

Università degli Studi di Cagliari

DICAAR

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA TRIENNALE IN INGEGNERIA ELETTRICA INDUSTRIALE

ANALISI MATEMATICA 2

edited by

NICOLA FERRU

 $Un of \!\!\! ficial \ Version$

2022 - 2023

Indice

	0.1	Preme	esse	5
	0.2	Simbo	oli	6
	- .			
1		oduzio		7
	1.1	- '	gia in R	7
		1.1.1	Distanza	7
	1.2	Intorn		7
		1.2.1	Insieme chiuso	8
		1.2.2	Insieme connesso	9
		1.2.3	Insieme convesso	9
		1.2.4	Coordinate Polari	9
		1.2.5	Limiti e continuità	9
		1.2.6	Continuità	9
		1.2.7	Esistenza del limite	9
		1.2.8	Teorema di esistenza dei valori intermedi	10
		1.2.9	Teorema di Weierstrass	10
2	Der	ivate l	Parziali	11
	2.1		ate parziali di primo grado	11
		2.1.1	Significato geometrico	11
	2.2	ata parziale seconde	12	
		2.2.1	Teorema di Schwarz (Dell'invertibilità dell'ordine di derivazione)	12
	2.3	Massin	mi e minimi relativi	12
		2.3.1	Teorema di Fermat	13
3	Diff	erenzi	abilità	15
		3.0.1	Tutte le funzioni differenziali sono continue	16
		3.0.2	Tutte le funzioni differenziali sono derivabili	16
		3.0.3	Le funzioni con derivate parziali continue sono diferenziabili	17
	3.1	Signifi	icato geometrico del differenziale e piano tengente	17
		3.1.1	Differenziale primo	17
		3.1.2	Piano Tangente	17
		3.1.3	Significato geometrico del differenziale primo	18
		3.1.4	Funzioni composite	18
		3.1.5	Funzione composta	19
		3.1.6	Teorema della derivata della funzione composta	19
	3.2	Teorei	ma differenziabilità delle funzioni composite	20
	3.3	Differe	enziale secondo	21
		3.3.1	Condizioni sufficiente per l'esistenza di minimo e massimo relativo	22
		3.3.2	Ricerca del massimo e del minimo assoluti	23
		3.3.3	Metodo dei moltiplicatori di di Lagrange	25

4 INDICE

4	Inte	egrali I	Doppi e tripli 27
	4.1	_	ni normali (semplici)
		4.1.1	Dominio normale rispetto all'asse $x \dots $
		4.1.2	Domini Polarmente normale
		4.1.3	Definizione di integrale doppio
	4.2	Somm	e di Riemann
		4.2.1	Proprietà dell'integrale doppio
		4.2.2	Formula di riduzione
		4.2.3	Baricentro di un dominio normale
		4.2.4	Domini normali in \mathbb{R}^3
	4.3	Integra	ali tripli
		4.3.1	Formule di riduzione per gli integrali tripli
		4.3.2	Significato geometrico degli integrali
		4.3.3	Coordinate polari e coordinate cilindriche
		4.3.4	Interazione per fette
		4.3.5	Integrali curvilinei
		4.3.6	Lunghezza di una curva
		4.3.7	Lunghezza di una curva in forma cartesiana
		4.3.8	Lunghezza di una curva polare
	4.4		a Curvilinea
	4.5		ale corvilineo
		4.5.1	Definizione di integrale curvilineo
		4.5.2	Baricentro di una curva
		4.5.3	Superfici e integrali di superficie
		4.5.4	Piano tangente e versore normale
		4.5.5	Orientazione di una superficie
		4.5.6	Integrale Superficiale
	4.6		rmazione integrali
		4.6.1	Formule di Green-Gauss
		4.6.2	Teorema della divergenza
	4.7	Forma	differenziali Lineari
		4.7.1	Integrazione delle forme differenziali
		4.7.2	Forme differenziali esatte
		4.7.3	Forma differeniali chiusa
		4.7.4	Condizioni necessarie affinché una forma differenziale sia esatta
	4.8	Funzio	one potenziale
		4.8.1	Condizioni sufficiente affinché una forma differenziale lineare sia Esatta 50
		4.8.2	Condizione necessaria e sufficiente
		4.8.3	Teorema di Stokes (o del rotore)

Elenco delle figure

3.1	Rappresentazione grafica della conica	22
4.1	Decomposizione del rettangolo R	28
4.2	Esempi di domini polarmente normali	31
4.3	Baricentro di un dominio normale	31
4.4	Differenza tra curva chiusa e aperta	35
4.5	Esempio della prima formula di Green-Gauss	42

0.1 Premesse...

In questo repository, inoltre, sono disponibili le dimostrazioni grafiche realizzate con Geogebra; consiglio a tutte le persone che usufruiranno di questo lavoro, di dare un occhiata alle dimostrazioni grafiche e stare attenti, in quanto nel tempo potranno essere presenti delle modifiche, così da apportare miglioramenti al contenuto degli stessi appunti. Solitamente il lavoro di revisione viene fatto tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che essendo un progetto volontario ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure essere presenti degli errori. Chiedo pertanto la cortesia a voi lettori di contattarmi per apportare eventuali correzioni . Tengo a precisare che tutto il progetto è puramente open source, pertanto vengono resi disponibili i sorgenti dei file LaTex insieme ai PDF compilati.

Cordiali saluti

0.2 Simboli

Simbolo	Nome	Simbolo	Nome
€	Appartiene	∋:	Tale che
∉	Non appartiene	<u>≤</u>	Minore o uguale
3	Esiste	<u>></u>	Maggiore o uguale
∃!	Esiste unico	α	alfa
\subset	Contenuto strettamente	β	beta
\subseteq	Contenuto	γ, Γ	gamma
\supset	Contenuto strettamente	δ, Δ	delta
⊇	Contiene	ϵ	epsilon
\Rightarrow	Implica	σ, Σ	sigma
\iff	Se e solo se	ρ	${ m rho}$
\neq	Diverso		
\forall	Per ogni		

Capitolo 1

Introduzione

1.1 tipologia in R

1.1.1 Distanza

- $R: d(x_1, x_2) = |x_1 x_2|$
- \mathbb{R}^2 : Siano $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$, la loro distanza è $d(P_1, P_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- \mathbb{R}^3 : Siano $Q_1(x_2, y_2, z_2)$, la loro distanza è $d(Q_1, Q_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- R^4 : Siano $x = (x_1, x_2, x_3, \dots, x_n) \in R^n$ e $y = (y_1, y_2, y_3, \dots, y_n) \in R^n$

$$d(x,y) = \sqrt{\sum_{a=1}^{D} (x_a y_a)^2}$$

La distanza è un'applicazione $R^n*R^n \to R^+ \vee \{0\}$ (ha come immagine al più nullo)

Proprietà 1. questi sono vincolati dalle sequenti proprietà

- $d(x,y) \le 0$ $d(x,y) = 0 \Leftrightarrow x \equiv y$ la distanza è nulla se i due punti coincidono
- ullet d(x,y)=d(y,x) la distanza tra x e y uguale alla distanza da y a x
- $d(x,y) \ge d(x,y) + d(z,y)$ disuguaglianza triangolare.

1.2 Intorno

Definizione 1. Insieme dei punti che distano da un punto P_0 meno di un δ

• R Intervallo $]x_0 - \delta, x_0 + \delta[$, P(x) generico punto $d(P_0, P) < \delta$

$$|x - x_0| < \delta$$

 \bullet R^2

$$P_{0}(x_{0}, y_{0})$$

$$P(x, y)$$

$$d(P_{0}, P) < \delta$$

$$\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}} < \delta$$

Cerchio di cerntro P_0 e di perimetro δ privato della circonferenza

 \bullet R^3

$$Q_0(x_0, y_0, z_0)$$

$$Q(x, y, z)$$

$$d(Q, Q_0) < \delta$$

$$\sqrt{(x - x_0)^2 + (x - y_0)^2 + (z - z_0)^2} < \delta$$

Sfera di centro Q_0 e raggio δ privata della sua superficie.

Punto interno P_0 è interno all'insieme D se:

$$\exists I_{P_0,\delta} \subset D \tag{1.1}$$

Esiste un interno di P_0 di ampiezza δ incluso nell'insieme D, cioè l'interno contiene tutti i punti dell'insieme.

Punto esterno P_0 è esterno all'insieme D se è interno al complementare di D, CD

$$\exists I_{P_0,\delta} \subset CD$$
 (1.2)

esiste un interno di P_0 di ampiezza δ incluso nel complementare dell'interno D

Punto di frontiera P_0 è un un punto di frontiera se

$$P_0 \in F_D \to \text{frontiera dell'insieme D}$$
 (1.3)

 $\forall I_{F_D}$ in esso cadono punti di D e pinti di CD qualunque interno, in esso cadono punti dell'insieme D e del suo complementare.

Punto di accumulazione P_0 è un punto di accumulazione se $\forall I_{P_0}$ cade in un punto $\in D$, se cade un punto di D in I_{p_0} , allora ne cadono infiniti.

Punto isolato P_0 è un punto isolato se $\exists I_{P_0,\delta}$ in cui non cade nessun punto dell'insieme.

Insieme Aperto

Definizione 2. A si dice aperto se $\forall P \in A \exists I_p \subset A$ per qualunque punto di A esiste un interno incluso in A, cioè ogni intorno di P è formato da punti dell'insieme aperto è formato da punti interni $a:b[x^2+y^2< r^2 \text{ cerchio senza circonferenza:}$

$$\begin{cases} y < 1 - x \\ y > 0 & triangolo \ senza \ lati \\ 0 < x < 1 \end{cases}$$
 (1.4)

1.2.1 Insieme chiuso

Definizione 3. A si dice chiuso se coincide con il suo insieme chiususura, che è formato dall'insieme tesso più gli eventuali punti di accumunlazione che non gli appartengono. Un insieme è chiuso quando contiene i suoi punti di accumulazione. [a:b]; $x^2 + y^2 \le r^2$ cerchio più circonferenza:

$$\begin{cases} y \le 1 - x \\ y \ge 0 & tringolo \ con \ lati \\ 0 \le x \le 1 \end{cases}$$
 (1.5)

1.2. INTORNO 9

1.2.2 Insieme connesso

Definizione 4. un insieme A si dice connesso se e solo se $\forall P_1, P_2 \subset A \ \exists \Gamma i(P_1, P_2) \subset A$. A è connesso se per qualunque P_1, P_2 di A esiste una spezzata inclusa in in A

A si dice semplicemente connessa se qualunque chiusa inclusa in A è frontiera dell'insieme.

1.2.3 Insieme convesso

Definizione 5. un insieme A si dice convesso se per ogni coppia di $x, y \in A$ il segmento \bar{xy} è contenuto in A

Insiemi Limitati In R:A è limitato se $\forall x \in A:$ Insieme illimitato In $R:[2;+\infty[$ illimitato $x \leq M$

$$[-1;1]$$
 limitato

 $InR^2: illimitato \begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$ (1.7)

In \mathbb{R}^2 : A è limitato se è contenuto in un intorno circolare dell'origine

$$\exists M > 0 : \sqrt{x^2 + y^2} \le M$$
 (1.6)

1.2.4 Coordinate Polari

Definizione 6. in molti casi è utile utilizzare una funzione in coordinate polari, sia P(x, y) un punto nel piano; esso è individuato univocamente da una coppia di valori: le coordinate cartesiano X e y oppure le coordinate polari ρ e θ .

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

per capire, facciamo un esempio

$$f(x,y) = \frac{x^3}{x^2 + y^2} \equiv f(\rho,\theta) = e^3 \frac{\cos^2 \theta}{e^2}$$
 (1.8)

1.2.5 Limiti e continuità

Definizione 7. f(x,y) una funzione definito in D e siano (x_0,y_0) punto di accumulazione per D

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \quad \forall \xi > 0 \ \exists \delta_{(E)} > 0 : \forall I_{(x_0,y_0),\delta}/\{(x_0,y_0)\}, \forall (x,y) \in I | f(x,y)$$
(1.9)

Per qualunque $\xi > 0$ esiste un $\delta(\xi) > 0$ per cui qualunque intorno di (x_0, y_0) al più x_0, y_0 e per qualunque (x_0, y_0) di quast'intorno la funzione dista da i meno di ξ .

1.2.6 Continuità

Definizione 8. Sia f(x,y) definita in D, f(x,y) si definisce continuo in $(x_0,y_0) \in D$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0) \tag{1.10}$$

1.2.7 Esistenza del limite

Definizione 9. Calcolando il limite con f in forma polare esiste se non dipende da θ . È possibile calcolare il limite di f in forma cartesiano nel segmento nodo. Anziché considerare tutti i punti dell'interno, si

considerino queli si ina generica retta.

$$y = y_0 + m(x - x_0) (1.11)$$

- Se il limite dipende da m esso non siste.
- Se non dipende da m esite.

1.2.8 Teorema di esistenza dei valori intermedi

Teorema 1. Sie f(x,y) definita in un insieme chiuso e limitato. Allora f(x,y) assume tutti i valori campresi fra il massimo ed il minimo di f(x,y) su D

1.2.9 Teorema di Weierstrass

Teorema 2. Una funzione continua in un intervallo chiuso e limitato, che ammette massimo e minimo assoluto.

Sia f(x,y) una funzione continua in D e sia D un insieme chiuso e limitato. Allora f(x,y) ha massimo e minimo assoluto in D.

Capitolo 2

Derivate Parziali

2.1 Derivate parziali di primo grado

Definizione 10. Sia f(x,y) una funzione di due variabili definita in un punto interno ad A Consideriamo un interno circolare di $P(x_0,y_0), I(x_0,y_0), \delta$, in netto sulla retta $y=y_0$ e incrementa la x_0 passante da x_0 a $x_0 + h$. Ho così un punto $P(x_0 + h, y_0) \in A$.

Definisco il rapporto di f(x,y) nella sola x

$$\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.1}$$

f(x,y) si definisce derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

$$\frac{\partial f}{\partial x} = fx = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.2}$$

Analogamente, considero un interno di $P(x_0, y_0), I(x_0, y_0), \delta$. Mi ruoto sulla retta $x = x_0$ e incremento la y_0 passando da y_0 a $y_0 + k$. Ho così un punto $P(x_0, y_0 + h) \in A$.

