# Odkrywanie konceptu jadalnego grzyba z wykorzystaniem algorytmu ID3

# **Projekt**

Komputerowe wspomaganie decyzji

Mateusz Olejarz

Grzegorz Paryś

# 1. Opis danych wejściowych

Dane na których będziemy pracować pochodzą ze strony http://archive.ics.uci.edu/ml/datasets/Mushroom.

Przedstawiony zbiór danych reprezentuje 8124 grzyby, z których każdy został sklasyfikowany jako jadalny, niejadalny lub o nieznanej jadalności i niezalecany. Te o nieznanej jadalności uznane zostały jako trujące i znajdują sie w grupie niejadalnych. W zbiorze znajduje się 4208 grzybów jadalnych, którym nadana została etykieta e oraz 3916 trujących o etykiecie p.

Zbiór opiera się na 22 atrybutach:

- Kształt czapeczki cap-shape
- Powierzchnia czapeczki cap-surface
- Kolor czapeczki cap-color
- Zasinienie bruises
- Zapach odor
- Przyczepienie blaszek gill-atachement
- Rozmieszczenie blaszek gill-spacing
- Rozmiar blaszek gill-size
- Kolor blaszek *gill-color*
- Kształt łodygi stalk-shape
- Korzeń łodygi stalk-root
- Powierzchnia ponad pierścieniem stalk-surface-above-ring
- Powierzchnia pod pierścieniem stalk-surface-below-ring
- Kolor łodygi nad pierścieniem stalk-color-above-ring
- Kolor łodygi pod pierścieniem stalk-color-below-ring
- Typ osłony veil-type
- Kolor osłony veil-color
- Liczba pierścieni *ring-number*
- Typ pierścienia *ring-type*
- Kolor wydruku zarodników spore-print-color
- Populacia population
- Siedlisko habitat

Dane przedstawione są za pomocą łańcuchów tekstu, co rozwiązujemy za pomocą **preprocessing** z biblioteki **sklearn.** 

```
# Zamieniamy dane z tekstu na liczby, w przeciwnym wypadku nie zadziała DecisionTreeClassifier
le = preprocessing.LabelEncoder()
for column in mushroom_data.columns:
    mushroom_data[column] = le.fit_transform(mushroom_data[column])
for column in mushroom_delete_column.columns:
    mushroom_delete_column[column] = le.fit_transform(mushroom_delete_column[column])
for column in mushroom_get_column_mode.columns:
    mushroom_get_column_mode[column] = le.fit_transform(mushroom_get_column_mode[column])
```

Wśród wartości znajduje się 2480 brakujących informacji, co sygnalizowane jest przez znak "?" na miejscu brakującego atrybutu. Przeprowadzamy badanie 3 przypadków.

- Pozostawienie znaków zapytania przy zamienianiu na liczby
- Zastąpienie ich poprzez wartość najczęściej występującą
- Usunięcie wierszy ze znakami zapytania

Chcieliśmy także użyć innych statystyk, takich jak wartość średnia czy mediana, jednak okazało się to niemożliwe.

```
mushroom_missing_left_x = mushroom_data.iloc[:, 1:23]
mushroom_column_mode_x = mushroom_get_column_mode.iloc[:, 1:23]
mushroom_delete_column_x = mushroom_delete_column.iloc[:, 1:23]
mushroom_missing_left_y = mushroom_data.iloc[:, 0]
mushroom_column_mode_y = mushroom_get_column_mode.iloc[:, 0]
mushroom_delete_column_y = mushroom_delete_column.iloc[:, 0]
```

Zbiory danych podzieliliśmy na zbiory uczące oraz trenujące:

# 2. Opis stosowanego narzędzia

Do rozwiązania problemu klasyfikacji w projekcie użyliśmy drzewa decyzyjnego. Jest to etykietowane drzewo (spójny skierowany graf acykliczny), które korzysta z graficznego przedstawienia decyzji i ich możliwych konsekwencji. Są one skonstruowane tak, aby pomóc w podejmowaniu decyzji. W ich skład wchodzą:

- Korzeń odpowiada wszystim możliwym decyzjom
- Węzły wewnętrzne odpowiadają testom przeprowadzanym na wartościach atrybutów przykładów
- Liście etykiety kategorii

#### Przykładowe drzewo decyzyjne:



#### Zalety drzew decyzyjnych:

- Są proste do zrozumienia i interpretacji
- Brak konieczności przygotowywania danych
- Są w stanie obsługiwać zarówno dane numeryczne jak i kategoryczne
- Można je poprawić za pomocą metod statystycznych
- Szybko wykonują operacje na dużych ilościach danych

# Ogólny algorytm zstępującego budowania drzewa decyzyjnego:

Ważnym elementem budowy drzewa jest podjęcie decyzji, czy obecnie rozpatrywany węzeł ma być liściem. Jeśli tak, to należy przypisać my odpowiednią etykietę kategorii. W przeciwnym wypadku tworzymy kolejny węzeł z testem, którego wynikom będą odpowieadały gałęzie prowadzące do poddrzew budowanych w ten sam sposób. Różne rozwiązanie problemu podjęcia decyzji liść-węzeł oraz wyboru odpowiedniego testu są przyczyną powstania wielu różnych algorytmów konstruwoania drzew decyzyjnych.

```
function buduj-drzewo(P,d,S)
{
// podjęcie decyzji czy węzeł jest końcowy - liść
    if kryterium-stopu(P,S) then
        utwórz liść l;
        d1:=kategoria(P,d);
        return l;
    endif;

//wybranie najlepszego testu dzielącego i rekurencyjny podział na pod-
węzły
    utwórz węzeł n;
    t_n:=wybierz-test(P,S);
    d:=kategoria(P,d);
    for all r∈R<sub>tn</sub> do
        n[r]:=buduj-drzewo(P<sub>tnr</sub>,d,S-{t<sub>n</sub>});
    endfor
    return n
}
```

#### agumenty wejściowe funkcji:

- P zbiór etykietowanych przykładów pojęcia c,
- d domyślna etykieta kategorii,
- S zbiór możliwych testów

#### argument zwracany:

 węzeł-korzeń drzewa decyzyjnego reprezentującego hipotezę przybliżającą (aproksymującą) pojęcie c na zbiorze przykładów P W zależności od postaci funkcji *kryterium-stopu, kategoria* i *wybierz-test* powstać mogą różne algorytmy, które będą konstruować drzewa o różnych wielkościach i własnościach.

# **Testy**

Efektywność drewa zależy w dużym stopniu od wyboru testu, to od niego zależy złożoność końcowa drzewa. Dla różnych atrybutów istnieją różne rodzaje testów.

#### a) Atrybuty nominalne

Dla tej grupy stosuje się test sprawdzający wartość atrybutu. Wyróżniamy trzy rodzaje testów:

- *testy tożsamościowe* wynikiem testu jest wartość atrybutu dzieli przykłady na tyle zbiorów, ile jest wartości atrybutów
- testy równościowe sprawdza wartość atrybutu w stosunku do zadanej wartości dzieli przykłady uczące na dwa zbiory - tych których wartość jest równa podanej wartości i pozostałe
- testy przynależnościowe sprawdza przynależność wartości atrybutu do określonego zbioru wartości - dzieli przykłady na dwa zbiory - te, których wartości należą do podanego zbioru wartości i pozostałe

# b) Atrybuty porządkowe

Można dla nich stosować te same rodzaje testów co dla atrybutów nominalnych, jednakże tracona jest zależność porządku między atrybutami, co może prowadzić do skomplikowania drzewa.

#### c) Atrybuty ciagle

Przy tej grupie atrybutów stosuje się testy przynależnościowe, których podzbiorem dziedziny jest pewnie przedział

Zarówno dla atrybutów porządkowych jak i ciągłych stosuje się również *testy nierównościowe* bazujące na relacji porządku na wartościach atrybutów. Przykłady dzieli się na dwa zbiory pod względem wartości atrybutu - mniejszej lub większej od podanej.

