Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2024

Two-Level Logic Minimization (1/2)

Reading:

Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

most of the following slides are by courtesy of Andreas Kuehlmann

Quine-McCluskey Procedure

Given G and D (covers for ℑ = (f,d,r) and d, respectively), find a minimum cover G* of primes where:
f ⊆ G* ⊆ f+d (G* is a prime cover of ℑ)

Q-M Procedure:

- 1. Generate all primes of \Im , $\{P_j\}$ (i.e. primes of (f+d) = G+D)
- 2. Generate all minterms $\{m_i\}$ of $f = G \land \neg D$
- 3. Build Boolean matrix B where

$$B_{ij} = 1 \text{ if } m_i \in P_j$$

= 0 otherwise

 Solve the minimum column covering problem for B (unate covering problem)

Complexity

 $\square \sim 2^n$ minterms; $\sim 3^n/n$ primes

■ There are $O(2^n)$ rows and $\Omega(3^n/n)$ columns. Moreover, minimum covering problem is NP-complete. (Hence the complexity can probably be double exponential in size of input, i.e. difficulty is $O(2^{3^n})$)

Two-Level Logic Minimization

Karnaugh map

$$F = \overline{xyzw} + \overline{xyzw} + x\overline{yzw} + x\overline{yzw}$$
 (cover of 3)

$$D = \overline{yz} + xyw + \overline{xyzw} + x\overline{yw} + \overline{xyzw}$$
 (cover of d)

Primes: $\bar{y} + w + \bar{x} \bar{z}$

Covering Table

Solution: $\{1,2\} \Rightarrow \bar{y} + w$ is a minimum prime cover (also $w + \bar{x} \bar{z}$)

Covering Table

Definition. An essential prime is a prime that covers an onset minterm of f not covered by any other primes.

Covering Table Row Equality

■ Row equality:

In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.

Example

```
m<sub>1</sub> 0101101m<sub>2</sub> 0101101
```

Covering Table Row and Column Dominance

■ Row dominance:

■ A row i₁ whose set of primes is contained in the set of primes of row i₂ is said to dominate i₂.

Example

```
    i<sub>1</sub> 011010
    i<sub>2</sub> 011110
```

- □ i₁ dominates i₂
- \square Can remove row i_2 because have to choose a prime to cover i_1 , and any such prime also covers i_2 . So i_2 is automatically covered.

Covering Table Row and Column Dominance

■ Column dominance:

A column j_1 whose rows are a superset of another column j_2 is said to dominate j_2 .

Example	${\sf j_1}$	\mathbf{j}_2
•	1	0
	0	0
	1	1
	0	0
	1	1

- \Box j₁ dominates j₂
- We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

Covering Table Table Reduction

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominated columns. For equal columns, keep one prime to represent them.
- 4. Newly formed row singletons define induced essential primes.
- 5. Go to 1 if covering table decreased.
- □ The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G. The resulting G is a minimum cover.

Covering Table Table Reduction

Solving Cyclic Core

- Best known method (for unate covering) is branch and bound with some clever bounding heuristics
- Independent Set Heuristic:
 - Find a maximum set I of "independent" rows. Two rows B_{i_1} , B_{i_2} are independent if **not** $\exists j$ such that $B_{i_1 j} = B_{i_2 j} = 1$.
 - Example
 A covering matrix B rearranged with independent sets first

Independent set § of rows

Solving Cyclic Core

□ Lemma:

|Solution of Covering| ≥ | *¶* |

Solving Cyclic Core

- Heuristic algorithm:
 - Let $\mathcal{I} = \{I_1, I_2, ..., I_k\}$ be the independent set of rows
- 1. choose $j \in I_i$ such that column j covers the most rows of A. Put Pj in G
- 2. eliminate all rows covered by column j
- 3. $\mathscr{I} \leftarrow \mathscr{I} \setminus \{I_i\}$
- **4.** go to 1 if $| \mathcal{I} | > 0$
- 5. If B is empty, then done (in this case achieve minimum solution because of the lower bound of previous lemma attained IMPORTANT)
- If B is not empty, choose an independent set of B and go to 1

Prime Generation for Single-Output Function

Tabular method

(based on *consensus* operation, or \forall):

- Start with minterm canonical form of F
- ☐ Group *pairs* of adjacent minterms into cubes
- □ Repeat merging cubes until no more merging possible; mark (√) + remove all covered cubes.
- □ Result: set of *primes* of *f*.

Example

$$F = x'y' + w x y + x' y z' + w y' z$$

$$F = x'y' + w x y + x'y z' + w y'z$$

w'x'y'z' √	w'x'y' √ w'x'z' √ x'y'z' √	x'y' x'z'
$\begin{array}{cccc} w'x'y'z & \sqrt{} \\ w'x'yz' & \sqrt{} \\ wx'y'z' & \sqrt{} \end{array}$	$x'y'z 1 \\ x'yz' 1 \\ wx'y' 1 \\ wx'z' 1 \\ \end{array}$	
$\begin{array}{cccc} w x' y' z & \sqrt{} \\ w x' y z' & \sqrt{} \end{array}$	w y'z w y z'	
$\begin{array}{ccc} w \ x \ y \ z' & \sqrt{} \\ w \ x \ y' \ z & \sqrt{} \end{array}$	w x y w x z	
$w x y z \qquad \sqrt{}$		

Prime Generation for Multi-Output Function

- □ Similar to single-output function, except that we should include also the primes of the products of individual functions
 - Example

x y z	$f_1 f_2$
0 - 0	0 1
0 1 1	11
1 – 1	10

ΛZ	
₇ y	
	X
	-

Can also represent it as:

$t_1 t_2$
0 1
0 1
10
10

Prime Generation

Example

Modification from single-output case: When two adjacent implicants are merged, the output parts are intersected

There are five primes for this two-output function

- What is the min cover?

Minimize Multi-Output Cover

Example

- 1. List multiple-output primes
- 2. Create a covering table
- 3. Solve

$$p_1 = 0 \ 1 \ 1 \ | \ 11$$
 $p_2 = 0 \ - 0 \ | \ 01$
 $p_3 = 0 \ 1 \ - \ | \ 01$
 $p_4 = -1 \ 1 \ | \ 10$
 $p_5 = 1 \ - 1 \ | \ 10$

Min cover has 3 primes:

$$F = \{ p_1, p_2, p_5 \}$$

 $p_1 p_2 p_3 p_4 p_5$

Prime Generation Using Unate Recursive Paradigm

- Apply unate recursive paradigm with the following merge step
 - (Assume we have just generated all primes of f_{x_i} and $f_{\neg x_i}$)

□ Theorem.

p is a prime of f iff p is maximal (in terms of containment) among the set consisting of

- $\blacksquare p = x_i q$, q is a prime of f_{x_i} , $q \not\subset f_{\neg x_i}$
- $\blacksquare p = q r$, q is a prime of f_{x_i} , r is a prime of $f_{\neg x_i}$

Prime Generation Using Unate Recursive Paradigm

Example

- Assume q = abc is a prime of f_{x_i} . Form $p = x_i abc$.
- Suppose r = ab is a prime of $f_{\neg x_i}$. Then x_i 'ab is an implicant of f.

$$f = x_i abc + x_i'ab + abc + \cdots$$

- Thus abc and x_i 'ab are implicants, so x_iabc is not prime.
- Note: abc is prime because if not, $ab \subseteq f$ (or ac, or bc) contradicting abc prime of f_{x_i} .
- Note: x_i 'ab is prime, since if not then either $ab \subseteq f$, x_i 'a $\subseteq f$, x_i 'b $\subseteq f$. The first contradicts abc prime of f_{x_i} and the second and third contradict ab prime of f_{-x_i} .

Summary

- Quine-McCluskey Method:
- 1. Generate cover of all primes $G = p_1 + p_2 + \cdots + p_{3^n/n}$
- 2. Make G irredundant (in optimum way)
 - Q-M is exact, i.e., it gives an exact minimum
- Heuristic Methods:
- 1. Generate (somehow) a cover of $\mathfrak T$ using some of the primes $G = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$
- 2. Make G irredundant (maybe not optimally)
- 3. Keep best result try again (i.e. go to 1)