-PROIECT --ECONOMETRIE -

Analiza econometrica a calitatii vietii in Europa, in anul 2018

Marin Ramona – Alexandra, Grupa 1061, Seria F

Introducere

Tema aleasa este analiza econometrica a calității vieții in Europa, in anul 2018. Motivul alegerii acestei teme este dorinta de documentare in legatura cu acest subiect, fiind acelasi subiect pe care l-am ales si pentru lucrarea de licenta. Analizand o serie de indicatori economici, putem concluziona aspect referitoare la calitatea vietii in tarile din Europa.

Calitatea vietii se refera la bunastarea oamenilor in societate si indica masura in care acestia sunt multumiti de conditiile de trai din tara in care traiesc. Calitatea vietii este un concept multidimensional care include o serie de domenii: conditii materiale de viata, sanatate, munca, locuirea, viata de familie, siguranta. Desi, abordarea calitatii vietii este raportat la nivel individual, aceasta surprinde si relatia pe care o are idividul cu societatea in care traieste. Astfel, tarile dezvoltate sunt caracterizate de niveluri inalte ale satisfactiei fata de viata, populatia fiind multumita de modul in care traieste. Analiza econometrica va fi efectuata prin corelatia care exista intre produsului intern brut, venitul national brut si consumul final, pe un cap de locuitor.

Literatura de specialitate

Fundatia Europeana pentru Imbunatatirea Conditiilor de Viata si de Munca a lansat in anul 2003, Studiul referitor la calitatea vietii in Europa(European Quality of Life Survey-EQLS), in cele 28 de state -UE25 si cele trei state candidate(Bulgaria, Romania, Turcia) care cuprinde mai multe analize realizate cu ajutorul unor indicatori economici, calculati in urma datelor obtinute de la cetatenii tarilor analizate prin intermediul chestionarelor, interviurilor si sondajelor statistice. Aceeasi fundatie realizeaza studii anual in ceea ce priveste calitatea vietii in tarile din Europa si au ca scop descrierea si explicarea calitatii vietii pe toate dimensiuniile sale.

Studii teoretice care analizeaza problema masurarii si compararii calitatii vietii in Europa au fost realizate de **Nussbaum si Sen**(1993), **Diener**(2000), **Diener si Suh**(1997) si **Robeyns**(2005).

De asemenea, **Frisch**, in anul 1998) a calculat scorul satisfacerii vietii ca o suma de ranguri bazate pe satisfacerea in diferite domenii ale vietii. Acesta a sustinut necesitatea evaluarii a calitatii vietii in mai multe domenii: medicina genrerala, psihiatrie, psihologie medicina comportamentala.

Modelul econometric

Analiza calitatii vietii populatiilor din Europa este efectuată utilizând modele econometrice, în special a regresiei liniare simple și multiple.

Ca variabile ale modelului econometric au fost alese:

- variabila dependenta (explicata) \longrightarrow PIB/locuitor, milioane euro (Y).
- variabile independente (explicative):
- \rightarrow venitul national brut/ locuitor, milioane euro (X_1) ;
- \rightarrow consumul final/locuitor, milioane euro (X_2) .

Modelul econometric este:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Sau
$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$$
,

oricare ar fi i- unitate statistica, cu valori de la 1 la n, unde n reprezinta volumul esantionului.

Pentru acest model econometric, consideram o selectie de volum **n=35** tari din Europa pentru care s-au inregistrat valorile variabilelor alese.

Nr_crt	Tara	PIB/per capita (milioane euro) _ Y	venit national brut/ per capita (milioane euro) _ X1	Consum final/ per capita (milioane dolari US)	Consum final/ per capita (milioane euro)_ X2
1	Belgia	133.3	36,811	24258.49	20377.14
2	Bulgaria	26.4	15,361	5644.92	4741.74
3	Republica Ceha	65.7	26,864	11378.04	9557.55
4	Danemarca	172.6	41,005	29712.18	24958.23
5	Germania	133.9	39,049	25476.18	21399.99
6	Estonia	65.0	24,708	10614.01	8915.77
7	Irlanda	222.5	46,331	25207.30	21174.13
8	Grecia	55.4	20,301	16023.31	13459.58
9	Spania	85.2	28,279	18203.81	15291.20
10	Franta	116.1	33,028	23455.20	19702.37
11	Croatia	42.0	19,639	9191.26	7720.66
12	Italia	96.9	30,147	21339.44	17925.13
13	Cipru	81.5	26,945	20254.39	17013.69
14	Letonia	50.0	20,979	9885.22	8303.58
15	Lituania	53.7	24,378	11480.76	9643.84
16	Luxembourg	326.3	51,360	34721.42	29165.99
17	Ungaria	46.0	21,236	8618.79	7239.78
18	Malta	85.8	28,220		0.00
19	Olanda	148.6	40,534	23626.01	19845.85
20	Austria	144.2	39,142	25457.98	21384.70
21	Polonia	42.9	20,976	9729.70	8172.95
22	Portugalia	66.0	23,588	15451.77	12979.49
23	Romania	34.7	19,856	8037.47	6751.48
24	Slovenia	73.2	26,530	14120.92	11861.57
25	Slovacia	54.4	21,546	10894.14	9151.08
26	Finlanda	140.1	34,539	26296.62	22089.16
27	Suedia	153.0	37,725	27315.98	22945.42
28	Islanda	208.3	57,028	27577.20	23164.84
29	Norvegia	230.6	72777.6	40750.27	34230.23
30	Elvetia	242.0	71173.2	41728.02	35051.53
31	Regatul Unit	120.5	32220	28296.66	23769.19
32	Muntenegru	24.8	7081.2	6435.05	5405.44
33	Albania	14.8	4082.4	3793.91	3186.88
34	Serbia	20.3	5384.4	4722.78	3967.13
35	Turcia	26.8	8836.8	8835.95	7422.20

Descrierea variabilelor

• **Produsul intern brut (PIB)** este un indicator macroeconomic care reflectă suma valorii de piață a tuturor mărfurilor și serviciilor destinate consumului final, produse în toate ramurile economiei în interiorul unei țări în decurs de un an.

Formula de calcul:

PIB = Consum + Investitii + Cheltuieli Guvernamentale + Exporturi - Importuri

Sursa date:

https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_PC\$DEFAULTVIEW/default/table?1 ang=en

• **Venitul national brut (VNB)** reprezintă ansamblul veniturilor primare de primit de către unitățile instituționale rezidente: remunerarea angajaților, impozitele pe producție și importuri minus subvențiile, veniturile din proprietate (cele de primit minus cele de plătit), excedentul brut de exploatare și venitul mixt brut.

Formula de calcul:

VNB= PIB – venituri primare de platit pentru unitatile institutionale + venituri primare primate de la restul lumii

Sursa date:

https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_PP/default/table?lang=en

• Consumul final (CF) este suma consumului privat, valoarea bunurilor si serviciilor achizitionate de sectorul privat stric pentru consum si consumul public, valoarea bunurilor si serviciilor produse si achizitionate de institutiile sectorului public pentru a isi desfasura activitatile.

Formula de calcul: $CF = C_{pv} + C_{pb}$

Sursa date: https://data.worldbank.org/indicator/NE.CON.PRVT.PC.KD

Partea I

MODELUL DE REGRSIE LINIARA UNIFACTORIALA (SIMPLA)

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$
 sau $y_i = \beta_0 + \beta_1 x_1 + \epsilon_i$, pentru unitatea statistica i

- variabila dependenta (explicata) este PIB/locuitor, milioane euro (Y);
- variabile independenta (explicativa) este venitul national brut/ locuitor, milioane euro (X_1) ;

Output-ul estimarii modelului de regresie liniara unifactoriala in Excel:

SUMMARY OUTPUT

Regression Statistics

Multiple R	0.9126
R Square	0.8329
Adjusted R Square	0.8278
Standard Error	30.9726
Observations	35

ANOVA

	df	SS	MS	F	Significance F
Regression	1	157751.4552	157751.4552	164.4441	2.27668E-14
Residual	33	31656.9505	959.3015		
Total	34	189408.4057			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-25.4717	11.3009	-2.2540	0.0310
venit national	0.0042	0.0003	12.8236	2.27668E-14
brut/ per capita				
(milioane euro)_X1				

Interpretare SUMMARY OUTPUT:

- **R=0.9126** Valoarea coeficientului de corelatie este foarte apropiata de 1, ceea ce arata ca intre PIB/ loc si venitul national brut/ loc exista o legatura foarte puternica, legatura pusa in evidenta prin modelul de regresie.
- **R**² = **0.8329** (coeficentul de determinatie) La nivelul esantionului de 35 de tari, arata ca 83,29% din variatia totala a variabilei dependente (PIB-ului/ loc) este explicata de variatia totala a variabilei independente (VNB/ loc), iar restul de 16,71% din variatia totala este explicata de anumiti factori reziduali.

