Mesure et Integration Cheat Sheet HIM7

Soit E un ensemble quelconque soit $\mathcal{T} \subset P(E)$ (ensemble des parties de E); on dit que \mathcal{T} est une tribu sur E si et seulement si \mathcal{T} vérifie les conditions suivantes:

- $\varnothing, E \in \mathcal{T}$
- $\forall A \in \mathcal{T}$ on a $A^c \in \mathcal{T}$
- $\forall (A_n)_n$ familles dénombrables de \mathcal{T} on a $\bigcup_n A_n \in \mathcal{T}$ dans ce cas-là on dit que (E,T)est un espace mesurable.

Soit *E* un ensemble quelconque:

- $\mathcal{T} = P(E)(E, P(E))$ est un espace mesurable.
- $\mathcal{T}_1 = \emptyset$, $E(E, \mathcal{T}_1)$ est un espace mesurable.

Soient E un ensemble quelconque et $C \in P(E)$ on appelle tribu engendrée par C la plus petite tribu sur E, c'est aussi l'intersiction de toutes les tribus sur E qui contient la partie C on la note $\sigma(C)$.

tribu borélienne

Soit E un espace topologique (ou métrique) $\mathcal{C} = \{$ ouvert de $\mathbb{R} \}$; on appelle tribu borélienne (ou tribu de Borèl) la plus petite tribu sur E qui contient les ouverts de E

Mesure Positive -

Une mesure positive sur (E, \mathcal{T}) est une application :

$$\mu: \mathcal{T} \longrightarrow \overline{\mathbb{R}}_+$$
 $A \longrightarrow \mu(A)$

Qui verifie les proprietés suivantes:

- $\mu(\theta) = 0$
- Pour toute suite $(A_n)_n$ d élements de \mathcal{T} disjoints deux à deux $(A_n \cap A_m = \emptyset \forall m \neq n)$ on a $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ avec la série:

$$\sum_{n} \mu(A_n) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A_j)$$

Dans ce cas là ,on dit que (E, \mathcal{T}, μ) est un espace mesuré.

Soit (E.T. μ) espace mesuré

- la mesure μ est dite fini si et seulement si $\mu(E) < \infty$
- la mesure μ esi dite mesure probabilité ou une probabilité si et seulement si $\mu(E) = 1$
- la mesure μ est σ fnis s'ile existe une suite $(A_n)_n$ de \mathcal{T} tel que E= $\bigcup_n A_n \forall n$

Si μ est finie alors μ σ finie. (la mesure de Lebesgue est δ finie Mais n'est pas finie.)

Soit (E, \mathcal{T}, μ) espace mesure soit $A \subset E_t$ on dit que A est un ensemble μ négligeable si et seulement si il 'existe $B \in \mathcal{T}$ tel que $A \subset B$ et $\mu(B) = 0$

Si $A \in \mathcal{T}$, A est dite négligeable si $\mu(A) = 0$.

Pour la mesure de Dirac en x_0 , toute ensemble ne contient pas x_0 sont négligeables.

Proposition 1.2.1

Soit (E, \mathcal{T}, μ) un espace mesure Alors :

- Si $A, B \in \mathcal{T}$ et $A \subset B \Longrightarrow \mu(A) \leq \mu(B)$
- Soit $(A_n)_n$ une suite de \mathcal{T} tel que $A_n \subset A_{n+1} \forall n$ Alors on a:

$$\mu\left(\bigcup_{n} A_{n}\right) = \sup_{n} \mu\left(A_{n}\right) = \lim_{x \to +\infty} \mu\left(A_{n}\right)$$

• Soit $(A_n)_n$ une suite de T tel que $A_{n+1} \subset A_n \forall n$ et il existe n_0 tel que $\mu\left(A_{n_0}\right) < \infty$ Alors on a:

$$\mu\left(\bigcap_{n} A_{n}\right) = \inf_{n} \mu\left(A_{n}\right) = \lim_{x \to +\infty} \mu\left(A_{n}\right)$$

