Lecture 2. Diode Models and Circuits (Part 2)

Jaeha Kim
Seoul National University
jaeha@snu.ac.kr

Design of Diode Circuits

- ☐ The ideal diode model is usually sufficient to design circuits and understand functionalities
- Use more detailed models for analyzing their limitations in reality

Applications of Diode

- Rectifiers
- □ Limiting/clamping circuits
- □ Level shifters
- □ Track-and-hold switches

M I Mixed-Signal IC and C S System Group at SNU

3

Half-Wave Rectifier with R Load

Draw V_{out} waveforms assuming ideal and constant-voltage models:

Half-Wave Rectifier with C Load

Repeat for a diode driving a capacitor instead of a resistor:
Vout

Half-Wave Rectifier with R+C Load

 \square What about when R_L is of finite value?

C S System Group at SNU

Half-Wave Rectifier Questions

- During which interval the diode is conducting?
- \square What is the amount of V_{out} discharge (=voltage ripple)?
- □ When does the diode current reach its maximum?

M I Mixed-Signal IC and C S System Group at SNU

7

Half-Wave Rectifier Questions (2)

□ When does the diode current reach its maximum?

Full-Wave Rectifier

☐ Throwing out a half of the input energy seems wasteful; can we realize a I/O-curve like below?

M I Mixed-Signal IC and C S System Group at SNU

9

Full-Wave Rectifier

□ Can we combine these two circuits into one?

Bridge Rectifier

Example 3.29

□ Plot the I/O characteristic of a full-wave rectifier assuming a constant-voltage model

Half-Wave vs. Full-Wave Rectifiers

M I Mixed-Signal IC and C S System Group at SNU

13

Limiting Circuits

Sometimes, there is a need to limit the maximum amplitude of the input signal

Desired I/O Characteristics

■ How would you realize this with diodes?

M I Mixed-Signal IC and C S System Group at SNU

15

Limiting Circuit (1)

Start with a negative-clipping circuit

Limiting Circuit (2)

And add a positive-clipping diode

☐ How can we change the voltage limits?

M I Mixed-Signal IC and C S System Group at SNU

17

General Voltage Limiting Circuit

Waveform Shifter

- \Box For a sinusoidal V_{in} (= V_p cosωt), what is the final voltage across C_1 ?
 - And, what is the relationship between $V_{in} \& V_{out}$?

M I Mixed-Signal IC and C S System Group at SNU

19

Waveform Shifter (2)

□ What happens now when the diode is flipped?

Voltage Doubler

 $\square V_{in} = V_{p} \cos \omega t$, what is the final voltage for V_{out} ?

- For details on transient behaviors, see the text
- M I Mixed-Signal IC and C S System Group at SNU

21

Voltage Shifter

■ What is the model that reflects the design intent?

Voltage Shifter (2)

M I Mixed-Signal IC and C S System Group at SNU

23

Diode as Switch

■ Want to build this using diode:

"Track-and-Hold"

■ Will this circuit work?

M I Mixed-Signal IC and C S System Group at SNU

24

Diode as Switch (2)

M I Mixed-Signal IC and C S System Group at SNU

25

Diode Bridge T&H Switch

□ Used for multi-GHz sampling in BJT technologies

M I Mixed-Signal IC and C S System Group at SNU

26