Acinetobacter baumannii Infection and Transmission in the Military Health Care

James Mancuso MAJ, MC C, Epidemiology USACHPPMEUR

Outline

- Background
- A. baumannii transmission throughout MEDEVAC Sequence
 - Iraq
 - LRMC
 - WRAMC
- Infection control and nosocomial transmission
- Recommendations
- Future directions

Background

- Common nosocomial pathogen
 - Recognized pathogen in Vietnam war
 - A. baumannii seen almost exclusively in medical treatment facilities
 - VAP, Burn units, ICUs
- Infections, colonization or both noted
- Acinetobacter species are common skin contaminants, but not A. baumannii
- Difficult to eradicate
 - Very hard to eliminate (lives on surfaces for over 48 hrs)
 - Often is multi-drug resistant so acquisition is hard to treat
 - Persistence on human host is unknown (1-176 days in 1 recent abstract)

Acinetobacter in Vietnam

- Study of wound infections at DaNang hospital in 68-69
- 30 critically ill patients
- 12 patients with bacteremia
- *JAMA* 1972:219(8), 1044-7.

Bloodstream isolates by species

Timeline

- 19 Mar 2003: OIF begins
- 21 Mar 2003: First LRMC Isolates seen
- April 2003: USNS Comfort notes increase in isolates of highly resistant A. baumannii
- June 2003: LRMC begins active surveillance program
- Summer 2004: Several nosocomial deaths at WRAMC and LRMC
- Aug 2004: EPICON directed by TSG
- Nov 2004: MMWR article, other publications

USNS Comfort 2003

- 23% Infected or colonized with MDR Acinetobacter spp.
- Positive cultures early in hospital course
- 80% of patients were Iraqis

Source: LCDR Kyle Peterson, NNMC

Acinetobacter Theories

- Dirt in Iraq
- Propensity for colonization in the tropics
- Perioperative Ancef
- Cross-contamination of US troops by Iraqis
- Difficulty in eradication
 - Normal hospital setting difficult
 - Translation to MEDEVAC chain with multiple moving parts

of First Positive A. baumannii Culture per Infected or Colonized Patient. Walter Reed Army Medical Center & Landstuhl Regional Medical Center

J anuary 2002 - March 2005 BY HOSPITAL; ANY SPECIMEN TYPE

Source: EPICON Report No. 12-HA-01JK-04

RMC *A. baumannii* Infection Control Surveillance

Source: Greg Deye and Abel Trevino, LRMC

Sites of Acinetobacter Cultures, LRMC, January 2002 to April 2005

Acinetobacter baumannii Surveillance and Clinical Cultures, Landstuhl Regional Medical Center, 2003-2005

Rate of Acinetobacter Bloodstream Infections, 2002-2005

Time from Admission to Collection of Positive Blood Culture

Rate of Respiratory Cultures with Acinetobacter, 2002-2005

Acinetobacter Wound Cultures, LRMC, 2003-2005

Acinetobacter Colonizations by Patient Status on Arrival to LRMC

MEDEVAC Patient

- Isolate OIFC 138
 - Source: sputum
 - Date: 11 May 03
 - Location: LRMC
- Isolate OIFC 137
 - Source: catheter tip
 - Date: 23 May 03
 - Location: WRAMC

 100% similar to isolate from MTF B Operating Room

- Evacuation Sequence
 - MTF E (Balad)
 - 10 May 03
 - MTF B (Dogwood)
 - 10 May 03
 - LRMC
 - 11 May 03
 - WRAMC
 - 22 May 03

DADICOL

Acinetobacter Infection By Referring Level III Facility

Nosocomial Patient

LRMC

- April 2004- 63yo woman admitted with COPD exacerbation
 - Admitted to med/surg ward (NOT ICU)
 - Developed Nosocomial Pneumonia due to MDR Acinetobater baumannii.
 - Only Acinetobacter patient with bacteremia not from OIF
 - Died of Sepsis

Transmission at a Referral Hospital in Germany

Epidemic curve of MDR Ab infection at Univerity Saarland Hospital

Source: Greg Deye, LRMC

Antibiotic Susceptibility

Source: Greg Deye and Wade Aldous, LRMC

RMC Admission Skin Isolates

Abx	2003 %S	2004 %5	р
Amp	2.083333	0	0.213
Gent	65.57377	32.76836	0.0001
T/S	64.58333	40.11299	0.0032
Cipro	68.85246	36.15819	0.0001
Amp/Sul	56.25	36	0.0475
Ceftaz	49.15254	25	0.001
Imi	97.91667	90.22989	0.1316
Pip	54.09836	28.24859	0.0005
TCN	70.96774	51.42857	0.0513
Tobr	73.77049	44	0.0001
Cefepime	51.6129	37.5	0.1646
Levoflox	65.71429	38.85714	0.0047
Amikacin	100	100	1
Meropenem	100	87.80488	0.5689 25

Source: Greg Deye and Wade Aldous, LRMC

Case-Control Study of ICU **Admissions With and Without** Ab Bloodstream Infections

