Preticanje

Postoji samo jedna traka, u jednosmjernoj cesti od Zračne luke **dr. Franje Tuđmana** do hotela. Dugačka je L kilometara.

Tijekom IOI-ja 2007, N+1 buseva prolazi tom cestom. Busevi su označeni od 0 do N. Bus i ($0 \le i < N$) prema rasporedu napušta zračnu luku u T[i]-toj sekundi, i može prijeći jedan kilometar u W[i] sekundi. Bus N je rezervni bus koji može prijeći 1 kilometar u X sekundi. Vrijeme Y kada on napušta zračnu luku još nije odlučeno.

Preticanje na cesti nije dozvoljeno, no busevima je dozvoljeno preticati se na posebni **stanicama**. Postoji M (M>1) stanica, označenih od 0 do M-1, na različitim pozicijama na cesti. Stanica j ($0 \le j < M$) nalazi se S[j] kilometara daleko od zračne luke. Stanice su poredane uzlazno po udaljenosti od luke, točnije, S[j] < S[j+1] za svaki $0 \le j \le M-2$. Prva stanica je zračna luka, i zadnja stanica je hotel, točnije, S[0] = 0 i S[M-1] = L.

Svaki bus putuje maksimalnom brzinom, osim ako ne stigne do sporijeg busa koji putuje ispred njega, u kojem slučaju u trenutku kad ga dostigne, prisiljen je putovati istom brzinom kao i sporiji bus, dokgod ne dođu do sljedeće stanice. Stoga, brži busevi će uvijek preticati sporije buseve.

Točnije, za svaki i te j takav da $0 \le i \le N$ i $0 \le j < M$, vrijeme $t_{i,j}$ (u sekundama) kada bus i **stiže** na stanicu j određeno je na sljedeći način. Neja je $t_{i,0} = T[i]$ za svaki $0 \le i < N$, i neka je $t_{N,0} = Y$. Za svaki j takav da je 0 < j < M:

- Definiramo **očekivano vrijeme stizanja** (u sekundama) busa i na stanicu j, označeno kao $e_{i,j}$, kao vrijeme kada bi bus i stigao na stanicu j kada bi putovao punom brzinom od trenutka kada je stigao na stanicu j-1. Točnije, neka je
 - $\circ \ \ e_{i,j} = t_{i,j-1} + W[i] \cdot (S[j] S[j-1])$ za svaki $0 \leq i < N$, i
 - $\circ \ e_{N,j} = t_{N,j-1} + X \cdot (S[j] S[j-1]).$
 - o Bus i stiže na stanicu j u *maksimalnom* očekivanom vremenu stizanja među očekivanom vremenu stizanja busa i i svih buseva koji su na stanicu j-1 stigli prije busa i. Točnije, neka je $t_{i,j}$ maksimum od vrijednosti $e_{i,j}$ i svih vrijednosti $e_{k,j}$ za koje je $0 \le k \le N$ te $t_{k,j-1} < t_{i,j-1}$.

Gospodin Malnar moli Vas da izračunate vrijeme stizanja rezervnog busa (busa N). Vaš je zadatak odgovoriti na Q Malnarovih upita, koji su sljedećeg oblika: kada bi rezervni bus krenuo sa zračne luke nakon Y sekundi, kada bi stigao u hotel?

Implementacijski detalji

Vaš je zadatak implementirati sljedeće funkcije.

```
void init(int L, int N, int64[] T, int[] W, int X, int M, int[] S)
```

- *L*: duljina ceste
- *N*: broj buseva koji nisu rezervni
- T: niz duljine N koji opisuje vremena u kojima busevi koji nisu rezervni kreću sa zračne luke.
- ullet W: niz duljine N koji opisuje maksimalne brzine u kojima busevi koji nisu rezervni kreću sa zračne luke.
- ullet X: vrijreme koje je potrebno rezervnom busu kako bi prešao 1 kilometar
- M: broj stanica
- ullet S: niz duljine M koji opisuje udaljenosti stanica od zračne luke.
- Ova funkcija pozvana je točno jednom prije svih poziva funkcije arrival_time.

```
int64 arrival_time(int64 Y)
```

- Y: vrijeme kada rezervni bus (bus N) treba krenuti sa zračne luke
- Ova funkcija trebala bi vratiti vrijeme kad bi rezervni bus stigao u hotel.
- Ova funkcija bit će pozvana točno Q puta.

Primjer

Promatrajte sljedeći niz poziva funkcija.

Zanemarivši bus 4 (čije vrijeme polaska još nije određeno), sljedeća tablica prikazuje očekivana vremena stizanja i stvarna vremena stizanja buseva koji nisu rezervni na svaku stanicu.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180

Vremena stizanja na stanicu 0 su vremena u kojima busevi polaze sa zračne luke. Točnije, $t_{i,0}=T[i]$ za $0\leq i\leq 3$.

