УТВЕРЖДАЮ

Генеральный д	циректор
ООО «Лаборат	гория Микроприборов»
	А.С. Тимошенков
« »	2020 г.

МОДУЛЬ ИНЕРЦИАЛЬНЫЙ СЕРИИ ГКВ

ПРОТОКОЛ информационного взаимодействия с изделием ЛМАП.402131.009Д1

Разработал	
	А.В. Михеев 2020 г.
Проверил	
	А.М. Каменский 2020 г.
Нормоконтро	олер
	Н.А. Петрова 2020 г.

Содержание

Содержание	2
1Введение	4
2Назначение	4
3Интерфейс обмена	4
4Представление данных	4
5Способ передачи	4
6Структура информационных пакетов	4
7Формат пакетов	5
7.1 Проверка соединения	5
7.2 Программный сброс	6
7.3 Данные об изделии	6
7.4 Настройка изделия	7
7.5 Параметры наборного пакета данных ГКВ-10	14
7.6 Запрос данных	19
7.7 Наборы данных ГКВ-10	20
7.7.1 Выдача кодов АЦП	20
7.7.2 Выдача калиброванных данных с датчиков	20
7.7.3 Ориентация	20
7.7.4 Данные инклинометра	21
7.7.5 Данные БИНС	21
7.7.6 Наборный пакет данных	21
7.7.7 Данные от ГНСС приемника	22
7.7.8 Расширенные данные от ГНСС приемника	22
7.8 Компенсация смещения датчиков угловой скорости	26
7.8.1 Получение коэффициентов смещения ДУС.	26
7.8.2 Запись коэффициентов смещения гироскопов	26
7.8.3 Накопление и вычисление коэффициентов смещения ДУС.	26
7.9 Настройка фильтра	28
7.10 Настройка алгоритмов	29
7.10.1. Параметры алгоритма ориентации фильтр Калмана	29
7.10.2. Параметры алгоритма навигации БИНС	29
7.10.3. Параметры алгоритма навигации БИНС и БИНС5 со скоростной коррекцией от	
приемника ГНСС	30
7.10.4. Получение параметров алгоритма	32
7.10.5. Запись параметров алгоритма	33

7.11 Маскирование коррекции от ГНСС приемника	33
7.12 Установка и коррекция курса	34
7.13 Настройки дополнительного RS-485	34
7.13.1. Назначение «Сквозной»	34
Приложение А (справочное) Пример расчета контрольной суммы на языке С	35
4.1 Таблица	35
 Функция 	36
Приложение Б (справочное) Дополнение к протоколу для прошивки с ГНСС приемн	иком
МНП	37
Б.1 Параметры наборного пакета данных	37
5.2 Настройка алгоритма «Пользовательский»	39
5.2.1 Параметры алгоритма «Пользовательский»	39
3Лист регистрации изменений	40

1 Введение

Настоящий протокол информационного взаимодействия устанавливает характеристики связи с изделием ГКВ-5/6/10/11/12 (далее ГКВ).

2 Назначение

Протокол предназначен для однозначного регламентирования скорости обмена, последовательности и типов данных, следующих в информационном обмене.

3 Интерфейс обмена

Информационное взаимодействие с изделием ГКВ обеспечивается посредством цифрового последовательного дифференциального асинхронного четырёхпроводного интерфейса RS-485. Параметры передачи данных: 8 бит данных, без бита четности, 1 стоп-бит и настраиваемой скоростью из ряда (115.200, 230.400, 460.800, 921.600, 1000, 2000, 3000 кбит/с). Скорость обмена данными, устанавливаемая при производстве 921600 бит/с.

Уровни сигналов не более 6 В, причем логическая единица: (A-B) > +200 мВ, логический ноль: (A-B) < -200 мВ.

4 Представление данных

Порядок передачи данных от младшего к старшему. Используется little-endian порядок байт. Структуры упакованные. Типы данных:

uint8 – 8 бит целое беззнаковое число

uint16 – 16 бит целое беззнаковое число

uint32 – 32 бит целое беззнаковое число

float32 – 32 бит число с плавающей точкой одинарной точности в формате IEEE 754

5 Способ передачи

Передачи по интерфейсу производятся непрерывными массивами байт — пакетами. Логически передачи соответствуют принципам «запрос-ответ» и «ведущий-ведомый» (кроме режима непрерывной передачи данных). Устройство является ведомым, и производит непрерывное прослушивание канала данных. Ведущее устройство посылает пакет-запрос, а ведомое, в течение фиксированного интервала, должно послать пакет-ответ. Выбор устройства производится с помощью поля адреса.

Исключением является режим непрерывной выдачи измеренных данных. В данном режиме устройство в соответствии с настроенной частотой выдачи данных посылает соответствующие типы пакетов. В остальном взаимодействие аналогично принципам «запрос-ответ» и «ведущий-ведомый».

Прием осуществляется целиковыми пакетами. Разделителем пакета служит задержка более 3,5 символов.

6 Структура информационных пакетов

Передача данных осуществляется попакетно. Структура пакета: заголовок фиксированной длины, поле данных переменной длины и контрольная сумма (см. рисунок 1).

Заголовок содержит служебную информацию: преамбулу (8 бит, имеет значение 0xFF), адрес устройства (8 бит), тип пакета (8 бит), длину поля данных (8 бит).

Поле данных имеет переменную длину и содержит параметры настройки изделия ГКВ, параметры данных с датчиков или их производные.

Контрольная сумма (32 бит) служит для проверки целостности переданного пакета данных. Расчет производится над массивом заголовок плюс поле данных. Значение добавляется к пакету в формате little-endian. Полином 32-й степени для расчета контрольной суммы имеет вид: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0$ (используется в Ethernet, Gzip, и т.д.). Пример расчета контрольной суммы CRC32 на языке программирования С приведен в приложении.

Рисунок 1 – Структура пакета

```
Пример структуры на языке C:
#define MAX_LENGTH 255
struct
{
    uint8 preamble;
    uint8 address;
    uint8 packet_type;
    uint8 length;
    uint8 data[MAX_LENGTH +4]; // data + CRC32
};
```

7 Формат пакетов

В разделе описаны:

- тип пакета;
- длина поля данных;
- поле данных;

7.1 Проверка соединения

Используется для определения подключения изделия к интерфейсу.

Запрос:

Назначение	Заполнение	
Тип пакета	0x00	
Длина поля данных	0	

Ответ:

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

Внимание! Ответ с типом пакета 0x00, также возвращается в качестве подтверждения на все пакеты (включая с неподдерживаемым типом), которые не подразумевают ответа специфичного типа.

7.2 Программный сброс

Используется для перезагрузки вычислителя

3anpoc:

Назначение	Заполнение	
Тип пакета	0x01	
Длина поля данных	0	

Ответ:

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

7.3 Данные об изделии

Используется для получения данных об изделии и его работоспособности

Запрос:

Назначение	Заполнение	
Тип пакета	0x04	
Длина поля данных	0	

Ответ:

Назначение	Заполнение	Примечание
Тип пакета	0x05	
Длина поля данных	0x2B	
Версия загрузчика	uint16	Номер версии в кодировке производителя
Версия прошивки	uint16	Номер версии в кодировке производителя
Дата производства	uint32	Дата производства в формате UTC
Серийный номер	char[16]	Дата производства в кодировке производителя в формате ASCII
Название изделия	char[16]	Код изделия в формате ASCII
Режим работы изделия	uint8	Используется на этапе производства
Статус данных	uint16	Битовое полле

Режим работы изделия

Значение регистра	Описание	
0	Режим, загрузчик (нет рабочей прошивки)	
1	Резерв	
2	Режим, рабочая программа	
3	Резерв	

Статус данных (битовое поле)

Биты	Описание		
1513	Резерв		
12	Метка времени ГНСС приемника (1PPS)		
11	Готовность алгоритма		
	Значение канала «Вход синхросигнала»		
10	1 – более 2,5 В		
	0 – менее 0,5 В		
9	0	Z	
8	Отказ акселерометра	Y	
7	- 1 — Отказ	X	
6		Z	
5	Отказ датчика угловой скорости	Y	
4	- 1 - Отказ	X	
3	Отказ АЦП		
3	1 — Отказ		
2	Пропуск данных АЦП		
2	1 – Были зафиксированы пропуски		
1	Переполнение очереди отправки данных		
1	1 – Очередь отправки была переполнена		
	Значение канала «Выход синхросигнала» 0 1 — более 2,5 В		
0			
	0 – менее 0,5 В		

