Teoria de Homotopia Abstrata

Edmundo Martins

21 de agosto de 2023

1 Categorias modelo

- 1.1 Definição. Seja M uma categoria localmente pequena, completa e co-completa. Uma estrutura modelo em M consiste de três classes de morfismos \mathcal{W} , \mathcal{F} , $\mathcal{C} \subseteq \operatorname{Mor}(M)$ cujos elementos são chamados, respectivamente, equivalências fracas, fibrações e cofibrações, as quais devem satisfazer as seguintes condições:
- (M1) A categoria M é bicompleta, ou seja, admite todos os limites e colimites indexados por categorias pequenas.
- (M2) (Propriedade 2-de-3) Dados morfismos $f: X \to Y \in g: Y \to Z$ em M, se dois dos morfismos do conjunto $\{f, g, g \circ f\}$ estiverem em \mathcal{W} , então o terceiro também deve estar.
- (M3) (Propriedade de retração) Se um morfismo $f:A\to X$ é retração de um outro morfismo $g:B\to Y$, ou seja, se existe um diagrama comutativo como abaixo,

$$A \xrightarrow{\operatorname{id}_{A}} B \xrightarrow{A} A$$

$$f \downarrow \qquad \downarrow g \qquad \downarrow f$$

$$X \xrightarrow{\operatorname{id}_{X}} X$$

e g pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C}), então f também pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C} , respectivamente). Em suma, as classes \mathcal{W} , \mathcal{F} e \mathcal{C} são fechadas por retrações.

(M4) (Propriedade de levantamento) Dado um diagrama comutativo como abaixo,

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow & & & \downarrow p \\ B & \longrightarrow & Y \end{array}$$

onde i é uma cofibração, e p é uma fibração; se um dos dois morfismos i ou p é também uma equivalência fraca, então o diagrama admite um levantamento, ou seja, existe um morfismo $f:B\to X$ que faz comutar o diagrama abaixo.

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow & & \downarrow & \uparrow & \downarrow p \\
B & \longrightarrow & Y
\end{array}$$

1

(M5) (Propriedade de fatoração) Qualquer morfismo $f: X \to Y$ em M pode ser fatorado nas duas formas mostradas abaixo,

onde p é simultaneamente uma fibração e uma equivalência fraca, enquanto j é simultaneamente uma cofibração e uma equivalência fraca.

Vamos introduzir um pouco de terminologia antes de fazermos alguns comentários sobre a definição acima. Os morfismos de M que pertencem à classe $\mathcal{W} \cap \mathcal{F}$ são chamados de **fibrações triviais** ou **fibrações acíclicas**, enquanto os morfismos que pertencem à classe $\mathcal{W} \cap \mathcal{C}$ são chamados de **cofibrações triviais** ou **cofibrações acíclicas**. Usando essa terminologia o axioma de fatoração (M5) pode ser enunciado da seguinte forma: todo morfismo em uma categoria modelo pode ser fatorado como uma cofibração seguido de uma fibração trivial, ou como uma cofibração trivial seguido de uma fibração.

1.2 Observação. Lembremos que, dados objetos X e Y de uma categoria C qualquer, dizemos que X é um **retrato** de Y se existem morfismos $s: X \to Y$ e $r: Y \to X$ tais que $r \circ s = \mathrm{id}_X$. Comumente nos referimos ao morfismo s por **seção** e ao morfismo r por **retração**. A condição $r \circ s = \mathrm{id}_X$ garante que s seja um monomorfismo. De fato, se $f, g: W \to X$ são morfismos tais que $s \circ f = s \circ g$, então

$$f = id_X \circ f = r \circ s \circ f = r \circ s \circ g = id_X \circ g = g.$$

Isso nos permite encarar X como um subobjeto de Y, e o morfismo r então intuitivamente deforma Y para esse subobjeto, mas de forma a mantê-lo fixado. Note que a condição $r \circ s = \mathrm{id}_X$ garante também que o morfismo r seja um epimorfismo.

A noção de retração que aparece no axioma (M3) de uma estrutura modelo enunciado acima pode ser interpretada nesse sentido em uma categoria adequada. Lembremos que toda categoria C dá origem a uma categoria de setas Arr(C). Os objetos dessa categorias são precisamente morfismos $f:A\to B$ na categoria incial C, e dados dois tais objetos $f:A\to B$ e $g:X\to Y$, um morfismo do tipo $(f:A\to B)\to (g:X\to Y)$ na categoria de setas Arr(C) é dado por um par de morfismos $(\alpha:A\to X,\beta:B\to Y)$ satisfazendo a igualdade $\beta\circ f=g\circ\alpha$. Podemos então visualizar esse morfismo em Arr(C) na forma de um quadrado comutativo como mostrado abaixo.

