Master Seminar – Elliptic Curves – Talk 6 The formal group of an elliptic curve

Marco Morosin

14.12.2020

The idea

E elliptic curve over a field K.

- local ring K[E]_O is a discrete valuation ring
- its completion at M_O is isomorphic to K [z]
- write x, y as x(z), y(z) ∈ K[[z]] • the group law is 'given by' a power series $F(z_1, z_2) \in K[\![z_1, z_2]\!]$:

$$(x(z_1),y(z_1))+(x(z_2),y(z_2))=(x(F(z_1,z_2)),y(F(z_1,z_2)))$$

$$\begin{cases} z := -\frac{x}{y} \\ w := -\frac{1}{y} \end{cases} \iff \begin{cases} x = \frac{z}{w} \\ y = -\frac{1}{w} \end{cases}$$

- O is (z, w) = (0, 0), z is a local uniformizer at O
- $w = z^3 + (a_1z + a_2z^2)w + (a_3 + a_4z)w^2 + a_6w^3 = f(z, w)$

Substitute recursively w = f(z, w) into itself:

$$w = z^{3} + (a_{1}z + a_{2}z^{2})[z^{3} + (a_{1}z + a_{2}z^{2})w + (a_{3} + a_{4}z)w^{2} + a_{6}w^{3}] +$$

$$+ (a_{3} + a_{4}z)[z^{3} + (a_{1}z + a_{2}z^{2})w + (a_{3} + a_{4}z)w^{2} + a_{6}w^{3}]^{2} +$$

$$+ a_{6}[z^{3} + (a_{1}z + a_{2}z^{2})w + (a_{3} + a_{4}z)w^{2} + a_{6}w^{3}]^{3} =$$

$$= \cdots$$

i.e. we have a sequence $\begin{cases} f_1(z,w) = f(z,w) \\ f_{m+1}(z,w) = f_m(z,f(z,w)) \end{cases}$

Claim

- $\exists \lim_{m\to\infty} f_m(z,0) =: w(z) \in \mathbb{Z}[a_1,\ldots,a_6][\![z]\!]$
- w(z) is the unique element in $\mathbb{Z}[a_1,\ldots,a_6][\![z]\!]$ such that w(z)=f(z,w(z))

Hensel's Lemma

Suppose: R complete in the I-adic topology, $F(X) \in R[X]$, $\exists n \ge 1$, $a \in R$ such that $F(a) \in I^n$ and $F'(a) \in R^{\times}$.

Then: $\forall r \in R$ with $r \equiv F'(a) \mod I$, the sequence $\begin{cases} w_0 = a \\ w_{m+1} = w_m - \frac{F(w_m)}{r} \end{cases}$ converges to $b \in R$ satisfying F(b) = 0 and $b \equiv a \mod I^n$. If R is a domain, these conditions determine b uniquely.

In our case

$$R = \mathbb{Z}[a_1, \dots, a_6][x]$$
 $I = (x)$ $F(w) = f(x, w) - w$
 $n = 1$ $a = 0$ $r = -1$

Note: $w_m = f_m(z, 0)$:

$$w_0 = 0$$
, $w_1 = F(0) = f(z, 0)$, $w_2 = w_1 + F(w_1) = f(z, f(z, 0))$,...

Moreover, the hypothesis are satisfied:

•
$$F(0) = f(z,0) = z^3 \in (z), F'(0) = a_1z + a_2z^2 - 1 \in \mathbb{Z}[a_1,\ldots,a_6][\![z]\!]^{\times}$$

•
$$-1 \equiv F'(0) \mod (z)$$

$$\implies \exists w(z) := \lim_m w_m \text{ and } f(z, w(z)) - w(z) = 0$$

Proof of Hensel's lemma

By replacing
$$F(w)$$
 by $F(w+a)/r$, we suppose $a=0$ and $r=1$, i.e.
$$w_0=0 \qquad F(0)\in I^n \qquad F'(0)\equiv 1 \mod I \qquad w_{m+1}=w_m-F(w_m)$$

- $w_m \in I^n$ for all $m \ge 0$: $w_0 = 0$ and, by induction, $w_m \in I^n \implies (\text{since } F(0) \in I^n) \ F(w_m) \in I^n \implies w_m F(w_m) \in I^n$
- $w_m \equiv w_{m+1} \mod I^{m+n}$ for all $m \geqslant 0$: $w_0 = 0 \equiv -F(0) = w_1 \mod I^n$;

$$F(X) - F(Y) = (X - Y)(F'(0) + XG(X, Y) + YH(X, Y))$$

$$\Rightarrow w_{m+1} - w_m = w_m - w_{m-1} - (F(w_m) - F(w_{m-1})) =$$

$$= (w_m - w_{m-1})(1 - F'(0) - w_m G(w_m, w_{m-1}) - w_{m-1} H(w_m, w_{m-1}))$$

$$\in I^{m+n-1} I = I^{m+n}$$

• R complete $\implies \exists b := \lim w_m \in R$. Moreover, $w_m \in I^n \implies b \in I^n$:

$$\forall k \; \exists M_k \colon m \geqslant M_k \implies b \in w_m + I^k \subset I^n + I^k$$

so the limit exists and $b \equiv 0 \mod I^n$. F(b) = 0?