Očekivana i stvarna vremena stizanja na stanicu 1 mogu se izračunati na sljedeći način:

- Očekivana vremena stizanja na stanicu 1:
 - \circ Bus 0: $e_{0,1} = t_{0,0} + W[0] \cdot (S[1] S[0]) = 20 + 5 \cdot 1 = 25$.
 - \circ Bus 1: $e_{1,1} = t_{1,0} + W[1] \cdot (S[1] S[0]) = 10 + 20 \cdot 1 = 30$.
 - \circ Bus 2: $e_{2,1} = t_{2,0} + W[2] \cdot (S[1] S[0]) = 40 + 20 \cdot 1 = 60$.
 - $\circ \ \ \text{Bus 3:} \ e_{3,1} = t_{3,0} + W[3] \cdot (S[1] S[0]) = 0 + 30 \cdot 1 = 30.$
- Vremena stizanja na stanicu 1:
 - Busevi 1 i 3 stižu na stanicu 0 prije busa 0, stoga $t_{0,1} = \max([e_{0,1}, e_{1,1}, e_{3,1}]) = 30$.
 - Bus 3 stiže na stanicu 0 prije busa 1, stoga $t_{1,1} = \max([e_{1,1}, e_{3,1}]) = 30$.
 - \circ Bus 0, bus 1 i bus 3 stižu na stanicu 0 prije busa 2, stoga $t_{2,1}=\max([e_{0,1},e_{1,1},e_{2,1},e_{3,1}])=60.$
 - Nijedan bus ne stiže na stanicu 0 prije busa 3, stoga $t_{3,1} = \max([e_{3,1}]) = 30$.

Busu 4 treba 10 sekundi kako bi prešao 1 kilometar, i određeno je da kreće sa zračne luke u 0-toj sekundi. U tom slučaju, sljedeća tablica prikazuje vrijeme stizanja za svaki bus. Jedina promjena s obzirom na očekivano i stvarno vrijeme stizanja buseva koji nisu rezervni je podcrtana.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	<u>60</u>
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	0	10	10	30	30	60	60

Vidimo da bus 4 stiže u hotel u 60-toj sekundi. Stoga, funkcija treba vratiti 60.

Bus 4 sada treba kreunti sa zračne luke u 50-toj sekundi. U tom slučaju, nema promjena u vremenima stizanja za buseve koji nisu rezervni u usporedbi s početnom tablicom. Vremena stizanja prikazana su u sljedećoj tablici.

i	$t_{i,}$	0	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20)	25	30	40	40	55	55
1	10)	30	30	70	70	130	130
2	40)	60	60	100	100	160	180
3	0		30	30	90	90	180	180
4	50)	60	60	80	90	120	130

Bus 4 pretiče sporiji bus 2 na stanici 1 jer stižu u isto vrijeme. Sljedeće, bus 4 dostiže bus 3 između stanice 1 i stanice 2, stoga bus 4 stiže na stanicu 2 u 90-toj sekundi umjesto 80-te. Nakon napuštanja stanice 2, bus 4 stiže bus 1 dok ne stigne u hotel. Bus stiže u hotel u 130-toj sekundi. Stoga, funkcija bi trebala vratiti 130.

Možemo prikazati vrijeme potrebno svakom busu kako bi stigao do određene udaljenosti od zračne luke. Neka x-os prikazuje udaljenost od zračne luke (u kilometrima) i y-os prikazuje vrijeme (u sekundama). Okomite iscrtkane linije označavajnu pozicije stanica. Popunjene vodoravne linije (zajedno s oznakama buseva) prikazuju buseve koji nisu rezervni. Istočkana crna linija prikazuje rezervni bus.

Ograničenja

• $1 \le L \le 10^9$

- 1 < N < 1000
- $0 \leq T[i] \leq 10^{18}$ (za svaki i takav da $0 \leq i < N$)
- $1 \leq W[i] \leq 10^9$ (za svaki i takav da $0 \leq i < N$)
- $1 \le X \le 10^9$
- $2 \le M \le 1000$
- $0 = S[0] < S[1] < \cdots < S[M-1] = L$
- $1 \le Q \le 10^6$
- $0 \le Y \le 10^{18}$

Podzadatci

- 1. (9 bodova) $N=1, Q \leq 1\,000$
- 2. (10 bodova) $M = 2, Q \leq 1\,000$
- 3. (20 bodova) $N, M, Q \leq 100$
- 4. (26 bodova) $Q \le 5\,000$
- 5. (35 bodova) Nema dodatnih ograničenja

Probni ocjenjivač

Probni ocjenjivač učitava ulaz u sljedećem obliku:

- 1. redak: L N X M Q
- 2. redak: $T[0] T[1] \dots T[N-1]$
- 3. redak: W[0] W[1] \dots W[N-1]
- 4. redak: S[0] S[1] \dots S[M-1]
- (5+k). redak $(0 \le k < Q)$: Y za svaki upit k

Probni ocjenjivač ispisuje Vaše odgovore u sljedećem obliku.

• (1+k). redak ($0 \le k < Q$): vrijednost koju je funkcija arrival_time vratila pri upitu k