

Naev Development Manual

Version 0.10.0-alpha.1

Naev DevTeam June 25, 2022

Contents

1	Introduction								
2	Miss	Missions and Events 7							
	2.1	Getting	g Started	7					
	2.2		S	11					
		2.2.1	Headers	11					
		2.2.2	Memory Model	15					
		2.2.3	Mission Variables	16					
		2.2.4	Hooks	17					
		2.2.5	Translation Support	19					
		2.2.6	Formatting Text	20					
		2.2.7	Colouring Text	21					
		2.2.8	System Claiming	22					
		2.2.9	Mission Cargo	23					
		2.2.10		24					
		2.2.11	Visual Novel Framework	25					
	2.3	Advan	ced Usage	28					
		2.3.1	Handling Aborting Missions	28					
		2.3.2	Dynamic Factions	28					
		2.3.3	Minigames	28					
		2.3.4	Cutscenes	28					
		2.3.5	Unidiff	28					
		2.3.6	Equipping with equipopt	28					
		2.3.7	Event-Mission Communication	28					
		2.3.8	Love2D API	29					
	2.4	Tips a	nd Tricks	29					
		2.4.1	Making Aggressive Enemies	29					
		2.4.2	Working with Player Fleets	30					
	2.5	Full Fx	ramnle	30					

4 CONTENTS

Chapter 1 Introduction

Welcome.

Chapter 2

Missions and Events

Naev missions and events are written in the Lua Programming Language¹. In particular, they use version 5.1 of the Lua programming language. While both missions and events share most of the same API, they differ in the following ways:

- Missions: Always visible to the player in the info window. The player can also abort them at any time. Missions are saved by default. Have exclusive access to the misn library and are found in dat/missions/.
- Events: Not visible or shown to the player in any way, however, their consequences can be seen by the player. By default, they are not saved to the player savefile. If you want the event to be saved you have to explicitly do it with evt.save(). Have exclusive access to the evt library and are found in dat/events/.

The general rule of thumb when choosing which to make is that if you want the player to have control, use a mission, otherwise use an event. Example missions include cargo deliveries, system patrols, etc. On the other hand, most events are related to game internals and cutscenes such as the save game updater event (dat/events/updater.lua) or news generator event (dat/events/news.lua).

A full overview of the Lua API can be found at naev.org/api² and is out of the scope of this document.

2.1 Getting Started

Missions and events share the same overall structure in which there is a large Lua comment at the top containing all sorts of meta-data, such as

^{1&}lt;https://www.lua.org>

^{2&}lt;https://naev.org/api>

where it appears, requirements, etc. Once the mission or event is started, the obligatory create function entry point is run.

Let us start by writing a simple mission header. This will be enclosed by long Lua comments --[[and --]] in the file. Below is our simple header.

```
--[[

<mission name="My First Mission">

<unique />

<avail>

<chance>50</chance>

<location>Bar</location>

</avail>

</mission>

--]]
```

The mission is named "My First Mission" and has a 50% chance of appearing in any spaceport bar. Furthermore, it is marked unique so that once it is successfully completed, it will not appear again to the same player. For more information on headers refer to Section 2.2.1.

Now, we can start coding the actual mission. This all begins with the create () function. Let us write a simple one to create an NPC at the Spaceport Bar where the mission appears:

The create function in this case is really simple, it only creates a single NPC with misn.setNPC. Please note that only a single NPC is supported with misn.setNPC, if you want to use more NPC you would have to use misn.npcAdd which is much more flexible and not limited to mission givers. There are two important things to note:

- 1. All human readable text is enclosed in _() for translations. In principle you should always use _() to enclose any text meant for the user to read, which will allow the translation system to automatically deal with it. For more details, please refer to Section 2.2.5.
- There is an image defined as a string. In this case, this refers to an image in gfx/portraits/. Note that Naev uses a virtual filesystem and the exact place of the file may vary depending on where it is set up.

With that set up, the mission will now spawn an NPC with 50

```
local vntk = require "vntk"
local fmt = require "format"

local reward = 50e3 -- This is equivalent to 50000, and easier to read
```

```
function accept ()
  -- Make sure the player has space
  if player.pilot():cargoFree() < 1 then</pre>
     vntk.msg( _("Not Enough Space"),
          _("You need more free space for this mission!") )
  end
  -- We get a target destination
  mem.dest, mem.destsys = spob.getS( "Caladan" )
  -- Ask the player if they want to do the mission
  if not vntk.yesno( _("Apples?"),
       fmt.f( ("Deliver apples to {spb} ({sys})?"),
             {spb=mem.dest,sys=mem.destsys}) ) then
     -- Player did not accept, so we finish here
     vntk.msg(_("Rejected"),_("Your loss."))
     misn.finish(false) -- Say the mission failed to complete
     return
  end
  misn.accept() -- Have to accept the mission for it to be active
  -- Set mission details
  misn.setTitle( _("Deliver Apples") )
  misn.setReward( fmt.credits( reward ) )
  local desc = fmt.f(_("Take Apples to {spb} ({sys})."),
       {spb=mem.dest,sys=mem.destsys}) )
  misn.setDesc( desc )
  -- On-screen display
  misn.osdCreate( _("Apples"), { desc } )
  misn.cargoAdd( "Food", 1 ) -- Add cargo
  misn.markerAdd( mem.dest ) -- Show marker on the destination
  -- Hook will trigger when we land
  hook.land( "land" )
end
```

This time it's a bit more complicated than before. Let us try to break it down a bit. The first line includes the vntk library, which is a small wrapper around the vn Visual Novel library (explained in Section 2.2.11). This allows us to show simple dialogues and ask the player questions. We also include the format library to let us format arbitrary text, and we also define the local reward to be 50,000 credits in exponential notation.

