Example: Stat 151 Winter 2020: Liking Hockey vs. Liking Soccer

	Socier				c) socien do 14					14 ' =	
Hockey		Yes	No	Total	Hockey	Voc	T	No			
	Yes	42	21	63		Yes	20.98	0.13	0.41		
	No	30	59	89		No	0-19	0.40 0.59 E	2 disjoint		
4-	Total	72	80	152		Total	0.47	0.53			
				30 ~	0.20	C	()			•	

Suppose we randomly select a student in this class.

Event A: likes hockey

Calculate:

a)
$$P(\text{Likes soccer}) = P(B) = \frac{72}{152} \approx 0.47$$

b)
$$P(\text{Likes hockey}) = P(A) = \frac{63}{153} \simeq 0.41$$

c)
$$P(\text{Likes hockey and soccer}) = P(A \cap B) = \frac{42}{152} \approx 0.28$$

d)
$$P(\text{Likes hockey, but not soccer}) = P(A \cap B^c) = \frac{21}{152} \approx 0.14$$

d) P(Likes hockey or likes soccer)

=
$$P(A \cup B)$$

= $P(A) + P(B) - P(A \cap B) \leftarrow not disjoint$
= $\frac{63}{150} + \frac{70}{150} - \frac{40}{150}$
= $\frac{93}{150} \approx 0.61$

 \triangleright P(Likes hockey or doesn't like soccer)

=
$$P(A \cup B^{c})$$

= $P(A) + P(B^{c}) - P(A \cap B^{c})$
= $\frac{63}{150} + \frac{80}{150} - \frac{21}{150}$ not disjoint
= $\frac{102}{150} \approx 0.8$

9) P(Likes hockey | likes soccer)

$$= \frac{P(A | B)}{P(B)} = \frac{42}{152} = \frac{42}{72} \approx 0.58$$

$$= \frac{P(A | B)}{P(B)} = \frac{72}{152}$$

g) $P(\text{Likes hockey} | \text{does not like soccer}) = P(A | B^c)$ $= 21 \times 2 \cdot 26$ $P(B^c)$

h) $P(\text{Likes soccer} | \text{likes hockey}) = P(B|A) = \frac{42}{63}$ $P(A) \qquad \qquad P(A)$

Independence

Two events A and B are said to be **independent** if

Otherwise, A and B are said to be **dependent**.

• A and B are independent if the occurrence of one has **no effect** on the occurrence of the other.

Example: An urn contains three yellow balls and 4 green balls. Two balls are randomly selected.

Event B: first ball is yellow
$$B^c = 1^{st}$$
 ball is green

Event A: second ball is green

With replacement: < independent

$$\bullet P(A|B) = \frac{4}{7} \simeq 0.57 = P(A)$$

$$\bullet \ P(A|B^{c}) = \frac{4}{7} = P(A)$$

Without replacement:

dependent

•
$$P(A|B) = \frac{4}{6} = \frac{2}{3} \approx 0.67 \neq P(A) = ?$$

•
$$P(A|B^{c}) = \frac{3}{6} = \frac{1}{2} = 0.5$$

Note: Let A and B be events. The following are equivalent:

a) A and B are independent

)
$$A$$
 and B are independent dependent

b)
$$P(A|B) = P(A)$$

d)
$$P(A|B) = P(A|B^{c})$$

P(A|B) =
$$P(A|B^c)$$

P(A|B) $\neq P(A|B^c)$
P(A|B) $\neq P(A|B^c)$
P(A|B) $\neq P(A|B^c)$

e)
$$P(A \cap B) = P(A)P(B)$$

Example: Liking hockey vs. liking soccer -> dependent

P(AB) 7 P(A)

$$P(\text{Likes hockey} | \text{likes soccer}) \neq P(\text{Likes hockey})$$

$$P(\text{Likes hockey} | \text{likes soccer}) \neq P(\text{Likes hockey} | \text{does not like soccer})$$

Example: A dentist's office surveyed all patients under 18 years of age, 40% of whom were under 12, about their fear of visiting the dentist. They found that 25\% of all patients under 18 were afraid of visiting the dentist and 15% of all patients under 18 were afraid and under 12.

