

- [ccs,] Creative commons sharealike license. https://creativecommons.org/licenses/by-sa/4.0/legalcode. Accessed on 5th Feb 2019.
- [Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–283.
- [Abts et al., 2003] Abts, D., Scott, S., and Lilja, D. J. (2003). So many states, so little time: Verifying memory coherence in the cray x1. In *Parallel and Distributed Processing Symposium*, 2003. Proceedings. International, pages 10–pp. IEEE.
- [Advanced Micro Devices, 2017] Advanced Micro Devices (2017). Software Optimization Guide for AMD Family 17h Processors.
- [Adve, 1993] Adve, S. V. (1993). Designing memory consistency models for shared-memory multiprocessors. PhD thesis, University of Wisconsin-Madison.
- [Adve and Gharachorloo, 1996] Adve, S. V. and Gharachorloo, K. (1996). Shared memory consistency models: A tutorial. *Computer*, 29(12):66–76.
- [Agarwal et al., 2009] Agarwal, N., Krishna, T., Peh, L.-S., and Jha, N. K. (2009). Garnet: A detailed on-chip network model inside a full-system simulator. In 2009 IEEE international symposium on performance analysis of systems and software, pages 33–42. IEEE.
- [Aho, 2003] Aho, A. V. (2003). Compilers: principles, techniques and tools (for Anna University), 2/e. Pearson Education India.
- [Aho and Ullman, 1977] Aho, A. V. and Ullman, J. D. (1977). Principles of Compiler Design (Addison-Wesley series in computer science and information processing). Addison-Wesley Longman Publishing Co., Inc.
- [Akinaga and Shima, 2012] Akinaga, H. and Shima, H. (2012). Reram technology; challenges and prospects. *IEICE Electronics Express*, 9(8):795–807.

[Akkary et al., 2003] Akkary, H., Rajwar, R., and Srinivasan, S. T. (2003). Checkpoint processing and recovery: Towards scalable large instruction window processors. In *Microarchitecture*, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on, pages 423–434. IEEE.

- [Albericio et al., 2016] Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N. E., and Moshovos, A. (2016). Chylutin: ineffectual-neuron-free deep neural network computing. In *Proceedings of the 43rd International Symposium on Computer Architecture*, pages 1–13.
- [Alglave, 2012] Alglave, J. (2012). A formal hierarchy of weak memory models. Formal Methods in System Design, 41(2):178–210.
- [Alpern et al., 2005] Alpern, B., Augart, S., Blackburn, S. M., Butrico, M., Cocchi, A., Cheng, P., Dolby, J., Fink, S., Grove, D., Hind, M., et al. (2005). The jikes research virtual machine project: building an open-source research community. *IBM Systems Journal*, 44(2):399–417.
- [Alpert and Avnon, 1993] Alpert, D. and Avnon, D. (1993). Architecture of the pentium microprocessor. *IEEE micro*, 13(3):11–21.
- [Anis and Nicolici, 2007] Anis, E. and Nicolici, N. (2007). On using lossless compression of debug data in embedded logic analysis. In 2007 IEEE International Test Conference, pages 1–10. IEEE.
- [Annavaram et al., 2003] Annavaram, M., Patel, J. M., and Davidson, E. S. (2003). Call graph prefetching for database applications. ACM Transactions on Computer Systems (TOCS), 21(4):412–444.
- [Apalkov et al., 2013] Apalkov, D., Khvalkovskiy, A., Watts, S., Nikitin, V., Tang, X., Lottis, D., Moon, K., Luo, X., Chen, E., Ong, A., Driskill-Smith, A., and Krounbi, M. (2013). Spin-transfer torque magnetic random access memory (stt-mram). *J. Emerg. Technol. Comput. Syst.*, 9(2):13:1–13:35.
- [Arora et al., 2015] Arora, A., Harne, M., Sultan, H., Bagaria, A., and Sarangi, S. R. (2015). Fp-nuca: A fast noc layer for implementing large nuca caches. *IEEE Transactions on Parallel and Distributed Systems*, 26(9):2465–2478.
- [Arvind and Maessen, 2006] Arvind, A. and Maessen, J. (2006). Memory model= instruction reordering+ store atomicity. In *Proceedings. 33rd International Symposium on Computer Architecture*, pages 29–40.
- [Austin, 1999] Austin, T. M. (1999). Diva: A reliable substrate for deep submicron microarchitecture design. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, pages 196–207. IEEE.
- [Bakhoda et al., 2009] Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, T. M. (2009). Analyzing cuda workloads using a detailed gpu simulator. In *Performance Analysis of Systems and Software*, 2009. ISPASS 2009. IEEE International Symposium on, pages 163–174. IEEE.
- [Balasubramonian et al., 2011] Balasubramonian, R., Jouppi, N. P., and Muralimanohar, N. (2011). Multi-core cache hierarchies. Synthesis Lectures on Computer Architecture, 6(3):1–153.
- [Bashir et al., 2019] Bashir, J., Peter, E., and Sarangi, S. R. (2019). A survey of on-chip optical interconnects. ACM Comput. Surv., 51(6):115:1–115:34.
- [Baumann, 2005] Baumann, R. C. (2005). Radiation-induced soft errors in advanced semiconductor technologies. *IEEE Transactions on Device and materials reliability*, 5(3):305–316.
- [Bekerman et al., 2000] Bekerman, M., Yoaz, A., Gabbay, F., Jourdan, S., Kalaev, M., and Ronen, R. (2000). Early load address resolution via register tracking. In *Proceedings of the 27th Annual International Symposium on Computer Architecture*, pages 306–315.

[Bellard, 2005] Bellard, F. (2005). Qemu, a fast and portable dynamic translator. In *USENIX Annual Technical Conference*, FREENIX Track, volume 41, page 46.

- [Benini et al., 1999] Benini, L., Macii, A., Macii, E., and Poncino, M. (1999). Selective instruction compression for memory energy reduction in embedded systems. In *Proceedings of the 1999 international symposium on Low power electronics and design*, pages 206–211. ACM.
- [Bergstra et al., 2010] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: A cpu and gpu math compiler in python. In *Proc. 9th Python in Science Conf.*, volume 1.
- [Bernick et al., 2005] Bernick, D., Bruckert, B., Vigna, P. D., Garcia, D., Jardine, R., Klecka, J., and Smullen, J. (2005). Nonstop advanced architecture. In 2005 International Conference on Dependable Systems and Networks (DSN'05), pages 12–21. IEEE.
- [Bienia et al., 2008] Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The parsec benchmark suite: Characterization and architectural implications. In *Proceedings of the 17th international conference on Parallel architectures and compilation techniques*, pages 72–81. ACM.
- [Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
- [Bjerregaard and Mahadevan, 2006] Bjerregaard, T. and Mahadevan, S. (2006). A survey of research and practices of network-on-chip. *ACM Computing Surveys (CSUR)*, 38(1):1.
- [Black, 1969] Black, J. R. (1969). Electromigration—a brief survey and some recent results. *IEEE Transactions on Electron Devices*, 16(4):338–347.
- [Blythe, 2008] Blythe, D. (2008). Rise of the graphics processor. Proceedings of the IEEE, 96(5):761–778.
- [Bodin and Seznec, 1997] Bodin, F. and Seznec, A. (1997). Skewed associativity improves program performance and enhances predictability. *IEEE transactions on Computers*, 46(5):530–544.
- [Bogdanov et al., 2007] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C. (2007). Present: An ultra-lightweight block cipher. In *International Workshop on Cryptographic Hardware and Embedded Systems*, pages 450–466. Springer.
- [Brooks et al., 2000] Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a framework for architectural-level power analysis and optimizations. In *Proceedings of the 27th annual International Symposium on Computer Architecture*, pages 83–94.
- [Brown et al., 2001] Brown, M. D., Stark, J., and Patt, Y. N. (2001). Select-free instruction scheduling logic. In *Microarchitecture*, 2001. MICRO-34. Proceedings. 34th ACM/IEEE International Symposium on, pages 204–213. IEEE.
- [Budde et al., 1990] Budde, D., Riches, R., Imel, M. T., Myers, G., and Lai, K. (1990). Register scorboarding on a microprocessor chip. US Patent 4,891,753.
- [Calder and Reinman, 2000] Calder, B. and Reinman, G. (2000). A comparative survey of load speculation architectures. *Journal of Instruction-Level Parallelism*, 2:1–39.
- [Calder et al., 1999] Calder, B., Reinman, G., and Tullsen, D. M. (1999). Selective value prediction. In *Proceedings of the 26th annual international symposium on Computer architecture*, pages 64–74.
- [Callahan et al., 1991] Callahan, D., Kennedy, K., and Porterfield, A. (1991). Software prefetching. In Patterson, D. A. and Rau, B., editors, ASPLOS-IV Proceedings - Forth International Conference on Architectural Support for Programming Languages and Operating Systems, Santa Clara, California, USA, April 8-11, 1991, pages 40-52. ACM Press.

[Champagne and Lee, 2010] Champagne, D. and Lee, R. B. (2010). Scalable architectural support for trusted software. In *HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture*, pages 1–12. IEEE.

- [Chandran et al., 2017] Chandran, S., Panda, P. R., Sarangi, S. R., Bhattacharyya, A., Chauhan, D., and Kumar, S. (2017). Managing trace summaries to minimize stalls during postsilicon validation. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 25(6):1881–1894.
- [Chen, 2016] Chen, A. (2016). A review of emerging non-volatile memory (nvm) technologies and applications. *Solid-State Electronics*, 125:25–38.
- [Chen et al., 1997] Chen, I., Bird, P., and Mudge, T. (1997). The impact of instruction compression on i-cache performance. Technical Report CSE-TR-330-97, Computer Science and Engineering, University of Michigan.
- [Chen et al., 2014] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. (2014). Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In *Proceedings* of the 19th international conference on Architectural support for programming languages and operating systems, pages 269–284.
- [Chen et al., 2012] Chen, Y., Chen, T., Li, L., Li, L., Yang, L., Su, M., and Hu, W. (2012). Ldet: Determinizing asynchronous transfer for postsilicon debugging. *IEEE Transactions on Computers*, 62(9):1732–1744.
- [Chen et al., 2016] Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016). Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. *IEEE journal of solid-state circuits*, 52(1):127–138.
- [Choi et al., 2013] Choi, J. W., Bedard, D., Fowler, R., and Vuduc, R. (2013). A roofline model of energy. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pages 661–672. IEEE.
- [Chrysos and Emer, 1998] Chrysos, G. Z. and Emer, J. S. (1998). Memory dependence prediction using store sets. In *Proceedings of the 25th annual international symposium on Computer architecture*, pages 142–153.
- [Clos, 1953] Clos, C. (1953). A study of non-blocking switching networks. *Bell System Technical Journal*, 32(2):406–424.
- [Coffin Jr, 1954] Coffin Jr, L. F. (1954). A study of the effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineers, New York, 76:931–950.
- [Constantinides et al., 2008] Constantinides, K., Mutlu, O., and Austin, T. (2008). Online design bug detection: Rtl analysis, flexible mechanisms, and evaluation. In 2008 41st IEEE/ACM International Symposium on Microarchitecture, pages 282–293. IEEE.
- [Cooperstein, 2015] Cooperstein, B. (2015). Advanced linear algebra. CRC Press.
- [Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. MIT Press, third edition.
- [Corporation, 2014a] Corporation, N. (2014a). Nvidia geforce gtx 1080. White paper, NVIDIA Corporation.
- [Corporation, 2014b] Corporation, N. (2014b). Nvidia's next generation cuda compute architecture: Kepler GK110/210. White paper, NVIDIA Corporation.

[Coskun et al., 2008] Coskun, A. K., Rosing, T. ., Whisnant, K. A., and Gross, K. C. (2008). Static and dynamic temperature-aware scheduling for multiprocessor socs. *IEEE Trans. VLSI Syst.*, 16(9):1127–1140.

- [Costan and Devadas, 2016] Costan, V. and Devadas, S. (2016). Intel sgx explained. *IACR Cryptology* ePrint Archive, 2016(086):1–118.
- [Cover and Thomas, 2013] Cover, T. M. and Thomas, J. A. (2013). Elements of Information Theory. Wiley.
- [Culler et al., 1998] Culler, D., Singh, J. P., and Gupta, A. (1998). Parallel Computer Architecture: A Hardware/Software Approach. The Morgan Kaufmann series in Computer Architecture Design. Morgan Kaufmann.
- [Dally and Towles, 2004] Dally, W. J. and Towles, B. P. (2004). Principles and practices of interconnection networks. Elsevier.
- [Dan and Towsley, 1990] Dan, A. and Towsley, D. (1990). An approximate analysis of the lru and fifo buffer replacement schemes. In *Proceedings of the 1990 ACM SIGMETRICS conference on Measurement and modeling of computer systems*, pages 143–152.
- [Danilak, 2017] Danilak, R. (2017). Why energy is a big and rapidly growing problem for data centers. https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers. Accessed on May 15th 2019.
- [David et al., 2013] David, T., Guerraoui, R., and Trigonakis, V. (2013). Everything you always wanted to know about synchronization but were afraid to ask. In *Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles*, pages 33–48. ACM.
- [Diaconis et al., 1983] Diaconis, P., Graham, R., and Kantor, W. M. (1983). The mathematics of perfect shuffles. *Advances in applied mathematics*, 4(2):175–196.
- [Dice et al., 2006] Dice, D., Shalev, O., and Shavit, N. (2006). Transactional locking ii. In *International Symposium on Distributed Computing*, pages 194–208. Springer.
- [Eden and Mudge, 1998] Eden, A. N. and Mudge, T. (1998). The yags branch prediction scheme. In *Proceedings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture*, pages 69–77.
- [Eisenbarth et al., 2007] Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel, L. (2007). A survey of lightweight-cryptography implementations. *IEEE Design & Test of Computers*, 24(6):522–533.
- [Elmore, 1948] Elmore, W. C. (1948). The transient response of damped linear networks with particular regard to wideband amplifiers. *Journal of applied physics*, 19(1):55–63.
- [Ergin et al., 2004] Ergin, O., Balkan, D., Ponomarev, D., and Ghose, K. (2004). Increasing processor performance through early register release. In *Computer Design: VLSI in Computers and Processors*, 2004. ICCD 2004. Proceedings. IEEE International Conference on, pages 480–487. IEEE.
- [Ersoy, 1985] Ersoy, O. (1985). Semisystolic array implementation of circular, skew circular, and linear convolutions. *IEEE transactions on computers*, 34(2):190–196.
- [Eyre and Bier, 2000] Eyre, J. and Bier, J. (2000). The evolution of dsp processors. *IEEE Signal Processing Magazine*, 17(2):43–51.

