Predicting the Band Gap of Compounds using Machine Learning

Bilal Armiyawo

AiCore

barmiyawo@st.ug.edu.gh

August 3, 2021

Overview

- Introduction
 - Motivation
- Methodology
 - Running Project
- 3 Data Processing and Storage
- 4 Results
 - Problems
 - Future Directions

Introduction

Objective

- Create a data set of elements and compounds with some features.
- Train a machine model to predict band gap energies of materials based on elemental descriptors

Motivation

- Abundance of models for predicting material properties but not band gap energies.
- Slower to calculate band gap energies from first principles.

Methodology

- Utilized python selenium for extraction of data.
- Mainly using functionalized codes, OQMD_Database_scraper.py and scraper_v3.py
- Some of the functions within the code include:
 - get_compounds()
 - get_elements()

Project Resources I

Figure: An image showing the OQMD website

Project Resources II

Figure: An image showing example results of a query for materials data

Project Resources III

Figure: An image showing the periodic table webpage

Project Resources IV

Figure: An image showing Hydrogen page with attributes found in web elements

Running Project

Scraping from OQMD website

To extract data from the OQMD website, run the code:

python OQMD_Database_scraper.py

Scraping from Periodic Table website

Similarly, extract element data by running the code,

python scraper_v3.py

Executing with a bash script

Can be executed in a bash script,

sh execute.sh

Data Processing and Storage

Pandas

- Determining storage format
- Cleaning the data
- Importing to SQL

For the desired structured output, the python library 'Pandas' was utilized.

Table I

Name	Space Group	Volume	Band Gap
CsHoSiS4	P212121	760.627	3.024
CsAu	Pm-3m	77.418	1.040
RbAu	Pm-3m	69.171	0.392

Table: Compounds with some distinct features

Table II

Element Name	Atomic Number	Electronegativity	Boiling Point
Hydrogen	1	2.2	20.28 K
Li	3	0.98	1615 K
RbAu	4	1.57	2744 K

Table: Elements with some distinct features

Results

- Scraper ran successfully locally.
- Included READme file delineating code usage.
- Data was stored locally in csv format.

Problems

- Connection refused when connecting to Postgre due to working from a Windows Subsystem Linux (WSL).
- TimeOutException error when running code.

Future Directions

Steps

- Ran the code remotely on the AWS EC2 server
- Store the data in S3 bucket
- Train a model to predict the band gap energies of simulated combinations of elements using elemental descriptors.