# Mathematics GR6261 Commutative Algebra Assignment # 4

Benjamin Church

March 9, 2019

## Problem 1

(a)

Let A be a Noetherian ring. Consider a descending chain of closed subsets  $V_i$  of Spec (A),

$$V_1 \supset V_2 \supset V_3 \supset \cdots$$

Any closed set can be written as  $V_i = V(I_i)$  for some ideal  $I_i \subset A$  which implies that, by Lemma 1.2, we have an ascending chain of radical ideals,

$$\sqrt{I_1} \subset \sqrt{I_2} \subset \sqrt{I_3} \subset \cdots$$

Since A is Noetherian, this chain must stabilize meaning that the sequence  $V_i = V(I_i) = V(\sqrt{I_i})$  will also stabilize. Thus, Spec (A) is a Noetherian space.

(b)

Let A be a ring and  $F \subset \operatorname{Spec}(A)$  a closed set. Then we know F = V(I) for some ideal  $I \subset A$ . Suppose that  $F = V(\mathfrak{p})$  for some  $\mathfrak{p} \in F$ . First, such a generic point is unique because if  $F = V(\mathfrak{p}')$  for some other  $\mathfrak{p}' \in F$  then  $\mathfrak{p} \in V(\mathfrak{p}')$  and  $\mathfrak{p}' \in V(\mathfrak{p})$  so  $\mathfrak{p}' \supset \mathfrak{p}$  and  $\mathfrak{p} \supset \mathfrak{p}'$  and thus  $\mathfrak{p}' = \mathfrak{p}$ .

Suppose we can decompose  $F = Z_1 \cup Z_2$  into closed proper subsets. Then  $Z_1 = V(I_1)$  and  $Z_2 = V(I_2)$  and  $Z_1 \cup Z_2 = V(I_1I_2)$ . Since  $Z_1, Z_2 \subseteq F$  we must have  $\mathfrak{p} \subseteq \sqrt{I_1}$  and  $\mathfrak{p} \subseteq \sqrt{I_2}$ . Furthermore,  $\sqrt{I_1I_2} = \sqrt{I_1} \cap \sqrt{I_2} \supset \mathfrak{p}$ . But if  $\mathfrak{p} \supset \sqrt{I_1} \cap \sqrt{I_2}$  then  $\mathfrak{p}$  must lie above one of them which we know it does not. Thus,  $\mathfrak{p} \subseteq \sqrt{I_1} \cap \sqrt{I_2}$  so  $Z_1 \cup Z_2$  must also be a proper subset contradicting the reducibility.

Now suppose that F is irreducible. Since F is closed, we may write  $F = V(J) = V(\sqrt{J})$  and take  $I = \sqrt{J}$ . Suppose that  $xy \in I$  then the ideals  $I_1 = I + x$  and  $I_2 = I + y$  lie above I so  $Z_1 = V(I_1)$  and  $Z_2 = V(I_2)$  are subsets of F = V(I). Furthermore,

$$Z_1 \cup Z_2 = V(I_1 I_2) = V(I^2 + Ix + Iy + xy) \supset V(I)$$

since  $I^2 + Ix + Iy + xy \subset I$ . But since  $Z_1, Z_2 \subset F$  we have  $Z_1 \cup Z_2 = F$  so by irreducibility we must have  $Z_1 = F$  or  $Z_2 = F$ . WLOG take  $Z_1 = F$  so V(I + x) = V(I). However, if  $x \notin I$  then no power of x lies in J so  $S_x = \{1, x, x^2, \ldots, \}$  is disjoint from J. By Lemma 1.4, there exists a prime ideal not containing powers of x above J (and thus above  $\sqrt{J} = I$ ) which contradicts V(I) = V(I + x). Thus,  $x \in I$  so I is a prime ideal. Therefore,  $F = V(\mathfrak{p})$ .

