TD2:

Exercice 1. Nous considérons les relations suivantes :

- 1. $E = \mathbb{N}, x\mathcal{R}y \Leftrightarrow x = -y,$
- 2. $E = \mathbb{R}, x\mathcal{R}y \Leftrightarrow \cos^2 x + \sin^2 y = 1.$

Ces relations sont-elles réflexives, antisymétriques, symétriques, transitives? Sont-elles des relations d'ordre, d'équivalence?

<u>Exercice</u> 2. Soit E l'ensemble des diviseurs positifs de 60, soient x et y des éléments de E, soient A et B des parties de E. On définit les relations binaires R, S et T sur E par :

$$xRy \leftrightarrow x \ divise \ y$$
 $xSy \leftrightarrow x - y \ multiples \ de \ 5$ $ATB \leftrightarrow A \ inclus \ dans \ B.$

Repondre par vrai ou faux

- R est une relation d'équivalence
- S est une relation d'équivalence
- T est une relation d'équivalence
- R est une relation d'ordre
- S est une relation d'ordre
- T est une relation d'ordre
- T est un ordre total
- T est un ordre partiel
- A-t-on 6 appartient à 15 suivant S?
- 10 suivant S a 6 éléments dans E?

Exercice 3. Soit $E = \{1; 2; 3; 4, 5\}$ et \mathcal{R} la relation binaire sur E dont le graphe est : $\{(1,1); (1,2); (1,4); (2,1); (2,2); (2,4); (3,3); (3,5); (4,1), (4,2); (4,4); (5,3); (5,5)\}$

- 1. Vérifier qu'il s'agit d'une relation d'équivalence.
- 2. Déterminer la classe de 2, notée $\overline{2}$.
- 3. Déterminer le quotient E/\mathcal{R} .

Exercice 4. Dans \mathbb{N}^* , on considère la relation notée | qui est la relation divise, a|b se lit a divise b ou encore b est un multiple de a; la définition mathématique de cette relation étant

$$a|b$$
 si et seulement si $\exists k \in \mathbb{N}^*$, $b = ka$.

1. Démontrer que c'est une relation d'ordre sur \mathbb{N}^* . Cet ordre est-il total? Donner des éléments comparables et non comparables.

- 2. *On considère la relation divise sur* $E = \{2, 4, 6, 8, 10, 12\}.$
 - (a) Construire le diagramme sagital de cette relation.
 - (b) Donner deux minorants et deux majorants de E.
 - (c) E admet-il un maximun? un mnimum?
 - (d) Donner deux minorants et deux majorants de $V = \{2, 4\}$ dans E.
 - (e) $U = \{4, 6, 8\}$ admet-il une borne supérieure, borne inférieure dans E? dans \mathbb{N}^* ?

Exercice 5. On munit l'ensemble $\mathbb{R} \times \mathbb{R}$ de la relation binaire notée \triangle , définie par : pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}$ et $(a,b) \in \mathbb{R} \times \mathbb{R}$,

$$(x,y) \triangle (a,b) \Leftrightarrow x < a \quad ou \quad (x=a \quad et \quad y=b).$$

Démontrer que la relation \triangle *est une relation d'ordre total sur* $\mathbb{R} \times \mathbb{R}$.

Exercice 6. 1. Soit f l'application de l'ensemble $\{1, 2, 3, 4\}$ dans lui-même définie par :

$$f(1) = 4,$$
 $f(2) = 1$ $f(3) = 2,$ $f(4) = 2.$

Déterminer $f^{-1}(A)$ lorsque $A = \{2\}$, $A = \{1, 2\}$, $A = \{3\}$.

- 2. Soit g l'application de \mathbb{R} dans \mathbb{R} définie par $g(x) = x^2$.
 - (a) Déterminer g(B) lorsque B = [-2; -1], B = [1, 2]
 - (b) Déterminer $g^{-1}(C)$ lorsque $C = \{1\}$, C = [1, 2].
 - (c) Déterminer $g^{-1}(g(D))$ pour D = [0, 1].
 - (d) Déterminer $g(g^{-1}(E))$ pour E = [-1, 0].

Exercice 7. Soient A, B et C des ensembles et $f: A \rightarrow B$ et $g: B \rightarrow C$ des applications.

