Gradient Estimation Using Stochastic Computation Graphs

Yoonho Lee

Department of Computer Science and Engineering Pohang University of Science and Technology

May 9, 2017

Outline

Stochastic Gradient Estimation

Stochastic Computation Graphs

Stochastic Computation Graphs in RL

Other Examples of Stochastic Computation Graphs

Outline

Stochastic Gradient Estimation

Stochastic Computation Graphs

Stochastic Computation Graphs in RL

Other Examples of Stochastic Computation Graphs

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)]$$

Approximate $\nabla_{\theta} R(\theta)$ can be used for:

- Computational Finance
- ► Reinforcement Learning
- Variational Inference
- Explaining the brain with neural networks

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)] = \int_{\Omega} f(\theta, w) P_{\theta}(dw)$$

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)] = \int_{\Omega} f(\theta, w) P_{\theta}(dw)$$

$$= \int_{\Omega} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} G(dw)$$

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)] = \int_{\Omega} f(\theta, w) P_{\theta}(dw)$$
$$= \int_{\Omega} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} G(dw)$$
$$F(\theta) = \nabla_{\theta} \int_{\Omega} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} G(dw)$$

$$\nabla_{\theta} R(\theta) = \nabla_{\theta} \int_{\Omega} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} G(dw)$$

$$= \int_{\Omega} \nabla_{\theta} (f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)}) G(dw)$$

$$= E_{w \sim G(dw)} [\nabla_{\theta} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} + f(\theta, w) \frac{\nabla_{\theta} P_{\theta}(dw)}{G(dw)}]$$

So far we have

$$\nabla_{\theta} R(\theta) = E_{w \sim G(dw)} [\nabla_{\theta} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} + f(\theta, w) \frac{\nabla_{\theta} P_{\theta}(dw)}{G(dw)}]$$

So far we have

$$\nabla_{\theta} R(\theta) = E_{w \sim G(dw)} [\nabla_{\theta} f(\theta, w) \frac{P_{\theta}(dw)}{G(dw)} + f(\theta, w) \frac{\nabla_{\theta} P_{\theta}(dw)}{G(dw)}]$$

Letting $G = P_{\theta_0}$ and evaluating at $\theta = \theta_0$, we get

$$\begin{split} \left. \nabla_{\theta} R(\theta) \right|_{\theta = \theta_{0}} &= E_{w \sim P_{\theta_{0}}(dw)} [\nabla_{\theta} f(\theta, w) \frac{P_{\theta}(dw)}{P_{\theta_{0}}(dw)} + f(\theta, w) \frac{\nabla_{\theta} P_{\theta}(dw)}{P_{\theta_{0}}(dw)}] \right|_{\theta = \theta_{0}} \\ &= E_{w \sim P_{\theta_{0}}(dw)} [\nabla_{\theta} f(\theta, w) + f(\theta, w) \nabla_{\theta} \ln P_{\theta}(dw)] \Big|_{\theta = \theta_{0}} \end{split}$$

So far we have

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)]$$

$$\left. \triangledown_{\theta} R(\theta) \right|_{\theta = \theta_0} = \left. E_{w \sim P_{\theta_0}(dw)} [\triangledown_{\theta} f(\theta, w) + f(\theta, w) \triangledown_{\theta} \ln P_{\theta}(dw)] \right|_{\theta = \theta_0}$$

So far we have

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)]$$

$$\left. egin{aligned} \left. igtriangledown_{ heta} R(heta)
ight|_{ heta = heta_0} = E_{w \sim P_{ heta_0}(dw)} \left[igtriangledown_{ heta} f(heta, w) + f(heta, w) igtriangledown_{ heta} \ln P_{ heta}(dw)
ight]
ight|_{ heta = heta_0} \end{aligned}$$

1. Assuming w fully determines f:

$$\left. egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{ heta}R(heta) \end{aligned} \middle|_{ heta= heta_0} &= E_{w\sim P_{ heta_0}(dw)}[f(w)
abla_{ heta}\ln P_{ heta}(dw)] \middle|_{ heta= heta_0} \end{aligned}$$

