

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Report No.: SRTC2014-H024-E0036

Product Name: GSM/GPRS/EDGE/UMTS

Digital Mobile Phone with Bluetooth and Wi-Fi

Product Model: Philips 1928

Applicant: Shenzhen Sang Fei Consumer Communications

Co., Ltd.

Manufacturer: Shenzhen Sang Fei Consumer Communications

Co., Ltd.

Specification: FCC Part 2.1093

FCC RF Exposure KDB Procedures

IEEE Std 1528-2003

IEEE Std 1528a-2005

FCC ID: VQRCTI928

The State Radio monitoring center Testing Center (SRTC)

No.80 Beilishi Road Xicheng District Beijing, China

Tel: 86-10-68009202 Fax: 86-10-68009205

Executive summary

Test report no.: SRTC2014-H024-E0036

Product Model: Philips 1928

Period of test: 2014.06.27~2014.06.30

Date of report: 2014.07.01

Laboratory: The State Radio_monitoring_center Testing Center (SRTC)
Test has been The tests documented in this report were performed in accordance

Carried out in accordance with FCC 47 CFR Parts 1 & 2, IEEE Std 1528-2003, IEEE Std 1528a-2005 and following FCC RF exposure KDB procedures:

accordance o 447498 D01 General RF Exposure Guidance v05r01 with: o 648474 D04 SAR Handsets Multi Xmiter and Ant v01r01

o 941225 D01 SAR test for 3G devices v02 o 941225 D02 HSPA and 1x Advanced v02r02

o 941225 D03 SAR Test Reduction GSM GPRS EDGE v01

o 941225 D06 Hot Spot SAR v01r01

o 248227 D01 SAR Meas for 802 11abg v01r02

o 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

o 865664 D02 SAR Reporting v01r01

Documentation: The documentation of the testing performed on the tested

devices is archived for 5 years at SRTC

Result summary:

	Mode	CH/f(MHz)	Power (dBm)	Position	SAR Limit (1g avg) (W/kg)	Reported SAR (1g avg)(W/kg)	Result
Ī	WCDMA	9800/1880	21.77	EDGE2	1.6	1.078	PASS
	Band2			(10mm Gap)			

This Test Report Is Issued by:

Mr. Song Qizhu

Mr. Wang Junfeng

Tested by: Issued date:

Mr. Jiang Shuo
Test engineer
2014.07.02

The State Radio_monitoring_center Testing Center (SRTC)

Tel: 86-10-68009202 68009203

Page number: 2 of 167

Fax: 86-10-68009195 68009205 Copyright © SRTC

Tables of contents

1. GENERAL INFORMATION	5
1.1 Notes of the test report	5
1.2 Information about the testing laboratory	5
1.3 Applicant's details	5
1.4 Manufacturer's details	5
1.5 Test Details	6
1.6 Maximum Results	6
1.6.1 Highest SAR Summary	6
2. DESCRIPTION OF THE DEVICE UNDER TEST	6
2.1 Wireless Technologies	7
2.2 Picture to demonstrate the required liquid depth	8
3. TEST CONDITIONS	8
3.1 Temperature and Humidity	8
3.2 Test Signal, Frequencies and Output Power	8
3.3 SAR Measurement Set-up	8
4. DESCRIPTION OF THE TEST EQUIPMENT	9
4.1 Measurement System and Components	9
4.2 Phantoms	11
4.3 Tissue Simulants	11
4.3.1 Tissue Simulant Recipes	12
4.3.2 System Checking	12
4.3.3 Tissue Simulants used in the Measurements	13
5. DESCRIPTION OF THE TEST PROCEDURE	
5.1 Device Holder	14
5.2 Test positions	14
5.2.1 Against Phantom Head	14
5.2.2 Body Worn Configuration	14
5.3 Scan Procedure	15
5.4 SAR Averaging Methods	15
6. MEASUREMENT UNCERTAINTY	16
7. RF Output Power Measurement	17
7.1 Manufacturing Tolerance	17
7.2 GSM Measurement result	
7.3 WCDMA Measurement result	24
7.4 Bluetooth Measurement result	27
7.5 Wi-Fi Measurement result	28
7.6 Standalone SAR Test Exclusion Considerations	30
8. RF Exposure Conditions	31
8.1 Head Exposure Conditions	31
8.2 Body-worn Accessory Exposure conditions	32

8.3 Hotspot Exposure Conditions	32
9. SAR Test result	
9.1 SAR Measurement Variability	44
9.1.1 The Highest Measured SAR configuration in Each Frequency Band	
9.1.2 Repeated Measurement Results	45
9.2 Simultaneous Transmission SAR Analysis	45
APPENDIX A: SYSTEM CHECKING SCANS	47
APPENDIX B: MEASUREMENT SCANS	53
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	109
APPENDIX D: RELEVANT PAGES FROM DAE REPORT(S)	131
APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S).	143
APPENDIX F: Test Setup	167

No.: SRTC2014-H024-E0036

FCC ID: VQRCTI928

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio monitoring center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company: The State Radio_monitoring_center Testing Center (SRTC)

Address: No.80 Beilishi Road, Xicheng District, Beijing China

City: Beijing Country or Region: China

Contacted person: Wang Junfeng

Tel: +86 10 68009181 +86 10 68009202 Fax: +86 10 68009195 +86 10 68009205

Email: wangjf@srrc.org.cn / wangjunfeng@srtc.org.cn

1.3 Applicant's details

Company: Shenzhen Sang Fei Consumer Communications Co., Ltd. Address: 11 Science & Technology Rd., Shenzhen Hi-tech Industrial

Park, Nanshan District

City: Shenzhen
Country or Region: China
Grantee Code: VQR
Contacted person: Helen.Lin

Tel: 86-755-33308888 Fax: 86-755-26614979

Email: Helen.Lin@sangfei.com

1.4 Manufacturer's details

Company: Shenzhen Sang Fei Consumer Communications Co., Ltd. Address: 11 Science & Technology Rd., Shenzhen Hi-tech Industrial

Park, Nanshan District

City: Shenzhen
Country or Region: China
Contacted person: Helen.Lin

Tel: 86-755-33308888 Fax: 86-755-26614979 Email: Helen.Lin@sangfei.com

The State Radio monitoring center Testing Center (SRTC) Page number: 5 of 167

Tel: 86-10-68009202 68009203

Fax: 86-10-68009195 68009205 Copyright © SRTC

1.5 Test Details

Period of test	2014.06.27~2014.06.30
Battery	Li-Lon/harbin coslight powerco.,ltd/AB3000BWMC
Headsets	Shenzhen TENJI Industrial Co., Ltd./TJ-101100
State of sample	Production unit
H/W Version	TMBHb
S/W Version	I928_M6592_1418_00_V01A_T01_AG
INACI	No.1: 864359020039827
IMEI	No.2: 864359020040007
Notes	

1.6 Maximum Results

The maximum reported SAR values for Head configuration and Body Worn configuration are given as follows. The device conforms to the requirements of the standard(s) when the maximum reported SAR value is less than or equal to the limit.

1.6.1 Highest SAR Summary

Exposure Position	Frequency Band	1g-SAR Reported Result (W/kg)	Highest 1g-SAR Reported Result (W/kg)
	GSM 850	0.163	
	GSM 1900	0.175	
Head	WCDMA Band 2	0.250	0.250
	WCDMA Band 5	0.171	
	WLAN 2.4GHz Band	0.198	
	GSM 850	0.545	
Dody	GSM 1900	0.854	
Body (10mm Gap)	WCDMA Band 2	1.078	1.078
(Tollin Gap)	WCDMA Band 5	0.241	
	WLAN 2.4GHz Band	0.147	

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	production unit	
Exposure environment	General population/uncontrolled	
Description of the Antenna	The device has an internal antenna.	

2.1 Wireless Technologies

Wireless Technology and	GSM Band : GSM850/PCS1900
Frequency Bands	WCDMA Band: FDD II/FDD V
	Wi-Fi Band: 2.4GHz~2.4835GHz
	Bluetooth Band: 2.4GHz~2.4835GHz
Mode	GSM
	⊠Voice (GMSK)
	$\overline{\boxtimes}$ GPRS (GMSK)
	EDGE (8PSK) (Rx only)
	WCDMA
	⊠UMTS Rel. 99 (Voice & Data)
	⊠HSDPA (Rel. 5)
	⊠HSUPA (Rel. 6)
	HSPA+ (Rel. 7)
	DC-HSDPA (Rel.)
	Wi-Fi 2.4GHz (802.11b/g/n)
	⊠802.11b
	⊠802.11g
	⊠802.11n (20MHz)
	⊠802.11n (40MHz)
	Bluetooth Ver. 4.0
	oxtimesBR(GFSK)
	⊠EDR(π/4 DQPSK , 8-DPSK)
	⊠BLE(GFSK)
Duty Cycle	GSM Voice: 12.5%;
	GPRS: 12.5% (1 Slot), 25% (2 Slots), 37.5% (3 Slots),
	50% (4 Slots)
	WCDMA: 100%
	Wi-Fi 802.11b/g/n: 100%
	Bluetooth: 32.25% (DH1), 66.68% (DH3), 77.52% (DH5)
GPRS Multi-Slot Class	☐Class 8 - One Up
	☐Class 10 - Two Up
	⊠Class 12 - Four Up
Mobile Phone Capability	☐Class A - Mobile phones can be connected to both
	GPRS and GSM services simultaneously.
	GPRS and GSM services, using one service at a time.
	Class C - Mobile phones are attached to either GPRS
	or GSM voice service. You need to switch manually
	between services
DTM (Dual Transfer Mode)	Not Supported

Page number: 7 of 167

Copyright © SRTC

2.2 Picture to demonstrate the required liquid depth

the liquid depth in the used SAM phantoms

Liquid depth for SAR Measurement

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C)	21.0 to 23.0
Ambient humidity (RH %)	30 to 45

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

3.3 SAR Measurement Set-up

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit. A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors.

The PC consists of the Micron Pentium IV computer with Win7 system and SAR Measurement Software DASY5 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot.

A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines.

The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection

The robot uses its own controller with a built in VME-bus computer.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY5,manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test	Serial	Calibration	Calibration
Equipment	Number	interval	expiry
DAE4	546	1 year	2014.08.13
DAE4	725	1year	2014.08.16
Dosimetric E-field Probe ES3DV3	3127	1 year	2014.08.21
Dosimetric E-field Probe EX3DV4	3708	1 year	2014.10.22
Dipole Validation Kit D835V2	4d023	1 year	2014.10.22
Dipole Validation Kit D1900V2	5d113	1 year	2014.10.16
Dipole Validation Kit D2450V2	738	1 year	2014.10.17
DASY5 No.1	52.8.7.1137	N/A	N/A
DASY5 No.2	52.8.7.1137	N/A	N/A

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Additional test equipment used in testing:

Toot Fauinment	Model	Serial	Calibration	Calibration
Test Equipment	Model	Number	interval	expiry
Signal Generator	E4428C	MY45280865	1 year	2014.08.20
Signal Generator	SML 03	103514	1 year	2014.08.20
Amplifier	5S1G4	0323472	N/A	N/A
Amplifier	5S1G4	301305	N/A	N/A
Power meter	E4417A	MY45101182	1 year	2014.08.20
Power Sensor	E4412A	MY41502214	1 year	2014.08.20
Power Sensor	E4412A	MY41502130	1 year	2014.08.20
Power meter	E4417A	MY45101004	1 year	2014.08.20
Power Sensor	E9300B	MY41496001	1 year	2014.08.20
Power Sensor	E9300B	MY41496003	1 year	2014.08.20
Communications Test Set	8960	GB43194054	1 year	2014.08.20
Communication Tester	CMU200	114666	1 year	2014.08.20
Network Analyzer	8714ET	US40372083	1 year	2014.08.20
Dielectric Probe Kit	85070D	US33030365	N/A	N/A

Detailed information of Isotropic E-field Probe Type ES3DV3

Construction	Symmetrical design with triangular core Interleaved sensors
	Built-in shielding against static charges PEEK enclosure
	material (resistant to organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to 4 GHz;
	Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Optical Surface	± 0.2 mm repeatability in air and clear liquids over diffuse
Detection	reflecting surfaces
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 3.9 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.0 mm
Dynamic Range	5 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Application	General dosimetry up to 4 GHz
	Dosimetry in strong gradient fields
	Compliance tests of mobile phones

Detailed information of Isotropic E-field Probe Type EX3DV4

Construction	Symmetrical design with triangular core Built-in shielding
	against static charges PEEK enclosure material (resistant to
	organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to > 6 GHz
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Optical Surface	± 0.3 mm repeatability in air and clear liquids over diffuse
Detection	reflecting surfaces
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1 mm
Dynamic Range	10 μW/g to > 100 W/kg
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Application	High precision dosimetric measurements in any exposure
	scenario (e.g., very strong gradient fields); the only probe
	that enables compliance testing for frequencies up to 6 GHz
	with precision of better 30%.

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

Fax: 86-10-68009195 68009205

Page number: 11 of 167

Copyright © SRTC

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue stimulant(s):

835MHz band

Ingredient	Head	Body
	(% by weight)	(% by weight)
Water	41.45	52.50
Sugar	56.00	45.0
Nacl	1.45	1.40
Cellulose	1.00	1.00
Preventol	0.10	0.10

1900MHz band

Ingredient	Head	Body
	(% by weight)	(% by weight)
Water	44,45	70.17
DGBE	55.24	29.44
Nacl	0.31	0.39

2450MHz band

Ingredient	Head	Body
	(% by weight)	(% by weight)
Water	55.00	68.64
DGBE	45.00	31.37
Nacl	0.00	0.00

4.3.2 System Checking

The manufacturer calibrates the probes annully. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

Date Tested	System Serial No.	System dipole	T.S. Liquid	me (nor	SAR asured malized o 1W)	Target (Ref.Value)	Delta (%)	Tolerance (%)
2014.06.27	No.1	D835V2	Head	1g	9.80	9.47	3.48	±10
2014.06.27	No.1	D835V2	Body	1g	9.88	9.28	6.47	±10
2014.06.28	No.1	D1900V2	Head	1g	41.60	40.40	2.97	±10
2014.06.28	No.2	D1900V2	Body	1g	43.20	40.90	5.62	±10
2014.06.29	No.2	D2450V2	Head	1g	51.20	53.20	3.76	±10
2014.06.30	No.2	D2450V2	Body	1g	53.20	49.30	7.91	±10

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

For the measurement of the following parameters the HP 85070D dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Date	Freq.(MHz)	Liquid	measured	Target	Delta(%)	Tolerance(%)	
Tested	1 16q.(IVII 12)	parameters	measureu	Taryet	Della (70)	i dierarice (%)	
2014.06.27	Head 835	εr	42.11	41.50	1.47	±5	
2014.00.27	i lead 635	σ[S/m]	0.91	0.90	1.1	±5	
2014.06.27	Body 835	εr	53.85	55.20	2.45	±5	
2014.00.27	Бойу 633	σ[S/m]	0.98	0.97	1.03	±5	
2014.06.28	Head 1900	εr	40.84	40.00	2.10	±5	
2014.00.20	пеац 1900	σ[S/m]	1.41	1.40	0.71	±5	
2014.06.28	Pody 1000	εr	52.18	53.30	2.10	±5	
2014.00.20	Body 1900	σ[S/m]	1.53	1.52	0.66	±5	
2014.06.29	Head 2450	εr	39.21	39.20	0.00	±5	
2014.00.29	Head 2450	σ[S/m]	1.79	1.80	0.56	±5	
2014.06.30	Pody 2450	εr	52.04	52.70	1.25	±5	
2014.00.30	Body 2450	σ[S/m]	1.97	1.95	1.03	±5	

Fax: 86-10-68009195 68009205

Page number: 13 of 167

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

5.2 Test positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance using a separate flat spacer that was removed before the start of the measurements. And the distance is 10mm. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

5.3 Scan Procedure

First, area scans were used for determination of the field distribution and the approximate location of the local peak SAR values. The SAR distribution is scanned along the inside surface, at least for an area larger than the projection of the handset and antenna. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. The SAR distribution is first measured on a 2-D coarse grid. The scan region should cover all areas that are exposed and encompassed by the projection of the handset. It is a 15 mm × 15 mm measurement grid used when two staggered one-dimensional cubic splines are used to estimate the maximum SAR location. Next, a zoom scan, a minimum of 7 x 7x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within DASY5 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the guadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

DASY5 Uncertainty Budget								
Error description	Uncertainty value	Prob. Dist.	Div.	(c_i)	(c _i) 10g	Std.Unc (1g).	Std.Unc. (10g)	(vi) Veff
Measurement system								
Probe calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	8
Axial isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	~
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	~
Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	~
Test Sample Related								
Device holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Power drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity(target.)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid conductivity(mea.)	±2.5%	R	$\sqrt{3}$	0.64	0.43	±0.9%	±0.6%	∞
Liquid Permittivity(target.)	±5.0%	R	$\sqrt{3}$	0.60	0.49	±1.7%	±1.4%	∞
Liquid Permittivity(mea.)	±2.5%	R	$\sqrt{3}$	0.60	0.49	±0.9%	±0.7%	∞
Combined std. Uncertainty						±10.9%	±10.7%	387
Expanded STD Uncertaint	у					±21.7%	±21.4%	

No.: SRTC2014-H024-E0036

FCC ID: VQRCTI928

7. RF Output Power Measurement

7.1 Manufacturing Tolerance

GSM

GSM 850						
Channel Channel 251 Channel 189 Channel 128						
Tolerance (dBm)	31.0~34.0	31.0~34.0	31.0~34.0			
	GSM 1900					
Channel	Channel 810	Channel 661	Channel 512			
Tolerance (dBm)	28.0~31.0	28.0~31.0	28.0~31.0			

GSM 850 GPRS					
	Channel	251	189	128	
1 Txslot	Tolerance (dBm)	31.0~34.0	31.0~34.0	31.0~34.0	
2 Txslot	Tolerance (dBm)	30.0~33.0	30.0~33.0	30.0~33.0	
3 Txslot	Tolerance (dBm)	28.0~31.0	28.0~31.0	28.0~31.0	
4 Txslot	Tolerance (dBm)	27.0~30.0	27.0~30.0	27.0~30.0	
	GSM 850	DEDGE (GMS	K)		
	Channel	251	189	128	
1 Txslot	Tolerance (dBm)	31.0~34.0	31.0~34.0	31.0~34.0	
2 Txslot	Tolerance (dBm)	30.0~33.0	30.0~33.0	30.0~33.0	
3 Txslot	Tolerance (dBm)	28.0~31.0	28.0~31.0	28.0~31.0	
4 Txslot	Tolerance (dBm)	27.0~30.0	27.0~30.0	27.0~30.0	

GSM 1900 GPRS					
	Channel	810	661	512	
1 Txslot	Tolerance (dBm)	28.0~31.0	28.0~31.0	28.0~31.0	
2 Txslot	Tolerance (dBm)	27.0~30.0	27.0~30.0	27.0~30.0	
3 Txslot	Tolerance (dBm)	25.0~28.0	25.0~28.0	25.0~28.0	
4 Txslot	Tolerance (dBm)	24.0~27.0	24.0~27.0	24.0~27.0	
	GSM 190	0 EDGE (GMS	SK)		
	Channel	810	661	512	
1 Txslot	Tolerance (dBm)	28.0~31.0	28.0~31.0	28.0~31.0	
2 Txslot	Tolerance (dBm)	27.0~30.0	27.0~30.0	27.0~30.0	
3 Txslot	Tolerance (dBm)	25.0~28.0	25.0~28.0	25.0~28.0	
4 Txslot	Tolerance (dBm)	24.0~27.0	24.0~27.0	24.0~27.0	

Fax: 86-10-68009195 68009205

Page number: 17 of 167

Copyright © SRTC

WCDMA

WCDMA Band2						
Channel 9262 9400 9538						
Tolerance (dBm)	20.0~23.0	20.0~23.0	20.0~23.0			
	WCDMA Band5					
Channel	4132	4183	4233			
Tolerance (dBm)	20.0~23.0	20.0~23.0	20.0~23.0			

HSUPA Band2						
	Channel	9262	9400	9538		
Sub test 1	Tolerance (dBm)	19.0~22.0	19.0~22.0	19.0~22.0		
Sub test 2	Tolerance (dBm)	19.0~22.0	19.0~22.0	19.0~22.0		
Sub test 3	Tolerance (dBm)	19.0~22.0	19.0~22.0	19.0~22.0		
Sub test 4	Tolerance (dBm)	18.0~21.0	18.0~21.0	18.0~21.0		
Sub test 5	Tolerance (dBm)	19.0~23.0	19.0~23.0	19.0~23.0		

HSUPA Band5						
	Channel	4132	4183	4233		
Sub test 1	Tolerance (dBm)	18.0~21.0	18.0~21.0	18.0~21.0		
Sub test 2	Tolerance (dBm)	18.0~21.0	18.0~21.0	18.0~21.0		
Sub test 3	Tolerance (dBm)	18.0~21.0	18.0~21.0	18.0~21.0		
Sub test 4	Tolerance (dBm)	17.0~20.0	17.0~20.0	17.0~20.0		
Sub test 5	Tolerance (dBm)	19.0~23.0	19.0~23.0	19.0~23.0		

Bluetooth

GFSK								
Channel	0	39	78					
Tolerance (dBm)	3.0~5.0	3.0~5.0	3.0~5.0					
π/4DQPSK								
Channel	0	39	78					
Tolerance (dBm)	5.0~7.0	5.0~7.0	5.0~7.0					
	8DPSK							
Channel	0	39	78					
Tolerance (dBm)	5.0~7.0	5.0~7.0	5.0~7.0					

Bluetooth(BLE)

GFSK						
Channel	0 39 78					
Tolerance (dBm)	-5~-2	-5~-2	-5~-2			

Wi-Fi

802.11b									
Channel	1	6	11						
Tolerance (dBm)	14.0~17.0	14.0~17.0	14.0~17.0						
	802.1	1g							
Channel	1	6	11						
Tolerance (dBm)	10.0~15.0	10.0~15.0	10.0~15.0						
	802.11n HT20 (M	MCS0~MCS3)							
Channel	1	6	11						
Tolerance (dBm)	11.0~16.0	11.0~16.0	11.0~16.0						
	802.11n HT20 (M	MCS4~MCS7)							
Channel	1	6	11						
Tolerance (dBm)	9~14	9~14	9~14						
	802.11n HT40 (N	MCS0~MCS3)							
Channel	1	6	11						
Tolerance (dBm)	8~15	8~15	8~15						
	802.11n HT40 (MCS4~MCS7)								
Channel	1	6	11						
Tolerance (dBm)	6~12.5	6~12.5	6~12.5						

7.2 GSM Measurement result

Conducted Power

Mode	GSM850(Head) Duty cycle: 1:8(12.5%)				V1900(Не ycle: 1:8(•
Channel	128	189	251	512	661	810
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
Measured Power(dBm)	32.19	32.25	32.29	29.33	29.36	29.42

GPRS Measured Power

Mode	GPRS850			GPRS1900			
Channel	128	189	251	512	661	810	
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8	
4Downlink1uplinkPower(dBm)	32.18	32.25	32.29	29.35	29.38	29.44	
3Downlink2uplinkPower(dBm)	31.27	31.35	31.35	28.29	28.35	28.47	
2Downlink3uplinkPower(dBm)	29.56	29.63	29.68	26.35	26.42	26.56	
1Downlink4uplinkPower(dBm)	28.84	28.90	28.94	25.50	25.60	25.76	

EDGE Measured Power

Mada	EDGE850(GMSK)			EDGE1900(GMSK)			
Mode	EDG	EDGE850(8PSK)			EDGE1900(8PSK)		
Channel	128	189	251	512	661	810	
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8	
	32.18	32.24	32.28	29.34	29.37	29.43	
4Downlink1uplinkPower(dBm)							
3Downlink2uplinkPower(dBm)	31.26	31.34	31.34	28.28	28.34	28.46	
2Downlink3uplinkPower(dBm)	29.55	29.62	29.67	26.34	26.41	26.55	
4 Day and indext and independent of Albana	28.83	28.89	28.93	25.49	25.59	25.75	
1Downlink4uplinkPower(dBm)							

GPRS Averaged Power

Mode	GPRS850			GPRS1900		
Channel	128	189	251	512	661	810
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
4Downlink1uplinkPower(dBm)	23.15	23.22	23.26	20.32	20.35	20.41
3Downlink2uplinkPower(dBm)	25.25	25.33	25.33	22.27	22.33	22.45
2Downlink3uplinkPower(dBm)	25.3	25.37	25.42	22.09	22.16	22.3
1Downlink4uplinkPower(dBm)	25.83	25.89	25.93	22.49	22.59	22.75

Division Factors(for Measured Power and Averaged Power):

To average the power, the division factor is as follows:

1TX-slot (4Downlink1uplink)= 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots(3Downlink2uplink) = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots (2Downlink3uplink)= 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots (1Downlink4uplink)= 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots (1Downlink4uplink) for GPRS.

EDGE Averaged Power

LUGE Averaged Fower									
Mada	EDGE850(GMSK)			EDGE1900(GMSK)					
Mode	EDG	E850(8	PSK)	EDG	E1900(8	PSK)			
Channel	128	189	251	512	661	810			
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8			
4D - Jirl 4 Jirl D - Jirl D - Jirl	23.15	23.21	23.25	20.31	20.34	20.4			
4Downlink1uplinkPower(dBm)									
3Downlink2uplinkPower(dBm)	25.24	25.32	25.32	22.26	22.32	22.44			
3Downlinkzupilikrowei(dbiii)									
2Downlink3uplinkPower(dBm)	25.29	25.36	25.41	22.08	22.15	22.29			
2DownlinkSupilitkFower(ubiti)									
1Downlink4uplinkPower(dBm)	25.82	25.88	25.92	22.48	22.58	22.74			
150Willink+upilinki owei(ubili)									

Division Factors(for Measured Power and Averaged Power):

To average the power, the division factor is as follows:

1TX-slot (4Downlink1uplink)= 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots(3Downlink2uplink) = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots (2Downlink3uplink)= 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots (1Downlink4uplink)= 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots (1Downlink4uplink) for EDGE(GMSK).

7.3 WCDMA Measurement result

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode		Subtest	Rel99
WCDMA	General	Loopback Mode	Test Mode 1
Settings		Rel99 RMC	12.2kbps RMC
		Power Control Algorithm	Algorithm2
		βc/βd	8/15

Measured Results

Mode	WCI	DMA Bar	ıd2	wo	DMA Baı	nd5
Channel	9262	9400	9538	4132	4183	4233
Frequency(MHz)	1852.4	1880	1907.6	826.4	836.6	846.6
RB test mode1+64kRMC(dBm)	21.67	21.78	20.54	20.93	21.67	18.98
RB test mode1+12.2kRMC(dBm)	21.67	21.77	20.55	20.98	21.70	19.00
RB test mode1+144kRMC(dBm)	21.69	21.82	20.54	20.94	21.69	18.99
RB test mode1+384kRMC(dBm)	21.70	21.81	20.55	20.95	21.71	19.01
AMR Voice test mode+12.2kRMC(dBm)	21.71	21.80	20.55	20.97	21.68	19.00

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121.

Sub-test	βc	β_{d}	β _d (SF)	$\beta_{c/}\beta_d$	${\beta_{hs}}^{(1)}$	CM(dB) (2)
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/18	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note2:CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.

Note3:For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to β_c =11/15 and β_d =15/15.

Measured Results

Mode	HS	DPA Band	1 2	HSI	DPA Ban	d 5
Channel	9262	9400	9538	4132	4183	4233
Frequency(MHz)	1852.4	1880	1907.6	826.4	836.6	846.6
sub-test1(dBm)	21.00	21.10	20.00	20.30	20.80	18.20
sub-test2(dBm)	21.00	21.10	20.00	20.40	20.90	18.20
sub-test3(dBm)	21.00	21.10	20.00	20.40	20.90	18.20
sub-test4(dBm)	21.00	21.10	20.00	20.50	20.30	18.20

Fax: 86-10-68009195 68009205

Page number: 25 of 167

Copyright © SRTC

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121.

Sub-test	P	0	β_{d}	0.0	β _{hs} ⁽¹⁾	ρ	ρ	β_{ed}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾	E-TFCI
Sub-lest	β _c	β_d	(SF)	β_{c}/β_{d}	Phs	eta_{ec}	$eta_{ ext{ed}}$	(SF)	(codes)	(dB)	(dB)	Index	E-TFGI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	2.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} :47/15	4	2	2.0	2.0	15	92
3	15/15	9/10	04	15/9	30/13	30/13	β _{ed2} :47/15	4	2	2.0	2.0	13	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	2.0	21	81

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note2:CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.For all other combinations of DPDCH,DPCCH,HS-DPCCH,E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to $\beta_c=10/15$ and $\beta_d=15/15$.

Note4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to β_c =14/15 and β_d =15/15.

NOTE5: Testing UE using E-DPDCH Physical layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. NOTE6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Measure Results

Mode	нѕ	UPA Band	12	HSUPA Band 5		
Channel	9262	9400	9538	4132	4183	4233
Frequency(MHz)	1852.4	1880	1907.6	826.4	836.6	846.6
sub-test1(dBm)	20.21	20.35	19.25	19.30	19.80	17.70
sub-test2(dBm)	20.21	20.38	19.26	19.30	19.90	17.70
sub-test3(dBm)	21.17	21.34	20.23	19.40	20.00	17.80
sub-test4(dBm)	19.67	19.83	18.73	18.70	19.40	17.20
sub-test5(dBm)	22.13	22.31	21.21	21.10	21.90	19.70

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02.

HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

Page number: 26 of 167

7.4 Bluetooth Measurement result

Modulation type	Test Result (mW)				
Modulation type	2402MHz(Ch0)	2441MHz(Ch39)	2480MHz(Ch78)		
GFSK	1.75	2.09	2.33		
π/4DQPSK	1.04	1.25	1.37		
8DPSK	1.02	1.29	1.36		
GFSK(BLE)	2402MHz(Ch0)	2440MHz(Ch19)	2480MHz(Ch39)		
GFSK(DLE)	0.40	0.45	0.51		

Modulation type	Test Result (dBm)				
Modulation type	2402MHz(Ch0)	2441MHz(Ch39)	2480MHz(Ch78)		
GFSK	2.43	3.21	3.68		
π/4DQPSK	0.19	0.96	1.36		
8DPSK	0.08	1.11	1.35		
GFSK(BLE)	2402MHz(Ch0)	2440MHz(Ch19)	2480MHz(Ch39)		
GFSK(BLE)	-4.02	-3.48	-2.92		

7.5 Wi-Fi Measurement result

	Data Rate	-	Test Result (mW)				
Test Mode	(Mbps)	2412MHz	2437MHz	2462MHz			
	(IVIDPS)	(Ch1)	(Ch6)	(Ch11)			
	1	39.17	39.72	40.09			
802.11b	2	36.64	38.11	39.17			
002.110	5.5	36.48	37.93	39.54			
	11	25.88	35.48	35.32			
	6	17.74	32.81	18.07			
	9	16.71	31.41	17.26			
	12	16.60	32.81	17.42			
902.11a	18	15.00	30.34	15.74			
802.11g	24	13.30	24.55	13.68			
	36	11.80	22.91	11.94			
	48	10.72	20.61	11.22			
	54	10.28	20.04	10.79			
	6.5	17.70	32.58	17.70			
	13	15.74	31.70	15.96			
	19.5	14.22	27.35	14.42			
802.11n	26	13.00	25.53	13.27			
(HT20)	39	11.61	23.88	11.86			
	52	10.76	21.83	11.43			
	58.5	10.33	20.32	10.96			
	65	9.89	19.32	10.42			
	Data Rate	Test Result (mW)					
Test Mode	(Mbps)	2422MHz	2437MHz	2462MHz			
	(MDP3)	(Ch3)	(Ch6)	(Ch11)			
	13.5	9.51	30.13	30.06			
	27	8.34	26.12	25.70			
	40.5	7.36	22.28	22.44			
802.11n	54	6.67	20.32	20.51			
(HT40)	81	5.41	17.26	17.10			
	108	4.89	15.35	15.28			
	121.5	4.69	13.37	14.66			
	135	4.58	13.06	14.29			

	Data Rate	Test Result (dBm)				
Test Mode	(Mbps)	2412MHz	2437MHz	2462MHz		
	(MBPO)	(Ch1)	(Ch6)	(Ch11)		
	1	15.93	15.99	16.03		
802.11b	2	15.64	15.81	15.93		
002.110	5.5	15.62	15.79	15.97		
	11	14.13	15.50	15.48		
	6	12.49	15.16	12.57		
	9	12.23	14.97	12.37		
	12	12.20	15.16	12.41		
902.116	18	11.76	14.82	11.97		
802.11g	24	11.24	13.90	11.36		
	36	10.72	13.60	10.77		
	48	10.30	13.14	10.50		
	54	10.12	13.02	10.33		
	6.5	12.48	15.13	12.48		
	13	11.97	15.01	12.03		
	19.5	11.53	14.37	11.59		
802.11n	26	11.14	14.07	11.23		
(HT20)	39	10.65	13.78	10.74		
	52	10.32	13.39	10.58		
	58.5	10.14	13.08	10.40		
	65	9.95	12.86	10.18		
	Data Rate	Test Result (dBm)				
Test Mode	(Mbps)	2422MHz	2437MHz	2462MHz		
	(MDP3)	(Ch3)	(Ch6)	(Ch11)		
	13.5	9.78	14.79	14.78		
	27	9.21	14.17	14.10		
	40.5	8.67	13.48	13.51		
802.11n	54	8.24	13.08	13.12		
(HT40)	81	7.33	12.37	12.33		
	108	6.89	11.86	11.84		
	121.5	6.71	11.26	11.66		
	135	6.61	11.16	11.55		

7.6 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10 mm test separation distances is 19 mW.

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and ≤ 50 mm
Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	7
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	б	12	19	25	31	

Summary of Transmitters

Band/Mode	F(GHz)	SAR test exclusion threshold (mW)	RF output power (mW)
Bluetooth	2.480	19	2.33
2.4GHz WLAN 802.11 b	2.462	19	40.09

According to the conducted power measurement results, we can draw the conclusion that:

stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of GSM and WiFi. Stand-alone SAR and simultaneous transmission SAR for Bluetooth should not be performed.

8. RF Exposure Conditions

Refer to the follow picture "Antenna Locations & Separation Distances" for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

8.1 Head Exposure Conditions

For WWAN, WiFi

Test Configurations	SAR Required	Note
Left Touch	yes	1
Left Tilt (15°)	yes	1
Right Touch	yes	1
Right Tilt (15°)	yes	1

8.2 Body-worn Accessory Exposure conditions

For WWAN

Test Configurations	SAR Required	Note
Rear	yes	1
Front	yes	1

For WiFi

Test Configurations	SAR Required	Note
Rear	yes	1
Front	yes	1

8.3 Hotspot Exposure Conditions

For WWAN

Test Configurations	Antenna-to-edge/surface	SAR Required	Note
Rear	<25 mm	yes	1
Front	<25 mm	yes	1
Edge1 (top)	140 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01
Edge2 (Bottom)	0.92 mm	Yes	1
Edge3 (Left)	0.98 mm	Yes	1
Edge4 (Right)	0.98 mm	Yes	1

For WiFi

Test Configurations	Antenna-to-edge/surface	SAR Required	Note	
Rear	<25 mm	yes	1	
Front	<25 mm	yes	1	
Edge1 (top)	0.92 mm	Yes	/	
Edge2 (Bottom)	150 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01	
Edge3 (Left)	70 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01	
Edge4 (Right)	0.98 mm	Yes	1	

9. SAR Test result

In order to determine the largest value of the peak spatial-average SAR of a handset, all device positions, configurations, and operational modes should be tested for each frequency band according to Steps 1 to 3 below.

Step 1: The tests should be performed at the channel that is closest to the center of the transmit frequency band.

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) All operational modes for each device position in item a) and configuration in item b) in each frequency band, e.g., analog and digital, If more than three frequencies need to be tested (i.e., Nc > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing the highest peak spatial-average SAR determined in Step 1 for each frequency, perform all tests at all other test frequency channels, e.g., lowest and highest frequencies. In addition, for all other conditions (device position, configuration, and operational mode) where

Page number: 33 of 167

the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies should be tested as well.

Step 3: Examine all data to determine the largest value of the peak. Note:

1. Per KDB 447498 D01v05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

- 2. Per KDB 447498 D01v05, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing are not necessary.
- 3. In the report the test position "Mobile phone screen Towards Ground" abbreviated as "TG",and "Mobile phone screen Towards Phantom" abbreviated as "TP".

The measured and reported Head/body SAR values for the test device are tabulated below:

Mode: GSM 850

fL(MHz)=824.2MHz fM(MHz)=836.4MHz fH(MHz)=848.8MHz

SAR Values (Head, 850MHz Band)

Limit of SAR (W/kg): <1.6W/kg(1g Average)

Test Case		Oh	Measure Conducted	Tune-up	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode	Ch	Power (dBm)	1g Average		1g Average	
Left		L	32.19	34.00			
cheek		М	32.25	34.00	1.50	0.086	0.129
Clieek		Н	32.29	34.00			
Left		L	32.19	34.00			
Tilted		М	32.25	34.00	1.50	0.065	0.097
	GSM	Н	32.29	34.00			
Right cheek		L	32.19	34.00			
		М	32.25	34.00	1.50	0.109	0.163
		Н	32.29	34.00			
Right Tilted		L	32.19	34.00			
		М	32.25	34.00	1.50	0.071	0.107
		Н	32.29	34.00			

The State Radio_monitoring_center Testing Center (SRTC)

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 34 of 167

Copyright © SRTC

No.: SRTC2014-H024-E0036

FCC ID: VQRCTI928

Mode: GSM850 (GSM/GPRS/EDGE)

fL(MHz)=824.2MHz fM(MHz)=836.4MHz fH(MHz)=848.8MHz

SAR Values (body, 850MHz Band

Limit of SAR (W/kg): <1.6W/kg(1g Average)

Test Case		Ch	Measure Conducted Power	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		(dBm)	(dBm)	1 actor	1 g Average	1g Average
	GSM With	L	32.19	34.00			
		М	32.25	34.00	1.50	0.103	0.154
	headset	Н	32.29	34.00			
		L	28.84	30.00			
TG	GPRS	М	28.90	30.00	1.29	0.422	0.544
		Ι	28.94	30.00			
	EDGE	L	28.83	30.00			
		М	28.89	30.00	1.29	0.422	0.545
		Н	28.93	30.00			
	GSM	L	32.19	34.00			
	With	М	32.25	34.00	1.50	0.102	0.153
	headset	Ι	32.29	34.00			
	GPRS	L	28.84	30.00			
TP		М	28.90	30.00	1.29	0.173	0.223
		Н	28.94	30.00			
	EDGE	L	28.83	30.00			
		М	28.89	30.00	1.29	0.173	0.223
		Ι	28.93	30.00			
EDGE 2		М	28.90	30.00	1.29	0.174	0.224
EDGE 3	GPRS	М	28.90	30.00	1.29	0.086	0.111
EDGE 4		М	28.90	30.00	1.29	0.021	0.027

Note: The distance between the EUT and the phantom bottom is 10mm.

Mode: GSM1900

fL(MHz)=1850.2MHz fM(MHz)=1880.0MHz fH(MHz)=1909.8MHz

SAR Values (Head, 1900MHz Band)

Limit of SAR (W/kg): <1.6W/kg(1g Average)

Test Case		СН	Measure Conducted	Tune-up	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		Power (dBm)	1g Average		1g Average	
Left		L	29.33	31.00			
cheek		М	29.36	31.00	1.46	0.120	0.175
Crieek		Τ	29.42	31.00			
Left		Ш	29.33	31.00			
Tilted	GSM -	М	29.36	31.00	1.46	0.059	0.086
		Н	29.42	31.00			
Right cheek		L	29.33	31.00			
		M	29.36	31.00	1.46	0.084	0.122
		Ι	29.42	31.00			
Right Tilted		L	29.33	31.00			
		М	29.36	31.00	1.46	0.065	0.095
		Η	29.42	31.00			

Fax: 86-10-68009195 68009205

Page number: 36 of 167

Copyright © SRTC

Mode: GSM1900 (GSM/GPRS/EDGE)

fL(MHz)=1850.2MHz fM(MHz)=1880.0MHz fH(MHz)=1909.8MHz

SAR Values (body, 1900MHz Band)

Limit of SAR (W/kg):<1.6W/kg(1g Average)

Test	Case	СН	Measure Conducted Power	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		(dBm)	ruotoi	1 g Average	1g Average	
	GSM	L	29.33	31.00			
	With	М	29.36	31.00	1.46	0.295	0.430
	headset	Н	29.42	31.00			
		L	25.50	27.00			
TG	GPRS	М	25.60	27.00	1.38	0.446	0.616
		Н	25.76	27.00			
		L	25.49	27.00			
	EDGE	М	25.59	27.00	1.38	0.451	0.624
		Н	25.75	27.00			
	GSM	L	29.33	31.00			
	With	М	29.36	31.00	1.46	0.199	0.290
	headset	Ι	29.42	31.00			
		L	25.50	27.00			
TP	GPRS	М	25.60	27.00	1.38	0.306	0.422
		Н	25.76	27.00			
		L	25.49	27.00			
	EDGE	М	25.59	27.00	1.38	0.319	0.441
		Ι	25.75	27.00			
EDGE 2		М	25.59	27.00	1.38	0.617	0.854
EDGE 3	EDGE	М	25.59	27.00	1.38	0.115	0.159
EDGE 4		M	25.59	27.00	1.38	0.309	0.428

Note: The distance between the EUT and the phantom bottom is 10mm.

Fax: 86-10-68009195 68009205

Page number: 37 of 167

Mode: WCDMA BAND2

fL(MHz)=1852.4MHz fM(MHz)=1880MHz fH(MHz)=1907.6MHz

SAR Values (Head, WCDMA BAND2)

Limit of SAR (W/kg):<1.6W/kg(1g Average)

Test	: Case	CH Measure Conducted Power		Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		(dBm)	(dBm)	i actor	1 g Average	1g Average
Left			21.67	23.00			
cheek		М	21.77	23.00	1.33	0.185	0.246
CHECK		Ι	20.55	23.00			
Left		L	21.67	23.00			
Tilted	DD (1	М	21.77	23.00	1.33	0.135	0.179
Tilleu	RB test mode1+	Ι	20.55	23.00			
Diaht	12.2kRMC	L	21.67	23.00			
Right cheek	12.2KIKIVIO	М	21.77	23.00	1.33	0.188	0.250
CHEEK	Right	Η	20.55	23.00			
Diaht		L	21.67	23.00			
		М	21.77	23.00	1.33	0.150	0.199
Tilted		Н	20.55	23.00			

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 38 of 167

Mode: WCDMA BAND2

fL(MHz)=1852.4MHz fM(MHz)=1880MHz fH(MHz)=1907.6MHz

SAR Values (body, WCDMA BAND2)

Limit of SAR (W/kg): <1.6W/kg(1g Average)

	Test Case		Measure Conducted Power	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
Position	mode		(dBm)	(dBm)	ractor	1 g Average	1g Average
	RB test	L	21.67	23.00			
TG	mode1+12.2kRMC	М	21.77	23.00	1.33	0.741	0.984
	with headset	Н	20.55	23.00			
	RB test	L	21.67	23.00			
TP	mode1+12.2kRMC	М	21.77	23.00	1.33	0.539	0.715
	with headset	Н	20.55	23.00			
		L	21.67	23.00	1.36	0.699	0.949
EDGE 2		М	21.77	23.00	1.33	0.812	1.078
EDGE 2	RB test	M(repeat)	21.77	23.00	1.33	0.809	1.074
	mode1+12.2kRMC	Н	20.55	22.00	1.40	0.700	0.977
EDGE 3		М	21.77	23.00	1.33	0.180	0.239
EDGE 4		М	21.77	23.00	1.33	0.212	0.281

Note: The distance between the EUT and the phantom bottom is 10mm.

Fax: 86-10-68009195 68009205

Page number: 39 of 167

No.: SRTC2014-H024-E0036

FCC ID: VQRCTI928

Mode: WCDMA BAND5

fM(MHz)=836.6MHz fH(MHz)= 846.6MHz fL(MHz)=826.4MHz

SAR Values (Head, WCDMA BAND5) Limit of SAR (W/kg): <1.6W/kg(1g Average)

Test	: Case	Measure Conducted Tune-uplimit Scaling		Measure Results (W/kg)	Reported Results (W/kg)		
Position	mode	СП	Power (dBm)	(dBm)	Factor	1 g Average	1g Average
Left		L	20.98	23.00			
cheek		М	21.70	23.00	1.35	0.093	0.126
CHEEK		Н	19.00	23.00			
Left		L	20.98	23.00			
Tilted	DD ()	М	21.70	23.00	1.35	0.066	0.089
Tilleu	RB test	Н	19.00	23.00			
Diaht	mode1+ 12.2kRMC	L	20.98	23.00			
Right cheek	12.2KIKIVIO	М	21.70	23.00	1.35	0.127	0.171
Crieek	_	Н	19.00	23.00			
Dight		L	20.98	23.00			
Right		М	21.70	23.00	1.35	0.072	0.097
Tilted		Н	19.00	23.00			

Fax: 86-10-68009195 68009205

Page number: 40 of 167

No.: SRTC2014-H024-E0036

FCC ID: VQRCTI928

Mode: WCDMA BAND5

fL(MHz)=826.4MHz fM(MHz)=836.6MHz fH(MHz)=846.6MHz

SAR Values (body, WCDMA BAND5)

Limit of SAR (W/kg): <1.6W/kg(1g Average)

	Test Case		Measure Conducted Power	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
Position	mode		(dBm)	(dBm)	i actor	1 g Average	1g Average
	RB test		20.98	23.00			
TG	mode1+12.2kRMC	М	21.70	23.00	1.35	0.179	0.241
	with headset	Ι	19.00	23.00			
	RB test	L	20.98	23.00			
TP	mode1+12.2kRMC	М	21.70	23.00	1.35	0.129	0.174
	with headset		19.00	23.00			
EDGE 2	DD toot	М	21.70	23.00	1.35	0.123	0.166
EDGE 3	RB test mode1+12.2kRMC	М	21.70	23.00	1.35	0.133	0.179
EDGE 4	INDUCTTIZ.ZKRIVIC	М	21.70	23.00	1.35	0.039	0.053

Note: The distance between the EUT and the phantom bottom is 10mm.

Fax: 86-10-68009195 68009205

Page number: 41 of 167

Mode: WiFi

SAR Values (WIFI 802.11b - Head)

Limit of SAR (W/kg):<1.6W/kg(1g Average)

Test Ca	ase	СН	Measurement Conducted Power	Tune-up	Scaling Factor	Measure Result(W/kg)	Reported Result (W/kg)			
Position	mode		(dBm)	(dBm)	1 40101	1 g Average	1g Average			
		1	15.93	18.00						
Left cheek	1Mbps	1Mbps	1Mbps	6	15.99	18.00				
							11	16.03	18.00	1.57
		1	15.93	18.00						
Left Tilt	1Mbps	1Mbps	1Mbps	1Mbps	6	15.99	18.00			
		11	16.03	18.00	1.57	0.071	0.112			
		1	15.93	18.00						
Right cheek	1Mbps	6	15.99	18.00						
		11	16.03	18.00	1.57	0.115	0.181			
	Right tilt 1Mbps	1	15.93	18.00						
Right tilt		6	15.99	18.00						
		11	16.03	18.00	1.57	0.126	0.198			

Fax: 86-10-68009195 68009205

Page number: 42 of 167

SAR Values (WIFI 802.11b - Body)

Limit of SAR (W/kg):<1.6W/kg(1g Average)

Test	Case	СН	Measure Conducted Power	Tune-up	Scaling Factor	Measure Result (W/kg)	Reported Result (W/kg)
Position	mode		(dBm)	(dBm)	ractor	1 g Average	1g Average
		1	15.93	18.00			
TG	1Mbps	6	15.99	18.00			
		11	16.03	18.00	1.57	0.093	0.147
		1	15.93	18.00			
TP	1Mbps	6	15.99	18.00			
		11	16.03	18.00	1.57	0.046	0.073
		1	15.93	18.00			
Edge 1	1Mbps	6	15.99	18.00			
		11	16.03	18.00	1.57	0.054	0.085
	dge 3 1Mbps	1	15.93	18.00			
Edge 3		6	15.99	18.00			
	11	16.03	18.00	1.57	0.046	0.073	

Note: The distance between the EUT and the phantom bottom is 10mm.

9.1 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-q SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

9.1.1 The Highest Measured SAR configuration in Each Frequency Band

Frequency band(MHz)	Air interface	Head(w/kg)	Body(w/kg)
850	GSM 850 WCDMA Band V	<0.8 W/kg	<0.8 W/kg
1900	GSM 1900 WCDMA Band II	<0.8 W/kg	>0.8 W/kg
2450	WiFi 802.11b/g/n	<0.8 W/kg	<0.8 W/kg

9.1.2 Repeated Measurement Results

Body-worn Exposure Condition

SAR Measurement Variability

Frequ	ency	T	Original	First	T I	Second
MHz	Ch.	Test Position	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR(W/kg)
1880	9800	EDGE2/RB test mode1+12.2kRMC	0.812	0.809	1.004	1

9.2 Simultaneous Transmission SAR Analysis

The sum of SAR values for GSM & WiFi (Hotspot)

	MAXIMUM SAR VALUE FOR	MAXIMUM SAR VALUE FOR
	HEAD	BODY
GSM	0.163	0.854
WiFi	0.181	0.000
Sum	0.344	0.854

According to the above tables, the sum of SAR values for GSM and WiFi <1.6W/kg. So simultaneous transmission SAR are not required for WiFi transmitter.

The sum of SAR values for WCDMA &WiFi (Hotspot)

		` ' '
	MAXIMUM SAR VALUE FOR	MAXIMUM SAR VALUE FOR
	HEAD	BODY
WCDMA	0.250	1.078
WiFi	0.181	0.073
Sum	0.431	1.151

According to the above tables, the sum of SAR values for GSM and WiFi $\,<$ 1.6W/kg. So simultaneous transmission SAR are not required for WiFi transmitter.

According to the formula(KDB447498 4.3.2) the Bluetooth sar as follow: [(max.power of channel,including tune-up tolerance,mw)/(min.test separation distance,mm)][√f(GHz)/x] W/kg for test separation distances ≤ 50mm.

Head:

min.test separation distance = 5mm

Body:

min.test separation distance = 10mm

Where x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.

The sum of SAR values for GSM & Bluetooth

	MAXIMUM SAR VALUE FOR	MAXIMUM SAR VALUE FOR
	HEAD	BODY
GSM	0.175	0.854
Bluetooth	0.096	0.000
Sum	0.271	0.854

According to the above tables, the sum of SAR values for GSM and Bluetooth < 1.6W/kg. So simultaneous transmission SAR are not required for Bluetooth transmitter.

The sum of SAR values for WCDMA & Bluetooth

	MAXIMUM SAR VALUE FOR HEAD	MAXIMUM SAR VALUE FOR BODY
WCDMA	0.250	1.078
Bluetooth	0.096	0.048
Sum	0.346	1.126

According to the above tables, the sum of SAR values for GSM and Bluetooth < 1.6W/kg. So simultaneous transmission SAR are not required for Bluetooth transmitter.

Fax: 86-10-68009195 68009205

Page number: 46 of 167

APPENDIX A: SYSTEM CHECKING SCANS

SYSTEM CHECKING SCANS

835MHz Head

Communication System: UID 0, CW (0); Frequency: 835 MHz

Medium parameters used (extrapolated): f = 835 MHz; σ = 0.91 S/m; ϵ_r = 42.108; ρ = 1000

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 835MHz Head/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (10x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.70 W/kg

System Performance Check at Frequencies 835MHz Head/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.861 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

835MHz Flat

Communication System: UID 0, CW (0); Frequency: 835 MHz

Medium parameters used (extrapolated): f = 835 MHz; σ = 0.978 S/m; ϵ_r = 53.846; ρ = 1000

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 835MHz Flat/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (10x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.80 W/kg

System Performance Check at Frequencies 835MHz Flat/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.603 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

1900MHz Head

Communication System: UID 0, CW (0); Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ S/m}$; $\varepsilon_r = 40.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 1900MHz Head/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (9x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 14.8 W/kg

System Performance Check at Frequencies 1900MHz Head/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

1900MHz Flat

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 52.184$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 System Performance Check at Frequencies 1900MHz Flat/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Area Scan (9x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 13.2 W/kg

System Performance Check at Frequencies 1900MHz Flat/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.369 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.49 W/kg Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 50 of 167

2450MHz Head

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ S/m; $\epsilon_r = 39.208$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/8/21;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 System Performance Check at Frequencies 2450MHz Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 16.6 W/kg

System Performance Check at Frequencies 2450MHz Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Defense Nelson On OOD Was Deserted

Reference Value = 93.369 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.83 W/kg Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 51 of 167

2450MHz Flat

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.965$ S/m; $\epsilon_r = 52.042$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3127; ConvF(4.07, 4.07, 4.07); Calibrated: 2013/8/21;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn725; Calibrated: 2013/10/16

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 System Performance Check at Frequencies 2450MHz Flat/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Area Scan (9x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 16.0 W/kg

System Performance Check at Frequencies 2450MHz Flat/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.369 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 52 of 167

APPENDIX B: MEASUREMENT SCANS

GSM (850MHz/Head)

Left Side	Cheek	836.4 MHz
-----------	-------	-----------

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 850/850GSM Hsl touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0902 W/kg

Head-Section Left HSL 850/850GSM Hsl touch M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.306 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.067 W/kg

Maximum value of SAR (measured) = 0.0901 W/kg

0 dB = 0.0901 W/kg = -10.45 dBW/kg

Left Side	Tilt	836.4 MHz
Lott Oldo	1111	000. + 1111.12

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 850/850GSM Hsl tilt M/Area Scan (9x14x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0691 W/kg

Head-Section Left HSL 850/850GSM Hsl tilt M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.568 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.0840 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.0685 W/kg

0 dB = 0.0685 W/kg = -11.64 dBW/kg

Right Side	Cheek	836.4 MHz
------------	-------	-----------

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 850/850GSM HSL touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.113 W/kg

Head-Section Right HSL 850/850GSM HSL touch M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.154 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.109 W/kg; SAR(10 g) = 0.083 W/kg

Maximum value of SAR (measured) = 0.115 W/kg

0 dB = 0.115 W/kg = -9.39 dBW/kg

Right Side	Tilt	836.4 MHz
------------	------	-----------

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 850/850GSM HSL tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0720 W/kg

Head-Section Right HSL 850/850GSM HSL tilt M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.399 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.071 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.0751 W/kg

0 dB = 0.0751 W/kg = -11.24 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 56 of 167

GSM with headset (850MHz/Flat)

FLAT	TP	836.4 MHz
------	----	-----------

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TP/850GSM TP M/Area Scan (9x14x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.106 W/kg

Flat-Section MSL 850 TP/850GSM TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.201 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.111 W/kg

0 dB = 0.111 W/kg = -9.55 dBW/kg

FLAT TG 836.4 MHz

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r = 53.843$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

• Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GSM TG M/Area Scan (9x14x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.105 W/kg

Flat-Section MSL 850 TG/850GSM TG M/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.129 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.112 W/kg

GSM (850MHz with GPRS/Flat)

FLAT TP 836.4 MHz		TP	836.4 MHz
-------------------	--	----	-----------

Communication System: UID 10028 - DAA, GPRS-FDD (TDMA, GMSK, TN 0-1-2-3);

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TP/850GPRS TP M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.179 W/kg

Flat-Section MSL 850 TP/850GPRS TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.043 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.131 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

Fax: 86-10-68009195 68009205

Page number: 59 of 167

FLAT	TG	836.4 MHz

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GPRS TG M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.428 W/kg

Flat-Section MSL 850 TG/850GPRS TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.361 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.226 W/kg

Maximum value of SAR (measured) = 0.475 W/kg

0 dB = 0.475 W/kg = -3.23 dBW/kg

GSM (850MHz with EDGE/Flat)

FLAT	TP	836.4 MHz
------	----	-----------

Communication System: UID 10058 - DAA, EDGE-FDD (TDMA, GMSK, TN 0-1-2-3);

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TP/850EDGE TP M/Area Scan (9x14x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.178 W/kg

Flat-Section MSL 850 TP/850EDGE TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.003 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.131 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

0 dB = 0.181 W/kg = -7.42 dBW/kg

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r = 53.843$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850EDGE TG M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.428 W/kg

Flat-Section MSL 850 TG/850EDGE TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.271 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.474 W/kg

0 dB = 0.474 W/kg = -3.24 dBW/kg

FLAT	Edge2	836.4 MHz

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

hotspot/850EGPRS edge2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.153 W/kg

hotspot/850EGPRS edge2/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.315 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.308 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

FLAT Edge3

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

hotspot/850EGPRS edge3/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0828 W/kg

hotspot/850EGPRS edge3/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.553 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.059 W/kg

Maximum value of SAR (measured) = 0.0929 W/kg

0 dB = 0.0929 W/kg = -10.32 dBW/kg

FLAT	Edge4	836.4 MHz

Frequency: 836.6 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

hotspot/850EGPRS edge4/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0177 W/kg

hotspot/850EGPRS edge4/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.997 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0350 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0236 W/kg

