

Індивідуальні завдання

Робота з курсу "Методи оптимізації"

Студента 2 курсу групи МП-21

Захарова Д.О.

Варіант 6

Завдання 1.

Умова. Графічне розв'язання задачі лінійного програмування. Знаходження максимуму і мінімуму цільової функції.

Розв'язок. Спочатку сформулюємо задачу лінійного програмування у довільному випадку. Нехай у нас є $n_x \in \mathbb{N}$ змінних, які запишемо у вектор змінних \mathbf{x} :

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \in \mathbb{R}^{n_x}$$

і нам потрібно мінімізувати або максимізувати деяку цільову функцію (візьмемо наприклад \max без зменшення загальності):

$$\mathcal{C}(\mathbf{x}) = \langle \mathbf{c}, \mathbf{x}
angle
ightarrow \max, \; \mathbf{c} \in \mathbb{R}^{n_x}$$

Замітка 1. Вважаємо, що $\langle {f c}, {f x}
angle = \sum_{k=1}^{n_x} c_k x_k$ — стандартна евклідова метрика.

Замітка 2. Насправді неважливо, стоїть в нас \max чи \min , бо ми завжди можемо обрати замість вектора \mathbf{c} вектор $\mathbf{c}' = -\mathbf{c}$ і тоді наша задача зведеться до протилежної (тобто наприклад $\{\langle \mathbf{c}, \mathbf{x} \rangle \to \max\} \iff \{\langle \mathbf{c}', \mathbf{x} \rangle \to \min\}$)

Також маємо деяку систему обмежень (згідно *замітки 2* не принципіально, який саме знак стоїть при формулюванні):

$$\langle \mathbf{b}_k, \mathbf{x}
angle \geq eta_k, \; \mathbf{b}_k \in \mathbb{R}^{n_x}, \; eta_k \in \mathbb{R}, \; k = \overline{1, n_eta}$$

Або інакше кажучі, якщо записати у вигляді сум:

$$\sum_{j=1}^{n_x} b_{k,j} x_j \geq eta_k, \; k = \overline{1,n_eta_k}$$

Замітка 3. Зазвичай при формулюванні задачі лінійного програмування додають умову $x_k \geq 0, \ k=\overline{1,n_x}$, але нам це для опису графічного розв'язання не так важливо (як мінімум можемо просто додати умови $(\mathbf{b}_m:b_i=\delta_{i,m}), (\beta_m=0)$).

Крок 1. Почнемо з кінця, а саме з систем умов $\langle \mathbf{b}_k, \mathbf{x} \rangle \geq \beta_k, \ \mathbf{b}_k \in \mathbb{R}^{n_x}, \ k=\overline{1,n_\beta}.$ Якщо ми запишемо кожну умову у вигляді рівності, тобто

$$\langle \mathbf{b}_k, \mathbf{x} \rangle = \beta_k$$

то це по суті буде описувати площину у просторі (або якщо $\mathbf{x} \in \mathbb{R}^2$, то пряму на плоскості). Причому будь-яка площина ділить цей простір на 2 частини, і лише одна з них і буде містити усі точки, при яких виконується умова нерівності. Тому достатньо підставити якусь довільну точку з якогось півпростору та перевірити чи виконується нерівність і якщо так — обрати цей півпростір, а якщо ні — інший.

Нехай ми обрали півпростір \mathcal{S}_1 для рівняння $\langle \mathbf{b}_1, \mathbf{x} \rangle \geq \beta_1$. Те саме ми робимо і для інших рівнянь, тим самим отримуючи набір півпросторів $\{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_{n_\beta}\}$.

Крок 2. Знайти об'єднання цих всіх півпросторів, тобто $\mathcal{S} = \bigcap_{k=1}^{n_\beta} \mathcal{S}_k$. Усі точки з \mathcal{S} будуть виконувати нашу систему обмежень.

Якщо $\mathcal{S}=\emptyset$, то нам в якомусь сенсі пощастило — тобто немає жодної точки, що підходить до обранної системи обмежень і тому оптимізувати нічого. Закриваємо завдання $\ensuremath{\mathfrak{C}}$

Якщо нам не "пощастило", рухаємось до третього кроку.

Крок 3. На секунду уявимо, що ми вже знайшли оптимальне значення $\gamma \in \mathbb{R}$, яке максимізує цільову функцію $\mathcal{C}(\mathbf{x}) = \langle \mathbf{c}, \mathbf{x} \rangle = \gamma \to \max$, і воно існує. Якщо взяти рівність $\langle \mathbf{c}, \mathbf{x} \rangle = \gamma$, то перед нами, як і в *кроці* 1, деяка площина $\mathcal{P}_{\gamma} := \{\mathbf{x} \in \mathbb{R}^{n_x} \mid \langle \mathbf{x}, \mathbf{c} \rangle = \gamma\}$. Причому оскільки розв'язок \mathbf{x} задовольняє системі обмежень, то $\mathcal{P}_{\gamma} \cap \mathcal{S} \neq \emptyset$ — це може бути або одна точка, або якийсь шматок площини \mathcal{P}_{γ} .

