Elliptic Curves and ECDSA Bonus Material!

Brendan Cordy

!!Con 2016

Elliptic Curves

Elliptic Curves

Counting Intersections

Double Intersections

Triple Intersections

The Point at Infinity

Adding Points

Adding Points

Strange, but has all the nice properties that addition should. Explicitly computing the sum takes a handful of operations.

Let
$$\lambda = \frac{y_Q - y_P}{x_Q - x_P}$$
, then $x_{P+Q} = \lambda^2 - x_P - x_Q$ $y_{P+Q} = \lambda(x_Q - x_{P+Q}) - y_P$

Point Doubling

Point Doubling

Again, explicitly computing the coordinates takes a handful of operations.

Point Doubling

- Again, explicitly computing the coordinates takes a handful of operations.
- In fact, we can use the same formulas, but with $\lambda = \frac{3x_P^2}{2y_P}$, so doubling takes about the same amount of time as adding distinct points.

Everything Works in \mathbb{F}_p

Everything Works in \mathbb{F}_p

► The graph is pretty nuts, but everything still works, even the explicit formulas for addition and doubling, if you do all the arithmetic mod p.

Everything Works in \mathbb{F}_p

- ► The graph is pretty nuts, but everything still works, even the explicit formulas for addition and doubling, if you do all the arithmetic mod p.
- ▶ $p = 2^{256} 4294966319$ in the secp256k1 standard used in Bitcoin, and the curve has about that many points on it.

P(4,47) on $y^2 = x^3 + 7 \pmod{71}$

P+P

P + P + P

P + P + P + P

P + P + P + P + P

P+P+P+P+P+P

P+P+P+P+P+P+P

P + P + P + P + P + P + P + P

Point Multiplication

Let $nP = P + P + \dots + P$.

Point Multiplication

- Let $nP = P + P + \dots + P$.
- ► There is a point *P* whose multiples cycle through all points on the curve (and it's given in the secp256k1 standard).

Point Multiplication

Let
$$nP = P + P + \dots + P$$
.

- ► There is a point *P* whose multiples cycle through all points on the curve (and it's given in the secp256k1 standard).
- ► Finding *nP* appears to require *n* additions. However, there is a clever way to do it.

$$179P = 128P + 32P + 16P + 2P + P$$

$$179P = 128P + 32P + 16P + 2P + P$$

▶ How many doublings? $\lfloor \log_2(n) \rfloor$

$$179P = 128P + 32P + 16P + 2P + P$$

- ▶ How many doublings? $\lfloor \log_2(n) \rfloor$
- ▶ How many additions? $\leq \lfloor \log_2(n) \rfloor$

$$179P = 128P + 32P + 16P + 2P + P$$

- ▶ How many doublings? $\lfloor \log_2(n) \rfloor$
- ▶ How many additions? $\leq \lfloor \log_2(n) \rfloor$
- ▶ $n \rightarrow 2 \log_2(n)$: Exponential speedup!

Generating Key-Pairs

▶ Take a random 256-bit integer d, and use peasant multiplication to compute Q = dP.

Generating Key-Pairs

- ▶ Take a random 256-bit integer d, and use peasant multiplication to compute Q = dP.

Generating Key-Pairs

- ▶ Take a random 256-bit integer d, and use peasant multiplication to compute Q = dP.
- What if instead we knew P and Q, but wanted to compute $d? \ ^- \ ^- \ ^-$
- ► The point *Q* is the public key, while the number *d* is kept secret.

▶ If you know that Q = dP, you can solve...

$$aP + bQ = xP$$

$$aP + bdP = xP$$

$$(a + bd)P = xP$$

$$x = a + bd$$

▶ If you know that Q = dP, you can solve...

$$aP + bQ = xP$$

$$aP + bdP = xP$$

$$(a + bd)P = xP$$

$$x = a + bd$$

Anyone can check whether solution works, without knowledge of d.

▶ To sign a transaction, let h be a hash of the transaction, k be a nonce, and r be the x-coordinate of kP. Solve hP + rQ = xkP.

- ▶ To sign a transaction, let h be a hash of the transaction, k be a nonce, and r be the x-coordinate of kP. Solve hP + rQ = xkP.
- The transaction is sent out along with the triple (Q, r, x). Nodes in the network will hash the transaction to obtain h, and verify the equation holds.

Elliptic Curves Recap

From $y^2 = x^3 + 7 \pmod{2^{256} - 4294966319}$ and P we can generate a key-pair (s, Q).

Elliptic Curves Recap

- From $y^2 = x^3 + 7 \pmod{2^{256} 4294966319}$ and P we can generate a key-pair (s, Q).
- Using ECDSA, the network can verify that a transaction originated from an individual who knows the value s.

Elliptic Curves Recap

- From $y^2 = x^3 + 7 \pmod{2^{256} 4294966319}$ and P we can generate a key-pair (s, Q).
- Using ECDSA, the network can verify that a transaction originated from an individual who knows the value s.
- ▶ The secret key *s* is a PIN used for spending.