(c)

Let X be a Noetherian topological space. Let  $\Sigma$  be the set of all closed subsets of X which are cannot be written as the finite union of closed irreducible sets without any inclusion relations. We assume that  $X \in \Sigma$  so that it is nonempty. Any chain of  $\Sigma$  (comprised of closed sets) stabilizes below by the Noetherian property and thus has a minimal element. By Zorn's Lemma,  $\Sigma$  has a minimal element W. Since W is not irreducible we can decompose  $W = W_1 \cup W_2$  into proper closed sets  $W_1$  and  $W_2$ . By minimality,  $W_1, W_2 \notin \Sigma$  but they are closed and thus can be written as the union of finitely many closed irreducible sets with no inclusions,

$$W_1 = Z_1 \cup \cdots \cup Z_n$$
 and  $W_2 = Y_1 \cup \cdots \cup Y_k$ 

Then we have,

$$W = W_1 \cup W_2 = Z_1 \cup \cdots \cup Z_n \cup Y_1 \cup \cdots \cup Y_k$$

which is a finite union of closed irreducible sets. There are no inclusions between different  $Z_i$  and different  $Y_i$ . Furthermore, if  $Z_i \subset Y_i$  then I can remove  $Z_i$  from the union. Thus, I can assume that there are no inclusions. This means that  $W \notin \Sigma$  which contradicts its definition so the assumption that  $\Sigma$  was nonempty is false. Thus,  $X \notin \Sigma$  so X may be decomposed into a finite union of closed irreducible sets without any inclusion relations between them.

## Problem 2

(a)

Suppose that Z and Z' are constructible. We can write,

$$Z = \bigcup_{i=1}^{n} O_i \cap F_i$$
 and  $\bigcup_{i=1}^{n'} O'_i \cap F'_i$ 

with  $O_i$  and  $O'_i$  open and  $F_i$  and  $F'_i$  closed. Then clearly,

$$Z \cup Z' = \bigcup_{i=1}^{n} O_i \cap F_i \cup \bigcup_{i=1}^{n'} O_i' \cap F_i'$$

is also constructible. Note, by adding sets of the form  $O_i = F_i = \emptyset$  which does not change the union we can assume that n = n' in the decompositions of Z and Z'.

Then,

$$Z \cap Z' = \bigcup_{i=1}^{n} [O_i \cap O'_i] \cap [F_i \cap F'_i]$$

which is constructible since  $O_i \cap O'_i$  is open (finite intersection of open sets) and  $F_i \cap F'_i$  is closed (arbitrary intersection of closed sets). Next,

$$Z \setminus Z' = Z \cap (X \setminus Z')$$

so, using the intersection property, it suffices to show that  $X \setminus Z'$  is constructible to show that set differences are. However, we can write,

$$Z^C = \bigcap_{i=1}^n O_i^C \cup F_i^C$$

Since  $O_i^C = X \cap O_i^C$  is closed and  $F_i^C = F_i^C \cap X$  is open both are constructible. Since  $Z^C$  is produced from finite unions and intersections of constructible sets it is constructible.

(b)

Let X be Noetherian. Suppose that  $Z \subset X$  is constructible then we can write,

$$Z = \bigcup_{i=1}^{n} O_i \cap F_i$$

for open  $O_i$  an closed  $F_i$ . Suppose that  $X_0$  is a closed irreducible subset of X and  $X_0 \cap Z$  is dense in  $X_0$ . Then,

$$Z \cap X_0 = \bigcup_{i=1}^n (O_i \cap X_0) \cap (F_i \cap X_0)$$

Therefore,

$$X_0 = \overline{(Z \cap X_0)} \subset \bigcup_{i=1}^n (F_i \cap X_0) = X_0 \cap \bigcup_{i=1}^n F_i$$

making the inclusion an equality. Thus,

$$X_0 = \bigcup_{i=1}^n (F_i \cap X_0)$$

However,  $X_0$  is irreducible and  $F_i \cap X_0$  is closed in  $X_0$  so we must have  $X_0 = X_0 \cap F_i$  for some  $F_i$ . Therefore,  $O_i \cap X_0 = (O_i \cap X_0) \cap (F_i \cap X_0) \subset Z \cap X_0$  so  $Z \cap X_0$  contains a nonempty open set.

