Assignment- 9-9.3-7

AI24BTECH11004-Bheri Sai Likith Reddy

Question: Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1. (12,2022)

Solution: The general equation of a parabola with directrix $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$ is given by,

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0 \tag{1}$$

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}} \tag{2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - ||\mathbf{n}||^2 \mathbf{F} \tag{3}$$

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2 \tag{4}$$

for the parabola $y^2 = x$, equation of the directrix is $\begin{pmatrix} -1 & 0 \end{pmatrix} \mathbf{x} = \frac{1}{4}$

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{5}$$

$$\mathbf{u} = \begin{pmatrix} \frac{-1}{2} \\ 0 \end{pmatrix} \tag{6}$$

$$f = 0 \tag{7}$$

for the line $x-\frac{1}{4} = 0$, parameters are

$$h_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix} \tag{8}$$

$$m = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9}$$

we know that the points of intersection of the line

$$\mathbf{L}: \mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \tag{10}$$

(11)

1

with the conic section $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0$ is given by $\mathbf{x}_i = \mathbf{h} + \kappa_i \mathbf{m}$ where

$$\kappa_{i} = \frac{1}{\mathbf{m}^{T} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{T} \left(\mathbf{V} \mathbf{h} + \mathbf{U} \right) + -\sqrt{\left[\mathbf{m}^{T} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right]^{2} - g\left(h \right) \left(\mathbf{m}^{T} \mathbf{V} \mathbf{m} \right)} \right)$$

from this we get $k_i = 1, -1$

That implies that the points of intersections are $a_0 = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix}$ and $a_1 = \begin{pmatrix} \frac{1}{4} \\ \frac{-1}{2} \end{pmatrix}$ similarly for line x = 1 we get point of intersections as $a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

hence area of the region between the two lines and the parabola and the x axis is

$$\int_{\frac{1}{4}}^{1} \sqrt{x} dx - \int_{\frac{1}{4}}^{1} 0 dx = \frac{7}{12}$$

Variables	Description
e	Eccentricity of the conic
F	Focus of conic
I	Identity matrix
$n^T \mathbf{x} = c$	Equation of directrix
n	Slope of normal to directrix
f	$ n ^2 n ^2 - c^2 e^2$
V	A symmetric matrix given by
	eigenvalue decomposition
u	Vertex of coniv with same directrix

