EEE104 – Digital Electronics (I) Lecture 15

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Counter Overview
- Asynchronous Counters

2

A Revision: J-K Flip-Flops

 When J = 1 and K = 1, the output will be toggled at the rising edge of the clock.

	INPUTS		OUTPUTS		
J	Κ	CLK	Q	Q	COMMENTS
0	0	1	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

Counter Overview

A **counter** is a group of flip-flops connected together to perform counting operation.

Categories:

- **Asynchronous counters**: each flip-flop is clocked by the output of the preceding flip-flop.
- **Synchronous counters**: all the flip-flops are clocked by the same clock input.

3

2-Bit Asynchronous Binary Counters

- J and K are HIGH for all flip-flops.
- FF1 is clocked by the \overline{Q}_0 output of FF0.

CLOCK PULSE	Q_1	Q_0	
Initially	0	0	
1	0	1	
2	1	0	
3	1	1	
4 (recycles)	0	0	

3-Bit Asynchronous Binary Counters

4-Bit Asynchronous Binary Counters

Asynchronous Decade Counters

- With n flip-flops, the maximum number of states of a counter is 2^n .
- A counter may be designed to go through less states or a truncated sequence, e.g. decade counter which counts from 0000 to 1001.
- The number of unique states that a counter will sequence through is called **modulus**.

ď

Asynchronous Decade Counters 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 • Once state 1010 appears, the decoder will reset the counter. • Only Q₁ and Q₃ used - Partial Decoding 9

Asynchronous Modulus-12 Counters

Cumulative Delay in Asynchronous Counters

The **propagation delay time** is the time interval for the output to change after an input has been applied.

Cumulative Delay in Asynchronous Counters

IC Asynchronous Counters

74LS93A

- Q_0 should be connected with CLK B when used as a counter.
- The NAND gate can be used as the decoder.

IC Asynchronous Counters

IC Asynchronous Counters

IC Asynchronous Counters

