

```
In [20]: #Import scikit-learn dataset library
         from sklearn import datasets
         #Load dataset
         cancer = datasets.load breast cancer()
In [21]: import pandas as pd
         df = pd.DataFrame(cancer.data)
In [22]:
         df.head()
                              2
                0
                      1
                                      3
                                                       5
                                                                       7
                                                                               8
Out[22]:
                                              4
                                                               6
         0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419
                                                                                 0.07871
         1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667
         2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 0.05999
         3 11.42 20.38
                          77.58
                                  386.1 0.14250 0.28390 0.2414 0.10520 0.2597 0.09744
         4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 0.05883
         5 \text{ rows} \times 30 \text{ columns}
In [23]:
         df.tail()
                  0
                         1
                                2
                                        3
                                                 4
                                                         5
                                                                  6
                                                                           7
                                                                                   8
Out[23]:
         564 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05
         565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05
                                    858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05
         566 16.60 28.08 108.30
         567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07
                                    181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05
         568
                7.76 24.54
                            47.92
         5 \text{ rows} \times 30 \text{ columns}
         df.info()
In [24]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 30 columns):
 # Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	0	569 non-null	float64
1	1	569 non-null	float64
2	2	569 non-null	float64
3	3	569 non-null	float64
4	4	569 non-null	float64
5	5	569 non-null	float64
6	6	569 non-null	float64
7	7	569 non-null	float64
8	8	569 non-null	float64
9	9	569 non-null	float64
10	10	569 non-null	float64
11	11	569 non-null	float64
12	12	569 non-null	float64
13	13	569 non-null	float64
14	14	569 non-null	float64
15	15	569 non-null	float64
16	16	569 non-null	float64
17	17	569 non-null	float64
18	18	569 non-null	float64
19	19	569 non-null	float64
20	20	569 non-null	float64
21	21	569 non-null	float64
22	22	569 non-null	float64
23	23	569 non-null	float64
24	24	569 non-null	float64
25	25	569 non-null	float64
26	26	569 non-null	float64
27	27	569 non-null	float64
28	28	569 non-null	float64
29	29	569 non-null	float64

dtypes: float64(30)
memory usage: 133.5 KB

In [25]: df.describe()

Out[25]:		0	1	2	3	4	5
	count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
	mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341
	std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813
	min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380
	25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920
	50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630
	75 %	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400
	max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400
	8 rows	× 30 columns					
In []:	print("Features: "	, cancer.fea	ature_names)			

```
In [ ]:
         sprint("Labels: ", cancer.target_names)
        Features: ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
         'mean smoothness' 'mean compactness' 'mean concavity'
         'mean concave points' 'mean symmetry' 'mean fractal dimension'
         'radius error' 'texture error' 'perimeter error' 'area error'
         'smoothness error' 'compactness error' 'concavity error'
         'concave points error' 'symmetry error' 'fractal dimension error'
         'worst radius' 'worst texture' 'worst perimeter' 'worst area'
         'worst smoothness' 'worst compactness' 'worst concavity'
         'worst concave points' 'worst symmetry' 'worst fractal dimension']
        Labels: ['malignant' 'benign']
In [27]: cancer.data.shape
Out[27]: (569, 30)
In [28]: # print the cancer labels (0:malignant, 1:benign)
         print(cancer.target)
```

```
1 1 1 1 1 1 1 0 0 0 0 0 0 1]
In [29]: from sklearn.model selection import train test split
   # Split dataset into training set and test set
   X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target
In [30]: from sklearn import svm
   clf = svm.SVC(kernel='linear')
   clf.fit(X train, y train)
   y pred = clf.predict(X test)
In [31]: from sklearn import metrics
   print("Accuracy:",metrics.accuracy score(y test, y pred))
   Accuracy: 0.9649122807017544
In [32]: print("Precision:", metrics.precision score(y test, y pred))
   print("Recall:", metrics.recall score(y test, y pred))
   Precision: 0.9811320754716981
   Recall: 0.9629629629629629
In [ ]:
```