Package 'breaktest'

August 31, 2022

Version 0.0.2 **Date** 2022-04-28

Title My First Collection of Functions
Author Anton Skrobotov [aut, ctb], Alexey Tsarev [aut, ctb], Vadim Zyamalov [aut, cre, ctb]
Maintainer Vadim Zyamalov <zyamalov@ranepa.ru></zyamalov@ranepa.ru>
Depends R (>= $3.5.0$)
Encoding UTF-8
Imports doSNOW, foreach, stringr
Description This package contains a set of different unit root and cointegration tests in the presence of structural breaks in the data.
License GPL (>= 2)
<pre>URL https://github.com/d9d6ka/breaktest</pre>
<pre>BugReports https://github.com/d9d6ka/breaktest/issues</pre>
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
NeedsCompilation no
R topics documented:
ACF ADF.test ADF.test.S AR coint.test.GH CPST.rescale critical.values.KPSS.1p critical.values.KPSS.2p determinants.KPSS.1.break determinants.KPSS.2.breaks 1 determinants.KPSS.N.breaks 1 DOLS DOLS.N.breaks 1

53

Index

DOLS.vars.N.breaks	 14
eos.break.test	 15
GLS	 16
GLS.bt	 16
info.criterion	 17
KP	 18
KPSS	 18
KPSS.1.break	19
KPSS.1.break.unknown	20
KPSS.2.breaks	21
KPSS.2.breaks.unknown	 22
KPSS.HLT	 23
KPSS.N.breaks	 23
KPSS.N.breaks.bootstrap	 25
lagn	
lr.var	 27
MDF.CHLT	 28
MDF.multiple	 29
MDF.single	
MZ.statistic	
NW.estimation	 31
NW.kernel	 32
NW.loocv	 32
NW.volatility	 33
OLS	
p.values.SADF	
print.sadf	
PY.sequential	
PY.single	
recursive.detrend	
reindex	 38
robust.tests.multiple	 38
robust.tests.single	39
SADF.bootstrap.test	
SADF.test	
sb.GSADF.test	42
seasonal.dummies	42
segments.GLS	43
segments.OLS	44
segments.OLS.double	44
segments.OLS.single	45
SSR.matrix	46
SSR.recursive	47
STADF.test	47
supBZ.statistic	49
supSBADF.statistic	50
weighted.SADF.test	
	 51

ACF 3

ACF

Calculating ACF values

Description

A simple auxiliary function providing the estimates of autocorrelations of orders from 0 to N-1.

Usage

```
ACF(y)
```

Arguments

У

An input time series of interest.

Details

The function is not intended to be used directly so it's not exported.

Value

The vector of ACF values of orders from 0 to N-1. Due to the R's way of indexing the 1-st element is the autocorrelation of order 0, and the N-th value is the autocorrelation of order N-1.

 ${\sf ADF.test}$

A simple implementation of ADF test

Description

A function for ADF test with the ability to select the number of lags. Lags are selected by informational criterions which can be modified as in Ng and Perron (2001) and Cavaliere et al. (2015).

Usage

```
ADF.test(
  y,
  const = TRUE,
  trend = FALSE,
  max.lag = 0,
  criterion = NULL,
  modified.criterion = FALSE,
  rescale.criterion = FALSE
)
```

4 ADF.test

Arguments

y The input time series of interest.

const, trend Whether a constand and trend are to be included.

max.lag Maximum lag number

criterion A criterion used to select number of lags. If lag selection is not needed keep this

NULL.

modified.criterion

Whether the unit-root test modification is needed.

rescale.criterion

Whether the rescaling informational criterion is needed. Designed to cope with

heteroscedasticity in residuals.

Details

Due to the Frisch-Waugh-Lovell theorem we first detrend y and then apply the test to the detrended series.

Value

List containing:

- y,
- · const,
- · trend,
- residuals,
- · coefficient estimates.
- · t-statistic value,
- · critical value,
- · Number of lags,
- indicator of stationarity.

References

Cavaliere, Giuseppe, Peter C. B. Phillips, Stephan Smeekes, and A. M. Robert Taylor. "Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility." Econometric Reviews 34, no. 4 (April 21, 2015): 512–36. https://doi.org/10.1080/07474938.2013.808065.

Ng, Serena, and Pierre Perron. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power." Econometrica 69, no. 6 (2001): 1519–54. https://doi.org/10.1111/1468-0262.00256.

ADF.test.S 5

ADF. test. S Detrending bootstrap test by Smeekes (2013)
--

Description

This bootstrap test is based on the recursive detrending procedure of Taylor (2002). The main idea is to apply the standard ADF test to the series with nuissanse parameters eliminated.

Usage

```
ADF.test.S(
   y,
   const = TRUE,
   trend = FALSE,
   c = 0,
   gamma = 0,
   trim = 0.15,
   max.lag = 0,
   criterion = NULL,
   modified.criterion = FALSE,
   iter = 999
)
```

Arguments

У	A series of interest.
const, trend	Whether the constant and trend are to be included.
С	A filtration parameter used to construct an autocorrelation coefficient.
gamma	Detrending type selection parameter. If 0 the OLS detrending is applied, if 1 the GLS detrending is applied, otherwise the autocorrelation coefficient is calculated as $1+c^{\gamma}T^{-\gamma}$.
trim	A trimming parameter.
max.lag	The maximum lag for inner ADF testing.
criterion	A criterion used to select number of lags. If lag selection is not needed keep this NULL.
modified.criter	rion
	Whether the unit-root test modification is needed.
iter	The number of bootstrap iterations.

Details

Critical values are calculated via a bootstrapping using MacKinnon-like regressions. For each number of observations and each number of variables obtained were 1999 values of test statistics. After that 1st, 2.5-th, 5-th, 10-th, and 97.5-th percentiles were calculated and saved along with the corresponding number of observations. This step was repeated 5 times to cope with possible biases. After that MacKunnon-like regressions were estimated.

AR

References

Taylor, A. M. Robert. "Regression-Based Unit Root Tests With Recursive Mean Adjustment for Seasonal and Nonseasonal Time Series." Journal of Business & Economic Statistics 20, no. 2 (April 2002): 269–81. https://doi.org/10.1198/073500102317352001.

MacKinnon, James G. "Critical Values for Cointegration Tests." Working Paper. Economics Department, Queen's University, January 2010. https://ideas.repec.org/p/qed/wpaper/1227.html.

Smeekes, Stephan. "Detrending Bootstrap Unit Root Tests." Econometric Reviews 32, no. 8 (July 2013): 869–91. https://doi.org/10.1080/07474938.2012.690693.

AR

Custom AR with extra information

Description

Custom AR with extra information

Usage

```
AR(y, x, max.lag, criterion = "aic")
```

Arguments

y Dependent variable.

x Exogenous explanatory variables.

max.lag The maximum number of lags.

criterion A criterion for lag number estimation.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of:

• beta: estimates of coefficients,

• residuals: estimated residuals,

• predict: forecasted values,

ullet t.beta: t-statistics for beta,

• lag: estimated number of lags.

coint.test.GH 7

coint.test.GH	Gregory-Hansen test for the absense of cointegration
COTITE CCS C. OIT	Gregory Hansen test for the absense of connegration

Description

Gregory and Hansen (1996) test for the null hypothesis of no cointegration under a possible structural break at the unknown moment of time.

The authors proposed ADF- and Z-type tests, slightly modified to allow the presence of a possible regime shift. Three type of shifts are allowed:

- a shift in the constant,
- a shift in the constand with the trend included,
- and a shift in the constant and the cointegrating vector.

Critical values are calculated via the adopted MacKinnon procedure of estimating the model for the response surface.