The function contains of 3 main parts:

1. We first check to see if the player has enough space for the apples with player.pilot():cargoFree() and display a message and return from

the function if not.

- We then ask the player if then ask the player if they want to deliver apples to Caladan and if they don't, we give a message and return from the function.
- 3. Finally, we accept the mission, adding it to the player's active mission list, set the details, add the cargo to the player, and define a hook on when the player lands to run the final part of the mission. Functions like misn.markerAdd add markers on the spob the player has to go to, making it easier to complete the mission. The On-Screen Display (OSD) is also set with the mission details to guide the player with misn.osdCreate.

Some important notes.

- We use fmt.f to format the strings. In this case, the {spb} will be replaced by the spb field in the table, which corresponds to the name of the mem.dest spob. This is further explained in Section 2.2.6.
- Variables don't get saved unless they are in the mem table. This table gets populated again every time the save game gets loaded. More details in Section 2.2.2.
- You have to pass function names as strings to the family of hook.*
 functions. More details on hooks in Section 2.2.4.

Now this gives us almost the entirety of the mission, but a last crucial component is missing: we need to reward the player when they deliver the cargo to **Caladan**. We do this by exploiting the hook.land that makes it so our defined land function gets called whenever the player lands. We can define one as follows:

```
local neu = require "common.neutral"
function land ()
  if spob.cur() ~= mem.dest then
    return
  end

vn.msg(_("Winner"), _("You win!"))
  neu.addMiscLog(_("You helped deliver apples!"))
  player.pay( reward )
  misn.finish(true)
end
```

We can see it's very simple. It first does a check to make sure the landed planet <code>spob.cur()</code> is indeed the destination planet <code>mem.dest</code>. If not, it returns, but if it is, it'll display a message, add a message to the ship log, pay the player, and finally finish the mission with <code>misn.finish(true)</code>. Remember that since this is defined to be a unique mission, once the mission is done it will not appear again to the same player.

That concludes our very simple introduction to mission writing. Note that

it doesn't handle things like playing victory sounds, nor other more advanced functionality. However, please refer to the full example in Section 2.5 that covers more advanced functionality.

2.2 Basics

In this section we will discuss basic and fundamental aspects of mission and event developments that you will have to take into account in almost all cases.

2.2.1 Headers

Headers contain all the necessary data about a mission or event to determine where and when they should be run. They are written as XML code embedded in a Lua comment at the top of each individual mission or event. In the case a Lua file does not contain a header, it is ignored and not loaded as a mission or event.

The header has to be at the top of the file starting with --[[and ending with --]] which are long Lua comments with newlines. A full example is shown below using all the parameters, however, some are contradictory in this case.

```
--[[
<?xml version='1.0' encoding='utf8'?>
<mission name="Mission Name">
<unique />
<chance>5</chance>
<location>Bar</location>
<chapter>[^0]</chapter>
<spob>Caladan</spob>
<faction>Empire</faction>
<system>Delta Pavonis</system>
<cond>player.credits() &gt; 10e3</cond>
<done>Another Mission</done>
<priority>4</priority>
<tags>
 <some_random_binary_tag />
</tags>
<notes />
</mission>
--11
```

Let us go over the different parameters. First of all, either a <mission> or <event> node is necessary as the root for either missions (located in

dat/missions/) or events (located in dat/events/). The name attribute has to be set to a unique string and will be used to identify the mission.

Next it is possible to identify mission properties. In particular, only the <unique /> property is supported, which indicates the mission can only be completed once. It will not appear again to the same player.

The header includes all the information about mission availability. Most are optional and ignored if not provided. The following nodes can be used to control the availability:

- **chance**: required field. indicates the chance that the mission appears. For values over 100, the whole part of dividing the value by 100 indicates how many instances can spawn, and the remainder is the chance of each instance. So, for example, a value of 320 indicates that 3 instances can spawn with 20% each.
- **location**: required field. indicates where the mission or event can start. It can be one of none, land, enter, load, computer, or bar. Note that not all are supported by both missions and events. More details will be discussed later in this section.
- **unique**: the presence of this tag indicates the mission or event is unique and will *not appear again* once fully completed.
- chapter: indicates what chapter it can appear in. Note that this is regular expression-powered. Something like 0 will match chapter 0 only, while you can write [01] to match either chapter 0 or 1. All chapters except 0 would be [^0], and such. Please refer to a regular expression guide such as regexr³ for more information on how to write regex.
- faction: must match a faction. Multiple can be specified, and only one
 has to match. In the case of land, computer, or bar locations it refers
 to the spob faction, while for enter locations it refers to the system
 faction.
- **spob**: must match a specific spob. Only used for land, computer, and bar locations. Only one can be specified.
- **system**: must match a specific system. Only used for enter location and only one can be specified.
- cond: arbitrary Lua conditional code. The Lua code must return a boolean value. For example player.credits() > 10e3 would mean the player having more than 10,000 credits. Note that since this is XML, you have to escape < and > with < and >, respectively. Multiple expressions can be hooked with and and or like regular Lua code.
- **done**: indicates that the mission must be done. This allows to create mission strings where one starts after the next one.
- priority: indicates what priority the mission has. Lower priority makes

^{3&}lt;https://regexr.com/>

the mission more important. Missions are processed in priority order, so lower priority increases the chance of missions being able to perform claims. If not specified, it is set to the default value of 5.

