1 блок «Решение нелинейных уравнений и их систем»

- 1. Решить нелинейное уравнение по следующему плану:
 - Построить график функции. Определить интервалы, в которых находится единственный корень..
 - Проверить сходимость каждого метода.
 - \circ В каждом интервале найти корень с точностью до 0.001 пользуясь следующими методами: методом половинного деления $x_n = \frac{a+b}{2}$, методом хорд $x_n = x_{n-2} \frac{f\left(x_{n-2}\right)(x_{n-1}-x_{n-2})}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)} \quad \text{, методом Ньютона} \quad x_n = x_{n-1} \frac{f\left(x_{n-1}\right)}{f'\left(x_{n-1}\right)} \quad \text{,}$ методом последовательных приближений $x_n = F\left(x_{n-1}\right)$.
 - \circ Стоп по условию $\left|x_{n}-x_{n-1}\right|<\epsilon$ или $\left|f\left(x_{n}\right)\right|<\epsilon$
 - Для каждого метода вывести количество итераций, вывести таблицу итераций (можно оформить с помощью PrettyTable или Pandas).
 - Проверить найденные решения с помощью метода solve

Таблица 1 - Первое задание

№ варианта	функция	a	b
1	$2,74x^3 - 1,93x^2 - 15,28x - 3,72$	-3	4
2	$-1,38 x^3 - 5,42 x^2 + 2,57 x + 10,95$	-5	3
3	x^3 + 2,84 x^2 – 5,606 x – 14,766	-4	3
4	$x^3 - 1,89 x^2 - 2x + 1,76$	-3	4
5	$-2.7x^3 - 1.48x^2 + 19.23x + 6.35$	-4	4
6	$2x^3 + 3,41x^2 - 23,74x + 2,95$	-5	4
7	x^3 + 2,28 x^2 – 1,934 x – 3,907	-4	2
8	$3x^3 + 1.7x^2 - 15.42x + 6.89$	-4	3
9	$-1.8 x^3 - 2.94 x^2 + 10.37 x + 5.38$	-5	4
10	$x^3 - 3,12 x^2 - 3,5 x + 2,458$	-3	5

2. Решить систему нелинейных уравнений методом Ньютона с точностью до 0,001.

Рассмотрим систему нелинейных уравнений второго порядка: $\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$ Требуется построить последовательность (x_i,y_i) которая при определенных условиях сходится к решению системы. Пусть задано начальное приближение (x_0,y_0) (его обычно определяют графическим методом). Тогда очередное приближение: $\begin{cases} x_i = x_0 + \Delta x \\ y_1 = y_0 + \Delta y \end{cases}$ и

 $\begin{cases} f\left(x_0+\Delta\ x\,,y_0+\Delta\ y\right)=0\\ g\left(x_0+\Delta\ x\,,y_0+\Delta\ y\right)=0 \end{cases}$. Разложим функции f и g в окрестности точки (x_0,y_0) в

ряд Тейлора: $\begin{cases} f\left(x_{0} + \Delta\,x\,,y_{0} + \Delta\,y\right) = f\left(x_{0,}y_{0}\right) + \frac{\delta\,f\left(x_{0,}y_{0}\right)}{\delta\,x}\Delta\,x + \frac{\delta\,f\left(x_{0,}y_{0}\right)}{\delta\,y}\Delta\,y + R = 0 \\ g\left(x_{0} + \Delta\,x\,,y_{0} + \Delta\,y\right) = g\left(x_{0,}y_{0}\right) + \frac{\delta\,g\left(x_{0,}y_{0}\right)}{\delta\,x}\Delta\,x + \frac{\delta\,g\left(x_{0,}y_{0}\right)}{\delta\,y}\Delta\,y + R = 0 \end{cases} .$

Пренебрегая остаточным членом, получаем: $\begin{cases} \frac{\delta f\left(x_{0,}y_{0}\right)}{\delta x} \Delta x + \frac{\delta f\left(x_{0,}y_{0}\right)}{\delta y} \Delta y = -f\left(x_{0,}y_{0}\right) \\ \frac{\delta g\left(x_{0,}y_{0}\right)}{\delta x} \Delta x + \frac{\delta g\left(x_{0,}y_{0}\right)}{\delta y} \Delta y = -g\left(x_{0,}y_{0}\right) \end{cases}$