2. Assuming $P_{\theta}(dw)$ is independent of θ :

$$\nabla_{\theta} R(\theta) = E_{w \sim P(dw)} [\nabla_{\theta} f(\theta, w)]$$

Stochastic Gradient Estimation SF vs PD

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)]$$

Score Function (SF) Estimator:

$$\left. egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} E_{w\sim P_{ heta_0}(dw)}[f(w)
abla_{ heta}\ln P_{ heta}(dw)] \end{aligned} \end{aligned} \end{aligned} \end{aligned} \right|_{ heta= heta_0}$$

Pathwise Derivative (PD) Estimator:

$$\nabla_{\theta} R(\theta) = E_{w \sim P(dw)} [\nabla_{\theta} f(\theta, w)]$$

Stochastic Gradient Estimation SF vs PD

$$R(\theta) = E_{w \sim P_{\theta}(dw)}[f(\theta, w)]$$

Score Function (SF) Estimator:

$$\left. egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} E_{w\sim P_{ heta_0}(dw)}[f(w)
abla_{ heta}\ln P_{ heta}(dw)] \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned}$$

Pathwise Derivative (PD) Estimator:

$$\nabla_{\theta} R(\theta) = E_{w \sim P(dw)} [\nabla_{\theta} f(\theta, w)]$$

- SF allows discontinuous f.
- ▶ SF requires sample values f; PD requires derivatives f'.
- ► SF takes derivatives over the probability distribution of *w*; PD takes derivatives over the function *f*.
- ▶ SF has high variance on high-dimensional w.
- ▶ PD has high variance on rough f.

Choices for PD estimator

Target	p(z; heta)	Base $p(\epsilon)$	One-liner $g(\epsilon; heta)$
Exponential	$\exp(-x); x>0$	$\epsilon \sim [0;1]$	$\ln(1/\epsilon)$
Cauchy	$rac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$ an(\pi\epsilon)$
Laplace	$\mathcal{L}(0;1) = \exp \left(- x ight)$	$\epsilon \sim [0;1]$	$\ln(rac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln \ (1-2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0;1]$	$\sqrt{\ln(rac{1}{\epsilon_1})}\cos \ (2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu;RR^\top)$	$\epsilon \sim \mathcal{N}(0;1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim Bern(rac{1}{2})$	$2\epsilon-1$
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu; \sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k; heta)$	$\epsilon \sim \mathcal{G}(k; heta^{-1})$	$\frac{1}{\epsilon}$

Outline

Stochastic Gradient Estimation

Stochastic Computation Graphs

Stochastic Computation Graphs in RL

Other Examples of Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs (NIPS 2015)

John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel

SF estimator:

$$\left. egin{aligned} \left. igtriangledown_{ heta} R(heta) \right|_{ heta = heta_0} &= E_{x \sim P_{ heta_0}(dx)}[f(x)
abla_{ heta} \ln P_{ heta}(dx)] \right|_{ heta = heta_0} \end{aligned}$$

PD estimator:

$$\nabla_{\theta} R(\theta) = E_{z \sim P(dz)} [\nabla_{\theta} f(x(\theta, z))]$$

Stochastic Computation Graph $(1) \quad \theta \longrightarrow x \qquad y \qquad f$

Objective

Gradient Estimator

$$\mathbb{E}_y\left[f(y)\right]$$

 $\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x} \log p(y \mid x) f(y)$

$$2) \quad \theta \longrightarrow x \longrightarrow y \longrightarrow f$$

$$\mathbb{E}_x\left[f(y(x))\right]$$

$$\frac{\partial}{\partial \theta} \log p(x \mid \theta) f(y(x))$$

$$(3) \quad \theta \longrightarrow x \longrightarrow y \longrightarrow f$$

$$\mathbb{E}_{x,y}\left[f(y)\right]$$

$$\frac{\partial}{\partial \theta} \log p(x \mid \theta) f(y)$$

$$\mathbb{E}_x\left[f(x,y(\theta))\right]$$

$$\frac{\partial}{\partial \theta} \log p(x \mid \theta) f(x, y(\theta)) + \frac{\partial y}{\partial \theta} \frac{\partial f}{\partial y}$$

$$\mathbb{E}_{x_1,x_2} \left[f_1(x_1) + f_2(x_2) \right]$$

$$\frac{\partial}{\partial \theta} \log p(x_1 \mid \theta, x_0) (f_1(x_1) + f_2(x_2)) + \frac{\partial}{\partial \theta} \log p(x_2 \mid \theta, x_1) f_2(x_2)$$