Now conversely, we assume the classification:  $Z \cap X_0$  is either not dense in  $X_0$  or

 $Z \cap X_0$  contains an open of  $X_0$  for each closed irreducible  $X_0$ . Consider the poset  $\Sigma$  of all closed subsets of  $X_0$  of X such that  $Z \cap X_0$  is not constructible ordered by inclusion. We assume this poset is nonempty. Since X is Noetherian, each descending chain of  $\Sigma$  (being comprised of closed sets) stabilizes and thus has a minimal element. Therefore, by Zorn's Lemma,  $\Sigma$  has a minimal element  $\tilde{X}$ . Thus, if  $X_0 \subset \tilde{X}$  is any proper closed subset then  $Z \cap X_0$  is constructible by minimality. I claim that  $\tilde{X}$  is irreducible. Suppose that we decompose  $\tilde{X} = X_1 \cup X_2$  into closed proper subsets then  $Z \cap \tilde{X} = (Z \cap X_1) \cup (Z \cap X_2)$ . However, by minimality,  $Z \cap X_1$  and  $Z \cap X_2$  are constructible and thus  $Z \cap \tilde{X} = (Z \cap X_1) \cup (Z \cap X_2)$  is also constructible, a contradiction of  $\tilde{X} \in \Sigma$ .

Now suppose that  $Z \cap \tilde{X}$  is not dense in  $\tilde{X}$ . Then,  $(Z \cap \tilde{X})$  is a proper closed subset of  $\tilde{X}$  so  $Z \cap \tilde{X} = (Z \cap \tilde{X}) \cap \overline{(Z \cap \tilde{X})}$  is constructible by the minimality of  $\tilde{X}$ . But this again contradicts  $\tilde{X} \in \Sigma$ . Therefore,  $Z \cap \tilde{X}$  must be dense in  $\tilde{X}$ . Using the classification, there exists a nonempty open (in  $\tilde{X}$ ) set  $U \subset Z \cap \tilde{X}$ . Then  $X_0 = \tilde{X} \setminus U$  is a proper closed subset of X and thus  $Z \cap X_0$  is constructible. However, then  $Z \cap \tilde{X} = U \cup (Z \cap X_0)$  since  $U \subset Z \cap \tilde{X}$  which implies that  $Z \cap \tilde{X}$  is constructible since U is open and  $Z \cap X_0$  is constructible. Therefore,  $\tilde{X} \notin \Sigma$ , a contradiction of its definition as least element. Thus,  $\Sigma$  must be nonempty so  $Z \cap Y$  is constructible for any closed Y. In particular,  $Z \cap X = Z$  is constructible.

#### Problem 3

Let A be a Noetherian ring and  $Z \subset \operatorname{Spec}(A)$  a constructible set. Let U(f) denote the elementary open set  $V((f))^C$ . By Lemma 1.7, we may write any open set of  $\operatorname{Spec}(A)$  as a finite union of such open sets. Therefore, when we decompose,

$$Z = \bigcup_{i=1}^{n} O_i \cap F_i$$

where  $O_i$  is open and  $F_i$  is closed we may assume that each  $O_i$  is an elementary open by adding each factor to the union and distributing the intersection with the closed set. Therefore we can write,

$$Z = \bigcup_{i=1}^{n} U(f_i) \cap V(I_i)$$

for some  $f_i \in A$  and ideal  $I_i \subset A$ . Let  $S_f = \{1, f, f^2, f^3, \cdots\}$  be the multiplicative set of powers of f. I claim that  $B = S_f^{-1}(A/I)$  is an A-algebra whose image under  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$  is exactly  $U(f) \cap V(I)$ . First,  $S_f$  does not contain zero when reduced to A/I because  $f \notin I$  otherwise  $U(f) \cap V(I)$  would be empty which we can assume is false. The prime ideals of A/I are exactly those primes of A above I i.e. V(I). Furthermore, we proved previously that the image of the map  $\operatorname{Spec}(S_f^{-1}(A/I)) \to \operatorname{Spec}(A/I)$  is exactly those prime ideals of A/I disjoint from  $S_f$ . However,  $S_f \cap \mathfrak{p} = \emptyset$  if and only if  $f \notin \mathfrak{p}$  since  $\mathfrak{p}$  is prime. Therefore, the image

is exactly  $U(f) = V(f)^C$  (with primes ranging over those of A/I which are given by V(I)). Thus, the image under the composition of maps,

$$\operatorname{Spec}\left(S_f^{-1}(A/I)\right) \to \operatorname{Spec}\left(A/I\right) \to \operatorname{Spec}\left(A\right)$$

gives exactly  $U(f) \cap V(I)$ .

