Integraltransformation

Zusammenfassung

Grasso Antonino

Sommersemester 21

Inhaltsverzeichnis

1	Verl	auf und	d Rahmen	3
2	Klas	sifizier	ung der Signale	3
3	Defi	nitione	n und Konstanten	3
	3.1	Period	endauer T_p	3
	3.2	Freque	enz f	3
	3.3		requenz ω_p	4
	3.4		unktion $\dot{sinc}(t)$	4
	3.5	Sprung	gfunktion $\varepsilon(t)$	4
	3.6		$\operatorname{gral} x(t)$	4
	3.7		enzspektrum $X(\omega)$	4
	3.8		threquenz f_A	4
	3.9		astetes Zeitsignal $x_A(t)$	4
	3.10		astetes Frequenzspektrum $X_A(\omega)$	4
			anne zwischen Abtastugnen	5
4	Sign	ale und	d Fouriertransformation	6
	4.1	Analog	ge Signale	6
		4.1.1	Fourierreihe (analoge, periodische Signale)	6
		4.1.2	CTFT (analoge, nicht-periodische Signale)	8
		4.1.3	Einschub: Die kontinuierliche Faltung	9
		4.1.4	Einschub: Der Delta-Impuls	9
		4.1.5		10
		4.1.6		11
	4.2	-		${14}$
		4.2.1		$\frac{14}{14}$
		4.2.2		$\frac{14}{14}$
		4.2.3	0 0	15
		4.2.4		16
		4.2.5		16

1 Verlauf und Rahmen

2 Klassifizierung der Signale

$x(t) \setminus t$	zeitkontinuierlich	zeitdiskret
wertkontinuierlich	analoges Signal	abgetastetes/diskretes Signal
wertdiskret	quantisiertes Signal	digitales Signal

3 Definitionen und Konstanten

3.1 Periodendauer T_p

$$x(t) := \mathbb{R} \to \mathbb{R}$$

$$T_p := x(t + n \cdot T_p) = x(t)$$

3.2 Frequenz f

$$f = \frac{1}{T_p} = \frac{\omega_p}{2\pi}$$

3.3 Kreisfrequenz ω_p

$$\omega_p = \frac{2\pi}{T_p}$$

3.4 sinc-Funktion sinc(t)

$$sinc(t) = \frac{\sin(t)}{t}$$

3.5 Sprungfunktion $\varepsilon(t)$

3.6 Zeitsignal x(t)

$$x(t) := Zeitsignal \\$$

3.7 Frequenzspektrum $X(\omega)$

$$X(\omega) := Frequenzspektrum$$

3.8 Abtastfrequenz f_A

$$f_A = \frac{1}{\Delta T_A} = \frac{\omega_p}{2\pi}$$

3.9 Abgetastetes Zeitsignal $x_A(t)$

$$x_A(t) := abgetastetes Zeitsignal$$

3.10 Abgetastetes Frequenzspektrum $X_A(\omega)$

$$X_A(\omega) := abgetastetes \ Frequenzspektrum$$

3.11 Zeitspanne zwischen Abtastugnen

 $\Delta T_A := Zeitspanne\ zwischen\ Abtastungen$

4 Signale und Fouriertransformation

4.1 Analoge Signale

4.1.1 Fourierreihe (analoge, periodische Signale)

Jedes Signal x(t) kann als unendliche Summe von überlagerten Sinus und Cosinus Funktionen dargstellt werden:

Sinus-Cosinus-Darstellung der Fourierreihe:

$$x(t) = \frac{a_0}{2} \sum_{n=1}^{\infty} \left(a_n \cdot \cos(n\omega_p t) + b_n \cdot \sin(n\omega_p t) \right)$$

$$a_n = \frac{2}{T_p} \int_{-\frac{T_p}{2}}^{\frac{T_p}{2}} x(t) \cdot \cos(n\omega_p t) dt$$

$$b_n = \frac{2}{T_p} \int_{-\frac{T_p}{2}}^{\frac{T_p}{2}} x(t) \cdot \sin(n\omega_p t) dt$$

$$(1)$$

 a_n und b_n dienen hierbei als Ähnlichkeitsmass wie sehr sich die Ursprungsfunktion x(t) der jeweiligen Elementarfunktion $(sin(n\omega_p t) \text{ oder } cos(n\omega_p t))$ ähnelt.

Bemerkungen:

- Die Fourierreihe nimmt an Sprungstellen den Mittelwert von linksseitigem und rechtsseitigem Grenzwert an
- Zur Berechnung der Fourierkoeffizienten lässt sich das Integrationsintervall verschieben z.B. zu $(0, T_p)$.

