NOWA ELETBONICA

Nº 34 — DEZEMBRO / 1979 — Cr\$ 50,00

Como realizar a sonorização de grandes ambientes

Um novo DPM, desta vez com display de cristal liquido

Os novos amplificadores de isolação

Monte o Power 200 e valorize seu pré-amplificador Um receptor AM e um alarme de falta de tensão na seção Prática

Curso de semicondutores — 25.º lição Pratica nas técnicas digitais — 12.º lição

NOVA ELETRONICA

EDITOR E DIRETOR RESPONSAVEL LEONARDO BELLONZI

CONSULTORIA TÉCNICA Geraldo Coen / Joseph E. Blumenfeld / Juliano Barsali / Leonardo Bellonzi REDAÇÃO Juliano Barsali / José Roberto da S. Caetano / Lígia Baeder Davino / Paulo Nubile DIAGRAMADOR Eduardo Manzini

ARTE Antonio T Chaves / Maria Isabel Aché / Maria T. Koffler / Miguel Angrisani / Roseli Julias CORRESPONDENTES: NEW YORK Guido Forgnoni / MILÃO Mário Magrone

COMPOSIÇÃO J.G. Propaganda Ltda. / FOTOLITO Estúdio Gráfico M. F. Ltda.

IMPRESSÃO Cia. Lithographica Ypiranga / DISTRIBUIÇÃO Abril S.A. Cultural e Industrial

NOVA ELETRÔNICA é uma publicação de propriedade da EDITELE — Editora Técnica Eletrônica Ltda. Redação, Administração e Publicidade Rua Geórgia, 1.051 — Brooklin — SP.

TODA CORRESPONDÊNCIA DEVE SER EXCLUSIVAMENTE ENDEREÇADA À NOVA ELETRÔNICA — CAIXA POSTAL 30.141 - 01000 S. PAULO, SP. REGISTRO N.º 9.949-77 — P.153

Kits	AMPLITENA — Uma antena interna para seu carro. 2 A montagem do POWER 200 . 4 Um novo DPM com display de cristal líquido . 14
Seção do principiante	O problema é seu
Componentes	Antologia do MC 1310 — demodulador para FM estéreo28
Teoria e Informação	Conversa com o leitor
	Avanços da holografia por raios laser
Áudio	Sonorização de grandes ambientes, no Brasil
Prática	Receptor AM portátil com dois transistores (um FET e um bipolar)
Engenharia	Prancheta do projetista 66 Os novos amplificadores de isolação 70
Suplemento BYTE	O 8080 para principiantes - 9.º lição
Cursos	Prática nas técnicas digitais — 12ª lição92

Curso de semicondutores — 25.ª lição

Todos os direitos reservados; proibe-se a reprodução parcial ou total dos textos e ilustrações desta publicação, assim como traduções e adaptações, sob pena das sanções estabelecidas em lei. Os artigos publicados são de inteira responsabilidade de seus autores. É vedado o emprego dos circuitos em caráter industrial ou comercial, salvo com expressa autorização escrita dos Editores, sendo apenas permitido para aplicações didáticas ou diletantes. Não assumimos nenhuma responsabilidade pelo uso de circuitos descritos e se os mesmos fazem parte de patentes. Em virtude de variações de qualidade e condições dos componentes, os Editores não se responsabilizam pelo não funcionamento ou desempenho suficiente dos dispositivos montados pelos leitores. Não se obriga a Revista, nem seus Editores, a nenhum tipo de assistência técnica nem comercial; os protótipos são minuciosamente provados em laboratório próprio antes de suas publicações. NÚMEROS ATRASADOS: preço da última edição à venda. A Editele vende números atrasados mediante o acréscimo de 50% do valor da última edição posta em circulação. ASSINATURAS: não remetemos pelo reembolso, sendo que os pedidos deverão ser acompanhados de cheque visado pagável em S. PAULO, em nome da EDITELE—Editora Técnica Eletrônica Ltda.

Esqueça todos os problemas com a antena externa do seu auto-rádio

Que tal deixar de vez a preocupação com antena torta, quebrada ou roubada; com infiltração de água e a conseqüente ferrugem? Com o novo sistema você evitará tudo isso, sem maior trabalho e perda de tempo na instalação. E ainda terá uma melhor recepção no seu rádio, em locais mais distantes.

Especificações técnicas

ELEMENTO RECEPTOR

Recepção com antena omnidirecional im pressa na placa.

FAIXA DE OPERAÇÃO

Cobre a faixa de rádio difusão AM-FM, respectivamente, 500-1600 kHz e 85-120 MHz.

PRÉ-AMPLIFICADOR

Devido a ser uma antena interna, para melhorar sua recepção, inclui dois préamplificadores com as seguintes características:

Ganho: 20 dB

Fator de ruído: 2,5 dB (*)

Impedância de saída: 50 Ω (cabo coaxial)

Consumo super baixo: no máximo 150 mW

com 12 V

Sistema utilizando entrada a FET (em AM).

(*) Expressa a razão entre o ruido encontrado na saida e o introduzido na entra da, ou seja, o ruido acrescentado, pelo sistema. A antena, se vista em relação ao todo do carro, não é componente vital ou indispensável ao seu funcionamento. No entanto, considerando-se o sistema de som do automóvel em particular, ela passa a ser fundamental, já que o rádio é peça importante, não para o carro, mas para o motorista.

O tipo de antena comumente utilizado em autoveículos exige colocação externa para que se obtenha uma recepção adequada. E aí aparecem os problemas. A disposição exterior torna a antena vulnerável ao tempo, a descuidos do dono ou à depredação. Nem precisaríamos dizer da facilidade com que pode ser roubada. Em um belo dia, ao tentar sintonizar uma estação, você pode surpreender-se com o rádio praticamente mudo (ou captando só barulho), sem antena e com um ótimo buraco para infiltração de água.

A idéia do sistema é, justamente, acabar com todos esses problemas. Prá começar, não requer qualquer furo na carroceria do veículo, para sua instalação. Acondicionado numa embalagem plástica, deve fixar-se ao pára-brisa, ocupando, porém, uma diminuta área na região do retrovisor. Colocado internamente, dificilmente será roubado ou danificado por qual-

perdas na antena e fornecer ao autorádio um sinal de potência suficiente para uma boa recepção, acrescentouse dois pré-amplificadores ao conjunto. Um deles destina-se a faixa de FM e o outro à faixa de AM, contando este último com um estágio de isolação que usa um FET canal N, o que permite a melhora do fator de ruído desse préamplificador.

A razão da separação entre as duas faixas explica-se porque um único préamplificador deveria ter uma faixa de recepção de 540 kHz a 120 MHz, o que permitiria a entrada de ruído da faixa não utilizada, ou seja, de 1,6 a 88 MHz. Além disso, a faixa de valores das impedâncias de entrada e saída é diferente para AM e FM.

O ganho do pré-amplificador compensa as perdas e ainda aumenta a relação sinal/ruído do sistema de autorádio, possibilitando assim uma sensível melhora na recepção.

Instalação

A antena só poderá ser colocada na parte frontal do pára-brisas, entre este e o espelho retrovisor. Observe na figura 2 o diagrama de ligações esquematizado. Siga esta figura e as instruções adiante para efetuar a montagem. antena, ligue o rádio e aguarde alguns segundos; sintonize uma estação e regule o *trimmer* do aparelho para obter o máximo rendimento.

Com isso você obterá do sistema de áudio de seu carro um maior aproveitamento, valendo-se de todas as vantagens do sistema.

DICA — como acabar com a interferência da ignição no seu rádio

O conjunto de ignição é talvez o maior elemento introdutor de ruído nos rádios de automóveis. Bobina, velas e distribuidor seguem a rotação do motor com faíscas e pulsos que são transmitidos através da fiação de alimentação e podem chegar até o autorádio.

Uma "dica" para eliminação da interferência é utilizada cabos resistivos, ou supressores, nas velas, e capacitores (ou condensadores, como são comumente chamados) na bobina, dínamo ou alternador (figura 3). No caso de automóveis com dínamo, exige-se um capacitor também no regulador de tensão. É importante na instalação dos mesmos, que se estabeleça um perfeito contato entre sua carcaça (negativo) e o terra do veículo, ou seja, o chassi.

Outro recurso importante na elimi-

quer ação externa.

Mas, como é afinal o sistema de antena?

Teoria de operação

Na figura 1 vê-se o diagrama de blocos do kit. Para minimizar possíveis

CABO COAXIAL

RÁDIO

2 + 12 V

1 — Limpe o local onde será instalada a antena com um pano úmido de álcool, solvente ou redutor.

2 — Retire a fita que serve como proteção ao adesivo e pressione a caixa da antena contra o vidro, no local escolhido.

3 — Coloque agora os fios da antena, por dentro da borracha de vedação do pára-brisa de seu veículo, de jeito tal que possibilite chegar até o auto-rádio. 4 — Ligue o fio preto fino a um terminal que possua + 12 V permanentemente, isto é, um terminal que mesmo com a chave de ignição desligada possua corrente. Recomenda-se para um ótimo funcionamento que o fio seja ligado a um fusível independente do sistema de iluminação, ignição, buzina, pisca-pisca, etc.

5 — Conecte o fio malha preto a algum ponto do chassi próximo, como por exemplo o parafuso de fixação do retrovisor, o parafuso de fixação do quebra sol, etc.

6 — Após completar a instalação da

nação das interferências é a instalação de supressores de 5 k ohms no centro do distribuidor e no centro da bobina, caso os cabos desses dispositivos não sejam resistivos. Para isso, os cabos deverão ser cortados a não mais que 5 cm de sua extremidade, para inclusão do supressor.

A nova antena instalada "in loco", pronta para o uso.

A MONTAGEM DO POWER 200

Um bom amplificador de áudio, com capacidade suficiente para atender suas exigências de mais potência. Aqui nós o concluímos, deixando com você as instruções para montagem do POWER 200.

Antes de entrar no assunto propriamente dito, algumas pequenas observações que lhe serão úteis na compreensão e no seguimento da montagem.

Nota: Devemos reparar um engano cometido na parte teórica do artigo POWER 200 (1.ª). No desenho do circuito do mesmo (figura 5), estão invertidas as indicações dos resistores R10 e R11. Onde se vê R10, vejase agora R11 e vice-versa. Os compradores do *kit*, todavia, já encontrarão o esquema corrigido no manual

Mesmo que você seja um "cobra" em eletrônica, um simples detalhe mecânico poderá complicar sua vida, se não for devidamente esclarecido. Em conseqüência, faremos algumas explicações a respeito dos critérios de designação dos parafusos porcas e arruelas utilizados neste kit.

Em primeiro lugar as dimensões

dessas peças serão sempre dadas em mm. Os parafusos são especificados da seguinte maneira:

Ma X b, onde a = diâmetro do corpo (nominal) e b = comprimento do corpo. As porcas e arruelas:

Ma, onde a = diâmetro nominal do furo da rosca.

Recomendamos ao usuário que adquirir o *kit*, que leia o manual antes de começar o trabalho, observando com atenção as instruções e obtendo uma idéia geral do que terá pela frente. As observações da introdução, em especial, serão úteis não só a esta montagem, mas a qualquer trabalho que realizar com equipamento eletrônico/elétrico.

A montagem do POWER 200 será dividida em quatro partes distintas. São elas:

 montagem da placa NE 3098A (amplificador)

II - montagem da placa NE 3098B

(fonte)

III — interligação + montagem da cai-

IV — ajuste e fechamento do kit

O método que acreditamos mais racional para a montagem é exposto a seguir. Procure acompanhar atentamente as instruções para que você não tenha qualquer problema.

Comece a montagem pela placa do amplificador (NE 3098A). Esta é mostrada na figura 1, com suas faces sobrepostas; você notará que os *lay-outs* de ambos os canais são absolutamente idênticos e que os componentes estão ordenados por canal no sentido horário. Isso foi feito com o objetivo de facilitar a montagem da seguinte forma: sempre que colocar um componente em um ponto da placa, coloque um outro igual no mesmo ponto do outro canal. Mas, faça isso com muita cautela, pois um eventual erro poderá ser duplicado.

- 1) Para iniciar, fixe os jumpers J1. Eles devem ser feitos com o fio sólido desencapado de 5 cm que acompanha o kit; corte dois pedaços daquele no comprimento de 18 mm e dobre 5 mm em cada extremidade dos mesmos. Solde-os rentes à placa nos pontos indicados, cortando seus excessos se necessário.
- 2) Vamos, agora, confeccionar o indutor L1, de aproximadamente 6 µH, Para isso, pegue o resistor R15 de 1n/1 W e o fio esmaltado de bitola 20 AWG. Retire mais ou menos 1 cm de esmalte de uma das pontas do fio, raspando-a. Conforme a figura 2A, enrole esta ponta em um dos terminais do resistor, junto ao corpo deste, soldando-a e cortando o excesso. Enrole a seguir, 20 voltas (espiras) no corpo do resistor. desencape a outra extremidade do fio, solde-a ao terminal oposto e corte seu excesso, do mesmo modo feito anteriormente (figura 2B). Repita o procedimento para a preparação do conjunto resistor + indutor do outro canal.
- 3) Monte e solde todos os resistores, procurando começar por R1 e terminar por R18. Proceda da seguinte forma: procure na lista de material o valor do resistor, vá até o material e selecione o dispositivo indicado (pegue já dois, para ambos os canais). Coloque, então, os resistores na placa, soldando-os e cortando seus excessos de terminais.

Aproveite o fato de que os compo-

nentes consecutivos na lista de material encontram-se fisicamente próximos, o que foi logrado através de uma ordem cíclica na placa.

Lembre-se que o resistor R15 é aquele preparado no ítem anterior.

Monte, depois, os potenciômetros P1 nos dois canais e gire-os no sentido assinalado por um ponto na face dos componentes (verifique também com a figura 23).

4) O próximo passo é a soldagem dos circuitos integrados. Coloque um deles na placa, certificando-se de seu correto posicionamento através da figura 3 — o pino 1 do CI deve corresponder ao ponto 1 da face dos componentes. Faça a soldagem com rapidez para evitar o aquecimento excessivo do dispositivo. Repita o mesmo para o outro canal.

5) Os diodos D1 e D2 coloque-os nos locais indicados, depois de identificar sua polaridade por meio da figura 4. Após soldá-los, corte também os excessos de seus terminais.

6) Monte e solde os capacitores não eletrolíticos — C1, C4, C5, C6, C7, C10, C11, C12, C13. Siga o mesmo procedimento usado para os resistores (ítem 3).

7) Para os capacitores eletrolíticos (C2, C3, C8, C9) deve-se tomar um cuidado especial, pois estes possuem polaridade e devem ser soldados na posição correta. Para identificar a polaridade, observe o corpo do capacitor e a figura 5; faça que ela coincida com a indicada na placa. Cuidado para não trocar o capacitor C2 por C8 ou C9. Acontece que, embora todos esses sejam de 10 µF, C8 e C9 requerem isolamento de 63 V, enquanto C2 requer 16 V. A isolação vem escrita no corpo do capacitor.

- 8) Monte, agora, os transistores T1 e T2. Identifique seus terminais com o auxílio da figura 6 e posicione-os corretamente na placa.
- 9) A etapa seguinte é a ligação dos fios à placa 3098A. Para facilitar, corte os fios, flexíveis e blindado, de acordo com a tabela I.

Antes de iniciar a soldagem, desencape os extremos dos fios em 5 mm, sendo que o cabo blindado deve ser desencapado em 10 mm na malha

TABELA I

nº da ligação	cor	bitola (AWG)	comp. (cm)	qtidade	origem
1 2 3 4 5 6	vermelha azul branco preto preto blindado	18 18 18 18 18 22	22 22 22 22 22 22 25	2 2 2 2 2 2 2	+0 -4-4-6+

OBS: As quantidades foram multiplicadas por 2, pois tudo o que for feito no canal direito, deve ser igualmente repetido no canal esquerdo.

dúvida, peque uma faca fina e afiada e passe entre os filetes.

Vamos deixar a placa descansar, agora, e nos concentrarmos um pouco no dissipador. Use um avental ou roupa mais velha para desempenhar esta etapa; daqui a pouco você entenderá a

razão dessa preocupação.

Para inciar a montagem do dissipador, identifique cada um dos componentes mostrados na figura 7. A montagem será feita transistor por transistor. Passe pasta térmica no dissipador. com a ajuda de uma espátula (um palito de sorvete poderá servir a este fim). Deixe-o por alguns instantes. Passe pasta térmica na placa de dissipação. no local onde posteriormente será colocado o isolador de mica. Coloque sobre este local o isolador de mica, de

haja um bom contato térmico. Nessa situação, o parafuso deve estar em seu devido lugar. Coloque agora o dissipador, previamente preparado, em contato com a placa de dissipação. Uma certa pressão se faz necessária para um bom contato térmico. Rosqueie então a porca no parafuso, deixando-a apertada o suficiente para uma boa fixação. Cuidado, pois um aperto maior poderá causar o rompimento da película de mica e o transistor entrará em contato elétrico com a placa do dissipador, ocasionando graves prejuízos ao seu

Nessa altura, certamente você já entendeu o porque do avental. Sendo assim, repita o mesmo processo para os outros três transistores.

É conveniente, caso você disponha

e 5 mm na alma. Em seguida, faça as ligações por ordem numérica, da seguinte maneira: solde cada fio no respectivo sinal de origem marcado na placa, de acordo com a tabela. No caso do cabo blindado, solde-o conforme o desenho encontrado na placa - a alma deve ser ligada à entrada, assinalada com E, e a malha soldada ao furo.

Agora que a placa já está montada, é aconselhável uma boa revisão antes de passar ao ítem seguinte. Na revisão, aborde valores de resistores, de capacitores - em caso de eletrolíticos também sua polaridade, posicionamento e código correto de diodos e transistores e dos Cls. Revise, depois, o lado cobreado; verifique se todos os pontos estão corretamente soldados. Certifique-se, também, que não existe contato entre filetes; se houver alguma

modo que seu furo coincida com o furo da placa. Deve-se tomar certo cuidado no manuseio do isolador de mica, devido à sua fragilidade (no kit são agregados alguns sobressalentes, por via das dúvidas).

Passe pasta térmica na área de contato do transistor (parte de trás) selecionado através da lista de material. acondicione o isolador de plástico no furo deste, e passe um parafuso M2, 6 x 10 pelo mesmo. Coloque o transistor na placa de dissipação, em contato com a mica (para haver um isolamento elétrico e condução térmica), pressionando-o levemente para que

de um ohmimetro ou uma lâmpada de teste, verificar se não há continuidade (contato elétrico) entre o transistor e a placa de dissipação. Se houver contato elétrico, refaça a montagem, com cuidado. Isto é normalmente ocasionado pelo não posicionamento correto do isolador de mica ou pelo seu rompimento.

Efetuaremos, a seguir, a ligação entre a placa de dissipação e a placa do amplificador previamente montada.

Com este fim, peque o cabo de 3 veias de seu kit e corte-o em quatro cabos de 10 cm de comprimento. Separe cada cabo 10 mm de um lado e 30 mm de outro e desencape 5 mm das pontas

(faça o mesmo para os 4 cabos). Coloque-o na placa do seguinte modo: use o lado em que separou 10 mm (figura 8), tomando o cuidado de manter sempre a mesma cor para o mesmo tipo de terminal. Depois de devidamente soldados aos pontos E, B e C de T3 e T4, você deve passá-los por baixo da placa.

Corte 12 pedaços de espaguete de 2 cm de comprimento e coloque-os nos extremos livres dos cabos. Ainda antes da soldagem, identifique os terminais dos transistores (figura 9). Se depois de passado o fio por baixo da placa impressa, você girá-lo 180° (meia volta) sobre seu próprio eixo, você verificará que ele está na posição correta de soldagem. Por exemplo, o fio soldado ao ponto B da placa deve ligar-se à base do transistor correspondente, que se encontra montado na placa de dissipação, de acordo com a figura 9. E assim para os terminais e transistores restantes. Solde transistor por transistor seguindo o procedimento descrito. Depois da soldagem pronta, cubra a parte desencapada com os espaguetes, terminal por terminal.

A fixação da placa NE 3098A à placa de dissipação é feita com o auxílio de um espaçador de fenolite. Coloque o parafuso M3 × 40 na parte impressa, depois coloque o espaçador de 30 mm que será encontrado junto ao kit. Passe a seguir o parafuso pela placa de dissipação e coloque a porca, como indica a figura 9. Não aperte ainda a porca, pois isso dificultaria a colocação dos demais parafusos. Para esses, siga o mesmo procedimento. Em seguida, aperte as porcas o suficiente para uma boa fixação.

Faça uma verificação visual dos terminais dos transistores, certificando-se que não haja curto circuito entre eles e nem com a placa de dissipação. Se houver contato entre os espaguetes não há problema; caso contrário acerte o espaguete para separar um terminal do outro, ou da placa. Com isso terminamos a primeira etapa da montagem, que foi a mais crítica e dificil. Portanto não se assuste, pois o resto é bastante simples.

A segunda etapa é a montagem da placa da fonte. NE 3098B. Esta placa é mostrada na figura 10 com ambas as faces sobrepostas.

1) Inicie a montagem com a fixação dos terminais molex que vão nesta placa. Estes terminais estão indicados pelas letras A e C, e devem ser soldados conforme as figuras 11/12. Eles vêem juntos e devem ser separados

antes da colocação e posterior soldagem.

2) Coloque, agora, o resistor R20 (1k8n,1/2 W) no devido lugar e solde-o. Corte os excessos dos terminais.

3) Coloque a ponte retificadora no seu lugar. MUITO CUIDADO PARA NÃO INVERTER SUA POLARIDADE. O terminal marcado com + da ponte deve corresponder ao + da face dos componentes da placa 3098B e o mes-

mo deve acontecer com o — (figura 11). Para iniciar a soldagem, corte um pedaço de fio desencapado de 1 cm de comprimento, aproximadamente e passe-o pelo furo do terminal da ponte (figura 12). Solde o fio ao terminal da ponte e depois à placa de cobre; isto deve ser feito também com os três terminais restantes. Corte os excessos dos fios.

4) A montagem dos dois capacito-

res eletrolíticos (C14 e C15) é simples, pois estes só permitem uma posição de encaixe. Coloque, portanto, os capacitores e solde-os na placa.

Portanto, a segunda etapa já está encerrada, vamos então partir para as interligações. Esta terceira fase é de certa forma crítica, não para o funcionamento, mas para o acabamento. Uma boa montagem pode melhorar a aparência e facilitar o acesso às partes do seu kit.

Primeiramente faremos as fixações na caixa.

1) Para fixação dos pés de borracha, localize os quatro furos como mostra a figura 13. Coloque uma arruela M3 no interior do pé de borracha e, em seguida, um parafuso M3 x 12 que deve atravessá-lo e continuar por um dos furos da caixa. Do outro lado, coloque uma porca M3 e fixe a mesma. Faça o mesmo com os demais pés de borracha.

Seguindo as figuras 14, 15 e 20, faça as seguintes fixações:

- 2) Fixe a borracha passante e o porta-fusível colocando a arruela correspondente na parte externa da caixa. Se a tensão da rede for 110 V, use um fusível de 4,0 ampères; se a rede for de 220 V, use um fusível de 2,0 A. No *kit* haverá um fusível extra, caso haja necessidade.
- 3) Fixe as tomadas de entrada e saída, utilizando para tanto 6 parafusos M3 × 8 e 6 porcas M3. Veja a figura 20 para melhor orientação.
- 4) Fixe o painel com os parafusos allen M3×8, valendo-se da chave que acompanha o kit.
- 5) Fixe o suporte de plástico para chave + LED, juntamente com estes, na parte frontal da caixa, sobre o painel. Confira os detalhes dessa montagem com a figura 15.
- 6) Fixe a chave de comutação 110/220 V com os parafusos M3 × 8, na parte traseira da caixa, de acordo com a figura 14.
- 7) Insira aproximadamente 27 cm do cabo de força pela borracha passante e dê um nó em sua parte interna à caixa. Separe os fios do cabo até a distância de 2 cm do nó, corte um de-

les a 6 cm desse nó e desencape 5 mm em cada uma das pontas. Solde a mais curta ao porta fusível e a mais longa à chave liga/desliga, segundo indica a figura 14.

8) A figura 14 mostra também como se deve fazer a ligação do transformador e do cabo de força à chave de comutação 110/220. Corte dois pedaços de fio branco bitola 18 AWG, nos comprimentos de 6 e 35 cm. Desencape 5 mm em cada extremidade desses e dos fios do primário do transformador. Estanhe esses fios e os terminais da chave (essa operação é efetuada derretendo-se solda na parte desencapada do fio e nos terminais da chave).

Passe os fios do primário acima do cabo de força e solde-os conforme a figura 14. Feito isso, solde o fio de 6 cm entre a chave de comutação e o porta fusível, e o de 35 cm entre o terminal central da chave liga/desliga e a chave de comutação. Faça um curto entre os terminais livres dessa última chave utilizando fio desencapado bitola 22 AWG, e observando ainda a figura 14.

9) Fixe, agora, o transformador. Utilize a figura 13 para identificar os furos. Na fixação serão empregados quatro parafusos M3, 5 × 8 + 4 porcas e 4 arruelas M3, 5. Siga a figura 16 para sua orientação.

10) A próxima operação é a de interligação das placas NE 3098A e NE3098B. Vale a pena salientar que não haverá necessidade de se cortar os fios, pois eles já foram cortados nas medidas corretas durante a montagem da placa NE 3098A. Essa, interligações devem ser feitas com os extremos livres dos fios provenientes da placa A, de acordo com a tabela II.

Na placa da fonte você encontrará, além da marcação da tabela, a letra D ou E, referindo-se ao canal direito ou esquerdo, respectivamente. Se você encontrar dificuldade no encaixe dos fios, estanhe as pontas.

nuceção co furo na placa como	marcação do furo na placa 3098B	cor do fio
da fonte +	≟ a (terra do amplif.) +	preto verme- lho branco

11) Desencape 5 mm dos três fios do secundário do transformador. Solde os fios vermelhos aos pontos marcados com ~ na placa da fonte (NE 3098B) e o preto ao ponto marcado com ½, próximo aos anteriores.

12) Corte o cabo duplo vermelho e preto que acompanha o *kit* em 22 cm. Separe os fios 2 cm em uma das pontas e 3 cm na outra, desencapando em 5 mm todas as extremidades. Solde as pontas separadas em 2 cm à placa da fonte — o fio vermelho ao ponto A e o preto ao ponto C.

Na outra ponta, instale dois espaguetes de 2 cm antes de soldar. O fio vermelho desta deverá ligar-se ao anodo do LED e o fio preto ao catodo deste. Você poderá identificar o catodo por ser o terminal mais curto e também o lado chanfrado do LED (figura 17). Depois de soldados, cubra as partes desencapadas dos fios com os espaguetes.

13) Corte dois pedaços de fio flexível branco, 18 AWG, de 18 cm. Desencape 5 mm em cada extremo. Solde, na placa NE 3098B, um fio ao ponto b do canal esquerdo e outro ao ponto b do canal direito, sendo que, os extremos livres serão ligados posteriormente aos pinos de terra de cada canal, no conector de entrada.

14) Corte um pedaço de fio branco, 18 AWG, de 20 cm de comprimento. Desencape as pontas e solde uma delas ao ponto G da placa NE 3098B. A finalidade desse fio é conectar o chassi ao terra da fonte, para manter todo o conjunto com uma única referência, o que evitará possíveis problemas no funcionamento do amplificador.

15) Fixe a placa da fonte. Utilize para este fim quatro espaçadores de fenolite de 10 mm de comprimento, quantro parafusos M3×15 e quatro

porcas BM3, de acordo com a figura 18. Identifique os furos pela figura 13.

16) Fixe a placa de dissipação, utilizando dois parafusos M3 × 8 e duas porcas BM3, baseando-se nas figuras 13, 19 e 21. Não aperte as porcas pois isso poderá dificultar o acesso aos trimpots de ajuste sobre a placa NE 3098A. Por isso deixe o conjunto conforme a figura 19.

17) Vamos, agora, ligar os cabos de entrada e saída da placa NE 3098A aos conectores usados para tais fins. Veja a figura 20. Para o canal direito serão utilizadas as metades superiores dos conectores. Primeiro montaremos o canal esquerdo, começando pela entrada. A blindagem do cabo blindado deve ser soldada ao pino externo do conector correspondente e a alma o pino central. Agora, na saída, o cabo proveniente do ponto & S da placa NE 3098A deve ser soldado ao terminal localizado à esquerda e o cabo proveniente de S ao terminal da direita. Observe a tomada de saida por fora e note que os parafusos de cabeça plástica vermelha devem corresponder à saida

de sinal e os de cabeça plástica preta ao terra da saída.

Repita o mesmo procedimento para o canal direito.

18) Conete os fios preparados no ítem 13 da seguinte forma: aquele correspondente ao canal esquerdo será ligado ao pino externo do conetor da entrada esquerda, junto à blindagem do fio já soldado. Repetir o mesmo para o outro fio relativo ao canal direito. Veja a figura 20.

19) Ligue o fio proveniente do ponto G da placa NE 3098B a algum ponto que faça contato com a parte metálica (não com a pintura) do chassi (ou caixa) como por exemplo, algum parafuso ou contato elétrico com a caixa.

Nesse ponto passamos à etapa final da montagem, o ajuste e fechamento do *kit*.

1 — Começaremos dando uma "ajeitada" nas ligações. Para isto, utilize um alicate de bico para realizar as dobras dos fios. Proceda de modo que o aspecto final das ligações seja o mostrado na figura 21.

2 — Montaremos o "intrumental" de ajuste do amplificador. Solde o resistor R19 em paralelo ao diodo emissor de luz (LED 2) e esse, por sua vez, a um pedaço de fio de 2 veias (vermelho e preto) de 20 cm de comprimento. Desencapados os extremos, o fio vermelho é conectado ao anodo do LED e o preto ao catodo (lembre-se da identificação da figura 17), conforme a figura 22.

3 — Realizemos então o ajuste do canal esquerdo. Solde os extremos livres do cabo do "instrumento" montado no ítem anterior (2) sobre os terminais da placa NE 3098B (fonte) de acordo com a seguinte ordem: o fio preto do terminal do canal esquerdo assinalado com C, e o fio vermelho ao terminal marcado com A.

Gire o trimpot P1 do canal esquer-

do (placa A) no sentido do ponto marcado na face dos componentes (vide figura 23).

Certifique-se de que não há nada ligado na entrada e na saída do amplificador.

Lique o cabo de força à rede e a seguir a chave no painel frontal. Nessa situação o LED de ajuste deverá estar apagado e o dissipador, após alguns instantes, à temperatura ambiente. Caso contrário, desligue o amplificador e revise as placas e ligações, já que possivelmente houve um erro na montagem. Vá ao potenciômetro do canal esquerdo e comece a movimentá-lo lentamente rumo ao outro extremo; quando o LED começar a acender, volte levemente até que ele se apague e aguarde mais um instante para certificar-se que não tende a acender-se novamente, sozinho. Nessas condições o dissipador vai aquecer-se, mas, após aguarrar alguns instantes, a temperatura deve permitir que se mantenha a mão sobre ele sem problema. Em caso negativo, volte o potenciômetro à posição inicial e comece o procedimento de novo, levando em conta que demora certo tempo para que a temperatura se estabilize. Se ainda encontrar problemas, desligue e revise completamente a montagem.

Como já foi dito na parte teórica do artigo, o ponto ótimo de ajuste é aquele em que o LED está quase apagado e com um leve movimento do trimpot ele começa a acender-se. Depois de feito o ajuste, DESLIGUE O APARELHO. Desligue também o "instrumento" de

ajuste dos terminais do canal esquerdo. Não se deve mais mexer no trimpot desse canal, o qual está ajustado.

Repita todo o procedimento para o ajuste do canal direito. Uma vez finalizado este, também devem ser colocados jumpers entre os terminais A e C de cada canal, os quais foram usados para o ajuste. Use para isso fio sólido desencapado de bitola 22 AWG, com 2 cm cada, cortando os excessos após a soldagem.

4 — Aperte as porcas de fixação

do dissipador.

