Project Initiation Label Refinement by Behavioral Similarity

Document owners: Bianka Bakullari Christopher Beine Nicole Ventsch Juan Garza

Last edited: April 22, 2019

1	Overview	1
2	Business Case 2.1 Scope 2.2 Assumptions 2.3 Key Benefits	1
3	Feasibility study 3.1 Theoretical point of view 3.2 Technical point of view 3.3 Risks and mitigations 3.3.1 Project management risks 3.3.2 Technical risks	2 2 2 3 3
	Project Plan 4.1 Milestones 4.2 Deliverables Project Team 5.1 Competences 5.2 Roles	6 6 6
6	Project office	8

1 Overview

Many processes involve carrying out an action multiple times. An example for this would be an online shop in which you first have to pay a registration fee before ordering an item and paying it. This process contains the event "payment" twice, but in different contexts, so that the payments are actually two different tasks. In the context of analysing processes, the event logs usually only contain the event names, so that the "payment" actions would be treated as the same task and loops would be induced in the resulting models. However, these loops do not match the actual process, which is the issue this project addresses.

These imprecise logs should be refined based on the structural contexts of the events. We want to refine the logs without any filtering. Moreover, we want to allow an interactive change of the thresholds used to refine the labels since this can vary for each log and we lack knowledge on the correctness of the refined log in general. All of this should be done by implementing an algorithm in Python and then creating a web service through which the user can modify his event log.

2 Business Case

Based on the setting explained in the overview, we now want to discuss the business case and explore the project's potential. We will do this by first defining the scope of the project, then the assumptions we have taken and finally we will consider the advantages that are achieved by carrying out this project.

2.1 Scope

During the project, we will create both code and documentation. Thus, the scope will be divided into these two aspects:

Documentation:

- Create a Project Initiation Document.
- Realize the Requirements Specification Document.
- Develop and describe the design of the interface.
- Design the algorithm structure by stating the usage of classes as well as the inputs and outputs for the functions that are used.
- Software Documentation during milestones.

Implementation:

- Set up a Web Service that uses the label refinement algorithm proposed by Xixi Lu, et al in [1].
- Create a user interface that allows the users to upload the original event log, set thresholds and imprecise label scope and finally download the refined event log.

For the successful accomplishment of our project, some background in Process Mining is needed, as well as programming knowledge. Moreover, the documentation of both organizational aspects and software will follow the software development lifecycle, where each part has to be submitted before the corresponding due date stated in the section "Project Plan - Milestones".

2.2 Assumptions

In this project we will assume that an event log is given by the user, i.e., data that contains at least the attributes "id", "time stamp" and "activity name". Furthermore, we will assume that these event logs are given in the standard XES format. Since the set of candidates for imprecise labels is given by the user, we assume that the quality of the processes applied on the refined event log also depends on the domain knowledge of the user who picks the candidate labels. The algorithm is a pre-processing step itself and it does not include other pre-processing mechanisms like filtering. In this context, instead of considering imprecise labels as noise and filtering them out, we change the labels based on the patterns present in the data.

2.3 Key Benefits

With this project we mainly aim to improve the given event logs by making them more precise, so that the subsequent analysis will be more accurate. The algorithm gives data scientists the opportunity to apply process discovery algorithms to both original and refined event logs and it allows them to choose the best alternative depending on their expert knowledge. More accurate models provide better insights from the data. Furthermore, it gives the data scientists the opportunity to take the best measures in order to optimize the processes and in that way to reduce the company's expenses while increasing its efficiency. By designing an interface that allows the users to upload an event log, to set the thresholds and to download the modified event log, will save the data analysts a lot of time and effort which would be needed to refine the log "manually" and also help them to find better models systematically. By providing a web service, the software can be used on demand and there are only minor requirements for the user's hardware which avoids the necessity to stick to a given programming language or software.

3 Feasibility study

In this section we give a description of our project by explaining why the task is realizable from both theoretical and technical point of view. We also try to take potential risks into account and propose countermeasures.

