AL FM Discrete Binary Operations

Who? T. Bretschneider

When? April 17, 2021

Outline

Introduction

Definition

Given a non-empty set S, a **binary operation** on S is a rule for combining any two elements $a,b\in S$ to give a unique result c where c is not necessarily an element of S.

Addition, subtraction and multiplication are all binary operations on $\mathbb R$ and division is a binary operation on $\mathbb R \setminus \{0\}$.

Square root and factorial are not binary operations (in fact both of these are unary operations as they only take one input).

Less familiar binary operations are often defined using a symbol such as $*, \Delta$ or $\odot.$

Problem

- 3*5 = 10
- □ 3 * 0 =
- 0 * 3 =
- <u>−5 * 0 =</u>

Definition

Given a non-empty set S, a **binary operation** on S is a rule for combining any two elements $a,b\in S$ to give a unique result c where c is not necessarily an element of S.

Addition, subtraction and multiplication are all binary operations on $\mathbb R$ and division is a binary operation on $\mathbb R \setminus \{0\}$.

Square root and factorial are not binary operations (in fact both of these are unary operations as they only take one input).

Less familiar binary operations are often defined using a symbol such as $*, \Delta$ or $\odot.$

Problem

- 3*5 = 10
- 3 * 0 = **0**
- □ 0 * 3 =
- -5*0 =

Definition

Given a non-empty set S, a **binary operation** on S is a rule for combining any two elements $a,b\in S$ to give a unique result c where c is not necessarily an element of S.

Addition, subtraction and multiplication are all binary operations on $\mathbb R$ and division is a binary operation on $\mathbb R \setminus \{0\}$.

Square root and factorial are not binary operations (in fact both of these are unary operations as they only take one input).

Less familiar binary operations are often defined using a symbol such as $*, \Delta$ or $\odot.$

Problem

- 3*5 = 10
- 3 * 0 = **0**
- □ 0 * 3 = **3**
- <u>−5</u> ∗ 0 =

Definition

Given a non-empty set S, a **binary operation** on S is a rule for combining any two elements $a,b\in S$ to give a unique result c where c is not necessarily an element of S.

Addition, subtraction and multiplication are all binary operations on $\mathbb R$ and division is a binary operation on $\mathbb R \setminus \{0\}$.

Square root and factorial are not binary operations (in fact both of these are unary operations as they only take one input).

Less familiar binary operations are often defined using a symbol such as $*, \Delta$ or $\odot.$

Problem

- 3*5 = 10
- 3 * 0 = **0**
- 0 * 3 = 3
- -5*0 = -8

Problem

The Binary operation $a\Delta b=a^2+b^2-2ab$ where $a,b\in\mathbb{R}$.

- Find the value of 3∆4.
- Find the relationship between a and b such that $a\Delta b = 0$.

Problem

The binary operation * is given by M*N=MN+M-N where M and N are 2×2 matrices. Show that, for any M, (M*I)*I=aM+bI where A and A are integers to be determined.

Problem The Binary operation $a\Delta b = a^2 + b^2 - 2ab$ where $a, b \in \mathbb{R}$.

- Find the value of 3∆4.
- Find the relationship between a and b such that $a\Delta b = 0$.

Solution
$$3\Delta 4 = 3^2 + 4^2 - 2 * 3 * 4 = 9 + 16 - 24 = 1$$

Problem The binary operation * is given by M*N=MN+M-N where M and N are 2×2 matrices. Show that, for any M, (M*I)*I=aM+bI where A and A are integers to be determined.

Problem The Binary operation $a\Delta b = a^2 + b^2 - 2ab$ where $a, b \in \mathbb{R}$.

- Find the value of 3∆4.
- Find the relationship between a and b such that $a\Delta b = 0$.

Solution
$$3\Delta 4 = 3^2 + 4^2 - 2 * 3 * 4 = 9 + 16 - 24 = 1$$

Solution
$$(a-b)^2 = 0 \implies a = b$$

Problem The binary operation * is given by M*N=MN+M-N where M and N are 2×2 matrices. Show that, for any M, (M*I)*I=aM+bI where A and A are integers to be determined.

Problem The Binary operation $a\Delta b = a^2 + b^2 - 2ab$ where $a, b \in \mathbb{R}$.

- Find the value of 3∆4.
- Find the relationship between a and b such that $a\Delta b = 0$.

Solution
$$3\Delta 4 = 3^2 + 4^2 - 2 * 3 * 4 = 9 + 16 - 24 = 1$$

Solution
$$(a-b)^2 = 0 \implies a = b$$

Problem The binary operation
$$*$$
 is given by $M*N=MN+M-N$ where M and N are 2×2 matrices. Show that, for any M , $(M*I)*I=aM+bI$ where A and A are integers to be determined.