Variable	Odds Ratio	p-value
Transport>48 hrs	n/a	0.01
FST exposure	2.7	0.13
Baghdad	2.8	0.07
Antibiotic use	2.0	0.20
IED	0.8	0.80
Intubated	2.6	0.06
Blood products	5.0	0.00
Civilian	3.0	0.08

Acinetobacter Cultures at Selected Stages in the Military Healthcare System

27

Comparing "Success"

- Different culturing practices
 - Sites: Nares, wound, skin
 - Number of cultures
 - Access to culture capability
 - Culturing technique
 - Time to culture
 - Laboratory practices
- Uncertain relative contribution of nosocomial transmission, control measures throughout the MHS

Concordance Data

- Comparison of LRMC and WRAMC culture concordance from May to July 2005
- LRMC rates
 - Positive on admission = 4.0% (25/623)
 - Positive on discharge = 8.7% (13/149)
 - ICU patients on admission = 4.6% (8/176)
 - ICU patients on discharge = 8.3% (6/72)
- LRMC study group
 - Positive on admission = 3.6% (3/84)
 - Positive on discharge = 11.1% (4/36)
 - ICU admission = 4.2% (3/72)
 - ICU discharge = 10.7% (3/28)
- WRAMC study group, n=89
 - Positive on admission = 14.6% (13/89)
 - Axilla 10.1% (8/79)
 - Groin 12.3% (9/73)
 - ICU patients at LRMC = 66% (59/89)

Concordance Data, LRMC Admission vs. Discharge Skin Surveillance Cultures, May-July 2005

	D/C Cx +	D/C Cx -	Total
Admit Cx +	5	4	9
Admit Cx -	8	132	140
Total	13	136	149

McNemar's test, p=0.25

Kappa=0.41

LRMC Overall admission rate= 4.0% This study = 6.0%

Concordance Data, LRMC Discharge vs. WRAMC Admission,

Skin Surveillance Cultures, May-July 2005

	WRAMC Admit +	WRAMC Admit -	Total
LRMC D/C +	2	2	4
LRMC D/C -	2	30	32
Total	4	32	36

McNemar's test, p=1.0

Kappa=0.44

Note: 78% were ICU patients at LRMC (28/36)

Concordance Data, WRAMC Groin vs. Axilla Admission,

Skin Surveillance Cultures, May-July 2005

	Groin Cx +	Groin Cx -	Total
Axilla Cx +	4	4	8
Axilla Cx -	5	50	55
Total	9	54	63

fection Control Challenges

- Lack of hand hygiene products and sinks
 - 40-60% compliance with hand washing
- Shortage of gowns
- Repeated shortages of antibiotics
- Cohorting of patients to achieve infection control
- Retroactive vs. proactive
 - Wait for lab positives rather than up front isolation

Control Measures

- Surveillance
- Education
- Isolation
 - Not described in literature for GNRs (MRSA only)
 - No clear APIC, SHEA guidelines
 - MDR Pseudomonas clearly not transmitted person/person
 - MDR Acinetobacter-strong evidence of person-person and surfaces
- Decontamination
- Hand washing enforcement
- Barrier precautions
- Appropriate antibiotic use and guidelines
- Topical medications aimed at elimination?
- Cohort patients
- Shut down infected units

Source: NCID, CDC Website

Campaign to Prevent Antimicrobial Resistance

Centers for Disease Control and Prevention

National Center for Infectious Diseases Division of Healthcare Quality Promotion

Clinicians hold the solution!

12 Steps to Prevent Antimicrobial Resistance: Hospitalized Adults

Prevent Infection 1. Vaccinate

- 2. Get the catheters out

Diagnose and Treat Infection **Effectively**

- 3. Target the pathogen
- 4. Access the experts

Use Antimicrobials Wisely

- 5. Practice antimicrobial control
- 6. Use local data
- 7. Treat infection, not contamination
- 8. Treat infection, not colonization
- Know when to say "no" to vanco
- 10. Stop treatment when infection is p cured or unlikely

Transmission

- 11. Isolate the pathogen
- 12. Break the chain of contagion

Source: NCID, CDC Website

raft HICPAC Isolation Guideline: Intensified MDRO Prevention Interventions

- Evidence of ongoing transmission
- Prevalence of target MDRO has exceeding institutional goals
- First case of epidemiologically important MDRO

Recommendations

- A dedicated IC practitioner at all level III and higher
- Standardized IC practices in place at all level III and higher facilities.
- Standardized surveillance with one technique (ax/groin) for all inpatients coming from theater for all MTFs, including level III. This implies microbiology capability able to support this surveillance.
- Standardized reporting requirement all level III and higher
- Improved documentation at all levels of care
- Inspection or reporting mechanisms where compliance with these measures will be verified

Conclusions

- A. baumannii is causing significant clinical disease
 - Once established, it is difficult to eradicate
 - Nosocomial spread and deaths have occurred
- Optimal Infection Control practices critical
- Field setting
 - Dedicated assets in field settings
 - Surveillance and lab capabilities in field setting
- MHS wide
 - Standardize surveillance for more meaningful comparisons