Betrags-/Phasen-Darstellung der Fourierreihe:

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cdot \cos(n\omega_p t + \varphi_n)$$

$$A_n = \sqrt{a_n^2 + b_n^2}$$

$$\varphi_n = -\arctan\left(\frac{b_n}{a_n}\right)$$
(2)

Diese Darstellung lässt sich aus den Additionstheoremen von Sinus und Cosinus ableiten.

Komplexe Darstellung der Fourierreihe:

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_p t}$$

$$c_n = \frac{1}{T_p} \int_{-\frac{T_p}{2}}^{\frac{T_p}{2}} x(t) \cdot e^{-jn\omega_p t} dt$$
(3)

Herleitung:

Mit

$$e^{j\omega t} := \cos(\omega t) + j \cdot \sin(\omega t)$$

erhält man

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

und daher:

$$\frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cdot \cos(n\omega_p t + \varphi_n) = \sum_{n=0}^{\infty} c_n e^{jn\omega_p t} + \sum_{n=1}^{\infty} c_{-n} e^{-jn\omega_p t}$$

$$c_n = \frac{A_n}{2} e^{j\varphi_n}$$

$$c_{-n} = \frac{A_n}{2} e^{-j\varphi_n}$$

Umformungen:

	$\rightarrow a_n, b_n$
A_n, φ_n	$a_n = A_n \cos \varphi_n,$
	$b_n = -A_n \sin \varphi_n$
c_n , $(c_{-n} := \bar{c}_n)$	$a_n = c_n + c_{-n},$
	$b_n = j \left(c_n - c_{-n} \right)$
	$ \rightarrow A_n, \overset{\bullet}{\varphi_n}$
a_n, b_n	$A_n = \sqrt{a_n^2 + b_n^2}$
	$\varphi_n = -\arctan \frac{b_n}{a_n}$
c_n , $(c_{-n}:=\bar{c}_n)$	$A_n = 2 c_n = 2\sqrt{Re(c_n)^2 + Im(c_n)^2},$
	$arphi_n = arg(c_n)$
	$\rightarrow c_n, (c_{-n} := \bar{c}_n)$
a_n, b_n	$c_n = \frac{1}{2}(a_n - j b_n)$ $c_n = \frac{A_n}{2} e^{j \varphi_n}$
A_n, φ_n	$c_n = \frac{A_n}{2} e^{j\varphi_n}$

Bedingungen für die Transformation:

- Die Funktion muss periodisch sein.
- Innerhalb einer Periode aufteilbar in endlich viele stetige Teilstücke.
- Es dürfen keine divergierende Sprungstellen auftauchen.

4.1.2 CTFT (analoge, nicht-periodische Signale)

Der Sinn der CTFT: Man möchte vom Zeitsignal x(t) zum Frequenzspektrum $X(\omega)$. Die Idee der CTFT: Man nimmt die Fourierreihe und lässt $T_p \to \infty$ gehen:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt \ (CTFT/FT) \ (aus \ 5)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} d\omega \ (ICTFT/IFT) \ (aus \ 6)$$
(4)

Herleitung:

Wir definieren eine Hilfsvariable: $\omega_n = n\omega_p$, sodass gilt: $\omega_{n+1} - \omega_n = \omega_p = \frac{2\pi}{T_p}$ und beginnen mit:

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{j\omega_n t}$$

und

$$c_n := \frac{1}{T_p} \int_{-\frac{T_p}{2}}^{\frac{T_p}{2}} x(t) \cdot e^{-j\omega_n t} dt$$

Wir definieren eine Funktion in Abhängigkeit von ω_n :

$$X(\omega_n) := \frac{2\pi}{\omega_p} c_n \quad (\Leftrightarrow c_n = \frac{\omega_p}{2\pi} X(\omega_n))$$

$$= \int_{-\frac{T_p}{2}}^{\frac{T_p}{2}} x(t) \cdot e^{-j\omega_n t} dt$$
(5)

Das neu gewonnene c_n wird nun als Koeffizient in die ursprüngliche komplexe Fourierreihe eingesetzt:

$$x(t) = \sum_{n=-\infty}^{\infty} \frac{\omega_p}{2\pi} X(\omega_n) e^{j\omega_n t}$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} X(\omega_n) e^{j\omega_n t} \omega_p$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} X(\omega_n) e^{j\omega_n t} (\omega_{n+1} - \omega_n)$$
(6)

Lässt man nun $T_p \to \infty$ gehen, wird ω_p immer kleiner und die Unterteilungen ω_n wandern dichter zueinander und im Grenzfall ein kontinuierlicher Verlauf $(\omega_n \to \omega)$ und man erhält ein Riemann-Integral. Daraus folgert sich die oben aufgeführten Integrale für x(t) und $X(\omega)$.

