

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 668 936

(21) N° d'enregistrement national :

90 14233

(51) Int Cl⁵ : A 61 L 27/00; A 61 F 2/28

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 09.11.90.

(71) Demandeur(s) : EBERLIN Jean-Luc — FR.

(30) Priorité :

(72) Inventeur(s) : EBERLIN Jean-Luc.

(43) Date de la mise à disposition du public de la
demande : 15.05.92 Bulletin 92/20.

(56) Liste des documents cités dans le rapport de
recherche : Se reporter à la fin du présent fascicule.

(60) Références à d'autres documents nationaux
apparentés :

(73) Titulaire(s) :

(74) Mandataire : Cabinet Thébault S.A.

(54) Greffon à base de collagène et de colle de fibrine pour la reconstruction ostéo-cartilagineuse et son procédé de préparation.

(57) - L'invention concerne un greffon à base de collagène et de colle de fibrine pour la reconstruction ostéo-cartilagineuse et son procédé de préparation.

- Le greffon selon l'invention est caractérisé en ce qu'il est constitué de l'association d'une matrice de collagène de structure poreuse imprégnée d'une colle de fibrine à prise lente, les proportions, en volume, de la colle de fibrine par rapport à la matrice de collagène étant d'au moins 1/4.

- Application notamment à la reconstruction ostéocartilagineuse.

FR 2 668 936 - A1

**GREFFON A BASE DE COLLAGENE ET DE COLLE DE FIBRINE
POUR LA RECONSTRUCTION OSTEO-CARTILAGINEUSE
ET SON PROCEDE DE PREPARATION**

La présente invention se rapporte à la reconstruction osseuse après traumatisme ou exérèse osseuse, tout particulièrement pour les os longs, courts ou plats, et vise à proposer un nouveau matériau de comblement d'un déficit ou d'une 5 solution de continuité dans lesdits os ou destiné à pallier une non-formation osseuse partielle dans le cas d'agénésie ou de dysplasie notamment.

Pour traiter les cas ci-dessus et dans le domaine plus général de la greffe osseuse, on dispose principalement de deux 10 matériaux qui sont le corail et les constituants organiques de l'os tels que l'hydroxy-apatite.

On demande notamment aux matériaux utilisés d'être biocompatibles, de présenter un terrain sain, propre, vascularisé, d'être suffisamment rigides, d'avoir une 15 congruence optimale avec le site receveur et d'éviter autant que possible la pose d'éléments externes de solidarisation ou contention.

Le corail présente ces qualités mais il est cassant, difficilement taillable et coûteux.

20 L'hydroxy-apatite, qui se présente sous la forme d'une pâte dense, ne permet pas d'avoir une forme préétablie et ne s'intègre à l'environnement qu'au bout d'un temps très long, de l'ordre de deux ans.

Une telle intégration, constatée par l'observation d'une 25 même densité osseuse radiologique sur l'os receveur et sur le

greffon, est aussi longue avec le corail.

De plus, ces deux types de matériaux ne permettent pas de pallier des solutions de continuité. En effet, dans ces applications la masse du greffon est relativement importante et 5 la perméation, nulle ou très faible, du corail ou de l'hydroxyapatite, c'est-à-dire l'aptitude à permettre le passage des liquides ou substances relativement visqueuses, n'assure pas la colonisation du greffon et donc l'homogénéisation entre l'os receveur et le greffon.

10 Le but de l'invention est de pallier ces inconvénients en proposant un nouveau matériau apte à constituer des greffons pour la reconstruction ostéo-cartilagineuse assurant une totale homogénéisation entre l'os receveur et le greffon et dont les qualités, en particulier mécaniques, permettent une 15 reconstruction adaptée, facile, rapide et solide.

A cet effet, l'invention a pour objet un greffon pour la reconstruction ostéo-cartilagineuse, caractérisé en ce qu'il est constitué de l'association d'une matrice de collagène de structure poreuse imprégnée d'une colle de fibrine à prise 20 lente, les proportions, en volume, de la colle de fibrine par rapport à la matrice de collagène étant d'au moins 1/4.

L'invention a également pour objet un procédé de préparation d'un tel greffon, caractérisé en ce qu'il consiste à prendre un bloc de collagène sous forme spongieuse, à déposer 25 sur ce bloc de la colle de fibrine à prise lente, sous forme visqueuse, à raison d'au moins une partie, en volume, de colle de fibrine pour quatre parties, en volume, de collagène, et à faire sécher l'ensemble jusqu'à élimination de pratiquement toute l'eau évaporable.

30 Le matériau ainsi obtenu est directement utilisable comme greffon. Il se présente sous forme d'une structure rigide qui peut être taillée et conformée à volonté pour constituer un greffon mis en place aisément.

On va maintenant décrire en détail, à titre d'exemple, un 35 mode de mise en œuvre du procédé ci-dessus.

On part d'une matrice de collagène, par exemple le produit commercialisé par la Société BRAUN sous la dénomination commerciale "OSTEOVIT", qui est un bloc spongieux taillé

constitué d'une structure squelettique.

Sur un tel bloc de collagène, par exemple un cube de quatre cm³, on dépose sur la face supérieure au moins 1 cm³ d'une colle de fibrine à prise lente. Cette colle est obtenue 5 par le processus suivant.

A partir d'un kit de lyophilisats de diverses vitesses de coagulation, par exemple le kit commercialisé par la société autrichienne IMMUNO sous la dénomination commerciale "TISSUCOL", on effectue, à la manière connue, un dosage de 10 façon à obtenir une colle à prise lente et plus précisément une colle dont la prise est obtenue au bout d'un temps de contact avec le collagène égal ou supérieur à 5 minutes environ.

