Fórmulas y Ecuaciones de la Tarea-6

Javier Horacio Pérez Ricárdez

1 Ejercicio 7

1.1 Datos

Se analiza la relación entre la cantidad de aditivo y el tiempo de secado.

1.2 a) Diagrama de Dispersión

No se utiliza una fórmula específica, pero se grafican los puntos de datos en un plano cartesiano.

1.3 b) Ajuste de un Polinomio de Segundo Grado

Se ajusta la relación usando un polinomio de segundo grado:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

donde β_0 es la intersección y β_1, β_2 son los coeficientes del polinomio.

Los coeficientes se obtienen minimizando el error cuadrático medio:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2))^2$$

Los coeficientes se pueden calcular resolviendo el sistema de ecuaciones normales:

$$\begin{pmatrix} n & \sum x & \sum x^2 \\ \sum x & \sum x^2 & \sum x^3 \\ \sum x^2 & \sum x^3 & \sum x^4 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \sum y \\ \sum xy \\ \sum x^2y \end{pmatrix}$$

1.4 c) Predicción

Para una cantidad de aditivo x = 6.5:

Predicción =
$$\beta_0 + \beta_1(6.5) + \beta_2(6.5)^2$$

2 Ejercicio 8

2.1 Datos

Se realiza una regresión múltiple para predecir el número de giros en función de dos elementos de aleación.

2.2 Regresión de Mínimos Cuadrados

La ecuación ajustada es:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

donde y es el número de giros, x_1 y x_2 son los porcentajes de los elementos A y B, respectivamente.

Los coeficientes se obtienen minimizando el error cuadrático medio:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}))^2$$

Resolviendo el sistema de ecuaciones normales:

$$\begin{pmatrix} n & \sum x_1 & \sum x_2 \\ \sum x_1 & \sum x_1^2 & \sum x_1 x_2 \\ \sum x_2 & \sum x_1 x_2 & \sum x_2^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \sum y \\ \sum y x_1 \\ \sum y x_2 \end{pmatrix}$$

2.3 Predicción

Para valores $x_1 = 2.5$ y $x_2 = 12$:

Predicción =
$$\beta_0 + \beta_1(2.5) + \beta_2(12)$$

3 Ejercicio 9

3.1 Datos

Se ajustan curvas exponenciales y de Gompertz para analizar la tasa de dosis en función de la altitud.

3.2 a) Ajuste de una Curva Exponencial

La ecuación ajustada es:

$$ln(y) = a + bx$$

donde a y b son los coeficientes del modelo.

3.3 Estimación de Dosis

Para una altitud de 3000 pies:

$$y_{3000} = e^{(a+b\cdot3000)}$$

3.4 Cambio de Ecuación y Reestimación

La ecuación se reescribe como:

$$y = ae^{-cx}$$

3.5 d) Ajuste de Curva de Gompertz

La ecuación es:

$$\ln(\ln(y)) = b + ax$$

4 Ejercicio 10

4.1 Intervalo de Confianza del Coeficiente de Correlación

Para un coeficiente de correlación r = 0.7 y n = 30:

$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

$$SE_z = \frac{1}{\sqrt{n-3}}$$

Los límites del intervalo de confianza son:

$$CI_z = z \pm z_{\alpha/2} \cdot SE_z$$

Transformando de nuevo a la escala de r:

$$CI_r = \left(\frac{e^{2 \cdot CI_{z,lower}} - 1}{e^{2 \cdot CI_{z,lower}} + 1}, \frac{e^{2 \cdot CI_{z,upper}} - 1}{e^{2 \cdot CI_{z,upper}} + 1}\right)$$