

# QorlQ T4240 Reference Design Board User Guide

Document Number: T4240RDBUG

Rev. 1, 01/2016







#### **Contents**

| Sec | ction number               | Title                                         | Page |
|-----|----------------------------|-----------------------------------------------|------|
|     |                            | Chapter 1<br>Introduction                     |      |
| 1.1 | Related documentation      |                                               | 7    |
| 1.2 | Acronyms and abbreviations |                                               | 8    |
|     |                            | Chapter 2<br>T4240RDB Hardware                |      |
| 2.1 | T4240RDB features          |                                               | 11   |
| 2.2 | Specifications             |                                               | 13   |
|     |                            | Chapter 3<br>Memory Interface                 |      |
|     |                            | Chapter 4 High-Speed Serial Interfaces (HSSI) |      |
| 4.1 | SATA II                    |                                               |      |
| 4.2 | SGMII                      |                                               | 17   |
| 4.3 | Protocol reference clocks  |                                               | 18   |
|     |                            | Chapter 5 Integrated Flash Controller (IFC)   |      |
| 5.1 | NOR flash boot bank        |                                               | 22   |
|     |                            | Chapter 6<br>Ethernet                         |      |
| 6.1 | Ethernet management        |                                               | 27   |



| Section no     | umber Title                                               | Page |
|----------------|-----------------------------------------------------------|------|
|                | Chapter 7<br>eSPI                                         |      |
|                | Chapter 8 eSDHC Interface                                 |      |
|                | Chapter 9<br>I2C                                          |      |
|                | Chapter 10<br>USB Interface                               |      |
|                | Chapter 11 Serial Interface, UART, and Console Port       |      |
|                | Chapter 12 Power-On Reset Configuration                   |      |
| 12.1 POR con   | nfiguration PLD                                           | 39   |
| 12.2 POR con   | nfiguration resistors                                     | 39   |
|                | Chapter 13<br>JTAG/COP                                    |      |
| 13.1 COP/JT    | AG port                                                   | 41   |
|                | Chapter 14 Interface Connector Pinout and Switch Settings |      |
| 14.1 Interface | e connector pinout.                                       | 43   |
| 14.1.1         | CN3                                                       | 44   |
| 14.1.2         | CN4.                                                      | 45   |
| 14.1.3         | FAN1 to FAN6                                              | 46   |
| 14.1.4         | FAN7 to FAN12                                             | 47   |
| 14.1.5         | J1                                                        | 48   |
| 14.1.6         | J2                                                        | 48   |
| 14.1.7         | J3: PCIe connector                                        | 49   |
| 14.1.8         | J4                                                        | 54   |
| 14.1.9         | J8                                                        | 55   |
| 14.1.10        | J9                                                        | 55   |



| Section nui    | mber Title                       | Page |
|----------------|----------------------------------|------|
| 14.1.12 J      | J11, J12, J13, and J14           | 57   |
| 14.1.13 J      | IP1                              | 58   |
| 14.1.14 J      | JP3: JTAG connector              | 59   |
| 14.1.15 J      | J15, J17, J18, and J19: 10G SFP+ | 60   |
| 14.1.16 I      | LAN1                             | 61   |
| 14.1.17        | Cortina PHY to 10G               | 62   |
| 14.2 Switch se | ttings                           | 63   |
| 14.2.1         | SW1 switch                       | 63   |
| 14.2.2         | SW2 switch                       | 64   |
| 14.2.3         | SW3 switch                       | 65   |
| 1424           | CW/A quitch                      | 65   |

#### Chapter 15 Updating the RCW





### Chapter 1 Introduction

The The QorIQ T4240 reference design board (T4240RDB) is a flexible system that supports a 24-virtual core T4240 processor. The T4240RDB main board is mounted in a 1U rack-mounted chassis. The T4240 supports clocking configuration flexibility for frequent configuration modifications. Two expansion slots are also provided for the addition of standard PCIe expansion cards. The T4240RDB comes with a Linux® board support package (BSP) that provides a comprehensive starting point for Linux development efforts.

The part no. of the T4240 reference design board (RDB) system is T4240RDB-16GPA (for a board based upon T4240 Rev 1.0 silicon) and T4240RDB-PB (for a board based upon T4240 Rev 2.0 silicon).

This document is applicable for PCBA Rev 4.0 and PLD Rev 4.1. The revision information is available in the U-Boot log.

#### 1.1 Related documentation

Some of the documents below may be available only under a non-disclosure agreement (NDA). To request access to these documents, contact your local field applications engineer or sales representative.

Table 1-1. Related documentation

| Document name                                                                                        | Description                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T4240 QorlQ Integrated Multicore Communications Processor Family Reference Manual (document T4240RM) | Provides details about the features and functionalities of the T4240 QorlQ Integrated Multicore Communications Processor Family.                                                                                                    |
|                                                                                                      | Link: http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-power-architecture-processors/qoriq-t4240-t4160-t4080-multicore-communications-processors:T4240? fpsp=1&tab=Documentation_Tab |

Table continues on the next page...



#### Acronyms and abbreviations

Table 1-1. Related documentation (continued)

| Document name                                                                                | Description                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T4240 QorlQ Integrated Multicore Communications Processor Family Data Sheet (document T4240) | Provides specific data regarding DC characteristics, power sequencing, input clocks, interfaces, as well as other design considerations.                                                                                            |
|                                                                                              | Link: http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-power-architecture-processors/qoriq-t4240-t4160-t4080-multicore-communications-processors:T4240? fpsp=1&tab=Documentation_Tab |
| QorlQ T4240 Reference Design Board Quick Start (document T4240RDBQS)                         | Provides information about the features of the T4240 Reference Design Board.                                                                                                                                                        |
|                                                                                              | Link: http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-power-architecture-processors/qoriq-t4240-reference-design-board:T4240RDB?fpsp=1&tab=Documentation_Tab                        |
| QorlQ SDK 1.9 Documentation                                                                  | Provides detailed information about the Freescale Linux-<br>Oriented Software Development Kit.                                                                                                                                      |
|                                                                                              | Link: https://freescale.sdlproducts.com/LiveContent/content/en-US/QorlQ_SDK_1.9                                                                                                                                                     |

### 1.2 Acronyms and abbreviations

Table 1-2. Acronyms and abbreviations

| Usage  | Description                                         |  |
|--------|-----------------------------------------------------|--|
| ATX    | Advanced Technology eXtended                        |  |
| AVD    | Address Valid Signal                                |  |
| COP    | Common On-chip Processor                            |  |
| CTS    | Clear-to-send                                       |  |
| DDR    | Double Data Rate                                    |  |
| DIMM   | Dual In-line Memory Module                          |  |
| DUART  | Dual Universal Asynchronous Receiver-Transmitter    |  |
| ECC    | Error Checking and Correction                       |  |
| EPPROM | Electrically Erasable Programmable Read-Only Memory |  |
| eSDHC  | Enhanced SD Host Controller                         |  |
| eSPI   | Enhanced Serial peripheral interface                |  |
| IEEE   | Institute of Electrical and Electronic Engineers    |  |
| IFC    | Integrated Flash Controller                         |  |
| JEDEC  | Joint Electron Device Engineering Council           |  |
| JTAG   | Joint Test Action Group                             |  |
| L2     | Level 2 caching                                     |  |
| LED    | Light-Emitting Diode                                |  |

Table continues on the next page...



