Formális nyelvek, 12. gyakorlat

Célja: A környezet-független nyelvek használatával kapcsolatos alapfeladatok begyakorlása

Fogalmak: Szintaxis-fa, legbal és legjobb levezetés, nagy Bar-Hillel lemma, felülről-lefelé és alulról-felfelé elemzés, LL(k), LR(k) nyelvtanok, verem-automaták.

Feladatok jellege: Néhány szintaxis-fa egy konkrét 2. típusú nyelvtanban. Kicsit bonyolultabb nyelvtan esetében (adott szóhoz) a felülről-lefelé és az alulról-felfelé elemzés bemutatása. Konkrét nyelvtanra az LL, LR tulajdonság deteketálása, illetve a nem teljesülés kimutatása. Nagy Bar-Hillel lemma alkalmazása konkrét nyelvre. 1 verem építése a kifejezésekhez, kettő verem a dadogós nyelvhez.

2005/06 II. félév

Formális nyelvek (12. gyakorlat) 2005/06 II. félév

Házi feladatok megoldása

2. feladat

Redukáljuk az előző gyakorlat 3. feladatában kapott VDA-t!

Megoldás:

Nevezzük át az állapotokat, hogy áttekinthetőbb legyen!

Házi feladatok megoldása

1. feladat

Oldjuk meg a következő egyenletrendszert! $a^*b^*X \cup (ba)^*bY \cup b^* = X$ $ba^*X \cup bY \cup a^*b^* = Y$

Megoldás:

$$X = (a^*b^*)^*(b^* \cup (ba)^*bY).$$

A második egyenletbe helyettesítve:

$$(ba^*(a^*b^*)^*(ba)^*b \cup b)Y \cup (ba^*(a^*b^*)^*b^* \cup a^*b^*) = Y$$
, amiből

$$Y = (ba^*(a^*b^*)^*(ba)^*b \cup b)^*(ba^*(a^*b^*)^*b^* \cup a^*b^*).$$

Hasonlóan:

$$X = (a^*b^* \cup (ba)^*b^2b^*a^*)^*((ba)^*bb^*a^*b^* \cup b^*).$$

Formális nyelvek (12. gyakorlat) 2005/06 II. félév 2

Házi feladatok megoldása

2. feladat

Redukáljuk az előző gyakorlat 3. feladatában kapott VDA-t!

Megoldás:

		а	b	С
$\stackrel{\longleftarrow}{\longrightarrow}$	1	2	3	4
\leftarrow	2	2	3	4
\leftarrow	3	5	6	7
\leftarrow	4	5	5	4
	5	5	5	5
\leftarrow	6	5	6	7
\leftarrow	7	5	8	7
	8	5	8	9
\leftarrow	9	5	8	9

$$\stackrel{0}{\sim}: \{1,2,3,4,6,7,9\} \quad \{5,8\}$$

$$\stackrel{1}{\sim}: \{1,2\} \quad \{3,6\} \quad \{4,7,9\} \quad \{5\} \quad \{8\}$$

$$\stackrel{2}{\sim}: \{1,2\} \quad \{3,6\} \quad \{4\} \quad \{7,9\} \quad \{5\} \quad \{8\}$$

$$\stackrel{3}{\sim}=\stackrel{2}{\sim}=\sim$$

b а С 12 36 12 5 36 36 79 A redukált 5 5 automata: 79 5 8 79 5 5 5 5 79 8

Házi feladatok megoldása

3. feladat

Konstruáljunk (minimális) VDA-t a következő reguláris kifejezéshez! $(a^*b)^*c \cup ab^*c^* \cup a^*$.

Megoldás:

arepsilon NDA					NDA						
		а	b	С	ε				а	b	С
\longrightarrow	q_1	q ₃			q_2, q_5		$\stackrel{\longleftarrow}{\longrightarrow}$	q_1	q_2, q_3, q_6	q 5	q ₇
	q_2	q_2			q 7		\leftarrow	q_2	q_2		
	q_3		q ₃		9 ₄		\leftarrow	q_3		q ₃	q_4
	q_4			q_4	q ₇		\leftarrow	q_4			q_4
	q 5			q_7	9 6			q 5	q_6	q 5	q ₇
	q_{6}	q 6	q 5					q_6	9 6	q 5	
\leftarrow	q_7						\leftarrow	q_7			

Formális nyelvek (12. gyakorlat)

2005/06 II. félév

Házi feladatok megoldása

3. feladat

Konstruáljunk (minimális) VDA-t a következő reguláris kifejezéshez! $(a^*b)^*c \cup ab^*c^* \cup a^*$.

