

## Refine Search

### Search Results -

| Terms                                                   | Documents |
|---------------------------------------------------------|-----------|
| monitor\$3 near5 tim\$3 near5 process\$3 near5 activity | 81        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Database:</b> <div style="background-color: black; color: white; padding: 2px 0;"> <a href="#">US Pre-Grant Publication Full-Text Database</a><br/> <a href="#">US Patents Full-Text Database</a><br/> <a href="#">US OCR Full-Text Database</a> </div> <div style="background-color: white; color: black; padding: 2px 0;"> <a href="#">EPO Abstracts Database</a><br/> <a href="#">JPO Abstracts Database</a><br/> <a href="#">Derwent World Patents Index</a><br/> <a href="#">IBM Technical Disclosure Bulletins</a> </div> | <b>Search:</b> <div style="border: 1px solid black; padding: 2px; width: 150px; height: 40px; vertical-align: top;"> <input type="text" value="L6"/> </div> <div style="display: flex; justify-content: space-between; width: 150px;"> <div style="flex: 1; text-align: right;"> <input type="button" value="Refine Search"/> </div> <div style="flex: 1; text-align: left;"> <input type="button" value="Recall Text"/> </div> <div style="flex: 1; text-align: left;"> <input type="button" value="Clear"/> </div> <div style="flex: 1; text-align: left;"> <input type="button" value="Interrupt"/> </div> </div> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Search History

**DATE:** Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

| <u>Set Name</u>                                | <u>Query</u>                                                           | <u>Hit Count</u> | <u>Set Name</u> |
|------------------------------------------------|------------------------------------------------------------------------|------------------|-----------------|
| side by side                                   |                                                                        |                  | result set      |
| <i>DB=USPT,USOC; PLUR=YES; OP=OR</i>           |                                                                        |                  |                 |
| <u>L6</u>                                      | monitor\$3 near5 tim\$3 near5 process\$3 near5 activity                | 81               | <u>L6</u>       |
| <u>L5</u>                                      | monitor\$3 near5 tim\$3 near5 process\$3 near5 (activity or operation) | 390              | <u>L5</u>       |
| <i>DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</i> |                                                                        |                  |                 |
| <u>L4</u>                                      | L3                                                                     | 0                | <u>L4</u>       |
| <i>DB=USPT,USOC; PLUR=YES; OP=OR</i>           |                                                                        |                  |                 |
| <u>L3</u>                                      | L2                                                                     | 23               | <u>L3</u>       |
| <i>DB=USPT; PLUR=YES; OP=OR</i>                |                                                                        |                  |                 |
| <u>L2</u>                                      | monitor\$3 near10 tim\$3 near10 (processing near5 activity)            | 23               | <u>L2</u>       |
| <u>L1</u>                                      | monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity)            | 111              | <u>L1</u>       |

END OF SEARCH HISTORY

## Refine Search

### Search Results -

| Terms                                                       | Documents |
|-------------------------------------------------------------|-----------|
| monitor\$3 near10 tim\$3 near10 (processing near5 activity) | 23        |

**Database:**

- US Pre-Grant Publication Full-Text Database
- US Patents Full-Text Database
- US OCR Full-Text Database
- EPO Abstracts Database
- JPO Abstracts Database
- Derwent World Patents Index
- IBM Technical Disclosure Bulletins

**Search:**

L2

### Search History

**DATE:** Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

**Set Name** Query  
side by side

*DB=USPT; PLUR=YES; OP=OR*

|                                                                | <b>Hit Count</b> | <b>Set Name</b> |
|----------------------------------------------------------------|------------------|-----------------|
| L2 monitor\$3 near10 tim\$3 near10 (processing near5 activity) | 23               | <u>L2</u>       |
| L1 monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity) | 111              | <u>L1</u>       |

END OF SEARCH HISTORY

## Refine Search

### Search Results -

| Terms | Documents |
|-------|-----------|
| L2    | 23        |

**Database:**

|                                             |
|---------------------------------------------|
| US Pre-Grant Publication Full-Text Database |
| US Patents Full-Text Database               |
| US OCR Full-Text Database                   |
| EPO Abstracts Database                      |
| JPO Abstracts Database                      |
| Derwent World Patents Index                 |
| IBM Technical Disclosure Bulletins          |

**Search:**

L3

Refine Search

Recall Text

Clear

Interrupt

### Search History

DATE: Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

Set Name Query  
side by side

Hit Count Set Name  
result set

DB=USPT,USOC; PLUR=YES; OP=OR

L3 L2

23 L3

DB=USPT; PLUR=YES; OP=OR

L2 monitor\$3 near10 tim\$3 near10 (processing near5 activity)

23 L2

L1 monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity)

111 L1

END OF SEARCH HISTORY

## Refine Search

### Search Results -

| Terms | Documents |
|-------|-----------|
| L3    | 0         |

**Database:** US Pre-Grant Publication Full-Text Database  
US Patents Full-Text Database  
US OCR Full-Text Database  
EPO Abstracts Database  
JPO Abstracts Database  
Derwent World Patents Index  
IBM Technical Disclosure Bulletins

**Search:**

### Search History

**DATE:** Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

**Set Name** Query  
side by side

**Hit Count** Set Name  
result set

*DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR*

L4 L3 0 L4

*DB=USPT,USOC; PLUR=YES; OP=OR*

L3 L2 23 L3

*DB=USPT; PLUR=YES; OP=OR*

L2 monitor\$3 near10 tim\$3 near10 (processing near5 activity) 23 L2

L1 monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity) 111 L1

END OF SEARCH HISTORY

## Refine Search

### Search Results -

| Terms                                                                                                       | Documents |
|-------------------------------------------------------------------------------------------------------------|-----------|
| (361/323  361/683  307/60  340/636  713/320  713/321  713/322  713/323  713/501<br> 713/600  713/300).ccls. | 5362      |

**Database:**

|                                             |
|---------------------------------------------|
| US Pre-Grant Publication Full-Text Database |
| US Patents Full-Text Database               |
| US OCR Full-Text Database                   |
| EPO Abstracts Database                      |
| JPO Abstracts Database                      |
| Derwent World Patents Index                 |
| IBM Technical Disclosure Bulletins          |

**Search:**

L8

Refine Search

Recall Text    Clear    Interrupt

### Search History

DATE: Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

Set Name Query  
side by side

Hit Count Set Name  
result set

*DB=USPT,USOC; PLUR=YES; OP=OR*

|           |                                                           |      |           |
|-----------|-----------------------------------------------------------|------|-----------|
| <u>L8</u> | 713/320-323,501,600,300;361/323,683;340/636;307/60.cccls. | 5362 | <u>L8</u> |
|-----------|-----------------------------------------------------------|------|-----------|

|           |                       |    |           |
|-----------|-----------------------|----|-----------|
| <u>L7</u> | 713/\$3.cccls. and l6 | 17 | <u>L7</u> |
|-----------|-----------------------|----|-----------|

|           |                                                         |    |           |
|-----------|---------------------------------------------------------|----|-----------|
| <u>L6</u> | monitor\$3 near5 tim\$3 near5 process\$3 near5 activity | 81 | <u>L6</u> |
|-----------|---------------------------------------------------------|----|-----------|

|           |                                                                        |     |           |
|-----------|------------------------------------------------------------------------|-----|-----------|
| <u>L5</u> | monitor\$3 near5 tim\$3 near5 process\$3 near5 (activity or operation) | 390 | <u>L5</u> |
|-----------|------------------------------------------------------------------------|-----|-----------|

*DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR*

|           |    |   |           |
|-----------|----|---|-----------|
| <u>L4</u> | L3 | 0 | <u>L4</u> |
|-----------|----|---|-----------|

*DB=USPT,USOC; PLUR=YES; OP=OR*

|           |    |    |           |
|-----------|----|----|-----------|
| <u>L3</u> | L2 | 23 | <u>L3</u> |
|-----------|----|----|-----------|

