

02장. 알고리즘 설계와 분석의 기초

Youn-Hee Han LINK@KOREATECH

http://link.koreatech.ac.kr

전혀 새로운 아이디어를 갑자기 착상하는 일이 자주 있다. 하지만 그것을 착상하기까지 오랫동안 끊임없이 문제를 생각한다. 오랫동안 생각한 끝에 갑자기 답을 착상하게 되는 것이다.

- 라이너스 폴링

학습 목표

◈ 알고리즘을 설계하고 분석하는 몇 가지 기초 개념 이해

◈ 기초적인 알고리즘 수행 시간 분석

◈ 점근적 표기법을 이해한다.

01. 몇 가지 기초 사항들

알고리즘 분석의 필요성

- ◈ 알고리즘 분석
 - 알고리즘이 자원을 얼마나 소모하는 지에 대한 분석
 - _ 자원
 - 소요 시간, 메모리, 통신 대역 등
 - 평균적인 경우 or 최악의 경우 분석
- ◈ 사용하는 알고리즘의 소요 시간이 입력의 크기에 대해 어떤 비율로 비례하는지 안다면 주어진 시간에 요구하는 작업을 완료할 수 있을 지 대략 짐작할 수 있음.
- ◈ 입력의 크기가 n일 때 최악의 경우
 - n2에 비례하는 시간을 소모하는 알고리즘
 - nlogn에 비례하는 시간을 소모하는 알고리즘
 - n에 비례하는 시간을 소모하는 알고리즘

- ◈ 알고리즘의 수행 시간을 좌우하는 기준은 다양하게 잡을 수 있다
 - **예**
 - for 루프의 반복횟수, 특정한 행이 수행되는 횟수, 함수의 호출횟수, ···
 - 핵심 연산 수행 횟수
- ◈ 몇 가지 간단한 경우의 예를 통해 알고리즘의 수행 시간을 살펴본다

```
sample1(A[], n) { k = \lfloor n/2 \rfloor; return A[k]; }
```

```
sample2(A[ ], n)
{
      sum ← 0;
      for i ← 1 to n
           sum← sum+ A[i];
      return sum;
}
```

✔ n에 관계없이 상수 시간이 소요된다.

✔ n에 비례하는 시간이 소요된다.

✓ n²에 비례하는 시간이 소요된다.

```
sample4(A[], n)
     sum \leftarrow 0;
     for i \leftarrow 1 to n
          for j ← 1 to n {
                k ← A[1 ... n]에서 임의로 [n/2] 개를 뽑을 때 0
  들 중 최댓값 ;
                sum ← sum + k;
     return sum;
✓ n³에 비례하는 시간이 소요된다.
```

```
sample5(A[], n)
{
    sum ← 0;
    for i ← 1 to n-1
        for j ← i+1 to n
            sum← sum+ A[i]*A[j];
    return sum;
}
```

✓ n²에 비례하는 시간이 소요된다.

```
factorial(n)
{
    if (n=1) return 1;
    return n*factorial(n-1);
}
```

✔ n에 비례하는 시간이 소요된다.

◈ 순차 검색 알고리즘(의사코드)

```
// 입력(1)
index seqsearch(int n,
                                    // 입력(2)
                 keytype[] S,
                                      // 입력(3)
                keytype x)
{
   location = 0;
   while (location < n && S[location] != x)</pre>
      location++;
   if (location >= n)
      location = -1;
   return location;
```

- while-루프: 아직 검사할 항목이 있고, x를 찾지 못하였나?
- if-문: 모두 검사하였으나, x를 찾지 못했나?

◈ 순차 검색 알고리즘(의사코드)

- 순차검색 알고리즘으로 키를 찾기 위해서 S에 있는 항목을 몇 개 나 검색해야 하는가?
 - 키와 같은 항목의 위치에 따라 다름
 - 최악의 경우: *n*
 - 평균의 경우: (n + 1)/2 ← 항목이 배열 안에 있는 경우
- 좀 더 빨리 찾을 수는 없는가?
 - 사실상 더 이상 빨리 찾을 수 있는 알고리즘은 존재하지 않는다.
 - 배열 S에 있는 항목에 대한 정보가 전혀 없는 상황에서, 모든 항목을 검색하지 않고 임의의 항목 x를 항상 찾을 수 있다는 보장이 없음.
 - 만약, 배열 S가 정렬되어 있다는 정보가 존재한다면? → 이진검색 알고리즘 적용가능

◈ 이진 검색 알고리즘(의사코드)

```
// 입력(1)
index binsearch(int n,
                                // 입력(2)(정렬된 배열)
               keytype[] S,
                                 // 입력(3)
               keytype x)
{
   low = 0; high = n - 1;
   location = -1;
   while (low <= high && location == -1) {
      mid = [(low + high) / 2]; // 나눗셈 & floor
      if (x == S[mid]) location = mid;
      else if (x < S[mid]) high = mid - 1;
      else low = mid + 1;
   return location;
```

- while-루프: 아직 검사할 항목이 있고, x를 찾지 못하였나?

