Pseudorandom Correlation Generators

Yuval Ishai

Technion

Mostly based on works with Elette Boyle, Geoffroy Couteau, Niv Gilboa, Lisa Kohl, and Peter Scholl

oo Road Map IKNP, Crypto 2003 "Extending Oblivious Transfers Efficiently" OT Factory **Extending** OT's Extending primitives Reductions Cryptographic primitives

Background and Motivation

Secure (2-Party) Computation

[Yao86,GMW87]

Learn f(x, y) and **nothing else** about x, y

Secure Computation Paradigms

2 semi-honest parties

Garbled Circuits

[Yao 86,...]

Linear Secret Sharing

[Goldreich-Micali-Wigderson 87, ...]

Fully Homomorphic Encryption [Gentry 09,...]

Secure Computation Paradigms

2 semi-honest parties

[Yao 86,...]

Linear Secret Sharing

[Goldreich-Micali-Wigderson 87, ...]

Function Secret Sharing

new

Fully Homomorphic Encryption [Gentry 09,...]

Homomorphic Secret Sharing [Boyle-Gilboa-I 15,...]

Share x_1 Eval_f y_1 + f(x)

Current HSS Worlds

```
"Homomorphia"
    – LWE+
                                       [DHRW16, BGI15, BGILT18]
                 Circuits
"Cryptomania"
    – DDH
                 Branching Programs
                                       [BGI16, BCGIO17, DKK18]
    Paillier
                 Branching Programs
                                       [FGJS17, OSY21, RS21]
    – LWE
                 Branching Programs
                                       [BKS19]
"Lapland"
                 Low-degree
                 polynomials
    - LPN
                                       [BCGI18,BCGIKS19,BCGIKS20,CM21]
"Minicrypt"
                 Point Functions
    - OWF
                                       [GI14, BGI15, BGI16]
                 Intervals
                 Decision Trees
"Algorithmica"
```

[Ben86]

None

Linear Functions

Challenge

Honest-majority 3PC [BGW88, CCD88, ALFNO16]

Dream goal for 2PC

Same?

FHE / HSS: heavy computation

Yao / GMW+ OT extension: heavy communication

Meeting challenge using correlated randomness

[Beaver '91]

[Bea95, Bea97, IPS08, BDOZ11, BIKW12, NNOB12, DPSZ12, IKMOP13, DZ13, DLT14, BIKK14, LOS14, FKOS15, DZ16, KOS16, DNNR17, Cou19, BGI19, BNO19, CG20, BGIN21,...]

Meeting challenge without correlated randomness?

Pseudorandom Correlation Generator (PCG)

[Boyle-Couteau-Gilboa-18, BCGI-Kohl-Scholl19]

Secure Computation with Silent Preprocessing

- Total communication & online computation meet challenge
 - Fast Expand → fully meet challenge!
- Malicious security with vanishing amortized cost

Secure Computation with Silent Preprocessing

- ✓ Ad-hoc future interactions
- √ Hiding communication pattern
- ✓ Hiding future plans

Concrete cost of setup: Peter's talk tomorrow

Secure Computation with Silent Preprocessing

Phase 1:

cheap PCG seed setup protocol

Phase 2:

silent seed expansion

Phase 3:

fast, "non-cryptographic"

online

offline

Non-cryptographic online phase?

- Know it when you see it...
- Efficiency: asymptotic and concrete
- "Indistinguishable from info-theoretic"

Main difference from Laconic SFE [QuachWeeWichs 18]

Definitions

PCG Security Definition: Take I

• Real = $(k_0, \text{Expand}(k_1)) \approx (\text{Sim}(R_0), R_1) = \text{Ideal}$

Securely realizing ideal correlation functionality (R_0, R_1)

Good for all applications

Not realizable even for simple correlations

PCG Security Definition: Take II

- Real = $(k_0, \operatorname{Expand}(k_1)) \approx (\operatorname{Sim}(R_0), R_1) = \operatorname{Ideal}$
- Real = $(k_0, \text{Expand}(k_1)) \approx (k_0, [R_1 \mid R_0 = \text{Expand}(k_0)])$

Securely realizing "corruptible" target correlation

Good for natural applications

Realizable for useful correlations

PCG protocol

Naturally extends to n parties

- Combines Setup + Expand
- Sublinear-communication protocol for corruptible version of (R_0, R_1)