- 5 Depois de verificar um perfeito acabamento na parte interior, feche a caixa. Utilize oito parafusos B2, 9×6.5 AA, encontrados no *kit* e que fixarão a tampa à base da caixa.
- 6 Agora você deve ligar uma caixa acústica para cada canal (recomendamos 8 ohms de impedância).
- 7 Conecte a saída de seu préamplificador à entrada do POWER 200

(canal por canal), ligue o cabo de força e a chave, e terá em funcionamento um amplificador capaz de reproduzir, com ótima fidelidade e muita potência, o som que você quer ouvir.

Lista de material

RESISTORES

(2) R1 — 100 ohms, 1/8 W, 5 % (marrom-preto-marrom)

(2) R2 — 100 k ohms, 1/8 W, 5 % (marrom-preto-amarelo)

(2) R3 — 4,7 k ohms, 1/8 W, 5 % (ama-

relo-violeta-vermelho)
(2) R4 — 2,7 k ohms, 1/8 W, 5 % (ver-

melho-violeta-vermelho)

(2) R5 — 1 k ohm, 1/8 W, 5 % (marrompreto-vermelho)

(2) R6 — 1 k ohm, 1/8, 5 % (marrom-preto-vermelho)

(2) R7 — 100 k ohms, 1/8 W, 5 % (mar-

rom-preto-amarelo) (2) R8 — 1 k ohm, 1/8 W, 5 % (marrom-

preto-vermelho)
(2) R9 — 82 k ohms 1/8 W/ 5 % (cipza

(2) R9 — 82 k ohms, 1/8 W, 5 % (cinzavermelho-laranja)

(2) R10 — 82 k ohms, 1/8 W, 5 % (cinza-vermelho-laranja)

(2) R11 — 1 k ohm, 1/8 W, 5 % (marrompreto-vermelho)

(2) R12 — 47 k ohms, 1/8 W, 5 % (amarelo-violeta-laranja)

(2) R13 — 10 ohms, 1 W, 5 % (marrompreto-preto)

Detalhe da montagem, mostrando a placa 3098A e os dissipadores.

(2) R14 — 100 ohms, 1/8 W, 5 % (marrom-preto-marrom)

(2) R15 — 1 ohm, 1 W, 5 % (preto-marrom-preto)

(2) R16 — 0,15 ohm, 5 W, 10 % (resistor de fio)

(2) R17 — 0,15 ohm, 5W, 10 % (resistor de fio)

(2) R18 — 1 k ohm, 1/8 W, 5 % (marrom-preto-vermelho)

(1) R19 — 22 ohms, 1/4 W, 5 % (vermelho-vermelho-preto)

(1) R20 — 1,8 k ohms, 1/2 W, 5 % (marrom-cinza-vermelho)

(2) P1 — 10 k ohms (trimpot)

CAPACITORES

(2) C1 — 100 nF/63 V (schiko, disco ou poliester)

(2) C2 — 10 μF/16 V (eletrolítico)
 (2) C3 — 1 μF/63 V (eletrolítico)

(2) C4 — 1 nF/63 V (disco ou plate)

(2) C5 — 10 pF/63 V (disco ou plate) (2) C6 — 10 pF/63 V (disco ou plate)

(2) C7 — 100 nF/63 V (disco ou poliester)

(2) C8 - 10 μ F/63 V (eletrolitico)

(2) C9 — 10 µF/63 V (eletrolítico)

(2) C10 — 100 nF/63 V (disco ou poliester)

(2) C11 — 1 nF/63 V (disco ou plate) (2) C12 — 100 nF/63 V (disco ou poli-

ester)

(2) C13 — 1 nF/63 V (disco oú plate)

C14 — 5000 μF/35 V (eletrolítico)
 C15 — 5000 μF/35 V (eletrolítico)

OBS: Os capacitores de poliester são metalizados.

SEMICONDUTORES

(2) D1 — 1N 4002 a 1N 4007 (diodo retificador)

(2) D2 — 1N 4002 a 1N 4007 (diodo retificador)

(1) PR1 — SKB 7/02 (ponte retificadora)

(1) LED1 — FLV 110-A (diodo emissor de luz)

(1) LED2 — FLV 110-A (diodo emissor de luz)

(2) T1 — BD139 ou BC379 (transistor NPN)

(2) T2 — BD140 ou BD380 (transistor PNP)

(2) T3 — FT03055 ou BD911 ou TIP3055 (transistor NPN)

(2) T4 — FT2955 ou BD912 ou TIP 2955 (transistor PNP)

(2) CI1 — LM391 (circuito integrado)

PARTES MECÂNICAS

(1) caixa

(1) painel

(1) tomada bipolar

(1) chave H-H para comutação(1) suporte conjugado chave/LED

(1) chave liga/desliga (H-H, 1 pólo, 2 posições)

(1) borracha passante, preta, diâmetro

10 mm

(1) porta-fusivel

(4) pés de borracha

(1) tomada de antena (4 bornes de saída)

(10) parafusos M3 × 8

(4) parafusos M3,5 \times 8

(4) parafusos M2,6 × 10

(4) parafusos M3 × 12

(4) parafusos $M3 \times 15$

(4) parafusos M3 × 40

(4) parafusos allen M3 × 8

(8) parafusos auto-atarraxantes B2.9 × 6.5

(22) porcas BM3

(4) porcas BM3,5

(4) porcas M3

(4) porcas BM2,6

(4) arruelas M3

(4) arruelas M3,5

(1) chave allen para parafuso M3

DIVERSOS

(1) transformador 110 + 110/21 + 21V - 3,5 A

(1) placa de circuito impresso NE3098A (1) placa de circuito impresso NE3098B

(4) terminais molex

(4) espaçadores de fenolite Øint. 3,1 mm, comp. 10 mm

20 cm de fio sólido desencapado, bitola 22 AWG

1,5 m de fio esmaltado desencapado, bitola 20 AWG

0,5 m de fio flexível encapado vermelho, bitola 18 AWG

0,5 m de fio flexível encapado azul, bitola 18 AWG

2 m de fio flexível encapado branco, bitola 18 AWG

1 m de fio flexível encapado preto, bitola 18 AWG

50 cm de cabo blindado, bitola 22 AWG 50 cm de cabo de três veias, bitola 22 AWG

50 cm de cabo paralelo duplo, vermelho e preto, 22 AWG

1 cabo de força 2×20 com *plug* macho 50 cm de espaguete, \emptyset int. 2,4 mm 2 m de solda trinúcleo, $\emptyset = 1$ mm

(1) placa de dissipação

(4) dissipadores

2 cm³ ou 1 pote de pasta térmica (4) isoladores de plástico para transistores de encapsulamento TO-220

(8) isoladores de mica para encapsulamento TO-220

(2) fusíveis de 2,0 A

(2) fusiveis de 4,0 A

/ista geral da montagem interna do POWER 200.

LEADER

PONTE DE MEDICÃO LEADER MODELO LCR 740

- Medição de Resistências, Impedância e Capacitância.
- Resist. 0,001-11 MH 8 escalas.
- Capacitância. 1 pf-11000 mf. 8 escala.
- Indut. 0,1 μH-1.100 H em 8 escalas.
- · Alimentação a Bateria ou Conversor.

OSCILOSCÓPIO 2 H a 7 MGH MODELO LBO 301

- Tubo de 3".
- Sensibilidade de 10 MV/divisão.
- Triger automático.
- Controle horizontal em 17 pontos.

Av. Rio Branco, 301 — Fones: 220-3811 — 221-0754 — 222-7122 • Caixa Postal 8725 — São Paulo — Endereço Telegráfico: ETERSON — ou nas boas casas do ramo.

A necessidade de manter-se em dia com o desenvolvimento da eletrônica. não poupa qualquer de seus seguidores, engenheiros, técnicos ou "curiosos". Por isso, não poderíamos ficar alheios ao crescente predomínio dos displays de cristal líquido, sobre os de LED, observado atualmente. E apresentamos o DPM com display de cristal líquido.

Características

- visualização por intermédio de um display de cristal líquido.
- alimentado por uma única bateria de 9 V.
- consumo super reduzido (em torno de 2 mA), possibilitan- pode operar com transdutores em ponte.* do o uso contínuo por aproximadamente 200 horas com a mesma bateria.
- baseado na tecnologia CMOS.
- autozeramento automático para zero volts de entrada.
- indicação automática de polaridade.
- entrada e referência verdadeiramente diferenciais.
- excitação direta do display

- baixo ruído: menos de 15 μV_{pp} (95% do tempo)
- clock e referência no próprio circuito integrado.
- ± 200,0 mV ou ± 2,000 V de fundo de escala.*
- permite medições diretas de resistências.*
- se desejado, permite incorporar uma referência de tensão
- três leituras por segundo.
- resolução de ± 100 μV na faixa de ± 200,0 mV.
- rejeição de modo comum = 86 dB (típico).
- * exige modificações no circuito.

A nova versão do medidor digital de painel vem ampliar ainda mais o quadro de escolhas à sua disposição. O dispositivo apresenta como característica principal o mostrador de cristal líquido, o que possibilita um baixíssimo consumo. Baseia-se no circuito integrado 7106, de tecnologia CMOS, "ir-

mão" do 7107 do DPM anterior. Com apenas esse CI e mais alguns componentes passivos constitui-se um milivoltimetro digital com o qual você poderá implementar um termômetro, um multimetro, um frequencimetro, etc. Descrição geral do 7106

O circuito integrado 7106, da Inter-

sil, é um conversor analógico/digital de 3 1/2 dígitos, baixo consumo e alta performance. Todos os componentes ativos necessários estão contidos num simples circuito integrado CMOS, incluindo os decodificadores para sete segmentos, os drivers para o display, referência interna e clock. Foi desen-

volvido para operar displays de cristal líquido e inclui, no próprio circuito um backplane driver.

O 7106 combina alta precisão, versatilidade e economia. A alta precisão é exemplificada pelo autozeramento a menos de 10 µV, desvio de zero menor que 1 µV/°C, corrente de polarização da entrada igual a 1 pA e erro de roll over menor que uma contagem. A versatilidade da entrada diferencial e da referência é útil em todos os sistemas. mas é especialmente vantajosa ao projetista em medições com células de carga, com medidores de força e outros transdutores tipo ponte. E. associada a essas vantagens, a econômica operação com uma fonte de alimentação simples ou uma pequena bateria de 9 V, e o pequeno número de componentes passivos necessários ao funcionamento do circuito.

Seção analógica

A parte analógica do conversor A/D 7106 é mostrada na figura 1; todos os componentes localizados fora das linhas pontilhadas foram adicionados externamente ao circuito desejado. Em cada ciclo de medição distinguimos três fases:

a) Autozeramento - a função desta fase é compensar internamente o funcionamento do circuito conversor, pois existem certos parâmetros que variam com o tempo, temperatura e de circuito para circuito. Basicamente, a grosso modo, esta fase acumula num capacitor todos esses parâmetros variáveis e, no momento da integração, soma-os ao circuito, porém, com a polaridade invertida. Com isso, anula as possíveis interações dessas variáveis na exatidão da me-

dida. Explicamos melhor, adiante, o funcionamento desta fase.

Durante o autozeramento, três fatos ocorrem. Primeiro, as entradas alta e baixa são desconectadas de seus Pinos no circuito integrado e internamente curtocircuitadas ao comum analógico. Segundo, o capacitor de referência é carregado com a voltagem de referência. E, por último, o laço de realimentação é fecha-

do sobre o circuito de carga do capacitor de autozeramento, de maneira que o mesmo se carregue com as tensões de *offset* no amplificador *buffer*, no integrador e no comparador. Quando o comparador é incluído no elo de realimentação, a precisão do autozeramento é limitada apenas pelo ruído existente no sistema, sendo que o mesmo em qualquer caso não deve ultrapassar 10 µV.

b) Integração - durante a integração do sinal, o curto interno é removido, as entradas internas alta e baixa são conectadas a seus pinos externos. O conversor, agora, integra a voltagem diferencial entre as entradas alta e baixa, por um tempo fixo. Essa tensão diferencial pode ser a mesma da faixa de modo comum, menos 1 volt de cada lado da alimentação. Se, por um lado, o sinal de entrada não possui retorno em relação

à alimentação do conversor, a entrada baixa pode ser referenciada ao comum analógico para estabelecer a tensão de modo comum correta. É nessa fase que determinamos a polaridade do sinal integrado.

c) De-integração - a fase final é a deintegração ou integração de referência. A entrada baixa é internamente ligada ao comum analógico e a entrada alta é conectada através do capacitor de referência previamente carregado. O mesmo capacitor, sempre será conectado com a polaridade invertida em relação à tensão de entrada (sinal a ser medido), causando, com isso, o retorno a zero da saída do integrador. O tempo requerido para retornar a saida do integrador a zero é proporcional ao sinal de entrada (tensão de entrada). Especificamente, a leitura digital é igual a

1000. (Vin Vref

Onde V_{in} é a tensão de entrada, e V_{ref} a tensão de referência do Cl.

Seção digital

A figura 2 mostra a parte digital do 7106. Na mesma, um terra digital é gerado por um zener de 6 V e um FET tipo P de canal largo, na configuração de seguidor de supridouro. O circuito foi dimensionado de maneira que a bateria ou fonte possa absorver folgadamente as correntes capacitivas relativamente altas que aparecem quando é comutado o backplane (BP). A freqüência do BP é igual à frequência do clock dividida por 800. Para três leituras por segundo a frequência do backplane é igual a 60 Hz, com uma amplitude de 5 V. Os segmentos são excitados em relação ao BP com a mesma frequência, amplitude e fase quando são desligados, (ou seja, não estão visíveis) mas, fora de fase (180°) quando estão ligados (visíveis). Em qualquer dos casos, existe uma tensão CC desprezível sobre os segmentos.

Um cuidado que devemos ter em relação ao LCD é o de nunca aplicarmos níveis CC sobre o mesmo, sob pena de danificarmos permanentemente o display. Assim sendo não devemos levar o pino test 1 ao + V além de poucos segundos, quando de um teste do display, pois, nesse momento, será aplicada uma voltagem CC constante e não uma onda quadrada sobre o dispositivo.

As aplicações do novo DPM

Milivoltímetro de até 200 mV: Utiliza-se o DPM praticamente sem alteração. Acrescenta-se, apenas, dois diodos à entrada, ligados em antiparalelo, com o objetivo de proteger o instrumento contra sobretensões (figura 3).

Voltimetro para até ± 2 V: Utiliza-se a mesma configuração do caso anterior, adicionando-se apenas um divisor de Análise da conversão e leitura

Partimos da suposição de que durante o tempo de conversão da entrada (período de integração) a tensão é constante e assim também a freqüência do clock durante um período de integração e desintegração. Nessa altura já foi realizado o autozeramento, portanto, não consideraremos tensões de offset.

Período de integração: V_{in} é ligado ao integrador durante um tempo fixo T_I, equivalente a 1000 períodos de clock. A tensão inicial da saída é zero volt, portanto, depois de T_I segundos:

$$V_N = V_O(T_i) = \frac{1}{\tau} \int_0^T V_{in} dt = -\left[\frac{T_f}{\tau}\right] V_{in}$$

onde $\tau = R.C$ lembre-se que V_{in} é constante durante

O que quer dizer que V_N é proporcional à tensão de entrada V_{in}.

Período de desintegração: V_{in} é desligado e V_{ref} é ligado com a polaridade invertida para que se consiga a desintegração até $V_0 = 0$. Se T_D é o tempo levado até chegar a esta situação, temos:

mos:

$$0 = V_{N-1} \int_{\tau}^{T} \int_{0}^{D} (V_{ref}), dt = V_{N} + \frac{T_{D}}{\tau}.V_{ref};$$
ou

 $-V_{N} = \frac{T_{D}.V_{ref}, portanto}{\tau} \frac{T_{I}.V_{in}}{\tau} = \frac{T_{D}.V_{ref}}{\tau}$ $dai que, T_{D} = T_{I}.V_{in} \frac{T_{D}.V_{ref}}{V_{ref}}$ (1)

Se o tempo T é determinado pela quantidade de períodos de clock N, de freqüência f, temos:

$$N = T.f$$
 ou $T = N f$

em nosso caso:

$$T_D = \frac{N_D}{f}; \qquad T_I = \frac{N_I}{f}$$
 (2)

Onde N_D é a contagem final que aparece no **display**, indicando a medida. N_I é feito igual a 1000 pulsos de **clock**, o que é controlado internamente. Se substituirmos (2) em (1) teremos:

$$N_D = 1000. \frac{V_{In}}{V_{ref}}$$

No aparece no display como resultado.

tensão com uma relação de 10:1 (figura 4).

Voltimetro multifaixas: O circuito básico do DPM₂é usado juntamente com um atenuador ajustável por passos, com relações de 1:1, 10:1, 100:1, 1000:1 e 10000:1, possibilitando medições de 0,1 mV a 2000 V (figura 5).

Microamperimetro de até 200 µA: Utiliza-se simplesmente um resistor de 1 quilohm em paralelo com a entrada, para que, com 200 uA de corrente, tenhamos uma tensão de 200 mV nos terminais do mesmo. Este artifício faz

com que haja uma correspondência direta do valor da tensão com o valor da corrente (figura 6).

Amperimetro de até 2 A: O artificio, aqui, é semelhante ao do caso anterior: liga-se um resistor de 0,1 ohm em paralelo à entrada, para que, com 2 A de corrente, tenhamos 200 mV sobre o resistor (figura 7).

Amperimetro multifaixas: O artificio continua sendo o mesmo. Neste caso, contudo, os resistores devem ser intercambiáveis, por meio de uma chave comutadora, proporcionando leituras

obtida diretamente em graus centígrados. O transistor (ou diodo) deve possuir uma deriva térmica de - 2 mV/°C, o que acontece nos semicondutores de silício.

Como a faixa de medida deste termômetro localiza-se entre 0 e 100 °C, pode-se calibrá-lo apenas nesses extremos, para termos toda a faixa calibrada. Utiliza-se como padrão o gelo, para 0 °C, e a água fervente, para 100 °C.

A primeira coisa a fazer, então, é impermeabilizar a sonda (com silicone, por exemplo) e efetuar a calibração, inicialmente a 0 °C, mergulhando a sonda em uma mistura de gelo picado

uma certa freqüência num nível proporcional de tensão. O circuito em questão está na figura 10.

Vê-se, também, que o DPM acoplado a esse conjunto pode atingir freqüências de até 20 MHz, divididas em várias faixas, de acordo com o valor estipulado para o capacitor CT, no circuito da figura 10. A calibração pode ser efetuada por meio de um gerador senoidal de precisão.

Milivoltimetro para até ± 20 mV: Aqui a sugestão é a de tornar o DPM mais sensível, fazendo-o medir tensões entre 0,01 mV e 20 mV Para isto, basta acoplar ao mesmo um amplificador CC com ganho igual a 10. O kit "milivoltimetro CMOS, lançado na NE n.º 15, págs 265 a 269, é um exemplo de circuito ideal para este caso.

Medição com transdutores em ponte: Veja a figura 11. Os valores dos resistores, no interior da ponte, são determinados pela sensibilidade desejada.

Observações

- Quanto mais precisos os componentes empregados nos circuitos auxiliares (resistores, capacitores, etc.), maior precisão será alcançada nas medições com o DPM.
- 2 No caso dos vários divisores de tensão e resistores isolados utilizados em diversas opções do DPM, é muito importante que se calcule a dissipação correta dos mesmos, através da corrente e tensão sobre eles. Deve-se, também, determinar uma boa margem de segurança na potência calculada de cada resistor, a fim de evitar aquecimento excessivo dos mesmos durante o funcionamento.

200.0 mA
900 n
200.0 mA
900 n
1N HI
200.0 mA
90 n
1N HI
200.0 mA
100 n
1

desde 0,1 µA até 2 A (figura 8).

Termômetro digital: Aqui o circuito adicional é um pouco mais complexo, pois deve-se providenciar uma conversão temperatura/tensão. A figura 9 apresenta uma solução: a sonda de temperatura pode ser um diodo de silício (ou um transistor, conectado como diodo); após a sonda, deve-se incluir alguns resistores e trimpots, que servem como divisores de tensão e ajuste de escala de temperatura. A leitura será

e água, e ajustando o trimpot de "ajuste de zero". Depois, faz-se a mesma coisa em água fervente, ajustando agora o trimpot "fator de escala". O display deve apresentar as leituras de 0,000 a 100,0 em graus centígrados, respectivamente.

A precisão das leituras estará entre 1% e 5%.

Freqüencímetro digital: Aqui é preciso utilizar um conversor freqüência-/tensão, circuito capaz de transformar

Montagem

Siga as operações apresentadas na seqüência indicada, para poder efetuar a correta montagem do DPM a cristal líquido.

- utilize um ferro de solda (soldador) cuja potência não exceda 30 W.
- a ponteira do mesmo deve ser fina e estar limpa e estanhada.
- não use, em hipótese alguma, pasta de solda.
- além do soldador, são necessárias as seguintes ferramentas para a montagem do kit: um alicate de corte e uma chave de fenda pequena.
- faça com fio nú todos os jumpers da placa, (figura 12).
- inicie a montagem com a colocação de todos os resistores na placa de circuito impresso.
- solde-os e apare as sobras dos terminais
- passe agora à colocação e posterior soldagem de todos os capaci-

- tores no circuito.
- assim como nos resistores, apare as sobras de terminais.
- fixe e solde o transistor Q1, dando especial atenção à pinagem do mesmo (figura 13).
- ultimando a montagem dos componentes de pequeno porte, solde na placa impressa o trimpot R4.
- se for usar o DPM como milivoltimetro de 200 mV, solde os dois diodos de proteção entre IN LO e IN HI.
- aplique os soquetes molex nos furos correspondentes ao circuito integrado e ao display.
- solde os molex e quebre suas abas de fixação.
- solde os clips para bateria nos fu-
- ros V + e V-
- encaixe o display e o circuito integrado nos soquetes molex.
- solde dois pedaços de fio à entrada do DPM (IN LO e IN HI).
- conecte a bateria aos clips da mes-
- curtocircuite a entrada do DPM e verifique se temos zero no display

amarelo)

R4 — 1 k ohm (trimpot)

R5 — 1 M ohm (marrom-preto-verde)

R6 — 1 M ohm (marrom-preto-verde)

OBS: todos os resistores são de 1/8 W de dissipação e tolerância de 5%. CAPACITORES

C1 — 100 nF/16 V (poliester metaliza-

C2 — 470 nF/16 V (poliester metaliza-

do) C3 220 nF/16 V (poliester metaliza-

do) C4 — 100 pF/16 V (stiroflex ou plate)

C5 — 10 nF/16 V (poliester metalizado ou stiroflex)

C6 - 820 pF/16 V (disco ou plate)

SEMICONDUTORES

CI1 — circuito integrado ICL 7106 CPL DSP1 - display LCD FE O201-C

ou quase zero.

aplique uma tensão conhecida entre ± 150 e 200 mV na entrada do dispositivo.

 por meio de R4 ajuste a leitura para que coincida com a tensão aplicada à entrada.

feito isso, curtocircuite novamente a entrada e leia zero volts. Isso indica o bom funcionamento do circui-

se for necessário o uso do ponto decimal no display, faça uma conexão entre o ponto DP da placa de circuito impresso e um dos três furos livres imediatamente abaixo do display.

Relação de material

RESISTORES

R1 - 22 k ohms (vermelho-vermelholaranja)

R2 - 47 k ohms (amarelo-violeta-laranja)

R3 - 100 k ohms (marrom-preto-

Q1 — transistor FET 2N 3819

D1 - diodo de chaveamento 1N914

ou 1N4148

D2 - diodo de chaveamento 1N914 ou 1N4148

DIVERSOS

placa de circuito impresso NE 3099 30 cm de fio rigido estanhado e desencapado, 22 ou 24 AWG

20 cm de fio flexível encapado, 22 AWG

1 m de solda trinúcleo, Ø 0,75 mm 90 pinos molex clips para bateria de 9 V

bateria de 9 V

LM159/LM359 Amplificadores de corrente (Norton) programáveis, duplos, de alta velocidade

Descrição geral

Os integrados LM159/LM359 consistem de dois amplificadores com entradas diferenciadoras de corrente (Norton). Seu projeto enfatizou a obtenção de um excelente desempenho em frequência, assim como as características de amplificadores programáveis pelo usuário. Cada amplificador apresenta uma resposta bastante extensa, de forma a exibir um produto ganho/largura de banda elevado, uma rápida slew rate e operação estável com ganhos inversores de laço fechado iguais ou maiores que 10. Possuem, também, pinos para compensação externa de frequência, adicional. Foram projetados para operar alimentados por uma fonte única, podendo acomodar tensões de modo comum, na entrada, de valor superior ao da alimentação.

Aplicações

- * Amplificadores de vídeo de aplicação geral
- * Filtros ativos para alta frequência e elevado fator Q
- * Amplificadores a foto-diodos
- * Geradores de sinais com extensa faixa de frequências

* Todas as aplicações em CA do LM 3900 operando em frequências bem maiores

Características

- * Produto ganho/largura de banda, slew rate, corrente de polarização de entrada, corrente de polarização do estágio de saída e dissipação total programáveis pelo usuário.
- * Produto ganho/largura de banda elevado (ISET = 0.5 mA) 400 MHz para A $_{\text{V}} = 10 \text{ a } 100$

30 MHz para Ay = 1

* Slew rate elevada (ISET = 0,5 mA)

 $60 \text{ V/}\mu\text{s} \text{ para AV} = 10 \text{ a } 100$

 $30 \text{ V/}\mu\text{s} \text{ para AV} = 1$

- * As entradas diferenciadoras de corrente permitem a aplicação de elevada tensão de entrada de modo comum.
- * Opera com uma única fonte de 5 a 22 V.
- * Grande variação de saída do amplificador inversor 2 mV a V cc-2 V.
- * Baixo ruído de banda larga: $6 \text{ nV}/\sqrt{\text{Hz}}$.

NS Electronics do Brasil Produtos Eletrônicos Ltda

AV. BRIGADEIRO FARIA LIMA 830 89 FONES: 210-4656 e 212-5056

No teste deste mês, apresentamos dez circuitos constituídos de uma bateria, uma fonte de sinal AC, um diodo e um resistor cada um. São conhecidos como circuitos limitadores. Ao lado se encontram dez formas de onda (A-J). Neste quadro, cada circuito tem correspondência com uma forma de onda. Preencha o espaço

pontilhado com as letras correspondentes.

Para simplificação do raciocínio, assuma que a bateria é de 1,5 volts e o sinal AC excurciona de +3,0 volts a —3,0 volts.

Leve em consideração o estado de polarização dos diodos e as quedas de tensão nos resistores.

Microtest Mod. 80

Patente internacional — Sensibilidade 20.000 ohms/volt O menor e mais leve analisador do mundo!!! $(90 \times 70 \times 18$ — somente 120 g) com a maior amplitude de

(90 × 70 × 18 — somente 120 g) com a maior amplitude de escala (90 mm)

Sem reostato de ajuste e sem comutador rotativo!

Regulagem eletrônica a ZERO ohm! Alta precisão: 2% em CC e CA.

8 CAMPOS DE MEDIDAS E 40 MEDIÇÕES!!!

VOLT CC	: 6 medições:	100 mV - 2V - 10V - 50V - 200 V (20k/V)
VOLT CA	: 5 "	1,5 V - 10 V - 50 V - 250 V - 1000 V - (4k/V
AMP. CC	: 6 "	50 uA - 500 uA - 5 mA - 50 mA - 500 mA - 54
AMP. CA	: 5 "	250 uA - 2,5 mA - 250 mA - 2,5 A
ОНМ	: 4 "	Low - x1 - x10 - x100 (de 1 até 5 Mega)
VOLT-SAIDA	: 5 "	1,5 V - 10 V - 50 V - 250 V - 1000 V
DECIBEL	: 5 "	+ 6 dB - + 22 dB - + 36 dB - + 62 dB
CAPACID	· 4	25 uF - 250 uF - 2500 uF - 25.000 uF

Fantástico!!!

O Pequeno Gigante!!!

Instrumento a núcleo magnético com suspensão antichoque e antivibrações, com blindagens contra os campos magnéticos externos, com escalas a espelho. Montagem de todos os componentes sobre circuito estampado reclinável e completamente extraível sem precisar efetuar dessoldaduras para uma eventual (facilima) substituição de qualquer componente Resistências a camadas metálicas com fio de manganina de altissima estabilidade com a precisão de 0,5%!!! O instrumento é protegido contra sobrecargas até 1000 vezes superiores à sua medição. Fusível de proteção a fio substituível, para as baixas medições ohmmétricas. PILHA de MER-CURIO de 1,35 volt com duração de até 3 anos com uso normal. MICROTEST mod. 80 é construido em partes intercambiáveis para uma fácil e econômica substituição de qualquer componente. Acompanha manual de instruções com GUIA para cada proprietário consertar o instrumento no caso de defeitos acidentais. A este Microtester podemos acoplar vários acessórios descritos anteriormente.

Preços especiais para Revendedores Peçam folhetos ilustrados com todos os instrumentos fabricados pela

"I.C.E." — INDÚSTRIA CISTRUZIINI ELETTROMECCANICHE MILÃO (Itália)

Distribuidor exclusivo:

COMERCIAL IMPORTADORA ALP LTDA.

Alameda Jaú, 1.528 — 4.º andar — Cj. 42 Fone: 881-0058 — CEP 01420 — SÃO PAULO — SP

Entenda como funcionam os osciladores a ponte de Wien

Os osciladores são circuitos elétricos que repetem formas de onda simples (senóides, ondas quadradas, triangulares, dentes de serra, etc.) continuamente no tempo, sem a necessidade de uma excitação de entrada. Eles geram os próprios sinais de saída. Às vezes, conforme o sinal de saída, os osciladores podem receber denominações diferentes, mas continuam sendo osciladores. Se geram pulsos, são chamados de geradores de pulsos; se geram sinais dentes de serra, são chamados de geradores dente de serra e assim por diante.

As aplicações que um circuito oscilador pode ter são inúmeras. As invenções do telégrafo e do rádio, por exemplo, estão intimamente ligadas ao desenvolvimento de osciladores; sem os quais a transmissão de sinais por ondas eletromagnéticas não seria possível. Na eletrônica digital eles também aparecem nos circuitos conhecidos como bases de tempo.

Discutirei, neste artigo, um dos diversos tipos de osciladores que existem: o oscilador a ponte de Wien, que, embora sendo um dos mais antigos, continua sendo muito usado por sua simplicidade e funcionalidade. Da teoria à prática, entenda como funcionam esses circuitos universais.

Para que o leitor tenha uma idéia, a fortuna de uma das maiores indústrias de instrumentação eletrônica, a Hewlett-Packard, começou com o lançamento no mercado de um gerador de baixa freqüência a ponte de Wien. A necessidade de obter formas de ondas constantes em amplitude e de baixa distorção levou a HP a escolher o oscilador a ponte de Wien para seus

produtos. Hoje em dia, as pontes de Wien que iremos estudar em seguida, são adaptadas a circuitos integrados lineares com excelentes resultados.

Ponte genérica de impedâncias.

A ponte de Wien

Na figura 1 se encontra o esquema de uma ponte de impedâncias. Z1, Z2, Z3 e Z4 são as impedâncias de resistores, indutores, capacitores ou associações de componentes. A ponte de impedâncias apresenta uma característica importante que é a chamada "condição de equilíbrio". Na condição de equilíbrio, não há diferença de potencial entre os pontos A e B.

Se a ponte contiver apenas resistores (R1, R2, R3 e R4), a condição de equilíbrio existirá se a equação abaixo for satisfeita:

 $R1 \times R3 = R2 \times R4$

Isto é, se a equação for verificada, para qualquer valor de tensão da fonte, a tensão entre A e B será nula.

Ponte de Wien para osciladores.

Na figura 2 se encontra o circuito da ponte de Wien. Com valores arbitrários de resistores e capacitores, a forma de onda do sinal entre os pontos A e B será atenuada e defasada em relação ao sinal do gerador G. Quanto mais a ponte de Wien se aproximar do equilíbrio, ou seja, quando a expressão Z1 × R3 = Z2 × R4 for verificada, menor a amplitude e menor a defasagem entre a saída e a entrada. Esses dois fatos são fundamentais para a compreensão de um oscilador a ponte de Wien.

