SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING.

Tatjana Pavlenko

5 oktober 2018

Plan för dagens föreläsning

- Begrepp inom hypotesprövning (rep.)
- ▶ Tre metoder för att avgöra om H_0 ska förkastas.
- ▶ Styrkefunktionen (Kap. 13.4).
- ► Tillämpning på normalfördelning (Kap. 13.6).
- ► Användning av normalapproximation (Kap. 13.7).

BEGREPP INOM HYPOTESPRÖVNING (REP.).

- Vi betraktar den allmänna situationen: vi har ett stickprov $x = (x_1, \ldots, x_n)$ som är utfall av s. v. (X_1, \ldots, X_n) från någon fördelning $F_X(x; \theta)$.
- ▶ Vi vill testa en grundhypotes, eller *nollhypotes*, om θ : H_0 : $\theta = \theta_0$ mot en *alternativ hypotes*, H_1 , som kan vara *enkel*, H_1 : $\theta = \theta_1$, eller *sammansatt*, t ex H_1 : $\theta > \theta_0$. En hypotes av typ H_1 : $\theta > \theta_0$ eller H_1 : $\theta < \theta_0$ är *ensidig*, medan H_1 : $\theta \neq \theta_0$ är *tvåsidig*.

BEGREPP INOM HYPOTESPRÖVNING (REP.).

- För att testa H_0 definierar vi först en test variabel eller teststorhet, $t_{obs} = t(x)$ som är en observation av motsvarande stickprovsvariabel t(X). Vi kommer också att behöva testets signifikansnivån eller felrisk.
- ▶ Def: Med signifikansnivån, eller felrisken, α för ett test menas

$$\alpha = P(H_0 \text{ förkastas}) \quad \text{om } H_0 \text{ är sann.}$$

► Testet utformas på så sätt att felrisken blir liten. Vanliga nivåer är $\alpha = 0.05$, $\alpha = 0.01$, $\alpha = 0.001$. Jämför med felrisker vid konfidensintervall konstruktion!

Tre metoder för att avgöra om H_0 ska förkastas.

Testvariabelmetoden (rep.)

- ▶ Hitta en teststorhet t(X) och till den ett kritiskt område C.
- ► Testet blir då:

$$\text{Om} \; \left\{ \begin{array}{l} t_{obs.} \in \textit{C}\,, & \text{f\"orkasta} \,\textit{H}_{0} \\ t_{obs.} \notin \textit{C}\,, & \text{ej f\"orkasta} \,\textit{H}_{0}, \end{array} \right.$$

där det kritiska området C anpassas så att

$$P(H_0 ext{ f\"orkastas}) = P(t(X) \in C) = \alpha \quad H_0 ext{ \"ar sann}$$

och α är testets signifikansnivå som väljs på förhand.

► Tolkning:

Om H_0 förkastas så föreligger det ett signifikant avvikelse från nollhypotesen H_0 på nivån α .

Tre metoder för att avgöra om H_0 ska förkastas (forts.)

Direktmetoden (rep.)

- ▶ Direktmetoden baseras också på testvariabel, med det kritiska området preciseras inte utan man avgör bara vilka värden på testvariabel som tyder på att H_1 är sann, t ex $t(X) \ge C$.
- Det direkta med direktmetoden är att vi räknar ut ett storhet som direkt kan jämföras med felrisken! Metoden går till på följande sätt:
 - 1. Antag att H_0 är sann (dvs att det parametervärde den specificerar är det rätta värde).
 - 2. Räkna under H_0 ut
 - p-värdet = P(teststorhet blir minst lika extremt som observerat).
 - 3. Om p-värde är mindre än α (ofta $\alpha=0.05,0.01,0.001$) så förkastas H_0 med felrisk α .

Tre metoder för att avgöra om H_0 ska förkastas (forts.)

Direktmetoden.

- ► Tolkning: Om *p*-värde är litet (ofta < än 0.05, 0.01 eller 0.001) så tror vi inte på *H*₀. *p*-värde ger alltså ett mått på *hur orimlig H*₀ är.
- Beslutsregel:
 om p-värde < α så förkastas H₀.
- Detta i termer av testvariabelmetoden betyder att t_{obs}. hamnar i det kritiska området C.

