

ME 5374-ST

Machine Learning for Materials Science and Discovery

Fall 2025

Asst. Prof. Peter Schindler

Lecture 9 – Data-Types and Databases in Materials Science

- Data-Types in Materials Science
- Atomistic File Types
- Application Programming Interfaces (APIs)
- Materials Databases
- FAIR Data Principles

Types of Materials Data

Scientific Literature
NLP and LLMs

Tshitoyan, V., et al. Nature **571**, 95-98 (2019)

Types of Materials Data

Oviedo, F., et al. Comput Mater 5, 60 (2019).

Ziatdinov, M., et al. Nat Mach Intell 4, (2022).

Types of Materials Data

High-throughput computations of properties

ML Paradigms in Materials Science

Model-centric Al
How change the model/architecture
to improve performance?

Data-centric Al
How systematically change data (x/y)
to improve performance?

Big Data

"Good Data"

Crystal Information File (CIF)

```
# generated using pymatgen
data Mo2NO
                                             No explicit symmetry
symmetry space group name H-M
cell length a 3.10000000
cell length b
               6.20000000
cell length c 3.10000000
                                        Lattice
cell angle alpha 90.00000000
cell angle beta
                 90.00000000
cell angle gamma 90.00000000
symmetry Int Tables number 1
chemical formula structural
chemical formula sum
                    'Mo2 N1 O1'
cell volume 59.58200000
cell formula units Z 1
loop
                                        Symmetry/Equivalent Positions
 _symmetry_equiv_pos_site id
 symmetry equiv pos as xyz
 1 'x, y, z'
loop
 atom site type symbol
 atom site label
 atom site symmetry multiplicity
 atom site fract x
 atom site fract y
 atom site fract z
 atom site occupancy
     Mo0 1 0.000000000
                       0.00000000
        1 0.00000000
     Mo2 1 0.50000000
                       0.70000000
       1 0.00000000 0.25000000 0.25000000 1
```

```
space group IT number
                                 29
                                 'P 2c -2ac'
symmetry space group name Hall
                                  'P c a 21'
symmetry space group name H-M
cell angle alpha
                                 90
cell angle beta
                                 90
cell angle gamma
                                 90
cell length a
                                 5,5833
cell length b
                                 5.5892
cell length c
                                 5.5812
cell formula units Z
cell volume
                                 174.168
database code amcsd
                                 0005243
exptl crystal density diffrn
                                 6.328
cod original formula sum
                                  'Co As S'
 cod database code
                                 9004218
loop
space group symop operation xyz
X, Y, Z
1/2+x,-y,z
1/2-x,y,1/2+z
-x, -y, 1/2+z
```

Atomic sites (species, occupation, coordinates,...)

More details on syntax:

https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax

XYZ File

```
<number of atoms>
comment line
<element> <X> <Y> <Z>
...
```

- Stores Cartesian coordinates (in Angstrom) and atom types of a molecule
- Extended XYZ format allows definition of lattice (and other information) in the comment line

```
8
Lattice="5.44 0.0 0.0 0.0 5.44 0.0 0.0 0.0 5.44" Properties=species:S:1:pos:R:3 Time=0.0
Si
          0.00000000
                           0.00000000
                                           0.00000000
          1.36000000
                                           1.36000000
Si
                           1.36000000
Si
          2.72000000
                           2.72000000
                                           0.00000000
Si
          4.08000000
                           4.08000000
                                           1.36000000
          2.72000000
Si
                           0.00000000
                                           2.72000000
Si
          4.08000000
                           1.36000000
                                           4.08000000
Si
          0.00000000
                           2.72000000
                                           2.72000000
Si
          1.36000000
                           4.08000000
                                           4.08000000
```


POSCAR File (VASP)

- Crystal structure input file for VASP (Density Functional Theory)
- Coordinate systems: "Direct" (=Fractional) or "Cartesian"
- More details: https://www.vasp.at/wiki/index.php/POSCAR

Application Programming Interfaces (APIs)

API is a set of defined functions, procedures, methods, or classes which enable a structured way of exchanging data between programs. It facilitates...

- uploading, examining, and downloading of data (without manual steps)
- selectively querying (fetch data that adhere to constraints)
- keeping track of versions
- standardization of interface

Representational State Transfer (REST API or RESTful interface) is the most commonly used framework that interfaces via stateless endpoints through request URLs. (see here for details: https://aws.amazon.com/what-is/restful-api/)

Request URL

https://api.materialsproject.org/materials/summary/?formula=SiO2&deprecated=false&_per_page=100&_skip=0&_limit=100&_all_fields=false&license=BY-C

https://api.materialsproject.org/docs

API standard developed for materials science and adopted by many large-scale databases