*DB=USPT; PLUR=YES; OP=OR*

|           |                                                             |    |           |
|-----------|-------------------------------------------------------------|----|-----------|
| <u>L2</u> | monitor\$3 near10 tim\$3 near10 (processing near5 activity) | 23 | <u>L2</u> |
|-----------|-------------------------------------------------------------|----|-----------|

|           |                                                             |     |           |
|-----------|-------------------------------------------------------------|-----|-----------|
| <u>L1</u> | monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity) | 111 | <u>L1</u> |
|-----------|-------------------------------------------------------------|-----|-----------|

END OF SEARCH HISTORY

## Refine Search

### Search Results -

|              |                  |
|--------------|------------------|
| <b>Terms</b> | <b>Documents</b> |
| L6 and L8    | 15               |

|                  |                                                                                                                                                                                                                                                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Database:</b> | <a href="#">US Pre-Grant Publication Full-Text Database</a><br><a href="#">US Patents Full-Text Database</a><br><a href="#">US OCR Full-Text Database</a><br><a href="#">EPO Abstracts Database</a><br><a href="#">JPO Abstracts Database</a><br><a href="#">Derwent World Patents Index</a><br><a href="#">IBM Technical Disclosure Bulletins</a> |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Search:</b><br><input style="width: 100%; height: 40px; border: 1px solid black; padding: 5px; margin-bottom: 5px;" type="text" value="L9"/> <div style="border: 1px solid black; padding: 2px; display: flex; align-items: center; gap: 10px;"> <span style="border: 1px solid black; padding: 2px 5px; border-radius: 5px; text-decoration: none; color: inherit;">Refine Search</span> <span style="border: 1px solid black; padding: 2px 5px; border-radius: 5px; text-decoration: none; color: inherit;">Recall Text</span> <span style="border: 1px solid black; padding: 2px 5px; border-radius: 5px; text-decoration: none; color: inherit;">Clear</span> <span style="border: 1px solid black; padding: 2px 5px; border-radius: 5px; text-decoration: none; color: inherit;">Interrupt</span> </div> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Search History

**DATE:** Monday, August 09, 2004 [Printable Copy](#) [Create Case](#)

**Set Name** Query  
side by side

*DB=USPT,USOC; PLUR=YES; OP=OR*

| <u>L9</u> | 16 and L8                                                              | 15   | <u>L9</u> |
|-----------|------------------------------------------------------------------------|------|-----------|
| <u>L8</u> | 713/320-323,501,600,300;361/323,683;340/636,307/60.ccls.               | 5362 | <u>L8</u> |
| <u>L7</u> | 713/\$3.ccls. and 16                                                   | 17   | <u>L7</u> |
| <u>L6</u> | monitor\$3 near5 tim\$3 near5 process\$3 near5 activity                | 81   | <u>L6</u> |
| <u>L5</u> | monitor\$3 near5 tim\$3 near5 process\$3 near5 (activity or operation) | 390  | <u>L5</u> |

*DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR*

|           |    |   |           |
|-----------|----|---|-----------|
| <u>L4</u> | L3 | 0 | <u>L4</u> |
|-----------|----|---|-----------|

*DB=USPT,USOC; PLUR=YES; OP=OR*

|           |    |    |           |
|-----------|----|----|-----------|
| <u>L3</u> | L2 | 23 | <u>L3</u> |
|-----------|----|----|-----------|

*DB=USPT; PLUR=YES; OP=OR*

|           |                                                             |     |           |
|-----------|-------------------------------------------------------------|-----|-----------|
| <u>L2</u> | monitor\$3 near10 tim\$3 near10 (processing near5 activity) | 23  | <u>L2</u> |
| <u>L1</u> | monitor\$3 near10 tim\$3 near10 (process\$3 near5 activity) | 111 | <u>L1</u> |

END OF SEARCH HISTORY

EAST - [Untitled1:1]

File View Edit Tools Window Help

Drafts Pending Active (6) monitor\$3 near5 tim\$3 near5 (processing near5 activity) Saved Favorites Tagged (0) UDC Queue Trash

Search List Browse Queue Clear DBs USPAT Plurals Highlight all hit terms initially

BRS I... IS&R... Image Text HTML

| Type | L # | Hits | Search Text                                                 | DBs   | Time Stamp       | Comments | Error | Definition | Err |
|------|-----|------|-------------------------------------------------------------|-------|------------------|----------|-------|------------|-----|
| 1    | BRS | L1   | 6 monitor\$3 near5 tim\$3 near5 (processing near5 activity) | USPAT | 2004/08/09 17:18 |          |       |            | 0   |



- Drafts
- Pending
- Active
  - L1: (6) monitor\$3 near5 tim\$3
- Failed
- Saved
- Favorites
- Tagged (0)
- UDC
- Queue
- Trash

Search
Up
Browse
Queue
Clear

DBs
USPAT
 Plurals

Default operator:
OR
 Highlight all hit terms initially

monitor\$3 near5 tim\$3 near5 (processing near5 activity)

|   | U                        | I                        | Document ID   | Issue Date | Pages | Title                                                   | Current OR | Current XRef         | R |
|---|--------------------------|--------------------------|---------------|------------|-------|---------------------------------------------------------|------------|----------------------|---|
| 1 | <input type="checkbox"/> | <input type="checkbox"/> | US 6427211 B2 | 20020730   | 23    | Real-time power conservation and thermal management for | 713/320    | 713/322;<br>713/323; |   |
| 2 | <input type="checkbox"/> | <input type="checkbox"/> | US 5982837 A  | 19991109   | 11    | Automatic baud rate detector                            | 375/377    |                      |   |
| 3 | <input type="checkbox"/> | <input type="checkbox"/> | US 5959277 A  | 19990928   | 17    | Gaming machine system operable with general             | 235/380    | 463/25;<br>463/29;   |   |
| 4 | <input type="checkbox"/> | <input type="checkbox"/> | US 5811772 A  | 19980922   | 15    | Gaming machine system operable with general             | 235/380    | 463/25;<br>902/23    |   |
| 5 | <input type="checkbox"/> | <input type="checkbox"/> | US 5345589 A  | 19940906   | 9     | Centralized monitoring of activity in a distributed     | 718/100    | 709/248              |   |
| 6 | <input type="checkbox"/> | <input type="checkbox"/> | US 5345584 A  | 19940906   | 16    | System for managing data storage based on               | 711/170    |                      |   |



» See

## Welcome to IEEE Xplore®

- Home
- What Can I Access?
- Log-out

## Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

## Search

- By Author
- Basic
- Advanced

## Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

## IEEE Enterprise

- Access the IEEE Enterprise File Cabinet

 Print Format

Your search matched **20** of **1060766** documents.  
A maximum of **500** results are displayed, **15** to a page, sorted by **Relevance Descending** order.

## Refine This Search:

You may refine your search by editing the current search expression or enter a new one in the text box.