7.4 Настройка изделия

Используется для настройки режимов работы изделия

Запрос

Назначение	Заполнение
Тип пакета	0x06
Длина поля данных	0

Запись/Ответ

Назначение	Заполнение	Примечание
Тип пакета	0x07	
Длина поля данных	0x3E	
Маска изменения формата данных	uint32	
Формат данных	uint32	
Маска изменения пара- метров выдачи данных	uint32	
Скорость основного по- следовательного интер- фейса RS-485	uint8	
Адрес изделия в протокле последовательного интерфейса	uint8	Адрес изделия может быть задан от 1 до 255. При производстве адрес равен 1. При посылке пакета с адресом равным 0, ответят все изделия на линии (широковещательная посылка).
Частота выдачи данных	uint16	
Алгоритм расчётов	uint8	
Диапазон измерения дат- чиков угловой скорости	uint8	Для ГКВ-5/6/10/11/12 диапазон измерения устанавливается аппаратно (\pm 900 °/c или \pm 2700 °/c). Значение регистра = 0.
Диапазон измерения ак- селерометров	uint8	Для ГКВ- $5/6/10/11/12$ диапазон измерения акселерометров устаналивается аппаратно (\pm 1, \pm 2,5, \pm 10, \pm 30, \pm 100 g). Значение регистра = 0.
Предделитель выходного синхросигнала	uint16	Предделитель изменяет скорость выдачи данных путем их усреднения. 0 – синхросигнал выключен.
DCM (1,1)	float32	
DCM (1,2)	float32	
DCM (1,3)	float32	
DCM (2,1)	float32	Матрица поворота (3х3) измеренных данных. По
DCM (2,2)	float32	умолчанию единичная.
DCM (2,3)	float32	умол штио одит тах.
DCM (3,1)	float32	
DCM (3,2)	float32	
DCM (3,3)	float32	
Тип дополнительный RS-485	uint8	
Пропуск выходных пакетов данных	uint8	При использовании алгоритмов ориентации и навигации уменьшение частоты выдачи данных необходимо регулировать пропуском пакетов.
Скорость обмена допол- нительного RS-485	uint8	
Диапазон измерения ка- нала магнитометра	uint8	
Тип входа внешней син- хронизации	uint8	

Маска изменения формата данных — маска предназначена для выборочного изменения, накладываемая на формат данных для изменения необходимых битов. 1 — бит может меняться, 0 — бит не может изменяться.

Формат данных (битовое поле)

Биты	Описание
3115	Резерв (заполнить 0)
14 ²⁾	1 – Длина наборного пакета изменяется в зависимости от обновления параметров
1.2	0 – Выдаваемое значение курса от минус 180 до +180°
13	1 – Выдаваемое значение курса от 0 до 360°
	Посылка пакета с данными по готовности
1.2	1 – Посылка по готовности (после обновления данных в регистре отправки про-
12	изводится их отправка, время вычисления может отличаться от раза к разу)
	0 – Синхронизация с получением измерения
	Номинальная частота выдачи данных F_{AUII}
11 ¹⁾	0 = частота равна 1 к Γ ц
	1 = частота равна 24кГц
	Посылка наборного пакета данных
10	0 = посылка пакетов данных, в соответствии с алгоритмом
	1 = посылка наборного пакета данных
	Тип выходного сигнал синхронизации
9	0 = импульсы по приходу сэмпла
	1 = переключение по приходу сэмпла
	Инверсия оси Z после преобразования СК
8	0 = без инверсии
	1 = инверсия
	Инверсия оси У после преобразования СК
7	0 = без инверсии
	1 = инверсия
	Инверсия оси X после преобразования СК
6	0 = без инверсии
	1 = инверсия
	Преобразование системы координат
	0 = XYZ->XYZ;
	1 = XYZ -> YZX
53	2 = XYZ -> ZXY
	3 = XYZ->XZY
	4 = XYZ -> YXZ
	5 = XYZ -> ZYX
	Ед. изм. Углов
2	$0 = ^{\circ}$,
	1 = рад
	Ед. изм. Угловой скорости
1	$0 = ^{\circ}/c$,
	1 = рад/с
_	Ед. изм. Кажущегося ускорения
0	0 = g;
	$1 = \mathbf{M/c^2}$

Примечание:

- 1) Внимание! При установке бита 11 необходимо учитывать следующие моменты:
- характеристики работы устройства могут отличаться
- номинальная частота выдачи данных (F_{AUII}) может быть равна 1 к Γ ц или 24 к Γ ц для Γ КВ-10/11/12 и 1 к Γ ц или 16 к Γ ц для Γ КВ-5/6.
- значения предделителей должны опираться на новую частоту
- максимально возможная частота выдачи ограничивается вычислительными ресурсами и может отличаться для различных алгоритмов расчётов
- максимально возможная частота выдачи ограничивается пропускной способностью последовательного интерфейса, для увеличения которой рекомендуется использовать наборный пакет данных с минимальным набором параметров
- необходимо учитывать работу фильтра при выборе частоты выдачи данных (например, если фильтр разряжает до частоты 1 кГц, то данные на частоте 2 кГц и более выдаваться не будут). Для ГКВ-5/6 фильтр всегда усреднение.
- 2) Рекомендуется для разгрузки канала связи, при установке бита наборный пакет необходимо составлять таким образом, чтобы в начале стояли наиболее часто обновляемые данные, в конце реже обновляемые данные. Если данные были обновлены, то они будут передаваться, не обновлены не будут. Длина пакета плавающая.

Маска изменения параметров выдачи данных — предназначена для выборочного (побитового) изменения регистра параметров выдачи данных

Биты	Описание
3110	Резерв
9	Установка пропуска выходных пакетов данных
8	Установка типа оборудования на дополнительном RS-485
7	Установка матрицы поворота DCM (направляющих косинусов)
6	Установка предделителя выходного синхросигнала
5	Установка диапазона акселерометров
4	Установка диапазона датчиков угловой скорости
3	Установка выходных данных (алгоритма расчётов)
2	Установка частоты выдачи данных
1	Установка адреса последовательного интерфейса
0	Установка скорости основного последовательного интерфейса

Скорость основного последовательного интерфейса RS-485:

Значение	Скорость, бит/с
регистра	1
0	921600
1	460800
2	230400
3	115200
4	1000000
5	2000000
6	3000000

Частота выдачи инерциальных данных

Частота выдачи *инерциальных* (ускорения, угловые скорости, температуры) данных устанавливается по формуле:

$$F$$
вых = $\frac{F_{AUII}}{ДЕЛ}$,

где ДЕЛ — значение регистра $F_{\text{вых}}$ — частота выдачи данных, причем если ДЕЛ = 0, то данные выдаются по запросу.

Внимание! При использовании алгоритмов ориентации частота выдачи инерциальных данных должна быть фиксированной и равна 1 кГц. Задать частота выдачи данных алгоритмов ориентации возможно используя «*Пропуск выходных пакетов данных*».

Предделитель выходного синхросигнала

Частота выдачи данных устанавливается по формуле:

Гвыхсинхр=**Г**вых/ДЕЛ,

где ДЕЛ – значение регистра Предделитель выходного синхросигнала, значение ДЕЛ = 0 эквивалентно = 1.

Пропуск выходных пакетов данных

Задание пропуска выходных пакетов данных. Частота выдачи данных алгоритма устанавливается по формуле:

 $F_{BЫX} = F_{AЛГ}/(\Pi PO\Pi YCK+1).$

Где ПРОПУСК – значение регистра Пропуск выходных пакетов данных.

Внимание! При установке пропуска пакетов *счетчик пакетов* будет выдаваться с учетом значения «ПРОПУСК».

Алгоритм расчётов

Значение регистра	Набор данных
0	Выдача кодов АЦП (см. п. 7.7.1)
1	Выдача калиброванных данных с датчиков (см. п. 7.7.2)
2	Алгоритм вычисления ориентации (крен, тангаж и курс
	фильтр Калмана см. п. 7.7.3)
4	Вычисления углов склонения (алгоритм инклинометра
	раздел см. п. 7.7.4)
5	Резерв.
6	Алгоритм вычисления навигационных данных прямым
	способом (БИНС см. п. 7.7.5)
7	Заказной*

Значение регистра	Набор данных
8	Алгоритм вычисления навигационных данных со скоростной коррекцией от приемника ГНСС с частотой 1 кГц (ESKF+CHC)
9	Алгоритм вычисления навигационных данных со скоростной коррекцией от приемника ГНСС с частотой 100 Гц (ESKF5+CHC)

Примечание — Набор данных «Заказной» предназначен для реализации специфичного выходного протокола под конкретного заказчика

Дополнительный RS-485

В качестве приема дополнительных данных возможно использовать дополнительный интерфейс RS-485.

Значение регистра	Назначение дополнительного RS-485
0	Выключен
1	Получение ASCII сообщений по протоколу NMEA
2	Бинарный протокол ГНСС приемника ИРЗ МНП-Х
3	Резерв
4	Бинарный протокол ГЕОС-3М
5	Бинарный протокол NV08C-CSM
6	Заказной
7	Orient Systems (открыт только при заказе совместно с
	приемником)
8	Novatel OEM6/7
9	Ublox (пакеты PVT, HHPOSLLH, POSNED)
10	Сквозной

По согласованию с ООО ЛМП возможна реализации подключения любого устройства с интерфейсом RS-485

Пропуск выходных пакетов данных

Устанавливается пропуск выходных данных, актуально для фильтрованных и навигационных данных. При выдаче данных с датчиков использование пропуска может дать алиайзинг (появление ложной низкочастотной разностной частоты). 0 – пропуск выключен.

