Logic & Set Theory

3.AB PrelB Maths – Exam B

Unless specified otherwise, you are to **always** (at least briefly) explain your reasoning. Even in closed questions.

Logic - propositions and conjunctions.

a) Complete the truth table below.

[1	.5	%]	

p	q	$p \land \neg q$
1	1	
1	0	
0	1	0
0	0	0

In other words: evaluate the proposition $p \land \neg q$ for the truth values of p and q corresponding to the first two lines of the truth table. You **don't** have to **explain anything**.

b) Complete the blank square in proposition

$$[10 \%]$$

$$p - q$$

with some logical conjunction $(\land, \lor, \Rightarrow, \Leftrightarrow)$ to make it *equivalent* to $\neg(p \Rightarrow q)$. Two statements are *equivalent* if their truth tables are the same.

For convenience, the truth table of implication is shown below.

p	q	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Explain your choice.

Basic set operations.

a) Given sets $A=\{c,c,c,b,b,a\}$ and $B=\{a,b,c\}$, determine whether the statements [15 %]

$$A \subseteq B$$
 and $B \subseteq A$.

are true or false. **Explain** your method.

b) Write an expression (using set operations) for the shaded area in the diagram $[10\ \%]$ below.

Cartesian product and relations.

a) Into the diagram below, draw the relation R (using **arrows**) from A to B if

 $A = \{1, 3, 5, 7\}, B = \{0, 2, 4, 6\} \text{ and } R = \{(1, 2), (3, 6), (5, 0)\}.$

[15 %]

7 • • 6

5 • 4

3 • 2

1 • 0

A B

b) Draw again the relation R from the previous exercise together with the relation $S = \{(0, a), (2, c), (4, d)\}$ between sets R and $C = \{a, b, c, d\}$.

		6		
7	•	•	•	d
		4		
5	•	•	•	\boldsymbol{c}
		2		
3	•	•	•	\boldsymbol{b}
		0		
1	•	•	•	\boldsymbol{a}
	\boldsymbol{A}	\boldsymbol{B}	$oldsymbol{C}$	

Now it is your task to compose the relations R and S into one relation T that goes from A to C. This means that T firstly applies R to get from A to B. Then, on all the results of R (end of every arrow from a)) applies S which gets it from S to S. At the end, S forgets the element from S and ends up only with the beginning and the ending of the journey. **Write down** the relation T.

Equivalence.

a) One of the examples of an equivalence is **'what flavor of ice cream'** each person likes the most. Verify that it is truly an equivalence. In other words: it has to satisfy

[15 %]

[10 %]

- reflexivity: every element is equivalent to itself;
- **symmetry**: if a is equivalent to b, then b is equivalent to a;
- **transitivity**: if a is eq. to b and b is eq. to c, then a is eq. to c.

b) Come up with at **least three** other equivalences on the set of all people. Try to estimate the number of equivalence classes they create. For the maximum credit there should be one that creates **over 100** partitions and also one that creates fewer than two.

You **may not** use the equivalence from part a).