Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2018/2019

7. prednáška

Úplnosť tabiel Korektné pravidlá Výroková rezolvencia

1. apríla 2019

Obsah 7. prednášky

Výroková logika
Tablový kalkul
Tablový dôkaz splniteľnosti
Hintikkova lema
Úplnosť
Nové korektné pravidlá
Rezolvencia vo výrokovej logike

2.9

Tablový kalkul

2.9.2

Tablový dôkaz splniteľnosti

Úplná vetva a tablo

Definícia 2.93 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a \mathcal{T} je tablo pre S^+ . **Vetva** π v table \mathcal{T} **je úplná** vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α , ktorá sa vyskytuje na π , sa *obidve* označené formuly α_1 a α_2 vyskytujú na π ;
- pre každú označenú formulu β , ktorá sa vyskytuje na π , sa *aspoň jedna* z označených formúl β_1 , β_2 vyskytuje na π ;
- $každá X^+ \in S^+$ sa vyskytuje na π .

Tablo \mathcal{T} je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

Lema 2.95 (o existencii úplného tabla)

Nech S⁺ je konečná množina označených formúl. Potom existuje úplné tablo pre S⁺.

2.9.3

Hintikkova lema

Nadol nasýtené množiny a Hintikkova lemma

Definícia 2.96

Množina označených formúl S^+ sa nazýva **nadol nasýtená** vtt platí:

- \bigcirc v S^+ sa nevyskytujú naraz $\mathsf{T} p$ a $\mathsf{F} p$ pre žiadnu výrokovú premennú p;
- \bigoplus ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;
- \bigoplus ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 2.97

Nech π je úplná otvorená vetva nejakého tabla \mathcal{T} .

Potom množina všetkých formúl na π je nadol nasýtená.

Lema 2.98 (Hintikkova)

Každá nadol nasýtená množina S⁺ je splniteľná.

Dôkaz Hintikkovej lemy.

Chceme vytvoriť ohodnotenie v, ktoré splní všetky formuly z S^+ . Definujme v pre každú výrokovú premennú p takto:

- ak $\mathbf{T} p \in S^+$: v(p) = t,
- ak **F** $p \in S^+$: v(p) = f,
- ak ani **T**p ani **F**p nie sú v S^+ , tak v(p) = t.

v je korektne definované vďaka H₀.

Indukciou na stupeň formuly dokážeme, že v spĺňa všetky formuly z S+:

- v očividne spĺňa všetky označené výrokové premenné z S⁺.
- $X^+ \in S^+$ je buď α alebo β :
 - Ak X^+ je α , potom obidve $\alpha_1, \alpha_2 \in S^+$ (H₁), sú nižšieho stupňa X^+ , a teda podľa indukčného predpokladu sú splnené pri v, preto v spĺňa aj α (podľa pozorovania 2.81).
 - Ak X^+ je β , potom aspoň jedna z β_1 , β_2 je v S^+ (H₂). Nech je to ktorákoľvek, je nižšieho stupňa ako X^+ , teda podľa IP ju v spĺňa, a preto v spĺňa β (podľa pozorovania 2.83).

2.9.4 Úplnosť

Úplnosť

Úplnosť kalkulu neformálne:

Ak je nejaké tvrdenie pravdivé, tak existuje jeho dôkaz v kalkule.

Veta 2.99 (o úplnosti)

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 2.100

Nech S je konečná teória a X je formula.

 $Ak S \models X$, $tak S \vdash X$.

Dôsledok 2.101

Nech X je formula. $Ak \models X$, $tak \vdash X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť – dôkaz

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ . Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol uzavretá. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla \mathcal{T} uzavreté.

2.9.5

Nové korektné pravidlá

Všimnite si:

 Na dokázanie korektnosti tablového kalkulu stačilo, aby mali pravidlá vlastnosť:

Nech v je ohodnotenie. Ak v spĺňa premisu (a množinu S^+), tak spĺňa oba (α) závery/aspoň jeden (β) záver.

- Vďaka tejto vlastnosti zo splniteľnej množiny S⁺ skonštruujeme iba splniteľné tablá.
- Netreba opačnú implikáciu (ak v spĺňa oba/jeden záver, tak spĺňa premisu).
- Na dôkaz úplnosti stačili pravidlá (S⁺), α, β, pretože stačia na vybudovanie úplného tabla.

