What is Communication?

- Communication: transmission of information from one point to another.
- Four Basic Elements
 - Information source: voice, music, picture, video, ...
 - Transmitter: converts information in the source into a form suitable for transmission over the channel
 - Channel: the physical medium, introduces distortion, noise, interference
 - Receiver: reconstruct a recognizable form of the source signal

Energy, Average Power, Bandwidth

Energy:

$$E = \int_{-\infty}^{+\infty} |s(t)|^2 dt = \int_{-\infty}^{+\infty} |S(f)|^2 df$$

Average Power = time average of energy, computed over a large interval

$$P = \frac{1}{T} \int_{-T/2}^{+T/2} |s(t)|^2 dt$$

Average Power of a Random Signal: Assemble average as following

$$P = E\left\{s^{2}\left(t\right)\right\} = \int_{-\infty}^{\infty} x^{2} f_{s(t)}\left(x,t\right) dx$$

Average Power of a Signal consisting of random and deterministic components:

Both time and assemble average

One-sided bandwidth: only consider positive frequencies when computing bandwidth for *physical* (real) signals

Complex-valued (in the time domain) signals: Complex envelope of a real-valued passband signal. The two-sided bandwidth of the complex envelope equals the physical (one-sided) bandwidth of the passband signal

Baseband and Passband Signals/Channels

Band-pass Noise

- n(t) in canonical form: $n(t) = n_I(t)\cos(2\pi f_c t) n_Q(t)\sin(2\pi f_c t)$
- $n_l(t)$ and $n_O(t)$ are fully representative of the band-pass noise.
 - Given band-pass noise, one may extract in-phase and quadrature components (using LPF of bandwidth B).
 - Given the two components, one may generate band-pass noise. This is useful in computer simulation.

Properties of Baseband Noise

- Usually noise n(t) has zero mean, then so do $n_l(t)$ and $n_Q(t)$.
- $n_i(t)$ and $n_Q(t)$ have the same variance (i.e., same power) as n(t)
- If noise n(t) is Gaussian, then so are $n_l(t)$ and $n_Q(t)$ and the envelope $r(t) = \sqrt{n_I^2(t) + n_Q^2(t)}$ is Rayleigh distribution.
- Both in-phase and quadrature components have the same PSD:

$$S_{N_{I}}(f) = S_{N_{Q}}(f) = \begin{cases} S_{N}(f - f_{c}) + S_{N}(f + f_{c}), & |f| \leq B \\ 0, & \text{otherwise} \end{cases}$$

Analog Communication Systems

Model of an analog communication system

Signal-to-Noise Ratio (SNR) at the output of the receiver:

$$SNR_o = \frac{\text{average power of message signal at the receiver output}}{\text{average power of noise at the receiver output}} = \frac{P_S}{P_N}$$

Normally expressed in decibels (dB): $SNR (dB) = 10 log_{10}(SNR)$

A Baseband Communication System

- It does not use modulation
- Transmit power is identical to message power:

$$P_T = P$$

If the unit channel gain or no propagation loss, then

$$P_S = P_T = P$$

Average noise power at receiver

$$P_N = 2W \times N_0/2 = WN_0$$

SNR at receiver output:

$$SNR_{\text{baseband}} = \frac{P_T}{N_0 W}$$

Double Sideband-Suppressed Carrier (DSB-SC) Modulation

General form of a DSB-SC signal (suppressed carrier AM):

$$s(t) = m(t)A\cos(2\pi f_c t)$$

- A: amplitude of the carrier; f_c : carrier frequency
- m(t): message signal with bandwidth W and average power, P- s(t): DSB modulated signal: bandwidth 2W, average power $P_T = \frac{1}{2}A^2P$
- Demodulation:

Coherent detector

- Bandwidth of band-pass filter: 2W
- Bandwidth of the low-pass filter: W
- SNR at the receiver output:

$$SNR_{baseband} = \frac{P_T}{N_0 W} \implies SNR_{DSB-SC} = SNR_{baseband}$$

Single Sideband (SSB) Modulation

General form of a SSB-SC signal:

$$s(t) = \frac{A}{2}m(t)\cos(2\pi f_c t) - \frac{A}{2}\hat{m}(t)\sin(2\pi f_c t)$$

- A: amplitude of the carrier; f_c : carrier frequency
- -m(t): message signal with bandwidth W and average power, P
- s(t): SSB modulated signal: bandwidth W and average power $P_T = \frac{1}{4}A^2P$
- Demodulatio

- Bandwidth of band-pass filter: W
- Bandwidth of the low-pass filter: W
- SNR at the receiver output:

$$SNR_{SSB} = SNR_{baseband} = SNR_{DSB-SC}$$

Standard AM

- Standard AM: $s_{AM}(t) = [A + m(t)]\cos(2\pi f_c t)$
 - Usually $A \ge m_p = \max |m(t)|$, modulation index $\mu = \frac{m_p}{A} \le 1$
 - -m(t): message signal with bandwidth W and average power, P
 - AM modulated signal: bandwidth 2W and average power $\frac{A^2 + P}{2}$
- Synchronous Detection Coherent detector

 Band-pass filter Product modulator v(t) Low-pass filter v(t) Noise v(t)
 - Bandwidth of band-pass filter: 2W
 - Bandwidth of the low-pass filter: W
 - SNR at the receiver output: $SNR_{AM} = \frac{P}{A^2 + P}SNR_{baseband}$

Non-coherent Receiver

Receiver:

- Bandwidth of band-pass filter: 2W
- $\mu = \frac{m_p}{A} \le 1, \text{ or } m_p \le A$
- SNR at the receiver output for small noise case: $SNR_{env} \approx \frac{P}{A^2 + P} SNR_{baseband}$

Frequency Modulation

Instantaneous frequency is varied linearly with message:

$$f_i(t) = f_c + k_f m(t)$$

- $-k_f$ is the frequency sensitivity of the modulator.
- frequency deviation: $\Delta f = k_f m_p$
- deviation ratio/modulation index:

$$\beta = \Delta f / W$$
, W: message bandwidth

Modulated signal:

$$s(t) = A\cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau)d\tau\right]$$

- The envelope is constant
- Signal s(t) is a non-linear function of the message signal m(t)
- Bandwidth using Carson's rule of thumb: $B_T = 2W(\beta+1) = 2(\Delta f + W)$

FM Receiver

- Bandwidth of bandpass filter: $B_T = 2W(\beta+1) = 2(\Delta f + W)$
- Discriminator: instantaneous amplitude is proportional to instantaneous frequency
- Bandwidth of baseband low-pass filter: W
- SNR at the receiver output:

$$SNR_{FM} = 3\beta^2 \frac{P}{m_p^2} SNR_{baseband}$$

Sampling, Quantization, PCM

- Sampling Theorem: A signal whose spectrum is band-limited to W Hz, can be reconstructed exactly from its samples if they are taken uniformly at a rate of $R \ge 2W$ Hz.
- Nyquist frequency: $f_s = 2W$ Hz

- Quantization
 - Uniform quantization: $SNR_o(dB) = 6n + 10\log_{10}\left(\frac{3P}{m_p^2}\right)$ (dB) Non-uniform quantization: improving SNR
- PCM: Pulse code modulation
- Grey Mapping
- Line Code