Скорость обмена дополнительного RS-485

Значение	Скорость,
регистра	бит/с
0	921 600
1	460 800
2	230 400
3	115 200
4	1 000 000
5	2 000 000
6	3 000 000
7	4 000 000
8	500 000
9	57 600
10	38400
11	19200
12	9600

Диапазон магнетометра

Значение регистра	Диапазон
	измерения,
	мТл
0	0,4
1	0,8
2	0,12
3	0,16

Тип входа внешней синхронизации

	- ···· · ···· · ···· · ···· · · · · · ·		
Значение	Тип синхронизации		
регистра	тип синхронизации		
0	Значение входа отражается в статусе бит 0 (длительность сиг-		
U	нала должна быть более 1 мс)		
1	Прием сигнала секундной метки от ГНСС приемника (1PPS).		
1	Фиксация по прерыванию.		
2	Выдача данных по импульсу		
2	Счетчик входных сигналов. Инкримент на каждый импульс.		
3	Работает по прерыванию.		

Внимание! При получении пакета типа 0x07 (запись параметров), производится запись настраиваемых параметров в энергонезависимую память. Таким образом, настроенное устройство сохраняет параметры после сброса питания. Ответ 0x00 посылается после записи. Время записи может достигать 1000 мс, в это время устройство не производит измерения.

Примечание – Данные зарезервированных полей не влияют на работу устройства.

7.5 Параметры наборного пакета данных ГКВ-10

Запрос

-	
Назначение	Заполнение
Тип пакета	0x26
Длина поля данных	0

Запись/Ответ

Назначение	Заполнение	
Тип пакета	0x27	
Длина поля данных	0x40	
Количество параметров в наборном пакете	uint8	
Диапазон [0, 63]	uiiito	
Тип параметра 0	uint8	
***	***	
Тип параметра 63	uint8	

«Количество параметров в наборном пакете» устанавливает количество выдаваемых параметров в пакете с типом 0x13, максимально можно сформировать пакет из 64 параметров. Не используемые поля типы параметров могут иметь любое значение.

Типы параметров представлены в таблице ниже:

Идентификатор	Название пере-	Описание
типа параметра	менной	
0	status	Статусное слово
1	sample_cnt	Счетчик сэмплов (от 0 до 2^{16})
2	nax	Ось Х акселерометра в кодах АЦП
3	nay	Ось Ү акселерометра в кодах АЦП
4	naz	Ось Z акселерометра в кодах АЦП
5	nwx	Угловая скорость Х в кодах АЦП
6	nwy	Угловая скорость Ү в кодах АЦП
7	nwz	Угловая скорость Z в кодах АЦП
8	ntx	Температура оси Х канал 0 в кодах АЦП
9	nty	Температура оси Ү канал 1 в кодах АЦП
10	ntz	Температура оси Z канал 2 в кодах АЦП
11	nt3	Температура микроконтроллера в кодах АЦП
12	naz2	Ось Z акселерометра в кодах АЦП
13	gps_rel_heading	Курс ГНСС между мастер и ровер антеннами
14	gps_rel_length	Расстояние между мастер и ровер антеннами
15	gps_sig_rel _heading	Оценка курса ГНСС между мастер и ровер антеннами
16	gps_sig_rel _length	Оценка расстояние между мастер и ровер антеннами
17	gdop/ gps_rel_time	Суммарное геометрическое снижение точности по местоположению и времени (при исполнении с приемником МНП) / Время ровер ГНСС приемника (ZED-F9P)

Идентификатор	Название пере-	Описание	
типа параметра	менной		
18	ax	Калиброванное значение оси Х акселерометра	
19	ay	Калиброванное значение оси Y акселерометра	
20	az	Калиброванное значение оси Z акселерометра	
21	WX	Калиброванное значение угловой скорости оси Х	
22	wy	Калиброванное значение угловой скорости оси Ү	
23	WZ	Калиброванное значение угловой скорости оси Z	
24	tx	Температура оси X канал 0 в °C	
25	ty	Температура оси Y канал 1 в °С	
26	tz	Температура оси Z канал 2 в °C	
27	t3	Температура микроконтроллера в °С	
28	t4	Резерв	
29	gps_ref_gen_err/ gps_rel_status	Отстройка генератора, Гц (при исполнении с приемником МНП)/ статус состояния ровер ГНСС приемника (ZED-F9P)	
30	gps_pos_err_max	Максимальная ошибка по положении, м (при исполнении с приемником МНП)	
31	gps_pos_err_ave	Средняя ошибка по положению, м (при исполнении с приемником МНП)	
32	gps_freq_err_max	Максимальная ошибка по частоте, Гц (при исполнении с приемником МНП)	
33	gps_freq_err_ave	Средняя ошибка по частоте, Гц (при исполнении с приемником МНП)	
34	alfa	Угол alfa инклинометра (между осью X и горизонтом)	
35	beta	Угол beta инклинометра (между осью Y и горизонтом)	
36	pitch	Угол тангажа ориентации	
37	roll	Угол крена ориентации	
38	yaw	Угол курса ориентации	
39	q0	q0 кватерниона ориентации	
40	q1	q1 кватерниона ориентации	
41	q2	q2 кватерниона ориентации	
42	q3	q3 кватерниона ориентации	
43	X	Положение X от стартовой системы координат (СК)	
44	y	Положение Ү от стартовой СК	
45	Z	Положение Z от стартовой СК	
46	VX	Линейная скорость X в СК модуля	
47	vy	Линейная скорость Ү в СК модуля	
48	VZ	Линейная скорость Z в СК модуля	
49	iwx	Угол-интеграл угловой скорости X	
50	iwy	Угол-интеграл угловой скорости Ү	
51	iwz	Угол-интеграл угловой скорости Z	
52	yaw_noph	Курс без фазовой задержки (при использовании параметра алгоритма use_phase_corr = 1)	
53	pitch_noph	Курс без фазовой задержки (при использовании параметра алгоритма use_phase_corr = 1)	

Идентификатор	Название пере-	Описание	
типа параметра	менной	V	
54	roll_noph	Курс без фазовой задержки (при использовании параметра алгоритма use_phase_corr = 1)	
		Широта в целочисленном представлении, вычисленная алгоритмом БИНС (для перевода в рад умножить	
55	alg_int_lat_noph		
		2*pi/2 ³²) (при использовании параметра алгоритма	
		use_phase_corr = 1). Представление числа в int32.	
		Долгота в целочисленном представлении, вычисленная	
56	alg_int_lon_noph	алгоритмом БИНС (для перевода в рад умножить	
	1	2*рі/2 ³²) (при использовании параметра алгоритма	
		use_phase_corr = 1). Представление числа в int32.	
57	alg alt noph	Высота без фазовой задержки (при использовании па-	
	8 1	раметра алгоритма use_phase_corr = 1)	
58-63		Резерв	
64	lax	Линейное ускорение Х в СК модуля	
65	lay	Линейное ускорение Ү в СК модуля	
66	laz	Линейное ускорение Z в СК модуля	
67	counter	Счетчик	
68		Время utc сначала недели в мс (при подключении при-	
	gps_time	емника СНС)	
69	gps_lat	Широта в рад.(при подключении приемника СНС)	
70	gps_lon	Долгота в рад (при подключении приемника СНС)	
71	gps_alt	Высота в м (при подключении приемника СНС)	
72		Статус состоянии приемника СНС (при подключении	
	gps_state_status	приемника СНС). Представление числа в uint32.	
73		Геометрический факторов СНС приемника (при под-	
	gps_tdop	ключении приемника СНС)	
74		Геометрический факторов СНС приемника (при под-	
	gps_hdop	ключении приемника СНС)	
75		Геометрический факторов СНС приемника (при под-	
	gps_vdop	ключении приемника СНС)	
76		Горизонтальная скорость по СНС приемнику (при под-	
	gps_vel	ключении приемника СНС)	
77		Путевой угол от СНС приёмника (при подключении	
	gps_yaw	приемника СНС)	
78		Вертикальная скорость (при подключении приемника	
	gps_alt_vel	CHC)	
79		Количество спутников в решении приемника СНС (при	
	gps_num_ss	подключении приемника СНС)	
80	mx	Ось Х значения магнитного поля в кодах АЦП	
81	my	Ось У значения магнитного поля в кодах АЦП	
82	mz	Ось Z значения магнитного поля в кодах АЦП	
83	gps lat vel	Вектор скорости по широте в м/с от приемника СНС	
84	gps_lon_vel	Вектор скорости по долготе в м/с от приемника СНС	
85	gps sig lat	СКО по широте от приемника СНС	
86	gps sig lon	СКО по долготе от приемника СНС	
	5F5_515_1011	no Aom ore or abusinima orre	

