

Ficha 5 - Cache

Exercícios resolvidos

1. Considere uma memória *cache* de mapeamento direto, com 8 blocos e uma palavra por bloco. Complete a seguinte tabela, que representa a evolução do estado da memória *cache* para os 10 acessos consecutivos indicados. Assuma que, inicialmente, a memória *cache* está vazia e que os endereços são endereços de *palavras*.

Apresente também o conteúdo da memória cache após o último acesso.

Acesso	Endereço	Hit/Miss	Conteúdo	do bloco
Acesso	Endereço	1111/1/1133	inicial	final
1	22			
2	26			
3	22			
4	26			
5	16			
6	3			
7	16			
8	8			
9	27			
10	10			

1. Como a memória tem 8 blocos, o índice do bloco é definido pelo resto da divisão do endereço por 8. O efeito da sequência de acessos é descrito a seguir. A operação de obtenção do resto é representada por %:

a % b = resto da divisão de a por b.

- 1. Endereço 22 \rightarrow posição 22 % 8 = 6; falta (miss); cache[6] \leftarrow mem[22].
- 2. Endereço 26 \rightarrow posição 26 % 8 = 2; falta (miss); cache[2] \leftarrow mem[26].
- 3. Endereço $22 \rightarrow \text{posição } 22 \% 8 = 6$; acerto (hit); cache[6] tem conteúdo de mem[22].
- 4. Endereço $26 \rightarrow \text{posição } 26 \% 8 = 2$; acerto (hit); cache[2] tem conteúdo de mem[26].
- 5. Endereço $16 \rightarrow \text{posição } 16 \% 8 = 0$; falta (miss); cache[0] $\leftarrow \text{mem}[16]$.
- 6. Endereço 3 \rightarrow posição 3 % 8 = 3; falta (miss); cache[3] \leftarrow mem[3].
- 7. Endereço $16 \rightarrow \text{posição } 16 \% 8 = 0$; acerto (hit); cache[0] tem conteúdo de mem[16].
- 8. Endereço 8 \rightarrow posição 8 % 8 = 0; falta (*miss*); cache[0] tinha conteúdo de mem[16]; cache[0] \leftarrow mem[8].
- 9. Endereço 27 → posição 27 % 8 = 3; falta (miss); cache[3] tinha conteúdo de mem[3]; cache[3] ← mem[27].

AJA, JCF Pág. 1 de 15

10. Endereço $10 \rightarrow \text{posição}$ 10 % 8 = 2; falta (miss); cache[2] tinha conteúdo de mem[26]; cache[2] $\leftarrow \text{mem}[10]$.

A tabela resultante é:

Acesso	Endereço	Hit/Miss	Conteúdo	do bloco
Acesso	Endereço	1111/1/1133	inicial	final
1	22	M	-	mem[22]
2	26	M	-	mem[26]
3	22	Н	mem[22]	mem[22]
4	26	Н	mem[26]	mem[26]
5	16	M	-	mem[16]
6	3	M	-	mem[3]
7	16	Н	mem[16]	mem[16]
8	8	M	mem[16]	mem[8]
9	27	M	mem[3]	mem[27]
10	10	M	mem[26]	mem[10]

O conteúdo final da memória cache é:

Bloco	Conteúdo
0	mem[8]
1	-
2	mem[10]
3	mem[27]
4	_
5	-
6	mem[22]
7	_

- **2.** Um CPU com endereços de 24 bits está equipado com uma memória *cache* de dados, de mapeamento direto, do tipo *write-through*. Etiqueta e índice têm, respetivamente, 14 e 6 bits de comprimento.
 - a) Determinar o número de blocos e o número de bytes por bloco desta memória cache.
 - **b)** Considerar a realização de sucessivas leituras, de uma palavra, das seguintes posições de memória:

0x3B7C94, 0x3B6C90, 0x3B6C98, 0x3B6C94

Quantos blocos são transferidos de memória principal para memória *cache* por causa dos três últimos acessos?

c) A memória *cache* é usada num sistema em que a penalidade de faltas é de 80 ciclos de relógio. Qual deve ser o valor máximo da taxa de faltas desta *cache* para que o número médio de ciclos de protelamento *no acesso a dados* não exceda 10?

