Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

KATEDRA INFORMATYKI STOSOWANEJ

PRACA INŻYNIERSKA

KAJETAN RZEPECKI

Implementacja maszyny wirtualnej dla funkcyjnych języków programowania wspierających przetwarzanie współbieżne.

Promotor: dr inż. Piotr Matyasik

OŚWIADCZENIE AUTORA PRACY
OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŻRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY.
PODPIS

AGH University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

DEPARTMENT OF APPLIED COMPUTER SCIENCE

BACHELOR OF ENGINEERING THESIS

KAJETAN RZEPECKI

Implementation of a virtual machine for functional programming languages with support for concurrent computing.

Supervisor:

Piotr Matyasik, Ph.D

Spis treści

1	Mo	tywacja pracy	6		
2	Imp	plementacja ThesisVM	7		
	2.1	Reprezentacja pośrednia programów	7		
	2.2	Reprezentacja obiektów ThesisVM	7		
	2.3	Reprezentacja stanu ThesisVM	7		
	2.4	Funkcja zmiany stanu ThesisVM	7		
3	Zar	ządzanie Pamięcią	8		
	3.1	Organizacja pamięci ThesisVM	8		
	3.2	Alokacja obiektów	8		
	3.3	Kolekcja nieosiągalnych obiektów	8		
	3.4	Kolekcja obiektów cyklicznych	8		
4	Mo	del Przetwarzania Współbieżnego	9		
	4.1	Model Aktorowy	S		
	4.2	Notacja procesu w ThesisVM	S		
	4.3	Harmonogramowanie procesów	S		
	4.4	Przesyłanie wiadomości	G		
A	A Kompilator kodu bajtowego				
В	Wizualizacja stanu maszyny wirtualnej				
C	C Przykładowe przebiegi programów				
D) Analiza wydainości ThesisVM				

1. Motywacja pracy

Celem pracy i powiązanego z nią projektu jest implementacja oraz ewaluacja maszyny wirtualnej dla funkcyjnych języków programowania, które umożliwiają przetwarzanie współbieżne wykorzystując Model Aktorowy ([?]) oraz asynchroniczne przekazywanie wiadomości.

- Opisać problemy Erlanga,
- opisać próby ich rozwiązania w Erlangu,
- opisać proponowany sposób ich rozwiązania,
- umotywować powstanie ThesisVM.

${f 2.}$ Implementacja Thesis ${f VM}$

- 2.1. Reprezentacja pośrednia programów
- 2.2. Reprezentacja obiektów ThesisVM
- 2.3. Reprezentacja stanu ThesisVM
- 2.4. Funkcja zmiany stanu ThesisVM

3. Zarządzanie Pamięcią

- 3.1. Organizacja pamięci Thesis VM
- 3.2. Alokacja obiektów
- 3.3. Kolekcja nieosiągalnych obiektów
- 3.4. Kolekcja obiektów cyklicznych

4. Model Przetwarzania Współbieżnego

- 4.1. Model Aktorowy
- 4.2. Notacja procesu w ThesisVM
- 4.3. Harmonogramowanie procesów
- 4.4. Przesyłanie wiadomości

A. Kompilator kodu bajtowego

Opisać pipeline kompilatora.

B. Wizualizacja stanu maszyny wirtualnej

Opisać narzędzie do rysowania grafów stanu.

C. Przykładowe przebiegi programów

Dać kilka przykładów prostych programów razem z grafami stanów.

D. Analiza wydajności ThesisVM

Przeanalizować wydajność GC i SMP.

${\bf Bibliografia}$

[Tes00] T. Test. Test title of a test $Bib\,TeX$ position. Test, Test, 2000.