Model fit 1

Fit model for earnings as a function of height and generate simulated coefficients.

```
lm.earn <- lm(earn ~ height, heights.clean)
display.xtable(lm.earn)</pre>
```

	Estimate	Std. Error	t value
(Intercept)	-61316.28	9525.18	-6.44
height	1262.33	142.11	8.88

Table: n = 1192 rank = 2 resid sd = 18865.079 R-Squared = 0.062

```
sim.earn <- sim(lm.earn)
beta.hat <- coef(lm.earn)</pre>
```

Stat 505

Gelman & Hill, Chapter 4

Plot model

Grey lines are simulated.

Stat 505 Gelman & Hill, Chapter 4

Plot commands

Stat 505

Gelman & Hill, Chapter 4

Uncentered

original model

```
fit.4 <- lm(kid_score ~ mom_hs + mom_iq + mom_hs:mom_iq, k:
display.xtable(fit.4)</pre>
```

	Estimate	Std. Error	t value
(Intercept)	-11.48	13.76	-0.83
$mom_{L}hs$	51.27	15.34	3.34
mom_iq	0.97	0.15	6.53
mom_hs:mom_iq	-0.48	0.16	-2.99

Table: n = 434 rank = 4 resid sd = 17.971 R-Squared = 0.23

Note intercept of -11 when Mom's IQ = 0, no high school.

Centered 1

centering by subtracting the mean

c_mom_hs <- with(kidiq, mom_hs - mean(mom_hs))
c_mom_iq <- with(kidiq, scale(mom_iq, center = T, scale =
fit.5 <- lm(kid_score ~ c_mom_hs * c_mom_iq, kidiq)
display.xtable(fit.5)</pre>

	Estimate	Std. Error	t value
(Intercept)	87.64	0.91	96.57
c_mom_hs	2.84	2.43	1.17
c_mom_iq	0.59	0.06	9.71
c_mom_hs:c_mom_iq	-0.48	0.16	-2.99

Table: n = 434 rank = 4 resid sd = 17.971 R-Squared = 0.23

All but last estimate change. Now does is the "(Intercept)" mean?

Gtat 505 Gelman & Hill, Chapter 4

Centered 3

centering by subtracting the mean & dividing by 2 sd

z_mom_hs <- with(kidiq, (mom_hs - mean(mom_hs))/(2 * sd(mor z_mom_iq <- scale(kidiq\$mom_iq, TRUE, TRUE)/2 #£ fit.7 <- lm(kid_score ~ z_mom_hs * z_mom_iq, kidiq) display.xtable(fit.7)

	Estimate	Std. Error	t value
(Intercept)	87.64	0.91	96.57
z_mom_hs	2.33	1.99	1.17
z_mom_iq	17.65	1.82	9.71
z_mom_hs:z_mom_iq	-11.94	4.00	-2.99

Table: n = 434 rank = 4 resid sd = 17.971 R-Squared = 0.23

What does not change? Why?

Centered 2

using a conventional centering point

	Estimate	Std. Error	t value
(Intercept)	86.83	1.21	71.56
c2_mom_hs	2.84	2.43	1.17
c2_mom_iq	0.73	0.08	8.96
c2_mom_hs:c2_mom_iq	-0.48	0.16	-2.99

Table: n = 434 rank = 4 resid sd = 17.971 R-Squared = 0.23

What does the 3rd line of output estimate?

Stat 505 Gelman & Hill, Chapter 4

Correlation

In SLR, slope is a function of correlation:

$$\widehat{\beta}_1 = r \frac{\sigma_y}{\sigma_x}$$

What if we standardize x and y?

If we centered?

Note difference between minimizing vertical SSE and minimizing average distance to the line (Principal Components)

Meaning of "regression to the mean"

Log Transform 1

Log 10

```
log.earn <- log(heights.clean$earn)
earn.logmodel.1 <- lm(log.earn ~ height, heights.clean)
display.xtable(earn.logmodel.1)</pre>
```

	Estimate	Std. Error	t value
(Intercept)	5.78	0.45	12.81
height	0.06	0.01	8.74

Table: n = 1192 rank = 2 resid sd = 0.893 R-Squared = 0.06

```
sim.logmodel.1 <- sim(earn.logmodel.1)
beta.hat <- coef(earn.logmodel.1)</pre>
```

log10.earn <- log10(heights.clean\$earn)
earn.log10model <- lm(log10.earn ~ height, heights.clean)
display.xtable(earn.log10model)</pre>

	Estimate	Std. Error	t value
(Intercept)	2.51	0.20	12.81
height	0.03	0.00	8.74

Table: n = 1192 rank = 2 resid sd = 0.388 R-Squared = 0.06

Gelman & Hill, Chapter 4

Stat 505

Stat 505

Gelman & Hill, Chapter 4

Plotting Log Transform

Back-transform Plot

itat 505 Gelman & Hill, Chapter 4

Figure 4.3

Log regression, plotted on original scale

earn.logmodel.3 <- lm(log.earn ~ height * male, heights.cle
display.xtable(earn.logmodel.3)</pre>

