Assignment #4

Network Emulation & Dynamic Rate Control

2018 Spring

Yusung Kim yskim525@skku.edu

Basic Information

Two programs (Sender & Receiver) based on UDP socket programming

Run multiple senders with one receiver

The receiver also acts as a Network Emulator

Sender

- When the sender starts, enter an IP address of a receiver, and "initial sending rate"
 - the sending rate unit is the number of packets per second (PPS)
 - a port number of a receiver is 10080
- If the sending rate is 10 PPS, the sender transmits a packet every 1/10 seconds (0.1 seconds).
- The packet size is 1000 bytes which consists of any data.
- Every two seconds, print the following
 - sending rate (the number of sent packets / 2 seconds)
 - goodput (the number of received ACKs / 2 seconds)
 - goodput ratio : goodput / sending rate
- Do not worry about the reliable data delivery in this assignment.

Receiver (1/2)

- A receiver consists of two modules;
 - one module is a network emulator, NE
 - another module is a ACK generator, AG
- When the receiver starts, enter a bottleneck link rate, and queue size for network emulator;
 - For the bottleneck link rate;
 e.g. 10 means forwarding 10 packets per second from NE to AG.
 - For bottleneck queue size,
 e.g. 100 means up to 100 packets can be stored before forwarding to AG.
- The NE module acts as a bottleneck link.
 - The NE module forwards all incoming packets to the AG module as fast as the bottleneck link rate.
 - If the incoming rate is higher than the bottleneck rate, incoming packets should be store in the bottleneck queue.
 - If the bottleneck queue is full, the next incoming packet will be dropped.

Receiver (2/2)

- If the AG module receives a data packet, sends an ACK to the sender.
- Every two seconds, print the following
 - incoming rate (#packets / 2secs) from the sender to NE
 - forwarding rate (#ACKs / 2secs) from NE to AG
 - avg queue occupancy (measure the queue occupancy every 100ms)

The Extension Goals

- Can you get goodput ratio (goodput / sending rate) close to 1
- Can you minimize the bottleneck queue occupancy?
- Is it possible for multiple senders to have a fair bandwidth?

while maximizing the utilization of the bottleneck link.

The Extension Goal Scenario

- Scenario (bottleneck link rate: 30 PPS, queue: 100, and initial sending rate: 30 PPS)
 - start sender1 at time 0 sec
 - start sender2 at time 30 secs
 - start sender3 at time 60 secs
 - stop sender3 at time 90 secs
 - stop sender2 at time 120 secs
 - stop sender1 at time 150 secs
- Make four graphs;
 - goodputs of the three senders as time goes on
 - goodput ratios of three senders as time goes on
 - forwarding rate at the receiver as time goes on
 - queue occupancy at the receiver as time goes on

Evaluations

- Sender can send packets on the given the rate (20 pts)
 - print three information every 2 seconds
- Receiver can limit the forwarding rate (20 pts)
 - print three information every 2 seconds
- Multiple senders with one receiver (20 pts)
 - whether multiple senders can operate with a receiver (fairness doesn't matter)
- Report file (10 pts)

Evaluations

The extension goals

 goodput ratio (goodput / sending rate) gets close to 1 	(5 pts)
 queue occupancy gets as low as possible 	(5 pts)
 multiple senders have fair bandwidth 	(5 pts)
while maximizing the utilization of the bottleneck link	(5 pts)

If you design the extension goals in a stateless fashion at NE,
 you will get additional 10 points. (10 pts)

Deliverables

- The deadline is 6.10(Sun) 23:59.
 - For delayed submissions, a penalty of -15 points applies every 24 hours. After 72 hours, you get zero points.
- Report includes;
 - PDF file format
 - your development environment information in detail (operating systems, languages, compilers/interpreter)
 - how to run sender and receiver programs including the screen capture.
 - how to design this assignment such as data structures and algorithms (how to modify which module such as sender, NE, or AG)
 - Show graphs if you develop the extension goals.
- Sender and receiver source codes