

Métodos para ecuaciones no lineales

Mario De León Urbina

Escuela de Matemática

29 de agosto de 2023

0 Contenidos

- Motivación
- 2 Método de bisección
- Método de punto fijo
- 4 Método de Newton-Rhapson
- 6 Método de la secante
- 6 Orden de convergencia

1 Contenidos |2

- Motivación
- 2 Método de bisección
- 3 Método de punto fijo
- 4 Método de Newton-Rhapson
- 6 Método de la secante
- 6 Orden de convergencia

Existen ecuaciones de la forma $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ en las cuales no es posible despejar el valor de x, por ejemplo

$$e^x = \cos(x)$$

lo cual es equivalente a

$$e^x - \cos(x) = 0$$

- en donde tomamos $f(x) = e^x \cos(x)$.
 - > Una solución es x = 0
 - > Otra solución está en [-2, -1]
 - Si se utiliza Geogebra puede verse que ¡hay infinitas intersecciones entre las gráficas!

Gráficamente tenemos la siguiente situación en el intervalo [-2, 1]:

O equivalentemente la siguiente situación:

Ecuaciones de la forma f(x) = 0 en la cual f es una función apropiada $f : \mathbb{R} \to \mathbb{R}$, se quiere encontrar una raíz de dicha función.

- ► Cualquier ecuación no lineal puede expresarse en dicha forma.
- Para ello estudiaremos algunos *métodos iterativos*: dado un valor inicial x_0 se construye una sucesión de números reales

$$\{x_n\}_{n=0}^{\infty} = \{x_0, x_1, x_2, ...\}$$

y la idea es que si la ecuación y el método son adecuados se esperará que

$$\lim_{n\to+\infty} x_n = \xi$$

es decir, que haya convergencia de la sucesión hacia un punto ξ .

2 Contenidos

- Motivación
- 2 Método de bisección
- Método de punto fijo
- 4 Método de Newton-Rhapson
- 6 Método de la secante
- 6 Orden de convergencia

Theorem (Teorema del valor intermedio)

Sea $f : [a, b] \to \mathbb{R}$ continua, tal que f(a)f(b) < 0. Entonces existe $\xi \in [a, b]$ tal que $f(\xi) = 0$.

Ejemplo:

En el intervalo [-2, -1] con la función $f(x) = e^x - \cos(x)$ se tiene que

$$f(-2)f(-1) = [e^{-2} - \cos(-2)][e^{-1} - \cos(-1)]$$

$$\approx -0.0951 < 0$$

Por el teorema de valor intermedio se tiene entonces que existe $\xi \in [-2, -1]$ tal que $f(\xi) = 0$.

Observación:

- \triangleright ¿Qué sucede su elegimos el intervalo [-2, 1]?
 - > R/ No se puede usar el TVI: $f(-2)f(1) \approx 1.2011 > 0$

Algoritmo

- ► Se basa en una aplicación reiterada del TVI.
- Consderemos una función continua $f:[a_0,b_0]\to\mathbb{R}$ con $f(a_0)\,f(b_0)<0$, i.e., los valores de $f(a_0)$ y $f(b_0)$ tienen signos opuestos.
- ▶ Sabemos que existe al menos una solución $c \in I_0 := [a_0, b_0]$ de la ecuación f(x) = 0.

2 Algoritmo |11

Algoritmo

- Por simplicidad asumamos que dicha raíz es única.
 - > Se calcula $c_0 := (a_0 + b_0)/2$ y se verifica si c_0 es raíz.
 - > Si c_0 no es raíz: sean $L_0 :=]a_0, c_0[, R_0 :=]c_0, b_0[$ y se utiliza el TVI en uno de los 2.
 - > Si la raíz está en L_0 se toman $a_1 := a_0$ y $b_1 := c_0$.
 - > Caso contrario, la raíz está en R_0 y se toman $a_1 := c_0$ y $b_1 := b_0$.
 - > Se define $I_1 := [a_1, b_1]$ y se tiene que $c \in I_1$.
 - > Se repite el proceso en k pasos, definiéndose $I_k := [a_k, b_k]$ obteniéndose $I_k \subset I_{k-1} \subset ... \subset I_1 \subset I_0$ con

$$\mathsf{longitud}(\mathit{I}_k) = \frac{1}{2^k} \cdot \mathsf{longitud}(\mathit{I}_0) = \frac{b_0 - a_0}{2^k} \underset{k \to \infty}{\longrightarrow} 0$$

Theorem

Suponiendo que f es continua en [a,b] y f(a)f(b) < 0, el método de bisección genera una sucesión $\{c_n\}$ que aproxima ξ un cero de f, tal que

$$|c_n - \xi| \le \frac{b - a}{2^n}$$

lo cual implica que $c_n = \xi + O\left(\frac{1}{2^n}\right)$, donde $O\left(\frac{1}{2^n}\right)$ es la velocidad de convergencia del método.