### Table 1-2. Acronyms and abbreviations (continued)

| Usage  | Description                                 |  |
|--------|---------------------------------------------|--|
| MDIO   | Management Data Input/Output                |  |
| PCIe   | Peripheral Component Interconnect Express   |  |
| PHY    | Physical Layer                              |  |
| PLD    | Programmable Logic Device                   |  |
| POR    | Power-On Reset                              |  |
| RDIMM  | Registered DIMM                             |  |
| RJ45   | Registered Jack-45                          |  |
| RS     | Series Resistor                             |  |
| RT     | Termination Resistor                        |  |
| RTS    | Ready-to-send                               |  |
| SATA   | SerialATA                                   |  |
| SD     | Secure Digital                              |  |
| SDRAM  | Synchronous DRAM                            |  |
| SerDes | Serializer/Deserializer                     |  |
| SFP    | Small Form-factor Pluggable                 |  |
| SGMII  | Serial Gigabit Media Independent Interface  |  |
| SLC    | Single-Level Cell                           |  |
| SoC    | System-on-a-chip                            |  |
| SPD    | Serial presence detect                      |  |
| SSTL   | Stub Series Terminated Logic                |  |
| UART   | Universal Asynchronous Receiver-Transmitter |  |
| UDIMM  | Unbuffered DIMM                             |  |
| USB    | Universal Serial Bus                        |  |



**Acronyms and abbreviations** 



### Chapter 2 T4240RDB Hardware

This section covers the features, block diagram, specifications, and mechanical data of the RDB.

#### 2.1 T4240RDB features

The board features are as follows:

- Freescale QorIQ T4240 communications processor with 24-virtual cores running at 1.8 GHz
  - 12 e6500 cores built on Power Architecture® technology and arranged as clusters of four e6500 cores each sharing a 2 MB L2 cache
- Memory subsystem:
  - SDRAM
    - 3 DIMM slots, supports 2 GB per DIMM
    - Supports DDR3 1866 UDIMM/RDIMM
  - NOR flash memory
    - 128 MB, 16-bit width NOR flash memory
  - NAND flash memory
    - 2 GB SLC NAND flash, MICRON:MT29F16G08ABABAWP:B
    - 2 Kbit 24C02 I2C EEPROM
    - SD connector to interface
- PCIe:
  - PCIe x4 connector
  - PCIe x8 connector
- USB 2.0:
  - One dual USB slot, connected to USB PHY, Type A Host mode
- Networking subsystem:
  - 10G PHY 4-port SFP+Cortina CS4340
  - 1G PHY SGMII, two Vitesse VSC8664
- Ethernet interfaces
  - ETH0 ETH7: Connected to SGMII PHY VSC8664
  - ETH8 ETH11: Connected to XFI Quad SFP+ PHY CS4340

QorIQ T4240 Reference Design Board User Guide, Rev. 1, 01/2016



#### 14∠40RDB features

#### **NOTE**

For Rev 1.0 silicon, two 10 Gbit /s (ETH10, ETH11) ports are not working, however other two 10 Gbit /s (ETH8, ETH9) ports are working fine.

- UART:
  - UART interface: supports two UARTs up to 115200 bit/s for console display; dual RJ45 slot is used for the two UART ports
- Transceiver (SFP+)
  - Finisar's FTLX8571D3BCL 10 Gbit/s SFP+ optical transceiver (as shown in Figure A-1)
- Miscellaneous:
  - LED:
    - Power LED (green indicates power ON; yellow indicates stand by)
    - Link LED (green indicates 1 Gbit/s and yellow indicates 10/100 Mbit/s) on each RJ-45 ethernet connector
    - Active LED (green) on each RJ45 Ethernet connector
  - JTAG for debugging
  - Reset: hardware reset
  - One Serial ATA (SATA 2.0) controller
  - Enhanced secure digital host controller (eSDHC)
  - Enhanced Serial peripheral interface (eSPI)
  - Three I2C controllers
  - Two 4-pin DUARTs
  - Power
    - ATX power supply, 300 W

Figure 2-1 shows a high-level block diagram of the T4240RDB board.





Figure 2-1. T4240RDB block diagram

### 2.2 Specifications

The table below lists the specifications for the T4240RDB board.

CharacteristicsSpecificationsChassis power requirementsATX power supply: 300 WCommunication processorFreescale QorlQ T4240Operating temperature0° C to 70° C (room temperature)Storage temperature-25° C to 85° CRelative humidity5% to 90% (noncondensing)

Table 2-1. T4240RDB specifications



opecifications



## **Chapter 3 Memory Interface**

The three fully programmable DDR SDRAM controllers support most JEDEC standards x4, x8, x16, or x32 DDR3 memories available. Only x32 DRAMs that use 1 data strobe per data byte are supported. In addition, unbuffered and registered DIMMs are also supported. However, mixing different memory types or unbuffered and registered DIMMs in the same system is not supported. Built-in error checking and correction (ECC) ensures very low bit-error rates for reliable high-frequency operation. Dynamic power management and auto-precharge modes simplify the memory system design.

Table 3-1. Supported DDR3 SDRAM device configurations

| SDRAM device | Device configuration | Row x Column x Subbank bits | 64-Bit bank size | Three banks of memory |
|--------------|----------------------|-----------------------------|------------------|-----------------------|
| 512 Mbit/s   | 128 Mbit/s x 4       | 13 x 11 x 3                 | 1 GB             | 4 GB                  |
| 512 Mbit/s   | 64 Mbit/s x 8        | 13 x 10 x 3                 | 512 MB           | 2 GB                  |
| 512 Mbit/s   | 32 Mbit/s x 16       | 12 x 10 x 3                 | 256 MB           | 1 GB                  |
| 1 Gbit/s     | 256 Mbit/s x 4       | 14 x 11 x 3                 | 2 GB             | 8 GB                  |
| 1 Gbit/s     | 128 Mbit/s x 8       | 14 x 10 x 3                 | 1 GB             | 4 GB                  |
| 1 Gbit/s     | 64 Mbit/s x 16       | 13 x 10 x 3                 | 512 MB           | 2 GB                  |
| 2 Gbit/s     | 512 Mbit/s x 4       | 15 x 11 x 3                 | 4 GB             | 16 GB                 |
| 2 Gbit/s     | 256 Mbit/s x 8       | 15 x 10 x 3                 | 2 GB             | 8 GB                  |
| 2 Gbit/s     | 128 Mbit/s x 16      | 14 x 10 x 3                 | 1 GB             | 4 GB                  |
| 4 Gbit/s     | 1 Gbit/s x 4         | 16 x 11 x 3                 | 8 GB             | 32 GB                 |
| 4 Gbit/s     | 512 Mbit/s x 8       | 16 x 10 x 3                 | 4 GB             | 16 GB                 |
| 4 Gbit/s     | 256 Mbit/s x 16      | 15 x 10 x 3                 | 2 GB             | 8 GB                  |

The DDR3 interface uses the SSTL driver/receiver and 1.5 V power. A VREF 1.5/2 V is needed for all SSTL receivers in the DDR3 interface. For details on DDR3 timing design and termination, see Application Note AN3940, *Hardware and Layout Design Considerations for DDR3 SDRAM Memory Interfaces*.



