

IN THE CLAIMS

Please amend the claims as follows

1(Currently amended). A compound represented by formula II

wherein at least one of R^2 , R^3 or R^5 is H, $R^{20}-(W)_x-CO-$, $R^{20}-(W)_x-CS-$ or $R^{20}-(W)_x-PO(OH)-$; and wherein at least one of R^2 , R^3 or R^5 is not H; wherein $[R^{20}]$ is R^{20} is alkyl, H, alkanoyl, cycloalkyl, aryl, heterocyclic, $NR^{21}R^{22}$, alkenyl, or alkynyl; or is alkyl, alkanoyl alkenyl or alkynyl substituted by halo, phenyl, cycloalkyl, $NR^{21}R^{22}$, hydroxy, alkoxy; or is aryl substituted by phenyl halo, CN, NO_2 , OH, R^{28} , O^-R^{28} , CF_3 , SH, $SR^{21}, SOR^{21}, SO_2R^{21}$; $NR^{21}R^{22}$ CO_2H , CO_2^- , OR^{21} , O^-M^+ or S^-M^+ ; wherein M^+ is an alkali metal cation;

or R^{20} is- $-(CHR^{21})_e-(CH_2)_f-CO-OR^{22}$,

$-(CHR^{21})_e-(CH_2)_f-OR^{22}$, or $-(CHR^{21})_e-(CH_2)_f-NR^{21}R^{22}$

W is O, NR^{28} or S;

R^{21} is H, alkyl, alkanoyl [$, Y]$ or aryl or is alkyl, alkanoyl or aryl substituted

substituted by halo, phenyl, CN, NO₂ OH, CO₂H or alkoxy; and R²² is H, alkyl or aryl or is alkyl or aryl substituted by phenyl; halo, CN, NO₂, OH, CO₂H or alkoxy;

or R²¹ and R²² taken together with N and one of CHR²¹, NR²¹, O, S, SO or SO₂ form a five-, six- or seven- membered ring;

R²⁷ is H, OR²¹, NR²¹R²², R²⁰-(W)_x-CO-, R²⁰-(W)_x-CS-, (HO)₂PO- or

R²⁰-(W)_x-PO(OH) - or HO-SO₂-;

R²⁸ is H, alkanoyl, aryl, alkyl or alkyl substituted by OH, halo or NR²¹R²²,

e= 0 to 6, f= 0 to 10, t = 0 to 100; s = 0 to 6000; r = 1 to 5000; and x = 0 or 1;

or a pharmaceutically acceptable salt thereof.

2(Original). A pharmaceutical composition of a compound of claim 1 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.

3(Currently amended).. A method of using a compound represented by formula II of claim 1 for treating a susceptible viral infection , wherein the method comprises administering a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof.

[.]

4(Currently amended).. A method of using a compound represented by formula II of claim 1 in association with interferon alpha for treating a chronic hepatitis C viral("HCV") infection , wherein the method comprises administering a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof and a therapeutically effective amount of an interferon alpha.

5(Currently amended).. The method of claim 4, wherein the interferon-alpha is selected from interferon alpha-2a, interferon alpha-2b, a consensus interferon, a purified interferon alpha product or a pegylated interferon-alpha-2a, pegylated interferon-alpha-2b, and pegylated consensus interferon.

6(Currently amended).. The method of claim 4, wherein the interferon-alpha [administered] is a pegylated interferon alpha-2b and the amount of pegylated interferon-alpha-2b [administered] is from 0.5 to 2.0 micrograms/kilogram per week on a weekly, [TIW] three times a week("TIW"), [QOD] every other day("QOD") or daily basis,

7(Original). The method of claim 4, wherein the interferon-alpha administered is a pegylated interferon alpha-2a and the amount of pegylated interferon alpha-2a administered is from 20 to 250 micrograms per week on a weekly, TIW, QOD or daily basis.

9(Original). The compound of formula II of claim 1, wherein $R^2 = R^3 = H$.

10(Original). The compound of formula II of claim 1 wherein $R^2 = R^5 = H$,

11(Original). The compound of formula II of claim 1 wherein $R^3 = R^5 = H$.

12(Original). The compound of formula II of claim 1, wherein R^5 is one of

wherein X is independently OH, alkanoyl, amino, alkylamino, dialkylamino , alkanoylamino, hydroxyalkyl , alkoxy, alkyl, CN, NO₂ , halo, or alkyl substituted by OH, alkanoyl, amino, alkylamino, dialkylamino , alkanoylamino, hydroxyalkyl , alkoxy, CN, NO₂ , or halo.

