Name: JOSSE Thelian

Exercise 1. You're given that the following improper integral is convergent:

$$I = \int_0^{+\infty} t^2 \mathrm{e}^{-t^3} \, \mathrm{d}t.$$

Determine the value of I (no justifications required).

1 12 - 13 += [

I = (see behind please)

Exercise 2. Let $E = \mathbb{R}^2$.

1. Recall the definition of the norm $\|\cdot\|_1$ on E.

Aborded 11.11, is the set of vectors out NOEE, that It vill= 1

2. Sketch the closed unit ball \overline{B} of $(E, \|\cdot\|_1)$.

Exercise 3. Let E be a vector space over \mathbb{R} . Recall the definition of "N is a norm on E."

N: E -> IR+ (is a morm on E if it satisfies:

. YUEE, N(U)=0 => U=0E

. YUEE, YXEIK, N(XU)= 1XIN(U)

. YUVEE, N(U+Y) (N(U)+N(V))

Exercise 4. Let $\alpha \in \mathbb{R}$. Fill in the blanks:

- the improper integral $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converges $\iff \mathcal{A} > 1$ the improper integral $\int_{0}^{1} \frac{\mathrm{d}t}{t^{\alpha}}$ diverges $\iff \mathcal{A} > 1$
- the improper integral $\int_0^{+\infty} e^{-\alpha t} dt$ converges $\iff \checkmark > \circlearrowleft$