# Kernels & Probabilistic Modeling

Mengye Ren

NYU

October 3, 2023

## Logistics

Oct 10 (next week): Legislative Day No Class

Oct 17: Homework 2 Due

• Oct 24: Midterm, in class, covers everything up until Oct 17

#### Last Lecture

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with  $\ell_2$  regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

Subgradient: generalize gradient for non-differentiable convex functions

Dual problem: Lagrange multiplier  $\alpha_i$  for each example.

Strong duality: For some convex problems, the primal and dual have the same solution.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 3 / 67

# Dual Problem: Dependence on x through inner products

SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t. 
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Note that all dependence on inputs  $x_i$  and  $x_j$  is through their inner product:  $\langle x_j, x_i \rangle = x_j^T x_i$ .
- We can replace  $x_i^T x_i$  by other products...
- This is a "kernelized" objective function.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 4 / 67

Feature Maps

- ullet Our general learning theory setup: no assumptions about  ${\mathcal X}$
- But  $\mathfrak{X} = \mathsf{R}^d$  for the specific methods we've developed:
  - Ridge regression
  - Lasso regression
  - Support Vector Machines

- ullet Our general learning theory setup: no assumptions about  ${\mathcal X}$
- But  $\mathfrak{X} = \mathsf{R}^d$  for the specific methods we've developed:
  - Ridge regression
  - Lasso regression
  - Support Vector Machines
- Our hypothesis space for these was all affine functions on  $R^d$ :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

- ullet Our general learning theory setup: no assumptions about  ${\mathcal X}$
- But  $\mathfrak{X} = \mathbb{R}^d$  for the specific methods we've developed:
  - Ridge regression
  - Lasso regression
  - Support Vector Machines
- Our hypothesis space for these was all affine functions on  $R^d$ :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R<sup>d</sup>?

- Often want to use inputs not natively in R<sup>d</sup>:
  - Text documents
  - Image files
  - Sound recordings
  - DNA sequences

- Often want to use inputs not natively in R<sup>d</sup>:
  - Text documents
  - Image files
  - Sound recordings
  - DNA sequences
- They may be represented in numbers, but...
- The ith entry of each sequence should have the same "meaning"
- All the sequences should have the same length

#### Feature Extraction

#### Definition

Mapping an input from X to a vector in  $R^d$  is called **feature extraction** or **featurization**.

## Raw Input

## Feature Vector

$$\mathcal{X} \xrightarrow{x}$$
 Feature  $\phi(x)$   $\mathbb{R}^d$ 

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 8 / 67

# Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map  $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space  $R^d$ .

# Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map  $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space  $R^d$ .
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \phi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

# Geometric Example: Two class problem, nonlinear boundary



- With identity feature map  $\phi(x) = (x_1, x_2)$  and linear models, can't separate regions
- With appropriate featurization  $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$ , becomes linearly separable .
- Video: http://youtu.be/3liCbRZPrZA

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 10 / 67

# Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
  - (can fit more relationships between input and action)
- Many ways to create new features.

Handling Nonlinearity with Linear Methods

# Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
  - height
    - weight
    - body temperature
    - blood pressure
    - etc...

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 13 / 67

### Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
  - The relation between a feature and the label may not be linear
  - There may be complex dependence among features

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 14/67

### Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
  - The relation between a feature and the label may not be linear
  - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
  - Non-monotonicity
  - Saturation
  - Interactions between features

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 14 / 67

### Non-monotonicity: The Issue

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in R$  (positive is good)
- Hypothesis Space  $\mathcal{F}=\{affine functions of temperature\}$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

## Non-monotonicity: The Issue

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in R$  (positive is good)
- Hypothesis Space  $\mathcal{F}=\{\text{affine functions of temperature}\}$
- Issue:
  - Health is not an affine function of temperature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

### Non-monotonicity: The Issue

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in R$  (positive is good)
- Hypothesis Space  $\mathcal{F}=\{affine functions of temperature\}$
- Issue:
  - Health is not an affine function of temperature.
  - Affine function can either say
    - Very high is bad and very low is good, or
    - Very low is bad and very high is good,
    - But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

## Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

### Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[ 1, \{temperature(x) - 37\}^2 \right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
  - Do we really need that?
  - What does  $w^T \phi(x)$  look like?

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

### Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, temperature(x), \{temperature(x)\}^2\right].$$

More expressive than Solution 1.

