FIG. 1

Ì

(1 Light chain amino acid sequence:

(LLTQSPAILSVSPGERVSFSC**rasqsigteih**wyqortngsprllik**yasesis**gipsrfsgsggtdftlsinsvesediadyyc**qqinswpt**tfgggtkleikradaaptvsifppssæ JTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

Fig.

(1 Heavy Chain amino acid sequence:

3VYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNLLGGPSVFIF¶ (KOVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKPKGSVRAPQVYVLPPPEEEMTKKQVTLITD /QLQESGPGLVKPSQSLSLTCTVTDYSIT**SDYAmn**wIRQFPGNKLEWMG**YISYSGSTSYNPSLKS**RISITRDTSKNQFFLQLNSVTTEDTATYYCAS**FDYAHAMDY**WGQGTSVTVSSAKT1**W** (DFMPEDIYVEWINNGKTELNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHhttKSFSRTPG

Il heavy chain nucleotide seguence:

. ggattactggggccaagggacttcggtcactgtctcttccgccaaaacaacaacagcccatcggtctatccactggcccctgtgtgggagatacaactggctcctcggtgactctaggatgc ggtcaagggttatttccctgagccagtgaccttgacctggaactctggatccctgtccagtggtgtgcacaccttcccagctgtctgcagtctgacctctacaccctcagcagctcagtg tgtaacctcgagcacctggcccagtccatcacctgcaatgtggcccacccggcaagcagcaccaaggtggacaagaaaattgagcccagagggcccacaaatcaagccctgtcctcca y ca a a tocco a go contrott to go de tott contrott contro con contro de la contro del la contro della contro Igcaccaggactggatgagtggcaaggagttcaaatgcaaggtcaacaacaacaagacctcccagcgcccatcgagagaaccatctcaaaaagcccaaagggtcagtaagagctccacaggtatat tgtcactgactactccatcaccagtgattacgcctggaactggatacggcaattcccagggaataaacttgagtggatggggtacataagctacagtggtagcacttcctacaatccatct caaaagtoggatotocatcactogagacacatccaagaaccagttottoctgcagotgaactctgtgactactgaggacacagccacatattactgtgcatoottogactatgoccacgoo :999ttggtcctgtatcatcctattcctggtggccactgccacaggtgtgcactccgacgtgcagcttcaggagtcaggacctggcctcgtgaaaccttctcagagtctgtccctcacctgt gcacaatcaccacacgactaagagcttctcccggactccgggtaaa

Il light chain nucleotide sequence:

ggtatccacacctcagttccttgtatttttgcttttctggattccagcctccagaggtgacatcttgctgactcagtctccagccatcctgtcgtgagtccaggagaaagagtcagtttc ctgcagggccagtcagagcattggcacaagcatacactggtatcagcaaagaacaaatggttctccaaaggcttctcataaagtatgcttctgagtctatctctgggatcccttccaggttt ytggcagtggatcagggacagattttactcttagcatcaacagtgtggagtctgaagatattgcagattattactgtcaacaaattaatagctggccaaccacgttcggcgggggggacaaa .ggaaataaaacgggctgatgctgcaccaactgtatccatcttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgtgcttcttgaacaacttctaccccaaagacatc itgtcaagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttggactgatcaggacagcaaagacagcacctacagcatgagcagcacctcacgttgaccaaggacgag itgaacgacataacagctatacctgtgaggccactcacaagacatcaacttcacccattgtcaagagcttcaacaggaatgagtgt

FIG. 4B

V-Region	Amino Acids 53-109
Risk	НЕММЕНМЕМНЕНЕНЕНЕНЕНЕНЕЕНЕЕНЕЕНЕНЕННИННИННИННИННИ
Mouse	RSISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQINSWPTTFGGGTKLEI-KRA

FIG. 4C

CHIR-RX1Heavy Chain Risk Assignments

V-Region	Amino Acids 1-57
Risk	<u>МНГНГНГНИГЕМГИГЕТНГНГНГНИННННННННННННННННННННННННННН</u>
Mouse	DVQLQRSGPGLVKPSQSLSLTCTVTDYSITSDYAWN-WIRQFPGNKLEWMGYISYSGST
V-Region	Amino Acids 58-113
Risk	НМНМИНМЕМЕНТИТИТИТИТИТИТИТИТЕТЕТЕТЕТИТИННИННИННИННИННИННИННИННИННИННИННИННИ
Mouse	SYNPSLKSRISITRDISKNOFFLOLNSVITEDTAL YYCASFDYAHAMDYWGOGTSVIVSS

MC1 Neutralizes human MCSF activity

MC3 Neutralizes human MCSF activity

FIG. 8A

Binding of MCSF-specific antibody to breast cancer cell line MDA231

Red: no antibody control

Black: M-CSF antibody 1 ug/ml Green: M-CSF antibody 10 ug/ml Blue: M-CSF antibody 50 ug/ml

FIG. 8B

Binding of MCSF-specific antibody to multiple myeloma cancer cell line ARB77

Red: no antibody control Green: M-CSF antibody 5 ug/ml Blue: control lgG2a 5 ug/ml

FIG. 9

Cancer Type	Cancer Status	Score 0					% with scores 3 or higher
adrenal	normal	10	5	5	0	0	. 0
basal cell	cencer	5	· 0	0	0	0	0
bladder	normal	6	1	2	1	0	10
brein	normal	17	1	. 2	0	0	0
	cancer	6	5		62	Ö	
breast	normal	1 7	5		6	Ö	24
breast	cancer	9	2	2	0	0	
carcinoids	cancer	1	Ô	1	0	Ö	0
carcinoids (muscle)			0	6	0	0	- : 0
choriocarcinoma	cencer	1			. 0	. 0	
colon	normel	4	00	2			. 0
colon	cancer	9		1	4	0	27
fibrosercome	cancer	-3	1	0	0	0	0
oslibladder	normal	2	1	0	1	0	26
germ cell	cancer	1	0	0	0	0	. 0
heart	normal	7	3	2	4	0	25
kidney	normal	- 5	.10	. 1	. 4	0	. 20
kldney	cencer	8	1	0	3	0	25
le iornyosarcoma	cancer	5	0	0	0	0	· 0
Bver	normal	11	3	4	1	0	
Byer	cencet	5	3	0	3	0	27
lung	normal	19	0	1	0	0	
lung	cancer	3	1	0	3	0	
lymphome	cancer	13	0	3	. 2	0	
melenome	cancer	7	0	2	.5	0	
melanoma(inflammation)	cancer ,	0	. 0	0	1	0	
mesotheliome	cancer	6	0	0	0	0	
neuroblestome	cancer	1	0	0	0	0	
ovaty	normel	6	0	2	0	0	
overy	cancer	81	2	0	4	0	A
pencreas	normal	9	2	5	4	0	
pancress	cencer	. 8	- 1	0	3	0	
prostate .	normal	0	3	8	3	0	<u> </u>
prostate	cancer	9	1	1	4	0	
sarcoma all	cancer	6	0	2	2	0	
sarcome :	cencer	3	0	2	1	0	
sercome (kidney)	cancer	3	0	2	1	0	
sercoma min	CBRCST	2	. 0	0	0	0	
seminome	Cancer	. 3	0	0	0	0	
small intestine	normal	. 2	1	0	1	0	
	normel	14	2	.3	0	0	
	cancet	3	G	0	. 0	0	• • • • • •
	nomal	3	2	2	1	0	13
	cancer	71	1	1	1	0	·10
STUTION	cancer	11	. 0	0	0	Ö	
TETOTOTO	normal	5	1	3	3	Ö	. 25
IESIM	normal	15	ö	<u>o</u>	Ö		
DIVIOLO	cancer	- 6	2	1	2		A
III y I UIG			- 6		• 1	- 6	
UNOM BII	cencer	6		2			
undit	cencer	5	0	2	0	<u> </u>	