	Fear	Do not fear	Total				
Under 12	0-15	0.25	0.4				
Between 12 and 17	0.1	0.5	0.6				
Total	0.25	0.75	1				
Redisjoint							

$$P(\text{fear and } < 12) = 0.15$$
 $P(\text{fear}) P(< 12) = (0.25)(0.4) = 0.1$
Chapter 12 =) fear, < 12 dependent Page 6 of 12

Multiplication Rules:

• General Multiplication Rule:

$$P(A \cap B) = P(B)P(A|B)$$

$$= P(A)P(B|A)$$

• Multiplication Rule for Independent Events:

If A and B are independent events, then

$$P(A \cap B) = P(A)P(B)$$

Example: An urn contains three yellow balls and four green balls.

Two balls are randomly selected without replacement. What is the probability that the second ball is yellow? Gependent

Let Y_1 = first is yellow, Y_2 = second is yellow, and G_1 = first is green.

$$P(Y_{a}) = P("Y_{a} \text{ and } Y_{a}") \in disjoint}$$

$$= P(Y_{a}) + P(G_{a} \text{ and } Y_{a}") \in disjoint}$$

$$= P(Y_{a}) + P(G_{a} \text{ and } Y_{a})$$

$$= P(Y_{a}) + P(G_{a}) + P(G_{a}) + P(G_{a})$$

$$= (\frac{3}{7})(\frac{3}{6}) + (\frac{4}{7})(\frac{3}{6}) \approx 0.43$$

Three balls are randomly selected without replacement. Find the probability of each of the following:

a) All three are green.

P(1st green and 2nd green and 3nd green)
$$= \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \simeq 0.11$$

yyy

c) There is at least one green ball.

$$P(\text{at least one green}) = 1 - p(\text{no green})$$

$$= 1 - \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5}$$

$$= 0.97$$

Example: Suppose that the blood types of the citizens of a country occur with the following probabilities:

Assume that the blood types of two citizens that are married to each other = 0.58 are independent events. For a married couple, what is the probability that:

a) they are both Type A?

b) at least one is Type A?

P(at least one Type A) =
$$1 - P(neither Type A) = 1 - P(1st nut A) P(2^d nut A)$$

= $1 - (0.58)(0.58) = 0.6636$

c) one has Type AB and the other has Type O?

P(one AB and one 0) [disjoint
=
$$P("15^{\dagger}AB \text{ and } a^{nd}O") \circ c "15^{\dagger}O \text{ and } a^{nd}AB")$$

= $P(15^{\dagger}AB \text{ and } a^{nd}O) + P(15^{\dagger}O \text{ and } a^{nd}AB)$
= $P(15^{\dagger}AB) P(a^{nd}O) + P(15^{\dagger}O) P(a^{nd}AB)$
Chapter 12 = $(0.03)(0.47) + (0.47)(0.03)$ Page 8 of 12
= 0.0382

Warning: Do not assume events are independent (without reason to) and do not assume events are disjoint. JANB = A

no effect on other

Warning: Do not confuse disjoint events with independent events.

Example: Consider the blood type example.

- For one person, the event that the person is Type A and the event that the person is Type B are disjoint.
- For two people that are married to each other, the event that the first person has Type A and the event that the second person has Type B are independent.

Suppose that A and B are two events such that $P(A), P(B) \neq 0$.

If A and B are disjoint, then they are dependent.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = 0 \neq P(A)$$

Equivalently, if A and B are independent, they are not disjoint.

$$P(A \cap B) = P(A)P(B) \neq \emptyset$$

Two dependent events may or may not be disjoint.

Chapter 12