COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

April 16, 2023

Lecture 31: Beyond Undecidability

▶ Virtually all interesting questions about Turing machines - A_{TM} , HALT, REG, FIN are undecidable.

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- ► Are they all equally hard?
- ► Suppose by some magic we were given the power to decide *HALT*. Can we use that to decide *REG*?

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- Are they all equally hard?
- ► Suppose by some magic we were given the power to decide *HALT*. Can we use that to decide *REG*?
- ▶ In other words, relative to the halting problem, is regularity decidable?

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- Are they all equally hard?
- ► Suppose by some magic we were given the power to decide *HALT*. Can we use that to decide *REG*?
- ▶ In other words, relative to the halting problem, is regularity decidable?

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- Are they all equally hard?
- ► Suppose by some magic we were given the power to decide *HALT*. Can we use that to decide *REG*?
- In other words, relative to the halting problem, is regularity decidable? How to model such questions?

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- Are they all equally hard?
- ightharpoonup Suppose by some magic we were given the power to decide HALT. Can we use that to decide REG?
- In other words, relative to the halting problem, is regularity decidable? How to model such questions?
- Oracle Turing machines!
- ▶ In addition to its ordinary read/write tape, there is a special one-way-infinite read-only input tape ("oracle tape") on which some infinite string ("oracle") is written.

- ▶ Virtually all interesting questions about Turing machines A_{TM} , HALT, REG, FIN are undecidable.
- ► Are they all equally hard?
- ightharpoonup Suppose by some magic we were given the power to decide HALT. Can we use that to decide REG?
- In other words, relative to the halting problem, is regularity decidable? How to model such questions?
- Oracle Turing machines!
- In addition to its ordinary read/write tape, there is a special one-way-infinite read-only input tape ("oracle tape") on which some infinite string ("oracle") is written.
- Machine can move its oracle tape head one cell in either direction in each step and make decisions based on the symbols written on the oracle tape.

Definition

For $A, B \subseteq \Sigma^*$, we say that A is recursively enumerable (Turing recognizable) in B if there is an oracle TM M with oracle B such that A = L(M). In addition, if M halts on all inputs, we write $A \leq_T B$ and say that A is recursive (decidable) in B or that A Turing reduces to B.

Definition

For $A,B\subseteq \Sigma^*$, we say that A is recursively enumerable (Turing recognizable) in B if there is an oracle TM M with oracle B such that A=L(M). In addition, if M halts on all inputs, we write $A\leq_T B$ and say that A is recursive (decidable) in B or that A Turing reduces to B.

Lemma

Halting problem is recursive in the membership problem.

Definition

For $A,B\subseteq \Sigma^*$, we say that A is recursively enumerable (Turing recognizable) in B if there is an oracle TM M with oracle B such that A=L(M). In addition, if M halts on all inputs, we write $A\leq_T B$ and say that A is recursive (decidable) in B or that A Turing reduces to B.

Lemma

Halting problem is recursive in the membership problem.

• Given a TM M and input x, first ask the oracle whether M accepts x.

Definition

For $A,B\subseteq \Sigma^*$, we say that A is recursively enumerable (Turing recognizable) in B if there is an oracle TM M with oracle B such that A=L(M). In addition, if M halts on all inputs, we write $A\leq_T B$ and say that A is recursive (decidable) in B or that A Turing reduces to B.

Lemma

Halting problem is recursive in the membership problem.

- Given a TM M and input x, first ask the oracle whether M accepts x.
- Given M,x, query oracle whether M accepts x. If the answer is yes, then output "yes".

Definition

For $A,B\subseteq \Sigma^*$, we say that A is recursively enumerable (Turing recognizable) in B if there is an oracle TM M with oracle B such that A=L(M). In addition, if M halts on all inputs, we write $A\leq_T B$ and say that A is recursive (decidable) in B or that A Turing reduces to B.

Lemma

Halting problem is recursive in the membership problem.

- Given a TM M and input x, first ask the oracle whether M accepts x.
- Given M, x, query oracle whether M accepts x. If the answer is yes, then output "yes".
- ▶ If the answer is no, switch accept and reject states of M (M') and query the oracle whether M' accepts x. If the answer is yes, output "yes". If the answer is still no, output "no" (M should loop on x).