Definisco il rapporto ingrementale di f(x,y) nella sola y

$$\frac{f(x_0 + k, y_0) - f(x_0, y_0)}{k}$$

derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

Se in un punto (x,y) esistono entrambi le derivate parziale si dice che la funzione è derivabile in (x,y) inoltre se f è derivabile in ogni punto $(x,y) \in A$, si dice che f è derivabile in A.

2.1.1 Significato geometrico

- Lo derivata prima par parziale in P è $fx(x_0, y_0)$, è la tangente alla curva che si crea intersecando f(x, y) con il piano $y = y_0$
- La derivata prima parziale in P, $fy(x_0, y_0)$ è la tangente alla curva che si crea intersecando f(x, y) con il piano $x = x_0$

Se esistono entrambe allora le due rette tangenti alle sezioni della funzione individuano il piano tangente al solido nel punto $P(x_0, y_0, z)$

2.2 Derivata parziale seconde

Definizione 11. Sia f(x,y) una derivabile e siano definite in un deminio le due derivate parziali

$$f_x(x,y)$$
 $f_y(x,y)$

Tali funzioni passano a loro volta essere derivabili e si ottengono così le derivate seconde parziali di f(x,y)

$$f_{xx}(x,y) \qquad f_{y}(x,y)$$

$$f_{xx}(x,y) \qquad f_{xy}(x,y) \qquad f_{yx}(x,y) \qquad f_{yy}(x,y)$$

$$f_{yx}(x,y) \qquad \text{derivata seconde pure} \qquad f_{yx} \qquad \text{derivata seconde resto}$$

$$f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y)$$

 $f_{yx}(x,y) \label{eq:fyx}$ derivata prima rispetto a

y poi rispetto a rispetto a x

con n variabili si hanno n^2 derivate seconde parziali – Spesso le derivate seconde sono disposte in una matrice quadrata, detta hessiana, con il sinbolo D^2

$$D^{2}f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$
n variabili $\rightarrow n * n$ (2.3)

Se esistono le quanto derivate di f, nel punto (x,y), si dice che f è dirivabile due volte in (x,y). Se ciò accade $\forall (x,y) \in A$, f è derivabile due volte nell'insieme A.

2.2.1 Teorema di Schwarz (Dell'invertibilità dell'ordine di derivazione)

Teorema 3. Sia f(x,y) definita in D e derivabile due volte $\forall (x,y) \in D$. Se le derivate seconde in (x_0,y_0) $f_{xy}(x_0,y_0)$ e $f_{yx}(x_0,y_0)$ sono continue in (x_0,y_0) allora risulta $f_{xy}(x_0,y_0) = f_{yx}(x_0,y_0)$.

In generale se vale il teorema di Schwarz, la matrice Hessiana può essere scritta come

$$H = D^2 f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{yx} & f_{yy} \end{bmatrix}$$

$$detH = f_{xx} * f_{yy} - (f_{xy})^2 = f_{xx} * f_{yy} - (f_{yx})^2$$

2.3 Massimi e minimi relativi

Definizione 12. Sia f(x,y) una funzione definita in un insieme D, un punto $p_0(x_0,y_0) \in D$, si dice di massimo relativo per la funzione se esiste intorno circolare di P_0 per cui il valore assunto della funzione nei punti dell'interno è minore o uguale a quello assunto in P_0 .

Analogamente un punto $P_0(x_0, y_0)$ si dice di minimo relativo per la funzione se esiste un interno circolare di P_0 per cui il valore assunto dalla funzione nei punti dell'intorno è maggiore o uguale.

$$\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \ge f(x,y) \quad Massimo \ relativo$$

 $\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \le f(x,y) \quad Minimo \ relativo$

2.3.1 Teorema di Fermat

Teorema 4. Sia f(x,y) derinita in D e derivabile in un punto $P_0(x_0,y_0)$

Se in $P_0(x_0, y_0)$ f(x, y) ha un massimo o un minimo relativo, allora le derivate prime parziali si annullano $(\nabla f = 0 \text{ gradiente nullo})$. La pendenza della tangente è zaro un massimo o minimo.

Gradiente

Sia f(x,y) una funzione derivabile in un punto (x,y), cioè esistano in (x,y) le due derivate parziali f_x e f_y .

Si definisce gradiente di f(x,y) nel punto (x,y): i vettore ∇f le cui componenti sono le derivate parziali di f(x,y).

$$\nabla f(x,y) \equiv (f_x(x,y); f_y(x,y)) \tag{2.4}$$

Massimi e minimi – condizione necessaria

Definizione 13. Se $P_0(x_0, y_0)$ è un punto di massimo/minimo relativo il gradiente è nullo. Così di massimo o minimo relativo interni al dominio della funzione f vanno ricercati tra i punti che annullano la funzione f. Pertanto un punto critico per una funzione derivabile e un punto in cui si annulla il gradiente della funzione.

Capitolo 3

Differenziabilità

Definizione 14. Sia f(x, y) definita in D e $P_0(x_0, y_0) \in D$. In $P_0, z = f(x_0, y_0)$, incremento la x_0 di un h e la y_0 di un k.

Così passo da $P_0(x_0, y_0)$ a $P(x_0 + h, y_0 + k)$. La funzione avrà avuto un certo incremento

$$f(x+h, y_0, y_0+k) - f(x_0, y_0)$$

Si definisce differenziale in $P_0(x_0, y_0)$ se $\exists A, B \in R : f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$, cioè se esistono due costanti reali A e B per cui l'increm,ento di f(x, y) che si ha passando da P_0 a P si può riscrivere come somma di una parte lineare Ah + Bk e di un infinitesimo di ordine superiore a $\sqrt{h^2 + k^2}$ (distanza di P_0 da P).

Se f(x,y) ammette derivate prime parziali le due costanti A e B sono:

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

e il differenziale diventa

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = f(x_0, y_0)h + f(x_0, y_0)k + o(\sqrt{h^2 + k^2})$$
(3.1)

Esempio 1. verificare che z = xy è differenziale $\forall (x_0; y_0) \in \mathbb{R}^2$, se z è differenziale $\rightarrow f(x_0 + h, y_0 + k) - f(x_0, y_0) = fx(x_0, y_0)h + fy(x_0, y_0)k + o(\sqrt{h^2 + k^2})$ dove

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

se z è derivabile in (x_0, y_0) .

$$f(x_0 + h, y_0 + k) = \underbrace{(x_0 + h)(y_0 + k)}_{Sostituisco} = x_0 y_0 + x_0 k + y_0 h + hk$$

$$f_x = y \ fx(x_0, y_0) = y_0$$
 $f_y = x$ $f_y(x_0, y_0) = x_0$
 $f \ \hat{e} \ derivabile \ in \ (x_0, y_0)$ $A = y_0$ $D = x_0$

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

$$\cancel{x}_0 y_0 + \cancel{x}_0 k + hk - \cancel{x}_0 y_0 = \cancel{y}_0 h + \cancel{x}_0 k + o(\sqrt{h^2 + k^2})$$

$$hk = o(\sqrt{h^2 + k^2})$$

detto quindi dimostrare che $\lim_{h\to 0k\to 0} \frac{hk}{\sqrt{h^2+k^2}} = 0$ e poi passo alle coordinate polari:

$$\begin{split} h &= \rho \cos \theta \\ k &= \rho \sin \theta \qquad \lim_{\rho \to 0} \frac{\phi' \cos \theta * \phi' \sin \theta}{\phi^2} \quad z = xy \ defferenziale \ \forall (x_0, y_0) \in R^2 \\ e^2 &= h^2 + k^2 \\ h &\to 0, k \to 0, \rho \to 0 \end{split}$$

3.0.1 Tutte le funzioni differenziali sono continue

Sia f(x,y) differenziabile (x_0,y_0) , allora f(x,y) è continua in (x_0,y_0)

Ip: Th:

$$f(x,y)$$
 differenziabile in (x_0,y_0) $f(x,y)$ è continua in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

Se $f(x_0, y_0)$ è continua in (x_0, y_0)

$$\lim_{h \to 0} f(x_0 + h, y_0 + k) - f(x_0, y_0) = 0$$

Calcolo il limite a destra per $h \to 0$ $k \to 0$

$$\lim_{h\to 0}\underbrace{Ah}_{k\to 0} + \underbrace{Bk}_{0} + o\underbrace{\left(\sqrt{h^2+k^2}\right)}_{0} = 0 \text{ per cui } f(x,y) \text{ è continua in } (x_o,y_0)$$

3.0.2 Tutte le funzioni differenziali sono derivabili

Sia f(x,y) differenziabile in un punto (x_0,y_0) . Allora f(x,y) è derivabile in (x_0,y_0)

Ip: Th:
$$f(x,y)$$
 differenziabile in (x_0,y_0) $f(x,y)$ è derivabile in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

divido entrambi per h e calcolo il limite per $h \to 0$

$$\lim_{h \to 0} \underbrace{\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}}_{\frac{\partial f}{\partial x}(x_0, y_0) = fx} = \underbrace{\frac{Ah + o(\sqrt{h^2})}{h}}_{A}$$

$$fx(x_0, y_0) = A$$

Analogamente si demostra che $f_y(x_0, y_0) = B$. Qundi dato che esistono f_x e f_y in (x_0, y_0) , f(x, y) è derivabile in (x_0, y_0) e in oltre $A = f_x(x_0, y_0)$, $B = f_y(x_0, y_0)$

Esercizio 1. Dimostrare che $z = x^2 = y^2$ è differenziabile in (1;1) – Per definire

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah = Bk + o(\sqrt{h^2 + k^2})$$

$$f(x_0 + h, y_0 + k) = (1 + h)^2 = (1 + k)^2$$

$$f(x_0, y_0) = 1 + 1 = 2$$

$$A = f(1, 1) = |2x|_{x=1} = 2$$

$$B = f_y(1, 1) = |2y|_{y=1} = 2$$

Così ho
$$(1+h)^2 + (1+k)^2 - 2 = 2h + 2k + o(\sqrt{h^2 + k^2})$$

$$h^2 + k^2 = o(\sqrt{h^2 + k^2})$$

$$devo\ dimostrare\ che\ \lim_{h\to 0}\ \frac{h^2+k^2}{\sqrt{h^2+k^2}}=0\ pasando\ a\ coordinate\ polari$$

$$h=e\cos\theta$$

$$k=e\sin\theta$$

$$e^2=h^2+k^2$$

$$k \to 0, h \to 0, p \to 0$$

 $\lim_{\epsilon \to 0} \frac{e^2}{|\epsilon|} = 0 \to z = x^2 + z^2 \text{ è differeziabile in (1,1)}$

3.0.3 Le funzioni con derivate parziali continue sono diferenziabili

Definizione 15. Sia f(x,y) definita in D_1 e sia derivabile in D. Sono f_x e f_y continue in D, allora f(x,y) è differenziale in D.

Condizione sufficiente per la differenzialità

Definizione 16. Affinché una funzione sia differenziabile in (x_0, y_0) basta che in (x_0, y_0) abbia derivate. In questo modo per determinare se una funzione è differenziabile in un punto si calcola le derivate parziali in quel punto, se esistono la funzione è differenziabile, in caso contrario non è derivabile.

Esempio 2. Dimostrare che $z = \sqrt{x^2 + y^2}$ non è differenziabile in (0;0)

$$z_x = \frac{2x}{2\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{x^2 + y^2}} \quad D: x^2 + y^2 > 0$$

$$z_y = \frac{2y}{2\sqrt{x^2 + y^2}} = \frac{y}{\sqrt{x^2 + y^2}} \quad D: x^2 + y^2 > 0$$

Sia z_x sia z_y sono definite per $x^2 + y^2 > 0$ cioè nei punti esterni al cerchio di centro (0,0) e 1, frontiera eclusa. Il punto (0,0) è interno al cerchio, quindi in esso f(x,y) non è derivabile. Per cui in punto (0,0) f(x,y) non è neanche differenziabile.

3.1 Significato geometrico del differenziale e piano tengente

3.1.1 Differenziale primo

È la parte lineare nella definizione di differenziale

$$f(x,y)$$
 definita in D $(x_0,y_0) \in D$

f(x,y) differenziale in (x_0,y_0) se

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \underbrace{f_x(x_0, y_0)h + f_y(x_0, y_0)k}_{\text{parte lineare}} + o(\sqrt{h^2 + k^2})$$

$$df(x_0, y_0) = f_x(x_0, y_0)h + f_y(x_0, y_0)k$$

3.1.2 Piano Tangente

La f(x,y) una funzione derivabile in (x_0,y_0) , il piano tangente alla funzione (x_0,y_0,z_0) ha equazione:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

 \vec{n} direzione ortogonale al piano tangente, è unitario

$$\vec{n} = \frac{(-f_{x_i} - f_{y_i}1)}{\sqrt{1 + f_x^2 + f_y^2}}$$

poiché
$$\nabla f(f_x, f_y) |\nabla f|^2 = f_x^2 + f_y^2 \rightarrow \vec{n} = \frac{(-f_{x_i} - f_{y_i})}{\sqrt{1 + |\nabla f|}}$$

Esempio 3. $z = x^2 + y^2$ (1,1)

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z_0 = f(1,1) = 1 + 1 = 2$$
 $z - 2 = 2(x - 1) + 2(y - 1)$ $f_x = 2x|_{1_{ii}} = 2$
 $f_y = 2y|_{1_{ii}} = 2$

3.1.3 Significato geometrico del differenziale primo

Passando da P_0 a P(x) si incrementa da $f(x_0)$ a $f(x_0+h)$ – Il differenziale primo dy indica la variazione che subisce la retta tangente passando da P_0 a P.

L'incremento $f(x_0 + h) - f(x_0)$ si approssima sempre più con dy per incrementi $h \to 0$

$$f(x_0 + h) - f(x_0) = f'(x)(x - x_0) - f(x_0) + o|x|$$

L'incremento $f(x_0 + h) - f(x_0)$ differisce dal valore $f'(x)(x - x_0)$ [retta tangente] per un o|x|, o|x| ci da l'errore.

