HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

WEB MINING

LECTURE 05: LINK ANALYSIS (1/2)

ONE LOVE. ONE FUTURE.

Main Problems in Link Analysis

- Graph Ranking: Analyze the role of nodes in graph
- Community detection: Detect communities consisting of members of similar nature
- Link prediction: Predicting the evolution of a graph over time
- Graph classification: Classify the vertices and edges of the graph into given classes

Agenda

- 1. Graph Ranking
- 2. Community Detection
- 3. Graph Representation

1. Graph Ranking/ 1.1 Basic concepts of graphs

a) Undirected graph

Directed graph

Adjacency Matrix

a[i, j] = 1 if there is edge (i,j)
2 if there is a edge from a node to itself
0 otherwise

Degree of a node

- $d_i(i)$ = number of in-edge of node i
- $d_o(i)$ = number of out-edge of node i

1.2 Dijkstra algorithm

- Find shortest path from source node s to the other nodes of graph
- d(v): Distance from node s to node v
 - **S1**: Initialize d(s) = 0; $d(v) = \infty$
 - **S2**: Arrange the nodes in a specific order in a queue Q
 - **S3**: Get node u from queue Q then update distance d(v) (if needed) of every node v adjacent to node u

Go back to step **S2** until every node is computed

Example

v	S	а	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
color[v]	W	W	W	W	W

v	s	a	b	С	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

$$egin{array}{c|cccc} v & \mathsf{a} & \mathsf{b} & \mathsf{c} & \mathsf{d} \ \hline d[v] & \mathsf{2} & \mathsf{7} & \infty & \infty \end{array}$$

v	S	a	b	С	d
d[v]	0	2	5	10	7
pred[v]	nil	S	a	a	a
color[v]	В	В	W	W	W

$$egin{array}{c|cccc} v & \mathsf{b} & \mathsf{c} & \mathsf{d} \ \hline d[v] & \mathsf{5} & \mathsf{10} & \mathsf{7} \ \hline \end{array}$$

v	S	a	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	W	W

$oldsymbol{v}$	S	a	b	С	d
d[v]	0	2	5	6	7
$\overline{pred[v]}$	nil	S	а	h	
P . \circ \circ \circ \circ		•	~	~	~

$$egin{array}{c|c} v & \mathsf{d} \ \hline d[v] & \mathsf{7} \ \hline \end{array}$$

v	S	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	В	В

$$Q = \emptyset$$
.

1.3 Degree Centrality/ Closeness Centrality

$$C_C(i) = \frac{n-1}{\sum_{j=1}^n d(i,j)}.$$

d(i, j): shortest distance from node i node j

Betweeness Centrality

$$C_B(i) = \sum_{j < k} \frac{p_{jk}(i)}{p_{jk}}.$$

 $p_{ik}(i)$: Number of shortest path from node j to node k the pass node i i

$$C_B(1) = 15$$
, $C_B(2) = C_B(3) = C_B(4) = C_B(5) = C_B(6) = C_B(7) = 0$

1.4 Prestige/ Degree Prestige

$$P_D(i) = \frac{d_I(i)}{n-1},$$

d_i(i): in-degree of node i

Proximity Degree

$$P_{P}(i) = \frac{|I_{i}|/(n-1)}{\sum_{j \in I_{i}} d(j,i)/|I_{i}|},$$

I_i: Set of nodes that can reach node i

1.5 PageRank Algorithm

- Rank graphs based on general structure
- For large graphs, the rank is approximated by an iterative algorithm based on the 'random walk'
- Important applications in web search engines
- Cons: Doesn't depend on the query

Transition matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Transition matrix normalization

Standardize:

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}. \qquad \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

$$\begin{array}{c} \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ \hline 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

$$\begin{array}{c} \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ \hline 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ \hline \end{array}$$

Formula

$$R(A) = (1 - d) / N + d * \Sigma_{B:(B,A) \in E} R(B) / d_o(B)$$

R(A): Thứ hạng của đỉnh A

d: damping factor

N: số đỉnh của đồ thị

(B,A) cạnh của đồ thị

d_o(B) bậc ra của đỉnh B

Example (d = 1)

Example (*d*= 0.85)

Algorithm

```
Algorithm PageRank(d, E)

1. Init page ranks R^{(0)};

2. i = 1;

3. repeat

4. for each page A do

5. R^{(i)}(A) = (1 - d) / N + d * \Sigma_{B:(B,A) \in E} R^{(i-1)}(B) / d_o(B);

6. endfor

7. i++;

8. until converged
```


Convergence speed

Application: Web Search

Application: Citation analysis

Guan et al. 2008. "Bringing Page-Rank to the Citation Analysis"

Application: Citation analysis (cont.)

1.6 HITS Algorithm

- Hypertext Induced Topic Search
- J. Kleinberg. "Authoritative Sources in a Hyperlinked Environment." In Proc. of the 9th ACM SIAM Symposium on Discrete Algorithms (SODA'98), pp. 668–677, 1998.

	Spam filtering	Query relevance	Execution
HIST			Online
PageRank			Offline

Authority/Hub

Authority: pages with many in-links

Hub: pages with many out-links

Bigraph

• Graph divided into 2 separated set of node such that every edge connects 2 node of different set

Algorithm

Input: Query q

Output: authority score and hub score of relevant pages of query q

Algorithm:

1 - Retrieve information

2 - Expand graph

3 - Compute rank

1-Retrieve information

Requires a search engine has relevant documents of query q

Input query q and a root set W of top k pages relevant to q

2- Expand graph

From root set W, expand to base set S

- For each page *p* in *W*
 - Insert pages that p links to
 - Insert pages that links to p

3- Compute rank

Authority score (a) Hub score (h)

$$G = (V,E)$$

$$L_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$a(i) = \sum_{(j,i)\in E} h(j) \qquad \sum_{i=1}^{n} a(i) = 1$$

$$h(i) = \sum_{(i,j)\in E} a(j)$$
 $\sum_{i=1}^{n} h(i) = 1$

3- Compute rank (cont.)

$$a = L^{T}h$$
$$h = La$$

```
HITS-Iterate(G)
     a_0 \leftarrow h_0 \leftarrow (1, 1, ..., 1);
     k \leftarrow 1
     Repeat
          a_k \leftarrow L^T L a_{k-1};
          h_k \leftarrow LL^T h_{k-1};
          a_k \leftarrow a_k / ||a_k||_1; // normalization
          h_k \leftarrow h_k / ||h_k||_1; // normalization
          k \leftarrow k + 1;
     until ||\boldsymbol{a}_k - \boldsymbol{a}_{k-1}||_1 < \varepsilon_a and ||\boldsymbol{h}_k - \boldsymbol{h}_{k-1}||_1 < \varepsilon_h;
     return a_k and h_k
```


HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!