1. Monotonicidade, convexidade e matrizes Monge

Aqui serão apresentados e explorados os conceitos de monotonicidade, convexidade e matrizes Monge, além disso, alguns resultados referentes a estes conceitos serão demonstrados. Estes conceitos são fundamentais para o desenvolvimento do restante do trabalho.

Definição 1.1 (Vetor monótono). Seja $a \in \mathbb{Q}^n$ um vetor, a é dito monótono quando vale uma das propriedades abaixo.

- Se para todo $i, j \in [n], i < j \Rightarrow a_i \le a_j, a \notin dito monótono crescente (ou só crescente).$
- Se para todo $i, j \in [n], i < j \Rightarrow a_i \ge a_j, a \notin dito monótono decrescente (ou só decrescente).$

Sabemos que a monotonicidade de vetores pode ser aproveitada para agilizar alguns algoritmos importantes, por exemplo, a busca binária pode ser interpretada como uma otimização da busca linear para vetores monótonos.

Definição 1.2 (Função convexa). Seja $g: \mathbb{Q} \to \mathbb{Q}$ uma função,

- se para todo $x, y \in \mathbb{Q}$ e $\lambda \in \mathbb{R}$ com $0 \le \lambda \le 1$, $g(\lambda x + (1 \lambda)y) \le \lambda g(x) + (1 \lambda)g(y)$, $g \notin dita convexa e$
- se para todo $x, y \in \mathbb{Q}$ e $\lambda \in \mathbb{R}$ com $0 \le \lambda \le 1$, $g(\lambda x + (1 \lambda)y) \ge \lambda g(x) + (1 \lambda)g(y)$, $g \notin dita \ c\^oncava$.

Proposição 1.3. A função $q(x) = x^2$ é convexa.

Demonstração. Só fazer.

Definição 1.4 (Vetor convexo). Seja $a \in \mathbb{Q}^n$ um vetor,

- se para todo $i, j, k \in [n]$, $i < j < k \Rightarrow a_j \leq \frac{(j-k)a_i + (i-j)a_k}{i-k}$, $a \notin dito$ convexo e
- se para todo $i, j, k \in [n], i < j < k \Rightarrow a_j \ge \frac{(j-k)a_i + (i-j)a_k}{i-k}, a \notin dito$

Geralmente, ao se definir convexidade de funções, diz-se que a função é convexa se e somente se para todo par x,y no domínio da função e todo $\lambda \in [0,1]$ real, $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$. A definição utilizada aqui é compatível com essa, porém, é específica para vetores. Uma situação parecida ocorre no sentido da concavidade.

Assim como a monotonicidade, a convexidade também é usualmente explorada para agilizar algoritmos, por exemplo, se um vetor é convexo podemos definir o valor mínimo do vetor com uma busca ternária ao invés de percorrer todo o vetor.

Definição 1.5. Seja $A \in \mathbb{Q}^{n \times m}$, definimos quatro vetores a sequir.

- O vetor de índices de máximos das linhas de A guarda na posição i o número $\max\{j \in [m] \mid A[i][j] \geq A[i][j'] \text{ para todo } j' \in [m]\}.$
- O vetor de índices de mínimos das linhas de A guarda na posição i o número $\min\{j \in [m] \mid A[i][j] \leq A[i][j'] \text{ para todo } j' \in [m]\}.$

eu uso isso lá no final do capítulo, achei razoável colocar aqui pra deixar menos poluído lá na frente, a explicação de lá já é bem complexa.

Tabela 1.6. Comportamento dos vetores de índices ótimos em relação à convexidade.

Se a matriz é	os índices de máximos são	e os de mínimos são
convexa	decrescentes	crescentes
côncava	crescentes	decrescentes

- O vetor de índices de máximos das colunas de A guarda na posição j o número $\max\{i \in [n] \mid A[i][j] \geq A[i'][j]$ para todo $i' \in [n]\}$.
- O vetor de índices de mínimos das colunas de A guarda na posição j o número min{i ∈ [n] | A[i][j] ≤ A[i'][j] para todo i' ∈ [n]}.