3.1.4 Funzioni composite

Definizione 17. Sia x(t) E y(t) due funzioni reali definite al variare in un intervallo I di R. $t \in T \le R$ corrisponde il punto (x(t), y(t))

$$\begin{cases} x = x(t) & Rappresenta \ nel \ piano \ una \ currva \ in \ frontiera \\ y = y(t) & Parametrica \end{cases}$$

Al variare di $t \in I \leq R$

x = x(t), y = y(t) descrive una curva γ nel piano

Esempio 4.

$$\begin{cases} x = t - 1 \\ y = t + 1 \end{cases} \qquad t \in [0, 1] \qquad \begin{cases} x = \Gamma \cos t \\ y = \Gamma \sin t \end{cases} \qquad t \in [0, 2\pi]$$

$$y = (t - 1) + 2 = x + 2 \qquad \qquad r^2 \cos t + r^2 \sin^2 t = r^2$$

circonferenza con certro nel origine e raggio r

$$[x(t)]^2 + [y(t)]^2 = r^2$$

Se si ha
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 al variare di $t \in T \le R$ si ha una curva nello spazio.
$$z = z(t)$$

Esempio 5.
$$\begin{cases} x = \Gamma \cos t \\ y = \Gamma \sin t \end{cases}$$
 elica circolare
$$z = Kt$$

3.1.5 Funzione composta

Definizione 18. Sia γ la curva $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $t \in I < R$ di codominio B

 $I \to B$

 $|Sia\ f(x,y)|\ definita\ in\ A$

 $t \in f(x(t), y(t))$ se il codominio di γ coincide con il codomio di f(x, y), cioè $B \leq A$

3.1.6 Teorema della derivata della funzione composta

Definizione 19. Sia γ la curva di punti (x(t), y(t)) e sia derivabile in un intervallo I (<u>cioè esistono</u>) Sia f(x,y) differenziabile in x(t)

Allora la funzione conposta da F(t) = f(x(t), y(t)) è derivabile in I e la sua derivata prima vale:

$$F'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t)$$
(3.2)

$$(\nabla f * \Gamma'(t)) \quad \nabla f \equiv (f_x; f_y) \quad \Gamma' \equiv (x'(t); y'(t))$$

Ipotesi $\gamma \equiv (x(t), y(t))$ derivabile in I f(x, y) differenziale in x(t) **Tesi** F(t) = f(x(t), y(t)) derivabile in I $F'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t)$

Dimostrazione. Devo dimostrare che $\lim_{h\to 0} \frac{F(t+h)-F(t)}{h} = F'(t) = F_x(x(t),y(t))x'(t) + f_y(x(t),y(t))y'(t)$ Scrivo l'incremento di F(t) per un h

F(t+h) - F(t) = f[x(t+h), y(t+h)] - f[x(t), y(t)] Per definizione di funzione composta F(t)

Poiché f(x,y) è differenziabile si ha

$$f[x(t+h), y(t+h)] - f[x(t), y(t)] = f_x \underbrace{[x(t), y(t)]}_{fx} \underbrace{[x(t+h) - x(t)]}_{h} + f_y \underbrace{[x(t+h) - y(t+h)]}_{fy} \underbrace{[y(t+h) - y(t)]^{2}}_{k} + o\underbrace{\left(\underbrace{[x(t+h) - x(t)]^{2} + \underbrace{[y(t+h) - y(t)]^{2}}_{k^{2}}}\right)}_{fy}$$

Divido entrambi i membri per h e calcolo il $\lim_{h\to 0}$

I membro

$$\lim_{h \to 0} \frac{f[x(t+h), y(t+h)] - f[x(t), y(t)]}{h} = F'(t)$$

II membro

$$\lim_{h \to 0} fx[x(t), y(t)] \underbrace{\left[\frac{x(t+h) - x(t)}{h}\right]}_{x'(t)} + \lim_{h \to 0} f_y[x(t+h) - y(t+h)] \underbrace{\left[\frac{y(t+h) - y(t)}{h}\right]}_{y'(t)} + \lim_{h \to 0} o\underbrace{\left(\sqrt{[x(t+h) - x(t)]^2 + [y(t+h) - y(t)]^2}\right)}_{0}$$

$$F' = f_x[x(t), y(t)]x'(t) + f_y[x(t), y(t)]y'(t)$$

Esempio 6.

$$z = x^{2}y \begin{cases} x(t) = -t & F(t) = z(x(t), y(t)) = -t^{2} * t = -t^{3} \\ y(t) = t & F'(t) = z' = -3t^{2} \end{cases}$$
$$F'(t) = f_{x}(x(t), y(t))x'(t) + f_{x}(x(t), y(t))y'(t) = z_{x}x'(t) + z_{y}y'(t) = -3t^{2}$$

3.2 Teorema differenziabilità delle funzioni composite

Teorema 5. Siano $x = (x_1, x_2, \dots, x_n)$ n funzioni in k variabili $t = (t_1, t_2, \dots, t_k)$

$$\begin{cases} x_1 = x_1(t_1, t_2, \dots, t_k) \\ x_2 = x_2(t_1, t_2, \dots, t_k) \\ \dots \\ x_n = x_n(t_1, t_2, \dots, t_k) \end{cases}$$
(3.3)

Componiamo le funzioni ottenendo la funzione composita

$$f[x_1(t_1,t_2,\ldots,t_k),x_2(t_1,t_2,\ldots,t_k),\ldots,x_n(t_1,t_2,\ldots,t_k)]$$

Siano $(x_1(t_1, t_2, ..., t_k), x_2(t_1, t_2, ..., t_k), ..., x_n(t_1, t_2, ..., t_k))$ n funzioni definite in un insieme aperto $D \leq R^n$ e siano derivabili parzialmente rispetto a t_i (i = 1, 2, ..., k).

Sia $f(x_1,...,x_n)$ una funzione definita in A contenente in codominio x(D) e sia f differenziabile in A Allora la funzione composita $F(t) = x_1(t_1,t_2,...,t_k), x_2(t_1,t_2,...,t_k),...,x_n(t_1,t_2,...,t_k)$ è derivabile parzialmente rispetto a $t_i(i=1,2,...,k)$ nel punto t.

$$\frac{\partial F}{\partial t_i}(t) = \frac{\partial f}{\partial x_i}(x(t)) + \frac{\partial x_i}{\partial t_i}(t)$$
 (si somma sugli inasci ripetuti)

Inoltre, se f e $(x_1(t_1, t_2, \ldots, t_k), x_2(t_1, t_2, \ldots, t_k), \ldots, x_n(t_1, t_2, \ldots, t_k))$ sono di classe C^1 , anche $F = f(x(t)) \in c^1$ ed è quindi differenziabile.

 $\hbar = k = 2$ coordinate polari

$$\begin{cases} x_1 = x \\ x_2 = y \end{cases} \begin{cases} t_1 = \varphi \\ t_2 = \varphi \end{cases} f(x,y) \begin{cases} x = x(\varphi, \varphi) \\ y = y(\varphi, \varphi) \end{cases} \rightarrow \begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$
$$f(x,y) = f(\rho \cos \varphi, \rho \sin \varphi)$$
$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} x \rho + \frac{\partial f}{\partial y} y \rho = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi$$
$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} x \rho + \frac{\partial f}{\partial y} y \varphi = \frac{\partial f}{\partial x} (-\rho \sin \varphi) + \frac{\partial f}{\partial y} (\rho \sin \varphi)$$

3.3 Differenziale secondo

Definizione 20. d^2f è il differenziale del differenziale primo

$$d^{2}f = d(df) = d(f_{x}h + f_{y}k) = \frac{\partial}{\partial x}(f_{x}h + f_{y}k)h + \frac{\partial}{\partial x}(f_{x}h + f_{y}k)k =$$

$$= (f_{xx}h + f_{xy}k)h + (f_{xy}h + f_{yy}k)k = f_{xx}h^{2} + f_{xy}khx + f_{xy}hx + f_{yy}k^{2}$$

Se $f(x,y) \in c^2$ (derivate parziali II continue) vale il teorema di Schwarz (2.2.1), cioè fyx = fxy - Il differenziale secondo allora diventa

$$d^2f = fxxh2 + 3fxyhk + fyyk^2$$

Per ipotesi il gradiente è nulla $\Delta f(x_0, y_0) = 0$ cioè $\nabla f(x_0, y_0) \equiv (f_x(x_0, y_0), fy(x_0, y_0)) \equiv (0, 0)$ ovvero le derivate parziali prime sono nulle $fx(x_0, y_0) = 0$, $fy(x_0, y_0) = 0$ – Ciò comporta l'annullarsi dei differenziale primo

$$df(x_0, y_0) = fx(x_0, y_0)h + fy(x_0, y_0)k = 0 * h + 0 * k = 0$$

Per cui nella foruma di Taylor si ha:

$$f(x,y) = f(x_0, y_0) + \frac{1}{2!}d^2f(x_0 + \theta h, y_0 + \theta k)$$
 Forme quadratiche

Il segno di $f(x,y) - f(x_0,y_0)$ è lo stesso di $\frac{1}{2!}d^2f(x_0 + \theta h, y_0 + \theta k)$, cioè è lo stesso differenziale secondo. Per ipotesi $det Hp(x_0,y_0) > 0$, $(f(x,y) \in C_A^2 \Rightarrow vale\ il\ teorema\ di\ Schwarz)$

$$\begin{vmatrix} fxx(x_0, y_0) & fxy(x_0, y_0) \\ fyx(x_0, y_0) & fyy(x_0, y_0) \end{vmatrix} = fxx * fyy - fxy^2 > 0$$

 $e fxx(x_0, y_0) > 0$

Ciò implica per definizione che la forma quadratica associata ad $Hp(x_0, y_0)$ è positiva tutto ciò implica $d^2f(x_0 + \theta h, y_0 + \theta k) > 0$

 $|Per\ cui\ f(x,y) - f(x_0,y_0) > 0|$

$$cioè f(x,y) > f(x_0,y_0)$$
 difiniziondi di Minimo relativo (2.3)

 $|quindi(x_0,y_0)|$ è un punto di muinimo relativo

Analogamente, se $f(x_0, y_0) < 0$ si dimosta che (x_0, y_0) è un punto di massimo relatovo (2.3)

3.3.1 Condizioni sufficiente per l'esistenza di minimo e massimo relativo

Sia f(x,y) definita in A, $f(x,y) \in C_A^2$, $(x_0,y_0) \in A$ Se $\nabla f(x_0,y_0) = 0$

$$det H_F(x_0,y_0) \begin{cases} > 0 \begin{cases} fxx(x_0,y_0) > 0 \text{ Minimo relativo} \\ fxx(x_0,y_0) < 0 \text{ Massimo relativo} \end{cases} \\ < 0 \text{ Punto di sella (non sono presenti Max e min)} \\ = 0 \text{ Non si vsa se sono presenti Max o min} \end{cases}$$

Esempio 7. Massimi e minimi

1.
$$z = x^2 + y^2$$

$$\nabla f = 0 \begin{cases} zx = 0 \\ zy = 0 \end{cases} \begin{cases} 2x = 0 \\ -2y = 0 \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases} in(0,0) \ \nabla f = 0 \ può \ MAX \ o \ MIN$$

$$det H_f = \begin{vmatrix} z_{xx} & z_{zy} \\ z_{xy} & z_{yy} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4$$

2. Semisuperfici sferica $z = \sqrt{c^2 - x^2 - y^2}$

$$\nabla f = 0 \begin{cases} z_x = \frac{-x}{\sqrt{\Gamma^2 - x^2 - y^2}} \\ z_y = \frac{-y}{\sqrt{\Gamma^2 - x^2 - y^2}} \end{cases} dominio \ D \ x^2 - y^2 < \Gamma^2$$

$$\begin{cases} z_x = 0 & \begin{cases} x = 0 \\ z_y = 0 \end{cases} & (0,0) \leftarrow D \text{ può esserci un Max e un Min} \end{cases}$$

Verifico e trovo che det H > 0 $f_{xx} < 0$: in(0,0) è presente il Max.

3. Cono
$$z = \sqrt{x^2 + y^2}$$

Figura 3.1: Rappresentazione grafica della conica

$$\nabla f = 0 \begin{cases} z_x = \frac{x}{\sqrt{x^2 + y^2}} \\ z_y = \frac{y}{\sqrt{x^2 + y^2}} \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Nota 1. sarebbe (0,0) ma il dominio delle derivate $x^2 + y^2 > 0$ cioè $\forall (x,y) \in \mathbb{R}^2 - \{0,0\}$ in (0,0) non è derivabile.

Sappiamo¹ che in (0,0) c'è un minimo assoluto

¹si vede geometricamente

4.
$$z = x^4 + y^4$$

$$\begin{cases} z_x = 4x^3 = 0 \\ z_y = \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases} in (0,0) \text{ può esserci Max/Min relativo}$$

$$det H = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0 \qquad \begin{aligned} f_{xx}(0,0) &= 12x^2|_{0,0} = 0 \\ f_{xx}(0,0) &= 0 \\ f_{yy}(0,0) &= 12y^2|_{0,0} = 0 \end{aligned}$$

 $det H = 0 \rightarrow non \ so \ se \ in \ (0,0) \ c$ 'è un massimo o un minimo relativo.

Per definire se esiste un massimo o un minimo relativo uso:

$$\min f(x_0, y_0) \le f(x, y) \quad 0 \le x^4 + y^4 \quad x^4 + y^4 \ge 0 \quad \underline{SI} \ \forall (x, y) \ risulta \ da \ x^4 + y^4 \ge 0 (0, 0) \min$$

$$\max f(x_0, y_0) \ge f(x, y) \quad 0 \ge x^4 + y^4 \quad x^4 + y^4 \le 0$$

$$\underline{NO}$$

3.3.2 Ricerca del massimo e del minimo assoluti

Condizioni sufficienti per l'essistenza del Massimo e del minimo assoluto

Teorema di Weierstrass

Teorema 6. Sia f(x,y) definita in D, i continua in D chiuso e limitato, allora il minimo e massimo assoluto in D.

Ipotesi:

Tesi:
$$\exists \min \ con \ m = f(x_1, y_1), M = f(x_2, y_2) \ tale$$
 $f \in C_D^0$ $che \ m \le f(x, y) \le M$

D chiuso e limitato

Ricerca dei punti di Massimo e minimo assoluti:

- nei punti di massimo o minimo relativo;
- nei punti di non derivabilità;
- nei punti di frontiera.