The valid location parameters are as follows:

Location	Event	Mission	Description
none	√	√	Not available anywhere.
land	\checkmark	\checkmark	Run when player lands
enter	\checkmark	\checkmark	Run when the player enters a system.
load	\checkmark		Run when the game is loaded.
computer		\checkmark	Available at mission computers.
bar		\checkmark	Available at spaceport bars.

Note that availability differs between events and missions. Furthermore, there are two special cases for missions: computer and bar that both support an accept function. In the case of the mission computer, the accept function is run when the player tries to click on the accept button in the interface. On the other hand, the spaceport bar accept function is called when the NPC is approached. Note that this NPC must be defined with misn.setNPC to be approachable.

Also notice that it is also possible to define arbitrary tags in the <tags> node. This can be accessed with player.misnDoneList() and can be used for things such as handling faction standing caps automatically.

Finally, there is a < notes > section that contains optional meta data about the meta data. This is only used by auxiliary tools to create visualizations of mission maps.

Example: Cargo Missions

Cargo missions appear at the mission computer in a multitude of different factions. Since they are not too important, they have a lower than default priority (6). Furthermore, they have 9 independent chances to appear, each with 60% chance. This is written as <chance>960</chance>. The full example is shown below:

```
--[[

<?xml version='1.0' encoding='utf8'?>
<mission name="Cargo">
<priority>6</priority>
<chance>960</chance>
<location>Computer</location>
<faction>Dvaered</faction>
<faction>Empire</faction>
<faction>Frontier</faction>
<faction>Goddard</faction>
```

```
<faction>Independent</faction>
<faction>Sirius</faction>
<faction>Soromid</faction>
<faction>Za'lek</faction>
<notes>
    <tier>1</tier>
    </notes>
    </mission>
--]]
```

Example: Antlejos

Terraforming antlejos missions form a chain. Each mission requires the previous one and are available at the same planet (Antlejos V) with 100% chance. The priority is slightly lower than default to try to ensure the claims get through. Most missions trigger on Land (<location>Land</location>) because Antlejos V does not have a spaceport bar at the beginning. The full example is shown below:

```
--[[

<?xml version='1.0' encoding='utf8'?>
<mission name="Terraforming Antlejos 3">
<unique />
<priority>4</priority>
<chance>100</chance>
<location>Land</location>
<spob>Antlejos V</spob>
<done>Terraforming Antlejos 2</done>
<notes>
<campaign>Terraforming Antlejos</campaign>
</notes>
</mission>
--]]
```

Example: Taiomi

Next is an example of a unique event. The Finding Taiomi event has a 100% of appearing in the Bastion system outside of Chapter 0. It triggers automatically when entering the system (<location>enter</location>).

```
--[[

<?xml version='1.0' encoding='utf8'?>

<event name="Finding Taiomi">

<location>enter</location>

<unique />

<chance>100</chance>

<cond>system.cur() == system.get("Bastion")</cond>
```

```
<chapter>[^0]</chapter>
  <notes>
    <campaign>Taiomi</campaign>
    </notes>
  </event>
--]]
```

2.2.2 Memory Model

By default, variables in Lua scripts are not saved when the player saves the game. This means that all the values you have set up will be cleared if the player saves and loads. This can lead to problems wit scripts that do the following:

```
local dest

function create ()
  dest = spob.get("Caladan")

-- ...
  hook.land( "land" )
  end

function land ()
  if spob.cur() == dest then -- This is wrong!
    -- ...
  end
end
```

In the above script, a variable called dest is created, and when the mission is created, it gets set to spob.get("Caladan"). Afterwards, it gets used in land which is triggered by a hook when the player lands. For this mission, the value dest will be set as long as the player doesn't save and load. When the player saves and loads, the value dest gets set to nil by default in the first line. However, upon loading, the create function doesn't get run again, while the hook is still active. This means that when the player lands, spob.cur() will be compared with dest will not have been set, and thus always be false. In conclusion, the player will never be able to finish the mission!

How do we fix this? The solution is the mission/event memory model. In particular, all mission / event instances have a table that gets set called mem. This table has the particular property of being *persistent*, i.e., even if the player saves and loads the game, the contents will not change! We can then use this table and insert values to avoid issues with saving and loading games. Let us update the previous code to work as expected with saving and loading.

We can see the changes are minimal. We no longer declare the dest variable, and instead of setting and accessing dest, we use mem.dest, which is the dest field of the mem persistent memory table. With these changes, the mission is now robust to saving and loading!

It is important to note that almost everything can be stored in the mem table, and this includes other tables. However, make sure to not create loops or it will hang the saving of the games.

The most common use of the persistent memory table mem is variables that keep track of the mission progress, such as if the player has delivered cargo or has talked to a certain NPC.

2.2.3 Mission Variables

Mission variables allow storing arbitrary variables in save files. Unlike the mem per-mission/event memory model, these are per-player and can be read and written by any Lua code. The API is available as part of the var module⁴.

The core of the var module is three functions:

- var.peek(varname): allows to obtain the value of a mission variable called varname. If it does not exist it returns nil.
- var.push(varname, value): creates a new mission variable varname or overwrites an existing mission variable varname if it exists with the value value. Note that not all data types are supported, but many are.
- var.pop(varname): removes a mission variable.

It is common to use mission variables to store outcomes in mission strings that affect other missions or events. Since they can also be read by any Lua code, they are useful in <cond> header statements too.

Supported variable types are number, boolean, string, and time. If you want to pass systems and other data, you have to pass it via untranslated

^{4&}lt;https://naev.org/api/modules/var.html>

name :nameRaw() and then use the corresponding .get() function to convert it to the corresponding type again.

