A Transfer Learning Approach to Aggregated DICOM Pulmonary Node Classification

Kennan LeJeune

David Blincoe

Sam Jenkins

Chris Toomey

Arthur Xin

kennan@case.edu

drb133@case.edu

soj3@case.edu ct

ctt16@case.edu

sxx132@case.edu

Case Western Reserve University

Department of Computer and Data Sciences

Abstract

Lung tumor identification and classification is a challenging task which typically requires a trained medical professional to choose the best slices of a scan and accurately classify the chosen slices. With medical data privacy restrictions and regulations, it is difficult to collect sufficient data to construct a typical Convolutional Neural Network to choose and classify DICOM slices. We propose an inductive transfer learning approach which applies hidden layer image representations from a residual neural network to our lung nodule classifier to classify each slice and provide recommendations to a user as to what slices may contain possible nodules.

1. Introduction

Traditionally, Machine Learning problems rely on the assumption that the training data and future data domains are in the same feature space and have the same distribution (Pan, Yang). However, a large number of real world applications perform poorly when these assumptions are not met. A common instance of is a classification task on a restricted domain of interest (e.g. classifying malignant brain tumors) with minimal or unlabeled training data, but we have sufficient training data in another domain of interest (e.g. classifying malignant lung carcinomas). Transfer Learning aims to solve this problem by adapting the knowledge acquired from a training task or training domain for use in a related domain or task. Intuitively, we can apply a solution to a problem to a different but related problem in a human-like matter.

1.1. Formal Transfer Learning Definition

Given source and target domains D_S , D_T and learning tasks T_S on the source domain and T_T on the target domain, where we aim to improve the learning of a target predictive function $f_T(\dot) \in D_T$ using the knowledge in D_S or T_S ,

where $D_S \neq D_T$ or $T_S \neq T_T$. Note that in the case where both domains and tasks are equivalent, this is analogous to a standard machine learning problem. We can characterize the nature of nearly all Transfer Learning problems by considering three primary cases:

1.2. Types of Transfer Learning

- 1. $D_S = D_T, T_S \neq T_T$ (Inductive Transfer, 1.2.1)
- 2. $D_S \neq D_T, T_S = T_T$ (Transductive Transfer, 1.2.2)
- 3. $T_S \neq T_T$ and D_S, D_T are unlabeled (Unsupervised Transfer, 1.2.3)

1.2.1 Inductive Transfer Learning

In Inductive Transfer Learning, the domain of the source and target tasks is the same. In this case, labeled data from the target task must be available in order to induce the predictive function that we want the classifier to learn. There are two situations in inductive transfer learning: one where labeled source data is available, and one where it is not. The first scenario is similar to something known as self-taught learning, in which the classifier hopes to learn basic patterns from random unlabeled data. The second scenario is similar to multi task learning, where the classifier attempts to learn several classification tasks at the same time, except in this case we only care about the performance on a single target task, and are hoping to use knowledge learned from the other tasks in order to improve performance on said target task.

1.2.2 Transductive Transfer Learning

Transductive Transfer Learning focuses on an area in which the source and target tasks are the same, but the domains differ. The data used in the target domain is unlabeled, whereas there is an abundance of labeled data in the source domain. Transductive transfer learning can be broken down even further, into two specific scenarios: the first, in which the target and source domains have a different feature space; and the second, where the feature space is the same, but the input data have different marginal probability distributions.

1.2.3 Unsupervised Transfer Learning

Unsupervised Transfer Learning focuses on a setting where there is no labeled data for either the source and target domains, and the target task is different from the source task. This situation is common in areas such as clustering and dimensionality reduction.

2. Related Works

3. Datasets

For this research we needed to obtain two separate datasets to fit two distinct roles. ImageNet, 3.1, was needed to train the classifier on general image data to fit the convolution segment of the network to recognize underlying image Structure. This is our source domain, $D_{\rm s}$.

LIDC-IDRI, 3.2, is used to train the output segment of the the network. This is our target domain, D_t .

3.1. ImageNet Dataset

3.2. LIDC-IDRI Dataset

The Lung Image Database Consortium image collection (LIDC-IDRI) dataset is a very popular cancer classification dataset that focuses on tumors located in the lungs. The lung scans are CT images of the upper torso. The entire dataset consists of 1018 cases that each contain thoracic radiologists annotations of tumor segments These tumors annotations each contain 9 different descriptors such as malignancy, calcification, and lobulation. The descriptor this paper is interested in is the malignancy of each nodule.

The malignancy is rated on a 1-5 scale. 1 being 'Highly Unlikely' of malignancy and 5 being 'Highly Suspicious' of malignancy. Using these ratings each slice in a chest CT was rated as either malignant, benign, or non-nodule. A slice was considered non-nodule if there was no nodule annotations found within the slice. To split nodules into malignant and benign labels, the annotations performed on a specific node were averaged and for malignancy values ≥ 3 , the node was considered malignant and for malignancy values < 3, the node was considered benign, based upon the 4 radiologists predictions.

3.2.1 PyLIDC

To assist in the extraction of data from the DICOM image files, a python library was utilized to read to XML files which contained the annotation information for each nodule. [1]

3.2.2 Processing LIDC-IDRI Data

DICOM files, (Digital Imaging and Communications in Medicine), are the standard method for transferring and communicating image data. The structures of these files are extremely robust and offer many access in the form of 'Tags'. In the case of LIDC-IDRI, the dataset is composed entirely of CT images which must be processed by first transforming the image data along the HU (Hounsfield scale) given the transformation coefficients in the DICOM.

The vertical slice size must also be taken into account because CT scans can be ordered in a variety of ranging resolutions from ($< 0.1 \mathrm{mm}$ to $> 3 \mathrm{mm}$). A scale of 1 mm per slice was chosen and the pixel data was transformed.

4. Network Structure

4.1. Residual Neural Network

The vanishing gradient has long been a problem when constructing neural networks with large architectures. Essentially, the back-propagating the gradient to earlier layers makes the gradient tend towards zero, so the performance can degrade in earlier layers. This can result in worse performance for deeper models than shallower ones, since earlier layers will perform worse for the deeper model. Residual neural networks attempt to solve this problem, by using "shortcuts" that jump layers in order to make sure the gradient does not become infinitesimally smaller. The image below illustrates this concept. The input, X, is both passed to the next layer and skips ahead to the layer after, in order to add the effects of the input and the activation function and avoid the vanishing gradient problem.

Figure 1. Resnet node

- 4.2. Study Aggregation
- 5. Experiments
- 6. Results
- 7. Further Investigation
- 8. Conclusion

References

[1] M. Hancock. Pylidc. https://github.com/notmatthancock/pylidc, 2018.