AJA, JCF Pág. 2 de 15

2.

a) O índice tem 6 bits, pelo que a memória *cache* tem 2^6 =64 blocos. Como ficam 24-14-6=4 bits para o deslocamento, cada bloco tem 2^4 =16 bytes.

b) A primeira leitura (endereço 0x3B7C94) afeta o bloco 9 (001001₂):

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
00111011011111									001001			0100											
etiqueta											í	nd	ic			_	les	:1					

Seja hit ou miss, a etiqueta do bloco 9 é 001110110111112 após a execução do acesso.

A segunda leitura (endereço 0x3B6C90) afeta o mesmo bloco (9):

00111011011011	001001	0000
----------------	--------	------

Como a etiqueta é diferente daquela que está em *cache*, trata-se de uma falta (*miss*) e é lido um bloco de memória principal. A etiqueta em memória *cache* é, agora, 00111011011011₂.

Os dois endereços seguintes levam sempre a *hit*, já que correspondem a partes do mesmo bloco (etiqueta e índices iguais aos do 2º acesso).

00111011011011	001001	1000
00111011011011	001001	0100

Logo, não existem mais acessos a memória principal: os últimos três acessos provocam a leitura de um bloco da memória principal.

c) O número de ciclos de protelamento (por operação de acesso a dados), C_p , é dado pelo número médio de acessos a dados que resultam em falta vezes a penalidade p_f (a dividir pelo número de acessos a dados N_d).

$$C_p = \frac{(N_d \times m_d) \times p_f}{N_d} = m_d \times p_f$$

Das condições do enunciado tem-se:

$$m_d \times 80 \le 10$$
 \Rightarrow $m_d \le \frac{10}{80} = 0.125$

Portanto, o valor máximo da taxa de faltas é $m_d=12.5\,\%$.

AJA, JCF Pág. 3 de 15

3. Um CPU tem endereços de 16 bits e uma memória *cache* de mapeamento direto para dados (palavras, 32 bits). A memória *cache* é do tipo *write-back*, possui uma palavra por bloco e a respetiva indexação é formada por 4 bits.

A tabela seguinte mostra parcialmente o conteúdo da *cache* (conteúdo e etiqueta em hexadecimal).

	conteúdo	etiqueta	V	d
	• • •			• • • •
5	7BCDBCD7	241	0	0
6	76543210	1F3	1	0
7	FFFFFFF	241	1	1
8	80000000	240	1	0
9	26E111A4	241	1	1
10	13012020	199	1	0
			• • •	

- **a)** Determine quantos blocos tem a *cache* e quantas palavras em memória podem ser mapeadas em cada entrada da *cache*.
- b) Determine o conteúdo de memória nos endereços 0x9020 e 0x9024.
- c) Mostre quantos acessos a memória ocorrem como consequência das seguintes operações:
 - ler Mem[0x7CDC]
 - escrever 0x12345678 em Mem[0xE020]
- d) Assuma que a taxa de faltas da *cache* é 1/9 da taxa de acertos, a penalidade de falta é 80 ciclos e o CPI devido a protelamento no acesso a dados é 2. Nestas condições, determine a percentagem de instruções executadas que acedem a memória.

3.

a) Os endereços decompõem-se nos seguintes campos:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
etiqueta											índ	ice		off	set
				10	bits						4 b	its		2 b	its

- byte *offset* formado pelos 2 bits menos significativos, permite designar um dos 4 bytes de cada palavra;
- índice formado pelos 4 bits que sucedem ao byte *offset*, permite representar os índices, de 0 a 15, dos blocos da *cache*;
- etiqueta formada pelos 10 bits restantes, permite identificar que palavra de memória está em cada bloco da *cache*.

