

Documentation pour l'enseignant

version du 8 décembre 2017 pour EduPython 2.5

Table des matières

1	Prés	sentation 4
	I)	Pourquoi EduPython?
		1) Le choix de Python
		2) Les plus d'EduPython
		3) D'AmiensPython à EduPython
	II)	Installation
	III)	Hello world!
2	Les	instructions de base 7
	$\mathbf{I})$	Les bases du langage Python
		1) La gestion des espaces
		2) Commentaires
		3) Majuscules ou minuscules
		4) Le rôle du symbole =, l'affectation
	II)	Entrées/Sorties
		1) Affichage et calculs simples
		2) Les variables
		3) Demande d'un nombre
		4) Demande d'un texte
	III)	Tests et conditions
		1) Si alors
		2) Si alors sinon
		3) Hormis les cas précédents, si
		4) Comparateurs
		5) Opérateurs logiques
	IV)	Boucles
	,	1) Boucle dont on connait le nombre d'itérations
		2) Boucle conditionnelle
3	Les	fonctions mathématiques 26
	I)	Puissance et factorielle d'un entier
	II)	Quotient entier et reste d'une division euclidienne
	III)	Plus grand diviseur commun
	IV)	Racine carrée
	V)	Fonction exponentielle et logarithme népérien
	VÍ)	Partie entière, Valeur absolue
	,) Trigonométrie
	,	I)Les constantes
		Le hasard

4	La tortue	38			
	Commencer une nouvelle figure	38			
	I) Avancer, reculer, tourner	38			
	II) Tracer des cercles	40			
	(V) La tortue : Afficher, Cacher, Vitesse	43			
	V) Le crayon : lever, baisser, taille, couleur	43			
		14			
5	Les graphiques	16			
0	0 1 1	46			
	, i , , , , , , , , , , , , , , , , , ,	17			
		1 1			
		±9 49			
	V) Repères multiples	50			
6		52			
	$oxed{D}$ Définition	52			
	I) Créer une liste, ajouter des éléments	54			
	III) Retirer des éléments	57			
	(V) Rechercher, Compter, Ordonner 5	59			
	V) Opérations sur les listes	32			
7	Probabilités et statistiques 63				
•	· · · · · · · · · · · · · · · · · · ·	33			
	, 1	36			
	-	39			
	, 0	72			
8		74			
		74			
		75			
	, , , , , , , , , , , , , , , , , , , ,	75			
		77			
	III) Codage d'un caractère	78			
		30			
	1) Extraire une sous-chaîne	30			
	2) Rechercher, remplacer et compter	31			
	V) Convertir des chaînes de caractères	33			
	1) Enregistrer et charger un fichier	33			
	2) Convertir une chaîne de caractères en liste	34			
9	Fonctions	36			
•		36			
	,	38			
	•	38			
		20			

10	Que	estions fréquemment posées
	I)	A propos d'EduPython
	,	1) Puis-je utiliser EduPython sous Mac ou Linux?
		2) Quelle est la différence avec la version d'origine PortablePython?
		3) Comment arrêter un programme en cours d'exécution?
		4) Pourquoi avoir traduit certaines fonctions?
		5) Quand je tente d'ouvrir un fichier .py, l'ordinateur me demande avec quoi l'ouvrir
	II)	A propos de Python
	11)	1) Pourquoi dites-vous que Python est un langage très puissant?
		2) Pourtant Python n'est pas précis dans les calculs!
		3) Les élèves éprouvent de grandes difficultés à utiliser « for i in range · · · » · · · · · · · · · · · · · · ·
)
	TTT)	4) Que signifie ce message d'erreur?
	III)	EduPython et l'enseignement ISN
11	Évol	lutions d'EduPython
	I)	Installer un module
	II)	Modifier l'interface
	III)	Utiliser une base de données
	IV)	Historique des évolutions
	11)	Thistorique des evolutions
12	Plus	s de 80 programmes
	I)	40 programmes simples
	II)	40 autres programmes plus élaborés

Chapitre 1

Présentation

J'ai eu plaisir à réaliser avec Vincent MAILLE et François PRÉDINAS la précédente documentation Amiens-Python, fruit de trois années de travail et de collaboration professionnelle et amicale.

L'évolution de Python 2 vers Python 3 était inéluctable et semble à présent opportune, avec la traduction des principales bibliothèques, et l'entrée de la programmation dans les programmes de Classe Préparatoire aux Grandes Écoles à la rentrée 2013.

Vincent MAILLE a réalisé la configuration EduPython, et m'a aidée dans la compilation de cette nouvelle documentation EduPython, qui est principalement une mise à jour de la précédente.

Je tiens à remercier Vincent MAILLE et François PRÉDINAS pour ce remarquable travail sur lequel je me suis appuyée.

Les exemples sont les mêmes, mais chaque programme a été retravaillé. Quelques définitions et remarques ont évolué.

Nous serons attentifs à vos retours concernant cette documentation ou l'usage d'EduPython, et heureux que vous nous teniez informé à l'adresse amienspython@ac-amiens.fr.

I) Pourquoi EduPython?

1) Le choix de Python

Le choix du langage Python était assez naturel pour différentes raisons :

- ▶ Un langage simple et mathématiquement puissant pour lequel on trouve des bibliothèques mathématiques très évoluées dans de multiples domaines (traitement de l'image, analyse de Fourier, calcul numérique...).
- ▶ Le langage Python est libre et gratuit, et peut donc être installé dans les établissements et dans les foyers des élèves.
- ► Enfin l'apparition du langage Python dans les programmes de CPGE, nous a conforté dans notre opinion.

2) Les plus d'EduPython

Malgré les nombreux atouts du langage Python, ce dernier comporte quelques points faibles que nous voulions combler. EduPython est dérivé de portablepython basé sur le Python 3.2 auquel nous avons apporté quelques modifications, en particulier :

- ▶ Une interface traduite en français pour une plus grande convivialité.
- \blacktriangleright Une bibliothèque unique *lycee* qui regroupe les bibliothèques les plus courantes ainsi que de nouvelles fonctions pouvant servir au lycée.
- ▶ Une documentation en français à destination de l'enseignant contenant des exemples simples d'usage pédagogique et téléchargeables sur le site d'EduPython.
- ▶ Un ensemble de fiches pour l'élève à distribuer tout au long de l'année.

Installation Présentation

EduPython est donc une version héritée du Python 3.2, ainsi un programme réalisé sous Python 3.2 fonctionnera aussi avec le logiciel EduPython. Mais l'inverse n'est pas forcément vrai si vous avez utilisé des fonctions de la bibliothèque *lycee*.

Lorsque vous cliquez sur Nouveau Fichier... vous pouvez choisir 3 types de programmes différents :

- Lycée : Si vous voulez utiliser la bibliothèque lycee
- Python 3.2 : Pour programmer en python 3.2 simplement
- Tortue : Pour utiliser la tortue de python (voir chapitre spécifique).

3) D'AmiensPython à EduPython

Faut-il passer à EduPython si l'on est habitué à AmiensPython?

C'est vous qui voyez... Il y en a qui ont essayé... ils n'ont pas eu trop de problèmes...

En réalité peu de choses changent entre Python 2 et 3 :

- La division qui devient une division décimale, mais qui était déjà en place avec AmiensPython grâce à l'instruction from __future__ import division automatiquement insérée en début de programme.
- Le print qui devient une fonction.
- Le input renvoie à présent une chaîne de caractères (si on utilisait la fonction demande, on n'aura pas le problème car la bibliothèque lycée a été mise à jour)
- Il n'y a plus de choix entre l'utilisation de <> ou !=, seul != est utilisé en Python 3.

A l'époque où AmiensPython avait été crée, la bibliothèque de sortie graphique matplotlib n'existait pas pour Python 3, d'où notre choix de rester sur Python 2. Aujourd'hui toutes les bibliothèques nécessaires existent pour Python 3 et dans la mesure où Python fait son apparition dans les classes préparatoires aux grandes écoles, il semblait intéressant de proposer cette possibilité de programmer en Python 3, dans la mesure où la version 2 n'est plus mise à jour. Cependant Python 2 reste encore extrêmement utilisé dans le monde.

II) Installation

Pour installer EduPython, rien de plus simple, rendez-vous sur le site officiel d'EduPython, téléchargez l'installateur et exécutez-le en renseignant l'emplacement où vous souhaitez installer le logiciel. Si vous ne savez pas où l'installer, lisez la section suivante.

Où installer EduPython? Tout dépend de ce que vous voulez en faire...

- ▶ Installation sur une clé USB : dans ce cas choisissez le lecteur représentant votre clef, l'installation se fera alors dans un dossier nommé « EduPython ».
- ▶ Installation sur un ordinateur personnel : même principe que pour la clé USB, choisissez un emplacement qui vous convient.
- ▶ Installation sur réseau si vous êtes administrateur : installez EduPython dans un dossier en <u>lecture seule</u> pour éviter qu'une erreur de manipulation d'un élève ne se répercute sur tout le reste du lycée.

Hello world! Présentation

▶ Installation pour une classe si vous êtes professeur : installez EduPython dans le lecteur de la classe de vos élèves et de préférence dans un dossier en lecture seule (le dossier fiche par exemple qui se trouve dans le dossier __commun convient parfaitement).

▶ Installation sur votre compte personnel dans un établissement (si vous êtes élève ou enseignant) : installez alors Python sur votre lecteur personnel (celui qui porte votre nom en général).

Remarque : Du fait que nous utilisons une version portable de Python, votre ordinateur ne saura pas ouvrir de lui-même les programmes Python (.py). Pour exécuter un programme vous devrez donc le rechercher dans vos dossiers et vos fichiers à partir de l'interface EduPython déjà ouverte.

III) Hello world!

Comme la coutume l'exige, notre premier programme sera l'affichage du texte "Hello World". L'interface choisie pour EduPython est un dérivé de Pyscripter, c'est une interface conviviale que nous avons traduite en français. Voici comment elle se présente :

La fenêtre de l'éditeur est composée de plusieurs zones :

A : Zone de saisie du programme

B : Zone de l'explorateur windows pour aller chercher vos fichiers

C : Zone où le programme s'exécute, cette zone s'appelle aussi la console Python

D : La barre de menu

E : La barre d'outils

Nous ne détaillerons pas davantage ici la barre d'outils très riche qui nous semble relativement intuitive à utiliser.

Notez cependant que pour utiliser la bibliothèque lycee que nous avons réalisée, un programme Python devra commencer par :

from lycee import * (Pas d'accent à lycee et un espace après import)

l'interface d'EduPython ajoute automatiquement cette ligne quand vous cliquez sur « nouveau ».

∳Remarque:

- Si vous oubliez l'espace entre le import et *, le programme fonctionnera mais vous ne bénéficierez pas de l'auto complétion et de l'aide par info bulle.
- D'autre part, la première exécution peut parfois prendre un peu de temps.

Chapitre 2

Les instructions de base

I) Les bases du langage Python	7
	_
1) La gestion des espaces	7
2) Commentaires	8
3) Majuscules ou minuscules	9
4) Le rôle du symbole =, l'affectation	9
II) Entrées/Sorties	1
1) Affichage et calculs simples	1
2) Les variables	2
3) Demande d'un nombre	2
4) Demande d'un texte	3
III) Tests et conditions	4
1) Si alors	4
2) Si alors sinon	5
3) Hormis les cas précédents, si	6
4) Comparateurs	7
5) Opérateurs logiques	0
IV) Boucles	1
1) Boucle dont on connait le nombre d'itérations	1
2) Boucle conditionnelle	3

I) Les bases du langage Python

1) La gestion des espaces

Dans le langage Python, on peut passer des lignes pour plus de clarté, ce qui n'est pas pris en compte lors de l'exécution du programme. Par contre, vous ne pouvez pas ajouter un espace en début de ligne comme bon vous semble, car cela a une signification. On appelle *indentation* ce décalage d'un cran d'une ou de plusieurs lignes d'un programme. Elle permet de délimiter un bloc d'instructions dans une boucle ou lors d'une exécution conditionnelle.

La ligne précédent l'indentation se finit toujours par deux points. Quand vous appuyez sur la touche après avoir tapé « : », l'indentation est automatiquement effectuée en même temps que le passage à la ligne.

Voici ce qui pourrait être un extrait d'un programme qui résout ax = b:

Télécharger

$\frac{1}{N}$ Indication:

On peut aussi appuyer sur la touche de tabulation \leftrightarrows , à gauche de la touche "A" pour gérer l'indentation.

∳Remarque:

Afin que le programme fonctionne, nous avons attribué à a et b des valeurs arbitraires. Il est évidemment plus intéressant de demander des valeurs à l'utilisateur mais ceci sera traité plus loin.

2) Commentaires

Le symbole # (se lit « croisillon », « hash »en anglais , symbole proche du « dièse ») permet de faire figurer dans le corps du programme un commentaire qui ne sera pas pris en compte lors de son exécution. # porte sur le reste de la ligne.

Télécharger

```
Code: Résolution de l'équation ax = b

a=2
b=6
if a!=0: # cas où a est différent de zéro
print ("Il y a une unique solution:")
print (b/a)

Aperçu du résultat dans la console
```

```
Il y a une unique solution:
3.0
```

3) Majuscules ou minuscules

Les instructions Python s'écrivent en minuscules.

On peut utiliser des majuscules dans les noms de variables. Par contre, il faudra l'écrire exactement de la même façon dans la suite du programme, en recopiant bien minuscules et majuscules : c'est ce qu'on appelle "respecter la casse".

Télécharger

Code: affichage d'une équation de droite

```
CoefficientDirecteur=2
ordonneeAlOrigine=6

print ("y=",CoefficientDirecteur,"x +", ordonneeAlOrigine)

______ Aperçu du résultat dans la console

y= 2 x + 6
```

4) Le rôle du symbole =, l'affectation

Le symbole = n'est pas celui de l'égalité mathématique, il n'est d'ailleurs pas symétrique.

Il s'agit d'affecter une valeur à une variable : on stocke une valeur numérique ou du texte dans une mémoire.

La syntaxe est NomDeLaVariable = valeur.

Télécharger

Code: affectation 1

```
a=2  # a vaut 2
b=3.1  # b vaut 3,1
s=b+3  # s vaut 6,1
c,d=4.2,7  # c vaut 4,2 et d vaut 7
e= "bonjour"  # e vaut "bonjour" (chaîne de caractères)
f="prêt à faire des mathématiques?"
  # f vaut "prêt à faire des mathématiques?" (chaîne de caractères)
```

ARemarque:

- Évidemment si vous exécutez ce programme rien de visible ne se passe puisqu'aucun affichage n'est demandé.
- On peut utiliser l'affectation simultanée a,b=2,3.1 à la place des deux premières lignes du code précédent.

-`\ographi-`\ographi-`Indication:

Quand on veut définir une chaine de caractères, on la délimite soit à l'aide de guillemets " " soit d'apostrophes , ,

Si la chaine de caractères que l'on veut définir est **Vous avez "gagné".**, on utilisera les apostrophes pour la délimiter puisqu'elle contient des guillemets. On écrira par exemple :

```
reponse='Vous avez "gagné".'
```

De même quand la chaine de caractères contient une apostrophe, on la délimite par des guillemets.

Télécharger

Code: affectation 2

```
a,b=3,2
a,b=a+b, a-b
print (a,b)

Aperçu du résultat dans la console
5 1
```

T'el'echarger

Code: affectation 3

```
a,b=3,2
a=a+b
b=a-b
print (a,b)

Aperçu du résultat dans la console
5 3
```


Dans l'exemple de gauche ci-dessus, les valeurs de a et b sont affectées simultanément en utilisant les valeurs des lignes précédentes. En revanche dans celui de droite, les affectations sont successives, ce qui explique les résultats différents. Ainsi a,b = b,a échange les valeurs des deux variables a et b.

Télécharger


```
from lycee import *
x = demande('Entrez une valeur pour x')
y = demande('Entrez une valeur pour y')
x,y = x + y, x - y
x,y = x + y, x - y
print ("maintenant, x = ", x, "et y = ", y)
```

Entrées/Sorties Les instructions de base

II) Entrées/Sorties

Affichage et calculs simples

print(valeur **ou** chaîne de caractères)

print affiche la valeur numérique ou le texte qui suit.

print(a, b) affiche à la suite sans passer à la ligne les éléments a et b. print (a, end = "") affiche l'élément a et ne passe pas à la ligne : le prochain affichage continuera sur cette

Télécharger

Code: affichages

```
print ("Bonjour,")
print ("ce programme calcule 2+3=",end="")
print (2+3)
print ("et 3(-2)=", 3*-2)
```

🗕 Aperçu du résultat dans la console 🗕

Bonjour,

```
ce programme calcule 2+3=5
et 3(-2) = -6
```


- Quand on veut afficher plusieurs choses à la suite qui ne sont pas dans la même ligne de programme, on indique de ne pas passer à la ligne suivante après l'affichage en finissant par ,end = "".
- Indication:

 Quan
 on in
 Quan
 des v
 progr Quand un programme ne produit pas le résultat attendu, il est important de penser à ajouter l'affichage des valeurs prises par les variables à chaque étape. Cela permet de comprendre ce que fait réellement le programme, et facilite la recherche d'erreurs, quitte ensuite à supprimer cette ligne ou la transformer en commentaire.

Pour un produit, le symbole * est indispensable, même s'il y a des parenthèses.

Entrées/Sorties Les instructions de base

2) Les variables

Les noms de variables commencent par une lettre, puis on peut se faire succéder les caractères que l'on veut, minuscules, majuscules, chiffres, *etc.* sans espace. Il est toujours commode d'employer des noms de variables explicites.

Télécharger


```
from lycee import *
nb6=0
for i in range(10):
    if randint(1,6)==6:
        nb6=nb6+1
print ("Sur les 10 lancers, on a obtenu", nb6, 'fois le numéro "6".')

Aperçu du résultat dans la console

Sur les 10 lancers, on a obtenu 3 fois le numéro "6".
```

-\one Indication:

Pour dénombrer, on peut utiliser un compteur (variable nb6 ici) que l'on initialise à 0, avant la boucle. Puis dans la boucle, on l'incrémente de 1 pour chaque cas favorable à l'aide de la commande nb6=nb6+1.

3) Demande d'un nombre

$var = \mathbf{demande}(question)$

luce

affiche une fenêtre où figure le texte question et un cadre blanc dans lequel on entrera ce qui est demandé. La réponse est alors affectée à la variable var, et contrairement à la fonction input, var contient un nombre et non une chaîne de caractères.

Télécharger

<u>Code</u>: Calculer l'opposé d'un nombre

```
from lycee import *
x=demande("Entrez un nombre pour obtenir son opposé")
print ("L'opposé de ", x, "est", -x)

Aperçu du résultat dans la console
L'opposé de -8 est 8
```

Entrées/Sorties Les instructions de base

I

Important: Même si on veut demander l'entrée d'un nombre par l'utilisateur, il est conseillé d'écrire d'abord un code en affectant des valeurs bien choisies dans le corps du programme. Ainsi, on peut le tester sans avoir à entrer de valeur pour chaque essai : c'est plus efficace pour le débogage et l'optimisation.

Télécharger

Code: Calculer l'IMC

```
from lycee import *
m=demande("masse en kilo : ")
t=demande("taille en mètre : ")
IMC=m/(t*t)
print ("L'IMC est de : ",IMC)
```

On peut demander aux élèves de se renseigner sur les valeurs conseillées de l'IMC et connaissant sa taille, donner l'intervalle dans lequel le poids « idéal »devrait être.