- ► Stochastic computation graphs are a design choice rather than an intrinsic property of a problem
- Stochastic nodes 'block' gradient flow

Neural Networks

 Neural Networks are a special case of stochastic computation graphs

Formal Definition

Definition 1 (Stochastic Computation Graph). A directed, acyclic graph, with three types of nodes:

- 1. Input nodes, which are set externally, including the parameters we differentiate with respect to.
- 2. Deterministic nodes, which are functions of their parents.
- 3. Stochastic nodes, which are distributed conditionally on their parents.

Each parent v of a non-input node w is connected to it by a directed edge (v, w).

Deriving Unbiased Estimators

Condition 1. (Differentiability Requirements) Given input node $\theta \in \Theta$, for all edges (v, w) which satisfy $\theta \prec^D v$ and $\theta \prec^D w$, the following condition holds: if w is deterministic, $\frac{\partial w}{\partial v}$ exists, and if w is stochastic, $\frac{\partial}{\partial v}p(w|\mathsf{PARENTS}_w)$ exists.

Theorem 1. Suppose $\theta \in \Theta$ satisfies Condition 1. The following equations hold:

$$\begin{split} \frac{\partial}{\partial \theta} & \mathbb{E}\left[\sum_{c \in C} c\right] = \mathbb{E}\left[\sum_{\substack{w \in S \\ \theta \prec^D w}} \left(\frac{\partial}{\partial \theta} \mathsf{log} p(w|\mathsf{DEPS}_w)\right) \hat{Q}_w + \sum_{\substack{c \in C \\ \theta \prec^D c}} \frac{\partial}{\partial \theta} c(\mathsf{DEPS}_c)\right] \\ & = \mathbb{E}\left[\sum_{c \in C} \hat{c} \sum_{\substack{w \in S \\ \theta \prec^D w}} \frac{\partial}{\partial \theta} \mathsf{log} p(w|\mathsf{DEPS}_w) + \sum_{\substack{c \in C \\ \theta \prec^D c}} \frac{\partial}{\partial \theta} c(\mathsf{DEPS}_c)\right] \end{split}$$

Surrogate loss functions

We have this equation from Theorem 1:

$$\frac{\partial}{\partial \theta} \mathbb{E} \left[\sum_{c \in C} c \right] = \mathbb{E} \left[\sum_{\substack{w \in S \\ \theta \prec^D w}} \left(\frac{\partial}{\partial \theta} log p(w | \mathsf{DEPS}_w) \right) \hat{Q}_w + \sum_{\substack{c \in C \\ \theta \prec^D c}} \frac{\partial}{\partial \theta} c(\mathsf{DEPS}_c) \right]$$

Note that by defining

$$L(\Theta, S) := \sum_{w \in S} log p(w|\mathsf{DEPS}_w) \hat{Q}_w + \sum_{c \in C} c(\mathsf{DEPS}_c)$$

we have

$$\frac{\partial}{\partial \theta} \mathbb{E} \left[\sum_{c \in C} c \right] = \mathbb{E} \left[\frac{\partial}{\partial \theta} L(\Theta, S) \right]$$

Surrogate loss functions

Implementations

Module: tf.contrib.bayesflow.stochastic_gradient_estimators

 Making stochastic computation graphs with neural network packages is easy

tensorflow.org/api_docs/python/tf/contrib/bayesflow/stochastic_gradient_estimators
github.com/pytorch/pytorch/blob/6a69f7007b37bb36d8a712cdf5cebe3ee0cc1cc8/torch/autograd/
variable.py

