

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(4-Chlorophenyl)-5-(4,5-dihydro-1Himidazol-2-yl)thieno[2,3-b]pyridin-4amine

Alice M. R. Bernardino, Luiz C. S. Pinheiro, Edward R. T. Tiekink, c* James L. Wardelld and Solange M. S. V. Wardelle

^aUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química Orgânica, Campus do Valonguinho, CEP 24210-150 Niterói, RJ, Brazil, ^bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland Correspondence e-mail: edward.tiekink@gmail.com

Received 12 June 2012; accepted 12 June 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean $\sigma(C-C) = 0.008 \text{ Å}$; disorder in main residue; R factor = 0.079; wR factor = 0.217; data-to-parameter ratio = 13.6

In the title compound, C₁₆H₁₃ClN₄S, the thienopyridine fusedring system is nearly planar (r.m.s. deviation = 0.0333 Å) and forms a dihedral angle of 4.4 (3)° with the attached dihydroimidazole ring (r.m.s. deviation = 0.0429 Å) allowing for the formation of an intramolecular (exocyclic amine)N-H...N(imine) hydrogen bond. The benzene rings of the disordered (50:50) -N(H)-C₆H₄Cl residue form dihedral angles of 59.1 (3) and 50.59 (15)° with the fused ring system. In the crystal, (imidazole amine)N-H···N(pyridine) hydrogen bonds lead to a supramolecular helical chain along the b axis. The chains assemble into layers (ab plane) with interdigitation of the chlorobenzene rings which results in weak $C-H\cdots Cl$ interactions in the *c*-axis direction.

Related literature

For the synthesis and biological activity of thienopyridine derivatives, see: Kaigorodova et al. (2000); Moloney (2001); Bernardino et al. (2004, 2006); Leal et al. (2008); Pinheiro et al. (2008a); El-Kashef et al. (2010); Testa et al. (2010); Panchamukhi et al. (2011). For the anti-leishmanial activity of 5-(4,5dihydro-1*H*-imidazol-2-yl)-4-(arylamino)thieno[2,3-*b*]pyridine, see: Pinheiro et al. (2012).

Experimental

Crystal data

$C_{16}H_{13}CIN_4S$	$V = 1471.5 (3) \text{ Å}^3$
$M_r = 328.81$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.784 (3) Å	$\mu = 0.40 \text{ mm}^{-1}$
b = 6.2264 (4) Å	T = 120 K
c = 13.6226 (18) Å	$0.25 \times 0.15 \times 0.03 \text{ mm}$
$\beta = 102.700 (4)^{\circ}$	

Data collection

Bruker-Nonius Roper CCD camera on κ -goniostat diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\min} = 0.639, T_{\max} = 1.000$

9375 measured reflections 2591 independent reflections 1106 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.138$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.217$ S = 0.992591 reflections 191 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\rm max} = 0.22~{\rm e}~{\rm \mathring{A}}^{-3}$ $\Delta \rho_{\min} = -0.42 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N2−H2n···N3	0.88 (10)	1.87 (11)	2.578 (18)	136 (10)
N2′−H2n···N3	0.88 (10)	2.04 (11)	2.740 (15)	135 (7)
N4−H4n···N1 ⁱ	0.88 (3)	2.10 (3)	2.956 (8)	167 (5)
C6−H6···Cl1′ ⁱⁱ	0.95	2.74	3.559 (10)	146

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding

NΗ

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

organic compounds

structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5563).

References

- Bernardino, A. M. R., Pinheiro, L. C. S., Azevedo, A. R., Frugulhetti, I. C. P. P., Carneiro, J. L. M., Souza, T. M. L. & Ferreira, V. F. (2004). *Heterocycl. Commun.* **10**, 407–410.
- Bernardino, A. M. R., Pinheiro, L. C. S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). *Bioorg. Med. Chem.* 14, 5765–5770.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. El-Kashef, H., Farghaly, A., Al-Hazmi, A., Terme, T. & Vanelle, P. (2010). *Molecules*, **15**, 2651–2666.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (1998). *COLLECT*. Nonius BV, Delft, The Netherlands. Kaigorodova, Y. A., Vasilin, V. K., Konyushkin, L. D., Usova, Y. B. & Krapivi
- Kaigorodova, Y. A., Vasilin, V. K., Konyushkin, L. D., Usova, Y. B. & Krapivin, G. D. (2000). *Molecules*, 5, 1085–1093.

- Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro,
 L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira,
 F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos,
 D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204.
- Moloney, G. P. (2001). Molecules, 6, M203.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Panchamukhi, S. I., Mulla, J. A., Shetty, N. S., Khazi, M. I., Khan, A. Y., Kalashetti, M. B. & Khazi, I. A. (2011). Arch. Pharm. 344, 358–65.
- Pinheiro, L. C. S., Abreu, P. A., Afonso, I. F., Leal, B., Corrêa, L. C. D., Borges, J. C., Marques, I. P., Lourenço, A. L., Sathler, P. C., Medeiros, C. A., Cabral, L. M., Júnior, M. L. O., Romeiro, G. A., Ferreira, V. F., Rodrigues, C. R., Castro, H. C. & Bernardino, A. M. R. (2008). Curr. Microbiol. 57, 463–468.
- Pinheiro, L. C. S., Borges, J. C., dos Santos, M. S., Ferreira, V. F., Bernardino,
 A. M. R., Tonioni, R., Sathler, P. C., Helena, C., Castro, H. C., Santos, D. O.,
 Nascimento, S. B., Bourguignon, S. C., Magalhães, U. O., Cabral, L. &
 Rodrigues, C. R. (2012). J. Microbiol. Antimicrob. 4, 32–39.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Testa, L., Biondi-Zoccai, G. G., Valgimigli, M., Latini, R. A., Pizzocri, S.,
 Lanotte, S., Laudisa, M. L., Brambilla, N., Ward, M. R., Figtree, G. A.,
 Bedogni, F. & Bhindi, R. (2010). Adv. Hematol. Article ID 595934.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2012). E68, o2135-o2136 [doi:10.1107/S160053681202658X]

N-(4-Chlorophenyl)-5-(4,5-dihydro-1*H*-imidazol-2-yl)thieno[2,3-*b*]pyridin-4-amine

Alice M. R. Bernardino, Luiz C. S. Pinheiro, Edward R. T. Tiekink, James L. Wardell and Solange M. S. V. Wardell

Comment

Thienopyridine derivatives have been synthesized by a variety of routes (Kaigorodova *et al.*, 2000; Bernardino *et al.*, 2006; Pinheiro *et al.*, 2008; El-Kashef *et al.*, 2010; Testa *et al.*, 2010). A primary motivation for the preparation of these compounds is their biological activity, *viz.* anti-viral (Bernardino *et al.*, 2004), anti-inflammatory (Moloney, 2001), anti-bacterial (Leal *et al.*, 2008; Pinheiro *et al.*, 2008; Panchamukhi *et al.*, 2011) and anti-parasitic (Bernardino *et al.*, 2006). Recently, the anti-leishmanial activity of a family of 5-(4,5-dihydro-1*H*-imidazol-2-yl)-4-(arylamino)thieno[2,3-*b*]pyridine derivatives was reported (Pinheiro *et al.*, 2012). We now wish to report the crystal structure determination of a related derivative, namely 5-(4,5-dihydro-1*H*-imidazol-2-yl)-4-(4'-chlorophenylamino)-thieno[2,3-*b*]pyridine, (I).

In (I), Fig. 1, the nine non-hydrogen atoms of the thienopyridine ring are planar, having a r.m.s. deviation = 0.0333 Å and maximum deviations of 0.051 (5) Å [for the C7 atom] and -0.038 (5) Å [C6]. The imidazolyl ring is approximately planar [r.m.s. deviation = 0.0429 Å] and is co-planar with the fused ring system forming a dihedral angle of 4.4 (3)°. The imine-N3 atom of the imidazolyl ring is orientated towards the exocyclic amine so that an intramolecular hydrogen bond is formed, Table 1. There are two orientations for the disordered —N(H)— C_0H_4Cl residue of equal weight. The benzene rings of this residue are approximately co-planar (dihedral angle = 8.7 (5)°) and slightly displaced from each other. The dihedral angles between each orientation and the fused ring system are 59.1 (3) and 50.59 (15)°.

The most prominent feature of the crystal packing is the formation of N—H···N hydrogen bonds between the imidazolyl-amine and the pyridyl-N atom which lead to supramolecular helical chains along the *b* axis, Fig. 2 and Table 1. These assemble into layers in the *ab* plane allowing for inter-digitation of the chlorobenzene rings which in turn, allows for the formation of weak C—H···Cl interactions, Table 1. For the illustrated orientation of disordered benzene ring, Fig. 3, the H6···Cl1 separation is 2.95 Å.

