7.5. ESERCIZI 107

## 7.5 Esercizi

**Esercizio 7.1** Sia *G* un gruppo abeliano e siano *H* e *K* sottogruppi finiti di *G*. Dimostrare che:

- 1. |H + K| divide |H||K|;
- 2. se gli ordini di H e K sono coprimi. allora  $H + K \cong H \times K$ .

**Esercizio 7.2** Sia G un gruppo abeliano di ordine n, dove n = 28, 30, 130, 131. Si dica per quali valori di n si puó affermare che G é necessariamente ciclico.

Esercizio 7.3 Dimostrare che se il gruppo  $\operatorname{Aut}(G)$  degli automorfismi di un gruppo G é ciclico allora il gruppo é abeliano. Dedurre che un gruppo G di ordine  $|G|=p^2$ , con p primo e  $Z(G)\neq\{1\}$ , è abeliano e quindi isomorfo a  $\mathbb{Z}_{p^2}$  oppure a  $\mathbb{Z}_p\times\mathbb{Z}_p$ . (Suggerimento: se  $\operatorname{Aut}(G)$  é ciclico anche  $G/Z(G)\cong\operatorname{Inn}(G)$  é ciclico e quindi esiste  $x\in G$  tale che < xZ(G)>= G/Z(G). Segue che per ogni  $y_1,y_2\in G$  esistono  $z_1,z_2\in Z(G), n_1,n_2\in \mathbb{Z}$  tali che  $y_1=x^{n_1}z_1$   $y_2=x^{n_2}z_2$ . Dimostrare che  $y_1y_2=y_2y_1$ . Si dimostra che l'ipotesi  $Z(G)\neq\{1\}$  è superflua cioè: un gruppo G di ordine  $|G|=p^2$ , con p primo è abeliano).

**Esercizio 7.4** Sia G un gruppo abeliano di ordine pq, con p e q primi non necessariamente distinti. Si trovi il numero dei sottogruppi di G. (Suggerimento: usare il teorema Frobenius-Stickelberger per dimostrare che G é isomorfo a  $\mathbb{Z}_{p^2}$  oppure a  $\mathbb{Z}_p \times \mathbb{Z}_p$  oppure a  $\mathbb{Z}_p \times \mathbb{Z}_q$  con  $p \neq q$ . Dimostrare che il gruppo ciclico  $\mathbb{Z}_{p^2}$  ha 3 sottogruppi; il gruppo  $\mathbb{Z}_p \times \mathbb{Z}_q$  ha 4 sottogruppi e il gruppo  $\mathbb{Z}_p \times \mathbb{Z}_p$  ha p+3 sottogruppi).

**Esercizio 7.5** Sia p un numero primo. Dimostrare che  $\operatorname{Aut}(\mathbb{Z}_p \times \mathbb{Z}_p) \cong \operatorname{GL}_2(\mathbb{Z}_p)$ . (Suggerimento: ogni atuomorfismo di  $\mathbb{Z}_p \times \mathbb{Z}_p$  puó essere visto come un'isomorfismo dello spazio vettoriale  $\mathbb{Z}_p \times \mathbb{Z}_p$  sul campo  $\mathbb{Z}_p$ ).

**Esercizio 7.6** Siano m e n due interi positivi coprimi. Dimostrare che ogni omomorfismo  $\varphi$  da  $\mathbb{Z}_m \times \mathbb{Z}_n$  in se stesso ha la forma  $\varphi = (\varphi_1, \varphi_2)$ , dove  $\varphi_j : \mathbb{Z}_m \to \mathbb{Z}_n$ , j = 1, 2, sono oppurtuni omomorfismi. (Suggerimento: usare il Lemma 6.3.2, che afferma che un omomorfismo  $\varphi : H \to K$  tra due gruppi H e K di ordini coprimi é banale, cioé ker  $\varphi = H$ ).

**Esercizio 7.7** Sia G un gruppo abeliano finito generato da due elementi x, y,  $G = \langle x, y \rangle$ . Sia p un numero primo che divide |G|, ma p non divide o(x). Dimostrare che p divide o(y). (Suggerimento: dimostrare che  $G = \langle x \rangle + \langle y \rangle$  e che, per la parte (a) dell'Esercizio 7.1,  $|\langle x \rangle + \langle y \rangle|$  divide  $|\langle x \rangle| |\langle y \rangle|$ ).

**Esercizio 7.8** Sia G un gruppo abeliano finito e sia  $\hat{G}$  l'insieme di tutti gli omomorfismi  $\varphi: G \to \mathbb{R}/\mathbb{Z}$ , sul quale definiamo un'operazione

$$(\varphi + \psi)(x) = \varphi(x) + \psi(x).$$

Dimostrare che  $\hat{G}$  é un gruppo e che se  $G\cong H\times K$  allora  $\widehat{H\times K}\cong \hat{H}\times \hat{K}$ .

**Esercizio 7.9** Sia  $\hat{G}$  come nell'Esercizio 7.8. Si dimostri che se G é ciclico allora  $\hat{G} \cong G$ . (Suggerimento: per  $n \geq 2$  si dimostri che l'applicazione  $\hat{\mathbb{Z}}_n \to U_n$ ,  $\varphi \mapsto \varphi([1]_n)$ , dove  $U_n$  é il sottogruppo di  $S^1 = \mathbb{R}/\mathbb{Z}$  costituito dalle radici n-esime dell'unità, é un isomorfismo).

**Esercizio 7.10** Sia  $\hat{G}$  come nell'Esercizio 7.8. Si dimostri che  $\hat{G} \cong G$ . (Suggerimento: usare gli Esercizi 7.8, 7.9 e il Teorema di Frobenius-Stickelberger).