Homework #3

Sam Fleischer

April 19, 2016

roblem 1	. 2
roblem 2	. 3
roblem 3	. 3
roblem 4	. 4
roblem 5	. 5
roblem 6	. 6
roblem 7	. 6

Problem 1

Let $f \in L^1(\mathbb{R})$, and set

$$g(x) = \int_{-\infty}^{x} f(y) dy.$$

Prove that g is continuous, and show that $\frac{\mathrm{d}g}{\mathrm{d}x}=f$, where $\frac{\mathrm{d}g}{\mathrm{d}x}$ denotes the weak derivative. Hint: given $\phi\in C_C^\infty(\mathbb{R})$, use the definition of g to obtain

$$\int_{\mathbb{R}} \phi'(x) g(x) dx = \int_{\mathbb{R}} \int_{-\infty}^{x} \phi'(x) f(y) dy dx.$$

Then write this integral as

$$\lim_{h\to 0}\frac{1}{h}\int_{\mathbb{R}}\left[\phi(x+h)-\phi(x)\right]g(x)\mathrm{d}x=-\lim_{h\to 0}\int_{\mathbb{R}}\int_{x}^{x+h}f(y)\phi(x)\mathrm{d}y\mathrm{d}x.$$

Proof. First we show *g* is continuous. Let $x_n \to x$. Then

$$\lim_{x_n \to x} |g(x_n) - g(x)| = \lim_{x_n \to x} \left| \int_{-\infty}^{x_n} f(y) dy - \int_{-\infty}^{x} f(y) dy \right|$$

$$= \lim_{x_n \to x} \left| \int_{x}^{x_n} f(y) dy \right|$$

$$\leq \lim_{x_n \to x} \int_{x}^{x_n} |f(y)| dy$$

$$= \begin{cases} \lim_{x_n \to x} \|f \mathscr{X}_{[x, x_n]}\|_1, & \text{if } x_n > x \\ \lim_{x_n \to x} \|f \mathscr{X}_{[x, x_n]}\|_1, & \text{else} \end{cases}$$

$$\leq \lim_{x_n \to x} \|f \|_1 \|\mathscr{X}_{[x, x_n]}\|_{\infty} \quad \text{without loss of generality}$$

$$= \|f\|_1 \lim_{x_n \to x} \|\mathscr{X}_{x_n, x}\|_{\infty}$$

$$= 0$$

Thus g is continuous. Next we show the weak derivative of g is f. Let ϕ be any test function. Then

$$\int_{\mathbb{R}} \phi'(x)g(x)dx = \int_{\mathbb{R}} \phi'(x) \int_{-\infty}^{x} f(y)dydy$$

$$= \int_{\mathbb{R}} \int_{-\infty}^{x} \phi'(x)f(y)dydx$$

$$= \int_{\mathbb{R}} \int_{y}^{\infty} \phi'(x)f(y)dxdy \quad \text{by Fubini's Theorem}$$

$$= \int_{\mathbb{R}} \left[\int_{y}^{\infty} \phi'(x)dx \right] f(y)dy$$

$$= \int_{\mathbb{R}} \phi(y)f(y)dy$$

$$= \int_{\mathbb{R}} \phi(x)f(x)dx$$

Thus f is the weak derivative of g.

Problem 2

Show that $W^{n,1}(\mathbb{R}^n) \subset C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Hint: $u(x) = \int_{-\infty}^0 \dots \int_{-\infty}^0 \frac{\partial^n}{\partial x_1 \dots \partial x_n} u(x+y) dy_1 \dots dy_n$.

Proof. For ease, let $\alpha_1 = (1,0,0,...,0)$, $\alpha_2 = (1,1,0,0,...,0)$, ..., $\alpha_n = (1,1,1,...,1)$. By the hint.

$$u(x) = \int_{-\infty}^{0} \dots \int_{-\infty}^{0} \frac{\partial^{n}}{\partial x_{1} \dots \partial x_{n}} u(x+y) dy_{1} \dots dy_{n}$$

$$= \int_{-\infty}^{0} \int_{-\infty}^{0} D^{\alpha_{n}} u(x+y) dy_{1} \dots dy_{n}$$

$$= \int_{-\infty}^{x_{n}} \dots \int_{-\infty}^{x_{1}} D^{\alpha_{n}} u(t) dt_{1} \dots dt_{n}$$

by some change of variables. Thus,

$$\sup |u(x)| = \sup \left| \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} D^{\alpha_n} u(t) dt_1 \dots dt_n \right|$$