Experimental

Following general procedures (Bernardino *et al.*, 2006; Pinheiro *et al.*, 2012), a solution of 4-(4'-chlorophenylamino)-thieno[2,3-*b*]pyridine-5-carbonitrile (1.5 mmol) in ethylenediamine (5 ml) was cooled at 273 K, carbon disulfide (8 drops) was added and the reaction mixture heated at 373 for 24 h. The resulting mixture was cooled, treated with water and filtered to give a brown crystalline solid, which was collected and dried. The sample used in the structure determination was grown from CHCl₃ solution. IR (KBr, cm⁻¹): ν NH 3225, ν C=N 1591). ¹H NMR (300 MHz, CDCl₃, TMS, δ in p.p.m.) 7.09 (d, 6.0, 1H, H2); 6.50 (d, 6.0, 1H, H3); 8.51 (s, 1H, H6); 7.29 (d, 8.7, 2H, Ar—H); 7.09 (d, 8.7, 2H, Ar—H); 3.83 (s, 4H, CH₂). ¹³C NMR (75 MHz, DMSO-d6, TMS, δ in p.p.m.) 164.4; 164.1; 146.9; 146.6; 140.0; 129.3; 128.8; 125.4; 123.6; 121.3; 119.4; 105.4. ESI-(+)-MS [M+H]+ - 329.051 (100).

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The N-bound H atoms were located from a difference map and refined with a distance restraint of N—H = 0.88±0.01 Å, and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$ (carrier atom). The —N(H)—C₆H₄Cl residue was disordered over two position. From anisotropic refinement (equivalent pairs of atoms were tied, and C₆ rings were idealized) the orientations were equal and so in the final refinement the site occupancies factors were fixed at 0.5. Several reflections, *i.e.* (1 0 0), (2 0 0), (0 0 2) and (-1 0 2), were affected by the beam-stop and were omitted from the final refinement.

Computing details

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows*(Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Only one orientation of the disordered —N(H)— C_6H_4Cl residue is shown.

Figure 2A view of the supramolecular helical chain propagated along [010] in (I) showing intra- and inter-molecular N—H···N (blue dashed lines) hydrogen bonds.

Figure 3

A view in projection down the b axis of the unit-cell contents for (I). The N—H···N and C—H···Cl interactions are shown as blue and orange dashed lines, respectively.

N-(4-Chlorophenyl)-5-(4,5-dihydro-1*H*-imidazol- 2-yl)thieno[2,3-*b*]pyridin-4-amine

Crystal data

 $C_{16}H_{13}CIN_4S$ $M_r = 328.81$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.784 (3) Å b = 6.2264 (4) Å c = 13.6226 (18) Å $\beta = 102.700$ (4)° V = 1471.5 (3) Å³ Z = 4

Data collection

Bruker–Nonius Roper CCD camera on κ -goniostat diffractometer Radiation source: Bruker-Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ $\varphi \& \omega$ scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2007)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.217$ S = 0.992591 reflections 191 parameters 2 restraints Primary atom site location: structure-invariant

Primary atom site location: structure-invariant direct methods

F(000) = 680 $D_x = 1.484 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5430 reflections

 θ = 1.0–26.4° μ = 0.40 mm⁻¹ T = 120 K Plate, colourless 0.25 × 0.15 × 0.03 mm

 $T_{\text{min}} = 0.639$, $T_{\text{max}} = 1.000$ 9375 measured reflections 2591 independent reflections 1106 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -7 \rightarrow 7$ $l = -16 \rightarrow 16$

 $R_{\rm int} = 0.138$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent

and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.088P)^2 + 1.3236P]$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.42 \text{ e Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.12641 (12)	0.5151 (2)	0.60112 (15)	0.0763 (7)	
N1	0.0697 (3)	0.2115 (6)	0.7026 (4)	0.0512 (13)	