Signal integrity test results show that this design does not require terminating resistors (Series Resistor (RS) and Termination Resistor (RT)) for the discrete DDR3 devices used. DDR3 supports on-die termination, the DDR3 chips and the T4240 are connected directly.

The interface is 1.5 V and is provided by an onboard voltage regulator. VREF, which is half of the interface voltage, or 0.75 V, is supplied by the same voltage regulator. The DDR3 parameters are stored in the I2C EEPROM. An SPD binary file is preloaded in the EEPROM.

Figure 3-1 shows the DDR3 SDRAM block diagram.



Figure 3-1. DDR3 SDRAM block diagram



## **Chapter 4 High-Speed Serial Interfaces (HSSI)**

The T4240RDB board features a serializer/deserializer (SerDes) interface for high speed interconnected applications. The SerDes interface supports PCI Express, SATA II, and XFI data transfers.

The T4240RDB supports 32 configurable SerDes interfaces:

- SerDes 1 lane E to lane H is configured as SGMII.
- SerDes 2 lane A to lane D is configured to support XFI and lane E to lane H is configured to support SGMII (for 10 Gbit /s and 1 Gbit /s speed).
- SerDes 3 lane A to lane H is configured as x8 PCIe port.
- SerDes 4 lane A to lane D is configured as x4 PCIe port.
- SerDes 4 lane 6 is configured as a SATA interface.

#### 4.1 **SATA II**

The SoC SATA controller is compliant with the Serial ATA 2.6 specification. The SATA controller supports speed of 1.5 Gbit /s (first-generation SATA) and 3 Gbit /s (second-generation SATA).

#### 4.2 SGMII

The Serial Gigabit Media Independent Interface (SGMII) is a high speed interface linking the Ethernet controller with an Ethernet PHY. SGMII use differential signalling for electrical robustness, which includes four signals:

- Receive data and its inverse
- Send data and its inverse





Figure 4-1. SerDes lanes at up to 10 GHz



#### 4.3 Protocol reference clocks

Each SerDes protocol allows a finite set of valid SerDes-related RCW fields and reference clock frequencies, as shown in the table below.

Table 4-1. Valid SerDes reference clocks and RCW encoding

| SerDes protocol<br>(Given lane)    | Valid reference clock frequency | Valid setting as determined by SRDS_PRTCL_S n | Valid setting as determined by SRDS_PLL_RE F_CLK_SEL_S n | Valid setting as determined by SRDS _DIV_[prot]_S n |
|------------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| Networking Protocols               | (SerDes 1 and SerDes 2)         |                                               |                                                          |                                                     |
| SGMII (1.25 Gbit /s)               | 100 MHz                         | SGMII @ 1.25 Gbit /s                          | 0: 100                                                   | Not applicable                                      |
|                                    | 125 MHz                         |                                               | 1: 125 MHz                                               |                                                     |
| XFI (10.3125 Gbit /s)              | 156.25 MHz                      | XFI @ 10.3125 Gbit /s                         | 0: 156.25 MHz                                            | Not applicable                                      |
| Non-networking Protoc              | cols (SerDes 3 and SerD         | es 4)                                         |                                                          | 1                                                   |
| PCI2 2.5 Gbit /s                   | 100 MHz <sup>1</sup>            | Any PCIe                                      | 0: 100 MHz                                               | 2'b10:2.5 G                                         |
| (doesn't negotiate upwards)        | 125 MHz <sup>1</sup>            |                                               | 1: 125 MHz                                               |                                                     |
| PCI Express 5 Gbit /s              | 100 MHz <sup>1</sup>            | Any PCIe                                      | 0: 100 MHz                                               | 2'b01:5.0 G                                         |
| (can negotiate up to 5<br>Gbit /s) | 125 MHz <sup>1</sup>            |                                               | 1: 125 MHz                                               |                                                     |
| SATA (1.5 or 3 Gbit /s)            | 100 MHz                         | Any SATA                                      | 0: 100 MHz                                               | Not applicable <sup>2</sup>                         |
|                                    | 125 MHz                         |                                               | 1: 125 MHz                                               | 1                                                   |

<sup>1.</sup> A spread-spectrum reference clock is permitted for PCIe. However, if any other high-speed interfaces such as sRIO, Interlaken, SATA, SGMII, SGMII 2.5x, QSGMII, XAUI, XFI, 10GBase-KR, HiGig/HiGig2, or Aurora are used concurrently on the same SerDes bank, the spread-spectrum clocking is not permitted.

<sup>2.</sup> SerDes lanes configured as SATA operates at 3.0 Gbit /s. 1.5 Gbit /s operation is later enabled through the SATA IP itself. It is possible for software to set each SATA at different rates.



Protocol reference clocks



## **Chapter 5 Integrated Flash Controller (IFC)**

The Integrated Flash Controller (IFC) is used to connect with an external asynchronous NAND flash, asynchronous NOR flash, and EPROM.

It has two chip-selects, only one accessible at a time.

The IFC handles pin multiplexing to the internal system bus based on the selected controller (NAND or NOR). To save pins at the chip level, multiplexing of address pins can be done on the data bus using an external address valid signal (AVD). The BCH error-correction algorithm is used to correct the error bits while reading from a NAND device. The following figure shows a block diagram of the IFC.



#### NUR flash boot bank



Figure 5-1. IFC block diagram



#### 5.1 NOR flash boot bank

The IFC provides up to 128 MB NOR flash memory, compatible with asynchronous NOR flash (synchronous burst-read is not supported) function. The T4240RDB provides 128 MB of flash memory. The flash memory used is configured in a 16-bit port size.



#### NUR flash boot bank



Figure 5-2. NOR flash memory



There are eight virtual banks in the NOR flash memory. SW3(3:1) defines the starting location of each bank.

Table 5-1. NOR flash image layout

| SW3(3:1) | Location | Nor flash address       |
|----------|----------|-------------------------|
| 000      | vBank0   | 0xef000000 ~ 0xefffffff |
| 001      | vBank1   | 0xee000000 ~ 0xeeffffff |
| 010      | vBank2   | 0xed000000 ~ 0xedffffff |
| 011      | vBank3   | 0xec000000 ~ 0xecffffff |
| 100      | vBank4   | 0xeb000000 ~ 0xebffffff |
| 101      | vBank5   | 0xea000000 ~ 0xeaffffff |
| 110      | vBank6   | 0xe9000000 ~ 0xe9ffffff |
| 111      | vBank7   | 0xe8000000 ~ 0xe8ffffff |

There are two default images in both vBank0 and vBank4 location. If the image in vBank0 is corrupted, adjust SW3(3:1) into (100) position, to boot up from vBank4.



NUR flash boot bank



### Chapter 6 Ethernet

- Up to eight 1 GHz Ethernet MACs
- Up to four 10 GHz MACs

### 6.1 Ethernet management

This section explains the electrical characteristics for the EMI1 and EMI2 interfaces. Frame Manager 2's external GE MDIO configures external GE PHYs connected to EMI1 pins.