◈ 이진 검색 알고리즘(의사코드)

x = 502 5 10 11 28 34 47 49 n=8 [초기입력] x == S[3] 누적비교횟수: 1 low=0, high=7, location=-1 mid=floor((0+7)/2)=3x == S[5] 누적비교횟수: 2 low=4, high=7, location=-1 mid=floor((4+7)/2)=5x == S[6] 누적비교횟수: 3 low=6, high=7, location=-1 mid=floor((6+7)/2)=6x == S[7] 누적비교횟수: 4 low=7, high=7, location=-1 mid=floor((7+7)/2)=7while 조건문 만족 못함 low=8, high=7, location=-1 ◆

◈ 이진 검색 알고리즘(의사코드)

- 최악의 경우에 대한 비교 횟수를 (개략적으로) 분석해 본다.

배열의 크기	순차검색	이진검색	ШП
n	n	lg <i>n</i> + 1	
128	128	8	
1,024	1,024	11	두 방법 모두 최악의 경우에 대한 비교 횟수임
1,048,576	1,048,576	21	네는 네표 것구요
4,294,967,296	4,294,967,296	33	

◈ 이진 검색 알고리즘(의사코드)

- 최악의 경우에 대한 비교 횟수를 (개략적으로) 분석해 본다.
 - 최악의 경우: x가 배열 S에 저장된 값들보다 클 때 (즉, 검색을 실패할 때)

 ➤ while 문을 수행할 때마다 검색 대상의 크기가 절반으로 감소
 - 배열의 크기가 16라면 → 5번의 비교가 필요하다.

$$> 5 = \log_2 16 + 1$$

• 배열의 크기가 32라면 → 6번의 비교가 필요하다.

배열의 크기가 64라면 → 7번의 비교가 필요하다.

$$> 7 = \log_2 64 + 1$$

- ...
- 배열의 크기가 2^k 라면 $\rightarrow k + 1 (= W)$ 번의 비교가 필요하다. 이때, $W = k + 1 = \log_2 2^k + 1$

재귀와 귀납적 사고

◈ 재귀=자기호출(recursion)

◈ 재귀적 구조

- 어떤 문제 안에 크기만 다를 뿐 성격이 똑같은 작은 문제(들)가 포함되어 있는 것
- 011: factorial
 - N! = N(N-1)!
- 예2: 수열의 점화식
 - $a_n = a_{n-1} + 2$

◈ 피보나찌 (Fibonacci) 수열의 정의

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$

- 예: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ···

레오나르도 피보나치

위키백과, 우리 모두의 백과사전.

레오나르도 피보나치(이탈리아어: Leonardo Fibonacci, 1170년 ~ 1240년-1250년) 또는 레오나르도피사노 (Leonardo da Pisa, Leonardo Pisano)는 이탈리아의 수학자로 피보나치 수에 대한 연구로 유명하다. 또한 유럽에 아라비아 수 체계를 소개하기도 했다.

- ◈ 문제: n번째 피보나찌 수를 구하라.
 - 입력: 음이 아닌 정수 n
 - 출력: n번째 피보나찌 수 (주의: 0번째 부터 시작)

◈ 재귀(recursive) 알고리즘:

```
value fib(index n)
{
   if (n <= 1)
     return n;
   else
     return (fib(n-1) + fib(n-2));
}</pre>
```

- ◈ 분석: 피보나찌 수 구하기 재귀 알고리즘은 수행속도가 매우 느리다.
 - 이유: 계산과정에서 동일한 피보나찌 수를 중복하여 계산한다.
 - 예: fib(5) 계산을 위해서는 fib(2)를 세 번이나 중복 계산한다.
- **♦ 함수** *fib*(5) 호출 시의 재귀 트리 (recursive tree)

fib(0)

fib(1)

실제 호출되는 상황을 봅시다!