Portanto, o número de blocos é $2^4 = 16$.

O número de palavras em memória que podem ser mapeadas em cada entrada da cache é dado pelo quociente entre o número de palavras e o número de blocos da cache: $\frac{2^{16}/4}{2^4}=2^{10}=1024$. Alternativamente, este número corresponde ao total de etiquetas possíveis com 10 bits: $2^{10}=1024$.

AJA, JCF Pág. 4 de 15

$$0x9020 = \underbrace{1001\ 0000\ 00}_{240_{\rm H}} \underbrace{10\ 00}_{8} 00$$

O conteúdo presente na entrada 8 da cache é válido (v=1) e a etiqueta (240 $_{
m H}$) é igual à etiqueta do acesso atual. Além disso, como d=0 significa que o conteúdo em memória é igual ao conteúdo atual em cache. Assim, conclui-se que o conteúdo de memória no endereço 0x9020 é 0x80000000.

$$0x9024 = \underbrace{1001\ 0000\ 00}_{240_{\rm H}}\underbrace{10\ 01}_{9}00$$

O conteúdo presente na entrada 9 da cache é válido (v=1) mas a etiqueta (241 $_{
m H}$) é diferente da etiqueta do acesso atual. Conclui-se assim que é impossível determinar o conteúdo de memória no endereço 0×9024 .

c) ler Mem[0x7CDC]:

$$0x7CDC = \underbrace{0111 \ 1100 \ 11}_{1F3_{\mathrm{H}}} \underbrace{01 \ 11}_{7} 00$$

O conteúdo presente na entrada 7 da *cache* é válido (v=1) mas a etiqueta (241_H) é diferente da etiqueta do acesso atual. Perante esta situação de *read-miss*, como d=1 é necessário fazer *write-back* (escrever conteúdo do bloco 7 da *cache* em memória) antes de concretizar a leitura de memória pretendida. Portanto, conclui-se que ocorrem dois acessos a memória.

escrever 0x12345678 em Mem[0xE020]:

$$0xE020 = \underbrace{1110\ 0000\ 00}_{380_{\mathrm{H}}} \underbrace{10\ 00}_{8} 00$$

O conteúdo presente na entrada 8 da *cache* é válido (v=1) mas a etiqueta (240_H) é diferente da etiqueta do acesso atual. Perante esta situação de *write-miss*, como d=0 não é necessário fazer *write-back* antes de atualizar o conteúdo da cache. É de notar que a escrita ocorre apenas na cache. Portanto, neste caso não há qualquer acesso a memória.

Conclui-se assim que após a realização das operações indicadas ocorreram 2 acessos a memória.

d)
$$\begin{split} \text{d)} \;\; & taxa_{falta} = \frac{1}{9} taxa_{acerto} = \frac{1}{9} (100 - taxa_{falta}) \; \text{pelo que } taxa_{falta} = 10 \,\% \\ & CPI_{prot} = taxa_{falta} \times N_{acessos/inst} \times p_f \\ & 2 = 0.1 \times N_{acessos/inst} \times 80 \\ & N_{acessos/inst} = 0.25 \end{split}$$

Percentagem de instruções que acedem a dados é 25 %.

- **4.** Um processador funciona a 2 GHz e possui uma memória *cache* unificada. A taxa de faltas no acesso à *cache* é 9% e o tempo de acesso à memória principal é 50 ns.
 - a) Calcule a penalidade de falta em ciclos.
 - b) Medições efetuadas para um conjunto de benchmarks revelaram que o número de ciclos de protelamento em acessos a memória (por instrução) é CPI_{prot} = 12.
 Determine a percentagem de instruções que acede a dados.

