

# Exploratory Data Analysis for Home Loan Application

Author: Aboubakr Aakaou

#### Agenda

- Data Science lifecycle
- Project Overview
- Overview of the Data
- Analysis
- Modeling
- Evaluation
- Deployment
- Conclusion

#### Data Science lifecycle

#### **Unlocking Insights: The Data Science Lifecycle**

The data science lifecycle comprises six stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment, guiding the process from problem definition to actionable insights.



## Project Overview

- 1. Standard Bank's digital transformation initiative for home loan applications.
- 2. **Objective**: Predict loan default risk and provide instant responses.
- 3. Adhering to the data science lifecycle (CRISP-DM).
- 4. **Key analysis objectives:** data overview, data quality, loan status, dependents, income comparison, and credit history impact.
- 5. A blend of automation and traditional methods for enhanced efficiency.
- 6. Improving customer service and experience.

#### **Overview of the Data**

|     | Loan_ID  | Gender | Married | Dependents | Education    | Self_Employed | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History | Property_Area | Loan_Status |
|-----|----------|--------|---------|------------|--------------|---------------|-----------------|-------------------|------------|------------------|----------------|---------------|-------------|
| 0   | LP001002 | Male   | No      | 0          | Graduate     | No            | 5849            | 0.0               | 126.0      | 360.0            | 1.0            | Urban         | Υ           |
| 1   | LP001003 | Male   | Yes     | 1          | Graduate     | No            | 4583            | 1508.0            | 128.0      | 360.0            | 1.0            | Rural         | N           |
| 2   | LP001005 | Male   | Yes     | 0          | Graduate     | Yes           | 3000            | 0.0               | 66.0       | 360.0            | 1.0            | Urban         | Υ           |
| 3   | LP001006 | Male   | Yes     | 0          | Not Graduate | No            | 2583            | 2358.0            | 120.0      | 360.0            | 1.0            | Urban         | Υ           |
| 4   | LP001008 | Male   | No      | 0          | Graduate     | No            | 6000            | 0.0               | 141.0      | 360.0            | 1.0            | Urban         | Υ           |
|     |          |        |         | ***        | ***          |               |                 |                   |            |                  |                |               |             |
| 609 | LP002978 | Female | No      | 0          | Graduate     | No            | 2900            | 0.0               | 71.0       | 360.0            | 1.0            | Rural         | Υ           |
| 610 | LP002979 | Male   | Yes     | 3+         | Graduate     | No            | 4106            | 0.0               | 40.0       | 180.0            | 1.0            | Rural         | Υ           |
| 611 | LP002983 | Male   | Yes     | 1          | Graduate     | No            | 8072            | 240.0             | 253.0      | 360.0            | 1.0            | Urban         | Υ           |
| 612 | LP002984 | Male   | Yes     | 2          | Graduate     | No            | 7583            | 0.0               | 187.0      | 360.0            | 1.0            | Urban         | Υ           |
| 613 | LP002990 | Female | No      | 0          | Graduate     | Yes           | 4583            | 0.0               | 133.0      | 360.0            | 0.0            | Semiurban     | N           |

14 rows × 13 columns

Data set after preprocessing

This pair plot is a graphical representation that shows pairwise relationships between variables in a dataset, typically through scatterplots. It helps visualize correlations, distributions, and patterns between multiple variables in the data.



# Analysis



#### Modeling

Logistic Regression









#### Modeling

**Gradient boosting** 









## Modeling

CNN model



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 0.03   | 0.06     | 33      |
| 1            | 0.74      | 1.00   | 0.85     | 90      |
| accuracy     |           |        | 0.74     | 123     |
| macro avg    | 0.87      | 0.52   | 0.45     | 123     |
| weighted avg | 0.81      | 0.74   | 0.64     | 123     |

#### Evaluation

| Models   | Logistic<br>Regression | Gradient<br>boosting | CNN |  |  |
|----------|------------------------|----------------------|-----|--|--|
| Accuracy | 80%                    | 76%                  | 74% |  |  |



#### Deployment

In the deployment phase, we put our models into action within the real-world context of Standard Bank's home loan application process. This ensures that our predictive solutions are actively contributing to quicker, more informed decisions.

#### Conclusion

Our journey through the data science lifecycle has brought us valuable insights and promising results. Logistic Regression, with an 80% accuracy, stands out as a robust choice, closely followed by Gradient Boosting at 76% and the CNN model at 74%. This project underscores the potential of data-driven decision-making, and it's a significant step towards enhancing the efficiency and customer experience in home loan applications at Standard Bank.

# Thank you for your attention