Тема 4. Аксиоматика и геометрические вероятности

Аксиоматика теории вероятностей

Как корректно определить вероятности на подмножествах (событиях) некоторого множества Ω , содержащего бесконечное число элементарных событий ω ? Например, для пространства Ω = [0, 1], в котором элементарными событиями ω являются точки отрезка. Прежде всего, необходимо определиться со свойствами, которым должна удовлетворять вероятностная мера (кратко — вероятность). Естественно потребовать выполнения для вероятностной меры следующих трёх аксиом, предложенных А. Н. Колмогоровым в 1933 году:

- 1) **Р**(A) \ge 0 для любого события A;
- 2) $P(\Omega) = 1$;
- 3) $\mathbf{P}(\bigcup \mathbf{A}_i) = \sum \mathbf{P}(\mathbf{A}_i)$ для любых попарно непересекающихся (несовместных) событий $\mathbf{A}_1, \mathbf{A}_2, \ldots$

Третья аксиома, называемая свойством *счётной аддитивности* вероятности, наименее очевидна. Её смысл таков: если множество (*торт*) разделено на конечное или <u>счётное</u> число частей (*кусков*), то вероятность (*объём*) множества равна сумме вероятностей всех частей. Эта аксиома нужна для возможности перехода к пределу при вычислении вероятностей (сумма ряда есть предел).

В следующей задаче для описания эксперимента необходимо использовать пространство Ω , содержащее бесконечное число исходов ω .

Задача о ключах. У человека m ключей, из которых только один открывает дверь. Ключи пробуются наудачу и не подошедшие ключи не откладываются. Найти вероятность, что потребуется ровно i попыток, чтобы открыть дверь.

Решение. Обозначим интересующее нас событие через A_i . Выясним, как устроено пространство элементарных событий Ω . Эксперимент состоит из многократных испытаний ключей без откладывания. Результаты этих испытаний описываются бесконечной последовательностью $\omega = (i_1, i_2, ...)$, где i_k — это номер ключа (от 1 до m), использованного при k-й попытке. Таких последовательностей бесконечно много. Как определить вероятности для подмножеств из пространства $\Omega_m = \{\omega\}$, в частности, для событий A_i ?

Отметим также, что недопустимо использовать параметр i при описании вероятностного пространства, так как он связан с конкретным событием, вероятность которого требуется вычислить, а не с самим экспериментом по испытанию ключей.

Рассмотрим для n=1,2,... вложенные пространства $\Omega_n=\{\omega_n\}$, где $\omega_n=(i_1,i_2,...,i_n)$. Каждое из них описывает n-кратный выбор наудачу с возвращением ключей из связки с m занумерованными ключами. Для $n\geq i$ нетрудно подсчитать вероятность интересующего нас события в пространстве Ω_n :

$$\mathbf{P}_{n}(\mathbf{A}_{i}) = (m-1)^{i-1} \cdot 1 \cdot m^{n-i} / m^{n} = (1/m)(1 - 1/m)^{i-1}.$$
 (1)

Объясним эту формулу. Пусть дверь открывает ключ с номером 1. Чтобы дверь открылась в точности при i-ой попытке, необходимо, чтобы при попытках с номерами от 1 до i-1 появлялись ключи с номерами 2, 3, ..., m; при i-ой попытке использовался ключ номер 1; при остальных (n-i) попытках пробовались ключи с любыми номерами (предполагается, что в любом случае осуществляются все n испытаний ключей, невзирая на то, открылась дверь при i-ой попытке или не открылась).

Так как при увеличении параметра n пространства Ω_n «раздуваются», приближаясь к Ω_∞ , то естественно определить $\mathbf{P}(\mathsf{A}_i)$ как $\lim_{n\to\infty}\mathbf{P}_n(\mathsf{A}_i)$. Но $\mathbf{P}_n(\mathsf{A}_i)$ не зависит от n согласно формуле (1). Поэтому разумно считать, что правая часть формулы (1) задаёт искомую вероятность $\mathbf{P}(\mathsf{A}_i)$ в пространстве Ω_∞ .

Из решения задачи о ключах возникает идея определять вероятности произвольных событий из пространства Ω_{∞} как пределы (*если они существуют*) вероятностей соответствующих событий в пространствах Ω_n (*если они там определены*). Однако более конструктивным является другой подход: не устраивать предельный переход для каждого конкретного события, а сразу определить вероятностную меру на подмножествах пространства Ω_{∞} . Почему такой подход предпочтительнее?

Например, рассмотрим событие

$$\mathsf{B} = \{\mathsf{дверь} \ \mathsf{откроется} \ \mathsf{когда}\text{-нибудь}\} = \bigcup_{i=1}^\infty \mathsf{A}_i.$$

Последнее равенство в этой формуле означает, что если дверь открылась, то это случилось либо при первой попытке, либо при второй, либо при третьей, ... , т. е. произошло хотя бы одно из событий A_i , i=1,2,...

