2020 ~ 2021 学年第 2 学期

开课学院 <u>理学院</u>	课程名称	5等数学【(2) 机口	电】 半期_	考核方式_	<u>闭卷</u>
考试时间 <u>120</u> 分钟	A 卷		共	_页第	页
考生姓名	_ 考生班级_		_ 考生学号_		
一、选择题(本大题共 10)小题,每小匙	03分,总计30	分)		
1. 微分方程 x(y"')² +2y'+	$3y^4 = 0$ 的阶数	为()【答	F案】C		
(A) 1 (B) 2					
2. 微分方程 $\frac{dy}{dx} = e^{x-y}$ 的通	解是()	【答案】B			
$(\mathbf{A}) \ e^y + e^x = C \qquad ()$	$B) e^y - e^x = C$	(C) $e^{-y} - e^x$	C = C (D)	$e^y - e^{-x} = C$	
					()
3. 若函数 $f(x)$ 满足 $f''(x)$	+2f'(x)+f(x)	$=0$, $\coprod f(0)=0$	$J, f'(0) = 1, \emptyset$		
				【答案	€】C
$(A) 0 \qquad (B)$	$\frac{1}{e}$	(C) 1	(D) <i>e</i>		
4. 原点到平面3x-2y+6z	x+14=0 的距离	$\frac{\overline{y}}{\overline{y}}d = ()$	【答案】B		
(A) 7 (E	3) 2	(C) 14	(D) $\sqrt{17}$		
5. 曲线 $\begin{cases} x - y^2 + z = 1 \\ y = 3 \end{cases}$ 在 $x \in \mathbb{R}$	oz 面上的投影I	曲线为()	【答案】A		
(A) 直线 (I	3) 抛物线	(C) 圆	(D) ¥	Ħ.	
6. 曲线 $\begin{cases} z = x^2 + y^2 \\ x^2 + y^2 = 2y \end{cases}$ 在点	(1, 1, 2) 的切线	总方程为()【答案】B		
(A) $\frac{x-1}{1} = \frac{y-1}{0} = \frac{z}{1}$	$\frac{-2}{2}$	$(B) \frac{x-1}{0} = \frac{y}{1}$	$\frac{-1}{1} = \frac{z-2}{2}$		
(C) $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{2}$	$\frac{-2}{0}$	(D) $\frac{x-1}{2} = \frac{y-1}{0}$	$\frac{-1}{0} = \frac{z-2}{1}$		
7. 极限 $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+2y^6} =$	()	′答案】D			
(A) 0 (B) $\frac{1}{2}$	$\frac{1}{8}$ (C)	∞ (I)) 不存在		

2020 ~ 2021 学年第 2 学期

开课学院 <u>理学院</u>	课程名称 高等数学【(2)	机电】 半期_	考核方式闭卷_				
考试时间 120 分钟	_ A 卷	共	页第页				
考生姓名	考生班级	考生学号_					
8. 函数 $z = f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + 0}} \end{cases}$	$\frac{1}{y^2}$, $x^2 + y^2 \neq 0$, $\pm (0,0)$ $\pm x^2 + y^2 = 0$,	上()【答》	秦】C				
(A) 不连续且偏导数	存在 (B) 不连续	且偏导数不存在	:				
(C) 连续且偏导数存	在 (D) 连续且位	偏导数不存在					
9. 曲面 $3x^2 + y^2 + z^2 = 12$ 上的点 $M(-1,0,3)$ 处的切平面与平面 $z = 0$ 的夹角是(
			【答案】B				
$(A) \frac{\pi}{6} \qquad (B) =$	$\frac{\pi}{4}$ (C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$					
10. 函数 $u = xy^2z$ 在点 $P(1, -1)$	-1,2)处方向导数的最大值	为() 【	答案】 D				
$(A) \sqrt{6} \qquad (B)$	3 (C) $\sqrt{20}$	(D) v	/21				
二、填空题(本大题共5小题,每小题2分,总计10分)							
11. 微分方程 y"-y=2xe ^x 自	的一特解可设为 y* =	[答案 $\int x(ax+b)e^x$				
12. $\forall \vec{a} = 2\vec{i} + \vec{j} - 2\vec{k}$, $\vec{b} = 3$	$3\vec{i} + 4\vec{j} - 5\vec{k}$,则 $Prj_{\vec{b}} \stackrel{\rightarrow}{a} = $	·	【答案】2√2				
13. 将 xoz 面上的抛物线 z^2	= 2x 绕 x 轴旋转而成的曲	面方程是	【答案】 $y^2 + z^2 = 2x$				
14. 极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+4}-2}$	=【答案】	4					
15. 设函数 $f(x,y) = \int_0^{xy} e^{xt^2} dt$	$ t, \mathbb{I} \frac{\partial^2 f}{\partial x \partial y} \bigg _{(1,1)} = \underline{\hspace{1cm}}$	【答案】4	łe				
三、解答题(本大题共 5 小题,每小题 10 分,总计 50 分) 16. 求微分方程的通解:							
$(1) y' = \frac{y}{x} + \tan\frac{y}{x}$	(2) xy'' + y' + x =	0					