[Farabet et al., 2011] Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., and LeCun, Y. (2011). Neuflow: A runtime reconfigurable dataflow processor for vision. In *Cvpr 2011 Workshops*, pages 109–116. IEEE.

- [Farber, 2011] Farber, R. (2011). CUDA Application Design and Development. Morgan Kaufmann.
- [Farooqui et al., 2011] Farooqui, N., Kerr, A., Diamos, G., Yalamanchili, S., and Schwan, K. (2011). A framework for dynamically instrumenting gpu compute applications within gpu ocelot. In *Proceedings* of the Fourth Workshop on General Purpose Processing on Graphics Processing Units, pages 1–9.
- [Federovsky et al., 1998] Federovsky, E., Feder, M., and Weiss, S. (1998). Branch prediction based on universal data compression algorithms. In *Proceedings. 25th Annual International Symposium on Computer Architecture*, pages 62–72. IEEE.
- [Feng et al., 2010] Feng, P., Chao, C., Wang, Z.-s., Yang, Y.-c., Jing, Y., and Fei, Z. (2010). Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. *Progress in natural science: Materials international*, 20:1–15.
- [Ferdman et al., 2011] Ferdman, M., Kaynak, C., and Falsafi, B. (2011). Proactive instruction fetch. In *Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture*, pages 152–162. ACM.
- [Fujitsu Semiconductor Limited, 2010] Fujitsu Semiconductor Limited (2010). Fram guide book. https://www.fujitsu.com/downloads/MICRO/fme/fram/fram-guide-book.pdf. Accessed on 20th November, 2019.
- [Gabbay and Mendelson, 1997] Gabbay, F. and Mendelson, A. (1997). Can program profiling support value prediction? In *Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture*, pages 270–280. IEEE Computer Society.
- [Gabis and Koudil, 2016] Gabis, A. B. and Koudil, M. (2016). Noc routing protocols—objective-based classification. *Journal of Systems Architecture*, 66:14–32.
- [Gaur et al., 2011] Gaur, J., Chaudhuri, M., and Subramoney, S. (2011). Bypass and insertion algorithms for exclusive last-level caches. In *Proceedings of the 38th annual international symposium on Computer architecture*, pages 81–92.
- [Geer, 2005] Geer, D. (2005). Taking the graphics processor beyond graphics. Computer, 38(9):14–16.
- [Gharachorloo, 1995] Gharachorloo, K. (1995). Memory consistency models for shared-memory multiprocessors, phd thesis. *Computer System Laboratory, Stanford Univ.*
- [Glendinning and Helbert, 2012] Glendinning, W. B. and Helbert, J. N. (2012). Handbook of VLSI microlithography: principles, technology and applications. William Andrew.
- [Goldreich and Ostrovsky, 1996] Goldreich, O. and Ostrovsky, R. (1996). Software protection and simulation on oblivious rams. *Journal of the ACM (JACM)*, 43(3):431–473.
- [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
- [Gropp et al., 1999] Gropp, W., Thakur, R., and Lusk, E. (1999). Using MPI-2: Advanced features of the message passing interface. MIT press.
- [GTX, 2014] GTX, N. G. (2014). 980: Featuring maxwell, the most advanced gpu ever made. White paper, NVIDIA Corporation.

[Guerraoui and Kapalka, 2008] Guerraoui, R. and Kapalka, M. (2008). On the correctness of transactional memory. In *Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming*, pages 175–184. ACM.

- [Guerraoui and Kapałka, 2010] Guerraoui, R. and Kapałka, M. (2010). Principles of transactional memory. Synthesis Lectures on Distributed Computing, 1(1):1–193.
- [Gulli and Pal, 2017] Gulli, A. and Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.
- [Guo and Solihin, 2006] Guo, F. and Solihin, Y. (2006). An analytical model for cache replacement policy performance. ACM SIGMETRICS Performance Evaluation Review, 34(1):228–239.
- [Gutsche et al., 2005] Gutsche, M., Avellan, A., Erben, E., Hecht, T., Hirt, G., Heitmann, J., Igel-Holtzendorff, T., Jakschik, S., Kapteyn, C., Krautheim, G., Kudelka, S., Link, A., Lützen, J., Sänger, A., Schroeder, U., Seidl, H., Stadtmüller, M., and Wiebauer, W. (2005). DRAM Capacitor Scaling. Technical report, Infineon.
- [Gwennap, 2019a] Gwennap, L. (2019a). Snapdragon 865 dis-integrates. Microprocessor Report.
- [Gwennap, 2019b] Gwennap, L. (2019b). Zen 2 boosts ryzen performance. Microprocessor Report.
- [Hachman, 2019] Hachman, M. (2019). Inside the snapdragon 865: Qualcomm reveals the features you'll find in 2020's best android phones. https://www.pcworld.com/article/3482244/inside-the-snapdragon-865-qualcomm-android.html. Accessed on 10th August, 2020.
- [Halfhill, 2008] Halfhill, T. R. (2008). Intel's tiny atom. Microprocessor Report, 22(4):1.
- [Halfhill, 2019] Halfhill, T. R. (2019). Intel's tremont: A bigger little core. Microprocessor Report.
- [Harris et al., 2010] Harris, T., Larus, J., and Rajwar, R. (2010). Transactional memory. Synthesis Lectures on Computer Architecture, 5(1):1–263.
- [Harris et al., 2006] Harris, T., Plesko, M., Shinnar, A., and Tarditi, D. (2006). Optimizing memory transactions. In *Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006*, pages 14–25.
- [Hazucha and Svensson, 2000] Hazucha, P. and Svensson, C. (2000). Impact of cmost echnology scaling on the atmospheric neutron soft error rate. *IEEE Transactions on Nuclear science*, 47(6):2586–2594.
- [Helkala et al., 2014] Helkala, J., Viitanen, T., Kultala, H., Jääskeläinen, P., Takala, J., Zetterman, T., and Berg, H. (2014). Variable length instruction compression on transport triggered architectures. In Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014 International Conference on, pages 149–155. IEEE.
- [Henning, 2006] Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer Architecture News, 34(4):1–17.
- [Herlihy and Shavit, 2012] Herlihy, M. and Shavit, N. (2012). The Art of Multiprocessor Programming. Elsevier.
- [Hinton et al., 2001] Hinton, G., Sager, D., Upton, M., Boggs, D., et al. (2001). The microarchitecture of the pentium® 4 processor. In *Intel Technology Journal*.
- [Hong and Kim, 2009] Hong, S. and Kim, H. (2009). An analytical model for a gpu architecture with memory-level and thread-level parallelism awareness. In *Proceedings of the 36th annual international symposium on Computer architecture*, pages 152–163.

[Horowitz, 1983] Horowitz, M. A. (1983). Timing models for MOS circuits. PhD thesis, Stanford University.

- [Howie, 2007] Howie, J. M. (2007). Fields and Galois theory. Springer Science & Business Media.
- [Huang et al., 2006] Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., and Stan, M. R. (2006). Hotspot: A compact thermal modeling methodology for early-stage vlsi design. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 14(5):501–513.
- [Hung et al., 2006] Hung, W.-L., Link, G. M., Xie, Y., Vijaykrishnan, N., and Irwin, M. J. (2006). Interconnect and thermal-aware floorplanning for 3D microprocessors. In *International Symposium on Quality Electronic Design (ISQED)*. IEEE.
- [Hwu and Patt, 1987] Hwu, W.-M. W. and Patt, Y. N. (1987). Checkpoint repair for high-performance out-of-order execution machines. *Computers, IEEE Transactions on*, 100(12):1496–1514.
- [Intel, 2004] Intel (2004). Enhanced speedstep® technology for the intel® pentium® m processor, white paper, march 2004. http://download.intel.com/design/network/papers/30117401.pdf. Accessed on 10th October 2019.
- [Jacob et al., 2007] Jacob, B., Ng, S., and Wang, D. (2007). Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann.
- [JEDEC Solid State Technology Association, 2003] JEDEC Solid State Technology Association (2003). Double data rate SDRAM specification. Standard JESD79C, JEDEC.
- [JEDEC Solid State Technology Association, 2008a] JEDEC Solid State Technology Association (2008a). DDR2 SDRAM specification. Standard JESD79-2E, JEDEC.
- [JEDEC Solid State Technology Association, 2008b] JEDEC Solid State Technology Association (2008b). DDR3 SDRAM. Standard JESD79-3C, JEDEC.
- [JEDEC Solid State Technology Association, 2020] JEDEC Solid State Technology Association (2020). DDR4 SDRAM. Standard JESD79-4C, JEDEC.
- [Jerger et al., 2017] Jerger, N. E., Krishna, T., and Peh, L.-S. (2017). On-chip networks. Synthesis Lectures on Computer Architecture, 12(3):1–210.
- [Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In *Proceedings of the 22nd ACM international conference on Multimedia*, pages 675–678.
- [Jiménez, 2003] Jiménez, D. A. (2003). Fast path-based neural branch prediction. In *Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture*, page 243. IEEE Computer Society.
- [Jiménez, 2011a] Jiménez, D. A. (2011a). Oh-snap: Optimized hybrid scaled neural analog predictor. Proceedings of the 3rd Championship on Branch Prediction.
- [Jiménez, 2011b] Jiménez, D. A. (2011b). An optimized scaled neural branch predictor. In Computer Design (ICCD), 2011 IEEE 29th International Conference on, pages 113–118. IEEE.
- [Jouppi et al., 2017] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis of a tensor processing unit. In *Proceedings of the 44th Annual International Symposium on Computer Architecture*, pages 1–12.

[Kaeli et al., 2015] Kaeli, D. R., Mistry, P., Schaa, D., and Zhang, D. P. (2015). Heterogeneous computing with OpenCL 2.0. Morgan Kaufmann.

- [Kalayappan and Sarangi, 2013] Kalayappan, R. and Sarangi, S. R. (2013). A survey of checker architectures. ACM Computing Surveys (CSUR), 45(4):1–34.
- [Kallurkar and Sarangi, 2017] Kallurkar, P. and Sarangi, S. R. (2017). Schedtask: a hardware-assisted task scheduler. In *Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture*, pages 612–624. ACM.
- [Kanter, 2019] Kanter, D. (2019). Intel's sunny cove sits on an icy lake. Microprocessor Report.
- [Karkar et al., 2016] Karkar, A., Mak, T., Tong, K.-F., and Yakovlev, A. (2016). A survey of emerging interconnects for on-chip efficient multicast and broadcast in many-cores. *IEEE Circuits and Systems Magazine*, 16(1):58–72.
- [Kawahara et al., 2012] Kawahara, T., Ito, K., Takemura, R., and Ohno, H. (2012). Spin-transfer torque ram technology: Review and prospect. *Microelectronics Reliability*, 52(4):613–627.
- [Kaxiras and Martonosi, 2008] Kaxiras, S. and Martonosi, M. (2008). Computer architecture techniques for power-efficiency. Synthesis Lectures on Computer Architecture, 3(1):1–207.
- [Keleher et al., 1994] Keleher, P., Cox, A. L., Dwarkadas, S., and Zwaenepoel, W. (1994). Treadmarks: Distributed shared memory on standard workstations and operating systems. In *USENIX Winter*, volume 1994.
- [Keltcher et al., 2003] Keltcher, C. N., McGrath, K. J., Ahmed, A., and Conway, P. (2003). The amd opteron processor for multiprocessor servers. *Micro*, *IEEE*, 23(2):66–76.
- [Khvalkovskiy et al., 2013] Khvalkovskiy, A., Apalkov, D., Watts, S., Chepulskii, R., Beach, R., Ong, A., Tang, X., Driskill-Smith, A., Butler, W., Visscher, P., et al. (2013). Basic principles of stt-mram cell operation in memory arrays. *Journal of Physics D: Applied Physics*, 46(7):074001.
- [Kim et al., 2003] Kim, C., Burger, D., and Keckler, S. W. (2003). Nonuniform cache architectures for wire-delay dominated on-chip caches. *IEEE Micro*, 23(6):99–107.
- [Kim and Lipasti, 2004] Kim, I. and Lipasti, M. H. (2004). Understanding scheduling replay schemes. In Proceedings of the 10th International Symposium on High Performance Computer Architecture.
- [Kim et al., 2007] Kim, J., Dally, W. J., and Abts, D. (2007). Flattened butterfly: a cost-efficient topology for high-radix networks. In *Proceedings of the 34th annual international symposium on Computer architecture*, pages 126–137.
- [Kim et al., 2004] Kim, N. S., Flautner, K., Blaauw, D., and Mudge, T. (2004). Circuit and microarchitectural techniques for reducing cache leakage power. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 12(2):167–184.
- [Klaiber et al., 2000] Klaiber, A. et al. (2000). The technology behind crusoe processors. *Transmeta Technical Brief*.
- [Kocher et al., 2019] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., et al. (2019). Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE.
- [Kolli et al., 2013] Kolli, A., Saidi, A., and Wenisch, T. F. (2013). Rdip: return-address-stack directed instruction prefetching. In *Microarchitecture (MICRO)*, 2013 46th Annual IEEE/ACM International Symposium on, pages 260–271. IEEE.

[Kong et al., 2012] Kong, J., Chung, S. W., and Skadron, K. (2012). Recent thermal management techniques for microprocessors. *ACM Computing Surveys (CSUR)*, 44(3):1–42.

