Author Classification using Traditional NLP and Modern Deep Learning Methods

Team Bayesian Banshee

- Dean Weiss, Nikita Parulekar, Hunter Worssam

Final Presentation

Contents

Abstract

Abstract

We explored author classification using the Project Gutenberg corpus by training models on full-length books from 80 unique authors.

Our analysis compared traditional algorithms (Naive Bayes, kNN, Random Forest, SVM, and MLP) with a more modern Transformer-based approach.

Dimensionality reduction & additional pre-processing was applied where appropriate, and models were optimized through hyperparameter tuning.

Results showed that Support-Vector Machine and Multilayer Perceptron models achieved the highest accuracy, while the Transformer, Naive Bayes, Random Forest and kNN also yielded impressive results relative to literature.

Dataset Creation and EDA

Dataset Creation Starting from All 75k PG Texts

Dataset EDA

- Wide range of documents across 'authors' from Mark Twain to the National Park service guides
- 81% of authors have books with > 1 million words

Traditional NLP Data Pre-Processing

Stemming and Lemmatization: root word creation

Text normalization processes used to reduce a word to its base form

Stemming

- Uses simple rules
- Usually just strips suffix
- Stemmed version may not be real word

Running → Runn

Better → Bett

Happiness → Happi

Played → Play

Lemmatizing

- Uses a dictionary, the part of speech, and grammatical rules to know what a word means
- Outputs dictionary form of word (lemma)
- Contextual understanding

Running → Run

Better → Good

Happiness → Happy

Played \rightarrow Play

Abstract Dataset Creation & EDA

Traditional NLP Preprocessing

Traditional Classifiers

Transformers

TF-IDF: how important a word is to a document

- Term Frequency (TF): how often a word appears in a document
- Inverse Document Frequency (IDF): how rare a word is across all documents.
- The product of TF and IDF highlights important, distinguishing words while down-weighting common terms.

Why Use TF-IDF?

- Converts raw text into numeric feature vectors usable by machine learning models.
- Scores & keeps top N word sequences of size 1, 2, ... y; set via the n-gram setting.
- Applied TF-IDF vectorization to cleaned text

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

Transformers

Stylometric Features Added to Enhance TF-IDF Feature Matrix

For Naive Bayes, Random Forest and kNN, **12 stylometric features & 6 readability metrics** were generated from each text, including:

Stylometric Features

- avg_word_length average number of characters per word
- avg sentence length average number of words per sentence
- **type_token_ratio** lexical diversity (unique words / total words)
- punctuation frequencies relative use of , . ; : ! ? -
- uppercase ratio proportion of capital letters
- **digit_ratio** proportion of numeric characters

Readability Metrics

- Flesch Reading Ease
- Flesch-Kincaid Grade Level
- Gunning Fog Index
- SMOG Index
- Coleman-Liau Index
- Automated Readability Index

- 1. Texts cleaned and tokenized using nltk toolkit.
- 2. Features calculated **per document** using custom Python functions and textstat (18 new features per document).
- 3. Stylometric features were both kept and removed during model training to evaluate their impact on accuracy.
- 4. For Naive Bayes and kNN (magnitude and distance based models), these features were normalized; but this was not required for Random Forest model.

Classical ML methods

Naive Bayes

Bayes' Theorem gives us the posterior probability of a class (e.g., an author) given features $X_1, X_2, ..., X_n$:

$$P(C \mid X_1, X_2, ..., X_n) = rac{P(C) \cdot P(X_1, X_2, ..., X_n \mid C)}{P(X_1, X_2, ..., X_n)}$$

This is hard to compute this directly because the joint probability portion in the numerator is complex — features may be dependent on each other.

For Naive Bayes, we assume all features are conditionally independent given the class:

$$P(X_1,X_2,...,X_n\mid C)pprox \prod_{i=1}^n P(X_i\mid C)$$

This simplifies computation and lets us estimate probabilities from frequencies (which we calculated directly through TF-IDF).

Parameter	Optimal Setting	
TF-IDF Max Features	15,000	
TF-IDF n-gram Size	(1, 3)	
Model Variant	Multinomial	
Alpha	0.1	

Dataset	F1 Score	
Training	0.9792	
Validation	0.9376	
Test	0.9520	

Abstract Dataset
Creation &
EDA

Traditional NLP Preprocessing

Traditional Classifiers

Transformers

Random Forest

Random Forest is an **ensemble method** that builds multiple decision trees and averages their predictions.