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} & X \\ f \downarrow & & \downarrow^g \\ B & \stackrel{\beta}{\longrightarrow} & Y \end{array}$$

A composição de morfismos é definida "colando" quadrados comutativos adjacentes. Mais precisamente, dados três objetos $f: X_1 \to Y_1, \ g: X_2 \to Y_2$ e $h: X_3 \to Y_3$ na categoria $Arr(\mathsf{C})$, e dados também dois morfismos componíveis

$$(\alpha_1: X_1 \to X_2, \beta_1: Y_1 \to Y_2)$$
 $(\alpha_2: X_2 \to X_3, \beta_2: Y_2 \to Y_3),$

sua composição é o morfismo

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) : (f : X_1 \to Y_1) \to (h : X_3 \to Y_3)$$

em Arr(C) definido pelo par

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) := (\alpha_2 \circ \alpha_1 : X_1 \to X_3, \beta_2 \circ \beta_1 : Y_1 \to Y_3).$$

Essa composição pode também ser visualizada como mostrado abaixo.

A associatividade dessa composição via colagem segue diretamente da associatividade da composição na categoria inicial C. Por fim, dado um objeto $f:X\to Y$ qualquer, o morfismo idêntico associado a ele é dado pelo par $\mathrm{id}_f\coloneqq(\mathrm{id}_X,\mathrm{id}_Y)$, conforme mostrado no quadrado comutativo abaixo.

$$X \xrightarrow{\operatorname{id}_X} X$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$Y \xrightarrow{\operatorname{id}_Y} Y$$

Note agora que, se o objeto $f:A\to B$ é um retrato do objeto $g:X\to Y$ na categoria de setas $\operatorname{Arr}(\mathsf{M})$, então por definição existem morfismos $s_1:A\to X,\,s_2:B\to Y,\,r_1:X\to A$ e $r_2:Y\to B$ tais que $(r_1,r_2)\circ(s_1,s_2)=\operatorname{id}_f$, o que também pode ser expresso pelo diagrama comutativo abaixo.

Esse é precisamente o diagrama que aparece no axioma de retração na definição de uma estrutura modelo. Podemos então reformular tal axioma dizendo que as classes de equivalências fracas, fibrações e cofibrações são todas fechadas por retrações na categoria de setas Arr(C).

- 1.3 Observação. Quando trabalhamos com categorias modelo, no lugar de dizermos explicitamente que um morfismo é uma equivalência fraca, ou uma cofibração, ou uma fibração, simplesmente adornarmos de alguma forma a seta que representa o morfismo em questão. A convenção notacional que seguiremos nesse aspecto é a seguinte:
 - uma equivalência fraca será denotada por $\stackrel{\sim}{\rightarrow}$;
 - uma cofibração será denotada por

 ;
 - $\bullet\,$ uma fibração será denotada por $\twoheadrightarrow.$

Também denotaremos cofibrações ou fibrações trivias por uma combinação dos símbolos acima:

- uma cofibração trivial será denotada por $\stackrel{\sim}{\rightarrowtail}$;
- uma fibração trivial será denotada por $\stackrel{\sim}{\twoheadrightarrow}$.

Seguindo essa convenção notacional, podemos, por exemplo, enunciar o axioma de levantamento (M4) da seguinte forma: em uma categoria modelo, todo quadrado comutativo da forma

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow^{i} \downarrow^{i} & & \downarrow^{p} \\
B & \longrightarrow & Y
\end{array}$$

admite um levantamento $f: B \to X$

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow \downarrow \downarrow & & \downarrow p \\
B & \longrightarrow & Y,
\end{array}$$

e todo quadrado comutativo da forma

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow & & \downarrow p \\ B & \longrightarrow & Y \end{array}$$

admite um levantamento $f: B \to X$

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow & \uparrow & \downarrow p \\
B & \longrightarrow Y.
\end{array}$$

Usando a mesma convenção, o axioma de fatoração (M5) pode ser enunciado da seguinte maneira: em uma categoria modelo, todo morfismo $f:X\to Y$ possui duas fotarações como mostrado abaixo.

1.4 Observação (Fatorações funtoriais). Por vezes a forma como o axioma de fatoração (M5) foi enunciado é suficiente, mas em geral é mais conveniente assumirmos a existência de fatorações funtoriais em uma categoria modelo, e o objetivo desse comentário é justamente explicar o significado preciso disso.