$$= \sup \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} \left| D^{\alpha_n} u(t) \right| dt_1 \dots dt_n$$

$$\leq \sup \int_{\mathbb{R}^n} \left| D^{\alpha_n} u(t) \right| dt_1 \dots dt_n$$

$$= \left\| D^{\alpha_n} u(t) \right\|_{\infty}$$

since $|\alpha| = n$ and hence $D^{\alpha_n} u(t) \in L^1(\Omega)$. Thus u is bounded, i.e. $u \in L^{\infty}(\mathbb{R}^n)$. Next we show u is continuous. For ease, denote $g_i = D^{\alpha_i} u \in L^1$. Then

$$g_{i-1} = \int_{-\infty}^{x_i} g_i(t) \mathrm{d}x_i$$

for $i=2,\ldots,n$ and $u=\int_{\infty}^{x_1}g_1(t)\mathrm{d}t_1$. Then by problem 1, g_{n-1} is continuous. But since $g_{n-1}\in L^1$, then g_{n-2} is continuous. Since n is finite, we can do this n-2 times to show g_1 is continuous. Again, since $g_1\in L^1$, then u is continuous. Thus $u\in C(\mathbb{R}^n)\cap L^\infty(\mathbb{R}^n)$.

Problem 3

If $u \in L^1_{loc}(\mathbb{R})$ and if $\frac{\mathrm{d}u}{\mathrm{d}x} = f \in L^1(\mathbb{R})$, then

$$u(x) = C + \int_{-\infty}^{x} f(y) dy,$$
 a.e. $x \in \mathbb{R}$

for some constant *C*.

Proof. First let $v(x) := C + \int_{\infty}^{x} f(y) dy$. Then by problem 1, $\frac{dv}{dx} = f$. Then for all test functions ϕ ,

$$\int_{\mathbb{D}} u(x)\phi'(x)dx = -\int_{\mathbb{D}} f(x)\phi(x)dx = \int_{\mathbb{D}} v(x)\phi'(x)dx$$

Every test function is the derivative of some other test function, and so we can say that for all test functions ψ ,

$$\int_{\mathbb{R}} u(x)\psi(x)\mathrm{d}x = \int_{\mathbb{R}} v(x)\phi(x)\mathrm{d}x$$

Since this holds for all test functions, it holds in particular for $\psi = \eta_{\varepsilon}$ for any $\varepsilon > 0$. Then

$$\int_{\mathbb{R}} u(x)\eta_{\varepsilon}(x-y)\mathrm{d}x = \int_{\mathbb{R}} v(x)\eta_{\varepsilon}(x-y)\mathrm{d}x \qquad \Longleftrightarrow \qquad u^{\varepsilon} = v^{\varepsilon}$$

Since $u^{\varepsilon} \to u$ and $v^{\varepsilon} \to v$, and $\lim u^{\varepsilon} = \lim v^{\varepsilon}$, then u = v, i.e.

$$u(x) = C + \int_{-\infty}^{x} f(y) dy,$$
 a.e. $x \in \mathbb{R}$

Problem 4

Let $\Omega := B(0, \frac{1}{2}) \subset \mathbb{R}^2$ denote the open ball of radius $\frac{1}{2}$. For $x = (x_1, x_2) \in \Omega$, let

$$u(x_1, x_2) = x_1 x_2 \log(|\log(|x|)|)$$
 where $|x| = \sqrt{x_1^2 + x_2^2}$.

- (a) Show that $u \in C^1(\bar{\Omega})$.
- (b) Show that $\frac{\partial^2 u}{\partial x_i^2} \in C(\bar{\Omega})$ for j=1,2 but $u \not\in C^2(\bar{\Omega})$.
- (c) Show that $u \in H^2(\Omega)$.

Proof. (a) First, we calculate the first partial derivatives:

$$\frac{\partial u}{\partial x_i} = \frac{x_i^2 x_j}{|x|^2 |\log(|x|)|} + x_j \log(|\log(|x|)|)$$

Note that as $|x| \to 0$, then by L'Hospital, each of the above terms $\to 0$. Thus $u \in C1(\bar{\Omega})$.