Введем матрицу Якоби: $J\left(x,y\right) = \begin{vmatrix} \frac{\delta f\left(x,y\right)}{\delta x} & \frac{\delta f\left(x,y\right)}{\delta y} \\ \frac{\delta g\left(x,y\right)}{\delta x} & \frac{\delta g\left(x,y\right)}{\delta y} \end{vmatrix} \; .$

Тогда вместо системы нелинейных уравнений будем решать систему линейных уравнений

относительно Δx , Δy : $\begin{vmatrix} \frac{\delta f(x,y)}{\delta x} & \frac{\delta f(x,y)}{\delta y} \\ \frac{\delta g(x,y)}{\delta x} & \frac{\delta g(x,y)}{\delta y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} .$

А далее вычислять на каждой итерации: $\begin{cases} x_{i+1} = x_i + \Delta \ x_i \\ y_{i+1} = y_i + \Delta \ y_i \end{cases}$, где x_i - текущее приближение к корню, x_{i+1} - последующее приближение. Процесс заканчивается, когда $\|x_{i+1} - x_i\| < \epsilon$.

Пример.

$$\begin{cases} x^2 + y^2 = 4 \Rightarrow \begin{cases} x^2 + y^2 - 4 = 0 \\ -3x^2 + y = 0 \end{cases}$$
. Построим матрицу Якоби:
$$\begin{vmatrix} \frac{\delta f}{\delta x} = 2x & \frac{\delta f}{\delta y} = 2y \\ \frac{\delta g}{\delta x} = -6x & \frac{\delta g}{\delta y} = 1 \end{cases}$$
. Задачу

свели к решению системы линейных уравнений (относительно Δx и Δy):

$$\begin{cases} 2x \Delta x + 2y \Delta y = 4 - x^2 - y^2 \\ -6x \Delta x + \Delta y = 3x^2 - y \end{cases}.$$

Определим начальные приближения (по графику): $x_0=1$, $y_0=2$. Подставим эти значения в систему уравнений относительно Δx и Δy : $\begin{cases} 2\Delta x + 4\Delta y = -1 \\ -6\Delta x + \Delta y = 1 \end{cases}$. Решить эту систему можно любым способом. Получаем $\Delta x=0,192$ и $\Delta y=-0,154$. Тогда $\begin{cases} x_1=x_0+\Delta x=1-0,192=0,808 \\ y_1=y_0+\Delta y=2-0,154=1,846 \end{cases}$. Полученные приближения вновь подставим в систему, найдем новые Δx и Δy , а затем значения $\begin{cases} x_2=x_1+\Delta x \\ y_2=y_1+\Delta y \end{cases}$ и так до тех пор, пока $\sqrt{(x_i-x_{i+1})^2+(y_i-y_{i+1})^2} \ge \epsilon \quad .$

Решить систему нелинейных уравнений методом Ньютона с точностью до 0,001, придерживаясь следующего плана:

- Построить графики функций. (можно использовать Plt.counter для построения функций, заданных неявно).
- Определите начальное приближение исходя из графиков.Вычислить производные, составить матрицу Якоби. (Вывести на экран).
- Составить систему линейных уравнений относительно приращений х и у. (вывести на экран).
- Решить линейную систему методом Крамера. (вывести на экран решение). Составить итерационную систему. (вывести на экран).
- \circ Стоп по условию . $\sqrt{(x_i x_{i+1})^2 + (y_i y_{i+1})^2} < \epsilon$ Вывести количество итераций.
- Проверить полученные решения подстановкой и сравнить с решениями функцией Питон (например, sympy.nsole)