- ♦ fib(n) 함수 호출 횟수 계산
 - -T(n): fib(n)을 계산하기 위하여 fib() 함수를 호출하는 횟수
 - 즉, T(n)은 재귀 트리 상의 마디의 개수

$$T(0)=1;$$

 $T(1)=1;$
 $T(n)=T(n-1)+T(n-2)+1$ for $n \ge 2$
 $> 2 \times T(n-2)$ since $T(n-1)>T(n-2)$
 $> 2^2 \times T(n-4)$
 $> 2^3 \times T(n-6)$
...
 $> 2^{n/2} \times T(0)$
 $= 2^{n/2}$

피보나치 수열: 재귀 → 반복

- ◈ 문제: n번째 피보나찌 수를 구하라.
 - 입력: 음이 아닌 정수 n
 - 출력: n번째 피보나찌 수 (주의: 0번째 부터 시작)

◈ 반복(iterative) 알고리즘:

```
value fib2(index n)
{
  int[] f = new int[n+1];
  f[0] = 0;
  if (n > 0) {
    f[1] = 1;
    for (i = 2; i <= n; i++)
       f[i] = f[i-1] + f[i-2];
  }
  return f[n];
}</pre>
```

피보나치 수열: 재귀 → 반복

- ◈ 분석: 반복 알고리즘은 수행속도가 훨씬 더 빠르다.
 - 이유: 재귀 알고리즘과는 달리 중복 계산이 없다.
- - 연산문
 - f[0] = 0
 - f[1] = 1
 - f[i] = f[i-1] + f[i-2]
 - T(n) = n + 1
 - 즉, f[0]부터 f[n]까지 단 한번씩만 계산한다.

피보나치 수열: 재귀 → 반복

◈ 노드 하나(혹은 연산 하나) 계산에 1ns 걸린다고 가정하자.

n	n+1	$2^{n/2}$	반복 알고리즘	재귀 알고리즘 (하한)
40	41	1,048,576	41ns	$1048 \mu s$
60	61	1.1×10 ⁹	61 <i>ns</i>	1s
80	81	1.1×10^{12}	81 <i>ns</i>	18min
100	101	1.1×10^{15}	101 <i>ns</i>	13days
120	121	1.2×10^{18}	121 <i>ns</i>	36years
160	161	1.2×10^{24}	161 <i>ns</i>	3.8 ×10 ⁷ years
200	201	1.3×10^{30}	201 <i>ns</i>	$4 imes 10^{13}$ years

재귀 vs. 반복

- ◈ 재귀 알고리즘 보다는 반복 알고리즘이 항상 효율적이다?
 - 많은 경우 그렇다.
 - 하지만, 알고리즘 설계 단계에서 재귀 알고리즘은 매우 유용 하며 때로는 재귀적으로 설계해도 매우 효율적일 때가 있다
 - 대부분의 재귀 알고리즘은 반복 알고리즘으로 변경 가능
- ◈ 피보나찌 수 구하기의 재귀 알고리즘
 - 분할정복(Divide & Conquer)의 전형적인 예이다.
- ◈ 피보나찌 수 구하기의 반복 알고리즘
 - <mark>동적 프로그래밍(Dynamic Programming)</mark> (또는 동적 계획 법)의 간단한 예이다

재귀를 사용한 분할 정복 예: 병합 정렬

◈ 분할정복(Divide & Conquer)의 예

```
알고리즘 2-1
               병합 정렬
mergeSort(A[], p, r) \triangleright A[p \cdots r]을 정렬한다.
   if (p < r) then {
       \bigcirc q \leftarrow \lfloor (p+r)/2 \rfloor; \triangleright p, r의 중간 지점 계산
       ② mergeSort(A, p, q); \triangleright 전반부 정렬
       ③ mergeSort(A, q+1, r); ▷ 후반부 정렬
       4 merge (A, p, q, r); \triangleright 병합
                   ✔2, ③은 재귀호출
                   ✓①, ④는 재귀적 호출 전후에 수반되는 오버헤드
merge(A[], p, q, r)
   정렬되어 있는 두 배열 A[p \cdots q]와 A[q+1 \cdots r]을 합쳐
   정렬된 하나의 배열 A[p \cdots r]을 만든다.
```

02. 점근적 표기 [점근적 분석]

알고리즘의 분석

- ◈ 공간적 효율성(Space Efficiency)과 시간적 효율성 (Time Efficiency)
 - 공간적 효율성은 얼마나 많은 메모리 공간을 요하는가를 지칭
 - 시간적 효율성은 얼마나 많은 시간을 요하는가를 지칭
 - 효율성을 뒤집어 표현하면 복잡도(Complexity)가 된다.
 - 즉, 복잡도가 높을수록 효율성은 저하된다.
- ♦ 일반적으로 시간적 효율성이 공간적 효율성보다 더욱 강조됨
 - Why? CPU Cost 가 Memory Cost 보다 비싸기 때문
 - 그렇다고, 공간적 효율을 무작정 무시하면 안됨

