

INTRO TO CRYPTOGRAPHY

Challenges (in Discord)

Challenges are available via the Discord bot.

Quick start:

- \$challs lists the challenges
- \$chall <challid> displays details for a challenge
- \$submit <challid> <flag> submits flag (only available via dm)

Invite link: https://discord.gg/ph2sseW

Slides and copies of the challenges are also available on GitHub: https://github.com/umisc/workshops/tree/master/Cryptography

Notation and Functions

a and b are congruent mod c implies that c divides a-b

$$a \equiv b \pmod{c} \implies c \mid (a-b)$$

The notation: $a \mod b$ is sometimes used to denote the value of the remainder when b divides a (i.e. $7 \mod 4 = 3$)

See: modular arithmetic

 $\gcd(a,b)$ denotes the largest positive integer that divides both a and b

See: gcd

Notation and Functions (continued)

Functions from the PyCrypto library:

Import: from Crypto.Util.number import *

<u>bytes_to_long</u> - converts bytes to an integer by creating a hex string from the hex representation of the bytes

```
bytes_to_long(b'a') == 0x61 == 97
bytes_to_long(b'ab') == 0x6162 == 24930
```

long to bytes - inverse function of bytes_to_long

```
long_to_bytes(24930) == b'ab'
```

Notation and Functions (continued)

<u>inverse</u> - calculates the modular inverse of the first argument mod the second

```
inverse(3, 17) == 6 # \times such that 3\times is congruent to 1 (mod 17)
```

GCD - calculates the gcd of two numbers

```
GCD(3, 7) == 1
```

<u>pow</u> - exponentiation/modular exponentiation function (Python in-built)

```
pow(2, 3) == 8

pow(2, 3, 5) == 3 \# (2**3)\%5 \text{ or } pow(2,3)\%5 \text{ except more efficient}
```

What is Cryptography?

Cryptography is the practice and study of techniques for secure communication in the presence of third parties.

Functions of Cryptography

Cryptography is used for:

- 1. **Privacy**: Ensuring only intended recipients can read messages
- 2. **Authentication**: Proving one's identity
- 3. **Integrity**: Ensuring receieved messages have not been altered or corrupted.
- 4. Non-repudiation: Proving authorship of a message

Types of Cryptograhy

- Symmetric-key Cryptography
- Public-key Cryptography (asymmetric)
- Hashing

Symmetric-key Cryptography

Symmetric-key cryptography involves two parties using the same shared key for encryption and decryption.

This shared key needs to be kept secret and distributed securely.

Some examples include:

- Caesar Cipher
- Single byte XOR
- Block Ciphers
- Stream Ciphers

Symmetric-key Cryptography (continued)

Key Exchange

Symmetric-key cryptography relies on both parties having a shared key.

This key needs to be known by the two parties without anyone else being able to obtain a copy.

There are methods that utilise 'mathematical problems' to aid with the task of key exchange. One such method is <u>Diffie-</u>
<u>Hellman</u>.

Public-key Cryptography

Public-key cryptography involves two parties using two public-key/private-key pairs to encrypt and decrypt messages between each other.

For instance, say Bob wants to send a message to Alice.

Alice generates a public/private key pair.

She sends the public key to Bob.

Bob encrypts the message with the public key and sends it to Alice.

Alice decrypts the message with her private key.

Public-key Cryptography (continued)

Public-key Cryptography (continued)

The private key and the public key is mathematically related such that:

- The private key can be used to decrypt a ciphertext encrypted with the public key
- The private key cannot be feasibly determined from the public key alone

A prime example of a public-key cryptosystem is **RSA**.

Principles of Cryptography

We want to send messages without eavesdroppers knowing what we're saying.

We could agree on a method for garbling and ungarbling our messages.

For example:

We can garble our message by shifting each letter by 1, and ungarble by shifting each letter by 1 in the opposite direction.

```
encrypt('hello') -> 'ifmmp'
decrypt('ifmmp') -> 'hello'
```

Principles of Cryptography

This isn't very secure though...

Instead, we could try using a system that doesn't allow the eavesdropper to know what we're saying even if they know how we are encrypting/decrypting the messages.

For example, we can jumble up the alphabet (<u>substitution</u> <u>cipher</u>). Using azertyuiopqsdfghjklmwxcvbn as the substituted alphabet (the key):

```
encrypt('hello') -> 'itssg'
decrypt('itssg') -> 'hello'
```

However, if the eavesdropper knows what kind of messages we're sending, this cipher can be quite unsecure too.