• Soit $(A_n)_n$ une suite quelconque de T Alors on a:

$$\mu\left(A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)$$

Soit $A \in \mathcal{P}(\mathbb{R})$, et soit $\lambda^* : \mathcal{P}(\mathbb{R}) \longrightarrow [0, +\infty]$ telle que $\lambda^*(A) =$ $\inf \left\{ \sum_{n} (b_n - a_n) / A \subset \bigcup_{n} a_n, b_n \right\}$

 λ^* est bien définie et vérifie :

- $\lambda^*(\emptyset) = 0$
- Pour tout $A, B \in \mathcal{P}(\mathbb{R})$ tels que $A \subset B$ on a $\lambda^*(A) \leq \lambda^*(B)$
- Pour toute suite $(A_n)_n$ de $\mathcal{P}(\mathbb{R})$, on a:

$$\lambda^* \left(\bigcup_n A_n \right) \le \sum_n \lambda^* \left(A_n \right)$$

Il existe une et une seule mesure sur $\mathcal{B}(\mathbb{R})$, notée λ et appelée mesure de Lebesgue sur les boréliens de \mathbb{R} tel que: Pour tout $\alpha, \beta \in \mathbb{R}$.

$$\lambda((\alpha,\beta)) = \beta - \alpha$$

Remarque : λ^* n'est pas une mesure sur $P(\mathbb{R})$. λ^* est définie sur l'ensemble de toutes les parties de \mathbb{R} . Cette mesure sera la restriction de l'application λ^* sur une nouvelle tribu.

Une partie E de $\mathcal{P}(\mathbb{R})$ est dite λ^* -mesurable si

$$\lambda^*(A) = \lambda^*(E \bigcap A) + \lambda^* \left(E^c \bigcap A \right)$$

est vérifiée pour toute partie $A \in \mathcal{P}(\mathbb{R})$ On note alors \mathcal{L} l'ensemble de toutes les parties λ^* -mesurable.

Proposition

Soit $m: \mathcal{B}(\mathbb{R}) \longrightarrow \mathbb{R}^+$ une mesure qui vérifie $m(K) \leq +\infty$ pour tout Kcompact de \mathbb{R} . On pose $\mathcal{T} = \{A \in \mathcal{B}(\mathbb{R}) / \text{ tel que pour tout } \epsilon \geq 0$, il existe O_{ϵ} ouvert de \mathbb{R} et il existe F_{ϵ} fermé de \mathbb{R} tel que $F_{\epsilon} \subset A \subset O_{\epsilon}$ et $m(O_{\epsilon} \backslash F_{\epsilon}) \leq \epsilon$ Alors \mathcal{T} est une tribu sur \mathbb{R} .

fonctions mesurables

Soient (E, A) et (F, τ) deux espaces mesurables et $f: E \to F$ une application. On dit que f est mesurable sur E ssi: $\forall B \in \tau$ $f^{-1}(B) \in \mathcal{A}$.

Proposition 3.1.1

Soient $(E_1, \mathcal{M}_1), (E_2, \mathcal{M}_2), (E_3, \mathcal{M}_3)$ des espaces mesurables; $f_1: E_1 \to E_2$ et $f_2: E_2 \to E_3$ des fonctions mesurables. Alors $f_2 \circ f_1: E_1 \to E_3$ est aussi mesurable.

Soit $f:(E,A)\to (F,B)$ une application. Si $\mathcal{B}=\sigma(\mathcal{C})$ (La tribu \mathcal{B} est engendree par la classe C), Alors :

$$(f \text{ est mesurable}) \iff (\forall B \in \mathcal{C}f^{-1}(B) \in \mathcal{A})$$

Corollaire 3.1.2

Soit $f:(E,\mathcal{A})\longrightarrow \mathbb{R}$.

$$(f \text{ est mesurable}) \iff (\forall a \in \mathbb{R} : f^{-1}(]-\infty, a[) \in \mathcal{A})$$

- $f^{-1}(] \infty, a[) = \{x \in E/f(x) < a\} = [f < a].$ $f^{-1}(]b, +\infty[) = \{x \in E/b < f(x)\} = [b < f].$

Corollaire 3.1.3

f est mesurable ssi : $\forall b \in \mathbb{R}$ on $a[b < f] \in \mathcal{A}$

Définition 3.2.1.

Soient (E_1, β_1) , (E_2, β_2) des espaces mesurables.