Let  $B_i = S_{f_i}^{-1}(A/I_i)$  and  $B = B_1 \times \cdots \times B_n$ . Now, by Lemma 1.8, the image of the map Spec  $(B) \to \text{Spec }(A)$  is equal to,

$$\bigcup_{i=1}^{n} \operatorname{Im}(\operatorname{Spec}(B_{i}) \to \operatorname{Spec}(A)) = \bigcup_{i=1}^{n} U(f_{i}) \cap V(I_{i}) = Z$$

Furthermore, B is a finitely generated A-algebra since there exists a surjective map,

$$A[x_1,\ldots,x_n] \longrightarrow B = S_{f_1}^{-1}(A/I_1) \times \cdots \times S_{f_n}^{-1}(A/I_n)$$

given by sending  $x_i \mapsto \bar{f_i}^{-1}$  and reducing elements of a modulo  $I_i$  in each factor.

## Problem 4

Let A be a Noetherian domain and B a finitely generated A-algebra such that  $A \to B$  is injective. First, since B is finitely generated as an A-algebra there is a surjection,

$$A[x_1,\ldots,x_n] \longrightarrow B$$

and from now on let  $x_1, \ldots, x_n$  denote the images inside B. We may assume that  $x_1, \ldots, x_r$  are algebraically independent and therefore form a transcendence basis for the fraction field of B over the fraction field of A. Let  $\tilde{A} = A[x_1, \ldots, x_r]$ . If  $B = \tilde{A}$  then we are done because Spec  $(A[x_1, \ldots, x_r]) \to \text{Spec}(A)$  is surjective and thus its image contains every elementary open set.

Now, for each  $x_i$  with  $r < i \le n$  we must have a polynomial relation over  $\tilde{A}$  in B,

$$\sum_{j=0}^{d_j} a_{ij} x_i^{d_j - j} = 0$$

with each  $a_{ij} \in \tilde{A}$ . Define the element of  $\tilde{A}$ 

$$a = \prod_{i=r+1}^{n} a_{i0}$$

which is a polynomial in  $x_1, \ldots, x_r$ . Let c denote any one of this polynomial's nonzero coefficients. I claim that the image of the map  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$  contains U(c). Let  $\mathfrak{p} \in U(c)$  that is a prime ideal of A with  $c \notin \mathfrak{p}$ . Let  $\mathfrak{q} = \mathfrak{p}[x_1, \ldots, x_r] \subset \tilde{A}$ 

be a prime ideal of  $\tilde{A}$  above  $\mathfrak{p}$ . Since c is not in  $\mathfrak{p}$  and is a nonzero coefficient of the polynomial a we cannot have  $a \in \mathfrak{q}$ . Consider the extension of rings  $B_{\mathfrak{q}}$  over  $\tilde{A}_{\mathfrak{q}}$ . Since  $a \notin \mathfrak{q}$  we know that a is inevitable in  $\tilde{A}_{\mathfrak{q}}$  which implies that each relation of the  $x_{r+1}, \dots, x_n$  over  $\tilde{A}_{\mathfrak{q}}$  can be reduced to a monic one since their leading coefficients are units. Therefore, the generators of  $B_{\mathfrak{q}}$  are integral over  $\tilde{A}_{\mathfrak{q}}$  which implies that  $B_{\mathfrak{q}}$  is integral over  $\tilde{A}_{\mathfrak{q}}$  since sums and products of integral elements remain integral. By Cohen's theorem, the map  $\operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(\tilde{A}_{\mathfrak{q}})$  is surjective so there exists a prime  $\mathfrak{P}B_{\mathfrak{q}}$  of  $B_{\mathfrak{q}}$  which lies above  $\mathfrak{q}\tilde{A}_{\mathfrak{q}}$ . Therefore,  $\mathfrak{P} \cap \tilde{A} = \mathfrak{q}$  and hence  $\mathfrak{P} \cap A = \mathfrak{P} \cap \tilde{A} \cap A = \mathfrak{q} \cap A = \mathfrak{p}$ . Therefore, there exists a prime of B above  $\mathfrak{p}$  so U(c) is contained in the image of  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ .

### Problem 5

Let A be a Noetherian ring and B a finitely generated A-algebra. Since there exists a surjection,

$$A[x_1,\ldots,x_n] \longrightarrow B$$

we know that B is Noetherian by the Hilbert basis theorem. Thus, both Spec (A) and Spec (B) are Noetherian topological spaces.

