

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/540,844	01/26/2006	Jadwiga Bienkowska	ARS-110	2201
23557	7590	09/17/2008	EXAMINER	
SALIWANCHIK LLOYD & SALIWANCHIK A PROFESSIONAL ASSOCIATION PO BOX 142950 GAINESVILLE, FL 32614-2950			BUNNER, BRIDGET E	
			ART UNIT	PAPER NUMBER
			1647	
			MAIL DATE	DELIVERY MODE
			09/17/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/540,844	BIENKOWSKA ET AL.	
	Examiner	Art Unit	
	Bridget E. Bunner	1647	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 24 June 2008.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 57-80 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 57-80 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 27 June 2005 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|--|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date <u>4/21/06</u> . | 6) <input checked="" type="checkbox"/> Other: <u>Revised Notice; PTO-90C</u> . |

DETAILED ACTION

Status of Application, Amendments and/or Claims

The amendments of 24 June 2008 and 27 June 2005 have been entered in full. Claims 1-56 are cancelled. Claims 57-80 are added.

Election/Restrictions

Applicant's election without traverse of Group I, claims 42-44, 47, 48-50 in the reply filed on 24 June 2008 is acknowledged.

Claims 57-80 are under consideration in the instant application.

Sequence Compliance

This application contains sequence disclosures that are encompassed by the definitions for nucleotide and/or amino acid sequences set forth in 37 CFR 1.821(a)(1) and (a)(2).

Specifically, the sequences disclosed in Figures 1 and 2 are not accompanied by the required reference to the relevant sequence identifiers. This application fails to comply with the requirements of 37 CFR 1.821 through 1.825. Applicant must comply with the requirements of the sequence rules (37 CFR 1.821 - 1.825). Please also see the enclosed Revised Notice to Comply and PTO-90C.

Specification

1. The disclosure is objected to because of the following informalities:
2. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.

The following title is suggested: "NOTCH-LIKE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE POLYPEPTIDES".

Appropriate correction is required.

Claim Objections

3. Claim 80 is objected to because of the following informalities:
4. In claim 80, line 1 a word is missing after the term “comprising”.

Appropriate correction is required.

Claim Rejections - 35 USC § 112, second paragraph

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

5. Claims 57-80 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
6. The term "notch-like activity" in claims 57-80 is a relative term which renders the claims indefinite. The term "notch-like activity" is not defined by the claims, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. It is well known in the art that Notch proteins have many different activities (see for instance, specification page 2, lines 3-29).

However, the specification does not define “notch-like activity” and hence, the skilled artisan would not know how to identify the claimed polypeptides of the instant invention.

Claim Rejections - 35 USC § 101 and 35 U.S.C. § 112, first paragraph

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

7. Claims 57-80 are rejected under 35 U.S.C. 101 because the claimed invention is not supported by either a credible, specific and substantial asserted utility or a well established utility. Novel biological molecules lack well established utility and must undergo extensive experimentation.

The claims are directed to an isolated polypeptide comprising (a) SEQ ID NO: 2; (b) SEQ ID NO: 4; (c) an amino acid sequence having at least 85% identity to SEQ ID NO: 2 or 4 and having notch-like activity; (d) a fusion protein comprising a heterologous sequence and a polypeptide set forth in (a) or (b) or (c); or a polypeptide as set forth in (a) or (b) or (c) or (d), wherein said polypeptide further comprises radioactive labels, fluorescent labels, biotin, or cytotoxic agents. The claims are also directed to nucleic acid molecules that encode such polypeptides. Claim 79 recites a vector comprising the nucleic acid. Claim 80 recites an isolated host cell comprising the nucleic acid.

The specification of the instant application discloses that “[t]he invention is based upon the identification of an Open Reading Frame (ORF) in the human genome encoding a novel notch-like polypeptide” (page 3, lines 4-6). However, the instant specification does not teach any significance or functional characteristics of the SCS0006 notch-like polypeptides (SEQ ID NO: 2, SEQ ID NO: 4) or nucleic acid molecules (SEQ ID NO: 1, SEQ ID NO: 3). The specification also does not disclose any methods or working examples that indicate the polypeptides and nucleic acids of the instant invention are involved in any activity. There is no

biological activity, expression pattern, phenotype, disease or condition, ligand, binding partner, or any other specific feature that is disclosed as being associated with SCS0006. Without any information as to the specific properties of SCS0006, the mere identification of the polypeptide is not sufficient to impart any particular utility to the claimed polypeptides and nucleic acids. Since significant further research would be required of the skilled artisan to determine how the claimed polypeptides and nucleic acids are involved in any activities, the asserted utilities are not substantial. Since the utility is not presented in mature form and significant further research is required, the utility is not substantial. The specification asserts the following as patentable utilities for the claimed putative polypeptides (SEQ ID NO: 2, SEQ ID NO: 4) and nucleic acids (SEQ ID NO: 1, SEQ ID NO: 3):

- 1) to produce a variant polypeptide (page 10, lines 6-30 through page 17)
- 2) to screen for compounds that enhance or reduce expression level of the polypeptide or nucleic acid (page 22, lines 1-4)
- 3) to produce antibodies against the polypeptide (page 15, lines 1-10)
- 4) to treat diseases and conditions in which the notch-like polypeptide is implicated (page 6, lines 27-29; page 7, lines 1-7; page 8, lines 18-30; page 9, lines 1-3)
- 5) to diagnose disease in a patient (page 7, lines 8-27)
- 6) to generate transgenic or “knock out” animals (page 9, lines 4-9)

Each of these shall be addressed in turn.

1) to produce a variant polypeptide. This asserted utility is not specific or substantial.

Such assays can be performed with any polypeptide. Further, the specification discloses nothing specific or substantial for the variant polypeptide that is produced by this method. Since this

Art Unit: 1647

asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

2) to screen for compounds that enhance or reduce expression level of the polypeptide or nucleic acid. This asserted utility is not specific or substantial. Such assays can be performed with any polypeptide or nucleic acid. Additionally, the specification discloses nothing specific or substantial for the compounds that can be identified by this method. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

3) to produce antibodies against the polypeptide. This asserted utility is not specific or substantial. Antibodies can be made to any polypeptide. However, if the specification discloses nothing specific and substantial about the polypeptide, therefore both the polypeptide and its antibodies have no patentable utility. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

4) treat diseases and conditions in which the notch-like polypeptide is implicated. This asserted utility is not specific or substantial. The specification does not disclose which cells or tissues are to be targeted or which diseases or disorders are to be treated. Significant further experimentation would be required of the skilled artisan to identify individuals with such a disease or condition. The specification also does not disclose if the cells, tissues, or disorders are associated with altered levels or forms of the SCS0006 polypeptide or nucleic acid. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

Art Unit: 1647

5) *to diagnose disease in a patient.* This asserted utility is not specific or substantial. Such assays can be performed with any polypeptide or nucleic acid. Further, the specification does not disclose the tissues or cell types the polypeptide or nucleic acid is normally expressed in. The specification also discloses nothing about the normal levels of expression of the polypeptide or nucleic acid or a specific DNA target. The specification does not disclose diseases associated with a SCS0006 polypeptide or nucleic acid. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

6) *to generate transgenic or “knock out” animals.* This asserted utility is not specific or substantial. The specification does not disclose diseases associated with a mutated, deleted, or translocated SCS0006 gene (SEQ ID NOs: 1, 3). Significant further experimentation would be required of the skilled artisan to identify such a disease. The specification discloses nothing about whether the gene will be “knocked in” or “knocked out” or what specific tissues and cells are being targeted. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

8. Claims 57-80 are also rejected under 35 U.S.C. 112, first paragraph. Specifically, since the claimed invention is not supported by either a specific and substantial asserted utility or a well established utility for the reasons set forth above, one skilled in the art clearly would not know how to use the claimed invention.

9. However, even if the claimed invention is eventually deemed to have a credible, specific and substantial asserted utility or a well established utility, claims 57, 60-61, 64-68, 71-72, and

75-80 would remain rejected under 35 U.S.C. § 112, first paragraph. Specifically, the specification teaches that the invention includes variants of the amino acid sequence recited in SEQ ID NO: 2 or SEQ ID NO: 4, wherein any amino acid specified in the chosen sequence is non-conservatively substituted, provided that no more than 15%, preferably no more than 10%, 5%, 3%, or 1% of the amino acid residues in the sequence are so changed" (page 10, lines 6-9 and lines 22-27). However, the specification does not teach any variant, fragment, or derivative of the SCS0006 polypeptide and nucleic acid other than the full-length amino acid sequences of SEQ ID NO: 2 and 4 and the full-length nucleic acid sequences of SEQ ID NOs: 1 and 3. The specification also does not teach functional or structural characteristics of the polypeptide variants, fragments, and derivatives (including the extracellular domain) recited in the claims.

