BINOMIAL THEOREM

OBJECTIVE PROBLEMS

1.	The coefficien	nts of x^2 , x^3 in the exp	oansion of (3+kx)	⁹ are equal. Then k =		
	1) 1	2) 2	3) 3	4) 9/7		
2.	If the coeffici	ent of rth, (r+1)th ar	nd (r+2)th terms	in (1+x) ¹⁴ are in A.P., t	hen the value	
	of r is					
	1) 9	2) 10	3) 11	4) 8		
3.	The coefficien	nts in the 5^{th} , 6^{th} , 7^{th}	terms in the exp	ansion of (1+x) ⁿ are in A	A.P. Then n =	
	1) 6	2) 7	3) 8	4) 9		
4.	16 th term in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ is					
	(a) $136xy^7$	(b) 136 <i>xy</i>				
	(c) $-136 xy^{15/2}$	(d) $-136 xy^2$				
5.	If the coefficient	nts of T_r, T_{r+1}, T_{r+2} term	ns of $(1+x)^{14}$ are in	$\mathbf{A.P.}$, then $r =$		
	(a) 6	(b) 7				
	(c) 8	(d) 9				
6.	If p and q be p	ositive, then the coef	ficients of x^p and	1_{x^q} in the expansion of	$(1+x)^{p+q}$ will be	
	(a) Equal					
	(b) Equal in mag	gnitude but opposite in	n sign			
	(c) Reciprocal to	each other				
	(d) None of these	e				
7.	If the coefficie	ents of r^{th} term and	$(r+4)^{th}$ term are eq	qual in the expansion o	of $(1+x)^{20}$, then	
	the value of r	will be				
	(a) 7	(b) 8				
	(c) 9	(d) 10				
8.	The ratio of th	e coefficient of terms	$\mathbf{s} \ x^{n-r} a^r \mathbf{and} \ x^r a^{n-r} \mathbf{i}$	n the binomial expansio	on of $(x+a)^n$ will	
	be					
	(a) <i>x</i> : <i>a</i>	(b) <i>n</i> : <i>r</i>				
	(c) $x:n$	(d) None of thes	se			

www.sakshieducation.com

9.	If coefficient of $(2r+3)^{th}$ and $(r-1)^{th}$	th terms in the expansion of $(1+x)^{15}$	are equal, then value of
	r is		

(a) 5

(b) 6

(c)4

(d)3

10. In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the coefficient of x^4

- (a) $\frac{405}{256}$
- (b) $\frac{504}{259}$
- (c) $\frac{450}{263}$
- (d) None of these

11. The coefficient of x^{-7} in the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$ will be

- (a) $\frac{462a^6}{b^5}$
- (b) $\frac{462a^5}{h^6}$
- (c) $\frac{-462a^5}{b^6}$
- (d) $\frac{-462a^6}{b^5}$

12. If A and B are the coefficients of
$$x^n$$
 in the expansions of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then

- (a) A = B
- (b) A = 2B
- (c) 2A = B
- (d) None of these

13. If the coefficients of
$$p^{th}$$
, $(p+1)^{th}$ and $(p+2)^{th}$ terms in the expansion of $(1+x)^n$ are in A.P., then

(a)
$$n^2 - 2np + 4p^2 = 0$$

(b)
$$n^2 - n(4p+1) + 4p^2 - 2 = 0$$

(c)
$$n^2 - n(4p+1) + 4p^2 = 0$$

(d) None of these

14. If the coefficients of 5^{th} , 6^{th} and 7^{th} terms in the expansion of $(1+x)^n$ be in A.P., then n=

- (a) 7 only
- (b) 14 only
- (c) 7 or 14
- (d) None of these

15.	If the coefficient of 4 th	term in the expansion	of	$(a+b)^n$ is	56, then	n is
-----	---------------------------------------	-----------------------	----	--------------	-----------------	------

- (a) 12
- (b) 10

(c) 8

(d) 6

16. If the third term in the binomial expansion of $(1+x)^m$ is $-\frac{1}{8}x^2$, then the rational value of m

is

(a) 2

(b) 1/2

(c) 3

(d) 4

17. If the coefficients of p^{th} , $(p+1)^{th}$ and $(p+2)^{th}$ terms in the expansion of $(1+x)^n$ are in A.P., then

- (a) $n^2 2np + 4p^2 = 0$
- (b) $n^2 n(4p+1) + 4p^2 2 = 0$
- (c) $n^2 n(4p+1) + 4p^2 = 0$
- (d) None of these

18. If coefficients of $(2r+1)^{th}$ term and $(r+2)^{th}$ term are equal in the expansion of $(1+x)^{43}$, then the value of r will be

- (a) 14
- (b) 15
- (c) 13
- (d) 16

19. If x^m occurs in the expansion of $\left(x + \frac{1}{x^2}\right)^{2n}$, then the coefficient of x^m is

- (a) $\frac{(2n)!}{(m)!(2n-m)}$
- (b) $\frac{(2n)!3!3!}{(2n-m)!}$
- (c) $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$
- (d) None of these

20. If the coefficients of x^7 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then *n* is

- (a) 56
- (b) 55
- (c) 45
- (d) 15

21. Coefficient of x in the expansion of $\left(x^2 + \frac{a}{x}\right)^5$ is

- (a) $9a^2$
- (b) $10a^3$
- (c) $10a^2$
- (d) 10*a*

22. If the coefficients of second, third and fourth term in the expansion of $(1+x)^{2n}$ are in

A.P., the	en $2n^2 - 9n + 7$ is equal to					
(a) - 1	(b) 0					
(c) 1	(d) $3/2$					
23. If in the	expansion of $(1 + x)^{m} (1 - x)^{m}$	$(x)^n$, the coefficient	of x and x^2 are	3 and – 6 respectively,		
then <i>m</i> is	S					
(a) 6		(c) 12 (d)		10		
24. The coe	efficients of (2r+4) th and	(r-2) th terms in the	expansion of (1+	$(x)^{18}$ are equal. Then $r =$		
1) 6	2) 7	3) 8	4) 4			
25. In the 6	expansion of $(1+x)^{20}$, the	ne coefficients of (r-	+1) th and rth ter	ms are in the ratio 2:1.		
Then r	is					
1) 7	2) 6	3) 5	4) 4			
26. The 21s	st and 22nd terms in th	ne expansion of (1+x	x) ⁴¹ are equal. Tl	hen the value of x is		
1) 1	2) 2	3) 9/7	4) 1/2			
,	Efficient of x^5 in the exp		,) ³⁰ is		
	(b) 9C_5		1 x) 1 1 (1 1 x) 13		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	xpansion of $(1 + 3x + 2x^2)^6$		II. i a			
(a) 144	(b) 288	the coefficient of x	15			
(c) 216	(d) 576					
29. The middle term in the expansion of $\left(x + \frac{1}{x}\right)^{10}$ is						
29. The line	idie term in the expans	SIOII OI $\left(x+\frac{1}{x}\right)$ IS				
(a) ${}^{10}C_4\frac{1}{x}$	(b) 10 C ₅					
(c) ${}^{10}C_5x$	(b) $^{10}C_5$ (d) $^{10}C_7x^4$					
30. If the s	30. If the second, third and fourth term in the expansion of $(x+a)^n$ are 240, 720 and 1080					
respecti	ively, then the value of	n				
(a) 15	(b) 20					
(c) 10	(d) 5					

31.	The term independent of x in	$\left(2x-\frac{1}{2x^2}\right)$) ¹² is
-----	--------------------------------	----------------------------------	---------------------------

