

Proves d'Hipòtesis amb Variables Qualitatives

Curs d'Estadística Bàsica per a la Recerca Biomèdica

UEB – VHIR

Miriam Mota-Foix i Alex Sánchez-Pla

Miriam.mota@vhir .org alex.sanchez@vhir.org

QUÈ VEUREM?

- 1. INTRODUCCIO
- 2. Contrastos per a una proporció
- 3. Contrastos per a dues proporcions
- 4. Anàlisi de taules de contingència
 - 1. Prova khi-quadrat
 - 2. Test de Fisher
 - 3. Test de Mcnemar

Introducció

- Si la variable d'interès és categòrica la forma de resumir-la és mitjançant una proporció.
- Podem plantejar diversos tests
 - Sobre una variable (proves amb proporcions)
 - La proporció (% d'afectats) coincideix amb un valor donat?
 - La proporció (% d'afectats) és la mateixa en dues poblacions?
 - Sobre dues variables (khi-quadrat i relacionades)
 - Hi ha associació entre dues variables categòriques?
 - Hi ha relació entre els valors d'una variable categòrica abans i després d'un tractament?

Study relating smoking and Cancer

Load data: "dadescancer.csv"

	Smoking X=1	Non smoking X=0	TOTAL
CANCER Y=1	190	87	277
NO CANCER Y=0	60	163	223
TOTAL	250	250	500

0	00000000 00000000 00000000 00000000 0000
0000000 0000000 0000000 0000000 0000000	0

0000000 0000000 0000000 0000000 0000000	0 0
0	00000000 00000000 00000000 00000000 0000

00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000

Contrast per a una proporció

- Objectiu: comprovar si la proporció de successos en una variable categòrica observada en una població s'ajusta a una proporció de referència p_0 .
- Suposarem que es disposa d'una mostra de mida n.
- El contrast es planteja com:

```
H0: p = p0 vs H1: p ≠ p0 ó
H0: p = p0 vs H1: p < p0</li>
H0: p = p0 vs H1: p > p0
```


Contrast de proporcions amb R

D'ESTADÍSTICA I BIOINFORMÀTICA

Exercici 1) diabetes.sav:

- Explora les dades diabetes per tenir una idea del percentatge de morts en la nostra mostra.
- Fes el mateix per a la segona hipótesis.

Contrast de proporcions amb R

- Els tests de proporcions amb R commander necessiten que proporcionem tot el vector de dades.
- La instrucció d'R
 prop.test permet fer-ho
 amb els comptatges

```
> prop.test(x=25, n=149, p=0.3)
1-sample proportions test with
    continuity correction
data: 25 out of 149, null
    probability 0.3
X-squared = 11.781, df = 1,
p-value = 0.0005983
alternative hypothesis: true p is
    not equal to 0.3
95 percent confidence interval:
 0.1134978 0.2396854
sample estimates:
        р
0.1677852
```


Contrasts de proporcions amb Rcmdr

- Els tests de proporcions amb R commander necessiten que proporcionem tot el vector de dades.
- Proporció morts a la "població" = ?

ALERTA! Com estan endreçats els nivells de les variables?

Datos/Modificar variables del conjunto de datos activo / Reordenar niveles del factor

Contrastos per 2 proporcions

Comparació entre (dues) proporcions

- Objectiu: comprovar si una variable binomial mesurada en dues poblacions diferents presenta la mateixa proporció de successos en totes dues.
- es disposa d'una mostra aleatòria simple per a cadascuna de les poblacions, de grandària respectiva n_1 i n_2 , \widetilde{p}_i és la freqüència relativa de successos a la població i.
- El contrast es planteja com:

```
    H0: p1 = p2 vs H1: p1 ≠ p2
    ó
    H0: p1 = p2 vs H1: p1 < p2</li>
```

- H0: p1 = p2 vs H1: p > p2

Comparació entre (dues) proporcions

D'ESTADÍSTICA I

- Compare % by group H0: p1 = p2
- Test z for comparing proportions

```
Frequency table:
Percentage table:
                                    mort
    mort
                                chd Muerto Vivo
chd Muerto Vivo Total Count
                                  No
     13.1 86.9 100
     24.0 76.0 100
        2-sample test for equality of proportions without continuity correction
data: .Table
X-squared = 2.8105, df = 1, p-value = 0.09365
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.24448030 0.02710656
sample estimates:
   prop 1
            prop 2
0.1313131 0.2400000
```


Relació entre variables categòriques

 taula de contingència : classificació d'observacions d'acord a 2 característiques qualitatives, una d'elles determina les files i l'altre les columnes.

