Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \in \mathbb{R}^{2} \longrightarrow z^{(m)} \in \mathbb{R}$$

Data Compression

10000 -> 1000

Reduce data from 3D to 2D

Motivation II: Data Visualization

Country

China

India

Russia

Singapore

USA

Canada

Data Visualization

×	
	F

GDP

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

[resources from en.wikipedia.org]

X2 Per capita **GDP**

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

X3 Human Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

XE Dro

X4

Life

ment Index|expectancy|percentage)|

80.7

73

64.7

65.5

80

78.3

XL

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

• • •

...

...

. . .

. . .

...

...

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

...

Data Visualization

	_		2 (1) EIR2
Country	z_1	z_2	<u></u>
Canada	1.6	1.2	
China	1.7	0.3	Reduce dota
India	1.6	0.2	from SOD
Russia	1.4	0.5	to 2D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation $3D \to 2D \\ K = 2$

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $\underline{u}^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

 x_1

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

 x_1

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 = \text{size of house}$, $x_2 = \text{number of bedrooms}$), scale features to have comparable range of values.

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to \underline{k} -dimensions Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

$$\sum_{i=1}^{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

Compute "eigenvectors" of matrix Σ :

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x;$$

Reconstruction from compressed representation

Reconstruction from compressed representation

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \stackrel{\text{(i)}}{\gtrsim} 1 \times \frac{1}{m} = \frac{1}{m} \frac{1}{m}$ Total variation in the data: 👆 😤 🗓 🔌

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k = 1

Compute $U_{reduce}, \underline{z}^{(1)}, z_{\underline{\hspace{0.1cm}}}^{(2)},$

 $\ldots, z_{approx}^{(m)}, x_{approx}^{(1)}, \ldots, x_{approx}^{(m)}$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

Choosing k (number of principal

→ components) [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

k=100

Advice for applying PCA

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 Speed up learning algorithm

 Chose k by % of vorce retain

- Visualization

Bad use of PCA: To prevent overfitting

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

Bod

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left[\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right]$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- Run PCA to reduce $\,x^{(i)}\,$ in dimension to get $z^{(i)}\,$
- Train logistic regression on $\{(z^{(1)},y^{(1)}),\ldots,(z^{(m)},y^{(m)})\}$
- Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$

How about doing the whole thing without using PCA?

Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.