Usage

```
coint.test.GH(
    ...,
    shift = "level",
    trim = 0.15,
    max.lag = 10,
    criterion = "aic",
    add.criticals = TRUE
)
```

Arguments

	Variables of interest.
shift	Expected break type.
trim	The trimming parameter to calculate break moment bounds.
max.lag	The maximum number of lags for the internal ADF testing.
criterion	The criterion for lag selection.
add.criticals	Whether critical values are to be returned. This argument is needed to suppress the calculation of critical values during the precalculation of tables needed for the p-values estimating.

Value

An object of type cointGH. It's a list of

- shift: shift type,
- Za: MZ_{α} statistic and c.v.,
- Zt: MZ_t statistic and c.v.,
- ADF: ADF statistic and c.v..

8 CPST.rescale

References

MacKinnon, James G. "Critical Values for Cointegration Tests." Working Paper. Working Paper. Economics Department, Queen's University, January 2010. https://ideas.repec.org/p/qed/wpaper/1227.html.

Gregory, Allan W., and Bruce E. Hansen. "Residual-Based Tests for Cointegration in Models with Regime Shifts." Journal of Econometrics 70, no. 1 (January 1, 1996): 99–126. https://doi.org/10.1016/0304-4076(69)41685-7.

CPST.rescale

Generating rescaled series as in Cavaliere et al. (2015)

Description

This rescaling procedure is needed to cope with possible heteroscedasticity in the data. Simply it's achieved by taking a cumulative sum of the first difference normalized by the non-parametric local estimate of the variance.

Usage

```
CPST.rescale(d.y, x, deter, k, max.lag)
```

Arguments

d.y A series of first differences.

x A matrix of ADF RHS variables.

deter A matrix of deterministic variables for detrending.

k A lag of the corresponding ADF model.

max.lag The maximum possible lag.

Value

A rescaled series.

References

Cavaliere, Giuseppe, Peter C. B. Phillips, Stephan Smeekes, and A. M. Robert Taylor. "Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility." Econometric Reviews 34, no. 4 (April 21, 2015): 512–36. https://doi.org/10.1080/07474938.2013.808065.

```
critical.values.KPSS.1p
```

Critical values for KPSS test with 1 break

Description

Auxiliary function returning pre-calculated critical values for KPSS.1.break

Usage

```
critical.values.KPSS.1p(model, break.point, N, k)
```

Arguments

model	A scalar equal to)

• 1: for model An,

• 2: for model A,

• 3: for model B,

• 4: for model C,

• 5: for model D,

• 6: for model E.

break.point Position of the break point.

N Number of observations.

k Number of RHS variables.

Details

The function is not intended to be used directly so it's not exported.

```
critical.values.KPSS.2p
```

Critical values for KPSS test with 2 breaks

Description

Auxiliary function returning pre-calculated critical values for KPSS.2.breaks

Usage

```
critical.values.KPSS.2p(model, break.point, N)
```

Arguments

model A scalar equal to

1: for the AA (without trend) model,2: for the AA (with trend) model,

3: for the BB model, 4: for the CC model,

• 5: for the AC-CA model.

break.point Position of the break point.

N Number of observations.

Details

The function is not intended to be used directly so it's not exported.

determinants.KPSS.1.break

Construct determinant variables for KPSS.1.break

Description

Construct determinant variables for KPSS.1.break

Usage

```
determinants.KPSS.1.break(model, N, break.point)
```

Arguments

model A scalar equal to

• 1: Model with trend, break in const,

2: Model with const and trend, break in const,3: Model with const and trend, break in trend,

• 4: Model with const and trend, break in const and trend.

N Number of observations.

break.point Break point.

Details

Procedure to compute deterministic terms for KPSS with 1 structural break.

The function is not intended to be used directly so it's not exported.

Value

Matrix of determinant variables.

determinants.KPSS.2.breaks

Construct determinant variables for KPSS.2.breaks

Description

Construct determinant variables for KPSS.2.breaks

Usage

```
determinants.KPSS.2.breaks(model, N, break.point)
```

Arguments

model A scalar equal to

- 1: for the AA (without trend) model,
- 2: for the AA (with trend) model,
- 3: for the BB model,
- 4: for the CC model,
- 5: for the AC-CA model,
- 6: for the AC-CA model,
- 7: for the AC-CA model.

N Number of observations.

break.point Positions for the first and second structural breaks (respective to the origin which

is 1).

Details

Procedure to compute deterministic terms for KPSS with 2 structural breaks.

The function is not intended to be used directly so it's not exported.

Value

Matrix of deterministic terms.

```
determinants.KPSS.N.breaks
```

Deterministic terms for KPSS.N.breaks

Description

Procedure to compute deterministic terms for KPSS with m structural breaks.

Usage

```
determinants.KPSS.N.breaks(model, N, break.point, const = FALSE, trend = FALSE)
```

DOLS DOLS

Arguments

model A scalar or vector of

1: for the break in const,2: for the break in trend,

• 3: for the break in const and trend.

N Number of observations. break.point Array of structural breaks.

const, trend Include constant and trend if TRUE.

Details

model should be either a scalar or a vector of the same size as the **break.point**. If scalar **model** will be repeated till the length of **break.point** is achieved.

Value

Matrix of deterministic terms.

DOLS

Estimating DOLS regression for multiple known break points

Description

Estimating DOLS regression for multiple known break points

Usage

```
DOLS(y, x, model, break.point, k.lags, k.leads)
```

Arguments

y A dependent (LHS) variable.

x A matrix of explanatory (RHS) variables.model See Carrion-i-Silvestre and Sansó (2006)

• 1: for model An,

• 2: for model A,

• 3: for model B,

• 4: for model C,

• 5: for model D,

• 6: for model E.

break.point A position of the break point.

k.lags, k.leads

A number of lags and leads in DOLS regression.

Details

The function is not intended to be used directly so it's not exported.

DOLS.N.breaks 13

Value

A list of:

- Estimates of coefficients,
- · Estimates of residuals.
- · A value of BIC,
- t-statistics for the estimates of coefficients.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

DOLS.N.breaks

Estimating DOLS regression for multiple known break points

Description

Estimating DOLS regression for multiple known break points

Usage

```
DOLS.N.breaks(
   y,
   x,
   model,
   break.point,
   const = FALSE,
   trend = FALSE,
   k.lags,
   k.leads
)
```

Arguments

y A dependent (LHS) variable.

x A matrix of explanatory (RHS) variables.

model A scalar or vector of break types:

• 1: for the break in const.

• 2: for the break in trend.

• 3: for the break in const and trend.

break.point An array of moments of structural breaks.

Whether a constant or trend are to be included.

k.lags, k.leads

const, trend

A number of lags and leads in DOLS regression.

14 DOLS.vars.N.breaks

Details

The function is not intended to be used directly so it's not exported.

Value

A list of:

- Estimates of coefficients,
- Estimates of residuals,
- A set of informational criterions values,
- t-statistics for the estimates of coefficients.

DOLS.vars.N.breaks

Preparing variables for DOLS regression with multiple known break points

Description

Preparing variables for DOLS regression with multiple known break points

Usage

```
DOLS.vars.N.breaks(
   y,
   x,
   model,
   break.point,
   const = FALSE,
   trend = FALSE,
   k.lags,
   k.leads
)
```

Arguments

y A dependent (LHS) variable.

x A matrix of explanatory (RHS) variables.

model A scalar or vector of

• 1: for the break in const.

• 2: for the break in trend.

• 3: for the break in const and trend.

break.point An array of moments of structural breaks.

whether a constant or trend are to be included.

k.lags, k.leads

A number of lags and leads in DOLS regression.

Details

The function is not intended to be used directly so it's not exported.

eos.break.test 15

Value

A list of LHS and RHS variables.

eos.break.test

Andrews-Kim (2006) test

Description

Test for structural break at the end of the sample.

Usage

```
eos.break.test(eq, m, dataset)
```

Arguments

eq Base model formula. At the moment all the variables included should be defined

explicitly, dynamic regressors (i.e. functions etc.) are not supported.

m Post-break period length.

dataset Source of the data.

Details

See Andrews and Kim (2006) for the detailed description.

Value

A list of

- m,
- estimated values of P- and R-tests,
- sequences of auxiliary statistics P_j and R_j ,
- the corresponding p-values.

References

Andrews, D. W. K. "End-of-Sample Instability Tests." Econometrica 71, no. 6 (2003): 1661–94. https://doi.org/10.1111/1468-0262.00466.

Andrews, Donald W. K, and Jae-Young Kim. "Tests for Cointegration Breakdown Over a Short Time Period." Journal of Business & Economic Statistics 24, no. 4 (2006): 379–94. https://doi.org/10.1198/07350010600

16 GLS.bt

GLS

Custom GLS with extra information

Description

Getting GLS estimates of betas, residuals, forecasted values and t-values.

Usage

```
GLS(y, z, c)
```

Arguments

y Dependent variable.

z Explanatory variables.

c Coefficient for ρ calculation.

Details

The function is not intended to be used directly so it's not exported.

Value

The list of betas, residuals, forecasted values and t-values.

GLS.bt GLS fitering

Description

GLS fitering

Usage

Arguments

trim Trimming parameter.

c Filtering parameter.

info.criterion 17

rions	
-------	--

Description

Information criterions

Usage

```
info.criterion(resids, extra, modification = FALSE, alpha = 0, y = NULL)
```

Arguments

resids	Input residuals needed for estimating the values of information criterions.
extra	Number of extra parameters needed for estimating the punishment term.
modification	Whether the unit-root test modificaton is needed. See Ng and Perron (2001) for further information.
alpha	The coefficient α of y_{t-1} in ADF model. Needed only for criterion modification purposes.
У	The vector of y_{t-1} in ADF model. Needed only for criterion modification purposes.

Details

Calculating the value of the following informational criterions:

- Akaike,
- Schwarz (Bayesian),
- Hannan-Quinn,
- Liu et al.

Value

The list of information criterions values.

References

Ng, Serena, and Pierre Perron. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power." Econometrica 69, no. 6 (2001): 1519–54. https://doi.org/10.1111/1468-0262.00256.

18 KPSS

ΚP

Kejrival-Perron procedure of breaks number detection

Description

Kejrival-Perron procedure of breaks number detection

Usage

```
KP(y, const = FALSE, breaks = 1, criterion = "aic", trim = 0.15)
```

Arguments

y An input series of interest.

const Whether the break in constant is allowed.

breaks Number of breaks.

criterion Needed information criterion: aic, bic, hq or lwz.
trim A trimming value for a possible break date bounds.

Value

The estimated optimal break point.

References

Kejriwal, Mohitosh, and Pierre Perron. "A Sequential Procedure to Determine the Number of Breaks in Trend with an Integrated or Stationary Noise Component: Determination of Number of Breaks in Trend." Journal of Time Series Analysis 31, no. 5 (September 2010): 305–28. https://doi.org/10.1111/j.1467-9892.2010.00666.x.

KPSS

Auxiliary function returning KPSS statistic value.

Description

Auxiliary function returning KPSS statistic value.

Usage

```
KPSS(resids, variance)
```

Arguments

resids The series of residuals.

variance The value of the long-run variance.

Details

The function is not intended to be used directly so it's not exported.

KPSS.1.break

KPSS.1.break

KPSS-test with known structural break

Description

Computes the cointegration test with one known structural break.

Usage

```
KPSS.1.break(y, x, model, break.point, weakly.exog = TRUE, 11.init)
```

Arguments

y An input (LHS) time series of interest.

x A matrix of (RHS) explanatory stochastic regressors.

model A scalar equal to

• 1: for model An,

• 2: for model A,

• 3: for model B,

• 4: for model C,

• 5: for model D,

• 6: for model E.

break.point Posit

Position of the break point.

weakly.exog

Exogeneity of the stochastic regressors

• TRUE: if the regressors are weakly exogenous,

• FALSE: if the regressors are not weakly exogenous (DOLS is used in this case).

ll.init

Scalar, defines the initial number of leads and lags for DOLS.

Details

The code provided is the original GAUSS code ported to R.

See Carrion-i-Silvestre and Sansó (2006) for further details.

Value

A list of:

- beta: DOLS estimates of the coefficients regressors,
- tests: SC test (coinKPSS-test),
- resid: Residuals of the model,
- t.beta: Individual significance t-statistics,
- break_point: Break points.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

20 KPSS.1.break.unknown

KPSS.1.break.unknown KPSS-test of cointegration

Description

Procedure for testing the null of cointegration in the possible presence of structural breaks.

Usage

```
KPSS.1.break.unknown(y, x, model, weakly.exog, ll.init)
```

Arguments

y (Tx1)-vector of the dependent variable

x (Txk)-matrix of explanatory stochastic regressors

model A scalar equal to

• 1: for model An,

• 2: for model A,

• 3: for model B,

• 4: for model C,

• 5: for model D,

• 6: for model E.

weakly.exog Exogeneity of the stochastic regressors

• TRUE: if the regressors are weakly exogenous,

• FALSE: if the regressors are not weakly exogenous (DOLS is used in this case).

11. init Scalar, defines the initial number of leads and lags for DOLS.

Details

Computes the cointegration test with one unknown structural break where the break point is estimated either minimizing the value of the statistic or the sum of the squared residuals. The estimation of the cointegrating relationship bases on DOLS.

The code provided is the original GAUSS code ported to R.

See Carrion-i-Silvestre and Sansó (2006) for further details.

Value

(2x2)-matrix, where the first rows gives the value of the min(SC) test and the estimated break point; the second row gives the value of the SC statistic, where the break point is estimated as min(SSR).

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

KPSS.2.breaks 21

KPSS.2.breaks

KPSS-test with 2 known structural breaks

Description

Procedure to compute the KPSS test with two structural breaks

Usage

```
KPSS.2.breaks(y, model, break.point, max.lag, kernel)
```

Arguments

y An input (LHS) time series of interest.

model A scalar equal to

1: for the AA (without trend) model,2: for the AA (with trend) model,

3: for the BB model, 4: for the CC model,

• 5: for the AC-CA model.

break.point Positions for the first and second structural breaks (respective to the origin which

is 1).

max.lag scalar, with the maximum order of the parametric correction. The final order of

the parametric correction is selected using the BIC information criterion.

kernel Kernel for calculating long-run variance

• bartlett: for Bartlett kernel,

• quadratic: for Quadratic Spectral kernel,

• NULL for the Kurozumi's proposal, using Bartlett kernel.

Details

The break points are known

The code provided is the original GAUSS code ported to R.

See Carrion-i-Silvestre and Sansó (2007) for further details.

Value

A list of:

• beta: DOLS estimates of the coefficients regressors,

• tests: SC test (coinKPSS-test),

• resid: Residuals of the model.

• t.beta: t-statistics for beta,

• break_point: Break points.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "The KPSS Test with Two Structural Breaks." Spanish Economic Review 9, no. 2 (May 16, 2007): 105–27. https://doi.org/10.1007/s10108-006-9017-8.

22 KPSS.2.breaks.unknown

KPSS.2.breaks.unknown KPSS-test with 2 unknown structural breaks

Description

Procedure to compute the KPSS test with two structural breaks

Usage

```
KPSS.2.breaks.unknown(y, model, max.lag = 0, kernel = "bartlett")
```

Arguments

y (Tx1)-vector of time series.

model A scalar equal to

- 1: for the AA (without trend) model,
- 2: for the AA (with trend) model,
- 3: for the BB model,
- 4: for the CC model,
- 5: for the AC-CA model.

max.lag scalar, with the maximum order of the parametric correction. The final order of

the parametric correction is selected using the BIC information criterion.

kernel Kernel for calculating long-run variance

- bartlett: for Bartlett kernel,
- quadratic: for Quadratic Spectral kernel,
- NULL for the Kurozumi's proposal, using Bartlett kernel.