- [Krick et al., 2000] Krick, R. F., Hinton, G. J., Upton, M. D., Sager, D. J., and Lee, C. W. (2000). Trace based instruction caching. US Patent 6,018,786.
- [Krishna et al., 2008] Krishna, T., Kumar, A., Chiang, P., Erez, M., and Peh, L.-S. (2008). Noc with near-ideal express virtual channels using global-line communication. In 2008 16th IEEE Symposium on High Performance Interconnects, pages 11–20. IEEE.
- [Kroft, 1981] Kroft, D. (1981). Lockup-free instruction fetch/prefetch cache organization. In *Proceedings* of the 8th annual symposium on Computer Architecture, pages 81–87. IEEE Computer Society Press.
- [Kuhn et al., 2011] Kuhn, K. J., Giles, M. D., Becher, D., Kolar, P., Kornfeld, A., Kotlyar, R., Ma, S. T., Maheshwari, A., and Mudanai, S. (2011). Process technology variation. *IEEE Transactions on Electron Devices*, 58(8):2197–2208.
- [Kung and Picard, 1984] Kung, H. and Picard, R. (1984). One-dimensional systolic arrays for multidimensional convolution and resampling. In *VLSI for Pattern Recognition and Image Processing*, pages 9–24. Springer.
- [Kung and Song, 1981] Kung, H. and Song, S. W. (1981). A systolic 2-d convolution chip. Technical Report CMU-CS-81-110, Carnegie Mellon University, Department of Computer Science.
- [Kung, 1982] Kung, H.-T. (1982). Why systolic architectures? IEEE computer, 15(1):37-46.
- [Kwan and Okullo-Oballa, 1990] Kwan, H.-K. and Okullo-Oballa, T. (1990). 2-d systolic arrays for realization of 2-d convolution. *IEEE transactions on circuits and systems*, 37(2):267–233.
- [Kwon et al., 2018] Kwon, H., Chatarasi, P., Pellauer, M., Parashar, A., Sarkar, V., and Krishna, T. (2018). Understanding reuse, performance, and hardware cost of dnn dataflows: A data-centric approach. arXiv preprint arXiv:1805.02566.
- [Lam, 1988] Lam, M. (1988). Software pipelining: An effective scheduling technique for vliw machines. In Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and Implementation, pages 318–328.
- [Lam, 2012] Lam, M. S. (2012). A systolic array optimizing compiler, volume 64. Springer Science & Business Media.
- [Lavenier et al., 1999] Lavenier, D., Quinton, P., and Rajopadhye, S. (1999). Advanced systolic design. Digital Signal Processing for Multimedia Systems, pages 657–692.
- [Lee et al., 2009] Lee, B. C., Ipek, E., Mutlu, O., and Burger, D. (2009). Architecting phase change memory as a scalable dram alternative. In *Proceedings of the 36th Annual International Symposium on Computer Architecture*, ISCA '09, pages 2–13.
- [Lee, 2013] Lee, R. B. (2013). Security basics for computer architects. Synthesis Lectures on Computer Architecture, 8(4):1–111.
- [Lefurgy et al., 1997] Lefurgy, C., Bird, P., Chen, I.-C., and Mudge, T. (1997). Improving code density using compression techniques. In *Microarchitecture*, 1997. Proceedings., Thirtieth Annual IEEE/ACM International Symposium on, pages 194–203. IEEE.
- [Leibholz and Razdan, 1997] Leibholz, D. and Razdan, R. (1997). The alpha 21264: A 500 mhz out-of-order execution microprocessor. In *Compcon'97. Proceedings, IEEE*, pages 28–36. IEEE.

[Leighton, 2014] Leighton, F. T. (2014). Introduction to parallel algorithms and architectures: Arraystrees hypercubes. Elsevier.

- [Leng et al., 2013] Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N. S., Aamodt, T. M., and Reddi, V. J. (2013). Gpuwattch: enabling energy optimizations in gpgpus. In *Proceedings of the 40th Annual International Symposium on Computer Architecture*, pages 487–498.
- [Leng et al., 2015] Leng, J., Zu, Y., and Reddi, V. J. (2015). Gpu voltage noise: Characterization and hierarchical smoothing of spatial and temporal voltage noise interference in gpu architectures. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), pages 161–173. IEEE.
- [Leng et al., 2014] Leng, J., Zu, Y., Rhu, M., Gupta, M., and Reddi, V. J. (2014). Gpuvolt: Modeling and characterizing voltage noise in gpu architectures. In *Proceedings of the 2014 international symposium on Low power electronics and design*, pages 141–146.
- [Lenoski et al., 1990] Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. (1990). The directory-based cache coherence protocol for the dash multiprocessor. In [1990] Proceedings. The 17th Annual International Symposium on Computer Architecture, pages 148–159. IEEE.
- [Li et al., 2009] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P. (2009). Mcpat: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture*, pages 469–480. ACM.
- [Li, 2012] Li, X. (2012). Survey of Wireless Network-on-Chip Systems. PhD thesis, Auburn University.
- [Lin, 2011] Lin, M.-B. (2011). Introduction to VLSI Systems: A Logic, Circuit, and System Perspective. CRC Press.
- [Lindholm et al., 2008] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. (2008). Nvidia tesla: A unified graphics and computing architecture. *Micro*, *IEEE*, 28(2):39–55.
- [Lipasti et al., 1996] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P. (1996). Value locality and load value prediction. In *Proceedings of the seventh international conference on Architectural support for programming languages and operating systems*, pages 138–147.
- [Lipp et al., 2018] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin, D., et al. (2018). Meltdown: Reading kernel memory from user space. In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 973–990.
- [Logan, 1986] Logan, D. L. (1986). A First Course in the Finite Element Method. PWS Engineering.
- [Lu et al., 2017] Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X. (2017). Flexflow: A flexible dataflow accelerator architecture for convolutional neural networks. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 553–564. IEEE.
- [Luk et al., 2005] Luk, C., Cohn, R. S., Muth, R., Patil, H., Klauser, A., Lowney, P. G., Wallace, S., Reddi, V. J., and Hazelwood, K. M. (2005). Pin: building customized program analysis tools with dynamic instrumentation. In *Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation*, pages 190–200.
- [Lustig et al., 2014] Lustig, D., Pellauer, M., and Martonosi, M. (2014). Pipecheck: Specifying and verifying microarchitectural enforcement of memory consistency models. In *Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture*, pages 635–646. IEEE Computer Society.

[Ma et al., 2015] Ma, S., Pal, D., Jiang, R., Ray, S., and Vasudevan, S. (2015). Can't see the forest for the trees: State restoration's limitations in post-silicon trace signal selection. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE.

- [Mador-Haim et al., 2011] Mador-Haim, S., Alur, R., and Martin, M. M. (2011). Litmus tests for comparing memory consistency models: How long do they need to be? In *Proceedings of the 48th Design Automation Conference*, pages 504–509. ACM.
- [Mahapatra and Parihar, 2018a] Mahapatra, S. and Parihar, N. (2018a). A review of nbti mechanisms and models. *Microelectronics Reliability*, 81:127–135.
- [Mahapatra and Parihar, 2018b] Mahapatra, S. and Parihar, N. (2018b). A review of nbti mechanisms and models. *Microelectronics Reliability*, 81:127–135.
- [Malhotra et al., 2014] Malhotra, G., Goel, S., and Sarangi, S. R. (2014). Gputejas: A parallel simulator for gpu architectures. In *High Performance Computing (HiPC)*, 2014 21st International Conference on, pages 1–10. IEEE.
- [Malhotra et al., 2017] Malhotra, G., Kalayappan, R., Goel, S., Aggarwal, P., Sagar, A., and Sarangi, S. R. (2017). Partejas: A parallel simulator for multicore processors. ACM Transactions on Modeling and Computer Simulation (TOMACS), 27(3):1–24.
- [Manson, 1953] Manson, S. S. (1953). Behavior of materials under conditions of thermal stress, volume 2933. National Advisory Committee for Aeronautics.
- [Martínez et al., 2002] Martínez, J. F., Renau, J., Huang, M. C., and Prvulovic, M. (2002). Cherry: Checkpointed early resource recycling in out-of-order microprocessors. In *Microarchitecture*, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International Symposium on, pages 3–14. IEEE.
- [McNairy and Soltis, 2003] McNairy, C. and Soltis, D. (2003). Itanium 2 processor microarchitecture. *IEEE Micro*, 23(2):44–55.
- [Mittal, 2016a] Mittal, S. (2016a). A survey of architectural techniques for managing process variation. ACM Computing Surveys (CSUR), 48(4):1–29.
- [Mittal, 2016b] Mittal, S. (2016b). A survey of recent prefetching techniques for processor caches. *ACM Computing Surveys (CSUR)*, 49(2):35.
- [Mittal, 2018] Mittal, S. (2018). A survey of techniques for dynamic branch prediction. *CoRR*, abs/1804.00261.
- [Miyaji, 1991] Miyaji, F. (1991). Static random access memory device having a high speed read-out and flash-clear functions. US Patent 5,054,000.
- [Moolchandani et al., 2020] Moolchandani, D., Kumar, A., and Sarangi, S. R. (2020). Accelerating cnn inference on asics: A survey. *Journal of Systems Architecture*, page 101887.
- [Moore et al., 2006] Moore, K. E., Bobba, J., Moravan, M. J., Hill, M. D., and Wood, D. A. (2006). Logtm: Log-based transactional memory. In *The Twelfth International Symposium on High-Performance Computer Architecture*, 2006., pages 254–265. IEEE.
- [Moscibroda and Mutlu, 2009] Moscibroda, T. and Mutlu, O. (2009). A case for bufferless routing in onchip networks. In *Proceedings of the 36th annual international symposium on Computer architecture*, pages 196–207.

[Moshovos et al., 1997] Moshovos, A., Breach, S. E., Vijaykumar, T. N., and Sohi, G. S. (1997). Dynamic speculation and synchronization of data dependences. In *Proceedings of the 24th annual international symposium on Computer architecture*, pages 181–193.

- [Moshovos and Sohi, 1999] Moshovos, A. and Sohi, G. S. (1999). Speculative memory cloaking and bypassing. *International Journal of Parallel Programming*, 27(6):427–456.
- [Muchnick et al., 1997] Muchnick, S. S. et al. (1997). Advanced compiler design implementation. Morgan Kaufmann.
- [Mukherjee, 2011] Mukherjee, S. (2011). Architecture design for soft errors. Morgan Kaufmann.
- [Muralimanohar et al., 2009] Muralimanohar, N., Balasubramonian, R., and Jouppi, N. P. (2009). Cacti 6.0: A tool to understand large caches. Technical Report HPL-2009-85, University of Utah and Hewlett Packard Laboratories.
- [Mutlu et al., 2003] Mutlu, O., Stark, J., Wilkerson, C., and Patt, Y. N. (2003). Runahead execution: An alternative to very large instruction windows for out-of-order processors. In *High-Performance Computer Architecture*, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on, pages 129–140.
- [Narayan and Tran, 1999] Narayan, R. and Tran, T. M. (1999). Method and apparatus for five bit predecoding variable length instructions for scanning of a number of risc operations. US Patent 5.898.851.
- [Neishaburi and Zilic, 2011] Neishaburi, M. H. and Zilic, Z. (2011). Hierarchical embedded logic analyzer for accurate root-cause analysis. In 2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pages 120–128. IEEE.
- [Ngabonziza et al., 2016] Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and Martin, S. (2016). Trustzone explained: Architectural features and use cases. In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), pages 445–451. IEEE.
- [Nose and Sakurai, 2000] Nose, K. and Sakurai, T. (2000). Analysis and future trend of short-circuit power. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 19(9):1023–1030.
- [NVIDIA, 2018] NVIDIA (2018). Cuda toolkit documentation. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
- [NVIDIA Inc., 2017] NVIDIA Inc. (2017). V100 gpu architecture. the world's most advanced data center gpu. White Paper: Version WP-08608-001_v1.1, NVIDIA.
- [NVIDIA Inc., 2020] NVIDIA Inc. (2020). Cuda compiler driver nvcc. Reference Guide TRM-06721-001_v11.0, NVIDIA.
- [Ors et al., 2004] Ors, S. B., Gurkaynak, F., Oswald, E., and Preneel, B. (2004). Power-analysis attack on an asic aes implementation. In *International Conference on Information Technology: Coding and Computing*, 2004. Proceedings. ITCC 2004., volume 2, pages 546–552. IEEE.
- [Padhye et al., 2018] Padhye, S., Sahu, R. A., and Saraswat, V. (2018). *Introduction to Cryptography*. CRC Press.
- [Palacharla et al., 1997] Palacharla, S., Jouppi, N. P., and Smith, J. E. (1997). Complexity-effective superscalar processors. In *Proceedings of the 24th annual international symposium on Computer architecture*, pages 206–218.

[Parashar et al., 2019] Parashar, A., Raina, P., Shao, Y. S., Chen, Y.-H., Ying, V. A., Mukkara, A., Venkatesan, R., Khailany, B., Keckler, S. W., and Emer, J. (2019). Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pages 304–315. IEEE.

- [Park et al., 2003] Park, I., Ooi, C. L., and Vijaykumar, T. (2003). Reducing design complexity of the load/store queue. In *Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture*, page 411. IEEE Computer Society.
- [Park et al., 2010] Park, J.-H., Shin, S., Christofferson, J., Shakouri, A., and Kang, S.-M. (2010). Experimental validation of the power blurring method. In *SEMI-THERM*, pages 240–244. IEEE.
- [Peterson et al., 1991] Peterson, C., Sutton, J., and Wiley, P. (1991). iWarp: a 100-MOPS, LIW microprocessor for multicomputers. *Micro*, *IEEE*, 11(3):26–29.
- [Petric et al., 2005] Petric, V., Sha, T., and Roth, A. (2005). Reno: a rename-based instruction optimizer. In 32nd International Symposium on Computer Architecture (ISCA'05), pages 98–109. IEEE.
- [Pinto and Santos, 2019] Pinto, S. and Santos, N. (2019). Demystifying arm trustzone: A comprehensive survey. ACM Computing Surveys (CSUR), 51(6):1–36.
- [Powell et al., 2001] Powell, M. D., Agarwal, A., Vijaykumar, T., Falsafi, B., and Roy, K. (2001). Reducing set-associative cache energy via way-prediction and selective direct-mapping. In *Proceedings* of the 34th annual ACM/IEEE international symposium on Microarchitecture, pages 54–65. IEEE Computer Society.
- [Powell and Vijaykumar, 2003a] Powell, M. D. and Vijaykumar, T. (2003a). Pipeline damping: a microarchitectural technique to reduce inductive noise in supply voltage. In 30th Annual International Symposium on Computer Architecture, 2003. Proceedings., pages 72–83. IEEE.
- [Powell and Vijaykumar, 2003b] Powell, M. D. and Vijaykumar, T. (2003b). Pipeline muffling and a priori current ramping: architectural techniques to reduce high-frequency inductive noise. In *Proceedings* of the 2003 international symposium on Low power electronics and design, pages 223–228.
- [Pratt, 1995] Pratt, V. (1995). Anatomy of the pentium bug. In *TAPSOFT'95: Theory and Practice of Software Development*, pages 97–107. Springer.
- [Prvulovic, 2006] Prvulovic, M. (2006). Cord: Cost-effective (and nearly overhead-free) order-recording and data race detection. In *The Twelfth International Symposium on High-Performance Computer Architecture*, 2006., pages 232–243. IEEE.
- [Quinn, 2017] Quinn, M. (2017). Parallel Programming in C with MPI and OpenMP. McGrawHill Education.
- [Qureshi et al., 2011] Qureshi, M. K., Gurumurthi, S., and Rajendran, B. (2011). Phase change memory: From devices to systems. *Synthesis Lectures on Computer Architecture*, 6(4):1–134.
- [Rashkeev et al., 2002] Rashkeev, S., Fleetwood, D., Schrimpf, R., and Pantelides, S. (2002). Dual behavior of H+ at $Si-SiO_2$ interfaces: Mobility versus trapping. Applied physics letters, 81(10):1839–1841.
- [Rastegar, 1994] Rastegar, B. (1994). Integrated circuit memory device having flash clear. US Patent 5,311,477.
- [Rathnam and Slavenburg, 1996] Rathnam, S. and Slavenburg, G. (1996). An architectural overview of the programmable multimedia processor, tm-1. In *Compcon'96.'Technologies for the Information Superhighway'Digest of Papers*, pages 319–326. IEEE.

