







Research and Development Technical Report DELET-TR-78-0564-2

INVESTIGATIONS OF THE SAFETY OF LI/SOC12 BATTERIES

K. M. Abraham R. M. Mank G. L. Holleck

**EIC CORPORATION** 55 Chapel Street Newton, MA 02158



**July 1979** 

Second Quarterly Report for Period 30 Dec 78 - 30 March 79

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

Prepared for: **ELECTRONICS TECHNOLOGY & DEVICES LABORATORY** 

### **ERADCOM**

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

#### NOTICES

#### Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

#### Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

| / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (19) REPORT DOCUMENTATION PAGE  1. REPORT NUMBER  12. GOVT ACCESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOJ 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                     |
| DELET TR-78-0564-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       |
| 1. TITLE (and Substite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S. TYPE OF REPORT & PERIOD COVERS                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarterly Report, in                                                                                                                                                  |
| INVESTIGATIONS OF THE SAFETY OF L1/SOC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 Dec 3078-30 March 97                                                                                                                                               |
| BATTERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                      |
| 7. AUTHOR(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S. CONTRACT OR GRANT NUMBER(-)                                                                                                                                        |
| Kuzhikalail M. Abraham, Richard M. Mank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . DAABØ7-78-C-Ø564                                                                                                                                                    |
| The state of the s | (15)                                                                                                                                                                  |
| PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TO PROGRAM ELEMENT, PROJECT, TASK                                                                                                                                     |
| EIC CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1L162705AH9411-218                                                                                                                                                    |
| 55 Chapel Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                    |
| Newton, MA 02158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12. REPORT DATE                                                                                                                                                       |
| U.S. Army Electronics Research & Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (11) Jul (19)                                                                                                                                                         |
| Command Attn: DELET-PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13. NUMBER OF PAGES                                                                                                                                                   |
| Fort Monmouth, New Jersey 07703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51                                                                                                                                                                    |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 15. SECURITY CLASS. (of this report)                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCLASSIFIED                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE- DECLASSIFICATION/DOWNGPADING                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15a. DECLASSIFICATION/DOWNGRADING                                                                                                                                     |
| Approved for Public Release; Distribution Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | limited.                                                                                                                                                              |
| Approved for Public Release; Distribution Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | limited.                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, if different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
| Approved for Public Release; Distribution Un.  17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different  18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, if different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, If different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from Report)                                                                                                                                                          |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different  18. SUPPLEMENTARY NOTES  19. KEY WORDS (Continue on reverse side if necessary and identify by block num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | from Report)                                                                                                                                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different and the state of the abstract entered in Block 20, if different and its answers answers and its  | bor) discharge, explosion hazards                                                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different  18. SUPPLEMENTARY NOTES  19. KEY WORDS (Continue on reverse side if necessary and identify by block num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bor) discharge, explosion hazards                                                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different and the state of the abstract entered in Block 20, if different and its answers answers and its answers and its answers and its answers and its answers answers and its answers  | bor) discharge, explosion hazards                                                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different in Supplementary notes  19. Key words (Continue on reverse side if necessary and identity by block number Lithium thionyl chloride battery, forced over charging behavior, IR spectra, cyclic voltamme Cl <sub>2</sub> , Li <sub>2</sub> S, SCl <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hor) discharge, explosion hazards, etry, SO2Cl2, SOCl+AlCl4,                                                                                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES  19. KEY WORDS (Continue on reverse side if necessary and identify by block num Lithium thionyl chloride battery, forced over charging behavior, IR spectra, cyclic voltamm Cl <sub>2</sub> , Li <sub>2</sub> S, SCl <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ber) discharge, explosion hazards, etry, SO2Cl2, SOCl+AlCl4-,                                                                                                         |
| 19. KEY WORDS (Continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on reverse side if neces | bor) discharge, explosion hazards, etry, SO2Cl2, SOCl+AlCl4-,                                                                                                         |
| 19. KEY WORDS (Continue on reverse side if necessary and identity by block number of the continue on reverse side if necessary and identity by block number of the continue on | discharge, explosion hazards, etry, SO2Cl2, SOC1+AlCl4-, one                                                                                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number charging behavior, IR spectra, cyclic voltamme Cl2, Li2S, SCl2.  20. ABSTRACT (Continue on reverse side if necessary and identify by block number charging behavior, IR spectra, cyclic voltamme Cl2, Li2S, SCl2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | discharge, explosion hazards, etry, SO2Cl2, SOCl+AlCl4-,  ometry were employed as ana- oducts in Li/SOCl2 cells oxide is produced during the                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number charging behavior, IR spectra, cyclic voltamme Cl <sub>2</sub> , Li <sub>2</sub> S, SCl <sub>2</sub> .  19. Cyclic voltammetry and infrared spectralytical tools to characterize the reaction producing various modes of operation. Sulfur didischarge. The nature of products formed dur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | discharge, explosion hazards, etry, SO2Cl2, SOC1+AlCl4-,  ometry were employed as ana- oducts in Li/SOCl2 cells oxide is produced during the ing forced overdischarge |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number charging behavior, IR spectra, cyclic voltamme Cl <sub>2</sub> , Li <sub>2</sub> S, SCl <sub>2</sub> .  20. ABSTRACT (Continue on reverse side if necessary and identify by block number charging behavior, IR spectra, cyclic voltamme Cl <sub>2</sub> , Li <sub>2</sub> S, SCl <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | discharge, explosion hazards, etry, SO2Cl2, SOC1+AlCl4-,  ometry were employed as ana- oducts in Li/SOCl2 cells oxide is produced during the ing forced overdischarge |

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enforced)

CURTY CLASSFICATION OF THIS PASS(The Date Batering)

Infrared spectral data indicated that Li2S is formed in cathode limited cells during forced overdischarge. On the other hand, there was very little or no Li2S present in cells at the end of discharge or in anode limited cells after forced overdischarge.

From anode limited cells, Cl<sub>2</sub> and a compound exhibiting IR absorption at 1070 cm<sup>-1</sup> were detected after forced overdischarge. These materials are formed by oxidation reactions at the anode.

Analysts of solutions from cells discharged without Li on the anode showed that SO<sub>2</sub>Cl<sub>2</sub>, SOC1 AlCl<sub>4</sub>-, Cl<sub>2</sub>, a material absorbing at 1070 cm<sup>-1</sup> and probably SCl<sub>2</sub> are formed as oxidation products. Some SO<sub>2</sub> was also found in these solutions.

The products detectable after "charging" a Li/SOC12 cell were SO<sub>2</sub>C1<sub>2</sub>, SC1<sub>2</sub>, SO<sub>2</sub>, and the material exhibiting absorption in the infrared spectrum at 1070 cm<sup>-1</sup>

On the basis of materials characterized from IR spectral and cyclic voltammetry data, a mechanism is proposed for the oxidation reactions in SOC1<sub>2</sub>/LiAlC1<sub>4</sub> solutions.



er was to be a

### TABLE OF CONTENTS

| Section |                                                                                                | Page           |
|---------|------------------------------------------------------------------------------------------------|----------------|
| ı.      | INTRODUCTION                                                                                   | 1              |
| II.     | CYCLIC VOLTAMMETRY STUDIES                                                                     | 2              |
|         | <ol> <li>Experimental Procedures</li></ol>                                                     | 2 2            |
|         | 2.1 Electrochemical Reduction of SOCl <sub>2</sub> /LiAlCl <sub>4</sub> Solutions              | 2              |
|         | Solutions                                                                                      | 9              |
| III.    | ANALYSIS OF ELECTROLYTE FROM L1/SOC12 CELLS AFTER DISCHARGE, FORCED OVERDISCHARGE AND "CHARGE" | 20             |
|         | 1. Experimental Procedure                                                                      | 20<br>22       |
|         | 2.1 Anode Limited Cells                                                                        | 22<br>32<br>43 |
|         | 3. Discussion of Analytical Results                                                            | 43             |
| IV.     | SUMMARY AND FUTURE WORK                                                                        | 50             |
| v.      | REFERENCES                                                                                     | 51             |

| Accessi |         | -     |
|---------|---------|-------|
| NTIS G  | RALI    | H     |
| DDC TAB |         | H     |
| Unannou | nced    |       |
| Justif  | cation  |       |
|         |         |       |
| Ву      |         |       |
| Distri  | bution  |       |
| Avail   | ability | Codes |
| AVEL    | Avails  | nd/or |
|         | spec    | ial   |
| Dist.   | , open  |       |
| M       |         |       |
|         |         |       |

