Project Development Phase - Sprint 2

Date	31 October 2022
Team ID	PNT2022TMID45599
Project Name	A new hint to transportation – Analysis of the NYC bike share system.
Maximum Marks	20 Marks

Feature Engineering: calculating Age from birth year

from datetime import datetime, date age=2018-df['birth_year']

df['Age']=age df.head()

1	tripduration	starttime	stoptime	start station id	start station name	start station latitude	start station longitude	end station id	end station name	end station latitude	end station longitude	bikeid	usertype	birth_year	gender	tripduration_bins	Age
	11.583333	2013-06- 01 00:00:01	01	444	Broadway & W 24 St	40.742354	-73.989151	434.0	9 Ave & W 18 St	40.743174	-74.003664	19678	Subscriber	1983.0		(0.0, 30.0]	35.0
1	11.550000	2013-06- 01 00:00:08	01	444	Broadway & W 24 St	40.742354	-72.989151	434.0	9 Ave & W 18 St	40.743174	-74.003664	16649	Subscriber	1984.0		(0.0, 30.0]	34.0
3	2.050000	2013-06- 01 00:01:04	01	475	E 15 St & Irving Pi	40.735243	-73.987586	262.0	Washington Park	40.691782	-73.973730	16352	Subscriber	1960.0		(0.0, 30.0]	58.0
4	25.350000	2013-06- 01 00:01:22	01		Little West St & 1 Pl	40.705693	-74.016777	310.0	State St & Smith St	40.689269	-73.989129	15567	Subscriber	1983.0		(0.0, 30.0]	35.0
6	34.283333	2013-06- 01 00:02:33	01	285	Broadway & E 14 St	40.734546	-73.990741	532.0	S 5 PI & S 5 St	40.710451	-73.960876	15693	Subscriber	1991.0		(30.0, 60.0]	27.0

calculating age group from age

agegroup = pd.cut(df['Age'], bins=bins).value_counts()

max_limit = df['Age'].max()

max limit

Agegroup

bins = $[0,20,40,60,max_limit]$

```
(20.0, 40.0]
                 161563
(40.0, 60.0]
                 148805
(60.0, 119.0]
                 27014
(0.0, 20.0]
```

Name: Age, dtype: int64

calculating hour

peak_hour['Start Date'l pd.to_datetime(df['starttime']) peak_hour['Stop Date'l pd.to_datetime(df['stoptime']) peak_hour['year'] =peak_hour["Start Date"].dt.year peak_hour["Hour"] peak_hour["Start Date"].dt.hour

		Start Date	Stop Date	year	Hour	bikeid	1.					
	0	2013-06-01 00:00:01	2013-06-01 00:11:36	2013	О	19678						
	1	2013-06-01 00:00:08	2013-06-01 00:11:41	2013	0	16649						
	3	2013-06-01 00:01:04	2013-06-01 00:03:07	2013	О	16352						
	4	2013-06-01 00:01:22	2013-06-01 00:26:43	2013	0	15567						
	6	2013-06-01 00:02:33	2013-06-01 00:36:50	2013	О	15693						
	577687	2013-06-30 23:58:09	2013-07-01 00:05:25	2013	23	19454						
	577689	2013-06-30 23:57:52	2013-07-01 00:00:57	2013	23	16746						
	577690	2013-06-30 23:58:39	2013-07-01 00:08:34	2013	23	19290						
	577698	2013-06-30 23:59:27	2013-07-01 00:14:52	2013	23	15250						
	577700	2013-06-30 23:59:33	2013-07-01 00:02:14	2013	23	18910						
337382 rows × 5 columns												

Visualization of the dataset in COGNOS Platform:

Finding the number of trips per each bike:

Finding the percentage of customers and subscribers

istomer and Subscriber with Gender

Bike Usage - Bike Id Vs Trip Duration:

