

The Heat of Dissociation of Nitric Oxide

G. Glockler

Citation: The Journal of Chemical Physics 16, 604 (1948); doi: 10.1063/1.1746954

View online: http://dx.doi.org/10.1063/1.1746954

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/16/6?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Neutral Dissociation of Superexcited Nitric Oxide Induced by Intense Laser Fields

Chin. J. Chem. Phys. 23, 252 (2010); 10.1088/1674-0068/23/03/252-254

Nitric oxide photofragment rotational distribution from UV dissociation of cyclopentadienylnickel nitrosyl

J. Chem. Phys. 88, 7418 (1988); 10.1063/1.454305

Negative Ion Formation by an Electron Capture Process in Nitric Oxide. Dissociation Energy of the Nitric Oxide Molecule

J. Chem. Phys. 29, 1424 (1958); 10.1063/1.1744743

The Heat of Formation of Nitric Oxide and Phosphorus Trioxide

J. Chem. Phys. 20, 113 (1952); 10.1063/1.1700148

Dissociation Energies of Nitrogen and Nitric Oxide

J. Chem. Phys. 16, 848 (1948); 10.1063/1.1747019

 $\bar{D}(\mathrm{OH~in~H_2O})$ and $\bar{D}(\mathrm{HF~in~HF})$. As seen in Fig. 2b, the value $\bar{D}(\mathrm{NH~in~NH_3}) = 4.02$ ev fits into this series. The needed information is collected in Table II. The heat of formation from atoms (Q_a) divided by the number of bonds gives the average bond energy (\bar{D}) .

The lower value of 3.63 ev of $\bar{D}({\rm NH}$ in ${\rm NH_3})$ based on $D({\rm N_2}) = 7.38$ ev is less than $D({\rm NH}, {\rm radical})$ (= 3.74 ev), whereas the corresponding distances are R(NH in NH₃) = 1.014Å and $R({\rm NH}, {\rm radical}) = 1.038$ Å. The higher value of 4.02 ev for $\bar{D}({\rm NH}$ in NH₃) is therefore more acceptable.

With the higher value of $D(N_2) = 9.764$ ev, the appearance potential of N^+ ions⁴ will then refer to the reaction

$$N_2(X \ ^1\Sigma_q^+) \rightarrow N(^4S) + N(^4S) - 9.764 \text{ ev} N(^4S) \rightarrow N^+(^3P) + E^- - 14.480 \text{ ev}$$

$$N_2(X^1\sum_g^+) \rightarrow N^+(^3P) + N(^4S) + E^- - 24.244 \text{ ev}$$

rather than to

$$N_2(X \ ^1\sum_{g}^+) \rightarrow N(^4S) + N(^4S)$$
 - 7.384 ev
 $N(^4S) \rightarrow N(^2D)$ - 2.381 ev
 $N(^4S) \rightarrow N^+(^3P) + E^-$ - 14.480 ev

$$N_2(X {}^1\sum_{g} {}^+) \rightarrow N^+({}^3P) + N({}^2D) + E^- - 24.245 \text{ ev}$$

The only difference is the state of the nitrogen atom, which cannot be detected in a mass spectrograph. Hence no conflict is apparent with these impact experiments. The effect on the heat of dissociation of NO will be discussed at a later date.

The values for the carbon-hydrogen bond energies have been taken from a study²⁶ which indicates that the high value of the heat of sublimation of carbon (L(C) = 7.334 eV) is not acceptable, since the CH bond energy for the free radical would have to be 4.08 ev rather than the spectroscopic value of 3.47 ev (Table I). It is seen that this high value does not fit at all into the sequence of Fig. 2a nor does the average bond energy $\bar{D}(\text{CH in CH}_4)$ as shown in Fig. 2b.

Wahrhaftig²⁷ determined that the heat of dissociation of F_2 'should be somewhat less than the usually accepted value (2.8 ev). It has no great influence on the interpolation made here (Fig. 2). The constants of Eqs. (1) and (2) are slightly changed for a smaller value of $D(F_2)$, but the empirical value of D(NH) = 3.74 ev is not affected.