Идентификатор типа параметра	Название пере- менной	Описание	
87	gps_sig_alt	СКО по высоте от приемника СНС	
88	gps_sig_lat_vel	СКО по скорости вдоль широты от приемника СНС	
89	gps_sig_lon_vel	СКО по скорости вдоль долготы от приемника СНС	
90	gps_sig_alt_vel	СКО по скорости по высоте от приемника СНС	
91		Широта в целочисленном представлении, вычисленная	
		алгоритмом БИНС (для перевода в рад умножить	
	alg_int_lat	$2*pi/2^{32}$). Представление числа в int32.	
92		Долгота в целочисленном представлении, вычисленная	
		алгоритмом БИНС (для перевода в рад умножить	
	alg_int_lon	$2*pi/2^{32}$). Представление числа в int32.	
93	alg_alt	Выста вычисленная алгоритмом БИНС в float32	
94		Широта от ГНСС приемника в целочисленном пред-	
		ставлении (для перевода в рад умножить 2*рі/2 ³²).	
	gps_int_latitude	Представление числа в int32.	
95		Долгота от ГНСС приемника в целочисленном пред-	
		ставлении (для перевода в рад умножить $2*pi/2^{32}$).	
	gps_int_longitude	Представление числа в int32.	
96		Состояние алгоритма БИНС. Представление числа в	
	alg_state_status	uint32.	
97	baro	Значение сигнала барометра в кодах кодах АЦП	
98	alg_var_x	Дисперсия оценки ошибки положения навигационного	
99	alg_var_y	алгоритма по осям X, Y, Z в M^2	
100	alg_var_z	asirophima no oeam 11, 1, 2 b m	
101	alg_var_vx	Дисперсия оценки ошибки скорости навигационного	
102	alg_var_vy	алгоритма по осям X, Y, Z в $(m/c^2)^2$	
103	alg_var_vz	ash ophima no ocam A, 1, 2 B (Mic)	
104	alg_var_psi	Дисперсия оценки ошибки ориентации навигационного	
105	alg_var_theta	алгоритма по осям углам курса (ψ), тангажа (θ), крена	
106	alg_var_phi	(ϕ) в рад ²	
107	gps_int_x	Координаты Х, Ү, Z в СК ЕСЕГ. Выдаются в целочис-	
108	gps_int_y	ленном представлении int32 (при исполнении с прием-	
109	gps_int_z	ником МНП)	

Внимание! Выбор параметра для посылки не приводит к его расчету алгоритмом. То есть, например, при выборе параметров, связанных с ориентацией, необходимо также, чтобы был выбран алгоритм, подразумевающий вычисление углов ориентации.

Примечание – Параметры наборного пакета, по умолчанию, выдаются в типом float (4 байта), если не указано иное. Параметры с названием *_int_* представлены типом int32 (4 байта), такие параметры введены для координаты с сантиметровой точностью.

Onucanue параметра состояния алгоритма БИНС alg_stage_status для алгоритмов ESKF и ESKF5.

Формат:

	Резерв	Коррекция (status)	Этап алгоритма (stage)
Биты:	31-16	15-8	7-0

Этап алгоритма		
0	Состояние сброса	
1	Поиск углов склонения в покое	
2	Поиск углов склоения в движении	
10	Поиск/ожидание курса	
30	Преднавигация – поиск курса после достижении пороговой скорости	
50	Полная навигация	
	Коррекция	
0	Нет	
1	По скорости от ГНСС	
2	Резерв	
3	По положению и скорости от ГНСС	
4	ZUPT: покой по вектору линейного ускорения	
5	ZUPT: ожидание покоя по курсу	
6	ZUPT: покой по ускорению и курсу	
7	ZUPT: резерв	
8	ZUPT: резерв	
9	ZUPT: откат навигационного решения при отключении ZUPT	
10	По модели автомобиля	
11	По акселерометрам	
12	По квазистационарному положению	
15	По высоте от ГНСС	
16	По высоте	
17	Резерв	
18	По курсу от ГНСС или внешней команды	

7.6 Запрос данных

Если в регистре параметров ДЕЛ = 0 – выдача данных по запросу – получение данных производится посылкой следующего запроса:

Запрос

Назначение	Заполнение
Тип пакета	0x17
Длина поля	0
данных	

Ответом является тип данных, заданный в параметрах.

7.7 Наборы данных ГКВ-10

Наборы задаются в регистре «Настройка изделия» в поле «Наборы данных».

7.7.1 Выдача кодов АЦП

Назначение		Заполнение
Тип пакета		0x0A
Длина поля дан	ных	0x24
Счетчик пакет	гов	uint16
Статус данны	IX	uint16
Сигиан акаанараматрар	X	uint32
Сигнал акселерометров	Y	uint32
в кодах АЦП	Z	uint32
Сигнал угловой скоро-	X	uint32
· •	Y	uint32
сти в кодах АЦП	Z	uint32
	X	uint16
Сигнал температуры в кодах АЦП	Y	uint16
	Z	uint16
	Вычислителя	uint16

7.7.2 Выдача калиброванных данных с датчиков

Назначение		Заполнение
Тип пакета		0x0B
Длина поля дан	ных	0x2C
Счетчик пакет	ОВ	uint16
Статус данны	IX	uint16
Сигнал акселерометров,	X	float32
приведенные к g или	Y	float32
M/c^2	Z	float32
Сигнал датчиков угло-	X	float32
вой скорости, приведен-	Y	float32
ные к град./с или рад./с	Z	float32
	X	float32
Сигналы датчиков тем-	Y	float32
пературы, приведенные	Z	float32
к°С	Вычислите-	float32
	ля	110at32

7.7.3 Ориентация

Алгоритм ориентации выбирается в регистре «Настройка изделия» поле «Набор данных»

Назначение	Заполнение
Тип пакета	0x0C
Длина поля данных	0x10

Счетчик пакетов	uint16
Статус данных	uint16
Тангаж	float32
Крен	float32
Курс	float32

7.7.4 Данные инклинометра

Назначение	Заполнение
Тип пакета	0x0D
Длина поля данных	0x0C
Счетчик пакетов	uint16
Статус данных	uint16
Альфа	float32
Бета	float32

7.7.5 Данные БИНС

Назначение	Заполнение	
Тип пакета	0x12	
Длина поля данных		0x34
Счетчик пакетов		uint16
Статус данных		uint16
	X	float32
Координаты в стартовой системе координат	Y	float32
	Z	float32
	Тангаж	float32
Ориентация, представления в углах Эйлера	Крен	float32
	Курс	float32
Иууучуулга	Альфа	float32
Инклинометр	Бета	float32
	q[3]	float32
Ориентация, представление кватернионом	q[2]	float32
	q[1]	float32
	q[0]	float32

Примечание: Данные БИНС выдаются при выборе алгоритмов «БИНС», «БИНС:ESKF+CHC», «БИНС:ESKF5 + CHC»

7.7.6 Наборный пакет данных

Назначение	Заполнение
Тип пакета	0x13
Длина поля данных	0x4 - 0xFF
Параметр 1	float321)
***	***
Параметр 63	float32

Набор и количество параметров задается пакетом «Параметры наборного пакета данных $\Gamma KB-10$ ».

Примечание: По умолчанию представление параметра float32, если не сказано иное.

7.7.7 Данные от ГНСС приемника

Назначение	Заполнение
Тип пакета	0x0E
Длина поля данных	0x3C
Время, мс	uint32
Широта, рад.	Double
Долгота, рад.	Double
Высота, м	double
слово состояния	uint32_t
TDOP	float32
HDOP	float32
VDOP	float32
Горизонтальная скорость, м/с	float32
Азимут, град.	Float32
Вертикальная скорость, м/с	double

При установке выдачи данных наборным пакетом, пакет не выдается.

7.7.8 Расширенные данные от ГНСС приемника

Назначение	Заполнение
Тип пакета	0x0F
Длина поля данных	0x2C
Скорость по широте (направление на север), м/с	double
Скорость по долготе (направление на восток), м/с	double
СКО широты, м	float32
СКО долготы, м	float32
СКО высоты, м	float32
СКО скорости по широте, м/с	float32
СКО скорости по долготе, м/с	float32
СКО вертикальной скорости, м/с	float32
Количество спутников в решение	uint16
Резер	uint16

Пакеты подразделов 7.6.7, 7.6.8 передаются при условии получения данных от ГНСС приемника. Частота выдачи зависит от настроенной частоты выдачи ГНСС приемника.

При использовании приёмника ГНСС Novatel или Comnav скорости и их оценки выдаются в геоцентрической СК (ECEF).