- 1. Montrer que $g \circ f$ injective $\Rightarrow f$ injective.
- 2. Montrer que $g \circ f$ surjective $\Rightarrow g$ surjective.

Exercice 8. 1. Soit f définie de \mathbb{R}^2 dans \mathbb{R}^2 par

$$\overline{f}(x;y) = (x; xy - y^3)$$
. f est-elle injective, surjective, bijective?

2. Soit h l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par h(x;y)=(2x+y-1;-3x+2y+2). Démontrer que h est une bijection et déterminer sa bijection réciproque h^{-1} .

Exercice 9. Vrai ou faux?

- 1. 0 est élément neutre de la soustration dans \mathbb{Z} ;
- 2. Les ensembles suivants, munis de la multiplication des réels sont-ils des groupes?
 - (a) $\{1, -1\}$;
 - (b) $\{1, -1, \frac{1}{2}, 2\}$
- 3. On considère le groupe $(\mathbb{C}\setminus\{0\},\times)$ formé de l'ensemble des nombres complexes non nuls, muni de la multiplication.

L'application qui à $z \in \mathbb{C} \setminus \{0\}$ associe z^2 est un automorphisme de $(\mathbb{C} \setminus \{0\}, \times)$;

- 4. Tout élément de $\mathbb{R}\setminus\{0\}$ est son propre inverse pour la division.
- 5. Le nombre de sous groupes d'un groupe est supérieur ou égal à 2;
- 6. Soit (G, .) un groupe. Soit C la partie de G définie par :

$$C = \{ x \in G / \forall x \in G, \ xy = yx \}.$$

C est un sous groupe de G;

- 7. Si un anneau possède des éléments inversibles, alors c'est un corps;
- 8. Deux groupes isomorphes ont le même élément neutre.

Exercice 10. Dans l'ensemble des nombres réels, on définit la loi de composition interne $"\star"$ par $\forall a,b\in\mathbb{R},\ a\star b=a$

- 1. " \star " est elle associative?
- 2. " *" admet elle un élément neutre?
- *3.* "★" est elle commutative?

Exercice 11.

 $Soit * la loi définie sur <math>\mathbb{R}$ par

$$\forall (x,y) \in \mathbb{R}^2 \qquad x * y = x \times y + (x^2 - 1) \times (y^2 - 1)$$

où $x^2 = x \times x$ et $y^2 = y \times y$ avec + et \times les opérations usuelles sur \mathbb{R} .

- 1. La loi * est-elle associative sur \mathbb{R} ? Commutative sur \mathbb{R} ?
- 2. Vérifier que \mathbb{R} possède un élément neutre pour la loi *.
- 3. La loi * confère-t-elle à $\mathbb R$ une structure de groupe?
- 4. Calculer le(s) symétrique(s) du réel 2 pour la loi *.
- 5. Résoudre les équations suivantes : 2 * x = 2, 2 * x = 5.

Exercice 12. On note

$$H = \{x + y\sqrt{3} / x^2 - 3y^2 = 1 \text{ et } (x, y) \in \mathbb{Z}^2\}.$$

- 1. Justifier que $H \subset \mathbb{R} \setminus \{0\}$;
- 2. Établir que (H, \times) est un sous-groupe de $(\mathbb{R}\setminus\{0\}, \times)$, $(\times$ désigne la multiplication usuelle dans $\mathbb{R})$

Exercice 13.

On définit sur \mathbb{R} les lois * et \top par

$$x * y = ax + by - 1 \quad (a \in \mathbb{R}, b \in \mathbb{R}), \qquad x \top y = x + y - x \times y$$

 $avec + et \times les$ opérations usuelles sur \mathbb{R}

- 1. (a) Déterminer des conditions sur a et b pour que * soit commutative dans \mathbb{R} .
 - (b) Déterminer des conditions sur a et b pour que * soit associative dans \mathbb{R} .
- 2. *On pose* a = b = 1.
 - (a) Montrer que $(\mathbb{R}, *)$ est un groupe commutatif.
 - (b) Montrer que la loi \top est distributive par rappport à la loi *.
 - (c) $(\mathbb{R}, *, \top)$ est il un corps commutatif?