AJA, JCF Pág. 5 de 15

4.

a) Para obter a penalidade de falta em ciclos, determina-se o número de ciclos que o processador executa durante o tempo de acesso a memória principal.

$$T = \frac{1}{F} = 0.5 \,\text{ns}$$
 logo $p_f = \frac{50}{0.5} = 100$

b) Seja n_a o número de acessos a memória por instrução e t_f a taxa de faltas. O número médio de ciclos gastos em protelamento devido a faltas no acesso a *cache* é:

$$CPI_{prot} = t_f \times p_f \times n_a$$

Portanto:

$$n_a = \frac{\text{CPI}_{\text{prot}}}{t_f \times p_f},$$

o que implica

$$n_a = \frac{12}{0.09 \times 100} = \frac{4}{3}$$

Cada instrução requer obrigatoriamente um acesso para a sua obtenção. Acessos adicionais são necessariamente acessos a dados. Então, o número médio de acessos a dados é: $n_a-1=\frac{1}{3}=33,3\%$.

AJA, JCF Pág. 6 de 15

Exercícios propostos

5. Uma memória *cache* de mapeamento direto usa a política de escrita *write-through*. A cache tem 4 blocos de duas *words* (8 bytes), sendo usada como *D-cache* num processador RISC-V.

O conteúdo da *cache* é o seguinte (em hexadecimal):

bloco			c	ont	eúd	o			atiquata	.,
	7	6	5	4	3	2	1	0	etiqueta	V
0	2a	5d	04	aa	78	00	9с	23	2900002	1
1	1b	b2	34	bb	7a	10	9f	a3	0000893	1
2	99	52	36	СС	88	b0	3с	2b	7bcd001	1
3	42	15	90	cd	71	ab	3f	6d	65abfff	0

Assuma endereços com 32 bits e que t0 = 0x52000044.

- a) Mostre como é decomposto o endereço para acesso à *cache* e indique o comprimento da etiqueta.
- b) Qual é o valor lido de memória por uma operação de 32 bits que use o endereço contido em t0?
- **6.** A tabela seguinte apresenta o conteúdo de uma memória *cache* de mapeamento direto, do tipo *write-through*, com 8 blocos de 4 bytes usada como D-*cache* num CPU com endereços de 32 bits.

	c	ont	eúd	o	etiqueta	٧
0	aa	ff	СС	33	123456a	0
1	12	34	56	78	7bcd001	1
2	88	b0	3с	2b	7fffd55	1
3	71	ab	3f	6d	7fffd55	1
4	34	ff	13	aa	07f9910	0
5	78	00	9с	23	0000893	1
6	7a	10	9f	a3	2900002	1
7	99	43	65	b4	7f01d12	0

- a) Como é decomposto o endereço para acesso à memória cache? Justifique.
- **b)** Indique, justificando, que alterações ocorrem na memória *cache* após a execução da seguinte sequência de operações (se em algum caso não for possível conhecer o conteúdo escreva "indeterminado". Cada registo Rx tem 32 bits.

```
1: R1 ← 0xfafafafa
```

2: R4 \leftarrow R3+R2

3: R4 ← 0x0ff32210

4: $R5 \leftarrow MEM[R4]$

5: R5 ← R4-R1

6: R6 ← 0xffffaaa8

7: $MEM[R6+4] \leftarrow R1$

7. A tabela seguinte apresenta o conteúdo (em hexadecimal) de uma memória *cache* de mapeamento direto usada como D-*cache* num CPU com endereços de 16 bits. A *cache* tem 8 blocos de 8 bytes e a política de escrita usada é do tipo *write-back*.

AJA, JCF Pág. 7 de 15

blaca			c	ont	eúd	o			otiquoto	,,	٦
bloco	7	6	5	4	3	2	1	0	etiqueta	\ V	d
0	aa	СС	de	hf	34	33	11	01	235	1	0
1	bb	ad	45	4f	af	de	21	99	391	1	1
2	СС	34	ab	1f	56	cd	ff	ff	023	1	1
3	dd	67	22	2b	32	56	32	21	198	0	1
4	ee	32	11	9f	aa	ba	ab	bb	311	1	0
5	ff	10	00	04	01	02	03	04	278	0	0
6	11	03	41	32	СС	dd	ee	ff	212	1	1
7	22	01	65	01	05	06	07	08	387	0	1

