[Statistical Physics Book = p1-4. Uses probability with lege numbers to gain insight into system properties. Clesned and grante pertides, e.g. 124, @ p42/2 = 124,12 + 1p42/2 + (x*4, 3 /2 + 3* 1/2 x 4,) large systems ? Probability Let A and B be independent P(A or B) = P(A) + P(B)

 $P(A \text{ and } B) = P(A) \cdot P(B)$

Court events

The number of north to arrange N objects is N!Pick Γ objects from N: combinating $\binom{N}{\Gamma} = \binom{N}{\Gamma}$ $= \frac{N!}{\Gamma! (N-\Gamma)!}$

where the order of the objects is not important.

e g. divide 5 objects into 2 pites y 2 objects and 3 objects:

States of a 545tem.

A system can be thought of as a collection of particles, e.s. a 3- spin system (i.e. 3 particles must spins of or b).

Stokes are: 1. 7 7 9. 7 7 5. 7 1 8. 1 1 1 3 aboun.

3 yp. 3. 7 1 7 6. 1 7 1 3 aboun.

2 yp Idour 1 yp 2 down

The 57sh has bulk properties that are not egully likely elthough all arrayents of perhales (i.e. op or down) is equally likely.

 $P(3 \circ p) = 18$, $P(2 \circ p \mid down) = 3/8$ P(3 down) = 1/8 $P(1 \circ p \mid 2 down) = 3/8$

Dishibuhans

4

Discrete: & can the on a set of <u>clistrete</u> volves { x, , xx, ... } bet the probability of the Pi

Normalisation - gives as $\sum_{i} P_{i} = 1$.

Mean volve 2 = <27 = I Pi Ri

Voriance = $\sigma^2 = \overline{\chi^2} - \overline{\chi}^2 = \sum_{i} P_i \chi_i^2 - (\sum_{i} P_i \chi_i^2)^2$

and so stendard deviation is o.

Birouil Distribution.

(5)

Process has 2 showers repected N times. If p is the probability g one out one then (1-p) is the probability g another in a single g or P probability g p happensy k divines out g N attempts M have $P_N(k) = \frac{N!}{k!(N-k)!} p^k (1-p)^{N-k}$ binomed coefficients.

Nordistan Z PN(K) = 1.

Average $\sum_{k=0}^{N} P_N(k) k$, variance $\sum_{k=0}^{N} P_N(k) k^2 - \mu^2$ = $\sum_{k=0}^{\infty} P_N(k) k$ = $\sum_{k=0}^{\infty} P_N(k) k^2 - \mu^2$ $0/4 \rightarrow (2/3)^{4} \sim 20\%$ $1/4 \rightarrow (2/3)^{4} \sim 20\%$ $1/4 \rightarrow \frac{4!}{3! 1!} (2/3)^{3} (1/3)^{2} \approx 40\%$ $1/4 \rightarrow \frac{4!}{3! 1!} (2/3)^{3} (1/3)^{2} \approx 21\%$ $1/4 \rightarrow \frac{4!}{2! 2!} (2/3)^{3} (1/3)^{2} \approx 21\%$

Gontinous Probabilities - a continuous renge of variables se. It's meningless to ook what's the probability of getting a particlar value of or, but instead we ask the probability of se in a given range.

If our outcomes lie in range [a, b] Then $p(a \le x \le b) = \int_{a}^{b} f(x) dx$ If the toble range is eg. (-0,00) we get nomelinhan $\int_{-\infty}^{\infty} f(\infty) d\kappa = 1.$ ej. fansien distribution $y(\alpha) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(\alpha-\mu)/2\sigma^2}$ the probability that a his between ± 0 of the near is P(pr-0 x 2 x x p+1) = 0.68

Probabilities The outcome of an experiment is not changes
the same - issues either in our control or not, chancells or
greaten weahourable. It we perform an experiment N times
on event i occurs ni times - the frequency of occurrence F(ni, N) = ni/N

This is not the probability, however probability is defined a $P_{i} = \lim_{N \to \infty} F(n_{i}, N) = \lim_{N \to \infty} \frac{n_{i}(N)}{N}$

We assume that for N big enough then $F(N_i, N) = P_i$ - This is the Ergodic hypothesis. Sometimes me can assign probabilités a privai (before). Le Jeron what they are before an expensent.

Fair dice $P_1 = P_2 = --- = P_6 = 16$. Fair coin $P_k = P_t = 12$

Toss a coin 4 times tak at each possibly g auteane.

Microstote hhhh hhhh hhhh hhhh thh	Macros hote. 4-heads - 3-heads 1-heads	Nowber of microsths in mocrosthe.	Ignoring order we get mevosthes. The have 16 equelly likely
he he hehe the tehh	2- Jails 2- heads		microstotes. But we have 5 macrostotes which have
かれたととして	3-tab 1-heccb 4-tabs.	4	differing probability.