Compressed Sensing Defence

Recurrent Neural Network with Top-k Gains for Session-based Recommendations Balazs Hidasi and Alexandros Karatzoglou

Bastien Billiot and Joël Garde

29 Mars 2021

- Introduction
- 2 Problem Formulation and Model Presentation
- 3 Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- 6 Results and Implementation
- **6** Opening and Conclusion

- Introduction
- 2 Problem Formulation and Model Presentation
- Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- 6 Results and Implementation
- Opening and Conclusion

Context: Recommendation system

- Digitization and boom of online services and products providers leading to an increase importance of customer retention and satisfaction
- Thus recommendation system has become an ever increasing tool to that goal

Definition

Recommenders systems are built to predict what users might like, especially when there are lots of choices available

Two major types of Recommenders Systems

COLLABORATIVE FILTERING Read by both users Similar users Read by her, recommended to him!

CONTENT-BASED FILTERING

Compressed Sensing Approach : Matrix completion and Recommender Systems

- ullet Collaborative-filtering recommendation system : matrix completion with homogeneous group o Netflix Prize
- Problem Formulation

Rebuild
$$A^* \in \mathbb{R}^{u \times v}$$
 with the available data of the matrix $Y_i = (\langle A^*, X_i \rangle)_{i=1,\dots,m}$, knowing that A^* is low-rank

Rank-minimization procedure (NP hard) :

$$\min_{A}(rg(A): \langle A, X_i \rangle = \langle A^*, X_i \rangle, i = 1, ...m)$$

• Nuclear Norm Minimization problem :

$$\min_{A}(||A||_{S_1}:=Y_i,i=1...,m)$$

• Semi Definitite Programming : projected or proximal gradient descent

Session Based Recommandation Systems and Paper Introduction

- $\bullet \ \, \mathsf{Emergence} \ \, \mathsf{of} \ \, \mathsf{unknown} \ \, \mathsf{users} \, \to \, \mathsf{Session}\text{-}\mathsf{Based} \ \, \mathsf{Recommender} \\ \mathsf{Systems} \ \, \mathsf{Systems}$
- GRU4REC: Session based reommender system proposed by two authors in a previous 2016 paper
- Studied Paper: Sampling and loss improvements

- Introduction
- 2 Problem Formulation and Model Presentation
- Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- 6 Results and Implementation
- Opening and Conclusion

Problem formulation

- ullet Ongoing session $s \in S$, sequence of events $a_i \in V$, $s = [a_1, a_2, \ldots, a_t]$
- Provide recommendation a_{t+1}
- Ranking over all V items (probability of being chosen): k highest recommended items
- Grundtruth item among k highest and as high as possible
- Challenges: different sequences length, high cardinality, ranking evaluation metrics

Model Architecture

Figure: General GRU4REC architecture.

Training procedure

Next event prediction

Given $[a_0, \ldots, a_i]$ predict a_{i+1}

Back-Propagation-Through-Time

Mini-batching.

Use the parallel computing facilities of GPU to accelerate optimization.

BPTT(1,1).

Process size 1, step size 1.

Figure: Mini-batch, taken from the paper.

- Introduction
- 2 Problem Formulation and Model Presentation
- 3 Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- 6 Results and Implementation
- Opening and Conclusion

Why do we sample?

• $|V| \sim 10^5$

Relevant samples

High-scoring samples.

Power-raized unigram distribution

$$Q(i) = supp(i)^{\alpha}$$

Scores for mini-batch negative sampling

		scores					
session	item	a_{i+1}	b_{j+1}	c_{k+1}		e_{m+1}	
а	a _i	1	0	0		0	
b	b _j	0	1	0		0	
С	C _k	0	0	1		0	
		0	0	0		0	
е	e _m	0	0	0		1	

Scores for full negative sampling

		scores									
session	item	a_{i+1}	b_{j+1}	c_{k+1}		e_{m+1}	n ₁	n ₂			n_{N_A}
а	a _i	1	0	0		0	0	0	0	0	0
b	b _j	0	1	0		0	0	0	0	0	0
С	c _k	0	0	1		0	0	0	0	0	0
		0	0	0		0	0	0	0	0	0
e	e _m	0	0	0		1	0	0	0	0	0

