# Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos

### Sources

- github: <a href="https://github.com/openai/Video-Pre-Training/tree/main">https://github.com/openai/Video-Pre-Training/tree/main</a>
- MineRL package: <a href="https://github.com/minerllabs/minerl">https://github.com/minerllabs/minerl</a>
- competition:
  - https://www.aicrowd.com/challenges/neurips-2022-minerl-basalt-competition
- blogpost: <a href="https://openai.com/research/vpt">https://openai.com/research/vpt</a>

### Fine-Tune

.mp4 video

https://drive.google.com/file/d/13frzJVAy4CjvcpEi7TLUPtWszIGvvgtc/view?usp=s haring

.jsonl actions file

https://drive.google.com/file/d/1Wx47fllzua1Ztny4t65KfxXDap9T7Wod/view?usp=s haring

## 2022 minerl basalt competition

FindCave



MakeVillageAnimalPen



**MakeWaterfall** 



BuildVillageHouse



BEDD: The MineRL BASALT Evaluation and Demonstrations Dataset for Training and Benchmarking Agents that Solve Fuzzy Tasks

## **Evaluation**

BASALT competition environments do not include reward functions

Human-eval: Labeling who is better from pairs of gameplays



| Direct questions  Q1. Did this player find and enter a cave?                                                                                                                          |             |      |              |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--------------|-----|
|                                                                                                                                                                                       |             |      |              |     |
| Question Set #2                                                                                                                                                                       |             |      |              |     |
| Q1. Which player found a cave the fastest? (If neither found a cave, that is a draw.)                                                                                                 | Left Player | Draw | Right Player | N/A |
| Q2. Which player moved more quickly and efficiently?                                                                                                                                  | Left Player | Draw | Right Player | N/A |
| Q3. Which player was better at looking for caves in areas they hadn't already explored?                                                                                               | Left Player | Draw | Right Player | N/A |
| Q4. Which player was better at going to areas where it is more likely to find caves?                                                                                                  | Left Player | Draw | Right Player | N/A |
| Q5. Which player was better at noticing potential caves that entered its field of vision?                                                                                             | Left Player | Draw | Right Player | N/A |
| Q6. Which player was better at realizing when it has successfully found a cave? (In other words, which player was better at properly ending the minigame once it had entered a cave?) | Left Player | Draw | Right Player | N/A |
| Q7. Which player seemed more human-like (rather than a bot or computer player)?                                                                                                       | Left Player | Draw | Right Player | N/A |
|                                                                                                                                                                                       |             |      |              |     |

#### BEDD

- The Demonstrations Dataset, a set of 13,928 videos (state-action pairs) demonstrating largely successful task completion attempts of the reward-free tasks,
- The Evaluation Dataset, a set of 3,049 dense pairwise comparisons of algorithmic and human agents attempting to complete the BASALT tasks, and
- The code for utilizing and analyzing these datasets for developing LfHF algorithms (some details in Section 2.3).

| Task                   | Videos | Episodes | Hours | Size  | Ep. len, s | Success % |
|------------------------|--------|----------|-------|-------|------------|-----------|
| FindCave               | 5,466  | 5,466    | 91    | 165GB | 60         | 93%       |
| MakeWaterfall          | 4,230  | 4,176    | 97    | 175GB | 84         | 98%       |
| CreateVillageAnimalPen | 2,833  | 2,708    | 89    | 165GB | 119        | 95%       |
| BuildVillageHouse      | 1,399  | 778      | 85    | 146GB | 391        | 92%       |
| Total                  | 13,928 | 13,128   | 361   | 651GB | 99         | 95%       |

Table 1: High-level demonstration data statistics decomposed by task. Episode length is the average episode length in seconds. A demonstration is counted as success if the player manually ended the episode instead of dvine or timing-out.

|                        |             |       | Words in | Response Sentiment |     |     |
|------------------------|-------------|-------|----------|--------------------|-----|-----|
| Task                   | Comparisons | Hours | Response | Ď                  | Ø.  | ₿.  |
| FindCave               | 722         | 60    | 27,948   | 79%                | 14% | 7%  |
| MakeWaterfall          | 682         | 56    | 26,437   | 76%                | 7%  | 17% |
| CreateVillageAnimalPen | 914         | 81    | 32,768   | 57%                | 11% | 32% |
| BuildVillageHouse      | 731         | 76    | 26,917   | 63%                | 9%  | 28% |
| Total                  | 3,049       | 273   | 114,070  |                    |     |     |

Table 2: High-level evaluation data statistics decomposed by task. We report the total number of agent-agent comparisons, human labor hours, and words used in the natural-language justifications of selecting a specific agent as the best one. We also report the percent of positive, neutral, and negative sentiments in these justifications.

## Analysis (dataset)

#### general goal - define proxy metrics

difficulty == length of the demonstration

right mouse button clicks == the number of blocks placed



(a) Right mouse button clicks

(b) Movement key presses

## A Retrospective of the MineRL BASALT 2022 Competition



# GoUp



## UniTeam

L1 distance between their embedded current situation and the embedded situations from the expert's dataset -> copy nearest action

