Tayler Series Approximation

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left[(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{g} \right] + \left[\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta'}) \right]$$

Gradient *g* is a *vector*

$$\mathbf{g} = \nabla L(\mathbf{\theta'}) \qquad \mathbf{g}_i = \frac{\partial L(\mathbf{\theta'})}{\partial \mathbf{\theta}_i}$$

Hessian *H* is a *matrix*

$$H_{ij} = \frac{\partial^2}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_i} L(\boldsymbol{\theta}')$$

Hessian

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}') + (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}')$$
At critical point

telling the properties of critical points

At critical point:

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

Hessian

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left[\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'})\right]$$

For all $oldsymbol{v}$

$$v^T H v > 0$$
 Around θ' : $L(\theta) > L(\theta')$ Local minima

= H is positive definite = All eigen values are positive.

For all $oldsymbol{v}$

$$v^T H v < 0$$
 Around θ' : $L(\theta) < L(\theta')$ Local maxima

= H is negative definite = All eigen values are negative.

Sometimes $v^T H v > 0$, sometimes $v^T H v < 0$ \longrightarrow Saddle point Some eigen values are positive, and some are negative.

Example

$$y = w_1 w_2 x$$

Error Surface

$$x \xrightarrow{w_1} \qquad \xrightarrow{w_2} \qquad y \iff \hat{y}$$

$$= 1$$

$$L = (\hat{y} - w_1 w_2 x)^2 = (1 - w_1 w_2)^2$$

$$\frac{\partial L}{\partial w_1} = 2(1 - w_1 w_2)(-w_2) = 0 \frac{\partial L}{\partial w_2} = 2(1 - w_1 w_2)(-w_1) = 0$$

Critical point:
$$w_1 = 0, w_2 = 0$$

$$H = \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} \quad \lambda_1 = 2, \lambda_2 = -2$$

Saddle point

$$\frac{\partial^2 L}{\partial w_1^2} = 2(-w_2)(-w_2) \qquad \frac{\partial^2 L}{\partial w_1 \partial w_2} = -2 + 4w_1 w_2
= 0 \qquad = -2$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2 \qquad \frac{\partial^2 L}{\partial w_2^2} = 2(-w_1)(-w_1)$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2$$

$$= 0$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2$$

$$= -2$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_2} = 2(-w_1)(-w_1)$$

$$= 0$$

Don't afraid of saddle point?

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

At critical point:
$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'})$$

Sometimes $v^T H v > 0$, sometimes $v^T H v < 0$ \Longrightarrow Saddle point H may tell us parameter update direction!

$$oldsymbol{u}$$
 is an eigen vector of $oldsymbol{H}$ λ is the eigen value of $oldsymbol{u}$ $\lambda < 0$

$$\mathbf{u}^T \mathbf{H} \mathbf{u} = \mathbf{u}^T (\lambda \mathbf{u}) = \lambda ||\mathbf{u}||^2$$

$$< 0$$

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'}) \implies L(\boldsymbol{\theta}) < L(\boldsymbol{\theta'})$$

$$\boldsymbol{\theta} - \boldsymbol{\theta'} = \boldsymbol{u} \qquad \boldsymbol{\theta} = \boldsymbol{\theta'} + \boldsymbol{u} \qquad \text{Decrease } L$$

$$\lambda_2 = -2$$
 Has eigenvector $\boldsymbol{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Update the parameter along the direction of $oldsymbol{u}$

You can escape the saddle point and decrease the loss.

(this method is seldom used in practice)

Saddle point