On $a: E_1 \times E_2 = \{(x,y)/x \in E_1, y \in E_2\}$ est un ensemble mesurable avec $(E_1 \times E_2, \sigma(C))$ et $C = \{A_1 \times A_2 / A_1 \in \beta_1, A_2 \in \beta_2\}$

Proposition 3.2.2

Soit $f_1, f_2 : (E, A) \to \mathbb{R}$ fonctions mesurables, avec (E, A) un espace.

$$f_1 + f_2 : (E, \mathcal{A}) \longrightarrow \mathbb{R}$$

 $x \longmapsto f_1(x) + f_2(x)$

est une fonction mesurable.

Proposition 3.2.1

Soient $(E_1, \mathcal{A}) \cdot (F_i, \beta_1) \cdot (F_2, \beta_2)$ des espaces mesurables $f_1: (E, \mathcal{A}) \to (F_1, \beta_1)$ et $f_2: (F_1, \beta_1) \longrightarrow (F_2, \beta_2)$ forctions mesurables. Alors l'application :

$$f: (E, \mathcal{A}) \longrightarrow (F_1 \times F_2, \sigma(\mathcal{C}))$$

 $x \longmapsto (f_1(x), f_2(x))$

Avec $C = \{A_1 \times A_2 / A_1 \in \beta_1, A_2 \in \beta_2\}$ est mesurable.

Théorème 3.2.1

Théorème 3.2.1. : Il y a équivalence entre :

- f est mesurable.
- $\forall a \in \mathbb{R}, [f > a] \in \mathcal{A}$
- $\forall a \in \mathbb{R}, [f < a] \in \mathcal{A}$
- $\forall a \in \mathbb{R}, [f \ge a] \in \mathcal{A}$
- $\forall a \in \mathbb{R}, [f \leq a] \in \mathcal{A}$

Théorème 3.2.2

soit (E,\mathcal{A}) un espacs nuesurable, et $f,g:(E,\mathcal{A})\longrightarrow \overline{\mathbb{R}}$ applications mesurables. Alors fg est aussi mesurable.

Remarque 3.2.1

comme conséquence, on a αf est mesurable pour tout $\alpha \in \mathbb{R}$ et f une fonction mesurable.

Corollaire 3.2.1

Comme conséquences des résultats précedents si f et g sont mesurables. ona $[f < g] \in \mathcal{A}, [f \leq g] \in \mathcal{A}, [f = g] \in \mathcal{A}, [f \neq g] \in \mathcal{A}.$

Proposition 3.2.3

Si $f:(E,\mathcal{A})\longrightarrow \overline{\mathbb{R}}$ mesurable. Alors $|f|,f^+,f^-$ sont aussi mesurables. On note $f^+=\sup(0,f)$ et $f^-=\sup(-f,0)$. Alors on peut caractériser f^+ et f^- par :

$$f^+ = \frac{f + |f|}{2}$$
 , $f^- = \frac{|f| - f}{2}$

Proposition 3.2.4

Soit f_n une suite de fonctions mesurables, on a : sont des fonctions mesurables.

1)
$$\inf_{n} f_{n}$$
, 2) $\sup_{n} f_{n}$, 3) $\lim_{\bar{n}} f_{n}$, 4) $\lim_{n} f_{n}$

Corollaire 3.2.2

Soit (E, A) un espace mesurable.

- Si $(f_n)_n$ une suite de fonctions de E dans $\overline{\mathbb{R}}$ mesurable, et si $f_n \to f$ simplement. Alors $f: E \longrightarrow \overline{\mathbb{R}}$ est mesurable.
- Si $f_n: E \longrightarrow \overline{\mathbb{R}}_+$ est mesurable. Alors $\sum_n f_n: E \longrightarrow \overline{\mathbb{R}}_+$ est mesurable.

Définition 3.3.1

Soit (E, A) un espace mesurable.

