

AL HUSSEIN BIN TALAL UNIVERSITY

Faculty of Information Technology Department of Computer Science

Course Name: C	perating Systems				
Lecturer: Prof. l	Bassam Alqaralleh				. T.
Student Name:		T	<u>.</u>	 T T	 T

Date: 25-Jan-2023 Duration: 90 Minutes

Final Exam

First Sem. 2022/2023

Question	Max mark	Student's score
Q1	20	
Q2	10 (
Q3	5, 4,	
Q4	10	
Q5 ⁺	5	
美国教	等。其一种的数型	
Total	50	

Note: your answer for each question should fit in the designated area.

Q1: Multiple Choices: Mark the most correct answer (read carefully): [20 Marks, 0.5 mark each]

اختار (ي) الاجابة الأكثر دقة (اقرأ (ي) بعناية وبدون تسرع

- 1. The scheduler which controls the degree of multiprogramming (the number of processes in memory) is:
 - A. Short term scheduler
 - B. Medium term scheduler
 - C. Long term scheduler
 - D. Multi-level queue scheduler
- 2. The key idea behind a medium-term scheduler is that it can:
- A. Increase the degree of multiprogramming
- B. Reduce the degree of multiprogramming
- C. Add processes to active contention for the CPU
- D. None of the above
- 3. Which of the following properties is not one of the properties of *direct* communications?
- A. A link is established between a pair of processes only if they have a shared mailbox
- B. A link is associated with exactly two processes
- C. Between each pair of processes, there exists exactly one link
- D. None of the above
- 4. Which of the following is <u>not</u> one of the four major categories of the benefits of multithreaded programming?
- A. Resource sharing
- B. Economy
- C. Utilization of single-processor architectures
- D. None of the above
- 5. RMIs allow:
- A. Objects to be passed to remote procedures
- B. Ordinary data structures to be passed to remote procedures
- C. Objects to be passed to local procedures
- D. Ordinary data structures to be passed to local procedures

A.	stub
B.	skeleton
C.	port
D.	socket
7.	Which of the following is not shared between threads that are belonging to the same
	process?
A.	Its code section
B.	Its data section
C.	Open files
D.	A register set
8.	In a single-processor architecture, multithreading generally occurs by:
A.	Priority multiplexing
B.	Time-division multiplexing
C.	Memory-space multiplexing
D.	None of the above
Adams.	
9. A.	A kernel-level threading model can be best described as:
	One-to-many
B.	Many-to-one
C.	One-to-one
D.	Many-to-many
10 1	
10.	The model of multi-threading in which the kernel can schedule another thread in the application for execution if a thread performs a blocking system call is:
	by bloth can is.
11/91/	Kernel lavel multist 1
A.	Kernel-level multithreading model
A. B.	User-level multithreading model
A. B. C.	User-level multithreading model Many-to-one multithreading model
A. B. C.	User-level multithreading model
A. B. C. D.	User-level multithreading model Many-to-one multithreading model None of the above
A. B. C. D.	User-level multithreading model Many-to-one multithreading model
A. B. C. D.	User-level multithreading model Many-to-one multithreading model None of the above The threads which are generally fast to create and manage are: Kernel-level threads
A. B. C. D.	User-level multithreading model Many-to-one multithreading model None of the above The threads which are generally fast to create and manage are:
A. B. C. D.	User-level multithreading model Many-to-one multithreading model None of the above The threads which are generally fast to create and manage are: Kernel-level threads

- 12. Which of the following is <u>not</u> true regarding one-to-one multithreading model?
- A. The overhead of creating kernel threads can burden the performance of an application
- B. Each user-level thread maps to kernel thread
- C. Multiple threads are unable to run in parallel on multiprocessors
- D. None of the above
- 13. Which of the following is true regarding many-to-many (N:M) multithreading model?
- A. Developers can create as many user threads as necessary
- B. The corresponding kernel threads can run in parallel on a multiprocessor.
- C. The kernel can schedule another thread for execution, when a thread performs a blocking system call
- D. All the mentioned above
 - 14. The dispatcher is the module that gives control of the CPU to the next process to be executed. This function involves the following tasks except:
- A. Switching context
- B. Switching to system mode
- C. Jumping to the proper location in the user program to restart that program
- D. None of the above
- 15. Context-switch time is
- A. Overhead
- B. Useful
- C. desired
- D. None of the mentioned above
- 16. CPU scheduling decisions may take place under the following circumstances except:
- A. When a process switches from the running state to the waiting state
- B. When a process switches from the ready state to the running state
- C. When a process switches from the waiting state to the ready state
- D. When a process terminates
- 17. The collection of processes in the memory that are ready and waiting to be executed:
- A. Ready queue
- B. Job pool
- C. Loading queue
- D. None of the above