Vanno ricercati quindi nei seguenti modi:

- 1. $\nabla f = 0$ dove il gradiente si annulla;
- 2. $\exists \nabla f$ dove il gradiente non esite;
- 3. sulla FD sulla frontiera.

Studio sulla frontiera

Sia ξ una superficie definita in un insieme D e sia FD la mia frontiera La frontiera FD è una curva² e suoi punti linitano l'iperbole ξ . Possiamo definire la frontiera in forma parametrica

$$FD: \begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in [a, b] \mathbb{R} \to \mathbb{R}^2$$

²o insieme di curve

Calcolo la funzione f(x, y) sui punti della frontiera

$$f(x,y) \to F(t) = f(x(t), y(t))$$
 funzione di 1 variabile (3.4)

studio del massimo e minimo per F(t) = 0 $\begin{cases}
F'' > 0 \min \\
F'' < 0 \max
\end{cases}$

Calcolo i valori della funzione nei punti di Massimo/minimo e li confronto con i valori Massimo/minimo relativi nel dominio e i valori nei punti di non derivabilità. La frontiera può anche essere in forma cartesiana

$$y = y(x) \quad a \le x \le b \tag{3.5}$$

Calcolo la funzione nei punti della frontiera e procedo come visto prima $f(x,y) \to F(t) = f(x(t),y(t))$

Esempio 8. Determinare il massimo e il mino assoluto di $f(x,y) = 1 + 2x^2 + \sqrt{x^2 + y^2}$ in $D: \{x^2 + y^2 \le \Delta\}$

- 1. $\nabla f = 0$
- 2. ∄∇f
- 3 FD

1.
$$\nabla f(x,y) = 0 \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \begin{cases} 4x + \frac{x}{\sqrt{x^2 + y^2}} \\ \frac{y}{\sqrt{x^2 + y^2}} \end{cases} \begin{cases} 4x + \frac{x}{|x|} = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

 $\nabla f = 0$ in (0,0) che non è nel C.E. delle derivate parziali per cui $\nabla f \neq 0 \ \forall (x,y) \in A \ A$ dominio f_x e f_y

2. $\nexists \nabla f$ le derivate parziali perime sono definite $\forall (x,y) \in R^2 : x^2 + y^2 \neq 0$ cioè in $R^2 - \{0,0\}$

(0,0) pnto di non derivabilità f(0,0)=1

3. FD

$$D: \{x^2 + y^2 \le 4\} \qquad FD: x^2 + y^2 = 4$$

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases} \quad t \in [0; 2\pi]$$

 $Calcolo\ f(x,y)\ sui\ punti\ di\ frontiera$

$$f(x,y) = F(t) = 1 + 2(2\cos t)^2 + \sqrt{(2\cos t)^2 + (2\sin t)^2} = 1 + 8\cos^2 t + 2 = 3 + 8\cos^2 t$$

Calcolo F(t) agli estremi $t \in [0; 2\pi]$ F(0) = 3 + 8 = 11 $F(2\pi) = 3 + 8 = 11$ Studio del massimo e del minimo di F(t)

$$F'(t) = 0 \quad 16\cos t(\sin t) = -16\sin t\cos t = 0 \quad t = 0 \quad t = \pi \quad t = \frac{\pi}{2}t = \frac{3}{2}\pi$$

$$F''(t) = 16(\cos t \cos t - \sin t \sin t) = 16(\sin^2 t - \cos^2 t)$$

Ottenuti mettendo a
$$F(t)$$
 e valori
$$\begin{cases} F''(\pi) = 16(-1) = -16 < 0 \text{ max } su \ FD & F(\pi) = 3 + 8 = 11 \\ F''(\frac{\pi}{2}) = 16(-1) = -16 > 0 \text{ min } su \ FD & F(\frac{\pi}{2}) = 3 \end{cases}$$
massimo e un minimo
$$\begin{cases} F''(\frac{3\pi}{2}) = 16(-1) = -16 < 0 \text{ min } su \ FD & F(\frac{3\pi}{2}) = 3 \end{cases}$$

Ho ottenuto i sequenti valori

1.
$$(x,y) \equiv (0,0)$$
 il min è 1 e viene assunto in $(0,0)$
11. $t = 0, \pi, 2\pi$ il max è 11 e viene assunti in
$$\begin{cases} x = 2\cos 0 \\ y = 2\sin 0 \end{cases}$$
3. $t = \frac{\pi}{2}, \frac{3}{2}\pi$
$$\begin{cases} x = 2\cos \pi \\ y = 2\sin \pi \end{cases}$$
 (-2,0)
$$\begin{cases} x = 2\cos 2\pi \\ y = 2\sin 2\pi \end{cases}$$
 (2,0)

3.3.3 Metodo dei moltiplicatori di di Lagrange

Nel caso in cui g(x,y) = 0 non definisca una funzione implicata, per trovare i massimi e minimi vincolati si introduce una funzione ausiliaria, detta lagrangiana, così definita:

$$F(x,y,\lambda) = f(x,y) + \lambda g(x,y)$$
(3.6)

 $F(x,y,\lambda)$ è combinazione lineare delle funzioni f(x,y) E g(x,y) – Il parametro λ prende il nome di Moltiplicatore di Lagrange. I punti di massimo vincolati sono quelli in cui il gradiente di F(x,y,z) si annulla ovvero...

$$\nabla F_{(x,y,z)} = 0 \begin{cases} F_x = f_x(x,y) + \lambda g_x(x,y) \\ F_y = f_x(x,y) + \lambda g_y(x,y) \\ F_\lambda = g(x,y) = 0 \end{cases}$$
(3.7)

Si risolve questo sistema di tre equazioni in tre variabili e il valore massimo della funzione è calcolata nei punti soluzioni è il massimo calcolato e il valore minimo della funzione calcolata nei punti soluzione è il massimo vincolato.

Capitolo 4

Integrali Doppi e tripli

4.1 Domini normali (semplici)

Definizione 21. I domini delle funzioni a più variabili possono presentare una forma di regolarità per cui è possibile delimitare la regione da intervalli e grafici di funzione. Si parla quindi di dominio semplice o normale rispetto alla variabile delimitabile da un intervallo. La normalità di un dominio è molto importante in molte definizioni di integrale multiplo e della sua risoluzione tramite le formule di riduzione. Inoltre la presenza di un dominio regolare permette ulteriori teoremi e formule d'integrazione, come le formule di Gauss-Green, il teorema della divergenza e il teorema del rotore.

4.1.1 Dominio normale rispetto all'asse x

Il dominio A si definisce normale rispetto all'asse x se è così definito:

$$A = \begin{cases} a \le x \le b & x \text{ valria in un intervallo} \\ g_1(x) \le y \le g_2(x) & y \text{ varia tra due funzioni di } x \end{cases}$$

$$(4.1)$$

Esempio 9.

$$D = \begin{cases} 0 \le x \le 1\\ x^2 \le y \le x \end{cases}$$

Il dominio B si definisce normale rispetto all'asse x se è così definito:

$$A = \begin{cases} c \le y \le d & y \text{ valria in un intervallo} \\ h_1(y) \le x \le h_2(y) & x \text{ varia tra due funzioni di } y \end{cases}$$

$$(4.2)$$

Esempio 10.

$$D = \begin{cases} 0 \le y \le 1\\ y < x < \sqrt{y} \end{cases}$$

4.1.2 Domini Polarmente normale

Il dominio C si definisce polarmente normale se è costantemente definito:

$$C = \begin{cases} \theta_1 \le \theta \le \theta_2 \\ \varphi_1(\theta) \le \varphi(\theta) \le \varphi_2(\theta) \end{cases}$$

$$(4.3)$$

Esempio 11.

$$(x-1)^2 + y^2 \le 1 \tag{4.4}$$

l'angolo varia tra θ e $\frac{\pi}{2}$, il segmento φ dipende dall'angolo

$$\theta = 0 \ \dot{e} \ \max \varphi = 2$$

$$\theta = \frac{\pi}{2} \ \dot{e} \ \min \varphi = 0$$

$$\varphi = 2\cos\theta \begin{cases} 0 \le \theta \le \frac{\pi}{2} \\ 0 \le \varphi \le 2\cos\theta \end{cases}$$

 $corona\ circolare\ \varphi = r\ \varphi = R$

$$\begin{cases} 0 \le \theta \le \frac{\pi}{2} \\ r \le \varphi \le R \end{cases}$$

4.1.3 Definizione di integrale doppio

Definizione 22. Sia f(x,y) una funzione limitata nel rettangolo R = [a,b]x[c,d], coordinata in [a,b] e di seconda coordinata in [c,d] Deconpongo regolarmante gli intervalli [a,b] e [c,d],

decomponendo [a, b] si ha
$$D_1 = \{x_0 = a, x_1, x_2, ..., x_n = b\}$$

decomponendo [c, d] si ha $D_1 = \{y_0 = a, y_1, y_2, ..., y_n = d\}$

Il prodotto cartesiano $D = D_1 * D_2$ è una semidivisione del rettangolo R

Figura 4.1: Decomposizione del rettangolo R

$$I_k = [x_{k-1}, x_k]$$
 in $D_1(k = 1, ..., n)$
 $J_h = [y_{h-1}, y_h]$ in $D_2(h = 1, ..., n)$

Il prodotto cartesiano $I_k * J_h$ individua il generico subrettangolo R_{kh} della semidivisione. Prendo un generico punto del subrettangolo $R_{kh}(x_k, y_h)$ e faccio il seguente prodotto:

$$f(x_k, y_h) * misR_{kh}$$
 con $misR_{kh} = misI_k * misJ_h$ area del subrettangolo

Con l'integrale doppio consudero il volume del parallelepipedo.

Geometricamente considera il pettangolo R_{kh} e la parte di superficie f(x,y) che vi si presenta il prodotto $f(x_i, y_n) * mis R_{kh}$ è il volume del parallelepipedo di base R_{kh} e altezza $f(x_k, y_h)$.

4.2 Somme di Riemann

Definisco le somme di Riemann $\sum_{k=h=1}^{k=m} f(x_k, y_h) * R_{kh}$ ciò rappresenta la somma di tutti i volumi dei

parallelepipedi di base R_{kh} e altezza $f(x_k, y_h)$ che si possono ottenere nel rettangolo R.

Infittisco le decomposizioni D_1 e $D_2(m \to \infty; n \to \infty)$, ottenendo così un numero sempre maggiore di subrettangoli di ampiezza via via minore.

$$misR_{kn} = misI_k * misI_n = \frac{b-a}{m} * \frac{d-c}{n} \to 0 \text{ per } m, n \to \infty$$
 (4.5)

Con l'infittirsi della decomposizione, aumenta la precisione con cui ciascun parallelepipedo approssima il volume sotto al grafico delle funzione in ogni R_{kh} .

Al limite, le somme di Riemann daranno il volume sotto al grafico della funzione in un certo rettangolo (in generale dominio).

Se esiste finito $\lim_{n\to\infty} \sum_{m\to\infty}^{k=m} \sum_{h=k=1}^{h=n} f(x_k.y_n) * misR_{kh}$ tale limite è definito ingrale doppio di f(x,y) nel dominio R = [a,b] * [c,d]

$$\iint\limits_{R} f(x,y)dxdy = \lim_{n \to \infty} \sum_{m \to \infty}^{k=m} \int\limits_{h=k=1}^{h=n} f(x_k,y_n) * misR_{kh}$$
(4.6)

Somme superiori e somme inferiori

Definizione 23. È possibile definire l'integrale doppio anche con le somme superiori e le somme inferiori

Somme inferiori
$$s(f,R) = \sum inf_{R_{kh}} f(x_k.y_n) * misR_{kh}$$

prendo il minimo valore che la funzione assume nel subrettangolo R_{kh} e lo moltiplico per l'area di tale subrettangolo. Sommando ottengo un parallelepipedo, il cui volume approssima per difetto individuato dalla funzione.

Somme superiori
$$s(f,R) = \sum sup_{R_{kh}} f(x_k.y_n) * misR_{kh}$$

prendo il massimo valore che la funzione assume nel subrettangolo R_{kh} e lo moltiplico per l'area di tale subrettangolo. Sommando ottengo un parallelepipedo, il cui volume approssima per eccesso quello individuato dalla funzione all'infittirsi della decomposizione le somme inferiori crescono, le somme superiori decrescono. Le somme superiori e le somme inferiori convergono ad uno stesso valore, detto integrale doppio¹

$$\lim s = \lim S = \iint_R f(x, y) dx dy$$

¹è il valore sotto al grafico della funzione

4.2.1 Proprietà dell'integrale doppio

Linearità
$$\begin{cases} 1) \iint_D [f_1(x,y) + f_2(x,y)] dx dy = \iint_D f_1(x,y) dx * dy + \iint_D f_2(x,y) dx * dy \\ 2) \iint_D \alpha f_1(x,y) dx dy = \alpha \iint_D f_2(x,y) dx * dy \end{cases}$$
 Assitività 3) Sia $D = D_1 \cup D_2 \iint_D f(x,y) dx dy = \iint_{D_1} f(x,y) dx * dy + \iint_{D_2} f(x,y) dx * dy \end{cases}$ Monotonia
$$\begin{cases} 4) \text{ Sia } f(x,y) \leq g(x,y) \ \forall (x,y) \in D \\ \iint_D f(x,y) dx dy \leq \iint_D g(x,y) dx * dy \\ 5) \text{ Sia } D_1 \subset D \\ \iint_{D_1} f(x,y) dx dy < \iint_D f(x,y) dx * dy \\ 6) |\iint_D f(x,y) dx dy| \leq \iint_D |f(x,y)| dx * dy \end{cases}$$

4.2.2 Formula di riduzione

• Sia $A \subset \mathbb{R}^2$ un dominio normale rispetto all'asse x

$$A = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases}$$

Allora $\iint_A f(x,y) dx dy = \int_a^b dx \left(\int_{g_1(x)}^{g_2(x)} f(x,y) dy \right)$ calcolo prima $\int_{g_1(x)}^{g_2(x)} f(x,y) dy$ che è una funzione della sola $x \not o(x)$

per calcolo
$$\int_a^b \phi(x)dx$$

• Dominio polarmente normale Effettua un cambio di coordinate, passando dalle coordinate cartesiane a quelle polari

L'integrale doppio è
$$\iint_{\mathcal{D}} f(x,y) dx dy$$

Passando alle coordinate polari

del dominio
$$D(x,y)$$
 passerò al dominio $D'(\varphi,\theta)$
$$\begin{cases} x = \varphi \cos \theta \\ y = \varphi \sin \theta \end{cases} \quad \varphi = \sqrt{x^2 + y^2}$$
 della funzione $f(x,y)$ passerò al dominio $f(\varphi,\theta)$

e da differenziali dxdy passerò ai differenziali $d\varphi d\theta$.

