		SRM Institute of Science and Technology Kattankulathur	
		DEPARTMENT OF MEATHEMATICS	
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS	
		UNIT - V : Taylor's & Laurent' series, Singularity, Poles and Residue Tutorial Sheet 14	
	Sl.No.	Questions	Answer
Part – A			
1		ylor's series expansion of $f(z) = \frac{z+3}{(z-1)(z-4)}$ about $z=2$ ermine the region of convergence.	$\sum_{n=0}^{\infty} \left\{ \frac{4}{3} (-1)^{n+1} - \frac{7}{6} \cdot \frac{1}{2^n} \right\} (z-2)^n$
2		heries for $\frac{1}{z-3}$ valid in (i) $ z < 3$, (ii) $ z > 3$.	$(i) - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$
			$(ii) \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n$
3	Expand $f(z) = \frac{z}{(z-1)(z-3)}$ as Laurent's series valid in the region $1 < z < 3$		$-\frac{1}{2z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$
4	Find the residues of $\frac{e^z}{z^8}$.		1 7!
5	Find the residue of $\frac{1-\cos(z)}{z^3}$.		1
Part – B			
6		aurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the region	(i) $-\sum_{n=0}^{\infty} (z+1)^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z+1}{2}\right)^n$
	(i) z+1 <1,	(ii) z+1 > 2.	(ii) $\sum_{n=1}^{\infty} \frac{1}{(z+1)^n} - \frac{1}{(1+z)} \sum_{n=0}^{\infty} \left(\frac{2}{z+1}\right)^n$
7		caurent's series of $f(z) = \frac{z}{(z^2+1)(z^2+4)}$ in the region	$\frac{1}{3z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n - \frac{z}{12} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z^2}{4}\right)^n$
	1< z <2.		
8	Find the res	idue at $z = 0$ for $f(z) = \frac{1 + e^z}{\sin z + z \cos z}$ and $f(z) = \frac{1}{z^2 e^z}$	1,-1
9		idue at each pole of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$.	$\frac{4}{9}, \frac{5}{9}$
10	Find the 1	residue at $z = 0$ for $\csc^2 z$	0