EXERCICE 1.

- **1.** Déterminer la forme trigonométrique du nombre complexe $4\sqrt{2}(-1+i)$.
- 2. Trois nombres complexes ont pour produit $4\sqrt{2}(-1+i)$. Leurs modules sont en progression géométrique de raison 2 et leurs arguments sont en progression arithmétique de raison $\frac{\pi}{4}$. On note z_1, z_2 et z_3 ces trois nombres, où la numérotation respecte l'ordre des modules. Sachant que z_1 a un argument compris entre $\frac{\pi}{2}$ et π , déterminer le module et un argument de chacun des trois nombres z_1, z_2 et z_3 .
- 3. Construire les images M_1 , M_2 et M_3 des nombres complexes z_1 , z_2 et z_3 dans le plan complexe.

EXERCICE 2.

On note $j = e^{2i\pi/3}$.

- **1.** Calculer j^3 , $1 + j + j^2$, $1 + j^2 + j^4$, j^{-1} et \bar{j} en fonction de j.
- 2. Simplifier l'expression

$$\frac{1+j}{(1-i)^2} + \frac{1-j}{(1+i)^2}.$$

EXERCICE 3.

Voici quelques calculs pour se délier les doigts...

1. Représenter sous forme cartésienne les nombres complexes suivants :

$$\frac{2-\sqrt{3}i}{\sqrt{3}-2i}$$
, $\frac{(2+i)(3+2i)}{2-i}$, $\frac{3+4i}{(2+3i)(4+i)}$.

2. On considère les nombres complexes

$$z_1 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
 et $z_2 = \frac{1}{\sqrt{3} + i}$.

Représenter sous forme cartésienne les nombres complexes suivants :

a.
$$z_1 + z_2$$

c.
$$z_1/z_2$$

d. $z_1^2 + z_2$

a.
$$z_1 + z_2$$
 c. z_1/z_2 **e.** $z_1^3 + z_2^3$ **b.** z_1z_2 **d.** $z_1^2 + z_2^2$

b.
$$z_1 z_2$$

Exercice 4.

Voici un peu d'entraînement...

1. On pose
$$z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$$
 et $z_2 = 1 + i$.

- **a.** Représenter le quotient z_1/z_2 sous forme polaire.
- **b.** En déduire les valeurs de $\cos(7\pi/12)$ et de $\sin(7\pi/12)$.
- 2. En précisant pour quelles valeurs des réels x et y, elles ont un sens, mettre sous forme polaire les expressions suivantes :

a.
$$1 + \sin x - i \cos x$$

b.
$$\frac{1}{1+i\tan x}$$

c.
$$\frac{1 + \cos x + i \sin x}{1 - \cos x - i \sin x}$$

d.
$$\frac{e^{ix} + e^{iy}}{1 + e^{i(x+y)}}$$

a.
$$1 + \sin x - i \cos x$$

b. $\frac{1}{1 + i \tan x}$
c. $\frac{1 + \cos x + i \sin x}{1 - \cos x - i \sin x}$

d. $\frac{e^{ix} + e^{iy}}{1 + e^{i(x+y)}}$

e. $\frac{(1 - i\sqrt{3})(\cos x + i \sin x)}{\cos x + \sin x + i(\cos x - \sin x)}$

Exercice 5.★

Voici quelques calculs de puissances.

1. Pour tout entier naturel n, simplifier les expressions suivantes :

$$\mathbf{a.} \left(\frac{1 + i\sqrt{3}}{1 + i} \right)^n$$

$$\mathbf{c.} \left(\frac{\sqrt{3} + \mathbf{i}}{1 + \mathbf{i}} \right)$$

a.
$$\left(\frac{1+i\sqrt{3}}{1+i}\right)^{n}$$
b.
$$\frac{(1-i)^{n}-\sqrt{2}^{n}}{(1+i)^{n}-\sqrt{2}^{n}}$$
c.
$$\left(\frac{\sqrt{3}+i}{1+i}\right)^{n}$$
d.
$$(1+\cos\theta+i\sin\theta)^{n}$$
e.
$$\frac{(1+i)^{n}-(1-i)^{n}}{i}$$

d.
$$(1 + \cos \theta + i \sin \theta)^n$$

e.
$$\frac{(1+i)^n - (1-i)^n}{i}$$

2. Pour quelles valeurs de l'entier relatif n le nombre complexe $(\sqrt{3} + i)^n$ appartient-il à \mathbb{R}_+ ? Pour quelles valeurs est-il imaginaire pur?

Exercice 6.★

Soit
$$\theta \in \mathbb{R}$$
 et $z_{\theta} = -\sin(2\theta) + 2i\cos^2(\theta)$.