Details

The break points are known

The code provided is the original GAUSS code ported to R.

See Carrion-i-Silvestre and Sansó (2007) for further details.

Value

Value of test statistic.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

KPSS.HLT 23

KPSS.HLT

Unit root testing procedure under a single structural break.

Description

Unit root testing procedure under a single structural break.

Usage

```
KPSS.HLT(y, const = FALSE, trim = 0.15)
```

Arguments

y A series of interest.

const Whether a constant should be included.

trim The trimming parameter to find the lower and upper bounds of possible break

dates.

Value

The value of test statistic.

References

Harvey, David I., Stephen J. Leybourne, and A. M. Robert Taylor. "Unit Root Testing under a Local Break in Trend." Journal of Econometrics 167, no. 1 (2012): 140–67.

KPSS.N.breaks

KPSS-test with multiple known structural breaks

Description

Procedure to compute the KPSS test with multiple known structural breaks

Usage

```
KPSS.N.breaks(
  y,
  x,
  model,
  break.point,
  const = FALSE,
  trend = FALSE,
  weakly.exog = TRUE,
  lags.init,
  leads.init,
  max.lag,
  kernel,
  criterion = "bic"
)
```

24 KPSS.N.breaks

Arguments

y An input (LHS) time series of interest.

x A matrix of (RHS) explanatory stochastic regressors.

model A scalar or vector of

1: for the break in const,2: for the break in trend,

• 3: for the break in const and trend.

break.point Array of structural breaks.

const, trend Whether a constant or trend should be included.

weakly.exog Boolean where we specify whether the stochastic regressors are exogenous or

not

• TRUE: if the regressors are weakly exogenous,

FALSE: if the regressors are not weakly exogenous (DOLS is used in this
case).

lags.init, leads.init

Scalars defining the initial number of lags and leads for DOLS.

max.lag scalar, with the maximum order of the parametric correction. The final order of

the parametric correction is selected using the BIC information criterion.

kernel Kernel for calculating long-run variance

• bartlett: for Bartlett kernel,

• quadratic: for Quadratic Spectral kernel,

• NULL for the Kurozumi's proposal, using Bartlett kernel.

criterion Information criterion for DOLS lags and leads selection: aic, bic, hq, or lwz.

Value

A list of

• beta: DOLS estimates of the coefficients regressors,

• tests: SC test (coinKPSS-test),

• resid: Residuals of the model.

• t.beta: t-statistics for beta,

• DOLS. lags: The estimated number of lags and leads in DOLS,

• break_point: Break points.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "The KPSS Test with Two Structural Breaks." Spanish Economic Review 9, no. 2 (May 16, 2007): 105–27. https://doi.org/10.1007/s10108-006-9017-8.

```
KPSS.N.breaks.bootstrap
```

KPSS-test with multiple unknown structural breaks

Description

Procedure to compute the KPSS test with multiple unknown structural breaks

Usage

```
KPSS.N.breaks.bootstrap(
  у,
  Х,
  model,
  break.point,
  const = FALSE,
  trend = FALSE,
  weakly.exog = TRUE,
  lags.init,
  leads.init,
  max.lag,
  kernel,
  iter = 9999,
  bootstrap = "sample",
  criterion = "bic"
)
```

Arguments

y An input (LHS) time series of interest.

x A matrix of (RHS) explanatory stochastic regressors.

model A scalar or vector of

- 1: for the break in const,
- 2: for the break in trend,
- 3: for the break in const and trend.

break.point Array of structural breaks.

const Include constant if **TRUE**.

trend Include trend if **TRUE**.

Boolean where we specify whether the stochastic regressors are exogenous or

- TRUE: if the regressors are weakly exogenous,
- FALSE: if the regressors are not weakly exogenous (DOLS is used in this case).

lags.init, leads.init

weakly.exog

Scalars defining the initial number of lags and leads for DOLS.

max.lag scalar, with the maximum order of the parametric correction. The final order of the parametric correction is selected using the BIC information criterion.

26 lagn

kernel Kernel for calculating long-run variance

• bartlett: for Bartlett kernel,

• quadratic: for Quadratic Spectral kernel,

• NULL for the Kurozumi's proposal, using Bartlett kernel.

iter Number of bootstrap iterations.

bootstrap Type of bootstrapping:

• "sample": sampling from residuals with replacement,

- "Cavaliere-Taylor": multiplying residuals by ${\cal N}(0,1)$ -distributed variable,

• "Rademacher": multiplying residuals by Rademacher-distributed variable.

criterion Information criterion for DOLS lags and leads selection: aic, bic or lwz.

Value

A list of:

• test: The value of KPSS test statistic,

• p.value: The estimates p-value,

• bootstrapped: Bootstrapped auxiliary statistics.

lagn

Produce a vector lagged backward of forward

Description

Produce a vector lagged backward of forward

Usage

$$lagn(x, i, na = NA)$$

Arguments

x Initial vector.

i Size of lag (lead if negative).

na Value to fill missing observations, NA by default.

Details

The function is not intended to be used directly so it's not exported.

Value

Lagged or leaded vector.

lr.var 27

lr.var

Calculating long-run variance or covariance matrix

Description

Calculating long-run variance or covariance matrix

Usage

```
lr.var(
  у,
  demean = TRUE,
  kernel = "bartlett",
  limit.lags = FALSE,
  limit.selector = "kpss-q",
  upper.rho.limit = 0.97,
  upper.lag.limit = 0.8,
  recolor = FALSE,
  \max.lag = 0,
  criterion = "bic"
lr.var.bartlett(y)
lr.var.quadratic(y)
lr.var.bartlett.AK(y)
lr.var.SPC(y, max.lag = 0, kernel = "bartlett", criterion = "bic")
```

Arguments

A series of interest. У

demean Whether the demeaning is needed.

kernel A kernel to be used:

• truncated:
$$\begin{cases} 1 & |x| \leq 1 \\ 0 & \text{otherwize} \end{cases}$$
• bartlett:
$$\begin{cases} 1 - |x| & |x| \leq 1 \\ 0 & \text{otherwize} \end{cases}$$
• parzen:
$$\begin{cases} 1 - 6x^2 + 6|x|^3 & |x| \leq 1/2 \\ 2(1 - |x|)^3 & 1/2 \leq |x| \leq 1 \\ 0 & \text{otherwize} \end{cases}$$
• tukey-hanning:
$$\begin{cases} (1 + \cos(\pi x))/2 & |x| \leq 1 \\ 0 & \text{otherwize} \end{cases}$$

• quadratic: $\frac{25}{12\pi^2x^2}\left(\frac{\sin(6\pi x/5)}{6\pi x/5}-\cos(6\pi x/5)\right)$

Whether all lags shoult be used in formulae. limit.lags

limit.selector Way of limit selection:

• kpss-q: $4(T/100)^{1/4}$.

28 MDF.CHLT

- kpss-m: $12(T/100)^{1/4}$.
- Andrews: kernel-specific formula from Andrews (1991).
- Kurozumi: kernel-specific formula from Andrews (1991) with Kurozumi (2002) proposal.

upper.rho.limit

The upper limit for the value or AR-coefficient.

upper.lag.limit

The value used to calculate the upper limit for Kurozumi (2002) proposal.

recolor Whether the correction by Sul et al. (2005) should be used. This option resets

limit.lags to TRUE, and limit.selector to Andrews.

max.lag Maximum number of lags used in AR regresion during recolorization. Other-

wize ignored.

criterion The information crietreion: bic, aic or lwz.

