Експериментално установяване на специфичната топлина на топене на леда и специфичната топлина на изпарение на водна пара

Васил Николов (Dated: 08.03.2022)

І. Цел на упражнението

Да се измерят специфичната топлина на топене на воден лед λ и специфичната топлина на изпарение на водната пара s.

II. Теоретична обосновка

При фазоф преход на водата от твърдо към течно състояние температурата е константна $(T=T_{melt})$, но за да разтопим лед с маса m е нужно да се вкара допълнително енергия в системата $\Delta Q=\lambda m$. Тук λ е константа - специфичната топлина на топене. Аналогично при изпарение на вода с маса m можем да дефинираме $s=\frac{\Delta Q}{m}=const.$ Тогава температурата на фазовият преход зависи от атмосферното налягане, което ще бъде измерено отделно.

III. Експериментална установка и работни формули

А. Специфична топлина на топене на леда

В добре термоизолиран дюаров съд поставяме вода с начална температура $T_0=56.7\pm0.1^{\circ}C$ и маса $m_{H20}=150.0\pm0.1g$. Поставяме и няколко ледени кубчета и чакаме, докато се разтопят. Чрез потопеният в съда термометър измерваме температурата $T_1=26.1\pm0.1^{\circ}C$. След това премерваме масата на съда. Тъй като знаем масата му, когато е празен, и масата на водата в началото можем да определим точно масата на сложените ледени кубчета $m_{ice}=49.0\pm0.1g$. Установено е, че топлинният капацитет на дюаровият съд е равен на този на $m_d=20g$ вода. Нека топлинният капацитет на водата е C. Тогава

$$c(m_{h2o} + m_d)(T_0 - T_1) + \lambda m_{ice} + cm_{ice}(T_1 - T_{melt}) = 0$$
$$\lambda = c \frac{(m_{h2o} + m_d)(T_0 - T_1) + m_{ice}(T_{melt} - T_1)}{m_{ice}}$$

С тези стойности пресмятаме крайната стойност на $\lambda=(331\pm4)~kJ/kg$. Тази стойност е в съгласие с табличната стойност от $\lambda_0=334~kJ/kg$

Б. Специфична топлина на изпарение на водата

В дюаровият съд сипваме дестилирана вода с начална температура $T_0=19.6\pm0.1^{\circ}C$. Потапяме маркуч на парогенераторът във водата, и го оставяме да работи докато температурата на водата не стигне $T_1=65.6^{\circ}C$. Изваждаме маркуча от водата и претегляме сместа, за да намерим масата на парата, която е кондензирала във водата. Началната маса на водата е $m_{h2o}=150.8g$, а масата на парата - $m_s=14.2g$.

$$c(m_{h2o} + m_d)(T_1 - T_0) - sm_s + cm_s(T_1 - T_{ph}) = 0$$

$$s = c\frac{(m_{h2o} + m_d)(T_1 - T_0) + m_s(T_1 - T_{ph})}{m_s}$$

Въздушното налягане по време на експеримента е p=710mmHg. При тази стойност температурата на изпарение на водата е $T_{ph}=98.07^{\circ}C$. Тогава стойността на специфичната температура на изпарение на водата е $s=2160\pm40~kJ/kg$

IV. Експериментални данни и резултати

- А. Градуиране на термодвойката
- Б. Фазов преход на сплав на Вуд