Лабораторная работа №3

Тема: «Циклы. Вычисление суммы ряда»

Цель работы: исследовать сходимость рядов, влияние точности вычисления на производительность алгоритмов

Выполнение работы

- 1. Согласно индивидуальному заданию (приложение I) разработайте алгоритм вычисления суммы ряда. При этом обратите внимание на недопустимость вычисления через вспомогательные функции степеней и факториалов.
- 2. Разработайте подпрограмму, которая выводит в файл результат вычисления суммы ряда с заданной точностью в виде таблицы (см. табл.1) так, чтобы диапазон изменения аргумента мог быть задан пользователем, но при этом не выходил за пределы интервала сходимости ряда, и количество значений аргумента равнялось 20. Значение точности и вычисляемую функцию укажите в заголовке файла (первая строка файла). При формировании таблицы также сформируйте строку заголовков.

Таблица 1. Представление результатов вычисления

№ п/п	x	f(x)	$S(x)=\sum f_i(x)$	Количество		
				слагаемых		
1.	$\mathcal{X}_{Ha^{q}}$	$f(x_{\text{Ha}})$	$S(x_{\text{нач}})$			
2.	$x_{\text{нач}} + x_{\text{шаг}}$	$f(x_{\text{нач}}+x_{\text{шаг}})$	$S(x_{\text{нач}}+x_{\text{шаг}})$			
20.	$\mathcal{X}_{ ext{KOH}}$	$f(x_{\text{KOH}})$	$S(x_{\text{KOH}})$			

3. Разработайте подпрограмму, которая позволит оценить зависимость производительности от точности вычислений для заданных значений *х*. Для этого подпрограмма должна формировать таблицу следующего содержания (табл. 2): Таблица 2. Зависимость производительности от точности

x_1		x_2		<i>x</i> ₃		χ_4		<i>x</i> ₅	
3	N	3	N	3	N	3	N	3	N
10-1		10-1		10-1		10-1		10-1	
10-2		10-2		10-2		10-2		10-2	
10-10		10-10		10-10		10-10		10-10	

где, значения {xi} должны быть заданы в исходном файле INPUT.TXT,

 ϵ – точность вычислений,

N – количество слагаемых.

Результат, полученный в табл. 2 проиллюстрируйте в виде графиков, построенных на одних осях координат.

- 4. Напишите программу вызывающую последовательно разработанные подпрограммы, при этом обе таблицы как результат должны быть записаны в файл OUTPUT.TXT.
- 5. Оформите отчет по работе.

Вариант 1

$$\frac{1}{(1+x)^3} = 1 - \frac{2 \cdot 3}{2} \cdot x + \frac{3 \cdot 4}{2} \cdot x^2 - \frac{4 \cdot 5}{2} \cdot x^3 + \dots,$$
$$x \in (-1, +1)$$

Вариант 2

$$\frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots,$$
$$x \in (-\infty, +\infty)$$

Вариант 3

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2} \cdot x + \frac{1 \cdot 3}{2 \cdot 4} \cdot x^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot x^3 + \dots,$$
$$x \in (-1, +1)$$

Вариант 4

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots,$$

 $x \in (-\infty, +\infty)$

Вариант 5

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots,$$

 $x \in (-1, +1)$

Вариант 6

$$\ln\left(\frac{1+x}{1-x}\right) = 2 \cdot \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots\right),$$

$$x \in (-1, +1)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots,$$
$$x \in (-1, +1)$$

Вариант 8

$$\frac{1}{(1+x)^2} = 1 - 2 \cdot x + 3 \cdot x^2 - 4 \cdot x^3 + 5 \cdot x^4 - \dots,$$
$$x \in (-1, +1)$$

Вариант 9

$$\sqrt{1+x} = 1 + \frac{1}{2} \cdot x - \frac{1}{2 \cdot 4} \cdot x^2 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} \cdot x^3 - \dots,$$

$$x \in (-1, +1)$$

Вариант 10

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{1}{2} \cdot x^2 + \frac{1 \cdot 3}{2 \cdot 4} \cdot x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot x^6 + \cdots,$$
$$x \in (-1, +1)$$

Вариант 11

$$arctg(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} ...,$$

 $x \in (-1, +1)$

Вариант 12

$$\ln\left(x + \sqrt{x^2 + 1}\right) = x - \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots,$$

$$x \in (-1, +1)$$

Вариант 13

$$e^{-x^{2}} = 1 - \frac{x^{2}}{1!} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \dots + (-1)^{N} \frac{x^{2N}}{N!},$$

$$x \in (-\infty, +\infty)$$

Вариант 14

$$sh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots,$$

 $x \in (-\infty, +\infty)$

Вариант 15

$$ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots,$$

$$x \in (-\infty, +\infty)$$

Вариант 16

$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + \dots + \frac{(2N)! \, x^{2N+1}}{4^N (N!)^2 (2N+1)} + \dots,$$
$$x \in (-1, +1)$$

Вариант 17

$$cos^{2}(x) = 1 - \frac{2x^{2}}{2!} + \frac{8x^{4}}{4!} - \frac{32x^{6}}{6!} + \dots + \frac{(-1)^{n}2^{2n-1}x^{2n}}{(2n)!} + \dots,$$
$$x \in (-\infty, +\infty)$$

Вариант 18

$$2^{x} = 1 + x \cdot \ln(2) + \frac{x^{2} \ln^{2}(2)}{2!} + \frac{x^{3} \ln^{3}(2)}{3!} + \frac{x^{4} \ln^{4}(2)}{4!} + \cdots,$$

$$x \in (-\infty, +\infty)$$