0 dB = 0.0236 W/kg = -16.27 dBW/kg

GSM (1900MHz/Head)

Left Side	Cheek	1880.0 MHz

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency:

1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ϵ_r = 40.934; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 1900/1900GSM touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.127 W/kg

Head-Section Left HSL 1900/1900GSM touch M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.345 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.073 W/kg

Maximum value of SAR (measured) = 0.131 W/kg

0 dB = 0.131 W/kg = -8.83 dBW/kg

Left Side	tilt	1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.526 \text{ S/m}$; $\varepsilon_r = 40.934$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 1900/1900GSM tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0620 W/kg

Head-Section Left HSL 1900/1900GSM tilt M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.517 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.0634 W/kg

0 dB = 0.0634 W/kg = -11.98 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 67 of 167

Cheek	1880.0 MHz
	Cheek

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ε_r = 40.934; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 1900/1900GSM touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0870 W/kg

Head-Section Right HSL 1900/1900GSM touch M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.035 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.051 W/kg

Maximum value of SAR (measured) = 0.0927 W/kg

0 dB = 0.0927 W/kg = -10.33 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 68 of 167

Right Side tilt 1880.0 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ε_r = 40.934; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 1900/1900GSM tilt M/Area Scan (9x14x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0685 W/kg

Head-Section Right HSL 1900/1900GSM tilt M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.593 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.035 W/kg

Maximum value of SAR (measured) = 0.0722 W/kg

0 dB = 0.0722 W/kg = -11.41 dBW/kg

GSM with headset (1900MHz/Flat)

FLAT	TP	1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle:

1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ε_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn725; Calibrated: 2013/10/16

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL 1900 TP/1900GSM TP M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.195 W/kg

Flat-Section MSL 1900 TP/1900GSM TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.206 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.220 W/kg

0 dB = 0.220 W/kg = -6.58 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 70 of 167

FLAT	TG	1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL 1900 TG/1900GSM TG M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.301 W/kg

Flat-Section MSL 1900 TG/1900GSM TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.626 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.514 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.161 W/kg

Maximum value of SAR (measured) = 0.326 W/kg

0 dB = 0.326 W/kg = -4.87 dBW/kg

Page number: 71 of 167

GSM (1900MHz with GPRS/Flat)

FLAT TP 1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle:

1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ε_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn725; Calibrated: 2013/10/16

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Flat-Section MSL 1900 TP/1900GPRS TP M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.295 W/kg

Flat-Section MSL 1900 TP/1900GPRS TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.836 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.546 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.169 W/kg

Maximum value of SAR (measured) = 0.335 W/kg

0 dB = 0.335 W/kg = -4.75 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 72 of 167

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle:

1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn725; Calibrated: 2013/10/16

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL 1900 TG/1900GPRS TG M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.458 W/kg

Flat-Section MSL 1900 TG/1900GPRS TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.519 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.446 W/kg; SAR(10 g) = 0.248 W/kg

Maximum value of SAR (measured) = 0.490 W/kg

0 dB = 0.490 W/kg = -3.10 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 73 of 167

GSM (1900MHz with EDGE/Flat)

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL 1900 TP/1900EDGE TP M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.295 W/kg

Flat-Section MSL 1900 TP/1900EDGE TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.872 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.350 W/kg

0 dB = 0.350 W/kg = -4.56 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 74 of 167

FLAT	TG	1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ε_r = 52.016; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Flat-Section MSL 1900 TG/1900EDGE TG M/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.466 W/kg

Flat-Section MSL 1900 TG/1900EDGE TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.551 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.836 W/kg

SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 0.496 W/kg

0 dB = 0.496 W/kg = -3.05 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 75 of 167

FLAT	Edge2	1880 MHz
. =,	5	

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL 1900 hotspot/1900 GPRS edge2 M/Area Scan (5x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.681 W/kg

Flat-Section MSL 1900 hotspot/1900 GPRS edge2 M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.991 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.323 W/kg

Maximum value of SAR (measured) = 0.688 W/kg

0 dB = 0.688 W/kg = -1.62 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

FLAT	Edge3	1880 MHz
	•	

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ε_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL 1900 hotspot/1900 GPRS edge3 M/Area Scan (5x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.166 W/kg

Flat-Section MSL 1900 hotspot/1900 GPRS edge3 M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.564 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.170 W/kg

0 dB = 0.170 W/kg = -7.70 dBW/kg

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL 1900 hotspot/1900 GPRS edge4 M/Area Scan (5x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.332 W/kg

Flat-Section MSL 1900 hotspot/1900 GPRS edge4 M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.676 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.556 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.340 W/kg

0 dB = 0.340 W/kg = -4.69 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

WCDMA BAND2 (Head)

Left Side	Cheek	1880 MHz

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.526$ S/m; $\epsilon_r = 40.934$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL Band 2/WCDMA Band 2 touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.192 W/kg

Head-Section Left HSL Band 2/WCDMA Band 2 touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.522 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.116 W/kg

Maximum value of SAR (measured) = 0.200 W/kg

Fax: 86-10-68009195 68009205

Page number: 79 of 167

Left Side	Tilt	1880 MHz

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ε_r = 40.934; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL Band 2/WCDMA Band 2 tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.137 W/kg

Head-Section Left HSL Band 2/WCDMA Band 2 tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.546 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.144 W/kg

0 dB = 0.144 W/kg = -8.42 dBW/kg

Copyright © SRTC

Page number: 80 of 167

Right Side	Cheek	1880 MHz
_		

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.526$ S/m; $\epsilon_r = 40.934$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL Band 2/WCDMA Band 2 touch M/Area Scan

(9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.190 W/kg

Head-Section Right HSL Band 2/WCDMA Band 2 touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.126 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.117 W/kg

Maximum value of SAR (measured) = 0.204 W/kg

0 dB = 0.204 W/kg = -6.90 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

Right Side	Tile	1880 MHz
Right Side	Tile	1880 MHz

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.526$ S/m; $\epsilon_r = 40.934$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL Band 2/WCDMA Band 2 tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.156 W/kg

Head-Section Right HSL Band 2/WCDMA Band 2 tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.507 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.165 W/kg

0 dB = 0.165 W/kg = -7.83 dBW/kg

Page number: 82 of 167

WCDMA BAND2 (Flat)

FLAT	TP	1880 MHz

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.58 S/m; ϵ_r = 52.594; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 TP/WCDMA Band 2 TP M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.434 W/kg

Flat-Section MSL Band 2 TP/WCDMA Band 2 TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.925 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 0.539 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.464 W/kg

0 dB = 0.464 W/kg = -3.33 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

FLAT	TG	1880 MHz
	_	

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 52.594$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 TG/WCDMA Band 2 TG M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.825 W/kg

Flat-Section MSL Band 2 TG/WCDMA Band 2 TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.483 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.741 W/kg; SAR(10 g) = 0.414 W/kg

Maximum value of SAR (measured) = 0.804 W/kg

FLAT	Edge2	1852.4 MHz
	_	

Communication System: UID 0, wcdma II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.569$ S/m; $\epsilon_r = 52.079$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 L/Area Scan (5x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.768 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 L/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.430 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 0.778 W/kg

0 dB = 0.778 W/kg = -1.09 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 85 of 167

FLAT	Edge2	1880 MHz
	· ·	

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.611$ S/m; $\epsilon_r = 52.016$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 M/Area Scan (5x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.886 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.722 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.812 W/kg; SAR(10 g) = 0.440 W/kg

Maximum value of SAR (measured) = 0.902 W/kg

0 dB = 0.902 W/kg = -0.45 dBW/kg

Z-Scan at power reference point

FLAT	Edge2	1880 MHz
FLAT	Edge2	1880 MHz

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.611$ S/m; $\epsilon_r = 52.016$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 M 3/Area Scan (5x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.767 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 M 3/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.407 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.809 W/kg; SAR(10 g) = 0.457 W/kg

Maximum value of SAR (measured) = 0.893 W/kg

0 dB = 0.893 W/kg = -0.49 dBW/kg

Page number: 88 of 167

Communication System: UID 0, wcdma II (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium parameters used (extrapolated): f = 1907.6 MHz; $\sigma = 1.64 \text{ S/m}$; $\epsilon_r = 52.197$; $\rho =$ 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 H/Area Scan (5x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.763 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge2 H/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.887 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.700 W/kg; SAR(10 g) = 0.377 W/kg

Maximum value of SAR (measured) = 0.774 W/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

Page number: 89 of 167

FLAT Edge3 1880 MHz

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge3 M/Area Scan (7x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.193 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge3 M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.620 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.102 W/kg Maximum value of SAR (measured) = 0.197 W/kg

0 dB = 0.197 W/kg = -7.06 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

FLAT	Edge4	1880 MHz

Communication System: UID 0, wcdma II (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.611$ S/m; $\epsilon_r = 52.016$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.61, 4.61, 4.61); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge4 M/Area Scan (7x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.211 W/kg

Flat-Section MSL Band 2 hotspot/WCDMA Band 2 edge4 M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.551 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.232 W/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

WCDMA BAND5 (Head)

Left Side	Cheek	836.5 MHz
Left Side	Cheek	836.5 MHz

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6

 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL Band 5/WCDMA Band 5 touch M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0954 W/kg

Head-Section Left HSL Band 5/WCDMA Band 5 touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.369 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.069 W/kg Maximum value of SAR (measured) = 0.0977 W/kg

0 dB = 0.0977 W/kg = -10.10 dBW/kg

Left Side	Tilt	836.5 MHz

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ε_r = 42.097; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL Band 5/WCDMA Band 5 tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0698 W/kg

Head-Section Left HSL Band 5/WCDMA Band 5 tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.205 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.0850 W/kg

SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.0695 W/kg

0 dB = 0.0695 W/kg = -11.58 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 93 of 167

Right Side	Cheek	836.5 MHz
•		

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL Band 5/WCDMA Band 5 touch M/Area Scan

(9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.133 W/kg

Head-Section Right HSL Band 5/WCDMA Band 5 touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.976 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.097 W/kg

Maximum value of SAR (measured) = 0.134 W/kg

0 dB = 0.134 W/kg = -8.73 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 94 of 167

Right Side	Tile	836.5 MHz
_		

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ =

1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(9.08, 9.08, 9.08); Calibrated: 10/22/2013;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2013

Phantom: SAM 1560; Type: SAM; Serial: 1560

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL Band 5/WCDMA Band 5 tilt M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0765 W/kg

Head-Section Right HSL Band 5/WCDMA Band 5 tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.800 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.0755 W/kg

0 dB = 0.0755 W/kg = -11.22 dBW/kg

WCDMA BAND5 (Flat)

FLAT	TP	836.5 MHz
------	----	-----------

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL Band 5 TP/WCDMA Band 5 TP M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.132 W/kg

Flat-Section MSL Band 5 TP/WCDMA Band 5 TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.438 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.097 W/kg

Maximum value of SAR (measured) = 0.135 W/kg

0 dB = 0.135 W/kg = -8.70 dBW/kg

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; $\sigma = 0.979$ S/m; $\epsilon_r = 53.843$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL Band 5 TG/WCDMA Band 5 TG M/Area Scan (9x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.182 W/kg

Flat-Section MSL Band 5 TG/WCDMA Band 5 TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.542 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.187 W/kg

0 dB = 0.187 W/kg = -7.28 dBW/kg

FLAT	Edge2	836.5 MHz
	_	

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 2/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.112 W/kg

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 2/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.668 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.123 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.138 W/kg

Fax: 86-10-68009195 68009205

Page number: 98 of 167

FLAT	Edge3	836.5 MHz
	J	

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 3/Area Scan (6x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.139 W/kg

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 3/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.973 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.092 W/kg

Maximum value of SAR (measured) = 0.142 W/kg

0 dB = 0.142 W/kg = -8.48 dBW/kg

FLAT	Edge4	836.5 MHz
	l <u> </u>	

Communication System: UID 10011 - CAA, UMTS-FDD (WCDMA); Frequency: 836.6 MHz Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(9.07, 9.07, 9.07); Calibrated: 10/22/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2013
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 4/Area Scan (6x14x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0368 W/kg

Flat-Section MSL Band 5 hot/WCDMA Band 5 edge 4/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.457 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0580 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.027 W/kg

Maximum value of SAR (measured) = 0.0422 W/kg

0 dB = 0.0422 W/kg = -13.75 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 100 of 167

Wi-Fi (Head)

Left Side	Cheek	2462MHz
-----------	-------	---------

Communication System: UID 10012 - CAA, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps);

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.791$ S/m; $\epsilon_r = 39.17$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Head-Section Left HSL WIFI/WIFI touch H/Area Scan (9x15x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0311 W/kg

Head-Section Left HSL WIFI/WIFI touch H/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.444 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.016 W/kg

Maximum value of SAR (measured) = 0.0351 W/kg

0 dB = 0.0351 W/kg = -14.55 dBW/kg

Left Side	Tilt	2462MHz
-----------	------	---------

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.791 S/m; ϵ_r = 39.17; ρ = 1000

kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Head-Section Left HSL WIFI/WIFI tilt H/Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0574 W/kg

Head-Section Left HSL WIFI/WIFI tilt H/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.945 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.071 W/kg; SAR(10 g) = 0.032 W/kg

Maximum value of SAR (measured) = 0.0800 W/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

Page number: 102 of 167

Right Side	Cheek	2462MHz

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.791$ S/m; $\epsilon_r = 39.17$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Head-Section Right HSL WIFI/WIFI touch H/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.108 W/kg

Head-Section Right HSL WIFI/WIFI touch H/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.016 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.115 W/kg; SAR(10 g) = 0.051 W/kg

Maximum value of SAR (measured) = 0.124 W/kg

Page number: 103 of 167

Right Side	Tilt	2462MHz
------------	------	---------

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.791$ S/m; $\epsilon_r = 39.17$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Head-Section Right HSL WIFI/WIFI tilt H/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.128 W/kg

Head-Section Right HSL WIFI/WIFI tilt H/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.612 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.126 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.140 W/kg

0 dB = 0.140 W/kg = -8.54 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 104 of 167

FLAT TP 2462MHz

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.968 S/m; ϵ_r = 51.852; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.07, 4.07, 4.07); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSL WIFI TP/WIFI TP H/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0375 W/kg

Flat-Section MSL WIFI TP/WIFI TP H/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.244 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0511 W/kg

0 dB = 0.0511 W/kg = -12.92 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 105 of 167