NS 0.2209 (3) -0.3570 (7) 0.8955 (4) 0.0739 (18) N4 0.0959 (3) -0.3191 (7) 0.8940 (4) 0.0549 (14) H4N 0.0473 (11) -0.288 (8) 0.869 (4) 0.066* C1 0.0829 (3) 0.0361 (8) 0.7610 (4) 0.0462 (14) H1 0.0394 -0.0512 0.7777 0.055* C2 0.1545 (3) -0.0563 (7) 0.7995 (4) 0.0464 (15) C3 0.2210 (3) 0.0395 (8) 0.7766 (5) 0.0601 (18) C4 0.2238 (8) 0.7136 (5) 0.0592 (18) C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.6777 0.097* C6 0.2236 (5) 0.5055 (10) 0.6682 (5) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104* C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13)						
H4N	N3	0.2209(3)	-0.3570(7)	0.8955 (4)	0.0739 (18)	
C1 0.0829 (3) 0.0361 (8) 0.75 (10 (4) 0.0462 (14) H1 0.0394 -0.0312 0.7777 0.055* C2 0.1545 (3) -0.0563 (7) 0.7995 (4) 0.0464 (15) C3 0.2210 (3) 0.0395 (8) 0.7765 (5) 0.0601 (18) C4 0.2088 (4) 0.2238 (8) 0.7136 (5) 0.0592 (18) C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.6677 (6) 0.081 (2) H6 0.2236 (5) 0.5055 (10) 0.0684 (6) 0.087 (2) H6 0.2236 (5) 0.5055 (10) 0.0684 (6) 0.087 (2) H6 0.2236 (5) 0.5055 (10) 0.0844 (6) 0.0739 (13) 0.50 C7 0.1334 (4) 0.2990 (8) 0.8822 (5) 0.0526 (16) 0.104* C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 C12 0.4373 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50	N4	0.0959(3)	-0.3191 (7)	0.8940 (4)	0.0549 (14)	
H1	H4N	0.0473 (11)	-0.288(8)	0.869 (4)	0.066*	
C2 0.1545 (3) -0.0563 (7) 0.7995 (4) 0.0464 (15) C3 0.2210 (3) 0.0395 (8) 0.7765 (5) 0.0601 (18) C4 0.2288 (4) 0.2238 (8) 0.77136 (5) 0.0692 (18) C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.6777 0.097* C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104* C7 0.1343 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 R8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C8 0.3602 (3) 0.2510 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50	C1	0.0829(3)	0.0361 (8)	0.7610 (4)	0.0462 (14)	
C3 0.2210 (3) 0.0395 (8) 0.7765 (5) 0.0601 (18) C4 0.2088 (4) 0.2238 (8) 0.7136 (5) 0.0592 (18) C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.6777 0.097* C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104* C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.200 (8) 0.842 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2301 (16) 0.8574 (12) 0.083 (3) <t< td=""><td>H1</td><td>0.0394</td><td>-0.0312</td><td>0.7777</td><td>0.055*</td><td></td></t<>	H1	0.0394	-0.0312	0.7777	0.055*	
C4 0.2088 (4) 0.2238 (8) 0.7136 (5) 0.0592 (18) C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.66777 0.097* C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104* C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) CI1 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.2952 (7) -0.067 (3) 0.824 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11)	C2	0.1545 (3)	-0.0563 (7)	0.7995 (4)	0.0464 (15)	
C5 0.2606 (4) 0.3478 (10) 0.6675 (6) 0.081 (2) H5 0.3144 0.3211 0.6777 0.097** C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104** C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0	C3	0.2210(3)	0.0395 (8)	0.7765 (5)	0.0601 (18)	
H5	C4	0.2088 (4)	0.2238 (8)	0.7136 (5)	0.0592 (18)	
C6 0.2236 (5) 0.5055 (10) 0.6084 (6) 0.087 (2) H6 0.2493 0.6035 0.5736 0.104* C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) CII 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.200 (8) 0.842 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C11 0.	C5	0.2606 (4)	0.3478 (10)	0.6675 (6)	0.081(2)	
H6	H5	0.3144	0.3211	0.6777	0.097*	
C7 0.1334 (4) 0.2970 (8) 0.6822 (5) 0.0526 (16) C11 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.200 (8) 0.842 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 H9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50	C6	0.2236 (5)	0.5055 (10)	0.6084 (6)	0.087(2)	
CI1 0.6039 (3) 0.3366 (8) 0.9082 (4) 0.0739 (13) 0.50 N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.200 (8) 0.842 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 C9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50	H6	0.2493	0.6035	0.5736	0.104*	