#### General Rule

Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

• Setting: Find products relevant to user's query

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

• Setting: Find products relevant to user's query

• Input: Product x

• Output: Score the relevance of x to user's query

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

- Setting: Find products relevant to user's query
- Input: Product x
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

- Setting: Find products relevant to user's query
- Input: Product x
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

18 / 67

where N(x) = number of people who bought x.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014,

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

Mengve Ren (NYU) CSCI-GA 2565 October 3, 2023

### Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

ullet log  $(\cdot)$  good for values with large dynamic ranges

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

### Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\Phi(x) = [1, \log\{1 + N(x)\}]$$

- ullet log  $(\cdot)$  good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$\phi(x) = (1[0 \leqslant N(x) < 10], 1[10 \leqslant N(x) < 100], ...)$$

• Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

### Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in R$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

#### Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in R$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

• Issue: It's the weight *relative* to the height that's important.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in R$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

## Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

# Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

## Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

• WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

21 / 67

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

## Interactions: Approach 2

Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

### General Principle

Simpler building blocks replace a single "smart" feature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

22 / 67

Interaction terms are useful building blocks to model non-linearities in features.

• Suppose we start with  $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$ .

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with  $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$ .
- Consider adding all monomials of degree M:  $x_1^{p_1} \cdots x_d^{p_d}$ , with  $p_1 + \cdots + p_d = M$ .
  - Monomials with degree 2 in 2D space:  $x_1^2$ ,  $x_2^2$ ,  $x_1x_2$

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with  $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$ .
- Consider adding all monomials of degree  $M: x_1^{p_1} \cdots x_d^{p_d}$ , with  $p_1 + \cdots + p_d = M$ .
  - Monomials with degree 2 in 2D space:  $x_1^2$ ,  $x_2^2$ ,  $x_1x_2$
- How many features will we end up with?

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with  $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathcal{X}$ .
- Consider adding all **monomials** of degree  $M: x_1^{p_1} \cdots x_d^{p_d}$ , with  $p_1 + \cdots + p_d = M$ .
  - Monomials with degree 2 in 2D space:  $x_1^2$ ,  $x_2^2$ ,  $x_1x_2$
- How many features will we end up with?

$$\begin{array}{c} x_{1}^{3} \longleftrightarrow \cdot \cdot \cdot \mid \mid \\ x_{1}^{2}x_{2} \longleftrightarrow \cdot \cdot \mid \cdot \mid \\ x_{1}^{2}x_{3} \longleftrightarrow \cdot \cdot \mid \mid \cdot \\ x_{1}x_{2}^{2} \longleftrightarrow \cdot \mid \cdot \cdot \mid \\ x_{1}x_{2}^{2} \longleftrightarrow \cdot \mid \cdot \cdot \mid \\ x_{1}x_{2}^{3} \longleftrightarrow \cdot \mid \mid \cdot \cdot \\ x_{2}^{3} \longleftrightarrow \mid \cdot \cdot \cdot \mid \\ x_{2}^{2}x_{3} \longleftrightarrow \mid \cdot \cdot \cdot \mid \\ x_{2}x_{3}^{2} \longleftrightarrow \mid \cdot \cdot \cdot \cdot \\ x_{3}^{3} \longleftrightarrow \mid \cdot \cdot \cdot \\ \end{array}$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

23 / 67

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with  $x = (1, x_1, ..., x_d) \in \mathbb{R}^{d+1} = \mathcal{X}$ .
- Consider adding all **monomials** of degree  $M: x_1^{p_1} \cdots x_d^{p_d}$ , with  $p_1 + \cdots + p_d = M$ .
  - Monomials with degree 2 in 2D space:  $x_1^2$ ,  $x_2^2$ ,  $x_1x_2$
- How many features will we end up with?

$$\begin{array}{c} x_{1}^{3} \longleftrightarrow \cdot \cdot \cdot \mid \mid \\ x_{1}^{2}x_{2} \longleftrightarrow \cdot \cdot \mid \cdot \mid \\ x_{1}^{2}x_{3} \longleftrightarrow \cdot \cdot \mid \mid \cdot \\ x_{1}x_{2}^{2} \longleftrightarrow \cdot \mid \cdot \cdot \mid \\ x_{1}x_{2}^{2} \longleftrightarrow \cdot \mid \cdot \cdot \mid \\ x_{1}x_{2}^{3} \longleftrightarrow \cdot \mid \mid \cdot \cdot \\ x_{2}^{3} \longleftrightarrow \mid \cdot \cdot \cdot \mid \\ x_{2}^{2}x_{3} \longleftrightarrow \mid \cdot \cdot \cdot \mid \\ x_{2}x_{3}^{2} \longleftrightarrow \mid \cdot \cdot \cdot \cdot \\ x_{3}^{3} \longleftrightarrow \mid \cdot \cdot \cdot \\ \end{array}$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

23 / 67

## Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

## Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

## Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

#### Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 24 / 67

The Kernel Trick

# SVM with Explicit Feature Map

- Let  $\psi: \mathfrak{X} \to \mathsf{R}^d$  be a feature map.
- The SVM objective (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i w^T \psi(x_i)).$$

# SVM with Explicit Feature Map

- Let  $\psi: \mathfrak{X} \to \mathsf{R}^d$  be a feature map.
- The SVM objective (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i w^T \psi(x_i)).$$

• Computation is costly if d is large (e.g. with high-degree monomials)

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 26 / 67

# SVM with Explicit Feature Map

- Let  $\psi: \mathcal{X} \to \mathbb{R}^d$  be a feature map.
- The SVM objective (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i w^T \psi(x_i)).$$

- Computation is costly if d is large (e.g. with high-degree monomials)
- Last time we mentioned an equivalent optimization problem from Lagrangian duality.