[Rau, 1993] Rau, B. R. (1993). Dynamically scheduled vliw processors. In *Proceedings of the 26th annual international symposium on Microarchitecture*, pages 80–92. IEEE Computer Society Press.

- [Rau, 1994] Rau, B. R. (1994). Iterative modulo scheduling: An algorithm for software pipelining loops. In *Proceedings of the 27th annual international symposium on Microarchitecture*, pages 63–74. ACM.
- [Reagen et al., 2017] Reagen, B., Adolf, R., Whatmough, P., Wei, G.-Y., and Brooks, D. (2017). Deep learning for computer architects. Synthesis Lectures on Computer Architecture, 12(4):1–123.
- [Reinman and Jouppi, 2000] Reinman, G. and Jouppi, N. P. (2000). Cacti 2.0: An integrated cache timing and power model. Research Report 2000/7, Compaq Western Research Laboratory.
- [Ren et al., 2017] Ren, L., Fletcher, C. W., Kwon, A., Van Dijk, M., and Devadas, S. (2017). Design and implementation of the ascend secure processor. *IEEE Transactions on Dependable and Secure Computing*, 16(2):204–216.
- [Rogers et al., 2007] Rogers, B., Chhabra, S., Prvulovic, M., and Solihin, Y. (2007). Using address independent seed encryption and bonsai merkle trees to make secure processors OS and performance-friendly. In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), pages 183–196. IEEE.
- [Roy et al., 2003] Roy, K., Mukhopadhyay, S., and Mahmoodi-Meimand, H. (2003). Leakage current mechanisms and leakage reduction techniques in deep-submicrometer cmos circuits. *Proceedings of* the IEEE, 91(2):305–327.
- [Rumpf and Strzodka, 2006] Rumpf, M. and Strzodka, R. (2006). Graphics processor units: New prospects for parallel computing. In *Numerical solution of partial differential equations on parallel computers*, pages 89–132. Springer.
- [Rupp, 2017] Rupp, K. (2017). Moore's law: Transistors per microprocessor. https://ourworldindata.org/grapher/transistors-per-microprocessor. Accessed on 11th August 2020.
- [Saini, 1993] Saini, A. (1993). Design of the intel pentium processor. In Computer Design: VLSI in Computers and Processors, 1993. ICCD'93. Proceedings., 1993 IEEE International Conference on, pages 258–261. IEEE.
- [Salminen et al., 2008] Salminen, E., Kulmala, A., and Hamalainen, T. D. (2008). Survey of network-on-chip proposals. White paper, OCP-IP, 1:13.
- [Samajdar et al., 2020] Samajdar, A., Joseph, J. M., Zhu, Y., Whatmough, P., Mattina, M., and Krishna, T. (2020). A systematic methodology for characterizing scalability of dnn accelerators using scale-sim. In *International Symposium on Performance Analysis of Systems and Software*. IEEE.
- [Sarangi, 2015] Sarangi, S. R. (2015). Computer Organisation and Architecture. McGrawHill.
- [Sarangi et al., 2014] Sarangi, S. R., Ananthanarayanan, G., and Balakrishnan, M. (2014). Lightsim: A leakage aware ultrafast temperature simulator. In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 855–860. IEEE.
- [Sarangi et al., 2008] Sarangi, S. R., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A., and Torrellas, J. (2008). Varius: A model of process variation and resulting timing errors for microarchitects. *IEEE Transactions on Semiconductor Manufacturing*, 21(1):3–13.
- [Sarangi et al., 2006a] Sarangi, S. R., Greskamp, B., and Torrellas, J. (2006a). Cadre: Cycle-accurate deterministic replay for hardware debugging. In *International Conference on Dependable Systems and Networks (DSN'06)*, pages 301–312. IEEE.

[Sarangi et al., 2015] Sarangi, S. R., Kalayappan, R., Kallurkar, P., Goel, S., and Peter, E. (2015). Tejas: A java based versatile micro-architectural simulator. In *International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)*.

- [Sarangi et al., 2006b] Sarangi, S. R., Tiwari, A., and Torrellas, J. (2006b). Phoenix: Detecting and recovering from permanent processor design bugs with programmable hardware. In *Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture*, pages 26–37. IEEE Computer Society.
- [Savage et al., 1997] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. (1997). Eraser: A dynamic data race detector for multithreaded programs. *ACM Transactions on Computer Systems (TOCS)*, 15(4):391–411.
- [Scheurich and Dubois, 1988] Scheurich, C. and Dubois, M. (1988). The design of a lockup-free cache for high-performance multiprocessors. In *Proceedings of the 1988 ACM/IEEE Conference on Super-computing*, Supercomputing '88, pages 352–359.
- [Sehatbakhsh et al., 2020] Sehatbakhsh, N., Nazari, A., Alam, M., Werner, F., Zhu, Y., Zajic, A. G., and Prvulovic, M. (2020). REMOTE: robust external malware detection framework by using electromagnetic signals. *IEEE Trans. Computers*, 69(3):312–326.
- [Settle et al., 2003] Settle, A., Connors, D. A., Hoflehner, G., and Lavery, D. (2003). Optimization for the intel/spl reg/itanium/spl reg/architecture register stack. In *Code Generation and Optimization*, 2003. CGO 2003. International Symposium on, pages 115–124. IEEE.
- [Seznec, 1993] Seznec, A. (1993). A case for two-way skewed-associative caches. In *Proceedings of the* 20th Annual International Symposium on Computer Architecture, pages 169–178. IEEE.
- [Seznec, 2004] Seznec, A. (2004). Revisiting the perceptron predictor. Technical Report PI-1620, IRISA, France.
- [Seznec, 2007] Seznec, A. (2007). A 256 kbits l-tage branch predictor. Journal of Instruction-Level Parallelism (JILP) Special Issue: The Second Championship Branch Prediction Competition (CBP-2), 9:1-6.
- [Seznec et al., 2002] Seznec, A., Felix, S., Krishnan, V., and Sazeides, Y. (2002). Design tradeoffs for the alpha ev8 conditional branch predictor. In *Proceedings 29th Annual International Symposium on Computer Architecture*, pages 295–306. IEEE.
- [Sharangpani and Arora, 2000] Sharangpani, H. and Arora, H. (2000). Itanium processor microarchitecture. *IEEE Micro*, 20(5):24–43.
- [Shivakumar and Jouppi, 2001] Shivakumar, P. and Jouppi, N. P. (2001). Cacti 3.0: An integrated cache timing, power, and area model. Research Report 2001/2, Compaq Western Research Laboratory.
- [Silberschatz et al., 2018] Silberschatz, A., Gagne, G., and Galvin, P. B. (2018). Operating system concepts. Wiley.
- [Själander et al., 2014] Själander, M., Martonosi, M., and Kaxiras, S. (2014). Power-efficient computer architectures: Recent advances. Synthesis Lectures on Computer Architecture, 9(3):1–96.
- [Slegel et al., 1999] Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., Li, W. H., Liptay, J. S., MacDougall, J. D., McPherson, T. J., et al. (1999). Ibm's s/390 g5 microprocessor design. *IEEE micro*, 19(2):12–23.
- [Sloss et al., 2004] Sloss, A., Symes, D., and Wright, C. (2004). ARM system developer's guide: designing and optimizing system software. Elsevier.

[Smith and Sohi, 1995] Smith, J. E. and Sohi, G. S. (1995). The microarchitecture of superscalar processors. *Proceedings of the IEEE*, 83(12):1609–1624.

- [Sorin et al., 2011] Sorin, D. J., Hill, M. D., and Wood, D. A. (2011). A primer on memory consistency and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212.
- [Sprangle et al., 1997] Sprangle, E., Chappell, R. S., Alsup, M., and Patt, Y. N. (1997). The agree predictor: A mechanism for reducing negative branch history interference. In *Proceedings of the 24th annual international symposium on Computer architecture*, pages 284–291.
- [Sridhar et al., 2010] Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., and Atienza, D. (2010). 3d-ice: Fast compact transient thermal modeling for 3d ics with inter-tier liquid cooling. In 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 463–470. IEEE.
- [Srinivasan et al., 2005] Srinivasan, J., Adve, S., Bose, P., and Rivers, J. (2005). Exploiting structural duplication for lifetime reliability enhancement. In 32nd International Symposium on Computer Architecture (ISCA'05), pages 520–531. IEEE.
- [Srinivasan et al., 2004] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2004). The case for lifetime reliability-aware microprocessors. In *Proceedings of the 31st annual international symposium on Computer architecture*, ISCA '04, pages 276—.
- [Stallings, 2006] Stallings, W. (2006). Cryptography and network security, 4/E. Pearson Education India.
- [Stefanov et al., 2013] Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., and Devadas, S. (2013). Path oram: an extremely simple oblivious ram protocol. In *Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security*, pages 299–310.
- [Stenstrom, 1990] Stenstrom, P. (1990). A survey of cache coherence schemes for multiprocessors. *Computer*, 23(6):12–24.
- [Suggs and Bouvier, 2019] Suggs, D. and Bouvier, D. (2019). Zen 2. https://www.youtube.com/watch? v=QU3PHKdj8wQ. Accessed on 17th August, 2020.
- [Suh et al., 2005] Suh, G. E., O'Donnell, C. W., and Devadas, S. (2005). Aegis: A single-chip secure processor. *Information Security Technical Report*, 10(2):63–73.
- [Sultan et al., 2014] Sultan, H., Ananthanarayanan, G., and Sarangi, S. R. (2014). Processor power estimation techniques: a survey. *IJHPSA*, 5(2):93–114.
- [Sultan et al., 2019] Sultan, H., Chauhan, A., and Sarangi, S. R. (2019). A survey of chip-level thermal simulators. *ACM Comput. Surv.*, 52(2):42:1–42:35.
- [Sultan and Sarangi, 2017] Sultan, H. and Sarangi, S. R. (2017). A fast leakage aware thermal simulator for 3d chips. In *Design*, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages 1733–1738.
- [Sultan et al., 2018] Sultan, H., Varshney, S., and Sarangi, S. R. (2018). Is leakage power a linear function of temperature? arXiv preprint arXiv:1809.03147.
- [Sze et al., 2020] Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2020). Efficient processing of deep neural networks. Synthesis Lectures on Computer Architecture, 15(2):1–341.
- [Szefer, 2018] Szefer, J. (2018). Principles of secure processor architecture design. Synthesis Lectures on Computer Architecture, 13(3):1–173.

[Szefer, 2019] Szefer, J. (2019). Survey of microarchitectural side and covert channels, attacks, and defenses. *Journal of Hardware and Systems Security*, 3(3):219–234.

- [Taassori et al., 2018] Taassori, M., Shafiee, A., and Balasubramonian, R. (2018). Vault: Reducing paging overheads in sgx with efficient integrity verification structures. In *Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems*, pages 665–678.
- [Tarjan et al., 2006] Tarjan, D., Thoziyoor, S., and Jouppi, N. P. (2006). Cacti 4.0. Technical Report HPL-2006-86, HP Laboratories.
- [Taub and Schilling, 1977] Taub, H. and Schilling, D. L. (1977). Digital integrated electronics. McGraw-Hill New York.
- [Thekkath et al., 2000] Thekkath, D. L. C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and Horowitz, M. (2000). Architectural support for copy and tamper resistant software. In *Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems*, page 168–177.
- [Thornton, 2000] Thornton, J. E. (2000). Parallel operation in the control data 6600. Readings in computer architecture, page 32.
- [Thoziyoor et al., 2007] Thoziyoor, S., Muralimanohar, N., and Jouppi, N. P. (2007). Cacti 5.0. Technical Report HPL-2007-167, HP Laboratories.
- [Tiwari and Torrellas, 2008] Tiwari, A. and Torrellas, J. (2008). Facelift: Hiding and slowing down aging in multicores. In 2008 41st IEEE/ACM International Symposium on Microarchitecture, pages 129–140. IEEE.
- [Turkington, 2013] Turkington, D. A. (2013). Generalized vectorization, cross-products, and matrix calculus. Cambridge University Press.
- [Van Bulck et al., 2018] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. (2018). Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 991–1008.
- [Vangal et al., 2007] Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Iyer, P., Singh, A., Jacob, T., et al. (2007). An 80-tile 1.28 tflops network-on-chip in 65nm cmos. In 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pages 98–589. IEEE.
- [Vantrease et al., 2011] Vantrease, D., Lipasti, M. H., and Binkert, N. (2011). Atomic coherence: Leveraging nanophotonics to build race-free cache coherence protocols. In *High Performance Computer Architecture (HPCA)*, 2011 IEEE 17th International Symposium on, pages 132–143.
- [Wang et al., 2018] Wang, C., Wu, H., Gao, B., Zhang, T., Yang, Y., and Qian, H. (2018). Conduction mechanisms, dynamics and stability in rerams. *Microelectronic Engineering*, 187:121–133.
- [Wang et al., 2005] Wang, D., Ganesh, B., Tuaycharoen, N., Baynes, K., Jaleel, A., and Jacob, B. (2005). Dramsim: a memory system simulator. ACM SIGARCH Computer Architecture News, 33(4):100–107.
- [Wang and Agrawal, 2008] Wang, F. and Agrawal, V. D. (2008). Single event upset: An embedded tutorial. In 21st International Conference on VLSI Design (VLSID 2008), pages 429–434. IEEE.

[Wang et al., 2013] Wang, J., Tim, Y., Wong, W.-F., and Li, H. H. (2013). A practical low-power memristor-based analog neural branch predictor. In Low Power Electronics and Design (ISLPED), 2013 IEEE International Symposium on, pages 175–180. IEEE.

