	Отчет по лабораторной работе №7 по курсу								
	Языки и методы программирования								
	Студент группы М8О-101Б-21 Постнов Александр Вячеславович, № по списку 17								
	Контакты www, e-mail: 61pav03@mail.ru								
	Работа выполнена: «» 202 <u>2</u> г.								
	Преподаватель: каф. 806 Титов В.К. Входной контроль знаний с оценкой Отчет сдан « » 2022_ г., итоговая оценка								
	Подпись преподавателя								
	Тема: Разреженные матрицы								
	Цель работы: Составить программу на языке Си с процедурами и/или функциями для обработки прямоугольных разреженных матриц с элементами целого типа(по согласованию с преподавателем)								
	 Цель работы: Составить программу на языке Си с процедурами и/или функциями для обработки прямоугольных разреженных матриц_с элементами целого типа(по согласованию с преподавателем) Задание (вариант схемы размещения матрицы №((17 + 3) % 4 + 1 = 1), вариант преобразования №((17 - 1) % 1.1 = 6)): Вычислить сумму двух разреженных матриц. Проверить, не является ли полученная матрица симметричной. 								
	 Цель работы: Составить программу на языке Си с процедурами и/или функциями для обработки прямоугольных разреженных матриц с элементами целого типа(по согласованию с преподавателем) Задание (вариант схемы размещения матрицы №((17 + 3) % 4 + 1 = 1), вариант преобразования №((17 - 1) % 11 1 = 6)): Вычислить сумму двух разреженных матриц. Проверить, не является ли полученная матрица симметричной. Варианты схемы размещения матрицы: все матрицы т × п хранятся по строкам, в порядке возрастания ин ненулевых элементов. 								
	 Цель работы: Составить программу на языке Си с процедурами и/или функциями для обработки прямоугольных разреженных матриц_с элементами целого типа(по согласованию с преподавателем) Задание (вариант схемы размещения матрицы №((17 + 3) % 4 + 1 = 1), вариант преобразования №((17 - 1) % 11 1 = 6)): 6. Вычислить сумму двух разреженных матриц. Проверить, не является ли полученная матрица симметричной. Варианты схемы размещения матрицы: все матрицы т × п хранятся по строкам, в порядке возрастания инденулевых элементов. 1. Цепочка ненулевых элементов в векторе А со строчным индексированием (индексы в массиве М равны 0, естрочным индексированием) 								

Индекс, равный нулю, означает отсутствие ненулевых элементов в строке (или в ее остатке).

Если матрицы не изменяются программой, возможна экономия памяти за счет отказа от хранения в массиве A индексов следующего элемента столбца (когда элементы идут подряд). Вставка и удаление при этом способе возможны, но чересчур дороги: число перестановок элементов составит O(N) вместо O(1).

4. Оборудование(лабораторное):

ЭВМ <u>-</u>, процессор <u>-</u>, имя узла сети <u>-</u> с ОП <u>-</u> Γ Б,

НМД - ГБ, терминал- адрес -, принтер -

Другие устройства -

Оборудование ПЭВМ студента, если использовалось:

Процессор AMD Ryzen 5 4500U, с ОП 8 ГБ

Другие устройства -

5. Программное обеспечение:

Операционная система семейства -, наименование - версия -

интерпретатор команд - версия

Система программирования - версия -

Редактор текстов - версия -

Утилиты операционной системы -

Прикладные системы и программы -

Местонахождение и имена файлов программ и данных =

Программное обеспечение ЭВМ студента, если использовалось:		
Операционная система семейства GNU/Linux, наименование Manjaro	версия 5-13-12-1	
интерпретатор команд <u>GNOME Terminal</u> версия <u>3.38.2.</u>		
Система программирования	версия	
Редактор текстов <u>emacs</u> версия <u>3.27.20</u>		
Утилиты операционной системы		
Прикладные системы и программы <u>-</u>		
Местонахождение и имена файлов программ и данных <u>-</u>		

6. Идея, метод, алгоритм решения задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальные спецификации с пред- и постусловиями)

Предложенную схему размещения матрицы я чуть-чуть изменил:

- 1) В массиве М я храню не индекс начала новой строки, а кол-во ненулевых элементов в строке(0 в строке
- 2) Я не храню индекс следующего элемента (потому что я не изменяю матрицу, а записываю результат в новую матрицу)
- 3) Я не записываю индекс столбца и значение в один массив, а разделяю на 2 массива (А индекс столбцов, а V значение столбца)

В целом модель не изменилась, так как содержит такую же идею. Но ячейке в строке могут быть описаны в разном порядке(не обязательно по возрастанию). Это не влияет на саму матрицу, так как все однозначно идентифицируется(матрица).

