

Biologie Grundstufe 2. Klausur

Montag, 14, Ma	ai 2018 (Nachmittag	I)
----------------	---------------------	----

Prüfungsnummer des Kandidaten														

1 Stunde 15 Minuten

Hinweise für die Kandidaten

- Tragen Sie Ihre Prüfungsnummer in die Kästen oben ein.
- Öffnen Sie diese Klausur erst, wenn Sie dazu aufgefordert werden.
- Teil A: Beantworten Sie alle Fragen.
- Teil B: Beantworten Sie eine Frage.
- Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.
- Für diese Klausur ist ein Taschenrechner erforderlich.
- Die maximal erreichbare Punktzahl für diese Klausur ist [50 Punkte].

20EP01

International Baccalaureate
Baccalaureat International
Bachillerato Internacional

Teil A

Beantworten Sie **alle** Fragen. Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.

1. Essbare Insekten zählen in vielen Ländern zur traditionellen Ernährung. Zu den häufig in Afrika und Asien verzehrten Insekten zählen beispielsweise die Grillen. Viele Studien haben untersucht, mit welchen Erfolgsaussichten man Insekten kommerziell züchten könnte, um sie entweder für den direkten Verzehr durch den Menschen zu nutzen oder indirekt über die Verfütterung an landwirtschaftliche Nutztiere.

Einer der dabei zu berücksichtigenden Faktoren ist, welche Lebewesen am effizientesten ihre Nahrung in tierische Proteine umwandeln, die zur Ernährung genutzt werden können. In einer Studie wurde der Anteil der essbaren Masse von zwei Nutztieren und von Grillen verglichen.

[Quelle: Food and Agriculture Organization of the United Nations. 2013. van Huis, *et al.*, *Forestry Paper* 171, Seite 60. http://www.fao.org/docrep/018/i3253e/i3253e00.htm. Wiedergabe mit freundlicher Genehmigung.]

(Fo	rts	etzi	ına	Fra	age	1)
		~~	ину		490	• ,

(a)	(1)	essbarer Masse.	[1]
	(ii)	Berechnen Sie, wie viel mehr Futter für Rinder als für Hühner benötigt wird, um 1 kg Lebendmasse zu produzieren.	[1]
	(iii)	Identifizieren Sie das Lebewesen, welches am wenigsten Futter zur Produktion von 1 kg essbarer Masse benötigt.	[1]

(Auf die vorliegende Frage wird auf Seite 5 weiter eingegangen)

Bitte umblättern

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

(Fortsetzung Frage 1)

Der Mehlwurm (*Tenebrio molitor*) lebt in den gemäßigten Zonen der Erde und wurde als mögliche Nahrungsquelle für Länder mit diesem Klima untersucht. Der Aminosäuregehalt von Mehlwürmern und Rindern wurde analysiert. In der Tabelle sind die Ergebnisse für sieben Aminosäuren gezeigt, die für die menschliche Ernährung erforderlich sind.

Aminosäure	Mehlwürmer / g kg ⁻¹ Trockenmasse	Rinder / g kg ⁻¹ Trockenmasse
Isoleucin	25	16
Leucin	52	42
Lysin	27	45
Methionin	6	16
Phenylalanin	17	24
Threonin	20	25
Valin	29	20

[Quelle: Food and Agriculture Organization of the United Nations. 2013. van Huis, et al., Forestry Paper 171, Seite 60. http://www.fao.org/docrep/018/i3253e/i3253e00.htm. Wiedergabe mit freundlicher Genehmigung.]

(b)	(i)	Unterscheiden Sie zwischen den Aminosäuregehalten von Mehlwürmern und von Rindern.	[1]
• • • •			
	(ii)	Prognostizieren Sie, mit Begründung, ob die Aminosäurezusammensetzung von Mehlwürmern oder von Rindern besser für die menschliche Ernährung geeignet ist.	[1]

Bitte umblättern

(Fortsetzung Frage 1)

(c)

Die Umweltauswirkungen der Produktion von Protein aus Mehlwürmern wurden verglichen mit den Auswirkungen der Produktion von traditionellen Proteinquellen. Die Diagramme zeigen die Produktion an Treibhausgasen (Potenzial der globalen Erwärmung) und den Flächenverbrauch bedingt durch die Produktion von 1 kg Protein aus Mehlwürmern, Hühnern und Rindern.

[Quelle: Food and Agriculture Organization of the United Nations. 2013. van Huis, *et al.*, *Forestry Paper* 171, Seite 60. http://www.fao.org/docrep/018/i3253e/i3253e00.htm. Wiedergabe mit freundlicher Genehmigung.]

