DCA 0118 – Procesamento Digital de Sinais Tópico 1: Sinais e sistemas discretos

Tiago Barros ¹

 $^1\langle tbarros@dca.ufrn.br \rangle$

Departamento de Engenharia de Computação e Automação (DCA) Centro de Tecnologia (CT) Universidade Federal do Rio Grande do Norte (UFRN)

2022.1

Tópico 1 – Programa

Conteúdo

- Sinais de tempo discreto;
- Sistemas de tempo discreto;
 - 2.1 Sistemas sem memória;
 - 2.2 Sistemas lineares;
 - 2.3 Sistemas invariantes no tempo;
 - 2.4 Sistemas causais;
 - 2.5 Sistemas estáveis;
- Sistemas lineares invariantes no tempo (SLIT);
- Propriedades de SLIT;
- Equações a diferenças lineares de coeficientes constantes (EDLCC);

inais discretos SIST Propriedades de SLIT EDLO

Bibliografia

Livro texto

Oppenheim, A.V. e Schafer, R.W., 2012. Processamento em tempo discreto de sinais. 3ª ed.-São Paulo: Pearson Education do Brasil.

- Capítulo 2:
 - Seções 2.0, 2.1, 2.2, 2.3, 2.4, 2.5.

Material complementar

- Lathi, B. P., Sinais e Sistemas Lineares.
- Oppenheim, A.V. e Willsky, A. S., Sinais e Sistemas.

Sinais

Sinais:

- Transmitem informação;
- Captados por sensores;
- Representados matematicamente:
 - funções de uma ou mais variáveis independentes;
- Variável independente (por exemplo, tempo):
 - contínua;
 - discreta;
- Sinal discreto no tempo:
 - sequências discretas;
- Amplitudes contínuas ou discretas:
 - sinais digitais possuem amplitudes e variáveis livres discretas;

Sinais

Sinal contínuo no tempo:

Sinal discreto no tempo:

Sinais

Sinais discretos → sequências

Sequências discretas

Sequência de números em x, n-ésimo número é representado por x[n]:

$$x = \{x[n]\}, -\infty < n < \infty, n$$
 inteiro.

Sinais

Amostragem periódica de sinal analógico $x_a(t)$:

$$x[n] = x_a(nT), -\infty < n < \infty$$

- T é período de amostragem;
- f_s é frequência de amostragem:

$$f_s=\frac{1}{T}.$$

 x[n] é definido apenas para números inteiros (indefinido para valores não inteiros de n).

Sinais discretos

Operações com sinais: Reflexão em torno do eixo-y (flipping)

2022.1

Operações com sinais: Escalonamento (scaling)

x[2n] (compressão – amostras são perdidas)

Operações com sinais: Escalonamento (scaling)

x[n/3] (expansão – sinal é expandido)

Operações com sinais: Deslocamento (shifting)

 $x[n-n_0]$ ($n_0 > 0$: atraso – desloca para direita; $n_0 < 0$: avanço – desloca para esquerda)

x[n-1]

Operações com sinais: exemplo

$$x[-2n+3]$$
?

Desloca, reflete, escala.

$$z[n] = x[n+3],$$

 $w[n] = z[-n],$
 $y[n] = w[2n].$

Caminho contrário:

$$y[n] = w[2n]$$

$$= z[-2n]$$

$$= x[-2n+3].$$

Operações com sinais: exemplo

$$z[n] = x[n+3]$$

Operações com sinais: exemplo

$$w[n] = z[-n]$$

$$y[n] = w[2n] = x[-2n+3]$$

Propriedade da simetria – sinais pares e ímpares

Par:
$$x[n] = x[-n]$$

Ímpar:
$$x[n] = -x[-n] (x[0] = -x[0] = 0)$$

Propriedade da simetria – sinais pares e ímpares

Todo sinal possui uma parte par e uma parte ímpar:

$$x_{e}[n] = \frac{1}{2}(x[n] + x[-n]);$$

 $x_{o}[n] = \frac{1}{2}(x[n] - x[-n]);$

$$x[n] = x_{e}[n] + x_{o}[n].$$

Propriedade da periodicidade

N = 4

$$x[n] = x[n+N]$$

N = 1

Sinais especiais – Sequência amostra unitária (função delta)