Solution

$$(M*I)*I = (MI + M - I)*I$$

$$= (M + M - I)*I$$

$$= (2M - I)*I$$

$$= (2M - I)(I) + (2M - I) - I$$

$$= 2M - I + 2M - I - I$$

$$= 4M - 3I \text{ so } a = 4 \text{ and } b = -3$$

Definition

A binary operation * is said to be closed on a set S if $a*b \in S \forall a,b \in S$

Note that closure refers to a set and a binary operation

The binary operation of addition is closed on $\ensuremath{\mathbb{Z}}$ as the sum of any two integers is also an integer.

The binary operation of subtraction is not closed on $\mathbb N$ as $5-7=-2\not\in\mathbb N$.

Problem

Determine whether the following binary operations are closed on $\mathbb Z.$

$$a*b = \frac{a+b}{a^2}$$

$$\square \quad a\Delta b = 2^{a+b}$$

$$a \circ b = a + b - 3ab$$

Definition

A binary operation * is said to be closed on a set S if $a * b \in S \forall a, b \in S$

Note that closure refers to a set and a binary operation

The binary operation of addition is closed on \mathbb{Z} as the sum of any two integers is also an integer.

The binary operation of subtraction is not closed on \mathbb{N} as $5-7=-2\not\in\mathbb{N}$.

Problem

Determine whether the following binary operations are closed on \mathbb{Z} .

$$a*b = \frac{a+b}{a^2}$$

$$\Box$$
 $a\Delta b = 2^{a+b}$

$$a \circ b = a + b - 3ab$$

Solution When
$$a = 2$$
 and $b = 2, 2 * 3 = \frac{2 \times 3}{4} = \frac{5}{4} \notin \mathbb{Z}$.

Definition

A binary operation * is said to be closed on a set S if $a*b \in S \forall a,b \in S$

Note that closure refers to a set and a binary operation

The binary operation of addition is closed on \mathbb{Z} as the sum of any two integers is also an integer.

The binary operation of subtraction is not closed on \mathbb{N} as $5-7=-2\not\in\mathbb{N}$.

Problem

Determine whether the following binary operations are closed on \mathbb{Z} .

$$a*b = \frac{a+b}{a^2}$$

$$\square \quad a\Delta b = 2^{a+b}$$

$$a \circ b = a + b - 3ab$$

Solution When
$$a = 2$$
 and $b = 2, 2 * 3 = \frac{2 \times 3}{4} = \frac{5}{4} \notin \mathbb{Z}$.

Solution

When
$$a=-2$$
 and $b=0, -2\Delta 0=2^{-2+0}=\frac{1}{4}\not\in\mathbb{Z}$

Definition

A binary operation * is said to be closed on a set S if $a * b \in S \forall a, b \in S$

Note that closure refers to a set and a binary operation

The binary operation of addition is closed on \mathbb{Z} as the sum of any two integers is also an integer.

The binary operation of subtraction is not closed on \mathbb{N} as $5-7=-2\not\in\mathbb{N}$.

Problem

Determine whether the following binary operations are closed on \mathbb{Z} .

$$a*b = \frac{a+b}{a^2}$$

$$\Box$$
 $a\Delta b = 2^{a+b}$

$$a \circ b = a + b - 3ab$$

Solution When
$$a = 2$$
 and $b = 2, 2 * 3 = \frac{2 \times 3}{4} = \frac{5}{4} \notin \mathbb{Z}$.

Solution When
$$a=-2$$
 and $b=0, -2\Delta 0=2^{-2+0}=\frac{1}{4}\not\in\mathbb{Z}$

Solution

Since a and b are in \mathbb{Z} then their sum a + b and product ab are also in \mathbb{Z} . Therefore $a \circ b$ is closed.

Problem

Which of the following sets are closed under multiplication?

Problem Which of the following sets are closed under multiplication?

Solution

The first is not closed because 1 + i and 1 - i are both in the set but (1+i)(1-i) = 2+0i is not.

Problem Which of the following sets are closed under multiplication?

Solution

The first is not closed because 1 + i and 1 - i are both in the set but (1+i)(1-i) = 2+0i is not.

Solution

The second is not closed because 2 + i and 1 + 2i are both in the set but (2+i)(1+2i) = 0+5i is not.

Problem

Which of the following sets are closed under multiplication?

Solution

The first is not closed because 1 + i and 1 - i are both in the set but (1 + i)(1 - i) = 2 + 0i is not.

Solution

The second is not closed because 2 + i and 1 + 2i are both in the set but (2 + i)(1 + 2i) = 0 + 5i is not.

Solution

If we have two non-zero complex numbers that multiply to give zero: zw = 0

Then since |zw| = |z||w|, either |z| or |w| = 0.

Therefore it is impossible to have two numbers in the set multiply to give the only number that isn't.

So the set is closed under multiplication.