(a)

Suppose that  $Z \subset \operatorname{Spec}(B)$  is a constructible set. First, assume that  $Z = \operatorname{Spec}(B)$ . We want to show that its image Z' in  $\operatorname{Spec}(A)$  is constructible. Let  $X_0 \subset \operatorname{Spec}(A)$  be a closed irreducible set. We have shown that such a set must have a generic point  $X_0 = V(\mathfrak{p})$ . Suppose that  $X_0 \cap Z'$  is dense in  $X_0$ , we need to show that  $X_0 \cap Z'$  contains an open set of  $X_0$  to prove that Z' is constructible.

Consider the quotients  $A/\mathfrak{p}$  and  $B/\mathfrak{p}B$ . Since  $A/\mathfrak{p}$  is a Noetherian domain since A is Noetherian and  $\mathfrak{p}$  is prime and  $B/\mathfrak{p}B$  is a finitely generated  $A/\mathfrak{p}$ -algebra since B is a finitely generated A-algebra then problem 4 applies. Therefore, there exists  $c \in A/\mathfrak{p}$  such that  $\operatorname{Spec}(B/\mathfrak{p}B) \to \operatorname{Spec}(A/\mathfrak{p})$  contains the open set U(c) in its image.

$$\operatorname{Spec}(B/\mathfrak{p}B) \longrightarrow \operatorname{Spec}(A/\mathfrak{p}) 
\downarrow \qquad \qquad \downarrow 
\operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$$

However, the image of Spec  $(A/\mathfrak{p})$  in Spec (A) is  $V(\mathfrak{p}) = X_0$  and thus  $U(c) \subset X_0 \cap Z'$  since U(c) is contained in the image of Spec (B) since it is contained in the image of Spec  $(B/\mathfrak{p}B)$ . Therefore, Z' is constructible.

For the general case, let  $Z \subset \operatorname{Spec}(B)$  be constructible. Since B is a finitely generated A-algebra over a Noetherian ring, it is Noetherian itself and thus we can apply problem 3. There exists a finitely-generated B-algebra B' over B such that the image of the induced map  $\operatorname{Spec}(B') \to \operatorname{Spec}(B)$  is exactly Z. Then consider,



The induced map  $\operatorname{Spec}(B') \to \operatorname{Spec}(A)$  is the composition of  $\operatorname{Spec}(B') \to \operatorname{Spec}(B)$  and  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ . Therefore, the image of  $\operatorname{Spec}(B')$  in  $\operatorname{Spec}(A)$  is exactly Z' the image of Z (which is the image of  $\operatorname{Spec}(B') \to \operatorname{Spec}(B)$ ) under  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ . Therefore, Z' is constructible since it is the image of  $\operatorname{Spec}(B')$  and B' is a finitely-generated A-algebra.

(b)

Suppose that the going-down property holds for  $A \to B$ . Let  $U \subset \operatorname{Spec}(B)$  be open and thus constructible. By the previous proposition, its image U' in  $\operatorname{Spec}(A)$  is also constructible. Let  $Z = \operatorname{Spec}(A) \setminus U'$  which is also constructible and let W be an irreducible component of  $\overline{Z}$ . Thus, W is a closed irreducible subset of  $\operatorname{Spec}(A)$  and Z is constructible and  $Z \cap W$  is dense in W (since W is a component of  $\overline{Z}$ ) so there exists O a nonempty open subset of W contained in  $Z \cap W$ . Since W is closed and irreducible in  $\operatorname{Spec}(A)$  it must have a generic point  $W = V(\mathfrak{p})$ . Since O is a nonempty open subset of W we must have  $\mathfrak{p} \in O$  otherwise  $\mathfrak{p} \in O^C$  but  $\mathfrak{p}$  is a generic point so its closure is W contradicting the fact that  $O^C$  is a proper subset of W. Thus  $\mathfrak{p} \in Z$ . Furthermore, for any prime  $\mathfrak{p} \subset \mathfrak{p}'$  if  $\mathfrak{p}'$  is in the image of  $\operatorname{Spec}(B)$  then by the going-down property we must also have  $\mathfrak{p}$  in the image. Therefore, if  $\mathfrak{p} \subset \mathfrak{p}'$  since  $\mathfrak{p} \in Z$  we also have  $\mathfrak{p}' \in Z$  so  $W = V(\mathfrak{p}) \subset Z$ . Since each irreducible component of  $\overline{Z}$  lies in Z we must have  $\overline{Z} = Z$  and thus Z is closed so  $U = Z^C$  is open proving that  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$  is an open map.

