© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°11

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale MP 1990

Dans tout le texte, z désigne une variable complexe; l'exponentielle de z sera notée indifféremment e^z et exp z, la partie réelle de z sera notée Re(z). On appellera Δ l'ensemble des nombres complexes de module strictement inférieur à 1. On conviendra de poser $0^0 = 1$.

On définit une application F de $\mathbb C$ dans $\mathbb C$ comme suit :

- F(1) = 0;
- pour tout $z \neq 1$, $F(z) = \exp\left(-\frac{z}{1-z}\right)$.

Le but du problème est d'établir que F est développable en série entière dans Δ et d'étudier quelques propriétés de la suite des coefficients de cette série entière.

La seconde et la troisième partie sont indépendantes.

1 PREMIERE PARTIE

- Soit n un entier naturel. Etablir que la fonction qui, à tout $z \neq 1$, associe $\left(\frac{z}{1-z}\right)^n$ admet un développement en série entière dans Δ , développement que l'on notera $\left(\frac{z}{1-z}\right)^n = \sum_{k=0}^{\infty} a_{n,k} z^k$.
- En utilisant le développement en série entière de $(1+x)^{\gamma}$, où γ est une constante réelle convenable et x une variable réelle comprise strictement entre -1 et 1, déterminer $a_{n,k}$ en fonction de n et de k.
- 3.a Montrer que l'égalité $b_k = \sum_{n=0}^{\infty} (-1)^n \frac{a_{n,k}}{n!}$ définit une suite $(b_k)_{k \in \mathbb{N}}$ de réels. 3.b Calculer b_0, b_1, b_2 .
- Etantant donné z appartenant à Δ, on définit pour tout couple (n, k) d'entiers naturels $u_{n,k} = (-1)^n \frac{a_{n,k}}{n!} z^k$. Montrer que la famille $(u_{n,k})_{(n,k) \in \mathbb{N}^2}$ est sommable.
- Déduire de ce qui précède que, pour tout z appartenant à Δ, l'on $a : F(z) = \sum_{k=0}^{\infty} b_k z^k$. On désignera par R le rayon de convergence de cette série entière (on a évidemment $R \ge 1$).

2 DEUXIEME PARTIE

On se propose dans cette partie de déterminer R et de trouver une suite majorant la suite de terme général $|b_n|$.

On désigne par Δ' l'ensemble des z vérifiant $|z| \le 1$ et $z \ne 1$. On confondra dans le langage les nombres complexes et les points du plan complexe les représentant.

- **6.a** Pour tout z complexe, on pose z = x + iy, x et y étant réels; calculer $\ln |F(z)|$ en fonction de x et y.
 - **6.b** Etant donné un réel λ strictement positif, on appelle C_{λ} l'ensemble des z vérifiant $|F(z)| = \lambda$. Déterminer une équation cartésienne de C_{λ} ; indiquer la nature et la position de C_{λ} .
 - **6.c** Tracer sur un même graphique les C_{λ} correspondant à $\lambda = \frac{1}{e}$, 1, \sqrt{e} , e, e^2 .
- **7** Quelle est la borne supérieure de |F(z)| lorsque z décrit Δ' ? Est-elle atteinte? Si oui, en quels points?
- **8. 8.a** Montrer que F est continue en tout point autre que 1.
 - **8.b** F admet-elle une limite au point 1?
 - **8.c** La restriction de F à Δ a-t-elle une limite au point 1?
- 9 Déduire de 8 la valeur de R. La série $\sum |b_n|$ est-elle convergente?
- 10 10.a On donne r compris strictement entre 0 et 1. Etablir les formules valables pour tout n entier naturel :

$$b_n r^n = \frac{1}{2\pi} \int_0^{2\pi} F(re^{i\theta}) e^{-in\theta} d\theta = \frac{1}{\pi} \operatorname{Re} \left(\int_0^{\pi} F(re^{i\theta}) e^{-in\theta} d\theta \right)$$

- **10.b** Etablir la convergence de l'intégrale $\int_0^{\pi} F(e^{i\theta})e^{-in\theta} d\theta$.
- **10.c** Démontrer que l'on a

$$\lim_{r\to 1^-} \int_0^\pi \mathbf{F}(re^{i\theta}) e^{-in\theta} \ \mathrm{d}\theta = \int_0^\pi \mathbf{F}(e^{i\theta}) e^{-in\theta} \ \mathrm{d}\theta$$

11 En déduire la formule :

$$b_n = \frac{2\sqrt{e}}{\pi} \operatorname{Re} \left(\int_0^{\frac{\pi}{2}} \exp\left(2int + \frac{i}{2\tan t}\right) dt \right)$$

- 12 Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ est bornée et donner une constante majorant $|b_n|$.
- On pose, pour tout t compris strictement entre 0 et $\frac{\pi}{2}$ et pour tout n entier strictement positif : $u_n(t) = 2nt + \frac{1}{2\tan t}$.

Etudier les variations et le signe des fonctions u_n , u'_n , u''_n . Expliciter en fonction de n la valeur T_n de l'unique zéro de u'_n .

