Buổi 5. Trực quan hóa dữ liệu

1 Thông tin chung

Mục tiêu

• Giới thiêu một số loại biểu đồ và các hàm vẽ biểu đồ để mô tả trực quan dữ liệu.

Kết quả đạt được

Sinh viên sau khi thực hành sẽ:

• Nắm vững được cách sử dụng các hàm vẽ biểu đồ để trực quan dữ liệu.

• Cài đặt được các ví dụ thực hành.

Thời gian thực hành: 3 tiết

Công cụ thực hành: Google Colab, Anaconda

2 Nội dung lý thuyết

2.1 Một số loại biểu đồ

- Biểu đồ histogram (distribution plot/histogram): biểu diễn tần số xuất hiện của một thuộc tính, cho biết dạng phân phối, miền giá trị của thuộc tính đó
- Biểu đồ cột (bar plot)
- Biểu đồ hộp (box plot): mô tả dạng phân bố và tìm các giá trị ngoại biên/cá biệt của một thuộc tính. Boxplot gồm 5 giá trị như sau:
 - Giá trị nhỏ nhất (min)
 - Tứ phân vi thứ nhất (Q1)
 - Trung vi (median)
 - Tứ phân vị thứ 3 (Q3)
 - Giá trị lớn nhất (max)
- Biểu đồ violin (violin plot): biểu diễn nhiều thông tin hơn boxplot.
- Biểu đồ phân tán (scatter plot): thể hiện mối quan hệ giữa hai biến nguyên nhân và kết quả.
- Biểu đồ ma trận (matrixplot): heatmap thường được dùng để biểu diễn ma trận tương quan giữa các thuộc tính.

2.2 Các thư viện vẽ biểu đồ

- matplotlib (https://matplotlib.org/)
- seaborn (https://seaborn.pydata.org/): được phát triển dựa trên matplotlib

3 Nội dung thực hành

3.1 Mô tả bài toán

Cho bảng dữ liệu hoa Iris gồm các thuộc tính sau:

- sepal_length: chiều dài đài hoa (cm)
- sepal_width: chiều rộng đài hoa (cm)
- petal_length: chiều dài cánh hoa (cm)
- petal_width: chiều rộng cánh hoa (cm)
- species: 3 loài hoa (setosa, versicolor, virginica)

3.2 Trưc quan hóa dữ liêu bài toán

Đọc dữ liệu từ tập tin iris.csv

```
[5]: import pandas as pd

iris = pd.read_csv('iris.csv')
iris.head()
# iris
```

```
[5]:
        sepal_length
                     sepal_width petal_length petal_width species
                 5.1
                              3.5
                                            1.4
                                                          0.2 setosa
                 4.9
                              3.0
                                            1.4
     1
                                                          0.2 setosa
     2
                 4.7
                              3.2
                                            1.3
                                                          0.2 setosa
     3
                 4.6
                              3.1
                                            1.5
                                                          0.2 setosa
                 5.0
                              3.6
                                            1.4
                                                          0.2 setosa
```

```
[3]: iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

```
Non-Null Count Dtype
   Column
                -----
   _____
                               float64
0
   sepal_length 150 non-null
1
   sepal_width
                150 non-null
                               float64
2
   petal_length 150 non-null
                             float64
3
   petal_width
                150 non-null
                               float64
   species
                150 non-null
                                object
```

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

Biểu diễn tần số xuất hiện của từng thuộc tính tương ứng với mỗi loại hoa.

```
[6]: import matplotlib.pyplot as plt import seaborn as sns
```

```
sns.barplot(x = 'species', y = 'sepal_length', data = iris)
```

[6]: <AxesSubplot:xlabel='species', ylabel='sepal_length'>


```
[6]: sns.barplot(x = 'species', y = 'sepal_width', data = iris)
```

[6]: <AxesSubplot:xlabel='species', ylabel='sepal_width'>


```
[7]: sns.barplot(x = 'species', y = 'petal_length', data = iris)
```

[7]: <AxesSubplot:xlabel='species', ylabel='petal_length'>


```
[8]: sns.barplot(x = 'species', y = 'petal_width', data = iris)
```

[8]: <AxesSubplot:xlabel='species', ylabel='petal_width'>

Biểu diễn tần suất xuất hiện các giá trị của từng thuộc tính.