Lemma

Membership problem is recursive in the Halting problem.

Lemma

Membership problem is recursive in the Halting problem.

• On input M,x ask the oracle if M halts on x. If it answers no, output "no".

Lemma

Membership problem is recursive in the Halting problem.

- On input M, x ask the oracle if M halts on x. If it answers no, output "no".
- lacktriangle If it answers "yes", run M on x and output the answer.

▶ \leq_T is coarser than \leq_m .

- ▶ \leq_T is coarser than \leq_m .
- ▶ \leq_T is strictly coarser than \leq_m : $\overline{HALT} \nleq_m HALT$, but $\overline{HALT} \leq_T HALT$.

- ▶ \leq_T is coarser than \leq_m .
- ▶ \leq_T is strictly coarser than \leq_m : $\overline{HALT} \nleq_m HALT$, but $\overline{HALT} \leq_T HALT$.
- $ightharpoonup \leq_T$ is transitive!

ightharpoonup Is everything computable with oracle access to HALT?

- ightharpoonup Is everything computable with oracle access to HALT?
- ▶ What about A_{TM} , HALT for oracle machines?

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{\text{Turing Recognizable (r.e.) languages}\}.$

- ▶ Is everything computable with oracle access to *HALT*?
- What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{\text{Turing Recognizable (r.e.) languages}\}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{\text{Turing Recognizable (r.e.) languages}\}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$
- ▶ Π_1^0 = {Complement of Turing Recognizable (co-r.e.) languages}

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{ \text{Turing Recognizable (r.e.) languages} \}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$
- ▶ Π_1^0 = {Complement of Turing Recognizable (co-r.e.) languages}
- $\qquad \qquad \Sigma_{n+1}^0 = \{ \text{Languages r.e. in some } B \in \Sigma_n^0 \}$

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{ \text{Turing Recognizable (r.e.) languages} \}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$
- ▶ Π_1^0 = {Complement of Turing Recognizable (co-r.e.) languages}
- Σ_{n+1}^0 = {Languages r.e. in some $B \in \Sigma_n^0$ }
- $\qquad \qquad \Delta_{n+1}^0 = \{ \text{Languages recursive in some } B \in \Sigma_n^0 \}$

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{\text{Turing Recognizable (r.e.) languages}\}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$
- ▶ Π_1^0 = {Complement of Turing Recognizable (co-r.e.) languages}
- Σ_{n+1}^0 = {Languages r.e. in some $B \in \Sigma_n^0$ }
- Δ^0_{n+1} = {Languages recursive in some $B \in \Sigma^0_n$ }
- Π^0_{n+1} = {Complements of languages in Σ^0_n }

- ▶ Is everything computable with oracle access to *HALT*?
- ▶ What about A_{TM} , HALT for oracle machines?
- $\Sigma_1^0 = \{ \text{Turing Recognizable (r.e.) languages} \}.$
- $\Delta_1^0 = \{ \text{Decidable languages} \}$
- $\blacktriangleright \ \Pi_1^0 = \{ \text{Complement of Turing Recognizable (co-r.e.) languages} \}$
- Σ_{n+1}^0 = {Languages r.e. in some $B \in \Sigma_n^0$ }
- $\blacktriangleright \ \Delta^0_{n+1} = \{ \text{Languages recursive in some } B \in \Sigma^0_n \}$
- $\blacktriangleright \ \Pi^0_{n+1}$ = $\{\mbox{Complements of languages in } \Sigma^0_n\}$

A hierarchy of harder and harder problems!

• $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ► $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ► $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$
- M halts on x is not a decidable predicate, but M halts on x in t steps is!

