PLAID: Supporting Computing Instructors to Identify Domain-Specific Programming Plans at Scale

Yoshee Jain*

Mehmet Arif Demirtaş*

Kathryn Cunningham

Meet Jane: Teaching Programming to Non-CS Majors

Data Analysis for Psychology Research

However, her students **do not want** to be software developers.


```
import pandas as pd

df = pd.read_csv("EEG_data.csv")

def final_score(eeg1, eeg2):
    return (eeg1 * 0.2 + eeg2 * 0.8) if (eeg2 > eeg1) else eeg1

df['final_score'] = df.apply(lambda obs: final_score(obs.eeg1, obs.eeg2))
```

```
import pandas as pd

df = pd.DataFrame.from_dict({'rating': [6, 9, 4], 'duration': [2.5, 3.0, 1.2]})

df['attention_score'] = df.apply(lambda x: x['rating'] * x['duration']), axis='columns')
```



```
import pandas as pd
df = pd.read csv("EEG data.csv")
def final score(eeg1, eeg2):
                                     Goal:
                                               Create a new column by processing existing ones
  return (eeg1 * 0.2 + eeg2 * 0.8)
df['final score'] = df.apply(lambda obs: final score(obs.eeg1, obs.eeg2))
import pandas as pd
df = pd.DataFrame.from dict({'rating': [6, 9, 4], 'duration': [2.5, 3.0, 1.2]})
df['attention score'] = df.apply(lambda x: x['rating'] * x['duration']), axis='columns')
```


Template that highlights the goal of a common code pattern

```
import pandas as pd
                                                 Composite columns with lambda
                                       Name:
df = pd.read csv("EEG data.csv")
def final score (eeg1, eeg2):
                                       Goal:
                                                 Create a new column by processing existing ones
  return (eeg1 * 0.2 + eeg2 * 0.8)
df['final score'] = df.apply(lambd
                                       Solution:
                                                 # Given a DataFrame object and a function
                                                 df['new'] = df.apply(lambda row: func(row['column']))
import pandas as pd
df = pd.DataFrame.from dict({ 'rati
                                       Changeable Areas: Column to create Processor func Column to process
df['attention score'] = df.apply()
```


Plan-Focused Pedagogies: Instruction That Uses Programming Plans

Plans can improve motivation [1] and problem-solving skills [2]

- [1] K Cunningham, B J Ericson, R A Bejarano, and M Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming by Starting from Code's Purpose. CHI '21.
- [2] N Weinman, A Fox, and MA Hearst. 2021. Improving Instruction of Programming Patterns with Faded Parsons Problems. CHI '21.

However, plan-focused pedagogies;

- have been mostly limited to introductory programming content
- can be time-consuming and unclear to apply as an instructor

Instructor-in-the-loop systems for interacting with LLMs can support this process.

In instructor-in-the-loop systems...

LLM generates various examples to provide many alternatives

Instructor chooses and refines content according to their learning objectives

LLM

Our Contributions:

Understand
instructor practices
and challenges for
applying plan-based
pedagogies

Present design goals
for incorporating
LLM-generated
content into
instructor workflows
through iterative
design workshops

Design and evaluate
PLAID: a system
combining LLMs'
strengths with
instructor expertise

Our Contributions:

1

Understand
instructor practices
and challenges for
applying plan-based
pedagogies

2

for incorporating
LLM-generated
content into
instructor workflows
through iterative
design workshops

3

Design and evaluate PLAID: a system combining LLMs'

instructor expertise

strengths with

What are the challenges in applying plan-focused pedagogies?

Challenges Observed in Formative Study with Instructors (N=10)

Instructors find it hard to find patterns common in real-world programs.

Finding the right balance between real-world complexity and abstract templates was challenging.

Due to a lack of prior work, instructors may struggle to learn about plan-based pedagogies.

Challenges

Opportunities

Tedious to find plans from practice

Generate many authentic programs and enable interactions for quick exploration

Difficult to find the right level of abstraction in plans

Provide interactions for comparing similar content to recognize high-level patterns

Challenging to learn how to apply plan-based pedagogies

Scaffold instructor experience by providing structured components derived from existing best practices.

How does PLAID support plan identification?

Generating Example **Programs**

Hide

Hide

Generating Example Programs

Generating Example **Programs**

Hide

Hide

Programs (Organized by Use Case)

A system that assists instructors in PLAn IDentification

Jane wants to brainstorm ideas to create plans.

Suggests a plan

She finds the generated name and goal to be too generic.

Edit these fields

Tell students about reading data from different types of files.

Mark the file path as a changeable area

She wants to design a plan about creating histograms.

Explore examples and create plans from programs.

Creates multiple plans that achieve the same goal.

Organize plans into groups

Jane can use plans to...

- ▼ Reading Data from Files
- Statistical Operations
- **∨** Visualize Summary Statistics

"Check for equality in the column"

import pandas as pd

elem = Input element

import pandas as pd

df = pd._____("____")

(A) read_file, "EEG_data.csv"

(B) read_json, "EEG_data.csv"

(C) read_csv, "EEG_data.csv"

(D) read_csv, "EEG_data.json"

Organize course slides around common goals

Create worked examples

Design assessments

Does PLAID make plan identification easier?

Results from Evaluation with Instructors (N=12)

Participants created more plans when using PLAID compared to the baseline condition.

Participants reported high scores on the **PSSUQ usability survey**.

Average task load for instructors was significantly lower with PLAID.

Qualitative Findings from Think-Aloud Sessions

Provides easily navigable reference material.

Initial ideas were hard to come up with:

- E8 stated, "I know the material for this on the Internet isn't especially good"
- It is easier to "derive from an existing codebase...because the sample code is the key part" (E10)

Challenging to compare examples:

- E11 valued the "condensed view", allowing them to look at multiple implementations on one screen

Provides easily navigable reference material.

Existing support does not meet instructors' needs:

Some participants compared our tool to ChatGPT:

- ChatGPT "was **verbose**" and that it was "quite an effort to ask even ChatGPT (for ideas)" (P9).
- ChatGPT output was **not appropriate for beginners**: "I don't even know if I fully understand (this concept)" (P5).

Creates learner-friendly material by providing structure

E10: "Stating explicit goals was useful for students to get more motivated that [they] know the purpose of learning about the code."

E9: "If I'm creating exercises in it, I'm specifying [to students] very clearly that 'This is the overall intuition of the coding flow, and these are the areas that you can play with.'

Supports plan-based pedagogy in new domains

Instructors were interested:

- Most expressed interest in incorporating plan-based pedagogy in their courses.

Key Takeaways

For instructors:

- Presents LLM-generated content as initial drafts for refinement.
- Supports interactions to make this process easier and faster.

For designers:

- Instructor-in-the-loop approaches with LLMs are promising
- They can automate repetitive work, allowing instructors to focus on refining content.

PLAID: Supporting Computing Instructors to Identify Domain-Specific Programming Plans at Scale

Yoshee Jain* yosheej2@illinois.edu

Mehmet Arif Demirtas* mad16@illinois.edu

Katie Cunningham katcun@illinois.edu

go.illinois.edu/PLAIDCHI

Takeaway | Instructors

PLAID enables using plan-based pedagogies in application-focused domains

Takeaway | Designers

LLMs should be combined with interactions for exploration and refinement

