

Simulation – Ordinal Differential Equations

ROBERTO ALEJANDRO CÁRDENAS OVANDO

Outline

- Ordinal Differential Equations (ODE)
- One step methods
 - Euler method
 - Heun method
- Taylor method
- Modified Euler method
- Runge-Kutta methods
- Coupled-Systems numerical approximation

Ordinal Differential Equations (ODE)

First order ODE have the form:

$$A_1 = \frac{A_1}{A_1} = \frac{A_2}{A_1} = \frac{A_1}{A_2} = \frac{A_1}{A_1} = \frac{A_1}{A_2} = \frac{A_1}{A_1} = \frac{A_1}{A_2} = \frac{A_1}{A$$

ODE – Example

Numeric approximation to compute the distance:

$$y_i = y_{i-1} + m \cdot \Delta x$$

ODE – Generalization

$$m = \frac{\Delta y}{\Delta x}$$
 $h = \Delta x$ $\Delta y = \gamma_{i+1} - \gamma_i$

ODE – One step methods

- All the methods that use only the slope to extrapolate are called one step methods.
- The two most common one step methods are:
 - Euler method
 - Heun method

$$T_n(f)(x) = f(x_0)(x-x_0)^2 + f'(x_0)(x-x_0)^2 + \underbrace{f''(x_0)(x-x_0)^2}_{>}$$

Euler Method

❖ Given the ODE:

$$\frac{dx}{dy} = \int Cx, y$$

We can find the solution as:

Euler Method

Euler Method - Example

❖The ODE:

$$\frac{dx}{dy} = -2x^3 + 12x^2 - 20x + 8.5$$

- From 0 to 4 with steps of 0.5.
- ArrInitial conditions: x = 0 and y = 1
- Compute the error knowing that the exact solution is:

$$y = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + 1$$

Euler Method – Example – code

```
Real
     x Approx
       1.000 1.00000
→ 0.5 1.625 3.21875
       0.875 3.00000
   1.0
   1.5 0.250 2.21875
   2.0 0.500 2.00000
   2.5 1.625 2.71875
   3.0 2.875 4.00000
   3.5 2.750 4.71875
   4.0 -1.000 3.00000
```


Truncation error

Truncation error is the error made by truncating an infinite sum and approximating it by a finite sum.

$$riangle$$
 Where $h = x_{i+1} - x_i$

Truncation error

❖As:

$$y_i = f(x_i - y_i)$$

❖Then:

$$Y_{i+1} = Y_i + \frac{1}{2}(x_{i}, y_i) \cdot h + \epsilon$$

$$\mathcal{E} = \frac{1}{2}(x_{i}, y_i) \cdot h^2 \rightarrow o(h^2) \quad \text{Order}$$

$$z_i$$

Heun method

Given the ODE:

$$\frac{qx}{q\lambda} = \frac{1}{2} Cx! \lambda!$$

• We can find the solution as:

$$y_{i+1}^* = y_i + f(x_i, y_i)h \leftarrow \text{Tirst step} \left(\frac{\mathcal{E}_{i+1}}{\mathcal{E}_{i+1}}\right)$$

$$y_{i+1} = y_i + \left[\frac{f(x_i, y_i)}{\mathcal{E}_{i+1}}\right] \cdot \frac{h}{\mathcal{E}_{i+1}} \sqrt{\frac{h}{2}} \sqrt{\frac{h}{$$

Heun method – First step

Heun method – Slope correction

Heun method - Example

❖The ODE:

$$\frac{dx}{dy} = -2x^{3} + 15x^{2} - 20x + 8.5$$

- From 0 to 4 with steps of 0.5.
- ArrInitial conditions: x = 0 and y = 1
- Compute the error knowing that the exact solution is:

$$y = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + 1$$

Heun method – Example – code

- x Approx
- 0.01.0000
- 0.5 3.4375
- 1.0 3.3750
- 1.5 2.6875
- 2.0 2.5000
- 2.5 3.1875
- 3.0 4.3750
- 3.5 4.9375
- 4.0 3.0000

