08-29 Problem Set

Joseph Franks

Question 1:

Let (X, ρ_1) and (Y, ρ_2) be metric spaces. Let f be an isometry between these two spaces. Show that f is continuous, uniformly continuous in fact!

Question 2:

- (a) Let (X, ρ) be a metric space and let $M \subset X$. Prove that every contact point of M is either a limit point of M or an isolated point of M. This is a significant result because it permits a classification all of the points of \overline{M} as one of the following.
 - 1. Limits points belonging to M
 - 2. Limit points of M which do not belong to M
 - 3. Isolated points of M
- (b) Let L denote the set of all limit points of M. Show that $\overline{M} = M \cup L$.

Question 3:

For $x, y \in \mathbb{R}^n, n \geq 2$, define

$$d(x,y) = \left(\sum_{k=1}^{n} |x_k - y_k|^p\right)^{\frac{1}{p}}$$

Show that for every $p \in (0,1)$, there exists $x, y \in \mathbb{R}^n$ such that

$$d(x+y,0) > d(x,0) + d(y,0) = d(x+y,y) + d(y,0)$$

and use this to conclude that for all such p, (\mathbb{R}^n, d) is not a metric space.

Question 4:

For $x = (x_1, \dots, x_n), y = (y_1, \dots y_n)$, both in \mathbb{R}^n , define

$$\rho(x,y) = \max_{1 \le k \le n} |x_k - y_k|.$$

Prove that (\mathbb{R}^n, ρ) is a metric space.

Question 5:

As a subset of \mathbb{R} with the absolute value metric, show that all of the points of \mathbb{N} are isolated. Can you generalize this to find a subset of \mathbb{R}^n endowed with the usual euclidean metric in \mathbb{R}^n whose points are all isolated points. Note that this is the p-metric we saw, with p=2.