O oscilador em geral

Um oscilador é sempre composto de um elemento ativo com um certo ganho, o amplificador; e um circuito de realimentação geralmente construído com elementos passivos. O diagrama de blocos do oscilador pode ser visto na figura 3.

Diagrama de blocos de um oscilador.

Para que o circuito oscile, duas condições devem ser satisfeitas:

1 — O ganho do amplificador deve ser igual ou superior à atenuação imposta pelo circuito de realimentação.

2 — A defasagem imposta pelo amplificador somada à defasagem imposta pelo circuito de realimentação deve ser igual a 0° ou um múltiplo de 360°.

Justifica-se a primeira condição

através de um exemplo:

Se o ganho do amplificador fosse de 10 e o circuito de realimentação atenuasse 20 vezes o sinal, teríamos um fenômeno do seguinte tipo: se num determinado instante tivéssemos na entrada do amplificador um sinal de 1 volt, ele seria amplificado e na saida teriamos 10 volts; esses 10 volts ao passarem pela rede de realimentação, seriam atenuados 20 vezes, de tal modo que teríamos na entrada do amplificador 0,5 volts e é claro que cada vez mais o sinal na entrada do amplificador diminuiria, de tal forma que um circuito desses nunca oscilará na prática. É preciso, então, que o amplificador tenha ganho suficiente para compensar a atenuação imposta pela rede de realimentação.

No segundo caso, se a soma das defasagens não for nula ou múltipla de 360°, ocorrerá um fenômeno de atenuação do sinal, atenuação esta que pode ser interpretada como uma realimentação negativa, pois o sinal de saída do amplificador passa a "competir" com o realimentado.

O Oscilador a Ponte de Wien

Há uma situação específica em que a defasagem de uma ponte de Wien é nula, mais exatamente na condição de equilíbrio. E a condição de equilíbrio só ocorre numa freqüência única. Daí é que veio a idéia de usar a ponte de Wien num oscilador.

O esquema genérico de um oscilador a ponte de Wien se encontra na figura 4.

Circuito básico do oscilador a ponte de Wien.

Do exame da função de transferência da rede, a situação de defasagem nula ocorrerá na freqüência:

$$f_0 = \frac{1}{2ii \sqrt{R_1 R_2 C_1 C_2^1}}$$

Para essa freqüência o ganho da rede de realimentação é dado por:

$$A = 1 + \frac{R_1}{R_2} + \frac{C_1}{C_2}$$

Como as razões R1/R2 e C1/C2 são maiores que 1, o ganho A será menor que 1; o que está correto, pois a rede é passiva.

Para o caso em que C1 = C2 e R1 = R2, A deve ser exatamente 3. A maioria dos circuitos amplificadores, porém, não consegue manter seu ganho constante e por causa disso, os osciladores a ponte de Wien costumam ter um bloco CAG (Controle Automático de Ganho). O diagrama de blocos ficaria o da figura 5, onde o

Oscilador a ponte de Wien com controle automático de ganho.

CAG recolhe o sinal de saída e injeta o sinal de controle num dos estágios do

amplificador

Quanto ao amplificador, é claro que a defasagem entre entrada e saída deve ser nula para que a condição 2 de oscilação seja satisfeita, já que a defasagem da ponte também é nula.

Na configuração da figura 5 o oscilador possui dois elos de realimentação. Um elo de realimentação positiva constituído pela ponte de Wien e responsável pela oscilação e outro elo, este de realimentação negativa, com a função de manter o ganho do amplificador constante.

Um esquema simples, invenção de Hewlett, de um oscilador a ponte de Wien com um amplificador operacional pode ser observado na figura 6.

Estabilização por lâmpada incandescente.

R3 e R4 formam o elo de realimentação negativa, onde R4 é uma lâmpada de filamento. Como a ponte de Wien realimenta o terminal não inversor, o amplificador operacional não defasa o sinal e o circuito tem chances de oscilar.

A lâmpada de filamento tem uma variação da resistência com a tensão dada pela curva da figura 7. Note que a

Curva de resistência (Ohms) por tensão (volts) de uma lâmpada incandescente.

um aumento de tensão corresponde um aumento de resistência.

Para o circuito da figura 6, o ganho é dado por:

$$A = 1 + \frac{R_3}{R_4}$$

Se a tensão de saída aumentar, a tensão em R4 também aumenta, acontece que com esse aumento de tensão, sua resistência também aumenta, fazendo com que o ganho A caia de tal modo a levar a tensão de saída de volta ao valor anterior. Essa malha de realimentação funciona com grandes resultados.

Uma outra maneira de construir o CAG é por meio de um termistor. Embora economicamente a lâmpada seja a opção mais viável, há ocasiões em que o uso das lâmpadas não é o ideal; os valores de resistência de lâmpadas estão restritos a uma faixa que raramente ultrapassa as centenas de ohms.

Os termistores são constituídos de uma película de óxido semicondutor colocada dentro de um bulbo de vidro. Como nas lâmpadas, uma variação da resistência do NTC (termistor com coeficiente de temperatura negativo, isto é, um aumento de temperatura causa uma diminuição da resistência) causa uma variação de temperatura e consequente variação de resistência.

Estabilização por NTC.

O circuito da figura 8 é praticamente idêntico ao circuito da figura 6, apenas que nesta o elemento esbilizador é o NTC R3.

Um circuito prático de um oscilador a ponte de Wien realimentado por NTC se encontra na figura 9. A freqüência é regulada por meio dos potenciômetros de 47 KOhms. O valor de C depende da freqüência de operação que se deseja obter. Como um exemplo, vamos calcular C de tal forma que a freqüência de saída seja de 10 Hz. Supondo que os potenciôme-

Circuito prático de um oscilador a ponte de Wien realimentado por NTC.

tros estejam totalmente fechados, a fregüência é dada por:

$$f = \frac{1}{2 \, \text{if R.C}}$$

onde R=4,7 KOhms e f=10Hz. Temos, então, uma equação a uma incógnita, facilmente resolvível; resultando no valor C=300 nF.

Se a freqüência desejada for de 100 Hz, o valor do capacitor será dividido por 10 (30 nF) e para todo aumento de freqüência, o valor do capacitor deve diminuir dessa proporção.

Entretanto, o circuito da figura 9 tem fortes limitações em freqüência quando construído com integrados operacionais do tipo 741. Com tensões de saída em torno de 2 volts, a distorção sobe a valores elevadíssimos se a freqüência for maior que 10 KHz. Outra limitação que pode vir do uso dos operacionais é que, em afta freqüência, o amplificador começa a defasar o sinal de um pequeno ângulo, o que altera a freqüência de oscilação e diminui a amplitude do sinal.

Os amplificadores operacionais especiais, do tipo LM 318, são os mais indicados para aplicações em alta freqüência.

Já que entrei no campo dos circuitos práticos, nada mais justo que apresentar um circuito prático de um oscilador a ponte de Wien realimentado por lâmpada. Tal circuito pode ser observado na figura 10. A parte relativa à ponte de Wien não sofreu praticamente nenhuma alteração. Como o valor de resistência da lâmpada é menor, o elo de realimentação dissipará maior potência que um circuito realimentado a termistor. Na fixa dos 100 Hz aos 10 KHz o sinal de saída apresenta distorção máxima por volta dos 0,5%, que é uma marca bem razoável.

A figura 11 mostra um circuito oscilador realimentado por NTC em que a variação de freqüência é entregue a um capacitor variável duplo. Esse tipo

Circuito prático de um oscilador a ponte de Wien realimentado por lâmpada.

	Faixa de Freq. (Hz)	Res. de Ent.	Corr. de ent. (nA)
LF 356	5	106	0,03
LM 741	1	2	80

de circuito é preferível quando se deseja boa resolução em freqüência. Nesse aspecto, os potenciômetros comerciais são inferiores aos capacitores de placa móvel.

(12)

Os operacionais usados nessas configurações são conhecidos como *Bifets*, com resistência de entrada incrivelmente mais altas e faixas de freqüência bem mais largas.

Para que o leitor possa comparar algumas diferenças entre os integrados operacionais comuns e os *bifets*, a figura 12 é um quadro que confronta o integrado LF356 (bifet) e o LM741 (operacional).

Existem, por outro lado, vários esquemas de osciladores a ponte de Wien construídos com elementos discretos. Para esse tipo de circuito, porém, os problemas de encontrar o ponto de oscilação são bem mais ardilosos e exigem dos projetistas e montadores uma paciência de Jó.

Um capacitor duplo para melhor resolução em freqüência.

TRANSFORMADORES

- * Transformadores de até 20 kV
- * Auto transformadores
- * Isoladores de linha monofásico/trifásico até 30 kVA
- * Transformadores para fontes de alimentação
- * Transformadores para ignição
- * Transformadores sob encomenda

Eletrônica Veterana Ltda. Ind. e Comércio de Componentes Eletrônicos

Rua Aurora, 161 — tel. 221.4292 — Cep.01209 — São Paulo (SP)

ANTOLOGIA DO 1310/1800

O LM 1310 é mais um circuito integrado que merece citação numa "antologia". Trata-se de um CI de baixo custo e alta eficiência, razões que foram suficientes para torná-lo o mais usado dentre os demoduladores de FM estéreo disponíveis no mercado.

Características:

Comutação automática de estéreo para mono.

 Não requer o uso de bobinas; toda a sintonização é realizada com um único potenciômetro.

Opera numa ampla faixa de tensões de alimentação.

Excelente separação de canais.

O circuito integrado LM 1310 é um demodulador FM estéreo que utiliza a técnica de phase locked loop na recuperação da subportadora de 38 kHz. Sua segunda versão, denominada LM 1800, apresenta como vantagem adicional uma rejeição da fonte de alimentação de 45 dB. Um outro atrativo sustentado por estes dispositivos é o baixo número de componentes externos requeridos, além da eliminação total do uso de bobinas. O sistema de FM resultante proporciona alta fidelidade sonora, ao mesmo tempo que mantém o custo baixo.

Antes de entrar na explicação do integrado propriamente dito, não é de mais recordar o conceito básico de de-

modulação.

Na transmissão de um sinal por freqüência modulada, a informação que se deseja enviar transforma-se na variação controlada da freqüência de uma onda de RF. Isso é o que chamamos de modulação em freqüência (FM), e o sinal de RF utilizado no transporte denomina-se portadora. Na recepção, é preciso recuperar o sinal contido na portadora. Dá-se aí o processo da demodulação, e o circuito usado nessa função é o demodulador. Chegamos onde queríamos. Esta é a operação basicamente executada pelo LM1310.

Há, no entanto, alguns detalhes ainda por observar. No caso da transmissão em FM estéreo, dois canais de informação — esquerdo (L) e direito (R) — são enviados simultaneamente através da mesma portadora. Isso é feito modulando-se um deles (em amplitude) numa subportadora de 38 kHz, antes da modulação na portadora principal. Além disso, não se modula diretamente os canais, mas sim sua soma (L + R) e diferença (L-R). A subportadora de 38 kHz que modula o sinal L-R é suprimida em seguida, mas uma freqüência piloto de 19 kHz é transmitida.

Como vimos, o processo de transmissão em FM estéreo não é exatamente simples. O circuito demodulador deve ter a capacidade de "destrinchar" todo o sinal, percorrer o caminho inverso e, ao final, oferecer os dois canais de áudio (L e R) separadamente e com fidelidade total à fonte emissora.

O demodulador integrado: como funciona

O circuito 1310/1800 cumpre a função indicada e o faz bem, como veremos agora. Até há algum tempo atrás a grande parte dos decodificadores de estéreo usados nos receptores de FM estereofônicos utilizava circuitos dobradores de freqüência para converter o sinal de 19 kHz na subportadora requerida de 38 kHz. Três circuitos externos sintonizados eram geralmente exigidos. Estes, deviam ser ajustados após a montagem e podiam prejudicar o desempenho caso fossem desalinhados devido a vibrações, choques mecânicos ou envelhecimento dos componentes. Além de dificultar a tarefa de ajuste, as bobinas ainda elevavam o custo total. O LM1310, porém, emprega a técnica de *phase locked loop* (PLL, vide quadro explicativo) para regerar a subportadora de 38 kHz e evitar essas desvantagens.

A figura 1 mostra o papel cumprido pelo demodulador no receptor FM estéreo. O gráfico indica o espectro composto da forma de onda da entrada, que contém a informação L + R na banda de áudio e a informação L-R com a portadora suprimida modulada em 38 kHz. Também está incluída a freqüência piloto de 19 kHz e, numa banda mais elevada, a informação SCA (vide quadro), sem importância para o usuário comum de FM.

O diagrama de blocos da figura 2 (LM1800) mostra o sinal composto de entrada aplicado ao amplificador de áudio, que age como um buffer de ganho unitário para a seção decodificadora. Um segundo sinal amplificado é acoplado capacitivamente a dois detectores de fase, um no elo fechado por fase e outro no circuito de comutação estéreo. Na malha fechada por fase, a saída de 76 kHz do oscilador controlado por tensão (VCO) é dividida duas vezes (para 38 e depois para 19 kHz), formando a outra entrada para o detector de fase da malha. A saída do detector de fase da malha ajusta o

Diagrama de blocos de um receptor de FM e espectro de frequências do sinal de entrada do LM1800.

VCO em precisamente 76 kHz. A saída de 38 kHz do primeiro divisor de trequência torna-se a subportadora regerada que demodulará a informação L-R na seção decodificadora. O sinal composto amplificado e um sinal de 19 kHz "em fase", gerado na malha fechada por fase, comandam o detector de fase 'em fase". Quando o elo é fechado, a

tensão CC de saída deste detector mede a amplitude piloto. Com sinais piloto suficientemente fortes para permitir boa recepção estéreo, aplicando a (trigger) retém o estado, aplicando a subportadora regerada ao decodificador e alimentando a lâmpada indicadora de estéreo. A histerese, inerente ao disparador, dá proteção contra comu-

tação estéreo/mono irregulares e consequentes oscilações da lâmpada.

No modo monoaural (chave eletrônica aberta), a saída do decodificador duplica o sinal composto de entrada, exceto aquilo que os capacitores de de-enfase (dos pinos 3 e 6 ao terra) atenuarem com os resistores de carga em 2 kHz. No modo estereofônico (chave -

Circuito equivalente do LM1800

Aplicação típica do LM1800

Ajuste do ponto de comutação estéreo/mono

eletrônica fechada), o decodificador demodula a informação L-R, combinaa com a L + R, e depois envia os sinais Le R separados aos pinos de saída, 4 e

5 respectivamente.

A figura 3 é o esquema equivalente do LM1800. O LM1310 é idêntico, exceto pelo circuito que envolve as saídas (Q35 a Q38), que é eliminado, sendo os pinos de saída conectados aos coletores de Q39-Q42. Assim, o LM1310 é essencialmente uma versão de 14 pinos do LM1800, com resistores de carga ligados à fonte de alimentação, ao invés de ao terra.

Aplicação típica do LM1800

O circuito da figura 4 ilustra a simplicidade de projeto de um sistema de demodulação FM estéreo usando o LM1800.R3 eC3 estabelecem uma adequada faixa de captura e uma baixa frequência de ressonância para o elo. C8 tem o efeito de desviar as oscilações de fase, a principal causa dos problemas de separação dos canais em alta frequência. Lembre-se que a subportadora de 38 kHz regenera, pelo fechamento de fase da saída de um divisor de 19 kHz, a freqüência piloto. Os atrasos de tempo através do divisor resultam na forma de onda de 38 kHz, a subportadora transmitida. O acréscimo do capacitor C9 (0,0025 µF) ao pino 2 introduz um retardo na entrada da malha fechada por fase, compensando os atrasos do divisor de frequência. A resistência de saída do amplificador de áudio é projetada para 500 ohms, para facilitar sua conexão.

A faixa de captura do LM1800 pode ser mudada pela simples alteração do produto RC externo no pino do VCO. O ganho da malha pode ser reduzido pela diminuição da resistência do VCO (R4 + R5, na figura 4). Mantendo um produto RC constante, enquanto se aumenta a capacitância de 390 pF para 610 pF, estreita-se a faixa de captura em aproximadamente 25%. Embora o sistema resultante apresente separação de canais levemente melhorada,

Aplicação típica do LM1310.

ele é mais sensível à sintonização de VCO.

Quando os circuitos até aqui descritos são ligados em um receptor FM prático, a separação de canais frequentemente é prejudicada devido à resposta imperfeita do estágio de FI. A rede para o pino de entrada da figura 5 pode ser usada para compensar a atenuação na FI e deverá restaurar a alta qualidade do som estéreo. O projetista de um receptor poderá preferir um ponto de comutação mono/estéreo diferente daquele programado no LM1800 (piloto: 15 mVRMS ligado; 6,0 mVRMS desligado). O circuito da figura 6 proporciona a flexibilidade desejada.

Características de desempenho típicas.

BRASITONE

Em Campinas
O mais completo e variado estoque
de circuitos integrados C-MOS, TTL,
Lineares, Transístores, Diodos,
Tirístores e Instrumentos Eletrônicos

KITS NOVA ELETRÔNICA

Rua 11 de Agosto, 185 — Campinas — Fone: 31-1756

PLL e SCA, entenda estas siglas

PLL - Abreviatura de phase locked loop, que se pode traduzir como malha (ou elo) fechado por fase. Uma malha eletrônica fechada que fornece uma frequência de saída, a qual está travada com, e segue exatamente, a fase de um sinal de referência. Isto é possível pela comparação das fases dos dois sinais e o uso da diferença resultante para corrigir a frequência do oscilador controlado por tensão, que fornece a saida (veja a figura). Se a saida do VCO,. ou o sinal de referência, muda de fase, o detector e o filtro produzem uma tensão CC de erro cuja amplitude e polaridade dependem da alteração na fase. Essa tensão de erro varia a frequência

do oscilador até que a coerência de fase entre os dois sinais seja atingida. A implementação deste conceito é simples. Tudo o que precisamos é de um detector de fase (modulador), uma malha de filtragem e um oscilador controlado por corrente ou tensão. Porém, se for desejada uma saída múltipla do sinal de referência e, ao mesmo tempo, em fase com este, um divisor de freqüência poderá ser inserido no elo de realimentação.

SCA — Abreviação de Secondary (ou Subsidiary) Communications Authorization, ou seja, Autorização para Comunicações Secundárias. Permissão garantida a uma difusora de FM para

transmitir, na mesma frequência portadora, um programa adicional para ser ouvido em receptores comuns, simultaneamente à programação regular. O objetivo é fornecer uma programação especial a uma audiência limitada. sem o custo de um transmissor totalmente novo. O SCA destina-se principalmente à transmissão de programas que são de natureza radiofônica; mas que interessam especialmente a segmentos limitados do público que pecam sua inscrição. Isso inclui música de fundo, previsões de tempo localizadas, sinais de tempo especiais e outras matérias de natureza radiofônica expressamente destinadas a agricultura, comércio, negócios, profissoes, religiões, educação, ou outros grupos engajados em atividades legalizadas. As facilidades do SCA podem também ser usadas na transmissão de sinais diretamente relacionados à operação das estações emissoras de FM. O sinal de SCA ocupa a faixa de 60 a 74 kHz, sendo modulado em AM na frequência central de 67 kHz antes da modulação em FM. No receptor, esse sinal é normalmente eliminado por um filtro de rejeição sintonizado na mesma freqüência.

KITS NOVA ELETRÔNICA
E COMPONENTES BEM AO
ALCANCE DOS
PERNAMBUCANOS

PERNAMBUCANOS

RUA DA CONCORDIA, 312
TEL. 224 · 3699 · 224 · 3580
RECIFE

O usuário que quizer aumentar ligeiramente o ganho de tensão no demodulador poderá incrementar o valor dos resistores de carga (R1 e R2 da figura 4), estando certo da variação correspondente dos capacitores de de-enfase (C1 e C2). Cargas elevadas como 5600 ohms poderão ser usadas (ganho de 1,4). O desempenho do LM1800 é virtualmente independente da alimentação utilizada (de 10 a 16 V), devido ao regulador do integrado.

Embora o diagrama mostre uma lâmpada indicadora de 100 mA, o projetista poderá desejar um LED. Isto não representa problema para o LM1800 desde que um resistor seja ligado em série limitando a corrente a um valor seguro para o LED. A lâmpada ou LED poderá ser alimentada a partir de qualquer fonte (até 18 V) e não precisará necessariamente ser operado pela mesma fonte que o CI.

Aplicação típica do LM1310

A figura 7 mostra o projeto de um demodulador estéreo que usa o LM1310. A faixa de captura, ajuste da sensibilidade da lâmpada e compensação da entrada são todas conseguidas do mesmo modo que no LM1800.

Avanços em Holografia

Paulo Nubile Inst. de Física da USP

Como a fotografia ou o video-tape, a holografia é mais uma técnica de registro de imagens. Sua importância vem do fato de ser a única técnica que consegue reproduzir todas as características de uma cena original: cor, brilho, contraste e profundidade. O fato da holografia reconstruir com um máximo de fidelidade uma cena lhe abre um campo vastíssimo de aplicações, como em medicina, química, física e, com promissores avanços, até em eletrônica. Este artigo se propõe a uma análise do que está sendo feito em termos de aplicações no campo da holografia.

A idéia que a maioria dos leitores têm sobre holografia é a de que é uma fotografia em três dimensões; ou seja, mudando o ângulo de observação, a imagem acompanha essa mudança como na cena original, permitindo até enxergar objetos que de uma outra posição estariam escondidos. Mas não é apenas para fotos tridimensionais que serve a holografia. Uma ânálise mais aprofundada de como são formados os homologramas revelará o real alcance utilitário desta técnica.

Holografando uma cena

Em 1971 Dennis Gabor, um físico, recebeu o Prêmio Nobel pela invenção da holografia. Isso aconteceu há 32 anos atrás, numa época em que as dificuldades técnicas para obtenção do holograma eram incríveis.

Para se ter uma idéia, só é possível a obtenção de um holograma com uma fonte de luz coerente (todas as frentes de onda em fase). A luz Laser que é a única fonte luminosa com essa característica, só foi desenvolvida nos fins dos anos 50 e início do anos 60; muito depois do estabelecimento dos princípios básicos da holografia. Nas suas experiências Dennis Gabor usou cristais polarizadores para simular fontes coerentes.

Em essência a holografia não é difícil de entender. Nas figuras 1 e 2 estão os arranjos práticos para obtenção e projeção de um holograma.

Considere um feixe de luz laser que é dividido em dois outros feixes por meio de um espelho semi-refletor. Se a transparência deste espelho for de50%, as intensidades dos feixes serão iguais e iguais à metade da intensidade do feixe original. Através de um aparato óptico (lentes e espelhos), um dos feixes é transmitido diretamente à chapa holográfica. O outro feixe é dirigido ao objeto ou à cena que se deseja holografar. A luz difundida pelo objeto, no caso uma pera, é enviada igualmente à chapa holográfica. Como se pode observar na figura 1, ocorre na chapa um fenômeno de interferência entre os dois feixes que a atingem. Quando a chapa é revelada, o que se pode observar são apenas figuras de interferência que a princípio parecem não ter nenhuma relação com o objeto original; mas, que se iluminada com o mesmo laser usado na obtenção do holograma, reproduzirá em três dimensões o objeto ou cena original. Essa imagem pode ser detectada pelos olhos, por outros instrumentos ópticos ou por uma câmera.

Como o holograma registra todas as informações da cena original, a imagem obtida é de extrema fidelidade. Com um simples holograma, pode-se examinar um objeto de diferentes pontos de observação e deter-

Reconstrução da imagem holográfica

imagem
olho

placa

Técnica de Projeção de Hologramas

Arranjo experimental para a obtenção de um holograma

Comp. de Onda (A)	Cor	Meio	Potência Aprox.
4416	azul aporp.	He-Cd	50
4579 .	azul apurp.	Ar	50
4762	azul	Kr	30
4765	azul	Ar	250
4880	azul-verde	Ar	700
4965	azul-verde	Ar	150
5017	verde	Ar	150
5145	verde	Ar	700
5682	amar-verde	Kr	60
6328	vermelho	He-Ne	50
6471	vermelho	Kr	150

Tabela que relaciona o comprimento de onda da luz emitida com os lasers existentes no mercado.

se em diferentes profundidades através da imagem.

O fato de se iluminar o holograma com a mesma fonte do feixe de referência reconstitui a situação original. só que, em vez do objeto, há o padrão de interferência que ele criou. O feixe Laser reinterfere com a placa holográfica, numa espécie de processo inverso ao usado na obtenção do holograma.

Há possibilidade de conseguir hologramas coloridos usando a técnica de superpor feixes Laser de três cores, nos comprimentos de onda de 6328 Å (vermelho), 5145 Å (verde) e 4880 Å (azul). A tabela da figura 4 mostra os diversos tipos de Laser de emissão continua para cada cor do espectro. Note que há Lasers cobrindo praticamente todo o espectro de freqüência da luz visível. O importante é garantir que a intensidade dos feixes de cada um dos três lasers sejam aproximadamente iguais. Isso se conseque com filtros atenuadores colocados na saída de cada feixe.

Na reprodução, o holograma obtido deve ser iluminado igualmente pelas três fontes, num ângulo próximo ao usado na obtenção, para evitar distorções e aberrações ópticas.

Normalmente os hologramas são obtidos através de fontes laser de emissão continua. Como essas fontes são de baixa potência (vide tabela da figura 4), o tempo de exposição para obtenção de um holograma é relativamente longo. Se as fontes tiverem potência de alguns miliwatts, o tempo de exposição deve ser de alguns minutos. Esse inconveniente restringe muito o campo de aplicação da holografia, já que não é possível obter hologramas de objetos em movimento, animais etc.

Se quisermos holografar uma mosca, não podemos esperar que ela fique sem se mexer durante cinco minutos, iluminada com luz laser. Mas hologramas de insetos já são uma realidade. Como isso é feito?

É mais ou menos intuitivo que quanto maior a potência do feixe, menor o tempo de exposição. Acontece que os lasers de emissão pulsada têm

potência de intensidade milhares de vezes maior. Portanto, um flash de um laser pulsado equivale a uma exposição demorada de um laser de emissão continua. Desde 1965 essa técnica de obtenção de hologramas vem sendo desenvolvida com sucesso. São usados pulsos de duração de dezenas de nanossegundos a alguns microssegundos (tempo que varia de acordo com a velocidade do objeto que se quer holografar).

A Figura 5 mostra o arranjo usado para tirar hologramas com Lasers pulsados. Note que, em essência, não há nenhuma mudança em relação ao-arranjo clássico para hologramas a laser de emissão contínua.

Na prática, porém, é difícil consequir fabricar um laser pulsado para cada cor do espectro. O laser a rubi, emitindo luz vermelha de comprimento de onda de 6943 Å, é o único laser pulsado adequado para as aplicações em holografia. Futuramente, os lasers de itrio-alumínio e os lasers de vidro, que emitem pulsos intensos de luz na faixa do infra-vermelho, poderão gerar

pulsos intensos de luz verde, quando os pulsos originais passarem por um dobrador de frequência.

Na reprodução da imagem de um holograma obtido com laser pulsado. deve-se usar um laser de emissão continua de mesma frequência. É um problema que já foi superado com o grande avanço na produção de lasers de emissão continua de diversas freqüências de emissão. Como já foi dito, há lasers de emissão continua cobrindo praticamente todo o espectro da luz visível.

O pico de intensidade da luz emitida por um laser pulsado de rubi, por exemplo, pode destruir alguns componentes ópticos ou até o objeto que se deseja holografar. Algumas precauções devem ser tomadas para evitar tais lamentáveis acontecimentos. O material vitreo que compõe as lentes e os espelhos deve ser especial e a rede de difusão (vide fig. 4) deve abrir bem o feixe de tal modo a diminuir a potência por unidade de área do pulso de luz. Na saída do laser, essa potência tem o valor de 2 x 108 w/cm2

njo para hologratias com lasers pulsados

durante o pulso, cerca de um bilhão de vezes mais intensa que a radiação do sol.

Os filmes holográficos e os processos de reprodução de chapas

Com o desenvolvimento de fontes de luz coerente de grande potência tornou-se mais prático usar outros materiais sensíveis em lugar das emulsões fotográficas para registrar um holograma. Muitos desses materiais têm grande resolução, mas são relativamente insensíveis. Porém, quando são expostos à luz de um laser de grande potência, os tempos de exposição diminuem e um bom holograma pode ser obtido.

Um holograma pode reconstituir as frentes de onda nele gravadas por modulação espacial tanto da amplitude quanto da fase da luz que o ilumina. Os filmes fotográficos, que modulam a amplitude da onda luminosa, são adequados tanto para formar fotografias quanto hologramas. Por outro lado, os materiais que modulam em fase têm pouca utilidade em fotografia, mas são ideais para obtenção de hologramas.

Muitos materiais modulados em fase, como os filmes dicromáticos de gelatina, filmes fotocondutores termo-plásticos, materiais fotocromáticos e cristais ferroelétricos já estão sendo usados.

Algumas emulsões fotográficas da Kodak e Agfa também estão sendo usadas, especialmente quando lasers pulsados são usados para a obtenção do holograma.

Quando um grande número de hologramas de um mesmo objeto ou cena são desejáveis, é preciso encontrar um método de duplicar originais ou formar vários originais ao mesmo tempo. Muitos hologramas podem ser duplicados com fontes não-laser e alguns poucos componentes ópticos, e sem a necessidade de estabilidade e mesas ópticas especiais.

A figura 6 mostra o arranjo básico para duplicação de um holograma, onde a fonte S é monocromática e não necessariamente coerente.

A Holografia entrando nos domínios da eletrônica

Em muitos campos a holografia tem promissoras perspectivas de aplicação prática. Na medicina e na biologia, em tratamento e análise de tecidos. Na química e física, em processos ligados à interferometria. Muitas dificuldades técnicas, porém, ainda persistem. Os problemas de trepidação e da baixa sensibilidade das emulsões fotográficas são, talvez, os maiores.

Um processo de duplicação de hologramas

É claro que tais problemas não são insolúveis e há um verdadeiro batalhão de cientistas desenvolvendo pesquisas no assunto. De 1970 para cá, muitos progressos foram alcançados, mas a comercialização da holo-

informações tridimensionais ou bidimensionais. As informações podem ser coloridas ou codificadas, gráficas ou alfa-numéricas. Podem ser armazenadas na superfície de holograma ou através de seu volume, espacial-

ocesso de leitura de uma memória apenas de leitura holográfica

grafia ainda parece pertencer ao domínio da ficção. Daqui até o final do artigo, discutirei os campos de aplicação da holografia à eletrônica.

Armazenagem de Informações

Os hologramas podem armazenar

mente separadas ou superpostas. Enfim, é uma unidade de memória extremamente versátil.

A figura 7 mostra o arranjo para a leitura de uma chapa holográfica. Mudando o ângulo de incidência, mudará

Página de memória de um holog

o conjunto de informações lidas. O plano de detecção é formado por sensores eletro-ópticos.como foto-transistores ou foto-diodos e o defletor de feixe é um sistema predominantemente mecânico.

As memórias holográficas têm caráter semi-permanente. A qualidade da memória holográfica está intimamente ligada ao material foto-sensível usado. A maior parte deles tem eficiência não muito maior que 1% e o tempo de armazenagem aumenta com a diminuição da temperatura. O material fotográfico SrTiO3 pode armazenar dados por semanas se a chapa for mantida à temperatura do nitrogênio líquido, por volta de 78° K. Hologramas de grande resolução podem ser armazenados em nanossegundos num filme de MnBi, mas a eficiência também é baixa. Talvez o material mais promissor na armazenagem de informações através da holografia seja o filme foto-condutor termoplástico, com uma eficiência que varia entre 5 e 10%.

A figura 8 mostra um circuito elétrico de uma célula holográfica extremamente simples (de magnitude 3 × 3) construida com material termoplástico. Os eletrodos conectam áreas retangulares de óxido a uma fonte de potência de 60 Hz. Cada área e escolhida através de um bloco de endereçamento. A corrente atravessa

a faixa de óxido produzindo o calor necessário para registrar a informação.

A figura 9 mostra a foto de uma página de holograma com 4032 bits lógicos de valor "1" e 64 bits lógicos de valor "0". Cada ponto tem um diâmetro de 100 um.

