Миниеместр 4.2 (18 часов лекций, 36 часов практических занятий).

План лекций.

- 1. Поверхности в \mathbb{R}^n . Гладкие и кусочно-гладкие поверхности. Касательная и нормаль к поверхности. Особые точки поверхностей. Ориентация поверхности. Квадрируемые поверхности, площадь поверхности.
- 2. Поверхностный интеграл первого рода. Основные свойства. Теорема о связи с кратным интегралом Римана.
- 3. Поверхностный интеграл второго рода. Основные свойства. Теорема о связи с поверхностным интегралом первого рода.
 - 4. Формула Остроградского-Гаусса.
 - 5. Формула Стокса.
- 6. Элементы теории поля. Скалярные и векторные поля. Потенциальное поле. Градиент. Соленоидальное поле. Дивергенция и ротор.
- 7. Формула Грина, формула Стокса и формула Острогорадского-Гаусса в терминах векторного анализа. Циркуляция векторного поля. Поверхностно односвязные области в \mathbb{R}^3 . Теорема об условиях потенциальности поля в области в \mathbb{R}^3 .
- 8. Поток векторного поля через поверхность. Независимость операторов ∇ , div, rot от выбора системы координат.
- 9. Формула Грина. для оператора Лапласа. Основные задачи векторного анализа. Соленоидальные поля. Объемно односвязные области в \mathbb{R}^3 .
- 10. Теорема об условиях соленоидальности поля в области в \mathbb{R}^3 . Задача о разложении векторного поля. Теорема Гельмгольца.

Литература.

- 1. Кудрявцев Л.Д. Курс математического анализа. Т. 1,2,3. М.: Высшая школа. 1989.
- 2. Зорич В.А. Курс дифференциального и интегрального исчисления. М.: Наука. 1984.
- 3. Никольский С.М. Курс математического анализа. Т. 1,2. М.: Наука. 1983.
- 4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 1,2,3. М.: Наука. 1970.
- 5. Кудрявцев Л.Д. и др. Сборник задач по математическому анализу. Т. 1,2,3. М.: Высшая школа. 1985.

План практических занятий.

- 1. Поверхности в \mathbb{R}^{n} . Касательная и нормаль к поверхности.
- 2. Поверхности в \mathbb{R}^n . Квадрируемые поверхности, площадь поверхности.
- 3. Поверхностный интеграл первого рода.
- 4. Контрольная работа.
- 5. Поверхностный интеграл второго рода.
- 6. Формула Остроградского-Гаусса.
- 7. Формула Стокса.

- 8. Элементы теории поля. Скалярные и векторные поля. Потенциальное поле. Градиент. Соленоидальное поле. Дивергенция и ротор.
 - 9. Контрольная работа.

Типовые теоретические задания.

- 1. Дайте определение.
- 2. Сформулируйте и докажите теорему.

Типовые практические задания.

- 1. Найдите касательную плоскость к поверхности в заданной точке.
- 2. Найдите площадь гладкой поверхности.
- 3. Вычислите поверхностный интеграл первого рода.
- 4. Вычислите поверхностный интеграл второго рода.
- 5. С помощью формулы Остроградского-Гаусса вычислите объем области.
- 6. Вычислите поверхностный интеграл с помощью формулы Стокса.
- 7. Найдите градиент ∇u скалярного поля u.
- 8. Найдите $\operatorname{div} \overline{a}$ и $\operatorname{rot} \overline{a}$. векторного поля \overline{a} .
- 9. Вычислите циркуляцию векторного поля \overline{a} влоль кривой.
- 10. Выясните, является ли поле потенциальным в области.
- 11. Найдите потенциал векторного поля \overline{a} .
- 12. Вычислите поток векторного поля \bar{a} через поверхность.
- 13. Выясните, является ли поле соленоидальным в области.

Типовой вариант на минисессии.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(семестр 4, Минисессия 2, 2020 г., вариант I)

- 1. Дайте определение гладкой поверхности, заданной параметрически (5 баллов).
- 2. Сформулируйте и докажите теорему о вычислении поверхностного интеграла первого рода (5+6=11 баллов).
- 3. Вычислите площадь поверхности параболоида, образованного вращением параболы $z=x^2$ вокруг оси Oz (11 баллов)?.
- 4. Вычислите поток векторного поля $\vec{h} = (y, z, x)$ через нижнюю часть сферы $S = \{x^2 + y^2 + z^2 = 1/4, z < 0\}$. Является ли это векторное поле соленоидальным в проколотом шаре $D = \{0 < x^2 + y^2 + z^2 < 16\}$. (12 баллов) ?
- 5. Найдите циркуляцию векторного поля $\vec{a}=(x^{10},y^{10},z^{10})$ вдоль кривой γ , лежащей в проколотом шаре $D=\{0< x^2+y^2+z^2<1\}$ на пересечении плоскости z=1/3 и сферы $S=\{x^2+y^2+z^2=1/4\}$. Является ли это векторное поле потенциальным в области D (11 баллов)?