The problem of predicting protein and DNA structure from sequence data and in turn utilizing predicted structural determinations to ascertain functional aspects of the protein and DNA is extremely complex. While it is known that many amino acid substitutions are generally possible in any given protein the positions within the protein's sequence where such amino acid substitutions can be made with a reasonable expectation of success are limited. Certain positions in the sequence are critical to the protein's structure/function relationship, e.g. such as various sites or regions directly involved in binding, activity and in providing the correct three-dimensional spatial orientation of binding and active sites. These or other regions may also be critical determinants of antigenicity. These regions can tolerate only relatively conservative substitutions or no substitutions (see Wells, 1990, Biochemistry 29:8509-8517; Ngo et al., 1994, The Protein Folding Problem and Tertiary Structure Prediction, pp. 492-495). However, Applicant has provided little or no guidance beyond the mere presentation of sequence data to

enable one of ordinary skill in the art to determine, without undue experimentation, the positions in the DNA and protein which are tolerant to change (e.g. such as by amino acid substitutions or deletions), and the nature and extent of changes that can be made in these positions. Even if an active or binding site were identified in the specification, they may not be sufficient, as the ordinary artisan would immediately recognize that an active or binding site must assume the proper three-dimensional configuration to be active, which conformation is dependent upon surrounding residues; therefore substitution of non-essential residues can often destroy activity. The art recognizes that function cannot be predicted from structure alone (Bork, 2000, Genome Research 10:398-400; Skolnick et al., 2000, Trends in Biotech. 18(1):34-39, especially p. 36 at Box 2; Doerks et al., 1998, Trends in Genetics 14:248-250; Smith et al., 1997, Nature Biotechnology 15:1222-1223; Brenner, 1999, Trends in Genetics 15:132-133; Bork et al., 1996, Trends in Genetics 12:425-427).

Due to the large quantity of experimentation necessary to generate the infinite number of derivatives recited in the claims and possibly screen same for activity, the lack of direction/guidance presented in the specification regarding which structural features are required in order to provide activity, the absence of working examples directed to same, the complex nature of the invention, the state of the prior art which establishes the unpredictability of the effects of mutation on protein structure and function, and the breadth of the claims which fail to recite any structural or functional limitations, undue experimentation would be required of the skilled artisan to make and/or use the claimed invention in its full scope.

Art Unit: 1647

10. Claims 57, 60-61, 64-68, 71-72, and 75-80 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

The claims are directed to an isolated polypeptide comprising (a) SEQ ID NO: 2; (b) SEQ ID NO: 4; (c) an amino acid sequence having at least 85% identity to SEQ ID NO: 2 or 4 and having notch-like activity; (d) a fusion protein comprising a heterologous sequence and a polypeptide set forth in (a) or (b) or (c); or a polypeptide as set forth in (a) or (b) or (c) or (d), wherein said polypeptide further comprises radioactive labels, fluorescent labels, biotin, or cytotoxic agents. The claims are also directed to nucleic acid molecules that encode such polypeptides. Claim 79 recites a vector comprising the nucleic acid. Claim 80 recites an isolated host cell comprising the nucleic acid.

The specification teaches that the instant invention includes variants of the amino acid sequence recited in SEQ ID NO: 2 or SEQ ID NO: 4, wherein any amino acid specified in the chosen sequence is non-conservatively substituted, provided that no more than 15%, preferably no more than 10%, 5%, 3%, or 1% of the amino acid residues in the sequence are so changed” (page 10, lines 6-9 and lines 22-27). The claims of the instant application do not require that the polypeptide variants possess any particular conserved structure or other disclosed distinguishing feature. Thus, the claims are drawn to a genus of polypeptides and nucleic acids encoding such. To provide adequate written description and evidence of possession of a claimed genus, the specification must provide sufficient distinguishing identifying characteristics of the genus. The

factors to be considered include actual reduction to practice, disclosure of drawings or structure chemical formulas, sufficient relevant identifying characteristics (such as, complete or partial structure, physical and/or chemical properties, and functional characteristics when coupled with a known or disclosed structure/function correlation), methods of making the claimed product, level of skill and knowledge in the art, predictability in the art, or any combination thereof.

However, in this case, the specification fails to disclose and there is no art-recognized correlation between the structure of the genus of claimed polypeptides (and nucleic acids) and their function of notch-like activity. The specification does not teach which 15% of the amino acids can vary from SEQ ID NOs: 2 and 4 and still result in a protein that retains notch-like activity. The specification also does not teach which nucleic acids that encode a polypeptide with at least 85% sequence identity to SEQ ID NO: 2 or 4 encode a polypeptide having the required notch-like activity. Therefore, the description of two notch-like polypeptides (SEQ ID NOs: 2, 4) and nucleic acids encoding such (SEQ ID NOs: 1, 3) is not adequate written description of an entire genus of functionally equivalent polypeptides and nucleic acids having notch-like activity.

Vas-Cath Inc. v. Mahurkar, 19USPQ2d 1111, clearly states that “applicant must convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession of the invention. The invention is, for purposes of the ‘written description’ inquiry, whatever is now claimed” (See page 1117). The specification does not “clearly allow persons of ordinary skill in the art to recognize that [he or she] invented what is claimed” (See *Vas-Cath* at page 1116).

Thus, the skilled artisan cannot envision the detailed chemical structure of the polypeptide and nucleic acid variants of the encompassed claims, and therefore conception is not

achieved until reduction to practice has occurred, regardless of the complexity or simplicity of the method of isolation. Adequate written description requires more than a mere statement that it is part of the invention and reference to a potential method of isolating it. The polypeptides and nucleic acid molecules are required. See *Fiers v. Revel*, 25 USPQ2d 1601 at 1606 (CAFC 1993) and *Amgen Inc. v. Chugai Pharmaceutical Co. Ltd.*, 18 USPQ2d 1016.

One cannot describe what one has not conceived. See *Fiddes v. Baird*, 30 USPQ2d 1481 at 1483. In *Fiddes*, claims directed to mammalian FGF's were found to be unpatentable due to lack of written description for that broad class. The specification provided only the bovine sequence.

Therefore, only an isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 and nucleic acid molecules encoding such, but not the full breadth of the claims meets the written description provision of 35 U.S.C. §112, first paragraph. Applicant is reminded that *Vas-Cath* makes clear that the written description provision of 35 U.S.C. §112 is severable from its enablement provision (see page 1115).

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

Art Unit: 1647

11. Claims 57, 60-61, 64-68, 71-72, and 75-80 are rejected under 35 U.S.C. 102(e) as being anticipated by Karim et al. (US20030100005; priority to 26 November 2001).

Karim et al. teach an isolated CRUMBS (CRB) protein that is 98% identical to the amino acid sequence of SEQ ID NO: 2 and 99% identical to the amino acid sequence of SEQ ID NO: 4 of the instant application (see SEQ ID NO: 17 of Karim et al.; also, see sequence alignments attached to the instant Office Action as Appendices A and B, respectively). Karim et al. disclose an isolated nucleic acid encoding a polypeptide that is at least 85% identical to the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4 (see SEQ ID NO: 8 of Karim et al.; see sequence alignments attached to the instant Office Action as Appendices C and D, respectively). Karim et al. also teach that the nucleotide sequence encoding a CRB polypeptide can be inserted into any appropriate expression vector (page 4, [0032-0033]). Karim et al. teach an isolated host cell comprising the CRB nucleic acid/vector (page 4, [0032]).

Conclusion

No claims are allowable.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Bridget E. Bunner whose telephone number is (571) 272-0881. The examiner can normally be reached on 8:30-4:30 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Manjunath Rao can be reached on (571) 272-0939. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