Frame Manager 2's external 10GE MDIO configures external XAUI, XFI, and HiGig/HiGig2 PHYs connected to EMI2 pins.

The EMI1 interface timing is compatible with IEEE Std 802.3<sup>TM</sup> clause 22 and EMI2 interface timing is compatible with IEEE Std 802.3<sup>TM</sup> clause 45.





Figure 6-1. EMI1: SGMII

Table 6-1. MDC/MDIO connectivity

| Device      | Package pin number | Signal description     |
|-------------|--------------------|------------------------|
| Interface 1 | G13                | Management Data Clock  |
| Interface 2 | H13                | Management Data In/Out |



## Chapter 7 eSPI

The eSPI is a full-duplex, synchronous, and character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The T4240 has the ability to boot from an SPI serial flash device in addition to supporting other peripheral devices conforming to the SPI standard.

On the RDB, a spansion SPI flash memory is supported (optional).



Figure 7-1. SPI





### Chapter 8 eSDHC Interface

The enhanced SD host controller (eSDHC) provides an interface between host system and SD cards. The secure digital (SD) card is specifically designed to meet the security, capacity, and performance. Booting from the eSDHC interface is supported using the processor's on-chip ROM.

On the T4240RDB, a single connector is used for both SD memory cards.



Figure 8-1. eSDHC interface





### Chapter 9 I2C

The T4240RDB uses 3 onboard I2C interfaces, which are connected to EEPROM (2Kb AT24C02C-XHM-B), RTC (Maxim DS1374), and Windbond (W83793G).



Figure 9-1. I2C block diagram





## Chapter 10 USB Interface

The USB interface is configured to operate as a standalone host.

The board features are:

- High-speed (480 MB/s), full-speed (12 MB/s), and low-speed (1.5 MB/s) operations
- Host mode
- Dual stacked Type A connection



Figure 10-1. USB interface





# **Chapter 11 Serial Interface, UART, and Console Port**

Serial interface 1 is a RS232 level serial interface in a RJ45 form factor and is used as the console port for the Appliance. The default setting for this port are:

• Baud rate: 115200

Data: 8 bitParity: NoStop: 1 bit

No flow control

### Each UART supports:

- Full-duplex operation
- Software-programmable baud generators:
  - Divide the input clock by 1 to (216 1)
  - Generate a 16x clock for the transmitter and receiver engines
- Clear-to-send (CTS) and ready-to-send (RTS) modem control functions
- Software-selectable serial interface data format that includes:
  - Data length
  - Parity
  - 1/1.5/2 stop bit
  - Baud rate
- Overrun, parity, and framing error detection

The UART ports are routed to dual stacked RJ45 connectors.



Figure 11-1. Serial interface, UART, and console port





# **Chapter 12 Power-On Reset Configuration**

This section explains:

- POR configuration PLD
- POR configuration resistors

# 12.1 POR configuration PLD

The Power-On Reset (POR) configuration PLD drives the appropriate configuration signals to the processor. When hard reset (HRESET) is asserted, the POR config PLD begins to drive the POR config signals to the processor. The config signals remain asserted until the POR config signals are latched by the processor. The POR configuration PLD does not drive all POR configuration pins, it drives only those which needs boot location.

# 12.2 POR configuration resistors

The Power-On Reset (POR) settings that are not set by the POR configuration PLD are controlled using the on-board resistors.



run configuration resistors



# Chapter 13 JTAG/COP

The JTAG connection is provided by a direct connection to the appropriate header connector.

# 13.1 COP/JTAG port

The common on-chip processor (COP) is a part of the T4240's JTAG module and is implemented as a set of additional instructions and logic. This port can connect to a dedicated emulator for extensive system debugging.







Figure 13-1. JTAG



# **Chapter 14 Interface Connector Pinout and Switch Settings**

This section explains:

- Interface connector pinout
- Switch settings

# 14.1 Interface connector pinout

Figure 14-1 shows the top view of the T4240RDB board.





Figure 14-1. T4240RDB top view

The following section shows the connector figures and pinouts of the T4240RDB board connectors.

## 14.1.1 CN3

The figure below shows the CN3 SD card connector.





Figure 14-2. CN3 SD card connector

Table 14-1. CN3 SD card connector interface

| Pin | Description      |
|-----|------------------|
| 1   | DAT3             |
| 2   | CMD              |
| 3   | GND              |
| 4   | VCC_3.3          |
| 5   | CLK              |
| 6   | GND              |
| 7   | DAT0             |
| 8   | DAT1             |
| 9   | DAT2             |
| 10  | WRITE PROTECTION |
| 11  | CARD DETECTION   |
| 12  | COMMON PIN       |

# 14.1.2 CN4

CN4 shows the USB ports that are present on the board.





Figure 14-3. CN4 USB connector

Table 14-2. CN4 USB connector interface

| Pin | Description |
|-----|-------------|
| 1   | USB2_VCC5   |
| 2   | USB2_DATA-  |
| 3   | USB2_DATA+  |
| 4   | USB_GND     |
| 5   | USB1_VCC5   |
| 6   | USB1_DATA-  |
| 7   | USB1_DATA+  |
| 8   | USB_GND     |

## 14.1.3 FAN1 to FAN6

The figure below shows the FAN connectors.





Figure 14-4. FAN1 to FAN6 connectors



Figure 14-5. FAN connector

Table 14-3. FAN connector interface

| Pin | Description       |
|-----|-------------------|
| 1   | GND               |
| 2   | +12V              |
| 3   | Fan speed sensor  |
| 4   | Fan speed control |



mieriace connector pinout

## 14.1.4 FAN7 to FAN12

The figure below shows the FAN7 to FAN12 connectors.



Figure 14-6. FAN7 to FAN12 connectors

## 14.1.5 J1

J1 refers to Power IC programing connector and I2C for power IC IR3565A.



Figure 14-7. J1 connector

Table 14-4. J1 connector interface

| Pin | Description |
|-----|-------------|
| 1   | GND         |
| 2   | Power_SDA   |
| 3   | Power_SCL   |

## 14.1.6 J2

J2 refres to the T4240 JTAG debug port.



Figure 14-8. J2 connector



Table 14-5. J2 connector interface

| Pin | Description     |
|-----|-----------------|
| 1   | COP_TDO         |
| 2   | NC              |
| 3   | COP_TDI         |
| 4   | COP_TRST_N      |
| 5   | NC              |
| 6   | OVDD            |
| 7   | COP_TCK         |
| 8   | NC              |
| 9   | COP_TMS         |
| 10  | NC              |
| 11  | COP_SRST_B      |
| 12  | GND             |
| 13  | COP_HRST_B      |
| 14  | NC              |
| 15  | DUT_CKSTP_OUT_B |
| 16  | GND             |

## 14.1.7 J3: PCle connector

J3 refers to the PCIe x8 connector.



