Complexité paramétrée (3)

Recherche de noyaux - bornes inférieures

Christophe PAUL (CNRS - LIRMM)

Noyaux exponentiels

EDGE CLIQUE-COVER LONGEST PATH

Algorithmes de distillation et de composition

Conjecture de OU-distillation Non-existence de noyau polynomial Exemples

Transformations paramétrées polynomiales

Définition et exemple Réductions non-triviales

Compositions croisées

Définition et théorèmes Dominating set

Observation

Le théorème prouvant, pour un problème paramétré (Q,κ) , l'équivalence entre l'existence d'un noyau et son appartenance à la classe de complexité FPT, ne permet que de déduire des noyaux de tailles exponentiels.

► Peut-on démontrer que certains problèmes n'admettent pas de noyau polynomial ?

L'exemple de Edge Clique-Cover

- ▶ Un graphe G = (V, E) et un paramètre $k \in \mathbb{N}$
- \triangleright Peut-on couvrir les arètes E par au plus k cliques ?

Théorème [Gramm, Guo, Hüffner, Niedermeier] EDGE CLIQUE-COVER admet un noyau de taille 2^k sommets.

Théorème [Gramm, Guo, Hüffner, Niedermeier] EDGE CLIQUE-COVER admet un noyau de taille 2^k sommets.

Règles de réduction

- 1. Supprimer les sommets isolés
- 2. S'il existe deux sommets x et y tels que N[x] = N[y], supprimer l'un des deux sommets.

Théorème [Gramm, Guo, Hüffner, Niedermeier] EDGE CLIQUE-COVER admet un noyau de taille 2^k sommets.

Preuve : Supposons qu'il existe k cliques $C_1 \dots C_k$ couvrant E. A chaque sommet x on assoccie un verteur C de k bits tel que

$$C[x,i]=1 \iff x \in C_i$$

Observation :
$$\forall i \in [k] \ C[x, i] = C[y, i] \text{ ssi } N[x] = N[y]$$

Théorème [Gramm, Guo, Hüffner, Niedermeier] EDGE CLIQUE-COVER admet un noyau de taille 2^k sommets.

Preuve : Supposons qu'il existe k cliques $C_1 \dots C_k$ couvrant E. A chaque sommet x on associe un verteur C de k bits tel que

$$C[x,i]=1 \iff x \in C_i$$

Observation : $\forall i \in [k] \ C[x,i] = C[y,i] \ \text{ssi} \ N[x] = N[y]$

Problème ouvert

EDGE CLIQUE-COVER admet-il un noyau polynomial?

LONGEST PATH

- ▶ Un graphe G = (V, E) et un paramètre $k \in \mathbb{N}$
- ► *G* contient-il un chemin de taille *k* ?

Longest Path est NP-Complet (cf. chemin hamiltonien) mais peut-être résolu en temps $O(c^k.n^{O(1)})$ grâce à Color Coding.

LONGEST PATH

Hypothèse II existe un algorithme de kernelization \mathcal{A} pour LONGEST PATH qui retourne un noyau polynomial.

▶ construisons une instance (G, k) avec t instances différentes $(G, k) = (G_1, k) \oplus (G_2, k) \oplus \ldots \oplus (G_t, k)$

Longest Path

Hypothèse II existe un algorithme de kernelization \mathcal{A} pour LONGEST PATH qui retourne un noyau polynomial.

▶ construisons une instance (G, k) avec t instances différentes $(G, k) = (G_1, k) \oplus (G_2, k) \oplus \ldots \oplus (G_t, k)$

Observation : (G, k) admet un chemin de longueur k ssi $\exists i$ tq G_i admet un chemin de taille k.

Question:

Est-il possible que \mathcal{A} identifie en temps polynomial quel G_i , parmi les 2^{2^n} possibles, possède un chemin de longueur k?

Noyaux exponentiels EDGE CLIQUE-COVER LONGEST PATH

Algorithmes de distillation et de composition Conjecture de OU-distillation Non-existence de noyau polynomial Exemples

Transformations paramétrées polynomiales Définition et exemple

Compositions croisées Définition et théorèmes Dominating set

Un algorithme de OU-distillation $\mathcal A$ pour un problème de décision Q (i.e. non paramétré) sur l'alphabet Σ est un algorithme qui :

▶ reçoit une séquence $(x_1, ... x_t)$, avec $x_i \in \Sigma^*$, $\forall i \in [t]$;

Un algorithme de OU-distillation \mathcal{A} pour un problème de décision Q (i.e. non paramétré) sur l'alphabet Σ est un algorithme qui :

- ▶ reçoit une séquence $(x_1, ... x_t)$, avec $x_i \in \Sigma^*$, $\forall i \in [t]$;
- ▶ possède une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$,

Un algorithme de OU-distillation $\mathcal A$ pour un problème de décision Q (i.e. non paramétré) sur l'alphabet Σ est un algorithme qui :

- ▶ reçoit une séquence $(x_1, ... x_t)$, avec $x_i \in \Sigma^*$, $\forall i \in [t]$;
- ▶ possède une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$,
- ▶ retourne $y \in \Sigma^*$ tel que
 - 1. $y \in Q \Leftrightarrow \exists i \in [t], x_i \in Q$;
 - 2. |y| est polynomial en $\max_{i \in [t]} |x_i|$.