Met 1	Thr	Ala	Pro	Gly 5	Ala	Ala	Gly	Arg	Cys 10	Pro	Pro	Thr	Thr	Trp 15	Leu
Gly	ser	Leu	Leu 20	Leu	Leu	Val	Сув	Leu 25	Leu	Ala	Ser	Arg	Ser 30	Ile	Thr
Glu	Glu	Val 35	Ser	Glu	Tyr	Cys	Ser 40	His	Met	Ile	Gly	Ser 45	Gly	His	Leu
Gln	Ser 50	Leu	Gln	Arg	Leu	Ile 55	Asp	Ser	Gln	Met	Glu 60	Thr	Ser	Сув	Gln
Ile 65	Thr	Phe	Glu	Phe	Val 70	Asp	Gln	Glu	Gln	Leu 75	Lys	qaA	Pro	Val	Сув 80
.Tyr	Leu	Lys	Lys	Ala 85	Phe	Leu	Leu	Val	Gln 90	Asp	Ile	Met	Glu	Asp 95	Thr
Met	Arg	Phe	Arg 100	Asp	Asn	Thr	Pro	Asn 105	Ala	Ile	Ala	Ile	Val 110	Gln	Leu
Gln	Glu	Leu 115	Ser	Leu	Arg	Leu	Lys 120	Ser	Сув	Phe	Thr	Lys 125	Asp	Tyr	Glu
Glu	His 130	Asp	Lys	Ala	Cys	Val 135	Arg	Thr	Phe	Tyr	Glu 140	Thr	Pro	Leu	Gln
Leu 145	Leu	Glu	Lys	Val	Lys 150	Asn	Val	Phe	Asn	Glu 155	Thr	Lys	Asn	Leu	Leu 160
Asp	Lys	Asp	Trp	Asn 165	Ile	Phe	Ser	Lys	Asn 170	Cys	Asn	Asn	Ser	Phe 175	Ala
Glu	Cys	Ser	Ser 180	Gln	Gly	His	Glu	Arg 185	Gln	Ser	Glu	Gly	Ser 190	Ser	Ser
Pro	Gln	Leu 195	Gln	Glu	Ser	Val	Phe 200	His	Leu	Leu	Val	Pro 205	Ser	Val	Ile
Leu	Val 210	Leu	Leu	Ala	Val	Gly 215	Gly	Leu	Leu	Phe	Tyr 220	Arg	Trp	Arg	Arg
Arg 225	Ser	His	Gln	Glu	Pro 230	Gln	Arg	Ala	Asp	Ser 235	Pro	Leu	Glu	Gln	Pro 240
Glu	Gly	Ser	Pro	Leu 245	Thr	Gln	Asp	Asp	Arg 250	Gln	Val	Glu	Leu	Pro 255	Val

Met Thr Ala Pro Gly Ala Ala Gly Arg Cys Pro Pro Thr Thr Trp Leu 10 Gly Ser Leu Leu Leu Val Cys Leu Leu Ala Ser Arg Ser Ile Thr 25 20 Glu Glu Val Ser Glu Tyr Cys Ser His Met Ile Gly Ser Gly His Leu 40 Gln Ser Leu Gln Arg Leu Ile Asp Ser Gln Met Glu Thr Ser Cys Gln 55 Ile Thr Phe Glu Phe Val Asp Gln Glu Gln Leu Lys Asp Pro Val Cys 65 70 75 80 Tyr Leu Lys Lys Ala Phe Leu Leu Val Gln Asp Ile Met Glu Asp Thr 85 90 Met Arg Phe Arg Asp Asn Thr Pro Asn Ala Ile Ala Ile Val Gln Leu 100 105 110 Gln Glu Leu Ser Leu Arg Leu Lys Ser Cys Phe Thr Lys Asp Tyr Glu 115 120 125 Glu His Asp Lys Ala Cys Val Arg Thr Phe Tyr Glu Thr Pro Leu Gln 135 140 Leu Leu Glu Lys Val Lys Asn Val Phe Asn Glu Thr Lys Asn Leu Leu 145 150 155 160 Asp Lys Asp Trp Asn Ile Phe Ser Lys Asn Cys Asn Asn Ser Phe Ala 165 170 175 170 Glu Cys Ser Ser Gln Asp Val Val Thr Lys Pro Asp Cys Asn Cys Leu 180 185 190 Tyr Pro Lys Ala Ile Pro Ser Ser Asp Pro Ala Ser Val Ser Pro His 195 200 205 Gln Pro Leu Ala Pro Ser Met Ala Pro Val Ala Gly Leu Thr Trp Glu 215 220 Asp Ser Glu Gly Thr Glu Gly Ser Ser Leu Leu Pro Gly Glu Gln Pro 225 230 235 240 Leu His Thr Val Asp Pro Gly Ser Ala Lys Gln Arg Pro Pro Arg Ser 245 250 255 250 Thr Cys Gln Ser Phe Glu Pro Pro Glu Thr Pro Val Val Lys Asp Ser 260 265 270 270 Thr Ile Gly Gly Ser Pro Gln Pro Arg Pro Ser Val Gly Ala Phe Asn 275 280 285 Pro Gly Met Glu Asp Ile Leu Asp Ser Ala Met Gly Thr Asn Trp Val 295 300 Pro Glu Glu Ala Ser Gly Glu Ala Ser Glu Ile Pro Val Pro Gln Gly 310 315 Thr Glu Leu Ser Pro Ser Arg Pro Gly Gly Gly Ser Met Gln Thr Glu 325 330 335 Pro Ala Arg Pro Ser Asn Phe Leu Ser Ala Ser Ser Pro Leu Pro Ala 340 345 350 Ser Ala Lys Gly Gln Gln Pro Ala Asp Val Thr Gly Thr Ala Leu Pro 360 365 Arg Val Gly Pro Val Arg Pro Thr Gly Gln Asp Trp Asn His Thr Pro 370 375 380 Gln Lys Thr Asp His Pro Ser Ala Leu Leu Arg Asp Pro Pro Glu Pro 390 395 Gly Ser Pro Arg Ile Ser Ser Leu Arg Pro Gln Gly Leu Ser Asn Pro 405 410 Ser Thr Leu Ser Ala Gln Pro Gln Leu Ser Arg Ser His Ser Ser Gly
420 425 430 Ser Val Leu Pro Leu Gly Glu Leu Glu Gly Arg Arg Ser Thr Arg Asp 440 Arg Arg Ser Pro Ala Glu Pro Glu Gly Gly Pro Ala Ser Glu Gly Ala 450 455 460 460 Ala Arg Pro Leu Pro Arg Phe Asn Ser Val Pro Leu Thr Asp Thr Gly
465 470 475 His Glu Arg Gln Ser Glu Gly Ser Ser Ser Pro Gln Leu Gln Glu Ser 485 490 495 Val Phe His Leu Leu Val Pro Ser Val Ile Leu Val Leu Leu Ala Val 500 505 510 Gly Gly Leu Leu Phe Tyr Arg Trp Arg Arg Arg Ser His Gln Glu Pro 515 520 525 Gln Arg Ala Asp Ser Pro Leu Glu Gln Pro Glu Gly Ser Pro Leu Thr 535 Gln Asp Asp Arg Gln Val Glu Leu Pro Val