- (a) 7930
- (b) 495
- (c)495
- (d) 7920

32. The term independent of x in the expansion $\left(x^2 - \frac{1}{3x}\right)^9$ is

- (a) $\frac{28}{81}$
- (b) $\frac{28}{243}$
- (c) $-\frac{28}{243}$
- (d) $-\frac{28}{81}$

33. In the expansion of
$$(1+x)^n$$
 the coefficient of p^{th} and $(p+1)^{th}$ terms are respectively p and q .

Then p+q=

- (a) n+3
- (b) n+1
- (c) n+2
- (d) n

34. The term independent of x in the expansion of
$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$$
 will be

- (a) 3/2
- (b) 5/4
- (c) 5/2
- (d) None of these

35. The greatest coefficient in the expansion of $(1+x)^{2n+2}$ is

- (a) $\frac{(2n)!}{(n!)^2}$
- (c) $\frac{(2n+2)!}{n!(n+1)!}$

36. The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is

- (a) $(-1)^{n-1}n$
- (b) $(-1)^n (1-n)$
- (c) $(-1)^{n-1}(n-1)^2$
- (d) (n-1)

37. The coefficient of
$$x^4$$
 in the expansion of $(1+x+x^2+x^3)^n$ is

(a) ${}^{n}C_{4}$

- (b) ${}^{n}C_{4} + {}^{n}C_{2}$
- (c) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{4} \cdot {}^{n}C_{2}$ (d) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$

38. If n is even positive integer, then the condition that the greatest term in the expansion of $(1+x)^n$ may have the greatest coefficient also, is

(a)
$$\frac{n}{n+2} < x < \frac{n+2}{n}$$

(b)
$$\frac{n+1}{n} < x < \frac{n}{n+1}$$

(c)
$$\frac{n}{n+4} < x < \frac{n+4}{4}$$

- (d)None of these
- **39.** The term independent of x in the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is

(a)
$$C_0^2 + 2C_1^2 + \dots + (n+1)C_n^2$$
 (b) $(C_0 + C_1 + \dots + C_n)^2$

(b)
$$(C_0 + C_1 + \dots + C_n)^2$$

(c)
$$C_0^2 + C_1^2 + \dots + C_n^2$$
 (d) None of these

- **40.** The coefficient of t^{24} in the expansion of $(1+t^2)^{12}(1+t^{12})(1+t^{24})$ is

(a)
$${}^{12}C_6 + 2$$

(b)
$${}^{12}C_5$$

(c)
$${}^{12}C_6$$

(d)
$$^{12}C_7$$

41.
$$C_1 + 2C_2 + 3C_3 + 4C_4 + \dots + nC_n =$$

(a)
$$2^n$$

(c)
$$n. 2^{n-1}$$

(d)
$$n. 2^{n+1}$$

42. The sum to (n+1) terms of the following series $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$ is

(a)
$$\frac{1}{n+1}$$

(b)
$$\frac{1}{n+2}$$

$$(c)\frac{1}{n(n+1)}$$

(c)
$$\frac{1}{n(n+1)}$$
 (d) None of these

43. The value of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots$ is equal to

$$(a) \frac{2^n - 1}{n + 1}$$

$$(c)\frac{2^n}{n}$$

(d)
$$\frac{2^n+1}{n+1}$$

44.
$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n =$$

(a)
$$\frac{(2n)!}{(n-r)!(n+r)!}$$
 (b) $\frac{n!}{(-r)!(n+r)!}$

(b)
$$\frac{n!}{(-r)!(n+r)}$$

(c)
$$\frac{n!}{(n-r)!}$$

45.	${}^{n}C_{0} - \frac{1}{2} {}^{n}C_{1} + \frac{1}{3} {}^{n}C_{2} - \dots + (-1)^{n}$	$\frac{{}^{n}C_{n}}{n+1} =$	=
-----	--	-----------------------------	---

(a) *n*

(b) 1/n

(c)
$$\frac{1}{n+1}$$

(d) $\frac{1}{n-1}$

46. If $(1+x)^{15} = C_0 + C_1x + C_2x^2 + \dots + C_{15}x^{15}$, then $C_2 + 2C_3 + 3C_4 + \dots + 14C_{15} = C_0 + C_1x + C_2x^2 + \dots + C_{15}x^{15}$

- (a) 14.2¹⁴
- (b) $13.2^{14} + 1$
- (c) $13.2^{14} 1$
- (d) None of these

47. If the sum of the coefficients in the expansion of $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ vanishes, then the value of α is

(a) 2

(b)-1

(c) 1

(d) - 2

48. If the sum of the coefficients in the expansion of $(x-2y+3z)^n$ is 128 then the greatest coefficient in the expansion of $(1+x)^n$ is

- (a) 35
- (b) 20
- (c) 10
- (d) None of these

49. The sum of coefficients in the expansion of $(x + 2y + 3z)^8$ is

(a) 3^8

(b) 5^8

- (c) 6^8
- (d) None of these

50. The sum of coefficients in the expansion of $(1 + x + x^2)^n$ is

(a) 2

(b) 3^{n}

- (c) 4ⁿ
- (d) 2^{n}

51. If $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to

- (a) $\frac{2n-1}{2}$
- (b) $\frac{1}{2}n-1$
- (c) n-1
- (d) $\frac{1}{2}n$

52. If $(1+x)^n = C_0 + C_1x + C_2x^2 + + C_nx^n$, then the value of $C_0 + 2C_1 + 3C_2 + + (n+1)C_n$ will be

- (a) $(n+2)2^{n-1}$
- (b) $(n+1)2^n$
- (c) $(n+1)2^{n-1}$
- (d) $(n+2)2^n$

53. If $a_k = \frac{1}{k(k+1)}$, for k = 1, 2, 3, 4, ..., n, then $\left(\sum_{k=1}^n a_k\right)^2 =$

(a)
$$\left(\frac{n}{n+1}\right)$$

(a)
$$\left(\frac{n}{n+1}\right)$$
 (b) $\left(\frac{n}{n+1}\right)^2$

(c)
$$\left(\frac{n}{n+1}\right)^4$$

(c)
$$\left(\frac{n}{n+1}\right)^4$$
 (d) $\left(\frac{n}{n+1}\right)^6$

54. The value of ${}^{15}C_0^2 - {}^{15}C_1^2 + {}^{15}C_2^2 - \dots - {}^{15}C_{15}^2$ is

$$(b) - 15$$

55. In the expansion of $(1+x)^5$, the sum of the coefficient of the terms is

(a)
$$80$$

56.
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} =$$

(a)
$$\frac{2^n}{n+1}$$

(b)
$$\frac{2^n-1}{n+1}$$

(c)
$$\frac{2^{n+1}-1}{n+1}$$

(d) None of these

57. Coefficients of $x^r[0 \le r \le (n-1)]$ in the expansion of $(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + ... + (x+2)^{n-1}$

(a)
$${}^{n}C_{r}(3^{r}-2^{n})$$

(b)
$${}^{n}C_{r}(3^{n-r}-2^{n-r})$$

(c)
$${}^{n}C_{r}(3^{r}+2^{n-r})$$

(d) None of these

58. The expansion of $\frac{1}{(4-3x)^{1/2}}$ binomial theorem will be valid, if

(a)
$$x < 1$$

(b)
$$|x| < 1$$

(c)
$$-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$$
 (d) None of these