4) Demande d'un texte

chaine=input(question)

Affiche une fenêtre où figure le texte *question* et un cadre blanc dans lequel on entrera la réponse, qui sera considérée comme une chaine de caractères. Cette valeur est ensuite affectée à la variable *chaine*.

Télécharger

Code: Programme du professeur Tournesol

```
from lycee import *
nb=demande("Entrez 3+2")
tex=input("Pourriez-vous répéter,svp?")
print (nb)
print (tex)
print (nb+1)
print (tex+"1")
Aperçu du résultat dans la console
```

3+21

- nb + 1 est une addition alors que tex + "1" est une concaténation.
- input renvoie une chaîne de caractère. Si vous effectuez des opérations : soustraction, division, l'erreur sera repérée, mais pas pour une addition (concaténation) ni une multiplication par un entier.

 Essayez de remplacer "demande" par "input" dans le programme opposé (3 programmes avant) et demandez l'opposé de -8.
- La fonction texte_demande créée pour AmiensPython peut être remplacée par input.

III) Tests et conditions

1) Si ... alors ...

effectue (une fois) les instructions indentées qui suivent lorsque le test est vérifié.

Télécharger

<u>Code</u>: nombre de zéros d'un trinôme

```
from lycee import *
a,b,c=demande("Entrez les coefficients du trinôme séparés par des virgules.")
delta=b*b-4*a*c
if delta>0:
    print ("Il y a deux solutions.")
    print ('Je vous laisse les trouver.')
if delta==0:
    print ("Il y a une solution unique.")
    print ("Je ne vous l'indiquerai pas.")
if delta<0:
    print ("Il n'y a aucune solution!")</pre>
```

Remarque:

Le "alors" n'apparaît pas en Python, c'est l'indentation qui délimite le bloc à exécuter.

♦ On peut imbriquer les boucles, à la manière d'un arbre qui se dessinerait avec les indentations.

Télécharger

```
<u>Code</u>: signe d'un trinôme
```

```
from lycee import *
a,b,c=demande("Entrez les coefficients du trinôme séparés par des virgules.")
delta=b*b-4*a*c
if delta<0:</pre>
    if a>0:
        print ("P(x)>0 pour tout réel x")
        print ("P(x)<0 pour tout réel x")</pre>
if delta==0:
    if a>0:
        print ("P(x) est positif pour tout réel x")
    if a<0:
        print ("P(x)est négatif pour tout réel x")
if delta>0:
    if a>0:
        print ("P(x)>0 à l'extérieur des racines")
    if a<0:
        print ("P(x)<0 à l'extérieur des racines")</pre>
```

2) Si ... alors ... sinon ...

effectue les instructions indentées lorsque le test est vérifié, sinon effectue les instructions alternatives indentées.

Télécharger

```
Solutions de ax + b = 0
```

```
from lycee import *
a=demande("Entrez a de l'équation ax+b=0")
b=demande("Entrez maintenant b de l'équation ax+b=0")
if a!=0:
    print ("Il y a une unique solution:",end="")
    print (-b/a)
else:
    if b==0:
        print ("Il y a une infinité de solutions.")
        print ("Tous les réels sont solutions.")
    else:
```

```
print ("Il n'y a aucune solution.")
```

$\stackrel{\checkmark}{\cancel{\bigcirc}}$ Remarque:

I

- Le "else" est aligné avec le "if" qui lui correspond.
- Taper ":" puis appuyer sur la touche "entrée" pour passer à la ligne, provoque l'indentation automatique.

3) Hormis les cas précédents, si...

if test1:instructions1 elif test2:instructions2

Effectue les instructions1 indentées lorsque le test1 est vérifié, sinon effectue le test2 et, si celui-ci est vérifié, effectue les instructions2 indentées.

Télécharger

<u>Code</u>: Image par une fonction définie par morceaux

```
#M comme mathématiques
from lycee import *
x=demande('valeur de x')
if x<-4:
    print ('f(',x,')=',8*x+36)
elif x<0: #on est dans le cas où x>=-4 et x<0
    print ('f(',x,')=',-x)
elif x<4: #on est dans le cas où x>=-4 et x>=0 et x<4
    print ('f(',x,')=',x)
else: #on est dans le cas où tous les tests précédents étaient négatifs
    print ('f(',x,')=',-8*x+36)</pre>
```

Bonus : Représenter la fonction sur [-5;5] (Voir chapitre sur les graphiques)

Remarque:

On peut enchaîner autant de "elif" que nécessaire.

Il peut être intéressant de terminer une série de "elif" par un "else" afin d'être sûr de traiter tous les cas.

→ elif est la contraction de « else if »Le "elif" remplace parfois avantageusement des boucles imbriquées.

4) Comparateurs

Ce symbole désigne l'égalité dans un test

Télécharger

Code: Recherche d'un triplet pythagoricien d'entiers consécutifs

les nombres 3 , 4 et 5 forment un triplet pythagoricien

Ces symboles désignent les inégalités strictes habituelles.

T'el'echarger

<u>Code</u>: Distance sur un axe gradué

```
from lycee import *
xA=demande("Entrez l'abscisse du point A")
xB=demande("Entrez l'abscisse du point B")
if xA>xB :
    dist=xA-xB
else :
    dist=xB-xA
print ("La distance AB est", dist)
```


Ces combinaisons de symboles désignent les inégalités larges \leq et \geq habituelles.

Exemple : On s'intéresse au volume d'eau contenu dans une cuve parallélépipédique de base rectangulaire (2m par 3m) et de 80 cm de hauteur. Ecrire un programme qui calcule le volume d'eau en fonction de la hauteur.

Télécharger

Code: Volume d'eau dans une cuve

```
from lycee import *
h= demande("valeur de h en décimètres?")
if 0>h:
    print ("h est impossible")
if h>=0 and h<=8:
    V= 600*h
    print ("le volume contenu dans la cuve est",V,"litres pour h=",h)
if h>8:
    print ("la cuve déborde!!!")
Aperçu du résultat dans la console
```

le volume contenu dans la cuve est 3600 litres pour h= 6

!=

Cette combinaison de symboles signifient « différent de »... (Le <> de python 2 ne fonctionne plus sous python 3.)

Télécharger

<u>S</u>Code: Le jeu du nombre mystère

```
from lycee import *
a=randint(1,100)
n=demande('Proposer une valeur')
if n!=a:
    print ("vous avez perdu, le nombre mystère n'est pas",n)
else:
    print ('gagné, vous devriez jouer au LOTO !')
```

__ Aperçu du résultat dans la console ____

. vous avez perdu, le nombre mystère n'est pas 54

5) Opérateurs logiques

l Permet d'effectuer une instruction si deux tests sont vérifiés simultanément.

l Permet d'effectuer une instruction si au moins un test sur deux est vérifié.

On choisit un nombre entier au hasard entre 1 et 666. On note S l'évènement « Obtenir un multiple de 7 » et T: « Le nombre se termine par 3 ». Ecrire un algorithme permettant de calculer p(T), p(S), $p(T \cap S)$ et $p(T \cup S)$.

Télécharger

<u>Code</u>: Calcul de probabilités

```
from lycee import *
p1,p2,p3,p4=0,0,0,0
for i in range(1,667):
    if reste(i,7)==0:
         p1 = p1 + 1
    if reste(i,10)==3:
         p2 = p2 + 1
    if reste(i,7)==0 and reste(i,10)==3:
         p3 = p3 + 1
    if reste(i,7)==0 or reste(i,10)==3:
         p4 = p4 + 1
print ("p(S)=",p1,"/666
                           p(T)=",p2,"/666")
print ("p(SnT)=",p3,"/666
                             p(SuT)=",p4,"/666")
                          _ Aperçu du résultat dans la console .
p(S) = 95 / 666
                p(T) = 67 / 666
p(SnT) = 9 / 666
               p(SuT) = 153 / 666
```


On peut écrire plusieurs "and" ou plusieurs "or" dans la même instruction, il suffit alors de mettre des parenthèses pour indiquer les priorités. Le mélange de "and" et "or" dans la même instruction peut faire travailler la logique pure.

Boucles Les instructions de base

IV) **Boucles**

Comme dans la plupart des langages, il existe en Python principalement deux manières de réaliser une boucle, c'est à dire une répétition d'un bloc d'instructions. Comme pour la commande si, la partie à répéter sera indentée vers la droite, ce qui permet en plus une bonne visibilité de l'algorithme.

Boucle dont on connait le nombre d'itérations

for var in list:

Réalise une boucle en faisant parcourir à la variable var toute la liste list (Voir le chapitre sur les listes pour plus de détails).

Notez que l'instruction se termine par deux points et que les instructions à répéter doivent être décalées, exactement comme pour le if.

Nous n'allons pas trop entrer dans les détails de l'utilisation des listes ici, cela fait partie d'un autre chapitre de la documentation. Mais voici quelques exemples d'utilisation d'une boucle for :

- On peut donner la liste de manière explicite :
 - for jour in ['Lundi', 'Mardi', 'Mercredi', 'Jeudi', 'Vendredi', 'Samedi', 'Dimanche']
- Ou aussi utiliser l'instruction range pour créer la liste d'entiers.

$\mathbf{range}(debut, fin, pas)$

(Les paramètres debut et pas sont optionnels.)

Génère une liste d'entiers :

- Dans l'intervalle [0; fin si un seul paramètre est renseigné.
- Dans l'intervalle [debut; fin[si 2 paramètres sont renseignés.
- Dans l'intervalle [debut; fin mais en réalisant une suite arithmétique de raison pas si les 3 paramètres sont renseignés.

Voici quelques exemples immédiats :

Boucles Les instructions de base

Télécharger

Code: Quelques exemples de boucles

```
from lycee import *
print ("Exemple 1 : ", end="")
for voyelle in ['a','e','i','o','u','y'] :
    print (voyelle,end="")
print ()
                                           Exemple 1 : aeiouy
print ("Exemple 2 :", end="")
                                           Exemple 2 :0123456789
for n in range(10):
                                           Exemple 3 : 2 3 4 5 6
   print (n, end="")
                                           Exemple 4: 100 102 104 106 108
print ()
print ("Exemple 3 : ", end="")
for n in range(2,7):
   print (n, " ", end="")
print ()
print ("Exemple 4 : ", end="")
for pair in range(100,110,2):
    print (pair, " ", end="")
```

Remarque:

- En cas d'incohérence, la liste n'est pas générée (liste vide) et la boucle n'est donc pas exécutée. (Par exemple : for n in range (100,110,-2):).
- La variable compteur parcourt quoiqu'il arrive les valeurs demandées même si on tente de modifier celle-ci.

Télécharger

```
Solution Compteur Modification du compteur
```

```
from lycee import *
for i in range(10):
    print (i," ", end="")
    if i==5 :
        i=8
0 1 2 3 4 5 6 7 8 9
```

Un exemple qui calcule $\sum_{i=1}^{n} i^2$.

Télécharger

<u>Code</u>: Somme des carrés des 100 premiers entiers

```
total=0
for n in range(101):
   total=total+n*n
   if n<100:
        print (n,"2 + ", end="")
   else :
        print (n,"2 = ", end="")
print (total)</pre>
```

Boucles Les instructions de base

```
Aperçu du résultat dans la console 0^2+1^2+2^2+3^2+4^2+5^2+6^2+...+97^2+98^2+99^2+100^2=338350
```

Exemple : On lance 100 000 fois de suite deux dés cubiques simultanément, et on s'intéresse au nombre de fois où la somme des deux faces vaut 7.

Télécharger


```
from lycee import *
j = 0
for i in range (100000):
    s = randint(1,6) + randint(1,6)
    if s == 7 :
        j = j+1
f = j / 100000
print ("le 7 est sorti", j, "fois donc avec une fréquence égale à",f)

Aperçu du résultat dans la console

le 7 est sorti 16788 fois donc avec une fréquence égale à 0.16788
```

2) Boucle conditionnelle

Dans la pratique, on ne connaît que rarement le nombre d'itérations pour arriver au résultat (d'où l'intérêt d'un programme). On peut alors utiliser des boucles de type TANT QUE FAIRE : ...

while condition:

Exécute une instruction ou un bloc d'instructions tant que la *condition* est vérifiée. (La boucle peut donc ne jamais être exécutée si, d'entrée la *condition* n'est pas remplie).

L'exemple classique est l'algorithme d'Euclide pour calculer le PGCD de 2 nombres :

Télécharger

<u>Code</u>: Calcul du PGCD de 2 entiers strictement positifs

```
from lycee import *
a,b = demande("Entrez deux entiers strictement positifs.")
print ("PGCD (",a,",",b,") = ", end="")
while b != 0:
   a, b = b, reste(a,b)
print (a)

Aperçu du résultat dans la console
```

Boucles Les instructions de base

```
. PGCD ( 12 , 14 ) = 2
```

On veut décomposer le produit de deux nombres en somme de carrés comme l'explique le schéma ci-dessous dont on peut trouver plus de détails sur le site Mathématiques magiques de Thérèse Eveilleau. Sur le schéma ci-dessous, l'algorithme donne :

```
14 \times 20 = 14^2 + 6^2 + 6^2 + 2^2 + 2^2 + 2^2.
```

Télécharger

```
Code: Multiplication babylonienne
   from lycee import *
                                                                                       6 x 6
   Longueur=demande("Premier nombre")
   Largeur=demande("Deuxième nombre")
   print(Longueur, "x", Largeur, " = ", end="")
   if Longueur < Largeur :</pre>
                                                                  14 x 14
       Longueur, Largeur = Largeur, Longueur
   while Largeur > 0 :
       print (Largeur, "2 + ", end="")
       Longueur = Longueur - Largeur
       if Longueur < Largeur :</pre>
            Longueur, Largeur=Largeur, Longueur
                                                                                          2 x 2
                                                                                      2 x 2
   print (0)
```

Bonus : Modifier cet exemple pour que la réponse ne se termine plus par « +0 »

Exemple de modélisation de la marche aléatoire d'un robot sur une table carrée (20cm par 20cm), située à un mètre du sol. Ce robot initialement placé au centre de la table bouge dans deux directions perpendiculaires, en avant ou en arrière, à une vitesse de 1 cm par seconde.

Télécharger

Code: Marche aléatoire d'un robot sur une table

```
from lycee import *
x, y = 0, 0
j = 0
while x >= -10 and x <= 10 and y >= -10 and y <= 10:
    a = randint(1,4)
    if a == 1 : x = x + 1
    if a == 2 : y = y + 1
    if a == 3 : x = x - 1
    if a == 4 : y = y - 1
    j = j + 1
print ("le robot est tombé de la table au bout de", j, "secondes.")</pre>
Aperçu du résultat dans la console
```

le robot est tombé de la table au bout de 153 secondes.

Boucles Les instructions de base

— Lorsqu'il n'y a qu'une instruction à exécuter, il n'est pas nécessaire de retourner à la ligne et de l'indenter (attention cependant à garder une bonne lisibilité du programme).

- Pour s'amuser, on peut remplacer les 4 lignes contenant des if par : x, y = x + (2 a) * reste(a, 2), y
 Au fait, le robot tombe-t-il toujours de la table?

Bonus: Une visualisation du parcours du robot peut se programmer avec la tortue.

Chapitre 3

Les fonctions mathématiques

Sommaire I) Puissance et factorielle d'un entier 26 II) Quotient entier et reste d'une division euclidienne 27 III) Plus grand diviseur commun 29 IV) Racine carrée 30 V) Fonction exponentielle et logarithme népérien 31 VI) Partie entière, Valeur absolue 31 VII) Trigonométrie 32

33

I) Puissance et factorielle d'un entier

VIII)Les constantes

```
puissance(a,n)

| Donne le résultat de a^n où a et n sont deux nombres.
```

Télécharger

```
#On se limite aux entiers inférieurs à 100
from lycee import *
for x in range(1,100):
    for y in range(x+1,100):
        if puissance(x,y)==puissance(y,x):
            print (x, "^", y, "=", y, "^", x)

Aperçu du résultat dans la console
```

Remarque:

Nous avons choisi de reprogrammer la fonction puissance afin d'éviter toute confusion chez les élèves mais pour obtenir 2⁸ on peut tout simplement taper 2**8.

lycee, math

Donne le résultat $n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$. où n est un nombre entier.

Soient $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ deux suites définies pour $n\in\mathbb{N}^*$ par $u_n=\sum_{k=0}^n\frac{1}{k!}$ et $v_n=u_n+\frac{1}{n!}$. On peut montrer que ces deux suites sont adjacentes. Estimer une valeur approchée de leur limite commune à 10^{-5} près.

Télécharger

 \checkmark Code: Estimation du nombre e par suites adjacentes.

```
from lycee import *
u,n,ecart=0,0,1
while ecart > puissance(10,-5) :
   u=u+1/factorial(n)
   v=u+1/factorial(n)
   print ("u",n,"=",u," et v",n,"=",v)
print ("la limite de (u_n) et (v_n) vaut ",u,"à 0.00001 près")
                  ___ Aperçu du résultat dans la console ____
u \ 0 = 1.0 et v \ 0 = 2.0
u 1 = 2.0 et v 1 = 3.0
 2 = 2.5 et v = 3.0
u 6 = 2.71805555555555554 et v 6 = 2.71944444444444446
u 7 = 2.7182539682539684 et v 7 = 2.7184523809523813
u = 2.71827876984127 et v = 2.7183035714285717
u 9 = 2.7182815255731922 et v 9 = 2.7182842813051145
la limite de (u_n) et (v_n) vaut 2.7182815255731922 à 0.00001 près
```

II) Quotient entier et reste d'une division euclidienne

$\mathbf{reste}(a,b)$

lycee

Donne le reste de la division de a par b, c'est à dire l'unique entier r tel que a = bq + r où q est un entier et r un entier naturel vérifiant $0 \le r < |b|$.

Les années bissextiles sont les années divisibles par 4, sauf celles divisibles par 100, sauf celles divisibles par 400. Imaginer un programme indiquant si une année est bissextile. (Cet exemple peut permettre de travailler un peu sur les opérateurs logiques)

Télécharger

Code: Année bissextile

```
from lycee import *
n=demande('année ? ')
if (reste(n,4)==0 \text{ and } reste(n,100)!=0) or reste(n,400)==0:
    print (n,'est une année bissextile')
else :
    print (n,"n'est pas une année bissextile")
```


$\mathbf{quotient}(a,b)$

lycee

Donne le quotient entier de la division de a par b, c'est à dire l'unique entier q tel que a = bq + r où q est un entier et r un entier naturel vérifiant $0 \le r < |b|$.

Imaginer un programme qui demande le nombre de décimales voulu et qui calcule le quotient avec la précision demandée.

Télécharger

Code: Une division avec un nombre arbitraire de décimales

```
from lycee import *
n = demande ("Nombre de décimales")
a = demande ("Dividende")
b = demande ("Diviseur")
print (quotient (a, b), ",",end="")
 = reste(a, b)
for i in range (n):
    q = quotient (r, b)
    print (q, end="")
    r = reste(r,b)
```

Remarque:

- Notez que ces deux fonctions existent déjà en python, le quotient de deux entiers pouvant être obtenu par int(a/b) et le reste par a%b. Mais ces fonctions ne renvoient pas forcément les valeurs usuelles lorsque l'on donne un diviseur négatif. Il s'agit de définir la division dans \mathbb{Z} comme renvoyant toujours un reste positif.
- La ligne print(quotient(a,b),",",end = "") se termine par end = "", ce qui a pour effet de ne pas retourner à la ligne après l'affichage, ainsi le résultat apparait sur une seule ligne.

III) Plus grand diviseur commun

L'algorithme d'Euclide a été étudié en classe de troisième, il est donc intéressant à notre avis que les élèves le programment une fois. Cependant, nous avons fait le choix d'ajouter cette fonction dont nous pouvons avoir besoin au cours de l'année.

