

Magma density and viscosity

Paul A. Jarvis

paul.jarvis@unige.ch

8th November 2019

Magma density

Bulk density depends on volume fraction of crystals and bubbles

$$\rho = \rho_{\rm m} \left(1 - \sum_i \phi_i \right) + \sum_i \rho_i \phi_i$$

 $\rho_{\mathsf{m}} = \mathsf{Melt} \; \mathsf{density}$

• Depends on T, P, X

i = quartz, hornblende, plagioclase etc. and H_2O , CO_2 bubbles etc.

 $\rho_i = \text{Density of phase } i$

- Depends on *T*, *P* for bubbles
- Depends on composition for crystals

 ϕ_i = Volume fraction of phase i

Melt density

$$\rho_m = \sum_i X_i M_i \left(\sum_i X_i V_i \right)^{-1}$$

 $M_i = \text{Molar mass of component } i$

Mass of 1 mol of i

 $V_i = Partial molar volume of component i$

Change in mixture volume when 1 mol of i is added