Si dimostra che nel passaggio ad altre coordinate il differenziale è $|j|d\varphi d\theta$, dove |j| è il determinante della matrice Jacobiana che contiene le derivate parziale prime

$$|J| = \begin{vmatrix} x_{\varphi} & x_{\theta} \\ y_{\varphi} & y_{\theta} \end{vmatrix} \to |J| = \begin{vmatrix} \cos \theta & -\varphi \sin \theta \\ \sin \theta & \varphi \cos \theta \end{vmatrix} = \varphi \cos^{2} \theta + \varphi \sin^{2} \theta = \varphi$$
 (4.7)

Per cui passando da dxdy alle coordinate polari avrò $\varphi d\varphi d\theta$ così l'integrale doppio diventa:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(\varphi,\theta)\varphi d\varphi d\theta$$

Esempi di domini polarmente normali

Figura 4.2: Esempi di domini polarmente normali

4.2.3 Baricentro di un dominio normale

Definizione 24. Sia D un demonio normale del piano. Si definisce baricentro del dominio D il punto di coordinate (x_0, y_0) tale che:

$$x_0 = \frac{1}{misD} \iint_D x dx dy$$
 $y_0 = \frac{1}{misD} \iint_D y dx dy$

misD: misura (area) del dominio D.

Esempio 12. calcolare il baricertro del dominio $D = \begin{cases} 0 \le x \le 2 \\ 0 \le y \le 1 \end{cases}$

$$misD = A_{rettangolo} = 2 * 1 = 2$$

Figura 4.3: Baricentro di un dominio normale

$$x_0 = \frac{1}{misD} \iint_D x dx dy = \frac{1}{2} \int_0^2 dx \int_0^1 x dy = \frac{1}{2} \int_0^2 dx |xy|_0^1 = \frac{1}{2} \int_0^2 x dx = \frac{1}{2} |\frac{x^2}{2}|_0^2 = \frac{1}{2} \not 2 = 1$$

$$y_0 = \frac{1}{misD} \iint_D y dx dy = \frac{1}{2} \int_0^2 dx \int_0^1 y dy = \frac{1}{2} \int_0^2 dx \left|\frac{y^2}{2}\right|_0^1 = \frac{1}{2} \int_0^2 \frac{1}{2} dx = \frac{1}{4} |x| = \frac{1}{2}$$

4.2.4 Domini normali in R^3

Definizione 25. Il dominio V definisce normale rispetto al piano xy se si può così descrivere:

$$\begin{cases} (x,y) \in D & normale \\ \alpha(x,y) & \leq z \leq \beta(x,y) \end{cases} \qquad (x,y) & appartengono \ ad \ un \ dominio \ normale \ di \ R^2 \\ z \ \dot{e} & compresa \ tra \ funzioni \ di \ x \ e \ y \end{cases}$$

 $\forall (x,y) \in D$ incontro prma la superficie minorante e per la superficie maggiorante.

4.3 Integrali tripli

Definizione 26. Sia f(x,y,z) una funzione limitata in un insieme V, considero il parallelepipedo

$$V = [a, b] * [c, d] * [e, f]$$

Decompose regolarmente $[a, b], [c, d], [e, f]$

rispettivametne in n, mek

intervalli $I_n = [x_0 = a, \dots, x_n = b],$
 $l_m = [y_0 = c, \dots, y_m = d], \ l_k = [z_0 = e, \dots, z_k = f]$

Il prodotto cartesiano $I_n*I_n*I_k$ individua il generico subparallelepipedo $V_{n,m,k}$.

Definisco le somme di Riemann: $\sum f(x, y, z) * misV_{n,m,k}^2$

All'infittirsi delle decomposizioni le somme di Riemann convergono ad uno stezzo valore, tale valore è definito integrale triplo di f(x, y, z) in V

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{k \to \infty} f(x, y, z) misV_{n,m,k} = \iiint_{V} f(x, y, z) dx dy dz$$

Oppure, definisco le somme inferiore e le somme superiori

Somme inferiori
$$\sum misV_{n,m,k} * \min_{V_{n,m,k}} f(x,y,z)$$

Somme superiori $\sum misV_{n,m,k} * \max_{V_{n,m,k}} f(x,y,z)$

All'infittirsi della decomposizione le somme inferiori crescono mentre le somme superiori decrescono. Se convergono ad una stesso valore, tale valore è definito integrale triplo di f(x, y, z) in V

$$\lim s(f, V) = \lim S(f, V) = \iint\limits_V f(x, y, z) dx dy dz$$

4.3.1 Formule di riduzione per gli integrali tripli

Sia g(x, y) integrabile in un dominio normale V

Se il dominio D è normale rispetto all'asse x

$$V = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \\ \alpha(x,y) \le z \le \beta(x,y) \end{cases} \iiint_V f(x,y,z) dx dy dz = \int_{\theta}^{\theta} dx \int_{f_1(x)}^{f_2(x)} dy \int_{\alpha(x,y)}^{\beta(x,y)} f(x,y,z) dz$$

Se il dominio D è normale rispetto all'asse y

$$V = \begin{cases} c \le y \le d \\ h_1(y) \le x \le h_2(y) \\ \alpha(x,y) \le z \le \beta(x,y) \end{cases} \iiint_V f(x,y,z) dx dy dz = \int_c^d dy \int_{h_1(y)}^{h_2(y)} \int_{a(x,y)}^{\beta(x,y)} f(x,y,z) dz$$

Se il dominio D è polarmente normale

$$V = \begin{cases} \theta_1 \leq \theta \leq \theta_2 \\ \varphi_1(\theta) \leq \varphi \leq \varphi_2(\theta) \\ \alpha(\varphi, \theta) \leq z \leq \beta(\varphi, \theta) \end{cases} \iiint_V f(x, y, z) dx dy dz = \int_{\theta_1}^{\theta_2} d\theta \int_{\varphi_1(\theta)}^{\varphi_2(\theta)} \varphi d\varphi \int_{\alpha(\varphi, \theta)}^{\beta(\varphi, \theta)} f(\varphi, \theta, z) dz \\ \alpha(x, y) \rightarrow \alpha(\varphi, \theta) \\ \beta(x, y) \rightarrow \beta(\varphi, \theta) \\ f(x, y, z) \rightarrow f(\varphi, \theta, z) \\ dx dy dz \rightarrow p d\theta d\varphi dz \end{cases}$$

 $^{^{2}}misV_{n,m,k}$: misura il volume del parallelepipedo

4.3.2 Significato geometrico degli integrali

4.3.3 Coordinate polari e coordinate cilindriche

$$(x,y) \to (\varphi,\theta)$$

$$\begin{cases} x = \varphi \cos \theta \\ y = \varphi \sin \theta \end{cases} \qquad \varphi = \sqrt{x^2 + y^2} \quad det J = \varphi$$

coordinate alindriche $(x, y, z) \rightarrow (\varphi, \theta, z)$

$$\begin{cases} x = \varphi \cos \theta \\ y = \varphi \sin \theta \end{cases} \qquad \varphi = \sqrt{x^2 + y^2 + z^2} \quad det J = \varphi \\ z = z \end{cases}$$

coordinate sferiche

$$\begin{cases} x = \varphi \sin \theta \cos \alpha \\ y = \varphi \sin \theta \sin \alpha \\ z = \varphi \cos \theta \end{cases}$$

4.3.4 Interazione per fette

Considera un volume V e lo interseco con un piano z = k. Così ottengo una sezione S_z

$$z = 1 - x^2 - y^2$$

Al variare di z tra due valori, cioè facendo variare S_z in funzione di z descrivo il volume V.

Esempio 13.

$$\int_0^1 S_z dz$$

 S_z è un cerchio di raggio R(z) che depende da z

$$z = 1 - x^2 + y^2$$
 $x^2 + y^2 = 1 - z$
 $R^2 = 1 - z$ $R(z) = \sqrt{1 - z}$

$$S_z = \pi R^2 = \pi (1 - z)$$

$$\iint\limits_{\mathcal{T}} f(x, y, z) dx dy dz = \int_{0}^{1} \pi (1 - z) dz$$

4.3.5 Integrali curvilinei

Curve in R^2 e in R^3

Definizione 27. Si definisce curva una coppia del tipo (γ, Γ) con

$$\vec{F}(t) = (x(t), y(t), z(t), \dots) \ t \in [a, b]$$

si tratta di un'applicazione $R \to R^n$ ad un valore di t associo n valori Le curve possono essere:

- In forma cartesiana z = f(x,y) (R^3) $\begin{cases} x = t \\ y = f(x) \end{cases}$ (R^2)
- In forma polare $\varphi = \varphi(\theta)$ $\varphi = 2r\cos\theta$ $0 \le \theta \le 2\pi$
- In forma parametrica $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$

Nello spazio una curva è l'intersezione tra due superfici.

Ogni curva ha anche un <mark>sostegno</mark>, che è il suo grafico nek piano o nello spazio.

Una curva si definisce <mark>chiusa</mark> se

$$\vec{F}(t) = \begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in [a, b] \text{ se } \vec{F}(a) = \vec{F}(b) \quad x(a) = x(b) \\ y(a) = y(b) \end{cases}$$

Figura 4.4: Differenza tra curva chiusa e aperta

Una curva chiusa la frontiera di un dominio

Una curva si devinisce semplice se presi due qualunque $t_1 \neq t_2$ rusylta $\vec{F}(t_1) \neq \vec{F}(t_2)$ cioè

$$\begin{cases} x(t_1) \neq x(t_2) \\ y(t_1) \neq y(t_2) \\ z(t_1) \neq z(t_2) \end{cases}$$

Curva semplice
$$\gamma \begin{cases} x = t \\ y = \sqrt{t} \end{cases}$$
 $y = \sqrt{x} \ \gamma \begin{cases} x = t \\ y = t^2 \end{cases}$ $y = x^2 \text{ Curva non semplice}^3$

Una curva è regolare se è di classe c^1 e le sue derivate prime non sono mai nulle contemporaneamente

$$\vec{F}(t) = \begin{cases} x = x(t) & \vec{F}(t) \in c' \\ y = y(t) & t \in [a, b] \end{cases} r'(t) = (x', y', z'(t) \dots) \neq (0, 0, 0 \dots)$$

Curva regolare

$$\gamma z(t) = \begin{cases} x = t^3 - t \\ y = t^2 - 1 \end{cases} \qquad f \in [-1, 1] \quad z'(t) = \begin{cases} x'(t) = 3t^2 - 1 \\ y'(t) = 2t \end{cases} \qquad \begin{array}{l} \text{non sono mai nulle} \\ \text{contemporaneamente} \end{cases}$$

$$r(t) = \begin{cases} x = t(1 - t^2)^2 \\ y = t^2(1 - t^2) \end{cases} \quad t \in [-1, 1]$$

Una curva è regolare a tratti se è l'unione di curve regolari

$$\gamma r(t) = \begin{cases} x = t^3 \\ y = t^2 \end{cases} \quad t \in [-1, 1] \text{ in } x = 0 \text{ c'è una cuspide perciò non è regolare } y = \sqrt[3]{x^2}$$

r(t) può però essere vista come l'unione di che curve regolari

$$\gamma' r(t) = \begin{cases} x = t^3 \\ y = t^2 \end{cases} \quad t \in [-1, 0]$$

$$\gamma''r'' = \begin{cases} x = t^3 \\ y = t^2 \end{cases} \quad t \in [0, 1]$$

sostegno nel II quadrante

$$\gamma = \gamma' \vee \gamma''$$

4.3.6 Lunghezza di una curva

Definizione 28. Sia la curva γ di equazione $\vec{F}(t)$, essa si definisce rettificabile se esiste finito l'estremo superiore della poligonale L(p) al variare della decomposizione.

$$sup_D L(\Delta)$$
 (4.9)

 $^{^3}t_1 \neq t_2$ ho due stessi valori della curva

Suddivido la curva in tanti segmenti che formano la poligonale L(D). All'infittirsi la poligonale approssimo sempre seguo la lunghezza della curva.

Se la curva $\vec{F}(t)$ è di classe c^1 allora essa è rettificabile

$$\vec{F}(t) = \begin{cases} x = x(t) \\ y = y(t) & t \in [a, b] \\ z = z(t) \end{cases}$$
 (4.10)

e la sua lunghezza vale $L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z(t)]^2 + \dots dt}$

4.3.7 Lunghezza di una curva in forma cartesiana

Se la curva γ nella forma $\begin{cases} x=t & t \in [a,b] \text{ ha come sostegno il grafico di } y=f(x) \\ y=f(t) & \text{La lunghezza della curva è } L_{\gamma}=\int_{a}^{b}\sqrt{1+[f'(x)]^{2}}dx \end{cases}$

4.3.8 Lunghezza di una curva polare

Se le curve è nella forma

$$\begin{cases} e = e(\theta) \\ \theta_1 \le \theta \le \theta_2 \end{cases}$$

La sua lunghezza vale:

$$L_{\gamma} = \int_{\theta_1}^{\theta_2} \sqrt{\varphi^2(\theta) + [\varphi'(\theta)]^2} d\theta$$

4.4 Ascissa Curvilinea

È possibile effettuare combiamenti di parametri per descrivere una curva. Fra tutte le rappresentazioni parametriche di una curva regolare ha particolare **importanza** geometrica quella che l'ascissa curvilinea. Prendiamo una curva γ di R^2 e un suo punto P_0

Ad ogni punto P della curva associamo un valore S(P) che è uguale alla lunguezza dell'arco di curva congiungente P_0 e P

Così definendo una corrispondenza biurivoca tra i punti della curva e i punti di un certo intervallo [a,b], cosiché se $S(p_1)=a$ $S(P_2)=b$ la lunqhezza dell'arco congiungente P_1 con P_2 è |b-a|

Sia $(\gamma, \vec{r}(t))$ una curva regolare; definiamo <u>l'ascissa curvilinea</u>⁴ come:

$$S(t) = \int_{a}^{t} \sqrt{[x'(\tau)] + [y'(\tau)]} d\tau$$

Per il teorema del calcolo integrale

$$S'(t) = \sqrt{[x'(t)]^2 + [y'(t)]^2} \quad S(t) \text{ è integrabile}$$

$$S'(t) = \frac{ds}{dt} \qquad \qquad S: [a,b] \to [0,L]$$

⁴o lunghezza d'arco

La lunghezza della curva così vale:

$$L = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} = \int dS$$
 (4.11)

4.5 Integrale corvilineo

Prendiamo una funzione f(x,y) definita in un insieme D e una curva γ interno a D.

