Grundzüge der Theoretischen Informatik 26.1.2022

Markus Bläser Universität des Saarlandes Noam Chansky

Naturamachliche Sake strukturieren

2 Subjekt > < Pradik at > < Objekt>

Kapitel 28: Grammatiken

Grammatiken

Definition (28.1)

Eine Grammatik G ist ein 4-Tupel (V, Σ, P, S) :

- 1. V ist eine endliche Menge, die Variablen oder Nichterminale.
- 2. Σ ist eine endliche Menge, die *Terminale*. Es gilt $V \cap \Sigma = \emptyset$.
- 3. P ist eine endliche Teilmenge von $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$, die *Produktionen*.
- 4. $S \in V$ ist die Startvariable.

Kovention 28.2

Für $(\mathfrak{u}, \mathfrak{v}) \in P$ schreiben wir auch $\mathfrak{u} \to \mathfrak{v}$ statt $(\mathfrak{u}, \mathfrak{v})$.

Ableitungen und erzeugte Sprache

Definition (28.3)

- 1. Eine Grammatik $G = (V, \Sigma, P, S)$ definiert eine binäre Relation \Rightarrow_G auf $(V \cup \Sigma)^*$ wie folgt: $u \Rightarrow_G v$ falls wir u = xyz und v = xy'z schreiben können mit $y \to y' \in P$. Wir sagen v ist ableitbar aus u (in einem Schritt). v ist ableitbar aus u falls $u \Rightarrow_G^* v$.
- 2. $\mathfrak{u} \in (V \cup \Sigma)^*$ heißt Satzform, falls $S \Rightarrow_G^* \mathfrak{u}$.
- 3. Eine Folge von Satzformen $w_0, \ldots, w_t \in (V \cup \Sigma)^*$ mit $w_0 = S$, $w_\tau \Rightarrow_G w_{\tau+1}$ für $0 \le \tau < t$ und $w_t = u$ heißt Ableitung von u.
- 4. Die von G erzeugte Sprache ist $L(G) = \{u \in \Sigma^* \mid S \Rightarrow_G^* u\}$

Beispiel 28.4

Sei
$$G_1 = (\{S\}, \{0,1\}, P_1, S)$$
 mit P_1 gegeben durch
$$S \to \epsilon$$

$$S \to 0S1$$

Sei
$$G_2=(\{W,V,N,N^+,Z,Z^+\},\{a,b,\ldots,z,0,1,\ldots,9,:,=,\neq,;,+,-,[,]\},P_2,W)$$
 mit P_2 gegeben durch
$$W\to V:=V+V\mid V:=V-V\mid V:=N^+\mid \text{while }V\neq 0\text{ do }W\text{ od }\mid [W;W]$$

$$V\to xN^+$$

$$N^+\to Z\mid Z^+N$$

$$N\to Z\mid ZN$$

$$Z\to 0\mid 1\mid \cdots\mid 9$$

$$Z^+\to 1\mid 2\mid \cdots\mid 9$$

$$V\to X$$

Beispiel 28.7
$$L(G_3) = \{ O^h A^h 2^h | n \in IN \}$$

Sei
$$G_3=(\{S,E,Z\},\{0,1,2\},P_3,S)$$
 mit P_3 gegeben durch
$$S\to 0EZ\mid 0SEZ$$

$$ZE\to EZ$$

$$0E\to 01$$

$$1E\to 11$$

$$1Z\to 12$$

 $2Z \rightarrow 22$

Die Chomsky-Hierarchie

a-> AB A-> E B-> E

Definition (28.8)

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

- 1. Jede Grammatik G ist eine Typ-0-Grammatik.
- 2. G ist eine Typ-1-Grammatik, falls $|\mathbf{u}| \leq |\mathbf{v}|$ für jedes $\mathbf{u} \to \mathbf{v} \in P$. "with vertical" $\triangleq \mathsf{NSPACE}(\mathbf{v})$ Die einzige Ausnahme ist $S \to \epsilon$. Falls $S \to \epsilon \in P$, dann erscheint S auf keiner rechten Seite.
- 3. G ist eine Typ-2-Grammatik falls sie Typ-1 ist und die linke Seite jeder Produktion aus V ist.
- 4. G ist eine Typ-3-Grammatik falls sie Typ-2 ist und jede rechte Seite einer Produktion $\Sigma V \cup \Sigma$.

Die Chomsky-Hierarchie (2)

Definition (28.9)

Sei $i \in \{0, 1, 2, 3\}$. $L \subseteq \Sigma^*$ ist eine *Typ-i-Sprache*, falls es eine Typ-i-Grammatik G gibt mit L = L(G).

Definition (28.10)

- 1. Die Menge aller Typ-2-Sprachen wird mit CFL bezeichnet.
- 2. Die Menge aller Typ-1-Sprachen wird mit CSL bezeichnet.

Theorem (28.12)

L ist eine Typ-3-Sprache genau dann, wenn L regulär ist.

Theorem (VI.6)

L ist eine Typ-0-Sprache genau dann, wenn $L \in RE$.

Bever 28,12 Typ3 => regular, (= 2ibuny Sei G= (V, Z, P, S) eri Typ 3 - Grannalik Per L. Ent einer when wir ar. dans E \$L 6.Qx2>3Q Se F #V Ye: M = (Vo { F}, Z, S, S * F) vole 8 definist ist durch: 8(A,0) = { {B | A > 0B } falls A > 0 & P LOIATOBJUEFS MONT Pur alle A eV und TES

Kapitel 29: Kontextfreie Grammatiken

Ableitungsbäume und Mehrdeutigkeit

$$E \rightarrow E * E \mid E + E \mid (E) \mid \chi$$

Beispiel: x + x * x

Linksableitung:

$$E \Rightarrow E + E \Rightarrow x + E \Rightarrow x + x * E \Rightarrow x + x * x$$

Rechtsableitung:

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * x \Rightarrow E + x * x \Rightarrow x + x * x$$

Ableitungsbäume

Definition (29.1)

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

- 1. Ein *Ableitungsbaum* ist ein geordneter Baum mit einer Knotenbeschriftung:
 - 1.1 Die Wurzel ist mit S beschriftet.
 - 1.2 Alle Blätter sind mit $V \cup \Sigma$ beschriftet oder mit ε . Im letzten Fall gibt es nur ein Blatt.
 - 1.3 Alle inneren Knoten sind mit Elementen aus V beschriftet. Falls A eine Knotenbeschriftung ist und x_1, x_2, \ldots, x_t (in dieser Reihenfolge) die Beschriftungen der Kinder, dann ist $A \to x_1 x_2 \ldots x_t \in P$.
- 2. Das *Blattwort* ist die Konkatenation der Beschriftungen der Blätter.

Beispiel

 \times + \times * \times

Definition (29.2)

- 1. Eine kfG heißt *mehrdeutig*, falls ein Wort zwei oder mehr Ableitungsbäum hat. Sonst heißt sie *eindeutig*.
- 2. Eine kfS L heißt *eindeutig*, falls es eine eindeutige Grammatik für L gibt. Sonst ist Sie *inhärent mehrdeutig*.

 $\{0^n1^n2^m3^m \mid n, m \ge 1\} \cup \{0^n1^m2^m3^n \mid n, m \ge 1\}$ ist kontextfrei und inhärent mehrdeutig.