RE-RUN

RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/044,442
Source:	
Date Processed by STIC:	

ENTERED

IFW16

RAW SEQUENCE LISTING

DATE: 01/06/2005

PATENT APPLICATION: US/10/044,442

TIME: 10:24:13

Input Set : N:\FANTU\US10044442.raw
Output Set: N:\CRF4\01052005\J044442.raw

SEQUENCE LISTING

SEQUENCE LISTING												
		(1) GENERAL INFORMATION:										
	2		APPLICANT: Malcolm Whitman and Xin Chen									
	3	(ii)	TITL	TITLE OF INVENTION: METHODS AND REAGENTS FOR MODULATIN								
,	4			TGF-BETA SUPERFAMILY SIGNALLING								
	5	(iii)	NUMBI	ER OF SEQUENCES: 18								
	6	(iv)		ORRESPONDENCE ADDRESS:								
	7			ADDRESSEE: Clark & Elbing LLP								
	8			TREET: 176 Federal Street								
	9		(C)	ITY: Boston								
	10		(D)	TATE: MA								
	11		(E)	COUNTRY: USA								
	12		(F)	ZIP: 02110								
	13	(v)		PUTER READABLE FORM:								
	14		(A)	MEDIUM TYPE: Diskette								
	15		(B)	COMPUTER: IBM Compatible								
	16			PERATING SYSTEM: DOS								
	17		(D)	OFTWARE: FastSEQ for Windows Version 2.0								
	18	(vi)	CURR	ENT APPLICATION DATA:								
C>	19		(A)	APPLICATION NUMBER: US/10/044,442								
C>	20		(B)	FILING DATE: 11-Jan-2002								
	21		(C)	CLASSIFICATION:								
	22	(vii)	PRIO	R APPLICATION DATA:								
W>	23		(A)	APPLICATION NUMBER: US/09/087,134								
	24		(B)	FILING DATE: 27-MAY-1998								
W>	25		(A)	APPLICATION NUMBER: 60/047,991								
	26		(B)	FILING DATE: 28-MAY-1997								
	27	(viii)	ATTO	RNEY/AGENT INFORMATION:								
	28		(A)	NAME: Bieker-Brady, Kristina								
	29		(B)	REGISTRATION NUMBER: 39,109								
	30		(C)	REFERENCE/DOCKET NUMBER: 00246/501002								
	31	(ix)	TELE	COMMUNICATION INFORMATION:								
	32		(A)	TELEPHONE: 617-428-0200								
	33		(B)	TELEFAX: 617-428-7045								
	34		(C)	TELEX:								
	35	(2) INFO	RMATI	ION FOR SEQ ID NO: 1:								
	36	(i)	SEQU	UENCE CHARACTERISTICS:								
	37		(A)	LENGTH: 1658 base pairs								
	38		(B)	TYPE: nucleic acid								
	39		(C)	STRANDEDNESS: single								
	40		(D)	TOPOLOGY: linear								
	41	(ii)	MOLE	CULE TYPE: cDNA								
	42		FEAT									
		, -,										

```
(A) NAME/KEY: Other
43
             (B) LOCATION: 1...1
44
             (D) OTHER INFORMATION: Xenopus Smad2 coding region
45
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
46
   ATGTCGTCCA TCTTGCCTTT CACCCCGCCA GTAGTGAAGC GCCTGCTAGG ATGGAAGAAG
                                                                           '60
47
    TCTGCAAGTG GCACCACAGG AGCAGGTGGC GATGAGCAGA ACGGACAGGA AGAGAAGTGG
                                                                           120
   TGCGAAAAAG CGGTAAAGAG CTTGGTGAAA AAACTGAAGA AAACGGGACA ATTAGACGAG
                                                                          180
49
   CTTGAGAAGG CGATCACGAC GCAGAACTGC AACACGAAAT GCGTAACGAT ACCAAGCACT
                                                                           240
50
   TGCTCTGAAA TTTGGGGACT GAGTACAGCA AATACCATAG ATCAGTGGGA TACCACAGGC
                                                                          300
    CTTTACAGCT TCTCTGAACA AACCAGGTCT CTTGATGGTC GACTCCAGGT GTCTCACCGT
                                                                          360
   AAAGGATTGC CGCATGTTAT CTACTGCAGA CTGTGGCGCT GGCCAGACCT GCACAGTCAT
                                                                           420
   CATGAACTGA AAGCAATCGA AAATTGTGAA TATGCTTTTA ACCTTAAAAA AGATGAAGTT
    TGTGTCAATC CATACCATTA TCAGAGGGTG GAGACACCAG TTTTACCACC TGTATTAGTT
                                                                           540