Une fonction $f: E \to \mathbb{R}$ est dite étagée ssi il existe $(\alpha_1, \dots, \alpha_{p_0})$ dans \mathbb{R} et il existe $(A_1, A_2, \dots, A_{p_0})$ des élèments de \mathcal{A} tel que

$$f = \sum_{i=1}^{p_0} \alpha_i 1_{Ai}$$

Remarque 1

Soit $A \in \mathcal{A}$. On a

$$\begin{split} 1_A : E &\longrightarrow \mathbb{R} \\ x &\longmapsto \begin{cases} 1 & \text{ si } x \in A \\ 0 & \text{ sinon.} \end{cases} \end{split}$$

Pour $a \in \mathbb{R}$, on a $[1_A < a] = \{x \in E/1_A(x) \le a\}$

$$[1_A < a] = \begin{cases} \phi \text{ si } a \le 0\\ A^c \text{ si } 0 < a \le 1\\ E \text{ si } a > 1 \end{cases}$$

D'où $[1_A < a] \in \mathcal{A}$ ceci $\forall a \in \mathbb{R}$. Ainsi 1_A est une fonction mesurable.

• conclusion:Toutes les fonctions étagées sont mesurables.

Théorème 3.3.1.

Soit (E,\mathcal{A}) un espace mesurable, et soit $f:E\longrightarrow \mathbb{R}^+$. Alors on a l'équivalence suivante:

- *f* est une fonction mesurable.
- f est une limite de suite $(f_n)_n$ étagées vérifiant:
 - a) $f_n \leq f$
 - b) $(f_n) \uparrow$
 - c) $f_n \longrightarrow f$ simplement.

Définition 3.4.1

Soit (E, A, μ) un espace mesuré.

Soient $f_n: E \to \overline{\mathbb{R}}$ et $f: E \longrightarrow \overline{\mathbb{R}}$ fonctions mesurables. On dit que $f_n \to f$ μ presque partout (note $\mu.p.p$) ssi il existe $A \in \mathcal{A}$ tel que $\mu(A^c) = 0$ et $\forall x \in A$ on a $f_n(x) \longrightarrow f(x)$.

Remarque 3

 $f_n \longrightarrow f \text{ simplement} \Longrightarrow f_n \longrightarrow f \mu.p.p. \operatorname{car} \mu(\phi) = 0.$

Théorème 3.4.1. (Thèorème d'Egorov)

Soient (E, \mathcal{A}, μ) un espace mesuré fini $(\mu(E) < +\infty) \cdot (f_n)_n$, $f: E \longrightarrow \mathbb{R}$ mesurables tel que $f_n \longrightarrow f\mu.p.p$. Alors :

 $\forall \varepsilon > 0 \exists A \in \mathcal{A} \text{ tel que } \mu(A) < \varepsilon \text{ et } f_n \longrightarrow f \text{ uniformement sur } (A^c).$

Lemme 4.1.1.

Soit $f \in \varepsilon_+$ et soient deux décompositions de f suivantes :

$$f = \sum_{i=1}^{n} \alpha_i 1_{Ai} = \sum_{j=1}^{m} \beta_j 1_{Bj}$$

avec $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{R}_+^*$ et $(\beta_1, \beta_2, \cdots, \beta_m) \in \mathbb{R}_+^*$

 $(A_i)_i$ sont disjoints deux à deux et (B_i) s swì disjoints deux à deux. Alors :

$$\sum_{i=1}^{n} \alpha_{i} \mu \left(A_{i} \right) = \sum_{j=1}^{m} \beta_{j} \mu \left(B_{j} \right)$$

Définition 4.1.2.

Soit (E, \mathcal{A}, μ) un espace mesuré et $f \in \varepsilon_+$. On appelle intégrale de f par rapport à la mesure μ le réel.

$$\int f d\mu = \sum_{i=1}^{n} \alpha_{i} \mu \left(A_{i} \right)$$

où $f = \sum_{i=1}^{p} \alpha_i 1_{Ai} \alpha_i \in \mathbb{R}_+^*$ et $A_i \in \mathcal{A}$ disjoints deux à deux.

• Notation : $\int f d\mu \text{ peut être noté } \int_{E} f d\mu \text{ ou } \int_{E} f(x) d\mu(x) \text{ ou } \int_{E} f(x) \mu(dx) \text{ ou } < f, \mu >.$

Remarque 4.1.1

• Si $f \in \varepsilon_+$ et f = 0

 \Longrightarrow

 $\int f d\mu = 0.$

- $\forall f \in \varepsilon_+ \Longrightarrow \int f d\mu \ge 0$.
- Si $\mu(E) = 0 \Longrightarrow \int f d\mu = 0$.

