CMPE 16 Homework # 2

John Allard, id:1437547

October 12th, 2014

1. Give the set represented by each of the expressions below where $A_1 = \{\Box, 2, 8, a, g\}, A_2 =$ $\{\triangle, -2, 8, a\}, A_3 = \{\Box, 12, 7, a, g\}, \text{ and } A_4 = \{\Box, \triangle, 2, 7, a, b, g\}.$ List each element in the set only once (i.e. $\{1,2\}$ instead of $\{1,2,2\}$).

(a) $A_1 \cup A_2$

Answer: $A_1 \cup A_2 = \{ \Box, 2, 8, a, g, -2, \triangle \}$

(b) $A_3 \cap A_4$

Answer : $A_3 \cap A_4 = \{ \Box, a, 7, g \}$

(c) $A_4 - A_1$

Answer: $A_4 - A_1 = \{\triangle, 7, b\}$

(d) $A_1 - A_4$

Answer : $A_1 - A_4 = \{8\}$

(e) $\bigcup_{i=1}^{4} A_i$ **Answer**: $\bigcup_{i=1}^{4} A_i = \{\Box, 2, 8, a, g, \triangle, -2, 12, b\}$

(f) $\bigcap_{i=1}^4 A_i$ Answer: $\bigcap_{i=1}^4 A_i = \{a\}$

- 2. For each of the sets below fill in the corresponding regions of a general Venn diagram for 3 sets. (The Venn diagram should have 3 sets in each case.) Answers on last page.
 - (a) $A \cup \overline{B} \cup C$
 - (b) $C (A \cap B)$
 - (c) $\overline{(B-C)\cup A}$
- 3. Write $\bigcup_{i\in\mathbb{Z}}(i,i+1)$ as the difference of two well known sets. Here (i,i+1) is the open interval of the real line with endpoints i and i+1. (That is, $(i, i+1) = x \in \mathbb{R} : i < x < i+1$).

Answer: The set $Y = \bigcup_{i \in \mathbb{Z}} (i, i + 1)$ can be written as the difference of \mathbb{R} and \mathbb{N} ; $Y = \mathbb{R} - \mathbb{N}$. This is because Y includes all numbers in \mathbb{R} up-to but not including the actual integer values in \mathbb{Z}

- 4. Using only the symbols 4, Z, S, P, W, $\emptyset, \subseteq, \in, \cup, \cap, -, =, \{, \}, \}$, (, and \neq , express the following statements
 - (a) 4 is pale and shy

Answer : $4 \in (P \cap S)$

(b) All worried integers are pale.

Answer: $W \subseteq P$

(c) Every integer is shy, worried, or pale.

Answer: $\mathbb{Z} \subseteq (P \cup S \cup W)$

(d) There are worried integers that are not shy.

Answer: $(W - S) \neq \emptyset$

5. Let P and Q be the statements

P I eat garlic.

Q I go to the dentist.

Rewrite each of the statements below using P and Q and logical connectives $(\neg, \land, \lor, \Longrightarrow)$.

(a) I don't eat Garlic

Answer : $\neg P$

(b) I don't go to the Dentist, but I eat garlic.

Answer : $\neg Q \land P$

(c) I eat garlic or I don't go to the dentist.

Answer: $P \vee \neg Q$

(d) Whenever I go to the dentist, I don't eat garlic.

Answer : $Q \implies \neg P$

6. Let P, Q and R be the statements

P I use plastic bags.

Q I use paper bags.

R I help the environment.

(a) $\neg P$

Answer: I do not use plastic bags

(b) $P \wedge Q$

Answer: I use plastic bags and I use paper bags

(c) $Q \Longrightarrow \neg R$

If I use paper bags, then I am not helping the environment.

(d) $\neg (P \implies R)$

It is not the case that if I use plastic bags I will help the environment.

- 7. Use a truth table to determine the values of each of the logical expressions below. Both of your truth tables should have at least 3 intermediate columns.
 - (a) $\neg (P \lor Q) \land \neg Q$
 - (b) $(P \lor Q) \land (Q \lor R) \land \neg (P \land R)$
- 8. Convert each of the following statements into the form If P then Q without changing their meanings. (Some of these statements might not be True and thats okay.)
 - (a) For a number to be prime, it must be greater than 1.