N2 0.2952 (7) -0.067 (3) 0.8204 (17) 0.074 (3) 0.50 H2N 0.292 (7) -0.200 (8) 0.842 (9) 0.089* 0.50 C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 H9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50	C7	0.1334 (4)	0.2970 (8)	0.6822 (5)	0.0526 (16)	
H2N	C11	0.6039(3)	0.3366 (8)	0.9082 (4)	0.0739 (13)	0.50
C8 0.3602 (3) 0.0556 (17) 0.8170 (11) 0.066 (3) 0.50 C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 H9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C1' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50	N2	0.2952 (7)	-0.067(3)	0.8204 (17)	0.074(3)	0.50
C9 0.3724 (3) 0.2610 (16) 0.8574 (12) 0.083 (3) 0.50 H9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50	H2N	0.292 (7)	-0.200(8)	0.842 (9)	0.089*	0.50
H9 0.3297 0.3483 0.8629 0.099* 0.50 C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50	C8	0.3602(3)	0.0556 (17)	0.8170 (11)	0.066(3)	0.50
C10 0.4470 (3) 0.3387 (12) 0.8896 (11) 0.093 (3) 0.50 H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 <	C9	0.3724 (3)	0.2610 (16)	0.8574 (12)	0.083(3)	0.50
H10 0.4554 0.4790 0.9172 0.111* 0.50 C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 N2' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8780 (8) 0.083 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50	H9	0.3297	0.3483	0.8629	0.099*	0.50
C11 0.5095 (3) 0.2109 (10) 0.8815 (5) 0.100 (3) 0.50 C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.089* 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.093 (3) 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.5	C10	0.4470(3)	0.3387 (12)	0.8896 (11)	0.093(3)	0.50
C12 0.4973 (4) 0.0056 (14) 0.8411 (8) 0.095 (4) 0.50 H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 N2' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 </td <td>H10</td> <td>0.4554</td> <td>0.4790</td> <td>0.9172</td> <td>0.111*</td> <td>0.50</td>	H10	0.4554	0.4790	0.9172	0.111*	0.50
H12 0.5400 -0.0817 0.8356 0.113* 0.50 C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 H2N' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 <	C11	0.5095 (3)	0.2109 (10)	0.8815 (5)	0.100(3)	0.50
C13 0.4227 (4) -0.0721 (16) 0.8089 (10) 0.071 (4) 0.50 H13 0.4143 -0.2124 0.7813 0.085* 0.50 C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 H2N' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 C9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8868 (9) 0.110* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 <	C12	0.4973 (4)	0.0056 (14)	0.8411 (8)	0.095 (4)	0.50
H13	H12	0.5400	-0.0817	0.8356	0.113*	0.50
C11' 0.6109 (3) 0.2495 (8) 0.9508 (4) 0.0739 (13) 0.50 N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 H2N' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 <tr< td=""><td>C13</td><td>0.4227 (4)</td><td>-0.0721 (16)</td><td>0.8089 (10)</td><td>0.071 (4)</td><td>0.50</td></tr<>	C13	0.4227 (4)	-0.0721 (16)	0.8089 (10)	0.071 (4)	0.50
N2' 0.2871 (4) -0.045 (2) 0.8004 (14) 0.074 (3) 0.50 H2N' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.1101* 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.5067 1.0304 0.094*	H13	0.4143	-0.2124	0.7813	0.085*	0.50
H2N' 0.2828 -0.1058 0.8574 0.089* 0.50 C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 <td>C11'</td> <td>0.6109(3)</td> <td>0.2495 (8)</td> <td>0.9508 (4)</td> <td>0.0739 (13)</td> <td>0.50</td>	C11'	0.6109(3)	0.2495 (8)	0.9508 (4)	0.0739 (13)	0.50
C8' 0.3706 (3) 0.0220 (11) 0.8521 (6) 0.066 (3) 0.50 C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153	N2'	0.2871 (4)	-0.045(2)	0.8004 (14)	0.074(3)	0.50
C9' 0.3835 (4) 0.2370 (11) 0.8780 (8) 0.083 (3) 0.50 H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) 0.50 H15A 0.2272 -0.5067 1.0304 0.094* 0.094* H15B 0.2153 -0.6706 0.9371 0.094* 0.0678 (19) H16A<	H2N'	0.2828	-0.1058	0.8574	0.089*	0.50
H9' 0.3412 0.3287 0.8805 0.099* 0.50 C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 <td< td=""><td>C8′</td><td>0.3706 (3)</td><td>0.0220 (11)</td><td>0.8521 (6)</td><td>0.066(3)</td><td>0.50</td></td<>	C8′	0.3706 (3)	0.0220 (11)	0.8521 (6)	0.066(3)	0.50
