MoskaliovYV 26012025-091947

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 1 на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 3.7 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 3.1 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 2.6 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 3.1 дБ, подключённый к плечу 1.

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.16 + 0.69\mathrm{i}$.

Найти модуль (в д \mathbb{B}) коэффициента передачи s_{21} .

- 1) -1.5 дБ
- 2) -0.5 дБ
- 3) -6.1 дБ
- 4) -3 дБ

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=2.2~\Gamma\Gamma$ ц и $f_{\rm B}=2.7~\Gamma\Gamma$ ц, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 0.9 дБ
- 2) 1.2 дБ
- 3) 0.4 дБ
- 4) 0.6 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 4 – Различные реализаци и Г-образной цепи согласования

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом:

$$s_{21} = -8.9 \text{ дБ}.$$

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $1.7~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.2 mB_T
- 2) 0.8 мBт
- 3) 1.3 MBT
- 4) 0.2 мBт