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ▶ $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$
- M halts on x is not a decidable predicate, but M halts on x in t steps is!
- ▶ $A_{TM} = \{(M, x) \mid \exists v, v \text{ is an accepting comp. history of } M \text{ on } x\}$
- ▶ $HALT = \{(M, x) \mid \exists v, v \text{ is a halting comp. history of } M \text{ on } x\}$

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ▶ $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$
- $\,\blacktriangleright\, M$ halts on x is not a decidable predicate, but M halts on x in t steps is!
- ▶ $A_{TM} = \{(M, x) \mid \exists v, v \text{ is an accepting comp. history of } M \text{ on } x\}$
- ▶ $HALT = \{(M, x) \mid \exists v, v \text{ is a halting comp. history of } M \text{ on } x\}$
- $A \in \Sigma_1^0$ if and only if $A = \{x \mid \exists y R(x,y)\}$

Arithmetic hierarchy via quantifiers

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ▶ $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$
- M halts on x is not a decidable predicate, but M halts on x in t steps is!
- ▶ $A_{TM} = \{(M, x) \mid \exists v, v \text{ is an accepting comp. history of } M \text{ on } x\}$
- ▶ $HALT = \{(M, x) \mid \exists v, v \text{ is a halting comp. history of } M \text{ on } x\}$
- $A \in \Sigma_1^0$ if and only if $A = \{x \mid \exists y R(x,y)\}$
- ▶ $B \in \Pi_1^0$ if and only if $A = \{x \mid \forall y R(x,y)\}$

Arithmetic hierarchy via quantifiers

- ► $A_{TM} = \{(M, x) \mid \exists tM \text{ accepts } x \text{ in } t \text{ steps}\}$
- ▶ $HALT = \{(M, x) \mid \exists tM \text{ halts on } x \text{ in } t \text{ steps}\}$
- $\begin{tabular}{ll} \hline & M \end{table} \ \mbox{not} \ x \ \mbox{is not a decidable predicate, but} \ M \end{table} \ \mbox{halts on} \ x \ \mbox{in} \ t \\ \mbox{steps is!} \\ \end{tabular}$
- $A_{TM} = \{(M, x) \mid \exists v, v \text{ is an accepting comp. history of } M \text{ on } x\}$
- ▶ $HALT = \{(M, x) \mid \exists v, v \text{ is a halting comp. history of } M \text{ on } x\}$
- $A \in \Sigma_1^0$ if and only if $A = \{x \mid \exists y R(x,y)\}$
- ▶ $B \in \Pi_1^0$ if and only if $A = \{x \mid \forall y R(x,y)\}$
- $\blacktriangleright \ \Delta_1^0 = \Sigma_1^0 \cap \Pi_1^0$

Arithmetic Hierarchy

Arithmetic Hierarchy

Theorem

• A set A is in Σ^0_n if there exists a decidable (n+1)-ary predicate R such that

$$A = \{x \mid \exists y_1, \forall y_2, \dots Qy_n R(x, y_1, \dots, y_n)\}$$

where $Q = \exists$ if n is odd and \forall if n is even.

② A set A is in Π^0_n iff there exists a decidable (n+1)-ary predicate R such that

$$A = \{x \mid y_1, \forall y_2, \dots Qy_n R(x, y_1, \dots, y_n)\}\$$

where $Q = \forall$ if n is odd and \exists if n is even.

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

 $EMPTY = \{M \mid \forall x \forall t, M \ \text{ does not accept in } t \text{ steps}\}$

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid \forall x \forall t, M \ \text{ does not accept in } t \text{ steps}\}$$

• Is this in Π_1^0 ?

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid \forall x \forall t, M \text{ does not accept in } t \text{ steps}\}$$

- Is this in Π_1^0 ?
- ▶ $(i,j) \rightarrow {i+j+1 \choose 2} + i$ (Exercise: verify that this is a computable one-one pairing function!)

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid \forall x \forall t, M \text{ does not accept in } t \text{ steps}\}$$

- ▶ Is this in Π_1^0 ?
- $(i,j) \rightarrow {i+j+1 \choose 2} + i$ (Exercise: verify that this is a computable one-one pairing function!)

$$TOTAL = \{M \mid M \text{ halts on all inputs}\}$$

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid \forall x \forall t, M \text{ does not accept in } t \text{ steps}\}$$

- ▶ Is this in Π_1^0 ?
- $(i,j) \rightarrow {i+j+1 \choose 2} + i$ (Exercise: verify that this is a computable one-one pairing function!)

$$TOTAL = \{M \mid M \text{ halts on all inputs}\}$$

 $TOTAL = \{M \mid \forall x \exists t \text{ M halts on } x \text{ in } t \text{ steps}\}$

$$EMPTY = \{M \mid L(M) = \emptyset\}$$

$$EMPTY = \{M \mid \forall x \forall t, M \text{ does not accept in } t \text{ steps}\}$$