The comparison made here favors the higher value of the heat of dissociation of nitrogen $(D(N_2) = 9.764 \text{ eV})$ and either of the lower values of the heat of sublimation of carbon (L(C) = 5.424 or 5.888 eV).

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 16, NUMBER 6

JUNE, 1948

The Heat of Dissociation of Nitric Oxide

G. GLOCKLER

Department of Chemistry and Chemical Engineering, State University of Iowa, Iowa City, Iowa (Received February 16, 1948)

The heat of dissociation of nitric oxide (D(NO)) is considered to be 6.49 ev on the basis of a comparison of the series CO, NO, O₂, OF, its band spectrum, and its photo-chemical dissociation. Appearance potentials of N⁺, O⁺, and O⁻ can be interpreted on this basis.

IF the heat of dissociation of nitrogen is 7.384 ev,¹ then the heat of dissociation of nitric oxide must be 5.30 ev since the heat of dissociation of oxygen is known to be 5.082 ev. However,

Gaydon² discussed the possibility that the higher value of 9.764 ev for the heat of dissociation of N₂ is more acceptable. The following considerations lend support to this view.

²⁶ Unpublished results.

²⁷ A. L. Wahrhaftig, J. Chem. Phys. 10, 248 (1942).

¹G. Herzberg, Molecular Spectra and Molecular Structure I. Diatomic Molecules (Prentice-Hall, Inc., New York, 1939).

² A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules (John Wiley and Sons, Inc., New York, 1947).

SERIES COMPARISON

If the heats of dissociation of the oxides of the first row elements C, N, O, F are compared (Fig. 1 and Table I), it is seen that the relation between dissociation energy (D) and internuclear distance (R) shows the same trend as does the similar relation between force constant (k) and internuclear distance. Such comparisons have been made by other writers,3 and they appear to have validity if the series of structures to be studied is chosen properly. In the present case the four elements belong to the first group of the periodic table, and their oxides are all diatomic molecules, with the exception of the OF radical, where the necessary information was obtained from fluorine monoxide, to be discussed below. The relation between force constants and internuclear distances follows the rule that a large force constant goes with a relatively small internuclear distance, even though the electron structures are disposed in a variety of ways.

Since the heat of dissociation of carbon monoxide is still in question,2,4 two values have been included in Table I. However, the main point of the present argument is not affected. It is seen from Fig. 1 that the lower value of 5.30 ev of the heat of dissociation of NO does not fit into this series. If the attempt is made to include it, then a curve is obtained which is guite different

Fig. 1. Force constants and dissociation energies of CO, NO, O_2 , and \overline{OF} .

⁴H. D. Hagstrum, Phys. Rev. 72, 947 (1947).

TABLE I. Force constants (k), dissociation energies (D), and internuclear distances (R) (reference 1, Table 36).

		\boldsymbol{k}	R		D(
		(m.d./cm)	Α.	a	b '		đ
N ₂	$\frac{1\Sigma_g^+}{1\Sigma^+}$	2.286	1.095	7.384	7.384	9.764	9.764
CO	$^{1}\Sigma^{+}$	1.89	1.1284	11.054	9.608	11.054	9,608
NO	$^{2}\Pi_{r}$	1.59	1.150	5.30	5.30	6.49	6.49
O_2	$^3\Sigma_{\sigma}^-$	1.18	1.2076	5.082	5.082	5.082	5.082
$\frac{O_2}{OF}$	(OF ₂)	0.56	$1.41 \pm .05$	2.45	2.45	2.45	2.45°

from the corresponding k-R curve. This finding is used for the assertion that the higher figure of D(NO) (=6.49 ev) is the correct value. The heat of dissociation of the OF radical was estimated to be 2.45 ev from the compound OF₂, using the heat of formation (Q_t) given by Bichowsky and Rossini.⁵ The heat of dissociation of F₂ was taken as 2.6 ev. Had the higher current value (2.8 ev)1 been employed, then the average bond energy ($\bar{D}(OF)$) would have been 2.55 ev with no effect on the trend of the curve in the important region. The breaking of the first OF bond in OF₂ may, however, be quite different from the bond energy of the remaining OF radical. A study of similar cases (water, ozone) indicates that D(OF) would hardly be greater than about 3.5 ev and that R(OF) would not differ very much from R(OF in O₂F). In order

Fig. 2. Force constants and dissociation energies of N₂, NO, and O2.