59. In the expansion of $\left(\frac{1+x}{1-x}\right)^2$, the coefficient of x^n will be

(a)
$$4n$$

(b)
$$4n-3$$

(c)
$$4n+1$$

(d) None of these

60.
$$\left(\frac{a}{a+x}\right)^{\frac{1}{2}} + \left(\frac{a}{a-x}\right)^{\frac{1}{2}} =$$

(a)
$$2 + \frac{3x^2}{4a^2} + \dots$$
 (b) $1 + \frac{3x^2}{8a^2} + \dots$

(b)
$$1 + \frac{3x^2}{8a^2} + ...$$

(c)
$$2 + \frac{x}{a} + \frac{3x^2}{4a^2} + \dots$$

(c)
$$2 + \frac{x}{a} + \frac{3x^2}{4a^2} + \dots$$
 (d) $2 - \frac{x}{a} + \frac{3x^2}{4a^2} + \dots$

61. $(r+1)^{th}$ term in the expansion of $(1-x)^{-4}$ will be

(a)
$$\frac{x^r}{r!}$$

(b)
$$\frac{(r+1)(r+2)(r+3)}{6}x^r$$

(c)
$$\frac{(r+2)(r+3)}{2}x^r$$
 (d) None of these

62.
$$\sum_{k=1}^{n} k \left(1 + \frac{1}{n} \right)^{k-1} =$$

(a)
$$n(n-1)$$

(b)
$$n(n+1)$$

$$(c)_n$$

(b)
$$n(n+1)$$
 (c) n^2 (d) $(n+1)^2$

63. If |x| < 1, then the value of

$$1+n\left(\frac{2x}{1+x}\right)+\frac{n(n+1)}{2!}\left(\frac{2x}{1+x}\right)^2+\dots\infty$$
 will be

(a)
$$\left(\frac{1+x}{1-x}\right)^n$$
 (b) $\left(\frac{2x}{1+x}\right)^n$

(b)
$$\left(\frac{2x}{1+x}\right)^{n}$$

$$(c) \left(\frac{1+x}{2x}\right)^n \qquad \qquad (d) \left(\frac{1-x}{1+x}\right)^n$$

(d)
$$\left(\frac{1-x}{1+x}\right)^n$$

64. $1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots$ is equal to

(b)
$$(1+x)^{1/3}$$

(c)
$$(1-x)^{1/3}$$

(d)
$$(1-x)^{-1/3}$$

65. $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots =$

(a)
$$\sqrt{2}$$

(b)
$$\frac{1}{\sqrt{2}}$$

(c)
$$\sqrt{3}$$

(d)
$$\frac{1}{\sqrt{3}}$$

66. The coefficient of x^3 in the expansion of $\frac{(1+3x)^2}{1-2x}$ will be

(a) 8

- (b) 32
- (c) 50
- (d) None of these

67. Coefficient of x^r in the expansion of $(1-2x)^{-1/2}$ is

(a)
$$\frac{(2r)!}{(r!)^2}$$

(b)
$$\frac{(2r)!}{2^r(r!)^2}$$

(c)
$$\frac{(2r)!}{(r!)^2 2^{2r}}$$

(c)
$$\frac{(2r)!}{(r!)^2 2^{2r}}$$
 (d) $\frac{(2r)!}{2^r . (r+1)! . (r-1)!}$

68.	If $ x < 1$, then in the expansion of	$(1+2x+3x^2+4x^3+)^{1/2}$	the coefficient of x^n is
00.	$11 \mid x \mid < 1$, then in the expansion of	$(1 + 2\lambda + 3\lambda + 4\lambda + \dots)$,	α

(a) n

(b) n+1

(c) 1

(d) - 1

69.
$$1 - \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} - \frac{1 \cdot 3 \cdot 5}{8 \cdot 16 \cdot 24} + \dots =$$

(a) $\frac{2}{5}$ (b) $\frac{\sqrt{2}}{5}$

(c) $\frac{2}{\sqrt{5}}$

(d) None of these

70. If a_r is the coefficient of x^r , in the expansion of $(1+x+x^2)^n$, then $a_1-2a_2+3a_3-...-2na_{2n}=$

(a) 0

(b) n

(c)-n

(d) 2n

71. The number of terms in the expansion of $(a+b+c)^n$ will be

(a) n+1

(b) n+3

(c) $\frac{(n+1)(n+2)}{2}$

(d) None of these

72. If a_1, a_2, a_3, a_4 are the coefficients of any four consecutive terms in the expansion of $(1+x)^n$,

then $\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} =$

(c) $\frac{2a_2}{a_2 + a_3}$

73. Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R - [R], where [.] denotes the greatest integer function. The value of R.fis

(a) 4^{2n+1}

(b) 4^{2n}

(c) 4^{2n-1}

(d) 4^{-2n}

74. If the three consecutive coefficient in the expansion of $(1+x)^n$ are 28, 56 and 70, then the value of n is

(a) 6

(b) 4

(c) 8

(d) 10

75. The greatest integer less than or equal to $(\sqrt{2} + 1)^6$ is

(a)196

(b) 197

(c)198

(d) 199

76. Find the value of

$$\frac{(18^3 + 7^3 + 3.18.7.25)}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$

(a) 1

(b)5

(c) 25

(d) 100

77. The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is

(a) 32

(b)33

(c)34

(d)35

78. If $T_0, T_1, T_2, \dots, T_n$ represent the terms in the expansion of $(x+a)^n$, then

$$(T_0 - T_2 + T_4 -)^2 + (T_1 - T_3 + T_5 -)^2 =$$

(a) $(x^2 + a^2)$

(b) $(x^2 + a^2)^n$

(c) $(x^2 + a^2)^{1/n}$

(d) $(x^2 + a^2)^{-1/n}$

79. The number of non-zero terms in the expansion of $(1+3\sqrt{2}x)^9+(1-3\sqrt{2}x)^9$ is

(a) 9

(b) 0

(c)5

(d) 10

80. $x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5 =$

(a) $(x + a)^5$

(b) $(3x + a)^5$

(c) $(x+2a)^5$

(d) $(x+2a)^3$

81. The value of $(\sqrt{5} + 1)^5 - (\sqrt{5} - 1)^5$ is

(a) 252

(b) 352

(c) 452

(d)532

82. $(1+x)^n - nx - 1$ **divisible (where** $n \in N$)

(a) by 2x

(b) by x^2

(c) by $2x^3$

(d) All of these

83. The total number of terms in the expansion of $(x+a)^{100} + (x-a)^{100}$ after simplification will be

(a) 202

(b) 51

(c) 50

(d) None of these

84. $(\sqrt{2}+1)^6 - (\sqrt{2}-1)^6 =$

(a) 101

(b) $70\sqrt{2}$

(c) $140\sqrt{2}$

(d) $120\sqrt{2}$

BINOMIAL THEOREM

HINTS AND SOLUTIONS

1.(d).
$$|T_3| = |T_4|$$

2.(a).
$$T_{r+1} + T_{r+3} = 2T_{r+2}$$

3. (b).