Proposition 4.1.1

- si $\alpha > 0$ et $f \in \varepsilon_+$, alors $\int (\alpha f) d\mu = \alpha \int f d\mu$.
- $\forall f, g \in \varepsilon_+$ on a $\int (f+g)d\mu = \int fd\mu + \int gd\mu$
- $\forall f, g \in \varepsilon_+ f \leq g \Longrightarrow \int f d\mu \leq \int g d\mu$

Lemme 4.2.1.

Soit (E,\mathcal{A},μ) un espace mesuré soient $(f_n)_n$, $(g_n)_n$ deux suites des forctions étagées positives croissantes qui convergent vers une fonction $f\in M$. Alors

$$\lim_{n} \int f_n d\mu = \lim_{n} \int g_n d\mu$$

Définition 4.2.1.

Soit $f \in M_+$ on définit :

$$\int f d\mu = \lim_{n} \left(\int f_n d\mu \right)$$

où $(f_n)_n$ suite croissante de fonction de ε_+ qui converge simplement vers f

Proposition 4.2.1

Soit $f, g \in M_+$ et $\alpha > 0$

Alor

- $\forall f,g \in M_+$ on a $\int (f+g)d\mu = \int fd\mu + \int gd\mu$
- Si $\alpha > 0$ et $f \in M_+$ on a $\int (\alpha f) d\mu = \alpha \int f d\mu$

Théorème de Beppolevi

Soit f_n une suite dans M_+ croissante Alors

$$\int \left(\sup_{n} f_{n}\right) d\mu = \sup_{n} \int f_{n} d\mu$$

c'est à dire

$$\int \left(\lim_{n} f_{n}\right) d\mu = \lim_{n} \int f_{n} d\mu$$

Remarque 4.3.1

 $Si(f_n)_n$ sont dans M_+ , c'est exactement la définition de l'intégrale.

Corollaire 4.3.1

Soit (E, A, μ) un espace mesure pour tout suite $(f_n)_n$ dans M_+ on a :

$$\int \sum_{n} f_n d\mu = \sum_{n} \int f_n d\mu$$

lemme de fatou

Soit $(f_n)_n$ une suite dans M_+ Alors :

$$\int \left(\liminf_{n} f_{n} \right) d\mu \le \liminf_{n} \left(\int f_{n} d\mu \right)$$

Définition 4.4.1

Soit (E,\mathcal{A},μ) un espace mesuré

On dit que f est intégrable si et seulement si $\int |f| d\mu$ existe (si $\int |f| d\mu = \infty$ alors f n'est pas intégrable)

(si $\int |f| d\mu = \infty$ alors f n'est pas integrable dans ce cas là ,on dit que $f \in \mathcal{L}^1$

avec:

$$\mathcal{L}^1 = \left\{ f \in M ext{ tel que } \int |f| d\mu < \infty
ight\}$$

Définition 4.4.2

Soit (E,\mathcal{A},μ) un espace mesuré et soit $f\in\mathcal{L}^1$ on appelle intégrale de f noté $\int f d\mu$ le nombre

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

Remarque 4.4.1

Si $f \in \mathcal{L}^1$, alors $f^+ \le |f|$ et donc $\int f^+ d\mu < \infty$. De même, on a $f^- \le |f|$ donc $\int f^- d\mu < \infty$. Comme $|f| = f^+ + f^-$, on a $\int |f| d\mu = \int f^+ d\mu + \int f^- d\mu$.

Proposition 4.4.1.

Soit (E, \mathcal{A}, μ) un espace mesuré et $\mathcal{L}^1 = \{f \in M \text{ tel que } \int |f| d\mu < \infty\}$. Alors on a :

- \mathcal{L}^1 est un espace vectoriel.
- L'application $f \longrightarrow \int f d\mu$ est linéaire.