    CCACGGCACA CGGAAATCTT GACAGAGCTG CCACCTCTTG ATGACTACAC GCATTCCATT
                                                                           600
57
    CCAGAAAACA CTAATTTTCC TGCAGGGATT GAACCTCAGA GCAATTATAT TCCAGAAACA
                                                                           660
   CCACCTCCTG GATATATTAG TGAAGATGGA GAAACTAGCG ATCAGCAACT TAACCAAAGC
                                                                           720
58
   ATGGACACAG GGTCACCAGC TGAGCTGTCT CCGAGTACAC TTTCTCCAGT CAACCACAAT
                                                                           780
59
   CTCGATTTGC AACCTGTCAC CTATTCGGAA CCTGCTTTTT GGTGCTCTAT AGCATACTAC
                                                                           840
    GAACTGAATC AGCGAGTAGG AGAAACTTTC CATGCATCGC AACCATCGCT TACCGTGGAC
                                                                           900
61
   GGCTTTACGG ACCCCTCAAA CTCTGAAAGG TTCTGCTTAG GTTTACTCTC AAATGTGAAC
                                                                           960
62
   CGAAATGCCA CGGTGGAAAT GACCAGGCGT CACATAGGAA GGGGTGTCCG GCTATATTAC
                                                                          1020
63
   ATCGGTGGAG AGGTGTTTGC AGAGTGCCTA AGTGATAGTG CTATTTTTGT TCAGAGTCCA
                                                                          1080
   AACTGTAACC AGCGATATGG ATGGCATCCA GCAACTGTAT GTAAGATTCC TCCAGGATGC
                                                                          1140
   AATCTGAAGA TTTTCAATAA TCAAGAGTTT GCGGCTCTCC TCGCTCAGTC TGTGAATCAA
                                                                          1200
66
   GGCTTTGAAG CAGTTTATCA GTTAACTCGA ATGTGCACCA TAAGGATGAG CTTTGTAAAA
                                                                          1260
   GGCTGGGGTG CTGAATACAG GCGACAGACC GTTACAAGCA CTCCATGCTG GATTGAGCTT
                                                                          1320
    CACCTGAATG GACCTTTGCA GTGGTTGGAC AAAGTGTTGA CACAGATGGG ATCCCCTTCA
                                                                         1380
    GTCCGCTGCT CAAGCATGTC CTAATGGTCT CCTCTTTTTA ATGTATTACC TGCGGCCGC
                                                                          1440
   AACTGCAGTC CCAGCAACAG ACTCAATACA GCTTGTCTGT CGTAGTATTT GTGTGTGGTG
                                                                          1500
    CCCATGAACT GTTTACAATC CAAAAGAGAG AGAATAAAAA AGCAAAAACA GCACTTGAGA
                                                                          1560
    TCCCATCAAC GAAAAGCACC TTGTTGGATG ATGTTTCTGA TACTCTTAAA GTAGATCCGT
                                                                          1620
    GTATAAATGA CTCCTTACCT GGGAAAAGGG ACTTTTTC
                                                                          1658
76 (2) INFORMATION FOR SEQ ID NO: 2:
77
        (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 467 amino acids
78
             (B) TYPE: amino acid
79
             (C) STRANDEDNESS: single
80
             (D) TOPOLOGY: linear
81
       (ii) MOLECULE TYPE: protein
82
       (ix) FEATURE:
83
84
             (A) NAME/KEY: Other
             (B) LOCATION: 1...1
85
             (D) OTHER INFORMATION: Xenopus Smad2
87
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
    Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu
88
                                         10
89
    Gly Trp Lys Lys Ser Ala Ser Gly Thr Thr Gly Ala Gly Gly Asp Glu
90
91
    Gln Asn Gly Gln Glu Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu
```

