

Mathematics II Set Theory

Chamith Jayasinghe chamith.j@sliit.lk

Set

- A set is a collection of objects considered as a whole.
- The objects of a set are called as elements or members.
- The elements can be anything.
 i.e. numbers, letters of the alphabet, etc.

Sets are conventionally denoted by capital letters. (A, B, C, etc.)

- Some sets may be described in words.
 eg: B is a set whose members are the first four positive whole numbers.
- Sets can be defined explicitly listing its elements, between curly braces.

eg: $B = \{1,2,3,4\}$

 More complicated sets are sometimes described by a different notation.

eg: $F = \{ n^2-4 : n \text{ is an Integer and } 0 \le n \le 19 \}$

- Above is interpreted as "F equals n²-4 such that n is a whole number in the range from zero to 19 inclusive."
- The colon ":" indicates "such that". Sometimes the pipe "|" is used instead of the colon.

Set Membership

If something is an element of a particular set then it is symbolized by "∈".
If not by "∉".

```
eg: F = \{-4, -3, 0, 1, 2\}
```

```
-4 \in F (-4 is an element of F)

5 \notin F (5 is not an element of F)
```

Subsets

■ If every member of the set A is also a member of the set B, then A is said to be a subset of B. It is also said as A is contained in B or B contains A.

■ Notation: $A \subseteq B$ or $B \supseteq A$

• eg: If
$$A = \{2,4,5,7\}$$

 $B = \{1,2,3,4,5,6,7\}$
Then $A \subset B$

Note: Any set is considered as a subset of itself

Proper Subset

■ If A and B are sets, A is a proper subset of B, if and only if every element of A is in B but, there at least one element of B that is not in A.

■ Notation: A ⊂ B

Example

I.
$$A = \{1,2,3,4,5\}$$

 $B = \{1,2,3\}$
 $B \subset A$
B is a proper subset of A.

II.
$$C = \{a,b,c\}$$

 $D = \{a,b,c\}$
 $C \subseteq D$
But C is not a proper subset of D.

Set Equality

$$A = B \leftrightarrow A \subseteq B$$
 and $B \subseteq A$

Given sets A and B, A equal B, if and only if, every element of A is in B and every element of B is in A

Special Sets

- P denotes the set of all primes
- N denotes the set of all natural numbers
- Z denotes the set of all integers
- Q denotes the set of all rational numbers

$$Q = \left\{ \frac{a}{b} \mid a, b \in Z \text{ and } b \neq 0 \right\}$$

R denotes the set of all real numbers
 [This includes both rational and irrational numbers]

Set Operations

1) Union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

 $A \cup B \text{ is the set of all elements } x \text{ such that}$

xisin Aorxisin B.

2) Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

 $A \cap B$ is the set of all elements x such that x is in A and x is in B.

3) Difference

$$A-B = \{x \mid x \in A \text{ and } x \notin B\}$$

4) Complement

$$A^{c} = A' = \{x \mid x \notin A\}$$

Venn Diagrams

■ We can visual subsets of a universal set, and how they interact/overlap, using Venn diagrams

Venn Diagrams

$$A \cup B$$

 $(A' \cap B')'$

$$A' \cap B'$$

 $(A \cup B)'$

Venn Diagrams

□ Venn diagrams using two or three sets are often used in presentations.

Venn diagrams for presentations

Venn diagrams of more sets are possible, but tend to be confusing as a presentation tool because of the number of possible interactions. The following diagrams show Venn diagrams for five sets on the left and for 7 sets on the right.

For any finite set, S, we let n (S) denote the number of objects in S.

Example: If
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$
 and $B = \{5, 6, 7, 8, 9, 10\}$ then $n(A) = 7$ and $n(B) = 6$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} => n (A \cup B) = 10.$$

 $A \cap B = \{5, 6, 7\} => n (A \cap B) = 3.$

For any finite set, S, we let n (S) denote the number of objects in S.

$$n (A \cup B) = n (A) + n (B) - n (A \cap B)$$

Note:

If two sets A and B do not intersect, then n $(A \cap B) = 0$ and hence n $(A \cup B) = n (A) + n (B)$.

Formula 1

Set and its complement

$$n(A') = n(A^c) = n(U) - n(A)$$

where U is the universal set.

Formula 2

The shaded region below is $A \cap B^c$ and $(A \cap B^c) \cap (A \cap B) = \emptyset$ so

$$n(A \cap B^c) = n(A) - n(A \cap B)$$

U

In a group of 30 people, 15 run, 13 swim, 13 cycle, 5 run and swim, 8 cycle and swim, 9 run and cycle, and 5 do all three activities.

- (a) Draw a Venn diagram showing the results of the survey.
- (b) How many of the 30 people neither run nor cycle?
- (c) How many people like run but did not like swim or cycle?

(a) Draw a Venn diagram showing the results of the survey.

$$n (U) = 30$$
 $n (R) = 15$
 $n (S) = 13$
 $n (C) = 13$
 $n (R \cap S) = 5$
 $n (C \cap S) = 8$
 $n (R \cap C) = 9$
 $R \cap C \cap S = 5$.

(b) How many of the 30 people neither run nor cycle?

Answer is 6 + 5 = 11

(c) How many people like run but did not like swim or cycle?

Answer is 6

Disjoint Sets

- Two sets are called disjoint if and only if they have no elements in common.
- \Box A and B are disjoint $\Leftrightarrow A \cap B = \Phi$

Eg: $A=\{1,3,5\}$ and $B=\{2,4,6\}$

 $A \cap B = \Phi$ so A and B sets are disjoint.

Universal Set

 A set which has all the elements in the universe is called an Universal set.

A Universal set denotes by U.

Empty Set

A set with no elements is called an empty set or null set.

Notation: {} or Φ

Set Properties involving **Φ**

$$A \cup \Phi = A$$

$$A \cap A^{c} = \Phi$$

$$A \cup A^{c} = U$$

$$A \cap \Phi = \Phi$$

$$U^c = \Phi$$

$$\Phi^c = U$$

Power Set

- The set of all subsets of A is called as the power set of A.
- Notation: P(A)

eg:
$$A = \{a, b\}$$

 $P(A) = \{\Phi, \{a\}, \{b\}, \{a,b\}\}$

Number of elements in A = nNumber of elements in power set of $A = 2^n$

Ordered Pair

An ordered pair is a pair of objects (elements)
 with an order associated with them.

• If the objects are represented by x and y then we can write the ordered pair as (x, y).

Cartesian Product of sets

■ The set of all ordered pairs (a,b) where **a** is an element of A and **b** is an element of B is called the Cartesian product of A and B.

Notation: A X B

• $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$

Set Identities

1. Commutative laws:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

2. Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

3. Distributive laws:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

4. Intersection with Universal set:

$$A \cap U = A$$

5. Double complement law:

$$(A^c)^c = A$$

Idempotent laws: 6.

$$A \cup A = A$$

$$A \cap A = A$$

De Morgan's law:
$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Union with Universal set: 8.

$$A \cup U = U$$

9. Absorption laws:

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

10. Set difference alternative representation:

$$A-B=A\cap B^{c}$$

Thank You