Example 2

$$\frac{dy}{dx} = f(x,y) = \ln(x)$$

$$x(0) = x_0 = 0.001$$

$$y(x_0) = 1$$

$$y(x_0) = 1$$

$$y(x_0) = 1$$

$$y(x_0) = 1$$

Example – Euler method

$$Y_{i+1} = Y_i + h$$

 $Y_{i+1} = Y_i + fcx_yyy_h$

Second - step

$$Y_2 = -0.756 + (-1.382).0.25$$

 $= -1.07$
 $X_2 = 0.251 + 0.25$
 $= 0.501$

Example – Heun method

$$X^{1} = 0.52 T$$

$$= -0.0361$$

$$X^{1} = 0.52 T$$

$$X^{2} = 0.22 T$$

$$X^{2} = 0.20 T$$

$$= -0.0361$$

$$X^{3} = 0.20 T$$

$$= -0.3816$$

$$X^{4} = 0.0361 + (-0.90$$

Taylor method

- General case of Euler method
- ❖It uses the Taylor series with a bigger order

$$\lambda^{1+1} = \lambda^{1} + \lambda_{1}(x^{2}) \cdot \mu + \frac{5!}{\lambda_{11}(x^{2}) \cdot \mu_{2}} + \frac{3!}{\lambda_{111}(x^{2}) \cdot \mu_{3}} + \cdots$$

Taylor method – Pros and Cons

- Pros
 - Explicit
 - Can be higher order
- Cons
 - Needs the explicit form of derivatives of f(x,y)

Local Truncation Error

Euler method - LTE

$$LTE = \frac{y(x_i + h) - y(x_i)}{h} - f(x_i, y_i)$$
E = d(h)

$$\lambda^{i+1} = \lambda^{i} + \mu \cdot f(x \cdot \lambda) + \mu \cdot \Gamma L \Sigma \qquad \Rightarrow \mu \cdot o(\mu) \rightarrow o(\mu)$$

$$\lambda^{i+1} = \lambda^{i} + \mu \cdot f(x \cdot \lambda) + o(\mu)$$

Taylor method - LTE

$$9:+1 = y: + h \cdot f(xn) + \frac{h^2 f(xn)}{2!} + h \cdot LTE$$

$$y_{i+1} = y_i + h \cdot F + o(h^3)$$

 $y_{i+1} = y_i + h \cdot F + o(h^3)$

Modified Euler Method – First step

Improving the Euler method -> Midpoint

$$3^{s+1} = y_{i} + h \cdot f(x_{i+\frac{1}{2}})$$

$$\sum_{i+1} = y_{i} + h \cdot f(x_{i+\frac{1}{2}})$$

Modified Euler Method – First step

Modified Euler Method – Midpoint

$$K_1 = hf(x,y)$$

$$K_2 = hf(x,y) \longrightarrow hf(x_{i+\frac{1}{2}},y_{i+\frac{1}{2}})$$

$$\therefore \quad y_{i+1} = y_i + h K_z$$

Modified Euler Method – Second step

```
Heun + Midpoint corrections
         Mean Half-Step
1st step
 Y_{i+1}^* = Y_i + hf(x_{i/Y_i}) K_1 = hf(x_{i/Y_i})
2nd step - Midpoint
 Yi+1 = Yi + hf (x;+ ; / Yi+ ; ) Kz=hf(x;+ ξ / Y; + ξ K<sub>1</sub>)
 3rd Step -> Heun
 \lambda^{i+1} = \lambda^{i} + \frac{2}{\mu} (t(x; \lambda^{i}) + t(x^{i+1} + \lambda^{i+1})) = \lambda^{i} + \frac{2}{\mu} (K^{1} + K^{5})
```


Modified Euler Method – Second step

Midpoint correction

Modified Euler Method – Second step

Modified Euler Method - LTE

$$y_{i+1} = y_i + \frac{1}{2} \left(K_1 + K_2 \right)$$

Taylor Series Kz

$$\frac{k_2}{h} = f(x_i, y_i) + h \frac{\partial}{\partial x} f(x_i, y_i) + K_1 \frac{\partial}{\partial y} f(x_i, y_i) + O(h_1, K_1)$$

