Today's Agenda (Nov. 15)

- Mixer Basics
- Mixer Performance Matrices
- IQ Mixer for Image Rejection
- IQ Mixer for SSB Tx

Electrical Schematic

*No Discussion Session Next Week (Nov. 22)

Mixer/Rx Basics

- Why not a(t) to a(t) directly?
- Why not using a high frequency ADC at Rx directly (e.g. 10 GS/s)?
- Why using super-heterodyne Rx?
- What are the disadvantages of super-heterodyne Rx?
- Is the double-side-band up-converter spectrum-efficient?
- What will happen if the LO and RF phases are not the same for a zero-IF Rx?

Mixer Performance Matrices (1/2)

- rugged construction
- low conversion loss
- high L-R isolation
- protected by US Patents 6,133,525 & 6,790,049

Applications

- cellular
- PCS
- instrumentation
- satellite communication

ZX05-1MHW+ CASE STYLE: FL905 Model ZX05-1MHW-S+ Quantity **Unit Price** \$39.95 1 - 4

Typical Performance Data

Down Converter $RF \longrightarrow \bigcirc \longrightarrow IF$	Frequency (MHz)		Conversion Loss (dB)	Isolation L-R (dB)	Isolation L-I (dB)	VSWR RF Port (:1)	VSWR LO Port (:1)
1	RF	LO	LO +13dBm	LO +13dBm	LO +13dBm	LO +13dBm	LO +13dBm
LO	500.79 533.89	470.79 503.89	5.58 5.69	36.54 35.79	33.15 32.80	1.45 1.43	2.59 2.46
Up Converter	550.45 583.55 600.10	520.45 553.55 570.10	5.74 5.74 5.72	35.31 35.05 35.01	32.18 30.26 29.30	1.41 1.38 1.38	2.49 2.66 2.64

Why the above performance metrics are important ones? RF-to-LO/IF leakage not important?

RF

ΙF

Coaxial Connections

Simple Mixer Analysis Example

Mixer Distortion Matrices (2/2)

\square Mixer IP_{1dB} , IM3, and IIP3

■ Mixer IM2 and IIP2

super-heterodyne mixers can afford to have worse IM2/IIP2

IQ Mixer for Image Rejection (1/3)

- Super-heterodyne mixers convert noise/blockers in image band to the IF
- Eg., Desired RF band at 1 GHz, LO at 0.99 GHz => Image band at 0.98 GHz
 Desired RF band at 0.99 GHz, LO at 1.0 GHz => Image band at 1.01 GHz

IF (super-heterodyne) Rx

Image rejection with filter is not easy

What are the image frequencies for this 2-stage conversion?

IQ Mixer for Image Rejection (2/3)

Spectral representation

 $A + C = -2a(t)\sin(\omega_{IF}t)$

IQ Mixer for Image Rejection (3/3)

Surface Mount Image Reject Mixer

Level 18 (LO Power +18dBm) 1000 to 1500 MHz

Electrical Schematic

IQ Mixer for SSB Tx

transmit redundant signal

- Swap IF and RF port in an IR mixer
- 90° phase shift for the IF or baseband signal usually achieved by DSP

