2-2 Decoder/Encoder

- NAND Gate Decoder
- * Active Low Output

 * Fig. 2-1 3-to-8 Decoder

 Active High Output
- Constructed with NAND instead of AND gates

Logic Diagram/Truth Table : Fig. 2-2

Fig. 2-2 2-to-4 Decoder with NAND gates

Enable	Input		Output			
Е	A1	A0	D0	D1	D2	D3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	x	x	1	1	1	1
(a) 1	ru	th T	Tab	le		

Decoder Expansion

- Constructed decoder: Fig. 2-3
- 3 X 8 Decoder constructed with two 2 X 4 Decoder

Encoder

Inverse Operation of a decoder

- 2ⁿ input, n output
- Truth Table : Tab. 2-2
 - 3 OR Gates Implementation
 - » A0 = D1 + D3 + D5 + D7
 - » A1 = D2 + D3 + D6 + D7
 - » A2 = D4 + D5 + D6 + D7

Fig. 2-3 A 3-to-8 Decoder constructed with two with 2-to-4 Decoder

2-2 Decoder/Encoder

Octal to Binary Encoder

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0		1		
1	0		0	0	0	0	0	l 1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

2-3 Multiplexers

- Multiplexer(Mux)
 - A combinational circuit that receives binary information from one of 2ⁿ input data lines and directs it to a single output line
 - A 2ⁿ -to 1 multiplexer has 2ⁿ input data lines and 1_n input selection lines (Data Selector)
 - 4-to-1 multiplexer Diagram : Fig. 2-4
 - 4-to-1 multiplexer Function Table : Tab. 2-3

Tab. 2-3 Function Table for 4-to-1 line Multiplexter

Sel	ect	Output
S1	S0	Y
0	0	lo
0	1	l ₁
1	0	12
1	1	l ₃

Fig. 2-4 4-to-1 Line Multiplexer

- Quadruple 2-to-1 Multiplexer
 - Quadruple 2-to-1 Multiplexer: Fig. 2-5

Fig. 2-5 Quadruple 2-to-1 line Multiplexter

Sel	ect	Output	
E	S	Υ	
0	0	All 0's	
1	0	A	
1	1	В	
70.77	o visione a gran		

(a) Function Table

2-3 Multiplexers

Fig A. Combinational logic diagram with four 2×1 multiplexer

Fig B. Demultiplexer

A **Demultiplexer**, sometimes abbreviated **DMUX** is a circuit that has one input and more than one output. It is used when a circuit wishes to send a signal to one of many devices

 Suppose a MUX is having 16 input lines. How many selection input lines are required?

- A) 2
- B) 3
- C) 4
- D) 5

2-4 Registers

Register

- A group of flip-flops with each flip-flop capable of storing one bit of information
- An n-bit register has a group of n flip-flops and is capable of storing any binary information of n bits
- The simplest register consists only of flip-flops, with no external gate :
 Fig. 2-6
- A clock input C will load all four inputs in parallel
 - The clock must be inhibited if the content of the register must be left unchanged

Register with Parallel Load

- A 4-bit register with a load control input: Fig. 2-7
- The clock inputs receive clock pulses at all times
- The buffer gate in the clock input will increase "fan-out"
- Load Input
 - 1 : Four input transfer
 - 0 : Input inhibited, Feedback from output to input(no change) Fig. 2-6 4-bit register

2-4 Registers

■ When the load input is 1, the data in the four inputs are transferred into the register with the next positive transition of a clock pulse

■ When the load input is 0, the data inputs are inhibited and the Doutput of flip flop are connected to their inputs.

Fig. 2-7 4-bit register with parallel load

2-5 Shift Registers

Shift Register

- A register capable of shifting its binary information in one or both directions
- The logical configuration of a shift register consists of a chain of flip-flops in cascade
- The simplest possible shift register uses only flip-flops: Fig. 2-8
- The serial input determines what goes into the leftmost position during the shift
- The serial output is taken from the output of the rightmost flip-flop

Fig. 2-8 4-bit shift register

- Data can be transferred to a register only when its load input is 1.
- A) True
- B) False

2-5 Shift Registers

- Bidirectional Shift Register with Parallel Load
 - A register capable of shifting in one direction only is called a unidirectional shift register
 - A register that can shift in both directions is called a bidirectional shift register
 - The most general shift register has all the capabilities listed below:
 - An input clock pulse to synchronize all operations
 - A shift-right /left (serial output/input)
 - A parallel load, n parallel output lines
 - The register unchanged even though clock pulses are applied continuously
 - 4-bit bidirectional shift register with parallel load :

Fig. 2-9

4 X 1 Mux = 4 D F/F = 4

Tab. 2-4 Function Table for Register of Fig. 2-9

Mode		Operation
S1	S0	
0	0	No chage
0	1	Shiftright(down)
1	0	shift left(up)
1	1	Parallel load

2-5 Shift Registers

Fig. 2-9 Bidirectional shift register

- Which of the following is not a type of a Register?
- A) SISO
- B) SIPO
- C) PIPO
- D) None of the above