Universidad de la República Facultad de Ingeniería - IMERL

Cálculo Diferencial e Integral en Varias Variables Julio 2022

Segundo parcial – 02 Julio de 2022

Nro de Parcial	Cédula	Apellido y nombre				

Respuestas Verdadero o Falso

1	2	3	4	5	6	7	8	9	10
F	F	F	V	F	V	V	V	F	V

Respuestas Ejercicios Multiple Opción

E. 1	E. 2	E. 3	E. 4	E. 5	E. 6	E. 7	E. 8	E. 9	E. 10
С	A	D		В	С	A	В	С	В

Importante

- El parcial dura 3h.
- En cada ejercicio se indica la cantidad de puntos que le corresponden. Tienen 10 ejercicios verdadero/falso de 2 puntos cada uno y 10 ejercicios múltiple opción de 4 puntos cada uno. El parcial es de 60 puntos en total.
- Solo serán válidas las respuestas indicadas en el cuadro de respuestas.
- En cada ejercicio hay una sola opción correcta.
- No se restan puntos.
- Notación: Dado un conjunto $A \in \mathbb{R}^n$, denotaremos por $\partial(A)$ la frontera de A, int(A) el conjunto de sus puntos interiores y $A^c = \mathbb{R}^n \setminus A$.

1. Verdadero - Falso.

Puntajes: 2 puntos si la respuesta es correcta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

- (1) Si $f: \mathbb{R}^2 \to \mathbb{R}$ tiene todas sus derivadas direccionales en (0,0) entonces f es continua en (0,0).
- (2) Si $f: \mathbb{R}^2 \to \mathbb{R}$ tiene todas sus derivadas direccionales en (0,0) entonces f es diferenciable en (0,0).
- (3) Sea $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Entonces la frontera de A coincide con el conjunto de los puntos de acumulación de A.
- (4) Sea $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cap \mathbb{Q} \times \mathbb{Q}$. Entonces la frontera de A coincide con el conjunto de los puntos de acumulación de A.
- (5) Si $f: \mathbb{R}^2 \to \mathbb{R}$ es tal que f(x,y) = x + 2y + 1 entonces el diferencial de f en (1,1) es $df_{(1,1)}(x,y) = x + 2y + 1$.
- (6) Si $f: \mathbb{R}^2 \to \mathbb{R}$ es tal que f(x,y) = x + 2y + 1 entonces el plano tangente de f en (1,1) es z = x + 2y + 1.
- (7) Si $A \subset \mathbb{R}^2$ entonces $A^c \cup \partial(A) = (int(A))^c$.
- (8) Si f es diferenciable en a entonces -5f es diferenciable en a.
- (9) Si una sucesión en \mathbb{R}^2 es acotada entonces alguna sucesión coordenada es convergente.
- (10) Si $f: \mathbb{R}^2 \to \mathbb{R}$ es diferenciable en a entonces $\frac{\partial f}{\partial y}$ existe en a.

2. Múltiple Opción

Puntajes: 4 puntos si la respuesta es correcta, 0 punto por no contestar. Indique sus respuestas en los casilleros correspondientes.

1. Sea la función $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} 1 & \text{si } x > 0 \ y > 0 \\ 2 & \text{si } x < 0 \ y > 0 \\ 3 & \text{si } x < 0 \ y < 0 \\ 4 & \text{si } x > 0 \ y < 0 \\ 0 & \text{en otro caso} \end{cases}$$

Entonces:

A. La función es continua en todo punto de \mathbb{R}^2 .

B. La función es discontinua solamente en (0,0).

C. La función es continua para todo (x, y) tal que $xy \neq 0$.

D. La función es discontinua únicamente sobre todos los puntos del Eje X.

La opción correcta es la (C):

Consideremos un punto (x_0, y_0) tal que $x_0y_0 = 0$. En otras palabras, un punto cualquiera sobre el Eje X o el Eje Y. Es fácil verificar que $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ no existe, usando trayectorias. (Rectas paralelas a los ejes coordenados). Por lo tanto, f no es continua en (x_0, y_0) . En los restantes puntos la función siempre es constante en algún entorno y por lo tanto continua.

2. Considere las siguientes afirmaciones:

- I. Si A y B son dos conjuntos abiertos en \mathbb{R}^n . Entonces su unión $A \bigcup B$ y su intersección $A \cap B$ son conjuntos abiertos en \mathbb{R}^n .
- II. El conjunto $A = \{p\}$ fomado por un solo punto $p \in \mathbb{R}^n$ no es un abierto en \mathbb{R}^n .
- III. Sea A un conjunto cualquiera de \mathbb{R}^n . La frontera de A es un conjunto cerrado.
- IV. El conjunto $A = \left\{ (x,0) \in \mathbb{R}^2 : x = \frac{1}{n}, \ n \in \mathbb{N} \right\}$ no tiene puntos interiores.