³ For literature references see G. Glockler, J. Chem. Phys. 16, 602 (1948).

a $D(N_2) = 7.384$ ev; L(C) = 7.334 ev. b $D(N_2) = 7.384$ ev; L(C) = 5.888 ev. c $D(N_2) = 9.764$ ev; L(C) = 7.334 ev. d $D(N_2) = 9.764$ ev; L(C) = 5.888 ev.

⁵ F. R. Bichowsky and F. D. Rossini, The Thermochemistry of the Chemical Substances (Reinhold Publishing Corporation, New York, 1936). ⁶ A. L. Wahrhaftig, J. Chem. Phys. 10, 248 (1942).

TABLE II. Beta-bands of nitric oxide.

1 2 3 Band origins		4 5 Band centers ^b		6 7 8 Intensity ob-			9 Refer-	
(v', 0'')	cm-1	diff.	cm ⁻¹	diff.	2-4	served	F.C.	ence below
0′	45440	1023				0	0	
1′	46463	1008				0	0	
2'	47471	995	47369	1006	+102	1	0	
3′	48466	981	48375	976	+ 91	1	0	
4'	49447	969	49351	984	+ 96	2	0	
5'	50416	957	50335	937	+ 81	2	0	
6′	51373		51272	1068	+101	3	0	۰
7'	52318	945 936	(52340)	931	- 22	3	1	đ
8'	53254	936	(53271)	859	- 17	?	1	•
9′	54179	925	54130	039	+ 49	4	2	
10′	55094	904		_	-	0	1	t
11'	56008	899	55885	1150	+123	1	2	i
12'	56907	892	(57035)	778	-128	1	3	g,i
13'	57799		(57813)	687	- 14	1	8	b,i
14'	58684	885 879	58500	1105	+184	1	10	i, j
15'	59563	879	59605	1105	- 42	8	10	k

<sup>F. A. Jenkins, H. A. Barton, and R. S. Mulliken, Phys. Rev. 30, 150 (1927), Eq. 8 (average values are used).
S. W. Leifson, Astrophys. J. 63, 73 (1926).
On short wave-length side of γ(3',0"); mentioned in Leifson's</sup>

that the value 5.30 ev for D(NO) should fit into the D-R curve, D(OF) would need to be about 4.5 ev. Such a value would mean that the removal energy for the first oxygen atom would

Fig. 3. Potential energy curves of NO.

TABLE III. Gamma- and epsilon-bands of NO.

1	2 Band o	3 riginsa	4 Band co	5 enters ^b	6 I	7 intensit	8 ·y	9 Refer-
(v', 0'')		diff.	ċm⁻¹	diff.	2-4	ob- served	I F.C	ence below
0'	44198		44156		42	4	0	
1′	46540	2342	46492	2326	48	4	0	
2′	48850	2310 2278	48809	2317 2279	41	4	1	
3'	51128	2210	51088	2219	39	3	2	
0'	53293	2281	53271	2297	22	7	8	c
1'	55574		55568		6	10	8	
2'	57809	2235	57813	2245	-4	6	5	đ
3'	59998	2189	60000	2187	-2	5	4	
4′	62141	2143	62089	2089	52	1		
5′	64238	2097	64234	2145	4	2		