알고리즘의 분석

◈ 시간적 복잡도 (Time Complexity) 분석

- 하드웨어 환경에 따라 처리시간이 달라진다.
 - · CPU 성능 차이
 - GPU (Graphics Processing Unit, 그래픽 처리 장치) 존재유무
 - · 곱셈/나눗셈 가속기능 유무
 - 입출력 장비의 성능, 공유여부
- 소프트웨어 환경에 따라 처리시간이 달라진다.
 - 프로그램 언어의 종류, 운영체제, 컴파일러의 종류
 - 운영체제에 현재 어느 정도의 프로세스가 동작하고 어느 정도의 load가 걸리고 있는가?
- 이러한 환경적 차이로 인해 실제 작동시간을 통한 분석 어려움
- 그래서, 실행환경과 무관하게 개략적으로 분석하는 방법 필요

알고리즘의 분석

- ◈ 그래서… 시간복잡도(Time Complexity) 분석이란?
 - 입력 크기에 따라서 단위 연산이 몇 번 수행되는지 결정하는 절차

◈복잡도 분석을 위한 주요 요소

- 단위연산(basic operation)
 - 알고리즘을 수행하는 데 있어서 가장 핵심적인 역할을 담당하는 연산
 - 비교문(comparison)에 있는 비교 연산 또는 지정문(assignment)에 있는 수치연산 후 지정 연산 등…
 - 주관적으로 선택
 - 하지만, 대부분의 전문가들은 동일한 것을 선택하게 되며, 서로 다른 단위연산을 택하더라도 최종적인 복잡도는 동일하게 될 정 도로 유사한 중요도를 지닌 단위연산을 택함
- <u>입력크기(input size)</u>
 - 배열의 크기, 리스트의 길이, 행렬에서 행과 열의 크기
 - · 그래프/트리에서 Vertex와 Edge의 수

알고리즘의 분석 종류

- ◈ 최악의 경우 분석(Worst-case analysis)
 - 입력 크기와 입력 값 모두에 종속
 - 단위연산이 수행되는 횟수가 최대(최악)인 경우 선택
 - 예: 입력 값이 찾는 대상인 리스트에 존재하지 않을 때
- ◈ 최선의 경우 분석(Best-case analysis)
 - 입력 크기와 입력 값 모두에 종속
 - 단위 연산이 수행되는 횟수가 최소(최선)인 경우 선택
 - 별로 유용하지 않음

알고리즘의 분석 종류

◈ 평균의 경우 분석(Average-case analysis)

- 입력 크기와 입력 값 모두에 종속
- 모든 입력에 대해서 단위연산이 수행되는 횟수의 기대치(평균)
- 확률적 계산 필요 → 일반적으로 최악의 경우보다 계산이 복잡

◆ 모든 경우 분석(Every-case analysis)

- 입력 값의 내용과 무관(independent)하게 복잡도가 항상 일정한 경우에만 모든 경우 분석이 가능함
 - 즉, 모든 경우 분석이 가능하다면 최악, 최선, 평균의 경우가 모든 경우 분석결과와 동일함
- 복잡도는 입력 크기에만 종속적임

시간 복잡도 분석 예

◈ 교환 정렬 (Exchange Sort)

- 문제: n개의 키를 정렬
- 입력: 양수 n, 배열 S[1 ... n]
- 출력: 비내림차순으로 정렬된 배열

```
exchangesort (int n, keytype[] S)
{
  index i, j;

  for (i = 1; i <= n-1; i++)
     for (j = i+1; j <= n; j++)
      if (S[j] < S[i])
       exchange S[i] and S[j];
}</pre>
```

```
13 25 2 3 • 13 25 2 3

2 25 13 3 • 2 25 13 3

2 13 25 3

2 3 25 13 • 2 3 25 13

2 3 13 25
```

시간 복잡도 분석 예

◈ 교환 정렬 (Exchange Sort) }

- exchangesort (int n, keytype[] S)
 {
 index i, j;

 for (i = 1; i <= n-1; i++)
 for (j = i+1; j <= n; j++)
 if (S[j] < S[i])
 exchange S[i] and S[j];
 }</pre>
- 단위연산: <u>비교문 (S[j]와 S[i]의 비교</u>)
- 입력크기: 정렬할 항목의 수 n
- 최악의 경우/최선의 경우/평균의 경우 동일 → 모든 경우 분석:
 - j-루프가 수행될 때마다 조건문을 1번씩 수행
 - 조건문의 총 수행횟수

```
    ✓ i = 1
    ∴ j-루프 n-1 번 수행
    ✓ i = 2
    ∴ j-루프 n-2 번 수행
    ✓ i = 3
    ∴ j-루프 n-3 번 수행
    ✓ …
    ✓ i = n-1
    ∴ j-루프 1 번 수행
    ✓ 따라서
    T(n) = (n-1) + (n-2) + ··· + 2 + 1 = n(n-1)/2
```

시간 복잡도 분석 예

◈ 교환 정렬 (Exchange Sort) }

- exchangesort (int n, keytype[] S)
 {
 index i, j;

 for (i = 1; i <= n-1; i++)
 for (j = i+1; j <= n; j++)
 if (S[j] < S[i])
 exchange S[i] and S[j];
 }</pre>
- 단위연산: exchange S[i] and S[j];
- 입력크기: 정렬할 항목의 수 n
- 최악의 경우/최선의 경우/평균의 경우 다름:
 - 최악의 경우

$$F(n) = (n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$$

• 최선의 경우

$$> T(n) = 0$$

따라서, 단위연산 선정 기준에 따라 시간 복잡도 분석 결과가 달라질 수 있음.