• $b \stackrel{m \to \infty}{\longleftrightarrow} w_{m+1} = w_m - F(w_m) \xrightarrow{m \to \infty} b - F(b)$ hence F(b) = 0

Assume moreover that R is an integral domain.

Uniqueness of b

• let c also satisfy F(c) = 0 and $c \equiv 0 \mod I^n$, then

$$0 = F(b) - F(c) = (b - c)(F'(0) + bG(b, c) + cH(b, c))$$

- if $b \neq c$, we would have $F'(0) = -bG(b,c) cH(b,c) \in I$
- this would contradict $F'(0) \equiv 1 \mod I$. Hence, b = c.

Proposition

- 1. $w(z) = z^3(1 + A_1z + A_2z^2 + \cdots) \in \mathbb{Z}[a_1, \ldots, a_6][\![z]\!]$
- 2. w(z) is unique in $\mathbb{Z}[a_1,\ldots,a_6][\![z]\!]$ satisfying w(z)=f(z,w(z))
- 3. if $\mathbb{Z}[a_1,\ldots,a_6]$ is a graded ring by $wt(a_i):=i$, then A_n is a homogeneous polynomial of weight n

Proof of 3.

- assign weights wt(z) := -1, wt(w) := -3.
- $f(z, w) = z^3 + (a_1z + a_2z^2)w + (a_3 + a_4z)w^2 + a_6w^3$ homogeneous of weight -3 in $\mathbb{Z}[a_1, \dots, a_6, z, w]$
- by induction, the same holds for $f_m(z, w)$, hence

$$f_m(z,0) = z^3(1 + B_1z + B_2z^2 + \cdots + B_Nz^N)$$

homogeneous of weight -3

• $-3 = \operatorname{wt}(B_n z^{n+3}) = \operatorname{wt}(B_n) - n - 3 \Longrightarrow B_n$ homogeneous of weight $n \Longrightarrow$ the same for A_n because $f_m(0,z) \to w(z)$

From w(z) we get:

•
$$x(z) = \frac{z}{w(z)} = \frac{1}{z^2} - \frac{a_1}{z} - a_2 - a_3 z - (a_4 + a_1 a_3) z^2 - \cdots$$

•
$$y(z) = -\frac{1}{w(z)} = -\frac{1}{z^3} + \frac{a_1}{z^2} + \frac{a_2}{z} + a_3 + (a_4 + a_1 a_3)z - \cdots$$

$$y(z) = -\frac{1}{w(z)} = -\frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z^2} + a_3 + (a_4 + a_1 a_3)z - \cdots$$

• $\omega(z) = \frac{dx(z)}{2v(z)+a_1x(z)+a_2} = (1+a_1z+(a_1^2+a_2)z^2+\cdots)dz$ with coefficients in $\mathbb{Z}[a_1,\ldots,a_6]$

Remark

• (x(z), y(z)) is a solution of

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

in $\mathbb{Z}[a_1,\ldots,a_6]((z))$

- Idea: find points on E by evaluating x(z), y(z) at $z \in K$
- Possible if K is a complete local field, $a_1, \ldots, a_6 \in \mathcal{O}_K$, $z \in \mathfrak{m}$. In this case we have an injective map

$$\mathfrak{m} \to E(K)$$
 $z \mapsto (x(z), y(z))$

with left-inverse $(x, y) \mapsto -x/y$ (remember z := -x/y)

The group law in terms of power series

Recall the formula for $(z_1, w(z_1)) + (z_2, w(z_2))$:

• the line through the two points is $w = \lambda(z_1, z_2)z + \nu(z_1, z_2)$ with

$$\lambda(z_1,z_2) := \frac{w_2(z) - w_1(z)}{z_2 - z_1} = \sum_{n=3}^{\infty} A_{n-3} \frac{z_2^n - z_1^n}{z_2 - z_1}$$

$$\nu(z_1,z_2) := w(z_1) - \lambda(z_1,z_2)z_1$$

- intersect $\begin{cases} w = f(z, w) \\ w = \lambda z + \nu \end{cases} \implies \text{cubic in } z \text{ with roots } z_1, z_2$
- the third root z₃ can be expressed as

$$z_3(z_1, z_2) = -z_1 - z_2 + \frac{a_1\lambda + a_3\lambda^2 - a_2y - 2a_4\lambda\nu - 3a_6\lambda^2\nu}{1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3}$$

- $w_3 := \lambda z_3 + \nu = f(z_3, w_3)$. The only element with this property is $w(z_3)$, hence $w_3 = w(z_3)$
- The three points are collinear, so $(z_1, w(z_1)) + (z_2, w(z_2)) + (z_3, w(z_3)) = O$

$$(z_1, w(z_1)) + (z_2, w(z_2)) = -(z_3, w(z_3))$$
. How to find this inverse?