Modified Euler Method - LTE

LTE – Comparison

Comparing methods

Second-order Runge-Kutta method:

$$\begin{cases} K_1 = h \left(f \left(x_i + \alpha h \right) \right) \\ K_2 = h \left(f \left(x_i + \alpha h \right) \right) \\ Y_{i+1} = y_i + \alpha_1 K_1 + \alpha_2 K_2 \end{cases}$$

$$(2) \alpha_1 + \alpha_2 = 1 \quad (3) \beta \alpha_2 = \frac{1}{2} = \infty \quad \text{solutions}$$

$$(3) \beta \alpha_3 = \frac{1}{2} = \infty \quad \text{solutions}$$

$$(3) \beta \alpha_4 = \frac{1}{2} = \infty \quad \text{solutions}$$

$$(3) \beta \alpha_5 = \frac{1}{2} = \infty \quad \text{solutions}$$

$$(3) \beta \alpha_5 = \frac{1}{2} = \infty \quad \text{solutions}$$

$$(3) \beta \alpha_5 = \frac{1}{2} = \infty \quad \text{solutions}$$

Comparing methods

Modified Euler:

$$\alpha_{1} = \alpha_{2} = \frac{1}{2}$$

$$\alpha_{1} = \alpha_{2} = \frac{1}{2}$$

$$\alpha_{1} = \alpha_{2} = \frac{1}{2}$$

$$\alpha_{2} = \beta = 1$$

$$\alpha_{3} = \beta = 1$$

$$\alpha_{4} = \beta = 1$$

$$\alpha_{5} = \beta = 1$$

$$\alpha_{7} = \beta = 1$$

$$\alpha_{7} = \beta = 1$$

$$\gamma_{i+1} = \gamma_i + \frac{1}{2} K_1 + \frac{1}{2} K_2$$

Comparing methods

Midpoint method:

$$\alpha_1 = 0 \quad \alpha_2 = 1 \quad \alpha = \beta = \frac{1}{2}$$

$$Y_{i+1} = Y_i + K_z$$

Comparing methods

Heun-Ralston method

$$\alpha_1 = \frac{1}{4} \quad \alpha_2 = \frac{3}{4} \quad \mathcal{L} = \beta = \frac{2}{3}$$

$$\gamma_{i+1} = \gamma_i + \frac{1}{4} (\chi_1 + 3 \chi_2)$$

ODE solution

- To solve the ODE in the interval [a,b] where $b = a + \Delta x$:
- ❖Interval $[x_i, x_{i+1}]$ where $x_{i+1} = x_i + h$

$$\int_{\rho}^{\alpha} \frac{dx}{dy} dx = \int_{\rho}^{\alpha} f(x/\lambda) dx$$

$$\therefore \lambda^{i+1} = \lambda^{i} + \int_{x^{i+1}}^{x^{i}} f(x^{i}) dx$$

Simpson's rule

Other numerical integration

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P(x) dx$$

Simpson's rule

- Lagrange polynomial interpolation with 3 points
- Quadratic interpolation

$$P(x) = f(a) \frac{(x-m)(x-b)}{(a-m)(a-b)} + \frac{f(b)(x-a)(x-b)}{(b-a)(b-m)} + \frac{f(b)(x-a)(x-m)}{(b-a)(b-m)}$$

$$f(\alpha), f(b),$$

$$f(m) m = b - a$$

Simpson's rule

Integration equivalence

$$\int_{a}^{b} P(x) dx = \frac{\frac{b-a}{2}}{3} \left[f(a) + 4f(m) + f(b) \right]$$

$$\int_{x_{i}}^{x_{i+1}} P(x) dx = \frac{h}{6} \left[f(x_{i}) + 4f(\frac{x_{i+1}-x_{i}}{2}) + f(x_{i+1}) \right]$$

Third order Range-Kutta method

❖ Mean → Integral → Simpson's rule

$$\overline{\mathbb{E}}[t(x)] = \int_{\rho}^{\infty} t(x) \, \lambda \, dx =$$

$$\frac{h}{6} \left[f(x_{i}, y_{i}) + 4f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}) + f(x_{i+1}, y_{i+1}) \right]$$

- ★Known: X; / Y; / X; + ½ / X; + 1
- ♦ Unknown: y_{i + 1/2} / Y_{i + 1}

Third order Range-Kutta method

half-step ♣ First step:

