# Geographic Lead-Lag Effects

Christopher A. Parsons, Riccardo Sabbatucci and Sheridan Titman

The Review of Financial Studies, 2020.10

吕漫妮 2021. 1. 9

## Contents

- Introduction
  - Background & Motivation
  - Research Problem
  - Contribution
- Model Design: Theoretical Motivation, Data
- Empirical Results
  - Validate Key Assumptions
  - Main Results
  - Robustness and Extensions
- Conclusion

# **Backgrounds & Motivation**

- Stock prices of firms with common characteristics such as industry and geographic position tend to move together. However, empirical studies document significant lead-lag relationships.
- Lead-lag profits tend to be modest when the "lagging" firm is heavily covered by analysts.
- Analysts tends to specialize by industrial sector rather than geography.
- ➤ How to understand the channel linking the scrutiny level to observed lead-lag relationships more explicitly, not only by individual analyst coverage but also by shared one?
- Can it be inspired with the help of geographic lead-lag effects?

## Why headquarters locations?

- 1. Both geographic position and industry group firms by their sensitivity to common fundamental shocks, causing lead-lag effects.
- 2. It help distinguish between analyst coverage measured at the level of the individual firm, and between pairs of firms. Analysts specialize by industrial sector instead of geographic position. A higher individual analyst following is almost certain to generate significant overlaps with industry peers. The geography sorting criteria should not generate substantial overlaps in analyst coverage.

#### Research Problem

- What is the real channel linking the scrutiny level to observed lead-lag relationships?
  - ➤ With the help of geographic lead-lag effects, we find analysts common to both leading and lagging firms are important may be a more useful concept for predicting relative mispricing.

### Contribution

- The first to explicitly tie the nature of the lead-lag relation to the organization of the analyst community.
- More explicitly understand the channel linking the level of scrutiny to observed lead-lag relationships.

## Outline



# Model Design: Theoretical Motivation

- industries A and B; locations X and Y; three firms i ∈{1,2,3}
- local shock L, industry shock I
- the realization of firm i's liquidating dividend at t=2:

$$\pi_1 = I_A + L_X + \epsilon_1$$

$$\pi_2 = I_A + L_Y + \epsilon_2$$

$$\pi_3 = I_B + L_Y + \epsilon_3$$
.

Time line:



# Model Design: Theoretical Motivation

- four possible reports analyst can choose: {π1,π3},{π1},{π3},{}
- Investor set the price of firm 2 as:  $P_{t=1}^2 = E[\pi_2 | (r_1, r_2, r_3, ... r_N)]$
- the stock price of firm 2 at t =1 can take on four possible values:

$$P_{t=1}^{2} = \begin{cases} 0 & \text{if neither } \pi_{1} \text{ nor } \pi_{3} \text{ reported,} \\ \pi_{1}\left(\frac{\sigma_{I}^{2}}{\sigma_{I}^{2} + \sigma_{L}^{2} + \sigma_{\epsilon}^{2}}\right) & \text{if only } \pi_{1} \text{ reported,} \\ \pi_{3}\left(\frac{\sigma_{L}^{2}}{\sigma_{I}^{2} + \sigma_{L}^{2} + \sigma_{\epsilon}^{2}}\right) & \text{if only } \pi_{3} \text{ reported,} \\ \pi_{1}\left(\frac{\sigma_{I}^{2}}{\sigma_{I}^{2} + \sigma_{L}^{2} + \sigma_{\epsilon}^{2}}\right) + \pi_{3}\left(\frac{\sigma_{L}^{2}}{\sigma_{I}^{2} + \sigma_{L}^{2} + \sigma_{\epsilon}^{2}}\right) & \text{if both } \pi_{1} \text{ and } \pi_{3} \text{ reported.} \end{cases}$$

- the probability of  $\pi 1 / \pi 3$  being reported p1(N) / p3(N)
- Industry momentum occurs when:

$$cov(P_{t=1}^1 - P_{t=0}^1, P_{t=2}^2 - P_{t=1}^2) = cov(\pi_1, \pi_2 - P_{t=1}^2) = \sigma_I^2(1 - p_1(N))$$

Regional momentum takes a similar form:

$$cov(\pi_3 - 0, \pi_2 - P_{t=1}^2) = \sigma_L^2(1 - p_3(N))$$

# Model Design: Data

- Sample:
- 1. domestic common stocks traded on the NYSE, NASDAQ, and AMEX over the period 1970 2013
- 2. stocks headquartered in or proximate to, the twenty largest urban centers in the United States
- Firm location variable: based on the ZIP code corresponding to its headquarters' location in the Compustat database.
- Industry classification: we monthly link each firm to a single Fama-French 12 industry, which groups firms by SIC designations