Un algorithme de OU-distillation $\mathcal A$ pour un problème de décision Q (i.e. non paramétré) sur l'alphabet Σ est un algorithme qui :

- ▶ reçoit une séquence $(x_1, ..., x_t)$, avec $x_i \in \Sigma^*$, $\forall i \in [t]$;
- ▶ possède une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$,
- ▶ retourne $y \in \Sigma^*$ tel que
 - 1. $y \in Q \Leftrightarrow \exists i \in [t], x_i \in Q$;
 - 2. |y| est polynomial en $\max_{i \in [t]} |x_i|$.

Conjecture [Bodlaender, Downey, Fellows, Hermelin] Aucun problème NP-Complet n'est OU-distillable.

Un algorithme de OU-distillation $\mathcal A$ pour un problème de décision Q (i.e. non paramétré) sur l'alphabet Σ est un algorithme qui :

- ▶ reçoit une séquence $(x_1, ... x_t)$, avec $x_i \in \Sigma^*$, $\forall i \in [t]$;
- ▶ possède une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$,
- ▶ retourne $y \in \Sigma^*$ tel que
 - 1. $y \in Q \Leftrightarrow \exists i \in [t], x_i \in Q$;
 - 2. |y| est polynomial en $\max_{i \in [t]} |x_i|$.

Conjecture [Bodlaender, Downey, Fellows, Hermelin] Aucun problème NP-Complet n'est OU-distillable.

Théorème [Fortnow et Santhanam]

S'il existe un problème NP-complet OU-distillable, alors $PH = \Sigma_p^3$

Un algorithme de OU-composition pour un problème paramétré $(Q,\kappa)\subseteq \Sigma^* \times \mathbb{N}$ est un algorithme \mathcal{A} qui

▶ reçoit une séquence $((x_1, k), ... (x_t, k))$, avec $(x_i, k) \in \Sigma^* \times \mathbb{N}$ $\forall i \in [t]$;

Un algorithme de OU-composition pour un problème paramétré $(Q,\kappa)\subseteq \Sigma^* \times \mathbb{N}$ est un algorithme \mathcal{A} qui

- ▶ reçoit une séquence $((x_1, k), ... (x_t, k))$, avec $(x_i, k) \in \Sigma^* \times \mathbb{N}$ $\forall i \in [t]$;
- ▶ a une complexité polynomiale en $\sum_{i=1}^{t} |x_i| + k$,

Un algorithme de OU-composition pour un problème paramétré $(Q,\kappa)\subseteq \Sigma^* \times \mathbb{N}$ est un algorithme \mathcal{A} qui

- ▶ reçoit une séquence $((x_1, k), ... (x_t, k))$, avec $(x_i, k) \in \Sigma^* \times \mathbb{N}$ $\forall i \in [t]$;
- ▶ a une complexité polynomiale en $\sum_{i=1}^{t} |x_i| + k$,
- ▶ retourne $(y, k') \in \Sigma^* \times \mathbb{N}$ tel que
 - 1. $(y, k') \in (Q, \kappa) \Leftrightarrow \exists i \in [t], (x_i, k) \in (Q, \kappa);$
 - 2. k' est polynomial en k.

Un algorithme de OU-composition pour un problème paramétré $(Q,\kappa)\subseteq \Sigma^* \times \mathbb{N}$ est un algorithme $\mathcal A$ qui

- ▶ reçoit une séquence $((x_1, k), ... (x_t, k))$, avec $(x_i, k) \in \Sigma^* \times \mathbb{N}$ $\forall i \in [t]$;
- ▶ a une complexité polynomiale en $\sum_{i=1}^{t} |x_i| + k$,
- ▶ retourne $(y, k') \in \Sigma^* \times \mathbb{N}$ tel que
 - 1. $(y, k') \in (Q, \kappa) \Leftrightarrow \exists i \in [t], (x_i, k) \in (Q, \kappa);$
 - 2. k' est polynomial en k.

 $\begin{array}{l} \textbf{Observation: L'existence d'un noyau polynomial pour Longest} \\ \textbf{PATH impliquerait l'existence d'un algorithme de } \textbf{OU-composition}. \end{array}$

Soit $(Q,\kappa) \in \Sigma^* \times \mathbb{N}$ un problème paramétré OU-composable tel que le problème $\tilde{Q} \in \Sigma^*$ (non-paramétré) est NP-Complet. Si (Q,κ) admet un noyau polynomial, alors \tilde{Q} est OU-distillable.

Soit $(Q,\kappa)\in \Sigma^*\times \mathbb{N}$ un problème paramétré <code>OU-composable</code> tel que le problème $\tilde{Q}\in \Sigma^*$ (non-paramétré) est NP-Complet. Si (Q,κ) admet un noyau polynomial, alors \tilde{Q} est <code>OU-distillable</code>.