Proposition 4.4.2

Soit $f \in M^+$. Alors :

$$\int f d\mu = 0 \Leftrightarrow f = 0\mu.p.p$$

Corollaire 4.4.1

Soient $f, g \in \mathcal{L}^1$. On a :

- $f \leq g..\mu.p.p \Longrightarrow \int f d\mu \leq \int g d\mu$
- $f = g..\mu.p.p \iff \int f d\mu = \int g d\mu$

Remarque 4.4.2

Pour tout $f \in \mathcal{L}^1$, on a :

$$\left| \int f d\mu \right| \le \int |f| d\mu$$

convergence monotone

Soit $(f_n)_n$ une suite de fonctions dans \mathcal{L}^1 croissante. Alors

- $(f_n)_n$ converge vers une fonction $f \in M$
- $\int f d\mu = \sup_n \int f_n d\mu = \lim_n \int f_n d\mu$

convergence dominée/de Lebesgue

Soit (E, A, μ) un espace mesuré et $(f_n)_n$ une suite de fonctions dans M vérifiant :

- f_n converge vers $f\mu.p.p$ (f est une fonction mesurable).
- il existe g dans \mathcal{L}^1 tel que $\forall n | f_n | \leq g..\mu.p.p.$

Alors $f \in \mathcal{L}^1$ et :

$$\int f d\mu = \lim_{n} \int f_n d\mu$$

Définition 5.0.1.

Soit (E, μ) un espace mesuré.

Soient $1 \le p < +\infty$ et $f: E \to \mathbb{R}$ une fonction mesurable.

On dit que $f \in \mathcal{L}^p$ si et seulement si $|f|^p \in \mathcal{L}^1$ (i.e $\int |f|^p d\mu \le +\infty$).

Proposition 5.0.1.

Soit (E, μ) un espace mesuré et $1 \le p \le +\infty$. \mathcal{L}^p est un espace vectoriel.

Proposition 5.3.2

Soit (E,μ) un espace mesuré et $f\in\mathcal{M}^+$. Si $\int fd\mu\leq +\infty$ alors $f<+\infty..\mu$ presque partout.

Définition 5.0.2.

On définit sur \mathcal{L}^p la relation d'équivalence suivante:

 $f\mathcal{R}g$ si et seulement si $f = g..\mu$ presque partout.

et on note L^p l'ensemble de toutes les classes d'équivalences de l'esvaces L^p , on on céfinit $f \in L^p$ si et seulement si :

$$\left(\int |f|^p\right)^{\frac{1}{p}} < +\infty$$

où f est un représentant de sa propre classe.

Cela implique clairement que l'application $f \longrightarrow (\int |f|^p)^{\frac{1}{p}}$ est une norme sur L^p et $(L^p, \|\cdot\|_p)$ est un espace vectoriel normé.

Définition 5.0.3

Définition 5.0.3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de L^p , soit $f\in L^p$.

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p si et seulement si :

$$\lim_{n \to +\infty} \|f_n - f\|_p = 0$$

Théorème 5.0.3.

Soit $p \ge 1$, et soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de l'espace L^p vérifiant :

- $(f_n)_{n\in\mathbb{N}}$ converge vers $f\mu$ presque partout.
- il existe une fonction g dans L^p vérifiant:

$$|f_n| \leq g$$
 μ presque partout

pour tout $n \in \mathbb{N}$

Alors $f \in L^p$ et $(f_n)_{n \in \mathbb{N}}$ converge vers f dans L^p

Théorème 5.1.1. (De Fatou)

Soit $(E,,\mu)$ un espace mesuré et soit $(f_n)_{n\in\mathbb{N}}$ une suite de l'espace L^p . Soit $f\in\mathcal{M}$ une fonction telle que $(f_n)_{n\in\mathbb{N}}$ converge vers $f..\mu$.p.p. L'implication suivante est valide :

Si la limite $\lim_{n\to+\infty} \|f_n\|_p \neq +\infty$ alors $f\in L^p$.

Riesz-Fischer

Soit (E, μ) un espace mesuré, soit $p \ge 1$. Alors $(L^p, \|\cdot\|_p)$ est un espace de Banach.

Corollaire 5.3.1.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de L^p qui vérifie :

- $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p
- $(f_n)_{n\in\mathbb{N}}$ converge vers $g..\mu$ presque partout

Alors $f = g\mu$ presque partout et $g \in L^p$.

