# On the compressors in quasi-static gas transmission network

Aleksandr Lukashevich

SkolTech, ICS RAS

October 8, 2019



### Outline

1 Transient Gas Flow Optimization Problem Issues



## Gas Flow Equations, Steady-State and Transient Cases

$$0 = p_t + Q_x$$
$$0 = (p^2)_x + Q|Q|$$

For some network given by a graph G = (V, E)

Steady-State Case: 
$$p_t = 0$$

$$p_j^2 - p_i^2 = Q_{ij}|Q_{ij}|, \ (i,j) \in E$$

$$A^T \mathbf{Q} = \mathbf{q}, \ A - \text{incidence matrix of } G$$
(1)





## Energy Function Minimization in Steady-Stae Case

Gas Flow Problem without bounds (1) can be formulated in the following forms (and vice-versa):

min 
$$\sum_{(i,j)\in E} |Q_{ij}|^3$$
s.t.  $A^T \mathbf{Q} = \mathbf{q}$  (2)

s.t. A' 
$$\mathbf{Q} = \mathbf{q}$$

$$\min \frac{2}{3} \sum_{(m,n) \in E} \frac{|\psi_m - \psi_n|^{3/2}}{\sqrt{a_{mn}}} - \boldsymbol{q}^T \psi$$
 (3)



#### Transient Case: Adiabatics



Multi-pipe discretization

approximated by another one. The physics is governed by  $p^{m+1} - p^m \qquad Q^m + 1 - Q^m + 1$ 

The whole network is

$$\begin{cases} 0 = \frac{p_i^{m+1} - p_i^m}{\varepsilon_t} + \frac{Q_{i,i+1}^m - Q_{i-1,i}^m}{\varepsilon_{x}} \\ 0 = |Q_{i,i+1}^m|Q_{i,i+1}^m + \frac{(p_{i+1}^m)^2 - (p_i^m)^2}{\varepsilon_{x}} \end{cases}$$





## Transient Case: successive $d^m$

$$\min \sum_{m=1}^{\mathcal{M}} \left[ \frac{\varepsilon_{x}}{3} \left\langle |\boldsymbol{Q}^{m}|^{3}, \mathbf{1} \right\rangle - \left\langle \boldsymbol{A}^{T} \boldsymbol{d}^{m}, \boldsymbol{Q}^{m} \right\rangle \right]$$
(4a)

s. t. 
$$\frac{p_i^{m+1} - p_i^m}{\varepsilon_t} + \frac{Q_{i,i+1}^m - Q_{i-1,i}^m}{\varepsilon_x} = 0$$
 (4b)



#### Transient Case: successive $d^m$ . Motivation and Plan

#### Motivation:

Successive solve optimization problems in order to <u>make</u> d<sup>m</sup> equal to the squared pressures. Why?

$$|\boldsymbol{Q}^{m}|\boldsymbol{Q}^{m} - \boldsymbol{A}^{T}\boldsymbol{d}^{m} = 0$$

$$\frac{p_{i}^{m+1} - p_{i}^{m}}{\varepsilon_{t}} + \frac{Q_{i,i+1}^{m} - Q_{i-1,i}^{m}}{\varepsilon_{x}} = 0$$



#### Transient Case: successive $d^m$ . Motivation and Plan

#### Action Plan:

- We solve a series of 4. For each of them we provide index k indicates the number of optimization problem. Suppose, for some k the optimization problem is solved with  $d_k$ .
  - Choose next  $d_{k+1}$  to make it closer to  $p_k^2$ .
  - Solve  $(k+1)^{\text{th}}$  optimization problem and get  $\boldsymbol{p}^2_{k+1}$ .
  - Repeat, until the process converges.



#### Transient Case: successive $d^m$ . Notations clarifications

$$\min \sum_{m=1}^{\mathcal{M}} \left[ \frac{\varepsilon_{x}}{3} \left\langle | \left( \boldsymbol{Q}^{m} \right)_{k} |^{3}, \mathbf{1} \right\rangle - \left\langle A^{T} \left( \left( \boldsymbol{d}^{m} \right)_{k} \right), \left( \boldsymbol{Q}^{m} \right)_{k} \right\rangle \right]$$
 (5a)

s. t. 
$$\frac{\left(p_i^{m+1}\right)_k - \left(p_i^{m}\right)_k}{\varepsilon_t} + \frac{\left(Q_{i,i+1}^{m}\right)_k - \left(Q_{i-1,i}^{m}\right)_k}{\varepsilon_x} = 0$$
 (5b)