Note que o máximo de uma linha (ou coluna) foi definido como o maior índice que atinge o máximo e o de mínimo foi definido como o menor índice que atinge o mínimo. Esta escolha foi feita para simplificar o Lema 1.9.

Dada uma matriz, encontrar estes vetores é um problema central para este trabalho. Neste momento é interessante classificar algumas matrizes de acordo com propriedades que vão nos ajudar a calcular os vetores de mínimos e máximos de maneira especialmente eficiente.

A Figura 1.6 resume as relações de implicação da classificação que será realizada. Os conceitos ilustrados nela serão apresentados a seguir.

Definição 1.7 (Matriz monótona). Seja $A \in \mathbb{Q}^{n \times m}$ uma matriz. Se A tiver o vetor de índices de máximos das linhas monótono, A é dita monótona nos máximos das linhas.

Valem também as definições análogas para mínimos ou colunas e pode-se especificar monotonicidade crescente ou decrescente.

Definição 1.8 (Matriz totalmente monótona). Seja $A \in \mathbb{Q}^{n \times m}$ uma matriz.

- Se $A[i'][j] \le A[i'][j']$ implica $A[i][j] \le A[i][j']$ para todo $1 \le i < i' \le n$ e 1 < j < j' < m, A é monótona convexa nas linhas.
- Se $A[i][j'] \le A[i'][j']$ implica $A[i][j] \le A[i'][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona$ convexa nas colunas.
- Se A[i'][j] > A[i'][j'] implica A[i][j] > A[i][j'] para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona$ côncava nas linhas.
- Se A[i][j'] > A[i'][j'] implica A[i][j] > A[i'][j] para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, A é monótona côncava nas colunas.

O motivo do uso dos termos "convexa" e "côncava" em relação a matrizes durante o texto são justificados pelo Teorema 1.15. Note que se uma matriz é totalmente monótona, todas as suas submatrizes são totalmente monótonas no mesmo sentido.

Lema 1.9. Se $A \in \mathbb{Q}^{n \times m}$ é uma matriz totalmente monótona convexa nas linhas, toda submatriz de A é monótona decrescente nos máximos das linhas e monótona crescente nos mínimos das linhas.

Se A é totalmente monótona côncava nas linhas, toda submatriz de A é monótona decrescente nos mínimos das linhas e monótona crescente nos máximos das linhas.

As afirmações valem identicamente em termos de colunas.

Demonstração. Considere uma matriz A totalmente monótona convexa nas linhas. Sejam i e i' índices de linhas de A onde i < i'. Chamamos de j o índice de máximo da linha i e de j' o índice de máximo da linha i'. Queremos provar que os máximos são decrescentes, portanto, vamos supor por absurdo que j < j'. Com isso, teremos A[i][j'] < A[i][j] e $A[i'][j] \le A[i'][j']$. Porém, já que A é monótona convexa nas linhas, a segunda desigualdade implica em $A[i][j] \le A[i][j']$, que contradiz a primeira. Portanto, os índices de máximos são decrescentes.

Agora, considere novamente dois índices i e i' quaisquer de linhas de A onde i < i'. Denotamos por j o índice de mínimo da linha i' e por j' o índice de mínimo da linha i (note e a inversão no uso de i'). Vamos supor por absurdo que i' e teremos $A[i'][j] \leq A[i'][j']$ e A[i][j'] < A[i][j]. E, novamente, usando o fato de que i'0 e monótona convexa nas linhas, obtivemos uma contradição.

Finalmente, se A' é uma submatriz de A, então A' é totalmente monótona convexa nas linhas, portanto monótona crescente nos máximos das linhas e monótona decrescente nos mínimos das linhas.

As demonstrações no caso côncavo e nos casos relacionados a colunas são análogas. $\hfill \Box$

Definição 1.10 (Monge Convexidade). Seja $A \in \mathbb{Q}^{n \times m}$.