A TV Holográfica

Em princípio é possível formar um holograma diretamente no tubo de uma câmera de TV, transmitir o padrão de interferências e demodular esse padrão de interferências na tela do aparelho de TV. No caso, as características físicas da tela de TV devem mudar; devem ter uma superfície transparente de tal modo a permitir sua iluminação com luz laser. No terminal do receptor, o holograma deve ser recriado num material foto-sensível com um tempo de exposição menor que 1/30 de segundo e logo após deixar a tela livre para o próximo qua-

Nas primeiras experiências de transmissão de sinais de TV holográfica, uma portadora era formada diretamente na face sensível da câmera. Devido às limitações na capacidade de resolução, o ângulo entre o feixe do objeto e de referência foi feito pequeno. O holograma assim formado foi transmitido num circuito fechado de televisão.

As experiências desenvolvidas nos laboratórios da Bell podem ser resumidas no sistema da figura 10. Os relatórios, expondo os resultados da experiência, dizem que muitos detalhes técnicos precisam ser suplantados até a utilização da TV holográfica. Um deles, e que parece um tanto óbvio, é a impossibilidade atual de formar hologramas de paisagens vastas,

como de um campo de futebol, por

exemplo.

Para tais casos, a única solução aparente é tentar formar hologramas não com um tipo tão sofisticado de luz como é a do laser, mas com luz incoerente como a emitida pelo sol ou por uma lâmpada. Já existe uma base teórica para essa tentativa.

O princípio básico da holografia com luz incoerente reside na divisão em amplitude das frentes de onda vindas de um objeto em duas componentes, provocando o aparecimento de duas ondas luminosas. Se fizermos as duas ondas interferirem, teremos um padrão de interferência numa chapa fotográfica. Esse padrão corresponde a N hologramas superpostos.

Na reconstituição, um laser deve ser usado para selecionar um dos N hologramas formados.É claro que, com esta técnica, os hologramas são inferiores. O sucesso dela dependerá em grande parte do desenvolvimento de materiais fotossensíveis especiais.

Glossário de Termos Holográficos

Holograma

A chapa onde são gravadas as frentes de onda tridimensionais. O aspecto de um holograma é o de um quadro semi-transparente que, visto sob luz branca, possui apenas algumas figuras de interferência luminosa; mas que, se iluminado com luz laser, reconstruirá a cena holografada. Cada fração do holograma tem o registro de todos os pontos da cena vistos de um determinado ângulo.

Luz Coerente

Feixes de luz compostos de ondas de igual amplitude e freqüência e mesma fase. Apenas fontes especiais de luz emitem luz coerente, como o laser; enquanto a luz vinda de uma lâmpada incandescente ou do sol é uma mistura de frentes de onda de diversas freqüências e amplitudes.

Os hologramas mais difundidos até hoje usam luz coerente para sua formação e reconstituição; embora técnicas mais modernas estejam desenvolvendo processos de obtenção de hologramas a partir de fontes não coerentes.

Laser

Sigla para Light Amplification by Stimulated Emission of Radiation. É a única fonte comercial que emite luz coerente, primordial para a maioria das técnicas holográficas.

Laser Continuo

Emitem feixes de luz coerente sem interrupção temporal. Normalmente têm baixa potência (da ordem de mw) e, como meio ativo usa uma mistura de gases, como o laser HeNe ou de CO2.

Laser Pulsado

Emite feixes de luz coerentes em intervalos iguais. Durante o tempo em que o laser pulsado não emite luz, sua cavidade ressonante acumula grande quantidade de energia que é liberada de forma praticamente instantânea num pulso de luz. Por isso, a potência de saída pode chegar a alguns gigawatts.

Nas técnicas holográficas o laser pulsado é usado para se obter hologramas com tempos de exposição de fração

de segundos.

Chaveamento Q

Método utilizado para a tranformação de um laser contínuo num laser pulsado.

Padrão de interferências

Quando duas ondas quaisquer se encontram num mesmo espaço, há uma interação entre elas. O resultado dessa interação é chamado de padrão de interferências e pode ser registrado numa chapa fotográfica ou outro registrador qualquer tanto em duas quanto em três dimensões.

Holograma de Transmissão

Um tipo de holograma obtido através do registro do padrão de interferências de dois feixes luminosos: o de referência, vindo de um laser, e o refletido, vindo do objeto.

O termo holograma de transmissão vem do fato de que para sua reconstituição, um feixe de luz laser o atravessa para que a imagem seja formada.

Holograma de Transmissão por luz branca

Um holograma obtido a partir de um holograma de transmissão que para sua projeção basta uma fonte de luz branca. Tem a óbvia vantagem de não necessitar de um laser para sua reconstituição.

Luz Branca

Luz composta de feixes luminosos de diferentes comprimentos de onda e diferentes intensidades. Num feixe de luz branca, todas as cores do espectro do arco-íris comparecem.

Holograma de Reflexão

O holograma reconstituído pela difusão de luz branca em sua superfície. A imagem obtida é real.

Holograma de Imagem Plana

Um tipo de holograma no qual a reconstituição da imagem se dá pela ação das superfícies das chapas.

Holograma de Volume

Todos os pontos da chapa foto-sensível registram os dados de uma cena, inclusive os interiores ao filme. No caso, os filmes devem ter um índice de reflexão muito baixo.

Índice de Reflexão

É o quociente entre a intensidade da frente de onda refletida por uma superficie e a incidente. Nos vidros e outros materiais transparentes, o índice de reflexão é muito baixo.

Imagem Virtual

Quando a imagem se forma atrás do holograma em relação ao observador.

Imagem Real

Quando a imagem se forma na frente da placa holográfica em relação ao observador.

Holografia

Um processo de gravação e projeção de imagens que permite a reconstrução de cenas em três dimensões, isto é, diferentes ângulos de visão revelarão diferentes aspectos da cena.

TACÔMETRO

Com um tacômetro você vai controlar a rotação em que está dirigindo, aumentando a vida de seu carro, evitando a «queima» de óleo, vai poder acertar corretamente a marcha lenta e com várias vantagens:

- é mais barato porque é você quem monta.
- é digital, portanto mais preciso, durável e fácil de ler.
- Depois de montado tem um aspecto sóbrio, combinando com todo tipo de carro.
- especialmente projetado para seu carro, com caixa blindada, sem necessidade de ajustes complexos e sem problemas quanto a ruído.

Testado em carros de várias marcas, sob todas as condições (calor excessivo, trepidação), funciona perfeitamente.

KITS NOVA ELETRÔNICA

para amadores e profissionais

À VENDA: NA FILCRES E REPRESENTANTES

alabla

Integradores e diferenciadores RC

Os integradores e diferenciadores passivos mais simples são feitos com um resistor e um capacitor, apenas. O que muda, de um para outro, é somente a posição desses dois componentes. Para que esses circuitos tenham o efeito desejado, isto é, apresentem na saída a derivada ou a integral da tensão de entrada, é preciso que esta tensão seja a de uma onda quadrada.

Ve C Vs Vs RC>>T

No diferenciador, a tensão de saída é proporcional à derivada da tensão de entrada, de acordo com a fórmula:

$$V_S = RC \frac{dV_e}{dt}$$

Os valores do resistor e do capacitor são escolhidos de tal forma que a
constante de tempo RC seja pequena,
comparada com o período T do sinal de
entrada. Sob essa condição e com
uma onda quadrada na entrada, ele vai
apresentar na saída os pulsos mostrados no desenho ao lado.

No **integrador**, por sua vez, a tensão de saída é proporcional à integral da tensão de entrada, de acordo com a fórmula:

$$V_S = \frac{1}{RC} \int V_e dt$$

Neste caso, os valores do resistor e do capacitor são escolhidos de modo que a constante RC seja grande, comparada com o período T do sinal de entrada. Sob essa condição e recebendo uma onda quadrada, ele vai apresentar na saída um tipo de onda triangular, como se vê pela figura.

Este mês quem dá o recado é o Melvin Victor Lovell e o Alda Medeiros, do Rio de Janeiro.

Eles apresentam sua idéia de uma forma muito interessante:

"O presidente da companhia XYZ possui um sistema Intercom, elaborado para chamar sua secretária. José e David são dois técnicos de laboratório, que trabalham em laboratórios separados, mas muitas vezes precisam auxiliar um ao outro. Quando perguntaram ao presidente se podiam instalar um sistema Intercom entre os dois laboratórios, para se comunicarem, o presidente concordou, desde que observassem as seguintes regras:

a) O sistema poderia ter somente dois fios de comunicação entre os dois laboratórios;

b) Pressionando a tecla de José, acenderia somente a lâmpada de David;

c) Pressionando a tecla de David, acenderia somente a lâmpada de José;

d) Pressionando ambas as teclas simultaneamente, acenderiam as duas lâmpadas;

e) O custo total para as duas unidades não excederia Cr\$ 300,00.

José e David foram trabalhar no projeto e logo tiveram um sistema Intercom funcionando, entre os dois laboratórios, que preenchia todos os requisitos exigidos pelo presidente.

Como conseguiram?"

O David e o José, digo, o Melvin e o Alda estão de parabéns.

COMO PROJETAR
CORRETAMENTE E REALIZAR UM
SISTEMA DE SONORIZAÇÃO PARA
GRANDES AMBIENTES NO BRASIL
(em 1979)

parte 1

INTRODUÇÃO

Cláudio César Dias Baptista

 \acute{E} ... Chegou a hora tão esperada de falar, ou melhor, escrever a este respeito. Que a importância do assunto e minha responsabilidade ao trazê-lo a você, atraiam luz e me façam feliz no resultado!

Voltamos a apresentar uma pequena série de artigos de Cláudio César Dias Baptista. Autor de nosso curso de Áudio, foi também responsável pela série de artigos sobre sistemas de som para grandes ambientes, onde foi prometida a focalização de cada setor desses sistemas, começando pela sonorização do "palco" com a apresentação do Sintetizador de Instrumentos Musicais e Vozes. Esta série foi interrompida pela direção da NE, que desejava dar rumos mais gerais, que especializados em um único setor de Áudio, à revista. Esperamos com esta nova série, mais resumida, atender aos continuados pedidos de leitores, aos quais podemos adiantar que o autor continua bem, vivendo em paz no Rio de Janeiro, onde produz mesas de som, amplificadores e o Sintetizador sob encomenda, tendo sido alvo de ampla reportagem pela Revista de Domingo do Jornal do Brasil.

Principais campos de interesse

- sonorização (reamplificação) para conjuntos musicais e orquestras.
- Sonorização para cinemas e auditórios em geral.
- Sonorização para igrejas, estádios, comícios, etc., em ambientes fechados ou abertos.
- Esta série de artigos pode ser considerada como um grupo de lições avançadas do Curso de Áudio.

Generalidades

Existem nos países desenvolvidos, por exemplo nos USA, sistemas exatos e racionais que nos permitem projetar aparelhagem de som para grandes ambientes, com resultados extremamente controlados.

Passarei a descrever um sistema assim, onde os cálculos serão baseados em dados exatos, sempre fornecidos pelos bons fabricantes de alto falantes estrangeiros. Até aqui, diria você, qualquer um poderia chegar, desde que se colocasse em contato com as empresas fabricantes desses alto falantes.

A novidade que lhe ofereço, no entanto, é que, a medida em que os cálculos feitos para os alto falantes estrangeiros forem sendo apresentados, acrescentarei dados sobre substituição dos alto falantes estrangeiros por unidades nacionais, baseado exclusivamente na minha prática pessoal — já que os alto falantes nacionais não são acompanhados de fábrica pelos dados técnicos mínimos necessários para que os cálculos sejam feitos diretamente (ver meu curso de áudio na NE).

De antemão esclareço que não serão conseguidos resultados idênticos usando-se alto falantes nacionais, mas que apenas procurarei chegar o mais perto possível nas equivalências sugeridas. Os motivos são apresentados na seqüência do artigo. Corneta versus Alto Falante

Na grande maioria dos sistemas de sonorização profissionais, a corneta acústica é utilizada, ao invés de simplesmente o alto falante. Não aquela corneta que todos se acostumaram a conhecer nas feiras ou sobre os automóveis de propaganda, nos circos e torres de igreja por aqui, que "berram" alto mas com uma qualidade sonora péssima. Um outro tipo de corneta. com características da mais alta fidelidade é a que me refiro. Esta corneta é a responsável pelos sons espetaculares dos grandes grupos de rock, ou dos grandes cinemas. Para entender a corneta, é importante saber que se compõe de duas partes principais — a corneta propriamente dita (HORN) e o DRIVER. A corneta (horn) não possui peças móveis e serve para dar eficiência ao driver, fazendo com que este consiga entregar corretamente ao ar a energia acústica que produz. O driver é um alto falante, em última análise, mas feito para encaixar-se à corneta e, normalmente, não funciona sem ela.

O driver é formado por um conjunto magnético permanente de alta qualidade e de um diafragma (figura 1), ligado à bobina móvel. Este diafragma (como os cones dos alto falantes) vibra, impulsionado pela bobina móvel, comprime e rarefaz o ar sobre um plug cônico que contém ranhuras que levam essas compressões do ar à garganta ou boca menor da corneta (horn). O plug serve para que as compressões do ar se mantenham uniformes e "em fase", vindas de toda a superfície do diafragma, até a garganta da corneta; caso não existisse, as altas frequências (agudos) não seriam reproduzidas. Daí ser chamado phasing plug e estar presente obrigatoriamente em qualquer driver que pretenda ser de alta fidelidade.

No alto falante comum, a transferência de energia ao ar, em forma de

som, é muito menos eficientemente realizada que na corneta.

Não cabe aqui chegar a detalhes maiores sobre o porque — basta dizer que um alto falante se assemelha, ao "empurrar" o ar, a alguém que empurre um monte de palha com um cabo de vassoura (o cabo entra e não empurra) enquanto que a corneta empurra o ar como alguém que empurre a palha com o mesmo cabo de vassoura, mas com uma larga tábua bem pregada à ponta — a palha é, então, deslocada.

Não só na forma apresentada existem cornetas; estas podem ser confeccionadas a partir do próprio alto falante para as freqüência baixas (os graves). Aqui podemos comparar melhor ainda cornetas X caixas acústicas comuns

Suponhamos uma caixa acústica com um único alto falante de 15". À mesma caixa acústica poderia ser adaptada uma corneta em frente ao alto falante (figura 2).

A simples colocação da corneta aumenta o rendimento do alto falante em aproximadamente 6 dB (quatro vezes mais potência acústica), mas apenas em uma faixa de freqüência delimitada pelo tamanho da corneta. A boca

maior da corneta, bem como o comprimento, dá a freqüência mais baixa que a corneta intensifica, enquanto que a boca menor e sua distância do alto falante dá a freqüência mais alta. A comparação, em gráfico, vê-se na figura 3. Notar que uma só corneta reproduz apenas uma parte das freqüências audiveis reproduzidas pelo alto falante que a excita.

Na figura 4 vemos diversos tipos de cornetas para as diferentes faixas de freqüências. São todas da marca norte-ameriana JBL, cujo endereço é 8500 Balboa Boulevard, Northridge, California, 91329, USA. Outra fábrica importante é a Altec (ex-Altec-Lansing)

O resultado, pois, do uso de várias cornetas é a reprodução de toda a faixa de freqüências audíveis. Este resultado é, no entanto, aproximado, pois existe o problema, nas baixas freqüências, do tamanho exagerado que tomaria a boca maior da corneta, para realmente chegar a reproduzir os graves profundos. Existem casos, no entanto, onde compensa chegar a essas dimensões (figura 6).

Normalmente, no entanto, não se usa bocas maiores que 1,52 m, como a da maior caixa corneta vista na introdução deste artigo — esta corneta dá um reforço de 6 dB após 100 Hz e abaixo disso, é "usável" desde 50 Hz. Para saber até onde uma corneta pode chegar aos graves, desde que seu comprimento seja adequado, devemos verificar o perimetro da boca maior, que deve se aproximar do comprimento de onda da freqüência mais baixa a reproduzir.

Crossovers e seus problemas

A figura 5 mostra duas regiões onde o som de uma corneta está sendo reproduzido também pela outra. Estas regiões, chamadas *crossovers*, são os pontos onde se deve dar a máxima atenção ao sistema.

Múltiplas cornetas

Como, para evitar distorção e por ser impraticável a construção de drivers que reproduzam toda a faixa de freqüências e de cornetas (horns) que também possam intensificar toda a faixa audível em uma única peça, é costume utilizar-se uma corneta especial para cada faixa de freqüências, com seu driver, também especial para cada faixa.

— 1515 South Manchester Ave, Anaheim, California, 92803. Escrevendo diretamente a essas fábricas você poderá obter desenhos, catálogos e demais informações a respeito de suas caixas e cornetas.

O resultado do uso de várias cornetas especializadas em conjunto, uma para cada faixa de freqüências, colocado em gráfico semelhante ao da figura 4, seria o seguinte (figura 5). Em primeiro lugar, as cornetas deveriam estar recebendo sinal elétrico vindo dos amplificadores, em fase. Isto pode parecer simples, mas tem sido motivo de debates e muitos artigos foram escritos a respeito no exterior. Como as freqüências tem que ser separadas ou divididas antes de chegarem às cornetas, pois os drivers para as freqüências mais altas não suportam as baixas freqüências, sempre são utiliza-

dos "filtros divisores de freqüências". Nos sistemas mais simples esses filtros são os conhecidos divisores pas-

sivos — e se usa um só amplificador de potência antes dos filtros (figura 7).

Estes filtros não são tão bons quanto os do sistema "ativo", devido a que os alto falantes ou *drivers* das cornetas não oferecem uma carga constante aos mesmos, ficando a resposta a freqüências prejudicada. Sua distorção é também maior.

O sistema de filtros ativos, eletrônicos, colocados antes dos amplificadores é muito superior em resultado e eficiência (figura 8). Sua distorção é mínima, a resposta a freqüências muito mais perfeitamente controlável; evitam distorção por intermodulação nos amplificadores, cuja eficiência quase dobra (95 WRMS em sistema com filtros ativos dão resultados equivalentes a 175 WRMS em sistemas com filtros passivos, em matéria de distorção a mesmo nível acústico).

Fase

Seja com filtros ativos ou passivos, para que as cornetas (ou caixas comuns, ou alto falantes em uma mesma caixa, inclusive nos sistemas residenciais) possam estar trabalhando "em fase" nas freqüências da região do crossover, este crossover deveria ter uma inclinação nas curvas de resposta dos filtros (mesmas que as da figura 5) igual a 6 dB/oitava. Isto não é possível

na maioria dos casos, pois a pequena atenuação dos graves obtida com um filtro deste tipo prejudicaria a (ou as) cornetas de alta freqüência, que poderiam não resistir e ter as bobinas móveis de seus *drivers* queimadas ou quebradas.

Tornou-se comum o uso então de divisores ativos ou passivos de 12 dB/oitava. Estes, no entanto, produzem variações de fase na região do crossover, o que resulta na perda de uma estreita faixa de fregüências nessa região (figura 9) quando os diafragmas e bobinas móveis das cornetas ou alto falantes estão "em fase", isto é, se uma tensão CC aplicada sobre eles os fizesse mover na mesma direção. Se Invertermos a posição dos dois fios que ligam uma das cornetas ao amplificador, teremos um pico ao invés de um vale na resposta do sistema - jamais conseguiremos, entretanto, resposta plana.

Some-se ao problema da resposta a freqüência não mais poder ser plana, o de a resposta a fase não o ser também e teremos como resultado, principalmente quando o *crossover* está entre 200 e 800 Hz, a falta daquele som *mellow*, redondo, nítido; a falta de impacto ao reproduzir-se acordes de um piano de cauda, a falta de clareza nos sopros de uma trompa ou trombone, a

para cada lado da freqüência central. A esse filtro liga-se um amplificador e mais uma corneta ou alto falante, e o resultado se vê na figura 10. Para maiores detalhes consulte a revista Radio Electronics (USA) may - 1976 - artigo de Leonard Feldman.

Com o sistema de 18 dB/oitava ou com este sistema de 12 dB/oitava corrigido, os resultados serão muito superiores aos dos sistemas comuns de 12 cará atraso na chegada do som ao ouvinte, vindo das unidades mais altas (figura 12).

Uma "lei" Para se obedecer, pois, por estes motivos de fase e pelos de facilidade de transporte, montagem e custo de confecção de caixas, é que "cada caixa acústica deve ser o menor possível em volume físico e o mais pontente, acusticamente possível, dentro desse volume físico". Uma dife-

falta de nitidez no puxar de arcos de um violoncelo ou contrabaixo, a falta de posicionamento correto estereofônico, má resposta a transientes, enfim, um som possivelmente muito alto, mas nunca satisfatório.

Resolve-se isto na parte que diz respeito a resposta a freqüências, apenas com o uso de divisores eletrônicos de 18 dB/oitava e não de 12 dB/oitava. Divisores passivos deste tipo não são recomendaveis e nunca funcionam bem (consultar Audio Handbook da National, onde há circuitos modernos para esta finalidade, de divisores ativos de 18 dB/oitava).

A melhor solução a meu ver é, no entanto, respeitar-se a perfeita resposta a freqüências e a perfeita resposta a fase — também mantendo melhor resposta a transientes. Isto se consegue com o uso do sistema comum de filtros eletrônicos de 12 dB/oitava, aos quais se acrescenta um filtro pássa faixas centralizado na mesma região do crossover, com queda de 6 dB/oitava

dB/oitava.

A propósito, a maioria das caixas acústicas residenciais de hi-fi (muito possivelmente aquela que você tem em casa!) padece do mesmo problema e pode ser corrigida da mesma maneira indicada anteriormente. Isto vale para todas as caixas acústicas hi-fi nacionais que conheço, e a maioria das estrangeiras!!!

Atenção deve ser dada para, em qualquer dos casos acima, manter as bobinas móveis das cornetas (*drivers*) e/ou alto falantes no mesmo plano vertical (figura 11).

Quando existir mais de um crossover, pelo menos o que se situa na região de 200 a 800 Hz deve ter estas questões levadas em consideração; os demais crossovers, em mais altas freqüências (5 kHz acima) não requerem tanta atenção.

Dimensões X Fase

Um problema que não deve ser descuidado no projeto de um sistema de som é o desvio de fase causado pelo ângulo formado entre as cornetas, ou caixas, ou alto falantes reprodutores, de diferentes faixas de freqüências, e o ouvinte. Quanto maiores as dimensões das caixas ou cornetas, quanto mais distantes entre si, mais longe deverá estar o ouvinte, pois, mesmo que as bobinas móveis estejam no mesmo plano vertical, o ângulo formado pela altura do sistema provo-

rente versão desta minha "lei" seria "as caixas acústicas devem fornecer o máximo possível de SPL por unidade de volume, para bons resultados em todos os sentidos"

ALTO FALANTES X alto falantes

CORNETAS X cornetas

Passo a comparar unidades estrangeiras com as nacionais. Espero obter resultados construtivos com esta comparação — se você exigir maior qualidade esta virá — o importante é, pois, conhecer a diferença para saber o que exigir.

Os principais motivos da impossibilidade de se conseguir equivalência real entre alto falantes nacionais e estrangeiros são:

1 — Inexistência, para os nacionais, de dados sobre SPL (NIS) a uma determinada distância, aplicada uma determinada potência elétrica sobre o alto falante (ver meu curso de áudio).

2 — Muito menor rendimento acústico (eficiência) dos alto falantes nacionais, devido a:

- a. O fio das bobinas móveis não ser de seção retangular e, portanto, existir 24% menos fio dentro do campo magnético para gaps iguais.
- Fios de seção não retangular não são tão firmemente apoiados uns contra os outros e contra o suporte da bobina móvel, o que acarreta

maior fragilidade e menor dissipação de calor.

Os sistemas magnéticos dos alto falantes nacionais desperdiçam campo magnético, pois: as peças de ferro são estampadas e não usinadas, como as dos alto falantes JBL, por exemplo. Experimente passar uma chave de fenda sobre o sistema magnético descoberto de um alto falante nacional - ele gruda sempre. Isto é desperdício de campo magnético que escapa do sistema e não se concentra na região da bobina móvel, onde deveria estar. Bons alto falantes, com sistema magnético em ferro fundido usinado, não atraem as chaves de fenda (experimente num JBL ou Gauss, por exemplo!). Os alto falantes com sistema magnético usinado possuem grandes imãs de alnico V em seu interior. muito mais eficientes que os de ferrite usados na maioria dos alto falantes brasileiros.

A carcaça do alto falante deve ser de alumínio fundido e usinado: as de chapa estampada, além de não serem rigidas, dissipam e desperdiçam campo magnético. Pouquissimos alto falantes nacionais são feitos assim.

A cola usada na bobina móvel dos alto falantes nacionais é de menor resistência ao calor (os Altec, por exemplo, usam uma cola "Kapton", da Du Pont, altamente

resistente).

O suporte da bobina móvel deve ser de alumínio anodizado de preto, em seu interior, para maior dissipação de calor (como nos alto falantes Gauss), quando se deseja alto falantes para o trabalho pesado aqui apresentado.

As tolerâncias na usinagem e centralização do cone e bobina móvel deveriam ser muito precisas.

Cada unidade fabricada deveria ser testada com respeito a padrão acústico em tolerâncias de ± 2 dB e, não apenas para "ver se funciona", como é costume fazer por aqui. Um alto falante não é uma lâmpada para por no corredor, pô!!! Os testes devem ser cuidadosos e resultar na limitação do erro de fabricação a valores conhecidos e informados ao público.

Distorções devidas à suspensão e ao cone deveriam ser medidas e especificadas ou pelo menos servir de padrão interno às, fábricas ao determinarem a máxima potência aplicável.

Aranhas (suportes do cone e bobina) podem ser duplas, como nos alto falantes Gauss, quando se deseja linearidade de movimento a altas potências (até 300 W por alto falante). Existe apenas um falante nacional com esta característica. mas despreza todas as anteriores.

Por enquanto isto chega, não? Reitero meu pedido às fábricas de alto falantes nacionais, para que melhorem seus produtos e forneçam dados úteis sobre os mesmos! Afinal, a importação de alto falantes ter sido restringida a mínimos casos deveria subentender que há similares nacionais, não?

Calculando o sistema de som

A maioria dos sistemas de som Para grandes ambientes, desde os utilizados por conjuntos musicais até os cinemas, etc., tem sido calculada "na base do chute" aqui no Brasil. Isto se dá por vários motivos. Quando são usados alto falantes nacionais, estes sim-

de dados sobre alto falantes ou cornetas a serem usados, você estar apto a prever com exatidão a que resultado chegar, antes de dispender milhares de cruzeiros em equipamento. Quando não existirem dados sobre os alto falantes ou cornetas, poderá seguir a tabela de equivalência aproximada que fornecerei, para chegar a uma previsão razoável. Servirá também para fazer com que as fábricas de alto falantes nacionais passem a publicar os dados necessários sobre seus produtos (ver tabela 1).

O processo é o seguinte:

 Calcule todo o sistema de som como se fosse utilizar os alto falantes ou cornetas estrangeiros,

plano das bobinas móveis

atrasos maiores para o ouvinte distante

atrasos maiores para o ouvinte próximo

plesmente não tem dados técnicos que os acompanhem de fábrica, para que se possa chegar a calcular alguma coisa.

Quando são usados alto falantes estrangeiros, os técnicos instaladores (quando não são os próprios músicos!) não possuem know-how a respeito. Pois bem. Passo a fornecer todos os dados técnicos necessários para que se faça os cálculos da maneira correta. Isto servirá para, quando na existência

cujos dados fornecerei e que seriam os ideais para seu caso.

2 — Se não puder obter esses mesmos alto falantes ou cornetas, use a tabela de equivalência aproximada para poder utilizar alto falantes brasileiros.

3 — Quando, "algum dia", as fábricas nacionais fornecerem os dados necessários, calcule diretamente sobre esses dados, para alto falantes nacionais. NOTA PARA OS CONJUNTOS MUSICAIS: Tenho sido procurado por inúmeros grupos musicais que normalmente vão ampliando seus sistemas de som de maneira desorganizada, caótica até. Minha recomendação: "COMECEM CERTO! — (ou RECOMECEM!)". O estudo (não a leitura apenas) deste artigo e sua colocação em prática será extremamente útil a vocês.

Existe uma maneira de calcular sistemas de sonorização, que apresentarei ao final do artigo, bastante precisa e completa, mas que, pelos cálculos que envolve, será considerada incompreensível por muitos leitores. É a maneira correta, no entanto, e que deve ser minuciosamente seguida para certeza nos resultados, principalmente quando se fizer necessário o uso de microfones e houver possibilidades de microfonia.

Neste momento, entretanto, apresentarei um sistema eminentemente prático (e não menos preciso) mas que não leva a microfonia em consideração. É o ideal para sistemas onde não existam microfones (reprodução de discos, fitas, cinemas, instrumentos musicais eletrificados ou eletrônicos, etc.) e "serve" para os que tenham microfones, desde que as providências costumeiras contra microfonia sejam postas em prática. Não é recomendável para os casos em que o microfone ou os microfones estiverem distantes das fontes sonoras. Este é o caso de teatros para música clássica ou lírica e conferências. Deve-se então, obrigatoriamente, usar o sistema mais complexo, no final do artigo.

Sistema prático - Régua de SPL!

A figura 13 traz impressa duas escalas. Essas escalas, recortadas e coladas conforme a figura instrui, em cartão ou cartolina, permitirão a você montar uma régua para cálculos de SPL (sound pressure level ou nível de pressão - intensidade - sonora), ferramenta utilíssima nos projetos de sistemas de som.

Nota: Forneço as medidas em pés porque é assim que são apresentadas nos dados dos alto falantes americanos, que me servem de padrão neste artigo.

Montada a régua, calcule o siste-

ma da seguinte maneira.

Estabeleça o nível de SPL que desejar conseguir a uma distância determinada do local onde estarão as cornetas ou caixas de alto falantes. Isto poderá ser feito com o auxílio da tabela fornecida na Nova Eletrônica n.º 5, no Curso de Áudio, que dá os níveis de SPL relativos a diversos tipos de fontes sonoras. Anote e guarde o valor em SPL desejado.