Un exemple de programme qui ajoute 2 fractions et retourne le résultat sous forme de fraction irréductible. Cet algorithme pourra largement être optimisé selon le niveau et la rapidité des élèves, en particulier pour tout ce qui concerne l'affichage du résultat s'il est entier par exemple.

Télécharger

Code: Somme de deux fractions

Cet autre programme est l'algorithme d'Euclide étendu étudié en spécialité maths de terminale scientifique. Cet exemple s'adresse donc à des élèves ayant déjà pratiqué l'activité algorithmique depuis 2 ans et est donc assez complexe à appréhender pour un débutant.

Télécharger

Code: Algorithme d'Euclide étendu

IV) Racine carrée

Le mathématicien grec Héron d'Alexandrie (Ier siècle après J.-C.) a trouvé une formule pour calculer l'aire d'un triangle connaissant la longueur de ces 3 côtés : $\mathscr{A} = \sqrt{p(p-a)(p-b)(p-c)}$ où a,b et c représentent les longueurs des 3 côtés de ce triangle et p son demi-périmètre. Traduisez cette formule dans un programme en Python.

Télécharger

<u>Code</u>: Calcul de l'aire d'un triangle avec la formule de Héron

```
from lycee import *
a,b,c=demande('Entrez les longueurs des 3 côtés')
p=(a+b+c)/2
aire=sqrt(p*(p-a)*(p-b)*(p-c))
print ("L'aire de ce triangle est",aire)
```

Télécharger

<u>Code</u>: Calcul de la longueur de l'hypoténuse dans un triangle rectangle

```
from lycee import *
a, b = demande ("Entrer les longueurs des deux côtés les plus courts du triangle
                                                    rectangle séparés par une virgule")
h = sqrt (a*a + b*b)
print ("L'hypoténuse mesure", h)
```

Fonction exponentielle et logarithme népérien

lycee, math

Retourne e^x où x est un nombre réel.

lycee

Retourne $\ln x$ où x est un nombre positif.

Remarque:

Dans le module math la fonction logarithme népérien se définit par math.log(...). Mais pour plus de cohérence, nous avons choisi de la renommer 1n dans le module 1ycee.

Partie entière, Valeur absolue VI)

$\mathbf{floor}(x)$

lycee, math

Retourne la partie entière du nombre x, c'est à dire le plus grand entier inférieur ou égal au réel x.

Retourne la valeur absolue x (ou distance à 0 dans le programme de collège).

VII) Trigonométrie

Dans les versions d'Amiens Python et d'Edu
Python antérieures à la version 1.3, nous avions fait le choix de redéfinir les fonctions trigonométriques et leurs réciproques qui sont, comme c'est l'usage en mathématiques, définies sur \mathbb{R} .

A l'usage, il s'est avéré que cette idée n'était pas si pertinente dans la mesure où elle modifiait le comportement des fonctions d'origine de Python

$\cos(x), \sin(x) \text{ et } \tan(x)$

Renvoient respectivement le cosinus, sinus et la tangente de l'angle x donné en radian.

$a\cos(x), a\sin(x) \text{ et } a\tan(x)$

Renvoient la mesure d'un angle en radian dont le cosinus, sinus ou la tangente valent x avec comme convention habituelle :

acos:
$$[-1;1] \to [0;\pi]$$
, asin: $[-1;1] \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, atan: $\mathbb{R} \to \left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$.

Cependant, le fait que la connaissance du radian ne soit plus exigible en seconde nous a conduit à définir ces fonctions aussi pour des réels qui représentent des mesures d'angles en degrés (ainsi que les fonctions réciproques).

$\cos \mathbf{D}(x), \sin \mathbf{D}(x) \text{ et } \tan \mathbf{D}(x)$

lycee

Renvoient respectivement le cosinus, sinus et la tangente de l'angle x donné en degré.

$\mathbf{acosD}(x)$, $\mathbf{asinD}(x)$ et $\mathbf{atanD}(x)$

lycee

Renvoient la mesure d'un angle en degré dont le cosinus, sinus ou la tangente valent x avec comme convention : $a\cos D: [-1;1] \to [0;180]$, $a\sin D: [-1;1] \to [-90;90]$, $a\tan D: \mathbb{R} \to]-90;90[$.

Un exemple issu d'un problème du mois de l'académie d'Amiens, « Le pré et la chèvre » : Une personne possède un pré de forme carrée de 10m de côté. Il attache une chèvre par une corde reliée à un piquet planté au milieu d'un des côtés. Il souhaite que la chèvre broute une surface d'aire égale à la moitié de l'aire du pré. Quelle longueur de corde doit-il laisser? Ici on peut imaginer un programme qui permet, en fonction de la longueur x de la corde, d'afficher la surface que la chèvre peut brouter.

Télécharger

<u>Code</u>: Le pré et la chèvre.

```
from lycee import *
x=demande("Longueur de la corde ?")
if x < 5:
    Aire=pi*x*x/2
elif x<10:</pre>
    AngleAEF=acosD(5/x)
    AngleFEG=180-2*AngleAEF
    Aire=5*sqrt(x*x-5*5)+pi*x*x/360*AngleFEG
elif x<sqrt(125):</pre>
    AngleMEA=acosD(5/x)
    AngleMEJ=180-2*AngleMEA
    AngleLEK=2*acosD(10/x)
    AngleMEL=1/2*(AngleMEJ-AngleLEK)
    LK=2*x*sinD(acosD(10/x))
    Aire=5*sqrt(x*x-5*5)+pi*x*x/180*AngleMEL+5*LK
else:
    Aire=100
print ("L'aire mesure", Aire)
```


VIII) Les constantes

lycee, math

Constante qui vaut une valeur approchée du nombre π .

T'el'echarger

<u>Code</u>: Calculer le périmètre d'un cercle

```
from lycee import *
r=demande("Entrer le rayon du cercle")
print ("La circonférence du cercle mesure",2*pi*r)
```

Remarque:

Attention : pi est une variable comme les autres mais qui a été initialisée avec une certaine valeur. Ainsi si dans un programme vous tapez pi=2, 2 sera alors la nouvelle valeur de π pour le programme. De même, vous pouvez au besoin définir le nombre $e=\exp(1)$ au début d'un programme niveau Terminale.

Le savant grec Archimède en 250 avant Jésus-Christ utilisa des polygones réguliers de 96 côtés, et détermina que le rapport de la circonférence d'un cercle à son diamètre a une valeur proche de $\frac{22}{7}$. Parmi toutes les fractions comprenant un dénominateur à un ou deux chiffres, quelles sont celles qui représentent une meilleure approximation de π ?

Télécharger

🗕 Aperçu du résultat dans la console 🗕

```
erreur historique 0.00126448926735

J'ai trouvé mieux : 179 / 57 L'erreur est : 0.00124177639681

J'ai trouvé mieux : 201 / 64 L'erreur est : 0.000967653589793

J'ai trouvé mieux : 223 / 71 L'erreur est : 0.000747583167258

J'ai trouvé mieux : 245 / 78 L'erreur est : 0.000567012564152

J'ai trouvé mieux : 267 / 85 L'erreur est : 0.000416183001558

J'ai trouvé mieux : 289 / 92 L'erreur est : 0.000288305763706

J'ai trouvé mieux : 311 / 99 L'erreur est : 0.000178512175652
```

IX) Le hasard

Il existe différentes manières de tirer un nombre au hasard selon ce que l'on a besoin de faire dans un programme. Voici 3 fonctions qui devraient déjà répondre à la majorité de vos besoins :

lycee, random

Cette fonction renvoie un nombre décimal de l'intervalle [0; 1[, choisi selon une densité uniforme sur cet intervalle.

Cette fonction ne nécessite pas d'argument, pensez cependant à ouvrir et fermer les parenthèses. (Comme pour la fonction ALEA() sur le tableur)

Exemple : Dans un repère orthonormé, on considère les 3 zones suivantes :

$$A = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le 1 \text{ et } \sqrt{x} \le y \le 1\}$$

$$B = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le 1 \text{ et } x^2 \le y \le \sqrt{x}\}$$

$$C = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le 1 \text{ et } 0 \le y \le x^2\}$$

Ecrire un algorithme qui permet de simuler le choix de 10~000 points du carré ci-contre et ainsi d'estimer la probabilité d'être dans chacune des zones A, B et C.

Télécharger

<u>Code</u>: Un carré découpé en 3 zones

```
from lycee import *
a,b,c=0,0,0
for i in range(10000):
                                                          Α
    x,y=random(),random()
    if y>sqrt(x): a=a+1
                                                                В
    elif y>x*x: b=b+1
    else : c=c+1
                                                                      C
print("On est dans la zone A",a,"fois sur 10 000.")
print("On est dans la zone B",b,"fois sur 10 000.")
print("On est dans la zone C",c,"fois sur 10 000.")
print("Donc les aires respectives des zones A, B et C",end="")
print("sont estimées à", a / 10000, ",", b / 10000, "et", c / 10000, end="")
print (" unités d'aire.")
```

Si on a besoin de tirer un nombre décimal dans un autre intervalle que [0;1], on utilisera la fonction suivante :

uniform(min,max)

 $lycee,\ random$

Cette fonction renvoie un nombre décimal de l'intervalle [min; max[, choisi selon une densité uniforme sur cet intervalle.

Enfin, pour des tirages sur des nombres entiers (typiquement des lancers de dés), une fonction est déjà programmée :

randint(min, max)

lycee, random

Renvoie un nombre entier de l'intervalle [min; max], avec un tirage équiprobable.

Exemple (Extrait d'un exercice de Math O' Lycée) : Dans une urne contenant 100 boules numérotées de 1 à 100, on tire une boule au hasard, on note le résultat, on la remet, on en tire à nouveau une et on note le deuxième résultat. Le but du jeu étant d'obtenir un score de 36, laquelle de ces deux règles offre la plus grande probabilité de gagner?

- Règle 1 : Le score est obtenu en calculant l'écart entre les deux résultats.
- Règle 2 : Le score est obtenu en conservant le plus petit des deux résultats.

Déterminer un programme simulant 10000 jeux et estimer les probabilités de gagner pour chacune des règles? Que peut-on conjecturer?

Télécharger


```
from lycee import *
regle1,regle2=0,0
for i in range(10000):
    boule1=randint(1,100)
    boule2=randint(1,100)
    if boule1>boule2 :
        score1=boule1-boule2
        score2=boule2
    else :
        score1=boule2-boule1
        if score1==36 : regle1=regle1+1
        if score2==36 : regle2=regle2+1
print ("Avec la règle 1, on a gagné",regle1,"fois sur 10 000.")
print ("Avec la règle 2, on a gagné",regle2,"fois sur 10 000.")
```

Enfin, on peut aussi tirer un nombre selon une loi normale $\mathcal{N}(\mu, \sigma)$ ainsi :

lycee, random

Cette fonction renvoie un nombre choisi selon une densité normale de paramètres (m,s).

Remarque:

D'autres fonctions existent dans le module math de Python, vous pouvez retrouver l'intégralité des fonctions disponibles sur la page officielle. Le module math étant chargé en même temps que le module lycee, vous pouvez utiliser les fonctions de cette manière : math.fonction(...).

Chapitre 4

La tortue

Sommaire

I)	Commencer une nouvelle figure	
II)	Avancer, reculer, tourner	
III)	Tracer des cercles	
IV)	La tortue : Afficher, Cacher, Vitesse	
$\mathbf{V})$	Le crayon : lever, baisser, taille, couleur	
VI)	$L'\'{e}cran: effacer, colorer \ le \ fond, \ afficher \ un \ texte \\ \ldots \\ $	

Souvenirs peut-être du temps où on étudiait le langage LOGO à l'école... Le langage Python possède lui aussi une bibliothèque graphique qui permet de faire déplacer une tortue à l'écran, en lui donnant des instructions simples (avancer, tourner à gauche, ...). Programmer avec la tortue, c'est souvent l'occasion de travailler un peu avec de la géométrie classique ou repérée... Il peut aussi trouver à notre avis tout son intérêt au collège pour travailler sur les grands théorèmes (Calculs d'angles et de distances).

I) Commencer une nouvelle figure

Dans EduPython, si vous souhaitez réaliser une nouvelle figure à l'aide de la tortue, cliquer sur le bouton Nouveau Fichier... et choisissez le mode Tortue. Un nouveau programme comportant déjà quelques lignes de code est généré :

```
# Créé par ..., le ... avec EduPython
from lycee import *
import turtle as tortue
    ....
tortue.mainloop()
```


II) Avancer, reculer, tourner

t

tortue.forward(n) et tortue.back(n)

turtle,lycee

Fait respectivement avancer ou reculer la tortue dans la direction où elle regarde de n pas (n pouvant être entier ou non)

Avancer, reculer, tourner La tortue

tortue.left(a) et tortue.right(a)

turtle, lycee

Fait respectivement tourner la tortue vers la gauche ou la droite de a degrés. (Aucun tracé n'est effectué, juste une rotation de la tête)

Télécharger


```
from lycee import *
import turtle as tortue
tortue.forward(100)
tortue.right(90)
tortue.forward(100)
tortue.right(90)
tortue.forward(100)
tortue.right(90)
tortue.forward(100)
tortue.right(30)
tortue.forward(100)
tortue.right(120)
tortue.forward(100)
tortue.mainloop()
```

On peut commencer par demander une figure simple pour permettre aux élèves de comprendre le principe. Par exemple : représenter la figure cicontre à l'aide de la tortue.

Tracer des cercles La tortue

Télécharger

<u>Code</u>: Une église.

```
from lycee import *
import turtle as tortue
tortue.left(90)
tortue.forward(100)
B = acosD(40 / 100)
tortue.right(90 - B)
tortue.forward(100)
C = 180 - 2 * B
tortue.right(180 - C)
tortue.forward(100)
tortue.right(90 - B)
tortue.forward(20)
tortue.left(90)
tortue.forward(100)
tortue.right(50)
FG = 20 / cosD(50)
tortue.forward(FG)
tortue.right(40)
HG=80 - sqrt(FG * FG - 20 * 20)
tortue.forward(HG)
tortue.right(90)
tortue.forward(200)
tortue.mainloop()
```

Puis enchaînez sur des figures où il est nécessaire de faire des calculs pour avancer : Représenter la figure ci-contre à l'aide de la tortue.

Télécharger

<u>Code</u>: Tracer un polygone régulier à n côtés.

```
from lycee import *
import turtle as tortue

n = demande("Nombre de côtés (au moins 3)")
for i in range(n):
    tortue.forward(50)
    tortue.left(360/n)

tortue.mainloop()
```

III) Tracer des cercles

Tracer des cercles La tortue

tortue.circle(rayon) ou tortue.circle(rayon,angle)

turtle, lycee

— Si rayon>0: Trace un cercle de rayon rayon à partir de la position de la tortue et en tournant dans le sens trigonométrique.

- Si rayon < 0: Trace un cercle de rayon |rayon| dans le sens horaire.
- Si angle est précisé, trace un arc de cercle de rayon |rayon| avec une ouverture de angle (en degré). Si angle n'est pas précisé, le cercle est tracé dans son intégralité.

La spirale ci-contre est obtenue en traçant bout à bout des quarts de cercle de centres successifs A, B, C et D.

Télécharger


```
<u>Code</u>: Tracer une spirale.
```

```
from lycee import *
import turtle as tortue

n = 10
for i in range(n):
    tortue.circle(5*i,90)

tortue.mainloop()
```


*Remarque:

Attention, on ne connaît a priori pas le centre de ce cercle... c'est d'ailleurs ce qui peut faire l'intérêt de l'algorithme!

Tracer des cercles La tortue

On veut tracer l'œuf de Pâques ci-contre.

Données : OA = OB = OC = r, C_1 est un demi-cercle de diamètre [AB], C_2 est un arc de cercle de centre A et passant par B et E, C_3 est un arc de cercle de centre C et passant par E et D, enfin C_4 est un arc de cercle de centre B et passant par D et A.

Télécharger

```
<u>Code</u>: Tracer un œuf de Pâques.
```

```
from lycee import *
import turtle as tortue

r = 100
tortue.right(90)
tortue.circle(r, 180)
tortue.circle(2 * r, 45)
tortue.circle(r * (2 - sqrt(2)), 90)
tortue.circle(2 * r, 45)
tortue.circle(2 * r, 45)
```


Télécharger

Code: Le yin et le yang.

```
from lycee import *
import turtle as tortue

r = 100
tortue.up()
tortue.forward(r)
tortue.down()
tortue.left(90)
tortue.circle(2 * r)
tortue.circle(r, 180)
tortue.circle(-r, 180)
tortue.hideturtle()
```


Télécharger

```
<u>Code</u>: Un soleil avec 120 rayons.
```

```
from lycee import *
import turtle as tortue

i = 0
while i < 120:
    tortue.right(90)
    tortue.forward(100)
    tortue.right(180)
    tortue.forward(100)
    tortue.forward(100)
    tortue.circle(50, 3)
    i = i + 1</pre>
tortue.mainloop()
```


IV) La tortue: Afficher, Cacher, Vitesse

tortue.showturtle() tortue.hideturtle()

turtle, lycee

A pour effet de respectivement cacher ou montrer la tortue à l'écran. Pour des questions d'esthétisme, on peut par exemple vouloir cacher la tortue en fin de tracé.

turtle, lycee

Permet de régler la vitesse de la tortue. v est un nombre entier entre 1 et 10, 1 étant la vitesse la plus lente et 10 la plus rapide.

V) Le crayon : lever, baisser, taille, couleur

On peut pour certains dessins avoir besoin de déplacer la tortue sans laisser de trace.

turtle, lycee

A pour effet de respectivement lever et baisser le crayon

tortue.pencolor(texte) ou tortue.pencolor(rouge,vert,bleu)

turtle, lycee

Définit la couleur du crayon.

- On peut entrer un texte entre guillemets parmi (entre autres): 'aqua', 'beige', 'black', 'blue', 'brown', 'chocolate', 'fuchsia', 'gold', 'gray', 'green', 'indigo', 'khaki', 'maroon', 'orange', 'red', 'white', ...
- On peut aussi définir sa propre couleur en paramétrant les composantes rouge, vert et bleu de la couleur (chaque composante étant un nombre entre 0 et 1).

Télécharger

Code: Le drapeau européen.

```
from lycee import *
import turtle as tortue
tortue.pensize(2)
tortue.pencolor(0.9, 0.9, 0.2)
tortue.bgcolor('blue')
for etoile in range(12):
  tortue.down()
  for branche in range(5):
      tortue.forward(30)
      tortue.left(144)
  tortue.up()
  tortue.forward(50)
  tortue.left(30)
tortue.mainloop()
```


Sur une idée de Benoît DUCANGE

L'écran : effacer, colorer le fond, afficher un texte

turtle, lycee

Efface l'écran et repositionne la tortue dans sa position initiale

turtle, lycee

Efface l'écran mais la position du crayon reste inchangée

tortue.write(texte)

turtle, lycee

Affiche le texte texte à l'emplacement de la tortue. Celle-ci ne se déplace pas lors de l'affichage.

De nombreuses autres fonctionnalités sont disponibles sur le site officiel :

http://docs.python.org/3.2/library/turtle.html

Chapitre 5

Les graphiques

Sommaire

<u>I)</u>	Placer des points, Afficher le repère, Les couleurs	46
	Nuage de points ou diagrammeXY	
	Les axes et la grille	
	Titres et légendes	
$\mathbf{V})^{'}$	Repères multiples	50

Si la tortue permet de revisiter la géométrie de collège, vous remarquerez rapidement que les possibilités graphiques sont très limitées pour un usage en classe. Nous vous présentons ici un nouvel objet inclus dans AmiensPython, l'objet **repere** qui va nous permettre de tracer des graphes de fonctions et autres diagrammes. Comme pour la tortue, les actions (appelées méthodes en programmation objet) seront exécutées par des commandes du type « repere action »...

