POLYHEDRA: VERTICES

Linear Programming Problem

From Two Weeks Ago.

Goal: Solve LP using Simplex and visualize!

Active Constraints

Active Constraints

x_1			\leq	1
	x_2		\leq	1
		x_3	\leq	1
x_1			\geq	0
	x_2		\geq	0
		x_3	\geq	0

Basic Geometric Facts

- Intersection of 2 lines in 2D yields a point.
 - Lines must be non-parallel.

- Intersection of 3 planes in 3D yields a point.
 - Exclude parallel planes, or other corner cases.

- Intersection of 4 hyper-planes in 4D yields a point.
 - Again, some corner cases.

Intersection of n hyper-planes

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \leftarrow \mathcal{H}_1$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \leftarrow \mathcal{H}_n$$

$$\mathbf{rank} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = n$$

Vertex (Definition)

A feasible solution x to the constraints is a vertex iff

$$\begin{vmatrix} a_{11}x_1 & +a_{12}x_2 & +\cdots + & a_{1n}x_n & \leq & b_1 \\ & & \ddots & & \vdots \\ a_{j1}x_1 & +a_{j2}x_2 & +\cdots + & a_{jn}x_n & \leq & b_j \\ & & \ddots & & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +\cdots + & a_{mn}x_n & \leq & b_m \end{vmatrix}$$

at least n ineqs. are active for x.

rank of the active constraints for x is n

Does every point x that activates n constraints form a vertex?

Can a vertex activate more than n constraints?

What if there are more variables than constraints?

Number of Vertices

n-dimensional hyper cube has 2ⁿ vertices.

In general, combinatorial explosion of vertices.

• m constraints, n variables: $\binom{m}{n}$ upper bound on vertices

DICTIONARIES AND VERTICES

Main Message

Dictionaries of Simplex = Vertices of the feasible region.

Linear Programming Problem

From Two Weeks Ago.

Goal: Solve LP using Simplex and visualize!

Linear Programming Problem

Dictionary Vertex Corr.

Dictionary Vertex Corr.

• • •		
• • •		
• • •		
?	$?x_2$	$?x_5$
	?	$\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & \\ \hline & ? & & ?x_2 \end{array}$

Example #3

Linear Programming Problem (Standard Form)

 $\mathbf{c}^{\mathsf{T}} \mathbf{x}$ max Feasible Dictionary $x_{B1} = b_1 + a_{11}x_{I1} + \cdots + a_{1j}x_{Ij} + \cdots + a_{1n}x_{In}$

- (1) Solution associated will make at least n constraints active.
- (2) Rank of active constraints is n.

Summary

- Vertex (definition).
 - A feasible point that makes at least n inequalities active.
 - The rank of active inequalities equals n.

- Feasible Dictionaries in Simplex:
 - Solution associated must be a vertex of the feasible region.

What does pivoting do?

PIVOTING AND VERTICES

What happens when we pivot?

- Entering variable leaves non-basic set.
 - Leaving variable becomes non-basic.

Adjacent Vertices

 $x_{2\uparrow}$

Example #2: Adjacent Vertices

Adjacent Vertices

Definition: Two vertices are adjacent if and only if

- At least (n-1) active constraints are common.
- Rank of common active constraints is (n-1).

Claim

For non-degenerate/non-final dictionary D_1 if D_2 is obtained on pivot, then the vertices corr. to D_1 and D_2 are adjacent.

x_{B1}	\mathbf{b}_1	• • •	x_{B2}	\mathbf{b}_2	• • •
\overline{z}	c_0	$+c_{N1}x_{N1}$	\overline{z}	c_2	$+c_{N2}x_{N1}$

Simplex Pivoting Visualization

Pivoting Issues

- Does pivoting always move to an adjacent vertex?
 - Yes, if the current dictionary is non-degenerate.

- What happens in the degenerate case?
 - Case-1: Move to an adjacent vertex.
 - Case-2: Remain in the same vertex (?)

What happens if a dictionary is unbounded?

