Q1

- The confusion matrix below shows the evaluation results for a binary classifier applied to a set of 768 test examples, which are annotated with the class labels (Pass, Fail). Calculate:
 - a) The precision score for both of the classes.
 - b) The recall score for both of the classes.
 - c) The F1-measure score for both of the classes.
 - d) The overall classification accuracy and average class accuracy for all the data.

				`	
$\mathbf{\nu}$	rമa	ICT2	ו אמ	Clas	9
	1 67	11/11/	-CJ (лаа	

Pass	Fail		
TP True Positive	FN False Negative	Pass	Real
FP False Positive	TN True Negative	Fail	Class

Predicted Class

Pass	Fail		
407	93	Pass	Real
108	160	Fail	Class

Q1(a,b)

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN} = Sensitivity$$

Note: These measures are always relative to one class!

Predicted Class

Pass	Fail		
407	93	Pass	Real
108	160	Fail	Class

Class	Precision	Recall
Pass	407/(407+108) = 0.79	407/(407+93) = 0.814
Fail	160/(93+160) = 0.632	160/(108+160) = 0.597

Q1(c)

c) Calculate the F1-measure score for both of the classes.

F1-Measure: harmonic mean of precision and recall

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Also relative to one class!

Class	Precision	Recall	F1
Pass	407/(407+108)	407/(407+93)	(2x0.79x0.814)/(0.79+0.814)
	= 0.79	= 0.814	= 0.802
Fail	160/(93+160)	160/(108+160)	(2x0.632x0.597)/(0.632+0.597)
	= 0.632	= 0.597	= 0.614

Q1(d)

d) Calculate the overall and average classification accuracy for all the data.

Accuracy: Number of predictions correct / all predictions

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Accuracy score is relative to the overall dataset, often reported as a percentage.

OVERALL ACCURACY:

(407+160)/(407+93+108+160)= 73.8281%

AVERAGE CLASS ACCURACY:

= average Recall(.894+.597)/2= 70.55%

Q2(a)

a) Calculate the **overall accuracy** for each of the 3 classifiers on this data. Based on your calculations, which classifier the most accurate?

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

Q2(a)

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

#Correct 9/12 5/12 10/12 Accuracy 75% 41.7% 83.3%

Overall Accuracy:

Number of predictions correct / all predictions

→ SVM is most accurate

Q2(b)

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

12 spam spam spam "Spam" TP 5 3 6 FP 1 3 1

5/6 = 0.833

Precision

3/6 = 0.5

6/7 = 0.857

Precision for spam:

Number of correct spam predictions / all predictions of spam

→SVM has highest precision for spam

Q2(c)

- Which classifier would you recommend for this dataset and why?
- FPs are undesirable for spam classification so need to select a classifier with low FP Rate and high —> SVM

Q3(a)

- 10-fold cross validation experiment. Dataset of 5000 images, so 500 images in each test set.
- a) What is the overall accuracy of the classifier based on the cross-validation results?

Fold	Class: Cats		Class: Dogs		Class: People	
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect
1	82	68	82	68	164	36
2	81	69	102	48	176	24
3	99	51	97	53	160	40
4	81	69	102	48	148	52
5	94	56	99	51	148	52
6	97	53	91	59	162	38
7	81	69	94	56	148	52
8	76	74	79	71	181	19
9	76	74	97	53	160	40
10	96	54	79	71	179	21

Q3(a)

Calculate accuracy for each fold

Fold	Class: Cats		Class: Dogs		Class: People		
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	Accuracy
1	82	68	82	68	164	36	65.6%
2	81	69	102	48	176	24	71.8%
3	99	51	97	53	160	40	71.2%
4	81	69	102	48	148	52	66.2%
5	94	56	99	51	148	52	68.2%
6	97	53	91	59	162	38	70.0%
7	81	69	94	56	148	52	64.6%
8	76	74	79	71	181	19	67.2%
9	76	74	97	53	160	40	66.6%
10	96	54	79	71	179	21	70.8%

Fold 1: (82+82+164)/(82+68+82+68+164+36) = 65.6% accuracy for fold ...

Q3(a)

Overall accuracy is average of fold accuracy

Fold	Class: Cats		Class: Dogs		Class: People		
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	Accuracy
1	82	68	82	68	164	36	65.6%
2	81	69	102	48	176	24	71.8%
3	99	51	97	53	160	40	71.2%
4	81	69	102	48	148	52	66.2%
5	94	56	99	51	148	52	68.2%
6	97	53	91	59	162	38	70.0%
7	81	69	94	56	148	52	64.6%
8	76	74	79	71	181	19	67.2%
9	76	74	97	53	160	40	66.6%
10	96	54	79	71	179	21	70.8%
Mean							68.2%

Fold 1: (82+82+164)/(82+68+82+68+164+36) = 65.6% accuracy for fold ...

Overall: (65.6% + 71.8% + 71.2% + 66.2% + 68.2% + 70.0% + 64.6% + 67.2% + 66.6% + 70.8%)/10 = 68.2%

Q3(b)

b) What conclusion might be draw about the different classes in the data, based on the results above?