4. (c)
$$T_{16} = {}^{17}C_{15}(\sqrt{x})^2(-\sqrt{y})^{15}$$

= $-\frac{17 \times 16}{2 \times 1} \times xy^{15/2} = -136 xy^{15/2}$

5. (d)
$$T_r = {}^{14}C_{r-1} x^{r-1}$$
; $T_{r+1} = {}^{14}C_r x^r$; $T_{r+2} = {}^{14}C_{r+1} x^{r+1}$

By the given condition $2^{14}C_r = {}^{14}C_{r-1} + {}^{14}C_{r+1}$ (i)

$$\Rightarrow 2 \cdot \frac{14!}{r! \cdot (14-r)!} = \frac{14!}{(r-1)! \cdot (15-r)!} + \frac{14!}{(r+1)!(13-r)!}$$

$$\Rightarrow 4r^2 - 56r + 180 = 0 \Rightarrow r^2 - 14r + 45 = 0$$

$$\implies$$
 $(r-5)(r-9) = 0 \implies r = 5,9$

But 5 is not given. Hence r = 9.

- **6.** (a) Coefficient of x^p is ${}^{(p+q)}C_p$ and coefficient of x^q is ${}^{(p+q)}C_q$. But ${}^{(p+q)}C_p = {}^{(p+q)}C_q$, $(: {}^nC_r = {}^nC_{n-r})$.
- 7. (c) ${}^{20}C_{r-1} = {}^{20}C_{r+3} \Rightarrow 20 r + 1 = r + 3 \Rightarrow r = 9$.
- **8.** (d) Ratio of coefficient of $x^{n-r}a^r$ and x^ra^{n-r} is

$$= \frac{{}^{n}C_{r}}{{}^{n}C_{n-r}} = \frac{{}^{n}C_{r}}{{}^{n}C_{r}} = \frac{1}{1}$$

9. (a) ¹⁵
$$C_{2r+2} = ^{15} C_{r-2}$$

But
$$^{15}C_{2r+2} = ^{15}C_{15-(2r+2)} = ^{15}C_{13-2r}$$

$$\Rightarrow^{15} C_{13-2r} = {}^{15} C_{r-2} \Rightarrow r = 5.$$

10. (a) In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the general term is $T_{r+1} = {}^{10}C_r \left(\frac{x}{2}\right)^{10-r} \cdot \left(-\frac{3}{x^2}\right)^r$

$$= {}^{10} C_r (-1)^r . \frac{3^r}{2^{10-r}} x^{10-r-2r}$$

Here, the exponent of x is $10-3r=4 \Rightarrow r=2$

$$T_{2+1} = {}^{10} C_2 \left(\frac{x}{2}\right)^8 \left(-\frac{3}{x^2}\right)^2 = \frac{10.9}{1.2} \cdot \frac{1}{2^8} \cdot 3^2 \cdot x^4$$
$$= \frac{405}{256} x^4$$

 \therefore The required coefficient = $\frac{405}{256}$.

11. (b) For number of term,

$$(11-r)(1)+r(-2)=-7 \Rightarrow 11-r-2r=-7 \Rightarrow r=6$$

Thus coefficient of x^{-7} is ${}^{11}C_6(a)^5 \left(-\frac{1}{b}\right)^6 = \frac{462}{b^6}a^5$

12. (b) Coefficient of x^n in expansion of $(1+x)^{2n}$ Coefficient of x^n in expansion of $(1+x)^{2n-1}$

$$= \frac{{^{2n}C_n}}{{^{(2n-1)}C_n}} = \frac{(2n)!}{n!n!} \times \frac{(n-1)!n!}{(2n-1)!}$$

$$=\frac{(2n)(2n-1)!(n-1)!}{n(n-1)!(2n-1)!}=\frac{2n}{n}=2:1$$

$$\Longrightarrow \frac{A}{B} = \frac{2}{1} \Longrightarrow A = 2B$$
.

13. (b) Coefficient of p^{th} , $(p+1)^{th}$ and $(p+2)^{th}$ terms in expansion of $(1+x)^n$ are ${}^nC_{p-1}$, nC_p , ${}^nC_{p+1}$.

Then
$$2^n C_p = {}^n C_{p-1} + {}^n C_{p+1}$$

$$\Rightarrow n^2 - n(4p+1) + 4p^2 - 2 = 0$$

14. (c) Coefficient of $T_5 = {}^nC_4, T_6 = {}^nC_5$ and $T_7 = {}^nC_6$

According to the condition, $2 {}^{n}C_{5} = {}^{n}C_{4} + {}^{n}C_{6}$

After solving, we get n=7 or 14.

15. (c) $T_4 = T_{3+1} = {}^nC_3 \ a^{n-3}b^3$

$$\Rightarrow^{n} C_{3} = 56 \Rightarrow \frac{n!}{3! (n-3)!} = 56$$

$$\Rightarrow n(n-1)(n-2) = 56.6 \Rightarrow n(n-1)(n-2) = 8.7.6$$

$$\Rightarrow n=8$$
.

16. (b) We have $(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + ...$

By hypothesis,
$$\frac{m(m-1)}{2}x^2 = -\frac{1}{8}x^2$$

$$\Longrightarrow 4m^2 - 4m = -1 \Longrightarrow (2m - 1)^2 = 0 \Longrightarrow m = \frac{1}{2}.$$

17. (c)
$$T_r = {}^{15}C_{r-1}(x^4)^{16-r} \left(\frac{1}{x^3}\right)^{r-1} = {}^{15}C_{r-1}x^{67-7r}$$

$$\implies 67 - 7r = 4 \implies r = 9.$$

18. (a) Coefficient of $(2r+1)^{th}$ term in expansion of $(1+x)^{43} = {}^{43}C_{2r}$ and coefficient of $(r+2)^{th}$ term = coefficient of $\{(r+1)+1\}^{th}$ term = ${}^{43}C_{r+1}$

According to question ${}^{43}C_{2r} = {}^{43}C_{r+1} = {}^{43}C_{43-(r+1)}$

Then 2r = 43 - (r+1) or 3r = 42 or r = 14.

19. (c)
$$T_{r+1} = {}^{2n}C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r = {}^{2n}C_r x^{2n-3r},$$

This contains x^m , if 2n - 3r = m

i.e. if
$$r = \frac{2n - m}{3}$$

$$\therefore$$
 Coefficient of $x^m = {}^{2n}C_r$, $r = \frac{2n-m}{3}$

$$= \frac{2n!}{(2n-r)!r!} = \frac{2n!}{\left(2n - \frac{2n-m}{3}\right)! \left(\frac{2n-m}{3}\right)!}$$

$$=\frac{2n!}{\left(\frac{4n+m}{3}\right)!\left(\frac{2n-m}{3}\right)!}.$$

20. (b) x^7 , x^8 will occur in T_8 and T_9 .

Coefficients of T_8 and T_9 are equal.

$$\therefore {}^{n}C_{7}2^{n-7}\left(\frac{1}{3}\right)^{7} = {}^{n}C_{8}2^{n-8}\left(\frac{1}{3}\right)^{8} \Rightarrow n = 55.$$

21. (b) In the expansion of $\left(x^2 + \frac{a}{x}\right)^5$ the general term is $T_{r+1} = {}^5C_r(x^2)^{5-r} \left(\frac{a}{x}\right)^r = {}^5C_r a^r x^{10-3r}$

Here, exponent of x is $10-3r=1 \Rightarrow r=3$

$$T_{2+1} = {}^{5}C_{3}a^{3}x = 10a^{3}.x$$

Hence coefficient of x is $10a^3$.

22. (b) $T_2 = {}^{2n}C_1 \ x$, $T_3 = {}^{2n}C_2 \ x^2$, $T_4 = {}^{2n}C_3 \ x^3$

Coefficient of T_2 , T_3 , T_4 are in A.P.

$$\implies$$
 2.²ⁿC₂=²ⁿC₁+²ⁿC₃

$$\implies 2\frac{2n!}{2!(2n-2)!} = \frac{2n!}{(2n-1)!} + \frac{2n!}{3!(2n-3)!}$$

$$\Rightarrow 2n^2 - 9n + 7 = 0$$
.