하지만, 정렬 알고리즘인 경우 비교연산을 단위연산으로 선정하는 경우가 많음

- ㆍ 평균의 경우
 - ▶ 분석 생략 (확률에 기반에 계산 필요)

알고리즘의 점근적 분석

- ◈ 크기가 작은 문제
 - 알고리즘의 효율성이 중요하지 않다
 - 비효율적인 알고리즘도 무방
- ◈ 크기가 충분히 큰 문제
 - 알고리즘의 효율성이 중요하다
 - 비효율적인 알고리즘은 치명적
- ◈ 입력의 크기가 충분히 큰 경우에 대한 분석을 점근적 (Asymptotic) 분석이라 한다 $\lim_{t \to \infty} f(n)$

 $n \rightarrow \infty$

알고리즘의 점근적 분석

◈ 동일 문제 해결을 위한 알고리즘 A와 B를 생각해 보자

- 아래와 같은 A와 B 의 Complexity라면 A가 당연히 효율적
 - A: n VS. B: n^2
- 그러나, 아래와 같은 A와 B 라면?
 - A: 100n VS. B: $0.01n^2$
 - 입력의 크기가 10,000 보다 적으면 알고리즘 A가 좋고 그렇지 않으면 알고리즘 B가 좋다.
 - 그렇다면 어느 알고리즘이 더 좋은 것인가?

◆ Asymptotic Complexity (점근적 복잡도)

- 일반적으로 시간적 효율을 말할 때에는 n이 무한히 큰 경우일 때의 복잡도를 지칭한다.
- 즉, <u>입력 데이터의 크기 n이 무한대로 갈 때 알고리즘의 실행시</u>
 간이 어디에 접근하는가?

알고리즘의 점근적 분석

- ◈ 상수(Constant) vs. 차수(Order)
 - Comparing $c_1 n$ with $c_2 n^2$ (c_1 and c_2 are constants)
 - Regardless of c_1 and c_2 , there exists a break even point.

- Consequently (결론적으로)···
 - 차수(Order) is important
 - 상수(Constant) can be negligible
 - 즉, NOI 무한대로 갈 때인 Asymptotic Complexity를 기준으로 평가
 - ▶ 입력 데이터가 최악일 때 알고리즘이 보이는 효율 기준

◈복잡도 카테고리

 $-\Theta(\lg n)$: 로그(logarithmic)

- $\Theta(n)$: 1**大**l(linear)

- $\Theta(n \lg n)$

- $\Theta(n^2)$: 2**λ** (quadratic)

- $\Theta(n^3)$: 3**大** (cubic)

- $\Theta(2^n)$: **지**수(exponential)

- $\Theta(n!)$: factorial

◈ 복잡도 카테고리와 수행 시간

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 μs	0.033 μs	0.1 μs	1 μs	1 μs
20	0.004 μs	0.02 μs	0.086 μs	0.4 μs	8 μs	1 ms†
30	0.005 μs	0.03 μs	0.147 μs	0.9 μs	27 μs	1 s
40	0.005 μs	0.04 μs	0.213 μs	1.6 μs	64 μs	18.3 min
50	0.006 μs	0.05 μs	0.282 μs	2.5 μs	125 μs	13 days
102	0.007 μs	0.10 μs	0.664 μs	10 μs	1 ms	4×10^{13} years
103	0.010 μs	1.00 μs	9.966 μs	1 ms	1 s	
104	0.013 μs	10 μs	130 μs	100 ms	16.7 min	
105	0.017 μs	0.10 ms	1.67 ms	10 s	11.6 days	
106	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 days	
107	0.023 μs	0.01 s	0.23 s	1.16 days	31,709 years	
108	0.027 μs	0.10 s	2.66 s	115.7 days	3.17×10^7 years	
109	0.030 μs	1 s	29.90 s	31.7 days		

^{* 1} μ s = 10⁻⁶ second † 1 ms = 10⁻³ second

[가정] 단위 연산 1회 수행시간 = 10⁻⁹ second

◈ 다음 두 복잡도 식을 가지고 있는 알고리즘은 어느 것이 복잡도가 높은가?