 $lackbox[(x,\kappa(x))]{}$ instance de $(Q,\kappa)\longrightarrow x\#1^k$ instance de $ilde{Q}$

Soit $(Q,\kappa)\in \Sigma^*\times \mathbb{N}$ un problème paramétré <code>OU-composable</code> tel que le problème $\tilde{Q}\in \Sigma^*$ (non-paramétré) est NP-Complet. Si (Q,κ) admet un noyau polynomial, alors \tilde{Q} est <code>OU-distillable</code>.

- $lackbox[(x,\kappa(x))]$ instance de $(Q,\kappa)\longrightarrow x\#1^k$ instance de $ilde{Q}$
- ightharpoonup Puisque $ilde{Q}$ est un problème NP-Complet, il existe deux transformations polynomiales

$$oxed{\Phi: ilde{Q} \longrightarrow \mathrm{SAT} \qquad \quad \Psi: \mathrm{SAT} \longrightarrow ilde{Q}}$$

Soit $(Q,\kappa)\in \Sigma^*\times \mathbb{N}$ un problème paramétré <code>OU-composable</code> tel que le problème $\tilde{Q}\in \Sigma^*$ (non-paramétré) est NP-Complet. Si (Q,κ) admet un noyau polynomial, alors \tilde{Q} est <code>OU-distillable</code>.

- $lackbox[(x,\kappa(x))]{}$ instance de $(Q,\kappa)\longrightarrow x\#1^k$ instance de $ilde{Q}$
- ightharpoonup Puisque $ilde{Q}$ est un problème NP-Complet, il existe deux transformations polynomiales

$$oxed{\Phi: ilde{Q} \longrightarrow \mathrm{SAT} \qquad \quad \Psi: \mathrm{SAT} \longrightarrow ilde{Q}}$$

▶ on va construire un algorithme \mathcal{A} de $\text{OU-distillation pour } \tilde{Q}$ à partir de Φ , Ψ , de l'algorithme de $\text{OU-composition } \mathcal{C}$ et de l'algorithme \mathcal{K} calculant le noyau de (Q, κ) .

L'algorithme décrit est un algorithme de OU -distillation pour $ilde{Q}.$

$$\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$$

L'algorithme décrit est un algorithme de OU -distillation pour $ilde{Q}.$

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$

L'algorithme décrit est un algorithme de OU -distillation pour \tilde{Q} .

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance de \tilde{Q} retournée est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$

L'algorithme décrit est un algorithme de OU -distillation pour \tilde{Q} .

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance de \tilde{Q} retournée est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - $r \leqslant k = \max_{i \in [r]} k_r \leqslant n$

L'algorithme décrit est un algorithme de ${\hbox{\scriptsize OU-}}$ distillation pour $ilde{Q}.$

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance de \hat{Q} retournée est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - $ightharpoonup r \leqslant k = \max_{i \in [r]} k_r \leqslant n$
 - ▶ $\forall i \in [r], k'_i$ est borné par un polynôme en $k_i \leq k \leq n$ (\mathcal{C} est un algorithme de ou-composition)

L'algorithme décrit est un algorithme de ${\hbox{\scriptsize OU-}}$ distillation pour $ilde{Q}.$

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance de \tilde{Q} retournée est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - $r \leqslant k = \max_{i \in [r]} k_r \leqslant n$
 - ▶ $\forall i \in [r], k'_i$ est borné par un polynôme en $k_i \leq k \leq n$ (\mathcal{C} est un algorithme de OU-composition)
 - ▶ Donc pour tout $i \in [r]$, la taille de $z_i \# 1^{k_i''}$ est bornée par un polynôme en n (\mathcal{K} est une kernalization)

L'algorithme décrit est un algorithme de ${\hbox{\scriptsize OU-}}$ distillation pour $ilde{Q}.$

- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \iff \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$
- lacksquare La complexité de l'algorithme est polynomiale en $\sum_{i\in[t]}|x_i|$
- ▶ Il reste à prouver que la taille de l'instance de \tilde{Q} retournée est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - $r \leqslant k = \max_{i \in [r]} k_r \leqslant n$
 - ▶ $\forall i \in [r], k'_i$ est borné par un polynôme en $k_i \leq k \leq n$ (\mathcal{C} est un algorithme de OU-composition)
 - ▶ Donc pour tout $i \in [r]$, la taille de $z_i \# 1^{k_i''}$ est bornée par un polynôme en n (\mathcal{K} est une kernalization)
 - ▶ Donc la taille de $\Psi(\bigvee_{i \in [r]} (\Phi(z_i \# 1^{k_i''}))$ est bornée par un polynôme en n (Φ et Ψ sont des transformations polynomiales)

Conséquences

Corollaire

Sauf si $PH = \Sigma_p^3$, Longest Path n'admet pas de noyau polynomial.

