8. Aufgabenblatt vom Samstag, den 14. Dezember 2019 zur Vorlesung

ALP I: Funktionale Programmierung Bearbeiter: A. Rudolph und F. Formanek Tutor: Stephanie Hoffmann Tutorium 06

Abgabe: bis Montag, den 06. Januar 2020, 10:10 Uhr

1. Aufgabe (24 Punkte)

(a) Behauptung: $reverse(reverse \ xs) = xs$ Induktion über Liste xs der Länge n

Induktionsanfang:
$$xs = []$$
 reverse (reverse $[]$) $\stackrel{rev.1}{=}$ reverse $[]$ $\stackrel{rev.1}{=}$ $[]$

Induktionsvorraussetzung: für xs = xs' gilt: reverse(reverse xs') = xs'

Indukionsschritt: Sei xs = (x:xs')

reverse(reverse (x:xs'))
$$\stackrel{rev.2}{=}$$
 reverse(reverse xs' ++ [x])

 \equiv (reverse [x]) ++ reverse (reverse xs')

 $\stackrel{rev.2}{\leftrightarrow}$ (reverse ([]) ++ [x]) ++ reverse(reverse xs') $\stackrel{rev.1}{\leftrightarrow}$

([] ++ [x]) ++ reverse(reverse xs') $\stackrel{(++).1}{=}$

[x] ++ reverse(reverse xs') $\stackrel{nachIV}{=}$

[x] ++ xs' \equiv (x:xs')

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.

(b) Behauptung: reverse(xs ++ ys) = reverse ys ++ reverse xs

Induktionsanfang:
$$xs = []$$

reverse($[] ++ ys$) = reverse $ys ++ reverse []$ $\stackrel{rev.1}{=}$ reverse($[] ++ ys$) = reverse $ys ++ []$ $\stackrel{(++).1}{=}$ reverse $ys = reverse$ $ys = reverse$

Induktionsvorraussetzung: für xs = xs' gilt: reverse(xs' ++ ys) = reverse ys ++ reverse xs'

Indukionsschritt: Sei
$$xs = (x:xs')$$

reverse $((x:xs') ++ ys) = reverse ys ++ reverse(x:xs') \stackrel{rev.2}{=}$

```
reverse((x:xs') ++ ys) = reverse ys ++ (reverse xs' ++ [x]) \stackrel{(++).2}{=} reverse(x:(xs'++ys)) = reverse ys ++ (reverse xs' ++ [x]) \stackrel{rev.2}{=} reverse(xs'++ys) ++ [x] = reverse ys ++ (reverse xs' ++ [x]) \stackrel{nachIV}{=} reverse ys ++ reverse xs' ++ [x] = reverse ys ++ (reverse xs' ++ [x]) \equiv reverse ys ++ reverse xs' ++ [x] = reverse ys ++ reverse xs' ++ [x]
```

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.

(c) Behauptung: elem a $(xs ++ ys) = elem \ a \ xs \mid\mid elem \ a \ ys$

```
Induktionsanfang: xs = [] elem a ([] ++ ys) = elem a [] || elem a ys = elem a [] || elem a ys = elem a [] || elem a ys = elem a [] || elem
```

Induktionsvorraussetzung: für xs = xs' gilt: elem a (xs' ++ ys) = elem a xs' || elem a ys

Indukionsschritt: Sei xs = (x:xs')

```
elem a ((x:xs') ++ ys) = elem a (x:xs') || elem a ys \stackrel{(++).1}{=} elem a (x:(xs' ++ ys)) = elem a (x:xs') || elem a ys \stackrel{elem.3}{=} elem a (x:(xs' ++ ys)) = elem a ys || elem a ys \equiv elem a (x:(xs' ++ ys)) = elem a ys \equiv elem a [x] || elem a [x] || elem a [x] || elem a ys [x] || elem a ys
```

TODO: Überarbeiten. Ergebnis ist falsch

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.

(d) Behauptung: $(takeWhile\ p\ xs) + (dropWhile\ p\ xs) = xs$

```
Induktionsanfang: xs = [] (takeWhile p []) ++ (dropWhile p []) = [] \stackrel{takeW.1}{=} [] ++ (dropWhile p []) = [] \stackrel{dropW.1}{=} [] ++ [] = [] \stackrel{(++).1}{=}
```

```
[\ ] = [\ ]
```

Induktionsvorraussetzung: für xs = xs' gilt: (takeWhile p xs') ++ (dropWhile p xs') = xs'

Indukionsschritt: Sei xs = (x:xs')

(takeWhile p (x:xs')) ++ (dropWhile p (x:xs')) = (x:xs')
$$\stackrel{takeW.2}{=}$$
 (x:(takeWhile p xs')) ++ (dropWhile p (x:xs')) = (x:xs') $\stackrel{dropW.2}{=}$ (x:(takeWhile p xs')) ++ (dropWhile p xs') = (x:xs') $\stackrel{(++).2}{=}$ x:((takeWhile p xs') ++ (dropWhile p xs') = (x:xs') $\stackrel{nachIV}{=}$ (x:xs') = (x:xs')

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.

(e) Behauptung: $map(f.g) xs = map f xs \cdot map g xs$

Induktionsanfang: xs = [] map $(f \cdot g)[] = map f[] \cdot map g[] \stackrel{map.1}{=} [] = []$

Induktionsvorraussetzung: für xs = xs' gilt: map $(f \cdot g) xs' = map f xs' \cdot map g xs'$

Indukionsschritt: Sei xs = (x:xs')
map (f . g) (x:xs') = map f (x:xs') . map g (x:xs') $\stackrel{map.2}{=}$ g(f(x)):map(f . g) xs' = g(f(x)):(map f xs' . map g xs') $\stackrel{nachIV}{=}$ g(f(x)):(map f xs' . map g xs') = g(f(x)):(map f xs' . map g xs')

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.