PRODUIT SCALAIRE

Leçon: PRODUIT SCALAIRE

Présentation globale

- I) Le produit scalaire de deux vecteurs
- II. Produit scalaire et norme
- III. Produit scalaire et orthogonalité
- **IV) APPLICATIONS DU PRODUIT SCALAIRE**

La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand *Hermann Grassmann* (1809 ; 1877), ci-contre.

Il fut baptisé produit scalaire par *William Hamilton* (1805 ; 1865) en 1853.

I) Le produit scalaire de deux vecteurs

1° Définitions

<u>Définition1</u>: Soit \vec{u} et \vec{v} deux vecteurs du plan. Et soient \vec{A} ; \vec{B} et \vec{C} trois points du plan tel que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$

On appelle <u>produit scalaire</u> de \vec{u} par \vec{v} , noté $\vec{u}.\vec{v}$, le nombre réel définit par :

Si
$$\vec{u} = \vec{0}$$
 ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = \vec{0}$

Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ alors soit *H* le projeté orthogonal de *C* sur la droite (AB) et alors

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AH} \times \overrightarrow{AB}$$
 cad

$$\overrightarrow{u.v} = \overrightarrow{AB}.\overrightarrow{AC} = AH \times AB$$
 si \overrightarrow{AB} et \overrightarrow{AH} ont le même sens

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = -AH \times AB$$
 si \overrightarrow{AB} et \overrightarrow{AH} ont un sens contraire

Remarque:

soient A; B; C et D quatre points du plan

$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{A'B'} \times \overrightarrow{CD} = \overrightarrow{AB} \times \overrightarrow{C'D'}$$
 avec

A'; B' les projections orthogonales respectifs de A; B sur la droite $\begin{pmatrix} CD \end{pmatrix}$

Et C'; D' les projections orthogonales respectifs de C et D sur la droite $\left(AB\right)$

Application: Soit ABC un triangle rectangle et isocèle en A et direct et AB = 2cm

Calculer $\overrightarrow{AB}.\overrightarrow{AC}$ et $\overrightarrow{BA}.\overrightarrow{BC}$ et $\overrightarrow{BA}.\overrightarrow{CB}$

Réponse

On a $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AA}$ car :

A est le projeté orthogonales de A sur $\left(AB\right)$ et B est le projeté orthogonales de B

sur(AB) et A est le projeté orthogonales de C sur(AB)

donc
$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AA = AB \times 0 = 0$$

de même On a
$$\overrightarrow{BA}.\overrightarrow{BC} = BA \times BA = 2 \times 2 = 4$$

de même On a $\overrightarrow{BA}.\overrightarrow{CB} = -BA \times AB = -2 \times 2 = -4$

<u>Définition2:</u>Soit un vecteur \vec{u} et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.

La <u>norme du vecteur</u> \vec{u} , notée $||\vec{u}||$, est la distance AB.

<u>Définition3</u>: Soit \vec{u} et \vec{v} deux vecteurs du plan.

On appelle <u>produit scalaire</u> de \vec{u} par \vec{v} , noté $\vec{u}.\vec{v}$, le nombre réel définit par :

 $-\vec{u} \cdot \vec{v} = 0$, si l'un des deux vecteurs \vec{u} et \vec{v} est nul

$$-\vec{u}\cdot\vec{v} = |\vec{u}| \times |\vec{v}| \times \cos(\vec{u};\vec{v})$$
, dans le cas contraire.

 $\vec{u}.\vec{v}$ se lit " \vec{u} scalaire \vec{v} ".

Remarque:

Si \overrightarrow{AB} et \overrightarrow{AC} sont deux représentants des vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} alors :

$$\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos BAC$$

Exemple:

Soit un triangle équilatéral ABC de côté a.

$$\overrightarrow{AB}.\overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos BAC$$

$$=a\times a\times \cos\frac{\pi}{3}=a^2\times\frac{1}{2}=\frac{a^2}{2}$$

Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple $\vec{u}.\vec{v} = \vec{0}$ est une maladresse à éviter ! 2) propriétés

<u>Propriété</u>: Pour tout vecteur \vec{u} et \vec{v} , on a : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

<u>Démonstration</u>:

On suppose que \vec{u} et \vec{v} sont non nuls (démonstration évidente dans la cas contraire).