Algorithm 1 Método de bisección

```
Require: f continua, intervalo inicial I_0 \leftarrow [a, b] con f(a)f(b) < 0
Ensure: Aproximación c_k de una raíz c de f en I_0
   k \leftarrow 0:
  while la iteración no haya convergido do
       c_k \leftarrow (a_k + b_k)/2;
       if c_k es una raíz then
           Retorne c_k:
       end if
       if f(a_k)f(c_k) < 0 then
           a_{k+1} \leftarrow a_k, b_{k+1} \leftarrow c_k;
       else
           a_{k+1} \leftarrow c_k, b_{k+1} \leftarrow b_k;
       end if
       k \leftarrow k + 1:
  end while
```


¿Cuándo detenerse?

- ▶ Existen diferentes ideas para determinar cuándo detener la iteración del ciclo while. En cualquier caso, se define un parámetro llamado tolerancia y lo denotaremos por tol, que permitirá determinar cuando el error en el paso k es aceptable.
- En la iteración de bisección se tiene que

$$|e_k| = |c_k - \xi| \le 2^{-k}(b - a)$$

Despejando k se obtiene que

$$\frac{b-a}{2^k} < \mathtt{tol} \Rightarrow \frac{b-a}{\mathtt{tol}} < 2^k \Rightarrow \log_2\left(\frac{b-a}{\mathtt{tol}}\right) < k$$

¿Cuándo detenerse?

Así, si se desea utilizar una tolerancia tol, entonces el valor mínimo de iterMax para la iteración de bisección puede ser considerado de la forma

$$\mathtt{iterMax} = \left[\log_2 \left(\frac{b-a}{\mathtt{tol}} \right) \right] + 1$$

donde $[\![y]\!] := \max\{r \in \mathbb{Z} : r \leq y\}$, se conoce como parte entera de y.

En MATLAB se implementa como floor(y).

¿Cuándo detenerse?

- Sin embargo, si la función crece o decrece muy rápido cerca de la raíz ξ , podría ocurrir que $f(c_k)$ no sea lo suficientemente pequeño. Por ello se podría pensar también en detener la operación si $|f(c_k)| < \text{tol}$.
- No obstante, esto podría ser un problema si la función crece o decrece de manera muy lenta en un vecindario de la raíz ξ .

Por lo anterior, la decisión del criterio de parada debe tomarse según las características del problema.

Ejemplos:

Implementando un algoritmo en MATLAB, escribimos la función

en donde los inputs son la función f(x), el intervalo inicial $I_0 = [a, b]$ y la tolerancia tol, y los outputs son la aproximación a la raíz c, la cantidad de iteraciones máximas en función de tol y a, b y una tabla en donde se contienen todos los datos.

- ▶ Utilizamos este script para la función $f(x) = e^x \cos(x)$ en el intervalo $I_0 = [-2, -1]$ y una tolerancia de 10^{-3} .
- Similarmente para la función $f(x) = e^x 2x 1$ en el intervalo $I_0 = [1, 2]$ y una tolerancia de 10^{-2} .

Т =

k	a	b	С	f(c)	err
		-			
0	-2	-1	-1.5	0.15239	1
1	-1.5	-1	-1.25	-0.028818	0.5
2	-1.5	-1.25	-1.375	0.058292	0.25
3	-1.375	-1.25	-1.3125	0.013713	0.125
4	-1.3125	-1.25	-1.2813	-0.0078275	0.0625
5	-1.3125	-1.2813	-1.2969	0.0028762	0.03125
6	-1.2969	-1.2813	-1.2891	-0.0024926	0.015625
7	-1.2969	-1.2891	-1.293	0.00018761	0.0078125
8	-1.293	-1.2891	-1.291	-0.0011535	0.0039063
9	-1.293	-1.291	-1.292	-0.00048322	0.0019531
10	-1.293	-1.292	-1.2925	-0.00014787	0.00097656

Т =

k	a	b	С	f(c)	err
_			-		
0	1	2	1.5	0.48169	1
1	1	1.5	1.25	-0.009657	0.5
2	1.25	1.5	1.375	0.20508	0.25
3	1.25	1.375	1.3125	0.090451	0.125
4	1.25	1.3125	1.2813	0.038638	0.0625
5	1.25	1.2813	1.2656	0.014058	0.03125
6	1.25	1.2656	1.2578	0.0020931	0.015625
7	1.25	1.2578	1.2539	-0.0038087	0.0078125