Figure 14-9. PCle x8 connector





Figure 14-10. J3 connector

**Table 14-6. J3** 

| Pin Number | Net Name          | Pin Function Description               | Direction |
|------------|-------------------|----------------------------------------|-----------|
| B1         | VCC_12            | +12V                                   | POWER     |
| B2         | VCC_12            | +12V                                   | POWER     |
| B3         | VCC_12            | +12V                                   | POWER     |
| B4         | GND               | GND                                    |           |
| B5         | 12C1_CH2_SCL      | SMbus CLK                              | I/O       |
| B6         | 12C1_CH2_SDA      | SMbus DATA                             | I/O       |
| B7         | GND               | GND                                    |           |
| B8         | VCC_3.3           | +3.3V                                  | POWER     |
| B9         | SLOT6_TRST_B      | TRST#                                  | OUT       |
| B10        | VCC_P3V3SB        | +3.3V Standby power                    | POWER     |
| B11        | PCIEX8_WAKE_B     | PCIe WAKE                              | OUT       |
| B12        | NC                | Reserved                               |           |
| B13        | GND               | GND                                    |           |
| B14        | SD3_TXC0_P        | PCI Express Transmit Differential Pair | OUT       |
| B15        | SD3_TXC0_N        | PCI Express Transmit Differential Pair | OUT       |
| B16        | GND               | GND                                    |           |
| B17        | HOT_PLUG_DETECT_B | PLUG DETECT                            | OUT       |
| B18        | GND               | GND                                    |           |
| B19        | SD3_TXC1_P        | PCI Express Transmit Differential Pair | OUT       |
| B20        | SD3_TXC1_N        | PCI Express Transmit Differential Pair | OUT       |
| B21        | GND               |                                        |           |
| B22        | GND               |                                        |           |

Table continues on the next page...





# Table 14-6. J3 (continued)

| Pin Number | Net Name          | Pin Function Description               | Direction |
|------------|-------------------|----------------------------------------|-----------|
| B23        | SD3_TXC2_P        | PCI Express Transmit Differential Pair | OUT       |
| B24        | SD3_TXC2_N        | PCI Express Transmit Differential Pair | OUT       |
| B25        | GND               |                                        |           |
| B26        | GND               |                                        |           |
| B27        | SD3_TXC3_P        | PCI Express Transmit Differential Pair | OUT       |
| B28        | SD3_TXC3_N        | PCI Express Transmit Differential Pair | OUT       |
| 329        | GND               |                                        |           |
| B30        | NC                |                                        |           |
| B31        | HOT_PLUG_DETECT_B |                                        | OUT       |
| B32        | GND               |                                        |           |
| B33        | SD3_TXC4_P        | PCI Express Transmit Differential Pair | OUT       |
| B34        | SD3_TXC4_N        | PCI Express Transmit Differential Pair | OUT       |
| B35        | GND               |                                        |           |
| B36        | GND               |                                        |           |
| B37        | SD3_TXC5_P        | PCI Express Transmit Differential Pair | OUT       |
| B38        | SD3_TXC5_N        | PCI Express Transmit Differential Pair | OUT       |
| B39        | GND               |                                        |           |
| B40        | GND               |                                        |           |
| B41        | GNDSD3_TXC6_P     | PCI Express Transmit Differential Pair | OUT       |
| B42        | SD3_TXC6_N        | PCI Express Transmit Differential Pair | OUT       |
| B43        | GND               |                                        |           |
| B44        | GND               |                                        |           |
| B45        | SD3_TXC7_P        | PCI Express Transmit Differential Pair | OUT       |
| B46        | SD3_TXC7_N        | PCI Express Transmit Differential Pair | OUT       |
| B47        | GND               |                                        |           |
| B48        | HOT_PLUG_DETECT_B | PLUG_DETECT                            | OUT       |
| B49        | GND               |                                        |           |
| A1         | PRSNT1            | PLUG DETECT                            | OUT       |
| A2         | VCC_12            | +12v                                   | POWER     |
| A3         | VCC_12            | +12v                                   | POWER     |
| <b>A</b> 4 | GND               |                                        |           |
| <b>A</b> 5 | SLOT6_TCK         | SLOT TCK                               | OUT       |
| <b>A6</b>  | SLOT6_TDI         | SLOT TDI                               | OUT       |
| 47         | NC                |                                        |           |
| A8         | SLOT6_TMS         | SLOT TMS                               | OUT       |
| A9         | VCC_3.3           | +3.3V                                  | POWER     |
| A10        | VCC_3.3           | +3.3V                                  | POWER     |
| A11        | RST_PCIE_B        | RESET                                  | IN        |
| A12        | GND               |                                        |           |

Table continues on the next page...



#### meriace connector pinout

# Table 14-6. J3 (continued)

| Pin Number | Net Name      | Pin Function Description              | Direction |
|------------|---------------|---------------------------------------|-----------|
| A13        | PCIE_REFCLK_P | PCIE CLOCK P                          | IN        |
| A14        | PCIE_REFCLK_N | PCIE CLOCK N                          | IN        |
| A15        | GND           |                                       |           |
| A16        | SD3_RX0_P     | PCI Express Receive Differential Pair | IN        |
| A17        | SD3_RX0_N     | PCI Express Receive Differential Pair | IN        |
| A18        | GND           |                                       |           |
| A19        | NC            |                                       |           |
| A20        | GND           |                                       |           |
| A21        | SD3_RX1_P     | PCI Express Receive Differential Pair | IN        |
| A22        | SD3_RX1_N     | PCI Express Receive Differential Pair | IN        |
| A23        | GND           |                                       |           |
| A24        | GND           |                                       |           |
| A25        | SD3_RX2_P     | PCI Express Receive Differential Pair | IN        |
| A26        | SD3_RX2_N     | PCI Express Receive Differential Pair | IN        |
| A27        | GND           |                                       |           |
| A28        | GND           |                                       |           |
| A29        | SD3_RX3_P     | PCI Express Receive Differential Pair | IN        |
| A30        | SD3_RX3_N     | PCI Express Receive Differential Pair | IN        |
| A31        | GND           |                                       |           |
| A32        | NC            |                                       |           |
| A33        | NC            |                                       |           |
| A34        | GND           |                                       |           |
| A35        | SD3_RX4_P     | PCI Express Receive Differential Pair | IN        |
| A36        | SD3_RX4_N     | PCI Express Receive Differential Pair | IN        |
| A37        | GND           |                                       |           |
| A38        | GND           |                                       |           |
| A39        | SD3_RX5_P     | PCI Express Receive Differential Pair | IN        |
| A40        | SD3_RX5_N     | PCI Express Receive Differential Pair | IN        |
| A41        | GND           |                                       |           |
| A42        | GND           |                                       |           |
| A43        | SD3_RX6_P     | PCI Express Receive Differential Pair | IN        |
| A44        | SD3_RX6_N     | PCI Express Receive Differential Pair | IN        |
| A45        | GND           |                                       |           |
| A46        | GND           |                                       |           |
| A47        | SD3_RX7_P     | PCI Express Receive Differential Pair | IN        |
| A48        | SD3_RX7_N     | PCI Express Receive Differential Pair | IN        |
| A49        |               | GND                                   |           |