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$$

$$= \left\| \vec{v} \right\| \times \left\| \vec{u} \right\| \times \cos \left(\vec{u} ; \vec{v} \right) = \left\| \vec{v} \right\| \times \left\| \vec{u} \right\| \times \cos \left(-\left(\vec{v} ; \vec{u} \right) \right)$$

$$= \|\vec{v}\| \times \|\vec{u}\| \times \cos(\vec{v}; \vec{u}) = \vec{v}.\vec{u}$$

<u>Propriétés</u>: Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , on a:

1)
$$\vec{u}.(\vec{v}+\vec{w}) = \vec{u}.\vec{v}+\vec{u}.\vec{w}$$

2)
$$\vec{u} \cdot (k\vec{v}) = k\vec{u} \cdot \vec{v}$$
, avec k un nombre réel.

- Admis -

Propriétés : Pour tous vecteurs \vec{u} et \vec{v} , on a :

1)
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2$$

2)
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

3)
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

Démonstration pour le 2) :

$$\left(\vec{u} - \vec{v}\right)^2 = \left(\vec{u} - \vec{v}\right)\left(\vec{u} - \vec{v}\right)$$

$$=\overrightarrow{u}.\overrightarrow{u}-\overrightarrow{u}.\overrightarrow{v}-\overrightarrow{v}.\overrightarrow{u}+\overrightarrow{v}.\overrightarrow{v}$$

$$= \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

II. Produit scalaire et norme

Soit un vecteur \vec{u} , on a :

$$\vec{u}.\vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos(\vec{u}; \vec{u}) = ||\vec{u}||^2 \times \cos 0 = ||\vec{u}||^2$$

Et
$$\overrightarrow{u}.\overrightarrow{u} = \overrightarrow{u}^2$$

On a ainsi :
$$\vec{u}^2 = \vec{u}.\vec{u} = ||\vec{u}||^2$$

Propriété : Soit \vec{u} et \vec{v} deux vecteurs. On a :

$$\vec{u}.\vec{v} = \frac{1}{2} \left(\left\| \vec{u} \right\|^2 + \left\| \vec{v} \right\|^2 - \left\| \vec{u} - \vec{v} \right\|^2 \right) \text{ et } \vec{u}.\vec{v} = \frac{1}{2} \left(\left\| \vec{u} + \vec{v} \right\|^2 - \left\| \vec{u} \right\|^2 - \left\| \vec{v} \right\|^2 \right)$$

Démonstration de la première formule :

$$\left\| \vec{u} - \vec{v} \right\|^2 = \left(\vec{u} - \vec{v} \right)^2$$

$$=\vec{u}^2 - 2\vec{u}.\vec{v} + \vec{v}^2$$

$$= \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2$$

donc
$$\vec{u}.\vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Propriété : Soit A, B et C trois points du plan. On a :

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

<u>Démonstration</u>:

$$\overline{\overrightarrow{AB} \overrightarrow{AC}} = \frac{1}{2} \left(\left\| \overrightarrow{AB} \right\|^2 + \left\| \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{AB} - \overrightarrow{AC} \right\|^2 \right) = \frac{1}{2} \left(AB^2 + AC^2 - \left\| \overrightarrow{CB} \right\|^2 \right) = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)$$

Exemple:

$$\overrightarrow{CG}.\overrightarrow{CF} = \frac{1}{2}(CG^2 + CF^2 - GF^2) = \frac{1}{2}(6^2 + 7^2 - 3^2) = 38$$

III. Produit scalaire et orthogonalité

1) Vecteurs orthogonaux

<u>Propriété</u>: Les vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

<u>Démonstration</u>:

Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

$$\vec{u}.\vec{v} = 0$$

$$\Leftrightarrow ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}) = 0$$

$$\Leftrightarrow \cos(\vec{u}; \vec{v}) = 0$$

 \Leftrightarrow Les vecteurs \vec{u} et \vec{v} sont orthogonaux

Application: 1) Soit ABC un triangle tel que AB=7 et AC=5 et BC=6

- a) Calculer $\overrightarrow{BA}.\overrightarrow{AC}$ et en déduire $\overrightarrow{AB}.\overrightarrow{AC}$
- b) Soit H le projeté orthogonal de C sur la droite (AB) Calculer AH

2) sachant que
$$\|\vec{u}\| = 4$$
 et $\|\vec{v}\| = 2$ et $\vec{u}.\vec{v} = -\frac{1}{2}$

a) Calculer :
$$A = (2\vec{u} - 3\vec{v}) \cdot (\vec{u} + 2\vec{v})$$
 et $B = (\vec{u} - \vec{v}) \cdot (\vec{u} + \vec{v})$ et $C = (\vec{u} - \vec{v})^2$ et $D = (2\vec{u} + 3\vec{v})^2$

b)en déduire
$$E = \|\vec{u} - \vec{v}\|$$
 et $F = \|2\vec{u} + 3\vec{v}\|$

Réponse : 1)