FLAT	TG	2462MHz
------	----	---------

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 51.852$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.07, 4.07, 4.07); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Flat-Section MSLWIFI TG/WIF TG H/Area Scan (9x14x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0728 W/kg

Flat-Section MSLWIFI TG/WIF TG H/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.639 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.104 W/kg

0 dB = 0.104 W/kg = -9.83 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

Page number: 106 of 167

FLAT	Edge1	2462 MHz
	•	

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 51.852$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.07, 4.07, 4.07); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Flat-Section MSLWIFI HOT/WIF H edge 1/Area Scan (6x9x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0522 W/kg

Flat-Section MSLWIFI HOT/WIF H edge 1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.081 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.0575 W/kg

Fax: 86-10-68009195 68009205

Page number: 107 of 167

FLAT	Edge4	2462 MHz
FLAI	Eage4	2462 MHZ

Frequency: 2462 MHz; Duty Cycle: 1:1.53815

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 51.852$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.07, 4.07, 4.07); Calibrated: 2013/8/21;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn725; Calibrated: 2013/10/16
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)
 Flat-Section MSLWIFI HOT/WIF H edge 4/Area Scan (6x14x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0517 W/kg

Flat-Section MSLWIFI HOT/WIF H edge 4/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.750 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.0990 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0523 W/kg

0 dB = 0.0523 W/kg = -12.81 dBW/kg

FCC ID: VQRCTI928

APPENDIX C: **RELEVANT PAGES FROM** PROBE CALIBRATION REPORT(S)

ES3DV3 - SN:3127

Schmid & Partner Engineering AG Zeughausstrasse 43, 8064 Zur		HAC MISA S C C S	Schweitzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servi Multilateral Agreement for the	ice is one of the signatories	s to the EA	No.: SCS 108
Client SRTC (PTT)		Certificate No.	ES3-3127_Aug13
CALIBRATION	CERTIFICATE		
Object	ES3DV3 - SN:312	27	
Calibration procedure(s)		A CAL-12.v8, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6
Calibration date:	August 21, 2013		
All calibrations have been condi Calibration Equipment used (M		facility, environment temperature (22 ± 3)°C a	are part of the certificate. and humidity < 70%.
Calibration Equipment used (Mi Primary Stundards	STE critical for calibration)	Carl Date (Centricate No.)	end humidity < 70%. Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter £44198	BTE critical for calibrations ID GB41293874	Car Date (Certificate No.) 94-Apr-13 (No. 217-91733)	send humidity < 70%. Scheduled Calibration Apr-14
Calibration Equipment used (Mi Primary Stundards	STE critical for calibration)	Carl Date (Centricate No.)	end humidity < 70%. Scheduled Calibration
Calibration Equipment used (Mi Primary Stundards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	### Critical for calibrations ###################################	Carl Caste (Certificate No.) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14
Calbration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	BTE critical for calibration) ID GB41253874 MY41489087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5277 (20x) SN: \$5129 (30b)	Cari Clate (Certificate No.) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01735) 94-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (Mi Primary Stundards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	### Critical for calibrations ###################################	Carl Caste (Certificate No.) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (MI Primary Stundards Power meter E4419B Power sensor E4412A Reference 3 d5 Attenuator Reference 30 d5 Attenuator Reference 30 d5 Attenuator Reference Probe E53CV2 DAE4	STE critical for pathretion) ID GB41283874 M*41499067 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660	Car Cate (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013 Dec12) 31-Jan-13 (No. DAE4-860, Jan13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (M Primary Stundards Power meter E44198 Power service E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E53OV2	BTE critical for calibration) ID GB41289874 MY41499087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013	Car Cate (Certificate No.) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. E83-3013 Dec12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13
Calbration Equipment used (Mi Primary Stundards Power sensor E44198 Power sensor E4412A Reference 3 d5 Attenuator Reference 30 d5 Attenuator Reference 70 d5 Attenuator Reference Probe ES3CV2 DAE4	8TE critical for caribration) ID GB41283874 MY41489087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5277 (20x) SN: 3013 SN: 3013	Carl Cate (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-860, Jan-13) Check Date (in house)	Scheduled Celeration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check
Calibration Equipment used (Mi Primary Stundards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E53CV2 DAE4 Secondary Standards RF penerator HP 8649C Network Analyzer HP 8753E	BTE critical for caribration) ID GB41283874 MY41489087 SN: \$5954 (3c) SN: \$5954 (3c) SN: \$5954 (3c) SN: 35129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37393555	Car Cate (Certificate No.) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01735) 94-Apr-13 (No. 217-01735) 28-Dec-12 (No. ESS-3013 Dec12) 31-Jan-13 (No. DAE4-860, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
Calibration Equipment used (MI Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3CV2 DAE4 Secondary Standards RF penerator HP 8549C	STE critical for calibration) ID GB41283874 MY41489087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642001700 US37393565	Car Cate (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. E83-3013 Dec12) 31-Jan-13 (No. DAE4-860 Jan13) Check Date (in house) 4-Aug-99 (in house theck Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (Mi Primary Stundards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E53CV2 DAE4 Secondary Standards RF penerator HP 8649C Network Analyzer HP 8753E	BTE critical for caribration) ID GB41283874 MY41489087 SN: \$5954 (3c) SN: \$5954 (3c) SN: \$5954 (3c) SN: 35129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37393555	Car Cate (Certificate No.) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01733) 94-Apr-13 (No. 217-01737) 94-Apr-13 (No. 217-01735) 94-Apr-13 (No. 217-01735) 28-Dec-12 (No. ESS-3013 Dec12) 31-Jan-13 (No. DAE4-860, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (MI Primary Stundards Power meter E44198 Power service E4412A Reference 3 d5 Attenuator Reference 30 d5 Attenuator Reference 30 d5 Attenuator Reference 30 d5 Attenuator Reference 70 d5 Attenuator Reference Probe E53CV2 DAE4 Secondary Standards RF penerator HP 8649C Network Analyzer HP 8753E Calibrated by: Approved by:	### Critical for pathrations ID	Car Cate (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 28-Dec-12 (No. E83-3013 Dec12) 31-Jan-13 (No. DAE4-860 Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function Laboratory Technolise	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check In house check: Apr-15 In house check: Oct-13

Page number: 109 of 167

No.: SRTC2014-H024-E0036 FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG oghausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,Z ConvF CF A. B. C. D

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z.

diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization @ o rotation around probe axis

Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
 b) IEC 62208-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx.y.z: Assessed for E-field potarization 9 = 0 (f < 900 MHz in TEM-ceil; f > 1800 MHz; R22 waveguide). NORMx.y.z are only intermediate values, i.e., the uncertainties of NORMx.y.z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{K,V,Z}$ ** ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No. E53-3127, Aug13

Fax: 86-10-68009195 68009205

Page 2 of 11

Copyright © SRTC

Page number: 110 of 167

FCC ID: VQRCTI928

ES3DV3 - SN:3127

August 21, 2013

Probe ES3DV3

SN:3127

Manufactured: Calibrated:

July 11, 2006 August 21, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3127_Aug13

Page 3 of 11

Fax: 86-10-68009195 68009205

Page number: 111 of 167

August 21, 2013

FCC ID: VQRCTI928

ES3DV3-SN:3127

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.30	1.27	1.22	± 10.1 %
DCP (mV) [®]	100.8	99.1	100.7	1

Modulation Calibration Paramete	A STATE OF

UID	Communication System Name		A dB	B dB√uV	С	D dB	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	159.5	±1.9 %
		Y	0:0	0.0	1.0		151.6	
		2	0.0	0.0	1.0	- //	156.8	
10012- CAA	IEEE 802.11b WiFt 2.4 GHz (DSSS, 1 Mbps)	X	3.48	71.8	20.4	1.87	127.7	±0.7 %
		Y	2.99	68.6	18.8		124.8	
0.000		Z	3.48	71.7	20.3	- 324	125.6	100000
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	16.63	99.3	22.9	1,16	110.0	±1.7 %
		Y	46.36	99.5	20.7		148.9	
		Z	66.77	99.8	19.8	2000	149.9	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	6.76	68.5	20.3	5.67	142.2	±1.2 %
		Y	6.71	68.4	20.4		137.1	
	Annual Control of the	Z	6.76	68.5	20.3		140.0	
10108- CAB	LTE-FDD (5C-FDMA, 100% RB, 10 MHz, QPSK)	X	6.68	68.2	20.3	5.80	140.3	±1.4 %
		Y	6.64	68,2	20.4		136.0	
		Z	6.62	68.0	20.2		137.6	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	6.33	67.5	20.0	5.75	137.4	±1.2 %
00811777	100.000	Y	6.26	67.4	20.1		133.1	
		Z	6.26	67.4	19.9		133.7	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	×	5.13	66.8	19.8	5.73	119.7	±0.9 %
		Y	5.09	66.7	19.9		116.9	
		2	5.09	66.8	19.8		116.9	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.18	67,1	20.0	5.72	117.5	±1.2 %
	The state of the s	Y	5.12	66.9	20.0		116.9	
		Z	5.05	66.7	19,7		116.9	10000
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.64	68.0	20.2	5.81	138.2	±1.2 %
		Y	6.70	68.3	20.5		136.9	
		Z	6.60	68.0	20.2		137.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3127_Aug13

Page 4 of 11

Fax: 86-10-68009195 68009205

Page number: 112 of 167

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
*Numerical linearization parameter; uncertainty not required.
*Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

FCC ID: VQRCTI928

ES3DV3-SN:3127

August 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.62	6.62	6.62	0.17	2.02	± 13.4 %
750	41.9	0.89	6.22	6.22	6.22	0.80	1.15	± 12.0 %
900	41.5	0.97	5.87	5.87	5.87	0.26	2.13	± 12.0 %
1810	40.0	1.40	5.01	5.01	5.01	0.69	1.29	± 12.0 %
2000	40.0	1.40	4.96	4.96	4.96	0.59	1.36	± 12.0 %
2450	39.2	1.80	4.38	4.38	4.38	0.80	1.24	± 12.0 %
2600	39.0	1.96	4.21	4.21	4.21	0.80	1.28	± 12.0 %

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), also it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at celibration frequency and the uncertainty for the indicated frequency band.

At hequenous below 3 CHz, the validity of tissus parameters (c and a) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 OHz, the validity of tissue parameters (c and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target bissue parameters.

Certificate No: ES3-3127_Aug13

Page 5 of 11

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 113 of 167

FCC ID: VQRCTI928

ES30V3- SN:3127

August 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^G	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	6.84	6.64	6.84	0.11	1.70	± 13.4 %
750	55.5	0.96	5.82	5.82	5.82	0.33	1.88	± 12.0 %
900	55.0	1.05	5.70	5.70	5.70	0.57	1.39	± 12.0 %
1810	53.3	1.52	4.61	4.61	4.61	0.39	1.81	± 12.0 %
2000	53.3	1.52	4.57	4.57	4.57	0.58	1.53	± 12.0 %
2450	52.7	1,95	4.07	4.07	4.07	0.80	1.13	± 12.0 %
2600	52.5	2.16	3.89	3.89	3,89	0.80	0.98	± 12.0 %

⁶ Frequency validity of a 100 MHz only applies for DASY will 4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency bend.
At frequencies below 3 GHz, the validity of feece parameters (a and n) can be released to ± 10% if Equid compensation formula is applied to reasoured SAR values. At frequencies above 3 GHz, the validity of itssue parameters (c and n) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for inclusted target feace parameters.

Certificate No: ES3-3127_Aug13

Page 6 of 11

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 114 of 167

Page number: 115 of 167

Page number: 116 of 167

Page number: 117 of 167

Page number: 118 of 167

ES3DV3-SN:3127

August 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-20.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: E83-3127_Aug13

Page 11 of 11

Fax: 86-10-68009195 68009205

Page number: 119 of 167

FCC ID: VQRCTI928

EX3DV4 - SN:3708

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3708_Oct13

Accreditation No.: SCS 108

SRTC (PTT) CALIBRATION CERTIFICATE EX3DV4 - SN:3708 QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes October 22, 2013 Calibration date: This cultivation certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. At calcystons have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and numbers = 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards Apr-14 **GB41293874** 04-Apr-15 (No. 217-01733) Power meter E4419B Apr.14 MY41498087 Power sensor E4412A 04-Apr-13 (No. 217-01733) Apr-14 04-Apr-13 (No. 217-01737) Reference 3 dB Attenuator SN: 55054 (3c) Apr-14 04-April 12 (No. 217-01735) Reference 20 dB Attenuator 5N: S5277 (20x) 04-Apr-13 (No. 217-01736) Apr-14 Reference 30 dB Attenuator SN: 55129 (30b) 28-Dec-12 (No. ES3-3013, Dec12) Dec-13 Reference Probe ES3DV2 SN: 3013 Sep-14 4-Sep-13 (No. DAE 4-660, Sep13) SN 950 DAE4 Scheduled Check Check Date (in house) Secondary Standards 4-Aug-99 (in house check Apr-13) In house check: Apr-15 US3642U01700 RF generator HP 86480 In house check: Oct-14 18-Oct-01 (in house check Oct-13) Network Analyzer HP 8753E US37390585 **Laboratory Technician** Leff Klysner Calibrated by: Technical Manager Katje Pokovic Approved by: Issued: Distriber 23, 2013

Certificate No. EX3-3708_Oct13

Page 1 of 11

This calibration certificate shell not be reproduced except in full without written approval of the laboratory

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 120 of 167

FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio avizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Page number: 121 of 167

Appreciated by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z NORMx,y,z ConvF DCP

diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D

φ rotation around probe axis Polarization o

a rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization #

i.e., 3 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques*, June 2013
b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\theta=0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Charl). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assetsed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor modia. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3708_Oct13

Page 2 of 11

Fax: 86-10-68009195 68009205 Copyright © SRTC

No.: SRTC2014-H024-E0036 FCC ID: VQRCTI928

EX3DV4 - SN:3708

October 22, 2013

Probe EX3DV4

SN:3708

Manufactured: Calibrated:

July 21, 2009 October 22, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3708_Oct13

Page 3 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 122 of 167

FCC ID: VQRCTI928

EX3DV4- SN:3708

October 22, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Basic Calibration Parameters

Dasic Campianon Fara	Sensor X Sensor X 0.19	A STATE OF THE PARTY OF THE PAR	40000000	Unc (k=2)	
	Sensor X	Sensor Y	Sensor Z	One (R=2)	
Mairo La Walley III	0.19	0.35	0.44	± 10.1 %	
DCP (m\0)	105.2	99.0	105.1		

