

Machine Learning

Juntae Kim

Department of Computer Science and Engineering

Dongguk University

Overview

Machine Learning (CSC4022)

Level: Undergraduate

Class type: Lecture + programming practice

■ Prerequisite: Calculus(□적분학I), Probability and Statistics(확률및통계학),

Linear Algebra(선형대수학) (Recommended),

Python programming (파이썬) (Recommended)

Artificial Intelligence(인공지능) (Recommended)

Course summary

- Machine learning is the study of how to make computers learn from data and experience. This course introduces the basic concepts and principles of machine learning
- Topics include various algorithms for supervised, unsupervised, and reinforcement learning such as perceptron, linear regression, decision trees, nearest neighbor, clustering algorithms, neural networks, deep learning models, as well as concepts of overfitting, regularization, dimensionality reduction, and ensemble. The classes consist of lectures on algorithms and theories, and programming practices (Python) for them

Overview

Class schedule

- Wednesday 3:30–5:20 pm(02), 5:30–7:15 pm(01), 6144 (lecture)
- Thursday 3:00-4:50 pm(02), 5:00–6:50 pm(01), 6119 (practice)

Professor/TA

- Juntae Kim, new engineering building 10114, 2260-3712, jkim@dongguk.edu
- Hiskias, new engineering building 5116, 2290-1421, hiskias.melke1@gmail.com

Slides/codes/homeworks

 All class materials including lecture slides, Jupyter notebook files, homework assignments, etc. will be available at the e-class for download

Grading

Midterm 25%, final exam 25%, practice 25%, homework 25%

Overview

Textbooks

- "Python Machine Learning", 3rd ed., Sebastian Raschka (머신러닝 교과서, 개정3판)
- "Probabilistic Machine Learning", Kevin Murphy (https://probml.github.io/pml-book/book1.html)

Course Schedule

주차	이론	실습	Homework
1 주차	Course overview, Python and Libraries	Programming Environment, Python Practice	
2 주차	Machine Learning Concepts	Numpy, Pandas, Matplotlib, Scikit-learn	
3 주차	Linear Regression, Gradient Descent	Linear Regression, Gradient Descent (ch02, ch10)	HW #1
4 주차	Logistic Regression	Logistic Regression (ch02, ch03)	
5 주차	Decision trees, K-Nearest Neighbor, SVM	Decision trees, K-Nearest Neighbor, SVM (ch03)	
6 주차	Data Preprocessing	Data Preprocessing (ch04), Feature Selection, PCA (ch05)	HW #2
7 주차	Performance Evaluation	Cross Validation, ROC (ch06), Bagging, Boosting (ch07)	
8 주차	Midterm (4/27 Sat.)		
9 주차	Learning form Text Data	Vectorization, Sentiment Analysis (ch08)	
10 주차	Unsupervised Learning	K-means, DBSCAN (ch11)	HW #3
11 주차	Artificial Neural Network	Multilayer Perceptron (ch02, ch12)	
12 주차	Tensorflow and Keras	Tensorflow, Image Classification (ch13, ch 14)	
13 주차	Deep learning models	CNN, RNN (ch15, ch16)	HW #4
14 주차	Reinforcement Learning	GAN, Q-Learning (ch18)	
15 주차	Final Exam (6/15 Sat.)		