Entonces

A. Todas las afirmaciones son verdaderas.

B. I, II, IV son verdaderas y III es falsa.

C. II, III, IV son veradaderas y I es falsa.

D. I, III y IV son verdaderas II es falsa.

La opción correcta es la (A):

Remitimos a las notas del Curso.

3. Si $f(x,y) = (e^{2x}\sin(y), e^{3x}\cos(y))$, y $g: \mathbb{R} \to \mathbb{R}^2$ differenciable tal que:

$$J_g(1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad g(1) = (0,0)$$

Entonces $d(f \circ g)_{(1)}(t-1)$ vale

A.
$$((t-1), 2(t-1))$$

B.
$$(2e^2(t-1), 3e^3(t-1))$$

C.
$$(3(t-1), 2(t-1))$$

D.
$$(2(t-1), 3(t-1))$$

La opción correcta es la (D):

Utilizando la regla de la cadena III, la Jacobiana de la función $f \circ g$ en t = 1 se encuentra como:

$$J_{f \circ g}(1) = J_f(g(1)) \cdot J_g(1)$$

$$J_f(g(1)) = \begin{pmatrix} 2e^{2x}\sin(y) & e^{2x}\cos(y) \\ 3e^{3x}\cos(y) & -e^{3x}\sin(y) \end{pmatrix} \Big|_{(0,0)} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \Rightarrow J_{f \circ g}(1) = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Finalmente $d(f \circ g)(1) = J_{f \circ g}(1) \cdot (t-1) = (2(t-1), 3(t-1)).$

- 4. De la función $f: \mathbb{R}^2 \to \mathbb{R}$ se conoce que:
 - f es diferenciable en $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
 - $f\left(\frac{\sqrt{2}}{2},t\right) = t^2 + 2t$

• $\frac{\partial f}{\partial \vec{v}}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 0 \text{ con } \vec{v} = (1, -2)$ Si $g(r, \theta) = (r \cos \theta, r \sin \theta)$, entonces $\frac{\partial}{\partial \theta} (f \circ g) (r, \theta)$ en $(1, \frac{\pi}{4})$ vale:

- A.
- В.
- C.
- D.

Puede ser útil recordar que $\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

Primero, usando la diferencialidad de f en $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ y el hecho de que $\frac{\partial f}{\partial \vec{v}} \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 0$

$$\frac{\partial f}{\partial v}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) = \langle (\frac{\partial f}{\partial x}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}),\frac{\partial f}{\partial y}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})),(1,-2)\rangle = 0$$

lo cual implica que $\frac{\partial f}{\partial x}\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=2\frac{\partial f}{\partial y}\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right).$

Por otra parte, podemos calcular por definición el valor de $\frac{\partial f}{\partial y}\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ usando que $f\left(\frac{\sqrt{2}}{2},t\right)=0$ $t^2 + 2t$

$$\frac{\partial f}{\partial y}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 2 + \sqrt{2}$$

Ahora, sean g_1 y g_2 las funciones componentes de g

$$g(r,\theta) = (g_1(r,\theta), g_2(r,\theta)) = (r\cos\theta, r\sin\theta).$$

Usando esta notación, por la regla de la cadena tenemos que

$$\frac{\partial (f\circ g)}{\partial \theta}(1,\frac{\pi}{4}) = \frac{\partial f}{\partial x}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})\frac{\partial g_1}{\partial \theta}(1,\frac{\pi}{4}) + \frac{\partial f}{\partial y}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})\frac{\partial g_2}{\partial \theta}(1,\frac{\pi}{4}) = \frac{\partial f}{\partial y}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})(2\frac{\partial g_1}{\partial \theta}(1,\frac{\pi}{4}) + \frac{\partial g_2}{\partial \theta}(1,\frac{\pi}{4}))$$

$$\frac{\partial (f\circ g)}{\partial \theta}(1,\frac{\pi}{4}) = (2+\sqrt{2})(2\frac{\partial g_1}{\partial \theta}(1,\frac{\pi}{4}) + \frac{\partial g_2}{\partial \theta}(1,\frac{\pi}{4}))$$

Finalmente usando que $\frac{\partial g_1}{\partial \theta}(1, \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$ y $\frac{\partial g_2}{\partial \theta}(1, \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$

$$\frac{\partial (f \circ g)}{\partial \theta} (1, \frac{\pi}{4}) = -1 - \sqrt{2}$$

5. Sea $f:\mathbb{R}^2\to\mathbb{R}$ definida como

$$f(x,y) = \cos(2cx + ay)$$

donde c es una constante no nula $(c \neq 0)$.