- write (z, w) in xy coord.'s: (x(z), y(z))
- use the inversion formula: $-(x(z), y(z)) = (x(z), -y(z) a_1x(z) a_3)$
- switch back to zw coord.'s (z = -x/y): (i(z), w(i(z))) where

$$i(z) = \frac{x(z)}{v(z) + a_1 x(z) + a_3} = \frac{z^{-2} - a_1 z^{-1} - \cdots}{-z^{-3} + 2a_1 z^{-2} + \cdots} \in \mathbb{Z}[a_1, \dots, a_6][\![z]\!]$$

Conclusion

The formal addition law is

$$F(z_1, z_2) = i(z_3(z_1, z_2)) = z_1 + z_2 + 2 - a_1 z_1 z_2 - a_2(z_1^2 z_2 + z_1 z_2^2) + \dots \in \mathbb{Z}[a_1, \dots, a_6] \llbracket z_1, z_2 \rrbracket$$

satisfying the usual properties

- $F(z_1, z_2) = F(z_2, z_1)$ (commutativity)
 - $F(z_1, F(z_2, z)) = F(F(z_1, z_2), z)$ (associativity)
 - F(z, i(z)) = 0 (inverse)

Formal Groups

Definition

A (one-parameter commutative) formal group law over a ring R is $F(X,Y) \in R[\![X,Y]\!]$ satisfying

- $F(X, Y) = X + Y + \text{(terms of degree } \ge 2)$
- F(X, F(Y, Z)) = F(F(X, Y), Z) (associativity)
- F(X, Y) = F(Y, X) (commutativity)
- $\exists ! \ i(T) \in R[T]$ such that F(T, i(T)) = 0 (inverse)
- F(X,0) = X and F(0,Y) = Y

Definition

A homomorphism $f \colon F \to G$ is $f(T) \in R[T]$ with no constant term, such that

$$f(F(X,Y)) = G(f(X),f(Y))$$

F and G are isomorphic if there are $f: F \to G$ and $g: G \to F$ such that

$$f(g(T)) = g(f(T)) = T$$

Notation

Denote by F/R a formal group law F over a ring R.

Examples

- formal additive group: F(X, Y) = X + Y
- formal multiplicative gr.: F(X, Y) = X + Y + XY = (1 + X)(1 + Y) 1
- formal group associated to an elliptic curve E: $F(z_1, z_2) = i(z_3(z_1, z_2))$

Definition (multiplication by m)

F/R formal group; for $m \in \mathbb{Z}$, define homomorphisms $[m]: F \to F$ by

$$[0](T) = 0$$
 $[m+1](T) = F([m](T), T)$ $[m-1](T) = F([m](T), i(T))$

Proposition

- 1. [m](T) = mT + (higher order terms)
- 2. if $m \in R^{\times}$, then [m] is an isomorphism

Proof of 1.

Remember $F(X, Y) = X + Y + \cdots$. By induction: [0](T) = 0,

- for $m \geqslant 0$:
 - $[m+1](T) = F([m](T), T) = F(mT + \cdots, T) = mT + T + \cdots$
- for $m \leq 0$:
 - $0 = F(T, i(T)) = T + i(T) + \cdots \implies i(T) = -T + \cdots$

downward induction: $[m-1](T) = F([m](T), i(T)) = mT + \cdots - T + \cdots$

Proof of 2.

More in general: if $a \in R^{\times}$ and $f(T) = aT + (higher order terms) \in R[T],$ then $\exists ! \ g(T) \in R[T]$ such that f(g(T)) = T. Moreover, g(f(T)) = T.

- We will define $g_n(T) \in R[T]$: $\begin{cases} f(g_n(T)) \equiv T \mod T^{n+1} \\ g_{n+1}(T) \equiv g_n(T) \mod T^{n+1} \end{cases}$
- $g_1(T) := a^{-1}T$. Suppose $g_{n-1}(T)$ has been constructed, then

$$g_n(T) = g_{n-1}(T) + \lambda T^n$$
 for some $\lambda \in R$

We must find λ such that $f(g_n(T)) \equiv T \mod T^{n+1}$.

$$f(g_n(T)) = f(g_{n-1}(T) + \lambda T^n) \equiv f(g_{n-1}(T)) + a\lambda T^n \mod T^{n+1}$$

$$\equiv T + bT^n + a\lambda T^n \mod T^{n+1} \text{ for some } b \in R$$

$$\implies$$
 take $\lambda = -a^{-1}b$.