RSA Overview

RSA is one of the first public-key cryptosystems and is still used today.

Its security lies in the difficulty of factorising the product of two large prime numbers.

RSA Key Generation

Public Key

The public key consists of two numbers: (n, e)

n is formed from taking the product of two large primes p and q

common.)

Private Key

The private key also consists of two numbers: (n, d)

e is any number such that $\gcd(e,\phi(n))=1$. (e=65537 is

where $d \equiv e^{-1} \pmod{\phi(n)}$ (i.e. d such that $de \equiv 1 \pmod{\phi(n)}$

RSA Key Generation (Notes)

Euler's totient function $\phi(n)$ counts the positive integers up to n that don't share any factors besides 1. (e.g. $\phi(9)=6$)

If p and q are assumed prime, then $\phi(pq)=(p-1)(q-1)$.

RSA Key Generation (Notes)

Euler's totient function $\phi(n)$ counts the positive integers up to n that don't share any factors besides 1. (e.g. $\phi(9)=6$)

If p and q are assumed prime, then $\phi(pq)=(p-1)(q-1)$.

This follows from the fact that all multiples of p will share a factor with pq and all multiples of q will share a factor with pq.

$$1,2,\ldots,p,\ldots,q,\ldots,2p,\ldots,2q,\ldots,pq=n$$

$$pq - p - q + 1 = (p - 1)(q - 1)$$

RSA Algorithm

Encryption

If m is the plaintext message, the ciphertext c is calculated as follows:

$$c = m^e \mod n$$

Decryption

Decryption of a ciphertext c using the private key n,d is done as follows:

$$m=c^d oxnomind n$$

Textbook RSA Example

```
from Crypto.Util.number import getPrime, inverse, bytes to long
message = b'hello!'
m = bytes to long(message)
p, q = getPrime(512), getPrime(512)
n = p * q
e = 0 \times 10001
c = pow(m, e, n) # ciphertext
phi = (p - 1)*(q - 1)
d = inverse(e, phi)
decrpyted message = long_to_bytes(pow(c, d, n)) # b'hello!'
```

Another RSA Example

Can you find the vulnerability?

```
from Crypto.Util.number import bytes to long, getPrime
from secret import secret message
p1 = p2 = getPrime(512)
q1, q2 = getPrime(512), getPrime(512)
n1 = p1*q1
n2 = p2*q2
m = bytes to long(secret message)
c1 = pow(m, e, n1)
c2 = pow(m, e, n2)
```

You know the values of the public keys (n_1, e) , (n_2, e) and the ciphertexts c_1 and c_2 .

Solution

Since $p_1=p_2$, it follows that $n_1=p_1q_1$ and $n_2=p_2q_2=p_1q_2$ will have a common factor. We can therefore calculate the \gcd of n_1 and n_2 to find p_1 and hence, p_2 , q_1 and q_2 . We can then decrypt the ciphertext.

```
from Crypto.Util.number import inverse, long_to_bytes, GCD
p1 = GCD(n1, n2)
q1 = n1 // p1
phi = (p1 - 1)*(q1 - 1)
d = inverse(e, phi)
m = pow(c, d, n)
print(long_to_bytes(m)) # got the secret message!
```

RSA Problems

RSA is pretty good, but there can be some issues which make it vulnerable in certain cases:

- If *n* is easily factorisable:
 - \circ If n is small
 - $\circ~$ If p and q are close (precisely, if $p-q < n^{rac{\pi}{2}}$)
- If e is small and $m^e < n$ then $m^e \bmod n$ is a no-op
- If e is small and the same message is sent to multiple recipients with different moduli
- If a message is sent multiple times using different moduli, of which some have common factors
- If a message is sent with a common modulus, and different public exponents that are coprime
- and many more...

Other CTF Crypto Problems

- One time pads with weak PRNGs
- Random classical ciphers
- Discrete log problem in DH key exchange
- Discrete log problem in <u>Elliptic-curve cryptography (ECC)</u>
- Random number theory/group theory/abstract algebra problems
- Decryption oracles
- and many more...

Resources and Links

Readings and Challenges:

- Crypto 101 (book)
- An Overview of Cryptography Gary C. Kessler (book)
- Cryptography: An Introduction Nigel Smart (book)
- Crypton (readings + challenges)
- Dan Boneh's RSA Survey
- cryptopals (challenges)
- CTF Writeups

Tools:

- factordb
- Alpertron integer factorisation calculator
- SageMath