Last Lecture Review

- Canonical Form of Boolean Function?
 - Sum of Minters
 - Product of Maxterms
- Minterms?
 - AND terms containing all variables, for input value=1 the variable is unprimed and for input value=0 the variable is primed
- Maxterms?
 - OR terms containing all variables, for input value=1 the variable is primed and for input value=0 the variable is unprimed
- Sum of minterms?
 - Take those minterms where the function is 1
- Product of Maxterms?
 - Take those maxterms where the function is 0

Canonical Form Conversion

- A function represented as Sum of minterms can be represented as the Product of maxterms of the remaining terms.
- The complement of a function expressed in sum of minterms equals the sum of minterms missing from the original function

• $F(A, B, C) = \sum (0, 3,4) = m_0 + m_3 + m_4$ • $F'(A, B, C) = \sum (1,2,5,6,7) = m_1 + m_2 + m_5 + m_6 + m_7$

 Now if we take the complement of F' using DeMorgan's theorem, we obtain F in the product of maxterms form:

• (F')' = $(m_1+m_2+m_5+m_6+m_7)$ ' • $F = m_1' \cdot m_2' \cdot m_5' \cdot m_6' \cdot m_7'$ • $= M_1M_2M_5M_6M_7$ • $= \prod(1,2,5,6,7)$ [Complement of minterms] [maxterms]

This implies the following relation:

• m'j = Mj

• So sum of minterms: $\sum (0,3,4) = \text{product of maxterms: } \prod (1,2,5,6,7)$

Table A: Conversion of Forms

Desired Form

Give n Form		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'	
	Minterm Expansion of F	-		List minterms not present in F	Maxterm nos are same as minterm nos of F	
	Maxterm Expansion of F	minterm nos are those nos, not on the maxterm list of F	-	minterm nos are same as maxterm nos of F	List maxterms not present in F	

Table B: Application of Table A

Desired Form

Gi ve n Fo rm		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'		
	F=∑(3,4,5,6,7)	-	F=π(0,1,2)	∑(0,1,2)	π(3,4,5,6,7)		
	F=π(0,1,2)	∑(3,4,5,6,7)	-	∑(0,1,2)	π(3,4,5,6,7)		

Conversion to Sum of minterms: By algebraic method

- Each term is inspected to see if it contains all variables. If it misses one or more can be ANDed with an expression such as x+x', where x is missing
- Example
 - Express F in Sum of Minterms F(A,B,C) = A + B' CA = A (B+B') = AB + AB'=AB(C+C') + AB'(C+C')=ABC + ABC' + AB'C + AB'C' B'C = B'C (A+A')= AB'C + A'B'CF = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C= A'B'C + AB'C' + AB'C + ABC' + ABC m1 + m4 + m5 + m6 + m7 $F(A,B,C) = \Sigma (1, 4, 5, 6, 7)$

Conversion to Product of maxterms : By algebraic method

- The function can be expressed as Product of Sum by bringing into OR form by distributive law
 - x + yz = (x+y) (x+z)
 any missing term Ored with xx'

```
Example
```

```
F = xy + x'z
= (xy + x') (xy + z)
= (x' + x) (x' + y) (x + z) (y + z)
= (x' + y + zz') (x + yy' + z) (xx' + y + z)
= (x' + y + z) (x' + y + z') (x + y + z) (x + y' + z)
x + y + z) (x' + y + z)
M_4 M_5 M_0 M_2
F(A,B,C) = \prod (0, 2, 4, 5)
```

Standard Forms

- Standard forms are those forms that allow the terms forming the function to consist of any number of the variables.
- There are two standard forms:
 - sum of products (SOP)
 - product of sums (POS)

Sum of Products

- The Sum of Products (SOP) is a Boolean expression containing AND terms, called product terms, of one or more literals each.
 - $F_1 = y' + xy + x'yz'$

Product of Sums

 The Product of Sums (POS) is a Boolean expression containing OR terms, called sum terms, of one or more literals each.

•
$$F_2 = x(y' + z)(x' + y + z')$$

Non Standard Form

F3 = AB + C(D + E)

Two Level Implementation

standard type two-level

(a) Sum of Products

(b) Product of Sums

Conversion from Nonstandard to Standard Form

A Boolean function may be expressed in a nonstandard form (fig 2.4a shows a function that is neither in sum of products nor in product of sums). It has three levels of gating It can be converted to a standard form (Sum of product) by using distributive law to remove parenthesis

Possible Functions

- n variable can give how many possible functions?
- Answer = 2^{2^n}

Other Logic Operations

- Given two Boolean variables:
 - When binary operators AND and OR are placed between two variables they form two Boolean functions x . y and x + y
 - there are 2^{2^2} = 16 combinations of the two variables as there are 2^{2^n} possible functions for n binary variables (we will see the details of these 16 functions in next slides)
 - each combination of the variables can result in one of two values, 0 or 1, therefore there are 2⁴=16 functions (combinations of 0's and 1's for the four combinations, 00,01,10,11)
- AND and OR represent two of the 16 possible functions.

Function Combinations

x	y	$\mathbf{F_0}$	$\mathbf{F_1}$	F ₂	F ₃	F ₄	F5	F6	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- F₁ represents the AND Operation
- F₇ represents the OR Operation
- There are 14 other functions

The End