Conséquences

Corollaire

Sauf si $PH = \Sigma_p^3$, Longest Path n'admet pas de noyau polynomial.

Sous-arborescence avec *k* feuilles

Etant donné un graphe orienté $D=(V, \overrightarrow{E})$, existe-t-il une arborescence \overrightarrow{T} dans D avec k feuilles ? \rightarrow algo en $O(4^k n^{O(1)})$

Conséquences

Corollaire

Sauf si $PH = \Sigma_p^3$, Longest Path n'admet pas de noyau polynomial.

Sous-arborescence avec k feuilles

Etant donné un graphe orienté $D=(V, \overrightarrow{E})$, existe-t-il une arborescence \overrightarrow{T} dans D avec k feuilles ? \rightarrow algo en $O(4^k n^{O(1)})$

Lemme

Sauf si $PH = \Sigma_p^3$, le problème $k ext{-Sous-Arborescence}$ n'admet pas de noyau polynomial.

Conséquences

Corollaire

Sauf si $PH = \Sigma_p^3$, Longest Path n'admet pas de noyau polynomial.

Sous-arborescence avec *k* feuilles

Etant donné un graphe orienté $D=(V, \overrightarrow{E})$, existe-t-il une arborescence \overrightarrow{T} dans D avec k feuilles ? \rightarrow algo en $O(4^k n^{O(1)})$

Lemme

Sauf si $PH = \Sigma_p^3$, le problème k-Sous-Arborescence n'admet pas de noyau polynomial.

Remarque La version enracinée (on fixe une racine r) admet un noyau cubique !

Noyaux exponentiels EDGE CLIQUE-COVER LONGEST PATH

Algorithmes de distillation et de composition Conjecture de OU-distillation Non-existence de noyau polynomial Exemples

Transformations paramétrées polynomiales Définition et exemple Réductions non-triviales

Compositions croisées

Définition et théorèmes

Dominating set

Transformations polynomiales et paramétrées

Soient (P,π) et (Q,κ) deux problèmes paramétrés. Une transformation polynomiale et paramétrée (TPP) de (P,π) vers (Q,κ) est un algorithme polynomial $\mathcal A$ qui :

- ▶ à toute instance (x, k) de (P, π) associe une instance (x', k') de (Q, κ) ;
- $\blacktriangleright (x,k) \in (P,\pi) \Longleftrightarrow (x',k') \in (Q,\pi) \text{ et } k' \leqslant poly(k)$

On note
$$(P,\pi) \leqslant_{TPP} (Q,\kappa)$$

Transformations polynomiales et paramétrées

Soient (P,π) et (Q,κ) deux problèmes paramétrés. Une transformation polynomiale et paramétrée (TPP) de (P,π) vers (Q,κ) est un algorithme polynomial $\mathcal A$ qui :

- ▶ à toute instance (x, k) de (P, π) associe une instance (x', k') de (Q, κ) ;
- $\blacktriangleright (x,k) \in (P,\pi) \Longleftrightarrow (x',k') \in (Q,\pi) \text{ et } k' \leqslant poly(k)$

On note
$$(P, \pi) \leq_{TPP} (Q, \kappa)$$

Théorème [Bodlaender, Thomassé, Yeo]

Soient (P, π) et (Q, κ) deux problèmes paramétrés tels que P est NP-Complet et Q appartient à NP.

Si $(P, \pi) \leq_{TPP} (Q, \kappa)$ et si (P, π) n'admet pas de noyau polynomial, alors (Q, κ) n'admet pas de noyau polynomial.

(**Idée :** en supposant que (Q, κ) admet un noyau polynomial, alors on construit un algorithme polynomial qui réduit (P, π) à un noyau polynomial.)

Utilisation

- construction de noyaux polynomiaux
- preuve de non-existence de noyau polynomial:

Utilisation

- construction de noyaux polynomiaux
- preuve de non-existence de noyau polynomial:

PATH PACKING

ightarrow Tester si un graphe contient k chemins sommets disjoints de taille k

Utilisation

- construction de noyaux polynomiaux
- preuve de non-existence de noyau polynomial:

PATH PACKING

ightarrow Tester si un graphe contient k chemins sommets disjoints de taille k

Remarque: PATH-PACKING n'est pas OU-composable!

Utilisation

- construction de noyaux polynomiaux
- preuve de non-existence de noyau polynomial:

PATH PACKING

 \rightarrow Tester si un graphe contient k chemins sommets disjoints de taille k

Remarque: PATH-PACKING n'est pas OU-composable!

LONGEST PATH ≤TPP PATH PACKING

- ▶ Un graphe G et k paires de sommets $(s_1, t_1), \dots (s_k, t_k)$
- ▶ *G* contient-il *k* chemins $P_1, ..., P_k$, sommets disjoints tels que P_i est un chemin entre s_i et t_i ($i \in [k]$) ?

