Seminar on Moduli Theory Lecture 9

Neeraj Deshmukh

October 23, 2020

Last Week

- Integer-valued polynomials and polynomial-like functions
- 4 Hilbert function and examples

We want to prove the following theorem about Hilbert polynomials:

Theorem

Let $X \to Y$ be a projective morphism with Y locally Noetherian. If $\mathcal F$ is a coherent sheaf on X which is flat over Y, then the Hilbert polynomial $\chi(\mathcal F_{X_v},d)$ is locally constant for $y\in Y$.

Theorem (Serre Vanishing)

Let A be a Noetherian ring. Let $\mathcal F$ be a coherent sheaf on a projective A-scheme X. Then, for $m\gg 0$, $H^i(X,\mathcal F(m))=0$ for all i>0.

Relative Serre Vanishing

Lemma

Suppose we have a commutative diagram of schemes,

$$X' \xrightarrow{g'} X$$

$$\downarrow_{f'} \qquad \downarrow_{f}$$

$$S' \xrightarrow{g} S$$

Let \mathcal{F} be an \mathcal{O}_X -modules. Assume both g and g' are flat. Then there exists a canonical base change map

$$g^*R^if_*\mathcal{F}\longrightarrow R^if'_*(g')^*\mathcal{F}$$

Lemma (Flat base change)

Consider a cartesian diagram of schemes

$$X' \xrightarrow{g'} X$$

$$\downarrow_{f'} \qquad \downarrow_{f}$$

$$S' \xrightarrow{g} S$$

Let $\mathcal F$ be a quasi-coherent $\mathcal O_X$ -module with pullback $\mathcal F'=(g')^*\mathcal F$. Assume that g is flat and that f is quasi-compact and quasi-separated. For any $i\geq 0$

- **1** the base change map, $g^*R^if_*\mathcal{F} \longrightarrow R^if_*'\mathcal{F}'$ is an isomorphism
- ② if $S = \operatorname{Spec}(A)$ and $S' = \operatorname{Spec}(B)$, then $H^{i}(X, \mathcal{F}) \otimes_{A} B = H^{i}(X', \mathcal{F}')$.

Case 1: X is separated

Case 2: X is quasi-separated

Theorem

Let $X \to Y$ be a projective morphism with Y locally Noetherian. If $\mathcal F$ is a coherent sheaf on X which is flat over Y, then the Hilbert polynomial $\chi(\mathcal F_{X_v},d)$ is locally constant for $y\in Y$.

Lemma

Let $S = \operatorname{Spec} A$ be a Noetherian local ring. Let \mathcal{F} be a coherent sheaf on $X = \mathbb{P}^n_S$. Consider the following statements:

- \bullet \mathcal{F} is flat over S;
- ② $H^0(X, \mathcal{F}(m))$ is a free A-module of finite rank, for all $m \gg 0$;
- **③** for any t ∈ S, the Hilbert polynomial $\chi(\mathcal{F}_t, m)$ of \mathcal{F}_t on X_t is independent of t.

Then we have the implications, $(1) \Leftrightarrow (2) \Rightarrow (3)$. Moreover, if S is domain then they are all equivalent.

 $(1) \Leftrightarrow (2)$

$$(2) \Rightarrow (3)$$