CS218: Design and Analysis of algorithms

Amortized analysis

Yan Gu

Monte Carlo algorithm

Gambles with correctness but not time

$$Pr[failure] = \frac{1}{2^{300}}$$

Worst-case time complexity: O(1)

Las Vegas algorithm

Gambles with time but not correctness

repeat:

k = RandInt(n) **if** A[k] = 1, **return** k

$$Pr[failure] = 0$$

- Worst-case time: cannot bound (can be big when super unlucky)
- Expected time: O(1) (2 iterations)

Types of algorithms

Correctness

Time complexity

Deterministic

Monte Carlo

Las Vegas

Always	Good		
With good probability	Ideally even better		
Always	Better		

Hashing and Rabin-Karp Algorithm

Hash function

- Maps arbitrary data to fixed-size values
 - Usually integers
- The same data are always mapped to the same value
- Different data are unlikely to be mapped to the same value
 - Collision: two keys are hashed to the same hash value

How to design a hash function

- E.g., Strings -> integers
- How can we map complicated structs
 - A pair: (i, j) for i, j in [1..100]
 - A triple (*i*, *j*, *k*) for *i*, *j*, *k* in [1..100]
 - A 2×2 matrix?
 - A string?

Application: Rabin-Karp algorithm

- Substring matching
- Given string X[1..n] (text) and Y[1..m] (pattern), we want to check if Y is a substring in X
 - X = abcabababc, Y = caba
- The naı̈ve solution cost O(nm) time
- Knuth-Morris-Pratt algorithm (KMP) can solve this in $oldsymbol{O}(n)$ time
 - Hard to understand 🕾

Let's try randomization!

- To check if Y appears in X, we just need to check all X's substring and see if they are the same with Y
 - Checking if X[s..e] = Y takes O(m) time
- Let's use hashing!
 - Check if the hash value of X[s..e] equals to the hash value of Y

Let's try randomization!

- To check if Y appears in X, we just need to check all X's substring and see if they are the same with Y
 - Checking if X[s..e] = Y takes O(m) time
- Let's use hashing!
 - For a string using characters a, b, c
 - H_1 : using a=1, b=2, c=3. adding everything up

Y	$= bcab, H_1(Y)$	=	8

а	b	С	а	b	а	b	С
---	---	---	---	---	---	---	---

abca	1+2+3+1=7	abab	1+2+1+2=6
bcab	2+3+1+2=8	babc	2+1+2+3=8
caba	3+1+2+1=7		

Let's try randomization!

 $Y = bcab, H_1(Y) = 8$

How to compute the hash value quickly?

O(n) time!

abca	1+2+3+1=7
bcab	2+3+1+2=8
caba	3+1+2+1=7
abab	1+2+1+2=6
babc	2+1+2+3=8

Hash value:

$$7-1+2=8$$

$$8-2+1=7$$

$$7-3+2=6$$

$$6-1+3=8$$

Fewer collisions?

 $Y = bcab, H_2(Y) = 2312$

• H_2 : treat a=1,b=2,c=3, use a decimal number

O(n) time!

abca	1231
bcab	2312
caba	3121
abab	1212
babc	2123

Hash value:

1231 (1231-1000)*10+2=2312 (2312-2000)*10+1=3121 (3121-3000)*10+2=1212 (1212-2000)*10+3=2123

A simple version

```
num (c) {return c-98;} // a=1, b=2, c=3
check match (X, Y) {
 hy = 0;
  for (i = 1..m) hy = hy*10 + num(Y[i]); //compute hash value of Y
 hx = 0;
  for (i = 1..n) {
    if (i < m) hx = hx*10 + num(X[i]); // process the first (m-1) characters
    else {
       if (i==m) hx = hx*10 + num(X[i]);
       else hx = (hx - X[i-m+1] * pow(10, m-1))*10 + num(X[i]); // compute new hash value
       if (hx == hy)
          if (check(X[i-m+1 .. i], Y)) return true;
```

More characters?