Megoldás:

VDA, redukálás

			а	b	С
$\stackrel{\longleftarrow}{\Longrightarrow}$	P	$\{q_1\}$	$\{q_2, q_3, q_6\}$	{ q ₅ }	$\{q_7\}$
\leftarrow	Q	$\{q_2, q_3, q_6\}$	$\{q_2, q_6\}$	$\{q_3, q_5\}$	$\{q_4\}$
	R	{ q 5}	{ q ₆ }	{ q ₅ }	$\{q_7\}$
\leftarrow	S	$\{q_{7}\}$	{}	{}	{}
\leftarrow	T	$\{q_2, q_6\}$	$\{q_2, q_6\}$	{ q ₅ }	{}
\leftarrow	U	$\{q_3, q_5\}$	{ q ₆ }	$\{q_3, q_5\}$	$\{q_4, q_7\}$
\leftarrow	V	$\{q_4\}$	{}	{}	$\{q_4\}$
	W	{ q 6}	{ q ₆ }	{ q ₅ }	{}
	X	{}	{}	{}	{}
\leftarrow	Y	$\{q_4, q_7\}$	{}	{}	$\{q_4\}$

Formális nyelvek (12. gyakorlat)

2005/06 II. félév

Házi feladatok megoldása

3. feladat

Konstruáljunk (minimális) VDA-t a következő reguláris kifejezéshez! $(a^*b)^*c \cup ab^*c^* \cup a^*$.

Megoldás:

		а	b	С
$\stackrel{\longleftarrow}{\Longrightarrow}$	Р	Q	R	S
\leftarrow	Q	Т	U	٧
	R	W	R	S
\leftarrow	S	Χ	Χ	Χ
\leftarrow	Τ	Т	R	Χ
\leftarrow	U	W	U	Υ
\leftarrow	V	Χ	Χ	٧
	W	W	R	Χ
	Χ	Χ	Х	Χ
\leftarrow	Υ	Χ	Χ	٧

 $\stackrel{0}{\sim}$: {*P*, *Q*, *S*, *T*, *U*, *V*, *Y*} {*R*, *W*, *X*}

 $\stackrel{1}{\sim}: \{P\} \{Q\} \{S\} \{T\} \{U\} \{V,Y\} \{R\} \{W,X\}$

 $\stackrel{2}{\sim}$: $\{P\}\{Q\}\{S\}\{T\}\{U\}\{V,Y\}\{R\}\{W\}\{X\}\}$

 $\stackrel{3}{\sim} = \stackrel{2}{\sim} = \sim$

Tehát csak a V és Y állapotokat lehet összevonni, a minimális automatának 9 állapota van.

Veremautomaták

Veremautomata (1-verem) alatt a következő 7-est értjük:

 $\mathcal{V} = \langle A, T, \Sigma, \delta, a_0, \sigma_0, F \rangle$, ahol

az állapotok (véges) halmaza

egy ábécé, a bemenő ábécé

a verem ábécéje Σ

állapotátmeneti függvény, $\delta: A \times (T \cup \{\varepsilon\}) \times \Sigma \rightarrow 2^{A \times \Sigma^*}$

 $a_0 \in A$ kezdőállapot

 $\sigma_0 \in \Sigma$ a verem kezdőszimbóluma

 $F \subset A$ a végállapotok halmaza.

A veremautomata egy ütemben kiolvassa a központi egység állapotát, az input szó aktuális szimbólumát és a verem tetőelemét, ennek függvényében új állapotba kerül, a verem tetőelemét felülírja egy vagy több jellel, az input szó következő betűjére áll az olvasófej (kivéve ε -mozgás) és a tetőmutató az új tetőelemre áll.

Veremautomaták.

Konfigurációátmenet

Konfiguráció (amitől a veremautomata további működése függ): $[a, v, \alpha], a \in A, v \in T^*, \alpha \in \Sigma^*. a$ az aktuális állapot, v az input szó még olvasatlan része α a verem tartalma.