93			35					40					45			
94	Val	Lys	Lys	Leu	Lys	Lys	Thr	Gly	Gln	Leu	Asp	Glu	Leu	Glu	Lys	Ala
95		50	-		-	-	55	_			_	60				
96	Ile	Thr	Thr	Gln	Asn	Cys	Asn	Thr	Lys	Cys	Val	Thr	Ile	Pro	Ser	Thr
97	65					70					75					80
98	Cys	Ser	Glu	Ile	Trp	Gly	Leu	Ser	Thr	Ala	Asn	Thr	Ile	Asp	Gln	Trp
99					85					90					95	
100	Asp	Thr	Thr	Gly	Lei	ı Tyr	Sei	: Phe	Sei	: Glu	ı Glr	Thr	Arg	g Ser	Leu	Asp
101				100					105	5				110		
102	Gly	/ Arg	J Leu	ı Gln	. Val	l Ser	His	s Arc	Lys	Gly	Let	Pro	His	val	Ile	Tyr
103			115					120					125			
104	Cys	arç	ງ Leu	ı Trp	Arg	y Trp	Pro) Asp	Lei	ı His	s Ser	His	His	s Glu	Leu	Lys
105		130					135					140				
106	Ala	11ϵ	e Glu	ı Asn	Суя	s Glu	туз	: Ala	ı Phe	e Asr	ı Let	ı Lys	Lys	qaA a	Glu	Val
107	145					150					155			_		160
108	Cys	Val	. Asr	Pro	_		туз	Glr.	ı Arç	-		ı Thr	Pro	o Val		
109		_		_	165		•			170				_	175	
110	Pro	va]	. Leu			o Arg	His	s Thr			e Leu	ı Thi	: GI	ı Leu		Pro
111	_	_	_	180		1	-		185		_	1		190		
112	Let	ı Asp			Thi	r His	s Sei) GI	ı Asr	ı Tnı		ı Phe	Pro	Ala
113	~ 1.	7.	195		a 1-		. 7	200		. D		. mb.	205		D	C1
114	GIZ			ı Pro	GII	ı ser		_	. 116	Pro) GII) PIO	PIO	Gly
115	m	210			. 7.~~		215			c 7\cr	. Cl.	220		ı Acn	Cl n	Cor
116	225		e Ser	. GIU	LAS	230 230		1 1111	. 561	ASI	235		тье	ı Asn	GIII	240
117 118			Thr	പ	, Co.			. Gl:	1 T.A1	1 901			^ Thi	. Leu	Ser	
119	Med	. voř	, 1111	. Gry	245		ALC	ı Oıt	L	250		, 501		. Dea	255	
120	Val	Agr	His	. Asn			Lei	ı Glr	Pro			· Tvi	seı	r Glu		Ala
121	• • • • • • • • • • • • • • • • • • • •			260			,	. 01.	265			1-		270		
122	Phe	e Trr	Cvs			e Ala	Tvi	r Tvi			ı Asr	ı Glr	ı Arc			Glu
123			275				1-	280					285		_	
124	Thi	: Phe	His	. Ala	Sei	r Glr	Pro	Ser	: Lei	ı Thi	. Val	Asp	Gly	, Phe	Thr	Asp
125		290					295					300				
126	Pro	Sei	Asn	ı Ser	Glu	ı Arç	J Phe	e Cys	Lei	ıGly	, Lei	ı Leı	ı Sei	. Asn	Val	Asn
127	305					310					315					320
128	Arg	g Asr	n Ala	a Thr	· Val	l Glu	ı Met	Thi	Arg	g Arg	g His	s Ile	e Gly	/ Arg	Gly	Val
129					325					330					335	
130	Arg	j Lei	ı Tyr	Tyr	116	e Gly	gly Gly	y Gli	ı Val	l Phe	e Ala	ı Glı	ı Cys	s Leu	Ser	Asp
131				340					345					350		
132	Sei	Ala	ı Ile	Phe	· Val	l Glr	ı Sei			n Cys	s Asr	ı Glr	ı Arç	g Tyr	Gly	Trp
133			355					360					365			
134	His			Thr	· Va.	l Cys	_		e Pro	o Pro	Gly			ı Leu	Lys	Ile
135		370					375					380		7		~-3
136			ı Asr	ı Glr	ı Glı			a Ala	a Lei	ı Leı			ı Sei	r Val	Asn	Gln
137	385					390		_	7		395		- CE-1	7	7	400
138	Gly	Phe	e Glu	ı Ala		_	GLi	ı Let	ı Thi		-	Суя	Thi	r Ile		
139	<u> </u>				409		. ~1	_ 7.7		41(_ 7··	~ ~1.	, ml	415	
140	sei	: Phe	e val	_	_	y Trp	GT.	Y Ala			Arg	y Arg	A GII			Thr
141				420)		•		425	>				430		

```
Ser Thr Pro Cys Trp Ile Glu Leu His Leu Asn Gly Pro Leu Gln Trp
                                 440
    Leu Asp Lys Val Leu Thr Gln Met Gly Ser Pro Ser Val Arg Cys Ser
144
145
         450
                             455
                                                  460
146
    Ser Met Ser
147
    465
149 (2) INFORMATION FOR SEQ ID NO: 3:
         (i) SEQUENCE CHARACTERISTICS:
151
              (A) LENGTH: 194 amino acids
              (B) TYPE: amino acid
152
              (C) STRANDEDNESS: single
153
              (D) TOPOLOGY: linear
154
        (ii) MOLECULE TYPE: protein
155
156
        (ix) FEATURE:
              (A) NAME/KEY: Other
157
