Developing a Statistical Early-Warning System for Cholera using Socio-Economic indicators

Howard Lei, Farnaz Ganjeizadeh, Shervin Baharmand, and Andishe Almasi

Introduction

- Early warning systems for disease outbreaks help predict medication demand, with business and supply-chain management implications
- Use of socio-economic indicators in a statistical framework a low-cost, minimally invasive approach
- Up to 2-year ahead predictions made for 10 African countries across 8-years (2004-2011)

Countries examined

Benin

Malawi

Burundi

Mozambique

Green indicators have high-

infections-to-population ratio

correlation w/ Cholera

Blue indicators have best

classification performance

Cameroon

Nigeria

Democratic Republic of Congo • Tanzania

Ghana

Togo

Socio-economic indicators examined

- Adolescent fertility rate
- Agriculture, value added (% of GDP)
- CO2 emissions (metric tons per capita)
- Exports of goods and services (% of GDP)
- External debt stocks
- Fertility rate (births per woman)
- Foreign direct investment
- Forest area (sq. km)
- GDP at market prices (current US\$)
- GDP growth (annual %)
- GNI per capita, Atlas method
- Gross National Income (GNI), Atlas method
- Immunization (measles)
- Imports of goods and services (% of GDP)
- Improved sanitation facilities (% of population with access)
- Improved water source (% of population with access)
- Industry, value added (% of GDP)
- Inflation, GDP deflator (annual %)
- Life expectancy at birth
- Merchandise trade (% of GDP)
- Mobile cellular subscriptions (per 100 people)
- Mortality rate (under age 5)
- Net barter terms of trade index
- Net migration
- Net ODA received per capita
- Population growth (annual %)
- Prevalence of HIV, total (% of population ages 15-49)
- Services, etc., value added (% of GDP)
- Surface area (sq. km)
- Total debt service (% of GNI)

Cholera infections-to-total population (CTP) ratio histogram

GOAL: Detect countries/years with higher risk of **Cholera infections (i.e. higher CTP-ratio)**

Predicting the CTP-ratio 1 year later (Training data: yrs 1990-2003 Test data: yrs 2004-2012)

Classifier	Socio-economic indicators	False Alarm	Miss	Avg False Alarm and Miss
Logistic Regression	10 highest correlation w/ CTP ratio	0.43	0.11	0.27
Logistic Regression	Improved water source CO2 emissions	0.18	0.37	0.28
Linear Regression	10 highest correlation w/ CTP ratio	0.37	0.26	0.32
Linear Regression	Improved water source CO2 emissions	0.18	0.37	0.28
Perceptron	10 highest correlation w/ CTP ratio	0.58	0.11	0.35
Perceptron	Improved water source CO2 emissions	0.52	0.32	0.42
SVM	10 highest correlation w/ CTP ratio	0.36	0.32	0.34
SVM	Improved water source CO2 emissions	0.06	0.42	0.24
Decision Tree	10 highest correlation w/ CTP ratio	0.54	0.26	0.40
Decision Tree	Improved water source CO2 emissions	0.45	0.32	0.39

Predicting the CTP-ratio 2 years later (Training data: yrs 1990-2003 Test data: yrs 2004-2011)

Classifier	Socio-economic indicators	False Alarm	Miss	Avg False Alarm and Miss
Logistic Regression	10 highest correlation w/ CTP ratio	0.40	0.11	0.26
Logistic Regression	Improved water source CO2 emissions	0.08	0.42	0.25
Linear Regression	10 highest correlation w/ CTP ratio	0.53	0.00	0.27
Linear Regression	Improved water source CO2 emissions	0.08	0.42	0.25
Perceptron	10 highest correlation w/ CTP ratio	0.40	0.21	0.31
Perceptron	Improved water source CO2 emissions	0.20	0.37	0.29
SVM	10 highest correlation w/ CTP ratio	0.35	0.21	0.28
SVM	Improved water source CO2 emissions	0.08	0.42	0.25
Decision Tree	10 highest correlation w/ CTP ratio	0.02	0.89	0.46
Decision Tree	Improved water source CO2 emissions	0.08	0.32	0.20

Summary

- Importance of 2 socio-economic indicators:
 - Improved water source
 - CO2 emissions

Note: Bacterium for Cholera transmitted through water

- **Decision tree classifier** with the 2 indicators gives lowest avg. error for 2-year ahead prediction
- Individual classifiers biased towards either false alarm or miss errors
 - Minimizing miss error ensures enough medication production
 - Minimizing false alarm error results in cost savings, potentially at the risk of not detecting countries/years with higher Cholera infections