Solution 1: Risk Minimizers for the Log-Loss

(a)

$$\pi_{c}^{*} = \underset{c \in [0,1]}{\operatorname{arg \, min}} \mathbb{E}_{xy} \left[L \left(y,c \right) \right] = \underset{c}{\operatorname{arg \, min}} \mathbb{E}_{y} \left[L \left(y,c \right) \right]$$

$$= \underset{c}{\operatorname{arg \, min}} \mathbb{E}_{y} \left[-y \log \left(c \right) - \left(1-y \right) \log \left(1-c \right) \right]$$

$$= \underset{c}{\operatorname{arg \, min}} - \log \left(c \right) \underbrace{\mathbb{E}_{y} \left[y \right]}_{=\mathbb{P}(y=1)=\pi} - \log \left(1-c \right) \underbrace{\mathbb{E}_{y} \left[1-y \right]}_{=1-\pi}$$

$$= \underset{c}{\operatorname{arg \, min}} - \left[\pi \log \left(c \right) + \left(1-\pi \right) \log \left(1-c \right) \right]$$

Taking the derivative with respect to c and setting it to 0:

$$\Rightarrow \frac{\partial}{\partial c} \left[-\pi \log (c) + (1 - \pi) \log (1 - c) \right] \stackrel{!}{=} 0$$

$$\Rightarrow -\frac{\pi}{c} + \frac{1 - \pi}{1 - c} = 0$$

$$\Rightarrow c(1 - \pi) = (1 - c)\pi$$

$$\Rightarrow c = \pi$$

$$\Rightarrow \pi_c^* = \mathbb{P}(y = 1)$$

(b)

$$\mathcal{R}_{l}(\pi_{c}^{*}) = \mathbb{E}_{xy} \left[L \left(y, \pi \right) \right]$$

$$= \mathbb{E}_{y} \left[-y \log \left(\pi \right) - (1 - y) \log \left(1 - \pi \right) \right]$$

$$= -\pi \log(\pi) - (1 - \pi) \log(1 - \pi)$$

$$= H(y) \text{ (= Entropy!)}$$

(c) $\hat{\theta}$, the optimal constant model in terms of the *empirical* risk, is given by $\hat{\theta} = \arg\min_{\theta \in \Theta} \mathcal{R}_{emp}(\theta)$.

$$\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$
$$= \sum_{i=1}^{n} \log\left(1 + \exp(-y^{(i)}\theta)\right)$$

As $L(y,\theta) = log (1 + \exp(-y^{(i)}\theta))$. Taking the derivative:

$$\frac{\partial}{\partial \theta} \mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \frac{1}{1 + \exp(-y^{(i)}\theta)} \left(+ \exp(-y^{(i)}\theta) \right) (-y^{(i)})$$

$$= -\sum_{i=1}^{n} y^{(i)} \frac{\exp(c)}{1 + \exp(c)}$$

$$= -\sum_{y^{(i)}=1}^{n} (1) \frac{\exp(-\theta)}{1 + \exp(-\theta)} - \sum_{y^{(i)}=-1}^{n} (-1) \frac{\exp(\theta)}{1 + \exp(\theta)}$$

$$\stackrel{!}{=} 0$$

This is equivalent to:

$$\sum_{y^{(i)}=-1}^{n} \frac{\exp(\theta)}{1 + \exp(\theta)} = \sum_{y^{(i)}=1}^{n} \frac{\exp(-\theta)}{1 + \exp(-\theta)}$$
$$n_{-} \frac{\exp(\theta)}{1 + \exp(\theta)} = n_{+} \frac{1}{1 + \exp(\theta)}$$
$$\frac{n_{+}}{n_{-}} = \exp(\theta)$$
$$\theta = \log(\frac{n_{+}}{n_{-}})$$

Solution 2: Risk Minimizers for the Brier Score

(a) The loss using Brier score is given by $L(y, \pi(\mathbf{x})) = (y - \pi(\mathbf{x}))^2$.

