

Introdução à Programação

Licenciatura em Engenharia Informática

Trabalho: 2ª parte

2020/2021

Sopa-de-Letras

O trabalho de programação que vos é proposto em IP é em torno do jogo *Sopa-de-Letras*. Cada partida de *Sopa-de-Letras* é jogada numa quadrícula como a da figura, onde estão "escondidas" várias palavras. Em cada jogada, o jogador seleciona um conjunto de posições contíguas da quadrícula. Se as letras nessas posições formam uma das palavras escondidas, essa palavra é considerada encontrada. No exemplo ao lado, podemos ver que já foram encontradas três palavras. O jogo pode ser jogado com tempo limitado ou sem tempo, caso em que apenas termina quando todas as palavras escondidas foram encontradas.

A l'afase do trabalho serviu para se familiarizarem com o jogo. Na 2ª fase, o objetivo é implementar as principais funcionalidades do jogo, como se descreve abaixo.

Em que consiste o trabalho, afinal?

Nesta fase vamos considerar que a quadrícula está preenchida com letras e que temos de procurar certas palavras que se encontram escondidas nas linhas e nas colunas da quadrícula. A quadrícula é representada internamente no programa por uma matriz de caracteres enquanto que as palavras escondidas são representadas por *Strings*. Uma jogada, que consiste num conjunto de posições contíguas da quadrícula todas na mesma linha ou coluna, é representado por um vetor com quatro inteiros: linha e coluna da posição inicial e linha e coluna da posição final. Por exemplo, a representação de uma das jogadas feitas no jogo que é mostrado na figura é [14,6,14,14] e as letras nestas posições (na ordem inversa) formam uma das palavras escondidas —JULGADORA— pelo que essa palavra está assinalada como "encontrada".

A vossa tarefa é desenvolver código Java que permita a um jogador jogar uma partida de *Sopa-de-Letras*. O programa deve ser capaz de: obter um puzzle, constituído por uma quadrícula e a lista de palavras que estão escondidas, e validar que este é válido; ler, validar e registar as jogadas.

Mais concretamente, devem implementar uma classe WordSearch que inclua:

- Uma função boolean isHidden(char | board, String word) que, assumindo que board é uma matriz e word!=null, verifica se word está escondida em alguma linha ou coluna de board, na ordem normal ou invertida.
- Uma função boolean isValidGame(char | board, String | hiddenWords) que, assumindo que board é uma matriz e hiddenWords!=null, verifica se para todo 0≤i<hiddenWords.length, a palavra hiddenWords[i] está escondida em board, isto é, isHidden(board, hiddenWords[i]).
- Uma função boolean isValidMove(int[] move, int rows, int columns) que assumindo que move!=null, rows>0 e columns>0, verifica se move tem quatro elementos e são efetivamente

linhas e colunas da quadrícula de dimensão **rows** x **columns** e definem posições contíguas todas na mesma linha ou na mesma coluna, representadas da esquerda para a direita se estiverem na mesma linha e de cima para baixo se estiverem na mesma coluna.

- Um procedimento int readMove(Scanner sc, int rows, int columns), que lê uma jogada através do canal dado. Se o que é lido for uma jogada válida para uma quadrícula de dimensão rows x columns, então o procedimento retorna um vetor com a jogada; caso contrário, deve ser enviada uma mensagem de erro para o ecrã e lida de novo a jogada.
 Assumindo que sc!=null, rows > 0 e columns > 0, o procedimento assegura que o vetor
 - Assumindo que sc!=null, rows > 0 e columns > 0, o procedimento assegura que o vetor retornado é uma jogada válida, i.e., isValidMove(\result, rows, columns).
- Uma função String findWord(char □ board, int □ move, String □ hiddenWords) que verifica se alguma das palavras escondidas foi encontrada na jogada move. A função retorna essa palavra ou null se não tiver sido encontrada nenhuma palavra. A função deve assumir que board é uma matriz, isValidGame(char □ board, String hiddenWords), e isValidMove(move, board.length, board[0].length).
- Um procedimento void printPuzzle(char | board, String hiddenWords) que deve imprimir a quadrícula e o número de palavras que ele tem escondidas. A função deve assumir que board é uma matriz e hiddenWords!=null.