- ▶ Un graphe G et k paires de sommets $(s_1, t_1), \dots (s_k, t_k)$
- ▶ *G* contient-il *k* chemins $P_1, ..., P_k$, sommets disjoints tels que P_i est un chemin entre s_i et t_i ($i \in [k]$) ?

Remarque

- ▶ DISJOINT PATHS est FPT et NPC [Roberston et Seymour]
- ► Mais DISJOINT PATHS n'est pas OU-composable

Méthode

- ▶ Introduction d'un problème intermédiaire (P, π)
- ▶ Montrer que (P, π) est FPT et OU-composable, que P (non-paramétré) est NP-Complet
- ▶ Montrer que $(P, \pi) \leqslant_{TPP}$ DISJOINT PATHS

Méthode

- ▶ Introduction d'un problème intermédiaire (P, π)
- ▶ Montrer que (P, π) est FPT et OU-composable, que P (non-paramétré) est NP-Complet
- ▶ Montrer que $(P, \pi) \leq_{TPP}$ DISJOINT PATHS

DISJOINT FACTORS

Un mot W sur $\Sigma = \{1, \dots k\}$ possède la propriété des facteurs disjoints si W contient k facteurs disjoints $F_1, \dots F_k$ tels que $\forall i \in [k], F_i$ commence et termine par la lettre i et $|F_i| \ge 2$.

Méthode

- ▶ Introduction d'un problème intermédiaire (P, π)
- Montrer que (P, π) est FPT et OU-composable, que P (non-paramétré) est NP-Complet
- ▶ Montrer que $(P, \pi) \leqslant_{TPP}$ DISJOINT PATHS

DISJOINT FACTORS

Un mot W sur $\Sigma = \{1, \dots k\}$ possède la propriété des facteurs disjoints si W contient k facteurs disjoints $F_1, \dots F_k$ tels que $\forall i \in [k], F_i$ commence et termine par la lettre i et $|F_i| \geqslant 2$.

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

$$((W_1, k), (W_2, k), (W_3, k), (W_4, k))$$

$$(k+1)W_1(k+1)W_2(k+1)$$

$$(k+1)W_3.(k+1)W_4(k+1)$$

$$(k+2)(k+1)W_1(k+1)W_2(k+1)(k+2)(k+1)W_3(k+1)W_4(k+1)(k+2)$$

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

$$((W_1,k)\dots(W_t,k))\longrightarrow (W',k+\lceil\log_2t\rceil)$$

Remarques:

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

$$((W_1,k)\dots(W_t,k))\longrightarrow (W',k+\lceil\log_2t\rceil)$$

Remarques:

▶ $t \leq 2^k$, sinon le problème peut se résoudre en temps polynomial car $2^k \leq \sum_{i=1}^t |W_i|$.

Exercice

- 1. Montrer que DISJOINT FACTORS est FPT (idée : par programmation dynamique en temps $O(nk \cdot 2^k)$)
- 2. Montrer que DISJOINT FACTORS est NP-Complet (idée : réduction depuis 3-SAT)

Lemme [BTY] : DISJOINT FACTORS est OU-composable

$$((W_1,k)\dots(W_t,k))\longrightarrow (W',k+\lceil\log_2t\rceil)$$

Remarques:

- ▶ $t \le 2^k$, sinon le problème peut se résoudre en temps polynomial car $2^k \le \sum_{i=1}^t |W_i|$.
- $k + \lceil \log_2 t \rceil \leqslant 2k$

Lemme [BTY] : DISJOINT FACTORS ≤ TPP DISJOINT PATHS

Théorème [Bodlaender, Thomassé, Yeo]

 $\ensuremath{\mathrm{DISJOINT}}$ Paths n'admet pas de noyau polynomial à moins que $PH = \Sigma_p^3$

Noyaux exponentiels

EDGE CLIQUE-COVER

Algorithmes de distillation et de composition

Conjecture de OU-distillation Non-existence de noyau polynomial Exemples

Transformations paramétrées polynomiales

Définition et exemple Réductions non-triviales

Compositions croisées

Définition et théorèmes Dominating set

Idée de base / objectifs

- unifier les deux techniques existantes (OU-composition et TPP)
- permettre de composer un problème vers un autre problème
- être capable de composer des problèmes NP-complets vers des problèmes FPT

Idée de base / objectifs

- unifier les deux techniques existantes (OU-composition et TPP)
- permettre de composer un problème vers un autre problème
- être capable de composer des problèmes NP-complets vers des problèmes FPT

Une relation d'équivalence $\mathcal R$ sur Σ^* est une relation d'équivalence polynomiale si

- 1. \exists un algorithme qui décide si $x \mathcal{R} y$ en temps $(|x| + |y|)^{O(1)}$
- 2. $\forall S \subseteq \Sigma^*$, \mathcal{R} partitionne S en au plus $(max_{x \in S}|X|)^{O(1)}$ classes

Idée de base / objectifs

- unifier les deux techniques existantes (OU-composition et TPP)
- permettre de composer un problème vers un autre problème
- être capable de composer des problèmes NP-complets vers des problèmes FPT