- 알고리즘 A: $0.1n^2$

- 알고리즘 B: $0.1n^2 + n + 100$

◈ 복잡도 수식이 2차 이하의 항으로만 구성된 경우, 2차 항이 궁극적으로 지배한다.

n	$0.1n^2$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

◈ 즉, 위 두 알고리즘은 동일한 복잡도 카테고리에 속한다.

- ◈ 컴퓨터 과학자들 사이에 고민한 내용…
 - 최고차 항의 상수를 무시하고
 - 최고차 항보다 작은 차수 항은 무시할 수 있는
 - 편리한 점근적 복잡도 표기 방법이 없을까?
 - 그래서 창안한 방법 $\rightarrow 0$, Ω , θ , ω , σ 표기법 -

이 알고리즘의 점근적 복잡도는 _____ 이다.

03. 점근적 표기의 엄밀한 정의 ← 공부할 것!

점근법 표기법 Asymptotic Notations: O

- $\diamond O(g(n))$
 - 기껏해야[많아도] g(n)의 비율로 증가하는 함수 집합
 - **e.g.**, O(n), O(nlogn), $O(n^2)$, $O(2^n)$, ...

igoplus Formal definition of O(g(n))

$$O\big(g(n)\big) = \{f(n) | \exists c > 0, n_0 > 0 \text{ s. t. } \forall n \geq n_0, f(n) \leq cg(n)\}$$

- $-f(n) \in O(g(n))$ 을 관행적으로 f(n) = O(g(n))라고 표기한다.
- -f(n) = O(g(n))의 직관적 의미
 - n이 커질 때 f(n)은 g(n)보다 더 높이 증가하지 않고, 아무리 느려도 $c \cdot g(n)$ 과 같거나 빠르게 수행된다.
 - 상수 비율의 차이는 무시

점근법 표기법 Asymptotic Notations: o

$\odot O(g(n))$ **QI**

- $-3n^2 + 2n = O(n^2)$
- $-7n^2 100n = O(n^2)$
- $nlogn + 5n = O(n^2)$
- $-3n = O(n^2)$

- Exchange Sort 알고리즘의 (점근적) 시간복잡도: $O(n^2)$

◈ 알 수 있는 한 최대한 tight 하게

- -nlogn + 5n = O(nlogn) 이므로 굳이 $O(n^2)$ 으로 표기할 필요 없다.
- 엄밀하지 않은 만큼 정보의 손실이 일어난다.

점근법 표기법 Asymptotic Notations: 0

$$O(g(n)) = \{f(n) | \exists c > 0, n_0 > 0 \text{ s. t. } \forall n \ge n_0, f(n) \le cg(n)\}$$

c = 6와 $n_0 = 1$ 을 선택하면, 모든 $n \ge n_0$ 에 대하여 $5n^2 \le 6n^2$ 이 성립한다. 즉, 정의를 만족하는 상수 c와 n_0 가 존재한다.

c=1와 $n_0=1$ 을 선택하면, 모든 $n\geq n_0$ 에 대하여 $\frac{n^2}{2}-5\leq n^2$ $(\because -5\leq \frac{n^2}{2})$ 이 성립한다. 즉, 정의를 만족하는 상수 c와 n_0 가 존재한다

.

점근법 표기법 Asymptotic Notations: Ω

- $\boldsymbol{\diamondsuit} \Omega(g(n))$
 - 최소한[적어도] g(n)의 비율로 증가하는 함수 집합
 - **e.g.**, $\Omega(n)$, $\Omega(nlogn)$, $\Omega(n^2)$, $\Omega(2^n)$, ...

\diamond Formal definition of $\Omega(g(n))$

$$\Omega(g(n)) = \{f(n) | \exists c > 0, n_0 > 0 \text{ s. t. } \forall n \ge n_0, cg(n) \le f(n) \}$$

- $-f(n) \in \Omega(g(n))$ 을 관행적으로 $f(n) = \Omega(g(n))$ 라고 표기한다.
- $-f(n) = \Omega(g(n))$ 의 직관적 의미
 - n이 커질 때 f(n)은 g(n)보다 더 높이 증가하고, 아무리 빨라도 $c \cdot g(n)$ 과 같거나 느리게 수행된다.
 - 상수 비율의 차이는 무시

점근법 표기법 Asymptotic Notations: Ω

$$\Omega(g(n)) = \{f(n) | \exists c > 0, n_0 > 0 \text{ s. t. } \forall n \geq n_0, cg(n) \leq f(n) \}$$

c = 1와 $n_0 = 1$ 을 선택하면, 모든 $n \ge n_0$ 에 대하여 $n^2 \le 5n^2 + 3$ ($\because -3 \le 4n^2$)이 성립한다. 즉, 정의를 만족하는 상수 c와 n_0 가 존재한다.

c = 1와 $n_0 = 1$ 을 선택하면, 모든 $n \ge n_0$ 에 대하여 $n^2 \le 5n^3 + 3$ 이 명백하게 성립한다. 즉, 정의를 만족하는 상수 c와 n_0 가 존재한다.