I) Placer des points, Afficher le repère, Les couleurs

matplot lib, lycee

Place dans la fenêtre graphique un point de coordonnées (x,y). Si aucune échelle n'est spécifiée, une échelle adaptée est proposée.

Le point est représenté avec la couleur et le style défini par la chaine *options*. Cette chaine comprend usuellement deux caractères : le premier étant une couleur, le deuxième le style, comme l'indique le tableau ci-dessous :

	Q 1		G : 1
Couleur		Style	
b	bleu	-	ligne continue
g	vert		tirets
r	rouge	:	pointillés
c	cyan		des points
m	magenta	О	des billes
у	jaune	X	des croix
k	noir	V	des triangles
W	blanc		points-tirets

Exemple:

la commande repere.plot(2,3,'gx') place un point sous forme de croix verte de coordonnées (2,3).

ARemarque:

Les options '-' ou '-' n'ont pas d'effet sur les points, mais seront utiles pour tracer des courbes, comme nous le verrons pas la suite.

Exemple:

On cherche, dans un repère orthonormé, tous les points de coordonnées (x,y) tels que x * (6-x) < y * (8+y).

Télécharger

<u>Code</u>: Ligne de niveau.

```
from lycee import *
for i in range(10000):
    x=uniform(-10,10)
    y=uniform(-10,10)
    if x*(6-x)<y*(8+y):
        repere.plot(x,y,'ro')
    else :
        repere.plot(x,y,'go')
repere.show()</pre>
```


Remarque:

Le programme se termine par l'instruction **repere.show()** qui a pour effet, vous l'aurez déjà deviné, d'afficher la fenêtre.

II) Nuage de points ou diagrammeXY

repere.plot(X,Y)

matplot lib, lycee

Dessine la fonction affine par morceaux passant par les points de coordonnées (x_i, y_i) où les nombres x_i et y_i sont respectivement les éléments de la liste X et la liste Y.

Pour dessiner le segment [AB], l'instruction repere.plot([xA,xB],[yA,yB]) suffit.

De part la simplicité de l'utilisation des listes, il devient alors très facile de tracer la représentation graphique d'une fonction affine :

Télécharger

```
Code: Tracer d'une droite.
```

```
from lycee import *
a,b=demande("Entrez le coefficient directeur et l'ordonnée à l'origine")
x = np.arange(-10, 10, 0.1)
repere.plot(x, a*x+b)
repere.show()
```

Remarque:

Précision technique : ici, on a recours à l'instruction np.arange(debut,fin,pas), qui crée une liste de valeurs entre debut et fin avec un pas pouvant être décimal (contrairement au range). Le gros avantage de cet objet, c'est que l'on peut alors effectuer des opérations comme x * x ou 3 * x + 4... (Consultez l'aide sur les objets de type NDArray de la bibliothèque numpy pour plus d'informations.)

Autre exemple : une puce située à l'origine d'un axe gradué effectue 1 000 sauts successifs. A chaque saut, elle avance ou recule aléatoirement d'une unité sans préférence pour un sens ou l'autre. Représentez le chemin parcouru par la puce.

Télécharger

<u>Code</u>: Marche aléatoire.

```
from lycee import *
p,x,y=0,[],[]
for i in range(1000):
    x.append(i)
    y.append(p)
    if randint(0,1)==0:
        p=p+1
    else :
        p=p-1
repere.plot(x,y)
repere.show()
```


Les axes et la grille Les graphiques

Remarque:

Ici le programme donné ne trace qu'une seule courbe, mais si vous décidez de ne pas fermer la fenêtre graphique et de relancer le programme, les graphiques se superposent et une échelle adaptée est proposée ce qui représente un apport pédagogique. Le paragraphe suivant vous explique néanmoins comment forcer le nettoyage de la fenêtre en début de programme.

III) Les axes et la grille

matplot lib, lycee

Efface et ré-initialise le contenu de la fenêtre graphique.

Par défaut, si aucune échelle n'est imposée, celle-ci est calculée automatiquement. Quelquefois, il peut s'avérer nécessaire de la modifier manuellement.

matplot lib, lycee

Impose une nouvelle échelle au repère.

Vous pouvez aussi choisir d'afficher une grille ou non en plus :

rej

$\mathbf{repere.grid}(mode)$

matplot lib, lycee

si le booléen *mode* vaut *True*, la grille est affichée, si *mode* vaut *False*, elle est masquée, comme c'est le cas par défaut.

IV) Titres et légendes

matplot lib, lycee

Ajoute le titre *texte* au graphique.

matplot lib, lycee

Affiche le texte texte sur l'axe des abscisses ou l'axe des ordonnées.

Repères multiples Les graphiques

repere.text(x,y,texte)

matplot lib, lycee

Affiche le texte texte sur le graphique à la position (x,y).

Télécharger

Code: Chute d'une balle.

Remarque:

Vous aurez remarqué qu'en ajoutant un r à la chaine de texte, on peut faire afficher des formules mathématiques pour peu que l'on connaisse un minimum la syntaxe LATEX... Enfin, on est davantage dans la décoration qu'autre chose!

V) Repères multiples

Il existe une instruction permettant de fractionner la fenêtre graphique en plusieurs sous graphiques. C'est peut-être un peu complexe pour des élèves, nous vous laissons donc juger de l'utilité de leur présenter cette fonction.

matplot lib, lycee

Fragmente la fenêtre graphique en plusieurs repères. n est un nombre entier de 3 chiffres construit ainsi :

- Le chiffre des centaines indique le nombre de lignes à créer.
- Le chiffre des dizaines indique le nombre de colonnes à créer.
- Le chiffre des unités indique quel est le repère actif.

Repères multiples Les graphiques

Exemple:

L'instruction repere.subplot(234) découpe la fenêtre graphique en 6 parties numérotées ainsi :

:	1	2	3
	4	5	6

Pour l'enseignant cela peut être pertinent avec le vidéoprojecteur pour donner du sens à la notion de probabilité comme dans l'exemple ci-dessous : faire apparaître ce qui est convergent et ce qui est chaotique...

Télécharger

<u>Code</u>: Pile ou face.

```
from __future__ import division
from lycee import *
p,f,e=0,0,0
n,ecart,ecartm,freqP,freqF=[],[],[],[],[]
for i in range(1,1000):
    if randint(0,1)==0:
        p=p+1
    else :
        f = f + 1
    e=p-f;
    n.append(i)
    ecart.append(e)
    ecartm.append(e/i)
    freqP.append(p/i)
    freqF.append(f/i)
repere.subplot(221)
repere.plot(n,ecart)
repere.title("écarts en nombre")
repere.subplot(222)
repere.plot(n,ecartm)
repere.title("écarts en
                      fréquence")
repere.subplot(223)
repere.plot(n,freqP)
repere.title("% de piles obtenus")
repere.subplot(224)
repere.plot(n,freqF)
repere.title("% de faces obtenus")
repere.show()
```

```
écarts en fréquence
           écarts en nombre
                                          1.0
 30
 20
                                          0.5
 10
                                          0.0
-20
                                         -0 =
-30
-40
-50
-50
0
                                                   200 400 600 800
% de faces obtenus
         200 400 600 800
% de piles obtenus
1.0
                                          1.0
                                          0.8
0.8
0.6
                                          0.6
0.4
                                          0.4
                                          0.2
0.2
0.0
                             800 1000 0.0
                400
                       600
                                                  200
                                                         400
                                                                600
                                                                      800 1000
```

Chapitre 6

Les listes

Sommaire

I)	Définition	52
II)	Créer une liste, ajouter des éléments	54
III)	Retirer des éléments	57
IV)	Rechercher, Compter, Ordonner	59
$\mathbf{V})$	Opérations sur les listes	32

I) Définition

Une liste est une suite d'éléments numérotés dont le premier indice est 0. Une liste n'a donc (presque) pas de limite de taille. Les listes existent dans le langage Python, sans besoin de la bibliothèque lycee.

Python affiche la liste comme un « vecteur ligne »dont les composantes sont les éléments de cette liste séparés par une virgule. La liste est délimitée par des crochets.

Pour atteindre l'élément d'indice i de la liste L, il suffit d'écrire L[i].

L'exemple suivant permet de démontrer que tous les ans, il y a au moins un vendredi 13 dans l'année.

Télécharger

Code: Vendredi 13

```
from lycee import *
jours=["Lundi","Mardi","Mercredi","Jeudi","Vendredi","Samedi","Dimanche"]
mois=["Janvier","Février","Mars","Avril","Mai","Juin","Juillet","Août"]
mois=mois+["Septembre","Octobre","Novembre","Décembre"]
nbjours=[31,28,31,30,31,30,31,30,31]
for jan in range(7):
    print ("Si le 13 Janvier est un",jours[jan],": ",end="")
    m=0;j=jan;
    while reste(j,7)!=4 and m<12:
        j=j+nbjours[m]
        m=m+1;
    if reste(j,7)==4:
        print ("Le 13",mois[m],"sera un Vendredi 13")
    else:
        print ("il n'y a pas de Vendredi 13")</pre>
```

Définition Les listes

```
Aperçu du résultat dans la console

Si le 13 Janvier est un Lundi : Le 13 Juin sera un Vendredi 13

Si le 13 Janvier est un Mardi : Le 13 Février sera un Vendredi 13

Si le 13 Janvier est un Mercredi : Le 13 Août sera un Vendredi 13

Si le 13 Janvier est un Jeudi : Le 13 Mai sera un Vendredi 13

Si le 13 Janvier est un Vendredi : Le 13 Janvier sera un Vendredi 13

Si le 13 Janvier est un Samedi : Le 13 Avril sera un Vendredi 13

Si le 13 Janvier est un Dimanche : Le 13 Septembre sera un Vendredi 13
```

Les éléments d'une liste peuvent être des nombres, du texte, voire des listes eux-mêmes. On peut aussi mélanger les types d'objets dans une même liste comme ci-dessous, lorsque cela semble utile.

Ici on propose de stocker dans une liste $[A,x_A,y_A,B,x_B,y_B,C,x_C,y_C,D,x_D,y_D]$ et l'on teste si ABCD est un parallélogramme.

Télécharger

<u>Code</u>: Reconnaître un parallélogramme

```
from lycee import *
quad=['C',1,2,'0',4,3,'Q',5,0,'P',2,-3]
if quad[4]-quad[1]==quad[7]-quad[10] and quad[5]-quad[2]==quad[8]-quad[11]:
    print( "Le quadrilatère "+quad[0]+quad[3]+quad[6]+quad[9], end="")
    print (" est un parallélogramme.")
else:
    print ("Le quadrilatère "+quad[0]+quad[3]+quad[6]+quad[9], end="")
    print (" n'est pas un parallélogramme.")

Aperçu du résultat dans la console

>>> Le quadrilatère COQP n'est pas un parallélogramme.
```

Remarque:

ATTENTION! Respectez bien la syntaxe entre crochets pour écrire votre liste. Il existe en effet un autre objet en Python: le tuple (N-uplet) qui se note entre parenthèses, il ressemble comme deux gouttes d'eau à la liste à ceci près par exemple que l'on ne peut pas modifier les éléments. Nous ne parlerons pas de cet objet dans cet ouvrage.

On peut connaître la taille de la liste avec la fonction len(L).

Renvoie le nombre d'éléments de la liste *list*

${f liste_demande}(prompt)$

lycee

Ouvre une fenêtre contenant le texte *prompt*, attend une liste dont les éléments sont séparés par des virgules et renvoie cette liste.

Télécharger

<u>Code</u>: produit de 2 polynômes

```
from lycee import *
A=liste_demande('entrez les coefficients de A(x) par ordre des puissances
B=liste_demande('entrez les coefficients de B(x) par ordre des puissances
                                                                      croissantes')
DegA, DegB=len(A)-1, len(B)-1
C = []
for degre in range(DegA+DegB+1) :
    k, coef = 0, 0
    while k<=degre :</pre>
        if k<=DegA and degre-k<=DegB :</pre>
             coef=coef+A[k]*B[degre-k]
        k = k + 1
    C.append(coef)
print ('('+affiche_poly(A)+')('+affiche_poly(B)+')='+affiche_poly(C))
                         🗕 Aperçu du résultat dans la console 🗕
(1+2X+3X^2)(3-X+2X^2)=3+5X+9X^2+X^3+6X^4
```

Notez la présence de la fonction affiche_poly qui transforme une liste en un polynôme pour plus de lisibilité.

$\mathbf{affiche} \mathbf{poly}(L)$

luce

Renvoie une chaîne de caractères représentant la liste L sous forme d'un polynôme,L[n] étant le coefficient de degré n.

Par exemple affiche_poly([1,0,4]) donne $1 + 4X^2$

Cette fonction n'existe pas dans le langage Python d'origine :

II) Créer une liste, ajouter des éléments

Il existe différentes manières de créer des listes :

- En définissant la liste en extension : On liste les éléments, par exemple les jours de la semaine dans l'exemple du vendredi 13.
- Avec l'instruction list(range) qui renvoie la liste générée par range que nous avons déjà vue en utilisant les boucles for.

- Avec une formule, lorsque l'on connaît une expression explicite des éléments de la liste, exemple pour obtenir la liste des 10 premiers carrés parfaits : L = [i * i for i in range(10)]
- Enfin, on peut partir d'une liste existante ou vide (notée : []) et ajouter les éléments au fur et à mesure, grâce aux instructions append et insert détaillées ci-dessous :

La conjecture d'Euler (cas n=5): Elle fut énon-

Ajoute un élément a à la liste list en fin de liste

Télécharger

Code: Conjecture d'Euler

```
from lycee import *
                                                cée par le mathématicien suisse Leonhard Euler en
L=[puissance(i,5) for i in range(1,5)]
                                                1769 et peut dans le cas n=5 s'énoncer ainsi : « on
                                                ne peut pas trouver 4 nombres entiers tels que la
trouve=0
                                                somme de chacun de ses nombres à la puissance 5
while trouve == 0:
                                                soit à son tour la puissance de 5 d'un nombre en-
  L.append(puissance(max,5))
                                                tier ». Cette conjecture fut infirmée par L. J. Lan-
  ind1=0;
  while ind1<max and trouve==0:</pre>
                                                der et T. R. Parkin en 1966 grâce au contre-exemple
     ind2=ind1
                                                suivant : 27^5 + 84^5 + 110^5 + 133^5 = 144^5. L'exemple
     while ind2<max and trouve==0:</pre>
                                                suivant cherche et trouve ce cas (Attention, si vous
       ind3=ind2
                                                exécutez le programme c'est un peu long).
       while ind3<max and trouve==0 :</pre>
         ind4=ind3
         while ind4 <max and trouve==0:</pre>
            if L[ind1]+L[ind2]+L[ind3]+L[ind4]==L[max-1]:
              print (ind1+1, "^5+", ind2+1, "^5+", ind3+1, "^5+", ind4+1, "^5=", max, "^5")
              print (L[ind1],"+",L[ind2],"+",L[ind3],"+",L[ind4],"=",L[max-1])
              trouve=1
            ind4 = ind4 + 1
         ind3=ind3+1
       ind2=ind2+1
     ind1=ind1+1
  max=max+1
  print ("max=",max)
27 ^5+ 84 ^5+ 110 ^5+ 133 ^5= 144 ^5
14348907 + 4182119424 + 16105100000 + 41615795893 = 61917364224
```

Si vous avez besoin d'insérer un élément à un autre endroit qu'en fin de liste, on utilisera la fonction suivante (en particulier pour insérer en début de liste) :

Insère l'élément a au rang j de la liste list

Télécharger

Code: Nombre de Kaprekar

```
from lycee import *
n=demande("Entrez un nombre entier strictement positif")
N=n*n
L=[]
                                                Un nombre de Kaprekar est un nombre qui,
trouveG, trouveD=-1,-1
while N!=0 :
                                                lorsqu'il est élevé au carré, peut être séparé
    L.insert(0,reste(N,10))
                                                en une partie gauche et une partie droite (non
    N=quotient(N,10)
                                                nulle) telles que la somme donne le nombre
for i in range(len(L)) :
                                                initial. Exemple: 4879 est un nombre de Ka-
    gauche=0
                                                prekar car,
    droite=0
    for j in range(i) :
                                                            4879^2 = 23804641
         gauche=gauche*10+L[j]
                                                                   et
    for j in range(i,len(L)) :
                                                           238 + 04641 = 4879
         droite=droite*10+L[j]
    if gauche+droite==n :
         trouveG, trouveD=gauche, droite
if trouveG>-1:
    print (n,"est nombre de Kaprekar ",end="")
    print (n,"2=",n*n," et ",n,"=",trouveG,"+",trouveD)
    print (n,"n'est pas nombre de Kaprekar")
13 n'est pas nombre de Kaprekar
703 est nombre de Kaprekar 703 ^2 = 494209 et 703 = 494 + 209
```

En réalité, l'utilisation de listes trouve son intérêt quand on a besoin de conserver les valeurs pour la suite du programme (extraire une moyenne, réutiliser des valeurs, ...). A vous de trouver l'équilibre entre lisibilité du programme et performance de celui-ci.

```
Par exemple : Que dire de la suite (u_n) définie par u_0 = 2, u_1 = 5 et pour tout entier positif n, u_{n+1} = \sqrt{u_{n-1} \times u_n + 9(u_n + 1)}?
```

On peut choisir soit d'utiliser une liste pour conserver toutes les valeurs, ou bien se limiter à deux variables a et b qui contiendront à chaque étape les valeurs de u_{n-1} et u_n :

Retirer des éléments Les listes

Télécharger

<u>Code</u>: Suite avec une liste

```
from lycee import *
U=[2,5]
n=1
while n<20 :
        U.append(sqrt(U[n-1]*U[n]+9*(U[n]+1)))
        n=n+1
print (U)

[2, 5, 8.0, 11.0, 14.0, 17.0, 20.0, 23.0 ...</pre>
```

Télécharger

```
Code: Suite sans liste
```

```
from lycee import *
a,b,n=2,5,1
while n<=20:
    print (a," ", end="")
    a,b=b,sqrt(a*b+9*(b+1))
    n=n+1

2 5 8.0 11.0 14.0 17.0 20.0 23.0 ...</pre>
```

Dans l'exemple suivant, l'utilisation d'une liste semble difficilement évitable dans la mesure où le calcul de u_{n+1} fait intervenir tous les termes précédents :

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier naturel n,

$$u_{n+1} = -u_n + u_{n-1} - u_{n-2} + \dots + (-1)^{n+1} u_0$$
$$= \sum_{k=0}^{n} (-1)^{k+1} u_{n-k}$$

- a) Calculer les 20 premiers termes de cette suite
 à l'aide d'un algorithme.
- b) Que peut-on conjecturer? Le prouver.
- c) Peut-on généraliser ce résultat pour u_0 quel-conque?

Télécharger

Code: Suite

```
from lycee import *
U=[2]
n=1
while n<20 :
    k=1
    total=0
    while k<=n :
        total=total+(-1)**(k+1)*k*U[n-k]
        k=k+1
    U.append(total)
    n=n+1
print (U)</pre>
```

[2, 2, -2, 0, 2, -2, 0, 2, -2, 0, ...

