

Feature Selection

```
recap: PCA

| Thear comb of old features to new feature

| Semester 1, 2021
| Subset of feature | Ling Luo
```

Outline

- Feature selection methods
 - Wrappers
 - Embedded
 - Filtering
- Filtering methods
 - Pointwise Mutual Information (PMI)
 - Mutual Information (MI)
 - χ^2
- Common issues

Machine Learning

Outlook	Temp	Humidity	Windy	Play?
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
				•••

How to do supervised machine learning?

- 1) Pick a feature representation
- if feature violates some assumption model, then the evaluation result can be bad

- 2) Compile data
- 3) Pick a suitable model
- 4) Train the model
- 5) Classify validation/test data, evaluate results
- 6) Go to Step 1

Machine Learning

- Our tasks as Machine Learning experts:
 - Choose a model suitable for classifying the data according to the attributes
 - Choose useful attributes for classifying the data according to the model

What are good features?

- Main goal:
 - Better performance according to some evaluation metric
- Side goals:
 - Seeing important features can suggest other important features
 - Fewer features → smaller models → faster answer
 - More accurate answer >> faster answer

```
if time complexity is not a big issue
```

Methods

- Filtering

```
Wrappers | Ofull wrapper: subset of attribute
| 
                                                                                                                                                                                                                                                                                                                                                              regression with regularisation & LAGO 4
Ridge
```

Wrappers

- Choose subset of attributes that give best performance on the validation data
- For example, for the weather data

Train model on:

{Outlook} {Temperature} ... {Outlook, Temperature} ... {Outlook, Temperature, Humidity} ...

Evaluate

0.65
0.6
•••
0.75
•••
0.8

Pick the best feature set

Wrappers

- Advantage:
 - Can find the feature set with optimal performance on validation data for this learner
- Disadvantage:
 - Not practical, takes a long time

brute force approach

Wrappers

all combinations

- How long does the full wrapper method take?
 - Assume we have a fast method (e.g. Naïve Bayes) over a data set of medium size (~50K instances)
 - If each train-evaluate cycle takes 10 seconds to complete,
 - For m attributes

- (2^m-1) combinations $\rightarrow \approx \frac{2^m}{6}$ minutes
- $m = 10 \rightarrow \approx 3 \text{ hours}$
- $m = 60 \rightarrow \approx 3.2^{15} \text{ hours}$
- Only practical for very small data sets

- Greedy Approach: sequential forward selection
 - Train and evaluate model on each single attribute
 - Choose the best attribute eg A
 - Until convergence:

conside ¿A. ? y where ? belongs to the remaining set

- Train and evaluate model on best attribute(s), plus each remaining single attribute
- Choose best attribute out of the remaining set
- Termination condition: performance (e.g. accuracy) stops increasing

measurement metric: final prediction aunracy

- Greedy Approach: sequential forward selection
 - Running time: takes $\frac{m(m+1)}{2}$ ($\rightarrow = m + (m-1) + \dots + 1$) cycles for m attributes $O(m^2)$
 - In practice, converges much more quickly than this
 - Can convergence to a sub-optimal (or even bad) solution
 - Assumes independence of attributes

- Ablation Approach: sequential backward selection
 - Start with all attributes
 - Remove one attribute, train and evaluate model
 - Until divergence:
 - From remaining attributes, remove each attribute, train and evaluate model with likely redundant feature
 - Remove attribute that causes least performance degradation
 - Termination condition: performance (e.g. accuracy) starts to degrade by more than threshold ε

- Ablation Approach: sequential backward selection
 - Advantages:
 - Removes most of irrelevant attributes at the start
 - Performs best when the optimal subset is large
 - Disadvantages:

- O(m²) early iteration with more attributes can be slones
- Running time: cycles can be slower with more attributes
- Not feasible on large data sets

Embedded

- Embedded methods: in-built feature selection
 Models perform feature selection as part of the algorithm, for example:
 - Decision trees
 - Regression model with regularisation, e.g. linear regression with L1-norm regularisation (LASSO) (more about this later)
- Still benefit from other feature selection approaches

Filtering Methods

don't need to train model don't rely on model prediction

- Intuition: evaluate "goodness" of each attribute
- Most popular strategy
- Consider each attribute separately: linear time in number of attributes

- What makes a single feature good?
 - Well correlated with interesting class

eg. decision tree

use gain ratio

(has been embedded

to decision tree)

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

Which attribute, a_1 or a_2 , is good?

as

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

a₁ is probably good

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

a₂ is probably not good

Filtering Methods

- · Pointwise Mutual Information (PMI) dependency of two variable
- Mutual Information (MI)
- χ^2