a P. Migeotte, Bull. Soc. Roy. Sci. Liége 14, 40 (1945) gives (0',0'') = 44120; (1',0'') = 46460; (2',0'') = 48780 and (3',0'') = 51060 cm⁻¹ (all values are averages); P. Migeotte and B. Rosen, *ibid.* 14, 49 (1945); A. G. Gaydon, Proc. Phys. Soc. London 56, 90, 160 (1944); B. Rosen, Phys. Rev. 68, 124 (1945); R. Schmid, Zeits. f. Physik 49, 428 (1928). b S. W. Leifson, Astrophys. J. 63, 73 (1926). ${}^{\circ}$ β(8',0'') at 53254 cm⁻¹. d β(13',0'') at 57799 cm⁻¹.

be only about 0.6 ev (5.1-4.5 ev). However, in the similar case of Cl₂O, Finkelnburg and Schumacher⁷ give from spectral data

$$ClO_2 \rightarrow ClO + O(^1D) - 4.4 \text{ ev},$$

or

$$ClO_2 \rightarrow ClO + O(^3P) - 2.4 \text{ ev.}$$

Since⁵

$$Cl+2O\rightarrow Cl_2O+5.30 \text{ ev}$$

it follows that

$$ClO \rightarrow Cl + O + 2.9$$
 ev.

This is just about one-half of the atomic heat of reaction (5.30 ev). Hence it appears likely that D(OF) is about equal to $\overline{D}(OF \text{ in } OF_2)$.

Another comparison can be made for the three molecules N2, NO, O2. It is seen from Fig. 2 that the higher values for $D(N_2)$ and D(NO)give a D-R curve which shows the same trend as the k-R curve. It is interesting to recall that Mulliken⁸ and Herzberg¹ give for the number of bonds, 3, 2.5, and 2, respectively. While such comparisons in themselves are not sufficient to render a decision in doubful cases, still they should be given some weight. Since heats of dis-

⁸ R. E. Mulliken, Rev. Mod. Phys. 4, 1 (1932).

<sup>On snort wave-length side of γ(3',0''); ment able 5 (reference 2).
d Covered by δ(0',0'') with center at 52340 cm⁻¹.
Covered by ε(0',0'') with center at 53271 cm⁻¹.
Not mentioned by Leifson (reference 2).
Near δ(2',0'') at 57035 cm⁻¹.
Near ε(2',0'') or 57813 cm⁻¹.
Allocation and centrin.</sup>

i Allocation not certain.
i 1704A may be β(16',1").
s Strongest β-band in entire absorption spectrum.

⁷W. Finkelnburg and H. J. Schumacher, Zeits, f. physik. Chemie Bodenstein Festband 704–16 (1931).

sociation have been in question for so many years,2 it seems appropriate to discuss any and all lines of argument which might help in settling the values of these important constants. It is believed that these series comparisons can be used as additional lines of argument to assist in determining magnitudes of force constants, internuclear distances, or bond energies.

BAND SPECTRUM

The higher value of D(NO) must fit into the energy level scheme of the molecule. In this connection it is of interest to point out that Herzberg and Mundie⁹ make the suggestion that the e-bands of NO are really a continuation of the γ -bands, as can be seen from their table of intervals. They base their remarks on the absorption spectra of Leifson¹⁰ and derive a predissociation limit between 51088 and 53271 cm⁻¹ (6.33 and 6.60 ev). Hence D(NO) must be equal to or less than these values. There is quite a remarkable change in intensity of these bands at v'=4. It may be supposed that some of the so-called γ -bands (v' = 4 to 7) are stronger than expected because some of them overlap certain β -bands, enhancing their appearance on the photographic plate. The band at 1877.2A (53271 cm⁻¹) could be $\gamma(4',0'')$ (53375 cm⁻¹) and $\beta(8',0'')$ (53254 cm⁻¹) and $\beta(10',1'')$ (53216

Fig. 4. Heat of dissociation of NO. 1. D(NO) = 5.30 ev based on $D(N_2) = 7.384$ ev. 2. D(NO) = 6.49 ev based on $D(N_2) = 9.764$ ev. 3. D(NO) = 7.02 ev after Jenkins, Barton, and Mulliken (reference 10). 4. D(NO) = 7.92 ev after Birge and Sponer (reference 18).