3.1 Theoretical point of view

From a theoretical point of view, an *imprecise* event log is a log for which we assume to have different tasks being handled as the same activity. In reality, each event in the data is a unique occurrence over time. By defining a *labeling function* which maps these events to a finite set of activity names, also called *labels*, we obtain event logs having common activities across traces and within traces. A problem arises when similar events happening in different contexts are assigned the same label. Applying process discovery algorithms to such event logs may lead to process models being imprecise, misleading or even incorrect.

There has already been some research investigating this problem. Some of the approaches include using additional domain knowledge to correct the labeling, or trace clustering to do relabeling according to the different variants.

In our project, we focus on the algorithm developed, investigated and explained in [1], which given an event log, refines the labels of events based only on the context and patterns present in this event log. The approach consists of three main steps: 1)detecting activities which need refined labels, do relabeling 2)across dissimilar traces and then 3)within traces. Here we assume that the set of candidate activities needing relabeling is given and the user should have the possibility to set the thresholds affecting the relabeling in steps 2) and 3). Since the logs have a finite set of activities leaving room for only a reduced number of computations needed for the cost function in step 2) and the fact that this algorithm has already been successfully implemented in ProM yielding good results, we conclude that the project is feasible from a theoretical point of view.

3.2 Technical point of view

As stated in [1], the algorithm has already been implemented in ProM, where controlled experiments have been made to test the performance of the algorithm based on event logs containing different patterns. There has also been a real life case study involving an event log with data concerning healthcare which was provided by Maastricht University Medical Center (MUMC+), a large academic hospital in the Netherlands. In the log containing 1039 cases and 6213 events, the activities *surgery* and *consultation* were imprecise. After relabeling, the resulting model reflected the behaviour which was described by the domain experts, according to whom the activity *surgery* for example took place many times during the treatment of certain patients.

For our project we will use following open source tools:

- Python 3.7.2 as back-end programming language
- pm4py python library as process mining toolkit
- NetworkX pyhton library for graph manipulation
- Flask 1.0.2 as web application framework

• JavaScript as front-end development language (Standard ECMAScript 2018)

We will separate the application into two main parts: the back-end, which is responsible for the algorithm and API design, and the front-end to provide a user-friendly interface.

Python is used as back-end programming language to implement the algorithm. Additionally, we will use Flask as a lightweight web-application framework. It provides a quick start and is easily customizable via plug-ins. It is also used in enterprise applications like Netflix.

In particular we will make use of the pm4py library which is a joint effort of the Process Mining group at the Fraunhofer FIT and the Chair of RWTH Process and Data Science group as it supports many process mining algorithms and performance measures in Python.

The front-end is for visualization only. It is created with HTML5 and JavaScript to access the API and to provide the UI logic. Thus, presentation and business logic can be easily separated and replaced.

The final web application will be optimized for Google Chrome (Version ≥ 65) and Firefox (Version ≥ 60).

3.3 Risks and mitigations

In the following we try to estimate the potential problems and risks that may arise during our project and propose ways to be prepared for or overcome them. We take into consideration complications concerning the organisational and management aspects, as well as those arising when implementing the algorithm.

3.3.1 Project management risks

Risks	Mitigations
Misunderstanding of tasks	Do regular discussions, meetings in the group
	and with the project supervisor
Unmatched schedules of the team members	Arrange meetings in advance, notify other
	members for any change
Acquiring new skills under time pressure	Assign tasks based on individual strengths to
	increase efficiency

3.3.2 Technical risks

Risks	Mitigations
Inconsistencies in programming styles	Explain the code to other members, write use-
	ful comments while coding
Unclear performance measures	Test code on small event logs, use automati-
	cally generated event logs to experiment
Software components do not work as a whole	Put emphasis on the design step

4 Project Plan

4.1 Milestones

The project starts on the 09/04/2019 and ends on the 08/07/2019 and is divided into eight milestones. The project is managed with a scrum-oriented approach where each milestone represents a sprint. The project team organizes the required tasks during each sprint and visualizes the current project status via a dashboard.