Pointwise Mutual Information

 Independence: the following formula holds if attribute A is independent from class C

$$P(A,C) = P(A)P(C)$$
 $P(C|A) = P(C) \Rightarrow A \land C \text{ are independent}$
 $P(C|A) \Rightarrow P(C) \Rightarrow P(C|A) \Rightarrow P$

- If $\frac{P(A,C)}{P(A)P(C)} \gg 1$, attribute and class occur together much more often than randomly.
- If $\frac{P(A,C)}{P(A)P(C)} \approx 1$, attribute and class are independent, and they occur together as often as we would expect from random chance.
- If $\frac{P(A,C)}{P(A)P(C)} \ll 1$, attribute and class are negatively correlated. $P(C(A) = P(C) \rightarrow \text{negatively correlated}$.

Pointwise Mutual Information

Pointwise Mutual Information

there feature have pair their positive [0] regarding
$$P(a,c)$$

$$PMI(A = a, C = c) = \log_2 \frac{P(a,c)}{P(a)P(c)}$$

 Best attributes: most correlated with class, the attributes with greatest PMI

PMI Example

a ₁	a ₂	C
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

 $P(a_1)$ means $P(a_1 = Y)$, Y is the "interesting" value of a binary attribute

$$P(a_1) = \frac{2}{4}, P(c) = \frac{2}{4}, P(a_1, c) = \frac{2}{4}$$

$$PMI(a_1, c) = \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_2 2 = 1$$

PMI Example

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

$$P(a_{2}) = \frac{2}{4}, P(c) = \frac{2}{4}, P(a_{2}, c) = \frac{1}{4}$$

$$PMI(a_{2}, c) = \log_{2} \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

$$PMI(a_{2}, c) = \log_{2} \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} = \log_{2} 1 = 0$$

Find Good Features

Summary: What makes a single feature good?

- Well correlated with interesting class
 - Knowing a lets us predict c with more confidence
- Reverse correlated with interesting class
 - Knowing \bar{a} (not a) lets us predict c with more confidence
- Well correlated or reverse correlated with uninteresting class
 - Knowing a lets us predict \bar{c} with more confidence
 - Usually not quite as good, but still useful
- Φ reverse correlated with uninteresting class \overline{a} and \overline{c}

Mutual Information (use entropy) TIXIY)=HIX|Y)-HIX)

1(x, 4)+[0, +10)

• Mutual Information: consider the PMIs of all the combinations of a, \overline{a} and c, \overline{c}

$$MI(A,C) = P(a,c) \left| \overline{\log_2 \frac{P(a,c)}{P(a)P(c)}} + P(\bar{a},c) \log_2 \frac{P(\bar{a},c)}{P(\bar{a})P(c)} + P(\bar{a},\bar{c}) \log_2 \frac{P(\bar{a},\bar{c})}{P(\bar{a})P(\bar{c})} + P(\bar{a},\bar{c}) \log_2 \frac{P(\bar{a},\bar{c})}{P(\bar{a})P(\bar{c})} \right|$$

Often written more compactly as:

binary.
$$MI(A,C) = \sum_{i \in \{a,\bar{a}\}} \sum_{j \in \{c,\bar{c}\}} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)}$$

0 log₂ 0 is defined as 0

Contingency Tables

Compact representation of these frequency counts

	a = Y	$a = N$, (\bar{a})	Total
c = Y	$\sigma(a,c)$	$\sigma(\bar{a},c)$	$\sigma(c)$
$c=N,(\bar{c})$	$\sigma(a,\bar{c})$	$\sigma(\bar{a},\bar{c})$	$\sigma(\bar{c})$
Total	$\sigma(a)$	$\sigma(\bar{a})$	М

• Compute P(a, c), P(a), P(c) etc. based on the table

$$P(a,c) = \frac{\sigma(a,c)}{M}$$

Contingency Tables

• Contingency Tables for toy example with attributes a_1 and a_2

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

• Contingency Tables for toy example: attribute a_1

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

$$P(a_1) = \frac{2}{4}, P(c) = \frac{2}{4}, P(\overline{a_1}) = \frac{2}{4}, P(\overline{c}) = \frac{2}{4}$$

$$P(a_1, c) = \frac{2}{4}, P(\overline{a_1}, c) = 0, P(a_1, \overline{c}) = 0, P(\overline{a_1}, \overline{c}) = \frac{2}{4}$$