Observation	Predicted PIB/per capita (milioane euro)_Y	Residuals	Standard Residuals
1	130.9734	2.3266	0.0762
2	39.8119	-13.4119	-0.4395
3	88.6991	-22.9991	-0.7537
4	148.7978	23.8022	0.7801
5	140.4848	-6.5848	-0.2158
6	79.5362	-14.5362	-0.4764
7	171.4330	51.0670	1.6736
8	60.8067	-5.4067	-0.1772
9	94.7128	-9.5128	-0.3118
10	114.8959	1.2041	0.0395
11	57.9932	-15.9932	-0.5241
12	102.6517	-5.7517	-0.1885
13	89.0434	-7.5434	-0.2472
14	63.6881	-13.6881	-0.4486
15	78.1337	-24.4337	-0.8007
16	192.8061	133.4939	4.3749
17	64.7804	-18.7804	-0.6155
18	94.4621	-8.6621	-0.2839
19	146.7960	1.8040	0.0591
20	140.8801	3.3199	0.1088
21	63.6754	-20.7754	-0.6809
22	74.7763	-8.7763	-0.2876
23	58.9154	-24.2154	-0.7936
24	87.2796	-14.0796	-0.4614
25	66.0978	-11.6978	-0.3834
26	121.3175	18.7825	0.6155
27	134.8579	18.1421	0.5946
28	216.8931	-8.5931	-0.2816
29	283.8299	-53.2299	-1.7445
30	277.0113	-35.0113	-1.1474
31	111.4619	9.0381	0.2962
32	4.6231	20.1769	0.6612
33	-8.1217	22.9217	0.7512
34	-2.5883	22.8883	0.7501
35	12.0843	14.7157	0.4823

Output-ul estimarii modelului de regresie liniar unifactorial in Eviews:

Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO_

Method: Least Squares Date: 04/13/21 Time: 17:42

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-25.47173	11.30089	-2.253958	0.0310
VENIT_NATIONAL_BRUTPER_CAPITA	0.004250	0.000331	12.82358	0.0000
R-squared	0.832864	Mean depend	dent var	102.9571
Adjusted R-squared	0.827799	S.D. depende	ent var	74.63803
S.E. of regression	30.97259	Akaike info cr	iterion	9.759528
Sum squared resid	31656.95	Schwarz crite	rion	9.848405
Log likelihood	-168.7917	Hannan-Quin	in criter.	9.790208
F-statistic	164.4441	Durbin-Watso	on stat	2.123386
Prob(F-statistic)	0.000000			

Estimatiilor parametrilor modelului

Pe baza esantionului de volum n=35 tari, am determinat cu ajutorul softurilor (**Eviews, Excel**) estimatorii $\hat{\beta}_0$ si $\hat{\beta}_1$ ai parametrilor β_0 - intercept si β_1 - panta ai modelului de regresie liniara unifactoriala.

- Astfel, se obtine: $\hat{\beta}_0 = 25.4717$ si $\hat{\beta}_1 = 0.0042$.
- Dreapta de regresie de selectie(la nivelul esantionului) este de ecuatia $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$,

adica: $\hat{y} = 25.4717 + 0.0042 x$.

• Ecuatia de regresie liniara in esantion este $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$,

adica: : $\hat{y} = 25.4717 + 0.0042 x_i$,

unde \hat{y}_i -reprezinta valorile ajustate ale variabilei Y, pentru unitatile statistice i, i ia valori intre 1 si 35,

iar $\hat{\boldsymbol{\varepsilon}}_i = \boldsymbol{y}_i - \hat{\boldsymbol{y}}_i$ sunt reziduurile modelului estimat de regresie(valorile observate ale variabilei eroare $\boldsymbol{\varepsilon}$).

Interpretarea valorilor coeficientilor:

- $\hat{\beta}_0$ intercept, arata nivelul mediu al variabilei dependente la nivelul esantionului daca nivelul variabilei independent ear fi egal cu 0 unitati. Astfel, daca venitul national brut/ loc ar fi egal cu 0 milioane de euro, atunci PIB-ul/ loc ar fi egal cu 25.4717 milioane de euro.
- $\widehat{\boldsymbol{\beta}}_1$ panta dreptei de regresie, arata cu cate unitati se modifica, in medie, la nivelul esantionului, nivelul variabilei depndente, daca nivelul variabilei indepndente creste cu o unitate. Astefl, PIB-ul/ loc creste, in medie, cu 0.0042 mil euro daca venitul national brut/ loc creste cuo unitate, adica cu 1 mil euro.

Testarea validitatii modelului de regresie

Testarea validitatii modelului de regresie liniara simpla, la un nivel de seminificatie de 5%.

• $Y = \beta_0 + \beta_1 X + \varepsilon$ sau $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, oricare ar fi i- unitate statistica.

Ipotezele

- **H**₀: modelul de regresie nu este valid statistic(variabila Y nu este un predictor al variabilei X₁);
- **H**₁: modelul de regresie este valid statistic.

Se considera selectia de volum n=35 tari din populatia statistica si se presupune ca cele sapte ipoteze fundamentale ale modelului sunt verificate si adevarate.

Testul statistic este
$$F = \frac{MSE}{MSR} = \frac{\frac{SSE}{k}}{\frac{SSR}{n-k-1}} \sim \text{Fisher}_{(k,n-k-1)} \Rightarrow F_{\text{calc}} = 164.44;$$

• k= numarul variabilelor explicative, in cazul nostrum, k=1.

Nivelul de semnificatie al testului este $\alpha = 0.05$ sau 5%, iar nivelul de incredere al testului este 1- $\alpha = 0.95$ sau 95%.

Regiunea critica R_c (regiunea de respingere a ipotezei nule H₀) este definita: $\mathbf{F} > \mathbf{F}_{critic}$, unde $\mathbf{F}_{critic} = \mathbf{F}_{\alpha;k;n-k-1}$, in cazul nostru $\mathbf{F}_{critic} = \mathbf{F}_{0.05;1;33} = \mathbf{F.INV.RT}(\mathbf{0.05,1,33})$ (in excel)= 4.14;

Decizia

♣ Deoarece F_{calc} (164.44) > F_{critic} (4.14), inseamna ca F_{calc} apartine regiunii critice R_c , atunci respingem ipoteza nula H_0 la un nivel de semnificatie de 5%, concluzionand ca datele de selectie sunt in favoarea ipotezei alternative H_1 , adica modelul este valid statistic.

Significance F

De asemnea, putem compara valoarea "Siginifcance F" cu valoarea lui α pentru a afla daca modelul este valid statistic. Astfel, in cazul nostru, Significance $F = 2.27E-14=2.27*10^{-14}$, Significance $F < \alpha(0,05)$, rezulta ca respingem ipoteza nula si acceptam ipoteza alternativa. Asadar, modelul de regresie este valid statistic.

Testarea semnificatiei statistice a parametrului panta $\widehat{m{\beta}}_1$

Testarea semnificatiei statistice a parametrului panta $\hat{\beta}_1$ ai modelului de regresie liniara simpla, la un nivel de seminificatie de 5%.

• $Y = \beta_0 + \beta_1 X + \varepsilon$ sau $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, oricare ar fi i- unitate statistica.

Ipotezele:

- \mathbf{H}_0 : $\boldsymbol{\beta}_1 = \mathbf{0}$ (parametru $\boldsymbol{\beta}_1$ nu este semnificativ diferit de 0);
- $\mathbf{H_1}$: $\boldsymbol{\beta_1} \neq \mathbf{0}$ (parametru $\boldsymbol{\beta_1}$ este semnificativ diferit de 0);

Se considera selectia de volum n=35 tari din populatia statistica si se presupune ca cele sapte ipoteze fundamentale ale modelului sunt verificate si adevarate.

Testul statistic: $t = \frac{\hat{\beta}_1 - \beta_1}{se(\hat{\beta}_1)} \sim \text{Student}_{(n-k-1)}$, sub presupunerea ca H₀ este adevarata;

 $\star t_{calc} = 12.82;$

Nivelul de semnificatie al testului este $\alpha = 0.05$ sau 5%, iar nivelul de incredere al testului este 1- $\alpha = 0.95$ sau 95%.

Regiunea critica \mathbf{R}_c (de respingere a ipotezei nule H_0) este definite: $t < -t_{critic}$ sau $t > t_{critic}$, unde $t_{critic} = t_{\alpha/2;n-k-1}$, reprezinta cuantila superioara de ordinul $\alpha/2$ a distributiei Student (n-k-1).

Valoarea lui t_{critic} este returnata in Excel cu ajutorul functiei T.INV.2T(α,n-k-1).

In cazul nostru, $t_{critic} = T.INV.2T(0.05,33) = 2.034$.

Decizia

Lum t_{calc} (12.82) > t_{critic} (2.034), t_{calc} apartine regiunii critice R_c , deci respingem ipoteza nula H_0 la un nivel de semnificatie de 5%, concluzionand ca datele din esantion sunt in favoarea ipotezei alternative H_1 , adica parametrul $β_1$ este semnificativ diferit de 0.

Intervalul de incredere de 95% pentru parametrul β_1

Intervalul de incredere de 95% pentru parametrul $\pmb{\beta}_1$ al modelului de regresie liniara unifactoriala

$$Y = \beta_0 + \beta_1 X + \varepsilon \quad ,$$

sau $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, oricare ar fi i- unitate statistica.

$$CI_{100\cdot(1-\alpha)\%}(\beta_1) = [\hat{\beta}_1 - t_{\frac{\alpha}{2};n-k-1} \cdot se(\hat{\beta}_1) ; \hat{\beta}_1 + t_{\frac{\alpha}{2};n-k-1} \cdot se(\hat{\beta}_1)]$$

In cazul nostru, α =0.05; n-k-1 = 33; $\widehat{\beta}_1$ = 0.0042; se $(\widehat{\beta}_1)$ = 0.0003; $t_{\alpha/2;n-k-1}$ = 2.034.

