PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/86, 5/10, A61K 48/00

A1

(11) International Publication Number:

(43) International Publication Date:

WO 98/10087

3710, 70112 4000

12 March 1998 (12.03.98)

(21) International Application Number:

PCT/US97/15694

(22) International Filing Date:

4 September 1997 (04.09.97)

(30) Priority Data:

60/024,700

6 September 1996 (06.09.96) US

(60) Parent Application or Grant (63) Related by Continuation

US Filed on 60/024,700 (CIP) 6 September 1996 (06.09.96)

Thou on

(71) Applicant (for all designated States except US): TRUSTEES
OF THE UNIVERSITY OF PENNSYLVANIA [US/US];
Suite 300, 3700 Market Street, Philadelphia, PA 19104-3147

(72) Inventors; and

(US).

(75) Inventors Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avigon Drive, Gladwyne, PA 19035 (US). FARINA, Steven, F. [US/US]; Apartment 1214, 1642 East 56th Street, Chicago, IL 60637 (US). FISHER, Krishna, J. [US/US]; 2338 Nashville Avenue, New Orleans, LA 70115 (US).

(74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CHIMPANZEE ADENOVIRUS VECTORS

(57) Abstract

A recombinant vector comprises chimpanzee adenovirus sequences and a heterologous gene under the control of regulatory sequences. A cell line which expresses chimpanzee adenovirus gene(s) is also disclosed. Methods of using the vectors and cell lines are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal .
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ΙT	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Стессе		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

CHIMPANZEE ADENOVIRUS VECTORS

This invention was supported by the National Institute of Health Grant No. DK47757. The United States government has rights in this invention.

5 Field of the Invention

10

15

20

25

30

The present invention relates to the field of vectors useful in somatic gene therapy and the production and use thereof, and also to the field of vaccines.

Background of the Invention

I. Gene Therapy

Gene therapy is an approach to treating disease, generally human disease, that is based on the modification of gene expression in cells of the patient. It has become apparent over the last decade that the single most outstanding barrier to the success of gene therapy as a strategy for treating inherited diseases, cancer, and other genetic dysfunctions is the development of useful gene transfer vehicles.

Eukaryotic viruses have been employed as vehicles for somatic gene therapy. Among the viral vectors that have been cited frequently in gene therapy research are adenoviruses. Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a therapeutic or reporter transgene to a variety of cell types. Human adenoviruses are composed of a linear, approximately 36 kb double-stranded DNA genome, which is divided into 100 map units (m.u.), each of which is 360 bp in length. The DNA contains short inverted terminal repeats (ITR) at each end of the genome that are required for viral DNA replication. The gene products are organized into early (E1 through E4) and late (L1 through L5) regions, based on expression before or after the initiation of viral DNA synthesis [see, e.g., Horwitz,

2

<u>Virology</u>, 2d edit., ed. B. N. Fields, Raven Press, Ltd., New York (1990)].

Recombinant adenoviruses types 2 and 5 (Ad2 and Ad5, respectively), which cause respiratory disease in humans, are currently being developed for gene therapy. Both Ad2 and Ad5 belong to a subclass of adenovirus and are not associated with human malignancies.

5

Providing extremely high levels of transgene delivery to virtually all cell types, regardless of the mitotic state. High titers (10¹³ plaque forming units/ml) of recombinant virus can be easily generated in an adenovirus-transformed, human embryonic kidney cell line 293 [ATCC CRL1573]. The 293 cell line contains a functional adenovirus Ela gene which provides a transacting Ela protein. It can be cryo-stored for extended periods without appreciable losses.

The efficacy of this system in delivering 20 a therapeutic transgene in vivo that complements a genetic imbalance has been demonstrated in animal models of various disorders [K. F. Kozarsky et al, Somatic Cell Mol. Genet., 19:449-458 (1993) ("Kozarsky et al I"); K. F. Kozarsky et al, <u>J. Biol. Chem.</u>, <u>269</u>:13695-13702 (1994) ("Kozarsky et al II); Y. Watanabe, Atherosclerosis, 25 36:261-268 (1986); K. Tanzawa et al, FEBS Letters, 118(1):81-84 (1980); J.L. Golasten et al, New Engl. J. Med., 309:288-296 (1983); S. Ishibashi et al, J. Clin. Invest., 92:883-893 (1993); and S. Ishibashi et al, J. 30 Clin. Invest., 93:1885-1893 (1994)]. Indeed, a recombinant replication defective adenovirus encoding a cDNA for the cystic fibrosis transmembrane regulator (CFTR) has been approved for use in at least two human CF clinical trials [see, e.g., J. Wilson, Nature, 365:691-35 692 (Oct. 21, 1993)]. The use of adenovirus vectors in

3

the transduction of genes into hepatocytes in vivo has previously been demonstrated in rodents and rabbits [see, e.g., Kozarsky II, cited above, and S. Ishibashi et al, J. Clin. Invest., 92:883-893 (1993)]. Further support of the safety of recombinant adenoviruses for gene therapy is the extensive experience of live adenovirus vaccines in human populations.

However, many humans have pre-existing immunity to human adenoviruses as a result of previous natural exposure, and this immunity is a major obstacle to the use of recombinant human adenoviruses for gene therapy protocols.

II. Vaccines

5

10

Replication competent, recombinant adenovirus (Ad) containing a variety of inserted genes 15 have been used as vaccine compositions with some success [see, e.g. Davis, U.S. Patent No. 4,920,309]. Others have described the insertion of a foreign gene into a live [L. Prevac, J. Infect. Dis., 161:27-30 (1990)] and a 20 replication-defective adenovirus for putative use as a vaccine [See, e.g. T. Ragot et al, J. Gen. Virol., 74:501-507 (1993); M. Eliot et al, J. Gen. Virol., 71:2425-2431 (1990); and S. C. Jacobs et al, J. Virol., 66:2086-2095 (1992)]. Jacobs et al, cited above, describes a recombinant E1-deleted, E3 intact, Ad 25 containing encephalitis virus protein NS1 under the control of a heterologous cytomegalovirus (CMV) promoter. When mice were immunized with the recombinant Ad vaccines and challenged with virus, Jacobs et al obtained partial protection (at most a 75% protection) for an average 30 survival of 15 days. Eliot et al, cited above, describe a recombinant E1-deleted, partially E3-deleted Ad with pseudorabies glycoprotein 50 inserted into the E1 deletion site under the control of a homologous Ad promoter. In rabbits and mice, after immunization and 35

4

challenge, only partial protection was obtained (i.e., about one-third). Ragot et al, cited above, describe a recombinant E1-deleted, partially E3-deleted Ad with Epstein Barr virus glycoprotein gp340/220 inserted into the E1 deletion site under the control of a homologous Ad promoter. In marmosets (tamarins) after three high dose (5X10⁹ pfu, 1X10¹⁰ pfu and 2X10¹⁰ pfu), intramuscular immunizations and viral challenge, full protection was obtained.

For certain highly infectious diseases, there is a demand for an effective vaccine. Desirably, a vaccine should be effective at a low dosage to control the occurrence of side effects or to enable sufficient amounts of vaccine to be introduced into the animal or human.

There exists a need in the gene therapy art for the development of additional adenovirus vector constructs that do not stimulate immediate immune responses which quickly eliminate the recombinant virus and the therapeutic transgene from the patient. There also exists a need in the vaccine art for new vaccine carriers, which are safe and effective in humans and other mammals.

Summary of the Invention

5

10

15

20

25

30

The present invention meets the need in the art by providing adenovirus nucleotide sequences of chimpanzee origin, a variety of novel vectors, and cell lines expressing chimpanzee adenovirus genes.

In one aspect the invention provides the nucleotide sequence of a chimpanzee C1 adenovirus. See SEQ ID NO: 1.

In another aspect the invention provides the nucleotide sequence of a chimpanzee C68 adenovirus. See SEQ ID NO: 2.

5

10

15

25

30

5

In a further aspect, the invention provides a recombinant adenovirus comprising the DNA sequence of a chimpanzee adenovirus and a selected heterologous gene operatively linked to regulatory sequences directing its expression. The recombinant virus is capable of infecting a mammalian, preferably a human, cell and capable of expressing the heterologous transgene product in the cell. In this vector, the native chimpanzee El gene, and/or E3 gene, and/or E4 gene may be deleted. A heterologous gene may be inserted into any of these sites of gene deletion. The heterologous transgene may encode a normal or therapeutic gene which, upon expression, replaces or modifies an inherited or acquired genetic defect. The heterologous gene may be an antigen against which a primed immune response is desired (i.e., a vaccine).

In another aspect, the invention provides a mammalian cell infected with the viral vector described above.

In still a further aspect of this invention, a novel mammalian cell line is provided which expresses a chimpanzee adenovirus gene or functional fragment thereof.

In still a further aspect, the invention provides a method for delivering a transgene into a mammalian cell comprising the step of introducing into the cell an effective amount of a recombinant virus described above.

Another aspect of this invention is a method for delivering to a mammalian patient having a disorder related to an inherited or acquired genetic defect a desired transgene. The method comprises the step of administering to the patient by an appropriate route an effective amount of an above-described recombinant

6

chimpanzee adenovirus containing a normal or therapeutic transgene, wherein the transgene product is expressed in vivo.

Still another aspect of this invention provides a method for eliciting an immune response in a mammalian host to protect against an infective agent. The method comprises the step of administering to the host an effective amount of a recombinant chimpanzee adenovirus comprising a heterologous gene that encodes an antigen from the infecting organism against which the immune response is targeted.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

15 Brief Description of the Drawings

5

10

20

25

30

Fig. 1A is a diagrammatic bar graph illustrating the structure of the chimpanzee adenovirus C1 (also referred to as C-1) and the location of the adenovirus genes thereon by nucleotide position and by map unit numbers appearing under the bar graph. The locations of the late genes (L-1 through L-5) are represented by arrows below the graph with molecular weight indications above the arrows and nucleotide positions below the arrows. The location of the E2a region early TATA box and transcriptional start site was not determined. The E2a region is estimated to begin approximately at nucleotide 27,100. The position of the translation initiation codon for the E2a encoded DNA binding protein is indicated by an asterisk.

Fig. 1B is a line graph showing the correlation between map units and nucleotide (base) pairs of the sequence of C1 [SEQ ID NO: 1].

7

Fig. 1C is a bar graph illustrating the various Bam HI clones obtained for the C1 Ad, indicating nucleotide numbers, fragment size in nucleotides, clone numbers, and fragment boundaries in nucleotides.

5

10

15

20

25

30

35

Fig. 2 is a tabular comparison of C1 and C68 predicted amino acid sequences examined for homology to previously described adenoviral protein sequences, Ad4, Ad5, Ad7, Ad12, and Ad40. Symbol "a" indicates that comparison of fragments of different size resulted in an underestimate of homology. Symbol "b" indicates a 95% identity from Ad-4 aa 1-95. A possible mistake in sequence apparently resulted in a frameshift and premature termination in this comparison. Symbol "c" indicates that Ad-5 has 2 small ORF's in this region encoding proteins of 64 and 67 residues with approximately 50% amino acid identity with, respectively, the amino and carboxy halfs of the chimp Ad homologs. Symbol "d" indicates that Ad-3 and Ad-7 fragments were not sequenced for this protein. Symbol "e" indicates that Ad-35 and Ad-4 were not sequenced for this protein. Symbol "f" indicates that the reported sequence for Ad-7 pVIII is 197aa, and the homology begins at aa30 of the chimp Ad sequences. The homology between the chimp Ad's and Ad-7 for the 197 aa region is 98% for C-1 and 90% for C-68.

Fig. 3A is a diagrammatic bar graph illustrating the structure of the chimpanzee adenovirus C68 and the location of the adenovirus genes thereon by nucleotide position and by map unit numbers appearing under the bar graph. The locations of the late genes are represented as described for Fig. 1A. The location of the E2a region early TATA box and transcriptional start site was not determined. The E2a region is estimated to begin approximately at nucleotide 26,800. The position of the translation initiation codon for the E2a encoded

8

DNA binding protein is indicated by an asterisk.

Although the entire genome of C68 has been cloned,
certain of the fragments in Fig. 3 have been individually
cloned (white bars) or not cloned (shaded bars).

Fig. 3B is a line graph showing the correlation between map units and nucleotide (base) pairs of the sequence of C68 [SEQ ID NO: 2]. White and shaded boxes are defined as in Fig. 3A.

5

10

15

20

25

Fig. 3C is a bar graph illustrating the various Pst fragments obtained for the C68 Ad, indicating nucleotide numbers, fragment sizes in nucleotides, clone numbers and fragment boundaries in nucleotides. White and shaded boxes are defined as in Fig. 3A.

Fig. 3D is a bar diagram illustrating Bam HI fragments of the C68 genome indicating nucleotide numbers, fragment size in nucleotides, clone numbers, and fragment boundaries in nucleotides. White and shaded boxes are defined as in Fig. 3A.

Fig. 3E is a bar diagram illustrating the HindIII-B fragment and its nucleotide boundaries and size. White and shaded boxes are defined as in Fig. 3A.

Fig. 4A is a more detailed schematic drawing of pC68-CMV-LacZ.

Fig. 4B is a schematic representation of pBS-Notx2.

Fig. 5A is a schematic drawing of plasmid pGPGK. The arrow indicates the direction of the murine PGK promoter. Restriction sites and marker genes are conventionally labeled.

Fig. 5B is a schematic drawing of plasmid pNEB-C68BamE. This plasmid contains fragments of the LacZ gene (small arrow) flanking either side of the bar indicating the C68 Ad BamE fragment. The large arrow illustrates the Amp^R gene. Restriction sites and marker genes are conventionally labeled.

9

Fig. 5C is a schematic drawing of plasmid pGPGK-C68BamE in which the BamE fragment from pNEB-C68BamE has been cloned downstream from the PGK promoter of pGPGK.

5

10

15

20

25

30

35

Fig. 5D is a representation of the PCR amplification of the C68 sequence from pNEB-C68BamE, illustrating the use of primers to introduce a KpnI site just upstream of the C68 E1 region translation initiation codon at nucleotide 576 of the C68 genomic DNA and reduce the sequence distance between the promoter and C68 coding sequence. Location of the primers is indicated.

Fig. 5E is a schematic drawing of plasmid pGPGK-C68E1-ATG, in which the ATG translational start codon was moved closer to the PGK promoter.

Fig. 5F is a schematic drawing of plasmid pBS-C68BamF, in which the BamF fragment was cloned into the BamHI site of pGPGK-C68E1-ATG to generate pGPGK-C68E1 (Fig. 5G).

Fig. 5G is a schematic drawing of plasmid pGPGK-C68E1, containing the complete chimpanzee C68 Ad E1 region under the control of the murine PGK promoter.

Fig. 6A is a schematic drawing of plasmid pGPGK, a duplication of Fig. 5A for purposes of explaining construction of the C1 Ad E1 expression plasmid.

Fig. 6B illustrates the isolation of the 5' end of the C1 E1 region as a 1.9kb SnaBI - XbaI fragment.

Fig. 6C illustrates the use of primers to introduce by PCR amplification a KpnI site just upstream of the C1 E1 region translation initiation codon E1-ATG at nucleotide 577 of the C1 genomic DNA.

Fig. 6D is a schematic drawing of plasmid pGPGK-C1 mul.3-6.6 (7.4kb).

Fig. 6E is a schematic drawing of plasmid pGPGK-C1-E1ATG.

10

Fig. 6F is a schematic drawing of plasmid pBS-C1BamI.

Fig. 6G is a schematic drawing of plasmid pGPGK-C1E1, containing the complete chimpanzee C1 Ad E1 region under the control of the murine PGK promoter.

5

20

30

35

Fig. 7A is a schematic drawing of plasmid pSP72-Pac with indicated restriction endonuclease enzyme cleavage sites.

Fig. 7B is a schematic drawing of plasmid pNEB-10 C1-BamG.

Fig. 7C is a schematic drawing of plasmid pSP-C1-mu0-1.3.

Fig. 7D is a schematic drawing of plasmid pCMV-B.

Fig. 7E is a schematic drawing of plasmid pSP-C1-mu0-1.3-CMV-B.

Fig. 7F is a schematic drawing of plasmid pGEM-3Z.

Fig. 7G is a schematic drawing of plasmid pBS-C1-BamI.

Fig. 7H is a schematic drawing of plasmid pGEM-C1-mu9-10.

Fig. 7I is a schematic drawing of plasmid pBS-C1-BamE.

Fig. 7J is a schematic drawing of plasmid pGEM-C1-mu9-17.

Fig. 7K is a schematic drawing of plasmid pC1-CMV-LacZ, illustrating C1 Ad mu 0 to 1.3, followed by the CMV promoter, a splice donor/splice acceptor sequence (SD/SA), the LacZ gene, a SV40 poly A sequence and C1 Ad mu 9-17, and additional plasmid sequence. The plasmid also contains an ori and Amp^R sequence.

Fig. 8A is a schematic drawing of pSP72-Pac with indicated restriction endonuclease enzyme cleavage sites.

11

Fig. 8B is a schematic drawing of pNEB-C68-BamE.

Fig. 8C is a schematic drawing of pSP-C68-mu 0-1.3.

Fig. 8D is a schematic drawing of pCMV-B.

Fig. 8E is a schematic drawing of pSP-C68-mu 0-1.3-CMV-8.

Fig. 8F is a schematic drawing of pGEM-3Z.

Fig. 8G is a schematic drawing of pBS-C68-BamF.

10 Fig. 8H is a schematic drawing of pGEM-C68-mu9-10.

5

25

35

Fig. 8I is a schematic drawing of pBS-C68-BamB.

Fig. 8J is a schematic drawing of pGEM-C68-mu9-16.7.

15 Fig. 8K is a schematic drawing of pC68-CMV-LacZ, illustrating C68 Ad mu 0 to 1.3, followed by the CMV promoter, an SD/SA, the LacZ gene, a SV40 poly A sequence and C68 Ad mu 9-16.7, and additional plasmid sequence. The plasmid also contains an ori and an Amp^R sequence.

Fig. 9A is a schematic drawing of pEGFP-1 (Clontech, Palo Alto, CA).

Fig. 9B is a schematic drawing of a Not-I synthetic linker (New England Biolabs).

Fig. 9C is a schematic drawing of pEGFP-Notx2.

Fig. 9D is a schematic drawing of pC1-CMV-LacZ (from Fig. 7K).

Fig. 9E is a schematic drawing of pC68-CMV-LacZ (from Fig. 8K).

Fig. 9F is a schematic drawing of pC1-CMV-GFP, in which the GFP coding region replaces the LacZ gene of pC1-CMV-LacZ.

Fig. 9G is a schematic drawing of pC68-CMV-GFP, in which the GFP coding region replaces the LacZ gene of pC68-CMV-LacZ.

12

Fig. 10A is a schematic drawing of pC68-CMV-GFP as discussed in Fig. 9G.

Fig. 10B is a schematic drawing of the C68 genome.

Fig. 10C is a schematic drawing of the C68-SspI-A fragment, which is 35,199 nucleotides.

5

10

25

Fig. 10D is a schematic drawing of the C68-CMV-GFP genome, which is formed by homologous recombination between the C68 mu 9-16.7 sequence in pC68-CMV-GFP and the homologous sequence in the C68-SspI-A fragment.

Fig. 11A is a schematic drawing of pNEB-C1-BamG.

Fig. 11B is a schematic drawing of the C1 genome.

Fig. 11C is a schematic drawing of pNEB-C1-AscI-B.

Fig. 11D is a schematic drawing of a Not-I synthetic linker (New England Biolabs).

Fig. 11E is a schematic drawing of pNEB-C1-20 AscI-B-NotI.

Fig. 11F is a schematic drawing of the C1 genome.

Fig. 11G is a schematic drawing of the AscI-A fragment of the C1 genome.

Fig. 11H is a schematic drawing of the C1 genome engineered to have a unique NotI site replacing the Spe-I site in the E1B 21K protein coding region.

Detailed Description of the Invention

The present invention provides novel adenovirus
vectors and packaging cell lines to produce those vectors
for use in the *in vitro* production of recombinant
proteins or fragments or other reagents, and for use in
the treatment of inherited or acquired genetic disorders
and abnormalities in humans and other mammals. The

13

present invention also provides novel vaccine compositions which comprise those vectors, the vectors comprising an inserted heterologous gene encoding an antigen from an infectious agent.

5

10

15

20

The methods of the invention involve delivering one or more selected heterologous gene(s) to a mammalian patient by administering a vector of the invention. Because the various vector constructs are derived from chimpanzee rather than from human adenoviruses, the immune system of the patient is not primed to respond immediately to the vector as a foreign antigen. A similar response would be expected where the patient was any mammal other than chimpanzee.

Use of the compositions of this invention thus permits a more stable expression of the selected transgene when administered to a non-chimpanzee, preferably human patient. Use of the compositions of this invention for vaccination permits presentation of a selected antigen for the elicitation of protective immune responses. The recombinant chimpanzee adenoviruses of this invention may also be used for producing heterologous gene products in vitro.

Chimpanzee adenovirus, strain Bertha or C1

[ATCC Accession No. VR-20] and chimpanzee adenovirus, strain Pan-9 or CV68 [ATCC Accession No. VR-594] were obtained from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD. For convenience, the virus CV68 is referred to throughout this specification as "C68". The viruses were originally isolated from feces [C1, Rowe et al, Proc. Soc. Exp. Med., 91:260 (1956)] or mesenteric lymph node [C68, Basnight et al, Am. J. Epidemiol., 94:166 (1971)] of infected chimpanzees.

14

Little is known about these viruses.

However, limited restriction and immunological analyses have been published. For example, C1 was shown to be most similar to Subgroup B human adenoviruses, but it was not neutralized by heterologous sera, and no hemagglutination inhibition was observed [Wigand et al, Intervirology, 30:1 (1989)]. Restriction analysis demonstrated that C68 was most similar to human Ad4 serotype (Subgroup E), but only 1 in 16 enzymes tested did not distinguish C68 and Ad4 [Kitchingman, Gene, 20:205 (1982)].

5

10

15

20

25

30

Both chimpanzee adenoviruses grow well in human cells and were propagated in human embryonic kidney 293 cells. As described in detail in Examples 1 and 2 below, genomic DNA was isolated from purified virus stocks and digested with a panel of restriction enzymes and the restriction fragments cloned and sequenced. The genomic nucleotide sequence of C1 adenovirus is set out in SEQ ID NO: 1. The genomic nucleotide sequence of C68 adenovirus is set out in SEO ID NO: 2.

Preliminary analysis of the sequence homology between C1, C68 and human adenoviruses was in agreement with the previously mentioned immunologic or restriction enzyme analysis. By reference to Figs. 1A-1C and 3A to 3D, it is shown that the putative E1 region of C1 occurs between about nucleotides 480 and about 3958; and of C68 between about nucleotides 480 and about 3956.

Other gene regions of C1 are identified by homology of the C1 sequence of SEQ ID NO: 1 to the known sequences of human adenoviruses Ad3, Ad5 and Ad7. Similarly, other gene regions of C68 are identified by homology of the C68 sequence of SEQ ID NO: 2 to the known sequence of human adenovirus Ad4 and Ad5. The genomic regions encoding early gene functions for E2a, E2b, E3,

15

E4, as well as the regions of C1 and C68 encoding late adenoviral gene products, are identified in Tables I and II below.

Table I C1 Chimpanzee Genome

5

	<u>Gene</u>	<u>Nucleotides</u>	Map Units	<pre>Size (nucl./mu)</pre>
	E1A	480-1540	1.4-4.3	1060/3.0
	E1B	1566-3958	4.4-11.1	2392/6.7
	E2A	23665-22065	66.6-62.1	1600/4.5
10	E2B	10379-3959	29.2-11.1	6420/18.1
	E 3	27181-31375	76.5-88.3	4194/11.8
	E4	35228-32535	99.2-91.6	2693/7.6
	L1	10893-13864	30.7-39.0	2971/8.4
	L2	13925-17591	39.2-49.5	3666/10.3
15	L3	17641-22083	49.7-62.2	4442/12.5
	L4	23697-27813	66.7-78.3	4116/11.6
	L5	31556-32551	88.8-91.6	995/2.8

Table II
C68 Chimpanzee Genome

20	<u>Gene</u>	<u>Nucleotides</u>	Map Units	Size (nucl./mu)
	E1A	480-1521	1.3-4.2	1041/2.9
	E1B	1560-3956	4.3-10.8	2396/6.6
	E2A	23370-21787	64.0-59.7	1583/4.3
	E2B	10346-3957	28.3-10.8	6389/17.5
25	E 3	26806-31877	73.4-87.3	5071/13.9
	E4	36193-33486	99.1-91.7	2707/7.4
	L1	10823-13817	29.6-37.8	2994/8.2
	L2	13884-17431	38.0-47.7	3547/9.7
	L3	17480-21804	47.9-59.7	4324/11.8
30	L4	23399-27439	64.1-75.1	4040/11.1
	L5	32134-33502	88.0-91.7	1368/3.7

Our preliminary experiments demonstrated that human antisera do not neutralize the chimpanzee adenoviruses in neutralizing antibody assays (see, e.g., International patent application PCT95/03035), thus indicating the desirability of vectors prepared from these sequences for gene therapy in humans. As further described in the examples, plasmids establishing chimpanzee adenovirus E1-expressing cell lines and

16

recombinant E1-deleted adenoviruses expressing a transgene are prepared.

5

25

35

The viral sequences used in the vectors and cell lines described below may be generated by using the teachings and references contained herein, coupled with standard recombinant molecular cloning techniques known and practiced by those skilled in the art.

E1-Expressing Complementation Cell Lines II. To generate recombinant chimpanzee adenoviruses (Ad) deleted in any of the genes described 10 above, the function of the deleted gene region, if essential to the replication and infectivity of the virus, must be supplied to the recombinant virus by a helper virus or cell line, i.e., a complementation or packaging cell line. For example, to generate a 15 replication-defective chimpanzee adenovirus vector, a cell line is needed which expresses the E1 gene products of the chimpanzee adenovirus. The protocol for the generation of the cell lines expressing the chimpanzee E1 gene products (Examples 3 and 4) is followed to generate 20 a cell line which expresses any selected chimpanzee adenovirus gene.

Conventional assays were not useful in identifying the chimpanzee adenovirus E1-expressing cell line and a novel AAV augmentation assay was developed to identify the chimpanzee adenovirus E1-expressing cell line. This assay is useful to identify E1 function in cell lines made by using the E1 genes of other uncharacterized adenoviruses, e.g., from other species. That assay is described in Example 4B below.

30 That assay is described in Example 4B below.

According to this invention, the selected chimpanzee adenovirus gene, e.g., E1, is under the transcriptional control of a promoter for expression in a selected parent cell line. Inducible or constitutive promoters may be employed for this purpose. Among

17

inducible promoters are included the sheep metallothionine promoter, inducible by zinc, or the mouse mammary tumor virus (MMTV) promoter, inducible by a glucocorticoid, particularly, dexamethasone. Other inducible promoters, such as those identified in International patent application W095/13392, published May 18, 1995, and incorporated by reference herein may also be used in the production of packaging cell lines according to this invention. Constitutive promoters in control of the expression of the chimpanzee adenovirus gene may be employed also. The promoter used to express E1 as exemplified below is the well-known constitutive murine PGK promoter.

5

10

35

parent cell is selected for the

generation of a novel cell line expressing any desired C1
or C68 gene. Without limitation, such a parent cell line
may be HeLa [ATCC Accession No. CCL 2], A549 [ATCC
Accession No. CCL 185], KB [CCL 17], Detroit [e.g.,
Detroit 510, CCL 72] and WI-38 [CCL 75] cells. These

cell lines are all available from the American Type
Culture Collection, 12301 Parklawn Drive, Rockville, MD,
USA. Other suitable parent cell lines may be obtained
from other sources.

The present invention provides an

exemplary cell line which contains and expresses the chimpanzee C68 or C1 Ad E1 gene, as described in detail in Examples 3 and 4 below. Briefly described, the entire chimpanzee adenovirus E1 region was cloned and, by a series of plasmid manipulations, it was placed under the control of a murine PGK promoter in a desired shuttle vector. See Figs. 5A-5G and 6A-6G.

After the desired shuttle vector containing the adenoviral sequences (i.e., pGPGK-C68 E1 described in Example 3) was transfected into the selected parental cell line (e.g., HeLa), expression of the E1

18

gene was detected. Conventional G418 selection as described in Example 4A was used to generate stable clones of these E1-expressing cells. The resulting cell line is thus able to provide chimpanzee Ad E1 gene products to the replication-defective recombinant virus (see Example 5) to allow productive infection and recovery of the recombinant virus.

5

10

15

20

25

30

35

The E1-expressing cell lines are useful in the generation of recombinant chimpanzee adenovirus E1 deleted vectors. Cell lines constructed using essentially the same procedures that express one or more other chimpanzee adenoviral gene products are useful in the generation of recombinant chimpanzee adenovirus vectors deleted in the genes that encode those products.

Further, cell lines which express other human Ad E1 gene products are also useful in generating the chimpanzee recombinant Ads of this invention.

III. Recombinant Viral Particles as Vectors The compositions of this invention comprise desirable viral vectors, that deliver a functional, normal or therapeutic gene to cells. vectors comprise chimpanzee adenovirus DNA sequence and a selected heterologous gene operatively linked to regulatory sequences which direct expression of the gene. The vector is capable of expressing the gene product in an infected mammalian cell. The vector is preferably functionally deleted in one or more viral genes. A minigene comprises the heterologous gene under the control of regulatory sequences. Optional helper viruses and/or packaging cell lines supply to the chimpanzee viral vectors any necessary products of deleted adenoviral genes.

The term "functionally deleted" means that a sufficient amount of the gene region is removed or otherwise damaged, e.g., by mutation or modification, so

19

that the gene region is no longer capable of producing functional products of gene expression. If desired, the entire gene region may be removed.

The viral sequences, helper viruses, if needed, and recombinant viral particles, and other vector components and sequences employed in the construction of the vectors described herein are obtained as described above. The DNA sequences of the two chimpanzee adenoviruses are employed to construct vectors and cell lines useful in the preparation of such vectors.

5

10

15

20

25

30

Modifications of the nucleic acid sequences forming the vectors of this invention, including sequence deletions, insertions, and other mutations may be generated using standard molecular biological techniques and are within the scope of this invention.

A. The "Minigene"

The methods employed for the selection of the transgene, the cloning and construction of the "minigene" and its insertion into the viral vector are within the skill in the art given the teachings provided herein. By "minigene" is meant the combination of a selected heterologous gene and the other regulatory elements necessary to transcribe the gene and express the gene product in a host cell. The gene is operatively linked to regulatory components in a manner which permits its transcription. Such components include conventional regulatory elements necessary to drive expression of the transgene in a cell transfected with the viral vector. Thus the minigene also contains a selected promoter which is linked to the transgene and located, with other regulatory elements, within the selected viral sequences of the recombinant vector.

Selection of the promoter is a routine matter and is not a limitation of this invention.

20

Useful promoters may be constitutive promoters or regulated (inducible) promoters, which will enable control of the amount of the transgene to be expressed. For example, a desirable promoter is that of the cytomegalovirus immediate early promoter/enhancer [see, e.g., Boshart et al, Cell, 41:521-530 (1985)]. Another desirable promoter includes the Rous sarcoma virus LTR promoter/enhancer. Still another promoter/enhancer sequence is the chicken cytoplasmic \(\theta\)-actin promoter [T. A. Kost et al, Nucl. Acids Res., 11(23):8287 (1983)]. Other suitable or desirable promoters may be selected by one of skill in the art.

5

10

The minigene may also desirably contain nucleic acid sequences heterologous to the viral 15 vector sequences including sequences providing signals required for efficient polyadenylation of the transcript (poly-A or pA) and introns with functional splice donor and acceptor sites. A common poly-A sequence which is employed in the exemplary vectors of this invention is 20 that derived from the papovavirus SV-40. The poly-A sequence generally is inserted in the minigene following the transgene sequences and before the viral vector sequences. A common intron sequence is also derived from SV-40, and is referred to as the SV-40 T intron sequence. 25 A minigene of the present invention may also contain such an intron, desirably located between the promoter/ enhancer sequence and the transgene. Selection of these and other common vector elements are conventional [see, e.g., Sambrook et al, "Molecular Cloning. A Laboratory 30 Manual.", 2d edit., Cold Spring Harbor Laboratory, New York (1989) and references cited therein] and many such sequences are available from commercial and industrial sources as well as from Genbank.

As above stated, the minigene is located in the site of any selected deletion in the viral

21

vector, such as the site of the E1 gene region deletion or E3 gene region deletion, among others which may be selected.

B. Construction of The Viral Plasmid

5 Vector

10

15

20

25

30

The chimpanzee adenovirus vectors useful in this invention include recombinant, defective adenoviruses, that is, chimpanzee adenovirus sequences functionally deleted in the E1a or E1b genes, and optionally bearing other mutations, e.g., temperature-sensitive mutations or deletions in other genes. It is anticipated that these chimpanzee sequences are also useful in forming hybrid vectors from other adenovirus and/or adeno-associated virus sequences. Homologous adenovirus vectors prepared from human adenoviruses are described in the published literature [see, for example, Kozarsky I and II, cited above, and references cited therein, U. S. Patent No. 5,240,846].

In the construction of useful chimpanzee adenovirus vectors for delivery of a gene to the human (or other mammalian) cell, a range of adenovirus nucleic acid sequences can be employed in the vectors. A vector comprising minimal chimpanzee adenovirus sequences may be used in conjunction with a helper virus to produce an infectious recombinant virus The helper virus provides essential gene particle. products required for viral infectivity and propagation of the minimal chimpanzee adenoviral vector. When only one or more selected deletions of chimpanzee adenovirus genes are made in an otherwise functional viral vector, the deleted gene products can be supplied in the viral vector production process by propagating the virus in a selected packaging cell line that provides the deleted gene functions in trans.

22

1. Recombinant Minimal Adenovirus

A minimal chimpanzee Ad virus is a viral particle containing only the adenovirus ciselements necessary for replication and virion encapsidation, which cis-elements flank the heterologous gene. That is, the vector contains only the cis-acting 5' and 3' inverted terminal repeat (ITR) sequences of the adenoviruses of this invention (which function as origins of replication) and the native 5' packaging/enhancer domains (that contain sequences necessary for packaging linear Ad genomes and enhancer elements for the El promoter). See, for example, the techniques described for preparation of a "minimal" human Ad vector in International Patent Application W096/13597, published

5

10

15

20

25

30

35

2. Other Defective Adenoviruses
Recombinant, replication-

deficient adenoviruses of this invention may also contain more than the minimal chimpanzee adenovirus sequences defined above. These other Ad vectors can be characterized by deletions of various portions of gene regions of the virus, and infectious virus particles formed by the optional use of helper viruses and/or packaging cell lines, as described herein.

May 9, 1996, and incorporated herein by reference.

As one example, suitable vectors may be formed by deleting all or a sufficient portion of the adenoviral immediate early gene E1a and delayed early gene E1b, so as to eliminate their normal biological functions. Replication-defective E1-deleted viruses are capable of replicating and producing infectious virus when grown on a chimpanzee adenovirus-transformed, complementation cell line containing functional adenovirus E1a and E1b genes which provide the corresponding gene products in trans. Based on the homologies to known adenovirus sequences, it is

23

anticipated that, as is true for the human recombinant E1-deleted adenoviruses of the art, the resulting recombinant chimpanzee adenovirus is capable of infecting many cell types and can express a transgene, but cannot replicate in most cells that do not carry the chimpanzee E1 region DNA unless the cell is infected at a very high multiplicity of infection.