- 1. Déterminer le module et un argument de z_{θ} . On discutera en fonction des valeurs de θ.
- 2. Déterminer l'ensemble des nombres réels θ tels que $|z_{\theta}| = |z_{\theta} 1|$.

Exercice 7.

Soit

$$\nu = \frac{\sqrt{3} + i}{i - 1}.$$

Ecrire v^{2002} sous forme polaire puis sous forme algébrique.

EXERCICE 8.

On pose $\omega=\sqrt{3}+i$. Déterminer $n\in\mathbb{Z}$ tel que $\omega^n\in\mathbb{R}$. Même question avec $\omega^n\in i\mathbb{R}$.

Exercice 9.

Soit $z \in \mathbb{C} \setminus \{1\}$.

- **1.** Montrer que $\frac{z+1}{z-1}$ est imaginaire pur *si et seulement si* $z \in \mathbb{U}$.
- **2.** Montrer que $\frac{z+1}{z-1} \in \mathbb{U}$ si et seulement si z est imaginaire pur.

Exercice 10.

1. Soit $u \in \mathbb{C}$ tel que $|u| \le 1$. Montrer que $|u| \le |2-u|$ et qu'il y a égalité si et seulement si u=1.

On définit une suite $complexe\ (z_n)$ par son premier terme z_0 et par la relation de récurrence

$$\forall n \in \mathbb{N}, \ z_{n+1} = \frac{z_n}{2 - z_n}$$

On suppose $|z_0| \leq 1$.

- **2.** Que peut-on dire de la suite (z_n) lorsque $z_0 = 0$? Justifier.
- **3.** Même question lorsque $z_0 = 1$.
- **4.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, $|z_n| \leq 1$.
- **5.** En déduire que la suite $(|z_n|)$ est décroissante.
- Dans la suite, on suppose $z_0 \neq 1$.
 - **6.** Montrer que $|z_1| < 1$.
 - 7. On pose $q = \frac{1}{2-|z_1|}$. Montrer que $|z_{n+1}| \leqslant q|z_n|$ pour tout $n \in \mathbb{N}^*$.
 - **8.** En déduire par récurrence que $|z_n| \leqslant q^{n-1}|z_1|$ pour tout $n \in \mathbb{N}^*$.
 - **9.** Quelle est la limite de la suite $(|z_n|)$?

Exercice 11.★

Soient a et b de module 1 tels que a $\neq \pm b$.

- **1.** Prouver que $\frac{1+ab}{a+b} \in \mathbb{R}$.
- **2.** Montrer que pour tout $z \in \mathbb{C}$,

$$\frac{z+ab\bar{z}-(a+b)}{a-b}\in i\mathbb{R}.$$

Exercice 12.★

Soient $a, b, c \in \mathbb{C}$ de module 1. Montrer que

$$|a+b+c|=|ab+bc+ac|.$$

Exercice 13.★

Déterminer les nombres complexes z tels que z, 1/z et 1+z soient de même module.

Exercice 14.★

Soient a, b et c trois nombres complexes de module 1 tels que a \neq c. Montrer que

$$\frac{a(c-b)^2}{b(c-a)^2} \in \mathbb{R}_+.$$

EXERCICE 15.

Dans tout l'exercice, le plan affine euclidien est rapporté à un repère orthonormé direct

- 1. Déterminer les nombres complexes z non nuls tels que les nombres complexes z, 1/z et 1+z aient même module.
- 2. Déterminer les nombres complexes tels que

$$|z-1|=|\overline{z}+1|.$$

Interprétation géométrique ?

3. Déterminer le lieu des points du plan dont l'affixe z vérifie

$$|(1+i)\overline{z}-2i|=2.$$

EXERCICE 16.

Soient z et z' deux nombres complexes. Montrer que $|z + z'|^2 + |z - z'|^2 = 2(|z|^2 +$ $|z'|^2$).

Exercice 17.★

Soient $\mathcal{E} = \mathbb{C} \setminus \{2i\}$ et $f : \mathcal{E} \to \mathbb{C}$ l'application définie par

$$\forall z \in \mathcal{E}, \ f(z) = \frac{z+i}{z-2i}.$$

Déterminer les ensembles suivants :

1.
$$\mathcal{E}_1 = \left\{ z \in \mathbb{C} \mid f(z) \in \mathbb{R} \right\};$$

2.
$$\mathcal{E}_2 = \left\{ z \in \mathbb{C} \mid f(z) \in i\mathbb{R} \right\};$$

3.
$$\mathcal{E}_3 = \{ z \in \mathbb{C} \mid \arg(f(z)) = \pi/2 \}.$$

Exercice 18.★

Résoudre dans $\mathbb C$ les équations suivantes

Exercice 19.