- a) Como é decomposto o endereço para acesso à memória cache? Justifique.
- b) Indique, se possível, o valor (byte) em memória principal no endereço 0xc467. Justifique.
- c) Explique quais as alterações que ocorrem na *cache* e na memória principal durante a leitura do valor (byte) residente no endereço 0xe48d.
- **8.** Um CPU tem endereços de 20 bits e usa uma memória *cache* de mapeamento direto com uma palavra por bloco. A *cache* é do tipo *write-back*, usa 6 bits para cada índice e 12 bits para cada etiqueta. Uma parte do conteúdo da *cache* está indicada (em hexadecimal) na tabela seguinte:

	conteúdo	etiqueta	V	d
0	12345678	ABC	1	1
1	6548FEAB	123	0	0
2	3C1F56FD	678	1	0
3	AFD12498	567	1	1
4	6198FA34	B7C	1	0
5	1929AAAA	8D1	0	1

- a) Determinar o número de blocos e o número total de bits usados na memória cache.
- b) Determinar, se possível, o endereço de memória do valor 0x6198FA34.
- c) Determinar, se possível, qual o valor atualmente armazenado na posição de memória 0x5670C.
- **9.** Um CPU tem endereços de 18 bits e uma memória *cache* de mapeamento direto para palavras (32 bits). A memória *cache* tem 16 posições. A política de escrita em memória é *write-through*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

AJA, JCF Pág. 8 de 15

conteúdo	etiqueta	٧
12345678	abc	1
6548feab	123	1
3c1f56fd	678	1
afd12498	567	0
6198fa34	b7c	1
1929aaaa	8d1	0
bbabeedd	cd3	1
1123aa56	456	1
7611432a	001	1
ffffeffe	877	1
ddedd556	777	0
4444ccc	198	1
7627abed	fdf	1
8768888a	479	1
71672912	655	0
22256733	111	1
	12345678 6548feab 3c1f56fd afd12498 6198fa34 1929aaaa bbabeedd 1123aa56 7611432a ffffeffe ddedd556 4444cccc 7627abed 8768888a 71672912	12345678 abc 6548feab 123 3c1f56fd 678 afd12498 567 6198fa34 b7c 1929aaaa 8d1 bbabeedd cd3 1123aa56 456 7611432a 001 ffffeffe 877 ddedd556 777 4444cccc 198 7627abed fdf 8768888a 479 71672912 655

- **a)** Indique qual é o espaço de endereçamento de um sistema baseado neste CPU e determine a sua capacidade máxima de memória.
- **b)** Determine o número de bits da etiqueta e do índice, assim como o número total de bits que a *cache* armazena.
- c) Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

tipo	endereço	valor
L	2df10	
L	23454	
L	3f7b0	
Ε	048c4	1212abab
Ε	3f7d0	00001111
Е	1dde8	aaaabbbb

10. Assuma que o CPU do exercício anterior é usado com uma memória *cache* também semelhante à anterior, mas que usa a política de escrita *write-back*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

AJA, JCF Pág. 9 de 15

	conteúdo	etiqueta	٧	d
0	12345678	abc	1	1
1	6548feab	123	0	0
2	3c1f56fd	678	1	0
3	afd12498	567	0	0
4	6198fa34	b7c	1	0
5	1929aaaa	8d1	0	1
6	bbabeedd	cd3	1	1
7	1123aa56	456	1	0
8	7611432a	001	1	1
9	ffffeffe	877	1	1
10	ddedd556	777	0	0
11	4444ccc	198	1	1
12	7627abed	fdf	0	1
13	8768888a	479	1	0
14	71672912	655	0	0
15	22256733	111	1	0

- a) Explique a finalidade do campo d.
- **b)** Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

tipo	endereço	valor
L	2df10	
Ε	2df10	33334444
Ε	10c64	9999aaaa
L	23454	
L	3f7b0	
Ε	21de4	bbbb7777
Ε	2afdc	1212abab
Ε	3f7b0	00001111

11. Para cada um dos sistemas indicados a seguir considere que o tempo de acesso a memória principal é de 70 ns e que 36% das instruções acedem a dados em memória. O acesso a memória principal tem início após falta de acesso à memória *cache*.