BEB
Art Unit 1647
10 September 2008

/Bridget E Bunner/
Primary Examiner, Art Unit 1647

Art Unit: 1647

Appendix A

SEQ ID NO: 2

US-10-303-685-17
: Sequence 17, Application US/10303685
: Publication No. US20030100005A1
: GENERAL INFORMATION:
: APPLICANT: Exelixis, Inc.
: TITLE OF INVENTION: CRBs AS MODIFIERS OF BRANCHING MORPHOGENESIS AND METHODS OF USE
: FILE REFERENCE: EX02-125C
: CURRENT APPLICATION NUMBER: US/10/303,685
: CURRENT FILING DATE: 2002-11-25
: PRIOR APPLICATION NUMBER: 60/333,388
: PRIOR FILING DATE: 2001-11-26
: NUMBER OF SEQ ID NOS: 17
: SOFTWARE: PatentIn version 3.1
: SEQ ID NO 17
: LENGTH: 1307
: TYPE: PRT
: ORGANISM: Homo sapiens
US-10-303-685-17

```

Query Match          98.0%; Score 6765.5; DB 4; Length 1307;
Best Local Similarity 93.4%; Pred. No. 0;
Matches 1221; Conservative 0; Mismatches 3; Indels 83; Gaps 3;

Qy      13 MALARPGTPDPQALASVLLLLWAPALSLLA-----GTVPSEP 50
        ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1 MALARPGTPDPQALASVLLLLWAPALSLLAGGNSLELCSEPKLSEVGQCQAQGTVPSEP 60

Qy      51 PSACASDPCAPGTECQATESGGYTCGPMEPRGCATQPCHHGALCVPQGPDPNGFRCYCVP 110
        ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      61 PSACASDPCAPGTECQATESGGYTCGPMEPRGCATQPCHHGALCVPQGPDPNGFRCYCVP 120

Qy      111 GFQGPRCELDIDECASRPCHHGATCRNLADRYECHCPLGYAGVTCEMEVDECASAPCLHG 170
        ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      121 GFQGPRCELDIDECASRPCHHGATCRNLADRYECHCPLGYAGVTCEMEVDECASAPCLHG 180

Qy      171 GSCLDGVGGSFRVCVCAPGYGGTRCQLDLDECQSQPCAHGGTCHDLVNGFRCDCAGTGYEGT 230
        ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      181 GSCLDGVGGSFRVCVCAPGYGGTRCQLDLDECQSQPCAHGGTCHDLVNGFRCDCAGTGYEGT 240

Qy      231 HCEREVLECASAPCEHNASCLEGLGSFRCLCWPGYSGELCEVDEDECASSPCQHGGRCLQ 290
        ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      241 HCEREVLECASAPCEHNASCLEGLGSFRCLCWPGYSGELCEVDEDECASSPCQHGGRCLQ 300

Qy      291 RSDPALYGGVQAAFPGAFSFRHAAGFLCHCPPGF----- 325
        ||||||| | | | | | | | | | | | | | | | | | | | |
Db      301 RSDPALYGGVQAAFPGAFSFRHAAGFLCHCPPFEGADCGVVEVDECASRPCLNGGHQCDL 360

Qy      326 -----GPTCEEDVDECLSDPCLHGGTCSDTVAGYICRCPETWGGRDCSVQLT 372
        ||||||| | | | | | | | | | | | | | | | | | | | |
Db      361 PNGFQCHCPDGYAGPTCEEDVDECLSDPCLHGGTCSDTVAGYICRCPETWGGRDCSVQLT 420

Qy      373 GCQGHTCPLAACIPIFESGVHSYVCHCPCGTHGPFCGQNTTF SVMAGSPPIQASVPAGGP 432
        ||||||| | | | | | | | | | | | | | | | | | | | | |
Db      421 GCQGHTCPLAACIPIFESGVHSYVCHCPCGTHGPFCGQNTTF SVMAGSPPIQASVPAGGP 480

```

Art Unit: 1647

Qy	433 LGLALRFRRTLPAGTLATRNDTKESLELALVAATLQATLWSYSTTVLVLRLPDLALNDGH 492
Db	481 LGLALRFRRTLPAGTLATRNDTKESLELALVAATLQATLWSYSTTVLVLRLPDLALNDGH 540
Qy	493 WHQVEVVLHLATLELRLWHEGCPARLCVASGPVALASTASATPLPAGISSAQLGDATFAG 552
Db	541 WHQVEVVLHLATLELRLWHEGCPARLCVASGPVALASTASATPLPAGISSAQLGDATFAG 600
Qy	553 CLQDVRVDGHLLPEDLGENVLLGCERREQCRPLPCVHGGSCVDLWTHFRCDCCARPHRG 612
Db	601 CLQDVRVDGHLLPEDLGENVLLGCERREQCRPLPCVHGGSCVDLWTHFRCDCCARPHRG 660
Qy	613 TCADEIPAATFGLGGAPSSASFLLQELPGPNLTVSFLLRTRESAGLLLQFANDSAAGLTV 672
Db	661 TCADEIPAATFGLGGAPSSASFLLQELPGPNLTVSFLLRTRESAGLLLQFANDSAAGLTV 720
Qy	673 FLSEGRIRAEAPGSPAVVLPGRWDDGLRHLVMLSFGPDQLQD LGQHVHVGGRLLAADSQP 732
Db	721 FLSEGRIRAEVPGSPAVVLPGRWDDGLRHLVMLSFGPDQLQD LGQHVHVGGRLLAADSQP 780
Qy	733 WGGPFRGCLQDLRLDGCHLPFFPLLDNSSQPSLEGGRQSWNLTAGCVSEDMCSPDPCFN 792
Db	781 WGGPFRGCLQDLRLDGCHLPFFPLLDNSSQPSLEGGRQSWNLTAGCVSEDMCSPDPCFN 840
Qy	793 GGTCLVTWNDFHCTCPANFTGPTCAQQLWCPGQPCCLPPATCEEVPDGFVCVAEATFREGP 852
Db	841 GGTCLVTWNDFHCTCPANFTGPTCAQQLWCPGQPCCLPPATCEEVPDGFVCVAEATFREGP 900
Qy	853 PAAFSGHNASSGRLLLGGSLAFRTRDSEAWLLRAAAGALEGVULAVRNGLLAGGVRGHG 912
Db	901 PAAFSGHNASSGRLLLGGSLAFRTRDSEAWLLRAAAGALEGVULAVRNGLLAGGVRGHG 960
Qy	913 LPGAVLPPIPGRVADGAHHRVRLAMERPAATS RWLWLWDGAATPVALRGLASDLGFLQG 972
Db	961 LPGAVLPPIPGRVADGAHHRVRLAMERPAATT SRWLWLWDGAATPVALRGLASDLGFLQG 1020
Qy	973 PGAVRILLAENFTGCLGR-----HFASWPGTPAPILGCRGAP 1009
Db	1021 PGAVRILLAENFTGCLGRVALGGPLPLARP RPGAAPGAREHFASWPGTPAPILGCRGAP 1080
Qy	1010 VCAPSCLHDGACRDLFDAFACACGPGWEGPRCEAHVDPCHSAPCARGRCHTHPDGRFEC 1069
Db	1081 VCAPSCLHDGACRDLFDAFACACGPGWEGPRCEAHVDPCHSAPCARGRCHTHPDGRFEC 1140
Qy	1070 RCPPGFGGPRCRLPVPSKECSLNVTC LDGSPCEGGSPAANCSCLEGLAGQRCQVPTLPCE 1129
Db	1141 RCPPGFGGPRCRLPVPSKECSLNVTC LDGSPCEGGSPAANCSCLEGLAGQRCQVPTLPCE 1200
Qy	1130 ANPCLNGGTCAAGGVSECICMARFSGQFCEVAKGLPLPLPFPLLEVAVPAACACLLL 1189
Db	1201 ANPCLNGGTCAAGGVSECICMARFSGQFCEVAKGLPLPLPFPLLEVAVPAACACLLL 1260
Qy	1190 LGLLSGILAARKRRQSEGTYSPSQQEVARLEMDSVLKVPPEERLI 1236
Db	1261 LGLLSGILAARKRRQSEGTYSPSQQEVARLEMDSVLKVPPEERLI 1307

Art Unit: 1647

Appendix B
SEQ ID NO: 4

RESULT 3
US-10-303-685-17
: Sequence 17, Application US/10303685
: Publication No. US20030100005A1
: GENERAL INFORMATION:
: APPLICANT: Exelixis, Inc.
: TITLE OF INVENTION: CRBs AS MODIFIERS OF BRANCHING MORPHOGENESIS AND METHODS OF USE
: FILE REFERENCE: EX02-125C
: CURRENT APPLICATION NUMBER: US/10/303,685
: CURRENT FILING DATE: 2002-11-25
: PRIOR APPLICATION NUMBER: 60/333,388
: PRIOR FILING DATE: 2001-11-26
: NUMBER OF SEQ ID NOS: 17
: SOFTWARE: PatentIn version 3.1
: SEQ ID NO 17
: LENGTH: 1307
: TYPE: PRT
: ORGANISM: Homo sapiens
US-10-303-685-17

Query Match 99.0%; Score 6613.5; DB 4; Length 1307;
Best Local Similarity 94.9%; Pred. No. 0;
Matches 1186; Conservative 0; Mismatches 3; Indels 61; Gaps 2;

Qy 1 SEPPSACASDPCAPGTECQATESGGYTCGPMEPRGCATQPCHHGALCVPQGPDPNGFRCY 60
Db 58 SEPPSACASDPCAPGTECQATESGGYTCGPMEPRGCATQPCHHGALCVPQGPDPPTGFRCY 117

Qy 61 CVPGFQGPRCELDIDECA SRPCHHGATCRNLADRYECHCPLGYAGVTCEMEVDECASAPC 120
Db 118 CVPGFQGPRCELDIDECA SRPCHHGATCRNLADRYECHCPLGYAGVTCEMEVDECASAPC 177

Qy 121 LHGGSCLDGVSFRVCVCAPGYGGTRCQLDLDECQS QPCAHGGTCHDLVNGFR CDCAGTGY 180
Db 178 LHGGSCLDGVSFRVCVCAPGYGGTRCQLDLDECQS QPCAHGGTCHDLVNGFR CDCAGTGY 237

Qy 181 EGTHCEREVLECASAPCEHNASCLEGLGSFRCLCUPGYSGELCEVDEDECASSPCQHGR 240
Db 238 EGTHCEREVLECASAPCEHNASCLEGLGSFRCLCUPGYSGELCEVDEDECASSPCQHGR 297

Qy 241 CLQRSDP ALYGGVQAAFFPGAF SFRHAAGFLCHCPPGFE----- 278
Db 298 CLQRSDP ALYGGVQAAFFPGAF SFRHAAGFLCHCPPGFE ADCGV EVDECASRPCLNGHC 357

Qy 279 -----GPTCEEDVDECLSDPCLHGGTCS DT VAGYICRC PETWGGRDCSV 322
Db 358 QDLPNGFQCHCPDG YAGPTCEEDVDECLSDPCLHGGTCS DT VAGYICRC PETWGGRDCSV 417

Qy 323 QLTGCQGHTCPLAATCIPIFESGVHSYVCHCPPGTHGPFCGQNTTFSVMAGSP IQASVPA 382
Db 418 QLTGCQGHTCPLAATCIPIFESGVHSYVCHCPPGTHGPFCGQNTTFSVMAGSP IQASVPA 477

Art Unit: 1647

Qy	383	GGPLGLALRFRTTLPAGTLATRNDTKESLELALVAATLQATLWSYSTTVLVLRLPDLALN	442
Db	478	GGPLGLALRFRTTLPAGTLATRNDTKESLELALVAATLQATLWSYSTTVLVLRLPDLALN	537
Qy	443	DGHWHQVEVVLHLATLELRLWHEGCPARLCVASGPVALASTASATPLPAGISSAQLGDAT	502
Db	538	DGHWHQVEVVLHLATLELRLWHEGCPARLCVASGPVALASTASATPLPAGISSAQLGDAT	597
Qy	503	FAGCLQDVVRVDGHLLLPEDLGENVLLGCERREQCRLPCVHGGSCVDLWTHFRCDCARPH	562
Db	598	FAGCLQDVVRVDGHLLLPEDLGENVLLGCERREQCRLPCVHGGSCVDLWTHFRCDCARPH	657
Qy	563	RGPTCADEIPAATFGLGGAPSSASFLLQELPGPNLTFSFLRTRESAGLLLQFANDSAAG	622
Db	658	RGPTCADEIPAATFGLGGAPSSASFLLQELPGPNLTFSFLRTRESAGLLLQFANDSAAG	717
Qy	623	LTVFLSEGRIRAEAPGSPAVVLPGRUDDGLRHLMVLSFGPDQLQDGLQHWHVGGRLLAAD	682
Db	718	LTVFLSEGRIRAEVPGSPAVVLPGRUDDGLRHLMVLSFGPDQLQDGLQHWHVGGRLLAAD	777
Qy	683	SQPWGPFRGCLQDLRLDGCHLPFFPLPLDNSSQPSSELGGRQSWNLTAGCVSEDMCSPDP	742
Db	778	SQPWGPFRGCLQDLRLDGCHLPFFPLPLDNSSQPSSELGGRQSWNLTAGCVSEDMCSPDP	837
Qy	743	CFNGGTCLVTWNDFHCTCPANFTGPTCAQQLWCPGQPCLPATCEEVPDGFVCVAEATFR	802
Db	838	CFNGGTCLVTWNDFHCTCPANFTGPTCAQQLWCPGQPCLPATCEEVPDGFVCVAEATFR	897
Qy	803	EGPPAAFSGNASSGRLLGGSLAFRTRDSEAWLLRAAGALEGVWLAVRNGSLAGGVRG	862
Db	898	EGPPAAFSGNASSGRLLGGSLAFRTRDSEAWLLRAAGALEGVWLAVRNGSLAGGVRG	957
Qy	863	GHGLPGAVLPIPGPRVADGAHWRVRLAMERPAATSRWLLWLDGAATPVALRGLASDLGF	922
Db	958	GHGLPGAVLPIPGPRVADGAHWRVRLAMERPAATTSRWLLWLDGAATPVALRGLASDLGF	1017
Qy	923	LQGPGAVRILLAENFTGCLGR-----HFASWPGTPAPILGCR	959
Db	1018	LQGPGAVRILLAENFTGCLGRVALGGPLPLARPRPGAAPGAREHFASWPGTPAPILGCR	1077
Qy	960	GAPVCAPSPCLHDGACRDLFDAFACACGPGWEGPRCEAHVDPCHSAPCARGRCHTHPDGR	1019
Db	1078	GAPVCAPSPCLHDGACRDLFDAFACACGPGWEGPRCEAHVDPCHSAPCARGRCHTHPDGR	1137
Qy	1020	FECRCPGFGGPRCRLPVPSKECSLNVTCLDGSPECAGSPAANCSCLEGLAGQRCQVPTL	1079
Db	1138	FECRCPGFGGPRCRLPVPSKECSLNVTCLDGSPECAGSPAANCSCLEGLAGQRCQVPTL	1197
Qy	1080	PCEANPCLNGGTCAAGGVSECICNARFSGQFCEVAKGLPLPLFPPLLLEVAVPAACACLL	1139
Db	1198	PCEANPCLNGGTCAAGGVSECICNARFSGQFCEVAKGLPLPLFPPLLLEVAVPAACACLL	1257
Qy	1140	LLLLGLLSGILAARKRRQSEGTYSPSQEVAGARLEMDSVLPKVPPEERLI	1189
Db	1258	LLLLGLLSGILAARKRRQSEGTYSPSQEVAGARLEMDSVLPKVPPEERLI	1307

Art Unit: 1647

Appendix C
DNA encoding SEQ ID NO: 2

```
US-10-303-685-8
; Sequence 8, Application US/10303685
; Publication No. US20030100005A1
; GENERAL INFORMATION:
; APPLICANT: Exelixis, Inc.
; TITLE OF INVENTION: CRBs AS MODIFIERS OF BRANCHING MORPHOGENESIS AND METHODS OF USE
; FILE REFERENCE: EX02-125C
; CURRENT APPLICATION NUMBER: US/10/303,685
; CURRENT FILING DATE: 2002-11-25
; PRIOR APPLICATION NUMBER: 60/333,388
; PRIOR FILING DATE: 2001-11-26
; NUMBER OF SEQ ID NOS: 17
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 8
; LENGTH: 3786
; TYPE: DNA
; ORGANISM: Homo sapiens
US-10-303-685-8
```

Alignment Scores:

Pred. No.:	0	Length:	3786
Score:	6808.00	Matches:	1221
Percent Similarity:	96.8%	Conservative:	0
Best Local Similarity:	96.8%	Mismatches:	3
Query Match:	98.6%	Indels:	38
DB:	7	Gaps:	1

US-10-540-844-2 (1-1236) x US-10-303-685-8 (1-3786)

Qy	13 MetAlaLeuAlaArgProGlyThrProAspProGlnAlaLeuAlaSerValLeuLeuLeu	32
Db	1 ATGGCGCTGGCCAGGCCTGGGACCCCGGACCCCCAGGCCCTGGCCTCTGCTGCTACTG	60
Qy	33 LeuLeuTrpAlaProAlaLeuSerLeuLeuAlaGlyThrValProSerGluProProSer	52
Db	61 CTGCTCTGGGCCCTGCCCTTCCCTCTGGCTGGGACGGTGCCTTCAGAGCCCCCAGT	120
Qy	53 AlaCysAlaSerAspProCysAlaProGlyThrGluCysGlnAlaThrGluSerGlyGly	72
Db	121 GCCTGTGCCTCAGACCCGTGCGCTCCAGGGACCGAGTGCAGGCTACCGAGAGTGGTGGC	180
Qy	73 TyrThrCysGlyProMetGluProArgGlyCysAlaThrGlnProCysHisHisGlyAla	92
Db	181 TATACTGTGGGCCATGGAGCCCCGGGCTGTGCCACCCAGCCATGCCACCACGGCGCT	240
Qy	93 LeuCysValProGlnGlyProAspProAsnGlyPheArgCysTyrCysValProGlyPhe	112
Db	241 CTGTGTGTGCCCAAGGGTCCAGATCCCACCGGCTTCGCTGCTACTGCGTGCCGGTTTC	300
Qy	113 GlnGlyProArgCysGluLeuAspIleAspGluCysAlaSerArgProCysHisHisGly	132
Db	301 CAGGGCCCCACGCTGCGAGCTGGACATCGATGAGTGTGCATCCGGCCGTGCCACCATGGG	360