Clasif	B_{I}	B_2		\mathbf{B}_{s}	Total
A_{I}	n_{11}	n_{12}	•••	n_{1s}	$n_{I\bullet}$
A_2	n_{21}	n_{22}	•••	n_{2s}	$n_{2\bullet}$
•••					
A_r	n_{r1}	n_{r2}		n_{rs}	n_{rullet}
Total	$n_{\bullet l}$	n _{•2}		n_{\bullet_S}	N

- quan la mostra correspon a una única població amb individus classificats d'acord a 2 variables qualitatives, l'objectiu és determinar si existeix relació entre les variables: és una prova d'independència.
- quan cada fila correspon a una mostra d'una població diferent l'objectiu és determinar si les diferents poblacions tenen diferències significatives en la variable estudiada: és una prova d'homogeneïtat de poblacions.

Prova d'independència Khi-quadrat

• Objectiu: comprovar en una única població la possible dependència de dues variables categòriques A_1 , amb categories $(A_1, ..., A_r)$, i B_1 , amb categories $(B_1, ..., B_s)$:

Per tant

H₀: La gravetat del tumor i la mutació **son independents.**

H₁: La gravetat del tumor i la mutació estan relacionats

 Aquest test requereix que un 80% de les categories tinguin 5 o més observacions

El test de Fisher

- El test khi quadrat pot ser inexacte amb mostres petites.
- El test de Fisher calcula la probabilitat d'observar el valor de test igual o més gran al observat construïnt totes les possibles taules
- S'anomena test exacte perque no fa servir una distribució sino que es calcula de nou per cada taula de dades → Millor opció que la khi-quadrat

2 variables independents

- Compare H0: Two variables are independent
- Chi squared test

Calcul 2 variables R

😱 Introducir una tabla de doble entrada	
Tabla Estadísticos	
Número de filas: 2	
Número de columnas: 2	
Introducir las frecuencias:	
Canc No c	
No F 20 3	
Tabla Estadísticos	
Calcular porcentajes	
Porcentajes por filas Porcentajes por columnas	
Porcentajes totales	
○ Sin porcentajes 🖟	
Test de hipótesis ✓ Test de independencia Chi-cuadrado	
✓ Componentes del estadístico Chi-cuadrado	
Imprimir las frecuencias esperadas	
✓ Test exacto de Fisher	
Ayuda Seiniciar Aceptar	

Pearson's Chi-squared test

data: .Table X-squared = 5.1212, df = 1, p-

Fisher's Exact Test for Count Data

data: .Table

p-value = 0.03015

value = 0.02363

alternative hypothesis: true odds ratio is not equal to 1

El test de Mc Nemar

- Test de dades aparellades amb dades categòriques.
 - Per exemple si interessa determinar si un individu presenta certa característica abans o després d'una intervenció.
- En un aquest estudi trobem 4 possibles resultats
 - Característica present abans i després de la intervenció
 - Característica absent abans i després de la intervenció
 - Característica present abans i absent després de la intervenció.
 - Característica absent abans i present després de la intervenció.

Taula per al test de McNemar

Condició 1\2

Present

Absent

Present

n11

 n_{12}

Absent

 n_{21}

 n_{22}

Test de Mc Nemar

- H0: La probabilitat que la característica estigui present no canvia al fer la intervenció
- HA: La probabilitat es veu afectada per la intervenció.

 No es tracta com una taula de contingència sino com un test de proporcions aparellades.

Exemple Mcnemar

- Subjectes de l'estudi: 165 dones a les que es va demanar d'informar, després d'haver rebut un implant de silicona, si aquest s'havia deteriorat.
 - Aquesta possibilitat es va confirmar quirúrgicament
- Condicions (Cadascuna en totes les dones)
 - Auto informe de Presencia/Absencia de problemes
 - Confirmació quirúrgica de Presencia/Absencia

SELF * SURGICAL Crosstabulation

Count

		SURGICAL		
		Rupture	No Rupture	Total
SELF	Rupture	69	28	97
	No Rupture	5	63	68
Total		74	91	165

.Table <- matrix(c(69,28,5,63), 2, 2, byrow=TRUE) mcnemar.test(.Table)