```
[22]: sns.distplot(a = iris['sepal_width'], bins = 30)
```

[22]: <AxesSubplot:xlabel='sepal_width'>


```
[8]: sns.FacetGrid(iris, hue = 'species', height = 6).map(sns.distplot, 

→"sepal_length").add_legend()
```

[8]: <seaborn.axisgrid.FacetGrid at 0x1bd45f2b408>

Kiểm tra thuộc tính sepal_length theo từng loại hoa

- Trục x là biến phân loại
- Trục y là biến liên tục

```
[9]: sns.stripplot(data = iris)
```

[9]: <AxesSubplot:>


```
[10]: sns.stripplot(x = "species", y = "sepal_length", data = iris, jitter = False)
```

[10]: <AxesSubplot:xlabel='species', ylabel='sepal_length'>

• Nếu các điểm dữ liệu bị trùng nhau, ta có thể sử dụng hàm swarmplot để vẽ lại biểu đồ trên.

```
[11]: sns.swarmplot(x = "species", y = "sepal_length", data = iris)
```

[11]: <AxesSubplot:xlabel='species', ylabel='sepal_length'>

• Biểu diễn so sánh số lượng 3 loại hoa.


```
[29]: iris['species'].value_counts().plot.pie(autopct='%1.1f%%', shadow=True)
plt.show()
```


Tìm các giá trị ngoại biên/cá biệt của từng thuộc tính.

```
[14]: plt.figure(figsize = (6, 6))
sns.set_style('whitegrid')
sns.boxplot(x = "species", y = "sepal_length", data = iris)
plt.show()
```


Ta thấy hoa virginica có một giá trị sepal_length ngoại biên.

```
[15]: iris.groupby(['species']).median()
[15]:
                  sepal_length sepal_width petal_length petal_width
      species
      setosa
                           5.0
                                         3.4
                                                      1.50
                                                                    0.2
                           5.9
                                         2.8
                                                      4.35
                                                                    1.3
      versicolor
                           6.5
                                         3.0
                                                      5.55
                                                                     2.0
      virginica
[16]: Q1 = iris[iris['species']=='virginica']['sepal_length'].quantile(0.25)
      Q3 = iris[iris['species'] == 'virginica']['sepal_length'].quantile(0.75)
```

```
IQR = Q3 - Q1
      above_outlier = IQR * 1.5 + Q3
      below_outlier= Q1 - IQR * 1.5
      print('Q1 = ' + str(Q1))
      print('Q1 = ' + str(Q3))
      print('above_outlier = ' + str(above_outlier))
      print('below_outlier = ' + str(below_outlier))
     Q1 = 6.2250000000000005
     Q1 = 6.9
     above_outlier = 7.9125
     below_outlier = 5.2125
[17]: | iris[(iris['species'] == 'virginica') & (iris['sepal_length'] > ___
       →above_outlier)]['sepal_length'].values
[17]: array([], dtype=float64)
[18]: | iris[(iris['species'] == 'virginica') & (iris['sepal_length'] <__
       →below_outlier)]['sepal_length'].values
[18]: array([4.9])
```

Quan sát thuộc tính sepal_length của hoa virginica, ta thấy:

- Trung vị chiều dài 6.5 cm
- Khoảng 25% có chiều dài nhỏ hơn 6.225 cm
- Khoảng 75% có chiều dài nhỏ hơn 6.9 cm
- Tìm thấy một giá trị ngoại biên (giá trị có chiều dài 4.9 cm)

```
[19]: plt.figure(figsize = (6, 6))

sns.set_style('whitegrid')
ax = sns.boxplot(x = 'species', y = 'sepal_length', data = iris)
ax = sns.stripplot(x = 'species', y = 'sepal_length', data = iris)

plt.show()
```


• Biểu đồ Boxplot có thể bị sai lệch. Khi dữ liệu biến đổi, median và khoảng giá trị vẫn giống nhau.

Sử dụng violinplot để mô tả các thuộc tính theo loại hoa

• Xét thuộc tính sepal_length

• Ta thấy, hoa virginica có sepal_length dài hơn 2 loại còn lại.

