

planetmath.org

Math for the people, by the people.

metric equivalence

Canonical name MetricEquivalence
Date of creation 2013-03-22 19:23:11
Last modified on 2013-03-22 19:23:11

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 54E35
Defines equivalent

Let X be a set equipped with two metrics ρ and σ . We say that ρ is equivalent to σ (on X) if the identity map on X, is a homeomorphism between the metric topology on X induced by ρ and the metric topology on X induced by σ .

For example, if (X, ρ) is a metric space, then the function $\sigma: X \to \mathbb{R}$ defined by

$$\sigma(x,y) := \frac{\rho(x,y)}{1 + \rho(x,y)}$$

is a metric on X that is equivalent to ρ . This shows that every metric is equivalent to a bounded metric.