TABLE IV. Delta-bands of nitric oxide.

Band originsa-c		Band c	enters ^d	Intensity ob-		Refer- ence	
$(v^{\prime},0^{\prime\prime})$	cm-1	cm ⁻¹	diff.	served	F.C.	below	
0′	52287	52340	2329	8	0	е .	
1'		54669	2366	10	5		
2′		57035	2127	6	10	f	
3'		59168	2518	4	8		
4'		61686	2310	2	8	ĸ	

<sup>A. G. Gaydon, Proc. Phys. Soc. London 56, 90 (1944); P. Migeotte and B. Rosen, Bull. Soc. Roy. Sci. Liége 14, 49 (1945); H. P. Knauss, Phys. Rev. 32, 417 (1928).
b. W. Jevons, Band Spectra of Diatomic Molecules (University Press, Cambridge, England, 1932).
R. Schmid, Zeits, f. Physik 59, 42 (1930); 64, 279 (1930).
d.S. W. Leifson, Astrophys. J. 63, 73 (1926).
β(7,0) at 1911.4A or 52318 cm⁻¹ is located here.
β(12,0) at 1757.2A or 56907 cm⁻¹ is located here.
Broad band.</sup>

cm⁻¹). However, Gaydon¹¹ and Migeotte and Rosen¹² have shown that the €-bands are really a band system apart from the γ -bands and $\gamma(4',0'')$ is really $\epsilon(0',0'')$, etc.

The band at 1799.6A (55568 cm⁻¹), however, is very likely only $\epsilon(1',0'')$ since other bands are about 400 cm⁻¹ distant. The band at 1729.7A (53813 cm^{-1}) can be $\epsilon(2',0'')$ (57795 cm^{-1}) and $\beta(13',0'')$ (57799 cm⁻¹). The band at 1666.6A

Fig. 5. Potential energy curves for NO and NO⁺. N(4 S)+O(3 P)=52380 cm⁻¹ or 6.49 ev; N(2 D)+O(3 P)=71590 cm⁻¹ or 8.88 ev; N(4 S)+O(5 S)=126150 cm⁻¹ or 15.64 ev; O+(4 S)+N(4 S)=161640 cm⁻¹ or 20.04 ev; N+(3 P)+O(3 P) or O^{-*}=169140 cm⁻¹ or 20.97 ev.

⁹ G. Herzberg and L. G. Mundie, J. Chem. Phys. 8, 263 (1940).

¹⁰ S. W. Leifson, Astrophys. J. 63, 73 (1926).

¹¹ A. G. Gaydon, Proc. Phys. Soc. London 56, 90, 160 (1944).

12 P. Migeotte and B. Rosen, Bull. Soc. Roy. Sci. Liége

 (60000 cm^{-1}) can be $\gamma (3',0'') (59955 \text{ cm}^{-1})$ and no overlapping occurs. The band at 1957.4A (51088 cm^{-1}) is clear of $\beta(6',0'')$ (51373 cm⁻¹) and of $\beta(8',1'')$ (51376 cm⁻¹) by about 290 cm⁻¹. Hence considerable overlapping can be responsible for the actual intensity distribution of many bands on Leifson's photograph.