Met 1	Thi	r Ala	a Pro	Gl ₃ 5	/ Ala	a Ala	a Gly	/ Arc	Cys 10	Pro	Pro) Thr	Thr	Trp	Leu
Gly	/ Sei	Let	1 Let 20	Lev	ı Let	ı Val	Cys	25	ı Lev	ı Ala	Ser	Arg	ser 30		Thr
		35	l Ser				40					45	_		
	50		ı Gln			55					60				
65			Glu		70					75					80
			Lys	85					90					95	
			Arg					105					110		
		115					120					125			
	130		Lys			135					140				
Leu 145	Leu	Glu	Lys	Val	Lys 150		Val	Phe	Asn	Glu 155	Thr	Lys	Asn	Leu	Leu 160
			Trp	165					170					175	Ala
			Ser 180					185					190		
		195	Ala				200					205			
	210		Ala			215					220			_	
Asp 225	Ser	Glu	Gly	Thr	Glu 230	Gly	Ser	Ser	Leu	Leu 235	Pro	Gly	Glu	Gln	Pro 240
			Val	245					250					255	
			Ser 260					265					270	-	
		275	Gly				280					285			
	290		Glu			295					300				
305			Ala		310					315					320
			Ser	325					330					335	
Pro	Ala	Arg	Pro 340	Ser	Asn	Phe	Leu	Ser 345	Ala	Ser	Ser	Pro	Leu 350	Pro	Ala
Ser	Ala	Lys 355	Gly	Gln	Gln	Pro	Ala 360	Asp	Val	Thr	Gly	His 365	Glu	Arg	Gln
	370		Ser			375					380	Val			
Leu	Val	Pro	Ser	Val	Ile	Leu	Val	Leu	Leu	Ala	Val	Gly	Gly	Leu	Leu
385					390					395			_		400
				405					410					415	_
			Glu 420			Glu		Ser 425	Pro	Leu	Thr	Gln	Asp 430	Asp	Arg
Gln	Val	Glu	Leu	Pro	Val										

16/44

FIG. 13

5H4 heavy chain protein sequence:

1		LVKTGTSVKI			
51	ISCYNGDTNY	NONFKGKATF	TVDTSSSTAY	MQFNSLTSED	SAVYYCAREG
101	GNYPAYWGQG	TLVTVSAAKT	TPPSVYPLAP	GSAAQTNSMV	TLGCLVKGYF
151	PEPVTVTWNS	GSLSSGVHTF	PAVLQSDLYT	LSSSVTVPSS	TWPSETVTCN
201	VAHPASSTKV	DKKIVPRDCG	CKPCICTVPE	VSSVFIFPPK	PKDVLTITLT
251	PKVTCVVVDI	SKDDPEVQFS	WFVDDVEVHT	AQTQPREEQF	NSTFRSVSEL
301	PIMHQDWLNG	KEFKCRVNSA	AFPAPIEKTI	SKTKGRPKAP	QVYTIPPPKE
351	QMAKDKVSLT	CMITDFFPED	ITVEWQWNGQ	PAENYKNTQP	IMDTDGSYFV
401	YSKLNVOKSN	WEAGNTETES	VI.HEGI.HNHH	TEKSI.SHSDG	¥

5H4 light chain protein sequence:

1	DIVMTQSHKF	MSTSVGDRVT	ITCKASQNVG	TAVTWYQQKP	GQSPKLLIYW
51 `	TSTRHAGVPD	RFTGSGSGTD	FTLTISDVQS	EDLADYFCQQ	YSSYPLTFGA
101	GTKLELKRAD	AAPTVSIFPP	SSEQLTSGGA	SVVCFLNNFY	PKDINVKWKI
151	DGSERQNGVL	NSWTDQDSKD	STYSMSSTLT	LTKDEYERHN	SYTCEATHKT
201	STSPIVKSFN	RNEC			

FIG. 14

MC-1 heavy chain protein sequence:

1	EVKLVESGGG	LVQPGGSLKL	SCATSGFTFS	DYYMYWVRQT	PEKRLEWVAY
51	ISNGGGSTYY	PDTVKGRFTI	SRDNAKNTLY	LQMSRLKSED	TAMYYCARQG
101	SYGYPFAYWG	QGTLVTVSAA	KTTAPSVYPL	APVCGDTTGS	SVTLGCLVKG
151	YFPEPVTLTW	NSGSLSSGVH	TFPAVLQSDL	YTLSSSVTVT	SSTWPSQSIT
201	CNVAHPASST	KVDKKIEPRG	PTIKPCPPCK	CPAPNLLGGP	SVFIFPPKIK
251	DVLMISLSPI	VTCVVVDVSE	DDPDVQISWF	VNNVEVHTAQ	TOTHREDYNS
301	TLRVVSALPI	QHQDWMSGKE	FKCKVNNKDL	PAPIERTISK	PKGSVRAPQV
351	YVLPPPEEEM	TKKQVTLTCM	VTDFMPEDIY	VEWTNNGKTE	LNYKNTEPVL
401	DSDGSVFMVS	KT.RVEKKNWV	EDNSYSCSVV	HEGI.HNHHTT	KSESDTDCK

MC-1 light chain protein sequence:

1	AIQMTQTTSS	LSASLGDRVT	ISCSASQGIS	NYLNWYQQKP	DGTVKLLIYY
51	TSSLHSGVPS	RFSGSGSGTD	YSLTISNLEP	EDIATYYCQQ	YSKLPWTFGG
101	GTKLEIKRAD	AAPTVSIFPP	SSEQLTSGGA	SVVCFLNNFY	PKDINVKWKI
151	DGSERQNGVL	NSWTDQDSKD	STYSMSSTLT	LTKDEYERHN	SYTCEATHKT
201	STSPIVKSFN	RNEC			

FIG. 15

MC-3 heavy chain protein sequence:

