Cours 4 – Expression de Besoins

MODULE INTRODUCTION AU GÉNIE LOGICIEL

Objectifs du Cours

Permettre à l'étudier de pouvoir exprimer les besoins d'un logiciel d'une manière formelle

Apprendre le modèle de spécifications bien formées des spécifications

Utiliser les diagrammes de cas d'utilisation pour modélisation les spécifications fonctionnelle

Utiliser les techniques avancées des diagrammes de cas d'utilisation pour produire des diagrammes représentatifs

Plan du Cours

Section 1 : Introduction

Section 2 : Modèle de Spécifications Section 3 : Modèle de Cas d'Utilisation Modélisation Avancée des cas d'Utilisation

Introduction

SECTION 1

Cycle de Vie

Motivations

Quoi et Pourquoi développer ?

Besoin de comprendre le client

Besoin de formaliser les attentes du client

Mieux les besoins sont capturés et bien formalisés, plus le projet a des chances de réussir

Aider le client à exprimer ce qu'il sait et ce qu'il veut

Types de besoins

Besoins fonctionnels

- Que doit faire le système
- Le système du point de vue de son utilisateur
- Quoi?

Besoins non fonctionnels

- Contraintes
- Exigence ou choix techniques
- Comment ?

Spécifications

- Les spécifications sont l'expression formelle des besoins
- Une spécification fonctionnelle exprime comment est le système du point de vue utilisateur
- Une spécification technique exprime comment est le système d'un point de vue interne (technique, technologie,...etc.)
- Le langage naturel peut être utilisé pour les spécifications fonctionnelles et / ou techniques

Problèmes de Recensement

Problèmes de compréhension

• Les développeurs et le client ne parlent pas le même langage

Problèmes de volatilité

Une spécification
 « valide » peut ne
 plus l'être après
 une courte période
 de temps

Problèmes humains

- Conflits
- Rétention d'information
- ...etc.

Problèmes de portée

- Savoir l'étendue d'une spécification
- À quel soussystème elle appartient ?

Modèles de Besoins

L'expression des besoins

Produit

Modèles des besoins

Modèle de spécification (texte)

Modèle des cas d'utilisation (UML, optionnel)

Processus d'Expression des Besoins

Expression de besoins dans UP

- UP propose deux modèles pour l'expression des besoins : le *modèle de spécifications* et le *modèle des cas d'utilisation*
- Le modèle des spécifications convient aussi bien pour les spécifications fonctionnelles que les spécifications non fonctionnelles
- Le modèle des cas d'utilisation est basé sur les diagrammes de cas d'utilisation d'UML
- Le modèle des cas d'utilisation s'adapte mieux aux spécifications fonctionnelles
- Le modèle de spécifications peut être créé en utilisant un éditeur de texte, un blocnotes ou un outil dédié

Introduction

SECTION 1 – DÉBAT (10 MNS)

Modèle de Spécifications

SECTION 2

Modèle de spécifications

Un ensemble de phrases bien formées

Phrases numérotées

Formulation Uniforme

Chaque spécification a un *numéro unique*

Une spécification décrit une seule fonction du système Une spécification peut être *fonctionnelle* (décrivant un aspect métier) ou *non-fonctionnelle* (décrivant un aspect technique)

Les spécifications peuvent être rédigées en utilisant un éditeur texte ou un outil dédié

Facilitent la compréhension, la gestion et la communication

Formulation

(id) le (système) doit <fonction>

Exemple de Formulation

Spécifications fonctionnelles :

- Le système GAB (distributeur) de biller doit vérifier la validité de la carte CIB insérée
- Le système GAB doit valider le code PIN entré par l'utilisateur
- Le système doit allouer une somme maximum de 20000 dinars à l'utilisateur

Spécifications non fonctionnelles :

- Le système du GAB doit être écrit en C++
- Le système du GAB doit utiliser un cryptage 256 bits pour les données sensibles
- Le système doit vérifier le PIN en moins de 03 secondes

Organisation des spécifications

- Les systèmes de moyenne et grande taille engendrent un nombre très important de spécifications (de quelques centaines à plusieurs milliers)
- L'organisation des spécifications permet de les structurer et bien gérer les autres activités de développement
- L'organisation permet aussi de scinder les spécifications en sousdomaines

Priorités des Spécifications

Chaque spécification doit avoir une priorité

La priorité permet de sélectionner les spécifications les plus importantes

Facilite l'ordonnoncement

La priorité peut être un nombre (de 1 à 5) MoSCoW est une méthode permettant d'affecter des priorités aux spécifications