### LIST OF ILLUSTRATIONS

| Figure |                                                                                                                                   | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Cyclic voltammograms of SOC12/1.8M LiAlC14 on glassy carbon electrode                                                             | 3    |
| 2      | Cyclic voltammogram of SOC12/1.8M LiA1C14 on Ni disc electrode                                                                    | 4    |
| 3      | Cyclic voltammogram of SOC12/1.8M LiA1C14 on glassy carbon electrode between 3.8V and 1V as a function of scan rate               | . 5  |
| 4      | Cyclic voltammogram of SOCl <sub>2</sub> /1.8M LiAlCl <sub>4</sub> on glassy carbon electrode between 0.0 and 4V                  | 7    |
| 5      | Cyclic voltammogram of SOC12/1.8M LiA1C14 with 10 v/o S2C12 on glassy carbon electrode                                            | 8    |
| 6      | Cyclic voltammogram of SOCl <sub>2</sub> /1.8M LiAlCl <sub>4</sub> on glassy carbon electrode between 4 and 5 volts               | 10   |
| 7      | Cyclic voltammogram of SOCl <sub>2</sub> /1.8M LiAlCl <sub>4</sub> on a glassy electrode                                          | 11   |
| 8      | Cyclic voltammogram of SOC1 <sub>2</sub> /1.8M LiAlC1 <sub>4</sub> with 1.5 v/o SC1 <sub>2</sub> on glassy carbon                 | 13   |
| 9      | Cyclic voltammogram of SOC12/1.8M LiAlC14 containing 30 v/o SO2C12 on glassy carbon electrode                                     | 14   |
| 10     | Cyclic voltammogram of SO <sub>2</sub> Cl <sub>2</sub> /1.8M LiAlCl <sub>4</sub> on glassy carbon electrode between 1 and 5 volts | 15   |
| 11     | Cyclic voltammogram of SOCl <sub>2</sub> /Li <sub>2</sub> O-2AlCl <sub>3</sub> on glassy carbon electrode                         | 16   |
| 12     | Schematic view of the cell for in situ cyclic voltammetry                                                                         | 21   |
| 13     | Discharge curve for Li/SOCl <sub>2</sub> cell P-22                                                                                | 25   |

# LIST OF ILLUSTRATIONS (continued)

| Figure |                                                                                                          | Page |
|--------|----------------------------------------------------------------------------------------------------------|------|
| 14     | Infrared spectrum of the electrolyte from Li/SOCl2 cell P-22 after the discharge shown in Fig. 13        | 26   |
| 15     | Infrared spectrum of electrolyte from Li/SOC12 cell P-22 after 0.49 mAh discharge shown in               |      |
| • •    | Fig. 13                                                                                                  | 27   |
| 16     | Galvanostatic discharge and overdischarge curves for Li/SOCl <sub>2</sub> cell P-18                      | 28   |
| 17     | Infrared spectrum of electrolyte from Li/SOC12 cell P-18 after the overdischarge shown in Fig. 16        | 29   |
| 18     | Discharge and overdischarge curves for Li/SOCl <sub>2</sub> cell P-26                                    | 30   |
| 19     | Discharge curve for cell P-19 without Li on the anode                                                    | 31   |
| 20     | Infrared spectrum of the electrolyte from cell P-19 shown in Fig. 19                                     | 33   |
| 21     | Discharge and overdischarge curves for cell P-32                                                         | 34   |
| 22     | Cyclic voltammogram of electrolyte from cell P-32 after 550 mAh overdischarge on glassy carbon electrode | 35   |
| 23     | Discharge curve for Li/SOCl2 cell P-31 without Li on the anode                                           | . 36 |
| 24     | Cyclic voltammogram of electrolyte from cell P-31 on glaszy carbon electrode                             | 37   |
| 25     | Discharge and overdischarge curves for cell P-35                                                         | 40   |

## LIST OF ILLUSTRATIONS (continued)

| Figure |                                                                                                                   | Page |
|--------|-------------------------------------------------------------------------------------------------------------------|------|
| 26     | Discharge and overdischarge curves for Li/SOCl <sub>2</sub> cell P-36                                             | 41   |
| 27     | Cyclic voltammogram of electrolyte from cell P-36 on glassy carbon electrode after overdischarge shown in Fig. 26 | 42   |
| 28.    | Infrared spectrum of electrolyte from Li/SOCl <sub>2</sub> cell P-36 after forced overdischarge shown in Fig. 26  | 44   |
| 29     | Galvanostatic "charging" wave for Li/SOCl2 cell P-34                                                              | 45   |
| 30     | Cyclic voltammogram of electrolyte from cell P-34 after 750 mAh charge                                            | 46   |
| 31     | Infrared spectrum of electrolyte from cell P-34 which was charged shown in Fig. 29 · · · · · · · · ·              | 47   |

### LIST OF TABLES

| Table |                                                  | Page |
|-------|--------------------------------------------------|------|
| 1     | Cell Parameters for Anode Limited Cells          | 23   |
| 2     | Analytical Test Summary of Anode Limited Cells   | 24   |
| 3     | Cell Parameters for Cathode Limited Cells        | 38   |
| 4     | Analytical Test Summary of Cathode Limited Cells | 39   |

#### I. INTRODUCTION

In recent years there has been considerable research and development on ambient temperature, high energy density Li cells. A particuarly promising system is based on SOCl<sub>2</sub> (1,2). Here, SOCl<sub>2</sub> serves as both a solvent and depolarizer for the cell. These cells have delivered 100 Whr/lb and 40 W/lb at the 2.5-hour rate and, as usual, higher energy densities at lower discharge rates (3). According to one report (4) they can deliver as much as 300 Whr/lb at low rates. Clearly this is a very promising system with many applications where high energy density and high rate are required.

The cell has two problems: (1) under a variety of circumstances, the cell has shown a tendency to explode, (2) after high temperature storage, it shows voltage delay.

The objective of this program is to explore the causes and find solutions to the explosion hazards in the Li/SOCl2 cells. Three types of explosion have been reported: (1) cells explode on short circuit; (2) cells explode on forced overdischarge; (3) cells explode on resistive load overdischarge. Clearly, any high rate, high energy density system such as Li/SOCl2 has the possibility of a thermal runaway type of explosion. It is not surprising that a hermetically sealed D-cell, which can deliver in excess of 20 amps, might explode when short circuited -- it just is not possible to remove the waste heat. However, this problem appears to have been solved with low pressure vents (100-300 psi) and with appropriate fuses incorporated into the cell (5,6).

The other two types of explosion are of greater concern. The forced overdischarge situation may be experienced by a cell in a battery package. Explosion on resistive load overdischarge implies that any completely discharged cell still connected to a piece of equipment is a hazard. No clear documentation of the explosion hazard on resistive load overdischarge is found in the literature. Forced overdischarge explosions have been documented for D-size (5) and C-size (10,11) Li/SOCl2 cells. This type of explosion, occurring after cell-voltage reversal, takes place without prior temperature or pressure rise and appears to be chemical in its origin. We have shown that forced over-discharge explosions appear to occur only in anode limited cells (10,11). Individual electrode potential measurements during discharge and overdischarge showed that the anode was at \( \frac{2}{3} \) 4.0V for a considerable length of time prior to an explosion. The nature of the explosion suggests the production of sensitive chemicals by oxidation of SOCl2 or other materials present in the cell which could explode under certain conditions.

In order to characterize the material(s) responsible for explosion in anode limited cells, a considerable amount of analytical work was carried out during the present quarter. Major emphasis was placed on cyclic voltammetry and infrared spectroscopy.

#### II. CYCLIC VOLTAMMETRY STUDIES

#### 1. Experimental Procedures

All the experiments imvolving reagent handling and cell construction were carried out in the absence of air and moisture in an argon atmosphere using a Vacuum-Atmospheres Corporation dry box.

Cyclic voltammetric studies of SOC12/LiAlC14 (1.8M) solutions were carried out on nickel and carbon electrodes using a three electrode system. A 15 mil lithium ribbon pressed onto a nickel screen served as the reference electrode. The reference electrode was contained in a Luggin capillary and was placed close to the working electrode. The counter electrode consisted of a piece of Li (~1 cm²) pressed onto a nickel screen. The Ni working electrode consisted of a 0.5 cm² nickel disc (10 mil thick), fitted in a Teflon holder. The carbon working electrode was a 0.10 cm² glassy carbon surface. The electrodes were arranged in a 25 ml capacity, three-necked flask. A volume measuring 7 ml of SOC12/1.8M LiAlC14 solution was used. The voltammetric scans were performed with a Amel Model 55i potentiostat in conjunction with their Model 566 function generator. The i-E curves were recorded on a Houston Omnigraphic Model 2000 X-Y Recorder or on a Bascom-Turner Series 8000 Recorder provided with microprocessor capabilities.

Cyclic voltammetry of materials from discharged or overdischarged cells was carried out in situ. The experimental details are given in the next Section.

#### Cyclic Voltammetry in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> Solutions

A typical cyclic voltammogram between 1 and 5V vs. Li<sup>+</sup>/Li in SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> on a glassy carbon electrode is shown in Figure 1. A similar voltammogram was obtained also on a Ni electrode and is shown in Figure 2. Although the overall features of the voltammogram are identical on both of the electrodes, the peaks appeared more sharp on the carbon electrode. Also the peaks on Ni are shifted to slightly lower potentials. Therefore most of the studies were performed using the glassy carbon electrode.

#### 2.1 Electrochemical Reduction of SOC12/LiA1C14 Solutions

#### Experimental Results

A typical cyclic voltammogram in SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> solution, obtained by scanning the carbon electrode cathodically from open circuit voltage (3.6V vs. Li<sup>+</sup>/Li) is shown in Figure 3. The scan rate is 0.1V/sec. The onset of a reduction peak occurs at ~3.0V with a peak at 2.6V. This reduction peak may be regarded as due to the reduction of SOCl<sub>2</sub> and is in good



Fig. 1. Cyclic voltammograms of SOC12/1.8M LiAlC14 on glassy carbon electrode. Scan rate = 100 mV/sec. The electrode was scanned anodic first from 3.7V.



