# State Estimation of Induction Machine using UKF

Ram Milan Verma

Indian Institute of Technology, Bombay

Course Project - CL 653

November 7, 2018

### Contents

- Importance/Idea of UKF
- Details of algorithm of UKF
- Model equations and Parameters
- 4 Linearisation Point for KF
- Results
- 6 Conclusion
- References

# Importance of UKF(Unscented Kalman Filter)

- Derivative free sampling based filter.
- Uses deterministic sampling and associates weights.
- Numerical approximations of first and second moments can be found using sample points chosen.
- Sample point generation is called sigma point generation.
- Sigma point is generated symmetrically around the mean.
- Hence, works well for signals with unimodal and symmetric probability densities.

### Unscented Kalman Filter

### Augmented Quantities

- **1**  $\chi(k-1) = [\mathbf{X}(k-1)^T, \mathbf{d}(k-1)^T, \mathbf{v}(k-1)^T]^T$
- ② It's mean,  $\widehat{\chi}(k-1|k-1) = [\widehat{X}(k-1|k-1)^T, \overline{0}^T, \overline{0}^T]^T$
- **3** Covariance matrix,  $P^a(k-1|k-1) = diag[P(k-1|k-1), Q, R]$

### Sigma Point generation

- $\mathbf{M} = \dim(\chi)$ ; Number of samples,  $N_s = 2M + 1$
- $\chi^{(1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1)$
- $\chi^{(i+1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1) + \rho \sqrt{P^{a}(k-1|k-1)}\zeta^{(i)}$
- $\chi^{(i+M+1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1) \rho \sqrt{P^a(k-1|k-1)}\zeta^{(i)}$  where  $\zeta^{(i)} = [0,0,...,1,0,0]^T$  i=1,...,M;  $\rho = \sqrt{M+\kappa}$   $\kappa$  (tuning parameter) = 1 or (3 M) (A Typical choice)

### Unscented Kalman Filter

### Weights

- Weights are chosen such that  $\sum \omega_i = 1$  and weighted sample average equals  $\widehat{\chi}(k-1|k-1)$
- $\omega_1 = \frac{\kappa}{M + \kappa}$
- $\omega_{i+1} = \omega_{i+M+1} = \frac{1}{2(M+\kappa)}$  For i=1,..,M

### Propagation using system and measurement models

- state propagation
  - Integrate the model equation for each sample points.
  - Get the weighted sum as sample mean,  $\widehat{X}(k|k-1) = \sum \omega_i \widehat{X}^{(i)}(k|k-1)$
- Measurement prediction
  - Get  $Y^{(i)}(k|k-1)$  by substituting  $\widehat{X}^{(i)}(k|k-1)$
  - $\widehat{Y}(k|k-1) = \sum_{i} \omega_i \widehat{Y}^{(i)}(k|k-1)$

### Unscented Kalman Filter

### Defining error and covariances

- $\varepsilon^{(i)}(k|k-1) = \widehat{X}^{(i)}(k|k-1) \widehat{X}(k|k-1)$
- $\bullet \ \epsilon^{(i)}(k) = \widehat{Y}^{(i)}(k|k-1) \widehat{Y}(k|k-1)$
- Covariances
  - $P_{\varepsilon\varepsilon}(k|k-1) \approx \sum \omega_i \varepsilon^{(i)}(k|k-1) [\varepsilon^{(i)}(k|k-1)]^T$
  - $P_{\varepsilon\epsilon}(k) \approx \sum \omega_i \varepsilon^{(i)} (k|k-1) [\epsilon^{(i)}(k)]^T$
  - $P_{\epsilon\epsilon}(k) \approx \sum \omega_i \epsilon^{(i)}(k) [\epsilon^{(i)}(k)]^T$

#### Kalman Update

- $L(k) = P_{\varepsilon \epsilon}(k) P_{\epsilon \epsilon}(k)^{-1}$
- innovation,  $e(k) = Y(k) \widehat{Y}(k|k-1)$
- $\bullet \ \widehat{X}(k|k) = \widehat{X}(k|k-1) + L(k) \ e(k)$
- $P(k|k) = P_{\varepsilon\varepsilon}(k|k-1) L(k)P_{\epsilon\epsilon}(k)L(k)^T$