	burst is called:
	A. Predicted average formula
	B. Exponential average formula
14.	C. Accurate average formula
	D. Historical-based average formula
	in a multilevel queue-scheduling algorithm, there must be a scheduling among the
	queues, which is commonly implemented as:
A.	Absolute priority preemptive scheduling
B.	Absolute priority non-preemptive scheduling
C.	Fixed-priority preemptive scheduling
D.	Fixed-priority non-preemptive scheduling
,	
25.	The effect, which occurs when some short processes wait for one big process to get
	off the CPU, and results in lower CPU and device utilization than might be possible if
	the shorter processes were allowed to go first, is called:
A.	Delay effect
B.	Waiting effect
C.	Convoy effect
D.	Latency effect
26.]	n the context of the makeup of dispatch latency, the dispatch latency has two components: the dispatch phase and the
A.	Conflict phase
B.	Interrupt phase
C.	Response phase
D.·	Switch phase
	2 Witon phase
27. 7	The sequence which can be created by monitoring the real system, recording the sequence of actual events, and is then used to drive the simulation, is called:
A.	Event list
B.	Event record
C.	Trace tape
D.	Trace record

28. CPU scheduling decisions may take place under the following circumstances except:

- 34. A deadlock situation may occur if and only if four necessary conditions hold simultaneously in the system:
- A. Mutual execution, hold and wait, no pre-emption, no circular wait
- B. Mutual execution, hold and wait, pre-emption, circular wait
- C. Mutual execution, hold and wait, no pre-emption, circular wait
- D. Mutual execution, hold and wait, pre-emption, no circular wait
 - 35. If a deadlock is detected, the system must recover by:
 - A. Terminating some of the deadlocked processes
 - A. Preempting resources from some of the deadlocked processes
- B. Either A or B
- C. None of the above
- 36. The method for dealing with deadlock which is based on having a priori information on how each process will be utilizing the resources is called:
- A. Deadlock prevention
- B. Deadlock avoidance
- C. Deadlock detection
- D. Deadlock prediction
- 37. A transaction (program unit) where all operations associated to it are executed to completion; or none are performed, can be described as:
- A. Atomic
- B. real time
- C. critical
- D. None of the above
 - 38. A solution to the critical section problems must satisfy the following criteria except:
 - A. Mutual exclusion
 - B. Stable
 - C. Bounded waiting
 - D. Progress

- A. Aging
 B. Starvation
 C. Definite blocking
 D. Deadlock
 - 40. The major difficulty of the "implementation" evaluation approach of scheduling algorithms is:

 A. Limited accuracy
 B. Cost
 C. Unrealistic
 D. inflexible

Q2) Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Arrival time	Burst time
P1	0	9
P2	2	1.
P3	4.	3
P4	5	1
P5	6	6.

2.1. Which Gantt chart does illustrate the execution of these processes using a Preemptive SJF scheduling algorithm? [5 Marks]

2.2. Consider the following Gantt chart, which table may contain the right response time, waiting time and turnaround time for each process? [5 Marks]

	P1	P2	P1	1	P5	1	P1	P3	I	P4	
0.0	2	3		6		12	10	6	19	20	

(A)

Process	Response Time	Waiting Time	Turnaround Time
P1	7	7	16
P2	0	0	1
P3	12	12	15
P4	14	14	15
P5	0	0	6

(B)

Process	Response Time	Waiting Time	Turnaround Time
P1	0	7	16
P2	0	0	1
P3	12	12	15
P4	14	14	15
P5	0	0	6

(C)

Process	Response Time	Waiting Time	Turnaround Time
P1	0	16	7
P2	0	1	0
P3	12	15	12
P4	14	15	14
P5	0	6	0

(D)

Process	Response Time	Waiting Time	Turnaround Time
P1	7	16	0
P2	0	1	0
P3	12	15	12
P4	14	15	14
P5	0	6	0

Q3) [5 marks] Given the resource-allocation graph below:

A. Draw the corresponding wait-for graph? [3 marks]

B. Show if there are any cycles exist? [2 marks]

- 1-
- 2-
- 3-
- 4-

Q4) [10 marks] Consider the following snapshot of a system:

	Allocation	Max	Available	Need
	ABCD	ABCD	ABCD	ABCI
P.0	0 0 1 2	0 0 1 2	1 5 2 0	
P1	1 0 0 0	1 7 5 0		
P2	1 3 5 4	2 3 5 6		
P3	0 6 3 2	0 6 5 3		
P4	0 0 1 4	0 6 5 6		

Answer the following questions using the banker's algorithm:

- A. What is the content of the matrix need? (2 marks)
- B. Is the system in a safe state? If your answer is "yes", give at least one safe sequence? (4 marks)
- C. If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately? (4 mark)

Q5) [5 Marks] Write down the solution for first readers writers problem – Reader process using the semaphores wrt and mutex.

Hint: The code of the writer process is written below; you need to write the code of the reader process only.

Writer Process	J. prilips A	Reader Process	
wait(wrt);			
writing is performed			
signal(wrt);			

Best wishes