- k indicates number of optimization problem
- Bold symbols vectors that contains all spatial elements. E.g.,  $\boldsymbol{d}^m = (d_1^m, \dots, d_T^m)^T$





$$\boldsymbol{d}_{k+1} = \boldsymbol{p}_k^2$$



Convergence (no) to the squared pressures. With close up



- Minimize  $\|\boldsymbol{d}_k \boldsymbol{p}_k^2\|^2$  with gradient iteration
  - $d_{k+1} = d_k \frac{1}{\gamma} (d_k p_k^2)$
  - $p_{k+1}$  solution of 4 with new  $d_{k+1}$ .





Convergence to the squared pressures





Convergence to the squared pressures (semi-log scale)





Convergence to the squared pressures (semi-log scale)



## Transient Case: successive $d^m$ . Convergence proof ideas

**Theorem**. Let  $x^*$  be a fixed point of  $x^{k+1} = g(x^k)$ , g(x) is differentiable at  $x^*$  and spectral radius of Jacobian  $g'(x^*)$  satisfies  $\rho = \rho\left(g'(x^*)\right) < 1$ . Then  $x^{k+1} = g(x^k)$  converges to  $x^*$  locally. Particularly,

$$\forall \ \varepsilon \in (0, 1 - \rho) \ \exists \ \delta > 0, \ c \in \mathbb{R} : \forall k \ge 0 \ \|x^k - x^*\| \le c \left(\rho + \varepsilon\right)^k$$
 if  $\|x^0 - x^*\| \le \delta$ .



## Transient Case: successive $d^m$ . Convergence proof ideas

$$\begin{split} &\left|\left(Q_{i,i+1}^{m}\right)_{k}\right|\left(Q_{i,i+1}^{m}\right)_{k}-\left(\left(d_{i+1}^{m}\right)_{k}-\left(d_{i}^{m}\right)_{k}\right)=0\Longrightarrow\\ &\Longrightarrow\left(Q_{i,i+1}^{m}\right)_{k}=\sqrt{\left|\left(d_{i+1}^{m}\right)_{k}-\left(d_{i}^{m}\right)_{k}\right|}\operatorname{sign}\left(\left(d_{i+1}^{m}\right)_{k}-\left(d_{i}^{m}\right)_{k}\right) \end{split}$$



Graphical representation of the dissipative equation **Skolte** 

# Transient Case: successive $d^m$ . Convergence proof ideas

$$\begin{split} &\frac{\left(\boldsymbol{p}_{i}^{m+1}\right)_{k}-\left(\boldsymbol{p}_{i}^{m}\right)_{k}}{\varepsilon_{t}}+\frac{\left(\boldsymbol{Q}_{i,i+1}^{m}\right)_{k}-\left(\boldsymbol{Q}_{i-1,i}^{m}\right)_{k}}{\varepsilon_{x}}=0\Longrightarrow\\ &\left(\boldsymbol{p}_{i}^{m+1}\right)_{k}=\left(\boldsymbol{p}_{i}^{1}\right)_{k}-\frac{\varepsilon_{t}}{\varepsilon_{x}}\sum_{m'=1}^{m-1}\left(\boldsymbol{Q}_{i,i+1}^{m'}\right)_{k}-\left(\boldsymbol{Q}_{i-1,i}^{m'}\right)_{k},\\ &\left(\boldsymbol{Q}_{i,i+1}^{m}\right)_{k}=\sqrt{\left|\left(\boldsymbol{d}_{i+1}^{m}\right)_{k}-\left(\boldsymbol{d}_{i}^{m}\right)_{k}\right|}\operatorname{sign}\left(\left(\boldsymbol{d}_{i+1}^{m}\right)_{k}-\left(\boldsymbol{d}_{i}^{m}\right)_{k}\right)\\ &\boldsymbol{d}_{k}=\boldsymbol{d}_{k-1}-\frac{1}{\gamma}\left(\boldsymbol{d}_{k-1}-\boldsymbol{p}_{k}^{2}\right) \end{split}$$

This is  $g(\cdot)!$  Magenta colored expressions allow to get  $d_{k+1}$  as a function of  $p_k$ 



### Outline

1 Transient Gas Flow Optimization Problem Issues