Слово состоянии

В зависимости от ГНСС приемника, слово состояния различается

7.7.8.1 Слово состояния для ГНСС приемника NV08C-CSM.

Значение регистра	Назначение поля
0	0 - на предыдущем интервале решения не было получено
	1 – на предыдущем интервале получено решение
1	1 - получено 2D решение
2	Резерв
3	1 – в решении использовались дифференциальные по-
	правки
4	1 - подтверждение данных RAIM проверкой (автономный
	контроль целостности система GPS)
5	1 – режим работы с дифференциальными поправками
6	Резерв
7	Не используется

7.7.8.2 Слово состояния для ГНСС приемника МНП.

Значение регистра	Назначение поля
0	1 – годность решения
1	1 – годность времени
27	Резерв
810	Система координат
1112	Тип эллипсоида
1314	Привязка времени
15	Резерв

Система координат

- 0 WGS-84;
- $1 \Pi 3-90.02;$
- 2 CK-42;
- 3 CK-95;
- 4..7 резерв

Тип эллипсоида

- 0 WGS-84;
- $1 \Pi 3-90.02;$
- 2 эллипсоид Красовского;
- 3 резерв.

Привязка времени:

- 0 UTC (USNO);
- 1 UTC (SU);
- 2 GPS;
- 3 ГЛОНАСС.

7.7.8.3 Слово состояния для ГНСС приемника ZED-F9P.

Значение	Назначение поля		
регистра			
0	1 – годность даты		
1	1 – годность времени		
2	1 – временная неоднозначность полностью решена		
37	Резерв		
815	0 – нет решения		
	1 — резерв		
	2 – решена 2мерная задача		
	3 – решена 3х мерная задача		
	4 – резерв		
	5 – решена задача получения времени		
16	1 – годность координат, DOP и оценки точности		
17	1 – применяются дифференциальные поправки		
1821	Резерв		
2223	RTK		
	0 – нет решение с фазовой неоднозначностью		
	1 – плавающее решение с фазовой неоднозначностью		
	2 – фиксированное решение с фазовой неоднозначностью		
2428	Резерв		
29	1 – годность даты и времени		
30	1 – годность даты		
31	1 – годность времени		

7.7.8.4 Слово состояния для ГНСС приемника Novatel/Comnav.

3	2	1	0
Резерв	Статус по скоро-	Статус по поло-	Статус общего
	сти	жению	решения

Статус общего решения

Значение	Наименование	Назначение
регистра		
0	SOL_COMPUTED	Навигационное решение вычислено
1	INSUFFICIENT_OBS	Недостаточно наблюдений
2	NO_CONVERGENCE	Нет сходимости
3	SINGULARITY	Сингулярность у матрицы параметров
4	COV_TRACE	Ковариация превышает максимум
5	TEST_DIST	Превышено тестовое расстояние (максимум 3 отклоне-
		ния, если расстояние> 10 км)
6	COLD_START	Нет сходимости с начала холодного старта
7	V_H_LIMIT	Превышены ограничения по высоте или скорости
8	VARIANCE	Дисперсия превышает пределы
9	RESIDUALS	Невязка слишком велика
10-12	Reserved	Резерв
13	INTEGRITY_WARNING	Большая невязка, положение не надёжно
14-22	Reserved	Резерв

Статус положения и скорости

Значение	Наименование	Назначение
регистра		
0	NONE	Нет решения
1	FIXEDPOS	Положение зафиксировано
2	FIXEDHEIGHT	Высота зафиксирована
3-7	Reserved	Резерв
8	DOPPLER_VELOCITY	Скорость вычисляется допплеровским эффектом
9-15	Reserved	Резерв
16	SINGLE	Решение получено только из данных ГНСС спутников
17	PSRDIFF	Решение получено используя кодовую дифференциаль-
		ную коррекцию псевдодальностей (DGPS, DGNSS)
18	WAAS	Решение получено используя SBAS коррекцию
19	PROPAGATED	Предполагаемое решение фильтром Калмана без новых
		измерений
20-31	Reserved	Резерв
32	L1_FLOAT	Плавающее RTK решение по одной частоте приемника
33	Reserved	Резерв
34	NARROW_FLOAT	Мультичастотное RTK решение с плавающей фазой
35-47	Reserved	Резерв
48	L1_INT	Фиксированное RTK решение по одной частоте приемни-
		ка
49	WIDE_INT	Мультичастотное RTK решение фазовой неоднозначно-
		сти для длинных волн
50	NARROW_INT	Мультичастотное RTK решение фазовой неоднозначно-
		сти для коротких волн
51-67	Reserved	Резерв
68	PPP_CONVERGIN	Процесс поиска сходимости по данным от TerraStar-C,
		TerraStar-C PRO or TerraStar-X
69	PPP	Решение по TerraStar-C, TerraStar-C PRO or TerraStar-X
70-80	Reserved	Резерв

7.8 Компенсация смещения датчиков угловой скорости

Команда записывает в флеш память смещение нуля в кодах АЦП.

7.8.1 Получение коэффициентов смещения ДУС.

Запрос

Назначение	Заполнение
Тип пакета	0x1D
Длина поля данных	0

Ответ

Назначение		Заполнение
Тип пакета		0x1E
Длина поля данных		48
	X	int32_t
ДУС	у	int32_t
	Z	int32_t

7.8.2 Запись коэффициентов смещения гироскопов.

Запрос

Назначение		Заполнение
Тип пакета		0x1E
Длина поля данных		48
	X	int32_t
ДУС	у	int32_t
	Z	int32_t

Ответ

Назначение	Заполнение
Тип пакета	0x1D
Длина поля данных	0

Коэффициенты записываются в флэш-память.

Внимание! Коэффициенты применяются до калибровки.

7.8.3 Накопление и вычисление коэффициентов смещения ДУС.

Запрос

Назначение	Заполнение
Тип пакета	0x1C
Длина поля данных	4
samples	uint32_t

Ответ

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

При получении данной команды устройство последовательно для каждого диапазона накапливает по samples значений угловых скоростей гироскопов. Затем производится усреднение полученных значений, вычисление значения смещения исходя из калибровки, расчет значения смещения в кодах АЦП, запись во флэш-память. Алгоритм работает таким образом, чтобы из значения угловой скорости после калибровки исключить постоянную составляющую. Во время работы алгоритма устройство не посылает данные.

7.9 Настройка фильтра

Запрос

Назначение	Заполнение
Тип пакета	0x1F
Длина поля данных	4

Ответ

Ответ	T	
Назначение	Заполнение	Примечание
Тип пакета	0x20	
Длина поля данных	0x05	
Тип	uint8_t	Типы фильтров: 0 — фильтр отключен, выдается крайний бит из оцифровки $24\ \mathrm{k}\Gamma\mathrm{u}$, $1,3,4$ — зарезервировано 2 — усреднение до частоты выдачи 5 -8 — разряжающий КИХ фильтр с параметрами: $F_d = F_s/K_0$ $F_{pass} = 250\ \mathrm{\Gamma}\mathrm{u}$ $F_{stop} = F_s/K_1$ $T_{group_delay} = K_2/F_s$, где F_d — частота разряжения фильтра, F_s — частота оцифровки АЦП = $24\ \mathrm{k}\Gamma\mathrm{u}$ F_{pass} — частота прохождения фильтра с подавлением не более $0,01\ \mathrm{д}\mathrm{b}$ F_{stop} — частота подавления фильтра с частотой не менее $-60\ \mathrm{д}\mathrm{b}$, T_{group_delay} — групповая фазовая задержка фильтра в мс, - коэффициент делителя частоты - коэффициент фазовой задержки КИХ фильтра $-10,000$ -10
Резерв	uint16_t	
Скользящее сред- нее	uint16_t	Длина (окно) скользящего среднего: 0 — скользящее среднее выключено 165535 — длина скользящего среднего.

Примечание:

- 1 При частоте выдачи менее частоты разряжения фильтра данные усредняются.
- 2 При частоте выдачи более частоты разряжения фильтра данные не выдаются.
- 3 Фильтр скользящего среднего может быть включен одновременно с КИХ фильтром, в этом случае сначала данные проходят КИХ фильтр, далее попадают на вход фильтра скользящего среднего.
- 4 Для ГКВ-5/6 КИХ фильтр отключен и всегда стоит «Усреднение».

7.10 Настройка алгоритмов

Для алгоритмов ориентации (фильтр Калмана – алгоритм расчетов 2) и навигации (БИНС – алгоритм расчетов 6, БИНС и БИНС5 со скоростной коррекцией от приемника СНС – алгоритм расчетов 8 и 9), устанавливаемых в пакете «*Настройка изделия*» тип 0х07 предусмотрены дополнительные настройки.

