

EPtask: Deep Reinforcement Learning Based Energy-E fficientand Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing

Mahan Bayhaghi

VEC

EPTask on VEC: PPO vs. DDPG/SAC & Baselines

- Goal: Priority-aware, energy-efficient task scheduling in Vehicular Edge Computing (VEC)
- What we built: A paper-aligned simulator + RL scheduler (PPO) with suggested baselines (SAC, DDPG, heuristic, local-only, offloading-only, random)
- **Key metrics:** deadline miss rate, completion time, mean energy, throughput.
- Takeaway: PPO learns smarter offloading & prioritization under mobility, deadlines, and energy limits.

Problem & Project Objectives

• **Challenge:** Where to compute each task (local/V2V/edge/cloud) and at what priority, under deadlines, mobility, and limited bandwidth/energy

Project objectives:

- Implement EPTask-style environment
- Train PPO and compare against DDPG, SAC, heuristic, local-only, offloading-only, random
- Report miss rate, completion time, energy, throughput
- show scalability vs. #vehicles

Design constraints (per proposal & our choices):

- Non-preemptive + EDF
- Distance-based TX power by default (learned-power kept for ablations).

Paper Alignment & Assumptions

•Table III mapping (core params):

•Radio: V2I 100 MHz; noise \approx -95 dBm (from -174 dBm/Hz over 100 MHz); vehicle TX \approx 1 dBm (bins for tiers).

•Compute: vehicle ≈ 1 GHz, edge ≈ 2 GHz, cloud ≈ 5 GHz (MIPS equivalents).

•**Tasks:** size 2–20 Mb, cycles 2–20 × 10⁹, 4 priority levels; **Poisson** arrivals (bursty).

•Mobility & links: 1-D movement;

distance→SNR→rate
•Scheduling rule: EDF

•Energy model: TX + compute energy per task

TABLE III EXPERIMENTAL PARAMETERS

Parameters	Value
Number of vehicles	10-50
Number of edge servers	8
Number of tasks	0-10
Required CPU cycles of the tasks C	2-20 cpu cycles
Computation power of edge servers	2 cpu cycles/s
Computation power of vehicles	1 cpu cycles/s
data size S	2-20 Mb
Bandwidth of edge server	100 MHz
Speed of vehicles	$\approx 25 \text{ m/s}$
Transmit power of vehicles	1 dBm
Execution power of vehicles	3-4 dBm
White Gaussian noise	-174 dBm/Hz
Power consumption coefficient ξ	10^{-11}
Power consumption coefficient γ	2
Received Signal Strength Indicator RSSI	-65 dBm
Transmit antenna gain TX	20 dBi
Receive antenna gain RX	-8 dBi
Signal attenuation SA	7 dB
Working frequency f	5GHz
Learning rate	0.0003
Size of Mini-batch	32
Number of steps in each episode	2048
Entropy loss coefficient	0.01

Simulator Architecture (What's in Code)

- Env core (env/vec_env.py):
 - Builds Dict observation (global/task/target/vehicle tensors)
 - Action per step on top-K tasks: (offload target, priority)
 - **Task generation:** Poisson arrivals; sample_tasks() from env/generators.py
 - **Link budget:** distance→SNR→rate
 - Energy/time: env/models.py (tx/compute time + energy functions)
 - **Reward:** -(z-time + z-energy) $-\lambda$ ·misses
- Metrics & tools:
 - •env/metrics.py, scripts/eval_metrics.py, scripts/plot_metrics.py.
 - •Grid & scalability: scripts/run_grid.py, scripts/plot_vs_vehicles.py.

RL Formulation & Methods

- Action (per top-K tasks):
 - Offload target ∈ {local, vehicles, edges, cloud}
 - Priority level $\in \{1..4\}$
 - (default is distance-based, no power head)
- Reward:
 - $(\lambda_1 \cdot \mathbf{z}(\text{completion time}) + \lambda_2 \cdot \mathbf{z}(\text{energy})) \lambda_3 \cdot \#\text{deadline_misses} \text{ (per step)}$
- Training setup: horizon 600; n_steps=2048, lr=3e-4; eval on 5 episodes;

Results

- **Setup:** configs/default.yaml, horizon 600, Poisson arrivals, distance-based power
- Key findings (qualitative):
 - PPO achieves the lowest deadline miss rate
 - Energy per task stays competitive with SAC/DDPG and lower than fixed baselines at load
- Why: PPO's discrete offload + priority decisions adapt to bursty queues and mobility.

Energy per Task Comparison

Deadline Miss Rate Comparison

Throughput Comparison

Scalability vs #Vehicles

- **Experiment:** $V \in \{10, 20, 30, 40, 50\}$, seeds = $\{0,1,2\}$, 5 eval episodes each.
- Trend highlights:
 - As **vehicles**↑, **offloading-only** degrades (shared V2I), **local-only** saturates on compute
 - PPO maintains lower miss rate by balancing local/V2V/edge/cloud
 - Throughput grows with V
- Interpretation: Learning when not to offload is as important as offloading

Insights

- Distance-based power (default) vs learned power (ablation):
 - Removing the power head shrinks the action space → faster, stabler PPO
- No-V2V ablation:
 - Increases queueing at edges/cloud
- Heuristic (EDF + min-ETA):
 - Strong at light load; under bursty arrivals and higher V, it misjudges congestion vs PPO
- Reward normalization (running z-scores):
 - Critical for stable training on CPU (prevents advantage blow-ups)
- Takeaway: The offload+priority structure is the main win

Reproducibility & Engineering

- One-command pipelines
 - Train: scripts/train.py, train_sac.py, train_ddpg.py
 - Evaluate & metrics: scripts/eval_metrics.py
 - Baselines: scripts/baseline_heuristic.py --mode {heuristic,local,offload,random}
 - Grids & plots: scripts/run_grid.py, scripts/plot_metrics.py, scripts/plot_vs_vehicles.py
- Configs & seeds
 - YAML configs (Table-III aligned); config snapshot saved in each logdir.
 - Multi-seed runs (≥3) aggregated to mean±std tables/plots.
- Environment
 - Gymnasium env, Dict observations

Any Questions?

References

1. P. Li, Z. Xiao, X. Wang, K. Huang, Y. Huang and H. Gao, "EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing," in IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 1830-1846, Jan. 2024, doi: 10.1109/TIV.2023.3321679.