2.2.4 Hooks

Hooks are the basic way missions and events can interact with the game. They are accessed via the hook.* API and basically serve the purpose of binding script functions to specific in-game events or actions. A full list of the hook API is available here⁵ and the API is always available in missions and events. **Hooks are saved and loaded automatically.**

The basics to using hooks is as follows:

```
function create ()
   -- ...
hook.land( "land" )
end

function land ()
   -- ...
end
```

In this example, at the end of the create function, the local function land is bound to the player landing with hook.land. Thus, whenever the player lands, the script function land will be run. All hook functions return a hook ID that can be used to remove the hook with hook.rm. For example, we can write a slightly more complicated example as such:

```
function create ()
    -- ...

mem.hook_land = hook.land( "land" )
    mem.hook_enter = hook.enter( "enter" )
end

function land ()
    -- ...
end

function enter ()
    hook.rm( mem.hook_land )
    hook.rm( mem.hook_enter )
end
```

The above example is setting up a land hook when the player lands, and an enter hook, which activates whenever the player enters a system by either

^{5&}lt;https://naev.org/api/modules/hook.html>

taking off or jumping. Both hooks are stored in persistent memory, and are removed when the enter function is run when the player enters a system.

Each mission or event can have an infinite number of hooks enabled. Except for timer and safe hooks, hooks do not get removed when run.

Timer Hooks

Timer hooks are hooks that get run once when a certain amount of real in-game time has passed. Once the hook is triggered, it gets removed automatically. If you wish to repeat a function periodically, you have to create a new timer hook. A commonly used example is shown below.

In this example, an enter hook is created and triggered when the player enters a system by taking off or jumping. Then, in the enter function, a 5 second timer hook is started that runs the dostuff function when the time is up. The dostuff function then checks a condition to do something and end, otherwise it repeats the 5 second hook. This system can be used to, for example, detect when the player is near a pilot or position, or display periodic messages.

Pilot Hooks

When it comes to pilots, hooks can also be used. However, given that pilots are not saved, the hooks are not saved either. The hooks can be made to be specific to a particular pilot, or apply to any pilot. In either case, the pilot

triggering the hook is passed as a parameter. An illustrative example is shown below:

```
function enter ()
    -- ...

local p = pilot.add( "Llama", "Independent" )
    hook.pilot( p, "death", "pilot_died" )
end

function pilot_died( p )
    -- ...
end
```

In the above example, when the player enters a system with the <code>enter</code> function, a new pilot p is created, and a "death" hook is set on that pilot. Thus, when the pilot p dies, the pilot_dead function will get called. Furthermore, the pilot_died function takes the pilot that died as a parameter.

There are other hooks for a diversity of pilot actions that are documented in the official API documentation⁶, allowing for full control of pilot actions.

2.2.5 Translation Support

Naev supports translation through Weblate⁷. However, in order for translations to be used you have to mark strings as translatable. This is done with a gettext⁸ compatible interface. In particular, the following functions are provided:

- _(): This function takes a string, marks it as translatable, and returns the translated version.
- N_(): This function takes a string, marks it as translatable, however, it returns the *untranslated* version of the string.
- n_(): Takes two strings related to a number quantity and return the translated version that matches the number quantity. This is because some languages translate number quantities differently. For example "1 apple", but "2 apples".
- p_(): This function takes two strings, the first is a context string, and the second is the string to translate. It returns the translated string. This allows to disambiguate same strings based on context such as p_("main menu", "Close") and p_("some guy", "Close"). In this case "Close" can be translated differently based on the context strings.

^{6&}lt;https://naev.org/api/modules/hook.html#pilot>

^{7&}lt;https://hosted.weblate.org/projects/naev/naev/>

^{8&}lt;https://www.gnu.org/software/gettext/>

In general, you want to use $_()$ and $n_()$ to envelope all strings that are being shown to the player, which will allow for translations to work without extra effort. For example, when defining a new mission you want to translate all the strings as shown below:

```
misn.setTitle( _("My Mission") )
misn.setDesc( _("You have been asked to do lots of fancy stuff for a
    very fancy individual. How fancy!") )
misn.setReward( _("Lots of good stuff!") )
```

Note that _() and friends all assume that you are inputting strings in English.

It is important to note that strings not shown to the player, e.g., strings representing faction names or ship names, do not need to be translated! So when adding a pilot you can just use directly the correct strings:

```
| pilot.add( "Hyena", "Mercenary" )
```

2.2.6 Formatting Text

An important part of displaying information to the player is formatting text. While string.format exists, it is not very good for translations, as the Lua version can not change the order of parameters unlike C. For this purpose, we have prepared the format library, which is much more intuitive and powerful than string.format. A small example is shown below:

Let us break down this example. First, we include the library as fmt. This is the recommended way of including it. Afterwards, we run fmt.f which is the main formatting function. This takes two parameters: a string to be formatted, and a table of values to format with. The string contains substrings of the form "{foo}", that is, a variable name surrounded by { and }. Each of these substrings is replaced by the corresponding field in the table passed as the second parameter, which are converted to strings. So, in this case, {spb} gets replaced by the value of table.spb which in this case is the variable spb that corresponds to the Spob of Caladan. This gets converted to a string, which in this case is the translated name of the planet. If any of the substrings are missing and not found in the table, it will raise an error.

There are additional useful functions in the format library. In particular the following:

- format.number: Converts a non-negative integer into a human readable number as a string. Gets rounded to the nearest integer.
- format.credits: Displays a credit value with the credit symbol \(\pi \).
- format.reward: Used for displaying mission rewards.
- format.tonnes: Used to convert tonne values to strings.
- format.list: Displays a list of values with commas and the word "and". For example {"one", "two", "three"} becomes "one, two, and three".
- format.humanize: Converts a number string to a human readable rough string such as "1.5 billion".