Программа принимает значения 2 переменных n и m - размеры двух матриц, которые нужно сложить(складывать матрицы можно только одинаковых размеров)

Дальше записываем массивы M(содержит информацию о кол-ве ненулевых элементов в строке), A(индексы столбцов ненулевых элементов), V(значения столбцов)

Я реализовал функции для работы с этой схемой размещения:

- 1) print razr(int *M, int *A, int *V, int n, int m) просто вывожу массивы M, A, V(каждый с новой строки)
- 2) to_normal(int **matrix, int *M, int *A, int *V, int n, int m) –преобразования из разреженной матрицы в полную.

Алгоритм: прохожу 1 циклом по массиву M, 2 циклом по значению текущей ячейки M, и просто записываю в столбцы значения (индексы столбцов беру из массива A, значения столбца из массива V, а строка - номер текущей ячейки в массиве M)

- 3) **semetr_razr(int *M, int *A, int *V, int n, int m)** проверка на то, что разреженная матрица является симметричной. Если бы матрица была бы полной, я бы в цикле делал проверку вот так : "matrix[i][j] == matrix[j][i]", т.е. номер строки и номер столбца поменял бы местами, и проверил их на одинаковое значение. С разреженными матрицами проверка будет идентична. Сначала прохожу по матрице М, потом прохожу по текущей ячейке матрицы М, и на любом шаге у меня информация о номере строки(текущий номер ячейки), номер столбца(текущее значение элемента массива А), значение в ячейке(текущее значение элемента массива V). Что нужно делать дальше? Мне нужно найти элемент в этой матрице, но необходимо поменять номер строки и номер столбца местами. Поэтому делаю опять обход по этим массивам и ищу этот элемент. Если такого элемента не существует(т.е он нулевый), или значение не совпадает, значит матрица не симметрична. Возвращаю false. В конце возвращаю true(т.к. все проверки прошли успешно). Очевидно, что на проверку будут идти только квадратные матрицы(иначе они не могут быть симметричными)
- 4) summ_razr(int *&M, int *&A, int *&V, int *M1, int *A1, int *V1, int *M2, int *A2, int *V2, int n, int m) сложение двух разреженных матриц(запись в новые массивы M, A, V). Сначала я нахожу кол-во ненулевых элементов(складываю ячейки M1 и M2). Кол-во ненулевых элементов в новой матрице не больше, чем кол-во ненулевых элементов в матрицах, которые складываются. В массиве М кол-во элементов не изменится, так как при сложении матриц кол-во строк не изменяется, а вот значения элементов изменятся(а могут и не изменится, если сложим нулевую матрицу). Поэтому создадим временные массивы A_temp, V_temp, в них кол-во элементов будет сумма кол-ва ненулевых элементов матриц. Дальше проходим по строкам каждой из матриц. На каждом шагу изменения строки заводим массив temp, в котором я буду записывать рассмотренные столбцы. Сначала запускаю двойной цикл относительно 1 матрицы по 2 матрице(по текущему номеру строки). Буду искать одинаковые столбцы на

строке и складывать значения, записывать данные во временные массивы A_temp, V_temp, увеличивать счетчик ненулевых элементов итоговой матрицы(эти все действия проводятся, если значение ячейки не нулевое). Запускаю двойной цикл относительно 2 матрицы по 1 матрице. Произвожу те же действия, но проверяю, что этот столбец я не рассматривал(проверяю, что столбец не встречался в массиве temp).

Выделяю память (кол-во ненулевых элементов в итоговой матрице) для массивов A, V (итоговые массивы) Записываю информацию из A temp, V temp. Действие алгоритма окончено.

Также для сравнение результатов сделал такие же функции(реализуются значительно проще) для обработки обычных (полных) матриц.

Опишу, что происходит в главной функции main:

- 1) Сначала записываю значения переменных n, m размеры 2 матриц.
- 2) Записываю 2 матрицы в разреженном виде. (массивы M 1, A 1, V 1, M 2, A 2, V 2)
- 3) Создаю 2 матрицы в полном виде с помощью функции to normal(описана выше)
- 4) Вывожу эти матрицы сначала в разреженном виде, потом в полном
- 5) складываю в разреженном виде, перевожу в полную форму, вывожу их, пишу симметричная матрица или нет, используя алгоритм для разреженной матрицы
- 6) складываю в полном виде, перевожу в разреженную форму, вывожу, пишу симметричная матрица или нет, используя алгоритм для полной матрицы.