Une relation d'équivalence \mathcal{R} sur Σ^* est une relation d'équivalence polynomiale si

- 1. \exists un algorithme qui décide si $x\mathcal{R}y$ en temps $(|x|+|y|)^{O(1)}$
- 2. $\forall S \subseteq \Sigma^*$, \mathcal{R} partitionne S en au plus $(max_{x \in S}|X|)^{O(1)}$ classes
- ► Exemple : nombre de sommets et valeur du paramètres égaux

Soient $L\subseteq \Sigma^*$ et $(Q,\kappa)\subseteq \Sigma^*\times \mathbb{N}$. Il existe une composition croisée de L vers Q si il existe une relation d'équivalence polynomiale \mathcal{R} sur Σ^* et un algorithme \mathcal{A} qui

- ▶ reçoit une séquence $(x_1, ... x_t)$, tel que $\forall 1 \leq i < j \leq t$, $x_i \mathcal{R} x_j$
- ightharpoonup a une complexité polynomiale en $\sum_{i=1}^t |x_i|$
- ▶ retourne $(x,k) \in \Sigma^* \times \mathbb{N}$ tel que
 - 1. $(x,k) \in (Q,\kappa) \Leftrightarrow \exists i \in [t], x_i \in L$
 - 2. k est polynomial en $\max_{i=1}^{t} |x_i| + \log t$.

Soient $L\subseteq \Sigma^*$ et $(Q,\kappa)\subseteq \Sigma^*\times \mathbb{N}$. Il existe une composition croisée de L vers Q si il existe une relation d'équivalence polynomiale \mathcal{R} sur Σ^* et un algorithme \mathcal{A} qui

- ▶ reçoit une séquence $(x_1, ... x_t)$, tel que $\forall 1 \leq i < j \leq t$, $x_i \mathcal{R} x_j$
- ▶ a une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$
- ▶ retourne $(x, k) \in \Sigma^* \times \mathbb{N}$ tel que
 - 1. $(x,k) \in (Q,\kappa) \Leftrightarrow \exists i \in [t], x_i \in L$
 - 2. k est polynomial en $\max_{i=1}^{t} |x_i| + \log t$.

Théorème [Bodlaender, Jansen, Kratsch]

Soit \mathcal{A} une composition croisée d'un problème NP-complet $L\subseteq \Sigma^*$ vers un problème paramétré (Q,κ) tel que $\tilde{Q}\in \mathsf{NP}$ -complet. Si (Q,κ) admet un noyau polynomial, alors L admet une OU -distillation.

Soient $L \subseteq \Sigma^*$ et $(Q, \kappa) \subseteq \Sigma^* \times \mathbb{N}$. Il existe une composition croisée de L vers Q si il existe une relation d'équivalence polynomiale \mathcal{R} sur Σ^* et un algorithme \mathcal{A} qui

- ▶ reçoit une séquence $(x_1, ... x_t)$, tel que $\forall 1 \leqslant i < j \leqslant t$, $x_i \mathcal{R} x_j$
- ▶ a une complexité polynomiale en $\sum_{i=1}^{t} |x_i|$
- ▶ retourne $(x,k) \in \Sigma^* \times \mathbb{N}$ tel que
 - 1. $(x,k) \in (Q,\kappa) \Leftrightarrow \exists i \in [t], x_i \in L$
 - 2. k est polynomial en $\max_{i=1}^{t} |x_i| + \log t$.

Théorème [Bodlaender, Jansen, Kratsch]

Soit \mathcal{A} une composition croisée d'un problème NP-complet $L\subseteq \Sigma^*$ vers un problème paramétré (Q,κ) tel que $\tilde{Q}\in \mathsf{NP}$ -complet. Si (Q,κ) admet un noyau polynomial, alors L admet une OU -distillation.

▶ preuve similaire à celle de la OU-composition

L'algorithme décrit est un algorithme de $\mathrm{OU} ext{-}\mathrm{distillation}$ pour \tilde{Q} .

▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)

L'algorithme décrit est un algorithme de $\mathrm{OU} ext{-}\mathrm{distillation}$ pour $ilde{Q}$.

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]} (\Phi(z_i\#1^{k_i''})) \in \tilde{Q} \ \Longleftrightarrow \ \exists i\in[r], (x_1\#1^{k_1}) \in \tilde{Q}$

L'algorithme décrit est un algorithme de OU -distillation pour \tilde{Q} .

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]}(\Phi(z_i\#1^{k_i''}))\in \tilde{Q} \iff \exists i\in[r],(x_1\#1^{k_1})\in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$

L'algorithme décrit est un algorithme de OU -distillation pour \tilde{Q} .

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\qquad \qquad \Psi(\bigvee_{i \in [r]} (\Phi(z_i \# 1^{k_i''})) \in \tilde{Q} \iff \exists i \in [r], (x_1 \# 1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance z de \tilde{Q} est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$

L'algorithme décrit est un algorithme de OU -distillation pour \tilde{Q} .

