EA 2

- 1. Ereignisse (10 Punkte). Es seien $A_1, \ldots, A_n \in \mathcal{A}$ Ereignisse auf einem (diskreten) Wahrscheinlichkeitsraum.
 - a) (5 Punkte) Drücken Sie folgende Ereignisse mit Hilfe von A_1, \ldots, A_n aus:
 - i) $M_k =$ "mindestens k der Ereignisse treten ein"
 - ii) $G_k = \text{,genau } k \text{ der Ereignisse treten ein".}$ $1_{A}(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \text{sowst} \end{cases}$
 - b) (5 Punkte) Wir definieren $Z = \sum_{k=1}^{n} \widehat{\mathbb{1}_{A_k}}$ die Anzahl der eingetroffenen Ereignisse. Schreiben
- ii) ... in Abhängigkeit von $\mathbb{P}[A_k]$.

 iii) ... in Abhängigkeit von $\mathbb{P}[G_k]$. $\mathbb{E}[\mathcal{I}] = \sum_{k=1}^{N} \mathbb{E}[\mathcal{I}] = \sum_{k=1}^{N} \mathbb{P}[M_k]$ 2. Zufallsgraph (10 Punkte). Wir betrachten den unten all v_1, v_2, v_3 und stellen uns v_1, v_2, v_3 und stellen uns v_1, v_2, v_3 und stellen uns v_2, v_3 und stellen uns v_3 .

 e_1, e_2, e_3 Teil des Graphen ist:

- Wir werfen eine Münze. Zeigt Sie Kopf, ist e_1 Teil des Graphen (und sonst nicht).
- Wir würfeln mit einem (sechsseitigen) Würfel. Ist das Ergebnis kleiner oder gleich 5, ist e₂ Teil des Graphen (und sonst nicht).
- Ist das Ergebnis des obigen Würfelwurfs größer als 3 oder gleich 1, dann ist e_3 Teil des Graphen (und sonst nicht).

Wir nehmen an, dass Münze und Würfel jeweils fair sind. Der Zufallsgraph G ist eine Zufallsvariable mit der folgenden Verteilung:

		1.	. \	•	\land			
$\mathbb{P}(G = \dots)$	0	0	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{4}$

- a) (1 Punkte) Berechnen Sie jeweils die Wahrscheinlichkeit, dass eine 1,2,3,4,5,6 gewürfelt wurde, wenn man weiß, dass der G die Form \triangle , \cdot , \wedge oder \cdot hat. \rightarrow Beispiel in Form $\mathcal{R}[W=i]GG$
- b) (4 Punkte) Berechnen Sie die Wahrscheinlichkeit, dass e_3 in der Kantenmenge von G ist. Berechnen Sie dann jeweils die Wahrscheinlichkeit unter der Zusatzinformation, dass ...

- i) ... e_1 in der Kantenmenge ist bzw. e_1 nicht in der Kantenmenge ist.
- ii) ... e_2 in der Kantenmenge ist bzw. e_2 nicht in der Kantenmenge ist.

Was fällt Ihnen auf, wenn Sie i) und ii) vergleichen?

- c) (2 Punkte) Zeigen oder widerlegen Sie " $\mathbb{P}[B \mid C] = \mathbb{P}[C \mid B]$ " für $B = \{v_2 \text{ hat mind. 1 Kante}\}$ und $C = \{\text{entweder ist } e_1 \text{ in } G \text{ oder eine 3 wurde gewürfelt, aber nicht beides}\}.$
- d) (3 Punkte) Berechnen Sie die Verteilung und den Erwartungswert der Zufallsvariable "Anzahl der Kanten an dem Knoten mit den meisten Kanten" jeweils bedingt darauf, dass
 - i) ... v_2 genau eine Kante hat.
 - ii) ... v_3 genau eine Kante hat.

