Accelerated Lecture 5: Data Visualization

Harris Coding Camp – Accelerate Track

Summer 2022

Today's lesson

- ► Why visualize data?
- How to do so with ggplot
 - How to map data to aesthetics with aes() (and what that means)
 - ► How to visualize the mappings with geoms
 - ▶ How to get more out of your data by using multiple aesthetics
 - How to use facets to add dimensionality
- Some base R tips

We have entire courses on data visualization. This is just a sample.

Data Visualization: Motivation

Suppose we want to know the following info:

- ▶ How have annual housing sales in Texas changed over time?
- ► How do these trends compare between cities?

Data Visualization: Motivation

Is simply looking at all these data helpful?

```
## # A tibble: 10 x 2
       year total_volume
##
##
      <int>
                   <dbl>
##
       2000 33342410971
    1
       2001
             35804815138
##
    2
##
    3
       2002
             37798888462
##
       2003
            41674204834
##
    5
       2004
            47913188880
##
    6
       2005
             56534755111
##
    7
       2006
             65237510783
       2007
             64393979596
##
    8
##
   9
       2008
             54198855809
##
  10
       2009
             48450447327
```

Data Visualization: Motivation

What if we make a plot of annual housing sales over time. . .

Now we can quickly understand and communicate about our data

Challenge: How do we efficiently communicate how to visualize data to the computer?

Introducing the "grammar of graphics" and ggplot

- gg = Grammar of graphics (Wickham 2010, Wilkinson et. al 2005, Bertin 1983)
 - ► Rules for how to put graph-parts together to make a logical expression
 - ► Implemented in R with ggplot2, a data visualization package in the tidyverse

Basic Components of ggplot (Layers)

- Layer 1: Scales and coordinates (ggplot())
 - A data frame
 - Aesthetic mapping: how data are mapped to x-axis, y-axis, color, size, etc
- ► Layer 2: Geometry (geom_xxx())
 - geometric objects like points, lines, shapes
- Layer 3: Labels (labs())
 - title, legend, etc

What is Aesthetic?

- An aesthetic is a visual property of the objects in your plot
 Including things like size, shape, color or x and y locations
- ► To display values, map variables in the data to visual properties of the geom (aesthetics)

Simplest ggplot code structure

ggplot() tells R to prepare to make a plot.

```
# Let's prepare new data frame 'annual_sales'
annual_sales <-
  txhousing %>%
  group_by(year) %>%
  summarize(total_volume = sum(volume, na.rm = TRUE))
# Layer 1, data frame
```

```
# Layer 1, data frame
ggplot(data = annual_sales)
```

Layer 1: adding an aesthetic mapping

mapping = aes() declares how to map the data to "aesthetics":

- R will map each row of the data (year, total_volume) to the (x,y)
- i.e. tell R to make x-axis year and y-axis total_volume

```
ggplot(data = annual_sales,
    mapping = aes(x = year, y = total_volume))
```


Here we see points by using geom_point():

Here we see bars by using geom_col().

Each observation or row has a (year, total_volume) mapped to the coordinate pair (x,y)

Here we see a line connecting each (x,y) pair using geom_line().

The data can be visualized with different geoms that can be composed (+) together:

Layer 3: Adding labels makes the plot more readable:

Annual Sales in Texas

Over laying multiple geoms: adding vertical lines

- add horizontal lines with geom_hline()
- ▶ add any linear fit with geom_abline() by providing a slope and intercept 18/55

aesthetics beyond the x and y position

We'll use midwest data and start with only mapping to x and y

ggplot(): Using color

- color maps data to the color of points or lines
 - ► Each state is assigned a color
 - ▶ This works with discrete data and continuous data

ggplot(): Using shape

- shape maps data to the shape of points
 - Each state is assigned a shape
 - ► This works with discrete data only

ggplot(): Using color + shape

- Combining color and shape:
 - Each state is assigned a shape and color

ggplot(): Using alpha

- alpha maps data to the transparency of points
- we map the percentage of people within a known poverty status to alpha

ggplot(): Using size

- size maps data to the size of points and width of lines.
- we map the percentage of people within a known poverty status to size

ggplot(): Using multiple aesthetics together

We can combine any and all aesthetics, and even map the same variable to multiple aesthetics

ggplot(): Using multiple aesthetics together

ggplot(): Facets (facet_grid)

Facets provide an additional tool to explore multidimensional data:

ggplot(): Facets (facet_wrap)

Facets provide an additional tool to explore multidimensional data:

ggplot(): Using aesthetics to explore data

Different geoms have specific aesthetics that go with them.

