

Ayudantía 7 - Filtros Pasivos 2: Más Pasivos

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

Φ +56 9 30915977

Edicson Solar Salinas

 ${\tt edicson.solar@mail.udp.cl}$

© +56 9 92763279

Shi Hao Zhang

 ${\tt shi.zhang@mail.udp.cl}$

© +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos hoy?

- Repaso exprés de filtros pasivos
- Resonancia: teoría y condiciones
- Comparación serie vs paralelo
- Ejercicios

Mini Repaso de Filtros Pasivos

- RC Pasa Alta: V_{out} en el resistor
- RC Pasa Baja: V_{out} en el capacitor
- RL Pasa Alta: V_{out} en el inductor
- RL Pasa Baja: V_{out} en el resistor
- RLC: pueden comportarse como pasa banda o rechaza banda según conexión

Frecuencia de corte: $f_c = \frac{1}{2\pi RC}$ o $\frac{R}{2\pi L}$

Mini Repaso: Quien es quien?

4 Ayudantía 7 - Filtros Pasivos 2: Más Pasivos

13 y 14 de mayo de 2025

¿Qué es la Resonancia?

- Fenómeno donde la impedancia reactiva total se anula.
- Solo ocurre en circuitos con L y C.
- **Serie:** $X_L = X_C \Rightarrow$ mínima impedancia
- Paralelo: $X_L = X_C \Rightarrow \text{máxima impedancia}$

Frecuencia de resonancia:

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

RLC Serie: Análisis

•
$$Z = R + j(\omega L - \frac{1}{\omega C})$$

- En $f_0 = f_R$: reactancias se cancelan $\Rightarrow Z = R$
- Corriente máxima, caída resistiva

$$f_R = rac{1}{2\pi\sqrt{LC}}$$

Ejercicio 1: Resonancia en RLC Serie

Dado:

- $R = 100 \,\Omega$
- $I = 10 \, mH$
- $C = 1 \, \mu F$

Calcule:

- a) Frecuencia de resonancia (f_R)
- b) Impedancia total en f_R
- c) ¿Qué pasa con la corriente máxima si la señal de entrada máxima es de 10 V?

Solución:

$$f_R = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10 \times 10^{-3} \cdot 1 \times 10^{-6}}} \approx 1592 \text{ Hz}$$

$$Z = R = 100 \Omega \quad \Rightarrow I = \frac{10}{100} = 0.1 \text{ A}$$

RLC Paralelo: Análisis

- En resonancia: $Z \to \infty$
- Corriente mínima
- Voltaje máximo en ramas paralelas

Ejercicio 2: RLC Paralelo

Datos:

- $L = 5 \, mH$
- $C = 2 \mu F$

Calcule la frecuencia de resonancia

$$f_0 = rac{1}{2\pi\sqrt{LC}} = rac{1}{2\pi\sqrt{5 imes 10^{-3} \cdot 2 imes 10^{-6}}} pprox 1591 \, Hz$$

Comparación

	RLC Serie	RLC Paralelo
Impedancia mínima	En <i>f</i> ₀	No
Impedancia máxima	No	En <i>f</i> ₀
Corriente máxima	En <i>f</i> ₀	No
Voltaje máximo	No	En <i>f</i> ₀

Ejercicio 3: Diseñar filtro

En un circuito eléctrico, se desea diseñar un filtro pasa banda utilizando únicamente resistencias y capacitores. El filtro se compone de un filtro pasa alto y un filtro pasa bajo conectados en serie. y tiene aproximadamente un ancho de banda (BW) = 1KHz. Las especificaciones del filtro son las siguientes:

- $R_1 = R_2 = 10 \,\mathrm{k}\Omega$
- $C_1 = 10.6 \, \mathrm{nF}$
- $C_2 = 6.37 \,\mathrm{nF}$

Diséñelo y obtenga las frecuencias de corte y de resonancia del filtro

Ejercicio 3: Solución

FILTRO BONITO

CÁLCULOS FEOS

•
$$f_1 = \frac{1}{2\pi R_1 C_1}$$

$$= \frac{1}{2\pi 10 \times 10^3 \times 10.6 \times 10^{-9}} \approx 1.5 \, \text{kH}$$

•
$$f_2 = \frac{1}{2\pi R_2 C_2}$$

$$= \frac{1}{2\pi 10 \times 10^3 \times 6.37 \times 10^{-9}} \approx 2.5 \, \text{kH}$$

$$extstyle \sqrt{ extstyle f_1 \cdot extstyle f_2} = \sqrt{1.5 imes 10^4 \cdot 2.5 imes 10^4} pprox 1.94 ext{ kHz}$$

Ejercicio 4: Otro diseño de filtro...

Diseñe un filtro pasa banda RLC serie con:

- Frecuencia central $f_0 = 1 \, kHz$
- $L = 10 \, mH$

¿Cuánto debe valer *C*? ¿Y si quieres un ancho de banda de 500 Hz, cuánto debe valer *R*?

$$BW = \frac{R}{2\pi L}$$

Ejercicio 4: Solución

FILTRO BONITO

CÁLCULOS FEOS

$$f_0 = 1 \text{ kHz} \Leftrightarrow f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$\Leftrightarrow f_0^2 = \frac{1}{4\pi^2 LC}$$

$$\Leftrightarrow C = \frac{1}{4\pi^2 L f_0^2}$$

$$\Leftrightarrow C = \frac{1}{4\pi^2 \times 10 \times 10^{-3} \times (10^3)^2}$$

$$\Leftrightarrow C = 2.53 \text{ nF}$$

$$BW = 500 \Leftrightarrow \frac{R}{2\pi \times 10 \times 10^{-3}} = 500$$

$$\Leftrightarrow R = 2\pi \times 10 \times 10^{-3} \times 500 = 10\pi$$

$$\Leftrightarrow R \approx 31.42 \Omega$$

Recursos de Ayudantía

Clickeable

- Playlist de ayudantías
- Ayudantía 6 Filtros Pasivos (Video)
- Ejercicios de Filtros Pasivos (Video)

¿DUDAS?

CHAO GENTE