7. Сценарий выполнения работы [план работы, первоначальный текст программы в черновике (можно на отдельном листе) и тесты либо соображения по тестированию]. #include <stdio.h>

```
void print razr(int *M, int *A, int *V, int n, int m) { //Выводим разреженную матрицу
  int NOZERO = 0;
  for (int i = 0; i < n; i++){
     printf("%d ", M[i]);
    NOZERO += M[i];
  printf("\n");
  for (int i = 0; i < NOZERO; i++){
     printf("%d ", A[i]);
  printf("\n");
  for (int i = 0; i < NOZERO; i++){
     printf("%d ", V[i]);
  printf("\n");
}
void print normal(int **matrix, int n, int m) { //Выводим нормальную матрицу
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++){
       printf("%d ", matrix[i][j]);
     printf("\n");
```

```
void to_razr(int **matrix, int *&M, int *&A, int *&V, int n, int m){ //преобразуем нормальную матрицу в разреженную
  M = new int[n]; //информация про строки -- кол-во ненулевых элементов в строке
  int NOZERO = 0; //Кол-во ненулевых элементов в матрице
  for (int i = 0; i < n; i++){
    for (int j = 0; j < m; j++){
      if (matrix[i][j] != 0) {
        M[i] += 1;
        NOZERO += 1;
      }
    }
  }
  A = new int[NOZERO];
  V = new int[NOZERO];
  int counter = 0;
  for (int i = 0; i < n; i++){
    for (int j = 0; j < m; j++){
      if (matrix[i][j] != 0) {
        A[counter] = j;
        V[counter] = matrix[i][j];
        counter++;
      }
    }
  }
}
void to_normal(int **matrix, int *M, int *A, int *V, int n, int m){ //пребразование из разреженной в полную
  int counter = 0; //указатель на элемент массива A, V
  for (int i = 0; i < n; i++){
    for (int j = 0; j < M[i]; j++){
      int stolbik = A[counter];
      int value = V[counter];
      matrix[i][stolbik] = value;
      counter++;
    }
  }
}
void summ razr(int *&M, int *&A, int *&V, int *M1, int *A1, int *V1, int *M2, int *A2, int *V2, int n, int m) { //Сложение двух razr матриц
  int *A_temp, *V_temp;
  M = new int[n];
  int nozero 1 = 0;
  int nozero 2 = 0;
  for (int i = 0; i < n; i++) {
    nozero_1 += M1[i];
    nozero 2 += M2[i];
  }
  int all_nozero = nozero_1 + nozero_2; //максимальное возможное кол-во ненулевых элементов
  //printf("Кол-во ненулевых: %d\n", all_nozero);
  A temp = new int[all nozero];
```