1	DVQLQESGPG	LVKPSQSLSL	TCTVTGYSIT	SDYAWNWIRQ	FPGNKLEWMG
51	YISYSGSTSY	NPSLKSRISI	TRDTSKNQFF	LQLNSVTTED	TATYYCARLE
101	TWLFDYWGQG	TTLTVSSAKT	TPPSVYPLAP	GCGDTTGSSV	TLGCLVKGYF
151	PESVTVTWNS	GSLSSSVHTF	PALLQSGLYT	MSSSVTVPSS	TWPSQTVTCS
201	VAHPASSTTV	DKKLEPSGPI	STINPCPPCK	ECHKCPAPNL	EGGPSVFIFP
251	PNIKDVLMIS	LTPKVTCVVV	DVSEDDPDVQ	ISWFVNNVEV	HTAQTQTHRE
301	DYNSTIRVVS	TLPIQHQDWM	SGKEFKCKVN	NKOLPSPIER	TISKIKGLVR
351	APQVYILPPP	AEQLSRKDVS	LTCLVVGFNP	GDISVEWTSN	GHTEENYKDT
401	APVLDSDGSY	FIYSKLNMKT	SKWEKTDSFS	CNVRHEGLKN	YYLKKTISRS
451	PGLDLDDICA	EAKDGELDGL	WTTITIFISL	FLLSVCYSAS	VTLFKVKWIF
501	SSVVELKOKI	SPDYRNMIGO	GA		

MC-3 light chain protein sequence:

1	DILLTQSPAI	LSVSPGERVS	FSCRASQSIG	TSIHWYQQRT	NGSPRLLIKY
51	ASESISGIPS	RFSGSGSGTD	FTLSINSVES	EDIADYYCQQ	SNSWPTTFGG
101	GTKLEIKWAD	AAPTVSIFPP	SSEQLTSGGA	SVVCFLNNFY	PKDINVKWKI
151	DGSERQNGVL	NSWTDQDSKD	STYSMSSTLT	LTKDEYERHN	SYTCEATHKT
201	STSPIVKSFN	RNEC			

FIG. 16A

For heavy chain CDR1:

1
H_CDR1_5H4 (1) -GYFMH
H_CDR1_MC-1 (1) -EYMY
H_CDR1_CHIR-RX1 (1) SYELL
H_CDR1_MC-3 (1) SYELL
Consensus (1) SDYAWN

For heavy chain CDR2:

For heavy chain CDR3:

H_CDR3_5H4 (1) -- GNYPAY
H_CDR3_MC-1 (1) QGSWG-PHAY
H_CDR3_CHIR-RX1 (1) -F GHAM
H_CDR3_MC-3 (1) -- LET LL Y
Consensus (1) DYGW FDY

FIG. 16B

For light chain CDR1:

For light chain CDR2:

L_CDR2_5H4 (1) STRH
L_CDR2_MC-1 (1) SSLH
L_CDR2_CHIR-RX1 (1) ASSIGNATION
L_CDR2_MC-3 (1) ASSIGNATION
Consensus (1) YTSESIS

For light chain CDR3:

L_CDR3_5H4 (1) 00 1 LT L_CDR3_MC-1 (1) 00 1 KLZWE L_CDR3_CHIR-RX1 (1) 00 IN 1 LZ L_CDR3_MC-3 (1) 00 SN 1 LZ Consensus (1) QQYSSWPTT

FIG. 17

FIG. 18

FIG. 19A

Heavy Chain

	No.of	
V-Region	Changes	Amino Acids 1-57
Risk		<u>МНТНТНТНИТТМТТТТНТНТНТНИННННННННННННННН</u>
Mouse		DVQLQESGPGLVKPSQSLSLTCTVTDYSITSDYAWN-WIRQFPGNKLEWMGYISYSGST
Human		qvqLqesGpgLVkPsqTLsLTCxvsGxsxSsxxxxxxWiRQpPgkgLEWigxiyyraxxgxt
Low Risk	2	DVQLQESGPGLVKPSQTLSLTCTVTDYSITSDYAWN-WIRQFPGKKLEWMGYISYSGST
Low+Mod	2	QVQLQESGPGLVKPSQTLSLTCTVSDYSITSDYAWN-WIRQFPGRGLEWMGYISYSGST

V-Region	No.of Changes	Amino Acids 58-113
Risk		нмнммнмгмгигигигигигигигигигигингининннннннн
Mouse		SYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYYCASFDYAHAMDYWGQGTSVTVSS
Human		xynpSlksRvTisvDTSKNQfsLxlxsvtaaDTAvYyCArxxxxxxxxxxxxxxtdxWGqGtxVTVSS
Low Risk	9	SYNPSLKSRITISRDTSKNQFSLQLNSVTAADTATYYCASFDYAHAMDYWGQGTTVTVSS
Low+Mod	7	SYNPSLKSRITISRDTSKNQFSLQLNSVTAADTAVYYCASFDYAHAMDYWGQGTTVTVSS

FIG. 19B

Low Risk Heavy Chain Vs. Kabat Vh2 Consensus:

Protein Seq:

DVQLQESGPGLVKPSQTLSLTCTVTDYSITSDYAWNWIRQFPGKKLEWMGYISYSGSTSYNPSLKSRITISRDTSKNQFSLQLNSVTAADTATYYCASFDYAHAMD YWGQGTTVTVSS

DNA Seq:

 AATITICCCGCGATACCTCTAAAAATCAATTTTCACTCCAACTCAATTCTGTTACCGCCGCGATACTGCCACCTACTGTGCCTCTTTTGACTACGCTCACG
 CCATGGATTATTGGGGACAGGGTACTACCGTTACCGTAAGCTCA

Low Risk + Moderate Risk Heavy Chain Vs. Kabat Vh2 Consensus:

Protein Seq:

QVQLQESGPGLVKPSQTLSLTCTVSDYSITSDYAWNWIRQFPGKGLEWMGYISYSGSTSYNPSLKSRITISRDTSKNQFSLQLNSVTAADTAVYYCASFDYAHAMD YWGQGTTVTVSS

DNA Seq:

CTATGGATTATTGGGGACAAGGAACTACCGTCACTGTCAGCTCA

FIG. 20A

Light Chain

	No.of	
V-Region	Changes	Amino Acids 1-52
Risk		ГАТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИННИННИННИН
Mouse		DILLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKYAS
Human		EIVITQSPGTLS1SPGERATLSCRASQSvsssyLAWYQQKPGQAPRLLIYGAS
Low Risk	∞	EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQSPRLLIKYAS
Low+Mod	6	EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQAPRLLIKYAS

	No.of	
V-Region	Changes	Amino Acids 53-109
Risk		ТТТТТНТНЕННИННИННИННИННИННИННИННИННИННИННИННИНН
Mouse	•	ESISGIPSRFSGSGSTDFTLSINSVESEDIADYYCQQINSWPTTFGGGTKLEI-KRA
Human		SRATGIPARFSGSGSTDFTLTISrLepEDFAVYYCQQYgssppxTFGqGTKvEI-KRT
Low Risk	8	ERISGIPDRFSGSGSTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEI-KRT
Low+Mod	10	ERATGIPDRFSGSGSTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEI-KRT

