

Modeling & Co-optimizing Integrated Transmission & Distribution Systems

Juan Ospina, Ph.D.

Scientist
A-1 Information Systems and Modeling Group

Feb. 7, 2024

LA-UR-24-20818

Outline

Part I: Los Alamos National Laboratory

- Introduction to Los Alamos National Lab.
- Introduction to A-1 Information Systems & Modeling Group

Part II: Research in T&D Optimization

- Background & Challenges
- Introduction to PowerModelsITD.jl
- Using PowerModelsITD.jl
- Experimental Test Cases

Los Alamos National Laboratory (LANL)

LANL is one of the world's largest and most advanced scientific institutions.

Primary mission:

provide scientific and engineering support to national security programs.

solve national security challenges through excellence.

Located in Northern New Mexico, Los Alamos

A Common Goal (Video)

https://www.youtube.com/watch?v=g_QOV3UAjuk

https://www.lanl.gov/

https://www.linkedin.com/company/los-alamos-national-laboratory/

Los Alamos National Laboratory (LANL)

Jobs: https://lanl.jobs/

LANL hires more than scientists!

Job Alerts https://lanl.jobs/creative/jobalerts

General talent community: https://lanl.jobs/creative/contact

Student talent community: https://lanl.jobs/creative/students

Military/Veterans community: https://lanl.jobs/creative/veterans

LANL: A-1 Information Systems and Modeling Group

- 1. Critical Infrastructure Modeling Team
 - Basic & applied research focused on:
 - Modeling the nation's critical infrastructures (e.g., Gas, Power, Water)
 - Quantifying vulnerabilities in the nation's critical infrastructures
 - Developing algorithms for the nation's critical infrastructures
- 2. Advanced Data Analytics and Forecasting Team
 - Basic & applied research focused on:
 - Modeling and understanding emerging threats
 - Disinformation
 - Disease outbreaks
 - Political instability
 - Nuclear proliferation
- 3. Chemical, Biological, and Radiological Agent Dispersion Modeling Team
 - Provides **research** and **modeling tools** to national organizations to
 - Protect and respond to chemical, biological, radiological, and other threats.

LANL: A-1 Information Systems and Modeling Group

Building capabilities for **decision support** for the:

- Department of Energy (DOE)
- Department of Defense (DoD)
- Federal Emergency Management Agency (FEMA)
- State government agencies (e.g., NM during COVID)
- and even up to the White House.

LANL: A-1 Critical Infrastructure Team

1. Electric Power Systems

- Transmission (PowerModels.jl)
- Distribution (PowerModelsDistribution.jl
- T&D (PowerModelsITD.jl)
- Networked Microgrids (PowerModelsONM.jl)

https://www.youtube.com/watch?v=D5k-IMicMPM

2. Natural Gas Transmission Systems

- Natural Gas (GasModels.jl)
- Gas + Power (GasPowerModels.jl)

3. Potable Water Distribution Systems

- Potable Water (WaterModels.jl)
- Water + Power (PowerWaterModels.jl)

4. Other Projects

- Cyber-Physical Energy Systems
- MG-RAVENS (Application Programming Interfaces for Grid Modeling)

https://github.com/lanl-ansi

Modeling & Optimization Ecosystem

Optimization

Gas Networks

LANL: A-1 Critical Infrastructure - Example Projects

1. A Framework for Exploring Power Flow Formulations

- Coffrin, C., Bent, R., Sundar, K., Ng, Y., & Lubin, M. (2018, June). Powermodels. jl: An open-source framework for exploring power flow formulations. In 2018 Power Systems Computation Conference (PSCC) (pp. 1-8). IEEE.
- PowerModels.jl: A Framework for Exploring Power Flow Formulations

2. GasModels.jl: Convex Relaxations for Gas Systems Modeling

 Tasseff, B., Coffrin, C., & Bent, R. (2021). Convex Relaxations of Maximal Load Delivery for Multi-contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks. arXiv preprint arXiv:2108.12361.