5

10

15

20

25

30

35

As another example, all or a portion of the adenovirus delayed early gene E3 may be eliminated from the chimpanzee adenovirus sequence which forms a part of the recombinant virus. The function of chimpanzee E3 is believed to be irrelevant to the function and production of the recombinant virus particle.

Chimpanzee adenovirus vectors may also be constructed having a deletion of the E4 gene. Still another vector of this invention contains a deletion in the delayed early gene E2a.

Deletions may also be made in any of the late genes L1 through L5 of the chimpanzee adenovirus genome. Similarly, deletions in the intermediate genes IX and IVa₂ may be useful for some purposes. Other deletions may be made in the other structural or non-structural adenovirus genes.

may be used individually, i.e., an adenovirus sequence for use in the present invention may contain deletions of E1 only. Alternatively, deletions of entire genes or portions thereof effective to destroy their biological activity may be used in any combination. For example, in one exemplary vector, the adenovirus sequence may have deletions of the E1 genes and the E4 gene, or of the E1, E2a and E3 genes, or of the E1 and E3 genes, or of E1, E2a and E4 genes, with or without deletion of E3, and so on. As discussed above, such deletions may be used in

24

combination with other mutations, such as temperaturesensitive mutations, to achieve a desired result.

The minigene containing the transgene may be inserted optionally into any deleted region of the chimpanzee Ad virus. Alternatively, the minigene may be inserted into an existing gene region to disrupt the function of that region, if desired.

5

10

15

20

25

30

The construction of exemplary E1-deleted chimpanzee Ad virus vectors is described in detail in Example 5 below. Desirably, such a vector contains chimpanzee adenovirus sequences Ad m.u. 0-1.3, followed by a minigene containing the transgene of interest (e.g., a therapeutic gene for the correction of a genetic defect in a patient or a marker gene to visualize infected cells) and the sequence Ad m.u. 9 to 100 of C1 or C68. These recombinant adenoviruses are functionally deleted of E1a and E1b.

C. Production of the Recombinant Viral Particle

1. Helper Viruses

Depending upon the chimpanzee adenovirus gene content of the viral vectors employed to carry the minigene, a helper adenovirus or non-replicating virus fragment may be necessary to provide sufficient chimpanzee adenovirus gene sequences necessary to produce an infective recombinant viral particle containing the minigene.

Useful helper viruses contain selected adenovirus gene sequences not present in the adenovirus vector construct and/or not expressed by the packaging cell line in which the vector is transfected. A preferred helper virus is desirably replication—defective and contains a variety of adenovirus genes in addition to the sequences described above. The helper

25

virus is desirably used in combination with the Elexpressing cell lines described herein.

5

10

15

20

25

30

35

Most preferably for C68, the "helper" virus is a fragment formed by clipping the C terminal end of the C68 genome with SspI, which removes about 1300 bp from the left end of the virus. This clipped virus is then co-transfected into the E1-expressing cell line with the plasmid DNA, thereby forming the recombinant virus by homologous recombination with the C68 sequences in the plasmid.

Because there is no similarly unique restriction site in the 5' end of C1, to create a recombinant virus, the SpeI site at position 1733 is replaced with a unique Not I site, generating the modified C1 NotI genome of about 35,526 bp. See, e.g., Figs 12A-12F.

Helper viruses may also be formed into poly-cation conjugates as described in Wu et al, J. Biol. Chem., 264:16985-16987 (1989); K. J. Fisher and J. M. Wilson, Biochem. J., 299:49 (April 1, 1994). Helper virus may optionally contain a second reporter minigene. A number of such reporter genes are known to the art. The presence of a reporter gene on the helper virus which is different from the transgene on the adenovirus vector allows both the Ad vector and the helper virus to be independently monitored. This second reporter is used to enable separation between the resulting recombinant virus and the helper virus upon purification.

2. <u>Assembly of Viral Particle and Infection of a Cell Line</u>

Assembly of the selected DNA sequences of the adenovirus, and the transgene and other vector elements into various intermediate plasmids and shuttle vectors, and the use of the plasmids and vectors

26

to produce a recombinant viral particle are all achieved using conventional techniques. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence. Standard transfection and co-transfection techniques are employed, e.g., CaPO₄ precipitation techniques. Other conventional methods employed include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like.

5

10

30

For example, following the construction and assembly of the desired minigene-15 containing viral vector, the vector is transfected in vitro in the presence of a helper virus into the packaging cell line. Homologous recombination occurs between the helper and the vector sequences, which permits the adenovirus-transgene sequences in the vector 20 to be replicated and packaged into virion capsids, resulting in the recombinant viral vector particles. The current method for producing such virus particles is transfection-based. However, the invention is not limited to such methods. 25

The resulting recombinant chimpanzee adenoviruses are useful in transferring a selected transgene to a selected cell. In in vivo experiments with the recombinant virus grown in the packaging cell lines, the E1-deleted recombinant chimpanzee adenovirus demonstrates utility in transferring a transgene to a non-chimpanzee, preferably a human, cell.

27

IV. Use of the Recombinant Virus Vectors

The resulting recombinant chimpanzee
adenovirus containing the minigene (produced by
cooperation of the adenovirus vector and helper virus or
adenoviral vector and packaging cell line, as described
above) thus provides an efficient gene transfer vehicle
which can deliver the transgene to a human patient in
vivo or ex vivo.

5

25

30

35

are administered to humans according to published methods for gene therapy. A chimpanzee viral vector bearing the selected transgene may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle.

15 A suitable vehicle includes sterile saline. Other aqueous and non-aqueous isotonic sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

The chimpanzee adenoviral vectors are administered in sufficient amounts to transduce the human cells and to provide sufficient levels of gene transfer and expression to provide a therapeutic benefit without undue adverse or with medically acceptable physiological effects, which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the liver, intranasal, intravenous, intramuscular, subcutaneous, intradermal, oral and other parental routes of administration. Routes of administration may be combined, if desired.

Dosages of the viral vector will depend primarily on factors such as the condition being treated, the age, weight and health of the patient, and may thus

28

vary among patients. For example, a therapeutically effective human dosage of the viral vector is generally in the range of from about 20 to about 100 ml of saline solution containing concentrations of from about 1 x 10⁹ to 1 x 10¹¹ pfu/ml virus vector. A preferred human dosage is estimated to be about 50 ml saline solution at 2 x 10¹⁰ pfu/ml. The dosage will be adjusted to balance the therapeutic benefit against any side effects and such dosages may vary depending upon the therapeutic application for which the recombinant vector is employed. The levels of expression of the transgene can be monitored to determine the frequency of dosage administration.

10

An optional method step involves the coadministration to the patient, either concurrently with, 15 or before or after administration of the viral vector, of a suitable amount of a short acting immune modulator. The selected immune modulator is defined herein as an agent capable of inhibiting the formation of neutralizing antibodies directed against the recombinant vector of 20 this invention or capable of inhibiting cytolytic T lymphocyte (CTL) elimination of the vector. The immune modulator may interfere with the interactions between the T helper subsets $(T_{H1} \text{ or } T_{H2})$ and B cells to inhibit neutralizing antibody formation. Alternatively, the 25 immune modulator may inhibit the interaction between THI cells and CTLs to reduce the occurrence of CTL elimination of the vector.

A variety of useful immune modulators and dosages for use of same are disclosed, for example, in Yang et al., J. Virol., 70(9) (Sept., 1996);
International Patent Application No. W096/12406, published May 2, 1996; and International Patent Application No.PCT/US96/03035, all incorporated herein by reference.

The recombinant chimpanzee adenoviruses may also be employed as vaccines or immune response-inducing compositions. The present invention provides a recombinant replication-defective chimpanzee Ad which can contain in any of its adenovirus sequence deletions a gene encoding a desired antigen. The chimpanzee adenovirus is likely to be better suited for use as a live recombinant virus vaccine in different animal species compared to an adenovirus of human origin. The recombinant adenoviruses can be used as prophylactic or therapeutic vaccines against any pathogen for which the antigen(s) crucial for induction of an immune response and able to limit the spread of the pathogen has been identified and for which the cDNA is available.

Because the recombinant chimpanzee adenoviruses described above are deleted in the E1 sequences, the adenoviruses are replication defective and thus highly unlikely to spread within a host or among individuals. The recombinant virus lacks oncogenic potential because the E1 gene, that can function as an oncogene in some adenovirus strains, has been deleted.

With respect to efficacy, the recombinant, replication-defective adenoviruses of this invention are expected to be highly efficacious at inducing cytolytic T cells and antibodies to the inserted heterologous antigenic protein expressed by the virus. This has been demonstrated with a recombinant, replication-defective human Ad containing a sequence encoding the rabies virus glycoprotein as the heterologous gene. See, e.g., Z. Q. Xiang et al., Virol., 219:220-227 (1996).

As described above and in the examples below, in the site of the E1 deletion of either of the two chimpanzee adenoviruses of this invention, and under control of a promoter heterologous to adenovirus, a sequence encoding a protein heterologous to the

30

adenovirus is inserted using techniques known to those of skill in the art. The heterologous nucleic acid encodes a protein which is desirably capable of inducing an immune response to a pathogen when administered to an immunocompetent host. Such a protein may be a protein from, among others, rabies virus, human papilloma virus, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), as well as antigens associated with diseases of other mammals.

5

It is also anticipated that the vaccine 10 method of the present invention may be employed with a tumor-associated protein specific for a selected malignancy. These tumor antigens include viral oncogenes, such as E6 and E7 of human papilloma virus, or cellular oncogenes such as mutated ras or p53. 15 Particularly, where the condition is human immunodeficiency virus (HIV) infection, the protein is preferably HIV glycoprotein 120 for which sequences are available from GenBank. Where the condition is human papilloma virus infection, the protein is selected from 20 the group consisting of E6, E7 and/or L1 [Seedorf, K. et al, <u>Virol.</u>, <u>145</u>:181-185 (1985)]. Where the condition is respiratory syncytial virus infection, the protein is selected from the group consisting of the glyco- (G) protein and the fusion (F) protein, for which sequences 25 are available from GenBank. In addition to these proteins, other virus-associated proteins, including proteins which are antigens for disease-causing agents of other mammals, e.g., domestic animals, horses, farm animals, etc., are readily available to those of skill in 30 the art. Selection of the heterologous proteins is not a limiting factor in the design of vaccine compositions of this invention.

A recombinant replication-defective chimpanzee adenoviral vector bearing a gene encoding an immunogenic protein may be administered to a human or other mammalian patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle is sterile saline. Other aqueous and non-aqueous isotonic sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

Optionally, a vaccinal composition of the invention may be formulated to contain other components, including, e.g. adjuvants, stabilizers, pH adjusters, preservatives and the like. Such components are well known to those of skill in the vaccine art.

The recombinant, replication defective adenoviruses are administered in a "pharmaceutically effective amount", that is, an amount of recombinant adenovirus that is effective in a route of administration to transfect the desired cells and provide sufficient levels of expression of the selected gene to provide a vaccinal benefit, i.e., some measurable level of protective immunity.

Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, intranasal, intramuscular, intratracheal, subcutaneous, intradermal, rectal, oral and other parental routes of administration. Routes of administration may be combined, if desired, or adjusted depending upon the immunogen or the disease. For example, in prophylaxis of rabies, the subcutaneous, intratracheal and intranasal routes are preferred. The route of administration primarily will depend on the nature of the disease being treated.

32

Doses or effective amounts of the recombinant replication-defective Ad virus will depend primarily on factors such as the condition, the selected gene, the age, weight and health of the animal, and may thus vary among animals. For example, a prophylactically effective amount or dose of the Ad vaccine is generally in the range of from about 100 μ l to about 10 ml of saline solution containing concentrations of from about 1 \times 10⁴ to 1 \times 10⁷ plague forming units (pfu) virus/ml. preferred dose is from about 1 to about 10 ml saline solution at the above concentrations. The levels of immunity of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of antibody titers in the serum, optional booster immunizations may be desired.

10

15

20

25

An additional use of the recombinant adenovirus vectors described herein resides in their use as expression vectors for the production of the products encoded by the heterologous genes. For example, the recombinant adenoviruses containing a gene inserted into the location of an E1 deletion may be transfected into an E1-expressing cell line as described above. The transfected cells are then cultured in the conventional manner, allowing the recombinant adenovirus to express the gene product from the promoter. The gene product may then be recovered from the culture medium by known conventional methods of protein isolation and recovery from culture.

The following examples illustrate the

cloning of the chimpanzee adenoviruses and the
construction and testing of the chimpanzee Ad El
expressing cell line and the construction of exemplary
recombinant adenovirus vectors of the present invention.
These examples are illustrative only, and do not limit
the scope of the present invention.

33

Example 1 - Virus Stocks and Propagation

5

10

15

20

25

30

The C1 [ATCC Accession No. VR-20] and C68 [ATCC Accession No. 594] virus stocks were obtained and propagated in 293 cells [ATCC CRL1573] cultured in Dulbecco's Modified Eagles Medium (DMEM; Sigma, St. Louis, MO.) supplemented with 10% fetal calf serum (FCS) [Sigma or Hyclone, Logan, UT] and 1 % Penicillin-Infection of 293 cells was carried Streptomycin (Sigma). out in DMEM supplemented with 2% FCS for the first 24 hours, after which FCS was added to bring the final concentration to 10%. Infected cells were harvested when 100% of the cells exhibited virus-induced cytopathic effect (CPE), collected, and concentrated by centrifugation. Cell pellets were resuspended in 10 mM Tris (pH 8.0), and lysed by 3 cycles of freezing and thawing.

Virus preparations were obtained following two ultra centrifugation steps on cesium chloride density gradients and stocks of virus were diluted to 1 \times 10¹² particles/ml in 10 mM Tris/100 mM NaCl/50% glycerol and stored at -70°C.

Example 2 - Cloning and Sequencing of Viral Genomic DNA

Genomic DNA was isolated from the purified virus preparations of Example 1, following standard methods [see, e.g., M. S. Horwitz et al, "Adenoviridae and Their Replication", <u>Virology</u>, second edition, pp. 1712, ed. B. N. Fields et al, Raven Press Ltd., New York (1990); B. J. Carter, in "Handbook of Parvoviruses", ed. P. Tijsser, CRC Press, pp. 155-168 (1990)] and digested with a panel of 16 restriction enzymes following the

manufacturers' recommendations. Enzymes that cut the DNA

10-15 times were utilized for cloning of the viral DNA into pBluescript SK+. Except as noted, all restriction

34

and modifying enzymes used in this and the following examples were obtained from Boehringer Mannheim, Indianapolis, IN.

Manipulation of the genomic DNA to remove the covalently attached terminal protein was performed 5 [Berkner and Sharp, Nucleic Acids Res., 11: 6003 (1983)]. Taking advantage of the absence of Pac-I restriction sites, synthetic PacI linkers (New England Biolabs, Beverly, MA) were ligated onto the ends of the genomic Genomic DNA was digested with BamHI, PstI, SalI or 10 XbaI and the restriction fragments (all but the genomic terminal fragments) were cloned into pBluescript SK+ (Stratagene, La Jolla, CA). Fragments containing the left and right genomic termini were cloned into pNEB-193 (New England Biolabs, Beverly, MA) as Pac-I/BamHI or Pac-15 I/Pst-I fragments.

The clones generated for C1 and C68 are illustrated in Figs. 1C and 3C, respectively. The cloned fragments are described in Table III(C1) [nucleotide sequence numbers correspond with SEQ ID NO: 1] and Table IVA-IVB (C68) [nucleotide sequence numbers correspond with SEQ ID NO: 2].

20

	<u>Table III</u>							
	Construct Name	Insert <u>Size</u>	Clone #	<u>Sequence</u>				
5	pBS:C1-Bam-A	8477	250,260 281	6135-14611				
	pBS:C1-Bam-B	8253	285	24678-32930				
	pBS:C1-Bam-C	3990	252	17259-21248				
10	pBS:C1-Bam-D	3429	263,269 275	21250-24677				
	pBS:C1-Bam-E	2537	251	3598- 6134				
	pBS:C1-Bam-F	2203	267,270, 279	14612-16814				
	pNEB:C1-Bam-G	1927	516	1-1927 left end				
15	pBS:C1-Bam-H	1632	486,487	32931-34562				
	pBS:C1-Bam-I	1538	288-293 483,485	2060- 3597				
	pNEB:C1-Bam-J	962	519	34563-35524 right end				
20	pBS:C1-Bam-K	288	256,295 296,,298	16971-17258				
	pBS:C1-Bam-L	156	260	16815-16970				
	pBS:C1-Bam-M	132	259,261 262	1928- 2059				
25	pBS:C1-Bam-A/Pst		423-428	subclone of 250				
	pBS:C1-Bam-B/HindII	:I	429-434	subclone of 285				
	pNEB:C-1AscB	7937	955	1-7937 left end				

		<u>Tab</u>	le IVA	
	Construct Name	<u>Size</u>	Clone #	<u>Sequence</u>
	pBS:C68-Pst-A	6768		24790-31554
5	pBS:C68-Pst-B	6713	133,141 213-217, 303-305	4838-11550
	pBS:C68-Pst-C	5228	219-221	14811-20038
	pBS:C68-Pst-D	2739	78,140	12072-14810
10	pBS:C68-Pst-E	2647	127,129 146,151	20039-22685
	pBS:C68-Pst-F	1951	138,149	32046-33996
	pNEB:C68-Pst-G	1874	502,505 506	1-1874 left end
15	pBS:C68-Pst-H	1690	128,135 145, 15 2	23094-24783
	pBS:C68-Pst-I	1343	222-224	33997-35339
	pNEB:C68-Pst-J	1180	508	35340-36519 right end
20	pBS:C68-Pst-K	1111	87,131 132,136 225-230	2763-3873
	pBS:C68-Pst-L	964 .	320,321, 323,324	3874-4837
25	pBS:C68-Pst-M	888	319,322	1875-2762
	pBS:C68-Pst-N	408	84,125 130	22686-23093
	pBS:C68-Pst-O	380		31666-32045
	pBS:C68-Pst-P	285	79,126	11551-11835
30	pBS:C68-Pst-Q	236		11836-12071
	pBS:C68-Pst-R	114	82	31552-31665

37 Table IVB

	BamHI Fragments	<u>Size</u>	Clone #	Sequence
	pBS:C68-Bam-A	16684		19836-36519 right end
5	pBS:C68-Bam-B	8858	95,99 101-103 119-121, 165, 166, 169,171	3582-12439
10	pBS:C68-Bam-C	4410	104,106 167,179 171	12440-16849
	pBS:C68-Bam-D	2986	195-197	16850-19835
	pNEB: C68-Bam-E	2041	537,545	1- 2041 left end
15	pBS:C68-Bam-F	1540	198-200	2042- 3581
	HindIII Fragments			
	pBR:C-68-Hind-B	9150	489,419, 492	23471-32620

the genome by comparison to known adenoviral sequences.
The nucleotide sequence of both viruses was determined
[Commonwealth Biotechnologies Incorporated, Richmond,
VA]. The nucleotide sequence of the top strand of C1 DNA
is reported in SEQ ID NO: 1. The nucleotide sequence of
the top strand of C68 DNA is reported in SEQ ID NO: 2.
Restriction maps were generated using a number of enzymes
and compared to data obtained from restricted genomic DNA
following electrophoreses on agarose gels.

20

25

30

Regulatory and coding regions in the viral DNA sequences were identified by homology to known adenoviral sequences using the Mac Vector program (Oxford Molecular Group) and a MacIntosh Quadra 610 computer (Apple Computer, Cupertino, CA). See Tables I and II. Open

38

reading frames were translated and the predicted amino acid sequences examined for homology to previously described adenoviral protein sequences, Ad4, Ad5, Ad7, Ad12, and Ad40. See Fig. 2 below.

5

10

15

20

The C1 E1 coding region is defined as the sequences between the E1A translation initiation site at nucleotide 576 of SEQ ID NO: 1 and the E1B translation termination signal at nucleotide 3507 of SEQ ID NO: 1. The corresponding sequences in the C68 genome are located at nucleotides 577 and 3510 of SEQ ID NO: 2. Other open reading frames and regulatory elements of the viruses are being examined for homology with other adenoviral sequences.

Our preliminary experiments have demonstrated that human antisera do not neutralize the chimpanzee adenoviruses in neutralizing antibody assays.

Example 3 - Generation of Plasmid Vectors Expressing the C1 and C68 E1 Genes

Plasmid vectors were constructed which encode the C1 and C68 E1 region genes, and these plasmids were used to generate stable cell lines expressing viral E1 proteins.

A. pGPGK-C68 E1

pGPGK (gift of Gaung Ping Gao, University
of Pennsylvania, Philadelphia, PA) is illustrated in Fig.
5A. pGPGK is a 5.5 kb plasmid containing the known murine
PGK promoter (indicated by the arrow on Fig. 5A),
followed by a multiple cloning site, a growth hormone
polyA sequence, an SV40 ori, a neomycin resistance gene,
an SV40 polyA sequence and an ampicillin resistance gene.
The remainder of the plasmid is additional plasmid
sequence.

39

As shown in Fig. 5B, the 5' end of the C-68 E1 region was derived from clone 245 which contains a defective version of the C-68 BamHI-E fragment (2042 base pairs) in pNEB-193, i.e., clone 245 was shown to lack approximately the first 30 base pairs of the C-68 genomic sequence, a region not included in the final product of this construction scheme, pGPGK-C68 E1. This plasmid pNEB-C68BamE was digested with BamHI and HindIII and the 2.1kb fragment was ligated with similarly digested pGPGK DNA. The resulting plasmid is designated pGPGK-C68 BamE, illustrated in Fig. 5C.

PCR primers SF-34

5

10

15

20

25

30

(GCAGGTACCGCGAGTCAGATCTACAC) [SEQ ID NO: 4] and SF-35 (CTGTCTGAGCTAGAGCTC) [SEQ ID NO: 5] were designed to introduce a KpnI restriction site 31 base pairs upstream of the E1A translation initiation site (nucleotide 577 of SEQ ID NO: 2). Using clone 245 as template, a 293bp PCR product was obtained using reagents from Perkin Elmer (Foster City, CA) under the following conditions: 94 = BOC x 5 minutes; 25 cycles of 94 = BOC x 1 minute; 54 = BOC x 1 minute; 72=BOC x 2 minutes; and a final extension cycle of 72= BOC x 7 minutes. The PCR product was purified and is indicated by the hatched bar in Fig. 5D.

The PCR product was digested with KpnI and NheI, yielding a 253bp fragment, which was purified and ligated with similarly digested pGPGK-C68 BamE (Fig. 5C) DNA to yield pGPGK-C68 E1-ATG (Fig. 5E).

The region derived from the PCR step was sequenced for several isolates and the adenovirus insert in pGPGK-C68E1-ATG was shown to match the expected sequence derived from C-68 genomic DNA. pGPGK-C68 E1-ATG (Fig. 5E) was digested with BamHI and the linearized plasmid treated with calf intestinal phosphatase. The purified/phosphatased backbone was ligated with the

40

1544bp C-68 BamF fragment isolated from pBS-C68 BamF (Fig. 5F) to yield the final plasmid, designated pGPGK-C68 E1 (Fig. 5G).

The C-68 derived sequence in plasmid pGPGK-C68 E1 ends at the BamHI site corresponding to nucleotide 3581 of SEQ ID NO: 2 in the C-68 genomic sequence, which is 80bp downstream of the end of the E1B coding region. This expression plasmid contains from about nucleotide 546 to nucleotide 3581 of SEQ ID NO: 2 which encodes E1a and E1b of chimpanzee Ad C68 under the control of the PGK promoter.

B. pGPGK-C1 E1

5

10

15

20

25

30

35

The C1 Ad E1 expression plasmid was constructed in a manner similar to that described above for the C68 E1 expression plasmid. Refer to Figs. 6A through 6G.

The 5' end of the C-1 El region is isolated as a 1.9kb SnaBI - XbaI fragment (Fig. 6B) and is cloned into pGPGK (Fig. 6A) digested with XbaI and EcoRV. The resulting pGPGK-Cl (map units 1.3-6.6) (Fig. 6D) is used as the template for PCR. Primers are designed to introduce a KpnI site just upstream of the Cl El region translation initiation codon (El-ATG) at nucleotide 578 of the Cl genomic DNA. (See Fig. 6C).

The PCR product is double digested with KpnI and KspI and ligated with similarly digested pGPGK-C1 (m.u. 1.3-6.6) to yield pGPGK-C1 E1-ATG.

Partial digestion of pGPGK-C1 E1-ATG (Fig. 6E) with BamHI and isolation of the full length linear DNA, followed by XbaI digestion and isolation of the full length band, followed by ligation with similarly digested pBS-C1 Bam-I (Fig. 6F) yields the final product, pPGPK-C1 E1 (Fig. 6G). The C-1 derived sequence in plasmid pGPGK-C1 E1 ends at the BamHI site corresponding to nucleotide 3599 in the C-1 genomic sequence, which is 90bp downstream of

41

the end of the E1B coding region. This expression plasmid contains from about nucleotide 548 to about nucleotide 3581 of SEQ ID NO: 1 which encodes E1a and E1b of Ad C1 under the control of the PGK promoter.

5 Example 4 - Generation of Cell Lines Expressing Chimpanzee Adenovirus El Proteins

10

15

20

25

30

Cell lines expressing viral El proteins were generated by transfecting HeLa (ATCC Acc. No. CCL2) and A549 (ATCC Acc. No. CCL185) cell lines with either pGPGK-C1 El or pGPGK-68 El of Example 3. These cell lines are necessary for the production of El deleted recombinant chimpanzee adenoviruses by co-transfection of genomic viral DNA and the expression plasmids described above. Transfection of these cell lines, as well as isolation and purification of recombinant chimpanzee adenoviruses therefrom were performed by methods conventional for other adenoviruses, i.e., human adenoviruses [see, e.g., Horwitz, cited above and other standard texts].

A. Cell lines expressing C1 and C68 E1 proteins

HeLa and A549 cells in 10cm dishes were transfected with 10 µg of pGPGK-C1-E1 DNA or pGPGK-C68-E1 DNA using a Cellphect™ kit (Pharmacia, Uppsala, Sweden) and following the manufacturer's protocol. 22 hours post-transfection, the cells were subjected to a three minute glycerol shock (15% glycerol in Hepes Buffered Saline, pH 7.5) washed once in DMEM (HeLa) or F12K (A549; Life Technologies, Inc., Grand Island, NY) media supplemented with 10% FCS, 1% Pen-Strep, then incubated for six hours at 37°C in the above described media. The transfected cells were then split into duplicate 15cm plates at ratios of 1:20, 1:40, 1:80, 1:160, and 1:320. Following incubation at 37°C overnight, the media was

42

supplemented with G418 (Life Technologies, Inc.) at a concentration of $1\mu g/ml$. The media was replaced every 5 days and clones were isolated 20 days post-transfection.

Thirty-two A549 and 16 HeLa C1 E1 cell clones and 40 A549 and 37 HeLa C68 E1 cell clones were isolated and assayed for their ability to augment adenoassociated virus (AAV) infection and expression of recombinant LacZ protein as described below.

5

10

20

25

B. AAV Augmentation Assay for Screening El Expressing Cell Lines

AAV requires adenovirus-encoded proteins in order to complete its life cycle. The adenoviral El proteins as well as the E4 region encoded ORF-6 protein are necessary for the augmentation of AAV infection.

A novel assay for El expression based on AAV augmentation is disclosed herein. Briefly, the method for identifying adenoviral El- expressing cells comprises the steps of infecting in separate cultures a putative adenovirus El-expressing cell and a cell containing no adenovirus

sequence, with both an adeno-associated virus (AAV) expressing a marker gene and an AAV expressing the ORF6 of the E4 gene of human adenovirus, for a suitable time. The marker gene activity in the resulting cells is measured and those cells with significantly greater

measurable marker activity than the control cells are selected as confirmed E1-expressing cells. In the following experiment, the marker gene is a lacZ gene and the marker activity is the appearance of blue stain.

above, as well as untransfected control cells (A549 and HeLa) are infected with 100 genomes per cell of an AAV vector bearing a marker gene, e.g., AV.LacZ [K. Fisher et al., J. Virol., 70:520 (1996)] and an AAV vector expressing the ORF6 region of human Ad5 (AV.orf6) (see SEQ ID NO: 3). The DNA sequence [SEQ ID NO: 3] of the

PCT/US97/15694

plasmid pAV.CMVALP.GRE-ORF6, also called AV.orf6, generates a novel recombinant adeno-associated virus (rAAV) containing the LacZ transgene and the Ad E4 ORF 6, which is an open reading frame whose expression product facilitates single-stranded (ss) to double-stranded (ds) 5 conversion of rAAV genomic DNA. In SEQ ID NO: 3, the AAV 5' inverted terminal repeat (ITR) is at nucleotides 53-219; the cytomegalovirus (CMV) enhancer/promoter is at nucleotides 255-848; the human placenta alkaline phosphatase cDNA (ALP) is at nucleotides 914-2892; the 10 SV40 polyadenylation (polyA) signal is at nucleotides 2893-3090; the glucocorticoid dependent (GRE) promoter is at nucleotides 3114-3393; the Ad5 E4-ORF6 cDNA is at nucleotides 3402-4286; the SV40 polyA signal is at nucleotides 4315-4512; and the 3' AAV ITR is at 15 nucleotides 4547 - 4713. All other nucleotides are plasmid-derived. These vectors are incubated in medium containing 2% FCS and 1% Pen-Strep at 37°C for 4 hours, at which point an equal volume of medium containing 10% FCS is added. It should be understood by one of skill in 20 the art that any marker gene (or reporter gene) may be employed in the first AAV vector of this assay, e.g., alkaline phosphatase, luciferase, and others. antibody-enzyme assay can also be used to quantitate levels of antigen, where the marker expresses an antigen. 25 The assay is not limited by the identity of the marker gene. Twenty to twenty-four hours post-infection, the cells are stained for LacZ activity using standard After 4 hours the cells are observed methods. microscopically and cell lines with significantly more 30 blue cells than the A549 or HeLa cell controls are scored as positive.

Eight A549 (A-2,3,8,13,15,18,23,38) and five HeLa (H-3,4,15,16,20) cell clones are significantly positive in the AAV augmentation assay and the three best

44

of each cell type (A-18, A-23, A-13 and H-16, H-4, H-20), when tested, support the growth of El deleted recombinant C68 viruses.

Four A549 (A-3, 6, 19, 22) and nine HeLa (H-2,5-7, 11-16) cell clones are significantly positive in the AAV augmentation assay and the three best of each cell type (A-3, A-19, A-22 and H-5, H-12, H-14), when tested, support the growth of E1 deleted recombinant C1 viruses.

10 <u>Example 5 - Generation of Recombinant Chimpanzee</u> Adenoviruses

5

15

20

25

30

Recombinant chimpanzee adenovirus vectors are prepared using the C1 and C68 sequences described herein and HEK293 cells. The cell lines described in Example 4 may also be used similarly. Plasmids used to construct C68 and C1 recombinant adenovirus vectors are illustrated in Figs. 7A through 7K, and 8A through 8K, respectively. See also Figs. 11A-11K.

A. pC1-CMV-LacZ

pSP72 (Promega, Madison, WI) is modified by digestion with BglII, followed by filling-in of the ends with Klenow and ligation with a synthetic 12bp PacI linker (New England Biolabs, Beverly, MA) to yield pSP72-Pac (Fig. 7A), which contains a large multiple cloning site with conventional restriction enzyme cleavage sites.

pSP72-Pac is digested with PacI and EcoRV and ligated with the 465bp PacI-SnaBI fragment isolated from pBSC1-BamG (Fig. 7B) to yield pSP-C1-MU 0-1.3 (Fig. 7C). The CMV promoter-driven LacZ gene is isolated from pCMV-B (Clontech, Palo Alto, CA; Fig. 7D) as a 4.5kb EcoRI/SalI fragment and ligated with similarly digested pSP-C1-MU 0-1.3 DNA to yield pSP-C1-MU 0-1.3-CMV-B.

45

For the initial step in the isolation of the C1 Ad map units 9-16 region, pGEM-3Z (Promega, Madison, WI; Fig. 7F) and pBS-C1-BamI (Fig. 7G) are digested with BamHI and SphI and the 310bp fragment from pBS-C1-BamI is ligated with the pGEM-3Z backbone to form pGEM-C1-MU9-10 (Fig. 7H). C1 map units 10-17 are isolated from pBS-C1 BamE (Fig. 7I) by digestion with BamHI. The 2.5 kb fragment is ligated with BamHI-digested pGEM-C1-MU9-10 to form pGEM-C1-MU9-17 (Fig. 7J). The 2.9 kb fragment containing C1 map unit 9-17 region is isolated from pGEM-C1-MU9-17 by digestion with HindIII and ligated with pSP-C1-MU 0-1.3-B (Fig. 7E) digested with HindIII to form the final plasmid, pC1-CMV-LacZ (Fig. 7K).

pC1-CMV-LacZ (Fig. 7K) thus contains C1 Ad mu 0 to 1.3, followed by the CMV promoter, an SD/SA, the LacZ gene, a SV40 poly A sequence and C1 Ad mu. 9-17, as well as additional plasmid sequence. This plasmid is cotransfected into the E1-expressing cell line with a left terminal clipped C1 Ad fragment (or a replication-defective C1 Ad helper virus) to produce by homologous recombination a recombinant chimpanzee adenovirus carrying the LacZ gene.

C. pC68-CMV-LacZ

5

10

15

20

25

30

35

pSP72-Pac (Fig. 8A; also Fig. 7A) is digested with PacI and EcoRV and ligated with the 465bp PacI-SnaBI fragment isolated from pBS-C68-BamE (Fig. 8B) to yield pSP-C68-MU 0-1.3 (Fig. 8C). As above, the CMV promoter-driven LacZ gene is isolated from pCMVB (Clontech; Fig. 8D; also Fig. 7D) as a 4.5kb EcoRI-SalI fragment and ligated with similarly digested pSP-C68-MU 0-1.3 DNA to yield pSP-C68-MU 0-1.3-CMVB (Fig. 8E).

For the initial step in the isolation of the map unit 9-16 region of C68, pGEM-3Z (Fig. 8F; also Fig. 7F) and pBS-C68-BamF (Fig. 8G) are double digested

46

with BamHI and SphI and the 293bp fragment from pBS-C68-BamF is ligated with the pGEM-3Z backbone to form pGEM-C68-MU9-10 (Fig. 8H). C68 map units 10-16.7 are isolated from pBS-C68 BamB (Fig. 8I) by digestion with XbaI, followed by filling in of the ends and digestion 5 with BamHI. The 2.4 kb fragment is ligated with BamHI/EcoRV-digested pGEM-C68-MU9-10 to form pGEM-C68-MU9-16.7 (Fig. 8J). The C68 map unit 9-16.7 region is isolated from pGEM-C68-MU9-16 by digestion with EcoRI, filling in of the ends with Klenow and then 10 digestion with HindIII. The 2.7 kb fragment is ligated with pSP-C68-MU 0-1.3-CMVB (Fig. 8E), digested with HindIII and PvuII to form the final plasmid, pC68-CMV-LacZ (Fig. 8K).

pC68-CMV-LacZ (Fig. 8K) thus contains C68
Ad mu 0 to 1.3, followed by the CMV promoter, an SD/SA,
the LacZ gene, a SV40 poly A sequence and C68 Ad mu 916.7, as well as additional plasmid sequence. This
plasmid is co-transfected into the E1-expressing cell
line with another C68 Ad to produce by homologous
recombination a recombinant chimpanzee adenovirus
carrying the LacZ gene.

