Math Notes

Yuchen Wang

January 29, 2019

Contents

1	Hyperbolic Functions	2
2	Trigonometric Formulas	2
3	Arc functions	2
4	Cross Product	2
5	Derivative of Logarithmic Functions	3
6	Common Taylor Series	3

1 Hyperbolic Functions

$$sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

2 Trigonometric Formulas

$$cos(a+b) = cos(a)cos(b) - sin(a)sin(b)$$

$$sin(a+b) = cos(a)sin(b) + sin(a)cos(b)$$

3 Arc functions

4 Cross Product

Definition In 3-dimensional Euclidean space only, the cross product of vectors ${\bf a}$ and ${\bf b}$ is

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Remark "xia, dafan, shang"

Properties

- 1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}
- 2. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|sin\theta$. This says that the length $\mathbf{a} \times \mathbf{b}$ equals the area of the parallelogram generated by \mathbf{a} and \mathbf{b} .
- 3. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 4. $(c_1\mathbf{a}_1 + c_2\mathbf{a}_2) \times \mathbf{b} = c_1\mathbf{a}_1 \times \mathbf{b} + c_2\mathbf{a}_2 \times \mathbf{b}$
- 5. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ and $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
- 6. Not associative: $(a \times b) \times c \neq a \times (b \times c)$

5 Derivative of Logarithmic Functions

$$\frac{d}{dx}\log_a x = \frac{1}{x \cdot ln(a)}$$

6 Common Taylor Series

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}$$