#### 1 Lemmata

**Lemma 1.1.** For any ideal  $I \subset A$ ,

$$V(I) = V(\sqrt{I})$$

*Proof.* Suppose that  $\mathfrak{p} \in V(I)$  and then  $\mathfrak{p} \supset I$  so clearly,

$$\mathfrak{p} \supset \bigcap_{\mathfrak{p} \supset I} \mathfrak{p} = \sqrt{I}$$

and thus  $\mathfrak{p} \in V(\sqrt{I})$ . Conversely, since,

$$\sqrt{I} = \bigcap_{\mathfrak{p} \supset I} \mathfrak{p} \supset I$$

we know that  $V(\sqrt{I}) \subset V(I)$ . Therefore,  $V(I) = V(\sqrt{I})$ .

**Lemma 1.2.**  $V(I) \subset V(J)$  if and only if  $\sqrt{I} \supset \sqrt{J}$ .

*Proof.* If  $V(I) \subset V(J)$  then for each prime  $\mathfrak{p} \supset I$  we have  $\mathfrak{p} \supset J$ . Therefore,

$$\sqrt{I} = \bigcap_{\mathfrak{p} \supset I} \mathfrak{p} \supset \bigcap_{\mathfrak{p} \supset J} \mathfrak{p} = \sqrt{J}$$

since the left is an intersection over a subset. Furthermore, if  $\sqrt{I} \supset \sqrt{J}$  then clearly  $V(\sqrt{I}) \subset V(\sqrt{J})$  since  $\mathfrak{p} \supset \sqrt{I} \supset \sqrt{J}$  implies  $\mathfrak{p} \supset \sqrt{J}$ . However,  $V(I) = V(\sqrt{I})$  for any ideal. Together, this implies that  $V(I) \subset V(J)$ .

Corollary 1.3. If V(I) = V(J) then  $\sqrt{I} = \sqrt{J}$ .

**Lemma 1.4.** Let A be a ring and  $S \subset A$  a multiplicative set. There exists a prime ideal  $\mathfrak{p}$  disjoint to S above any ideal disjoint to I.

*Proof.* Let  $\Sigma$  be the poset under inclusion of ideals of A disjoint to S.  $\Sigma$  is nonempty since it contains (0). Suppose that  $\mathcal{I} \subset \Sigma$  is a chain and consider,

$$U = \bigcup_{I \in \mathcal{I}} I$$

This is an ideal because if  $x, y \in U$  then  $x \in I$  and  $y \in I'$  for  $I, I' \in \mathcal{I}$  but  $\mathcal{I}$  is totally ordered so either  $I \subset I'$  or  $I' \subset I$  and thus the larger contains both x and y and therefore the sum and the multiples are in U. Furthermore,

$$S \cap U = \bigcup_{I \in \mathcal{I}} S \cap I = \emptyset$$

so  $U \in \Sigma$ . However,  $\forall I \in \mathcal{I} : I \subset U$ . Since every chain has a maximum, by Zorn's Lemma there exist maximal elements of  $\Sigma$  above every ideal  $I \in \Sigma$ . Suppose  $\mathfrak{m} \in \Sigma$  is maximal and  $x, y \notin \mathfrak{m}$ . Then, by maximality,  $(x) + \mathfrak{m} \notin \Sigma$  and  $(y) + \mathfrak{m} \notin \Sigma$  so they must contain elements of S say  $s_x \in (x) + \mathfrak{m}$  and  $s_y \in (y) + \mathfrak{m}$  then  $s_x s_y \in [(x) + \mathfrak{m}][(y) + \mathfrak{m}] \subset (xy) + \mathfrak{m}$  but  $s_x s_y \notin \mathfrak{m}$  since  $s_x s_y \in S$  but  $\mathfrak{m} \in \Sigma$ . Therefore,  $xy \notin \mathfrak{m}$  otherwise  $s_x s_y \in (xy) + \mathfrak{m} = \mathfrak{m}$ . Thus,  $\mathfrak{m}$  is a prime disjoint to S above a particular  $I \in \Sigma$ .