Entonces

A. La función f satisface la ecuación

$$\frac{\partial^2 f}{\partial x^2} = c^2 \frac{\partial^2 f}{\partial y^2}$$

para infinitos valor de a.

B. Existen exáctamente dos valores de a para los cuales la función f satisface la ecuación

$$\frac{\partial^2 f}{\partial x^2} = c^2 \frac{\partial^2 f}{\partial y^2}.$$

C. Existe un único valor de a para el cual la función f satisface la ecuación

$$\frac{\partial^2 f}{\partial x^2} = c^2 \frac{\partial^2 f}{\partial y^2}.$$

D. No existen valores de a para los cuales la función f satisface la ecuación

$$\frac{\partial^2 f}{\partial x^2} = c^2 \frac{\partial^2 f}{\partial y^2}.$$

<u>La opción correcta es la (B):</u> Hay que calcular las derivadas segundas e igualar los resultados, $\frac{\partial f}{\partial x}(x,t) = -\sin(2cx+at)2c \Rightarrow \frac{\partial^2 f}{\partial x^2}(x,t) = -\cos(2cx+at)4c^2$. Por otro lado $\frac{\partial f}{\partial t}(x,t) = -\sin(2cx+at)a \Rightarrow \frac{\partial^2 f}{\partial t^2}(x,t) = -\cos(2cx+at)a^2$. Entonces

$$\frac{\partial^2 f}{\partial x^2} = c^2 \frac{\partial^2 f}{\partial t^2} \Leftrightarrow \cos(2cx + at) 4c^2 = \cos(2cx + at) a^2 c^2 \Leftrightarrow a^2 = 4 \Leftrightarrow a = \pm 2.$$

6. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Entonces

- A. Existen las derivadas parciales de f en todo punto del plano y ambas son continuas en (0,0).
- B. Existen las derivadas parciales de f en todo punto del plano y sólo una de ellas es continua en (0,0).
- C. Existen las derivadas parciales de f en todo punto del plano y ninguna es continua en (0,0).
- D. Las derivadas parciales de f no están definidas en todo el plano.

La opción correcta es la (C):

• Calculemos primero $\frac{\partial f}{\partial x}$: Para todo $(x,y) \neq (0,0)$ basta aplicar las reglas de derivación para calcular dicha derivada parcial.

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^2(x^2+y^2) - x^3(2x)}{(x^2+y^2)^2} = \frac{3x^4 + 3x^2y^2 - 2x^4}{(x^2+y^2)^2} = \frac{x^4 + 3x^2y^2}{(x^2+y^2)^2}$$

Para (x, y) = (0, 0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3}{h^2}}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

Entonces

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^4 + 2x^2y^2}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$

• Calculemos ahora $\frac{\partial f}{\partial y}$: Para todo $(x,y) \neq (0,0)$, al igual que antes, basta aplicar las reglas de derivación para calcular dicha derivada parcial.

$$\frac{\partial f}{\partial y}(x,y) = \frac{-x^3(2y)}{(x^2+y^2)^2} = \frac{-2x^3y}{(x^2+y^2)^2}.$$

Para (x, y) = (0, 0):

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

Entonces

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{-2x^3y}{(x^2+y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Estudiamos ahora la continuidad en el origen de ambas derivadas. Si consideramos la recta x=0: $\lim_{y\to 0}\frac{\partial f}{\partial x}(0,y)=\lim_{y\to 0}0=0\neq 1$. Entonces $\frac{\partial f}{\partial x}$ no es continua en (0,0).

Para la otra derivada parcial podemos considera la recta x = y:

$$\lim_{x\to 0}\frac{\partial f}{\partial y}(x,x)=\lim_{x\to 0}\frac{-2x^4}{(2x^2)^2}=-\frac{1}{2}\neq 0.$$

Entonces $\frac{\partial f}{\partial y}$ no es continua en (0,0).

7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como

$$f(x,y) = \begin{cases} \frac{e^{x^2 + y^2} - 1}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$

Entonces:

A. f es continua y diferenciable en (0,0).

B. f es continua en (0,0) pero no es diferenciable en (0,0).

C. f es diferenciable en (0,0) pero no es continua en (0,0).

D. f no es diferencible ni continua en (0,0).

La opción correcta es la (A.):

• Continuidad en (0,0):

$$\lim_{(x,y)\to(0,0)}\frac{e^{x^2+y^2}-1}{x^2+y^2}=\lim_{r\to 0,\theta\in[0,2\pi)}\frac{e^{r^2}-1}{r^2}=\lim_{r\to 0,\theta\in[0,2\pi)}\frac{r^2}{r^2}=1=f(0,0).$$

• Diferencviabilidad en (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{\frac{e^{h^2} - 1}{h^2} - 1}{h} = \lim_{h \to 0} \frac{e^{h^2} - 1 - h^2}{h^3} = \lim_{h \to 0} \frac{2he^{h^2} - 2h}{3h^2} = \lim_{h \to 0} \frac{2e^{h^2} - 2}{3h} = \lim_{h \to 0} \frac{4he^{h^2}}{3} = 0.$$

Por simetría podemos deducir que $\frac{\partial f}{\partial y}(0,0) = 0$.

