PTX PULSE DESIGN FOR 7T MRI

Yangyang Xu & Dr.Jin Jin

Introduction

3 magnetic fields in 7T MRI:

(1) B₀ (2) B₁ (3) Gradient

Advantages of High Fields:

- High signal-to-noise ratio (SNR)
- High spatial/temporal resolution Novel contrast mechanisms
- SWI(susceptibility weighted imaging)
- fMRI

Challenges of High Fields:

- Inhomogeneity of B₁
- · SAR effects

Solutions for Challenges:

- Parallel Transmission (pTx)
- 1) B_1 shimming (magnitude-pahse & phase-only)
 - 2) kT-spoke (gradient control)

Project Objectives:

- A MATLAB app that helps researchers focus on experiments rather than coding
- An efficient, user friendly, expandable, and editable MATLAB app
- This MATLAB app includes the B₁ shimming solutions, drawing region of interest, and simulation results of the B₁ shimming solutions

Methods – Shimming solutions B₁ without any shim schemes

$$B_1^+ = \frac{B_x + iB_y}{2}$$

Amplitude-phase shim

$$B_1^+ = \sum_{k=1}^n (B_1^+)_k \omega_k e^{i\theta k} \qquad \omega_k = |\omega_k| e^{i\theta k}$$

Phase-only shim

$$B_1^+ = \sum_{k=1}^n (B_1^+)_k e^{i\theta k}$$

kT-spoke shim

 $w = argmin_w\{||B_1^+(w, g)| - b||_2^2 + \lambda F(w)\}$

MLS can be used to optimise any shim schemes:

$$w = argmin_{w}\{|||B_{1}^{+}(w)| - b||_{2}^{2} + \lambda F(w)\}$$

B1 Shimming efficiency

$$\eta = \frac{average{\|B_1^+\|}^2}{average{\|B_{p_1}^+\|}^2} = \frac{w^H \Gamma w}{w_p^H \Gamma w_p}$$

B1 inhomogeneity

$$RMSE = \sqrt{average\Delta \|B_1^+\|^2}$$

$$Inhomogeneity = \frac{RMSE}{average\|B_1^+\|}$$

B_1^+	RF field	B_{p1}^+	Phase-only filed
B_{x} , B_{y}	x, y component s in RF field	Γ	correlation matrix
i	$\sqrt{-1}$	ω_k	amplitude
k	k-th channel	$e^{i\theta k}$	phase

Methods - MATLAB App

Results

MLS shimming within ROI | Phase-only shimming within ROI | Lumbar Spine | Lumbar

Layer 6
Layer

Conclusion:

Small ROIs can achieve better efficiency, but phaseonly has the best efficiency. The MLS improves the homogeneity.

School of Information Technology & Electrical Engineering