

CHERI-picking: Leveraging capability hardware for prefetching

Shaurya Patel, Sidhartha Agrawal, Alexandra Fedorova, Margo Seltzer

Problem

- □ DRAM is **expensive** and **memory demands** of datacenter applications **are increasing**.
- □ Far memory is cheap but degrades application performance, prefetchers are important to hide latency of memory access.
- Applications with **Linked data structures** are difficult to prefetch because of their pointer-chasing behavior.

Insightful data from hardware

☐ Capability hardware systems such as CHERI makes it possible to identify pointers at runtime.

Our Approach

- Analyze application traces to classify percentage of pagefaults caused by pointer accesses.
- Leverage CHERI data at runtime to make OS pre-fetching decisions.

Prefetching system for pointer data

Preliminary results

- ☐ We benchmark the system by using a linked list traversal.
- ☐ We used a random permutation of numbers to assign linked list nodes, each node is page size.
- ☐ Total memory consumption is 4GB and we constrained it at 50%.

		Pointer based prefetcher	Improvement
Cache hits	46749	655345	12.9X
#major faults	1.86m	1.41m	24%
Execution	21.85	20.56	5.91%
time	minutes	minutes	

Future work

- ☐ Use application execution traces to identify programs for which pointer-based prefetching can be effective.
- ☐ Evaluate the pre-fetcher CHERI-Morello hardware using CheriBSD.
- ☐ Develop real-time monitoring to identify programs for which we should do pointer-based prefetching.