Calcoliamo la funzione nella curva γ e detterminiamo una curva Γ dello spazio.

L'area delimitata dal cilindro di basi γ e Γ se f(x,y)>0 è il valore dell'integrale curvilineo di f(x,y) esteso a γ .

4.5.1 Definizione di integrale curvilineo

Data una curva regolare $(\gamma, \vec{r}(t))$

$$\begin{cases} x = x(t) \\ y = y(t) & t \in [a, b] \\ z = z(t) \end{cases}$$

$$(4.12)$$

e una funzione $f(x, y, z) \in \mathbb{C}$ – definita in D_1 con la curva inclusa D, si definisce integrale curvilineo di f(x, y, z) esteso alla curva

$$\int_{\gamma} f(x, y, z) ds = \int_{a}^{b} f[x(t), y(t), z(t)] * \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$

4.5.2 Baricentro di una curva

Si definisce baricentro di una curva quel punto di coordinate (x_0, y_0) per cui

$$x_0=\frac{1}{L_\gamma}\int_\gamma xds\quad y_0=\frac{1}{L_\gamma}\int_\gamma yds\quad \text{con }L_\gamma$$
lunghezza della curva γ

Esempio 14.

$$\gamma = \begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad t \in \left[0, \frac{\pi}{2}\right]$$

$$L_{\gamma} = \int_{\gamma} ds = \int_{0}^{\frac{\pi}{2}} \sqrt{(-3\cos^{2}t\sin t)^{2} + (3\sin^{2} + \cos t)^{2}} dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{9\cos^{4}t\sin^{2}t + 9\sin^{4}t\cos^{2}t} dt = \int_{0}^{\frac{\pi}{2}} \sqrt{9\cos^{2}t\sin^{2}t} dt = \int_{0}^{\frac{\pi}{2}} 3\cos t \sin t dt$$

$$= \left| \frac{3\sin^{2}t}{2} \right|_{0}^{\frac{\pi}{2}} = \frac{3}{2}$$

$$x_0 = \frac{1}{L_{\gamma}} \int_{\gamma} x ds = \frac{2}{3} 3 \cos^4 t \sin t dt = -\frac{2}{4} \int_0^{\frac{\pi}{2}} -4 \sin t * \cos^4 t dt$$

$$y_0 = \frac{1}{L_{\gamma}} \int_{\gamma} y ds = \frac{2}{3} \int_0^{\frac{\pi}{2}} 3 \sin^2 t + \cos t dt = \frac{2}{4} \int_0^{\frac{\pi}{2}} 4 \sin^4 t \cos t dt = \frac{1}{10} \left| \sin^5 t \right|_0^{\frac{\pi}{2}} = \frac{1}{10}$$

4.5.3 Superfici e integrali di superficie

Superfici

Definizione 29. Sia definizsce superfice in R^3 una coppia (Σ, r) dove Σ è il sostegno $(grafico) \in R^3$ ed r è la parametrizzazione $d\Sigma, r \in \mathbb{C}^0_{\dot{a}}$.

 \dot{A} insieme aperto connesso di R^2 per cali $r(A) = \Sigma$, r calcolata nei punti di A e da la superficie. r è un'applicazione vettoriale $r(u,v) = (x(u,v),y(u,v),z(u,v)) = x(x,v)\vec{L} + y(u,v)\vec{J} + z(u,v)\vec{k}$ $(u,v) \in A$ $R^2 \to R^3$ ad ogni punto di A del piano, associo un punto di Σ nello spazio.

Una superficie si dice semplice $\vec{r}(u,v)$ è 1-1, cioè se x(u,v),y(u,v),z(u,v) sono 1-1 (cioè biurivoche, invertite) – Una superficie si dice regolare a tratti se è firmata dall'unione di un numero finito di superfici di classe C^1 regolari.

Una superficie è di classe
$$C_A^k$$
 se $\vec{r}(u,v) \in C_A^k$ cioè
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \\ z = z(u,v) \end{cases}$$

Una superficie si dice vegolare se $\vec{r}(u,v) \in C'$ e la matrice delle derivate parziali prime ha rango 2 Una superficie si dice chiusa se è limitata e il suo bordo è l'insieme ruoto (non ha bordo).

Teorema 7. Le superfici cartesiane di classe c^1 sono regolari:

Esempio 15.

Superficie sferica:
$$z = \pm \sqrt{R^2 + x^2 - y^2}$$
 $x^2 + y^2 + z^2 = R^2$ definita su $D: \{x^2 + y^2 \le R^2\}$
Superficie corta: $z = k\sqrt{x^2 + y^2}$

4.5.4 Piano tangente e versore normale

Prendiamo un dominio $A < R^2$ e un suo punto $P(u_0, v_0)$. Prendo due linee in A passanti per P, sulla superficie Σ ho due curve.

Sia $\vec{r}(u,v)$ l'equazione della superficie Σ e siano $\vec{r}(u_0,v)$ e $\vec{r}(u,v_0)$ le surve che si chiamano linee coordinate superficie⁵, i vettori tangenti alle linee coordinate sono

$$\vec{r}_u = (x_u, y_u, z_u)$$
$$\vec{r}_v = (x_v, y_v, z_v)$$

Se il prodotto vettoriale non è nullo, i vettori sono linearmente ma pendenti, quindi il rango di quella matrice è 2. Allora possiamo dire una superficie σ è regolare se e solo se $\vec{r}_u \wedge \vec{r}_v \neq 0$, cioè esiste il piano tangente. $\vec{r}_u \wedge \vec{r}_v$ e un vettore ortogonale al piano contenente \vec{r}_u e \vec{r}_v che è il piano tangente alla superficie.

La sua equazione è:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix} = 0 \text{ in } P(x_0, y_0, z_0)$$

Per avere il versore normale si divide il prodotto vettoriale per la sua lunghezza.

$$\vec{n} = \frac{\vec{r}_u \wedge \vec{r}_v}{||\vec{r}_u \wedge \vec{r}_v||}$$

In forma cartesiana

$$\vec{r}(u,v) = \begin{cases} x = u \\ y = v \\ z = f(u,v) = f(x,y) \end{cases} \qquad r_u = r_x = \begin{cases} 1 \\ 0 \\ f_x \end{cases} \qquad r_v = r_y = \begin{cases} 0 \\ 1 \\ f_y \end{cases}$$

⁵(u,v) si chiamano coordinate local

Il prodotto vettoriale

$$ec{r}_x \wedge ec{r}_y = egin{bmatrix} ec{i} & ec{v} & ec{k} \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = -f_x ec{i} - f_y ec{j} + k = (-f_x; -f_y; 1)$$

il versore normale

$$\vec{n} = \frac{\vec{r}_x \wedge \vec{r}_y}{||r_x \wedge r_y||}$$

4.5.5 Orientazione di una superficie

Sia Σ una superficie regolare ($\vec{r} \in e', P(M) = 2$), si scegla il versore normale in modo che vanando con continuità lungo una curva chiusa γ inclusa in Σ_1 possa ritornare alla posizione inziale in conseguenza della scelta del versore normale. Una superficie cartesiana è orientabile.

Orientamenti possibili sono: versore normale \vec{n} rivolto verso l'alto o il verso basso.

Area di una superficie

Sia Σ una superficie regolare. Si definisce area della superficie Σ il numero reale non negativo definito da

$$S = \iint\limits_{\Sigma} do = \iint\limits_{A} ||\vec{r_u} \wedge \vec{r_v} du dv = \iint\limits_{A} \sqrt{A^2 + B^2 + C^2} du dv$$

A, B, C componenti del prodotto vettoriale, d_o elemento infinitesimo di area.

Se la superficie Σ è in forma cartesiana $z = f(x, y) \ (x, y) \in D$

L'area di Σ è

$$S = \iint\limits_{D} \sqrt{1 + f_x^2 + f_y^2} dx dy$$

Se la superficie Σ è data in forma implicità F(x,y)=0

Con $F_z = 0$ per il teorema del Din è localmente esplicitabile in z = f(x, y)

L'area di σ è:

$$S = \iint\limits_{D} \sqrt{1 + \left(\frac{F_x}{F_z}\right)^2 + \left(\frac{F_y}{F_z}\right)^2} dxdy$$

4.5.6 Integrale Superficiale

Sia h(x, y, z) una funzione definita e continua in un insieme $V \subset \mathbb{R}^3$ e sia Σ una superficie inclusa in V che si prosetta in un dominio piano D. Si definisce integrale superficiale della funzione h(x, y, z) esteso alla superficie Σ :

$$\iint\limits_{\Sigma} h(x,y,z) do = \iint\limits_{A} h(x(u,v),y(u,v),z(u,v)) || \vec{r}_u \wedge \vec{r_v} || du dv$$

Se la superficie Σ è in forma cartesiana

$$\iint\limits_{\Sigma} h(x,y,z)do = \iint\limits_{A} h(x,y,z(u,v)) \sqrt{1 + fx^2 + f_y^2} dxdy$$

4.6 Trasformazione integrali

4.6.1 Formule di Green-Gauss

Prima formula - teorema

Definizione 30. Sia f(x,y) continua in un insieme D, sia $\frac{\partial f}{\partial x}$ (derivata parziale rispetto a x) continua in D, sia D normale rispetto all'asse y e sia la sua frontiera F_0 una curva regolare a tratti Allora vale la seguente relazione

$$\iint\limits_{D} \frac{\partial f}{\partial x} dx dy = \int_{FD} f(x, y) dy$$

FD: frontiera percorsa nel verso positivo

Ipotesi:

Tesi

$$\iint\limits_{D} \frac{\partial f}{\partial x} dx dy = \int_{+FD} f(x, y) dy$$

$$f(x,y) \in C_D^o$$
$$\frac{\partial f}{\partial x} \in C_D^o$$

D normale rispetto all'asse y D: $\begin{cases} c \le y \le d \\ \alpha(y) \le x \le \beta(y) \end{cases}$

 F_D regolare a tratti

Dimostrazione. Poiché $f(x,y) \in C_D^o$ e $\frac{\partial f}{\partial x} \in C_D^o$, esse sono integrabili in D II dominio D_1 che è normale ripsetto all'asse y, può essere descritto come

$$D: \begin{cases} c \leq y \leq d & \text{e la sua frontiera è} \\ \alpha(y) \leq x \leq \beta(y) & FD = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \end{cases}$$

Sviluppiamo I e II membro della tesi

I membro

$$\iint\limits_{D} \frac{\partial f}{\partial x} dx dy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial x} dx = \int_{c}^{d} f[\beta(y), y] - f[\alpha(y), y] dy$$

N.B.
$$\int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial x} dx = |f(x,y)|_{x=\alpha(y)}^{x=\beta(y)} = f(\beta(y),y) - f(\alpha(y),y)$$

II membro $F_D: \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$

$$\int_{+FD} f(x,y)dy = \int_{\gamma_1} f(x,y)dy + \int_{\gamma_2} f(x,y)dy + \int_{\gamma_3} f(x,y)dy + \int_{\gamma_4} f(x,y)dy$$
(4.13)

$$\gamma_1 : y = c \quad dy = 0
\gamma_2 = \begin{cases} x = \beta(y) \\ y \in [c, d] \end{cases} \qquad \gamma_3 : y = d \quad dy = 0
\gamma_4 = \begin{cases} x = \alpha(y) \\ y \in [d, c] \end{cases}$$

$$\begin{split} \int_{+FD} f(x,y) dy &= \int_{\gamma_2} f(x,y) dy + \int_{\gamma_4} f(x,y) dy \\ \int_{\gamma_2} f(x,y) dy &= \int_c f[\beta,y] dy \quad \int_{\gamma_4} f(x,y) dy = \int_d^c f[\alpha(y),y] dy = -\int_c^d f[\alpha(y),y] dy \\ \int_{+FD} f(x,y) dy &= \int_c^d f[\alpha(y),y] dy - \int_c^d f[\alpha(y),y] dy = \int_c^d f[\alpha(y),y] - f[\alpha(y),y] dy \end{split}$$

Si è così dimostrata la tesi

Per cui con questa formula di Green-Gauss un integrale doppio – sotto opportune ipotesi – si può trasformare in un integrale curvilineo esteso alla frontiera del dominio di integrazione

$$\iint\limits_{D} \frac{\partial f}{\partial x} dx dy = \int_{+F_{D}} f(x, y) dy$$

Esempio 16. Calcolare $\iint_D \frac{dxdy}{\sqrt{1-x^2}}$ con $D = \begin{cases} xy \leq \frac{1}{4} \\ x \geq 4 \\ 0 \leq x \leq \frac{\sqrt{3}}{2} \end{cases}$

$$f(x,y) = \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x \quad \to \iint_D \frac{dxdy}{\sqrt{1-x^2}} = \int_{+F_D} \arcsin x dy \quad F_D = F_D = \gamma_1 \cup \gamma_2 \cup \gamma_3$$