}

```
V_temp = new int[all_nozero];
int counter_1 = 0;
int counter_2 = 0;
int counter = 0;
for (int k = 0; k < n; k++) {
  int *temp;
  temp = new int[M1[k] + M2[k]]; //текущая информация о рассмотренных столбиках строки
  for (int i = 0; i < M1[k] + M2[k]; i++) {
    temp[i] = -1;
  }
  int counter_temp = 0;
  int no_zero_temp = 0;
  for (int i = counter_1; i < M1[k] + counter_1; i++) {
    int a_temp = A1[i];
    int v_temp = V1[i];
    for (int j = counter_2; j < M2[k] + counter_2; j++) {
      if (a_temp == A2[j]) {
        v_temp += V2[j];
      }
    }
    if (v_temp != 0) {
      A_temp[counter] = a_temp;
      V_temp[counter] = v_temp;
      temp[counter_temp] = a_temp;
      counter++;
      no_zero_temp++;
      counter_temp++;
    }
  }
  for (int i = counter_2; i < M2[k] + counter_2; i++) {
    int a_temp = A2[i];
    int v_temp = V2[i];
    int flag = 0; //нужно сделать проверку, что этот ненулевый столбик не проверяли в текущей строке
    for (int i = 0; i < M1[k] + M2[k]; i++) {
      if (a_temp == temp[i]) { //уже рассматривали этот столбик
        flag = 1;
        break;
      }
    if (flag == 0){ //дальше как обычно
      for (int j = counter_1; j < M1[k] + counter_1; j++) {
        if (a_temp == A1[j]) {
          v_temp += V1[j];
        }
      if (v_temp != 0) {
        A_temp[counter] = a_temp;
        V_temp[counter] = v_temp;
        counter++;
        no_zero_temp++;
    }
  }
```

```
counter_1 += M1[k];
    counter_2 += M2[k];
    M[k] = no_zero_temp;
    delete [] temp;
  }
  A = new int[counter];
  V = new int[counter];
  for (int i = 0; i < counter; i++) {
    A[i] = A_temp[i];
    V[i] = V_temp[i];
  delete [] A_temp;
  delete [] V_temp;
}
bool semetr_razr(int *M, int *A, int *V, int n, int m) {
  //проверка в норм форме -- должно быть a[i][j] = a[j][i]
  int temp_1 = 0;
  for (int num_1 = 0; num_1 < n; num_1++) { //pассматриваем все строки
    for (int i = 0; i < M[num_1]; i++) { //рассматриваем ненулевые элементы строки
       int a_temp_i = A[temp_1 + i];
       int v_temp_i = V[temp_1 + i];
       int flag = 0;
       int temp_2 = 0;
       for (int num_2 = 0; num_2 < n; num_2++) {
         for (int j = 0; j < M[num_2]; j++) {
           int a_temp_j = A[temp_2 + j];
           int v_{temp_j} = V[temp_2 + j];
           if (num_2 == a_temp_i && a_temp_j == num_1 && v_temp_j == v_temp_i) {
             flag = 1;
           }
         }
         temp_2 += M[num_2];
      if (!flag) {
         return false;
       }
    }
    temp_1 += M[num_1];
  }
  return true;
}
void summ_normal(int **matrix, int **matrix1, int **matrix2, int n, int m) {
  for (int i = 0; i < n; i++){
    for (int j = 0; j < m; j++){
       matrix[i][j] += (matrix1[i][j] + matrix2[i][j]);
    }
  }
}
bool semetr_normal(int **matrix, int n, int m) {
```

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++) {
       if (matrix[i][j] != matrix[j][i]) {
         return false;
      }
    }
  }
  return true;
}
int main() {
  int **matrix_1, *M_1, *A_1, *V_1;
  int **matrix_2, *M_2, *A_2, *V_2;
  int n, m;
  scanf("%d", &n);
  scanf("%d", &m);
  matrix_1 = new int*[n];
  matrix_2 = new int*[n];
  for (int i = 0; i < n; i++){
    matrix_1[i] = new int[m];
    matrix_2[i] = new int[m];
  }
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++) {
       matrix_1[i][j] = 0;
       matrix_2[i][j] = 0;
    }
  }
  M_1 = new int[n];
  M_2 = new int[n];
  int nozero1 = 0;
  int nozero2 = 0;
  for (int i = 0; i < n; i++) {
    scanf("%d", &M_1[i]);
     nozero1 += M_1[i];
  }
  A_1 = new int[nozero1];
  V 1 = new int[nozero1];
  for (int i = 0; i < nozero1; i++) {
     scanf("%d", &A_1[i]);
  }
  for (int i = 0; i < nozero1; i++) {
     scanf("%d", &V_1[i]);
  }
  for (int i = 0; i < n; i++) {
    scanf("%d", &M_2[i]);
     nozero2 += M_2[i];
  A_2 = new int[nozero2];
  V_2 = new int[nozero2];
  for (int i = 0; i < nozero2; i++) {
```