Le mélange ainsi obtenu est visqueux.

Une fois déposée sur la matrice de collage, la colle de 15 fibrine va, par fluage, progressivement coloniser la masse poreuse de collagène.

L'opération se passe par exemple à la température ambiante et en milieu stérile et dure le temps nécessaire au séchage de l'ensemble, c'est-à-dire à la disparition de pratiquement toute 20 l'eau évaporable. Un tel séchage dure plusieurs heures et dépend du volume du bloc de collagène imprégné.

Une fois séché, le produit obtenu est un bloc rigide, non-élastique et le demeure même s'il est réhumidifié. Il peut être conservé dans cet état aussi longtemps que les constituants de 25 départ, et de préférence sous conditionnement stérile. La température de conservation n'a pas d'incidence particulière sur la conservation.

L'opération d'imprégnation du bloc de collagène par la colle de fibrine peut s'effectuer également en milieu non 30 stérile, auquel cas, après séchage, on effectuera une stérilisation aux rayons gamma du matériau, avant son utilisation, ce qui n'altère pas la qualité de l'association colle + collagène.

Le bloc de collagène peut, avant son imprégnation par la 35 colle de fibrine, être taillé ou conformé suivant la forme du greffon à réaliser.

Si le bloc de collagène n'est pas au préalable taillé ou conformé, il peut l'être après imprégnation et séchage, à tout moment avant son utilisation.

La taille ou conformation du collagène, avant ou après imprégnation et séchage, ne présente aucune difficulté.

Il est nécessaire que la proportion, en volume, de colle de fibrine, par rapport à la matrice de collagène soit au moins 5 d'une partie pour quatre parties respectivement. En deça de ce seuil, la quantité de colle est insuffisante et la structure finale n'est pas rigide et a tendance à devenir plastique, mais pas élastique, si elle est réhumidifiée. Par contre, la proportion de colle de fibrine peut être sensiblement 10 supérieure à 1/4, et aller jusqu'à la saturation de la structure poreuse de la matrice de collagène.

Le matériau obtenu conformément à l'invention présente une structure homogène, est sculptable à volonté et permet le passage et la fixation notamment des ostéoblastes qui ont 15 ainsi, dès le début, une trame vierge, anallergique et solide.

Dans le cadre d'une étude clinique prospective on a remplacé 25 % du fût fémoral d'un lapin par un greffon selon l'invention, stabilisé par un fixateur externe.

Au bout de dix jours on a constaté, par des coupes 20 histologiques, la colonisation de la totalité du greffon, ce qui confirme la perméation remarquable du greffon.

Il est à noter que quel que soit le volume du greffon, sa colonisation totale s'opère en toutes circonstances, contrairement au corail et à l'hydroxy-apatite.

25 Au bout de trois mois on a constaté radiologiquement, non seulement l'obtention d'une même densité osseuse de la structure interne du greffon par rapport à la partie originelle, mais un alignement de la continuité osseuse corticale (partie dure et portante de l'os).

30 Avec le greffon selon l'invention, la reconstruction osseuse ne commence plus par une phase de "désertification" cellulaire du tissu greffé et le temps de colonisation s'en trouve diminué d'autant. D'autre part, la corticalisation du greffon et son adaptation à l'environnement tissulaire ne passe 35 pas par un stade de remaniement osseux interne, comme c'est le cas pour les techniques de greffe osseuse avec des matériaux du type corail ou os de banque.

beaucoup plus rapidement qu'avec les matériaux habituels ce qui permet, dès la constatation radiologique de la consolidation, d'enlever l'éventuel matériel d'ostéosynthèse beaucoup plus précocement (au bout de 3 à 4 mois en général, au lieu de deux 5 ans au moins avec des greffons en corail ou hydroxy-apatite).

Du fait que le greffon selon l'invention conserve en permanence une bonne rigidité, on peut dans certains cas, éviter d'associer des éléments externes rapportés temporaires, de solidarisation ou contention.

10 Enfin, l'invention n'est évidemment pas limitée aux modes de réalisation décrits ci-dessus mais en couvre au contraire toutes les variantes.

R E V E N D I C A T I O N S

=:=:=:=:=:=:=:=:=:=:=:=

1. Greffon pour la reconstruction ostéo-cartilagineuse, caractérisé en ce qu'il est constitué de l'association d'une matrice de collagène de structure poreuse imprégnée d'une colle de fibrine à prise lente, les proportions, en volume, de la colle de fibrine par rapport à la matrice de collagène étant d'au moins 1/4.

2. Procédé de préparation d'un greffon selon la revendication 1, caractérisé en ce qu'il consiste à prendre un bloc de collagène sous forme spongieuse, à déposer sur ce bloc de la colle de fibrine à prise lente, sous forme visqueuse, à raison d'au moins une partie, en volume, de colle de fibrine pour quatre parties, en volume, de collagène, et à faire sécher l'ensemble jusqu'à élimination de pratiquement toute l'eau évaporable.

15 3. Procédé suivant la revendication 2, caractérisé en ce que la colle de fibrine est réalisée, à partir d'un kit de lyophilisats de diverses vitesses de coagulation, par dosage, de façon à obtenir une prise au bout d'un temps de contact avec le collagène égal ou supérieur à cinq minutes environ.

20 4. Procédé suivant la revendication 2 ou 3, caractérisé en ce que les diverses opérations s'effectuent en milieu stérile.

5. Procédé suivant la revendication 2 ou 3, caractérisé en ce que les diverses opérations s'effectuent en milieu non stérile, le produit obtenu étant, après séchage, soumis à une 25 stérilisation aux rayons gamma.