	Estimate	Std. Error	t value
(Intercept)	8.39	0.84	9.94
height	0.02	0.01	1.30
male	-0.08	1.26	-0.06
height:male	0.01	0.02	0.40

Table: n = 1192 rank = 4 resid sd = 0.881 R-Squared = 0.087

Stat 505

Stat 505

Gelman & Hill, Chapter 4

Log Transform 4 Standardized

Standardized

Log Transform 5

Log Transform 3
Including interactions

Elasticity

z.height <- with(heights.clean, (height - mean(height))/sd
earn.logmodel.4 <- lm(log.earn ~ male * z.height, heights.d
display.xtable(earn.logmodel.4)</pre>

	Estimate	Std. Error	t value
(Intercept)	9.53	0.05	210.88
male	0.42	0.07	5.75
z.height	0.07	0.05	1.30
male:z.height	0.03	0.07	0.40

Table: n = 1192 rank = 4 resid sd = 0.881 R-Squared = 0.087

log.height <- log(heights.clean\$height)
earn.logmodel.5 <- lm(log.earn ~ log.height + male, heights
display.xtable(earn.logmodel.5)</pre>

Gelman & Hill, Chapter 4

	Estimate	Std. Error	t value
(Intercept)	3.62	2.60	1.39
log.height	1.41	0.62	2.26
male	0.42	0.07	5.84

Table: n = 1192 rank = 3 resid sd = 0.881 R-Squared = 0.087

Stat 505 Gelman & Hill, Chapter 4

Other Transforms, §4.5

MASS::boxcox(lm(earn ~ height + male, heights.clean), lam = seq(0, 1, 0.1))

Indicators

Divide shuttle launches into "cold" ($< 66^{\circ}$) or "warm" ($\ge 66^{\circ}$) to look at O-ring failures.

Or model failures as a function of temperature?

Is left-handedness a binary variable?

Cut a continuous variable up into bins to make a factor? Or use a smoother?

Identifiability

A model is non-identifiable if some parameters cannot be estimated uniquely (have infinite SE).

Example: a factor with J levels can use J dummy variables, but if the model includes an intercept, we get non-identifiability problem. Solutions: drop one column, and let this be the reference level. or drop the intercept (but F tests and R^2 are lost) or require a constraint like $\sum \tau_i = 0$.

In R singular.ok = TRUE allows less than full rank **X** without complaint. NA's for missing values.

Stat 505

Gelman & Hill, Chapter 4

General Principles §4.6

- Include all "important" predictors
- Similar predictor variables could be averaged together.
- Consider interactions when main effects are large.
- Exclude variables?
 - 1 No if sign is as expected and p-value is large.
 - 2 Yes if sign is opposite expected sign and p-value is large.
 - 3 Maybe if sign is as expected and p-value is small. (Think)
 - No if sign is as expected and p-value is small.

Gelman & Hill, Chapter 4

Stat 505

Gelman & Hill, Chapter 4

```
Mesquite example
```

```
Pairs Plot
```


Stat 505

Gelman & Hill, Chapter 4

Stat 505

Gelman & Hill, Chapter 4

Data Summary

Model 1

<pre>mesq.fit.1 <-</pre>	<pre>lm(weight '</pre>	~	diam1	+	${\tt diam2}$	+	canopy.height	+	
density +	group, meso	qu	uite)						
display.xtable	e(mesq.fit.:	1)							

	diam1	diam2	total.height	canopy.height	density
2.5	1.01	0.51	0.70	0.60	1.00
25	1.40	1.00	1.20	0.86	1.00
50	1.95	1.52	1.50	1.10	1.00
75	2.48	1.90	1.70	1.30	2.00
97.5	4.07	3.66	2.20	1.85	6.75
	1.08	0.90	0.50	0.44	1.00

	Estimate	Std. Error	t value
(Intercept)	-1091.89	176.46	-6.19
diam1	189.67	112.76	1.68
diam2	371.46	124.38	2.99
canopy.height	355.67	209.84	1.69
total.height	-101.73	185.57	-0.55
density	131.25	34.36	3.82
group	363.30	100.18	3.63

Table: n = 46 rank = 7 resid sd = 268.96 R-Squared = 0.848

Logs make sense here since weight is related to volume, a product of 3 dimensions.