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0. \end{cases}$$

Sinais especiais – Sequência degrau unitária

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0. \end{cases}$$

Sinais especiais – Relação entre u[n] e $\delta[n]$

- Tempo contínuo:
 - u(t) e $\delta(t)$ se relacionam por meio de integrais e derivadas;
- Tempo discreto:
 - u[n] e $\delta[n]$ se relacionam por meio de somas e diferenças;

De forma intuitiva:

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \cdots$$
$$= \sum_{k=0}^{\infty} \delta[n-k]$$

Sinais especiais – Relação entre u[n] e $\delta[n]$

Pode-se relacionar u[n] e $\delta[n]$ de outra maneira:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0. \end{cases}$$
$$= \sum_{m=-\infty}^{n} \delta[m].$$

Sinais especiais – Relação entre u[n] e $\delta[n]$

Relembrando, para o caso contínuo (integral):

$$u(t) = \int_{\tau=-\infty}^{t} \delta(\tau) d\tau.$$

Analogia, para o caso discreto (somatório):

$$u[n] = \sum_{m=-\infty}^{n} \delta[m].$$

Sinais especiais – Relação entre u[n] e $\delta[n]$

$$u[n-1]$$

$$\delta[n] = u[n] - u[n-1]$$

Sinais especiais – Relação entre u[n] e $\delta[n]$

Relembrando, para o caso contínuo (derivada):

$$\delta(t) = \frac{\mathsf{d}}{\mathsf{d}t} u(t).$$

Analogia, para o caso discreto (equação a diferenças):

$$\delta[n] = u[n] - u[n-1].$$

Sinais discretos

Construindo sequências a partir de sequências amostra unitária

25 / 88

Construindo sequências a partir de sequências amostra unitária

$$x[n] = 1\delta[n] - 1\delta[n-1] + 2\delta[n-2].$$

Generalizando:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Propriedade de amostragem da função $\delta[n]$

$$\sum_{k=-\infty}^{\infty} x[k]\delta[n-k] = \sum_{k=-\infty}^{\infty} x[k]\delta[k-n] = x[n].$$

$$\delta[k-n]$$

Revisão de números complexos

Coordenadas cartesianas (ou retangulares):

$$z = x + jy$$
;

- $j = \sqrt{-1}$;
- Parte real: Re(z) = x;
- Parte imaginária: Im(z) = y;

Γiago Barros Τόριco 1

Revisão de números complexos

Coordenadas polares:

$$z = re^{\theta}$$
;

- r = |z|: módulo ou magnitude de z;
- $\theta = \angle z$: fase ou ângulo de z;

Revisão de números complexos

Relação entre diferentes representações: identidade de Euler:

$$e^{j\theta} = \cos\theta + j \sin\theta.$$

De onde obtém-se:

$$\cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$

$$\sin\theta = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$$

Revisão de números complexos – Representação geométrica

$$z = x + jy = re^{j\theta}$$

$$\begin{split} r &= \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}(y/x); \\ x &= r \mathrm{cos}\theta, \qquad y = r \mathrm{sen}\theta. \end{split}$$

Sinais especiais – Sequência senoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
, para todo n ,

- $A \in \phi \in \mathbb{R}$ representam a amplitude e fase;
- $\omega_0 \in \mathbb{R}$ representa a frequência (digital);

Sequência para A=1; $\omega_0=\pi/8$ e $\phi=0$.

Sinais especiais – Sequência exponencial

Sequência exponencial real:

$$x[n]=a^nu[n],$$

para a constante real e |a| < 1.

Sinais especiais – Sequência exponencial complexa

Sequência exponencial complexa:

$$x[n] = \beta e^{(\alpha + j\omega_0)n}$$
, para todo n ,
 $\beta = Ae^{j\phi}$.

- β : amplitude complexa;
 - A: amplitude real;
 - φ: fase da exponencial;
- α : fator de amortecimento;
 - $\alpha \neq$ 0: fator exponencial de alteração de amplitudes;
 - $\alpha = 0$: sequência exponencial complexa periódica;
- ω_0 : frequência;

Sinais especiais – Sequência exponencial complexa

Pode ser escrita como:

$$x[n] = Ae^{\alpha n} \left[e^{j(\omega_0 n + \phi)} \right]$$
$$= Ae^{\alpha n} \left[\cos(\omega_0 n + \phi) + j \sin(\omega_0 n + \phi) \right].$$