Phase-Unbalanced Power Distribution Network Optimization with PowerModelsDistribution.jl

- Fobes, D. M., Claeys, S., Geth, F., & Coffrin, C. (2020). PowerModelsDistribution. jl: An open-source framework for exploring distribution power flow formulations. Electric Power Systems Research, 189, 106664.
- PowerModelsDistribution.jl: A Framework for Exploring Distribution Network Power Flow Formulations

4. Microgrids for Resilience and Reliability

- Fobes, D. M., Bent, R., Jain, R., Flores-Espino, F., Pratt, A., Mahoney, R., ... & Reno, M. J. (2023). Quantifying resiliency benefits of networked microgrids using PowerModelsONM. jl.
- Fobes, D. M., Nagarajan, H., & Bent, R. (2022). Optimal Microgrid Networking for Maximal Load Delivery in Phase Unbalanced Distribution Grids: A Declarative Modeling Approach. IEEE Transactions on Smart Grid, 14(3), 1682-1691.
- R&D 100 PowerModels ONM

5. Towards the Secure Operation of Cyber-Physical Energy Systems

- Ospina Casas, J. J. (2022). Towards the Secure Operation of Cyber-Physical Energy Systems (CPES) (No. LA-UR-22-31034). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
- Ospina, J., Venkataramanan, V., & Konstantinou, C. (2022). CPES-QSM: A Quantitative Method Toward the Secure Operation of Cyber–Physical Energy Systems. IEEE Internet of Things Journal, 10(9), 7577-7590.

LANL: A-1 Information Systems and Modeling Group

https://organizations.lanl.gov/a-1/#open-positions

Part II: Research in T&D Optimization - Outline

- Background & Challenges
- Introduction to PowerModelsITD.jl
- Using PowerModelsITD.jl
- Experimental Test Cases

Acknowledgements - Team & Funding

- David Fobes (A-1 LANL)
- Russell Bent (T-5 LANL)
- Andreas Wächter (Northwestern University)
- Xinyi Luo (Northwestern University)

This work was performed with the support of the **U.S. Department of Energy (DOE) Office of Electricity (OE) Advanced Grid Modeling (AGM)** Research Program under program manager **Ali Ghassemian**. We gratefully acknowledge Ali's support of this work.

Background

 Conventional electric power systems (EPS) are composed of:

- Generation
- Transmission
- Distribution
- Managed independently by:
 - Transmission system (TSOs)
 - Distribution system operators (DSOs).

Traditional Power Generation/Consumption

Advantages & Disadvantages

Easy to optimize (All coming from monolithic Generation sites)

A lot of energy is lost in this process!

- Around 2-6% in transmission
- Around 4% in distribution

Efforts to Reduce Losses and Improve Efficiency

Distributed Energy 1. Renewable energy sources (RES) Resources (DERs) Energy storage devices (Batteries) Industrial plants Reducing Transformer Transmission Distribution Fossil Fuel Generation Adding DERs close to the Residential customers consumption (At the distribution)

Adding DERs (Issue)

- Just adding DERs everywhere is not a realistic solution
 - A balance between Generation & Consumption needs to be always maintained
 - If balanced is not maintained
 - Blackouts can occur
 - Transformers can explode
 - Protection devices can be triggered

Solution: Optimal control of DERs (Optimization)

We need to **optimize** the **power/energy dispatch** from **DERs**.

Obtain the exact **power** that each **DER** needs to **dispatch** (i.e., **OPF**).

Optimizing is not that simple!

Power Flow Formulations:

Physical models that describe how the power flows on the lines.

Modeling Problems: TSOs

TSOs traditionally model distribution systems as consumers (loads).

Modeling Problems : DSOs

• DSOs traditionally regard transmission systems as buses with unlimited resources (often modeled as voltage sources).