#### **Przycinanie Drzew**

Jest to technika stosowana aby uniknąć przeuczenia, zwiększyć dokładność klasyfikacji dla danych rzeczywistych oraz do uproszczenia budowy drzewa. Polega ono na zastąpieniu poddrzewa liściem reprezentującym kategorię naczęściej występującą w usuwanym poddrzewie. Kategoria ta nazwyana jest kategowią większościową.

Przycinanie dokonywane jest na podstawie zbioru przykładów nazywanego zbiorem przycinania. Algorytm przycinania wygląda następująco:

Wyróżnia się dwa rodzaje przycinania ze względu na postać zbioru przycinania:

- 1. Zbiór przycinania jest równy zbiorowi trenującemu do przycinania na podstawie zbioru trenującego sotsuje się heurystyki.
- 2. Zbiór przycinania jest różny od zbioru trenującego podejście to stosowane jest gdy dostępna jest wystarczająca ilość przykładów trenujących. Wówczas przeprowadza się budowę drzewa na np. 2/3 z nich, pozostawiając 1/3 jako zbiór przycinania.

# Opis stosowanego przez nas algorytmu ID3

Algorytm ID3 stworzony został w 1986r. przez Rossa Quinlana, a jego cechą charakterystyczną jest wybór atrybutów dla których przeprowadza się takie testy, aby drzewo było jak najprostsze i jak najefektywniejsze. Aby obliczyć który z atrybutów da największy przyrost informacji oblicza się entropię.

Entropia definiowana jest jako średnia ilość informacji, przypadająca na znak symbolizujący zajście zdarzenia z pewnego zbioru. Zdarzenia w tym zbiorze mają przypisane prawdopodobieństwa wystąpienia.

#### Wzór na entropię:

$$H(x) = \sum_{i=1}^{n} p(i) \log \frac{1}{p(i)} = -\sum_{i=1}^{n} p(i) \log p(i)$$

adzie p(i) to prawdopodobieństwo zajścia zdarzenia i

#### Własności entropii:

- Nieujemna
- Maksymalna, gdy prawdopodobieństwa zajść zdarzeń są takie same
- Równa 0, gdy stany przyjmują wartość 0 lub 1
- Superpozycja gdy dwa systemy są niezależne to entropia sumy systemów równa się sumie entropii

#### Treść algorytmu:

- 1. Oblicz entropię dla każdego atrybutu
- 2. Wybierz atrybut A z najniższą entropią
- 3. Podziel zbiór przykładów uczących ze względu na wartość atrybutu A na rozłączne podzbiory
- 4. Dodaj do drzewa krawędzie z warunkami:

```
jeśli A=a1 to ... (poddrzewo 1)
jeśli A=a2 to ... (poddrzewo 2)
```

- 5. Dla każdego poddrzewa wykonaj kroki od 1.
- 6. W każdej iteracji jeden atrybut jest usuwany. Algorytm zatrzymuje się, gdy do rozpatrzenia nie pozostanie juz żaden atrybut lub wszystkie przykłady w danym podrzewie mają tą samą wartość atrybutu decyzyjnego.

## Problemy w stosowaniu algorytmu ID3:

- istnieje wiele obiektów opisanych takimi samymi atrybutami z taką samą decyzją należy wyeliminować przykłady nie wnoszące nowych informacji
- istnieją obiekty z brakami danych należy braki uzupełnić wprowadzając na miejsce przykładu z brakami przykłady z wszystkimi możliwymi kombinacjami wartości brakujących atrybutów
- nadmierne rozrastanie się drzewa należy dokonać przycinania drzewa.
- bardzo duża baza danych należy przeprowadzić algorytm na losowej próbce zamiast na całości danych

# 3. Uzyskana jakość

Jakość, w zależności od zastosowanego rozwiązania poradzenia sobie z wartościami brakującymi wynosiła:

- Przy pozostawnieniu znaków zapytania 0.7015057573073517 1.0
- Przy zastąpieniu znaków zapytania najczęściej występującymi wartościami –
   0.8795394154118689 1.0
- Przy usunięciu wierszy ze znakami zapytania 0.5483076923076923 1.0