Résoudre les équations suivantes dans $\mathbb C$:

1.
$$z^2 + (5-2i)z + 5 - 5i = 0$$
;

2.
$$z^2 + (-3 + i)z + 4 - 3i = 0$$
;
3. $z^2 - (9 - 2i)z + 26 = 0$;
6. $z^4 - z^3 - z + 1 = 0$;

3.
$$z^2 - (9 - 2i)z + 26 = 0$$
;

4.
$$z^4 + (3-6i)z^2 + 2(16-63i) = 0$$
; 7. $z^4 + 2 - i\sqrt{12} = 0$.

5.
$$z^6 + (2i - 1)z^3 - 1 - i = 0$$
;

6.
$$z^4 - z^3 - z + 1 = 0$$

7.
$$z^4 + 2 - i\sqrt{12} = 0$$

Exercice 20.★

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 = \bar{z}$$

2.
$$z^3 = \bar{z}$$

Exercice 21.★

Résoudre dans C l'équation

$$z^2 + 8|z| - 3 = 0.$$

EXERCICE 22.

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$(3+i)z^2 - (8+6i)z + 25+5i = 0$$

1.
$$(3+i)z^2 - (8+6i)z + 25 + 5i = 0$$
; **4.** $(1-5i)z^2 - (20+4i)z + 61 + 7i = 0$;

2.
$$iz^2 + (4i - 3)z + i - 5 = 0$$
;

3.
$$z^2 - 5z + 4 + 10i = 0$$
;

3.
$$z^2 - 5z + 4 + 10i = 0$$
; 5. $z^6 - 2\cos(\theta)z^3 + 1 = 0$, où $\theta \in \mathbb{R}$.

EXERCICE 23.

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^5 = 16\overline{z}$$
;

2.
$$2\overline{z} - 3z = 2 + 3i$$
.

Exercice 24.

Résoudre dans $\mathbb C$ les équations suivantes

1.
$$2z + 3\overline{z} = 1$$
;

3.
$$z^2 = -\overline{z}^2$$

2.
$$z^2 = \bar{z}$$
;

4.
$$z^4 = \frac{1}{\overline{z}}$$

EXERCICE 25.

Résoudre dans $\mathbb C$ les équations suivantes

1.
$$(z+i)^3 + iz^3 = 0$$
;

2.
$$z^4 - z^3 + z^2 - z + 1 = 0$$
.

Exercice 26.

Pour $z \in \mathbb{C}$, on pose $f(z) = z^3 - (16 - i)z^2 + (89 - 16i)z + 89i$.

- 1. Montrer que l'équation f(z)=0 a une unique solution imaginaire pure que l'on déterminera.
- **2.** Résoudre dans \mathbb{C} l'équation f(z) = 0.
- **3.** Etudier dans le plan complexe la nature du triangle ayant pour sommets les images des trois racines de cette équation.

Exercice 27.

- 1. Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv 0[2\pi]$. Montrer que $\frac{1+e^{\mathrm{i}\theta}}{1-e^{\mathrm{i}\theta}}=\mathrm{i}\cot n\frac{\theta}{2}$ où $\cot n=\frac{\cos n}{\sin n}$
- 2. Résoudre l'équation $(z-1)^5=(z+1)^5$. On exprimera les solutions à l'aide de la fonction cotan.

Exercice 28.

- **1.** Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv 0[2\pi]$. Montrer que $\frac{1+e^{\mathrm{i}\theta}}{1-e^{\mathrm{i}\theta}}=\mathrm{i}\cot \frac{\theta}{2}$ où $\cot \theta=\frac{\cos \theta}{\sin \theta}$
- 2. Résoudre de deux façons l'équation $(z-1)^5=(z+1)^5$. En déduire les valeurs de cotan $\frac{\pi}{5}$, cotan $\frac{2\pi}{5}$, cotan $\frac{3\pi}{5}$ et cotan $\frac{4\pi}{5}$.

Exercice 29.

On pose $\omega = e^{\frac{2i\pi}{5}}$, $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- 1. Déterminer une équation du second degré dont les racines sont α et β .
- 2. En déduire $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$.
- 3. En déduire $\cos \frac{\pi}{5}$ et $\sin \frac{\pi}{5}$.

Exercice 30.