Sequências senoidais:

$$\begin{aligned} &\cos(\omega_0+\phi) &=& \frac{1}{2}\left(e^{j(\omega_0+\phi)}+e^{-j(\omega_0+\phi)}\right) \\ &\sin(\omega_0+\phi) &=& \frac{1}{2j}\left(e^{j(\omega_0+\phi)}-e^{-j(\omega_0+\phi)}\right) \end{aligned}$$

Periodicidade em sinais discretos – Sequência senoidal

Diferenças entre sequências senoidais e sinais senoidais contínuos no tempo

- ω_0 (frequência digital): tem dimensão de radiano, pois n é adimensional (alguns autores utilizam radiano/amostra);
- Sequências senoidais com frequências ω_0 e $\omega_0 + 2\pi k$ (para k inteiro) são indistinguíveis entre si;

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT

Periodicidade em sinais discretos – Sequência senoidal

Característica de sequência senoidal (discreta):

$$x[n] = A\cos[(\omega_0 + 2\pi k)n + \phi], k \text{ inteiro}$$

= $A\cos(\omega_0 n + \phi).$

Periodicidade em sinais discretos – Sequência senoidal

Sequências senoidais

Sequências senoidais não necessariamente são periódicas;

Lembrando que sequência é periódica com período N se

$$x[n] = x[n + N]$$
, para qualquer n .

Tem-se que

$$x[n] = A\cos[\omega_0 n + \phi]$$

= $A\cos[\omega_0 (n + N) + \phi]$

somente se $N\omega_0=2\pi I$, para I=kn inteiro, ou seja, $N=2\pi I/\omega_0$.

Periodicidade em sinais discretos – Sequência senoidal

Exemplo

Determine o menor período N para a sequência abaixo ser periódica

$$x[n] = \cos\left(\frac{4\pi}{5}n\right)$$

$$N\frac{4\pi}{5} = 2\pi I \longrightarrow N = \frac{5}{2}I.$$

Resposta: N deve ser inteiro, logo x[n] é periódico para l=2 com N=5.

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Periodicidade em sinais discretos – Sequência exponencial

O que acontece quando somamos 2π à ω_0 ?

$$e^{j(\omega_0+2\pi)n} = e^{j\omega_0n}e^{j2\pi n}.$$

Como n é inteiro, $e^{j2\pi n}=1$. Logo

$$e^{j(\omega_0+2\pi)n} = e^{j\omega_0n}.$$

Significado: sinais de tempo discreto possuem variações de frequência apenas entre 0 e 2π .

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT EDI

Periodicidade em sinais discretos – Sequência exponencial

$$\omega_0=0$$
, $e^{j0n}=1$.

Baixa frequência.

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Periodicidade em sinais discretos – Sequência exponencial

$$\omega_0 = \pi \longrightarrow e^{j\pi n} = \left\{ egin{array}{ll} 1, & n \ {\sf par}, \ -1, & n \ {\sf impar}. \end{array} \right.$$

Alta frequência.

Sistemas de tempo discreto

Sistemas: processam sinais para criar outros sinais;

$$\begin{array}{c|c}
\hline
x[n] & T\{\bullet\} \\
\hline
y[n]
\end{array}$$

$$x[n] \longrightarrow y[n],$$

 $y[n] = T\{x[n]\},$

Exemplo: sistema média-móvel

$$y[n] = \frac{1}{5} \sum_{k=-2}^{2} x[n-k]$$

$$= \frac{1}{5} (x[n+2] + x[n+1] + x[n] + x[n-1] + x[n-2]).$$

Tempo contínuo (equações diferenciais)

$$y'(t) + ay(t) = bx(t).$$

Tempo discreto (equações a diferenças)

$$y[n] + ay[n-1] = bx[n].$$

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT EDL

Conectando sistemas discretos

Serial/cascata

 Tiago Barros
 Tópico 1
 2022.1
 45 / 88

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT EDL

Conectando sistemas discretos

Paralelo

nais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Conectando sistemas discretos

Realimentação (feedback)

nais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de sistemas discretos

2.1) Sistemas sem memória:

Um sistema é sem memória se saída y[n] para cada valor de n depender apenas da entrada x[n] no mesmo valor de n.

- $y[n] = (x[n])^2 \Longrightarrow$ sem memória;
- $y[n] = x[n n_0] \Longrightarrow$ com memória se $n_0 > 0$ (atraso) ou $n_0 < 0$ (avanço);

ais discretos Sistemas discretos SLIT Propriedades de SLIT EI

Propriedades de sistemas discretos

2.2) Sistemas lineares:

Definidos pelas propriedades da aditividade e homogeneidade.