U55: PCI-e x4 connector





Figure 14-11. U55 connector

**Table 14-7. J3** 

| Pin Number | Net Name          | Pin Function Description               | Direction |
|------------|-------------------|----------------------------------------|-----------|
| B1         | VCC_12            | +12V                                   | POWER     |
| B2         | VCC_12            | +12V                                   | POWER     |
| B3         | VCC_12            | +12V                                   | POWER     |
| B4         | GND               | GND                                    |           |
| B5         | I2C1_CH2_SCL      | SMbus CLK                              | I/O       |
| B6         | I2C1_CH2_SCL      | SMbus DATA                             | I/O       |
| B7         | GND               | GND                                    |           |
| B8         | VCC_3.3           | +3.3V                                  | POWER     |
| В9         | SLOT6_TRST_B      | TRST#                                  | OUT       |
| B10        | VCC_P3V3SB        | +3.3V Standby power                    | POWER     |
| B11        | PCIEX8_WKE_B      | PCIE WAKE#                             | OUT       |
| B12        | NC                | Reserved                               |           |
| B13        | GND               | GND                                    |           |
| B14        | SD3_TXC0_P        | PCI Express Transmit Differential Pair | I/O       |
| B15        | SD3_TXC0_N        | PCI Express Transmit Differential Pair | I/O       |
| B16        | GND               | GND                                    |           |
| B17        | HOT_PLUG_DETECT_B | PLUT DETECT                            | OUT       |
| B18        | GND               | GND                                    |           |
| B19        | SD3_TXC1_P        | PCI Express Transmit Differential Pair | OUT       |
| B20        | SD3_TXC1_N        | PCI Express Transmit Differential Pair | OUT       |
| B21        | GND               | GND                                    |           |
| B22        | GND               | GND                                    |           |
| B23        | SD3_TXC2_P        | PCI Express Transmit Differential Pair | I/O       |
| B24        | SD3_TXC2_N        | PCI Express Transmit Differential Pair | I/O       |
| B25        | GND               | GND                                    |           |
| B26        | GND               | GND                                    |           |
| B27        | SD3_TXC3_P        | PCI Express Transmit Differential Pair | I/O       |
| B28        | SD3_TXC3_N        | PCI Express Transmit Differential Pair | I/O       |
| B29        | GND               | GND                                    |           |
| B30        | NC                |                                        |           |
| B31        | HOT_PLUG_DETECT_B |                                        | OUT       |

Table continues on the next page...



## merface connector pinout

# Table 14-7. J3 (continued)

| Pin Number | Net Name      | Pin Function Description               | Direction |
|------------|---------------|----------------------------------------|-----------|
| B32        | GND           | GND                                    |           |
| A1         | PRSNT1        | PLUG DETECT                            | OUT       |
| A2         | VCC_12        | +12v                                   | POWER     |
| A3         | VCC_12        | +12v                                   | POWER     |
| A4         | GND           | GND                                    |           |
| A5         | SLOT6_TCK     | SLOT TCK                               | OUT       |
| A6         | SLOT6_TDI     | SLOT TDI                               | OUT       |
| A7         | NC            |                                        |           |
| A8         | SLOT6_TMS     | SLOT TMS                               | OUT       |
| A9         | VCC_3.3       | +3.3V                                  | POWER     |
| A10        | VCC_3.3       | +3.3V                                  | POWER     |
| A11        | RST_PCIE_B    | RESET                                  | IN        |
| A12        | GND           |                                        |           |
| A13        | PCIE_REFCLK_P | PCIE CLOCK P                           | IN        |
| A14        | PCIE_REFCLK_N | PCIE CLOCK N                           | IN        |
| A15        | GND           |                                        |           |
| A16        | SD3_RX0_P     | PCIE Express Receive Differential Pair | IN        |
| A17        | SD3_RX0_N     | PCIE Express Receive Differential Pair | IN        |
| A18        | GND           |                                        |           |
| A19        | NC            |                                        |           |
| A20        | GND           |                                        |           |
| A21        | SD3_RX1_P     | PCIE Express Receive Differential Pair | IN        |
| A22        | SD3_RX1_N     | PCIE Express Receive Differential Pair | IN        |
| A23        | GND           |                                        |           |
| A24        | GND           |                                        |           |
| A25        | SD3_RX2_P     | PCIE Express Receive Differential Pair | IN        |
| A26        | SD3_RX2_N     | PCIE Express Receive Differential Pair | IN        |
| A27        | GND           |                                        |           |
| A28        | GND           |                                        |           |
| A29        | SD3_RX3_P     | PCIE Express Receive Differential Pair | IN        |
| A30        | SD3_RX3_N     | PCIE Express Receive Differential Pair | IN        |
| A31        | GND           |                                        |           |
| A32        | NC            |                                        |           |
|            |               | 1                                      |           |

# 14.1.8 J4

J4 refers to the T4240 I2C bus connector.





Figure 14-12. J4 connector

Table 14-8. J4 connector interface

| Pin | Description |
|-----|-------------|
| 1   | I2C2_SDA    |
| 2   | GND         |
| 3   | I2C2_SCL    |

## 14.1.9 J8

J8 refers to the ATX power connector.



Figure 14-13. J8 connector

Table 14-9. J8 connector interface

| Pin | Description |
|-----|-------------|
| 1   | GND         |
| 2   | GND         |
| 3   | GND         |
| 4   | GND         |
| 5   | P12V        |
| 6   | P12V        |
| 7   | P12V        |
| 8   | P12V        |



meriace connector pinout

## 14.1.10 J9

J9 refers to the ATX power connector for main power.



Figure 14-14. J9 connector

Table 14-10. J9 connector interface

| Description |
|-------------|
| P3V3        |
| P3V3        |
| GND         |
| P5V         |
| GND         |
| P5V         |
| GND         |
| PWROK       |
| P5V_SB      |
| P12V        |
| P12V        |
| P3V3        |
| P3V3        |
| N12V        |
| GND         |
| PSON#       |
| GND         |
| GND         |
| GND         |
| NC          |
| P5V         |
| P5V         |
| P5V         |
| GND         |
|             |

# 14.1.11 J10

J10 refers to the SATA port/connector.





## Figure 14-15. J10 SATA connector

Table 14-11. J10 SATA connector interface

| Pin | Description |
|-----|-------------|
| 1   | GND         |
| 2   | TXP         |
| 3   | TXN         |
| 4   | GND         |
| 5   | RXN         |
| 6   | RXP         |
| 7   | GND         |

# 14.1.12 J11, J12, J13, and J14

J11, J12, J13, and J14 refers to the gigabit Ethernet (GbE) ports.



#### meriace connector pinout



Figure 14-16. J11, J12, J13, and J14 connector

Table 14-12. J11, J12, J13, and J14 connector interface

| Pin | Description |
|-----|-------------|
| A1  | A_MDX1+     |
| A2  | A_MDX1-     |
| A3  | A_MDX2+     |
| A4  | A_MDX2-     |
| A5  | A_MDX3+     |
| A6  | A_MDX3-     |
| A7  | A_MDX4+     |
| A8  | A_MDX4-     |
| B1  | B_MDX1+     |
| B2  | B_MDX1-     |
| B3  | B_MDX2+     |
| B4  | B_MDX2-     |
| B5  | B_MDX3+     |
| B6  | B_MDX3-     |
| B7  | B_MDX4+     |
| B8  | B_MDX4-     |



## 14.1.13 JP1

The jumper, JP1, is used to toggle between Normal mode and JTAG debug mode. Figure 14-18 shows the JP1 pins.