Modeling Problems: Integration of DERs

- Distribution systems are becoming more active:
 - Integration of Distributed Energy Resources (DERs)
 - Integration of Information & Communication Technologies (ICTs).

The **assumption** of <u>distribution</u> being just a **passive load** is **unreasonable** for **optimal** T&D **operation**.

Challenges

- Traditionally owned and operated by separate entities.
- Centralized models may not be scalable and hard to solve. (Assumption)
- Convergence issues with AC OPF (nonlinear, nonconvex formulations)
- No coordination of resources across T&D boundaries.

Coordination between **T&D** networks will be imperative for the optimal operation of the power grid.

To fill this gap, we developed a first-of-its-kind tool that supports and enables the Co-optimization of T&D systems

Outline

- Background & Challenges
- Introduction to PowerModeIsITD.jl
- Using PowerModelsITD.jl
- Experimental Test Cases

InfrastructureModels.jl

Core package for multi-infrastructure modeling and optimization ecosystem

PowerModelsITD.jl

- Open-source tool (Written in Julia)
- Based on LANL multi-infrastructure ecosystem
- Used for modeling and optimizing T&D systems
- Solve steady-state ITD Optimal Power Flow (OPF)
- Evaluate diverse network formulations
- Common research platform for emerging formulations

[1] https://github.com/lanl-ansi/PowerModelsITD.jl

[2] Ospina, J., et al. (2023). Modeling and Rapid Prototyping of Integrated Transmission-Distribution OPF Formulations with PowerModelsITD.jl. IEEE Transactions on Power Systems.

[3] Ospina, J., et al. (2023). On the Feasibility of Market Manipulation and Energy Storage Arbitrage via Load-Altering Attacks. Energies, 16(4), 1670.

PowerModelsITD.jl: Problem Specifications

- Integrated T&D Power Flow (pfitd) Power Flow
- Integrated T&D Optimal Power Flow (opfitd) Optimal Power Flow
- Integrated T&D Optimal Power Flow with storage costs (opfitd_storage)
- Integrated T&D Optimal Power Flow with on-load tap-changer (opfitd_oltc)

PowerModelsITD.jl: Formulations

NLP Formulations

- ACP-ACPU
 - Power-Voltage, polar coordinates, non-linear (NLP)
- ACR-ACRU
 - Power-Voltage, rectangular coordinates, non-linear (NLP)
- IVR-IVRU
 - Current-Voltage, rectangular coordinates, non-linear (NLP)

Linear Approximations

- NFA-NFAU
 - Network Flow Approximation
 - Active power only, lossless, linear (LP)
- BFA-LinDist3Flow
 - Branch Flow Approximation Linear Approximation

Relaxations

- SOCBFM-SOCUBFM
 - Second Order Cone Branch Flow Model Relaxations – W-space.

Hybrid Formulations (Experimental)

- ACR-FOTRU
 - Power-Voltage NLP, rectangular coordinates, First-Order Taylor Approximation
- ACP-FOTPU
 - Power-Voltage NLP, polar coordinates, First-Order Taylor Approximation
- ACR-FBSU
 - Power-Voltage NLP, rectangular coordinates, Forward-Backward Sweep Approximation
- SOCBFM-LinDist3Flow
 - Second Order Cone Branch Flow Model Relaxation – W-space.
 - Linear Approximation.