- $CI_{95\%}(\beta) = [0.0042 2.034 * 0.0003; 0.0042 + 2.034 * 0.0003];$
- $CI_{95\%}(\beta) = [0.0035; 0.0048]$ mil euro
 - \blacksquare Cum intervalul de incredere de 95% determinat pentru parametrul β_1 nu contine valoarea 0, atunci putem spune ca acest parametru este semnificativ diferit de 0.
 - Intervalul [0.0035; 0.0048] $mil\ euro$ acopera, pentru un nivel de incredere de 95%, valoarea adevarata a parametrului β_1 . Adica, daca venitul national brut/ loc creste cu o unitate(1 mil euro), atunci PIB-ul/ loc creste, in medie, cu o valoarea acoperita de intervalul [0.0035; 0.0048] $mil\ euro$, la un nivel de incredere de 95%.

Verificare ipotezelor fundamentale ale modelului clasic de regresie

1) Homoscedasticitatea erorilor aleatoare

-prin metoda grafica

Figura 1. Reziduri vs VNB/ per capita

Figura 2. Reziduri vs valorile estimate prim modelul de regresie ale PIB-ului/per capita

→ Din cele două grafice, Figurile 1 și 2, se observă că valoarea absolută a reziduurilor nu se modifica semnificativ, aproape deloc, pe măsură ce valorile venitului national brut/ per capital cresc, respectiv pe măsură ce valorile ajustate ale PIB-ului/per capita cresc, ceea ce sugerează că ipoteza de homoscedasticitate este îndeplinită, nu există heteroscedasticitate

Figura 4. Pătratele reziduurilor versus valorile estimate prin modelul de regresie ale PIB-ului/per capita

Din cele două grafice, Figurile 3 și 4, se observă că valorile pătratelor rezidurilor nu cresc pe măsură ce valorile venitului national brut/ per capita cresc, respectiv pe măsură ce valorile ajustate ale PIB-ului/per capita cresc, ceea ce sugerează că ipoteza de homoscedasticitate a erorilor este îndeplinită, nu există heteroscedasticitate.

-prin teste statistice

Testul White

Testul White solicită ca, după determinarea reziduurilor din regresia originală, să se estimeze o regresie auxiliară a pătratelor reziduurilor în raport cu o constantă, variabilele explicative ale modelului original, pătratele lor și produsele lor încrucișate.

În cazul nostru, modelul de regresie inițial (original) este un model de regresie liniară unifactorială:

$$PIB_i = \beta_0 + \beta_1 \times VNB_i + \varepsilon_i$$
, unde Y= PIB/per capita si X= VNB/per capita,

Pentru care am retinut seria reziduurilor $\hat{\mathcal{E}}_i$, atunci regresia auxiliara este:

• $\hat{\varepsilon}_i^2 = \alpha_0 + \alpha_1 \cdot x_i + \alpha_2 \cdot x_i^2 + \eta_i$, unde x_i este VNB/per capita si η_i -este o variabila de perturbatie (eroare) care verfica ipotezele asociate modelului clasic de regresie liniara.

Ipotezele testului sunt:

- H_0 : $\alpha_1 = \alpha_2 = 0$ (nu exista heteroscedasticitate sau erorile aleatoare sunt homoscedastice);
- H_1 : exista $\alpha_i \neq 0$ (exista heteroscedasticitate sau erorile aleatoare sunt heteroscedastice);

Testul statistic este: $W = nR_a^2$, urmeaza asimptotic o distributie χ^2 cu gradele de libertate date de numarul de regresori din ecuatia auxiliara (in cazul nostru sunt 2 regresori);

Output-ul din Eviews, testul White:

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity	1		
F-statistic	1.944249	Prob. F(2,32)	0.1596
Obs*R-squared	3.792230	Prob. Chi-Square(2)	0.1502
Scaled explained SS	18.14080	Prob. Chi-Square(2)	0.0001

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 04/27/21 Time: 16:58 Sample: 1 35 Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-427.3379	1810.024	-0.236095	0.8149
VENIT_NATIONAL_BRUTPER_CAPITA	4.74E-07	1.36E-06	0.347396	0.7306
VENIT_NATIONAL_BRUTPER_CAPITA	0.025837	0.105585	0.244705	0.8082
R-squared	0.108349	Mean depend	dent var	904.4843
Adjusted R-squared	0.052621	S.D. depende	ent var	3010.548
S.E. of regression	2930.268	Akaike info cr	iterion	18.88539
Sum squared resid	2.75E+08	Schwarz crite	rion	19.01871
Log likelihood	-327.4944	Hannan-Quir	nn criter.	18.93141
F-statistic	1.944249	Durbin-Watso	on stat	1.860995
Prob(F-statistic)	0.159630			

Dependent Variable: ABSOLUTE_REZIDUURI

Method: Least Squares Date: 05/09/21 Time: 12:41

Sample: 1 35

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.033852	7.990982	0.504801	0.6171
VENIT_NATIONAL_BRUTPER_CAPITA	0.000516	0.000234	2.203573	0.0346
R-squared	0.128269	Mean depend	ent var	19.63903
Adjusted R-squared	0.101853	S.D. depende	nt var	23.10955
S.E. of regression	21.90106	Akaike info cri	terion	9.066393
Sum squared resid	15828.67	Schwarz criter	rion	9.155270
Log likelihood	-156.6619	Hannan-Quin	n criter.	9.097073
F-statistic	4.855735	Durbin-Watso	n stat	1.713717
Prob(F-statistic)	0.034642			

Ecuatia de regresie auxiliara estimata este:

$$\hat{\varepsilon}_i^2 = -427.3379 + x_i + 4.74 \cdot 10^{-7} \cdot x_i^2$$

- ♣ W_{calc} = n · R_a² = obs * R − squared = 3.79 , cu probabilitatea asociata Prob. Chi-Square(2)= α =0.1502.
- \star $\chi^2_{critic} = \chi^2_{\alpha;df} = \chi^2_{0,05;2} = 5.99$, returnata de functia = CHISQ.INV.RT(0.05,2) in Excel:

Decizia

Lum $W_{calc} < \chi^2_{critic}$ si Prob Chi-Square(2) = 0.1502 > 0.05 (α), rezulta ca nu avem motive sa respingem ipoteza nula H_0 , deci erorile aleatoare sunt homoscedastice, nu exista heteroscedasticitate.

Testul Glejser

Dintre formele functionale liniare in parametrii porpuse de Glejer, incepem cu estimarea modelului:

$$\hat{\varepsilon}_i = \lambda_0 + \lambda_1 x_i + v_i,$$

Ipotezele testului sunt:

- H_0 : $\lambda_1 = \lambda_2 = 0$ (nu exista heteroscedasticitate, adica exista homoscedasticitate);
- H_1 : exista $\lambda_1 \neq 0$ (exista heteroscedasticitate);
- Ecuatia estimata de regresie este: $|\hat{\epsilon}_i| = 4.033852 + 0.000516 \text{ VNB/per cap}_i$
- se= (7.990982) (0.000234)
- $R^2 = 0.128269$
 - ♣ Coeficientul panta $λ_1$ este semnificativ statistic deoarece t-Statistic=2.203 si Probvalue= 0.0346 (<0.05), deci erorile aleatoare ale modelului original de regresie sunt heteroscedastice.

Output-ul din Eviews, testul Glejer:

Heteroskedasticity Test: Glejser Null hypothesis: Homoskedasticity

F-statistic	Prob. F(1,33)	0.0346
Obs*R-squared	Prob. Chi-Square(1)	0.0341
Scaled explained SS	Prob. Chi-Square(1)	0.0097

Test Equation: Dependent Variable: ARESID Method: Least Squares Date: 05/09/21 Time: 12:54 Sample: 135 Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA	4.033852 0.000516	7.990982 0.000234	0.504801 2.203573	0.6171 0.0346
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.128269 0.101853 21.90106 15828.67 -156.6619 4.855735 0.034642	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	19.63903 23.10955 9.066393 9.155270 9.097073 1.713717

🖶 Rezultatul aplicarii testului Glejer este ca exista heteroscedasticitate, desi testul White a demonstrat contrariul, vom considera ca exista o urma de heteroscedasticitate care trebuie sa fie corectata.

Non-autocorelarea erorilor aleatoare

Figura 1. Diagrama de imprastiere: PIB/per cap versus Venit national brut/per cap

Figura 2. Evolutia celor doua serii de timp, PIB-ul si VNB,in perioada analizata

Figura 3. Evolutia seriei reziduurilor $\hat{\varepsilon}_t$.

Figura 4. Diagrama de imprastiere a seriei reziduurilor curente $\hat{\mathcal{E}}_t$ verusu reziduurile decalate $\hat{\mathcal{E}}_{t-1}$

♣ Deoarece valorile reziduurilor sunt distribuite in mod aleator de o parte si de alta a axei orizontaele, fara sa apara un model anume, erorile aleatoare nu sunt autocorelate. (figura 3)

Diagrama de impratsiere sugereaza sa consideram modelul de regresie liniara simpla:

•
$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$

Outuput-ul de estimare pentru modelul de regresie:

•
$$\hat{y}_t = -25.47173 + 0.004250x_t$$

Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO__Y Method: Least Squares Date: 05/15/21 Time: 13:56 Sample: 1 35 Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA	-25.47173 0.004250	11.30089 0.000331	-2.253958 12.82358	0.0310 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.832864 0.827799 30.97259 31656.95 -168.7917 164.4441 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	102.9571 74.63803 9.759528 9.848405 9.790208 2.123386

Testul Durbin- Watson

-verifica daca exista autocorelare de ordinul intai in seria reziduurilor.

