IEE239 - Procesamiento de Señales e Imágenes Digitales

Laboratorio 02 - Guía Práctica Martes, 18 de abril del 2017

Horario: 07M2.

Duración: 2 horas 30 minutos.

Está permitido el uso de material adicional. La evaluación es **estrictamente** personal.

Está terminantemente prohibido copiar código externo (ejemplos de clase, material en línea, etc.).

1. (3 puntos) Se tiene la transformada Z de x[n]:

$$X(z) = \frac{1}{(1 - a_1 z^{-1})(1 - a_2 z^{-1})}$$

- a. Considerando que x[n] es causal, hallar analiticamente x[n], usando fracciones parciales e incluir la respuesta en comentarios. Calcular su ROC. Describir graficamente su espacio de muestras.
- b. Sabiendo que $a_1 = 0.5$ y $a_2 = 0.3$ graficar polos y zeros. Usar la función **zplane()**. ¿Qué se puede afimar sobre la BIBO estabilidad del sistema cuya respuesta al impulso corresponde a x[n]?
- c. Considerar la señal y[n]:

$$y[n] = a_1^n u[n] + a_2^n u[-1 - n];$$

- i. Hallar analiticamente Y(z).
- ii. Sabiendo que $a_1 = 0.4$ y $a_2 = 1.2$, graficar polos y zeros. Usar la función **zplane()**. ¿Qué se puede afimar sobre la BIBO estabilidad del sistema representado por la respuesta al impulso y[n]?
- iii. Asumiendo que $\hat{y}[n]$ es una secuencia finita donde M=1024, realizar lo siguiente:

$$\hat{y}[n] = \begin{cases} a_1^n u[n] + a_2^n u[-1 - n], -M \le n \le M \\ 0, \text{ Otros casos} \end{cases}$$

- a. Generar la secuencia $\hat{y}[n]$ y calcular de forma analítica su transformada Z. Describir graficamente su espacio de muestras y obtener su diagrama de polos y ceros.
- b. Demostrar con simulaciones que $\hat{y}[n]$, al ser FIR, se puede obtener la salida del sistema a partir de convolución. Para ello calcular la convolución entre $\hat{y}[n]$ y un escalor unitario. Luego filtrar el escalon unitario con los coeficientes de $\hat{y}[n]$ con la función **filter()**. Considerar el escalon unitario u[n-128], con $n \in \{0, ..., 1023\}$. Comparar ambos resultados y comentar si se cumple la condición.
- 2. (3 puntos) Dado el siguiente sistema:

- a. Hallar la función de transferencia del sistema, en su forma de fracciones parciales, para ello calcular el polinomio del numerador y el denominador de forma analítica. Luego hallar las fracciones parciales usando la función **residuez()**.
- b. Con los coeficientes del numerador y denominador graficar el diagrama de polos y zeros. Usar la función **zplane()**.
- c. Dado que se tiene $x_c(n)$, de 2 segundos de duración.

$$x_c(t) = \sin(10\pi t) + \sin(5\pi t)$$

- i. Discretizar la señal $X_c(t)$ y calcular $x_1[n]$, para ello considerar una frecuencia de muestreo 100Hz. Describir graficamente su el espacio de muestras y calcular espectro de magnitud. Usar la función **espectrodemag()**.
- ii. Discretizar la señal $X_c(t)$ y calcular $x_2[n]$, para ello considerar una frecuencia de muestreo 10Hz. Describir graficamente su el espacio de muestras y calcular espectro de magnitud. Usar la función **espectrodemag()**.¿Qué que se puede comentar conrepecto a la pregunta anterior.
- iii. Hallar la convolución entre $x_1[n]$ y la respuesta al impulso del sistema presentado en la pregunta 2. Graficar el resultado, y[n], en espacio de muestras y en espectro de magnitud. Usar la función **espectrodemag()** para graficar el espectro de magnitud.
- 3. (4 puntos) Se tiene la señal h[n]:

$$h[n] = \begin{cases} (1/A)^n, 0 \le n \le M \\ 0, & \text{Otros casos} \end{cases}$$

a. Calcular de forma analítica la transformada de Z de h[n] Asumiemdo que |A| > 1. Luego, evaluar H(z) para z en el círculo unitario: $z = e^{j\omega}$.

Por teoría, se sabe que la transformada de Fourier en tiempo discreto corresponde a la transformada z evaluada en el círculo unitario. Por lo tanto, su expresión corresponde a:

$$H(e^{j\omega}) \triangleq \sum_{n=-\infty}^{+\infty} x[n]z^{-n} \Big|_{z=e^{j\omega}}$$

b. A partir de la expresión $H(e^{j\omega})$ obtenida en el inciso anterior, evaluar su espectro de magnitud $|H(e^{j\omega})|$ para posiciones $\omega = \frac{2\pi k}{N}, \ k \in \{0, \dots, N-1\}$. Para ello, considerar $M=1024, \ A=8$ y N=4096.

c. Se tiene la señal k[n]:

$$k[n] = \begin{cases} (1/B)^n, 0 \le n \le M/2\\ 0, \text{ Otros casos} \end{cases}$$

- i. Se pide calcular $Y(e^{j\omega})$, que es la transformada Z de y[n], evaluada con $z=e^{j\omega}$ en el circulo unitario. Para ello calcular las transformadas Z de K(z) y H(z), y calcular su producto punto. Graficar el espectro de magnitud: $|Y(e^{j\omega})|$. Considerar para k[n], $M=1024,\ B=4$ y 4096 muestras de ω en el rango de $-\pi \leq \omega \leq \pi$.Y mantener los valores de h[n] de la pregunta 3b.
- ii. Alternativamente, usando la propiedad de convolución, calcular $\hat{Y}(e^{j\omega})$, por medio de la convolución entre k[n] y h[n] usando el comando $\mathbf{conv}()$. Luego, evaluar Y(z) para z en el círculo unitario: $z=e^{j\omega}$ y hallar $Y(e^{j\omega})$. Y a partir de la expresión $Y(e^{j\omega})$ obtenida en el inciso anterior, evaluar su espectro de magnitud $|\hat{Y}(e^{j\omega})|$ para posiciones $\omega=\frac{2\pi k}{N},\ k\in\{0,\ldots,N-1\}$. Considerar $M=1024,\ B=4$ y N=4096. Antes de realizar la transformada de Fourier, recortar la señal producto de la convolución a la longitud de h[n].
- iii. Comprobar que ambos espectros sean simlares.