## Empirical Results: Validate Key Assumptions

 Geographic effects on firms' performance: panel regressions of individual firms' fundamental X onto their contemporaneous city portfolio for the same variable X

#### Area comovement in fundamentals

|                 | ΔΕΡS    | ΔSales  | ΔEmployees | ΔNewCapital_EV | Returns<br>monthly | Returns<br>annual |
|-----------------|---------|---------|------------|----------------|--------------------|-------------------|
| city            | .151*** | .164*** | .178***    | .210***        | .228***            | .298***           |
|                 | (4.70)  | (5.98)  | (5.92)     | (6.61)         | (16.59)            | (6.91)            |
| industry        | .641*** | .634*** | .633***    | .671***        | .927***            | .949***           |
|                 | (20.68) | (26.48) | (24.16)    | (27.33)        | (88.04)            | (18.70)           |
| $R^2$           | 9.71%   | 26.13%  | 19.54%     | 26.66%         | 13.75%             | 21.36%            |
| Observations    | 125,196 | 149,153 | 133,220    | 86,598         | 1,626,775          | 124,956           |
| Time FE         | Y       | Y       | Y          | Y              | Y                  | Y                 |
| # time clusters | 54      | 66      | 66         | 47             | 528                | 44                |
| Firm FE         | Y       | Y       | Y          | Y              | Y                  | Y                 |
| # firm clusters | 12,103  | 13,232  | 12,401     | 9,433          | 13,033             | 12,193            |

## Empirical Results: Validate Key Assumptions

Analyst specialization by industry



➤ About 83% of the stocks covered were in the same industry while 28% in the same city.

## Empirical Results: Validate Key Assumptions

Analyst specialization by industry:

|                                                                                                                | Full<br>sample | Firms with 1-3 analysts | Firms with<br>4-9 analysts | Firms with<br>10+ analysts |
|----------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------------|----------------------------|
| Avg # of analysts                                                                                              | 4.81           | 1.83                    | 5.84                       | 13.81                      |
| Overlaps between geographic peers % firm-years with zero overlap # of peers connected via at least one overlap | 57.93%         | 68.87%                  | 49.37%                     | 38.28%                     |
|                                                                                                                | 2.08           | 0.84                    | 2.61                       | 5.55                       |
| Overlaps between industry peers % firm-years with zero overlap # of peers connected via at least one overlap   | 7.39%          | 12.67%                  | 2.32%                      | 0.49%                      |
|                                                                                                                | 15.73          | 5.81                    | 19.05                      | 45.95                      |

Firms within the same industry tend to be covered by a common set of analysts.

Establish the presence of lead-lag effects:

$$r_{i,c,j,t+1} = \alpha + \beta_1 r_{c,\neq j,t} + \beta_2 r_{\neq c,j,t} + \beta_3 X_t + \epsilon_{i,c,j,t+1}$$

Predictability of stock returns by area and industry portfolios with controls (Fama-MacBeth)

#### A. Individual stock returns

|                                                 | full sample | 1970-1990 | 1991-2013 |  |
|-------------------------------------------------|-------------|-----------|-----------|--|
| $r_{city,t-1}$ $r_{industry,t-1}$               | .061***     | .066***   | .057***   |  |
|                                                 | (5.11)      | (3.81)    | (3.45)    |  |
|                                                 | .243***     | .249***   | .239***   |  |
|                                                 | (11.71)     | (8.26)    | (8.34)    |  |
| Avg R <sup>2</sup> Observations # time clusters | 6.48%       | 6.55%     | 6.42%     |  |
|                                                 | 1,458,783   | 481,729   | 977,054   |  |
|                                                 | 516         | 240       | 276       |  |

Both β1 and β2 are significant, with lead-lags within cities being one-fourth as strong as those within industry groups.

$$r_{i,c,j,t+1} = \alpha + \beta_1 r_{c,\notin j,t} + \beta_2 r_{\notin c,j,t} + \beta_3 X_t + \epsilon_{i,c,j,t+1}$$



➤ The 1-month lagged return is an important predictor. Realizations of the geographic factors are incorporated into stock prices much more slowly. Overreaction to industry factors.