-se estimeaza parametrii modelului de regresie prin MCMMP si se obtin reziduurile $\hat{\varepsilon}_t$.

Ipotezele testului sunt:

• H_0 : $\rho = 0$ (nu exista autocorelarea erorilor);

• $H_1: \rho \neq 0$ (exista autocorelarea erorilor);

Statistica testului DW:

$$DW = \frac{\sum_{t=2}^{n} (\hat{\varepsilon}_{t} - \hat{\varepsilon}_{t-1})^{2}}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}.$$

$$\hat{\rho} = \frac{\sum_{t=1}^{n} \hat{\mathcal{E}}_{t} \cdot \hat{\mathcal{E}}_{t-1}}{\sum_{t=1}^{n} \hat{\mathcal{E}}_{t}^{2}}$$
, unde p este **coefientul de selectie**

Si

Decizie:

 \perp Cum DW \approx 2 si p \approx 0, rezulta ca nu exista autocorelatie.

Observation	Residuals (ε̂_t)	ε̂_t - ε̂_t-1	(ε̂_t - ε̂_t-1)^2	(ε̂_t)^2	ε̂_t *ε̂_t-1
1	2.3266			5.41	
2	-13.4119	15.7384	247.6979	179.88	-31.20
3	-22.9991	9.5873	91.9155	528.96	308.46
4	23.8022	-46.8014	2190.3671	566.55	-547.43
5	-6.5848	30.3871	923.3749	43.36	-156.73
6	-14.5362	7.9514	63.2242	211.30	95.72
7	51.0670	-65.6032	4303.7771	2607.84	-742.32
8	-5.4067	56.4736	3189.2696	29.23	-276.10
9	-9.5128	4.1062	16.8605	90.49	51.43
10	1.2041	-10.7170	114.8531	1.45	-11.45
11	-15.9932	17.1973	295.7480	255.78	-19.26
12	-5.7517	-10.2415	104.8873	33.08	91.99
13	-7.5434	1.7916	3.2100	56.90	43.39
14	-13.6881	6.1448	37.7580	187.36	103.25
15	-24.4337	10.7456	115.4680	597.01	334.45
16	133.4939	-157.9277	24941.1456	17820.63	-3261.75
17	-18.7804	152.2743	23187.4608	352.70	-2507.06
18	-8.6621	-10.1183	102.3800	75.03	162.68
19	1.8040	-10.4660	109.5378	3.25	-15.63
20	3.3199	-1.5159	2.2981	11.02	5.99
21	-20.7754	24.0953	580.5825	431.62	-68.97
22	-8.7763	-11.9991	143.9787	77.02	182.33
23	-24.2154	15.4392	238.3677	586.39	212.52
24	-14.0796	-10.1358	102.7342	198.24	340.94
25	-11.6978	-2.3818	5.6729	136.84	164.70
26	18.7825	-30.4803	929.0492	352.78	-219.71
27	18.1421	0.6404	0.4101	329.14	340.75
28	-8.5931	26.7352	714.7720	73.84	-155.90
29	-53.2299	44.6368	1992.4460	2833.43	457.41
30	-35.0113	-18.2186	331.9185	1225.79	1863.65
31	9.0381	-44.0494	1940.3519	81.69	-316.44
32	20.1769	-11.1388	124.0733	407.11	182.36
33	22.9217	-2.7448	7.5338	525.40	462.49
34	22.8883	0.0334	0.0011	523.87	524.64
35	14.7157	8.1726	66.7906	216.55	336.82

SUM((ε̂_t - ε̂_t-1)^2)	67219.9160
SUM((ε̂_t)^2)	31656.95
DW	2.123385699

SUM((ɛ̂_t * ɛ̂_t-1)	-2063.99
SUM((ε̂_t)^2)	31656.95
р	-0.06

SAU

-se determina, pentru nivelul se semnificatie de 1%, valorile cristice $d_1(dL)$ si $d_2(dU)$;

-din tabelul valorilor critice ale statisticii Durbin-Watson, pentru un nivel de semnificatie de 1%, n=35(volumul esantionului) si k=1(o singura variabila explicativa), se gasesc $d_1(dL)=1,195$ si $d_2(dU)=1,307$.

Regiunea 1	Regiunea 2	Regiunea 3	Regiunea 4	Regiunea 5
0	d_1	l_2 4-	$-d_2$ 4-a	d_1 4
Respingem H₀ și	Indecizie; se	Nu respingem H ₀ ,	Indecizie; se	Respingem H₀ și
acceptăm H_1 , $\rho > 0$.	recomandă aplicarea	erorile sunt	recomandă aplicarea	acceptăm H_1 , $\rho < 0$.
	altui test.	necorelate.	altui test.	

♣ Regiunea in care se incadreaza DW(calc)=2,12 este **Regiunea 3**, deoarece

1,307< DW< 4-1,307, rezulta ca nu respingem ipoteza nula H₀, deci nu exista autocorelare de ordinul 1, erorile sunt necorelate.

Testul Breusch-Godfrey

-acest test se foloseste pentru detectarea autocorelarii de ordin superior lui 1, in seria reziduurilor.

Ipotezele testului sunt:

- H_0 : $\rho_1 = \rho_2 = \cdots = \rho_r$ (erorile nu sunt autocorelate, nu exista autocorelare de ordin r a erorilor aleatoare)
- $H_1: \rho_i \neq 0, i \in \{1, 2, ..., r\}$ (exista autocorelare de ordin r a erorilor aleatoare)

-vom aplica testul Breusch-Godfrey pentru autocorelarea de ordin $\ r=2.$

-se estimeaza parametrii modelului de regresie initial prin MCMMP si se obtin reziduurile $\hat{\varepsilon}_t$.

-se considera un model de regresie auxiliar:

 $\hat{\varepsilon}_t = \alpha_0 + \alpha_1 x_{t,1} + \alpha_2 x_{t,2} + ... + \alpha_k x_{t,k} + \rho_1 \hat{\varepsilon}_{t-1} + \rho_2 \hat{\varepsilon}_{t-2} + ... + \rho_r \hat{\varepsilon}_{t-r} + v_t$, unde v_i este o variabila de perturbatie care verifica ipotezele asociate modelului clasic de regresie liniara.

In cazul nostru,
$$\hat{\varepsilon}_t = \alpha_0 + \alpha_1 x_t + \rho_1 \hat{\varepsilon}_{t-1} + \rho_2 \hat{\varepsilon}_{t-2} + v$$

Statistica testului este: $LM = n \cdot R_{aux}^2$, care urmeaza o distributie χ^2

F-statistic	0.367278	Prob. F(2,31)	0.6956
Obs*R-squared	0.810141	Prob. Chi-Square(2)	0.6669

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 05/15/21 Time: 18:27 Sample: 135 Included observations: 35

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA RESID(-1) RESID(-2)	1.681727 -6.18E-05 -0.087557 -0.137441	12.11060 0.000361 0.190772 0.180473	0.138864 -0.171131 -0.458964 -0.761559	0.8905 0.8652 0.6495 0.4521
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.023147 -0.071387 31.58409 30924.19 -168.3819 0.244852 0.864345	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-1.83E-14 30.51371 9.850394 10.02815 9.911755 2.024679

-modelul auxiliar de regresie estimat este:

•
$$\hat{\varepsilon}_t = 1.68 - (6.18E - 05)x_t - 0.087\hat{\varepsilon}_{t-1} - 0.137\hat{\varepsilon}_{t-2}$$

- ♣ Pe baza rezultatelor output-ului din EViews, putem afirma ca parametrii ρ_1 si ρ_2 nu sunt semnificativ statistic deoarece avem p-value> 0.05, pentru un nivel de semnificatie de 5 %.
- Valoarea calculcata a statisticii testului: $LM = n \cdot R_{aux}^2 = \text{obs* R-squared} = 0.810141;$
- Valoarea critica a testului: $\chi^2_{critic} = \chi^2_{a;df} = \chi^2_{0,05;2} = 5.991464547;$

(valorea crtica este calculata in Excel cu ajutorul functiei =CHUSQ.INV.RT(0,05;2).

Decizia:

♣ Cum LM(calc) < 5,99, rezulta ca nu respingem ipoteza nula , deci nu exista autocorelare a erorilor modelului de regresie.

Normalitatea erorilor aleatoare

- -aplicam **Testul Jarque-Bera(JB)** privind distributia normala a erorilor;
- -acest test calculeaza mai intai coeficientul de asimetrie(Skewness) si coeficientul de boltire(Kurtosis) pentru reziduurile obtinute prin MCMMP.

Ipotezele testului sunt:

- H₀: Reziduurile provin dintr-o distributie normala (S=0 si K=3), unde S= Skewness; K= Kurtosis;
- H_1 : Reziduurile provin dintr-o distributie normala.