• MI for a_1

$$\begin{split} MI(A,C) &= P(a_1,c) \log_2 \frac{P(a_1,c)}{P(a_1)P(c)} + P(\overline{a_1},c) \log_2 \frac{P(\overline{a_1},c)}{P(\overline{a_1})P(c)} + \\ &P(a_1,\bar{c}) \log_2 \frac{P(a_1,\bar{c})}{P(a_1)P(\bar{c})} + P(\overline{a_1},\bar{c}) \log_2 \frac{P(\overline{a_1},\bar{c})}{P(\overline{a_1})P(\bar{c})} \\ &= \frac{1}{2} \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} + 0 \log_2 \frac{0}{\frac{1}{2} \cdot \frac{1}{2}} + 0 \log_2 \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{2} \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} \\ &= \frac{1}{2} \cdot 1 + 0 + 0 + \frac{1}{2} \cdot 1 = 1 \end{split}$$

• Contingency Tables for toy example: attribute a_2

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

$$P(a_2) = \frac{2}{4}, P(c) = \frac{2}{4}, P(\overline{a_2}) = \frac{2}{4}, P(\overline{c}) = \frac{2}{4}$$

$$P(a_2, c) = \frac{1}{4}, P(\overline{a_2}, c) = \frac{1}{4}, P(a_2, \overline{c}) = \frac{1}{4}, P(\overline{a_2}, \overline{c}) = \frac{1}{4}$$

• MI for a_2

$$\begin{split} MI(A,C) &= P(a_2,c) \log_2 \frac{P(a_2,c)}{P(a_2)P(c)} + P(\overline{a_2},c) \log_2 \frac{P(\overline{a_2},c)}{P(\overline{a_2})P(c)} + \\ &P(a_2,\bar{c}) \log_2 \frac{P(a_2,\bar{c})}{P(a_2)P(\bar{c})} + P(\overline{a_2},\bar{c}) \log_2 \frac{P(\overline{a_2},\bar{c})}{P(\overline{a_2})P(\bar{c})} \\ &= \frac{1}{4} \log_2 \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{4} \log_2 \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{4} \log_2 \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{4} \log_2 \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} \\ &= 4 \cdot \frac{1}{4} \cdot 0 = 0 \end{split}$$

 a_1 is better than a_2

- Similar idea with MI, but different solution
- Conduct statistical test to check the independence of a feature and the class
- Contingency table

	a = Y	$a=N,(\bar{a})$	Total
c = Y	W	X	W + X
$c = N, (\bar{c})$	Y	Z	Y + Z
Total	W + Y	X + Z	М

- If a and c were independent, what value would we expect to be in W?
- Independence $\rightarrow P(a,c) = P(a)P(c)$

$$\frac{\sigma(a,c)}{M} = \frac{\sigma(a)}{M} \cdot \frac{\sigma(c)}{M}$$

$$\sigma(a,c) = \frac{\sigma(a)\sigma(c)}{M}$$

$$E(W) = \frac{(W+Y)(W+X)}{W+X+Y+Z}$$

- Compare the value actually observed O(W) with the expected value E(W) ($W = \sigma(a,c)$)
 - $O(W) \gg E(W)$: a occurs more often with c than we would expect at random **predictive** positively correlated
 - $O(W) \ll E(W)$: a occurs less often with c than we would expect at random **predictive**negatively correlated
 - $O(W) \approx E(W)$: a occurs as often with c as we would expect at random **not predictive**
- Similarly with *X*, *Y*, *Z*

Calculation

$$\chi^{2} = \frac{(O(W) - E(W))^{2}}{E(W)} + \frac{(O(X) - E(X))^{2}}{E(X)} + \frac{(O(Y) - E(Y))^{2}}{E(Y)} + \frac{(O(Z) - E(Z))^{2}}{E(Z)}$$

$$\chi^{2} = \sum_{i \in \{a, \bar{a}\}} \sum_{j \in \{c, \bar{c}\}} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}}$$

- Fit χ^2 to a chi-square distribution
- χ^2 becomes much greater when |O E| is large but E is small
- High value of χ^2 indicates the dependency between a feature and the class.