Usunięcie wierszy okazało się najgorszym rozwiązaniem, odjęło znaczną część informacji. Nie biorąc pod uwagę przypadku, w którym rozpoznawał dane, na których się uczył, jego skuteczność w najlepszym przypadku wynosiła jedynie **0.6984615384615385** 

# Wykresy poszczególnych rozwiązań:

• Pozostawienie brakujących argumentów przy zamianie na typ liczbowy:



• Zastąpienie znaków, tymi występującymi najczęściej:



• Usunięcie wierszy z brakującymi danymi:



**Niebieski** – wyniki przy zbiorze trenującym

**Czerwony** – wyniki przy zbiorze testowym

# 4. Analiza zmian parametrów konfiguracyjnych

Korzystne okazało się zmienienie **splittera** z domyślnie *best* na *random,* szczególnie dla przypadku, w którym część wierszy została usunięta. Wzrost dokładności był na tyle duży, że pomimo spadku dokładnościu przy innych metodach, ogólna dokładność wzrosła o 3%.

#### 5. Kod

Link do repozytorium:

Kod:

```
colNames=['target','cap-shape', 'cap-surface', 'cap-color', 'bruises',
'odor', 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring', 'stalk-surface
type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color',
'population','habitat']
mushroom_data = pd.read_csv('agaricus-lepiota.data', sep=',',
 names=colNames)
mushroom get column mode = mushroom data.copy()
mushroom delete column = mushroom data.copy()
mode value = mushroom data.mode().iloc[:,11]
mushroom get column mode.replace("?", np.nan, inplace=True)
mushroom get column mode.replace(np.nan, mode value[0], inplace=True)
mushroom delete column.replace("?", np.nan, inplace=True)
mushroom_delete_column.dropna(inplace=True)
```

```
mushroom missing left x = mushroom data.iloc[:, 1:23]
mushroom column mode x = mushroom get column mode.iloc[:, 1:23]
mushroom delete column x = mushroom delete column.iloc[:, 1:23]
mushroom_missing_left_y = mushroom_data.iloc[:, 0]
mushroom_column_mode_y = mushroom_get_column_mode.iloc[:, 0]
mushroom delete column y = mushroom delete column.iloc[:, 0]
missing left train x, missing left test x, missing left train y,
missing left test y = \
mode train x, mode test x, mode train y, mode test y = \
train_size=0.8, random_state=1)
deleted_train_x, deleted_test_x, deleted_train_y, deleted_test_y = \
left model = tree.DecisionTreeClassifier(criterion='entropy', max depth=10,
mode model = tree.DecisionTreeClassifier(criterion='entropy', max depth=10,
deleted model = tree.DecisionTreeClassifier(criterion='entropy',
mode model.fit(mode train x, mode train y)
deleted model.fit(deleted train x, deleted train y)
print(mode model.score(mode test x, mode test y))
    graph1 = tree.DecisionTreeClassifier(criterion='entropy',
missing left test y))
    train scores left.append(graph1.score(missing_left_train_x,
missing left train y))
plt.plot(test scores left, color='red')
plt.plot(train scores left)
plt.show()
test scores mode = []
```

```
test scores mode.append(graph2.score(mode test x, mode test y))
    train scores mode.append(graph2.score(mode train x, mode train y))
plt.plot(test scores mode,
    test scores deleted.append(graph2.score(deleted test x,
deleted train y))
plt.plot(test_scores_deleted, color='red')
plt.plot(train scores deleted)
plt.show()
sn.heatmap(left model cnf matrix)
mode model predictions = mode model.predict(mode test x)
mode_model_cnf matrix = confusion_matrix(mode test y,
mode_model_predictions)
sn.heatmap(mode model cnf matrix)
deleted_model_predictions = deleted_model.predict(deleted test x)
deleted model cnf matrix = confusion matrix(deleted test y,
deleted model predictions)
sn.heatmap(deleted model cnf matrix)
```