Carlotte and the second	Physical Communication in	Decompton
Modulation	Calibration	Parameters

UID	Communication System Name		A dB	B dB√μV	c	D dB	VR mV	Unc (ic≈2)
0	CW	X	0.0	0.0	1.0	0.00	158.0	±3.8 %
4	- CW	Y	0.0	0.0	1.0		177.5	
		2	0.0	0.0	1.0	Seguent/	144.5	
10011- CAA	UMTS-FDD (WCDMA)	X	3.93	72.1	21.9	2.91	120.3	21.2 %
CAN		Y	3:09	64.4	16.5		139.7	
		Z	3.78	70.0	20.0	TO CONTRACT	113.5	
10021- DAA	GSM-FDD (TDMA, GMSK)	Х	1.13	61.4	11.3	9.39	61.2	±1.9 %
Line		Y.	1.65	61.0	11.2		72.5	
	The state of the s	2	2.53	67.9	14.5		111.9	- Algorithman
10028- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	21.01	99.6	21.5	3.55	116.9	±2.2 %
DYVI		Y	1.24	65.5	11.2		135.6	
	III. C.	Z	37:27	99.5	21.1		112.4	
10058- DAA	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.47	76.5	24.9	6.52	147.4	±1.4 %
the section of		X.	4.06	70.1	20.4		133.6	
	The first control of the control of	Z	5.21	76.7	24.0		114.0	
10082- CAA	IEEE 802,11a/h W/FI 5 GHz (OFDM, 6 Mbos)	×	9.94	67.8	21.0	8.68	113.4	±2.7 %
Gro-	100000	Y	10.10	68.1	20.9		133.0	
17.7.155		Z	9.76	68.0	21.2		105.2	
10081- CAA	CDMA2000 (1xRTT, RC3)	×	4.05	68.2	20.2	3.97	114.6	a0.9 %
- Corner		Y	3.66	84.0	16.8		134.3	
		2	4.05	67.4	19.3		110.2	-0.0.0
10097- CAA	UMTS-FDD (HSDPA)	×	4.82	68.3	19.9	3.98	127.3	±0.9 %
		Y	4.49	65.3	17.3		149.4	
		Z	4.85	68.1	19.3	-	121.5	10.00
10098- CAA	UMTS-FDD (HSUPA, Subtest 2)	X	4.80	68.3	19.8	3.98	127.8	10.9 %
and in the later		Y	4.50	65.4	17.4		149.2	
		Z	4.90	68.4	19.5		123.0	42.7
10403- AAA	CDMA2000 (1xEV-DO, Rev. 0)	×	5.17	75,3	22.4	3.76	120.1	±1.2 %
-0.00		1.4	4.52	67.1	17.5		140.2	-
		- 2	5.92	73.3	21.0		118.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3708_Oct13

Page 4 of 11

Fax: 86-10-68009195 68009205

Page number: 123 of 167

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
* Normercol Insertzation parameter: uncortainty not required.
* Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

FCC ID: VQRCTI928

EX3DV4- SN:3708

October 22, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Calibration Parameter Determined in Head Tissue Simulating Media

bration (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha [©]	Depth ⁽⁾ (mm)	Unct. (k=2)
900	41.5	0.97	9.08	9.08	9.08	0.23	1,20	± 12.0 %
1810	40.0	1.40	7.87	7.87	7.87	0.69	0.63	± 12.0 %
2000	40.0	1.40	7.86	7.86	7.86	0.76	0.57	± 12.0 %
2450	39.2	1.80	7.10	7.10	7.10	0.40	0.77	± 12.0 %
5200	36.0	4.66	5.52	5.52	5.52	0.30	1.80	± 13.1 %
5300	35.9	4.76	5.17	5.17	5.17	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.86	4.86	4.86	0.40	1.80	± 13.1 9
5600	35.5	5.07	4,55	4.55	4.55	0.45	1.80	± 13.1 9
5800	35.3	5.27	4.81	4.81	4.81	0.40	1.80	± 13.19

Certificate No: EX3-3708_Oct13

Page 5 of 11

Fax: 86-10-68009195 68009205

Page number: 124 of 167

Frequency wildly of a 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to a 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
At frequencies below 3 GHz, the validity of tissue parameters (c and e) can be calcard to a 10% 2 liquid compensation formula is applied to inequalities. At frequencies above 3 GHz, the validity of tissue parameters (c and e) are restricted to a 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.
A philip Topic and otherwise during cardioration. SPEAC was parameter that the nonzering deviation due to the boundary effect after compensation is always less than a 1% for frequencies below 3 GHz and below a 2% for frequencies between 3-6 GHz at any distance larger than rolf the probe tip standard from the boundary.

FCC ID: VQRCTI928

October 22, 2013 EX3DV4-SN:3708

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity*	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ⁰	Depth (mm)	Unct. (k=2)
900	55.0	1.05	9.07	9.07	9.07	0.80	0.59	± 12.0 %
1810	53.3	1.52	7.69	7.69	7.69	0.42	0.92	± 12.0 %
2000	53.3	1.52	7.63	7.63	7.63	0.48	0.82	± 12.0 %
2450	52.7	1.95	7.12	7.12	7.12	0.72	0.65	± 12.0 %
5200	49.0	5,30	4.49	4.49	4.49	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.33	4.33	4.33	0.45	1.90	± 13.1 9
5500	48.6	5.65	3.94	3.94	3.94	0.50	1.90	± 13.1 9
5800	48.5	5,77	3.70	3.70	3.70	0.55	1.90	# 13.1 9
5800	48.2	6.00	4.25	4.25	4.25	0.45	1.90	± 13.1 9

Certificate No: EX3-3708_Oct13

Page 6 of 11

Fax: 86-10-68009195 68009205

Page number: 125 of 167

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSIS of the Convil uncertainty at subtration frequency and the uncontainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of fissue parameters (s. and v) ban be relixed to ± 10% if signal compensation formula in applied to measured SAR values. At frequencies above 2 GHz, the validity of tissue parameters (s. and v) is restricted to ± 5%. The uncertainty in the RSIS of the ConvF uncertainty for indicated target fasce parameters.

Alpha/Depth are determined during sabtration. SEFACI was not at the remaining develop due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diservely from the boundary.

EX3DV4-SN:3708

October 22, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3708, Oct13

Page 7 of 11

Fax: 86-10-68009195 68009205

Page number: 126 of 167

EX3DV4- SN:3708

October 22, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3708_Oct13

Page 9 of 11

Fax: 86-10-68009195 68009205

Page number: 128 of 167

EX3DV4 SN:3708 October 22: 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (¢, 9), f = 900 MHz

Certificate No. EX3-3708_Oct13

Page 10 of 11

Fax: 86-10-68009195 68009205

Page number: 129 of 167

FCC ID: VQRCTI928

EX3DV4- SN:3708

October 22, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-0.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No. EX3-3708_Oct13

Page 11 of 11

Fax: 86-10-68009195 68009205

Page number: 130 of 167

FCC ID: VQRCTI928

APPENDIX D: RELEVANT PAGES FROM DAE REPORT(S)

DAE4 - SN:546

Schmitt & Partner Engineering AG e a qZoughtusstrasse 63, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speeg.com, http://www.speag.com IMPORTANT NOTICE USAGE OF THE DAE 4 The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is E-Stop Failures: Touch detection may be maifunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering 11.12.2009 TN BR040315AD DAE4.doc

Fax: 86-10-68009195 68009205

Page number: 131 of 167

FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SRTC (PTT)

Accreditation No.: SCS 108

Certificate No: DAE4-546_Aug13

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BJ - SN: 546

QA CAL-06:v28 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

August 13, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (51). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the cartificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	TQ #	Call Calds (Call striction No.)	COMMUNES CANNESSON
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

Calibrated by:

Eric Hainfeld

Function Technician

Approved by:

Fin Bemholt

This calibration pertificate shall not be reproduced except in full without written approval of the laboratory.

Deputy Technical Managor

Issued: August 13, 2013

Certificate No: DAE4-546_Aug13

Page 1 of 5

Fax: 86-10-68009195 68009205

Page number: 132 of 167

No.: SRTC2014-H024-E0036 FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Bervice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the racognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-546_Aug13

Page 2 of 5

Fax: 86-10-68009195 68009205

Page number: 133 of 167

FCC ID: VQRCTI928

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1,....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.328 ± 0.02% (k=2)	404.086 ± 0.02% (k=2)	404.194 ± 0.02% (k=2)
Low Range	3.98769 ± 1.50% (k=2)	3.95711 ± 1.50% (k=2)	3.97853 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	240.0 ° ± 1 °	

Certificate No: DAE4-546_Aug13

Page 3 of 5

Fax: 86-10-68009195 68009205

Page number: 134 of 167

FCC ID: VQRCTI928

Appendix

1. DC Volt

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199990.29	-7.32	-0.00
Channel X + Input	19999.70	-1,11	-0.01
Channel X - Input	-19995.30	5.53	-0.03
Channel Y + Input	199995.55	-1.80	-0.00
Channel Y + Input	19998.41	-2.41	-0.01
Channel Y - Input	-20000.36	0.57	-0.00
Channel Z + Input	199994.26	-3.48	-0.00
Channel Z + Input	19997.97	-2.83	-0.01
Channel Z - Input	-20000.68	0.28	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.85	-0.09	-0.00
Channel X + Input	201.93	0.64	0.32
Channel X - Input	-198.79	-0.22	0.11
Channel Y + Input	2000.76	-0.22	-0.01
Channel Y + Input	201.38	0.03	0.01
Channel Y - Input	-199.43	-0.79	0.40
Channel Z + Input	2000.70	-0.32	-0.02
Channel Z + Input	200.28	-0.98	-0.49
Channel Z - Input	-199,76	-1.10	0.55

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	1.78	-0.47
	-200	1.25	-0.47
Channel Y	200	-0.34	-0.32
	- 200	-0.87	-1.34
Channel Z	200	1,69	1.71
	- 200	-4.92	-4.44

3. Channel separation

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-2.82	-3.89
Channel Y	200	8.88	1	-0.80
Channel Z	200	4.65	7.29	

Certificate No: DAE4-546_Aug13

Fax: 86-10-68009195 68009205

Page number: 135 of 167

FCC ID: VQRCTI928

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15841	16095
Channel Y	16161	15583
Channel Z	15907	16498

Input Offset Measurement
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.58	-0.74	1.64	0.39
Channel Y	-0.12	-5.00	0.71	0.38
Channel Z	-0.95	-1.81	-0.10	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-546_Aug13

Page 5 of 5

Fax: 86-10-68009195 68009205

FCC ID: VQRCTI928

DAE4 - SN:725

Schmid & Partner Engineering AG

s p e a g

Zeughaussresse 43, 8004 Zurich, Switzerland Phone +41, 44,245,9700, Fax +41,44,245,9779 into@apeag.com, http://www.speeg.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over lightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE. Sefore shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Fax: 86-10-68009195 68009205

Page number: 137 of 167

No.: SRTC2014-H024-E0036 FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étationnage
Servizio svizzero di taratura
S Swiss Célibration Service

Accredited by the Swiss Accreditation Service (SAS).

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Multilateral Agreement for the recognition of calibration

Client SRTC (PTT)

Cartificate No: DAE4-725_Oct13

Accreditation No.: SCS 108

roject	DAE4 - SD 000 D	04 BM - SN: 725	
Calibration procedure(s)	QA CAL-06.v26 Calibration proced	ure for the data acquisition electron	onics (DAE)
Calibration date:	October 16, 2013		
The measurements and the uno	ertainties with confidence pro ucted in the closed laboratory	nal standards, which realize the physical units bablilly are given on the following pages and a facility: environment temperature (22 ± 3)°C a	are part of the certificate.
rimary Standards	ID #	Car Date (Certificate No.)	Scheduled Calibration
Solthley Multimeter Type 2001	SN: 0810278	01-DcI-13 (No:13976)	Oct-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1		07-Jan-13 (in house check) 07-Jan-13 (in house check)	in house check: Jan-14 in house check: Jan-14
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	19527
			Contract of the second
Approved by:	Fin Bombolt	Deputy Yechnical Manager	W Blumel
repulsival by			IN TO CONCOL

Certificate No: DAE4-725_Oct13

Page 1 of 5

Fax: 86-10-68009195 68009205

Page number: 138 of 167

FCC ID: VQRCTI928

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-725 Oct13

Page 2 of 5

Fax: 86-10-68009195 68009205

Page number: 139 of 167

FCC ID: VQRCTI928

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1 µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1,....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	X	Z
High Range	404.107 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)	404.426 ± 0.02% (k=2)
Low Range	3.93439 ± 1.50% (k=2)	3.99085 ± 1.50% (k=2)	3.96524 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	235.0 ° ± 1 °

Certificate No: DAE4-725_Oct13

Page 3 of 5

Fax: 86-10-68009195 68009205

Page number: 140 of 167

FCC ID: VQRCTI928

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199996.65	0.05	0.00
Channel X + Input	20003.59	3.75	0.02
Channel X - Input	-19997.82	4.23	-0.02
Channel Y + Input	199994.93	-1.46	+0.00
Channel Y + Input	20002.73	2.97	0.01
Channel Y - Input	-19998.49	3,54	-0.02
Channel Z + Input	199994.66	-2.16	-0.00
Channel Z + Input	20002.40	2.70	0.01
Channel Z - Input	-20001.28	0.81	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Inpu	1999.29	-0.66	-0.03
Channel X + Inpu	200.69	0.47	0.23
Channel X - Input	-199.26	0.32	-0.16
Channel Y + Inpu	1999.88	0.10	0.01
Channel Y + Inpu	199.71	-0.38	-0.18
Channel Y - Input	-200.66	-1.10	0.55
Channel Z + Inpu	1999,26	-0.38	-0.02
Channel Z + Inpu	201,34	1.21	0.61
Channel Z - Inpur	-200.66	-0.96	0.48
Channel Z - Inpu	-200.66	-0.96	0

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.22	8.82
	- 200	-6.67	-9.07
Channel Y	200	-10.26	-10.68
	- 200	9.67	9.25
Channel Z	200	-3.08	-3.40
	- 200	2.52	2.46

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec.

