Εύρηκα

介電潤濕

-探索液滴在電極版上的現象

楊竣凱 劉柏杰 李敏鴻 教授 賴奕帆 老師

目錄

- 研究動機
- 研究介紹
 - 研究理論
 - 實驗
 - 數值模擬
- 結論
- 感謝

研究動機

Εύρηκα

日常生活中的小水珠隨處可見,但看到MIT關於介電潤濕的影片,水珠神奇的被電腦程式所控,讓我們對次現象十分驚嘆和好奇。

介電潤濕?

Εύρηκα

一種以施加電壓改變電極上介電層表面濕潤特性之現象。現多應用於lab-on-a-chip、電濕潤顯示器等項目上。

Young's equation

- 表面張力與接觸角的關係(靜力平衡)
- $oldsymbol{\cdot} \gamma_{sg} = \gamma_{sl} + \gamma_{lg} cos heta$
- θ:接觸角
- γ :表面張力($\frac{N}{m}$)/ $\frac{J}{m^2}$

Lippmann equation

• 表面張力與電壓的關係

$$\gamma_{SL} = \gamma_{SL_0} - \frac{1}{2}CV^2, C = \frac{\varepsilon\varepsilon_0}{t}$$

• C為比電容, 為單位面積上的電容值($\frac{Q}{V \cdot m^2}$

Lippmann-Young equation

•接觸角與電壓的關係

$$oldsymbol{cos} heta=oldsymbol{cos} heta_0+rac{1}{2}rac{arepsilonarepsilon_0}{\gamma_{LG} imes t}V^2$$

測量方法

- 1. 自製
 - a. 使用USB顯微鏡,後放手機白幕增加畫面對比以
 - b. 用Geogebra的圓錐曲線功能測量接觸角
- 2. 接觸角測量儀

實驗樣本

樣本一:防水噴霧+保鮮膜(PE)

樣本二:鐵氟龍+保鮮膜(PE)

+PET膠帶

樣本三:石蠟

樣本一:保鮮膜(PE)+防水噴霧

接觸角隨電壓的變化

Εύρηκα

 $V-\theta$ (waterproof+PE)

cos隨V²的變化

Εύρηκα

$cos\theta$ - V^2 (waterproof+PE)

接觸角隨電壓的變化(PE)

 θ -V(Teflon+PE)

cos隨V²的變化(PE)

Ευρηκα

 $cos\theta$ - V^2 (Teflon+PE)

接觸角隨電壓的變化(PET)

 θ -V(Teflon+PET)

cos隨V²的變化(PET)

 $cos\theta$ - V^2 (Teflon+PET)

比較

- PET厚度較厚(0.05mm)
- PE膜約(0.08mm)
- 可看到PET所需的 電壓較小

$cos\theta$ - V^2 (Teflon+PET)

 $cos\theta$ - V^2 (Teflon+PE)

樣本三: 石蠟

接觸角隨電壓的變化

Εύρηκα

 θ -V(wax)

cos隨V²的變化

 $cos\theta$ - V^2 (wax)

數值模擬

模擬流程

數值模擬

Εύρηκα

使用python以有限差分法進行空間中電位分布的運算,進而求出其電容和所儲存電能。

1.
$$\nabla^2 V = 0$$

2.
$$C = \frac{2 \iiint \frac{1}{2} \varepsilon_0 E^2 d\tau}{V^2} = \frac{\varepsilon_0}{V^2} \iiint E^2 d\tau$$

Ex _{0, ny-1} , Ey _{0, ny-1}	51.5	Ex _{nx-1, ny-1,} Ey _{nx-1, ny-1}
i	æ.	:
Ex _{0, 0} Ey _{0, 0}		Ex _{nx-1, 0} Ey _{nx-1, 0}

不同接觸角下電容值

Εύρηκα

電容-接觸角

不同接觸角下總能量

Ευρηκα

不同接觸角下總能

不同電壓下穩定接觸角

	模擬	理論
\mathbf{V}	接觸角	接觸角
100	89.621°	89.851°
500	86.312°	86.277°
700	83.833°	82.689°
1000	76.449°	74.948°

不同大小電極板比較

Εύρηκα

模擬和理論值比較(cos-V^2)

結論

- 1. 防水噴霧各處差異性太大,不適合做為疏水層;相較之下,鐵氣龍的效果良好。
- 2. 保鮮膜、膠帶厚度已可使操作電壓保持在300~400V以內,但難 以再降低厚度,未來發展性較為不佳。
- 3. 雖然目前石蠟所需電壓較高,但厚度可持續降低,未來有望成為介電潤濕的新材料。

結論

- 4. 由於液滴形狀為球狀,其電容值與厚度的關係與平行電容板並不相同,且前者變化程度較小。
- 5. 液滴接觸角愈大, 電極板超出水滴範圍愈多, 電極板的邊際效應 則愈明顯, 導致電容值較小, 平衡狀態接觸角較理論預測大。

感謝

Εύρηκα

- 李敏鴻 教授, 國立臺灣師範大學光電工程研究所
- 賴奕帆 老師
- 特教組的老師
- 所有任課老師
- 兩班導師
 - 姚志鴻 老師
 - 高君陶 老師
- 225,226所有同學