(MATNA1901) Lineáris algebra vizsga

1. Adja meg az operátor fogalmát! Mit értünk egy operátor reprezentációja alatt? (10 pont)

Operátornak a lineáris vektor-vektor függvényeket nevezzük.

Az operátorok reprezentációját nevezzük mátrixnak. Azaz, legyen $\alpha_{ij} \in \mathbb{R}$ minden $i \in \{1, 2, ..., m\}$ és $j \in \{1, 2, ..., n\}$ estén, ahol $m, n \in \mathbb{N}^+$. Az

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

számtáblázatot $m \times n$ típusú mátrixnak nevezzük. Jelölje az $m \times n$ típusú mátrixok halmazát $M_{m \times n}$.

2. Mit értünk két mátrix egymással való szorzatán?

(10 pont)

<u>Definíció:</u> Legyen $A = (\alpha_{ij})_{m \times n}$ és $B = (\beta_{ij})_{n \times k}$ két mátrix. Az A és B mátrixok szorzata alatt az $A \cdot B = (\gamma_{ij})_{m \times k}$ mátrixot értjük, ahol

$$\gamma_{ij} = \sum_{l=1}^{n} \alpha_{il} \beta_{lj}.$$

Azaz:

$$A_{m \times n} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{i1} & \alpha_{i2} & \cdots & \alpha_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} \quad B_{n \times k} = \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1j} & \cdots & \beta_{1k} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2j} & \cdots & \beta_{2k} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nj} & \cdots & \beta_{nk} \end{pmatrix}$$

$$A \cdot B_{m \times k} = \begin{pmatrix} \alpha_{11} \beta_{11} + \alpha_{12} \beta_{21} + \dots + \alpha_{1n} \beta_{n1} & \alpha_{11} \beta_{12} + \alpha_{12} \beta_{22} + \dots + \alpha_{1n} \beta_{n2} & \dots & \alpha_{11} \beta_{1k} + \alpha_{12} \beta_{2k} + \dots + \alpha_{1n} \beta_{nk} \\ \alpha_{21} \beta_{11} + \alpha_{22} \beta_{21} + \dots + \alpha_{2n} \beta_{n1} & \alpha_{21} \beta_{12} + \alpha_{22} \beta_{22} + \dots + \alpha_{2n} \beta_{n2} & \dots & \alpha_{21} \beta_{1k} + \alpha_{22} \beta_{2k} + \dots + \alpha_{2n} \beta_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} \beta_{11} + \alpha_{m2} \beta_{21} + \dots + \alpha_{mn} \beta_{n1} & \alpha_{m1} \beta_{12} + \alpha_{m2} \beta_{22} + \dots + \alpha_{mn} \beta_{n2} & \dots & \alpha_{m1} \beta_{1k} + \alpha_{m2} \beta_{2k} + \dots + \alpha_{mn} \beta_{nk} \end{pmatrix}$$

3. Határozza meg a determináns fogalmát!

(10 pont)

<u>Leibnitz-féle definíció:</u> Ha az **A** mátrix $n \times n$ -es típusú, ahol n > 1 és $n \in \mathbb{N}$ (vagyis négyzetes), akkor az **A** mátrix determinánsa alatt a következő számot értjük:

$$det(\mathbf{A}) = \sum_{\{i_1, i_2, \dots, i_n\} \in P_n} (-1)^{I(i_1, i_2, \dots, i_n)} \alpha_{1i_1} \cdot \alpha_{2i_2} \cdot \dots \cdot \alpha_{ni_n},$$

ahol az összegzés az $1, 2, \ldots, n$ számok összes permutációjára történik, és $I(i_1, i_2, \ldots, i_n)$ jelöli az (i_1, i_2, \ldots, i_n) permutációban lévő inverziók számát. Jelölése:

$$\det (\mathbf{A}), \begin{vmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{vmatrix}, \quad |\mathbf{A}|.$$

Axiomatikus definíció: Legyen $\mathbf{A} \in \mathbb{R}^{n \times n}$ négyzetes mátrix és det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény. Ezt a det (\mathbf{A}) függvényt az $\mathbf{A}^{n \times n}$ mátrix determinánsának hívjuk, ha

- (a) Homogén: $\det(\ldots \lambda_i \mathbf{a}_i \ldots) = \lambda_i \det(\ldots \mathbf{a}_i \ldots);$
- (b) Additív $\det(\ldots \mathbf{a}_i + \mathbf{b}_i \ldots) = \det(\ldots \mathbf{a}_i \ldots) + \det(\ldots \mathbf{b}_i \ldots);$
- (c) Alternáló: $\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_i \ldots) = -\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_i \ldots);$
- (d) Az egységmátrix determinánsa 1: $\det(\mathbf{E}_n) = 1$,

ahol $\lambda_i \in \mathbb{R}$ és $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$ a $\mathbf{A}^{n \times n}$ mátrix oszlop vektorai. Ezt a leképezést egy n változós függvénynek tekinthetjük a mátrix oszlopai felett: $\mathbb{R}^n \to \mathbb{R}$. Ezek az axiómák egyértelműen meghatározzák a leképezést. Egy másik $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény ezekkel a tulajdonságokkal azonos a det-tel. Másképpen, a mátrix egyértelműen hozzá lehet rendelni egy értéket ezekkel a szabályokkal. Ha $\mathbf{A} \in \mathbb{R}^{n \times n}$, akkor a determináns n^{th} -ed rendű. A determináns egy funkcionál. Ez egy olyan leképezés, amely skalárt rendel egy függvényhez.

