Моделирование статических характеристик биполярных транзисторов

Лабораторная работа №205М

Получить от преподавателя номер набора биполярных транзисторов.

В папке FRTK\#Gr\NAME\ создать проект с именем данной лабораторной работы (см. Методику моделирования).

Подключить библиотеки: SPECIAL, SOURCE и BIPOLAR.

Для OrCAD_10.5_DEMO подключить библиотеки: SPECIAL, SOURCE, EVAL и EVALAA. В DEMO версии доступны для моделирования только четыре n-p-n транзистора (Q2N2222, Q2N3904 из библиотеки EVAL и 2N2222, 2N5058 из библиотеки EVALAA) и три p-n-p транзистора (Q2N2907, Q2N3906 из библиотеки EVAL и BFT93 из библиотеки EVALAA).

1. Задание к допуску

1.1. Начертить в тетради схему получения зависимости токов переноса (коллектора) и токов рекомбинации (базы) от напряжения источника V1 для прямого Q1 и инверсного Q2 включения n-p-n транзистора (рис.1.1).

Рис.1.1 Схема включения транзисторов для моделирования токов переноса и рекомбинации n-p-n транзистора

1.2. Начертить в тетради схему получения зависимости токов переноса (коллектора) и токов рекомбинации (базы) от напряжения источника V1 для прямого Q1 и инверсного Q2 включения p-n-p транзистора (рис.1.2).

Рис.1.2 Схема включения транзисторов для моделирования токов переноса и рекомбинации p-n-p транзистора

1.3. Начертить в тетради схему моделирования выходных вольтамперных характеристик n-p-n транзистора в схеме с общей базой (рис.1.3) с источником тока I1 в эмиттере транзистора Q1 и источником напряжения V2 в эмиттере транзистора Q2.

Рис.1.3 Схема моделирования выходных вольтамперных характеристик n-p-n транзистора в схеме с общей базой

1.4. Начертить в тетради схему моделирования выходных вольтамперных характеристик p-n-p транзистора в схеме с общей базой (рис.1.4) с источником тока I1 в эмиттере транзистора Q1 и источником напряжения V2 в эмиттере транзистора Q2.

Рис.1.4 Схема моделирования выходных вольтамперных характеристик р-n-р транзистора в схеме с общей базой

1.5. Начертить в тетради схему моделирования выходных вольтамперных характеристик n-p-n транзистора в схеме с общим эмиттером (рис.1.5) с источником тока I1 в базе транзистора Q1 и источником напряжения V2 в базе транзистора Q2.

Рис.1.5 Схема моделирования выходных вольтамперных характеристик n-p-n транзистора в схеме с общим эмиттером

1.6. Начертить в тетради схему моделирования выходных вольтамперных характеристик p-n-p транзистора в схеме с общим эмиттером (рис.1.6) с источником тока I1 в базе транзистора Q1 и источником напряжения V2 в базе транзистора Q2.

Рис.1.6 Схема моделирования выходных вольтамперных характеристик p-n-p транзистора в схеме с общим эмиттером

1.7. Начертить в тетради схему моделирования U_{ce0} (напряжения на коллекторе транзистора в схеме с общим эмиттером при нулевом токе коллектора) в зависимости от тока базы n-p-n и p-n-p транзисторов (puc.1.7).

Рис.1.7 Схема моделирования U_{се}0

2. Задание к выполнению работы

2.1. Составить схему рис.1.1. В режиме **DC Sweep** получить зависимости токов переноса IC(Q1) и токов рекомбинации IB(Q1) для прямого Q1 и IE(Q2), IB(Q2) инверсного Q2 включения **n-p-n** транзистора от напряжения источника V1 в диапазоне от -0.8V до -0.1V.

Перерисовать в логарифмическом масштабе графики полученных зависимостей в тетрадь.

Дополнительно построить графики десятичных логарифмов отношения токов переноса к токам рекомбинации LOG10(IC(Q1)/IB(Q1)) и LOG10(IE(Q2)/IB(Q2)).