D. pBS-Notx2

The LacZ gene is removed from either

25 pC1-CMV-LacZ (Fig. 7K) or pC68-CMV-LacZ (Fig. 8K) by
digestion with NotI, and replaced by the coding sequence
of any desired gene. This cloning step is facilitated by
having the gene of interest flanked by NotI restriction
sites, preferably with the upstream site in the 5'

untranslated region of the gene.

Such a cloning vector is derived from pBluescript SK+ (Stratagene, La Jolla, CA) by digestion of SK+ with SalI, followed by filling in of the ends and

47

ligation with a synthetic 8bp NotI linker (New England Biolabs, Beverly, MA): GCGGCCGC.
CGCCGGCG

The resulting pBS-Notx2 shuttle vector

(Fig. 4B) is thus designed to facilitate cloning of cDNAs into pC1-CMV-LacZ (Fig. 7K) and pC68-CMV-LacZ (Fig. 8K; see also Fig. 4A) as a NotI fragment. pBS-Notx2 has two NotI sites flanking a number of restriction sites suitable for cloning the cDNA to be expressed in the recombinant adenoviruses and the LacZ ORF from pBluescript is maintained, allowing blue/white screening of clones in pBS-Notx2.

Homologous Recombination with Helper Virus E. To generate the recombinant adenoviruses from the plasmids described above, the appropriate E1-15 expressing packaging cell line, such as 293 cell line or a cell line of Example 4, is co-transfected with a replication defective C1 or C68 helper virus, or a leftend clipped C1 or C68 fragment, as appropriate. helper viruses may be deleted of other non-essential 20 The infected cell line is subsequently transfected with an adenovirus vector as described above bearing the transgene of interest. Homologous recombination occurs between the helper and the plasmid, which permits the adenovirus-transgene sequences in the 25 vector to be replicated and packaged into virion capsids,

resulting in the recombinant adenovirus.

30

35

Transfection is followed by an agar overlay for 2 weeks, after which the viruses are plaqued, expanded and screened for expression of the transgene. See, for example, Figs. 10A-10D. Several additional rounds of plaque purification are followed by another expansion of the cultures. Finally the cells are harvested, a virus extract prepared and the recombinant chimpanzee adenovirus containing the desired transgene is

48

purified by buoyant density ultracentrifugation in a CsCl gradient. All of the above procedures are known to those of skill in the art.

5

10

15

20

25

30

35

Another C1 Recombinant Adenovirus F. Another set of plasmids used to construct a C1 recombinant adenovirus is described as follows. Figs. 11A-11H illustrate the scheme employed to generate a unique restriction site in the left end of the C1 A unique site is necessary in the procedure employed in generating a recombinant adenovirus, but C1 There are two Spe-I restriction sites, has no such site. including one at position 1733, within the E1B 21K coding To replace this Spe-I site with a unique Not-I site, plasmid pNEB-C1-BamG (Fig. 11A), containing the left end of the C1 genome, was digested with Spe-I and Asc-I, and ligated to the 6204 bp Spe-I/Asc-I fragment from the C1 genome (Fig. 11B). The resulting plasmid, pNEB-C1-AscI-B (Fig. 11C) is then digested with Spe-I, filled in with Klenow enzyme and ligated to the synthetic

This plasmid is digested with Pac-I and Asc-I and the purified fragment is ligated overnight with the C1-Asc-I-A fragment (Fig. 11G). The ligation reaction is extracted with phenol:chloroform:iso-amyl alcohol, then chloroform, and then 3 μ g of sheared salmon sperm DNA is added and the DNA is ethanol precipitated. The resuspended DNA is used to transfect 293 cells and DNA from viral plaques is tested for a Not-I site (11H).

8bp Not-I linker (Fig. 11D) described above, to yield

G. GFP as a Transgene

pNEB-C1-AscI-B-NotI (Fig. 11E).

Plasmids used to construct exemplary C68 expression plasmids containing the bacterial green fluorescent protein (GFP) gene are illustrated in Figs. 9A through 9G, respectively. To facilitate the cloning of the GFP gene into the chimp Adeno expression vectors,

49

pEGFP-1 (Fig. 9A, Clonetech, Palo Alto, CA) was digested with Sma-I and ligated to the previously described 8bp Not-I linker (Fig. 9B). The resulting plasmid, pEGFP-Notx2 (Fig. 9C) has the GFP gene flanked by Not-I sites.

5

20

25

30

The purified pEGFP-Notx2 Not-I fragment is ligated to Not-I digested pC1-CMV-LacZ (Figs. 7K and 9D) or pC68-CMV-LacZ (Figs. 8K and 9E) to yield the GFP expression vectors pC1-CMV-GFP (Fig. 9F) and pC68-CMV-GFP (Fig. 9G and Fig. 10A), respectively.

The resulting recombinant chimpanzee adenovirus described in Example 5 above is then employed to deliver the transgene to a mammalian, preferably human, cell. For example, following purification of the recombinant C68-CMV-GFP virus of Example 5G, human embryonic kidney 293 cells and A549 cells were infected at an MOI of 50 particles per cell. GFP expression was documented 24 hours post-infection.

In vivo studies have tested the infectivity of the virus in murine liver (tail vein injection), lung (intratracheal injection) and muscle (intramuscular injection). Preliminary data indicate that the C68-CMV-GFP recombinant virus transduces all three tissues, and GFP expression can be detected.

When administered in vivo, a less severe immune response is produced by the human immune system (which is naive to the chimpanzee adenovirus sequences) than to a human adenovirus construct, thereby permitting subsequent administration of the same or another vector.

All references recited above are incorporated herein by reference. Numerous modifications and variations of the present invention are included in the scope of the above-identified specification and are expected to be obvious to one of skill in the art. Such

50

modifications and alterations to the compositions and processes of the present invention, such as selections of different minigenes or selection or dosage of the vectors or immune modulators are believed to be within the scope of the claims appended hereto.

51

SEQUENCE LISTING

(1)	GENERAL	INFORMA	TION

- (i) APPLICANT: Trustees of the University of Pennsylvania Wilson, James M. Farina, Steven F. Fisher, Krishna J.
- (ii) TITLE OF INVENTION: Chimpanzee Adenovirus Vectors
- (iii) NUMBER OF SEQUENCES: 5
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Howson and Howson
 - (B) STREET: Spring House Corporate Cntr., P.O. Box 457
 - (C) CITY: Spring House
 - (D) STATE: Pennsylvania
 - (E) COUNTRY: United States of America
 - (F) ZIP: 19477
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: WO
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/024,700
 - (B) FILING DATE: 06-SEP-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bak, Mary E.
 - (B) REGISTRATION NUMBER: 31,215
 - (C) REFERENCE/DOCKET NUMBER: GNVPN.021CIP1PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-540-9200
 - (B) TELEFAX: 215-540-5818
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35524 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCATCATCAA TAATATACCT TAAACTTTTG GTGCGTGTTA ATATGCAAAT GAGGCGTTTG 60 120 GTGACGTTTT GATGACGTGG TCGTGAGGCG GAGTTGGTTT GCAAGTTCTC GTGGGAAAAG 180 TGACGTCAAA CGAGGTGTGG TTTGAACACG GAAATACTCA ATTTTCCCGC GCTCTCTGAC 240 AGGAAATGAT GTGTTTTTGG GCGGATGCAA GTGAAAATTC CTCATTTTCG CGCGAAAACT 300 AAATGAGGAA GTGAATTTCT GAGTAATTTC GTGTTTATGA CAGGGTGGAG TATTTACCGA 360 GGGCCGAGTA GACTTTGACC GATTACGTGG AGGTTTCGAT TACCGTGTTT TTCACCTAAA 420 TTTCCGCGTA CGGTGTCAAA GTCCTGTGTT TTTACGTAGG TGTCAGCTGA TCGCTAGAGT 480 ATTTAAACCT GACGAGTTCC GTCAAGAGGC CACTCTTGAG TGCCAGCGAG AAGAGTTTTC 540 TCCTCCGCAC TGCGAGTCAG ATCTCCACTT TGAAAATGAG ACACCTGCGC TTCCTGTCCC 600 AGGAGATAGT CTCCACTGAG ACTGGGAATG AAATACTGCA ATTTGTGGTA AATACACTGA 660 TGGGAGACGA TCCAGAGCCG CCTGAGCCAC CTTTTGATCC TCCTACGCTT CATGAATTAT 720 ATGATTTAGA GGTAGACGGA CCGGAGGACC CTAATGAAAA CGACGTGAAT GGGTTTTTTA 780 CTGATTCTAT GTTATTAGCT GCTAATGAGG GAGTGGATTT AGACCCACCT TCTGGAACTT 840 TTGATACTCC AGGGGTGATT GTGGAAAGCG ACATAGATGG GAAAAATTTA CCTGATTTGG 900 GTGCTGCTGA ATTGGACTTA TACTGCTATG AAGAGGGTTT TCCTCAGAGT GATGATGAAG 960 ATGTGGAGAA TGAGCAGTCA ATTCAGACCG CCGCGGGTGA GGGAGTGAAA GCTGCCAGTG 1020 ATGGTTTTAA GTTGGACTGT CCGGTGCTTC CTGGACATGG CTGTAAGTCT TGTGAATTTC 1080 ACAGGAAAA TACTGGAGTA AAAGAAATAT TATGCTCGCT TTGTTATATG AGAGCGCATT 1140 GCCACTITAT TTACAGTAAG TGTGTTTAAA GTTAAATTTA AAGGAACAGT AGCTGTTTTA 1200 ATAACTCTTG AATGGGTGAT TTATGTTTTG CTGATTTTTA TAGGTCCTGT GTCTGATGCT 1260 GATGAATCGC CTTCTCCTGA TTCAACTACC TCACCTCCTG AAATTCGGGC ACCCGTTCCT 1320 GCAAACGTAT GCAAGCCCAT TTCTGTGAAG CTTAAGCCTG GGAAACGCCC TGCTGTGAAT 1380 AAACTTGAGG ATTTGCTGGA GGGTGTGGAT GAACCTTTGG ACTTGTGTAC CCGGAAAATA 1440 CCAAGGCAAT GAGTGCTCCG CACCTGTGTT TATCTAATGT GACGTCACTG TTTTTGTGAG 1500 AGTGTCATGT AATAAAATTA TGTCAGCAGC TGAGTGTTTT ATTGTTTATT GGGTGGGACT 1560 TGGGATATAT AAGTAGGAGC AGACCTGTGT GGTTAGCTCA CAGCAGCTTG CTGCCATCCA 1620 TGGAGGTTTG GGCCATATTG GAAGATCTTA GGCAGACTAG GCAACTGCTA GAAAACGCCT 1680 CGGACAGAGT CTCTGGTCTT TGGAGATTCT GGTTCGGTGG TGATCTAGCT AGACTAGTCT 1740 TTAGGATAAA GCAGGATTAC AGGCAAGAAT TTGAAAAGTT ATTGGACAAC TGTCCAGGAC 1800 TTTTTGAAGC TCTTAACTTG GGCCACCAGG CTCATTTTAA GGAGAAGGTT TTATCAGTTT 1860 TGGATTTTTC TACCCTGGT AGAACTGCTG CTGCTGTAGC TTTCCTTACA TTTATATTTG 1920 ATANATGGAT CCCACAGACC CACTTCAGCA AGGGATACGT TTTGGATTTC ATAGCAGCAG 1980 CTTTGTGGAG AACATGGAAG GCTCGCAGGA TGAGGACAAT CTTAGATTAC TGGCCAGTAC 2040

AGCCTCTGGG TGTAGCAGGG ATCCTGAGAC ACCCACCGAC CATGCCAGCG GTTTTGGAGG 2100 AGGTGCAACA AGAGGACAAT CCGAGAGCCG GCCTGGACCC TCCGGTGGAG GAGGCGGAGG 2160 AGTAGCTGAC TTGTTTCCTG AACTGCGACG GGTGCTTACT AGATCTACAA CCAGTGGGCG 2220 GGACAGGGGC ATTAGAGGG AAAGGAATCC TAGTGGAACT AATCCCAGAT CTGAGTTGGC 2280 TTTANGTTTG ATGAGTCGCA GACGTCCTGA AACTATATGG TGGCATGAGG TTCAGAATGA 2340 GGGCAGGGAT GAAGTATCAA TATTGCAAGA GAAATATTCT CTAGAACAGG TGAAAACATG 2400 TTGGTTGGAG CCTGAGGATG ATTGGGAGGT TGCCATTAGG AATTATGCCA AGATAGCTTT 2460 GAGGCCTGAT AAATTGTACA GAATTACTAA ACGGATTAAT ATTAGAAATG CATGCTATAT 2520 ATCAGGGAAT GGGGCTGAGG TAGTGATAGA CACTCAGGAC AGAACAGTTT TTAGATGCTG 2580 TATGATGGGT ATGTGGCCAG GGGTGATTGG CATGGAGGCG GTAACCTTTA TGAATGTAAA 2640 2700 GTTTAGAGGG GATGGGTATA ATGGTGTGGT TTTTATGGCT AATACTAAAT TGATTTTGCA TGGTTGTAGC TTTTTTGGTT TTAATAATAT ATGTGTGGAA GCTTGGGGGC AGGTCAGTGT 2760 2820 AAGAGGCTGT AGTTTCTATG CATGCTGGAT TGCAACATCA GGCAGGACCA AGAGTCAATT GTCTGTGAAG AAATGTATGT TTGAGAGATG TAACCTGGGC ATACTAAATG AAGGAGAAGC 2880 2940 CAGAGTCAGC CACTGTGCTT CTTCCGAAAC TGGCTGTTTC ATGTTGATGA AGGGAAATGC CANTGTGANA CATANTATGA TCTGCGGACC CTCAGATGAC AGGCCTTATC AGATGCTGAC 3000 ATGTGCTGGC GGACATTGCA ATATGCTGGC TACCGTGCAT ATTGTTTCTC ACCCACGCAA 3060 GAAATGGCCT GTTTTGGAAC ATAATGTGAT GACCAAATGT ACCATGCACG TAGGTGGACG 3120 CAGAGGAATG TTAATGCCAT ACCAGTGTAA CATGAATAAT GTGAAAGTGA TGTTGGAACC 3180 AGATGCATTT TCCAGAATGA GTTTAACAGG AATCTTTGAC ATGAATCTGC AAATATGGAA 3240 GATCCTGAGA TATGATGACA CGAAGTCGAG GGTACGCGCA TGCGAGTGCG GGGCCAAACA 3300 TGCCAGGTTC CAGCCGGTGT GTGTGGATGT GACTGAAGAA CTAAGGCCAG ATCATTTGGT 3360 GATTGCCTGC ACTGGAGCGG AGTTCGGTTC TAGTGGTGAA GAAACTGACT AAAGTGAGTA 3420 3480 GTAGTGGGAT ACTTTGGATG GGCTCTTATG TGAATATGGT GGACAGATTG GGTAAATTTT GTTCTTTCTG TCTTGCAGCT GTCATGAGTG GAAGCGCTTC TTTTGAGGGG GGAGTCTTTA 3540 GCCCTTATCT GACGGCCCT CTCCCACCAT GGGCAGGAGT TCGTCAGAAT GTCATGGGAT 3600 CCACTGTGGA TGGGAGACCA GTCCAGCCG CCAATTCATC AACACTGACC TATGCCACTT 3660 TGAGCTCTTC ACCCTTGGAT GCAGCTGCAG CTGCTGCCGC TTCTGCTGCC GCCAATACCG 3720 TCCTTGGAAT TGGCTATTAT GGAAGCATCG TTGCCAATAC CAGTTCCTCA AATAACCCTT 3780 CGACCCTGGC TGAGGACAAG CTACTTGTTC TTTTGGCGCA GCTTGAGGCG TTGACCCAGC 3840 GCCTGGGTGA ACTGTCTCAG CAGGTGGCCC AGCTGCGCGA GCAAACTGAG TCTGCTGTTG 3900 CCACAGCAAA GTCTAAATAA AGATTAATCA ATAAATAAAG GAGATACTTG TTGATTTTAA 3960

ACTGTAATGA ATCTTTATTT GATTTTTCGC GCACGGTATG CCCTGGACCA CCGGTCTCGA 4020 TCATTGAGAA CTCGGTGGAT TTTTTCCAGG ACCCTGTAGA GGTGGGATTG AATGTTTAGA 4080 TACATGGGCA TTAGGCCGTC TCGGGGGTGG AGATAGCTCC ATTGAAGAGC CTCATGCTCC 4140 GGGGTAGTAT TATAAATCAC CCAGTCATAA CAAGGTCGGA GTGCATGATG TTGCACAATA 4200 TCTTTAAGGA GCAGGCTGAT TGCAACTGGG AGCCCCTTGG TGTATGTGTT TACAAATCTG 4260 TTANGCTGAG ATGGATGCAT TCTGGGTGAA ATTATATGCA TTTTTGACTG TATCTTGAGG 4320 TTGGCAATGT TGCCGCCCAG ATCCCGTCTC GGGTTCATGT TATGCAGGAC CACCAAGACG 4380 GTGTATCCGC TGCACTTAGG AAATTTATCA TGCAGCTTAG ATGGAAAAGC ATGAAAAAAT 4440 TTGGAGACGC CTTTGTGTCC GCCCAGATTC TCCATGCACT CATCCATGAT GATAGCGATG 4500 GGGCCGTGGG CGGCGGCACG GGCAAACACA TTCCGGTGGT CTGACACATC ATAGTTATGC 4560 TCCTGAGACA GGTCATCATA AGCCATTTTA ATAAACTTTG GGCGGAGGGT GCCAGATTGG 4620 GGTATAAATG TACCCTCGGG CCCCGGAGCA TAGTTTCCCT CACAGATTTG CATTTCCCAG 4680 GCTTTCAATT CAGAGGGGG GATCATGTCC ACCTGAGGGG CTATAAAAAA TACCGTTTCT 4740 GGGGCTGGGG TGATTAACTG TGATGATAGC AAATTCCTGA GCAGCTGTGA CTTGCCACAC 4800 4860 CCAGTGGGGC CGTAAATGAC CCCGATTACG GGTTGCAGAT GGTAGTTTAG GGAGCGGCAG CTGCCGTCCT CTCGGAGCAG GGGGGCCACT TCGTTCATCA TTTCCCTTAC ATGGATATTT 4920 TCCCGCACCA AGTCCGTTAG GAGGCGCTCT CCACCTAGCG ATAAAAGTTC CTGGAGGGAG 4980 GAGAAGTTTT TGAGCGGCTT TAGCCCGTCA GACATGGGCA TTTTGGAAAG AGTCTGTTGC 5040 AAGAGCTCAA GCCGGTCCCA GAGCTCGGTA ATGTGTTCTA TGGCATCTCG ATCCAGCAGA 5100 CCTCCTCGTT TCCCGGGTTG GGACGCTCC TGGAGTAGGG TATCAGACGA TGGGCGTCCA 5160 GCGCTGCCAG GGTCCGGTCT TTCCAGGGTC GCAGCGTCCG AGTCAGGGTT GTTTCCGTCA 5220 CAGTGAAGGG GTGCGCGCCT GGTTGGGCGC TTGCGAGGGT GCGCTTCAGG CTCATCCTGC 5280 TGGTCGAGAA CCGCTGCCGA TCGGCGCCCT GCATGTCAGC CATGTAGCAG TTTACCATGA 5340 GTTCGTAGTT GAGTGCCTCG GCTGCGTGAC CTTTGGCGCG GAGCTTACCT TTGGAAGTTT 5400 TCTGGCAGGC AGGGCAGTAC AGACACTTGA GGGCATATAG CTTGGGCGCG AGGAAGATTG 5460 ATTCGGGGGA GTATGCATCC GCGCCGCAGG AGGCGCAGAT GGTTTCGCAT TCCACGAGCC 5520 AGGTCAGATC CGGCTCATCG GGGTCAAAAA CAAGTTTACC GCCATGTTTT TTGATGCGCT 5580 TCTTACCTTT GGTCTCCATG AGTTCGTGTC CCCGCTGGGT GACAAAGAGG CTGTCCGTGT 5640 CCCCGTAGAC CGATTTTATG GGCCTGTCCT CGAGCGGAGT GCCTCGGTCC TCTTCGTAGA 5700 GGAACCAGA CCACTCTGAT ACAAAGGCGC GCGTCCAGGC CAGTACAAAA GAGGCCACGT 5760 GGGAGGGGTA GCGGTCGTTA TCAACCAGGG GGTCCACCTT CTCCACAGTA TGTAAACACA 5820 TGTCCCCTC CTCCACATCC AAGAAGGTGA TTGGCTTGTA AGTGTAGGCC ACGTGACCAG 5880

TTCCAGCCGG	TGGGGTATAA	AAGGGGGCGG	GTCTCTGCTC	GTCCTCACTG	TCTTCCGGAT	5940
CGCTGTCCAG	GAGCGCCAGC	TGTTGGGGTA	GGTATTCCCT	TTCGAAGGCG	GGCATAACCT	6000
CTGCACTCAG	GTTGTCAGTT	TCTAGGAACG	AGGAGGATTT	GATATTGACA	GTGCCAGTTG	6060
AGATGCCTTT	CATGAGACTC	TCGTCCATTT	GGTCAGAAAA	GACAATTTTC	TTGTTGTCAA	6120
GCTTGGTGGC	AAAGGATCCG	TATAGGGCAT	TGGATAAAAG	CTTGGCGATG	GAGCGCATGG	6180
TTTGGTTCTT	ATCCTTGTCC	GCACGCTCCT	TGGCAGCAAT	GTTGAGTTGG	ACGTACTCGC	6240
GCGCCAGGCA	CTTCCATTCA	GGAAAGATGG	TCGTCAGTTC	ATCTGGCACG	ATTCTGACTC	6300
GCCAGCCCCG	ATTATGCAGG	GTGATTAGAT	CCACACTGGT	GGCCACCTCG	CCTCGGAGGG	6360
GCTCGTTGGT	CCAGCAGAGT	CGACCCCCTT	TTCTTGAACA	GAAAGGGGGG	AGGGGGTCTA	6420
GCATGAGTTC	ATCAGGGGG	TCTGCATCCA	TGGTGAATAT	TCCTGGGAGC	AGATCTTTGT	6480
CAAAATAGCT	AATGTGAGCG	GGGTCATCCA	AAGCCATCTG	CCATTCTCGA	GCTGCCAGCG	6540
CGCGTTCATA	GGGATTGAGT	GGGGTGCCCC	ATGGCATGGG	GTGGGTGAGT	GCAGAGGCAT	6600
ACATGCCACA	GATGTCATAG	ACATACAGTG	GTTCTTCGAG	GATGCCGATG	TAGGTGGGAT	6660
AACAGCGCCC	CCCTCTGATG	CTTGCTCGCA	CATAGTCATA	GAGTTCATGC	GAGGGGGCGA	6720
GAAGACCCGG	GCCCAGATTG	GTACGGTTGG	GTTTTTCAGC	TCTGTAAACG	ATCTGGCGAA	6780
AGATGGCATG	GGAATTGGAA	GAGATGGTAG	GTCTCTGAAA	GATGTTAAAA	TGGGCATGAG	6840
GCAGGCCCAC	AGAGTCCCTG	ACGAAGTGGG	CATAGGACTC	TTGCAGCTTG	GCCACCAGCT	6900
CGGCGGTGAC	GAGCACATCC	AGGGCGCAGT	AGTCAAGGGT	CTCTTGAATG	ATGTCATAAC	6960
CTGGTTGGTT	TTTCTTTTCC	CACAGCTCGC	GGTTGAGGAG	GTATTCTTCG	CGATCTTTCC	7020
AGTACTCTTC	GAGGGGAAAC	CCGTCTTTGT	CTGCACGGTA	AGAGCCCAGC	ATGTAGAACT	7080
GATTGACTGC	CTTGTAGGGG	CAGCATCCCT	TCTCCACGGG	GAGAGAGTAT	GCTTGGGCGG	7140
CCTTGCGCAG	AGAGGTATGA	GTGAGGGCAA	AGGTGTCCCT	GACCATGACT	TTAAGGAACT	7200
GATACTTGAA	GTCGATGTCA	TTACAGGCCC	CCTGTTCCCA	GAGTTGGAAG	TCTACCCGCT	7260
TCTTGTAGGC	GGGATTGGGC	AAAGCGAAAG	TAACATCGTT	GAAGAGTATC	TTGCCTGCCC	7320
TGGGCATGAA	ATTGCGGGTG	ATGCGGAAAG	GCTGGGGCAC	TTTTGCTCGG	TTATTGATCA	7380
CCTGAGCGGC	TAGGACGATC	TCATCAAAGC	CATTGATGTT	GTGCCCCACT	ATGTACAGTT	7440
CTATGAATCG	AGGGGTGCCC	TTGACATGAG	GCAGCTTCTT	AAGTTCTTCG	AAAGTTAGGT	7500
CTGTGGGGTC	AGAGAGAGCA	TAGTGTTCGA	GGGCCCATTC	GTGCAGGTGA	GGGTTCGCAT	7560
TGAGGAAGGA	GGACCAAAGA	TCCACTGCCA	GTGCTGTTTG	TAACTGGTCC	CGGTACTGGC	7620
GAAAATGCTG	GCCGACTGCC	ATCTTTTCTG	GGGTGACACA	GTAGAAGGTT	TTGGGGTCCT	7680
GCTGCCAGCG	ATCCCACTTT	AGTTTCATGG	CGAGGTCGTA	GGCGATGTTG	ACGAGCCGCT	7740
CGTCCCCAGA	GAGTTTCATG	ACCAGCATGA	AGGGTATGAG	TTGCTTGCCA	AAGGACCCCA	7800

TCCAGGTGTA GGTTTCCACA TCGTAGGTGA GGAAGAGCCT TTCCGTGCGA GGATGAGAGC 7860 CGATCGGGAA GAACTGGATC TCCTGCCACC AGTTGGAGGA ATGGCTGTTG ATGTGATGGA 7920 AGTAGAAATC CCTGCGGCGC GCCGAGCATT CATGCTTGTG CTTGTACAGA CGGCCGCAGT 7980 ACTCGCAGGG CTGCACGGGA TGCACCTCGT GAATGAGTTG TACCTGGCTT CCTTTGACGA 8040 GAAATTTCAG TGGGAAGTTG AGGCCTGGCG CTTTTACCTC GCTCTCTACT ATGTTATCTG 8100 CATCGGCCTG GCCATCTTCT GTCTCGATGG TGGTCATGCT AACAAGCCCC CGCGGAGGC 8160 AAGTCCAGAC CTCGGCACGG GAGGGGCGGA GCTCGAGGAC GAGAGCGCGC AGGCCGGAGC 8220 TGTCCAGGGT CCTGAGACGC TGCGGAGTCA GGTTAGTAGG TAGGGTGAGG AGATTGACTT 8280 GCATGATCTT TTCGAGGGCA AGCGGGAGGT TCAGATGGTA TTTGATCTCC ACGGGTCCGT 8340 TGGTGGAAAT GTCGATGGCT TGCAGGGTTC CGTGCCCTTT GGGCGCCACC ACCGTGCCCT 8400 TGTTTTCCT TTTGGGCGGA GGCGGTGGTG TTGCTTCTTG CATGTTCAGA AGCGGTGGCG 8460 AGGGCGCGC CCTGGCGGTA GAGGCGCTC GGGCCCCGGC GGCATGGCTG GCAGTGGCAC 8520 GTCGGCGCG CGCGCGGGTA GGTTCTGGTA CTGCGCCCTG AGAAGACTTG CGTGCGCGAC 8580 AACGCGGCGG TTGACGTCCT GGATCTGTCG CCTCTGGGTG AAAGCTACCG GCCCGTGAG 8640 CTTGAACCTG AAAGAGAGTT CAACAGAATC AATCTCGGTA TCGTTGACGG CGGCTTGTCT 8700 TAGGATCTCT TGTACGTCGC CCGAGTTGTC CTGGTAGGCT ATCTCGGCCA TGAACTGCTC 8760 GATTTCTTCC TCCTGAAGAT CTCCGCGGCC TGCTCTCTCG ACGGTGGCCG CGAGGTCGTT 8820 GGAGATGCGA CCCATGAGTT GAGAGAATGC ATTCATGCCT GCCTCGTTCC AGACGCGGCT 8880 GTAGACCACG GCCCCTCGG GATCTCTCGC GCGCATGACC ACCTGGGCGA GGTTGAGCTC 8940 CACGTGCCG GTGAAGACCG CATAGTTGCA TAGGCGCTGG AAGAGGTAGT TGAGTGTGGT 9000 GGCGATGTGC TCGGTGACGA AGAAATACAT GATCCATCGT CTCAGCGGCA TCTCGCTGAC 9060 ATCGCCCAGG GCTTCCAAGC GTTCCATGGC CTCGTAAAAG TCCACGGCAA AGTTGAAAAA 9120 CTGGGAGTTG CGCGCGACA CGGTCAACTC CTCCTCCAGA AGACGGATGA GTTCGGCGAT 9180 GGTGGCGCGC ACCTCGCGCT CGAAAGCTCC CGGGATTTCT TCCTCCTCTT CTTCTATCTC 9240 CTCTTCCACT AACATCTCTT CTTCCTCTTC AGGCGGGGC GGAGGAGGAG GGGGCACGCG 9300 GCGACGCCGG CGCGCACGG GCAAACGGTC GATGAATCTT TCAATGACCT CTCCGCGGCG 9360 GCGCCCATG GTCTCGGTGA CGGCACGGCC GTTTTCCCTG GGTCTCAGAG TGAAGACGCC 9420 TCCGCGCATC TCCCTAAAGT GGTGACTGGG GGGCTCTCCG TTGGGCAGGG ACAGAGCGCT 9480 GATTATGCAT TTTATCAATT GCCCCGTAGG GACTCCGCGC AAGGACCTGA TCGTCTCAAG 9540 ATCCACGGA TCGGAAAACC TTTCGACGAA AGCGTCTAAC CAGTCGCAAT CGCAAGGTAG 9600 GCTGAGCACT GTTTCTTGTA GGCGGGGGTG GCTACACGCT CGGTCGGGGT TCTCTATTTC 9660 TTCTCCTTCC TCCTCTCGG AGGGTGAGAC GATGCTGCTG GTGATGAAAT TAAAATAGGC 9720

57

AGTTCTGAGA CGGCGGATGG TGGCGAGGAG CACCAGGTCT TTGGGACCGG CTTGCTGGAT 9780 GCCAGCCA TTGCCCATTC CCCAAGCATT ATCCTGCCAC CTGGCCAGAT CTTTGTAGTA 9840 GTCTTGCATA AGTCGCTCCA CGGGCACTTC TTCTTCGCCC GCTCTGCCAT GCATGCGCGT 9900 GAGCCCAAAC CCGCGCATGG GCTGGACAAG TGCCAGGTCC GCTACGACCC TTTCTGCGAG 9960 GATGGCTTGC TGCACCTGGG TGAGGGTGGC TTGGAAGTCG TCAAAGTCCA CAAAGCGATG 10020 GTAGGCCCG GTGTTGATGG TGTAAGAGCA GTTGGCCATG ACTGACCAGT TGACTGTCTG 10080 GTGCCCCGGG CGCACAATCT CGGTGTACTT GAGGCGCGAG TAGGCGCGGG TGTCAAAGAT 10140 GTANTCGTTG CAGGCGCGCA CCAGGTACTG GTAGCCGATT AGAAANTGTG GTGGCGGCTG 10200 GCGGTATAGG GGCCATCGCT CTGTAGCCGG GGCGCCAGGA GCGAGGTCTT CCAGCATGAG 10260 GCGGTGATAA CCGTAGATGT ACCTGGACAT CCAGGTGATA CCGGAGGCGG TGGTGGATGC 10320 CCGAGGGAAC TCGCGTACGC GGTTCCAGAT GTTGCGCAGC GGCATGAAGT AGTTCATGGT 10380 AGGCACGGTT TGGCCCGTGA GGCGCGCACA GTCGTTGATG CTCTAGACAT ACGGGCAAAA 10440 ACGAAAGCGG TCAGCGGCTC GACTCCGTGG CCTGGAGGCT AAGCGAACGG GTTGGGCTGC 10500 GCGTGTACCC CGGTTCGAAT CTCGGATTAG GCTGGAGCCG CAGCTAACGT GGTACTGGCA 10560 CTCCCGTCTC GACCCAAGCC TGCACAAAAC CTCCAGGATA CGGAGGCGGG TCGTTTTTTT 10620 TTTTTTGCT TTTCCTGGAT GGGAGCCAGT GCTGCGTCAA GCTTTAGAAC GCTCAGTTCT 10680 10740 GCATGCCCCG GTTCGAGTCT TAGCGCCCCG GATCGGCCGG TTTCCGCCGC AAACGAGGGT 10800 TTGGCAGCCC CGTCATTTCT AAGACCCCGC TAGCCGACTT CTCCAGTTTA CGGGAGCGAG 10860 CCCTCTTTT TTTTTTGTT TTTGTTGCCC AGATGCATCC CGTGCTGCGA CAGATGCGCC 10920 CCCAGCAACA GCCCCCTTCT CAGCAGCAGC CACAGCAACA GCCACAAAAG GCTCTTCCTG 10980 CTCCTGTAAC TACTGCAGCT GCAGCCGTCA GCGGCGCGGG ACAGCCCGCC TATGATCTGG 11040 ACTTGGAAGA GGGCGAGGGA CTGGCGCGTC TGGGTGCACC ATCGCCCGAG CGGCACCCGC 11100 GGGTGCAACT GAAAAAGGAT TCTCGCGAGG CGTACGTGCC GCAGCAGAAC CTGTTCAGGG 11160 ACAGGAGCGG TGAGGAGCCG GAGGAAATGC GAGCTTCCCG CTTTAACGCG GGTCGCGAGC 11220 TGCGTCATGG TCTGGACCGA AGACGGGTGC TGCGCGATGA TGATTTTGAA GTCGATGAAG 11280 TGACAGGGAT AAGTCCTGCT AGGGCACATG TGGCTGCGGC CAACCTAGTA TCAGCCTACG 11340 AGCAGACCGT GAAGGAGGAG CGCAACTTTC AAAAATCTTT CAACAATCAT GTGCGCACCC 11400 TGATTGCCCG CGAGGAGGTG ACACTGGGTC TAATGCACCT GTGGGACCTG ATGGAAGCTA 11460 TTACCCAGAA CCCCACCAGC AAACCTCTGA CCGCTCAGCT GTTTCTAGTG GTGCAACATA 11520 GCAGAGACAA TGAGGCATTT AGGGAGGCGC TGTTGAACAT CACTGAGCCC GAGGGGAGAT 11580 GGTTGTATGA TCTTATCAAT ATTCTGCAAA GTATCATAGT GCAAGAACGT AGCCTGGGTC 11640