- (1) Se vale $A[i][j] + A[i'][j'] \le A[i][j'] + A[i'][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin dita\ Monge\ convexa$.
- (2) Se vale $A[i][j] + A[i'][j'] \ge A[i][j'] + A[i'][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin dita\ Monge\ concava$.

A desigualdade que define as matrizes Monge é conhecida também por "Condição de Monge" ou "Desigualdade Quadrangular".

citação

Lema 1.11. Se A é Monge convexa, A é totalmente monótona convexa tanto nas linhas quanto nas colunas.

Se A é Monge côncava, A é totalmente monótona côncava tanto nas linhas quanto nas colunas.

Demonstração. Seja A uma matriz Monge convexa. Suponha que vale, para certos $i, i' \in [n]$ e $j, j' \in [m]$ onde i < i' e j < j', $A[i'][j] \le A[i'][j']$, então, somamos esta desigualdade à definição de Monge convexa e obtemos $A[i][j] \le A[i][j']$, ou seja, A é totalmente monótona convexa nas linhas.

Por outro lado, se vale, para certos $i, i' \in [n]$ e $j, j' \in [m]$ com i < i' e j < j', $A[i][j'] \le A[i'][j']$, somamos esta desigualdade à definição de Monge convexa e obtemos $A[i][j] \le A[i'][j]$, assim, A é totalmente monótona convexa nas columas.

A prova para o caso côncavo é análoga.

As matrizes Monge são usadas para resolver uma série de problemas que serão explorados aqui. A condição de Monge é a mais forte apresentada aqui. Alguns dos algoritmos apresentados não dependem dela, apenas da monotonicidade ou total monotonicidade, ainda assim, ela leva a resultados úteis que nos permitem provar a pertinência dos algoritmos a alguns problemas, mesmo que o algoritmo usado não se utilize da condição diretamente.

Como consequência desta utilidade, iremos discutir um problema que será resolvido com um algoritmo apresentado somente na Seção ??, o algoritmo SMAWK. Ele não será explicado neste momento, utilizamos ele como caixa preta. Isto é motivado pelo fato de que o pensamento apresentado aqui não é útil somente para o algoritmo SMAWK, ele é útil também em vários dos outros momentos deste trabalho.

Problema 1.12. Dados dois inteiros k e n com $k \leq n$, um vetor de pesos $a \in \mathbb{Q}^n$ e uma matriz de custos $A[i][j] = \left(\sum_{k=i+1}^j a_k\right)^2$. Queremos particionar o vetor a em k partes não-vazias de forma a maximizar a soma dos custos das partes, isto é, queremos escolher um vetor $r \in \mathbb{N}^{[0 \dots k]}$ de índices tal que $1 = r_0 < r_1 < r_2 < \dots < r_{k-1} < r_k = n$ de forma que $\sum_{i=1}^k A[r_{i-1}][r_i]$ seja máximo.

Podemos resolver este problema com programação dinâmica. Vamos preencher a matriz $E \in \mathbb{Q}^{k \times n}$ definida recursivamente para todo $k' \in [k]$ e $n' \in [n]$:

$$E[k'][n'] = \begin{cases} A[1][n'] & \text{, se } k' = 1, \\ \max_{i=k'-1}^{n'-1} E[k'-1][i] + A[i][n'] & \text{, se } k' \le n', \\ \text{indefinida} & \text{, caso contrário.} \end{cases}$$

A recorrência acima nos dá em cada entrada E[k'][n'] o maior valor possível alcançado particionando o vetor a[1..n'] em k' partes não vazias. Podemos preencher esta tabela trivialmente em tempo $O(kn^2)$, basta iterarar primeiro pelos índices k' crescentemente. O caso onde k'=1 é resolvido trivialmente e os casos maiores podem ser resolvidos, um por vez, testando todas as possibilidades de máximo para todo n'.

Fixamos um k' > 1. Vamos utilizar o algoritmo SMAWK para agilizar a solução deste subproblema. Este algoritmo é capaz de resolver o Problema 1.13 (descrito abaixo) em tempo O(n). Precisamos provar, então, que o subproblema resolvido para cada k' é equivalente ao Problema 1.13.

