

Azure Machine Learning – Azure ML Service

• Azure Machine Learning Service - A cloud-based platform for creating, managing, and publishing machine learning models.

Machine Learning Types – Supervised ML Models

• Supervised ML Model: training data includes known label values

Classification

predicting one of several categories or classes

- Whether a patient is at risk of diabetes
- whether tumor is benign or malignant
- Categorize loan applications as low-risk or high-risk
- Whether a loan will be repaid
- Fraud detection
- Object detection

Regression

predicting numeric values

- The number of cars that will be sold next month
- The price of a pre-owned car based on its maker, model, engine size, and mileage
- The number of future car rentals
- Predicting how many minutes a flight will be delayed based on weather information
- The Carbon Dioxide Emissions by Energy Consumption Use in an area

Time-series forecasting

predicting numeric values based on time

- Heights of ocean tides
- Weather forecasting
- Global temperature
- Monthly counts of sunspot
- Pollution levels
- Blood pressure tracking
- Heart rate monitoring
- Population
- Unemployment rates

Machine Learning Types – Unsupervised ML Models

• **Unsupervised ML Model**: to separate inputs into clusters based purely on their characteristics, or *features* without a known label value

Clustering

group inputs into clusters based on the similarity of their features

- Segment customers into different groups
- Group cars of similar size or weight
- Group penguins based their similarities
- Image classification group images that have similar characteristics
- Face grouping divide faces into groups

Feature: Shape

The minimum number of features: 1

Machine Learning Types – Summary

Core ML Concepts – Features & Labels

- Feature: Data values that influence the prediction of a model
- Labelling: Process of tagging training data with known values

Core ML Concepts – Training and Validation Datasets

Split Data

Split Rows (one of the common techniques)

 randomly split the data into rows for training and rows for evaluation/testing

Cross-validation

 Iteratively test the trained model with data it wasn't trained with and compare the predicted value with the actual known value

Core ML Concepts – Machine Learning Algorithms

Core ML Concepts – Evaluation Metrics for Classification

Core ML Concepts – Evaluation Metrics for Classification Example

Apple Classification

Core ML Concepts – Evaluation Metrics for Classification – ROC Curve & AUC

Confusion Matrix

ROC Curve (receiver operating characteristic curve)

Core ML Concepts – Evaluation Metrics - Predicted vs. True

- Residuals (Errors) the difference between the predicted and actual value (label)
- **Residual Histogram** a diagram shows the frequency of residual value ranges

Core ML Concepts – Evaluation Metrics for Regression

Mean Absolute Error (MAE)	The average of the absolute errors (difference between predicted values and true values)	$MAE = \frac{\sum_{i=1}^{n} P_i - T_i }{n}$
Root Mean Squared Error (RMSE)	The square root of the mean squared errors (difference between predicted and true values)	$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (P_i - T_i)^2}{n}}$
Relative Absolute Error (RAE)	The relative absolute difference between predicted and true values compare models where the labels are in different units	$RAE = \frac{\sum_{i=1}^{n} P_i - T_i }{\sum_{i=1}^{n} \overline{T} - T_i } \overline{T} = \frac{\sum_{i=1}^{n} T_i}{n}$
Relative Squared Error (RSE)	The relative squared difference between predicted and true values compare models where the labels are in different units	$RSE = \frac{\sum_{i=1}^{n} (P_i - T_i)^2}{\sum_{i=1}^{n} (\overline{T} - T_i)^2}$
Coefficient of Determination (R2)	Represents the predictive power of the model as a value between 0 and 1	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (P_{i} - T_{i})^{2}}{\sum_{i=1}^{n} (\overline{T} - T_{i})^{2}} = 1 - RSE$

Core ML Concepts – Evaluation Metrics for Regression Example

	Α	В	С	D	E	F	G	Н
1	Number (i)	Predicted Value (Pi)	True Value (Ti)	Absolute Difference (Pi-Ti)	ABS Difference Square (Pi-Ti)^2	ABS Difference to the Mean (Ti- (mean of Ti))	ABS Mean Square (Ti- (mean of Ti))^2	Formula
2	1	-1	-2	1	1	5.4	29.16	
3	2	1	2	1	1	1.4	1.96	
4	3	2	1.5	0.5	0.25	1.9	3.61	
5	4	3	2.5	0.5	0.25	0.9	0.81	
6	5	3.5	4	0.5	0.25	0.6	0.36	
7	6	4	3	1	1	0.4	0.16	
8	7	5	6.5	1.5	2.25	3.1	9.61	
9	8	5.5	5.5	0	0	2.1	4.41	
10	9	6	5	1	1	1.6	2.56	
11	10	7	6	1	1	2.6	6.76	
12		SUM	34	8	8	20	59.4	SUM(row2:row11)
13		Mean	3.4					C12/A11
14		_	MAE	0.8				D13/A11
15		L .	RMSE		0.894427191			SQRT(E12/A11)
16			RAE ◀ ━ ¬			0.4		D12/F12
17			RSE ◀— ┛				0.134680135	E12/G12
18			R-Squared	+			0.865319865	1-G17
Lower the value Closer to 0 the the better Closer to 1 the								

ML Solution Core Tasks Overview

ML Solution Core Tasks – Data Ingestion

Create Datasets in Azure Machine Learning Designer (Recommended)

- Import Data module import data from Azure cloud storages or public URLs
- Enter Data Manually module create a small dataset by manually entering values

ML Solution Core Tasks – Data Preparation Common Tasks

ML Solution Core Tasks – Data Preparation Common Tasks Cont.