TGGCTGAGAA	GGTGGCTGCT	ATTAACTACT	CGGTCTTAAG	CCTGGGCAAG	CACTACGCTC	11700
GCAAGATCTA	TAAAACCCCA	TACGTACCTA	TAGACAAGGA	GGTTAAGATA	GATGGGTTTT	11760
ATATGCGCAT	GACTCTCAAG	GTGCTGACCT	TGAGTGACGA	TCTGGGAGTG	TACCGCAACG	11820
ACAGGATGCA	CCGTGCAGTG	AGCGCCAGCA	GAAGGCGTGA	GCTGAGCGAC	AGAGAACTTA	11880
TGCACAGCTT	GCAAAGAGCT	CTGACGGGGG	CTGGAACCGA	GGGGGAGAAC	TACTTTGACA	11940
TGGGAGCGGA	TTTGCAATGG	CAGCCCAGTC	GCAGGGCCCT	GGACGCAGCA	GGGTATGAGC	12000
TTCCTTACAT	AGAAGAGGCG	GATGAAGGCC	ATGACGAGGA	GGGCGAGTAC	CTGGAAGACT	12060
GATGGCGCGA	CCATCCATAT	TTTTGTTAGA	TGCAGCAACA	GCCACCTCCT	GATCCCGCAA	12120
TGCGGGCGGC	GCTGCAGAGC	CAGCCGTCCG	GCATTAACTC	CTCGGACGAT	TGGACCCAGG	12180
CCATGCAACG	CATCATGGCG	CTGACGACCC	GCAACCCCGA	AGCCTTTAGA	CAGCAACCCC	12240
AGGCCAACCG	CCTTTCTGCC	ATCCTGGAGG	CCGTAGTGCC	CTCCCGCTCC	AACCCCACCC	12300
ACGAGAAGGT	CCTGGCTATC	GTGAACGCGC	TGGTGGAGAA	CAAAGCCATA	CGTCCCGATG	12360
AGGCTGGACT	GGTATACAAT	GCCCTATTGG	AGCGCGTAGC	CCGTTACAAC	AGCAGCAACG	12420
TGCAGACCAA	CCTTGACCGG	ATGGTGACCG	ATGTGCGCGA	GGCTGTGTCT	CAGCGCGAGC	12480
GGTTCCAGCG	AGACTCCAAT	CTAGGGTCGC	TGGTGGCGTT	GAACGCCTTC	CTCAGCACCC	12540
AGCCTGCCAA	CGTGCCTCGC	GGCCAGCAAG	ACTACACAAA	CTTTCTAAGT	GCATTAAGAC	12600
TCATGGTGGC	CGAAGTCCCT	CAAAGTGAGG	TGTACCAGTC	CGGGCCAGAC	TACTTTTTCC	12660
AGACCAGCAG	ACAGGGCTTG	CAGACAGTGA	ACCTGAGCCA	GGCTTTTAAG	AACCTGAATG	12720
GTCTGTGGGG	AGTGCGTGCC	CCAGTAGGAG	ATCGGGCAAC	CGTGTCTAGC	TTGCTAACCC	12780
CCAACTCCCG	CCTACTACTG	CTCTTGGTAG	CCCCATTCAC	TGACAGCGGT	AGCATCGACC	12840
GCAATTCTTA	CTTGGGCTAT	TTGTTGAACC	TGTATCGCGA	GGCCATAGGG	CAAACTCAGG	12900
TAGATGAGCA	AACCTATCAA	GAAATTACCC	AAGTGAGCCG	CGCTCTGGGT	CAGGAAGACA	12960
CTGGCAGCTT	GGAAGCCACC	TTAAACTTCT	TGCTGACCAA	CCGGTCGCAG	AAGATCCCTC	13020
CTCAGTATGC	GCTTACCGCG	GAGGAGGAAC	GAATCCTGAG	ATACGTGCAG	CAGAGCGTGG	13080
GACTTTTCCT	AATGCAGGAG	GGGGCGACTC	CTACTGCTGC	GCTAGATATG	ACAGCCCGAA	13140
ACATGGAGCC	CAGCATGTAT	GCCAGTAACA	GGCCTTTTAT	CAATAAACTA	CTAGACTACT	13200
TACACAGGGC	GGCTGCTATG	AACTCTGATT	ATTTCACCAA	TGCTATACTG	AACCCCCATT	13260
GGCTGCCCCC	ACCTGGGTTC	TATACGGGCG	AGTATGACAT	GCCCGACCCC	AATGACGGGT	13320
TTTTATGGGA	CGATGTGGAC	AGTAGTGTTT	TCTCCCCGCC	TCCTGGTTAT	AACACTTGGA	13380
AGAAGGAAGG	GGGCGATAGA	AGGCATTCTT	CCGTATCGCT	GTCCGGGGCA	ACGGGTGCTG	13440
TCGCAGCGGT	GCCCGAGGCC	GCAAGTCCTT	TCCCTAGTTT	GCCATTTTCG	CTAAACAGTG	13500
TACGCAGCAG	TGAGCTGGGC	AGGATCACGC	GTCCGCGCTT	GATGGGCGAG	GAGGAGTACT	13560

13620 TGAATGACTC GCTGTTGAGG CCAGAGCGGG AGAAGAACTT CCCCAATAAC GGGATAGAGA GCCTGGTGGA TAAGATGAGC CGCTGGAAGA CGTACGCGCA CGAGCACAGG GACGAGCCCC 13680 GACCTAGCAG CAGCGCCGGC GCCCGTAGAC GCCAGCGGCA CGATAGGCAG CGGGGACTTG 13740 TGTGGGACGA TGAGGATTCC GCCGACGACA GCAGCGTGTT GGACTTGGGT GGGAGTGGTG 13800 GTGGTAACCC GTTTGCTCAC CTGCGCCCCC GCGTTGGGCG CCTGATGTAA AAACCGAAAA 13860 TARATGGTAC TCACCAAGGC CATGGCGACC AGCGTGCGTT CGTTTCTTCT CTGTTGTATC 13920 TAGTATGATG AGGCGAACCG TGCTAGGAGG AGCGGTGGTG TATCCGGAGG GTCCTCCTCC 13980 TTCGTATGAA AGCGTGATGC AGCAGGCGGC GGCGGCGCC ATGCAGCCAC CACTGGAGGC 14040 TCCCTTTGTC CCCCCTCGGT ACCTGGCACC TACGGAGGGG AGAAACAGCA TTCGTTACTC 14100 GGAGCTGGCA CCATTGTATG ATACCACCCG GTTGTATTTG GTGGACAACA AGTCGGCGGA 14160 14220 CATCGCCTCA CTGAACTATC AGAACGACCA CAGCAACTTC CTCACCACGG TGGTGCAAAA CANTGACTTT ACCCCACGG AGGCCAGCAC CCAGACAATC AACTTTGACG AGCGGTCGCG 14280 ATGGGGTGGT CAGCTGAAGA CTATCATGCA CACCAACATG CCCAACGTGA ACGAGTACAT 14340 GTTTAGCAAC AAGTTCAAAG CTCGGGTGAT GGTGTCCAGA AAGGCTCCTG AAGGTGTCAC 14400 AGTAGATGAC AATTATGATC ACAAGCAGGA TATTTTGGAA TATGAGTGGT TTGAGTTTAC 14460 14520 TCTACCGGAA GGCAACTTCT CAGCCACAAT GACCATTGAC CTAATGAACA ATGCCATCAT TGATAATTAC CTTGAAGTGG GCAGACAGAA TGGAGTGTTG GAGAGTGACA TTGGTGTTAA 14580 ATTTGACACC AGGAACTTTA AACTGGGTTG GGATCCGGAA ACTAAGTTGA TTATGCCTGG 14640 GGTTTACACC TATGAGGCAT TCCATCCTGA CATTGTATTG TTGCCTGGTT GTGGGGTTGA 14700 CTTTACTGAA AGTCGCCTTA GTAACTTGCT TGGTATCAGG AAAAGACACC CATTCCAGGA 14760 GGGTTTTAAG ATCTTGTATG AGGATCTTGA AGGGGGTAAT ATCCCAGCCC TTTTGGATGT 14820 AGAAGCCTAT GAGAACAGTA AGAAAGAACA AGAAGCCAAA ACAGAAGCCG CTAAAGCTGC 14880 TGCTATTGCT AAAGCCAATA TAGTTGTCAG CGACCCTGTC AGGGTGGCTA ATGCCGAAGA 14940 AGTCAGAGGA GACAACTATA CAGCTACATC TGTTGCAACT GAAGAATCGC TATTGACTAC 15000 TGCTGCGACT GGAACCAAAA ATACAGAGAC AGGACTCACT ATCAAACCTG TAGAAAAAGA 15060 TAGCAAGAGT AGAAGTTACA ATGTCTTGGA AGATAAAGTT AATACAGCCT ACCGCAGCTG 15120 GTATCTGTCC TACAACTATG GCGACCCTGA AAAAGGAGTC CGTTCCTGGA CACTGCTCAC 15180 CACCTCGGAT GTCACCTGTG GAGCAGAGCA GGTGTACTGG TCACTTCCAG ACATGATGCA 15240 GGACCCTGTC ACATTCCGTT CCACGAGACA AGTCAGCAAC TATCCAGTGG TAGGTGCAGA 15300 GCTCATGCCA GTCTTCTCAA AAAGTTTCTA CAACGAGCAA GCCGTGTACT CCCAGCAGCT 15360 TCGCCAGTCC ACCTCGCTCA CGCACGTCTT CAACCGCTTC CCTGAGAACC AGATCCTCAT 15420 CCGCCCGCA GCGCCCACCA TTACCACCGT CAGTGAAAAC GTTCCTGCTC TCACAGATCA 15480

CGGGACCCTG	CCGTTGCGCA	GCAGTATCCG	GGGAGTCCAG	CGCGTGACCG	TTACTGACGC	15540
CAGACGCCGC	ACCTGCCCCT	ACGTCTACAA	GGCCCTGGGC	ATAGTCGCGC	CCCCCCTCCT	15600
TTCAAGCCGC	ACTTTCTAAA	AAAAAAAAA	TGTCCATTCT	TATCTCACCT	AGTAATAACA	15660
CCGGTTGGGG	CCTGCGCGCG	CCAAGCAAGA	TGTACGGAGG	TGCTCGCAAA	CGCTCTACAC	15720
AGCACCCTGT	GCGAGTGCGC	GGACACTTCC	GCGCTCCATG	GGGCGCCCTC	AAGGGCCGTA	15780
TCCGCACTAG	AACCACCGTC	GATGATGTGA	TCGACCAGGT	GGTGGCCGAT	GCTCGTAATT	15840
ATACTCCTAC	TGCACCTACA	TCTACTGTGG	ATGCAGTTAT	TGACAGCGTA	GTAGCTGACG	15900
CCCGCGCCTA	TGCTCGCCGG	AAGAGCAGGC	GGAGACGCAT	CGCCAGGCGC	CACCGGGCTA	15960
CTCCCGCTAT	GCGAGCAGCA	AGAGCTTTGC	TACGGAGAGC	CAAACGCGTG	GGGCGAAGAG	16020
CTATGCTTAG	AGCAGCCAGA	CGCGCGGCTT	CAGGTGCCAG	TGCTGGCAGG	TCCCGCAGGC	16080
GCGCAGCCAC	TGCAGCAGCA	GCGGCCATTG	CCAACATGGC	CCAACCGCGA	AGAGGCAATG	16140
TGTACTGGGT	GCGCGACGCC	ACCACCGGCC	AGCGCGTGCC	CGTGCGCACC	CGTCCCCCTC	16200
GCTCTTAGAA	GATACTGAGC	AGTCTCCGAT	GTTGTGTCCC	AGCGAGGATG	TCCAAGCGCA	16260
AATACAAGGA	AGAGATGCTC	CAGGTCATCG	CGCCTGAAAT	CTACGGTCCG	CCGGTGAAGG	16320
ATGAAAAAA	GCCCGCAAA	ATCAAGCGGG	TCAAAAAGGA	CAAAAAGGAA	GAAGATGGCG	16380
ATGATGGTCT	GGTGGAGTTT	GTGCGCGAGT	TCGCCCCAAG	CCGCCGTGTG	CAGTGGCGTG	16440
GACGCAAAGT	GCGGCCTGTG	CTGAGACCTG	GAACCACGGT	GGTCTTTACG	CCCGGCGAGC	16500
GCTCCAGCAC	TGCTTTTAAG	CGGTCCTATG	ATGAGGTGTA	TGGGGATGAT	GATATTCTGG	16560
AGCAGGCGGC	TGACCGCCTG	GGCGAGTTTG	CTTATGGCAA	GCGCTCCCGC	TCCAGTCCCA	16620
AGGAGGAGGC	GGTGTCCATT	CCCTTGGACA	ATGGGAATCC	CACCCTAGC	CTCAAGCCAG	16680
TCACCCTGCA	GCAAGTGCTG	CCCGTGCCTC	CACGCAGAGG	CATCAAGCGA	GAGGGTGAGG	16740
ATCTGTATCC	CACTATGCAA	TTGATGGTGC	CCAAGCGCCA	GCGGCTGGAG	GACGTGCTGG	16800
AGAAAATGAA	AGTGGATCCC	GATATACAAC	CTGAGGTCAA	AGTGAGACCC	ATCAAGCAGG	16860
TGGCGCCAGG	TTTGGGAGTA	CAAACCGTAG	ACATCAAGAT	TCCAACCGAG	TCCATGGAAG	16920
TCCAAACCGA	ACCTGCAAAG	CCCACAACCA	CCTCCATTGA	GGTACAAACG	GATCCCTGGA	16980
TGTCAGCACC	CGTTACAACT	CCAGCTGCCG	TCAACACCAC	TCGAAGATCC	CGGCGACAGT	17040
ACGGTCCAGC	AAGTTTGCTG	ATGCCAAATT	ATGCTCTGCA	CCCATCTATT	ATTCCAACTC	17100
CGGGTTACCG	AGGCACTCGC	TACTACCGCA	GCCGGAGCAG	TACTTCCCGC	CGTCGCCGCA	17160
AAACACCTAC	AAGTCGTAGT	CACCGTCGTC	GCCGTCGCCC	CACCAGCAAT	CTGACTCCCG	17220
CTGCTCTGGT	GCGGAGAGTG	TATCGCGATG	GCCGCGCGA	TCCCATGACG	TTGCCACGCG	17280
TACGCTACCA	CCCAAGCATC	ACAACTTAAC	GACTGTTGCC	GCTGCCTCCT	TGCAGATATG	17340
GCCCTCACTT	GCCGCCTTCG	TGTCCCCATT	ACTGGCTACC	GAGGAAGAAA	CTCGCGCCGT	17400

AGAAGAGGGA	TGTTGGGGCG	CGGGATGCGA	CGCCACAGGC	GGCGGCGCGC	TATCAGCAAG	17460
AGGCTGGGGG	GTGGCTTTCT	GCCTGCTCTG	ATCCCCATCA	TAGCCGCGGC	GATCGGGGCG	17520
ATACCAGGCA	TAGCTTCCGT	GGCGGTTCAG	GCCTCGCAGC	GCCACTGACA	TTGGAAAAAC	17580
TTATAAATAA	AACAGAATGG	ACTCTGATGC	TCCTGGTCCT	GTGACTATGT	TTTTGTAGAG	17640
ATGGAAGACA	TCAATTTTTC	ATCCCTGGCT	CCGCGACACG	GCACGAGGCC	GTACATGGGC	17700
ACCTGGAGCG	ACATCGGCAC	CAGCCAACTG	AACGGGGGCG	CCTTCAATTG	GAGCAGTATC	17760
TGGAGCGGGC	TTAAAAATT	TGGCTCTACC	ATAAAAACCT	ATGGGAACAA	AGCTTGGAAC	17820
AGCAGCACAG	GGCAGGCACT	GAGAAATAAG	CTTAAAGAAC	AAAACTTCCA	ACAGAAGGTG	17880
GTTGATGGGA	TCGCCTCTGG	TATTAATGGG	GTGGTGGATC	TGGCCAACCA	GGCCGTGCAG	17940
AAACAGATAA	ACAGCCGCCT	GGACCCGCCG	CCGTCAGCCC	CGGGTGAAAT	GGAAGTGGAG	18000
GAAGATCTCC	CTCCCCTTGA	AAAACGGGGC	GACAAGCGTC	CGCGCCCCGA	TCTGGAGGAG	18060
ACACTAGTCA	CACGCTCAGA	CGACCCGCCC	TCCTACGAGG	AGGCAGTGAA	GCTTGGAATG	18120
CCCACCACCA	GGCCTGTAGC	CCCCATGGCT	ACCGGGGTGA	TGAAACCTTC	TCAGTCACAC	18180
CGACCCGCTA	CCTTGGACTT	GCCTCCTCCC	CCTGCTGCTG	CAGCGCCTGC	TCGCAAGCCT	18240
GTCGCTACCC	CGAAGCCCAC	CACCGTACAG	CCCGTCGCCG	TAGCCAGACC	GCGTCCTGGG	18300
GGCGGCCCAC	GACCGAATTC	AAACTGGCAG	AGTACTCTGA	ACAGCATCGT	TGGTCTGGGC	18360
GTGCAAAGTG	TAAAACGCCG	TCGCTGCTTT	TAAATTAAAT	ATGGAGTAGC	GCTTAACTTG	18420
CCTGTCTGTG	TGTATGTGTC	ATCATCACGC	CGCTGCCGCA	GCAACAGCAG	AGGAGAAAGG	18480
AAGAGGTCGC	GCGCCGAGGC	TGAGTTGCTT	TCAAGATGGC	CACCCCATCG	ATGCTGCCCC	18540
AGTGGGCATA	CATGCACATC	GCCGGACAGG	ATGCTTCGGA	GTACCTGAGT	CCGGGTCTGG	18600
TGCAGTTCGC	CCGCGCCACA	GACACCTACT	TCAATCTGGG	GAACAAGTTT	AGGAACCCCA	18660
CCGTGGCGCC	CACCCATGAT	GTGACCACCG	ACCGCAGTCA	GCGGCTGATG	CTGCGCTTTG	18720
TACCCGTTGA	CCGGGAGGAC	AATACCTACT	CATACAAAGT	TCGATACACC	TTGGCTGTGG	18780
GCGACAACAG	AGTGCTGGAT	ATGGCCAGCA	CTTTCTTTGA	CATTCGGGGT	GTGTTGGATA	18840
GAGGCCCTAG	CTTCAAGCCA	TATTCTGGCT	CTGCTTACAA	CTCATTGGCC	CCTAAGGGCG	18900
CTCCCAATAC	ATCTCAGTGG	CTTGATAAGG	GAGTCACAAC	CACTGATAAT	AATACTGAAA	18960
ACGGAGATGA	AGAAGATGAA	GTTGCCGAGG	AAGGGGAAGA	AGAAAAACAA	GCTACATACA	19020
CTTTTGGCAA	TGCGCCAGTA	AAAGCCGAAG	CTGAAATTAC	AAAAGAAGGA	CTGCCAATAG	19080
GTTTGGAAGT	TCCATCTGAA	GGTGACCCTA	AACCCATTTA	TGCTGATAAA	CTGTATCAGC	19140
CAGAACCTCA	GGTGGGAGAG	GAATCTTGGA	CTGATACGGA	TGGCACAGAT	GAAAAATATG	19200
GAGGCAGAGC	ACTTAAACCT	GAAACTAAAA	TGAAACCCTG	CTACGGGTCT	TTTGCTAAAC	19260
CTACTAATGT	TAAAGGCGGC	CAAGCAAAAG	TGAAGAAAGT	AGAAGAAGGC	AAGGTTGAAT	19320

ATGACATTGA CATGAACTTT TTCGACCTAA GATCACAAAA GACTGGTCTC AAGCCTAAAA 19380 TTGTAATGTA TGCAGAAAAT GTGGATCTAG AAACTCCAGA CACTCATGTG GTGTACAAAC 19440 CTGGAGCTTC AGATGCTAGT TCTCATGCAA ACCTTGGTCA ACAGTCCATG CCCAATAGAC 19500 CTAACTATAT TGGCTTCAGG GACAACTTCA TCGGACTCAT GTACTATAAC AGTACTGGCA 19560 ACATGGGAGT GCTGGCTGGA CAAGCGTCTC AGCTAAATGC AGTGGTTGAC TTGCAAGACA 19620 GAAACACAGA ATTGTCATAT CAACTCTTGC TTGATTCTCT GGGAGACAGA ACCAGATATT 19680 TCAGCATGTG GAATCAAGCA GTGGATAGCT ATGACCCAGA TGTGCGTGTT ATTGAAAACC 19740 ATGGTGTGGA AGATGAACTT CCCAACTATT GTTTTCCATT GGACGGTGTA GGTCCGCGAA 19800 CAGACAGTTA CAAGGGAATT GAGACAAATG GTGACGAAAA CACTACTTGG AAAGATTTAG 19860 ATCCAAATGG CATAAGTGAA CTTGCTAAGG GAAATCCATT TGCCATGGAA ATCAACATCC 19920 AAGCTAATCT CTGGAGAAGT TTCCTTTATT CCAACGTGGC CCTCTATCTC CCAGACTCGT 19980 ACAAATACAC TCCAACCAAT GTTACTCTCC CAGAAAACAA AAACACCTAT GACTACATGA 20040 ATGGGCGGGT GGTTCCCCCC TCCCTGGTGG ATACCTACGT AAACATTGGC GCCAGATGGT 20100 CTTTGGATGC CATGGACAAC GTCAACCCT TCAACCATCA CCGCAACGCT GGCCTGCGAT 20160 ACCGGTCCAT GCTTCTGGGC AATGGTCGCT ACGTGCCTTT CCACATTCAA GTGCCTCAGA 20220 AATTCTTTGC TGTGAAAAAC CTGCTGCTTC TACCTGGTTC TTACACCTAC GAGTGGAACT 20280 TCAGAAAGGA TGTGAACATG GTCCTGCAGA GTTCCCTTGG CAATGATCTC CGAGTTGATG 20340 GCGCCAGCAT CAGTTTTACC AGCATCAATC TCTATGCCAC CTTCTTCCCC ATGGCCCACA 20400 ACACTGCCTC CACCCTTGAA GCCATGCTGC GCAACGACAC CAATGATCAA TCATTCAATG 20460 ACTACCTTTC TGCAGCTAAC ATGCTCTACC CCATCCCTGC CAATGCTACC AACGTTCCCA 20520 TCTCCATTCC CTCTCGCAAC TGGGCCGCCT TCAGGGGCTG GTCCTTTACC AGACTGAAAA 20580 CCAAGGAGAC TCCCTCTTG GGATCAGGGT TCGATCCCTA CTTTGTTTAC TCTGGTTCTA 20640 TACCCTACCT GGATGGTACC TTCTACCTCA ACCACACTTT CAAGAAAGTC TCTATCATGT 20700 TTGACTCTTC AGTCAGCTGG CCTGGTAATG ACAGATTGCT AACTCCAAAC GAGTTCGAAA 20760 TCAAGCGCAC AGTTGATGGG GAAGGCTACA ATGTGGCCCA ATGTAACATG ACCAAAGACT 20820 GGTTTCTGGT CCAGATGCTT GCCAACTACA ACATTGGATA CCAGGGTTTC TATGTTCCTG 20880 AGGGTTACAA GGATCGCATG TATTCCTTCT TCAGAAACTT CCAGCCCATG AGTAGACAGG 20940 TGGTTGATGA GATTAACTAC AAAGACTATA AAGCTGTCGC CGTACCCTAC CAGCATAATA 21000 ACTCTGGCTT TGTGGGTTAC ATGGCTCCTA CCATGCGTCA GGGTCAAGCG TACCCTGCTA 21060 ACTACCCATA CCCCCTAATT GGAACCACTG CAGTAACCAG TGTCACCCAG AAAAAATTCC 21120 TGTGTGACAG GACCATGTGG CGCATCCCAT TCTCTAGCAA CTTCATGTCC ATGGGTGCCC 21180 TTACAGACCT GGGACAGAAC TTGCTGTACG CCAACTCAGC CCATGCGCTG GACATGACTT 21240

TTGAGGTGGA TCCCATGGAT	GAGCCCACCC	TGCTTTATCT	TCTTTTCGAA	GTATTCGACG	21300
TGGTCAGAGT GCACCAACCA					21360
TCTCGGCTGG TAACGCCACC					21420
GCGTGACCGG AAACGGCTCC					21480
					21540
GTGGACCCTA TTTTCTGGGA					21600
AGCTGGCCTG CGCCATTGTC					
CTTTTGGTTG GAACCCGCGC					21660
ATGACCGTCT TAAGCAGATC					21720
TTGCTACTAA GGATCGCTGC	ATTACCCTGG	AAAAGTCCAC	CCAAACAGTG	CAGGGTCCGC	21780
GCTCCGCCGC TTGTGGACTT	TTTTGCTGCA	TGTTTCTCCA	TGCCTTTGTA	CACTGGCCAG	21840
ACCGTCCCAT GGACGGTAAC	CCCACCATGA	AGTTGCTTAC	GGGAGTGCCC	AACAACATGC	21900
TCCAGTCACC CCAAGTCCAG	CCCACCCTGC	GCAGGAACCA	GGAGGCGCTC	TACCATTTCC	21960
TCAACACACA TTCATCTTAC	TTTCGTTCTC	ACCGCGCACG	TATCGAAAGG	GCTACTGCGT	22020
TCGATCGTAT GGGATAATAT	AAGTCATGTA	AAACCGTGTT	CAATAAACAG	AACTTTATTT	22080
TTTACATACA CTGGTGGTTT	GCTCATTTAT	TCGCTCAGAA	GTCGAAGGGG	TTTTGGCGGG	22140
AATCAGAGTG ACCCGCGGGC	AGGGATACGT	TTCGGAACTG	GAACTGAGCT	TGCCACTTGA	22200
ATTCGGGGAT CACCAGCTTG	GGAACTGGCA	GGTCAGGCAG	GATGTCGCTC	CACAGCTTCC	22260
GGGTTAGTTG CAGGGCTCCC	AACAGGTCAG	GGGCTGAAAT	CTTAAAATCG	CAATTGGGAC	22320
CCGTGCTCTG AGCGCGGGAG	TTGCGATACA	CAGGGTTGCA	ACACTGGAAC	ACCATAAGCG	22380
ACGGGTATTT CACACTCGCC	AGCACAGTGG	GGTCGGTGAT	AATTCCCACA	TCCAGGTCTT	22440
CGGCATTGGC CATGCTAAAG	GGGGTCATCT	TGCAAGTCTG	TCTGCCCATA	GTCGGTACCC	22500
AGCCTGGCTT GTGGTTGCAA					22560
ATCTCATACC TGGATACACA					22620
CCTTGCTACC CTCAGTGTAG					22680
ACCCGGCATC ATTCACACAA					
CCCAGCGGTT CTGGGTGATC					
TTTCGCTTGC CACATCCATT					
AACACTTTAG CTTGCCTTCA					
ACTCCCAGTT ATTGTGAGCG					
CCATCATGGT TGAGAGGGTC					
CATTCACATA CTGGTGGCAA	ATTCGCTTGT	ACTGTTCATG	CTGCTCTGGC	ATAAGCTTGA	23100
AAGAGGTTCT TAGGTCATTC	TCCAGCCTGT	ACTTCTCCAT	CAGCACAGCC	ATTACTTCCA	23160

TGCCCTTTTC	CCAGGCAGAA	ACCAGGGGTA	GGCTCATGGC	ATTTCTAACA	GAAATAGCAG	23220
CTACTTTAGC	CAGAGGGTCA	TCCTTGTCGA	TCTTCTCAAC	ACTTCTTTTG	CCATCCTTCT	23280
CAGTGATGCG	CACGGGTGGG	TAGCTGAAGC	CCACAGCCAC	CAGCTCCGCC	TCTTCTCTTT	23340
CTTCTTCGCT	GTCCTGACTG	ATGTCTTGTA	AAGGGACATG	CTTGGTCTTC	CTGGACTTCT	23400
TTTTGGGGGG	TATTGGCGGA	GGGCTGCTGC	TCCGCTCCGG	AGACATGGAG	GACCGCGAAG	23460
TTTCGCTCAC	CAGTACCACC	TGGCTCTCGG	TAGAAGAACC	GGACCCCACA	CGGCGGTAGG	23520
TGTTCCTCTT	CGGGGGCAGA	GGCGGAGGTG	ACTGCGATGG	GCTGCGGTCT	GGCCTGGGAG	23580
GCGGATGACT	GGCAGAGCCC	CTTCCGCGTT	CGGGGGTGTG	CTCCCGGTGG	CGGTCGCTTG	23640
ACTGATTTCC	TCCGCGGCTG	GCCATTGTGT	TCTCCTAGGC	AGAGAAAACA	ACAGACATGG	23700
AGACTCAGCC	ATCGCTGCCA	ACACCGCTGC	AAGCACCATC	ACACCTCGCC	TCCAGCGACG	23760
AGGAGGAGGA	ACAAAGCTTA	ACCGCCCCAC	CACCCAGTCC	CGCCACCACC	ACCTCTACCC	23820
TCGAGGATGA	GGAGGTCGAC	GCACCCCAGG	AGATACAGGC	GCAGGATATG	AAGGATGAGA	23880
AAGCGGAAGA	GATTGAGGCA	GATATCGAGC	AGGACCCAGG	CTATGTGACA	CCGGCCGAGC	23940
ACGAGGAAGA	GCTGAGACGC	TTTCTAGAGA	AAGATGATGA	CAACCGTCCA	GAACAGCAAG	24000
CAGATGGCGA	TCAACAGAAG	GCTGGGCTCG	GTGGTCATGT	TGCCGACTAC	CTCACCGGCC	24060
TTGGTGGGGA	GGATGTGCTC	CTCAAACACC	TAGCAAGGCA	GTCGATCATA	ATCAAAGACG	24120
CACTGCTTGA	TCGCAGCGAA	GTGCCCATCA	GTGTGGAAGA	GCTCAGCCGC	GCCTACGAGC	24180
TCAATCTGTT	CTCGCCTCGG	GTACCCCCA	AGCGTCAGCC	AAACGGCACC	TGCGAGCCCA	24240
ACCCTCGCCT	CAACTTCTAT	CCCGCATTCA	CCGTCCCCGA	AGTGCTGGCC	ACCTACCACA	24300
TATTTTTTAA	АААССААААА	ATCCCAATTT	CCTGCCGCGC	CAACCGAACT	CGCGCCGATG	24360
CCCTGTTCAA	CTTGGGACCT	GGCGCTTGCT	TACCTGATAT	AACTTCCTTG	GAAGAGGTCC	24420
CAAAGATCTT	CGAAGGTCTG	GGCAGTGATG	AGACTCGGGC	CGCAAATGCT	CTGCAACAGG	24480
GAGAGAGTGG	CATTGATGAA	CATCACAGCG	CTCTGGTGGA	GTTGGAGGGC	GATAATGCCC	24540
GACTTGCAGT	ACTCAAGCGC	AGTATCGAAG	TGACCCATTT	TGCATACCCC	GCTGTCAACC	24600
TGCCTCCCAA	AGTCATGAGC	GCTGTCATGG	ATCAGATACT	CATTAAACGC	GCAAGTCCCC	24660
TATCAGAAAA	CATGCAGGAT	CCAGACGCCT	CGGATGAGGG	CAAACCAGTG	GTCAGTGATG	24720
AACAGCTATC	TCGCTGGCTG	GGCACCAACT	CCCCACTAGA	CTTGGAAGAG	CGGCGCAAGC	24780
TCATGATGGC	CGTGGTGCTA	GTTACTGTGG	AAATGGAGTG	TCTTCGCCGC	TTCTTCACTG	24840
ACCCCGAGAC	ATTGCGCAAG	CTCGAGGAGA	ACCTGCACTA	CACTTTTAGA	CATGGATTTG	24900
TGCGACAGGC	ATGCAAGATC	TCCAACGTGG	AGCTTACGAA	CCTGGTTTCC	TACATGGGCA	24960
TTTTGCATGA	AAACAGACTC	GGACAGAGCG	TGTTGCACAC	CACCCTGAAG	GGTGAAGCCC	25020
GTCGCGACTA	CATCCGCGAC	ACTGTCTACC	TCTACCTCTG	CCATACCTGG	CAGACTGGTA	25080

TGGGTGTGTG GCAGCAGTGT TTGGAAGAAC AGAACCTGAA AGAGCTTGAC AAGCTCTTAC 25140 AAAGATCCCT CAAATCCTTG TGGACGGGTT TTGACGAGCG CACAGTCGCC TCTGATCTGG 25200 CAGATCTCAT CTTCCCCGAG CGTCTCAGGA CCACTCTGCG CAACGGGCTG CCTGACTTCA 25260 TGAGCCAGAG CATGCTTAAC AACTTTCGCT CTTTCATCCT GGAACGCTCC GGTATCCTGC 25320 CCGCCACCTG CTGTGCGCTA CCATCCGACT TTGTGCCTCT GACCTACCGC GAGTGCCCAC 25380 CACCGCTATG GAGCCACTGC TACCTGTTCC GCCTGGCCAA CTACCTATCA TACCACTCGG 25440 ATGTGATCGA GGATGTGAGC GGAGATGGCC TGCTTGAGTG CCACTGCCGC TGTAATCTCT 25500 GCTCACCACA TCGCTCCCTC GTCTGTAACC CCCAGCTGCT TAGTGAAACC CAAATTATCG 25560 GCACCTTCGA ATTGCAGGGT CCCAGCGGCG AAGGCGATGG GTCTTCTCCT GGGCAAAGTT 25620 TGAAACTGAC CCCGGGACTG TGGACCTCCG CCTACCTGCG CAAGTTCTCC CCCGAGGACT 25680 ACCACCCCTA TGAGATCAGG TTCTATGAGG ACCAATCACA GCCGCCCAAA GCCGAGCTAT 25740 CAGCATGCGT CATCACCCAG GGGGCAATTT TGGCCCAATT GCAAGCCATC CAAAAATCCC 25800 GCCAAGAATT TTTGCTGAAA AAGGGTAACG GAGTCTACCT CGACCCCCAG ACTGGTGAGG 25860 AGCTCAACAC AAGGTTTTCT CAGGATGTCT CAGCGCCGAG GAAGCAAGAA GTTGAAAGTG 25920 CAGCTGCCGC CCCCAGAGGA TATGGAGGAA GACTGGGACA GTCAGACAGA GGAGATGGAA 25980 GATTGGGACA GCCAGGCAGA GGAGGAGGAG GACAGCCTGG AGGAAGACAG TTTGGAGGAG 26040 GAAGACGAGG AGGCAGAGGA GGTGGAAGAA GCAACCGCCG CCAAACAGTT GTCCTCGGCA 26100 GCGGAGACAA GCAAGGCCAC AGACAGTACC ACAGCTACCA TCTCCGCTCC GGGTCGGGGG 26160 GCCCAGCACC GTCCCAACAG TAGATGGGAT GAGACCGGGC GACTCCCGAA TGCGACCACC 26220 GCTTCTAAGA CTGGTAAGGA GCGGCAGGGA TACAAGTCCT GGCGGGGGCA TAAGAACGCT 26280 ATCATATCCT GCTTGCATGA ATGCGGGGGC AACATATCCT TCACCCGCCG CTACCTGCTC 26340 TTCCACCACG GGGTGAACTT CCCCCGCAAT GTCTTGCATT ACTACCGTCA CCTCCACAGC 26400 CCCTATTACA GCCGCAAGT CTCGGCAGAA AAAGACAACA GCAGCAAGGA CCTCCAGCAG 26460 26520 AAAACCAGCA GCAGTTAGAA AACCCACAGC AGGTGCAGGA GGACTGAGAA TCACAGCGAA CGAGCCAGCG CAGACCCGAG AGCTGAGAAA CCGGATTTTT CCAACCCTCT ATGCCATCTT 26580 CCAACAGAGT CGGGGGCAAG AGCAGGAACT GAAAGTAAAA AACCGATCTT TGCGCTCGCT 26640 CACCCGAAGT TGTTTGTATC ACAAGAGCGA AGACCAACTT CAGCGCACTC TCGAGGACGC 26700 CGAGGCTCTC TTCAACAAGT ACTGCGCGCT CACTCTTAAA GAGTAGCCCG CGCCCGCGCT 26760 ATCTCGAAAA AGGCGGGAAT TACGTCACCC TTGGCGCCCG TCCTTTGCCC TCGTCATGAG 26820 TAAAGAAATT CCCACGCCTT ACATGTGGAG TTATCAGCCC CAAATGGGAC TGGCAGCAGG 26880 CGCCTCCCAG GACTACTCCA CCCGTATGAA TTGGCTCAGC GCCGGTCCCT CGATGATCTC 26940 ACGGGTTAAT GATATACGAG CTTATCGAAA CCAATTACTC CTAGAACAGT CAGCACTTAC 27000

