TP4 : Hacheur dévolteur à IGBT ou MOSFET Commande modulation de largeur d'impulsions (PWM ou MLI)

I. Objectifs

- ✓ Visualisation du signal de commande du composant de puissance IGBT ou MOSFET par MLI avec fréquence fixe.
- ✓ Visualisation des tensions et courants à l'entrée et à la sortie du hacheur dévolteur.

II. Manipulations

1. Test de l'unité de commande en mode PWM (MLI)

Schéma de cablage:

- a. Mesurer la tension du potentiomètre de valeur de consigne avec le voltmètre avec le calibre 10 (mesure de tension continue, « AV », « AC+DC »).
- b. Régler la fréquence à 200Hz de l'unité de commande
- **c.** L'entrée (12) de l'amplificateur de sortie de l'unité de commande est reliée à la sortie (9) du modulateur de largeur d'impulsions à l'aide d'un cavalier de dérivation.
- **d.** Observez à l'oscilloscope la tension de sortie u_9 du modulateur de largeur d'impulsions c.-à-d. entre le point (9) de l'unité de commande et son bus 0V.
- e. mesurer la période sur l'écran de l'oscilloscope.
- **f.** modifier la tension du potentiomètre de consigne et lire cette tension sur le voltmètre et la largeur d'impulsion $t_f(ms)$.

Mesure	Calcul		
$U_{\mathit{onsigne}}(V)$	T(ms)	$t_f(ms)$	t_f
			T

 \checkmark Représenter la courbe $\frac{t_f}{T} = f\left(U_{consigne}\right)$

- 2. Hacheur dévolteur à IGBTou MOSFET commande par MLI
- a. Faites le câblage suivant :

b. Réglage

- ✓ Tension simple $U_e = 30V$
- ✓ Fixer $U_{consigne} = 5V$
- ✓ Fixer fréquence de hachage $f_h = 200Hz$
- ✓ Résistance de la charge $R = 100\Omega$
- ✓ Impulsions de la sortie S_1 =impulsions d'amorçage de l'IGBT $\begin{cases} S_{1+} \text{ à la gachette } G \\ S_{1-} \text{ à la cathode } E \end{cases}$
- ✓ Impulsions de la sortie S_1 =impulsions d'amorçage du MOSFET $\begin{cases} S_{1+} & \text{à la gachette } G \\ S_{1-} & \text{à la cathode } S \end{cases}$
- ✓ Voltmètre V_1 : calibre 30V, tension continue d'entrée U_e , position des commutateurs : « AV » et « AC+DC ».
- ✓ Voltmètre V_2 : calibre 30V, tension continue de sortie U_s , position des commutateurs : « AV » et « AC+DC ».
- ✓ Ampèremètre A_1 : calibre 3A, courant continu d'entrée I_e , position des commutateurs : « AV » et « AC+DC ».

- ✓ Ampèremètre A_2 : calibre 3A, courant continu de sortie I_s , position des commutateurs : « AV » et « AC+DC ».
- ✓ Connecter au moyen de cavaliers les circuits de protection RCD respectivement de l'IGBT (MOSFET) et de la diode de roue libre.

c. Allure des tensions et courants

- ✓ Mettez d'abord la partie commande sous tension.
- ✓ Mettez maintenant la partie puissance en marche et observer à l'oscilloscope tension et courant de charge :
- \checkmark Observer à l'oscilloscope Canal I : la courbe de la tension de sortie U_s et d'entrée U_e
- ✓ Observer à l'oscilloscope Canal II : avec l'ampli séparateur (canal B réglage : « DC », « x10 ») la courbe du courant de sortie et le courant d'entrée.
- ✓ Discuter les résultats obtenus.

d. Caractéristique de commande $U_s, I_e = f\left(t_f\right)$ pour un courant de charge I_s constant

En faisant varier la valeur de consigne à partir de la valeur maximale sélectionnée, effectuer la série de mesures suivantes : U_s , U_e , $I_e = f(t_f)$

Mesure					Calcul (idéal)	
$t_f(ms)$	$U_{s}(V)$	$U_{e}(V)$	$I_e(A)$	$I_s(A)$	$U_{sidcute{a}le}ig(Vig)$	$I_{eid\'eale}ig(Aig)$

✓ Calculer la valeur théorique de la tension de sortie : $U_{sidéale} = U_e \frac{t_f}{T}$ ainsi que la valeur théorique du courant d'entrée $I_{eidéale} = I_s \frac{t_f}{T}$

- ✓ Représenter U_s , $U_{sidéale} = f(t_f)$ sur le même graphe.
- \checkmark Représenter $I_e, I_{eidéale} = f(t_f)$ sur le même graphe.
- ✓ Interpréter les résultats obtenus.