Data Sources

Source type	Access methods	Examples	Access type	Drawbacks	
Papers & textbooks	Hand extract (copy/paste) Download PDF/LaTeX/XML Text-mine with NLP/LLMs	Journal articles, Landolt-Börnstein (https://materials.springer.com/bookshelf)	Manual (unless text- mining with NLP/LLMs)	Time-consuming; error-prone; parsing PDFs difficult; coverage limited	
Public websites (no API)	Manual download, copy/paste Web crawling (legal grayzone)	University pages, project web pages, vendor datasheets	Manual	Data formats inconsistent; scraping may be legally/ethically restricted; fragile if site changes	
Public repositories (no API)	Manual download of files or bulk repositories	Figshare, Zenodo, NIMS (https://mits.nims.go.jp/)	Manual	No programmatic access; updates require re-download; can be very large	
Public databases (with API)	Programmatic access (REST/GraphQL APIs)	Materials Project, PubChem, OQMD	API	Rate limits (sometimes) Learning curve for API queries	
Commercial databases	API + web portals; licensed access	Proprietary vendor/industry databases ICSD, Pauling File	API (licensed)	Expensive; restrictive licenses; not open for redistribution	
Automated experiments (own data)	Instrument/robot control, high-throughput workflows	Autonomous labs; Laboratory Information Management Systems (LIMS)-managed workflows	Manual (experiment) + API (instrument control)	Very costly; needs infrastructure; time-intensive	

Potential Value of Text-Mining

Recap: Database File Formats

Format	Structure	Human- readable	Loading speed	Strengths	Limitations
CSV (Comma- Separated Values)	Rows and columns separated by delimiters (flat, tabular)	Yes	⁴ Medium	Simple, lightweight, works well with spreadsheets	No nested structures, no data types (all text)
JSON (JavaScript Object Notation)	Key–value pairs, lists, nested objects (hierarchical)	Yes	🥦 Slow	Handles complex data, preserves data types, widely used in APIs (Application Programming Interfaces)	More verbose, harder to edit manually than CSV
HDF5 (Hierarchical Data Format)	Binary format with hierarchical groups and datasets	× No	♣ Fast	Efficient for very large datasets, supports metadata	Requires special libraries (e.g., h5py, PyTables)
Pickle	Python-specific serialized objects	× No	← Fast	Can store almost any Python object easily	Not portable outside Python, unsafe if source is untrusted
YAML (YAML Ain't Markup Language)	Human-readable key-value and nested structure	✓ Yes	🥦 Slow	More flexible and readable than JSON, allows comments	Less standardized than JSON

Examples: Property-Focused Materials Databases (mostly computational)

name	structure information	mechanical properties	thermal properties	electronic properties	API ^a	data license	refs
Materials Project	Y	Y	Y	Y	Y	CC BY 4.0	85
Open Quantum Materials Database	Y	N	Y	Y	Y	CC BY 4.0	86
AFLOW for Materials Discovery	Y	Y	Y	Y	Y	b	87
Novel Materials Discovery (NOMAD)	Y	Y	Y	Y	Y	CC BY 4.0	88
Open Materials Database	Y	N	Y	Y	Y	CC BY 4.0	89
Citrine Informatics	Y	Y	Y	Y	Y	CC BY	90
Materials Platform for Data Science (MPDS)	Y	Y	Y	Y	Y	CC BY 4.0	91
AiiDA/Materials Cloud	Y	Y	Y	Y	Y	Varies	92, 93
NREL MatDB	Y	N	Y	Y	N	Own license	94
NIST TRC Alloy Data	N	N	Y	N	On request	Free	95
NIST TRC ThermoData	N	N	Y	N	N	NIST SRD	96
NIST JARVIS-DFT/-ML Database	Y	Y	Y	Y	Y	Public domain	97, 98
MatWeb	N	Y	Y	N	N	Paid	99
Total Materia	N	Y	Y	N	N	Paid	100
Ansys Granta (MaterialUniverse repository)	N	Y	Y	N	N	Paid	101
MATDAT	N	Y	Y	N	N	Paid	102

Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices,

A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch, K. A. Persson, and T. D. Sparks, Chemistry of Materials 2020 32 (12), 4954-4965

Examples: Structure-Focused Materials Databases (mostly experimental)

name	no. records ^a	API	Data license	ref
Cambridge Structural Database (CSD)	1,055,780	Y	Paid	103
Inorganic Crystal Structure Database (ICSD)	216,302	N	Paid	104
Pearson's Crystal Data (PCD)	335,000	N	Paid	105
International Centre for Diffraction Data (ICDD)	1,004,568	N	Paid	106
Crystallography Open Database (COD)	455,714	Y	Open- access	107
Pauling File	357,612	Y	Paid	108
CrystMet database	160,000	N	Paid	109

^aNote: values for number of records were updated as of the submission date (May 2020).

Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices,

A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch, K. A. Persson, and T. D. Sparks, Chemistry of Materials 2020 32 (12), 4954-4965

Compilation of Databases and Tools in Materials Informatics

https://github.com/blaiszik/awesome-matchem-datasets

https://github.com/tilde-lab/awesome-materials-informatics

FAIR Data Principles

Letter / Term	Purpose	Example Solution
F – Findable	Ensure data can be located easily by humans/machines	Assign persistent identifiers (DOIs) Provide searchable metadata in repositories
A - Accessible	Make data retrievable via standard protocols	Open web protocols (HTTP/HTTPS) or APIs, Ensure data can be accessed with authentication if needed (e.g., PubChem API)
I – Interoperable	Enable data integration across platforms and tools	Store crystallographic data in CIF format, adopt common ontologies (e.g., OPTIMADE for materials APIs)
R - Reusable	Facilitate long-term use and reproducibility	Provide detailed metadata (methods, units), apply open licenses (e.g., CC-BY), deposit in repositories like Zenodo or Figshare

Materials Project: Obtaining API Key

Go to: https://materialsproject.org

Lecture Feedback

Please, scan the QR code and take a minute to let me know how the lecture was and mention any **feedback/questions**

This form is anonymous!