FORMA NORMAL DE BOYCE-CODD (BCNF):

Condiciones necesarias:

- Claves candidatas múltiples.
- o Claves candidatas solapadas.
- o Claves candidatas compuestas.

R1={S#,SNAME,STATUS,CIUDAD}

CC1= S#
CC2= SNAME

 $\{S\#\} \rightarrow \{SNAME,STATUS,CIUDAD\}$ $\{SNAME\} \rightarrow \{S\#, STATUS, CIUDAD\}$ $\{S\#\} \rightarrow \{SNAME\}$ $\{SNAME\} \rightarrow \{S\#\}$

3NF

R1= {S#,SNAME, P#,CANT} CC1={S#, P#} CC2={SNAME, P#}

 $\{S\#,P\#\} \rightarrow \{SNAME, CANT\}$ $\{S\#\} \rightarrow \{SNAME\}$ $\{SNAME, P\#\} \rightarrow \{S\#, CANT\}$ $\{SNAME\} \rightarrow \{S\#\}$

BCNF (Primera descomposición):

R1= {S#, SNAME}

CC1= S#

CC2= SNAME

 $\{S\#\} \rightarrow \{SNAME\}$

$\{SNAME\} \rightarrow \{S\#\}$

R2 = { S#, P#, CANT}
CC1 = {S#,P#}

$$\{S\#, P\#\} \rightarrow \{CANT\}$$

BCNF (Segunda descomposición)

R1= $\{S\#, SNAME\}$ CC1= S#CC2= SNAME $\{S\#\} \rightarrow \{SNAME\}$ $\{SNAME\} \rightarrow \{S\#\}$

R2 = { SNAME, P#, CANT} CC1 = {SNAME, P#} SNAME, P# \rightarrow {CANT}

SNAME	P#	CANT

3NF:

R1={GCIA,DPTO,PISO,CANT} {GCIA, DPTO}
$$\rightarrow$$
 {PISO, CANT} {PISO} \rightarrow {DPTO}

BCNF:

R1= {PISO, DPTO}

CC1= PISO CC2= DPTO

 ${PISO} \rightarrow {DPTO}$ ${DPTO} \rightarrow {PISO}$

R2 ={GCIA, PISO, CANT} CC1= {GCIA, PISO} {GCIA, PISO} → {CANT}

Ejemplo Date:

CC1={GCIA, PISO}

CC2={GCIA, DPTO}

BCNF:

R1={PISO,DPTO}

CC1= PISO

CC2= DPTO

 $\{PISO\} \rightarrow \{DPTO\}$

 $\{DPTO\} \rightarrow \{PISO\}$

R2= {GCIA, PISO}
CC1={GCIA, PISO}

S= ALUMNO

J= TEMA

P= POSICIÓN

CC1= {ALUMNO, TEMA}
CC2= {TEMA, POSICIÓN}

{ALUMNO, TEMA} → {POSICIÓN} {TEMA, POSICIÓN} → {ALUMNO}

CUARTA FORMA NORMAL (4NF):

MATERIA	PROFESOR	TEXTO
Física	Green	Mecánica básica
	Brown	Principios de óptica
Matemáticas	Green	Mecánica básica
		Análisis vectorial
		Trigonometría

CTX

MATERIA	PROFESOR	TEXTO
Física	Green	Mecánica básica
Física	Green	Principios de óptica
Física	Brown	Mecánica básica
Física	Brown	Principios de óptica
Matemáticas	Green	Mecánica básica
Matemáticas	Green	Análisis vectorial
Matemáticas	Green	Trigonometría

CC={MATERIA, PROFESOR, TEXTO} (BCNF)

CT

MATERIA	PROFESOR
Física	Green
Física	Brown
Matemáticas	Green

CC1={MATERIA, PROFESOR}

CX

MATERIA	TEXTO
Física	Mecánica básica
Física	Principios de óptica
Matemáticas	Mecánica básica
Matemáticas	Análisis vectorial
Matemáticas	Trigonometría

CC2={MATERIA, TEXTO}

En la relación CTX:

- No existen FD (Excepto las triviales). La relación es "Todo Clave".
- o Existen dependencias multivaluadas (MVD).
 - \circ Materia \rightarrow \rightarrow Profesor
 - \circ Materia \rightarrow \rightarrow Texto.
- o Las MVD son una generalización de FD.
- Una MATERIA no tiene asociado un ÚNICO profesor
 - No existe una FD.
- Una MATERIA no tiene asociado un ÚNICO texto.
 - No existe una FD.
- Una MATERIA se relaciona con un CONJUNTO bien definido de profesores
 - Existe una MVD.

- Una MATERIA se relaciona con un CONJUNTO bien definidos de textos.
 - Existe una MVD.

CONJUNTO "BIEN DEFINIDO":

Para un curso determinado ("**Física**") y un texto especifíco ("**Mecánica básica**") el conjunto de profesores ("**Green**, **Brown**") que concuerdan con el par (**Física**, **Mecánica básica**) en la relación CTX depende ÚNICAMENTE del valor del curso ("**Física**") independientemente del texto utilizado.

DEPENDENCIA MULTIVALUADA:

Sea R una relación y A, B, C un subconjunto de atributos de R. Entonces decimos que B es MULTIDEPENDIENTE de A

 $A \rightarrow \rightarrow B$

Ó A MULTIDETERMINA a B sí y solo sí el conjunto de valores de B que concuerdan con un par dado (A:a, C:c) perteneciente a R depende únicamente del valor de A y es independiente de C.

4NF:

La relación R está en 4NF sí y sólo sí, siempre que existan dos subconjuntos A y B de atributos de R tales que la MVD A $\rightarrow \rightarrow$ B se satisfaga, entonces todos los atributos de R dependen funcionalmente de A.

(Una relación está en 4NF sí y sólo sí las MVD existentes también son FD).

- La relación CTX NO está en 4NF dado que no existen FD.
- La relación CX está en 4NF pues resulta de la proyección de la MVD MATERIA →→ TEXTO que en dicha relación es una FD trivial {materia, texto} que es la clave candidata ("Todo clave").
- La relación CT está en 4NF pues resulta de la proyección de la MVD MATERIA→→ PROFESOR que en dicha relación es una FD trivial {materia, profesor} que es la clave candidata ("Todo clave").