Art Unit: 1647

Qy	133 AlaThrCysArgAsnLeuAlaAspArgTyrGluCysHisCysProLeuGlyTyrAlaGly	152
Db	361 GCCACCTGCCGCAACCTGGCCGATCGCTACGAGTGCCATTGCCCTTGCTATGCAGGC	420
Qy	153 ValThrCysGluMetGluValAspGluCysAlaSerAlaProCysLeuHisGlyGlySer	172
Db	421 GTGACCTGCCGAGATGGAGGTGGACGAGTGCGCCTCAGGCCCTGCCACGGGGCTCG	480
Qy	173 CysLeuAspGlyValGlySerPheArgCysValCysAlaProGlyTyrGlyGlyThrArg	192
Db	481 TGCCTGGACGGCGTGGCTCCTCCGCTGTGTGCGCAGGCTACGGGGCACCCGT	540
Qy	193 CysGlnLeuAspLeuAspGluCysGlnSerGlnProCysAlaHisGlyGlyThrCysHis	212
Db	541 TGCCAGCTGGACCTCGACGAGTGCCAGAGCCAGCCGTGCGCACATGGGGCACGTGCCAC	600
Qy	213 AspLeuValAsnGlyPheArgCysAspCysAlaGlyThrGlyTyrGluGlyThrHisCys	232
Db	601 GACCTGGTCAACGGGTTCCGGTGCAGACTGCGCGGGCACCGGCTACGAGGCACGCACTGC	660
Qy	233 GluArgGluValLeuGluCysAlaSerAlaProCysGluHisAsnAlaSerCysLeuGlu	252
Db	661 GAGCGGGAGGTGCTGGAGTGCGCATCGCGCCCTGCGAGCACACGCGTCCTGCCTCGAG	720
Qy	253 GlyLeuGlySerPheArgCysLeuCysTrpProGlyTyrSerGlyGluLeuCysGluVal	272
Db	721 GGCCTCGGGAGCTTCCGCTGCCTCTGTTGGCAGGCTACAGCGCGAGCTGTGCGAGGTG	780
Qy	273 AspGluAspGluCysAlaSerSerProCysGlnHisGlyGlyArgCysLeuGlnArgSer	292
Db	781 GACGAGGACGAGTGTGCATCGAGCCCCCTGCCAGCATGGGGCCATGCCCTGCAGCGCTCT	840
Qy	293 AspProAlaLeuTyrGlyValGlnAlaAlaPheProGlyAlaPheSerPheArgHis	312
Db	841 GACCCGGCCCTCTACGGGGTGTCCAGGCCCTCCCTGGCGCCTTCAGCTCCGCCAT	900
Qy	313 AlaAlaGlyPheLeuCysHisCysProProGlyPheGlu-----	325

Db	901 GCTGCGGGTTCTGTGCCACTGCCCTCCCTGGCTTGAGGGAGCCGACTGCCGTGTGGAG	960
Qy	325 -----	325
Db	961 GTGGACGAGTGTGCCCTACGGCCATGCCAACGGAGGCCACTGCCAGGACCTGCCAAT	1020
Qy	326 -----GlyProThrCysGluGluAspValAsp	334
Db	1021 GGCTTCCAGTGTCACTGCCAGATGGCTACCGAGGGCGACATGTGAGGAAGATGTGGAT	1080
Qy	335 GluCysLeuSerAspProCysLeuHisGlyGlyThrCysSerAspThrValAlaGlyTyr	354
Db	1081 GAATGCCCTGCGATCCCTGCCCTGCACGGCGAACCTGCAGTGACACTGTGGCAGGCTAT	1140
Qy	355 IleCysArgCysProGluThrTrpGlyGlyArgAspCysSerValGlnLeuThrGlyCys	374
Db	1141 ATCTGCAGGTGCCAGAGACCTGGGTGGCGACTGTTCTGTGCAGCTCACTGGCTGC	1200

Art Unit: 1647

Qy	375 GlnGlyHisThrCysProLeuAlaAlaThrCysIleProIlePheGluSerGlyValHis 394
Db	1201 CAGGGCCACACCTGCCCGCTGGCTGCCACCTGCATCCCTATCTTCGAGTCTGGGTCCAC 1260
Qy	395 SerTyrValCysHisCysProProGlyThrHisGlyProPheCysGlyGlnAsnThrThr 414
Db	1261 AGTTACGTCTGCCACTGCCACCTGGTACCCATGGACCGTTCTGTGCCAGAACATTACCA 1320
Qy	415 PheSerValMetAlaGlySerProIleGlnAlaSerValProAlaGlyGlyProLeuGly 434
Db	1321 TTCTCTGTGATGGCTGGAGCCCCATTCAAGGCATCAGTGCCAGCTGGTGGCCCCCTGGT 1380
Qy	435 LeuAlaLeuArgPheArgThrThrLeuProAlaGlyThrLeuAlaThrArgAsnAspThr 454
Db	1381 CTGGCACTGAGGTTTCGACCACTGCCGCTGGACCTGGCCACTCGCAATGACACC 1440
Qy	455 LysGluSerLeuGluLeuAlaLeuValAlaAlaThrLeuGlnAlaThrLeuTrpSerTyr 474
Db	1441 AAGGAAAGCTTGGAGCTGGCATTTGGTGGCAGCCACACTTCAGGCCACACTCTGGAGCTAC 1500
Qy	475 SerThrThrValLeuValLeuArgLeuProAspLeuAlaLeuAsnAspGlyHisTrpHis 494
Db	1501 AGCACCACTGTGCTTGTCCCTGAGACTGCCGGACCTGGCCCTAAACGATGGCATTGGCAC 1560
Qy	495 GlnValGluValValLeuHisLeuAlaThrLeuGluLeuArgLeuTrpHisGluGlyCys 514
Db	1561 CAGGTGGAGGTTGTGCTCCATCTAGCGACCTGGAGCTACGGCTCTGGCATGAGGGCTGC 1620
Qy	515 ProAlaArgLeuCysValAlaSerGlyProValAlaLeuAlaSerThrAlaSerAlaThr 534
Db	1621 CCTGCCCGGCTCTGTGTGGCCTCTGGCCCTGGCTTCCACGGCTTCGGCAACT 1680
Qy	535 ProLeuProAlaGlyIleSerSerAlaGlnLeuGlyAspAlaThrPheAlaGlyCysLeu 554
Db	1681 CCGCTGCCCTGCCGGATCTCCTCTGCCAGCTGGGGACGCGACCTTGCAGGCTGCCTC 1740
Qy	555 GlnAspValArgValAspGlyHisLeuLeuLeuProGluAspLeuGlyGluAsnValLeu 574
Db	1741 CAGGACGTGCGTGTGGATGCCACCTCCTGCTGCCTGAGGATCTGGTGAGAACGTCTC 1800
Qy	575 LeuGlyCysGluArgArgGluGlnCysArgProLeuProCysValHisGlySerCys 594
Db	1801 CTGGGCTGTGAGCGCCGAGAGCAGTGCCGGCTCTGCCTGTGTCACGGAGGGCTCTGT 1860
Qy	595 ValAspLeuTrpThrHisPheArgCysAspCysAlaArgProHisArgGlyProThrCys 614
Db	1861 GTGGATCTGTGGACTCATTTCCGGTGGACTGTGCCGGCCCCATAGAGGTCCCACGTGCG 1920
Qy	615 AlaAspGluIleProAlaAlaThrPheGlyLeuGlyGlyAlaProSerSerAlaSerPhe 634
Db	1921 GCTGATGAGATTCTGCTGCCACCTTGGCTGGGAGGCGCCCCAAGCTCTGCCTCCTT 1980

