Resolution Size by Graph Based Parameters

Ziyi Cai

BASICS Lab, Shanghai Jiao Tong University

Introduction

Preliminaries and Notations

- > SAT instances ϕ, ψ, \dots
- \rightarrow Clauses of a SAT C_1, C_2, \ldots
- > An undirected hypergraph H is a pair H = (V, E) where V is a set of elements called vertices and E is a set of non-empty subsets of V called hyperedges.

Tree decompositions of graphs

Definition 1.1 (tree decomposition)

Let G be a graph. A tree decomposition of G is a tuple $(T, (B_t)_{t \in V(T)})$, where T is a tree and B_t the bag at t such that the following conditions are satisfied:

> For every $v \in V(G)$ the set

$$T_v := \{ t \in V(T) \mid v \in B_t \}$$

is nonempty and connected in T, i.e, $T[T_v]$ is a subtree of T.

> For every $e \in E(G)$ there exists a $t \in V(T)$ such that $e \subseteq B_t$.

Treewidth

The width of a tree decomposition $(T, (B_t)_{t \in V(T)})$ is

width
$$(T, (B_t)_{t \in V(T)}) := \max\{|B_t| - 1 \mid t \in V(T)\}.$$

The treewidth of G is a minimum number of widths of all tree decompositions of G.

Hypergraph of SAT Instances

To each instance ϕ of a SAT, we can associate a hypergraph $H(\phi) = (V, E)$ whose set V of vertices coincides with $Vars(\phi)$, and whose set E of hyperedges contains for each clause C_i of ϕ , a hyperedge E_i consisting of Vars (C_i) .

Underlying Graphs of Hypergraphs

[HOSG07] discusses some methods to get a graph from a hypergraph.

Primal Graph
$$V(P(H)) = V(H), E(P(H)) = \bigcup_{e \in E(H)} \{(x, y) \mid x, y \in e\}$$

Incidence Graph $V(I(H)) = V(H) \cup E(H), E(I(H)) = \bigcup_{e \in E(H)} \{(x, e) \mid x \in e\}$

We define $P_{\phi} := P(H(\phi))$ and $I_{\phi} := I(H(\phi))$ for short.

Theorem 1.2

For any CNF formula ϕ , $tw(I_{\phi}) \leq tw(P_{\phi}) + 1$.

Example 1.3

Let $\phi = x_1 \vee x_1 \vee \cdots \vee x_m$. Then $\operatorname{tw}(P_{\phi}) = m - 1$ while $\operatorname{tw}(I_{\phi}) = 1$.

Resolution

Definition 1.4 (resolution)

Resolution is one of the propositional proof systems and has only one inference rule:

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Resolution rules takes two clauses and produces a new implied clause (resolvent). A resolution refutation of a formula ϕ is a sequence of clauses C_1, C_2, \ldots, C_k such that

- > for each $i(1 \le i \le k)$, C_i is a clause occurring in ϕ or a resolvent of two previous clauses, and
- > the last clause C_k is an empty clause.

The size of the refutation is the number k of clauses. The width of the refutation is a maximum number of literals in clauses

Resolution

Theorem 1.5

Resolution is sound and complete.

Theorem 1.6

If for every unsatisfiable CNF ϕ there exists a polynomially bounded resolution refutation proof. then NP = coNP.

Tree-like Resolution

Tree resolution is a diagramatic form of a resolution refutation. The underlying directed acyclic graph of a tree resolution is a tree. Note that in a tree resolution, initial clauses may be reiterated multiple times, but derived clauses may only be used once.

Figure: A tree-like resolution refutation for $(a \lor b \lor c) \land (a \lor \neg c) \land \neg b \land (\neg a \lor c) \land (b \lor \neg c)$.

♦ Introduction > Upper Bound Results > Bibliography ♦

DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [DP60, DLL62] is a search algorithm for deciding the satisfiability of propositional logic formula in conjunctive normal form.

DPLL Algorithm

16: end function

Algorithm 1 Determine whether a given CNF formula is satisfiable.

```
1: function DPLL(\phi)
         while there is a unit clause \{\ell\} in \phi do
             \phi \leftarrow \text{UNIT-PROPAGATE}(\ell, \phi)
         end while
5:
         while there is a literal I that occurs pure in \phi do
6:
             \phi \leftarrow \text{PURE-LITERAL-ASSIGN}(\ell, \phi)
         end while
         if \phi is empty then
9:
             return true
10:
          end if
11:
          if \phi contains an empty clause then
12.
              return false
13:
         end if
14:
          I \leftarrow \text{CHOOSE-LITERAL}(\phi)
          return DPLL (\phi \cup \{\ell\}) \vee DPLL (\phi \cup \{\overline{\ell}\})
15:
```

Resolution and DPLL-based Algorithms

Theorem 1.7

DPLL and tree-like resolution are polynomially equivalent.

As a consequence, the size of a resolution refutation is a lower bound for time complexity of SAT-solvers.

However, this connection is under assumption of optimality. [AM19] shows that resolution cannot be solved in polynomial time of the resolution size of an input formula unless NP = P holds.

