Работа 3.2.6

Исследование гальванометра

Цель работы: изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, преключатель, ключи, линейка.

Установка.

Рис. 1: Схема установки для работы гальванометра в стационарном режиме.

Рис. 2: Схема установки для определения баллистической постоянной.

Теория.

Сила тока, протекающего через гальванометр в стационарном режиме:

$$I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0}. (1)$$

Динамическая постоянная:

$$C_I = \frac{I}{\varphi} = \frac{2aI}{x}, \quad \sigma_{C_I} = \sqrt{\left(\frac{I}{x}\sigma_{2a}\right)^2 + \left(2a\sigma_{\frac{I}{x}}\right)^2}.$$
 (2)

Логарифмический декремент затухания:

$$\Theta = \ln \frac{x_n}{x_{n+1}}, \quad \sigma_{\Theta} = \sqrt{\left(\frac{\sigma_{x_n}}{x_n}\right)^2 + \left(\frac{\sigma_{x_{n+1}}}{x_{n+1}}\right)^2}.$$
 (3)

Критическое сопротивление $(X=(R_0+R)^2,\,Y=1/\Theta^2)$:

$$R_{\rm kp} = \frac{1}{2\pi} \sqrt{\frac{\Delta X}{\Delta Y}} - R_0, \quad \sigma_{R_{\rm kp}} = \frac{1}{4\pi} \sqrt{\frac{\Delta Y}{\Delta X}} \cdot \sigma_{\frac{\Delta X}{\Delta Y}}. \tag{4}$$

Баллистическая постоянная:

$$C_{Q_{\text{kp}}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{l_{max}^{\text{kp}}} \tag{5}$$

Таблица 1: Зависимость I(x).

aosima i. Sabicimocib i(x)							
ſ	x, см	R, Om	I, MKA				
Ī	23.5	1,200	4.6622				
Ī	20.6	1,400	4.1071				
	18.8	1,600	3.6702				
	17.4	1,800	3.3173				
ſ	12.5	3,000	2.1037				
ſ	9.6	4,500	1.4435				
ſ	7.9	6,000	1.0987				
ſ	5.3	10,000	0.6712				
ſ	2.0	30,000	0.2279				
ſ	1.0	60,000	0.1145				

Обработка результатов.

Рассчитаем ток через гальванометр в стационарном режиме по формуле (1). Построим график I(x) (таблица 1, рисунок 3. С его помощью найдем динамическую постоянную по формуле (2). Заметим, что погрешность измерения R и R_0 пренебрежимо мала по сравнению с x.

$$\frac{I}{x} = (22.8 \pm 0.5) \cdot 10^{-6} \text{ A/m}$$

$$C_I = (0.0501 \pm 0.0016) \frac{A}{MM/M}.$$

Рис. 3: Зависимость I(x).

Рассчитаем логарифмический декремент затухания по формуле (3). Построим график $1/\Theta^2 = f\left[(R+R_0)^2\right]$ (таблица 2, рисунок 4). Рассчитаем погрешность $1/\Theta^2$ по формуле

$$\sigma_{1/\Theta^2} = \frac{\sigma_{\Theta}}{\Theta^3}.$$

Погрешность R и R_0 пренебрежимо мала. С помощью графика рассчитаем критическое сопротивление, пользуясь формулой (4).

$$\frac{\Delta X}{\Delta Y} = 1/\frac{\Delta Y}{\Delta X}, \quad \sigma_{\frac{\Delta X}{\Delta Y}} = \sigma_{\frac{\Delta Y}{\Delta X}}/\left(\frac{\Delta Y}{\Delta X}\right)^2.$$

	reconnice 2. Admir Ann on podesicium inputin recinere competinizationimi.									
x_1 , cm	x_2 , cm	R, Om	Θ	σ_{Θ}	$1/\Theta^2$	σ_{1/Θ^2}	$(R+R_0)^2$ кОм ²			
19.8	2.8	3,180	1.96	0.04	0.261	0.005	11.9716			
18.2	3.2	3,710	1.74	0.03	0.331	0.006	15.9201			
16.6	3.5	4,240	1.56	0.03	0.413	0.008	20.4304			
15.3	3.9	4,770	1.37	0.03	0.53	0.01	25.5025			
22.8	4.5	5,300	1.62	0.02	0.38	0.01	31.1364			
19.6	7.4	6,360	0.97	0.01	1.05	0.02	44.0896			
17.3	7.3	7,420	0.86	0.01	1.34	0.02	59.2900			
23.2	11.3	8,480	0.72	0.01	1.93	0.03	76.7376			
21.0	10.6	9,540	0.68	0.01	2.14	0.03	96.4324			
18.8	10.4	10,600	0.59	0.01	2.85	0.05	118.3744			

$$\frac{\Delta Y}{\Delta X} = (0.0194 \pm 0.0007) \ \mathrm{кOm}^{-2}$$
 $R_{\mathrm{Kp}} = (860 \pm 30) \ \mathrm{Om}$

Рис. 4: Зависимость $1/\Theta^2 [(R_0 + R)^2]$.

Рассчитаем критическое сопротивление для баллистического режима. Для этого построим график $l_{max}\left[(R+R_0)^{-1}\right]$ (таблица 3, рисунок 5), учтем, что отклонение зайчика в критическом режиме в e раз меньше, чем в режиме без затухания. Отклонение в режиме без затухания $l_{max}^0=(23.6\pm0.1)$ см, значит в критическом режиме $l_{max}^{\rm kp}=(8.68\pm0.04)$ см. Коэффициент наклона графика $k=(-19.5\pm0.6)$ см \cdot кОм.

$$R_{\rm kp} = \frac{k}{l_{max}^{\rm kp} - l_{max}^0} - R_0,$$

$$R_{\rm kp} = (1020 \pm 30) \; {\rm Om}$$

Значения, полученные подбором, в стационарном и баллистическом режиме совпадают. Рассчитаем баллистическую постоянную по формуле (5):

$$C_{Q_{\text{kp}}} = (0.0100 \pm 0.0003) \frac{\text{K}}{\text{MM/M}}.$$

Время релаксации $t = R_0 C = 560 \text{ мкс} \ll T = 5 \text{ c}$

Таблица 3: Зависимость $l_{max} \left[(R + R_0)^{-1} \right]$.

-1
-1

Рис. 5: Зависимость $l_{max}\left[(R+R_0)^{-1}\right]$.