- **14. 14.a** Etablir, pour tout n > 0, l'existence et l'unicité d'un couple α_n , β_n de réels tels que : $0 < \alpha_n < T_n < \beta_n < \frac{\pi}{2}$ et $u_n'(\beta_n) = -u_n'(\alpha_n) = n^{3/4}$.
 - **14.b** Démontrer l'inégalité $u_n''(\beta_n) \ge 2n^{3/2}$.
 - **14.c** En déduire une majoration de $\beta_n \alpha_n$.
- Pour tout n > 0, on appelle respectivement I_n , J_n , K_n et L_n les intégrales de la fonction $t \mapsto \exp(iu_n(t))$ sur les intervalles $\left[0, \frac{\pi}{2}\right]$, $\left[0, \alpha_n\right]$, $\left[\alpha_n, \beta_n\right]$, $\left[\beta_n, \frac{\pi}{2}\right]$.
- **16. 16.a** Donner une majoration de $|K_n|$.

- **16.b** En écrivant : $L_n = \int_{\beta_n}^{\frac{\pi}{2}} \frac{1}{iu'_n(t)} e^{iu_n(t)} iu'_n(t) dt$, établir l'inégalité $|L_n| \le \frac{2}{n^{3/4}}$.
- **16.c** Majorer par la même technique $|J_n|$.
- **16.d** Déduire de ce qui précède une majoration de $|b_n|$ du type $Cn^{-3/4}$ où C est une constante entière, qui soit valable pour tout n. On ne cherchera pas la meilleure valeur possible de C.

3 TROISIEME PARTIE

Cette partie est indépendante de la précédente. Elle a pour but essentiel une étude sommaire de la variation du signe de b_n en fonction de n.

- 17 Déterminer une équation différentielle linéaire homogène d'ordre 1 vérifiée par F(x) lorsque x décrit]-1,1[.
- 18 On pose, dans la suite du problème, $c_n = nb_n$ pour tout n.
- 19 19.a Etablir la relation de récurrence (R):

$$\forall n \in \mathbb{N}^*, \ c_{n+1} = \left(2 - \frac{1}{n}\right)c_n - c_{n-1}$$

- **19.b** Déterminer c_n pour n allant de 0 à 6.
- **19.c** Montrer que s'il existe n non nul tel que $c_n = 0$, alors c_{n-1} et c_{n+1} sont non nuls et de signes opposés.
- On pose, pour tout n entier strictement positif: $d_n = c_n c_{n-1}$. On suppose, dans cette seule question, qu'il existe n_0 tel que pour tout $n \ge n_0$ on ait $c_n > 0$. En remarquant que $d_{n+1} - d_n = -\frac{c_n}{n} = -b_n$, aboutir à une contradiction.
- On peut donc définir (on ne demande pas de le justifier) une suite $(\theta_n)_{n\geq 1}$ strictement croissante et à valeurs entières, possédant les propriétés suivantes :
 - $\theta_1 = 0$;
 - $(-1)^n c_{\theta_n} \geq 0$;
 - pour tout k tel que $\theta_n < k < \theta_{n+1}$, on a $(-1)^n c_k > 0$.

On note U_n l'intervalle d'entiers $[\theta_n, \theta_{n+1}]$ et $M_n = \max_{k \in U_n} |c_k|$.

Dans la suite de cette question on suppose que *n* est pair.

21.a Etablir les inégalités :

$$0 \le c_{\theta_n} < c_{\theta_{n+1}}$$
 et $c_{\theta_{n+1}-2} > c_{\theta_{n+1}-1} > 0$

En déduire une minoration de $\theta_{n+1} - \theta_n$.

- **21.b** Etudier les variations de d_p lorsque p varie de θ_n à θ_{n+1} .
- **21.c** En déduire les variations de c_p quand p décrit U_n .
- **21.d** Etablir que si p, q, r appartiennent à U_n et vérifient p < q < r, on a alors : $\frac{c_q c_p}{q p} > \frac{c_r c_q}{r q}$. Faire une figure représentant l'ensemble des points de coordonnées (k, c_k) , k décrivant U_n ; interpréter géométriquement l'inégalité précédente.
- **21.e** Indiquer très sommairement ce que deviennent les résultats ci-dessus pour *n* impair.
- **22 22.a** Soit *n* un entier pair et *h* un entier vérifiant $0 \le h < \theta_{n+1} \theta_n$. Etablir la relation $c_{\theta_n+h} \le (h+1)d_{\theta_n}$.
 - **22.b** En déduire $d_{\theta_n+h} \ge d_{\theta_n} \left(1 \frac{h(h+1)}{2\theta_n}\right)$.
 - **22.c** Soit ω_n le plus petit entier k de U_n tel que $c_k = M_n$. Donner une minoration de $\omega_n \theta_n$ ne faisant intervenir que θ_n .
 - **22.d** Montrer que la minoration obtenue est valable aussi pour n impair. Quelle est la limite de $\theta_{n+1} \theta_n$ quand n tend vers $+\infty$?