Engineering mathematics II Midterm exam., 4/20/2021

This is an open-book test. The total score is 100 points. Please show your computations.

1.(10%) Consider the matrix

$$\underline{\underline{A}} = \left[\begin{array}{cccc} 1 & -3 & 0 & -2 \\ -2 & 3 & -1 & -1 \end{array} \right] .$$

Assume that $\underline{\underline{A}}$ is the augmented matrix corresponding to a system of linear equations. Write down the system of linear equations corresponding to $\underline{\underline{A}}$, and then solve it.

2.(10%) Show that if $\underline{\underline{A}}$ is a 2×2 lower triangular matrix, then $\underline{\underline{A}}^n$ (i.e. product of n items of $\underline{\underline{A}}$) is also a 2×2 lower triangular matrix.

3. Consider the matrix

$$\underline{\underline{A}} = \left[\begin{array}{cc} 2 & -3 \\ -7 & -11 \end{array} \right] \ .$$

- (a). (5%) Find $\underline{\underline{\underline{A}}}^{-1}$ (i.e. the inverse of $\underline{\underline{\underline{A}}}$).
- (b). (10%) Express \underline{A}^{-1} as a product of elementary matrices.

4. Consider the matrix

$$\underline{\underline{A}} = \left[\begin{array}{ccc} 2 & -3 & 1 \\ -7 & 0 & -11 \\ 4 & 5 & 9 \end{array} \right] .$$

- (a). (5%) $\det(\underline{A}) = ?$
- (b). (5%) Find $\underline{\underline{A}}^{-1}$.
- (c). (5%) $\det(\underline{A}^{-1}) = ?$

5.(10%) Let V be the vector space of real functions whose first three derivatives exist. Find the values of α , β , and γ such that $W = \{f|f''' + 2\alpha f'' - 3\beta f' + 5f = \gamma\}$ is a subspace of V.

6. It is known that $\mathcal{P}_2 = \{a + bx + cx^2 | a, b, c \in \mathcal{R}\}$ (i.e. set of polynomials of degrees no greater than 2) with the usual polynomial addition and the usual number-to-polynomial multiplication is a vector space. Let us consider $S = \{1, 1 + x, 1 + x^2\}$ in \mathcal{P}_2 .

- (a). (5%) Show that S is linearly independent.
- (b). (5%) Let us adopt S as an ordered basis for \mathcal{P}_2 . Find the coordinate vector of $2-x+3x^2$ with respect to S.

1

7. Consider the matrix

Its rref (reduced row echelon form) is

- (a). (4%) Find a basis for row-spsce(\underline{A}).
- (b). (4%) Find a basis for column-space(\underline{A}).
- (c). (4%) row-rank(A) = ?
- (d). (4%) column-rank(\underline{A}) = ?
- (e). $(4\%) \text{ rank}(\underline{A}) = ?$
- (f). (5%) Find a basis for null-spsce(\underline{A}).
- (g). (5%) nullity(\underline{A}) = ?