2.2. Составить схему рис.1.2. В режиме **DC Sweep** получить зависимости токов переноса -IC(Q1) и токов рекомбинации -IB(Q1) для прямого Q1 и -IE(Q2), -IB(Q2) инверсного Q2 включения **p-n-p** транзистора от напряжения источника V1 в диапазоне от 0.1V до 0.8V.

Перерисовать в логарифмическом масштабе графики полученных зависимостей в тетрадь.

Дополнительно построить графики десятичных логарифмов отношения токов переноса к токам рекомбинации LOG10(IC(Q1)/IB(Q1)) и LOG10(IE(Q2)/IB(Q2)).

- 2.3. Составить схему рис.1.3 моделирования выходных вольтамперных характеристик **п-р-п** транзистора в схеме с общей базой с источником тока **IDC** I1 в эмиттере транзистора **Q**1 и источником напряжения **VDC V**2 в эмиттере транзистора **Q**2. Установить ток источника тока **I**1 равным 1mA, напряжение источника напряжения V1 оставить равным 0VDc, установить пробник напряжения на цепь эмиттера **Q**1, провести сканирование по V1 в диапазоне от -0.7V до +1V, измерить напряжение V(Q1:e) на эмиттере **Q**1 при V1=0. Установить на источнике **V**2 это напряжение. В результате этого токи эмиттеров обоих транзисторов при **V**1=0 будут одинаковыми.
- 2.3.1. Получить зависимости токов коллектора обоих транзисторов от V1 в диапазоне от -0.7V до +1V. При необходимости подобрать нижний предел сканирования.

Перерисовать полученные графики в тетрадь.

2.3.2. Повторить получение токов коллектора обоих транзисторов от V1, но теперь в диапазоне от -0.1V до +5V.

Перерисовать полученные графики в тетрадь.

- 2.3.3. Повторить пункт 2.3.1. при трех значениях температуры: 17, 27 и 37 градусов.
 - Перерисовать полученные графики в тетрадь.
- 2.3.4. Для транзистора Q1 получить зависимости тока коллектора от V1 в диапазоне от -0.7V до +1V при нескольких значениях тока эмиттера, например: 0, 1mA, 2mA, 3mA. 4mA. Перерисовать полученные графики в тетрадь.

- 2.4. Составить схему рис.1.4 моделирования выходных вольтамперных характеристик **p-n-p** транзистора в схеме с общей базой с источником тока **IDC I**1 в эмиттере транзистора **Q**1 и источником напряжения **VDC V**2 в эмиттере транзистора **Q**2. Установить (аналогично 2.3) на источнике **V**2 такое напряжение, чтобы токи эмиттеров обоих транзисторов при **V**1=0 были равными 1mA.
- 2.4.1. Получить зависимости токов коллектора обоих транзисторов от V1 в диапазоне от 1V до +0.7V. При необходимости подобрать верхний предел сканирования.

Перерисовать полученные графики в тетрадь.

2.4.2. Повторить получение токов коллектора обоих транзисторов от V1 в диапазоне от 5V до +0.1V.

Перерисовать полученные графики в тетрадь.

2.4.3. Повторить пункт 2.4.1. при трех значениях температуры: 17, 27 и 37 градусов.

Перерисовать полученные графики в тетрадь.

- 2.4.4. Для транзистора Q1 получить зависимости тока коллектора от V1 в диапазоне от 1V до +0.7V при нескольких значениях тока эмиттера, например: 0, 1mA, 2mA, 3mA. 4mA. Перерисовать полученные графики в тетрадь.
- 2.5. Составить схему рис.1.5 моделирования выходных вольтамперных характеристик **n-p-n** транзистора в схеме с общим эмиттером с источником тока I1 в базе транзистора **Q**1 и источником напряжения **V**2 в базе транзистора **Q**2. Установить напряжение источника **V**2 равным 0.65V-075V, так чтобы при сканировании по **V**1 от 0V до +1.0V ток коллектора **Q**2 при V1=+1V был в интервале от 1mA до 10mA. Измерить ток базы **Q**2 при V1=+1V и установить это значение тока для источника **I**1.
- 2.5.1. Получить зависимости токов коллектора обоих транзисторов от V1 в диапазоне от 0V до +1V.

