CS 228M: Logic in CS

Domain Transformations

Ashwin Abraham

11th October, 2023

Given an FO formula $\eta(x)$ with one free variable x, for any word w, define w_{η} as the word obtained by only retaining the alphabets in w at positions i satisfying η (ie i is such that w satisfies $\eta(x)$ under the assignment $x \to i$), and deleting the rest. For a language L, we define $L_{\eta} = \{w : w_{\eta} \in L\}^{1}$. This transformation of a language is known as a domain transformation to the domain of η . We show that if a language L is FO definable, then the transformed language L_{η} is also FO definable, and we construct an FO formula defining L_{η} from the FO formula of L.

Recall that the atomic formulae of FO[<] are $x=y, \ x< y$ and $Q_a(x)$ where x and y are variables and a is an alphabet. If φ and ψ are FO formulae, then so are $\varphi \wedge \psi, \ \varphi \vee \psi, \ \varphi \Longrightarrow \psi, \ \neg \varphi$ and $\neg \psi$. If φ contains a free variable x (we write $\varphi(x)$), then $\forall x \ \varphi(x)$ and $\exists x \ \varphi(x)$ are also FO formulae. Note that $x \neq y$ and S(x,y) are shorthands for $\neg (x=y)$ and $x < y \wedge \forall z (x < z \Longrightarrow (y=z \vee y < z))$ respectively. For each FO formulae φ there is a unique sequence of production rules we can apply to generate φ from the atomic formulae. Recall that for any FO sentence (ie formula with no free variables) φ , we define $L(\varphi)$ to be the set of words w satisfying φ . For any formulae φ and η , define φ_{η} such that:

- For atomic formulae φ , $\varphi_{\eta} = \varphi$
- $(\varphi \circ \psi)_{\eta} = \varphi_{\eta} \circ \psi_{\eta}$ for any binary connective $\circ \in \{\land, \lor, \Longrightarrow \}$
- $(\neg \varphi)_{\eta} = \neg \varphi_{\eta}$
- $(\forall x \ \varphi(x))_{\eta} = \forall x (\eta(x) \implies \varphi_{\eta}(x))$
- $(\exists x \ \varphi(x))_{\eta} = \exists x (\eta(x) \land \varphi_{\eta}(x))$

Taking the η -transform of an FO formula φ to get φ_{η} corresponds to modifying the \forall and \exists steps in the sequence of steps generating φ by adding an implication and a conjunction respectively with η , as described above.

Theorem 1. For any FO sentence φ , $L(\varphi)_{\eta} = L(\varphi_{\eta})$, ie for any word w, $w \vDash \varphi_{\eta} \iff w_{\eta} \vDash \varphi$

Proof. The intuition behind by changing $\forall x \ \varphi(x)$ to $\forall x(\eta(x) \implies \varphi_{\eta}(x))$ and $\exists x \ \varphi(x)$ to $\exists x(\eta(x) \land \varphi_{\eta}(x))$ we restrict the domain of these variables to that of η and since φ is has no free variables, the domain of every variable is restricted this way.

We can prove the theorem formally by structural induction on φ . Let $\mathcal{D}_{\eta}(w)$ be the set of positions in w that satisfy η . We strengthen the inductive hypothesis to claim that for any FO formula φ and assignment α of variables to elements of $\mathcal{D}_{\eta}(w)$, $w \vDash_{\alpha} \varphi_{\eta} \iff w_{\eta} \vDash_{\alpha'} \varphi$. Here α' is an assignment on w_{η} such that $\alpha'(x)$ is equal to the number of elements in $\mathcal{D}_{\eta}(w)$ less than $\alpha(x)$, for any variable x.

Let us consider the case where $w_{\eta} = \varepsilon$, ie $\mathcal{D}_{\eta}(w)$ is empty separately, as here there are no assignments of variables to elements of $\mathcal{D}_{\eta}(w)$. Our inductive hypothesis therefore becomes vacuously true. Note that in this case, if φ is a sentence, then $\varepsilon \vDash \varphi$ if and only if assigning all existentially qualified clauses false and all universally qualified true causes the whole sentence to be true. Note that the same condition arises for $w \vDash \varphi_{\eta}$ to be true, as we have $\forall x \neg \eta(x)$, since $\mathcal{D}_{\eta}(w) = \varnothing$. Therefore, when $w_{\eta} = \varepsilon$, for any sentence φ , we have $w \vDash \varphi_{\eta} \iff w_{\eta} \vDash \varphi$. When $w_{\eta} \neq \varepsilon$, ie $\mathcal{D}_{\eta}(w)$ is not empty, then our inductive hypothesis reduces to $w \vDash \varphi_{\eta} \iff w_{\eta} \vDash \varphi$ when φ is a sentence. This is because, for a sentence, satisfaction is independent of the assignment to the variables. Henceforth in our proof, we will assume $\mathcal{D}_{\eta}(w)$ is non-empty.