Cyclic voltammogram of  $SOC1_2/1.8M$  LiAlCl<sub>4</sub> on Ni disc electrode. Scan rate = 50 mV/sec. Electrode was scanned anodic first from 3.7V. Fig. 2.



Fig. 3. Cyclic voltammogram of SOC12/1.8M LiAlC14 on glassy carbon electrode between 3.8V and 1V as a function of scan rate.

agreement with previous observations (7,8) on similar electrodes. Following the peak at 2.6V a very weak current peak appears at ~1.8V. No other reduction peaks are observed up to 1.0V. Scanning the electrode below 1.0V showed only the current peak corresponding to the plating of Li on the carbon. The onset of current corresponding to this process occurs at ~0.5V with a peak near 0.0V, Figure 4. This process, however, led to the damage of the carbon electrode surface and therefore in all studies the electrode was scanned only to 1.0V. The anodic scan from 1.0V showed a very weak current peak at 2.55V, and as shown previously (7), this peak may correspond to the oxidation of the material exhibiting the reduction peak at 1.80V. The reduction peak at 1.8V and oxidation peak at 2.55V may correspond to the reduction and oxidation of SO2. Addition of SO2 to the solution slightly enhanced the height of the reduction peak at 1.8V. Because of electrode passivation from the high current reduction process at 2.6V, addition of SO2 did not result in a significant increase in the height of the peak at 1.8V. The severe passivation of the electrode, probably due to LiCl, was indicated by the observation that after an anodic sweep to 3.6V, second cathode sweep did not show any reduction peak at all. It was necessary to regenerate the electrode by holding it at an anodic potential of ~4.6V before reproducible results could be obtained. The regeneration of the electrode was achieved in a second electrochemical cell so that products generated while holding the electrode at the anodic potential would not contaminate the test solution.

#### Discussion

Various workers have suggested several reactions in the reduction of SOC12/LiA1C14 solutions. The commonly accepted reduction reaction is

$$2SOC1_2 + 4Li \rightarrow 4LiC1 + SO_2 + S$$
 (1)

However, other reduction products such as  $S_2Cl_2$ ,  $Li_2SO_3$  and  $Li_2S_2O_4$  have also been suggested and sporadic reports of identification of some of these products have appeared. In order to see whether these products could be identified by cyclic voltammetry, cyclic voltammograms were obtained with addition of  $S_2Cl_2$   $Na_2S_2O_4$  and  $Na_2SO_3$  to  $S_2Cl_2/1.8$ M LiAlCl<sub>4</sub> solutions. Both  $Na_2SO_3$  and  $Na_2S_2O_4$  were insolube in the electrolyte. The voltammogram obtained with addition of  $\sim 10$  v/o  $S_2Cl_2$  is shown in Figure 5. The voltammogram does not show a separate reduction peak corresponding to  $S_2Cl_2$ . It appears that  $S_2Cl_2$  reduces at a potential slightly positive of the reduction of  $S_2Cl_2$  so that the positive portion of the  $S_2Cl_2$  reduction peak is slightly broadened with the resulting current peak becoming asymmetrical. Further addition of  $S_2Cl_2$  brought about more broadening of the  $S_2Cl_2$  reduction peak at the positive region.

The present value of the reduction potential of  $S_2Cl_2$  does not agree with the value reported by Blomgren et al. (8). These authors reported that  $S_2Cl_2$  in  $SOCl_2/LiAlCl_4$  solution reduces at 3.4V vs.  $Li^+/Li$ .



Cyclic voltammogram of  $SOC1_2/1.8M$  LiAlCl<sub>4</sub> on glassy carbon electrode between 0.0 and 4V. Scan rate = 50 mV/sec. Fig. 4.



Cyclic voltammogram of  $SOC1_2/1.8M$  LiAlCi4 with 10 v/o  $S_2C1_2$  on glassy carbon electrode. Scan rate =  $50~\rm{mV/sec}$ . Cathodic scan first. F1g. 5.

#### 2.2 Electrochemical Oxidation of SOC12/LiAlC14 Solutions

#### Experimental Results

A typical cyclic voltammogram in SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> solution on a carbon electrode is shown in Figure 6. A similar voltammogram was also obtained on a nickel electrode. On scanning the electrode anodically from 4 volts, the onset of an anodic current occurs at ~4.4V vs. Li<sup>+</sup>/Li. The voltammogram shows two broad peaks at 4.55V and 4.65V as well as a sharp and high current peak at 5.0V. In poorly resolved voltammograms, the two peaks at 4.55V and 4.65V merge together and appear as one peak. On cycling the electrode continuously between 4 and 5 volts the heights of the broad peaks decreases although it does not completely disappear even after several cycles. After the electrode was scanned cathodically to 2V or below, a very large current peak is observed in the subsequent anodic sweep to 5.0V. In these cases, the two peaks at 4.55 and 4.65 volts generally appear as a single peak.

When the electrode is scanned cathodically below 4V after the anodic scan to 5V, the reduction peaks due to the oxidation products appear in the resulting voltammogram. It is shown in Figure 7.

There are two clearly separated current peaks at  $\sim 3.6 V$  and  $\sim 3.25 V$  which come from the reduction of oxidation products. There is also a third peak at 2.95V, appearing as a shoulder to the SOCl<sub>2</sub> reduction peak at 2.6V. These peaks are not found in the voltammogram when the first sweep was initiated cathodically from open circuit. The appearance of these peaks and their relative peak heights were found to depend on the potential of scan reversal.

None of these three peaks appear when the scan is reversed at potentials below 4.2 volts. When the scan is reversed at  $\sim 4.6$  volts the peak at 3.25 volts appears as the major one. On increasing the reversal potential to values greater than 4.6V the height of the peak at 3.6V also increases along with the appearance of the shoulder at 2.75V. If the electrode is cycled several times between 4V and 5V before sweeping cathodically, all three peaks show increased peak heights. The voltammograms obtained by addition of  $Cl_2$  to the  $SOCl_2$ /LiAlCl4 showed an increase in the reduction current peak at 3.25V. As would be seen later the reduction peak at 3.25V was also observed in the cathodic region of  $SO_2Cl_2$ /LiAlCl4 solutions after an anodic scan to 5.0V.

In order to identify the other reduction peaks in the voltammogram resulting from oxidation products, the electrode was scanned cathodically from open circuit after adding various reagents to SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solutions. The materials added were SCl<sub>2</sub>, S<sub>2</sub>Cl<sub>2</sub>, SO<sub>2</sub>Cl<sub>2</sub>, SO<sub>2</sub>, AlCl<sub>3</sub> and various combinations of these. Runs were also made using the Li<sub>2</sub>O/AlCl<sub>3</sub> based electrolyte (9) in place of LiAlCl<sub>4</sub>.



Fig. 6. Cyclic voltammogram of SOC1<sub>2</sub>/1.8M LiAlCl<sub>4</sub> on glassy carbon electrode between 4 and 5 volts. Curves 1 and 2 represent successive scans. Scan rate = 50 mV/sec.



Fig. 7. Cyclic voltammogram of SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> on a glassy carbon electrode. Scan rate = 100 mV/sec. The electrode was scanned anodic first from 3.7V. Cathodic curve 1 was obtained after voltage reversal at ~4.9V. Curve 4 was obtained after twice cycling the electrode between 4 and 5V.

The voltammogram obtained by adding 1% SCl<sub>2</sub> to SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> solution is shown in Figure 8. The onset of the cathodic current begins at 3.8V as in the case of the voltammogram in Figure 7. Addition of more SCl<sub>2</sub> resulted in an increase in the current with a peak at  $\sim 3.6$ V. When larger amounts of SCl<sub>2</sub> were added, the peaks moved slightly to lower potentials.

The reduction peaks at 2.85V could most probably be due to  $SO_2Cl_2$ . The voltammogram obtained by adding 30 v/o  $SO_2Cl_2$  to  $SOCl_2/1.8M$  LiAlCl4 electrolyte is shown in Figure 9. The reduction peak is observed at  $\sim 2.9V$  as a shoulder to the  $SOCl_2$  peak. The voltammogram of  $SO_2Cl_2/1.8M$  LiAlCl4 was also recorded to confirm this assignment and is shown in Figure 10. An interesting feature of the voltammogram is the position of the  $Cl_2$  reduction peak. It occurs at about the same position as the one assigned to  $Cl_2$  reduction in  $SOCl_2/LiAlCl_4$  solutions. Evidently  $Cl_2$  is an oxidation product of  $SO_2Cl_2$  also.

We have also obtained a cyclic voltammogram in  $SOC1_2/Li_20-AlC1_3$  based electrolyte. The solution had a Li<sup>+</sup> ion concentration of lM. The voltammogram is shown in Figure 11. The features are similar to those observed in  $SOC1_2/LiAlC1_4$  solutions also.

The various other voltammograms with addition of the other reagents or their combinations were not very informative.