26 / 67 Mengve Ren (NYU) CSCI-GA 2565 October 3, 2023

### SVM Dual Problem

• By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize 
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$
s.t. 
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

• If  $\alpha^*$  is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i) \quad \text{and} \quad \hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)^T \psi(x).$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 27 / 67

### SVM Dual Problem

• By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize 
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$
s.t. 
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

• If  $\alpha^*$  is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)$$
 and  $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)^T \psi(x)$ .

• Key observation:  $\psi(x)$  only shows up in inner products with another  $\psi(x')$  for both training and inference.

27 / 67

## Compute the Inner Products

Consider 2D data. Let's introduce degree-2 monomials using  $\psi: R^2 \to R^3$ .

$$(x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product is

$$\psi(x)^{T}\psi(x') = x_{1}^{2}x_{1}'^{2} + (\sqrt{2}x_{1}x_{2})(\sqrt{2}x_{1}'x_{2}') + x_{2}^{2}x_{2}'^{2}$$

$$= (x_{1}x_{1}')^{2} + 2(x_{1}x_{1}')(x_{2}x_{2}') + (x_{2}x_{2}')^{2}$$

$$= (x_{1}x_{1}' + x_{2}x_{2}')^{2}$$

$$= (x^{T}x')^{2}$$

We can calculate the inner product  $\psi(x)^T \psi(x')$  in the original input space without accessing the features  $\psi(x)$ !

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 28 / 67

## Compute the Inner Products

Now, consider monomials up to degree-2:

$$(x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product can be computed by

$$\psi(x)^T \psi(x') = (1 + x^T x')^2$$
 (check).

More generally, for features maps producing monomials up to degree-p, we have

$$\psi(x)^T \psi(x') = (1 + x^T x')^p$$
.

(Note that the coefficients of each monomial in  $\psi$  may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

- Using explicit features:  $O(d^p)$
- Using implicit computation: O(d)

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

29 / 67

## Kernel Function

30 / 67

- ullet Input space:  $\chi$
- Feature space:  $\mathcal{H}$  (a Hilbert space, e.g.  $R^d$ )
- Feature map:  $\psi: \mathfrak{X} \to \mathcal{H}$
- The kernel function corresponding to  $\psi$  is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where  $\langle \cdot, \cdot \rangle$  is the inner product associated with  $\mathcal{H}$ .

- $\bullet \ \, \textbf{Input space} \colon \, \mathfrak{X}$
- Feature space:  $\mathcal{H}$  (a Hilbert space, e.g.  $\mathbb{R}^d$ )
- Feature map:  $\psi: \mathcal{X} \to \mathcal{H}$
- The kernel function corresponding to  $\psi$  is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where  $\langle \cdot, \cdot \rangle$  is the inner product associated with  $\mathcal{H}$ .

Why introduce this new notation k(x,x')?

- $\bullet \ \, \textbf{Input space} \colon \, \mathfrak{X}$
- Feature space:  $\mathcal{H}$  (a Hilbert space, e.g.  $\mathbb{R}^d$ )
- Feature map:  $\psi: \mathfrak{X} \to \mathcal{H}$
- The kernel function corresponding to  $\psi$  is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where  $\langle \cdot, \cdot \rangle$  is the inner product associated with  $\mathcal{H}$ .

Why introduce this new notation k(x,x')?

• We can often evaluate k(x,x') without explicitly computing  $\psi(x)$  and  $\psi(x')$ .

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 31 / 67

- $\bullet \ \, \textbf{Input space} \colon \, \mathfrak{X}$
- Feature space:  $\mathcal{H}$  (a Hilbert space, e.g.  $\mathbb{R}^d$ )
- Feature map:  $\psi: \mathcal{X} \to \mathcal{H}$
- The kernel function corresponding to  $\psi$  is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where  $\langle \cdot, \cdot \rangle$  is the inner product associated with  $\mathcal{H}$ .

Why introduce this new notation k(x,x')?

• We can often evaluate k(x,x') without explicitly computing  $\psi(x)$  and  $\psi(x')$ .