Propriedade da aditividade:

$$\xrightarrow{x_1[n] + x_2[n]} \qquad \qquad \text{H\{}\}$$

Para quaisquer entradas $x_1[n]$ e $x_2[n]$, tem-se:

$$x_1[n] \longrightarrow y_1[n],$$

$$x_2[n] \longrightarrow y_2[n],$$

$$x_1[n] + x_2[n] \longrightarrow y_1[n] + y_2[n].$$

Sistemas discretos

Propriedade da homogeneidade:

Se saída do sistema é da forma:

$$x[n] \longrightarrow y[n].$$

Sistema é homogêneo se, para qualquer constante a:

$$ax[n] \longrightarrow ay[n].$$

nais discretos Sistemas discretos SLIT Propriedades de SLIT E

Propriedades de sistemas discretos

Sistemas lineares – aditividade e homogeneidade (princípio da superposição).

$$\begin{array}{c|c} a_1x_1[n] + a_2x_2[n] \\ \hline & \\ & \end{array} \begin{array}{c} a_1y_1[n] + a_2y_2[n] \\ \hline \end{array}$$

$$a_1x_1[n] + a_2x_2[n] \longrightarrow a_1y_1[n] + a_2y_2[n].$$

Propriedade deve ser verdade para quaisquer entradas $x_1[n]$ e $x_2[n]$.

Generalizando:

$$\sum_{k} a_k x_k[n] \longrightarrow \sum_{k} a_k y_k[n].$$

nais discretos Sistemas discretos SLIT Propriedades de SLIT EE

Propriedades de sistemas discretos

Exemplo

Determine se o sistema cuja saída é $H\{x[n]\} = y[n] = x[n] - 2x[n-1]$ é linear.

Sejam $x_1[n]$ e $x_2[n]$:

$$x_1[n] \longrightarrow y_1[n] = x_1[n] - 2x_1[n-1],$$

 $x_2[n] \longrightarrow y_2[n] = x_2[n] - 2x_2[n-1],$

Sistemas discretos

1) Aditividade – Analisar a resposta a entrada $z[n] = x_1[n] + x_2[n]$:

$$H\{z[n]\} = z[n] - 2z[n-1]$$

$$= x_1[n] + x_2[n] - 2x_1[n-1] - 2x_2[n-1]$$

$$= (x_1[n] - 2x_1[n-1]) + (x_2[n] - 2x_2[n-1])$$

$$= y_1[n] + y_2[n]$$

Aditividade OK.

Sistemas discretos

2) Homogeneidade – Analisar a resposta a entrada $z[n] = ax_1[n]$:

$$H\{z[n]\} = z[n] - 2z[n-1]$$

$$= ax_1[n] - 2ax_1[n-1]$$

$$= a(x_1[n] - 2x_1[n-1])$$

$$= ay_1[n]$$

Homogeneidade OK.

Sistemas discretos

3) Linearidade (pelo teorema da superposição) – Analisar a resposta a entrada $z[n] = a_1x_1[n] + a_2x_2[n]$:

$$H\{z[n]\} = z[n] - 2z[n-1]$$

$$= a_1x_1[n] + a_2x_2[n] - 2a_1x_1[n-1] - 2a_2x_2[n-1]$$

$$= a_1(x_1[n] - 2x_1[n-1]) + a_2(x_2[n] - 2x_2[n-1])$$

$$= a_1y_1[n] + a_2y_2[n].$$

sistema é linear.

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT EDL

Propriedades de sistemas discretos

Exemplo

Determine se o sistema cuja saída é y[n] = 3x[n] + 5 é linear.

Sistemas discretos

Exemplo

Determine se o sistema cuja saída é y[n] = 3x[n] + 5 é linear.

Aditividade

$$x_1[n] \longrightarrow y_1[n] = 3x_1[n] + 5,$$

 $x_2[n] \longrightarrow y_2[n] = 3x_2[n] + 5,$

Testando propriedade da aditividade:

$$z[n] = x_1[n] + x_2[n] \longrightarrow H\{z[n]\} = 3z[n] + 5$$

 $\longrightarrow 3(x_1[n] + x_2[n]) + 5$

$$y_1[n] + y_2[n] = 3x_1[n] + 3x_2[n] + 10$$

 $\neq H\{z[n]\}$

O sistema não é linear (pela propriedade da aditividade).