Перерисовать полученные графики в тетрадь.

2.5.2. Исключить из схемы транзистор $\mathbf{Q}2$ и получить зависимости тока коллектора $\mathbf{Q}1$ от напряжения V1 в диапазоне от -1V до +1V для нескольких значений параметра I1 (например, 2uA, 4uA, 6uA, 8uA, 10uA).

Перерисовать полученные графики в тетрадь.

2.5.3. При фиксированном токе базы получить зависимости тока коллектора $\mathbf{Q}1$ от напряжения $\mathbf{V}1$ в диапазоне от -1V до +1V для трёх значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные графики в тетрадь.

- 2.6. Составить схему рис. 1.6 моделирования выходных вольтамперных характеристик **р- n-р** транзистора в схеме с общим эмиттером с источником тока **I**1 в базе транзистора **Q**1 и источником напряжения **V**2 в базе транзистора **Q**2. Установить напряжение источника **V**2 таким, чтобы при сканировании по V1 от -1V до 0V ток коллектора **Q**2 при V1= -1V был в интервале от 1mA до 10mA. Измерить ток базы **Q**2 при V1=-1V и установить это значение тока для источника **I**1.
- 2.6.1. Получить зависимости токов коллектора обоих транзисторов от V1 в диапазоне от 1 V до 0 V. Перерисовать полученные графики в тетрадь.
- 2.6.2. Исключить из схемы транзистор $\mathbf{Q}2$ и получить зависимости тока коллектора $\mathbf{Q}1$ от напряжения $\mathbf{V}1$ в диапазоне от -1V до +1V для нескольких значений параметра I1 (например, 2uA 4uA 6uA 8uA 10uA). Перерисовать полученные графики в тетрадь.
- 2.6.3. При фиксированном токе базы получить зависимости тока коллектора ${\bf Q}1$ от напряжения ${\bf V}1$ в диапазоне от -1V до +1V для трёх значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные графики в тетрадь.

2.7. Составить схему рис.1.7 моделирования напряжения на коллекторе транзистора в схеме с общим эмиттером при нулевом токе коллектора в зависимости от тока базы **n-p-n** и **p-n-p** транзисторов ($U_{ce0}(IB)$).

Получить зависимости напряжений на коллекторах транзисторов от тока базы в диапазоне от 1uA до 100uA.

Перерисовать полученные графики в тетрадь.

3. Задание к сдаче работы

- 3.1. Как зависит ток переноса от температуры?
- 3.2. Как зависит ток рекомбинации от температуры?
- 3.3. Как зависит сумма токов переноса и рекомбинации от температуры?
- 3.4. Как зависит отношение тока переноса к току рекомбинации от температуры?
- 3.5. Как зависит от V1 напряжение на эмиттере транзистора Q1 в схемах рис.1.3, рис.1.4?
- 3.6. Как зависит от V1 ток эмиттера транзистора Q2 в схемах рис.1.3, рис.1.4?
- 3.7. Как зависит от температуры ток эмиттера транзистора Q1 в схемах рис.1.3, рис.1.4 при V1=0?
- 3.8. Как зависит от температуры ток коллектора транзистора Q1 в схемах рис.1.3, рис.1.4 при V1=0?
- 3.9. Как зависит от температуры ток эмиттера транзистора Q2 в схемах рис.1.3, рис.1.4 при V1=0?
- 3.10. Как зависит от V1 разность токов коллектора транзистора Q1 в схемах рис.1.3, рис.1.4 при двух значениях тока эмиттера?
- 3.11. Как зависит от тока базы ток коллектора транзистора Q1 в схемах рис.1.5, рис.1.6 при V1=+1V и V1=-1V?
- 3.12. Как зависит ток коллектора **n-p-n** транзистора Q2 от напряжения на его базе при V1=0 и V1=+1V в схеме рис.1.5?
- 3.13. Как зависит ток коллектора **p-n-p** транзистора Q2 от напряжения на его базе при V1=0 и V1=-1V в схеме рис.1.6?
- 3.14. Как зависит от температуры напряжения на коллекторах транзисторов при фиксированном токе базы в схеме рис.1.7?
- 3.15. Можно ли использовать переход эмиттер база транзистора для высоковольтного выпрямителя?