The details can best be seen in Tables II-IV. The band origins of the β -bands were calculated from an equation given by Jenkins, Barton, and Mulliken. 13 The similar quantities for the γ -, δ-, and ε-bands were obtained from Gaydon.11 It should be noted that Knauss¹⁴ recognized the band $\delta(0',0'')$ on Leifson's photograph. The difference between his value for the band head (1915.7A) and Leifson's measurement (1910A) he ascribes to the fact that the latter's values were all for the middle of the bands. This latter fact must be kept in mind when comparison is made between calculated values and experimental absorption bands. Rough guesses of intensities based on visual inspection of Leifson's photographs¹⁰ and a crude use of the Franck-Condon principle are given in columns 9 and 10 of his Tables II–IV. The principle is not applicable in a simple manner in the present case as has been mentioned by Kaplan¹⁵ and Barton, Jenkins, and Mulliken.16

These considerations and the work of Gaydon¹¹ suggest that an upper ${}^{2}\Sigma^{+}$ state (from N(${}^{6}S$) +O(3P) at 6.49 ev) might cross the region near $\delta(1',0'') = 54700$ cm⁻¹ at 1.15A. However, the non-crossing rule would have to be violated three times $(A^2\sum^+, C^2\sum, D^2\sum^+)$. It is therefore necessary to consider another scheme, shown in Fig. 3. Here $A^2\Sigma^+$ is perturbed by a flat $^2\Sigma^+$ state as above, so that $\gamma(4',0'')$ does not exist. These two states form $C^2\Sigma$. The $D^2\Sigma^+$ state lies above and is not affected. The non-crossing rule is not violated. $A^2\Sigma^+$ may have a maximum at about 1.2A. Two interesting facts are noticeable in this connection. $\beta(10',0'')$ is not mentioned by Leifson at all and certainly cannot be seen on the published photograph. This level seems greatly perturbed. Similarly, $\beta(11',0'')$ differs considerably from the calculated value. On the other hand, $\beta(9',0'')$ is very strong in comparison. Hence these three levels appear perturbed by the presence of a repulsive state. This point may be cited in favor of the crossing of the $^2\Sigma^+$ state at $\delta(1',0'')$, as mentioned above. However, the main consideration, namely, that the higher value of D(NO) = 6.49 ev, favored by Gaydon,² can be fitted into an energy diagram, seems acceptable. It is obvious that not all the points at issue have been resolved.

PHOTO-CHEMICAL DISSOCIATION

Flory and Johnston¹⁷ state that they have observed photo-chemical dissociation at 1830A. However, this wave-length need not be taken too literally since spark sources usually have quite a continuous distribution in wave-length of radiation emitted.

BIRGE-SPONER EXTRAPOLATION

It is always of interest in a study of this kind to see how a suggested value for a heat of dissociation compares with the well-known Birge-Sponer extrapolation.¹⁸ The usual plot is indicated in Fig. 4. It should be noted that the use of the equation of the origins of the β -bands given by Jenkins, Barton, and Mulliken¹³ gives a value for D(NO) nearer to the presently suggested figure than the usually accepted one.

APPEARANCE POTENTIALS

Hagstrum and Tate¹⁹ studied the ionization and dissociation processes in nitric oxide. In their interpretation of these collision processes they used D(NO) = 5.30 ev. Gaydon² already remarks that the larger value of 6.49 ev can be reconciled with the impact experiments. A detailed study (based on Fig. 5) of the processes

$$NO+E^-\rightarrow N+O^{-*}$$

$$NO\rightarrow N^++O^{-*}$$

$$NO\rightarrow N+O^+$$

indicates that merely different amounts of kinetic energy of the resulting products need be assumed in order to bring the experiments into line with the high value of D(NO) = 6.49 ev.

¹³ F. A. Jenkins, H. A. Barton, and R. E. Mulliken, Phys. Rev. **30**, 150 (1927).

 ¹⁴ H. P. Knauss, Phys. Rev. **32**, 417 (1928).
 ¹⁵ J. Kaplan, Phys. Rev. **37**, 1406 (1931).
 ¹⁶ H. A. Barton, F. A. Jenkins, and R. S. Mulliken, Phys. Rev. **30**, 175 (1927).

¹⁷ P. J. Flory and H. L. Johnston, J. Am. Chem. Soc. **57**, 2641 (1935).

¹⁸ R. T. Birge and H. Sponer, Phys. Rev. **28**, 259 (1926).

¹⁹ H. D. Hagstrum and J. T. Tate, Phys. Rev. **59**, 354