Lineare Algebra 1 - WS 2024/25

Übungsblatt 9-15.1.2025

Aufgabe 1

(a) Gibt es eine lineare Abbildung $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\varphi\begin{pmatrix}2\\0\end{pmatrix}=\begin{pmatrix}0\\1\end{pmatrix},\;\varphi\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}5\\2\end{pmatrix},\;\varphi\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}2\\3\end{pmatrix}?$$

(b) Es sei $\varphi:\mathbb{R}^3\to\mathbb{R}^2$ eine lineare Abbildung mit

$$\varphi\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}7\\11\end{pmatrix},\;\varphi\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}-8\\2\end{pmatrix},\;\varphi\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}-8\\2\end{pmatrix}.$$

Berechnen Sie

$$\varphi \begin{pmatrix} -1 \\ 8 \\ 3 \end{pmatrix}$$
.

Aufgabe 2

Die lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ ist gegeben durch

$$\varphi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \end{pmatrix}.$$

Bestimmen Sie die Matrix $M(\varphi; \mathcal{B}, \mathcal{B}')$ von φ bezüglich der Basen

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right) \quad \text{und} \quad \mathcal{B}' = \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right).$$

${\bf Aufgabe~3}$

Sei φ eine lineare Abbildung $\mathbb{C}^4 \to \mathbb{C}^4$ und

$$A = M(\varphi; \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 1 & \lambda & 0 & 1 \\ -\lambda & 2 & 1 & 3 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & \lambda & 1 \end{pmatrix},$$

wobei \mathcal{B} eine geordnete Basis von \mathbb{C}^4 ist. Bestimmen Sie den Rang von φ in Abhängigkeit vom Parameter $\lambda \in \mathbb{C}$.

Aufgabe 4

Es seien V ein Vektorraum über dem Körper K, und φ ein Endomorphismus von V. Für $n \in \mathbb{N}_0$ setzen wir

$$\varphi^n = \begin{cases} \operatorname{Id}_V & \text{falls } n = 0\\ \underbrace{\varphi \circ \dots \circ \varphi}_{n \text{ mal}} & \text{falls } n > 0 \end{cases}.$$

Es seien $v \in V$ und $n \in \mathbb{N}_0$ mit

$$\varphi^n(v) \neq 0, \quad \varphi^{n+1}(v) = 0.$$

Zeigen Sie, dass die Vektoren $v=\varphi^0(v),\,\varphi(v),\dots,\,\varphi^n(v)$ linear unabhängig sind.

Aufgabe 5

Es seien V ein Vektorraum über dem Körper K, und φ ein Endomorphismus von V mit $\varphi \circ \varphi = \varphi$. Zeigen Sie, dass V die direkte Summe von $\varphi(V)$ und $\ker(\varphi)$ ist.