Список литературы

- 1. Б.Н.Митяшев. Полупроводниковые приборы. Изд.МФТИ, 1978.
- 2. А.С.Терентьев. Биполярный транзистор. Изд.МФТИ, 2006.
- 3. В.П.Псурцев. Моделирование электронных схем.

Приложение 1

$\mathcal{N}_{\underline{\mathbf{o}}}$	р-п-р транзисторы	n-p-n транзисторы
набора		
1	Q2N3012	Q2N3011
2	Q2N3072	Q2N3020
3	Q2N3073	Q2N3053
4	Q2N3120	Q2N3117
5	Q2N3121	Q2N3227
6	Q2N3133	Q2N3246
7	O2N3134	O2N3252

Наборы транзисторов

8	Q2N3135	Q2N3253
9	Q2N3136	Q2N3299
10	Q2N3209	Q2N3300
11	Q2N3244	Q2N3301
12	Q2N3245	Q2N3302
13	Q2N3248	Q2N3390
14	Q2N3304	Q2N3394
15	Q2N3467	Q2N3414
16	Q2N3502	Q2N3508
17	Q2N3505	Q2N3509
18	Q2N3548	Q2N3565
19	Q2N3634	Q2N3605
20	Q2N3702	Q2N3607

Приложение 2

PSpice модели транзисторов

```
.model Q2N3012
                 PNP(Is=867.6E-18 Xti=3 Eg=1.11 Vaf=100 Bf=70.34 Ne=2.031
           Ise=225f Ikf=.1439 Xtb=1.5 Br=.8203 Nc=2 Isc=0 Ikr=0 Rc=1.75
+
           Cjc=4.524p Mjc=.2226 Vjc=.75 Fc=.5 Cje=5.881p Mje=.4345 Vje=.75
+
           Tr=18.21n Tf=160.8p Itf=.6 Vtf=3 Xtf=1.5 Rb=10)
+
                 NPN(Is=44.14f Xti=3 Eg=1.11 Vaf=100 Bf=67.62 Ne=1.402
.model Q2N3011
           Ise=118.1f Ikf=.3636 Xtb=1.5 Br=13.04m Nc=2 Isc=0 Ikr=0 Rc=.6
+
+
           Cjc=2.83p Mjc=86.19m Vjc=.75 Fc=.5 Cje=4.5p Mje=.2418 Vje=.75
+
           Tr=1.087u Tf=227.7p Itf=.3 Vtf=4 Xtf=4 Rb=10)
.model Q2N3072
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=60.06 Ne=1.829
           Ise=211.4f Ikf=1.079 Xtb=1.5 Br=4.32 Nc=2 Isc=0 Ikr=0 Rc=.715
+
+
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=122n Tf=761.3p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3020
                 NPN(Is=14.1f Xti=3 Eg=1.11 Vaf=100 Bf=88.85 Ne=1.5 Ise=0
           Ikf=.75 Xtb=1.5 Br=5.591 Nc=2 Isc=0 Ikr=0 Rc=.7 Cjc=15.69p
+
           Mjc=.3603 Vjc=.75 Fc=.5 Cje=55.06p Mje=.1553 Vje=.75 Tr=854.5p
           Tf=1.008n Itf=1.3 Vtf=5 Xtf=55 Rb=10)
                 PNP(Is=650.6E-18 Xti=3 Eq=1.11 Vaf=115.7 Bf=60.06 Ne=1.829
.model Q2N3073
           Ise=211.4f Ikf=1.079 Xtb=1.5 Br=4.32 Nc=2 Isc=0 Ikr=0 Rc=.715
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
+
           Tr=122n Tf=761.3p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model 02N3053
                 NPN(Is=14.1f Xti=3 Eq=1.11 Vaf=100 Bf=138.2 Ne=1.5 Ise=0
           Ikf=.75 Xtb=1.5 Br=5.187 Nc=2 Isc=0 Ikr=0 Rc=.7 Cjc=15.69p
+
+
           Mjc=.3603 Vjc=.75 Fc=.5 Cje=55.06p Mje=.1553 Vje=.75 Tr=830.8p
           Tf=808.1p Itf=1.2 Vtf=5 Xtf=55 Rb=10)
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=60.06 Ne=1.829
.model Q2N3120
           Ise=211.4f Ikf=1.079 Xtb=1.5 Br=4.32 Nc=2 Isc=0 Ikr=0 Rc=.715
+