2020 ~ 2021 学年第 2 学期

开课学院 理学院

课程名称 高等数学【(2) 机电】 半期 考核方式 闭卷

考试时间 120 分钟

共 页第 页

考生姓名

考生班级

考生学号___

【答案】

(1)
$$\Leftrightarrow \frac{y}{x} = u$$
, $\bigcup \frac{dy}{dx} = u + x \frac{du}{dx}$,

于是
$$u + x \frac{du}{dx} = u + \tan u$$
,即 $\cot u du = \frac{1}{x} dx$

两端积分得 $\ln |\sin u| = \ln |x| + C'$, 即 $\sin u = Cx$,

故所求通解为:
$$\sin \frac{y}{x} = Cx$$

于是
$$\frac{dp}{dx} + \frac{1}{x}p = -1$$

$$\text{III } p = e^{-\int_{x}^{1} dx} \left(\int -e^{\int_{x}^{1} dx} dx + C_{1} \right) = \frac{1}{x} \left(-\frac{1}{2}x^{2} + C_{1} \right) = \frac{C_{1}}{x} - \frac{1}{2}x$$

故所求通解为:
$$y = -\frac{1}{4}x^2 + C_1 \ln|x| + C_2$$

17、过点M(1, 12, 9)作平面x+3y+3z-26=0的垂线,求该垂线的直线方程及垂足的

【答案】

平面 x+3y+3z-26=0 的法向量 $\vec{n}=(1,3,3)$,于是其垂线的方向向量 $\vec{s}=(1,3,3)$

故所求的直线方程为
$$\frac{x-1}{1} = \frac{y-12}{3} = \frac{z-9}{3}$$

即参数方程为
$$\begin{cases} x=1+t \\ y=12+3t \end{cases}$$
 ,代入平面方程得: $t=-2$ $z=9+3t$

故垂足为(-1,6,3)

18、设二元函数
$$z = x^2 y + \frac{x}{y}$$
, 求: (1) $dz|_{\substack{x=1\\y=1}}$; (2) $\frac{\partial^2 z}{\partial x \partial y}|_{\substack{x=1\\y=1}}$.

【答案】

2020 ~ 2021 学年第 2 学期

开课学院 理学院

课程名称 高等数学【(2) 机电】 半期 考核方式 闭卷

考试时间 120 分钟

考生姓名

考生班级

考生学号

(1) 由于
$$\frac{\partial z}{\partial x} = 2xy + \frac{1}{y}$$
; $\frac{\partial z}{\partial y} = x^2 - \frac{x}{y^2}$

于是
$$dz\Big|_{\substack{x=1\\y=1}} = \frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=1}} dx + \frac{\partial z}{\partial y}\Big|_{\substack{x=1\\y=1}} dy = 3dx$$

19、(1) 设
$$z = f(x, x^y + y)$$
, f 具有一阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$;

【答案】

$$(1) \quad \frac{\partial z}{\partial x} = f_1' + yx^{y-1} f_2'$$

$$\frac{\partial z}{\partial y} = (x^y \ln x + 1) f_2'$$

(2)
$$\diamondsuit F(x,y,z) = e^z - xyz - 1$$
,

则
$$F_x(x,y,z) = -yz$$
, $F_y(x,y,z) = -xz$, $F_z(x,y,z) = e^z - xy$

故
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{e^z - xy}$$
 , $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{xz}{e^z - xy}$