Adicionalmente, a classe **WordSearch** deve ser programada de forma a ser possível executar o programa da seguinte forma

\$ java WordSearch <pathToTextFileWithPuzzle>

onde <pathToTextFileWithPuzzle> é o caminho para um ficheiro de texto com o puzzle num formato apropriado para ser lido recorrendo à classe PuzzleReader fornecida. Recorrendo ao construtor e métodos desta classe, às funções e procedimentos listados anteriormente e eventualmente a outros que considere apropriados definir, a implementação do método main da classe WordSearch deve:

- I. obter o puzzle do ficheiro dado
- 2. verificar que o puzzle lido é válido
- 3. se for inválido o programa deve terminar com uma mensagem apropriada
- 4. caso contrário, deve imprimir a quadrícula e o número de palavras que tem escondidas
- 5. até todas as palavras escondidas no puzzle terem sido adivinhadas,
 - deve ler, validar e registar cada jogada;
 - deve imprimir as palavras encontradas e o número de palavras ainda escondidas;
- 6. quando o jogo terminar, deve imprimir uma mensagem apropriada.

Utilizando o ficheiro Puzzle.txt fornecido, a execução do programa deve ser semelhante ao exemplificado abaixo, onde o texto introduzido pelo utilizador está representado a castanho e negrito.

\$ java WordSearch Puzzle.txt

	ı	2	3	4	5	6	7	8	9	10	П	12	13	14	15
ı	٧	J	F	Ρ	1	Q	Н	0	Z	Р	Υ	Е	Χ	Χ	Χ
2	Υ	S	J	R	Ε	Ν	1	D	0	S	٧	٧	Ε	W	Ν
3	0	X	F	0	В	1	F	J	Κ	W	F	М	Κ	Н	٧
4	٧	Χ	Ρ	G	٧	Μ	С	Ô	Ν	Χ	F	0	0	Μ	J
5	Ν	Μ	Ρ	R	Τ	G	R	Χ	R	F	٧	1	В	R	Α
6	Κ	F	Κ	Α	0	В	Υ	0	Μ	Μ	Н	F	Ε	В	Χ
7	٧	Υ	L	Μ	Μ	Z	Α	D	Z	Υ	Α	Χ	Ν	F	J
8	Q	Μ	U	Α	Κ	Κ	Q	Н	Μ	Χ	F	Т	G	Υ	W
9	R	Ν	G	С	Α	٧	Α	J	R	F	Χ	G	Ε	Q	Т
10	Κ	U	Α	Α	Υ	F	Ν	Q	W	L	Α	Q	Ν	С	G
П	Α	Ρ	D	0	U	D	Ν	Т	Q	Ε	Μ	Т	Н	0	Α
12	В	1	Α	Н	S	1	J	Ρ	Ν	Α	Χ	1	Α	Z	Υ
13	٧	Q	Α	U	L	Ν	0	G	G	J	F	Н	R	Р	С
14	Α	С	I	Т	Α	Μ	R	0	F	Ν	1	G		Χ	F
15	S	Т	Υ	Χ	D	Ν	С	0	Q	0	Н	Q	Α	I	U
16	D	G	D	Q	Н	Χ	L	R	G	R	J	D	I	Р	S
17	G	W	Ν	Α	L	0	R	D	0	S		U	R	1	L
18	Z	Ε	R	W	W	٧	L	٧	D	В	Н	F	L	U	٧
19	G	1	0	Н	Μ	Н	Ν	С	Ε	Ε	Κ	Е	W	Κ	U
20	Α	W	L	D	S	F	Ν	Χ	R	0	٧	Α	Н	J	W

Hidden words: 4

Give your move: 9 5 9 8 Found words: JAVA Hidden words: 3

Give your move: 10 5 10 18 Your move is invalid.

Give your move: 6 13 15 13 Found words: JAVA ENGENHARIA

Hidden words: 2

Give your move: 11 4 1 4 Your move is invalid.

Give your move: 1 4 11 4

Found words: JAVA ENGENHARIA PROGRAMACAO

Hidden words: 1

Give your move: 14 1 14 11

Found words: JAVA ENGENHARIA PROGRAMACAO INFORMATICA

Hidden words: 0

Good work. All hidden words were found.

O que entrego?

O ficheiro **WordSearch. java** com a solução. Não há relatório a entregar porque o vosso software é a vossa documentação. Assim, não se esqueçam de comentar condignamente a vossa classe. Devem incluir no início da classe um cabeçalho *javadoc* com @author (nome e número dos alunos que compõem o grupo). Para cada procedimento/função definidos há que preparar um cabeçalho incluindo a sua descrição, e, se for caso disso, @param, @requires, @ensures e @return. Apresentem um texto "limpinho", que siga as normas de codificação em Java, bem alinhado e com um número de colunas adequado. Consultem, na página da disciplina, o *Guia de Estilo Java para IP*.

Como entrego o trabalho?

Um dos alunos do grupo entrega o trabalho através da ligação que, para o efeito, existe na página da disciplina no *moodle*. O prazo de entrega é dia 13 de Dezembro às 23h55.

Quanto vale o trabalho?

Esta 2ª parte do trabalho é cotada para 7.5 valores e irá somar às notas das outras duas partes.