• For a given $\ddot{\phi}_{max}$ and $\dot{\phi}_{max}$, there is a threshold slew angle ϕ_T that determines whether the slew will have a period of coasting. The threshold slew angle is found by:

$$\phi_T = \frac{(\dot{\phi}_{max})^2}{\ddot{\phi}_{max}} \tag{1}$$

- Using the conditions, $\dot{\phi}(t_1) = \dot{\phi}_{max}$, $\dot{\phi}(t_f) = \dot{\phi}_f$, $\phi(t_f) = \phi_f$, the switching times can be determined as follows.
- If $\phi_f < \phi_T$, the switching times t_1 and final time t_f are determined thus:

$$t_f = \sqrt{\frac{4\phi_f}{\ddot{\phi}_{max}}} \tag{2}$$

$$t_1 = \frac{t_f}{2} \tag{3}$$

• If $\phi_f > \phi_T$, then the slew will have a period of coasting with constant $\dot{\phi}(t)$. The switching times t_1, t_2 , and final time t_f are then calculated as:

$$t_1 = t_0 + \frac{\dot{\phi}_{max} - \dot{\phi}_0}{\ddot{\phi}_{max}},\tag{4}$$

$$t_{2} = t_{1} + \frac{1}{\dot{\phi}_{max}} \Big[\phi_{f} - \dot{\phi}_{0}(t_{1} - t_{0}) - \frac{1}{2} \ddot{\phi}_{max}(t_{1} - t_{0})^{2} - \frac{\dot{\phi}_{max}(\dot{\phi}_{max} - \dot{\phi}_{f})}{\ddot{\phi}_{max}} + \frac{(\dot{\phi}_{max} - \dot{\phi}_{f})^{2}}{2\ddot{\phi}_{max}} \Big],$$
(5)

$$t_f = t_2 - \frac{\dot{\phi}_f - \dot{\phi}_{max}}{\ddot{\phi}_{max}} \tag{6}$$