

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming Deadlines
 - Homework 7: next Friday @ 11:59 pm
 - Lab 6: Monday 10/31 @ 11:59 pm
 - Nothing due this week
- Midterm Exam
 - Wednesday 10/19 (MW Section) and Thursday 10/20 (TuTh Section)
 - in-person, closed-book
- Live QA Session on Piazza every Friday 4:30-5:30 pm
- Video for debugging using VS Code

Previous lecture

- LZW
 - implementation concerns
- Shannon's Entropy
- Comparing LZW vs Huffman
- Burrows-Wheeler Compression Algorithm
- ADT Priority Queue
 - array and BST implementations

This Lecture

- ADT Priority Queue (PQ)
 - Heap implementation
- Heap Sort
- Indexable PQ

Repetitive Highest Priority Problem

Input:

- a (large) dynamic set of data items
 - each item has a priority
 - e.g., highest priority is minimum item
 - e.g., highest priority is maximum item
- a stream of zero or more of each of the following operations
 - Find a highest priority item in the set
 - Insert an item to the set
 - Remove a highest priority item from the set

Examples

- Selection sort
 - Repeatedly, remove a minimum item from the array and insert it in its correct position in the sorted array
- Huffman trie construction
 - Each iteration: remove a minimum tree from the forest (twice) and insert a new tree

Let's create an ADT!

- The ADT Priority Queue (PQ)
- Primary operations of the PQ:
 - O Insert
 - Find item with highest priority
 - e.g., findMin() or findMax()
 - Remove an item with highest priority
 - e.g., removeMin() or removeMax()

Muddiest Points

Q: PQ runtimes for different data structures

	findMin	removeMin	insert
Unsorted Array	O(n)	O(n)	O(1)
Sorted Array	O(1)	O(1)	O(n)
Red-Black BST	O(log n)	O(log n)	O(log n)

Muddiest Points

Q: PQ runtimes for different data structures

	findMin	removeMin	insert
Unsorted Array	O(n)	O(n)	O(1)
Sorted Array	O(1)	O(1)	O(n)
Red-Black BST	O(log n)	O(log n)	O(log n)

Is a BST overkill to implement ADT PQ?

- Balanced BST (e.g., RB-BST) provides log n runntime time for all operations
- Our find and remove operations only need the highest priority item, not to find/remove any item
 - O Can we take advantage of this to improve our runtime?
 - Yes!

The heap

- A heap is complete binary tree such that for each node T in the tree:
 - T.item is of a higher priority than T.right_child.item
 - T.item is of a higher priority than T.left_child.item

- It does not matter how T.left_child.item relates to T.right_child.item
 - O This is a relaxation of the approach needed by a BST

The *heap property*

Min Heap Example

• In a Min Heap, a highest priority item is a minimum item

Heap PQ runtimes

- Find is easy
 - Simply the root of the tree
 - $\Theta(1)$
- Remove and insert are not quite so trivial
 - O The tree is modified and the heap property must be maintained

Heap insert

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property

Min heap insert

Heap remove

- Tricky to delete root...
 - O So let's simply overwrite the root with the item from the last leaf and delete the last leaf
 - But then the root is violating the heap property...
 - So we push the root down the tree until it is supporting the heap property

Min heap removal

Heap runtimes

- Find
 - \bigcirc $\Theta(1)$
- Insert and remove
 - O Height of a complete binary tree is Ig n
 - At most, upheap and downheap operations traverse the height of the tree
 - \bigcirc Hence, insert and remove are $\Theta(\lg n)$

Heap implementation

- Simply implement tree nodes like for BST
 - This requires overhead for dynamic node allocation
 - O Also must follow chains of parent/child relations to traverse the tree
- Note that a heap will be a complete binary tree...
 - O We can easily represent a complete binary tree using an array

Storing a heap in an array

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
 - \bigcirc parent(i) = $\lfloor (i 1) / 2 \rfloor$
 - left_child(i) = 2i + 1
 - O right_child(i) = 2i + 2

For arrays indexed from 0

Can we turn any array into a heap?

- Yes!
- Any array can be thought of as a complete tree!
- We can change it into a heap using the following algorithm
- Scan through the array right to left starting from the rightmost non-leaf
 - O the largest index *i* such that left_child(i) is a valid index (i.e., < n)
 - \bigcirc 2i+1 < n \rightarrow i < (n-1)/2
 - O push the node down the tree until it is supporting the heap property
- This is called the **Heapify** operation

Heapify Running time

- Upper bound analysis:
 - O We make about n/2 downheap operations
 - log n each
 - O So, O(n log n)

Heapify Running time

- A tighter analysis
 - O for each node that we start from, we make at most *height[node]* swaps

Heapify Running time: A tighter analysis

- Runtime = $\sum_{i=1}^{n} height[n]$
- = $\sum_{i=0}^{\log n} number\ of\ nodes\ with\ height\ i$
- Assume a full tree
 - \bigcirc A node with height *i* has 2^{*i*} nodes in its subtree including itself
 - O Assume k nodes with height i:
 - O they will have $k2^i$ nodes in their subtrees
 - \bigcirc $k2^i <= n \rightarrow k <= n/2^i$
- So, at most n/2ⁱ nodes exist with height I
- = $\theta(largest term) = \theta(n)$

Heap Sort

- Heapify the numbers
 - MAX heap to sort ascending
 - MIN heap to sort descending
- "Remove" the root
 - O Don't actually delete the leaf node
- Consider the heap to be from 0 .. length 1
- Repeat

Heap sort analysis

- Runtime:
 - O Worst case:
 - n log n
- In-place?
 - O Yes
- Stable?
 - O No

Storing Objects in PQ

- What if we want to **update** an Object in the heap?
 - O What is the runtime to find an arbitrary item in a heap?
 - $\Theta(n)$
 - \blacksquare Hence, updating an item in the heap is $\Theta(n)$
 - O Can we improve of this?
 - Back the PQ with something other than a heap?
 - Develop a clever workaround?

Indirection

- Maintain a second data structure that maps item IDs to each item's current position in the heap
- This creates an indexable PQ

Indirection example setup

- Let's say I'm shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.
- Keep objects of the following type in the heap:

```
class CardPrice implements Comparable<CardPrice>{
      public String store;
      public double price;
      public CardPrice(String s, double p) { ... }
      public int compareTo(CardPrice o) {
            if (price < o.price) { return -1; }</pre>
            else if (price > o.price) { return 1; }
            else { return 0; }
```

Indirection example

- n = new CardPrice("NE", 333.98);
- a = new CardPrice("AMZN", 339.99);
- x = new CardPrice("NCIX", 338.00);
- b = new CardPrice("BB", 349.99);
- Update price for NE: 340.00
- Update price for NCIX: 345.00
- Update price for BB: 200.00

Indirection

"NE":2

"AMZN":1

"NCIX":3

"BB":0

Indexable PQ Discussion

- How are our runtimes affected?
- space utilization?
- how should we implement the indirection?
- what are the tradeoffs?