CACCACCCCC	AGACAACACC	TTAATCCCCG	AAATTGGCCC	GCCGCCCTGG	TGTACCAGGA	27060
AACCCCCGCT	CCCACCACCG	TACTACTTCC	TCGAGACGCC	CAGGCCGAAG	TTCAGATGAC	27120
TAACGCAGGT	GTACAGCTGG	CGGGCGGTTC	CCCCTTTGT	CGTCACCGGC	CTCAACAGAG	27180
TATAAAACGC	CTGGTGATCA	GAGGCCGAGG	TATCCAGCTC	AACGACGAGT	CGGTGAGCTC	27240
TTCGCTTGGT	CTGCGACCAG	ACGGAGTCTT	CCAAATTGCC	GGCTGCGGGA	GATCTTCCTT	27300
CACTCCTCGT	CAGGCTGTAC	TGACTTTGGA	GAGTTCGTCC	TCACAGCCCC	GCTCGGGTGG	27360
CATCGGGACT	CTCCAGTTTG	TGGAGGAGTT	TACTCCCTCT	GTCTACTTCA	ACCCCTTCTC	27420
CGGATCTCCT	GGGCATTACC	CGGACGAGTT	CATACCAAAT	TTCGACGCAA	TCAGCGAGTC	27480
AGTGGATGGT	TATGATTGAT	GTCTAATGGT	GGCGCGGCTG	AGCTAGCTCG	ACTGCGACAT	27540
CTAGACCACT	GCCGCCGCTT	TCGCTGCTTT	GCCAGAGAAC	TCACCGAGTT	CATCTACTTC	27600
GAAATACCCG	AGGAGCACCC	TCAGGGACCG	GCCCACGGAG	TGCGTATTAC	CATCGAAGGG	27660
GGTATAGACT	CTCGCCTGCA	TCGAATCTTC	TGCCAGCGGC	CCGTGCTAAT	CGAGCGCGAC	27720
CAGGGAAACA	CCACAGTCTC	CATCTACTGC	ATCTGTAACC	ACCCCGGATT	GCATGAAA GC	27780
CTTTGCTGTC	TTATTTGTGC	TGAGTTTAAT	AAAAACTGAG	TTAAGACTCT	CCTACGGACT	27840
ACCAATTCTT	CAACCCGGAC	TTTATAACAA	TCAGACCCTC	CTACCAAGTC	AGAAGACCCC	27900
AACCCTTCCT	CTGATCCAGG	ACTCTAATTC	TACCTCCCCA	GCACCATACT	TTACTAGCCT	27960
TCCCGAAACT	AACAACCTCG	GAGCTAAACT	GCACCGCTTT	TCCAGAAGCC	TTCTCTCTGC	28020
CAATACTACC	ACTCCCAGAA	CCGGAGGTGA	GCTCCGTAGT	CTTCCTAATA	ACAACCCCTG	28080
GGTGGTAACT	GGGTTTGTAA	CATTAGGTGT	AGTTGCGGGT	GGGCTTGTGC	TTATCCTTTG	28140
CTACCTATAC	ACACCTTGCT	GTGCTTATTT	AGTAATCTTG	TGTTGCTGGT	TTAAGAAATG	28200
GGGGCCCTAC	TAGCCGCGCT	TGCTTTACTT	TCACTTTTTG	AGCCTGGCTC	TACTATGCTA	28260
GTTCAGCCTG	TACTATTTGA	TCCATGCCTC	AATTTTGATC	CAGACAACTG	CACACTCACT	28320
TTTGCTCCAG	AGGCTGGACG	CTGTGGAGTT	CTTATTAGGT	GCGGACGGGA	ATGCAGTCCC	28380
ATTGAAATAC	ACCACAATAA	CAAACTTTGG	AACAATACCT	TATTCACCAC	ATGGCAGCCA	28440
GGAGACCCTG	AGTGGTATAC	TGTCTCTGTC	CGTGGTCCTG	ACGGTTCCAT	CCGCACTGCT	28500
AATAACACTT	TTATTTTTGC	TGAGATGTGC	GATCTGACCA	TGTTCATGAG	CAAACAGTAT	28560
AACCTATGGC	CTCCAAGCAA	GGAGAACATT	GTGGCATTCT	CCCTTGCTTA	TTGCTTGTGT	28620
ACGTGTCTCA	TTACTGCTAT	TCTGTGTATC	TGCATACACT	TGCTTATTGC	CACTCGCCAC	28680
AGAAACAGCA	ATAAGGAAAA	AGAGAAAATG	CCTTGAGCTT	TTTCTCATCT	ATGTTTTTT	28740
TTTTTGTTAC	AGACATGGCT	TCAGTTATAG	CTCTAATTAT	TGCCAGCATT	CTCACTGCCG	28800
CACACGGACA	AACAATTGTC	TATATTACCT	TAGGTCATAA	CCACACTCTT	ATAGGACCCC	28860
AAATTAGTTC	ACAGGTTATA	TGGACCAAAC	TTGGAAGTGT	TGATTATTTT	GACATAATCT	28920

GCAACAGAAC TAAACCAATA TTTGTAACCT GTAACAAACA AAATCTCACC TTAATCAATG 28980 29040 TTAGCGAAAT TTACAACGGT TACTATTATG GTTATGACAG ACACAGCAGT GAATATAAAA 29100 ATTACTTAGT TCGCATAACT CAACCCAAAA CTACAAAAAT GCCAAATATG GCAAAAATTC ANATGGTTAG CACATTAGAA AATCTTTCAT ATCCCACCAC ACCCGATGAG AAAAACATTC 29160 CAAATTCAAT GATTGCCATT ATTGCGGCGG TGGCAGTGGG AATGGCACTA ATAATAATTT 29220 GTATGTTCCT ATATGCTTGT TACTGTAGAA AGTTTCACAA ACAGGACCCC CTACTAAATT 29280 TTTGACATTT AATTTTTTAT ACAGCTATGG TTTCCACTAC AGCCTTTTTT ATTATCAGTA 29340 GCCTTGCAGC TGTCACTTAT GGTCGCTCAC ACCTCACTGT AACTGTTGGC TCAACTTGTA 29400 CACTACAAGG ACCCCAAGAA GGGCATGTCA GTTGGTGGAG AATATATGAT AGTGGATGGT 29460 TCATTAGGCC ATGTGACCAG CCTGGTAACA AATTTCTCTG CAACGGGAGA GACCTGACCA 29520 TTATTAACAT AACAGTAAAT GACCAGGGCT TCTATTATGG AACTAACTAT AAAAATAACT 29580 TAGATTACAA CATTATCGTA GTGCCAGCCA CCACTCCAGC TCCCCGCAAA ACCACTTTCT 29640 TTAGCAGCAG TGCCAGTATT TCTAAAACAG CTTCTGCAAT CTTAAAGCTT CAAAAAATCG 29700 CTTTAAGTAA TTCCACAACC TCTTCCACTA ACACAACGTC TAAATCAGTA GTCGGCATCG 29760 CTGTTGCCGC GGTAATGGGA TTAATGATTA TAACTTTGTG CATAATCTAC TACGCCTGCT 29820 29880 GCTATAGAAA ACATGAACAA AAAAGCGATC CCTTGCTGAA TTTTGATATT TAATTTTTTT TTATAGAATC ATGAAAAAC TAATTATCCT AGCTTTTATT TTGTTTCAAT CATATACCAC 29940 TAACACTACC AATGTGCAGA CTACTTTAAA TCATAGTATG GAAAACCACA CTACCTCTTA 30000 TAAGCACACA AACATCACTA CCCATCAGCC TAAATATGCT ATGCAACTAG AAATCACAAT 30060 30120 ACTANTIGIG ATTGCAATAC TTATCATATC TATCATTTTC TATTTTACCC TATGCCGCCA ARTACCCART ATTCATAGAA AAAGACGTCC CATTTATTGC CCCATGATTA GTCAACCCCA 30180 TATGACTCTA AATGAAATCT AAGATCTATT CTTTCTCTTT TTTACAGTAT GGTGAACACC 30240 AATCATGATT CCTAGAAATT TCTTCTTCAC CATACTCATC TGTGCTTTTA ATGTCTGTGC 30300 CACCTTTACA GCAGTAGCCA CTACAAGCCC CGACTGTATA GGACCATTTG CCTCATACAC 30360 ACTITITGCT TITGTCGCTT GCACCTGCGT GTGTAGCGTA GTCTGCCTGG TTATTAATTT 30420 TTTTCAACTT GTAGACTGGA TCTTTGTGAG ACTTGCCTAT CTGCGTCACC ATCCCGAATA 30480 CCGCAATCAA CATGTTGCGG CACTTCTCAG ACTTATTTAA AACCATGCAG GCTATACTAC 30540 CAGTCATTCT GCTTCTGTTG CTCCCCTGCG ATGCCTTAAC CCCCGTCGCT AATCGTACCC 30600 CACCTGAACA ACTTAGAAAA TGCAAATTCC AACAACCATG GACATTCCTT GATTGCTATC 30660 GAGAAAAATC TGATTTCCCC ACATACTGGA TTATGATCAT TGGAATTGTT AATCTAGTTT 30720 CTTGCACACT ATTCTCTTTC CTTGTTTATC ATTTTTTGA TTTTGGATGG AATGCCCCCA 30780 ATGCACTCAC TTACCCACAA GAACCAGAGG AACATATCCC ACTACAGAAC ATGCAACAGC 30840

68

CARTAGCTTT AATAGATTAT GACAATGAGC CACAGCCCTC GCTGCTTCCT GCTATTAGTT 30900 ACTTCAACCT AACCGGTGGA GATGACTGAC CCACTCGCCG CCTCCACTGC TGCCGAGGAA 30960 CTGCTTGATA TGGACGGCCG CACCTCAGAA CAGCGACTCG CCCAACTACG CATACGCCAG 31020 CAGCAGGAAC GTGCCGCCAA GGAGCTCAGG GATGCTATTG AAATTCACCA GTGCAAAAAA 31080 GGCATATTCT GTCTGGTGAA ACAAGCCAAG ATTTCCTACG AGATCACCAC TACTGACCAT 31140 CGCCTCTCAT ACGAGCTCGG TCCGCAGCGG CAAAAATTCA CGTGTATGGT GGGAATCAAC 31200 CCCATAGTCA TTACCCAGCA GGCTGGAGAT ACTAAGGGTT GCATCCACTG TTCCTGCGGT 31260 TCCACCGAGT GCATCTACAC CCTACTTAAG ACCCTCTGCG GCCTTCGAGA CATCCTACCC 31320 31380 AAATCAGCAA TCATGTCTCC GTCCAAATTT TCTCCTAGCA GCACCTCACT TCCCTCTTCC 31440 CAACTCTGGT ACTCTAAACC CCGCCTGGCA GCATACTTTC TCCACACTTT AAATGGAATG 31500 TCAAATTTTA GTTCCTCTTT TCTACCCACA ATCTTCATCT CTTTATTCTC CCCAGATGGC 31560 CAAACGAACT CGGTTGAGCA GCTCCTTCAA CCCGGTCTAC CCCTATGAAG ATGAAAACAG 31620 CTCACACCCC TTTATAAACC CTGGTTTCAT TTCCCCTAAT GGGTTTACAC AAAGCCCAGA 31680 CGGAGTTCTG ACACTAAATT GTGTTGCTCC CCTTACAACC GCTAATGGCG CCCTAGATAT 31740 CAAAGTAGGA GGAGGGCTTA AAGTGAACTC AACTGATGGA TTCTTAGAAG AAAACATAAA 31800 CATCACATCA CCACTTACAA AGTCTAACCA TTCTATAGGT TTAGAATGGA GCGATGGGTT 31860 ACAAACAAAC GAAGCCAAGC TCTGTGTCAA ACTTGGAAAA GGTCTTGTAT TTGACTCTTC 31920 CAGTGCTATT GCAATGGAAA ATAACACTTT GTGGACAGGT GCAAAACCAA GTGCCAACTG 31980 TGTAATTAAA GAGGGAGAAG ATTCCCCAGA CTGTAAGCTC ACTTTAGTTC TAGTGAAGAA 32040 TGGAGGACTG GTAAATGGAT ACATAACATT AATGGGAGAC TCAGAATATA CTAACACCTT 32100 GTTTANARAC AAACAAGTTA CAATAGATGT AAACCTCGCA TTTGATAATA CCGGCCAAAT 32160 TATCACTTAC CTATCATCTC TTAAAAGTAA CCTGAACTTT AAAGACAACC AAAACATGGC 32220 TACTGGAACC ATAACCAGTG CCAAAGGCTT CATGCCCAGC ACCACCGCCT ATCCATTTAT 32280 AACATACGCC ACTCAGTCCC TAAATGAAGA TTACATTTAT GGAGAGTGTT ACTACAAATC 32340 TACCAATGGA ACTCTCTTC CACTAAAAGT TACTGTCACA CTAAACAGAC GTATGTCAGC 32400 TTCTGGAATG GCCTATGCTA TGAACTTTTC ATGGTCTCTA AATGCAGAGG AAGCCCCTGA 32460 AACTACCGAA GTCACTCTCA TTACCTCCCC CTTCTTTTTT TCTTATATCA GAGAAGACGA 32520 CTGACAACAA AAAATAAAGA TTAACTTTTT TATTGAAATC AGTTTACAAG ATTCGAGTAG 32580 TTATTTTGCC CCCCTCTTCC CATTTTATAG AATACACAAT CCTCTCCCCA CGCACAGCTT 32640 TGAACATTTG AATTCCATTA GAGATAGACA TAGTTTTAGA TTCCACATTC CACACAGTTT 32700 CAGAGCGGC CAATCTTGGA TCAGTGATAG ATATAAAGCC ATCGGAACAG TCTTTCAAGG 32760

TGGTTTCACA GTCCAACTG	C TGCGGCTGCG	GCTCCGGAGT	TTGGATTAGA	GTCATCTGGA	32820
AGAAGAACGA TGGGAGTCA	T AATCCGAGAA	CGGGATCGGA	CGGTTGTGTC	TCAAACCTCG	32880
AAGCAGTCGC TGTCTGCGC	C GCTCCGTGCG	ACTGCTGCTG	ATGGGATCAG	GATCCACAGT	32940
CTCTCTAAGC ATGATTTTA	a tagccctcaa	CATTAACATC	CTGGTGCGAT	GTGCACAACA	33000
ACGCATTCTA ATCTCGCTT	a gctcactgca	GTAGGTACAA	CACATTACCA	CAATGTTGTT	33060
TAACAGGCCA TAATTAAAG	G TGCTCCAGCC	AAAACTCATC	TCAGGGATAA	TCATGCCCGC	33120
GTGACCATCA TACCAGATO	T TAATGTAAAT	CAAATGGCGC	CCCCTCCAGA	ACACACTGCC	33180
CACATACATA ATCTCCTTG	G GCATATGCAT	GTTCACAATC	TCTCTGTACC	ATGGACAGCG	33240
CTGGTTAATC ATACAGCCC	C TAATAACCTT	CCGGAACCAA	ATAGCCAGCA	CTGCTCCCCC	33300
AGCAATACAT TGAAGAGAA	C CCGGCTGTTT	ACAGTGACAA	TGAAGAACCC	ACTTCTCTCG	33360
CCCATGGATC ACTTGAGAA	T GAAATATATC	TATAGTGGCA	CAACACAAAC	ATAAATGCAT	33420
GCATCTTTTC ATAACCCTT	A ACTCTTCGGG	GGTTAGAAAC	ATATCCCAGG	GAATGGGAAG	33480
CTCTTGCAAA ACAGTAAAG	C TGGCAGAACA	AGGAAGACCG	CGAACATAAC	TTACACTGTG	33540
CATGGTCAGG GTATTACAA	T CTGGTAACAG	TGGATGGTCT	TCAGTCATAG	AAGCTCTGGT	33600
TTCATTTTCC TCACAGCGT	G GTAAAGGGGC	CCTCAAATGA	GGGTCCATGA	TGTACGGATG	33660
ATGTCTGTGG CATGACGTC	G ATCGTGCACG	CGACCTCGTT	GTAATGGAGC	TGCTTCCTGA	33720
CATTCTCGTA TTTTGCATG	A CAAAACCTAG	CCTTAGCACA	ACACACTTCT	CTTCGCCTTC	33780
TATCCCGTCG CCTAACGCA	T TCAGTGTGGT	AATTGAAGTA	CAGCCATTCC	CGTAGATTGG	33840
TCAAAAGTTC CTCGGCTTC	A GTTGTTATGA	AAACTCCATC	ATGTCTGATC	GCTCTGATAA	33900
AATCATTCAC TGTAGAATG	g gcaataccca	ACCATGCAAT	ACAATTAGCT	TGAGTTTTAA	33960
TCAAAGGAGG GGGAGGAAG	A CATGGAAGAA	CCATAATTAA	TTTTTTATTC	CAGACGATCT	34020
CGCAGTATTT CTAAATGAA	G ATCACGAAGA	TGGCACCTCT	CGCCCCCACT	GTGTTGATGA	34080
AAAATAACAG CTAAGTCAA	A CACGATGCGA	TTCTCAAGAT	GCTCAATGGT	GGCTTCAAGC	34140
AAAGCCTCCA CGCGCACAT	с сааааасааа	AGAACAGCAA	AAGAAGGGC	ATGTTCTAAT	34200
TCCTCAATCA TCATATTAC	A TTCCTGTACC	ATTCCCAGAT	AATTTTCATC	TTTCCAGCCT	34260
TGAATTAATC GTGTCATTT	C TTCTTGTAAA	TCCAATCCAC	ACATGAAAAA	CAGCTCTCGG	34320
AGGGCACCCT CCACCACCA	T CCTTAAGCAC	ACCCTCATAA	TGACAAAATA	TCTTGCTCCT	34380
GTGTCACCTG CAGCAAATT	G AGAATGGCAA	CATCAAACGA	CATGCCATTG	TCTCTAAGCT	34440
CTTCTCTAAG TTCAAGTTG	T AAAAACTCCT	TCAAATCATC	GCCAAACTGC	TTGGCCATAG	34500
GTCCGCCAGG AATAAGAGC	G GGGGACGCTA	CTGTACAGAA	CAAACGGAGA	CCGCCCCAAT	34560
GGGATCCAGC AAAAGTGAG	G TTACAATAAG	CATACTGAGA	ACCTCCAGTG	ATATCATCCA	34620
GAGTGCTGGA AACATAATC	A GGCAGAGTTT	CTCGTATAAA	ATTAATAAA	GAAAATTCTG	34680

PCT/US97/15694 WO 98/10087

70

CCAGATGAAC	ATTTAAAATT	TCTGGAATAC	AGATGCAATA	AGTTACCGCG	CTGCGCTCCA	34740
ACATTGTTAG	TACGATTAGT	CTGTAAAAA	ACAGCACAAA	AGTTATTACA	TCATGCTAGC	34800
CTGGCGAACG	GATGGATAAA	TCACTCTCTC	CAACACCAGG	CAGGCTACAG	GGTCTCCAAC	34860
ACGACCCTCG	TAAAACCTGT	CAGTATGATT	AAAAAGCATC	ACCGAAAGAG	GCTGTTGATG	34920
AGCAGCAAAT	ATTATTTGCG	ATGAAGCATA	CAATCCAGAA	GTGTTAGTAT	CAGTTAAAGA	34980
AAAAAAACGT	CCAATATAGC	ATCTGGGAAC	AATTATGCTC	AATCTCAAAT	GCAGCAAAGC	35040
GACACCTCTG	GGATGCAAAG	TAAAATCCAC	AGGAGCATAA	AAAATGTAAT	TATTCCCCTC	35100
TTGCACAGGC	AGCCTAGCTC	CCGGCCCCTC	CAAAATCACA	TACAAAACTT	CAGCCATAGC	35160
TTACCGCACA	AATCAGGCAG	AGCAGACAGG	AGAACTATAA	ACTGACTGCC	GCCTGTGCGC	35220
AATATATAGT	CAACCTATAC	ACTGACGTAA	TCGGATAAAG	TCTAAAAAAT	CCCGCCAAAA	35280
CCAGCACACG	CCCAGAAACT	GTGTCATCCG	CGAGAAAATT	TCACTTCCGC	ATTTTATTCC	35340
GGAAAAACGT	CACTTCCTCT	TTCCCACGAA	TCGTCACTTC	CGGTAATCTT	GTAACGTCAC	35400
CTTCCCGCCC	CGCCCCTAAC	GGTCGCCGTC	CCCACAGCCA	ATCACCTTTC	ACCCTCCCCA	35460
AATTCAAACG	CCTCATTTGC	ATATTAACAC	GCACCAAAAG	TTTAAGGTAT	ATTATTGATG	35520
ATGG						35524

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36519 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CCATCTTCAA	TAATATACCT	CAAACTTTTT	GTGCGCGTTA	ATATGCAAAT	GAGGCGTTTG	60
AATTTGGGGA	GGAAGGGCGG	TGATTGGTCG	AGGGATGAGC	GACCGTTAGG	GGCGGGGCGA	120
GTGACGTTTT	GATGACGTGG	TTGCGAGGAG	GAGCCAGTTT	GCAAGTTCTC	GTGGGAAAAG	180
TGACGTCAAA	CGAGGTGTGG	TTTGAACACG	GAAATACTCA	ATTTTCCCGC	GCTCTCTGAC	240
AGGAAATGAG	GTGTTTCTGG	GCGGATGCAA	GTGAAAACGG	GCCATTTTCG	CGCGAAAACT	300
GAATGAGGAA	GTGAAAATCT	GAGTAATTTC	GCGTTTATGG	CAGGGAGGAG	TATTTGCCGA	360
GGGCCGAGTA	GACTTTGACC	GATTACGTGG	GGGTTTCGAT	TACCGTGTTT	TTCACCTAAA	420
TTTCCGCGTA	CGGTGTCAAA	GTCCGGTGTT	TTTACGTAGG	TGTCAGCTGA	TCGCCAGGGT	480
ATTTAAACCT	GCGCTCTCCA	GTCAAGAGGC	CACTCTTGAG	TGCCAGCGAG	AAGAGTTTTC	540
TCCTCCGCGC	CGCGAGTCAG	ATCTACACTT	TGAAAGATGA	GGCACCTGAG	AGACCTGCCC	600

GATGAGAAAA	TCATCATCGC	TTCCGGGAAC	GAGATTCTGG	AACTGGTGGT	AAATGCCATG	660
ATGGGCGACG	ACCCTCCGGA	GCCCCCACC	CCATTTGAGA	CACCTTCGCT	GCACGATTTG	720
TATGATCTGG	AGGTGGATGT	GCCCGAGGAC	GATCCCAATG	AGGAGGCGGT	AAATGATTTT	780
TTTAGCGATG	CCGCGCTGCT	AGCTGCCGAG	GAGGCTTCGA	GCTCTAGCTC	AGACAGCGAC	840
TCTTCACTGC	ATACCCCTAG	ACCCGGCAGA	GGTGAGAAAA	AGATCCCCGA	GCTTAAAGGG	900
GAAGAGATGG	ACTTGCGCTG	CTATGAGGAA	TGCTTGCCCC	CGAGCGATGA	TGAGGACGAG	960
CAGGCGATCC	AGAACGCAGC	GAGCCAGGGA	GTGCAAGCCG	CCAGCGAGAG	CTTTGCGCTG	1020
GACTGCCCGC	CTCTGCCCGG	ACACGGCTGT	AAGTCTTGTG	AATTTCATCG	CATGAATACT	1080
GGAGATAAAG	CTGTGTTGTG	TGCACTTTGC	TATATGAGAG	CTTACAACCA	TTGTGTTTAC	1140
AGTAAGTGTG	ATTAAGTTGA	ACTTTAGAGG	GAGGCAGAGA	GCAGGGTGAC	TGGGCGATGA	1200
CTGGTTTATT	TATGTATATA	TGTTCTTTAT	ATAGGTCCCG	TCTCTGACGC	AGATGATGAG	1260
ACCCCCACTA	CAAAGTCCAC	TTCGTCACCC	CCAGAAATTG	GCACATCTCC	ACCTGAGAAT	1320
ATTGTTAGAC	CAGTTCCTGT	TAGAGCCACT	GGGAGGAGAG	CAGCTGTGGA	ATGTTTGGAT	1380
GACTTGCTAC	AGGGTGGGGT	TGAACCTTTG	GACTTGTGTA	CCCGGAAACG	CCCCAGGCAC	1440
TAAGTGCCAC	ACATGTGTGT	TTACTTGAGG	TGATGTCAGT	ATTTATAGGG	TGTGGAGTGC	1500
AATAAAAAAT	GTGTTGACTT	TAAGTGCGTG	GTTTATGACT	CAGGGGTGGG	GACTGTGAGT	1560
ATATAAGCAG	GTGCAGACCT	GTGTGGTTAG	CTCAGAGCGG	CATGGAGATT	TGGACGGTCT	1620
TGGAAGACTT	TCACAAGACT	AGACAGCTGC	TAGAGAACGC	CTCGAACGGA	GTCTCTTACC	1680
TGTGGAGATT	CTGCTTCGGT	GGCGACCTAG	CTAGGCTAGT	CTACAGGGCC	AAACAGGATT	1740
ATAGTGAACA	ATTTGAGGTT	ATTTTGAGAG	AGTGTTCTGG	TCTTTTTGAC	GCTCTTAACT	1800
TGGGCCATCA	GTCTCACTTT	AACCAGAGGA	TTTCGAGAGC	CCTTGATTTT	ACTACTCCTG	1860
GCAGAACCAC	TGCAGCAGTA	GCCTTTTTTG	CTTTTATTCT	TGACAAATGG	AGTCAAGAAA	1920
CCCATTTCAG	CAGGGATTAC	CAGCTGGATT	TCTTAGCAGT	AGCTTTGTGG	AGAACATGGA	1980
AGTGCCAGCG	CCTGAATGCA	ATCTCCGGCT	ACTTGCCGGT	ACAGCCGCTA	GACACTCTGA	2040
GGATCCTGAA	TCTCCAGGAG	AGTCCCAGGG	CACGCCAACG	TCGCCAGCAG	CAGCAGCAGG	2100
AGGAGGATCA	AGAAGAGAAC	CCGAGAGCCG	GCCTGGACCC	TCCGGCGGAG	GAGGAGGAGT	2160
AGCTGACCTG	TTTCCTGAAC	TGCGCCGGGT	GCTGACTAGG	TCTTCGAGTG	GTCGGGAGAG	2220
GGGGATTAAG	CGGGAGAGGC	ATGATGAGAC	TAATCACAGA	ACTGAACTGA	CTGTGGGTCT	2280
GATGAGTCGC	AAGCGCCCAG	AAACAGTGTG	GTGGCATGAG	GTGCAGTCGA	CTGGCACAGA	2340
TGAGGTGTCG	GTGATGCATG	AGAGGTTTTC	TCTAGAACAA	GTCAAGACTT	GTTGGTTAGA	2400
GCCTGAGGAT	GATTGGGAGG	TAGCCATCAG	GAATTATGCC	AAGCTGGCTC	TGAGGCCAGA	2460
CAAGAAGTAC	AAGATTACTA	AGCTGATAAA	TATCAGAAAT	GCCTGCTACA	TCTCAGGGAA	2520

TGGGGCTGAA	GTGGAGATCT	GTCTCCAGGA	AAGGGTGGCT	TTCAGATGCT	GCATGATGAA	2580
TATGTACCCG	GGAGTGGTGG	GCATGGATGG	GGTTACCTTT	ATGAACATGA	GGTTCAGGGG	2640
AGATGGGTAT	AATGGCACGG	TCTTTATGGC	CAATACCAAG	CTGACAGTCC	ATGGCTGCTC	2700
CTTCTTTGGG	TTTAATAACA	CCTGCATCGA	GGCCTGGGGT	CAGGTCGGTG	TGAGGGGCTG	2760
CAGTTTTTCA	GCCAACTGGA	TGGGGGTCGT	GGGCAGGACC	AAGAGTATGC	TGTCCGTGAA	2820
GAAATGCTTG	TTTGAGAGGT	GCCACCTGGG	GGTGATGAGC	GAGGGCGAAG	CCAGAATCCG	2880
CCACTGCGCC	TCTACCGAGA	CGGGCTGCTT	TGTGCTGTGC	AAGGGCAATG	CTAAGATCAA	2940
GCATAATATG	ATCTGTGGAG	CCTCGGACGA	GCGCGGCTAC	CAGATGCTGA	CCTGCGCCGG	3000
CGGGAACAGC	CATATGCTGG	CCACCGTACA	TGTGGCTTCC	CATGCTCGCA	AGCCCTGGCC	3060
CGAGTTCGAG	CACAATGTCA	TGACCAGGTG	CAATATGCAT	CTGGGGTCCC	GCCGAGGCAT	3120
GTTCATGCCC	TACCAGTGCA	ACCTGAATTA	TGTGAAGGTG	CTGCTGGAGC	CCGATGCCAT	3180
GTCCAGAGTG	AGCCTGACGG	GGGTGTTTGA	CATGAATGTG	GAGGTGTGGA	AGATTCTGAG	3240
ATATGATGAA	TCCAAGACCA	GGTGCCGAGC	CTGCGAGTGC	GGAGGGAAGC	ATGCCAGGTT	3300
CCAGCCCGTG	TGTGTGGATG	TGACGGAGGA	CCTGCGACCC	GATCATTTGG	TGTTGCCCTG	3360
CACCGGGACG	GAGTTCGGTT	CCAGCGGGGA	AGAATCTGAC	TAGAGTGAGT	AGTGTTCTGG	3420
GGCGGGGGAG	GACCTGCATG	AGGGCCAGAA	TAACTGAAAT	CTGTGCTTTT	CTGTGTGTTG	3480
CAGCAGCATG	AGCGGAAGCG	GCTCCTTTGA	GGGAGGGGTA	TTCAGCCCTT	ATCTGACGGG	3540
GCGTCTCCCC	TCCTGGGCGG	GAGTGCGTCA	GAATGTGATG	GGATCCACGG	TGGACGGCCG	3600
GCCCGTGCAG	CCCGCGAACT	CTTCAACCCT	GACCTATGCA	ACCCTGAGCT	CTTCGTCGTT	3660
GGACGCAGCT	GCCGCCGCAG	CTGCTGCATC	TGCCGCCAGC	GCCGTGCGCG	GAATGGCCAT	3720
GGGCGCCGGC	TACTACGGCA	CTCTGGTGGC	CAACTCGAGT	TCCACCAATA	ATCCCGCCAG	3780
CCTGAACGAG	GAGAAGCTGT	TGCTGCTGAT	GGCCCAGCTC	GAGGCCTTGA	CCCAGCGCCT	3840
GGGCGAGCTG	ACCCAGCAGG	TGGCTCAGCT	GCAGGAGCAG	ACGCGGGCCG	CGGTTGCCAC	3900
GGTGAAATCC	АААТААААА	TGAATCAATA	AATAAACGGA	GACGGTTGTT	GATTTTAACA	3960
CAGAGTCTGA	ATCTTTATTT	GATTTTTCGC	GCGCGGTAGG	CCCTGGACCA	CCGGTCTCGA	4020
TCATTGAGCA	CCCGGTGGAT	CTTTTCCAGG	ACCCGGTAGA	GGTGGGCTTG	GATGTTGAGG	4080
TACATGGGCA	TGAGCCCGTC	CCGGGGGTGG	AGGTAGCTCC	ATTGCAGGGC	CTCGTGCTCG	4140
GGGGTGGTGT	TGTAAATCAC	CCAGTCATAG	CAGGGGCGCA	GGGCATGGTG	TTGCACAATA	4200
TCTTTGAGGA	GGAGACTGAT	GGCCACGGGC	AGCCCTTTGG	TGTAGGTGTT	TACAAATCTG	4260
TTGAGCTGGG	AGGGATGCAT	GCGGGGGAG	ATGAGGTGCA	TCTTGGCCTG	GATCTTGAGA	4320
TTGGCGATGT	TACCGCCCAG	ATCCCGCCTG	GGGTTCATGT	TGTGCAGGAC	CACCAGCACG	4380
GTGTATCCGG	TGCACTTGGG	GAATTTATCA	TGCAACTTGG	AAGGGAAGGC	GTGAAAGAAT	4440