Correlations

Useful target correlations: 3+ parties

Linear n-party correlations

 $(R_1, ..., R_n) \in_R$ Linear space V N x deg-t Shamir of random secret N x additive shares of 0

VSS, honest-majority MPC Proactive secret sharing Secure sum / aggregation

Useful target correlations: 3+ parties

Linear n-party correlations

 $(R_0, ..., R_n) \in_R$ Linear space V N x deg-t Shamir of random secret N x additive shares of 0

VSS, honest-majority MPC Proactive secret sharing Secure sum / aggregation

Useful target correlations: 2+ parties

Oblivious transfer (OT)

$$N \times (s_0, s_1) \Leftrightarrow (c, s_c)$$

2PC of Boolean circuits
GMW-style, semi-honest:
2 x bit-OT + 4 comm. bits per AND

Oblivious Linearfunction Evaluation N x (a,b) ←
(OLE), mult. triples

$$N \times (a,b) \leftarrow OLE \Rightarrow (x,ax+b)$$

2PC of Arithmetic circuits
GMW-style, semi-honest:
2 x OLE + 4 ring elements per MULT

Vector OLE (VOLE)

2PC of scalar-vector product ZK, batch-OPRF, PSI, ... (Yesterday - Peter's talks)

Useful target correlations: 2+ parties

Authenticated Multiplication Triples

([a_i],[b_i],[c_i], [
$$\alpha$$
a_i],[α b_i],[α c_i])
c_i=a_ib_i

2PC of Arithmetic circuits SPDZ-style, malicious

Truth-Table

Randomly shifted, secret-shared TT

2PC of "unstructured" functions

Additive

$$R0+R1=R$$

Generalizes the above

State of the Art

Current PCG Feasibility Landscape

"Obfustopia"	iO	General [HW15, HIJKR16]
"Homomorphia"	LWE+	Additive [DHRW16, BCGIKS19]
"Cryptomania"	DDH,DCR	Low-depth [BGI16, BCGIO17, OSY21]
"Lapland"	LPN Ring-LPN VD-LPN	VOLE, OT [BCGI18, BCGIKS19] OLE, (Auth.) Triples [BCGIKS20a] PCF for VOLE, OT [BCGIKS20b]
"Minicrypt"	PRG	Linear [GI99, CDI05, BBGHIN21] Truth table [BCGIKS19]

Current PCG Feasibility Landscape

"Obfustopia"	iO	General [HWI5, HIJKRI6]
"Homomorphia"	LWE+	Additive [DHRW16, BCGIKS19]
"Cryptomania"	DDH,DCR	Low-depth [BGI16, BCGIO17, OSY21]
"Lapland"	LPN Ring-LPN VD-LPN	Constant-degree additive (poly(N) expansion time)
"Minicrypt"	PRG	Linear [GI99, CDI05, BBGHIN21] Truth table [BCGIKS19]

Good concrete efficiency?

Generic Construction from HSS

Additive Correlation

Additive shares

Homomorphic Secret Sharing (HSS)

[Benaloh86, Boyle-Gilboa-Ishai I 6]

HSS ⇒ PCG for Additive Correlations

Sampling function f:

PCGs in Minicrypt

Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Replicated, independent field elements

Linear target correlation

Local, linear mapping

Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Replicated, independent PRG seeds

Local, linear mapping

Additive Shares of 0

 $r_i = \Sigma \text{ inbox}_i - \Sigma \text{ outbox}_i$

Degree-d Shamir Shares

 $\binom{n}{d}$ replicated elements each given to n-d parties

Concrete efficiency: n=7, d=3, $N=10^6$

Generalized PRSS from Covering Designs

[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

- Goal: avoid $\binom{n}{d}$ overhead when security threshold t < degree d
 - O(n) share size for constant t regardless of degree
 - Application: Efficient MPC with share packing
- Construction from covering designs
 - (n, m, t)-cover: m-subsets of [n] covering all t-subsets
 - (n, d+1, t)-cover of size $k \rightarrow PRSS$ with k(n-d)(d+1) storage
 - Tight up to a (d+I) factor