III) Retirer des éléments

list.remove(e)

Supprime la première occurrence de l'élément e dans la liste list

Retirer des éléments Les listes

Attention, si vous essayez de retirer un élément d'une liste alors qu'il n'en fait pas partie, un message d'erreur sera renvoyé par la console python :

```
Traceback (innermost last):
File "<interactive input>", line 1, in ?
ValueError: list.index(x): x not in list
```

Il peut être pertinent de tester si l'élément appartient à une liste à l'aide de la fonction suivante :

e in list

Teste si l'élément e est dans la liste list et renvoie VRAI ou FAUX

Le Crible d'Ératosthène permet de lister la liste des premiers nombres premiers.

Télécharger

Code: Crible d'Ératosthène

```
from lycee import *
N = demande ("Obtenir les nombres premiers inférieurs à ?")
indice = 0
liste = list(range (2, N))
                                                                              20
                                                    12
                                                        13
                                                                 16
                                                                    17
                                                                       18
                                                                          19
                                                           14
                                                              15
while indice < len (liste) :</pre>
                                                    22
                                                           24
                                                              25
                                                                 26
                                                                              30
    nombre = liste[indice]
    n = 2
                                                    32
                                                        33
                                                           34
                                                              35
                                                                 36
                                                                    37
                                                                       38
                                                                          39
                                                                              40
     while n * nombre < N :</pre>
                                                    42
                                                           44
                                                              45
                                                                    47
                                                                       48
                                                                          49
                                                        43
                                                                 46
         multiple = n * nombre
                                                        53
                                                                    57
                                                                          59
         if multiple in liste :
                                                              65
                                                                    67
                                                                       68
              liste.remove(multiple)
                                                                    77
                                                        73
                                                                          79
         n = n + 1
     indice = indice + 1
                                                 81
                                                    82
                                                        83
                                                           84
                                                              85
                                                                 86
                                                                    87
                                                                       88
                                                                          89
                                                                              90
print (liste)
                                                              95
                                                                 96
                                                                    97
```

Vous pouvez aussi savoir qu'un élément a n'est pas dans la liste L avec le test a not in L Enfin, si vous souhaitez supprimer le $i^{\grave{e}me}$ élément d'une liste, il faut utiliser la commande pop :

Supprime l'élément d'indice i de la liste list.

Télécharger

<u>Code</u>: Polynome dérivé

```
from lycee import *
P=liste_demande("Entrez les coef du polynome, séparés par des virgules")
print ("Le polynôme dérivé de",affiche_poly(P),"est",end="")
d=1
while d<len(P):
    P[d]=d*P[d]
    d=d+1
P.pop(0)
print (affiche_poly(P))</pre>
Aperçu du résultat dans la console
Le polynôme dérivé de 1+4X-3X^2+7X^4 est 4-6X+28X^3
```

IV) Rechercher, Compter, Ordonner

list.index(e)

Renvoie l'indice de la première occurrence de l'élément e dans la liste liste. Si l'élément e n'est pas dans la liste, une erreur se produit, pensez donc à tester avec la commande in la présence de l'élément dans la liste.

I Renvoie le nombre d'occurrences de la valeur e dans la liste list

Télécharger

Code: Compter le nombre de 6

Sur 1 000 lancers, vous avez obtenu 177 fois le chiffre 6. Le premier 6 a été obtenu au tirage numéro 5

list.sort()

Ordonne la liste *list* (par ordre croissant des valeurs)

Retourne une liste ordonnée qui contient les éléments d'une liste de départ list

Notez bien la différence entre L.sort() qui modifie la liste L et sorted(L) qui renvoie la liste triée, mais L n'est pas modifiée.

Un exemple avec l'algorithme de Kaprekar : On considère un nombre N de 4 chiffres (éventuellement des 0) que l'on transforme en un nombre $N=n_2-n_1$ où n_1 est le nombre formé des 4 chiffres de n triés dans l'ordre croissant et n_2 celui formé des 4 chiffres de n triés dans l'ordre décroissant.

On crée une liste des entiers de 0 à 9999. à chaque étape, on applique l'algorithme de Kaprekar à tous les éléments de la liste. Combien la liste comporte-elle de nombres distincts

- a) Après le 1er passage?
- b) Après le 2ème passage?
- c) Après le 5ème passage?
- d) Après le 10ème passage?
- e) Après le 100ème passage?

Télécharger

Code: Algorithme de Kaprekar

```
from lycee import *
L=range(10000)
for passage in range(1,20):
    L1=[]
    for n in L :
        d=reste(n,10)
        c=reste(quotient(n,10),10)
        b=reste(quotient(n,100),10)
        a=quotient(n,1000)
        a,b,c,d=sorted([a,b,c,d])
        n1=a*1000+b*100+c*10+d
        n2=d*1000+c*100+b*10+a
        n3=n2-n1
        if not n3 in L1 :
        L1.append(n3)
```

```
print ("Passage", passage, ": ", len(L1), "possibilités", L1)
L=L1
```


Remarque importante : La dernière ligne du programme L = L1 indique que l'adresse de la liste L est celle de la liste L1, mais ne recopie pas celle-ci, ce qui n'a pas ici d'importance, car une nouvelle liste L1 est créée à l'itération suivante.

En effet, contrairement aux autres variables étudiées jusqu'à présent, les listes (dont on ne connaît pas la taille a priori) sont des pointeurs (on utilise plutôt le terme d'alias en Python) et pointent donc vers des adresses mémoire. Ainsi, si vous indiquez dans un programme L1 = L2, celui-ci comprendra que les listes L1 et L2 sont les mêmes objets, dans ce cas modifier L2 modifiera L1 et inversement. Pour pallier ce problème, vous devrez saisir L2 = L1[:] pour obtenir une copie indépendante de la liste L1.

Télécharger

Code: copie de l'adresse d'une liste

```
from lycee import *
A = ["Bleu", "Blanc", "Rouge"]
B = A
B [1] = "Vert"
print ("A = ", A)
print ("B = ", B)

A = ['Bleu', 'Vert', 'Rouge']
B = ['Bleu', 'Vert', 'Rouge']
```

Un dernier exemple qui permet de calculer les coefficients binomiaux grâce au triangle de Pascal. Ici on a recours à deux listes : la liste A contient la liste au rang n-1 et la liste B celle au rang n.

Comme vous le verrez dans le chapitre suivant, on peut heureusement calculer les coefficients $\left(\begin{array}{c} n \\ p \end{array} \right)$ à l'aide de la fonction binomial.

Télécharger

<u>Code</u>: copie du contenu d'une liste

```
from lycee import *
A = ["Bleu", "Blanc", "Rouge"]
B = A[:]
B[1] = "Vert"
print ("A = ", A)
print ("B = ", B)

A = ['Bleu', 'Blanc', 'Rouge']
B = ['Bleu', 'Vert', 'Rouge']
```

Télécharger

<u>Code</u>: Triangle de Pascal

```
from lycee import *
n=demande('quelle puissance ?')
listeA=[1,0] #initialisation
print ([1])
listeB=listeA
for l in range (2,n+2):
    listeA=listeB[:]
    for i in range (1,l):
        listeB[i]=listeA[i-1]+listeA[i]
    print (listeB)
    listeB.append(0)
```

Opérations sur les listes

Les listes

V) Opérations sur les listes

L1 + L2

Renvoie une liste contenant les éléments de la liste L1 suivis des éléments de la liste L2.

On peut par exemple l'utiliser pour concaténer différents échantillons (voir partie statistiques et probabilités).

L * n

Renvoie une liste contenant les éléments de la liste L répétés n fois.

On utilise souvent cette instruction pour initialiser une liste. Par exemple, pour simuler une urne contenant 5 boules vertes et 3 rouges, on pourra taper : Urne = ["Verte"] * 5 + ["Rouge"] * 3. (Cf le chapitre statistiques et probabilités.)

Ce dernier exemple implémente la méthode de Hörner, autrefois étudiée en première S. Cette méthode propose un algorithme pour factoriser un polynôme lorsque l'on en connaît une racine. Le schéma ci-dessous illustre le cas du polynôme $X^3 - 7X^2 + 17X - 14$ dont une racine évidente est 2. (Pour plus d'informations, nous vous invitons à lire quelques explications de Serge SAUTON) :

$$X^{3} - 7X^{2} + 17X - 14$$
$$= (X - 2)(X^{2} - 5X + 7)$$

Télécharger

<u>Code</u>: Méthode de Hörner

Chapitre 7

Probabilités et statistiques

Sommaire

I)	Statistiques descriptives	63
II)	Simulation et échantillonnage	66
III)	Diagrammes	69
IV)	Conversion	72

L'une des principales utilisations que nous pouvons faire d'une liste de valeurs est le traitement statistique de celle-ci. Nous avons vu comment travailler sur les listes. A présent, découvrons les outils statistiques que nous avons à notre disposition.

Ces fonctions ont été ajoutées dans le module *lycee* d'AmiensPython. Ce ne sont donc pas des fonctions de base de Python, et vous devrez donc les recréer ou les recopier si vous souhaitez les utiliser avec un autre environnement.

I) Statistiques descriptives

Pour commencer, nous allons reprendre les opérations statistiques étudiées au collège et complétées au lycée.

lycee

Renvoie la liste *liste* ordonnée par ordre croissant sans doublons et (éventuellement) :

- Si option vaut 'effectif', la liste des effectifs correspondants.
- Si option vaut 'frequence', la liste des fréquences correspondantes.

Les dés de Sicherman sont deux dés à 6 faces : les faces du premier sont consituées des numéros 1, 2, 2, 3, 3 et 4 et celles du second 1, 3, 4, 5, 6 et 8. Lorsque l'on jette ces 2 dés et que l'on ajoute les résultats des faces, on obtient non seulement les mêmes possibilités qu'avec un dé classique (de 2 à 12), mais avec les mêmes fréquences d'apparition! Le programme ci-dessous lance mille fois deux dés de Sicherman ainsi que deux dés classiques et compare graphiquement les fréquences des sommes obtenues. (Sur une idée de Jean-Philippe BLAISE).

Code: Dés de Sicherman from lycee import * 0.16 De1=[1,2,2,3,3,4] 0.14 De2=[1,3,4,5,6,8] 0.12 L1=[];L2=[] for i in range(10000): 0.10 L1.append(randint(1,6)+randint(1,6)) 0.08 L2.append(De1[randint(0,5)]+De2[randint(0,5)]) 0.06 X,F=compte(L1,'frequence') repere.plot(X,F,'bo') 0.04 X,F=compte(L2,'frequence') 0.02 repere.plot(X,F,'rx')

Ce précédent exemple pourrait être ensuite repris et adapté pour répondre aux 2 défis suivants :

Télécharger

Défi 1 : Imaginer un programme pour déterminer la loi de probabilité. (Une preuve papier/crayon est ici largement pertinente.)

repere.show()

Défi 2 : Existe-t-il d'autres dés à 6 faces composées d'entiers naturels et ayant les mêmes propriétés ? Imaginer un programme pour répondre à cette question.

lycee

Renvoie la moyenne arithmétique, il existe 3 manières d'utiliser cette fonction:

- Soit on indique une liste xi de données brutes
- Soit on indique une liste xi de valeurs et une liste ni de même taille correspondant aux effectifs.
- Soit on indique une liste xi ordonnée de taille N et une liste ni de taille N-1, dans ce cas, la liste xi est considérée comme les extrémités de classes et d'effectifs la liste ni. La moyenne est alors calculée en prenant les centres de ces classes.

$\mathbf{mediane}(xi,ni,option)$

lycee

Renvoie la valeur médiane de la série xi éventuellement pondérée des effectifs ni correspondants si celle-ci est donnée.

Vous pouvez aussi préciser un dernier paramètre option précisant le mode de calcul :

- Si option vaut 1 ou n'est pas précisé, la médiane est la valeur centrale de la série (valeur centrale de la série ou moyenne arithmétique des deux valeurs centrales)
- Si le paramètre option est 2, la médiane est alors la valeur pour laquelle on dépasse 50% des valeurs.
- la fonction mediane n'est pas prévue pour fonctionner avec des classes, mais seulement des valeurs discrètes.

ECC(xi,ni) et FCC(xi,ni)

lycee

Renvoient la liste xi ordonnée et respectivement la liste formée des effectifs ou fréquences cumulés croissants de la liste xi. Si une liste ni (de même taille) est précisée les effectifs cumulés croissants sont calculés en tenant compte des effectifs ni.

Remarque : Si aucune liste ni n'est précisée, les données xi n'ont pas besoin d'être ordonnées.

quartile(xi,ni,val)

lycee

xi est une série éventuellement pondérée des effectifs ni correspondants. Selon les valeurs du paramètre val:

- Si val = 1 renvoie le premier quartile de la série.
- $\bullet\,$ Si val=3 renvoie le troisième quartile de la série.
- Si val n'est pas précisé, renvoie le premier et troisième quartile.

$\mathbf{decile}(xi,ni,val)$

lycee

xi est une série éventuellement pondérée des effectifs ni correspondants. Selon les valeurs du paramètre val:

- Si val = 1 renvoie le premier décile de la série.
- Si val = 9 renvoie le neuvième décile de la série.
- Si val n'est pas précisé, renvoie le premier et neuvième décile.

En Novembre 1976 dans un comté du sud du Texas, Rodrigo Partida était condamné à huit ans de prison. Il attaqua ce jugement au motif que la désignation des jurés de ce comté était discriminante à l'égard des Américains d'origine mexicaine. Alors que 79,1% de la population de ce comté était d'origine mexicaine, sur les 870 personnes convoquées pour être jurés lors d'une certaine période de référence, il n'y eut que 339 personnes d'origine mexicaine. (D'après un énoncé du document ressources pour faire la classe en mathématiques au lycée professionnel).

Enoncé : Effectuer 1000 simulations sur un tirage de 870 personnes dans une population composée à 79.1% de mexicains et donner l'intervalle interdéciles. Que peut-on en conclure?

Télécharger

Code: Appel de jugement

```
from lycee import *
Nb=[]
for i in range(1000):
    Mexicain=0
    for n in range(870):
        if random()<0.791 :
            Mexicain=Mexicain+1
        Nb.append(Mexicain)
baton(Nb)
repere.show()
dec1,dec9=decile(Nb)
print ("80% des valeurs se ",end="")
print ("situent entre",dec1,'et',dec9)</pre>
```

Remarque:

Comme on le verra quelques pages plus loin, en ajoutant simplement baton(Nb) et repere.show() en fin de programme, on peut visualiser la distribution.

variance(xi,ni) & ecartype(xi,ni)

lycee

Renvoient respectivement la variance et l'écart type des valeurs de la série xi éventuellement pondérée des effectifs ni correspondants si la liste ni est donnée. On peut aussi travailler avec des classes en donnant la liste des valeurs xi contenant alors une valeur de plus que la liste des effectifs ni. Dans ce cas, le calcul est effectué en utilisant les centres des classes.

II) Simulation et échantillonnage

$\bigcup_{i \in \mathcal{I}} \mathbf{binomial}(n,p)$

lycee

Retourne le coefficient binomial $\binom{n}{p}$, c'est-à-dire le nombre de chemins de l'arbre réalisant p succès pour n répétitions.

(D'après un document de l'inspection générale): Monsieur Z, chef du gouvernement d'un pays lointain, affirme que 52% des électeurs lui font confiance. On interroge 100 électeurs au hasard (la population est suffisamment grande pour considérer qu'il s'agit de tirages avec remise) et on souhaite savoir à partir de quelles fréquences, au seuil de 5%, on peut mettre en doute le pourcentage annoncé par Monsieur Z, dans un sens, ou dans l'autre.

On fait l'hypothèse que Monsieur Z dit vrai et que la proportion des électeurs qui lui font confiance dans la population est p=0.52. La variable aléatoire X, correspondant au nombre d'électeurs lui faisant confiance dans un échantillon de 100 électeurs, suit la loi binomiale de paramètres n=100 et p=0.52. Déterminons donc a et b tels que :

- a est le plus petit entier tel que $P(X \le a) > 0.025$
- b est le plus petit entier tel que $P(X \le b) > 0.975$.

Télécharger

Code: Elections

```
from lycee import *
p,a,b=0,-1,-1
for k in range(101):
    p=p+binomial(100,k)*puissance(0.52,k)*puissance(0.48,100-k)
    if a==-1 and p>0.025 :
        a=k
```

```
if b==-1 and p>=0.975 :
    b=k

print ("On peut considérer l'affirmation de monsieur Z exacte ", end="")
print("au seuil de 5%, si le nombre de personne ayant répondu ", end="")
print("positivement est dans l'intervalle [",a,";",b,"].")
Aperçu du résultat dans la console
```

On peut considérer l'affirmation de monsieur Z exacte au seuil de 5%, si le nombre de personnes ayant répondu positivement est dans l'intervalle [42 ; 62].

lycee

Renvoie un élément de la liste L avec équiprobabilité.

Télécharger

<u>Code</u>: Un tirage de LOTO

```
from lycee import *
boules=list(range(1,50))
for i in range(5):
    b=choice(boules)
    print ("boule",i+1,":",b)
    boules.remove(b)
print ("Numéro chance : ", end="")
print (randint(1,10))
```

L'exemple ci-contre simule un tirage de LOTO, la difficulté est de ne pas tirer une boule déjà sortie. Il suffit donc de créer une liste contenant les 49 boules de départ. A chaque tirage, on supprime de la liste la boule tirée grâce à l'instruction remove.

Notez la simplicité du code Python comparée au cassetête qu'est la programmation d'un tirage sans remise au tableur! Bien évidemment, la commande choice ne se limite pas aux listes numériques. Dans cet exemple de jeu : on mise $1 \in$ pour faire une partie. 30 boules blanches et 20 noires sont placées dans une urne. On tire 3 boules successivement et sans remise. Si on obtient 3 boules de la même couleur, on gagne $5 \in$, sinon rien. Estimer le gain moyen d'une partie.

$\stackrel{ extstyle extstyle$

Ici l'utilisation de la fonction moyenne n'est pas réellement utile. Un compteur totalisant le gain à chaque jeu serait suffisant. Par contre pour calculer l'écart type, il semble pratique de stocker tous les résultats dans une liste. Télécharger

Code: Une urne de 50 boules

```
from lycee import *
Gain=[]
for i in range(10000) :
    Urne = ["Blanche"] * 30 + ["Noire"] * 20
    B1=choice(Urne)
    Urne.remove(B1)
    B2=choice(Urne)
    Urne.remove(B2)
    B3=choice(Urne)
    if B1==B2 and B2==B3:
        Gain.append(4)
    else
        Gain.append(-1)
print ("Gain moyen : ", end="")
print (moyenne(Gain))
print ("Ecart type : ",end="")
print (ecartype(Gain))
```

lycee

Retourne une liste de n nombres décimaux aléatoires dans l'intervalle [0,1].

lycee

Retourne une liste de n nombres entiers aléatoires dans l'intervalle [min, max].

(D'après un énoncé du document ressources pour faire la classe en mathématiques au lycée professionnel) : On admet que toute personne réservant une place d'avion a une chance sur 10 de ne pas se présenter à l'embarquement. Une compagnie aérienne dispose d'un avion de 100 places et vend 107 réservations. L'objectif est d'évaluer la probabilité de surréservation de cette compagnie, c'est-à-dire de répondre à la question : Quel est le risque que plus de 100 passagers se présentent à l'embarquement?

BONUS: On estime que lorsqu'un avion est complet, les personnes en surnombre embarquent toutes dans le suivant. Estimer le nombre de personnes qui ne peuvent pas embarquer au cinquantième départ.

Télécharger


```
from lycee import *
surbook=0
for simul in range(10000):
    P=listeRandint(0,9,107)
    venus=107-P.count(0)
    if venus>100 :
        surbook=surbook+1
print("Dans", surbook/100, end="")
print("% des vols, certaines ",end="")
print("personnes n'ont pu embarquer.")
```

III) Diagrammes

lycee

Génère le diagramme en bâtons relatif à la liste de valeurs xi, en tenant compte de la liste optionnelle des pondérations ni.

