课程编号: 100172003

北京理工大学 2017-2018 学年第二学期

2016 级概率与数理统计试题 (A卷)

座号_		班	级		学号_			姓名		
(本试	卷共8页	,八个大	题,满分	} 100 分;	最后一页	页空白纸	为草稿纸	(t)	1	
题号	_	=	三	四	五	六	七	八	总分	核分
得分										
签名										
附表:								•		
$\varphi(2)=0$.	9772, φ(1	.64)=0.95,	φ(1.96)=0).975, t _{0.025}	(15) = 2.1	$314, t_{0.025}$	(16) = 2.	1199,		
$t_{0.05}(15) = 1.7531, t_{0.05}(16) = 1.7459, \chi_{0.025}^{2}(4) = 11.1433, \chi_{0.975}^{2}(4) = 0.4844, \chi_{0.025}^{2}(5) = 12.8325,$										
$\chi^2_{0.975}(5) = 0.8312$, $\chi^2_{0.05}(4) = 9.4877$, $\chi^2_{0.95}(4) = 0.7107$, $\chi^2_{0.5845}(4) = 2.8428$										
一、填	空题(12	分)	得分]					
$1.$ 设 A , B 为两个事件,则事件 $\overline{A \cup B}$ 表示 (回答该事件表示的含义)										
2. 若 $P(A)$ =0.6, $P(A \cup B) = 0.84$, $P(\overline{B} \mid A) = 0.4$ 则 $P(B)$ =										
3. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他} \end{cases}$,用 Y 表示对 X 的 3 次独立重复观察中										
事件{2	$X \leq \frac{1}{2}$ } 出其	见的次数。	,则 <i>P(Y</i>	=2)=						
4. 设随机变量 X 和 Y 相互独立,都服从参数为 2 的泊松分布,则 $P\{X+Y=0\}=$										
5.已知 EX=-2, EX ² = 5, 则 D(1-3X)=										
6. 设随机变量 X 满足 $E(X)=\mu$, $D(X)=\sigma^2$,则由切比雪夫不等式可得 $P(X-\mu >3\sigma)\leq$										
7. 设随机变量序列 $X_1, X_2, \dots, X_n, \dots$ 相互独立,都服从参数 $\lambda=1$ 的泊松分布,则										
$\lim_{n\to\infty}$	$P(X_1 + \cdots$	$+X_n \ge n$	$+2\sqrt{n}$)=			<u>_</u> .				
8. 设隙	植机变量 $arsigma$	和η相互	独立且矣	$\dot{z} \sim \chi^2(n)$	$\eta \sim \chi^2$	n),则 E	$(\xi + \eta) =$,D	$O(\xi+\eta)=$	=
9. 已知	口一批零件	‡的长度 。	X(单位:	cm)服从	正态分布	$N(\mu,1),$	从中随机	1的取出	16 个零作	牛,得到
长度的	平均值为	40cm, 5	则μ的置信	水平为:	95%的置 ⁶	信区间是	<u> </u>	·		
10. 设总体 $X \sim N(\mu, \sigma^2)$, μ , σ^2 均未知, x_1 ,, x_5 是总体 X 的样本值,假设 H_0 : $\sigma^2 = 4$, H_1 : $\sigma^2 = 1$										
在显著	性水平α	= 0.05下	的拒绝域	:是s ²≤ 0.	7107,则	该检验犯	l第一类钉	昔误的概义	率是	,
犯第二	类错误的	概率是								

二、(12分) 得分

甲、乙、丙 3 台机床各自独立的加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 $\frac{1}{4}$,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 $\frac{3}{20}$.

- 1. 分别求甲、乙、丙 3 台机床各自加工的零件是一等品的概率;
- 2. 从甲、乙、丙加工的零件中各自取一个检验, 求至少有一个一等品的概率.

得分

1.设离散型随机变量X的分布律为

X	-2	-1	1	3
P_k	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{15}$	c

- (1) 确定常数 c 的值; (2) 求 Y 的分布律; (3) 求 Y 的分布函数。
- 2. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} A + Be^{-x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

求 (1) 常数 A, B 的值; (2) $P\{X \le 2\}$, $P\{X > 3\}$; (3) X 的概率密度函数 f(x).

四、(14分) 得分

设二维随机变量(X, Y)在区域 $D=\{(x, y): x>0, y>0, 2x+y\leq 2\}$ 上服从均匀分布.

- 1. 写出(X, Y)的联合概率密度函数f(x, y);
- 2. 求 X 和 Y 的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断 X 和 Y 是否相互独立 (说明理由);
- 3. 求 Z = X + Y 的概率密度函数 $f_Z(z)$.

五、(14分) 得分

设二维随机变量(X, Y),已知 EX=1,EY=0,DX=4,DY=1, $\rho_{XY} = \frac{2}{3}$,令 Z = 2X - 3Y。

试求: 1. EZ, DZ; 2. cov(X,Z), ρ_{XZ} ; 3. 判断 X与 Z 是否独立,为什么?

设总体 X 和总体 Y 相互独立,且均服从正态分布 $N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_{10} 是来自总体 X 的一个样本, Y_1, Y_2, \cdots, Y_5 是来自总体 Y 的一个样本, 令 $\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$, $S_X^2 = \frac{1}{9} \sum_{i=1}^{10} (X_i - \overline{X})^2$ 。

问
$$\frac{10(\overline{X}-\mu)^2+9S_X^2}{2\sum_{i=1}^5(Y_i-\mu)^2}$$
服从什么分布?并给出证明.

设总体 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0, \\ 0, & \text{其它.} \end{cases}$$

其中 θ >0 为未知参数. X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本, x_1, x_2, \cdots, x_n 为相应的样本观测值. 求 1. 参数 θ 的矩估计; 2. 参数 θ 的最大似然估计.

八、(12分) 得分

已知维尼纶纤度在正常条件下服从正态分布 $N(\mu, 0.048^2)$ 。今抽取5根纤维,测得其纤度的样本均值 $\bar{x} = 1.414$,样本方差 $s^2 = 0.00778$ 。问在显著性水平 $\alpha = 0.05$ 下,这天纤度的波动是否正常?