Output din EViews:

Jarque-Bera= 146,11 si Probability=0.000

Decizia:

♣ Deoarece JB=146,11 > x_{critic}^2 (3,84) si de asemenea, probabilitatea asociata statisticii

JB < 0.05, respingem H_0 , in favoarea ipotezei alternative, adica reziduurile nu provin dintr-o distributie normala.

Diagrama Q-Q Plot pentru erorile aleatoare

♣ Se observa ca punctele sunt putin deviate de la linia dreapta, ceea ce indica o distributie putin anormala, dar se apropie de o distributie normala.

Corectarea modelului de regresie

-pentru corectarea heteroscedasticitatii erorilor aleatoare, vom aplica metoda celor mai mici patrate – ponderata;

-consideram ca dispersiile erorilor σ_i^2 sunt necunoscute;

a)-presupunem ca dispersia erorilor este proportionala cu patratul unei variabile explicative;\

$$\bullet \quad \sigma_i^2 = \sigma^2 \cdot x_i^2 \; ,$$

atunci modelul de regresie $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ se imparte prin x_i ;

-se obtine:
$$\frac{y_i}{x_i} = \beta_0 \frac{1}{x_1} + \beta_1 + \frac{\varepsilon_i}{x_i}$$

Output-ul estimarii modelului de regresie obtinut dupa impartire este:

Dependent Variable: PIB_Y/VNB_X

Method: Least Squares Date: 05/20/21 Time: 17:15

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 1//NB_X	0.003245 -0.972974	0.000227 3.266676	14.29288 -0.297848	0.0000 0.7677
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002681 -0.027541 0.000927 2.84E-05 195.7817 0.088714 0.767686	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.003196 0.000915 -11.07324 -10.98437 -11.04256 2.299167

- ♣ Modelul de regresie nu este valid statistic, deoarece probabilitate Prob(F-statistic) este egala cu 0,76 < 0,05. Deci, presupunerea ca dispersia erorilor este proportionala cu patratul unei variabile explicative nu este relevanta.
- b) -presupunem ca dispersia erorilor este proportionala cu o variabila explicative, adica

$$\bullet \quad \sigma_i^2 = \sigma^2 \cdot x_i \; ,$$

atunci modelul de regresie $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ se imparte prin $\sqrt{x_i}$;

-se obtine:
$$\frac{y_i}{\sqrt{x_i}} = \beta_0 \cdot \frac{1}{\sqrt{x_i}} + \beta_1 \frac{x_i}{\sqrt{x_i}} + \frac{\varepsilon_i}{\sqrt{x_i}} \implies \frac{y_i}{\sqrt{x_i}} = \beta_0 \cdot \frac{1}{\sqrt{x_i}} + \beta_1 \sqrt{x_i} + \frac{\varepsilon_i}{\sqrt{x_i}}$$
;

Output-ul estimarii modelului de regresie obtinut prin impartire este:

Dependent Variable: PIB_Y/SQR(VNB_X)

Method: Least Squares Date: 05/20/21 Time: 17:36

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
1/SQR(VNB_X) SQR(VNB_X)	-12.26588 0.003813	6.662386 0.000272	-1.841064 14.02984	0.0746 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.658380 0.648028 0.163432 0.881427 14.76447 2.195380	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.552116 0.275475 -0.729398 -0.640521 -0.698718

Testarea validitatii modelului

-deoarece valoarea lui F-statistic nu este afisata, aceasta trebuie calculata.

- SSR=Sum squared resid= 0,881;
- MSR= $(S.E. of regression)^2 = 0.163^2 = 0.0265$;

$$R^2 = \frac{SSE}{SST} \Leftrightarrow R^2 = \frac{SSE}{SSE + SSR}$$
 => $SSE = \frac{R^2}{1 - R^2} \cdot SSR$ => $SSE = 1,695$;

- SST= SSE+SSR=> SST=2,576;
- Verificare SST: (S.D. dependent var) 2 =SST/(n-1) => 0,075=0,075 (A)

-Statistica testului:

$$F_{calc} = \frac{MSE}{MSR} = \frac{\frac{SSE}{k}}{\frac{SSR}{n-k}} \implies F_{calc} = 67,8.$$

-cu ajutorul functiei =F.INV.RT(0.05,1,34), aplicata in Excel, obtinem **valoarea critica a testului** F_{critic} = 4,14.

Decizia:

Lum $F_{calc} > F_{critic}$, rezulta ca modelul de regresie, obtinut prin impartirea la $\sqrt{x_i}$ a modelului initial, este valid statistic.

-Verificam daca heteroscedasticitatea a fost eliminata, aplicand testul White.

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	1.569597	Prob. F(2,32)	0.4799
Obs*R-squared		Prob. Chi-Square(2)	0.4562
Scaled explained SS	4.708364	Prob. Chi-Square(2)	0.0950

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/20/21 Time: 18:06 Sample: 1.35 Included observations: 35

Collinear test regressors dropped from specification

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 1/SQR(VNB_X)^2 SQR(VNB_X)^2	-0.019835 193.2357 1.17E-06	0.044009 323.5536 9.83E-07	-0.450710 0.597229 1.188737	0.6552 0.5546 0.2433
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.044846 -0.014852 0.066869 0.143086 46.58111 0.751219 0.479929	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.025184 0.066378 -2.490349 -2.357034 -2.444329 1.760221

- Observand ca valoarea calculata a testului statistic este W_{calc} = Obs* R-squared = 1,59 cu probabilitatea Prob. Chi-Square(2)=0,4562 > 0,05 rezulta ca nu avem motive sa respingem ipoteza nula H_0 , deci erorile aleatoare sunt homoscedastice, nu exista heteroscedasticitate.
- ♣ Asadar, transformarea propusa prin impartire a corectat hetereoscedasticitatea erorilor aleatoare ale modelului original de regresie.

Previzionarea punctuala si prin interval de incredere de 95% a valorii variabilei dependente Y daca variabila explicativa X_1 creste cu 10% fata de ultima valoarea inregistrata, utilizant modelul econometric corectat.

-pentru unitatea statistica: Romania.

• **Valoarea cunoscuta** a variabilei explicative: venit national brut/ per capita este, in 2018, egala cu 19,856 milioane euro. Dupa o crestere de 10% aceasta va fi: x₀=21,841 milioane euro.

Modelul econometric corectat:

- $\frac{y_i}{\sqrt{x_i}} = \beta_0 \cdot \frac{1}{\sqrt{x_i}} + \beta_1 \sqrt{x_i} + \frac{\varepsilon_i}{\sqrt{x_i}}$;
- Estimatiile parametrilor sunt: $\hat{\beta}_0 = -12.265 \text{ si } \hat{\beta}_1 = 0.0038$;
- Dreapta de regresie de selectie, la nivelul esantionului: $\frac{\hat{y}}{\sqrt{x}} = -12.265 \cdot \frac{1}{\sqrt{x}} + 0.0038\sqrt{x}$
- Ecuatia de regresie in esantion: $\frac{\hat{y}_i}{\sqrt{x_i}} = -12.265 \frac{1}{\sqrt{x_i}} + 0.0038 \sqrt{x_i}$

Previzionarea mediei $M(Y|X=x_0=21,841)$

-estimatia punctuala a mediei

•
$$\frac{\hat{y}_0}{\sqrt{x_0}} = -12,265 \frac{1}{\sqrt{x_0}} + 0,0038 \sqrt{x_0}$$

$$\Rightarrow \hat{y}_0 = -12.265 + 0.0038 * 21841$$

$$\Rightarrow \hat{y}_0 = 70.73$$
 milioane euro.

-interval de incredere $100(1-\alpha)\% = 95\%$ al mediei

$$\begin{split} CI_{100\cdot (1-\alpha)\%} \big(M \big(Y \big| X = x_0 \big) \big) &= \\ &= \left[\hat{y}_0 - t_{\frac{\alpha}{2}; n-2} \cdot \hat{\sigma}_{\varepsilon} \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2}}; \, \hat{y}_0 + t_{\frac{\alpha}{2}; n-2} \cdot \hat{\sigma}_{\varepsilon} \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2}} \right] \end{split}$$

In cazul nostru,

•
$$t_{\frac{\alpha}{2};n-2} = 2.03 \text{ (=T.INV.2T(0.05,33))};$$

•
$$\hat{\sigma}_{\varepsilon} = MSR = 95.93$$
;

•
$$\bar{x} = 30,218$$
;

•
$$\sum_{i=n}^{n} (x_i - \bar{x})^2 = 8733,821.$$

•
$$CI_{95\%}(M(Y|X=x_0=21.841))=$$

• =
$$[70.73 - 2.03 \cdot 95.93 \cdot \sqrt{\frac{1}{35} + \frac{107,371}{8733,821}}; 70.73 + 2.03 \cdot 959.3 \cdot \sqrt{\frac{1}{35} + \frac{107,371}{8733,821}}]$$

• =[70.73-38.94; 70.73+38.94]
$$\Rightarrow CI_{95\%}(M(Y|X=x_0=21,841)) = [31.79; 109.67] \text{ milioane euro.}$$

• Astfel, in selectii repetate, 95 din 100 de intervale ca cel obtinut anterior vor acoperi valoarea adevarata a PIB-ului/per capita mediu al Romaniei, daca VNB/ per capita este egal cu 21,841 milioane euro.