More details can be found in the generated documentation⁹.

2.2.7 Colouring Text

All string printing functions in Naev accept special combinations to change the colour. This will work whenever the string is shown to the player. In particular, the character # is used for a prefix to set the colour of text in a string. The colour is determined by the character after #. In particular, the following are valid values:

Symbol	Description
#0	Resets colour to the default value.
#r	Red colour.
#g	Green colour.
#b	Blue colour.
#o	Orange colour.
#y	Yellow colour.
#w	White colour.
#p	Purple colour.
#n	Grey colour.
#F	Colour indicating friend.
#H	Colour indicating hostile.
#N	Colour indicating neutral.
#I	Colour indicating inert.
#R	Colour indicating restricted.

Multiple colours can be used in a string such as "It is a #ggood#0 #rmonday#0!". In this case, the word "good" is shown in green, and "monday" is shown in red. The rest of the text will be shown in the default colour.

^{9&}lt;https://naev.org/api/modules/format.html>

While it is possible to accent and emphasize text with this, it is important to not go too overboard, as it can difficult translating. When possible, it is also best to put the colour outside of the string being translated. For example $_("\#rred\#0")$ should be written as $"\#r"..._("red")..."\#0"$.

2.2.8 System Claiming

One important aspect of mission and event development are system claiming. Claims serve the purpose of avoiding collisions between Lua code. For example, pilot.clear() allows removing all pilots from a system. However, say that there are two events going on in a system. They both run pilot.clear() and add some custom pilots. What will happen then, is that the second event to run will get rid of all the pilots created from the first event, likely resulting in Lua errors. This is not what we want is it? In this case, we would want both events to try to claim the system and abort if the system was already claimed.

Systems can be claimed with either misn.claim or evt.claim depending on whether they are being claimed by a mission or an event. A mission or event can claim multiple systems at once, and claims can be exclusive (default) or inclusive. Exclusive claims don't allow any other system to claim the system, while inclusive claims can claim the same system. In general, if you use things like pilot.clear() you should use exclusive claims, while if you don't mind if other missions / events share the system, you should use inclusive claims. You have to claim all systems that your mission uses to avoid collisions!

Let us look at the standard way to use claims in a mission or event:

```
function create ()
  if not misn.claim( {system.get("Gamma Polaris")} ) then
    misn.finish(false)
  end
-- ...
end
```

The above mission tries to claim the system "Gamma Polaris" right away in the create function. If it fails and the function returns false, the mission then finishes unsuccessfully with misn.finish(false). This will cause the mission to only start when it can claim the "Gamma Polaris" system and silently fail otherwise. You can pass more systems to claim them, and by default they will be exclusive claims.

Say our event only adds a small derelict in the system and we don't mind it sharing the system with other missions and events. Then we can write the event as:

```
function create ()
  if not evt.claim( {system.get("Gamma Polaris")}, nil, true ) then
     evt.finish(false)
  end
-- ...
end
```

In this case, the second parameter is set to nil, which defaults to trying to claim the system instead of just testing it, and more importantly, the third parameter is set to true which indicates that this event is trying to do an **inclusive** claim. Again, if the claiming fails, the event silently fails.

Claims can also be tested in an event/mission-neutral way with naev.claimTest. However, this can only test the claims. Only misn.claim and evt.claim can enforce claims for missions and events, respectively.

As missions and events are processed by priority, make sure to give higher priority to those that you want to be able to claim easier. Otherwise, they will have difficulties claiming systems and may never appear to the player. Minimizing the number of claims and cutting up missions and events into smaller parts is also a way to minimize the amount of claim collisions.

2.2.9 Mission Cargo

Cargo given to the player by missions using misn.cargoAdd is known as **Mission Cargo**. This differs from normal cargo in that only the player's ship can carry it (escorts are not allowed to), and that if the player jettisons it, the mission gets aborted. Missions and events can still add normal cargo through pilot.cargoAdd or player.fleetCargoAdd, however, only missions can have mission cargo. It is important to note that when the mission finishes, all associated mission cargos of the mission are also removed!

The API for mission cargo is fairly simple and relies on three functions:

- misn.cargoAdd: takes a commodity or string with a commodity name, and the amount to add. It returns the id of the mission cargo. This ID can be used with the other mission cargo functions.
- misn.cargoRm: takes a mission cargo ID as a parameter and removes it. Returns true on success, false otherwise.
- misn.cargojet: same as misn.cargoRm, but it jets the cargo into space (small visual effect).

Custom Commodities

Commodities are generally defined in dat/commodities/, however, it is a common need for a mission to have custom cargo. Instead of bloating

the commodity definitions, it is possible to create arbitrary commodities dynamically. Once created, they are saved with the player, but will disappear when the player gets rid of them. There are two functions to handle custom commodities:

- commodity.new: takes the name of the cargo, description, and an optional set of parameters and returns a new commodity. If it already exist, it returns the commodity with the same name. It is important to note that you have to pass *untranslated* strings. However, in order to allow for translation, they should be used with N_().
- commodity.illegalto: makes a custom commodity illegal to a faction, and takes the commodity and a faction or table of factions to make the commodity illegal to as parameters. Note that this function only works with custom commodities.