Pour l'afficher, il faut ajouter ensuite repere.show().

On suppose que pour une carte bleue donnée, tous les codes de 4 chiffres sont équiprobables. Représenter à l'aide d'un diagramme en bâtons, la répartition du nombre de touches en commun que peuvent avoir deux utilisateurs d'un même distributeur.

Télécharger

<u>Code</u>: Codes de carte bleue

```
from lycee import *
                                                                   Diagramme en Batons de la liste
ListeMeme=[]
for i in range(10000):
    Carte1=listeRandint(0,9,4)
    Carte2=listeRandint(0,9,4)
    meme=0
    for touche in range(10):
         if touche in Carte1 and touche in Carte2:
             meme=meme+1
    ListeMeme.append(meme)
print ("En moyenne, on a ", end="")
print (moyenne(ListeMeme), end="")
                                                                       Valeurs de la liste
print (" touches en commun")
baton(ListeMeme)
repere.show()
```

$\mathbf{barre}(liste, a, pas)$

lycee

Génère le diagramme en barre relatif à la liste de valeurs *liste*.

Pour l'afficher, il faut ajouter ensuite repere.show().

- Si seulement *liste* est renseigné, les valeurs seront réparties en 10 classes de même amplitude.
- Si *liste* et a sont renseignés, les valeurs seront réparties en a classes de même amplitude.
- Si les trois paramètres sont renseignés :
 - a est le centre de la première classe,
 - pas est un nombre indiquant l'amplitude des classes.

On réalise un programme permettant d'étudier un échantillon de N familles de 5 enfants. Parmi celles-ci, on regarde la fréquence du nombre de familles comportant 2 garçons et 3 filles ou inversement. On reconduit 1000 fois cette simulation. Que dire de la distribution des fréquences selon les valeurs de N?

Télécharger

Après avoir montré que la probabilité qu'une famille de 5 enfants soit dans cette situation est $p = \frac{5}{8}$ soit 62,5%, et visualisé ce diagramme obtenu avec des échantillons de taille 50, 100, 300, 500 et 1 000, on observe la fluctuation des fréquences autour de cette valeur p. Au fur et à mesure de l'augmentation de N, l'étendue diminue. D'ailleurs, on pourrait améliorer ce programme pour compter le nombre de simulations où la fréquence observée est dans l'intervalle de fluctuation au seuil de 95% $F_{95} = \left[p - \frac{1}{\sqrt{N}}; p - \frac{1}{\sqrt{N}}\right]$ comme dans l'exemple en vidéo sur le site d' AmiensPython.

$\mathbf{histop}(liste, classes)$

repere.show()

lycee

Génère l'histogramme relatif à la liste *liste* dont l'aire totale des rectangles vaut 1. Pour l'affichage, ajouter ensuite repere.show().

- Si seule *liste* est renseignée, les valeurs seront réparties en 10 classes de même amplitude.
- Si la variable *classes* est un entier, les valeurs seront réparties en ce nombre de classes.
- Sinon, vous pouvez choisir vos classes d'amplitudes variées en indiquant dans la liste *classes* la liste ordonnée des bornes.

ARemarque:

- Nous avons choisi le nom histop pour donner une connotation probabiliste à cette fonction. En effet, comme l'aire totale vaut 1, la probabilité de choisir un individu dans une classe donnée est l'aire du rectangle correspondant.
- Pour les fonctions barre et histop, nous avons utilisé les conventions usuelles, c'est-à-dire des intervalles semi-ouverts sauf pour le dernier : Si x_1, x_2, \ldots, x_N sont les bornes, les classes seront : $[x_1; x_2[, [x_2; x_3[, \ldots, [x_{N-1}; x_N].$

On a généré un fichier représentant les âges d'un million de spectateurs de cinéma de plus de 6 ans à partir des données du site cnc.fr On souhaite afficher cette répartition selon les tranches suivantes : 6-10; 11-14; 15-19; 20-24; 25-34; 35-49; 50-60 et plus de 60 ans.

Télécharger

Code: Entrées au cinéma

```
from lycee import *
R=CSV2liste('A')
Ages=L=[6,11,15,20,25,35,50,60,99]
histop(R,Ages)
repere.show()
```


Notez la puissance de calcul de Python, on a ici un fichier d'un million de valeurs de plus de 4 méga-octets, on obtient avec ce programme simple l'histogramme en 10 secondes environ avec un ordinateur portable.

polygoneECC(xi,ni,coul) & polygoneFCC(xi,ni,coul)

lycee

Identique à la fonction baton, mais génèrent respectivement le polygone des effectifs cumulés croissants et des fréquences cumulées croissantes.

- Ce type de graphique ne présente d'intérêt que pour une répartition par classe, la liste xi doit donc comporter une valeur de plus que la liste ni.
- le paramètre optionnel coul est un caractère utilisant le code couleur présenté au chapitre 5.

ARemarque:

Ne perdez pas de vue que ces diagrammes ne sont que des graphiques étudiés au chapitre 5. Vous pouvez donc changer le titre et les noms des axes grâce aux fonctions repere.title, repere.xlabel et repere.ylabel

Un exemple de calcul du coefficient de Gini, dont vous pouvez trouver une présentation sur le site Statistix.

Télécharger

Code: Coefficient de Gini

```
from lycee import *
listedeciles=[0,0.1,0.2,0.3,0.4,0.5,0.6]
listedeciles=listedeciles+[0.7,0.8,0.9,1]
proportions=[0.03,0.045,0.055,0.067,0.079,0.092]
proportions=proportions+[0.107,0.125,0.152,0.248]
listedeciles,cumul=ECC(listedeciles,proportions)
polygoneECC(listedeciles,proportions)
repere.plot([0,1],[0,1])
somme=0
for i in range (9):
    somme=somme+0.1*cumul[i]
somme=somme+0.05*cumul[9]
gini=1-2*somme
print ("Le coefficient de Gini vaut",gini, ".")
repere.show()
```


IV) Conversion

Le travail sur les statistiques n'a d'intérêt en classe que s'il s'opère sur de grandes séries de valeurs dont on veut extraire une information. Aussi il nous est apparu utile d'offrir la possibilité de charger un fichier type tableur dans une liste. Cependant les fichiers excel ou OpenOffice sont trop complexes à analyser pour être chargés tels quels, vous devrez donc avant toutes choses convertir le fichier tableur au format CSV, pour cela il vous suffit de faire enregistrer-sous, puis de choisir CSV comme type de fichier.

(CSV2 liste(num, fichier))

lycee

Retourne une liste composée d'une colonne ou d'une ligne d'un fichier CSV.

- num peut être un nombre (pour indiquer une ligne) ou un caractère (pour indiquer une colonne).
 - Si fichier n'est pas renseigné, vous serez invité à en choisir un par l'intermédiaire d'un explorateur de fichiers
 - Les cellules ne comptant pas de nombre sont ignorées

liste 2 CSV(L, fichier)

lycee

Enregistre le contenu de la liste L dans le fichier fichier. Ce fichier peut alors être ouvert par Excel ou OpenOffice

• Si fichier n'est pas renseigné, vous serez invité à en choisir un par l'intermédiaire d'un explorateur de fichiers

L'exemple suivant compare les polygones des effectifs cumulés croissants du nombre d'habitants par commune de la Somme et de la Seine Saint-Denis. Les données proviennent du site de l'INSEE et ont été placées dans un tableur (télécharger le fichier).

Télécharger

<u>Code</u>: Comparaison de deux départements

```
from lycee import *
etendue=1000
nbclasse=quotient(140000, etendue)
#Lecture de la colonne C : Somme
L=CSV2liste('C')
Pop80=[0]*nbclasse
for v in L:
    classe=quotient(v,etendue)
    Pop80[classe]=Pop80[classe]+1
#Lecture de la colonne F : Seine St-Denis
L=CSV2liste('F')
Pop93=[0]*nbclasse
for v in L :
    classe=quotient(v,etendue)
    Pop93[classe]=Pop93[classe]+1
Pop=[i*etendue for i in range(nbclasse+1)]
polygoneFCC(Pop,Pop80,'b')
polygoneFCC(Pop,Pop93,'r')
repere.title('Population dans le 80 et le
                                     93')
repere.ylabel('Fréquences')
repere.xlabel("Nombre d'habitants")
repere.show()
```


Chapitre 8

Sommaire

Les chaînes de caractères

I)	Longueur et caractères d'une chaîne							
II)								
	1) Coller, répéter							
	2) Transformer							
III)	Codage d'un caractère							
IV)	sous-chaîne d'une chaîne de caractères							

 1)
 Extraire une sous-chaîne
 80

 2)
 Rechercher, remplacer et compter
 81

 V)
 Convertir des chaînes de caractères
 83

 1)
 Enregistrer et charger un fichier
 83

 2)
 Convertir une chaîne de caractères en liste
 84

En programmation une chaîne est l'équivalent d'une phrase, un caractère l'équivalent d'une lettre. D'un point de vue algorithmique, il est très formateur de travailler sur ces objets avec les élèves, car on peut faire réaliser des programmes simples à décrire sans connaissances mathématiques autres que l'algorithmique.

Les chaînes de caractères se définissent à l'aide de guillemets doubles ou simples : ex : 'bonjour', "J'ai faim".

I) Longueur et caractères d'une chaîne

Remarquez l'analogie de l'instruction len avec les listes, d'ailleurs comme pour celles-ci, on obtient le caractère à la position i en écrivant ch[i]:

Attention : la première lettre est à l'indice 0. Il faut donc bien réfléchir aux indices de fin! Voici deux programmes qui utilisent ces instructions, le premier compte le nombre de voyelles dans un mot, le second écrit une phrase à l'envers :

Télécharger Télécharger **<u>Code</u>**: Nombre de voyelles Code: A l'envers from lycee import * mot="anticonstitutionnellement" from lycee import * nb=0; i=0;phrase="Coucou, il fait beau !" while i <len(mot):</pre> p=len(phrase)-1if mot[i] in ["a","e","i","o","u","y"] : while p>=0: print (phrase[p],end="") i = i + 1print (mot, "a", nb, "voyelle(s).")

Si, à présent, on veut pouvoir stocker le mot à l'envers dans une variable pour tester, par exemple si le mot est un palindrome, nous allons coller bout à bout (on dit **concaténer**) les lettres du mot.

II) Opérations sur les chaînes

1) Coller, répéter

```
L'opérateur + ch1 + ch2: Concatène les chaînes ch1 et ch2, exemple "bon"+"jour" donne "bonjour"
```

Voici deux exemples différents qui permettent de savoir si un mot est un palindrome :

Télécharger

Code: Palindrome1

```
from lycee import *
phrase = "kayak"
envers = ""
p = len(phrase) - 1
while p >= 0 :
    envers = envers + phrase[p]
    p = p - 1
if phrase == envers :
    print (phrase, end="")
    print (" est un palindrome.")
```

Télécharger

Code: Palindrome2

```
from lycee import *
phrase = "kayak"
envers = "" ; p = 0
while p < len(phrase) :
    envers = phrase[p] + envers
    p = p + 1
if phrase == envers :
    print (phrase, end="")
    print (" est un palindrome.")</pre>
```

Remarque:

A la quatrième ligne, l'instruction envers = "" permet d'initialiser la variable envers comme étant une chaîne vide.

| ch1*n : Répète n fois la chaîne ch1, exemple : "ha! "*3 donne "ha! ha! ha! "

Exemple de programme qui double toutes les voyelles d'un mot :

Télécharger

<u>Code</u>: Doubler les voyelles

```
from lycee import *
mot="glouglou dit le dindon"
double=""
i=0;
while i <len(mot):
    if mot[i] in ("a","e","i","o","u","y") :
        double=double+mot[i]*2
    else :
        double=double+mot[i]
    i=i+1
print (double)</pre>
```

2) Transformer

L'exemple précédent ne fonctionne que si le texte est entré en minuscules, évidemment on pourrait adapter la ligne de test en in ("a","e","i","o","u","y","A","E","I","o","U","Y") mais il existe déjà, en Python, deux fonctions qui transforment une chaîne en majuscules ou minuscules :

lycee

renvoient respectivement la chaîne de caractères ch en majuscules et en minuscules.

Aemarque:

- Les fonctions upper() et lower() n'ont aucun effet sur les caractères spéciaux(marqués d'un accent).

Dans l'exemple suivant, on veut transformer un nombre inférieur ou égal à 255 en écriture hexadécimale (base 16), il nous faut alors concaténer des chiffres (ou nombres) à des caractères (ou chaînes). Il est alors nécessaire que tous aient la même nature : des chaînes de caractères.

l renvoie le nombre n transformé en chaîne de caractères.

Par exemple str(25) renvoie la chaîne de caractères "25".

Télécharger

<u>Code</u>: Hexadécimal 1

```
from lycee import *
n=demande("Entrez un nombre n<256 ")
hexa=""
c=quotient(n,16)
for i in range(2):
    if c<10 : hexa=hexa+str(c)
    elif c==10 : hexa=hexa+"A"
    elif c==11 : hexa=hexa+"B"
    elif c==12 : hexa=hexa+"C"
    elif c==13 : hexa=hexa+"D"
    elif c==14 : hexa=hexa+"E"
    elif c==15 : hexa=hexa+"F"
    c=reste(n,16)
print (n,"s'ecrit",hexa,"en base 16")</pre>
```

Et une version bien plus courte, utilisant un alphabet composé des symboles utilisés en base 16 :

Télécharger

Code: Hexadécimal 2

```
from lycee import *
n=demande("Entrez un nombre n<256")
alphabet="0123456789ABCDEF"
q=quotient(n,16)
r=reste(n,16)
hexa=alphabet[q]+alphabet[r]
print (n,"s'ecrit",hexa,"en base 16")</pre>
```

DEFI: Imaginer un algorithme pour convertir n'importe quel nombre décimal en base 16.

Inversement, pour transformer une chaîne de caractères en nombre :

renvoie la valeur numérique de la chaîne de caractères ch.

♠Remarque:

- Notez que eval est bien plus puissante que transformer la chaîne "12" en nombre 12, car vous pouvez utiliser aussi les opérations et les fonctions de Python. Par exemple, eval ("quotient(12,5) * sqrt(3)") renvoie 3.46410161514.
- En ce qui concerne les changements de base, en pratique, on utilise plutôt une liste qu'une chaîne pour stocker un nombre en base a. Le nombre est d'ailleurs écrit « à l'envers » : le premier nombre de la liste est le chiffre des unités. Ainsi l'élément de la liste d'indice i est à multiplier par aⁱ pour obtenir la valeur du nombre. L'addition de deux nombres est ainsi assez simple à programmer(penser aux retenues). Par exemple, le nombre A76 en base 16 sera défini par la liste [6,7,A] et vaut 6 × 16⁰ + 7 × 16¹ + 10 × 16².

III) Codage d'un caractère

Les algorithmes de cryptographie fonctionnent souvent sur le modèle : Prendre une lettre \rightarrow Lui associer un nombre \rightarrow Transformer ce nombre \rightarrow Afficher la lettre correspondant à cette image. En Python comme dans tous les langages, il existe déjà les fonctions qui associent à chaque caractère un nombre et inversement. Ce nombre est appelé le code ASCII (American Standard Code for Information Interchange), dont voici quelques correspondances :

Lettre	espace	A	В	 Z	0	1	 9	a	b	 \mathbf{Z}
Code ASCII	32	65	66	 90	48	49	 57	97	98	 122

$\operatorname{\mathbf{car}}$ ord(car) et $\operatorname{\mathbf{str}}(n)$

- ord(car): Renvoie le code ASCII du caractère car.
- str(n): Renvoie le caractère dont le code ASCII est n.

Dans la pratique, vous verrez que ce code pose des soucis. En effet, les premiers caractères sont des caractères spéciaux. Pour éviter tout problème d'affichage, la console Python que vous utilisez les remplace par le caractère générique de ce qui a pour conséquence immédiate de ne plus distinguer visuellement ces 30 premiers caractères... Difficile alors de décrypter le message □□□□□! Pour pallier ce problème, nous vous proposons un autre codage qui correspond à un alphabet que nous avons baptisé l'Alphabet AmiensPython (AAP). Il se compose de 102 caractères.

CI- AAD	0	1	2	2	4	-		7		0	10	11	12	12	1.4	15	1.0
Code AAP	0	1	Z	3	4	5	ь	/	8	9	10	11	12	13	14	15	16
Caractère		Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
Code AAP	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
Caractère	Q	R	S	T	U	V	W	Х	Υ	Z	а	b	С	d	е	f	g
Code AAP	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Caractère	h	i	j	k		m	n	0	р	q	r	S	t	u	V	w	х
Code AAP	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67
Caractère	У	Z	0	1	2	3	4	5	6	7	8	9		,	:	;	!
Code AAP	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
Caractère	?	&	à	â	é	è	ê	ë	î	Ϊ	ù	#	-	(-	_)
Code AAP	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101
Caractère	{	}	[]		\	@	=	+	۰	§	\$	<	>	%	*	/

AlphabetAP

lycee

Alphabet AP est la chaîne de caractères contenant tous les caractères ordonnés de l'alphabet Amiens Python.

Remarque : Comme pour pi, il s'agit en réalité d'une variable que l'on a initialisée. Ainsi, vous pouvez choisir de la modifier en début de programme pour vos besoins.

codeAAP(car) et decodeAAP(n)

lycee

- codeAAP(car): Renvoie la place dans l'Alphabet AmiensPython du caractère car.
- decodeAAP(n): Renvoie le caractère de rang n dans l'Alphabet AmiensPython.

Un exemple de codage et décodage affine : f(x) représente le reste de la division de 5x + 46 par 102 et g(x)celui de la division de 41x + 52 par 102.

> Codage: Lettre $\stackrel{\texttt{CodeAAP}}{\longmapsto}$ Nombre $\stackrel{f}{\longmapsto}$ Nombre $\stackrel{\texttt{DecodeAAP}}{\longmapsto}$ Lettre Décodage : Lettre $\stackrel{\texttt{CodeAAP}}{\longmapsto}$ Nombre $\stackrel{g}{\longmapsto}$ Nombre $\stackrel{\texttt{DecodeAAP}}{\longmapsto}$ Lettre

Télécharger

Code: codage affine

```
from lycee import *
texte="Les carottes sont cuites !"
message=""
for i in range(len(texte)):
    lettre=texte[i]
    code=codeAAP(lettre)
    code2=reste(5*code+46,102)
    lettre2=decodeAAP(code2)
    message=message+lettre2
print (message)
```

Télécharger

<u>Code</u>: décodage affine

```
from lycee import *
texte="D%!t|#9uéé%!t!upét|ïQé%!të"
message=""
for i in range(len(texte)):
    lettre=texte[i]
    code=codeAAP(lettre)
    code2=reste(41*code+52,102)
    lettre2=decodeAAP(code2)
    message=message+lettre2
print (message)
```

IV) sous-chaîne d'une chaîne de caractères

1) Extraire une sous-chaîne

• ch[deb:fin]: Renvoie la partie de la chaîne ch comprise entre le caractère à la position deb (inclus) et celui à la position fin (exclu).

Si deb n'est pas précisé, la sous-chaîne commence au début de la chaîne. Si fin n'est pas précisé la sous-chaîne s'arrête à la fin de la chaîne :

- ch[deb:]: Renvoie la partie droite de la chaîne ch commençant au rang deb (inclus).
- ch[:fin]: Renvoie la partie gauche de la chaîne ch jusqu'au rang fin (exclu).