Representando gráficamente el segundo ejemplo:

3 Contenidos | 23

- Motivación
- Método de bisección
- 3 Método de punto fijo
- 4 Método de Newton-Rhapson
- **5** Método de la secante
- 6 Orden de convergencia

En este apartado se estudia una función φ en un intervalo [a,b] que satisface ciertas condiciones, entre ellas la contractividad, para dar paso a una iteración que utiliza la misma función dada partiendo de un valor inicial x_0 .

Definition (Punto fijo)

Dada φ una función definida en $D\subseteq\mathbb{R}$. Se dice que $\xi\in D$ es punto fijo de φ si y solo si $\varphi(\xi)=\xi$.

Ejemplo:

La función $\varphi(x) = \ln(2x+1)$ posee dos puntos fijos en el intervalo [0, 2], tal como puede verse en la figura. Uno de ellos es x=0, y el otro hay que aproximarlo.

Theorem (Brower)

Supongamos que φ es una función definida y continua sobre [a,b] y además $\varphi([a,b])\subseteq [a,b]$. Entonces existe $\xi\in [a,b]$ tal que $\xi=\varphi(\xi)$.

Definition (Iteración de punto fijo)

Sea φ definida y continua sobre [a,b] y que además $\varphi([a,b]) \subseteq [a,b]$. Dado un valor inicial $x_0 \in [a,b]$ se define la sucesión

$$x_{k+1} := \varphi(x_k)$$
, para $k = 0, 1, 2, ...$

la cual es llamada iteración simple o método de aproximaciones sucesivas.

Definition (Función contractiva)

Sea φ definida y continua sobre [a,b]. Se dice que φ es una **contracción** sobre [a,b] si existe L positiva tal que 0 < L < 1 y además

$$|\varphi(x) - \varphi(y)| \le L|x - y|, \quad \forall x, y \in [a, b]$$

Nota:

La gráfica de una función contractiva en un intervalo I = [a, b] queda "atrapada" en el cuadrado $I \times I = [a, b] \times [a, b] = [a, b]^2$.

► En otras palabras, el conjunto

$$G_f(a, b) := \{(x, \varphi(x)) : x \in [a, b]\} \subseteq [a, b]^2$$

Theorem (Derivada y contractividad)

Suponga que φ es una función real, definida y diferenciable sobre [a,b]. Entonces si $|\varphi'(x)| \leq L$ para todo $x \in [a,b]$ con 0 < L < 1 entonces φ es una contracción sobre [a,b].

Theorem (Unicidad de punto fijo)

Sea φ definida y continua sobre [a,b] y que además $\varphi([a,b]) \subseteq [a,b]$ y siendo φ una contracción sobre [a,b]. Entonces φ tiene un único punto fijo $\xi \in [a,b]$. Además la iteración simple $x_{k+1} = \varphi(x_k)$ converge a ξ para cualquier valor $x_0 \in [a,b]$.

Importante:

Si φ **no** es contractiva, la sucesión $x_{k+1} = \varphi(x_k)$ podría ser divergente.

3 Algoritmo |30

Algorithm 2 Método de punto fijo

Require: f continua sobre [a, b], valor inicial $c_0 \in [a, b]$

Ensure: c_k aproximación al punto fijo de f en [a, b] for $k \leftarrow 1, 2, ...$ do

 $c_k \leftarrow f(c_{k-1});$

end for

¿Cuándo parar?

Tomaremos el error relativo, que es el que compararemos con la tolerancia dada:

$$|e_k| = rac{|x_{k+1} - x_k|}{|x_{k+1}|} < anl e$$

Ejemplo

La ecuación $e^x - 2x - 1 = 0$ puede reescribirse como

$$e^x = 2x + 1 \Rightarrow x = \ln(2x + 1)$$

- ► Tomamos $\varphi(x) := \ln(2x+1)$. Gráficamente, en el intervalo [1, 2] vimos que es contractiva y que además $\varphi([1, 2]) \subseteq [1, 2]$.
 - > La contractividad se puede obtener también analizando $\varphi'(x)$ junto con $\varphi''(x)$ (recomendado cuando la función no es monótona en el intervalo), y de hecho se tiene que $\varphi(x)$ es monótona creciente en [1,2]. Por lo tanto, $\varphi(x)$ alcanza sus valores extremos en x=1, x=2.
 - > Es más, se tiene que $L=|\varphi'(2)|=\frac{2}{3}<1$.