#### • Discussion

It appears that there are two oxidation reactions at potentials between 4.4V and 4.65V. The first peak at  $\sim 4.5V$  most probably corresponds to oxidation of LiCl (Equation 2) and the process may represent the removal of the LiCl film from the electrode surface.

LiC1 
$$\rightarrow$$
 Li<sup>+</sup> +  $\frac{1}{2}$ C1<sub>2</sub> + e<sup>-</sup> (2)

The fact that it was possible to regenerate the electrode surface which had been passivated by holding it at a potential of ~4.5V substantiate the assignment. The observed increase in the height of the peak after a cathodic sweep to 1V and the continuous decrease in the height of the peak on successive cycling between 4V and 5V are also in agreement for this assignment.

The more positive broad peak at 4.65V may correspond to the oxidation of AlCl4-, (Equation 3).

$$A1C1_4^- + \frac{1}{2}C1_2 + A1C1_3 + e^-$$
 (3)



Pig. 8. Cyclic voltammogram of SOCl<sub>2</sub>/1.8M LiAlCl<sub>4</sub> with 1.5 v/o SCl<sub>2</sub> on glassy carbon. Scan rate = 50 mV/sec. Cathodic scan first.



Cyclic voltammogram of  $SOCl_2/1.8M$  LiAlCl<sub>4</sub> containing 30 v/o  $SO_2Cl_2$  on glassy carbon electrode. Anodic scan first. Scan rate = 50 mV/sec. F18. 9.



Cyclic voltammogram of  $80_2C1_2/1.8M$  LiAlCl4 on glassy carbon electrode between 1 and 5 volts. Scan rate = 50 mV/sec. The electrode was scanned anodic first. F18. 10.



Cyclic voltammogram of  $SOCl_2/L1_20$ -2AlCl<sub>3</sub> on glassy carbon electrode. Scan rate =  $200~\rm{mV/sec}$ . Anodic scan first. Fig. 11.

When the voltammograms were run in SOC1<sub>2</sub>/LiAlC1<sub>4</sub> solutions as a function of the concentration of LiAlC1<sub>4</sub> from 0.25 to 2.0M, we found increasing peak heights with increasing concentration of LiAlC1<sub>4</sub>. The results from these experiments are not conclusive. However, we had identified (10,11) AlC1<sub>3</sub> as an oxidation product of SOC1<sub>2</sub>/LiAlC1<sub>4</sub> solution when these solutions were electrolyzed at constant current with the anode potential remaining at ~4.6V.

The high current peak near 5V is most probably due to oxidation of SOC1<sub>2</sub>. However, the oxidation may begin at a much lower potential; say, at ~4.6V in keeping with the fact that products of SOC1<sub>2</sub> were preser\* (10,11) in the SOC1<sub>2</sub>/LiAlC1<sub>4</sub> electrolyte after constant current electroly is at anode potentials of 4.6V.

The predominant reactions at 4.6V could then be reaction (2) and reactions (3) and (4) shown below.

$$A1C1_4^- \rightarrow A1C1_3 + \frac{1}{2}C1_2 + e^-$$
 (3)

$$SOC1_2 + AIC1_4^- + SOC1^+AIC1_4^- + \frac{1}{2}C1_2^- + e^-$$
 (4)

Reaction (2) would occur predominantly only if the electrode had been first scanned cathodically from open circuit so as to cause LiCl deposition on the electrode by SOCl<sub>2</sub> reduction. Reaction 4 is now accepted as the primary oxidation process in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solutions (7,11).

A further discussion of the oxidation products of SOC12 may be made with reference to the voltammogram below 4V obtained by sweeping the electrode cathodically after an anodic scan to 5V (see Fig. 7).

Since the anodic peak at 4.6V and the cathodic peak at 3.25V are interdependent, and since the primary reactions at 4.6V involve the formation of Cl<sub>2</sub>, the peak at 3.25V is most probably due to Cl<sub>2</sub> reduction. This assignment is supported by the observation that a solution of Cl<sub>2</sub> in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> shows a reduction peak at 3.25V and that the Cl<sub>2</sub> reduction peak in SO<sub>2</sub>Cl<sub>2</sub>/LiAlCl<sub>4</sub> is formed at ~3.25V.

The reduction peak at 3.6V can be assigned tentatively to a sulfur chloride such as  $SCl_2$  with reference to the voltammogram in Figure 8. The reduction potential observed here for  $SCl_2$  is in agreement with the value reported by Blomgren et al. (8). They found that  $SCl_2$  reduces at  $\sim 3.7$ V vs. Li<sup>+</sup>/Li in  $SOCl_2$ . Two other experimental results also suggested that the peak at  $\sim 3.6$ V is most probably due to  $SCl_2$ . In  $SOCl_2$ /LiAlCl<sub>4</sub> solutions containing S or  $S_2Cl_2$ , the reduction peaks at 3.6V showed higher currents than in solutions without the additives, suggesting that these materials may chemically

react with an anodic product to give the material with the 3.6V reduction potential. Since Cl<sub>2</sub> is an oxidation product, the most probable reactions are,

$$S_2Cl_2 + Cl_2 \rightarrow 2SCl_2 \tag{5}$$

$$S + Cl_2 \rightarrow SCl_2 \tag{6}$$

These reactions are well known. For example  $SCl_2$  is prepared by passing dry  $Cl_2$  gas through powdered S. The reaction is exothermic and the intermediate is  $S_2Cl_2$ . In this reaction, with a large excess of  $Cl_2$ , the unstable  $SCl_4$  can also be prepared by proper low temperature cooling.

From these information we assign the reduction peak at 3.6V as most probably due to SCl<sub>2</sub>. However SCl<sub>2</sub> is a reduced S species and its formation on oxidation of SOCl<sub>2</sub>/LiAlCl<sub>4</sub> is somewhat unusual. Nevertheless, a reaction mechanism involving the formation of SCl<sub>2</sub> can be written for oxidation reactions in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> which could account for all the products:

The reduction peak at 2.85V may correspond to SO<sub>2</sub>Cl<sub>2</sub> in accordance to the results presented in Figures 9 and 10.

Oxidation reactions that would explain the formation of the various products observed here could then be, (2), (3), (4) and (7) and (8) shown below.

$$SOC1_2 + SOC1^+A1C1_4^- \rightarrow SC1^+ + A1C1_3 + \frac{1}{2}C1_2 + e^- + S0_2C1_2$$
 (7)

$$SC1^+ + A1C1_4^- \rightarrow SC1^+A1C1_4^-$$
 (8)

The cathodic processes to balance the charges would involve the reduction of SOCl<sub>2</sub> with Li+ from LiAlCl<sub>4</sub> as shown in Equation (1).

The first oxidation reaction of SOCl<sub>2</sub> shown in Equation (4) is now well accepted. However, we note that SOCl+AlCl<sub>4</sub> is structurally similar to LiAlCl<sub>4</sub> and could be oxidized at potentials close to that of the oxidation of LiAlCl<sub>4</sub>. Although the reactions in (7) and (8) may represent the overall processes, the actual reactions may take place in multisteps as shown in (9) and (10).

$$2SOC1^{+}A1C1_{4}^{-} \rightarrow 2A1C1_{3} + C10_{2} + 2e^{-} + \frac{1}{2}C1_{2} + 2SC1^{+}$$
 (9)

$$2SOC1_2 + C10_2 \rightarrow 2SO_2C1_2 + \frac{1}{2}C1_2$$
 (10)

Note that this reaction scheme involves a very explosive and powerful oxidizing agent  ${\rm Clo}_2$ . The complex  ${\rm SCl}^+{\rm AlCl}_4^-$  is essentially  ${\rm AlCl}_3$  complex of  ${\rm SCl}_2$  and has been previously characterized (12).

We would like to stress that the reaction schemes shown above have been proposed to explain the observed products. More work is needed for further confirmation.

# III. ANALYSIS OF ELECTROLYTE FROM L1/SOC12 CELLS AFTER DISCHARGE, FORCED OVERDISCHARGE AND "CHARGE"

A preliminary account of the analysis of products from discharged and overdischarged Li/SOCl<sub>2</sub> cells by IR spectrometry was given in the last quarterly report. Further studies were made in the present quarter using both IR spectrometry and in situ cycle voltammetry. The small prismatic cells with a slightly flooded configuration was used for these studies. The larger amounts of electrolyte were needed to have materials left for analysis after the galvanostatic tests. Control experiments with extracts of the electrode package from cells containing lesser amounts of electrolyte did not show results different from flooded cells.

#### 1. Experimental Procedure

In the IR spectrometric methods anode and cathode limited cells were subjected to various states of discharge and overdischarge and the electrolyte was analyzed. The electrode package was then extracted with SOCl2 on SCl2 and spectra were again recorded. In order to identify the spectra, spectra of mixtures of various reagents of known compositions were also obtained.

All infrared spectra were obtained on a Beckman Acculab 5 dual beam spectrometer. The instrument covers the range 4000 cm<sup>-1</sup> to 375 cm<sup>-1</sup>. All the liquid spectra were obtained with Beckman TAC cells. These have AgC1 windows of 0.025 to 0.1 mm path length and can be sealed permanently.