An full example of adding a custom commodity to the player is as follows:

```
local c = commodity.new( N_("Smelly Cheese"), N_("This cheese smells
    really bad. It must be great!") )
c:illegalto( {"Empire", "Sirius"} )
mem.cargo_id = misn.cargoAdd( c, 1 )
-- Later it is possible to remove the cargo with misn.cargoRm(
    mem.cargo_id )
```

2.2.10 Ship Log

The Ship Log is a framework that allows recording in-game events so that the player can easily access them later on. This is meant to help players that haven't logged in for a while or have forgotten what they have done in their game. The core API is in the shiplog module¹⁰ and is a core library that is always loaded without the need to require. It consists of two functions:

- shiplog.create: takes three parameters, the first specifies the id of the log (string), the second the name of the log (string, visible to player), and the third is the logtype (string, visible to player and used to group logs).
- shiplog.append: takes two parameters, the first specifies the id of the log (string), and second is the message to append. The ID should match one created by shiplog.create.

The logs have the following hierarchy: logtype \(\mathbb{N} \) log name \(\mathbb{M} \) message. The logtype and log name are specified by shiplog.create and the messages are added with shiplog.append. Since, by default, shiplog.create doesn't overwrite existing logs, it's very common to write a helper log function as follows:

^{10&}lt;https://naev.org/api/modules/shiplog.html>

```
local function addlog( msg )
  local logid = "my_log_id"
  shiplog.create( logid, _("Secret Stuff"), _("Neutral") )
  shiplog.append( logid, msg )
end
```

You would use the function to quickly add log messages with addlog(_("This is a message relating to secret stuff.")). Usually logs are added when important one-time things happen during missions or when they are completed.

2.2.11 Visual Novel Framework

The Visual Novel framework is based on the Love2D API and allows for displaying text, characters, and other effects to the player. It can be thought of as a graph representing the choices and messages the player can engage with. The core API is in the vn module¹¹.

The VN is based around creating scenes, and adding nodes which represent things like displaying text or giving the player options. Once the conversation graph is set up, vn.run() will begin execution and it won't return until the dialogue is done. Let us start by looking at a simple example.

```
local vn = require "vn" -- Load the library
-- Below would be what you would include when you want the dialogue
vn.clear() -- Clear internal variables
vn.scene() -- Start a new scene
local mychar = vn.newCharacter( _("Alex"), {image="mychar.webp"} )
vn.transition() -- Will fade in the new character
vn.na(_([[You see a character appear in front of you.]]) -- Narrator
mychar(_([[How do you do?]])
vn.menu{ -- Give a list of options the player chooses from
  {_("Good."), "good"},
  {_("Bad."), "bad"},
}
vn.label("good") -- Triggered when the "good" option is chosen
mychar(_("Great!"))
vn.done() -- Finish
vn.label("bad") -- Triggered on "bad" option
mychar(_("That's not ...good"))
vn.run()
```

Above is a simple example that creates a new scene with a single character (mychar), introduces the character with the narrator (vn.na), has the character

^{11&}lt;https://naev.org/api/modules/vn.html>

talk, and then gives two choices to the player that trigger different messages. By default the vn.transition() will do a fading transition, but you can change the parameters to do different ones. The narrator API is always available with vn.na, and once you create a character with vn.newCharacter, you can simple call the variable to have the character talk. The character images are looking for in the gfx/vn/characters/directory, and in this case it would try to use the file gfx/vn/characters/mychar.webp.

Player choices are controlled with vn.menu which receives a table where each entry consists of another table with the first entry being the string to display (e.g., _("Good.")), and the second entry being either a function to run, or a string representing a label to jump to (e.g., "good"). In the case of passing strings, vn.jumpis used to jump to the label, so that in the example above the first option jumps tovn.label("good"), while the second one jumps tovn.label("bad"). By usingvn.jump, vn.label, andvn.menu' it is possible to create complex interactions and loops.

It is recommended to look at existing missions for examples of what can be done with the vn framework.

vntk Wrapper

The full vn framework can be a bit verbose when only displaying small messages or giving small options. For this purpose, the vntk module can simplify the usage, as it is a wrapper around the vn framework. Like the vn framework, you have to import the library with require, and all the functions are blocking, that is, the Lua code execution will not continue until the dialogues have closed. Let us look at some simple examples of vntk.msg and vntk.yesno below:

```
local vntk = require "vntk"
-- ...
vntk.msg( _("Caption"), _("Some message to show to the player.") )
-- ...
if vntk.yesno( _("Cheese?"), _("Do you like cheese?") ) then
-- player likes cheese
else
-- player does not
end
```

The code is very simple and requires the library. Then it will display a message, and afterwards, it will display another with a Yes and No prompt. If

^{12&}lt;https://naev.org/api/modules/vntk.html>

the player chooses yes, the first part of the code will be executed, and if they choose no, the second part is executed.

Arbitrary Code Execution

It is also possible to create nodes in the dialogue that execute arbitrary Lua code, and can be used to do things such as pay the player money or modify mission variables. Note that you can not write Lua code directly, or it will be executed when the ${\rm vn}$ is being set up. To have the code run when triggered by the ${\rm vn}$ framework, you must use ${\rm vn.func}$ and pass a function to it. A very simple example would be

```
vn.label("pay_player")
vn.na(_("You got some credits!"))
vn.func( function ()
   player.pay( 50e3 )
end )
-- ...
```

It is also to execute conditional jumps in the function code with ${\tt vn.jump}$. This would allow to condition the dialogue on things like the player's free space or amount of credits as shown below:

```
vn.func( function ()
  if player.pilot():cargoFree() < 10 then
     vn.jump("no_space")
  else
     vn.jump("has_space")
  end
end )

vn.label("no_space")
-- ...

vn.label("has_space")
-- ...</pre>
```

In the code above, a different dialogue will be run depending on whether the player has less than 10 free cargo space or more than that.

As you can guess, vn.func is really powerful and opens up all sorts of behaviour. You can also set local or global variables with it, which is very useful to detect if a player has accepted or not a mission.