Umreißen Sie die Unterschiede zwischen den Umweltauswirkungen der Verwendung

von Mehlwürmern und der Verwendung traditioneller Nutztiere zur Proteinproduktion										

(Fortsetzung Frage 1)

(d)	Vögel und Säugetiere halten eine konstante Körpertemperatur aufrecht, obwohl sie in erheblichem Maße Körperwärme an die Umgebung verlieren. Bei Insekten wie beispielsweise Mehlwürmern ist die Körpertemperatur variabel und entspricht oft genau der Umgebungstemperatur oder liegt nur leicht darüber. Analysieren Sie, unter Nutzung dieser Informationen, die Daten in den Balkendiagrammen.	[2]
(e)	Erörtern Sie, unter Verwendung aller relevanten Daten zu dieser Frage, die Verwendung von Insekten als bedeutende Nahrungsquelle für den Menschen.	[3]
(e)		[3]
(e) 		[3]

Bitte umblättern

[2]

2. (a) Beschriften Sie in dieser Darstellung der DNA die mit I, II, III und IV markierten Teile. [2]

ļ
G
A
IV

[Quelle: © International Baccalaureate Organization 2018]

(b)	(i)	Erklären Sie, wie das Erstellen von Modellen Watson und Crick bei der Ermittlung
		der Struktur der DNA half.

	(11))	oka							ne	11	ue	11 \	OH	10	Ш)50	וווכ	eı	IV	OI	e	JK	ai y	/Οι	150	ile.	:11	_ E	ille	:11 (JI I	ı	[1]
			 • •	 	 		• •				•			• •			-	-					-	-	-				-					
			 • •	 	 						•			• •			•							•			• •		• •				• •	
		• •	 ٠.	 	 	• •	٠.	٠.	٠.	٠.	•	• •	٠.	٠.	٠.		•	• •		٠.	٠.	• •	•	٠	• •		٠.	٠.	٠.	٠.	٠.	٠.	٠.	

(Fortsetzung Frage 2)

(0)	UIIII	elisen Sie die Rollen der lolgenden Enzyme bei der Replikation.	
	(i)	Helicase	[1]
	(ii)	DNA-Polymerase	[2]

Bitte umblättern

3. (a) Die elektronenmikroskopische Aufnahme zeigt eine Palisadenparenchymzelle.

[Quelle: BIOPHOTO ASSOCIATES/Getty Images]

	(i)	Geben Sie die Namen der mit I und II beschrifteten Strukturen an.	[1]
I.			
II.			
	(ii)	Umreißen Sie die Funktion der mit III beschrifteten Struktur.	[2]
	(iii)	Die Pflanze, aus der diese Zelle stammt, gehört zur Gruppe der Angiospermophyta. Geben Sie ein Merkmal an, das nur diese Pflanzengruppe besitzt.	[1]

(Fortsetzung Frage 3)

(b)	Un						'			nrungsweise.	
(c)	Erk	därer	Sie,	wie	Energie	und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk	därer	Sie,	wie	Energie	und N	lährstoffe i	n Ökosyste	emen transfe	riert werden.	
(c)	Erk	därer	Sie,	wie	Energie	und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk	därer	Sie,	wie	Energie	e und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk	därer	Sie,	wie	Energie	e und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk	klärer	. Sie,	wie	Energie	e und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk		Sie,	wie	Energie	und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	
(c)	Erk	därer	. Sie,	wie	Energie	und N	lährstoffe i	n Ökosyste	emen transfe	eriert werden.	

Bitte umblättern

			_0,,,,
١.	(a)	Skizzieren Sie eine Grafik, um die Auswirkung der Temperatur auf die Aktivität von Enzymen zu veranschaulichen.	[2
		↑	
		•	
	(b)	Erklären Sie die Enzym-Substrat-Spezifität.	[
	(5)	Emailon die die Enzym edberat epezintat.	
			ı

Teil B

Beantworten Sie **eine** Frage. Für die Qualität Ihrer Antwort ist bis zu ein zusätzlicher Punkt erhältlich. Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.

- **5.** Jede Zelle ist von einer Zelloberflächenmembran umgeben, die die Bewegung von Stoffen in die Zelle hinein und aus ihr heraus reguliert.
 - (a) Zeichnen Sie ein kommentiertes Diagramm des Flüssig-Mosaik-Modells der Membranstruktur.

[4]

(b) Beschreiben Sie die Prozesse, die an der Resorption verschiedener Nährstoffe über die Zellmembran der Zottenepithelzellen, die den Dünndarm auskleiden, beteiligt sind.

[4]

(c) Erklären Sie die Ereignisse, die während eines Nervenimpulses ablaufen, und wie der Impuls entlang eines Axons weitergeleitet wird.

[7]

- **6.** Bakterien haben zwar einen einfachen Aufbau, zeigen aber als Gruppe eine große Vielfalt.
 - (a) Umreißen Sie die Rollen, die Bakterien im Kohlenstoffkreislauf spielen.

[3]

(b) Beschreiben Sie die Evolution der Resistenz gegen Antibiotika in Bakterien.

[4]

(c) Erklären Sie den Prozess der genetischen Modifikation von Bakterien.

[8]

Bitte umblättern