Check to search within this result set

## Results Key:

**JNL** = Journal or Magazine **CNF** = Conference **STD** = Standard

**1 Monitoring neuronal oscillations and signal transmission between cortical regions using time-frequency analysis of electroencephalogram activity**

*Haykin, S.; Racine, R.J.; Yan Xu; Chapman, C.A.;*  
Proceedings of the IEEE, Volume: 84, Issue: 9, Sept. 1996  
Pages:1295 - 1301

[\[Abstract\]](#) [\[PDF Full-Text \(1012 KB\)\]](#) **IEEE JNL**

**2 Multi-channel EEG activity correlation analysis to detect the onset of cerebral ischemia**

*Czinege, L.; Urbanics, R.; Farkas, Z.;*  
Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, 3-6 Nov. 1994  
Pages:1230 - 1231 vol.2

[\[Abstract\]](#) [\[PDF Full-Text \(184 KB\)\]](#) **IEEE CNF**

**3 Circadian dynamics of respiratory parameters from ambulatory monitoring**

*Raciti, M.; Pisani, P.; Emdin, M.; Carpeggiani, C.; Ruschi, S.; Kraft, G.; Francesconi, R.; Membretti, G.; Marchesi, C.;*  
Computers in Cardiology 1994, 25-28 Sept. 1994  
Pages:581 - 584

[\[Abstract\]](#) [\[PDF Full-Text \(288 KB\)\]](#) **IEEE CNF**

**4 Detection of seizures from small samples using nonlinear dynamic system theory**

*Yaylali, I.; Kocak, H.; Jayakar, P.;*  
Biomedical Engineering, IEEE Transactions on , Volume: 43 , Issue: 7 , July 1  
Pages:743 - 751

[\[Abstract\]](#) [\[PDF Full-Text \(828 KB\)\]](#) [IEEE JNL](#)

---

**5 Practical solutions for the shutdown process in industrial facilities depending on network disturbances**

*Drera, G.; Pedrazzini, S.; Previ, A.; Tonelli, L.;*  
Electricity Distribution, 2001. Part 1: Contributions. CIRED. 16th International Conference and Exhibition on (IEE Conf. Publ No. 482) , Volume: 2 , 18-21 Ju 2001  
Pages:5 pp. vol.2

[\[Abstract\]](#) [\[PDF Full-Text \(588 KB\)\]](#) [IEE CNF](#)

---

**6 Human EEG dimensionality and depth of anesthesia**

*Watt, R.C.; Springfield, C.L.; Maslana, E.S.; Kanemoto, A.; Mylrea, K.;*  
Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE , 3-6 Nov. 1994  
Pages:223 - 224 vol.1

[\[Abstract\]](#) [\[PDF Full-Text \(152 KB\)\]](#) [IEEE CNF](#)

---

**7 Bird hazard detection with airport surveillance radar**

*Bruder, J.A.; Cavo, V.N.; Wicks, M.C.;*  
Radar 97 (Conf. Publ. No. 449) , 14-16 Oct. 1997  
Pages:160 - 163

[\[Abstract\]](#) [\[PDF Full-Text \(324 KB\)\]](#) [IEE CNF](#)

---

**8 Electrochromic mechanism study of corona poled electro-optic poly films**

*Chen Gangjin; Xia Zhongfu; Zhang Yewen;*  
Properties and Applications of Dielectric Materials, 2000. Proceedings of the 6 International Conference on , Volume: 2 , 21-26 June 2000  
Pages:741 - 744 vol.2

[\[Abstract\]](#) [\[PDF Full-Text \(268 KB\)\]](#) [IEEE CNF](#)

---

**9 On-line testing for VLSI**

*Nicolaidis, M.;*  
Test Conference, 1997. Proceedings., International , 1-6 Nov. 1997  
Pages:1042

[\[Abstract\]](#) [\[PDF Full-Text \(84 KB\)\]](#) [IEEE CNF](#)

---

**10 Time-frequency signal analysis applied to EEG signals associated with eye blinks**

*Varner, J.L.; Rohrbaugh, J.W.; Sirevaag, E.J.; Packingham, K.; Stern, J.A.;*  
Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the

IEEE , Volume: 3 , 31 Oct.-3 Nov. 1996  
Pages:1013 - 1014 vol.3

[\[Abstract\]](#) [\[PDF Full-Text \(128 KB\)\]](#) [IEEE CNF](#)

---

**11 Content-based scalable H.263 video coding for road traffic monitor based on regularity of video content**

*Ho, W.K.-H.; Lun, D.P.-K.;*  
Intelligent Multimedia, Video and Speech Processing, 2001. Proceedings of 2C International Symposium on , 2-4 May 2001  
Pages:324 - 327

[\[Abstract\]](#) [\[PDF Full-Text \(428 KB\)\]](#) [IEEE CNF](#)

---

**12 Taylor Enterprise Dynamics**

*Nordgren, W.B.;*  
Simulation Conference, 2001. Proceedings of the Winter , Volume: 1 , 9-12 D 2001  
Pages:269 - 271 vol.1

[\[Abstract\]](#) [\[PDF Full-Text \(197 KB\)\]](#) [IEEE CNF](#)

---

**13 Heart rate variability after coronary artery bypass grafting**

*Suda, Y.; Otsuka, K.; Ban, T.; Ichikawa, S.; Higashita, R.; Takeuchi, Y.;*  
Computers in Cardiology 1999 , 26-29 Sept. 1999  
Pages:607 - 610

[\[Abstract\]](#) [\[PDF Full-Text \(264 KB\)\]](#) [IEEE CNF](#)

---

**14 MIDAS-miniature intelligent domiciliary alarm system-a practical application of telecare**

*Doughty, K.; Isak, R.; King, P.J.; Smith, P.; Williams, G.;*  
[Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Confere 1999. Proceedings of the First Joint , Volume: 2 , 13-16 Oct. 1999  
Pages:691 vol.2

[\[Abstract\]](#) [\[PDF Full-Text \(76 KB\)\]](#) [IEEE CNF](#)

---

**15 The TASTE-model and the EPM-system: conceptual designs for exploitation and exploration of aggregated emission inventory inform in environmental monitoring**

*Misseyer, M.P.; Spoor, E.R.K.; Scholten, H.J.;*  
System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on , Volume: 7 , 6-9 Jan. 1998  
Pages:428 - 440 vol.7

[\[Abstract\]](#) [\[PDF Full-Text \(1164 KB\)\]](#) [IEEE CNF](#)

---

[1](#) [2](#) [Next](#)

---



## Welcome to IEEE Xplore®

- Home
- What Can I Access?
- Log-out

## Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

## Search

- By Author
- Basic
- Advanced

## Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

## IEEE Enterprise

- Access the IEEE Enterprise File Cabinet

 Print Format

Search Results [PDF FULL-TEXT 468 KB] PREV NEXT DOWNLOAD CITATION

**Design verification of a super-scalar RISC processor**

Turumella, B. Kabakibo, A. Bogadi, M. Menon, K. Thusoo, S. Nguyen, L. Saxena, M.

HaL Comput. Syst., Campell, CA, USA ;

*This paper appears in: Fault-Tolerant Computing, 1995. FTCS-25. Digest Papers., Twenty-Fifth International Symposium on*

Meeting Date: 06/27/1995 - 06/30/1995

Publication Date: 27-30 June 1995

Location: Pasadena, CA USA

On page(s): 472 - 477

Reference Cited: 7

Inspec Accession Number: 5028582

**Abstract:**

The paper provides an overview of the design verification methodology for Ha processor development. This activity covered approximately two and a half design development time. Objectives and challenges are discussed and the methodology is described. Monitoring mechanisms that give high observability of internal design states, novel features that increase the simulation speed, and automatic result checking are described. Also presented for the first time, is an analysis of the design defects discovered during the verification process. Such an analysis is useful in augmenting verification programs to target common design defects

**Index Terms:**

HaL Sparc64 processor development automatic result checking tools computer architecture computer testing design defects design verification formal verification integrated circuit testing internal design states monitoring mechanisms observability reduced instruction set simulation speed software tools super-scalar RISC processor verification programs virtual machines HaL Sparc64 processor development automatic result checking tools computer architecture computer testing design defects design verification formal verification integrated circuit testing internal design states monitoring mechanisms observability reduced instruction set simulation speed software tools super-scalar RISC processor verification programs virtual machines

**Documents that cite this document**

There are no citing documents available in IEEE Xplore at this time.

US-PAT-NO: 6427211

DOCUMENT-IDENTIFIER: US 6427211 B2

TITLE: Real-time power conservation and thermal management for electronic devices

----- KWIC -----

Claims Text - CLTX (21):

21. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the utilization percentage of said processing unit.

Claims Text - CLTX (31):

31. An apparatus comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to the utilization percentage of said processing unit being below a preselected level and/or temperature associated with said processing unit.

Claims Text - CLTX (33):

33. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to one of: a) the utilization percentage of said processing unit being below a preselected level; b) temperature associated with said processing unit; and c) the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.