2.3 Advanced Usage

TODO

2.3.1 Handling Aborting Missions

TODO

2.3.2 Dynamic Factions

TODO

2.3.3 Minigames

TODO

2.3.4 Cutscenes

TODO

2.3.5 Unidiff

TODO

2.3.6 Equipping with equipopt

TODO

2.3.7 Event-Mission Communication

In general, events and missions are to be seen as self-contained isolated entities, that is, they do not affect each other outside of mission variables. However, it is possible to exploit the hook module API to overcome this limitation with hook.custom and naev.trigger:

hook.custom: allows to define an arbitrary hook on an arbitrary string.
The function takes two parameters: the first is the string to hook (should not collide with standard names), and the second is the function to run when the hook is triggered.

 naev.trigger: also takes two parameters and allows to trigger the hooks set by hook.custom. In particular, the first parameter is the same as the first parameter string passed to hook.custom, and the second optional parameter is data to pass to the custom hooks.

For example, you can define a mission to listen to a hook as below:

```
function create ()
    -- ...

hook.custom( "my_custom_hook_type", "dohook" )
end

function dohook( param )
    print( param )
end
```

In this case, "my_custom_hook_type" is the name we are using for the hook. It is chosen to not conflict with any of the existing names. When the hook triggers, it runs the function dohook which just prints the parameter. Now, we can trigger this hook from anywhere simply by using the following code:

```
naev.trigger( "my_custom_hook_type", some_parameter )
```

The hook will not be triggered immediately, but the second the current running code is done to ensure that no Lua code is run in parallel. In general, the mission variables should be more than good enough for event-mission communication, however, in the few cases communication needs to be more tightly coupled, custom hooks are a perfect solution.

2.3.8 Love2D API

TODO

2.4 Tips and Tricks

TODO

2.4.1 Making Aggressive Enemies

TODO Explain how to nudge the enemies without relying on pilot:control().

2.4.2 Working with Player Fleets

TODO Explain how to detect and/or limit player fleets.