Таблица 2-Второе задание

№ варианта	система уравнений
1.	$ \begin{cases} \sin(x+1) - y = 1.2 \\ 2x + \cos y = 2 \end{cases} $
2.	$ \begin{cases} \sin(x) + 2y = 2 \\ 2x + \cos(y - 1) = 0.7 \end{cases} $
3	$ \begin{cases} \sin(x+0.5) - y = 1 \\ x + \cos(y-2) = 0 \end{cases} $
4	$ \begin{cases} \cos(x+0.5) - y = 2 \\ \sin y - 2x = 1 \end{cases} $
5	$ \begin{cases} \sin(x+1.5) - y + 2.9 = 0 \\ \cos(y-2) + x = 0 \end{cases} $
6	$ \begin{cases} \sin y - 2x = 1.6 \\ \cos (x + 0.5) + y = 0.8 \end{cases} $
7	$ \begin{cases} \sin(x-1) + y = 0.1 \\ x - \sin(y+1) = 0.8 \end{cases} $
8	$ \begin{cases} \cos(x+y) + 2y = 0 \\ x + \sin y = 0.6 \end{cases} $
9	$ \begin{cases} \cos(x+0.5) - y = 2 \\ \sin y - 2x = 1 \end{cases} $
10.	$ \begin{cases} \sin(0.5x + y) - 1.2y = 1 \\ x^2 + y^2 = 1 \end{cases} $

2 блок «Численное интегрирование»

Задание.

 \circ Найдите шаг интегрирования h для вычисления интеграла $\int_a^b f(x) dx$ по формуле трапеций с точностью $\epsilon = 0.001$. Для вычисления шага воспользуйтесь формулой $M \frac{|b-a|h^2}{12} < \epsilon$, M = max |f''(x)| , $x \in [a,b]$. Указание. Шаг h следует выбирать с учетом дополнительного условия: отрезок интегрирования должен разбиваться на число частей, кратное 4. Вычисления шага h должны присутствовать в лабораторной работе, в текстовом блоке. Текстовый блок поддерживает Latex-формулы.

• Вычислите интеграл по формуле трапеций с шагами 2h и h:

$$\int\limits_a^b f\left(x\right) dx \approx h(\frac{y_0}{2} + y_1 + y_2 + ... + \frac{y_n}{2}) \quad , \quad y_i = f\left(x_i\right) \quad .$$
 Дайте уточненную оценку погрешности по правилу Рунге
$$\Delta \approx \frac{1}{3} |I_n - I_{2\mathrm{n}}| \quad .$$

• Вычислите интеграл по формуле Симпсона с шагами 2h и h:

$$\int_a^b f\left(x\right) dx \approx \frac{h}{3} \Big(y_0 + y_{2\mathrm{m}} + 4 \big(y_1 + y_3 + \ldots + y_{2\mathrm{m}-1} \big) + 2 \big(y_2 + y_4 + \ldots + y_{2\mathrm{m}-2} \big) \Big) \quad ,$$

$$y_i = f\left(x_i\right) \quad .$$
 Дайте уточненную оценку погрешности по правилу Рунге для формулы Симпсона:
$$\Delta \approx \frac{1}{15} |I_n - I_{2\mathrm{n}}| \quad .$$

- Найдите значение интеграла с помощью функций Python.
- Вычислите определенный интеграл по формуле Ньютона-Лейбница. (вычисления должны присутствовать в текстовом блоке). Сравните приближенные значения интеграла с точным. Какая формула численного интегрирования дала более точный результат?

Таблица 3 - Вычислите интеграл от заданной функции

№ варианта	функция	a	b
1	$f(x) = \frac{x^3}{\sqrt{1 - x^2}}$	-0.5	0.5
2	$f(x) = e^{-x} \cos x$	0	2
3	$f(x) = x \operatorname{arctg} x$	0	1
4	$f(x) = x \arccos x$	-0.5	0.5
5	$f(x) = x^2 \ln(x)$	1	2
6	$f(x) = \sqrt{x} \ln(x)$	1	4
7	$f(x) = x^2 e^{-x}$	0	1
8	$f(x) = x \arcsin x$	0	0.9
9	$f(x) = x^2 \cos x$	0	1
10	$f(x) = x^2 \sin x$	0	1

3 блок «Численные методы решения обыкновенных дифференциальных уравнений»

Задание.

Решается задача Коши: y' = f(x,y) , $y(a) = y_0$ на отрезке [a,b] .