Заметим, что событие В <u>не принадлежит</u> ни одному из Ω_n : зная только результаты первых n испытаний ключей, нельзя сказать, появится ли $i_k=1$ при k>n в бесконечной последовательности $\omega=(i_1,i_2,\ldots)$. Тем не менее интуитивно очевидно, что в конце концов дверь непременно откроется, т.е. событие В обязательно произойдёт. Поэтому при корректном определении вероятностной меры на подмножествах пространства Ω_∞ вероятность ${\bf P}({\bf B})$ должна быть равна 1.

Убедимся в этом с помощью аксиомы счётной аддитивности вероятности. Так как события A_1, A_2, \ldots несовместны (не могут произойти одновременно), то, применяя формулу (1) и формулу суммы бесконечной геометрической прогрессии со знаменателем q = 1 - 1/m, получаем:

$$\mathbf{P}(\mathsf{B}) = \sum_{i=1}^{\infty} \mathbf{P}(\mathsf{A}_i) = \frac{1}{m} \sum_{i=1}^{\infty} (1 - 1/m)^{i-1} = (1 - q) \sum_{i=0}^{\infty} q^i = (1 - q) \cdot \frac{1}{1 - q} = 1.$$

Итак, возникает проблема, как определить вероятностную меру на подмножествах пространства Ω_{∞} , частности, — для множества В. К сожалению, оказалось, что вероятностную меру, удовлетворяющую трём приведённым выше аксиомам, невозможно определить <u>на всех</u> подмножествах пространства Ω_{∞} . Также нельзя её определить для всех подмножеств отрезка [0, 1] и для ряда других пространств, состоящих из бесконечного числа ω . Неформально говоря, причина заключается в том, что некоторые подмножества таких пространств очень сложно устроены (рис. 1).

Рис. 1

Выход состоит в том, что <u>вероятности определяются</u> не для всех подмножеств пространства Ω, а <u>только для достаточно широкого класса подмножеств</u>, которые, собственно, и называются *событиями*. Какими «естественными» свойствами должен обладать класс событий?

Прежде всего, он должен быть *замкнут* относительно операций пересечения, объединения и дополнения своих элементов (событий). Действительно, если A и B — события, то представляется разумным, что событиями также должны быть: пересечение $A \cap B = \{$ произошли и A, и B $\}$, объединение $A \cup B = \{$ случилось A или случилось B $\}$, дополнение $\overline{A} = \{$ A не произошло $\}$.

Ввиду аксиомы счётной аддитивности необходимо также потребовать замкнутости класса относительно операции счётного объединения событий. Тогда из очевидной **формулы Буля**

$$\overline{\bigcap A_i} = \bigcup \overline{A}_i$$

вытекает замкнутость класса также и относительно операции счётного пересечения событий.

Помимо замкнутости класс событий должен содержать пустое множество, само Ω и некоторые «простейшие» подмножества Ω , на которых вероятность определяется естественным образом. Например, в задаче про ключи такими подмножествами являются события, описываемые условиями на конечное число координат i_k элементарного события $\omega = (i_1, i_2, \ldots)$, т. е. подмножества, принадлежащие пространству Ω_n при некотором n. В частности, события A_i из задачи о ключах — «простейшие», а событие B — нет.

В свою очередь, для пространства $\Omega = [0,1]$ «простейшими» событиями служат интервалы (a,b), где 0 < a < b < 1. Вероятность интервала (a,b) естественно определяется как его длина b-a. При этом вероятность, что взятая наудачу из отрезка [0,1] точка окажется внутри интервала заданной длины Δ , не зависит от местонахождения интервала внутри отрезка [0,1] (рис. 2). Это вполне согласуется с интуитивным представлением об совершенно случайном выборе точки.

Как устроены произвольные события из несчётного пространства Ω ? Нестрого говоря, они являются теми множествами, которые можно сколь угодно хорошо приблизить счётными объединениями простейших событий. В частности, события на отрезке [0,1] — это множества, для которых определено понятие длины как меры $\textit{Лебега.}^1$ Процесс построения меры Лебега технически сложен. Поэтому мы не будем здесь его рассматривать.

Можно доказать, что следствием вероятностных аксиом являются

Свойства непрерывности вероятности

- 1) Пусть события вложены и сужаются: $A_1 \supseteq A_2 \supseteq \dots$ Тогда $\mathbf{P}(\bigcap A_i) = \lim_{i \to \infty} \mathbf{P}(A_i)$.
- 2) Пусть события вложены и расширяются: $\mathsf{B}_1 \subseteq \mathsf{B}_2 \subseteq \dots$. Тогда $\mathbf{P}(\bigcup \mathsf{B}_i) = \lim_{i \to \infty} \; \mathbf{P}(\mathsf{B}_i)$.

Вычисление пределов, стоящих справа, позволяет находить вероятности событий, которые представляются в виде счётных пересечений или счётных объединений вложенных событий.

Геометрические вероятности

Вероятность можно определить не только для подмножеств отрезка [0,1], но и для множеств, находящихся на плоскости, в трёхмерном пространстве и в n-мерном пространстве.

Если пространством Ω является единичный квадрат [0,1] х $[0,1] = [0,1]^2$, т. е. элементарным событием (исходом) служит точка $\omega = (x,y)$, выбранная наудачу из $[0,1]^2$, то вероятность $\mathbf{P}(A)$ определяется как *площадь* множества A (рис. 3).