2.5 Full Example

Below is a full example of a mission.

```
<?xml version='1.0' encoding='utf8'?>
<mission name="Mission Template (mission name goes here)">
<unique />
 <priority>4</priority>
 <chance>5</chance>
 <location>Bar</location>
</mission>
--11
--[[
  Mission Template (mission name goes here)
  This is a Naev mission template.
  In this document aims to provide a structure on which to build many
  Naev missions and teach how to make basic missions in Naev.
  For more information on Naev, please visit: http://naev.org/
  Naev missions are written in the Lua programming language:
      http://www.lua.org/
  There is documentation on Naev's Lua API at: http://api.naev.org/
  You can study the source code of missions in
      [path_to_Naev_folder]/dat/missions/
  When creating a mission with this template, please erase the
      explanatory
  comments (such as this one) along the way, but retain the the MISSION
  DESCRIPTION fields below, adapted to your mission.
  MISSION: <NAME GOES HERE>
  DESCRIPTION: < DESCRIPTION GOES HERE>
--]]
-- require statements go here. Most missions should include
-- "format", which provides the useful `number()` and
-- `credits()` functions. We use these functions to format numbers
-- as text properly in Naev. dat/scripts/common/neutral.lua provides
-- the addMiscLog function, which is typically used for non-factional
-- unique missions.
local fmt = require "format"
```

```
local neu = require "common.neutral"
local vntk = require "vntk"
--[[
Multi-paragraph dialog strings *can* go here, each with an identifiable
name. You can see here that we wrap strings that are displayed to the
player with `_()`. This is a call to gettext, which enables
localization. The _() call should be used directly on the string, as
shown here, instead of on a variable, so that the script which figures
out what all the translatable text is can find it.
When writing dialog, write it like a book (in the present-tense), with
paragraphs and quotations and all that good stuff. Leave the first
paragraph unindented, and indent every subsequent paragraph by four (4)
spaces. Use quotation marks as would be standard in a book. However, do
*not* quote the player speaking; instead, paraphrase what the player
generally says, as shown below.
In most cases, you should use double-brackets for your multi-paragraph
dialog strings, as shown below.
One thing to keep in mind: the player can be any gender, so keep all
references to the player gender-neutral. If you need to use a
third-person pronoun for the player, singular "they" is the best choice.
You may notice curly-bracketed {words} sprinkled throughout the text.
   These
are portions that will be filled in later by the mission via the
`fmt.f()` function.
--]]
-- Set some mission parameters.
-- For credit values in the thousands or millions, we use scientific
   notation (less error-prone than counting zeros).
-- There are two ways to set values usable from outside the create()
   function:
-- - Define them at file scope in a statement like "local credits =
   250e3" (good for constants)
-- - Define them as fields of a special "mem" table: "mem.credits =
    250e3" (will persist across games in the player's save file)
local misplanet, missys = spob.getS("Ulios")
local credits = 250e3
-- Here we use the `fmt.credits()` function to convert our credits
-- from a number to a string. This function both applies gettext
-- correctly for variable amounts (by using the ngettext function),
-- and formats the number in a way that is appropriate for Naev (by
-- using the numstring function). You should always use this when
-- displaying a number of credits.
local reward_text = fmt.credits( credits )
```

```
--[[
First you need to *create* the mission. This is *obligatory*.
You have to set the NPC and the description. These will show up at the
bar with the character that gives the mission and the character's
description.
--]]
function create ()
  -- Naev will keep the contents of "mem" across games if the player
      saves and quits.
  -- Track mission state there. Warning: pilot variables cannot be saved.
  mem.talked = false
  -- If we needed to claim a system, we would do that here with
  -- something like the following commented out statement. However,
  -- this mission won't be doing anything fancy with the system, so we
  -- won't make a system claim for it.
  -- Only one mission or event can claim a system at a time. Using claims
  -- helps avoid mission and event collisions. Use claims for all systems
  -- you intend to significantly mess with the behaviour of.
  --if not misn.claim(missys) then misn.finish(false) end
  \mbox{--} Give the name of the NPC and the portrait used. You can see all
  -- available portraits in dat/gfx/portraits.
  misn.setNPC( _("A well-dressed man"),
      "neutral/unique/youngbusinessman.webp", _("This guy is wearing a
      nice suit.") )
end
This is an *obligatory* part which is run when the player approaches the
character.
Run misn.accept() here to internally "accept" the mission. This is
required; if you don't call misn.accept(), the mission is scrapped.
This is also where mission details are set.
--]]
function accept ()
  -- Use different text if we've already talked to him before than if
  -- this is our first time.
  local text
  if mem.talked then
     -- We use `fmt.f()` here to fill in the destination and
     -- reward text. (You may also see Lua's standard library used for
         similar purposes:
     -- `s1:format(arg1, ...)` or equivalently string.format(s1, arg1,
         ...)`.)
```

```
-- You can tell `fmt.f()` to put a planet/system/commodity object
      into the text, and
  -- (via the `tostring` built-in) know to write its name in the
      player's native language.
  text = fmt.f(_([["Ah, it's you again! Have you changed your mind?
      Like I said, I just need transport to {pnt} in the {sys}
      system, and I'll pay you {reward} when we get there. How's that
      sound?"]]), {pnt=misplanet, sys=missys, reward=reward_text})
else
  text = fmt.f(([[As you approach the guy, he looks up in curiosity.
      You sit down and ask him how his day is. "Why, fine," he
      answers. "How are you?" You answer that you are fine as well
      and compliment him on his suit, which seems to make his eyes
      light up. "Why, thanks! It's my favourite suit! I had it custom
      tailored, you know.
 "Actually, that reminds me! There was a special suit on {pnt} in the
    {sys} system, the last one I need to complete my collection, but
    I don't have a ship. You do have a ship, don't you? So I'll tell
    you what, give me a ride and I'll pay you {reward} for it! What
    do you say?"]]),
     {pnt=misplanet, sys=missys, reward=reward_text})
  mem.talked = true
end
-- This will create the typical "Yes/No" dialogue. It returns true if
-- yes was selected.
-- For more full-fledged visual novel API please see the vn module. The
-- vntk module wraps around that and provides a more simple and easy
-- interface, although it is much more limited.
if vntk.yesno( _("My Suit Collection"), text ) then
  -- Followup text.
  vntk.msg( _("My Suit Collection"), _([["Fantastic! I knew you would
      do it! Like I said, I'll pay you as soon as we get there. No
      rush! Just bring me there when you're ready.]]) )
  -- Accept the mission
  misn.accept()
  -- Mission details:
  -- You should always set mission details right after accepting the
  -- mission.
  misn.setTitle( _("Suits Me Fine") )
  misn.setReward( reward_text )
  misn.setDesc( fmt.f(_("A well-dressed man wants you to take him to
      {pnt} in the {sys} system so he get some sort of special
      suit."), {pnt=misplanet, sys=missys}) )
  -- Markers indicate a target planet (or system) on the map, it may
      not be
```

```
-- needed depending on the type of mission you're writing.
     misn.markerAdd( misplanet, "low" )
     -- The OSD shows your objectives.
     local osd_desc = {}
     osd_desc[1] = fmt.f(_("Fly to {pnt} in the {sys} system"),
         {pnt=misplanet, sys=missys} )
     misn.osdCreate( _("Suits Me Fine"), osd_desc )
     -- This is where we would define any other variables we need, but
     -- we won't need any for this example.
     -- Hooks go here. We use hooks to cause something to happen in
     -- response to an event. In this case, we use a hook for when the
     -- player lands on a planet.
     hook.land( "land" )
  end
  -- If misn.accept() isn't run, the mission doesn't change and the
      player can
  -- interact with the NPC and try to start it again.
-- luacheck: globals land (Hook functions passed by name)
-- ^^ That is a directive to Luacheck, telling it we're about to use a
   global variable for a legitimate reason.
-- (More info here: https://github.com/naev/naev/issues/1566) Typically
   we put these at the top of the file.
-- This is our land hook function. Once `hook.land( "land" )` is called,
-- this function will be called any time the player lands.
function land ()
  -- First check to see if we're on our target planet.
  if spob.cur() == misplanet then
     -- Mission accomplished! Now we do an outro dialog and reward the
     -- player. Rewards are usually credits, as shown here, but
     -- other rewards can also be given depending on the circumstances.
     vntk.msg( fmt.f(_([[As you arrive on {pnt}, your passenger reacts
         with glee. "I must sincerely thank you, kind stranger! Now I
         can finally complete my suit collection, and it's all thanks to
         you. Here is {reward}, as we agreed. I hope you have safe
         travels!"]]), {pnt=misplanet, reward=reward_text}) )
     -- Reward the player. Rewards are usually credits, as shown here,
     -- but other rewards can also be given depending on the
     -- circumstances.
     player.pay( credits )
     -- Add a log entry. This should only be done for unique missions.
     neu.addMiscLog( fmt.f(_([[You helped transport a well-dressed man
         to {pnt} so that he could buy some kind of special suit to
```

35

```
complete his collection.]]), {pnt=misplanet} ) )

-- Finish the mission. Passing the `true` argument marks the
-- mission as complete.
  misn.finish( true )
  end
end
```