AI IN ROBOTICS – SEGMENTATION

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

PRESENTER: HASSAN YOUSEFZADE

Object detection vs object segmentation

Segmentation

- High Detail: Image segmentation helps robots assign each pixel to a class, thus identifying the precise shape and boundaries of
 objects. This high accuracy is useful for grasping and manipulating complex objects.
- Practical Application: This allows robots to grasp objects with complex and irregular shapes, such as car parts, precise tools, or food items.

Object detection

- Fast Identification: Object detection allows robots to quickly identify objects and determine their approximate position in the
 environment.
- Practical Application: Useful for manipulation tasks that require fast object identification, such as picking items off a conveyor belt.

Environmental Complexity

- Image Segmentation: Useful in complex environments requiring precise differentiation of objects from the background and detailed object identification.
- Object Detection: Useful in simpler environments or applications requiring quick object identification.

Paired training data: for each training image, each pixel is labeled with a semantic category.

TREE, SKY, ...

At test time, classify each pixel of a new image.

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Downsampling: Pooling, strided convolution Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network! Med-res: D₂ x H/4 x W/4 D₂ x H/4 x W/4 D₂ x H/4 x W/4 D₃ x H/4 x W/4

Low-res: D₃ x H/4 x W/4

Input: 3 x H x W

High-res: D₁ x H/2 x W/2

High-res: C x H x W D₁ x H/2 x W/2

Predictions: H x W

pooling

Nearest Neighbor

1	2	
3	4	

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

1	2	
3	4	

Input: 2 x 2

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Output: 4 x 4

Max - pooling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1 Dot product between filter and input Input: 4 x 4 Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

3 x 3 transposed convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

Input

Kernel

0	1
2	3

Transposed Conv

0	1
2	3

Output

	0	1
+	2	3

+	0	2	+
	4	6	

+	0	3
	6	9

	0	0	1
=	0	4	6
	4	12	9

Downsampling: Pooling, strided convolution

Input: 3 x H x W Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

High-res:

D₁ x H/2 x W/2

High-res: D₁ x H/2 x W/2 **Upsampling**: Unpooling or strided transposed convolution

Predictions: H x W

UNET

1) Problem: Reduced feature resolution

Causes:

- Maxpooling

12	20	30	0			
8	12	2	0	2 × 2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12	·		

Source: computersciencewiki.org

- Conv, strides = 2

2) Problem: Existence of multiple-scale objects

D

Same class

Different size (FoV)

Reduced accuracy (in borders)

DCNN output

- 1) Atrous convolution (or dilated convolution)
- 2) Atrous Spatial Pyramid Pooling (ASPP)
- 3) Conditional Random Fields (CRFs)

Pipeline

Backbone ASPP Upsample x8 CRF

3) Reduced accuracy (in borders)

Cause: Downsampling, maxpooling, useful to achieve invariance in classification

DCNN output

In Segmentation we want to preserve spatial information

1) Atrous convolution (or dilated convolution)

Filter = $3x3 \rightarrow$ Increases the field of view.

(Field of view, reminder)

Operation	Field of view (size)	
Conv 3x3	3	

(Field of view, reminder)

Operation	Field of view (size)
Conv 3x3	3
Conv 3x3	3 + 2 = 5

2) Atrous Spatial Pyramid Pooling (ASPP)

Conditional Random Fields (CRFs) 3)

$$E(x) = \sum_{i} \theta_{i}(x_{i}) + \sum_{ij} \theta_{ij}(x_{i}, x_{j})$$
 (2)

$$\mu(x_i,x_j)=1 \text{ if } x_i\neq x_j,$$

$$\theta_{ij}(x_i, x_j) = \mu(x_i, x_j) \left[w_1 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\alpha}^2} - \frac{||I_i - I_j||^2}{2\sigma_{\beta}^2}\right) + w_2 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\gamma}^2}\right) \right]$$
(3)

$$+w_2 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_\gamma^2}\right)$$
 (3)

p = coordinates

I = RGB intensity values

DEEPLAB

3) Conditional Random Fields (CRFs)

$$\theta_{ij}(x_i, x_j) = \mu(x_i, x_j) \left[w_1 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\alpha}^2} - \frac{||I_i - I_j||^2}{2\sigma_{\beta}^2}\right) + w_2 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\gamma}^2}\right) \right]$$
(3)

Small distance, similar intensities

Small negative values → large penalty

DEEPLAB

3) Conditional Random Fields (CRFs)

$$\theta_{ij}(x_i, x_j) = \mu(x_i, x_j) \left[w_1 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\alpha}^2} - \frac{||I_i - I_j||^2}{2\sigma_{\beta}^2}\right) + w_2 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\gamma}^2}\right) \right]$$
(3)

Large distance, different intensities

Large negative values → very small penalty

DEEPLAB-V3

Evaluation metrics in segmentation

Evaluation metrics in segmentation

DSC: Dice similarity coefficient

Evaluation metrics in segmentation

$$Dice\ Coefficient = \frac{2*TP}{FN + (2*TP) + FP}$$

$$Jaccard\ Index = \frac{TP}{TP + FN + FP}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

TP - true positive

TN - true negative

Manual Segmentation

FP - false positive

FN - false negative

Automated Segmentation