7.10.1 Параметры алгоритма ориентации фильтр Калмана

Индекс параметра	Параметр	Описание параметра
1	reset	При установке «1» происходит сброс алгоритма. После обработки посланного значения «1» переходит в «0».
2	idle_time ¹	Количество сэмплов для проведения выставки (для установленной частоты 1 кГц будет соответствовать миллисекундам);
3	steady_time	Количество сэмплов для срабатывания коррекции ориентации по значению от акселерометров
4	a_threshold	Отклонение от длины вектора кажущегося ускорения равного «1», в допуске которого возможно срабатывание коррекция (по умолчанию 0.003 , следовательно, если длина вектора кажущегося ускорения лежит в пределах 1 ± 0.003 коррекция может произойти)
5	w_threshold	Отклонение от длины вектора угловой скорости, в допуске которого возможно срабатывание коррекция (по умолчанию 0.003, следовательно, если длина вектора кажущегося ускорения лежит в пределах 1±0.003 коррекция может произойти)
	1000 отчетам, вр 2 Значения угло	их, поступающих на вход алгоритма 1 кГц, что соответствует ремя выставки по умолчанию 10000 отсчетов — 10 с. вой скорости и кажущегося линейного ускорения фильтруются вытром, внутренний фильтр настроен на частоту выдачи 1 кГц и

7.10.2 Параметры алгоритма навигации БИНС

Индекс параметра	Параметр	Описание параметра
1	reset	При установке «1» происходит сброс алгоритма. После обработки посланного значения «1» переходит в «0».
2	init_sample	количество сэмплов для проведения выставки

7.10.3 Параметры алгоритма навигации БИНС и БИНС5 со скоростной коррекцией от приемника ГНСС

Индекс параметра	Параметр	Описание параметра
0	reset	При установке «1» происходит сброс алгоритма. После обработки посланного значения «1» переходит в «0».
1	idle_time ¹	Время выставки в отсчетах. Значение по умолчанию – 10000.
2	filt_yaw_time	Время фильтрации данных курса для нахождения истинного курса при превышении скорости vel_threshold. Значение по умолчанию 2000.
3	vel_threshold	Порог скорости от ГНСС приемника, после которого возможно определение истинного курса и начинается вычисляться положение в геодезической системе координат. Значение по умолчанию -2 .
4	steady_time	Время установления режима покоя в отчетах. В режиме покоя считается, что ГКВ никуда не двигается. Есть два режима покоя idle_corrector, которые работают, если не превышены пороги по кажущимся линейным ускорения (1±a_threshold и 1±ta_threshold) и угловым скоростям (w_threshold). По умолчанию 500.
5	idle_corrector	Корректор режима покоя. Может принимать два состояния 1 и 2. 1 — коррекция по измерениям акселерометров (рекомендуется использовать, если нет коррекции от ГНСС приемника), 2 — по вычислению скорости (рекомендуется использовать, если есть коррекция от ГНСС приемника). Значение по умолчанию — 2.
6	a_threshold	Порог определения покоя по вектору кажущегося линейного ускорения для корректора 1. Значение по умолчанию — 0,003.
7	w_threshold	Порог определения покоя по вектору угловой скорости. Значение по умолчанию – 0,0005
8	ta_threshold	Порог определения покоя по вектору кажущегося линейного ускорения для корректора 2. Значение по умолчанию – 0,055
9	use_onepps	Использование сигнала синхронизации от ГНСС приемника (1PPS). «1» - используется. «0» - не используется. При установленном ГНСС приёмнике внутри ГКВ рекомендуется установить «1». При подключении внешнего ГНСС приемника к дополнительному RS-485 и сигнала 1PPS к входу синхросигнала ГКВ, рекомендуется установить «1». По умолчанию 1. В случае, если сигнал 1PPS не подключен, установить «0». Используется для синхронизации инерциальных данных и данных от ГНСС приемника. Время решения навигационной задачи ГНСС приемником может меняться, сравнение данных ГНСС приемника и инерциальных данных должно происходить синхронно, при этом появляется задержка данных решения навигационной задачи ГКВ, в связи с задержкой решения

		навигационной задачи ГНСС приемником. Время задержки не
		более 140 мс, при длительном времени – решение не учитыва-
		ется.
1.0	1	Использование параметров расстояния от инерциального мо-
10	use_lever_arm	дуля до ГНСС антенны. По умолчанию 0.
		Разрешение расчета навигационных данных без фазовой за-
11	use phase corr	держки данных от ГНСС приёмника. «1» - коррекция фазы.
		$<\!\!<\!\!0>\!\!>$ - коррекция отключена. Значение по умолчанию -0 .
		Начальный курс. По умолчанию равен 0. Если есть возмож-
		ность после включения ГКВ установить курс, то навигацион-
12	start_yaw	ные данные будет сразу вычисляться с условием известного
		курса. Значение передается в радианах.
		Расстояние от инерциального модуля до ГНСС антенны по
13	lever arm x	оси Х. Положительное расстояние по направлению оси инер-
10	is voi_umi_n	циального модуля. Значение передается в метрах.
		Расстояние от инерциального модуля до ГНСС антенны по
14	lever_arm_y	оси Ү. Значение передается в метрах.
		Расстояние от инерциального модуля до ГНСС антенны по
15	lever_arm_z	оси Z. Значение передается в метрах.
		car update, car update sig y, car update sig z,
		car_update_arm_x, car_update_arm_y, car_update_arm_z,
16-24	car_update ²	car_update_disp_yaw, car_update_disp_pitch,
25	acc update ³	car_update_disp_roll – находится в разработке.
	acc_update	Находится в разработке.
26-28	atout als m	Смещение нулей акселерометров для навигационного алго-
20-28	start_ab_n	ритма. Где n – ось из последовательсти x,y,z. Значение пере-
29	ali au de ma	дается в д.
	align_type	Тип выставки
20.22	1:	Поворот ориентации от ГНСС приемника, где г – последова-
30-32	gps_disp_r	тельность поворотов курс, тангаж, крен. Значение передается
		в радианах
22.26	1	Оценка поворота ориентации от ГНСС приемника (2х антен-
33-36	gps_disp_sig_r	ное решение), где r – последовательность поворотов курс,
		тангаж, крен. Значение передается в радианах.
25		При выставки align_type=4
37	wait_rtk	1 – переход в состояние полной навигации после фиксирован-
		ного решения (RTK) Мастер приемника
		Коррекция курса (yaw) от ГНСС приемника
38	update_	0 – нет коррекции
	yaw_mode	1 – установка начального курса, далее не используется
		2 – постоянная коррекция
		СК выдачи линейных скоростей, ускорений
39	frame	0 – в геодезической СК (NED)
		1 – в связанной с ГКВ СК
	Примечания	
		ных, поступающих на вход алгоритма 1 кГц, что соответствует
	1000 отчетам, вр	емя выставки по умолчанию $10000-10$ с.

- 2 Коррекция по модели автомобиля (находится на стадии испытаний и перехода в аппаратную часть).
- 3 Коррекция по данным акселерометров (находится на стадии испытаний и проверки).

Типы выставки:

0 — Выставка из покоя. Инерциальный модуль должен находиться в состоянии покоя (т.е. угловые скорости и кажущееся линейное ускорение не должны меняться) первые 10 секунд*, за это время усредняются показания ДУС и акселерометров — этап алгоритма 1. Усредненное значение ДУС в дальнейшем учитывается, как смещение нулей ДУС, а усредненные значения акселерометров применяются для вычисления начальных углов склонения. Далее алгоритм ждет изменения скорости для доворота стартовой СК к геодезичской — этап алгоритм 30. Курс вычисляется после начала движения при достижении горизонтальной скорости ГНСС порогового значения в течение определенного времени. По умолчанию — 2 м/с, длительностью 2000 мс. До момента вычисления курса рекомендуется двигаться прямолинейно. После вычисления курса — этап алгоритма 50.

*рекомендуется такой временной интервал, исходя из времени нестабильности датчиков угловой скорости (ДУС), но этот параметр может быть задан пользователем.

- **2 Выставка в динамике на основе данных ГНСС.** Алгоритм постоянно пробует найти участок, где можно вычислить начальные углы (как правило, это участок с постоянной горизонтальной скоростью) этап алгоритма 2. Далее переходит в этап 10 и ждет маневра в течение 20 секунд, т.е. изменения ускорения для вычисления курса и доворота стартовой СК к геодезической СК и переходу к основному навигационному алгоритму. Если было изменение ускорения, то алгоритм перейдет на этап 50 (полная навигация), иначе вернется на этап 2.
- **3** Выставка в квазистационаром положении на основе данных ГНСС. При включении в квазистационаром положении (например, корабельная качка) введена выставка под номером 3. Алгоритм ищет начальные углы склонения этап 2. Затем корректируется каждые 1000 мс (минимум) от ГНСС этап 10. Для перехода в полную навигацию необходимо отправить команду установки и коррекции курса (тип 0х40), после чего алгоритм войдет в этап 50. Если модуль остается без движений (без ускорений) и невозможно применение корректора покоя, то курс будет уплывать, команда установки и корректировки курса может быть использована повторно.
- **4 Выставка из покоя с использованием курса от ГНСС в режиме RTK.** Логика работы соотвествует типу выставки 0. Отличие: Переход к этапу 50 (полная навигация) осуществялется после приема от ГНСС флага работы в целочисленном редиме (FIXED /NAROOW INT) при выставленном параметре wait_rtk = 1 и годности решение курса от ГНСС. Для доворота вектора курса от ГНСС к курсу от инерциального модуля необходимо использовать параметры gps_disp_* и gps_disp_sig_*. Коррекция курса от двух антенного ГНСС осуществялется согласно параметру update_yaw_mode.

