Optimization Methods (CS1.404), Spring 2024 Lecture 20

Naresh Manwani

Machine Learning Lab, IIIT-H

March 21st, 2024

KKT Optimality Conditions: First Order

KKT Optimality Conditions of First Order

Consider the problem min $f(\mathbf{x})$ such that $h_j(\mathbf{x}) \leq 0, \ j=1\dots l, \ \mathbf{x} \in \mathbb{R}^n$. Assume that $\mathbf{x}^* \in \mathcal{X}$ to be a regular point and \mathbf{x}^* is a local minima. Then there exist λ_j $j=1\dots l$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j h_j(\mathbf{x}^*) = 0; \quad j = 1, \dots, l$$
$$\lambda_i > 0; \quad j = 1, \dots, l$$

- These are first order KKT necessary conditions.
- KKT point: $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$, where $\boldsymbol{\lambda}^* = [\lambda_1^* \ \lambda_2^* \ \dots \ \lambda_I^*]^T$.

Lagrangian Function

Lagrangian function is represented as:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \nabla f(\mathbf{x}) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x})$$

KKT Conditions imply

$$\begin{split} &\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*,\boldsymbol{\lambda}^*) = 0 \\ &\lambda_j^* \geq 0; \ \ j = 1\dots I \quad (\lambda's \text{ are called Lagrange multipliers.}) \\ &\lambda_j^* h_j(\mathbf{x}^*) = 0; \ \ j = 1\dots I \quad \text{(Complementary slackness conditions.)} \\ &\lambda_j^* = 0; \ \ \forall j \in \mathcal{A}(\mathbf{x}^*) \end{split}$$

- Note that for active constraints, $\lambda_j^* h_j(\mathbf{x}^*) = 0$ because $h_j(\mathbf{x}^*) = 0$. Thus, λ_j^* can be zero or greater than zero.
- For non-active constraints, $h_j(\mathbf{x}^*) < 0$. Thus, $\lambda_i^* h_j(\mathbf{x}^*) = 0$ implies $\lambda_i^* = 0$.

 ✓ □ → ✓ □ → ✓ □ → ✓ □ → ✓ □ →

 March 21st, 2024

Necessity of the KKT Conditions Under Regularity Condition for Convex Optimization Problem

Theorem

Let x^* be a regular point and is an optimal solution of the problem

CP:
$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t. $h_i(\mathbf{x}) < 0, j = 1...l$

where $f(\mathbf{x})$ and $h_1(\mathbf{x}), \dots, h_l(\mathbf{x})$ are continuously differentiable convex functions over \mathbb{R}^n . Then, there exists multipliers $\lambda_1, \dots, \lambda_l \geq 0$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j h_j(\mathbf{x}^*) = 0; \quad j = 1 \dots l.$$

Sufficiency of the KKT conditions Under Regularity Condition for Convex Optimization Problems

- KKT conditions are necessary optimality conditions under the regularity condition.
- When the problem is convex, the KKT conditions are always sufficient and no further condition is required.

Theorem

Consider the convex optimization problem:

CP:
$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \le 0, j = 1...I$

where $f(\mathbf{x}), h_1(\mathbf{x}), \dots, h_l(\mathbf{x})$ are continuously differentiable convex functions over \mathbb{R}^n . Let there exist multipliers $\lambda_1, \dots, \lambda_l \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j h_j(\mathbf{x}^*) = 0; \quad j = 1 \dots l.$$

Then, x^* is an optimal solution.

Naresh Manwani OM March 21st, 2024

Slater's Condition

Slater's Condition

Let $h_j(\mathbf{x}) \leq 0$; $j=1\ldots l$ are convex inequalities such that $h_j(\mathbf{x}^*)$, $j=1\ldots l$ are convex functions. Slater's condition is satisfied for these inequalities if there exists a point $\hat{\mathbf{x}}$ such that

$$h_j(\hat{\mathbf{x}}) < 0; \ j = 1 \dots I.$$

Thus, Slater's condition requires that there exists a point that strictly satisfies the constraints. In other words, the interior of the feasible set is non-empty.

- Slater's condition does not require, like in the regularity condition, an apriori knowledge on the point that is a candidate to be an optimal solution.
- Checking the validity of Slater's condition is much easier task than checking regularity.

