Indian Institute of Technology Patna Department of Electrical Engineering

EE101 - Electrical Sciences Autumn - 2015 End Sem Exam 21 November 2015

There are 5 problems. They carry equal marks.

$$(5 \times 10 = 50)$$

1. (a) Consider the circuit ant its v-i characteristics. Find V_1 , V_2 and R.

(b) Consider the circuit. Find V_o and I_D . Use 0.7 V model for diode.

2. Consider the circuit. Assume $\beta = 100$ and $V_{BE} = 0.7$ V.

- (a) Determine the operating point.
- (b) Draw the small signal model.
- (c) Find the small signal voltage gain.

3. Consider the op-amp circuit. Assume that the op-amp is ideal.

- (a) Find the differential equation that relates V_o to V_i .
- (b) Let $V_i = V_m \cos(\omega t)$. Find the sinusoidal steady state output V_o that has the following form.

$$V_o = A\cos(\omega t + \phi)$$

4. Consider the circuit. The terminal characteristics of nonlinear element is

$$i_N = ae^{bv_N}$$

where a and b are constants.

- (a) Find the expression that relates v_O to v_I .
- (b) if v_I consists of DC and small signal $(V_I + v_i)$, the output can also be represented as $v_O = V_O + v_o$. Draw the small signal model.
- (c) Find the small signal gain expression $\frac{v_o}{v_i}$.
- (a) Design a three input digital circuit that should give a high output whenever two adjacent bits are high. Implement the circuit using only NAND gates.
 - (b) Given the truth table for the logic function F:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- i. Write the Product of Sums (POS) expression.
- ii. Find the minimum POS expression.
- iii. Implement the minimum POS using only NOR gates.