Analysis

Imports

```
library(mgcv)
library(tidyverse)
library(caret)
library(mice)

df <- read.csv("data/train_simple.csv", stringsAsFactors = TRUE)
df <- select(df, -coverage) # Doesn't seem particularly useful</pre>
```

Fit linear regression without imputing income

As lots of the incomes are zero, it makes sense to impute these, as employment status is a categorical variable anyway.

```
res <- lm(total_claim_amount ~ employment_status + location_code +
            vehicle_class + income + monthly_premium_auto +
             employment_status*monthly_premium_auto +
            location_code*monthly_premium_auto, data = df)
summary(res)
##
## Call:
## lm(formula = total_claim_amount ~ employment_status + location_code +
       vehicle_class + income + monthly_premium_auto + employment_status *
##
       monthly_premium_auto + location_code * monthly_premium_auto,
##
       data = df
##
## Residuals:
      Min
                1Q Median
##
                                3Q
                                       Max
## -547.60 -63.02 -28.05 55.76 1412.19
##
## Coefficients:
##
                                                         Estimate Std. Error
                                                       -5.851e+01 2.290e+01
## (Intercept)
                                                        7.078e+01 2.057e+01
## employment statusEmployed
## employment_statusMedical Leave
                                                       -6.527e+00 2.851e+01
## employment_statusRetired
                                                        1.125e+02 3.148e+01
## employment_statusUnemployed
                                                       -1.402e+01 2.134e+01
                                                        1.934e+01 1.174e+01
## location_codeSuburban
## location codeUrban
                                                        8.502e+00 1.466e+01
## vehicle classLuxury Car
                                                        3.860e+01 1.591e+01
                                                        2.375e+01 1.524e+01
## vehicle_classLuxury SUV
## vehicle_classSports Car
                                                       -5.391e+00 7.451e+00
## vehicle_classSUV
                                                       -2.224e+00 5.266e+00
```

```
## vehicle_classTwo-Door Car
                                                        1.680e+00 3.685e+00
## income
                                                       -1.284e-04 8.227e-05
## monthly premium auto
                                                        1.890e+00 2.372e-01
## employment_statusEmployed:monthly_premium_auto
                                                       -7.825e-01 2.049e-01
## employment_statusMedical Leave:monthly_premium_auto 3.508e-01 2.926e-01
## employment statusRetired:monthly premium auto
                                                       -1.359e+00 3.236e-01
## employment statusUnemployed:monthly premium auto
                                                       1.209e+00 2.141e-01
                                                       4.063e+00 1.219e-01
## location_codeSuburban:monthly_premium_auto
## location_codeUrban:monthly_premium_auto
                                                        2.366e+00 1.548e-01
##
                                                       t value Pr(>|t|)
## (Intercept)
                                                        -2.555 0.010652 *
                                                         3.441 0.000583 ***
## employment_statusEmployed
## employment_statusMedical Leave
                                                        -0.229 0.818890
                                                         3.572 0.000356 ***
## employment_statusRetired
## employment_statusUnemployed
                                                        -0.657 0.511302
## location_codeSuburban
                                                         1.647 0.099660 .
## location_codeUrban
                                                         0.580 0.561942
## vehicle classLuxury Car
                                                         2.426 0.015271 *
## vehicle_classLuxury SUV
                                                         1.559 0.119071
## vehicle classSports Car
                                                        -0.724 0.469384
## vehicle_classSUV
                                                        -0.422 0.672753
## vehicle_classTwo-Door Car
                                                         0.456 0.648411
## income
                                                        -1.560 0.118711
## monthly premium auto
                                                         7.967 1.85e-15 ***
## employment_statusEmployed:monthly_premium_auto
                                                        -3.819 0.000135 ***
## employment_statusMedical Leave:monthly_premium_auto 1.199 0.230527
## employment_statusRetired:monthly_premium_auto
                                                        -4.198 2.72e-05 ***
                                                        5.649 1.67e-08 ***
## employment_statusUnemployed:monthly_premium_auto
## location_codeSuburban:monthly_premium_auto
                                                      33.337 < 2e-16 ***
## location_codeUrban:monthly_premium_auto
                                                       15.285 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 124.5 on 7764 degrees of freedom
## Multiple R-squared: 0.8129, Adjusted R-squared: 0.8125
## F-statistic: 1776 on 19 and 7764 DF, p-value: < 2.2e-16
Impute income variable
df_big <- read.csv("data/train.csv", stringsAsFactors = TRUE)</pre>
df big <- df big %>% select(-Country, -Customer)
df_big$Income[df_big$Income == 0] <- NA</pre>
imputations <- complete(mice(df_big, method = "pmm", seed=1))</pre>
## Warning: Number of logged events: 26
df$income <- imputations$Income</pre>
head(df)
##
     employment_status income location_code monthly_premium_auto
## 1
              Employed 56274
                                   Suburban
## 2
                                   Suburban
                                                              94
            Unemployed 20325
```

