Gradientenverfahren

Gradientenverfahren

Wie kann man Minima einer differenzierbaren Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ finden?

Gradientenverfahren

- An jedem Punkt $x_k \in \mathbb{R}^n$ zeigt der negative Gradient $d_k := -\nabla f(x_k)$ in die steilste Abstiegsrichtung.
- Für hinreichend kleines α_k folgt mit Satz über die lokale Linearisierung:

$$f(x_{k+1}) = f(x_k + \alpha_k d_k) = f(x_k) + \alpha_k df(x_k) d_k + R(\alpha_k dk)$$

- Setze $x_{k+1} = x_k + \alpha_k d_k$
- Es gilt $f(x_{k+1}) \le f(x_k)$, falls $\nabla f(x_k) \ne 0$
- Falls die folge $f(x_k)$ beschränkt ist, so ist dieser Fixpunkt x^* ein Minimum, da $\nabla f(x^*) = 0$ gelten muss.

Gradientenverfahren

Figure: Quelle: Wikipedia

Backpropagation

Backpropagation

Das Gradientenverfahren angewendet auf eine Lossfunktion eines neuronalen Netzes wird als Backpropagation bezeichnet. Gegeben ist ein neuronales Netz $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^m$, und ein Datensatz $D:=\{(x_i,y_i)\}$ mit $x_i\in \mathbb{R}^n,y_i\in \mathbb{R}^m$. Finde Gewichte Omega, so dass Lossfunktion

$$L_D:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

minimal wird. Zum Beispiel

$$L_D(\omega) := \sum_{(x_i, y_i) \in D} (f(\omega, x_i) - y_i)^2$$

Figure

Figure

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- $k \leftarrow k + 1$

Backpropagation

Mini Batch

• Datensatz D sehr groß (Big Data)

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).
- #D' = 1 stochastischer Gradientenabstieg.

Figure: Quelle: https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D_k'}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D_k'}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_{\iota}}(\omega_k + \alpha d_k) = L_{D'_{\iota}}(\omega_k) + \alpha_k dL_{D'_{\iota}}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.
- $k \leftarrow k + 1$