• $g(T) := \lim g_n(T) \in R[T]$ exists and f(g(T)) = T

• Repeat the procedure using f(T) := g(T): $h(T) := \lim h_n(T)$ satisfies g(h(T)) = T, so

$$g(f(T)) = g(f(g(h(T)))) = g(h(T)) = T$$

• Uniqueness: let $j(T) \in R[T]$ such that f(j(T)) = T, then

$$g(T) = g(f(j(T))) = j(T)$$

Groups associated to formal groups

Notation: R complete local ring, \mathfrak{m} max ideal, $k = R/\mathfrak{m}$, F formal group over R

completeness $\implies F(x,y) \in \mathfrak{m} \quad \forall x,y \in \mathfrak{m} \implies$ group structure on \mathfrak{m} Definition

The group associated to F, denoted by $F(\mathfrak{m})$, is the set \mathfrak{m} with group structure

$$x \oplus_F y := F(x, y)$$
 (addition) $\ominus_F x := i(x)$ (inversion)

• The additive group $\widehat{\mathbb{G}}_{a}(\mathfrak{m})$ is just $(\mathfrak{m},+)$

$$0 \to \widehat{\mathbb{G}}_a(\mathfrak{m}) \to R \to k \to 0$$

• The multiplicative group $\widehat{\mathbb{G}}_m(\mathfrak{m})$ is isomorphic to $(1+\mathfrak{m},\cdot)$:

$$\widehat{\mathbb{G}}_{m}(\mathfrak{m}) \to 1 + \mathfrak{m} \qquad x \mapsto 1 + x$$

$$x \oplus_{F} y = x + y + xy \mapsto 1 + x + y + xy = (1 + x)(1 + y)$$

$$0 \to \widehat{\mathbb{G}}_{m}(\mathfrak{m}) \xrightarrow{x \mapsto 1 + x} R^{\times} \to k^{\times} \to 1$$

Example

 \widehat{E} associated to an elliptic curve E/K, $K = \operatorname{Frac}(R)$.

$$\mathfrak{m} \to E(K)$$
: $z \mapsto (x(z), y(z))$ gives a homomorphism $\widehat{E}(\mathfrak{m}) \to E(K)$:

• for $z_1 \neq z_2$: $z_1 \oplus_{\widehat{E}} z_2 = i(z_3(z_1, z_2)) \mapsto (x(z_1), y(z_1)) + (x(z_2), y(z_2))$

• for $z_1 = z_2$: continuity argument

There is often an exact sequence

$$0 o \widehat{E}(\mathfrak{m}) o E(K) o \widetilde{E}(k) o 0$$

where \widetilde{E} is some elliptic curve over k.

Proposition

- 1. The map $\frac{F(\mathfrak{m}^n)}{F(\mathfrak{m}^{n+1})} o \frac{\mathfrak{m}^n}{m^{n+1}}$ induced by $id_{\mathfrak{m}^n/\mathfrak{m}^{n+1}}$ is an isomorphism of groups
- 2. let $p := \operatorname{char} k \geqslant 0$; every torsion element in $F(\mathfrak{m})$ has order a power of p

Proof of 1.

Enough to show it's a homomorphism: let $x, y \in \mathfrak{m}^n$, then $x \oplus_F y = F(x, y) = x + y + (\text{higher order terms}) \equiv x + y \mod \mathfrak{m}^{2n}$

Proof of 2.

x of order $p^rm \implies p^rx$ of order m: enough to show that no element $\neq 0$ has order prime to p

Let $m \geqslant 1$ with $p \nmid m$; suppose $x \in F(\mathfrak{m})$ such that [m](x) = 0 Note that $(m,p) = 1 \implies m \notin \mathfrak{m}$:

- p = 0: $m \in \mathfrak{m}$ would imply $\operatorname{char}(k) = q$ for some q prime factor of m
- p > 0: write 1 = am + bp, then $\overline{1} = \overline{am}$ hence $\overline{m} \neq \overline{0}$

So, $m \in R^{\times} \implies [m]$ is an automorphism of $F \implies [m] \colon F(\mathfrak{m}) \to F(\mathfrak{m})$ is an automorphism, so

$$ker[m] = 0 \implies x = 0$$

The invariant differential

Definition

An invariant differential on a formal group F/R is a differential form

$$\omega(T) = P(T)dT \in R[T]dT$$

such that $\omega \circ F(T,S) = \omega(T)$, i.e. $P(F(T,S))F_X(T,S) = P(T)$ We call it *normalized* if P(0) = 1