Problem

Determine whether the following function are closed on first $\mathbb Z$ and the on $\mathbb Q.$

- $\Box \quad a\Delta b = \sqrt{a^2b^2}$
- $\square \quad a\Omega b = \frac{a+b}{a^2+1}$

Problem

Determine whether the following function are closed on first $\ensuremath{\mathbb{Z}}$ and the on

$$a \circ b = \frac{a+b}{a}$$

$$\Box \quad a\Delta b = \sqrt{a^2b^2}$$

Solution Closed on \mathbb{Z} and \mathbb{Q} .

Problem

Determine whether the following function are closed on first $\mathbb Z$ and the on

$$\Box \quad a\Delta b = \sqrt{a^2b^2}$$

Solution Closed on \mathbb{Z} and \mathbb{Q} .

$$\mathsf{Solution}$$

Solution $3 \circ 2 = \frac{5}{2} \notin \mathbb{Z}$ so not closed on \mathbb{Z} .

$$0 \circ 2 = \frac{\overline{2}}{\overline{0}} \not\in \mathbb{Q}$$
 so not closed on \mathbb{Q} .

Problem

Determine whether the following function are closed on first $\mathbb Z$ and the on

$$a \circ b = \frac{a+b}{a}$$

$$\Box \quad a\Delta b = \sqrt{a^2b^2}$$

Solution Closed on \mathbb{Z} and \mathbb{Q} .

Solution $3 \circ 2 = \frac{5}{2} \notin \mathbb{Z}$ so not closed on \mathbb{Z} .

$$0 \circ 2 = \frac{\overline{2}}{\overline{0}} \not\in \mathbb{Q}$$
 so not closed on \mathbb{Q} .

Solution $\sqrt{a^2b^2}=|ab|$. If $a,b\in\mathbb{Z}$ then $|ab|\in\mathbb{Z}$ and if $a,b\in\mathbb{Q}$ then $|ab|\in\mathbb{Q}$ so closed on \mathbb{Z} and \mathbb{Q} .

Problem

Determine whether the following function are closed on first \mathbb{Z} and the on

$$\bullet \Delta b = \sqrt{a^2b^2}$$

Solution Closed on \mathbb{Z} and \mathbb{Q} .

Solution $3 \circ 2 = \frac{5}{2} \notin \mathbb{Z}$ so not closed on \mathbb{Z} .

 $0 \circ 2 = \frac{2}{0} \notin \mathbb{Q}$ so not closed on \mathbb{Q} .

Solution $\sqrt{a^2b^2} = |ab|$. If $a, b \in \mathbb{Z}$ then $|ab| \in \mathbb{Z}$ and if $a, b \in \mathbb{Q}$ then $|ab| \in \mathbb{Q}$ so closed on \mathbb{Z} and \mathbb{Q} .

Solution $1\Omega 2 = \frac{3}{2} \notin \mathbb{Z}$ so not closed on \mathbb{Z} .

Since $a^{2}+1>0$ then $\frac{a+b}{a^{2}+1}\in\mathbb{Q}$ so closed on \mathbb{Q} .

Associativity

Definition

A binary operation * is **associative** on a set S if $a*(b*c)=(a*b)*c \forall a,b,c \in S$.

The for all in the definition makes it easier to show that a binary operation is not associative as you only have to provide one counter example.

Problem

Determine whether the following binary operations on $\mathbb R$ are associative:

- a*b=2a+3b
- $a \circ b = a + b + ab$

Associativity

A binary operation * is **associative** on a set S if $a*(b*c) = (a*b)*c \forall a, b, c \in S.$

Problem

Determine whether the following binary operations on \mathbb{R} are associative:

$$a \circ b = a + b + ab$$

Solution (1*0)*2 = 2*2 = 10 whereas 1*(0*2) = 1*6 = 20. Therefore * in not associative on \mathbb{R} .

Associativity

Definition

A binary operation * is **associative** on a set S if $a*(b*c)=(a*b)*c \forall a,b,c \in S$. The for all in the definition makes it easier to show that a binary operation

Problem

is not associative as you only have to provide one counter example. Determine whether the following binary operations on $\mathbb R$ are associative:

$$a \circ b = a + b + ab$$

Solution

(1*0)*2 = 2*2 = 10 whereas 1*(0*2) = 1*6 = 20. Therefore * in not associative on \mathbb{R} .

Solution

$$(a \circ b) \circ c = (a+b+ab) \circ c$$
$$= a+b+ab+c+(a+b+ab)(c)$$
$$= a+b+ab+c+ac+bc+abc.$$

$$a \circ (b \circ c) = a \circ (b + c + bc)$$

$$= a + b + c + bc + a(b + c + bc)$$

$$= a + b + c + bc + ab + ac + abc.$$

 \implies \circ is associative.