Generalized PRSS from Covering Designs

[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

(n, m, t)	Baseline	Best known	Lower bound	CDI seeds	PRSS seeds
	cover size	cover size	cover size	per party	per party
(9, 3, 1)	3	3	3	8	7
(15, 5, 1)	3	3	3	14	11
(15, 5, 2)	49	13	13	91	48
(48, 16, 1)	3	3	3	47	33
(48, 16, 2)	15	13	13	1081	143
(48, 16, 4)	495	252	173	178365	2772
(48, 20, 4)	490	87	60	178365	1052
(48, 20, 6)	5168	1280	459	$1.07 \cdot 10^6$	15467
(49, 24, 2)	31	7	7	1128	90
(49, 24, 4)	245	38	31	194580	484
(49, 24, 8)	12219	4498	968	$3.7 \cdot 10^{8}$	57281
(72, 24, 2)	15	12	12	2485	196
(72, 24, 4)	495	180	126	971635	2940
(72, 24, 6)	18564	4998	1419	$1.4 \cdot 10^8$	81634

2-Party PCG in Minicrypt: Truth-Table Correlation [BCGIKS19]

- Truth-table correlation for g: additive sharing of $\left(\mathrm{TT}_g \ll \mathrm{r,r}\right)$
 - Authenticate via a random multiplier for malicious security
- Recall: DPF = FSS for a point function $f_{a,b}: [N] \to \mathbb{G}$
 - a = r, b = 1, give PCG for additive shares of random unit vector e_r
 - Convert to TT correlation via matrix-vector multiplication
 - Matrix is circulant \rightarrow (offline) Expand time = $\tilde{O}(N)$
 - Alternatively: *locally* expand online in time O(N)
 - Authentication almost for free
- Comparison with "FSS gates" [BGI19, BCGGIKR21] (Elette's talk)
 - Works for every gate g
 - Infeasible for large input domains

Part II:

PCGs in Lapland

Learning Parity with Noise (LPN) over F [BFKL93]

(LWE with low-Hamming noise)

Parameterized by **G** & by **noise distribution**

LPN-based PCGs:Tools

Recall: **VOLE** correlation

Idea: sparse VOLE is compressible!

PCG for VOLE from LPN

[Boyle-Couteau-Gilboa-I18]

PCG for VOLE -> PCG for OT

[Boyle-Couteau-Gilboa-I-Kohl-Scholl 19, +Rindal 19]

- Use VOLE over $\mathbb{F}_{2^{\lambda}}$ ($\lambda = 128$ in practice)
 - VOLE sender = OT receiver, **b** = sender's share of **a**x
- Pick entries of a from base field, x and b from extension field
- Each bit a_i selects between b_i (known) and x+b_i (unknown)
 - For each received $c_i = a_i x + b_i$, VOLE sender knows one of $(c_i, c_i + x)$
 - Destroy correlations between unknown strings via hash function, a-la [IKNP03]

"Silent OT Extension"

PCG for degree-d correlations from LPN

Goal: generate [p(r)] for degree-d polynomial map p

- Pick a random sparse a
- Gen: Use FSS to additively share a, axa, axaxa, ..., (a)^d
- Expand: Write p(Ha) as a linear function L of shared values, and apply L to shares

Problem: poor concrete efficiency

• Even for OLE or triples, and with circulant H, takes $\Omega(N^2)$ computation

Towards PCGs for triples

• Idea: Use evaluations of sparse polynomials s, s' and $s \cdot s'$

Good news:

$$s(\alpha_i) \cdot s'(\alpha_i) = (s \cdot s')(\alpha_i)$$

Expand requires time $\tilde{O}(N)$

Bad news:

LPN broken by algebraic decoding techniques

Coefficients of secret sparse polynomial s

Arithmetic ring-LPN assumption

• Idea: Defeat algebraic decoding attacks by building on ring-LPN

```
Ring-LPN assumption: R_p = \mathbb{Z}_p[X]/F(X): (a, a \cdot e + f) \approx (a, \$) a \leftarrow R_p, \ e, f \ t-sparse in R_p F(X) splits into linear factors \Rightarrow R_p \cong \mathbb{Z}_p^N
```

Splittable ring-LPN:

- Slightly better known attacks
- Requires slightly more noise

PCG for triples from Ring-LPN

$$(a \cdot e + f) \cdot (a \cdot e' + f')$$

= $a^2 \cdot ee' + a \cdot (ef' + fe') + ff'$

- Share ee', ef', fe', ff' via FSS
- Expand via polynomial multiplication + multi-evaluation
- \Rightarrow time $\tilde{O}(N)$