Priorités de spécifications - Méthode MoSCoW

Priorité	Description
M (Must have)	Spécification obligatoire et fondamentale du système
S (Should have)	Spécification importante qui peut être omise sous certaines conditions
C (Could have)	Spécification optionnelle, réaliser si on a le temps
W (Want to have)	Spécifications qui peuvent attendre les dernières livraisons du système

Attributs de spécifications

Attribut	Description
Etat	 Proposé : en cours de discussion, pas encore validé Approuvé : validé et attend d'être implémenté Rejeté : rejeté et n'attendra pas son implémentation Incorporé : spécification qui a été implémentée durant une livraison
Criticisme	 Critique: la spécification doit être implémentée sinon le système n'est pas accepté Important: la spécification peut être omise mais son omission affecterait considérablement l'utilisabilité du système Utile: la spécification peut être omise et son omission n'a pas un grand impact sur le système

Attributs de spécifications - Suite

Attribut	Description
Effort	Estimation approximative des ressources et du temps nécessaire pour la spécification
Risque	Le risque relatif à cette spécification : élevé, moyen ou bas
Stabilité	La probabilité que la spécification change dans le temps
Cible	La version du produit dans laquelle la spécification est planifiée
Description	Une description plus détaillée de la fonctionnalité

Sources de Recensement

Utilisateurs directs

Personnes ayant une relation avec le système Autres systèmes avec lesquels va interagir le logiciel

Le matériel sur lequel va être déployé le logiciel

Contraintes juridiques et administratives

Contraintes techniques

Objectifs métier

Mécanismes de Recensement

Analyse des systèmes et documents actuels

Interviews

Questionnaires

Ateliers

Glossaires

Scénario - Exemple

« Le client parcourt le catalogue de produit et ajoute les produits qui lui plaisent à son panier. Quand le client souhaite finaliser son achat, il fournit ses informations sur sa carte et sur son adresse de livraison. Le système vérifie la carte du client ensuite valide la transaction. »

Scénario – Exemple

Id	Spécification	Etat	Criticism e	Effort	Stabilité	Cible
1	Le système doit permettre à l'utilisateur de parcourir le catalogue de produits	Incorporé	Critique	20j	Stable	1.0
2	Le système doit afficher à l'utilisateur la liste des produits qu'il a cherché par nom	Proposé	Critique	3j	Stable	1.0
3	Le système doit afficher à l'utilisateur la liste des produits qu'il a cherché par référence	Proposé	Important	3j	Stable	1.5
4	Le système doit valider le numéro de la carte de crédit du client	Proposé	Critique	5j	Stable	1.0
5	Le système doit analyser l'historique des achats du client pour proposer les produits qui peuvent l'intéresser le plus	Proposé	Important	8j	Instable	2.0
6	Le système doit permettre à l'utilisateur d'ajouter des produits dans son panier	Incorporé	Critique	5j	Stable	1.0

Modèle de Spécifications

SECTION 2 – DÉBAT (10 MNS)

Modèle des Cas d'Utilisation

SECTION 3

Création des Cas d'Utilisation

Limites du Système

- Quelles sont les limites du système ? Qu'est-ce qui fait partie du système et qu'est-ce qui est externe au système ?
- Décider clairement des limites du système n'est pas aussi évident qu'on le croit
- La limite du système est aussi appelée « sujet »

Limite du système – Notation UML

Acteurs

Les utilisateurs du système sont des « acteurs »

Un acteur identifie un rôle pas une personne

Un cas d'utilisation peut avoir plusieurs acteurs

Un acteur peut être impliqué dans plusieurs cas d'utilisation

Un acteur interagit directement avec le système

Un acteur peut identifier une entité non humaine : un matériel ou un autre système interagissant avec le système, il est aussi utilisé pour représenter le temps

Les acteurs sont externes au système

Les acteurs sont nommés en utilisant des noms courts et significatifs

Représentation des acteurs

«actor» **Acteur**

Identification des acteurs

Qui ou qu'est-ce qui utilise le système ? Quel est leur rôle dans l'interaction ?

Qui installe le système ?

Qui démarre ou arrête le système ?

Quels sont les systèmes qui interagissent avec ce système ?

Qui fournit les informations au système ?

Quels sont les évènements qui ont lieu à un moment donné?

Scénario

Exemple d'un achat en ligne

« Le client parcourt le catalogue de produit et ajoute les produits qui lui plaisent à son panier. Quand le client souhaite finaliser son achat, il fournit ses informations sur sa carte et sur son adresse de livraison. Le système vérifie la carte du client ensuite valide la transaction. »

- D'autres scénarios dérivés peuvent avoir lieu : par exemple le client a une remise ou la carte est invalide.
- Malgré leur différences, tous ces scénarios forment un seul cas d'utilisation car l'objectif est unique : acheter un produit.