- 13 The compound of formula II of claim 1, wherein R^{5'} is

wherein X is OH, COCH₃, OCOCH₃, NO₂ , NH₂ , [[CH₃]₂N], (CH₃)₂N, NHCOCH₃, CH₂OH , CH₃ , OCH₃ , F, Br or Cl.

14. The compound of claim 1, wherein R^{5'} is

- 15(Original). A method of treating patients having chronic hepatitis C infection comprising administering a therapeutically effective amount of a ribavirin derivative of formula I and a therapeutically effective amount of interferon-alpha for a time period sufficient to eradicate detectable HCV-RNA at the end of said period of administering and to have no detectable HCV-RNA for at least 24 weeks after the end of said period of administrating, and wherein the ribavirin derivative is represented by formula I:

wherein at least one of R^2 , R^3 or R^5 is H, $R^6-(W)_x-CO-$, $R^6-(W)_x-CS-(HO)_2PO-$, $R^6-(W)_x-PO(OH)-$ or $HO-SO_2-$ and wherein at least one of R^2 , R^3 or R^5 is not H;

wherein R^6 is H, alkyl, alkanoyl, cycloalkyl, heterocyclic, aryl, $NR^{7a}R^{7b}$, alkenyl, or alkynyl;

or is alkyl, alkanoyl, alkenyl or alkynyl substituted by halo, phenyl, cycloalkyl, $NR^{7a}R^{7b}$, hydroxy or alkoxy;

or R^6 is aryl substituted by phenyl, halo, CN, NO_2 , OH, R^{18} , OR^{18} , CF_3 , SH, SR^{7a} , SOR^{7a} , SO_2R^{7a} ; $NR^{7a}R^{7b}$, CO_2H , $CO_2^- M^{+-}$, $O^- M^+$, OR^{7a} or $S^- M^+$;

wherein M^+ is an alkali metal cation;

or R^6 is $-(CHR^{7a})_e-(CH_2)_f-CO-OR^{7b}$,
 $-(CHR^{7a})_e-(CH_2)_f-OR^{7b}$, or $-(CHR^{7a})_e-(CH_2)_f-NR^{7a}R^{7b}$

W is O, NR^{18} or S;

R^{7a} is H, alkyl, alkanoyl, aryl or is alkyl, alkanoyl or aryl substituted by halo phenyl CN, NO_2 , OH, CO_2H or alkoxy; and R^{7b} is H, alkyl or aryl or is alkyl or aryl substituted by halo, CN, NO_2 , CO_2H , OH or alkoxy;

or R^{7a} and R^{7b} taken together with N and one of CHR^{7a} , NR^{7a} , O, S, SO or SO_2 form a five-, six- or seven- membered ring;

R^{17} is H, OR^{7a} , $NR^{7a}R^{7b}$, $R^6-(W)_x-CO-$, $R^6-(W)_x-CS-$, $(HO)_2PO-$,

$R^6-(W)_x-PO(OH)-$, or $HO-SO_2-$;

R^{18} is H, aryl, alkyl, or alkyl substituted by OH, halo, $NR^{7a}R^{7b}$, or alkanoyl;

$e = 0$ to 6, $f = 0$ to 10, and $x = 0$ or 1;

or a pharmaceutically acceptable salt thereof.

16(Original). The method of claim 15 wherein R⁵ is R⁶CO wherein R⁶ is aryl substituted by phenyl, halo, CN, NO₂, OH, R¹⁸, OR¹⁸, CF₃, SH, SR^{7a}, SOR^{7a}, SO₂R^{7a}; NR^{7a}R^{7b} CO₂H, CO₂⁻ M⁺, O⁻M⁺ OR^{7a} or S⁻M⁺ and wherein M⁺ is an alkali metal cation.

17(Original). The method of claim 15 wherein R⁵ is R⁶CO wherein R⁶ is phenyl substituted by, halo, CN, NO₂, OH, R¹⁸, OR¹⁸, CF₃, SH, SR^{7a}, SOR^{7a}, SO₂R^{7a}; NR^{7a}R^{7b} CO₂H, CO₂⁻ M⁺, O⁻M⁺ OR^{7a} or S⁻M⁺ and wherein M⁺ is an alkali metal cation.