

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=11; day=5; hr=7; min=3; sec=16; ms=132;]

=====

Application No: 10559406 Version No: 3.0

Input Set:

Output Set:

Started: 2009-10-22 19:11:40.667
Finished: 2009-10-22 19:11:41.659
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 992 ms
Total Warnings: 8
Total Errors: 0
No. of SeqIDs Defined: 15
Actual SeqID Count: 15

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)

SEQUENCE LISTING

<110> Alexander, Henry
Zimmermann, Gerolf

<120> METHOD AND MEANS FOR THE DETERMINATION OF DEFINED STATES OR
MODIFICATIONS IN THE MUCUS OF THE UTERUS OR IN THE EPITHELIUM OF
OTHER ORGANS

<130> 55928.00003

<140> 10559406
<141> 2009-10-22

<150> PCT/DE04/01210
<151> 2004-06-04

<150> DE10325639.3
<151> 2003-06-06

<150> DE10325638.5
<151> 2003-06-06

<160> 15

<170> PatentIn version 3.5

<210> 1
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope e-beta9 (ebetahCG)

<400> 1

Thr Cys Asp Asp Pro Arg Phe Gln Ala Ser Ser Ser Ser Lys Ala
1 5 10 15

<210> 2
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope beta9 (tbetahCG)

<400> 2

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala
1 5 10 15

<210> 3

<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope e-beta1 (ebetahCG)

<400> 3

Ser Arg Glu Met Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr
1 5 10 15

<210> 4
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope beta1 (tbetahCG)

<400> 4

Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr
1 5 10 15

<210> 5
<211> 861
<212> DNA
<213> Homo sapiens

<400> 5
agcactttcc tcgggtcacg gcctcctcct ggttcccaag accccaccat aggcagaggc 60
aggccttcctt acaccctact ctctgtgcct ccagcctcga ctagtcccta gcactcgacg 120
actgagtctc agaggtcaact tcaccgtggt ctccgcctca tccttggcgc tagaccactg 180
aggggagagg actgggggtgc tccgctgagc cactcctgtg cttccctggc cttgtctact 240
tctcgccccc cgaagggtta gtgtccagct cactccagca tcctacaacc tcctggtggc 300
cttgacgccc ccacaaaccc gaggtataaa gccaggtaca ccaggcaggg gacgcaccaa 360
ggatggagat gttccagggg ctgctgctgt tgctgctgct gagcatgggc gggacatggg 420
catccaagga gatgcttcgg ccacggtgcc gccccatcaa tgccaccctg gctgtggaga 480
aggagggctg ccccggtgtgc atcacccgtca acaccaccat ctgtgccggc tactgcccc 540
ccatgaccccg cgtgctgcag ggggtcctgc cggccctgccc tcaggtggtg tgcaactacc 600
gcgatgtgctgctgctgc atccggctcc ctggctgccc ggcggcgtg aacccctgg 660
tctcctacgc cgtggctctc agctgtcaat gtgcactctg ccggccgcagc accactgact 720

gcgggggtcc caaggaccac cccttacact gtgatgaccc ccgtttccag gcctcctctt 780
cctcaaaggc ccctcccccc agcattccaa gtccatcccg actccgggg ccctcggaca 840
ccccgatcct cccacaataa a 861

<210> 6
<211> 861
<212> DNA
<213> Homo sapiens

<400> 6
agcacttcc tcgggtcact gcctcctctt ggttccaag accccaccat aggcaaggc 60
aggccttcctt acaccctact ctctgtgcct ccagcctcga cttagtcccta acactcgacg 120
actgagtctc agaggtcact tccccgtggt ctccgcctca tccttggcgc tagaccactg 180
aggggagagg actgggggtgc tccgctgagc cactcctgtg cctccctggc cttgtctact 240
tctcgcccccc cgaagggtta gtgtcgagct cactccagca tcctacaacc tcctggtggc 300
cttgccgccc ccacaacccc gaggtatgaa gccaggataca ccaggcaggg gacgcaccaa 360
ggatggagat gttccagggg ctgctgctgt tgctgctgct gagcatgggc gggacatgg 420
catccaagga gccacttcgg ccacgggtgcc gccccatcaa tgccaccctg gctgtggaga 480
aggagggctg ccccggtgtgc atcaccgtca acaccaccat ctgtgccggc tactgcccc 540
ccatgaccgg cgtgctgcag ggggtcctgc cggccctgcc tcaggtggtg tgcaactacc 600
cgatgtgcg ctgcgacttcc atccggctcc ctggctgccc ggcggcgtg aacccctgg 660
tctcctacgc cgtggctctc agctgtcaat gtgcactctg ccgcggcagc accactgact 720
gcgggggtcc caaggaccac cccttacact gtgatgaccc ccgtttccag gcctcctctt 780
cctcaaaggc ccctcccccc agcattccaa gtccatcccg actccgggg ccctcggaca 840
ccccgatcct cccacaataa a 861