Necessity of the KKT Conditions Under Slater's Condition for Convex Optimization Problem

Theorem

Let x^* be an optimal solution of the problem

CP:
$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t. $h_i(\mathbf{x}) < 0, j = 1...I$

where $f(\mathbf{x})$ and $h_1(\mathbf{x}), \dots, h_l(\mathbf{x})$ are continuously differentiable convex functions over \mathbb{R}^n . In addition, suppose there exists a point $\hat{\mathbf{x}}$ such that

$$h_i(\hat{\mathbf{x}}) < 0; j = 1...I.$$

Then, there exists multipliers $\lambda_1, \ldots, \lambda_l \geq 0$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_i h_i(\mathbf{x}^*) = 0; \quad i = 1 \dots l.$$

Not all Problems Satisfy Slater's Condition

Consider the optimization problem as follows.

min
$$x_1 + x_2$$

 $(x_1 + 1)^2 + x_2^2 \le 1$
 $(x_1 - 1)^2 + x_2^2 \le 1$

Here, Feasible set $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^2 \mid (x_1+1)^2 + x_2^2 \le 1, \ (x_1-1)^2 + x_2^2 \le 1\} = \{(0,0)\}.$ At this point, both the constraints are satisfied with equality. Thus, it does not satisfy Slater's condition.

Equality Constraint Problems

Optimization problem with equality constraints is given as below.

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

s.t.
$$e_i(\mathbf{x}) = 0$$
; $i = 1 \dots m$

where $f(\mathbf{x})$, $e_1(\mathbf{x})$,..., $e_m(\mathbf{x})$ are smooth functions over \mathbb{R}^n .

Regular Point for Equality Constraint Problems

Definition

A point \mathbf{x}^* satisfying the equality constraints $e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0$ is said to be a regular point of the constraints if the gradient vectors $\nabla e_1(\mathbf{x}^*), \dots, \nabla e_m(\mathbf{x}^*)$ are linearly independent. Let $D\mathbf{e}(\mathbf{x}^*)$ be the Jacobian matrix of $\mathbf{e} = [e_1, \dots, e_m]^T$ at \mathbf{x}^* , given by

$$D\mathbf{e}(\mathbf{x}^*) = egin{bmatrix} De_1(\mathbf{x}^*) \ dots \ e_m(\mathbf{x}^*) \end{bmatrix} = egin{bmatrix}
abla e_1(\mathbf{x}^*)^T \ dots \
abla e_m(\mathbf{x}^*)^T \end{bmatrix}$$

Then, \mathbf{x}^* is regular if and only if rank $D\mathbf{e}(\mathbf{x}^*) = m$. That is, the Jacobian matrix is of full rank.

Example 1

- Let there is a single equality constraint in \mathbb{R}^3 . Thus, n=3, m=1.
- $e(x_1, x_2, x_3) = x_2 x_3^2 = 0$
- $\nabla e(x_1, x_2, x_3) = [0, 1, -2x_3]^T$. Hence, for any (x_1, x_2, x_3) , $\nabla e(x_1, x_2, x_3) \neq \mathbf{0}$.
- In this case, $Dim(S) = dim\{(x_1, x_2, x_3) \mid \nabla e(x_1, x_2, x_3) = \mathbf{0}\} = n m = 2$

Example 2

- Let there are two equalities constraint in \mathbb{R}^3 . Thus, n=3, m=2.
- $e_1(x_1, x_2, x_3) = x_1 = 0$ and $e_2(x_1, x_2, x_3) = x_2 x_3^2 = 0$
- $\nabla e_1(x_1, x_2, x_3) = [0, 0, 1]^T$ and $\nabla e_2(x_1, x_2, x_3) = [0, 1, -2x_3]^T$. Hence, the vectors $\nabla e_1(x_1, x_2, x_3)$ and $\nabla e_2(x_1, x_2, x_3)$ are linearly independent in \mathbb{R}^3 .
- In this case, $Dim(S) = dim\{(x_1, x_2, x_3) \mid \nabla e_1(x_1, x_2, x_3) = 0\}$ $\mathbf{0}, \nabla e_2(x_1, x_2, x_3) = \mathbf{0} = n - m = 1.$

ОМ

March 21st. 2024

Dimension of Feasible Set of Set of Equality Constraints

The set of equality constraints $e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0, e_i : \mathbb{R}^n \to \mathbb{R}$, describes a surface

$$S = \{ \mathbf{x} \in \mathbb{R}^n \mid e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0 \}.$$

Assuming the point in S are regular, the dimension of the surface S is n-m.