- **Normal mode**: when in this mode, the system will go directly to the Kernel. Place the jumper on pin 1 and 2 to use this mode. This is also the default mode.
- **JTAG mode**: when in this mode, before entering to the Kernel, there is an option to select **CodeWarrior IDE**, as a debugging tool. Place the jumper on pin 2 and 3 to use this mode.

JP1 is shown in the figure below.



Figure 14-17. JP1 connector

Table 14-13. JP1 connector interface

| JTAG mode | Choose                |
|-----------|-----------------------|
| 1-2       | Normal mode (default) |
| 2-3       | JTAG mode             |



Figure 14-18. JP1 pins

## 14.1.14 JP3: JTAG connector

The jumper, JP3, refers to the CPLD programming connector.



#### meriace connector pinout



Figure 14-19. JP3 connector

Table 14-14. JP3 connector interface

| Pin | Description |
|-----|-------------|
| 1   | TCK         |
| 2   | GND         |
| 3   | TDO         |
| 4   | P3V3        |
| 5   | TMS         |
| 6   | JTAG        |
| 7   | NC          |
| 8   | NC          |
| 9   | TDI         |
| 10  | GND         |

# 14.1.15 J15, J17, J18, and J19: 10G SFP+

The jumpers, J15, J17, J18, and J19 (10G SFP+), refers to the 10 gigabit Ethernet (GbE) ports.





Figure 14-20. 15, J17, J18, and J19: 10G SFP+

Table 14-15. J15, J17, J18, and J19 connector interface

| Pin | Description |
|-----|-------------|
| 1   | VEET        |
| 2   | TXFAULT     |
| 3   | TX_DISABLE  |
| 4   | SDA         |
| 5   | SCL         |
| 6   | MOD-ABS     |
| 7   | RS0         |
| 8   | RX_LOS      |
| 9   | RS1         |
| 10  | VEER        |
| 11  | VEER        |
| 12  | RD-         |
| 13  | RD+         |
| 14  | VEER        |
| 15  | VCCR        |
| 16  | ССТ         |
| 17  | VEET        |
| 18  | TD+         |
| 19  | TD-         |
| 20  | VEET        |

# 14.1.16 LAN1

LAN1 refers to the console ports.



## meriace connector pinout



Figure 14-21. LAN1 console connector

Table 14-16. LAN1 console connector interface

| Pin | Description |
|-----|-------------|
| A1  | SER2_RTS_B  |
| A2  | NC          |
| A3  | SER2_TXD    |
| A4  | GND         |
| A5  | NC          |
| A6  | SER2_RSD    |
| A7  | NC          |
| A8  | SER2 CTS B  |
| B1  | SER1_RTS_B  |
| B2  | NC          |
| B3  | SER1_TXD    |
| B4  | GND         |
| B5  | NC          |
| B6  | SER1_RXD    |
| B7  | NC          |
| B8  | SER1 CTS B  |

# 14.1.17 Cortina PHY to 10G

The figure below shows the 10G SPF+ cage.





Figure 14-22. 10G SPF+ cage



Figure 14-23. Cortina PHY to 10G

# 14.2 Switch settings

This section explains:

- SW1 switch
- SW2 switch
- SW3 switch
- SW4 switch

## 14.2.1 SW1 switch

The switch SW1 is used to select the frequency of the system clock (SYSCLK) and the DDR reference clock (DDRCLK).

Default SW1 settings are:

• SW1(4:1): 0011



#### **switch** settings

• SYSCLK: 66 MHz

DDRCLK: 133.33 MHz

Table 14-17. SW1 settings

| SW1(4:1)       | SYSCLK (MHz) | DDRCLK (MHz) |
|----------------|--------------|--------------|
| 0000           | 66.67        | 66.67        |
| 0001           | 66.67        | 100          |
| 0010           | 66.67        | 125          |
| 0011 (Default) | 66.67        | 133.33       |
| 0100           | 100          | 66.67        |
| 0101           | 100          | 100          |
| 0110           | 100          | 125          |
| 0111           | 100          | 133.33       |
| 1000           | 125          | 66.67        |
| 1001           | 125          | 100          |
| 1010           | 125          | 125          |
| 1011           | 125          | 133.33       |
| 1100           | 133.33       | 66.67        |
| 1101           | 133.33       | 100          |
| 1110           | 133.33       | 125          |
| 1111           | 133.33       | 133.33       |

For SW1(4:1) values in the above table, 0 indicates ON and 1 indicates OFF.

# 14.2.2 SW2 switch

The SW2(3:4) are reserved pins for future use. For an SW2 value, 0 indicates ON and 1 indicates OFF.

The SW2 and SW3 are the selection of the RCW location.

Table 14-18. SW2 switch settings

| Switches | Pin | Description                              |
|----------|-----|------------------------------------------|
| SW2      |     | ON: RCW source located in NOR/<br>NAND   |
|          |     | OFF: RCW source located in SD/<br>EEPROM |
| SW2      | 2   | ON: RCW in NAND                          |
|          |     | OFF: RCW in NOR                          |
| SW3      | 4   | ON: RCW source located in SD             |
|          |     | OFF: RCW source located in EEPROM        |



Default is to have the RCW in the NOR flash location.

#### NOTE

- RCW in NOR, SW2(4:1) will be XX10.
- RCW in NAND, SW2(4:1) will be XX00.

### 14.2.3 SW3 switch

The SW3 switch defines eight virtual banks starting and ending location. There are eight virtual bank in the NOR flash and Table 5-1 lists those bank locations. SW3(3:1) is used to select the virtual bank location. The default SW3(4:1) value is X000.

Table 14-19. SW3 settings

| 3:1 | NOR flash virtual bank selector |
|-----|---------------------------------|
| 4   | RCW_SRC_SELECT                  |
|     | 1: RCW source from EEPROM       |
|     | 0: RCW source from SD card      |

For an SW3 value, 0 indicates ON and 1 indicates OFF.

## 14.2.4 SW4 switch

The table below shows the SW4 settings, where value 0 indicates ON and value 1 indicates OFF.

Table 14-20. SW4 settings

| P1 | Auto power mode                   |
|----|-----------------------------------|
|    | 0: Power always ON                |
|    | 1: Normal power ON/ OFF (default) |
| P2 | CFG_TESTSEL_B                     |
|    | 0: T4160 mode                     |
|    | 1: T4240 mode (default)           |
| P3 | Reserved                          |
| P4 | Reserved                          |



**switch** settings



# **Chapter 15 Updating the RCW**

Follow these steps for updating the RCW under U-Boot:

1. Use UART to 10-pin connector cable to connect the host computer to the T4240RDB board, as shown in Figure 15-3.



Figure 15-1. UART to 10-Pin connector cable

P1 P2 2 --- 3 3 --- 6 4 --- 7 5 --- 4,5 6 --- 2 7 --- 8 8 --- 1

Figure 15-2. Console cable - pin assignment





Figure 15-3. Connecting the 10-Pin connector cable

Table 15-1. Connecting the 10-Pin connector cable

| DB9 | RJ45 | Function |
|-----|------|----------|
| 8   | 1    | RTS      |
| 6   | 2    | Х        |
| 2   | 3    | TXD      |
| 5   | 4    | GND      |
| 5   | 5    | Х        |
| 3   | 6    | RXD      |

Table continues on the next page...



