Dependable Hybrid Systems Design: Coping With Errors

Dominique Méry Zheng Cheng

LORIA

Jan 28th, 2020

Where were we?

Using refinement to construct implementable code for predictive control, which ensures safety property is preserved inductively

Recap: Design Dependable Hybrid Systems via Refinement

Recap: Heating System

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- ightharpoonup Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- Safety: $T_{min} \leq T \leq T_{max}$

Case 1: ON mode, $T(now + \delta + t_{act}) \leq T_{max}$, Stay ON

Practice: Hands-on proof experience

- Download lab material: https://github.com/veriatl/LORIA_WEEK2
- ▶ In M4, try to prove PO: Prediction_ON_safe/safe_fa/INV

Case 2: ON mode, $T(now + \delta + t_{act}) > T_{max}$, TO OFF

Practice: Modelling switch mode

- Draw the trajectory when mode switching
- Give a mathematical expression for such trajectory
- Encode such expression in the event Prediction_ON_unsafe of M4

Simulation

Assumptions

 Control logic/Simulation based on unique analytic solutions

Determine Uniqueness

Given initial value problem:

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Lipschitz-continuous

f is Lipschitz-continuous on set D if there is constant K such that:

$$|f(t,u)-f(t,v)| \le K|u-v| \text{ for all } (t,u) \ (t,v) \in D \ \ (1)$$

Cauchy-Lipschitz theorem

if f is Lipschitz-continuous on D, then initial value problem of f with $(t_0, x_0) \in D$ has a unique solution

Determine Uniqueness: Example

Ex: Let $D=R^2$, and let $f(t,x)=t^2+2x$, for each (t,u) and (t,v) in D, consider:

$$|f(t, u) - f(t, v)| = |(t^2 + 2u) - (t^2 + 2v)|$$

= $2|u - v|$

So, f is Lipschitz-continuous on D= R^2 with K=2.

Determine Analytic Solution

TRY HARD

Assumptions

- Control logic/Simulation based on unique analytic solutions
- ► Abort if:
 - non-unique
 - ► non-analytic?

Proposal: Numerical Solutions + Coping with Errors

Our quest: Can me make rigours control logic based on approximated values?

Forward-Euler Method and Truncation Errors

Forward-Euler: $f_e(n + \delta) = f_e(n) + \dot{f}(n, f_n) * \delta$

Forward-Euler Method and Truncation Errors

► Global truncation errors

Forward-Euler Method and Truncation Errors

► Local truncation errors

Properties of Forward-Euler Method and Truncation Errors

Global truncation errors:

$$\mid \mathsf{f}(\delta)$$
 - $f_{\mathsf{e}}(\delta) \mid \leq \epsilon_{\mathsf{gte}} = \frac{\delta M}{2K} (e^{K(t-t_0)} - 1)$

► Local truncation errors:

$$| f(\delta + \triangle) - f_e(\delta + \triangle) | \le \epsilon_{Ite} = M$$

► Ref: www.math.unl.edu/~gledder1/Math447/EulerError

Control Logic Design based on Forward-Euler Method and Truncation Errors

New Heating System

- ▶ 2 modes: ON/OFF
- ► Simple dynamics: \dot{T} =1/-1
- ▶ monotonic T_{on} and T_{off} (no analytic solutions)
- ightharpoonup Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- Safety: $T_{min} \leq T \leq T_{max}$

New Heating System

- $ightharpoonup |T_{on}(\delta) Te_{on}(\delta)| \le \epsilon_{gteon}$
- $ightharpoonup |T_{off}(\delta) Te_{off}(\delta)| \leq \epsilon_{gteoff}$
- $ightharpoonup |T_{on}(\delta + \triangle)| \le \epsilon_{Iteon}$
- $ightharpoonup |T_{off}(\delta + \triangle) Te_{off}(\delta + \triangle)| \le \epsilon_{lteoff}$
- $ightharpoonup Min \leq \dot{T_{on}}(\delta, T_{on}(\delta)) \leq Max$
- $ightharpoonup Min \leq \dot{T_{off}}(\delta, T_{off}(\delta)) \leq Max$

Case 1: ON mode safe

Case 1: ON mode safe

$$\begin{split} T_{on}(now + \triangle) &\leq Te_{on}(now + \triangle) + \epsilon_{lte} & (prop_{lte}) \\ &= T_{on}(now) + \dot{T_{on}}(now, T_{on}(now)) \cdot \triangle + \epsilon_{lte} & (Euler) \\ &\leq T_{on}(now) + Max \cdot \triangle + \epsilon_{lte} & (prop_{\dot{fc}}) \\ &\leq Te_{on}(now) + \epsilon_{gteon} + Max \cdot \triangle + \epsilon_{lte} & (prop_{gte}) \\ &\leq T_{max} & (predict) \end{split}$$

Case 2: ON mode unsafe

$$T_{on}(now + \triangle) = ...$$
 $> T_{max}$ (predict)

Conclusion

► A refinement strategy for design dependable hybrid system

Conclusion

- A refinement strategy for design dependable hybrid system
- Propose different refinement strategies to design control logic
 - Based on modelling numerical solutions, and coping with truncation errors
 - ► Adaptable to deal with sensor errors or round-off errors