Problem

The function min(a, b) is defined by:

$$\min(a, b) = \begin{cases} a, & a < b \\ b, & otherwise. \end{cases}$$

Gary claims that the binary operation Δ , which is defined as

$$x\Delta y = \min(x, y - 3)$$

where x and y are real numbers, is associative as finding the smallest number is not affect by the order of the operation. Disprove Gary's claim.

Problem

The function min(a, b) is defined by:

$$min(a, b) = \begin{cases} a, & a < b \\ b, & otherwise. \end{cases}$$

Gary claims that the binary operation Δ , which is defined as

$$x\Delta y = \min(x, y - 3)$$

where x and y are real numbers, is associative as finding the smallest number is not affect by the order of the operation. Disprove Gary's claim.

$$2\Delta(1\Delta 3) = 2\Delta(0) = -3 \neq (-2)\Delta 3 = (2\Delta 1)\Delta 3.\square$$

Problem

M Determine whether the following operations on \mathbb{R} are commutative.

- a*b=2a+b
 - $a\Delta b=3^{a+b}$.

Problem

If * is both associative and commutative on a set S, show that $(a*b)^2=a^2*b^2$.

Definition

A binary operation * is said to be commutative on a set S if $a*b=b*a \forall a,b \in S$.

Problem

Determine whether the following operations on $\mathbb R$ are commutative.

$$a*b = 2a + b$$
$$a\Delta b = 3^{a+b}.$$

Solution

$$3*2=2\times 3+2=8$$
 whereas $2*3=2\times 2+3=7$ So * is not commutative on $\mathbb R$

Problem

If * is both associative and commutative on a set S, show that $(a*b)^2=a^2*b^2$.

Definition

A binary operation * is said to be commutative on a set S if $a*b=b*a \forall a,b \in S$.

Problem

Determine whether the following operations on $\mathbb R$ are commutative.

$$a*b = 2a + b$$
$$a\Delta b = 3^{a+b}.$$

Solution

$$3*2=2\times 3+2=8$$
 whereas $2*3=2\times 2+3=7$ So $*$ is not commutative on $\mathbb R$

Solution

$$a\Delta b = 3^{a+b}$$

= 3^{b+a} (since addition is commutative on \mathbb{R})
= $b\Delta a$.

So Δ is commutative on \mathbb{R} .

Problem

If * is both associative and commutative on a set S, show that $(a*b)^2=a^2*b^2$.

Definition

A binary operation * is said to be commutative on a set S if $a*b=b*a \forall a,b \in S$.

Problem

Determine whether the following operations on $\mathbb R$ are commutative.

$$a*b = 2a + b$$
$$a\Delta b = 3^{a+b}.$$

Solution

$$3*2=2\times 3+2=8$$
 whereas $2*3=2\times 2+3=7$ So $*$ is not commutative on $\mathbb R$

Solution

$$a\Delta b = 3^{a+b}$$

= 3^{b+a} (since addition is commutative on \mathbb{R})
= $b\Delta a$.

So Δ is commutative on \mathbb{R} .

Problem

If * is both associative and commutative on a set S, show that $(a*b)^2 = a^2*b^2$.

Solution

$$(a*b)^2 = (a*b)*(a*b)$$

$$= a*(b*a)*b (because* is associative on S)$$

$$= a*(a*b)*b (because* is commutative on S)$$

$$= (a*a)*(b*b) (because* is associative on S)$$

$$= a^2*b^2$$

Problem

The binary operation \blacklozenge is defined as $a\blacklozenge b=a^b$ where a and b are non-zero real numbers.

- Determine whether or not ♦ is associative.
- Tim claims that as $2 \spadesuit 4 = 4 \spadesuit 2$ then \spadesuit is commutative. Assess the validity of Tim's claim.

Problem

The binary operation \blacklozenge is defined as $a\blacklozenge b=a^b$ where a and b are non-zero real numbers.

- Determine whether or not ♦ is associative.
- Tim claims that as 2♦4 = 4♦2 then ♦ is commutative. Assess the validity of Tim's claim.

Solution

It is not associative.
$$a \blacklozenge (b \blacklozenge c) = a^{(b^c)} \neq a^{bc} = (a^b)^c = (a \blacklozenge b) \blacklozenge c$$

Problem

The binary operation \blacklozenge is defined as $a\blacklozenge b=a^b$ where a and b are non-zero real numbers.

- Determine whether or not ♦ is associative.
- Tim claims that as 2♦4 = 4♦2 then ♦ is commutative. Assess the validity of Tim's claim.

Solution

It is not associative.
$$a \blacklozenge (b \blacklozenge c) = a^{(b^c)} \neq a^{bc} = (a^b)^c = (a \blacklozenge b) \blacklozenge c$$

Solution

He has only checked it for one case but commutative must hold for all $a,b\in\mathbb{R}$. It is also not commutative since $1 • 2 = 1 \neq 2 = 2 • 1$.

