

SCIENCE

Department of Kinesiology

Feedback: Fundamentals KINESIOL 1E03 - Motor control and learning

Laura St. Germain Fall 2022 Week 8 Lecture 15

Review from last lecture

Recall this performance curve...

Establishing and using a pre-shot routine is advantageous for novice and experienced golfers

Task: Wedge shots from **43.75**, **54.68**, and **65.62** yards

Groups:

- 1. Control no practice
- 2. **Practice** 3-week training program
- 3. **Practice+Preshot** same as Practice plus a 13 step preshot routine

Preshot routines may be advantageous for multiple reasons

- Psychological explanations such as increased confidence, self-efficacy, positive outlook, etc.
- Attentional focus on external factors important to successful performance

Focus of attention can be based on specific instructions or be self-adopted

ATTENTIONAL FOCUS: The information that a performer's attention (or consciousness) is directed at

- Internal focus of attention: Focus on information associated with the performer's body
 - e.g., "Think about the timing of your hip rotation"
- External focus of attention: Focus on information that is external to the performer's body
 - e.g., "Think about the tennis racquet hitting the ball"

THIS IS **NOT** A VISUAL FOCUS...IT IS A **MENTAL FOCUS**

An external focus is more effective than an internal

Task: Stabilometer

Groups:

- Internal focus = feet
- External focus = markers on platform
- **Control** = no instructions given

Explaining the external focus advantage

CONSTRAINED ACTION HYPOTHESIS: Consciously controlling one's movements **constrains** the motor system, which **interferes** with **automatic** control process

 Focusing on the movement effect via an external focus allows the motor system to more naturally self-organize

Q: How could we test the predictions of the constrained action hypothesis?

- "Consciously controlling..."
- "...constrains the motor system...interferes with automatic control processes"

Any questions?

Strength

_ .

Game Performance

Balance/Agility

Health

Strength

Game Performance

Balance/Agility

Practice

Augmented feedback

Health

Learning objectives

- 1. Distinguish between **intrinsic** and **augmented** feedback.
- 2. Compare and contrast the **knowledge of performance** and **knowledge of results** feedback, and give examples of each.
- 3. Discuss the roles and influence of augmented feedback on motor learning.

Take-home message:

(Augmented) feedback plays a vital role in skill acquisition, retention, and transfer.

Adapted from Magill and Anderson 2017 13 / 26

Feedback can arise from within the performer or come from an external source

INTRINSIC FEEDBACK: Sensory information that arises as a **natural consequence** of performing an action

- e.g., vision, proprioception, haptic, etc
- also called response-produced feedback, inherent feedback, and task-intrinsic feedback

AUGMENTED FEEDBACK: Information about performing an action that is **fed back** to the learner by an **external** source to **supplement** (i.e., augment) the use of intrinsic feedback

• e.g., from a coach, therapist, video-replay, etc

Knowledge of results gives information about the outcome of a performance attempt

Knowledge of results is redundant with the outcome

Source: http://talkhockey.ca/wp-content/uploads/Skills-0666.gif

Knowledge of results is not redundant with the outcome

Source: https://gifimage.net/wp-content/uploads/2017/10/chinese-diversgif.gif

Knowledge of performance gives information about movement characteristics of a performance

See gait cycle

Source: https://www.sciencefriday.com/wp-content/uploads/2017/09/giphy-68.gif

See trajectory of tennis racquet during serve

Source: https://thumbs.gfycat.com/GlaringWickedBarasingasize_restricted.gif

Augmented feedback: Similarities and differences

Knowledge of results	Knowledge of performance
Similarities	
Verbal (or verbalizable)	Verbal (or verbalizable)
Augmented	Augmented
Provided after movement (usually)	Provided after movement (usually)
Differences	
Information about goal outcome	Information about movement pattern
Often redundant with intrinsic feedback	Usually distinct from intrinsic feedback
Usually provided as a score	Usually kinematic information
Often used in laboratory research	Often provided in everyday activities

Paradoxical properties of augmented feedback

 Augmented feedback can be essential for motor learning

BUT...

 Augmented feedback may not be essential for motor learning Augmented feedback can enhance motor learning

BUT...

Augmented feedback can hinder motor learning

Augmented feedback can be essential for motor learning

- Some performance contexts do not make critical sensory feedback available to the performer or learner
- Injury or disease can affect the integrity of the sensory pathways needed to detect intrinsic feedback
- Although the necessary intrinsic feedback is available and the individual's sensory system is capable of detecting it, the individual is unable to use the intrinsic feedback

Augmented feedback may not be essential for motor learning

- Some motor skills inherently provide sufficient intrinsic feedback, rendering augmented feedback redundant
- Some performance contexts provide a detectable external referent that the performer or learner can use to evaluate the appropriateness of an action
- When learners are able to observe fellow learners that are also beginners practice a new motor skill

Augmented feedback can enhance motor learning

- Some skills do not require augmented feedback to learn them, **but** receiving augmented feedback can:
 - accelerate the learning or skill acquisition process
 - result in a higher level of proficiency
- In these situations, augmented feedback is neither essential or redundant
- E.g., learning a difficult coordination pattern like the 90 degree bimanual coordination pattern
 - Use of Lissajous augmented feedback

Augmented feedback can hinder motor learning

- Augmented feedback can result in a dependence on its provision
- This has a negative impact when that same augmented feedback is not available in a test situation
- The dependency is likely when there is minimal intrinsic feedback available or it is difficult to interpret and use
- The dependence is likely (but not guaranteed) when a learner receives:
 - Erroneous augmented feedback
 - Concurrent augmented feedback
 - Frequent augmented feedback

The roles of augmented feedback in motor learning

Informational role

- Guide the learner to an appropriate movement solution
- Facilitate achievement the action goal of the skill
- Emphasized in the Guidance hypothesis¹
 - Feedback is both a performance and learning variable

Motivational role

- **Encourage** the learner to continue striving toward a goal through continued practice
- Secondary or a by-product of informational role
- Emphasized in the "OPTIMAL" theory³
 - Practice context can put learners into a virtuous or a vicious cycle

Conditions best suited for knowledge of results and knowledge of performance

Knowledge of results

- 1. To **confirm** own interpretation of intrinsic feedback
- 2. **Unable** to determine the outcome from intrinsic feedback alone
- 3. Motivate oneself to continue practicing
- 4. Encourage **discovery learning** through **trial- and-error** problem solving
- 5. May promote an **external focus** of attention

Knowledge of performance

- 1. When skills **must be** performed according to **specified** movement characteristics
- 2. Specific movement components that require **precise coordination** must be improved or corrected
- 3. The goal of the action is to produce a specific **kinematic**, **kinetic**, or **muscle activity** profile
- 4. Knowledge of results is **redundant** with intrinsic feedback

Learning objectives

- 1. Distinguish between **intrinsic** and **augmented** feedback.
- 2. Compare and contrast the **knowledge of performance** and **knowledge of results** feedback, and give examples of each.
- 3. Discuss the roles and influence of augmented feedback on motor learning.

Take-home message:

(Augmented) feedback plays a vital role in skill acquisition, retention, and transfer.

What questions do you have?

- @_LauraStGermain
- @LauraStGermain
 - www.cartermaclab.org