Bemerkungen:

- Stärke des Vorhandenseins einer Frequenz: $|X(\omega)|$
- Verschiebung der einzelenen Frequenzen: $\varphi = \arg(X(\omega))$
- Es gilt: $\overline{X(\omega)} = X(-\omega)$
- Bei reellen Signalen ist Betragsspektrum $|X(\omega)|$ symmetrich um Null

4.1.3 Einschub: Die kontinuierliche Faltung

$$y(t) := x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\tau) \cdot x_2(t - \tau) d\tau$$
 (7)

(Integral)

Mit der Laufvariable τ läuft man x_1 forwärts durch und x_2 rückwärts aber um t verschoben durch.

t ist hier als fester, bekannter Wert zu interpretieren.

(Faltung) (Man macht das was oben drüber steht für jedes beliebige t)

Man legt ein τ für x_1 und x_2 fest, verändert t laufend und sieht sich die Schnittfläche der beiden Funktionen an.

Main Purpose in der Signalverarbeitung: Abschwächung / Auslöschung von hohen Frequenzen.

4.1.4 Einschub: Der Delta-Impuls

Wir definieren eine Funktion:

$$\delta(t) = 0 \quad for \ t \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t) \ dt = 1$$
(8)

Verwendung des Delta-Impulses (Ausblendeigenschaft):

$$\int_{-\infty}^{\infty} x(t) \cdot \delta(t - t_0) dt = \int_{-\infty}^{\infty} x(t_0) \cdot \delta(t - t_0) dt$$

$$= x(t_0) \cdot \int_{-\infty}^{\infty} \delta(t - t_0) dt$$

$$= x(t_0)$$
(9)

x(t) wird überall ignoriert ausser an der Stelle an der $\delta(t-t_0) \neq 0$, d.h. bei $t=t_0$. Quasi eine Abtastung der Funktion x(t) an Stelle t_0 .

Fouriertransformation des Delta-Impulses:

$$\int_{-\infty}^{\infty} \delta(t) \cdot e^{-j\omega t} dt = \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j\omega 0} dt = \int_{-\infty}^{\infty} \delta(t) = 1$$
$$\delta(t) - 0 = 1$$

Das Spektrum des Delta-Impulses enthält alle Frequenz mit Gewicht 1!

Die Stammfunktion des Delta-Impulses: $\varepsilon(t)$:

$$\varepsilon(t) = \int_{-\infty}^{t} \delta(\tau) \ d\tau \Leftrightarrow \frac{d}{dt} \varepsilon(t) = \delta(t)$$

Fouriertransformation der Sprungfunktion:

$$\varepsilon(t) \circ \pi \cdot \delta(\omega) + \frac{1}{i\omega}$$

4.1.5 Faltung mit dem Delta-Impuls

$$x(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} x(\tau) \cdot \delta((t - t_0) - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau) \cdot \delta(\tau - (t - t_0)) d\tau$$

$$= x(t - t_0)$$
(10)

Kurz bedeutet das

$$x(t) * \delta(t - t_0) = x(t - t_0) ,$$

und für $t_0 = 0$

$$x(t) * \delta(t) = x(t)$$
.

Der Delta-Impuls ist das Neutrale Element bezüglich der Faltung!

4.1.6 Besonderheiten der CTFT

Eigenschaften der CTFT:

Eigenschaft	Zeitbereich	○	Frequenzbereich
Linearität	$k_1 x_1(t) + k_2 x_2(t)$	O	$k_1 X_1(\omega) + k_2 X_2(\omega)$
Symmetrie / Dualität	Gilt: $x(t)$	○	$X(\omega)$
	$\qquad \qquad dann auch \colon X(t)$	0	$2\pi x(-\omega)$
Zeitverschiebung	x(t- au)	○	$X(\omega)\mathrm{e}^{-j\omega au}$
Frequenzverschiebung	$x(t) \mathrm{e}^{ j W t}$	o—•	$X(\omega-W)$