a) Calcule de $\overrightarrow{BA}.\overrightarrow{AC}$

On a
$$\overrightarrow{BA}.\overrightarrow{AC} = \frac{1}{2} \left(\left\| \overrightarrow{BA} + \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{AC} \right\|^2 \right) = \frac{1}{2} \left(\left\| \overrightarrow{BC} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{AC} \right\|^2 \right)$$

$$= \frac{1}{2} \left(BC^2 - AB^2 - AC^2 \right) = \frac{1}{2} \left(6^2 - 7^2 - 5^2 \right) = -19$$

donc: $\overrightarrow{BA}.\overrightarrow{AC} = -19$

On a
$$\overrightarrow{AB}.\overrightarrow{AC} = -\overrightarrow{BA}.\overrightarrow{AC} = 19$$

b) Calcule de AH

On a
$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AH$$
 donc : $AH = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB} = \frac{19}{7}$

2) a)
$$A = (2\vec{u} - 3\vec{v}) \cdot (\vec{u} + 2\vec{v}) = 2\vec{u} \cdot \vec{u} + 4\vec{u} \cdot \vec{v} - 3\vec{u} \cdot \vec{v} - 6\vec{v} \cdot \vec{v} = 2\vec{u} \cdot \vec{u} + 4\vec{u} \cdot \vec{v} - 3\vec{u} \cdot \vec{v} - 6\vec{v} \cdot \vec{v}$$

$$A = 2\vec{u}^2 + \vec{u}\cdot\vec{v} - 6\vec{v}^2 = 2 \cdot \|\vec{u}\|^2 + \vec{u}\cdot\vec{v} - 6\|\vec{v}\|^2 = 2 \times 4^2 + \frac{1}{2} - 6 \times 2^2 = 32 + \frac{1}{2} - 24 = \frac{15}{2}$$

$$B = \left(\frac{\vec{u}}{2} - \vec{v}\right) \cdot \left(\vec{u} + \frac{\vec{v}}{2}\right) = \frac{1}{2}\vec{u} \cdot \vec{u} + \frac{1}{4}\vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{v} - \frac{1}{2}\vec{v} \cdot \vec{v}$$

$$B = \frac{1}{2} \times \|\vec{u}\|^2 - \frac{3}{4} \times \vec{u} \cdot \vec{v} - \frac{1}{2} \times \|\vec{v}\|^2 = \frac{1}{2} \times 4^2 - \frac{3}{4} \times \left(-\frac{1}{2}\right) - \frac{1}{2} \times 2^2 = 8 + \frac{3}{2} - 2 = \frac{51}{8}$$

$$C = \left(\vec{u} - \vec{v}\right)^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2 = \left\|\vec{u}\right\|^2 - 2\vec{u} \cdot \vec{v} + \left\|\vec{v}\right\|^2 = 4^2 - 2\left(-\frac{1}{2}\right) + 2^2 = 16 + 1 + 4 = 21$$

$$D = (2\vec{u} + 3\vec{v})^2 = 4\vec{u}^2 + 12\vec{u}\cdot\vec{v} + 9\vec{v}^2 = 4\|\vec{u}\|^2 + 12\vec{u}\cdot\vec{v} + 9\|\vec{v}\|^2 = 4 \times 4^2 + 12\left(-\frac{1}{2}\right) + 9 \times 2^2 = 64 - 6 + 36 = 94$$

b)
$$(\vec{u} - \vec{v})^2 = 21$$
 donc $||\vec{u} - \vec{v}||^2 = 94$ donc $||\vec{u} - \vec{v}|| = \sqrt{21}$

$$(2\vec{u} + 3\vec{v})^2 = 94$$
 donc $||2\vec{u} + 3\vec{v}||^2 = 94$ donc $||2\vec{u} + 3\vec{v}|| = \sqrt{94}$

2) Projection orthogonale

<u>Définition</u>: Soit une droite *d* et un point M du plan.

Le <u>projeté orthogonal</u> du point M sur la droite *d* est le point d'intersection H de la droite *d* avec la perpendiculaire à *d* passant par M.

<u>Propriété</u>: Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$. H est le projeté orthogonal du point B sur la droite (OA).

On a: $\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA}.\overrightarrow{OH}$

<u>Démonstration</u>:

$$\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA}.\left(\overrightarrow{OH} + \overrightarrow{HB}\right) = \overrightarrow{OA}.\overrightarrow{OH} + \overrightarrow{OA}.\overrightarrow{HB} = \overrightarrow{OA}.\overrightarrow{OH}$$

En effet, les vecteurs \overrightarrow{OA} et \overrightarrow{HB} sont orthogonaux donc $\overrightarrow{OA}.\overrightarrow{HB} = 0$.