Corollaire 5.3.2.

Si $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p , alors il existe une sous suite $\left(f_{\varphi(n)}\right)_{n\in\mathbb{N}}$ de la suite $(f_n)_{n\in\mathbb{N}}$ qui converge μ presque partout vers f.

Corollaire 5.3.3

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans L^p telle que $(f_n)_{n\in\mathbb{N}}$ converge vers une fonction $f\mu$ presque partout.

Alors $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p et $f\in L^p$. (avec $p\neq\infty$)

Proposition 5.3.1.

Soit (E, μ) un espace mesuré tel que $\mu(E) \le +\infty$ et soient $p, q \ge 1$ vérifiant $1 \le p \le q < \infty$. Alors $L^q \subset L^p$.

Remarque 5.2.1

Dans la preuve, on a si $(f_n)_n$ est une suite de Cauchy dans L^p alors elle admet une sous suite $(f_{\varphi(n)})_n$ qui converge μ presque partout vers $f \in L^p$ uniformément.

Définition 5.1.1.

Soient (E, μ) un espace mesuré et soit l'application $f: E \to \overline{\mathbb{R}}$.

On dit que l'application f est essentiellement bornée ou que $f \in \mathcal{L}^{\infty}$ si et seulement s'il existe c > 0 vérifiant :

 $|f| \le c$ μ presque partout

Si $f \in \mathcal{L}^{\infty}$, on pose :

 $||f||_{\infty} = \inf\{c > 0 | |f| \le c \text{ in presque partout } \}$

Proposition 5.1.1

Si $f \in \mathcal{L}^{\infty}$ on a : $|f| \leq ||f||_{\infty} \mu$ presque partout.

Complétude dans le cas de L

Soit (E, μ) un espace mesuré. Alors $(L^{\infty}, \|.\|_{\infty})$ est complet.

Inégalité de Young

Soient $p, q \ge 1/\frac{1}{p} + \frac{1}{q} = 1$, alors pour tout $x, y \ge 0$ on a

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$$

Soient (E, μ) un espace mesuré, $1 \le p, q < +\infty$. $\frac{1}{p} + \frac{1}{q} = 1$ $f \in \mathcal{L}^p, g \in \mathcal{L}^q$, Alors on a : $fg \in \mathcal{L}^1$

• $\int |f||g|d\mu \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \left(\int |g|^q d\mu\right)^{\frac{1}{q}}$

Soient (E, μ) un espace mesuré, $p \ge 1, \mathcal{L}^p \ni$

 $f,g:E\longrightarrow \mathbb{R}.$

Alors on $a: f+g \in \mathcal{L}^p$ et :

$$\left(\int |f+g|^p d\mu\right)^{\frac{1}{p}} \leq \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$$

Soit (E, μ) un espace mesuré et (U, d) un espace métrique. Soit l'application:

$$f: E \times U \longrightarrow \mathbb{R}$$

 $(x,t) \longrightarrow f(x,t)$

On suppose que:

- L'application $t \to f(x,t)$ est continue sur $U\mu$ presque partout suivant la
- Il existe $g \in L^1|f(.,t)| \leq g$ pour tout $t \in U$ et μ presque partout suivant la variable x.

Alors l'application:

$$F: U \to \mathbb{R}$$

$$t \to F(t) = \int_E f(x, t) d\mu(x)$$

est continue sur U.

Dérivabilité sous le signe intégral

Soit (E, μ) un espace mesuré et I un intervaile ouvert de \mathbb{R} . On considere l'application:

$$f: E \times I \to \mathbb{R}$$

 $(x,t) \longrightarrow f(x,t)$

vérifiant:

- L'application $t \to f(.,t)$ est dérivable dans $I\mu$ presque partout sur E.
- n existe $g \in L^1 \left| \frac{\partial f}{\partial t}(.,t) \right| \leq g$ pour tout $t \in I\mu$ presque partout sur E.

Alors l'application :

$$F: U \longrightarrow \mathbb{R}$$

$$t \longrightarrow F(t) = \int_{\mathbb{R}} f(x, t) d\mu(x)$$

est dérivable sur I.