- What happens if we have 26 letters? Or even more?
 - Use base-26 (or base-x with x > 26)
- If Y has 100 characters?
- Cannot use an integer to store?
- We can use $H_3(s) = H_2(s) \% p$ for some big prime p
 - Still, the same strings will be mapped to the same value
 - Different strings are likely to be mapped to different values
- (a + b) % p = (a % p) + (b % p)
- $(a \times b) \% p = (a \% p) \times (b \% p)$

The cost of the algorithm?

- O(n) time to compute and compare all hash values
- But if two hash values are the same, we need to verify the strings are equal or not
 - *O*(*m*) time
- In the worst case, all comparisons succeed, we need $\mathcal{O}(nm)$ time
- However, the probability of two different strings is mapped to the same value is 1/p, expected cost is $O\left(\frac{mn}{p}+n\right)$
- ullet We can use a large p to decrease the cost
- We can also use two independent hash functions to even lower the chance of collision

CS218: Design and Analysis of algorithms

Amortized analysis

Yan Gu

Amortized analysis

- A somehow different angle to analyzing algorithms (very different from the "standard" way of worst-case analysis)
- May be new for many of you, so you may need to take some time after class to understand the idea

Hashing and hash table

Hash function

- Maps arbitrary data to fixed-size values
 - Usually integers
- The same data are always mapped to the same value
- Different data are unlikely to be mapped to the same value
 - Collision: two keys are hashed to the same hash value

A short recall of hash table

 Maintain a list of unordered elements, and support quick insert/delete and lookup

Used in unordered_set/unordered_map (C++), HashMap (Java),

Dictionary (Python)

Hash table and hash functions

- E.g., Strings -> integers
- A["John Smith"] = false
 - A[2] = false (John Smith)
- A["Lisa Smith"] = true
 - A[1] = true (Lisa Smith)
- X = A["John Smith"]
 - X = A[2]
- A["Sandra Dee"] = false
 - A[2]?

Ways to deal with collisions

• When an element is mapped to a index i, but finds out that position i has been taken by another element?

Open addressing / closed hashing

- Find another empty position (e.g., linear probing: try the next position)
- It can also be using other ways to find the next empty position, not necessarily try the next position (e.g., probe quadratically)

Closed addressing / open hashing

- Throw the element still to position i
- All elements in position i will be further organized as another data structure, e.g., a linked list

Open addressing vs. closed addressing

Open Addressing

Characteristic structure (colors denote "home" bucket):

- 0:
- 1: (1
- 2: (2)
- 3: (2)
- 4: (2)
- 5: (4)
- 6:
- 7: (7)
- 8: 7
- 9: 9

Closed Addressing

Characteristic structure (colors denote "home" bucket):

- 0:
- 1: (1)
- 2: 222
- 3:
- 4: (4)
- 5:
- 6:
- 7: (7)(7)
- 8:
- 9: 9

Source:

https://programming.guide/hash-tables-open-vs-closed-addressing.html

Simple uniform hashing strategy

- For each element with key x, find a random position $h_1(x)$;
 - if there's a collision, try another (i.e., $h_2(x)$)
- Say insert key to be 5
- Then insert key to be 88
- What's the expected number of retries?

Analyzing expected number of retries

- Assuming at least half of the elements in the hash table are empty
 - Recall this is the "load factor" r of a hash table, and presumably should be less than $\frac{1}{2}$
- What's the probability that we need the first try?
- What's the probability that we need the first retry?
- What's the probability that we need the second retry?
- What's the probability that we need the k-th retry?
- Total number of retries $\leq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2 = O(1)$

Conclusion for hash table analysis

- Using this simple strategy, we can show that insert and lookup has constant (O(1)) cost in expectation
- Similar for other probing strategies

What happens if the hash table is too full?

In the above analysis, it's very important that the hash table load factor is a below 1/2

- That's why we know that an insertion succeeds with probability ½
- So the cost is 1/2+1/4+1/8+... = O(1)
- Actually, any constant works
- But, how can we guarantee that?

Resizing hash table

- When the load factor of the hash table is more than ½
- i.e., when we have more than n/2 elements in the hash table of size n
- Resize the table

What is the cost of an insertion?

- Worst case cost: O(n)?
 - *n* is the current table size
- That's too expensive...?
- Is the worst-case cost of n insertions $O(n^2)$?

What is the cost of an insertion?

- Worst case cost: O(n)?
 - *n* is the current table size
- However, this happens very rarely at least every O(n) insertions!