When can we use the kernel trick?

### Some Methods Can Be "Kernelized"

#### Definition

A method is **kernelized** if every feature vector  $\psi(x)$  only appears inside an inner product with another feature vector  $\psi(x')$ . This applies to both the optimization problem and the prediction function.

### Some Methods Can Be "Kernelized"

#### Definition

A method is **kernelized** if every feature vector  $\psi(x)$  only appears inside an inner product with another feature vector  $\psi(x')$ . This applies to both the optimization problem and the prediction function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize 
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$

s.t. 
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

Prediction:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i \psi(x_i)^T \psi(x).$$

32 / 67

#### Definition

The **kernel matrix** for a kernel k on  $x_1, \ldots, x_n \in \mathcal{X}$  is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

• In ML this is also called a **Gram matrix**, but traditionally (in linear algebra), Gram matrices are defined without reference to a kernel or feature map.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 33 / 67

### The Kernel Matrix

- The kernel matrix summarizes all the information we need about the training inputs  $x_1, \ldots, x_n$  to solve a kernelized optimization problem.
- In the kernelized SVM, we can replace  $\psi(x_i)^T \psi(x_i)$  with  $K_{ii}$ :

$$\begin{aligned} \text{maximize}_{\alpha} & & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ij} \\ \text{s.t.} & & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n. \end{aligned}$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 34/67

### Kernel Methods

Given a kernelized ML algorithm (i.e. all  $\psi(x)$ 's show up as  $\langle \psi(x), \psi(x') \rangle$ ),

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.

#### Kernel Methods

Given a kernelized ML algorithm (i.e. all  $\psi(x)$ 's show up as  $\langle \psi(x), \psi(x') \rangle$ ),

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.
- Once the kernel matrix is computed, the computational cost depends on number of data points *n*, rather than the dimension of feature space *d*.
- Useful when d >> n.

Given a kernelized ML algorithm (i.e. all  $\psi(x)$ 's show up as  $\langle \psi(x), \psi(x') \rangle$ ),

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.
- Once the kernel matrix is computed, the computational cost depends on number of data points *n*, rather than the dimension of feature space *d*.
- Useful when d >> n.
- Computing the kernel matrix may still depend on d and the essence of the **trick** is getting around this O(d) dependence.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 35 / 67

Example Kernels

## Kernels as Similarity Scores

- Often useful to think of the k(x,x') as a similarity score for x and x'.
- We can design similarity functions without thinking about the explicit feature map, e.g. "string kernels", "graph kernels".
- How do we know that our kernel functions actually correspond to inner products in some feature space?

### How to Get Kernels?

- Explicitly construct  $\psi(x): \mathcal{X} \to \mathbb{R}^d$  (e.g. monomials) and define  $k(x, x') = \psi(x)^T \psi(x')$ .
- Directly define the kernel function k(x,x') ("similarity score"), and verify it corresponds to  $\langle \psi(x), \psi(x') \rangle$  for some  $\psi$ .

There are many theorems to help us with the second approach.

Linear Algebra Review: Positive Semidefinite Matrices

#### Definition

A real, symmetric matrix  $M \in \mathbb{R}^{n \times n}$  is **positive semidefinite (psd)** if for any  $x \in \mathbb{R}^n$ ,

$$x^T M x \geqslant 0.$$

#### **Theorem**

The following conditions are each necessary and sufficient for a symmetric matrix M to be positive semidefinite:

- M can be factorized as  $M = R^T R$ , for some matrix R.
- All eigenvalues of M are greater than or equal to 0.

#### **Definition**

A symmetric function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a **positive definite (pd)** kernel on  $\mathcal{X}$  if for any finite set  $\{x_1, \ldots, x_n\} \in \mathcal{X}$   $(n \in \mathbb{N})$ , the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

- Symmetric: k(x,x') = k(x',x)
- The kernel matrix needs to be positive semidefinite for any finite set of points.
- Equivalent definition:  $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$  given  $\alpha_i \in \mathbb{R} \ \forall i$ .

 Mengye Ren (NYU)
 CSCI-GA 2565
 October 3, 2023
 40 / 67

#### **Theorem**

A symmetric function k(x,x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some  $\psi$  if and only if k(x, x') is **positive definite**.

- Proving a kernel function is positive definite is typically not easy.
- But we can construct new kernels from valid kernels.

