Definition

- anstatt einzelne [[Zufallsvariable]] zu betrachten
 - wo jedem Ereignis ein Wert zugewiesen wird
- mehrere Ereignisse mit mehreren Werten

Oft haben wir einen Zufallsvektor

$$\omega \mapsto \boldsymbol{X}(\omega) = (X_1(\omega), \dots, X_n(\omega))'$$

oder einen Zufallsprozess

$$\omega \mapsto (X_k(\omega) \colon k \geq 1)$$

 \bullet Mengen von Zufallsvariablen, definiert auf denselben $\Omega\text{-Raum}$

Beispiele

Wir haben N_1 schwarze Kugeln, N_2 rote Kugeln und N_3 blaue Kugeln in einer Urne. Wir ziehen 10 Kugeln mit Zurücklegen. Sei

- ► X₁ die Anzahl der **schwarzen** Kugeln,
- ► X₂ die Anzahl der roten Kugeln und
- ► X₃ die Anzahl der blauen Kugeln.

Dann beschreibt

$$\boldsymbol{X}=(X_1,X_2,X_3)'$$

wie viele Kugeln jeder Farbe gezogen wurden.

Beispiel

Wir werfen eine Münze 10 mal. Sei $\Omega = \{0, 1\}^{10}$. Sei X_i das Resultat des *i*-ten Wurfs und $X_i(\omega) = \omega_i$. Der Vektor (X_1, X_5) gibt das Resultat des ersten und fünften Wurfs an.

Beispiel

Wir werfen eine Münze ∞ oft. Sei $\Omega = \{0, 1\}^{\infty}$. Sei wieder X_i das Resultat des *i*-ten Wurfs und $X_i(\omega) = \omega_i$. Das ist ein Zufallsprozess.

Beispiel

Wir werfen eine Münze und wetten $1 \in$ auf Kopf oder Zahl. Sei X_i der Gewinn/Verlust des i-ten Wurfs, dann ist $X_i = \pm 1$ und

$$S_n := X_1 + \ldots + X_n, \quad S_0 = 0,$$

ist der Gewinn/Verlust nach n Würfen. Der Prozess (S_n : $n \ge 1$) ist ein Random Walk.

Marginale Verteilung

Für einen gegebenen Zufallsvektor $(X_1, \ldots, X_n)'$ oder Zufallsprozess $(X_k : k \ge 1)$ definieren wir die marginale PMF oder CDF:

$$p_{kj} = P(X_k = x_j)$$
 oder $F_k(x) = P(X_k \le x)$.

• beschreibt nicht das Verhalten von ZV untereinander

Seien $X_h = 1$, wenn es heute um h Uhr in Graz regnet. Sonst ist $X_h = 0$. Die Prognose sagt z.B. $P(X_{15} = 1) = 0.9$.

Kann man aus der Prognose links die Wahrscheinlichkeit errechnen, dass es zwischen 15 und 18 Uhr durchregnet?

Versuche folgende zwei Szenarien zu modellieren:

- Eine breite Kaltfront zieht durch. Mit 10%
 Wahrscheinlichkeit zieht sie an Graz vorbei.
 Allerdings, wenn Sie nicht vorbeizieht, dann regnet es in den nächsten 10 Stunden durchgehend.
- Das Wetter ist sehr wechselhaft und schaueranfällig.
 Ob es zu einer bestimmten Uhrzeit regnet oder nicht hat keinen Einfluss auf das nachfolgende Wetter.

Gemeinsame Verteilung

$$p(x_1,\ldots,x_n) = P(X_1 = x_1,\ldots,X_n = x_n),$$

$$F(x_1,\ldots,x_n)=P(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Wenn der Vektor X eine Dichte hat, dann ist

$$F(x_1,\ldots,x_n)=\int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_n}f(t_1,\ldots,t_n)dt_n\ldots dt_1.$$

• Randverteilung für Zufallsvektor (X,Y)

Die Verteilung von Y ist gegeben durch

$$F^{Y}(y) = \lim_{x \to \infty} F(x, y) = \lim_{x \to \infty} P(X \leq x, Y \leq y).$$

Die PMF von Y ist gegeben durch

$$p(y) := P(Y = y) = \sum_{x} P(X = x, Y = k) = \sum_{x} p(x, y).$$

Die Dichte von Y ist gegeben durch

$$f^{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx.$$

• Beispiele

Beispiel (Rand-PMF)

Wir haben eine Urne mit einer schwarzen, einer roten und einer blauen Kugeln. Wir ziehen 5 mal mit Zurücklegen. Sei (X_1, X_2, X_3) die Anzahl der gezogenen Kugeln der einzelnen Farben. Dann haben wir

$$P(X_1 = k_1, X_2 = k_2, X_3 = k_3) = {5 \choose k_1, k_2, k_3} \frac{1}{3^5}.$$

Es folgt, dass

$$P(X_1 = 2) = \frac{1}{3^5} \sum_{0 \le k_2, k_3 \le 5} {s \choose 2, k_2, k_3},$$

wobei $\binom{n}{k_1,k_2,k_3}=0$ falls $k_1+k_2+k_3\neq n$.

Beispiel (Randdichte/Randverteilung)

Angenommen (X, Y) ist ein Zufallsvektor mit Dichtefunktion

$$f(x, y) = (1 + x + y)/2, \quad 0 \le x, y \le 1.$$

Beachte Konvention: f(x, y) = 0 wenn $0 \le x, y \le 1$ nicht gilt. Wir müssen immer nur über den Bereich $f(x, y) \ne 0$ integrieren.

Die Dichtefunktion von X ist dann

$$f^{X}(x) = \int_{0}^{1} f(x, y) dy = \frac{x}{2} + \frac{3}{4}.$$

Die Verteilungsfunktion von X ist dann

$$F^X(x) = \int_0^x f^X(t) dt = \frac{x^2}{4} + \frac{3x}{4}.$$

Sei $X_0 = 1$ wenn es heute regnet und 0 sonst. Sei $X_1 = 1$ wenn es morgen regnet und 0 sonst. Der Vektor $X = (X_0, X_1)$ hat PMF

$$p_{00} = 1/3$$
, $p_{01} = 1/2$, $p_{10} = 1/12$, $p_{11} = 1/12$.

wobei $p_{ij} = P(X_0 = i, X_1 = j)$. Wie groß ist die Wahrscheinlichkeit, dass es morgen regnet?

1 1	l 0		Pij = P(X=1, X=j
3		1/12	Po1 + P11
1		1/12	•

Sei X_0 die heutige Regenmenge (I/m^2) in Graz und Sei X_1 morgige Regenmenge in Graz. Der Vektor $X = (X_0, X_1)$ habe die Dichtefunktion

$$f(x,y) = \frac{1}{6}e^{-1/2x-1/3y}, \quad x,y \ge 0.$$

Weise nach, dass es sich hier um eine Dichtefunktion handelt. Wie groß ist die Wahrscheinlichkeit dass es entweder heute, oder morgen mehr als $5I/m^2$ regnet?

$$f(xy) = \frac{1}{6} e^{-\frac{x}{2} - \frac{9}{5}}$$

$$x_1y \ge 0 \quad (0 \text{ sand})$$

$$\int_{-\infty}^{\infty} f(xy) \, dx \, dy = \int_{-\infty}^{\infty} \int_{-\frac{x}{2}}^{\infty} \frac{1}{3} e^{-\frac{x}{2}} \, dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} \, dx \cdot \int_{-\infty}^{\infty} \frac{1}{3} e^{-\frac{x}{2}} \, dy$$

$$\int_{-\infty}^{\infty} \frac{1}{3} e^{-\frac{x}{2}} \, dx \cdot \int_{-\infty}^{\infty} \frac{1}{3} e^{-\frac{x}{2}} \, dy$$

$$\int_{-\infty}^{\infty} \frac{1}{3} e^{-\frac{x}{2}} \, dx \cdot \int_{-\infty}^{\infty} \frac{1}{3}$$