On pose $\omega = e^{\frac{2i\pi}{11}}$ ainsi que

$$S = \omega + \omega^3 + \omega^4 + \omega^5 + \omega^9$$
 $T = \omega^2 + \omega^6 + \omega^7 + \omega^8 + \omega^{10}$

- 1. a. Montrer que $\sin \frac{6\pi}{11} + \sin \frac{18\pi}{11} > 0$. En déduire que Im(S) > 0.
 - **b.** Montrer que S + T = -1 et ST = 3.
 - **c.** En déduire une équation du second degré dont sont solutions S et T puis les valeurs de S et T.
- 2. **a.** Montrer que $\omega \omega^{10} = 2i \sin \frac{2\pi}{11}$.
 - **b.** Montrer que $\frac{1-\omega^3}{1+\omega^3} = -i \tan \frac{3\pi}{11}$.
 - **c.** Montrer que $\sum_{k=1}^{10} (-\omega^3)^k = \frac{1-\omega^3}{1+\omega^3}$.
 - **d.** En déduire que tan $\frac{3\pi}{11} + 4 \sin \frac{2\pi}{11} = i(T S) = \sqrt{11}$.

Exercice 31.★

En linéarisant sin⁴ x, calculer une expression simple de la somme

$$\sin^4\left(\frac{\pi}{8}\right) + \sin^4\left(\frac{3\pi}{8}\right) + \sin^4\left(\frac{5\pi}{8}\right) + \sin^4\left(\frac{7\pi}{8}\right).$$

Exercice 32.★

Soient α et β , deux nombres réels. Simplifier les sommes

$$S_{n} = \sum_{k=0}^{n} {n \choose k} \cos(\alpha + k\beta),$$

$$S'_{n} = \sum_{k=0}^{n} {n \choose k} \sin(\alpha + k\beta),$$

$$S_n'' = \sum_{k=0}^n (-1)^k \cos(\alpha + k\beta).$$

Exercice 33.★

Soit α , un nombre réel tel que $\cos \alpha \neq 0$. On pose

$$R_n = \sum_{k=0}^n \frac{\cos k\alpha}{\cos^k \alpha} \quad \text{et} \quad I_n = \sum_{k=0}^n \frac{\sin k\alpha}{\cos^k \alpha}.$$

Calculer $R_n + iI_n$ et en déduire des expressions simplifiées de R_n et de I_n .

EXERCICE 34.

Simplifier, pour tout $n \in \mathbb{N}$,

$$F_n = \frac{\cos(x) + \cos(3x) + \cos(5x) + \dots + \cos((2n+1)x)}{\sin(x) + \sin(3x) + \sin(5x) + \dots + \sin((2n+1)x)}.$$

EXERCICE 35.

On pose $\omega = e^{\frac{2i\pi}{5}}$ et $\alpha = \omega + \frac{1}{\omega}$.

- **1.** Montrer que $\frac{1}{\omega^2} + \frac{1}{\omega} + 1 + \omega + \omega^2 = 0$.
- 2. En déduire que α est solution d'une équation du second degré que l'on précisera.
- 3. En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$ puis de $\sin\left(\frac{2\pi}{5}\right)$.

Exercice 36.★

Soit ω une racine septième de l'unité distincte de 1. Simplifier le nombre

$$\alpha = \frac{\omega}{1 + \omega^2} + \frac{\omega^2}{1 + \omega^4} + \frac{\omega^3}{1 + \omega^6}.$$

Exercice 37.

Etablir par un calcul que $Re(z) < \frac{1}{2}$ équivaut à

$$\left|\frac{z}{z-1}\right|<1.$$

Donner une interprétation géométrique de ce résultat.

Exercice 38.★

Soit λ un nombre réel irrationnel. Montrer que, pour tout entier naturel $n \ge 1$, on a

$$\left| \sum_{k=0}^{n-1} e^{2ik\lambda \pi} \right| \leqslant \frac{1}{|\sin(\lambda \pi)|}.$$

Exercice 39.

Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$ tels que

$$1 + z + \cdots + z^{n-1} - nz^n = 0.$$

Montrer que $|z| \leq 1$.

Exercice 40.

Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C} \setminus \mathbb{U}$. Montrer que

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \leqslant \frac{1 - |z|^{n+1}}{1 - |z|}.$$

Exercice 41.★

Prouver que

$$\forall a, b \in \mathbb{C}, |a| + |b| \leqslant |a + b| + |a - b|.$$

étudier les cas d'égalité.

Exercice 42.★

Soient $n \ge 2$ et z_1, z_2, \dots, z_n appartenant à \mathbb{C}^* . Prouver que

$$|z_1 + \ldots + z_n| \leq |z_1| + |z_2| + \ldots + |z_n|,$$

avec égalité si et seulement si

$$arg(z_1) = arg(z_2) = \ldots = arg(z_n).$$

Exercice 43.