Chi-Square Example

• Contingency Tables for toy example attribute a_1

Observed values

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

Expected values (independent)

a_1	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

Chi-Square Example

• χ^2 for a_1

$$\chi^{2} = \frac{(O_{a,c} - E_{a,c})^{2}}{E_{a,c}} + \frac{(O_{\bar{a},c} - E_{\bar{a},c})^{2}}{E_{\bar{a},c}} + \frac{(O_{a,\bar{c}} - E_{\bar{a},c})^{2}}{E_{a,\bar{c}}} + \frac{(O_{\bar{a},\bar{c}} - E_{\bar{a},\bar{c}})^{2}}{E_{\bar{a},\bar{c}}}$$

$$= \frac{(2-1)^{2}}{1} + \frac{(0-1)^{2}}{1} + \frac{(0-1)^{2}}{1} + \frac{(2-1)^{2}}{1}$$

$$= 4$$

Chi-Square Example

• Contingency Tables for toy example attribute a_2

Observed values

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

Expected values (independent)

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

Chi-Square Example

• χ^2 for a_2

$$\chi^{2} = \frac{(O_{a,c} - E_{a,c})^{2}}{E_{a,c}} + \frac{(O_{\bar{a},c} - E_{\bar{a},c})^{2}}{E_{\bar{a},c}} + \frac{(O_{a,\bar{c}} - E_{\bar{a},c})^{2}}{E_{a,\bar{c}}} + \frac{(O_{\bar{a},\bar{c}} - E_{\bar{a},\bar{c}})^{2}}{E_{\bar{a},\bar{c}}}$$

$$= 0$$

- All observed values are equal to expected values
- Higher χ^2 indicates dependency, so a_1 is more predictive than a_2

Common Issues

Types of Attributes

Nominal attributes of multiple values - one-hot

Outlook = {sunny, overcast, rainy}

```
sunny = [1,0,0]
```

- Strategy 1: Treat as multiple binary attributes
 - Convert to three features
 Outlook = sunny → sunny = Y, overcast = N, rainy = N
 - Use measures as given
 - But results can be difficult to interpret regarding the original feature

For example, Outlook=sunny is useful, but Outlook=overcast and Outlook=rainy are not useful... Should we use Outlook?

Types of Attributes

• Strategy 2: Expand formulae and contingency tables

Outlook	Sunny	Overcast	Rainy	Total
c = Y	U	V	W	U+V+W
c = N	X	Y	Z	X + Y + Z
Total	U + X	V + Y	W + Z	М

$$\begin{split} MI(Outlook,C) &= \sum_{i \in \{s,o,r\}} \sum_{j \in \{c,\bar{c}\}} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)} \\ & \text{ # of comb} = \text{ # of attributes * # of outcomes} \end{split}$$

Types of Attributes

Continuous Attributes

0 • Estimate probabilities P(a,c), P(a), P(c) etc. by fitting a distribution such as Gaussian

Discretise values

Multi-class Problems

- Multiclass classification tasks are usually much more difficult than binary classification task
- For example, predict geotag for Melbourne, Sydney, Brisbane, Perth and Adelaide based on words in a post
 - How about these features: swanston, fed, mcg,
 - docklands, afl?

 good to distinguish Me! from other cities
 but they may not be predictive enough for other classes

 Need to make a point of selecting features for each class to give our classifier the best chance of predicting every class correctly. (not just predict one class)

Summary

- Feature selection methods
 - Wrappers, embedded and filtering
- Popular filters: PMI, MI and χ^2
 - How to use them? What are the results going to look like?
- Importance of feature selection
 - necessary for distance-based models, e.g. kNN curse of dimensionality

- Naive Bayes/Decision Trees, to a lesser extent
- SVMs can work well without feature selection

References

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduction to Data Mining. Pearson, 2018.
- Ian Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.
- Isabelle Guyon, and Andre Elisseeff. 2003. An introduction to variable and feature selection. The Journal of Machine Learning Research. Vol3, 1157–1182
- Yiming Yang, Jan Pedersen. 1997. A Comparative Study on Feature Selection in Text Categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, 412–420

accurate model

uncorrelation between features >> more info high correlation between feature and label

	Question 2 1/1p
	Using full Wrapper method, the best model with 4 features always contains the set of features involved in the best model with 3 features.
	○ True
Correct!	® False
	Using full Wrapper method, it compares all combinations of features, and the best model with 4 features may not contain the set of features involved in the best model with 3 features. For example, two features working well together
	may be selected in 4-feature model, which replaces a certain feature in the best model with 3 features. However, for greedy approach wrapper, this statement is true, because greedy approach adds feature incrementally.

	Question 3	0 / 1 pt	
	Which one of the following choices is an ideal value for PMI between the the class?	feature and	
	\bigcirc + ε (a small positive value)		
	0 0		
errect Answer	O +∞		
ou Answered	◎ 1		
	PMI is defined as log (P(a, b)/P(a)P(b)), which can be converted to log (P(a b)/P(a)). In the ideal case, the input and the output are highly corre that $P(a b) \approx 1$, and when P(a) is a small proability value, in theory PMI to infinity.		

PCA - feature reduction approach rather than feature selection