Identity

Definition

For a binary operation * on a set S, if there exists an element e such that x*e=e*x=x for all $x\in S$ then e is called the **identity** element.

This does not mean * has to be commutative on S, just that e commutates.

Problem

For the following binary operations, determine whether an identity element exists in \mathbb{R} :

- a*b=3ab
- $a \circ b = 3a + b$

Identity

Definition

For a binary operation * on a set S, if there exists an element e such that x*e=e*x=x for all $x\in S$ then e is called the **identity** element.

This does not mean * has to be commutative on S, just that e commutates.

Problem

For the following binary operations, determine whether an identity element exists in \mathbb{R} :

$$a*b=3ab$$

$$a \circ b = 3a + b$$

Solution

Using the definition we have that:

$$a*e = 3ae = a$$
$$(3e - 1)(a) = 0$$

$$e=rac{1}{3}$$
.

Easy to check that this also works for e * a. So an identity exists for * on $\mathbb R$ and is $\frac{1}{3}$.

Identity

Definition

For a binary operation * on a set S, if there exists an element e such that x*e=e*x=x for all $x\in S$ then e is called the **identity** element.

This does not mean * has to be commutative on S, just that e commutates.

Problem

For the following binary operations, determine whether an identity element exists in \mathbb{R} :

$$a*b=3ab$$

$$a \circ b = 3a + b$$

Solution

Using the definition we have that:

$$a*e=3ae=a$$

$$(3e-1)(a)=0$$

$$e=rac{1}{3}.$$

Easy to check that this also works for e*a. So an identity exists for * on $\mathbb R$ and is $\frac{1}{3}$.

Solution

$$a \circ e = 3a + e = a$$
$$e = -2a.$$

Since the identity element is constant it cannont change depending on a so no identity for \circ on $\mathbb R$ exists.

Definition

Consider a binary operation * on a set S with an identity element e. For $x \in S$, an inverse element $x^{-1} \in S$ exists if and only if $x * x^{-1} = x^{-1} * x = e$.

Note that this definition does not make sense unless there is an identity element.

For addition in \mathbb{R} , the inverse of the element a is -a.

For addition on the set $\{0,1,2,3,\ldots\}$ there is no inverse for any element apart from 0 (even though there is an identity).

For multiplication on $\mathbb{R}\setminus\{0\}$ the inverse of an element a is

Problem

The binary operation \lozenge is given by $a \lozenge b = a + b - ab$ where $a, b\mathbb{Z}$.

- Show that the identity element in the set $\mathbb Z$ with respect to the binary operation \Diamond is 0.
- Find the inverse of the element 4 under the binary operation ◊.

Definition

Consider a binary operation * on a set S with an identity element e. For $x \in S$, an inverse element $x^{-1} \in S$ exists if and only if $x * x^{-1} = x^{-1} * x = e$.

Note that this definition does not make sense unless there is an identity element.

For addition in \mathbb{R} , the inverse of the element a is -a.

For addition on the set $\{0,1,2,3,\ldots\}$ there is no inverse for any element apart from 0 (even though there is an identity).

For multiplication on $\mathbb{R}\setminus\{0\}$ the inverse of an element a is

Problem

The binary operation \lozenge is given by a $\lozenge b = a + b - ab$ where $a, b\mathbb{Z}$.

- Show that the identity element in the set \mathbb{Z} with respect to the binary operation \Diamond is 0.
- Find the inverse of the element 4 under the binary operation ◊.

Definition

Consider a binary operation * on a set S with an identity element e. For $x \in S$, an inverse element $x^{-1} \in S$ exists if and only if $x * x^{-1} = x^{-1} * x = e$.

Note that this definition does not make sense unless there is an identity element.

For addition in \mathbb{R} , the inverse of the element a is

For addition on the set $\{0, 1, 2, 3, ...\}$ there is no inverse for any element apart from 0 (even though there is an identity).

For multiplication on $\mathbb{R}\setminus\{0\}$ the inverse of an element a is

Problem

- The binary operation \Diamond is given by $a \Diamond b = a + b ab$ where $a, b \mathbb{Z}$.
 - Show that the identity element in the set \mathbb{Z} with respect to the binary operation \Diamond is 0.
 - Find the inverse of the element 4 under the binary operation \Diamond .

Solution

 $a \lozenge 0 = a + 0 - a \times 0 = a$ and $0 \lozenge a = 0 + a - 0 \times a = a$, so 0 is the identity element.

Definition |

Consider a binary operation * on a set S with an identity element e. For $x \in S$, an inverse element $x^{-1} \in S$ exists if and only if $x * x^{-1} = x^{-1} * x = e$.

Note that this definition does not make sense unless there is an identity element.

For addition in \mathbb{R} , the inverse of the element a is -a.

