Croatian and Indian collaborations and contributions to Diophantine m-tuples

Andrej Dujella

Department of Mathematics, Faculty of Science University of Zagreb, Croatia Croatian Academy of Sciences and Arts URL: https://web.math.pmf.unizg.hr/~duje/ **Diophantus:** Find four (positive rational) numbers such that the product of any two of them, increased by 1, is a perfect square:

$$\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$$

Fermat: {1, 3, 8, 120}

Euler: $\{1, 3, 8, 120, \frac{777480}{8288641}\}$ (extension is unique – Stoll (2019))

$$ab + 1 = r^2 \mapsto \{a, b, a + b + 2r, 4r(a + r)(b + r)\}$$

Definition: A set $\{a_1, a_2, \ldots, a_m\}$ of m non-zero integers (rationals) is called a *(rational)* Diophantine m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le m$.

Question: How large such sets can be?

Baker & Davenport (1969): $\{1,3,8,d\} \Rightarrow d = 120$ (problem raised by Denton (1957), Gardner (1967), van Lint (1968))

D. (2004): There does not exist a Diophantine sextuples. There are only finitely many Diophantine quintuples.

He, Togbé & Ziegler (2019): There does not exist a Diophantine quintuple.

There is no known upper bound for the size of rational Diophantine tuples.

Euler: There are infinitely many rational Diophantine quintuples. Any pair $\{a,b\}$ such that $ab+1=r^2$ can be extended to a quintuple.

Gibbs (1999):
$$\left\{\frac{11}{192}, \frac{35}{192}, \frac{155}{27}, \frac{512}{27}, \frac{1235}{48}, \frac{180873}{16}\right\}$$

D., Kazalicki, Mikić & Szikszai (2017): There are infinitely many rational Diophantine sextuples.

D., Kazalicki & Petričević (2019): There are infinitely many sextuples such that denominators of all the elements (in the lowest terms) in the sextuples are perfect squares.

Definition: For a (nonzero) integer n, a set of m distinct nonzero integers $\{a_1, a_2, \ldots, a_m\}$ such that $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$, is called a Diophantine m-tuple with the property D(n) or a D(n)-m-tuple.

There does not exist a D(n)-quadruple for $n \equiv 2 \pmod{4}$ (Brown, Gupta & Singh, Mohanty & Ramasamy, 1985).

If $n \not\equiv 2 \pmod{4}$ and $n \not\in \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then there exist at least one D(n)-quadruple (D., 1993).

There does not exist a D(-1)-quadruple (Bonciocat, Cipu & Mignotte, 2022).

M. N. Deshpande and A. Dujella, An interesting property of a recurrence related to the Fibonacci sequence, *Fibonacci Quart.* 40 (2002), 157–160.

Let (F_k) be the sequence of Fibonacci numbers defined by $F_1 = 1$, $F_2 = 1$, $F_{k+2} = F_k + F_{k+1}$. Then $\{F_{2k}, F_{2k+2}, F_{2k+4}\}$ is a D(1)-triple and $\{F_{2k+1}, F_{2k+3}, F_{2k+5}\}$ is a D(-1)-triple.

We characterized binary recurrence sequences (G_k) with the property that there exists an integer n such that $\{G_k, G_{k+1}, G_{k+2}\}$ is a D(n)-triple for all $k \geq 0$.

Photo taken by N. Saradha in January 2013 at Tata Institute of Fundamental Research, Mumbai.

Book Release Function

We coordially invite you to the release of the book

Wonderland of families of diophantine triples (second edition)

Authored by

Late Dr.M.N.Deshpande

The book will be released by

Dr. Satish Mohgaonkar

Prof & Head , Dept.of Mathematics

RCOEM,Nagpur

Wednesday May 11, 2022

6:30 p.m

Venue: Conference Hall Maharashtra Rashtrabhasha Prachar Sabha Wockhardt Hospital Premises Shankar Nagar, Nagpur

AWAITING YOUR PRESENCE

DR.K.S.BHANU SHRI. SUBHASH KARANDE DR.CHITRA CHOLKAR

A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property D(4), Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 401–412.

If $\{F_{2k}, 5F_{2k}, 4F_{2k+2}, d\}$ is a D(4)-quadruple, than $d=4L_{2k}F_{4k+2}$, where (L_k) be the sequence of Lucas numbers defined by $L_1=1$, $L_2=3$, $L_{k+2}=L_k+L_{k+1}$.

M. Bliznac Trebješanin and A. Filipin, Nonexistence of D(4)-quintuples, J. Number Theory 194 (2019), 170–217.

S. P. Mohanty and A. M. S. Ramasamy, On $P_{r,k}$ sequences, Fibonacci Quart. 23 (1985), 36–44.

A. M. S. Ramasamy, A remarkable sequence, *Banyan Mathematical Journal* 2 (1995), 69–76.

A. M. S. Ramasamy, Sets and sequences linked with a question of Diophantus, Bulletin of Kerala Mathematics Association 4 (2007), 109–125.

A. Dujella and N. Saradha, Diophantine m-tuples with elements in arithmetic progressions, *Indag. Math.* (N.S.) 25 (2014), 131–136.

We showed that for $n \geq 3$ there does not exist a Diophantine quintuple $\{a,b,c,d,e\}$ such that $a \equiv b \equiv c \equiv d \equiv e \pmod{n}$.

On the other hand, for any positive integer n there exist infinitely many Diophantine triples $\{a,b,c\}$ such that $a \equiv b \equiv c \equiv 0 \pmod{n}$.

A. Dujella, F. Najman, N. Saradha and T. N. Shorey, Products of three factorials, *Publ. Math. Debrecen* 85 (2014), 123–130.

A. Bérczes, A. Dujella, L. Hajdu, N. Saradha and R. Tijdeman, Products of factorials which are powers, *Acta Arith.* 190 (2019), 339–350.

Kalyan Chakraborty, Shubham Gupta and Azizul Hoque

Connections between existence of D(n)-quadruples and representability of n as a difference of two squares. In \mathbb{Z} , n is not a difference of two squares if and only if $n \equiv 2 \pmod{4}$.

Analogous results in quadratic, cubic and quartic fields (D., Franušić, Jadrijević, Soldo).

However, Chakraborty, Gupta, and Hoque showed that in certain rings of the form $\mathbb{Z}[\sqrt{4k+2}]$, there are elements n which are not difference of two squares but there exists a D(n)-quadruple:

K. Chakraborty, S. Gupta and A. Hoque, On a conjecture of Franušić and Jadrijević: Counter-examples, *Results Math.* 78 (2023), Article 18.

K. Chakraborty, S. Gupta and A. Hoque, Diophantine D(n)-quadruples in $\mathbb{Z}[\sqrt{4k+2}]$, Glas. Mat. Ser. III 59 (2024), 259–276.

- A. Dujella, On the number of Diophantine m-tuples, Ramanujan Journal 15 (2008), 37–46.
- Z. Franušić, Diophantine quadruples in $\mathbb{Z}[\sqrt{4k+3}]$, Ramanujan Journal 17 (2008), 77–88.
- A. M. S. Ramasamy, Polynomials yielding quadruples with property D(k), Journal of Ramanujan Society of Mathematics and Mathematical Sciences 7 (2019), 53–64.
- S. Kim, C. H. Yip and S. Yoo, Explicit constructions of Diophantine tuples over finite fields, *Ramanujan Journal* 65 (2024), 163–172.
- N. Adžaga, G. Dražić, A. Dujella and A. Pethő, Asymptotics of D(q)-pairs and triples via L-functions of Dirichlet characters, $Ramanujan\ Journal$, to appear.

Thank you very much for your attention!