Cas d'utilisation

- Les cas d'utilisation sont une technique de capture des besoins fonctionnels du système
- Les cas d'utilisation décrivent les interactions entre les utilisateurs du système et le système lui-même
- Les cas d'utilisation est une description "narrative" de comment est utilisé le système
- Les cas d'utilisation d'indiquent pas le séquencement des évènements
- Les cas d'utilisation sont toujours déclenchés par les acteurs
- Les cas d'utilisation représentent le système du point de vue de l'acteur

Représentation Cas d'utilisation

Création des Cas d'Utilisation

Le diagramme de cas d'utilisation

Acteur principal et secondaire

- L'acteur principal déclenche le cas d'utilisation (CU) tandis que l'acteur secondaire réagit au CU
- Généralement, l'acteur principal est dessiné à gauche et le secondaire à droite

Documentation d'un cas d'utilisation

CU:ChercherUnProduit (Nom du cas d'utilisation)

ID:1 (Numéro d'identification unique)

Description brève : chercher des produits afin d'alimenter éventuellement le panier ou faire des comparatifs entre les produits

Acteurs primaires : Client (liste des acteurs primaires)

Acteurs secondaires : (liste des acteurs secondaires)

Préconditions : le client doit être authentifié (l'état du système avant que le CU ne démarre)

Enchaînement principal

- 1. Le CU démarre quand le client clique sur le lien « chercher » (flux du CU)
- 2. Le client entre la référence ou le nom du produit
- 3. Le système affiche la liste des produits triés par nom

Postconditions : (l'état du système après le CU)

Enchaînement s alternatifs: (Flux se déclenchant sous certaines conditions)

Documentation d'un cas d'utilisation – Attributs

Attribut	Description	
Nom du cas d'utilisation	 Pas d'espace, utilise la convention UpperCamelCase Décrit un comportement, utiliser des verbes Le nom doit être parlant et aussi court que possible Le nom est unique 	
ID	Identifiant numérique unique du CU	
Description brève	Un paragraphe qui résume le CU	
Acteurs primaires	Acteurs qui déclenchent le CU	
Acteurs secondaires	Acteurs qui interagissent avec le CU	
Preconditions	 L'état du système avant le CU Doit être vrai avant l'exécution du CU 	
Postconditions	 L'état du système après le CU Doit être vrai après l'exécution 	

Enchaînements des CU

- Un enchaînement est une suite d'actions numérotées
- La première action est formulée comme ceci : Le CU démarre quand <l'acteur><fonction>
- Chaque action est formulée comme ceci : <quelque chose / quelqu'un> <fonction>

Enchaînements des CU – Suite

- L'enchaînement principal est une séquence d'évènements décrivant le CU
- Le CU suit idéalement un enchainement mais peut avoir des déviations, ces déviations sont appelées enchaînement alternatifs
- Les enchaînements sont aussi appelés scénarios
- Il existe deux types de déviations : les déviations simples qui sont formalisées dans l'enchaînement et les déviations complexes qui sont formalisées dans un autre enchaînement

Exemples d'enchaînements

- 1. Le CU démarre quand le client clique sur le bouton « se connecter »
- 2. Le client entre son nom d'utilisateur dans la zone « login »
- 3. Le client entre son mot de passe dans la zone « mot de passe »
- 4. Le système vérifie la validité du nom d'utilisateur et du mot de passe

Enchaînements – Mauvaise Formulation

- « Les informations du client sont entrées et vérifiées »
- Qui entre les informations ?
- Dans quoi ?
- Quelles sont ces informations ?
- Ne pas s'exprimer en voix passive
- Se poser les questions : qui, quoi, quand et où ? Répondre avec précision.

