Problem 8.3.15

Sujal Rajani

September 30, 2025

Question

Question: An equilateral triangle is inscribed in the parabola $y^2=4ax$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Solution

let

SOLUTION let the three position vector of the equilateral triangle be \mathbf{A} , \mathbf{B} and \mathbf{C} .

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} x \\ y \end{pmatrix}, \mathbf{C} = \begin{pmatrix} x \\ -y \end{pmatrix}$$

both parabola and equilateral triangle are symmetric about x axis that why the y coordinates of **B**and **C** are of different sign .

$$v^2 = 4ax$$

because the position vector of ${\bf B}$ and ${\bf C}$ lie of the parabola .

$$||\mathbf{B} - \mathbf{A}||^2 = ||\mathbf{B} - \mathbf{C}||^2$$
$$(\mathbf{B} - \mathbf{A})^{\top}(\mathbf{B} - \mathbf{A}) = (\mathbf{B} - \mathbf{C})^{\top}(\mathbf{B} - \mathbf{C}).$$
$$y^2 + x^2 = 4y^2$$
$$x = 12a.$$

Frame Title

by replacing the value of x in (1) equation :

$$y^2 = 48a^2$$
$$y = \sqrt{48}a$$

the length of side of equilateral triangle is :

$$2y = 2\sqrt{48}a.$$

for plotting we are takeing a= $\!1$.

