Công thức số hạng tổng quát của cấp số nhân

1. Lý thuyết

- Dãy số (u_n) là một cấp số nhân khi $\frac{u_{n+1}}{u_n} = q$ không phụ thuộc vào n và q là công bội.
- Công thức số hạng tổng quát: $u_n=u_1$. q^{n-1} với $~\forall n\in\mathbb{N}, n\geq 2.$

2. Công thức

- Công thức số hạng tổng quát: $u_n=u_1.q^{n-1}$ với $\,\forall n\in\mathbb{N}, n\geq 2.$

Do đó để tìm được số hạng tổng quát, ta cần tìm số hạng đầu tiên và công bội của cấp số nhân.

3. Ví dụ minh họa

Ví dụ 1: Cho cấp số nhân (u_n) với $u_1 = 2$ và $u_2 = -6$.

- a) Xác định công thức số hạng tổng quát của cấp số nhân.
- b) Tính số hạng thứ 300 của cấp số nhân.
- c) Số 118098 là số hạng thứ bao nhiều của cấp số nhân.

Lời giải

a) Ta có:
$$q = \frac{u_2}{u_1} = \frac{-6}{2} = -3$$

Số hạng tổng quát của cấp số nhân: $u_n = u_1 \cdot q^{n-1} = 2 \cdot (-3)^{n-1}$

- b) Số hạng thứ 300 của cấp số nhân: $u_{300} = 2.(-3)^{300-1} = -2.3^{299}$.
- c) Gọi số hạng thứ k là số 118098, ta có $u_{\boldsymbol{k}}=u_1.q^{\boldsymbol{k}\text{-}1}=118098$

$$\Leftrightarrow 2.(-3)^{k-1} = 118098 \Leftrightarrow (-3)^{k-1} = 59049 = (-3)^{10} \Leftrightarrow k = 11$$

Vậy số 118098 là số hạng thứ 11 của cấp số nhân.

Ví dụ 2: Cho cấp số nhân (u_n) với $u_2 = \frac{1}{4}; u_5 = 16$.

- a) Tìm u_1 và công bội d.
- b) Xác định công thức tổng quát của cấp số nhân.
- c) Tính số hạng thứ 250 của cấp số nhân.

Lời giải

a) Ta có:

$$\begin{cases} u_2 = \frac{1}{4} \iff \begin{cases} u_1 q = \frac{1}{4} \\ u_1 q = 16 \end{cases} \Leftrightarrow \begin{cases} q^3 = 64 = 4^3 \\ u_1 q = \frac{1}{4} \end{cases} \Leftrightarrow \begin{cases} q = 4 \\ u_1 q = \frac{1}{4} \end{cases}$$

Vậy
$$u_1 = \frac{1}{16}; q = 4$$
.

- b) Số hạng tổng quát: $u_n = u_1 q^{n-1} = \frac{1}{16} \cdot 4^{n-1} = 4^{n-3}$.
- c) Số hạng thứ 250 của cấp số nhân: $u_{250} = 4^{250 3} = 4^{247}$.