Exercise 6.113

L Answer (a).

We are given that the function x has the magnitude spectrum M and phase spectrum P, where

$$M(\omega) = 1$$
 and $P(\omega) = \omega$.

Let X denote the Fourier transform of x. From the definition of magnitude and phase spectra, we have

x. From the definition of magnitude and phase spectra, we have
$$X(\omega) = M(\omega)e^{jP(\omega)} \qquad \text{definition of magnitude and phase spectro} \\ = 1e^{j\omega} \qquad \text{substitute (1) and (2)} \\ = e^{j\omega}. \qquad \text{drop 1}$$

Taking the inverse Fourier transform of X, we obtain

we obtain
$$x(t) = \mathcal{F}^{-1}\left\{e^{j\omega}(1)\right\}(t)$$
 time shifting property
$$= \mathcal{F}^{-1}\left\{1\right\}(t+1)$$

$$= \delta(t+1).$$
 For $\delta = 1$ (from FT table)