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-1.84	-3.15
Channel Y	200	8.55	22	-0.38
Channel Z	200	5.04	4.95	-

Certificate No: DAE4-725_Oct13

Fax: 86-10-68009195 68009205

FCC ID: VQRCTI928

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16153	13986
Channel Y	16197	15238
Channel Z	16104	14928

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Innuit 10 Mars

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std, Deviation (µV)
Channel X	1.14	0.26	2.74	0.41
Channel Y	-0.99	-2.06	0.58	0.53
Channel Z	0.03	-0.95	0.90	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25tA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-725_Oct13 Page 5 of 5

Fax: 86-10-68009195 68009205

Page number: 142 of 167

FCC ID: VQRCTI928

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

D835V2 - SN:4d023

Calibration Laboratory of S Schweizerischer Kalibrierdienst SUINS Schmid & Partner Service suisse d'étalonnage SE BRATT C IIac MRA Engineering AG Servizio svizzero di taratura sstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D835V2-4d023_Oct13 SRTC (PTT) CALIBRATION CERTIFICATE D835V2 - SN: 4d023 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz October 22, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Certificate No.) GB37480704 Power meter EPM-442A 09-Oct-13 (No. 217-01827) Oct-14

Name Function Signal.
Calibrated by: Israe El-Naoug Laboratory Technician

Approved by Kalja Pokovic Technical Manager

99-Oct-13 (No. 217-91827)

09-Oct-13 (No. 217-01828)

04-Apr-13 (No. 217-01736)

04-Apr-13 (No. 217-01739)

Check Date (in house)

US37390585 S4206 18-Oct-01 (in house check Oct-13)

28-Dec-12 (No. ES3-3205, Dec12)

25-Apr-13 (No. DAE4-601, Apr13)

04-Aug-99 (in house check Oct-13)

The state of the s

This calibration cartificate shall not be reproduced except in full without written approval of the laboratory.

US37292763

MY41092317

RN 5005

SN: 601

SN: 5068 (20k)

SN 5047.3 / 06327

Certificate No: D835V2-4d023_Oct13

Page 1 of 8

Fax: 86-10-68009195 68009205

Power sensor HP 8481A

Power sensor HP 8481A

Reference 20 dB Attenuator

Reference Probe ES3DV3

Network Analyzer HP 8753E

Secondary Standards RF generator R&S SMT-06

DAE4

Type-N mismatch combination

Page number: 143 of 167

Copyright © SRTC

Oct/14

Oct-14

Apr-14

Apr-14

Dec-13

Apr-14

In house check: Oct-15

In house check: Oct-14

issued: October 22, 2013

FCC ID: VQRCTI928

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienat
C Service suisse d'étalonnage
Servizio svizzero di tarature
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: DB35V2-4d023_Oct13

Page 2 of 8

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 144 of 167

FCC ID: VQRCTI928

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41,5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.93 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.15 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	4444	2440

SAR result with Body TSL

SAR averaged over 1 cm ⁹ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k×2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.14 W/kg ± 16.5 % (k×2)

Certificate No: D835V2-4d023_Oct13

Page 3 of 6

FCC ID: VQRCTI928

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 2.6 jΩ
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω - 3.8 μΩ	
Return Loss	- 27.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2004

Certificate No: D835V2-4d023_Oct13

Page 4 of 8

Copyright © SRTC

DASY5 Validation Report for Head TSL

Date: 18.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d023

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_c = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.083 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.84 W/kg

Certificate No: D835V2-4d023_Oct13

Page 5 of 8

Fax: 86-10-68009195 68009205

Page number: 147 of 167

Impedance Measurement Plot for Head TSL

Certificate No: DB35V2-4d023_Oct13

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d023

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.005$ S/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m²

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.083 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.79 W/kg

Certificate No: D835V2-4d023_Oct13

Page 7 of 8

Fax: 86-10-68009195 68009205

Page number: 149 of 167

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d023_Oct13

Page 8 of 8

FCC ID: VQRCTI928

D1900V2 - SN:5d113

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio avizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the aignatories to the EA

Multilateral Agreement for the recognition of calibration certificates

ALIBRATION	CERTIFICATE	Certificate No:	77 / S = 20 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1
Object	D1900V2 - SN: 5d	1113	
alibration procedure(s)	QA CAL-05.v9 Calibration process	dure for dipole validation kits above	ve 700 MHz
Calibration date:	October 16, 2013		
		The state of the s	The state of the s
Calibration Equipment used (f	A&TE ortical for calibration)	y tactity, environment temperature (22 s 3)*C	
Calibration Equipment used (f	A&TE orifical for calibration)	Call Date (Cortificate No.)	Scheduled Galibration
Calibration Equipment used (f Primary Standards Power mater EPM-442A	A&TE ortical for calibration) ID # G837480704	Call Date (Conflicate No.) 09-Dct-13 (No. 217-01827)	Scheduled Calibration Oct-14
calibration Equipment used (f Primary Standards Power thatck EPM-442A Power sensor HP 8481A	A&TE ortical for calibration) ID # GB37460704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01627) 09-Oct-13 (No. 217-01827)	Scheduled Galibration
Calibration Equipment used (f Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ASTE oritical for calibration) ID # GB37480704 US37292783 MY41092317	Cali Dale (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Galibration Oct-14 Oct-14
Calibration Equipment used it Primary Standards Power instite EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ASTE oritical for calibration) ID # G837480704 US37292783 MY41092317 SN: S058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01627) 09-Oct-13 (No. 217-01827)	Scheduled Galibration Cich-14 Cich-14 Cich-14
Calibration Equipment used it Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ASTE oritical for calibration) ID # G837480704 US37292783 MY41092317 SN: S058 (20k)	Call Dalle (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 26-Dec-12 (No. ESS-3205_Dec12)	Scheduled Calibration Cicl-14 Cicl-14 Coc-14 Apr-14 Apr-14 Dec-13
Calibration Equipment used (f Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Neteronce 20 dB Attenuator Type-N mismatch combinator Reference Probe ES3CV3	ASTE oritical for calibration() ID # GB37480704 US37292783 MY41092317 SN: 5068 (20%) SN: 5047.3 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01627) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apri-13 (No. 217-01736) 04-Apri-13 (No. 217-01739)	Scheduled Galibration Clct-14 Clct-14 Clct-14 Apr-14 Apr-14
Calibration Equipment used (f Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8461A Reference 20 d5 Attenuator Type-N mismatch combination Reference Probe ES3OV3 DAE4	A&TE oritical for calibration() ID # GB37480704 US37292783 MY41092317 SN: 5066 (20%) SN: 5047 3 / 06327 SN: 3205 SN: 601	Cal Dale (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01829) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 26-Doc-12 (No. ESS-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Galibration Cich-14 Cich-14 Coch-14 Apr-14 Apr-14 Dec-13 Apr-14
Calibration Equipment used (f Primary Standards Power natick EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combinator Reference Probe ES3CV3 DAE4 Secondary Standards	A&TE oritical for calibration() ID # GB37480704 US37292783 MY41092317 SN: 5086 (204) SN: 5047 3 / 06327 SN: 3205 SN: 601	Call Date (Certificate No.) 09-Oct-13 (No. 217-01627) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 26-Doc-12 (No. ESS-3205_Dec10) 26-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Cicl-14 Cicl-14 Coc-14 Apr-14 Apr-14 Dec-13
Calibration Equipment used (f Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 d5 Attenuator Type-N mismatch combination Reference Probe ES3CV3 DAE4	A&TE oritical for calibration() ID # GB37480704 US37292783 MY41092317 SN: 5066 (20%) SN: 5047 3 / 06327 SN: 3205 SN: 601	Cal Dale (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01829) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 26-Doc-12 (No. ESS-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Galibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Apr-13 Apr-14 Dec-13 Apr-14 Scheduled Check
Calibration Equipment used (f Primary Standards Power thate: EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe ES3CV3 DAE4 Secondary Standards BF generator R&S SMT-08	A&TE oritical for calibration/ ID # G637460704 US37292783 MY41092317 SN: 5058 (20%) SN: 5073 / 06327 SN: 3205 SN: 601 ID # 100005 US3739058S \$4206	Call Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01739) 26-Dec-12 (No. 217-01739) 26-Dec-12 (No. ESS-3205_Dec-10) 25-Apr-13 (No. DAE4-601_Apr13) Check Oate (in house) 04-App-99 (in house)	Scheduled Calibration Cld:-14 Cld:-14 Cld:-14 Apr14 Apr14 Dec-13 Apr14 Scheduled Check In house check: Oct-15
Calibration Equipment used (f Primary Standards Power thate: EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe ES3CV3 DAE4 Secondary Standards BF generator R&S SMT-08	ASTE oritical for calibration/ ID # GB37480704 US37292783 MY41092517 SN: 5068 (20k) SR: 5047.3 / 06327 SN: 3005 SN: 601	Call Date (Certificate No.) 09-Oct-13 (No. 217-01807) 09-Oct-13 (No. 217-01807) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01739) 26-Dec-12 (No. ESS-3205_Dec-12) 25-Apr-13 (No. DAE4-601_Apr-13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Galibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15 In house dheck: Oct-14
Calibration Equipment used (f. Premary Standards	ASTE oritical for calibration/ ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 5047 3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4208	Call Date (Certificate No.) 09-Oct-13 (No. 217-01627) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01829) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 26-Doc-12 (No. ESS-3205_Dec12) 26-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Galibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15 In house dheck: Oct-14

Certificate No: D1900V2-5d113_Oct13

Page 1 of 8

Fax: 86-10-68009195 68009205

Page number: 151 of 167

FCC ID: VQRCTI928

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d113_Oct13

Page 2 of 6

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 152 of 167

FCC ID: VQRCTI928

Measurement Conditions

DACV quetom configuration, as far as not given on page 1

ASY system configuration, as far as not	given on page 11	Constitution of the Consti
DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

ne following parameters and calculations were applied.			1
The state of the s	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.37 mho/m ± 6 %
Head TSI, temperature change during test	< 0.5 °C	****	name.

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg = 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6.%	1,49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAB for cominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d113_Oct13

Page 3 of 8

Fax: 86-10-68009195 68009205

Page number: 153 of 167

FCC ID: VQRCTI928

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω + 6.4 JΩ	
Return Loss	- 23.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.8 \Omega + 6.7 j\Omega$	
Return Loss	- 22.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 24, 2009	

Certificate No: D1900V2-5d113_Oct13

Page 4 of 8

Fax: 86-10-68009195 68009205

Page number: 154 of 167

DASY5 Validation Report for Head TSL

Date: 16.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT; Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d113

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.850 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

Certificate No: D1900V2-5d113_Oct13

Page 5 of 8

Fax: 86-10-68009195 68009205

Page number: 155 of 167

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d113_Oct13

Page 6 of 8

Fax: 86-10-68009195 68009205

Page number: 156 of 167

DASY5 Validation Report for Body TSL

Date: 16.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d113

Communication System: UID 0 - CW ; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_c = 53.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0;

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.823 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kgMaximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: D1900V2-5d113_Oct13

Page 7 of 8

Fax: 86-10-68009195 68009205

Page number: 157 of 167

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d113_Oct13

Page 8 of 8

No.: SRTC2014-H024-E0036 FCC ID: VQRCTI928

D2450V2 - SN:738

Calibration Laboratory of Schmid & Partner

Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio evizzero di taratura S Swiss Calibration Service

Scheduled Calibration

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SRTC (PTT)

Calibration procedure(s)

Primary Standards

Accreditation No.: SCS 108

Certificate No: D2450V2-738_Oct13

CALIBRATION CERTIFICATE Object D2450V2 - SN: 738

QA CAL-05.VB Calibration procedure for dipole validation kits above 700 MHz

Calibration date: October 17, 2013

This calibration certificate documents the traceability to national standards, which reside the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humiday < 70%.

Celibration Equipment used (M&TE critical for celibration)

ID #

This calibration certificate shall not be reproduced except in full without written approval of the liaboratory

ATTENDED AND ADDRESS OF THE PARTY OF T	100 0	Charl Manue Crista Investment Lath 1	SCHOOLING CHICKBIRD
Power meter EP\$4-442A	GB37450704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-16
Power sensor HP \$461A	MY41092317	09-Dut-13 (No. 217-01828)	Clet-1#
Reference 20 dB Attenuator	SN: 5056 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N minnatch combination	SN: 5047.3 / 96327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES30V3	SN: 3205	26-Dec-12 (No. ES3-3205, Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	10.0	Check Date (in frouse)	Scheduled Check
RF generator R&S SMT-06	100006	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 6753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In frouse chack: Oct-14
	Name	Function	Signature
Calibrated by:	Torso El-Nisous		Signature
	Tallan E-reason	Laboratory Technician	March El Danney
2011000000	0.0000000000000000000000000000000000000		
Approved by:	Katja Pokovio	Technical Menager	the the
			-

Cal Date (Certificate No.)

Certificate No: 02450V2-736_Oct13

Page 1 of 8

Fax: 86-10-68009195 68009205

Page number: 159 of 167

Copyright © SRTC

Iseued: Outster 17, 2013

FCC ID: VQRCTI928

S

C

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swisa Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swies Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, *Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-738_Oct13

Page 2 of 8

Fax: 86-10-68009195 68009205

Page number: 160 of 167

FCC ID: VQRCTI928

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL paremeters	22.0 °C	39.2	1,80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6±6%	1.84 mho/m ± 6 %
Head TSL temperature change during test	<0.5°C	-	_

SAR result with Head TSL

SAR averaged over 1 cm2 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg = 17.0 % (k+2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to TW	24.7 W/kg a 16.5 % (km2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	and the	1966

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.75 W/kg
SAR for nominal Body TSL parameters	nomalized to 1W	22.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-738_Oct13

Page 3 of 8

Fax: 86-10-68009195 68009205

Page number: 161 of 167

FCC ID: VQRCTI928

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 3.6 JΩ
Return Loss	- 27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω = 5.3 JΩ	
Return Loss	- 25.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns
THE STATE OF THE PARTY OF THE P	A PARTICIPATION OF THE PROPERTY OF THE PARTICIPATION OF THE PARTICIPATIO

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 25, 2003

Certificate No: D2450V2-736_Dcl13

Page 4 of 8

Copyright © SRTC

DASY5 Validation Report for Head TSL

Date: 17.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 738

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.333 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 16.9 W/kg

Page 5 of 8

Fax: 86-10-68009195 68009205

Certificate No: D2450V2-738_Oct13

Page number: 163 of 167

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-738_Oct13

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 17.10.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 738

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\epsilon_e = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.129 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.75 W/kg Maximum value of SAR (measured) = 16.3 W/kg

0 dB = 16.3 W/kg = 12.12 dBW/kg

Certificate No: D2450V2-738_Oct13

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-738_Oct13

Page 8 of 8

FCC ID: VQRCTI928

APPENDIX F: Test Setup

Appendix Test Setup

Page number: 167 of 167