C10' 0.4582 (4) 0.3178 (14) 0.9004 (9) 0.093 (3) 0.50 H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C9'	0.3835 (4)	0.2370 (11)	0.8780 (8)	0.083(3)	0.50
H10' 0.4670 0.4647 0.9181 0.111* 0.50 C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	H9′	0.3412	0.3287	0.8805	0.099*	0.50
C11' 0.5200 (4) 0.1836 (17) 0.8968 (9) 0.100 (3) 0.50 C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C10'	0.4582 (4)	0.3178 (14)	0.9004 (9)	0.093 (3)	0.50
C12' 0.5071 (3) -0.0313 (16) 0.8709 (9) 0.095 (4) 0.50 H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	H10'	0.4670	0.4647	0.9181	0.111*	0.50
H12' 0.5494 -0.1230 0.8685 0.113* 0.50 C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C11'	0.5200 (4)	0.1836 (17)	0.8968 (9)	0.100(3)	0.50
C13' 0.4325 (3) -0.1121 (14) 0.8486 (7) 0.071 (4) 0.50 H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C12'	0.5071 (3)	-0.0313 (16)	0.8709 (9)	0.095 (4)	0.50
H13' 0.4237 -0.2590 0.8309 0.085* 0.50 C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	H12′	0.5494	-0.1230	0.8685	0.113*	0.50
C14 0.1587 (2) -0.2514 (6) 0.8627 (3) 0.0494 (15) C15 0.2003 (2) -0.5287 (6) 0.9594 (4) 0.079 (2) H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C13'	0.4325 (3)	-0.1121 (14)	0.8486 (7)	0.071 (4)	0.50
C15	H13′	0.4237	-0.2590	0.8309	0.085*	0.50
H15A 0.2272 -0.5067 1.0304 0.094* H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C14	0.1587 (2)	-0.2514 (6)	0.8627 (3)	0.0494 (15)	
H15B 0.2153 -0.6706 0.9371 0.094* C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	C15	0.2003 (2)	-0.5287 (6)	0.9594 (4)	* *	
C16 0.1138 (3) -0.5183 (6) 0.9492 (3) 0.0678 (19) H16A 0.0875 -0.6421 0.9108 0.081*	H15A	0.2272	-0.5067	1.0304	0.094*	
H16A 0.0875 -0.6421 0.9108 0.081*	H15B	0.2153	-0.6706	0.9371	0.094*	
	C16	0.1138 (3)	-0.5183 (6)	0.9492 (3)	0.0678 (19)	
	H16A	0.0875	-0.6421	0.9108		
H16B 0.1000 -0.5117 1.0157 0.081*	H16B	0.1000	-0.5117	1.0157	0.081*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.1145 (17)	0.0388 (9)	0.0898 (14)	0.0007 (9)	0.0533 (12)	0.0066 (8)
N1	0.051(3)	0.038(3)	0.068 (4)	0.004(2)	0.020(3)	0.007(2)
N3	0.048(3)	0.035(3)	0.121 (5)	-0.001(2)	-0.019(3)	0.006(3)
N4	0.051(3)	0.048(3)	0.060(4)	0.000(3)	0.000(3)	0.011(2)
C1	0.037 (4)	0.043 (3)	0.059 (4)	-0.007(3)	0.012(3)	-0.004(3)
C2	0.037 (4)	0.032(3)	0.066 (4)	-0.002(2)	0.003(3)	-0.002(3)
C3	0.035 (4)	0.033(3)	0.113 (6)	-0.002(3)	0.018 (4)	-0.016(3)
C4	0.055 (4)	0.031(3)	0.100 (5)	-0.007(3)	0.034 (4)	-0.013(3)
C5	0.082 (5)	0.050(4)	0.129(7)	-0.024(4)	0.061 (5)	-0.024(4)
C6	0.129 (7)	0.041 (4)	0.113 (6)	-0.019(4)	0.077 (5)	-0.011(4)
C7	0.060(4)	0.032(3)	0.071 (5)	0.002(3)	0.027(3)	-0.005(3)
C11	0.0423 (14)	0.087 (4)	0.094(4)	-0.012(2)	0.019(2)	-0.012 (2)
N2	0.031(4)	0.041 (4)	0.144(8)	0.002(3)	0.004(4)	-0.005(4)
C8	0.022 (4)	0.043 (4)	0.126 (11)	0.008(3)	-0.004(5)	-0.012(5)
C9	0.036 (4)	0.048 (4)	0.166 (9)	-0.002(3)	0.028 (5)	-0.035(5)
C10	0.038 (5)	0.083 (5)	0.162 (8)	-0.011(4)	0.029 (5)	-0.061(5)
C11	0.034 (5)	0.112 (6)	0.154(8)	-0.021(5)	0.022 (5)	-0.075(6)
C12	0.022 (4)	0.102(7)	0.147 (11)	0.013 (4)	-0.009(5)	-0.057(7)
C13	0.040 (5)	0.059 (5)	0.097 (12)	0.020(4)	-0.020(6)	-0.024(7)
C11'	0.0423 (14)	0.087 (4)	0.094(4)	-0.012(2)	0.019(2)	-0.012(2)
N2'	0.031(4)	0.041 (4)	0.144 (8)	0.002(3)	0.004(4)	-0.005(4)
C8′	0.022(4)	0.043 (4)	0.126 (11)	0.008(3)	-0.004(5)	-0.012(5)
C9'	0.036 (4)	0.048 (4)	0.166 (9)	-0.002(3)	0.028 (5)	-0.035(5)
C10′	0.038 (5)	0.083 (5)	0.162(8)	-0.011(4)	0.029 (5)	-0.061(5)
C11'	0.034 (5)	0.112 (6)	0.154(8)	-0.021(5)	0.022 (5)	-0.075(6)
C12′	0.022(4)	0.102(7)	0.147 (11)	0.013 (4)	-0.009(5)	-0.057(7)
C13′	0.040 (5)	0.059 (5)	0.097 (12)	0.020(4)	-0.020 (6)	-0.024(7)
C14	0.045 (4)	0.035(3)	0.061 (4)	-0.009(3)	-0.003(3)	-0.011 (3)
C15	0.091 (6)	0.042 (4)	0.082 (5)	0.002(3)	-0.026(4)	-0.001(3)
C16	0.077 (5)	0.044 (3)	0.068 (5)	-0.007(3)	-0.015 (4)	0.010(3)