Tre metoder för att avgöra om H_0 ska förkastas (forts.)

Konfidensmetoden.

- Konfidensmetoden går till på följande sätt:
 - 1. Beräkna ett konfidensintervall I_{θ} för parametern med samma felrisk som önskas för testet, dvs med konfidensgrad $1-\alpha$.
 - 2. Förkasta $H_0: \theta = \theta_0 \text{ om } \theta_0 \notin I_{\theta}$.
- Typen av konfidensintervall som ska beräknas beror på hur den alternativa hypotesen ser ut:
 - · om $H_1: \theta \neq \theta_0$ ska I_{θ} vara tvåsidigt,
 - · om $H_1: \theta > \theta_0$ ska I_θ vara ensidigt, nedåt begränsat,
 - · om H_1 : $heta < heta_0$ ska $I_ heta$ vara ensidigt, uppåt begränsat
- ▶ Tolkning: under antagande att H_0 är sann, dvs θ_0 är den sanna parametervärde

$$P(H_0 ext{ f\"orkastas}|H_0 ext{ \"ar sann}) = P(t(X) \in C)$$

= $P(\theta_0 \notin I_{\theta}) = 1 - (1 - \alpha) = \alpha$,

dvs testnivå är α .

EXEMPEL: RATTONYKTERHET (FORTS. FRÅN FÖRRA FÖRELÄSNING)

- ► Gränsen för rattonykterhet är 2‰.
- ► Modell: antag att ett mättning i är en observation av

$$X_i = \mu + \varepsilon_i$$
,

där μ är den sanna halten, $\varepsilon_i \in \mathcal{N}(0, \sigma)$ (ober. för i = 1, ..., n) är mätfel där σ antas vara känd, låt $\sigma = 0.04$.

För att avgöra om en person är skyldig till rattonykterhet kan man använda följande hypoteser:

$$H_0: \quad \mu = 0.2 \text{ (oskyldig)}$$

 $H_1: \quad \mu > 0.2 \text{ (skyldig)}.$

• Vi väljer felrisken, $\alpha = 0.001$, dvs

$$\alpha = P(\text{f\"orkasta } H_0 \text{ om } H_0 \text{ \"ar sann}).$$

EXEMPEL: RATTONYKTERHET (FORTS.)

Att H_0 förkastas innebär att vi finner en person skyldig och om H_0 är sann så är man oskyldig. Felrisk (signifikansnivån) blir alltså

$$P(\text{d\"{o}ma en oskyldig}) = 0.001.$$

Denna händelse inträffar i genomsnitt var tusende gång, dvs vi valde ganska låg felrisk.

- ▶ Tillämpning av de tre metoderna för att avgöra om H_0 ska förkastas i ex om rattonykterhet, på tavlan.
- Viktig! De tre metoderna för hypotesprövning är ekvivalenta, dvs ger alltid samma resultat. Detta gäller dock endast exakta test, inte alltid approximativa.

TVÅ TYP AV FEL VID HYPOTESPRÖVNING.

Hur bra ett test skiljer H_0 från H_1 ? Det finns två olika fel (felslutsatser) som kan inträffa vid hypotesprövning. Det brukar kallas

- fel av första slaget: att förkasta H₀ trots att H₀ är sann, (typ I-felet, den valda felrisken eller signifikansnivån, α)
- ► fel av andra slaget: att inte förkasta H₀ trots att H₁ är sann, (typ II-felet).
- Exempel: Test förmåga att förkasta H_0 då den inte är sann, t ex hur stor chans har man att klara sig om man är skyldig med en given promillehalt i exempel om rattonykterhet som togs upp? Vi ska i så fall räkna ut

 $P(\text{d\"omas med alkoholhalten }\mu)$

dvs, sannolikhet att dömas om μ är den sanna värde.

För detta brukar man ange testets *styrka* som funktion av parameter μ (allmänt θ).

STYRKEFUNKTION.