Fold	Class: Cats		Class: Dogs		Class: People		
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	Accuracy
1	82	68	82	68	164	36	65.6%
2	81	69	102	48	176	24	71.8%
3	99	51	97	53	160	40	71.2%
4	81	69	102	48	148	52	66.2%
5	94	56	99	51	148	52	68.2%
6	97	53	91	59	162	38	70.0%
7	81	69	94	56	148	52	64.6%
8	76	74	79	71	181	19	67.2%
9	76	74	97	53	160	40	66.6%
10	96	54	79	71	179	21	70.8%
Mean	86.3	63.7	92.2	57.8	162.6	37.4	68.2%
Class Acc.	57.5%		61.5%		81.3%		

[→] High accuracy for class "People", low accuracy for "Cats" and "Dogs". Suggests system is poor at distinguishing between these classes.

Q3(c)

c) Would "leave-one-out cross validation" be an appropriate evaluation strategy on this dataset?

If each fold has 500 examples, then overall dataset has n=5000 examples. So leave-one-out would require running 5000 experiments where 1 example is left out each time.

Could be computationally impractical to do this, so *k*-fold cross validation would be more suitable.

Q4

The notebook **05 ROC Exercise** contains code for loading the diabetes dataset (**diabetes.csv**).

- a) Using the code in **08 ROC** as a template produce ROC curves for kNN, SVM and Naive Bayes classifiers on the diabetes data.
- b) Repeat this exercise using synthetic data generated using the code below. What insights do these ROC curves provide?

Q4(a)

```
qnb = GaussianNB()
y score = gnb.fit(X train, y train).predict proba(X test)
fprG, tprG, t = roc curve(y test, y score[:,1])
roc aucG = auc(fprG, tprG)
kNN = KNeighborsClassifier(n neighbors = 5)
y score = kNN.fit(X train, y train).predict proba(X test)
fprN, tprN, t = roc curve(y test, y score[:,1])
roc aucN = auc(fprN, tprN)
di svm = SVC(kernel = 'linear',C=1, probability=True)
y score = di SVM.fit(X train, y train).predict proba(X test)
fprS, tprS, t = roc curve(y test, y score[:,1])
roc aucS = auc(fprS, tprS)
y score[:5]
Out[54]:
array([[0.06800138, 0.93199862],
       [0.82309978, 0.17690022],
       [0.89492645, 0.10507355],
      [0.37098204, 0.62901796],
       [0.86324697, 0.13675303]])
```

Q4(a)

Plotting code similar to that in notebook 05 ROC

```
import matplotlib.pyplot as plt
%matplotlib inline
                                                           ROC Analysis for Diabetes data
plt.figure()
                                                1.0
lw = 2
plt.plot(fprG, tprG, color='red',
                                                0.8
          lw=lw, label='ROC NB (area =
                                              True Positive Rate
plt.plot(fprS, tprS, color='green',
                                                0.6
          lw=lw, label='ROC SVM (area =
plt.plot(fprN, tprN, color='blue',
          lw=lw, label='ROC kNN (area =
                                                0.2
                                                                          ROC NB (area = 0.80)
                                                                          ROC SVM (area = 0.85)
plt.plot([0, 1], [0, 1], color='black'
                                                                          ROC kNN (area = 0.74)
                                                0.0
plt.xlim([0.0, 1.0])
                                                         0.2
                                                                 0.4
                                                                         0.6
                                                                                0.8
                                                                                        1.0
plt.ylim([0.0, 1.0])
                                                                False Positive Rate
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Analysis for Diabetes data')
plt.legend(loc="lower right")
plt.show()
```

Q4(b)

Repeat with synthetic data

```
from sklearn.datasets import make classification
X, y = make classification(n samples=1000, n features=4, n classes=2,
                                 class sep = 0.75, random state=1)
X train, X test, y train, y test = train test split(X, y, random state=0, test size=1/3)
 qnb = GaussianNB()
y score = gnb.fit(X train, y train).predict proba(X test)
fprG, tprG, t = roc curve(y test, y score[:,1])
roc aucG = auc(fprG, tprG)
                                                                       ROC Analysis for Synthetic data
                                                           1.0
kNN = KNeighborsClassifier(n neighbors = 5)
y score = kNN.fit(X train, y train).predict pr
                                                           0.8
fprN, tprN, t = roc curve(y test, y score[:,1]
y_score = di_SVM.fit(X_train, y_train).predict fprs, tprs, t = roc_curve(y_test, y_score[:,1])
roc_aucs = auc(fprs, tprs)
                                                                                         ROC NB (area = 0.82)
                                                                                         ROC SVM (area = 0.85)
                                                                                         ROC kNN (area = 0.84)
                                                                     0.2
                                                                              0.4
                                                                                       0.6
                                                                                                0.8
                                                             0.0
                                                                                                        1.0
                                                                             False Positive Rate
```