References

Andrews, Donald W. K. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." Econometrica 59, no. 3 (1991): 817–58. https://doi.org/10.2307/2938229.

Kurozumi, Eiji. "Testing for Stationarity with a Break." Journal of Econometrics 108, no. 1 (May 1, 2002): 63–99. https://doi.org/10.1016/S0304-4076(01)00106-3.

Sul, Donggyu, Peter C. B. Phillips, and Chi-Young Choi. "Prewhitening Bias in HAC Estimation." Oxford Bulletin of Economics and Statistics 67, no. 4 (August 2005): 517–46. https://doi.org/10.1111/j.1468-0084.2005.00130.x.

MDF.CHLT

MDF test for a single break and possible heterscedasticity

Description

MDF test for a single break and possible heterscedasticity

Usage

```
MDF.CHLT(y, max.lag = 10, trim = 0.15, iter = 499)
```

Arguments

y A series of interest

max.lag The maximum possible lag.

trim Trimming parameter for lag selection

iter Number of bootstrap iterations.

Value

An object of type mdfCHLT. It's a list of four sublists each containing:

- The value of MZ_{α} , MSB, MZ_{t} , or ADF,
- The asymptotic c.v.,
- The bootstrapped c.v.

MDF.multiple 29

References

Cavaliere, Giuseppe, David I. Harvey, Stephen J. Leybourne, and A.M. Robert Taylor. "Testing for Unit Roots in the Presence of a Possible Break in Trend and Nonstationary Volatility." Econometric Theory 27, no. 5 (October 2011): 957–91. https://doi.org/10.1017/S0266466610000605.

MDF.multiple

MDF procedure for multiple unknown breaks.

Description

MDF procedure for multiple unknown breaks.

Usage

```
MDF.multiple(
   y,
   const = FALSE,
   breaks = 1,
   breaks.star = 1,
   trim = 0.15,
   ZA = FALSE
)
```

Arguments

y A series of interest.

const Whether the constant term should be included.

breaks Number of breaks.

breaks.star Number of breaks got from the Kejrival-Perron procedure.

trim Trimming value for a possible break date bounds.

ZA Whether ZA variant should be used.

Value

A list of sublists each containing

- The value of statistic: MDF GLS, MDF OLS,
- The asymptotic critical values. UR values are included as well.

30 MZ.statistic

MDF.single

MDF procedure for a single unknown break.

Description

MDF procedure for a single unknown break.

Usage

```
MDF.single(y, const = FALSE, trend = FALSE, trim = 0.15)
```

Arguments

y A series of interest.

const Whether the constant term should be included.

trend Whether the trend term should be included.

trim Trimming value for a possible break date bounds.

Value

A list of sublists each containing

- The value of statistic: MDF GLS, MDF OLS,
- \bullet The asymptotic critical values. UR values are included as well.

MZ.statistic

Calculating M-statistics by Stock (1990) and Perron and Ng (1996).

Description

Calculating M-statistics by Stock (1990) and Perron and Ng (1996).

Usage

```
MZ.statistic(y, 1, const = FALSE, trend = FALSE)
```

Arguments

y A series of interest.

Number of lags for inner ADF test.

const, trend Whether a constand and trend are to be included.

Details

The function is not intended to be used directly so it's not exported.

Value

List of values of MZ_{α} , MZ_{t} and MSB statistics.

NW.estimation 31

References

Perron, Pierre, and Serena Ng. "Useful Modifications to Some Unit Root Tests with Dependent Errors and Their Local Asymptotic Properties." The Review of Economic Studies 63, no. 3 (July 1, 1996): 435–63. https://doi.org/10.2307/2297890.

Stock, James H. "A Class of Tests for Integration and Cointegration." Kennedy School of Government, Harvard University, 1990.

NW.estimation

Nadaraya-Watson kernel regression.

Description

Nadaraya-Watson kernel regression.

Usage

```
NW.estimation(y, x, h, kernel = "unif")
```

Arguments

y LHS dependent variable.

x RHS explanation variable.

h Bandwidth.

kernel Needed kernel, currently only unif and gauss.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of arguments as well as the estimated coefficient vector and residuals.

References

Harvey, David I., S. Leybourne, Stephen J., and Yang Zu. "Nonparametric Estimation of the Variance Function in an Explosive Autoregression Model." School of Economics. University of Nottingham, 2022.

32 NW.loocv

NW.kernel

Nadaraya-Watson kernel series

Description

Nadaraya-Watson kernel series

Usage

```
NW.kernel(i, x, h, kernel = "unif")
```

Arguments

i Current index.x Kernel variable.h Bandwidth.

kernel Needed kernel, currently only unif and gauss.

Details

The function is not intended to be used directly so it's not exported.

Value

A series of kernel function values.

References

Harvey, David I., S. Leybourne, Stephen J., and Yang Zu. "Nonparametric Estimation of the Variance Function in an Explosive Autoregression Model." School of Economics. University of Nottingham, 2022.

NW.loocv

LOO-CV for h in Nadaraya-Watson kernel regression.

Description

LOO-CV for h in Nadaraya-Watson kernel regression.

Usage

```
NW.loocv(y, x, kernel = "unif")
```

Arguments

y LHS dependent variable.x RHS explanation variable.

kernel Needed kernel, currently only unif and gauss.

NW.volatility 33

Details

The function is not intended to be used directly so it's not exported.

Value

A list of arguments as well as the estimated bandwidth h.

References

Harvey, David I., S. Leybourne, Stephen J., and Yang Zu. "Nonparametric Estimation of the Variance Function in an Explosive Autoregression Model." School of Economics. University of Nottingham, 2022.

NW.volatility

NW.volatility - Nadaraya-Watson kernel volatility estimation

Description

NW.volatility - Nadaraya-Watson kernel volatility estimation

Usage

```
NW.volatility(e, h, kernel = "unif")
```

Arguments

e The series of interest.

h Bandwidth.

kernel Needed kernel, currently only unif and gauss.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of arguments as well as the estimated omega and s.e.

References

Cavaliere, Giuseppe, Peter C. B. Phillips, Stephan Smeekes, and A. M. Robert Taylor. "Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility." Econometric Reviews 34, no. 4 (April 21, 2015): 512–36. https://doi.org/10.1080/07474938.2013.808065.

p.values.SADF

0LS

Custom OLS with extra information

Description

Getting OLS estimates of betas, residuals, forecasted values and t-values.

Usage

```
OLS(y, x)
```

Arguments

y Dependent variable.x Explanatory variables.

Details

The function is not intended to be used directly so it's not exported.

Value

The list of:

• beta: estimates of coefficients,

• resid: estimated residuals,

• predict: forecasted values,

• t.beta: t-statistics for beta.

p.values.SADF

Critical values for SADF-type tests

Description

Interpolating p-value for intermediate observation numbers for SADF-type tests.

Usage

```
p.values.SADF(statistic, N.obs, cr.values)
```

Arguments

statistic The statistic value.

N. obs The number of observations.cr.values The set of precalculated tables.

Details

The function is not intended to be used directly so it's not exported.

print.sadf 35

print.sadf

Custom functions for printing results in a nice way.

Description

Custom functions for printing results in a nice way.

Usage

```
## S3 method for class 'sadf'
print(x, ...)
## S3 method for class 'mdfHLT'
print(x, ...)
## S3 method for class 'mdfHLTN'
print(x, ...)
## S3 method for class 'mdfCHLT'
print(x, ...)
## S3 method for class 'cointGH'
print(x, ...)
```

Arguments

x Object containing results.

... Any additional arguments for print function.

PY.sequential

Sequential Perron-Yabu (2009) statistic for breaks at unknown date.