Partea a II-a

MODEL ECONOMETRIC MULTIFACTORIAL

Variabile ale modelului econometric sunt:

- variabile independente (explicative):
- \longrightarrow venitul national brut/ locuitor, milioane euro (X_1) ;
- \rightarrow consumul final/locuitor, milioane euro (X_2).

Modelul econometric este:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Sau
$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$$
,

oricare ar fi i- unitate statistica, cu valori de la 1 la n, unde n reprezinta volumul esantionului.

Output-ul estimarii modelului de regresie liniara multifactoriala in Excel:

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.9266
R Square	0.8586
Adjusted R Square	0.8498
Standard Error	28.9301
Observations	35

ANOVA

	df	SS	MS	F	Significance F
Regression	2	162626.04	81313.02	97.15	2.55384E-14
Residual	32	26782.36	836.95		
Total	34	189408.41			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-25.4924	10.5556	-2.4151	0.0216
X1	0.0027	0.0007	3.8662	0.0005
X2	0.0031	0.0013	2.4133	0.0217

Residual output:		
Observation	Predicted Y	Residuals
1	137.1029	-3.8029
2	30.8472	-4.4472
3	76.9077	-11.2077
4	162.5420	10.0580
5	146.3272	-12.4272
6	69.0728	-4.0728
7	165.4658	57.0342
8	70.9763	-15.5763
9	98.3061	-13.1061
10	124.7366	-8.6366
11	51.6123	-9.6123
12	111.4529	-14.5529
13	99.9444	-18.4444
14	57.0450	-7.0450
15	70.4021	-16.7021
16	203.6157	122.6843
17	54.4896	-8.4896
18	51.3538	34.4462
19	145.6153	2.9847
20	146.5337	-2.3337
21	56.6371	-13.7371
22	78.4581	-12.4581
23	49.2375	-14.5375
24	83.0486	-9.8486
25	61.1824	-6.7824
26	136.1549	3.9451
27	147.4509	5.5491
28	200.6854	7.6146
29	277.4350	-46.8350
30	275.5792	-33.5792
31	134.9809	-14.4809
32	10.3313	14.4687
33	-4.6236	19.4236
34	1.3095	18.9905
35	21.2834	5.5166

Output-ul estimarii modelului de regresie liniara multifactoriala in Eviews:

```
Estimation Command:
-------
LS PIB_PER_CAPITA__MILIOANE_EURO_
                                   Y C VENIT_NATIONAL_BRUT__PER_CAPITA__MILIOANE_EURO____X1
CONSUM_FINAL__PER_CAPITA__MILIOANE_EURO___X2
Estimation Equation:
PIB_PER_CAPITA__MILIOANE_EURO__
                               Y = C(1) + C(2)
*VENIT_NATIONAL_BRUT__PER_CAPITA__MILIOANE_EURO_
*CONSUM_FINAL__PER_CAPITA__MILIOANE_EURO___X2
Substituted Coefficients:
PIB_PER_CAPITA__MILIOANE_EURO____Y = -25.4924270786 + 0.00272311073514
*VENIT_NATIONAL_BRUT__PER_CAPITA__MILIOANE_EURO____X1 + 0.00306004243125
*CONSUM_FINAL__PER_CAPITA__MILIOANE_EURO___X2
Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO____Y
Method: Least Squares
Date: 04/18/21 Time: 14:29
Sample: 135
Included observations: 35
```

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-25.49243	10.55564	-2.415053	0.0216
VENIT_NATIONAL_BRUTPER_CAPITA	0.002723	0.000704	3.866178	0.0005
CONSUM_FINALPER_CAPITAMILIO	0.003060	0.001268	2.413345	0.0217
R-squared	0.858600	Mean depend	dent var	102.9571
Adjusted R-squared	0.849762	S.D. depende	ent var	74.63803
S.E. of regression	28.93007	Akaike info cr	iterion	9.649456
Sum squared resid	26782.36	Schwarz crite	rion	9.782772
Log likelihood	-165.8655	Hannan-Quin	n criter.	9.695477
F-statistic	97.15411	Durbin-Watso	on stat	2.042596
Prob(F-statistic)	0.000000			

Interpretare SUMMARY OUTPUT, din Excel:

- **R=0.9266** -> Valoarea coeficientului de corelatie este foarte apropiata de 1, ceea ce arata ca intre PIB/ loc si venitul national brut/ loc si consumul final/ loc exista o legatura foarte puternica, legatura pusa in evidenta prin modelul de regresie liniara multifactoriala.
- **R**² = **0.8586** (coeficentul de determinatie)-> La nivelul esantionului de 35 de tari, arata ca 85,86% din variatia totala a variablei dependente (PIB-ului/ loc) este explicata de variatia totala a celor doua variabile indepndente (VNB/ loc si CF/loc), iar restul de 14,14% din variatia totala este data de factori reziduali.

• Pe coloana "Actual" sunt valorile observate y_i ale variabilei dependente PIB/ loc (Y), pe urmatoare coloana "Fitted" sunt valorile ajustate \hat{y}_i ale variabilei dependente PIB/ loc (Y), ajustate prin modelul de regresie estimata si pe ultima coloana "Residual" sunt reziduurile modelului de regresie estimate $\hat{\varepsilon}_i$, pentru toate unitatile statistice i ale esantionului de volum n= 35 tari.

obs	Actual	Fitted	Residual	Residual Plot
1	133.300	137.103	-3.80292	1 9 1
2	26.4000	30.8472	-4.44720	
3	65.7000	76.9077	-11.2077	[4] [
4	172.600	162.542	10.0580	🕟
5	133.900	146.327	-12.4272	l i≪ i
6	65.0000	69.0728	-4.07283	1 2
7	222.500	165.466	57.0342	1 >
8	55.4000	70.9763	-15.5763	1911
9	85.2000	98.3061	-13.1061	
10	116.100	124.737	-8.63656	I 🏟 I
11	42.0000	51.6123	-9.61229	
12	96.9000	111.453	-14.5529	[[4] [
13	81.5000	99.9444	-18.4444	id(i
14	50.0000	57.0450	-7.04502	[
15	53.7000	70.4021	-16.7021	10-1
16	326.300	203.616	122.684	1 1
17	46.0000	54.4896	-8.48959	1 0
18	85.8000	51.3538	34.4462	>>
19	148.600	145.615	2.98471	
20	144.200	146.534	-2.33366	(4 (
21	42.9000	56.6371	-13.7371	14 1
22	66.0000	78.4581	-12.4581	roj r
23	34.7000	49.2375	-14.5375	(4 (
24	73.2000	83.0486	-9.84861	
25	54.4000	61.1824	-6.78241	
26	140.100	136.155	3.94514	Pa
27	153.000	147.451	5.54912	
28	208.300	200.685	7.61456	الهلا
29	230.600	277.435	-46.8350	et 1
30	242.000	275.579	-33.5792) by 1
31	120.500	134.981	-14.4809	1 6/1
32	24.8000	10.3313	14.4687	ا 👂 ا
33	14.8000	-4.62361	19.4236	լ ֆո
34	20.3000	1.30948	18.9905	الج ا
35	26 8000	21 2834	5.51660	1 6 1
7	<			

Estimatiile parametrilor modelului de regresie liniara multifactoriala

Pe baza esantionului de volum n=35 tari, am determinat cu ajutorul softurilor (**Eviews, Excel**) estimatorii $\hat{\beta}_0$, $\hat{\beta}_1$ si $\hat{\beta}_2$ ai parametrilor β_0 - intercept si β_1 si β_2 - pante ale modelului de regresie liniara multifactoriala.

• Astfel, se obtine: $\hat{\beta}_0 = -25.49$; $\hat{\beta}_1 = 0.0027$; $\hat{\beta}_2 = 0.0031$.

Dreapta de regresie de selectie(la nivelul esantionului) este:

• $\hat{y} = -25.49 + 0.0027X_1 + 0.0031X_2$;

Ecuatia de regresie liniara, in esantion, este $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \hat{\beta}_2 x_{i,2}$,

adica:
$$\hat{y} = -25.49 + 0.0027x_{i,1} + 0.0031x_{i,2}$$

unde \hat{y}_i -reprezinta valorile ajustate ale variabilei Y, pentru unitatile statistice i, i ia valori intre 1 si 35,

iar $\hat{\boldsymbol{\varepsilon}}_i = \boldsymbol{y}_i - \hat{\boldsymbol{y}}_i$ sunt reziduurile modelului estimat de regresie(valorile observate ale variabilei eroare $\boldsymbol{\varepsilon}$).

Interpretarea paramterilor ai modelului de regresie estimat liniar multifactorial

- $\widehat{\boldsymbol{\beta}}_0$ = -25.49, este estimatorul parametrului β_0 , numit intercept sau termen liber, care arata, pe baza datelor din esantion, nivelul mediu al variabilei dependente atunci cand nivelul tuturor variabilelor independente este egal cu 0 unitati. Daca venitul national brut si consumul national brut ar fi egal cu 0 mil euro, atunci PIB-ul/ loc mediu estimat este de 25.49 mil euro(acest parametru nu are intotdeauna o interpretare economica).
- $\widehat{\boldsymbol{\beta}}_1 = 0.0027$, este parametrul panta corespunzator variabilei X_1 (VNB/ loc). Daca variabila X_1 creste cu o unitate(1 mil euro) si nivelul consumului final/per capita ramane constant sau nemodificat, PIB-ul/loc va creste, in medie, cu 0.0027 mil euro.
- $\widehat{\boldsymbol{\beta}}_2 = 0.0031$, este parametrul panta corespunzator variabilei X_2 (CF/ loc). Daca variabila X_2 creste cu o unitate(1 mil euro) si nivelul venitului national brut/per capita ramane constant sau nemodificat, PIB-ul/loc va creste, in medie, cu 0.0031 mil euro.

