MATH 307

Chapter 6

Section 6.3: Homogeneous Systems With Constant Coefficients The Nondiagonalizable Case

Contents

The Upper Triangular Case	2
Solving One Nonhomogeneous ODE	2
The General Case	9

Created by: Pierre-Olivier Parisé Summer 2022

THE UPPER TRIANGULAR CASE

EXAMPLE 1. Find the general solution to the system

$$Y' = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} Y.$$

$$Y' = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} Y.$$

$$-1 > \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 2y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 2y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \\ 4x \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix}$$

$$-1 > \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3y_1 + 4y_2 \end{bmatrix}$$

Solving One Nonhomogeneous ODE

Given an nonhomogeneous ODE

$$y' = ay + g \tag{*}$$

the general solution is given by

$$y = y_H + y_P$$

where

- y_H is the general solution to the homogeneous ODE y' = ay.
- y_P is a particular solution to the ODE (\star) and it has the following form:

$$y_P(x) = e^{ax} \int e^{-ax} g(x) \, dx.$$

EXAMPLE 2. Complete the previous example.

(**)
$$y_1^2 = 3y_1 + cze^{2zz}$$

1) $y_1^2 = 3y_1$, $-D$ $y_1(x) = ce^{3zz}$

2) $a = 3$, $g(x) = cze^{2zz}$ $-D$ $y_1(x) = e^{3zz} \int e^{-3zz} cze^{2zz} dz$
 $= -cze^{2zz}$
 $y_1 = y_1 + y_2 = c_1e^{3zz} - cze^{2zz}$

THE GENERAL CASE

When A in Y' = AY is not diagonalizable, we can use the Jordan Canonical Form B of A.

EXAMPLE 3. Find the general solution of Y' = AY for

$$A = \begin{bmatrix} 1 & -2 & -6 \\ -2 & 2 & -5 \\ 2 & 1 & 8 \end{bmatrix}.$$

1) Jordan Canonical Frm.

$$B = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} , P = \begin{bmatrix} -2 & 6 & -1 \\ -1 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

2) Solve uppon-triangular system:

$$Z = P^{-1}y - P$$
 $Y' = Ay$ decomes $Z' = BZ$ (*)
 $(*) - D$ $Z'_1 = 3Z_1 + Z_2$
 $Z'_2 = 3Z_2$
 $Z'_3 = 5Z_3$

$$-5$$
 $Zz = cze^{3x}$ & $Z_3 = c_3e^{5x}$

Now, becomes $Z_1 = \frac{3}{3}Z_1 + \frac{3}{2}Z_2 + \frac{3}{2}Z_3 + \frac{3}{2}Z_4 + \frac{3}{2}Z_4$

So,
$$Z = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix}$$
 -> $Y = PZ$.