Machine Learning Stock Advisor

Grant Harrell, Nolan Henderson, Aubrey Trumbo

Background

Predicting stock market movement using ML is a billion dollar industry that can metaphorically print money if done right.

A model that can regularly predict whether a stock will go up or down can remove lots of uncertainty normally associated with trading.

Goals

To create a model that:

- Is trained on one specific stock
- Predicts whether the stock will close higher or lower than the opening value
- Has above 50% success

If there is sufficient time remaining once these goals are met, we hope to train additional stocks with the same criteria

Industry Standard

"Good Predictors" typically have an accuracy of 70% - 95%

LSTM algorithms (RNN) are popular

- Around 93%

Methodology

Features - Close, Volume, Open, High, Low, Date

	Actual_Close	Volume	High	Lou	w Close_	_1 Ope	n_1 Clo	se_2	Open_2	Clo	se_3	Open_3	• • •
985	179.990005	107097600.0	144.440002	138.80000	3 142.05000	03 140.559	998 147.05	0003 14	18.970001	149.92	9993	151.250000	
986	180.009995	124545100.0	147.259995	141.11000	1 144.67999	93 143.330	002 142.05	0003 14	40.559998	147.05	0003	148.970001	1555
987	181.190002	181178000.0	167.970001	157.50999	5 162.13000	05 162.839	996 144.67	9993 14	43.330002	142.05	0003	140.559998	
988	184.759995	126427500.0	170.880005	158.36000	1 170.17999	93 158.960	007 162.13	0005 16	62.839996	144.67	9993	143.330002	1.1
989	177.809998	109815700.0	172.119995	166.36999	5 168.28999	93 168.850	006 170.17	9993 15	58.960007	162.13	0005	162.839996	1
		Open_7	Close_8	Open_8	Close_9	Open_9	Close_10	Open	_10 Year	Month	Day		
	***	172.339996	174.600006	172.550003	171.759995	173.039993	176.880005	172.910	004 2024	5	2		
	***	170.240005	171.050003	172.339996	174.600006	172.550003	171.759995	173.039	993 2024	5	3		
	***	156.740005	161.479996	170.240005	171.050003	172.339996	174.600006	172.550	003 2024	5	6		
	101	157.639999	157.110001	156.740005	161.479996	170.240005	171.050003	172.339	996 2024	5	7		
	***	151.250000	155.449997	157.639999	157.110001	156.740005	161.479996	170.240	005 2024	5	8		

HistGradientBoosting

```
Best Parameters:
{'clf__learning_rate': 0.1,
'clf__max_depth': 7,
'clf__min_samples_leaf': 10}
```


Neural Network

Best parameters: Best parameters: {'clf hidden_layer_sizes' : (4, 4)}

Methodology (cont.)

AdaBoost

```
Best Parameters: {'ada__learning_rate': 1.0,
'ada__n_estimators': 100}
```

Bagging

```
Best Estimator: LogisticRegression

Best Parameters:
{'bagging__base_estimator__C': 10.0,
'bagging__max_features': 1.0,
'bagging__max_samples': 1.0,
'bagging__n_estimators': 50}
```

```
# Define a list of candidate estimators to
evaluate
estimators = [
    ('RandomForest',
RandomForestClassifier()),
    ('SVM', SVC()),
    ('MLP', MLPClassifier()),
    ('KNN', KNeighborsClassifier()),
    ('LogisticRegression',
LogisticRegression())
```

SVM

```
Grid Parameters:
{'clf_kernel': ['linear',
'poly', 'rbf', 'sigmoid']}

Best parameters:
{'clf_kernel': 'linear'}
```


Voting

Our Models

adaBoost - 57%

Gradient Boosting - 75.3%

Support Vector Machine - 84.4%

Neural Network - 93%

Bagging - **94.4**%

The Real Test

How much money does the model actually make?

The Real Test

How much money does the model actually make?