•			

FIG. 20B

Low Risk Light Chain Vs. Kabat Vk3 Consensus:

Protein Seq:

EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQSPRLLIKYASERISGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEIKRT

Nucleotide Seq:

GAAATAGTCCTTACCCAATCTCCCGGAACCCTCTCAGTATCTCCCGGCGAACGAGTAACCTTTTCATGTAGAGCATCCCAATCCATCGGCACTTCAATTCACT **ACAGACTICACACTTACAATTICCCGCGTCGAATCCGAAGACTTCGCTGACTATTACTGCCAACAAATCAACTCATGGCCTACTACTTTCGGTCAAGGCACC AAACTCGAAATTAAACGTACG**

Low Risk + Moderate Risk Light Chain Vs. Kabat Vk3 Consensus:

Protein Seq:

EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKT**GQAP**RLLIKYASERATGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEIKRT

Nucleotide Seq:

ACCGATTTCACACTTACAATATCCAGAGTCGAATCAGAAGATTTTGCAGATTACTATTGTCAACAAATAAACAGCTGGCCCACTACATTCGGACAAGGCACA **AAACTCGAAATTAAACGTACG**

FIG. 21A

Light Chain - Changes back to Murine

V-Region	No.of Changes	Amino Acids 1-52
TOP STATE	Cognana C	
Risk		ТНЕНЕНЕМЕТМЕНЕМЕТЕНЕНЕННИННННННННННННННН
Mouse		DILLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKYAS
Human		EIVITQSPGTLS1SPGERATLSCRASQSvsssyLAWYQQKPGQAPRLLIYGAS
Low Risk	œ	EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQSPRLLIKYAS
Low+Mod	6 .	RIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQAPRLLIKYAS

V-Region	No.of Changes	Amino Acids 53-109
Risk		нгммгнмгмнгнгнгнгнгнгнгнгтгтгтгтнгнннннннн
Mouse		ESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQINSWPTTFGGGTKLEI-KRA
Human		sratgipdrfsgsgsgtdftltisllepedfavyycooppxtfgggtkvei-krt
Low Risk	8	ERISGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEI-KRT
Low+Mod	10	ERATGI PDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEI-KRT
Low+Mod	7	ESISGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEI-KRT
Altnernate		

FIG. 21B

Low Risk Light Chain Vs. Kabat Vk3 Consensus; AA54 changed back to murine:

Protein Seq:

EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQSPRLLIKYASESISGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEIKRT

Nucleotide Seq:

GAAATAGTCCTTACCCAATCTCCCGGAACCCTCTCAGTATCTCCCGGCGAACGAGTAACCTTTTCATGTAGAGCATCCCAATCCATCGGCACTTCAATTCAC **AACTCGAAATTAAACGTACG**

Low Risk + Moderate Risk Light Chain Vs. Kabat Vk3 Consensus; AA54, 55, 56 changed back to murine:

Protein Seq:

EIVLTQSPGTLSVSPGERVTFSCRASQSIGTSIHWYQQKTGQAPRLLIKYASESISGIPDRFSGSGSGTDFTLTISRVESEDFADYYCQQINSWPTTFGQGTKLEIKRT

Nucleotide Seq:

CCGATTTCACACTTACAATATCCAGAGTCGAATCAGAAGATTTTGCAGATTACTATTGTCAACAAATAAACAGCTGGCCCACTACATTCGGACAAGGCACAA **AACTCGAAATTAAACGTACG**

FIG. 22A

Light Chain – Changes based on HK6 2-1-1(A14)

V-Region	No.of Changes	Amino Acids 1-52
Risk		ТНГНТНГИГТИГНТИГГГНТНГНГНИННННННННННННН
Mouse	٠	DILLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKYAS
Human		DVVMTQSPAFLSVTPGEKVTITCQASEGIGNYLYWYQQKPDQAPKLLIKYAS
Low Risk	10	DIVLTQSPAFLSVTPGEKVTFTCQASQSIGTSIHWYQQKTDQSPRLLIKYAS
Low+Mod	12	DIVLTQSPAFLSVTPGEKVTFTCQASQSIGTSIHWYQQKTDQAPKLLIKYAS

V-Region	No.of Changes	Amino Acids 53-109
Risk		нгммгимгингититититититититититининнинниннинннин
Mouse		ESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQINSWPTTFGGGTKLEI-KRA
Human		QSISGVPSRFSGSGSGTDFTFTISSLEAEDAATYYCQQGNKHPLTFGGGTKVEI-KRT
Low Risk	5	ESISGIPSRFSGSGSGTDFTLTISSVEAEDAADYYCQQINSWPTTFGGGTKLEI-KRT
Low+Mod	5	ESISGIPSRFSGSGSGTDFTLTISSVEAEDAADYYCQQINSWPTTFGGGTKLEI-KRT

FIG. 22B

Low Risk Light Chain vs. VK6 Subgroup 2-1-(1) A14:

Protein Seq:

DIVLTQSPAFLSVTPGEKVTFTCQASQSIGTSIHWYQQKTDQSPRLLIKYASESISGIPSRFSGSGSGTDFTLTISSVEAEDAADYYCQQINSWPTTFGGGTKLEIKRT

Nucleotide Seq: Not synthesized

Low Risk + Moderate Risk Light Chain vs. VK6 Subgroup 2-1-(1) A14:

DIVLTQSPAFLSVTPGEKVTFTCQASQSIGTSIHWYQQKTDQAPKLLIKYASESISGIPSRFSGSGSGTDFTLTISSVEAEDAADYYCQQI NSWPTTFGGGTKLEIKRT

Nucleotide Seq:

GACATAGITICICACACAATCACCAGCATICCICICICAGITACACCCGGCGAAAAAGIAACCITITACCIGICAGGCITICICAATCIAICGGCACTICIATICACT GGTATCAACAAAAACCGATCAAGCTCCTAAAACTCCTCATAAAATACGCATCCGAATCCATCTCCGGTATCCCTCCAGATTTTCAGGCTCCGGCTCCGGCA CAGATTICACCCTTACCATTAGCTCAGTTGAAGCCGAAGACGCAGCTGATTACTACTGTCAACAAATAAACTCATGGCCCACTACTTTCGGCGGGGGGCACTA **AACTCGAAATAAAACGTACG**

Murine RX-1 Light Chain:

	∡uu
	V
	Ţ
	7
	저
	m
	Ĕ
	Ē
	Ďμ
	3
	S
	Z
	Н
	O
	Q
	Ö
	7
	SEDIADYY
	9
	SEDIA
	Ħ
	벎
	120
	Ä
	5
	'n
	÷.
	Ħ
	S
	TLS
	H
	SCTDFTLSI
	TDF
	H
	3SPRLLIKYASESISGIPSRFSGSGSG;
	ຜ
	Ö
	Ω
	Ö
	67
	Ħ
	14
	χ,
	=
	75
	$\tilde{\omega}$
	H
	ŝ
	Œ
	S
	Z,
	7
	×
	H
	닉
	뉬
	<u> </u>
	2
	77
	\mathbf{z}
	TOORTE
	2
	$\overline{\mathbf{o}}$
	Ŏ
	>+
	3
	H
	Ĭ
	ပ်)
	댰
	IG
	H
	Š
	$\widetilde{\mathbf{x}}$
	AS
	2
	ซ
	ഗ്
	[I
	Ś
	>
	24
	问
	Ď
•	H
	2
	5
	3
	법
	7
	~
	31
	č
	TOS
	5
	3
	Ħ
	A