Description

Sequential Perron-Yabu (2009) statistic for breaks at unknown date.

Usage

```
PY.sequential(
   y,
   const = FALSE,
   breaks = 1,
   criterion = "aic",
   trim = 0.15,
   max.lag = 1
```

PY.single

Arguments

y The input series of interest.
const Allowing the break in constant.

breaks Number of breaks.

criterion Needed information criterion: aic, bic, hq or lwz.

trim A trimming value for a possible break date bounds.

max.lag The maximum possible lag in the model.

Value

The estimated Wald statistic.

References

Kejriwal, Mohitosh, and Pierre Perron. "A Sequential Procedure to Determine the Number of Breaks in Trend with an Integrated or Stationary Noise Component: Determination of Number of Breaks in Trend." Journal of Time Series Analysis 31, no. 5 (September 2010): 305–28. https://doi.org/10.1111/j.1467-9892.2010.00666.x.

PY.single

Perron-Yabu (2009) statistic for break at unknown date.

Description

Perron-Yabu (2009) statistic for break at unknown date.

Usage

```
PY.single(
   y,
   const = FALSE,
   trend = FALSE,
   criterion = "aic",
   trim = 0.15,
   max.lag
)
```

Arguments

y The input series of interest.

const, trend Allowing the break in constant or trend.

criterion Needed information criterion: aic, bic, hq or lwz.
trim A trimming value for a possible break date bounds.

max.lag The maximum possible lag in the model.

Value

A list of the estimated Wald statistic as well as its c.v.

recursive.detrend 37

References

Perron, Pierre, and Tomoyoshi Yabu. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component." Journal of Business & Economic Statistics 27, no. 3 (July 2009): 369–96. https://doi.org/10.1198/jbes.2009.07268.

recursive.detrend

Detrending the data recursively

Description

This procedure is aimed to provide a recursively detrended series. More or less classical approach of full-sample detrending may lead to the regressors correlated with the error term.

Usage

```
recursive.detrend(y, x, c, gamma, trim)
```

Arguments

y The dependent (LHS) variable.

x The matrix of explanatory (RHS) variables.

A filtration parameter used to construct an autocorrelation coefficient.

gamma A detrending type selection parameter. If 0 the OLS detrending is applied, if

1 the GLS detrending is applied, otherwise the autocorrelation coefficient is

calculated as $1 + c^{\gamma} T^{-\gamma}$.

trim The trimming parameter. It's used to find the minimum size of subsamples while

calculating recursive estimates. The ending point of the subsample for the t is

 $max(t, trim \times T)$.

Details

Elliott et al (1996) recommend using c=-7 for the model with only an intercept, and c=-13.5 for the model with a linear trend.

The function is not intended to be used directly so it's not exported.

Value

A detrended series.

References

Elliott, Graham, Thomas J. Rothenberg, and James H. Stock. "Efficient Tests for an Autoregressive Unit Root." Econometrica 64, no. 4 (1996): 813–36. https://doi.org/10.2307/2171846.

Taylor, A. M. Robert. "Regression-Based Unit Root Tests With Recursive Mean Adjustment for Seasonal and Nonseasonal Time Series." Journal of Business & Economic Statistics 20, no. 2 (April 2002): 269–81. https://doi.org/10.1198/073500102317352001.

38 robust.tests.multiple

reindex

A function that makes reindexing

Description

The function is aimed to calculate the sequence of indices providing a new "time transformed" time series as in Cavaliere and Taylor (2008).

Usage

```
reindex(u)
```

Arguments

..

The residuals series for reindexing.

Details

The function is not intended to be used directly so it's not exported.

References

Cavaliere, Giuseppe, and A. M. Robert Taylor. "Time-Transformed Unit Root Tests for Models with Non-Stationary Volatility." Journal of Time Series Analysis 29, no. 2 (March 2008): 300–330. https://doi.org/10.1111/j.1467-9892.2007.00557.x.

Kurozumi, Eiji, Anton Skrobotov, and Alexey Tsarev. "Time-Transformed Test for Bubbles under Non-Stationary Volatility." Journal of Financial Econometrics, April 23, 2022. https://doi.org/10.1093/jjfinec/nbac004.

robust.tests.multiple A wrapping function around KP and MDF.multiple.

Description

A wrapping function around KP and MDF.multiple.

Usage

```
robust.tests.multiple(
  y,
  const = FALSE,
  season = FALSE,
  breaks = 2,
  trim = 0.15
)
```

robust.tests.single 39

Arguments

A series of interest.
Whether the constant term should be included.
Whether the seasonal adjustment is needed.
Number of breaks.
Trimming value for a possible break date bounds.

robust.tests.single A wrapping function around MDF.single.

Description

A wrapping function around MDF.single.

Usage

```
robust.tests.single(
   y,
   const = FALSE,
   trend = FALSE,
   season = FALSE,
   trim = 0.15
)
```

Arguments

У	A series of interest.
const	Whether the constant term should be included.
trend	Whether the trend term should be included.
season	Whether the seasonal adjustment is needed.
trim	Trimming value for a possible break date bounds.

SADF.bootstrap.test Supremum ADF tests with wild bootstrap.

Description

SADF.bootstrap.test is a wild bootstrapping procedure for estimating critical and p-values for SADF.test.

 ${\sf GSADF.bootstrap.test}\ is\ the\ same\ procedure\ but\ for\ {\sf GSADF.test.}$

40 SADF.bootstrap.test

Usage

```
SADF.bootstrap.test(
   y,
   trim = 0.01 + 1.8/sqrt(length(y)),
   const = TRUE,
   alpha = 0.05,
   iter = 999,
   seed = round(10^4 * sd(y))
)

GSADF.bootstrap.test(
   y,
   trim = 0.01 + 1.8/sqrt(length(y)),
   const = TRUE,
   alpha = 0.05,
   iter = 4 * 200,
   seed = round(10^4 * sd(y))
)
```

Arguments

y An input time series of interest.

trim Trimming parameter to determine the lower and upper bounds.

const Whether the constant needs to be included.

alpha The significance level of interest.

iter The number of iterations.

seed The seed parameter for the random number generator.

Value

An object of type sadf. It's a list of:

- y,
- trim,
- const,
- alpha,
- iter,
- seed,
- vector of t-values,
- the value of the corresponding test statistic,
- series of bootstrapped test statistics,
- bootstrapped critical values,
- p-value.

References

Kurozumi, Eiji, Anton Skrobotov, and Alexey Tsarev. "Time-Transformed Test for Bubbles under Non-Stationary Volatility." Journal of Financial Econometrics, April 23, 2022. https://doi.org/10.1093/jjfinec/nbac004.

SADF.test 41

SADF.test

Supremum ADF tests

Description

SADF. test is a test statistic equal to the minimum value of ADF. test for subsamples starting at t = 1

GSADF.test is a generalized version of SADF.test. Subsamples are allowed to start at any point between 1 and T(1-trim).

Usage

```
SADF.test(
   y,
   trim = 0.01 + 1.8/sqrt(length(y)),
   const = TRUE,
   add.p.value = TRUE
)

GSADF.test(
   y,
   trim = 0.01 + 1.8/sqrt(length(y)),
   const = TRUE,
   add.p.value = TRUE
)
```

Arguments

y The input time series of interest.

trim Trimming parameter to determine the lower and upper bounds.

const Whether the constant needs to be included.

add.p.value Whether the p-value is to be returned. This argument is needed to suppress

the calculation of p-values during the precalculation of tables needed for the

p-values estimating.

Value

An object of type sadf. It's a list of:

- y,
- trim,
- const,
- vector of t-values,
- the value of the corresponding test statistic,
- p-value if it was asked for.

