Math 107Q - Introduction to probability and statistics Oxford College of Emory University Spring 2014

Dr. Robert Bailey Dr. Ricardo Conceição Dr. Karen Rogers rbailey@emory.edu rconcei@emory.edu karen.m.rogers@emory.edu

Required text and technology

- Elementary Statistics, 11th or 12th ed., Mario F. Triola.
- Calculator (TI-83, TI-83 PLUS, TI-84 or TI-84 PLUS recommended).
- Blackboard.

Course Content

Visual displays of data, measures of central tendency and of variability, classification of data, counting, probability, Chebyshevs Theorem, normal distribution, binomial distribution, Central Limit Theorem, hypergeometric distribution, Poisson distribution, Confidence Intervals, Hypothesis testing (means, proportions, variances), Simple linear regression and correlation, Analysis of Variance (one way), Chi Square Tests (Goodness-of-fit, Contingency Tables), Nonparametric methods (Wilcoxon [for independent samples], Kruskal Wallis, Spearman's rho). Emphasis is on inference.

Goals

- 1. Cognitive: At the end of this course students should be able to:
 - (a) Categorize a data set;
 - (b) Correctly work various simple probability problems;
 - (c) Articulate the role of functions in statistics;
 - (d) Describe major misuses of statistics,
 - (e) Recognize several distributions and characterize them;
 - (f) Analyze interval data for which statistical tests involving means, proportions, medians, rankings, and variances are the parameters;
 - (g) Interpret relationships in bivariate data;
 - (h) Discuss the difference between parametric and nonparametric statistics in relation to inherent assumptions of the general statistical model;
 - (i) Recognize and explain the limitations of statistics;
 - (j) Interpret the role of statistics in analyzing data and in inference;

- (k) Use a calculator for appropriate statistical tests;
- (l) Interpret statistical findings in relation to the situation from which the data was drawn,
- (m) Describe the experimental nature of mathematical statistics,
- (n) Draw inferences using the vocabulary of statistics.

2. Affective:

- (a) Students may choose to use suggested organizational guidelines, study skills and test-taking approaches.
- (b) Students will perform experiments and analyze the results by using appropriate statistical techniques.
- (c) Students will have the opportunity to react to articles (readings) related to statistical methods.
- (d) Group work for experiments will enable students to coordinate with others while completing a project and will enable students to develop problem-solving strategies.

The general goals for students taking this course are: Students should: (a) begin to be good consumers of information through gaining knowledge about statistics, (b) become more focused on learning processes as they learn and apply study skills.

Responsibilities

Each **student** has the following responsibilities:

- 1. Come prepared and on time to every class.
- 2. Treat the instructor and peers with respect.
- 3. Ask questions. Asking questions is a sign of maturity, not ignorance, as long as the student thinks clearly before asking.

The **instructor** has the following responsibilities:

- 1. Come prepared to every class.
- 2. Design each class so students can accomplish the cognitive objectives listed in the syllabus.
- 3. Provide appropriate tips for studying and study materials as seem appropriate.
- 4. Create a mutually respectful classroom environment.
- 5. Return tests and assignments in a timely manner so that students will know their grades.
- 6. Grading, as far as possible, to be consistent and impersonal.

Grading

Grades will be determined by student performance on five tests, five assignments and a comprehensive final exam, as follows:

5 tests @ 100	500
5 INQ Projects	300
Final	200
Total	1000

Maximum grade cuts are as follows:

A	В	С	D	F
900 - 1000	800 - 899	700 - 799	600 - 699	0 - 599

Plus/minus grades may be assigned for percentages near the maximum grade cuts. Also, the instructors reserve the right to amend, append, or otherwise make changes to the plan for the course.

Tests and Final Exam

Tests will be given during class time on the following dates (see also attached listing of topics):

- ★ Friday, February 7th 2014.
- ★ Wednesday, February 26th 2014.
- ★ Monday, March 24th 2014.
- ★ Wednesday, April 9th 2014
- ★ Wednesday, April 23rd 2014.

Each test will cover the topics listed for that test on the attached outline. There are no practice tests or additional problems outside those in the text and formal notes. Formulas will be provided and your calculator may be used for appropriate portions of tests, experiments, and the final exam. You are expected to take tests at the scheduled times. Any emergencies will be handled on an individual basis and must be documented. No make-up test will be given after the testing time and date. The final exam will include material selected from the entire course. The final exam will be given at the time designated on the final exam schedule, no exceptions.