점근법 표기법 Asymptotic Notations: ⊕

- $\boldsymbol{\diamondsuit}\,\Theta(g(n))$
 - g(n)과 동일한 비율로 증가하는 함수 집합
 - **e.g.**, $\Theta(n)$, $\Theta(nlogn)$, $\Theta(n^2)$, $\Theta(2^n)$, ...
- igoplus Formal definition of $\Theta(g(n))$

$$O(g(n)) = O(g(n)) \cap \Omega(g(n))$$

$$\Theta(g(n)) = \{f(n) | \exists c_1, c_2 > 0, n_0 > 0 \text{ s. t. } \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n) \}$$

- $-f(n) \in \Theta(g(n))$ 을 관행적으로 $f(n) = \Theta(g(n))$ 라고 표기한다.
- $-f(n) = \Theta(g(n))$ 의 직관적 의미
 - n이 커질 때 f(n)과 g(n)은 같은 정도로 증가한다.
 - 상수 비율의 차이는 무시
 - $\underline{f(n)}$ 는 $\underline{g(n)}$ 과 동일한 차수(order) \rightarrow 일반적으로 $\underline{\theta(g(n))}$ 는 복잡도 카테고리를 나눌 때 사용한다.

점근법 표기법 Asymptotic Notations: ∅

$$O(g(n)) = O(g(n)) \cap O(g(n))$$

[예제 2-2]와 [예제 2-6]에서 $5n^2 + 3 = O(n^2)$ 및 $5n^2 + 3 = \Omega(n^2)$ 임을 각각 증명하였다. 그러므로, $5n^2 + 3 = \Theta(n^2)$ 이다.

[예제 2-3]과 [예제 2-7]에서 $\frac{n^2}{2} - 5 = O(n^2)$ 및 $\frac{n^2}{2} - 5 = \Omega(n^2)$ 임을 각각 증명하였다. 그러므로, $\frac{n^2}{2} - 5 = \Theta(n^2)$ 이다.

점근법 표기법 Asymptotic Notations

 $O(n^2)$

점근법 표기법 Asymptotic Notations

- $\diamond o(g(n))$
 - g(n)보다 느린 비율로 증가하는 함수 집합
- igoplus Formal definition of o(g(n))

$$o(g(n)) = \{f(n) | \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0\}$$

- $-f(n) \in o(g(n))$ 을 관행적으로 f(n) = o(g(n))라고 표기한다.
- -f(n) = o(g(n))의 직관적 의미
 - n이 커질 때 f(n)은 g(n)보다 느리게 증가한다.
 - 상수 비율의 차이는 무시
 - **4**: $n = o(n^2)$

점근법 표기법 Asymptotic Notations

- $\diamondsuit w(g(n))$
 - g(n)보다 빠른 비율로 증가하는 함수 집합
- igoplus Formal definition of <math>w(g(n))

$$w(g(n)) = \{f(n) | \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty\}$$

- $-f(n) \in w(g(n))$ 을 관행적으로 f(n) = w(g(n))라고 표기한다.
- f(n) = w(g(n))의 직관적 의미
 - n이 커질 때 f(n)은 g(n)보다 빠르게 증가한다.
 - 상수 비율의 차이는 무시

복잡도 카테고리의 주요 성질 [1/3]

- 1. $g(n) \in O(f(n))$ iff $f(n) \in \Omega(g(n))$
- 2. $g(n) \in \Theta(f(n))$ iff $f(n) \in \Theta(g(n))$
- 3. b > 10 □ a > 10 □ e log_a n ∈ Θ(log_b n)은 항상 성립한다.
 → 즉, 임의의 밑에 대한 로그(logarithm) 복잡도 함수는 모두 같은 카테고리에 속한다.
- ◆ 4. 지수(exponential) 복잡도 함수 (예 2ⁿ)의 밑이 다르면 이들
 은 모두 다른 복잡도 카테고리에 속한다.
 - 즉, 임의의 서로 다른 a와 b에 대해서 $a^n \notin \Theta(b^n)$ 이다.
 - 만약 b > a > 0 이면, $a^n \in o(b^n)$ ($\in Small o$)

복잡도 카테고리의 주요 성질 [2/3]

● 5. n!은 어떤 지수 (an)복잡도 함수보다도 복잡도가 더 높다.

$$\checkmark a^n \in O(n!)$$
 (\leftarrow Small o)

● 6. 복잡도 카테고리들은 다음 순서로 나열된다.