- ▶ Is this in Π_1^0 ?
- $(i,j) \rightarrow {i+j+1 \choose 2} + i$ (Exercise: verify that this is a computable one-one pairing function!)

$$TOTAL = \{M \mid M \text{ halts on all inputs}\}$$

$$TOTAL = \{M \mid \forall x \exists t \mid \mathsf{M} \text{ halts on } x \text{ in } t \text{ steps}\}$$

 $TOTAL \in \Pi^0_2.$

$$FIN = \{M \mid L(M) \text{ is finite}\}$$

$$FIN = \{M \mid L(M) \text{ is finite}\}$$

$$FIN = \{M \mid \exists n, \forall x, \quad \text{if } |x| > n, \ x \notin L(M)\}$$

$$FIN = \{M \mid L(M) \text{ is finite}\}$$

$$FIN = \{M \mid \exists n, \forall x, \text{ if } |x| > n, x \notin L(M)\}$$

 $FIN = \{M \mid \exists n, \forall x, \forall t, |x| \le n \text{ or } M \text{ does not accept } x \text{ in } t \text{ steps}\}$

$$FIN = \{M \mid L(M) \text{ is finite}\}$$

$$FIN = \{M \mid \exists n, \forall x, \text{ if } |x| > n, x \notin L(M)\}$$

 $FIN = \{M \mid \exists n, \forall x, \forall t, |x| \leq n \ \text{ or } M \text{ does not accept } x \text{ in } t \text{ steps}\}$

$$FIN \in \Sigma_2^0$$

Arithmetic Hierarchy

▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.

- ▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.
- A_{TM} is the "hardest" problem in $\Sigma^0_1!$

- ▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.
- A_{TM} is the "hardest" problem in $\Sigma^0_1!$
- ▶ A set B is r.e.-complete, if it is both r.e.-hard and is in r.e.

- ▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.
- A_{TM} is the "hardest" problem in Σ_1^0 !
- ▶ A set *B* is r.e.-complete, if it is both r.e.-hard and is in r.e.
- ▶ For any class of languages C, we say B is C-complete if for all $L \in C$, $L \leq_m B$ and $B \in C$.

- ▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.
- A_{TM} is the "hardest" problem in Σ_1^0 !
- ▶ A set *B* is r.e.-complete, if it is both r.e.-hard and is in r.e.
- ▶ For any class of languages C, we say B is C-complete if for all $L \in C$, $L \leq_m B$ and $B \in C$.
- Exercise: All the problems we saw before are hard for the respective Σ_k^0, Π_k^0 classes.

- ▶ $A_{TM} \in r.e.$, and for every $L \in r.e$, $L \leq_m A_{TM}$.
- A_{TM} is the "hardest" problem in Σ_1^0 !
- ▶ A set *B* is r.e.-complete, if it is both r.e.-hard and is in r.e.
- ▶ For any class of languages \mathcal{C} , we say B is \mathcal{C} -complete if for all $L \in \mathcal{C}$, $L \leq_m B$ and $B \in \mathcal{C}$.
- Exercise: All the problems we saw before are hard for the respective Σ_k^0, Π_k^0 classes.
- COFIN is Σ^0_3 -complete!

• What is 0 in Σ_1^0 ?

- What is 0 in Σ_1^0 ?
- Arithmetic hierarchy: based on first order quantifications (quantification over natural numbers or strings).

- What is 0 in Σ_1^0 ?
- Arithmetic hierarchy: based on first order quantifications (quantification over natural numbers or strings).
- What if you are allowed to quantify over functions and relations? (sets of numbers, strings)
- Analytic hierarchy: $\Sigma_1^1, \Pi_1^1, \dots$ etc.

- What is 0 in Σ_1^0 ?
- Arithmetic hierarchy: based on first order quantifications (quantification over natural numbers or strings).
- What if you are allowed to quantify over functions and relations? (sets of numbers, strings)
- Analytic hierarchy: $\Sigma_1^1, \Pi_1^1, \dots$ etc.
- These classes do have natural complete problems!