**Lemma 1.5.** Every irreducible component is closed.

Proof. Suppose that  $D \subset X$  is irreducible. Then suppose we can decompose  $\overline{D} = Z_1 \cup Z_2$  as a union of closed proper sets. Then,  $Z_1 \cap D$  and  $Z_2 \cap D$  are closed in D and cover D so by irreducibility WLOG  $Z_1 \cap D = D$ . Thus,  $Z_1$  is a closed set containing D so  $Z_1 \supset \overline{D}$  proving that  $\overline{D}$  is irreducible. Therefore, if D is an irreducible component then it must be a maximal irreducible set so  $D = \overline{D}$  otherwise  $\overline{D}$  would be an irreducible set properly containing it.

**Lemma 1.6.** Any topological space can be written as the union of its irreducible components.

*Proof.* Let  $\Sigma$  be the set of irreducible subsets of X which is a poset under inclusion. Let  $\mathcal{C} \subset \Sigma$  be a chain and consider,

$$U = \bigcup_{D \in \mathcal{C}} C$$

I claim that U is irreducible. If we could decompose  $U = Z_1 \cup Z_2$  into proper closed sets then, for each  $D \in \mathcal{C}$ , the sets  $Z_1 \cap D$  and  $Z_2 \cap D$  would be closed in D and cover D. Since  $Z_1$  and  $Z_2$  are not proper there must exist  $D_1$  and  $D_2$  with  $D_1 \not\subset Z_1$  and  $D_2 \not\subset Z_2$  but WLOG  $D_1 \subset D_2$  since they are in a chain. Thus,  $Z_1 \cap D_2$  and  $Z_2 \cap D_2$  are proper closed sets covering  $D_2$  contradicting its irreducibility. Thus, U is irreducible so  $U \in \Sigma$ . Since each chain has a maximum element, by Zorn's Lemma, there exists a maximal element of  $\Sigma$  above any  $D \in \Sigma$ . Specifically, if  $x \in X$  is any point, then  $\overline{\{x\}}$  is irreducible because if  $\overline{\{x\}} = Z_1 \cup Z_2$  then WLOG  $x \in Z_1$  so  $Z_1$  is a closed set containing x which implies that  $\overline{\{x\}} \subset Z_1$ . Thus, each point of x is contained in a maximal irreducible set proving the lemma.

**Lemma 1.7.** Let A be a Noetherian ring then any open set of Spec (A) can be written as a finite union of elementary open sets  $U(f) = V((f))^C$ .

*Proof.* Any open set  $U = V(I)^C$  for some ideal  $I \subset A$ . Since A is Noetherian, the ideal I is finitely-generated so we may write,

$$I = Af_1 + \cdots Af_n$$

and thus,

$$V(I) = V((f_1)) \cap \cdots \cap V((f_n))$$

Therefore,

$$U = V((f_1))^c \cup \cdots \cup V((f_n))^C = U(f_1) \cup \cdots \cup U(f_n)$$

**Lemma 1.8.** Let  $B_1$  and  $B_2$  be A-algebras. Denote the natural maps  $\iota_1: A \to B_1$  and  $\iota_2: A \to B_2$ . Then the diagonal gives a map,

$$\operatorname{Spec}(B_1 \times B_2) \to \operatorname{Spec}(A)$$

whose image in  $\operatorname{Spec}(A)$  is equal to,

$$\iota_1^*(\operatorname{Spec}(B_1)) \cup \iota_2^*(\operatorname{Spec}(B_2))$$

Proof. Every prime ideal of  $B_1 \times B_2$  is of the form  $\mathfrak{P}_1 \times B_2$  or  $B_1 \times \mathfrak{P}_2$  where  $\mathfrak{P}_1$  is a prime ideal of  $B_1$  and  $\mathfrak{P}_2$  is a prime ideal of  $B_2$ . Therefore, under the map  $\iota_1 \times \iota_2 : A \to B_1 \times B_2$ , the preimage of the prime  $\mathfrak{P}_1 \times B_1$  is the prime  $\iota_1^{-1}(\mathfrak{P}_1)$  and the preimage of the prime  $B_1 \times \mathfrak{P}_2$  is  $\iota_2^{-1}(\mathfrak{P}_2)$ . Therefore, the image of this map over all primes of  $B_1 \times B_2$  gives exactly the required union.