	Initial total size	Current #slots filled	#insertions before resizing	Resizing cost	
Phase 1	k	0	k/2	k/2	Happens after k/2 insertions
Phase 2	2k	k/2	k/2	k 🕕	Happens after k/2 insertions
Phase 3	4k	k	k	2k	 Happens after k insertions
Phase 4	8k	2k	2k	4k	 Happens after 2k insertions

- All the rest of the insertions cost O(1)!
- Every t insertions, we have an insertion of cost $\mathcal{O}(t)$
- Somehow "on average", the cost is still a constant?

(Assume unit cost per insertion and per rehash)

Amortized Analysis

Amortized analysis

- Some operations are expensive, some of them are cheap
- The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations
- For a resizable hash table:
 - In every k insertions, we have an insertion cost O(k)
 - All other insertions have cost O(1)
 - In any sequence of k insertions, the total cost is O(k)!

Amortized analysis

- You must perform a series of operations
- We analyze the cost per operation
- If we look at a sequence of k operations, the total cost is f(k)
- Then the "amortized" cost for each operation is f(k)/k
- Some operations may be expensive
- But we can charge its work to some previous operations
- A common way to think about it: a bad case happen only after enough number of good cases happen!

What is the cost of an insertion?

	Initial total size	Current #slots filled	#insertions before resizing	Resizing cost	
Phase 1	k	0	k/2	k/2	Happens after k/2 insertions
Phase 2	2k	k/2	k/2	k 🕕	 Happens after k/2 insertions
Phase 3	4k	k	k	2k	 Happens after k insertions
Phase 4	8k	2k	2k	4k	 Happens after 2k insertions

- The total cost of the first k/2 insertions is k/2 + k/2
- The total cost of the first k insertions is < 3k
- The total cost of the first 2k insertions is < 6k
- The total cost of every t consecutive insertion is O(t)
- The amortized cost of an insertion is a constant!

Binary Counter

- You need to flip the scoreboard from 0 to n, how many times you need to flip it?
 - You need to flip every digit

• Let's first consider a simple case, what if it's a binary counter?

- Binary number
- Count from 0 to n
- You pay 1 dollar when you flip a bit (0 to 1 or 1 to 0)
- How much do we need to pay?
- 000 -> 001 -> 010 -> 011 -> 100 -> 101 -> 110 -> 111
- Let's guess!
 - A. $O(\log n)$
 - B. $O(\sqrt{n})$
 - C. O(n)
 - D. $O(n \log n)$
 - E. $O(n^2)$

- 0000
- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111

- 1000
- 1001
- 1010
- 1011
- 1100
- 1101
- · 1110
- 1111

- The last digit changes every time
 - n times
- The second last digit changes every other time
 - n/2 times
- The third last digit changes every 4 times
 - n/4 times
- •
- In total O(n) time

How many flips we need for every increment?

- xxxxx0 -> xxxxx1
- xx01111 -> xx10000
- Not a fixed number can be really bad!
- Sometimes we need to flip a lot of bits... a bad case?
- Let's "amortize" the cost!

Piggy bank

- Let's consider every bit
- Every time, when it change from 0 to 1, pay 2 dollars!
 - 1 dollar for changing this bit from 0 to 1 immediately
 - 1 dollar to save in its piggy bank, use it to pay when it's changed back from 1 to 0
- So we only need to pay the costs for 0 -> 1!

	A[3]	A[2]	A[1]	A[0]	Paid
Counter	0	0	0	0	
Bank balance	0	0	0	0	

Only pay when a bit changes from 0 to 1, but pay \$2!

\$1 for changing this bit from 0 to 1 \$1 in bank. Later use it when it's changed back from 1 to 0

	A[3]	A[2]	A[1]	A[0]	Paid
Counter	0	0	0	0	
Bank balance	0	0	0	0	
Counter	0	0	0	1	
Bank balance	0	0	0	1	2
Counter	0	0	1	0	
Bank balance	0	0	1	0	2
Counter	0	0	1	1	
Bank balance	0	0	1	1	2
Counter	0	1	0	0	
Bank balance	0	1	0	0	2
Counter	0	1	0	1	
Bank balance	0	1	0	1	2

	A[3]	A[2]	A[1]	A[0]	Paid
Counter	0	1	0	1	
Bank balance	0	1	0	1	2
Counter	0	1	1	0	
Bank balance	0	1	1	0	2
Counter	0	1	1	1	
Bank balance	0	1	1	1	2
Counter	1	0	0	0	
Bank balance	1	0	0	0	2

Only pay when a bit changes from 0 to 1, but pay \$2!