The IR data were complemented by cyclic voltammetry studies. Attempts to obtain cyclic voltammetry data with a microcarbon electrode incorporated inside the cell between two layers of the electrode package were not successful due to passivation from excessive film formation on the electrode surface. However, informative results were obtained from cyclic voltammetry on a glassy carbon microelectrode (0.07 cm²) introduced into the cell through a side arm of the specially designed glass cell. The cell and the electrode arrangement is shown schematically in Figure 12. During discharge the microcarbon electrode was removed from the electrolyte. In order to record the voltammogram after discharge and overdischarge, the electrode was pushed down and secured contact with the electrolyte by placing the cell in a tilted position. Passivation of the electrode was avoided by this procedure. Reproducible results were obtained. The cell reference electrode and Li electrode were used as the reference and counter electrodes for CV.



Fig. 12. Schematic view of the cell for in situ cyclic voltammetry.

Since the IR spectral data and cyclic voltammetry results are complementary, it is appropriate to discuss the data with respect to cell configurations and the modes of cell operation.

#### Experimental Results

#### 2.1 Anode Limited Cells

The anode limited cells and their construction parameters are given in Table 1. A summary of the discharge results, the extent of discharge or overdischarge for each cell before IR spectral or cyclic voltammetry tests are presented in Table 2. The most informative region of the IR spectrum is below 1500 cm<sup>-1</sup>, the region of S-O absorptions. In cyclic voltammetry, the cathodic region below 4V is the most useful.

Cell P-22 was discharged at 27 mA and yielded 490 mAh capacity, Figure 13. The cell was anode limited as indicated by the potentials of the anode vs. Li reference electrode at the end discharge. The cell was terminated just at the end discharged when the anode potential was  $\sim 3.5$ V. The IR spectrum of the electrolyte is shown in Figure 14. The only IR identifiable product is  $50_2$ .

We have also obtained a similar spectrum from cell P-21 which had been discharged to 260 mAh,  $\sim 2/3$  the normal capacity of the cell. At the time of iR spectral recording the cell potential in P-21 was at 3.4V and the anode potential was at +50 mV.

In order to see if any other products with absorptions hidden inside the large  $SOCl_2$  peak near  $1200~cm^{-1}$ , we recorded the IR spectra in the double beam spectrometer with  $SOCl_2/1.8M$  LiAlCl<sub>2</sub> solution taken in an identical cell placed in the reference beam. The spectrum is shown in Figure 15. The absorptions due to  $SO_2$  are clearly seen at  $1340~cm^{-1}$  and  $1155~cm^{-1}$ . The normal  $SOCl_2$  peaks are folded upwards in this spectrum. This technique was found to be a useful one of general utility in the IR spectral studies of this system.

Another anode limited cell P-18 was discharged at 24 mA and then forced overdischarged also at 24 mA. The overdischarge proceeded with considerable voltage fluctuations as often found (10,11) in anode limited cells during forced overdischarge. The discharge and overdischarge are presented in Figure 16. The IR spectrum was recorded after 240 mAh of overdischarge and is shown in Figure 17. The spectrum shows SO<sub>2</sub> as the major product. However, another new peak of medium intensity is present at 1070 cm<sup>-1</sup>. The spectrum obtained with SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solution in the reference beam showed that no material is present which absorbs at 1200 cm<sup>-1</sup>. The IR spectrum from anode limited cell P-26 (Figure 18) overdischarged for 1.1 Ah was identical to the one in Figure 19 except that the intensity of the peak at 1070 cm<sup>-1</sup> was relatively higher. We have reproduced this result in yet another cell overdischarged for 2Ah.

Table 1

Cell Parameters for Anode Limited Cells

|          |                                         |                              | Carbon Electrode                              | qe                                | Lit        | Lithium<br>Electrode | Electrolyte<br>LiAlCl <sub>4</sub> /SOCl <sub>2</sub> | SOC12 |                              |
|----------|-----------------------------------------|------------------------------|-----------------------------------------------|-----------------------------------|------------|----------------------|-------------------------------------------------------|-------|------------------------------|
| Cell No. | Cell<br>Configuration                   | Average<br>Thickness<br>(mm) | Total Area<br>Facing Li<br>(cm <sup>2</sup> ) | Approximate Amount of Carbon (mg) | Area (cm2) | Amount (Ah)          | Con.<br>L1A1C14<br>(M)                                | vol.  | Discharge<br>Current<br>(mA) |
| P-18     | C/L1/C/L1/C<br>(AL*)                    | 0.65                         | 24                                            | 400                               | 24         | 0.63                 | 1.8                                                   | 4.5   | 24                           |
| P-19     | AL, without Li<br>on the anode<br>Exmet | 0.75                         | 24                                            | 530                               | 1          | 1                    | 1.8                                                   | 4.0   | 24                           |
| P-21     | AL.                                     | 0.75                         | 24                                            | 470                               | 24         | 0.63                 | 1.8                                                   | 4.0   | 24                           |
| P-22     | AL.                                     | 0.75                         | 24                                            | 450                               | 24         | 0.63                 | 1.8                                                   | 4.0   | 27                           |
| P-23     | AL, without Li<br>on the anode<br>Exmet | 0.70                         | 24                                            | 450                               | 1 -        |                      | 1.8                                                   | 4.0   | 20                           |
| P-26     | AL                                      | 0.68                         | 24                                            | 480                               | 24         | 0.63                 | 1.8                                                   | 3.5   | 77                           |
| P-31     | AL, no lithium                          | 0.68                         | 24                                            | 400                               | •          |                      | 1.8                                                   | 4.0   | 77                           |
| P-32     | AL.                                     | 69.0                         | 24                                            | 400                               | 24         | 0.63                 | 1.8                                                   | 4.0   | 24                           |
|          |                                         |                              |                                               |                                   |            |                      |                                                       |       |                              |

\*AL + anode limited.

Table 2

Analytical Test Summary of Anode Limited Cells

|          |                     | Test Peri             | formed After             |
|----------|---------------------|-----------------------|--------------------------|
| Cell No. | Cell Capacity (mAh) | Discharge, mAh  IR CV | Overdischarge, mAh IR CV |
| P-18     | 396                 |                       | 240                      |
| P-19     | Cell without Li     |                       | 670                      |
| P-21     | 260*                | 260*                  |                          |
| P-22     | 490                 | 490                   |                          |
| P-23     | Cell without Li     |                       | 1150                     |
| P-26     | 620                 |                       | 1100                     |
| P-31     | Cell without Li     |                       | 3300 3300                |
| P-32     | 490                 | 490                   | 2160 2600                |

<sup>\*</sup>Partial discharge.



Fig. 13. Discharge curve for  $Li/SOCI_2$  cell P-22. Current = 24 mA.



Infrared spectrum of the electrolyte from  $L1/SOC1_2$  cell P-22 after the discharge shown in Fig. 13. F18. 14.



Infrared spectrum of electrolyte from L1/SOC12 cell P-22 after 0.49 mAh discharge shown in Fig. 13. The reference cell contained  $\mathrm{SOC1}_2$ . F18. 15.



Calvanostatic discharge and overdischarge curves for Li/SOCI<sub>2</sub> cell P-18. Current = 24 mA. F1g. 16.



Infrared spectrum of electrolyte from Li/SOCl<sub>2</sub> cell P-18 after the overdischarge shown in Fig. 16. Fig. 17.



Fig. 18. Discharge and overdischarge curves for Li/SOCl<sub>2</sub> cell P-26. Current = 24 mA.



Fig. 19. Discharge curve for cell P-19 without Li on the anode. Current = 24 mA.

In all the anode limited cells some Li, mostly in loose patches, was still present at the end of discharge. This Li could possibly react with the oxidation product(s) so that some of the products were not available for detection. To eliminate this possibility, two cells were tested without any lithium on the anode. This cell represents an extreme case of anode limited cell, the discharge profile of these types of cell was shown in the last report. The discharge curve for cell P-19 is shown in Figure 19. Cell P-23 was tested without the Li reference electrode since the Li could react with oxidation products. Both cells gave identical IR spectra. The spectrum from P-19 is shown in Figure 20. The spectrum shows two other peaks at 1410 cm<sup>-1</sup> and 1110 cm<sup>-1</sup> in addition to the peaks present in Figure 17. The peak at 1410 cm<sup>-1</sup> is due to SO<sub>2</sub>Cl<sub>2</sub> and the peak at 1110 cm<sup>-1</sup> is due to the complex SOCl<sup>+</sup>AlCl<sub>4</sub>. These compounds were characterized previously from IR spectral data in solutions of SOCl<sub>2</sub>/LiAlCl<sub>4</sub> after constant current electrolysis (10, 11).

Cyclic voltammetry data were obtained after various stages of discharge and overdischarge. A typical voltammogram obtained by scanning the C electrode between 1 and 4V in the electrolyte from cell P-32 (Figure 21) which had been forced overdischarge for 2.16 Ah is shown in Figure 22. The voltammogram shows a reduction peak at 3.25V due to an oxidation product. A very low current peak may be present at  $\sim 3.6$ V. We note that the voltammogram obtained after 490 mAh of discharge when the anode potential had polarized to  $\sim 4.0$ V did not show any peaks at 3.6V and 3.25V. Evidently Cl<sub>2</sub> and SCl<sub>2</sub> are present in the overdischarged cell. The IR spectrum from cell P-32, obtained immediately after the cyclic voltammetry run, was identical to that shown in Figure 19, showing principally the peak at 1070 cm<sup>-1</sup> from the product. In addition, SO<sub>2</sub> and a minute amount of SO<sub>2</sub>Cl<sub>2</sub> were also present.