- [Wang and Franklin, 1997] Wang, K. and Franklin, M. (1997). Highly accurate data value prediction using hybrid predictors. In *Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture*, pages 281–290. IEEE Computer Society.
- [Wang et al., 2016] Wang, Y., Li, H., and Li, X. (2016). Re-architecting the on-chip memory sub-system of machine-learning accelerator for embedded devices. In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–6. IEEE.
- [Wegman and Carter, 1981] Wegman, M. N. and Carter, J. L. (1981). New hash functions and their use in authentication and set equality. *Journal of computer and system sciences*, 22(3):265–279.
- [Wickerson et al., 2017] Wickerson, J., Batty, M., Sorensen, T., and Constantinides, G. A. (2017). Automatically comparing memory consistency models. In *Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages*, pages 190–204.
- [Williams et al., 2009] Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful visual performance model for multicore architectures. *Communications of the ACM*, 52(4):65–76.
- [Williamson, 2007] Williamson, D. (2007). Arm cortex-a8: A high-performance processor for low-power applications. *Unique Chips and Systems*, page 79.
- [Wilton and Jouppi, 1993] Wilton, S. J. and Jouppi, N. P. (1993). An enhanced access and cycle time model for on-chip caches. Research Report 93/5, Digital Western Research Laboratory.
- [Wittenbrink et al., 2011] Wittenbrink, C. M., Kilgariff, E., and Prabhu, A. (2011). Fermi gf100 gpu architecture. *IEEE Micro*, 31(2):50–59.
- [Wong et al., 2010] Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., and Moshovos, A. (2010). Demystifying gpu microarchitecture through microbenchmarking. In *Performance Analysis of Systems & Software (ISPASS)*, 2010 IEEE International Symposium on, pages 235–246. IEEE.
- [Woo et al., 1995] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The splash-2 programs: Characterization and methodological considerations. *ACM SIGARCH computer architecture news*, 23(2):24–36.
- [Wouters, 2009] Wouters, D. (2009). Oxide resistive ram (oxrram) for scaled nvm application. *Innovative Mass Storage Technologies-IMST*.
- [Wu et al., 2019] Wu, Y. N., Emer, J. S., and Sze, V. (2019). Accelergy: An architecture-level energy estimation methodology for accelerator designs. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE.
- [Xu and Liu, 2010] Xu, Q. and Liu, X. (2010). On signal tracing in post-silicon validation. In 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 262–267. IEEE.
- [Yeh and Patt, 1991] Yeh, T.-Y. and Patt, Y. N. (1991). Two-level adaptive training branch prediction. In *Proceedings of the 24th annual international symposium on Microarchitecture*, pages 51–61. ACM.
- [Yeh and Patt, 1992] Yeh, T.-Y. and Patt, Y. N. (1992). Alternative implementations of two-level adaptive branch prediction. In *Proceedings of the 19th annual international symposium on Computer architecture*, pages 124–134.

[Yeh and Patt, 1993] Yeh, T.-Y. and Patt, Y. N. (1993). A comparison of dynamic branch predictors that use two levels of branch history. In *Proceedings of the 20th annual international symposium on computer architecture*, pages 257–266.

- [Yiu, 2009] Yiu, J. (2009). The definitive guide to the ARM Cortex-M3. Newnes.
- [Yoaz et al., 1999] Yoaz, A., Erez, M., Ronen, R., and Jourdan, S. (1999). Speculation techniques for improving load related instruction scheduling. In *Proceedings of the 26th annual international symposium on Computer architecture*, pages 42–53.
- [Yu, 2016] Yu, S. (2016). Resistive random access memory (rram) from devices to array architectures. Synthesis Lectures on Computer Architecture, 6.
- [Yu and Chen, 2016] Yu, S. and Chen, P.-Y. (2016). Emerging memory technologies: Recent trends and prospects. *IEEE Solid-State Circuits Magazine*, 8(2):43–56.
- [Zhou et al., 2007] Zhou, P., Teodorescu, R., and Zhou, Y. (2007). Hard: Hardware-assisted lockset-based race detection. In 2007 IEEE 13th International Symposium on High Performance Computer Architecture, pages 121–132. IEEE.

Index

2-level Predictor, 74 2D Convolution, 728	Authenticity, 679 Automated Theorem Proving, 652
2D Convolution, 728	9,
Access Charle 456	Average Memory Access Time, 268 Axioms of Coherence, 442
Access Graph, 456 Access Transistor, 536	Axioms of Concrence, 442
Accumulator, 88	Page to hade Execution 120
	Back-to-back Execution, 120 Backward Slice, 320
ACIE Properties, 511	Backward Slice, 329 Band-to-Band Tunneling, 614
ACIF Properties, 683	<u> </u>
Acquire Instruction, 445	Bandwidth, 353
Activity Factor, 611	Bank, see Cache Bank 291
Adaptive Routing, 372	Bank Set, 402
Address Space Layout Randomization, 685	Barrier, 228
Address Translation Attack, 693	Bartok STM, 518
Adiabatic, 618	BEDO, 555
Adiabatic Boundary, 618	Benes Network, 345
Advanced Memory Buffer (AMB), 559	Binary Modular Exponentiation, 696
AES, 672	Binning, 652
hardware implementation, 677	Bit Lane Steering, 562
key schedule, 673	Bit-Complement Traffic, 408
operations, 673	Bit-Reverse Traffic, 409
AES Block Cipher, 672	Bit-Rotation Traffic, 409
AES Modes, 674	Bit-serial Multiplier, 731
Aging, 662	Block, 226
Allocators, 387	Block Cipher, 672
Alpha Power Law, 612, 658	blockDim, 228
AMD Processors, 755	Blocking, see Loop Tiling 308
Amdahl's Law, 421	Branch History Register, 73
Arbiters, 387	Branch Interlock, 36
Arbitration, 469	Branch Target Buffer, 82
Architectural Simulation, 743	Broadcast, 112
Architectural Vulnerability Factor, 643	tag, 113
ARF, 174	tag bus, 113
ARM Memory Model, 494	BTB, 82
ASIC, 215	Buffer Overflow Attack, 684
ASIP, 215	Buffered DIMMs, 558
Asymmetric Ciphers, 678	Buffered Links, 337
Asynchronous DRAM, 552	Burst Chop Mode, 558
Atomic Exchange, 485	Burst Extended Data Out, see BEDO 555
Atomic Operations, 479	Burst Length, 558
Atomicity, 433	Busy Wait Loop, 444
Attack Surface, 685	Butterfly Network, 345
Attack Vectors, 686	Bypass Network, 124