Stat 505 Gelman & Hill, Chapter 4

Log Pairs Plot

Log Model

mesq.fit.2 <- lm(log(weight) ~ log(diam1) + log(diam2) + log(total.height) + log(density) + group, mesquite)
display.xtable(mesq.fit.2)</pre>

	Estimate	Std. Error	t value
(Intercept)	4.77	0.16	30.75
log(diam1)	0.39	0.28	1.40
log(diam2)	1.15	0.21	5.48
log(canopy.height)	0.37	0.28	1.33
log(total.height)	0.39	0.31	1.26
log(density)	0.11	0.12	0.90
group	0.58	0.13	4.53

Table: n = 46 rank = 7 resid sd = 0.329 R-Squared = 0.887

Gelman & Hill, Chapter 4

Stat 505

Stat 505

Gelman & Hill, Chapter 4

Volume Model 2

Volume Model

Total leaf weight is a function of volume of canopy. Build a new variable:

canopy.volume <- with(mesquite, diam1 * diam2 * canopy.heigmesq.fit.3 <- lm(log(weight) ~ log(canopy.volume), mesquitedisplay.xtable(mesq.fit.3) # Volume, area & shape model

	Estimate	Std. Error	t value
(Intercept)	5.17	0.08	62.07
log(canopy.volume)	0.72	0.05	13.23

Table: n = 46 rank = 2 resid sd = 0.414 R-Squared = 0.799

Can we add to this one? Perhaps surface area and shape?

canopy.area <- with(mesquite, diam1 * diam2)
canopy.shape <- with(mesquite, diam1/diam2)
mesq.fit.4 <- lm(log(weight) ~ log(canopy.volume) + log(canopy.shape) + log(total.height) + log(density) +
 mesquite)
display.xtable(mesq.fit.4)</pre>

	Estimate	Std. Error	t value
(Intercept)	4.77	0.16	30.75
log(canopy.volume)	0.37	0.28	1.33
log(canopy.area)	0.40	0.29	1.36
log(canopy.shape)	-0.38	0.23	-1.64
log(total.height)	0.39	0.31	1.26
log(density)	0.11	0.12	0.90
group	0.58	0.13	4.53

Table: n = 46 rank = 7 resid sd = 0.329 R-Squared = 0.887

at 505 Gelman & Hill, Chapter 4

Stat 505

Gelman & Hill, Chapter 4

Model 5

```
mesq.fit.5 <- lm(log(weight) ~ log(canopy.volume) + log(can
    group, mesquite)
display.xtable(mesq.fit.5)</pre>
```

	Estimate	Std. Error	t value
(Intercept)	4.70	0.12	39.81
log(canopy.volume)	0.61	0.19	3.22
log(canopy.area)	0.29	0.24	1.22
group	0.53	0.12	4.56

Table: n = 46 rank = 4 resid sd = 0.337 R-Squared = 0.873

Stat 505 Gelma

Gelman & Hill, Chapter 4

Series of models, 4.7

Clean NES elections data to get year, party ID, and nine predictors.

```
regress.year <- function(yr) {</pre>
    this.year <- subset(data, nes.year == yr)
    lm.0 <- lm(partyid7 ~ ., data = this.year)</pre>
    summary(lm.0)$coef[, 1:2]
yrs \leftarrow seq(1972, 2000, 4)
yrlyCoef <- array(NA, c(9, 2, 8), dimnames = list(c("Intercept",</pre>
    "Ideology", "Black", "Age.30.44", "Age.45.64", "Age.65.up",
    "Education", "Female", "Income"), c("Est", "SE"), yrs))
for (yr in yrs) yrlyCoef[, , (yr - 1968)/4] <- regress.year(yr)</pre>
par(mfrow = c(2, 5), mar = c(3, 4, 2, 0))
for (k in 1:9) {
    plot(yrs, yrlyCoef[k, 1, ], pch = 20, cex = 0.5, xlab = "year",
        ylab = "Coefficient", main = dimnames(yrlyCoef)[[1]][k],
        mgp = c(1.2, 0.2, 0), cex.main = 1, cex.axis = 1, cex.lab = 1,
        tcl = -0.1)
    segments(yrs, yrlyCoef[k, 1, ] - 0.67 * yrlyCoef[k, 2, ],
        yrs, yrlyCoef[k, 1, ] + 0.67 * yrlyCoef[k, 2, ], lwd = 0.5)
    abline(h = 0, lwd = 0.5, lty = 2)
```

Model 6

```
mesq.fit.6 <- lm(log(weight) ~ log(canopy.volume) + log(canopy.shape) + log(total.height) + group, mesquite
display.xtable(mesq.fit.6)</pre>
```

	Estimate	Std. Error	t value
(Intercept)	4.77	0.15	30.84
log(canopy.volume)	0.38	0.28	1.38
log(canopy.area)	0.41	0.29	1.41
log(canopy.shape)	-0.32	0.22	-1.44
log(total.height)	0.42	0.31	1.37
group	0.54	0.12	4.56

Table: n = 46 rank = 6 resid sd = 0.329 R-Squared = 0.885

Stat 505

Gelman & Hill, Chapter 4

Figure 4.6

Running the same multiple regression in Presidential election years, we can see how some influences on Party identification have changed. Intervals are roughly 50% confidence intervals. Positive coefficients indicate Republican leanings.

Stat 505 Gelman & Hill, Chapter 4

Stat 505

Gelman & Hill, Chapter 4