Ex 1. Suppose $A = \mathbb{k}Q/I$ is a bounded path algebra.

- 1. Find an example of finite acyclic quiver Q (with I=0) so that
 - every indecomposable projective A-module is uniserial, but
 - there exists a non-uniserial indecomposable injective A-module.
- 2. Let e_x be the primitive idempotent associated to a vertex $x \in Q_0$. Describe (with reason) the bounded quiver (Q'', I'') so that $kQ''/I'' \cong A/Ae_xA$.
- 3. Consider the guiver

$$Q = \left(\begin{array}{c} \stackrel{\alpha}{\bigcap}_{\beta} \\ 1 \xrightarrow{\beta} 2 \end{array} \right) \quad \text{with } I = \langle \alpha^2 \rangle.$$

Describe the radical series and socle series of each indecomposable projective A-module.

- 4. Show that if $M \to N$ is a sujrective A-module homomorphism, then the length of the radical series of M is at most that of N.
- **Ex 2.** Consider the Kronecker quiver $Q = (1 \xrightarrow{\alpha \atop \beta} 2)$.
 - 1. Let A be the algebra given by

$$\begin{pmatrix} \mathbb{k} & \mathbb{k}^2 \\ 0 & \mathbb{k} \end{pmatrix} = \left\{ \begin{pmatrix} a & (b_1, b_2) \\ 0 & c \end{pmatrix} \mid a, b_1, b_2, c \in \mathbb{k} \right\}$$

with multiplication

$$\begin{pmatrix} a & (b_1, b_2) \\ 0 & c \end{pmatrix} \begin{pmatrix} a' & (b'_1, b'_2) \\ 0 & c' \end{pmatrix} = \begin{pmatrix} aa' & (ab'_1 + b_1c', ab'_2 + b_1c') \\ 0 & cc' \end{pmatrix}.$$

Show that $A \cong \mathbb{k}Q$.

2. Consider the algebra B given by

$$\left\{ \begin{pmatrix} a & (b_1, b_2) \\ 0 & a \end{pmatrix} \mid a, b_1, b_2 \in \mathbb{k} \right\},\,$$

i.e. the subring of A where the diagonal entries are required to be the same. Find bound quiver (Q', I') such that $B \cong \mathbb{k}Q'/I'$.

- 3. Find an indecomposable B-module M of length 4 and of Loewy length 3.
- 4. Explain why every A-module has a natural B-module structure and find an indecomposable B-module that does not arise from an indecomposable A-module in this way.

Ex 3. Consider the truncated polynomial ring $B = \mathbb{k}[x]/(x^2)$ and let S be its unique simple module $S = \mathbb{k}y$.

- 1. Find a basis for the Hom-spaces $\operatorname{Hom}_B(X,Y)$ for $X,Y \in \{B,S\}$. Note: One of these spaces have dimension 2, and all other have dimension 1.
- 2. Show that $\operatorname{End}_B(S \oplus B)$ is isomorphic to the algebra given by

$$\left\{ \begin{pmatrix} a & b & c \\ 0 & x & y \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, x, y \in \mathbb{k} \right\}$$

with usual matrix multiplication.

3. Find the bound path algebra presentation of $A := \operatorname{End}_B(S \oplus B)$, i.e. a k-algebra isomorphism $A \cong kQ/I$.

Ex 4. Let A be a finite-dimensional k-algebra and I an ideal of A. Let $\pi: A \to A/I$ be the natural projection.

- 1. Show that $\pi_*(M) := M$ defines a functor $\text{mod} A/I \to \text{mod} A$.
- 2. Explain why π_* is fully faithful, but not dense in general.

Consider a category C with objects $\{a, a'\}$ and

- $C(x,x) = \{id_x\}$ for both $x \in \{a, a'\}$.
- $C(a, a') = \{f\} \text{ and } C(a', a) = \{g\}$
- such that gf = id and fg = id.

Consider also a category \mathcal{D} with object $\{b\}$ and $\mathcal{D}(b,b) = \{id_b\}$.

3. Show that $\mathcal C$ and $\mathcal D$ are equivalent but not isomorphic.