Curve on the Surface

Definition

A curve C on a surface S is a set of points $\{\mathbf{x}(t) \in S \mid t \in (a,b)\}$, continuously parameterized by $t \in (a,b)$, that is, $\mathbf{x} : (a,b) \to S$ is a continuous function.

- All the points on the curve satisfy the equation describing the surface.
- The curve passes through the point \mathbf{x}^* if there exist $t^* \in (a, b)$ such that $\mathbf{x}(t^*) = \mathbf{x}^*$.

14

Curve on the Surface

• The curve $C = \{ \mathbf{x}(t) \in S \mid t \in (a,b) \}$ is differentiable if

$$\mathbf{x}'(t) = rac{\partial \mathbf{x}(t)}{\partial t} = egin{bmatrix} x_1'(t) \ \vdots \ x_n'(t) \end{bmatrix}$$
 exists for all $t \in (a,b)$.

• The curve $C = \{ \mathbf{x}(t) \in S \mid t \in (a,b) \}$ is twice-differentiable if

$$\mathbf{x}''(t) = rac{\partial^2 \mathbf{x}(t)}{\partial t^2} = egin{bmatrix} x_1''(t) \\ \vdots \\ x_n''(t) \end{bmatrix}$$
 exists for all $t \in (a,b)$.

• The vector $\mathbf{x}'(t)$ is the direction of the tangent to the curve at $\mathbf{x}(t)$.

Gradient is perpendicular to the level curve

Theorem

Consider a function $\mathbf{e}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{e} \in \mathbb{C}^1$. Consider the level set

$$S = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{e}(\mathbf{x}) = \mathbf{0}\}$$

Then, for any point \mathbf{x}_0 in S, the Jacobian $\nabla \mathbf{e}(\mathbf{x}_0)$ is perpendicular to S.

Proof:

- We need to show that for any vector \mathbf{a} , which is tangent to S at \mathbf{x}_0 , we have that \mathbf{a} is perpendicular to $\nabla \mathbf{e}(\mathbf{x}_0)$.
- If **a** is tangent to S, we can find a parametrized curve $\mathbf{x}(t)$ lying in S such that $\mathbf{x}_0 = \mathbf{x}(t_0)$ and $\mathbf{x}'(t_0) = \mathbf{a}$.

Tangent Space

Definition

Tangent space at a point \mathbf{x}^* on the surface $S = \{\mathbf{x} \in \mathbb{R}^n \mid e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0\}$ is the set

$$\begin{split} \mathcal{T}(\mathbf{x}^*) &= \{ \mathbf{d} \mid De(\mathbf{x}^*)\mathbf{d} = \mathbf{0} \} \\ &= \{ \mathbf{d} \mid \nabla e_1(\mathbf{x}^*)^T\mathbf{d} = 0, \dots, \nabla e_m(\mathbf{x}^*)^T\mathbf{d} = 0 \} \end{split}$$

- Tangent space at x^* is the null-space of $De(x^*)$, which is a subspace of \mathbb{R}^n .
- Assuming x^* is a regular point, dimension of the tangent space $T(x^*)$ is $n m_{\text{the same}}$
- Tangent space passes through the origin.

Example of Tangent Space

- Let $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid e_1(x_1, x_2, x_3) = x_1 = 0, \ e_2(x_1, x_2, x_3) = x_1 x_2 = 0\}$ be the subspace of \mathbb{R}^3 .
- $De(x_1, x_2, x_3) = \begin{bmatrix} \nabla e_1(x_1, x_2, x_3)^T \\ \nabla e_2(x_1, x_2, x_3)^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}.$
- Because ∇e_1 and ∇e_2 are linearly independent when evaluated at any $(x_1, x_2, x_3) \in S$, all the points of S are regular.
- $\begin{array}{l} \bullet \quad T(x_1,x_2,x_3) = \{(y_1,y_2,y_3) \mid \nabla e_1(x_1,x_2,x_3)^T(y_1,y_2,y_3) = \\ 0, \ \nabla e_2(x_1,x_2,x_3)^T(y_1,y_2,y_3) = 0\} = \\ \left\{ (y_1,y_2,y_3) \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \{[0,0,\alpha] \mid \alpha \in \mathbb{R}\} = x_3 \text{ axis in } \mathbb{R}^3. \end{array}$
- Tangent space at any x is a one dimensional subspace of \mathbb{R}^3 .

