Proofs

Consider data for variable $\mathbf{x}=x_1,\,x_2,\,\dots,\,x_n.$ We use \mathbf{x} to denote the sample mean of \mathbf{x} , and s_x is the sample standard deviation of \mathbf{x} .

Part I

For each of the following three transformations derive (a) the sample mean z, and (b) the sample standard deviation s_z .

1. Centering

$$z_i = (x_i - \mathbf{x})$$