∳Remarque:

- Attention : ch[3 : 7] renvoie la partie de ch de la quatrième à la septième lettre mais n'a pas d'effet sur ch.
- Au passage on notera que ce système d'extraction est aussi valable pour une liste. (On comprend alors mieux le sens de la commande L2 = L1[:] présentée au chapitre précédent.)

(D'après Wikipedia): L'ISBN (International Standard Book Number) ou numéro international normalisé du livre est un numéro international qui permet d'identifier, de manière unique, chaque livre publié. Il est destiné à simplifier la gestion informatique du livre: bibliothèques, libraires, distributeurs, etc. Jusqu'en janvier 2007, le code ISBN comportait 10 chiffres, le dernier étant une clé de contrôle permettant de détecter une erreur de saisie (code détecteur) et calculé ainsi:

• On attribue une pondération à chaque position (de 10 à 2 en allant en sens décroissant) et on fait la somme des produits ainsi obtenus.

- On conserve le reste de la division euclidienne de ce nombre par 11. La clé s'obtient en retranchant ce nombre à 11.
- Si le reste de la division euclidienne est 0, la clé de contrôle n'est pas 11 (11 0 = 11) mais 0.
- De même si le reste de la division euclidienne est 1, la clé de contrôle n'est pas 10 mais la lettre X. Ceci permet donc d'avoir respectivement pour les restes de la division 0, 1, 2, 3, ... 10 les codes 0, X, 9, 8, ..., 1.

Par exemple:

Code ISBN	2	2	6	6	1	1	1	5	6
Pondération	10	9	8	7	6	5	4	3	2
Produit	20	18	48	42	6	5	4	15	12

Soit au total 170 dont le reste de la division euclidienne par 11 est 5. La clé de contrôle est donc 11-5=6. L'ISBN au complet est : 2-266-11156-6.

Télécharger

<mark>≮Code</mark>: Code ISBN

```
from lycee import *
code=input("Entrer le code ISBN sans les - :")
l=len(code)
debut = code [:1-1]
#On peut écrire code[:-1]
fin=code[1-1:]
#On peut écrire code[-1]
total=0
for i in range(9):
    total=total+eval(debut[i])*(10-i)
cle=11-reste(total,11)
if cle==11 : cle=str(0)
elif cle==10 : cle="X"
else : cle=str(cle)
if cle==fin:
    print ("Ce code est valide")
else :
    print ("Ce code n'est pas valide")
```


2) Rechercher, remplacer et compter

Indique la position dans la chaîne ch où se trouve texte et renvoie -1 si texte n'apparait pas dans la chaîne ch.

Télécharger

L'exemple suivant illustre comment simplifier une fraction. A la différence de l'exemple donné dans la partie mathématiques, où l'on demandait le numérateur et le dénominateur, cette foisci la fraction est entrée sous forme d'une chaîne (exemple "12/45"), le programme extrait alors le numérateur et le dénominateur pour simplifier la fraction.

```
from lycee import *
frac=input("Entrez une fraction")
barre=frac.find("/")
if barre==-1:
    print ("Le nombre n'est pas ", end="")
    print ("sous forme fractionnaire")
else:
    num=eval(frac[:barre])
    den=eval(frac[barre+1:])
    d=pgcd(num,den)
    num,den=quotient(num,d),quotient(den,d)
    print (frac+"="+str(num)+"/"+str(den))
```

Remarque:

En informatique, l'action d'analyser une chaîne pour l'interpréter, s'appelle « parser » la chaîne (de l'anglais to parse : analyser).

ch.replace(texte1, texte2)

Remplace texte1 par texte2 chaque fois qu'il le trouve dans la chaîne ch.

Les Shadoks ne possèdent que 4 mots pour compter : GA - BU - ZO - MEU, et comptent donc en base 4...L'explication par les Shadoks eux-même est bien plus drôle. Le programme ci-contre, transforme un nombre Shadoks en nombre compréhensible par les terriens.

Télécharger

Code: Compter en Shadoks

```
from lycee import *
nbS="MEU GA GA BU MEU ZO ZO"
print (nbS,"=",end="")
nbS=nbS.replace("GA","0")
nbS=nbS.replace("BU","1")
nbS=nbS.replace("ZO","2")
nbS=nbS.replace("MEU","3")
nbS=nbS.replace(" ","")
d=1;r=0
for i in range(len(nbS),0,-1):
    r=r+eval(nbS[i-1])*d
    d=d*4
print (r)
```


ch.count(texte)

Compte le nombre de fois où texte est présent dans la chaîne ch.

Cette fois, on essaie un codage non affine avec une fonction polynomiale : f définie par $f(x) = 51x^2 + 46x + 21$ en appliquant toujours le même principe :

Lettre
$$\stackrel{\texttt{CodeAAP}}{\longmapsto}$$
 Nombre $\stackrel{f}{\longmapsto}$ Nombre $\stackrel{\texttt{DecodeAAP}}{\longmapsto}$ Lettre

Question : « A-t-on un réel codage ? », c'est à dire : « 2 lettres distinctes sont-elles codées par 2 lettres distinctes ? »ou encore pour parler mathématiquement f réalise-t-elle une bijection de $\{0,1,\cdots,101\}$ dans $\{0,1,\cdots,101\}$?

Nul besoin ici de chercher des théorèmes de Gauss ou autre puisque l'ordinateur peut se charger de lister tous les cas. Le programme ci-contre (qui n'est pas optimisé) transforme tout l'alphabet, puis compte le nombre de fois où chaque caractère apparait.

DEFI : Imaginer un programme pour répondre à la question : « Existe-il une fonction de degré 2 qui décode ? »

Télécharger

Code: Tester un codage

```
from lycee import
message=""
i = 0
for i in range(len(AlphabetAP)):
    lettre=AlphabetAP[i]
    code=codeAAP(lettre)
    code1=51*code*code+46*code+21
    code2=reste(code1,102)
    lettre2=decodeAAP(code2)
    message=message+lettre2
doubles=0
for i in range(len(message)):
    if message.count(message[i])>1 :
        doubles=doubles+1
if doubles==0 :
    print ("C'est un codage")
else :
    print ("Ce n'est pas un codage")
```

V) Convertir des chaînes de caractères

1) Enregistrer et charger un fichier

Comme pour les listes, il nous a semblé important de pouvoir enregistrer une chaîne dans un fichier texte (et de pouvoir le charger!). On peut par exemple imaginer de demander aux élèves de vous envoyer un message codé par messagerie ou via un espace de dépôt...

fich2chaine(nom) (se prononce « fiche to chaine » : transformer un fichier en chaîne)

lycee

Renvoie une chaîne de caractères qui correspond au contenu du fichier nom. Si aucun nom n'est précisé, une fenêtre invitant l'utilisateur à choisir un fichier s'ouvrira lors de l'exécution du programme.

Notez que si le fichier comprend plusieurs lignes, la chaîne obtenue sera composée de toutes les lignes séparées par le caractère spécial "\n".

La fonction suivante permet à l'inverse d'enregistrer une chaîne dans un fichier texte.

chaine2fich(ch, nom)

lycee

Enregistre le contenu de la chaîne ch dans le fichier nom. Si aucun nom n'est précisé, une fenêtre invitant l'utilisateur à choisir un nom de fichier s'ouvrira lors de l'exécution du programme.

Remarque:

Attention: Python sait lire un fichier de texte brut, mais ne saura pas lire un fichier Word ou OpenOffice car ces fichiers sont très complexes (gestion des images, des polices de caractères ...) Si vous souhaitez utiliser un fichier provenant d'un tel logiciel, vous devrez utilisez « enregistrer sous »et modifier le format d'enregistrement. (Choisir « texte brut »ou « .txt ».)

2) Convertir une chaîne de caractères en liste

Il peut être parfois utile de convertir une chaîne de caractères en une liste de chaînes. Dans ce cas, il faut indiquer le séparateur qui sera utilisé.

$ch.\mathbf{split}(sep)$

Renvoie une liste de chaînes de caractères obtenue en découpant la chaîne ch à chaque occurrence du séparateur sep.

Inversement,

sep.join(list)

Renvoie une chaîne de caractères obtenue en concaténant les éléments de la liste list séparés par le séparateur sep.

Dans l'exemple qui suit, nous allons charger dans une chaîne le poème bien connu ci-contre et transformer cette chaîne en une liste de mots en utilisant le séparateur espace, puis compter le nombre de lettres de chaque mot pour obtenir les premières décimales du nombre π .

Télécharger

<u>Code</u>: Poème version 1

```
from lycee import *

poeme=fich2chaine()
CarSpeciaux=['.',',','!',"'","\n",';','?',':']
for c in CarSpeciaux:
    poeme=poeme.replace(c," ")
mots=poeme.split(" ")
for m in mots:
    if m!="" : print (reste(len(m),10),end="")
```

Contenu du fichier poeme_pi.txt:

« Que j'aime à faire apprendre ce nombre utile aux sages! Immortel Archimède, artiste ingénieur, Qui de ton jugement peut priser la valeur? Pour moi, ton problème eut de pareils avantages. Jadis, mystérieux, un problème bloquait Tout l'admirable procédé, l'oeuvre grandiose Que Pythagore découvrit aux anciens Grecs. 0 quadrature! Vieux tourment du philosophe Insoluble rondeur, trop longtemps vous avez Défié Pythagore et ses imitateurs. Comment intégrer l'espace plan circulaire? Former un triangle auguel il équivaudra? Nouvelle invention : Archimède inscrira Dedans un hexagone; appréciera son aire Fonction du rayon. Pas trop ne s'y tiendra: Dédoublera chaque élément antérieur; Toujours de l'orbe calculée approchera; Définira limite; enfin, l'arc, le limiteur De cet inquiétant cercle, ennemi trop rebelle Professeur, enseignez son problème avec zèle »

Encore une fois, nous insistons sur le fait qu'il n'est pas indispensable pour les élèves de connaître ces fonctions. La démarche de chercher soi-même les espaces et de compter les lettres peut être très formatrice d'un point de vue algorithmique.

Télécharger

<u>Code</u>: Poème version 2

```
from lycee import *
poeme=fich2chaine()
NbDecimales, pos=0,0
reponse=""
ponctuation=('.', ',', '!', "'", "\n", ';', '?', ':', '')
while pos<len(poeme):</pre>
    NbLettres=0
    while pos<len(poeme) and not poeme[pos]in ponctuation:</pre>
        NbLettres=NbLettres+1
        pos=pos+1
    reponse=reponse+str(reste(NbLettres, 10))
    NbDecimales=NbDecimales+1
    if NbDecimales==1 : reponse=reponse+","
    while pos<len(poeme) and poeme[pos]in ponctuation:
        pos=pos+1
print (reponse)
```

Chapitre 9

Fonctions

Sommaire

I)	Exemple de fonctions mathématiques	86
II)	Fonction au sens informatique	88
III)	Une fonction peut en cacher une autre	88
IV)	Récursivité	89

A l'arrivée de l'algorithmique au lycée, la notion de fonction n'apparaissait pas dans le programme. A présent, qu'elle y apparait de manière claire, c'est vers ce type de programmation qu'il faut s'orienter :

- D'une part, la notion de fonction au sens mathématique est très présente dans tout le cycle du lycée,
- d'autre part, il est important de pouvoir réinvestir ce qui a été fait.
- Enfin utiliser des fonctions permet clairement d'identifier les entrées et les sorties, sans passer par d'interminables utilisations de input.

def nom de la fonction(paramètres):

Définit une nouvelle fonction, comme pour le if et le for, les deux points entrainent une indentation délimitant la déclaration de la fonction. Le bloc peut servir à effectuer une série d'actions, mais le plus souvent il se termine par return pour renvoyer une ou plusieurs valeurs.

I) Exemple de fonctions mathématiques

Une cuve a la forme d'un cône surmonté d'un cylindre, chacun d'une hauteur de 20cm. Une sonde est placée pour mesurer la hauteur d'eau, comme sur le schéma ci-contre. Le diamètre du cylindre est aussi de 20cm. On souhaite réaliser un algorithme affichant le volume d'eau en fonction de la hauteur.

Pour plus de clarté, nous avons volontairement omis les tests vérifiant que la hauteur h est bien dans l'intervalle [0;40]. Nous vous présentons deux versions du programme : La première sans fonction est déjà un travail conséquent en classe de seconde. (Recherche des formules de volume, théorème de Thalès, ...) La seconde définit une fonction V(h), comme nous le ferions en mathématiques.

Télécharger

<u>Code</u>: La cuve sans fonction

```
from lycee import *
h=demande("hauteur d'eau ?")
if h<20 :
    R=h/2
    V=1/3*pi*R*R*h
else :
    Vcone=1/3*pi*10*10*20
    Vcyl=pi*10*10*(h-20)
    V=Vcyl+Vcone
print ("Le volume est",V)</pre>
```

Télécharger

<u>Code</u>: La cuve avec fonction

```
from lycee import *
def V(h):
    if h<20 :
        R=h/2
        return 1/3*pi*R*R*h
    else :
        Vcyl=1/3*pi*10*10*20
        Vcone=pi*10*10*(h-20)
        return Vcyl+Vcone

h=demande("hauteur d'eau ?")
print ("Le volume est",V(h))</pre>
```

Remarque:

La fonction V peut alors être utilisée comme n'importe quelle fonction de Python. Vous pourriez par exemple demander de tracer la courbe de V, en remplaçant les 2 dernières lignes du second programme par :

```
X=list(range(41))
Y=[]
for x in X : Y.append(V(x))
repere.plot(X,Y)
repere.show()
```


- Toutes les variables à l'intérieur de la déclaration de la fonction sont des variables locales, c'est-à-dire que le fait de les modifier ou d'avoir une variable qui porte le même nom dans le corps principal du programme n'a aucun effet sur celui-ci.
- De la même manière, à l'intérieur d'une fonction, le logiciel ne connait aucune des variables du reste du programme, vous devez donc prévoir de placer toutes les variables dont vous aurez besoin dans les paramètres de la fonction. (Ici seul h est nécessaire.)

II) Fonction au sens informatique

Extrait d'un concours FFJM: « Les briques de Brian sont tous les parallélépipèdes rectangles dont les dimensions sont des nombres entiers inférieurs ou égaux à 7. Brian calcule le volume de chaque brique et le divise par le carré de sa plus grande dimension. Il additionne ensuite tous les résultats. Quelle fraction irréductible obtient-il? ».

En fait, nous nous apercevons qu'il suffit de calculer :

$$\sum_{i=1}^{7} \sum_{j=1}^{i} \sum_{k=1}^{j} \frac{j \times k}{i}$$

La difficulté est ici de travailler avec les fractions et de conserver des valeurs exactes. La fonction sommefrac attend 4 arguments n_1,d_1,n_2 et d_2 et renvoie le numérateur et le dénominateur du résultat simplifié de $\frac{n_1}{d_1} + \frac{n_2}{d_2}$.

Télécharger

```
from lycee import *
from math import *
def sommefrac(n1,d1,n2,d2):
    n,d=n1*d2+n2*d1,d1*d2
    p=pgcd(n,d)
    return quotient(n,p),quotient(d,p)

n,d=0,1
for i in range(1,8):
    for j in range(1,i+1):
        n,d=sommefrac(n,d,j*k,i)
print (n,'/',d)
```

III) Une fonction peut en cacher une autre

Comme le montre l'exemple précédent, une fonction peut à son tour faire appel à une autre fonction que vous avez créée. En Python, il n'y a pas d'ordre pour déclarer les fonctions.

Récursivité Fonctions

Télécharger

```
<u>Code</u>: Suite de Syracuse
```

```
from lycee import *
def suivant(x):
    if reste(x,2)==0:
        return quotient(x,2)
        return 3*x+1
def vol(x):
    L = []
    while x!=1 :
        L.append(x)
        x=suivant(x)
    return L
tmax=0
for n in range(1,100001):
    t=len(vol(n))
    if t>tmax :
        print ("Temps de vol de",t,"pour n=",n)
```

Une suite de Syracuse N est la suite définie par

$$u_0 = N$$
 et $u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair } \\ 3 \times u_n + 1 & \text{sinon} \end{cases}$.

On appelle **temps de vol** le premier indice p tel que $u_p = 1$.

Sur les 10 000 premières suites de Syracuse, laquelle a le temps de vol maximal?

IV) Récursivité

Une fonction peut même s'appeler elle-même. (Attention cependant aux boucles infinies!) C'est ce que l'on appelle des fonctions récursives. Prenons l'exemple le plus connu de l'algorithme d'Euclide, il peut s'énoncer ainsi : Si a et b sont 2 entiers naturels non simultanément nuls, alors :

$$PGCD(a,b) = \begin{cases} a \text{ si } b = 0\\ PGCD(b,r) \text{ sinon} \end{cases}$$
 où r est le reste de la division euclidienne de a par b .

La fonction correspondante s'énonce alors d'une manière très simple :

Télécharger

Code: PGCD récursif

```
from lycee import *
def pgcd_rec(a,b):
    if b==0 :
        return a
    else :
        return pgcd(b,reste(a,b))
print (pgcd_rec(12,28))
```

Récursivité Fonctions

Un autre exemple pour calculer de manière originale a^n (sans utiliser la fonction puissance).

Ce premier exemple est basé sur le fait que :

$$a^n = \begin{cases} a \text{ si } n = 1\\ a \times a^{n-1} \text{ sinon} \end{cases}$$

Télécharger

```
Code: Puissance récursive version 1
```

```
from lycee import *
def puissV1(a,n):
    if n==1 :
        return a
    else :
        return a*puissV1(a,n-1)
print (puissV1(2,10))
```

Ce second exemple est basé sur le fait que :

$$a^{n} = \begin{cases} a \text{ si } n = 1\\ \left(a^{\frac{n}{2}}\right)^{2} \text{ si } n \text{ est pair} \\ a \times a^{n-1} \text{ sinon} \end{cases}$$

Télécharger

```
Code: Puissance récursive version 2
```

```
from lycee import *
def puissV2(a,n):
    if n==1 :
        return a
    elif reste(n,2)==0 :
        temp=puissV2(a,quotient(n,2))
        return temp*temp
    else :
        return a*puissV2(a,n-1)
```

Le second algorithme est appelé algorithme des puissances indiennes et limite fortement le nombre de multiplications à effectuer, pour calculer 2^{10} avec le premier algorithme, neuf multiplications sont nécessaires alors qu'il n'en faut que quatre avec le deuxième.

Un dernier exemple avec une suite récurrente d'ordre 2 : la plus connue est sûrement la suite de Fibonacci définie par $u_0 = u_1 = 1$ et pour tout entier naturel n, $u_{n+2} = u_n + u_{n+1}$, le programme suivant renvoie le terme u_r pour r donné.

Télécharger

Code: Suite de Fibonacci

```
from lycee import *
def fibo(n):
    if n==0 or n==1:
        return 1
    else:
        return fibo(n-1)+fibo(n-2)
r=demande("Indice du terme de la suite de Fibonacci?")
print (fibo(r))
```

Remarquez que cet exemple est très mauvais d'un point de vu algorithmique (comptez le nombre d'additions pour calculer fibo(n) et comparez-le avec une méthode itérative!

Chapitre 10

Sommaire

Questions fréquemment posées

<u>I)</u>	A pro	ppos d'EduPython	91
	1)	Puis-je utiliser EduPython sous Mac ou Linux?	91
	2)	Quelle est la différence avec la version d'origine PortablePython?	91
	3)	Comment arrêter un programme en cours d'exécution?	91
	4)	Pourquoi avoir traduit certaines fonctions?	92
	5)	Quand je tente d'ouvrir un fichier .py, l'ordinateur me demande avec quoi l'ouvrir	92
II)	A pro	opos de Python	92
	1)	Pourquoi dites-vous que Python est un langage très puissant?	92
	2)	Pourtant Python n'est pas précis dans les calculs!	92
	3)	Les élèves éprouvent de grandes difficultés à utiliser « for i in range · · · »	93

I) A propos d'EduPython

4)

1) Puis-je utiliser EduPython sous Mac ou Linux?

