高等数学 I 练习卷(1)

一、填空题(将答案写在答题纸的相应位置。每小题 3 分, 共 15 分。)

1. 极限
$$\lim_{x \to \infty} (\frac{x}{x+2})^x = \underline{\hspace{1cm}}$$
.

- 2. 已知函数 $y = xe^x$,则 $y'' = _____$
- 3. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\arctan x}{1+x^2} dx = _____.$
- 4. 曲线 $y = \frac{1}{\ln x}$ 的垂直渐近线为______.
- 5. 极限 $\lim_{x \to 1} \frac{\sqrt{5x-4} \sqrt{x}}{x-1} = \underline{\hspace{1cm}}$.

二、单项选择题(将答案写在答题纸的相应位置。每小题 3 分, 共 15 分。)

1.当x→0时,下列变量中与x²是等价无穷小量的是(

A.
$$1-\cos x$$

$$\mathbf{B.} \quad x + x^2$$

C.
$$e^{x} - 1$$

A.
$$1-\cos x$$
 B. $x+x^2$ C. e^x-1 D. $\ln(1+x)\cdot\sin x$

2. 曲线
$$y = x \ln x$$
 在点(1,0) 处的切线方程是().

A.
$$y = x$$

A.
$$y = x$$
 B. $y = -x-1$ C. $y = x-1$ D. $y = x+1$

C.
$$y = x - 1$$

D.
$$y = x + 1$$

3. 若
$$\int f(x)dx = F(x) + C$$
, 则 $\int \sin x f(\cos x)dx = ($).

A.
$$F(\cos x) + C$$

B.
$$-F(\cos x) + C$$

C.
$$F(\sin x) + C$$

A.
$$F(\cos x) + C$$
 B. $-F(\cos x) + C$ C. $F(\sin x) + C$ D. $-F(\sin x) + C$

4. 反常积分
$$\int_{0}^{+\infty} e^{-2x} dx$$
 ().

B. 收敛于
$$\frac{1}{2}$$

A.发散 B. 收敛于
$$\frac{1}{2}$$
 C. 收敛于 $-\frac{1}{2}$ D. 收敛于1

5. 设函数
$$f(x) = \frac{x^2 - 4}{x^2 - 3x + 2}$$
,则 $x = 2$ 是 $f(x)$ 的().

A.可去间断点 B.跳跃间断点 C.第二类间断点 D. 连续点

三、计算题(要求写出主要计算步骤及结果。每小题8分,共40分。)

- 1. 求极限 $\lim_{x\to 0} \frac{\tan x x}{x \sin x}$.
- 2. 计算由参数方程 $\begin{cases} x = 1 2t \\ y = t t^3 \end{cases}$ 所确定的函数的二阶导数 $\frac{d^2 y}{dx^2}$.
- 3. 计算不定积分 $\int \frac{1}{e^x + e^{-x}} dx$.
- 4. 计算不定积分 $\int x \ln(1+x) dx$.
- 5. 计算定积分 $\int_{1}^{4} \frac{\sqrt{x}}{1+(\sqrt{x})^{3}} dx$.

四、综合解答题(要求写出主要计算步骤及结果。每小题 10 分, 共 20 分。)

- 1. 设函数 $f(x) = \begin{cases} \frac{x}{1+2^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 试讨论 f(x) 在 x = 0 处的连续性与可导性.
- 2. 求 $y = x^3 5x^2 + 3x + 5$ 的单调区间与极值,凹凸区间与拐点. (要求列表)

五、证明题(要求写出主要证明过程。每小题 5 分, 共 10 分。)

1. 设函数 f(x) 在[0,1]上连续,且 f(x) > 0.

证明: 方程 $x + \int_0^x f(t)dt = 1$ 在(0,1)内有且仅有一个实根.

2. 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 0.

证明: 在(a,b)内至少存在一点 ξ , 使得 $f'(\xi) = 2\xi f(\xi)$.