▶ the ggplot cheatsheet shows all the geoms with their associated aesthetics

 Adjust code to reproduce the following plot (sample codes provided in the next slide):

2. Adjust code to reproduce the following plot (sample codes provided in the next slide):

discrete vs continuous data

aes	discrete	continuous
	limited number of classes usually chr or lgl	unlimited number of classes numeric
x, y	yes	yes
color, fill	yes	yes
shape	yes (6 or fewer categories)	no
size, alpha	not advised	yes
facet	yes	not advised

Here, discrete and continuous have different meaning than in math

- For ggplot meaning is more fluid.
- ▶ If there are fewer than 6 to 10 groups, discrete visualizations can work
- ▶ If your "discrete" data is numeric, use as.character() or as_factor() to enforce the decision.

color can be continuous

shape does not play well with many categories

- Will only map to 6 categories, the rest become NA.
- ▶ We can override this behavior and get up to 25 distinct shapes

36 / 55

alpha and size can be misleading with discrete data

Warning: Using alpha for a discrete variable is not adv

Type of figures

- 1. Distribution of univariate (single variable)
- bar plot, histogram, density plot, etc
- 2. Relationship between bivariate (two variables)
- scatter plot, line plot, boxplot, (segmented) bar plot, etc
- 3. Relationship between many variables at once
- usually focusing on the relationship between two while conditioning for others

Univariate: bar plot

```
midwest %>%
  ggplot(aes(x = state)) +
  geom_bar()
```


Univariate: histogram

```
midwest %>%
  ggplot(aes(x = percollege)) +
    geom_histogram(binwidth = 1)
```


Univariate: density

```
midwest %>%
  ggplot(aes(x = percollege)) +
    geom_density()
```


Univariate: box plots

```
midwest %>%
  ggplot(aes(x = percollege)) +
    geom_boxplot()
```


Bivariate: scatter plot

Bivariate: scatter + smooth Line plot

Bivariate: scatter + smooth Line plot

Bivariate: box plots

Recap

- Visualizing our data can help lead to powerful insights between variable relationships
 - Making quick plots helps us understand data and makes us aware of data issues
- ggplot starts by mapping data to "aesthetics"
 - e.g. What data shows up on x and y axes and how color, size and shape appear on the plot
- ▶ Then, we use geoms to create a visualization based on the mapping
- We many consider adding labels to make plots more readable
- ▶ There are many ways you can visualize your data!

Next steps

Labs

- ▶ Today: Data visualization with ggplot (may run into tomorrow)
- Tomorrow: Introducing plotting in base R

I can produce basic plots to explore and communicate about data

Lecture

Data manipulation and analysis with groups

Appendix: Some graphs you made along the way

- Distributions
- Grouped bar graph
- ► Faceted bar graph

Appendix: distributions

- geom_density() only requires an x aesthetic and it calculates the distribution to plot.
- We can set the aesthetics manually, independent of data for nicer graphs.

```
chi sq samples <-
tibble(x = c(rchisq(100000, 2),
              rchisq(100000, 3),
              rchisq(100000, 4)),
        df = rep(c("2", "3", "4"), each = 1e5))
chi_sq_samples %>%
  ggplot(aes(x = x, fill = df)) +
  geom_density(alpha = .5) +
  labs(fill = "df", x = "sample")
```

Appendix: distributions

Appendix: grouped bar graph

- position = "dodge2" tells R to put bars next to each other, rather than stacked on top of each other.
- ▶ Notice we use fill and not color because we're "filling" an area.

Appendix: grouped bar graph

Appendix: faceted bar graph

- Notice that we manipulate our data to the right specification before making this graph
- Using facet_wrap we get a distinct graph for each time period.

Appendix: faceted bar graph