Enchaînements – Contrôle de Flux

- Pour éviter de créer des enchaînements alternatifs, on peut faire des instructions de contrôle de flux à l'intérieur d'un enchaînement
- Le mot clé si : contrôle conditionnel
- Le mot clé **pour** : répétition pour tous les éléments d'un ensemble
- Le mot clé *tantque* : répétition selon une condition

Documentation d'un cas d'utilisation - Simulation

CU: GérerUnePhotoDansLAlbum

ID: 2

Description brève : Gestion de l'album photo en ligne

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions:

- le client doit être authentifié
- L'album n'est pas vide

Enchaînement principal

- 1. Le CU démarre quand l'utilisateur clique sur une photo dans l'album
- 2. *Si* l'utilisateur clique sur le bouton « supprimer »
 - 2.1 Le système supprimer la photo de l'album
- 3. *Si* l'utilisateur clique sur le bouton « N&B »
 - 3.1 Le système transforme la photo en noir et blanc

Postconditions : Une photo supprimée ou modifée

Enchaînement s alternatifs :

CU: ChercherUnePhoto

ID: 3

Description brève: Rechercher une photo dans les albums en ligne

Acteurs primaires : Utilisateurs

Acteurs secondaires : Aucun

Préconditions : le client doit être authentifié

Enchaînement principal

- 1. Le CU démarre quand l'utilisateur clique sur le bouton « chercher »
- 2. Le client entre les mots clé de recherche
- 3. Le système trouve les photos indexées avec ces mots clés
- 4. *Si* le résultat de recherche n'est pas vide
 - 4.1. *Pour* chaque photo trouvée

4.1.1 Le système affiche la miniature de la photo

4.1.2 Le système ajoute la photo aux statistiques de recherche

5. Sinon

5.1 Le système affiche un message « aucune photo trouvée »

Postconditions:

Enchaînement s alternatifs :

CU: UploaderDesPhotos

ID: 4

Description brève : Uploader des photos dans l'album

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions : le client doit être authentifié

Enchaînement principal

- 1. Le CU démarre quand l'utilisateur clique sur le bouton « upload »
- 2. Le client sélectionne sur son ordinateur les photos à uploader
- 3. *Tantque* qu'il y a un espace libre dans le quota de l'utilisateur
 - 3.1. *Pour* chaque photo à uploader
 - 3.1.1 Enregistrer la photo dans l'espace de l'utilisateur
 - 3.1.2 Créer une miniature de la photo

Postconditions:

Enchaînement s alternatifs :

Enchaînements Alternatifs

- Les enchaînements décrivent souvent des actions très complexes
- Les enchaînements alternatifs sont des déviations ou des interruptions des enchaînements principaux
- Les enchaînements alternatifs peuvent être documentés à l'intérieur de la spécification ou séparément
- Un enchaînement alternatif peut ne pas revenir à l'enchaînement principal

Enchaînements Alternatifs - Suite

- Les noms des enchaînements alternatifs sont formulés de la manière suivante : Enchaînement Alternatif : NomCU:NomEnchaînementAlternatif
- L'id de l'enchaînement alternatif obéit à une numérotation hiérarchique. Par exemple, si l'ID un CU est 5, l'id de son premier enchaînement alternatif serait 5.1

Enchaînements Alternatifs – Démarrage

- L'EA peut démarrer au lieu de l'enchaînement principal. Dans ce cas, c'est l'utilisateur qui déclenche cette déviation.
- L'EA peut démarrer après une étape N de l'enchaînement principal « l'EA démarre après l'étape X de l'enchaînement principal »
- L'EA peut démarrer à n'importe quel moment
- Pour chaque CU il y a un seul enchaînement principal et plusieurs EA
- Eviter de donner trop d'enchaînements alternatifs
- Regrouper les EA similaires

Documentation d'un cas d'utilisation - Simulation

CU: CréerUnCompte

ID: 8

Description brève : Création d'un compte utilisateur

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions: Aucune

Enchaînement principal

- 1. L'utilisateur clique sur le lien « s'inscrire »
- 2. L'utilisateur entre son nom d'utilisateur
- 3. L'utilisateur entre son mot de passe
- 4. Le système valide le nom d'utilisateur et le mot de passe
- 5. Le système crée un compte pour l'utilisateur

Postconditions : Le compte du client est créé

Enchaînements alternatifs:

CompteExistant

MotDePasseInvalide

Annulation

EA: CréerUnCompte:CompteExistant

ID: 8.1

Description brève: Le système informe l'utilisateur que le nom d'utilisateur a déjà été

pris

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions:

• Le compte entré par l'utilisateur est réservé par un autre utilisateur

Enchaînement principal

- 1. L'EA démarre à l'étape 4 de l'enchaînement principal
- 2. Le système affiche que le compte a déjà été donné à un autre utilisateur
- 3. L'EA revient à l'étape 2 de l'enchaînement principal

Postconditions: Aucune

Enchaînements alternatifs:

EA: CréerUnCompte:Annuler

ID: 8.3

Description brève : L'utilisateur annule la création de son compte

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions:

Enchaînement principal

- 1. L'EA démarre à n'importe quel moment
- 2. L'utilisateur annule la création de son compte

Postconditions: Aucune

Enchaînements alternatifs:

Traçabilité des cas d'utilisation

- Un CU peut décrire une ou plusieurs spécifications
- Une spécification peut être représentée par un ou plusieurs CU
- La matrice de traçabilité définit les relations entre les spécifications et les CU

	CU1	CU2	CU ₃	CU ₄
S ₁		X		
S ₂	X		X	
S ₃				X
S ₄		X		

Quand utiliser les CU?