```
scanf("%d", &A_2[i]);
}
for (int i = 0; i < nozero2; i++) {
  scanf("%d", &V_2[i]);
}
to_normal(matrix_1, M_1, A_1, V_1, n, m);
to_normal(matrix_2, M_2, A_2, V_2, n, m);
printf("RAZR MATRIX_1:\n");
print_razr(M_1, A_1, V_1, n, m);
printf("\n");
printf("RAZR MATRIX_2:\n");
print_razr(M_2, A_2, V_2, n, m);
printf("\n");
printf("FULL ARRAY_1 FROM RAZR_1:\n");
print_normal(matrix_1, n, m);
printf("\n");
printf("FULL ARRAY_2 FROM RAZR_2:\n");
print_normal(matrix_2, n, m);
printf("\n");
int *M, *A, *V; //сюда будет записана сумма
printf("SUMMA RAZR MATRIX AND IN NORMAL FORM: \n");
summ\_razr(M, A, V, M\_1, A\_1, V\_1, M\_2, A\_2, V\_2, n, m);\\
print_razr(M, A, V, n, m);
int **matrix;
matrix = new int*[n];
for (int i = 0; i < n; i++) {
  matrix[i] = new int[m];
}
for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++) {
    matrix[i][j] = 0;
  }
}
printf("----\n");
to_normal(matrix, M, A, V, n, m);
print_normal(matrix, n, m);
if (n == m) {
  if (semetr_razr(M, A, V, n, m)) {
    printf("the \ matrix \ is \ symmetric\n");
  }
  else {
    printf("the matrix is not symmetric\n");
}
else {
  printf("the matrix is not symmetric\n");
```

```
}
  printf("\n");
  printf("SUMMA NORMAL MATRIX: \n");
  int **matrix_t;
  matrix_t = new int*[n];
  for (int i = 0; i < n; i++) {
    matrix_t[i] = new int[m];
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++) {
      matrix_t[i][j] = 0;
    }
  }
  summ_normal(matrix_t, matrix_1, matrix_2, n, m);
  print_normal(matrix_t, n, m);
  int *M_t, *A_t, *V_t;
  to_razr(matrix_t, M_t, A_t, V_t, n, m);
  printf("----\n");
  print_razr(M_t, A_t, V_t, n, m);
  if (n == m) {
    if (semetr_normal(matrix_t, n, m)) {
      printf("the matrix is symmetric\n");
    }
    else {
      printf("the matrix is not symmetric\n");
    }
  }
    printf("the matrix is not symmetric\n");
  }
  return 0;
}
Тестирование:
1 тест:
55
10230
001034
124562
10230
001034
124562
Ответ:
10230
001034
2 4 8 10 12 4
the matrix is not symmetric
```

2 тест:
55 11103 011234 111456
20001 010 561
Ответ:
2 1 1 0 4 0 1 1 1 0 2 3 4 6 6 1 1 1 4 5 6 the matrix is not symmetric
3 тест:
65 111010 0114 1111
101001 023 -178
Ответ:
0 1 2 0 1 1 1 1 2 4 3 1 1 7 1 8 the matrix is not symmetric
4 тест:
1 1 1 0 -1 1
Ответ:
0
the matrix is symmetric

5 тест:

the matrix is symmetric

124562

Пункты 1-7 отчета составляются строго до начала лабораторной работы.

Допущен к выполнению работы. Подпись преподавателя _____

8. Распечатка протокола (подклеить листинг окончательного варианта программы с тестовыми примерами, подписанный преподавателем).

[alex@fedora 7(?)]\$ cat head.txt Лабораторная работа №7 Разреженные матрицы Выполнил: студент группы М8О-101Б-21 Постнов Александр Вячеславович [alex@fedora 7(?)]\$ g++ main.cpp -o main [alex@fedora 7(?)]\$ cat test.txt 55 10230 001034 124562 10230 001034124562 [alex@fedora 7(?)]\$./main <test.txt RAZR MATRIX_1: 10230 001034

```
RAZR MATRIX_2:
10230
001034
124562
FULL ARRAY_1 FROM RAZR_1:
10000
00000
24000
50062
00000
FULL ARRAY_2 FROM RAZR_2:
10000
00000
24000
50062
00000
SUMMA RAZR MATRIX AND IN NORMAL FORM:
10230
001034
2 4 8 10 12 4
-----
20000
00000
48000
10 0 0 12 4
0\,0\,0\,0\,0
the matrix is not symmetric
SUMMA NORMAL MATRIX:
20000
0\,0\,0\,0\,0
48000
10 0 0 12 4
00000
10230
001034
2 4 8 10 12 4
the matrix is not symmetric
[alex@fedora 7(?)]$ cat test1.txt
5 5
11103
0\,1\,1\,2\,3\,4
111456
20001
0\,1\,0
561
[alex@fedora 7(?)]$ ./main <test1.txt
RAZR MATRIX_1:
```