General Intractability of Resolution

Definition 1.8 (pigeonhole principle)

The pigeonhole principle PHP_{n-1}^n is the CNF formula over variables $x_{i,i}$ with $1 \le i \le n, 1 \le j \le n-1$ with the following clauses:

Pigeon Axioms Every pigeon hole belong to some hole: $P_j = \bigvee_{i=1}^{n-1} x_{i,j}$ for i = 1, ..., n. **Hole Axioms** No two pigeons occupy the same hole: $\overline{x_{i_1,i}} \vee \overline{x_{i_2,i}}$ for $i_1 \neq i_2$ and $i=1,\ldots,n-1.$

Fact 1.9

 PHP_{n-1}^{n} is not satisfiable.

Theorem 1.10 ([Hak85])

There is a constant c > 1 such that any resolution refutation of PHP_{n-1}^n requires size c^n .

Upper Bound Results

Bounded by tw $\left(P_{\phi} ight)$

Theorem 2.1

For an unsatisfiable formula ϕ with primal treewidth $tw(P_{\phi})$, there exists a resolution refutation bounded by $2^{O(tw(P_{\phi}))} \cdot |\phi|$.

Proof Sketch

A smooth tree decomposition is a tree decomposition satisfying that $|B_t \setminus B_{fa(t)}| = 1$ for all $t \in V(T)$ but root. For any graph G there exists a smooth tree decomposition of width $\mathsf{tw}(G)$. We call $B_t \setminus B_{fa(t)}$ the forgotten vertex w.r.t. t.

The desired resolution refutation is obtained by iteratively applying resolutions on forgotten vertices of leaves.

Bounded by tw (I_{ϕ})

Recall that $tw(I_{\phi}) \le tw(P_{\phi}) + 1$.

Conjecture 2.1.1

For an unsatisfiable formula ϕ with incidence treewidth tw (I_{ϕ}) , there exists a resolution refutation bounded by $2^{O(tw(I_{\phi}))} \cdot |\phi|$.

Bounded by tw (I_{ϕ}) , Under Fixed k

Theorem 2.2

For any k-CNF formula ϕ , $tw(P_{\phi}) = \Theta(tw(I_{\phi}))$.

Corollary 2.3

For an unsatisfiable k-CNF formula ϕ with incidence treewidth $tw(I_{\phi})$, there exists a resolution refutation bounded by $2^{O(tw(I_{\phi}))} \cdot |\phi|$.

Bounded by tw (I_{ϕ}) , Under Fixed k

It's well-known that any CNF formula can be converted into an equivalent 3-CNF formula. This conversion can be done without significantly increasing the incidence treewidth.

Theorem 2.4

For any CNF formula ϕ , there exists an equivalent 3-CNF formula ψ such that $tw(I_{ab}) = O(tw(I_{ab})).$

Remark 2.4.1

Additional variables are introduced while obtaining the equivalent formula. Hence this result does not necessarily imply we have a resolution refutation with size $2^{O(tw(I_{\phi}))} \cdot |\phi|$.

Bounded by pw (I_{ϕ})

Definition 2.5 (path decomposition)

Path decompositions and pathwidth are defined similarly as tree decompositions and treewidth, except that in the definition of path decomposition, T is restricted to a simple path.

Fact 2.6

For any graph G, $pw(G) \ge tw(G)$.

Theorem 2.7 ([BT97])

For any graph G, $pw(G) = O(tw(G) \cdot \log |V(G)|)$.

Bounded by $pw(I_{\phi})$

Theorem 2.8 ([Ima17])

For an unsatisfiable k-CNF formula ϕ with incidence pathwidth $pw(I_{\phi})$, there exists a resolution refutation bounded by $2^{O(pw(I_{\phi}))} \cdot |\phi|$.

Corollary 2.9

For an unsatisfiable k-CNF formula ϕ with incidence treewidth $tw(I_{\phi})$, there exists a resolution refutation bounded by $|\phi|^{O(tw(I_{\phi}))}$.

Bibliography

References I

Albert Atserias and Moritz Müller, *Automating resolution is np-hard*, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 2019, pp. 498–509.

Hans L. Bodlaender and Dimitrios M. Thilikos, *Constructive linear time algorithms for branchwidth*, Automata, Languages and Programming (Berlin, Heidelberg) (Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, eds.), Springer Berlin Heidelberg, 1997, pp. 627–637.

Martin Davis, George Logemann, and Donald Loveland, *A machine program for theorem-proving*, Commun. ACM **5** (1962), no. 7, 394–397.

Martin Davis and Hilary Putnam, A computing procedure for quantification theory, J. ACM 7 (1960), no. 3, 201–215.

Armin Haken, *The intractability of resolution*, Theoretical Computer Science **39** (1985), 297–308, Third Conference on Foundations of Software Technology and Theoretical Computer Science.

Petr Hliněný, Sang-il Oum, Detlef Seese, and Georg Gottlob, Width Parameters Beyond Tree-width and their Applications, The Computer Journal **51** (2007), no. 3, 326–362.

Kensuke Imanishi, An upper bound for resolution size: Characterization of tractable sat instances, WALCOM: Algorithms and Computation (Cham) (Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, eds.), Springer International Publishing, 2017, pp. 359–369.

References II

Thanks for listening.