A cyclic voltammogram was also obtained in the electrolyte from cell P-31, Figure 23, discharged without Li on the anode. The voltammogram is shown in Figure 24. It shows the peaks due to Cl<sub>2</sub>, and SCl<sub>2</sub>.

#### 2.2 Cathode Limited Cells

Both IR spectra and cyclic voltammograms were obtained in the electrolytes from three cathode limited cells P-29, P-35 and P-36 after 3.24 Ah, 1.87 Ah and 1.08 Ah of overdischarge respectively. The construction parameters of these cells are shown in Table 3. The tests are summarized in Table 4. The discharges and overdischarges are presented in Figures 25 and 26 for cells P-35 and P-36 respectively. The voltammograms of cell P-36 obtained after 1.87 Ah of overdischarge is shown in Figure 27. The voltammogram shows a small reduction peak at 3.25V due to Cl<sub>2</sub> in addition to the SOCl<sub>2</sub> and SO<sub>2</sub> reduction peaks. The Cl<sub>2</sub> peak was not present in the voltammograms recorded just at the end of discharge. Cell P-36 gave identical results.



Infrared spectrum of the electrolyte from cell P-19 shown in Fig. 19. Fig. 20.



Fig. 21. Discharge and overdischarge curves for cell P-32. Current = 24 mA.



Fig. 22: Cyclic voltammogram of electrolyte from cell P-32 after 550 mAh overdischarge on glassy carbon electrode. Scan rate = 50 mV/sec. Cathodic scan first.



Discharge curve for  $\text{Li/SOCl}_2$  cell P-31 without Li on the anode. Current = 24 mA. F18. 23.



after the discharge shown in Fig. 23. The voltammogram represented by the broken curve was obtained after 0.10 Ah discharge. Cyclic voltammogram of electrolyte from cell P-31 on glassy carbon electrode. The solid curve represents the voltammogram obtained F18. 24.

Table 3

Cell Parameters for Cathode Limited Cells

|                                                       | rge                                           |                         |      |      |      |
|-------------------------------------------------------|-----------------------------------------------|-------------------------|------|------|------|
|                                                       | Discharge<br>Current<br>(mA)                  | 36                      | 36   | 36   | 36** |
| Electrolyte<br>LialCl <sub>4</sub> /SOCl <sub>2</sub> | Vol. (m1)                                     | 7                       | 4    | 4    | 4    |
|                                                       | Con.<br>L1A1C14<br>(M)                        | 1.8                     | 1.8  | 1.8  | 1.8  |
| Lithium                                               | Amount (Ah)                                   | 2.01                    | 2.01 | 2.01 | 2.01 |
| Lit                                                   | Area (cm2)                                    | 36                      | 36   | 36   | 36   |
| Carbon Electrode                                      | Approximate Amount of Carbon (mg)             | 007                     | 380  | 360  | 420  |
|                                                       | Total ARea<br>Facing Li<br>(cm <sup>2</sup> ) | 36                      | 36   | 36   | 36   |
|                                                       | Average<br>Thickness (mm)                     | 0.66                    | 0.62 | 0.62 | 99.0 |
|                                                       | Cell<br>Configuration                         | L1/C/L1/C/L1/C/L1 (CL*) | ឥ    | ៩    | ថ    |
|                                                       | Cell No.                                      | P-29                    | P-35 | P-36 | P-34 |

\*CL + cathode limited.

Table 4

Analytical Test Summary of Cathode Limited Cells

|          | Cell Capacity (mA) | Test Performed After |       |                   |         |  |
|----------|--------------------|----------------------|-------|-------------------|---------|--|
| Cell No. |                    | Discharge            | , mAh | Overdischar<br>IR | ge, mAh |  |
| P-29     | 920                | •                    | -     | 3240              |         |  |
| P-35     | 1230               | -                    | -     | 1872              | 1872    |  |
| P-36     | 1210               | -                    | •     | 1080              | 1080    |  |
| P-34     | Cell was charged   | -                    | -     | 4600              | 4600    |  |



Fig. 25. Discharge and overdischarge curves for cell P-35. Current = 36 mA.



Discharge and overdischarge curves for Li/SOC12 cell P-36. Current = 36 mA. Fig. 26.



Cyclic voltammogram of electrolyte from cell P-36 on glassy carbon electrode after overdischarge shown in Fig. 26. Scan rate = 50 mV/sec. Cathodic scan first. F18. 27.

The IR spectrum of the electrolyte from P-36 is shown in Figure 28. The spectrum shows the SO<sub>2</sub> peaks at 1340 cm<sup>-1</sup> and 1155 cm<sup>-1</sup>. A weak shoulder is present at 1065 cm<sup>-1</sup> and two strong bands are present at 790 cm<sup>-1</sup> and 665 cm<sup>-1</sup>. The latter bands are quite pronounced and found predominantly in solution from cathode limited cells after overdischarge. All the three cells showed the peaks at 790 cm<sup>-1</sup> and 665 cm<sup>-1</sup> in the electrolyte after overdischarge. Partially discharged cells showed these peaks sometimes as weak bands. Isolation experiments showed that the peak is not present in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solutions, but was found in a solution of Li<sub>2</sub>S in SOCl<sub>2</sub>/LiAlCl<sub>4</sub>.

#### 2.3. "Charged" Li/SOCl2 Cells

In order to characterize the reactions responsible for regenerative processes in the "charging" of Li/SOCl<sub>2</sub> cells, both cyclic voltammogram and IR spectra were obtained for the electrolyte from cell P-34. The cell had been charged to 4.6 Ah as shown in Figure 29. The cyclic voltammogram is shown in Figure 30. The voltammogram shows the peak due to SCl<sub>2</sub> at 3.65V. A Cl<sub>2</sub> peak may be hidden in the saddle between the two large peaks. IR spectrum, presented in Figure 31, shows SO<sub>2</sub>Cl<sub>2</sub> and the product exhibiting the peak at 1070 cm<sup>-1</sup>. Some SO<sub>2</sub> is also present.

#### 3. Discussion of Analytical Results

Cyclic voltammetry and IR spectral data indicate that SO<sub>2</sub> is produced in Li/SOCl<sub>2</sub> cells during the early stages of discharge. Cyclic voltammetry also indicated that LiCl is a product of discharge. These observations are in agreement with the generally accepted discharge mechanisms shown in Equation 1. The often proposed intermediate, SO, could not be identified either by IR spectrometry or cyclic voltammetry.

When anode limited cells are forced overdischarged, the anode potential rises to values >4V leading to oxidation reactions of cell materials with the formation of several products. The oxidation products identified were Cl<sub>2</sub> by cyclic voltammetry and a material absorbing at 1070 cm<sup>-1</sup> in the infrared spectrum. In some cells small amounts of SO<sub>2</sub>Cl<sub>2</sub> and SOCl<sup>+</sup>AlCl<sub>4</sub> were also found. All these products could result from oxidation reactions of the type discussed in the previous section.

Several IR experiments with reagent combinations were performed to identify the material exhibiting absorption at  $1070~\rm cm^{-1}$  in the IR spectrum. Only the spectrum of  $S_2Cl_2$  showed a weak band at  $1070~\rm cm^{-1}$ . This is the first overtone band of the S-Cl stretch at  $550~\rm cm^{-1}$ . However, the intensity of the peak at  $1070~\rm cm^{-1}$  in the electrolyte from cells is much higher than even in neat  $S_2Cl_2$  indicating that the material is different. SCl<sub>2</sub> does not have any absorptions at  $1070~\rm cm^{-1}$ . The possibility of  $SO_3$  was investigated by spectral measurements on solutions of  $SO_3$  in  $SOCl_2$ . However,  $SO_3$  oxidized  $SOCl_2$  rapidly to produce  $SO_2Cl_2$  and no absorption at  $1070~\rm cm^{-1}$  was found. Further studies are in progress to identify this material.



Infrared spectrum of electrolyte from L1/SOCl2 cell P-36 after forced overdischarge shown in Fig. 26. F18. 28.



Fig. 29. Galvanostatic "charging" wave for Li/SOCl<sub>2</sub> cell P-34. Current = 36 mA.



Fig. 30. Cyclic voltammogram of electrolyte from cell P-34 after 750 mAh charge. Scan rate = 50 mV/sec. Cathodic scan first.



Infrared spectrum of electrolyte from cell P-34 which was charged shown in in Fig. 29. F1g. 31.