FIG. 23A

LEIKRA		
PX1 KV	3	(1) DIEERGSBAILSBAPGERVŠFSGRASOSI GE-SĒMĀYQGRINGSPRILĪKYABBBI SĢTFSRFSGSGSGEDFTLSBNSRESBBIADĀYGOINSĀPTTPG
ĕ	ដ្ឋ	
hVK I Consensus	3	(1) DIQ M项级S度SESASVGBNTITGGRASQSISS-YLNRYQGKPGKAPKLL序YAASŠLOSGVRSRRSGSGROFFLFTSSLOPEBFATKYCOOSYSTP
hVK II Consensus	Ξ	DIVM <u>ygreledepasiscresorulusdodantyl d</u> iyylökpegöspollöytleyra sevenyra seresessesseridetilkesryra etdiyyenyra etd
hVK III Consensus	E	bivging Bills His ber Tits Grasson Sussession - Lawyoor Prodate Brander Brander Brander Bredering Bredering Br
hVK IV Consensus	3	DIVMIGS BOLDAVS LEBRATI NEKESOS VLVSSNNKOV LÄWYOÖK PEGOP PÄLLIÄYMAS IRRESEVEDRESSESSERIDE ILLIESSLOA EIDVAVÄYCOVYSTP
hVK V Consensus	Ē	ELTEGISERINGSER SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT
hVK VI Consensus	3	ETVINGROUPS TERMINE THE PROPERTY OF THE PROPER

LIGHT CHAIN amino balf

DILLTQSPAILSVSPGERVSFSCRASQSI -- GTSIH---- WYQQRTNGSPRLLIKYAS RX-1

20	
4 0 1	
abcdef 30	
20	
미	
msod	Volta

Kabat:

HK2...DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSXDGXXYLNWYLQKPGQSPQLLIYXXS HK3...EIVLTQSPGTLSLSPGERATLSCRASQS----VSSSYLAWYQQKPGQAPRLLIYGAS HK1...DIQMTQSPSSLSASVGDRVTITCRASQSLVXX-XISXXLXWYQQKPGKAPKLLIYXAS HK4...DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWAS

Germline Consensus (with JK4):

YAAS	YTLS	YGAS	YWAS	QEAT	KYAS
YQQKPGKAPKLL	YLQKPGQSPQLL	YQQKPGQAPRLL	YQQKPGQPPKLL	YQQKPGEAAIFI	YQQKPDQSPKLL
MNTASSI	DSDDGNTYLDW	VSSSYLAW	YSSNNKNYLAW	WINDDO	HTSS
VTITCRASQS	ASISCRSSQSLI	ATLSCRASOS	ATINCKSSQSVI	VNISCKASQDII	VTITCRASOSIC
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAAS	DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSDDGNTYLDWYLQKPGQSPQLLIYTLS	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGAS	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWAS	ETTLTQSPAFMSATPGDKVNISCKASQDIDDDMNWYQQKPGEAAIFIIQEAT	EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLHWYQQKPDQSPKLLIKYAS
OIMOID.	DIVMTQ	EIVLTO	DIVMTQ	ETTLTO	EIVLTO
hVK1	hVK2	hVK3	hVK4	hVK5	hVK6

-	11011	
こうくこう	× < < < < < < < < < < < < < < < < < < <	
2	3	
-	j	

TFGGGTKLEI-KRA	
EDIADYYCQQINSWPT	
FSGSGSTDFTLSINSVESEI	
ESTSGIPSKFSG	
1-	

Kabat:

HK2...NRXSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAXQXPR-----XTFGQGTKVEI-KRT HK3...SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPP-----XTFGQGTKVEI-KRT HK1...XLXSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQXXXXPE-----XTFGQGTKVEI-KRT HK4...TRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTP-----XTFGQGTKVEI-KRT

Germline Consensus (with JK4):

----LTFGGGTKVEI-KRT ---LTFGGGTKVEI-KRT TLVPGIPPRFSGSGYGTDFTLTINNIESEDAAYYFCLQHDNFP-----LTFGGGTKVEI-KRT ----LTFGGGTKVEI-KRT QSFSGVPSRFSGSGSGTDFTLTINSLEAEDAATYYCHQSSSLP-----LTFGGGTKVEI-KRT SLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTP-----LTFGGGTKVEI-KRT YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFP-SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSP-TRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPhVK5 hVK2 hVK3 hVK4 hVK6

Murine RX-1 Heavy Chain:

DVQLQESGPGLVKPSQSLSLTCTVTDYSITSDYAWNWIRQFPGNKLEWMGYISYSGSTSYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYYC ASFDYAHAMDVWChorneymere

FIG. 24A

ASFUIAHAMUIWGQGISVIVSS	ر ا	SSALASTS
RX1 VH Consensus Germline	Ξ	(1) D VQDQESGPGLVKPSQSLS LÄGTVÄDŽŠIÄS-DYAMNÄTRÖPPGNKÄEMÄGYISYSGSTSÄNPSÄKSRÄŠIÄRDTSKNQFÄLQYNSŸTTEÖTÄTÄYÄASPDY
,	3	(1) QVQÜVQSGĀEĞKKPGASĞÜĞĞKASGÜTFÜGYYMHÜVRQAPGGÜEMÜGWINPNSGGTNÎAQKFQGRÜTÜÜRDTSISÜAYÜREĞRLRSÜBİTAVÜYĞAR
hVH II Consensus	3	QĞTÜKESGPTLVKP TQĞLTLİĞCTPSGFSLSTSGVGVGWĞRQPPGKRİĞEMLÄLIYMNDDKRWSPSEKSRÜTTÜRDTSKNÖVVLTMÜNDEVÜTATAY CAHR.
hVH III Consensus	Ξ	E VOBVESGGOLVOPGOSLRISGAASGETPSSYWMSWYRGAPGKGEEWYÄNIKODGSEKYKYDSWKGRFTISFONAKNSLYLOWNSIRAEDTÄVKYGAR
hVH IV Consensus	3	OVOÑOESGPGLVKPS GTLSLTGAVSGGSISSS-NWWSWVROPPGKGLIEWIGZIYHSGSTNNPSEKSRVTISVDKSKNOPPGL KUSSVTAADTAVKYGAR
	Ξ	B VOEVOSGREVKKPGESLRESGREGSGYSFTSYWEGWYRGMPCKGLEWMGIIYPGDSDTRWSPFFOCOWTISADKSISHAYLOWSSLRASDTAWYWAR
hVH VI Consensus	Ξ	QVQÜQOSGPGLVKPS QÜLSLÜĞA ISG DSVSSNSAAMMÜ RÖSPSRGÜEWÜGRTYYRSKWYN - DYAVSÜKSRÜTINPDTSKNÖPB LOÜNSÇTPEDTÄVYYĞAR -
	3	(1) OVQŽVQSGSELKKPDAS <u>QRGSG</u> KASGŽTF <u>TS</u> SYAMN∯VRQAPGGGEWMGWINTNTGNPTÄAGGFTGRFVPSLDTSVSEATQTESTKRPGTEVZ