Answer: If x is prime then x > 1

(b) Whenever you bring an umbrella, it rains.

Answer: If I bring an umbrella, then it will rain.

(c) A number is prime only if it is not even.

Answer: If a number is not even, then it is prime.

(d) Either n > a or m > a if n + m > 2a

Answer : If n + m > 2a, then either $n > a \lor m > a$

- 9. As discussed in class, given a finite set S of size n and an ordering $s_1, s_2, ..., s_n$ of the n elements in S, we can represent the subsets of s using bit vectors of length n ($\{0,1\}^n$). For a subset $A \subseteq S$, the corresponding bit vector $b(A) = (b_1, b_2, ..., b_n)$ where $b_i = 1$ if $s_i \in A$ and $b_i = 0$ if $s_i \notin A$. Let S be the elements from the four sets in Problem 1 ordered as $\square, \triangle, -2, 2, 7, 8, 12, a, b, g$.
 - (a) Give the bit vector corresponding to \emptyset **Answer**: $\{0,0,0,0,0,0,0,0,0,0,0\}$
 - (b) Give the bit vector corresponding to the subset A_1 in Problem 1 **Answer**: $\{1,0,0,1,0,1,0,1,0,1\}$
 - (c) Give the bit vector corresponding to the subset A_2 in Problem 1 **Answer**: $\{0, 1, 1, 0, 0, 1, 0, 1, 0, 0\}$
 - (d) Give the bit vector corresponding to the subset A_3 in Problem 1 **Answer**: $\{1,0,0,0,1,0,1,1,0,1\}$
 - (e) Give the bit vector corresponding to the subset A_4 in Problem 1 **Answer**: $\{1, 1, 0, 1, 1, 0, 0, 1, 1, 1\}$
- 10. Given the bit vectors $\mathbf{b}(B) = (b_1, b_2, ..., b_n)$ and $\mathbf{b}(D) = (d_1, d_2, ..., d_n)$ representing two subsets B and D. In each case below explain how you would calculate the required bit vector (in general), and then apply your method to obtain the result for $B = A_1$ and $D = A_4$ from Problem 1.
 - (a) $\mathbf{b}(B \cup D)$

Answer: In general, if I want to find the union of two bit vectors representing subsets of the same set, I would simply perform a bitwise OR operation. The OR operation would put a 1 at any index where either B or D have 1's, which is the definition of union.

In the specific case of U = S, $B = A_1$, and $D = A_4$...

$$\mathbf{b}(A_1 \cup A_4) = \{x_1, x_2, ..., x_n : x_i = (B_i \text{ OR } D_i)\}$$
$$\mathbf{b}(A_1 \cup A_4) = \{1, 1, 0, 1, 1, 1, 0, 1, 1, 1\}$$

(b) $\mathbf{b}(B \cap D)$

Answer: In general, if I want to find the intersection of two bit vectors representing subsets of the same set, I would simply perform a bitwise AND operation. In the specific case of U = S, $B = A_1$, and $D = A_4$...

$$\mathbf{b}(A_1 \cap A_4) = \{x_1, x_2, ..., x_n : x_i = (B_i \text{ AND } D_i)\}$$
$$\mathbf{b}(A_1 \cap A_4) = \{1, 0, 0, 1, 0, 0, 0, 1, 0, 1\}$$

(c) $\mathbf{b}(B-D)$

Answer: To find the difference between the two subsets B and D, I would need to only take members which are in B but also not in D. More formally,

$$\mathbf{b}(B - D) = \{x_1, x_2, ..., x_n : x_i = (B_i \text{ AND } (\neg D_i))\}$$
$$\mathbf{b}(A_1 - A_4) = \{0, 0, 0, 0, 0, 1, 0, 0, 0, 0\}$$

(d) $\mathbf{b}(\overline{B})$

Answer : For sets, taking the compliment of a subset just means taking everything in the Universe that is not in that subset. In other words

$$\mathbf{b}(\overline{B}) = \{x_1, x_2, ..., x_n : x_i = (\neg B_i)\}$$

Figure 1: Venn Diagram for Problem 2a

Figure 2: Venn Diagram for Problem 2b

Figure 3: Venn Diagram for Problem 2c