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=122n Tf=761.3p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
+
.model Q2N3117
                 NPN(Is=5.911f Xti=3 Eg=1.11 Vaf=62.37 Bf=1.007K Ne=1.382
           Ise=5.911f Ikf=14.71m Xtb=1.5 Br=1.276 Nc=2 Isc=0 Ikr=0 Rc=1.61
+
           Cjc=4.017p Mjc=.3174 Vjc=.75 Fc=.5 Cje=4.973p Mje=.4146 Vje=.75
+
           Tr=4.674n Tf=821.4p Itf=.35 Vtf=4 Xtf=7 Rb=10)
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=60.06 Ne=1.829
.model Q2N3121
           Ise=211.4f Ikf=1.079 Xtb=1.5 Br=4.32 Nc=2 Isc=0 Ikr=0 Rc=.715
```

```
Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=122n Tf=761.3p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3227
               NPN(Is=498.7f Xti=3 Eq=1.11 Vaf=100 Bf=281 Ne=4.612
Ise=65.64n
+
            Ikf=33.8m Xtb=1.5 Br=4.851m Nc=2 Isc=0 Ikr=0 Rc=1.5 Cjc=2.937p
+
           Mjc=99.99m Vjc=.75 Fc=.5 Cje=3.184p Mje=.3171 Vje=.75 Tr=2.312u
+
           Tf=385.5p Itf=0 Vtf=0 Xtf=0 Rb=10)
.model Q2N3133
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=94.38 Ne=1.829
            Ise=134.5f Ikf=1.079 Xtb=1.5 Br=3.912 Nc=2 Isc=0 Ikr=0 Rc=.715
+
+
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=116.8n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3246
                 NPN(Is=5.911f Xti=3 Eg=1.11 Vaf=62.37 Bf=990.7 Ne=1.38
+
           Ise=5.911f Ikf=14.67m Xtb=1.5 Br=1.276 Nc=2 Isc=0 Ikr=0 Rc=1.61
+
           Cjc=4.017p Mjc=.3174 Vjc=.75 Fc=.5 Cje=4.973p Mje=.4146 Vje=.75
+
           Tr=4.675n Tf=821.4p Itf=.35 Vtf=4 Xtf=7 Rb=10)
.model Q2N3134
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=231.7 Ne=1.829
            Ise=54.81f Ikf=1.079 Xtb=1.5 Br=3.563 Nc=2 Isc=0 Ikr=0 Rc=.715
+
            Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
+
           Tr=111.3n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
                 NPN(Is=1.608p Xti=3 Eg=1.11 Vaf=100 Bf=135.3 Ne=1.279
.model Q2N3252
           Ise=1.833p Ikf=.9453 Xtb=1.5 Br=19.88m Nc=2 Isc=0 Ikr=0 Rc=.6
+
+
           Cjc=9.293p Mjc=.256 Vjc=.75 Fc=.5 Cje=52.8p Mje=.4351 Vje=.75
+
           Tr=3.91u Tf=300.5p Itf=.45 Vtf=6 Xtf=1.5 Rb=10)
.model 02N3135
                 PNP(Is=650.6E-18 Xti=3 Eq=1.11 Vaf=115.7 Bf=94.38 Ne=1.829
            Ise=134.5f Ikf=1.079 Xtb=1.5 Br=3.912 Nc=2 Isc=0 Ikr=0 Rc=.715
+
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=116.8n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
+
                 NPN(Is=1.608p Xti=3 Eg=1.11 Vaf=100 Bf=93.03 Ne=1.279
.model Q2N3253
            Ise=2.666p Ikf=.9453 Xtb=1.5 Br=21.41m Nc=2 Isc=0 Ikr=0 Rc=.6
            Cjc=9.293p Mjc=.256 Vjc=.75 Fc=.5 Cje=52.8p Mje=.4351 Vje=.75
