南京大学物理学院近代物理实验

近代物理实验

电磁波传播特性和电磁波的反射实验报告

姓名杨峻学号111120174院系班级物理学院 5 班报告日期2014 年 4 月 9 日

§1 实验目的

- 1. 了解电磁波综合测试仪的结构,掌握其工作原理。
- 2. 利用相干波原理,测定自由空间内电磁波波长 λ。
- 3. 研究电磁波在良导体表面的反射

§2 实验仪器

- 1. 三厘米固态信号发生器 1 台
- 2. 电磁波综合测试仪 1 套
- 3. 反射板 (金属板) 2 块
- 4. 半透射板(有机玻璃板)1块

§3 实验原理

略。

§4 实验步骤

电磁波的传播特性

- 1. 整体机械调整,使 P_T , P_R 相向,轴线在统一水平线上,调整信号电平,使 P_R 表头指示接近满刻度
- 2. 安装反射板 A, B,半投射板 C,注意 A, B 轴向成 90° ,C 板法向与 A 板法向成 45° ,并注意反射板 A, B 的法向分别为 P_{R}, P_{T} 的轴向重合。
- 3. 固定 A 板,用旋转手柄移动 B 板,使 P_R 表头指示接近零,记下零指示的起始位置。
- 4. 用旋转手柄使 B 板移动,再从表头上测出 n 个极小值,同时从读数机构上得到相应于(3)的起始零指示位置求得的反射板移动的距离 ($\Delta L_n \Delta L_0$),连续测三次,求平均值
- 5. 根据测得的 $(\Delta L_n \Delta L_0)$ 值, 计算 λ, K, v 即可

电磁波的反射

- 1. 调整实验装置
- 2. 验证电磁波入射到良导体表面的反射特性

§5 实验数据记录

Table 1: 波长的测量

实验次数	1	2	3
微安表指示次数 $n+1$	2	3	4
可移动板位移 $(\Delta L_n - \Delta L_0)mm$	15.255	15.502	16.435
波长 $\lambda = \frac{2(\Delta L_n - \Delta L_0)}{n} mm$	30.470	31.004	32.870

Table 2: 验证反射定律

入射角 θ_1	20°	30°	40°	50°	60°	70°	80°
反射角 θ_1'	13.1°	30.0°	35.0°	49.7°	59.5°	74.1°	79.9°
入射场强 $E_1(\mu A)$	60	60	60	60	60	60	60
入射场强 $E_1(\mu A)$	50	40	44	57	58	40	50

Table 3: 反射角与入射角相同时场强的测量

入射角 θ_1	20°	30°	40°	50°	60°	70°	80°
反射角 θ_1'	20°	30°	40°	50°	60°	70°	80°
入射场强 $E_1(\mu A)$	60	60	60	60	60	60	60
入射场强 $E_1(\mu A)$	46	40	46	54	56	24	50

§6 数据处理与实验分析

电磁波传播特性 实验测得的电磁波的波长值为 32.870mm,实验所用仪器的发射频率为 9.37GHz,从而理论发射波长为 32.017mm,实验测量得到的绝对误差为 0.853mm,实验所得的相对误差为 2.66%。

在实验过程中注意到这样的现象: 电流表的示数每次归零后, 金属板移动的距离并不是严格的等距。可能的原因有以下几点:

- 1. 电磁波的传播并不是严格的真空条件,中间经过玻璃板的折射以及金属板的反射可能在介质中激发电场,从而对电磁波的传播造成影响。
- 2. 由于人工的读数造成的误差。
- 3. 机械装置调整时,金属板面并不能保证严格的垂直从而导致误差。

电磁波的反射 从上面的表格可以看出本次实验测量的结果基本符合反射定律。

表二是通过旋转活动臂搜索出反射场强极大的位置,并读出极大值所在位置的角度。从表格中可以看出反射角与入射角的相差并不是很大,绝大多数的数据都满足反射定

律。但是在反射角为 20,70 度时有较大的偏差,为了进一步弄清其中的原因,我们进行了补充的实验。表三是补充实验的结果,它是在入射角等于反射角时测量场强的大小。

从表三的数据中可以看出,在 20 度时,角度变化很多的情况下场强的变化并不是很大,而 70 度的情况下角度不大却导致场强有较大的变化。这导致了在这两个角度下反射定律的验证实验有较大的偏离。

可能的原因如下:

- 1. 本实验使用金属铝作为反射板,实际的金属并非理想导体,它有有限的电导率,这导致反射率在 20 度附近反射率随角度的变化缓慢,在 70 度附近变化迅速。
- 2. 电磁波照射到金属表面可能产生附加的电场影响实验的结果。
- 3. 实验装置的不够精密导致实验误差。