4G3 Computational Neuroscience Assignment 1

Candidate No: 5660E

February 22, 2016

1 Network Dynamics

1.1 Input amplification and integration with a feed-forward linear network

a) Firing rates with $\lambda = 1$

Figure 1: Caption

b) Firing rates with $\lambda = 0$

Figure 2: Caption

c) Firing rates with $\lambda = -1$

Figure 3: Caption

d) Equilibrium firing rates with $\lambda = 1$

Figure 4: Caption

1.2 Randomly connected network

a) Firing rates with g = 0

i.

Figure 5: Caption

ii. Eigenvalues of the recurrent connectivity matrix \boldsymbol{W}

Figure 6: Caption

iii. Equilibrium firing rates

Figure 7: Caption

b) Firing rates with g=2

i.

Figure 8: Caption

ii. Eigenvalues of the recurrent connectivity matrix \boldsymbol{W}

Figure 9: Caption

iii. Equilibrium firing rates

Figure 10: Caption

c) Firing rates with g = 0.95

i.

Figure 11: Caption

ii. Eigenvalues of the recurrent connectivity matrix \boldsymbol{W}

Figure 12: Caption

iii. Equilibrium firing rates

Figure 13: Caption

1.3 Visual cortex model

a) Denoising

i. Noisy input

Figure 14: Caption

ii. Equilibrium population firing rate

Figure 15: Caption

b) Gain modulation

i. Input

Figure 16: Caption

ii. Equilibrium population firing rate

Figure 17: Caption

- c) Winner-takes-all input selection and sustained activity
- i. Input

Figure 18: Caption

ii. Equilibrium population firing rate

Figure 19: Caption

iii. Sustained activity

Figure 20: Caption

${\bf 2} \quad {\bf The \ asynchronous \ \& \ irregular \ state \ of \ cortical \ circuits}$

a) Generating Poisson spike trains

Figure 21: Caption

b) Single LIF neuron with one input spike train

Figure 22: (a) Membrane potential dynamics

- c) Single LIF neuron with many input spike train
- (a)

Figure 23: (a) Membrane potential dynamics without spike-reset (w=0.9)

Figure 24: (a) Membrane potential dynamics without spike-reset (w=1)

(b)

$$h(t) = \frac{w}{K} \sum_{j=1}^{K} S_j(t)$$

$$\mathbb{E}[h(t)] = \mathbb{E}\left[\frac{w}{K} \sum_{j=1}^{K} S_j(t)\right]$$

$$= \frac{w}{K} \sum_{j=1}^{K} \mathbb{E}[S_j(t)]$$

$$= \frac{w}{K} \sum_{j=1}^{K} r_X$$

$$= wrx$$

$$\mathrm{Var}[\mathbf{h}(\mathbf{t})] = \mathrm{E}[\mathbf{h}(\mathbf{t})^2] - \mathbb{E}[h(t)]^2$$