3 Método de punto fijo

Utilizando $x_0=1$, tol $=10^{-2}$ e iterMax =10, implementamos en MATLAB el algoritmo y al digitar

[x , k, T] = puntofijo(f, x0, tol, iterMax)

x = 1.2460

k = 6

 $T = 7 \times 4 \text{ table}$

	k	х	f(x)	err
1	0	1.0000	1.0986	0.0986
2	1	1.0986	1.1623	0.0898
3	2	1.1623	1.2013	0.0548
4	3	1.2013	1.2246	0.0325
5	4	1.2246	1.2381	0.0190
6	5	1.2381	1.2460	0.0110
7	6	1.2460	1.2504	0.0063

4 Contenidos

- 1 Motivación
- Método de bisección
- 3 Método de punto fijo
- 4 Método de Newton-Rhapson
- 6 Método de la secante
- 6 Orden de convergencia

Consideremos la ecuación f(x) = 0. Supongamos que $\lambda(x)$ es una función sin ceros reales y definamos $g(x) := x - \lambda(x)f(x)$. Entonces,

$$g(c) = c \Leftrightarrow g(c) = c - \lambda(c)f(c) \Leftrightarrow f(c) = 0$$

También, como $g'(c) = 1 - \lambda(c)f'(c)$, al tomar $\lambda(x) = \frac{1}{f'(x)}$, se puede probar que g tiene un cero de multiplicidad 2 y por un teorema asociado a iteración de punto fijo se tiene la sucesión

Definition (Iteración de Newton-Rhapson)

$$\begin{cases} x_0 \text{ inicial,} \\ x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}, \quad k = 1, 2, 3, \dots \end{cases}$$

se conoce como iteración de Newton-Rhapson.

Geométricamente:

4 Algoritmo | 36

Algorithm 3 Método de Newton-Rhapson

Require: f continua y derivable, valor inicial c_0 (cercano a la raíz c de f)

Ensure: Aproximación c_k de la raíz c de f

for
$$k \leftarrow 1, 2, ...$$
 do
$$c_k \leftarrow c_{k-1} - \frac{f(c_{k-1})}{f'(c_{k-1})};$$
end for

¿Cuándo parar?

Con respecto a la condición de parada del método de Newton-Raphson, se puede considerar el error relativo de una aproximación, es decir

$$|e_k| = \left| \frac{x_k - x_{k-1}}{x_k} \right| <$$
tol.

Theorem

Si $f \in C^2([a,b])$ y además se satisface que

- 1) $f(a) \cdot f(b) < 0$;
- 2) $f'(x) \neq 0$ para todo $x \in [a, b]$;
- 3) $f''(x) \ge 0$ o $f''(x) \le 0$, para todo $x \in [a, b]$;

4)
$$\left| \frac{f(a)}{f'(a)} \right| \leq b - a$$
 $y \left| \frac{f(b)}{f'(b)} \right| \leq b - a$.

Entonces, el método de Newton convergerá a la única solución ξ de f(x) = 0 para cualquier $x_0 \in [a, b]$.

Observaciones:

El método falla si cualquier punto de iteración es un punto en donde la primer derivada se anula. También puede divergir u oscilar.

Ejemplo:

Consideremos $f(x) = e^x - x^2$, con $x_0 = 1$. Implementando un script en MATLAB,

```
[x, k, T] = NewRaph(f, df, x0, tol, iterMax)
```

```
f = @(x) exp(x)-x.^2;

df = @(x) exp(x)-2*x;

x0 = 1;

tol = 1e-2;

iterMax = 6;
```



```
x = -0.7035
k = 4
```

k _	x 0	x	err
1	1	-1.3922	1.7183
2	-1.3922	-0.83509	0.66714
3	-0.83509	-0.70983	0.17645
4	-0.70983	-0.70348	0.0090275

5 Contenidos | 40

- Motivación
- 2 Método de bisección
- Método de punto fijo
- 4 Método de Newton-Rhapson
- **5** Método de la secante
- 6 Orden de convergencia

5 Introducción |41

Dada una función f, en la práctica puede ser posible no tener conocimiento a priori de f'. Como sabemos que x_k en el método de Newton-Rhapson (dadas las condiciones claro) converge a ξ , tiene sentido aproximar

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

De esta forma se tiene

Definition (Iteración de la secante)

$$\begin{cases} x_0, x_1 \text{ iniciales,} \\ x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \quad k = 1, 2, 3, \dots \end{cases}$$

se conoce como método de la secante.

