```
options = optimoptions('fmincon', "Display","iter","Algorithm","sqp");
fun = @(x)(x(1) + x(2) + x(3));
lb = [100, 1000, 1000, 10, 10, 10, 10];
ub = [10000, 10000, 10000, 10000, 1000, 1000, 1000];
A = [];
b = [];
Aeq = [];
beq = [];
```

generate random number and load non linear constraint

```
x0 = randn(8,1,"double")

x0 = 8×1
    -1.2075
    0.7172
    1.6302
    0.4889
    1.0347
    0.7269
    -0.3034
    0.2939

nonlcon = @conQ3;
```

solve the equation

```
[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)
```

Your initial point x0 is not between bounds 1b and ub; FMINCON shifted x0 to satisfy the bounds.

shitte	ed x0 to satisf	fy the bounds.				
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	9	2.100000e+03	1.225e+06	1.000e+00	0.000e+00	1.000e+00
1	18	2.100000e+03	5.387e+00	1.000e+00	8.869e+02	6.452e+02
2	52	2.100254e+03	5.387e+00	1.341e-04	1.957e-01	6.452e+02
3	92	2.100284e+03	5.387e+00	1.578e-05	2.319e-02	6.452e+02
4	131	2.100327e+03	5.387e+00	2.254e-05	3.377e-02	6.452e+02
5	163	2.100879e+03	5.385e+00	2.737e-04	4.365e-01	6.451e+02
6	190	2.104596e+03	5.376e+00	1.628e-03	2.924e+00	6.447e+02
7	199	4.783568e+03	2.164e-07	1.000e+00	2.073e+03	1.109e+02
8	208	4.703215e+03	7.926e-11	1.000e+00	5.895e+01	5.032e+00
9	217	4.562402e+03	2.012e-10	1.000e+00	1.024e+02	4.300e+00
10	226	4.534854e+03	4.004e-11	1.000e+00	1.930e+01	4.300e+00
11	235	4.468911e+03	2.005e-09	1.000e+00	4.512e+01	4.300e+00
12	245	4.437674e+03	2.285e-04	1.000e+00	2.092e+01	4.300e+00
13	254	4.335891e+03	2.186e-09	1.000e+00	6.785e+01	2.972e+00
14	264	4.329051e+03	0.000e+00	1.000e+00	6.049e+00	1.000e+00
15	274	4.294884e+03	0.000e+00	1.000e+00	3.023e+01	1.000e+00
16	284	4.263675e+03	1.776e-15	1.000e+00	2.852e+01	1.349e+00
17	294	4.255144e+03	0.000e+00	1.000e+00	1.013e+01	2.126e+00
18	308	4.248812e+03	1.868e-04	2.401e-01	7.452e+00	1.915e+00
19	321	4.241355e+03	5.376e-04	3.430e-01	8.562e+00	1.255e+00
20	332	4.229563e+03	1.051e-03	7.000e-01	1.298e+01	1.255e+00
21	342	4.217127e+03	0.000e+00	1.000e+00	1.261e+01	1.255e+00
22	356	4.208075e+03	4.604e-04	2.401e-01	9.384e+00	1.255e+00
23	375	4.200522e+03	7.962e-04	4.035e-02	7.836e+00	1.255e+00
24	397	4.196869e+03	1.043e-03	1.384e-02	3.957e+00	1.255e+00
25	407	3.963060e+03	5.630e-11	1.000e+00	3.582e+02	8.969e+00
26	418	3.942271e+03	0.000e+00	7.000e-01	1.172e+02	7.913e+00

27	429	3.930700e+03	1.525e-11	7.000e-01	7.647e+01	6.998e+00
28	440	3.924293e+03	1.892e-11	7.000e-01	2.119e+01	6.704e+00
29	451	3.905200e+03	9.861e-12	7.000e-01	1.496e+01	6.520e+00
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
30	462	3.821975e+03	0.000e+00	7.000e-01	8.294e+01	5.969e+00
31	472	3.682481e+03	1.741e-03	1.000e+00	1.416e+02	8.390e-01
32	482	3.679577e+03	0.000e+00	1.000e+00	8.917e+00	2.559e-01
33	492	3.670730e+03	0.000e+00	1.000e+00	4.553e+01	2.011e-01
34	502	3.654445e+03	0.000e+00	1.000e+00	1.420e+02	7.334e-02
35	511	3.652083e+03	0.000e+00	1.000e+00	2.364e+00	2.234e-02
36	520	3.652083e+03	0.000e+00	1.000e+00	6.127e-09	4.851e-13

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

 $x = 8 \times 1$

10³ ×

0.1000

1.0000

2.5521

0.0100

0.0100 0.3900

0.3142

0.4900

fval = 3.6521e+03