Assignment #1

- 1. [Big Data concept] (15) Give one example of Big Data application you know. Use the detailed example to explain each of the five Big V's.
- 2. [Relational Data Model] (35) As of January 2017, the OpenFlights Airports Database (https://openflights.org/data.html) contains over 10,000 airports, train stations and ferry terminals spanning the globe. Each entry in the Airport table contains the following:

Airport ID Unique OpenFlights identifier for this airport.

Name Name of airport. May or may not contain the City name.

City Main city served by airport. May be spelled differently from Name.

Country Country or territory where airport is located. See countries.dat to cross-reference to ISO 3166-1 codes.

IATA 3-letter IATA code. Null if not assigned/unknown.

ICAO 4-letter ICAO code.

Latitude Decimal degrees, usually to six significant digits. Negative is South, positive is North.

Longitude Decimal degrees, usually to six significant digits. Negative is West, positive is East.

Altitude In feet.

Timezone Hours offset from UTC. Fractional hours are expressed as decimals, eg. India is 5.5.

DST Daylight savings time. One of E (Europe), A (US/Canada), S (South America), O (Australia), Z (New Zealand), N (None) or U (Unknown). See also: Help: Time

Tz database time zone Timezone in "tz" (Olson) format, eg. "America/Los_Angeles".

Type Type of the airport. Value "airport" for air terminals, "station" for train stations, "port" for ferry terminals and "unknown" if not known. In airports.csv, only type=airport is included.

Source Source of this data. "OurAirports" for data sourced from OurAirports, "Legacy" for old data not matched to OurAirports (mostly DAFIF), "User" for unverified user contributions. In airports.csv, only source=OurAirports is included.

- a. (15) Consider the following terms: *relation schema*, *relational database schema*, *domain*, *attribute*, *attribute domain*, *relation instance*. Give what these terms are with the above Airport database. Give one small (4-5 tuples) instance of the Airport table.
- b. (20) There are three databases in the OpenFlight dataset: Airport, Airline, and Route. Give the schema of these three databases and mark the primary keys, foreign keys and provide examples of functional dependencies you identified over the three tables. [You may draw a diagram to illustrate the schema, PKs, FKs and FDs]
- 3. [Functional Dependencies] (30) Recall Armstrong's axioms.
 - Reflexivity rule: if $Y \subseteq X$ then $X \rightarrow Y$
 - Augmentation rule: if $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - Transitivity rule: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
 - a. Give two examples for using Armstrong's inference rules to induce new FDs from the set of FDs you designed in question 2 (b).
 - b. Prove the following inference rules also hold, using FD definition and Armstrong's Axioms.
 - i. decomposition rule: if $X \rightarrow YZ$ then: $X \rightarrow Y$ and $X \rightarrow Z$
 - ii. Psuedo transitivity: if $X \rightarrow Y$ and $YW \rightarrow Z$ then: $XW \rightarrow Z$

4. [Normalization] (20) Given a relation $R(A_1, A_2, A_3, A_4)$, with three FDs $A_2, A_3 \rightarrow A_4$; $A_3, A_4 \rightarrow A_1$; $A_1, A_2 \rightarrow A_3$. Provide the 3NF and BCNF form of the schema and explain why.