# Tugas Praktikum Analisis Algoritma



Disusun oleh:

Rahma Batari

140810180051

Program Studi S1 Teknik Informatika
Fakultas Matematika & Ilmu Pengetahuan Alam
Universitas Padjadjaran

# Worksheet 01

Dengan Algoritma Gale-Shapley, cari himpunan stable-matching yang sesuai dengan preference- lists berikut ini. Gunakan processor terhebat yang Anda miliki (otak) untuk mengikuti algoritma G-S dan output tidak perlu diuraikan per-looping tetapi Anda harus memahami hasil setiap looping.

## Men's Preferences Profile

Victor Wyatt Xavier Yancey Zeus

| Oth    | 1 st   | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
|--------|--------|-----------------|-----------------|-----------------|
| Bertha | Amy    | Diane           | Erika           | Clare           |
| Diane  | Bertha | Amy             | Clare           | Erika           |
| Bertha | Erika  | Clare           | Diane           | Amy             |
| Amy    | Diane  | Clare           | Bertha          | Erika           |
| Bertha | Diane  | Amy             | Erika           | Clare           |

## Women's Preferences Profile

Amy

| O <sup>th</sup> | <b>1</b> st | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
|-----------------|-------------|-----------------|-----------------|-----------------|
| Zeus            | Victor      | Wyatt           | Yancey          | Xavier          |
| Xavier          | Wyatt       | Yancey          | Victor          | Zeus            |
| Wyatt           | Xavier      | Yancey          | Zeus            | Victor          |
| Victor          | Zeus        | Yancey          | Xavier          | Wyatt           |
| Yancey          | Wyatt       | Zeus            | Xavier          | Victor          |

| Tahap | Man    | Woman  | Free   |
|-------|--------|--------|--------|
| 1     | Victor | Bertha |        |
| 2     | Wyatt  | Diane  |        |
| 3     | Xavier | Bertha | Victor |
| 4     | Victor | Amy    |        |
| 5     | Yancey | Amy    | Yancey |
| 6     | Yancey | Diane  | Wyatt  |
| 7     | Wyatt  | Bertha | Wyatt  |
| 8     | Wyatt  | Amy    | Wyatt  |
| 9     | Wyatt  | Clare  |        |
| 10    | Zeus   | Bertha | Zeus   |
| 11    | Zeus   | Diane  | Yancey |
| 12    | Yancey | Clare  | Yancey |
| 13    | Yancey | Bertha | Yancey |
| 14    | Yancey | Erika  |        |

# Program C++

```
Code:
Nama: Rahma Batari
NPM: 140810180051
Kelas: A
Tanggal: 26 Februari 2020
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
#define N 5
bool chooseMen(int prioritas[2 * N][N], int w, int m, int m1)
  for (int i = 0; i < N; i++)
    if (prioritas[w][i] == m1)
       return true;
    if (prioritas[w][i] == m)
       return false;
  }
void smp(int prioritas[2 * N][N])
  int pasanganWanita[N];
  bool priaFree[N];
  memset(pasanganWanita, -1, sizeof(pasanganWanita));
  memset(priaFree, false, sizeof(priaFree));
  int jumlahFree = N;
  while (jumlahFree > 0)
    int m;
    for (m = 0; m < N; m++)
       if (priaFree[m] == false)
          break;
    for (int i = 0; i < N \&\& priaFree[m] == false; <math>i++)
       int w = prioritas[m][i];
       if (pasanganWanita[w - N] == -1)
```

```
pasanganWanita[w - N] = m;
       priaFree[m] = true;
      jumlahFree--;
    else
      int m1 = pasanganWanita[w - N];
      if (chooseMen(prioritas, w, m, m1) == false)
         pasanganWanita[w - N] = m;
         priaFree[m] = true;
         priaFree[m1] = false;
  }
}
cout << "----" << endl;
cout << " Man Women " << endl;
cout << "-----" << endl;
string man;
string woman;
for (int i = 0; i < N; i++)
  if (i < N)
  {
    if (pasanganWanita[i] == 0)
      man = "Victor";
    if (pasanganWanita[i] == 1)
       man = "Wyatt";
    if (pasanganWanita[i] == 2)
       man = "Xavier";
    if (pasanganWanita[i] == 3)
       man = "Yancey";
    if (pasanganWanita[i] == 4)
      man = "Zeus";
    if (i == 0)
       woman = "Amy";
    if (i == 1)
       woman = "Bertha";
    if (i == 2)
       woman = "Clare";
    if (i == 3)
       woman = "Diane";
    if (i == 4)
       woman = "Erika";
  cout << " " << man << "\t " << woman << endl;
cout << "----" << endl;
```

```
int main()  \{ \\  \text{int prioritas}[2*N][N] = \{ \{6,5,8,9,7\}, \\  \{8,6,5,7,9\}, \\  \{6,9,7,8,5\}, \\  \{5,8,7,6,9\}, \\  \{6,8,5,9,7\}, \\  \{4,0,1,3,2\}, \\  \{2,1,3,0,4\}, \\  \{1,2,3,4,0\}, \\  \{0,4,3,2,1\}, \\  \{3,1,4,2,0\}\}; \\  \text{smp(prioritas)}; \\ \text{return 0;} \}
```