Formas de provar não linearidade – contraexemplo (basta falhar para um caso):

$$x_1[n] = 1 \longrightarrow y_1[n] = 8,$$

 $x_2[n] = 2 \longrightarrow y_2[n] = 11,$
 $z[n] = x_1[n] + x_2[n] = 3 \longrightarrow H\{z[n]\} = 14 \neq y_1[n] + y_2[n].$

inais discretos Sistemas discretos SLIT Propriedades de SLIT EDI

Propriedades de sistemas discretos

2.3) Sistemas invariantes no tempo (ou invariantes no deslocamento):

São sistemas se comportam da mesma maneira, independente do instante de tempo em que a entrada é aplicada.

$$x[n] \longrightarrow y[n],$$

 $x[n-n_0] \longrightarrow y[n-n_0]$

inais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de sistemas discretos

Exemplo

Verificar se y[n] = x[n] - 2x[n-1] descreve um sistema invariante no tempo.

Fazendo $z[n] = x[n - n_0]$, o que acontece ao aplicarmos z[n] ao sistema?

$$H\{z[n]\} = z[n] - 2z[n-1]$$

= $x[n-n_0] - 2x[n-1-n_0].$

ais discretos Sistemas discretos SLIT Propriedades de SLIT

Propriedades de sistemas discretos

Para o sistema ser invariante no tempo, devemos ter $x[n-n_0] \longrightarrow y[n-n_0]$. Calculando para o sistema do exemplo (y[n] = x[n] - 2x[n-1]):

$$y[n - n_0] = x[n - n_0] - 2x[n - n_0 - 1]$$

= $z[n] - 2z[n - 1]$
= $H\{z[n]\}.$

Logo, o sistema é invariante no tempo.

inais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de sistemas discretos

Exemplo

Verificar se $y[n] = x[n^2]$ descreve um sistema invariante no tempo.

Fazendo $z[n] = x[n - n_0]$, o que acontece ao aplicarmos z[n] ao sistema?

$$H{z[n]} = z[n^2]$$

= $x[n^2 - n_0].$

 Tiago Barros
 Tópico 1
 2022.1
 62 / 88

is discretos Sistemas discretos SLIT Propriedades de SLIT

Propriedades de sistemas discretos

Verificando se $x[n - n_0] \longrightarrow y[n - n_0]$. Como $y[n] = x[n^2]$, temos:

$$y[n - n_0] = x[(n - n_0)^2]$$

= $x[n^2 - 2nn_0 + n_0^2].$

Logo, o sistema não é invariante no tempo.

inais discretos Sistemas discretos SLIT Propriedades de SLIT EDI

Propriedades de sistemas discretos

2.4) Sistemas causais:

Um sistema é causal se sua saída para um instante n depende apenas de sua entrada até o instante n.

- y[n] = x[n] 2x[n-1] é causal;
- y[n] = x[n+3] não é causal;

Reflexão:

Todo sistema "real" é causal?

inais discretos Sistemas discretos SLIT Propriedades de SLIT EI

Propriedades de sistemas discretos

2.5) Sistemas estáveis:

Um sistema é estável no sentido entrada limitada saída limitada (BIBO, do inglês bouded-input, bounded-output) se toda sequência limitada de entrada produzir uma sequência limitada de saída.

x[n] é entrada limitada se houver um valor fixo positivo e finito B_x tal que

$$|x[n]| \le B_x < \infty$$
, para todo n .

Sistema é estável se para toda entrada limitada houver um valor fixo positivo e finito B_{ν} tal que

$$|y[n]| \le B_y < \infty$$
, para todo n .

nais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de sistemas discretos

Exemplo

Sistema $y[n] = (x[n])^2$.

Se $|x[n]| \le B_x$ para todo n, então $|y[n]| = |x[n]|^2 \le B_x^2$ para todo n. \Longrightarrow sistema é estável.

Exemplo

Sistema $y[n] = \log_{10}(|x[n]|)$.

 $y[n] = \log_{10}(|x[n]|) = -\infty$ para todo n em que |x[n]| = 0. \Longrightarrow sistema é instável.

nais discretos SIST Propriedades de SLIT EE

Sistemas lineares e invariantes no tempo (SLIT)

Sistemas do mundo real são frequentemente modelados como SLIT:

- Boa aproximação;
- Análise é simples e poderosa;

Conceito chave: Superposição para SLIT.

