

Challenges: non-model species

Long and linked reads have dramatically decreased the cost of new reference genomes (~US\$ 3k)

A solution for building the extensive databases needed for eDNA?

Low coverage and genotype likelihoods

9

Challenges: biases from reference

Graph based methods hold a lot of promise

More of the same?

Many approaches based on metrics that describe SNP frequencies (especially the Site Frequency Spectrum)

Very challenging to model ascertained data

Whole genomes solve the problem of **ascertainment** present in SNP chips!!!

But does more data mean better answers?

ARTICLE One wave only!

A genomic history of Aboriginal Australia

ARTICLE One wave (but it could have been two...)

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

t list of authors and animations appears at the cité of the paper

LETTER Two waves!

doi:10.1038/nature19792

Genomic analyses inform on migration events during the peopling of Eurasia

A list of authors and affiliations appears at the end of the paper

17

Overview

- Type of data
- Demography
- Selection

More of the same? Selection scans and GWAS already possible with SNP chips Individuals with disease Individuals without disease Individuals without disease Society SNP 1 Individuals with disease Individuals without disease Society SNP 2 Individuals without disease Society SNP 3 Individuals without disease Society SNP 3 Individuals with disease Society SNP 3 Individuals with disease SNP 3 Individual