• Suppose k,  $k_1$ ,  $k_2$ :  $\mathfrak{X} \times \mathfrak{X} \to \mathsf{R}$  are pd kernels. Then so are the following:

$$k_{\text{new}}(x, x') = \alpha k(x, x')$$
 for  $\alpha \ge 0$  (non-negative scaling)

Based on Mark Schmidt's slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

42 / 67

• Suppose k,  $k_1$ ,  $k_2$ :  $\mathfrak{X} \times \mathfrak{X} \to \mathsf{R}$  are pd kernels. Then so are the following:

$$k_{\text{new}}(x, x') = \alpha k(x, x')$$
 for  $\alpha \geqslant 0$  (non-negative scaling)  
 $k_{\text{new}}(x, x') = k_1(x, x') + k_2(x, x')$  (sum)

Based on Mark Schmidt's slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

42 / 67

• Suppose k,  $k_1$ ,  $k_2$ :  $\mathfrak{X} \times \mathfrak{X} \to \mathsf{R}$  are pd kernels. Then so are the following:

$$k_{\text{new}}(x, x') = \alpha k(x, x')$$
 for  $\alpha \geqslant 0$  (non-negative scaling)  
 $k_{\text{new}}(x, x') = k_1(x, x') + k_2(x, x')$  (sum)  
 $k_{\text{new}}(x, x') = k_1(x, x')k_2(x, x')$  (product)

 $\textbf{Based on Mark Schmidt's slides:} \\ \texttt{https://www.cs.ubc.ca/\~schmidtm/Courses/540-W19/L12.5.pdf} \\ \textbf{pdf} \\$ 

• Suppose k,  $k_1$ ,  $k_2$ :  $\mathfrak{X} \times \mathfrak{X} \to \mathsf{R}$  are pd kernels. Then so are the following:

$$\begin{array}{lll} k_{\mathsf{new}}(x,x') &=& \alpha k(x,x') \quad \text{for } \alpha \geqslant 0 \quad \text{(non-negative scaling)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x') + k_2(x,x') \quad \text{(sum)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x') k_2(x,x') \quad \text{(product)} \\ k_{\mathsf{new}}(x,x') &=& k(\psi(x),\psi(x')) \text{ for any function } \psi(\cdot) \quad \text{(recursion)} \end{array}$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 42 / 67

• Suppose  $k, k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathsf{R}$  are pd kernels. Then so are the following:

$$\begin{array}{lll} k_{\mathsf{new}}(x,x') &=& \alpha k(x,x') \quad \text{for } \alpha \geqslant 0 \quad \text{(non-negative scaling)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x') + k_2(x,x') \quad \text{(sum)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x')k_2(x,x') \quad \text{(product)} \\ k_{\mathsf{new}}(x,x') &=& k(\psi(x),\psi(x')) \quad \text{for any function } \psi(\cdot) \quad \text{(recursion)} \\ k_{\mathsf{new}}(x,x') &=& f(x)f(x') \quad \text{for any function } f(\cdot) \quad \text{($f$ as 1D feature map)} \end{array}$$

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt's slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

42 / 67

#### Linear Kernel

- Input space:  $\mathfrak{X} = \mathbb{R}^d$
- Feature space:  $\mathcal{H} = \mathbb{R}^d$ , with standard inner product
- Feature map

$$\psi(x) = x$$

• Kernel:

$$k(x, x') = x^T x'$$

# Quadratic Kernel in R<sup>d</sup>

- Input space  $\mathfrak{X} = \mathsf{R}^d$
- Feature space:  $\mathcal{H} = \mathbb{R}^D$ , where  $D = d + \binom{d}{2} \approx d^2/2$ .
- Feature map:

$$\psi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

• Then for  $\forall x, x' \in \mathbb{R}^d$ 

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
  
=  $\langle x, x' \rangle + \langle x, x' \rangle^2$ 

- Computation for inner product with explicit mapping:  $O(d^2)$
- Computation for implicit kernel calculation: O(d).

# Polynomial Kernel in R<sup>d</sup>

- Input space  $\mathfrak{X} = \mathsf{R}^d$
- Kernel function:

$$k(x,x') = (1 + \langle x,x' \rangle)^M$$

- $\bullet$  Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- ullet Cost of explicit inner product computation grows rapidly in M.

# Radial Basis Function (RBF) / Gaussian Kernel

Input space  $\mathfrak{X} = \mathbb{R}^d$ 

$$k(x,x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right),\,$$

where  $\sigma^2$  is known as the bandwidth parameter.

• Probably the most common nonlinear kernel.

# Radial Basis Function (RBF) / Gaussian Kernel

Input space  $\mathfrak{X} = \mathbb{R}^d$ 

$$k(x,x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right),\,$$

where  $\sigma^2$  is known as the bandwidth parameter.

- Probably the most common nonlinear kernel.
- Does it act like a similarity score?

# Radial Basis Function (RBF) / Gaussian Kernel

Input space  $\mathfrak{X} = \mathbb{R}^d$ 

$$k(x,x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right),\,$$

where  $\sigma^2$  is known as the bandwidth parameter.