Este nível é estabelecido exclusivamente com base em seu objetivo particular e depende apenas de que

			TABELA 1			
Modelo do alto falante ou corneta estran- geiros.	SPL em dB a 0,001 W, 30 pés.	Padrão de dis- tribuição sonora VERT X HOR	Máxima potên- cia RMS conti- nua em WATTS	CROSSOVER recomendado	Adaptador para corneta ao driver	Alto falante (s) nacional (is) "equivalente (s)"
Para graves HORN mod 4550 com 2 alto falantes de 15" mod 2220, todos JBL. Re- produzem 100 Hz acima, usável desde 50 Hz. A corneta tem 1,52 m de boca X 91 X 83 cm.	57	90° X 120°	100	800 Hz (usar daqui para os mais graves)		Fazer duas cornetas com 4 alto falantes nacionais pesados de 15" cada, para ins- trumentos musicais, com 1,52 m de bo- ca, cada corneta.
Para médios graves. HORN mod 4560 com 1 alto falante mod 2220, de 15" JBL, ambos. A corneta tem 76 cm de boca X 91 X 83 cm. Reproduz de 200 Hz acima, usá- vel desde 60 Hz.	57	90.º X 120.º	50	800 Hz (usar de 800 Hz para baixo)	-	Fazer uma corneta com 4 alto falantes nacionais de 12", em pé, para instrumentos musicais ou vozes, com boca de 76 cm.
Para médios graves — HORN mod A-7 da ALTEC, com alto falante de 15" mod 421- 8H série II, para instrumentos musicais. Usável desde 60 Hz, reproduz de 200 Hz acima.	aprox 54	90° X 120°	50	800 Hz (usar de 800 Hz para baixo)		Existe cópia nacional, mas com 1 só alto falante e não chega ao nivel necessário: use duas pelo menos, ou faça uma dife- rente como indicada no quadro acima.
Para médios, curta distância, para público próximo ao palco, ou para monitor de palco. HORN-LENS (lente acústica) mod 2395 com 1 <i>driver</i> mod 2440, ou o novo 2441.	59	45° X 1405	30	500 Hz (usar de 500 Hz a 7 kHz; no máximo 12 kHz)	_	Nada existe que se assemelhe, no Brasil. Com muito boa vontade seria possivel confeccionar 1 caixa curva, com 2 filei- ras de 8 alto falantes de 8", os mais pesa- dos nacionais, full-range, para, pelo me- nos se paroximar do padrão de distribui- ção, mas não se conseguirá atingir o mesmo SPL.
ldem					-	Algumas fábricas de alto falantes nacionais começam a experimentar drivers decornetas. Não existe ainda, no entanto, diversificação no tipo de corneta (HORN) utilizado e, muito menos, "lentes acústicas". Sugiro fortemente o estudo por essas fábricas, da lente acústica para quando for necessário grande ângulo de distribuição sonora.
Para sons médios, atingindo público à distância de pròxima a média, do palco. "Radial High Frequency" HORN mod 2350 com 1 driver 2440 ou 2441, ambos JBL.		40° X 90°	30	500 Hz (usar de 500 Hz a 7 kHz; no má- ximo 12 kHz)	2328	Há uma empresa nacional confeccionando cornetas sob encomenda. Estas seriam as únicas que possivelmente chegariam perto. A mesma fábrica confecciona a atualmente mais eficiente pequena corneta de HI FI nacional, com 102 dB SPL (mas não informa a que distância). Seriam necessárias mais de 30 destas pequenas cornetas para nos aproximarmos da norte-americana. Outra possibilidade seria o uso de 4 caixas de 8 aito falantes de 8" ou 4 caixas com 4 de 12" que, pelo menos, chegariam perto do SPL daquela, mas não com a distribuição sonora ou fase a deequadas que já teriam ângulo aberto demais.
Para sons médios, atingindo público à distância de média a longa — "Radial High Frequency" HORN mod 2355 com 1 driver 2440 ou 2441 (JBL).	65	40.º X 60.º	30	500 Hz (usar de 500 Hz a 7 kHz; no má- ximo 12 kHz)	2328	Nada existe no Brasil, por maior quanti- dade de alto falantes que se use, que per- mita conseguir estes parâmetros, se- quer aproximadamente (note que aqui a eficiência é já o dobro da anterior!). Que as fábricas dêem mais atenção a este ti- po de drivers e de cornetas.
Para sons médios, atingindo público à distância longa — High Frequency HORN mod 2356 com 1 driver 2482.	70	20° X 40°	60	300 Hz (usar de 300 Hz até 6 kHz)	-	Faça os cálculos usando a régua! (sem comentários).
Nota: As cornetas acima podem admitir 2 drivers, com adaptadores, o que dobra a potência admissivel.					-	
1 unidade 075 Ultra High Frequency tweeter (ring rediator) 2405	aprox 56	ângulo estreito	10-	3500 Hz (usar de 3500 Hz a 21 kHz, de prefe- rência acima de 7 kHz para evitar danos)		Não há o que fazer — não se consegue com alto falantes nacionais no ángulo coberto. A reprodução destas freqüências, sem levar o ángulo de distribuição coberto poderia ser feita com, pelo menos, 16 tweeters nacionais tipo pequena corneta, ou uma bateria de 32 tweeters de cone.

2405 Ultra High Frequency tweeter	56	90° X 30° — 16 kHz 65° X 25° — 20 kHz (ângulos abertos)	10	6500 Hz (usar de 7000 Hz a 21 kHz)	-	Idem acima, só que agora consegue-se o largo.ângulo usando-se várias unidades, mas não a fase exata, nem a resposta a transientes.
Para sons médios, distância média (equi- pamento mais barato que os anteriores) 1 driver 808-8A, ou o novo "8B", com 1 HORN 511 (ALTEC). ESta é uma das cor- netas mais usadas no mundo.	аргох 59	40° × 90°	15	500 Hz	_	Não será demais usar 16 pequenas cor- netas nacionais já mencionadas ante- riormente. Note que não há correspon- dência exata se fizer cálculos com os nú- meros dados anteriormente, mas é as- sim mesmo, devido a problemas de aco- plamento e fase.
Para médios e agudos a niveis mais baixos, a melhor "extended range existente, ou para altas freqüências, como complemento das 2440 usar 2420 JBL (driver) com 2350 HORN (pode ser usada aem vez dos ulfratweeters). Existe também o excelente e não menos qualificado driver "Pioneer", TAD PD801".	62	40° X 90°	15	(use de 500 Hz ou, melhor ain- da, de 800 Hz, até 20 kHz. É excelente até 14 kHz)	-	16 e 32 pequenas cornetas nacionais já mencionadas. Podem ser usadas também baterias de alto falantes de 8" ou mesmo 5". A quantidade è "a que couber", pois estes não chegarão ao SPL desejado se não forem usados uns 16 alto falantes pelo menos.

			TAB	EL/	2						
DECIBEIS (10 log-potência)	0	1	2	3	4	5	6	7	8	9	10
RELAÇÃO DE POTÊNCIA	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0
LOG ¹⁰	0	0,1	0,2	0,3	0,4	0,5	0,6	0.7	0,8	0,9	1,0

imagine bem os resultados aos quais deseja chegar. É uma questão particular de cada projetista e depende de cada necessidade.

> DISQUE QUE ELA ATENDE!

COM NOVO TELEFONE

223.7388 (TRONCO)

ATENÇÃO

Na tabela 1 deste artigo, estão os dados sobre diversos alto falantes e cornetas estrangeiros que servirão de base para o projeto, como padrão conhecido, bem como as sugestões para "equivalentes" nacionais.

Escolha "a olho" o falante ou corneta que julgar suficiente para chegar ao SPL desejado em sua faixa de freqüências (repita depois todo o processo para as demais faixas de freqüências).

Passe os dados conhecidos de SPLX potência desse alto falante para a régua e siga as intruções seguintes (também impressas abreviadas na régua):

- Coloque a distância conhecida (geralmente 30 pés) impressa na escala móvel, coincidindo com a potência conhecida (geralmente 0,001 watts).
- 2 Coloque o clip sobre o SPL conhecido, dado a essa potência, para esse alto falante (ou corneta) encontrável na tabela 1.
- 3 Mova a escala móvel até o SPL máximo desejado coincidir com o clip (aquele SPL que você calculou ser o ideal).
- 4 Leia a potência requerida para que distância onde deseja o SPL máximo seja atingido o SPL desejado.

Se essa potência for maior que a máxima potência contínua aplicável

ao alto falante, repita os cálculos até o ítem 2.

Sem mover o clip, então, coloque a distância desejada na régua móvel, coincidindo com a potência máxima contínua admitida pelo alto falante ou corneta que deseja usar.

Leia o SPL que obterá onde o clip coincide com a escala móvel de SPL.

Para cada 3 dB de SPL a mais que necessitar para chegar ao nível desejado, deverá usar mais um alto falante ou corneta igual ao 1º, recebendo também potência extra igual a aplicada no 1º (resumindo: dobre os alto falantes e a potência).

Para verdadeiramente bons resultados em sistemas de som, deve-se considerar uma margem de 10 dB extra além do SPL obtido com a potência máxima contínua aplicável ao alto falante. Isto permitirá que os alto falantes trabalhem em sua região de distorcão menor e durem mais, pois sempre existem "picos" de potência, em música, que não são detectados pelos indicadores (VU), luzes, etc. ou medidores de SPL, e os dados apresentados na tabela do curso de áudio não levam estes picos em consideração, pois, em geral, foram obtidos com medidores de SPL que não os detectam.

Notar que + 10 dB equivalem a 10 vezes a potência. Estou anexando, na tabela 2, a equivalência entre decibéis a mais e potência a mais. Por exemplo, + 3 dB = 2 X a potência; + 1 dB = 1,25 X a potência, etc. Esta tabela talvez lhe seja útil, mas não é obrigatória para os cálculos citados (cont. prox. n.º).

CORTAR Faça coincidir a distância è a porência co-hecidis do altolatione. Coloque o "clip" no SPL conhecido à I condição ! Mora a régua interna para que o SPL dese-iado conecida com o clip. Lesa a potiencia reguentida a distrância deseptida. Sem mover o "clip", coloque a distância desajada e à potência desejada. Leis o SPL resultante no "clip". 1.0 1.5 2.0 3 4 5 6 8 10 15 20 30 40 50 60 150 250 40 60 800 150 0 150 250 300 400 500 500 40 500 40 50 50 50 40 50 40 5 ESCALA MÖVEL 00 11 .003 .006 .010 .02 .03 .04 .06 .10 .2 .3 .4 .6 .10 .2 .3 4 .6 .10 .20 .30 40 .60 .100 .200 .300 .5000 .1000 RECORTE ESTE RETÂNGULO DISTÂNCIA POTÊNCIA 4 GUIA PARA A ESCALA 5 GUIA PARA A ESCALA SPL em dB WATTS CORTAR A S

Saiba como construir um rádio AM com 2 transistores (um FET e um bipolar) com um mínimo de trabalho.

Este receptor cobre a faixa das ondas médias, e usa apenas dois transistores, incluindo um transistor a efeito de campo. O uso do FET no circuito diminui o nível de ruído e o consumo. O circuito tem ainda a vantagem de possuir apenas dois indutores de fácil construção, o que permite um ajuste de funcionamento não crítico (geralmente o maior problema dos circuitos receptores).

O capacitor C1 é variável de L2 é um ele de realimentação regenerativo que reinjeta uma parte do sinal amplificado na entrada. Essa bobina é responsável pela oscilação do circuito. Como não há um oscilador local no circuito, o batimento de freqüência se dará com a mesma freqüência da transmissora.

Com o FET atuando como elemento não linear e com o batimento do sinal + realimentação; na saída dreno

Podendo ser construído numa placa de circuito impresso de dimensões reduzidíssimas, o receptor AM a FET apresenta um fascínio: a simplicidade. Basta correr os olhos pelo esquema (Figura 1) para perceber isso. Como o detetor é regenerativo, nenhum alinhamento é necessário, e apenas um simples ajuste para otimizar a performance deve ser feito após a conclusão da montagem para que o rádio esteja pronto para uso.

O Receptor cobre toda a faixa de ondas médias e tem uma saída para fone de ouvido a cristal de alta impedância (100 kohm) ou para amplificador.

O Circuito

Q1 é um transistor a efeito de campo, e esse tipo de componente é bem diferente dos tradicionais transistores bipolares. Um transistor bipolar tem uma grande resistência entre o coletor e emissor que pode ser alterada com a aplicação de algum sinal na base. Um FET, porém, tem uma impedância relativamente baixa entre dreno e fonte que só é alterada com a aplicação de um sinal reverso no terminal porta (gate)

No circuito, Q1 funciona como uma parte do divisor de tensão que oferece polarização de base para o transistor Q2, bipolar e NPN. A polarização do FET se deve à ação de R2 e C2; qualquer corrente que flua por R2 polarizará a porta reversamente em relação à fonte.

A bobina L1, que envolve uma barra de ferrite, atua como uma antena, e o sinal recebido é aplicado à porta de Q1.

Diagrama completo do receptor AM a FE

Detalhe de construção das bobinas

teremos um sinal de rádio freqüência com a envoltória. O capacitor C3 trata de desacoplar o sinal de r.f.

O transistor Q2 forma um estágio amplificador de áudio de alto ganho, com um resistor de coletor relativamente alto (6,4 kOhm): valor próprio para o casamento com o fone de ouvido. Caso se deseje acoplar a saída de Q2 a outro estágio amplificador, o valor R4 pode ser aumentado. Mas, na configuração da figura 1, a única saída plausível é para um fone de ouvido, qualquer outra consumiria mais potência do que o circuito pode fornecer.

A antena de ferrite é caseira. É uma barra cilíndrica de 102 mm × 6 mm. A figura 2 mostra, com detalhes, a constituição das bobinas na barra de ferrite. Note que a bobina L2 é formada apenas por uma volta (um loop) de fio em torno da barra de ferrite. A bobina L1 consiste de 65 voltas de fio 32 s.w.g. esmaltado. Esse enrolamento é preso por dois tubos isoladores para garantia de fixação.

O circuito pode ser acomodado numa caixa de fibra de vidro ou outro material isolante, já que uma caixa metálica (de alumínio, por exemplo) serviria de blindagem para a antena, ou seja, ela não receberia sinal algum.

Observe na figura 3 uma sugestão para a distribuição de componentes numa placa de circuito impresso. Note que não há controle de volume, pois a saída é para fone de ouvido.

A foto do protótipo montado no laboratório da Nova Eletrônica se encontra na figura 4.

A disposição de transistores pode ser observada na figura 5.

Ajustes

Uma vez completada a fase de construção do circuito, a única coisa a fazer é ajustar a bobina de reação (L2) para o melhor ponto de trabalho. Com o fone de ouvido conectado à saída e o receptor ligado, o procedimento de ajuste é o seguinte: com uma das mãos vá variando o valor de C1 e sintonizando várias estações e com a outra mão vá alterando a posição da espira que compõe a bobina L2 na barra de ferrite. Haverá um ponto em que a intensidade do som e a separação das estações atingem um nível ótimo de trabalho. O ideal seria fixar L2 nessa posição e fechar o aparelho.

Se a intensidade de som for muito baixa, deve-se inverter a posição da bobina L2 (já que uma defasagem de 180° faz com que L2 atue como um elo de realimentação negativa).

Relação de Componentes

Resistores

R1 - 4,7 kOhm

R2 - 12 kOhm

R3 - 2,7 MOhms

R4 - 6,8 kOhm Todos de 1/4 w e 10%

Capacitores

C1 - 250 pF variável

C2 - 4,7 uF/16 V

C3 - 0,01 uF

 $C4 - 2,2 \, uF/16 \, V$

Transistores

Q1 - 2N 3819 (FET canal N)

Q2 - BC 167C

Diversos

S1 — chave liga-desliga monopolar

B1 - bateria de 9 V

Detalhes de construção das bobinas - Barra cilíndrica de ferrite de 103 mm de altura e 1/4 de polegada de diâmetro. 32 a.w.g. esmaltado para a confecção de L1.

Indicador Acústico de Falta de Tensão de Rede.

Luca Bulio

Em certas ocasiões a falta de tensão de rede tem consequências até desastrosas, como num hospital onde os instrumentos de cura são cada vez mais eletronizados. Nessas situações seria extremamente útil um indicador acústico que dispare sempre quando houver falta de tensão de rede.

Em casa o indicador também pode ser útil, pois nem sempre se toma conhecimento imediato da interrupção do fornecimento da rede.

Neste artigo mostramos um circuito extremamente simples de um indicador acústico para esses fins e que pode aproveitar o transformador de filamento de algum aparelho a válvulas encostado.

A figura 1 mostra o esquema elétrico do dispositivo, nele se nota a presença da bateria B1, que é constantemente carregada pelo transformador via D1 e R1. O transformador T1 tem seu primário ligado à tensão alternada da rede e fornece no secundário uma tensão de 6,3 volts. Qualquer transformador adaptado a um aparelho a válvulas pode ser usado no indicador, já que a intensidade de corrente drenada pelo circuito é baixíssima.

A tensão presente no secundário é retificada pelo diodo D1 e transmitida por R1 à bateria, recarregando-a continuamente para que esteja sempre em perfeitas condições de funcionamento.

Tal bateria pode ser constituída de duas células de níquel-cádmio de 1,25 volts. É possível usar qualquer bateria com um máximo de tensão de 4,5 volts; acima deste valor os resistores devem ser recalculados. Para uma bateria de carbono e zinco ou manganês, por exemplo, o valor de R1 deve ser de 47000 Ohms.

O gerador do sinal de alarme consiste de um multivibrador astável a dois transistores acionado por um retificador controlado de silício (SCR). A porta (gate) do SCR é polarizada, normalmente, com uma tensão bem abai-

xo da necessária para fazer com que o SCR conduza, graças aos valores bem altos de R3 e R4. A tensão mantida pelo capacitor C1 (por volta de 1 volt) só existe se houver tensão de rede. Na ausência dessa tensão o capacitor se descarrega e a bateria, que passa a agir sozinha, dispara o SCR.

Uma vez disparado o SCR, o ponto A cai ao nível de terra e o multivibrador astável estará acionado. A malha C1 e R3 é uma malha de atraso, para que, no caso de interrupções brevissimas no fornecimento da rede, o alarme não dispare. Caso o capacitor C1 seja retido do circuito, qualquer falha instantânea será acusada pelo alarme.

Durante o funcionamento normal, isto é, quando a tensão da rede tem seu valor Nominal, o circuito absorve 1 mA, ou menos. Essa corrente é usada para a recarga da bateria. Se, no entanto, a tensão da rede vier a faltar, o consumo sobe para 15 mA, corrente drenada pelo multivibrador astável.

A parte da lâmpada é opcional e foi colocada no circuito como um controle de estado da bateria. Caso o leitor queira usar um LED, basta substituir a lâmpada por um ramo composto de um resistor de 33 Ohms e de um LED FLV 110.

Detalhes de Construção

O protótipo do indicador acústico de falta de tensão pode ser visto na foto da figura 2, protótipo este que foi montado e testado no laboratório da Nova Eletrônica.

A placa de circuito impresso vista pelo lado cobreado e pelo lado dos componentes está na figura 3.

O transformador T1 pode vir montado numa pequena caixa de plástico, como as usadas para fitas de máquina de escrever ou para fitas cinematográficas.

Na parte frontal da caixa que conterá o circuito, é conveniente colocar o comutador de ascenção S1; na parte de trás pode ser fixado o alto-falante. A chapa onde estiver fixado o altofalante deve ser perfurada (uns dez furos de 2 mm de diâmetro) para facilitar a transmissão de ondas sonoras pelo ar.

A lâmpada ou o led também podem ser instalados no painel frontal, fixados com qualquer material adesivo

num orificio de dimensão compatível com a dos componentes.

O capacitor eletrolítico C1, que determina a constante de tempo de retardo, não pode, de forma alguma, ter polarização reversa no circuito. O polo positivo vai conectado ao polo negativo da bateria e o polo negativo do capacitor vai ligado à junção de R2 com R3.

O valor do capacitor C2, que está fixado no circuito em 0,05 µF, pode ser mudado a critério do montador. De acordo com C2 o sinal de saída terá maior ou menor freqüência.

Verificação e Uso do circuito

Uma vez completada e conferida a montagem, basta conectar o primário do transformador à rede com a chave \$1 na posição central (desligada).

Antes de qualquer operação, confira a carga da bateria colocando a chave na posição Lâmpada; caso ela não acenda, algo aconteceu com a bateria e a primeira providência a tomar é retirar a bateria da caixa e testá-la com um multimetro. Se tudo estiver normal com a bateria, a chave S1 pode ser colocada na posição de Alarme. Caso o primário do transformador estiver alimentado pela rede, nenhum som deve ser ouvido do alto-falante. Para fins de teste, corte propositalmente a alimentação do primário e verifique se o multivibrador astável está oscilando. Caso o alarme não dispare, há algo de errado com o circuito.

Neste momento, é necessário citar um particular. Como sabemos, um retificador controlado de silício não permite a passagem de corrente pelos terminais anodo e catodo enquanto um pulso não for aplicado entre porta (gate) e catodo. Porém, uma vez comutado, só há duas maneiras de cortá-lo novamente. Uma é cortando a fonte de polarização de anodo e a outra é invertendo a polaridade dessa fonte.

Em conseqüência, uma vez acionado o alarme, a única maneira de interrompê-lo é comutando a chave de ascenção para a posição de Desligado (o que equivale a interromper a fonte de tensão). Essa característica é interessante para garantir o percebimento de alguma pessoa da ausência do fornecimento de energia elétrica.

Relação de Componentes

B1 — Duas baterias de níquel-cádmio de 1,25 volts

C1 — Capacitor eletrolítico de 100 µF/10 V

C2 — Capacitor cerâmico a disco de 0,05 µF

D1/2 — diodos tipo IN4001

I1 — Lâmpada miniatura de 2,5 a 3,0 volts

Q1 — Transistor tipo BC557

Q2 — Transistor tipo BC237

R1 - 680 Ohm - 0,25 w

R2 — 3,3 kOhm - 0,25 w

R3 — 10 kOhm - 0,25 w

R4 - 10 kOhm - 0,25 w

R5 - 10 kOhm - 0,25 w

R6 — 1 kOhm - 0,25 w R7 — 100 Ohm - 0,25 w

SCR - TIC 47

Altofalante - miniatura de 8 Ohm S1 — comutador de três posições

Copyright Onda Quad

do PRARCHETA PROJETISTA

Porta externa dobra velocidade do contador

Jeffrey Mattox USAF, Bedford, Mass.

O ritmo de operação de um contador bidirecional convencional, síncrono, binário ou decádico, pode ser dobrado, sem que a freqüência de clock seja alterada. Uma única porta adicional faz o serviço, tanto para a contagem progressiva como para a regressiva.

A possibilidade de se dobrar o ritmo de contagem é muito útil em certas aplicações onde o contador deve avançar com velocidade dobrada, como , por exemplo, quando se quer acelerar os dígitos, para atingir um determinado ponto. Nada impede, também, que a porta externa seja utilizada para reduzir o ritmo pela metade, dependendo do nível lógico do sinal de controle. Tanto o contador decádico (74192, por exemplo), como o binário (74193, por exemplo) possuem duas linhas de clock: uma para cada modalidade de contagem, progressiva ou regressiva; a entrada de clock que não e utilizada fica geralmente presa à linha de alimentação. Nos dois tipos de contador, existe um flip-flop para cada bit de saída.

Detectanto o bit menos significativo de saída do contador e baixando o nível da entrada de clock alternado no momento apropriado, pode-se manter esse bit estático, enquanto o flip-flop do segundo contador recebe todos os pulsos primários de clock. Além disso, o estado do bit menos significativo trava as entradas de clock alternado dos outros flip-flops.. No contador progressivo, o bit menos significativo deve ter nível "1" e no regressivo, nível "0"

O circuito (a) mostra um contador binário tipo 74193 ligado na modalidade progressiva. Sua entrada de clock alternado, neste caso a entrada de contagem regressiva (CD), é controlada por uma porta NE; assim que a entrada DOBRO vai para "1", aquela entrada é levada para "0", logo que o bit menos significativo vá para "1" também. Esse bit permanece nesse estado enquanto a entrada DOBRO permanecer em "1". Tudo se passa, então, como se a freqüência de contagem tivesse dobrado.

O circuito (b) exemplifica o caso da modalidade regressiva, que é semelhante ao anterior, mas utiliza uma porta NOU e um sinal DOBRO invertido. As saídas de transporte do contador (CARRY e BORROW) operam normalmente, a fim de permitir que a contagem seja transmitida ao estágio seguinte.

Trio de Cls converte o código 7 segmentos para decimal

James Southway McDonnel Douglas Astronautics Co.

Um dispositivo que converte o código 7 segmentos de um display para o código decimal pode ser implementado com três circuitos integrados com sua saída podendo ser adaptada a qualquer tipo de indicador a válvula de cátodo quente.

O pequeno número de Cls é possível graças à combinação da lógica da decodificação binária-decimal com algumas portas externas e a ligação direta das saídas do decodificador ao display. Em

outras palavras, o pino 1 do decodificador fornece o sinal diretamente para o pino 2 do display, o pino 4 fornece o sinal para o pino 9 e assim por diante. O integrado decodificador é um 74141 ou equivalente; as portas externas estão contidas no integrado 7420, duas portas NE de quatro entradas, e 4 portas ou exclusivo no integrado 7486. Outra possibilidade é usar uma das portas ou exclusivo como inversor e uma das duas portas NE do integrado 7420 como uma porta NE de duas entradas.

Conversor - três integrados TTL convertem o código 7 segmentos para o decimal.

Amplificador quádruplo NORTON permite construir um gerador de funções de baixo custo

P. Vicek
Orbit Control Ltd.

Um versátil gerador de funções que minimiza o número de componentes do circuito, com consequente diminuição do custo, e nóide para mínima distorção pode ser construído com gasto total menor que cem cruzeiros.

O resistor R1 pode ser us componentes do circuito, com consequente diminuição do custo, e nóide para mínima distorção.

Um circuito similar pode

Apenas um único amplificador Norton é necessário para obter um gerador senoidal (observe a figura A). Quando o resistor R1 e o capacitor C1 são omitidos do circuito, a configuração resultante é o padrão para um gerador de onda quadrada baseada no amplificador Norton.

A adição de um capacitor de integração C1 ao gerador de onda quadrada produz uma senoide na saída com pequena distorção. O resistor R1 pode ser usado para ajustar o nível de saída da senóide para mínima distorção.

Um circuito similar pode ser usado para conectar uma saida senoidal a um gerador de sinais quadrados e triangulares construído com dois amplificadores Norton. Como mostra a figura B, a saída triangular funciona como a entrada para o gerador senoidal.

Para os valores especificados dos componentes a freqüência de saída gira em torno de 700 Hz. O potenciômetro R2 serve como ajuste de simetria tanto para ondas quadradas quanto para triangulares.

O quarto amplificador do integrado 3900 pode ser usado como excitador para as três saídas do gerador.

SUGADOR DE SOLDA

Indispensável na remoção de qualquer componente eletrônico. Bico com encaixe, sem rosca, várias opções

SUPORTE P/ PLACA

Mantém firme a placa.

Torna o manuseio da mesma bem mais prático seja na montagem, conserto, experiência, etc.,

DESSOLDADOR

A solução para remoção de circuito integrado e demais componentes. Derrete a solda e faz a sucção.

Fornece tensões fixas e ajustáveis de 1,5 a 12 VDC. Corrente de saida 1 A.

Coloca mais ordem e segurança na bancada. Com esponja para limpeza do bico.

Fura com incrivel rapidez, perfeição e simplicidade placas de circuito impresso.

PESQUISADOR DE SINAIS

O maior quebra-galho do técnico reparador localiza com rapidez, defeitos em rádios de pilha, à válvula, amplifica dor, etc

CORTADOR DE PLACA

A maneira mais simples e econômica de cortar placas de circuito impresso

CANETA P/TRAÇAR CIRCUITOS **IMPRESSOS**

INJETOR DE SINAIS

De tamanho reduzido, indispensável ao têcnico, para consertos de rádio, tv, amplificador, etc.

CETEKIT

Conjunto completo p/ confecção e montagem de circuito impresso

SOLICITE GRATIS: Catálogo e Tabela de Resistências (Plastificado)

BARAO DE DUPRAT. 312 FUN AMARO S. PAULO CEP (TELEFONES. 548-4262 e 522 1384 RUA BARAO DE DUPRAT STO. AMARO NOME

ENDER..... BAIRRO.....CEP ...ESTADO.....

Desenho inédito de transformador reduz custo e tamanho de amplificador de isolação híbrido

Bill Olschewski, Burr-Brown Research Corp.

Uma montagem toroidal, compatível com circuitos híbridos, oferece melhor estabilidade a longo prazo, boa resposta em freqüência e características superiores de ruptura.

Sempre que os engenheiros que necessitam ou utilizam amplificadores de isolação estão reunidos e conversam sobre os aperfeiçoamentos mais desejados por todos, os três principais - custo, tamanho e desempenho - são infalivelmente mencionados. O fabricante de equipamentos industriais ou médicos geralmente tem que escolher entre adquirir amplificadores de isolação ou confeccioná-los por sua conta; o custo é o principal critério que influencia tal decisão, apesar de existirem vários outros. Citando um exemplo, temos o projetista de sistemas analógicos de múltiplos canais, que normalmente topa com limitações de espaço nos circuitos impressos, já que quase sempre procura concentrar um grande número de canais de dados numa só placa; o fabricante de equipamento médico, por sua vez, não está tão preocupado com espaço, mas com tensões de ruptura bastante elevadas e fugas reduzidas, a um custo razoável.

Com o objetivo de atender às mais variadas necessidades, tanto do exemplo visto como de uma infinidade de outros usuários em potencial, a Burr-Brown desenvolveu um novo tipo de amplificador de isolação, radicalmente diferente em seu desenho e técnicas de fabricação, batizado como BB3656. Entre as principais características de projeto e benefícios para os usuários, destacam-se:

Um único transformador, compatível com sistemas híbridos, em conjunto com um circuito que faz o acoplamento de sinal e alimentação através da barreira de isolação, resultando no amplificador de isolação de menores dimen-

- sões e custo, considerando que dispõe de sua própria fonte de entrada isolada.
- Um circuito integrado cerâmico de película espessa, que emprega o transformador para proporcionar estabilidade a longo prazo e confiabilidade a um baixo custo.
- Isolador de três entradas, responsável por tensões de ruptura nunca antes obtidas e por uma grande versatilidade.
- Razão de chaveamento de 750 kHz, que resulta na melhor resposta em freqüência para pequenos sinais, entre todos os amplificadores de isolação, e reduz os requisitos para filtragem externa.
- Uma nova abordagem diferencial que emprega dois demoduladores, um para realimentação para trás (Feedback) e outro para realimentação para frente (Feedforward), produzindo precisões comparáveis às de dispositivos acoplados a transformador bem mais dispendiosos.

A figura 1 mostra o diagrama funcional do 3656 em sua configuração não-inversora e de ganho unitário. O transformador T1, de indução elevada, é excitado pelo gerador de pulsos, que por meio de uma chave eletrônica aplica alternadamente um circuito aberto e a tensão de C1 sobre o enrolamento W1, da forma ilustrada na figura 2a. Quando a tensão (v) é aplicada ao enrolamento, a corrente (i) na indutância (L) do enrolamento cresce de acordo com a fórmula (figura 2b):

 $\frac{di}{dt} = \frac{v}{l}$

Auto-suficiente de nascença — O diagrama funcional de um amplificador de isolação hibrido mostra o transformador T1 bem no centro e um mínimo de componentes externos. Uma razão de chaveamento de 750 kHz resulta numa boa resposta a altas frequências, eliminando componentes adicionais de filtragem.

As resistências e capacitâncias do circuito tem apenas efeitos secundários e podem ser ignoradas, neste caso.

No instante em que a chave "abre", a tensão sobre o transformador é invertida e alcança o valor necessário para manter a corrente em seu nível original. Tal efeito tem o nome de "retorno" (flyback).

À tensão de flyback ou retorno (VF) aparece em todos os enrolamentos, sob a forma mostrada na figura 2c; sua amplitude é proporcional à corrente instantânea e à resistência equivalente (Rp) em paralelo à indutância do transformador:

VF = iRp
A magnitude de VF pode ser variada pela alteração da resistência em paralelo com qualquer dos enrolamentos do transformador, resultando numa forma de modulação em amplitude. Essa tarefa é executada pelo modulador por retorno, controlado pelo operacional A1 de entrada. A alimentação para esse operacional é obtida pela retificação do pulso energizador positivo que surge em W2; a retificação é efetuada por D1, e a corrente continua resultante é suavizada por C2, dando origem à tensão positiva de alimentação. De forma semelhante, a alimentação negativa é obtida através de D3 e C3, a partir do enrolamento W4. Caso o amplificador vá ser usado como um isolador de três entradas, é possível obter tensões de alimentação isoladas para o operacional A2 de saída, acrescentando capacitores de filtro aos circuitos W3-D2 e W5-D4.

Bem no coração do amplificador de isolação existem dois moduladores por retorno idênticos, ambos encarregados de comparar o sinal de retorno de ascendência positiva, no respectivo enrolamento, com a amplitude do pulso energizador negativo. Na modulação ou carga mínima, produzem um sinal de saída positivo; com a elevação da modulação, o sinal de saída do demoduldor vai diminuindo, até tornar-se negativo, à máxima modulação.

O demodulador 1 é usado num sistema de laço fecha-

do, tendo sua saída ligada à entrada inversora de A1, configuração que leva esse operacional a controlar o nível do modulador, até que a saída do demod. 1 iguale-se ao sinal presente na entrada não-inversora de A1, fazendo VFB = VE. Da mesma forma, o demod. 2 produz saída igual, originando VFF = Ve. Prevenindo a sobrecarga do demod. 2, incluiu-se o operacional A2 para protegê-lo, ligado como um amplifi-

Modulação por retorno (ou flybeck) — A tensão de alimentação pulsante é aplicada ao enrolamento do transformador (a). Como resultado dessa tensão a corrente tem o comportamento mostrado em (b); sempre que a chave é aberta, ocorre o retorno que aparece em (c). Os pulsos positivos retificados fornecem a potência necessária para energizar o operacional de entrada (A₁), que controla o modulador por retorno.