For addition on the set $\{0,1,2,3,\ldots\}$ there is no inverse for any element apart from 0 (even though there is an identity).

For multiplication on $\mathbb{R}\setminus\{0\}$ the inverse of an element a is

Problem

- The binary operation \lozenge is given by $a\lozenge b = a + b ab$ where $a, b\mathbb{Z}$.
 - Show that the identity element in the set \mathbb{Z} with respect to the binary operation \lozenge is 0.
 - Find the inverse of the element 4 under the binary operation \lozenge .

Solution

 $a\lozenge 0=a+0-a\times 0=a$ and $0\lozenge a=0+a-0\times a=a,$ so 0 is the identity element.

Solution

If $a \lozenge 4 = 0$ then a + 4 - 4a = 0 and $a = \frac{4}{3}$. This $4^{-1} = \frac{4}{3}$.

Definition

A **Cayley table** is a square array where the elements of a set S are the headings of the rows and columns and the elements are the result of inputting the row header and column header into a binary operation *.

Problem

Let a binary operation * on a set $\{0,1,2,3\}$ be defined by $a*b=a^2+ab$.

- Construct the Cayley table for *.
- Is the operation * closed on S?
- Is the operation * commutative?

Definition

A **Cayley table** is a square array where the elements of a set S are the headings of the rows and columns and the elements are the result of inputting the row header and column header into a binary operation *.

Problem

Let a binary operation * on a set $\{0,1,2,3\}$ be defined by $a*b=a^2+ab$.

- Construct the Cayley table for *.
- Is the operation * closed on S?
- Is the operation * commutative?

Solution

*	0	1	2	3	
0	0	0	0	0	
1	0	2	3	4	
2	0	6	8	10	
3	0	12	15	18	

Definition

A **Cayley table** is a square array where the elements of a set S are the headings of the rows and columns and the elements are the result of inputting the row header and column header into a binary operation *.

Problem

Let a binary operation * on a set $\{0, 1, 2, 3\}$ be defined by $a*b=a^2+ab$.

- Construct the Cayley table for *.
- Is the operation * closed on S?
- Is the operation * commutative?

Solution

*	0	1	2	3
0	0	0	0	0
1	0	2	3	4
2	0	6	8	10
3	0	12	15	18

Solution

The operation * is clearly not closed on S. There are elements in the Cayley table which are not in S. Take $1*3=4\not\in S$.

Definition

A **Cayley table** is a square array where the elements of a set S are the headings of the rows and columns and the elements are the result of inputting the row header and column header into a binary operation *.

Problem

Let a binary operation * on a set $\{0,1,2,3\}$ be defined by $a*b=a^2+ab$.

- Construct the Cayley table for *.
- Is the operation * closed on S?
- Is the operation * commutative?

Solution

*	0	1	2	3
0	0	0	0	0
1	0	2	3	4
2	0	6	8	10
3	0	12	15	18

Solution

The operation * is clearly not closed on S. There are elements in the Cayley table which are not in S. Take $1*3=4\not\in S$.

Solution

The lack of symmetry around the leading diagonal indicates that the operation * is not commutative.

Problem

Let $U_4 = \{1, i, -i, -1\}$ and consider the operation of multiplication it U_4 .

- Construct the Cayley table for the operation.
- Is the operation commutative or associative?
- State the identity if it exists.
- Find the inverse of each element, if possible.

Problem

Let $U_4 = \{1, i, -i, -1\}$ and consider the operation of multiplication it U_4 .

- Construct the Cayley table for the operation.
- Is the operation commutative or associative?
- State the identity if it exists.
- Find the inverse of each element, if possible.

Solution

×	1	i	-i	-1
1	1	-i	i	-1
i	i	-1	1	-i
-i $-i$	1	-1	i	
-1	-1	— <i>i</i>	i	1

Problem

Let $U_4 = \{1, i, -i, -1\}$ and consider the operation of multiplication it U_4 .

- Construct the Cayley table for the operation.
- Is the operation commutative or associative?
- State the identity if it exists.
- Find the inverse of each element, if possible.

Solution

×	1	i	— і	-1
1	1	-i	i	-1
i	i	-1	1	-i
−i −i	i 1	-1	i	
-1	-1	— <i>i</i>	i	1

Solution

The operation is both commutative and associative as multiplication is associative and commutative on the parent group of \mathbb{C} .

Problem

Let $U_4 = \{1, i, -i, -1\}$ and consider the operation of multiplication it U_4 .

- Construct the Cayley table for the operation.
- Is the operation commutative or associative?
- State the identity if it exists.
- Find the inverse of each element, if possible.

Solution

×	1	i	− <i>i</i>	-1
1	1	-i	i	-1
i	i	-1	1	-i
-i $-i$	1	-1	i	
-1	-1	— <i>i</i>	i	1

Solution

The operation is both commutative and associative as multiplication is associative and commutative on the parent group of \mathbb{C} .

