UNIVERSITY OF TENNESSEE DEPARTMENT OF MATHEMATICS

MATH 447 - Homework 5

Robert D. French

September 30, 2014

SECTION 3.1

PROBLEM 10

Prove that if $\lim(x_n) = 0$ and if x > 0, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$.

PROOF. By the definition of limit, for each positive ϵ such an $M(\epsilon)$ can be found. Thus, take ϵ to be smaller than x, so that $x_n \in V_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$ whenever $n \ge M$. Since $\epsilon < x$, $x - \epsilon \in \mathbb{P}$ so $x_n > 0$.

PROBLEM 14

Let $b \in \mathbb{R}$ satisfy 0 < b < 1. Show that $\lim(nb^n) = 0$.

PROOF. We first begin by proving the following Lemma: If $(k_n)^2 \to 0$ and $k_n < 0$, then $k_n \to 0$.

By hypothesis, given an $\epsilon > 0$, there exists some $M(\epsilon) \in \mathbb{N}$ such that $|(k_n)^2 - 0| < \epsilon$ whenever $n \ge M(\epsilon)$. Further, $|(k_n)^2 - 0| = ||k_n| \cdot |k_n|| = |k_n|^2$ so that we have $|k_n| < \sqrt{\epsilon}$. Since the absolute value of k_n is smaller than any arbitrary positive number, and we know that $k_n < 0$ for all choices of n, we have that $k_n \to 0$.

Now we may proceed with the main portion of our argument. Since $b \in (0,1)$, we may define a sequence (k_n) such that $b^{1/n} = 1 + k_n$ for some $k_n < 0$. This implies that $b = (1 + k_n)^n$.

The Binomial Theorem tells us that $b = 1 + nk_n + \frac{1}{2}n(n-1)(k_n)^2 + \cdots \ge 1 + \frac{1}{2}n(n-1)(k_n)^2$, so we have that $b - 1 \ge \frac{1}{2}n(n-1)(k_n)^2$. Thus, $\frac{2b-2}{n(n-1)} \ge (k_n)^2$.

We know from previous work that $\frac{1}{n(n-1)} \to 0$, and since $\frac{2b-2}{n(n-1)}$ is a constant times a convergent expression, we know that its limit is zero as well. Since $(k_n)^2$ is bounded above by a sequence which converges to zero, and below by the constant sequence (0), we have that $(k_n)^2 \to 0$. Thus, by our earlier Lemma, k_n

PROBLEM 17

HINT

If $n \ge 3$, then $0 < 2^n / n! \le 2(\frac{2}{3})^{n-2}$.

PROOF.

MAIN PROBLEM

Show that $\lim_{n \to \infty} (2^n/n!) = 0$.

PROOF.

PROBLEM 18

If $\lim(x_n) = x > 0$, show that there exists a natural number K such that if $n \ge K$, then $\frac{1}{2}x < x_n < 2x$.

PROOF.

SECTION 3.2

PROBLEM 7

If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_nb_n) = 0$. Explain why Thm 3.2.3 cannot be used.

PROOF.

PROBLEM 9

Let $y_n := \sqrt{n+1} - \sqrt{n}$ for $n \in \mathbb{N}$. Show that $(\sqrt{n}y_n)$ converges. Find the limit.

PROOF.

Problem 11
Part A
Find $\lim ((3\sqrt{n})^{1/2n})$
Proof.
PART B
Find $(\sqrt{n^2 + 5n} - n)$
Proof.
PROBLEM 12
If $0 < a < b$, determine $\left(\frac{a^{n+1} + b^{n+1}}{a^n + b^n}\right)$.
Proof.
Problem 13
If $a > 0$, $b > 0$, show that $\lim (\sqrt{(n+a)(n+b)} - n) = (a+b)/2$.
Proof.
Problem 14
Part A
Use the Squeeze Theorem to find $\lim(n^{1/n^2})$.
Proof.
Part B
Use the Squeeze Theorem to find $\lim((n!)^{1/n^2})$.

Show that if $z_n := (a^n + b^n)^{1/n}$ where 0 < a < b, then $\lim(z_n) = b$.

PROBLEM 15

PROOF.

PROOF.

PROBLEM 23

Show that if (x_n) and (y_n) are convergent sequences, then the sequences (u_n) and (v_n) defined by $u_n := \max\{x_n, y_n\}$ and $v_n := \min\{x_n, y_n\}$ are also convergent.

PROOF.

PROBLEM 24

Show that if (x_n) , (y_n) , (z_n) are convergent sequences, then the sequence (w_n) defined by $w_n := \min\{x_n, y_n, z_n\}$ is also convergent.

PROOF.