Random Forest is an attractive model for author classification:

- Robust to multicollinearity & noise.
- Handles high dimensional, sparse data.
- Ensemble nature reduces overfitting risk.

TF-IDF settings of 15,000 features of size (1,3) were used for Naive Bayes, Random Forest, and kNN to maintain comparability.

Only model-specific hyperparameters were folded into the tuning stage.

Parameter	Optimal Setting	
# of Trees	300	
min_samples_split	5	
min_samples_leaf	2	
Max Depth	None	
Dataset	F1 Score	
Training	1.0000	
Validation	0.9455	
Test	0.9263	

Abstract Dataset Creation & EDA

Traditional NLP Preprocessing

Traditional Classifiers

Transformers

kNN

kNN is a **non-parametric**, **distance-based** learning algorithm that classifies a sample based on the majority label among its *k* nearest neighbors in the feature space.

A downside to the distance-based nature of kNN is that it is increasingly prone to the **curse of dimensionality**.

To account for this, we use **singular value decomposition (SVD)** to trim our TF-IDF feature matrix from 15,000+ features down to 200-1000.

Stylometric features were particularly valuable to the kNN due to their **low-dimensional**, **dense signal** for writing style.

- When SVD Components is set to 18, all 18 stylometric features are kept above TF-IDF values.

Parameter	Optimal Setting	
SVD Components	300	
n-neighbors	3	
Distance Metric	Cosine	

Dataset	F1 Score	
Training	1.0000	
Validation	/alidation 0.9438	
Test	0.9344	

Abstract

Dataset
Creation & Traditional NLP
Preprocessing
EDA

Traditional Classifiers Transformers

Support Vector Machine - Choosing Kernel

- Linear kernel outperformed radial basis function and polynomial (deg 2) kernel on validation (and test) set
- Features already capture non-linear complexity between authors' styles and the classes are linearly separable
- Degradation of validation and test set performance for RBF and polynomial kernel -> signs of overfitting relative to linear kernel

Multi-Layer Perceptron - simpler the better

Abstract Dataset
Creation &
EDA

Traditional NLP Preprocessing

Traditional Classifiers

Transformers

Impact of Word Count and N-Grams

All classifiers benefit from increased word count, little benefit from bi-grams, though have diminishing returns

Transformers

Fine-Tuned transformers have more practical compute and data requirements

Aspect	Train From Scratch	Fine-Tuned Transformer	
Data Requirement	Requires large datasets (100,000s+ examples)	Works well with small datasets (100s-1000s of examples)	
Compute & Time	High compute, weeks to months	Low compute, hours to days	
Model Customization	Full architectural control	Limited to existing architectures	
Performance Ceiling	Potentially higher (with enough data)	Lower, capped by pre-training limitations	

Finetuning II approach was chosen for best modelling performance

Transformers have limits on input length

- Due to token interaction in the attention mechanism, time and compute requirements scale quadratically with sequence length
- 81% of our documents have >1e6
 words while most regular
 pretrained encoder transformers
 have token input limits 512-1000
- Sparse attention transformer models such as Longformer can handle longer token lengths of 4096
- Transformers cannot handle the entire document

Hierarchical novel-level approach improved accuracy by 12%

*accuracy improvement quoted for DistillBERT using 5 samples/document

DistillBERT outperformed Longformer with increased document coverage

DistillBERT Hyperparameter tuning

- Model benefits from aggressive updates. Author classification requires more adaptation from the pretrained model
- Significantly stronger regularization, common in author attribution tasks to prevent model from latching onto specific words.
- Also saw this in SVM preferring linear kernel over more complex ones.