              (B) LOCATION: 1...1
158
              (D) OTHER INFORMATION: Xenopus Smad2 MH2 domain
159
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
160
     Trp Cys Ser Ile Ala Tyr Tyr Glu Leu Asn Gln Arg Val Gly Glu Thr
161
162
                                          10
     Phe His Ala Ser Gln Pro Ser Leu Thr Val Asp Gly Phe Thr Asp Pro
163
164
                                      25
     Ser Asn Ser Glu Arg Phe Cys Leu Gly Leu Leu Ser Asn Val Asn Arg
165
166
                                  40
     Asn Ala Thr Val Glu Met Thr Arg Arg His Ile Gly Arg Gly Val Arg
167
    Leu Tyr Tyr Ile Gly Gly Glu Val Phe Ala Glu Cys Leu Ser Asp Ser
169
170
                         70
     Ala Ile Phe Val Gln Ser Pro Asn Cys Asn Gln Arg Tyr Gly Trp His
171
172
173
     Pro Ala Thr Val Cys Lys Ile Pro Pro Gly Cys Asn Leu Lys Ile Phe
174
                                      105
175
     Asn Asn Gln Glu Phe Ala Ala Leu Leu Ala Gln Ser Val Asn Gln Gly
                                  120
     Phe Glu Ala Val Tyr Gln Leu Thr Arg Met Cys Thr Ile Arg Met Ser
177
178
                             135
                                                  140
     Phe Val Lys Gly Trp Gly Ala Glu Tyr Arg Arg Gln Thr Val Thr Ser
179
180
                         150
                                              155
     Thr Pro Cys Trp Ile Glu Leu His Leu Asn Gly Pro Leu Gln Trp Leu
181
182
                     165
                                          170
     Asp Lys Val Leu Thr Gln Met Gly Ser Pro Ser Val Arg Cys Ser Ser
183
                 180
185 Met Ser
187 (2) INFORMATION FOR SEQ ID NO: 4:
         (i) SEQUENCE CHARACTERISTICS:
188
              (A) LENGTH: 1401 base pairs
189
190
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
191
              (D) TOPOLOGY: linear
```

```
193
        (ii) MOLECULE TYPE: cDNA
194
        (ix) FEATURE:
195
              (A) NAME/KEY: Other
196
              (B) LOCATION: 1...1
197
              (D) OTHER INFORMATION: Human Smad2 coding region
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
198
199
    ATGTCGTCCA TCTTGCCATT CACGCCGCCA GTTGTGAAGA GACTGCTGGG ATGGAAGAAG
                                                                           60
200
    TCAGCTGGTG GGTCTGGAGG AGCAGGCGGA GGAGAGCAGA ATGGGCAGGA AGAAAAGTGG
                                                                          120
201 TGTGAGAAAG CAGTGAAAAG TCTGGTGAAG AAGCTAAAGA AAACAGGACG ATTAGATGAG
                                                                          180
202 CTTGAGAAAG CCATCACCAC TCAAAACTGT AATACTAAAT GTGTTACCAT ACCAAGCACT
                                                                          240
203 TGCTCTGAAA TTTGGGGACT GAGTACACCA AATACGATAG ATCAGTGGGA TACAACAGGC
                                                                          300
204 CTTTACAGCT TCTCTGAACA AACCAGGTCT CTTGATGGTC GTCTCCAGGT ATCCCATCGA
                                                                          360
205 AAAGGATTGC CACATGTTAT ATATTGCCGA TTATGGCGCT GGCCTGATCT TCACAGTCAT
                                                                          420
206 CATGAACTCA AGGCAATTGA AAACTGCGAA TATGCTTTTA ATCTTAAAAA GGATGAAGTA
                                                                          480