Vergleichen Sie dies mit dem "normalen" Erwartungswert ohne Zusatzinformation. Was passiert, wenn wir auf $\{G = 1 \}$ bedingen?

- 3. Monte-Carlo-Simulation (10 Punkte). Wir betrachten in dieser Aufgabe zwei Beispiele für das Verfahren.
 - a) (4 Punkte) Wir betrachten die Funktion $G(x,y)=\mathbb{1}_{\{x^2+y^2\leq 1\}}$ für $x,y\in\mathbb{R}$. Finden Sie C sodass

$$\frac{\pi}{C} = \int_{[0,1]^2} G(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

gilt und beschreiben (und begründen) Sie, wie Sie diese Gleichung nutzen können, um π numerisch zu schätzen, wenn nur stetig gleichverteilte Zufallszahlen zwischen 0 und 1 erzeugt werden können.

Hinweis: Mit der Polarkoordinatentransformation $(x = r\cos(\theta), y = r\sin(\theta), dx dy = r dr d\theta)$ kann man $\int_{[0,1]^2} G(x,y) dx dy = \int_0^{\pi/2} \int_0^1 r dr d\theta$ zeigen.

Als Nächstes wollen wir die Wahrscheinlichkeit, dass eine Standard Normalverteilte Zufallsvariable im Intervall [-1,1] liegt, numerisch berechnen. Wir verwenden ein Monte-Carlo-Verfahren und haben bereits n=15 unabhängige Realisierungen einer auf [0,2] gleichverteilten Zufallsvariable X erzeugt:

- b) (2 Punkte) Zeigen Sie, dass es eine Konstante C gibt, sodass das gesuchte Integral dem Ausdruck $C \cdot \mathbb{E}(e^{-(X-1)^2/2})$ entspricht und berechnen Sie C.
- c) (2 Punkte) Verwenden Sie b) und die Realisierungen von X um das gesuchte Integral zu approximieren.
- d) (2 Punkte) Berechnen Sie die gesuchte Wahrscheinlichkeit mithilfe der beiliegenden Tabelle

und vergleichen Sie das Ergebnis mit Ihrem Ergebnis aus c). $Hinweis: \Phi(1) = 0.8413.$

n wurde hier absichtlich klein gewählt. Bei einer numerischen Auswertung des Integrals am Computer würde man n wesentlich größer wählen und auch weniger runden.

- 4. Portfolio-Optimierung (10 Punkte). Ein Manager kann in zwei verschiedene Aktien investieren. Der Kurs *i*-ten Aktie am heutigen Tag bezeichnen wir mit x_i , den Kurs in einem Jahr mit X_i . Die Rendite ist damit $R_i = (X_i x_i)/x_i$. Aus der Entwicklung der letzen Jahre wurden folgende Charakteristiken geschätzt: $\mathbb{E}(R_1) = 0.4$, $\mathbb{E}(R_2) = 0.6$, $Var(R_1) = 0.25$, $Var(R_2) = 1$, $Cov(R_1, R_2) = 0.4$. Der Manager will nun eine möglichst sichere Investition wählen. Er investiert den a-ten Teil des Vermögens in Aktie 1, den (1-a)-ten Teil in Aktie 2. Somit hat er die Rendite $Y(a) = aR_1 + (1-a)R_2$. Er will nun Var(Y(a)) minimieren.
 - a) (2 Punkt) Berechnen Sie die Korrelation zwischen R_1 und R_2 .
 - b) (2 Punkt) Angenommen alle Werte $a \in \mathbb{R}$ sind erlaubt. Wie muss a gewählt werden, um die Varianz zu minimieren? Wie groß ist die erwartete Rendite für das optimale a?
 - c) (3 Punkte) Wie muss a gewählt werden, falls nur Werte in [0,1] erlaubt sind?
- d) (3 Punkte) Wie muss a gewählt werden, falls zusätzlich die erwartete Rendite $\mathbb{E}(Y(a))$ mindestens 0.5 betragen soll?