$$\pi_{c}^{*} = \arg\min_{c} \mathbb{E}_{xy} \left[L(y, c) \right]$$

$$= \arg\min_{c} \mathbb{E}_{y} \left[(y - c)^{2} \right]$$

$$= \arg\min_{c} \mathbb{E}_{y} \left[y^{2} - 2yc + c^{2} \right]$$

$$= \arg\min_{c} \operatorname{Var}_{y}(y) + \pi^{2} - 2c\pi + c^{2}$$

$$= \arg\min_{c} \pi (1 - \pi^{2}) + \pi^{2} - 2c\pi + c^{2}$$

$$= \arg\min_{c} \pi - \pi^{2} + \pi^{2} - 2c\pi + c^{2}$$

$$= \arg\min_{c} \pi - 2c\pi + c^{2}$$

$$= \arg\min_{c} \pi - 2c\pi + c^{2}$$

$$= \arg\min_{c} -2c\pi + c^{2}$$

Where we used $Var(y) = \mathbb{E}(y^2) - [\mathbb{E}(y)]^2$.

Taking the deriviative with respect to c and setting it to 0:

$$\Rightarrow \frac{\partial}{\partial c} \left[-2c\pi + c^2 \right] \stackrel{!}{=} 0$$

$$\Rightarrow -2\pi + 2c = 0$$

$$\Rightarrow \pi \qquad = c$$

$$\Rightarrow \pi_c^* \qquad = \mathbb{P}(y = 1)$$

(b)

$$\begin{split} \mathcal{R}_l(\pi_c^*) &= \mathbb{E}_{xy} \left[L\left(y, \pi\right) \right] \\ &= \mathbb{E}_y \left[\left(y - \pi \right) \right] \\ &= \mathbb{E}_y \left[y^2 - 2y\pi + \pi^2 \right] \\ &= \pi - 2\pi^2 + \pi^2 \\ &= \pi - \pi^2 \\ &= \pi (1 - \pi) \\ &= \mathsf{Var}_y(y) \end{split}$$

Loss	Risk minimizer	Bayes risk	Optimal constant model	Risk of optimal constant model
L2	$\mathbb{E}_{y \mathbf{x}}\left(y \mathbf{x} ight)=f^*(\mathbf{x})$	$\mathcal{R}^*_{L2} = \mathbb{E}_x[Var_{y x}(y x)]$	$\mathbb{E}_y[y] = f_c^*$	$Var_y(y) = \mathcal{R}_{L2}(f_c^*)$
0/1	$h^*(\mathbf{x}) = \arg\max_{C \in \mathcal{Y}} \mathbb{P}(y = C \mathbf{x} = \mathbf{x})$	$\mathcal{R}_{0/1}^* = 1 - \mathbb{E}_x \left[\max_{C \in \mathcal{Y}} \mathbb{P}(y = C \mathbf{x} = \mathbf{x}) \right]$	Exercise 2	Exercise 2
Log	$\pi^*(\mathbf{x}) = \mathbb{P}(y = 1 \mathbf{x} = \mathbf{x})$	$\mathcal{R}_l^* = \mathbb{E}_x[\mathcal{H}_{y x}(y x)]$ exp. cond. entropy (ch. 13)	$\pi_{\scriptscriptstyle C}^* = \mathbb{P}(y=1)$	$\mathrm{H}_y(y) = \mathcal{R}_l(\pi_c^*)$
Brier	$\pi^*(\mathbf{x}) = \mathbb{P}(y = 1 \mathbf{x} = \mathbf{x})$	$\mathcal{R}_B^* = \mathbb{E}_x[Var_{y x}(y x)] \ (=\mathcal{R}_{L2}^*)$	$\pi_c^* = \mathbb{P}(y=1)$	$Var_y(y) = \mathcal{R}_B(\pi_c^*)$