CSC242: Introduction to Artificial Intelligence

Lecture 3.4

Please put away all electronic devices

Announcements

- Exam 3 One week from today
- Project 3 due same day 1159PM
 - Don't wait to be finished

THE NEW YORK TIMES BESTSELLER

THINKING,
FAST AND SLOW

DANIEL KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

"[A] masterpiece.... This is one of the greatest and most engaging collections of insights into the human mind I have read." —william easterly, Financial Times

NEW YORK TIMES BESTSELLER

REVISED AND EXPANDED EDITION

JANOITA 981 BEDICLA BIA

"Sly and lucid. . . . Revolutionary." — New York Times Book Review

The Hidden Forces That Shape Our Decisions

DAN ARIELY

AUTHOR OF THE UPSIDE OF IRRATIONALITY

Bayesian Networks

Cavity	toothache	$\neg toothache$
cavity		
$\neg cavity$		The same of the sa

\mathcal{C}	Cavity	catch	$\neg catch$
(eavity	1.79	
	cavity		

$P(toothache, cavity, catch) = \\ P(toothache|cavity)P(catch|cavity)P(cavity)$

Cavity	toothache	$\neg toothache$
cavity		
$\neg cavity$		The second of the

Cavity	catch	$\neg catch$
cavity	1.75	
$\neg cavity$		

 $\mathbf{P}(B, E, A, J, M) = \alpha \mathbf{P}(B) \mathbf{P}(E) \mathbf{P}(A \mid B, E) \mathbf{P}(J \mid A) \mathbf{P}(M \mid A)$

Full joint distribution: 2⁵=32 entries Bayesian network: 10 entries Assuming conditional independences encoded in the network

Inference in Bayesian Networks

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$
$$= \alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

 "A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network."

Exact Inference in BNs

Space Complexity

Approximate Inference in Bayesian Networks

Exact Inference

- ullet Query variable X
- Evidence variables $E_1, ..., E_m$
 - ullet Observed values: $e=\langle e_1\ ,\ ...,\ e_m
 angle$
- Non-evidence, non-query ("hidden") variables: Y
- ullet Compute: $\mathbf{P}(X \mid \mathbf{e})$

Approximate Inference

- ullet Query variable X
- ullet Evidence variables $E_1, ..., E_m$
 - ullet Observed values: $e=\langle e_1\ ,\ ...,\ e_m
 angle$
- ullet Non-evidence, non-query ("hidden") variables: Y
- Approximate (estimate): P(X | e)

Unconditional Approximation

- ullet Query variable X
- Evidence variables $E_1, ..., E_m$
 - ullet Observed values: $e=\langle e_1\ ,\ ...,\ e_m
 angle$
- Non-evidence, non-query ("hidden") variables: Y
- ullet Approximate (estimate): $\mathbf{P}(X)$

Heads

Goal: P(Heads) P(Heads=true) P(heads)

Heads

of flips: N # of heads: N_{heads}

(Heads)

 $P(heads) \approx \frac{N_{heads}}{N}$

(Heads)

 $P(heads) = \lim_{N \to \infty} \frac{N_{heads}}{N}$

Sampling

- Generating events (possible worlds)
 from a distribution
- Estimating probabilities as ratio of observed events to total events
 - Consistent estimate: becomes exact in the large-sample limit

P(Rain = true)

Sampling

- Generate assignments of values to the random variables
- That are consistent with the full joint distribution encoded in the network
 - In the sense that in the limit, the frequency of occurrence of any event (possible world) is equal to its probability

 $\langle Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true \rangle$

 $\langle Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true \rangle$ $\langle Cloudy = false, Sprinkler = false, Rain = false, WetGrass = false \rangle$ $\langle Cloudy = true, Sprinkler = true, Rain = true, WetGrass = true \rangle$

Generating Samples

- Sample each variable in topological order
 - Child appears after its parents
- Choose the value for that variable conditioned on the values already chosen for its parents

