2022 级转数院试券

来自 22 级考生

2023年9月5日

一. 选择题

1. x = 1 $\neq \frac{1}{1 - e^{\frac{1}{1-x}}}$ 的 () 间断点.

选项就那几个间断点, 当填空题算了

2. 4 个反常积分判断敛散性的题

3. 对于
$$0 < x < \frac{\pi}{4}$$
, 判断 $f(x) = \frac{\tan x}{x}$, $g(x) = \left(\frac{\tan x}{x}\right)^2$, $h(x) = \frac{\tan x^2}{x^2}$ 的大小 ().

A.
$$f(x) \ge g(x) \ge h(x)$$

B.
$$h(x) \ge f(x) \ge g(x)$$

C.
$$g(x) \ge f(x) \ge h(x)$$

B.
$$h(x) \ge f(x) \ge g(x)$$

C. $h(x) \ge g(x) \ge f(x)$

4.
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} &, x^2 + y^2 \neq 0 \\ 0 &, x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 处 $($ $)$.

- A. 连续且可微 B. 连续但不可微 C. 不连续 D. 无法判断

5. 已知
$$\sum_{n=1}^{\infty} a_n^2$$
 收敛, 则 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{1+n^2}}$ ().

- A. 条件收敛
- B. 绝对收敛 C. 发散
- D. 无法确定

二. 填空题

1.
$$\lim_{n\to\infty} (1+\frac{1}{2}+\cdots+\frac{1}{n})^{\frac{1}{n}} = \underline{\hspace{1cm}}$$

2.
$$y = x(1 + \arcsin \frac{2}{x})$$
 的渐近线为_____.

3. 通解为
$$y = C_1 e^x + C_2 x e^x$$
 的常系数齐次线性微分方程为______.

4.
$$y = \frac{4}{x}, y = x, y = 4x$$
 所围成的图像的面积为_____.

5.
$$\int_{(0,0)}^{(1,1)} (x^2 + y) dx + (x - \sin^2 y) dy \underline{\qquad}.$$

三. 解答题

1.
$$\lim_{x \to 0} \frac{e^{\sin x} - e^x}{\tan x \ln(1 + x^2)}$$
.

2. 求
$$\int_{e}^{x} \frac{\ln t}{t^2 - 2t + 1} dt$$
 在 $x \in [e, e^2]$ 上的最值.

3. 求
$$(x^2-1)y'+2xy=\cos x$$
 满足 $y(0)=1$ 的特解.

4. 已知
$$z$$
 是关于 x,y 的隐函数且满足 $x^2+y^2+z^2-4z=0$, 求 $\frac{\partial^2 z}{\partial x^2}$.

5. 求
$$\iint_{\Sigma} xz \, dy dz + 2zy \, dz dx + 3xy \, dx dy$$
, 其中 Σ 是 $z = 1 - x^2 - \frac{y^2}{4} (0 \le z \le 1)$ 的上侧.

6. 求
$$f(x) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{2n}$$
 ($|x| < 1$) 的和函数及极值.

7. 求过 (1,0) 的 $y=\sqrt{2-x}$ 的切线与 $y=\sqrt{2-x}$ 和 x 轴围成的区域绕 x 轴旋转一周得到物体的体积.

8. 已知 f(1) > 0, $\lim_{x \to 0^+} \frac{f(x)}{x} = -1$ 且 f 在 [0,1] 上二阶可导. 求证: (i) f(x) = 0 在 (0,1) 上至少有一实根. (ii) $f(x)f''(x) + (f'(x))^2 = 0$ 有两个不同实根.