$2\ 2\ 2\ 2$: can be split into $(2\ 2)\ (2\ 2)$

WORKSPACE / SUBMIT

Palindrome Cutting

Time limit: 2000 ms Memory limit: 256 MB

Consider an **even** length array S of numbers from 1 to M. We will call this array good if it can be split into any number of contiguous subsequences of **even** length, each one being a palindrome. Given N and M, count the number of **good** arrays of length N with numbers from 1 to M modulo 998244353.

Standard input

Statement Submissions Questions

The first line of input contains two integers N and M.

Standard output

The first line of output should contain one integer — the number of **good** arrays of length N of numbers from 1 to M modulo 998244353.

Constraints and notes

- N is even,
- $2 \le N \le 5 \cdot 10^5$,
- $1 \le M < 998244353$

Input	Output	Explanation
4 2	6	The 6 good arrays are:
		$1\ 1\ 2\ 2$: can be split into $(1\ 1)\ (2\ 2)$
		$2\; 2\; 1\; 1$: can be split into $(2\; 2)\; (1\; 1)$
		$1\ 1\ 1$: the entire array is a palindrome
		$1\ 2\ 2\ 1$: the entire array is a palindrome
		$2\ 1\ 1\ 2$: the entire array is a palindrome