108

Suburban

3

Employed 48767

```
## 4
            Unemployed 17723
                                    Suburban
                                                               106
              Employed 43836
## 5
                                       Rural
                                                               73
## 6
              Employed 62902
                                       Rural
                                                                69
     total_claim_amount vehicle_class
##
## 1
               384.8111 Two-Door Car
## 2
              1131.4649 Four-Door Car
## 3
               566.4722 Two-Door Car
                                  SUV
## 4
               529.8813
## 5
               138.1309 Four-Door Car
## 6
               159.3830 Two-Door Car
```

Look at linear regression for baseline

```
res <- lm(total_claim_amount ~ employment_status + location_code +
             vehicle_class + income + monthly_premium_auto +
             employment_status*monthly_premium_auto +
             location_code*monthly_premium_auto, data = df)
summary(res)
##
## Call:
## lm(formula = total_claim_amount ~ employment_status + location_code +
##
       vehicle_class + income + monthly_premium_auto + employment_status *
##
       monthly_premium_auto + location_code * monthly_premium_auto,
       data = df)
##
##
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
## -548.18 -62.94 -28.02
                             55.71 1411.93
##
## Coefficients:
                                                         Estimate Std. Error
##
## (Intercept)
                                                       -5.927e+01 2.290e+01
## employment_statusEmployed
                                                        6.971e+01 2.057e+01
## employment_statusMedical Leave
                                                       -6.445e+00 2.851e+01
## employment_statusRetired
                                                        1.124e+02 3.149e+01
## employment_statusUnemployed
                                                       -1.143e+01 2.127e+01
                                                        1.945e+01 1.174e+01
## location codeSuburban
## location codeUrban
                                                        8.446e+00 1.466e+01
                                                        3.854e+01 1.591e+01
## vehicle_classLuxury Car
## vehicle_classLuxury SUV
                                                        2.378e+01 1.524e+01
## vehicle_classSports Car
                                                       -5.370e+00 7.452e+00
## vehicle_classSUV
                                                       -2.232e+00 5.266e+00
## vehicle classTwo-Door Car
                                                        1.661e+00 3.685e+00
## income
                                                       -9.665e-05 8.128e-05
## monthly_premium_auto
                                                        1.889e+00 2.372e-01
                                                       -7.824e-01 2.049e-01
## employment_statusEmployed:monthly_premium_auto
## employment_statusMedical Leave:monthly_premium_auto 3.499e-01
                                                                   2.926e-01
## employment_statusRetired:monthly_premium_auto
                                                       -1.359e+00 3.237e-01
## employment statusUnemployed:monthly premium auto
                                                        1.210e+00 2.141e-01
                                                        4.064e+00 1.219e-01
## location_codeSuburban:monthly_premium_auto
## location_codeUrban:monthly_premium_auto
                                                        2.367e+00 1.548e-01
##
                                                       t value Pr(>|t|)
```

```
-2.588 0.009675 **
## (Intercept)
## employment_statusEmployed
                                                         3.389 0.000704 ***
## employment statusMedical Leave
                                                        -0.226 0.821158
## employment_statusRetired
                                                         3.571 0.000358 ***
## employment statusUnemployed
                                                        -0.538 0.590877
## location codeSuburban
                                                         1.656 0.097726 .
## location codeUrban
                                                         0.576 0.564584
## vehicle classLuxury Car
                                                         2.423 0.015425 *
## vehicle classLuxury SUV
                                                         1.561 0.118629
                                                        -0.721 0.471182
## vehicle_classSports Car
## vehicle_classSUV
                                                        -0.424 0.671777
                                                         0.451 0.652116
## vehicle_classTwo-Door Car
## income
                                                        -1.189 0.234440
                                                         7.963 1.92e-15 ***
## monthly_premium_auto
## employment_statusEmployed:monthly_premium_auto
                                                        -3.819 0.000135 ***
## employment_statusMedical Leave:monthly_premium_auto
                                                        1.196 0.231792
## employment_statusRetired:monthly_premium_auto
                                                        -4.198 2.73e-05 ***
## employment statusUnemployed:monthly premium auto
                                                        5.649 1.67e-08 ***
## location_codeSuburban:monthly_premium_auto
                                                        33.347 < 2e-16 ***
## location codeUrban:monthly premium auto
                                                        15.289 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 124.5 on 7764 degrees of freedom
## Multiple R-squared: 0.8129, Adjusted R-squared: 0.8125
## F-statistic: 1776 on 19 and 7764 DF, p-value: < 2.2e-16
Exactly the same performance, great.
```