23. (c)
$$(1+x)^m (1-x)^n$$

$$= \left(1 + mx + \frac{m(m-1)x^2}{2!} + \dots\right) \left(1 - nx + \frac{n(n-1)}{2!}x^2 - \dots\right)$$
$$= 1 + (m-n)x + \left[\frac{n^2 - n}{2} - mn + \frac{(m^2 - m)}{2}\right]x^2 + \dots$$

Given,
$$m - n = 3$$
 or $n = m - 3$

Hence
$$\frac{n^2-n}{2}-mn+\frac{m^2-m}{2}=-6$$

$$\Rightarrow \frac{(m-3)(m-4)}{2} - m(m-3) + \frac{m^2 - m}{2} = -6$$

$$\implies m^2 - 7m + 12 - 2m^2 + 6m + m^2 - m + 12 = 0$$

$$\Longrightarrow -2m + 24 = 0 \implies m = 12$$

27. (c)
$$(1+x)^{21} + (1+x)^{22} + \dots + (1+x)^{30}$$

= $(1+x)^{21} \left[\frac{(1+x)^{10} - 1}{(1+x) - 1} \right] = \frac{1}{x} [(1+x)^{31} - (1+x)^{21}]$

 \therefore Coefficient of x^5 in the given expression

= Coefficient of
$$x^5$$
 in $\left\{ \frac{1}{x} [(1+x)^{31} - (1+x)^{21}] \right\}$

= Coefficient of
$$x^6$$
 in $[(1+x)^{31} - (1+x)^{21}]$

$$={}^{31}C_6-{}^{21}C_6$$
.

28. (d)
$$(1+3x+2x^2)^6 = [1+x(3+2x)]^6$$

Only
$$x^{11}$$
 gets from ${}^{6}C_{6}x^{6}(3+2x)^{6}$

$$\therefore {}^{6}C_{6}x^{6}(3+2x)^{6} = x^{6}(3+2x)^{6}$$

:. Coefficient of
$$x^{11} = {}^{6}C_{5}3.2^{5} = 576$$
.

29. (b) Middle term of
$$\left(x + \frac{1}{x}\right)^{10}$$
 is $T_6 = {}^{10}C_5$.

30. (d)
$$T_2 = n(x)^{n-1}(a)^1 = 240$$
(i)

$$T_3 = \frac{n(n-1)}{1.2} x^{n-2} a^2 = 720$$
(ii)

$$T_4 = \frac{n(n-1)(n-2)}{1.2.3} x^{n-3} a^3 = 1080$$
(iii)

To eliminate x,

$$\frac{T_2 \cdot T_4}{{T_3}^2} = \frac{240 \cdot 1080}{720 \cdot 720} = \frac{1}{2} \Longrightarrow \frac{T_2}{T_3} \cdot \frac{T_4}{T_3} = \frac{1}{2}$$

Now,
$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_r}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

Putting r = 3 and 2 in above expression, we get

$$\Rightarrow \frac{n-2}{3} \cdot \frac{2}{n-1} = \frac{1}{2} \Rightarrow n = 5.$$

31. (d) We have
$$(x)^{12-r} \left(\frac{1}{x^2}\right)^r = x^0 \implies x^{12-3r} = x^0 \implies r = 4$$

Hence the required term is ${}^{12}C_4 2^8 \left(-\frac{1}{2}\right)^4 = 7920$.

32. (b) In
$$\left(x^2 - \frac{1}{3x}\right)^9$$
,

$$T_{r+1} = {}^{9}C_r(x^2)^{9-r} \left(-\frac{1}{3x}\right)^r = {}^{9}C_r x^{18-2r} \frac{(-1)^r}{3^r} x^{-r}$$

It is independent of x.

$$\therefore 18 - 3r = 0 \Rightarrow r = 6$$

$$\therefore T_7 = {}^{9}C_6 x^{18-12} \frac{(-1)^6}{3^6} x^{-6} = {}^{9}C_6 \frac{(-1)^6}{36} = \frac{28}{243}$$

33. (b)
$$p^{th}$$
 term $= T_p = {}^n C_{p-1}(x)^{n-p+1} (1)^{p-1} = p$

$$(p+1)^{th}$$
 term $=T_{p+1}={}^{n}C_{p}(x)^{n-p}(1)^{p}=q$

Then, coefficient of $\frac{p}{q} = \frac{{}^{n}C_{p-1}}{{}^{n}C_{n}}$

$$\Rightarrow \frac{p}{q} = \frac{n!}{(p-1)!(n-p+1)!} \cdot \frac{p! (n-p)!}{n!}$$

$$\Rightarrow \frac{p}{q} = \frac{p}{n-p+1}$$

$$\implies p+q=n+1$$
.

34. (b)
$$(10-r)(\frac{1}{2})+r(-2)=0 \Rightarrow 5-\frac{r}{2}-2r=0 \Rightarrow r=2$$

So the term independent of x

$$= {}^{10}C_2 \times \left(\frac{1}{3}\right)^4 \left(\frac{3}{2}\right)^2 = \frac{10 \times 9}{2 \times 1} \times \frac{1}{3 \times 3 \times 2 \times 2} = \frac{5}{4}$$

35. (b) Greatest coefficient of $(1+x)^{2n+2}$ is

$$= {}^{(2n+2)}C_{n+1} = \frac{(2n+2)!}{\{(n+1)!\}^2}$$

36. (b) Coefficient of x^n in expansion of $(1+x)(1-x)^n$

i.e., coefficient of x^n in expansion of $(1-x)^n$ + coefficient of x^{n-1} in expansion of $(1-x)^n$

Now,
$$(-1)^{n} {}^{n}C_{n} + (-1)^{n-1} {}^{n}C_{n-1}$$

$$(-1)^n [{}^n C_n - {}^n C_{n-1}] = (-1)^n [1-n].$$

37. (d) $(1+x+x^2+x^3)^n = \{(1+x)^n(1+x^2)^n\}$

$$= (1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n})$$

$$(1 + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{4} + \dots + {}^{n}C_{n}x^{2n})$$

Therefore the coefficient of x^4

$$= {}^{n}C_{2} + {}^{n}C_{2} \cdot {}^{n}C_{1} + {}^{n}C_{4} = {}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$$

38. (a) If *n* is even, the greatest coefficient is ${}^{n}C_{n/2}$

Therefore the greatest term = ${}^{n}C_{n/2}x^{n/2}$

$$C_{n/2}x^{n/2} > {}^{n}C_{(n/2)-1}x^{(n-2)/2}$$

and
$${}^{n}C_{n/2}x^{n/2} > {}^{n}C_{(n/2)+1}x^{(n/2)+1}$$

$$\Rightarrow \frac{n-\frac{n}{2}+1}{\frac{n}{2}} x > 1 \text{ and } \frac{\frac{n}{2}}{\frac{n}{2}+1} x < 1$$

$$\Rightarrow x > \frac{\frac{n}{2}}{\frac{n}{2} + 1} \text{ and } x < \frac{\frac{n}{2} + 1}{\frac{n}{2}}$$

$$\implies x > \frac{n}{n+2}$$
 and $x < \frac{n+2}{n}$

39. (c) As in Previous question, obviously the term independent of x will be

$${}^{n}C_{0}$$
. ${}^{n}C_{0} + {}^{n}C_{1}$. ${}^{n}C_{1} + \dots {}^{n}C_{n}$. ${}^{n}C_{n} = C_{0}^{2} + C_{1}^{2} + \dots + C_{n}^{2}$.