Nové pravidlo

Čo sa stane, ak pridáme nové pravidlo, napríklad modus ponens:

$$\frac{\mathsf{T}(A \to B) \quad \mathsf{T}A}{\mathsf{T}B} \qquad ? \tag{MP}$$

Upravíme definíciu priameho rozšírenia:

Úprava definície tabla

(...) Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame rozšírenie** \mathcal{T} ktorýmkoľvek z pravidiel:

- α
- MP A
- MP Ak sa na vetve π_y nachádzajú *obe* formuly $T(A \rightarrow B)$ a TA, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci TB.

Nové pravidlo vs. korektnosť a úplnosť

Korektnosť tabiel s (MP)

Pri dôkaze lemy K1

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných.

Ak v spĺňa S $^+$ a v spĺňa $\mathcal T$, tak v spĺňa aj každé priame rozšírenie $\mathcal T$.

využijeme

Tvrdenie 2.102 (Korektnosť pravidla (MP))

Nech v je ľubovoľné ohodnotenie. Ak v spĺňa $T(A \rightarrow B)$ a TA, tak v spĺňa TB.

Dôkaz.

```
Keďže v \models T(A \rightarrow B), tak v \models (A \rightarrow B), teda v \not\models A alebo v \models B.
Pretože ale v \models TA, tak v \models A. Takže v \models B.
```

Dôkaz lemy K2 a samotnej vety o korektnosti – bez zmeny

Úplnosť – bez zmeny, úplné tablo vybudujú základné pravidlá

Nové pravidlá vo všeobecnosti

Definícia 2.103 (Tablové pravidlo a jeho korektnosť)

Nech n a k sú prirodzené čísla, $n \ge 0$, k > 0, nech $P_1^+, \ldots, P_n^+, C_1^+, \ldots, C_k^+$ sú označené formuly nad výrokovými premennými $\{q_1, \ldots, q_m\}$.

Tablové pravidlo R je množina dvojíc n-tíc a k-tic označených formúl

$$R = \left\{ \frac{P_{1}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \cdots P_{n}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]}}{C_{1}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \middle| \dots \middle| C_{k}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \middle| X_{1},...,X_{m} \in \mathcal{E} \right\},$$

ktoré vzniknú súčasnou substitúciou formúl X_1, \ldots, X_m za premenné q_1, \ldots, q_m v označených formulách $P_1^+, \ldots, P_n^+, C_1^+, \ldots, C_k^+$. Prvky hornej n-tice nazývame **premisy**, prvky dolnej k-tice nazývame **závery**. Každý prvok R nazývame **inštancia** pravidla R.

Tablové pravidlo R je **korektné** (tiež zdravé z angl. sound) vtt pre každé ohodnotenie výrokových premenných v platí, že ak v spĺňa všetky premisy P_1^+, \ldots, P_n^+ , tak v spĺňa niektorý záver C_1^+, \ldots, C_k^+ .

Nové pravidlá vo všeobecnosti

Úprava definície tabla

(...)

- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame rozšírenie** \mathcal{T} ktorýmkoľvek z pravidiel:

R Ak sa pre nejakú inštanciu pravidla R na vetve π_{y} nachádzajú všetky premisy $P_{1}^{+},...,P_{n}^{+}$ tak k uzlu y pripojíme k nových vrcholov obsahujúcich postupne závery $C_1^+, ..., C_{\nu}^+$.

Rezolvencia vo výrokovej logike

Tranzitivita implikácie

Vráťme sa k neoznačeným formulám. Je nasledujúce pravidlo korektné?

$$\frac{(A \to B) \qquad (B \to C)}{(A \to C)}$$

Nahraďme implikácie disjunkciami:

$$\frac{(\neg A \lor B) \qquad (\neg B \lor C)}{(\neg A \lor C)}$$

Rezolvencia

Predchádzajúce pravidlo sa dá zovšeobecniť na ľubovoľné dvojice klauzúl:

Definícia 2.104

Rezolvenčný princíp (rezolvencia, angl. resolution principle) je pravidlo

$$\frac{(k_1 \vee \cdots \vee p \vee \cdots \vee k_m) \quad (\ell_1 \vee \cdots \vee \neg p \vee \cdots \vee \ell_n)}{(k_1 \vee \cdots \vee k_m \vee \ell_1 \vee \cdots \vee \ell_n)}$$

pre ľubovoľnú výrokovú premennú p a ľubovoľné literály $k_1,\ldots,k_m,\,\ell_1,\ldots,\ell_n.$

Klauzulu
$$(k_1 \lor \cdots \lor k_m \lor \ell_1 \lor \cdots \lor \ell_n)$$
 nazývame **rezolventou** klauzúl $(k_1 \lor \cdots \lor p \lor \cdots \lor k_m)$ a $(\ell_1 \lor \cdots \lor \neg p \lor \cdots \lor \ell_n)$.