Ignore, replace, or infer missing values

Examples:

- Minimum missing value ratio [0-1, default 0] the minimum portion of missing values to be operated
- Maximum missing value ratio [0-1, default 1] the maximum portion of missing values to be operated
- Custom substitution value
- Replace with mean / median / mode
- Remove entire row / column

Change the values of numeric columns to be on a common scale

Examples:

MinMax - Rescaling to the [0,1]

Significantly larger values
may lead to higher bias

length	width 64.1	height 48.8	curb- weight 2548	length 0.413433	width 0.316667	height 0.083333	curb- weight 0.411171
168.8	64.1	48.8	2548	0.413433	0.316667	0.083333	0.411171
171.2	65.5	52.4	2823	0.449254	0.433333	0.383333	0.517843

Separate data into training and validation datasets *Examples:*

• **Split Rows** - [0-1, default 0.5] the fraction of rows in the first output dataset

For example, if the value is 0.7, then the dataset is divided 70/30

ML Solution Core Tasks – Feature Engineering & Selection

Feature Engineering

 The process of creating new features from original data to help machine learning algorithms to learn better

Observation / Record (Rows)

Features (Columns)

	Α	В	С	D	
1	Date	Auctions Reported	Sold	Clearance Rate	
2	1-Apr-21	798	750	0.9398	
3	2-Apr-21	841	800	0.9512	
4	3-Apr-21	675	666	0.9867	
5	4-Apr-21	987	780	0.7903	
6	5-Apr-21	888	850	0.9572	
7	6-Apr-21	767	721	0.94	
8	7-Apr-21	879	801	0.9113	
9	8-Apr-21	977	905	0.9263	

Automation – Featurization

- Automatically pre-process the features before training
- Feature Type: DateTime
- **Engineer Features:**
 - Day of week Year
 - Week of the year
- Minute

- Month
- Day of year
- Hour

Second

Day

Quarter

Feature Selection

- The purpose is to narrow the features by selecting a subset of relevant, useful features of original data to reduce noise and improve training performance
- The process of applying statistical tests to the input datasets to determine which columns are more predictive of the output

ML Solution Core Tasks – Model Training & Evaluation

Train Model Train a ML model **Purpose** Train Model module – for a regression or classification model **Azure ML** Module Train Clustering Model **module** – for a clustering model **Input**: dataset for training and algorithm K-means clustering Number of centroids parameter the number of clusters for the Input / model azureml-blobstore-3a015b93-a244-47f0-8559-f9466af2ec91 **Output** Access policy Properties

Score Model

Generate predictions on new actual data

- Score Model module for a regression or classification model
- Assign Data to Clusters
 module for a clustering model
- Input: dataset for validation (Split Data)

Evaluate Model

Measures the accuracy of a trained model

- Evaluate Model module for a regression or classification or clustering model
- Output: evaluation metrics for comparison of the performance of multiple training models

ML Solution Core Tasks – Model Deployment & Management

ML Solution Core Tasks – Building Azure ML Pipelines

Azure Machine Learning Pipelines

- Orchestrate data preparation, model training, deployment, and tasks management
- Help automate machine learning workflows

ML Solution Core Tasks - Creating Pipelines - Regression Model

Training Pipeline

Automobile price data (Raw) Data **Preparation** Select Columns in Dataset Completed 🛆 Clean Missing Data Completed 🖒 **Algorithm** Selection Normalize Data Completed 🖒 Split Data Linear Regression Completed 🛆 Completed 🗘 ුජී Train Model **Training** Completed 🖒 :: Score Model Scoring Completed 🖒 **Evaluation** Completed 🖒

Inference Pipeline

ML Solution Core Tasks – Creating Pipelines – Classification Model

Training Pipeline

Inference Pipeline

Azure Machine Learning – Workspace

Azure Machine Learning Workspace

A centralized place to manage data, compute resources, code, models, and other artefacts related to your machine learning workloads.

Workspace Management

Business/Data Experts

Programmer

No Code

Coding

Task	Azure Portal	Azure ML Studio	Python SDK / R SDK	Azure ML CLI	Visual Studio Code
Create a workspace	X		X	X	X
Manage workspace access	X			X	
Create and manage compute resources	X	X	X	X	
Create a Notebook VM		X			

Azure Machine Learning – Workspace Architecture

Azure Machine Learning – Compute Resource

Creating an Azure ML Workspace

in

Azure Portal

Azure Machine Learning – Automated ML (AutoML)

 AutoML - the process of automating the time-consuming, iterative tasks of machine learning model development

Azure Machine Learning – AutoML Model Training Steps

Training a Regression Model

with

Azure Automated ML

No-code Machine Learning with Azure ML Studio #2 Designer

Azure Machine Learning – ML Designer

Azure ML designer provides a drag-and-drop visual canvas to build, test, and

deploy ML models.

- Datasets
- Modules
- Pipelines
- Supported open-source frameworks
 - MLflow
 - Kubeflow
 - ONNX (Open Neural Network Exchange)
 - PyTorch
 - TensorFlow
- Supported programming languages
 - Python and R

Azure Machine Learning – ML Designer Model Training Steps

Training a Classification Model

with

Azure ML Designer