Figura 4.5: Esempio della prima formula di Green-Gauss

$$\gamma_1: x = \frac{\sqrt{3}}{2} \quad y \in \begin{bmatrix} \frac{\sqrt{3}}{6}, \frac{1}{2} \end{bmatrix} \qquad \int_{\gamma_1} \arcsin x dy = 0 \qquad poich\'e \ dy = 0 (y = \cos t)$$

$$\gamma_2: y = x \quad x \in \begin{bmatrix} \frac{1}{2}, \frac{\sqrt{3}}{2} \end{bmatrix} \quad da \ percorrere \ "al \ contrario" \qquad dy = d(x) = 1 dx$$

$$\begin{split} -\int_{\gamma_2} \arcsin x dy &= -\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \arcsin x dx = -\left| x \arcsin x - \int \frac{x}{\sqrt{1-x^2}} dx \right|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} = -\left| x \arcsin x - \int \sqrt{1-x^2} dx \right|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\ &= -\left[\frac{\sqrt{3}}{2} \arcsin \frac{\sqrt{3}}{2} - \sqrt{1-\frac{3}{4}} - \frac{1}{2} \arcsin \frac{1}{2} - \sqrt{1-\frac{1}{4}} \right] = -\left[\frac{\sqrt{3}}{2} \frac{\pi}{6} + \frac{1}{2} - \frac{1}{2} \frac{\pi}{3} - \frac{\sqrt{3}}{2} \right] \\ \gamma_3 : \quad y &= \frac{1}{4x} \quad x \in \left[\frac{1}{2}, \frac{\sqrt{3}}{2} \right] \quad dy = -\frac{1}{4x} \quad \int_{\gamma_3} \arcsin x dy = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \arcsin x \left(\frac{1}{4x} dx \right) \end{split}$$

$$\int_{\gamma_3} \arcsin x dy = -\int_{\frac{\sqrt{3}}{6}}^{\frac{1}{2}} = y \arcsin \frac{1}{4y} dy = y \arcsin \frac{1}{4y} - \int y * \frac{1}{\sqrt{1 - \frac{1}{16}} y^2} \left(-frac 14 y^2 \right) dy$$
$$= y \arcsin \left(\frac{1}{4y} \right) - \int -\frac{1}{4y} \frac{1}{\sqrt{\frac{16y^2 - 1}{16y^2}}} dy$$

Si risolve con la sostituzione $\int \frac{1}{\sqrt{x^2-a^2}} dx$

$$x = \sqrt{x^2 - a^2} = a \tan t$$
$$\sqrt{y^2 - \frac{1}{16}} = \frac{1}{4} \tan t$$

Seconda formula di Green-Gauss

Teorema 8. Sia f(x,y) continua in un insieme D, sia $\frac{\partial f}{\partial y}$ continua in D, sia D un dominio normale rispetto all'asse x e sia la sua frontiera F_D una curva regolarea tratti. Allora vale la seguente relazione

$$\iint\limits_{D} \frac{\partial f}{\partial y} dx dy = -\int_{+FD} f(x, y) dx \tag{4.14}$$

Ipotesi

 F_D regolare a tratti

$$f(x,y) \in C_D^o$$

$$\frac{\partial f}{\partial y} \in C_D^0$$

Tesi

$$\iint\limits_{D} \frac{\partial f}{\partial y} dx dy = - \int_{+FD} f(x, y) dx$$

D normale rispetto all'asse x

$$D: \begin{cases} a \le x \le b \\ g(x) \le y \le h(x) \end{cases}$$

Dimostrazione. Purché $f(x,y) \in C_D^o$ e $\frac{\partial f}{\partial y} \in C_D^o$, esse sono integrali in D. Il dominio D_1 che è normale rospetto all'esse x può essere descritto come

$$D = \begin{cases} a \le x \le b & \text{e la sua frontiera è} \\ g(x) \le y \le h(x) & F_D = \gamma_1 \land \gamma_2 \land \gamma_3 \land \gamma_4 \end{cases}$$

Svuluppiamo I e II membro della tesi $\int_{h(x)}^{g(x)} \frac{\partial f}{\partial y} dy = |f(x,y)|_{y=g(x)}^{y=h(x)} = f[x,h(x)] - f[x,g(x)]$

I membro

$$\iint\limits_{D}\frac{\partial f}{\partial y}dxdy=\int_{a}^{b}dx\int_{g(x)}^{h(x)}\frac{\partial f}{\partial y}dy=f[x,h(x)]-f[x,g(x)]dx$$

II membro

$$\int_{D} f(x,y)dx = \int_{\gamma_1} f(x,y)dx + \int_{\gamma_2} f(x,y)dx + \int_{\gamma_3} f(x,y)dx + \int_{\gamma_4} f(x,y)dx$$

$$\gamma_2: \quad x=b \quad y \in [g(b),h(b)]dx=0$$

$$\gamma_4: \quad x=a \quad y \in [g(a), b(a)]dx=0$$

$$\begin{array}{ll} \gamma_1: & y=g(x) & x\in[a,b] & \int_{\gamma_1}f(x,y)dx=\int_a^bf[x,g(x)]dx \\ \gamma_3: & y=h(x) & x\in[b,a] & \int_{\gamma_3}f(x,y)dx=-\int_a^bf[x,h(x)]dx \end{array}$$

per cui

$$\int_{+FD} f(x,y) dx = \int_{a}^{b} f[x,g(x)] dx - \int_{a}^{b} f[x,h(x)] dx = \int_{a}^{b} f[x,g(x)] - f[x,h(x)] dx$$

combiando di segno si dimostra la tesi

con questa formula di Green-Gaun un integrale doppio – sotto opportune ipotesi – si può trasformare in un integrale curvilineo hteso alla frontiera del dominio di integrazione.

$$\iint \frac{\partial f}{\partial y} dx dy = -\int_{FD} f(x, y) dx$$

4.6.2 Teorema della divergenza

Definizione 31. Sia $\vec{F} \equiv (f(x,y), g(x,y)) \in C'_D$ funzione vetoriale, si definisce divergenza di \vec{F}

$$div\vec{F} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \qquad \begin{array}{c} derivata \ rispetto \ \partial x \ della \ prima \ componente \ più \ derivata \\ rispetto \ a \ \partial y \ della \ seconda \ componente \end{array}$$

Teorema della divergenza

Teorema 9. Sia $\vec{F} \equiv (f(x,y), g(x,y)) \in C'_0$ e sia D un dominio normale⁶, con la sua frontiera F_D regolare a tratti, vale la sequente relazione:

$$\iint_D div \vec{F} dx dy = \int_{\perp FD} \vec{F} * \vec{n} ds \quad con \, \vec{n} \, versore \, normale \, a \, F_D$$

Ipotesi:

Tesi:

$$\vec{F} \equiv (f(x,y),g(x,y)) \in C_0'$$

$$\iint\limits_{D} div \vec{F} dx dy = \int_{+FD} \vec{F} * \vec{n} ds$$

D normale rispetto ad entrambi gli assi F_D regolare a tratti.

Dimostrazione.

$$\iint div \vec{F} dx dy = \iint_D \left(\frac{\partial f}{\partial x}\right) dx dy \quad \text{per definizione divergenza}$$

Dalle ipotesi valgono le due formule di *Green-Gauss*

$$\iint \frac{\partial f}{\partial x} dx dy = \int_{+FD} f(x, y) dy : \iint_{D} \frac{\partial f}{\partial y} dx dy = -\int_{+FD} g(x, y) dx$$

Devo così dimostrare che $f(x,y)dx - g(x,y)dy = \vec{F} * \vec{n}ds$

Ricavo il versore normale \vec{n} : F_D regolare a tratti ed è quindi ed è quindi esprimibile come unione di curve regolari di espressione parametrica

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in [a, b] \quad \exists x'(t).y'(t) \text{ perch\'e la curva \`e regolare.}$$

⁶rispetto ad entrambi gli assi

Il vettore tangente $\vec{t} = (x'(t), y'(t))$, scambiando le componenti e cambiandone una di segno si ottine il vettore normale (y'(t), -x'(t)); dividendo per la norma $\sqrt{[x'(t)]^2 + [y'(t)]^2}$ si ha il versore normale \vec{n}

$$\vec{n} \equiv \left(\frac{y'(t)}{\sqrt{[x'(t)]^2 + [y'(t)]^2}} : \frac{x'(t)}{\sqrt{[x'(t)]^2 + [y'(t)]^2}}\right)$$

Svolgo ora il prodotto scalere $\vec{F} * \vec{n} ds$, ricordando che $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2}$

$$\vec{F} \equiv (f(x,y), g(x,y))$$

$$\vec{F} * \vec{n} ds = \left(\frac{f(x,y)y'(t)}{\sqrt{[x'(t)]^2 + [y'(t)]^2}} - \frac{g(x,y)x'(t)}{\sqrt{[x'(t)]^2 + [y'(t)]^2}}\right) \sqrt{[x'(t)]^2 + [y'(t)]^2}$$

$$x'(t) = dx$$

$$y'(t) = dy$$

$$\vec{F} * \vec{n} ds = f(x,y)dy - g(g,y)dx$$

Quindi

$$\iint\limits_{D} div \vec{F} dx dy = \int_{+FD} f(x, y) dy - g(x, y) dx \quad div \vec{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$$

Il teorema della divergenza (4.6.2) vale anche in \mathbb{R}^3 , in forma vettoriale

$$\iiint\limits_V div \vec{F} dx dy dz = \iint\limits_{+\Sigma} \vec{F} * \vec{n} ds \quad \vec{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$$

Esempio 17. calcolare utilizzando il teorema della divergenza $\iint_D div \vec{F} dx dy \ con \ \vec{F} \equiv (-2x^3y; \frac{1}{2}xy), D = \{x^2 + y^2 \leq 1\}$

$$div\vec{F} = -\frac{2x^{3}y}{\partial x} + \frac{-\frac{1}{2}xy}{\partial y} = -6x^{2}y - \frac{1}{2}x$$

$$\iint_{D} (-6x^{2}y - \frac{1}{2}x)dxdy = \int_{+FD} f(x,y)dy + g(x,y)dx = \int_{+FD} -2x^{2}ydy + \frac{1}{2}xydx$$

$$FD: x^{2} + y^{2} = 1 \quad \begin{cases} x = \cos t \\ y = \sin t \end{cases} \quad t \in [0, 2\pi] \quad dx = -\sin t dt$$

$$\int_0^{2\pi} -2\cos^3 t \sin t \cos t dt + \frac{1}{2}\cos t \sin t (-\sin t) dt = + \int_0^{2\pi} \left(-2\cos^4 t \sin t + \frac{1}{2}\sin^2 t \cos t \right)$$
$$= \left| -\frac{2}{5}\cos^5 t - \frac{7}{6}\sin^3 t \right|_0^{2\pi} = -\frac{2}{5} - 0 + \frac{2}{5} - 0 = 0$$

Applicazioni della formula di Green-Gauss

Rimandi teorici a partire da (4.6.1) – Calcolo dell'area di dominio piani

Ricordando le formule di Green-Gauss $\iint_D \frac{\partial f}{\partial x} dx dy = \int_{+FD} f(x,y) dy : \iint_D \frac{\partial f}{\partial y} dx dy = -\int_{+FD} f(x,y) dx$ nella formula dell'area $\frac{\partial f}{\partial x} = 1$ o $\frac{\partial f}{\partial y} = 1$ per cui f(x,y) = x o f(x,y) = ySi ha così $A = \iint_D dx dy = \int_{+FD} x dy = -\int_{+FD} y dx \rightarrow \int_{+FD} x dy - \int_{+FD} y dx = 2 \iint_D dx dy$ si ha:

$$A = \frac{1}{2} \int_{+FD} x dy - y dx$$

Esempio 18. Calcolare l'area del dominio delimitato dall'ellisse con semiassi a e b

$$F_D: egin{array}{ccc} x=a\cos t & & dx=a\sin t \\ y=b\sin t & & dy=b\cos t \end{array}$$

$$\iint dx dy = \frac{1}{2} \int_{+FD}^{2\pi} x dy - y dx = \frac{1}{2} \int_{0}^{2\pi} a \cos t (b \cos t) - b \sin t (-a \sin t) dt$$
$$= \frac{1}{2} \int_{0}^{2\pi} ab \cos^{2} t + ab \cos^{2} t + ab \sin^{2} t = \frac{1}{2} ab \int_{0}^{2\pi} dt = ab\pi$$

4.7 Forma differenziali Lineari

Si definisce differenziale lineare ω

$$\mathbb{R}^2 \Rightarrow \omega = f(x, y)dx + g(x, y)dy$$
$$\mathbb{R}^3 \Rightarrow \omega = F_1(x, y, z)dx + F_2(x, y, z)dy + F_3(x, y, z)dz$$

4.7.1 Integrazione delle forme differenziali

Definizione 32. Sia ω una forma differenziale continua in un insieme D^7 e sia γ una curva regolare a tratti contenuta in D, di equazioni parametriche $\gamma \equiv (x(t), y(t), z(t)), t \in [a, b]$. Si definisce integrale della forma differenziale esteso alla curva γ

$$\int_{\gamma} \omega ds = \int_{\gamma} F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz = \int_a^b F_1(x(t), y(t), z(t)) x'(t) + F_2(x(t), y(t), z(t)) y'(t) + F_3(x(t), y(t), z(t)) z'(t) dt$$

L'integrale rettilineo che va tra gli estremi su cui è preso t La funzione $F \equiv [F_1(x, y, z), F_2(x, y, z), F_3(x, y, z)]$ viene calcolata sui punti della curva γ^8

I differenziali sono
$$\begin{cases} dx = x'(t) \\ dy = y'(t) \\ dz = z'(t) \end{cases}$$

Le proprietà delle forme differenziali lineari derivano dalle proprietà degli integrali curvilinei

• Linearità:

$$\int_{\gamma} \omega_1 + \omega_2 ds = \int_{\gamma} \omega_1 ds + \int_{\gamma} \omega_2 ds$$
$$\alpha \int_{\gamma} \omega ds = \int_{\gamma} \alpha \omega ds$$

• Additività:

$$\gamma = \gamma_1 \wedge \gamma_2 \wedge \dots \wedge \gamma_n$$
 $\int_{\gamma} \omega ds = \int_{\gamma_1} \omega ds + \int_{\gamma_2} \omega ds + \dots + \int_{\gamma_n} \omega ds$

⁷ivi integrabile

⁸funzione composita

4.7.2 Forme differenziali esatte

Definizione 33. Sia ω una forma differenziabile, essa si dice esatta, se esiste una funzione $f(x, y, z)^9$ tale che il suo differenziale primo sia ω

$$\omega = F_1(x, y, z)dx + F_2(x, y, z)dy + F_3(x, y, z)dz$$
 è esatto se $\exists f(x, y, z) : df = \omega$

poiché $df = fx(x - x_0) + fy(y - y_0) + fz(z - z_0)$

se
$$\omega$$
 è esatta
$$\begin{cases} F_1(x, y, z) = \frac{\partial f}{\partial x} \\ F_2(x, y, z) = \frac{\partial f}{\partial y} \\ F_3(x, y, z) = \frac{\partial f}{\partial z} \end{cases}$$

4.7.3 Forma differeniali chiusa

In R^2 : consideriamo una forma differenziale ω in R^2 esatta

$$\omega = F_1(x, y)dx + F_2(x, y)dy$$

Per definizione di forma differenziale esatta

$$\exists f(x,y): df = \omega \quad \text{cioè } F_1(x,y) = \frac{\partial f}{\partial x} \quad F_2(x,y) = \frac{\partial f}{\partial y}$$

Con $f(x,y) \in C^2$ derivo F, rispetto a $y \in F_2$ rispetto ∂x – Così vale il teorema di Schwarz (2.2.1)

$$\frac{\partial}{\partial y}F_1(x,y) = \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = f_{xy} \quad \frac{\partial F_2}{\partial x} = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) = f_{yx}$$

$$f_{xy} = f_{yx} \to \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$$

Se è vera tale relazione, la forma differenziale si dice chiusa.