207 TGTGTAAACC CTTACCACTA TCAGAGAGTT GAGACACCAG TTTTGCCTCC AGTATTAGTG
                                                                          540
208 CCCCGACACA CCGAGATCCT AACAGAACTT CCGCCTCTGG ATGACTATAC TCACTCCATT
                                                                          600
209 CCAGAAAACA CTAACTTCCC AGCAGGAATT GAGCCACAGA GTAATTATAT TCCAGAAACG
                                                                          660
210 CCACCTCTG GATATATCAG TGAAGATGGA GAAACAAGTG ACCAACAGTT GAATCAAAGT
                                                                          720
211 ATGGACACAG GCTCTCCAGC AGAACTATCT CCTACTACTC TTTCCCCTGT TAATCATAGC
                                                                          780
212 TTGGATTTAC AGCCAGTTAC TTACTCAGAA CCTGCATTTT GGTGTTCAAT AGCATATTAT
                                                                          840
213 GAATTAAATC AGAGGGTTGG AGAAACCTTC CATGCATCAC AGCCCTCACT CACTGTAGAT
                                                                          900
214 GGCTTTACAG ACCCATCAAA TTCAGAGAGG TTCTGCTTAG GTTTACTCTC CAATGTTAAC
                                                                          960
    CGAAATGCCA CGGTAGAAAT GACAAGAAGG CATATAGGAA GAGGAGTGCG CTTATACTAC
                                                                         1020
216 ATAGGTGGG AAGTTTTTGC TGAGTGCCTA AGTGATAGTG CAATCTTTGT GCAGAGCCCC
                                                                         1080
217 AATTGTAATC AGAGATATGG CTGGCACCCT GCAACAGTGT GTAAAATTCC ACCAGGCTGT
218 AATCTGAAGA TCTTCAACAA CCAGGAATTT GCTGCTCTTC TGGCTCAGTC TGTTAATCAG
219 GGTTTTGAAG CCGTCTATCA GCTAACTAGA ATGTGCACCA TAAGAATGAG TTTTGTGAAA
220 GGGTGGGGAG CAGAATACCG AAGGCAGACG GTAACAAGTA CTCCTTGCTG GATTGAACTT
221 CATCTGAATG GACCTCTACA GTGGTTGGAC AAAGTATTAA CTCAGATGGG ATCCCCTTCA
                                                                         1380
222 GTGCGTTGCT CAAGCATGTC A
                                                                         1401
224 (2) INFORMATION FOR SEO ID NO: 5:
225
         (i) SEQUENCE CHARACTERISTICS:
226
              (A) LENGTH: 467 amino acids
227
              (B) TYPE: amino acid
228
              (C) STRANDEDNESS: single
229
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: protein
230
231
        (ix) FEATURE:
232
              (A) NAME/KEY: Other
233
              (B) LOCATION: 1...1
234
              (D) OTHER INFORMATION: Human Smad2
235
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
    Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu
237
                      5
                                         10
    Gly Trp Lys Lys Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu
238
239
                 20
240
    Gln Asn Gly Gln Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu
241
                                 40
242
    Val Lys Lys Leu Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala
```

VERIFICATION SUMMARY

DATE: 01/06/2005

PATENT APPLICATION: US/10/044,442

TIME: 10:24:14

Input Set : N:\FANTU\US10044442.raw

Output Set: N:\CRF4\01052005\J044442.raw

L:19 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]

L:20 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]

L:25 M:238 W: Alpha Fields not Ordered, Reordered [(A) APPLICATION NUMBER:] of (1)(vii)