Art Unit: 1647

Qy	635 LeuLeuGlnGluLeuProGlyProAsnLeuThrValSerPheLeuLeuArgThrArgGlu 654
Db	1981 CTGCTCAAGAGCTGCCAGGTCCAAACCTCACAGTGTCTTCCTCTCCGCACTCGGGAG 2040
Qy	655 SerAlaGlyLeuLeuGlnPheAlaAlaAsnAspSerAlaAlaGlyLeuThrValPheLeu 674
Db	2041 TCCGCTGGCCTGTTGCTCAGTTGCCAATGACTCCGAGCTGGCCTAACAGTATTCCCTG 2100
Qy	675 SerGluGlyArgIleArgAlaGluAlaProGlySerProAlaValValLeuProGlyArg 694
Db	2101 AGTGAGGGTCGGATCCGGCTGAGGTGCCGGCAGTCCTGCTGTAGTGCTCCCTGGCGC 2160
Qy	695 TrpAspAspGlyLeuArgHisLeuValMetLeuSerPheGlyProAspGlnLeuGlnAsp 714
Db	2161 TGGGATGATGGGCTCCGTCACCTGGTGTAGCTCAGCTTCGGCCTGACCAGCTGCAGGAC 2220
Qy	715 LeuGlyGlnHisValHisValGlyGlyArgLeuLeuAlaAlaAspSerGlnProTrpGly 734
Db	2221 CTGGGGCAGCACGTGCACGTGGGTGGGAGGCTCCCTGCTGCCGACAGCCAGCCCTGGGGT 2280
Qy	735 GlyProPheArgGlyCysLeuGlnAspLeuArgLeuAspGlyCysHisLeuProPhePhe 754
Db	2281 GGGCCCTTCCGAGGCTGCCAGGACCTGCGACTCGATGGCTGCCACCTCCCTTT 2340
Qy	755 ProLeuProLeuAspAsnSerSerGlnProSerGluLeuGlyGlyArgGlnSerTrpAsn 774
Db	2341 CCTCTGCCACTGGATACTCAAGCCAGCCCAGCGAGCTGGCGGAGGCAGTCCTGGAAC 2400
Qy	775 LeuThrAlaGlyCysValSerGluAspMetCysSerProAspProCysPheAsnGlyGly 794
Db	2401 CTCACTCGGGCTCGTCTCGAGGAATGTGCAGTCCTGACCCCTGTTCAATGGTGGG 2460
Qy	795 ThrCysLeuValThrTrpAsnAspPheHisCysThrCysProAlaAsnPheThrGlyPro 814
Db	2461 ACTTGCCCTCGTCACCTGGAATGACTTCCACTGTACCTGCCACCTTGCAATTTACGGGCCT 2520
Qy	815 ThrCysAlaGlnGlnLeuTrpCysProGlyGlnProCysLeuProProAlaThrCysGlu 834
Db	2521 ACGTGTGCCAGCAGCTGTGGTGTCCCGGCCAGCCCTGTCTCCACCTGCCACGTGTGAG 2580
Qy	835 GluValProAspGlyPheValCysValAlaGluAlaThrPheArgGluGlyProProAla 854
Db	2581 GAGGTCCCTGATGGCTTGTGTGTGGCGGAGGCCACGTTCCGCGAGGGTCCCCCGCC 2640
Qy	855 AlaPheSerGlyHisAsnAlaSerSerGlyArgLeuLeuGlyGlyLeuSerLeuAlaPhe 874
Db	2641 GCGTTCAGCGGGCACACGCGTCGTCAGGGCGCTTGCTCGCGGCCCTGTCGCTGGCCTT 2700
Qy	875 ArgThrArgAspSerGluAlaTrpLeuLeuArgAlaAlaAlaGlyAlaLeuGlyVal 894
Db	2701 CGCACCGCGGACTCCGAGGCCTGGCTGCTGCCGCGGGGGGCCCTGGAAGGCGTG 2760
Qy	895 TrpLeuAlaValArgAsnGlySerLeuAlaGlyGlyValArgGlyGlyHisGlyLeuPro 914
Db	2761 TGGCTGGCGGTGCGCAATGGCTCGCTGGCGGGGGCGTGCAGGGCATGGCCTGCC 2820

Art Unit: 1647

Qy	915 GlyAlaValLeuProIleProGlyProArgValAlaAspGlyAlaTrpHisArgValArg	934
Db	2821 GGCCTGTGCTGCCATACGGGCCGCGCGTGGCGATGGTGCCTGGCACCGCGTGGT	2880
Qy	935 LeuAlaMetGluArgProAlaAlaAlaThrSerArgTrpLeuLeuTrpLeuAspGlyAla	954
Db	2881 CTGGCCATGGAGCCCCGGCGGCCACCACCTCGGCTGGCTGCTGGCTGGATGGTGCC	2940
Qy	955 AlaThrProValAlaLeuArgGlyLeuAlaSerAspLeuGlyPheLeuGlnGlyProGly	974
Db	2941 GCCACCCCAGGTGGCGCTGCGCGCCTGGCCAGTGACCTGGGCTTCCTGCAGGGCCCGGGT	3000
Qy	975 AlaValArgIleLeuLeuAlaGluAsnPheThrGlyCysLeuGlyArgHisPheAlaSer	994
Db	3001 GCTGTGCGCATCCTGCTGGCTGAGAACTTCACCGGCTGCTGGGCCACTTCGCGTCT	3060
Qy	995 TrpProGlyThrProAlaProIleLeuGlyCysArgGlyAlaProValCysAlaProSer	1014
Db	3061 TGGCTGGGACGCCGGCCCGATCCTCGGCTGCCGCGCGCCGTGTGCGCCCTCG	3120
Qy	1015 ProCysLeuHisAspGlyAlaCysArgAspLeuPheAspAlaPheAlaCysAlaCysGly	1034
Db	3121 CCCTGTCTGCAACGACGGTGCCTGCCGTGACCTCTCGACGCCCTTGCGCTGCGCCTGCGC	3180
Qy	1035 ProGlyTrpGluGlyProArgCysGluAlaHisValAspProCysHisSerAlaProCys	1054
Db	3181 CGGGGGTGGGAAGGCCCGCGCTGCGAAGCCCACGTCGACCCCTGTCACTCCGCCCTGCG	3240
Qy	1055 AlaArgGlyArgCysHisThrHisProAspGlyArgPheGluCysArgCysProProGly	1074
Db	3241 GCGCGTGGCCGCTGTCACACGCACCCCGACGGCCGCTTCGAGTGCCGCTGCCGCTGGC	3300
Qy	1075 PheGlyGlyProArgCysArgLeuProValProSerLysGluCysSerLeuAsnValThr	1094
Db	3301 TTGGGGGCCCGCTGCAGGTTGCCTGTCACCAAGGAGTGCAGCCTGAATGTCACC	3360
Qy	1095 CysLeuAspGlySerProCysGluGlyGlySerProAlaAlaAsnCysSerCysLeuGlu	1114
Db	3361 TGCCTCGATGGCAGCCCATG TGAGGGTGGCTCTCCGCTGCCAACTGCAGCTGCCCTGGAG	3420
Qy	1115 GlyLeuAlaGlyGlnArgCysGlnValProThrLeuProCysGluAlaAsnProCysLeu	1134
Db	3421 GGTCTTGCTGCCAGAGGTGTCAGGTCCCCACTCTGCCATGTGAAGCCAACCCCTGCTTG	3480
Qy	1135 AsnGlyGlyThrCysArgAlaAlaGlyGlyValSerGluCysIleCysAsnAlaArgPhe	1154
Db	3481 AATGGGGCACCTGCCGGGCAGCTGGAGGGGTGTGAATGTATCTGCAATGCCAGATTC	3540
Qy	1155 SerGlyGlnPheCysGluValAlaLysGlyLeuProLeuProLeuProPheProLeuLeu	1174
Db	3541 TCCGGCCAGTTCTGTGAAGTGGCGAAGGCCCTGCCGCTGCCATTCCCCTGCTG	3600

Art Unit: 1647

Qy	1175 GluValAlaValProAlaAlaCysAlaCysLeuLeuLeuLeuLeuGlyLeuLeuSer 1194
Db	3601 GAGGTGCCGTACCTGCAGCCTGTGCCTGCCTCCCTCCTGGGCCTTC 3660
Qy	1195 GlyIleLeuAlaAlaArgLysArgArgGlnSerGluGlyThrTyrSerProSerGlnGln 1214
Db	3661 GGGATCCTGGTAGCCCGAAAGGCCGCCAGTGTGAGGGCACCTACAGCCCCAAGCCAGCAG 3720
Qy	1215 GluValAlaGlyAlaArgLeuGluMetAspSerValLeuLysValProProGluGluArg 1234
Db	3721 GAGGTGGCTGGGGCCCGGCTGGAGATGGACAGTGTCCCTCAAGGTGCCACCGGAGGAGAGA 3780
Qy	1235 LeuIle 1236
Db	3781 CTCATC 3786

Art Unit: 1647

Appendix D

DNA encoding SEQ ID NO: 4

US-10-303-685-8
 ; Sequence 8, Application US/10303685
 ; Publication No. US20030100005A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Exelixis, Inc.
 ; TITLE OF INVENTION: CRBs AS MODIFIERS OF BRANCHING MORPHOGENESIS AND METHODS OF USE
 ; FILE REFERENCE: EX02-125C
 ; CURRENT APPLICATION NUMBER: US/10/303,685
 ; CURRENT FILING DATE: 2002-11-25
 ; PRIOR APPLICATION NUMBER: 60/333,388
 ; PRIOR FILING DATE: 2001-11-26
 ; NUMBER OF SEQ ID NOS: 17
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 8
 ; LENGTH: 3786
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-10-303-685-8

Alignment Scores:

Pred. No.:	0	Length:	3786
Score:	6635.00	Matches:	1186
Percent Similarity:	96.7%	Conservative:	0
Best Local Similarity:	96.7%	Mismatches:	3
Query Match:	99.4%	Indels:	38
DB:	7	Gaps:	1

US-10-540-844-4 (1-1189) x US-10-303-685-8 (1-3786)