Outline

Stochastic Gradient Estimation

Stochastic Computation Graphs

Stochastic Computation Graphs in RL

Other Examples of Stochastic Computation Graphs

MDP

▶ The MDP formulation itself is a stochastic computation graph

Policy Gradient

Surrogate Loss

Theorem 1 (Policy Gradient). For any MDP, in either the average-reward or start-state formulations,

$$\frac{\partial \rho}{\partial \theta} = \sum_{s} d^{\pi}(s) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta} Q^{\pi}(s, a). \tag{2} 1$$

$$\theta$$

$$\log p(a_{1}|s_{1}) \begin{cases} \log p(a_{2}|s_{2}) \\ * Q(a_{1}, s_{1}) \end{cases}$$

$$|\log p(a_{2}|s_{2}) \end{cases}$$

$$* Q(a_{1}, s_{1})$$

► The policy gradient algorithm is Theorem 1 applied to the MDP graph

¹Richard S Sutton et al. "Policy Gradient Methods for Reinforcement Learning with Function Approximation" Technic NIPS (1999).

Stochastic Value Gradient SVG(0)

Learn Q_{ϕ} , and update²

$$\Delta heta arpropto orall_{ heta} \sum_{t=1}^T Q_{\phi}(s_t, \pi_{ heta}(s_t, \epsilon_t))$$

Stochastic Value Gradient SVG(1)

Learn V_{ϕ} and dynamics model f such that $s_{t+1} = f(s_t, a_t) + \delta_t$. Given transition (s_t, a_t, s_{t+1}) , infer noise δ_t .³

$$\Delta \theta \propto \nabla_{\theta} \sum_{t=1}^{I} r_t + \gamma V_{\phi}(f(s_t, a_t) + \delta_t)$$

Stochastic Value Gradient $SVG(\infty)$

Learn f, infer all noise variables δ_t . Differentiate through whole graph.4

Deterministic Policy Gradient

Theorem 1 (Deterministic Policy Gradient Theorem). Suppose that the MDP satisfies conditions A.1 (see Appendix; these imply that $\nabla_{\theta}\mu_{\theta}(s)$ and $\nabla_{a}Q^{\mu}(s,a)$ exist and that the deterministic policy gradient exists. Then,

$$\begin{split} \nabla_{\theta} J(\mu_{\theta}) &= \int_{\mathcal{S}} \rho^{\mu}(s) \nabla_{\theta} \mu_{\theta}(s) \left. \nabla_{a} Q^{\mu}(s,a) \right|_{a = \mu_{\theta}(s)} \mathrm{d}s \\ &= \mathbb{E}_{s \sim \rho^{\mu}} \left[\nabla_{\theta} \mu_{\theta}(s) \left. \nabla_{a} Q^{\mu}(s,a) \right|_{a = \mu_{\theta}(s)} \right] \end{aligned} \tag{9} \quad \mathbf{5}$$

Evolution Strategies

Algorithm 1 Evolution Strategies

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Sample $\epsilon_1, \dots \epsilon_n \sim \mathcal{N}(0, I)$
- 4: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for $i = 1, \dots, n$
- 5: Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^{n} F_i \epsilon_i$
- 6: end for

6

Outline

Stochastic Gradient Estimation

Stochastic Computation Graphs

Stochastic Computation Graphs in RL

Other Examples of Stochastic Computation Graphs

Neural Variational Inference

$$\nabla_{\theta} \mathcal{L}(x) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \log P_{\theta}(x, h^{(i)})$$

and

$$\nabla_{\phi} \mathcal{L}(x) \approx \frac{1}{n} \sum_{i=1}^{n} (\log P_{\theta}(x, h^{(i)}) - \log Q_{\phi}(h^{(i)}|x))$$
$$\times \nabla_{\phi} \log Q_{\phi}(h^{(i)}|x).$$

 $x \longrightarrow h_1 \longrightarrow h \longrightarrow h_2 \longrightarrow \tilde{x} \longrightarrow L$

Where

$$L(x, \theta, \phi) = \mathbb{E}_{h \sim Q(h|x)}[\log P_{\theta}(x, h) - \log Q_{\phi}(h|x)]$$

Score function estimator

⁷Andriy Mnih and Karol Gregor. "Neural Variational Inference and Learning in Belief Networks". In 1965 (2014).