Examples

• $\omega = dT$ is invariant on $\widehat{\mathbb{G}}_a$:

$$P(F(T,S))F_X(T,S)=1=P(T)$$

• $\omega = \frac{dT}{1+T} = (1-T+T^2-T^3+\cdots)dT$ is invariant on $\widehat{\mathbb{G}}_m$

$$F_X(T,S) = 1 + S$$

 $P(F(T,S))F_X(T,S) = \frac{1}{1+T+S+TS}(1+S) = \frac{1}{1+T} = P(T)$

Proposition

On a formal group F/R, there exists a unique normalized invariant differential, namely $\omega(T) = F_X(0,T)^{-1}dT$. Any invariant differential is given by $a\omega$, $a \in R$

Proof

Let P(T)dT be invariant, so $P(F(T,S))F_X(T,S) = P(T)$. Then

$$P(F(0,S))F_X(0,S) = P(S)F_X(0,S) = P(0)$$

hence

- $P(S)(1+\cdots) = P(0) \implies P(S) = P(0)F_X(0,S)^{-1}$
- $P(T)dT = P(0)F_X(0,T)^{-1}dT$ is of the form $a\omega$
- $F_X(0,0) = 1 \implies \omega$ is normalized

Is it invariant?
$$\iff F_X(0, F(T, S))^{-1}F_X(T, S) = F_X(0, T)^{-1}$$
?
$$F(U, F(T, S)) = F(F(U, T), S) \implies F_X(U, F(T, S)) = F_X(F(U, T), S)F_X(U, T)$$

$$\implies F_X(0, F(T, S)) = F_X(F(0, T), S)F_X(0, T) = F_X(T, S)F_X(0, T)$$

For $f(T) \in R[T]$, let f'(T) be the formal derivative (term by term).

Corollary

Consider F, G with normalized invariant differentials ω_F , ω_G and a homomorphism $f: F \to G$. Then $\omega_G \circ f = f'(0)\omega_F$.

Proof

 $\omega_G \circ f$ is an invariant differential on F:

$$(\omega_G \circ f)(F(T,S)) = \omega_G(G(f(T),f(S))) =$$

$$= \omega_G \circ G(f(T),f(S)) = (\omega_G \circ f)(T)$$

hence $\omega_G \circ f = a\omega_F$ for some $a \in R$, i.e.

$$G_X(0, f(T))^{-1}f'(T)dT = aF_X(0, T)^{-1}dT$$

Evaluating at T=0:

$$G_X(0, f(0))^{-1} f'(0) = aF_X(0, 0)^{-1}$$

$$\iff G_X(0, 0)^{-1} f'(0) = aF_X(0, 0)^{-1}$$

$$\iff f'(0) = a$$

Corollary

Let F/R formal group, $p \in \mathbb{Z}$ prime. Then there are $f(T), g(T) \in R[\![T]\!]$ with f(0) = g(0) = 0 such that

$$[p](T) = pf(T) + g(T^p)$$

Proof

- Remember [p](T) = pT + (higher order terms), hence <math>[p]'(0) = p
- so, by the previous result:

$$p\omega(T) = (\omega \circ [p])(T)$$

= $F_X(0, [p](T))^{-1}[p]'(T)dT = (1 + \cdots)[p]'(T)dT$

- $(1+\cdots)\in R[T]^{\times} \implies [p]'(T)=p(1+\cdots)^{-1}\omega(T)\in pR[T]$
- write $[p](T) = \sum_{n\geqslant 0} a_n T^n \implies [p]'(T) = \sum_{n\geqslant 1} a_n n T^{n-1}$, then:

$$\mathbb{N} = \{ n \mid a_n = pa'_n \in pR \} \cup \{ n \mid n = pn' \} =: A \cup B$$

• $f(T) := \sum_{n \in A} a'_n T^n \implies pf(T) = \sum_{n \in A} a_n T^n$ $g(T) := \sum_{n \in B \setminus A} a_{n'} T^{n'} \implies g(T^p) = \sum_{n \in B \setminus A} a_{n'} T^n$

The formal logarithm

Let R be a torsion-free ring, $K := R \otimes_{\mathbb{Z}} \mathbb{Q}$. We have an injection $R \hookrightarrow K$.

Definition

F/R formal group, $\omega(T)=(1+c_1T+c_2T^2+\cdots)dT$ its normalized invariant differential. The formal logarithm of F is

$$\log_{\mathsf{F}}(T) := \int \omega(T) = T + \frac{c_1}{2}T^2 + \frac{c_2}{3}T^3 + \cdots \in K\llbracket T \rrbracket$$

The formal exponential of F is the unique element $\exp_F(T) \in K[T]$ such that

$$\log_F \circ \exp_F(T) = \exp_F \circ \log_F(T) = T$$

Example

$$\log_{\widehat{\mathbb{G}}_m}(T) = \int \frac{dT}{(1+T)} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}T^n}{n} \qquad \exp_{\widehat{\mathbb{G}}_m}(T) = \sum_{n=1}^{\infty} \frac{T^n}{n!}$$

are the usual Taylor expansions for log(1 + T) and $e^{T} - 1$.