Previous losses

Cross-entropy:

$$CE(\hat{y}, y) = -\sum_{k=1}^{N} \hat{y}_k log(y_k)$$

Bayesian Personalized Ranking (BPR):

$$L_{BPR} = -\frac{1}{N_s} \sum_{j=1}^{N_s} log[\sigma(r_i - r_j)]$$

TOP1 :

$$L_{top1} = \frac{1}{N_s} \sum_{j=1}^{N_s} \sigma(r_j - r_i) + \sigma(r_j^2)$$

Vanishing Gradient

$$rac{\partial L_{top1}}{\partial r_i} = -rac{1}{N_S}\sum_{j=1}^{N_S}\sigma'(r_j-r_i) ext{ and } rac{\partial L_{BPR}}{\partial r_i} = -rac{1}{N_S}\sum_{j=1}^{N_S}(1-\sigma(r_i-r_j))$$

- Irrelevant negative samples : vanishing gradient
- Number of irrelevant samples increases faster than relevant ones
- Gradient vanishes as the number of samples increases

Proposed losses

Ranking-Max loss family functions

$$L_{pairwise-max}(r_i, \{r_j\}_{j=1}^{N_S}) = L_{pairwise}(r_i, \max_{j=1,\dots,N_s}(r_j))$$

- $L_{TOP1-max} = \sum_{j=1}^{N_s} s_j [\sigma(r_j r_i) + \sigma(r_j^2)]$
- $L_{BPR-max} = -log \sum_{j=1}^{N_s} s_j \sigma(r_i r_j)$

- Introduction
- 2 Problem Formulation and Model Presentation
- Authors contributions
 - Sampling
 - Loss improvements
- 4 Discussion
- Sesults and Implementation
- Opening and Conclusion

Importance sampling

- Sampled loss \neq full loss
- $\nabla p\left(a_t|a_{< t},x\right) = \nabla \mathcal{E}(a_t) \mathbb{E}_{p\left(a_t|a_{< t},x\right)}[\mathcal{E}(a)]^1$
- $\mathbb{E}_{p(a_t|a_{< t},x)}[\mathcal{E}(y)] \approx \sum_{j=1}^{N_s} w(a_j)\mathcal{E}(a)$
- $w(a_j) = softmax_{[1,N_s]}(E(a_j) log Q(a_j))$

Bastien Billiot and Joël Garde

¹Sébastien Jean et al. *On Using Very Large Target Vocabulary for Neural Machine Translation*. 2015. arXiv: 1412.2007 [cs.CL].

LogSumExp

•
$$lse((x)_i) = log \sum_i e^{x_i}$$

•
$$CE = -r_i + lse(r_j)$$

²What Is the Log-Sum-Exp Function?

 $\texttt{https://nhigham.com/2021/01/05/what-is-the-log-sum-exp-function/.} \quad \texttt{E} \quad \checkmark 9.9.3.$

2

Connections to other papers

- Word2Vec³: non-recurrent
- ullet Blackout: 4 Importance sampling + Q_{lpha}
- re-weighting:⁵ according to rank.

³Tomas Mikolov et al. *Efficient Estimation of Word Representations in Vector Space*. 2013. arXiv: 1301.3781 [cs.CL].

⁴Shihao Ji et al. BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies. 2016. arXiv: 1511.06909 [cs.LG].

⁵Wei Chen et al. "Ranking Measures and Loss Functions in Learning to Rank.". In: Jan. 2009, pp. 315–323.