Solution

The identity is 1.

Problem

Let $U_4 = \{1, i, -i, -1\}$ and consider the operation of multiplication it U_4 .

- Construct the Cayley table for the operation.
- Is the operation commutative or associative?
- State the identity if it exists.
- Find the inverse of each element, if possible.

Solution

×	1	i	−i	-1
1	1	-i	i	-1
i	i	-1	1	-i
-i $-i$	1	-1	i	
-1	-1	— <i>i</i>	i	1

Solution

The operation is both commutative and associative as multiplication is associative and commutative on the parent group of \mathbb{C} .

Solution

The identity is 1.

Solution

1 and -1 are both self inverse. i and -i are inverse pairs.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 10$, $6 \times_{9} 3 = 10$, $8 +_{10} 13 = 10$,

$$1+_{10}1=$$
 .

Problem

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 + _{12} 10 = 3$$
, $5 \times _{12} 10 = 2$, $6 \times _{9} 3 = 2$, $8 + _{10} 13 = 2$,

$$1+_{10}1=$$
 .

Problem

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 2$, $6 \times_{9} 3 = 0$, $8 +_{10} 13 = 0$,

$$1+_{10}1=$$
 .

Problem

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 2$, $6 \times_{9} 3 = 0$, $8 +_{10} 13 = 1$,

$$1+_{10}1=$$
 .

Problem

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 2$, $6 \times_{9} 3 = 0$, $8 +_{10} 13 = 1$,

$$1+_{10}1=1$$
.

Problem

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 2$, $6 \times_{9} 3 = 0$, $8 +_{10} 13 = 1$,

$$1+_{10}1=1$$
.

Problem

- Find the value of $5 \blacksquare 3$.
- Find two integers a and b such that $a \blacksquare b = 0$.

Solution
$$5 \blacksquare 3 = 5^2 + 3 + 2 \mod 16 = 30 \mod 16 = 14$$
.

Definition

Modular arithmetic is a system of arithmetic for integers where numbers 'wrap around' upon reaching a certain value called the modulus.

Definition

 $+_n$ means addition modulo n.

 \times_n means multiplication modulo n.

You do modular arithmetic all the time when reading a clock.

10 o'clock plus three hours is 1 o'clock because we wrap around at 12.

We would write $10 + 3 \equiv 1 \mod 12$ or $10 +_{12} 3 = 1$.

$$5 +_{12} 10 = 3$$
, $5 \times_{12} 10 = 2$, $6 \times_{9} 3 = 0$, $8 +_{10} 13 = 1$,

$$1+_{10}1=1$$
.

- Find the value of 5■3.
- Find two integers a and b such that $a \blacksquare b = 0$.

Solution
$$5 \blacksquare 3 = 5^2 + 3 + 2 \mod 16 = 30 \mod 16 = 14$$
.

Solution
$$a^2 + b = 14, a = 3, b = 5$$

Problem

The binary operation * is defined as $x*y=x+y+1 \mod 2$ where $x,y\in \mathbb{R}.$

- Prove that the binary operation * is associative.
- Find an identity element of the set $\mathbb R$ with respect to the binary operation
- Prove that the sat $\mathbb R$ has infinitely many identity elements with respect to *.

Problem

The binary operation * is defined as $x*y=x+y+1 \mod 2$ where $x,y\in \mathbb{R}.$

- Prove that the binary operation * is associative.
- Find an identity element of the set \mathbb{R} with respect to the binary operation *.
 - Prove that the sat $\mathbb R$ has infinitely many identity elements with respect to *.

Solution

$$(a*b)*c = (a+b+1 \mod 2)*c$$

= $a+b+1+c+1 \mod 2$
= $a+b+c \mod 2$.

$$a*(b*c) = a*(b+c+1 \mod 2)$$

= $a+b+c+1+1 \mod 2$
= $a+b+c \mod 2$.

$$\therefore$$
 $a*(b*c) = (a*b)*c$ for all $a,b,c \in \mathbb{R}$ and so $*$ is associative.

Problem

The binary operation * is defined as $x*y=x+y+1 \mod 2$ where $x,y\in \mathbb{R}.$

- Prove that the binary operation * is associative.
- Find an identity element of the set \mathbb{R} with respect to the binary operation *.
 - Prove that the sat $\mathbb R$ has infinitely many identity elements with respect to *.

Solution

$$(a*b)*c = (a+b+1 \mod 2)*c$$

= $a+b+1+c+1 \mod 2$
= $a+b+c \mod 2$.

$$a*(b*c) = a*(b+c+1 \mod 2)$$

= $a+b+c+1+1 \mod 2$
= $a+b+c \mod 2$.

$$\therefore$$
 $a*(b*c) = (a*b)*c$ for all $a,b,c \in \mathbb{R}$ and so $*$ is associative.

