Varianta 7

Subjectul I.

- a) Punctul *M* aparține elipsei $\iff a = 9$.
- **b**) Intersecțiile dreptei cu axele sunt punctele A(7,0), $B(0,\frac{7}{3})$.
- c) $\frac{5\sqrt{2}}{2}$.
- **d)** Punctele A, B, C aparțin planului dat \Leftrightarrow $\begin{cases} a = 6 \\ b = 3 \\ c = -2 \end{cases}$
- e) Cel mai mare dintre cele trei numere este $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$.
- **f**) 1.

Subjectul II.

1

a)
$$(X^2 - 3X + 2)^2 = X^4 - 6X^3 + 13X^2 - 12X + 4 = f$$
.

- **b)** $f(x)=0 \iff x_1=x_2=1, x_3=x_4=2.$
- c) Restul împărțirii lui f la g este 36.
- d) Suma coeficienților polinomului este egală cu 0.
- e) Cea mai mică valoare a funcției g este $y_v = -\frac{1}{4}$.
- 2.
- a) Calcul direct.
- **b**) [S] = 0.
- c) $x = \frac{-1}{2}$ este punctul de maxim local al funcției.
- **d**) Dreptele d: x = 0 și g: x = -1 sunt asimptote verticale (bilaterale).
- **e**) $S = \ln \frac{4}{3}$.

Subjectul III.

- **a)** $X^{-1} = \frac{1}{a} \cdot I_3$.
- **b)** Presupunem contrariul deci că există $a \in \mathbb{Q}$ pentru care $X = aI_3 \in H$. Înlocuind în $X^{-1} = X^2 + X$, obținem $a^3 + a^2 1 = 0$, dar ecuația anterioară nu are

rădăcini raționale, fals.

- c) Dacă $A \in H$, atunci A este inversabilă și $A^{-1} = A^2 + A \iff A \cdot A^{-1} = A^3 + A^2$
- **d**) Se folosește punctul **c**) și faptul că $A \in H$.
- e) Calcul direct.
- f) Dacă $A \in H$, rezultă că A este inversabilă.

Pentru o matrice inversabilă $P \in M_3(\mathbf{Q})$, notăm $U = P^{-1} \cdot A \cdot P$.

Atunci U este inversabilă și $U^{-1} = (P^{-1} \cdot A \cdot P)^{-1} = P^{-1} \cdot A^{-1} \cdot P$.

Mai mult, se demonstrează că $U^2 + U = U^{-1}$, deci $U \in H$.

g) Pentru $a \in \mathbf{Q}^*$, toate matricele de forma $P_a = \begin{pmatrix} a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ sunt inversabile.

Alegem
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \in H$$
.

Din **f**) rezultă că pentru orice $a \in \mathbf{Q}^*$, $P_a^{-1} \cdot A \cdot P_a \in H$.

Deoarece când a parcurge \mathbf{Q}^* , matricele $P_a^{-1} \cdot A \cdot P_a$ sunt elemente distincte ale mulțimii H, rezultă că mulțimea H are o infinitate de elemente, de unde deducem concluzia.

Subjectul IV.

- a) Integrând prin părți obținem: $I_1 = \cos 1 + 2\sin 1 2$.
- **b)** $I_{n+1} I_n = \int_0^1 x^{2n} (x^2 1) \cdot \sin x \, dx < 0$, $\forall n \in \mathbb{N}^*$, deci şirul $(I_n)_{n \ge 1}$ este strict descress $(I_n)_{n \ge 1}$
- c) $f''(x) \le 0$ pentru $x \in \left[0, \frac{\pi}{2}\right]$, deci f este concavă pe $\left[0, \frac{\pi}{2}\right]$.
- **d**) Pentru $x \in \left(0, \frac{\pi}{2}\right)$, considerăm punctele A(1,0) și $M(\cos x, \sin x)$ de pe cercul trigonometric. Deoarece y_M este mai mic decât lungimea arcului mic de cerc cu capetele în A și M, deducem că $\sin x < x$, $\forall x \in \left(0, \frac{\pi}{2}\right)$.

Considerăm punctele O(0,0) și $N(\frac{\pi}{2},1)$ de pe graficul funcției sinus.

Deoarce pentru $x \in \left(0, \frac{\pi}{2}\right)$, graficul funcției sinus este deasupra coardei (ON), se deduce concluzia.

e) Din d) obținem că $\frac{2}{\pi} \cdot x \le \sin x \le x$, $\forall x \in \left[0, \frac{\pi}{2}\right]$ și înmulțind inegalitatea cu

$$x^{2n} \ge 0$$
, avem: $\frac{2}{\pi} \cdot x^{2n+1} \le x^{2n} \cdot \sin x \le x^{2n+1}$, $\forall x \in [0,1] \subset \left[0, \frac{\pi}{2}\right]$.

Integrând această ultimă dublă inegalitate pe intervalul [0,1], obținem concluzia.

- f) Se verifică prin calcul direct.
- g) Din e), avem $0 < I_n < \frac{1}{2(n+1)} < \frac{1}{2}$, $\forall n \in \mathbb{N}^*$, deci şirul $(I_n)_{n \ge 1}$ este mărginit.

Rezultă că
$$\lim_{n\to\infty} \frac{n}{2(n+1)(2n+1)} \cdot I_{n+1} = 0$$
.

Din **f**), înlocuind
$$n \in \mathbb{N}^*$$
 cu $n+1$, obținem $n \cdot I_n = \frac{2(n+1)\sin 1 - \cos 1 - I_{n+1}}{2(n+1)(2n+1)} \cdot n$ și

obţinem
$$\lim_{n\to\infty} (n \cdot I_n) = \frac{1}{2} \cdot \sin 1$$
.