- Introduction
- 2 Problem Formulation and Model Presentation
- 3 Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- 5 Results and Implementation
- Opening and Conclusion

Presentation: Datasets and Metrics

- 4 datasets: RSC15, VIDEO and VIDXL, CLASS
- Metrics: Recall@20 and MRR@20
- $REC_{20}(y_h) = \mathbb{I}_{rank(y_h)>20}$
- $MRR_{20}(y_h) = \frac{1}{rank(y_h)} \mathbb{I}_{rank(y_h) > 20}$

Presentation: Results

Additional samples :

- Top performance : combination of additional samples and new loss BPR-max +25% to +55% vs. baseline kNN and +18% to +37.5% vs. GRU4REC
- Mitigated results for TOP1-max vs. XE (with or without additional samples)

Batching

```
def __iter__(self):
r = np.arange(len(self.offsets)-1) # r is a permutation array. we access
if self random:
    np.random.shuffle(r)
n_done = 0 # how many sessions have been fully seen.
n_new = self.bs # how many new sessions to fetch to form the current be
reset = np.ones(self.bs, dtype=bool) # true if the current element if t
CUR = np.zeros(self.bs, dtype=np.intp) # pointers to the current events
END = np.zeros_like(CUR) # pointers to the last events of the current s
ft = np.arange(2, dtype=np.intp).reshape((-1,1)) # [0,1] array, used as
while n_new + n_done + 1 < r.shape[0]: # as long as we can have full be
  CUR[reset] = self.offsets[r[n_done:n_done+n_new]] # where we finished
  END[reset] = self.offsets[r[n_done:n_done+n_new] + 1] - 1 #offsets[x=
  batch = CUR + ft # form a batch of [features, targets] by looking for
  b = self.data[batch] # form a batch of [features, targets] by looking
  reset = batch[1] == END # if the target is the last event of the sess
  n_new = reset.sum() # compute how many to get for the new one
  n done += n new
  CUR += 1 # go to next element in all current sessions.
  vield b, reset
```

Batching

Model

```
def __init__(self, input_size, hidden_size):
  parameters:
  input_size: number of words. (events)
  hidden size: hidden dimention.
  super().__init__()
  self.input_size = input_size
  self.hidden size = hidden size
  # minified GRU cell with only 4 weights matrices
  self.Wx = nn.Parameter(torch.empty((input_size, hidden_size)))
  self.Wr = nn.Parameter(torch.empty((hidden_size, hidden_size)))
  self.Wh = nn.Parameter(torch.empty((hidden_size, hidden_size)))
  self.Wy = self.Wx # tied weights: the output projection matrix is the
  self.bh = nn.Parameter(torch.empty((hidden_size,)))
  self.by = nn.Parameter(torch.empty((input_size,)))
  nn.init.xavier_normal_(self.Wx)
  nn.init.xavier_normal_(self.Wr)
  nn.init.orthogonal_(self.Wh) #orthogonal initialisation for the recurred
  nn.init.uniform_(self.bh)
  nn.init.uniform_(self.by)
```

Model

```
def forward(self, inputs, carry, targets=None):
  # gru
  s = self.Wx[inputs]
  v = s + self.bh
  r = torch.sigmoid(torch.addmm(v, carry, self.Wr))
  h = torch.tanh(torch.addmm(v, r * carry, self.Wh))
  h = (1-r) * carry + r * h
  if targets is not None: #partial score computation for using negative s
      y = torch.addmm(self.by[targets], h, self.Wy[targets].T)
  else: # full score computation for testing.
      y = torch.addmm(self.by, h, self.Wy.T)
  return h, y
```

general remarks

- focus on speed
- unusual GRU
- y = y self.logq * T.log(self.P0)

- Introduction
- 2 Problem Formulation and Model Presentation
- 3 Authors contributions
 - Sampling
 - Loss improvements
- Discussion
- Sesults and Implementation
- **6** Opening and Conclusion

Opening

Comparison with other models:

- Always a top contender with overall decent results on every dataset
- Not better than baseline KNN models when much more complex

Evaluation of Session based recommender systems:

- Difficult to build a state-of-the-art model for all business applications (SR for music vs KNNs for e-commerce)
- No reference method (A/B, fixed dataset), metric or dataset

To go further: Cross-domain recommendation systems

Conclusion

- Improvements of a performing model : GRU4REC with additional samples and new losses
- Top performer in various applications but still quiet expensive computationnaly for the improvements over baseline models
- Ranking-max loss: unsufficient explanations and first parts do not introduce new concepts
- Evaluation methods, metrics and datasets and other modelling (cross domain)