Na Observação 1.2 discutimos como toda categoria C dá origem a uma categoria de setas $\operatorname{Arr}(\mathsf{C})$ cujos objetos são morfismos de C, e cujos morfismos sãos quadrados comutativos "conectando" dois morfismos de C. Essa categoria vem naturalmente equipada com um funtor domínio dom : $\operatorname{Arr}(\mathsf{C}) \to \mathsf{C}$ definido da seguinte forma: dado um objeto $X \xrightarrow{f} Y$ em $\operatorname{Arr}(\mathsf{C})$, definimos $\operatorname{dom}(f) := X$, e dado um morfismo $(\alpha : X_1 \to X_2, \beta : Y_1 \to Y_2)$ em $\operatorname{Arr}(\mathsf{C})$ entre os objetos $X_1 \xrightarrow{f} Y_1$ e $X_2 \xrightarrow{g} Y_2$ como mostrado abaixo,

$$\begin{array}{ccc} X_1 & \xrightarrow{\alpha} & X_2 \\ f \downarrow & & \downarrow g \\ Y_1 & \xrightarrow{\beta} & Y_2 \end{array}$$

definimos $dom(\alpha, \beta) := \alpha$. Veja que é uma definição razoável, pois $dom(f) = X_1$, e $dom(g) = X_2$, portanto $dom(\alpha, \beta)$ define um morfismo de dom(f) para dom(g) na categoria C. A verificação

de que isso define de fato um funtor do tipo $\operatorname{Arr}(\mathsf{C}) \to \mathsf{C}$ segue de um raciocínio direto usando a definição da composição em $\operatorname{Arr}(\mathsf{C})$ via "colagem de quadrados comutativos adjacentes". Analogamente, temos também um funtor codomínio cod : $\operatorname{Arr}(\mathsf{C}) \to \mathsf{C}$ que manda um objeto $X \xrightarrow{f} Y$ de $\operatorname{Arr}(\mathsf{C})$ para o objeto $\operatorname{cod}(f) \coloneqq Y$ de C e que manda um morfismo $(\alpha: X_1 \to X_2, \beta: Y_1 \to Y_2)$ em $\operatorname{Arr}(\mathsf{C})$ como acima para o morfismo $\operatorname{cod}(\alpha, \beta) \coloneqq \beta$ em C .

Tendo em mãos os funtores domínio e codomínio, podemos definir uma **fatoração funtorial** em uma categoria C qualquer como um par de funtores (ι : Arr(C) \to C, π : Arr(C) \to C) satisfazendo as seguintes condições:

- (i) $dom \circ \iota = dom;$
- (ii) $cod \circ \pi = cod;$
- (iii) $cod \circ \iota = dom \circ \pi$;
- (iv) $f = \pi(f) \circ \iota(f)$ para todo $f \in Arr(C)$.

Vamos entender o que cada uma dessas condições significa. Os funtores ι e π nos permitem, dado um morfismo f em C, produzir dois outros morfismos $\iota(f)$ e $\pi(f)$. A condição (i) diz que o domínio de $\iota(f)$ é igual ao de f, a condição (ii) diz que o codomínio de $\pi(f)$ ao de f, e a condição (iii) diz que o codomínio de $\iota(f)$ é igual ao domínio de $\pi(f)$, de forma que a composição $\pi(f) \circ \iota(f)$ faz sentido e deve ser igual ao morfismo f inicial de acordo com a condição (iv) acima. Assim, se o morfismo f é do tipo $X \to Y$, então $\iota(f)$ e $\pi(f)$ são do tipo $X \to Z$ e $Z \to Y$, respectivamente, para algum objeto $Z \in C$, e pela condição (iv) esses três morfismos juntos formam o triângulo comutativo mostrado abaixo.

Por vezes queremos que os morfismos $\iota(f)$ e $\pi(f)$ que aparecem na fatoração de f pertençam a classes específicas de morfismos de C . Nesse sentido, se existem classes $\mathcal{R}, \mathcal{L} \subseteq (\mathsf{C})$ para os quais a fatoração funtorial (ι, π) satisfaz as condições adicionais $\iota(f) \in \mathcal{R}$ e $\pi(f) \in \mathcal{L}$ para todo $f \in (\mathsf{C})$, diremos que o par (ι, π) define uma $(\mathcal{R}, \mathcal{L})$ -fatoração funtorial.