- Probably the most common nonlinear kernel.
- Does it act like a similarity score?
- Have we departed from our "inner product of feature vector" recipe?
  - Yes and no: corresponds to an infinite dimensional feature vector

CSCI-GA 2565 46 / 67 Mengve Ren (NYU) October 3, 2023

#### Our current recipe:

• Recognize kernelized problem:  $\psi(x)$  only occur in inner products  $\psi(x)^T \psi(x')$ 

#### Our current recipe:

- Recognize kernelized problem:  $\psi(x)$  only occur in inner products  $\psi(x)^T \psi(x')$
- Pick a kernel function ("similarity score")

#### Our current recipe:

- Recognize kernelized problem:  $\psi(x)$  only occur in inner products  $\psi(x)^T \psi(x')$
- Pick a kernel function ("similarity score")
- Compute the kernel matrix (*n* by *n* where *n* is the dataset size)

#### Our current recipe:

- Recognize kernelized problem:  $\psi(x)$  only occur in inner products  $\psi(x)^T \psi(x')$
- Pick a kernel function ("similarity score")
- Compute the kernel matrix (n by n where n is the dataset size)
- Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

# SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t. 
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] i = 1, \dots, n.$$

• Given dual solution  $\alpha^*$ , primal solution is  $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$ .

# SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t. 
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Given dual solution  $\alpha^*$ , primal solution is  $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$ .
- Notice:  $w^*$  is a linear combination of training inputs  $x_1, \ldots, x_n$ .

# SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t. 
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Given dual solution  $\alpha^*$ , primal solution is  $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$ .
- Notice:  $w^*$  is a linear combination of training inputs  $x_1, \ldots, x_n$ .
- We refer to this phenomenon by saying " $w^*$  is in the span of the data."
  - Or in math,  $w^* \in \operatorname{span}(x_1, \ldots, x_n)$ .

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 48 / 67

Ridge regression solution is in the "span of the data"

• The ridge regression solution for regularization parameter  $\lambda > 0$  is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

Ridge regression solution is in the "span of the data"

• The ridge regression solution for regularization parameter  $\lambda > 0$  is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

• This has a closed form solution:

$$w^* = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

where X is the design matrix, with  $x_1, \ldots, x_n$  as rows.

Ridge regression solution is in the "span of the data"

• Rearranging  $w^* = (X^TX + \lambda I)^{-1}X^Ty$ , we can show that:

$$w^* = X^T \underbrace{\left(\frac{1}{\lambda}y - \frac{1}{\lambda}Xw^*\right)}_{\alpha^*}$$
$$= X^T \alpha^* = \sum_{i=1}^n \alpha_i^* x_i.$$

- So  $w^*$  is in the span of the data.
  - i.e.  $w^* \in \operatorname{span}(x_1, \ldots, x_n)$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023

50 / 67

If solution is in the span of the data, we can reparameterize

ullet The ridge regression solution for regularization parameter  $\lambda>0$  is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

## If solution is in the span of the data, we can reparameterize

ullet The ridge regression solution for regularization parameter  $\lambda>0$  is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

- We now know that  $w^* \in \operatorname{span}(x_1, \dots, x_n) \subset \mathbb{R}^d$ .
- So rather than minimizing over all of  $\mathbb{R}^d$ , we can minimize over span  $(x_1, \dots, x_n)$ .

$$w^* = \operatorname*{arg\,min}_{w \in \operatorname{span}(x_1, \dots, x_n)} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2.$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 51/67

• The ridge regression solution for regularization parameter  $\lambda > 0$  is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

- We now know that  $w^* \in \operatorname{span}(x_1, \dots, x_n) \subset \mathbb{R}^d$ .
- So rather than minimizing over all of  $\mathbb{R}^d$ , we can minimize over span  $(x_1, \dots, x_n)$ .

$$w^* = \underset{w \in \text{span}(x_1, ..., x_n)}{\arg \min} \frac{1}{n} \sum_{i=1}^n \{ w^T x_i - y_i \}^2 + \lambda ||w||_2^2.$$

ullet Let's reparameterize the objective by replacing w as a linear combination of the inputs.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 51 / 67

If solution is in the span of the data, we can reparameterize

- Note that for any  $w \in \text{span}(x_1, \dots, x_n)$ , we have  $w = X^T \alpha$ , for some  $\alpha \in \mathbb{R}^n$ .
- So let's replace w with  $X^T \alpha$  in our optimization problem:

[original] 
$$w^* = \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2$$

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 52 / 67

If solution is in the span of the data, we can reparameterize

- Note that for any  $w \in \text{span}(x_1, \dots, x_n)$ , we have  $w = X^T \alpha$ , for some  $\alpha \in \mathbb{R}^n$ .
- So let's replace w with  $X^T \alpha$  in our optimization problem:

$$\begin{aligned} & [\text{original}] \ w^* &= & \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2 \\ & [\text{reparameterized}] \ \alpha^* &= & \arg\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \left\{ \left( X^T \alpha \right)^T x_i - y_i \right\}^2 + \lambda \|X^T \alpha\|_2^2. \end{aligned}$$

- To get  $w^*$  from the reparameterized optimization problem, we just take  $w^* = X^T \alpha^*$ .
- We changed the dimension of our optimization variable from d to n. Is this useful?