Exemple:

Soit un carré ABCD de côté c.

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \left\| \overrightarrow{AB} \right\|^2 = c^2$$

III. APPLICATIONS DU PRODUIT SCALAIRE

1)LES RELATIONS MÉTRIQUES DANS LE TRIANGLE RECTANGLE

Le triangle ABC ci-dessous est rectangle en A et [AH] la hauteur.

Théorème : Théorème de Pythagore

si ABC est rectangle en A alors $BC^2 = AB^2 + AC^2$ (i.e. le carré de l'hypoténuse est la somme des carrés des 2 autres côtés)

Démonstration:

$$\overrightarrow{BC^2} = \overrightarrow{BC}^2 = \left(\overrightarrow{BA} + \overrightarrow{AC}\right)^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA}.\overrightarrow{AC} + \overrightarrow{AC}^2$$

ABC est rectangle en A donc $\overrightarrow{BA}.\overrightarrow{AC} = 0$

Donc $BC^2 = AB^2 + AC^2$

AUTRE RESULTATS:

 $BA^2 = BH \times BC$ ET $CA^2 = CH \times BC$ ET $AH^2 = HB \times HC$ ET $AB \times AC = AH \times BC$ Application: Soit ABC un triangle rectangle en A et H est le projeté orthogonal du

point A sur la droite (BC) et
$$AH = 2cm$$
 et $ABC = \frac{\pi}{3}$

a)On a ABH un triangle rectangle en H donc

$$\sin\left(ABC\right) = \frac{AH}{AB} \text{ Donc } AB = \frac{AH}{\sin\left(ABC\right)} = \frac{2}{\sin\left(\frac{\pi}{3}\right)} = \frac{2}{\frac{\sqrt{3}}{2}} = 2 \times \frac{2}{\sqrt{3}} = \frac{4}{3}\sqrt{3}$$

b)On a $AB^2 = AH^2 + HB^2$ car ABH un triangle rectangle en H

Donc:
$$AB^2 - AH^2 = HB^2$$
 Donc: $\left(\frac{4}{3}\sqrt{3}\right)^2 - 2^2 = HB^2$ Donc: $\frac{16}{3} - 2^2 = HB^2$ Donc: $HB^2 = \frac{4}{3}$

$$HB = \sqrt{\frac{4}{3}} = \frac{2}{3}\sqrt{3}$$

c)On a
$$BA^2 = BH \times BC$$
 Donc: $BC = \frac{BA^2}{BH}$ Donc: $BC = \frac{\left(\frac{4}{3}\sqrt{3}\right)^2}{\frac{2}{3}\sqrt{3}} = \frac{\left(\frac{4}{3}\sqrt{3}\right)^2}{\frac{2}{3}\sqrt{3}} = \frac{8}{3}\sqrt{3}$

2) Théorème d'Al Kashi

Théorème : Dans un triangle ABC, on a, avec les notations de la figure :

$$BC^2 = AB^2 + AC^2 - 2AB \times AC\cos A$$

Démonstration:

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos A$$

et

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = \frac{1}{2}(b^2 + c^2 - a^2)$$

donc:
$$\frac{1}{2}(AB^2 + AC^2 - BC^2) = AB \times AC \times \cos A$$

soit :
$$BC^2 = AB^2 + AC^2 - 2AB \times AC \cos A$$

A Samarkand, le savant perse *Jemshid ibn Massoud al Kashi (1380 ; 1430)* vit sous la protection du prince *Ulugh-Beg* (1394 ; 1449) qui a fondé une Université comprenant une soixantaine de scientifiques qui étudient la théologie et les sciences.

Dans son Traité sur le cercle (1424), *al Kashi* calcule le rapport de la circonférence à son rayon pour obtenir une valeur approchée de 2π avec une précision jamais atteinte. Il obtient 9 positions exactes en base 60 soit 16 décimales exactes : $2\pi \approx 6,283$ 185 307 179 586 5

Soit ABC un triangle quelconque.

