$$\frac{y'^2}{\frac{6}{(2+\sqrt{5})}} - \frac{y'^2}{\frac{6}{(\sqrt{5}-2)}} = 1$$

Ésta es la ecuación (8.5.15) con $a=\sqrt{\frac{6}{2+\sqrt{5}}}\approx 1.19$ y $b=\sqrt{\frac{6}{\sqrt{5}-2}}\approx 5.04$. Como

$$Q = \frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} 2 & 1 - \sqrt{5} \\ -1 + \sqrt{5} & 2 \end{pmatrix}$$

y det Q=1, se tiene, usando el problema 45 y el hecho de que 2 y $-1+\sqrt{5}$ son positivos,

$$\cos\theta = \frac{1}{\sqrt{10 - 2\sqrt{5}}} \approx 0.85065$$

Entonces θ está en el primer cuadrante y, utilizando una calculadora, se encuentra que $\theta \approx 0.5536$ rad $\approx 31.7^{\circ}$. Por lo tanto, (8.5.16) es la ecuación de una hipérbola estándar rotada un ángulo de 31.7° (vea la figura 8.2).

Figura 8.2 La hipérbola $x^2 - 4xy + 3y^2 = 6$.

EJEMPLO 8.5.3 Una elipse

Identifique la sección cónica cuya ecuación es

$$5x^2 - 2xy + 5y^2 = 4 (8.5.17)$$

SOLUCIÓN ightharpoonup En este caso $A = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$, los valores característicos de A son $\lambda_1 = 4$ y

$$\lambda_2 = 6 \text{ y dos vectores característicos ortonormales son } \mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \text{ y } \mathbf{v}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}. \text{ Entonces } Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}.$$