G oznacza grupę.

Teoria: Działanie grupy G na zbiorze X (lewo- i prawostronne). Działanie lewostronne jako homomorfizm $\varphi: G \to Sym(X)$. Działanie wierne, tranzytywne. Stabilizator G_x , orbita O(x) = Gx. Sprzężenie w grupie, automorfizmy wewnętrzne. $C(X), Z(G), Inn(G). |O(x)| = [G:G_x]$. Lemat Burnside'a. Grupy permutacji.

- 1. Załóżmy, że $X\subseteq G$. $C(X)=\{g\in G:g \text{ komutuje z każdym }x\in G\}$. Jest to tzw. centralizator zbioru X. Gdy $X=\{g\}$, piszemy C(g) zamiast $C(\{g\})$. Gdy X=G, piszemy Z(G) zamiast C(X), jest to tzw. centrum grupy G. Udowodnić, że
 - (a) $^- C(X) < G$; (b) $^- Z(G)$ jest grupą abelową;
 - (c) $Z(G) \triangleleft G$;
 - (d) dla $g \in G$, $|g^G| = [G : C(g)]$;
 - (e) $G/Z(G) \cong Inn(G)$, gdzie Inn(G) to grupa automorfizmów wewnętrznych grupy G:
 - (f) $Inn(G) \triangleleft Aut(G)$.
- 2. Udowodnić, że podgrupa grupy cyklicznej jest cykliczna.
- 3. Wyznaczyć wszystkie automorfizmy grupy (\mathbb{Z}_{10} , $+_{10}$) (wsk: na co może przejść w automorfizmie generator grupy?). Które z tych automorfizmów są wewnętrzne?
- 4. Załóżmy, że $f:G\to H$ jest homomorfizmem grup, $g\in G,\ ord(g)=n$ oraz $k\in\mathbb{Z}.$ Udowodnić, że
 - (a) $ord(g^k) = \frac{n}{NWD(n,k)}$
 - (b) ord(f(q)) dzieli ord(q).
- 5. Ile różnych typów naszyjników można utworzyć z:
 - (a) 3 czarnych i 3 białych koralików,
 - (b) 4 czarnych, 3 białych i 1 czerwonego koralika?
- 6. Niech $\sigma \in S_n$ będzie iloczynem cykli rozłącznych $\alpha_1, \ldots, \alpha_k$ takich, że α_i jest długości l_i . Udowodnić, że $ord(\sigma) = NWW(l_1, \ldots, l_k)$
 - (a) w przypadku, gdy k = 2,
 - (b) ogólnie.
- 7. Udowodnić, że permutacje $\sigma, \tau \in S_n$ są sprzężone w grupie $S_n \iff$ ich rozkłady na iloczyny cykli rozłącznych są podobne, tzn. dla każdego k w rozkładach σ i τ jest tyle samo cykli długości k.
- 8. Czy istnieje działanie grupy $G = (\mathbb{Z}, +_{10})$ na zbiorze 10-elementowym X o n orbitach, gdzie
 - (a) n=1, (b) n=2, (c) n=3, (d) n=4? (wsk: rozważyć działanie G na zbiorze G/H przez lewe przesunięcie)

- 9. (a) W grupie permutacji S_7 wyznaczyć rzędy elementów i ich klasy sprzężenia. (b) Wyznaczyć klasy sprzężenia w grupie D_6 .