(12) **United States Patent**  
Watts, Jr.

(10) Patent No.: **US 6,427,211 B2**  
(45) Date of Patent: **Jul. 30, 2002**

(54) **REAL-TIME POWER CONSERVATION AND THERMAL MANAGEMENT FOR ELECTRONIC DEVICES**

(75) Inventor: La Vaughn F. Watts, Jr., Austin, TX (US)

(73) Assignee: Texas Instruments Incorporated, Dallas, TX (US)

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/727,897

(22) Filed: Dec. 1, 2000

**Related U.S. Application Data**

(62) Division of application No. 08/395,335, filed on Feb. 28, 1995, now Pat. No. 6,158,012, which is a continuation-in-part of application No. 08/623,831, filed on Apr. 12, 1993, now Pat. No. 6,005,336, which is a continuation of application No. 07/429,270, filed on Oct. 30, 1990, now Pat. No. 5,218,704.

(51) Int. Cl. <sup>7</sup> ..... G06F 1/34; G06F 1/08  
(52) U.S. Cl. ..... 713/320; 713/322; 713/323; 713/501

(58) Field of Search ..... 713/501, 300, 713/321, 322, 323, 340, 320; 700/14, 714/14; 327/519; 702/130, 132

(56) **References Cited**

**U.S. PATENT DOCUMENTS**

|             |         |                 |         |
|-------------|---------|-----------------|---------|
| 5,167,026 A | 11/1992 | Smith et al.    | 395/375 |
| 5,169,314 A | 2/1993  | Georgiou et al. | 307/271 |
| 5,287,292 A | 2/1994  | Kenny et al.    | 364/550 |
| 5,339,445 A | 8/1994  | Gasztonyi       | 395/750 |

|             |         |                    |         |
|-------------|---------|--------------------|---------|
| 5,414,880 A | 3/1995  | Canova, Jr. et al. | 395/750 |
| 5,475,847 A | 12/1995 | Ikeda              | 395/750 |
| 5,490,059 A | 2/1996  | Malalingah et al.  | 364/166 |
| 5,493,684 A | 2/1996  | Gephart et al.     | 395/750 |
| 5,502,838 A | 3/1996  | Kifnals            | 395/550 |
| 5,504,908 A | 4/1996  | Ikeda              | 395/750 |

**FOREIGN PATENT DOCUMENTS**

|    |              |         |
|----|--------------|---------|
| EP | 0 426 410 A3 | 5/1991  |
| EP | 0 501 655 A3 | 9/1992  |
| EP | 0 586 395 A1 | 10/1993 |
| WO | WO 92/10032  | 6/1992  |

Primary Examiner—Gopal C. Ray

(74) Attorney, Agent, or Firm—Ronald O. Neerings; Wade James Brady, III; Frederick J. Telsley, Jr.

(57) **ABSTRACT**

A real-time power conservation and thermal management apparatus and method for portable computers employs a monitor (40) to determine whether a CPU may rest based upon a real-time sample of the CPU activity and temperature levels and to activate a hardware selector (500, 510, 520, 530) to carry out the monitor's determination. If the monitor determines the CPU may rest, the hardware selector reduces CPU clock time (280); if the CPU is to be active, the hardware selector returns the CPU to its previous high speed clock level (330). Switching back into full operation from its rest state occurs without a user having to request it and without any delay in the operation of the computer while waiting for the computer to return to a "ready" state. Furthermore, the monitor adjusts the performance level of the computer to manage power conservation and thermal management in response to the real-time sampling of CPU activity (10) and temperature (24). Such adjustments are accomplished within the CPU cycles and do not affect the user's perception of performance and do not affect any system application software executing on the computer.

65 Claims, 4 Drawing Sheets



[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 6 of 17

File: USPT

Jan 9, 2001

DOCUMENT-IDENTIFIER: US 6173409 B1

TITLE: Real-time power conservation for electronic device having a processor

Current US Original Classification (1):713/322Current US Cross Reference Classification (1):713/601

CLAIMS:

9. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of activity time within said CPU; anda clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU.

14. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of activity time within said CPU; anda clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU in response to usage of said CPU being below a preselected level.

15. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of activity time within said CPU; anda clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU to control the amount of activity time in said CPU.

16. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of activity time within said CPU; anda clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU to optimize the activity time within said CPU in response to usage of said CPU being below a preselected level.

17. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of idle time and activity time within said CPU; and

a clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU.

18. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of idle time and activity time within said CPU; and

a clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU in response to usage of said CPU being below a preselected level.

19. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of idle time and activity time within said CPU; and

a clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU to control the amount of idle time and activity time in said CPU.

24. An apparatus, comprising:

a central processing unit (CPU) having a monitor for measuring the relative amount of idle time and activity time within said CPU; and

a clock manager coupled to said CPU, said clock manager selectively modifying a clock signal being sent to said CPU to control the amount of idle time and activity time in said CPU in response to a utilization percentage of said CPU being below a preselected level.

26. An apparatus, comprising:

a central processing unit (CPU) coupled to a clock and having a monitor for measuring the relative amount of idle time and activity time within said CPU; and

a clock manager coupled to said CPU, said clock manager controlling periods of time said clock is in an OFF state, the length of said periods of time said clock is in an OFF state being appropriate to allow said CPU to operate at an efficient utilization percentage.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 6 of 17

File: USPT

Jan 9, 2001

US-PAT-NO: 6173409

DOCUMENT-IDENTIFIER: US 6173409 B1

TITLE: Real-time power conservation for electronic device having a processor

DATE-ISSUED: January 9, 2001

## INVENTOR-INFORMATION:

| NAME                    | CITY   | STATE | ZIP CODE | COUNTRY |
|-------------------------|--------|-------|----------|---------|
| Watts, Jr.; LaVaughn F. | Temple | TX    |          |         |
| Wallace; Steven J.      | Temple | TX    |          |         |

## ASSIGNEE-INFORMATION:

| NAME                           | CITY   | STATE | ZIP CODE | COUNTRY | TYPE CODE |
|--------------------------------|--------|-------|----------|---------|-----------|
| Texas Instruments Incorporated | Dallas | TX    |          |         | 02        |

APPL-NO: 09/ 392205 [PALM]

DATE FILED: September 8, 1999

## PARENT-CASE:

This application is a Continuation of application Ser. No. 08/023,831 filed Apr. 12, 1993 U.S. Pat. No. 6,006,336, which is a Continuation of application Ser. No. 07/429,270 filed Oct. 30, 1989, now U.S. Pat. No. 5,218,704.

INT-CL: [07] G06 F 1/32

US-CL-ISSUED: 713/322; 713/601

US-CL-CURRENT: 713/322; 713/601

FIELD-OF-SEARCH: 713/322, 713/601, 713/320, 713/300, 713/600

## PRIOR-ART-DISCLOSED:

## U.S. PATENT DOCUMENTS

[Search Selected](#) [Search ALL](#) [Clear](#)

| PAT-NO                                  | ISSUE-DATE    | PATENTEE-NAME | US-CL |
|-----------------------------------------|---------------|---------------|-------|
| <input type="checkbox"/> <u>3453601</u> | July 1969     | Bogert et al. |       |
| <input type="checkbox"/> <u>3623017</u> | November 1971 | Lowell        |       |
| <input type="checkbox"/> <u>3868647</u> | February 1975 | Zandvied      |       |
| <input type="checkbox"/> <u>3922526</u> | November 1975 | Cochran       |       |