HEAVY CHAIN amino half

DVQLQESGPGLVKPSQSLSLTCTVTDYSITSDYAWN-WIRQFPGNKLEWMGYIS---YSGST

apc

20

ap

30

20

10

pog

Germline Consensus (with JH4):

EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMS--WVRQAPGKGLEWVANIK--QDGSEK EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG--WVRQMPGKGLEWMGIIYP--GDSDT QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYY-RSKWYN QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIY----WNDDK QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSNWW-SWVRQPPGKGLEWIGEIY---HSGST QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMN--WVRQAPGQGLEWMGWINT--NTGNP QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMH--WVRQAPGQGLEWMGWINP--NSGGT hVHIII **hVHVII** hVHII hVHIV hVHVV **hVHVI**

FIG. 24B

HEAVY CHAIN carboxy half

-- DYWGQGTSVTVSS SYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYYCASFDYAHAM---

Kabat

... XYNPSLKSRVTISVDTSKNQFSLXLXSVTAADTAVYYCARXXXXXXXXXXXXXXXXXFDXWGQGTXVTVSS ...YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAXXXXXXXXXXXXXXYXXFDXWGQGTLVTVSS ...NYAQKFQGRVTITXDXSTSTAYMELSSLRSXDTAVYYCARXXXXXXXXXXXXXXXXXXXXDXWGQGTLVTVSS HH2 HH

Germline Consensus (with JH4):

RYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS DYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS NYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS RYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHRXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS YYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARXXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS NYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYYCARXXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS TYAQGFTGRFVFSLDTSVSTAYLQICSLKAEDTAVYYCARXXXXXXXXXXXXXXXXYFDYWGQGTLVTVSS hvhiii hVHVI I hWHII hVHIV hVHVI hVHV hVHI

35/44

Figure 24C:

Kabat numbering of 5H4:

5H4 heavy chain protein sequence:

1-30:	EIQLQQSGPE LVKTGTSVKI SCKASGYSFT
31-35:	GYFMH
36-49:	WVKQSHGKSLEWIG
50-65:	YIS C (52A) YNGDTNY NQNFKG
66-94:	KATF TVDTSSSTAY MQF N (82A) S(82B) L(82C) TSED SAVYYCAR
95-102:	EGGNYPAY
103-437:	WGQG TLVTVSAAKT TPPSVYPLAP GSAAQTNSMV
TLGCLVKGYFF	PEPVTVTWNS GSLSSGVHTF PAVLQSDLYT LSSSVTVPSS TWPSETVTCN
VAHPASSTKV	DKKIVPRDCG CKPCICTVPE VSSVFIFPPK PKDVLTITLT PKVTCVVVDI
SKDDPEVQFS	WFVDDVEVHT AQTQPREEQF NSTFRSVSEL PIMHQDWLNG KEFKCRVNSA
AFPAPIEKTI	SKTKGRPKAP QVYTIPPPKE QMAKDKVSLT CMITDFFPED ITVEWQWNGQ
PAENYKNTQP	IMDTDGSYFV YSKLNVQKSN WEAGNTFTCS VLHEGLHNHH TEKSLSHSPG K

5H4 light chain protein sequence:

1-23:	DIVMTQSHKF MSTSVGDRVT ITC
24-34:	KASQNVG TAVT
35-49:	WYQQKPGQSPKLLIY
50-56:	WTSTRHA
57-88:	GVPD RFTGSGSGTD FTLTISDVQS EDLADYFC
89-97:	QQYSSYPLT
98-214:	FGAGTKLELKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PKDINVKWKI
	DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
	CTCDIVKSEN PNEC

Figure 24D:

Kabat numbering of MC1

MC-1 heavy chain protein sequence:

1-30:	EVKLVESGGG LVQPGGSLKL SCATSGFTFS
31-35:	DYYMY
36-49:	WVRQTPEKRLEWVA
50-65:	YIS N (52A) GGGSTYY PDTVKG
66-94:	RFTI SRDNAKNTLY LQM S (82A) R (82B) L (82C) KSED TAMYYCAR
95-102:	QGSYGYPFAY
103-449:	WG QGTLVTVSAA KTTAPSVYPL APVCGDTTGS SVTLGCLVKG YFPEPVTLTW
NSGSLSSGVH	TFPAVLQSDL YTLSSSVTVT SSTWPSQSIT CNVAHPASST KVDKKIEPRG
PTTKPCPPCK	CPAPNLLGGP SVFIFPPKIK DVLMISLSPI VTCVVVDVSE DDPDVQISWF
UNNVEVHTAO	TOTHREDYNS TLRVVSALPI OHQDWMSGKE FKCKVNNKDL PAPIERTISK
PKGSVRAPOV	YVLPPPEEEM TKKQVTLTCM VTDFMPEDIY VEWTNNGKTE LNYKNTEPVL
DSDGSYFMYS	KLRVEKKNWV ERNSYSCSVV HEGLHNHHTT KSFSRTPGK

MC-1 light chain protein sequence:

	•
1-23:	AIQMTQTTSS LSASLGDRVT ISC
24-34:	SASQGIS NYLN
35-49:	WYQQKP DGTVKLLIY
50-56:	YTSSLHS.
57-88:	GVPS RFSGSGSGTD YSLTISNLEP EDIATYYC
89-97:	QQ YSKLPWT
98-214:	FGGGTKLEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PKDINVKWKI
DGSERQNGVL	NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT STSPIVKSFN
RNEC	

37/44

Figure 24E

Kabat numbering of MC3

MC-3 heavy chain protein sequence:

DVQLQESGPG LVKPSQSLSL TCTVTGYSIT

1-30: DVQLQESGPG LV 31-35: SDYAW N (35A)

36-49: WIRQ FPGNKLEWMG 50-65: YISYSGSTSY NPSLKS 66-94: RISIT RDTSKNQFFL QL N (82A) S (82B) V (82C) TTEDT ATYYCAR

95-102: LETWLFDY

103-522: WGQG TTLTVSSAKT TPPSVYPLAP GCGDTTGSSV TLGCLVKGYF PESVTVTWNS GSLSSSVHTF PALLQSGLYT MSSSVTVPSS TWPSQTVTCS VAHPASSTTV DKKLEPSGPI STINPCPPCK ECHKCPAPNL EGGPSVFIFP PNIKDVLMIS LTPKVTCVVV DVSEDDPDVQ ISWFVNNVEV HTAQTQTHRE DYNSTIRVVS TLPIOHODWM SGKEFKCKVN NKDLPSPIER TISKIKGLVR APQVYILPPP AEQLSRKDVS LTCLVVGFNP GDISVEWTSN GHTEENYKDT APVLDSDGSY FIYSKLNMKT SKWEKTDSFS CNVRHEGLKN YYLKKTISRS PGLDLDDICA EAKDGELDGL WTTITIFISL FLLSVCYSAS VTLFKVKWIF SSVVELKQKI SPDYRNMIGQ GA

