MATRICES USING PYTHON

TOTLI.VARSHA REDDY

1

varshareddy724@gmail.com IITH Future Wireless Communication (FWC)

ASSIGN-4

FWC22036

Contents

Problem

Solution 1

Construction

Problem

ABCD, DCFE and ABFE are parallelograms. Show that ar(ADE)=ar(BCF).

Theory:

1

Parallelograms on the same base and in between the same parallels are equal in area. Given: ABCD, DCFE and ABFE are parallelograms.

2 Solution

To Prove: Ar(ADE)=Ar(BCF)

parallelogram ABCD lies between same parallel lines AD and BC

parallelogram DECF lies between same parallel lines DE and CF

parallelogram ABEF lies between same parallel lines AE and FΒ

 $\therefore \mathsf{EA} = \mathsf{FB}$ $\therefore \Delta \ \mathsf{ADE} = \Delta \ \mathsf{BCF}$ Hence, Proved

Termux commands:

python3 matrixline.py

The input parameters for this construction are

Symbol	Value	Description
а	4.5	EA
b	4.5	BC
С	10	CD
d	2.5	DE
θ_1	$25\pi/180$	∠BC
θ_2	$120\pi/180$	∠DE
θ_3	$2\pi/3$	∠AE
θ_4	$35\pi/180$	∠CD
E	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point E

To Prove:

$$Ar(ADE)=Ar(BCF)$$

$$v1=A-D$$

$$v2=D-E$$

Area of the triangle $\triangle ADE$ is given by $Ar(\Delta ADE) = \frac{1}{2} ||\vec{v1} \times \vec{v2}||....(2)$

Area of the triangle $\Delta {\rm BCF}$ is given by $Ar(\Delta BCF) = \frac{1}{2} ||\vec{v3} \times \vec{v4}||....(3)$

$$\therefore$$
 Ar(ADE)=Ar(BCF)

The below python code realizes the above construction:

https://github.com/KrishnaYadati/Assignments/tree/ main/Matrix-line_assignment/line_program

3 Construction

Figure of Construction