Proposition

F formal group over R torsion-free. Then $\log_F \colon F \to \widehat{\mathbb{G}}_a$ is an isomorphism of formal groups over $K = R \otimes \mathbb{Q}$.

Proof.

 $\omega_F(F(T,S)) = \omega_F(T)$. Integrating in T gives:

$$\log_F F(T,S) = \log_F(T) + c(S)$$
 for some $c(S) \in K[T]$

for T=0 we get $c(S)=\log_F(S)$, so \log_F is a homomorphism. It is an isomorphism with inverse \exp_F .

Application

Note: to define ω_F , \log_F , \exp_F we did not use commutativity of F. If R torsion-free, the proposition implies

$$F(X,Y) = \exp_F(\log_F(X) + \log_F(Y)) = \exp_F(\log_F(Y) + \log_F(F)) = F(Y,X)$$

Conclusion: any one-parameter formal group over a torsion-free ring is commutative.

Lemma

Let $f(T) = \sum_{n=1}^{\infty} (a_n/n!) T^n \in K[\![T]\!]$ with $a_n \in R$, $a_1 \in R^{\times}$. Then the unique $g(T) \in K[\![T]\!]$ with f(g(T)) = T has the form $g(T) = \sum_{n=1}^{\infty} (b_n/n!) T^n$ with $b_n \in R$.

Proof.

Write
$$g(T) = \sum_{n=1}^{\infty} (b_n/n!) T^n$$
 with $b_n \in K$.
 $f(g(T)) = T \implies f'(g(T))g'(T) = 1 \implies f'(g(0))g'(0) = a_1b_1 = 1$
 $\implies b_1 = a_1^{-1} \in R$

Differentiate again: $f'(g(T))g''(T) + f''(g(T))g'(T)^2 = 0 \implies$

$$a_1b_2 = -a_2b_1^2 \implies b_2 = -a_2b_1^2/a_1 \in R$$

By induction $b_n \in R$ for all n.

Application

 $\log_F(T)$ has the form $\sum_{n=1}^{\infty}(a_n/n)T^n=\sum_{n=1}^{\infty}(a_n'/n!)T^n$ with $a_n'\in R$, $a_1'=1$. By the lemma: $\exp_F(T)=\sum_{n=1}^{\infty}(b_n/n!)T^n$ for some $b_n\in R$, $b_1=1$.

Formal groups over DVR's

Remember: F formal group over complete local ring $R \Longrightarrow F(\mathfrak{m})$ has no torsion of order prime to $p := \operatorname{char}(R/\mathfrak{m})$.

Theorem

Let R be a complete DVR, v its valuation, $p := \operatorname{char}(R/\mathfrak{m}) \geqslant 0$, F/R formal group. If $x \in F(\mathfrak{m})$ has order p^n , then $v(x) \leqslant \frac{v(p)}{p^n - p^{n-1}}$

Proof

If $\operatorname{char}(R) > 0$ or p = 0, then $v(p) = \infty$, trivial. So, we assume $\operatorname{char}(R) = 0$ and p > 0.

Choose $f(T), g(T) \in R[T]$ such that

$$[p](T) = pf(T) + g(T^p)$$

Remember $[p](T) = pT + \cdots$, hence $f(T) = T + \cdots$ By induction on n:

• let $x \neq 0$ such that [p](x) = 0:

$$0 = pf(x) + g(x^{p}) = px + g(x^{p}) + \cdots$$

$$\implies v(px) \geqslant v(x^{p}) \iff v(p) + v(x) \geqslant pv(x) \iff v(p) \geqslant (p-1)v(x)$$

n → n + 1; suppose x has order pⁿ⁺¹
 then [p](x) has order pⁿ ⇒ induction hypothesis:

$$\frac{v(p)}{p^n-p^{n-1}}\geqslant v([p](x))$$

Moreover:

$$v([p](x)) = v(pf(x) + g(x^{p})) \ge \min\{v(pf(x)), v(g(x^{p}))\}$$

= \min\{v(px), v(x^{p})\}

Hence

$$\frac{v(p)}{p^n - p^{n-1}} \geqslant \min\{v(px), v(x^p)\}$$
 but we can't have
$$\frac{v(p)}{p^n - p^{n-1}} \geqslant v(px) = v(p) + v(x) > v(p),$$

$$\Rightarrow \frac{v(p)}{p^n - p^{n-1}} \ge v(x^p) = pv(x)$$
$$\Rightarrow \frac{v(p)}{p^{n+1} - p^n} \ge v(x)$$

Example: formal groups over \mathbb{Z}_p

v(p) = 1. If $x \in F(p\mathbb{Z}_p)$ has order p^n , then

$$0 < v(x) \leqslant \frac{1}{p^n - p^{n-1}}$$

- for p = 2: if n = 1, $0 < v(x) \le 1$ is possible: we may have elements x of order p = 2; no torsion elements of higher order
- for p > 2: impossible \implies no torsion elements

Analogously for O_K with K finite unramified extension of \mathbb{Q}_p .