Híbridos e transformadores

Até há pouco tempo, evitava-se incluir transformadores e indutores nos circuitos integrados híbridos. Os poucos fabricados com tais componentes tinham produção difícil e dispendiosa, devido a várias dificuldades relacionadas com tamanho, superfícies inadequadas para montagem e interligações fios/substrato. Quando a Burr-Brown resolveu ingressar no promissor mercado de amplificadores de isolação e conversores CC/CC isolados, dotados de circuitos híbridos de baixo custo, acoplados por transformador, decidiu que era necessário eliminar tais problemas. Como resultado, surgiu uma nova abordagem de transformadores toroidais, montados so-

bre um substrato híbrido, que realmente acabou com os problemas de fabricação.

No quadro abaixo, temos uma comparação por etapas entre a nova técnica e a convencional (que é raramente usada). Atualmente, o transformador compatível com circuitos híbridos, apesar de apresentar um bom desempenho, ainda não alcançou o mesmo rendimento de um transformador convencional; sua capacitância de acoplamento já é bem reduzida e sua precisão, excelente, mas as perdas resistivas ainda são elevadas e sua indutância deixa um pouco a desejar.

transformadores conversionals	transformadores compativels c/ hibridos
Para ser montado num encapsulamento híbrido, o pequeno transformador toroidal precisa não só ser enrolado a mão, como ter seus fios precisamente colocados e revestidos.	As espiras são feitas por meio de um enrolador manual ou automático, reduzindo a mão de obra em 50 a 90%.
A superfície de montagem de um transformador toroidal é formada pelo fio magnético, causando problemas de tolerância e uniformidade.	A superfície plana do próprio toróide é utilizada para a montagem, conferindo-lhe um elevado grau de uniformidade.
O fio magnético ligado ao substrato deve manter o núcleo em posição e suportar certos esforços.	O núcleo é preso diretamente ao substrato, resultando numa melhor adesão e integridade para todo o dispositivo.
O fio magnético é de difícil posicionamento, para soldagem em pequenos pontos. A dificulda- de relacionada com as conexões e substrato necessário cresce com o número de ligações.	As conexões são feitas por meio de junções e o número delas não afeta a complexidade ou o custo.
O fio precisa ser mantido em posição, enquanto é soldado.	Não requerem soldagens.

cador de ganho unitário. Temos, como resultado, $V_S = V_{FF} = V_e$.

A precisão da equação de transferência depende basicamente da estabilidade e rastreamento dos dois operacionais e da perfeita combinação dos componentes dos demoduladores. Por meio de operacionais de alto desempenho e componentes "casados" numa precisão de 0,5%, mais um coeficiente de temperatura de 25 ppm/°C, obtém-se uma excelente acuidade em ganhos elevados. A não-linearidade ocasionada por diferenças nas saídas dos demoduladores é muito pequena, graças à possibilidade que a tecnologia de circuitos híbridos, com película espessa, oferece, permitindo um elevado grau de obtenção de "casamento" entre resistores e capacitâncias espúrias, em linhas de produção.

Isolacionismo — Uma característica dominante desse amplificador de isolação integrado é o seu transformador compatível que, em conjunto com a técnica de modulação por rejorno, é utilizado para se obter isolação entre sinal e alimentação por meio de um único transformador.

Comparando o passado com o presente

Na tabela de comparação entre amplificadores de isolação são confrontadas características e especificações do novo amplificador de isolação com as de outros já existentes (é preciso observar, aqui, que os amplificadores de isolação anteriores eram montados como circuitos impressos e encapsulados em módulos plásticos). Os modelos de modulação em amplitude foram os primeiros a aparecer, seguidos pelos de modulação por largura de pulso, em 1973, e pelos ópticos, em 1976.

Nota-se que o amplificador de transformador único e modulação por retorno apresenta um bom desempenho em vários pontos. Sua não-linearidade está ao nível dos outros e excede a dos tipos modulados em amplitude, de baixo custo. Sua isolação para pulsos é maior que a de qualquer outro amplificador, satisfazendo os requisitos de proteção em aplicações médicas, contra os pulsos defibriladores.

Além disso, a capacitância de sua barreira de isolação é a menor entre todos os dispositivos acoplados por transformador disponíveis atualmente - uma característica muito desejada em aplicações médicas, onde as fugas da alimentação para o paciente devem ser mantidas no mínimo possívei. Os novos amplificadores de isolação com um só transformador mantém a fuga de corrente abaixo de 0,5 µA, um valor 20 vezes menor que o exigido por lei, no EUA.

Outra grande vantagem da baixa capacitância da barreira está no fato de se poder manter a degradação da rejeição no mínimo, em aplicações onde a impedância da fonte de sinal é elevada e o amplificador de isolação não conta com um estágio de entrada balanceado. A própria rejeição

esboco do

junção a ponto

na modalidade de isolação do novo dispositivo é comparável à dos amplificadores mais antigos.

Mais um ponto a favor do novo amplificador é a sua resposta em freqüência para pequenos sinais, melhor que a de qualquer outro dispositivo equivalente, ultrapassando até os acoplados opticamente. Além de tudo, o encapsulamento cerâmico de 20 pinos em que é abrigado é o menor existente, medindo apenas $28 \times 28 \times 7$ mm.

A inovação que tornou possível, economicamente, a montagem de um amplificador de isolação sobre um bloco cerâmico híbrido foi o novo transformador compatível com circuitos híbridos (veja o quadro "Híbridos e transformadores"). A figura 3, uma reprodução do amplificador de isolação vista por cima, sem a tampa do invólucro, mostra a localização do transformador, do restante dos componentes (operacionais, resistores, capacitores e diodos) e dos pinos revestidos a ouro. A montagem toroidal do transformador domina o desenho, bem no centro; suas espiras são de ouro e não de fio comum, uma mudança radical nos sistemas até então vistos. Para ilustrar um pouco mais os detalhes de construção do transformador, a figura 4a fornece uma visão de topo, em transparência, de sua estrutura, enquanto a figura 4b mostra uma visão lateral, em corte.

Fabricação

A confecção do amplificador de isolação começa pela deposição de condutores de ouro sobre o substrato cerâmico, de modo a formar o traçado do cicuito e das interconexões, e também o traçado dos condutores do transformador, que é mostrado na fig. 4a. Os condutores são então "queimados", de acordo com o processo de película espessa. A camada isolante de vidro também é depositada e depois "queimada" pela tecnologia da película espessa. Mais alguns processos e o substrato está pronto, contendo 20 resistores tipo cermete, ajustados a laser, além de 19 pinos revestidos a ouro, soldados em seus lugares.

O primeiro passo, na linha de montagem do circuito híbrido, é a fixação do toróide revestido de Parilene à camada isolante de vidro. Em seguida, são fixados aos substratos todos os demais componentes. As conexões entre o integrado e os condutores são feitas por meio de fios de ouro de 25 µm, e as espiras do transformador são completadas com fios de 50 µm, também de ouro, conforme a distribuição vista na fig. 4a.

Depois, o dispositivo é ajustado por meio de raios laser, testado e revestido com uma camada isolante de Parilene C, que é um revestimento de alta qualidade, exibindo uma rigidez dielétrica de 5,6 kV/µm. Ele se apresenta em for-

Vistas do transformador — Uma visão de topo (a) e uma lateral, em corte (b), fornecem uma boa idéia da construção toroidal, que proporciona acoplamento do sinal e da alimentação através da barreira de isolação do amplificador. As espiras são feitas com fio de ouro, ao invés do fio convencional, sendo conectadas a um sistema de ligação, também de ouro, que recobre o substrato de cerâmica.

O que vem a ser o amplificador de isolação?

Os amplificadores de isolação lembram os operacionais, mas são projetados para apresentarem uma descontinuidade galvânica entre seus pinos de entrada e os de saída. Tal descontinuidade, denominada barreira de isolação, deve exibir uma elevada tensão de ruptura, fugas reduzidas em CC (barreira com resistência elevada) e fugas reduzidas em CA (barreira com capacitância reduzida).

A barreira de isolação diferencia o amplificador de isolação dos amplificadores operacionais de instrumentação, em custo, complexidade e aplicação. Os chamados amplificadores de isolação de três portas possuem uma barreira adicional entre as ligações de alimentação e de sinal, o que aumenta sua versatilidade, pois permite que o projetista ligue a alimentação em comum tanto com a entrada como com a saída. Em alguns casos, pode ser vantajoso isolar a fonte em relação à entrada ou à saída, eliminando assim causas de falhas que surgem num sistema.

Os amplificadores de isolação se prestam, em geral, a funções impossíveis de serem executadas com os operacionais ou de instrumentação:

- Detecção de pequenos sinais na presença de tensões elevadas (maiores de 10 V) ou tensões desconhecidas de modo comum.
- Eliminação completa dos laços de terra.
- Proteção de pacientes sob monitoração médica ou sob medições de diagnóstico.

Logo abaixo temos uma comparação dos três tipos básicos de amplificadores integrados. O amplificador de isolação, além de oferecer a característica implícita em seu nome, eleva a precisão, graças à sua entrada flutuante. Em contraste com o amplificador de instrumentação, ele não só elimina os erros devidos aos laços de terra, mas reduz os erros do sistema de forma global. Isto porque sua razão de rejeição na modalidade de isolação é, em geral, duas vezes maior que a rejeição de modo comum de um amplificador de instrumentação.

TIPO	AMPLIFICADOR OPERACIONAL	AMPLIFICADOR DE INSTRUMENTAÇÃO	AMPLIFICADOR DE ISOLAÇÃO
símbolo			
configuração de alimentação	realimentação definida pelo projetista	realimentação ganho ajustável dentro de limites fixos	realimentação ganho ajustável dentro de limites fixos
aplicação básica	elemento c/ ganho p/ aplicação geral buffer computadores analógicos	amplificadores analógicos sensores, de alta precisão, sempre que os potenciais de modo comum são menores que a tensão de alimentação	amplificadores analógicos sensores, de alt precisão, para potenciais de modo comun maiores que a tensão de alimentação isoladores analógicos de segurança eliminação de laços de terra
maiores falhas	erros de <i>offset</i> : ruído e de modo comum independentes do ganho	offset e ruído de entrada e saida; erro total depende do ganho; um só conjunto de especificações de modo comum	offset e ruído de entráda e saída; erros de isolação e de modo comum separados, exceto para dispositivos de entrada única

ma de pó, antes de ser aplicado; sofrendo evaporação numa câmara de vácuo, pode então ser depositado, sob a forma de vapor. Várias firmas aeroespaciais tem utilizado esse polímero na proteção de placas de circuito impresso, em ambientes severos. Até a NASA, atualmente, anda adquirindo circuitos híbridos revestidos com esse material, como proteção contra impacto de partículas. no espaço.

A integridade do transformador sob condições de tensão elevada é assegurada por diversas isolações. A camada vítrea que recobre os condutores e o revestimento de Parilene, sobre o núcleo toroidal, apresentam uma rigidez dielétrica mínima de 8 kV; a camada final de Parilene C, por sua vez, tem 4 kV, no mínimo, de rigidez dielétrica. Em conjunto, todas as camadas isolantes alcançam uma tensão mínima de ruptura de 8 kV.

Finalmente, o encapsulamento é selado pela aplicação de uma "tampa" cerâmica sobre o dispositivo, sob calor e pressão, numa atmosfera de nitrogênio. O calor encarregase de "curar" um anel de epóxi que circunda a tampa cerâmica, formando uma vedação completamente estanque.

Aplicações

No isolador de duas portas e ganho unitário da fig. 1,

são necessários apenas um capacitor externo de filtragem (C1) e uma fonte entre \pm 8 e \pm 15 volts. Com uma alimentação de \pm 15 V e ganho unitário, esse circuito proporciona uma faixa dinâmica de tensões de entrada e saída de \pm 5 V. Com mais dois resistores, pode-se programar A2 para um ganho não-inversor igual a 2, obtendo-se então uma faixa dinâmica mínima de tensões de saída de \pm 10 V.

Na figura 5 vemos o 3656 ligado como um isolador de três portas e ganho unitário. Todas as fontes isoladas são produzidas internamente, as quais são filtradas pelos capacitores C2 e C3, para alimentação do operacional A2. Se houver disponibilidade de uma fonte dupla para a porta de saída, esses capacitores podem ser eliminados. A faixa dinâmica de tensões de entrada e saída é de ± 5 V, caso as fontes sejam iguais à da figura.

Como resultado de uma exigência cada vez maior do público e de um crescente envolvimento do governo americano em torno da segurança de pacientes, os amplificadores de isolação tornaram-se uma necessidade em muitos aparelhos monitores de aplicação médica. O 3656 presta-se perfeitamente a essa função, devido ao seu baixo ruído, baixa capacitância e alta tensão de ruptura de sua isolação.

O amplificador para eletrocardiógrafos da figura 6, por

O amplificador em ação — O CI 3656, aqui representado em sua configuração de ganho unitário, apresenta uma faixa dinâmica de entrada e saida de 5 V, com alimentação produzida internamente. Se for utilizada alimentação externa de dupla polaridade, pode-se eliminar os capacitores C2 e C3.

Aplicação médica — Devido à sua elevada isolação, o 3656 é ideal como amplificador para eletrocardiógrafos, pois pode suportar aplica ções incorretas de pulsos de defribilação, enquanto o paciente está sendo monitorado. Por outro lado, os pulsos cardiacos são amplificados com precisão garantida por uma resposta em freqüência de CC a 3 kHz.

Controle industrial — A transmissão de sináis pela modalidade de corrente, frequentemente usada nos laços industriais de controle, pode ser convenientemente implementada com o 3656, neste caso utilizado como um isolador de três portas, a fim de controlar o transistor fornecedor de corrente (Q1). O circuito é capaz de converter entradas de 1 ou 5 V em sinais de 4 ou 20 mA.

Comparação entre amplificadores de isolação						
metodo de isolação	transformador único	transformador duplo	transformador duplo	optico diferencial		
encapsulamento	cerâmico	plástico	plástico	cerâmico		
modulação	por retorno	por amplitude	por largura de pulso	por intensidade de luz		
não linearidade, especif. máx. (%)	0,05 a 0,1	0,03 a 0,3	0,005 a 0,025	0,05 a 0,2		
tensão de isolação p/ pulsos (kV)	8	até 7,5	até 5	5		
capacitância da barreira de isolação (pF)	6	20 a 100	16	1,8		
rejeição na modalidade de isolação (dB), a 60 Hz e ganho = 10	125	115 a 130	140 a 150	120		
resposta em freqüência p/ pequenos sinais (kHz)	35	1 a 2,5	1,5 a 2,5	. 15		
tamanho (cm ³)	5,4	23 a 164	91	7.2		

exemplo, foi implementado tendo um estágio de entrada do tipo instrumentação, pela utilização de um operacional adicional de baixa potência e baixo ruído. Os resistores R3 e R4 ajustam o ganho não-inversor do operacional interno em 10, enquanto R1 e R2 cuidam do "casamento" das entradas do operacional externo, conforme a prática normal de se

projetar amplificadores de instrumentação.

Os resistores R5 e R7 formam uma proteção contra os picos dos pulsos de defibrilação, que podem ser inadvertidamente aplicados à entrada, caso seja empregado um defibrilador para restaurar a função cardíaca do paciente, enquanto está sendo monitorado. R6 impõe a corrente quiescente de A1, e R8 equaliza a carga do demodulador de saída com a do demodulador de entrada, para máxima precisão no ganho. C2 providencia a filtragem da alimentação negativa interna para o operacional de saída: com a inclusão de uma fonte de ± 15 V, esse capacitor pode ser eliminado.

O circuito amplifica pulsações cardíacas com uma resposta em fregüência de CC a 3 kHz. Por intermédio de um filtro passa-banda, instalado entre o amplificador e o moni-

tor, é possível selecionar a faixa desejada.

Para a eletroencefalografia, ou monitoração de ondas cerebrais, onde não são requeridas as proteções contra defibriladores, elimina-se R5 e R7, conseguindo-se menor ruido. No entanto, dependendo da banda de frequência a ser monitorada, o ganho deve ser elevado, já que as ondas do cérebro tem menor amplitude que as do coração. Isto é facilmente feito com uma rede RC série em paralelo com R1 e R4. Para se observar, com um ganho de 200, as ondas alfa e

téta, por exemplo, que cobrem a faixa de 4 a 13 Hz, deve-se utilizar dois resistores de 10 quilohms e dois capacitores de 10 µF.

Laços industriais de controle

A transmissão analógica de sinais em circuitos industriais de controle é efetuada, normalmente, com laços de 4 a 20 mA, onde 4 mA representa o "zero" ou quiescente, e 20 mA, o sinal máximo. A transmissão de sinais pela modalidade de corrente elimina imprecisões causadas pelas atenuações dos cabos, barreiras intrinsecas de segurança e sensores mútiplos. A característica do zero deslocado, inerente à faixa de 4 a 20 mA, torna também simples o reconhecimento de condições anormais de operação, tais como falta de alimentação ou circuitos abertos. Se a corrente transmitida não cair entre 4 e 20 mA, sabe-se que uma condição de erro está implantada.

A figura 7 mostra um conversor isolado de 1 a 5 V para 4 a 20 mA, alimentado por uma única fonte de 24 Vcc. A tensão para o amplificador de isolação é ajustada para 15 V, através de um regulador comum, de três terminais. O amplificador de isolação é usado com uma entrada flutuante (três portas), a fim de controlar o transistor Q1 e enviar sua corrente de emissor para o resistor de carga R2. A tensão de realimentação para o operacional interno de saída é obtida no resistor sensor R1, sendo proporcional à corrente de sai-

Estabilidade — Em aplicações onde a estabilidade em CC é importante, como é o caso deste termopar, o amplificador de isolação pode ser suplementado por um operacional de alto desempenho, empregando a fonte interna de alimentação e os capacitores C2 e C3, para filtragem adicional.

geral de atenuação:

Projetar sistemas com elevada rejeição na modalidade de isolação torna-se tarefa simples, se o amplificador dispõe de um estágio de entrada de instrumentação ou balanceado, ou então se conta com um estágio desses adicionado externamente. O estágio frontal balanceado permite que a rejeição especificada seja mantida porque as capacitâncias da barreira entre cada entrada e o comum da saída podem ser facilmente balanceadas. Assim, para se manter a rejeição próxima a 120 dB, com um desbalanceamento de capacitância de 0,5 pF, é possível tolerar um desbalanceamento de impedância de até 50 quilohms da fonte de sinal.

Por outro lado, manter a rejeição plena com um estágio de estrada não-balanceado é mais difícil. As resistências da fonte de sinal, neste caso, não devem superar as centenas de ohms. Se ultrapassarem esse valor, poderá ocorrer uma certa degradação de desempenho, num grau que irá depender do circuito, da capacitância de isolação e das capacitâncias espúrias externas.

Um tipo bastante simples de amplificador de isolação, com um estágio de entrada constituído por um operacional, aparece na figura. A1 representa, naturalmente, o operacional de entrada, enquanto A2 é o estágio de isolação de ganho unitário. A rejeição especificada é obtida quando o sinal de modo comum VCM não produzir sinal de entrada diferencial entre as entradas de A1 e A2 ou em ambos. É o caso que se verifica quando os resistores R2, R4 e R5 e os capacitores C1, C2 e CISO tem valor igual a zero. No entanto, como todos esses componentes tem um certo valor finito

Assım, por exemplo, Se R5=1 quilohm e CISO=6pF, a atenuação calculada a 60 HZ é de 2,2×10⁻⁶ ou 2,2 partes por milhão. Apesar da atenuação de uns poucos ppm parecer normal, é preciso lembrar que 1 ppm equivale a 120 dB(20 log 1 ppm).

Qualquer sinal diferencial que apareça nas entradas de A1, devido à atenuação desigual de V_{CM}, pela rede C1-R2 e sua carga R3, por um lado, e pela rede C2-R4 com a entrada não-inversora de A1 como carga, pelo outro, será amplificado da mesma forma que o sinal de entrada V_e. Desse modo, uma atenuação desigual pode ser diretamente traduzida numa limitação à rejeição na modalidade de isolação, com referência à entrada.

Qualquer atenuação de V_{CM}, ocasionada pelo filtro passabaixas R5-C_{ISO}, com respeito á porção comum de V_{CM} que surge na entrada de A1, vai aparecer na entrada de A2. O ganho para esse sinal é igual a um, independentemente do ganho de A1, o que dá origem a uma degradação da rejeição, com relação à saída.

O sistema de três entradas da figura maximiza a rejeição do 3656 ou de quaisquer outros amplificadores de isolação que exibam entrada desbalanceada. Isso porque CISO torna-se menos crítico com ganhos elevados, enquanto C1 e C2 podem ter valores baixos. Entretanto, o valor de R2 afeta o ganho do circuito.

Se houver preferência por um sistema de duas entradas e o comum da entrada for ligado à junção de R2 e R3 (mudando-se a posição da chave S1), o ganho não será mais afetado por R2, mas a degradação do balanço causado pela rede C1-R2 com a carga R3, em conjunto com a capacitância C_{ISO}, será amplificada por A1 e dará lugar a uma rejeição bem mais pobre, em ganhos maiores que 1.

1

Para uma maior estabilidade em CC, desejada em certas aplicações, como no amplificador para termopar da figura 8, o estágio de entrada do 3656 pode ser suplementado com um operacional de alto desempenho, utilizando-se a

fonte isolada. Seu ganho foi fixado em 1000, através dos resistores R2 e R3. C2 e C3 proporcionam filtragem adicional para a fonte isolada - recomendação feita sempre que A1 drenar mais de 0,1 mA de corrente de alimentação.

Geraldo Coen

A necessidade de interrupções

Uma análise de como o microprocessador trata das

prioridades de suas tarefas.

9ª licão

3030

para principiantes

O microprocessador 8080, a exemplo do antigo 8008, possui um terminal de entrada que pode ser utilizado por circuitos externos para interromper o programa que estiver sendo executado. Essa necessidade provém, geralmente, da ocorrência de eventos de maior prioridade, que exijam a atenção imediata da UCP. A interrupção é útil também para as ocasiões em que o software está sobrecarregado, verificando com frequência eventos de pequena importância. Vamos dar um exemplo: suponha que um dispositivo periférico de baixa velocidade, tal como um teclado, deva ser manipulado sem a intervenção de interrupções. Nesse caso, o programa principal deve deixar sua tarefa principal periodicamente, a fim de verificar se o teclado está enviando novos dados. Tal procedimento pode criar limitações indesejáveis para o software do sistema.

No 8080, a UCP indica o reconhecimento de uma requisição de interrupção ao fazer com que o bit de status INTA vá para "1", durante o ciclo seguinte de busca de instruções (em outras palavras, DBO fica "alto" durante o período STB). No entanto, a UCP não vai reconhecer nenhuma interrupção, a não ser que uma instrução El (enabel interrupt - habilitação de interrupção) tenha sido previamente executada.

Tanto no caso do 8080 como no do 8008, deixa-se a cargo de circuitos externos a inclusão da instrução de interrupção na barra de dados da UCP, no momento apropriado. O 8008 utiliza a função de interrupção para escapar ao estado inicial de imobilidade (STOPPED), que ocorre automaticamente, sempre que se aplica a alimentação. Isto é o que se chama interrupção inicial. No 8080, não se utiliza uma interrupção para inicializar a UCP; ao invés disso, emprega-se a entrada RE-SET, que "limpa" apenas o registrador PC do microprocessador. Todos os outros registradores internos devem ser inicializados por meio de software.

Flip-flop que evita que a interrupção seja executada antes da execução de uma instrução HALT (parada).

Como se utiliza a interrupção

O programa dado ao microcomputador, que contém todas as instruções normalmente executadas pelo mesmo, ao efetuar suas funções mais importantes, é conhecido como programa principal. Sempre que surge um pedido de interrupção, o microprocessador conclui a instrução que está executando, e permite a inclusão de uma instrução adicional. Tal instrução é normalmente, do tipo RESTART (reinício), e vai chamar uma sub-rotina na memória, isto é, a UCP salta do ponto do programa principal em que havia parado para uma nova localidade, onde

a sub-rotina está armazenada. diz-se que a sub-rotina da interrupção serve a interrupção que ocasiónou a busca daquela sub-rotina.

Vamos dar um exemplo, para ilustrar melhor: ao pressionarmos uma certa tecla de um teclado, poderemos dar origem a uma interrupção, que irá chamar uma sub-rotina de interrupção para o processamento de caracteres. A sub-rotina de interrupção, portanto, serve o teclado, ao introduzir o caracter selecionado e armazená-lo numa lista de caracteres, em uma memória RAM. A sub-rotina devolve o comando,

em seguida, ao programa principal; dependendo de como foi projetado o sistema, tanto o programa principal como uma outra sub-rotina de interrupção poderá apanhar esses caracteres armazenados, para um processamento posterior.

Em suma, o uso da capacidade de interrupção do microprocessador é um elemento importante no projeto total do sistema. O uso ou não de interrupções e a presença delas em um ou mais níveis, vai depender da aplicação a que o microcomputador está destinado.

Sistema de pedido de interrupções para o 8080.

Um exemplo de interrupções simples

É o caso de um microcomputador onde uma interrupção é reconhecida somente quando a UCP está inativa (no estado STOPPED ou HALTED). Isto é útil sempre que a requisição de interrupção não precisar atendimento imediato. É claro que, mesmo em sistemas bastante complexos, uma interrupção não será atendida imediatamente, se houver outra de maior prioridade ainda em processamento. Nesses casos, se o programa principal

aceitar interrupções somente em certos pontos de sua execução, os problemas associados com a manutenção de certos *status* internos do microprocessador, durante a execução da interrupção, são minimizados.

Mas, voltando às interrupções simples, podemos ver, na figura 1, um flipflop conectado entre uma fonte de interrupções e o terminal apropriado da UCP. Nessas condições, um pedido de interrupção será passado para a UCP somente se a mesma parar antes do recebimento do pedido. Nos sistemas

em que é utilizado o 8080, o sinal HLTA (halt acknowledge - reconhecimento de parada) pode ser combinado ao PH2T, para produzir um trem de pulsos que permita que o pedido seja enviado ao microprocessador logo após sua ocorrência.

O microprocessador dá o aviso de que foi interrompido através de um sinal de *reset* do pedido de interrupção; no 8080, esse sinal é o INTA.

Introdução aos sistemas de prioridade de interrupções

ABELA	/					
DB5	DB4	DADOS	DADOS	OCTAL	INSTRUÇÃO	ENDEREÇO DE REINÍCIO
1	1	00110000	11001111	317	RST 1	000010
1	0	00100000	11011111	337	RST 3	000030
0	1	00010000	11101111	357	RST 5	000050
0	0	00000000	11111111	377	RST 7	000070

Um microcomputador capaz de reconhecer interrupções de mais de uma fonte é denominado sistema de interrupções múltiplas. Sistemas com duas ou mais fontes de interrupções necessitam, normalmente, de um método que lhes permita estabelecer prioridades entre as interrupções, para saber qual delas deve ser atendida em primeiro lugar. O sistema de prioridade de interrupções tem a tarefa de distribuí-las numa hierarquia, de acordo com o nível de importância dado a cada uma.

Cada interrupção ganha, então um nível de prioridade e, quando um programa está sendo executado como resultado de uma determinada interrupção, diz-se que o microcomputador está naquele nível de interrupção.

Costuma-se considerar, nos microcomputadores, que o nível de interrução 0 tem a maior prioridade, enquanto que os níveis com numeração crescente ganham prioridades sucessivamente menores. Assim, digamos, se o microprocessador estiver executando um programa no nível 2 de interrupção, um novo pedido, trazendo o nível 1 ou 0, deverá ser respeitado; o programa deverá pular para a interrupção de maior prioridade, retornando depois ao nível 2.

Porém, uma interrupção nível 2 não poderá ser perturbada pelos níveis 3 ou 4, ou por qualquer outro de prioridade mais baixa. E o sistema deve ser projetado, ainda, para não considerar pedidos de interrupção do mesmo nível que aquela que estiver sendo executada.

Na figura 2 aparece um típico sistema de prioridade de interrupções para o 8008, sob a forma de blocos, com todas as suas partes básicas. Iremos percorrer, em seguida, um circuito prático de interrupções para o 8080, onde vocês notarão as muitas diferenças básicas que existem, nessa parte, entre as duas gerações de microprocessadores.

Um exemlo de lógica de interrupções para o microprocessador 8080

Como já havíamos dito, o 8080 atende normalmente a pedidos externos de interrupção. Uma fonte muito

comum de interrupções é o dispositivo periférico de entrada (tal como um teclado), que introduz dados de uma forma totalmente imprevisível, mas que deve receber prioridade imediata, sempre que o exigir. O 8080, normalmente, aceita o pedido de interrupção e gera um sinal de reconhecimento da mesma; os circuitos externos detectam esse sinal e introduzem uma instrução especial, fazendo com que a UCP pule para a sub-rotina de interrupção correspondente. Quando tal sub-rotina é concluida, a UCP retorna ao programa principal, no ponto exato em que havia sido interrompido.

Nos sistemas existem, geralmente, várias fontes de interrupção, o que torna necessária a inclusão de um meio de se decodificar a fonte do pedido de interrupção, para que a UCP execute as instruções corretas.

Mas vamos passar à análise do sistema de interrupção do 8080, que aparece na figura 3. Ele oferece possibilidade para a manipulação de 3 níveis de interrupção; um sistema adicional de controle, porém, pode fazê-lo atingir oito níveis diferentes.

Tudo começa quando algum dispositivo externo faz com que a linha INTR (canto inferior esquerdo do desenho) vá para o nível "0"; essa linha está conectada, através de uma ponte J7, ao estágio inversor H4 (a ponte J8 só substituiria J7 se o sistema adicional de interrupções fosse instalado). Em seguida, o flip-flop de pedido de interrupção (74LS74) é ativado, levando o sinal INT para "1", que por estar ligado diretamente ao 8080, vai realmente requisitar uma interrupção a ele.

O 8080 contém um flip-flop interno de interrupção, chamado INTE, que so-fre um reset sempre que uma interrupção está em curso ou quando uma instrução DI (disabel interrupt - recusa de interrupção) é executada, evitando assim que a UCP habilite interrupções posteriores. Para que possa ser habilitadas, é preciso executar uma instrução EI, como já vimos anteriormente; isso irá ativar o flip-flop INTE, permitindo ao 8080 reconhecer interrupções.

O 8080 por si só não preserva os pedidos de interrupção colocados quando os mesmos estão sendo recusados; no entanto, o *flip-flop* de pedidos encarrega-se disso, preservando-

os até que o microprocessador esteja pronto a aceitá-los.

Logo que uma interrupção é reconhecida, o 8080 entra no ciclo especial da instrução de interrupção. A linha DBO vai para "0", o que vale para a lógica de controle do sistema como uma aceitação de interrupção; essa lógica produz então o sinal INTX, utilizado para introduzir a instrução especial de interrupção na barra de dados e também para dar um reset no flip-flop de pedidos

A linha INTX é ligada às entradas de dois excitadores 7417 (parte superior do diagrama), de coletor aberto, e aos terminais de habilitação de um conjunto de 6 excitadores *tristate* (8T97). Enquanto os dois 7417 levam as linhas DB7 e DB6 a "0", o 8T97 faz o mesmo com as linhas DBO a DB3; DB5 e DB4 são mantidas em "1" pelos resistores R4 e R3 (eles seriam substituídos pelas pontes J2 e J1 só em caso de uso da placa adicional de interrupção).

Nessas condições, os bits invertidos DB7-DB0 da barra de dados fornecem a leitura 00110000; invertidos novamente, a UCP vai lê-los sob a forma 11001111, equivalente ao 317 octal. Essa distribuição de bits forma o código para a instrução RST 1 do 8080, instrução de chamada de um só byte que obriga a UCP a pular para a localidade 000010 da memória, deslocando a pilha do contador de programa. Comecando por esse ponto da memória, o usuário deve instalar um programa que contenha as instruções necessárias à execução dos objetivos do pedido de interrupção. A rotina de interrupção termina com uma instrução RET (retorno), que desloca novamente a pilha do contador de programa e devolve o controle ao programa principal.

É preciso ter em mente que, para evitar que a rotina de interrupção perturbe o programa principal, todos os registros e bandeiras (flags) de uma e de outro devem ser preservados, assim que tem início a interrupção (por meio de instruções PUSH), e restaurados logo após o seu término (por meio de instruções POP).