|                          |                |                |                   |
|--------------------------|----------------|----------------|-------------------|
| <input type="checkbox"/> | <u>3941989</u> | March 1976     | McLaughlin et al. |
| <input type="checkbox"/> | <u>4137563</u> | January 1979   | Tsunoda           |
| <input type="checkbox"/> | <u>4217637</u> | August 1980    | Faulkner et al.   |
| <input type="checkbox"/> | <u>4254475</u> | March 1981     | Cooney et al.     |
| <input type="checkbox"/> | <u>4267577</u> | May 1981       | Hashimoto et al.  |
| <input type="checkbox"/> | <u>4279020</u> | July 1981      | Christian et al.  |
| <input type="checkbox"/> | <u>4293927</u> | October 1981   | Hoshii            |
| <input type="checkbox"/> | <u>4316247</u> | February 1982  | Iwamoto           |
| <input type="checkbox"/> | <u>4317180</u> | February 1982  | Lies              |
| <input type="checkbox"/> | <u>4317181</u> | February 1982  | Teza et al.       |
| <input type="checkbox"/> | <u>4361873</u> | November 1982  | Harper et al.     |
| <input type="checkbox"/> | <u>4381552</u> | April 1983     | Nocilini et al.   |
| <input type="checkbox"/> | <u>4409665</u> | October 1983   | Tubbs et al.      |
| <input type="checkbox"/> | <u>4590553</u> | May 1986       | Noda              |
| <input type="checkbox"/> | <u>4612418</u> | September 1986 | Takeda et al.     |
| <input type="checkbox"/> | <u>4615006</u> | September 1986 | Maejima et al.    |
| <input type="checkbox"/> | <u>4670837</u> | June 1987      | Sheets            |
| <input type="checkbox"/> | <u>4686386</u> | August 1987    | Tadao             |
| <input type="checkbox"/> | <u>4698748</u> | October 1987   | Juzswik et al.    |
| <input type="checkbox"/> | <u>4748559</u> | May 1988       | Smith et al.      |
| <input type="checkbox"/> | <u>4758945</u> | July 1988      | Remedi            |
| <input type="checkbox"/> | <u>4780843</u> | October 1988   | Tietjen           |
| <input type="checkbox"/> | <u>4814591</u> | March 1989     | Nara et al.       |
| <input type="checkbox"/> | <u>4819164</u> | April 1989     | Branson           |
| <input type="checkbox"/> | <u>4821229</u> | April 1989     | Jauregui          |
| <input type="checkbox"/> | <u>4823292</u> | April 1989     | Hillion           |
| <input type="checkbox"/> | <u>4823309</u> | April 1989     | Kusaka et al.     |
| <input type="checkbox"/> | <u>4851987</u> | July 1989      | Day               |
| <input type="checkbox"/> | <u>4870570</u> | September 1989 | Satoh et al.      |
| <input type="checkbox"/> | <u>4893271</u> | January 1990   | Davis et al.      |
| <input type="checkbox"/> | <u>4980836</u> | December 1990  | Carter et al.     |
| <input type="checkbox"/> | <u>5025387</u> | June 1991      | Frane             |
| <input type="checkbox"/> | <u>5083266</u> | January 1992   | Watanabe          |
| <input type="checkbox"/> | <u>5086387</u> | February 1992  | Arroyo et al.     |
| <input type="checkbox"/> | <u>5129091</u> | July 1992      | Yorimoto et al.   |
| <input type="checkbox"/> | <u>5142684</u> | August 1992    | Perry et al.      |
| <input type="checkbox"/> | <u>5167024</u> | November 1992  | Smith             |
|                          | <u>5179693</u> | January 1993   | Kitamura et al.   |

|                          |         |                |                   |
|--------------------------|---------|----------------|-------------------|
| <input type="checkbox"/> |         |                |                   |
| <input type="checkbox"/> | 5201059 | April 1993     | Nguyen            |
| <input type="checkbox"/> | 5218704 | June 1993      | Watts, Jr. et al. |
| <input type="checkbox"/> | 5560024 | September 1996 | Harper et al.     |
| <input type="checkbox"/> | 5930516 | July 1999      | Watts, Jr. et al. |
|                          |         |                | 713/322           |

## FOREIGN PATENT DOCUMENTS

| FOREIGN-PAT-NO | PUBN-DATE    | COUNTRY | US-CL |
|----------------|--------------|---------|-------|
| 0 349 726 B1   | January 1990 | EP      |       |
| 0 363 567 B1   | April 1990   | EP      |       |
| 8911349        | April 1990   | EP      |       |
| 0 349 726      | October 1990 | EP      |       |

ART-UNIT: 271

PRIMARY-EXAMINER: Auve; Glenn A.

ATTY-AGENT-FIRM: Neerings; Ronald O. Telecky, Jr.; Frederick J.

## ABSTRACT:

A real-time power conservation apparatus and method for portable computers employs a monitor to determine whether a CPU may rest based upon a real-time sampling of the CPU activity level and to activate a hardware selector to carry out the monitor's determination. If the monitor determines the CPU may rest, the hardware selector reduces CPU clock time; if the CPU is to be active, the hardware selector returns the CPU to its previous high speed clock level. Switching back into full operation from its rest state occurs without a user having to request it and without any delay in the operation of the computer while waiting for the computer to return to a "ready" state. Furthermore, the monitor adjusts the performance level of the computer to manage power conservation in response to the real-time sampling of CPU activity. Such adjustments are accomplished within the CPU cycles and do not affect the user's perception of performance and do not affect any system application software executing on the computer.

31 Claims, 8 Drawing figures

[Previous Doc](#)    [Next Doc](#)    [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 5 of 17

File: USPT

May 28, 2002

DOCUMENT-IDENTIFIER: US 6397340 B2

\*\* See image for Certificate of Correction \*\*

TITLE: Real-time power conservation for electronic device having a processor

Current US Original Classification (1):713/322Current US Cross Reference Classification (1):713/601

CLAIMS:

11. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor.

18. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor in response to usage of said processor being below a preselected level.

19. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor to control the amount of activity time in said processor.

20. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor to optimize the activity time within said CPU in response to usage of said processor being below a preselected level.

21. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor.

24. An apparatus, comprising:

h e b b cg b cc e

a processor having a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor in response to usage of said processor being below a preselected level.

25. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor to control the amount of idle time and activity time in said CPU.

30. An apparatus, comprising:

a processor having a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for selectively modifying a clock signal being sent to said processor to control the amount of idle time and activity time in said processor in response to a utilization percentage of said processor being below a preselected level.

32. An apparatus, comprising:

a processor coupled to a clock and having a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for providing a signal for circuitry for controlling periods of time said clock is in an OFF state, the length of said periods of time said clock is in an OFF state being appropriate to allow said processor to operate at an efficient utilization percentage.

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 5 of 17

File: USPT

May 28, 2002

US-PAT-NO: 6397340

DOCUMENT-IDENTIFIER: US 6397340 B2

**\*\* See image for Certificate of Correction \*\***

TITLE: Real-time power conservation for electronic device having a processor

DATE-ISSUED: May 28, 2002

## INVENTOR-INFORMATION:

| NAME                    | CITY   | STATE | ZIP CODE | COUNTRY |
|-------------------------|--------|-------|----------|---------|
| Watts, Jr.; LaVaughn F. | Austin | TX    |          |         |
| Wallace; Steven J.      | Waco   | TX    |          |         |

## ASSIGNEE-INFORMATION:

| NAME                           | CITY   | STATE | ZIP CODE | COUNTRY | TYPE CODE |
|--------------------------------|--------|-------|----------|---------|-----------|
| Texas Instruments Incorporated | Dallas | TX    |          |         | 02        |

APPL-NO: 09/ 756838 [PALM]

DATE FILED: January 9, 2001

## PARENT-CASE:

This application is a Continuation of application Ser. No.09/392,205, filed Sep. 8, 1999,now U.S. Pat. No. 6,173,409 which is a Continuation of application Ser. No. 08/023,831, filed Apr. 12, 1993, now U.S. Pat. No. 6,006,336 which is a Continuation of application Ser. No. 07/429,270 filed Oct. 30, 1989, now U.S. Pat. No. 5,218,704.

