Salary Prediction With Simple Linear Regression

October 10, 2021

0.1 Simple linear Regression

- 0.1.1 Simple linear regression is a regression model that estimates the relationship between one independent variable and one dependent variable using a straight line. Both variables should be quantitative.
- 0.1.2 For example, the relationship between temperature and the expansion of mercury in a thermometer can be modeled using a straight line: as temperature increases, the mercury expands. This linear relationship is so certain that we can use mercury thermometers to measure temperature.

Simple linear regression formula The formula for a simple linear regression is: # y = B0 + B1X + e y is the predicted value of the dependent variable (y) for any given value of the independent variable (x).

B0 is the intercept, the predicted value of y when the x is 0.

B1 is the regression coefficient – how much we expect y to change as x increases.

x is the independent variable (the variable we expect is influencing y).

e is the error of the estimate, or how much variation there is in our estimate of the regression coefficient.

0.2 Importing the Libraries

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

- [2]: from sklearn.model_selection import train_test_split
 ## Splitting the dataset into the Training set and test set
- [3]: from sklearn.linear_model import LinearRegression
 ## Training the simple linear Regression Model
- [15]: import statsmodels.api as sm

0.3 Importing the Dataset

```
[4]: data_set = pd.read_csv('Salary_Data.csv')
[5]: x = data_set.iloc[:, :-1].values
    y = data_set.iloc[:, -1].values
```

0.4 Splitting the dataset into the Training set and test set

```
[16]: data_set.describe()
```

```
[16]:
             YearsExperience
                                      Salary
                   30.000000
                                   30.000000
      count
                    5.313333
                                76003.000000
     mean
      std
                    2.837888
                                27414.429785
                                37731.000000
     min
                    1.100000
      25%
                    3.200000
                                56720.750000
      50%
                    4.700000
                                65237.000000
      75%
                              100544.750000
                    7.700000
     max
                   10.500000 122391.000000
```

```
[7]: x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2, 

→random_state = 0)
```

0.5 Training the simple linear Regression Model on the Training set

```
[8]: regressor = LinearRegression()
regressor.fit(x_train, y_train)
```

[8]: LinearRegression()

0.6 Predicting the Test set result

```
[11]: y_predict = regressor.predict(x_test)
```

0.7 Visualising the Training set results

```
[12]: plt.scatter(x_train, y_train, color = 'red')
   plt.plot(x_train, regressor.predict(x_train), color = "blue")
   plt.title("Salary vs Experience [ Training Set]")
   plt.xlabel("Years of Experiences")
   plt.ylabel("Salary")
   plt.show()
```


0.8 Visualising the Test set results

```
[13]: plt.scatter(x_test, y_test, color = 'red')
   plt.plot(x_train, regressor.predict(x_train), color = "blue")
   plt.title("Salary vs Experience [ Test Set]")
   plt.xlabel("Years of Experiences")
   plt.ylabel("Salary")
   plt.show()
```


0.9 Regression Itself

```
[18]: x_stats = sm.add_constant(x)
results = sm.OLS(y,x_stats).fit()
results.summary()
```

[18]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Var:	iable:	У	R-sq	uared:		0.957				
Model:		OLS	Adj.	R-squared:		0.955				
Method:		Least Squares	F-st	atistic:		622.5				
Date:		Sun, 10 Oct 2021	Prob	(F-statisti	1.14e-20					
Time:		17:09:50	Log-	Likelihood:	-301.44					
No. Observations:		30	AIC:			606.9				
Df Residuals:		28	BIC:			609.7				
Df Model:		1								
Covariance Type:		nonrobust								
=======	coe:	======================================	t	P> t	[0.025	0.975]				
const	2.579e+0	4 2273.053	11.347	0.000	2.11e+04	3.04e+04				

x1	9449.9623	378.755	24.950	0.000	8674.119	1.02e+04
=======						
Omnibus:		2.1	40 Durbin	Durbin-Watson:		
Prob(Omnil	bus):	0.3	43 Jarque	-Bera (JB)	:	1.569
Skew:		0.3	63 Prob(J	B):		0.456
Kurtosis:		2.1	47 Cond.	No.		13.2

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[]: