Universidade Tecnológica Federal do Paraná - UTFPR

Clube de Programação

Discentes:
Gabriel Moro Conke,
Henrique Alberto Padilha Mendes,
Pedro Henrique de Freitas Neves.

Conteúdo

1	Tem	iplate e Compilação				
	1.1	Template				
	1.2	Compilação				
2	STI	Stuffs				
	2.1	Pair				
	2.2	Vector				
	2.3	List				
	2.4	Deque				
	2.5	Stack				
	2.6	Queue				
	2.7	Priority Queue				
	2.8	Map				
	2.9	Set				
	2.10	MultiSet				
3	Vetores 8					
	3.1	Inicializacao				
		3.1.1 1D				
		3.1.2 2D				
	3.2	Difference Array				
		3.2.1 Difference Array 2D				
	3.3	Segment tree				
		3.3.1 SegTree Aditiva				
		3.3.2 SegTree Multiplicativa				
		3.3.3 SegTree Aditiva com Lazy Propagation				
	3.4	Fenwick Tree (BIT)				
		3.4.1 BIT aditiva				
	3.5	Bitset				
4	Ordenação e Busca 15					
	4.1	Insertion Sort				
	4.2	Merge Sort				
	4.3	STL Sort				
	4.4	Binary Search				
5	Con	abinatória 18				
	5.1	Permutação				
		5.1.1 Permutação sem renetição 18				

Clube de Programação

	5.2	5.1.2 Permutação com repetição
_	~. •	
6	Stri	
	6.1	Comandos básicos
	6.2	Substrings
	6.3	char to int
	6.4	int to string
7	Teor	ria dos Números 20
	7.1	Exponenciação binária
		7.1.1 Exponenciação binária modular
	7.2	Aritmética modular
	7.3	Recorrências lineares
		7.3.1 Multiplicação de matrizes
		7.3.2 Fibonnaci por exponenciação binária de matrizes
	7.4	Fatoração em números primos
	7.5	GCD e LCM
8	Grat	$ ext{fos}$
0		
	8.1	
	8.2	
	8.3	BFS
	8.4	Ordenação Topológica
	8.5	Componentes Conexas
	8.6	Checagem de grafo bipartido
	8.7	Árvores Geradoras Mínimas - MST
		8.7.1 Kruskal
		8.7.2 Prim
	8.8	Caminhos mínimos
		8.8.1 Dijkstra
		8.8.2 Belmann-Ford
		8.8.3 Floyd Warshall
9	Teor	ria dos Jogos 31
	9.1	Jogo do Nim
10	Prog	gramação Dinâmica 32
-	-	Fibonacci
		Problema da mochila
		Longest Common Subsequence

Clube de Programação

11 Outros		
	11.1 MUF - Make Union Find	34

1 Template e Compilação

1.1 Template

• Template:

```
#include <bits/stdc++.h>
using namespace std;

#define fast_io ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL)
#define endl '\n'
#define ll long long
#define ii pair<int,int>

const int MAX = 212345;

int main(){
    fast_io;
    return 0;
}
```

• Uma vez criado o template, para criar os arquivos da questão realizar o comando:

```
cp template.cpp X.cpp
```

1.2 Compilação

- 1. Entrar no diretório que está o arquivo .cpp
- 2. Compilar (substituir "A.cpp" pelo arquivo .cpp em questão):

3. Executar o comando "./a.out < tmp.in", onde tmp.in é o arquivo com as entradas

2 STL Stuffs

As estruturas Vector, List e Deque armazenam os elementos em ordem linear, seguindo a estrutura na qual foram inseridos.

2.1 Pair

Combinação de dois valores que podem (ou não) possuir tipos diferentes.

```
pair <type1, type2> Pair_name
//Criação de um pair.

pair <type1, type2> Pair_name (value1, value2)
//Criação do um pair com valores já escritos.

pair pair_name (1, 'a')
//Criação de um pair sem pré-determinar os tipos.

g2 = make_pair(1, 'a')
g2 = {1, 'a'}
//Atribuição de um pair (ideal para uso em vectors).
```

2.2 Vector

Vetor de alocação dinâmica, que possui os seguintes comandos principais:

```
begin()
//Returns an iterator pointing to the first element.
end()
//Returns an iterator pointing to the last element.
size()
//Returns the number of elements in the vector.
empty()
//Returns whether the container is empty.
front()
//Returns a reference to the first element in the vector.
nome_vec[i]
```

```
//Returns a reference to the element at position 'i' in the vector.
push_back(element)
//Push the elements into a vector from the back. (copia o elemento)
pop_back()
//Remove elements from a vector from the back.
insert(index, val)
//Inserts new elements before the element at the specified position
//No casos envolvendo inserção de um caracter em uma string, deve-se usar
str.insert(index, 1, 'char');
clear()
//Destroy all the elements of the vector.
erase(posIn, posFinal)
//Remove elements from a container from the specified range (used with iterator
- Feito em tempo O(n). Set faz esse processo em tempo O(1).
emplace(position /*Iterator*/, element);
//Insert a element at the position (constrói o elemento).
emplace_back(value);
//Insert a element at the end of the vector.
```

2.3 List

2.4 Deque

Lista que possui dois fins (um no começo e outro no final). - Parecido com a fila, mas faz a inserção/remoção do começo/fim em O(1).

```
deque_name.insert (iterator, value);
//Insere o elemento na posição do itarator.

deque_name.push_front(value);
deque_name.push_back(value);
//Adiciona um elemento no começo/fim do deque.
deque_name.pop_front();
```

```
deque_name.pop_back();
//Retira um elemento do começo/fim do deque. (possui tipo void).

deque_name.clear();
//Exclui todos os elementos do deque.

deque_name.erase(iterator1, iterator2);
//Exclui os elementos do intervalo delimitado.

deque_name.empty();
//Verifica se o deque está vazio.

deque_name.front();
deque_name.back();
//Acessa os elementos do começo/fim do deque.

deque_name.size();
//Verifica o tamanho do deque.
```

2.5 Stack

Feito de acordo com os comandos padrões do vector.

- 2.6 Queue
- 2.7 Priority Queue
- 2.8 Map
- 2.9 Set

erase(posIn, posFinal) //Remove elements from a container from the specified range (used with iterators). - Feito em tempo O(1).

2.10 MultiSet

3 Vetores

3.1 Inicialização

3.1.1 1D

• vector<int> v(size, val);

3.1.2 2D

• vector<vector<int>> a(rows, vector<int>(columns, 0));

3.2 Difference Array

Utilizado para somar ou subtrair valores de um vetor dado um range e um comportamento específico.

- Estrutura inicial: array a
- Operações de range O(1) ($\pm d$)
- Restaurar os valores do array: O(n)

```
delta = 0;
for (int i = 0; i < MAX; i++){
    delta += diff[i]; // array de diferenças
    a[i] += delta;
}</pre>
```

3.2.1 Difference Array 2D

• dcol é um vetor de acumulado para as colunas, responsável por garantir o comportamento do range de somas.

```
for (int i = 0; i < MAX; i++){
   int delta = 0;
   for (int j = 0; j < MAX; j++){
        dcol[j] += diff[i][j];
        delta += dcol[j];
        a[i][j] += delta;
   }
}</pre>
```

3.3 Segment tree

Extensivamente utilizada para fazer operações em intervalos de vetores, tanto atualização como consultas sao feitas em $O(\log n)$.

Um teste com n operações de consulta implementadas linearmente criariam um algoritmo $O(n^2)$, enquanto aplicando SegTree, n operações geram um algoritmo $O(n \log n)$.

OBS: a árvore é indexada com o pai em 1, ou seja, chamar _build(1, 0, n-1), _query(1, 0, n-1, i, j), _update(1, 0, n-1, i, val)

3.3.1 SegTree Aditiva

```
int a[MAX], tree[4*MAX];
void build(int node, int start, int end){
    // Leaf node
    if(start == end) tree[node] = a[start];
    else{
        int mid = (start + end) >> 1;
        build(2*node, start, mid);
        build(2*node+1, mid+1, end);
        tree[node] = tree[2*node] + tree[2*node+1];
    }
}
void update(int node, int start, int end, int idx, int val){
    // Leaf node
    if(start == end){
        A[idx] += val;
        tree[node] += val;
        return;
    }
    int mid = (start + end) >> 1;
    if(start <= idx and idx <= mid)</pre>
        update(2*node, start, mid, idx, val); // left child
    else
```

```
update(2*node+1, mid+1, end, idx, val); // right child
        tree[node] = tree[2*node] + tree[2*node+1];
    }
    int query(int node, int start, int end, int 1, int r){
        // range completely outside
        if(r < start or end < 1) return 0; // sum neutral</pre>
        // range completely inside
        if(1 <= start and end <= r) return tree[node];</pre>
        \ensuremath{//} range partially inside and partially outside
        int mid = (start + end) >> 1;
        int p1 = query(2*node, start, mid, l, r);
        int p2 = query(2*node+1, mid+1, end, l, r);
        return (p1 + p2);
    }
3.3.2
      SegTree Multiplicativa
    int a[MAX], tree[4*MAX];
    void build(int node, int start, int end){
        // Leaf node
        if(start == end) tree[node] = a[start];
        else{
            int mid = (start + end) >> 1;
            build(2*node, start, mid);
            build(2*node+1, mid+1, end);
            tree[node] = tree[2*node] * tree[2*node+1];
        }
    }
    void update(int node, int start, int end, int idx, int val){
        // Leaf node
        if(start == end){
```

```
A[idx] += val;
        tree[node] += val;
        return;
    }
    int mid = (start + end) >> 1;
    if(start <= idx and idx <= mid)</pre>
        update(2*node, start, mid, idx, val); // left child
    else
        update(2*node+1, mid+1, end, idx, val); // right child
    tree[node] = tree[2*node] * tree[2*node+1];
}
int query(int node, int start, int end, int 1, int r){
    // range completely outside
    if(r < start or end < 1) return 1; // multiplication neutral</pre>
    // range completely inside
    if(1 <= start and end <= r) return tree[node];</pre>
    // range partially inside and partially outside
    int mid = (start + end) >> 1;
    int p1 = query(2*node, start, mid, l, r);
    int p2 = query(2*node+1, mid+1, end, l, r);
    return (p1 * p2);
}
```

3.3.3 SegTree Aditiva com Lazy Propagation

Lazy propagation serve para atualizações em intervalos.

Código adaptado para range queries e range updates (lazy propagation)

```
vector<ll> a(MAX), tree(4*MAX), lazy(4*MAX);

// call build(1, 0, n-1);
void build(int node, int start, int end){
  if (start == end) tree[node] = a[start];
```

```
else{
        int mid = (start+end)>>1;
        build(2*node,start,mid);
        build(2*node+1,mid+1,end);
        tree[node] = tree[2*node] + tree[2*node+1];
    }
}
// call updateRange(1, 0, n-1, 1, r, val);
void updateRange(int node, int start, int end, int 1, int r, int val){
    if (lazy[node]){
        tree[node] += (end-start+1) * lazy[node];
        if (start != end){
            lazy[2*node] += lazy[node];
            lazy[2*node+1] += lazy[node];
        lazy[node] = 0;
    }
    if (start>end || start>r || end<1) return;</pre>
    if (start>=1 && end<=r){</pre>
        tree[node] += (end-start+1) * val;
        if (start != end){
            lazy[2*node] += val;
            lazy[2*node+1] += val;
        }
        return;
    }
    int mid = (start+end) >> 1;
    updateRange(2*node, start, mid, 1, r, val);
    updateRange(2*node+1, mid+1, end, 1, r, val);
    tree[node] = tree[2*node] + tree[2*node+1];
}
// call queryRange(1, 0, n-1, 1, r);
11 queryRange(int node, int start, int end, int 1, int r){
```

```
if (start>end || start>r || end<l) return 0;

if (lazy[node]){
    tree[node] += (end-start+1) * lazy[node];
    if (start != end){
        lazy[2*node] += lazy[node];
        lazy[2*node+1] += lazy[node];
    }
    lazy[node] = 0;
}

if (start>=l && end<=r) return tree[node];

int mid = (start+end)>>1;
ll p1 = queryRange(2*node, start, mid, l, r);
ll p2 = queryRange(2*node+1, mid+1, end, l, r);
return (p1+p2);
}
```

3.4 Fenwick Tree (BIT)

Uma estrutura que, de modo semelhante à SegTree, realiza operações de consulta e de atualização ambas em $O(\log n)$. OBS: a árvore bit é indexada a partir de 1.

3.4.1 BIT aditiva

```
int n, bit[MAX];

void setbit(int i, int delta){
    while (i <= n){
        bit[i] += delta;
        i += i&-i; // i&-i retorna a maior potencia de 2 que divide i
    }
}

int getbit(int i){
    int ans = 0;
    while(i){
        ans += bit[i];
        i -= i&-i; // subtrai maior potencia de 2 que divide i
    }
}</pre>
```

```
return ans;
}
```

3.5 Bitset

Maneira de armazenar uma string binária de forma eficiente, com complexidade O(n/32) e O(n/64). A utilização pode ser feita da mesma forma que vetores, com a condição da estrutura favorecer operações bit a bit.

bitset<n> nome(k); /*criar bitset de tamanho n (deve ser conhecido em tempo de compilação) que armazena o número k.*/

4 Ordenação e Busca

4.1 Insertion Sort

```
Complexidade O(n²);
void insertionSort (vector<int> &array, int size){
   int i, key, j;
   for (i=1; i<size; i++){
      key = array[i];
      j = i-1;
      while (j>=0 && array[j] > key){
         array[j+1] = array[j];
         j=j-1;
      }
      array[j+1] = key;
}
```

4.2 Merge Sort

```
Complexidade O(n \log(n))
void merge(vector<int> &array, int left, int mid, int right){
    vector<int> firstHalf (mid-left+1);
    vector<int> secondHalf (right-mid);
    for (int i=0; i < mid-left+1; i++)</pre>
        firstHalf[i] = array[left+i];
    for (int i=0; i < right-mid; i++)</pre>
        secondHalf[i] = array[mid + i + 1];
    int j=0, k=0, i=left;
    while (j<mid-left+1 && k < right - mid){
        if (firstHalf[j] <= secondHalf[k])</pre>
             array[i++] = firstHalf[j++];
        else
             array[i++] = secondHalf[k++];
    }
    while (j < mid-left+1)</pre>
```

```
array[i++] = firstHalf[j++];
while (k < right-mid)
    array[i++] = secondHalf[k++];
}

void mergeSort(vector<int> &array, int begin, int end){
    if (begin >= end)
        return;

    int mid = (begin + end)/2;
    mergeSort(array, begin, mid);
    mergeSort(array, mid + 1, end);
    merge(array, begin, mid, end);
}
```

4.3 STL Sort

Ordena os elementos de um vector em complexidade O(n*log(n))

```
sort (Iterator_begin, Iterator_first);
//Geralmente utilizado da seguinte forma,
sort (vector_name.begin(), vector_name.end());
```

4.4 Binary Search

Para a realização da busca binária, é necessário que o vetor esteja inicialmente ordenado. Existem comandos da STL que facilitam a realização do processo.

- UTILIZANDO VECTOR - 1. lower_bound: retorna um iterator da primeira posição do vetor com um valor não menor que o desejado.

```
auto it = lower_bound(vec.begin(), vec.end(), wanted);
```

2. upper_bound: retorna um iterator apontando para o primeiro elemento maior que o valor desejado.

```
auto it = upper_bound(vec.begin(), vec.end(), wanted);
```

- Nos casos em que todos os valores sejam menores que "wanted" a função retorna um iterador apontando para o último elemento do vector + 1.

- UTILIZANDO SET (utilizar as funções abaixo, caso contrário existem casos $\mathrm{O}(\mathrm{n}))$
- 1. lower_bound: retorna um iterator da primeira posição do vetor com um valor não menor que o desejado.

```
auto it = set_name.lower_bound(wanted);
```

2. upper_bound: retorna um iterator apontando para o primeiro elemento maior que o valor desejado.

```
auto it = set_name.upper_bound(wanted);
```

- Nos casos em que todos os valores sejam menores que "wanted" a função retorna um iterador apontando para o último elemento do vector + 1.

5 Combinatória

5.1 Permutação

Dados um conjunto com n caixas iguais, queremos saber as diferentes formas de organizar n bolas.

É descobrir todas as permutações por meio de uma função da STL de complexidade O(n*n!)

bool next_permutation (Iterator 1, Iterator 2);

//Rearranja os elementos na próxima permutação, sendo essa a menor possível maior que a atual (no quesito lexicográfico); retornando se a operação foi bem sucedida ou não.

5.1.1 Permutação sem repetição

$$P(n) = n! (1)$$

5.1.2 Permutação com repetição

$$P(n, k, l, \dots) = n!/k!l!\dots$$
(2)

k, l,... representam a quantidade de vezes que a bola (k, l, ...) se repete

5.2 Combinação

Dados um conjunto com n caixas iguais, queremos saber as possibilidades para se colocar k bolas iguais dentro delas

$$C(n,k) = \frac{n!}{k!(n-k)!}$$
(3)

6 Strings

6.1 Comandos básicos

6.2 Substrings

A função substr de string retorna uma substring interna da string inicial, os parâmetros são:

- Posição inicial
- Tamanho da substring

Ex: substring que remove o último char da string str.

```
str.substr(0, str.length()-1);
```

6.3 char to int

Para converter um char (i-ésimo char da string) em int, é possível fazer:

```
int x = str[i] - '0';
```

6.4 int to string

Para converter um int x em uma string com seus algarismos, fazemos:

```
string str = to_string(x);
```

7 Teoria dos Números

1- Número de subconjuntos de um conjunto é 2^n , sendo n o número de elementos do conjunto.

7.1 Exponenciação binária

Queremos calcular um número a^x , podemos fazer isso em complexidade O(logx), utilizando o seguinte algoritmo:

```
long long power(long long base, long long exp) {
   long long result = 1;

while (exp > 0) {
    if (exp % 2 == 1) {
       result *= base;
    }
   base *= base;
   exp /= 2;
}

return result;
}
```

7.1.1 Exponenciação binária modular

Podemos querer realizar operaçõs de exponenciais grandes, mod algum primo grande. Para isso (REVISAR ESTE CODIGO):

```
// P é o primo grande em questão (i.e. whatsapp 998244353)
long long power(long long base, long long exp) {
   long long result = 1;

   while (exp > 0) {
      if (exp % 2 == 1) {
        result *= base;
        result %= P;
    }
    base *= base;
   base %= P;
   exp /= 2;
```

```
}
return result;
}
```

7.2 Aritmética modular

Propriedades:

- $\bullet \ (a+b+c)mod(n) = ((a+b)mod(n)+c)mod(n)$
- (a-b)mod(n)

Esta operação tem um problema, pois seu valor pode ser negativo, para contornar isso, fazemos: (a+n-b)mod(n). ATENÇÃO: os valores de a e b devem ser válidos, isto é, $a,b \in \{0,1,\cdots,n-1\}$.

- $(a \cdot b \cdot c) \mod(n) = ((a \cdot b) \mod(n)) \cdot c \mod(n)$
- $(a \cdot b) \mod(n) = ((a \mod(n) \cdot b \mod(n)) \mod(n))$
- $(a \cdot b^{-1}) mod(n)$

 b^{-1} pode ser lido como o inverso multiplicativo de b, ou seja, temos que $b \cdot \frac{1}{b} = 1 \ mod(n)$. Se n for primo, todo a, b terá inverso multiplicativo (com exceção de 0).

Pequeno Teorema de Fermat $(a \neq 0 \text{ e } p \text{ \'e primo})$:

- 1. $a^p \equiv a \mod(p)$
- 2. $a^{p-1} \equiv 1 \mod(p)$
- 3. Logo: $a \cdot a^{p-2} \equiv 1 \mod(p)$, portanto: $a^{p-2} \equiv a^{-1}$
- 4. Para calcular a^{p-2} , utilizar exponenciação binária modular.

7.3 Recorrências lineares

Em recorrências lineares, é possível encontrar fórmulas fechadas com complexidade $O(\log n)$. Para isto, é utilizada a exponenciação binária de matrizes.

Exemplo: Fibonnacci:

$$f_n = f_{n-1} + f_{n-2}$$
, para $n > 2$.

Ainda, é possível obter uma transformação linear A de \mathbb{C}^2 em \mathbb{C}^2 tal que, para todo $n \geq 2$,

$$A\begin{pmatrix} f(n-2) \\ f(n-1) \end{pmatrix} = \begin{pmatrix} f(n-1) \\ f(n) \end{pmatrix},$$

bastando tomar

$$\mathsf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \, .$$

Assim, indutivamente, temos, para todo $n \geq 2$, que

$$\mathsf{A}^{n-1}\begin{pmatrix}f(0)\\f(1)\end{pmatrix} = \begin{pmatrix}f(n-1)\\f(n)\end{pmatrix}.$$

Segue o algoritmo abaixo para o cálculo do n-ésimo número de Fibonacci.

7.3.1 Multiplicação de matrizes

```
vector<vector<int>> matMult(vector<vector<int>>& A, vector<vector<int>>& B) {
    int m = A.size();
                         // Número de linhas em matrizA
    int n = A[0].size(); // Número de colunas em matrizA
    int p = B[0].size(); // Número de colunas em matrizB
    // Inicialize a matriz de resultado com zeros
    vector<vector<int>> ans(m, vector<int>(p, 0));
    // Realize a multiplicação das matrizes
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < p; j++) {
            for (int k = 0; k < n; k++) {
                ans[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return ans;
}
```

7.3.2 Fibonnaci por exponenciação binária de matrizes

vector<vector<int>> $I = \{\{1,0\},\{0,1\}\};$ // matriz identidade

```
// exponenciação binária de matrizes
vector<vector<int>> matrixExp(vector<vector<int>> A, int exp){
    if (exp == 0) return I;
    if (exp%2 == 0){
        vector<vector<int>> B = matrixEXp(A, exp/2);
        return matMult(B, B);
    }
    return matMult(A, matrixExp(A, exp-1));
}

int fibonnaci(n){
    if (n <= 1) return n;
    vector<vector<int>> B = matrixExp(A, n-1)
    return B[1][1];
}
```

7.4 Fatoração em números primos

A fatoração em números primos tranforma um número grande em um produto de primos. Por exemplo, 5733, a fatoração pode transformá-lo em 3.3.7.7.13; sendo que cada fator ocupa um índice no vector.

```
vector<int> fatoracao (int n){
   vector<int> fatores;
   for (int x=2; x*x<= n; x++)
      while(n%x == 0){
        fatores.push_back(x);
        n/=x;
    }
   if (n>1) fatores.push_back(n);
   return fatores;
}
```

7.5 GCD e LCM

Algoritmo de Euclides (atenção para os limites de INT e LL):

```
int gcd(int a, int b){
    if (b == 0) return a;
    return gcd(b, a%b);
}
```

```
int lcm(int a, int b){
    return (a*b)/gcd(a, b);
}
```

8 Grafos

8.1 Lista de adjacências

A estrutura utilizada é tal que as adjacências são da forma $g[u] = \{w, v\}$. O peso está em primeiro para facilitar um eventual sort.

```
vector<vector<ii>>> g(MAX);

// para adicionar aresta que conecta $u$ e $v$ com custo $w$ fazer:
g[u].push_back({w,v});
g[v].push_back({w,u});
```

8.2 DFS:

Chamar uma dfs para cada vértice, da forma:

```
for (int u = 0; u < n; u++)
        if (!vis[u]) dfs(u, u+1);

Complexidade: O(V + E)

void dfs(int u, int val){
    vis[u] = val;
    for (auto &v : g[u])
        if (!vis[v.second]) dfs(v.second,val);
}</pre>
```

8.3 BFS

```
Salva as distâncias a partir do vértice de início s. Complexidade : \mathcal{O}(V+E)
```

```
void bfs(int s){
    d[s] = 0;
    queue<int> q; q.push(s);
    while(!q.empty()){
        int u = q.front(); q.pop();
        for (auto &v : g[u])
            if (d[v.second] == INF){
```