Solution

For the identity element $e, e*a=a*e=a=a+e+1 \mod 2$. So $e+1=0 \mod 2$, and so e=1 works. So 1 is an identity element.

Problem

The binary operation * is defined as $x * y = x + y + 1 \mod 2$ where $x, y \in \mathbb{R}$.

- Prove that the binary operation * is associative.
- Find an identity element of the set $\mathbb R$ with respect to the binary operation

*.

Prove that the sat $\mathbb R$ has infinitely many identity elements with respect to *.

Solution

$$(a*b)*c = (a+b+1 \mod 2)*c$$

= $a+b+1+c+1 \mod 2$
= $a+b+c \mod 2$.

$$a*(b*c) = a*(b+c+1 \mod 2)$$

= $a+b+c+1+1 \mod 2$
= $a+b+c \mod 2$.

$$\therefore$$
 $a*(b*c)=(a*b)*c$ for all $a,b,c\in\mathbb{R}$ and so $*$ is associative.

Solution

For the identity element $e, e*a=a*e=a=a+e+1 \mod 2$. So $e+1=0 \mod 2$, and so e=1 works. So 1 is an identity element.

Solution

Anything equal to 1 $\mod 2$ is an identity element. So anything of the form $1+2k, \forall k \in \mathbb{Z}$, will work. This is identical to all odd numbers.

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$ Find the inverse of the element 5 under multiplication $\mod 12.$

Problem

- Construct a Cayley table far multiplication modulo 5 on $\{1,2,3,4\}$.
 - Use the table to solve the following:
 - $2x = 1 \mod 5$
 - $4x + 3 = 4 \mod 5$
 - State the identity if it exists.
 - Verify that $3^{-1} = 2$.
 - State the inverse of each other element.

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

- Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.
 - Use the table to solve the following:
 - $2x = 1 \mod 5$
 - $4x + 3 = 4 \mod 5$
 - State the identity if it exists.
 - Verify that $3^{-1} = 2$.
 - State the inverse of each other element.

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.

Use the table to solve the following:

 $2x = 1 \mod 5$

 $4x + 3 = 4 \mod 5$

State the identity if it exists.

Verify that $3^{-1} = 2$.

State the inverse of each other element.

Solution

×5	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution

 $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.

Use the table to solve the following:

 $2x = 1 \mod 5$

 $4x + 3 = 4 \mod 5$

State the identity if it exists.

Verify that $3^{-1} = 2$.

State the inverse of each other element.

Solution

1	2	3	4	
1	2	3	4	
2	4	1	3	
3	1	4	2	
4	3	2	1	
	1 1 2 3 4	1 2 1 2 2 4 3 1 4 3	3 1 1	7 7 7 7

Solution x = 3

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution

 $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.

Use the table to solve the following:

 $2x = 1 \mod 5$

 $4x + 3 = 4 \mod 5$

State the identity if it exists.

Verify that $3^{-1} = 2$.

State the inverse of each other element.

Solution

×5	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

Solution x = 3

Solution
$$4x = 1 \mod 5 \implies x = 4$$

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution

 $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.

Use the table to solve the following:

 $2x = 1 \mod 5$ $4x + 3 = 4 \mod 5$

State the identity if it exists.

Verify that $3^{-1} = 2$.

State the inverse of each other element.

Solution

×5	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

Solution x = 3

Solution $4x = 1 \mod 5 \implies x = 4$

Solution

The identity is 1.

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution

 $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

- Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.
- Use the table to solve the following:
 - $2x = 1 \mod 5$
 - $4x + 3 = 4 \mod 5$
- State the identity if it exists.
- Verify that $3^{-1} = 2$.
- State the inverse of each other element.

Solution

×5	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

Solution x = 3

Solution $4x = 1 \mod 5 \implies x = 4$

Solution The identity is 1.

Solution $3 \times_5 2 = 2 \times_5 3 = 1$

Problem

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Find the inverse of the element 5 under multiplication mod 12.

Solution

 $5 \times_{12} 5 = 1$ so $5^{-1} = 5$. It is self inverse.

Problem

Construct a Cayley table far multiplication modulo 5 on {1, 2, 3, 4}.

Use the table to solve the following:

 $2x = 1 \mod 5$

 $4x + 3 = 4 \mod 5$

State the identity if it exists.

Verify that $3^{-1} = 2$.

State the inverse of each other element.

Solution

×5	1	2	3	4	
1	1	2	3	4	
2	2	4	1	3	
3	3	1	4	2	
4	4	3	2	1	

Solution x = 3

Solution $4x = 1 \mod 5 \implies x = 4$

Solution The identity is 1.

Solution $3 \times_5 2 = 2 \times_5 3 = 1$

Solution 1 and 4 are self inverse. 2 and 3 are an inverse pair.