Problema 1.13. Dada uma matriz $A \in \mathbb{A}^{n \times n}$ totalmente monótona convexa nas colunas, encontrar o vetor de máximos das colunas de A.

Definimos a matriz $B_{k'}$ para todo $i, n' \in \mathbb{N}$ onde $k' - 1 \le i < n' \le n$ como $B_{k'}[i][n'] = E[k' - 1][i] + A[i][n']$. Note que já que k' é fixo, já descobrimos

os valores da entrada da matriz E na linha k'-1. Encontrar o índice i que atinge o máximo em E[k'][n'] é exatamente encontrar o índice de máximo da coluna n' na matriz $B_{k'}$, formalmente,

$$\max_{i=k'-1}^{n'-1} B_{k'}[i][n'] = \max_{i=k'-1}^{n'-1} E[k'-1][i] + A[i][n'].$$

Portanto, basta mostrar que $B_{k'}$ é monótona convexa nas colunas. Para isso, vamos mostrar, com a ajuda dos resultados abaixo, que $B_{k'}$ é Monge convexa.

Lema 1.14. Sejam $A, B \in \mathbb{Q}^{n \times m}$ matrizes $e \ c \in \mathbb{Q}^n$ um vetor tais que para todo $i \in [n]$ e $j \in [m]$, B[i][j] = A[i][j] + c[i]. Se A é Monge convexa, B é Monge convexa.

O mesmo resultado vale se $c \in \mathbb{Q}^m$ e B[i][j] = A[i][j] + c[j].

Demonstração. Sejam A, B e b definidos como no enunciado do te-Suponha que A é Monge convexa. Vale, para quaisquer $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A[i][j] + A[i'][j'] \le A[i'][j] + A[i][j']$, logo, vale $A[i][j] + b[i] + A[i'][j'] + b[i'] \le A[i'][j] + b[i'] + A[i][j'] + b[i]$ que é $B[i][j] + B[i'][j'] \le B[i'][j] + B[i][j']$. A prova para o caso onde $c \in \mathbb{Q}^m$ e B[i][j] = A[i][j] + c[j] é análoga.

Com este resultado, é fácil ver que, desde que A seja Monge convexa, B_1 será Monge convexa e a Monge convexidade será mantida para todo $B_{k'}$ com $1 \le k' \le k$. O teorema a seguir nos ajuda a mostrar que A é Monge convexa.

Teorema 1.15. Sejam $A \in \mathbb{Q}^{n \times n}$ uma matriz, $b \in \mathbb{Q}^n$ um vetor $e g : \mathbb{Q} \to \mathbb{Q}$ uma fução tais que, para todo $i \in [n]$ e $j \in [m]$, $A[i][j] = g\left(\sum_{k=1}^{j} b_k - \sum_{k=1}^{i} b_k\right)$.

A é convexa se e somente se g é convexa. Similarmente, A é côncava se e somente se b é côncava.

Antes de apresentar uma prova para o teorema acima, vamos mostrar a utilidade dele no nosso problema atual, o que deve ajudar na compreensão de seu enunciado.

Queremos mostrar que
$$A$$
 é Monge convexa, porém, para um certo vetor $a \in \mathbb{Q}^n$, $A[i][j] = \left(\sum_{k=(i+1)}^j a_k\right)^2 = \left(\sum_{k=1}^j a_k - \sum_{k=1}^i a_k\right)^2$, por definição. As-

sim, precisamos mostrar apenas que a função $g(x) = x^2$ é convexa, o que segue da Proposição 1.3. Agora, como explicado acima, todas as matrizes $B_{k'}$ são Monge convexas e podemos aplicar o algoritmo SMAWK para todo k', resolvendo o Problema 1.12 em tempo O(kn).

Agora, nos resta provar o Teorema 1.15.

Demonstração. Só fazer.

Referências

[1] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In *Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing*, STOC '80, pages 429–435, New York, NY, USA, 1980. ACM.