Geometric parameters (Å, °)

S1—C6	1.710 (8)	C9—C10	1.3900
S1—C7	1.738 (6)	С9—Н9	0.9500
N1—C7	1.336 (7)	C10—C11	1.3900
N1—C1	1.341 (6)	C10—H10	0.9500
N3—C14	1.281 (6)	C11—C12	1.3900
N3—C15	1.474 (6)	C12—C13	1.3900
N4—C14	1.348 (6)	C12—H12	0.9500
N4—C16	1.449 (6)	C13—H13	0.9500
N4—H4N	0.877 (10)	Cl1'—C11'	1.674 (10)
C1—C2	1.390 (7)	N2'—C8'	1.556 (10)
C1—H1	0.9500	N2'—H2N'	0.88 (1)
C2—C3	1.421 (8)	C8′—C9′	1.3900
C2—C14	1.481 (6)	C8′—C13′	1.3900
C3—N2′	1.263 (12)	C9'—C10'	1.3900

sup-7

C2 C4	1 420 (0)	CO/ 110/	0.0500
C3—C4	1.420 (8)	C9'—H9'	0.9500
C3—N2	1.479 (16)	C10'—C11'	1.3900
C4—C7	1.391 (8)	C10'—H10'	0.9500
C4—C5	1.447 (8)	C11′—C12′	1.3900
C5—C6	1.347 (10)	C12'—C13'	1.3900
C5—H5	0.9500	C12'—H12'	0.9500
С6—Н6	0.9500	C13'—H13'	0.9500
Cl1—C11	1.815 (9)	C15—C16	1.5151
N2—C8	1.394 (17)	C15—H15A	0.9900
N2—H2N	0.88 (1)	C15—H15B	0.9900
C8—C9	1.3900	C16—H16A	0.9900
C8—C13	1.3900	C16—H16B	0.9900
C6—S1—C7	90.3 (3)	C13—C12—C11	120.0
C7—N1—C1	113.7 (5)	C13—C12—H12	120.0
C14—N3—C15	105.7 (4)	C11—C12—H12	120.0
C14—N4—C16	109.2 (4)	C12—C13—C8	120.0
C14—N4—H4N	128 (4)	C12—C13—H13	120.0
C16—N4—H4N	119 (4)	C8—C13—H13	120.0
N1—C1—C2	126.0 (5)	C3—N2′—C8′	138.2 (13)
N1—C1—H1	117.0	C3—N2′—H2N	118 (6)
C2—C1—H1	117.0	C8'—N2'—H2N	92 (6)
C1—C2—C3	118.8 (5)	C3—N2'—H2N'	98.6
C1—C2—C14	118.9 (5)	C8'—N2'—H2N'	88.6
C3—C2—C14	122.3 (5)	C9'—C8'—C13'	120.0
N2'—C3—C4	120.3 (8)	C9'—C8'—N2'	117.5 (7)
N2'—C3—C2	122.7 (8)	C13'—C8'—N2'	120.4 (8)
C4—C3—C2	116.6 (5)	C8'—C9'—C10'	120.0
C4—C3—N2	127.6 (8)	C8'—C9'—H9'	120.0
C2—C3—N2	115.8 (8)	C10'—C9'—H9'	120.0
C7—C4—C3	117.4 (5)	C11'—C10'—C9'	120.0
C7—C4—C5	110.8 (6)	C11'—C10'—H10'	120.0
C3—C4—C5	131.6 (6)	C9'—C10'—H10'	120.0
C6—C5—C4	111.9 (7)	C10'—C11'—C12'	120.0
C6—C5—H5	124.0	C10'—C11'—C11'	122.2 (6)
C4—C5—H5	124.0	C12'—C11'—C11'	115.9 (6)
C5—C6—S1	114.6 (5)	C13'—C12'—C11'	120.0
C5—C6—H6	122.7	C13'—C12'—H12'	120.0
S1—C6—H6	122.7	C11'—C12'—H12'	120.0
N1—C7—C4	127.6 (5)	C12'—C13'—C8'	120.0
N1—C7—S1	119.9 (5)	C12'—C13'—H13'	120.0
C4—C7—S1	112.4 (4)	C8'—C13'—H13'	120.0
C8—N2—C3	114.5 (16)	N3—C14—N4	116.2 (4)
C8—N2—H2N	129 (8)	N3—C14—C2	123.6 (4)
C3—N2—H2N	116 (8)	N4—C14—C2	120.1 (4)
C3—N2—H2N'	93.2	N3—C15—C16	107.1 (2)
C9—C8—C13	120.0	N3—C15—H15A	110.3
C9—C8—N2	123.2 (15)	C16—C15—H15A	110.3
C13—C8—N2	111.9 (13)	N3—C15—H15B	110.3
C13—C0—INZ	111.7 (13)	113—C13—1113B	110.3