In R^3 : Definiamo primo il rotore di una funzione vettoriale di classe C'Sia $F \equiv (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$. Il rotore di F è il determinante:

$$rot\vec{F} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \partial x & \partial y & \partial z \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\vec{l} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)\vec{j} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_2}{\partial x}\right)\vec{k}$$

Consideriamo ora una forma differenziale lineare ω in \mathbb{R}^3

$$\omega = F_1(x, y, s)dx + F_2(x, y, z)dy + F_3(x, y, z)dz$$

$$\text{con } F \equiv (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$$

 ω è chiusa se rotF=0

$$rot\vec{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\vec{l} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)\vec{j} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_2}{\partial x}\right)\vec{k}$$

 $rot\vec{F}$ è un vettore, è nullo quando tutte le sue componenti sono nulle.

$$\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z} \quad ; \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} \quad ; \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_2}{\partial x}$$

Condizioni necessarie affinché una forma differenziale sia esatta

Se ω è esatta allora è chiusa

Condizione necessaria: Affinché ω sia esatta è che deve essere chiusa cioè se ω non è chiusa può essere esatta, invece, se ω non è chiusa sicuramente non è esatta

$$R^2 \frac{\partial F_1}{\partial x} = \frac{\partial F_2}{\partial y}$$

$$R^2 rot \vec{F} = 0$$

Dimostrazione. Per definizione
$$rotF = \begin{vmatrix} l & j & k \\ \alpha_x & \alpha_y & \alpha_z \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Se ω è esatta

esiste la funzione potenziale f(x,y,z) tale che $df = \omega$, per cui $F_1 = \frac{\partial f}{\partial x}; F_2 = \frac{\partial f}{\partial y}; F_3 = \frac{\partial f}{\partial z}$ da cui

$$rotF = \begin{vmatrix} l & j & k \\ \partial_x & \partial_y & \partial_z \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix} = (f_{zy} - f_{yz})\vec{l} - (f_{zx} - f_{xz})\vec{j} + (f_{yx} - f_{xy})\vec{k}$$

Se $f(x, y, z) \in \mathbb{C}^2$ vale il teorema di Schwarz (2.2.1), così tutte le componenti di rotF sono nulle rotF =

Proprietà delle forme differenziale lineari esatte

Teorema 1 - L'integrale curvilineo di una forma differenziale lineare esatta non dipende dalla curva (percorso) ma solo dagli estremi

Sia omega esatta in un insieme V e sia $\gamma \subset V$ un arco di curva regolare di estremi P_0 e P_1 allora $\int F_1(x,y,z)dx + F_2(x,y,z)dy + F_3(x,y,z)dz = f(P_1) - f(P_0)$

Ipotesi:

 ω esatta in V

atta in
$$V$$

$$\int_{\gamma} F_1 dx + F_2 dy + F_3 = f(P_1) - f(P_0)$$

$$\gamma = \begin{cases} x = x(t) & \text{if } x = x(t) \\ y = y(t) & \text{if } t \in [a, b] \\ z = z(t) & \text{if } x = x(t) \end{cases}$$

Dimostrazione. Per definizione di integrale curvilineo

$$\int_{\gamma} F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz = \int_a^b [F_1(x(t), y(t), z(t)) + F_2(x(t), y(t), z(t))] dt + F_3(x(t), y(t), z(t)) dt$$

per ipotesi ω è esatta, per cui esiste una funzione potenziale tale che $df = \omega$ da cui si ha:

$$\begin{split} F_1(x(t),y(t),z(t)) &= \frac{\partial f}{\partial x}(x(t),y(t),z(t)) \\ F_2(x(t),y(t),z(t)) &= \frac{\partial f}{\partial y}(x(t),y(t),z(t)) \\ F_3(x(t),y(t),z(t)) &= \frac{\partial f}{\partial z}(x(t),y(t),z(t)) \end{split}$$

L'integrale diventa $\int_a^b [F_1(x(t), y(t), z(t)) + F_2(x(t), y(t), z(t)) + F_3(x(t), y(t), z(t))] dt$

Per il teorema della derivata della funzione composta, l'espressione da integralre è $\frac{\partial f}{\partial t}(x(t), y(t), z(t))$

per cui
$$\int_{a}^{b} \frac{\partial f}{\partial t}(x(t), y(t), z(t)) dt = \left| f(x(t), y(t), z(t)) \right|_{a}^{d} = f(P_{1}) - f(P_{0}) \text{ con } \frac{P_{0}(x(a), y(a), z(a))}{P_{1}(x(b), y(b), z(b))}$$

Teorema 2 - Sia ω una forma differenziale lineare continua in un insieme A aperto connsso.

Le sequanti affermazioni sono vere:

- a) ω è esatta in A
- b) per $\forall \gamma \subset A$ chiusa $\int_{\gamma} \omega = 0$
- c) se γ_1 e γ_2 hanno gli stessi estremi e lo stesso verso di percorrenta si ha

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$$

4.8 Funzione potenziale

Definizione 34. Se ω è esatta, esiste una funzione f(x,y), detta funzione potenziale, tale che il suo differenziale eguaglia ω

$$df = \omega$$

f(x,y) è definita a meno di una costante, infatti df(x,y) = d(f(x,y) + k) con ω esatta, la funzione potenziale si triva con

$$f(x,y) = \int_{\gamma} \omega = \int_{\gamma} F_1(x,y) dx + F_2(x,y) dy$$

Poiché ω è esatta, quest'integrale curvilineo non dipende dal pecorso, ma sdamente dagli estremi. Per cui considero un percorso semplice su cui integrare i segmenti paralleli agli assi

$$\gamma = \gamma_1 + \gamma_2 \quad \gamma_1 dy = 0$$
$$\gamma_2 dx = 0$$

$$f(x,y) = \int_{\gamma} F_1 dx + F_2 dy = \int_{\gamma_1} F_1(x,y) dx + F_2(x,y) dy + \int_{\gamma_2} F_1(x,y) dx + F_2(x,y) dx$$

$$= \int_{x_0}^x F_1(t,y_0) dt + F_2(t,y_0) dy + \int_{y_0}^y F_1(x_0,m) dx + F_2(x_0,m) dm = \int_{x_0}^x F_1(t,y_0) dt + \int_{y_0}^y F_2(x_0,m) dm$$

4.8.1 Condizioni sufficiente affinché una forma differenziale lineare sia Esatta

Definizione 35. Sia ω una differenziale chiusa in un insieme A semplicemente connesso. Allora ω è esatta in A.

Ipotesi: Tesi:

 ω è chiusa in A

A semplicemente connesso

 ω è esatta in A

Prendo una qualunque curva γ chiusa in A, poiché A è semplicemente connesso, ogni γ è frontiera di un sottoinsieme A' di A.

 $|Per\ cui\ \int_{\gamma}\omega=\int_{+FA'}F_1(x,y)dx+F_2(x,y)dy$ - $Per\ il\ teorema\ della\ divergenza\ (4.6.1)$

$$\int_{+FA'} F_1(x,y)dx + F_2(x,y)dy = \iint_{A'} -\frac{\partial F_1(x,y)}{\partial y}dxdy + \iint_A \frac{\partial F_2(x,y)}{\partial x}dxdy$$

Per ipotesi ω è chiusa cioè $\frac{\partial F_1(x,y)}{\partial y} = \frac{\partial F_2}{\partial x}(x,y)$

Per cui si ha:

$$\iint\limits_{A'} -\frac{\partial F_1(x,y)}{\partial y} dx dy + \iint\limits_{A} \frac{\partial F_2(x,y)}{\partial y} dx dy = 0$$

ovvero $\int_{\gamma} \omega = 0$ l'integrale per stato calcolato segliendo una qualunque γ chiusa in A. Tale il risultato è una caratteristica delle forme differenziali lineari esatte, per cui si può concludere che ω è esatta in A.

4.8.2 Condizione necessaria e sufficiente

Il teorema precedente è condizione necessaria e sufficiente affinché una forma differenziale lineare ω si esatta.

 ω è esatta in A $\Leftrightarrow \omega$ è chiuse in A

 ω esatta in A $\Rightarrow \omega$ chiusa in A

 ω chiusa in A $\Rightarrow \omega$ esatta in A

4.8.3 Teorema di Stokes (o del rotore)

Con il teorema di Stoches – sotto opportune condizione – è possibile trasformare un integrale superficiale in un integrale curvilineo, esteso al bordo della superfice.

Sia $F(x, y, z) \equiv (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$ un campo¹⁰ vettoriale definito in un insieme $V \subset R^3$, sia $F(x, y, z) \in C'_V$

Sia Σ una porzione di superficie $\subset V$, Σ regolare, orientabile, dotata di bordo orientabile che sia una curva regolare o regolare a tratti.

$$\Sigma : \vec{r} = r(u, v) = \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases} \quad (u, v) \in D \quad \vec{r}(u, v) \in C_D^2$$

Allora vale la seguente uguaglianza

$$\iint\limits_{\Sigma} rot \vec{F} * \vec{n}_e d\sigma = \int_{+B\Sigma} \vec{F} * \vec{t} ds$$

¹⁰o funzione

dove
$$rot\vec{F} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \partial x & \partial y & \partial z \\ F_1 & F_2 & F_3 \end{vmatrix} \vec{n}_e$$
 versore noramle alla superficie $\sum n_e \frac{\vec{r}_u \wedge \vec{r}_v}{||\vec{r}_u \wedge \vec{r}_v||} dr$ elemento differenziale d'area

$$M = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \end{pmatrix} dr = \sqrt{j_1^2 + j_2^2 + j_3^2}$$

$$J_1 = egin{bmatrix} y_u & z_u \ y_v & z_v \end{bmatrix} \quad J_2 = egin{bmatrix} x_u & z_u \ x_v & z_v \end{bmatrix} \quad J_3 = egin{bmatrix} x_u & z_u \ x_v & z_v \end{bmatrix}$$

 $B\Sigma \text{ bprdp della superficie } \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$

 \vec{t} versore tangente al bordo – ds coerento differenziale di lunghezza $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2}$

In forma cartesiana La superficie ω è $\{z = f(x,y), (x,y) \in D\}, f(x,y) \in C^2$ – la direzione normale $n_e \equiv \left(\frac{-fx}{\sqrt{1+f_x^2+f_y^2}}; \frac{-fy}{\sqrt{1+f_x^2+f_y^2}}; \frac{1}{\sqrt{1+f_x^2+f_y^2}}\right)$

$$ds = \sqrt{1 + f_x^2 + f_y^2}$$

$$rot\vec{F} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \partial x & \partial y & \partial z \\ F_1 & F_2 & F_3 \end{vmatrix} = A\vec{l} + B\vec{j} + C\vec{k}$$

$$\iint_{\Sigma} rotF_0 n_e dv = \int_{+B\Sigma} F_0 t ds$$

$$\iint_{A} \frac{-Afx - Bfy + X}{\sqrt{1 + f_x^2 + f_y^2}} * \sqrt{1 + f_x^2 + f_y^2} = \int_{+B\Sigma} \underbrace{F_1 dx + F_2 dy + F_3}_{\omega} dz$$

Il prodotto scalare $\vec{F} * n_e$ è detto flusso

 $\iint_{\Sigma} rot F_0 n_e dv$ Integrale del flusso del rotore attraverso la superficie Σ

Corollario 1

Definizione 36. Sia $n(x,y,z) \in C_V^2, V \subset \mathbb{R}^3$, sotto le ipotesi di validità di Stokes (4.8.3)

$$\int_{+B\Sigma} \nabla n * t ds = 0$$

Infatti per il teorema di Stokes $\int_{+B\Sigma} \nabla h * t ds = \iint_{\Sigma} rot \nabla h * n_e dv$

$$rot\nabla h = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \partial x & \partial y & \partial z \\ hx & hy & hz \end{vmatrix} = (h_{yx} - h_{xy})\vec{l} - (h_{zx} - h_{xz})\vec{j} + (h_{yx} - h_{xy})\vec{k}$$

$$rot \nabla h = 0$$

$$Da \ cui \int_{+B\Sigma} \nabla h * t ds = 0$$

Corollario 2

Definizione 37. Sotto le validità del teorema di Stokes (4.8.3), date due superfici Σ_1 e Σ_2 di egual bordo. Si ha

$$\iint\limits_{\Sigma_1} rot F_0 n_e dr_1 = \iint\limits_{\Sigma_2} F_0 n_e dr_2$$

Infatti per il teorema di Stokes

I membro

$$\int_{+B\Sigma_1} F_0 t ds$$

II membro

$$\int_{+B\Sigma_2} F_0 t ds$$

poiché $B\Sigma_1 = B\Sigma_2$ per ipotesi, i due integrali sono uguali. Quindi il flusso del rotore non dipende dalla superficie ma dal bordo.