MATH 1700

Instructor: Mehdi Maadooliat

Chapter 2B

Department of Mathematical and Statistical Sciences

CHAPTER 2B

- Descriptive Analysis
- Measures of Position
 - Quartiles
 - Percentile
 - Five number summary
 - Interquartile range (IQR)
- Box-and-whiskers display
- Standard score, or z-score
- Empirical Rule
- Comparing the measures of center and spread

- Measures of position are used to describe the position a specific data value possesses in relation to the rest of the data when in ranked order. *Quartiles* and *percentiles* are two of the most popular measures of position.
- Quartiles Values of the variable that divide the ranked data into quarters; each set of data has three quartiles.
 - L = lowest value
 - Q_1 = data value where 25% are smaller
 - $\mathbf{Q_2} = \widetilde{\mathbf{x}} = \mathbf{median}$
 - Q_3 = data value where 75% are smaller
 - H = highest value

Ranked data, increasing order

25% 25% 25% 25%

L Q₁ Q₂ Q₃ H

 Percentiles Values of the variable that divide a set of ranked data into 100 equal subsets.

- The k^{th} percentile,
 - P_k = value where k% are smaller

Ranked data, increasing order

Quartiles are special percentiles.

• The Percentile Process: Finding k^{th} percentile.

EXAMPLE 12 - FINDING QUARTILES AND PERCENTILES

• Using the sample of 50 elementary statistics final exam scores listed in Table 2.15, find the first quartile, Q_1 ; the 58^{th} percentile, P_{58} .

60	47	82	95	88	72	67	66	68	98	90	77	86
58	64	95	74	72	88	74	77	39	90	63	68	97
70	64	70	70	58	78	89	44	55	85	82	83	
72	77	72	86	50	94	92	80	91	75	76	78	

Raw Scores for Elementary Statistics Exam [TA02-06]
Table 2.15

- Step 1:
 - Rank the data from lowest to highest

39	64	72	78	89
44	66	72	80	90
47	67	74	82	90
50	68	74	82	91
55	68	75	83	92
58	70	76	85	94
58	70	77	86	95
60	70	77	86	95
63	72	77	88	97
64	72	78	88	98

EXAMPLE 12 - SOLUTION

• Find Q_1 :

- Step 2: Find
$$\frac{nk}{100}$$
: $\frac{nk}{100} = \frac{(50)(25)}{100} = 12.5$

- Step 3: *B* is the next larger integer, 13.
- Step 4: Find Q_1 : Q_1 is the 13^{th} value, $Q_1 = 67$

• Find *P*₅₈:

- Step 2: Find
$$\frac{nk}{100} : \frac{nk}{100} = \frac{(50)(58)}{100} = 29$$

- Step 3: Since A = 29, an integer, add 0.5 and use 29.5.
- Step 4: Find P_{58} : P_{58} is the average of 29^{th} and 30^{th} values, $P_{58} = 77.5$

39	64	72	78	89	
44	66	72	80	90	13th position from L_{∞} Stem-and-leaf of score $N = 50$
47	67	74	82	90	13th position from L Stem-and-leaf of score N = 50 Leaf Unit = 1.0
50	68	74	82	91	1 1 3 1 9
55	68	75	83	92	29th and 30th 2 4 4 positions from L 3 4 7
58	70	76	85	94	positions from 2 4 7 4 5 0
58	70	77	86	95	7 5 588
60	70	77	86	95	13 6 0 3 4 4 15 6 6 7 8 8
63	72	77	88	97	13th position from H 24 7 000222244
64	72	78	88	98	(7) 7 5677788
					19 8 0223 15 8 566 889 9 9 00124 4 9 5578

- Five Number Summary
 - L = lowest value
 - Q_1 = data value where 25% are smaller
 - $\mathbf{Q_2} = \widetilde{\mathbf{x}} = \mathbf{median}$
 - Q_3 = data value where 75% are smaller
 - H = highest value
- Interquartile range: The difference between the first and third quartiles. It is the range of the middle 50% of the data.

$$- IQR = Q_3 - Q_1$$

Box-and-whiskers display A graphic representation of the 5-number summary. The five numerical values (smallest, first quartile, median, third quartile, and largest) are located on a scale, either vertical or horizontal.

SIDE-BY-SIDE BOX PLOT FOR AIS DATA (AUSTRALIAN INSTITUTE OF SPORT)

JAMM: STAT-Calculator

- The position of a specific value can also be measured in terms of the mean and standard deviation using the *standard score*, commonly called the *z-score*.
- Standard score, or z-score The position a particular value of x has relative to the mean, measured in standard deviations. The z-score is found by the formula

$$z = \frac{\text{value} - \text{mean}}{\text{st.dev.}} = \frac{x - \overline{x}}{s}$$
 (2.11)

• Example: Find the standard scores for (a) 92 and (b) 72 with respect to a sample of exam grades that have a mean score of 74.92 and a standard deviation of 14.20.

EXAMPLE 14 - FINDING Z-SCORES

• a.
$$x_1 = 92$$
, $\bar{x} = 74.92$, $s = 14.20$. Thus,

$$z = \frac{x - \overline{x}}{s}$$

$$= \frac{92 - 74.92}{14.20} = \frac{17.08}{14.20} = 1.20.$$

• **b.**
$$x_2 = 72$$
, $\bar{x} = 74.92$, $s = 14.20$. Thus,

$$z = \frac{x - \overline{x}}{s}$$

$$= \frac{72 - 74.92}{14.20} = \frac{-2.92}{14.20} = -0.21.$$

- This means that the score 92 is approximately 1.2 standard deviations above the mean and
- that the score 72 is approximately one-fifth of a standard deviation below the mean.

EMPIRICAL RULE (THE 68-95-99.7 RULE)

If the distribution is mound-shaped, then

- Approximately 68% of the data falls within one standard deviation of the mean

 Approximately 95% of the data falls within two standard deviations of the mean

 Approximately 99.7% of the data falls within three standard deviations of the mean

• Read more about this on Section 2.6 of the Book (Chebyshev's Theorem)

COMPARING MEASURES OF CENTER AND SPREAD

- The sample mean and the sample standard deviation are good measures of center and spread, respectively, for symmetric data
- If the data set is skewed or has outliers, the sample median and the interquartile range are more commonly used
- Mean versus median

QUESTIONS?

ANY QUESTION?