Compiladores

Prof. Marc Antonio Vieira de Queiroz

Ciência da Computação - UNIFIL LAB 7 marc.queiroz@unifil.br

31/07/2013

Roteiro I

Gramáticas LL(1)

Análise Sintática Descendente I

Analisadores sintáticos preditivos podem ser construídos para uma classe de gramáticas chamada LL(1).

A sigla LL, refere-se L (left-to-right), onde na qual faz-se a varredura da palavra, da esquerda para a direita. O segundo L significa derivação mais a esquerda. A análise do número (1) a frente significa a quantidade de símbolos necessários para tomada de decisão.

A classe LL(1) é rica o suficiente para reconhecer a maioria das construções presentes nas linguagens de programação. Porém não é tão simples escrever uma gramática deste tipo, pois não pode conter recursão à esquerda, nem ser ambígua.

Uma gramática G é LL(1) se se somente se, sempre que $A \to \alpha | \beta$ forem duas produções distintas de G, as seguintes condições forem verdadeiras:

3 / 10

Análise Sintática Descendente II

- **1** Para um terminal **a**, tanto α quanto β não derivam cadeias começando com a.
- ② No máximo um dos dois, α ou β , pode derivar a cadeia vazia.
- **S**e $\beta \stackrel{\Rightarrow}{*} \epsilon$, então α não deriva nenhuma cadeia começando com um terminal em FOLLOW(A)

Marc Antonio (UNIFIL)

1 e 2 são condições equivalente a dizer que FIRST(α) e FIRST(β) são conjuntos disjuntos. A interseção destes conjuntos é vazia.

Construções de fluxo de controle, com suas distintas palavras-chave, geralmente satisfazem as restrições das gramáticas LL(1). Exemplo:

```
stmt \rightarrow \mathbf{if} (expr) stmt \mathbf{else} stmt
| \mathbf{while} (expr) stmt
| \{stmt\_list\}
```

Figura: 1

5 / 10

Gramáticas LL(1)

Então as palavras-chave if, while e o símbolo { nos dizem quais as alternativas bem-sucedidas se estivermos procurando por um stmt.

Tabela para reconhecer preditivo I

Utiliza os conjuntos FIRST e FOLLOW em uma tabela M[A,a], onde:

- A é um não-terminal
- a é um terminal ou \$

Para montar a tabela a produção $A \to \alpha$ é escolhida se o próximo símbolo de entrada (a) estiver em FIRST(α). A única complicação ocorre quando $\alpha = \epsilon$ ou ($\alpha * \epsilon$). Nesse caso, deve-se escolher $A \to \alpha$, se o símbolo corrente da entrada estiver em FOLLOW(A), ou seja \$ foi alcançado e \$ está em FOLLOW(A).

Marc Antonio (UNIFIL) Aula 012 31/07/2013 7 / 10

Algoritmo: Construção da tabela preditiva

entrada: Gramática saída: tabela M

Método: para cada produção $A \rightarrow \alpha$, faça:

- **1** Para cada a em FIRST(α) inclua $A \rightarrow \alpha$ em M[A,a]
- ② Se ϵ pertence a FIRST(α), inclua $A \to \alpha$ em M[A,b] para cada terminal b em FOLLOW(A).
- **3** Se ϵ pertence a FIRST(α) e \$ pertence a FOLLOW(A) acrescente $A \to \alpha$ em M[A,\$].

Se depois de realizar estes passos, não houver produções em M[A,a] então M[A,a] é definida como error (entrada em branco).

8 / 10

Marc Antonio (UNIFIL) Aula 012 31/07/2013

Exemplo

Para a expressão da gramática G (figura abaixo), utilize o algoritmo 4.31 para produzir uma tabela de parsing. Onde entradas em branco representam erros, entradas não nulas indicam uma produção na qual deve expandir o não terminal.

Tabela para reconhecedor preditivo:

NON - TERMINAL	INPUT SYMBOL					
	id	+		()	- 8
E	$E \rightarrow TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E^c \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \to FT'$		
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		