20、求二元函数
$$f(x,y) = x^3 + 8y^3 - xy$$
 的极值

【答案】

先求驻点,令
$$\begin{cases} f_x(x,y) = 3x^2 - y = 0 \\ f_y(x,y) = 24y^2 - x = 0 \end{cases}$$
, 解得
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$
,
$$\begin{cases} x = \frac{1}{6} \\ y = \frac{1}{12} \end{cases}$$

即驻点为
$$(0,0)$$
, $(\frac{1}{6},\frac{1}{12})$

2020 ~ 2021 学年第 2 学期

开课学院 理学院

课程名称 高等数学【(2) 机电】 半期 考核方式 闭卷

考试时间 120 分钟

__<u>A_</u>卷

共_____页第_____页

考生姓名

考生班级

考生学号

为了判断这两个驻点是否为极值点, 求二阶导数

$$\begin{cases} f_{xx}(x, y) = 6x \\ f_{xy}(x, y) = -1 \\ f_{yy}(x, y) = 48y \end{cases}$$

在点
$$(0,0)$$
 处, $A = f_{xx}(0,0) = 0$, $B = f_{xy}(0,0) = -1$, $C = f_{yy}(0,0) = 0$

因为 $AC-B^2=-1<0$,所以(0,0)不是极值点。

类似的,在点
$$(\frac{1}{6},\frac{1}{12})$$
 处, $A=f_{xx}(\frac{1}{6},\frac{1}{12})=1,\ B=f_{xy}(\frac{1}{6},\frac{1}{12})=-1,\ C=f_{yy}(\frac{1}{6},\frac{1}{12})=4$

因为
$$A=1>0$$
, $AC-B^2=3>0$,

所以
$$(\frac{1}{6},\frac{1}{12})$$
是极小值点,极小值为 $f(\frac{1}{6},\frac{1}{12}) = -\frac{1}{216}$

四、证明题(本大题共2小题,每小题5分,总计10分)

21、设
$$z = \frac{y}{f(x^2 - y^2)}$$
, 其中 $f(u)$ 为可导函数,

证明:
$$\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = \frac{z}{v^2}$$
.

证明: 令
$$u = x^2 - y^2$$
, 于是 $z = \frac{y}{f(u)}$

$$\frac{\partial z}{\partial x} = -\frac{2xyf'(u)}{f^2(u)},$$

$$\frac{\partial z}{\partial y} = \frac{f(u) + 2y^2 f'(u)}{f^2(u)},$$

$$\frac{1}{x}(-\frac{2xyf'(u)}{f^2(u)}) + \frac{1}{y}(\frac{f(u) + 2y^2f'(u)}{f^2(u)}) = \frac{1}{yf(u)} = \frac{z}{y^2}$$

22、证明: 直线
$$L_1$$
:
$$\begin{cases} x-y+z=1 \\ 2x+y+z=4 \end{cases}$$
 与直线 L_2 :
$$\begin{cases} x+y-3=0 \\ y+z+2=0 \end{cases}$$
 垂直.

2020 ~ 2021 学年第 2 学期

课程名称 高等数学【(2) 机电】 半期 考核方式 闭卷 开课学院_理学院___ 考试时间__120_分钟 <u>A 卷</u> 共_____页第_____页 考生姓名 考生学号__ 考生班级

主 直线 L_1 : $\begin{cases} x - y + z = 1 \\ 2x + y + z = 4 \end{cases}$ 的方向向量为 $\vec{n}_1 = (1, -1, 1) \times (2, 1, 1) = (-2, 1, 3)$ 直线 L_2 : $\begin{cases} x + y - 3 = 0 \\ y + z + 2 = 0 \end{cases}$ 的方向向量为 $\vec{n}_2 = (1, 1, 0) \times (0, 1, 1) = (1, -1, 1)$ 证明:

由于 $\vec{n}_2 \cdot \vec{n}_1 = (-2,1,3) \cdot (1,-1,1) = -2 - 1 + 3 = 0$,故直线 L_1 与直线 L_2 垂直.