+
           Tr=4.046u Tf=300.5p Itf=.45 Vtf=6 Xtf=1.5 Rb=10)
+
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=231.7 Ne=1.829
.model Q2N3136
            Ise=54.81f Ikf=1.079 Xtb=1.5 Br=3.563 Nc=2 Isc=0 Ikr=0 Rc=.715
+
            Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
+
           Tr=111.3n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3299
                 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=118.6 Ne=1.236
           Ise=14.34f Ikf=.2524 Xtb=1.5 Br=7.134 Nc=2 Isc=0 Ikr=0 Rc=1
            Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+
           Tr=50.96n Tf=410.3p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
+
.model Q2N3209
                 PNP(Is=867.6E-18 Xti=3 Eg=1.11 Vaf=100 Bf=70.34 Ne=2.031
            Ise=225f Ikf=.1439 Xtb=1.5 Br=.8203 Nc=2 Isc=0 Ikr=0 Rc=1.75
+
+
           Cjc=4.524p Mjc=.2226 Vjc=.75 Fc=.5 Cje=5.881p Mje=.4345 Vje=.75
+
           Tr=18.21n Tf=160.8p Itf=.6 Vtf=3 Xtf=1.5 Rb=10)
.model Q2N3300
                 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307
+
           Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+
           Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
           Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
.model Q2N3244 PNP(Is=336.7f Xti=3 Eg=1.11 Vaf=100 Bf=149 Ne=1.5 Ise=0
Ikf=.6
           Xtb=1.5 Br=.2843 Nc=2 Isc=0 Ikr=0 Rc=.5 Cjc=39.63p Mjc=.3357
+
+
           Vjc=.75 Fc=.5 Cje=87.82p Mje=.3551 Vje=.75 Tr=242.9n Tf=800p
+
           Itf=0 Vtf=0 Xtf=0 Rb=10)
```

```
.model Q2N3301 NPN(Is=14.34f Xti=3 Eq=1.11 Vaf=74.03 Bf=118.6 Ne=1.236
           Ise=14.34f Ikf=.2524 Xtb=1.5 Br=7.134 Nc=2 Isc=0 Ikr=0 Rc=1
+
+
            Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+
           Tr=50.96n Tf=410.3p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
.model Q2N3245
                PNP(Is=336.7f Xti=3 Eg=1.11 Vaf=100 Bf=89.34 Ne=1.5 Ise=0
+
            Ikf=.6 Xtb=1.5 Br=.2996 Nc=2 Isc=0 Ikr=0 Rc=.5 Cjc=39.63p
+
           Mjc=.3357 Vjc=.75 Fc=.5 Cje=87.82p Mje=.3551 Vje=.75 Tr=252.1n
+
           Tf=800p Itf=0 Vtf=0 Xtf=0 Rb=10)
.model Q2N3302 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307
+
            Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+
           Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+
           Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
.model Q2N3248
                 PNP(Is=867.6E-18 Xti=3 Eg=1.11 Vaf=100 Bf=90.02 Ne=2.116
+
           Ise=283.3f Ikf=.149 Xtb=1.5 Br=.7886 Nc=2 Isc=0 Ikr=0 Rc=1.75
+
           Cjc=4.524p Mjc=.2226 Vjc=.75 Fc=.5 Cje=5.881p Mje=.4345 Vje=.75