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\qquad \qquad \Psi(\bigvee_{i \in [r]} (\Phi(z_i \# 1^{k_i''})) \in \tilde{Q} \iff \exists i \in [r], (x_1 \# 1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance z de \tilde{Q} est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - ▶ r est polynomial en m
 R est une relation d'équivalence polynomiale

L'algorithme décrit est un algorithme de $\mathrm{OU} ext{-}\mathrm{distillation}$ pour $ilde{Q}.$

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\blacktriangleright \ \Psi(\bigvee_{i \in [r]} (\Phi(z_i \# 1^{k_i''})) \in \tilde{Q} \iff \exists i \in [r], (x_1 \# 1^{k_1}) \in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance z de \tilde{Q} est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - ▶ r est polynomial en m
 - \mathcal{R} est une relation d'équivalence polynomiale
 - ▶ $\forall i \in [r]$, k'_i est polynomial en $m + \log t$

 ${\mathcal A}$ est une composition croisée

L'algorithme décrit est un algorithme de $\mathrm{OU} ext{-}\mathrm{distillation}$ pour $ilde{Q}$.

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]}(\Phi(z_i\#1^{k_i''}))\in \tilde{Q} \iff \exists i\in[r],(x_1\#1^{k_1})\in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance z de \tilde{Q} est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - ▶ r est polynomial en m

 ${\cal R}$ est une relation d'équivalence polynomiale

▶ $\forall i \in [r]$, k'_i est polynomial en $m + \log t$

 ${\cal A}$ est une composition croisée

▶ $\forall i \in [r]$, |zi| et k_i'' est polynomial en $m + \log t$

 \mathcal{K} est une kernelization

L'algorithme décrit est un algorithme de OU -distillation pour $ilde{Q}.$

- ▶ On pose $m = \max_{i \in [t]} |x_i|$ et $t \leq (|\Sigma| + 1)^m$ (sinon certaines instances sont des copies que l'on supprime)
- $\blacktriangleright \ \Psi(\bigvee_{i\in[r]}(\Phi(z_i\#1^{k_i''}))\in \tilde{Q} \iff \exists i\in[r],(x_1\#1^{k_1})\in \tilde{Q}$
- La complexité de l'algorithme est polynomiale en $\sum_{i \in [t]} |x_i|$
- ▶ Il reste à prouver que la taille de l'instance z de \tilde{Q} est polynomiale en $n = \max_{i \in [t]} |x_i \# 1^{k_i}|$
 - ▶ r est polynomial en m

 ${\cal R}$ est une relation d'équivalence polynomiale

▶ $\forall i \in [r]$, k'_i est polynomial en $m + \log t$

 ${\cal A}$ est une composition croisée

▶ $\forall i \in [r], |zi|$ et k_i'' est polynomial en $m + \log t$

 ${\cal K}$ est une kernelization

▶ |z| est polynomial en $r \times (m + \log t)$ donc polynomial en m

Corollaire:

Soit $\mathcal A$ une composition croisée d'un problème NP-complet $L\subseteq \Sigma^*$ vers un problème paramétré (Q,κ) tel que $\tilde Q\in \text{NP-complet}$. Sauf si $PH=\Sigma_p^3$, (Q,κ) n'admet pas de noyau polynomial.

Corollaire:

Soit \mathcal{A} une composition croisée d'un problème NP-complet $L\subseteq \Sigma^*$ vers un problème paramétré (Q,κ) tel que $\tilde{Q}\in \text{NP-complet}$. Sauf si $PH=\Sigma_p^3$, (Q,κ) n'admet pas de noyau polynomial.

Observations:

- 1. Si le problème paramétré (P, κ) est OU-composable, alors il existe une composition croisée de \tilde{P} vers (P, κ) .
 - la relation d'équivalence polynomiale regroupe les instances "valides" $x\#1^k$ selon la valeur du paramètre k

Corollaire:

Soit \mathcal{A} une composition croisée d'un problème NP-complet $L\subseteq \Sigma^*$ vers un problème paramétré (Q,κ) tel que $\tilde{Q}\in \text{NP-complet}$. Sauf si $PH=\Sigma_p^3$, (Q,κ) n'admet pas de noyau polynomial.

Observations:

- 1. Si le problème paramétré (P, κ) est OU-composable, alors il existe une composition croisée de \tilde{P} vers (P, κ) .
 - la relation d'équivalence polynomiale regroupe les instances "valides" $x\#1^k$ selon la valeur du paramètre k
- 2. Soient (P, κ_P) et (Q, κ_Q) deux problèmes paramétrés tels que (P, κ_P) est OU-composable et $(P, \kappa_P) \leqslant_{TPP} (Q, \kappa_Q)$, alors il existe une composition croisée de \tilde{P} vers (Q, κ_Q) .

