Undo and Redo Support for Replicated Registers

A Guided Research Project with Martin Kleppmann

Leo Stewen

October, 2023

Contents

- 1. Semantics of Undo and Redo with Multiple Users
- 2. Algorithm
- 3. Evaluation
- 4. Future Work

Semantics of Undo and Redo with

Multiple Users

Figure 1: Canvas with two Replicated Registers.

Figure 1: Canvas with two Replicated Registers.

(2a) black

Figure 2: Canvas with one Replicated Register.

Figure 2: Canvas with one Replicated Register.

A Taxonomy of Undo Behavior

	Generating Replica	Any Replica
Reverse Chronological	local undo	global undo
Selective	revert ¹	

¹often called *selective undo* in the literature

Figure 3: Canvas with one Replicated Register.

Figure 3: Canvas with one Replicated Register.

Algorithm

Register: [1]

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Register: [2]

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Figure 4: An operation history with undo and redo. Internally, both undo and redo operations are *RestoreOps*. Their respective anchor operations are indicated by blue dashed arrows.

Evaluation

Common Editing Scenario (Constant Runtime)

Figure 5: Runtime of the last undo/redo operation in a sequence of n consecutive undo/redo operations.

8/11

Figure 6: Sequence of alternating undo-redo operations.

Figure 6: Sequence of alternating undo-redo operations of length 1.

Figure 6: Sequence of alternating undo-redo operations of length 2.

Figure 6: Sequence of alternating undo-redo operations of length 3.

Degenerate Editing Scenario (Linear Runtime)

Figure 7: Runtime of the last undo/redo operation in a sequence of alternating undo-redo operations of length n.

- Integration with Automerge (the Counter CRDT...)
- How does undo and redo work with text CRDTs?
- Support other kinds of undo: selective undo, global undo?

- Integration with Automerge (the Counter CRDT...)
- How does undo and redo work with text CRDTs?
- Support other kinds of undo: selective undo, global undo?

- Integration with Automerge (the Counter CRDT...)
- How does undo and redo work with text CRDTs?
- Support other kinds of undo: selective undo, global undo?

Questions? Feedback?

Reach me at lstwn@mailbox.org