5 Algoritmo 143

Algorithm 4 Método de la Secante

Require: f continua, valores iniciales c_0 , c_1 (cercanos a la raíz)

Ensure: Aproximación c_k de la raíz c de f

for
$$k \leftarrow 1, 2, ...$$
 do $c_{k+1} \leftarrow c_k - \frac{c_k - c_{k-1}}{f(c_k) - f(c_{k-1})} f(c_k);$

end for

¿Cuándo parar?

El error relativo en este método es $|e_k| = \left| \frac{x_k - x_{k-1}}{x_k} \right|$ y es el que se acota si se da una tolerancia específica.

Ejemplo

Al aproximar un cero de

$$f(x) = \frac{1}{2} \left(1 + \sin \frac{90\pi}{(x+6)^2} \right)$$

en el intervalo [0, 3], tomando $x_0=0,\,x_1=3,\,{\tt tol}=10^{-3}$ e iterMax =3, implementamos el script

$$[x, k, T] = secante(f, x0, x1, tol, iterMax)$$


```
f = Q(x) 1/2 * (1 + \sin(90*pi/(x+6).^2));
x0 = 0; x1 = 3;
iterMax = 3; tol = 1e-3;
```

```
x = 1.8685
k = 3
```

17	
Т	=

	AU	VI	GII
_	<u> </u>		
0	0	3	1
1	3	4.4709	0.32899
2	4.4709	1.8946	1.3598
3	1.8946	1.8685	0.013995

6 Contenidos | 46

- Motivación
- Método de bisección
- Método de punto fijo
- 4 Método de Newton-Rhapson
- **5** Método de la secante
- 6 Orden de convergencia

Definition

Considere una sucesión $\{x_k\}_{k=0}^{\infty}$ tal que $\lim_{k\to\infty}x_k=\xi$, con $x_k\neq\xi$ para todo k. Suponga que

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|}=\mu\geq 0$$

Entonces se dice que x_k converge a ξ

- **Sublinealmente**, si $\mu = 1$;
- **Superlinealmente**, si $\mu = 0$;
- ▶ Linealmente, si $\mu \in]0,1[$, y $\rho := -\log \mu$ se define como la razón de convergencia asintótica.

Nota:

En el caso de convergencia superlineal, se dice que x_k converge a ξ con orden q>1 si

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^q}$$

existe.

▶ Si q = 2 se dice que la convergencia es **cuadrática**.

Orden del método de Newton

La convergencia del método de Newton es cuadrática.

Orden de convergencia de bisección

Para este caso el error $e_k := |x_k - \xi|$ no decrece de forma monótona en general, pero la convergencia es lineal porque

$$rac{e_{k+1}}{e_k} \sim rac{1}{2}$$

Orden de convergencia de la secante

Suponiendo que f tiene segunda derivada continua, sea ξ tal que $f(\xi)=0$ y $f'(\xi)\neq 0$. Si x_0 es lo suficientemente cercano a ξ , entonces la sucesión $\{x_n\}_{n=0}^\infty$ generada por el método de la secante converge a ξ con un orden de convergencia $q=\frac{1+\sqrt{5}}{2}\approx 1.618$.

Orden de convergencia de punto fijo

Si f es derivable y satisface las hipótesis adecuadas para convergencia de punto fijo, el método converge al menos linealmente, pues

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|} = \lim_{k \to \infty} \frac{|f(x_k) - f(\xi)|}{|x_k - \xi|} = |f'(\xi)| < 1$$

Si $f'(\xi) = 0$ entonces la convergencia es superlineal.

Definition

Supongamos que $\{p_n\}$ converge linealmente a p, entonces

$$\hat{p}_n := p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$

converge más rápidamente a p que $\{p_n\}$.

Theorem

Supongamos que $p_n \to p$ linealmente y que $\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} < 1$.

Entonces $\hat{p}_n \to p$ con mayor rapidez, en el sentido de que $\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0$.

Definition

La iteración del punto fijo determina el siguiente valor x_{k+1} de la forma $x_{k+1} = g(x_k)$. Ahora vamos a considerar una variante de la forma

$$\begin{cases} v_1 &= x_k \\ v_2 &= g(v_1) \\ v_3 &= g(v_2) \end{cases}$$
$$x_{k+1} &= v_1 - \frac{(v_2 - v_1)^2}{v_3 - 2v_2 + 1}$$

la cual es conocida como la iteración de Steffensen.

El método de Steffensen se puede ver como una combinación del método de punto fijo y del método de Aitken.

¡Muchas Gracias!