DEGENERATE POLYHEDRA

Degenerate Dictionaries

$$\begin{aligned}
 x_1 &= 3 & -\frac{1}{3}x_4 & +\frac{1}{3}x_3 \\
 x_2 &= 11 & -x_4 & +0x_3 \\
 x_5 &= 11 & -\frac{2}{3}x_4 & -\frac{1}{3}x_3 \\
 x_6 &= 0 & +\frac{1}{3}x_4 & -\frac{1}{3}x_3 \\
 z &= 25 & -\frac{7}{3}x_4 & +\frac{1}{3}x_3
 \end{aligned}$$

- 1. Understand geometry of degeneracy
- 2. Highly degenerate polyhedra.

Vertex (Definition)

A feasible solution x to the constraints is a vertex iff

$$\begin{vmatrix} a_{11}x_1 & +a_{12}x_2 & +\cdots + & a_{1n}x_n & \leq & b_1 \\ & & \ddots & & \vdots \\ a_{j1}x_1 & +a_{j2}x_2 & +\cdots + & a_{jn}x_n & \leq & b_j \\ & & \ddots & & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +\cdots + & a_{mn}x_n & \leq & b_m \end{vmatrix}$$

at least n ineqs. are active for x.

rank of the active constraints for x is n

Vertices and Active Constraints

x_1			\leq	1
	x_2		\leq	1
		x_3	\leq	1
x_1			\geq	0
	x_2		\geq	0
		x_3	\geq	0

Can a vertex activate more than n constraints?

Degenerate Vertex (Definition)

Vertex x is degenerate iff

it activates n+k constraints for k>0

Degenerate vs. Non-degenerate vertex

Non-degenerate:

- Activates exactly n constraints.
- Exactly n faces meet at the vertex.
- Unique dictionary associated with vertex.

Degenerate:

- Activates n + k constraints (k > 0)
- More than n faces meet at the vertex.
- Multiple dictionaries associated with vertex.

Degeneracy due redundancy

```
max
                 \mathcal{X}
 s.t.
C_1: y \le 2
C_2: x -y \le 1
C_3: x +y \le 3
C_4: x \le 2
```


Degeneracy due to redundancy

Degeneracy without redundancy

Removing any of the constraints changes

Simplex over Degenerate Polyhedra

UNBOUNDED POLYHEDRA: RAYS

Thus far...

 Feasible Region: Polyhedra Vertices: Unbounded Problems. Activate at Act Vertice Simplex Degene enerate

Unbounded Linear Programs and Rays

Ray

Vector **r** is a ray of polyhedron P iff for every $\mathbf{x} \in P$ and every $\lambda \geq 0$,

$$\mathbf{x} + \lambda \mathbf{r} \in P$$

Ray (Fundamental Property)

Polyhedron: $A\mathbf{x} \leq \mathbf{b}$

r is a ray if and only if $A\mathbf{r} \leq \mathbf{0}$

Ray (Fundamental Property)

Is (1,1) a ray of this polyhedron?

Example

Second Dictionary

$$x_2 = 4 + x_1 - x_7$$
 $x_4 = 9 - x_7$
 $x_5 = 6 + x_1 - x_3$
 $x_6 = 2 + 2x_1 - x_3$
 $z = 12 + 5x_1 - 3x_7 - 5x_3$

Unbounded Dictionary

- No leaving variables.
- Alternatively: all entries in the column corr. to entering variables are non-negative.

$$x_{B1} = b_1 + a_{11}x_{I1} + \cdots + a_{1j}x_{Ij} + \cdots$$
 $x_{B2} = b_2 + a_{21}x_{I1} + \cdots + a_{2j}x_{Ij} + \cdots$

$$\vdots$$

$$x_{Bm} = b_m + a_{m1}x_{I1} + \cdots + a_{mj}x_{Ij} + \cdots$$

$$z = c_0 + c_1x_{I1} + \cdots + c_jx_{Ij} + \cdots$$

Unbounded Dictionary and Ray