Multicoloniaritatea variabilor explicative

Modelul de regresie 1

-este un model multifactorial cu k=2 variabile explicative: $\mathbf{y_i} = \boldsymbol{\beta_0} + \boldsymbol{\beta_1 x_{i,1}} + \boldsymbol{\beta_2 x_{i,2}} + \boldsymbol{\epsilon_i}$;

Output-ul de estimare pentru modelul de regresie 1:

Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO____Y

Method: Least Squares Date: 05/16/21 Time: 11:06

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA CONSUM_FINALPER_CAPITAMILIO	-25.49243 0.002723 0.003060	10.55564 0.000704 0.001268	-2.415053 3.866178 2.413345	0.0216 0.0005 0.0217
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.858600 0.849762 28.93007 26782.36 -165.8655 97.15411 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	102.9571 74.63803 9.649456 9.782772 9.695477 2.042596

- Rezultatele estimarii modelului de regresie 1 arata ca Venitul Nation Brut si Consumul Final, impreuna, explica 85,86% din variatia PIB-ului.
- Deoarece p-value(Prob) pentru cei doi parametrii panta (β_1 , β_2): 0,0027 si 0,003< 0,05, rezulta ca acestia sunt semnificativ statistic. De asemenea, Prob(F-Statistic) este mai mica decat nivelul de semnificatie 0,05, ceea ce inseamna ca modelul de regresie este valid statistic.

Detectarea multicoliniaritatii pe baza coeficientilor de corelatie dintre variabilele explicative

	Correlation						
	Α	В	С	D			
1		PIB_PER_C	VENIT_NATI	CONSUM_FINAL_			
2							
3	PIB_PE	1.000000	0.912614	0.890254			
4	VENIT	0.912614	1.000000	0.898240			
5	CONS	0.890254	0.898240	1.000000			

- ♣ Intre variabilele X₁ si X₂ exista o legatura liniara directa puternica deoarece coeficientul de corelatie liniara Pearson este destul de apropiat de valoarea 1.
- \leftarrow Cum $r_{x1,x2} = 0.89$, rezulta ca variabilele X_1 si X_2 sunt corelate foarte puternic.

Model de regresie 2

-regresam variabila X_2 in raport cu variabila $X_{1;}$

Dependent Variable: CONSUM_FINAL__PER_CAPITA__MILIOANE_EURO

__X2

Method: Least Squares Date: 05/16/21 Time: 11:10

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA	6.765066 0.498962	1449.170 0.042499	0.004668 11.74047	0.9963 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.806835 0.800982 3971.774 5.21E+08 -338.6770 137.8387 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	15084.84 8903.036 19.46726 19.55614 19.49794 1.817572

- $\hat{x}_{i,2} = 6.765066 + 0.498962 x_{i,2}$
- F-Statistic= 137.8387 cu Prob(F-Statistic) < 0.05
- DW= 1.817572
- $R^2 = 0.806$
- lacktriangle Ecuatia de regresie arata ca exista coliniaritate puternica intre variabilele X_2 si X_1 .

Criteriul factorului de inflatie a variantei(Variance Inflationary Factor)

- -coeficientul de determinatie R_j^2 ;
- -calcularea factorului de inflatie al variantei: $VIF = \frac{1}{1 R_j^2}$;

Output-ul din EViews pentru VIFX2 al modeluluide regresie 2:

	Value
VIFX2	5.176929

↓ Cum VIFX2= $5,177 \in [5,10)$, rezulta ca multicoloniaritatea este moderata.

Output-ul din EViews pentru VIFX2 si VIFX1 al modelului de regresie 2:

Variance Inflation Factors Date: 05/16/21 Time: 12:19

Sample: 135

Included observations: 35

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C VENIT_NATIONAL_B CONSUM_FINALP	111.4215	4.659488	NA
	4.96E-07	24.12182	5.176929
	1.61E-06	20.47606	5.176929

Eliminarea multicoliniaritatii

-pentru a elimina multicoliniaritatea, vom elimina una din variabile coloniare, deoarece nu se pot logaritma datele care au valori negative.

Modelul de regresie 4:

-regresam variabila Y in rapot cu variabila X₁

Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO____Y

Method: Least Squares Date: 05/16/21 Time: 12:36

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENIT_NATIONAL_BRUTPER_CAPITA	-25.47173 0.004250	11.30089 0.000331	-2.253958 12.82358	0.0310 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.832864 0.827799 30.97259 31656.95 -168.7917 164.4441 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	102.9571 74.63803 9.759528 9.848405 9.790208 2.123386

♣ Comparand Prob(p-value) pentru variabila X₁ din modelul de regresie 4 cu cel din modelul de regresie initial multifactorial(1), se observa ca parametrul panta corespunzator variabilei X₁ este mai semnidicativ.

Model de regresie 5:

-regresam variabila Y in rapot cu variabila X₂;

Dependent Variable: PIB_PER_CAPITA__MILIOANE_EURO____Y

Method: Least Squares Date: 05/16/21 Time: 12:36

Sample: 135

Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CONSUM_FINALPER_CAPITAMILIO	-9.626825 0.007463	11.59981 0.000665	-0.829912 11.22834	0.4126 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.792551 0.786265 34.50627 39292.52 -172.5731 126.0755 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	102.9571 74.63803 9.975604 10.06448 10.00628 1.937222

- ♣ Comparand Prob(p-value) pentru variabila X₂ din modelul de regresie 5 cu cel din modelul de regresie initial multifactorial(1), se observa ca parametrul panta corespunzator variabilei X₁ este cu mult mai semnidicativ.
- ♣ Cele doua modele de regresie 4 si 5 arata ca, in cazul multicoliniaritatii, eliminarea unei variabilei va face ca cealalta variabila explicativa sa fie mai semnificativa statistic.

Verificarea indeplinirii ipotezelor fundamentale ale modelului clasic de regresie liniara

1. Heteroscedasticitatea erorilor aleatoare(ipoteza I3)

-pentru detectarea heteroscedasticitatii, vom aplica **testul White**, in EViews;

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic		Prob. F(5,29)	0.0863
Obs*R-squared		Prob. Chi-Square(5)	0.0908
Scaled explained SS	43.57612	Prob. Chi-Square(5)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/16/21 Time: 13:03 Sample: 135 Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	969.0195	1600.379	0.605494	0.5496
X1^2	-1.08E-05	6.94E-06	-1.562293	0.1291
X1*X2	2.31E-05	1.95E-05	1.182839	0.2465
X1	0.307654	0.184245	1.669808	0.1057
X2^2	6.02E-06	1.45E-05	0.416384	0.6802
X2	-0.803507	0.398985	-2.013875	0.0534
R-squared	0.271322	Mean dependent var		765.2104
Adjusted R-squared	0.145688	S.D. dependent var		2572.506
S.E. of regression	2377.742	Akaike info criterion		18.54049
Sum squared resid	1.64E+08	Schwarz criterion		18.80713
Log likelihood	-318.4587	Hannan-Quinn criter.		18.63254
F-statistic	2.159619	Durbin-Watson stat		1.884566
Prob(F-statistic)	0.086348			

Ecuatia de regresie auxiliara estimata este:

 $\hat{\varepsilon}_i^2 = 969.0195 + 0.307 * X_1 - (1.08 E - 05) * X_1^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - 0.803 * X_2 - (6.02 E - 06) * X_2^2 + (2.31 E - 05) * X_1 X_2 - (2.31 E - 05)$

Valorea calculata a testului statistic F=F-Statistic= 2.15, cu probabilitatea asociata Prob F.=0.08>0,05;

Valoarea calculata a testului statistic $W_{calc} = n \cdot R_a^2 = obs * R - squared = 9.49$, cu probabilitatea asociata Prob. Chi-Square(5)= α =0.0908>0.05.

• $\chi^2_{critic}=\chi^2_{\alpha;df}=\chi^2_{0,05;5}$ = 11.07 , returnata de functia = CHISQ.INV.RT(0.05,5) in Excel;

Decizia

- ♣ Pentru ca probabilitatile asociate Prob F=0.08 si Prob Chi-Square(5) = 0.0908 sunt mai mari decat nivelul de semnificatie de 0.05, nu respingem ipoteza nula si acceptam H1.
- + De asemenea, $W_{calc} < \chi^2_{critic}$, rezulta ca nu avem motive sa respingem ipoteza nula H_0 , deci erorile aleatoare sunt homoscedastice, nu exista heteroscedasticitate.

2. Autocorelarea erorilor aleatoare

Testul Breusch-Godfrey

-acest test se foloseste pentru detectarea autocorelarii de ordin superior lui 1, in seria reziduurilor.

Ipotezele testului sunt:

- H_0 : $\rho_1=\rho_2=\cdots=\rho_r$ (erorile nu sunt autocorelate, nu exista autocorelare de ordin r a erorilor aleatoare)
- $H_1: \rho_i \neq 0, i \in \{1, 2, ..., r\}$ (exista autocorelare de ordin r a erorilor aleatoare)
- -vom aplica testul Breusch-Godfrey pentru autocorelarea de ordin r=2.
- -se estimeaza parametrii modelului de regresie initial prin MCMMP si se obtin reziduurile $\hat{\varepsilon}_t$.