Os dispositivos externos podem requisitar interrupção também através das linhas DB5 e DB4, levando-as para "0" durante o período DBIN. Essa nova situação produz uma tabela de 4 ins-

truções (veja Tabela I). Dessa forma teremos, apesar das 4 instruções, apenas 3 níveis de interrupção (logo

mais veremos porque).

RST 1 é uma instrução de uso geral, geralmente de baixa prioridade, e através da qual o dispositivo externo não afeta DB5 e DB4. Um segundo acesso de interrupção irá "baixar" DB4, e um terceiro, DB5. Outras linhas de dados poderão ser utilizadas, mas não terão efeito algum, a não ser que a placa adicional para 8 níveis seja incorporada ao sistema.

A instrução RST 7 levaria DB5 e DB4 para "0" ao mesmo tempo e, por isso, não pode ser usada, sob risco de criar ambigüidades. O problema é que ela poderia ser confundida com a ocasião em que tanto DB5 como DB4 estivessem requisitando interrupção, por intermédio de dispositivos externos diferentes. Observe ainda que, se ocorrer uma instrução RS3, 5 ou 7, um pedido feito pela RST 1 poderia ficar encoberto.

Para sincronizar os circuitos de

placas periféricas com a lógica de interrupção da UCP, liga-se o sinal de introdução de interrupções INTX ao INTS, através da ponte J6 (canto inferior direito do desenho). O dispositivo que está requisitando uma interrupção usa esse sinal para habilitar os circuitos que "baixam" as linhas de dados DB5 e DB4. Na figura 4 mostramos um circuito adequado a essa função.

Quando uma interrupção é requisitada, a linha IRQ (interrupt request - pedido de interrupção) vai para "1", ativando o primeiro flip-flop (através de seu pino 3). A saída Q do mesmo (pino 6) vai causar um reset no segundo flip-flop (pino 13), fazendo a saída Q deste ir para "0" (pino 9). Esta saída tem conexão com o terminal de reset do primeiro flip-flop (pino 1), causando assim um reset no mesmo; O segundo, porém, permanece no mesmo estado.

Com o pino 8 do segundo flip-flop em "1", o excitador de coletor aberto ligado a ele é ativado, levando a linha INTR para "0" e requisitando uma interrupção ao microprocessador.

O microprocessdor responde,

aceitando, com um sinal INTS de habilitação. Assim que INTS vai para "0", ativa um estágio inversor feito com um 7438; esse sinal, combinado com o nível "1" que sobrou na saída Q do segundo flip-flop (pino 8), vai ativar uma porta NE de coletor aberto (7438), levando para "0" o DB5, o DB4 ou nenhum dos dois, como for desejado. Quando o sinal INTS termina, indo para "1", o segundo flip-flop muda de estado, levando seu pino 8 para "0" e finalizando assim o pedido de interrupção de INTR e a interferência nas linhas de dados DB4 ou DB5.

O sinal RESI, ligado ao pino 10 do segundo *flip-flop*, é capaz de desativar a entrada de pedido de interrupção, quando vai para "0". Caso não seja utilizado, deve ser ligado ao nível "1" (LN).

O dispositivo que pede interrupção deve possuir, naturalmente, outros circuitos para se comunicar com a UCP. Se for o caso de um dispositivo de entrada, a instrução RST (reinício) fará o microprocessador executar instruções correspondentes, endereçando as portas de entrada adequadas.

Porta de pedido de interrupções para o 8080.

Convertendo dados digitais em gráficos de TV a cores

Mitch Goozé e James Farrell, Motorola Inc.

Um integrado gerador de vídeo simplifica a conexão entre microprocessadores, em computadores ou jogos de vídeo, e receptores de TV.

Ao se utilizar a TV a cores doméstica como visor, podese eliminar o custo do componente mais caro dos jogos de vídeo e dos computadores pessoais. Mas, apesar de vantajoso do ponto de vista mercadológico, tal solução pode tornar-se um pesadelo para o projetista, especialmente se o dispositivo adicional contiver um microprocessador.

Uma típica conexão entre um aparelho de TV, que requer uma entrada analógica de radiofreqüência, e um jogo ou computador doméstico, que utilizam lógica digital, chega a exigir 25 000 transistores ou então 280 Cls de pequena ou média integração. Num esforço para reduzir o número de componentes nessas conexões, vários fabricantes de inte-

grados procuraram condensar a conversão digital/vídeo num único CI de integração em larga escala.

A tarefa do gerador de vídeo, ou VDG (*Video-Display Generator*), é justamente essa: ler dados digitais em uma memória RAM, controlada a mircroprocessador (e chamada, às vezes, de memória de renovação), para convertê-los em formas de onda analógicas de vídeo, contendo informações de brilho e cor. Esses sinais são sincronizados com o rastreamento da TV pela adição de pulsos temporizadores. Em seguida, são levados a um modulador de croma, que os codifica sob a forma de um sinal composto de RF, reproduzindo uma transmissão de TV no canal 3 ou 4.

Gerador de video — Num jogo de video "inteligente", o microprocessador transfere dados da memória do visor para o gerador de video, que vai converte los em figuras ou formas, na tela. A memória ROM armazena códigos dos objetos e o adaptador dos *interfaces* periféricos comunica os circuitos com os jogadores.

Jogando dentro das regras

No ano de 1953, o NTSC (National Television System Committee - Comitê Nacional de Sistemas de TV) estabeleceu as especificações para os sinais de TV a cores. Ficou decidido, na época, que em resposta à necessidade de sinais compatíveis para receptores a cores e branco-e-preto, os sinais de definição de cor deveriam ser transportados por uma subportadora que fosse 3,579545 MHz acima da portadora modulada pelo brilho Essa providência garantia a separação entre as informações de brilho (luminância) e cor (crominância) e, portanto, garantia que o detector de qualquer aparelho de TV pudesse distinguir um sinal do outro. Os receptores de preto-e-branco, então, detectam o sinal de luminância e ignoram o de crominância. Os receptores de imagens a cores cuidam primeiramente do sinal de luminância, a fim de determinar o grau de brilho em um certo ponto da tela, e em seguida, buscam o de crominância, para saber o quanto de vermelho, azul e verde há naquele ponto.

Após determinar a maneira pela qual os sinais de TV deveriam carregar as informações de cor, o NTSC se pôs a examinar o grau de resolução que a imagem colorida deveria exibir. O compromisso, aqui, envolve resolução e largura de banda. Para se definir uma distribuição de alta resolução de cores que variam rapidamente, é preciso um sinal de alta freqüência, o que leva à necessidade de uma transmissão com uma extensa largura de banda. Mas, como a largura de cada canal de TV é de apenas 6 MHz, parecia, à primeira vista, que as rápidas variações de cor em pequenas áreas não poderiam ser transmitidas e, dessa forma, pequenos objetos apareceriam completamente descoloridos na tela.

Porém, durante suas pesquisas o NTSC estudou as características de resolução do olho humano, descobrindo que a capacidade do olho de perceber cores diminuía à medida que a área visada era reduzida. Em objetos de pequeno porte, o olho é incapaz de discernir cor, e o cérebro os "preenche" com a cor circundante

Esse é o motivo pelo qual a largura de banda de 6 MHz pro-

porciona uma resolução adequada para gráficos em TV a cores: nas grandes áreas, um sinal de baixa freqüência pode definir a cor, enquanto as áreas menores são transmitidas em preto-e-branco.

O NTSC estudou também a resposta em freqüência de nossos olhos, chegando à conclusão de que são sensíveis à cor na proporção Y = 0,59G + 0,11B + 0,30R, onde Y é o brilho total da luz e G, B e R representam seus componentes em verde, azul e vermelho. Já que o brilho, da forma como é medido pelo sinal monocromático, já faz parte da transmissão branco-e-preto, o achado do NTSC significa que apenas dois dos três sinais de cor precisam ser transmitidos; o sinal faltante pode ser obtido no próprio receptor, subtraindo do sinal monocromático os outros dois sinais, de acordo com a equação vista.

Na prática, o circuito abaixo representado é capaz de gerar os sinais de cor num transmissor de TV (ou integrado VDG). Os sinais do azul, vermelho e verde, vindos de uma câmera a cores (ou da memória do visor), são somados numa certa proporção, de modo a produzir o sinal Y de luminância. Depois de passar por um filtro passa-baixas de 1,5 MHz e por um inversor, o sinal Y é então subtraído dos sinais de azul e vermelho, indo modular em freqüência a portadora. O sinal do verde é desprezado, enquanto os sinais B-Y e R-Y vão modular em fase uma subportadora de 3,579545 MHz, em ângulos diferentes, como se pode ver. Isto coloca os dois sinais em quadratura, que é o mesmo que dizer que seus fasores estão distanciados de 90°. Como o nível e a fase da resultante da soma desses vetores vão variar com a variação das amplitudes relativas dos dois sinais, um sinal composto de vídeo é suficientemente definido com apenas duas cores.

Assim que o sinal alcança o receptor, o sinal de luminância é detectado e adicionado aos sinais B-Y e R-Y demodulados, a fim de se recuperar os componentes do azul e do vermelho da luz. Tais componentes são depois subtraídos proporcionalmente de Y, para se obter o verde.

Aqui descrevemos a operação de um desses integrados geradores de vídeo, o MC6847, feito com a tecnologia MOS de canal N, trabalhando num jogo de vídeo controlado a microprocessador. A operação desse componente num jogo de vídeo é delimitada pelos padrões do NTSC, que definem o formato e largura de banda dos sinais de TV dentro dos Estados Unidos (veja o quadro "Jogando dentro das regras"). E como a saída de um jogo de vídeo deve simular uma transmissão de TV, os padrões determinam também as características dos sinais de vídeo e de sincronização gerados pelo integrado VDG, além da máxima resolução possível do visor, dentro da largura de banda do canal.

O preco da versatilidade

Existem duas arquiteturas de sistema, já bastante popularizadas, para o uso de microprocessadores na geração e controle de objetos ou pontos em gráficos ou caracteres: uma delas utiliza o método orientado ao objeto e a outra, o RAM intensivo. No primeiro caso, um conjunto fixo de caracteres gráficos fica armazenado em uma memória ROM; esses objetos são recolhidos pelo microprocessador e transferidos diretamente para a tela, através do VDG e do modulador de croma. O tamanho e a resolução dos objetos depende da freqüência de *clock* do sistema, sendo que os mais rápidos podem reproduzir objetos menores e com maior resolução no visor.

	F	ORMATO DAS TELAS	DE T V			
modalidade	70	formato da matriz dos elementos do visor	detalhes elementares, em pontos	barra de dados do VDG bMsbms	espaço requerido na RAM do visor (bits)	
ulfanumėrica interna		32 larg. / 16 alt.	12 7	reserva código ASCII	512×8	
alfanumérica externa	7	32 larg. / 16 alt.	12	caracteres personalizados	512×8	
semigráfica—4	8	64 larg. / 32 alt.	6 L3 L2 L1 L0 um elemento	[C ₃ C ₂ C ₁ C ₀ L ₃ L ₂ L ₁ L ₀]	512×8	
semigráfica—6	mer Miller (in	64 larg. / 48 alt.	4 4 L ₅ L ₄ L ₃ L ₂ L ₁ L ₀	[C ₁ C ₀ L ₅ L ₄ L ₃ L ₂ L ₁ L ₀]	512×8	
gráfico colorido 64 por 64		64 larg. 64 alt.	4 3 E ₃ E ₂ E ₁ E ₀	[C ₁ C ₀ C ₁ C ₀ C ₁ C ₀ C ₁ C ₀	1024 × 8	
gráfico 128 por 64		128 larg. / 64 alt.	3 17 16 15 14 13 12 11 10	[L7 L6 L5 L4 L3 L2 L1 L0	1024×8	
grafico colorido 128 por 64		128 larg. 64 alt.	3 E3 E2 E1 E0	[C ₁]C ₀ C ₁ C ₀ C ₁ C ₀	2048 × 8	
gráfico 128 por 96		128 larg. / 96 alt.	2 2 [17 16 15 14 13 12 11 10	[17][6][5][4][3][2][1][0]	1536 × 8	
grafico colorido 128 por 96		128 larg. 96 alt.	2 2 E ₃ E ₂ E ₁ E ₀	C ₁ C ₀ C ₁ C ₀ C ₁ C ₀ C ₁ C ₀	3072×8	
gráfico 128 por 192		128 larg. / 192 alt.	2 1 [17]L6[L5][L4][L3][L2][L1][L0]	[17][6][5][4][13][2][1][0]	3072×8	
gráfico colorido 128 por 192	B -	128 larg. 192 alt.	2 1 E3 E2 E1 E0	[c ₁ c ₀ c ₁ c ₀ c ₁ c ₀ c ₁ c ₀	6144×8	
gráfico 256 por 192	anana sa	256 larg. / 192 alt.	1 1716151413121110	[L7]L6]L5]L4]L3]L2]L1]L0]	6144×8	

Nesses sistemas, o microprocessador move os objetos com dois graus de liberdade, ao variar suas coordenadas em registradores internos de posição vertical e horizontal. Movimentos complexos, tais como rotação, requerem programações mais sofisticadas. Num jogo militar, por exemplo, girar a imagem de um tanque iria exigir a armazenagem de vários perfis do mesmo, em vários ângulos diferentes.

Assim, os sistemas orientados aos objetos permitem que os mesmos sejam controlados mais facilmente (pela simples alteração de sua posição em registradores), em relação aos RAM intensivos. Além disso, exigem menor espaço em memórias RAM, reduzindo seu custo total. Por outro lado, os sistema RAM intensivos oferecem maior flexibilidade naquilo que pode ser posto na tela.

Os RAM intensivos fazem uso de uma técnica chamada mapeamento direto da memória. Nesse caso, conforme nos mostra a figura 1, o VDG lê seqüencialmente bytes de dados que representam séries de pontos horizontais, vindos da memória do visor, mapeando o conteúdo da mesma diretamente no visor. Para variar o quadro, o microprocessador simplesmente atualiza as linhas apropriadas da memória do visor.

A facilidade com que se pode mudar as imagens da tela torna os sistemas RAM intensivos mais atrativos. Porém, como a resolução no visor é uma função das dimensões da memória, maior resolução significa custo maior para o sistema. Combinando as vantagens dos dois métodos, o MC6847 reduz os requisitos de memória e também o custo, sem perda de definição no visor ou de flexibilidade no controle.

Subdividindo a tela

O gerador de vídeo 6847 é capaz de operar em 12 modalidades diferentes no visor: duas alfanuméricas, duas semigráficas e oito gráficas plenas (veja a tabela "Sumário dos modos de operação do gerador de vídeo 6847"). Cada modalidade é selecionada pelo microprocessador e divide o visor, que tem 256 pontos de largura por 192 de altura, em uma matriz de compartimentos ou elementos. O conteúdo de cada compartimento varia, desde uma matriz de 8 colu-

Colorido — O VDG divide cada elemento do visor, de 8 por 12 pontos, em quatro compartimentos, segundo a modalidade semigráfica 4. Os 4 bits menos significativos de cada palavra de dados que chega vão selecionar uma das 16 possíveis combinações de iluminação; os 4 bits mais significativos vão determinar a cor.

nas e 12 linhas, nas modalidades de menor densidade (as alfanuméricas), até um único ponto, na modalidade gráfica de maior resolução. A escolha de cor para todos os pontos "acesos" de cada compartimento também varia de acordo com a modalidade, desde uma entre duas, até uma entre oito.

Um jogo do tipo RAM intensivo requer uma RAM de visor espaçosa o suficiente para guardar todos os 49 152 pontos de um quadro de 256 por 192 pontos. Portanto, a quantidade e custo da memória necessária para se implementar um certo VDG dependem de quantos pontos uma palavra de dados pode controlar na modalidade adotada. Na menos densa de todas, cada byte (8 bits) controla apenas 96 pontos, o que é satisfeito com uma RAM de 512 × 8 bits; e na mais densa de todas, cada byte controla 8 pontos (ou seja, um ponto por bit), exigindo assim uma RAM de 6144 × 8 bits, 12 vezes maior que a outra.

As duas modalidades alfanuméricas dividem a tela em uma matriz de compartimentos, com 32 colunas e 16 linhas. Cada compartimento tem 8 pontos de largura e 12 de altura e contém um caracter. Na modalidade alfanumérica interna, uma ROM interna do VDG produz 1 entre 64 caracteres, numa distribuição de 5 por 7 pontos, que encaixa no compartimento de 8 por 12 pontos. Os 6 bits menos significativos de cada palavra de dados contém o código ASCII para aquele caracter; os dois bits remanescentes são os reservas, que podem ser usados para selecionar, digamos, um caracter laranja ou verde sobre um fundo preto, ou o contrário, ao conectá-los aos pinos CSS (color-set-select — seleção de cor) e INV (inverse-video) do integrado VDG. Outra possibilidade seria ligar uma das linhas dos bits de reserva ao pino INT/ EXT do VDG, permitindo assim a seleção de uma ROM externa de caracteres.

Na modalidade alfanumérica externa, uma ROM externa gera 1 entre 256 caracteres personalizados, dentro do compartimento de 8 x 12 pontos. A exemplo da alfanumérica interna, cada palavra de dados define 96 pontos, exigindo também 512 bytes na memória RAM do visor.

As duas modalidades seguintes são denominadas semigráfica—4 e —6. Na primeira, cada compartimento de 8 por 12 é dividido em 4 elementos (figura 2); os 4 bits menos significativos (L3-L0) da palavra gerada internamente vão selecionar 1 entre 16 graus de iluminação dos elementos, enquanto três dos quatro bits mais significativos (C2-C0) vão selecionar uma entre oito cores para os pontos iluminados. Dessa forma, nessa modalidade a tela torna-se um visor de 64 por 32 elementos, cada elemento com 4 pontos de largura e 6 de altura. Cada palavra de dados vai controlar quatro dos 2048 elementos de 24 pontos, exigindo uma RAM de 512 bytes.

Na semigráfica—6, cada compartimento de 8 por 12 é dividido em 6 elementos. Os 6 bits menos significativos da palavra, que provêm de uma ROM externa, selecionam 1 entre 64 graus de iluminação dos elementos; os 2 bits mais significativos selecionam uma entre quatro cores para o compartimento. O pino CSS pode ser empregado para escolher um entre dois conjuntos de 4 cores.

Aqui a tela transforma-se numa matriz de 64 por 48 elementos, cada elemento com 4 pontos de largura por 4 de altura. Cada palavra controla seis dos 3072 elementos de 16 pontos, necessitando, aqui também, de uma RAM de 512 bytes. O pino INT/EXT é usado para se escolher entre as duas modalidades semigráficas.

O MC6847 pode trabalhar, ainda, em 8 modalidades gráficas plenas, cujos formatos dos elementos e requisitos de memória estão resumidos na tabela. Observe como a ne-

Indexação — No mapeamento indireto, a cada elemento de visor corresponde a um byte na memória do visor. Esse byte aponta para um determinado objeto, mais abaixo. Comparado ao mapeamento direto, esta arquitetura híbrida requer memórias duas vezes mais rápidas, mas com apenas 1/6 do tamanho.

cessidade de RAM cresce à medida que se exige maior resolução e controle; nas mais densas modalidades, por exemplo, é preciso prever 6144 bytes de memória RAM. Observe também a ausência da modalidade de gráficos coloridos de 256 × 192, devido à descoberta do NTSC de que o olho humano não distingue cores de pequenos objetos, tais como pontos numa tela.

O melhor dos dois métodos

Para se reduzir a quantidade de RAM necessária nas modalidades mais densas, o 6847 opera com uma arquitetura híbrida. Batizada de **indexação**, essa abordagem reúne as vantagens dos dois métodos de geração digital de gráficos e caracteres numa tela, ao mesmo tempo em que corta para 1/6 o tamanho da RAM necessária (de 6144 para 1024 bytes). Mas ela apresenta também uma desvantagem, que é a de exigir uma memória duas vezes mais rápida.

A indexação utiliza uma técnica chamada **mapeamento indireto da memória**, onde a área do visor é arranjada numa matriz de 32 × 12 elementos, cada elemento com 8 × 16 pontos. Desse modo, a tela contém 384 elementos, numerados de 0, no canto superior esquerdo, até 383, no canto inferior direito (figura 3). A cada compartimento corresponde um byte na metade superior da RAM do visor; os 512 bytes inferiores contêm os códigos para 32 objetos e os 128 restantes são utilizados como "rascunho", durante as computações.

Temporização acelerada é a chave para a abordagem da indexação. Normalmente, o sistema toma quatro ciclos do *clock* de 3,58 MHz para enviar um byte de dados ao VDG; no entanto, pela multiplexação das linhas de endereço da memória, é possível dobrar esse ritmo, por um sistema conhecido como **busca dupla**. Durante os dois primeiros ciclos do *clock*, o VDG endereça a localidade da RAM correspondente ao elemento que está sendo varrido pelo feixe de elétrons. Tal localidade contém o endereço dos 16 bytes da parte inferior, que definem o objeto a ser mostrado naquele elemento da tela. O endereço do objeto é retido ao fim dos dois primeiros ciclos, para ser novamente aplicado à RAM, no início dos dois últimos, quando o código do objeto está sendo enviado ao gerador de vídeo.

Esse procedimento é repetido até que os 384 elementos sejam varridos. Para alterar a posição de um objeto na tela, o microprocessador muda a condição de seu indicador de endereços, nos 384 bytes superiores da RAM do visor; um dos objetos é sempre o fundo (ou ausência de objeto), enquanto os restantes são selecionáveis em uma entre quatro cores

Como neste sistema a memória do visor é questionada com uma freqüência duas vezes maior, o tempo de acesso à memória sofre uma grande alteração, de 450 ns para apenas 200 ns. O custo para se obter um tempo de acesso reduzido para menos da metade é mais que compensado pela redução de 1/6 no tamanho da memória requerida para as operações de resolução elevada.

PRÁTICA EM TÉCNICAS DIGITAIS

12ª Licão

CODIFICADORES e MULTIPLEXADORES

O decodificador foi o primeiro dos circuitos lógicos combinacionais a ser estudado, na lição anterior. Agora, mais três circuitos de importante papel na eletrônica digital serão vistos — o codificador, o multiplexador e o demultiplexador.

Codificadores

O codificador é um circuito lógico combinacional que aceita uma ou mais entradas e gera um código de saída binária de múltiplos bits. Na verdade, os codificadores são exatamente o oposto dos decodificadores. Os decodificadores detectam ou simplesmente identificam códigos específicos, enquanto os codificadores geram os có-

A figura 1-12 apresenta um circuito codificador simples. As entradas são três chaves tipo push-button, indicadas pelos números 1, 2 e 3. O circuito codificador consiste de duas portas NE positiva/NOU negativa. As saídas AB formam um código binário de dois bits. Quando a chave 1 é pressionada, a saida da porta 2 vai para 1. Nesse instante ambas as entradas da porta 1 estão altas e portanto sua saída é baixa. Pressionado-se a chave 1, o código 01 de saída é gerado.

Pressionando-se a chave 2 a saida A é forcada para o nível alto. A saída B da porta 2 está em 0, portanto o código de saída é 10. Ao ser pressionada a chave 3, as saídas de ambas as portas são forçadas para o nível alto, gerando o código 11. Como se vê, um código binário correpondente ao número decimal dado a cada chave na entrada é gerado quando aquela chave é fechada. Quando todas as chaves estão abertas (não pressionadas) o código de saída é

Uma aplicação típica para um circuito codificador é a translação do sinal de entrada de um teclado decimal para o código binário ou BCD. A figura 2-12 mostra um circuito codificador decimal para BCD. Quando qualquer uma das linhas de entrada é levada a zero, o código BCD de quatro bits correspondente é gerado na saída. Por exemplo, levando a linha de entrada do número 5 a 0 binário, as saídas das portas 1 e 3 serão forçadas a 1. As portas 2 e 4 apresentarão saídas baixas nesse momento. O código de saída nas linhas DCBA será, então, 0101, ou seja, o equivalente binário do número decimal 5. Esse circuito, como todos os codificadores, gera um único código de saida para cada entrada individual.

Um exemplo típico de um moderno cicuito integrado codificador binário aparece na figura 3-12. Trata-se de um codificador de prioridade TTL MSI de oito entradas. O codificador recebe dados de oito linhas e gera o código binário correspondente ao número assinalado na entrada. A entrada deve ser colocada em 0 para gerar o código de saída correspondente. Sabe-se que as entradas são ativadas em 0. Ao contrário dos dois codificadores anteriormente vistos, as saidas do circuito da figura 3-12 (denominadas AO, A1 e A2) também estão ativas em 0. Para esse circuito o que isto significa é que uma saída baixa representa 1 binário. Ele gera um código lógico negativo na saí-

Uma característica única desse circuito é que há uma prioridade, ou precedência, determinada para cada entrada, de maneira que quando duas ou mais entradas estiverem baixas simultaneamente, a que tiver maior prioridade será representada na saída. Nesse caso, as entradas com o maior valor numérico têm maior prioridade. Com isso, se as entradas 3 e 6 estiverem baixas simultaneamente, um código binário representando o número 6 será gerado na saida.

A entrada El nesse circuito é uma entrada liberadora. Quando a mesma estiver em 1, a saida do inversor a ela conectado estará baixa. Isto inibirá as portas de 1 a 8 e forçará as três linhas de saída binária ao nível 1. Quando a

Circuito codificador de prioridade com oito entradas.

Circuito codificador simples.

Codificador decimal para BCD.

entrada El estiver baixa, a saída do inversor estará alta, liberando, portanto, todo o circuito das portas.

A porta NE número 1 de oito entradas comanda todas as 8 linhas de entrada. Se qualquer uma delas deve ir para 0, a saída EO vai para 1, indicando que uma ou mais das linhas está ativada. A saída GS também vai para 0. Se todas as entradas estão altas ou abertas (não ativadas), a saída EO está baixa indicando seu estado. Usando a entrada EI e as saídas EO e GS, vários desses dispositivos podem ser combinados para codificar N diferentes estados de entrada. Uma tabela verdade para esse circuito é apresentada na figura 4-12.

Multiplexadores

O multiplexador é um circuito ele-

trônico usado para selecionar e encaminhar qualquer um dentre vários sinais de entrada a uma única saída. A forma mais simples de multiplexador é uma simples chave de um pólo e múltiplas posições. A figura 5-12 mostra uma chave seletora rotativa usada como multiplexador. Qualquer dos seis sinais de entrada pode ligar-se à linha de saída pelo simples ajuste da posição desta chave seletora mecânica. As chaves seletoras mecânicas são muito usadas em várias operações de de multiplexação em circuitos eletrônicos. Entretanto, muitas aplicações exigem que o multiplexador opere em velocidades elevadas e seja automaticamente selecionável. Multiplexadores deste tipo podem ser facilmente construídos com componentes eletrônicos.

Há dois tipos básicos de circuitos multiplexadores eletrônicos: o analógico e o digital. O simples multiplexador com chave seletora da figura 5-12 trabalha tanto com sinais analógicos quanto digitais. Porém, quando são construídos multiplexadores eletrônicos, eles são projetados especialmente para uma das aplicações, analógica ou digital. Para as aplicações analógicas são muito utilizados relês e chaves bipolares ou MOSFETs. Nas aplicações digitais que envolvem sinais binários, um multiplexador pode ser construído simplesmente com portas lógicas comuns.

			(ent	rada	as				sai	das		
. EI	0	1	2	3	4	5	6	7	GS	40 /	41	42	E0
1	X	X	X	X	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	X	X	X	X	X	X	X	X	0	0	0	0	1
0	X	X	X	X	X	X	0	1	0	1	0	0	1
0	X	X	X	X	X	0	1	1	0	0	1	0	1
0	X	X	X	X	0	1	1	1	0	1	1	0	1
0	X	X	X	0	1	1	1	1	0	0	0	1	1
0	X	X	0	1	1	1	1	1	0	1	0	1	1
0	X	0	1	1	1	1	1	1	0	0	1	1	1
0	0	1.	1	1	1	1	1	1	0	1	1	1	1

Tabela verdade para o codificador de prioridade com oito entradas.

alta, liberando a porta 1. A saída Q estará baixa, inibindo a porta 2. A fonte de dados 1 deverá, portanto, permitir a passagem através da porta 1 e da porta 3 para a saída. A fonte de dados 2 não terá efeito sobre o estado da saída. O reset do flip-flop inverterá esta condição. A porta 1 será inibida por Q, evitando, em conseqüência, que a fonte de dados 1 atinja a saída. Todavia, a fonte de dados 2 estará liberada e chegará à saída da porta 3. Esse circuito é equivalente a uma chave de um polo e duplo acionamento, como a indicada na figura 6-12B.

Um circuito MSI funcional que utili-

Multiplexador digital de duas entradas (A) e seu equivalente mecânico (B).

Multiplexador de 4 × 2 entradas

O circuito da figura 6-12A é a forma mais simples de multiplexação digital. Ele tem duas entradas de dados e uma única saída. Qualquer uma das entradas pode ser selecionada e alimentar a saída. O processo de seleção acontece nas portas E, 1 e 2. O flip-flop controla estas duas portas para determinar qual entrada poderá passar através da porta OU 3 para a saída. Quando o flip-flop está em set, a saída Q deve estar

za esse multiplexador básico de duas entradas é mostrado na figura 7-12. Quatro multiplexadores de duas entradas são combinados para formar um multiplexador para duas palavras de quatro bits. A palavra 1 tem os bits A1, B1, C1 e D1. A palavra 2 apresenta os bits A2, B2, C2 e D2. A entrada habilitadora E (enable) controla o circuito. Se E está alto, a saida do inversor 15 está baixa, inibindo, portanto, todas as por-

tas E e assim evitando que qualquer palavra apareça nas saídas. Com E baixa, o circuito está liberado.

A entrada seletora (S) especifica qual palavra de quatro bits aparecerá na saída. Quando a entrada seletora estiver alta, as portas 2, 5, 8 e 11 estarão liberadas, levando a palavra de entrada 1 a aparecer na saída. Se a entrada S estiver baixa, as portas 1, 4, 7 e 10 estarão liberadas. Isso permitirá que a palavra 2 passe à saída.

Um circuito multiplexador de quatro entradas é mostrado na figura 8-12. Cada entrada é aplicada a uma porta NE que é liberada ou inibida por um decodificador 1 de 4. As saídas das portas NE são reunidas numa função OU pela porta 5. Como em outros multiplexadores, apenas uma das quatro entradas será liberada e passará à saída. A seleção da entrada é feita pelo circuito decodificador. Uma palavra binária de dois bits AB é aplicada ao decodificador. Este reconhece um dos quatro códigos possíveis na entrada e libera a porta apropriada. Por exemplo, quando a palavra de dois bits de entrada é 00, a linha de saída AB é alta. Isto libera a porta 1 e a entrada 1 passa à saida. O código de entrada 01 libera a porta 2, o código de entrada 10 libera a porta 3 e o código de entrada 11 libera a porta 4.

O meio mais simples de implementar o multiplexador de 4 bits é combinar ambas as funções, decodificação e liberação, na mesma porta. Tal circuito é apresentado na figura 9-12. O arranjo é virtualmente idêntico ao multiplexador de quatro entradas já descrito. No entanto, entradas adicionais permitirão também o desempenho da função decodificadora. As saídas normal e complementar da palavra de dois bits AB são aplicadas às portas liberadoras da mesma maneira que seriam aplicadas às portas decodificadoras. Se o código binário de entrada 00 for aplicado, as linhas A e B estarão altas. A porta 1 será liberada e a entrada número 1 passará pelas portas 1 e 5 à saída. As portas 2, 3 e 4 estarão inibidas neste instante.

Um multiplexador TTL binário de oito entradas que utiliza essa mesma técnica é mostrado na figura 10-12. As portas 1 e 8 liberam ou inibem as oito linhas de entrada de dados D0 a D7. Uma palavra de entrada binária de três bits (ABC) libera uma das oito portas, dependendo do código da entrada. Os seis inversores das entradas seletoras de dados geram os sinais normal e complementar, necessários às portas selecionadoras. Esta palavra de entrada de três bits é um código de endereçamento que designa qual linha de entrada será selecionada. Se a entrada binária for 101, a entrada D5 será selecionada. A linha habilitadora strobe libera ou inibe todas as oito portas seletoras.

