Remark 0.1. On a vector space V there can be many inner products.

Example 0.2

- if $\langle \cdot, \cdot \rangle$ is an inner product, then so is $c \langle \cdot, \cdot \rangle$ for c > 0 in \mathbb{R}
- if $\phi: V \to V$ is an isomorphism, then also $\langle x, y \rangle' = \langle \phi(x), \phi y \rangle$
- if V = C[a, b] is a vector space of continuous products (a < b), where $\mathbb{F} = \mathbb{R}$). Then $\langle f(x), f(y) \rangle = \int_a^b f(t)g(t) dt$ is an inner product.
- if V = C[a, b] is a vector space of continuous products (a < b), where $\mathbb{F} = \mathbb{C}$). Then $\langle f(x), f(y) \rangle = \int_a^b f(t) \overline{g(t)} \, dt$ is an inner product.

Here, if $f(x) \in C[a, b]$, write $f(x) = f_1(x) + i f_2(x)$, where $f_1, f_2 \in \mathbb{R}$. Define

$$\int_a^b f(t) dt = \int_a^b f_1 dt + i \int_a^b f_2 dt.$$

Then

$$\overline{\int f(t) \, \mathrm{d}t} = \int \overline{f(t) \, \mathrm{d}t}$$

and

$$\int (f(t) + cg(t)) dt = \int f(t) dt + c \int g(t) dt.$$

Definition 0.3.

H is the inner product space $C[0, 2\pi]$, $\mathbb{F} = \mathbb{C}$, with $\langle f, g, = \rangle \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$.

Theorem 0.4

Let V be an inner product space with the inner product $\langle \cdot, \cdot \rangle$.

- a) $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- b) If for all $x \in V \setminus \langle x, y \rangle = \langle x, z \rangle$, then y = z

Proof.

- a) If x=0, then $\langle x,x\rangle=0$. Otherwise, $\langle x,x\rangle>0$
- b) If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then $\langle x, y z \rangle = 0$. Therefore, taking x = y z, we obtain y z = 0.

Definition 0.5.

The **norm** or **length** of $x \in V$ is $\left\| \sqrt{\langle x, x \rangle} \right\| \ge 0$

Example 0.6

If $V = \mathbb{F}^n$ with the standard inner product $\langle a, b \rangle = \sum a_i \overline{b_i}$, then

$$\sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_n|^2}$$

Theorem 0.7

Let V be an inner product space. Then the following holds:

a)
$$||cx|| = |c|||x||$$
 for all $c \in \mathbb{F}$ and $x \ inV$

b)
$$||x|| = 0 \Leftrightarrow x = 0$$

c)
$$|\langle x, y \rangle| \le ||x|| ||y||$$
 (Cauchy-Schwarz)

d)
$$||x + y|| \le ||x|| + ||y||$$
 (Triangle Inequality)

Proof. a)
$$||cx|| = \sqrt{\langle cx, cx \rangle} = \sqrt{c\overline{c}\langle x, x \rangle} = |c|||x||$$

- b) Exercise.
- c) Note that if y = 0, the inequality holds. Suppose now $y \neq 0$. Note the following:

$$0 \le \langle x + cy, x + cy \rangle = \langle x, x + cy \rangle + c \langle y, x + cy \rangle \tag{1}$$

$$= \langle x, x \rangle + \overline{c} \langle x, y \rangle + c \langle y, x \rangle + c \overline{c} \langle y, y \rangle \tag{2}$$

Plugging in $c = -\frac{\langle x,y \rangle}{\langle y,y \rangle} = -\langle x, (\|y\|)^2 \rangle$, we obtain

$$0 \le ||x||^2 - \frac{|\langle x, y \rangle|}{||y||^2},$$

and thus $|\langle x, y \rangle \le ||x|| ||y|||$

Consider
$$||x+y||^2 \le (||x|| + ||y||)^2$$
. Note that $\langle x+y, x+y \rangle = \langle x, x \rangle + 2\Re \langle x, y \rangle + \langle y, y \rangle$

For the standard innerp product on \mathbb{F}^n , from Cauchy-Schwarz it follows that $\left|\sum_{i=1}^n a_i b_i\right| \leq \sqrt{\sum |a_i|^2} \sqrt{\sum |b_i|^2}$ and by Triangle Inequality $\left|\sum_{i=1}^n a_i b_i\right| \leq \sqrt{\sum |a_i|^2} \sqrt{\sum |b_i|^2}$