Byzantine Failures, 638 Cache, 256 Dasic operations, 266 replacement, 267 write back, 267 write through, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-invalidate protocol, 459 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Hierarchy, 258 Cache Hier, 267 Cache His, 267 Cache Miss, 257 Cache Miss, 257 Cache Miss, 257 Cache Jank, 292 mat, 292 subarray, 292 Call Graph History Cache, 323 Call Graph Prefetching, 321 Call Graph Prefetching, 321 Call Graph Prefetching, 321 Call Graph Frefetching, 321 Call Graph Frefetching, 321 Call Graph, 458 Capacity Misses, 269 Causal Ordering, 506 Causallity, 457 CBRAMs, 592 CDC, see Channel Dependence Graph 366 Chang Sharing, 734 Chemelal Mechanical Polishing, 657 Cipher Block Chaning, 674 Cipher Hock Chaning, 674 Cipher Hock Chaning, 674 Cipher Rock, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 clock period, 29 Clock period, 29 Convolution Operation, 710 Convolution Operation, 710 Control Path, 27 Control Hazard, 35 Context of a Program, 139 Convolution Operation, 710	Bypassing, 39, 121, 122	frequency, 29
Clock Layer, 340 Clos Network, 343 Dasic operations, 266 replacement, 267 write back, 267 write back, 267 write through, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Protocols, 459 Cache Coherence Protocols, 459 Cache Coherence Protocols, 459 Cache Coherence Protocols, 459 Cache Hit; 257 Cache Hit; 257 Cache Ilit, 257 Cache Ilit, 257 Cache Miss, 257 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Miss, 257 Cacti, 277, 289 Dank, 292 subarray, 292 Sublank, 292 Call Graph, 321 Call Graph Prefetching, 321 Call Graph, 458 Capacity Misses, 269 Causal Grein, 506 Canusality, 457 CBRAMS, 592 Cands Graph, 458 Capacity Misses, 269 Causal Graph, 458 Capacity Misses, 269 Causal Graph, 458 Chamel Dependence Graph, 366 Change Sharing, 734 Checkpoint, 645 Chamel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Cipher tark, 671 Circular Queue, 107 Convection, 619 Control Hazard, 35 Control Hazard, 35 Control Path, 27 Convection, 619	Byzantine Failures, 638	Clock Gating, 627
Cache, 256 basic operations, 266 replacement, 267 write back, 267 write through, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-update protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 456 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Herarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 257 Cache Index, 260 Cache Line, 260 Cache Miss, 257 Cache Miss, 257 Cache Miss, 292 mat, 292 subbarray, 292 subbarray, 292 subbarray, 292 subbarray, 292 subbarray, 292 subbarray, 292 call Graph History Cache, 323 Call Graph Prefetching, 321 CAM Array, 287 CAM Call, 285 Capacity Misses, 269 Causal Graph, 458 Capacity Misses, 269 Causal Graph, 457 CBRAMs, 599 Causal Graph, 457 CBRAMs, 592 Chamnel Dependence Graph, 366 Chamnel, 348, 710 Chamnel Dependence Graph, 366 Chamnel, 348, 710 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Circuit Switching, 352 Circuit Coherence, 425, 442 Code Injection Attack, 684 Code Ruse Attack, 687 Cold Boot Attack, 687 Colum Multiplexers, 283 Commit Width, 135 Common Mode Rejection, 283 Common Subexpression Elimination, 180, 730 Compulsory Misses, 269 Concurrency Ontrol, 513 optimistic, 513 pessimistic, 513 pessimistic, 513 conduction Band, 615 Conduction Band, 615 Conduction, 619 Conduction, 619 Conflicting Access, 465 Conflicting Access, 465 Conflicting Access, 497 Conflicts, 512 detection, 512 detection, 512 cocurrence, 512 resolution, 512 Content Addressable Memory, see CAM Array 287 Content Addressable Memor	•	Clock Layer, 340
basic operations, 266 replacement, 267 write back, 267 write back, 267 write back, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 459 Cache Hierarchy, 258 Cache Hit, 257 Cache Index, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Miss, 257 Cachi, 277, 289 bank, 292 mat, 292 subarray, 292 subarray, 292 subarray, 292 subarray, 292 subarray, 292 call Graph, 458 Capacity Misses, 269 Causal Graph, 458 Cansal Ordering, 506 Causally, 457 CBRAMs, 592 CBAnnel Dependence Graph, 366 Chamel, 348, 710 Chamnel Dependence Graph, 366 Chamel, 348, 710 Chamnel Dependence Graph, 366 Chamel, 348, 710 Chamnel Dependence Graph, 366 Chamel, 348, 710 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Circuit Switching, 332 Circular Queue, 107 Convection, 619 Convection, 619 Convection, 619 Convection, 619 Consensus Problem, 489 Consensus Problem, 489 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Context of a Program, 139 Context of a Program, 129 Context	Cache, 256	
replacement, 267 write back, 267 write brough, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Index, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Line, 277, 289 bank, 292 subbank, 292 subbank, 292 subbank, 292 subbank, 292 subbank, 292 Call Graph, 321 CAM Cell, 285 CAM Cell, 285 CAM Cell, 285 CAM Cell, 285 CAM Complistory Cache, 323 Call Graph Prefetching, 321 CAM Array, 287 CAM Cell, 285 Cansal Ordering, 506 Causallty, 457 CABRAMs, 592 CDG, see Channel Dependence Graph, 366 Chain of Trust, 686 Channel Alsk, 710 Channel Dependence Graph, 366 Chain of Trust, 686 Chain, 645 Chexpoint, 645 Chemical Mutitihreading, 424 Code Injection Attack, 684 Code Reuse Attack, 687 Collum Multiplexers, 283 Commit Width, 135 Co		
write back, 267 write through, 267 Cache Bank, 291 Cache Coherence, 425, 442 axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Hit, 257 Cache Hit, 257 Cache Index, 260 Cache Line, 260 Cache Line, 260 Cache Miss, 257 Cacti, 277, 289 bank, 292 mat, 292 subbarray, 292 subbarray, 292 subbarray, 292 subbarray, 292 call Graph History Cache, 323 Call Graph Prefetching, 321 CAM Cell, 285 Capacity Misses, 269 Carter-Wegman Construction, 690 Causal Graph, 458 Causal Ordering, 506 Causal Ordering, 506 Call Spank, 592 CDG, see Chamnel Dependence Graph, 366 Charge Sharing, 734 Cheschopint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuix Switching, 332 Circular Queue, 107 Convercing, 619 Converce, 619 Converce, 512 control, 619 Control Hazard, 35 Control Control, 619 Control Path, 27 Control Path, 27 Control Control, 619 Control Path, 27 Control, 619	replacement, 267	
write through, 267 Cache Bank, 291 axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Protocol, 459 Cache Coherence Protocol, 459 Cache Coherence Protocol, 450 Cache Hit, 257 Cache Hit, 257 Cache Index, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Miss, 257 Cache Miss, 257 Cache Miss, 257 Cache Miss, 257 Cache Jan, 292 mat, 292 mat, 292 subbank, 292 mat, 292 subbank, 292 Call Graph, 321 Call Graph Prefetching, 321 Call Graph Prefetching, 321 Call Graph Prefetching, 321 CAM Cell, 285 Capacity Misses, 269 Carter-Wegman Construction, 690 Causal Graph, 458 Causal Ordering, 506 Causal Graph, 458 Causal Ordering, 506 Causallity, 457 Causal Graph, 458 Causal Ordering, 506 Causallity, 457 Causallity, 457 Canden Dependence Graph 366 Channel, 348, 710 Channel Dependence Graph 366 Channel Dependence Graph 366 Channel Ask, 710 Channel Dependence Graph 366 Channel Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circular Queue, 107 Circular Queue, 107 Convection, 619 Convection, 619 Control Path, 27 Convection, 619 Control Path, 27 Convection, 619 Control Path, 27 Convection, 619	- ,	•
Cache Bank, 291 optimizations, 730 Cache Coherence, 425, 442 coarse-grained Multithreading, 424 axioms, 443 race conditions, 477 write-invalidate protocol, 464 Code Reuse Attack, 684 write-update protocol, 459 Cold Boot Attack, 687 Cache Coherence Protocol, 426 Cold Boot Attack, 687 Cache Coherence Protocols, 459 Cold Boot Attack, 687 Cache Coherence Protocols, 459 Commit Width, 135 Cache Hierarchy, 258 Common Mode Rejection, 283 Cache Hie, 257 Common Subexpression Elimination, 180, 730 Cache Miss, 257 Compare and Set, 485 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 pessimistic, 513 mat, 292 pessimistic, 513 subbarray, 292 conduction Band, 615 Call Graph History Cache, 323 Conduction Band, 615 Call Graph History Cache, 323 Conduction Band, 615 Capacity Misses, 269 Conduction, 619 Cavasal Graph, 458 Conflicting Accesses, 497 Causal Graph, 458 Conflicting Accesses, 465 <		
Cache Coherence, 425, 442 Coarse-grained Multithreading, 424 axioms, 443 Code Injection Attack, 684 race conditions, 477 write-invalidate protocol, 459 Code Ruses Attack, 684 Cache Coherence Protocollem, 426 Coherence, 428, 442 Cache Coherence Protocols, 459 Column Multiplexers, 283 Cache Coherence Protocols, 459 Commit Width, 135 Cache Hit, 257 Common Mode Rejection, 283 Cache Line, 260 Compare and Set, 485 Cache Inie, 260 Compiler Techniques, 178 Cache Miss, 257 Compiler Techniques, 178 Cache Miss, 292 Onnuction, 619 bank, 292 postmistic, 513 mat, 292 postmistic, 513 subbank, 292 optimistic, 513 subbank, 292 conduction, 619 Call Graph History Cache, 323 Conduction Band, 615 Call Graph Prefetching, 321 Conflict Detection, 513 Call Graph Prefetching, 321 Conflict Detection, 513 Carter-Wegman Construction, 690 Carter-Wegman Construction, 690 Conflicting Accesses, 495 Causality, 457 Conflicting Accesses, 495 Cansensus	<u> </u>	
axioms, 443 race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 459 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Line, 260 Cache Jine, 260 Compulse Techniques, 178 Compulsory Misses, 269 Concurrency Control, 513 optimistic, 513 pessimistic, 513 pessimistic, 513 pessimistic, 513 conduction Band, 615 Conductive Filament, 591 Conductive Filament, 591 Conductive Filament, 591 Conflict betection, 513 caggr, 513 lazy, 513 validation, 513 Capacity Misses, 269 Causal Graph, 458 Causal Ordering, 506 Causal Graph, 458 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel Dependence Graph, 366 Channel Jine, 656 Channel, 348, 710 Channel Dependence Graph, 366 Channel Bependence Graph, 366 Channel, 348, 710 Confusion, 672 Con	•	
race conditions, 477 write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 427 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Line, 277, 289 Dank, 292 Dank, 292 Subbank, 292 Subbank, 292 Subbank, 292 Call Graph, 321 Call Graph History Cache, 323 Call Graph Prefetching, 321 Call Graph Prefetching, 321 CAM Array, 287 CAM Cell, 285 Canyal Prefetching, 321 CAM Array, 287 CAM Cell, 285 Causal Graph, 458 Causal Ordering, 506 Causal Graph, 458 Causal Ordering, 506 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Channel, 348, 710 Channel Dependence Graph, 366 Channel, 348, 710 Channel Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher text, 671 Circular Queue, 107 Clock Cyele, 29 Code Reuse Attack, 687 Column Multiplexers, 283 Commin Multiplexers, 283 Commin Width, 135 Column Multiplexers, 283 Commin Multiplexers, 283 Commin Multiplexers, 283 Commin Mode Rejection, 283 Commin Mode Rejection, 283 Commin Mode Rejection, 283 Common Subexpression Elimination, 180, 730 Common Subexpression Elimination, 180, 730 Computer Wistome Mode Rejection, 283 Common Subexpression Elimination, 180, 730 Common Subexpression El		0,
write-invalidate protocol, 464 write-update protocol, 459 Cache Coherence Problem, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 426 Cache Coherence Protocols, 459 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Hierarchy, 258 Cache Index, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Line, 260 Cache Jine, 260 Compare and Set, 485 Compiler Techniques, 178 Conduction Bale, 189 Conduction, 619 Conduction,		
write-update protocol, 459 Cold Boot Attack, 687 Cache Coherence Protocol, 426 Column Multiplexers, 283 Cache Coherence Protocol, 459 Commit Width, 135 Cache Hierarchy, 258 Common Mode Rejection, 283 Cache Hit, 257 Common Subexpression Elimination, 180, 730 Cache Line, 260 Compare and Set, 485 Cache Miss, 257 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 optimistic, 513 subarray, 292 conduction, 619 Call Graph, 321 Conduction Band, 615 Call Graph Prefetching, 321 Confidentiality, 671 Call Graph Prefetching, 321 Conflict Detection, 513 Capacity Misses, 269 validation, 513 Capacity Misses, 269 validation, 513 Cart-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Accesse, 495 Causality, 457 Conflicting Accesses, 495 Causal Ordering, 506 Conflicting, 512 detection, 512		
Cache Coherence Problem, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 426 Cache Coherence Protocol, 459 Cache Hierarchy, 258 Cache Hit, 257 Cache Ilierarchy, 258 Cache Jir, 257 Cache Index, 260 Cache Jir, 260 Cache Jir, 260 Cache Jir, 277, 289 Cache Miss, 257 Cache Miss, 257 Cache Miss, 292 Dank, 292 Dank, 292 Dank, 292 Subarray, 292 Subarray, 292 Subarray, 292 Subarray, 292 Subarray, 292 Subarray, 292 Call Graph, 321 Call Graph Frefetching, 321 Call Graph Prefetching, 321 Call Graph Frefetching, 321 Call Graph, 458 Canasal Graph, 458 Causal Ordering, 506 Causal Graph, 458 Causal Ordering, 506 Canasal Graph, 457 Canasal Graph, 458 Canasal Graph, 458 Canasal Graph, 457 Canasal Graph, 458 Canasal Ordering, 506 Canasal Graph, 458 Canasal Ordering, 506 Cansal France, 489 Conflicting Accesses, 497 Conflicting A		
Cache Coherence Protocols, 426 Commit, 133 Cache Coherence Protocols, 459 Commit Width, 135 Cache Hitarachy, 258 Common Mode Rejection, 283 Cache Hit, 257 Common Subexpression Elimination, 180, 730 Cache Line, 260 Compare and Set, 485 Cache Line, 260 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 pessimistic, 513 mat, 292 pessimistic, 513 subbank, 292 Conduction, 619 Call Graph History Cache, 323 Conduction Band, 615 Call Graph History Cache, 323 Conficit Detection, 513 Cam Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Accesse, 465 Causal Ordering, 506 Conflicting Accesse, 465 Causal Ordering, 506 Conflict, 512 CDG, see Channel Dependence Graph 366 Consensus Number, 489 Channel Dependence Graph, 366 Consensus Number, 489 Channel Dependenc		
Cache Coherence Protocols, 459 Commit Width, 135 Cache Hierarchy, 258 Common Mode Rejection, 283 Cache Hit, 257 Common Subexpression Elimination, 180, 730 Cache Index, 260 Compare and Set, 485 Cache Miss, 257 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 pessimistic, 513 subarray, 292 Conduction, 619 subbank, 292 Conduction Band, 615 Call Graph, 321 Conficit Detection, 591 Call Graph Prefetching, 321 Conficit Detection, 513 Call Graph Prefetching, 321 Conflict Detection, 513 Capacity Misses, 269 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflict Misses, 269 Conflicting Access, 465 Causality, 457 Conflicting Accesses, 497 Conflicts, 512 CBRAMs, 592 detection, 512 occurrence, 512 Chain of Trust, 686 Consensus Number, 489 Consensus Problem, 489 Chain of Broad, 645 Consensus Problem,		
Cache Hierarchy, 258 Common Mode Rejection, 283 Cache Hit, 257 Common Subexpression Elimination, 180, 730 Cache Index, 260 Compare and Set, 485 Cache Line, 260 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 pessimistic, 513 mat, 292 pessimistic, 513 subarray, 292 Conduction, 619 subank, 292 Conduction Band, 615 Call Graph History Cache, 323 Conductive Filament, 591 Call Graph Prefetching, 321 Conflict Detection, 513 CAM Array, 287 eager, 513 CAM Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Access, 465 Causal Ordering, 506 Conflicting Access, 497 Causality, 457 Conflicting Access, 497 CBRAMs, 592 detection, 512 CDG, see Channel Dependence Graph 366 Consensus Number, 489 Channel, 348, 710 Conflicting, 672		
Cache Hit, 257 Cache Index, 260 Cache Line, 260 Cache Miss, 257 Cache Miss, 257 Cacti, 277, 289 Cacti, 278, 269 Canduction, 619 Canduction, 61		
Cache Index, 260 Compare and Set, 485 Cache Line, 260 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 pessimistic, 513 subarray, 292 Conduction, 619 subbank, 292 Conduction Band, 615 Call Graph, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 CAM Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Access, 465 Causal Ordering, 506 Conflicting Accesses, 497 Causality, 457 Conflicts, 512 CBRAMs, 592 detection, 512 CDG, see Channel Dependence Graph 366 conflictis, 512 Chain of Trust, 686 consument of the control of th	* .	· · · · · · · · · · · · · · · · · · ·
Cache Line, 260 Compiler Techniques, 178 Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 pessimistic, 513 subarray, 292 Conduction, 619 subbank, 299 Conduction Band, 615 Call Graph, 321 Conficentiality, 671 Call Graph Prefetching, 321 Conflict Detection, 513 CAM Array, 287 eager, 513 CAM Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Access, 465 Causal Ordering, 506 Conflicting Accesses, 497 Causally, 457 Conflicts, 512 CBRAMs, 592 detection, 512 CDG, see Channel Dependence Graph 366 Conflicts, 512 Chain of Trust, 686 resolution, 512 Channel, 348, 710 Conflicts, 512 Channel Bependence Graph, 366 Consensus Number, 489 Cheekpoint, 645 Consensus Problem, 489 Chemical Mechanical Polishing, 65		
Cache Miss, 257 Compulsory Misses, 269 Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 pessimistic, 513 subbarray, 292 Conduction, 619 subbank, 292 Conduction Band, 615 Call Graph, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 CAM Array, 287 eager, 513 CAM Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Access, 465 Causal Ordering, 506 Conflicting Accesses, 497 Causality, 457 Conflicting Accesses, 497 Causality, 457 detection, 512 CBRAMs, 592 detection, 512 Chain of Trust, 686 resolution, 512 Channel, 348, 710 Conflicts, 512 Channel Dependence Graph, 366 Consensus Number, 489 Cheekpoint, 645 Consensus Problem, 489 Cheekpoint, 645 Conte		- · · · · · · · · · · · · · · · · · · ·
Cacti, 277, 289 Concurrency Control, 513 bank, 292 optimistic, 513 mat, 292 pessimistic, 513 subarray, 292 Conduction, 619 subbank, 292 Conduction Band, 615 Call Graph, 321 Conductive Filament, 591 Call Graph History Cache, 323 Conflict Detection, 513 CAM Array, 287 eager, 513 CAM Cell, 285 lazy, 513 Capacity Misses, 269 validation, 513 Carter-Wegman Construction, 690 Conflict Misses, 269 Causal Graph, 458 Conflicting Access, 465 Causallity, 457 Conflicting Access, 497 Causality, 457 Conflicting Access, 497 CBRAMs, 592 detection, 512 CDG, see Channel Dependence Graph 366 conflicting Accesses, 497 Chain of Trust, 686 resolution, 512 Channel, 348, 710 Confusion, 672 Channel Dependence Graph, 366 Consensus Number, 489 Chaege Sharing, 734 Consensus Problem, 489 Cheekpoint, 645 Consensus Problem, 489 Chemical Mechanical Polishing, 657 Content Addressable Memory, see CAM Array 263		
bank, 292		- *
mat, 292 subarray, 292 subbank, 292 Conduction, 619 Call Graph, 321 Call Graph History Cache, 323 Call Graph Prefetching, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 Cand Cell, 285 Capacity Misses, 269 Causal Graph, 458 Capacity Misses, 269 Causal Graph, 458 Causal Ordering, 506 Causal Graph, 458 Causal Ordering, 506 Causality, 457 Causality, 457 Causality, 457 Causality, 457 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Convection, 619 Conduction, 619 Conduction, 513 Conficting Access, 465 Conflicting Accesses, 497 Conflicting Accesses, 465 Conflicting Accesses, 497 Conflicting Accesses, 497 Conflicting Accesses, 497 Conflicting Accesses, 497 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflicting Accesses, 497 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflicting Accesses, 497 Conflicting Accesses, 465 Conflicting Accesse		· · · · · · · · · · · · · · · · · · ·
subarray, 292 subbank, 292 Conduction, 619 Subbank, 292 Conduction Band, 615 Call Graph, 321 Call Graph History Cache, 323 Confidentiality, 671 Call Graph Prefetching, 321 Confidentiality, 671 Canfidentiality, 671 Canfidentiality, 671 Canfidentiality, 671 Canfidentiality, 671 Canfidentiality, 671 Canfidentiality, 671 Confidentiality, 671 Canfidentiality, 671 Confidentiality, 671 Context of a Program, 139 Control Path, 27 Convection, 619		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- · · · · · · · · · · · · · · · · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	- :	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
CAM Cell, 285 Capacity Misses, 269 Carter-Wegman Construction, 690 Causal Graph, 458 Causal Ordering, 506 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Cipher Block Chaining, 674 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Conflict Misses, 269 Conflict Misses, 269 Conflicting Accesses, 465 Conflicting Accesses, 497 Conflicts, 512 detection, 512 conflicts, 512 Confl		Conflict Detection, 513
Capacity Misses, 269 Carter-Wegman Construction, 690 Causal Graph, 458 Causal Ordering, 506 Causality, 457 CBRAMs, 592 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Cipher Block Chaining, 674 Circuit Switching, 352 Circular Queue, 107 Clausal Graph, 458 Conflict Misses, 269 Conflicting Accesse, 465 Conflicting Accesses, 497 Conflicting Accesses, 465 Conflicting Accesses, 407 Conflicting Accesses, 465 Conflicting Accesses, 465 Conflict		
Carter-Wegman Construction, 690 Causal Graph, 458 Causal Ordering, 506 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Circuit Switching, 352 Circular Queue, 107 Clausality, 457 Conflicting Accesse, 465 Conflicting Accesses, 497 Confli		lazy, 513
Causal Graph, 458 Causal Ordering, 506 Causality, 457 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clausal Graph, 465 Conflicting Access, 465 Conflicting Accesses, 497 Conflicts, 512 detection, 512 occurrence, 512 resolution, 512 Confusion, 672 Consensus Number, 489 Consensus Problem, 489 Consensus Problem, 489 Constant Folding, 179 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Content Addressable Memory, see CAM Array 263 Content Addressable Memory, 52 Control Hazard, 35 Control Hazard, 35 Control Path, 27 Clock Cycle, 29 Convection, 619	- *	
Causal Ordering, 506 Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 CCBRAMs, 592 Conflicting Accesses, 497 Conflicts, 512 Chanfled Adecesses, 497 Conflicts, 512 Cenflicts, 512 Cenflicts, 512 Cenflicts, 512 Cenflicts, 512 Cenflicts, 512 Centert, 512 Concurrence, 512 Confusion, 672 Confusion, 672 Consensus Number, 489 Consensus Problem, 489 Consensus Problem, 489 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Control Hazard, 35 Circular Queue, 107 Control Path, 27 Clock Cycle, 29 Convection, 619		Conflict Misses, 269
Causality, 457 CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 CDG, see Channel Dependence Graph 366 Conflicts, 512 detection, 512 Coccurrence, 512 resolution, 512 Confusion, 672 Confusion, 672 Consensus Number, 489 Consensus Problem, 489 Constant Folding, 179 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Control Hazard, 35 Control Path, 27 Convection, 619	Causal Graph, 458	Conflicting Access, 465
CBRAMs, 592 CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 detection, 512 Occurrence, 512 Confusion, 672 Confusion, 672 Confusion, 672 Consensus Number, 489 Consensus Problem, 489 Consensus Problem, 489 Consensus Problem, 489 Consensus Problem, 489 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Control Hazard, 35 Control Path, 27 Convection, 619	Causal Ordering, 506	Conflicting Accesses, 497
CDG, see Channel Dependence Graph 366 Chain of Trust, 686 Channel, 348, 710 Channel Dependence Graph, 366 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Concert Addressable Memory, see CAM Array 263 Control Path, 27 Convection, 619	Causality, 457	Conflicts, 512
Chain of Trust, 686 resolution, 512 Channel, 348, 710 Confusion, 672 Channel Dependence Graph, 366 Consensus Number, 489 Charge Sharing, 734 Consensus Problem, 489 Checkpoint, 645 Constant Folding, 179 Chemical Mechanical Polishing, 657 Content Addressable Memory, see CAM Array 287 Cipher Block Chaining, 674 Content Addressable Memory, seeCAM Array 263 Ciphertext, 671 Context of a Program, 139 Circuit Switching, 352 Control Hazard, 35 Circular Queue, 107 Control Path, 27 Clock Cycle, 29 Convection, 619	CBRAMs, 592	detection, 512
Channel, 348, 710 Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Constant Folding, 179 Constant Folding, 179 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Context of a Program, 139 Control Hazard, 35 Control Path, 27 Convection, 619	CDG, see Channel Dependence Graph 366	occurrence, 512
Channel Dependence Graph, 366 Charge Sharing, 734 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Consensus Number, 489 Consensus Problem, 489 Consensus Number, 489 Consensus Problem, 489 Consensus Problem, 489 Consensus Problem, 489 Consensus Problem, 489 Consensus Number, 489 Consensus Problem, 489 Content Addressable Memory, see CAM Array 263 Content Addressable Memory, see CAM A	Chain of Trust, 686	resolution, 512
Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Consensus Problem, 489 Constant Folding, 179 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Context of a Program, 139 Control Hazard, 35 Control Path, 27 Convection, 619	Channel, 348, 710	Confusion, 672
Charge Sharing, 734 Checkpoint, 645 Checkpoint, 645 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Consensus Problem, 489 Constant Folding, 179 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Context of a Program, 139 Control Hazard, 35 Control Path, 27 Convection, 619	Channel Dependence Graph, 366	Consensus Number, 489
Checkpoint, 645 Constant Folding, 179 Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Constant Folding, 179 Content Addressable Memory, see CAM Array 263 Content A	Charge Sharing, 734	Consensus Problem, 489
Chemical Mechanical Polishing, 657 Cipher Block Chaining, 674 Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Content Addressable Memory, see CAM Array 263 Content Addressable Memory, see CAM Array 287 Content Addressable Memory, see CAM Array 263 Content Addressable Memory, see CAM Array		Constant Folding, 179
Cipher Block Chaining, 674 Ciphertext, 671 Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Context of a Program, 139 Control Hazard, 35 Control Path, 27 Convection, 619	- · · · · · · · · · · · · · · · · · · ·	<u> </u>
Ciphertext, 671 Context of a Program, 139 Circuit Switching, 352 Control Hazard, 35 Circular Queue, 107 Control Path, 27 Clock Cycle, 29 Convection, 619		
Circuit Switching, 352 Circular Queue, 107 Clock Cycle, 29 Control Hazard, 35 Control Path, 27 Convection, 619		
Circular Queue, 107 Control Path, 27 Clock Cycle, 29 Convection, 619	· · · · · · · · · · · · · · · · · ·	· ·
Clock Cycle, 29 Convection, 619	9,	
	- · · · · · · · · · · · · · · · · · · ·	
	· ·	