¹ Анри Леон Лебе́г (1875-1941) — французский математик, наиболее известный как автор теории интегрирования, обобщающей обычное определение интеграла на более широкий класс функций.

Площади сложных фигур с криволинейной границей можно вычислять на основе свойства непрерывности, накрывая фигуры сеткой и уменьшая длину ребра ячейки сетки вдвое. При этом сумма площадей ячеек, оказавшихся целиком внутри фигуры, будет стремиться к площади фигуры.

Если пространством исходов Ω является единичный куб $[0,1]^3$, т. е. исходом служит $\omega = (x,y,z)$, выбранная наудачу из $[0,1]^3$, вероятность **P**(A) определяется как *объём* множества A (рис. 4).

Аналогично, при выборе точки $\omega = (x_1, x_2, ..., x_n)$ наудачу из n-мерного единичного куба $[0,1]^n$, вероятность $\mathbf{P}(A)$ определяется как n-мерный объём множества A в смысле меры Лебега.

Домашнее задание

Если 3-й буквой вашего имени является:

А, Б, В, Г, Д, Е, Ё, то «своими» являются задачи 4.1 и 4.5 (вариант 1); **Ж, 3, И, Й, К, Л, М,** то «своими» являются задачи 4.2 и 4.6 (вариант 2); **Н, О, П, Р,** то «своими» являются задачи 4.3 и 4.7 (вариант 3); **С, Т, У, Ф, Х, Ц, Ч, Ш, Щ, Ъ, Ы, Ь, Э, Ю, Я**, то «своими» являются задачи 4.4 и 4.8 (вариант 4).

Решать надо ТОЛЬКО «свои» задачи. Если задача содержит пункты а) и б), то только «свой» пункт. Если «своя» задача уже решена на семинаре, то вместо неё можно решать задачу с номером 5 – N, где N — номер варианта. Если и задача с номером 5 – N тоже была решена на семинаре, то вместо первой «своей» задачи можно решать задачу с номером 9 – N. Дополнительно можно решать задачу с номером 9, но она будет засчитана лишь в том случае, если правильно решены обе «свои» задачи.

4.1) Две точки выбираются наудачу из [0, 1]. Какова вероятность, что из отрезков, на которые они разбивают [0, 1], можно составить треугольник? Изобразить искомое событие как фигуру из $[0, 1]^2$. 4.2) Точка $\omega = (x_1, x_2, \dots, x_n)$ взята наудачу из n-мерного единичного куба $[0, 1]^n$. Найти вероятность, что наибольшая из координат x_i не превосходит числа a, где 0 < a < 1.

- 4.3) Точка $\omega = (x_1, x_2, ..., x_n)$ взята наудачу из n-мерного единичного куба $[0,1]^n$. Найти вероятность, что наименьшая из координат x_i не превосходит числа b, где 0 < b < 1. (Указание. Найдите $P(\overline{A})$.)
- 4.4) Точка $\omega = (x_1, x_2, \dots, x_n)$ взята наудачу из n-мерного единичного куба $[0,1]^n$. Определим две случайные величины: $X(\omega) = \min\{x_1, x_2, \dots, x_n\}, \ Y(\omega) = \max\{x_1, x_2, \dots, x_n\}.$ Найти $\mathbf{P}(X \le x, Y \le y)$ в случае: a) 0 < x < y < 1; б) 0 < y < x < 1. (Указание. Найдите сначала $\mathbf{P}(X > x, Y \le y)$.)
- 4.5) Наудачу берётся хорда в круге. Чему равна вероятность, что её длина больше длины стороны вписанного равностороннего треугольника? Определите проведение хорды наудачу двумя способами, которые приводят к разным ответам.
- 4.6) Два игрока по очереди бросают игральную кость. Выигрывает тот игрок, у кого раньше выпадет шестёрка. Какова вероятность выигрыша для игрока, бросающего кость первым? Сравнить её с 1/2.
- 4.7) Двое договорились встретиться в определённом месте между 6 и 7 часами. Каждый из пришедших ждёт другого: а) 20 минут; б) 15 минут после чего уходит. Какова вероятность, что встреча состоится? (Предполагается, что приход каждого в течение часа происходит наугад.)
- 4.8) Коэффициенты p и q квадратного уравнения: a) $px^2 + x + q = 0$; б) $x^2 + px + q = 0$ выбираются наудачу из отрезка [0,1]. Какова вероятность, что оно имеет действительные корни? 4.9)* Точка $\omega = (x_1, x_2, \ldots, x_n)$ взята наудачу из n-мерного единичного куба $[0,1]^n$. Обозначим через Z k-ю величину в порядке возрастания среди координат x_1, x_2, \ldots, x_n . Найти $\mathbf{P}(Z \le x)$, где 0 < x < 1. (Указание. Найдите сначала вероятность, что число x не превосходят ровно x_1, x_2, \ldots, x_n , где x_1, x_2, \ldots, x_n , где x_2, \ldots, x_n что представляет собой такое подмножество единичного куба x_1, x_2, \ldots, x_n .