ID	Milestone	Description	Deadline
1	Project Initiation document	The Project Initiation Document provides all of the key information required to start and run the project. This includes the project description, business case, feasibility study and a project team presentation.	22/04/2019
2	Requirements Specification document	The Requirements Specification document contains functional and non-functional requirements such as a set of use cases to describe the system interactions.	29/04/2019
3	Design Analysis and dummy P.o.C.	The final document is a description about the planned system architectural background and a proof of concept visualizing the main UI components.	13/05/2019
4	Sprint 1 code and documentation	In this sprint the import module and a static front-end will be implemented.	24/05/2019
5	Sprint 2 code and documentation	In this sprint the algorithm will be implemented.	07/06/2019
6	Sprint 3 code and documentation	In this sprint the final user interface and visualization will be implemented.	21/06/2019
7	Testing, assessment and deployment	The application is checked for accuracy and should be available for use.	01/07/2019
8	Final report on the project	The final report provides an overview about the project course and the result.	08/07/2019

Label Refinement based on Behavioral Similarity

Project Start:	11/	04/19															
Display Week:	1			April 8, 2019	April 15, 2019	April 22, 2019	April 29, 2019	May 6, 2019	May 13, 2019	May 20, 2019	May 27, 2019	June 3, 2019	June 10, 2019	June 17, 2019	June 24, 2019	July 1, 2019	July 8, 2019
TASK	START	END	DAYS										10 11 12 13 14 15 16 :				
Project Initiation	JIAMI		- DAIS														
Set up the Project Office	11/04/19	12/04/19	2														
Develop a Business Case		16/04/19	6														
Undertake a Feasibility Study		17/04/19	6														
Establish the Project Charter		19/04/19	5														
Appoint the Project Team	16/04/19	21/04/19	6														
PI document elaboration		21/04/19	11														
Requirements Specification																	
Requirements analysis	22/04/19	24/04/19	3														
Use case analysis	24/04/19	26/04/19	3														
Requirements review	26/04/19	28/04/19	3														
RS document elaboration	22/04/19	28/04/19	7														
Design Analysis & dummy P.o.C.																	
Architectural design	29/04/19	01/05/19	3														
High-level design	01/05/19	03/05/19	3														
Detailed design	04/05/19	12/05/19	9														
Frontend mockup	05/05/19	09/05/19	5														
Documentation review	29/04/19	12/05/19	14														
Sprint 1																	
Web Service set up	13/05/19	15/05/19	3														
Static frontend	13/05/19	17/05/19	5														
File loader module	13/05/19	17/05/19	5														
Unit test	17/05/19	18/05/19	2														
Module integration I	18/05/19	24/05/19	7														
Documentation review	13/05/19	24/05/19	12														
Sprint 2																	
Imprecise label detetion module		29/05/19	6														
Cost function module		31/05/19	8														
Mapping module		31/05/19	8														
Unit test		03/06/19	3														
Module integration II		07/06/19	4														
Documentation review	24/05/19	07/06/19	15														
Sprint 3																	
Horizontal/Vertical refinement module File exporter module		17/06/19	8														
Petrinet visualization module		14/06/19	5														
Unit test			3														
Module integration III		17/06/19 20/06/19	4														
Documentation review		21/06/19	12														
Testing, assessment and deployment	25,00,25	, 30, 13	**														
Integration testing	22/06/19	25/06/19	4														
Internal project assessment		27/06/19	2														
Deployment		29/06/19	2														
Final documentation		01/07/19	10														

4.2 Deliverables

With each milestone various deliverables are created to monitor, document and verify the document progress.

1 Project Initiation document:

• Final Project Initiation Document with key information about the project

2 Requirements Specification Document:

- Requirements Specification Document with functional and non-functional requirements
- Use case analysis

3 Design analysis and dummy P.o.C:

- System and software architecture documentation
- Front-end mockup

4 Sprint 1 code and documentation

- Unit Test protocols
- Code documentation

5 Sprint 2 code and documentation

- Unit Test protocols
- Code documentation

6 Sprint 3 code and documentation

- Unit Test protocols
- Code documentation

7 Testing, assessment and deployment

- Test protocols
- Server configuration
- Web API
- Web-application

8 Final report on the project

• Final report

5 Project Team

In the following we focus on the individual strengths of the members of the team and specify the responsibilities with respect to the milestones of the project.