TTGGCGACGC	CTTTGTGCCC	GCCCAGGTTT	TCCATGCACT	CATCCATGAT	GATGGCGATG	4500
GGCCCGTGGG	CGGCGGCCTG	GGCAAAGACG	TTTCGGGGGT	CGGACACATC	ATAGTTGTGG	4560
TCCTGGGTGA	GGTCATCATA	GGCCATTTTA	ATGAATTTGG	GGCGGAGGGT	GCCGGACTGG	4620
GGGACAAAGG	TACCCTCGAT	CCCGGGGGCG	TAGTTCCCCT	CACAGATCTG	CATCTCCCAG	4680
GCTTTGAGCT	CGGAGGGGGG	GATCATGTCC	ACCTGCGGGG	CGATAAAGAA	CACGGTTTCC	4740
GGGGCGGGG	AGATGAGCTG	GGCCGAAAGC	AAGTTCCGGA	GCAGCTGGGA	CTTGCCGCAG	4800
CCGGTGGGGC	CGTAGATGAC	CCCGATGACC	GGCTGCAGGT	GGTAGTTGAG	GGAGAGACAG	4860
CTGCCGTCCT	CCCGGAGGAG	GGGGCCACC	TCGTTCATCA	TCTCGCGCAC	GTGCATGTTC	4920
TCGCGCACCA	GTTCCGCCAG	GAGGCGCTCT	CCCCCAGGG	ATAGGAGCTC	CTGGAGCGAG	4980
GCGAAGTTTT	TCAGCGGCTT	GAGTCCGTCG	GCCATGGGCA	TTTTGGAGAG	GGTTTGTTGC	5040
AAGAGTTCCA	GGCGGTCCCA	GAGCTCGGTG	ATGTGCTCTA	CGGCATCTCG	ATCCAGCAGA	5100
CCTCCTCGTT	TCGCGGGTTG	GGACGGCTGC	GGGAGTAGGG	CACCAGACGA	TGGGCGTCCA	5160
GCGCAGCCAG	GGTCCGGTCC	TTCCAGGGTC	GCAGCGTCCG	CGTCAGGGTG	GTCTCCGTCA	5220
CGGTGAAGGG	GTGCGCGCCG	GGCTGGGCGC	TTGCGAGGGT	GCGCTTCAGG	CTCATCCGGC	5280
TGGTCGAAAA	CCGCTCCCGA	TCGGCGCCCT	GCGCGTCGGC	CAGGTAGCAA	TTGACCATGA	5340
GTTCGTAGTT	GAGCGCCTCG	GCCGCGTGGC	CTTTGGCGCG	GAGCTTACCT	TTGGAAGTCT	5400
GCCCGCAGGC	GGGACAGAGG	AGGGACTTGA	GGGCGTAGAG	CTTGGGGGCG	AGGAAGACGG	5460
ACTCGGGGGC	GTAGGCGTCC	GCGCCGCAGT	GGGCGCAGAC	GGTCTCGCAC	TCCACGAGCC	5520
AGGTGAGGTC	GGGCTGGTCG	GGGTCAAAAA	CCAGTTTCCC	GCCGTTCTTT	TTGATGCGTT	5580
TCTTACCTTT	GGTCTCCATG	AGCTCGTGTC	CCCGCTGGGT	GACAAAGAGG	CTGTCCGTGT	5640
CCCCGTAGAC	CGACTTTATG	GGCCGGTCCT	CGAGCGGTGT	GCCGCGGTCC	TCCTCGTAGA	5700
GGAACCCCGC	CCACTCCGAG	ACGAAAGCCC	GGGTCCAGGC	CAGCACGAAG	GAGGCCACGT	5760
GGGACGGGTA	GCGGTCGTTG	TCCACCAGCG	GGTCCACCTT	TTCCAGGGTA	TGCAAACACA	5820
TGTCCCCCTC	GTCCACATCC	AGGAAGGTGA	TTGGCTTGTA	AGTGTAGGCC	ACGTGACCGG	5880
GGGTCCCGGC	CGGGGGGGTA	TAAAAGGGTG	CGGGTCCCTG	CTCGTCCTCA	CTGTCTTCCG	5940
GATCGCTGTC	CAGGAGCGCC	AGCTGTTGGG	GTAGGTATTC	CCTCTCGAAG	GCGGGCATGA	6000
CCTCGGCACT	CAGGTTGTCA	GTTTCTAGAA	ACGAGGAGGA	TTTGATATTG	ACGGTGCCGG	6060
CGGAGATGCC	TTTCAAGAGC	CCCTCGTCCA	TCTGGTCAGA	AAAGACGATC	TTTTTGTTGT	6120
CGAGCTTGGT	GGCGAAGGAG	CCGTAGAGGG	CGTTGGAGAG	GAGCTTGGCG	ATGGAGCGCA	6180
TGGTCTGGTT	TTTTTCCTTG	TCGGCGCGCT	CCTTGGCGGC	GATGTTGAGC	TGCACGTACT	6240
CGCGCGCCAC	GCACTTCCAT	TCGGGGAAGA	CGGTGGTCAG	CTCGTCGGGC	ACGATTCTGA	6300
CCTGCCAGCC	CCGATTATGC	AGGGTGATGA	GGTCCACACT	GGTGGCCACC	TCGCCGCGCA	6360

GGGGCTCATT AGTCCAGCAG AGGCGTCCGC CCTTGCGCGA GCAGAAGGGG GGCAGGGGGT 6420 CCAGCATGAC CTCGTCGGGG GGGTCGGCAT CGATGGTGAA GATGCCGGGC AGGAGGTCGG 6480 GGTCAAAGTA GCTGATGGAA GTGGCCAGAT CGTCCAGGGC AGCTTGCCAT TCGCGCACGG 6540 CCAGCGCGC CTCGTAGGGA CTGAGGGGCG TGCCCCAGGG CATGGGATGG GTAAGCGCGG 6600 AGGCGTACAT GCCGCAGATG TCGTAGACGT AGAGGGGCTC CTCGAGGATG CCGATGTAGG 6660 TGGGGTAGCA GCGCCCCCG CGGATGCTGG CGCGCACGTA GTCATACAGC TCGTGCGAGG 6720 GGGCGAGGAG CCCCGGGCCC AGGTTGGTGC GACTGGGCTT TTCGGCGCGG TAGACGATCT 6780 GGCGGAAAAT GGCATGCGAG TTGGAGGAGA TGGTGGGCCT TTGGAAGATG TTGAAGTGGG 6840 CGTGGGGCAG TCCGACCGAG TCGCGGATGA AGTGGGCGTA GGAGTCTTGC AGCTTGGCGA 6900 CGAGCTCGGC GGTGACTAGG ACGTCCAGAG CGCAGTAGTC GAGGGTCTCC TGGATGATGT 6960 CATACTTGAG CTGTCCCTTT TGTTTCCACA GCTCGCGGTT GAGAAGGAAC TCTTCGCGGT 7020 CCTTCCAGTA CTCTTCGAGG GGGAACCCGT CCTGATCTGC ACGGTAAGAG CCTAGCATGT 7080 AGAACTGGTT GACGGCCTTG TAGGCGCAGC AGCCCTTCTC CACGGGGAGG GCGTAGGCCT 7140 GGGCGCCTT GCGCAGGGAG GTGTGCGTGA GGGCGAAAGT GTCCCTGACC ATGACCTTGA 7200 GGAACTGGTG CTTGAAGTCG ATATCGTCGC AGCCCCCTG CTCCCAGAGC TGGAAGTCCG 7260 TGCGCTTCTT GTAGGCGGGG TTGGGCAAAG CGAAAGTAAC ATCGTTGAAG AGGATCTTGC 7320 CCGCGCGGGG CATAAAGTTG CGAGTGATGC GGAAAGGTTG GGGCACCTCG GCCCGGTTGT 7380 TGATGACCTG GGCGGCGAGC ACGATCTCGT CGAAGCCGTT GATGTTGTGG CCCACGATGT 7440 AGAGTTCCAC GAATCGCGGA CGGCCCTTGA CGTGGGGCAG TTTCTTGAGC TCCTCGTAGG 7500 TGAGCTCGTC GGGGTCGCTG AGCCCGTGCT GCTCGAGCGC CCAGTCGGCG AGATGGGGGT 7560 TGGCGCGGAG GAAGGAAGTC CAGAGATCCA CGGCCAGGGC GGTTTGCAGA CGGTCCCGGT 7620 ACTGACGGAA CTGCTGCCCG ACGCCATTT TTTCGGGGGT GACGCAGTAG AAGGTGCGGG 7680 GGTCCCCGTG CCAGCGATCC CATTTGAGCT GGAGGGCGAG ATCGAGGGCG AGCTCGACGA 7740 GCCGGTCGTC CCCGGAGAGT TTCATGACCA GCATGAAGGG GACGAGCTGC TTGCCGAAGG 7800 ACCCCATCCA GGTGTAGGTT TCCACATCGT AGGTGAGGAA GAGCCTTTCG GTGCGAGGAT 7860 GCGAGCCGAT GGGGAAGAAC TGGATCTCCT GCCACCAATT GGAGGAATGG CTGTTGATGT 7920 GATGGAAGTA GAAATGCCGA CGGCGCCCG AACACTCGTG CTTGTGTTTA TACAAGCGGC 7980 CACAGTGCTC GCAACGCTGC ACGGGATGCA CGTGCTGCAC GAGCTGTACC TGAGTTCCTT 8040 TGACGAGGAA TTTCAGTGGG AAGTGGAGTC GTGGCGCCTG CATCTCGTGC TGTACTACGT 8100 CGTGGTGGTC GGCCTGGCCC TCTTCTGCCT CGATGGTGGT CATGCTGACG AGCCCGCGCG 8160 GGAGGCAGGT CCAGACCTCG GCGCGAGCGG GTCGGAGAGC GAGGACGAGG GCGCGCAGGC 8220 CGGAGCTGTC CAGGGTCCTG AGACGCTGCG GAGTCAGGTC AGTGGGCAGC GGCGGCGCGC 8280

GGTTGACTTG	CAGGAGTTTT	TCCAGGGCGC	GCGGGAGGTC	CAGATGGTAC	TTGATCTCCA	8340
CCGCGCCATT	GGTGGCGACG	TCGATGGCTT	GCAGGGTCCC	GTGCCCCTGG	GGTGTGACCA	8400
CCGTCCCCCG	TTTCTTCTTG	GGCGGCTGGG	GCGACGGGGG	CGGTGCCTCT	TCCATGGTTA	8460
GAAGCGGCGG	CGAGGACGCG	CGCCGGGCGG	CAGGGGCGGC	TCGGGGCCCG	GAGGCAGGGG	8520
CGGCAGGGGC	ACGTCGGCGC	CGCGCGCGGG	TAGGTTCTGG	TACTGCGCCC	GGAGAAGACT	8580
GGCGTGAGCG	ACGACGCGAC	GGTTGACGTC	CTGGATCTGA	CCCCTCTGGG	TGAAGGCCAC	8640
GGGACCCGTG	AGTTTGAACC	TGAAAGAGAG	TTCGACAGAA	TCAATCTCGG	TATCGTTGAC	8700
GCCGCCTGC	CGCAGGATCT	CTTGCACGTC	GCCCGAGTTG	TCCTGGTAGG	CGATCTCGGT	8760
CATGAACTGC	TCGATCTCCT	CCTCTTGAAG	GTCTCCGCGG	CCGGCGCGCT	CCACGGTGGC	8820
CGCGAGGTCG	TTGGAGATGC	GGCCCATGAG	CTGCGAGAAG	GCGTTCATGC	CCGCCTCGTT	8880
CCAGACGCGG	CTGTAGACCA	CGACGCCCTC	GGGATCGCCG	GCGCGCATGA	CCACCTGGGC	8940
GAGGTTGAGC	TCCACGTGGC	GCGTGAAGAC	CGCGTAGTTG	CAGAGGCGCT	GGTAGAGGTA	9000
GTTGAGCGTG	GTGGCGATGT	GCTCGGTGAC	GAAGAAATAC	ATGATCCAGC	GGCGGAGCGG	9060
CATCTCGCTG	ACGTCGCCCA	GCGCCTCCAA	ACGTTCCATG	GCCTCGTAAA	AGTCCACGGC	9120
GAAGTTGAAA	AACTGGGAGT	TGCGCGCCGA	GACGGTCAAC	TCCTCCTCCA	GAAGACGGAT	9180
GAGCTCGGCG	ATGGTGGCGC	GCACCTCGCG	CTCGAAGGCC	CCCGGGAGTT	CCTCCACTTC	9240
CTCTTCTTCC	TCCTCCACTA	ACATCTCTTC	TACTTCCTCC	TCAGGCGGCA	GTGGTGGCGG	9300
GGGAGGGGC	CTGCGTCGCC	GGCGGCGCAC	GGGCAGACGG	TCGATGAAGC	GCTCGATGGT	9360
CTCGCCGCGC	CGGCGTCGCA	TGGTCTCGGT	GACGGCGCGC	CCGTCCTCGC	GGGGCCGCAG	9420
CGTGAAGACG	CCGCCGCGCA	TCTCCAGGTG	GCCGGGGGG	TCCCCGTTGG	GCAGGGAGAG	9480
GGCGCTGACG	ATGCATCTTA	TCAATTGCCC	CGTAGGGACT	CCGCGCAAGG	ACCTGAGCGT	9540
CTCGAGATCC	ACGGGATCTG	AAAACCGCTG	AACGAAGGCT	TCGAGCCAGT	CGCAGTCGCA	9600
AGGTAGGCTG	AGCACGGTTT	CTTCTGGCGG	GTCATGTTGG	TTGGGAGCGG	GGCGGGCGAT	9660
GCTGCTGGTG	ATGAAGTTGA	AATAGGCGGT	TCTGAGACGG	CGGATGGTGG	CGAGGAGCAC	9720
CAGGTCTTTG	GGCCCGGCTT	GCTGGATGCG	CAGACGGTCG	GCCATGCCCC	AGGCGTGGTC	9780
CTGACACCTG	GCCAGGTCCT	TGTAGTAGTC	CTGCATGAGC	CGCTCCACGG	GCACCTCCTC	9840
CTCGCCCGCG	CGGCCGTGCA	TGCGCGTGAG	CCCGAAGCCG	CGCTGGGGCT	GGACGAGCGC	9900
CAGGTCGGCG	ACGACGCGCT	CGGCGAGGAT	GGCTTGCTGG	ATCTGGGTGA	GGGTGGTCTG	9960
GAAGTCATCA	AAGTCGACGA	AGCGGTGGTA	GGCTCCGGTG	TTGATGGTGT	AGGAGCAGTT	10020
GGCCATGACG	GACCAGTTGA	CGGTCTGGTG	GCCCGGACGC	ACGAGCTCGT	GGTACTTGAG	10080
GCGCGAGTAG	GCGCGCGTGT	CGAAGATGTA	GTCGTTGCAG	GTGCGCACCA	GGTACTGGTA	10140
GCCGATGAGG	AAGTGCGGCG	GCGGCTGGCG	GTAGAGCGGC	CATCGCTCGG	TGGCGGGGGC	10200

GCCGGGCGCG	AGGTCCTCGA	GCATGGTGCG	GTGGTAGCCG	TAGATGTACC	TGGACATCCA	10260
GGTGATGCCG	GCGGCGGTGG	TGGAGGCGCG	CGGGAACTCG	CGGACGCGGT	TCCAGATGTT	10320
GCGCAGCGGC	AGGAAGTAGT	TCATGGTGGG	CACGGTCTGG	CCCGTGAGGC	GCGCGCAGTC	10380
GTGGATGCTC	TATACGGGCA	AAAACGAAAG	CGGTCAGCGG	CTCGACTCCG	TGGCCTGGAG	10440
GCTAAGCGAA	CGGGTTGGGC	TGCGCGTGTA	CCCCGGTTCG	AATCTCGAAT	CAGGCTGGAG	10500
CCGCAGCTAA	CGTGGTATTG	GCACTCCCGT	CTCGACCCAA	GCCTGCACCA	ACCCTCCAGG	10560
ATACGGAGGC	GGGTCGTTTT	GCAACTTTTT	TTTGGAGGCC	GGATGAGACT	AGTAAGCGCG	10620
GAAAGCGGCC	GACCGCGATG	GCTCGCTGCC	GTAGTCTGGA	GAAGAATCGC	CAGGGTTGCG	10680
TTGCGGTGTG	CCCCGGTTCG	AGGCCGGCCG	GATTCCGCGG	CTAACGAGGG	CGTGGCTGCC	10740
CCGTCGTTTC	CAAGACCCCA	TAGCCAGCCG	ACTTCTCCAG	TTACGGAGCG	AGCCCCTCTT	10800
TIGTTTTGTT	TGTTTTTGCC	AGATGCATCC	CGTACTGCGG	CAGATGCGCC	CCCACCACCC	10860
TCCACCGCAA	CAACAGCCCC	CTCCACAGCC	GGCGCTTCTG	CCCCGCCCC	AGCAGCAACT	10920
TCCAGCCACG	ACCGCCGCGG	CCGCCGTGAG	CGGGGCTGGA	CAGAGTTATG	ATCACCAGCT	10980
GGCCTTGGAA	GAGGGCGAGG	GGCTGGCGCG	CCTGGGGGCG	TCGTCGCCGG	AGCGGCACCC	11040
GCGCGTGCAG	ATGAAAAGGG	ACGCTCGCGA	GGCCTACGTG	CCCAAGCAGA	ACCTGTTCAG	11100
AGACAGGAGC	GGCGAGGAGC	CCGAGGAGAT	GCGCGCGCC	CGGTTCCACG	CGGGGCGGGA	11160
GCTGCGGCGC	GGCCTGGACC	GAAAGAGGGT	GCTGAGGGAC	GAGGATTTCG	AGGCGGACGA	11220
GCTGACGGGG	ATCAGCCCCG	CGCGCGCGCA	CGTGGCCGCG	GCCAACCTGG	TCACGGCGTA	11280
CGAGCAGACC	GTGAAGGAGG	AGAGCAACTT	CCAAAAATCC	TTCAACAACC	ACGTGCGCAC	11340
CCTGATCGCG	CGCGAGGAGG	TGACCCTGGG	CCTGATGCAC	CTGTGGGACC	TGCTGGAGGC	11400
CATCGTGCAG	AACCCCACCA	GCAAGCCGCT	GACGGCGCAG	CTGTTCCTGG	TGGTGCAGCA	11460
TAGTCGGGAC	AACGAAGCGT	TCAGGGAGGC	GCTGCTGAAT	ATCACCGAGC	CCGAGGGCCG	11520
CTGGCTCCTG	GACCTGGTGA	ACATTCTGCA	GAGCATCGTG	GTGCAGGAGC	GCGGGCTGCC	11580
GCTGTCCGAG	AAGCTGGCGG	CCATCAACTT	CTCGGTGCTG	AGTTTGGGCA	AGTACTACGC	11640
TAGGAAGATC	TACAAGACCC	CGTACGTGCC	CATAGACAAG	GAGGTGAAGA	TCGACGGGTT	11700
TTACATGCGC	ATGACCCTGA	AAGTGCTGAC	CCTGAGCGAC	GATCTGGGGG	TGTACCGCAA	11760
CGACAGGATG	CACCGTGCGG	TGAGCGCCAG	CAGGCGGCGC	GAGCTGAGCG	ACCAGGAGCT	11820
GATGCATAGT	CTGCAGCGGG	CCCTGACCGG	GGCCGGGACC	GAGGGGGAGA	GCTACTTTGA	11880
CATGGGCGCG	GACCTGCACT	GGCAGCCCAG	CCGCCGGGCC	TTGGAGGCGG	CGGCAGGACC	11940
CTACGTAGAA	GAGGTGGACG	ATGAGGTGGA	CGAGGAGGGC	GAGTACCTGG	AAGACTGATG	12000
GCGCGACCGT	ATTTTTGCTA	GATGCAACAA	CAACAGCCAC	CTCCTGATCC	CGCGATGCGG	12060
GCGGCGCTGC	AGAGCCAGCC	GTCCGGCATT	AACTCCTCGG	ACGATTGGAC	CCAGGCCATG	12120

CAACGCATCA	TGGCGCTGAC	GACCCGCAAC	CCCGAAGCCT	TTAGACAGCA	GCCCCAGGCC	12180
AACCGGCTCT	CGGCCATCCT	GGAGGCCGTG	GTGCCCTCGC	GCTCCAACCC	CACGCACGAG	12240
AAGGTCCTGG	CCATCGTGAA	CGCGCTGGTG	GAGAACAAGG	CCATCCGCGG	CGACGAGGCC	12300
GGCCTGGTGT	ACAACGCGCT	GCTGGAGCGC	GTGGCCCGCT	ACAACAGCAC	CAACGTGCAG	12360
ACCAACCTGG	ACCGCATGGT	GACCGACGTG	CGCGAGGCCG	TGGCCCAGCG	CGAGCGGTTC	12420
CACCGCGAGT	CCAACCTGGG	ATCCATGGTG	GCGCTGAACG	CCTTCCTCAG	CACCCAGCCC	12480
GCCAACGTGC	CCCGGGGCCA	GGAGGACTAC	ACCAACTTCA	TCAGCGCCCT	GCGCCTGATG	12540
GTGACCGAGG	TGCCCCAGAG	CGAGGTGTAC	CAGTCCGGGC	CGGACTACTT	CTTCCAGACC	12600
AGTCGCCAGG	GCTTGCAGAC	CGTGAACCTG	AGCCAGGCTT	TCAAGAACTT	GCAGGGCCTG	12660
TGGGGCGTGC	AGGCCCCGGT	CGGGGACCGC	GCGACGGTGT	CGAGCCTGCT	GACGCCGAAC	12720
TCGCGCCTGC	TGCTGCTGCT	GGTGGCCCCC	TTCACGGACA	GCGGCAGCAT	CAACCGCAAC	12780
TCGTACCTGG	GCTACCTGAT	TAACCTGTAC	CGCGAGGCCA	TCGGCCAGGC	GCACGTGGAC	12840
GAGCAGACCT	ACCAGGAGAT	CACCCACGTG	AGCCGCGCCC	TGGGCCAGGA	CGACCCGGGC	12900
AACCTGGAAG	CCACCCTGAA	CTTTTTGCTG	ACCAACCGGT	CGCAGAAGAT	CCCGCCCCAG	12960
TACGCGCTCA	GCACCGAGGA	GGAGCGCATC	CTGCGTTACG	TGCAGCAGAG	CGTGGGCCTG	13020
TTCCTGATGC	AGGAGGGGC	CACCCCCAGC	GCCGCGCTCG	ACATGACCGC	GCGCAACATG	13080
GAGCCCAGCA	TGTACGCCAG	CAACCGCCCG	TTCATCAATA	AACTGATGGA	CTACTTGCAT	13140
CGGGCGGCCG	CCATGAACTC	TGACTATTTC	ACCAACGCCA	TCCTGAATCC	CCACTGGCTC	13200
CCGCCGCCGG	GGTTCTACAC	GGGCGAGTAC	GACATGCCCG	ACCCCAATGA	CGGGTTCCTG	13260
TGGGACGATG	TGGACAGCAG	CGTGTTCTCC	CCCCGACCGG	GTGCTAACGA	GCGCCCCTTG	13320
TGGAAGAAGG	AAGGCAGCGA	CCGACGCCCG	TCCTCGGCGC	TGTCCGGCCG	CGAGGGTGCT	13380
GCCGCGGCGG	TGCCCGAGGC	CGCCAGTCCT	TTCCCGAGCT	TGCCCTTCTC	GCTGAACAGT	13440
ATCCGCAGCA	GCGAGCTGGG	CAGGATCACG	CGCCCGCGCT	TGCTGGGCGA	AGAGGAGTAC	13500
TTGAATGACT	CGCTGTTGAG	ACCCGAGCGG	GAGAAGAACT	TCCCCAATAA	CGGGATAGAA	13560
AGCCTGGTGG	ACAAGATGAG	CCGCTGGAAG	ACGTATGCGC	AGGAGCACAG	GGACGATCCC	13620
CGGGCGTCGC	AGGGGGCCAC	GAGCCGGGGC	AGCGCCGCCC	GTAAACGCCG	GTGGCACGAC	13680
AGGCAGCGGG	GACAGATGTG	GGACGATGAG	GACTCCGCCG	ACGACAGCAG	CGTGTTGGAC	13740
TTGGGTGGGA	GTGGTAACCC	GTTCGCTCAC	CTGCGCCCCC	GTATCGGGCG	CATGATGTAA	13800
GAGAAACCGA	AAATAAATGA	TACTCACCAA	GGCCATGGCG	ACCAGCGTGC	GTTCGTTTCT	13860
TCTCTGTTGT	TGTTGTATCT	AGTATGATGA	GGCGTGCGTA	CCCGGAGGGT	CCTCCTCCCT	13920
CGTACGAGAG	CGTGATGCAG	CAGGCGATGG	CGCCGCCGC	GATGCAGCCC	CCGCTGGAGG	13980
CTCCTTACGT	GCCCCGCGG	TACCTGGCGC	CTACGGAGGG	GCGGAACAGC	ATTCGTTACT	14040

CGGAGCTGGC ACCCTTGTAC GATACCACCC GGTTGTACCT GGTGGACAAC AAGTCGGCGG 14100 ACATCGCCTC GCTGAACTAC CAGAACGACC ACAGCAACTT CCTGACCACC GTGGTGCAGA 14160 ACANTGACTT CACCCCCACG GAGGCCAGCA CCCAGACCAT CAACTTTGAC GAGCGCTCGC 14220 GGTGGGGCGG CCAGCTGAAA ACCATCATGC ACACCAACAT GCCCAACGTG AACGAGTTCA 14280 TGTACAGCAA CAAGTTCAAG GCGCGGTGA TGGTCTCCCG CAAGACCCCC AATGGGGTGA 14340 CAGTGACAGA GGATTATGAT GGTAGTCAGG ATGAGCTGAA GTATGAATGG GTGGAATTTG 14400 AGCTGCCCGA AGGCAACTTC TCGGTGACCA TGACCATCGA CCTGATGAAC AACGCCATCA 14460 TCGACAATTA CTTGGCGGTG GGGCGGCAGA ACGGGGTGCT GGAGAGCGAC ATCGGCGTGA 14520 AGTTCGACAC TAGGAACTTC AGGCTGGGCT GGGACCCCGT GACCGAGCTG GTCATGCCCG 14580 GGGTGTACAC CAACGAGGCT TTCCATCCCG ATATTGTCTT GCTGCCCGGC TGCGGGGTGG 14640 14700 ACTTCACCGA GAGCCGCCTC AGCAACCTGC TGGGCATTCG CAAGAGGCAG CCCTTCCAGG AAGGCTTCCA GATCATGTAC GAGGATCTGG AGGGGGGCAA CATCCCCGCG CTCCTGGATG 14760 TCGACCCCTA TGAGAAAAGC AAGGAGGATG CAGCAGCTGA AGCAACTGCA GCCGTAGCTA 14820 CCGCCTCTAC CGAGGTCAGG GGCGATAATT TTGCAAGCGC CGCAGCAGTG GCAGCGGCCG 14880 AGGCGGCTGA AACCGAAAGT AAGATAGTCA TTCAGCCGGT GGAGAAGGAT AGCAAGAACA 14940 GGAGCTACAA CGTACTACCG GACAAGATAA ACACCGCCTA CCGCAGCTGG TACCTAGCCT 15000 ACAACTATGG CGACCCCGAG AAGGGCGTGC GCTCCTGGAC GCTGCTCACC ACCTCGGACG 15060 TCACCTGCGG CGTGGAGCAA GTCTACTGGT CGCTGCCCGA CATGATGCAA GACCCGGTCA 15120 CCTTCCGCTC CACGCGTCAA GTTAGCAACT ACCCGGTGGT GGGCGCCGAG CTCCTGCCCG 15180 TCTACTCCAA GAGCTTCTTC AACGAGCAGG CCGTCTACTC GCAGCAGCTG CGCGCCTTCA 15240 CCTCGCTTAC GCACGTCTTC AACCGCTTCC CCGAGAACCA GATCCTCGTC CGCCCGCCCG 15300 CGCCCACCAT TACCACCGTC AGTGAAAACG TTCCTGCTCT CACAGATCAC GGGACCCTGC 15360 CGCTGCGCAG CAGTATCCGG GGAGTCCAGC GCGTGACCGT TACTGACGCC AGACGCCGCA 15420 CCTGCCCCTA CGTCTACAAG GCCCTGGGCA TAGTCGCGCC GCGCGTCCTC TCGAGCCGCA 15480 CCTTCTAAAT GTCCATTCTC ATCTCGCCCA GTAATAACAC CGGTTGGGGC CTGCGCGCGC 15540 CCAGCAAGAT GTACGGAGGC GCTCGCCAAC GCTCCACGCA ACACCCCGTG CGCGTGCGCG 15600 GGCACTTCCG CGCTCCCTGG GGCGCCCTCA AGGGCCGCGT GCGGTCGCGC ACCACCGTCG 15660 ACGACGTGAT CGACCAGGTG GTGGCCGACG CGCGCAACTA CACCCCCGCC GCCGCGCCCG 15720 TCTCCACCGT GGACGCCGTC ATCGACAGCG TGGTGGCGGA CGCGCGCGG TACGCCCGCG 15780 CCAAGAGCCG GCGGCGGCGC ATCGCCCGGC GGCACCGGAG CACCCCCGCC ATGCGCGCGG 15840 CGCGAGCCTT GCTGCGCAGG GCCAGGCGCA CGGGACGCAG GGCCATGCTC AGGGCGGCCA 15900 GACGCGCGC TTCAGGCGCC AGCGCCGGCA GGACCCGGAG ACGCGCGGCC ACGGCGGCGG 15960

CAGCGGCCAT	CGCCAGCATG	TCCCGCCCGC	GGCGAGGGAA	CGTGTACTGG	GTGCGCGACG	16020
CCGCCACCGG	TGTGCGCGTG	CCCGTGCGCA	CCCGCCCCCC	TCGCACTTGA	AGATGTTCAC	16080
TTCGCGATGT	TGATGTGTCC	CAGCGGCGAG	GAGGATGTCC	AAGCGCAAAT	TCAAGGAAGA	16140
GATGCTCCAG	GTCATCGCGC	CTGAGATCTA	CGCCCTGCG	GTGGTGAAGG	AGGAAAGAAA	16200
GCCCCGCAAA	ATCAAGCGGG	TCAAAAAGGA	CAAAAAGGAA	GAAGAAAGTG	ATGTGGACGG	16260
ATTGGTGGAG	TTTGTGCGCG	AGTTCGCCCC	CCGCCGCCCC	GTGCAGTGGC	GCGGGCGGAA	16320
GGTGCAACCG	GTGCTGAGAC	CCGGCACCAC	CGTGGTCTTC	ACGCCCGGCG	AGCGCTCCGG	16380
CACCGCTTCC	AAGCGCTCCT	ACGACGAGGT	GTACGGGGAT	GATGATATTC	TGGAGCAGGC	16440
GGCCGAGCGC	CTGGGCGAGT	TTGCTTACGG	CAAGCGCAGC	CGTTCCGCAC	CGAAGGAAGA	16500
GGCGGTGTCC	ATCCCGCTGG	ACCACGGCAA	CCCCACGCCG	AGCCTCAAGC	CCGTGACCTT	16560
GCAGCAGGTG	CTGCCGACCG	CGGCGCCGCG	CCGGGGGTTC	AAGCGCGAGG	GCGAGGATCT	16620
GTACCCCACC	ATGCAGCTGA	TGGTGCCCAA	GCGCCAGAAG	CTGGAAGACG	TGCTGGAGAC	16680
CATGAAGGTG	GACCCGGACG	TGCAGCCCGA	GGTCAAGGTG	CGGCCCATCA	AGCAGGTGGC	16740
CCCGGGCCTG	GGCGTGCAGA	CCGTGGACAT	CAAGATTCCC	ACGGAGCCCA	TGGAAACGCA	16800
GACCGAGCCC	ATGATCAAGC	CCAGCACCAG	CACCATGGAG	GTGCAGACGG	ATCCCTGGAT	16860
GCCATCGGCT	CCTAGTCGAA	GACCCCGGCG	CAAGTACGGC	GCGGCCAGCC	TGCTGATGCC	16920
CAACTACGCG	CTGCATCCTT	CCATCATCCC	CACGCCGGGC	TACCGCGGCA	CGCGCTTCTA	16980
CCGCGGTCAT	ACCAGCAGCC	GCCGCCGCAA	GACCACCACT	CGCCGCCGCC	GTCGCCGCAC	17040
CGCCGCTGCA	ACCACCCCTG	CCGCCCTGGT	GCGGAGAGTG	TACCGCCGCG	GCCGCGCACC	17100
TCTGACCCTG	CCGCGCGCGC	GCTACCACCC	GAGCATCGCC	ATTTAAACTT	TCGCCAGCTT	17160
TGCAGATCAA	TGGCCCTCAC	ATGCCGCCTT	CGCGTȚCCCA	TTACGGGCTA	CCGAGGAAGA	17220
AAACCGCGCC	GTAGAAGGCT	GGCGGGGAAC	GGGATGCGTC	GCCACCACCA	CCGGCGGCGG	17280
CGCGCCATCA	GCAAGCGGTT	GGGGGGAGGC	TTCCTGCCCG	CGCTGATCCC	CATCATCGCC	17340
GCGGCGATCG	GGGCGATCCC	CGGCATTGCT	TCCGTGGCGG	TGCAGGCCTC	TCAGCGCCAC	17400
TGAGACACAC	TTGGAAACAT	CTTGTAATAA	ACCCATGGAC	TCTGACGCTC	CTGGTCCTGT	17460
GATGTGTTTT	CGTAGACAGA	TGGAAGACAT	CAATTTTTCG	TCCCTGGCTC	CGCGACACGG	17520
CACGCGGCCG	TTCATGGGCA	CCTGGAGCGA	CATCGGCACC	AGCCAACTGA	ACGGGGGCGC	17580
CTTCAATTGG	AGCAGTCTCT	GGAGCGGGCT	TAAGAATTTC	GGGTCCACGC	TTAAAACCTA	17640
TGGCAGCAAG	GCGTGGAACA	GCACCACAGG	GCAGGCGCTG	AGGGATAAGC	TGAAAGAGCA	17700
GAACTTCCAG	CAGAAGGTGG	TCGATGGGCT	CGCCTCGGGC	ATCAACGGGG	TGGTGGACCT	17760
GGCCAACCAG	GCCGTGCAGC	GGCAGATCAA	CAGCCGCCTG	GACCCGGTGC	cecceccee	17820
CTCCGTGGAG	ATGCCGCAGG	TGGAGGAGGA	GCTGCCTCCC	CTGGACAAGC	GGGCGAGAA	17880