GAM

Does using a GAM improve performance:

```
res <- gam(total_claim_amount ~ employment_status + location_code +
             vehicle class + s(income) +
             s(monthly_premium_auto, by = employment_status) +
             s(monthly_premium_auto, by = location_code), data = df)
summary(res)
##
## Family: gaussian
## Link function: identity
##
## total_claim_amount ~ employment_status + location_code + vehicle_class +
       s(income) + s(monthly_premium_auto, by = employment_status) +
##
       s(monthly_premium_auto, by = location_code)
##
## Parametric coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
                                                8.308 14.082 < 2e-16 ***
## (Intercept)
                                   116.989
                                                8.428 -0.542 0.58799
## employment_statusEmployed
                                    -4.566
## employment_statusMedical Leave
                                    25.506
                                                9.449
                                                       2.699 0.00696 **
## employment_statusRetired
                                   -15.802
                                               10.587 -1.493 0.13560
```

```
## employment statusUnemployed
                                   100.847
                                                7.324
                                                       13.769 < 2e-16 ***
## location_codeSuburban
                                                3.984
                                                       99.380 < 2e-16 ***
                                   395.907
## location codeUrban
                                   228.393
                                                4.650
                                                       49.113 < 2e-16 ***
## vehicle_classLuxury Car
                                     8.303
                                               19.458
                                                        0.427 0.66961
## vehicle_classLuxury SUV
                                   -24.152
                                               19.409
                                                       -1.244
                                                               0.21341
## vehicle classSports Car
                                                       -0.719 0.47224
                                    -5.686
                                                7.910
## vehicle classSUV
                                    -1.174
                                                5.858
                                                       -0.200 0.84117
## vehicle_classTwo-Door Car
                                     1.318
                                                3.650
                                                        0.361 0.71807
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                                                            edf Ref.df
                                                                            F
## s(income)
                                                          7.572 8.488 4.088
## s(monthly_premium_auto):employment_statusDisabled
                                                          4.530
                                                                 5.395 2.656
## s(monthly_premium_auto):employment_statusEmployed
                                                          0.875
                                                                 0.875 2.189
## s(monthly_premium_auto):employment_statusMedical Leave 4.146
                                                                 4.868 5.605
## s(monthly premium auto):employment statusRetired
                                                          0.875
                                                                 0.875 0.664
## s(monthly_premium_auto):employment_statusUnemployed
                                                          8.814
                                                                 8.870 6.874
## s(monthly premium auto):location codeRural
                                                          8.491
                                                                 8.793 2.355
## s(monthly_premium_auto):location_codeSuburban
                                                          8.248
                                                                 8.728 3.946
## s(monthly_premium_auto):location_codeUrban
                                                          0.875 0.875 5.008
##
                                                           p-value
## s(income)
                                                          6.40e-05 ***
## s(monthly_premium_auto):employment_statusDisabled
                                                            0.0262 *
## s(monthly premium auto):employment statusEmployed
                                                            0.1664
## s(monthly_premium_auto):employment_statusMedical Leave 5.29e-05 ***
## s(monthly_premium_auto):employment_statusRetired
                                                            0.4461
## s(monthly_premium_auto):employment_statusUnemployed
                                                           < 2e-16 ***
## s(monthly_premium_auto):location_codeRural
                                                            0.0144 *
## s(monthly_premium_auto):location_codeSuburban
                                                          3.39e-05 ***
## s(monthly_premium_auto):location_codeUrban
                                                            0.0364 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Rank: 92/93
## R-sq.(adj) =
                0.816
                         Deviance explained = 81.8%
## GCV = 15297 Scale est. = 15186
                                        n = 7784
```

Hmmm seems to do about the same, but I don't really know what I am doing. Perhaps this is due to the fact that it is mostly linear relationships (from EDA) so these result could be reasonable.

Things to do

See if we can get GAMs to work better. Calculate cross-validation absolute error for each model. Consider robust regression or quantreg as we are interested in absolute error, rather than the mean square error. Median regression is a thing. This will probably work better for absolute error?