Lógica proposicional: El chancuco

Definiciones:

Símbolo(s)	Nombre	Lectura
true, Verdadero	Verdadero	"Verdadero"
false, Falso	Falso	"Falso"
7	Negación	"no"
\equiv , \Longleftrightarrow	Equivalencia	" equivale a"
V	Disyunción	" o"
\oplus	Disyunción exclusiva	" o esto, o"
\wedge	Conjunción	" y"
\Longrightarrow	Implicación	" implica"
F	Teorema	" es un teorema."

Precedencia de operación: $\neg, (\land, \lor, \oplus), \implies, \equiv$

Verdadero, Falso y doble negación:

Regla	Nombre
$\neg \neg p \equiv p$	Doble negación
$false \equiv \neg true$	Definición de false
$\neg false \equiv true$	Negación de false

Propiedades de la conjunción \vee :

Regla	Nombre
$p \lor false \equiv p$	Identidad ∨
$p \lor true \equiv true$	Dominación ∨
$p \lor p \equiv p$	Idempotencia \vee
$p \vee q \equiv q \vee p$	Conmutatividad ∨
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Asociatividad ∨
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributividad \vee sobre \wedge
$\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan ∨
$p \lor (p \land q) \equiv p$	Absorción ∨ sobre ∧
$p \vee \neg p \equiv true$	Tautología (medio excluido)

Propiedades de la disyunción A:

Regla	Nombre
$p \wedge true \equiv p$	Identidad de ∧
$p \wedge false \equiv false$	Dominación ∧
$p \wedge p \equiv p$	Idempotencia \land
$p \wedge q \equiv q \wedge p$	Conmutatividad ∧
$(p \land q) \land r \equiv p \land (q \land r)$	Asociatividad \land
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributividad \land sobre \lor
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan de \wedge
$p \land (p \lor q) \equiv p$	Absorción de ∧ sobre ∨
$p \land \neg p \equiv false$	Contradicción

Sobre \Longrightarrow , \oplus , \equiv :

Regla	Nombre
$p \implies q \equiv \neg p \lor q$	Definición ⇒
$(p \equiv q) \equiv (p \implies q) \land (q \implies p)$	Definición ≡
$p \oplus q \equiv \neg (p \equiv q)$	Definición \oplus
$true \equiv (p \equiv p)$	$Identidad \equiv$
$(p \equiv q) \equiv (q \equiv p)$	Conmutatividad \equiv
$((p \equiv q) \equiv r)) \equiv (p \equiv (q \equiv r))$	Asociatividad ≡
$p \implies q \equiv \neg q \implies \neg p$	Contrarecíproca
$p \lor q \equiv \neg p \implies q$	Definición de ∨ con ⇒
$p \land q \equiv \neg(p \implies \neg q)$	Definición de \land con \Longrightarrow
$\neg(p \implies q) \equiv p \land \neg q$	Negación de ⇒
$(p \implies q) \land (p \implies r) \equiv (p \implies (q \land r))$	Distributividad izquierda de \implies sobre \land
$(p \implies q) \lor (p \implies r) \equiv (p \implies (q \lor r))$	Distributividad izquierda de \implies sobre \lor
$(p \implies r) \land (q \implies r) \equiv (p \lor q) \implies r$	Distributividad derecha de \implies sobre \land
$(p \implies r) \lor (q \implies r) \equiv (p \land q) \implies r$	Distributividad derecha de \implies sobre \land
$p \implies (q \implies r) \equiv (p \land q) \implies r$	Asociatividad izquierda de \implies
$p \equiv q \equiv \neg p \equiv \neg q$	$Contrarrecíproca \equiv$
$\neg(p \equiv q) \equiv \neg p \equiv q$	$Negacion_1 \equiv$
$\neg(p \equiv q) \equiv p \equiv \neg q$	$Negaci\'on_2 \equiv$
$p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$	Definición ₂ \equiv
$p \oplus q \equiv (p \vee q) \land \neg (p \land q)$	Definición $_2\oplus$

Reglas ecuacionales:

Regla	Nombre
$\frac{p \equiv p}{true}$	Reflexividad \equiv
$\frac{p \equiv q}{q \equiv p}$	Simetría ≡
$\frac{p \equiv q, q \equiv r}{p \equiv r}$	Transitividad \equiv
$\frac{E}{E[x:=p]}$	Sustitución
$E_1 \equiv E_2$ $E[x:=E_1] \equiv E[x:=E_2]$	Leibniz

Formato de demostración ecuacional:

Lema: (Proposición necesaria para la demostración posterior)

Dem:

Teo: (Proposición a demostrar)

Dem:

Exp. Regla (razón) E_0 E_1 r_1

 $\equiv \begin{array}{ccc} E_k & r_k \\ & & \end{array}$

 $[r_i$ justifica la equivalencia $E_{i-1} \equiv E_i$.]