(b) Next, we calculate each non-mixed second partial derivative:

$$\begin{split} \frac{\partial^2 u}{\partial x_i^2} &= \frac{2x_i x_j |x|^2 \left| \log(|x|) \right|}{|x|^2 \left| \log(|x|) \right|^2} - \frac{x_i^2}{|x|^2 \left| \log(|x|) \right|^2} + \frac{2x_i^3 x_j \left| \log(|x|) \right|}{|x|^2 \left| \log(|x|) \right|^2} + x_i x_j \\ &= \frac{2x_i x_j}{\left| \log(|x|) \right|} - \frac{x_i^2}{|x|^2 \left| \log(|x|) \right|^2} + \frac{2x_i^3 x_j}{|x| \left| \log(|x|) \right|} + x_i x_j \end{split}$$

Similar to the first partials, each term $\to 0$ as $|x| \to 0$. Thus $\frac{\partial^2 u}{\partial x_i^2} \in C(\bar{\Omega})$ for i = 1, 2. However,

$$\frac{\partial^2 u}{\partial x_j \partial x_i} = \frac{x_i^2}{|x| |\log(|x|)|} + \frac{x_i^2 x_j^2}{|x|^4 |\log(|x|)|^2} + \frac{2x_i^2 x_j^2}{|x|^4 |\log(|x|)|} + \frac{x_j^2}{|x|^4 |\log(|x|)|} + \frac{|\log(|\log(|x|)|)|}{|x|^4 |\log(|x|)|} + \frac{|\log(|\log(|x|)|)|}{|x|^4 |\log(|x|)|} + \frac{|\log(|\cos(|x|)|)|}{|x|^4 |\log(|x|)|} + \frac{|\log(|\cos(|x|)|)|}{|x|^4 |\log(|x|)|} + \frac{|\cos(|\cos(|x|)|)|}{|x|^4 |\cos(|x|)|} + \frac{|\cos(|x|)|}{|x|^4 |\cos(|x|$$

which diverges to ∞ as $|x| \to 0$. Thus $u \notin C^2(\bar{\Omega})$.

(c) Although $\frac{\partial^2 u}{\partial x_j \partial x_i}$ is not continuous, it is integrable, and thus there is a v such that for all test functions ϕ ,

$$\int_{\Omega} u \frac{\partial^2 \phi}{\partial x_1 \partial x_2} dx = (-1)^2 \int_{\Omega} v \phi dx + \int_{\partial B_{\frac{1}{2}}(x)} \left[\frac{\partial u}{\partial x_1} \frac{\partial \phi}{\partial x_1} + \frac{\partial u}{\partial x_2} \frac{\partial \phi}{\partial x_2} \right] ds ,$$

which shows the second weak derivatives of u exist for any α , which shows $u \in H^2(\Omega)$.

Problem 5

Prove that $C_C^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ for integers $k \ge 0$ and $1 \le p < \infty$.

Proof. First note that $C_C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$. Let $u \in W^{k,p}(\mathbb{R}^n)$. Then in particular, $\eta_{\mathcal{E}} * u \in C_C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and

$$\left\|\eta_{\varepsilon} * u - u\right\|_{W^{k,p}} = \left(\sum_{|\alpha| \le k} \left\|D^{\alpha}(\eta_{\varepsilon} * u) - D^{\alpha}u\right\|_{L^{p}}\right)^{\frac{1}{p}} = \left(\sum_{|\alpha| \le k} \left\|\eta_{\varepsilon} * D^{\alpha}u - D^{\alpha}u\right\|_{L^{p}}\right)^{\frac{1}{p}} \to 0$$

since each $D^{\alpha}u \in L^p$ and convolutions approximate functions. Thus $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Next we show $C_C^{\infty}(\mathbb{R}^n)$ is dense in $C_C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$. Suppose $f \in C_C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$. Define $\phi \in C_C^{\infty}(\mathbb{R}^n)$ as follows:

$$\phi(x) = \begin{cases} 1 & \text{if } |x| \le 1\\ 0 & \text{if } |x| \ge 2. \end{cases}$$

Then for R = 1, 2, ..., define ϕ_R as the dilation of ϕ .

$$\phi_R(x) = \phi\left(\frac{x}{R}\right).$$

Also define $f_R = \phi_R f$. Note $f_R \in C_C^\infty(\mathbb{R}^n)$ since $\phi_R \in C_C^\infty(\mathbb{R}^n)$ and $f \in C^\infty(\mathbb{R}^n)$. Then by the Liebnitz rule,

$$\partial^{\alpha} f_{R} = \partial^{\alpha} \left[\phi_{R} f \right] = \sum_{|\beta| \leq |\alpha|} {\alpha \choose \beta} \partial^{\beta} \phi_{R} \partial^{\alpha-\beta} f = \phi_{R} \partial^{\alpha} f + \sum_{\substack{|\beta| \leq |\alpha| \\ \beta \neq 0}} {\alpha \choose \beta} \partial^{\beta} \phi_{R} \partial^{\alpha-\beta} f$$