Variational Autoencoder

We apply this technique to the variational lower bound (eq. (2)), yielding our generic Stochastic Gradient Variational Bayes (SGVB) estimator $\tilde{\mathcal{L}}^A(\theta,\phi;\mathbf{x}^{(i)})\simeq \mathcal{L}(\theta,\phi;\mathbf{x}^{(i)})$:

$$\tilde{\mathcal{L}}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(i,l)}|\mathbf{x}^{(i)})$$
where $\mathbf{z}^{(i,l)} = g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)})$ and $\boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon})$

$$\boldsymbol{\phi} \qquad \boldsymbol{\epsilon} \qquad \boldsymbol{\theta} \qquad \boldsymbol$$

 Pathwise derivative estimator applied to the exact same graph as NVIL

DRAW

- Sequential version of VAE
- Same graph as $SVG(\infty)$ with (known) deterministic dynamics(e=state, z=action, L=reward)
- ightharpoonup Similarly, VAE can be seen as SVG(∞) with 1 timestep and deterministic dynamics

GAN

- ► Connection to SVG(0) has been established in [10]
- ▶ Actor has no access to state. Observation is a random choice between real or fake image. Reward is 1 if real, 0 if fake. D learns value function of observation. G's learning signal is D.

¹⁰David Pfau and Oriol Vinyals. "Connecting Generative Adversarial Networks and Actor-Critic Methods" (2016).

Bayes by backprop

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[\frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right]_{11}$$

and our cost function f is:

$$f(D, \theta) = \mathbb{E}_{w \sim q(w|\theta)}[f(w, \theta)]$$

= $\mathbb{E}_{w \sim q(w|\theta)}[-\log p(D|w) + \log q(w|\theta) - \log p(w)]$

- ► From the point of view of stochastic computation graphs, weights and activations are not different
- Estimate ELBO gradient of activation with PD estimator: VAE
- ► Estimate ELBO gradient of weight with PD estimator: Bayes by Backprop

Summary

- ► Stochastic computation graphs explain many different algorithms with one gradient estimator(Theorem 1)
- Stochastic computation graphs give us insight into the behavior of estimators
- Stochastic computation graphs reveal equivalencies:
 - ► NVIL[7]=Policy gradient[12]
 - $ightharpoonup VAE[6]/DRAW[4]=SVG(\infty)[5]$
 - ▶ GAN[3]=SVG(0)[5]

References I

- [1] Charles Blundell et al. "Weight Uncertainty in Neural Networks". In: ICML (2015).
- [2] Michael Fu. "Stochastic Gradient Estimation". In: (2005).
- [3] Ian J. Goodfellow et al. "Generative Adversarial Networks". In: NIPS (2014).
- [4] Karol Gregor et al. "DRAW: A Recurrent Neural Network For Image Generation". In: ICML (2015).
- [5] Nicolas Heess et al. "Learning Continuous Control Policies by Stochastic Value Gradients". In: NIPS (2015).
- [6] Diederik P Kingma and Max Welling. "Auto-Encoding Variational Bayes". In: ICLR (2014).
- [7] Andriy Mnih and Karol Gregor. "Neural Variational Inference and Learning in Belief Networks". In: ICML (2014).

References II

- [8] David Pfau and Oriol Vinyals. "Connecting Generative Adversarial Networks and Actor-Critic Methods". In: (2016).
- [9] Tim Salimans et al. "Evolution Strategies as a Scalable Alternative to Reinforcement Learning". In: arXiv (2017).
- [10] John Schulman et al. "Gradient Estimation Using Stochastic Computation Graphs". In: NIPS (2015).
- [11] David Silver et al. "Deterministic Policy Gradient Algorithms". In: *ICML* (2014).
- [12] Richard S Sutton et al. "Policy Gradient Methods for Reinforcement Learning with Function Approximation". In: NIPS (1999).

Thank You