C10—C9—C8	120.0	C16—C15—H15B	110.3
C10—C9—H9	120.0	H15A—C15—H15B	108.6
C8—C9—H9	120.0	N4—C16—C15	100.8 (2)
C11—C10—C9	120.0	N4—C16—H16A	111.6
C11—C10—H10	120.0	C15—C16—H16A	111.6
C9—C10—H10	120.0	N4—C16—H16B	111.6
C10—C11—C12	120.0	C15—C16—H16B	111.6
C10—C11—Cl1	117.2 (4)	H16A—C16—H16B	109.4
C12—C11—Cl1	122.2 (4)		
C7—N1—C1—C2	0.1 (8)	C8—C9—C10—C11	0.0
N1—C1—C2—C3	0.1 (8)	C9—C10—C11—C12	0.0
N1—C1—C2—C14	-179.7(5)	C9—C10—C11—Cl1	171.4 (3)
C1—C2—C3—N2′	-173.2 (10)	C10—C11—C12—C13	0.0
C14—C2—C3—N2′	6.6 (13)	Cl1—Cl1—Cl2—Cl3	-170.9(3)
C1—C2—C3—C4	-0.9(8)	C11—C12—C13—C8	0.0
C14—C2—C3—C4	178.9 (5)	C9—C8—C13—C12	0.0
C1—C2—C3—N2	179.7 (10)	N2—C8—C13—C12	-156.1 (17)
C14—C2—C3—N2	-0.5 (11)	C4—C3—N2′—C8′	57 (3)
N2'—C3—C4—C7	174.0 (10)	C2—C3—N2′—C8′	-131.2 (19)
C2—C3—C4—C7	1.5 (8)	N2—C3—N2′—C8′	-87 (7)
N2—C3—C4—C7	-179.2(11)	C3—N2′—C8′—C9′	-4(3)
N2'—C3—C4—C5	-0.7(13)	C3—N2′—C8′—C13′	-168.0(18)
C2—C3—C4—C5	-173.2 (6)	C13'—C8'—C9'—C10'	0.0
N2—C3—C4—C5	6.1 (15)	N2'—C8'—C9'—C10'	-163.7(10)
C7—C4—C5—C6	1.7 (8)	C8'—C9'—C10'—C11'	0.0
C3—C4—C5—C6	176.6 (6)	C9'—C10'—C11'—C12'	0.0
C4—C5—C6—S1	-1.2(8)	C9'—C10'—C11'—C11'	-163.6 (6)
C7—S1—C6—C5	0.4 (5)	C10'—C11'—C12'—C13'	0.0
C1—N1—C7—C4	0.6 (8)	Cl1'—C11'—C12'—C13'	164.6 (6)
C1—N1—C7—S1	176.0 (4)	C11'—C12'—C13'—C8'	0.0
C3—C4—C7—N1	-1.5(9)	C9'—C8'—C13'—C12'	0.0
C5—C4—C7—N1	174.3 (6)	N2'—C8'—C13'—C12'	163.2 (9)
C3—C4—C7—S1	-177.2(4)	C15—N3—C14—N4	0.7 (6)
C5—C4—C7—S1	-1.4 (6)	C15—N3—C14—C2	176.6 (5)
C6—S1—C7—N1	-175.4(5)	C16—N4—C14—N3	-7.2 (7)
C6—S1—C7—C4	0.6 (5)	C16—N4—C14—C2	176.7 (4)
N2'—C3—N2—C8	55 (5)	C1—C2—C14—N3	174.8 (5)
C4—C3—N2—C8	15 (3)	C3—C2—C14—N3	-5.0(8)
C2—C3—N2—C8	-165.7 (17)	C1—C2—C14—N4	-9.4 (8)
C3—N2—C8—C9	55 (2)	C3—C2—C14—N4	170.8 (5)
C3—N2—C8—C13	-149.3 (11)	C14—N3—C15—C16	5.8 (4)
C13—C8—C9—C10	0.0	C14—N4—C16—C15	9.7 (5)
N2—C8—C9—C10	153.3 (17)	N3—C15—C16—N4	-9.2 (4)

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	\mathbf{H} ··· A	D··· A	<i>D</i> —H··· <i>A</i>
N2—H2n···N3	0.88 (10)	1.87 (11)	2.578 (18)	136 (10)

N2'—H2n'···N3	0.88 (10)	2.04 (11)	2.740 (15)	135 (7)
N4— $H4n$ ··· $N1$ ⁱ	0.88(3)	2.10(3)	2.956 (8)	167 (5)
C6—H6···Cl1′ ⁱⁱ	0.95	2.74	3.559 (10)	146

Symmetry codes: (i) -x, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2.