```
plt.figure(figsize = (20, 6))

plt.subplot(1, 3, 1)
sns.swarmplot('species', 'sepal_length', data=iris);

plt.subplot(1, 3, 2)
sns.boxplot('species', 'sepal_length', data=iris);

plt.subplot(1, 3, 3)
sns.violinplot('species', 'sepal_length', data=iris, inner='quartile');

plt.show()
```


Kiểm tra sự tương quan giữa các cặp thuộc tính

• sepal_length và sepal_width.

```
[22]: sns.scatterplot(x = 'sepal_length', y = 'sepal_width', data = iris)
```

[22]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>

- Iris được phân thành 3 lớp khác nhau, nên ta có thể chọn màu sắc tương ứng cho từng loài hoa

```
[23]: sns.scatterplot(x = 'sepal_length', y = 'sepal_width', hue = 'species', data = ⊔ ⇔iris)
```


• sepal_length và petal_length.

```
[24]: sns.scatterplot(x = 'sepal_length', y = 'petal_length', hue = 'species', data = 

⇔iris)
```

[24]: <AxesSubplot:xlabel='sepal_length', ylabel='petal_length'>

Biểu diễn độ tương quan của tất cả các cặp thuộc tính

```
[25]: corr_matrix = iris.corr()
      corr_matrix
[25]:
                    sepal_length sepal_width petal_length petal_width
      sepal_length
                        1.000000
                                     -0.109369
                                                    0.871754
                                                                  0.817954
      sepal_width
                       -0.109369
                                      1.000000
                                                   -0.420516
                                                                 -0.356544
      petal_length
                        0.871754
                                     -0.420516
                                                    1.000000
                                                                  0.962757
     petal_width
                                     -0.356544
                        0.817954
                                                    0.962757
                                                                  1.000000
[26]: plt.figure(figsize = (6, 6))
      ax = sns.heatmap(corr_matrix, annot = True, cmap= 'coolwarm', square = True, __
       \rightarrowlinewidths = 1)
      ## Doạn lệnh sửa lỗi mất dòng đầu, dòng cuối ở phiên bản matplotlib 3.1.1
      bottom, top = ax.get_ylim()
      ax.set_ylim(bottom + 0.5, top - 0.5)
      ##
      plt.show()
```


Quan sát bản đồ nhiệt ta thấy có 3 cặp thuộc tính có mối tương quan đồng biến:

```
- sepal_length, petal_length: 0.87
- sepal_length, petal_width: 0.82
- petal_length, petal_width: 0.96
```

• Độ tương quan giữa các cặp thuộc tính của loại hoa setosa và versicolor.

```
plt.figure(figsize = (6, 6))
corr_not_virginica = iris[iris['species'] != 'virginica'].corr()
mask = np.tri(*corr_not_virginica.shape).T
ax = sns.heatmap(corr_not_virginica, annot = True, cmap= 'coolwarm', square =

→True, linewidths = 1, mask = mask)

## Doan lệnh sửa lỗi mất dòng đầu, dòng cuối ở phiên bản matplotlib 3.1.1
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
```


Biểu diễn mối quan hệ giữa tất cả các cặp thuộc tính trong dữ liệu.

```
[28]: sns.pairplot(iris, hue = 'species', markers = ['o', 's', 'D'], height = 4)
```

[28]: <seaborn.axisgrid.PairGrid at 0x1bd484724c8>


```
[29]: sns.pairplot(iris, kind = 'reg', hue = 'species', height = 4)
```

[29]: <seaborn.axisgrid.PairGrid at 0x1bd4a0c2508>


```
[30]: import sweetviz as sv

my_report = sv.analyze(iris)
my_report.show_html()
```

:FEATURES DONE: || [100%] 00:03 ->

(00:00 left)

:PAIRWISE DONE: || [100%] 00:00

-> (? left)

Creating Associations graph... DONE!

Report SWEETVIZ_REPORT.html was generated! NOTEBOOK/COLAB USERS: no browser will pop up, the report is saved in your notebook/colab files.

3.3	Bài	tâp

Cho tập dữ liệu các loại Pokemon tại địa chỉ: https://gist.github.com/armgilles/194bcff35001e7eb53a2a8b441e8b

• Vẽ các loại biểu đồ để trực quan hóa dữ liệu các loại Pokemon.