- \circ Найдите шаг интегрирования h для решения задачи Коши методом Рунге-Кутта (IV) с точностью 10^{-4} .
- $^{\circ}$ Найти решение задачи Коши на отрезке [a,b] методом Рунге-Кутта (IV) с точностью до 10^{-4} . Построить приближенную интегральную кривую.

$$y_{k+1} = y_k + \frac{h}{6} (F_1 + 2F_2 + 2F_3 + F_4)$$

$$F_1 = f(x_k, y_k)$$

$$F_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2} F_1)$$

$$F_3 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2} F_2)$$

$$F_4 = f(x_{k+1}, y_k + h F_3)$$

- \circ Найти решение задачи Коши на отрезке [a,b] методом Эйлера $y_{k+1} = y_k + h \ f \ (x_k \ , y_k) \$. Построить приближенную интегральную кривую на одном графике с предыдущим пунктом.
- Найти решение задачи Коши с помощью функций Python.
- Найти точное решение задачи Коши. Сравнить точное решение с приближенным.
 Найти максимум модуля отклонений в узловых точках приближенного решения от точного.
- Все расчеты должны быть представлены в виде сводных таблиц (например, Pretty Table или Pandas).

Пример. Решим задачу Коши $xy'-y=-y^2(2\ln(x)+\ln^2x)$, y(1)=2 , a=1 , b=2 . Найдем шаг интегрирования для решения задачи Коши методом Рунге-Кутта (IV) с точностью 10^{-4} . Преобразуем уравнение к виду: $y'=\frac{y}{x}-\frac{y^2}{x}(2\ln(x)+\ln^2x)$. Найдем начальный шаг интегрирования. Поскольку метод Рунге- Кутта IV имеет точность четвертого порядка относительно шага h, должно выполняться условие $h^4=\epsilon$. Кроме того, чтобы

была возможность перерасчета с удвоенным шагом, разобьем отрезок [a,b] на четное число частей. Поэтому начальный шаг h_0 должен быть определен из двух условий:

 $h_0^4=\epsilon$, $\frac{b-a}{h_0}$ четно. Согласно первому условию $h_0=\sqrt[4]{0.0001}=0.1$. Для уточнения шага поступают следующим образом. Находим решение задачи Коши в точке x_0+2h_0 по формулам Рунге-Кутта с шагами h_0 и $2h_0$, получаем два значения y_2 и \widetilde{y}_2 . Путем увеличения или уменьшения шага в два раза (не обязательно однократного) подберем наибольшее значение h_0 , при котором будет выполнено неравенство $\frac{|y_2-\widetilde{y}_2|}{15}<\epsilon$. Итак. начнем вычисления с $h_0=0.1$. По условию, $x_0=a=1$, $y_0=2$. Найдем решение данной задачи методом Рунге-Кутта сначала в точке x_0+h_0 , затем в точке x_0+2h_0 , получим соответственно $y_1\approx 2.1569$ и $y_2\approx 2.2227$. Далее найдем решение задачи Коши в точке x_0+2h_0 и шагом $2h_0$, получим $\widetilde{y}_2\approx 2.2226$. Найдем $\frac{|y_2-\widetilde{y}_2|}{15}=5.6\cdot 10^{-6}<\epsilon$. Значит, шаг можно увеличить в два раза (если оказалось, что $\Delta=\frac{|y_2-\widetilde{y}_2|}{15}>\epsilon$, то шаг следует в два раза уменьшать).

Повторяем вычисления с шагом $h_1=0.2$. Получаем $y_1\approx 2.2226$, $y_2\approx 2.1258$ и $\widetilde{y}_2\approx 2.1208$. Тогда $\Delta=\frac{|y_2-\widetilde{y}_2|}{15}\approx 0.0003>\varepsilon$. Останавливаемся на шаге $h_1=0.2$. Определим $n=\frac{b-a}{h_1}=\frac{2-1}{0.2}=5$. Так как n должно быть четным, то выбираем n=6 . Тогда $h_2=\frac{b-a}{n}=\frac{2-1}{6}\approx 0.167$. Снова вычислим погрешности с шагом $h_2=0.167$ и $2\cdot h_2=0.333$: $y_1\approx 2.2109$, $y_2\approx 2.18396$, $\widetilde{y}_2\approx 2.18227$, $\Delta=\frac{|y_2-\widetilde{y}_2|}{15}\approx 0.0001$, что укладывается в заданную точность.