Az $u \in T^*$ input szóhoz tartozó kezdőkonfiguáció: [a_0, u, σ_0].

Közvetlen konfiguációátmenet: $[a,u,\alpha] \dashv [b,v,\beta]$, ha u=tv, $t \in T \cup \{\varepsilon\}$ és van olyan $\sigma \in \Sigma$, $\gamma, \tau \in \Sigma^*$, hogy $\alpha = \sigma \gamma, \beta = \tau \gamma$, valamint $(b,\tau) \in \delta(a,t,\sigma)$.

Közvetett konfigurációáatmenet: a közvetlen konfigurációátmenet tranzitív, reflexív lezártja, jelölése: -|...

Formális nyelvek (12. gyakorlat)

2005/06 II. félév 9 / 1

Veremautomaták

Példa

1. Feladat

Készítsünk üres veremmel elfogadó veremautomatát a csak az *a* változót tartalmazó helyes kifejezések nyelvéhez!

Megoldás

$$\mathcal{V} = \langle \{q_0, q_1\}, \{a, +, -, *, /, (,)\}, \{\#, (\}, \delta, q_0, \#, \ \rangle.$$

$$\delta(q_0, a, \sigma) = (q_1, \sigma) \quad \forall \sigma \in \{\#, (\}$$

$$\delta(q_0, (, \sigma) = (q_0, (\sigma) \quad \forall \sigma \in \{\#, (\}$$

$$\delta(q_1, t, \sigma) = (q_0, \sigma) \quad \forall \sigma \in \{\#, (\}, t \in \{+, -, *, /\}$$

$$\delta(q_1,), () = (q_1, \varepsilon)$$

$$\delta(q_1, \varepsilon, \#) = (q_1, \varepsilon)$$

Veremautomaták

Elfogadás, determinisztikus veremautomata

 $[a, v, \alpha]$ végállapottal elfogadó konfiguráció: ha $a \in F$ és $v = \varepsilon$.

[a, v, α] üres veremmel elfogadó konfiguráció: ha $v = \alpha = \varepsilon$.

 $\mathcal V$ végállapottal/üres veremmel elfogad egy u szót ha van az u-hoz tartozó kezdőkonfigurációból végállapottal/üres veremmel elfogadó konfigurációba átmenet.

Determinisztikus veremautomata: olyan veremautomata, melyre

- $\forall a \in A, \sigma \in \Sigma, t \in T \cup \{\varepsilon\} : |\delta(a, t, \sigma)| \leq 1$.
- $\forall a \in A, \sigma \in \Sigma : |\delta(a, \varepsilon, \sigma)| \neq 0 \implies \forall t \in T : |\delta(a, t, \sigma)| = 0.$

Formális nyelvek (12. gyakorlat)

2005/06 II. félév 10 / 13

Veremautomaták

Példa

2. Feladat

Készítsünk végállapottal elfogadó veremautomatát a következő L nyelvhez! $L = \{u \in \{a, b, c\}^* \mid u = wcw^{-1}, w \in \{a, b\}^*\}$

Megoldás

$$\mathcal{V} = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle.$$

$$\delta(q_0, t, \#) = (q_1, t\#) \quad \forall t \in \{a, b\}
\delta(q_1, t_1, t_2) = (q_1, t_1 t_2) \quad \forall t_1, t_2 \in \{a, b\}
\delta(q_1, c, t) = (q_2, t) \quad \forall t \in \{a, b\}$$

$$\delta(q_2, t, t) = (q_2, \varepsilon) \qquad \forall t \in \{a, b\}$$

$$\delta(q_2,\varepsilon,\#)=(q_3,\#)$$

Veremautomaták

Példa

3. Feladat

Készítsünk végállapottal elfogadó veremautomatát a következő L nyelvhez! $L = \{u \in \{a, b\}^* \mid u = ww^{-1}, w \in \{a, b\}^*\}$

Megoldás

$$\mathcal{V} = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle. \\
\delta(q_0, t, \#) = (q_1, t\#) & \forall t \in \{a, b\} \\
\delta(q_1, t_1, t_2) = (q_1, t_1 t_2) & \forall t_1, t_2 \in \{a, b\} \\
\delta(q_1, t, t) = (q_2, \varepsilon) & \forall t \in \{a, b\} \\
\delta(q_2, t, t) = (q_2, \varepsilon) & \forall t \in \{a, b\} \\
\delta(q_2, \varepsilon, \#) = (q_3, \#)$$

Itt tehát $\delta(q_1, a, a)$ -nak és $\delta(q_1, b, b)$ -nek két értéke van, a veremautomata nem determinisztikus.