 How to create profitable trading strategies? - Every month, we rank each firm by the average lagged 1-month return of firms (same city, different industry) and form VW portfolios with 1month holding period.

| Momentum trading strategy, quintiles |              |        |        |        |        |  |
|--------------------------------------|--------------|--------|--------|--------|--------|--|
|                                      | Mean (%)     | CAPM α | t-stat | FF-3 α | t-stat |  |
| Lowest city return                   | 0.735        | -0.258 | -3.228 | -0.244 | -3.011 |  |
|                                      | 0.876        | -0.077 | -1.112 | -0.038 | -0.520 |  |
|                                      | 1.027        | 0.109  | 1.432  | 0.127  | 1.583  |  |
|                                      | 0.949        | -0.009 | -0.102 | -0.002 | -0.022 |  |
| Highest city return                  | 1.158        | 0.212  | 3.196  | 0.211  | 3.029  |  |
| 5-1 spread                           | 0.423 [3.65] | 0.471  | [4.16] | 0.455  | [3.99] |  |

➤ A geographic momentum strategy is profitable, but appears unrelated to standard risk factors.

Which measure of analyst coverage is most relevant when thinking about lead-lag effects on stock returns?
 r<sub>i,c,j,t+1</sub> = α + β<sub>1</sub>r<sub>c,∉j,t</sub> + β<sub>2</sub>r<sub>∉c,j,t</sub> + β<sub>3</sub>X<sub>t</sub> + ε<sub>i,c,j,t+1</sub>

| A. Number of analysts |          |          |          |          |            |  |
|-----------------------|----------|----------|----------|----------|------------|--|
|                       | (0)      | (1-4)    | (5-9)    | (10+)    | Δ High/Low |  |
| $r_{city,t-1}$        | 0.067*** | 0.060**  | 0.090*** | 0.060*** |            |  |
| ,,,                   | (3.63)   | (3.27)   | (4.12)   | (2.76)   | [0.877]    |  |
| $r_{industry,t-1}$    | 0.283*** | 0.245*** | 0.140*** | 0.098**  |            |  |
|                       | (8.79)   | (8.83)   | (4.64)   | (3.54)   | [0.00***]  |  |
| $Avg R^2$             | 6.42%    | 7.33%    | 10.72%   | 13.98%   |            |  |
| Observations          | 503,536  | 317,030  | 167,289  | 170,333  |            |  |
| # time clusters       | 336      | 336      | 336      | 336      |            |  |

Analyst overlap plays an important role in the relative stock price efficiency between companies subject to common shocks.

| R                                                 | Regressions with overlaps |                 |                 |  |  |
|---------------------------------------------------|---------------------------|-----------------|-----------------|--|--|
|                                                   | (1)                       | (2)             | (3)             |  |  |
| $r_{city,t-1}$                                    | 0.070***                  | 0.056***        | 0.056***        |  |  |
|                                                   | (5.86)                    | (4.41)          | (4.38)          |  |  |
| $r_{industry,t-1}$                                | 0.245***                  | 0.264***        | 0.265***        |  |  |
|                                                   | (11.65)                   | (12.21)         | (12.24)         |  |  |
| $city_{i,t-1}*city_{overlap,i,t-1}$               | 000                       |                 | 004             |  |  |
| 1,, 1                                             | (-0.03)                   |                 | (-0.32)         |  |  |
| $industry_{i,t-1} * industry_{overlap,i,t-1}$     | 011***                    |                 | 008**           |  |  |
| ,,, 1                                             | (-3.01)                   |                 | (-2.25)         |  |  |
| $city_{i,t-1}*city_{numofanalysts,i,t-1}$         |                           | .006            | .006            |  |  |
| ,                                                 |                           | (1.43)          | (1.46)          |  |  |
| $industry_{i,t-1}*industry_{numofanalysts,i,t-1}$ |                           | <del>017*</del> | <del>017*</del> |  |  |
| -,                                                |                           | (-1.83)         | (-1.79)         |  |  |

Analyst overlap plays an important role in the relative stock price efficiency between companies subject to common shocks.

### Robustness and Extensions

- mis-measured headquarters' locations
- regional predictability for more all less regionally concentrated firms
- time fixed effects
- one month delayed portfolio formation
- control other sources of lead-lags such as firm size, analyst coverage, customers and suppliers relationships, institutional ownership...

### Conclusion

- We find that regionally sorted portfolios generate trading profits that are a quarter to half as large as those using industry sorts.
- Because of the way that analysts are organized, leadlags between non-industry local peers are comparatively invariant to sorts on analyst coverage.
- We develop a simple model and conduct empirical research, and conclude that shared analyst coverage may be more useful to predict relative mispricing.