References

Kurozumi, Eiji, Anton Skrobotov, and Alexey Tsarev. "Time-Transformed Test for Bubbles under Non-Stationary Volatility." Journal of Financial Econometrics, April 23, 2022. https://doi.org/10.1093/jjfinec/nbac004.

42 seasonal.dummies

 ${\sf sb.GSADF.test}$

Sign-based SADF test

Description

Sign-based SADF test

Usage

```
sb.GSADF.test(
   y,
   trim = 0.01 + 1.8/sqrt(length(y)),
   const = TRUE,
   alpha = 0.05,
   iter = 999,
   urs = TRUE,
   seed = round(10^4 * sd(y))
)
```

Arguments

У	A series of interest.
trim	Trimming parameter to determine the lower and upper bounds.
const	Whether the constant needs to be included.
alpha	Needed level of significance.
iter	Number of bootstrapping iterations.
urs	Use union of rejections strategy if TRUE.
seed	The seed parameter for the random number generator.

References

Harvey, David I., Stephen J. Leybourne, and Yang Zu. "Sign-Based Unit Root Tests for Explosive Financial Bubbles in the Presence of Deterministically Time-Varying Volatility." Econometric Theory 36, no. 1 (February 2020): 122–69. https://doi.org/10.1017/S0266466619000057.

seasonal.dummies

Generating monthly seasonal dummy variables

Description

Generating monthly seasonal dummy variables

Usage

```
seasonal.dummies(N)
```

Arguments

Ν

number of observations.

segments.GLS 43

Details

The function is not intended to be used directly so it's not exported.

Value

The matrix of values od seasonal dummies.

segments.GLS

Procedure to minimize the GLS-SSR for 1 break point

Description

Procedure to minimize the GLS-SSR for 1 break point

Usage

```
segments.GLS(
  y,
  const = FALSE,
  trend = FALSE,
  breaks = 1,
  first.break = NULL,
  last.break = NULL,
  trim = 0.15
)
```

Arguments

y Variable of interest.

const Whether there is a break in the constant. trend Whether there is a break in the trend.

breaks Number of breaks.

first.break First possible break point.
last.break Last possible break point.

trim Trim value to calculate first.break and last.break if not provided.

Details

The function is not intended to be used directly so it's not exported.

Value

The point of possible break.

References

Skrobotov, Anton. "On Trend Breaks and Initial Condition in Unit Root Testing." Journal of Time Series Econometrics 10, no. 1 (2018): 1–15. https://doi.org/10.1515/jtse-2016-0014.

segments.OLS.double

segments.OLS

Find m+1 optimal partitions

Description

Find m+1 optimal partitions

Usage

```
segments.OLS(y, x, m = 1, width = 2, SSR.data = NULL)
```

Arguments

y (Tx1)-vector of the dependent variable.

x (Txk)-vector of the explanatory stochastic regressors.

m Number of breaks.

width Minimum spacing between the breaks.

SSR.data Optional matrix of recursive SSR's.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of:

- · optimal SSR,
- the vector of break points.

References

Bai, Jushan, and Pierre Perron. "Computation and Analysis of Multiple Structural Change Models." Journal of Applied Econometrics 18, no. 1 (2003): 1–22. https://doi.org/10.1002/jae.659.

segments.OLS.double

Procedure to minimize the SSR for 2 break points

Description

Procedure to minimize the SSR for 2 break points

Usage

```
segments.OLS.double(y, model)
```

segments.OLS.single 45

Arguments

y (Tx1)-vector of time series

model A scalar equal to

• 1: for the AA (without trend) model,

• 2: for the AA (with trend) model,

• 3: for the BB model,

• 4: for the CC model,

• 5: for the AC-CA model.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of

• resid: (Tx1) vector of estimated OLS residuals,

• tb1: The first break point,

• tb2: The second break point.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "The KPSS Test with Two Structural Breaks." Spanish Economic Review 9, no. 2 (May 16, 2007): 105–27. https://doi.org/10.1007/s10108-006-9017-8.

segments.OLS.single

Procedure to minimize the SSR for 1 break point

Description

Procedure to minimize the SSR for 1 break point

Usage

```
segments.OLS.single(beg, end, first.break, last.break, len, SSR.data)
```

Arguments

beg Sample begin. end Sample end.

first.break First possible break point.
last.break Last possible break point.
len Total number of observations.

SSR. data The matrix of recursive SSR values.

46 SSR.matrix

Details

The function is not intended to be used directly so it's not exported.

Value

A list of:

- SSR: Optimal SSR value,
- break.point: The point of possible break.

References

Carrion-i-Silvestre, Josep Lluís, and Andreu Sansó. "Testing the Null of Cointegration with Structural Breaks." Oxford Bulletin of Economics and Statistics 68, no. 5 (October 2006): 623–46. https://doi.org/10.1111/j.1468-0084.2006.00180.x.

SSR.matrix

Pre-calculate matrix of recursive SSR values.

Description

Pre-calculate matrix of recursive SSR values.

Usage

```
SSR.matrix(y, x, width = 2)
```

Arguments

y Dependent variable.

x Explanatory variables.

width Minimum spacing between the breaks.

Details

The function is not intended to be used directly so it's not exported.

Value

The matrix of recursive SSR values.

SSR.recursive 47

SSR	recursive	

Calculate SSR recursively

Description

Calculate SSR recursively

Usage

```
SSR.recursive(y, x, beg, end, width = 2)
```

Arguments

y (Tx1)-vector of the dependent variable.

x (Txk)-vector of the explanatory stochastic regressors.

beg, end The start and the end of SSR calculating period.

width Minimum spacing between the breaks.

Details

The function is not intended to be used directly so it's not exported.

Value

The vector of calculated recursive SSR.

References

Brown, R. L., J. Durbin, and J. M. Evans. "Techniques for Testing the Constancy of Regression Relationships over Time." Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149–92.

STADF.test

Supremum ADF tests with time transformation

Description

See SADF.test. Tests with time transformation are the modified versions of the ordinary SADF and GSADF tests using Nadaraya-Watson residuals and reindexing procedure by Cavaliere-Taylor (2008).

48 STADF.test

Usage

```
STADF.test(
  у,
  trim = 0.01 + 1.8/sqrt(length(y)),
  const = FALSE,
  omega.est = TRUE,
  truncated = TRUE,
  is.reindex = TRUE,
  ksi.input = "auto",
  hc = 1,
  pc = 1,
  add.p.value = TRUE
GSTADF.test(
  у,
  trim = 0.01 + 1.8/sqrt(length(y)),
  const = FALSE,
  omega.est = TRUE,
  truncated = TRUE,
  is.reindex = TRUE,
  ksi.input = "auto",
  hc = 1,
  pc = 1,
  add.p.value = TRUE
```

Arguments

An input time series of interest. trim Trimming parameter to determine the lower and upper bounds. Whether the constant needs to be included. const Whether the variance of Nadaraya-Watson residuals should be used. omega.est truncated Whether the truncation of Nadaraya-Watson residuals is needed. is.reindex Whether the Cavaliere and Taylor (2008) time transformation is needed. ksi.input The value of the truncation parameter. Can be either auto or the explicit numerical value. In the former case the numeric value is estimated. The scaling parameter for Nadaraya-Watson bandwidth. hc The scaling parameter for the estimated truncation parameter value. рс add.p.value Whether the p-value is to be returned. This argument is needed to suppress the calculation of p-values during the precalculation of tables needed for the

Value

An object of type sadf. It's a list of:

p-values estimating.

- y,
- N: Number of observations,

supBZ.statistic 49

- trim,
- · const,
- omega.est,
- truncated,
- is.reindex,
- new.index: the vector of new indices,
- ksi.input,
- hc,
- · h.est,
- u.hat,
- pc,
- w.sq,
- t.values: vector of t-values,
- the value of the corresponding test statistic,
- u.hat.truncated: truncated residuals if truncation was asked for,
- ksi, sigma: estimated values of the truncation parameter and resulting s.e. if ksi.input equals auto,
- eta.hat: the values of reindexing function if reindexing was asked for,
- p-value if it was asked for.