On a ·

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos(\overrightarrow{AB}, \overrightarrow{AC})$$

$$AB^{2} = BC^{2} + AC^{2} - 2BC \times AC \times \cos(\overrightarrow{CA}, \overrightarrow{CB})$$

$$AC^2 = AB^2 + BC^2 - 2AB \times BC \times \cos(\overrightarrow{BA}, \overrightarrow{BC})$$

Application: Soit ABC un triangle tel que et AB = 5 et AC = 8 et $A = \frac{2\pi}{3}$

Calculer BC et $\cos C$

Réponse

a)D'après le Théorème d'Al Kashi on a :

$$BC^2 = AB^2 + AC^2 - 2AB \times AC\cos A$$

$$BC^2 = 5^2 + 8^2 - 2 \times 5 \times 8 \cos \frac{2\pi}{3}$$
 donc $BC^2 = 25 + 64 + 40 = 129$ donc $BC = \sqrt{129}$

b)D'après le Théorème d'Al Kashi on a :

$$AB^2 = AC^2 + BC^2 - 2CA \times CB \cos C$$
 donc $2CA \times CB \cos C = AC^2 + BC^2 - AB^2$

donc
$$\cos C = \frac{AC^2 + BC^2 - AB^2}{2CA \times CB}$$
 donc $\cos C = \frac{64 + 129 - 25}{2 \times 8 \times \sqrt{129}} = \frac{168}{16\sqrt{129}} = \frac{21\sqrt{129}}{258}$

EXERCICE: Soit *EFG* un triangle tel que et *EF* = 7 et *EG* = 5 et *FEG* = $\frac{\pi}{4}$

Calculer FG et $\cos EGF$

3) Théorème de la médiane

Propriété: Soit deux points A et B et I le milieu du segment [AB].

Pour tout point M, on a : $MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$

Démonstration :

$$MA^{2} + MB^{2} = \left\| \overrightarrow{MA} \right\|^{2} + \left\| \overrightarrow{MB} \right\|^{2} = \overrightarrow{MA}^{2} + \overrightarrow{MB}^{2}$$

$$= \left(\overrightarrow{MI} + \overrightarrow{IA} \right)^{2} + \left(\overrightarrow{MI} + \overrightarrow{IB} \right)^{2}$$

$$= \overrightarrow{MI}^{2} + 2\overrightarrow{MI}.\overrightarrow{IA} + \overrightarrow{IA}^{2} + \overrightarrow{MI}^{2} + 2\overrightarrow{MI}.\overrightarrow{IB} + \overrightarrow{IB}^{2}$$

$$= 2\overrightarrow{MI}^{2} + 2\overrightarrow{MI}.\left(\overrightarrow{IA} + \overrightarrow{IB} \right) + \overrightarrow{IA}^{2} + \overrightarrow{IB}^{2}$$

$$= 2\overrightarrow{MI}^{2} + 2\overrightarrow{MI}.\overrightarrow{O} + \left(\frac{1}{2}\overrightarrow{AB} \right)^{2} + \left(\frac{1}{2}\overrightarrow{AB} \right)^{2}$$

$$= 2MI^{2} + \frac{AB^{2}}{2}$$

Exemple:

On souhaite calculer CK.

D'après le théorème de la médiane, on a :

$$CA^2 + CB^2 = 2CK^2 + \frac{AB^2}{2}$$
, donc:

$$CK^{2} = \frac{1}{2} \left(CA^{2} + CB^{2} - \frac{AB^{2}}{2} \right) = \frac{1}{2} \left(7^{2} + 5^{2} - \frac{8^{2}}{2} \right) = 21$$

Donc: $CK = \sqrt{21}$.

3) Surface d'un triangle et formule de sinus

Propriétés: Dans un triangle ABC, on a

1) $S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$ avec S_Surface du triangle ABC

2)
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{2 \times S}{abc}$$
 formule de sinus

Application1 : : Soit *EFGH* un parallélogramme tel que et EF = 3 et EH = 5 et $EH = \frac{3\pi}{4}$

Calculer la Surface du triangle *EFH* et la Surface du parallélogramme *EFGH* Réponse

a)
$$S_{EFH} = \frac{1}{2}EF \times EH \sin E = \frac{1}{2}3 \times 5 \sin \frac{3\pi}{4} = \frac{15}{2} \sin \left(\pi - \frac{\pi}{4}\right) = \frac{15}{2} \times \frac{\sqrt{2}}{2} = \frac{15}{4}\sqrt{2}$$

b)
$$S_{EFGH} = 2 \times S_{EFH} = 2 \times \frac{15}{4} \sqrt{2} = \frac{15}{2} \sqrt{2}$$

Application2:: Soit ABC un triangle tell que et a = BC = 6 et

$$A = 30^{\circ} \text{ et } B = 73^{\circ}$$

Calculer b et c

Réponse

$$\frac{\sin A}{a} = \frac{\sin 30^{\circ}}{6} = \frac{1}{12}$$
 donc $\frac{\sin 73^{\circ}}{b} = \frac{1}{12}$ donc $b = 12\sin 73^{\circ} = 11.47$

$$\frac{\sin 77^{\circ}}{c} = \frac{1}{12}$$
 donc $c = 12\sin 77^{\circ} = 11.69$