Cloudy Sprinkler Rain WetGrass

Cloudy Sprinkler Rain WetGrass

true

 $\mathbf{P}(Cloudy) = \langle 0.5, 0.5 \rangle$

Cloudy true Sprinkler false Rain WetGrass

$$\mathbf{P}(Sprinkler \mid Cloudy = true) = \langle 0.1, 0.9 \rangle$$

Cloudy true
Sprinkler false
Rain true

WetGrass

$$\mathbf{P}(Rain \mid Cloudy = true) = \langle 0.8, 0.2 \rangle$$

Cloudy true
Sprinkler false
Rain true
WetGrass true

 $\overline{\mathbf{P}(WetGrass \mid Sprinkler = false, Rain = true)} = \langle 0.9, 0.1 \rangle$

Cloudy true
Sprinkler false
Rain true
WetGrass true

 $\langle Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true \rangle$

Guaranteed to be a consistent estimate (becomes exact in the large-sample limit)

Sampling

- Generate assignments of values to the random variables
- That are consistent with the full joint distribution encoded in the network
 - In the sense that in the limit, the frequency of occurrence of any event (possible world) is equal to its probability

Approximate Inference

- ullet Query variable X
- ullet Evidence variables $E_1, ..., E_m$
 - ullet Observed values: $e=\langle e_1\ ,\ ...,\ e_m
 angle$
- ullet Non-evidence, non-query ("hidden") variables: Y
- Approximate (estimate): P(X | e)

 $\mathbf{P}(Rain \mid Sprinkler = true)$

 $\langle Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true \rangle$

Rejection Sampling

- Generate sample from the prior distribution specified by the network
- Reject sample if inconsistent with the evidence
- Use remaining samples to estimate probability of event

 $\mathbf{P}(Rain \mid Sprinkler = true)$

100 samples

Sprinkler=false: 73

Sprinkler=true: 27

 $\mathbf{P}(Rain \mid Sprinkler = true)$

100 samples

Sprinkler=false: 73

Sprinkler=true: 27

Rain=true: 8

Rain=false: 19

 $\mathbf{P}(Rain \mid Sprinkler = true)$

100 samples

Sprinkler=false: 73

Sprinkler=true: 27

 $Rain = \overline{true}$: 8

Rain=false: 19

$$\mathbf{P}(Rain \mid Sprinkler = true) \approx \alpha \left\langle \frac{8}{27}, \frac{19}{27} \right\rangle = \langle 0.296, 0.704 \rangle$$

Rejection Sampling

- Generate sample from the prior distribution specified by the network
- Reject sample if inconsistent with the evidence
- Use remaining samples to estimate probability of event

Rejection Sampling

- Generate sample from the prior distribution specified by the network
- Reject sample if inconsistent with the evidence
- Use remaining samples to estimate probability of event

Fraction of samples consistent with the evidence drops exponentially with number of evidence variables

Cloudy Sprinkler Rain WetGrass

Cloudy
Sprinkler
Rain
WetGrass

Cloudy Sprinkler Rain WetGrass w=1.0

Cloudy Sprinkler Rain WetGrass w=1.0

 $\mathbf{P}(Rain \mid Cloudy = true, WetGrass = true)$

true

Cloudy Sprinkler Rain WetGrass w = 0.5

 $\mathbf{P}(Rain \mid Cloudy = true, WetGrass = true)$

true

Cloudy Sprinkler Rain WetGrass w=0.5

true

false

true

false

true

true

false

true

true

 $egin{array}{ll} Cloudy & true \ Sprinkler & false \ Rain & true \ WetGrass & true \ egin{array}{ll} w = 0.45 \ \end{array}$

 $egin{array}{ll} Cloudy & true \ Sprinkler & false \ Rain & true \ WetGrass & true \ w = 0.45 \ \end{array}$

$$N_{Rain=true}$$
 +=

 $egin{array}{ll} Cloudy & true \ Sprinkler & false \ Rain & true \ WetGrass & true \ w = 0.45 & & & \ \end{array}$

 $\mathbf{P}(Rain \mid Cloudy = true, WetGrass = true)$

 $N_{Rain=true}$ += 0.45

Likelihood Weighting

- Generate only samples consistent with the evidence
 - Generate sample using topological order
 - Evidence variable: Value fixed, update weight
 - Non-evidence variable: Sample value from network
- Compute weighted sum of samples for estimate