Eigenschaft	Zeitbereich	0	Frequenzbereich
Zeitskalierung	$x(k \cdot t)$	○	$\frac{1}{ k } \cdot X \left(\frac{1}{k} \cdot \omega \right)$
Frequenzskalierung	$\frac{1}{ k } \cdot x \left(\frac{1}{k} \cdot t \right)$	○	$X(k\cdot\omega)$
Faltung (Zeit)	$x_1(t) * x_2(t)$	○	$X_1(\omega) \cdot X_2(\omega)$
Faltung (Frequenz)	$2\pi \cdot x_1(t) \cdot x_2(t)$	O	$X_1(\omega) * X_2(\omega)$

Eigenschaft	Zeitbereich	o—•	Frequenzbereich
Differentiation (Zeit)	$\frac{\mathrm{d}}{\mathrm{d}t} \; x(t)$	○	$j\omega X(\omega)$
Integration (Zeit)	$\int\limits_{-\infty}^t x(au) \; d au$	0	$\frac{X(\omega)}{j\omega} + \pi \cdot X(0) \cdot \delta(\omega)$
Reelle Signale $x(t)$	$X(-\omega) = \overline{X(\omega)}$	und	$ X(-\omega) = X(\omega) $

${\bf Signal dauer\text{-}Band breite\text{-}Produkt:}$

Signal	Zeitintervall	Dauer	Spektrum	Bereich	Bandbreite
x(t)	$[t_0, t_1]$	$t_1 - t_0$	$X(\omega)$	$[\omega_0,\omega_1]$	$\omega_1 - \omega_0$
x(k t)	$[\frac{1}{k} t_0, \frac{1}{k} t_1]$	$\frac{1}{k}(t_1 - t_0)$	$\frac{1}{ k } X(\frac{1}{k} \omega)$	$[k\omega_0,k\omega_1]$	$k\left(\omega_1-\omega_0\right)$
$\frac{1}{ k } x(\frac{1}{k} t)$	$[kt_0,kt_1]$	$k\left(t_{1}-t_{0}\right)$	$X(k \omega)$	$\left[\frac{1}{k}\omega_0,\frac{1}{k}\omega_1\right]$	$\frac{1}{k}(\omega_1-\omega_0)$

Demnach ist das Signaldauer-Bandbreite-Produkt (oder Zeit-Bandbreite-Produkt) konstant, da $\frac{1}{k}(t_1-t_0)\cdot k\ (\omega_1-\omega_0)=k\ (t_1-t_0)\cdot \frac{1}{k}(\omega_1-\omega_0)=(t_1-t_0)\cdot (\omega_1-\omega_0)$:

$${\sf Signaldauer} \times {\sf Bandbreite} = {\it const.}$$

Korrespondenzen der CTFT:

${\sf Zeitbereich}\ x(t)$	○ —• Fr	equenzbereich $X(\omega)$
$\delta(t)$	0	1
1	○	$2\pi\delta(\omega)$
arepsilon(t)	○	$\pi\delta(\omega)+rac{1}{j\omega}$
t	○	$-\frac{2}{\omega^2}$
t^n	○	$2\pij^n\cdot\tfrac{\mathrm{d}^n}{\mathrm{d}\omega^n}\delta(\omega)$

${\it Zeitbereich} x(t)$	\circ —• Frequenzbereich $X(\omega)$
$\operatorname{rect}\left(rac{t}{ au} ight)$	
$sinc(\omega_0t)$	\circ $\frac{\pi}{\omega_0} \operatorname{rect}\left(\frac{\omega}{2\omega_0}\right)$
$\mathrm{e}^{-rac{1}{2}rac{1}{ au^2}t^2}$	$\circ - \bullet \qquad \qquad \sqrt{2\pi}\tau \cdot \mathrm{e}^{-\frac{1}{2}\tau^2\omega^2}$

4.2 Diskrete Signale

4.2.1 Delta-Kamm

Die Idee eines Delta-Kamms: Aus einer kontinuierlichen Funktion wird eine Zahlenfolge gemacht.

Um eine Zahlenfolge aus einer kontinuierlichen Funktion zu erhalten, muss diese abgetastet werden. Die Abtastung einer kontinuierlichen Funktion erfolgt mit einem Delta-Kamm:

$$\sum_{n=-\infty}^{\infty} \delta(t - n\Delta T_A) \tag{11}$$

Der Delta-Kamm stellt eine Schar einzelner Delta-Impulsen an bestimmten gewünschten Abtastungsorten mit gleichem Abstand voneinander dar:

4.2.2 Abgetastetes Signal

Ein abgetastetes Signal ist mit Hilfe des Delta-Kamms definiert durch:

$$x_A(t) := x(t) \cdot \sum_{n = -\infty}^{\infty} \delta(t - n\Delta T_A)$$
 (12)

 $x_A(t)$ wird auch als Diskretes Signal bezeichnet.

