Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



## Folha de Dados Primeira Lista Exercícios Circuitos Sequenciais e Projeto RTL

## Entrega até sexta-feira 09 de maio de 2019 às 23:50 horas

#### Instruções:

- 1. Organize o repositório em pastas para cada exercício.
- 2. Entregar todos os arquivos necessários para replicar o experimento.
- 3. Preencha os dados solicitados, imprima este documento em PDF e deixe no repositório.

Nome: Matheus Moreira da Silva Vieira matrícula: 140155546

#### Exercício 1. Ping-pong leds

- 1) Diagrama de blocos proposto.
- 2) Diagrama esquemático (Análise RTL pré-síntese)



3) Estimação consumo de recursos lógicos após a síntese lógica:

| LUTs      | FFs        | Pinos de IOs | Blocos DSP | Blocos BRAM |
|-----------|------------|--------------|------------|-------------|
| Total:    | Total:     | Total:       | Total:     | Total:      |
| 61(0.29%) | 56 (0.13%) | 31 (29.25%)  | 0 (0%)     | 0 (0%)      |

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



#### 4) Consumo de recursos após implementação (processo *Place and Route -* PAR):

| LUTs       | FFs        | Pinos de IOs | Blocos DSP | Blocos BRAM |
|------------|------------|--------------|------------|-------------|
| Total:     | Total:     | Total:       | Total:     | Total:      |
| 61 (0.29%) | 56 (0.13%) | 31 (29.25%)  | 0 (0%)     | 0 (0 %)     |

5) Análise de timming:

Worst negative slack (setup): 6.164 ns Worst negative slack (hold): 0.220 ns

Frequência de operação do circuito: 100 MHz Caminho crítico (net de origem): anodo\_cnt\_reg[15]/C Caminho crítico (net de destino): anodo\_cnt\_reg[17]/D

Maximo path delay: 3.888 ns

## 6) Layout do circuito após a implementação (após processo *Place and Route* – PAR):



7) Estimação do consumo de energia após a implementação do circuito:

Potência total: 76 (mW) Potência estática: 72 (mW) Potência dinâmica: 4 (mW) Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



#### Gráfico de consumo de energia:



## Exercício 2. Ping-pong leds FSM

| 1 \ | D.       | 1  | 1 1    | 4         |
|-----|----------|----|--------|-----------|
| I)  | Diagrama | ae | blocos | proposto. |



| Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília |
|-----------------------------------------------------------------------------------------|
| Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).                     |

Professor: Daniel Mauricio Muñoz Arboleda

6) Análise de timming:

Wors negative slack (setup): \_\_\_\_\_ ns

e-mail: damuz@unb.br



| 2) | Diagrama de estado | os:                  |                        |                      |                       |
|----|--------------------|----------------------|------------------------|----------------------|-----------------------|
| 3) | Diagrama esquemá   | ítico (Análise RTL p | oré-síntese)           |                      |                       |
|    |                    |                      |                        |                      |                       |
|    |                    |                      |                        |                      |                       |
|    |                    |                      |                        |                      |                       |
|    |                    |                      |                        |                      |                       |
|    |                    |                      |                        |                      |                       |
|    |                    | _                    |                        |                      |                       |
|    |                    | Figura               | 2.3. Esquemático R'    | TL<br>               |                       |
| 4) | Estimação consu    | mo de recursos lóg   | gicos após a síntese   | e lógica:            |                       |
|    | LUTs<br>Total:     | FFs<br>Total:        | Pinos de IOs<br>Total: | Blocos DSP<br>Total: | Blocos BRAM<br>Total: |
|    | (%)                | (%)                  | (%)                    | (%)                  | (%)                   |
|    |                    |                      |                        |                      |                       |
| 5) | Consumo de recu    | rsos após implemo    | entação (processo      | Place and Route -    | PAR):                 |
|    | LUTs<br>Total:     | FFs<br>Total:        | Pinos de IOs<br>Total: | Blocos DSP<br>Total: | Blocos BRAM<br>Total: |
|    | (%)                | (%)                  | (%)                    | (%)                  | (%)                   |
|    |                    |                      |                        |                      |                       |

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



| Worst negative slack (hold): ns Frequência de operação do circuito: MHz Caminho crítico (net de origem): Caminho crítico (net de destino): Maximo path delay: ns          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Layout do circuito após a implementação (após processo Place and Route – PAR):                                                                                            |
|                                                                                                                                                                           |
| Figura 2.4. Layout do circuito                                                                                                                                            |
| Estimação do consumo de energia após a implementação do circuito:  Potência total: (mW)  Potência estática: (mW)  Potência dinâmica: (mW)  Gráfico de consumo de energia: |
| Figura 2.5. Consumo de energia da solução obtida.                                                                                                                         |
|                                                                                                                                                                           |

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



# Exercício 3. Neurônio GMBH de segunda ordem usando IP-Cores em ponto flutuante

1) Diagrama de blocos proposto.



| 2) | Diagrama de estados (se aplica) |
|----|---------------------------------|
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    | Figure 2.2 Discours de satula.  |
|    | Figura 3.2. Diagrama de estados |

e-mail: damuz@unb.br



3) Diagrama esquemático (Análise RTL pré-síntese)



4) Erro quadrático médio usando Matlab como estimador estatístico para 100 amostras.

MSE =



Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



## 5) Estimação consumo de recursos lógicos após a síntese lógica:

| LUTs         | FFs         | Pinos de IOs | Blocos DSP | Blocos BRAM |
|--------------|-------------|--------------|------------|-------------|
| Total:       | Total:      | Total:       | Total:     | Total:      |
| 711 (3.42 %) | 189 (0.45%) | 58 (54.72 %) | 2 (2.22%)  | 0 (0%)      |

#### 6) Consumo de recursos após implementação (processo *Place and Route - PAR*):

| LUTs        | FFs         | Pinos de IOs | Blocos DSP | Blocos BRAM |
|-------------|-------------|--------------|------------|-------------|
| Total:      | Total:      | Total:       | Total:     | Total:      |
| 709 (3.41%) | 189 (0.45%) | 58 (54.72%)  | 2 (2.22%)  | 0 (0%)      |

| $\overline{}$ | A /1.   | 1  | . • | •      |
|---------------|---------|----|-----|--------|
| ·/\           | Análise | de | tın | ımıno. |
| ,,            | mansc   | uc | um  |        |

Wors negative slack (setup): \_\_\_\_\_ ns

Worst negative slack (hold): \_\_\_\_\_ ns

Frequência de operação do circuito: \_\_\_\_\_ MHz

Caminho crítico (net de origem): Caminho crítico (net de destino): Maximo path delay: \_\_\_\_\_ ns

#### 8) Layout do circuito após a implementação (após processo Place and Route – PAR):



Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br



## 9) Estimação do consumo de energia após a implementação do circuito:

Potência total: 10655 (mW) Potência estática: 149 (mW) Potência dinâmica: 10506 (mW)

Gráfico de consumo de energia:

