# Wi-Fi Dataset EDA

# 1. Objective

#### **Business Context**

- The demand and usage of the internet is growing across the globe and public wifi is becoming a new normal as we move forward. Wifi providers want to optimize the cost while providing the free and paid wifi. Here, we have a use case of public WiFi hotspots in New York City.
- The information comprises of records for every public WiFi hotspot (ones provided by or in partnership with the city) in New York City.
- We would analyze the data and try to infer if the free public WiFi tends to cluster around certain (more affluent) areas.

## Goal / Ask

- Based on the business context, we will be using unsupervised learning techniques such as clustering in order to identify clusters of wifi providers in the specific locations.
- However, prior to that, we need to answer few business questions by performing EDA (Exploratory Data Analysis) to understand the data.
- In this assignment, focus is limited to EDA. Please refer to the dataset shared.

# 2. Dataset Information

- Dataset has 10 columns/features and 2500+ records
- OBJECTID unique identifier
- BORO Borough of New York City (BX-Bronx, QU-Queens, MN-Manhattan, BK-Brooklyn, SI-Staten Island)
- TYPE Type of wi-fi provided by the franchise
- PROVIDER Franchise who is providing the wifi connection
- LAT Latitude
- LON Longitude
- LOCATION\_T Type of location that a wi-fi hotspot is present in
- CITY The city in which the hotspot is located
- BoroCode The NY City borough where the hotspots are located
- NTACode Neighbourhood Tab Access by number

## 3. Business Questions for EDA

## Import relevant packages

```
import pandas as pd
import seaborn as sns
import matplotlib as plt
from scipy.stats import chi2_contingency
```

## 1. Get the data provided, check frequency distribution of the features, drop

# irrelevant and redundant features if any and state your inferences?

#### Import the data and print a sample

```
In [2]: df = pd.read_excel('wifi_data.xlsx')
    df.sample(10)
```

| Out[2]: |      | OBJECTID | Borough | Туре            | Provider                | Latitude  | Longitude  | Location_T            | City             | BoroCode | NT/ |
|---------|------|----------|---------|-----------------|-------------------------|-----------|------------|-----------------------|------------------|----------|-----|
|         | 978  | 902.0    | ВК      | Limited<br>Free | SPECTRUM                | 40.715088 | -73.960502 | Indoor                | Brooklyn         | 3.0      |     |
|         | 2293 | 2292.0   | ВК      | Free            | Transit<br>Wireless     | 40.677050 | -73.972367 | Subway<br>Station     | Brooklyn         | 3.0      |     |
|         | 1286 | 2249.0   | MN      | Free            | Transit<br>Wireless     | 40.724329 | -73.997702 | Subway<br>Station     | New<br>York      | 1.0      |     |
|         | 2108 | 1305.0   | SI      | Limited<br>Free | SPECTRUM                | 40.626860 | -74.075848 | Outdoor<br>TWC Aerial | Staten<br>Island | 5.0      |     |
|         | 291  | 215.0    | ВК      | Free            | Downtown<br>Brooklyn    | 40.692417 | -73.987117 | Outdoor               | Brooklyn         | 3.0      |     |
|         | 1458 | 1771.0   | ВК      | Free            | BPL                     | 40.605690 | -73.986232 | Library               | Brooklyn         | 3.0      |     |
|         | 454  | 378.0    | QU      | Free            | QPL                     | 40.729253 | -73.781909 | Library               | Flushing         | 4.0      |     |
|         | 2435 | 2435.0   | QU      | Free            | LinkNYC -<br>Citybridge | 40.744278 | -73.930399 | Outdoor<br>Kiosk      | Queens           | 4.0      |     |
|         | 775  | 700.0    | вх      | Free            | LinkNYC -<br>Citybridge | 40.864870 | -73.892800 | Outdoor<br>Kiosk      | Bronx            | 2.0      |     |
|         | 1244 | 2207.0   | MN      | Free            | Transit<br>Wireless     | 40.773620 | -73.959874 | Subway<br>Station     | New<br>York      | 1.0      |     |

# Get frequency distribution of all columns i.e print number of unique values/categories in each column

```
In [3]:
    for i in df.columns:
        n = len(pd.unique(df[i]))
        print(i,n)
```

```
OBJECTID 2566
Borough 5
Type 3
Provider 15
Latitude 2390
Longitude 2375
Location_T 6
City 44
BoroCode 5
NTACode 178
```

## Identify and remove irrelevant and redundant features

Here we can observe that the following columns have too many unique values and therefore are redundant for our analysis:

- 1. OBJECTID
- 2. Latitude
- 3. Longitude

Therefore, we remove the above columns.

## 2. Perform univariate and bivariate analysis and answer the following:

a) Which provider has the highest number of wi-fi hotspots?

```
In [6]:
    df['Provider'].value_counts().plot.bar()
    a = df['Provider'].value_counts().idxmax()
    print('The provider with the highest number of hotspots is',a)
```

The provider with the highest number of hotspots is LinkNYC - Citybridge



b) Which provider provides the highest number of free wifi hotspots? Is the second highest provider same for "free wifi hotspots" compared to "all wifi hotspots"?

```
In [7]: g = sns.countplot(y='Provider', hue='Type', data=df, order = df['Provider'].value_counts()
```



The highest provider of free hotspots is the same the highest provider of hotspots overall - **LinkNyc - Citybridge**. However, **Spectrum** which is the second highest provider for "all wifi hotspots" is not the second highest provider of "free wifi hotspots"

#### c) List down the name of providers that provide "Limited Free" type of wifi?

```
In [8]:
         print('The name of providers that provide "Limited Free" type of wifi are')
         (df.loc[df['Type'] == 'Limited Free']).Provider.value counts()
        The name of providers that provide "Limited Free" type of wifi are
                                    343
        SPECTRUM
Out[8]:
        ALTICEUSA
                                     237
        AT&T
                                       1
        BPL
                                       0
        Chelsea
                                       0
        City Tech
                                       0
        Downtown Brooklyn
                                       0
                                       0
        Harlem
        LinkNYC - Citybridge
                                       0
        Manhattan Down Alliance
                                       Λ
                                       0
        NYCHA
                                       0
        NYPL
                                       0
        Partner
                                       Λ
        QPL
        Transit Wireless
        Name: Provider, dtype: int64
```

#### d) What is the correlation coefficient between borough and BoroCode?

```
In [9]:
         CrosstabResult=pd.crosstab(index=df['Borough'],columns=df['BoroCode'])
         print(CrosstabResult)
        BoroCode
                   1.0 2.0 3.0 4.0 5.0
        Borough
                              593
                                     1
        ΒK
                      1
                           0
                         257
                                0
                                     0
                                           0
        ВX
                      0
                  1204
        MN
                           0
                                0
                                     0
                                          0
        QU
                      0
                           0
                                0
                                  415
                                          0
        SI
                      0
                           0
                                0
                                          95
```

Define the hypothesis:

H0: The two columns are not related to each other

H1: The two columns are related to each other

We perform a Chi-square test to check the correlation between the two variables. If the p-value is greater than 0.5, then we accept H0. The closer the p-values is to 0, the higher the correlation.

```
In [10]:
          ChiSqResult = chi2_contingency(CrosstabResult)
          print('The P-Value of the ChiSq Test is:', ChiSqResult[1])
         The P-Value of the ChiSq Test is: 0.0
```

Therefore, we can conclude that the variables "Borough" and "BoroCode" are highly correlated with each other.

#### e) Are there any indoor free wifi hotspots?

```
In [11]:
          sns.countplot(hue='Type', y='Location T', data=df, order = df['Location T'].value counts()
         <AxesSubplot:xlabel='count', ylabel='Location T'>
```

Out[11]:



There are no indoor free wi-fi hotspots.

#### f) Which city has the "partner\_site" type wifi hotspot?

```
In [12]:
          vc = (df.loc[df['Type'] == 'Partner Site']).City.value counts()
          print('The city with type "Partner Site" is',vc[vc>0].index[0])
```

The city with type "Partner Site" is New York