복잡도 카테고리의 주요 성질 (3/3)

- $\Theta(\log_4 n) = \Theta(\log_2 n)$?
 - 복잡도 카테고리의 주요 성질 3 번 사용
- $5n + 3lgn + 10nlgn + 7n^2 \in \Theta(n^2)$?
 - 복잡도 카테고리의 주요 성질 6과 7을 사용

최종 정리!!! (1/2)

- 다음 두 복잡도 식을 가지고 있는 알고리즘의 복잡도 표기법은?
 - **알고리즘** A: 0.1n²
 - **알고리즘** B: 0.1n²+n+100
 - 알고리즘 A, B 둘 다 $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$ 로 표기가능... 하지만, 각각의 뇌앙스(의미) 및 해석은 다르다.
 - 어떻게 다를까?...
 - 모든 경우분석이 가능한 알고리즘에 대한 단위연산 기반 복잡도가 위와 같다면 해당 알고리즘의 점근적 복잡도는 $\Theta(n^2)$ 로 표기한다.
 - 즉, 최선의 경우와 최악의 경우가 구분이 안될 때...
 - 모든 경우 분석이 되지 않는 경우에는 최악의 분석을 수행하고, 최악의 분석 결과가 위와 같은 단위연산 기반 복잡도로 나왔다면 점근적 복잡도는 ○(n²)
 - 많은 경우 최악의 경우와 최선의 경우는 나뉘어짐.
 - 즉, O(n²)이 가장 많이 사용되는 점근적 복잡도 표기법임

최종 정리!!! (2/2)

- 만약 알고리즘 분석 결과 최악의 경우 $W(n) = n^2$ 이 나왔다면, 해당 알고리즘의 점근적 복잡도는 $O(n^2)$ 이라고 결론 내림.
 - $W(n) = n^2$ 라는 수식이 해당 알고리즘을 분석한 결과 <u>최악의 경우에</u> 나온 수식이며, 임의의 양의 실수 c (c = 1)와 음이 아닌 정수 N (N = 0) 및 모든 정수 $n \ge N$ 에 대하여 $n^2 \le c \cdot n^2$ 이므로 해당 알고리즘의 점근 적 복잡도는 $O(n^2)$ 는 이다"라고 최종적 인 결론을 내린다.
- 만약 알고리즘 분석 결과 모든 경우 T(n) = n² 이 나왔다면,
 해당 알고리즘의 점근적 복잡도는 Θ(n²) 이라고 결론 내림.
 (하지만 가끔은 이런 경우에도 점근적 복잡도를 O(n²) 로 표기하는 경우가 있음.)

time(
$$n$$
) = 3 F(n) - 2 is O(F(n))
time(n) = 2 n is O(n)
time(n) = 4687 n is O(n)
time(n) = 1,76*10²⁵ is O(1)

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)

Simple statement sequence

```
s_1; s_2; ....; s_k
```

- -O(1) as long as k is constant
- Simple loops

```
for(i=0;i<n;i++) { s; } where s is O(1)
```

- Time complexity is n O(1) or O(n)
- Nested loops

```
for(i=0;i<n;i++)
  for(j=0;j<n;j++) { s; }</pre>
```

- Complexity is n O(n) or $O(n^2)$

This part is O(n)

Loop index doesn't vary linearly

```
h = 1;
while ( h <= n ) {
    s;
    h = 2 * h;
}</pre>
```

- h takes values 1, 2, 4, ... until it exceeds n
- There are 1 + $\log_2 n$ iterations
- Complexity O(log n)

Loop index depends on outer loop index

- Inner loop executed
 - . 1, 2, 3,, n times

.. Complexity O(n2)

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

```
get(x);
get(y);
z:=x+y;
put(z);

f(n)=c->O(1)
```

```
for i in 1..n loop
  z(i):=x(i)+y(i);
end loop;

f(n)=cn -> O(n)
```

```
x:=rnd(100);
if x>90 then
  for i in 1..n loop
    x:=x+z(i);
  end loop;
else
  x:=0;
end if;

f(n)=(0.1)*cn+(0.9)d -> O(n)
```

```
for i in 1..n loop
    s(i):=0;    c
    for j in 1..n loop
    s(i):=s(i)+x(i,j);
    end loop;
end loop;
dn

f(n)=n(c+dn) -> O(n²)
```

```
for i in 1..n loop
   s:=s+x(i);
end loop;
for i in 1..m loop
   t:=t+y(i);
end loop;

f(n,m) = cn+dm -> O(n+m)
```