# Output:

III C:\Users\WINDOWS\Documents\Kuliah\Semester 4\Analisis Algoritma\Praktikum 1.exe

#### **Analisis Algoritma**

Jawablah pertanyaan berikut:

1. Apakah jawaban Anda di Worksheet 01 dan Program sama persis? Jika Tidak? Kenapa?

Ya, jawaban saya di worksheet01 dengan output program sama persis.

Anda diminta untuk membuktikan algoritma G-S benar dengan menjawab pertanyaan berikut:

## Fakta (1.1):

Seorang wanitatetap bertunangan dari titik di mana dia menerima proposal pertamanya; dan urutan mitra yang bertunangan dengannya menjadi lebih baik dan lebih baik lagi (hal ini sesuai dengan daftar preferensi wanita).  $\Box$  tidak perlu dipertanyakan

### Fakta (1.2):

Urutan wanita yang dilamar pria lebih buruk dan lebih buruk lagi (hal ini sesuai dengan daftar preferensi pria). □ tidak perlu dipertanyakan

#### **Teorema (1.3):**

Algoritma G-S berakhir setelah paling banyak n<sup>2</sup> iterasi menggunakan While Loop. Buktikan!

Ketika menggunakan while loop memiliki kemajuan dimana pria free melamar wanita berikutnya dalam daftar pilihan pria tersebut, seseorang yang belum pernah ia lamar sebelumnya. Karena terdapat n pria dan setiap daftar pilihan memiliki panjang n, terdapat paling banyak proposal n² yang dapat terjadi. Sehingga jumlah dalam iterasi yang dapat terjadi paling banyak adalah n².

Algoritma

#### **Teorema (1.4):**

Jika seorang pria bebas dibeberapa titik dalam eksekusi algoritma, maka ada seorang wanita yang belum dia ajak bertunangan.

Buktikan!

Dibuktikan berdasarkan kontradiksi. Misalkan ada waktu tertentu dalam pelaksanaan algoritma ketika seorang pria free, namun telah mengusulkan kepada setiap wanita. Ini berarti, setiap wanita telah diusulkan setidaknya satu kali. Dengan teori 1, mendapatkan bahwa setiap wanita bertunangan. Jadi, kita telah melibatkan n wanita dan karenanya n free bertunangan, yang menyiratkan bahwa m juga terlibat bertentangan dengan asumsi bahwa m adalah free.

#### **Teorema (1.5):**

Himpunan S yang dikembalikan saat terminasi adalah perfect matching Buktikan!

Karena setiap pria berpasangan dengan setiap wanita

### **Teorema (1.6):**

Sebuah eksekusi algoritma G-S mengembalikan satu set pasangan S. Set S adalah pasangan yang stabil. Buktikan!

Menunjukkan bahwa pencocokan yang dikembalikan adalah pencocokan sempurna. Dibuktikan dengan kontradiksi. Misalkan tidak, maka ada seorang pria yang masih lajang di akhir algoritma. Menurut teori 2, itu berarti m belum melamar beberapa wanita. Tetapi kemudian, algoritma tidak akan keluar dari pengulangan loop, menghasilkan kontradiksi yang diinginkan.

Menunjukkan bahwa pencocokan yang dikembalikan stabil. Dibuktikan dengan kontradiksi. Misalkan ada laki-laki m dan m' dan wanita w dan w' sehingga (m, w) dan (m', w') berada di S, tetapi m lebih suka w' ke w dan w' lebih suka m ke m'. Dengan algoritma, w adalah wanita terakhir yang saya ajukan. Karena m lebih suka w' ke w, m harus sudah mengusulkan ke w' sebelum usulannya ke w. Pada saat itu, atau nanti, w' bertunangan dengan seorang pria, katakanlah m'', yang ia sukai lebih dari m. Pada akhirnya, w' bertunangan dengan m'. Oleh teori 1, menemukan bahwa w' lebih memilih m' daripada m'' dan lebih memilih m'' daripada m; ini menyiratkan bahwa w' lebih suka m' daripada m, bertentangan dengan asumsi bahwa w' lebih memilih m daripada m'.