Qy	1 SerGluProProSerAlaCysAlaSerAspProCysAlaProGlyThrGluCysGlnAla	20
Db	106 TCAGAGCCCCCCCAGTGCCTGTGCCTCAGACCCGTGCGCTCCAGGGACCGAGTGCCAGGCT	165
Qy	21 ThrGluSerGlyGlyTyrThrCysGlyProMetGluProArgGlyCysAlaThrGlnPro	40
Db	166 ACCGAGAGTGGTGGCTATAACCTGTGGGCCATGGAGCCCCGGGCTGTGCCACCCAGCCA	225
Qy	41 CysHisHisGlyAlaLeuCysValProGlnGlyProAspProAsnGlyPheArgCysTyr	60
Db	226 TGCCACCACGGCGCTCTGTGTGTCAGGGTCCAGATCCCACCGGTTCCGCTGCTAC	285
Qy	61 CysValProGlyPheGlnGlyProArgCysGluLeuAspIleAspGluCysAlaSerArg	80
Db	286 TGCCTGCCGGGTTCCAGGGGCCACGCTGCGAGCTGGACATCGATGAGTGTGCATCCGG	345
Qy	81 ProCysHisHisGlyAlaThrCysArgAsnLeuAlaAspArgTyrGluCysHisCysPro	100
Db	346 CCGTGCCACCATGGGCCACCTGCCGAACTGGCCATCGAGTGGCCATTGCC 405	
Qy	101 LeuGlyTyrAlaGlyValThrCysGluMetGluValAspGluCysAlaSerAlaProCys	120
Db	406 CTTGGCTATGCAGGGCGTGACCTGCGAGATGGAGGTGGACGAGTGGCCCTCAGCGCCCTGC	465

Art Unit: 1647

Qy	121 LeuHisGlyGlySerCysLeuAspGlyValGlySerPheArgCysValCysAlaProGly 140
Db	466 CTGCACGGGGCTCGTGCCTGGACGGCGTGGCTCCTCCGCTGTGTGCGCGCCAGGC 525
Qy	141 TyrGlyGlyThrArgCysGlnLeuAspLeuAspGluCysGlnSerGlnProCysAlaHis 160
Db	526 TACGGGGCACCCGTTGCCAGCTGGACCTCGACGAGTGCCAGGCCAGCGTGCACAT 585
Qy	161 GlyGlyThrCysHisAspLeuValAsnGlyPheArgCysAspCysAlaGlyThrGlyTyr 180
Db	586 GGGGGCACGTGCCACGACCTGGTCAACGGGTTCCGGTGCAGTGCACGGGCTAC 645
Qy	181 GluGlyThrHisCysGluArgGluValLeuGluCysAlaSerAlaProCysGluHisAsn 200
Db	646 GAGGGCACGCACTGCGAGCAGGGAGGTGCTGGAGTGCGCATCGCGCCCTGCGAGCACAAIC 705
Qy	201 AlaSerCysLeuGluGlyLeuGlySerPheArgCysLeuCysTrpProGlyTyrSerGly 220
Db	706 GCGTCCTGCCTCGAGGGCCTCGGGAGCTTCCGCTGCCTCTGTTGCCAGGCTACAGCGGC 765
Qy	221 GluLeuCysGluValAspGluAspGluCysAlaSerSerProCysGlnHisGlyGlyArg 240
Db	766 GAGCTGTGCGAGGTGGACGAGGACGAGTGTGCATCGAGCCCCCTGCCAGCATGGGGCCGA 825
Qy	241 CysLeuGlnArgSerAspProAlaLeuTyrGlyValGlnAlaAlaPheProGlyAla 260
Db	826 TGCCTGCAAGCGCTCTGACCCGGCCCTACGGGGGTGTCCAGGCCGCTTCCCTGGCGCC 885
Qy	261 PheSerPheArgHisAlaAlaGlyPheLeuCysHisCysProProGlyPheGlu----- 278
Db	886 TTCAGCTTCCGCCATGCTGCCAGTGTGCCACTGCCCTCTGGCTTGAGGGAGCC 945
Qy	278 ----- 278
Db	946 GACTGCGGTGTGGAGGTGGACGAGTGTGCCTCACGGCCATGCCTAACGGAGGCCACTGC 1005
Qy	279 -----GlyProThrCys 282
Db	1006 CAGGACCTGCCAATGGCTTCCAGTGTCACTGCCAGATGGCTACGCAGGGCGACATGT 1065
Qy	283 GluGluAspValAspGluCysLeuSerAspProCysLeuHisGlyGlyThrCysSerAsp 302
Db	1066 GAGGAAGATGTGGATGAATGCCCTGCGATCCCTGCCCTGCACGGCGGAACTGCAGTGAC 1125
Qy	303 ThrValAlaGlyTyrIleCysArgCysProGluThrTrpGlyGlyArgAspCysSerVal 322
Db	1126 ACTGTGGCAGGCTATATCTGCAGGTGCCAGAGACCTGGGGTGGCGCGACTGTTCTGTG 1185
Qy	323 GlnLeuThrGlyCysGlnGlyHisThrCysProLeuAlaAlaThrCysIleProIlePhe 342
Db	1186 CAGCTCACTGGCTGCCAGGGCCACACCTGCCCGCTGGCTGCCACCTGCATCCCTATCTTC 1245
Qy	343 GluSerGlyValHisSerTyrValCysHisCysProProGlyThrHisGlyProPheCys 362
Db	1246 GAGTCTGGGGTCCACAGTTACGTCTGCCACTGCCACCTGGTACCCATGGACCGTTCTGT 1305

Art Unit: 1647

Qy	363 GlyGlnAsnThrThrPheSerValMetAlaGlySerProIleGlnAlaSerValProAla	382
Db	1306 GGCCAGAATAACCACCTCTCTGTGATGGCTGGAGCCCCATTCAAGGCATCAGTGCCAGCT	1365
Qy	383 GlyGlyProLeuGlyLeuAlaLeuArgPheArgThrThrLeuProAlaGlyThrLeuAla	402
Db	1366 GGTGGCCCCCTGGGTCTGCCACTGAGGTTGCCACACTGCCCTGGGACCTTGGCC	1425
Qy	403 ThrArgAsnAspThrLysGluSerLeuGluLeuAlaLeuValAlaAlaThrLeuGlnAla	422
Db	1426 ACTCGCAATGACACCAAGGAAAGCTTGGAGCTGGCATTGGTGGCAGCCACACTTCAGGCC	1485
Qy	423 ThrLeuTrpSerTyrSerThrThrValLeuValLeuArgLeuProAspLeuAlaLeuAsn	442
Db	1486 ACACCTGGAGCTACAGCACCACTGTGCTTGAGACTGCGGGACCTGGCCCTAACAC	1545
Qy	443 AspGlyHisTrpHisGlnValGluValLeuHisLeuAlaThrLeuGluLeuArgLeu	462
Db	1546 GATGGCCATTGGCACCCAGGTGGAGGTTGTGCTCCATCTAGCGACCCCTGGAGCTACGGCTC	1605
Qy	463 TrpHisGluGlyCysProAlaArgLeuCysValAlaSerGlyProValAlaLeuAlaSer	482
Db	1606 TGGCATGAGGGCTGCCCTGCCCGGCTCTGTGTGGCCTCTGGCCTGTGGCCCTGGCTTCC	1665
Qy	483 ThrAlaSerAlaThrProLeuProAlaGlyIleSerSerAlaGlnLeuGlyAspAlaThr	502
Db	1666 ACGGCTTCGGCAACTCCGCTGCCCGGGATCTCCTCTGCCAGCTGGGGACGCGACCC	1725
Qy	503 PheAlaGlyCysLeuGlnAspValArgValAspGlyHisLeuLeuLeuProGluAspLeu	522
Db	1726 TTTGCAGGCTGCCCTCCAGGACGTGCGTGTGGATGGCACCTCCTGCTGCCTGAGGATCTC	1785
Qy	523 GlyGluAsnValLeuLeuGlyCysGluArgArgGluGlnCysArgProLeuProCysVal	542
Db	1786 GGTGAGAACGTCCTCTGGCTGTGAGCGCGAGAGCAGTGCCTGGCCTCTGCCTGTGTC	1845
Qy	543 HisGlyGlySerCysValAspLeuTrpThrHisPheArgCysAspCysAlaArgProHis	562
Db	1846 CACGGAGGGCCTGTGTGGACTCTGTGGACTCATTCGCGACTGTGCCGGCCCCAT	1905
Qy	563 ArgGlyProThrCysAlaAspGluIleProAlaAlaThrPheGlyLeuGlyAlaPro	582
Db	1906 AGAGGTCCCACGTGCGCTGATGAGATTCCCTGCTGCCACCTTGGCTTGGAGGGCGCCCA	1965
Qy	583 SerSerAlaSerPheLeuLeuGlnGluLeuProGlyProAsnLeuThrValSerPheLeu	602
Db	1966 AGCTCTGCCCTCTTCTGCTCCAAGAGCTGCCAGGTCCACACTCACAGTGTCTTCCTT	2025
Qy	603 LeuArgThrArgGluSerAlaGlyLeuLeuLeuGlnPheAlaAsnAspSerAlaAlaGly	622
Db	2026 CTCCGCACTCGGGAGTCGGCTGCCCTGTTGCTCAGTTGCGAATGACTCCAGCTGGC	2085