- Le système est dominé par les spécifications fonctionnelles
- Le système est utilisé par plusieurs utilisateurs
- Le système a plusieurs interfaces

Modèles des Cas d'Utilisation

SECTION 3 – DÉBAT (10 MNS)

Modélisation Avancée des Cas d'Utilisation

SECTION 4

Généralisation des acteurs

- Des acteurs peuvent avoir beaucoup de CU en commun
- Un acteur peut être différent d'un autre acteur par quelques CU supplémentaires
- La généralisation répond au souci d'encombrement des diagrammes de CU
- La généralisation des CU simplifie non seulement la présentation mais aussi la sémantique des CU

Généralisation des acteurs - Suite

Généralisation des acteurs - Suite

Généralisation des CU

Généralisation des CU

Inclusion des CU

- L'inclusion est une relation entre deux CU (CU1 et CU2). CU 1 est appelé *CU de base* et CU2 est appelé *CU d'inclusion*.
- Quand l'enchaînement arrive au point d'inclusion, CU1 ne s'exécuter que lorsque CU2 s'exécute.
- L'inclusion évite la répétition

Inclusion des CU

• Un CU peut avoir plusieurs CU d'inclusion

• CU ne s'exécute que lorsque tous les CU d'inclusion ont été exécutés

Inclusion - Exemple

Inclusion des CU - Exemple

CU: S'Authentifier

ID: 15

Description brève : Authentification de l'utilisateur

Acteurs primaires : Utilisateurs

Acteurs secondaires: Aucun

Préconditions:

Enchaînement principal

- 1. Le CU commence lorsque l'utilisateur clique sur « se connecter »
- 2. L'utilisateur entre son nom de compte et son mot de passe
- 3. Le système valide le compte et le MDP
- 4. Le système le dirige vers sa page par défaut

Postconditions: Utilisateur connecté »

Enchaînements alternatifs:

CompteInvalide

MDPInvalide

Inclusion des CU – Suite

CU: CreerUneAnnonce
<i>ID</i> : 16
Description brève : Création d'une nouvelle annonce dans le site
Acteurs primaires : Vendeur
Acteurs secondaires : Aucun
Préconditions :
Enchaînement principal
1. <i>Inclure</i> (S'authentifier)
2
3
Postconditions:
Enchaînements alternatifs :

Extension des CU

- L'extension est une relation entre deux CU : CU1 et CU2
- CU2 étend CU1 par un comportement optionnel qui a lieu sous une certaine condition
- Cette condition est appelé « point d'extension »

Extension des CU

Extension des CU - Suite

CU: FaireUneOffre

ID: 16

Description brève : L'acheteur désire acquérir le produit de l'annonce et veut faire une

offre au vendeur

Acteurs primaires : Acheteur

Acteurs secondaires : Aucun

Préconditions:

Enchaînement principal

1. L'utilisateur consulte les détails de l'offre

Point d'extension : NégocierLeMontant (si l'annonce est négociable)

2. Envoyer le montant au vendeur

Postconditions:

Enchaînements alternatifs:

Best practices

Les acteurs doivent être appelés en utilisant leur rôle au singulier Ne pas montrer le comportement, plutôt montrer la fonctionnalité Les diagrammes ne doivent pas être trop encombrés. Par exemple, au maximum 15 CU par diagramme

Tous les CU doivent avoir le même niveau d'abstraction

Les spécifications des CU doit être de la même taille (1/2 page à 1 page) Si les CU sont trop grands, utiliser les inclusions / extensions / généralisations

Sortir les éléments redondants en des CU inclus

Sortir les éléments conditionnels en des CU d'extension

Les CU sont appelé en utilisant des verbes

Ne pas schématiser les communications entre acteurs

Modélisation Avancée des Cas d'Utilisation

SECTION 4, DÉBAT

Bibliographie

- Software Engineering Right Edition, Ian Sommerville, Addison Wesley, 2007
- Software Development and Professional Practice, John Dooley, APress, 2010
- Software Development Life Cycle (SDLC), Togi Berra, course session 2
- Rational Unified Process Best Practices for Software
- Development Teams, IBM / Rational, 1998