Ejercicios de refuerzo

1. Consideramos la homografía

$$f:\mathbb{P}^3\to\mathbb{P}^3,\ [\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]\mapsto [3\mathtt{x}_0-\mathtt{x}_1+\mathtt{x}_3:\mathtt{x}_0+\mathtt{x}_1+\mathtt{x}_3:\mathtt{x}_0-\mathtt{x}_1+2\mathtt{x}_2+\mathtt{x}_3:2\mathtt{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f es un hiperplano H_1 de \mathbb{P}^3 y concluir que f es una elación.
- (2) Calcular todos los hiperplanos invariantes para f distintos de H_1 y demostrar que todos ellos pasan por un punto común P_0 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Demostrar que $f|_{\mathbb{A}_1} : \mathbb{A}_1 \to \mathbb{A}_1$ es una traslación y calcular el vector v de dicha traslación.
- (5) Elegid un hiperplano H_2 invariante para f distinto de H_1 . Demostrar que $f|_{\mathbb{A}_2} : \mathbb{A}_2 \to \mathbb{A}_2$ es una transvección y calcular una referencia afín de \mathbb{A}_2 tal que la matriz de $f|_{\mathbb{A}_2}$ tenga tantos coeficientes nulos como sea posible.

2. Consideramos la homografía

$$f:\mathbb{P}^3\to\mathbb{P}^3,\ [\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]\mapsto [-\mathtt{x}_0-\mathtt{x}_1+\mathtt{x}_3:-\mathtt{x}_0-\mathtt{x}_1-\mathtt{x}_3:-2\mathtt{x}_2:\mathtt{x}_0-\mathtt{x}_1-\mathtt{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f está formado por un hiperplano H_1 de \mathbb{P}^3 y un punto fijo $P_0 \in \mathbb{P}^3 \setminus H_1$ y concluir que f es una homología.
- (2) Calcular todos los hiperplanos invariantes para f distintos de H_1 y demostrar que todos ellos pasan por el punto P_0 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Demostrar que $f|_{\mathbb{A}_1} : \mathbb{A}_1 \to \mathbb{A}_1$ es una homotecia y calcular su centro y su razón.
- (5) Elegid un hiperplano H_2 invariante para f distinto de H_1 . Demostrar que $f|_{\mathbb{A}_2} : \mathbb{A}_2 \to \mathbb{A}_2$ es una dilatación y calcular una referencia afín de \mathbb{A}_2 tal que la matriz de $f|_{\mathbb{A}_2}$ tenga tantos coeficientes nulos como sea posible.

3. Consideramos la homografía

$$f:\mathbb{P}^3\to\mathbb{P}^3,\; [\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]\mapsto [2\mathtt{x}_0+\mathtt{x}_1+2\mathtt{x}_3:\mathtt{x}_0+2\mathtt{x}_1-2\mathtt{x}_3:-3\mathtt{x}_0-3\mathtt{x}_1-3\mathtt{x}_2:2\mathtt{x}_0-2\mathtt{x}_1-\mathtt{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f es la unión de dos rectas L_1 y L_2 , que no son coplanarias. Probar que f es una homografía involutiva.
- (2) Calcular todos los hiperplanos invariantes para f y probar que todos ellos contienen a L_1 o a L_2 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Elegid, para i=1,2, un hiperplano invariante H_i que contiene a L_i y consideramos el espacio afín $\mathbb{A}_i := \mathbb{P}^3 \setminus H_i$. Demostrar que $f|_{\mathbb{A}_i} : \mathbb{A}_i \to \mathbb{A}_i$ es una simetría paralela a una dirección W_i con respecto a una recta S_i para i=1,2. Calcular W_i y S_i para i=1,2. ¿Que relación existe entre las rectas proyectivas L_1 y L_2 y la dirección W_i y la recta S_i para i=1,2?

1