Parameter	Comparison of optimal hyperparameter vs default
learning_rate	~40% higher
weight_decay	8.6x higher
dropout	3x higher
attention_dropout	2x higher
batch_size	2-4x larger

Comparison Across Models and Other Studies

Literature Review of text classification

- A study on **18-authors** of late 19th century novels yielded an **accuracy of 0.80 and F-1 of 0.82** using a **GAN-BERT** model¹.
- The 'goldilocks hypothesis' suggests that dataset size and diversity of the dataset determine which methods outperform⁵
- A text classification study showed Linear SVM outperformed vs fine tuned transformer for BBC
 & 20 NewsGroup datasets².
- A study using "all the news" dataset compared DistillBERT to ,RF,MLP. Results showed
 DistillBERT underperformed vs RF and MLP in Article 3 Dataset, Article 1 dataset (10 authors)
 but outperformed in Article 2 dataset³
- There are however other studies that see fine tuned transformers outperforming traditional NLP!

Summary Metrics on Test Dataset

Model Name	Accuracy	F-1	Precision	Recall
DistillBERT	0.8875	0.8842	0.9181	0.8875
Support Vector Machine	0.9875	0.9871	0.9906	0.9875
Multi-Layer Perceptron	0.9667	0.9662	0.9763	0.9667
Naive Bayes	0.9542	0.9520	0.9700	0.9542
Random Forest	0.9292	0.9263	0.9442	0.9292
k -Nearest Neighbors	0.9375	0.9344	0.9565	0.9375

Abstract Dataset
Creation &
EDA

Traditional NLP Preprocessing

Traditional Classifiers

Transformers

Results Discussion

- For this problem, lower cost NLP methods outperform fine tuned transformers
 - No Free Lunch Theorem
- SVM followed by MLP were the top 2 models
- Regularization is key
 - Linear SVM outperforms more complex kernels
 - 1-layer MLP outperformed MLP with multiple hidden layers significantly
 - Possibly why fine tuned transformers underperformed
- Caveat: possible that in wider parameter space (hyperparameters, epoch, test set, etc) different models "win"

Limitations & Future Directions

- Ensemble methods that combine TF-IDF features ability to capture global style, with fine tuned transformers that capture more nuanced patterns.
- Integrate document level hierarchical knowledge within training process for transformers.
- Try the other fine tuning approaches for transformers
- More compute for transformers to try even larger word coverage and a larger hyperparameter space
- Developing more efficient transformers for long documents is an active area of research.
- Use of Latent Dirichlet Allocation (LDA) along with TF-IDF to better differentiate writing styles and themes within texts.

Summary

References

- Ugolini, Laura and Mitkov, Ruslan (2023) Authorship attribution of late 19th century novels using GAN-BERT. In: 61st Annual Meeting of the Association for Computational Linguistics - Student Research Workshop, 10 July 2023 - 12 July 2023, Toronto, Canada
- 2. Wahba, Yasmen, et al. A Comparison of SVM against Pre-Trained Language Models (PLMs) for Text Classification Tasks. arXiv:2211.02563, arXiv, 4 Nov. 2022. arXiv.org, https://doi.org/10.48550/arXiv.2211.02563.
- 3. Abbasi, Ahmed, et al. "Authorship Identification Using Ensemble Learning." *Scientific Reports*, vol. 12, no. 1, June 2022, p. 9537. *DOI.org (Crossref)*, https://doi.org/10.1038/s41598-022-13690-4.
- 4. Rennie, J. D. M., Shih, L., Teevan, J., & Karger, D. R. (2003). *Tackling the poor assumptions of naive Bayes text classifiers*. Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC. Massachusetts Institute of Technology, Artificial Intelligence Laboratory.
- 5. Snyder, Scott H., et al. "The Goldilocks Paradigm: Comparing Classical Machine Learning, Large Language Models, and Few-Shot Learning for Drug Discovery Applications." Communications Chemistry, vol. 7, no. 1, June 2024, pp. 1–11. www.nature.com, https://doi.org/10.1038/s42004-024-01220-4.
- 6. Daniel Jurafsky and James Martin. Speech and Language Processing. 2008.

Sources

- [1]. A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics.
- [2]. NLTK: The Natural Language Toolkit
- [3]. A prototype qutenberg-hathitrust sentence-level parallel corpus for OCR error analysis: pilot investigations

Our code is available at:

https://github.com/DeanKW/gutenberg corpus analysis

Our fork of the Project Gutenberg Repository:

https://github.com/DeanKW/gutenberg

The original repository:

https://github.com/pgcorpus/gutenberg