Euler K1=hf(x:, Y:)
$$Y_{i+\frac{1}{2}}^* = Y_i + \frac{K1}{2}$$

Second step: Tull-step

Third order Range-Kutta method

RK 3th-order equations:

$$K1 = hf(X; /V_i)$$
 $K2 = hf(X_{i+1/2} / Y_i + 1/2 K1)$
 $K3 = hf(X_{i+1/2} / Y_i + 2 K2 - K1)$
 $Y_{i+1} = Y_i + \frac{1}{6}(K1 + 4 K2 + K3)$

\$\int LTE: O(h^4)

Fourth order Range-Kutta method

Also based on Simpson's rule

*Equations:
$$K1 = h f(x_i, y_i)$$
 $K2 = h f(x_i + \xi_i, y_i + \xi_i K_i)$
 $K3 = h f(x_i + \xi_i, y_i + \xi_i K_i)$
 $K4 = h f(x_{i+1}, y_i + \xi_i K_i)$
 $Y_{i+1} = Y_i + \frac{1}{6}(K_1 + \xi_i K_2 + \xi_i K_3 + K_i + K_i)$

*LTE: 0(h⁵)

Range-Kutta method – Example

Third order

$$\frac{dx}{dx} = f(x/\lambda) = |u(x)|$$

$$A_0 = \frac{1}{2}$$

Solución analítica

$$Y(x) = 1 - X + X \ln(X)$$

 $Y(x_0) = 1$
 $Y(x_0) = 0.40$
 $Y(x_0) = 0.15$

Range-Kutta method – Example

Fourth order

$$\frac{dx}{dy} = f(x/\lambda) = |u(x)|$$

$$\gamma(x_0) = 1$$

$$(0.251) = 0.40$$

$$y(\sigma,sol) = 0.15$$

iff
$$\frac{dy}{dx} \perp y \rightarrow RK3 == RK4$$

Systems numerical approximation

- Solve: Higher order, multivariate or coupled cases
- Two first order equations

Higher order – Example

$$\lambda_{11} - 0.02\lambda_{1} + 0.12\lambda_{2} = 0$$
 $\lambda_{11} - 0.02\lambda_{1} + 0.12\lambda_{2} = 0$
 $\lambda_{12} - 0.02\lambda_{12} = 0$

Higher order – Example

Culer method

$$x_1 = x^a + 0.2(0.02x - 0.12^{\lambda})$$

 $x^{i+1} = x^i + y \cdot f(f^{i} \times x^{i} \times \lambda^{i})$
 $\lambda^{i+1} = \lambda^{0} + 0.2 \cdot x$
 $\lambda^{i+1} = \lambda^{i} + y \cdot g(f^{i} \times x^{i} \times \lambda^{i})$

Coupled system – Example

$$\frac{dx}{dt} = -4x + 3y + 6$$

$$\frac{dy}{dt} = -2x + y + 3$$

$$X_0 = \emptyset$$

$$Y_0 = \emptyset$$

Coupled system – Example

RK4

First:
$$K_{1x} = hf(\pm i/X_{1}/Y_{1})$$

= $h(-4x + 3y + 6)$

$$K_{1}y = h g \left(t_{i} \times x_{i} \times y_{i} \right)$$

$$= h \cdot \left(-2x + y + 3 \right)$$

Stiffness

- Stability issues
- ❖ E.g. Exponential growth

$$y'(x) = -\alpha y$$
$$y(0) = y_0$$
$$y(x) = y_0 e^{\alpha x}$$

 \Leftrightarrow If $\alpha x > 1$ unstable and the solution may oscillate

Stiffness

A stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small.

Stiffness

Absolute stability – Explicit

Absolute stability - Implicit

deSolve library

Function	Description
lsoda [9]	IVP ODEs, full or banded Jacobian, automatic choice for
	stiff or non-stiff method
lsodar [9]	same as 1soda; includes a root-solving procedure.
lsode [5],	IVP ODEs, full or banded Jacobian, user specifies if stiff
vode [2]	(bdf) or non-stiff (adams)
lsodes [5]	IVP ODEs; arbitrary sparse Jacobian, stiff
rk4, rk,	IVP ODEs; Runge-Kutta and Euler methods
euler	
radau [4]	IVP ODEs+DAEs; implicit Runge-Kutta method
daspk [1]	IVP ODEs+DAEs; bdf and adams method
zvode	IVP ODEs, like vode but for complex variables
adapted from [19].	