8.4 Ordenação Topológica

Atribui rótulos aos vértices de um grafo DAG de modo que para toda aresta (u, v), u.rótulo < v.rótulo. Utiliza uma DFS com pequena variação:

ATENÇÃO: esse código salva a ordem topológia reversa.

```
vector<int> ts; // topological sort

void dfs(int u, int val){
   if (vis[u]) return;
   vis[u] = val;
   for (auto &v : g[u])
      if (!vis[v.second]) dfs(v.second,val);

   ts.push_back(u);
}
```

8.5 Componentes Conexas

Código que conta a quantidade de componentes conexas e marca cada vértice com o valor de sua componente.

```
int ans = 0;
for (int u = 0; u < n; u++)
    if (!vis[i]) dfs(u, ++ans);</pre>
```

8.6 Checagem de grafo bipartido

Para checar se um grafo é bipartido, "colorimos" ele com uma BFS modificada.

```
bool bfs(){
   color[s] = 0;
   bool isBipartite = true;
```

```
queue<int> q; q.push(s);
while(!q.empty() && isBipartite){
    int u = q.front(); q.pop();
    for (auto &v : g[u]){
        if (color[v.second] == INF){
            color[v.second] = 1-color[u];
            q.push(v.second);
        }
        else if (color[v.second] == color[u]{
            isBipartite = false; break;
        }
    }
}
return isBipartite;
}
```

8.7 Árvores Geradoras Mínimas - MST

8.7.1 Kruskal

Utiliza MUF para unir as arestas e seus vértices. Complexidade: $\mathcal{O}(E \log V)$

```
int kruskal(){
    int cost = 0, u, v, w;
    for (int i = 0; i < n; i++) {_p[i]=i; _rank[i]=0;}
    sort(edges.begin(), edges.end());
    for (auto &e : edges){
        u = e.second.first;
        v = e.second.second;
        w = e.first;
        if (_find(u) != _find(v)){
            cost += w;
            _union(u, v);
        }
    }
    return cost;
}</pre>
```

8.7.2 Prim

Utiliza fila de prioridade e lista de adjacência para escolher novo vértice com aresta de menor peso. Complexidade: $\mathcal{O}(E \log V)$

```
vi taken(MAX);
int prim(){
   priority_queue<ii>> pq;
   taken[0] = 1;
   for (auto &v : g[0])
        if (!taken[v.second]) pq.push({-v.first, -v.second});
    int cost = 0;
   while(!pq.empty()){
        ii front = pq.top(); pq.pop();
        int w = -front.first;
        int u = -front.second;
        if (!taken[u]) {
            cost += w;
            taken[u] = 1;
            for (auto &v : g[u])
                if (!taken[v.second]) pq.push({-v.first, -v.second});
        }
   }
   return cost;
}
```

8.8 Caminhos mínimos

8.8.1 Dijkstra

```
Complexidade: O(E log V)

void dijkstra(int s){
   int d, u, v;
   for (int i = 0; i < n; i++) dist[i] = INF;
   priority_queue<ii, vector<ii>, greater<ii>> pq;
   pq.push({0,s});
   while(!pq.empty()){
```

```
d = pq.top().first;
u = pq.top().second;
pq.pop();
if (d > dist[u]) continue;

for (auto &x : adj[u]){
    d = x.first;
    v = x.second;
    if (dist[v] > dist[u] + d){
        dist[v] = dist[u] + d;
        pq.push({dist[v], v});
    }
}
}
```

8.8.2 Belmann-Ford

Pode ser utilizado para detectar ciclos negativos. Complexidade: $\mathcal{O}(EV)$

Para detectar ciclos negativos, executar mais uma varredura, de forma que o código fique da seguinte maneira:

```
int main(){
        bellmann_ford(s);
        bool hasNegativeCycle = false;
        for (int u = 0; u < V; u++)
            for (auto &v : adj[u])
                 if (dist[v].second > dist[u]+v.first)
                     hasNegativeCycle = true;
        if (hasNegativeCycle) cout << "CYCLE" << endl;</pre>
        else cout << "NO CYCLE" << endl;</pre>
    }
8.8.3
      Floyd Warshall
calcula as menores distâncias entre todos os vértices de um grafo.
void floyd_warshall(int graph[][N], int N) {
    int dist[N][N], i, j, k;
    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            dist[i][j] = graph[i][j];
    for (k = 0; k < N; k++)
```

for (i = 0; i < N; i++)