7.10.4 Получение параметров алгоритма

Запрос

Назначение	Заполнение
Тип пакета	0x23
Длина поля данных	4
Индекс параметра	uint32_t

Ответ

Назначение	Заполнение
Тип пакета	0x24
Длина поля данных	45
Индекс параметра	uint32_t
Значение параметра	float
Количество параметров алгоритма	uint32_t
Имя параметра	char [32]
Не используется	bool

7.10.5 Запись параметров алгоритма

Запрос

Назначение	Заполнение
Тип пакета	0x24
Длина поля данных	45
Индекс параметра	uint32_t
Значение параметра	float
Не используется	uint32_t
Не используется	char [32]
Сохранить все параметры в ПЗУ	bool

Ответ

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

Примечание — Если в дальнейшем значение параметра не будет меняться, рекомендуем записать в ПЗУ (Flash). При записи в ПЗУ необходимо обеспечить стабильное питание на время записи.

7.11 Маскирование коррекции от ГНСС приемника

Для проверки работы алгоритма при потере данных от ГНСС приемника реализована функция отключения коррекции (только для алгоритма ESKF5 для некоторых типов устройств). Отключает коррекцию от ГНСС приемника на заданное число входных сэмплов (для $1\ \kappa\Gamma\iota$ – значения в мс). Отрицательное значение – полное отключение. Отключается только коррекция, остальные алгоритмы (совмещение СК, нахождение начального курса, и т.д.) – нет.

Запрос

Назначение	Заполнение
Тип пакета	0x25
Длина поля данных	4
Количество сэмлов пропуска обновления от ГНСС	uint32_t

Ответ

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

7.12 Установка и коррекция курса

В случае не отсутствия динамики навигационный алгоритм не сможет корректировать курс (ошибка по курсу будет зависеть от ошибки ДУС). Команда «Уставнока и коррекция курса» поворачивает курс к присланному значению с учетом оценки ошибки и стабильности ДУС.

Запрос

Назначение	Заполнение
Тип пакета	0x40
Длина поля данных	8
Истинный курс оси X ИНС, рад	float32
Ошибка установки истинного курса оси Х ИНС, рад	float32

Ответ

Назначение	Заполнение
Тип пакета	0x00
Длина поля данных	0

7.13 Настройки дополнительного RS-485

7.13.1 Назначение «Сквозной»

Допополнительный RS-485 можно настроить на прием внешних данных с привзякой к общему потоку ГКВ. При установке назначения дополнительного RS-485 «Сквозной» данные будут приниматься и оборачиваться в старндарную структуру. Скорость интерфейса соотвествует заданной в настройках. Длина принимаемых данных должна быть не более 128 байт, частота не более частоты выдачи данных, разделение потока осуществляется по таймауту линии более 3 байт.

Назначение	Заполнение
Тип пакета	0x42
Длина поля данных	N
Счетчик (для привязки к основному потоку)	uint16_t
Состояние (резерв) = 0	uint8_t
Размер полученных данных [0,127] = k	uint8_t
Байт 0	uint8_t

Байт k	uint8_t
где $N = k + 4 -$ длина поля данных,	
k = 0127 - длина полученных данных	

Приложение А

(справочное)

Пример расчета контрольной суммы на языке С

А.1 Таблица

0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1. 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d

};

А.2 Функция

Приложение Б

(справочное)

Дополнение к протоколу для прошивки с ГНСС приемником МНП.

Дополнение к протоколу с ГНСС приемником МНП-6 в части настройки алгоритма работы «Пользовательский». Для использования данного дополнения необходимо выбрать алгоритм «Пользовательский» и «Наборный пакет» в пакете «Настройка» тип 0х07.

Б.1 Параметры наборного пакета данных

При выборе алгоритма работы «Пользовательский» параметры наборного пакета изменены на указанные в таблице Б.1.

Таблица Б.1 – Описание и типы параметров наборного пакета

Идентификатор	Название пере-	параметров наоорного пакета
типа параметра	менной	Описание
0	status	статусное слово целочисленное беззнаковое uint16
1	sample_cnt	счетчик сэмплов (от 0 до 2^{16})
17	gdop	Геометрический фактор точности, цена деления 0,01
18	ax	Калиброванное значение осей X, Y, Z акселерометра
19	ay	знаковое целочисленное 16 бит. Коэффициент преоб-
20	az	разования задается в параметрах алгоритма ax_lsb, ay_lsb, az_lsb,
21	WX	Калиброванное значение угловой скорости осей X, Y,
22	wy	Z знаковое целочисленное 16 бит. Коэффициент пре-
23	WZ	образования задается в параметрах алгоритма wx_lsb, wy_lsb, wz_lsb,
24	tx	Tourismatives can V. V. 7 wayer 0 averages very very
25	ty	Температура оси X, Y, Z канал 0 знаковое целочис- ленное 16 бит, в °C×100
26	tz	ленное то оит, в САТОО
27	tout	Температура микроконтроллера знаковое целочисленное 16 бит, в °C×100
29	gps_ref_gen_err	Отстройка генератора. Рассчитана относительно не- сущей частоты GPS. Ццена деления 1 Гц
30	gps_pos_err_max	Ошибка по дальности (макс.). Максимальное значение ошибки оценки дальности до спутников. Цена деления 0,1 м.
31	gps_pos_err_ave	Ошибка по дальности (средняя). Среднее значение ошибки оценки дальности до спутников. Цена деления 0,1 м.
32	gps_freq_err_max	Ошибка по частоте (макс.). Максимальное значение ошибки оценки допплеровского сдвига. Цена деления 0,001 Гц.
33	gps_freq_err_ave	Ошибка по дальности (средняя). Среднее значение ошибки оценки допплеровского сдвига. Цена деления 0,001 Гц.
52	gps_ecef_x_low	Координата от ГНСС приемника по осям X, Y, Z в СК

Идентификатор	Название пере-	Описание	
типа параметра	менной	Officating	
53	gps_ecef_y_low	ЕСЕГ младшая часть 1)	
54	gps_ecef_z_low		
55	gps_ecef_x_ high	Координата от ГНСС приемника по осям X, Y, Z в СК	
56	gps_ecef_y_ high	ЕСЕГ старшая часть 1)	
57	gps_ecef_z_high	Есел старшая часть	
58	gps_ecef_vx_low	Скорость от ГНСС приемника по осям X, Y, Z в СК	
59	gps_ecef_vy_low	Скорость от 1 нестириемника по осям A, 1, 2 в Ск ЕСЕГ младшая часть 2)	
60	gps_ecef_vz_low	тест младшая часть	
61	gps_ecef_vx_ high	CHARGETY OF FLICC WAYNESS TO COME V V 7 P CV	
62	gps_ecef_vy_high	Скорость от ГНСС приемника по осям X, Y, Z в СК ЕСЕГ старшая часть $^{2)}$	
63	gps_ecef_vz_high	— ЕСЕГ СТАРШАЯ ЧАСТЬ 27	
68	gps_time_low	Время utc сначала недели в мс старшая и младшая ча-	
69	gps_time_high	сти	
72	gps_state_status	Статус состоянии приемника ГНСС приемника без-	
		знаковое целочисленное uint16 ³⁾	

Примечания:

- 1) Значение знаковое целочисленное int32, для получения координат необходимо умножить на коэффициент преобразования 0,1 м.
- 2) Значение знаковое целочисленное int32, для получения скорости необходимо умножить на коэффициент преобразования 0.01 м/c^2 .
- 3) Слово состояния ГНСС приемника

Значение регистра	Назначение поля
0	1 – годность решения
1	1 – годность времени
27	Резерв
810	Система координат
1112	Тип эллипсоида
1314	Привязка времени
15	Резерв

Система координат

- 1) 0 WGS-84;
- 2) $1 \Pi 3-90.02$;
- 3) 2 CK-42;
- 4) 3 CK-95;
- 5) 4..7 резерв

Тип эллипсоида

- 1) 0 WGS-84;
- 2) $1 \Pi 3-90.02$;
- 3) 2 эллипсоид Красовского;
- 4) 3 резерв.

Привязка времени:

- 1) 0 UTC (USNO);
- 2) 1 UTC (SU);
- 3) 2 GPS;
- 4) 3 ГЛОНАСС.