Processador	Cache	Taxa de faltas	Tempo de acerto
P1	1 KiB	11,4%	0,62 ns
P2	2 KiB	8,0%	0,66 ns

- **a)** Assumindo que é o tempo de acerto que determina o período de relógio, determine as frequências de operação dos dois sistemas.
- b) Determine o tempo médio de acesso à memória para os dois casos.
- **c)** Assumindo um CPI básico de 1, determine o CPI de cada um dos processadores. Qual é o processador mais rápido?

AJA, JCF Pág. 10 de 15

12. Um CPU funciona a 1 GHz e está equipado com memórias *cache* para instruções e para dados, cujas taxas de faltas são, respetivamente, 5 % e 10 %. O tempo de acesso a memória principal é 80 ns (a acrescentar ao tempo de acesso a memória *cache*). Em média, 40 % das instruções de um programa acedem a dados (i.e., são *load* ou *store*).

- a) Determine a taxa de faltas global da memória *cache* em número de faltas por 1000 instruções.
- **b)** Suponha que se pretendia equipar o CPU com uma memória *cache* unificada. Determine a máxima taxa de faltas desta alternativa para que ela apresente o mesmo desempenho que a versão *split cache*.
- **c)** Assuma que, na ausência de faltas de *cache*, o CPU tem CPI_{ideal}=1,2. Determine o CPI efetivo para os seguintes casos:
 - i. sistema sem memória cache;
 - ii. sistema com memória cache.
- **13.** Considere um sistema em que o endereçamento de memória é de 32 bits. A *cache* do sistema possui 4096 blocos com 4 palavras por bloco. Determine o número de bits necessários para armazenar as etiquetas na *cache* para cada forma de organização.
 - a) Mapeamento direto.
 - **b)** Associatividade com 2 vias.
 - c) Associatividade de 4 vias.
 - d) Associatividade total.
- **14.** Para aumentar o desempenho geral, um dado computador utiliza uma *cache* associativa com duas vias (2-*way*) cuja estrutura e conteúdo, em hexadecimal, estão representados na tabela. Considerar que a memória endereçável do computador é de 64 KiB.

	dados							ationata		ا اما				
conjunto	0	1	2	3	0	1	2	3	etiqueta		d		V	
0	57	C5	25	90	3F	21	42	10	000	7B1	1	0	1	1
1	10	24	E5	Α9	11	Α4	23	98	7A7	42B	0	0	0	0
2	FE	6A	34	1B	DE	76	03	77	27E	311	1	0	1	0
3	23	65	Α5	65	65	ΑE	21	7C	42F	1FE	1	1	1	0
4	99	00	32	AC	7E	5E	60	77	675	777	1	0	1	1
5	A1	А3	6B	6D	DD	71	09	95	2EC	5EA	1	0	0	0
6	FF	4E	5D	A4	В8	ВС	70	13	7BC	0D2	1	0	1	0
7	14	15	8C	55	AB	87	99	15	1AB	111	0	0	1	1

- a) Determine a capacidade de armazenamento da cache em bytes.
- **b)** Determine o número de comparações simultâneas efetuadas pelos circuitos da *cache* durante um acesso à memória.
- c) Indique o conteúdo da memória correspondente aos endereços 8567, F798 e 663E.
- **d)** Diga qual a posição de memória que contém o valor DE.
- **e)** Suponha que os endereços 01FF e 831C são utilizados um a seguir ao outro com frequência, isto é, correspondem a código num ciclo. Onde seriam eles colocados na memória *cache*? E se fossem os endereços 9A30, 9A50 e 9A71? Comente.
- **f)** Relacione o campo d (*dirty* bit) com o tipo de *cache*: *write-through* ou *write-back*.