Convolutional Layer, 709 Convolutional Neural Networks, see CNNs 709 Convoy Effect, 153 Core, 13, 415 Correct Path, 52 Correctness of Executions, 459 Counter Mode Encryption, 675 Counters, 688 Covert Channel, 696 Credit, 348 Credit based Flow Control, 348 Critical Section, 480 Critical Word First, 270 Crossbar Switch, 385 Cuckoo Hashing, 307 CUDA, 225 block, 226 events, 233 graphs, 231 grid, 226 kernel, 226	Delayed Branches, 37 Delayed Selective Replay, 167 Dennard Scaling, 14 Dependence Check Logic, 102, 106 Dependence Speculation, 155 Design Faults, 651 Design for Debug, 655 Destructive Read, 539 Detected but Unrecoverable Errors, 643 DfD, see Design for Debug 655 DIBL, 616 Diffie-Hellman Key Exchange Protocol, 680 Diffusion, 672 Digital Signature, 679 dim3, 226 Dimension Slicing, 386 Dimension-Ordered Routing, 369 Dipole Moment, 582 Direct Mapped Cache, 261 Direct Tunneling, 616 Directed Acyclic Graph, 49
streams, 231	Directory, 472
thread, 226 Current Summing, 734	Directory Protocol, 472 Disjoint Access Parallelism, 510
Current Summing, 194	Disjoint Lock Atomicity, 518
d-cache , see Data Cache 257	Dispatch, 108
DAG, 49	Dispatcher, 713
Data Cache, 257	Distance Fog, 224
Data Dependence Order, 48	Distributed Cache, 425
Data Flow Optimizations, 178	Distributed Shared Memory, 417
Data Hazard, 33	DMR, see Dual Modular Redundancy 645
Data Integrity, 680	DNNs, 708
Data Interlock, 34	Dopant Density Fluctuations, 657
Data Path, 27	Double Data Rate Memory, 556
Data Prefetching, 324	Doubly Block Circulant Matrix, 729
Data Race, 497	Drain Induced Barrier Lowering, 616
Data-Race-Freedom, 499	DRAM Access Protocols, 551
DDR Memory, 556	DRAM Address Mapping Policies, 574
DDR2 Memory, 557	DRAM Addressing, 574
DDR3 Memory, 557	close page, 575
DDR4 Memory, 557	open page, 575
Dead Code, 180	DRAM Array, 538
Dead Code Elimination, 180	read, 539
Deadlock, 363, 365	refresh, 546
Deadlock Avoidance, 369	sense amplifier, 541
Deadlock Recovery, 369	write, 546
Decode, 27	DRAM Cell, 536
Decoupling Capacitors, 629	DRAM Command Scheduling, 576
Deep Feed-Forward Networks, 709	DRAM Page, 538
Deep Learning, 704	DRAM Scheduling, 572
Deep Neural Networks, see DNNs 708	greedy scheduling, 576

rank round robin scheduling, 576	Fetch Throttling, 628
bank round robin scheduling, 576	Filter Reuse, 716
commands, 576	Fine-grained Multithreading, 424
DRAMs, 536	Finite Difference Method, 621
DRF Memory Models, 503	Finite Element Method, 623
Drowsy Caches, 630	FIT Rate, 638
Dual Modular Redundancy, 645	Flash
DVFS, 612	program/erase cycle, 581
Dynamic NUCA, 402	Flash Clearing, 514
Dynamic Power, 609	Flash Memory, 577
Dynamic Power Management, 625	block, 580
Dynamic RAMs, see DRAMs 536	floating gate transistor, 578
Dynamic Voltage and Frequency Scaling, see DVFS	page, 580
612	read disturbance, 582
012	
F Dtt 970	wear leveling, 581
Early Restart, 270	Flattened Networks, 341
Eavesdropping, 680	Flit, 346
EDA, 46	Floating Gate Transistor, 578
EDO, 554	Flow Control, 347
EEPROM, 577	credit based, 348
Electrical Masking, 642	on-off, 349
Electromigration, 664	Flush+Reload, 698
Electronic Codebook, 674	Flushing the Pipeline, 138
Elmore Delay Model, 293	Flynn's Classification, 423
Embedded DRAM, 593	Folded Bit Line Array Architecture, 541
Emulator, 744	Folded Torus Topology, 340
Enclave, 686, 693	Folding (execution folding), 714
Energy Delay Square Metric, 612	Forward Biasing, 616
EPIC Processors, 194	Forward Slice, 162
EPROM, 577	Forwarding, 39
Error, 637	Forwarding Paths, 40
Error Masking, 642	Fourier's Law, 620
Event Queue, 745	Fowler-Nordheim Tunneling, 616
Evict+Time, 698	FPGA, 215
Execution, 430, 435, 447	FPM, 553
Execution Witness, 447	Fragment Processor, 223
Extended Data Out, see EDO 554	Frame, 274
,	Frame Buffer, 224
Fail-stop Failure Mode, 638	Free list, 106
Failure, 637	Frequency, 43
False Sharing, 478	Freshness, 683
Fast Page Mode, see FPM 553	From-read Edge, 452
Fault, 637	Fully Associative Cache, 262
FB-DIMMs, 559	Fully Buffered DIMMs, see FB-DIMMs 559
Feature Size, 14	Fully Connected Layer, 709
Fence Instruction, 444	Fully Mapped Scheme, 473
FeRAM, 582	runy Mapped Scheme, 475
Feram, 582 Feram Cell, 583	GAg Predictor, 76
Fermi Level, 615	GAp Predictor, 74
Ferroelectric Effect, 582	Gate Oxide Tunneling, 616
Ferroelectric RAM, see FeRAM 582	Gate-Induced Drain Leakage, 617
refroedenic Itawi, see reitawi 302	Gaic-muuccu Diam Deakage, 017

GB, see Global Buffer 713 GIDL, 617 Global Buffer, 713 Global History, 74 Global Miss Rate, 268 Global Wires, 338 GPC, 234 GPGPU, 218, 233 GPU, 213 shader, 218 Graph, 49 Graphics Processing Cluster(GPC), 233 Graphics Processors, 213 Green's Functions, 624 Grid, 226 Ground Plane, 340 GShare Predictor, 79 Gustafson-Barsis's Law, 422 Halo Pixels, 717 Happens-before Relationship, 448 global, 448 hard Disk, 272 Hard Errors, 662 Hardware Threads, 424 Hardware Transactional Memory, 511, 524 Harvard Architecture, 254 Hazucha-Svensson Model, 640 HCI, 663 Head-of-Line(HOL) Blocking, 358 Heat Sink, 618 Heat Transfer Mechanisms, 619 Helper Threads, 329 High Bandwidth Memory, 593 Hit-Miss Predictor, 161 Home Bank, 402 Host Process, 693 Hot Carrier Injection, see HCI 663 Hot-Carrier Injection, 616 HP NonStop, 645 HTM, see Software Transactional Memory 511, see Hardware Transactional Memory 524 Hybrid Memory Cube, 593 Hypercubes, 341	Induction Variables, 182 Inductive Noise, 648 Ineffectual Operations, 730 Inferencing, 708 Injection Rate, 407 Input Buffering, 378 Input Feature Map, 708 Input Stationary, 717 Instruction Cache, 257 Instruction Commit, 135 Instruction Decoding, 83 Instruction Issue, 108 Instruction Packet, 31, 62, 84 Instruction Packet, 31, 62, 84 Instruction Retirement, see Instruction Commit 135 Instruction Select, see Select 114 Instruction Status Table, 65 Instruction Window, 108 Integrity, 671 Intel Processors, 749 Intel SGX, 687 Interposer, 593 IPC, 43 IS, see Input Stationary 717 Isothermal Boundary, 618 Issue, 108 Issue Throttling, 628 Issue Width, 108 Itanium, 197 register remapping, 200 aggressive speculation, 207 instruction group, 200 load boosting, 207 multi-way branch, 199 predication, 205 register stack engine, 203 register stack frame, 201 stop bit, 200 virtual registers, 200 JIT Compilation, 225 Kerckhoff's Principle, 685 Kernel, 226
	Kerckhoff's Principle, 685 Kernel, 226
i-cache , see Instruction Cache 257	L1 Cache, 257
IBM G5, 645 ifmap, see Input Feature Map 708 ILP, 47	Last Level Cache, 535 Latency Speculation, 159 Lateral Heat Conduction, 619