INT-CL: [07] G06 F 1/32

US-CL-ISSUED: 713/322; 713/601

US-CL-CURRENT: 713/322; 713/601

FIELD-OF-SEARCH: 713/322, 713/323, 713/320, 713/300, 713/600, 713/601

## PRIOR-ART-DISCLOSED:

## U.S. PATENT DOCUMENTS

[Search Selected](#) [Search ALL](#) [Clear](#)

| PAT-NO                                  | ISSUE-DATE    | PATENTEE-NAME | US-CL |
|-----------------------------------------|---------------|---------------|-------|
| <input type="checkbox"/> <u>3453601</u> | July 1969     | Bogert et al. |       |
| <input type="checkbox"/> <u>3623017</u> | November 1971 | Lowell        |       |
| <input type="checkbox"/> <u>3868647</u> | February 1975 | Zandvied      |       |

|                          |                |                |                   |         |
|--------------------------|----------------|----------------|-------------------|---------|
| <input type="checkbox"/> | <u>3922526</u> | November 1975  | Cochran           | 235/152 |
| <input type="checkbox"/> | <u>3941989</u> | March 1976     | McLaughlin et al. |         |
| <input type="checkbox"/> | <u>4137563</u> | January 1979   | Tsunoda           |         |
| <input type="checkbox"/> | <u>4217637</u> | August 1980    | Faulkner et al.   |         |
| <input type="checkbox"/> | <u>4254475</u> | March 1981     | Cooney et al.     |         |
| <input type="checkbox"/> | <u>4267577</u> | May 1981       | Hashimoto et al.  |         |
| <input type="checkbox"/> | <u>4279020</u> | July 1981      | Christian et al.  |         |
| <input type="checkbox"/> | <u>4293927</u> | October 1981   | Hoshii            |         |
| <input type="checkbox"/> | <u>4316247</u> | February 1982  | Iwamoto           |         |
| <input type="checkbox"/> | <u>4317180</u> | February 1982  | Lies              |         |
| <input type="checkbox"/> | <u>4317181</u> | February 1982  | Teza et al.       |         |
| <input type="checkbox"/> | <u>4361873</u> | November 1982  | Harper et al.     |         |
| <input type="checkbox"/> | <u>4381552</u> | April 1983     | Nocilini et al.   |         |
| <input type="checkbox"/> | <u>4409665</u> | October 1983   | Tubbs et al.      |         |
| <input type="checkbox"/> | <u>4590553</u> | May 1986       | Noda              |         |
| <input type="checkbox"/> | <u>4612418</u> | September 1986 | Takeda et al.     | 179/81R |
| <input type="checkbox"/> | <u>4615006</u> | September 1986 | Maejima et al.    |         |
| <input type="checkbox"/> | <u>4670837</u> | June 1987      | Sheets            |         |
| <input type="checkbox"/> | <u>4686386</u> | August 1987    | Tadao             | 307/269 |
| <input type="checkbox"/> | <u>4698748</u> | October 1987   | Juzswik et al.    |         |
| <input type="checkbox"/> | <u>4748559</u> | May 1988       | Smith et al.      |         |
| <input type="checkbox"/> | <u>4758945</u> | July 1988      | Remedi            |         |
| <input type="checkbox"/> | <u>4780843</u> | October 1988   | Tietjen           |         |
| <input type="checkbox"/> | <u>4814591</u> | March 1989     | Nara et al.       | 235/380 |
| <input type="checkbox"/> | <u>4819164</u> | April 1989     | Branson           |         |
| <input type="checkbox"/> | <u>4821229</u> | April 1989     | Jauregui          |         |
| <input type="checkbox"/> | <u>4823292</u> | April 1989     | Hillion           |         |
| <input type="checkbox"/> | <u>4823309</u> | April 1989     | Kusaka et al.     |         |
| <input type="checkbox"/> | <u>4851987</u> | July 1989      | Day               |         |
| <input type="checkbox"/> | <u>4870570</u> | September 1989 | Satoh et al.      |         |
| <input type="checkbox"/> | <u>4893271</u> | January 1990   | Davis et al.      |         |
| <input type="checkbox"/> | <u>4980836</u> | December 1990  | Carter et al.     |         |
| <input type="checkbox"/> | <u>5025387</u> | June 1991      | Frane             |         |
| <input type="checkbox"/> | <u>5083266</u> | January 1992   | Watanabe          |         |
| <input type="checkbox"/> | <u>5086387</u> | February 1992  | Arroyo et al.     |         |
| <input type="checkbox"/> | <u>5129091</u> | July 1992      | Yorimoto et al.   |         |
|                          | <u>5142684</u> | August 1992    | Perry et al.      |         |

|                          |         |                |                   |
|--------------------------|---------|----------------|-------------------|
| <input type="checkbox"/> |         |                |                   |
| <input type="checkbox"/> | 5167024 | November 1992  | Smith             |
| <input type="checkbox"/> | 5179693 | January 1993   | Kitamura et al.   |
| <input type="checkbox"/> | 5201059 | April 1993     | Nguyen            |
| <input type="checkbox"/> | 5218704 | June 1993      | Watts, Jr. et al. |
| <input type="checkbox"/> | 5560024 | September 1996 | Harper et al.     |
| <input type="checkbox"/> | 6173409 | January 2001   | Watts, Jr. et al. |
|                          |         |                | 713/322           |

## FOREIGN PATENT DOCUMENTS

| FOREIGN-PAT-NO | PUBN-DATE    | COUNTRY | US-CL |
|----------------|--------------|---------|-------|
| 0 349 726      | January 1990 | EP      |       |
| 0 363 567      | April 1990   | EP      |       |
| 8911349        | April 1990   | EP      |       |
| 0 349 726      | October 1990 | EP      |       |

ART-UNIT: 2181

PRIMARY-EXAMINER: Auve; Glenn A.

ATTY-AGENT-FIRM: Neerings; Ronald O. Brady, III; Wade James Telecky, Jr.; Frederick J.

## ABSTRACT:

A real-time power conservation apparatus and method for portable computers employs a monitor to determine whether a CPU may rest based upon a real-time sampling of the CPU activity level and to activate a hardware selector to carry out the monitor's determination. If the monitor determines the CPU may rest, the hardware selector reduces CPU clock time; if the CPU is to be active, the hardware selector returns the CPU to its previous high speed clock level. Switching back into full operation from its rest state occurs without a user having to request it and without any delay in the operation of the computer while waiting for the computer to return to a "ready" state. Furthermore, the monitor adjusts the performance level of the computer to manage power conservation in response to the real-time sampling of CPU activity. Such adjustments are accomplished within the CPU cycles and do not affect the user's perception of performance and do not affect any system application software executing on the computer.

38 Claims, 8 Drawing figures

[Previous Doc](#)    [Next Doc](#)    [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 4 of 17

File: USPT

Jul 30, 2002

DOCUMENT-IDENTIFIER: US 6427211 B2

TITLE: Real-time power conservation and thermal management for electronic devices

Current US Original Classification (1):

713/320

Current US Cross Reference Classification (1):

713/322

Current US Cross Reference Classification (2):

713/323

Current US Cross Reference Classification (3):

713/501

## CLAIMS:

21. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the utilization percentage of said processing unit.

31. An apparatus comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to the utilization percentage of said processing unit being below a preselected level and/or temperature associated with said processing unit.

33. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to one of: a) the utilization percentage of said processing unit being below a preselected level; b) temperature associated with said processing unit; and c) the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

35. An apparatus comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the activity time in said processing unit.

37. An apparatus, comprising: a processing unit having a monitor for measuring the

relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the activity time within said processing unit in response to one of the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

39. An apparatus comprising: a processing unit having a monitor for measuring the relative amount of activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the activity time within said processing unit in response to one of: a) the utilization percentage of said processing unit being below a preselected level; b) temperature associated with said processing unit; and c) the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

41. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to optimize the utilization percentage of said processing unit.

43. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to one of the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

45. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit in response to one of: a) the utilization percentage of said processing unit being below a preselected level; b) temperature associated with said processing unit; and c) the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

47. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to minimize the amount of idle time and optimize the activity time in said processing unit.

49. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to minimize the amount of idle time and optimize the activity time in said processing unit in response to one of the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

51. An apparatus, comprising: a processing unit having a monitor for measuring the relative amount of idle time and activity time within and temperature associated

with said processing unit, results of said measuring being used by said processing unit for providing a signal for circuitry for selectively modifying a clock signal being sent to said processing unit to minimize the idle time and optimize the activity time within said processing unit in response to one of: a) the utilization percentage of said processing unit being below a preselected level; b) temperature associated with said processing unit; and c) the utilization percentage of said processing unit being below a preselected level and temperature associated with said processing unit.

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)
 [Generate Collection](#) [Print](#)

L7: Entry 4 of 17

File: USPT

Jul 30, 2002

US-PAT-NO: 6427211

DOCUMENT-IDENTIFIER: US 6427211 B2

TITLE: Real-time power conservation and thermal management for electronic devices

DATE-ISSUED: July 30, 2002

## INVENTOR-INFORMATION:

| NAME                     | CITY   | STATE | ZIP CODE | COUNTRY |
|--------------------------|--------|-------|----------|---------|
| Watts, Jr.; La Vaughn F. | Austin | TX    |          |         |

## ASSIGNEE-INFORMATION:

| NAME                           | CITY   | STATE | ZIP CODE | COUNTRY | TYPE CODE |
|--------------------------------|--------|-------|----------|---------|-----------|
| Texas Instruments Incorporated | Dallas | TX    |          |         | 02        |

APPL-NO: 09/ 727597 [PALM]

DATE FILED: December 1, 2000

## PARENT-CASE:

This application is a Divisional of application Ser. No. 08/395,335 filed Feb. 28, 1995 now U.S. Pat. No. 6,158,012, which is a Continuation-in-Part of application Ser. No. 08/023,831 filed Apr. 12, 1993 now U.S. Pat. No. 6,006,336, which is a Continuation of application Ser. No. 07/429,270 filed Oct. 30, 1989, now U.S. Pat. No. 5,218,704.

INT-CL: [07] G06 F 1/32, G06 F 1/08

US-CL-ISSUED: 713/320; 713/322, 713/323, 713/501

US-CL-CURRENT: 713/320; 713/322, 713/323, 713/501

FIELD-OF-SEARCH: 713/501, 713/300, 713/321, 713/322, 713/323, 713/340, 713/320, 700/14, 714/14, 327/513, 702/130, 702/132

## PRIOR-ART-DISCLOSED:

## U.S. PATENT DOCUMENTS

 [Search Selected](#) [Search All](#) [Clear](#)

| PAT-NO                                  | ISSUE-DATE    | PATENTEE-NAME   | US-CL   |
|-----------------------------------------|---------------|-----------------|---------|
| <input type="checkbox"/> <u>5167024</u> | November 1992 | Smith et al.    | 395/375 |
| <input type="checkbox"/> <u>5189314</u> | February 1993 | Georgiou et al. | 307/271 |
| <input type="checkbox"/> <u>5287292</u> | February 1994 | Kenny et al.    | 364/550 |

|                          |                |               |                     |         |
|--------------------------|----------------|---------------|---------------------|---------|
| <input type="checkbox"/> | <u>5339445</u> | August 1994   | Gasztongyi          | 395/750 |
| <input type="checkbox"/> | <u>5414860</u> | May 1995      | Canova, Jr. et al.  | 395/750 |
| <input type="checkbox"/> | <u>5475847</u> | December 1995 | Ikeda               | 395/750 |
| <input type="checkbox"/> | <u>5490059</u> | February 1996 | Mahalingaiah et al. | 364/166 |
| <input type="checkbox"/> | <u>5493684</u> | February 1996 | Gephhardt et al.    | 395/750 |
| <input type="checkbox"/> | <u>5502838</u> | March 1996    | Kikinis             | 395/550 |
| <input type="checkbox"/> | <u>5504908</u> | April 1996    | Ikeda               | 395/750 |

## FOREIGN PATENT DOCUMENTS

| FOREIGN-PAT-NO | PUBN-DATE      | COUNTRY | US-CL |
|----------------|----------------|---------|-------|
| 0 426 410      | May 1991       | EP      |       |
| 0 501 655      | September 1992 | EP      |       |
| 0 566 395      | October 1993   | EP      |       |
| WO 92/10032    | June 1992      | WO      |       |

ART-UNIT: 2181

PRIMARY-EXAMINER: Ray; Gopal C.

ATTY-AGENT-FIRM: Neerings; Ronald O. Brady, III; Wade James Telecky, Jr.; Frederick J.

## ABSTRACT:

A real-time power conservation and thermal management apparatus and method for portable computers employs a monitor (40) to determine whether a CPU may rest based upon a real-time sample of the CPU activity and temperature levels and to activate a hardware selector(500, 510, 520, 530) to carry out the monitor's determination. If the monitor determines the CPU may rest, the hardware selector reduces CPU clock time (280); if the CPU is to be active, the hardware selector returns the CPU to its previous high speed clock level (330). Switching back into full operation from its rest state occurs without a user having to request it and without any delay in the operation of the computer while waiting for the computer to return to a "ready" state. Furthermore, the monitor adjusts the performance level of the computer to manage power conservation and thermal management in response to the real-time sampling of CPU activity (10) and temperature (24). Such adjustments are accomplished within the CPU cycles and do not affect the user's perception of performance and do not affect any system application software executing on the computer.

65 Claims, 8 Drawing figures

[Previous Doc](#)    [Next Doc](#)    [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 1 of 17

File: USPT

May 4, 2004

DOCUMENT-IDENTIFIER: US 6732283 B2

TITLE: Processor having real-time power conservation

Abstract Text (1):

A processor, comprising a monitor for, depending on the respective embodiment, measuring the relative amount of idle time, activity time, or idle time and activity time within the processor, results of the measuring being used by the processor for controlling a clock speed of the processor. Yet other embodiments disclose, depending upon the respective embodiment, a processor, comprising a monitor for measuring the relative amount of idle time, activity time or idle time and activity time within the processor, results of the measuring being used by the processor to control power dissipation associated with the processor.

Current US Original Classification (1):713/322Current US Cross Reference Classification (1):713/601

## CLAIMS:

11. A processor, comprising: a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor for controlling a clock speed of said processor.

21. A processor, comprising: a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor for controlling a clock speed of said processor.

32. A processor, comprising: a monitor for measuring the relative amount of activity time within said processor, results of said measuring being used by said processor to control power dissipation associated with said processor.

33. A processor, comprising: a monitor for measuring the relative amount of idle time and activity time within said processor, results of said measuring being used by said processor to control power dissipation associated with said processor.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#) [Generate Collection](#) [Print](#)

L7: Entry 1 of 17

File: USPT

May 4, 2004

US-PAT-NO: 6732283

DOCUMENT-IDENTIFIER: US 6732283 B2

TITLE: Processor having real-time power conservation

DATE-ISSUED: May 4, 2004

## INVENTOR-INFORMATION:

| NAME                    | CITY   | STATE | ZIP CODE | COUNTRY |
|-------------------------|--------|-------|----------|---------|
| Watts, Jr.; LaVaughn F. | Austin | TX    |          |         |
| Wallace; Steven J.      | Temple | TX    |          |         |

## ASSIGNEE-INFORMATION:

| NAME                           | CITY   | STATE | ZIP CODE | COUNTRY | TYPE CODE |
|--------------------------------|--------|-------|----------|---------|-----------|
| Texas Instruments Incorporated | Dallas | TX    |          |         | 02        |

APPL-NO: 10/ 375982 [PALM]

DATE FILED: February 28, 2003

## PARENT-CASE:

This application is a Continuation of application Ser. No. 10/074,739, filed Feb. 11, 2002, which is a Continuation of application Ser. No. 09/756,838, filed Jan. 9, 2001, now U.S. Pat. No. 6,397,340 which is a Continuation of application Ser. No. 09/392,205, filed Sep. 8, 1999, now U.S. Pat. No. 6,173,409 which is a Continuation of application Ser. No. 08/023,831, filed Feb. 23, 1993, now U.S. Pat. No. 6,006,336 which is a Continuation of application Ser. No. 07/429,270 filed Oct. 30, 1989, now U.S. Pat. No. 5,218,704.