AJA, JCF Pág. 11 de 15

15. Um processador de 32 bits (endereços, instruções e dados) possui dois níveis de *cache*. O tempo de acesso a memória principal é de 80 ns. As características das *caches* são as seguintes:

- Cache L1: 64 KiB, 64 palavras/bloco, mapeamento direto, $t_{acerto}=1~\mathrm{ns},\,t_{falta}=10~\%$ e write-back.
- Cache L2: 512 KiB, 128 palavras/bloco, 4 vias, $t_{acerto}=4\,\mathrm{ns},\,t_{falta}=25\,\%,\,write-through\,\,\mathrm{e}\,\,\mathrm{LRU}$ (critério de substituição *least recently used*).
- a) Determine o valor hexadecimal da etiqueta em cada uma das *caches*, quando o CPU acede ao endereço 0x25031968.
- **b)** Suponha que neste sistema são executadas 1000 instruções em que 10% são *stores*, 20% *loads*, 30% *branchs* e 40% são instruções aritméticas ou lógicas. Determine o número de acessos à memória principal.
- c) Considere uma *cache* de nível 2 alternativa à acima indicada e que apresenta as seguintes características: 512 KiB, 128 palavras/bloco, 8 vias, $t_{acerto}=8~{\rm ns},\, t_{faltas}=20~\%,\, write-though$ e FIFO. O novo sistema veria o seu desempenho aumentar ou diminuir? Justifique.

Fim do enunciado

AJA, JCF Pág. 12 de 15

Soluções:

5.

a) Byte offset ([1..0]): 2 bits
 Word offset ([2]): 1 bit
 Índice ([4..3]): 2 bits
 Etiqueta [31..5]: 27 bits

b) 0x2a5d04aa

6.

a) Offset ([1..0]): 2 bits Índice ([4..2]): 3 bits Etiqueta [31..5]: 27 bits

b) Blocos 3 e 4 são alterados.

	conteúdo	etiqueta	V
0	aa ff cc 33	123456a	0
1	12 34 56 78	7bcd001	1
2	88 b0 3c 2b	7fffd55	1
3	fa fa fa fa	7fffd55	1
4	indeterminado	07f9910	1
5	78 00 9c 23	0000893	1
6	7a 10 9f a3	2900002	1
7	99 43 65 b4	7f01d12	0

7.

a) Offset ([2..0]): 3 bitsÍndice ([5..3]): 3 bitsEtiqueta [15..6]: 10 bits

b) 0xEE

c) O valor 0x45 é escrito no endereço 0xE44D da memória principal.

Lê de memória principal o bloco que inclui o valor no endereço 0xE48D de memória, escrevendoo na posição 1 da *cache* (*offset* = 5). Atualiza a etiqueta desse bloco para 392, assim como os indicadores (v=1 e d=0).

8.

- a) N° blocos = 64; bits/bloco = 46; total de bits = 2944.
- **b)** 0xB7C10.
- c) Indeterminado.

9.

- a) Endereçamento: 0x00000 0x3ffff; capacidade máxima: 256 KiB.
- **b)** Etiqueta: 12 bits; índice: 4 bits; armazenamento: 720 bits.
- c) 1. Lê valor 0x6198fa34 de memória cache.

AJA, JCF Pág. 13 de 15

- 2. Lê valor de memória principal e coloca-o na posição 5, com v=1 e etiqueta 0x8d1.
- 3. Lê valor de memória principal e coloca-o na posição 12, com v=1 e etiqueta 0xfde.
- 4. Escreve valor 0x1212abab na posição 1, v=1, e atualiza a memória principal no endereço 0x048c4.
- 5. Não altera memória *cache* (não existe informação em *cache* para este endereço, porque a etiqueta é diferente); coloca valor 0x00001111 em memória principal no endereço 0x3f7d0.
- 6. Não altera memória *cache* (não existe informação válida em *cache* para este endereço); coloca valor 0xaaaabbbb em memória principal no endereço 0x1dde8.

