

AI Ethics

AI Ethics and Risks

- People might lose their jobs
 - Al creates wealth and does dangerous and boring jobs for us
- Accountability loss: who is responsible, Al, owner, creator?
 - Similar issues elsewhere (medicine, software, plane crash)
- Al reproducing our negative biases and attitudes (e.g. racism)
 - Al should share our positive values
- Use of Al as weapon (e.g. drones) ← OPEN (€17€1)
 - Can also save lives? Every beneficial invention can be misused

AI Ethics and Risks

- Al Success might end of the human era
 - Kurtzweil, Musk, Hawking!
 - Once machine surpasses human intelligence it can design smarter machines.
 - Intelligence explosion and singularity at which human era ends

- Many counter arguments
 - (imits to intelligence)
 - nothing special about human intelligence
 - computational complexity
 - "intelligence to do a task" ≠ "ability to improve intelligence to do a task"

INTEL .

TIME

GO - ALPMA GO

Stunning Al Breakthrough Takes Us One Step
Closer To The Singularity

George Dvorsky

Oct 19, 2017, 8:30am Filed to: ai-

Robotics Laws

The Three Laws of Robotics [Azimov 1942]

- 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- B. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law
- A robot may not injure humanity, or, through inaction, allow humanity to come to harm

UK Principles of Robotics
[EPSRC 2011]

- 1. Robots are multi-use tools. Robots should not be designed solely or primarily to kill or harm humans, except in the interests of national security.
- 2. Humans, not robots, are responsible agents. Robots should be designed & operated as far as is practicable to comply with existing laws & fundamental rights freedoms, including privacy.
- 3. Robots are products. They should be designed using processes which assure their safety and security.
- 4. Robots are manufactured artefacts. They should not be designed in a deceptive way to exploit vulnerable users; instead their machine nature should be transparent.
- 5. The person with legal responsibility for a robot should be attributed.

Summary

- How to think or how to behave? Being like humans or being rational?
 - This course about acting rationally
- Al related to many fields including philosophy, mathematics, economics, neuroscience, psychology, computer sci. and control theory
- 50+ years of progress along many different paradigms: logic, expert systems, neural nets, learning, probabilities
- Increasingly scientific: focus on experimental comparisons and theoretical foundations
- Al is a high-risk high-gain area with major ethical implications

Intelligent Agents

Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents and Environments

- Agents include humans, robots, softbots, thermostats, etc.
- Percept refers to the agent perceptual input at any given instant
- The **agent function** maps from percept histories to actions:

$$f: P^* \rightarrow A$$

• The agent program implements f on the physical architecture.

Vacuum-cleaner World

D OLB

- Percepts: current location and its content, e.g., (A, Dirty)
- Actions: Left, Right, Suck, NoOp

Na OPERATOR -> DO NOTHING

A Vacuum-cleaner Agent

Percept sequence	Action	
(A, Clean)	Right	
(A, Dirty)	Suck	
(B, Clean)	Left	
(B, Dirty)	Suck	
(A, Clean), (A, Clean)	Right	
(A, Clean), (A, Dirty)	Suck	


```
function Reflex-Vacuum-Agent (location, status) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

- What is the right function f?
- Can it be implemented in a small agent program?

Rationality

The performance measure evaluates the environment sequence

- one point per room cleaned up within Thme steps?
- one point per clean room per time step, minus half a point per action?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

- Rational ≠ omniscient
 - percepts may not supply all relevant information
- Rational ≠ clairvoyant
 - action outcomes may not be as expected
- Hence, <u>rational</u> ≠ <u>successful</u>

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing a driverless taxi:

- Performance measure:
 - safety, destination, profits) legality, comfort, ...
- **→ Environment:**
 - streets/freeways, traffic pedestrians, weather, ...
 - Actuators:
 - steering, accelerator, brake, horn, blinkers, ...
 - Sensors:
 - PS, video, accelerometers, gauges, engine sensors, ...

Internet shopping agent

Consider, e.g., the task of designing an **internet shopping bot**:

- Performance measure:
 - price, quality, appropriateness, efficiency
- Environment:
 - user, WWW sites, vendors, shippers
- Actuators:
 - display to user, follow URL, fill in form
- Sensors:
 - HTML pages (text, graphics, scripts), user input

Properties of Task Environments

- Fully vs partially observable
 - do the agent sensors give access to all relevant information about the environment state?
- Deterministic vs stochastic

 is the next state completely determined by the current state and executed action?
- Knówn vs unknown
 - does the agent know the environment's laws of physics?
- Episodic vs sequential
 - is the next decision independent of the previous ones?
- Static vs dynamic
 - can the environment change whilst the agent is deliberating?
 - **Semi-dynamic:** only the performance score changes.
- Discrete vs continuous
 - can time, states, actions, percepts be represented in a discrete way?
- Single vs multi-agent
 - is a single agent making decisions, or do multiple agents need to compete or cooperate to maximise interdependent performance measures?

Environment types (
		Crossword	Poker	Part picking robot	Taxi
	Observable	Yes ′	No	M05764	No
	Deterministic	Yes /	No 🖊	Yes	NO (570 CM)
	Known	Yes /	Yes	Yes	Yes)
	Episodic	NO	No	No>Yes	~ ⊙
	Static	Yes /	Yes	NO	No
	Discrete	Yes /	Yes ~	No	No
	Single-agent	Yes -	No	Yes	(N ₆)
					OTHER TAXIS

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, <u>dynamic</u>, continuous, multi-agent.