MC-3 light chain protein sequence:

1-23: DILLTOSPAI LSVSPGERVS FSC

24-34: RASQSIG TSIH 35-49: WYQQRT NGSPRLLIK

50-56: YASESIS

57-88: GIPS RFSGSGSGTD FTLSINSVES EDIADYYC

89-97: QQ SNSWPTT

98-214: FGG GTKLEIKWAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC

WO 2005/068503 38/44

With Different IgG Subclass Constant Regions Measurement of Neutralizing Activity of heRX1

Cell Proliferation

Against recombinant human MCSF

Fig. 26

Activity of heRX1-1 With Different IgG Subclasses Against Other Forms of MCSF

--- mRX1---- RX1-1-lgG2----- RX1-1-lgG1---- RX1-1-lgG4---- RX2

Similar results observed against Cyno MCSF in serum and recombinant Cyno MCSF

Fig. 27

Activity of heRX1-1 With Different IgG Subclasses Against Other Forms of MCSF

Similar results observed against Cyno MCSF in serum and recombinant Cyno MCSF

--- rmRX1 --- RX1-1-1gG2-*- RX1-1-1gG1--- RX1-1-1gG4

Fig. 28

Amino Acids

MGWSCIILFLVATATGVHS

DVQLQESGPGLVKPSQTLSLTCTVTDYSITSDYAWNWIRQFPGKKLEWMGYISYSGSTSYNPSLKSRITISRDTSKNQFSL QLNSVTAADTATYYCASFDYAHAMDYWGQGTTVTVSS

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTY ICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK•

Nucleotides

ATGGGATGGAGTTGCATTATACTTTTCCTCGTTGCCACCGCCACTGGAGTTCACTCTGACGTACAACTTCAAGAATC CCTACAATCCTTCTCTGAAATCACGCATCACAATTTCCCGCGATACCTCTAAAAAATCAATTTTCACTCCAACTCAATT CTGTTACCGCCGCCGATACTGCCACCTACTGCGCCTCTTTTGACTACGCTCACGCCATGGATTATTGGGGACAG GGTACTACCGTAAGCTCAGCCAGCACAAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCA CCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTC AGGCGCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGG TGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGT GGACAGGGGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG GTCAGCCTGACCTGCTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA AGAGCCTCTCCCTGTCCCCGGGTAAATGA

43/44

Amino Acids

MGWSCIILFLVATATGVHS

QVQLQESGPGLVKPSQTLSLTCTVSDYSITSDYAWNWIRQFPGKGLEWMGYISYSGSTSYNPSLKSRITISRDTSKNQFSL OLNSVTAADTAVYYCASFDYAHAMDYWGQGTTVTVSS

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTY ICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK•

Nucleotides

ATGGGTTGGTCTTGCATCATTCTCTTTCTCGTCGCTACCGCAACTGGTGTACACTCCCAAGTTCAACTTCAAGAATCA GGCCCGGACTCGTTAAACCCTCTCAAACTCTCTCTTACTTGCACTGTATCCGATTACTCTATTACTTCAGACTAC CTTACAACCCCTCTCTCAAATCTCGAATAACAATCTCACGCGATACTTCTAAAAAATCAATTCTCACTTCAACTTAAC AGGAACTACCGTCACTGTCAGCTCAGCCAGCACAAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGC ACCTCTGGGGGCACAGCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACT CAGGCGCCTGACCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTG GTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCCAAGG TGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAACTCCTGGG GGGACCGTCAGTCTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG TGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG CCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGG ACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGG ACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA GAAGAGCCTCTCCCTGTCCCCGGGTAAATGA

44/44

Fig. 30

HeRX-1 Low Risk Heavy Chain Gamma-4

MGWSCIILFLVÄTATGVHSDVQLQESGPGLVKPSQTLSLTCTVTDYSITSDYAWNWIRQFPGKKLEWMGYISYSGSTSYN PSLKSRITISRDTSKNQFSLQLNSVTAADTATYYCASFDYAHAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKY GPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRV VSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEW ESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK

Nucleotides

cDNA

ATGGGATGGAGTTGCATTATACTTTTCCTCGTTGCCACCGCCACTGGAGTTCACTCTGACGTACAACTTCAAGAATC CCTACAATCCTTCTCTGAAATCACGCATCACAATTTCCCGCGATACCTCTAAAAAATCAATTTTCACTCCAACTCAATT CTGTTACCGCCGCCGATACTGCCACCTACTACTGTGCCTCTTTTGACTACGCTCACGCCATGGATTATTGGGGACAG GGTACTACCGTTACCGTAAGCTCAGCCAGCACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCA CCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTC AGGCGCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGG TGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGT GGACAAGAGAGTTGAGTCCAAATATGGTCCCCATGCCCATCATGCCCAGCACCTGAGTTCCTGGGGGGACCATCA CGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAC GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAA GGGCAGCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCA GGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCT CTCCCTGTCTCTGGGTAAATGA

Genomic

ATGGGATGGAGTTGCATTATACTTTTCCTCGTTGCCACCGCCACTGGAGTTCACTCTGACGTACAACTTCAAGAATC CCTACAATCCTTCTCTGAAATCACGCATCACAATTTCCCGCGATACCTCTAAAAATCAATTTTCACTCCAACTCAATT CTGTTACCGCCGCCGATACTGCCACCTACTACTGTGCCTCTTTTGACTACGCTCACGCCATGGATTATTGGGGACAG GGTACTACCGTTACCGTAAGCTCAGCCAGCACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCCTGCTCCAGGAGCA CCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTC AGGCGCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGG TGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGT GGACGCACCCGGCTGTGCAGCCCCAGCCCAGGGCAGCAAGGCATGCCCCATCTGTCTCCTCACCCGGAGGCCTCT GACCACCCCACTCATGCTCAGGGAGAGGGTCTTCTGGATTTTTCCACCAGGCTCCGGGCAGCCACAGGCTGGATGC CCCTACCCAGGCCCTGCGCATACAGGGGCAGGTGCTGCGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACCCT GCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCAGACACCTTCTCTCCCCAGATCTG AGTAACTCCCAATCTTCTCTCTGCAGAGTCCAAATATGGTCCCCCATGCCCATCATGCCCAGGTAAGCCAACCCAGG CCTCGCCCTCCAGCTCAAGGCGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTG ACGCATCCACCTCCATCTCTCCTCAGCACCTGAGTTCCTGGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCC TCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACA GCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGTGGGACCCACGGGGTGCGAGG GCCACATGGACAGAGGTCAGCTCGGCCCACCCTCTGCCCTGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGG GCAGCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGAC CTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGG TGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCT CCCTGTCTCTGGGTAAATGA