\$1 for changing this bit from 0 to 1 \$1 in bank. Later use it when it's changed back from 1 to 0

Piggy bank

- Let's consider every bit
- Every time, when it change from 0 to 1, pay 2 dollars!
 - 1 dollar for changing this bit from 0 to 1 immediately
 - 1 dollar to save in its piggy bank, use it to pay when it's changed from 1 to 0
- So we only need to pay the costs for 0 -> 1!
- How many 0s will be changed to 1 every time?

Piggy bank

- So we only need to pay the costs for 0 -> 1!
- How many 0s will be changed to 1 every time?
- There will be only one 0 changed to 1 in each increment!
- Why? Because every time we encounter a 0, we change it to 1, and stop

• In total the cost is O(n)

"Piggy bank" analysis for resizable hash tables

Resizing hash table

- When the load factor of the hash table is more than ½
- i.e., when we have more than n/2 elements in the hash table of size n
- Resize the table

What is the cost of an insertion?

- Although every insertion may need O(n) cost
- Resizing happens only after O(n) insertions!

- Let every insertion "pay" more dollars!
 - One for the insertion itself (used immediately)
 - More for moving the elements to the next hash table (save in the bank)
 - How much do you need?
 - When we resize, we have enough money in our piggy bank

What is the cost of an insertion?

	Initial total size	Current #slots filled	#insertions before resizing	Saved money	Resizing cost
Phase 1	k	0	k/2	k/2 * 2 = k	k/2
Phase 2	2k	k/2	k/2	k/2 * 2 = k	k
Phase 3	4k	k	k	k * 2 = 2k	2k
Phase 4	8k	2k	2k	2k * 2 = 4k	4k

Let every insertion "pay" 3 dollars!

- One for the insertion itself (used immediately)
- One for moving the element itself to the next hash table (save in the bank)
- One for moving some other element to the next hash table (save in the bank)
- When we resize, we have enough money in our piggy bank

- Resizable arrays
- When we write code, usually we specify the array size when we allocate memory, but what happens if we do not know the upper bound of the array size?
 - E.g., "std::vector" in C++
 - push_back: add to the end
 - size(): get the current size

- Resizable arrays
- When we write code, usually we specify the array size when we allocate memory, but what happens if we do not know the upper bound of the array size?
 - E.g., "std::vector" in C++
 - push_back: add to the end
 - size(): get the current size

- Resizable arrays
- When we write code, usually we specify the array size when we allocate memory, but what happens if we do not know the upper bound of the array size?
 - E.g., "std::vector" in C++
 - push_back: add to the end
 - size(): get the current size

- Resizable arrays
- When we write code, usually we specify the array size when we allocate memory, but what happens if we do not know the upper bound of the array size?
 - E.g., "std::vector" in C++
 - push_back: add to the end
 - size(): get the current size

- Resizable arrays
- When we write code, usually we specify the array size when we allocate memory, but what happens if we do not know the upper bound of the array size?

Resizable arrays

- Are we wasting space?
 - Yes, but up to a constant factor!
 - When we store k elements, we use at most 2k space
- What is the cost of push_back
 - Usually O(1), but can be as expensive as O(n)?

5

8

Amortized O(1)!

5

8

3

Similar to resizable hash table

push back?

Summary for amortized analysis

- Some operations are expensive, some of them are cheap
- The amortized analysis considers the cost of the "average" cost per operation on a sequence of operations
 - Direct analysis
 - Piggy bank analysis
 - Potential analysis

• Examples:

- Array-based data structures (e.g., vector, hash-tables)
- Cost analysis for Fibonacci heap, Splay tree, weight-balanced tree, scapegoat tree, and many other data structures
- Many other algorithms such as parallel scheduler

The next 2 weeks

Graph algorithms