40. (a)
$$(1+t^2)^{12}(1+t^{12})(1+t^{24})$$

$$= (1 + ^{12}C_1t^2 + ^{12}C_2t^4 + \dots + ^{12}C_4t^8 + \dots + ^{12}C_{10}t^{20} + \dots) \ (1 + t^{12} + t^{24} + t^{36})$$

$$\therefore$$
 Coefficient of $t^{24} = {}^{12}C_6 + 2$.

41. (c) Put n = 1, 2, 3,...

$$S_1 = 1$$
, $S_2 = 2 + 2 = 4$

Now by alternate (c), put n = 1, 2

$$S_1 = 1.2^0 = 1, S_2 = 2.2^1 = 4$$

42. (d) $(1-x)^n = C_0 - C_1 x + C_2 x^2 - C_3 x^3 + \dots$

$$\implies x (1-x)^n = C_0 x - C_1 x^2 + C_2 x^3 - C_3 x^4 + \dots$$

$$\implies \int_{0}^{1} x(1-x)^{n} dx = \int_{0}^{1} (C_{0}x - C_{1}x^{2} + C_{2}x^{3}...)dx \dots (i)$$

The integral on the LHS

$$= \int_{1}^{0} (1-t)t^{n}(-dt), \text{ by putting } 1-x=t$$

$$= \int_{0}^{1} (t^{n} - t^{n+1}) dt = \frac{1}{n+1} - \frac{1}{n+2}$$

Whereas the integral on the RHS of (i)

$$= \left[\frac{C_0 x^2}{2} - \frac{C_1 x^3}{3} + \frac{C_2 x^4}{4} - \dots \right] = \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \dots$$

$$\therefore \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \dots \text{ to } (n+1) \text{ terms}$$

$$= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}.$$

43. (a) We know that

$$\frac{(1+x)^n - (1-x)^n}{2} = C_1 x + C_3 x^3 + C_5 x^5 + \dots$$

Integrating from x = 0 to x = 1, we get

$$\frac{1}{2}\int_{0}^{1}\left\{ (1+x)^{n}-(1-x)^{n}\right\} dx$$

$$= \int_{0}^{1} (C_1 x + C_3 x^3 + C_5 x^5 + \dots) dx$$

$$\Rightarrow \frac{1}{2} \left\{ \frac{(1+x)^{n+1}}{n+1} + \frac{(1-x)^{n+1}}{n+1} \right\}_0^1 = \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots$$

Or
$$\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots = \frac{1}{2} \left\{ \frac{2^{n+1} - 1}{n+1} + \frac{0 - 1}{n+1} \right\}$$

$$=\frac{1}{2}\left(\frac{2^{n+1}-2}{n+1}\right)=\frac{2^n-1}{n+1}$$

44. (a)
$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_rx^r + \dots$$
 (i)

$$\left(1 + \frac{1}{x}\right)^n = C_0 + C_1 \frac{1}{x} + C_2 \frac{1}{x^2} + \dots + C_r \frac{1}{x^r} + \dots$$
 (ii)

Multiplying both sides and equating coefficient of x^r in $\frac{1}{x^n}(1+x)^{2n}$ or the coefficient of x^{n+r} in $(1+x)^{2n}$ we get the value of required expression

$$= {}^{2n}C_{n+r} = \frac{(2n)!}{(n-r)!(n+r)!}$$

Trick: Solving conversely.

Put n=1 and r=0 in first term, (given condition)

(i)
$${}^{1}C_{0}{}^{1}C_{0} + {}^{1}C_{1}{}^{1}C_{1} = 1 + 1 = 2$$
 , $(:: r \le n)$

Put n=2, r=1, then

(ii)
$${}^{2}C_{0}{}^{2}C_{1} + {}^{2}C_{1}{}^{2}C_{2} = 2 + 2 = 4$$

Now check the options

(a) (i) Put
$$n=1, r=0$$
, we get $\frac{2!}{(1)!(1)!} = 2$

(ii) Put
$$n = 2, r = 1$$
, we get $\frac{4!}{(1)!(3)!} = 4$

45. (c) Trick : Put
$$n = 1, 2$$

At
$$n=1$$
, ${}^{1}C_{0}-\frac{1}{2}{}^{1}C_{1}=1-\frac{1}{2}=\frac{1}{2}$

At
$$n=2$$
, ${}^{2}C_{0}-\frac{1}{2}{}^{2}C_{1}+\frac{1}{3}{}^{2}C_{2}=1-1+\frac{1}{3}=\frac{1}{3}$

Which is given by option (c).

46. (b) We have
$$(1+x)^{15} = C_0 + C_1 x + C_2 x^2 + \dots + C_{15} x^{15}$$

$$\Rightarrow \frac{(1+x)^{15}-1}{x} = C_1 + C_2 x + \dots + C_{15} x^{14}$$

Differentiating both sides with respect to x, we get

$$=\frac{x.15(1+x)^{14}-(1+x)^{15}+1}{x^2}$$

$$= C_2 + 2C_3x + \dots + {}^{14}C_{15}x^{13}$$

Putting x = 1, we get

$$C_2 + 2C_3 + \dots + 14C_{15} = 15.2^{14} - 2^{15} + 1 = 13.2^{14} + 1.$$

47. (c) The sum of the coefficients of the polynomial $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ is obtained by putting x = 1 in $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$.

Therefore by hypothesis $(\alpha^2 - 2\alpha + 1)^{51} = 0 \Rightarrow \alpha = 1$

48. (a) Sum of the coefficient in the expansion

$$(x-2y+3z)^n$$
 is $(1-2+3)^2 = 2^n$

$$\therefore 2^n = 128 \Rightarrow n = 7$$

Therefore, greatest coefficient in the expansion of $(1+x)^7$ is 7C_3 or 7C_4 because both are equal to 35.

- **49.** (c) Sum of the coefficients is obtained by putting x = y = z = 1, so sum of the coefficients $=(1+2+3)^8=6^8$.
- **50.** (b) We can obtain sum of coefficients by putting x = 1 in polynomial.

$$\implies$$
 $(1 + x + x^2)^n = (1 + 1 + 1)^n = 3^n$.

51. (d) We have, $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$

$$t_n = \sum_{r=0}^n \frac{n - (n-r)}{{}^n C_{n-r}}, \qquad [\because {}^n C_r = {}^n C_{n-r}]$$

$$[\because {^{n}C_{r}} = {^{n}C_{n-r}}]$$

$$= n \sum_{r=0}^{n} \frac{1}{{}^{n}C_{r}} - \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{n-r}}$$

$$t_n = n.S_n - \left[\frac{n}{{}^nC_n} + \frac{n-1}{{}^nC_{n-1}} + \dots + \frac{1}{{}^nC_1} + 0 \right]$$

$$t_n = n.S_n - \sum_{r=0}^n \frac{r}{C_r}$$

$$\Rightarrow t_n = n.S_n - t_n \Rightarrow 2t_n = {}^nS_n \Rightarrow \frac{t_n}{S_n} = \frac{n}{2}.$$

52. (a) Trick: Put n=1, the expression is equivalent to ${}^{1}C_{0} + 2.{}^{1}C_{1} = 1 + 2 = 3$

Only option (a) gives the value.

