Inferencia Estadística Tablas de contingencia

Edimer David Jaramillo - Bioestadística 1

Abril de 2019

Introducción

- Ideal para analizar variables categóricas.
- Los datos se presentan como frecuencias de observaciones.
- De gran utilidad para verificar si los valores de dos factores son dependientes o independientes.
- ullet El estadístico χ^2 es útil para el análisis de variables categóricas

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Donde:

- O: frecuencia observada.
- E: frecuencia esperada.

Enunciado

Se dispone de 300 animales de laboratorio y se decide tratar a 200 con una vacuna experimental y dejar 100 como controles. Después de tratar al primer lote se expone a los 300 al contagio de la enfermedad en estudio. El recuento final, después de un período experimental adecuado, fue:

	Enfermos	Sanos	Total
Tratados	56	144	200
No Tratados	71	29	100
Total	127	173	300

Hipótesis

 H_0 : los dos factores o variables categóricas son independientes

 H_0 : los dos factores o variables categóricas no son independientes

Solución con R (1/3)

Solución con R (2/3)

mosaicplot(tabla, main = "Gráfico de mosaico")

Gráfico de mosaico

Solución con R (3/3)

- Función chisq.test()
 - x: tabla de datos.

```
prueba_chi2 <- chisq.test(tabla, correct = FALSE)
prueba_chi2
##
## Pearson's Chi-squared test
##
## data: tabla
## X-squared = 50.494, df = 1, p-value = 1.195e-12</pre>
```

Frecuencias observadas

prueba_chi2\$observed

##			Entermos	Sanos
##	Vacun	ado	56	144
##	No va	cunado	71	29

Frecuencias esperadass

prueba_chi2\$expected

```
## Enfermos Sanos
## Vacunado 84.66667 115.33333
## No vacunado 42.33333 57.66667
```

¿De dónde salen estos valores esperados?

$$F_{esperada-vacunados} = \frac{200 * 127}{300} = 84.667$$

$$F_{esperada-sanos-vacunados} = \frac{200*173}{300} = 115.33$$