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 52 / 67

## Consider very large feature spaces

- Suppose we have a 300-million dimension feature space [very large]
  - (e.g. using high order monomial interaction terms as features, as described last lecture)
- Suppose we have a training set of 300,000 examples [fairly large]
- In the original formulation, we solve a 300-million dimension optimization problem.
- In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
- This is why we care about when the solution is in the span of the data.
- This reparameterization is interesting when we have more features than data  $(d \gg n)$ .

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 53 / 67

#### More General

- For SVM and ridge regression, we found that the solution is in the span of the data.
- The Representer Theorem shows that this "span of the data" result occurs far more generally.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 54 / 67

# The Representer Theorem (Optional)

Generalized objective:

$$w^* = \arg\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

• Representer theorem tells us we can look for  $w^*$  in the span of the data:

$$w^* = \underset{w \in \operatorname{span}(x_1, \dots, x_n)}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle).$$

• So we can reparameterize as before:

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}^n} R\left( \left\| \sum_{i=1}^n \alpha_i x_i \right\| \right) + L\left( \left\langle \sum_{i=1}^n \alpha_i x_i, x_1 \right\rangle, \dots, \left\langle \sum_{i=1}^n \alpha_i x_i, x_n \right\rangle \right).$$

Our reparameterization trick applies much more broadly than SVM and ridge.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 55 / 67

• We formualte the kernelized verions of SVM and ridge regression.

- We formualte the kernelized verions of SVM and ridge regression.
- Many other algorithms can be kernelized.

- We formualte the kernelized verions of SVM and ridge regression.
- Many other algorithms can be kernelized.
- Our principled tool for kernelization is reparameterization by the representer theorem.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 56 / 67

- We formulate the kernelized verions of SVM and ridge regression.
- Many other algorithms can be kernelized.
- Our principled tool for kernelization is reparameterization by the representer theorem.
- Representer theorem says that all norm-regularized linear models can be kernelized.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 56 / 67

- We formulate the kernelized verions of SVM and ridge regression.
- Many other algorithms can be kernelized.
- Our principled tool for kernelization is reparameterization by the representer theorem.
- Representer theorem says that all norm-regularized linear models can be kernelized.
- Once kernelized, we can apply the kernel trick: doesn't need to represent  $\phi(x)$  explicitly.

Mengye Ren (NYU) CSCI-GA 2565 October 3, 2023 56 / 67

Overview

# Why probabilistic modeling?

- A unified framework that covers many models, e.g., linear regression, logistic regression
- Learning as statistical inference
- Principled ways to incorporate your belief on the data generating distribution (inductive biases)

• Two ways to model how the data is generated:

• Two ways to model how the data is generated:

• Conditional:  $p(y \mid x)$ 

• Generative: p(x,y)

• Two ways to model how the data is generated:

• Conditional: p(y | x)

• Generative: p(x, y)

• How to estimate the parameters of our model? Maximum likelihood estimation.

- Two ways to model how the data is generated:
  - Conditional: p(y | x)
  - Generative: p(x, y)
- How to estimate the parameters of our model? Maximum likelihood estimation.
- Compare and contrast conditional and generative models.

Conditional models

60 / 67

## Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

**Goal**: Predict a real-valued **target** y (also called response) from a vector of **features** x (also called covariates).

## Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

**Goal**: Predict a real-valued **target** y (also called response) from a vector of **features** x (also called covariates).

## Examples:

- Predicting house price given location, condition, build year etc.
- Predicting medical cost of a person given age, sex, region, BMI etc.
- Predicting age of a person based on their photos.

# Problem setup

Data Training examples  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$ , where  $x \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ .

# Problem setup

Data Training examples  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$ , where  $x \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ .

Model A *linear* function h (parametrized by  $\theta$ ) to predict y from x:

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x, \tag{1}$$

where  $\theta \in \mathbb{R}^d$  are the **parameters** (also called weights).

 Mengye Ren (NYU)
 CSCI-GA 2565
 October 3, 2023
 62 / 67

Data Training examples  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$ , where  $x \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ .

Model A *linear* function h (parametrized by  $\theta$ ) to predict y from x:

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x, \tag{1}$$

where  $\theta \in \mathbb{R}^d$  are the **parameters** (also called weights).

#### Note that

- We incorporate the bias term (also called the intercept term) into x (i.e.  $x_0 = 1$ ).
- We use superscript to denote the example id and subscript to denote the dimension id.

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let  $X \in \mathbb{R}^{N \times d}$  be the **design matrix** whose rows are input features.
- Let  $y \in \mathbb{R}^N$  be the vector of all targets.

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let  $X \in \mathbb{R}^{N \times d}$  be the **design matrix** whose rows are input features.
- Let  $y \in \mathbb{R}^N$  be the vector of all targets.
- We want to solve

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} (X\theta - y)^{T} (X\theta - y). \tag{3}$$

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let  $X \in \mathbb{R}^{N \times d}$  be the **design matrix** whose rows are input features.
- Let  $y \in \mathbb{R}^N$  be the vector of all targets.
- We want to solve

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} (X\theta - y)^{T} (X\theta - y). \tag{3}$$

Solution Closed-form solution:  $\hat{\theta} = (X^T X)^{-1} X^T y$ .

Loss function We estimate  $\theta$  by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let  $X \in \mathbb{R}^{N \times d}$  be the **design matrix** whose rows are input features.
- Let  $y \in \mathbb{R}^N$  be the vector of all targets.
- We want to solve

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} (X\theta - y)^{T} (X\theta - y). \tag{3}$$

Solution Closed-form solution:  $\hat{\theta} = (X^T X)^{-1} X^T y$ .

### Review questions

- Derive the solution for linear regression.
- What if  $X^TX$  is not invertible?

### Review

#### We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

### Review

#### We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

#### But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

CSCI-GA 2565 October 3, 2023 64 / 67

### Review

#### We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

#### But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

### Next,

• Derive linear regression from a probabilistic modeling perspective.

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of  $Y \mid X = x$ ?

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of  $Y \mid X = x$ ?

$$p(y \mid x; \theta) = \mathcal{N}(\theta^T x, \sigma^2). \tag{6}$$

Imagine putting a Gaussian bump around the output of the linear predictor.

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where  $\epsilon$  is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of  $Y \mid X = x$ ?

$$p(y \mid x; \theta) = \mathcal{N}(\theta^T x, \sigma^2). \tag{6}$$

Imagine putting a Gaussian bump around the output of the linear predictor.

Given a probabilistic model and a dataset  $\mathcal{D}$ , how to estimate the model parameters  $\theta$ ?

(8)

 Mengye Ren (NYU)
 CSCI-GA 2565
 October 3, 2023
 66 / 67

Given a probabilistic model and a dataset  $\mathcal{D}$ , how to estimate the model parameters  $\theta$ ?

The maximum likelihood principle says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta) \tag{7}$$

(8)

Given a probabilistic model and a dataset  $\mathcal{D}$ , how to estimate the model parameters  $\theta$ ?

The maximum likelihood principle says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta) \tag{7}$$

$$= \prod_{i=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta).$$
 (examples are distributed *iid*) (8)

Given a probabilistic model and a dataset  $\mathcal{D}$ , how to estimate the model parameters  $\theta$ ?

The maximum likelihood principle says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta) \tag{7}$$

$$= \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta).$$
 (examples are distributed *iid*) (8)

In practice, we maximize the  $\log$  likelihood  $\ell(\theta)$ , or equivalently, minimize the negative log likelihood (NLL).

# MLE for linear regression

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

(13)

 Mengye Ren (NYU)
 CSCI-GA 2565
 October 3, 2023
 67 / 67

## MLE for linear regression

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \log \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta)$$

$$= \sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$$
(10)

(13)

## MLE for linear regression

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (11)

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(n)} - \theta^{T} x^{(n)}\right)^{2}}{2\sigma^{2}}\right) \tag{12}$$

(13)

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (11)

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(n)} - \theta^{T} x^{(n)}\right)^{2}}{2\sigma^{2}}\right)$$
(12)

$$= N \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2$$
 (13)

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (11)

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\left(y^{(n)} - \theta^{T} x^{(n)}\right)^{2}}{2\sigma^{2}}\right)$$
 (12)

$$= N \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2$$
 (13)

Let's find the MLE solution for our model. Recall that  $Y \mid X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$ .

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta)$$
 (10)

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta)$$
 (11)

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\left(y^{(n)} - \theta^{T} x^{(n)}\right)^{2}}{2\sigma^{2}}\right)$$
(12)

$$= N \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left( y^{(n)} - \theta^T x^{(n)} \right)^2$$
 (13)