```
11103
011234
111456
RAZR MATRIX_2:
20001
010
561
FULL ARRAY_1 FROM RAZR_1:
10000
01000
01000
00000
00456
FULL ARRAY_2 FROM RAZR_2:
56000
00000
00000
00000
10000
SUMMA RAZR MATRIX AND IN NORMAL FORM:
21104
0\,1\,1\,1\,2\,3\,4\,0
66114561
66000
0\,1\,0\,0\,0
01000
00000
10456
the matrix is not symmetric
SUMMA NORMAL MATRIX:
66000
01000
0\,1\,0\,0\,0
00000
10456
21104
0\,1\,1\,1\,0\,2\,3\,4
66111456
the matrix is not symmetric
[alex@fedora 7(?)]$ cat test2.txt
65
111010
0114
1111
101001
```

-178
[alex@fedora 7(?)]\$./main <test2.txt< td=""></test2.txt<>
RAZR MATRIX 1:
111010
0114
1111
RAZR MATRIX_2:
101001
023
-178
170
FULL ARRAY_1 FROM RAZR_1:
10000
01000
01000
00000
00001
00000
FULL ARRAY_2 FROM RAZR_2:
-10000
00000
00700
00000
00000
00080
SUMMA RAZR MATRIX AND IN NORMAL FORM:
SUMMA RAZR MATRIX AND IN NORMAL FORM: 0 1 2 0 1 1
012011
012011 11243
012011 11243 11718
012011 11243 11718
012011 11243 11718
012011 11243 11718 00000 01000
012011 11243 11718 00000 01000 01700
012011 11243 11718 00000 01000 01700 00000
012011 11243 11718 00000 01000 01700 00000 00000
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric
0 1 2 0 1 1 1 1 2 4 3 1 1 7 1 8 0 0 0 0 0 0 1 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 0 the matrix is not symmetric SUMMA NORMAL MATRIX:
0 1 2 0 1 1 1 1 2 4 3 1 1 7 1 8
0 1 2 0 1 1 1 1 2 4 3 1 1 7 1 8 0 0 0 0 0 0 1 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 0 the matrix is not symmetric SUMMA NORMAL MATRIX:
0 1 2 0 1 1 1 1 2 4 3 1 1 7 1 8
012011 11243 11718
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01000 01700
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 01700 00000
012011 11243 11718 00000 01000 01700 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 01700 00000 01700 00000
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 001700 00000 01700 00001 00080
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 01700 00000 01700 00000 00001
012011 11243 11718 00000 01000 01700 00000 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 001000 01700 00000 00001 00080
012011 11243 11718 00000 01000 01700 00001 00080 the matrix is not symmetric SUMMA NORMAL MATRIX: 00000 01700 001700 00000 01700 00000 010000 0110000 0110000 0110000 011000000

```
11
1
0
-1
1
0
[alex@fedora 7(?)]$ ./main <test3.txt
RAZR MATRIX_1:
0
-1
RAZR MATRIX_2:
0
FULL ARRAY_1 FROM RAZR_1:
FULL ARRAY_2 FROM RAZR_2:
SUMMA RAZR MATRIX AND IN NORMAL FORM:
0
the matrix is symmetric
SUMMA NORMAL MATRIX:
0
the matrix is symmetric
[alex@fedora 7(?)]$ cat test4.txt
44
3100
0121
1 -1 1 1
0111
003
-115
[alex@fedora 7(?)]$ ./main <test4.txt
RAZR MATRIX_1:
3100
0121
1-111
```

RAZR MATRIX_2:
0111
003
-1 1 5
FULL ARRAY_1 FROM RAZR_1:
1 -1 1 0
0100
0000
0000
FULL ARRAY_2 FROM RAZR_2:
0000
-1 0 0 0
1000
0005
SUMMA RAZR MATRIX AND IN NORMAL FORM:
3211
0121003
1-111-115
1-110
-1 1 0 0
1000
0005
the matrix is symmetric
SUMMA NORMAL MATRIX:
1-110
-1 1 0 0
1000
0005
3211
0120103
1-11-1115
the matrix is symmetric

9. Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

No	Лаб.	Дата	Время	Событие	Действие по исправлению	Примечание	
	или						
	дом.						
1	дом		9:00	Сравнивал матрицу с	Сравнивал элемент матрицы с	Это произошло из-за	
		20.04.2		числом	числом	похожего названия	
						переменных(V temp,	

	022							v_temp)	
10. Зам	ечания	автора							
	ораторн ольшого	размера	с большим к					от очень полез Гельно экономі	
Недоч	чёты при	і выполне	нии задания	могут быть	устранены	следующим с	образом:		

Подпись студента ____Постнов_____