▶ Un graphe G = (V, E) contient-il un ensemble dominant $S \subseteq V$ de taille au plus k:

$$\forall x \in V, x \notin S \Rightarrow \exists y \in S, (x, y) \in E$$

▶ Un graphe G = (V, E) contient-il un ensemble dominant $S \subseteq V$ de taille au plus k:

$$\forall x \in V, x \notin S \Rightarrow \exists y \in S, (x, y) \in E$$

Résultats connus

► W[2]-complet si paramétré par la taille de la solution

⇒ pas de noyau exponentiel!

▶ Un graphe G = (V, E) contient-il un ensemble dominant $S \subseteq V$ de taille au plus k:

$$\forall x \in V, x \notin S \Rightarrow \exists y \in S, (x, y) \in E$$

Résultats connus

- ▶ W[2]-complet si paramétré par la taille de la solution
 - ⇒ pas de noyau exponentiel!
- ► FPT et OU-composable si paramétré par treewidth(G)
 - ⇒ pas de noyau polynomial !

▶ Un graphe G = (V, E) contient-il un ensemble dominant $S \subseteq V$ de taille au plus k:

$$\forall x \in V, x \notin S \Rightarrow \exists y \in S, (x, y) \in E$$

Résultats connus

- \blacktriangleright W[2]-complet si paramétré par la taille de la solution
 - ⇒ pas de noyau exponentiel!
- ► FPT et OU-composable si paramétré par treewidth(G)
 - ⇒ pas de noyau polynomial !
- FPT si paramétré par la taille d'un vertex cover

▶ Un graphe G = (V, E) contient-il un ensemble dominant $S \subseteq V$ de taille au plus k:

$$\forall x \in V, x \notin S \Rightarrow \exists y \in S, (x, y) \in E$$

Résultats connus

 \blacktriangleright W[2]-complet si paramétré par la taille de la solution

⇒ pas de noyau exponentiel !

► FPT et OU-composable si paramétré par treewidth(G)

⇒ pas de noyau polynomial !

▶ FPT si paramétré par la taille d'un vertex cover

MAIS

$$vertex \ cover(G) \geqslant treewidth(G)$$

∃? un noyau polynomial pour la paramétrisation par vertex cover

Théorème [Wratigan]

Il existe une composition croisée de VERTEX COVER vers DOMINATING SET paramétré par vertex cover.

Dominating set

Théorème [Wratigan]

Il existe une composition croisée de VERTEX COVER vers DOMINATING SET paramétré par vertex cover.

Soit $(G_1 \# 1^{k_1}, \dots G_t \# 1^{k_t})$ une série d'instances de VERTEX COVER

- ▶ les deux problèmes sont NP-Complets
- $ightharpoonup G_i \# 1^{k_i} \mathcal{R} G_j \# 1^{k_j} \text{ si } |V(G_i)| = |V(G_j)| = n \text{ et } k_i = k_j = k$

Dominating set

Théorème [Wratigan]

Il existe une composition croisée de VERTEX COVER vers DOMINATING SET paramétré par vertex cover.

Soit $(G_1\#1^{k_1},\ldots G_t\#1^{k_t})$ une série d'instances de VERTEX COVER

- les deux problèmes sont NP-Complets
- ► $G_i \# 1^{k_i} \mathcal{R} G_j \# 1^{k_j}$ si $|V(G_i)| = |V(G_j)| = n$ et $k_i = k_j = k$
- ▶ On construit une instance (*G*, *k*_{*G*}, *Z*) de DOMINATING SET paramétré par vertex cover avec *Z* un vertex cover de *G* tel que

G admet un ensemble dominant de taille k_G ssi

 $\exists j \in [t]$ tel que G_i possède un vertex cover de taille k_i

$$|S| = k + 3 \qquad (s_i, e_{p,q}) \in E(G) \Leftrightarrow (p,q) \notin E(G_i)$$

▶
$$|S| = k + 3$$

▶
$$\forall j \in [k], |S_j| = k + 3$$

$$(s_i, e_{p,q}) \in E(G) \Leftrightarrow (p,q) \notin E(G_i)$$

$$(v_i^j, e_{p,q}) \in E(G) \Leftrightarrow i = p \lor i = q$$

▶
$$|S| = k + 3$$

▶
$$\forall j \in [k], |S_i| = k + 3$$

$$(s_i, e_{p,q}) \in E(G) \Leftrightarrow (p,q) \notin E(G_i)$$

$$(v_i^j, e_{p,q}) \in E(G) \Leftrightarrow i = p \lor i = q$$

 G_i possède un vertex cover $S = \{u_1, \dots u_k\}$ de taille k $\Rightarrow \{c, s_i\} \cup \{v_{u_i}^i : i \in [I]\}$ est un k + 2-dominant de G

▶
$$|S| = k + 3$$

▶
$$\forall j \in [k], |S_j| = k + 3$$

$$(s_i, e_{p,q}) \in E(G) \Leftrightarrow (p,q) \notin E(G_i)$$

$$(v_i^j, e_{p,q}) \in E(G) \Leftrightarrow i = p \lor i = q$$

G possède un (k+2) dominant

 $\Rightarrow \exists i \in [k]$ tel que G_i possède un vertex cover de taille k