LB, see Local Buffer 713	Memory Consistency, 427, 446, 489
Leakage Power, 614	Memory Consistency, 421, 440, 469 Memory Consistency Model, see Memory Model
Leakage Power Management, 628	446
Leakage-Temperature Feedback Loop, 608	Memory Controller, 571
Legal Execution, 430	Memory Dependences, 126
Legal Sequential Execution, 431	Memory Encryption Engine, 688
LET Rate, 639	Memory Model, 427, 446
Line Edge Roughness, 657	Memory Models, 489
Linear Regression, 705	Memory Operation, 429
Links, 337	Memory Wall, 535
Livelock, 362	Merkle Tree, 690
LLC, 535, 546	Mesh Topology, 340
Load Latency Speculation, 152	MESI Protocol, 467
Load Linked and Store Conditional, 485	Message, 346
Load-store Forwarding, 128	Message Authentication Code, see MAC 682
Load-store Queue, see LSQ 125	Metal Layers, 339
Load-use Hazard, 42	Micro-operation, see Microinstruction 84
Local Buffer, 713	Microbumps, 593
Local History, 74	Microcode Memory, 317
Local Miss Rate, 268	Microinstruction, 84
Local Wires, 338	MIMD, 423
Lock, 480	Minimally Oblivious Routing, 371
Lock Set Algorithm, 504	MISD, 423
Lock-free Algorithms, 487	Miss Penalty, 270
Logical Masking, 642	Miss Status Handling Register, see MSHR 304
Lookahead Routing, 398	Mixed Mode Accesses, 516
Lookup Tables, 131	Model Checking, 652
Loop Fusion, 183	MOESI Protocol, 469
Loop Invariant based Code Motion, 181	Moore's Law, 14
Loop Optimizations, 181	MPMD, 423
Loop Predictor, 72	MRAM, 585
Loop Tiling, 308	MSHR, 304
Loop Unrolling, 184	primary miss, 304
Loop-Carried Dependence, 189	secondary miss, 305
Loosely Coupled Multiprocessors, 417	MTBF, 638
LRU, 267	MTTF, 638
LSQ, 125	MTTR, 638
design, 129	Multicore, 415
forwarding, 128	MultiMaster, 645
load queue and store queue, 129	Multiply and Accumulate Operation, 712
LVPT Table, 161	MultiSlave, 645
,	Multithreaded Execution, 424
MAC, 682, 688	Mutual Exclusion, 482
Man-in-the-middle Attack, 681	,
Mapping of Loops, 713	NBTI, 663
Marking an Instruction, 138	Negative Bias Temperature Instability, see NBTI
Markov Prefetching, 320	663
Markov Property, 320	Network Diameter, 340
Matrix Arbiter, 390	Network Topology, 338
Measurement, 686	bus, 338
Memory Address, 28	Neural Networks, 705

information 700	Dama Fault Chaming Attacks 604
inferencing, 708	Page Fault Snooping Attacks, 694
training, 708 Neuromorphic Circuits, 735	Page Table, 276
Next Line Prefetching, 319	Page Walk, 276 PAp Predictor, 78
9.	-
NLR, see No Local Reuse Architectures 715	Parallel Execution, 432
No Local Reuse Architectures, 715	Parallel Reduction, 719
No-Dep-Cycle, 458	Parameter Variation, 656
NoC, 335	Partial Store Ordering, see PSO 494
NoC Evaluation Metrics, 406	Partial Sum, 712
NoC Simulation, 407	Partially Mapped Scheme, 476
Node Table based Routing, 381	Pass Transistors, 283
Non-blocking Caches, 304	Path Diversity, 341, 371
Non-Selective Replay, 163	Path ORAM, 695
Non-uniform Cache Architectures, see NUCA Ar-	Pattern History Table, 75
chitectures 401	PC Address, 28
Nonces, 683	PCM, 588
Nondeterminism, 649	PE, 712
Nonvolatile Memory, 577	Per-location Sequential Consistency, see PLSC 437
NUCA Architectures, 401	Performance Equation, 43
nvcc, 225	Phase Change Memory, see PCM 588
NVM, 577	Phase Shift Masking, 661
	Phit, 347
Oblivious RAM, see ORAM 695	Photolithography, 656
Oblivious Routing, 371	PHT, see Pattern History Table 75
Off-Axis Illumination, 661	Physical Addresses, 274
ofmap, see Output Feature Map 708	Physical Memory Space, 274
On-chip Network, 335	Physical Register File, 98
On-Off Flow Control, 349	Physical Registers, 98
One-Time Pad, 675	Physically Unclonable Function, seePUF 679
OOO Processor, 48	PIM, 733
Opacity, 516	Pipeline Bubble, 34
Open Bit Line Array Architecture, 541	Pipeline Damping, 648
Open Page Access Policy, 573	Pipeline Diagram, 33
OpenCL, 225	Pipelined Caches, 302
Operand Fetch, 27	Pixel, 708
Optical Proximity Correction, 661	Pixel Engine, 224
ORAM, 695	Placement, 46
Orphan Instructions, 167	Plaintext, 671
OS, see Output Stationary 717	PLSC, 437, 457
Out-of-order Processor, 48	Point of View, 429
Output Feature Map, 708	Pointer Chasing, 327
Output Feedback Mode, 675	Poison Bit, 168
Output Stationary, 717	Polarization, 582
Oxide Thickness Variation, 657	Polymorph Engine, 221, 234
Oxygen Vacancy, 591	attribute setup, 222
	hull shader, 221
P-N Junction Reverse Bias Current, 614	stream output, 222
Packet, 346	tessellation, 222
PAg Predictor, 76	vertex shader, 221
Page, 274	viewport, 222
Page Fault, 277	viewport transformation, 222

Rank, 572 window, 222 RAW Dependence, 33, 54 Pooling Layer, 708 max pooling, 708 RC4, 676 Port, 291 hardware implementation, 677 Power Gating, 628 RC4 Stream Cipher, 676 Power Gating Noise, 629 Read Leveling, 566 Power Grid, 340 Read Postamble, 566 Power Management, 625 Read Preamble, 566 Power Models, 608 Read-from Edge, 451 Power of Atomic Operations, 488 Reconvergence, 241 Power Plane, 340 Redo Log, 515 PowerPC Memory Model, 494 Redox ReRAMs, 590 Pre-execution Techniques, 328 Reduce Operation, 421 Precharging, 281 Reduction, 713 Refresh, 536 Precise Exceptions, 56, 134 Predecoder, 84 Refresh Management, 573 Predicated Execution, 195, 206, 239 Register Alias Table, 99 Register Release, 137 Prefetch Length, 555 Prefetch Width, 558 Register Renaming, 54 Register Spilling, 203 Prefetching Register Write-back, 28 data, see Data Prefetching 324 Registered Memory, 562 instructions, see Instruction Prefetching 319 Prime+Probe, 697 Relations, 449 Private Key, 678 Release Consistency, 494 Release Instruction, 445 Process, 271, 419 Process Variation, 656 Reliability, 637 ReLU Function, 706 Processing Block, 236 Processing Element, see PE 712 Remote Attestation, 687 Rename Table, 98, 99 Processing in Memory, 733 Processor Consistency, 494 Renaming, 96 Rendering, 219 Profiling, 162, 322 Program Order, 48 Reorder Buffer, 135 Program Order Edge, 450 Repeaters, 337 Replay, 162 Program Phase, 256 Programming GPGPUs, 225 Replay Attack, 682 Replay Queue, 166 Properly Synchronized Programs, 502 ReRAM, 590 Pseudo-LRU, 267 Resample and Resync, 561 PSO, 494 PTX, 225 Reservation Stations, 177 Public Key, 678 Resistive RAM, see ReRAM 590 Resistive Switching Phenomenon, 590 PUF, 679 Punchthrough Current, 617 Restoring a Read, 539 Retiming Lemma, 726 QDR Memory, 557 Retirement, 134 Quad Data Rate Memory, 557 Retirement Register File, 140 Return Address Stack, 82 Qualcomm Processors, 759 Quoting Enclave, 693 Reverse Biasing, 616 ROB, see Reorder Buffer 135 Radiation, 619 ROB Entry, 139 Radiation Hardening, 641 Roofline Model, 594 Random Variation, 657 Root of Trust, 686

SIMT, 237 Round Robin Arbitration, 389 Route Computation, 380 Simulator, 744 Router, 337 Simultaneous Multithreading, 424 design, 378 Single Cycle Processor, 30 pipeline, 395 Single Lock Atomicity, 517 Router Bypassing, 398 SingleSlave, 645 SISD, 423 Routing, 46, 361 dynamic, 361 Skewed Associative Caches, 305 static, 361 Sleep State, 629 Row Stationary, 717 Sleep Transistors, 629 SM, 235 Rowhammer Attack, 698 RS. see Row Stationary 717 Snoopy Protocol, 459, 464 Runahead Execution, 328 SoC, 755 Soft Errors, 638 SASS, 225 Software Pipelining, 186 Saturating Counter, 70 epilogue, 191 Scan Chain, 652 prologue, 191 Scheduling, 108 Software Transactional Memory, 511, 518 Scoreboarding, 203 Source Routing, 380 Sealing, 687 Source Synchronous Bus, 557 Secure Architectures, 684 Space-Time Diagram, 353 Security, 671 Spatial Locality, 255 Select, 114 Spatial Reuse, 718 tree based select unit, 114 Speculation, 152 Semi-systolic Array, 725 Speculative Execution Attacks, 699 Semiconductor Package, 617 Speculative VC Allocation, 399 Sense Amplifier, 284, 541 Spin Lock, 444, 483 Separable Allocator, 391 Spin-Transfer Torque, 586 Sequential Consistency, 435, 494 Splicing Attack, 681 Sequential Execution, 430 SPMD, 423 Serializability, 516 Spoofing Attack, 681 Serialization, 430 Squashing, 162 Session Keys, 679 SRAM Array, 279 Set Associative Cache, 264 SRAM Cell, 278 SHA, 681 Stacked Capacitors, 538 shader, 218 Start-gap Wear Leveling, 590 Shared Cache, 425 Starvation, 362, 483 Shmooing, 652 Static NUCA, 401 Short-Circuit Power, 613 Stationarity, 715 Shuffle Traffic, 409 Statistical Static Timing Analysis, 661 Side Channel, 696 Steady-state Analysis, 618 Side-Channel Attacks, 696 Steady-state Thermal Analysis, 619 classification, 696 STM, see Hardware Transactional Memory 511, countermeasures, 699 see Software Transactional Memory 518 Sigmoid Function, 706 Stop-and-go, 632 Signals, 654 Store and Forward Flow Control, 354 Silent Data Corruption, 643 Store Set, 157 Silent Stores, 181 Stream Cipher, 672 Silicon Traps, 663 Streaming Multiprocessor, 235 SIMD, 423 Streaming Processors, 236 SimpleRisc ISA, 741 Strength Reduction, 179

Stress Migration, 664	Time-dependent Dielectric Breakdown, 664
Strict Serializability, 516	Timing Vulnerability Factor, 643
Stride, 155, 324	Timing Window Masking, 642
Stride based Prefetching, 324	TL2 STM, 521
Strongly Coupled Multiprocessors, 417	TLB, 276
STT-MRAM, 586	TMR, see Triple Modular Redundancy 645
Sub-resolution Assist Features, 661	Token based Replay, 170
Subthreshold Leakage, 615	Tomasulo's Algorithm, 177
Summarization, 655	Topological Sort, 454
spatial, 655	Tornado Traffic, 410
temporal, 655	Torus Topology, 340
Superscalar Processor, 48	Total Store Ordering, see TSO 494
Support Vector Machines, 705	Tournament Predictor, 79
Swap Space, 272	TPC, 235
Switch Allocation, 382	Trace, 314
Switch Traversal, 384	Trace Based NoC Simulators, 410
Symmetric Ciphers, 678	Trace Buffers, 655
Synchronization Edge, 453	Trace Cache, 313
Synchronization Instructions, 444	Training, 708
Synchronous DRAM, 555	Trans-silicon Vias, 339
Synthetic Traffic Generation, 407	Transactional Memory, 509, 511
System Call, 138	Transactional Sequential Consistency, 518
Systematic Variation, 657	Transactions, 511, 512
Systolic Array, 725	conflict, 512
Systolic Arrays, 727	eager version management, 514
Systolic Transfer, 719	lazy version management, 515
,	read set, 512, 518
Tag Bus, 113	version management, 513
Tail Recursion, 202	write set, 512, 518
TCB, see Trusted Computing Base 685	Transfers per Second, 558
TEE, see Trusted Execution Environment 686	Transient Analysis, 618
Tejas Architectural Simulator, 743	Transient Faults, 638
Temperature Management, 631	Transient Thermal Analysis, 619
Temperature Map, 618	Translation Lookaside Buffer, see TLB 276
Temperature Model, 617	Transpose Traffic, 408
Temporal Locality, 256	Trench Capacitors, 537
Temporal Reuse, 715	Triple Modular Redundancy, 645
Tessellation, 221	True Sharing, 478
Test and Exchange, 484	Trusted Computing Base, 685
Test and set, 485	Trusted Execution Environment, 686
Texture Mapping, 223	Trusted Platform Module, 686
Thermal Cycling, 665	TSO, 494
Thermal Interface Material, 618	TSVs, 339
Thermal Runaway, 608	Tunneling Magnetoresistance, 585
Thermal-electrical Analogy, 622	Turn Graph, 367
Thin Air Read, 458	Turn Model, 373
Thread, 226, 329, 417	Turns, 373
Thread Engine, 233	
Threat Model, 686	Undo Log, 514
Throughput, 353	Uniprocessor Access Constraint, 455
Tile, 337	Universal Approximator, 704

Unlock, 480

Valence Band, 615 Valiant's Algorithm, 371 Validation, 651, 652

Value Prediction, 161

Vault, 593

Vector Clocks, 505

Verification, 651

Vertical Heat Conduction, 619

Vias, 339

Virtual Channel Allocation, 382

Virtual Channels, 359

deadlock freedom, 375

Virtual Cut Through Flow Control, 356

Virtual Memory, 271, 272

Virtually Indexed Physically Tagged Caches, 311

VLIW, 194

Volatile Memory, 577

Von Neumann Architecture, 254

Wait-free algorithms, 488

Wakeup, 112

WAR Dependence, 54

Warp, 236

Wavefront Allocator, 392

WAW Dependence, 54

Way Prediction, 307

Weak Consistency, 494

Weak Ordering, see Weak Consistency 494

Wear Leveling, 581

Weight Reuse, 716

Weight Stationary, 716

Window of Vulnerability, 163

Workarounds for Design Faults, 654

Working Set, 256

Wormhole Flow Control, 357

WP Axiom, 443

Write Caching, 573

Write Cancellation, 589

Write Leveling, 568

Write Pausing, 589

Write Postamble, 568

Write Preamble, 568

Write Propagation Axiom, 443

Write Recovery Time, 546

Write Serialization Axiom, 443

Write Serialization Edge, 452

Write-Invalidate Protocol, 464

Write-Update Protocol, 459

Wrong Path, 36, 52

WS, see Weight Stationary 716

WS Axiom, 443

X-Y Routing, 369

Z-depth, 224