Security based on (splittable) ring-LPN

Cost analysis and extensions

- Cost: for N triples over \mathbb{Z}_p
 - $O(t^2)$ DPF keys
 - $O(Nt^2)$ PRG calls + $O(N \log N)$ arithmetic operations

O(Nt) using regular noise

• Extensions:

- Extends to authenticated multiplication triples with < 2x overhead
- Matrix triples, degree-2 correlations (less efficient)
- Multi-party correlations (only non-authenticated)

Multi-party multiplication triples

- Goal: PCG for additive n-out-of-n shares of N multiplication triples
 - Online communication scales linearly with n
- Idea: Use n(n-1) instances of 2-party PCG for triples
 - Separately share each term a_ib_i
 - Requires 2-party PCG to be programmable
 - Does not work with PCG for OT, or authenticated triples
- Workarounds for authenticated triples:
 - Use 3-party DPF [Abram-Scholl22] (less efficient)
 - Use (unauthenticated) multiplication triples + fully-linear IOP [Boyle-Gilboa-l-Nof21]

Concrete efficiency: VOLE and OT

Concrete efficiency: OLE and Triples

Non-silent alternatives:

Overdrive [KPR18] Leviosa [HIVM19]

x100-x1000 communication comparable run time

Pseudorandom Correlation Functions (PCF)

[Boyle-Couteau-Gilboa-I-Kohl-Scholl20]

- Goal: securely generate correlation instances on the fly
 - Pair of correlated (weak) PRFs $(f_{k_0}(r), f_{k_1}(r))$
 - Security against insiders

- GGM-style reduction to PCG does not apply...
- PCF for VOLE from WPRF f_k and FSS:
 - Pick random key k and scalar x
 - Give k to P_0 , x to P_1
 - Use FSS to share $x \cdot f_k$
 - Challenge: use PRG-based FSS!

MPC-friendly WPRF Candidate

Best possible security: $2^{\sqrt{n}}$

[Hellerstein-Servedio07]

Secure under variable-density variant of LPN

$$f_k(x) = \bigoplus_{i=1}^D \bigoplus_{j=1}^w \bigwedge_{h=1}^i (x_{i,j,h} \oplus k_{i,j,h})$$

Sparse polynomial

Applications:

- PCF
- XOR-RKA security

input

Variable-density LPN

Public input r

Concrete efficiency: PCF

- PCFs for OT / VOLE from VDLPN (< 10⁹ instances) [BCGIKS20]
 - key size: $\approx 120 \text{kB}$ ($\approx 2 \text{MB}$ conservative)
 - evaluation: 8,000 PRG calls / instance => $\approx 20,000$ instances / second / core

- PCFs from number-theoretic assumptions [Orlandi-Scholl-Yakoubov21]
 - Public-key setup, small keys
 - Slow evaluation

Application: MPC-friendly symmetric crypto

"2-3-WPRF" candidate

[Boneh-I-Passelègue-Sahai-Wu I 8]

Secure protocol $[K],[x_i] \rightarrow [y_i]$

[Dinur-Goldfeder-Halevi-I-Kelkar-Sharma-Zaverucha 21]

output y

 $B \in \mathbb{Z}_3^{n \times \ell}$

 $K \in \mathbb{Z}_2^{n \times n}$

input x

 $n = 256, \ell = 81$

With preprocessing:

Online cost 1024 bits, 2 rounds

Using PCGs for VOLE/OT, amortized preprocessing cost: 353 bits

Main trick: converting random OT over \mathbb{Z}_3 to "double-sharing" ($[r]_{2,}[r]_3$) deterministically conditioned on OT sender's inputs being distinct.

- → 1.5n OT instances produce n double-shares
- → 1.377n bits to communicate good subset

Remaining challenges

Better PCGs

- More correlations?
 - Garbled circuits, FSS keys, ...
- Multi-party binary or authenticated triples
- Smaller seeds, faster expansion and seed generation
- Scalable PCG for Shamir-shares

Better understanding of LPN-style assumptions

- Which codes?
- Which noise patterns?

Better PCFs

The End

Questions?