Chapter 7

Probability.

Definition 7.0.1. A probability space defined by a tuple (Ω, P) such that:

- 1. Ω is a set, called the sample space. Any element $\omega \in \Omega$ is named an atomic event. Conceptually, we think of atomic events as possible outcomes of our experiment. Any subset $A \subset \Omega$ is an event.
- 2. P, called the probability function, is a function that assigns a number in [0,1] to any event, denoted as $P: 2^{\Omega} \to [0,1]$, and satisfies:
 - (a) For any event $A\subset \Omega$, $P(A)=\sum_{w\in A}P(w)$.
 - (b) Normalization, over the atomic events, to 1, which means $\sum_{\omega \in \Omega} P(\omega) = 1$

Example 7.0.1.

```
Result: Sorting A_1, A_2, ...A_n

1 for i \in [n] do

2 | for j \in [n] do

3 | if A_i < A_j then

4 | swap A_i \leftrightarrow A_j

5 | end

6 | end

7 end
```

Algorithm 1: "ICan'tBelieveItCanSort" alg.