4.2.3 DTFT (diskrete, nicht-periodische Signale)

Mit Hilfe der Ausblendeigenschaft des Delta-Impulses kann man die Fouriertransformation eines solchen abgetasteten Signals bestimmen:

$$X_{A}(\omega) = \int_{-\infty}^{\infty} x_{A}(t) \cdot e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - n\Delta T_{A}) e^{-j\omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \cdot \delta(t - n\Delta T_{A}) dt$$

$$= \sum_{n=-\infty}^{\infty} x(n\Delta T_{A}) e^{-j\omega n\Delta T_{A}}$$
(13)

Bemerkungen:

- Ein diskretes Zeitsignal führt dennoch zu einem kontinuierlichen Frequenzspektrum
- Durch Abtastung eines Zeitsignals mit Zeitabständen ΔT_A wird Frequenzspektrum periodisch mit Periodendauer $\omega_p:=\frac{2\pi}{\Delta T_A}$
- diskretes Zeitsignal ⊶ periodisches Spektrum
- Zusammenhang CTFT und DTFT: $x_A(\omega) = \frac{1}{\Delta T_A} \sum_{=-\infty}^{\infty} X \left(\omega \frac{2\pi n}{\Delta T_A}\right)$

4.2.4 Abtasttheorem

Man folgert: $\omega_P > 2 \cdot 2\pi B$

Daraus ergibt sich das eigentliche Abtasttheorem:

$$f_A = \frac{1}{\Delta T_A} > 2 \cdot B \Rightarrow \Delta T_A < \frac{1}{2 \cdot B} \tag{14}$$

Ist das Abtasttheorem beim Abtasten eines Signales eingehalten, so kann versichert werden, dass keine Informationen des Originalsignals verloren gehen und eine Rekonstruktion ist möglich.

 \Rightarrow "Mindestens mit der doppelt so grossen Frequenz wie im Originalsignal vorhanden ist abtasten."

Bemerkungen:

- Die höchsten Frequenzen sind die, die zuerst unter der Verletzung des Abtasttheorems leiden (Unterabtastung)
- Informationsverlust ist nicht leicht zu beheben
- In der Praxis verwendet man häufig eine deutliche Überabtastung

4.2.5 Rekonstruktion von abgetasteten Signalen

Unter der Annahme, dass das Abtasttheorem mit Zeitintervallen ΔT_A nicht verletzt wird, kann aus den diskreten Abtastwerten $x(n\Delta T_A)$ die kontinuierliche Originalfunktion x(t)

rekonstruiert werden mit:

$$x(t) := \sum_{n = -\infty}^{\infty} x(n\Delta T_A) \cdot sinc\left(\frac{\pi}{\Delta T_A}(t - n\Delta T_A)\right)$$
 (15)

 \Rightarrow "Man interpoliert die diskreten Punkten mit der sinc-Funktion."

Herleitung:

1. Schritt: Isolieren einer Periode durch Fenstern

Man verwendet einen wichtigen Trick: Das sogenannte Fenstern von Signalen.

Man multipliziert die periodische Fouriertransformierte des Abtastsignals $X_A(\omega)$ mit einem Rechteckpuls der Breite ω_P , um die Fouriertransformierte des Originalsignals $X(\omega)$ zurück zu gewinnen:

Signal Fenstern mathematisch:

$$X(\omega) = X_A(\omega) \cdot \Delta T_A \cdot rect\left(\frac{\omega}{\omega_P}\right)$$

$$= X_A(\omega) \cdot \Delta T_A \cdot rect\left(\frac{\omega \Delta T_A}{2\pi}\right)$$
(16)

2. Schritt: Zurücktransformieren

(Multiplikation im Spektrum \Rightarrow Faltung im Zeitsignal)

$$X(\omega) \stackrel{\bullet \bullet}{\longrightarrow} x_A(t) * sinc(\frac{t\pi}{\Delta T_A})$$

$$= \int_{-\infty}^{\infty} x(\tau) \cdot \sum_{n=-\infty}^{\infty} \delta(\tau - n\Delta T_A) \cdot sinc(\frac{\pi}{\Delta T_A}(t-\tau)) d\tau$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) \cdot sinc(\frac{\pi}{\Delta T_A}(t-\tau)) \delta(\tau - n\Delta T_A) dt\tau$$

$$= \sum_{n=-\infty}^{\infty} x(n\Delta T_A) \cdot sinc(\frac{\pi}{\Delta T_A}(t-n\Delta T_A)) = x(t)$$
(17)