- ▶ Def. Styrkefunktionen, $h(\theta)$, för ett test definieras som
 - $h(\theta) = P(H_0 \text{ förkastas}) \text{ om } \theta \text{ är det rätta parametersvärde.}$
- Ett test är bra om
 - $h(\theta)$ är stor för alla $\theta \in H_1$. och $h(\theta)$ är liten för alla $\theta \in H_0$.
- Med hjälp av styrkefunktionen kan vi räkna ut typ I- och typ II-felet:

Typ I:
$$\alpha = P(H_0 \text{ f\"orkastas trots att den \"ar sann}) = h(\theta_0)$$

Typ II: $\beta = P(H_0 \text{ ej f\"orkastas om den ej \"ar sann utan} \theta_1 \"ar r\"att v\"arde) = $1 - h(\theta_1)$.$

- ▶ Plottar man styrkefunktionen kan man avläsa de båda felriskerna.
- ► Exempel: studera testets styrkefunktion för rattonykterhet exempel, på tavlan.

STYRKEFUNKTION (FORTS.)

För att se hur bra ett test skiljer H_0 från H_1 kan man använda styrkefunktion, $h(\mu)$, som är sannolikhet att H_0 förkastas då μ är rätt värde.

FIGUR: Vänster: styrkefunktionen för alkoholtestet. Höger: samma styrkefuntion samt hur den förändras då man fördubblar antalet mätningar till n=6 eller halverar observationernas $\sigma=0.02$ (t ex genom att köpa dyrare mätare). I båda fallen ökar testets benägenhet att fälla skyldiga persone

TILLÄMPNING PÅ NORMALFÖRDELNING: ALLMÄNT

Låt x_1, \ldots, x_n vara ett slumpmässigt stickprov från $N(\mu, \sigma)$.

Vi vill testa

$$H_0: \mu = \mu_0$$

och använder testvariabel metoden. Då är testvariabel

$$u(x) = \begin{cases} (\bar{x} - \mu_0)/D & \text{om } \sigma \text{ ar kand, } D = \sigma/\sqrt{n} \\ (\bar{x} - \mu_0)/d & \text{om } \sigma \text{ ar okand, } d = s/\sqrt{n} \end{cases}$$

▶ Om H_0 är sann, är dessa kvoter observationer av s.v som är N(0,1) respektive t(n-1) fördelad och vi får kritisk område C med hjälp av motsvarande λ - och t-kvantiler.

TILLÄMPNING PÅ NORMALFÖRDELNING: (FORTS.)

Beslutsregel erhålls beroende på utseendet hos den alternativa hypotesen H_1 :

- (a) Om $H_1: \mu \neq \mu_0$ (dvs tvåsidig alternativ), så förkastas H_0 om $|u(x)| \geq \lambda_{\alpha/2}$, respektive om $|u(x)| \geq t_{\alpha/2}(n-1)$.
- ▶ (b) Om $H_1: \mu > \mu_0$ (dvs ensidig alternativ), så förkastas H_0 om $u(x) > \lambda_{\alpha}$, resp. $u(x) > t_{\alpha}(n-1)$.
- (c) Om $H_1: \mu < \mu_0$ (dvs ensidig alternativ), så förkastas H_0 om $u(x) < \lambda_{\alpha}$, resp. $u(x) < t_{\alpha}(n-1)$.

ANVÄNDNING AV NORMALAPPROXIMATION.

▶ Har man approximativt normafördelad skattatre, dvs $\theta^* \in AsN(\theta, D(\theta^*))$ då kan man använda testvariabel

$$t(X) = \frac{\theta^* - \theta_0}{D(\theta^*)}$$
 om $D(\theta^*)$ är känd.

▶ Om $D(\theta^*)$ innehåller den parameter vi undersöker i H_0 då ska θ_0 , dvs värden från H_0 användas, vilket ger $D_0(\theta^*)$ och testvariabeln

$$t(X) = \frac{\theta^* - \theta_0}{D(\theta^*)}.$$

Annars används

$$t(X) = \frac{\theta^* - \theta_0}{d(\theta^*)}.$$

Kvoten ovan antas ungefär normalfördelad så att man kan utföra ett test på samma sätt som under normalantagande. Viktig! λ -kvantilen används och H_0 förkastas på approximativt nivån α .