53. (b) $\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} \frac{1}{k(k+1)}$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

$$\left(\sum_{k=1}^{n} a_k\right)^2 = \left(\frac{n}{n+1}\right)^2.$$

54. (c) As we know that

$${}^{n}C_{0} - {}^{n}C_{1}^{2} + {}^{n}C_{2}^{2} - {}^{n}C_{3}^{2} + ... + (-1)^{n} \cdot {}^{n}C_{n}^{2} = 0$$
, (if *n* is odd)

And in the question n=15 (odd).

- **55.** (c) Sum of the coefficients = $(1+1)^5 = 2^5 = 32$.
- **56.** (c) Proceeding as above and putting n+1=N.

So given term can be written as

$$\frac{1}{N} \Big\{ {}^{N}C_{1} + {}^{N}C_{2} + {}^{N}C_{3} + \Big\}$$

57. (b) We have $(x+3)^{n-1} + (x+3)^{n-2}(x+2) +$

$$(x+3)^{n-3}(x+2)^2 + \dots + (x+2)^{n-1}$$

$$=\frac{(x+3)^n-(x+2)^n}{(x+3)-(x+2)}=(x+3)^n-(x+2)^n$$

$$\left(\because \frac{x^n - a^n}{x - a} = x^{n-1} + x^{n-2}a^1 + x^{n-3}a^2 + \dots + a^{n-1}\right)$$

Therefore coefficient of x^r in the given expression

= Coefficient of
$$x^r$$
 in $[(x+3)^n - (x+2)^n]$

$$= {}^{n}C_{r}3^{n-r} - {}^{n}C_{r}2^{n-r} = {}^{n}C_{r}(3^{n-r} - 2^{n-r})$$

58. (d) The given expression can be written as $4^{-1/2} \left(1 - \frac{3}{4}x\right)^{-1/2}$ and it is valid only

when
$$\left| \frac{3}{4} x \right| < 1 \Rightarrow -\frac{4}{3} < x < \frac{4}{3}$$
.

59. (a) Given term can be written as $(1+x)^2(1-x)^{-2}$

$$= (1 + 2x + x^{2})[1 + 2x + 3x^{2} + \dots + (n-1)x^{n-2}]$$

$$= x^{n}(n+1+2n+n-1)+...$$

Therefore coefficient of x^n is 4n.

60. (a)
$$\left(\frac{a+x}{a}\right)^{-1/2} + \left(\frac{a-x}{a}\right)^{-1/2} = \left(1 + \frac{x}{a}\right)^{-1/2} + \left(1 - \frac{x}{a}\right)^{-1/2}$$

$$= \left[1 + \left(-\frac{1}{2}\right)\left(\frac{x}{a}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2.1}\left(\frac{x}{a}\right)^{2} + \dots\right] + \left[1 + \left(-\frac{1}{2}\right)\left(-\frac{x}{a}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2.1}\left(-\frac{x}{a}\right)^{2} + \dots\right]$$

$$=2+\frac{3x^2}{4a^2}+\dots$$

Here odd terms cancel each other.

61. (b)
$$(1-x)^{-4} = \left[\frac{1.2.3}{6}x^0 + \frac{2.3.4}{6}x + \frac{3.4.5}{6}x^2 + \frac{4.5.6}{6}x^3 + \dots + \frac{(r+1)(r+2)(r+3)}{6}x^r + \dots\right]$$

Therefore $T_{r+1} = \frac{(r+1)(r+2)(r+3)}{6} x^r$.

62. (c)
$$\sum_{k=1}^{n} k \left(1 + \frac{1}{n}\right)^{k-1}$$

$$=1+2\left(1+\frac{1}{n}\right)^{1}+3\left(1+\frac{1}{n}\right)^{2}+....$$
 up to *n* terms

=
$$1 + 2t + 3t^2 + ...$$
 up to *n* terms

$$= (1-t)^{-2} = \left[1 - \left(1 + \frac{1}{n}\right)\right]^{-2} = \left(\frac{1}{n}\right)^{-2} = (n)^2 = n^2.$$

63. (a)
$$(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n + \dots$$

If x is replaced by $-\left(\frac{2x}{1+x}\right)$ and n is -n.

64. (d) Let
$$(1+y)^n = 1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots$$

$$=1 + ny + \frac{n(n-1)}{2!}y^2 + \dots$$

Comparing the terms, we get

$$ny = \frac{1}{3}x, \frac{n(n-1)}{2!}y^2 = \frac{1.4}{3.6}x^2$$

Solving,
$$n = -\frac{1}{3}, y = -x$$
.

Hence given series = $(1-x)^{-1/3}$

65. (a) Let the given series be identical with the expansion of $(1+x)^n$ *i.e.* with $1+nx+\frac{n(n-1)}{2!}x^2+....;|x|<1$. Then, $nx=\frac{1}{4}$ and $\frac{n(n-1)}{2}x^2=\frac{1}{4}\cdot\frac{3}{8}=\frac{3}{32}$ Solving these two equations for n

and x. We get $x = -\frac{1}{2}$ and $n = -\frac{1}{2}$. \therefore Sum of the given series

$$= (1+x)^n = \left(1 - \frac{1}{2}\right)^{-1/2} = 2^{1/2} = \sqrt{2}.$$

66. (c) =
$$(1+3x)^2(1-2x)^{-1}$$

$$= (1+3x)^{2} \left(1+2x+\frac{1.2}{2.1}(-2x)^{2}+\dots\right)$$

$$=(1+6x+9x^2)(1+2x+4x^2+8x^3+...)$$

Therefore coefficient of x^3 is (8 + 24 + 18) = 50.

67. (b) Coefficient of
$$x^r = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)...\left(-\frac{1}{2}-r+1\right)}{r!}(-2)^r$$

$$\frac{1.3.5...(2r-1)}{2^r} \cdot \frac{(-1)^r (-1)^r 2^r}{r!}$$

$$=\frac{1.3.5...(2r-1)}{r!}=\frac{2r!}{r! r! 2^r}$$

68. .(c) Since
$$1+2x+3x^2+4x^3+.... = (1-x)^{-2}$$

Therefore, we have

$$(1 + 2x + 3x^2 + 4x^3 + \infty)^{1/2} = \{(1 - x)^{-2}\}^{1/2}$$

$$= (1-x)^{-1} = 1 + x + x^{2} + \dots + x^{n} + \dots \infty$$

- \therefore The coefficient of $x^n = 1$.
- **69.** (c) Comparing the given expression to

$$1 + nx + \frac{n(n-1)}{2!}x^2 + \dots i.e.(1+x)^n$$
, We get

$$nx = -\frac{1}{8}$$
 and $\frac{n(n-1)}{2!}x^2 = \frac{3}{128} \Rightarrow x = \frac{1}{4}, n = -\frac{1}{2}$

Hence
$$1 - \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} - \dots = \left(1 + \frac{1}{4}\right)^{-1/2} = \frac{2}{\sqrt{5}}$$

70. (c) Let us take
$$a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n} = (1 + x + x^2)^n$$

Differentiating with respect to x on both sides $a_1 + 2a_2x + ... + 2n a_{2n}x^{2n-1} = n(1+x+x^2)^{n-1}(2x+1)$

Put
$$x = -1 \implies a_1 - 2a_2 + 3a_3 - \dots + 2n a_{2n} = -n$$
.

71. (c) By converse rule, put n=1, 2, then number of terms are 3, 6.