GCGACCCCGC	CCCGATGCGG	AGGAGACGCT	GCTGACGCAC	ACGGACGAGC	CGCCCCCGTA	17940
CGAGGAGGCG	GTGAAACTGG	GTCTGCCCAC	CACGCGGCCC	ATCGCGCCCC	TGGCCACCGG	18000
GGTGCTGAAA	CCCGAAAAGC	CCGCGACCCT	GGACTTGCCT	CCTCCCCAGC	CTTCCCGCCC	18060
CTCTACAGTG	GCTAAGCCCC	TGCCGCCGGT	GGCCGTGGCC	CGCGCGCGAC	CCGGGGGCAC	18120
CGCCCGCCCT	CATGCGAACT	GGCAGAGCAC	TCTGAACAGC	ATCGTGGGTC	TGGGAGTGCA	18180
GAGTGTGAAG	CGCCGCCGCT	GCTATTAAAC	CTACCGTAGC	GCTTAACTTG	CTTGTCTGTG	18240
TGTGTATGTA	TTATGTCGCC	GCCGCCGCTG	TCCACCAGAA	GGAGGAGTGA	AGAGGCGCGT	18300
CGCCGAGTTG	CAAGATGGCC	ACCCCATCGA	TGCTGCCCCA	GTGGGCGTAC	ATGCACATCG	18360
CCGGACAGGA	CGCTTCGGAG	TACCTGAGTC	CGGGTCTGGT	GCAGTTTGCC	CGCGCCACAG	18420
ACACCTACTT	CAGTCTGGGG	AACAAGTTTA	GGAACCCCAC	GGTGGCGCCC	ACGCACGATG	18480
TGACCACCGA	CCGCAGCCAG	CGGCTGACGC	TGCGCTTCGT	GCCCGTGGAC	CGCGAGGACA	18540
ACACCTACTC	GTACAAAGTG	CGCTACACGC	TGGCCGTGGG	CGACAACCGC	GTGCTGGACA	18600
TGGCCAGCAC	CTACTTTGAC	ATCCGCGGCG	TGCTGGATCG	GGGCCCTAGC	TTCAAACCCT	18660
ACTCCGGCAC	CGCCTACAAC	AGTCTGGCCC	CCAAGGGAGC	ACCCAACACT	TGTCAGTGGA	18720
CATATAAAGC	CGATGGTGAA	ACTGCCACAG	AAAAAACCTA	TACATATGGA	AATGCACCCG	18780
TGCAGGGCAT	TAACATCACA	AAAGATGGTA	TTCAACTTGG	AACTGACACC	GATGATCAGC	18840
CAATCTACGC	AGATAAAACC	TATCAGCCTG	AACCTCAAGT	GGGTGATGCT	GAATGGCATG	18900
ACATCACTGG	TACTGATGAA	AAGTATGGAG	GCAGAGCTCT	TAAGCCTGAT	ACCAAAATGA	18960
AGCCTTGTTA	TGGTTCTTTT	GCCAAGCCTA	CTAATAAAGA	AGGAGGTCAG	GCAAATGTGA	19020
AAACAGGAAC	AGGCACTACT	AAAGAATATG	ACATAGACAT	GGCTTTCTTT	GACAACAGAA	19080
GTGCGGCTGC	TGCTGGCCTA	GCTCCAGAAA	TTGTTTTGTA	TACTGAAAAT	GTGGATTTGG	19140
AAACTCCAGA	TACCCATATT	GTATACAAAG	CAGGCACAGA	TGACAGCAGC	TCTTCTATTA	19200
ATTTGGGTCA	GCAAGCCATG	CCCAACAGAC	CTAACTACAT	TGGTTTCAGA	GACAACTTTA	19260
TCGGGCTCAT	GTACTACAAC	AGCACTGGCA	ATATGGGGGT	GCTGGCCGGT	CAGGCTTCTC	19320
AGCTGAATGC	TGTGGTTGAC	TTGCAAGACA	GAAACACCGA	GCTGTCCTAC	CAGCTCTTGC	19380
TTGACTCTCT	GGGTGACAGA	ACCCGGTATT	TCAGTATGTG	GAATCAGGCG	GTGGACAGCT	19440
ATGATCCTGA	TGTGCGCATT	ATTGAAAATC	ATGGTGTGGA	GGATGAACTT	CCCAACTATT	19500
GTTTCCCTCT	GGATGCTGTT	GGCAGAACAG	ATACTTATCA	GGGAATTAAG	GCTAATGGAA	19560
CTGATCAAAC	CACATGGACC	AAAGATGACA	GTGTCAATGA	TGCTAATGAG	ATAGGCAAGG	19620
GTAATCCATT	CGCCATGGAA	ATCAACATCC	AAGCCAACCT	GTGGAGGAAC	TTCCTCTACG	19680
CCAACGTGGC	CCTGTACCTG	CCCGACTCTT	ACAAGTACAC	GCCGGCCAAT	GTTACCCTGC	19740
CCACCAACAC	CAACACCTAC	GATTACATGA	ACGGCCGGGT	GGTGGCGCCC	TCGCTGGTGG	19800

81

ACTCCTACAT CAACATCGGG GCGCGCTGGT CGCTGGATCC CATGGACAAC GTGAACCCCT 19860 TCAACCACCA CCGCAATGCG GGGCTGCGCT ACCGCTCCAT GCTCCTGGGC AACGGGCGCT 19920 ACGTGCCTT CCACATCCAG GTGCCCCAGA AATTTTTCGC CATCAAGAGC CTCCTGCTCC 19980 TGCCCGGGTC CTACACCTAC GAGTGGAACT TCCGCAAGGA CGTCAACATG ATCCTGCAGA 20040 GCTCCCTCGG CAACGACCTG CGCACGGACG GGGCCTCCAT CTCCTTCACC AGCATCAACC 20100 TCTACGCCAC CTTCTTCCCC ATGGCGCACA ACACGGCCTC CACGCTCGAG GCCATGCTGC 20160 GCAACGACAC CAACGACCAG TCCTTCAACG ACTACCTCTC GGCGGCCAAC ATGCTCTACC 20220 CCATCCCGGC CAACGCCACC AACGTGCCCA TCTCCATCCC CTCGCGCAAC TGGGCCGCCT 20280 20340 TCCGCGGCTG GTCCTTCACG CGTCTCAAGA CCAAGGAGAC GCCCTCGCTG GGCTCCGGGT TCGACCCCTA CTTCGTCTAC TCGGGCTCCA TCCCCTACCT CGACGGCACC TTCTACCTCA 20400 ACCACACCTT CAAGAAGGTC TCCATCACCT TCGACTCCTC CGTCAGCTGG CCCGGCAACG 20460 ACCGGCTCCT GACGCCCAAC GAGTTCGAAA TCAAGCGCAC CGTCGACGGC GAGGGCTACA 20520 ACGTGGCCCA GTGCAACATG ACCAAGGACT GGTTCCTGGT CCAGATGCTG GCCCACTACA 20580 ACATCGGCTA CCAGGGCTTC TACGTGCCCG AGGGCTACAA GGACCGCATG TACTCCTTCT 20640 TCCGCAACTT CCAGCCCATG AGCCGCCAGG TGGTGGACGA GGTCAACTAC AAGGACTACC 20700 AGGCCGTCAC CCTGGCCTAC CAGCACAACA ACTCGGGCTT CGTCGGCTAC CTCGCGCCCA 20760 CCATGCGCCA GGGCCAGCCC TACCCCGCCA ACTACCCCTA CCCGCTCATC GGCAAGAGCG 20820 CCGTCACCAG CGTCACCCAG AAAAAGTTCC TCTGCGACAG GGTCATGTGG CGCATCCCCT 20880 20940 TCTCCAGCAA CTTCATGTCC ATGGGCGCGC TCACCGACCT CGGCCAGAAC ATGCTCTATG CCAACTCCGC CCACGCGCTA GACATGAATT TCGAAGTCGA CCCCATGGAT GAGTCCACCC 21000 TTCTCTATGT TGTCTTCGAA GTCTTCGACG TCGTCCGAGT GCACCAGCCC CACCGCGGCG 21060 TCATCGAGGC CGTCTACCTG CGCACCCCCT TCTCGGCCGG TAACGCCACC ACCTAAGCTC 21120 TTGCTTCTTG CAAGCCATGG CCGCGGGCTC CGGCGAGCAG GAGCTCAGGG CCATCATCCG 21180 CGACCTGGGC TGCGGGCCCT ACTTCCTGGG CACCTTCGAT AAGCGCTTCC CGGGATTCAT 21240 GGCCCGCAC AAGCTGGCCT GCGCCATCGT CAACACGGCC GGCCGCGAGA CCGGGGGCGA 21300 GCACTGGCTG GCCTTCGCCT GGAACCCGCG CTCGAACACC TGCTACCTCT TCGACCCCTT 21360 CGGGTTCTCG GACGAGCGCC TCAAGCAGAT CTACCAGTTC GAGTACGAGG GCCTGCTGCG 21420 CCGCAGCGCC CTGGCCACCG AGGACCGCTG CGTCACCCTG GAAAAGTCCA CCCAGACCGT 21480 GCAGGGTCCG CGCTCGCCG CCTGCGGGCT CTTCTGCTGC ATGTTCCTGC ACGCCTTCGT 21540 GCACTGGCCC GACCGCCCCA TGGACAAGAA CCCCACCATG AACTTGCTGA CGGGGGTGCC 21600 CAACGGCATG CTCCAGTCGC CCCAGGTGGA ACCCACCCTG CGCCGCAACC AGGAGGCGCT 21660 CTACCGCTTC CTCAACTCCC ACTCCGCCTA CTTTCGCTCC CACCGCGCGC GCATCGAGAA 21720

GGCCACCGCC	TTCGACCGCA	TGAATCAAGA	CATGTAAACC	GTGTGTGTAT	GTTAAATGTC	21780
TTTAATAAAC	AGCACTTTCA	TGTTACACAT	GCATCTGAGA	TGATTTATTT	AGAAATCGAA	21840
AGGGTTCTGC	CGGGTCTCGG	CATGGCCCGC	GGGCAGGGAC	ACGTTGCGGA	ACTGGTACTT	21900
GGCCAGCCAC	TTGAACTCGG	GGATCAGCAG	TTTGGGCAGC	GGGGTGTCGG	GGAAGGAGTC	21960
GGTCCACAGC	TTCCGCGTCA	GTTGCAGGGC	GCCCAGCAGG	TCGGGCGCGG	AGATCTTGAA	22020
ATCGCAGTTG	GGACCCGCGT	TCTGCGCGCG	GGAGTTGCGG	TACACGGGGT	TGCAGCACTG	22080
GAACACCATC	AGGGCCGGGT	GCTTCACGCT	CGCCAGCACC	GTCGCGTCGG	TGATGCTCTC	22140
CACGTCGAGG	TCCTCGGCGT	TGGCCATCCC	GAAGGGGGTC	ATCTTGCAGG	TCTGCCTTCC	22200
CATGGTGGGC	ACGCACCCGG	GCTTGTGGTT	GCAATCGCAG	TGCAGGGGGA	TCAGCATCAT	22260
CTGGGCCTGG	TCGGCGTTCA	TCCCCGGGTA	CATGGCCTTC	ATGAAAGCCT	CCAATTGCCT	22320
GAACGCCTGC	TGGGCCTTGG	CTCCCTCGGT	GAAGAAGACC	CCGCAGGACT	TGCTAGAGAA	22380
CTGGTTGGTG	GCGCACCCGG	CGTCGTGCAC	GCAGCAGCGC	GCGTCGTTGT	TGGCCAGCTG	22440
CACCACGCTG	CGCCCCCAGC	GGTTCTGGGT	GATCTTGGCC	CGGTCGGGGT	TCTCCTTCAG	22500
CGCGCGCTGC	CCGTTCTCGC	TCGCCACATC	CATCTCGATC	ATGTGCTCCT	TCTGGATCAT	22560
GGTGGTCCCG	TGCAGGCACC	GCAGCTTGCC	CTCGGCCTCG	GTGCACCCGT	GCAGCCACAG	22620
CGCGCACCCG	GTGCACTCCC	AGTTCTTGTG	GGCGATCTGG	GAATGCGCGT	GCACGAAGCC	22680
CTGCAGGAAG	CGGCCCATCA	TGGTGGTCAG	GGTCTTGTTG	CTAGTGAAGG	TCAGCGGAAT	22740
GCCGCGGTGC	TCCTCGTTGA	TGTACAGGTG	GCAGATGCGG	CGGTACACCT	CGCCCTGCTC	22800
GGGCATCAGC	TGGAAGTTGG	CTTTCAGGTC	GGTCTCCACG	CGGTAGCGGT	CCATCAGCAT	22860
AGTCATGATT	TCCATACCCT	TCTCCCAGGC	CGAGACGATG	GGCAGGCTCA	TAGGGTTCTT	22920
CACCATCATC	TTAGCGCTAG	CAGCCGCGC	CAGGGGGTCG	CTCTCGTCCA	GGGTCTCAAA	22980
GCTCCGCTTG	CCGTCCTTCT	CGGTGATCCG	CACCGGGGGG	TAGCTGAAGC	CCACGGCCGC	23040
CAGCTCCTCC	TCGGCCTGTC	TTTCGTCCTC	GCTGTCCTGG	CTGACGTCCT	GCAGGACCAC	23100
ATGCTTGGTC	TTGCGGGGTT	TCTTCTTGGG	CGGCAGCGGC	GGCGGAGATG	TTGGAGATGG	23160
CGAGGGGGAG	CGCGAGTTCT	CGCTCACCAC	TACTATCTCT	TCCTCTTCTT	GGTCCGAGGC	23220
CACGCGGCGG	TAGGTATGTC	TCTTCGGGGG	CAGAGGCGGA	GGCGACGGGC	TCTCGCCGCC	23280
GCGACTTGGC	GGATGGCTGG	CAGAGCCCCT	TCCGCGTTCG	GGGGTGCGCT	CCCGGCGGCG	23340
CTCTGACTGA	CTTCCTCCGC	GGCCGGCCAT	TGTGTTCTCC	TAGGGAGGAA	CAACAAGCAT	23400
GGAGACTCAG	CCATCGCCAA	CCTCGCCATC	TGCCCCCACC	GCCGACGAGA	AGCAGCAGCA	23460
GCAGAATGAA	AGCTTAACCG	CCCCGCCGCC	CAGCCCCGCC	ACCTCCGACG	CGGCCGTCCC	23520
AGACATGCAA	GAGATGGAGG	AATCCATCGA	GATTGACCTG	GGCTATGTGA	CGCCCGCGGA	23580
GCACGAGGAG	GAGCTGGCAG	TGCGCTTTTC	ACAAGAAGAG	ATACACCAAG	AACAGCCAGA	23640

GCAGGAAGCA	GAGAATGAGC	AGAGTCAGGC	TGGGCTCGAG	CATGACGGCG	ACTACCTCCA	23700
CCTGAGCGGG	GGGGAGGACG	CGCTCATCAA	GCATCTGGCC	CGGCAGGCCA	CCATCGTCAA	23760
GGATGCGCTG	CTCGACCGCA	CCGAGGTGCC	CCTCAGCGTG	GAGGAGCTCA	GCCGCGCCTA	23820
CGAGTTGAAC	CTCTTCTCGC	CGCGCGTGCC	CCCCAAGCGC	CAGCCCAATG	GCACCTGCGA	23880
GCCCAACCCG	CGCCTCAACT	TCTACCCGGT	CTTCGCGGTG	CCCGAGGCCC	TGGCCACCTA	23940
CCACATCTTT	TTCAAGAACC	AAAAGATCCC	CGTCTCCTGC	CGCGCCAACC	GCACCCGCGC	24000
CGACGCCCTT	TTCAACCTGG	GTCCCGGCGC	CCGCCTACCT	GATATCGCCT	CCTTGGAAGA	24060
GGTTCCCAAG	ATCTTCGAGG	GTCTGGGCAG	CGACGAGACT	CGGGCCGCGA	ACGCTCTGCA	24120
AGGAGAAGGA	GGAGAGCATG	AGCACCACAG	CGCCCTGGTC	GAGTTGGAAG	GCGACAACGC	24180
GCGGCTGGCG	GTGCTCAAAC	GCACGGTCGA	GCTGACCCAT	TTCGCCTACC	CGGCTCTGAA	24240
CCTGCCCCCC	AAAGTCATGA	GCGCGGTCAT	GGACCAGGTG	CTCATCAAGC	GCGCGTCGCC	24300
CATCTCCGAG	GACGAGGGCA	TGCAAGACTC	CGAGGAGGGC	AAGCCCGTGG	TCAGCGACGA	24360
GCAGCTGGCC	CGGTGGCTGG	GTCCTAATGC	TAGTCCCCAG	AGTTTGGAAG	AGCGGCGCAA	24420
ACTCATGATG	GCCGTGGTCC	TGGTGACCGT	GGAGCTGGAG	TGCCTGCGCC	GCTTCTTCGC	24480
CGACGCGGAG	ACCCTGCGCA	AGGTCGAGGA	GAACCTGCAC	TACCTCTTCA	GGCACGGGTT	24540
CGTGCGCCAG	GCCTGCAAGA	TCTCCAACGT	GGAGCTGACC	AACCTGGTCT	CCTACATGGG	24600
CATCTTGCAC	GAGAACCGCC	TGGGGCAGAA	CGTGCTGCAC	ACCACCCTGC	GCGGGGAGGC	24660
CCGGCGCGAC	TACATCCGCG	ACTGCGTCTA	CCTCTACCTC	TGCCACACCT	GGCAGACGGG	24720
CATGGGCGTG	TGGCAGCAGT	GTCTGGAGGA	GCAGAACCTG	AAAGAGCTCT	GCAAGCTCCT	24780
GCAGAAGAAC	CTCAAGGGTC	TGTGGACCGG	GTTCGACGAG	CGCACCACCG	CCTCGGACCT	24840
GGCCGACCTC	ATTTTCCCCG	AGCGCCTCAG	GCTGACGCTG	CGCAACGGCC	TGCCCGACTT	24900
TATGAGCCAA	AGCATGTTGC	AAAACTTTCG	CTCTTTCATC	CTCGAACGCT	CCGGAATCCT	24960
GCCCGCCACC	TGCTCCGCGC	TGCCCTCGGA	CTTCGTGCCG	CTGACCTTCC	GCGAGTGCCC	25020
CCCGCCGCTG	TGGAGCCACT	GCTACCTGCT	GCGCCTGGCC	AACTACCTGG	CCTACCACTC	25080
GGACGTGATC	GAGGACGTCA	GCGGCGAGGG	CCTGCTCGAG	TGCCACTGCC	GCTGCAACCT	25140
CTGCACGCCG	CACCGCTCCC	TGGCCTGCAA	CCCCCAGCTG	CTGAGCGAGA	CCCAGATCAT	25200
CGGCACCTTC	GAGTTGCAAG	GGCCCAGCGA	AGGCGAGGGT	TCAGCCGCCA	AGGGGGGTCT	25260
GAAACTCACC	CCGGGGCTGT	GGACCTCGGC	CTACTTGCGC	AAGTTCGTGC	CCGAGGACTA	25320
CCATCCCTTC	GAGATCAGGT	TCTACGAGGA	CCAATCCCAT	CCGCCCAAGG	CCGAGCTGTC	25380
GGCCTGCGTC	ATCACCCAGG	GGGCGATCCT	GGCCCAATTG	CAAGCCATCC	AGAAATCCCG	25440
CCAAGAATTC !	TTGCTGAAAA	AGGGCCGCGG	GGTCTACCTC	GACCCCCAGA	CCGGTGAGGA	25500
GCTCAACCCC (GGCTTCCCCC	AGGATGCCCC	GAGGAAACAA	Gaagctgaaa	GTGGAGCTGC	25560

CGCCCGTGGA	GGATTTGGAG	GAAGACTGGG	AGAACAGCAG	TCAGGCAGAG	GAGGAGGAGA	25620
TGGAGGAAGA	CTGGGACAGC	ACTCAGGCAG	AGGAGGACAG	CCTGCAAGAC	AGTCTGGAGG	25680
AAGACGAGGA	GGAGGCAGAG	GAGGAGGTGG	AAGAAGCAGC	CGCCGCCAGA	CCGTCGTCCT	25740
CGGCGGGGGA	GAAAGCAAGC	AGCACGGATA	CCATCTCCGC	TCCGGGTCGG	GGTCCCGCTC	25800
GACCACACAG	TAGATGGGAC	GAGACCGGAC	GATTCCCGAA	CCCCACCACC	CAGACCGGTA	25860
AGAAGGAGCG	GCAGGGATAC	AAGTCCTGGC	GGGGGCACAA	AAACGCCATC	GTCTCCTGCT	25920
TGCAGGCCTG	CGGGGGCAAC	ATCTCCTTCA	CCCGGCGCTA	CCTGCTCTTC	CACCGCGGGG	25980
TGAACTTTCC	CCGCAACATC	TTGCATTACT	ACCGTCACCT	CCACAGCCCC	TACTACTTCC	26040
AAGAAGAGGC	AGCAGCAGCA	GAAAAAGACC	AGCAGAAAAC	CAGCAGCTAG	AAAATCCACA	26100
GCGGCGGCAG	CAGGTGGACT	GAGGATCGCG	GCGAACGAGC	CGGCGCAAAC	CCGGGAGCTG	26160
AGGAACCGGA	TCTTTCCCAC	CCTCTATGCC	ATCTTCCAGC	AGAGTCGGGG	GCAGGAGCAG	26220
GAACTGAAAG	TCAAGAACCG	TTCTCTGCGC	TCGCTCACCC	GCAGTTGTCT	GTATCACAAG	26280
AGCGAAGACC	AACTTCAGCG	CACTCTCGAG	GACGCCGAGG	CTCTCTTCAA	CAAGTACTGC	26340
GCGCTCACTC	TTAAAGAGTA	GCCCGCGCCC	GCCCAGTCGC	AGAAAAAGGC	GGGAATTACG	26400
TCACCTGTGC	CCTTCGCCCT	AGCCGCCTCC	ACCCATCATC	ATGAGCAAAG	AGATTCCCAC	26460
GCCTTACATG	TGGAGCTACC	AGCCCCAGAT	GGGCCTGGCC	GCCGGTGCCG	CCCAGGACTA	26520
CTCCACCCGC	ATGAATTGGC	TCAGCGCCGG	GCCCGCGATG	ATCTCACGGG	TGAATGACAT	26580
CCGCGCCCAC	CGAAACCAGA	TACTCCTAGA	ACAGTCAGCG	CTCACCGCCA	CGCCCGCAA	26640
TCACCTCAAT	CCGCGTAATT	GCCCCCCCC	CCTGGTGTAC	CAGGAAATTC	CCCAGCCCAC	26700
GACCGTACTA	CTTCCGCGAG	ACGCCCAGGC	CGAAGTCCAG	CTGACTAACT	CAGGTGTCCA	26760
GCTGGCGGGC	GGCGCCACCC	TGTGTCGTCA	CCGCCCCGCT	CAGGGTATAA	AGCGGCTGGT	26820
GATCCGGGGC	AGAGGCACAC	AGCTCAACGA	CGAGGTGGTG	AGCTCTTCGC	TGGGTCTGCG	26880
ACCTGACGGA	GTCTTCCAAC	TCGCCGGATC	GGGGAGATCT	TCCTTCACGC	CTCGTCAGGC	26940
CGTCCTGACT	TTGGAGAGTT	CGTCCTCGCA	GCCCGCTCG	GGTGGCATCG	GCACTCTCCA	27000
GTTCGTGGAG	GAGTTCACTC	CCTCGGTCTA	CTTCAACCCC	TTCTCCGGCT	CCCCGGCCA	27060
CTACCCGGAC	GAGTTCATCC	CGAACTTCGA	CGCCATCAGC	GAGTCGGTGG	ACGGCTACGA	27120
TTGAATGTCC	CATGGTGGCG	CAGCTGACCT	AGCTCGGCTT	CGACACCTGG	ACCACTGCCG	27180
CCGCTTCCGC	TGCTTCGCTC	GGGATCTCGC	CGAGTTTGCC	TACTTTGAGC	TGCCCGAGGA	27240
GCACCCTCAG	GCCCGGCCC	ACGGAGTGCG	GATCGTCGTC	GAAGGGGCC	TCGACTCCCA	27300
CCTGCTTCGG	ATCTTCAGCC	AGCGTCCGAT	CCTGGTCGAG	CGCGAGCAAG	GACAGACCCT	27360
TCTGACTCTG	TACTGCATCT	GCAACCACCC	CGGCCTGCAT	GAAAGTCTTT	GTTGTCTGCT	27420
GTGTACTGAG	TATAATAAAA	GCTGAGATCA	GCGACTACTC	CGGACTTCCG	TGTGTTCCTG	27480

AATCCATCAA	CCAGTCTTTG	TTCTTCACCG	GGAACGAGAC	CGAGCTCCAG	CTCCAGTGTA	27540
AGCCCCACAA	GAAGTACCTC	ACCTGGCTGT	TCCAGGGCTC	CCCGATCGCC	GTTGTCAACC	27600
ACTGCGACAA	CGACGGAGTC	CTGCTGAGCG	GCCCTGCCAA	CCTTACTTTT	TCCACCCGCA	27660
GAAGCAAGCT	CCAGCTCTTC	CAACCCTTCC	TCCCCGGGAC	CTATCAGTGC	GTCTCGGGAC	27720
CCTGCCATCA	CACCTTCCAC	CTGATCCCGA	ATACCACAGC	GTCGCTCCCC	GCTACTAACA	27780
ACCAAACTAA	CCTCCACCAA	CGCCACCGTC	GCGACCTTTC	TGAATCTAAT	ACTACCACCC	27840
ACACCGGAGG	TGAGCTCCGA	GGTCAACCAA	CCTCTGGGAT	TTACTACGGC	CCCTGGGAGG	27900
TGGTTGGGTT	AATAGCGCTA	GGCCTAGTTG	CGGGTGGGCT	TTTGGTTCTC	TGCTACCTAT	27960
ACCTCCCTTG	CTGTTCGTAC	TTAGTGGTGC	TGTGTTGCTG	GTTTAAGAAA	TGGGGAAGAT	28020
CACCCTAGTG	AGCTGCGGTG	CGCTGGTGGC	GGTGTTGCTT	TCGATTGTGG	GACTGGGCGG	28080
TGCGGCTGTA	GTGAAGGAGA	AGGCCGATCC	CTGCTTGCAT	TTCAATCCCA	ACAAATGCCA	28140
GCTGAGTTTT	CAGCCCGATG	GCAATCGGTG	CGCGGTACTG	ATCAAGTGCG	GATGGGAATG	28200
CGAGAACGTG	AGAATCGAGT	ACAATAACAA	GACTCGGAAC	AATACTCTCG	CGTCCGTGTG	28260
GCAGCCCGGG	GACCCCGAGT	GGTACACCGT	CTCTGTCCCC	GGTGCTGACG	GCTCCCCGCG	28320
CACCGTGAAT	AATACTTTCA	TTTTTGCGCA	CATGTGCGAC	ACGGTCATGT	GGATGAGCAA	28380
GCAGTACGAT	ATGTGGCCCC	CCACGAAGGA	GAACATCGTG	GTCTTCTCCA	TCGCTTACAG	28440
CCTGTGCACG	GCGCTAATCA	CCGCTATCGT	GTGCCTGAGC	ATTCACATGC	TCATCGCTAT	28500
TCGCCCCAGA	AATAATGCCG	AAAAAGAAAA	ACAGCCATAA	CGTTTTTTT	CACACCTTTT	28560
TCAGACCATG	GCCTCTGTTA	AATTTTTGCT	TTTATTTGCC	AGTCTCATTG	CCGTCATTCA	28620
TGGAATGAGT	AATGAGAAAA	TTACTATTTA	CACTGGCACT	AATCACACAT	TGAAAGGTCC	28680
AGAAAAAGCC	ACAGAAGTTT	CATGGTATTG	TTATTTTAAT	GAATCAGATG	TATCTACTGA	28740
ACTCTGTGGA	AACAATAACA	AAAAAAATGA	GAGCATTACT	CTCATCAAGT	TTCAATGTGG	28800
ATCTGACTTA	ACCCTAATTA	ACATCACTAG	AGACTATGTA	GGTATGTATT	ATGGAACTAC	28860
AGCAGGCATT	TCGGACATGG	AATTTTATCA	AGTTTCTGTG	TCTGAACCCA	CCACGCCTAG	28920
AATGACCACA	ACCACAAAAA	CTACACCTGT	TACCACTATG	CAGCTCACTA	CCAATAACAT	28980
TTTTGCCATG	CGTCAAATGG	TCAACAATAG	CACTCAACCC	ACCCCACCCA	GTGAGGAAAT	29040
TCCCAAATCC	ATGATTGGCA	TTATTGTTGC	TGTAGTGGTG	TGCATGTTGA	TCATCGCCTT	29100
GTGCATGGTG	TACTATGCCT	TCTGCTACAG	AAAGCACAGA	CTGAACGACA	AGCTGGAACA	29160
CTTACTAAGT	GTTGAATTTT	AATTTTTTAG	AACCATGAAG	ATCCTAGGCC	TTTTAATTTT	29220
TTCTATCATT	ACCTCTGCTC	TATGCAATTC	TGACAATGAG	GACGTTACTG	TCGTTGTCGG	29280
ATCAAATTAT	ACACTGAAAG	GTCCAGCGAA	GGGTATGCTT	TCGTGGTATT	GCTATTTTGG	29340
ATCTGACACT	ACAGAAACTG	AATTATGCAA	TCTTAAGAAT	GGCAAAATTC	AAAATTCTAA	29400

PCT/US97/15694

AATTAACAAT TATATATGCA ATGGTACTGA TCTGATACTC CTCAATATCA CGAAATCATA 29460 TGCTGGCAGT TACACCTGCC CTGGAGATGA TGCTGACAGT ATGATTTTTT ACAAAGTAAC 29520 29580 TCAAACCGCA GCAGAGGGG CAGCAAAGTT AGCCTTGCAG GTCCAAGACA GTTCATTTGT 29640 TGGCATTACC CCTACACCTG ATCAGCGGTG TCCGGGGCTG CTAGTCAGCG GCATTGTCGG 29700 TGTGCTTTCG GGATTAGCAG TCATAATCAT CTGCATGTTC ATTTTTGCTT GCTGCTATAG 29760 AAGGCTTTAC CGACAAAAAT CAGACCCACT GCTGAACCTC TATGTTTAAT TTTTTCCAGA 29820 GTCATGAAGG CAGTTAGCGC TCTAGTTTTT TGTTCTTTGA TTGGCATTGT TTTTTGCAAT 29880 CCTATTCCTA AAGTTAGCTT TATTAAAGAT GTGAATGTTA CTGAGGGGGG CAATGTGACA 29940 CTGGTAGGTG TAGAGGGTGC TGAAAACACC ACCTGGACAA AATACCACCT CAATGGGTGG 30000 AAAGATATTT GCAATTGGAG TGTATTAGTT TATACATGTG AGGGAGTTAA TCTTACCATT 30060 GTCAATGCCA CCTCAGCTCA AAATGGTAGA ATTCAAGGAC AAAGTGTCAG TGTATCTAAT 30120 GGGTATTTTA CCCAACATAC TTTTATCTAT GACGTTAAAG TCATACCACT GCCTACGCCT 30180 AGCCCACCTA GCACTACCAC ACAGACAACC CACACTACAC AGACAACCAC ATACAGTACA 30240 TTAAATCAGC CTACCACCAC TACAGCAGCA GAGGTTGCCA GCTCGTCTGG GGTCCGAGTG 30300 GCATTTTTGA TGTGGGCCCC ATCTAGCAGT CCCACTGCTA GTACCAATGA GCAGACTACT 30360 GAATTTTTGT CCACTGTCGA GAGCCACACC ACAGCTACCT CCAGTGCCTT CTCTAGCACC 30420 GCCAATCTCT CCTCGCTTTC CTCTACACCA ATCAGTCCCG CTACTACTCC TAGCCCCGCT 30480 CCTCTTCCCA CTCCCTGAA GCAAACAGAC GGCGGCATGC AATGGCAGAT CACCCTGCTC 30540 ATTGTGATCG GGTTGGTCAT CCTGGCCGTG TTGCTCTACT ACATCTTCTG CCGCCGCATT 30600 CCCAACGCGC ACCGCAAGCC GGTCTACAAG CCCATCATTG TCGGGCAGCC GGAGCCGCTT 30660 CAGGTGGAAG GGGGTCTAAG GAATCTTCTC TTCTCTTTTA CAGTATGGTG ATTGAACTAT 30720 GATTCCTAGA CAATTCTTGA TCACTATTCT TATCTGCCTC CTCCAAGTCT GTGCCACCCT 30780 CGCTCTGGTG GCCAACGCCA GTCCAGACTG TATTGGGCCC TTCGCCTCCT ACGTGCTCTT 30840 TGCCTTCACC ACCTGCATCT GCTGCTGTAG CATAGTCTGC CTGCTTATCA CCTTCTTCCA 30900 GTTCATTGAC TGGATCTTTG TGCGCATCGC CTACCTGCGC CACCACCCC AGTACCGCGA 30960 CCAGCGAGTG GCGCGCTGC TCAGGCTCCT CTGATAAGCA TGCGGGCTCT GCTACTTCTC 31020 GCGCTTCTGC TGTTAGTGCT CCCCCGTCCC GTCGACCCCC GGTCCCCCAC CCAGTCCCCC 31080 GAGGAGGTCC GCAAATGCAA ATTCCAAGAA CCCTGGAAAT TCCTCAAATG CTACCGCCAA 31140 AAATCAGACA TGCATCCCAG CTGGATCATG ATCATTGGGA TCGTGAACAT TCTGGCCTGC 31200 ACCCTCATCT CCTTTGTGAT TTACCCCTGC TTTGACTTTG GTTGGAACTC GCCAGAGGCG 31260 CTCTATCTCC CGCCTGAACC TGACACACCA CCACAGCAAC CTCAGGCACA CGCACTACCA 31320

	CCACTACAGC	CTAGGCCACA	ATACATGCCC	ATATTAGACT	ATGAGGCCGA	GCCACAGCGA	31380
	CCCATGCTCC	CCGCTATTAG	TTACTTCAAT	CTAACCGGCG	GAGATGACTG	ACCCACTGGC	31440
	CAACAACAAC	GTCAACGACC	TTCTCCTGGA	CATGGACGGC	CGCGCCTCGG	AGCAGCGACT	31500
	CGCCCAACTT	CGCATTCGCC	AGCAGCAGGA	GAGAGCCGTC	AAGGAGCTGC	AGGATGCGGT	31560
	GGCCATCCAC	CAGTGCAAGA	GAGGCATCTT	CTGCCTGGTG	AAACAGGCCA	AGATCTCCTA	31620
	CGAGGTCACT	CCAAACGACC	ATCGCCTCTC	CTACGAGCTC	CTGCAGCAGC	GCCAGAAGTT	31680
	CACCTGCCTG	GTCGGAGTCA	ACCCCATCGT	CATCACCCAG	CAGTCTGGCG	ATACCAAGGG	31740
	GTGCATCCAC	TGCTCCTGCG	ACTCCCCGA	CTGCGTCCAC	ACTCTGATCA	AGACCCTCTG	31800
	CGGCCTCCGC	GACCTCCTCC	CCATGAACTA	ATCACCCCCT	TATCCAGTGA	AATAAAGATC	31860
	ATATTGATGA	TGATTTTACA	GAAATAAAAA	ATAATCATTT	GATTTGAAAT	AAAGATACAA	31920
	TCATATTGAT	GATTTGAGTT	TAACAAAAA	ATAAAGAATC	ACTTACTTGA	AATCTGATAC	31980
	CAGGTCTCTG	TCCATGTTTT	CTGCCAACAC	CACTTCACTC	CCCTCTTCCC	AGCTCTGGTA	32040
	CTGCAGGCCC	CGGCGGGCTG	CAAACTTCCT	CCACACGCTG	AAGGGGATGT	CAAATTCCTC	32100
	CTGTCCCTCA	ATCTTCATTT	TATCTTCTAT	CAGATGTCCA	AAAAGCGCGT	CCGGGTGGAT	32160
	GATGACTTCG	ACCCCGTCTA	CCCCTACGAT	GCAGACAACG	CACCGACCGT	GCCCTTCATC	32220
	AACCCCCCCT	TCGTCTCTTC	AGATGGATTC	CAAGAGAAGC	CCCTGGGGGT	GTTGTCCCTG	32280
	CGACTGGCCG	ACCCCGTCAC	CACCAAGAAC	GGGGAAATCA	CCCTCAAGCT	GGGAGAGGGG	32340
	GTGGACCTCG	ATTCCTCGGG	AAAACTCATC	TCCAACACGG	CCACCAAGGC	CGCCGCCCCT	32400
	CTCAGTTTTT	CCAACAACAC	CATTTCCCTT	AACATGGATC	ACCCCTTTTA	CACTAAAGAT	32460
	GGAAAATTAT	CCTTACAAGT	TTCTCCACCA	TTAAATATAC	TGAGAACAAG	CATTCTAAAC	32520
	ACACTAGCTT	TAGGTTTTGG	ATCAGGTTTA	GGACTCCGTG	GCTCTGCCTT	GGCAGTACAG	32580
	TTAGTCTCTC	CACTTACATT	TGATACTGAT	GGAAACATAA	AGCTTACCTT	AGACAGAGGT	32640
	TTGCATGTTA	CAACAGGAGA	TGCAATTGAA	AGCAACATAA	GCTGGGCTAA	AGGTTTAAAA	32700
	TTTGAAGATG	GAGCCATAGC	AACCAACATT	GGAAATGGGT	TAGAGTTTGG	AAGCAGTAGT	32760
	acagaaacag	GTGTTGATGA	TGCTTACCCA	ATCCAAGTTA	AACTTGGATC	TGGCCTTAGC	32820
	TTTGACAGTA	CAGGAGCCAT	AATGGCTGGT	AACAAAGAAG	ACGATAAACT	CACTTTGTGG	32880
	ACAACACCTG	ATCCATCACC	AAACTGTCAA	ATACTCGCAG	AAAATGATGC	AAAACTAACA	32940
	CTTTGCTTGA	CTAAATGTGG	TAGTCAAATA	CTGGCCACTG	TGTCAGTCTT	AGTTGTAGGA	33000
	agtggaaacc	TAAACCCCAT	TACTGGCACC	GTAAGCAGTG	CTCAGGTGTT	TCTACGTTTT	33060
	GATGCAAACG	GTGTTCTTTT	AACAGAACAT	TCTACACTAA	AAAAATACTG	GGGGTATAGG	33120
,	CAGGGAGATA	GCATAGATGG	CACTCCATAT	ACCAATGCTG	TAGGATTCAT	GCCCAATTTA	33180
	AAAGCTTATC	CAAAGTCACA	AAGTTCTACT	ACTAAAAATA	ATATAGTAGG	GCAAGTATAC	33240