Malheureusement non, en tout cas pas dans son intégralité. L'éditeur utilisé PyScripter, ne fonctionne que sous windows. Néanmoins, vous pouvez récupérer la bibliothèque lycee pour l'installer avec votre version personnelle de Python. Vous rencontrerez peut-être des problèmes d'accents. Tenez nous informés.

2) Quelle est la différence avec la version d'origine Portable Python?

En effet, EduPython est dérivée du projet PortablePython que vous pouvez retrouver ici. Les modifications réalisées sont minimes, mais évitent à chaque utilisateur de faire ces modifications (Modification du moteur de rendu Python, pour permettre l'utilisation du mode "tortue", Ajout de la bibliothèque XTurtle, plus interactive, prise en compte des accents...

3) Comment arrêter un programme en cours d'exécution?

En appuyant simultanément sur la touche contrôle et la touche F2.

4) Pourquoi avoir traduit certaines fonctions?

En réalité, n'ont été traduites que les fonctions qui ont été modifiées. Prenons l'exemple de demande, nous avons fait le choix de la renommer pour indiquer qu'elle avait subi une transformation par rapport à la fonction input de départ (dans ce cas pour renvoyer un nombre et non une chaîne de caractères). Mais rien ne vous empêche d'utiliser eval(input) avec vos élèves.

5) Quand je tente d'ouvrir un fichier .py, l'ordinateur me demande avec quoi l'ouvrir.

En effet, EduPython étant un système portable, aucune installation n'a lieu. De ce fait, les fichiers python ne sont pas associés à l'interface. Vous devez lancer EduPython, puis sélectionner « ouvrir » et aller chercher votre fichier.

Si vous avez des droits d'administrateur, EduPython effectue l'association, ce qui n'est pas possible si vous exécutez le programme sur une clé USB.

II) A propos de Python

1) Pourquoi dites-vous que Python est un langage très puissant?

En fait d'autres langages sont aussi très performants pour les calculs. Mais Python peut travailler sur de très grands nombres. D'ailleurs, il n'y a pas de limite de taille pour les *entiers*, il calcule avec eux sans approximation. Le dernier exemple de cette documentation est inspiré du livre « histoire d'algorithmes, du caillou à la puce » de Chabert et alii. Le test de primalité de Lucas et Lehmer sur les nombres de Mersenne permet en une vingtaine de minutes de conclure que $2^{21701} - 1$ est un nombre premier (hors programme bien sûr). Ce nombre trouvé le 30 octobre 1978 est maintenant à la portée d'un simple ordinateur.

Télécharger

<u>Code</u>: Test de primalité de Lucas Lehmer.

```
from lycee import *
p=demande('entrer p, nombre premier impair')
M=2**p-1
print ("M=2^p -1=",M)
i,v=2,4

while v!=0 and i<=p:
    i=i+1
    v=v**2-2
    v=v%M
    print ("v(2^", i, ") est congru à", v, "mod M")

if v==0 and i==p:
    print ("Le nombre de Mersenne 2^", p, "-1=", M, "est premier.")
else:
    print ("Le nombre de Mersenne 2^", p, "-1=", M, "n'est pas premier.")</pre>
```

2) Pourtant Python n'est pas précis dans les calculs!

Si vous tapez print 3-2.99-0.01, vous obtiendrez le résultat -2.13370987545e-16 ce qui peut poser problème...Cela vient de la représentation des nombres dans la machine : La représentation des nombres décimaux se

fait selon la norme IEEE 754 et on obtient la même erreur avec beaucoup de logiciels (Excel, OpenOffice, XCas,...). En fait pour nous le nombre 2,99 est un nombre "simple" dans son écriture décimale, mais pour un ordinateur qui pense en base 2, c'est beaucoup plus complexe! Plus d'informations sur la documentation officielle de Python

3) Les élèves éprouvent de grandes difficultés à utiliser « for i in range · · · »

En effet, la boucle for et la définition de l'ensemble des valeurs prises par la variable sont deux difficultés simultanées, qui nécessitent un temps long d'appropriation par les élèves.

Il semble plus efficace de n'utiliser que la boucle while dans un premier temps. Il faut alors initialiser la variable avant la boucle, et incrémenter dans la boucle par i = i + 1, par exemple.

Après la répétition de ce genre de boucle, on peut proposer aux élèves le for et l'emploi du range.

4) Que signifie ce message d'erreur?

Cela signifie qu'un programme en Python est déjà en train d'être exécuté. Il suffit de cliquer sur "YES" pour stopper l'exécution en cours.

III) EduPython et l'enseignement ISN

Les modules python ajoutés dans Edu Python permettent un travail relativement complet en ISN dans différents champs comme :

- Le traitement du signal et de l'image (Numpy, Matplotlib, PIL)
- La liaison série (PySerial)
- Les bases de données (Sqlite3)
- ...

Ainsi, si les élèves utilisent EduPython depuis la seconde, il semble intéressant qu'ils puissent continuer à le faire puisqu'ils ont des habitudes de travail avec cet outil. Cependant les choix pédagogiques que nous avons mis en œuvre dans la bibliothèque *lycee* (nouvelles fonctions et choix d'utiliser une division décimale) ne sont pas des conventions du langage Python tel qu'un étudiant pourra les retrouver dans son cursus ultérieur.

Lors de la mise en place de l'ISN, nous trouvons donc pertinent de donner la possibilité de continuer à utiliser l'interface PyScripter d'EduPython pour réaliser des programmes Python en se passant de la bibliothèque *lycee*. Ce sera l'occasion d'échanger avec les élèves sur la nature des variables en utilisant input ou eval(input) au lieu de demande ou en allant voir comment sont programmées les fonctions de la bibliothèque *lycee* dont on pourrait avoir besoin.

En cliquant sur « Nouveau Fichier », vous avez à présent la possibilité de choisir si vous souhaitez commencer un programme avec EduPython ou en Python classique.

Chapitre 11

Évolutions d'EduPython

Sommaire		
I)	Installer un module	94
II)	Modifier l'interface	95
III)	Utiliser une base de données	95
IV)	Historique des évolutions	96

I) Installer un module

Depuis la version 2 d'EduPython, il est possible d'intaller un nouveau module via **conda** ou **pip**. Il suffit dans le menu Outils de sélectionner "Installation d'un nouveau module". Puis de choisir la méthode d'installation et le nom du module.

Depuis la version 2.5, il est aussi possible de préciser un proxy pour utiliser pip ou conda dans un établissement par exemple. Cette configuration peut se faire au moment de l'installation ou plus tard dans la rubrique "Outils".

II) Modifier l'interface

Depuis la version 2 d'EduPython, il est possible de réinitialiser la disposition de l'interface, au cas où une personne l'aie modifiée. Il suffit de cliquer sur la double flèche verte et rouge. Le configuration reviendra dans l'état initial au démarrage suivant.

III) Utiliser une base de données

Depuis la version 0.3, EduPython embarque la version portable du logiciel SQLite Browser qui permet d'administrer une basse de données SQLite à l'instar de phpmyadmin pour mysql.

Pour lancer le logiciel, on peut cliquer sur la pictogramme ci-dessus ou utiliser le raccourci CTRL + B. On pourra alors créer une base, insérer, supprimer des enregistrements, tester des requêtes... Bien évidement, on pourra interfacer cette base avec Python à l'aide du module **sqlite3**.

Remarque:

A noter que depuis la version 1.3 d'EduPython, le module mysql est aussi présent, mais il faut alors installer un Système de Gestion de Base de Données adéquat.

IV) Historique des évolutions

Version 2.5

- Editeur :
 - ♦ Correction d'un bug dans pip et gestion des proxys
 - ♦ Prise en compte des fichiers accentués.
- Modules:
 - ♦ Sorties graphiques : Scipy (version 0.9.1)

Version 2.3

- Editeur :
 - ♦ Correction d'un bug dans Qt qui empêchait les sorties graphiques
- Modules :
 - \diamond Sorties graphiques : Matplotlib (version 2.0.0)

Version 2.2

• Module lycee

♦ Correction d'un bug dans la fonction tirageBinomal de la bibliothèque lycee

• Modules

- \diamond Calcul numérique : Numpy, version 1.11.3
- ♦ Calcul numérique : Scipy, version 0.18.1
- ♦ Sorties graphiques : Matplotlib, version 1.5.3
- ♦ Traitement d'images : PIL(Pillow), version 4.0.0
- ♦ Base de données : mysql, version 2.0.4
- ♦ Musique : pyknon

Version 2.1

• Module lycee

♦ Ajout de la bibliothèque lycee oubliée dans la version 2.0.

Version 2.0

- Editeur
 - ♦ PyScripteur (version 2.6.0)
- Modules
 - ♦ Calcul numérique : Numpy, version 1.11.1
 - ♦ Calcul numérique : Scipy, version 0.18.0
 - ♦ Traitement d'images : skimage, version 0.12.3

Version 1.3

• Modules

- ♦ Calcul numérique : Numpy, version 1.8.2
- ♦ Calcul numérique : Scipy, version 0.14.0
- ♦ Traitement d'images : skimage, version 0.10.1
- ♦ Base de données : mysql, version 1.1.6
- ♦ Musique midi : pyknon

Chapitre 12

Plus de 80 programmes

Sommaire		
I)	40 programmes simples	98
II)	40 autres programmes plus élaborés	99

I) 40 programmes simples

Il nous semble important de proposer tout au long de l'année des programmes simples à réaliser, c'est pourquoi nous nous sommes efforcés d'illustrer au maximum cette documentation par des petits programmes. En voici la liste enrichie de commentaires :

	$L\epsilon$	es bases
Télécharger	Ü	Que fait le programme suivant?
Télécharger	Û	Nombre de 6 obtenus en lançant un dé 10 fois
Télécharger	Û	Calculer l'opposé d'un nombre
Télécharger	Û	Calculer l'IMC
Télécharger	Û	Nombre de zéros d'un trinôme
Télécharger	Û	Signe d'un trinôme
Télécharger	Û	Solutions de $ax + b = 0$
Télécharger	Û	Image par une fonction définie par morceaux
Télécharger	Û	Recherche d'un triplet pythagoricien d'entiers consécutifs
Télécharger	Û	Distance sur un axe gradué
Télécharger	Û	Volume d'eau dans une cuve
Télécharger	Û	Le jeu du nombre mystère
Télécharger	Û	Calcul de probabilités
Télécharger	Ü	Somme des carrés des 100 premiers entiers
Télécharger	Û	Obtenir 7
Télécharger	Ü	Calcul du PGCD de 2 entiers strictement positifs
Télécharger	Ü	Multiplication babylonienne
Télécharger	Û	Marche aléatoire d'un robot sur une table

		onctions mathématiques
Télécharger	Û	Recherche des entiers distincts tels que $x^y = y^x$
Télécharger	Û	Estimation du nombre e par suites adjacentes.
Télécharger	Ü	Une division avec un nombre arbitraire de décimales
Télécharger	Û	Somme de deux fractions
Télécharger	Ü	Calculer l'aire d'un triangle avec la formule de Héron
Télécharger	Ü	Calcul de la longueur de l'hypoténuse dans un triangle rectangle
Télécharger	Ü	Le pré et la chèvre
Télécharger	Û	Calculer le périmètre d'un disque
Télécharger	Û	Approximation historique du nombre π
Télécharger	Ü	Un carré découpé en 3 zones
Télécharger	Ü	100 boules
		a tortue
Télécharger	Q	Tracer d'une maison
Télécharger	Ü	Tracer d'une église
Télécharger	Ü	Tracer un polygone régulier à n côtés.
Télécharger	Û	Tracer une spirale.
Télécharger	Û	Tracer un œuf de pâques.
Télécharger	Ü	Le yin et le yang.
Télécharger	Ü	Dessiner un soleil
Télécharger	Û	Le drapeau européen.
		es graphiques
Télécharger	M	Ligne de niveau
Télécharger	M	Tracer d'une droite
Télécharger	M M	Marche aléatoire
Télécharger		Chute d'une balle
Télécharger	Ü	Pile ou face

II) 40 autres programmes plus élaborés

Télécharger	Û	Suite
Télécharger	Û	Crible d'Ératosthène
Télécharger	Û	Polynome dérivé
Télécharger	$\hat{\mathbf{\Omega}}$	Compter le nombre de 6
Télécharger	$\hat{\mathbf{\Omega}}$	Algorithme de Kaprekar
Télécharger	Û	Méthode de Hörner
	Pı	robabilités et statistiques
Télécharger	Q	Dés de Sicherman
Télécharger	Û	Appel de jugement
Télécharger	Û	Elections
Télécharger	Û	Un tirage de LOTO
Télécharger	Û	Une urne de 50 boules
Télécharger	Û	Surréservation
Télécharger	Û	Codes de carte bleue
Télécharger	Û	Avoir une full d'enfants
Télécharger	Û	Entrées au cinéma
Télécharger	Û	Coefficient de Gini
Télécharger	Û	Comparaison de deux départements
	т	1 ^ 1
mara i	. U	es chaînes de caractères Nombre de voyelles
Télécharger	Ü	A l'envers
Télécharger Télécharger	Ü	Palindrome1
	Ü	Palindrome2
Télécharger Télécharger	Ü	Doubler les voyelles
	Ü	Hexadécimal 1
Télécharger	Ü	Hexadécimal 2
Télécharger	Ü	Codage affine
Télécharger	Ü	Décodage affine
Télécharger	Ü	Code ISBN
Télécharger	Ü	Analyser une fraction
Télécharger	Ü	Compter en Shadoks
Télécharger	Ü	•
Télécharger	Ü	Tester un codage Poème version 1
Télécharger	Ü	
Télécharger	•••	Poème version 2
	Le	es fonctions
Télécharger	Û	La cuve sans fonction
Télécharger	Û	La cuve avec fonction

Ü

Télécharger

Les briques de Brian

Télécharger	Ü	Suite de Syracuse
Télécharger	Û	PGCD récursif
Télécharger	Û	Puissance récursive version 1
Télécharger	Û	Puissance récursive version 2
Télécharger	Û	Suite de Fibonacci

Index

```
#, 8
                                                           factorial, 27
\mathbf{n}, 83
                                                           fich2chaine, 83
**, 26
                                                           find, 81
*, 11, 62, 76
                                                           floor, 31
+, 62, 75
                                                           for...in...:, 21
<= et >=, 17
                                                           gauss, 37
< et >, 17
                                                           histop, 70
                                                           if, 14
==, 17
=, 9, 10
                                                           index, 59
AAP, 79
                                                           input, 13
CSV2liste, 72
                                                           insert, 55
ECC, 64
                                                           int, 28
FCC, 64
                                                           in, 58
%, 28
                                                           join, 84
Chaîne[], 74, 80
                                                           len, 53, 74
liste[], 52, 61
                                                           liste2CSV, 72
abs, 31
                                                           listeRandint, 68
acos, asin, atan, 32
                                                           listeRand, 68
acosD, asinD, atanD, 32
                                                           liste demande, 53
affiche_poly, 54
                                                           ln, 31
                                                           lower, 77
and, 20
append, 54
                                                           mediane, 64
barre, 69
                                                           moyenne, 64
baton, 69
                                                           not in, 58
binomial, 66
                                                           np.arange, 48
chaine2fich, 83
                                                           ord, 79
choice, 67
                                                           or, 20
codeAAP, 79
                                                           pgcd, 29
compte, 63
                                                           pi, 33
cosD, 32
                                                           polygoneECC, polygoneFCC, 71
cos, 32
                                                           pop, 58
count, 59, 82
                                                           print(), 11
decile, 65
                                                           print(, end="), 11
decodeAAP, 79
                                                           puissance, 26
def, 86
                                                           quartile, 65
demande, 12
                                                           quotient, 28
                                                           randint, 36
ecartype, 66
elif, 16
                                                           random(), 35
else, 15
                                                           range, 21, 48, 54
end, 11
                                                           remove, 57
eval, 78
                                                           repere.axis, 49
exp, 31
                                                           repere.clf(), 49
```

INDEX INDEX

repere.grid, 49	Code ASCII, 78
repere.plot, 46, 47	Coefficient binomial, 66
repere.show(), 47	Commentaires, 8
repere.subplot, 50	Concaténation, 77
repere.text, 49	Concaténer, 62, 75
repere.title, 49, 71	Conditions des tests, 17
repere.xlabel, 49, 71	Conversion, 72
repere.ylabel, 49, 71	Conversion chaîne en fichier texte, 83
replace, 82	Conversion chaîne en liste, 84
reste, 27	Conversion chaîne en nombre, 78
return, 86	Conversion code ASCII, 79
$\sin D$, $\frac{32}{}$	Conversion en Majuscules, 77
\sin , $\frac{3}{3}$ 2	Conversion en minuscules, 77
sort, sorted, 60	Conversion fichier texte en chaîne, 83
split, 84	Conversion liste en chaîne, 84
sqrt, 30	Conversion liste en tableur, 72
str, 77, 79	Conversion nombre en chaîne, 77
tanD, 32	Conversion tableur en liste, 72
tan, 32	- · · · · · · · · · · · · · · · · · · ·
tortue.back, 38	Diagramme en bâtons, 69
tortue.circle, 40	Diagramme en barres, 69
tortue.clear(), 44	T
tortue.down(), 43	Ecart type, 66
tortue.forward, 38	Effectifs cumulés croissants, 64
tortue.hideturtle(), 43	Effectifs cumulés croissants(polygone), 71
tortue.left, 39	Et, 20
tortue.pencolor, 43	Exponentielle, 31, 34
tortue.reset(), 44	Extraction, 80
tortue.right, 39	Factorielle, 27
tortue.showturtle(), 43	Fenêtre graphique, 49, 50
tortue.speed, 43	Fonction, 86
tortue.up(), 43	Fréquences cumulées croissantes, 64
tortue.write, 44	Fréquences cumulées croissantes (polygone), 71
uniform, 35	rrequences eminices eroissances(porygone), +1
upper, 77	Histogramme normé, 70
variance, 66	
while, 23	Incrémenter, 12
	Indentation, 7, 14
Accentuation, 6	Installation, 5
Affectation, 9	IAT-V 50
Affectation simultanée, 9	Liste, 21, 52, 54, 61, 62
Alors, 14	
Alphabet AmiensPython, 79	Longueur d'anna chaîna 74
Arccos, Arcsin, Arctan, 32	Longueur d'une chaîne, 74
Dooléan 40	Nombre aléatoire, 35, 67
Booléen, 49 Royales, 21	Nombre aléatoire entier, 36
Boucles, 21	Nombres aléatoires, 68
Casse, 9	
Chaîne de caractères, 10, 74, 75	Ordonner, 60
Code AmiensPython 79	Ou, 20

INDEX INDEX

Parser, 82
Partie entière, 31
Passage à la ligne, 11, 25, 28, 83
Polynôme, 54
Procédure, 86
Récursivité, 89
Répétition, 62, 76
Racine carrée, 30
reacine carree, 50
Segment, 47
Si, 14
Sinon, 15
Supprimer, 49, 57, 58
Supplimer, 10, 01, 00
Taille d'une liste, 53
Tant que, 23
Test, 58
Then, 14
Firage aléatoire, 67
Tracer un cercle, 40
Tracer une droite, 48
iracci une dione, 40
Valeur absolue, 31
Variables(nom), 12