Tvrdenie 2.105

Rezolvencia je korektné pravidlo, teda rezolventa je logickým dôsledkom množiny obsahujúcej obe premisy.

Špeciálne prípady rezolvencie

Viacero pravidiel sa dá chápať ako špeciálne prípady rezolvencie:

$$\frac{(\neg p \lor q) \quad (\neg q \lor r)}{(\neg p \lor r)} \qquad \frac{(p \to q) \quad (q \to r)}{(p \to r)} \qquad \text{(tranzitivita} \to)$$

$$\frac{(\neg p \lor \ell) \quad p}{\ell} \qquad \frac{(p \to \ell) \quad p}{\ell} \qquad \text{(modus ponens)}$$

$$\frac{(\neg p \lor q) \quad \neg q}{\neg p} \qquad \frac{(p \to q) \quad \neg q}{\neg p} \qquad \text{(modus tolens)}$$

Pozorovania o rezolvencii

Rezolvencia s jednotkovou klauzulou skráti druhú klauzulu:

$$\frac{\neg q \quad (p \lor q \lor \neg r)}{(p \lor \neg r)}$$

• Nie každý logický dôsledok sa dá odvodiť rezolvenciou:

$$\{p,q\} \models (p \lor q)$$

Pozorovania o rezolvencii

Ak rezolvencia odvodí prázdnu klauzulu

$$\frac{\neg p \quad p}{\Box}$$

premisy nie sú súčasne splniteľné

 Niektoré dvojice klauzúl možno rezolvovať na viacerých literáloch, ale je nekorektné urobiť to naraz:

$$\frac{(\neg p \lor q) \quad (p \lor \neg q)}{(q \lor \neg q)} \quad \frac{(\neg p \lor q) \quad (p \lor \neg q)}{(\neg p \lor p)} \quad \boxed{\neg p \lor q) \quad (p \lor \neg q)}$$

Prečo?

Lebo
$$\{(\neg p \lor q), (p \lor \neg q)\}$$
 je splniteľná $(v_1 = \{p \mapsto t, q \mapsto t\}, v_2 = \{p \mapsto f, q \mapsto f\}),$ ale \square je nesplniteľná

Problematické prípady

Opakovaným aplikovaním rezolvencie môžeme odvodzovať ďalšie dôsledky

Príklad 2.106

Z množiny $S = \{(\neg p \lor r), (\neg q \lor r), (p \lor q)\}$ odvodíme $(r \lor r)$:

- 1 $(\neg p \lor r)$ predpoklad z S
- 2 $(\neg q \lor r)$ predpoklad z S
- $(p \lor q)$ predpoklad z S
- $(r \lor q)$ rezolventa (1) a (3)
- $(r \lor r)$ rezolventa (2) a (4)
 - Klauzula (r ∨ r) je evidentne ekvivalentná s r;
 r sa ale z množiny S iba rezolvenciou odvodiť nedá
 - Preto potrebujeme ešte pravidlo idempotencie:

$$\frac{(k_1 \vee \cdots \vee \ell \vee \cdots \vee \ell \vee \cdots \vee k_n)}{(k_1 \vee \ell \vee \cdots \vee k_n)}$$

Rezolvenčné odvodenie a zamietnutie

Definícia 2.107

Rezolvenčné odvodenie z množiny klauzúl S je každá (aj nekonečná) postupnosť klauzúl $C_1, C_2, \ldots, C_n, \ldots$, ktorej každý člen C_i je:

- prvkom S alebo
- rezolventou dvoch predchádzajúcich klauzúl C_j a C_k pre j < i a k < i, alebo
- záverom pravidla idempotencie pre nejakú predchádzajúcu klauzulu C_i, j < i.

Zamietnutím (angl. refutation) množiny klauzúl S je konečné rezolvenčné odvodenie, ktorého posledným prvkom je prázdna klauzula \square .

Definícia 2.108

Množinu klauzúl budeme nazývať aj klauzálna teória.

Korektnosť a úplnosť rezolvencie

Veta 2.109 (Korektnosť rezolvencie)

Nech S je množina klauzúl.

Ak existuje zamietnutie S, tak S je nesplniteľná.

Veta 2.110 (Úplnosť rezolvencie)

Nech S je množina klauzúl.

Ak S je nesplniteľná, tak existuje zamietnutie S.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost.* Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.