Para ver la diferenciabilidad tenemos que calcular el siguiente límite:

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{(x^2+y^2)^{1/2}} = \lim_{r\to 0,\theta\in[0,2\pi)} \frac{e^{r^2}-1-r^2}{r^3} = 0.$$

8 El valor del límite

$$\lim_{\substack{(x,y)\to(2,0)}} \frac{xe^y - \left(2 + (x-2) + 2y + 2y^2 + (x-2)y + (x-2)^2\right)}{(x-2)^2 + y^2}$$

es:

A. 1.

B. -1.

C. 0.

D. No existe.

La opción correcta es la (B):

Llamemos $f(x,y) = xe^y$. Sus derivadas hasta orden 2 son:

•
$$\frac{\partial f}{\partial x} = e^y$$
, $\frac{\partial f}{\partial y} = xe^y$,
• $\frac{\partial^2 f}{\partial x^2} = 0$, $\frac{\partial^2 f}{\partial x \partial y} = e^y$, $\frac{\partial^2 f}{\partial y^2} = xe^y$.

Luego, el desarrollo de Taylor de f en un entorno de (2,0) es:

$$f(x,y) = f(2,0) + \frac{\partial f}{\partial x}(2,0)(x-2) + \frac{\partial f}{\partial y}(2,0)y + \frac{1}{2}$$

$$\left(\frac{\partial^2 f}{\partial x^2}(2,0)(x-2)^2 + 2\frac{\partial^2 f}{\partial x \partial y}(2,0)(x-2)y + \frac{\partial^2 f}{\partial y}(2,0)y^2\right) + r_3(x-2,y) =$$

$$= 2 + (x-2) + 2y + \frac{1}{2}\left(2(x-2)y + 2y^2\right) + r_2(x-2,y).$$

Sustituyendo en el límite, tenemos:

$$\lim_{(x,y)\to(2,0)}\frac{xe^y-\left(2+(x-2)+2y+2y^2+(x-2)y+(x-2)^2\right)}{(x-2)^2+y^2}=\\=\lim_{(x,y)\to(2,0)}\frac{y^2-2y^2-(x-2)^2+r_2}{(x-2)^2+y^2}=\lim_{(x,y)\to(2,0)}\frac{-\left(y^2+(x-2)^2\right)+r_2}{(x-2)^2+y^2}=-1,$$
 porque
$$\lim_{(x,y)\to(2,0)}\frac{r_2}{(x-2)^2+y^2}=0.$$

- 9. Sea π el plano tangente a la gráfica de la función $f(x,y) = x^3y + 2y^2 + e^{xy}$ en el punto (0,2,f(0,2)). Selecione la opción correcta:
 - A. $(-\frac{1}{2}, 1) \in \pi$.
 - B. $(-1, 1, 9) \in \pi$.
 - C. $\left(-\frac{1}{2}, 1, 0\right) \in \pi$.
 - D. $(-1, 1, 0) \in \pi$.

La opción correcta es la (C):

$$\frac{\partial f}{\partial x} = 3x^2y + ye^{xy}$$
$$\frac{\partial f}{\partial x}(0,2) = 2$$
$$\frac{\partial f}{\partial y} = x^3 + 4y + xe^{xy}$$
$$\frac{\partial f}{\partial y}(0,2) = 8$$

Por lo tanto la ecuación del plano tangente es

$$z - f(0,2) = \frac{\partial f}{\partial x}(0,2)(x-0) + \frac{\partial f}{\partial y}(0,2)(y-2)$$
$$z - 9 = 2(x-0) + 8(y-2)$$
$$z = 2x + 8y - 7$$

- 10. Se considera la región $D=\{(x,y)\in\mathbb{R}^2:x\leq x^2+y^2\leq 1,\,x\geq 0,\,y\geq 0\}$ Entonces $\int_D \int_D xy\,dy\,dx$ es igual a
 - A. $\frac{\pi}{4}$
 - B. $\frac{1}{12}$

C.
$$\frac{1}{6}$$

D. $-\frac{1}{12}$

La opción correcta es la (B): Pasando a coordenadas polares $\int\limits_{D} xy\,dy\,dx = \int_{0}^{\pi/2} \int_{cos\theta}^{1} rcos\theta rsen\theta rdrd\theta = \int_{0}^{\pi/2} \int_{cos\theta}^{1} r^{3}cos\theta sen\theta drd\theta = \frac{1}{12}$