Table 15-1. Connecting the 10-Pin connector cable (continued)

| DB9 | RJ45 | Function |
|-----|------|----------|
| 4   | 7    | X        |
| 7   | 8    | CTS      |

- 2. Open the Hyper Terminal or applications with similar functions on the host computer, for example Tera Term.
  - a. Open **Tera Term** from the programs menu.
  - b. Select **Serial** and confirm the correct **Port**.
  - c. Select **OK**, as shown in Figure 15-4.



Figure 15-4. Selecting serial port

- d. Select Setup/serial port ..., and prepare setup as shown in Figure 15-5.
  - Port: COM1
  - Baud rate: 115200
  - Data: 8 bitParity: none
  - Stop:1 bit
  - Flow control: none





Figure 15-5. Setting-up serial port

3. Turn ON and select any key to stop autoboot on U-boot, for example, RCW binary filename  $rcw_28_56_2_10_1666MHz_1600MHz$ . BIN file is located in SW image (USB drive).

#### **NOTE**

- File name is only for reference, actual name may vary based on project requirements.
- Use Kermit for downloading files.

```
loadb 1000000
## Ready for binary (kermit) download to 0x01000000 at 115200 bps...
## Total Size = 0x00000078 = 120 Bytes
## Start Addr = 0x01000000
```

I2C write 1000000 50 0.1 78 (Length: 78; refers to the total size value)





Figure 15-6. Transferring through Kermit

Power up the board once completed.





# Appendix A 10G interface testing steps

The T4240RDB board has four 10G interfaces. The table below shows how ETH matches to Linux.

Table A-1. Port map

| Label in Linux | Label on the front panel |  |
|----------------|--------------------------|--|
| fm1-mac9       | eth11                    |  |
| fm1-mac10      | eth10                    |  |
| fm2-mac9       | eth8                     |  |
| fm2-mac10      | eth9                     |  |

Follow these steps to test the 10G interface performance by connecting two RDB boards:

- 1. Choose the correct interface you want to test and connect the SFP.
- 2. After connecting the SFP, connect the optical fiber cable to both ends of the board, as shown in Figure A-2.
- 3. In this scenario, the interface is fm2-mac9. So, you need to make the interface up, by using the following commands on both the boards:
  - Board 1: Ifconfig fm2-mac9 192.168.1.10 up
  - Board 2: Ifconfig fm2-mac9 192.168.1.20 up
- 4. Now you can ping between the boards and test if the connection is working fine:
  - Board 1: ping 192.168.1.20
  - Board 2: ping 192.168.1.10





Figure A-1. SFP+ module





Figure A-2. 10G interface (ETH8-ETH11)

Execute these commands to run iperf on the board to check the throughput performance:

- Board 1 (server): iperf -s
- Board 2 (client): iperf -c 192.168.1.10 -P24

Iperf is a client server communication benchmark, which is used to measure the network performance. Following are the features of ipref:

- TCP:
  - Measure bandwidth.
  - Report MSS/MTU size and observed read sizes.
  - Support for TCP window size via socket buffers.
  - Multi-threaded if pthreads or Win32 threads are available. Client and server can have multiple simultaneous connections.
- UDP:
  - Client can create UDP streams of specified bandwidth.
  - Measure packet loss
  - Measure delay jitter



- Multicast capable
- Multi-threaded if pthreads are available. Client and server can have multiple simultaneous connections.

## Listing A-1. Synopsis

```
iperf [-s|-c host] [options]
iperf [-h|--help] [-v|--version]
                           Listing A-2. Description Client/Server
-f, --format
          [kmKM] format to report: Kbits, Mbits, KBytes, MBytes
-i, --interval
          # seconds between periodic bandwidth reports
-1, --len
          # [KM]length of buffer to read or write (default 8 KB)
-m, --print_mss
         print TCP maximum segment size (MTU - TCP/IP header)
          # server port to listen on/connect to
-u, --udp
         use UDP rather than TCP
-w, --window
          #[KM] TCP window size (socket buffer size)
-B, --bind
          <host> bind to <host>, an interface or multicast address
-C, --compatibility
          for use with older versions does not sent extra msgs
-M, --mss
          # set TCP maximum segment size (MTU - 40 bytes)
-N, --nodelay
          set TCP no delay, disabling Nagle's Algorithm
-V, --IPv6Version
          Set the domain to IPv6
                                Listing A-3. Server specific
-s, --server
         run in server mode
-U, --single_udp
         run in single threaded UDP mode
-D, --daemon
         run the server as a daemon
                                 Listing A-4. Client specific
-b, --bandwidth #[KM]
          for UDP, bandwidth to send at in bits/sec (default 1 Mbit/sec, implies -u)
-c, --client
          <host> run in client mode, connecting to <host>
-d, --dualtest
```



```
Do a bidirectional test simultaneously
-n, --num
          #[KM] number of bytes to transmit (instead of -t)
-r, --tradeoff
          Do a bidirectional test individually
-t, --time
          # time in seconds to transmit for (default 10 secs)
-F, --fileinput <name>
          input the data to be transmitted from a file
-I, --stdin
          input the data to be transmitted from stdin
-L, --listenport #
          port to recieve bidirectional tests back on
-P, --parallel
          # number of parallel client threads to run
-T, --ttl
          # time-to-live, for multicast (default 1)
```





# Appendix B Booting from SD card

Follow these steps to boot up the board from SD card:

- 1. Insert the SD card into another working board.
- 2. Download the U-Boot image and program into the SD card.

```
tftp 1000000 $your_dir_path/u-boot-with-spl-pbl.bin mmc write 1000000 8 0x800
```

#### NOTE

u-boot-with-Spi-pbl.bin file is inside the software folder in the USB stick.

3. Set the T4240RDB's board Switch 3 as:

```
SW3[4-1] = 0000
```

#### NOTE

- 0 represents ON.
- SW2[1] should be OFF to load RCW from SD card.
- 4. Insert the SD card into the SD card slot and power up the board to boot from SD card.

#### **NOTE**

For more information on the system recovery, see QorIQ SDK 1.9 Documentation.

- For SD card deployment, see, https:// freescale.sdlproducts.com/LiveContent/content/en-US/ QorIQ\_SDK\_1.9/GUID-09A9C9B5-F47B-4FA3-912E-8682C033B6BF
- When both NOR flash memory banks are corrupted, you can use the CodeWarrior IDE to flash the image to NOR flash memory. See, https://freescale.sdlproducts.com/LiveContent/content/en-US/QorIQ\_SDK\_1.9/GUID-6E44B664-2DFD-4695-9801-701AD8CB0B9D





# **Appendix C Revision History**

Table C-1 summarizes revisions to this document.

Table C-1. Revision history

| Revision | Date    | Topic cross-reference | Description                |
|----------|---------|-----------------------|----------------------------|
| Rev. 1   | 01/2016 | SW2 switch            | Updated table Table 14-18. |
| Rev. 0   | 06/2015 | -                     | Initial public release.    |





How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and QorlQ are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015-2016 Freescale Semiconductor, Inc. All rights reserved.

Document Number T4240RDBUG Revision 1, 01/2016