References

Cavaliere, Giuseppe, and A. M. Robert Taylor. "Time-Transformed Unit Root Tests for Models with Non-Stationary Volatility." Journal of Time Series Analysis 29, no. 2 (March 2008): 300–330. https://doi.org/10.1111/j.1467-9892.2007.00557.x.

Kurozumi, Eiji, Anton Skrobotov, and Alexey Tsarev. "Time-Transformed Test for Bubbles under Non-Stationary Volatility." Journal of Financial Econometrics, April 23, 2022. https://doi.org/10.1093/jjfinec/nbac004.

supBZ.statistic

Calculate supBZ statistic

Description

Calculate supBZ statistic

Usage

```
supBZ.statistic(
  y,
  trim = 0.01 + 1.8/sqrt(length(y)),
  sigma.sq = NULL,
  generalized = FALSE
)
```

50 supSBADF.statistic

Arguments

y The series of interest.

trim Trimming parameter to determine the lower and upper bounds.

sigma.sq Local non-parametric estimates of variance. If NULL they will be estimated via

Nadaraya-Watson procedure.

generalized Whether to calculate generalized statistic value.

Details

The function is not intended to be used directly so it's not exported.

Value

A list of:

- y,
- trim,
- sigma.sq,
- BZ. values: a series of BZ-statistic,
- supBZ.value: the maximum of supBZ.values,
- h.est: the estimated value of bandwidth if sigma.sq is NULL.

References

Harvey, David I., Stephen J. Leybourne, and Yang Zu. "Testing Explosive Bubbles with Time-Varying Volatility." Econometric Reviews 38, no. 10 (November 26, 2019): 1131–51. https://doi.org/10.1080/07474938.

supSBADF.statistic

Calculate superior sign-based SADF statistic.

Description

Calculate superior sign-based SADF statistic.

Usage

```
supSBADF.statistic(y, trim = 0.01 + 1.8/sqrt(length(y)), generalized = FALSE)
```

Arguments

y The series of interest.

trim Trimming parameter to determine the lower and upper bounds.

generalized Whether to calculate generalized statistic value.

Details

The function is not intended to be used directly so it's not exported.

weighted.SADF.test 51

Value

A list of

- y,
- trim,
- C. t: the cumulative sum of "signs" (1 or -1) of the first difference of y,
- SBADF. values: series of sign-based ADF statistics,
- supSBADF.value: the maximum of SBADF.values.

References

Harvey, David I., Stephen J. Leybourne, and Yang Zu. "Sign-Based Unit Root Tests for Explosive Financial Bubbles in the Presence of Deterministically Time-Varying Volatility." Econometric Theory 36, no. 1 (February 2020): 122–69. https://doi.org/10.1017/S0266466619000057.

weighted.SADF.test

Weighted supremum ADF test

Description

Weighted supremum ADF test

Usage

```
weighted.SADF.test(
  у,
  trim = 0.01 + 1.8/sqrt(length(y)),
  const = TRUE,
  alpha = 0.05,
  iter = 4 * 200,
  urs = TRUE,
  seed = round(10^4 * sd(y))
)
weighted.GSADF.test(
  trim = 0.01 + 1.8/sqrt(length(y)),
  const = TRUE,
  alpha = 0.05,
  iter = 4 * 200,
  urs = TRUE,
  seed = round(10^4 * sd(y))
)
```

Arguments

y The input time series of interest.

trim Trimming parameter to determine the lower and upper bounds.

const Whether the constant needs to be included.

52 weighted.SADF.test

alpha The significance level of interest.

iter The number of iterations.

urs Use union of rejections strategy.

seed The seed parameter for the random number generator.

Value

An object of type sadf. It's a list of:

- y,
- trim,
- const,
- alpha,
- iter,
- urs,
- · seed.
- sigma.sq: the estimated variance,
- BZ.values: a series of BZ-statistic,
- supBZ.value: the maximum of supBZ.values,
- supBZ.bootstsrap.values: bootstrapped supremum BZ values,
- supBZ.cr.value: supremum BZ α critical value,
- p.value,
- is.explosive: 1 if supBZ.value is greater than supBZ.cr.value.

if urs is TRUE the following items are also included:

- vector of t-values,
- the value of the SADF test statistic,
- SADF. bootstrap. values: bootstrapped SADF values,
- U. value: union test statistic value,
- U.bootstrap.values: bootstrapped series of U.value,
- U.cr.value: critical value of U.value.

References

Harvey, David I., Stephen J. Leybourne, and Yang Zu. "Testing Explosive Bubbles with Time-Varying Volatility." Econometric Reviews 38, no. 10 (November 26, 2019): 1131–51. https://doi.org/10.1080/07474938.

Kurozumi, Eiji, Anton Skrobotov, and Alexey Tsarev. "Time-Transformed Test for Bubbles under Non-Stationary Volatility." Journal of Financial Econometrics, April 23, 2022. https://doi.org/10.1093/jjfinec/nbac004.

Index

105.2	W7
ACF, 3	MZ.statistic, 30
ADF. test, 3, 41	NW.estimation, 31
ADF.test.S, 5	•
AR, 6	NW.kernel, 32
	NW. 100cv, 32
coint.test.GH, 7	NW.volatility, 33
CPST.rescale, 8	01.0.24
critical.values.KPSS.1p,9	OLS, 34
critical.values.KPSS.2p,9	n voluce CADE 24
	p.values.SADF, 34
determinants.KPSS.1.break, 10	print, 35
determinants.KPSS.2.breaks, 11	print.cointGH (print.sadf), 35
determinants.KPSS.N.breaks, 11	<pre>print.mdfCHLT(print.sadf), 35</pre>
DOLS, 12	<pre>print.mdfHLT(print.sadf), 35</pre>
DOLS.N.breaks, 13	<pre>print.mdfHLTN(print.sadf), 35</pre>
DOLS.vars.N.breaks, 14	print.sadf,35
	PY.sequential, 35
eos.break.test, 15	PY.single, 36
GLS, 16	recursive.detrend,37
GLS.bt, 16	reindex, 38
GSADF.bootstrap.test	robust.tests.multiple, 38
(SADF.bootstrap.test), 39	robust.tests.single,39
GSADF.test, 39	
GSADF.test(SADF.test), 41	SADF.bootstrap.test,39
GSTADF.test (STADF.test), 47	SADF.test, <i>39</i> , 41, <i>47</i>
, , , , , , , , , , , , , , , , , , , ,	sb.GSADF.test,42
info.criterion, 17	seasonal.dummies,42
	segments.GLS, 43
KP, 18, <i>38</i>	segments.OLS, 44
KPSS, 18	segments.OLS.double,44
KPSS.1.break, 9, 10, 19	segments.OLS.single,45
KPSS.1.break.unknown, 20	SSR.matrix, 46
KPSS.2.breaks, 9, 11, 21	SSR.recursive, 47
KPSS.2.breaks.unknown, 22	STADF.test, 47
KPSS.HLT, 23	supBZ.statistic, 49
KPSS.N.breaks, <i>11</i> , 23	supSBADF.statistic, 50
KPSS.N.breaks.bootstrap, 25	34p3b/(b) 1.3t4t13t1c, 30
11 33.11.bi caks.bootsti ap, 23	weighted.GSADF.test
lagn, 26	(weighted.SADF.test), 51
1r.var, 27	weighted.SADF.test, 51
1	
MDF.CHLT, 28	
MDF.multiple, 29, 38	
MDF.single, 30, 39	