Art Unit: 1647

Qy	623 LeuThrValPheLeuSerGluGlyArgIleArgAlaGluAlaProGlySerProAlaVal 642	
Db	2086 CTAICAGTATTCTGAGTGAGGGTCGGATCCGGGCTGAGGTGCCGGCAGTCCTGCTGTA 2145	
Qy	643 ValLeuProGlyArgTrpAspAspGlyLeuArgHisLeuValMetLeuSerPheGlyPro 662	
Db	2146 GTGCTCCCTGGCGCTGGATGGCTCCGTACACTGGTATGCTCACGCTTCGGGCT 2205	
Qy	663 AspGlnLeuGlnAspLeuGlyGlnHisValHisValGlyGlyArgLeuLeuAlaAlaAsp 682	
Db	2206 GACCAGCTGCAGGACCTGGGGCAGCACGTGCACGTGGTGGGAGGCTCTGCTGCCGAC 2265	
Qy	683 SerGlnProTrpGlyGlyProPheArgGlyCysLeuGlnAspLeuArgLeuAspGlyCys 702	
Db	2266 AGCCAGCCCTGGGGTGGGCCCTTCCGAGGCTGCCACTGAGGACCTGCGACTCGATGGCTGC 2325	
Qy	703 HisLeuProPhePheProLeuProLeuAspAsnSerSerGlnProSerGluLeuGlyGly 722	
Db	2326 CACCTCCCCTTTCTGCCACTGGATAACTCAAGCCAGCCCAGCGAGCTCGCGGC 2385	
Qy	723 ArgGlnSerTrpAsnLeuThrAlaGlyCysValSerGluAspMetCysSerProAspPro 742	
Db	2386 AGGCAGTCCTGGAACCTCACTGCCGGCTCGCTCTCCGAGGACATGTGCAGTCCTGACCCC 2445	
Qy	743 CysPheAsnGlyGlyThrCysLeuValThrTrpAsnAspPheHisCysThrCysProAla 762	
Db	2446 TGTTCAAATGGTGGACTTGCCTCGTCACCTGGAATGACTTCACTGTACCTGCCCTGCC 2505	
Qy	763 AsnPheThrGlyProThrCysAlaGlnGlnLeuTrpCysProGlyGlnProCysLeuPro 782	
Db	2506 AATTCA CGGGGCCTACGTGTGCCAAGCAGCTGTGGTGTCCGGCCAGCCTGTCTCCA 2565	
Qy	783 ProAlaThrCysGluGluValProAspGlyPheValCysValAlaGluAlaThrPheArg 802	
Db	2566 CCTGCCACGTGTGAGGGTCCCTGATGGCTTGTGTGTGGCGGGAGGCCACGTTCCGC 2625	
Qy	803 GluGlyProProAlaAlaPheSerGlyHisAsnAlaSerSerGlyArgLeuLeuGlyGly 822	
Db	2626 GAGGGTCCCCCGCCCGTTCAGCGGGCACACCGCGTCGTCAAGGGCGCTTGCTCGCGGC 2685	
Qy	823 LeuSerLeuAlaPheArgThrArgAspSerGluAlaTrpLeuLeuArgAlaAlaAlaGly 842	
Db	2686 CTGTCGCTGGCCTTTCGACCGCGACTCGAGGCCTGGCTGCTGCGTCCGGCGGGGC 2745	
Qy	843 AlaLeuGluGlyValTrpLeuAlaValArgAsnGlySerLeuAlaGlyGlyValArgGly 862	
Db	2746 GCCCTGGAAGGCGTGTGGCTGGCGGTGCGCAATGGCTCGCTGGCGGGGGCGTGCAGG 2805	
Qy	863 GlyHisGlyLeuProGlyAlaValLeuProIleProGlyProArgValAlaAspGlyAla 882	
Db	2806 GGCCATGGCCTGCCCGCGCTGTGCTGCCCATACGGGGCCGCGCGTGGCGATGGTGCC 2865	
Qy	883 TrpHisArgValArgLeuAlaMetGluArgProAlaAlaAlaThrSerArgTrpLeuLeu 902	
Db	2866 TGGCACCGCGTGCCTGGCATGGAGCGCCGGCACACCTCGCGCTGGCTGCTG 2925	

Art Unit: 1647

Qy	903 TrpLeuAspGlyAlaAlaThrProValAlaLeuArgGlyLeuAlaSerIspLeuGlyPhe 922
Db	2926 TGGCTGGATGGTGCGCCACCCCGGTGGCGTGCAGCCTGGCCAGTGACCTGGCTTC 2985
Qy	923 LeuGlnGlyProGlyAlaValArgIleLeuLeuAlaGluAsnPheThrGlyCysLeuGly 942
Db	2986 CTGCAAGGGCCCCGGGTGCTGTGCGCATCCTGCTGGCTGAGAACTTCACCGGCTGCTGGGC 3045
Qy	943 ArgHisPheAlaSerTrpProGlyThrProAlaProIleLeuGlyCysArgGlyAlaPro 962
Db	3046 CGCCACTTCGCGTCTTGGCCTGGGACGCCGGCCCCGATCCTCGGCTGCCCGGGCGCGCCC 3105
Qy	963 ValCysAlaProSerProCysLeuHisAspGlyAlaCysArgAspLeuPheAspAlaPhe 982
Db	3106 GTGTGTGCCCTCGCCCTGTCACGACGGTGCCTGCCGTGACCTTTGACGCCCTT 3165
Qy	983 AlaCysAlaCysGlyProGlyTrpGluGlyProArgCysGluAlaHisValAspProCys 1002
Db	3166 GCCTGCGCCTGCAGGGCCGGGGTGGGAAGGCCCGCGCTGCGAAGCCCACGTCGACCCCTGT 3225
Qy	1003 HisSerAlaProCysAlaArgGlyArgCysHisThrHisProAspGlyArgPheGluCys 1022
Db	3226 CACTCCGCCCCCTGCGCCCGTGGCCGCTGTCACACGCACCCGACGGCCGCTCGAGTGC 3285
Qy	1023 ArgCysProProGlyPheGlyGlyProArgCysArgLeuProValProSerLysGluCys 1042
Db	3286 CGCTGCCCGCCTGGCTTCGGGGGCCGCGCTGCAAGGTTGCCTGTCCCATCCAAGGAGTGC 3345
Qy	1043 SerLeuAsnValThrCysLeuAspGlySerProCysGluGlyGlySerProAlaAlaAsn 1062
Db	3346 AGCCTGAATGTCACCTGCCTCGATGGCAGCCCATGTGAGGGTGGCTCTCCGCTGCCAAC 3405
Qy	1063 CysSerCysLeuGluGlyLeuAlaGlyGlnArgCysGlnValProThrLeuProCysGlu 1082
Db	3406 TGCAGCTGCCCTGGAGGGCTTGCTGGCCAGAGGTGTCAGGTCCCCACTCTCCCTGTGAA 3465
Qy	1083 AlaAsnProCysLeuAsnGlyGlyThrCysArgAlaAlaGlyGlyValSerGluCysIle 1102
Db	3466 GCCAACCCCTGCTTGAAATGGGGCACCTGCCGGCAGCTGGAGGGTGTCTGAATGTATC 3525
Qy	1103 CysAsnAlaArgPheSerGlyGlnPheCysGluValAlaLysGlyLeuProLeuProLeu 1122
Db	3526 TGCAATGCCAGATTCTCCGGCCAGTTCTGTGAAGTGGCGAAGGGCCTGCCCTGCCGTG 3585
Qy	1123 ProPheProLeuLeuGluValAlaValProAlaAlaCysAlaCysLeuLeuLeuLeu 1142
Db	3586 CCATTCCCACGTGCTGGAGGTGGCCGTACCTGCAGCCTGTGCCCTGCCCTCCCTCCTC 3645
Qy	1143 LeuGlyLeuLeuSerGlyIleLeuAlaAlaArgLysArgArgGlnSerGluGlyThrTyr 1162
Db	3646 CTGGGCCCTCTTCAGGGATCCTGGCAAGCCGAAAGGCCGGCAGTCTGAGGGCACCTAC 3705
Qy	1163 SerProSerGlnGlnGluValAlaGlyAlaArgLeuGluMetAspSerValLeuLysVal 1182
Db	3706 AGCCCAAGCCAGCAGGAGGTGGCTGGGGCCGGCTGGAGATGGACAGTGTCCCTCAAGGTG 3765
Qy	1183 ProProGluGluArgLeuIle 1189
Db	3766 CCACCGGAGGAGAGACTCATC 3786