           Tr=17.87n Tf=160.8p Itf=.6 Vtf=3 Xtf=1.5 Rb=10)
+
.model Q2N3390
                NPN(Is=12.03f Xti=3 Eg=1.11 Vaf=37.37 Bf=685.8 Ne=1.971
           Ise=1.842p Ikf=.1072 Xtb=1.5 Br=4.379 Nc=2 Isc=0 Ikr=0 Rc=1
+
            Cjc=5.777p Mjc=.3199 Vjc=.75 Fc=.5 Cje=8.307p Mje=.384 Vje=.75
+
           Tr=685.3p Tf=385.4p Itf=.17 Vtf=3 Xtf=8 Rb=10)
+
.model Q2N3304
                 PNP(Is=545.6E-18 Xti=3 Eq=1.11 Vaf=100 Bf=59.22 Ne=1.5 Ise=0
           Ikf=50m Xtb=1.5 Br=1.438 Nc=2 Isc=0 Ikr=0 Rc=3.75 Cjc=2.77p
+
+
           Mjc=.1416 Vjc=.75 Fc=.5 Cje=2.65p Mje=.3083 Vje=.75 Tr=4.123n
+
           Tf=118.5p Itf=.5 Vtf=3 Xtf=6 Rb=10)
.model Q2N3394
                 NPN(Is=61.01f Xti=3 Eg=1.11 Vaf=57.37 Bf=121.3 Ne=1.305
            Ise=122.2f Ikf=97.79m Xtb=1.5 Br=.2359 Nc=2 Isc=0 Ikr=0 Rc=2.14
+
            Cjc=6.072p Mjc=.3333 Vjc=.75 Fc=.5 Cje=5.928p Mje=.3333 Vje=.75
+
           Tr=1.633u Tf=316.3p Itf=.2 Vtf=5 Xtf=8 Rb=10)
+
                 PNP(Is=336.7f Xti=3 Eg=1.11 Vaf=100 Bf=118.1 Ne=1.5 Ise=0
.model Q2N3467
           Ikf=.6 Xtb=1.5 Br=.2901 Nc=2 Isc=0 Ikr=0 Rc=.5 Cjc=39.63p
           Mjc=.3357 Vjc=.75 Fc=.5 Cje=87.82p Mje=.3551 Vje=.75 Tr=246.4n
+
           Tf=800p Itf=0 Vtf=0 Xtf=0 Rb=10)
+
                 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=184.4 Ne=1.277
.model Q2N3414
+
            Ise=14.34f Ikf=.2714 Xtb=1.5 Br=6.386 Nc=2 Isc=0 Ikr=0 Rc=1
+
            Cjc=9.393p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+
           Tr=48.09n Tf=409.7p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
.model Q2N3502
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=231.7 Ne=1.829
            Ise=54.81f Ikf=1.079 Xtb=1.5 Br=3.563 Nc=2 Isc=0 Ikr=0 Rc=.715
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=111.3n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3508
                 NPN(Is=498.7f Xti=3 Eg=1.11 Vaf=100 Bf=97.11 Ne=4.644
+
            Ise=195.4n Ikf=33.96m Xtb=1.5 Br=5.485m Nc=2 Isc=0 Ikr=0 Rc=1.5
+
           Cjc=2.937p Mjc=99.99m Vjc=.75 Fc=.5 Cje=3.184p Mje=.3171
+
           Vje=.75 Tr=2.511u Tf=385.5p Itf=0 Vtf=0 Xtf=0 Rb=10)
.model 02N3505
                 PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=231.7 Ne=1.829
+
           Ise=54.81f Ikf=1.079 Xtb=1.5 Br=3.563 Nc=2 Isc=0 Ikr=0 Rc=.715
+
           Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
+
           Tr=111.3n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
.model Q2N3509
                 NPN(Is=498.7f Xti=3 Eg=1.11 Vaf=100 Bf=281 Ne=4.612
Ise=65.64n
           Ikf=33.8m Xtb=1.5 Br=4.851m Nc=2 Isc=0 Ikr=0 Rc=1.5 Cjc=2.937p
```