Note that any partial derivative of ϕ_R contains a factor of $\frac{1}{R}$ by the chain rule. Thus,

$$\partial^{\alpha} f_{R} = \phi_{R} \partial^{\alpha} f + \frac{1}{R} h_{R}$$

where h_R is a bounded function in L^p . It is also uniformly bounded in R, which implies

$$\left\| \frac{1}{R} h_R \right\|_p \le \frac{1}{R} \|h_R\| \le \frac{M}{R} \to 0 \text{ as } R \to \infty.$$

Thus, $\partial^{\alpha} f_R \to \partial^{\alpha} f$ in L^p for each $|\alpha| \le k$, which implies $f_R \to f$ in $W^{k,p}(\mathbb{R}^n)$. Since each $f_R \in C_C^{\infty}(\mathbb{R}^n)$, then $C_C^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Problem 6

Let η_{ε} denote the standard mollifier, and for $u \in H^3(\mathbb{R}^3)$, set $u^{\varepsilon} = \eta_{\varepsilon} * u$. Prove that

$$\left\| u^{\varepsilon} - u \right\|_{L^{\infty}(\mathbb{R}^{3})} \leq C \sqrt{\varepsilon} \|u\|_{H^{2}(\mathbb{R}^{3})},$$

and that

$$\|u^{\varepsilon} - u\|_{L^{\infty}(\mathbb{R}^3)} \le C\varepsilon \|u\|_{H^3(\mathbb{R}^3)}.$$

Proof. Let $u \in H^3(\mathbb{R}^3) = W^{3,2}(\mathbb{R}^3)$. Then since $3 < 2 \cdot 3 = 6$, then by Morrey's Inequality for $W^{k,p}(\mathbb{R}^n)$, where (k,p,n) = (3,2,3),

$$\|u\|_{C^{3-1-\left[\frac{3}{2}\right],1+\left[\frac{3}{2}\right]-\frac{3}{2}\left(\mathbb{R}^{3}\right)}=\|u\|_{C^{1,\frac{1}{2}}(\mathbb{R}^{n})}\leq C\|u\|_{W^{3,2}}\big(\mathbb{R}^{3}\big)=C\|u\|_{H^{3}\left(\mathbb{R}^{3}\right)}$$

Similarly, since $H^3(\mathbb{R}^3) \subset H^2(\mathbb{R}^3)$, then since $3 < 2 \cdot 2 = 4$, then

$$\|u\|_{C^{2-1-\left[\frac{3}{2}\right],1+\left[\frac{3}{2}\right]-\frac{3}{2}\left(\mathbb{R}^{3}\right)}=\|u\|_{C^{0,\frac{1}{2}}(\mathbb{R}^{n})}\leq C\|u\|_{W^{2,2}}\big(\mathbb{R}^{3}\big)=C\|u\|_{H^{2}\left(\mathbb{R}^{3}\right)}$$

Since $\|u\|_{C^{1,\frac{1}{2}}(\mathbb{R}^n)} < \infty$ and $\|u\|_{C^{0,\frac{1}{2}}(\mathbb{R}^n)} < \infty$, then u is continuous, and thus $\|u\|_{L^\infty} \le \|u\|_{C^{i,\frac{1}{2}}(\mathbb{R}^3)}$ for i=0,1. Thus $\|u^\varepsilon-u\|_{L^\infty} \le C\|u^\varepsilon-u\|_{H^j(\mathbb{R}^3)}$ for j=2,3. Thus

$$\|u^{\varepsilon} - u\|_{L^{\infty}(\mathbb{R}^{3})} \le C\sqrt{\varepsilon} \|u\|_{H^{2}(\mathbb{R}^{3})} \quad \text{and} \quad \|u^{\varepsilon} - u\|_{L^{\infty}(\mathbb{R}^{3})} \le C\varepsilon \|u\|_{H^{3}(\mathbb{R}^{3})}.$$

Problem 7

Let $D := B(0,1) \subset \mathbb{R}^2$ denote the unit disc, and let

$$u(x) = \left[-\log|x|\right]^{\alpha}.$$

Prove that the *weak derivative* of u exists for all $\alpha \ge 0$.

Proof. For any $0 < \delta < 1$, set $D_{\delta} = B(0,1) \setminus B(0,\delta)$. Then for $u(x) = [-\log|x|]^{\alpha}$, the strong derivative u' exists on D_{δ} , and thus the weak derivative of u exists on D_{δ} for all $\alpha \ge 0$. It remains to be shown that the boundary terms of the integral over the remaining δ -ball limit to 0 as $\delta \to 0$.