Ways of inquiry

There will be four group assignments, with students working in groups with varying sizes but ranging from two to four people. **Individual work will receive a zero.** Within the group, each student is expected to work as a group member on each aspect of each assignment (experiment, set of problems, and/or article(s)) and to participate in a somewhat "equal" manner. A signed form of individual contributions must accompany each experiment. No assignment will be accepted after class time on the due date.

- * Assignment 1: Friday, January 31st 2014.
- * Assignment 2: Friday, February 21st 2014.
- * Assignment 3: Friday, March 7th 2014
- * Assignment 4: Friday, March 28th 2014.
- * Assignment 5: Friday, April 18th 2014.

An individual's grade is based on: the individual's contribution and work within the group, the group's write-up, the statistical analysis used, the experimental procedure outlined and followed, creativity including originality and neatness, clarity of work on problems, completeness of ideas on written responses, and correctness of work.

Homework

Class time will be used to enrich topics in statistics but will not be used to merely summarize information from the text. It is each student's responsibility to read the appropriate sections of the textbook and make appropriate notes. Homework problems will not be collected but are to benefit the student. Each student should work most of the problems assigned in the text and in the formal typed notes. Example problems will be worked in class, one for each major concept. However, there is little or no class time for working through homework problems. Basic problems and concepts for which the student is responsible are included in the formal typed notes for this course, available on the class conference.

To do well, the average student will need to study about 3 hours outside of class for every class meeting or around 8 to 9 hours per week. You may need more time in some subjects. Spread this time out over the week. Marathon studying, especially in mathematics, does not work well!

Office Hours/Outside Help

The student should plan to take advantage of the available outside help for this course:

Office hours will be announced by your instructor. Students should use this time to come by and ask specific questions related to this course and/or homework problems. In addition, students may email instructors privately or post questions on the Math 107 class conference.

There is a class conference on Blackboard. Students should consult this conference frequently for announcements about office hours, SI sessions, tutoring, homework assignments, formal notes, class notes, outlines for tests, etc. Students may pose individual questions on the class conference.

Our SI (Supplemental Instruction) student leaders will schedule review sessions each week. These sessions are optional, however each student is encouraged to pick one of the times per week and attend regularly. Even though these sessions are optional, students who attend SI sessions generally do better in the courses for which there are SI leaders. Student tutors are available in the Math Center in Pierce Hall. Help is always available from 3:00 until 6:00, Monday through Thursday afternoons. A schedule is posted in the Math Center providing additional opportunities for help.

Study groups organized by students are highly recommended. The meetings should be scheduled weekly and should be part of a regular weekly routine.

Attendance Policy

You are expected to **attend all classes** since you are responsible for work covered in class. **Tests will not be given after the test day** (listed on this syllabus), the student will not have the opportunity to make up that test. Emergencies and verifications are at the discretion of the professor. Arrangements related to grading because of an absence from a test are at the discretion of the professor. Absences from tests must have appropriate documentation.

Honor Code

The Honor Code of Oxford College applies to all work submitted for credit in this course. To receive credit for work submitted you must place your name on it. By placing your name on such work, you pledge that the work has been done in accordance with the given instructions and that you have witnessed no Honor Code violations in the conduct of the assignment.

Disclaimer

Student work submitted as part of this course may be reviewed by Oxford College and Emory College faculty and staff for the purposes of improving instruction and enhancing Emory education.

List of topics (12th edition) Math 107Q Spring 2014

PART 1 for Test 1: Counting and Probability

- 1. Introduction to Statistics, Jerome Cardan, the famous birthday problem
- 2. Counting, Section 4.6
- 3. Laws of Probability, Sections 4.2, 4.3; 4.4, 4.5, 4.8
- 4. Probability: Birthday problem, Game of Craps
- 5. Discrete Distributions, Sections 5.2; 5.3, 5.4; 5.5

PART 2 for Test 2: Descriptive Statistics, Normal Distribution

- 6. Introduction to Statistics and Histograms, Chapter 1 and Sections 2.4, 2.2, 2.3
- 7. Descriptive Statistics, Sections 3.2, 3.3
- 8. Normal Distribution and Central Limit Theorem, Sections 6.1, 6.2, 6.3, 6.4, 6.5
- 9. Normal Approximation to the Binomial, Section 6.7

PART 3 for Test 3: Hypothesis Testing: Proportions

- 10. Confidence Intervals: Proportions, Section 7.2
- 11. Hypothesis Testing: Theory, Section 8.2 (MUST READ BEFORE CLASS)
- 12. Hypothesis Testing: one sample proportions, Section 8.3
- 13. Hypothesis Testing: two sample proportions, Section 9.2
- 14. Chi Square Models, Sections 11.2, 11.3

PART 4 for Test 4: Hypothesis Testing: Means

- 15. Confidence Intervals: Means, Sections 7.3
- 16. Hypothesis Testing: one sample means, Sections 8.4
- 17. Hypothesis Testing: two sample means, Sections 9.3, 9.4, 9.5

18. Wilcoxon, Section 13.4

Part 5 for Test 5: Other Statistical Tests

- 19. ANOVA Section 12.2
- 20. Regression, Sections 10.2, 10.3
- 21. Spearman rho, Section 13.6
- 22. Kruskal Wallis, Section 13.5
- 23. Wrap-up, review, evaluation

Final exams will be given according to the college schedule.