5.1 Competences

In this section we introduce the members of our team by shortly describing their knowledge and competences which will be useful to carry out the task successfully.

Nicole Ventsch

Nicole Ventsch is a Master student at RWTH studying Mathematics and Data Science in parallel. She is studying both subjects in her second semester of the master's degree. Moreover, she works as a student assistant in the field of Data Analytics / Business Intelligence. Due to her background in mathematics, she has a good understanding of theoretical foundations. Moreover, she is very interested in Data Science and already took many courses in that area. Since she took the course "Introduction to Data Science", she has also worked with Python before. Though she has a strong theoretical background, she has never worked on user interfaces or with web services, so that this aspect of the project will be new to her. Additionally, she is not used to the software development lifecycle, so that execution this project will include many new experiences to her.

Juan Garza

Juan Garza is a student at the RWTH University. He is currently in his 4th semester of studies towards a master's degree in Computer Science. During his studies, he deepened his knowledge of process mining by attending the lecture "Business Process intelligence". Moreover, he carried out a seminar on "Selected Topics in Process Mining". He is familiar with Java and Python as programming languages. Besides school projects, he has no programming experience in "real world" environments which may represent a difficulty for him.

Bianka Bakullari

Bianka Bakullari is a Master student at RWTH studying Computer Science. She has a good theoretical background on the field of Process Mining after having attended the lectures "Business Process Intelligence" and "Introduction to Data Science". Currently she is attending the "Advanced Process Mining" lecture. She has gathered some experience working with Python where in most cases pre-processing and analysis was made on concrete event data. Therefore, a challenge of this project is implementing an algorithm that works on any given event log efficiently. Since she has never worked with web applications before, the execution of this step will be a new experience for her.

Christopher Beine

Christopher Beine is a 4th semester Bachelor student at the RWTH Aachen University. Before his studies, he made an apprenticeship as a Computer Science Expert Subject Area: Software Development by Phoenix Contact GmbH & Co. KG where he works as a full-stack developer. He supervised several software projects within the company and is currently developing a web application for planning and visualizing the strategic orientation. In the field of data science, he deepens his knowledge with online courses such as the "Machine Learning" from Standford University on Coursera. He has practical experience with C#, PHP, JavaScript, the software development lifecycle and the most common web technologies.

5.2 Roles

We emphasize that all of the team members are supposed to put active effort on each of the milestones of the project. However, we assign a team member to have main responsibility for each step in order to ensure that the deliverables have sufficient quality and nothing is missing.

ID	Milestone	Chief Responsibility	Contact
1	Project Initiation document	Bianka Bakullari	bianka.bakullari@gmail.com
2	Requirements Specification document	Nicole Ventsch	nicole.ventsch@rwth-aachen.de
3	Design Analysis and dummy P.o.C.	Christopher Beine	christopher.beine@rwth-aachen.de
4	Sprint 1 code and documentation	Juan Garza	juan.garza@rwth-aachen.de
5	Sprint 2 code and documentation	Bianka Bakullari	bianka.bakullari@gmail.com
6	Sprint 3 code and documentation	Christopher Beine	christopher.beine@rwth-aachen.de
7	Testing, assessment and deployment	Juan Garza	juan.garza@rwth-aachen.de
8	Final report on the project	Nicole Ventsch	nicole.ventsch@rwth-aachen.de

6 Project office

In order to better be able to keep track of our progress, we use the Trello dashboard to divide our tasks into planned, running and completed ones. Trello also gives the opportunity to write descriptions and comments on each task, so that everyone is able to specify certain details needed to be considered or problems having arisen. For our deliverables we use Git, as this makes it able to keep track of any changes and updates to our documentation or code. All members and the instructors have access to both Trello account and the Git repository.

References

- [1] Lu, Xixi, et al. "Handling duplicated tasks in process discovery by refining event labels." International Conference on Business Process Management. Springer, Cham, 2016.
- [2] La Rosa M., Loos P., Pastor O. (eds) Business Process Management, BPM 2016, Lecture Notes in Computer Science, vol 9850. Springer, Cham, 2016.