}

for (j = 0; j < N; j++)

if (dist[i][k] + dist[k][j] < dist[i][j])
 dist[i][j] = dist[i][k] + dist[k][j];</pre>

9 Teoria dos Jogos

9.1 Jogo do Nim

- **1- Jogo do Nim:** Dadas k pilhas (g1, g2, ..., gk), deve-se retirar uma quantidade de pedras de alguma pilha. O vencedor será sempre o jogador que possui a soma de Nim não nula em sua jogada, isto é, $g1 \oplus g2 \oplus ...gk! = 0$
- **2-** Grundy Numbers & mex (mínimo excluído): o número de Grundy é utilizado para analisar o estado do jogo. Todo jogo imparcial possui um numero de Grundy. O número de Grundy é o MEX de todos os estados possíveis que podemos atingir a partir do estado atual, considerando as jogadas válidas.
- **3-** Grundy numbers em jogos de Nim compostos (mais de uma pilha): o número de Grundy do jogo completo é dado pelo XOR bit a bit de todas as n pilhas.

$$S = g_1 \bigoplus g_2 \bigoplus \cdots \bigoplus g_n$$

4- Teorema de Sprague Grundy: se o Grundy number resultante for diferente de 0, o jogador da vez ganha; do contrário, o adversário ganha.

10 Programação Dinâmica

10.1 Fibonacci

Exemplo clássico de programação dinâmica, reduzindo a complexidade do Fibonacci para O(n)

```
int Fibonacci(vector<int> &MEMO, int n){
   if (MEMO[n] != -1)
      return MEMO[n];
   if (n == 1 || n==2){
      MEMO [n] = 1;
      return MEMO[n];
   }
   MEMO[n] = Fibonacci(MEMO, n-1) + Fibonacci(MEMO, n-2);
   return MEMO[n];
}

vector<int> MEMO(n+1, -1);
int result = Fibonacci(MEMO, n);
```

10.2 Problema da mochila

Selecionar um conjunto de itens (itens que possuem pesos e valores) de modo que o somatório dos valores seja máximo, respeitando a capacidade da mochila.

10.3 Longest Common Subsequence

Dada duas strings X e Y, calcula a maior sequência comum entre ambas.

```
//Essa função pode ser alterada para calcular a sequência de qualquer tipo.
//Para se descobrir essa subsequência, deve-se criar uma matriz auxiliar de setas.
int lcs (string X, string Y, int m, int n){
    vector<vector<int>> MEMO (m+1, vector<int>(n+1, 0));
    for (int i=0; i<=m; i++){
        for (int j=0; j <= n; j++){
            if (i == 0 || j==0)
                MEMO[i][j] = 0;
            else if (X[i-1] == Y[j-1])
                MEMO[i][j] = MEMO[i-1][j-1] + 1;
            else
                MEMO[i][j] = max(MEMO[i-1][j], MEMO[i][j-1]);
        }
    }
    return (MEMO[m][n]);
}
```

11 Outros

11.1 MUF - Make Union Find

Algoritmo relacionado a conectividade em grafos e algoritmos de agrupamento. Ex: uva793.cpp

Utilizado no algoritmo de Kruskal para Árvores Geradoras Mínimas.

```
vi _p(MAX);
vi _rank(MAX);

int _find(int u){
    if (_p[u] == u) return u;
    return _p[u] = _find(_p[u]);
}

void _union(int u, int v){
    u = _find(u);
    v = _find(v);
    if (_rank[u] < _rank[v]) _p[u] = v;
    else{
        _p[v] = u;
        if (_rank[u] == _rank[v]) _rank[u]++;
    }
}</pre>
```

Antes de realizar as operações, utilizar as seguintes definições:

```
for (int i = 0; i < n; i++) {_p[i]=i; _rank[i]=0;}
```