Lemma

Let R be a DVR, $p \in \mathbb{Z}$ a prime with $0 < v(p) < \infty$. Then, for all $n \ge 1$, $v(n!) \le \frac{(n-1)v(p)}{p-1}$.

Proof

$$v(n!) = \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right] v(p) \leqslant \sum_{i=1}^{[\log_p n]} \frac{nv(p)}{p^i} = nv(p) \frac{1 - p^{-[\log_p n]}}{p - 1} \leqslant \frac{(n - 1)v(p)}{p - 1}$$

Lemma

Let R be a complete DVR, char(R) = 0, $p \in \mathbb{Z}$ a prime with v(p) > 0.

- 1. let $f(T) = \sum_{n=1}^{\infty} (a_n/n) T^n$ with $a_n \in R$. If $x \in R$ has v(x) > 0, then $f(x) \in R$
- 2. let $g(T) = \sum_{n=1}^{\infty} (b_n/n!) T^n$ with $b_n \in R$. If $x \in R$ has v(x) > v(p)/(p-1), then $g(x) \in R$. If moreover $b_1 \in R^{\times}$, then v(g(x)) = v(x)

Proof of 1.

We must check that $f(x) = \sum_{n=1}^{\infty} (a_n/n)x^n \in R$:

$$v(a_n x^n/n) = v(a_n) + nv(x) - v(n) \geqslant nv(x) - v(n)$$

$$\geqslant nv(x) - v(p) \log_p n \to \infty$$

Proof of 2.

We must check that $g(x) = \sum_{n=1}^{\infty} (b_n/n!)x^n \in R$:

$$\begin{aligned} v(b_n x^n / n!) &= v(b_n) + n v(x) - v(n!) \geqslant n v(x) - v(n!) \geqslant \\ &\geqslant n v(x) - (n-1) \frac{v(p)}{p-1} = v(x) + (n-1) \left(v(x) - \frac{v(p)}{p-1} \right) \to \infty \end{aligned}$$

This also shows: $n \geqslant 2 \implies v(b_n x^n/n!) > v(x)$. If $b_1 \in R^{\times}$ then $v(b_1 x) = v(x)$, so $v(g(x)) = v(b_1 x) = v(x)$.

Theorem

Assume: K complete DVF, $\operatorname{char}(K) = 0$, $v(K^{\times}) = \mathbb{Z}$, $R := \mathcal{O}_K$, $p \in \mathbb{Z}$ prime with v(p) > 0, F/R formal group.

- 1. The formal logarithm induces a homomorphism $\log_F : F(\mathfrak{m}) \to (K,+)$
- 2. If r > v(p)/(p-1), it induces an isomorphism $\log_F \colon F(\mathfrak{m}^r) \to \widehat{\mathbb{G}}_a(\mathfrak{m}^r)$

Proof

1. $\log_F(F(X, Y)) = \log_F(X) + \log_F(Y)$ as power series. Convergence? We just proved:

$$\sum_{n=1}^{\infty} \frac{a_n}{n} T^n \qquad (a_n \in R)$$

converges if v(x) > 0.

We proved previously: log_F is of such form.

2. Do $\log_F(x)$, $\exp_F(x)$ converge to values in \mathfrak{m}^r ? Write \log_F , \exp_F as

$$\sum_{n=1}^{\infty} \frac{b_n}{n!} T^n \qquad (b_n \in R)$$

 $x \in \mathfrak{m}^r \iff v(x) \geqslant r > v(p)/(p-1)$, hence convergence in R $b_1 = 1 \in R^\times \implies v(g(x)) = v(x)$, hence $g(x) \in \mathfrak{m}^r$

Formal groups in characteristic *p*

From now on, R is a ring of characteristic p.

Definition

For $f: F \to G$ homomorphism of formal groups over R, the *height of f* $\operatorname{ht}(f)$ is the largest $h \in \mathbb{Z}$ such that $f(T) = g(T^{p^h})$ for some $g(T) \in R[\![T]\!]$. $\operatorname{ht}(0) := \infty$.

Define the height of a formal group by $ht(F) := ht([p]), [p] \colon F \to F$.

Remark

- $m\geqslant 1$ prime to $p\implies \mathsf{ht}([m])=0$ because $[m](T)=mT+\cdots$
- $\mathsf{ht}([p])\geqslant 1$ because $[p](T)=pf(T)+g(T^p)=g(T^p)$ (char p)

Proposition

 $f: F \to G$ homomorphism of formal groups over R.