In solutions from cell discharged without Li on the anode, SO<sub>2</sub>Cl<sub>2</sub>, SOCl<sup>+</sup>AlCl<sub>4</sub><sup>-</sup> and the material exhibiting absorption at 1070 cm<sup>-1</sup> were identified from IR spectra. Cyclic voltammetry showed SCl<sub>2</sub> and Cl<sub>2</sub> also. The fact these materials are present in much higher concentrations in these cells than in overdischarged anode limited cells is probably due to the absence of Li which could react with the products as well as due to the availability of larger amounts of electrolyte for oxidation. The reaction in the cells without Li on the anode involve regenerative process so that these cells could be "discharged" for long periods of time without changes in electrode polarization. The important cell reactions in the regenerative process may be,

The presence of SO<sub>2</sub>Cl<sub>2</sub> in these cells suggest that some oxidation of SOCl<sup>+</sup>AlCl<sub>4</sub> also occurs. Control experiments suggested SO<sub>2</sub>Cl<sub>2</sub> also forms a complex with AlCl<sub>3</sub> which could probably be formulated as SO<sub>2</sub>Cl<sup>+</sup>AlCl<sub>4</sub>. In the infrared spectrum the peak due to the complex absorb very close to the SO<sub>2</sub>Cl<sub>2</sub> absorptions at 1410 cm<sup>-1</sup> and 1205 cm<sup>-1</sup>, so that these peaks appear as a doublet in the solution spectrum of AlCl<sub>3</sub> in SO<sub>2</sub>Cl<sub>2</sub>. In dilute solutions the separation of the peaks are not clear. The formation of SO<sub>2</sub>Cl<sub>2</sub> and its AlCl<sub>3</sub> complex may have relevance to the safety of Li/SOCl<sub>2</sub> cells. We have found that the reaction of SO<sub>2</sub>Cl<sub>2</sub> with Li is extremely fast in the presence of AlCl<sub>3</sub>. The IR spectrum identified SO<sub>2</sub> as a product of the reaction which may be written as,

$$2Li + SO_2Cl_2 + 2AlCl_3 \rightarrow SO_2 + 2LiAlCl_4$$
 (16)

SOC12 also reacts with Li in the presence of AlCl3, but the reaction is much slower.

Analysis of electrolyte from cathode limited cells after long periods of overdischarge showed that some reactions were occurring between cell materials. This is clearly evidenced by the IR spectrum of the solution which

shows an absorption of medium intensity at 790 cm<sup>-1</sup>. This peak is not found or is very weak in the electrolyte, just at the end of discharge. However, we have found a peak of comparable intensity in solutions of Li<sub>2</sub>S in SOCl<sub>2</sub>/LiAlCl<sub>4</sub>. This indicates that the peak is due to a Li<sub>2</sub>S mediated reaction product of SOCl<sub>2</sub>/LiAlCl<sub>4</sub>. The significance is that Li<sub>2</sub>S is formed in the cell during forced overdischarge of a cathode limited cell. It is probable that the Li which is plated on to the cathode during overdischarge reacts with S produced in the discharge to form Li<sub>2</sub>S. This Li<sub>2</sub>S reacts with the electrolyte to form the product exhibiting the absorption at 790 cm<sup>-1</sup>. Preliminary evidence suggest that LiAlCl<sub>4</sub> is necessary for this reaction of Li<sub>2</sub>S. The cyclic voltammograms also showed some Cl<sub>2</sub> in the electrolyte. The Cl<sub>2</sub> may come from the Li<sub>2</sub>S reaction or the reaction products. A weak absorption at 1065 cm<sup>-1</sup> indicates that probably some S<sub>2</sub>Cl<sub>2</sub> is present. The absorption may be the expected overtone band of the S-Cl stretch at 550 cm<sup>-1</sup> as found in neat S<sub>2</sub>Cl<sub>2</sub>.

The reaction products in solution from the "charged" Li/SOCl<sub>2</sub> cells were SO<sub>2</sub>Cl<sub>2</sub>, SO<sub>2</sub>, SCl<sub>2</sub> and the product exhibiting the absorption at 1070 cm<sup>-1</sup>. Very little or no Cl<sub>2</sub> or SOCl<sup>+</sup>AlCl<sub>4</sub><sup>-</sup> was found. The cell process is regenerative and may involve reactions of the type shown in Equations 11-15. The difference is that the oxidation reactions occur on the carbon electrode. The explanation for the absence of SOCl<sup>+</sup>AlCl<sub>4</sub><sup>-</sup> and probably Cl<sub>2</sub> may be related to the regenerative reactions. The chlorine which is produced reacts with Li in the presence of SOCl<sup>+</sup>AlCl<sub>4</sub><sup>-</sup> to produce LiAlCl<sub>4</sub> so that no net concentration of these materials is present in solution.

#### IV. SUMMARY AND FUTURE WORK

Infrared spectral and cyclic voltammetry data indicated that SO<sub>2</sub>Cl<sub>2</sub>, Cl<sub>2</sub>, SOC1+AlCl<sub>4</sub>-, possibly SCl<sub>2</sub> and a material exhibiting infrared absorption at 1070 cm<sup>-1</sup> are formed in the oxidation reactions of SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solutions. The combinations of these materials present in electrolytes from cells vary with the modes of operation and configuration of the cells.

Li<sub>2</sub>S formation has been established in cathode limited cells during forced overdischarge. However, no Li<sub>2</sub>S is found in the cells at the end of normal discharge or in anode limited cells after forced overdischarge.

On the basis of materials characterized, a mechanism has been proposed for oxidation reactions in SOCl<sub>2</sub>/LiAlCl<sub>4</sub> solutions.

During the next quarter analytical work will continue with cells discharged on resistive load. We will continue the studies of explosion hazard in Li/SOCl<sub>2</sub> cells as a function of LiAlCl<sub>4</sub> concentration, current density and cell configuration.

#### V. REFERENCES

- 1. W. K. Behl, J. A. Christopulos, M. Ramirez and S. Gilman, J. Electrochem. Soc. 120, 1619 (1973).
- J. J. Auborn, K. W. French, S. I. Lieberman, V. K. Shah and A. Heller, J. Electrochem. Soc. 120, 1613 (1973).
- A. N. Dey, P. R. Mallory Company, Second Quarterly Report, ECOM-74-0109-2, November 1974.
- 4. A. N. Dey and P. Bro, Paper No. 32 presented at the Power Sources Conf., Brighton, 1976.
- 5. A. N. Dey, P. R. Mallory Company, Interim Report, ECOM-74-0109-13, November 1977 and references therein.
- N. Marincic and A. Lombardi, GTE Laboratory, Final Report, ECOM-74-0108-F, April 1977.
- 7. W. K. Behl, Proc. 27th Power Sources Symposium, Atlantic City, June 1976.
- G. E. Blomgren, V. Z. Leger, M. L. Kronenberg, T. Kalnoki-Kis and R.J. Brodd, 11th International Power Sources Symposium, Brighton, 1978.
- J. P. Gabano and P. Lenfant, Proceedings of the Symposium on Battery Design and Optimization, The Electrochemical Society, Princeton, NJ, 1978.
- K. M. Abraham, P. G. Gudrais, G. L. Holleck and S. B. Brummer, 28th Power Sources Symposium, Atlantic City, NJ, 1978.
- 11. K. M. Abraham, G. L. Holleck and S. B. Brummer, Proceedings of the Symposium on Battery Design and Optimization, the Electrochemical Society, Princeton, NJ, 1978.
- 12. S. N. Nabi and M. A. Khaleque, J. Chem. Soc. 3626 (1965).

### Distribution List

| Defense Documentation Center<br>Attn: DDC-TCA<br>Cameron Station (Bldg. 5)<br>Alexandria, VA 22314             | (12) | CDR, US Army Research Office<br>Attn: DRXRO-IP<br>P.O. Box 12211<br>Research Triangle Park, NC 27709  | (1)                      |
|----------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------|--------------------------|
| Commander Naval Ocean Systems Center Attn: Library                                                             |      | CDR, US Army Signals Welfare Lab<br>Attn: DELSW-OS<br>Vint Hill Farms Station                         | (1)                      |
| San Diego, CA 92152                                                                                            | (1)  | Warrenton, VA 22186                                                                                   |                          |
| CDR, Naval Surface Weapons Ctr.<br>White Oak Laboratory<br>Attn: Library Code WX-21<br>Silver Spring, MD 20910 | (1)  | Commander US Army Mobility Equipment Research & Development Com. Attn: DRDME-R Fort Belvoir, VA 22060 | (1)                      |
| Commandant, Marine Corps HQ US Marine Corps Attn: Code LMC Washington, DC 20380                                | (2)  | Commander US Army Electronics R & D Comman Fort Monmouth, NJ 07703                                    | d                        |
| Rome Air Development Center<br>Attn: Documents Library (TILD)<br>Griffiss AFB, NY 13441                        | (1)  | DELET-P DELET-DD DELET-DT DELSD-L (Tech Lib)                                                          | (1)<br>(1)<br>(2)<br>(1) |
| Air Force Geophysics Lab/SULL<br>Attn: S-29<br>Hanscom AFB, MA 01731                                           | (1)  | DELSD-L-S (Stinfo) DELET-PR                                                                           | (2)<br>(5)               |
| HQDA (DAMA-ARZ-D/<br>Dr. F. D. Verderame)<br>Washington, DC 20310                                              | (1)  | Commander US Army Communications R & D Com Fort Monmouth, NJ 07703                                    | mand                     |
| CDR, Harry Diamond Laboratories                                                                                | (1)  | USMC-LNO                                                                                              | (1)                      |
| Attn: Library<br>2800 Powder Mill Road                                                                         | (1)  | NASA Scientific & Tech. Info<br>Facility                                                              | (1)                      |
| Adelphi, MD 20783                                                                                              |      | Baltimore/Washington Internation                                                                      | al                       |
| Director                                                                                                       |      | P.O. Box 8757, MD 21240                                                                               |                          |
| US Army Materiel Systems                                                                                       | (1)  |                                                                                                       |                          |
| Analysis Actv.                                                                                                 |      | Mr. Donald Mortel                                                                                     | (1)                      |
| Attn: DRXSY-MP                                                                                                 |      | AF Aero Propulsion Lab.                                                                               |                          |
| Aberdeen Proving Ground, MD 2100                                                                               | •    | Attn: AFAPL-POE-1<br>Wright-Patterson AFB, OH 45433                                                   |                          |