Formális nyelvek (12. gyakorlat)

2005/06 II. félév 13 / 17

Nagy Bar-Hillel lemma

Szükséges feltétel egy nyelv 2. típusba tartozására

Nagy Bar-Hillel-lemma

Minden $L \in \mathcal{L}_2$ esetén léteznek p, q > 0 nyelvfüggő egész konstansok (p = p(L), q = q(L)), amelyekre ha $u \in L$, és l(u) > p, akkor u-nak létezik u = xyzvw felbontása, ahol l(yv) > 0, $l(yzv) \le q$ és minden $i \ge 0$ egészre $xy^izv^iw \in L$.

Kevésbé formálisan a lényeget a következőképpen fejezhetjük ki: *L* minden elég hosszú szavában van két, egymáshoz közel lévő, nem triviális, párhuzamosan beiterálható részszó.

Veremautomaták

Összefoglaló

A determinisztikus veremautomaták által elfogadott nyelvek osztálya valódi részhalmaza a veremautomaták által elfogadott nyelvek osztályának.

A végállapottal és az üres veremmel elfogadó veremautomaták által elfogadható nyelvek osztálya megegyezik (bármely veremautomatához készíthető egy másik típusú vele ekvivalens veremautomata).

A veremautomaták által elfogadott nyelvek osztálya megegyezik a 2-es típusú nyelvtanok által generált nyelvek osztályával (\mathcal{L}_2 -vel).

2-vermek: Ezek már minden \mathcal{L}_0 -beli nyelvet el tudnak fogadni, azaz az 1-vermekhez képest már két osztálynyi az ugrás.

Formális nyelvek (12. gyakorlat)

2005/06 II. félév 14 / 17

2005/06 II. félév

Nagy Bar-Hillel lemma

4. Feladat:

$$L = \{a^n b^n a^n \mid n \in \mathbb{N}\} \stackrel{?}{\in} \mathcal{L}_2$$

Megoldás:

Nem. Indirekt, tegyük fel, hogy $L \in \mathcal{L}_2$. Ekkor a Nagy Bar-Hillel lemma szerint léteznek a nyelvfüggő p és q konstansok. Legyen $M = \max\{p, q\}$. Tekintsük az $u = a^M b^M a^M$ szót.

Mivel $\ell(u) > M \ge p$, ezért a Nagy Bar-Hillel lemma szerint létezik az u-nak u = xyzvw felbontása, ahol l(yv) > 0, $l(yzv) \le q \le M = \ell(a^M) = \ell(b^M)$. Tehát vagy x, vagy w tartalmazza a^M -t részszóként. Tegyük fel, hogy x (a másik eset teljesen analóg).

Vizsgáljuk meg, milyen szavakat kapunk y és v párhuzamos beiterálása után. A kettő közül az egyik biztosan nemüres. A kapott szavak $\{xy^izv^iw \mid i>0\}$.

Nagy Bar-Hillel lemma

4. Feladat:

$$L = \{a^n b^n a^n \mid n \in \mathbb{N}\} \stackrel{?}{\in} \mathcal{L}_2$$

Megoldás:(folytatás)

Ha $b^k a^l$ alakű, ahol k, l > 0, akkor a beiterálás során olyan szavakat kapnánk amelyek felváltva *a*-ból és *b*-ből álló blokkokat tartalmaznak. Ha i > 2, akkor ezek a szavak nem lesznek *L*-beliek.

Ha viszont y és v a^k vagy b^k alakú (legalább az egyik kitevő pozitív), akkor az iterációval olyan szavakat kapunk, melyek $a^M b^{M_1} a^{M_2}$ alakúak. Így viszont $i \geq 2$ -re max $\{M_1, M_2\} > M$, azaz a kapott szó ez esetben sem L-beli, tehát a kezdeti, indirekt feltevésünk volt hamis.

Formális nyelvek (12. gyakorlat)

2005/06 II. félév 17

17/17