Hence number of terms of $(a+b+c)^n = \frac{(n+1)(n+2)}{2}$.

72. (c) Let a_1, a_2, a_3, a_4 be respectively the coefficients of $(r+1)^{th}, (r+2)^{th}$, $(r+3)^{th}$ and $(r+4)^{th}$ terms in the expansion of $(1+x)^n$.

Then
$$a_1 = {}^nC_r$$
, $a_2 = {}^nC_{r+1}$, $a_3 = {}^nC_{r+2}$, $a_4 = {}^nC_{r+3}$

Now
$$\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{{}^{n}C_r}{{}^{n}C_r + {}^{n}C_{r+1}} + \frac{{}^{n}C_{r+2}}{{}^{n}C_{r+2} + {}^{n}C_{r+3}}$$

$$= \frac{{}^{n}C_{r}}{{}^{n+1}C_{r+1}} + \frac{{}^{n}C_{r+2}}{{}^{n+1}C_{r+3}} = \frac{{}^{n}C_{r}}{\frac{n+1}{r+1}{}^{n}C_{r}} + \frac{{}^{n}C_{r+2}}{\frac{n+1}{r+3}{}^{n}C_{r+2}} (::^{n}C_{r} = \frac{n}{r}{}^{n-1}C_{r-1})$$

$$=\frac{r+1}{n+1}+\frac{r+3}{n+1}=\frac{2(r+2)}{n+1}$$

$$=2\frac{{}^{n}C_{r+1}}{{}^{n+1}C_{r+2}}=2\frac{{}^{n}C_{r+1}}{{}^{n}C_{r+1}+{}^{n}C_{r+2}}=\frac{2a_{2}}{a_{2}+a_{3}}$$

73. (a) Since $(5\sqrt{5} - 11)(5\sqrt{5} + 11) = 4$

$$\Longrightarrow 5\sqrt{5} - 11 = \frac{4}{5\sqrt{5} + 11},$$

$$0 < 5\sqrt{5} - 11 < 1 \Rightarrow 0 < (5\sqrt{5} - 11)^{2n+1} < 1$$

74. (c) Let the three consecutive coefficients be

$$^{n}C_{r-1} = 28, ^{n}C_{r} = 56 \text{ and } ^{n}C_{r+1} = 70, \text{ so that}$$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r} = \frac{56}{28} = 2$$

And
$$\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1} = \frac{70}{56} = \frac{5}{4}$$

This gives n+1=3r and 4n-5=9r

$$\therefore \frac{4n-5}{n+1} = 3 \Rightarrow n = 8$$

75. (b) Let $(\sqrt{2} + 1)^6 = k + f$, where k is integral part and f the fraction $(0 \le f < 1)$.

Let
$$(\sqrt{2}-1)^6 = f', (0 < f' < 1)$$
,

Since
$$0 < (\sqrt{2} - 1) < 1$$

76. (a) The numerator is of the form

$$a^3 + b^3 + 3ab(a+b) = (a+b)^3$$

$$\therefore N^r = (18 + 7)^3 = 25^3$$

$$\therefore D^{r} = 3^{6} + {}^{6}C_{1}3^{5}.2^{1} + {}^{6}C_{2}3^{4}.2^{2} + {}^{6}C_{3}3^{3}.2^{3} + {}^{6}C_{4}3^{2}.2^{4} + {}^{6}C_{5}3.2^{5} + {}^{6}C_{6}2^{6}$$

This is clearly the expansion of $(3+2)^6 = 5^6 = (25)^3$

$$\therefore \frac{N^r}{D^r} = \frac{(25)^3}{(25)^3} = 1$$

77. (b)
$$T_{r+1} = {}^{256}C_r(\sqrt{3})^{256-r}(\sqrt[8]{5})^r = {}^{256}C_r(3)^{\frac{256-r}{2}}(5)^{r/8}$$

Terms would be integral if $\frac{256-r}{2}$ and $\frac{r}{8}$ both are positive integer.

As $0 \le r \le 256$, $\therefore r = 0, 8, 16, 24, \dots, 256$ For above values of r, $\left(\frac{256 - r}{2}\right)$ is also an integer.

- \therefore Total number of values of r = 33.
- **78.** (b) From the given condition, replacing a by ai and -ai respectively, we get

$$(x+ai)^n = (T_0 - T_2 + T_4 -) + i(T_1 - T_3 + T_5 -)$$
(i)

And
$$(x-ai)^n = (T_0 - T_2 + T_4 -) - i(T_1 - T_3 + T_5 -)$$
(ii)

Multiplying (ii) and (i) we get required result

$$i.e.(x^2+a^2)^n = (T_0-T_2+T_4-...)^2+(T_1-T_3+T_5-...)^2$$

79. (c) Given expression

$$= 2[1 + {}^{9}C_{2}(3\sqrt{2}x)^{2} + {}^{9}C_{4}(3\sqrt{2}x)^{4} + {}^{9}C_{6}(3\sqrt{2}x)^{6} + {}^{9}C_{8}(3\sqrt{2}x)^{8}]$$

 \therefore The number of non-zero terms is 5.

80. (c) Conversely,

$$(x+a)^n = {}^nC_0 + {}^nC_1x^{n-1}a + {}^nC_2x^{n-2}a^2 + \dots$$

So,

$$(x+2a)^5 = x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5$$
.

81. (b)
$$(\sqrt{5} + 1)^5 - (\sqrt{5} - 1)^5$$

$$= 2 \left\{ {}^{5}C_{1}(\sqrt{5})^{4} + {}^{5}C_{3}(\sqrt{5})^{2} + {}^{5}C_{5}.1 \right\} = 352$$

82. (b)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{12}x^2 + \frac{n(n-1)(n-2)}{123}x^3 + \dots$$

$$\therefore (1+x)^n - nx - 1 = x^2 \left[\frac{n(n-1)}{1.2} + \frac{n(n-1)(n-2)}{1.2.3} x + \dots \right]$$

From above it is clear that $(1+x)^n - nx - 1$ is divisible by x^2 .

83. (b) We know
$$\frac{1}{2}\{(1+a)^n + (1-a)^n\} = {}^nC_0 + {}^nC_2a^2 + {}^nC_4a^4 + \dots$$

Therefore, number of terms in expansion of $\{(x+a)^{100} + (x-a)^{100}\}\$ is 51.

84. (c)
$$(x+a)^n - (x-a)^n$$

$$= 2 \left[{^{n}C_{1}x^{n-1}a + {^{n}C_{3}x^{n-3}a^{3}} + {^{n}C_{5}x^{n-5}a^{5}} + \dots } \right]$$

$$\therefore (\sqrt{2} + 1)^6 - (\sqrt{2} - 1)^6$$

$$=2[{}^{6}C_{1}(\sqrt{2})^{5}(1)^{1}+{}^{6}C_{3}(\sqrt{2})^{3}(1)^{3}+{}^{6}C_{5}(\sqrt{2})^{1}(1)^{5}]$$

$$\therefore (\sqrt{2} + 1)^6 - (\sqrt{2} - 1)^6 = 2[6 \times 4\sqrt{2} + 20 \times 2\sqrt{2} + 6\sqrt{2}]$$

$$= 2[24\sqrt{2} + 40\sqrt{2} + 6\sqrt{2}] = 140\sqrt{2} \cdot = \frac{1}{N} \{2^{N} - 1\} = \frac{1}{n+1} (2^{n+1} - 1) \quad (\because N = n+1)$$