Mathematics at the T&D Boundaries

Outline

- Background & Challenges
- Introduction to PowerModeIsITD.jl
- Using PowerModelsITD.jl
- Experimental Test Cases

Using PowerModelsITD.jl

The **files** needed to run **OPFITD** are:

Transmission file

MATPOWER (".m")

PSS(R)E v33 specification (".raw")

Distribution file(s)

Boundary file

[25] "DiTTo (Distribution Transformation Tool)," 2021, Accessed: Aug. 06, 2021. [Online]. Available: https://github.com/NREL/ditto

other proprietary file formats supported via DiTTo [25]

OpenDSS (".dss")

Set VoltageBases = "230,13.8"

Set tolerance=0.000001 set defaultbasefreq=60

New Load.L3 phases=1 loadbus.3.0 (13.8 3 sqrt /) kW=3000 kvar=1500 model=1

New generator.gen1 Bus1=loadbus.1.2.3 Phases=3 kV=(13.8 3 sqrt /) kW=2000 pf=1 conn=wye Mode

Using PowerModelsITD.jl

Simple User Interface

```
using PowerModelsITD
import Ipopt
ipopt = Ipopt.Optimizer
pmitd_path = joinpath(dirname(pathof(PowerModelsITD)), "..")
# Files
pm file = joinpath(pmitd path, "test/data/transmission/case5 with2loads.m")
pmd file1 = joinpath(pmitd path, "test/data/distribution/case3 unbalanced.dss")
pmd file2 = joinpath(pmitd path, "test/data/distribution/case3 balanced.dss")
boundary file = joinpath(pmitd path, "test/data/json/case5 case3x2 unbal bal.json")
pmd_files = [pmd_file1, pmd_file2] # vector of files
pmitd_type = NLPowerModelITD{ACPPowerModel, ACPUPowerModel}
result = solve opfitd(pm file, pmd files, boundary file, pmitd type, ipopt)
                      Case w/ 2 distro. systems
```

Beginners Guide (Other examples)

https://lanl-ansi.github.io/PowerModelsITD.jl/stable/tutorials/BeginnersGuide.html

Results

```
ulia> result
Dict{String, Any} with 8 entries:
  "solve time"
                        => 0.12712
  "optimizer"
                       => "Ipopt"
  "termination status" => LOCALLY SOLVED
  "dual status"
                        => FEASIBLE POINT
  "primal status"
                       => FEASIBLE POINT
  "objective"
                        => 18146.3
  "solution"
                        => Dict{String, Any}("multiinfrastructure"=>true, "it"=>Dict{String, Any}("pmd...
  "objective lb"
                        => -Inf
```

Transmission

```
julia> result["solution"]["it"]["pm"]
Dict{String, Any} with 6 entries:
    "baseMVA" => 100.0
    "branch" => Dict{String, Any}("3"=>Dict{String, Any}("qf"=>206.656, "qt"=>-202.276, "pt"=>221.006, "pf"=>-220.308), "4"=>Dict{String, Any}("qf"=>-217.108, "qt"=>221.882, "pt"=>79.0383, "pf"=>-78.3924), "1"=...
    "gen" => Dict{String, Any}("4"=>Dict{String, Any}("qg"=>56.3262, "pg"=>18.0328), "1"=>Dict{String, Any}("qg"=>30.0, "pg"=>40.0), "5"=>Dict{String, Any}("qg"=>-201.205, "pg"=>461.003), "2"=>Dict{String, Any}("va"=>-0.949629, "vm"=>0.917681), "5"=>Dict{String, Any}("va"=>-0.949629, "vm"=>0.937736), "2"=>Dict...
    "per_unit" => false
```

Distribution

```
Julia> result["solution"]["it"]["pmd"]

Dict{String, Any} with 7 entries:

"line" => Dict{String, Any}("3bus_unbal.quad"=>Dict{String, Any}("qf"=>[1344.85, 1503.97, 1502.46], "qt"=>[-1333.33, -1500.0, -1500.0], "pt"=>[-3333.33, -2333.33], "pf"=>[3351.62, 2340.39, 2344.9...

"settings" => Dict{String, Any}("sbase"=>1000000.0)

"transformer" => Dict{String, Any}("3bus_bal.subxf"=>Dict{String, Any}("q"=>[1508.51, 1508.51, 1508.51, 1508.51], [-1508.41, -1508.41]], "p"=>[[2351.59, 2351.59, 2351.59], [-2351.58, -2351.58]]), "3bu...

"generator" => Dict{String, Any}("3bus_unbal.gen1"=>Dict{String, Any}("qg_bus"=>[-0.0, -0.0, -0.0], "qg"=>[-0.0, -0.0, -0.0], "pg"=>[666.668, 666.668], "pg_bus"=>[666.668, 666.668], "pg_bus"=>[666.668, 666.668], "pg_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus"=>[1500.0], "pd_bus_bal.substation"=>Dict{String, Any}("abus_unbal.loadbus"=>Dict{String, Any}("va"=>[-1.08179, -121.0...]

"per unit" => false
```

