Sistemi - Modulo di Sistemi a Eventi Discreti Discrete Event and Hybrid Systems

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

7 Febbraio 2022

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	20	
problema 2	10	
totale	30	

- 1. Si considerino i due seguenti automi definiti sull'alfabeto $E = \{a_1, a_2, b_1, b_2\}$. Consider the two following automata over alphabet $E = \{a_1, a_2, b_1, b_2\}$. Automa G (impianto):
 - stati: 0, 1, 2, 3, 4, 5, 6, 7, 8 con 0 stato iniziale e 8 unico stato accettante;
 - transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 4: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 4 a 5: b_1 , transizione da 4 a 5: b_1 , transizione da 4 a 5: a_2 , transizione da a_1 a a_2 : a_2 .

Automa H_a (specifica):

- stati: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 con 0 stato iniziale e 8 unico stato accettante;
- transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 9: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 7: b_2 , transizione da 6 a 7: a_1 , transizione da 6 a 7: a_1 , transizione da 6 a 7: a_1 , transizione da 9 a 9: a_1 , transizione da 9 a 9: a_1 , a_1 , a_1 , a_2 , a_2 , a_2 , a_3 , a_4 , a_4 , a_5 , a_5 , a_5 , a_5 , a_7 , a_8 , a_7 , a_8 , a_8

(a) Si disegnino i grafi dei due automi.

Draw the graphs of the two automata.

(b) Siano dati i linguaggi K e $M=\overline{M}$ sull'alfabeto E, e gl'insiemi di eventi $E_c\subseteq E$ e $E_o\subseteq E$. Sia P la proiezione naturale da E^\star a E_o^\star .

Si scriva la definizione di osservabilita' di K rispetto a M, E_c ed E_o .

Consider the languages K and $M = \overline{M}$ over alphabet E, and the set of events $E_c \subseteq E$ and $E_o \subseteq E$. Let P be the natural projection from E^* to E_o^* .

Write the definition of observability of K with respect to M, E_c and E_o .

(c) Siano $M = \mathcal{L}(G)$ e $K = \mathcal{L}_m(H_a)$.

Siano
$$E_{uo} = \{a_2\}$$
 e $E_{uc} = \emptyset$.

K e' osservabile rispetto a M, E_c ed E_o ? Lo si verifichi usando la definizione.

Let
$$M = \mathcal{L}(G)$$
 and $K = \mathcal{L}_m(H_a)$.

Let
$$E_{uo} = \{a_2\}$$
 and $E_{uc} = \emptyset$.

K is observable with respect to M, E_c and E_o ? Verify it using the definition of observability.

- (d) Si costruisca $H_{a,obs}$, l'automa osservatore di H_a . Build $H_{a,obs}$, the observer automaton of H_a .
- (e) Si risponda alla domanda del punto precedente sull'osservabilita' utilizzando l'automa osservatore. Si spieghi con chiarezza il procedimento. Answer the previous question about observability by means of the observer automaton. Explain in detail the procedure.

(f) Si restringa il comportamento dell'impianto rappresentato da G, applicandogli l'azione di controllo del seguente supervisore S_B : all'inizio abilita solo a_1 , poi dopo aver visto a_1 abilita a_2 e b_1 (e disabilita b_2), e infine dopo aver visto ancora b_1 abilita a_2 e b_2 .

Si disegni $H_{B,a}$, l'automa che rappresenta tale comportamento ristretto dell'impianto G sotto il controllo del supervisore S_B , cioe' sia K_B la nuova specifica del comportamento ammissibile, dove $K_B = \mathcal{L}_m(H_{B,a}) = \mathcal{L}_m(S_B/G)$.

Restrict the plant behaviour represented by G, by the control action of the following supervisor S_B : at the beginning enable only a_1 , then after having seen a_1 enable a_2 and b_1 (and disable b_2), and finally after having seen again b_1 enable a_2 and b_2 .

Draw $H_{B,a}$, the automaton representing the restricted behaviour of the plant G under the control action of the supervisor S_B , i.e., let K_B be the new specification of the admissible behaviour. where $K_B = \mathcal{L}_m(H_{B,a}) = \mathcal{L}_m(S_B/G)$.

Si risponda alla seguenti domande. Nota bene: in tutti gli automi s'indichino con chiarezza gli stati accettanti.

Answer the following questions. Please, mark clearly the accepting states in all automata.

- i. Si discuta intuitivamente questa politica di controllo. Quali stringhe marcate dell'impianto sono permesse da essa?
 Explain qualitatively this control policy. What are the marked strings of the plant that are admitted by this control policy?
- ii. Si disegni l'automa $H_{B,a}$. Draw the automaton $H_{B,a}$.
- iii. Si disegni $H_{B,a,obs}$, l'automa osservatore di $H_{B,a}$. Draw $H_{B,a,obs}$, the observer automaton of $H_{B,a}$.

- iv. Si costruisca una realizzazione $R_{B,real}$ di S_B . Si ricordi che una realizzazione e' semplicemente un automa che rappresenta la politica di controllo del supervisore. Si seguano i seguenti passi:
 - Build a realization $R_{B,real}$ of S_B . Keep in mind that a realization is simply an automaton which represents the control policy of the supervisor. Follow the following steps:
 - A. Si costruisca un automa rasato ("trim") R_B che genera e marca la specifica $\overline{K_B}$, cioe' tale che $\mathcal{L}_m(R_B) = \mathcal{L}(R_B) = \overline{K_B}$, dove $K_B = \mathcal{L}_m(H_{B,a}) = \mathcal{L}_m(S_B/G)$.

Build a trim automaton R_B which generates and marks the specification $\overline{K_B}$, i.e., such that $\mathcal{L}_m(R_B) = \mathcal{L}(R_B) = \overline{K_B}$, where $K_B = \mathcal{L}_m(H_{B,a}) = \mathcal{L}_m(S_B/G)$.

- B. Si disegni $R_{B,obs}$, l'automa osservatore di R_B . Draw $R_{B,obs}$, the observer automaton of R_B .
- C. Si disegni $R_{B,real}$, che e' la realizzazione standard di S_B , ottenuta aggiungendo autoanelli in ogni stato x_{obs} di $R_{B,obs}$ per ogni evento inosservabile in

$$\bigcup_{x \in x_{obs}} \Gamma_{R_B}(x)$$

(Γ e' la funzione di attivazione dell'automa).

Draw $R_{B,real}$, which is the standard realization of S_B , obtained by adding self-loops to every state x_{obs} of $R_{B,obs}$ for every unobservable event in

$$\bigcup_{x \in x_{obs}} \Gamma_{R_B}(x)$$

(Γ is the activation function of the automaton).

- 2. Si consideri il linguaggio $L_m = \{a^mba^n : m \ge n \ge 0\}.$
 - ullet Si disegni un automa a stati finiti il cui linguaggio marcato e' L_m .
 - ullet Si disegni una rete di Petri il cui lingaggio marcato e' L_m .

Si commentino le soluzioni proposte.

Consider the language $L_m = \{a^mba^n : m \ge n \ge 0\}.$

- Draw a finite automaton whose marked language is L_m .
- Draw a Petri net whose marked language is L_m .

Explain the proposed solutions.