- 1. if f'(0) = 0, then $f(T) = f_1(T^p)$ for some $f_1 \in R[[T]]$
- 2. write $f(T) = g(T^{p^h})$ with h = ht(f). Then $g'(0) \neq 0$

Proof

- 1. $0 = f'(0)\omega_F(T) = (\omega_G \circ f)(T) = (1 + \cdots)f'(T)dT \implies f'(T) = 0$ $\implies f(T) = f_1(T^p)$
- 2. $q := p^h$, $F(X, Y) = \sum_{i,j} a_{ij} X^i Y^j$. Since char(R) = p, one can check that $F^{(q)}(X, Y) := \sum_{i,j} a_{ij}^q X^i Y^j$ is still a formal group.

We show that g is a homomorphism $F^{(q)} \rightarrow G$: if $S^q = X$, $T^q = Y$, then

$$g(F^{(q)}(X,Y)) = g(F(S,T)^q) = f(F(S,T)) =$$

$$= G(f(S), f(T)) = G(g(S^q), g(T^q)) = G(g(X), g(Y))$$

Suppose
$$g'(0) = 0$$
: by 1. $g(T) = g_1(T^p)$
 $\implies f(T) = g(T^{p^h}) = g_1(T^{p^{h+1}})$ would contradict $h = ht(f)$.

Proposition

$$F \xrightarrow{f} G \xrightarrow{g} H$$
 homomorphisms; then $ht(g \circ f) = ht(f) + ht(g)$.

Proof

$$f(T) = f_1(T^{p^{ht(f)}}), g(T) = g_1(T^{p^{ht(g)}})$$

$$g(f(T)) = g_1(f_1(T^{\rho^{\mathrm{ht}(f)}})^{\mathrm{ht}(g)}) = g_1(\widetilde{f_1}(T^{\rho^{\mathrm{ht}(f) + \mathrm{ht}(g)}}))$$

 f_1 obtained from f_1 raising coefficients to $p^{\mathsf{ht}(g)}$. We have seen that $f_1'(0) \neq 0 \neq g_1'(0)$, i.e. f_1, g_1 have $\neq 0$ linear terms E_1/K , E_2/K elliptic curves over K of char p.

Recall

An isogeny $E_1 \to E_2$ is a morphism $\varphi \colon E_1 \to E_2$ such that $\varphi(O) = O$ deg $\varphi := [K(E_1) : \varphi^*K(E_2)] = (\deg_i \varphi)(\deg_s \varphi)$

Theorem

Let $\varphi\colon E_1\to E_2$ be a nonzero isogeny over K, $f\colon \widehat E_1\to \widehat E_2$ the induced homomorphism of formal groups. Then

$$\deg_i(\varphi) = p^{ht(f)}$$

Special case:
$$\varphi = (-)^{p^r}$$

 $\deg_i \varphi = p^r \text{ (talk 2) and } f(T) = T^{p^r} \text{, hence } \operatorname{ht}(f) = r \implies \deg_i(\varphi) = p^{\operatorname{ht}(f)}.$

Special case: φ is separable

Fact: $\varphi \colon E_1 \to E_2$ separable $\iff \varphi^* \colon \Omega_{E_2} \to \Omega_{E_1}$ injective

$$0 \neq \omega \circ f = f'(0)\omega \implies f'(0) \neq 0 \implies \mathsf{ht}(f) = 0$$

General case

Let φ be any isogeny.

Fact: $\varphi = \lambda \circ \varphi'$ with $\varphi' = ((\deg_i \varphi)$ -th power Frobenius) and λ separable.

$$\operatorname{ht}(\varphi) = \operatorname{ht}(\lambda \circ \varphi') = \operatorname{ht}(\lambda) + \operatorname{ht}(\varphi') = \operatorname{ht}(\varphi')$$

$$\deg_i(\varphi) = \deg_i(\lambda) \deg_i(\varphi') = p^{\operatorname{ht}(\lambda)} p^{\operatorname{ht}(\varphi')} = p^{\operatorname{ht}(\varphi)}$$

Corollary

For E/K with char(K) = p > 0 we have $ht(\widehat{E}) \in \{1, 2\}$

Proof

- By the theorem with $\varphi = [p]$: $\deg_i([p]) = p^{ht([p])}$
- Fact (talk 2): $deg([p]) = p^2$
- Hence, $\deg_i([p]) \in \{1, p, p^2\}$
- but $\deg_i([p]) \neq 1$ because [p] is not separable
- therefore, $\deg_i([p]) = p^{\mathsf{ht}([p])} \in \{p, p^2\}$, so $\mathsf{ht}([p]) \in \{1, 2\}$