Sistemas lineares e invariantes no tempo (SLIT)

Aplicando-se $\delta[n]$ à entrada de um SLIT definido pela transformação H $\{\}$, temos:

- $\delta[n]$: sequência amostra unitária (impulso);
- h[n]: resposta ao impulso do SLIT;

Relembrando que podemos escrever sequencias discretas x[n] como:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Sistemas lineares e invariantes no tempo (SLIT)

Como obter a resposta do SLIT a uma sequência arbitrária x[n]?

$$H\{x[n]\} = H\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}$$

Propriedade da linearidade:

$$H\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]H\{\delta[n-k]\}$$

Propriedade da invariância ao tempo:

$$H\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

nais discretos Sistemas discretos SLIT Propriedades de SLIT E

Sistemas lineares e invariantes no tempo (SLIT)

- Saída do SLIT é obtida pela convolução entre a entrada e sua resposta ao impulso, h[n]:
 - h[n] é suficiente para caracterizar um SLIT;

Convolução é representada como:

$$y[n] = x[n] * h[n],$$

ou

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

nais discretos SIT Propriedades de SLIT

Sistemas lineares e invariantes no tempo (SLIT)

Considere o SLIT dado por y[n] = x[n] - 2x[n-1] + 3x[n-2]. Qual é a resposta à entrada x[n] dada por

Sistemas lineares e invariantes no tempo (SLIT)

$$y[n] = x[n] - 2x[n-1] + 3x[n-2]$$

1) Método direto:

•
$$y[n] = 0$$
 para $n < 0$,

•
$$y[0] = x[0] = 1$$
,

•
$$y[1] = x[1] - 2x[0] = 1 - 2 = -1$$
,

•
$$y[2] = x[2] - 2x[1] + 3x[0] = 1 - 2 + 3 = 2$$
,

•
$$y[3] = x[3] - 2x[2] + 3x[1] = 0 - 2 + 3 = 1$$
,

•
$$y[4] = x[4] - 2x[3] + 3x[2] = 0 + 0 + 3 = 3$$
,

Sistemas lineares e invariantes no tempo (SLIT)

$$y[n] = x[n] - 2x[n-1] + 3x[n-2]$$

2) Usando somatório de convolução:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- \bullet $\delta = \left| \underline{\underline{1}} \right|$,
- $h[0] = \delta[0] = 1$.
- $h[1] = 0 2\delta[0] = -2$.
- $h[2] = 0 0 + 3\delta[0] = 3$.
- h[3] = 0,

$$\mathbf{h} = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$$

Sistemas lineares e invariantes no tempo (SLIT)

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$= x[0]h[n] + x[1]h[n-1] + x[2]h[n-2]$$

$$= (1) \begin{bmatrix} \frac{1}{2} & -2 & 3 \end{bmatrix}$$

$$+ (1) \begin{bmatrix} 0 & 1 & -2 & 3 \end{bmatrix}$$

$$+ (1) \begin{bmatrix} 0 & 0 & 1 & -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & -1 & 2 & 1 & 3 \end{bmatrix}$$

Sistemas lineares e invariantes no tempo (SLIT)

$$y[n] = x[n] - 2x[n-1] + 3x[n-2]$$

3) Reflete (em torno do eixo-y) e desloca: $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

inais discretos Sistemas discretos SLIT Propriedades de SLIT E

Sistemas lineares e invariantes no tempo (SLIT)

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

•
$$y[0] = \sum_{k} x[k]h[0-k] = 1$$

•
$$y[1] = \sum_{k} x[k]h[1-k] = 1-2 = -1$$

•
$$y[2] = \sum_{k} x[k]h[2-k] = 3-2+1=2$$

•
$$y[3] = \sum_{k} x[k]h[3-k] = 3-2=1$$

•
$$y[4] = \sum_{k} x[k]h[4-k] = 3$$

$$\mathbf{y} = \begin{bmatrix} \underline{1} & -1 & 2 & 1 & 3 \end{bmatrix}$$

nais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de SLIT (convolução)

Propriedade 1

Um SLIT é inteiramente determinado por sua resposta ao impulso. (Não é válido para sistemas não LIT.)