Likelihood Weighting

- Pros:
 - Doesn't reject any samples
- Cons:
 - More evidence ⇒ lower weight
 - Affected by order of evidence vars in topsort (later = worse)

Approximate Inference in Bayesian Networks

Rejection Sampling

Likelihood Weighting

Cloudy true
Sprinkler false
Rain true
WetGrass true

 $\mathbf{P}(Rain \mid Sprinkler = true, WetGrass = true)$

- ullet To approximate: $\mathbf{P}(X \mid \mathbf{e})$
- Generate a sequence of states
 - Values of evidence variables are fixed
 - Values of other variables appear in the right proportion given the distribution encoded by the network

Markov Chain Monte Carlo Simulation

- ullet To approximate: $\mathbf{P}(X \mid \mathbf{e})$
- Generate a sequence of states
 - Values of evidence variables are fixed
 - Values of other variables appear in the right proportion given the distribution encoded by the network

Monte Carlo

Markov Chain

Markov Chain Monte Carlo Simulation

- ullet To approximate: $\mathbf{P}(X \mid \mathbf{e})$
- Generate a sequence of states
 - Values of evidence variables are fixed
 - Values of other variables appear in the right proportion given the distribution encoded by the network

Conditional Independence

X conditionally independent of Zs given Us

Conditional Independence Markov Blanket

X conditionally independent of all Vs given Us, Ys, and Zs

Markov Blanket

- The Markov Blanket of a node is its parents, its children, and its children's parents.
- A node is conditionally independent of all other nodes in the network given its Markov Blanket

Maibles Siamapainign

- ullet To approximate: $\mathbf{P}(X \mid \mathbf{e})$
- Start in a state with evidence variables set to evidence values (others arbitrary)
- On each step, sample the non-evidence variables conditioned on the values of the variables in their Markov Blankets
 - Order irrelevant

Cloudy true
Sprinkler true
Rain false
WetGrass true

 $\mathbf{P}(Rain \mid Sprinkler = true, WetGrass = true)$

Cloudy true
Sprinkler true
Rain false
WetGrass true

$$N_{Rain=false}$$
 += 1

Cloudy true
Sprinkler true
Rain false
WetGrass true

CloudytrueSprinklertrueRainfalseWetGrasstrue

Cloudy true Sprinkler trueRainfalseWetGrass

true

 $\mathbf{P}(Rain \mid Sprinkler = true, WetGrass = true)$

 $\mathbf{P}(Cloudy \mid Sprinkler=true, Rain=false)$

CloudyfalseSprinklertrueRainfalseWetGrasstrue

Cloudy false
Sprinkler true
Rain false
WetGrass true

$$N_{Rain=false} += 1$$

Cloudy false
Sprinkler true
Rain false

true

WetGrass

 $\mathbf{P}(Rain \mid Sprinkler = true, WetGrass = true)$

 $\mathbf{P}(Rain \mid Sprinkler=true, Rain=false, Cloudy=false)$

Cloudy false
Sprinkler true
Rain true
WetGrass true

$$N_{Rain=true} += 1$$

Cloudy false
Sprinkler true
Rain true
WetGrass true

 $\mathbf{P}(Rain \mid Sprinkler = true, WetGrass = true)$

Gibbs Sampling

- To approximate: P(X | e)
- Start in a state with evidence variables set to evidence values (others arbitrary)
- On each step, sample non-evidence variables conditioned on the values of the variables in their Markov Blanket
 - Order irrelevant
- A form of local search!

Exact Inference in Bayesian Networks

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$
$$= \alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

Intractable (#P-Hard)

Approximate Inference in Bayesian Networks

- Sampling consistent with a distribution
- Rejection Sampling: rejects too much
- Likelihood Weighting: weights get too small
- Gibbs Sampling: MCMC algorithm
 - Similar to local search
- All generate <u>consistent</u> estimates (equal to exact probability in the large-sample limit)

For Next Time:

AIMA 15.0-15.3