The base cases of our structural induction are when φ is an atomic formula such as x < y, x = y, or $Q_b(x)$ for some alphabet b. In these cases $\varphi_{\eta} = \varphi$ and it is easy to see why our claim holds. Assuming our claim holds for φ and ψ , it is again easy to see why it holds for $\neg \varphi$ and $\varphi \circ \psi$.

Now, assuming our claim holds for $\varphi(x)$ (where x is a free variable), let us show that it holds $\forall x \ \varphi(x)$ as well. In this case, $(\forall x \ \varphi(x))_{\eta} = (\forall x (\eta(x) \implies \varphi_{\eta}(x)))$. If $w_{\eta} \vDash_{\alpha'} \forall x \ \varphi(x)$, then this means for every $0 \le i < |\mathcal{D}_{\eta}(w)|$,

¹If I had instead defined this as $\{w_{\eta}: w \in L\}$, would this still always be FO definable?

 $w_{\eta} \vDash_{\alpha'[x \to i]} \varphi(x)$. By the inductive hypothesis, this occurs if and only if $w \vDash_{\alpha[x \to j]} \varphi_{\eta}(x)$ for every j satisfying η , which occurs if and only if $w \vDash_{\alpha[x \to j]} (\eta(x) \implies \varphi_{\eta}(x))$ for every j, ie $w \vDash_{\alpha} \forall x (\eta(x) \implies \varphi_{\eta}(x))$, ie the claim holds for $\forall x \varphi(x)$.

Now let us show that it holds for $\exists x \ \varphi(x)$ too. If $w_{\eta} \vDash_{\alpha'} \exists x \ \varphi(x)$, then this means there is some $0 \le i < |\mathcal{D}_{\eta}(w)|$ such that $w_{\eta} \vDash_{\alpha'_{[x \to i]}} \varphi(x)$. By the inductive hypothesis, this occurs if and only if $w \vDash_{\alpha_{[x \to j]}} \varphi_{\eta}(x)$ for some j satisfying η , which itself occurs if and only if there is some j such that $w \vDash_{\alpha_{[x \to j]}} \eta(x) \land \varphi_{\eta}(x)$, ie $w \vDash \exists x (\eta(x) \land \varphi_{\eta}(x))$, ie the claim holds for $\exists x \ \varphi(x)$ too, which completes our induction.

The concept of domain transformations often proves to be quite useful. For example, we can prove that the concatenation of two FO definable languages $L_1 = L(\varphi)$ and $L_2 = L(\psi)$ is also FO definable. If a word $w \in L(\varphi)L(\psi)$, then there must be some p such that the first p letters of w satisfy φ and the remaining letters satisfy ψ . We will therefore construct two domains, $\{x: x < p\}$ and $\{x: \neg(x < p)\}$. The FO formula defining $L(\varphi)L(\psi)$ then becomes $\exists p(\varphi_{< p} \land \psi_{\geq p})$, where $\varphi_{< p} = \varphi_{\{x:x < p\}}$ and so on. This is actually incorrect, as this excludes the possibility that the entire string w is from L_1 and the empty string lies in L_2 , so to fix that, we need to modify the equation to be

$$\exists p(\varphi_{\leq p} \land \psi_{\geq p}) \lor \exists p(\varphi_{\leq p} \land \psi_{>p})$$

Another use of this concept is in showing that $\mathtt{shuffle}(L_1, L_2)$ is FO definable if L_1 is a finite language and L_2 is an FO definable language. Recall that for words $w_1, w_2 \in \Sigma^*$, $\mathtt{shuffle}(w_1, w_2)$ was defined as the set $\{x_1y_1 \ldots x_ky_k : x_1 \ldots x_k = w_1, y_1 \ldots y_k = w_2\}$. Note that x_i and y_i here are subwords of w_1 and w_2 , not necessarily alphabets. For languages L_1, L_2 , $\mathtt{shuffle}(L_1, L_2)$ is defined as \bigcup $\mathtt{shuffle}(u, v)$.

necessarily alphabets. For languages L_1, L_2 , snuffle (L_1, L_2) is defined as $\bigcup_{\substack{u \in L_1 \\ v \in L_2}} u \in L_1$ If L_1 is a finite language, say $\{w_1, \dots w_n\}$, then clearly shuffle $(L_1, L_2) = \bigcup_{\substack{1 \le i \le n \\ 1 \le i \le n}} \text{shuffle}(w_i, L_2)$. Since the

union is finite, showing that $\mathtt{shuffle}(w,L)$ is FO definable, when w is a word and L is an FO definable language is sufficient. Let $w=a_1\ldots a_k$, where a_i are the alphabets. If a word $v\in\mathtt{shuffle}(w,L)$, then there must exist positions p_1 to p_k in v corresponding to the insertion of a_1 to a_k , on removal of which we get a word in L. If $L=L(\varphi)$, our formula therefore becomes

$$\exists p_1, \dots p_k \left[\bigwedge_{1 \le i < k} p_i < p_{i+1} \land \bigwedge_{1 \le i \le k} Q_{a_i}(p_i) \land \varphi_\eta \right]$$

where
$$\eta = \{x : \bigwedge_{1 \le i \le k} x \ne p_k\}.$$