Exemplo (sistema não é IT):

$$y[n] = nx[n],$$

 $\delta[n] \longrightarrow h[n] = 0.$

- Resposta ao impulso é zero, mesmo assim sistema pode produzir saídas não-negativas para outras entradas x[n].
- Não é possível caracterizar sistema a partir do conhecimento de h[n];

ais discretos Sistemas discretos SLIT Propriedades de SLIT EDI

Propriedades de SLIT (convolução)

Propriedade 2

A convolução é comutativa.

$$x[n] * h[n] = h[n] * x[n]$$

Definindo $m = n - k \longrightarrow k = n - m$:

$$\sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} x[n-m]h[m].$$

Consequência:

• Sinal refletido em torno do eixo-y pode ser tanto h[n] quanto x[n].

nais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de SLIT (convolução)

Propriedade 3

A convolução é distributiva.

$$x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$$

ais discretos Sistemas discretos SLIT Propriedades de SLIT El

Propriedades de SLIT (convolução)

Propriedade 4

A convolução é associativa.

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

 Tiago Barros
 Tópico 1
 2022.1
 81 / 88

ais discretos Sistemas discretos SLIT Propriedades de SLIT EDI

Propriedades de SLIT (convolução)

Propriedade 5

Causalidade.

• Em um sistema causal, y[n] não depende de x[n+k] para k>0.

Reescrevendo a convolução (para sistemas LIT):

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Para que um SLIT seja causal, devemos ter h[k] = 0 para k < 0.

Sinais discretos Sistemas discretos SLIT Propriedades de SLIT EDLO

Propriedades de SLIT (convolução)

Propriedade 6

Estabilidade.

Um SLIT é estável se sua resposta ao impulso for somável em valor absoluto:

$$B_h = \sum_{-\infty}^{\infty} |h[k]| < \infty.$$

ais discretos Sistemas discretos SLIT Propriedades de SLIT ED

Propriedades de SLIT (convolução)

Propriedade 7

Resposta ao degrau.

Aplicando-se $\delta[n] = u[n] - u[n-1]$ à entrada de um SLIT, obtemos h[n] = s[n] - s[n-1], onde s[n] é a resposta ao degrau:

$$s[n] = \mathsf{H}\{u[n]\} = u[n] * h[n].$$

Temos que

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$
$$s[n] = \sum_{k=-\infty}^{n} h[k]$$

A resposta ao degrau também caracteriza sistemas LIT.

EDLCC – Equações a diferenças lineares de coeficientes constante

EDLCC de N-ésima ordem:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r]$$

$$y[n] = y_p[n] + y_h[n].$$

- y_h solução homogênea;
- y_n solução particular;

Podemos resolver EDLCC's tratando-as como SLIT's.

EDLCC – Solução por SLIT

• Para N = 0 e $a_0 = 1$ (sistema FIR):

$$y[n] = \sum_{r=0}^{M} b_r x[n-r].$$

$$h[n] = \begin{cases} b_n, & n = 0, 1, \dots, M \\ 0, & \text{caso contrário.} \end{cases}$$

Solução é obtida pela convolução entre x[n] e h[n].

• Para $N \neq 0$ e $a_0 = 1$:

$$y[n] = \sum_{r=0}^{M} b_r x[n-r] - \sum_{k=1}^{N} a_k y[n-k].$$

EDLCC – Solução por SLIT

Exemplo

EDLCC de primeira-ordem:

$$y[n] - ay[n-1] = x[n].$$

Suponha que $x[n] = \delta[n]$ e y[n] = 0, para n < 0 (causal).

$$y[n] = \delta[n] + ay[n-1]$$
 (solução é recursiva).

- y[-1] = 0;
- $y[0] = \delta[0] + ay[-1] = 1;$
- $y[1] = \delta[1] + ay[0] = a;$
- $y[2] = \delta[2] + ay[1] = a^2$; · · ·

$$y[n] = a^n u[n].$$

EDLCC – Solução por SLIT

Exemplo

EDLCC de primeira-ordem:

$$y[n] - ay[n-1] = x[n].$$

Suponha que $x[n] = \delta[n]$ e y[n] = 0, para n > 0.

$$y[n-1] = a^{-1} (y[n] - \delta[n]).$$

- $y[0] = a^{-1}(y[1] \delta[1]) = 0$
- $y[-1] = a^{-1}(y[0] \delta[0]) = -a^{-1}$
- $y[-2] = a^{-1}(y[-1] \delta[-1]) = -a^{-2}$: ...

$$y[n] = -a^n u[-n-1].$$