Multiplexador de quatro entradas

Um multiplexador de quatro entradas combinando com as funções decodificadora e habilitadora.

Ambos os sinais, normal (W) e complementar (Y) estarão disponíveis na saída. Um outro nome dado ao multiplexador é selecionador de dados.

Aplicações dos multiplexadores

Além de proporcionar um meio conveniente de seleção de uma entre diversas entradas, para ser ligada a uma única saída, o multiplexador apresenta diversas aplicações especiais que o tornam ainda mais útil. Os multiplexadores são também usados para prover conversão de dados paralelo/ série, geração de padrões seriados e implementação simplificada de funções booleanas.

Conversão paralelo/série — Uma das mais comuns aplicações de um multiplexador está na conversão paralelo/

série de dados. Uma palavra binária paralela é aplicada às entradas de um multiplexador. A seguir, pelo següenciamento através dos códigos habilitadores de entrada, a saída do dispositivo torna-se uma representação série da palavra paralela de entrada. Essa função é ilustrada na figura 11-12. No caso é mostrado um multiplexador de quatro entradas (o multiplexador é muitas vezes abreviado como MPX ou MUX). Um simples bloco é geralmente utilizado para representar o multiplexador, simplificando seu desenho. Uma palavra binária AB de dois bits, de um contador, é usada para selecionar a entrada desejada. A palavra de entrada WXYZ é armazenada em um registrador acumulador de 4 bits. A saída de cada um dos flip-flops do registrador é

ligada a uma entrada do multiplexador. Quando o contador de dois bits é incrementado, o código AB de seleção é sequenciado através de seus quatro estados, de 00 a 11. A saida (M) do multiplexador é igual ao estado do flip-flop conectado à entrada habilitadora. Isto é ilustrado pela tabela verdade da figura 12-12. Pelo següenciamento dos quatro estados de entrada a um ritmo fixo, a palavra de entrada paralela é convertida em uma palavra de saída série. Quando as entradas AB estão em 00, o estado do flip-flop W aparece na saida do multiplexador. Quando o estado da entrada AB é 01, o estado do flip-flop X aparece na saida do multiplexador. Do mesmo modo, a seleção das entradas 10 e 11 causará o aparecimento de Y e Z, respectivamente, na saída do multiplexador. Em função de como as entradas estão ligadas ao registrador, o multiplexador fará ocorrer o LSB ou o MSB primeiro.

Gerador de palavras binárias seriadas — Outra aplicação do multiplexador está na geração de uma palavra binária série. Esta aplicação é virtualmente idêntica à técnica de conversão paralelo/série. A principal diferença é que para geração da palavra binária, a palavra série gerada na saída do multiplexador é geralmente um valor fixo, ao contrário daquele variável do conversor paralelo/série. Há ocasiões que requerem a geração de uma única palavra série fixa para alguma função especial.

A figura 12-12 mostra um multiplexador de oito entradas usado para gerar uma palavra binária fixa na saída. Note que as oito entradas são conectadas ou a + 5 V (1 binário) ou à terra (0 binário). A palavra ABC de três bits é usada para seleção de qual das entradas será enviada à saída. Pelo següenciamento das palavras de três bits, de 000 a 111, com um contador binário, os estados binários aplicados às entradas 1 a 8 são sequencialmente passados à saída. A palavra binária 10011010 é gerada na saída. Cada vez que a palavra de três bits da entrada seletora for seqüenciada de 000 a 111, esta palavra série de saída será gerada. Novamente, em função da aplicação, as conexões à entrada do multiplexador poderão ser feitas para ocorrer tanto o MSB como o LSB, primeiramente na saída. No caso apresentado o MSB (bit mais significativo) aparece em primeiro lugar na saida. A tabela verdade da figura 12-12 define completamente a função desse circuito.

Geração de funções booleanas — Os multiplexadores podem simplificar enormemente a implementação de funções de Boole na forma de soma de produtos. Uma observação mais atenciosa do circuito da figura 10-12 mostrará que ele implementa inerentemente a soma de produtos para todas as

combinações de entrada. Os produtos de ABC até ABC são desenvolvidos pelas portas de 1 a 8. Conectando-se 1 ou O binário às entradas de dados apropriadas, pode-se selecionar os produtos desejados na saida.

Por exemplo, supondo que se deseje implementar a função booleana indicada:

$M = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

Estudando-se o diagrama lógico do multiplexador da figura 10-12 podese determinar quais portas gerarão cada produto booleano. Estas são indicadas na tabela A para sua conveniência. Note que a porta 1 gera o produto ABC. Quando for aplicado 1 binário à entrada D0, aparecerá 1 binário na saída se a entrada de dados selecionada for 000. Aplicando-se 0 a D0, o estado de entrada 000 será ignorado e aparecerá 0 binário na saída W. Portanto, pode-se ver que os produtos booleanos são selecionados pela aplicação de 1 binário à entrada associada com a porta de geração daquele produto. Aos produtos que não forem desejados na saída, deverá ser aplicado 0 binário às portas de geração correspondentes.

Para gerar a expressão indicada anteriormente, o estado 1 binário deverá ser aplicado às entradas D1, D4, D6 e D7. Estas correspondem às portas 2, 5, 7 e 8 na figura 10-12. O gerador de funções booleanas completo é mostrado na figura 13-12.

Outras funções booleanas mais complexas podem também ser implementadas com multiplexadores, pela conexão de outras variáveis às entradas do multiplexador, ao invés de um nível fixo 0 ou 1 binário. Quatro somas de produtos variáveis de entradas A, B, C e D. por exemplo, conectando-se os estados de entrada D e D a entradas selecionadas do multiplexador para implementar a função desejada.

Utilizando Cls multiplexadores MSI comuns, a implementação de funcões booleanas é grandemente simplificada. Com esta técnica não é necessário interligar múltiplas cápsulas de portas lógicas SSI para implementar a função desejada. Isso reduz grandemente o número de circuitos integrados usados, o consumo de potência, o tamanho e a necessidade de interconexões.

Demultiplexadores

O demultiplexador é um circuito lógico que é basicamente o inverso do multiplexador. Enquanto o multiplexador tem múltiplas entradas e uma única saida, o demultiplexador possui uma única entrada e múltiplas saídas. A entrada pode ser ligada a qualquer das múltiplas saídas. O demultiplexador é também conhecido como distribuidor de dados.

Um simples circuito demultiplexador de duas saídas é mostrado na figura 14-12. A única entrada é aplicada a ambas as portas E, 1 e 2. O flip-flop A seleciona qual porta é liberada. Quando o flip-flop A está em set, a porta 1 deve ser liberada e a porta 2 inibida. A entrada, portanto, passará pela porta 1 à saida número 1. Com o flip-flop em reset a porta 2 estará liberada e a entrada passará à saída número 2.

Um distribuidor de dados de quatro entradas é visto na figura 15-12. Neste, a entrada única aplica-se às quatro portas simultaneamente. Como no multiplexador, entradas adicionais nas portas seletoras são usadas para decodificação. Uma palavra AB de dois bits de um contador é empregada na seleção de qual porta será liberada. Se a pala-

vra AB for 11, a porta 4 estará livre e a entrada passará por ela. As outras três portas estarão inibidas nesse mesmo instante.

O distribuidor de dados da figura 15-12 está sendo usado como conversor série/paralelo. Esta é uma aplicacão típica de um circuito demultiplexador. Uma palavra seriada é aplicada à entrada. Enquanto ocorrem os bits de entrada, o contador de dois bits é incrementado. Isto fará as portas do distribuidor serem liberadas uma a cada vez, següencialmente de cima para baixo. A entrada para o contador de dois bits está sincronizada com a ocorrência dos bits na palavra série.

O registrador armazenador com os flip-flops WXYZ está em reset antes da aplicação da entrada série. Os flipflops do registrador são ligados à saída do distribuidor de dados e sequencialmente colocados em set ou reset enquanto ocorre a palavra seriada. Uma vez que cada uma das quatro portas está sendo liberada em sequência, o registrador contém a palavra série de entrada. Suas saídas podem então ser observadas simultaneamente. A palavra série de entrada foi convertida em uma palavra paralela na saida.

A figura 16-12 mostra as formas de onda para o circuito da figura 15-12. A entrada é o número série 1101. As for-

Multiplexador de quatro entradas usado como conversor paralelo série

mas de onda mostra as saidas das portas 1 a 4 e as saídas dos flip-flops WXYZ. O primeiro bit da entrada série é 1 binário. Ele ocorre durante a sequência de entrada AB. Nesse instante a porta 1 está livre e, já que a entrada é 1 binário, sua saída deverá ir para 0. Isto colocará em set o flip-flop W, fazendo com que sua saida seja alta. A seleção AB é a próxima da següência. Note que esta é sincronizada com a próxima entrada, que é também 1 binário. Este estado de entrada fará a porta 2 ser liberada. Uma vez que o sinal de entrada é 1

Multiplexador de oito entradas usado para gerar a palavra binária série 10011010

Multiplexador usado como gerador de funções booleanas de soma de produtos

binário nesse momento, a saida da porta 2 vai para 0, consequentemente colocando o flip-flop X em set. A saida X vai para 1. Na próxima entrada selecionada da sequência, AB, a palavra série de entrada é 0. A porta 3 será liberada. A entrada é 0 binário, nesse momento, de modo que a saida da porta 3 permanece alta. A seleção AB de entra-

entrada de dados	portas	saida
D0	1	ABC
D1	2	ABC
D2	3	ABC
D3	4	ABC
D4	5	ABC
D5	6	ABC
D6	7	ABC
D7	8	ABC

entrada		said	las
	A	В	C
0	0	Ô	0
1	0	0	1
2	0	1	1
3	0	1	0
4	1	1	0
5	1	1	1
6	1	0	1
7	1	0	0

Demultiplexador de duas saídas

de dados. A figura 17-12 mostra como um decodificador 7442 BCD para decimal pode ser empregado como distribuidor de dados de oito saídas. Quando este circuito é utilizado como demultiplexador, as entradas A, B e C são usadas para selecionar a saída desejada. Estas três entradas deverão liberar uma das portas, de 1 a 8. A entrada de dados é aplicada à entrada D do circuito. Note que a entrada de dados é invertida pelo inversor 17 e depois aplicada às portas. Os dados aparecerão na saída da porta selecionada pela palavra

estiverem simultaneamente baixas, as saidas serão:

a. A0 = 1; A1 = 0; A2 = 1

b. A0 = 0; A1 = 1; A2 = 1

c. A0 = 0; A1 = 1; A2 = 0

d. A0 = 0; A1 = 0; A2 = 0

4 — Qual das seguintes definições melhor descreve um multiplexador digital?

a. um circuito que pode passar uma única entrada a uma das diversas saidas.

b. um circuito que reconhece um código específico de entrada.

c. um circuito que liga uma das diversas entradas a qualquer das diversas saidas.

d. um circuito que liga uma das diversas entradas a uma única saída.

5 - Qual código binário deve ser aplicado às entradas seletoras de dados (ABC) do multiplexador de 8 entradas da figura 10-12 (A = LSB) para permitir que o dado de entrada D3 seja conectado à saida?

a. 001

b. 101

c. 011

d. 110

6 — Qual palavra binária série será gerada pelo circuito multiplexador da figura 13-12?

Um demultiplexador de quatro saídas usado como conversor série paralelo.

da é a próxima. A porta 4 é liberada e. com a entrada 1 binário, sua saída é baixa. Isto coloca em set o flip-flop Z, fazendo com que sua saída vá a 1. Olhando os estados dos flip-flops após a ocorrência do quarto bit da entrada série, nota-se que a saída paralela 1101 está disponível. Observe que todas as entradas de reset para os flipflops do registrador estão ligadas conjuntamente para formar uma linha de reset comum. Antes da aplicação da entrada série, um sinal de nível baixo é aplicado à entrada de reset para limpar o registrador, deixando-o em 0000.

Uma olhada atenta ao circuito distribuidor de dados da figura 15-12 mostra que ele é essencialmente um decodificador, onde as portas decodificadoras têm todas uma entrada comum. Devido a essa configuração particular, um circuito decodificador MSI comum poderá ser utilizado como distribuidor

de três bits ABC. Por exemplo, se o estado de entrada for 000, a porta 1 será liberada. O dado aplicado à entrada D aparecerá na saída da porta 1. Nesta aplicação as portas 9 e 10 do decodificador não são usadas.

Pequeno teste de revisão

1 — Se as entradas 2 e 4 do codificador mostrado na figura 2-12 forem colocadas em 0 ao mesmo tempo, o código de saída será:

a. 0010

b. 0100

c. 0110

d. 1001

2 — Desenhe o diagrama lógico de um codificador para gerar o código Gray binário de 3 bits dado na tabela B. Use circuitos NE positivo/NOU negativo.

3 — Se as linhas de entrada 2, 4 e 5 do codificador de prioridade da figura 3-12

Formas de onda de uma conversão série paralelo com um multiplexador

Um decodificador 7442 usado como distribuidor de dados com 8 saídas

Codificador de código Gray, resposta da questão 2 do teste.

7 — Qual função booleana será gerada pelo circuito multiplexador da figura 12-12?

8 — Um outro nome dado ao multiplexador é

9 - Um outro nome dado ao demultiplexador é_

10 - Uma aplicação típica do multiplexador é

11 - Na figura 15-12, se A está em set e B em reset, e a entrada é 1 binário, a estará liberada e o flipporta___ flop_ estará em ____ binário. 12 - Na figura 17-12, qual código de

entrada (CBA) deve ser aplicado para conectar a entrada à saida da porta 6? a. 010

b. 011

c. 101

d. 110

Respostas

1. (c) 0110 — As saidas das portas 2 e 3 irão para 1 quando as entradas 2 e 4 forem para 0. Nesse circuito, quando duas ou mais entradas são ativadas ao mesmo tempo, o código de saída é aquele produzido pela reunião das entradas isoladas numa função OU.

2. Vide figura 18-12.

3. (c) AO = 0; A1 = 1; A2 = 0 — O código de saída será 101 ou 5, que tem a maior prioridade das três entradas.

4. (d) Um circuito que liga uma das diversas entradas a uma única saída. 5. (d) ABC = 110 ou CBA = 011 = 3.

6. 01001011 (D0 a D7). Enquanto os estados ABC selecionados na entrada passam de 000 a 111, as entradas D0 a D7 deverão ser liberadas sequencialmente para produzir uma palavra binária série que é função dos estados da entrada.

 $7 - M = \overline{A}\overline{B}\overline{C} + AB\overline{C} + \overline{A}\overline{B}C + \overline{A}BC$. As entradas binárias 1 são aplicadas às entradas de dados D0, D3, D4 e D6. Estas são ligadas às portas 1, 4, 5 e 7, respectivamente, que de acordo com a tabela A geram os produtos ĀBC, ABC,

ABC. ABC.

8. selecionador de dados.

9. distribuidor de dados.

10. conversão série/paralelo.

11. 3, Y, 1.

12. (c) 101.

GIRSO DE SEMIGONDUTORES

25ª LIÇÃO

Aplicações dos circuitos integrados

Os circuitos integrados podem se dividir em duas categorias gerais. Classificam-se em CIs digitais e CIs lineares. Nesta lição, que conclui o capítulo dedicado aos circuitos integrados, examinaremos alguns exemplos típicos de aplicação de ambos os grupos.

Os circuitos integrados digitais são simplesmente circuitos de comutação que manipulam informações e destinam-se ao uso em vários tipos de circuitos lógicos e computadores digitais. Os Cls lineares fornecem um sinal de saída proporcional ao sinal de entrada a eles aplicado. São amplamente usados para prover funções como amplificação e regulação. É fácil encontrá-los em aparelhos de TV, receptores de FM. fontes de alimentação eletrônicas e em diversos tipos de equipamentos de comunicações.

Como é realmente impossível considerar todas as possibilidades de aplicação dos Cls lineares e digitais, ficaremos com o estudo de alguns exemplos mais comuns. Começaremos pelos digitais, para depois nos dedicarmos aos lineares.

Cls digitais

A maior parte dos circuitos integrados em uso atualmente é digital. Estes dispositivos são muito empregados em computadores digitais e calculadoras eletrônicas portáteis, no desempenho de várias funções aritméticas e decisões executivas. Os Cls digitais são produzidos tanto usando a técnica bipolar de construção, quanto a técnica MOS. Seus circuitos podem ser muito simples ou extremamente complexos e assim são oferecidos nos níveis SSI. MSI e LSI.

Um tipico CI digital formado com o uso de técnicas bipolares de construção ilustra a figura 1-25. Um diagrama esquemático deste CI é mostrado na figura 1-25A. Note que apenas transistores, diodos e resistores, são usados no circuito e uma vez que ele contém apenas 11 componentes, é classificado como um circuito SSI. Neste circuito os transistores são os elementos chave, e devido à maneira singular como estão ligados, o circuito é comumente denominado circuito de lógica transistor-transistor(TTL).

O circuito TTL da figura 1-25A desempenha uma importante função lógica. É capaz de comparar dois niveis de tensão de entrada, os quais devem ser iguais a 0 ou aproximadamente 3 volts, e fornecer um nivel de tensão na saida (0 ou 3 V) dependente da combinação de entrada. O circuito faz o que é comumente chamado de função NE e, portanto, recebe a designação de porta NE, uma vez que produz chaveamento ou comutação entre dois ni-

veis de tensão. A porta NE, como todos os circuitos digitais, é capaz de reconhecer somente dois niveis de tensão (às vezes chamados de niveis lógicos) em cada uma de suas entradas. Ao invés de referir-se às tensões especificas envolvidas (que podem variar com diferentes tipos de circuitos digitais), é prática comum designá-las como umnível lógico alto (1) e um nvel lógico baixo (0). Um circuito digital pode ser tomado, portanto, como um dispositivo que responde a vários níveis lógicos altos e baixos (1 ou 0), e as tensões reais envolvidas podem ser ignoradas. A tabela da figura 1-25B mostra os niveis de saida produzidos pela porta NE quando todas as combinações possíveis (apenas 4 no caso) de níveis de entrada foram efetuadas. A porta NE é capaz. portanto, de tomar uma decisão simples baseada nas combinações de niveis lógicos em suas entradas e fornecer um nível lógico de saida especifico para cada combinação.

Uma vez que muitos milhares de portas NE são usadas em computadores digitais e outros sistemas digitais complexos, não é prático desenhar o circuito inteiro a cada vez que ele é mostrado em um esquema. Assim sendo, a porta NE é usualmente representada pelo símbolo mostrado na figura 1-25C. Note que apenas as duas entradas e a saída do circuito são representadas.

É comum construir não um, mas quatro destes circuitos de porta NE numa única pastilha, usando técnicas bipolares, e montá-la num só encapsulamento. Tanto as cápsulas DIP como as flat-pack são largamente usadas nos CIs desse tipo. O perfil de uma típica cápsula em linha dupla é apresentada na figura 1-25D. Este perfil ilustra como as várias portas NE são internamente conectadas aos terminais da cápsula. Observe que ela possui 14 pinos (terminais), que estão numerados consecutivamente no sentido anti-horário. A cápsula também apresenta um chanfro numa das extremidades, que serve como chave para ajudar a localização do pino 1. Note que os pinos 1 e 2 servem como entradas a uma porta e o pino 3 provê a conexão de saida. A alimentação é simultaneamente aplicada a todos os quatro circuitos através dos pinos 14 e 7.

O perfil da cápsula mostrado na figura 1-25D é típico daqueles fornecidos pelos fabricantes de CI em seus folhetos de especificações. Eles podem ainda oferecer um esquema do circuito envolvido e, é claro, sempre providenciarão suas características elétricas mais importantes. Em muitos casos, o projetista do circuito ou

engenheiro está mais interessado no que o circuito pode fazer e menos interessado em como ele o faz ou como é construído. Em conseqüência, os manuais de especificações estão sujeitos a conter mais informações mecânicas e elétricas que se relacionem ao desempenho geral do CI e muito menos informação relatando sua construção interna.

Um exemplo típico de um CI formado pelo uso de técnicas MOS de construção é apresentado na figura 2-25. Este circuito utiliza uma das mais novas e avançadas técnicas de fabricação. Contém transistores MOSFET de modo de crescimento em ambos os canais, P e N, e é comumente indi-

cado como um semicondutor MOS complementar/simétrico ou simplesmente um CI CMOS. Os circuitos CMOS que contêm MOSFETs de canal P e canal N são bastante utilizados atualmente porque apresentam muitas vantagens sobre outros tipos de circuitos digitais. Consomem menos potência e possuem boa estabilidade térmica. Podem operar numa ampla faixa de tensões de alimentação (tipicamente 3 a 15 volts), em comparação aos circuitos TTL que requerem uma precisa fonte de 5 V. Os circuitos CMOS também apresentam uma elevada resistência de entrada. que torna possível conectar um grande número de entradas a uma única sa1da sem carregá-la e sem romper a operação do circuito. Esta é uma vantagem extremamente importante nos equipamentos digitais onde milhares de circuitos são usados.

O circuito mostrado na figura 2-25A contém quatro MOSFETs que estão interligados de modo que desempenhem uma função lógica útil. O circuito resultante é denominado porta NOU, e como a porta NE anteriormente descrita, é um bloco fundamental usado na construção de circuitos lógicos complexos. Entretanto, a porta NOU responde diferentemente a várias combinações de niveis de tensão na entrada. Os niveis de saida (1 ou 0) produzidos pela porta NOU para todas as combinações possíveis de níveis de entrada são mostrados na tabela da figura 2-25B.

O símbolo da porta NOU é indicado na figura 2-25C. Este símbolo é geralmente empregado em lugar do esquema real. Quatro destas portas NOU são geralmente formadas numa mesma pastilha semicondutora e montadas numa única cápsula integrada. Um desenho com o perfil de um DIP típico, que contém quatro portas NOU, é mostrado na figura 2-25D.

Tanto os circuitos TTL como os CMOS podem ser usados para desempenhar as funções NE e NOU e várias outras funções lógicas que devem ser realizadas em um sistema digital altamente complexo. Os CIs mostrados nas figuras 1-25 e 2-25 são, assim, típicos de circuitos SSI usados em equipamentos digitais. Tais circuitos podem ser tomados como blocos básicos utilizados para construir sistemas digitais complexos que desempenham operações úteis.

CIs lineares

Como foi dito anteriormente, os circuitos lineares fornecem saídas proporcionais a suas entradas. Eles não comutam entre dois estados, como os circuitos digitais. Os mais populares circuitos lineares são os tipos projetados para amplificar tensões CA e CC. De fato, um circuito amplifi-

Um CI digital CMOS

cador de alto desempenho, conhecido como *amplificador operacional*, é amplamente empregado em diversos tipos de equipamentos eletrônicos.

O amplificador operacional pode amplificar tensões alternadas ou contínuas e apresenta um ganho extremamente elevado. Pode ser construido com componentes discretos, mas é mais comumente produzido na forma de CI e, portanto, é vendido como uma cápsula completa projetada para reunir certas especificações. Porém, o amplificador operacional é elaborado de modo a ser usado em várias aplicações. Seu ganho (capacidade de amplificação) pode ser controlado pelo uso de componentes externos adicionais e ele possui usualmente características próprias que possibilitam ajustar sua operação de vários modos.

Um tipico circuito de amplificador operacional pode ser visto na figura 3-25A. O circuito contém transistores, resistores e capacitores interligados para formar um circuito amplificador altamente eficiente. Este apresenta duas entradas e uma saída, como se vê. Uma entrada é comumente referida como entrada não-inversora (+) e a outra é denominada entrada inversora (-). O circuito amplifica tanto sinais continuos como alternados, aplicados à sua entrada. Todavia, os sinais aplicados à entrada (+) não são invertidos quando aparecem na saida. Em outras palavras, quando a tensão de entrada é negativa ou positiva, a saida corresponde sendo negativa ou positiva, respectivamente. Quando um sinal é injetado na entrada inversora

(–), acontece a inversão. Ou seja, a polaridade da tensão de saída é sempre oposta à do sinal de entrada. Essa propriedade única aumenta grandemente a versatilidade do circuito.

Quando a tensão de entrada é igual a zero, a tensão de saida deve também ser igual a zero. No entanto, na prática a tensão de saída deve ser compensada numa pequena quantidade, uma vez que as tolerâncias dos componentes tornam impossível construir um circuito perfeitamente balanceado. Em consequência, dois terminais de compensação, denominados offset null, são fornecidos de modo que o circuito possa ser adequadamente balanceado. Isto se faz simplesmente conectando os terminais opostos de um potenciômetro aos terminais de offset null, e o terminal central ao terra do circuito. O potenciômetro deve então ser ajustado para balancear o circuito.

A alimentação é aplicada ao amplificador operacional através dos terminais V + e V - . O circuito requer, portanto, uma fonte de tensão positiva e uma fonte de tensão negativa. A maior parte dos amp op pode operar numa faixa razoável de tensões de alimentação, mas estas tensões nunca devem exceder os limites máximos indicados pelo fabricante. Os amplificadores operacionais também consomem muito pouca potência. A maioria das unidades apresenta valores máximos de dissipação de potência de 500 miliwatts ou menos.

O amp op possui uma resistência de entrada extremamente alta, mas sua resistência de saída é muito baixa. O dispositivo apresenta ainda um ganho de tensão muitissimo elevado. Muitos modelos amplificam garantidamente uma tensão de entrada pelo menos 15000 ou 20000 vezes e algumas dessas unidades possuem ganhos tipicos que excedem várias centenas de milhar ou mesmo mais de um milhão.

Em muitos casos, os amplificadores operacionais não são usados sozinhos e suas capacidades totais de amplificação não são aproveitadas. Ao invés disso, é comum conectar componentes externos ao amplificador de modo que ele permita a uma pequena porção do sinal de saída retornar à entrada e controlar o ganho total do circuito. Um ganho menor é obtido dessa maneira, mas a operação torna-se mais estável e previsível.

O operacional é normalmente representado pelo símbolo mostrado na figura 3-25B. Note que as entradas (+) e (-) estão identificadas no símbolo. O circuito amplificador operacional é geralmente encapsulado de vários modos para adequar-se a uma larga faixa de aplicações. Por exemplo, o circuito da figura 3-25A é encontrado no encapsulamento em linha dupla (DIP) da figura 3-25C ou no encapsulamento metálico da figura 3-25D. E está disponível ainda em mini DIPs, como o da figura 3-25E.

Os amplificadores operacionais são empregados em vários tipos de equipamentos eletrônicos. São os mais importantes componentes usados em computadores eletrônicos analógicos, devido às suas caracte-

Anunciantes deste número

	22
BARTO	 32
BRASITONE	
CE1	 61
CETEISA-ATLAS	
COMERCIAL BEZERRA	 19
CASA STRAUCH	
	 27
ELETRÔNICA RADAR	 53
LEADER	 13
N.S. DOBRASIL	 21
PHILIPS	 69
RADIO SHOP	 78 79 80 81 100
TV-PECAS	 51
NOVIK	2ª CAPA
	3: CAPA
	4º CAPA
BRAVOX	 4.ª CAPA

rísticas lineares que podem implementar operações de soma e multiplicação. Quando usados em computadores analógicos, as tensões são utilizadas para representar (são análogas às) as quantidades reais a serem multiplicadas ou somadas. Os Cls de amplificadores operacionais, por seu tamanho reduzido, são adequados ao uso em equipamentos eletrônicos portáteis em que o tamanho e o consumo de potência deve reduzir-se ao mínimo. Também são apropriados à aplicação em instrumentos de teste e em equipamentos de comunicações.

Vários tipos de circuitos reguladores de tensão são também construidos na forma de circuito integrado. Esses dispositivos lineares são usados para converter uma tensão continua não-regulada (obtida por retificação de CA) em tensões de saida requladas que se mantêm essencialmente constantes enquanto fornecem uma ampla gama de correntes de saída. Estes reguladores de tensão integrados têm substituído muito dos requladores com componentes discretos que já foram bastante utilizados. Alguns CIs reguladores oferecem apenas uma tensão de saida fixa, mas outros tipos disponíveis apresentam saidas ajustáveis.

Tipos especiais de Cls lineares também são projetados para aplicacões específicas. Por exemplo, Cls lineares especiais são elaborados para o uso em receptores de FM, onde são empregados para detectar sinais de FM. Alguns CIs são designados para o uso em receptores de TV a cores de estado sólido, onde são usados para detectar, processar e controlar automaticamente os sinais de croma (cor). Outros são utilizados para prover operações extremamente simples tais como a geração de um sinal para operar uma lâmpada, ou algum outro indicador, quando um receptor de FM ou de TV está sintonizado corretamente. Alguns Cls lineares são ainda usados como interface, ou interligação, entre circuitos digitais quando informações digitais devem ser transmitidas sobre uma longa linha de transmissão. Tais dispositivos são comumente chamados de comandos de receptores de linha e são empregados em sistemas digitais embora sejam basicamente dispositivos lineares.

Pequeno teste de revisão

1 — Os circuitos integrados podem ser classificados de modo geral em ___

2		0	CI	mo	ost	rado	na	fig	ura	1-25A	é
C	om	un	ner	nte	de	nom	ina	do	por	ta	

3 — Como todos os circuitos digitais, o circuito da figura 1-25A responde a apenas

níveis de tensão de entrada.

4 — Os níveis de tensão usados em um sistema digital são comumente denominados e

ou níveis lógicos _____

5 — A alimentação deve ser aplicada ao Cl da figura 1-25D através dos pinos e

6 — O Cl digital da figura 2-25A utiliza

tanto de canal N como de canal P.

7 — O circuito da figura 2-25A e normalmente chamado de porta _____

8 — Um CI digital CMOS geralmente apresenta uma ______ de entrada maior que um CI digital

9 — Um circuito linear fornece uma saida _____ a sua entrada.

10 — Um dos CIs lineares mais populares é o ______.

11 — Quando um sinal alternado é aplicado à entrada (-) do circuito mostrado na figura 3-25A, ele aparece

na saida.

12 — O encapsulamento de CI ilustrado na figura 3-25E é comumente chamado de

13 — Fontes negativa e positiva devem ser aplicadas à capsula integrada da figura 3-25C, através do pinos ____

respectivamente.

Respostas

- 1. digitais e lineares
- 2. NE
- 3. dois
- 4. alto e baixo, ou 1 e 0
- 5. 14 e 7
- 6. MOSFETs
- 7. NOU
- 8. resistência
- 9. proporcional
- 10. amplificador operacional

+

- 11. invertido
- 12. mini DIP
- 13.11 e 6

FONTE PX

Fornece uma tensão de saída de 12 a 14 V estabilizada, uma corrente de 5A, apresentando pouquíssimo ripple, de montagem facílima, possui poucos componentes.

Ideal para operar transceptores na faixa do cidadão, ou para aqueles que prefiram «curtir» o som do toca-fitas em casa.

KITS NOVA ELETRÔNICA para amadores e profissionais

À VENDA: NA FILCRES E REPRESENTANTES

GERADOR DE FUNÇÕES

Especificações técnicas: faixa de freqüência, 0,1 Hz a 100 KHz; formas de onda: senoidal, quadrada, triangular, dente de serra, pulsos; nível de saída, até 5 VCC; corrente, até 50 mA; impedância de saída, 50 ohms (protegida contra curto-circuito); variação, 1 dB; distorção de senóide, menor que 1% de 20 a 20 KHz.

Tempo de subida onda quadrada e pulso: 0,25 us; precisão de ajustes de freqüência, 1%.

Aplicações: no levantamento de curvas de resposta, curvas de distorção em áudio, na localização de estágios defeituosos para os técnicos em reparação, como gerador de pulsos ou onda quadrada na análise de circuitos digitais, etc.

KITS NOVA ELETRÔNICA para amadores e profissionais

À VENDA: NA FILCRES E REPRESENTANTES

Com potencia real de 82 Watts RMS (120 IHF), indicada e controlada através de VU meter especial, estéreo, o SPA-80 incorpora recursos que além de proporcionarem maior potência e melhor som em qualquer nível de volume, ainda consome menor energia da bateria - mesmo quando o motor do veiculo estiver desligado. Chave reversora de canais e controles independentes de graves e agudos, completam sua tremenda versatilidade