4. Mi a mátrix rangja? (10 pont)

Legyenek $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s \in V$ vektorok. Az $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s\}$ vektorrendszer rangja alatt az $\mathcal{L}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$ altér dimenzióját értjük. Jele: $\rho(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$.

5. Mi az a vegyes szorzat és hogyan fejthető ki determináns segítségével? (10 pont)

Vegyes szorzat: Az $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3$ vektorok vegyes szorzata:

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \mathbf{c}.$$

Állítás: A vegyes szorzat kifejezhető a determináns segítségével:

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

6. Mit értünk egy mátrix inverzén?

(10 pont)

Az $\mathbf{A} \in \mathcal{M}_{n \times n}$ (négyzetes) mátrixnak létezik inverze, ha van olyan $\mathbf{B} \in \mathcal{M}_{n \times n}$, hogy $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{E}_n$. Az \mathbf{A} mátrix inverzét \mathbf{A}^{-1} -gyel jelöljük.

7. Mi a lineáris egyenletrendszer alapmátrixa (együtthatómátrixa)?

(10 pont)

Alapmátrix: A lineáris egyenletrendszer alapmátrixa (együtthatómátrixa) alatt a következőt értjük:

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

8. Mit jelent a halmazok (Minkowski-)összege?

(10 pont)

Halmazok (Minkowski-)összege: $A + B = \{a + b : a \in A, b \in B\}.$

9. Mit értünk egy mátrix sajátértékén, sajátvektorán és sajátalterén? (10 pont)

Legyen V egy vektortér \mathbb{R} felett. Legyen $\varphi:V\to V$ lineáris leképezés. Ha az $\mathbf{a}\in V$ nemnulla vektorra és $\lambda\in\mathbb{R}$ -re $\varphi(a)=\lambda\mathbf{a}$ teljesül, akkor azt mondjuk, hogy \mathbf{a} sajátvektora φ -nek és λ az \mathbf{a} -hoz tartozó sajátértéke φ -nek.

Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$ a λ -hoz tartozó sajátvektorok és a nullvektor halmaza. A L_{λ} alteret alkot, ezért a λ -hoz tartozó sajátaltérnek nevezzük.

A mátrix diagonális alakja azt jelenti, hogy csak a főátlóban találhatóan nem nulla elemek.

Az $n \times n$ -es **A** mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz, azaz ha létezik egy olyan diagonális Λ és egy invertálható **C** mátrix, hogy $\Lambda = \mathbf{C}^{-1}\mathbf{AC}$.

<u>Tétel:</u> (Diagonalizálhatóság szükséges és elégséges feltétele). Az $n \times n$ -es **A** mátrix pontosan akkor diagonalizálható, azaz pontosan akkor létezik olyan **C** mátrix, melyre $\mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, ha **A**-nak van n lineárisan független sajátvektora. Ekkor a diagonális mátrix az **A** sajátértékeiből, **C** a sajátvektoraiból áll.

<u>Bizonyítás:</u> Ha **A** hasonló egy diagonális mátrixhoz, azaz van olyan **C** mátrix, hogy $\Lambda = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, akkor **C**-vel balról szorozva a $\mathbf{C}\Lambda = \mathbf{A}\mathbf{C}$ egyenlőséget kapjuk. Ha $\mathbf{C} = [\mathbf{x}_1\mathbf{x}_2...\mathbf{x}_n]$ és $\lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, akkor

$$\begin{bmatrix} \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \end{bmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \end{bmatrix}.$$

A bal oldali mátrix i-edik oszlopa $\lambda_i \mathbf{x}_i$, a jobb oldali mátrixé $\mathbf{A}\mathbf{x}_i$. Ezek megegyeznek, azaz $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$, tehát \mathbf{x}_i a λ_i sajátértékhez tartozó sajátvektor. Mivel \mathbf{C} invertálható, ezért oszlopvektorai függetlenek, ami bizonyítja az állításunk egyik felét. Tegyük most fel, hogy van \mathbf{A} -nak n független sajátvektora. Képezzünk a sajátértékekből egy $\mathbf{\Lambda}$ diagonális mátrixot, úgy hogy a \mathbf{C} mátrix i-edik oszlopába kerülő \mathbf{x}_i vektorhoz tartozó λ_i sajátérték a $\mathbf{\Lambda}$ mátrix i-edik oszlopába kerüljön. Mivel $\lambda_i \mathbf{x}_i = \mathbf{A}\mathbf{x}_i$, ezért $\mathbf{\Lambda}$ hasonló \mathbf{A} -hoz.

<u>A vizsga osztályzása:</u> 0–40 pont: elégtelen (1), 41–55 pont: elégséges (2), 56–70 pont: közepes (3), 71–85 pont: jó (4), 86–100 pont: jeles (5).

Facskó Gábor facskog@gamma.ttk.pte.hu

Pécs, 2025. június 4.