ATGAATGGAG	ATGTTTCAAA	ACCTATGCTT	CTCACTATAA	CCCTCAATGG	TACTGATGAC	33300
AGCAACAGTA	CATATTCAAT	GTCATTTTCA	TACACCTGGA	CTAATGGAAG	CTATGTTGGA	33360
GCAACATTTG	GGGCTAACTC	TTATACCTTC	TCATACATCG	CCCAAGAATG	AACACTGTAT	33420
CCCACCCTGC	ATGCCAACCC	TTCCCACCCC	ACTCTGTGGA	ACAAACTCTG	AAACACAAAA	33480
TAAAATAAAG	TTCAAGTGTT	TTATTGATTC	AACAGTTTTA	CAGGATTCGA	GCAGTTATTT	33540
TTCCTCCACC	CTCCCAGGAC	ATGGAATACA	CCACCCTCTC	CCCCCGCACA	GCCTTGAACA	33600
TCTGAATGCC	ATTGGTGATG	GACATGCTTT	TGGTCTCCAC	GTTCCACACA	GTTTCAGAGC	33660
GAGCCAGTCT	CGGGTCGGTC	AGGGAGATGA	AACCCTCCGG	GCACTCCCGC	ATCTGCACCT	33720
CACAGCTCAA	CAGCTGAGGA	TTGTCCTCGG	TGGTCGGGAT	CACGGTTATC	TGGAAGAAGC	33780
AGAAGAGCGG	CGGTGGGAAT	CATAGTCCGC	GAACGGGATC	GGCCGGTGGT	GTCGCATCAG	33840
GCCCGCAGC	AGTCGCTGCC	GCCGCCGCTC	CGTCAAGCTG	CTGCTCAGGG	GGTCCGGGTC	33900
CAGGGACTCC	CTCAGCATGA	TGCCCACGGC	CCTCAGCATC	AGTCGTCTGG	TGCGGCGGGC	33960
GCAGCAGCGC	ATGCGGATCT	CGCTCAGGTC	GCTGCAGTAC	GTGCAACACA	GAACCACCAG	34020
GTTGTTCAAC	AGTCCATAGT	TCAACACGCT	CCAGCCGAAA	CTCATCGCGG	GAAGGATGCT	34080
ACCCACGTGG	CCGTCGTACC	AGATCCTCAG	GTAAATCAAG	TGGTGCCCCC	TCCAGAACAC	34140
GCTGCCCACG	TACATGATCT	CCTTGGGCAT	GTGGCGGTTC	ACCACCTCCC	GGTACCACAT	34200
CACCCTCTGG	TTGAACATGC	AGCCCCGGAT	GATCCTGCGG	AACCACAGGG	CCAGCACCGC	34260
CCCGCCCGCC	ATGCAGCGAA	GAGACCCCGG	GTCCCGGCAA	TGGCAATGGA	GGACCCACCG	34320
CTCGTACCCG	TGGATCATCT	GGGAGCTGAA	CAAGTCTATG	TTGGCACAGC	ACAGGCATAT	34380
GCTCATGCAT	CTCTTCAGCA	CTCTCAACTC	CTCGGGGGTC	AAAACCATAT	CCCAGGGCAC	34440
GGGGAACTCT	TGCAGGACAG	CGAACCCCGC	AGAACAGGGC	AATCCTCGCA	CAGAACTTAC	34500
ATTGTGCATG	GACAGGGTAT	CGCAATCAGG	CAGCACCGGG	TGATCCTCCA	CCAGAGAAGC	34560
GCGGGTCTCG	GTCTCCTCAC	AGCGTGGTAA	GGGGCCGGC	CGATACGGGT	GATGGCGGGA	34620
CGCGGCTGAT	CGTGTTCGCG	ACCGTGTCAT	GATGCAGTTG	CTTTCGGACA	TTTTCGTACT	34680
TGCTGTAGCA	GAACCTGGTC	CGGGCGCTGC	ACACCGATCG	CCGGCGGCGG	TCTCGGCGCT	34740
TGGAACGCTC	GGTGTTGAAA	TTGTAAAACA	GCCACTCTCT	CAGACCGTGC	AGCAGATCTA	34800
GGGCCTCAGG	AGTGATGAAG	ATCCCATCAT	GCCTGATGGC	TCTGATCACA	TCGACCACCG	34860
TGGAATGGGC	CAGACCCAGC	CAGATGATGC	AATTTTGTTG	GGTTTCGGTG	ACGGCGGGGG	34920
AGGGAAGAAC	AGGAAGAACC	ATGATTAACT	TTTAATCCAA	ACGGTCTCGG	AGTACTTCAA	34980
AATGAAGATC	GCGGAGATGG	CACCTCTCGC	CCCCGCTGTG	TTGGTGGAAA	ATAACAGCCA	35040
GGTCAAAGGT	GATACGGTTC	TCGAGATGTT	CCACGGTGGC	TTCCAGCAAA	GCCTCCACGC	35100
GCACATCCAG	AAACAAGACA	ATAGCGAAAG	CGGGAGGGTT	CTCTAATTCC	TCAATCATCA	35160

TGTTACACTO	CTGCACCATC	CCCAGATAAT	TTTCATTTTT	CCAGCCTTGA	ATGATTCGAA	35220
CTAGTTCGTG	AGGTAAATCC	AAGCCAGCCA	TGATAAAGAG	CTCGCGCAGA	GCGCCCTCCA	35280
CCGGCATTCT	TAAGCACACC	CTCATAATTC	CAAGATATTC	TGCTCCTGGT	TCACCTGCAG	35340
CAGATTGACA	AGCGGAATAT	CAAAATCTCT	GCCGCGATCC	CTGAGCTCCT	CCCTCAGCAA	35400
TAACTGTAAG	TACTCTTTCA	TATCCTCTCC	GAAATTTTTA	GCCATAGGAC	CACCAGGAAT	35460
AAGATTAGGG	CAAGCCACAG	TACAGATAAA	CCGAAGTCCT	CCCCAGTGAG	CATTGCCAAA	35520
TGCAAGACTG	CTATAAGCAT	GCTGGCTAGA	CCCGGTGATA	TCTTCCAGAT	AACTGGACAG	35580
AAAATCGCCC	AGGCAATTTT	TAAGAAAATC	AACAAAAGAA	AAATCCTCCA	GGTGGACGTT	35640
TAGAGCCTCG	GGAACAACGA	TGAAGTAAAT	GCAAGCGGTG	CGTTCCAGCA	TGGTTAGTTA	35700
GCTGATCTGT	AGAAAAAACA	AAAATGAACA	TTAAACCATG	CTAGCCTGGC	GAACAGGTGG	35760
GTAAATCGTI	CTCTCCAGCA	CCAGGCAGGC	CACGGGGTCT	CCGGCGCGAC	CCTCGTAAAA	35820
ATTGTCGCTA	TGATTGAAAA	CCATCACAGA	GAGACGTTCC	CGGTGGCCGG	CGTGAATGAT	35880
TCGACAAGAT	GAATACACCC	CCGGAACATT	GGCGTCCGCG	AGTGAAAAA	AGCGCCCGAG	35940
GAAGCAATAA	GGCACTACAA	TGCTCAGTCT	CAAGTCCAGC	AAAGCGATGC	CATGCGGATG	36000
AAGCACAAAA	TTCTCAGGTG	CGTACAAAAT	GTAATTACTC	CCCTCCTGCA	CAGGCAGCAA	36060
agcccccgai	CCCTCCAGGT	ACACATACAA	AGCCTCAGCG	TCCATAGCTT	ACCGAGCAGC	36120
AGCACACAAC	: AGGCGCAAGA	GTCAGAGAAA	GGCTGAGCTC	TAACCTGTCC	ACCCGCTCTC	36180
TGCTCAATAT	ATAGCCCAGA	TCTACACTGA	CGTAAAGGCC	AAAGTCTAAA	AATACCCGCC	36240
AAATAATCAC	ACACGCCCAG	CACACGCCCA	GAAACCGGTG	ACACACTCAA	AAAAATACGC	36300
GCACTTCCTC	AAACGCCCAA	AACTGCCGTC	ATTTCCGGGT	TCCCACGCTA	CGTCATCAAA	36360
ACACGACTTI	CAAATTCCGT	CGACCGTTAA	AAACGTCACC	CGCCCCGCCC	CTAACGGTCG	36420
CCCGTCTCTC	AGCCAATCAG	CGCCCCGCAT	CCCCAAATTC	AAACACCTCA	TTTGCATATT	36480
AACGCGCACA	AAAAGTTTGA	GGTATATTAT	TGATGATGG			36519

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8299 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCCCAATACG CAAACCGCCT CTCCCCGCGC GTTGGCCGAT TCATTAATGC AGCTGCGCGC 60 TCGCTCGCTC ACTGAGGCCG CCCGGGCAAA GCCCGGGCGT CGGGCGACCT TTGGTCGCCC 120

GGCCTCAGTG	AGCGAGCGAG	CGCGCAGAGA	GGGAGTGGCC	AACTCCATCA	CTAGGGGTTC	180
CTTGTAGTTA	ATGATTAACC	CGCCATGCTA	CTTATCTACA	TCATCGATGA	ATTCGAGCTT	240
GCATGCCTGC	AGGTCGTTAC	ATAACTTACG	GTAAATGGCC	CGCCTGGCTG	ACCGCCCAAC	300
GACCCCCGCC	CATTGACGTC	AATAATGACG	TATGTTCCCA	TAGTAACGCC	AATAGGGACT	360
TTCCATTGAC	GTCAATGGGT	GGAGTATTTA	CGGTAAACTG	CCCACTTGGC	AGTACATCAA	420
GTGTATCATA	TGCCAAGTAC	GCCCCCTATT	GACGTCAATG	ACGGTAAATG	GCCCGCCTGG	480
CATTATGCCC	AGTACATGAC	CTTATGGGAC	TTTCCTACTT	GGCAGTACAT	CTACGTATTA	540
GTCATCGCTA	TTACCATGGT	GATGCGGTTT	TGGCAGTACA	TCAATGGGCG	TGGATAGCGG	600
TTTGACTCAC	GGGGATTTCC	AAGTCTCCAC	CCCATTGACG	TCAATGGGAG	TTTGTTTTGG	660
CACCAAAATC	AACGGGACTT	TCCAAAATGT	CGTAACAACT	CCGCCCCATT	GACGCAAATG	720
GGCGGTAGGC	GTGTACGGTG	GGAGGTCTAT	ATAAGCAGAG	CTCGTTTAGT	GAACCGTCAG	780
ATCGCCTGGA	GACGCCATCC	ACGCTGTTTT	GACCTCCATA	GAAGACACCG	GGACCGATCC	840
AGCCTCCGGA	CTCTAGAGGA	TCCGGTACTC	GACCCGAGCT	CGGATCCACT	AGTAACGGCC	900
GCCAGTGTGC	TGGAATTCTG	CACTCCAGGC	TGCCCGGGTT	TGCATGCTGC	TGCTGCTGCT	960
GCTGCTGGGC	CTGAGGCTAC	AGCTCTCCCT	GGGCATCATC	CTAGTTGAGG	AGGAGAACCC	1020
GGACTTCTGG	AACCGCGAGG	CAGCCGAGGC	CCTGGGTGCC	GCCAAGAAGC	TGCAGCCTGC	1080
ACAGACAGCC	GCCAAGAACC	TCATCATCTT	CCTGGGCGAT	GGGATGGGG	TGTCTACGGT	1140
GACAGCTGCC	AGGATCCTAA	AAGGGCAGAA	GAAGGACAAA	CTGGGGCCTG	AGATACCCCT	1200
GGCCATGGAC	CGCTTCCCAT	ATGTGGCTCT	GTCCAAGACA	TACAATGTAG	ACAAACATGT	1260
GCCAGACAGT	GGAGCCACAG	CCACGGCCTA	CCTGTGCGGG	GTCAAGGGCA	ACTTCCAGAC	1320
CATTGGCTTG	AGTGCAGCCG	CCCGCTTTAA	CCAGTGCAAC	ACGACACGCG	GCAACGAGGT	1380
CATCTCCGTG	ATGAATCGGG	CCAAGAAAGC	AGGGAAGTCA	GTGGGAGTGG	TAACCACCAC	1440
ACGAGTGCAG	CACGCCTCGC	CAGCCGGCAC	CTACGCCCAC	ACGGTGAACC	GCAACTGGTA	1500
CTCGGACGCC	GACGTGCCTG	CCTCGGCCCG	CCAGGAGGGG	TGCCAGGACA	TCGCTACGCA	1560
GCTCATCTCC	AACATGGACA	TTGATGTGAT	CCTAGGTGGA	GGCCGAAAGT	ACATGTTTCG	1620
CATGGGAACC	CCAGACCCTG	AGTACCCAGA	TGACTACAGC	CAAGGTGGGA	CCAGGCTGGA	1680
CGGGAAGAAT	CTGGTGCAGG	AATGGCTCGG	CGAACGCCAG	GGTGCCCGGT	ACGTGTGGAA	1740
CCGCACTGAG	CTCATGCAGG	CTTCCCTGGA	CCCGTCTGTG	ACCCATCTCA	TGGGTCTCTT	1800
TGAGCCTGGA	GACATGAAAT	ACGAGATCCA	CCGAGACTCC	ACACTGGACC	CCTCCCTGAT	1860
GGAGATGACA	GAGGCTGCCC	TGCGCCTGCT	GAGCAGACAC	CCCCGCGGCT	TCTTCCTCTT	1920
CGTGGAGGGT	GGTCGCATCG	ACCATGGTCA	TCATGAAAGC	AGGGCTTACC	GGGCACTGAC	1980
TGAGACGATC	ATGTTCGACG	ACGCCATTGA	GAGGGCGGGC	CAGCTCACCA	GCGAGGAGGA	2040

CACGCTGAGC	CTCGTCACTG	CCGACCACTC	CCACGTCTTC	TCCTTCGGAG	GCTACCCCCT	2100
GCGAGGGAGC	TCCTTCATCG	GGCTGGCCGC	TGGCAAGGCC	CGGGACAGGA	AGGCCTACAC	2160
GGTCCTCCTA	TACGGAAACG	GTCCAGGCTA	TGTGCTCAAG	GACGGCGCCC	GGCCGGATGT	2220
TACCGAGAGC	GAGAGCGGGA	GCCCGAGTA	TCGGCAGCAG	TCAGCAGTGC	CCCTGGACGA	2280
AGAGACCCAC	GCAGGCGAGG	ACGTGGCGGT	GTTCGCGCGC	GGCCCGCAGG	CGCACCTGGT	2340
TCACGGCGTG	CAGGAGCAGA	CCTTCATAGC	GCACGTCATG	GCCTTCGCCG	CCTGCCTGGA	2400
GCCCTACACC	GCCTGCGACC	TGGCGCCCCC	CGCCGGCACC	ACCGACGCCG	CGCACCCGGG	2460
GCGGTCCGTG	GTCCCCGCGT	TGCTTCCTCT	GCTGGCCGGG	ACCCTGCTGC	TGCTGGAGAC	2520
GGCCACTGCT	CCCTGAGTGT	CCCGTCCCTG	GGGCTCCTGC	TTCCCCATCC	CGGAGTTCTC	2580
CTGCTCCCCA	CCTCCTGTCG	TCCTGCCTGG	CCTCCAGCCC	GAGTCGTCAT	CCCCGGAGTC	2640
CCTATACAGA	GGTCCTGCCA	TGGAACCTTC	CCCTCCCCGT	GCGCTCTGGG	GACTGAGCCC	2700
ATGACACCAA	ACCTGCCCCT	TGGCTGCTCT	CGGACTCCCT	ACCCCAACCC	CAGGGACTGC	2760
AGGTTGTGCC	CTGTGGCTGC	CTGCACCCCA	GGAAAGGAGG	GGGCTCAGGC	CATCCAGCCA	2820
CCACCTACAG	CCCAGTGGGG	TCGAGACAGA	TGGTCAGTCT	GGAGGATGAC	GTGGCGTGAA	2880
GCTGGCCGCG	GGGATCCAGA	CATGATAAGA	TACATTGATG	AGTTTGGACA	AACCACAACT	2940
AGAATGCAGT	GAAAAAAATG	CTTTATTTGT	GAAATTTGTG	ATGCTATTGC	TTTATTTGTA	3000
ACCATTATAA	GCTGCAATAA	ACAAGTTAAC	AACAACAATT	GCATTCATTT	TATGTTTCAG	3060
GTTCAGGGGG	AGGTGTGGGA	GGTTTTTTCG	GATCCTCTAG	AGTCGACTCT	AGANNNNNNN	3120
NNNNNNNN	NNNNNNNN	NNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	3180
NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	3240
NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	3300
NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	3360
NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNGGATCCC	CATGACTACG	TCCGGCGTTC	3420
CATTTGGCAT	GACACTACGA	CCAACACGAT	CTCGGTTGTC	TCGGCGCACT	CCGTACAGTA	3480
GGGATCGTCT	ACCTCCTTTT	GAGACAGAAA	CCCGCGCTAC	CATACTGGAG	GATCATCCGC	3540
TGCTGCCCGA	ATGTAACACT	TTGACAATGC	ACAACGTGAG	TTACGTGCGA	GGTCTTCCCT	3600
GCAGTGTGGG	ATTTACGCTG	ATTCAGGAAT	GGGTTGTTCC	CTGGGATATG	GTTCTAACGC	3660
GGGAGGAGCT	TGTAATCCTG	AGGAAGTGTA	TGCACGTGTG	CCTGTGTTGT	GCCAACATTG	3720
ATATCATGAC	GAGCATGATG	ATCCATGGTT	ACGAGTCCTG	GGCTCTCCAC	TGTCATTGTT	3780
CCAGTCCCGG	TTCCCTGCAG	TGTATAGCCG	GCGGGCAGGT	TTTGGCCAGC	TGGTTTAGGA	3840
TGGTGGTGGA	TGGCGCCATG	TTTAATCAGA	GGTTTATATG	GTACCGGGAG	GTGGTGAATT	3900
ACAACATGCC	AAAAGAGGTA	ATGTTTATGT	CCAGCGTGTT	TATGAGGGGT	CGCCACTTAA	3960

TCTACCTGCG CTTGTGGTAT GATGGCCACG TGGGTTCTGT GGTCCCCGCC ATGAGCTTTG 4020 GATACAGCGC CTTGCACTGT GGGATTTTGA ACAATATTGT GGTGCTGTGC TGCAGTTACT 4080 GTGCTGATTT AAGTGAGATC AGGGTGCGCT GCTGTGCCCG GAGGACAAGG CGCCTTATGC 4140 TGCGGCCGT GCGAATCATC GCTGAGGAGA CCACTGCCAT GTTGTATTCC TGCAGGACGG 4200 AGCGGCGGCG GCAGCAGTTT ATTCGCGCGC TGCTGCAGCA CCACCGCCCT ATCCTGATGC 4260 ACGATTATGA CTCTACCCCC ATGTAGGGAT CCCCATCACT AGTGCGGCCG CGGGGATCCA 4320 GACATGATAA GATACATTGA TGAGTTTGGA CAAACCACAA CTAGAATGCA GTGAAAAAAA 4380 TGCTTTATTT GTGAAATTTG TGATGCTATT GCTTTATTTG TAACCATTAT AAGCTGCAAT 4440 ANACANGTTA ACAACAACAA TTGCATTCAT TTTATGTTTC AGGTTCAGGG GGAGGTGTGG 4500 GAGGTTTTTT CGGATCCTCT AGAGTCGACC TGCAGGCATG CAAGCTGTAG ATAAGTAGCA 4560 4620 TGGCGGGTTA ATCATTAACT ACAAGGAACC CCTAGTGATG GAGTTGGCCA CTCCCTCTCT GCGCGCTCGC TCGCTCACTG AGGCCGGGCG ACCAAAGGTC GCCCGACGCC CGGGCTTTGC 4680 CCGGGCGCC TCAGTGAGCG AGCGAGCGCG CAGCTGGCGT AATAGCGAAG AGGCCCGCAC 4740 CGATCGCCCT TCCCAACAGT TGCGCAGCCT GAATGGCGAA TGGAANTTCC AGACGATTGA 4800 GCGTCAAAAT GTAGGTATTT CCATGAGCGT TTTTCCTGTT GCAATGGCTG GCGGTAATAT 4860 TGTTCTGGAT ATTACCAGCA AGGCCGATAG TTTGAGTTCT TCTACTCAGG CAAGTGATGT 4920 TATTACTAAT CAAAGAAGTA TTGCGACAAC GGTTAATTTG CGTGATGGAC AGACTCTTTT 4980 ACTCGGTGGC CTCACTGATT ATAAAAACAC TTCTCAGGAT TCTGGCGTAC CGTTCCTGTC 5040 TANANTCCCT TTANTCGGCC TCCTGTTTAG CTCCCGCTCT GATTCTAACG AGGAAAGCAC 5100 GTTATACGTG CTCGTCAAAG CAACCATAGT ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG 5160 CGGGTGTGGT GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC 5220 CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA 5280 ATCGGGGGCT CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC CCCAAAAAAC 5340 TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT TTTCGCCCTT 5400 TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT CCAAACTGGA ACAACACTCA 5460 ACCCTATCTC GGTCTATTCT TTTGATTTAT AAGGGATTTT GCCGATTTCG GCCTATTGGT 5520 TANANANTGA GCTGATTTAN CANANATTTA ACGCGANTTT TANCANANTA TTANCGTTTA 5580 CAATTTAAAT ATTTGCTTAT ACAATCTTCC TGTTTTTGGG GCTTTTCTGA TTATCAACCG 5640 5700 GGGTACATAT GATTGACATG CTAGTTTTAC GATTACCGTT CATCGATTCT CTTGTTTGCT CCAGACTCTC AGGCAATGAC CTGATAGCCT TTGTAGAGAC CTCTCAAAAA TAGCTACCCT 5760 CTCCGGCATG AATTTATCAG CTAGAACGGT TGAATATCAT ATTGATGGTG ATTTGACTGT 5820 CTCCGGCCTT TCTCACCCGT TTGAATCTTT ACCTACACAT TACTCAGGCA TTGCATTTAA 5880

AATATATGAG	GGTTCTAAAA	ATTTTTATCC	TTGCGTTGAA	ATAAAGGCTT	CTCCCGCAAA	5940
AGTATTACAG	GGTCATAATG	TTTTTGGTAC	AACCGATTTA	GCTTTATGCT	CTGAGGCTTT	6000
ATTGCTTAAT	TTTGCTAATT	CTTTGCCTTG	CCTGTATGAT	TTATTGGATG	TTGGAANTTC	6060
CTGATGCGGT	ATTTTCTCCT	TACGCATCTG	TGCGGTATTT	CACACCGCAT	ATGGTGCACT	6120
CTCAGTACAA	TCTGCTCTGA	TGCCGCATAG	TTAAGCCAGC	CCCGACACCC	GCCAACACCC	6180
GCTGACGCGC	CCTGACGGGC	TTGTCTGCTC	CCGGCATCCG	CTTACAGACA	AGCTGTGACC	6240
GTCTCCGGGA	GCTGCATGTG	TCAGAGGTTT	TCACCGTCAT	CACCGAAACG	CGCGAGACGA	6300
AAGGCCTCG	TGATACGCCT	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	6360
ACGTCAGGTG	GCACTTTTCG	GGGAAATGTG	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	6420
ATACATTCAA	ATATGTATCC	GCTCATGAGA	CAATAACCCT	GATAAATGCT	TCAATAATAT	6480
TĠAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	CTTTTTTGCG	6540
GCATTTTGCC	TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA	6600
GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	TAAGATCCTT	6660
GAGAGTTTTC	GCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CTTTTAAAGT	TCTGCTATGT	6720
GGCGCGGTAT	TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	6780
TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG	6840
ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	GGCCAACTTA	6900
CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA	CATGGGGGAT	6960
CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG	7020
CGTGACACCA	CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	7080
CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	7140
GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA	ATCTGGAGCC	7200
GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	7260
ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	ATGAACGAAA	TAGACAGATC	7320
GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	TTACTCATAT	7380
ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT	7440
TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	7500
CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	7560
TTGCAAACAA	AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	7620
ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	7680
GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	7740
CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	7800

PCT/US97/15694 WO 98/10087

94	
GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG GGGTTCGTGC	7860
ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACTGA GATACCTACA GCGTGAGCTA	7920
TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG	7980
GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT	8040
CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG	8100
CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC GGTTCCTGGC CTTTTGCTGG	8160
CCTTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA CCGTATTACC	8220
GCCTTTGAGT GAGCTGATAC CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG	8280
AGCGAGGAAG CGGAAGAGC	8299
(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: other nucleic acid (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GCAGGTACCG CGAGTCAGAT CTACAC	26
(2) INFORMATION FOR SEQ ID NO:5:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

18 CTGTCTGAGC TAGAGCTC

95

WHAT IS CLAIMED IS:

- 1. A vector comprising a chimpanzee adenovirus DNA sequence and a selected heterologous gene operatively linked to regulatory sequences which direct expression of said gene in a heterologous host cell.
- 2. The vector according to claim 1 wherein said chimpanzee adenovirus sequence comprises at least 5' and 3' cis-elements necessary for replication and virion encapsidation, said cis-elements flanking said selected gene and regulatory sequences.
- 3. The vector according to claim 1 wherein said chimpanzee adenovirus sequence has a deletion in all or a part of the E1 gene.
- 4. The vector according to claim 1 wherein said chimpanzee adenovirus sequence comprises the sequence of SEQ ID NO: 1 or a fragment thereof.
- 5. The vector according to claim 1 wherein said chimpanzee adenovirus sequence comprises the sequence of SEQ ID NO: 2 or a fragment thereof.
- 6. A host cell transfected with the vector of claim 1.
- 7. A human cell that expresses a selected gene introduced therein through transduction of the vector of claim 1.
- 8. A non-simian mammalian cell line that expresses a chimpanzee adenovirus gene.

- 9. The cell line according to claim 8 wherein said gene is an adenovirus E1 gene or a functional fragment of said E1 gene.
- 10. The cell line according to claim 8 wherein said chimpanzee adenovirus gene is obtained from the sequence of SEQ ID NO: 1.
- 11. The cell line according to claim 8 wherein said chimpanzee adenovirus gene is obtained from the sequence of SEQ ID NO: 2.
- 12. A pharmaceutical composition comprising a recombinant adenovirus vector in a pharmaceutically acceptable carrier, said vector comprising a chimpanzee adenovirus DNA sequence and a selected heterologous gene operatively linked to regulatory sequences which direct expression of said gene in a host cell.
- 13. A method for delivering a heterologous gene to a mammalian cell comprising introducing into said cell an effective amount of the vector of claim 1.
- 14. A method for producing a selected gene product comprising infecting a mammalian cell with the vector of claim 1, culturing said cell under suitable conditions and isolating and recovering from said cell culture the expressed gene product.

97

chimpanzee adenovirus DNA sequence and a selected heterologous gene encoding an antigen of an infective agent operatively linked to regulatory sequences which direct expression of said gene in the production of a medicament for eliciting an immune response in a mammalian host against said infective agent.

chimpanzee adenovirus DNA sequence and a selected heterologous therapeutic gene operatively linked to regulatory sequences which direct expression of said gene in the production of a medicament for treating a patient having an acquired or inherited genetic defect.

		Ad-4	Ad-5	Ad-7	Ad-12	Ad-40
Human Serotype		E	c	В	A	F
Sub-group Chimp Virus	C1 vs C68	C1 C68	C1 C68	C1 C68	C1 C68	C1 C68
Protein C1/C68 a						
El and pIX region		42 500	29 14a	81 26ª	12 NHª	NH NHa
ElA 6/11K 58/101	26a	41 52ª	29 14ª 33 26	82 60	36 37	36 39
E1A 25K 231/226	55	56 91 57 92	34 34	83 <u>er</u>	37 40	34 40
EIA 28K 262/257	57 ***	57 92 49 68°	48 46	84 <u>er</u>	39 38	43 42
EIB 21K 181/186	6 0	49 650	53 57	88 73	46 46	46 47
ELB 55K 495/498	74 54		21. 29	85 53	21. 25	<i>2</i> 7 30
E1B 8.3K 91/102 pIX 139/143	90 80		52 48	96 80	56 51	22 23
pIX 139/143	ω					
E2 and IVa2 Region		~ ~	53 53	86 76	45 49	46 47
E2A DBP 516/513	78	76 93		96 90	75 76	73 73
E2B pTP 643/628	91	90 94		96 90	72 72	68 69
E2B pol 1121/1125	90	83 92		96 92	76 7 7	80 80
IVa2 448/448	93		82 82	30 JZ		
E3 Region					66 70	AT! AT!
E3A#1 106/106	<i>7</i> 8		52 58	96 78 *** 34	66 70 NH NH	NH NH NH NH
E3A#2 146/209	33a		NH NH	80 34 T (7)	NH NH	NA NA NA NA
E3A#3 172/176	60		38 32	75 60 73 34	NH NH	NH NH
E3Hyp 184/204	26		M M	/3 34 82 31	NH NH	NH NH
E3H _M p 188/204	31		M M	48ª NH	NH NH	NH ' NH
E3Hyp 103/295	-NH		M M	92 77	44 41	37 36
E3B#4 91/91	71		47 48 34 32	75 49	27 25	26 22
E3B#5 134/143	54		34, 32 52, 54	21 80	52 52	46 48
E3B#6 135/135	79		32 JA	<i>x</i> • •		
E4 Region					44 50	NH NH
E4 123/124	orf-1 70		42 45		30 31	32 35
E4 129/129			32° 31°		65 67	60 59
E4 117/117			49 5 2		40 45	39 38
E4 124/121			45 56		50 51	47 47
E4 303/301			57 63 42 5 5		49 42	36 31
B4 83/64	car≛-7 60		42 35		-	
Late Region				m 74	20 25	38 36
L1 16.6K 139/139			45 47	88 74	28 25 71 70	30 30 77 75
L1 52/55K 389/391	85		es es		75 66	73 65
11 IIIa 586/592	85		76 79	85 83ª	72 76	72 76
L2 III 554/534		<i>m</i> ~	70 72 73 70	m 63-	76 7 4	73 72
12 pVII 192/193	91	87 96	58 61 .		හි 6 7	െ ഒ
L2 pV 353/343					65 64	72 65
12 pMJ 76/77	<u>ar</u>				66 58	57 49
L3 pVI 250/242	79 ~	ac 00	65 68 79 78	86 85	76 7 9	77 79
L3 II 956/933		85 88 78 88	75 76	93 87	79 80	78 82
L3 23K 207/206		/0 00	62 65		ଘ 64	59 G2
IA 100K 828/804	80 Margin 72		43 40		36 38	39 44
LA 22K 197/188 LA 33K 231/222	76		44 44		NH NH	41 41
	Her As 92	95 90e	79 79	86 78 [£]	78 7 9	80 80
LA DVIII 22//22/ L5 IV 322/425		27ª 90	19a 36a	66 26ª	18ª 28ª	17ª 23ª

C68 E1 Expression Plasmid

C1 E1 Expression Plasmid

Fig. 11H Fig. 11B Fig. 11E Spel Hinda C1 - Not-I (35536 bp) pNEB-C1-Ascl·B-Not-I #955 (10657 bp) CONSTRUCTION OF C1 GENOME WITH UNIQUE NOT-1 SITE **C1 Genome** (35524 bp) Ligate/Purily Transfect 293 Cells Fig. 11D Ascl Pac-I/Asc-I digest Bamiti Bamiti / 90990090 090090090 BamHi / Not-I Linker Hind≣ ž Spe-I Filt-In Phosphatase Asc-I Gel Purily Asc-I Spe-I pNEB-C1-Ascl-B #788 (10645 bp) Spel C1-Ascl-A (27587 bp) C1 Genome (35524 bp) pNEB-C1-Bam-G #516 (4642 bp) 8am !!! Spel RamHi Hindill Ascl / | les Hindill Pstl Y bad Pacl, Hindill Pstl Saff Xbal Xbal Fig. 11F Spet Fig. 11G Fig. 11A Fig. 11C

11/11

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 97/15694

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/86 C12N C12N5/10 A61K48/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N A61K C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-3,6-9, WO 94 26914 A (RHÔNE-POULENC RORER S.A.) Y 12-16 24 November 1994 see page 2, line 33 - page 3, line 26 1-3,6-9, A.H.KIDD ET AL.: "Human and simian Y 12-16 adenoviruses: Phylogenetic interferences from analysis of VA RNA genes" VIROLOGY, vol. 207, no. 1, 20 February 1995, ORLANDO pages 32-45, XP002052836 see table 2 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Χ * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance *E* sariier document but published on or after the international "X" document of particular relevance; the claimed invention nnot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1, 02, 98 21 January 1998 **Authorized officer** Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Cupido, M Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 97/15694

<u>.</u>		PCT/US 97/15694		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	100		
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
	R. WIGAND ET AL.: "Chimpanzee adenoviruses are related to four subgenera of human adenoviruses" INTERVIROLOGY, vol. 30, no. 1, January 1989 - February 1989, pages 1-9, XP002052837 cited in the application see page 1; table 4	1-16		

International application No. PCT/US 97/15694

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.
C. COTTON DELLE CONTROL CONTRO

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210
Remark: Although claim 13, insofar an in vivo method is concerned, is directed to a method of treatment of the human oranimal body, the search has been carried out and based on the alleged effects of the vector.
•

INTERNATIONAL SEARCH REPORT

Information on patent family members

international Application No
PCT/US 97/15694

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9426914 A	24-11-94	FR 2705361 A	25-11-94	
		AU 6787894 A	12-12-94	
		BR 9406720 A	06-02-96	
		CA 2163256 A	24-11-94	
		CN 1124040 A	05-06-96	
		CZ 9503028 A	14-02-96	
		EP 0698108 A	28-02-96	
		FI 955552 A	27-12-95	
		HU 73465 A	28-08-96	
		JP 8510122 T	29-10-96	
		NO 954466 A	07-11-95	
		PL 311660 A	04-03-96	
		SK 144795 A	03-04-96	
		ZA 9403358 A	16-01-95	

BEST AVAILABLE COPY