Внимание!!! При выборе алгоритма «Пользовательский» и «Наборный пакет» действительны только параметры из Таблицы 1.

Б.2 Настройка алгоритма «Пользовательский»

Для выбора коэффициента преобразования сигналов акселерометров и угловых скоростей предусмотрены дополнительные настройки.

Б.2.1 Параметры алгоритма «Пользовательский»

Индекс параметра	Параметр	Описание параметра
1	ax_lsb	Коэффициент преобразования осей X, Y, Z в ускорение в g.
2	ay_lsb	По умолчанию 0.004. Тип float32.
3	az_lsb	7 110 умолчанию 0.004. Тип поат52.
4	wx_lsb	Коэффициент преобразования осей X, Y, Z в угловую ско-
5	wy_lsb	рость в °/с. По умолчанию 0.03. Тип float32.
6	wz_lsb	

8 Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменений	№№ изменяемых листов
1	04.07.2015	1.1	Добавлен наборный пакет: 1 В п.7.3 «Настройка изделия» в регистр «Формат данных (битовое поле)» добавлен бит 10 «Посылка наборного пакета данных». 2 Добавлен п.7.4 «Параметры наборного пакета данных ГКВ-10». 3 Добавлен п.7.6.6 «Наборный пакет данных». Версия прошивки изделия, начиная с которой применены изменения — 2.	
2	07.10.2015	1.2	 Добавлено возможность посылки пакетов со скоростью больше 1 кГц: 1.1. В п.7.3 «Настройка изделия» в регистр «Формат данных (битовое поле)» добавлен бит 11 «Посылка пакетов со скоростью больше 1 кГц». Добавлены переменные «Угол-интеграл угловой скорости X, Y, Z» в п.7.4 «Параметры наборного пакета данных ГКВ-10» идентификаторы типа 49, 50, 51. Версия прошивки изделия, начиная с которой применены изменения – 2. 	
3	25.02.2015	1.3	 Добавлено поле 12 «Посылка пакет с данными по готовности, а не синхронизируя с получением следующего сэмпла» в п. 7.3 формат данных. Добавлен п.7.7 Компенсация смещения гироскопов. 	
4	24.06.2016	1.4	 Изменена контрольная сумма с CRC8 на CRC32 в п.6 Структура информационных пакетов стр.4 и приложение 8 стр. 26, 27. Добавлено в наборный пакет параметр линейное ускорение в п.7.4 «Параметры наборного пакета данных ГКВ-10» таблица «Типы параметров представлены в таблице ниже»: стр.18 Версия прошивки изделия, начиная с которой применены изменения — 3. 	

			1 Исправлены ссылки на пункты наборного па-		
5	12.08.2016	1.5	кета в подразделе 7.3 таблица «Набор дан-		
3	12.08.2016	1.5	ных»		
			2 Добавлен подраздел 7.8 «Настройка фильтра»		
			1 Добавлен дополнительные алгоритмы в		
			«Набор данных» (п.7.3), «Заказной», «БИНС		
			со скоростной коррекцией от приемника		
6	28.08.2017	1.6	CHC»	8-11,14,16	
			2 Изменен диапазон измерения канала угловой		
			скорости (гироскопов), должен быть выбран		
			диапазон ±900 °/с.		
			1 В настройки пакета добавлен параметр		
			«Пропуск пакетов» (п.7.3)		
7	29.09.2017	1.7	2 Дополнен типы наборных параметров но-	8,17-20,26	
,	29.09.2017	1./	выми значениями (п.7.4)	0,17-20,20	
			3 Увеличена максимальная длина наборного		
			пакета (п.7.6.6)		
			1 Добавлено описание включение дополни-		
8	09.02.2017	1.8	тельного интерфейса RS-485 (п.7.3)	8,9,13,16,17,	
	09.02.2017	1.0	2 Добавлены пакеты с параметрами ГНСС	27-29	
			приемника (п.7.6.7 и п.7.6.8)		
			1 Добавлены дополнительные скорости че-		
			тырехпроводного RS-485 (7.3).		
9	14.05.2018	1.9	2 Исправлена ошибка параметра статус	10,11,21,22,	
			(п.7.6.1)	24,25	
			3 В параметры наборного пакета добавлены		
			параметры с №№ 91-96 1 Добавлено описание параметров алгорит-		
			 Добавлено описание параметров алгорит- мов 		
10	07.02.2018	1.10	2 Добавлены типы пакетов для работы с па-	36-40	
			раметрами алгоритмов.		
11	05.03.2019	1.11	Исправлены ошибки в описании протокола	9-11, 18, 34	
- 1	00.00.2017	1,11	1. Изменена ориентация страниц и внесены	, 11, 10, 51	
			исправления в формулировки.		
12	11.03.2019	1.12	2. Добавлено приложение 2 с описанными на		
			языке С структурами пакетов.		
				1. Добавлен в настройки ГКВ параметр «Тип	
			входная внешней синхронизации»	0.12	
1.0	14.06.2010	1.12	2. Расширен список ГНСС приемников	8-13	
13	14.06.2019	1.13	3. Добавлен пример в приложение Д «пара-	8-13	
			метр Тип «Входная внешней синхрониза-	22.26	
			ции», обновлен список ГНСС приемников	33-36	
			4. Исправлена ошибка в статусе данных –		
14	04.10.2019	1.14	Бит готовности алгоритма 11 бит, Метка	7	
			времени 12 бит.		
15	10.01.2020	1.15	В параметры наборного пакета добавлены	17	

			параметры оценки ошибки навигационно-	
			го алгоритма с №№ 98-106 Добавлено описание статусов ГНСС при-	
			емников.	
16	02.04.2020	1.16	Внесены исправления по форматированию	21-23
			текста.	
			Добавлены параметры в наборный пакет	
17	10.04.2020	1.17	при использовании приемника МНП	17
			Добавлены биты настройки изделия в	
1.0	16042020	1.10	формат данных:	0
18	16.04.2020	1.18	- курса положительный	9
			- обрезка наборного пакета	
19	27.04.2020	1.19	Исправлена ошибка: неверный тип пакета	21
19	27.04.2020	1.19	7.6.5 Данные БИНС.	21
			- добавлено описание представление па-	
			раметров наборного пакета с типом от-	
			личным от float32;	
20	29.04.2020	1.20	- исправлен перевод параметров gps_int_x,	17, 18, 22, 32
			gps_int_y, gps_int_z	
			- описание состояния алгоритма БИНС;	
			- добавлен подраздел 7.11 Маскирование данных от ГНСС приемника	
			Добавлено описание слово состояния	
21	18.06.2020	1.21	ГНСС приёмников Novatel и ComNav	24, 25
			1 Добавлен Тип входного сигнала «Счет-	
			чик» и параметр counter (счетчик) в	
22	12 00 2020	1 00	наборный пакет.	
22	12.08.2020	1.22	2 Изменено приложение Б. Приложение Б	
			описывает работу с особой прошивкой из-	
			делия ГКВ.	
22	03.09.2020	1.23	Изменения в приложении Б параметров	35-37
			наборного пакета	
23	15.09.2020	1.24	Исправлена ошибка в протоколе тип и	20
24	10.00.2020	2	длина пакета п.7.6.2	
24	18.09.2020	2	Протокол объединен с протокол ГКВ-5/6	
			1 Команда программного сброса (7.2). Ну- мерация разделов изменена.	
			2 Параметры алгоритма – тип выставки, по-	6, 17,18, 31,
25	18.09,.2021	2.01	ворот ориентации от ГНСС приемника и	32, 34
			их оценка. Описание «Выставки».	32, 31
			3 Команада установки и коррекции курса	
			1 Исправлена ошибка в названии линейно-	
			го ускорения в параметрах наборного па-	
26	01.02.2021	2.02	кета	15, 17
			2 Исправлена ошибка структуры парамет-	
			ра алогоритма alg_state_status	
27	08.02.2021	2.03	Добавлено описание назначения дополни-	34

			тельного RS-485 (7.13)	
28	04.03.2021	2.04	Исправление описания пакетов от ГНСС приемника с типами 0x0E (п.7.7.7) и 0x0F(п.7.7.8)	22
29	11.03.2021	2.03	Исправлена ошибка в описании индексов параметров навигационного алгоритма (п.7.10.3)	30
30	06.04.2021	2.04	Исправлено на: «Для ГКВ-5/6/10/11/12 диапазон измерения», «Для ГКВ-5/6/10/11/12 диапазон измерения акселерометров»	8
31	20.04.2021	2.05	1 Добавлены параметры в наборный пакет gps_rel_heading, gps_sig_rel_heading, gps_rel_leangth, gps_rel_leangth, gps_rel_status, gps_rel_time 2 Добавлены параметры алгоритм БИНС ESKF5: wait_rtk, update_yaw_mode, frame	14,15,31