Найдем решение задачи Коши методом Рунге-Кутта с шагами h_0 =0.167 и $2 \cdot h_0$ =0.333 , результаты вычислений запишем в таблицу, приведенную ниже. Результаты вычислений оформлены с помощью модуля PrettyTable. Наборы x, y_run, y_tilda и delta — это списки, где x содержит набор аргументов, y_run — результат работы метода Рунге-Кутта с h_0 =0.167 , y_tilda — результат работы метода Рунге-Кутта с шагом $2 \cdot h_0$ =0.333 и delta $\Delta = \frac{|y_2 - \widetilde{y}_2|}{15}$.

```
from prettytable import PrettyTable
mytable = PrettyTable()
mytable.add_column('x', x)
mytable.add_column('y', y_run)
mytable.add_column('y_tilda', y_tilda)
mytable.add_column('delta', delta)
print(mytable)
                  | y_tilda | delta
        1 2
   1
                                0.0
  1.167 | 2.2109
                     2.183
                             0.0001
 1.334 | 2.184 |
 1.501 | 2.0077 |
 1.668 | 1.7808 |
                     1.7803
 1.835 | 1.56
| 2.002 | 1.3669 | 1.3679 | 0.0001 |
```

Рисунок 1. Метод Рунге-Кутта (IV)

Построим график средствами mathplotlib:

Рисунок 2.Интегральная кривая, полученная методом Рунге-Кутта Найдем решение задачи Коши на отрезке [1,2] методом Эйлера с шагом h_0 =0.167 и $2\cdot h_0$ =0.333 . Наборы x, y_eu, ytilda_eu и delta — это списки, где x содержит набор аргументов, y_eu — результат работы метода Эйлера с h_0 =0.167 , ytilda_eu — результат работы метода Эйлера с шагом $2\cdot h_0$ =0.333 и delta $\Delta = |y_2 - \widetilde{y}_2|$.

```
from prettytable import PrettyTable
mytable = PrettyTable()
mytable.add_column('x', x)
mytable.add_column('y_eu', y_eu)
mytable.add_column('ytilda_eu', ytilda_eu)
mytable.add_column('delta', delta)
print(mytable)
    x | y_eu | ytilda_eu | delta
   1 | 2
  1.167 | 2.334
| 1.334 | 2.4086 |
                        1.9995 | 0.4091
| 1.501 | 2.2312 |
| 1.668 | 1.9382 |
                        0.546
                                 1.3922
  1.835 | 1.649
| 2.002 | 1.4074 |
                        0.413
                                 0.9944 |
```

Рисунок З.Метод Эйлера

Рисунок 4.Интегральные кривые

Сравним полученные решения с решением, полученным встроенным методом Python. Используем функцию odeint из модуля SciPy.

Рисунок 5. Решение функцией odeint

```
from prettytable import PrettyTable
mytable = PrettyTable()
mytable.add_column('x', x)
mytable.add_column('Эйлер', y_eu)
mytable.add_column('Рунге-Кутт', y_run)
mytable.add_column('Питон', у)
print(mytable)
  х | Эйлер | Рунге-Кутт | Питон |
  1 | 2 |
                    2 | 2.0
| 1.167 | 2.334 |
                    2.2109
                             2.2109
1.334 | 2.4086 | 2.184
                              2.1841
| 1.501 | 2.2312 |
                   2.0077
                             2.0078
| 1.668 | 1.9382 |
| 1.835 | 1.649 |
                             1.7809
                   1.7808
                     1.56
                              1.5601
| 2.002 | 1.4074 | 1.3669 | 1.3669 |
```

Рисунок 6. Сравнение решений разными методами

Рисунок 7. Интегральные кривые

Кроме этого, в лабораторной работе предлагается найти точное решение ОДУ.

Таблица 4 - Решить задачу Коши

№ варианта	задача Коши	a	b
1	$y' + xy = 0.5(x-1)e^{x}y^{2}$, $y(0) = 2$	0	2
2	$y' + y^2 = x$, $y(0) = 1$	0	2
3	$xy' + y = y^3 e^{-x}$, $y(1) = 1$	1	2
4	$y' + xy = 0.5(x+1)e^{x}y^{2}$, $y(0)=1$	0	2
5	$y' + 2xy = 2x^3y^3$, $y(0)=1$	0	1
6	$y' + y = 0.5xy^2$, $y(0) = 2$	0	2
7	$y' + xy = (x-1)e^{x}y^{2}$, $y(0)=1$	0	2
8	$xy' + y = y^2 \ln x$, $y(1) = 1$	1	2.6
9	$y'-y=2xy^2$, $y(-1)=0.2$	-1	0.6
10	$xy' + y = 2y^2 \ln x$, $y(1) = 0.5$	1	5