SIPMOS ® Power Transistor

- N channel
- Enhancement mode
- Avalanche-rated
- dv/dt rated
- 175°C operating temperature
- also in SMD available

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	l _D	R _{DS(on)}	Package	Ordering Code
BUZ 100 S	55 V	77 A	0.015 Ω	TO-220 AB	Q67040-S4001-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
$T_{\rm C}$ = 25 °C		77	
<i>T</i> _C = 100 °C		55	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		308	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{D} = 77~A,~V_{DD} = 25~V,~R_{GS} = 25~\Omega$			
$L = 128 \mu H, T_j = 25 °C$		380	
Avalanche current, limited by T_{jmax}	I _{AR}	77	А
Avalanche energy,periodic limited by T_{jmax}	E _{AR}	17	mJ
Reverse diode dv/dt	dv/dt		kV/µs
$I_{S} = 77 \text{ A}, \ V_{DS} = 40 \text{ V}, \ di_{F}/dt = 200 \text{ A/}\mu\text{s}$			
$T_{\text{jmax}} = 175 ^{\circ}\text{C}$		6	
Gate source voltage	V _{GS}	± 20	V
Power dissipation	P _{tot}		W
<i>T</i> _C = 25 °C		170	

Maximum Ratings

Parameter	Symbol	Values	Unit
Operating temperature	T _j	-55 + 175	°C
Storage temperature	T _{stg}	-55 + 175	
Thermal resistance, junction - case	R _{thJC}	≤ 0.88	K/W
Thermal resistance, junction - ambient	R _{thJA}	≤ 62	
IEC climatic category, DIN IEC 68-1		55 / 175 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics	,	,	·		
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, \ I_{\rm D} = 0.25 \text{ mA}, \ T_{\rm j} = 25 \text{ °C}$		55	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\rm GS} = V_{\rm DS}, I_{\rm D} = 130 \ \mu \rm A$		2.1	3	4	
Zero gate voltage drain current	/ _{DSS}				μA
$V_{\mathrm{DS}} = 50 \; \mathrm{V}, \; V_{\mathrm{GS}} = 0 \; \mathrm{V}, \; T_{\mathrm{j}} = -40 \; \mathrm{^{\circ}C}$		-	-	0.1	
$V_{\text{DS}} = 50 \text{ V}, \ V_{\text{GS}} = 0 \text{ V}, \ T_{\text{j}} = 25 \text{ °C}$		-	0.1	1	
$V_{\rm DS} = 50 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 150 \; ^{\circ}\rm C$		-	-	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_{D} = 55 \text{ A}$		-	0.01	0.015	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 55 \text{ A}$		25	-	-	
Input capacitance	C _{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	1900	2375	
Output capacitance	C _{oss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	615	770	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	310	390	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 77 \text{ A}$					
$R_{\rm G}$ = 4.7 Ω		-	15	25	
Rise time	t _r				
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 77 \text{ A}$					
$R_{\rm G}$ = 4.7 Ω		-	30	45	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 77 \text{ A}$					
$R_{\rm G}$ = 4.7 Ω		-	40	60	
Fall time	t_{f}				
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 77 \text{ A}$					
$R_{\rm G}$ = 4.7 Ω		-	25	40	
Gate charge at threshold	Q _{g(th)}				nC
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 0.1 A, $V_{\rm GS}$ =0 to 1 V		-	2.5	3.8	
Gate charge at 7.0 V	Q _{g(7)}				
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 77 A, $V_{\rm GS}$ =0 to 7 V		-	50	75	
Gate charge total	Q _{g(total)}				
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 77 \text{ A}, V_{\rm GS} = 0 \text{ to } 10 \text{ V}$		-	65	100	
Gate plateau voltage	V _(plateau)				V
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 77 \text{ A}$, ,	-	5.9	-	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	I _S				А
$T_{\rm C}$ = 25 °C		-	-	77	
Inverse diode direct current,pulsed	/ _{SM}				
<i>T</i> _C = 25 °C		-	-	308	
Inverse diode forward voltage	V _{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 154 \text{ A}$		-	1.25	1.8	
Reverse recovery time	t _{rr}				ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	105	160	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	0.16	0.25	

Power dissipation

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Drain current

 $I_{\rm D} = f(T_{\rm C})$

parameter: V_{GS} ≥ 10 V

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0, $T_C = 25$ °C

Transient thermal impedance

$$Z_{\text{th JC}} = f(t_{\text{p}})$$

parameter: $D = t_D / T$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_{\rm p}$ = 80 $\mu \rm s$, $T_{\rm j}$ = 25 °C

Typ. drain-source on-resistance

 $R_{\mathrm{DS}\;(\mathrm{on})} = f(I_{\mathrm{D}})$

parameter: $t_p = 80 \mu s$, $T_j = 25 °C$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 55$ A, $V_{\rm GS} = 10$ V

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Gate threshold voltage

 $V_{GS(th)} = f(T_i)$

parameter: $V_{GS} = V_{DS}$, $I_D = 130 \mu A$

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$ parameter: $I_D = 77$ A, $V_{DD} = 25$ V $R_{GS} = 25 \Omega$, $L = 128 \mu H$

Typ. gate charge

$$V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$$

parameter: $I_{D \text{ puls}} = 77 \text{ A}$

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_j)$$