Soient A, B, C, D quatre points du plan distincts deux à deux. On suppose de plus A, B, C non alignés et on introduit le cercle $\mathcal C$ de centre O circonscrit au triangle ABC. On choisit un repère orthonormé du plan de centre O tel que $\mathcal C$ ait pour rayon 1. On note a, b, c, d les affixes respectifs de A, B, C, D.

On pose enfin $Z = \frac{d-a}{c-a} \frac{c-b}{d-b}$.

- **1.** Dans cette question, on suppose que D appartient à C.
 - **a.** Justifier que $\overline{a} = \frac{1}{a}$, $\overline{b} = \frac{1}{b}$, $\overline{c} = \frac{1}{c}$, $\overline{d} = \frac{1}{d}$.
 - **b.** Montrer que Z est un réel.
 - **c.** En déduire que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$.
- 2. Réciproquement, on suppose que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$ et on veut montrer que D appartient à C.
 - a. Que peut-on dire de Z?
 - **b.** Exprimer d en fonction de a, b, c, Z.
 - **c.** Calculer $\overline{\mathbf{d}}$ et en déduire que D appartient à \mathcal{C} .

Exercice 44.★

Déterminer l'ensemble des points du plan d'affixe z tels que les points d'affixes 1, z et z^3 soient alignés.

Exercice 45.★

Déterminer l'ensemble des nombres complexes z tels que les points d'affixes respectives z, iz et z^2 soient alignés.

Exercice 46.★

Le plan \mathcal{P} est muni d'un repère orthonormé direct \mathcal{R} . Déterminer l'ensemble des points $\mathcal{M}(z)$ du plan \mathcal{P} tels que les points d'affixes respectives $1, z^2$ et z^4 soient alignés.

Exercice 47.★★

Déterminer les points $\mathsf{M}(z)$ du plan $\mathcal P$ tels que $\left(\frac{z}{z-1}\right)^4\in\mathbb R.$

Exercice 48.★★

Soient A, B, C trois points deux à deux distincts d'affixes a, b, c.

1. Prouver que ABC est un triangle équilatéral direct si et seulement si

$$a + jb + j^2c = 0,$$

et équilatéral indirect si et seulement si

$$a + jc + j^2b = 0.$$

2. Prouver que ABC est un triangle équilatéral si et seulement si

$$a^{2} + b^{2} + c^{2} = ab + ac + bc.$$

Exercice 49.★

On se place dans le plan complexe rapporté à un repère orthonormé direct $\mathcal{R}=(0,\vec{u},\vec{v})$. Soit $M_1M_2M_3$ un triangle inscrit dans un cercle de centre O. On note z_k l'affixe de M_k .

1. Montrer que l'orthocentre H du triangle $M_1M_2M_3$ a pour affixe

$$h = z_1 + z_2 + z_3$$
.

2. En déduire que le centre de gravité, le centre du cercle circonscrit et l'orthocentre d'un vrai triangle sont alignés.

Exercice 50.★

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$e^z + e^{-z} = 1$$
;

2.
$$e^z + e^{-z} = 2i$$
.

Exercice 51.

Soient (x_n) et (y_n) deux suites réelles définies par $x_0=1$, $y_0=0$ et par $\forall n\in\mathbb{N}, \begin{cases} x_{n+1}=x_n+y_n\\ y_{n+1}=y_n-x_n \end{cases}$. On pose $z_n=x_n+iy_n$ pour tout $n\in\mathbb{N}$.

- **1.** Calculer z_0, z_1, z_2 et z_3 .
- 2. Montrer que (z_n) est une suite géométrique. On donnera sa raison sous formes algébrique et exponentielle.
- 3. Exprimer $A_n = \sum_{k=0}^n z_k$, $B_n = \sum_{k=0}^n x_k$, $C_n = \sum_{k=0}^n y_k$ en fonction de n à l'aide des fonctions cos et sin.

Exercice 52.★

Simplifier la somme

$$S_n = \sum_{0 \le 2k \le n} (-3)^k \binom{n}{2k}.$$

Exercice 53.★

Pour tout entier naturel n, on pose

$$S_{1} = \sum_{k=0}^{n} {3n \choose 3k}, \quad S_{2} = \sum_{k=0}^{n-1} {3n \choose 3k+1},$$
 et
$$S_{3} = \sum_{k=0}^{n-1} {3n \choose 3k+2}.$$

- 1. Calculer $S_1 + S_2 + S_3$, puis $S_1 + jS_2 + j^2S_3$ et $S_1 + j^2S_2 + j^4S_3$.
- **2.** En déduire les valeurs de S_1 , S_2 et S_3 .