Proposed Calendar (12th edition) Math 107Q Spring 2014

Monday	Tuesday	WEDNESDAY	Thursday	FRIDAY
Jan 13th	Jan 14th	Jan 15th 1	Jan 16th	Jan 17th 2
		§Slides		§ 4.6
		Introduction to Statistics		Counting
Jan 20th	Jan 21st	Jan 22nd 3	Jan 23rd	Jan 24th 4
No class Martin Luther King Jr. holiday		§ 4.2, 4.3 Laws of Probability		§ 4.4, 4.5, 4.8 Bayes' Theorem
Jan 27th 5	Jan 28th	Jan 29th 6	Jan 30th	Jan 31st 7
§ INQ Discussion Birthday problem, Game of Craps		§ 5.2 Discrete Distributions		Assignment 1 due § 5.3, 5.4 Discrete Distributions (cont.)
Feb 3rd 8	Feb 4th	Feb 5th 9	Feb 6th	Feb 7th
§ 5.5		Review Test 1		Test 1
Discrete Distributions (cont.)				

Monday	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Feb 10th 10	Feb 11th	Feb 12th 11	Feb 13th	Feb 14th 12
$\frac{\text{Chapter 1}}{\S 2.4, \ 2.2, \ 2.3}$ Introduction to Statistics; Histograms		§ 3.2 Descriptive Statistics		§ 3.2 Descriptive Statistics (cont.)
Feb 17th 13	Feb 18th	Feb 19th 14	Feb 20th	Feb 21st 15
§ 6.1, 6.2 Normal		§ 6.3, 6.4, 6.5 Central Limit		Assignment 2 due
Distribution		Theorem		Normal Approximation to the Binomial
Feb 24th 16	Feb 25th	Feb 26th	Feb 27th	Feb 28th 17
Review Test 2		Test 2		§ INQ Discussion Misuses of statistics
Mar 3rd 18	Mar 4th	Mar 5th 19	Mar 6th	Mar 7th 20
§ 7.2		§ 8.2		Assignment 3 due
Confidence Intervals,		READ BEFORE		§ 8.3
Proportions		CLASS Hypothesis Testing		Hypothesis Testing, one sample proportions
Mar 10th	Mar 11th	Mar 12th	Mar 13th	Mar 14th
Spring Break	Spring Break	Spring Break	Spring Break	Spring Break

Monday	Tuesday	Wednesday	Thursday	FRIDAY
Mar 17th 21	Mar 18th	Mar 19th 22	Mar 20th	Mar 21st 23
§ 9.2		§ 11.2, 11.3		Review Test 3
Hypothesis Testing, two sample proportions		Chi Square Models		
Mar 24th	Mar 25th	Mar 26th 24	Mar 27th	Mar 28th 25
Test 3		§ 7.3		Assignment 4 due
		Confidence Intervals,		§ 8.4
		Means		Hypothesis Testing, one sample means
Mar 31st 26	Apr 1st	Apr 2nd 27	Apr 3rd	Apr 4th 28
§ 9.3, 9.4, 9.5		§ 9.3, 9.4, 9.5		Assignment 5 plan approval deadline
Hypothesis Testing, two		Hypothesis Testing, two		§ 13.4
sample means		sample means (cont.)		Wilcoxon
Apr 7th 29	Apr 8th	Apr 9th	Apr 10th	Apr 11th 30
Review Test 4		Test 4		§ 12.2
				ANOVA
Apr 14th 31	Apr 15th	Apr 16th 32	Apr 17th	Apr 18th 33
§ 13.5, 13.4		§ 10.2		Assignment 5 due
Kruskal Wallis, Wilcoxon		Regression		§ 10.3, 13.6
· / Heorion				Regression Spearman rho

Monday	Tuesday	Wednesday	Thursday	FRIDAY
Apr 21st 34	Apr 22nd	Apr 23rd	Apr 24th	Apr 25th 35
Review Test 5		Test 5		Wrap-up
Apr 28th 36	Apr 29th	Apr 30th	May 1st	May 2nd
Last day of classes	Reading Day			
Review &				
Evaluation				