Boundary

```
julia> result["solution"]["it"]["pmitd"]["boundary"]
Dict{String, Any} with 4 entries:
    "(100001, 5, voltage_source.3bus_unbal.source)" => Dict{String, Any}("pbound_fr"=>[8068.8], "qbound_fr"=>[4367.42])
    "(100001, voltage_source.3bus_unbal.source, 5)" => Dict{String, Any}("pbound_to"=>[-3367.36, -2346.47, -2354.97], "qbound_to"=>[-1355.14, -1507.53, -1504.75])
    "(100002, voltage_source.3bus_bal.source, 6)" => Dict{String, Any}("pbound_to"=>[-2351.62, -2351.62, -2351.62], "qbound_to"=>[-1508.64, -1508.64])
    "(100002, 6, voltage_source.3bus_bal.source)" => Dict{String, Any}("pbound_fr"=>[7054.87], "qbound_fr"=>[4525.93])
```


Outline

- Background & Challenges
- Introduction to PowerModeIsITD.jl
- Using PowerModelsITD.jl
- Experimental Test Cases

Experimental Test Cases: OPF ITD

Test Cases	N	E
case_r1_25_1	759	762
case_r1_1247_1	3403	3 583
case_r1_1247_2	1450	1 527
case_r1_1247_3	168	165
case_r1_1247_4	970	981
case_r2_25_1	16 17	16 81
case_gc_1247_1	96	93
case_r2_1247_1	17 31	17 50
case_r2_1247_2	1 207	1275
case_r4_1247_2	1 155	1202
case_r5_25_1	3116	3250
case_r5_35_1	1435	1 505
case_r5_1247_4	2030	2088

Totals:

Buses/Nodes: 19,637

(w/ +500 from transmission)

Edges: 20,595 (w/ +733

from transmission)

PVs

55

<u>DGs</u>

17

Experimental Test Cases: OPF Results

CPU: x6 Cores @ 2.80 Ghz

RAM: 128 GB

Solver:

Ipopt vers.: 3.14.4 **MUMPS vers**.: 5.4.1

Formulation	\$/hr	Time (s)	Iterations
ACP-ACPU	422,095.2350	525.154	94
IVR-IVRU	422,095.2348	360.954	99
NFA-NFAU	412,286.7567	10.860	24
ACR-FBSUBF	422,074.7218	226 .852	97
BFA-LinDist3	412,286.7567	146.084	45
SOCBF-LinDist3	421,529.7893	241.203	75

Other Use Cases

T&D

Cyberattack evaluation [6]

Future Work

- 1. Support new ITD formulations
 - Relaxations
 - Approximations
 - Hybrids
- 2. Support **decomposition-based formulations** that allow:
 - Parallel computation of large-scale problems
- 3. Build **realistic** T&D datasets
 - Sufficiently large T&D networks
 - Realistic
 - Lack of reliable large distribution systems datasets* (Open-source)
- 4. Explore applications & research (Collaborations)
 - EVs/DERs integration and optimization studies
 - Transformer Deferral Studies
 - Cybersecurity-related studies in T&D networks

Thank you Questions?

Contacts:

- Juan Ospina: jjospina@lanl.gov
- David M Fobes: dfobes@lanl.gov