## Distribution List (continued)

| Mr. Richard E. Oderwald<br>Department of the Navy                                      | (1) | Dr. Leonard Nanis                                                                                | (1) |
|----------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|-----|
| Hqs., US Marine Corps                                                                  |     | G207                                                                                             |     |
| Code LMC 4                                                                             |     | S.R.I.                                                                                           |     |
| 그 사람이 그리아 살아가 살아가면 하는 것이 되었다. 그는 그리아 나는 그리아 나는 그리아 |     | Menlo Park, CA 94025                                                                             |     |
| Washington, DC 20380                                                                   |     |                                                                                                  |     |
| Common 1                                                                               |     | Dr. J. J. Auborn, Rm 1A-317                                                                      | (1) |
| Commander                                                                              | (1) | Bell Laboratories                                                                                |     |
| Harry Diamond Laboratories                                                             |     | 600 Mountain Avenue                                                                              |     |
| Attn: DELHD-RDD (Mr. A. Benderly                                                       | 7)  | Murray Hill, NJ 07974                                                                            |     |
| 2800 Powder Mill Road                                                                  |     |                                                                                                  |     |
| Adelphi, MD 20783                                                                      |     | Stonehart Associates, Inc.                                                                       | (1) |
|                                                                                        |     | 34 Five Fields Road                                                                              |     |
| Electrochimica                                                                         | (1) | Madison, CT 06443                                                                                |     |
| 2485 Charleston Road                                                                   |     | Attn: Mr. Thomas Reddy                                                                           |     |
| Mountain View, CA 94040                                                                |     |                                                                                                  |     |
| Attn: Dr. Eisenberg                                                                    |     | Mr. J. R. Modem                                                                                  | (1) |
|                                                                                        |     | Energy Conversion Branch Code 3                                                                  | 642 |
| Dr. Hugh Barger                                                                        | (1) | Naval Underwater Systems Center                                                                  |     |
| P.O. Box 2232                                                                          |     | Newport Laboratory                                                                               |     |
| Davidson, NC 28036                                                                     |     | Newport, RI 02840                                                                                |     |
| Energy Storage & Conversion Dept.                                                      | (1) | NASA Lewis Research Center                                                                       | (1) |
| TRW Systems                                                                            |     | Mail Stop 6-1                                                                                    | (1) |
| One Space Park                                                                         |     | 21000 Brookpark Road                                                                             |     |
| Redondo Beach, CA 90278                                                                |     | Cleveland, OH 44135                                                                              |     |
| Attn: Dr. H.P. Silverman                                                               |     | Attn: Dr. Stuart Fordyce                                                                         |     |
| Sanders Associates, Inc.                                                               | (1) | Mr. Joe McCartney                                                                                | (1) |
| 24 Simon Street                                                                        | ` ' | Naval Undersea Center                                                                            | (1) |
| Mail Stop NSI-2208                                                                     |     | Code 608                                                                                         |     |
| Nashua, NH 03060                                                                       |     | San Diego, CA 92132                                                                              |     |
| Attn: J. Marshall                                                                      |     | odn blego, or 32132                                                                              |     |
|                                                                                        |     | Atlus Corporation                                                                                | /11 |
| Power Conversion, Inc.                                                                 | (1) | 440 Page Mill Road                                                                               | (1) |
| 70 MacQuesten Pkwy                                                                     | (-) | Palo Alto, CA 94306                                                                              |     |
| Mount Vernon, NY 10550                                                                 |     | Attn: Douglas Glader                                                                             |     |
| Attn: Stuart Chodosh                                                                   |     | ween, pouglas grader                                                                             |     |
| Dr. D. Pouli                                                                           | (1) | J. Bene<br>MS 488                                                                                | (1) |
| Portfolio Manager                                                                      | (1) | 나는 그 가장하다 한 사람들은 것이 되었다면 내가 되었다면 나는 것이 없는 것이 없는 것이 없는 것이 없다면 |     |
| Hooker Chemicals & Plastics Corp.                                                      |     | NASA Langley Research Center                                                                     |     |
| M.P.O. Box 8                                                                           |     | Hampton, VA 23665                                                                                |     |
| Niagara Falls, NY 14302                                                                |     |                                                                                                  |     |
| wrafere Lerra's MI T4305                                                               |     |                                                                                                  |     |

# Distribution List (continued)

| Mr. Eddie T. Seo<br>Research and Development Div. | (1) | Yardney Electric Company (1)<br>82 Mechanic Street |     |
|---------------------------------------------------|-----|----------------------------------------------------|-----|
| The Gates Rubber Company                          |     | Pawcatuck, CT 02891                                |     |
| 999 S. Broadway                                   |     | Attn: Mr. William E. Ryder                         |     |
| Denver, CO 80217                                  |     |                                                    |     |
|                                                   |     | P.R. Mallory & Company, Inc.                       | (1) |
| Mr. Sidney Gross                                  | (1) | Northwest Industrial Park                          |     |
| Mail Stop 8C-62                                   |     | Burlington, MA 01803                               |     |
| Boeing Aerospace Company<br>P.O. Box 3999         |     | Attn: Dr. Per Bro                                  |     |
| Seattle, WA 98124                                 |     | Exxon Research & Engg. Company                     | (1) |
|                                                   |     | Corporate Research Laboratory                      | ,-, |
| Honeywell Technology Center                       | (1) | Linden, NJ 07036                                   |     |
| Attn: Dr. H.V. Venkatasetty                       |     | Attn: Dr. R. Hamlen                                |     |
| 10701 Lyndale Avenue South                        |     |                                                    |     |
| Bloomington, MN 55420                             |     | Argonne National Laboratories                      | (1) |
|                                                   |     | 9700 South Cass Avenue                             |     |
| Transportation Systems Center                     | (1) | Argonne, IL 60439                                  |     |
| Kendall Square                                    |     | Attn: Dr. E. C. Gay                                |     |
| Cambridge MA 02142                                |     |                                                    |     |
| Attn: Dr. Norman Rosenberg                        |     | GTE Sylvania, Inc.                                 | (1) |
|                                                   |     | 77 A Street                                        |     |
| GTE Laboratories, Inc.                            | (1) | Needham Heights, MA 02194                          |     |
| 40 Sylvan Road                                    |     | Attn: Mr. Richard Pabst                            |     |
| Waltham, MA 02154                                 |     |                                                    |     |
|                                                   |     | General Motors Corp.                               | (1) |
| Foote Mineral Company                             | (1) | Research Laboratories                              |     |
| Route 100                                         |     | General Motors Technical Center                    |     |
| Exton, PA 19341                                   |     | 12 Mile and Mounds Roads                           |     |
| Attn: Dr. H. Grady                                |     | Warren, MI 48090                                   |     |
|                                                   |     | Attn: Dr. J. L. Hartman                            |     |
| Honeywell, Inc.                                   | (1) |                                                    |     |
| 104 Rock Road                                     |     | Union Carbide Corporation                          | (1) |
| Horsham, PA 19044                                 |     | Parma Research Center                              |     |
| Attn: C. Richard Walk                             |     | P.O. Box 6116<br>Cleveland, OH 44101               |     |
| Eagle-Picher Industries, Inc.                     | (1) |                                                    |     |
| Electronics Division                              | \\  | P.R. Mallory & Company, Inc.                       | (1) |
| Attn: Mr. Robert L. Higgins                       |     | S. Broadway                                        |     |
| P.O. Box 47                                       |     | Tarrytown, NY 10591                                |     |
| Jon14n MT 64801                                   |     | Attn: J. Dalfonso                                  |     |

### Distribution List (continued)

| North American Rockwell Corp.           | (1) |
|-----------------------------------------|-----|
| Atomics International Div.<br>Box 309   |     |
| Canoga Park, CA 01304                   |     |
| Attn: Dr. L. Heredy                     |     |
| General Electric Research               | (1) |
| Development Center                      |     |
| P.O. Box 8                              |     |
| Schenectady, NY 12301                   |     |
| Attn: Dr. Stefan Mitoff                 |     |
| The Electric Storage Battery<br>Company | (1) |
| Carl F. Norburg Research Center         |     |
| 19 W. College Avenue                    |     |
| Yardley, PA 19067                       |     |
| Attn: Dr. A. Salkind                    |     |
| Gulton Industries, Inc.                 | (1) |
| Metuchen, NJ 08840                      |     |
| Attn: Wm C Chamlin                      |     |