10.

- **a)** O campo d indica se o valor de conteúdo em memória *cache* é diferente do valor em memória principal.
- b) 1. Índice 4, etiqueta 0xb7c e v=1: read hit.
 Ler valor 0x6198fa34 de memória cache (bloco 4).
 - 2. Endereço igual ao da alínea anterior: *write hit*.

 Como d=0, não é necessário fazer *write back*. O valor 0x33334444 é escrito na memória *cache* (bloco 4), v=1, d=1, etiqueta 0xb7c.
 - 3. Índice 9, etiqueta 0x431, v=1: write miss.

 Como v=1 e d=1, é necessário fazer write back: escrever o valor 0xffffeffe (posição 9) em memória (endereço 0x21de4). O valor 0x9999aaaa é colocado na posição 9 da memória cache, com v=1, d=1, etiqueta 0x431.
 - 4. Índice 5, etiqueta 0x8d1 e v=0: *read miss*. Como v=0, não faz *write back* (valor de d não interessa neste caso). Ler valor de memória principal e colocá-lo na posição 5, com v=1, d=0, etiqueta 0x8d1.
 - Índice 12, etiqueta 0xfde, v=0: read miss.
 Como v=0, não faz write back. Ler valor de memória principal e colocá-lo na posição 12, com v=1, d=0, etiqueta 0xfde.
 - 6. Índice 9, etiqueta 0x877. O bloco 9 foi alterado pelo terceiro acesso, pelo que a etiqueta é diferente (etiqueta atual do bloco 0x431). Como v=1, ocorre um *write miss*.

 Sendo d=1, é necessário efetuar *write back*: escrever o valor 0x9999aaaa na posição de endereço 0x00010c64. Escrever valor 0xbbbb7777 no bloco 9 de memória *cache*, v=1, d=1, etiqueta 0x877.
 - 7. Índice 7, etiqueta 0xabf, v=1: como as etiquetas não coincidem, ocorre *write miss*.

 Como d=0, não existe necessidade de fazer *write-back*. Colocar o valor 0x1212abab em memória *cache* (bloco 7) com v=1 e d=1.
 - 8. Índice 12, etiqueta 0xfde, v=1 (mesmo endereço que no quinto acesso, que alterou este bloco): *read hit*.

Basta atualizar valor em memória *cache*: escreve valor 0x00001111 no bloco 12 com v=1, d=1, etiqueta 0xfde (mantém etiqueta).

11.

- **a)** P1: 1,61 GHz; P2: 1,52 GHz
- **b)** P1: $t_{acesso} = 8.6 \, ns$; P2: $t_{acesso} = 6.26 \, ns$

AJA, JCF Pág. 14 de 15

c) P1: CPI=18,5; P2: CPI=12,5; P2 é 1,39 vezes mais rápido que P1.

12.

- **a)** 90
- **b)** 6,43 %
- **c) i.** 113,2
 - ii. 8,4

13.

- **a)** 64 Kib
- **b)** 68 Kib
- **c)** 72 Kib
- **d)** 112 Kib

14.

- **a)** 90
- **b)** Duas comparações entre etiquetas de 11 bits.
- c) Mem[8567] = indeterminado (v=0)

Mem[F798] = FF (após WB)

Mem[663E] = indeterminado (etiquetas diferentes).

- **d)** indeterminado (v=0)
- e) Conjunto 7, ocupando as duas vias.
- **f)** Os conteúdos nos endereços 9A30 e 9A50 ocupariam as duas vias do conjunto 4, mas o primeiro destes conteúdos seria substituído pelo valor de memória em 9A71.

15.

- **a)** L1: 0x2503; L2: 0x1281
- **b)** 40
- c) O desempenho mantém-se igual.

AJA, JCF Pág. 15 de 15