INT-CL: [07] G06 F 1/32

US-CL-ISSUED: 713/322; 713/601

US-CL-CURRENT: 713/322; 713/601

FIELD-OF-SEARCH: 713/300, 713/320, 713/322, 713/323, 713/324, 713/600, 713/601

## PRIOR-ART-DISCLOSED:

## U.S. PATENT DOCUMENTS

[Search Selected](#) [Search ALL](#) [Clear](#)

| PAT-NO                                  | ISSUE-DATE    | PATENTEE-NAME | US-CL |
|-----------------------------------------|---------------|---------------|-------|
| <input type="checkbox"/> <u>3453601</u> | July 1969     | Bogert et al. |       |
| <input type="checkbox"/> <u>3623017</u> | November 1971 | Lowell        |       |

|                          |                |                |                   |         |
|--------------------------|----------------|----------------|-------------------|---------|
| <input type="checkbox"/> | <u>3868647</u> | February 1975  | Zandvied          |         |
| <input type="checkbox"/> | <u>3922526</u> | November 1975  | Cochran           |         |
| <input type="checkbox"/> | <u>3941989</u> | March 1976     | McLaughlin et al. |         |
| <input type="checkbox"/> | <u>4137563</u> | January 1979   | Tsunoda           |         |
| <input type="checkbox"/> | <u>4217637</u> | August 1980    | Faulkner et al.   |         |
| <input type="checkbox"/> | <u>4254475</u> | March 1981     | Cooney et al.     |         |
| <input type="checkbox"/> | <u>4267577</u> | May 1981       | Hashimoto et al.  |         |
| <input type="checkbox"/> | <u>4279020</u> | July 1981      | Christian et al.  |         |
| <input type="checkbox"/> | <u>4293927</u> | October 1981   | Hoshil            |         |
| <input type="checkbox"/> | <u>4316247</u> | February 1982  | Iwamoto           |         |
| <input type="checkbox"/> | <u>4317180</u> | February 1982  | Lies              |         |
| <input type="checkbox"/> | <u>4317181</u> | February 1982  | Teza et al.       |         |
| <input type="checkbox"/> | <u>4361873</u> | November 1982  | Harper et al.     |         |
| <input type="checkbox"/> | <u>4381552</u> | April 1983     | Nocillini et al.  |         |
| <input type="checkbox"/> | <u>4409665</u> | October 1983   | Tubbs et al.      |         |
| <input type="checkbox"/> | <u>4590553</u> | May 1986       | Noda              |         |
| <input type="checkbox"/> | <u>4612418</u> | September 1986 | Takeda et al.     |         |
| <input type="checkbox"/> | <u>4615005</u> | September 1986 | Maejima et al.    |         |
| <input type="checkbox"/> | <u>4670837</u> | June 1987      | Sheets            |         |
| <input type="checkbox"/> | <u>4686386</u> | August 1987    | Tadao             |         |
| <input type="checkbox"/> | <u>4698748</u> | October 1987   | Juzswik et al.    |         |
| <input type="checkbox"/> | <u>4748559</u> | May 1988       | Smith et al.      |         |
| <input type="checkbox"/> | <u>4758945</u> | July 1988      | Remedi            |         |
| <input type="checkbox"/> | <u>4780843</u> | October 1988   | Tietjen           |         |
| <input type="checkbox"/> | <u>4814591</u> | March 1989     | Nara et al.       |         |
| <input type="checkbox"/> | <u>4819164</u> | April 1989     | Branson           |         |
| <input type="checkbox"/> | <u>4821229</u> | April 1989     | Jauregui          |         |
| <input type="checkbox"/> | <u>4823292</u> | April 1989     | Hillion           |         |
| <input type="checkbox"/> | <u>4823309</u> | April 1989     | Kusaka et al.     |         |
| <input type="checkbox"/> | <u>4841440</u> | June 1989      | Yonezu et al.     | 713/322 |
| <input type="checkbox"/> | <u>4851987</u> | July 1989      | Day               |         |
| <input type="checkbox"/> | <u>4870570</u> | September 1989 | Satoh et al.      |         |
| <input type="checkbox"/> | <u>4893271</u> | January 1990   | Davis et al.      |         |
| <input type="checkbox"/> | <u>4924428</u> | May 1990       | Vea               | 714/1   |
| <input type="checkbox"/> | <u>4980836</u> | December 1990  | Carter et al.     |         |
| <input type="checkbox"/> | <u>5025387</u> | June 1991      | Frane             |         |
| <input type="checkbox"/> | <u>5083266</u> | January 1992   | Watanabe          |         |
|                          | <u>5086387</u> | February 1992  | Arroyo et al.     |         |

|                          |                |                |                   |
|--------------------------|----------------|----------------|-------------------|
| <input type="checkbox"/> | <u>5129091</u> | July 1992      | Yorimoto et al.   |
| <input type="checkbox"/> | <u>5142684</u> | August 1992    | Perry et al.      |
| <input type="checkbox"/> | <u>5167024</u> | November 1992  | Smith             |
| <input type="checkbox"/> | <u>5175845</u> | December 1992  | Little            |
| <input type="checkbox"/> | <u>5179693</u> | January 1993   | Kitamura et al.   |
| <input type="checkbox"/> | <u>5201069</u> | April 1993     | Barabolak         |
| <input type="checkbox"/> | <u>5218704</u> | June 1993      | Watts, Jr. et al. |
| <input type="checkbox"/> | <u>5222239</u> | June 1993      | Rosch             |
| <input type="checkbox"/> | <u>5560024</u> | September 1996 | Harper et al.     |
| <input type="checkbox"/> | <u>5930516</u> | July 1999      | Watts, Jr. et al. |
| <input type="checkbox"/> | <u>6006336</u> | December 1999  | Watts, Jr. et al. |
| <input type="checkbox"/> | <u>6173409</u> | January 2001   | Watts, Jr. et al. |

## FOREIGN PATENT DOCUMENTS

| FOREIGN-PAT-NO | PUBN-DATE      | COUNTRY | US-CL |
|----------------|----------------|---------|-------|
| 0 363 567      | September 1889 | EP      |       |
| 0 349 726      | January 1990   | EP      |       |
| 0 349 726      | January 1990   | EP      |       |
| 0 363 567      | April 1990     | EP      |       |

## OTHER PUBLICATIONS

"System Power Savings by Automatic Sleep Mode", IBM Technical Disclosure Bulletin, vol. 29, No. 9, Feb. 1987, pp. 4122-4124.  
 "Advanced Clock Controller Cuts Power Needs, Size of Static CMOS Systems", Curtis A. Mros and Walt Niewierski, Harris Corp., CMOS Technology, Design Entry, 6 pages.

ART-UNIT: 2181

PRIMARY-EXAMINER: Auve; Glenn A.

ATTY-AGENT-FIRM: Neerings; Ronald O. Brady, III; Wade James Telecky, Jr.; Frederick J.

## ABSTRACT:

A processor, comprising a monitor for, depending on the respective embodiment, measuring the relative amount of idle time, activity time, or idle time and activity time within the processor, results of the measuring being used by the processor for controlling a clock speed of the processor. Yet other embodiments disclose, depending upon the respective embodiment, a processor, comprising a monitor for measuring the relative amount of idle time, activity time or idle time and activity time within the processor, results of the measuring being used by the processor to control power dissipation associated with the processor.

33 Claims, 8 Drawing figures