<210> 7
<211> 861
<212> DNA
<213> Homo sapiens

<400> 7
agcactttc tcgggtcact gcctcctctt ggttccaag accccaccat aggcaaggc 60
aggccttcctt acaccctact ctctgtgcct ccagcctcga cttagtcccta rcactcgacg 120
actgagtctc agaggtcact tccccgtggt ctccgcctca tccttggcgc tagaccactg 180
aggggagagg actgggggtgc tccgctgagc cactcctgtg cctccctggc cttgtctact 240

tctcgccccc cgaagggtta gtgtcsagct cactccagca tcctacaacc tcctggtggc	300
cttgcgcccc ccacaamccc gaggtatrraa gccaggataca ccaggcaggg gacgcaccaa	360
ggatggagat gttccagggg ctgctgctgt tgctgctgct gagcatgggc gggacatggg	420
catccargga gmyrcttcgg ccacggtgcc gccccatcaa tgccaccctg gctgtggaga	480
aggagggctg ccccggtgtgc atcacccgtca acaccaccaat ctgtgccggc tactgcccc	540
ccatgacccg cgtgctgcag ggggtcctgc cggccctgccc tcaggtggtg tgcaactacc	600
gcgatgtgctgcg cttcgagtcc atccggctcc ctggctgccc gcgcggcgtg aaccccggtgg	660
tctcctacgc cgtggctctc agctgtcaat gtgcactctg ccgcgcgcgc accactgact	720
gcgggggtcc caaggaccac cccttgacct gtgatgaccc ccgcttccag gcctcctctt	780
cctcaaaggc ccctcccccc agcattccaa gtccatcccg actccgggg ccctcggaca	840
ccccgatcct cccacaataa a	861

<210> 8
<211> 165
<212> PRT
<213> Homo sapiens

<400> 8

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly			
1	5	10	15

Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile			
20	25	30	

Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr			
35	40	45	

Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Met Arg Val			
50	55	60	

Gly Val Leu Gln Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg			
65	70	75	80

Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val			
85	90	95	

Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu			
100	105	110	

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu
115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro
130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr
145 150 155 160

Pro Ile Leu Pro Gln
165

<210> 9
<211> 165
<212> PRT
<213> Homo sapiens

<400> 9

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly
1 5 10 15

Gly Thr Trp Ala Ser Arg Glu Met Leu Arg Pro Arg Cys Arg Pro Ile
20 25 30

Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr
35 40 45

Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Met Arg Val
50 55 60

Gly Val Leu Gln Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg
65 70 75 80

Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val
85 90 95

Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu
100 105 110

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu
115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Ala Ser Ser Ser Lys Ala Pro
130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr
145 150 155 160

Pro Ile Leu Pro Gln
165

<210> 10
<211> 165
<212> PRT
<213> Homo sapiens

<400> 10

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly
1 5 10 15

Gly Thr Trp Ala Ser Arg Glu Met Leu Arg Pro Arg Cys Arg Pro Ile
20 25 30

Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr
35 40 45

Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Met Arg Val
50 55 60

Gly Val Leu Gln Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg
65 70 75 80

Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val
85 90 95

Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu
100 105 110

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu
115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Ala Ser Ser Ser Lys Ala Pro
130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr
145 150 155 160

Pro Ile Leu Pro Gln
165

<210> 11
<211> 141
<212> PRT
<213> Homo sapiens

<400> 11

Met Glu Met Leu Gln Gly Leu Leu Leu Leu Leu Ser Met Gly
1 5 10 15

Gly Ala Trp Ala Ser Arg Glu Pro Leu Arg Pro Trp Cys His Pro Ile
20 25 30

Asn Ala Ile Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr
35 40 45

Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Met Arg Val
50 55 60

Leu Gln Ala Val Leu Pro Pro Leu Pro Gln Val Val Cys Thr Tyr Arg
65 70 75 80

Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val
85 90 95

Asp Pro Val Val Ser Phe Pro Val Ala Leu Ser Cys Arg Cys Ala Pro
100 105 110

Cys Arg Arg Ser Thr Ser Asp Cys Gly Gly Pro Lys Asp His Pro Leu
115 120 125

Thr Cys Asp His Pro Glu Leu Ser Gly Leu Leu Phe Leu
130 135 140

<210> 12
<211> 10
<212> PRT
<213> Artificial Sequence

<220>

<223> Peptide P1 (ebetahCG)

<400> 12

Cys Asp Asp Pro Arg Phe Gln Ala Ser Ser
1 5 10

<210> 13

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Peptide K1 (tbetahCG)

<400> 13

Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser
1 5 10

<210> 14

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Peptide P2 (ebetahCG)

<400> 14

Ser Arg Glu Met Leu Arg Pro Arg Cys Arg Pro
1 5 10

<210> 15

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Peptide K2 (tbetahCG)

<400> 15

Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro
1 5 10