# Model equations

State space model of system

$$\frac{dx_1}{dt} = k_1 x_1 + z_1 x_2 + k_2 x_3 + z_2 \tag{1}$$

$$\frac{dx_2}{dt} = z_1 x_1 + k_1 x_2 + k_2 x_4 \tag{2}$$

$$\frac{dx_3}{dt} = k_3 x_1 + k_4 x_3 + (z_1 - x_5) x_4 \tag{3}$$

$$\frac{dx_4}{dt} = k_3 x_2 - (z_1 - x_5) x_3 + k_4 x_4 \tag{4}$$

$$\frac{dx_5}{dt} = k_5(x_1x_4 - x_2x_3) + k_6z_3 \tag{5}$$

where  $x_1, x_2$  and  $x_3, x_4$  are components of stator and rotor flux;  $x_5$  is angular velocity;  $z_1, z_2, z_3$  are inputs indicating frequency, amplitude and load torque

#### Measurement model and Parameters

Measurement model equations

$$y_1 = k_7 x_1 + k 8 x_3 \tag{6}$$

$$y2 = k_7 x_2 + k_8 x_4 \tag{7}$$

• 
$$\times(0) = [0.2, -0.6, -0.4, 0.1, 0.3]^T$$
;  $Q = 10^{-4} I_{5x5}$ ;  $R = 10^{-2} I_{2x2}$ ;  $T_s = 0.1$  sec;  $P(0|0) = I_{5x5}$ ;  $N = 500$ 

Table: Parameters and inputs

|        |       |       | $k_4$  |        |       |        |   |   |   |   |
|--------|-------|-------|--------|--------|-------|--------|---|---|---|---|
| -0.186 | 0.178 | 0.225 | -0.234 | -0.081 | 4.643 | -4.448 | 1 | 1 | 1 | 0 |

# Linearisation point for KF

- Used fsolve function of MATLAB.
- it takes initial point  $(x_0)$  as one argument to perform search.
- Used feval to check the correctness of steady state point obtained.
- For  $x_0 = [0 \ 0 \ 0 \ 1 \ 1]$  or  $[0 \ -1 \ 0.5 \ -1 \ 1]$
- $x_{ss} = [0.0148 0.9998 \ 0.0143 0.9613 \ 1.0000]$
- Output of feval: 1.0e-08 \*[0.0000 0.0000 0.0481 -0.1631 -0.0023]

# Results: True Vs Estimated(All Filter)



## Results: True Vs Estimated (EKF and UKF)



# Results: Innovation(All Filter)



# Results: Innovation(EKF and UKF)



# Results: Spectral Radii(All on same plot)



# Results: Spectral Radii(subplots)



# Results: Estimation error(All Filter)



### Results: Estimation error for EKF



#### Results: Estimation error for UKF



## Results: Estimation error for EKF and UKF(State 1)



# Results: Estimation error for EKF and UKF(State 2)



## Results: Estimation error for EKF and UKF(State 3)



### Results: Estimation error for EKF and UKF(State 4)



## Results: Estimation error for EKF and UKF(State 5)



### **Tables**

Table: Mean and variances across time

|          | K      | (F      | EKF    |         | UKF    |        |  |
|----------|--------|---------|--------|---------|--------|--------|--|
|          | y1     | y2      | y1     | y2      | y1     | y2     |  |
| Mean     | 0.0028 | -0.0146 | 0.0096 | -0.0058 | 0.0607 | 0.0077 |  |
| Variance | 0.0854 | 0.1210  | 0.0160 | 0.0182  | 0.0205 | 0.0235 |  |

Table: Root Mean Square Error

| Filter | State 1 | State 2 | State 3 | State 4 | State 5 |  |
|--------|---------|---------|---------|---------|---------|--|
| KF     | 2.2648  | 2.9405  | 10.0561 | 12.2089 | 19.8373 |  |
| EKF    | 0.0358  | 0.0387  | 0.1288  | 0.1374  | 0.2158  |  |
| UKF    | 0.0343  | 0.0597  | 0.1047  | 0.2104  | 0.1185  |  |

Figure: Mean, Variance and RMSE for filters

# Results: Normalised Estimation Error Squared (NESS)





# Results: Normalised Estimation Error Squared(NESS)





#### Conclusion

- The fraction of time instants for which  $\beta_k$  exceeded the bounds was 0 and  $\alpha$ =0.05. Hence filter can be said consistent.
- KF didn't work well on this system at chose linearisation point.
- Both EKF and UKF performed decently well.
- For few states EKF estimated better, for few UKF and for few both did better

### References

- Lectrue slides
- Kandepu, R., and Foss, B., and Imsland, L.; Applying the Unscented Kalman Filter for Nonlinear State Estimation, Journal of Process Control, 18, 2008, 753-768.

# The End