-se considera un model de regresie auxiliar:

 $\hat{\varepsilon}_i = \alpha_0 + \alpha_1 x_{i,1} + \alpha_2 x_{i,2} + ... + \alpha_k x_{i,k} + \rho_1 \hat{\varepsilon}_{i-1} + \rho_2 \hat{\varepsilon}_{i-2} + ... + \rho_r \hat{\varepsilon}_{i-r} + v_i$, unde v_i este o variabila de perturbatie care verifica ipotezele asociate modelului clasic de regresie liniara.

• In cazul nostru,
$$\hat{\varepsilon}_t = \alpha_0 + a_1 x_{t1} + a_2 x_{t2} + \rho_1 \hat{\varepsilon}_{t-1} + \rho_2 \hat{\varepsilon}_{t-2} + \rho_3 \hat{\varepsilon}_{t-3} + v$$

Statistica testului este: $LM = n \cdot R_{aux}^2$, care urmeaza o distributie χ^2 .

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 3 lags

F-statistic	Prob. F(3,29)	0.7579
Obs*R-squared	Prob. Chi-Square(3)	0.7121

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 05/16/21 Time: 13:27

Sample: 135

Included observations: 35

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-1.432411	11.52741	-0.124261	0.9020
X1	-0.000300	0.000857	-0.350356	0.7286
X2	0.000693	0.001570	0.441113	0.6624
RESID(-1)	0.013499	0.191086	0.070642	0.9442
RESID(-2)	0.167486	0.220173	0.760701	0.4530
RESID(-3)	-0.143609	0.194102	-0.739861	0.4653
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.039207 -0.126447 29.78793 25732.30 -165.1655 0.236682 0.943085	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		8.10E-15 28.06629 9.780888 10.04752 9.872929 2.013420

-modelul auxiliar de regresie estimat este:

$$\hat{\varepsilon}_t = -1.432 - 0.0003x_{t1} + 0.00069x_{t2} + 0.0134\hat{\varepsilon}_{t-1} + 0.167\hat{\varepsilon}_{t-2} - 0.143\hat{\varepsilon}_{t-3}$$

- ♣ Se poate observa, din output-ul din EViews, ca niciunul dintre parametrii modelului auxiliar nu sunt semnificativ statistic deoarece avem p-value(Prob) mult mai mare decat 0,05.
- Valoarea calculata a testului este: $LM = n \cdot R_{aux}^2 = \text{obs* R-squared} = 1,3722;$
- Valoarea critica a testului este: $\chi^2_{critic} = \chi^2_{\alpha;df} = \chi^2_{0,05;3} = 7,814;$

(valorea crtica este calculata in Excel cu ajutorul functiei = CHUSQ.INV.RT(0,05;3).

Decizia:

↓ Cum LM(calc) < 7,814, rezulta ca nu respingem ipoteza nula, deci nu exista autocorelare a erorilor modelului de regresie.

3. Normalitatea erorilor aleatoare

-aplicam **Testul Jarque-Bera(JB)** privind distributia normala a erorilor;

-acest test calculeaza mai intai coeficientul de asimetrie(Skewness) si coeficientul de boltire(Kurtosis) pentru reziduurile obtinute prin MCMMP.

Ipotezele testului sunt:

- H₀: Reziduurile provin dintr-o distributie normala (S=0 si K=3), unde S= Skewness; K= Kurtosis;
- H_1 : Reziduurile provin dintr-o distributie normala.

Output din EViews:

Jarque-Bera= 156,48 si Probability=0.000

♣ Deoarece JB=156,48 > x_{CritiC}^2 si in plus, probabilitatea asociata statisticii JB < 0,05, respingem H₀, in favoarea ipotezei alternative, adica reziduurile nu provin dintr-o distributie normala.

Variabila DUMMY

Vom introduce o variabila de tip Dummy, in functie de populatia pe care o are fiecare tara,astfel:

- **D=1**, daca tara respectiva are populatia peste cea medie din Europa;
- **D=0**, daca tara respectiva are populatia sub cea medie din Europa;

Nr_crt	Tara	PIB/per capita (milioane euro) _ Y	Populatia(numar locuitori)	Variabila Dummy
1	Belgia	133.3	11,398,589	0
2	Bulgaria	26.4	7,050,034	0
3	Republica Ceha	65.7	10,610,055	0
4	Danemarca	172.6	5,781,190	0
5	Germania	133.9	82,792,351	1
6	Estonia	65.0	1,319,133	0
7	Irlanda	222.5	4,830,392	0
8	Grecia	55.4	10,741,165	0
9	Spania	85.2	46,658,447	1
10	Franta	116.1	67,026,224	1
11	Croatia	42.0	4,105,493	0
12	Italia	96.9	60,483,973	1
13	Cipru	81.5	864,236	0
14	Letonia	50.0	1,934,379	0
15	Lituania	53.7	2,808,901	0
16	Luxembourg	326.3	602,005	0
17	Ungaria	46.0	9,778,371	0
18	Malta	85.8	475,701	0
19	Olanda	148.6	17,181,084	0
20	Austria	144.2	8,822,267	0
21	Polonia	42.9	37,976,687	1
22	Portugalia	66.0	10,291,027	0
23	Romania	34.7	19,533,481	1
24	Slovenia	73.2	2,066,880	0
25	Slovacia	54.4	5,443,120	0
26	Finlanda	140.1	5,513,130	0
27	Suedia	153.0	10,120,242	0
28	Islanda	208.3	348,450	0
29	Norvegia	230.6	5,295,619	0
30	Elvetia	242.0	8,484,130	0
31	Regatul Unit	120.5	66,273,576	1
32	Muntenegru	24.8	622,359	0
33	Albania	14.8	2,870,324	0
34	Serbia	20.3	7,001,444	0
35	Turcia	26.8	80,810,525	1

Exista diferente intre tarile din Europa in functie de numarul de locuitori(peste medie, sub medie), in ceea ce priveste calitatea vietii, indicata de PIB/per capita(milioane euro)?

-vom considera regresia $PIB_i = \beta_0 + \beta_1 D_i + \varepsilon_i$;

SUMMARY OUTPUT

Regression S	Statistics
Multiple R	0.154145714
R Square	0.023760901
Adjusted R Square	-0.005822102
Standard Error	74.85498937
Observations	35

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4500.514418	4500.514418	0.803194362	0.376631425
Residual	33	184907.8913	5603.269433		
Total	34	189408.4057			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	109.1296296	14.40584942	7.575369313	1.02555E-08	79.82070861	138.4385506	79.82070861	138.4385506
Variabila Dummy	-27.00462963	30.1319959	-0.896211115	0.376631425	-88.30863622	34.29937696	-88.30863622	34.29937696

- $\hat{\beta}_0 = 109,12$, rezulta ca nivelul mediu al PIB-ului/per capita al tarilor cu o populatie sub medie este 109,12 milioane euro.
- $\hat{\beta}_1 = 109,12 27,0046 = 82.1154$, ceea ce inseamna ca nivelul mediu al PIB-ului/per capita al tarilor cu o populatie peste medie este 82,12 milioane euro.

Concluzii

- ♣ In acest proiect, s-a urmarit caracterizarea calitatii vietii in tarile din Europa, analizand econometric legatura dintre trei indicatori economici: produsului intern brut, venitul national brut si consumul final, pe un cap de locuitor.
- → Dupa verificare ipotezelor fundamentale, in ceea ce priveste homoscedasticitatea, autocorelarea si normalitatea erorilor aleatoare, reiese ca datele constituie un model multifactorial destul de omogen.
- ♣ In urma analizei, se poate afirma ca exista o legatura intre cei trei indicatori macroeconomici, adica Produsul Intern Brut este influentat direct de ceilalti doi indicatori macroeconomici: Venitul National Brut si Consumul Final.
- ♣ De asemenea, s-a demonstrat, cu ajutorul variabilei Dummy, ca PIB-ul/per capita al unei tari nu este direct proportional cu numarul locuitorilor acesteia. Din contra, tarile cu o populatie mai mica au avut nivelul mediu al PIB-ului mai mare decat restul, mai exact cu 27 milioane de euro.
- ♣ Concluzionam ca satsifacerea populatiei fata de nivelul de trai este influentata direct de venitul de care acestia beneficiaza in tara lor si ca Produsul Intern Brut poate fi un factor care sa descrie bunastarea unei societati.

Bibiografia

- https://ro.wikipedia.org/wiki/Produs_intern_brut
- http://www.ipe.ro/RePEc/WorkingPapers/cs18_1.pdf
- https://www.macrotrends.net/countries/SRB/serbia/gni-per-capita
- https://scholar.google.ro/scholar?q=European+Quality+of+Life+Survey&hl=ro&as_sdt=0&as_vis=1&oi=scholart
- http://www.iccv.ro/wp-content/uploads/2018/03/Raport-Calitatea-Vietii.pdf
- https://link.springer.com/article/10.1007/s11205-018-1854-y
- https://ec.europa.eu/eurostat/data/database
- Cursuri si seminarii Econometrie anul II, Conf. univ. dr. Mihaela Covrig, Departamentul de Statistica si Econometrie.