Окрім того, справедливо те, що якщо ми візьмемо якесь значення $\gamma' > \gamma$ і для неї знайдемо деяку площину $\mathcal{P}_{\gamma'}$, то вона не буде перетинати \mathcal{S} . Якщо більш строго, то

$$(orall \gamma' \in \mathbb{R}) \ (\gamma' > \gamma) : \{\mathcal{P}_{\gamma'} \cap \mathcal{S} = \emptyset\}$$

Це дозволяє сформулювати достатньо простий алгоритм знаходження оптимального розв'язку. Візьмемо деяке початкове значення γ_0 (з форми $\mathcal S$ часто доволі інтуїтивно зрозуміло, яке саме взяти) і побудуємо площину $\mathcal P_{\gamma_0}$. Почнемо потрохи збільшувати значення γ_0 допоки при збільшенні ми більше не будемо отримувати перетин. Інакше кажучі, знайдемо множину значень $G = \{\gamma \in \mathbb R \mid \mathcal P_\gamma \cap \mathcal S \not=\emptyset\}$ і в якості розв'язку візьмемо $g := \max G$ і в якості множини оптимальних параметрів $\mathcal P_q \cap \mathcal S$.

Але насправді не завжди взагалі існує такий оптимальний параметр, тобто як б ми не збільшували γ , все одно буде знаходитись прямі $\mathcal{P}_{\gamma} \cap \mathcal{S} \neq \emptyset$ і тому в цьому випадку в нас також не можна знайти конкретний розв'язок.

Для випадку знаходження мінімуму функції дії такі самі, але ми знаходимо $\min G$ (або виносимо мінус і знаходимо максимум).

Приклад застосування цього алгоритму можна побачити у завданні 2.

Завдання 2.

Умова. Розв'язати задачу лінійного програмування графічним методом:

$$\mathcal{C}(x_1,x_2) = 2x_1 + 2x_2 o ext{max} \ egin{cases} x_1 + x_2 \leq 12 \ -x_1 + 3x_2 \geq 3 \ x_1 + 2x_2 \leq 14 \end{cases}$$

Розв'язок. Йдемо по кроках, як це описано у завданні 1.

Крок 1. Побудуємо прямі

$$x_1+x_2=12,\; -x_1+3x_2=3,\; x_1+2x_2=14$$

Отримаємо наступний малюнок:

Червоним, синім і зеленим відміченні рівняння у порядку виписаному вище

Далі обираємо напівплощини $\mathcal{P}_1,\mathcal{P}_2,\mathcal{P}_3$ згідно знакам нерівностей:

Знаходимо перетин $\mathcal{P}=\mathcal{P}_1\cap\mathcal{P}_2\cap\mathcal{P}_3$:

Далі починаємо будувати множину прямих $x_1+x_2=\gamma, \gamma\in\mathbb{R}$. Насправді доволі інтуїтивно зрозуміло, що нам потрібно знайти таке значення γ , що наша пряма $x_1+x_2=\gamma$ буде перетинати одну єдину точку, що є перетином $(-x_1+3x_2=3)\cap(x_1+2x_2=14)$. Для цього спочатку знайдемо перетин цих двох прямих. Якщо скласти два рівняння, отримаємо $5x_2=17\to x_2=17/5$ і тому $x_1=14-\frac{34}{5}=\frac{36}{5}$. Отже, наше значення γ :

$$\gamma = x_1 + x_2 = rac{17 + 36}{5} = rac{53}{5}$$

5

Також згадаємо, що оптимізувати потрібно $\mathcal{C}(x_1,x_2)=2x_1+2x_2$, тобто насправді максимальне значення \mathcal{C} дорівнює $2\gamma=\frac{106}{5}$ і досягається при $\begin{bmatrix} x_1\\x_2\end{bmatrix}=\frac{1}{5}\begin{bmatrix} 36\\17\end{bmatrix}$. В цьому тепер можна переконатись, побудувавши графік $2x_1+2x_2=106/5$:

Відповідь. $\mathcal{C}(36/5,17/5) = 106/5 o \max$.

Завдання 3.

Спочатку складемо математичну модель. Нехай ми взяли x_1 виробів виду Π_1 та x_2 виробів виду Π_2 . Тоді нам потрібно максимізувати виручку:

$$\mathcal{C}(x_1,x_2) = c_1x_1 + c_2x_2
ightarrow \max$$

Оскільки виробів виду Π_1 потрібно не більше n_1 штук, то маємо умову $x_1 \leq n_1$. Аналогічно для виду $\Pi_2: x_2 \leq n_2$. Окрім цього, кількість виробів не може бути від'ємною, а отже можна додати умову $0 \leq x_i \leq n_i$. Також скоріше за все, кількість виробу — це число ціле, тому $x_i \in \mathbb{Z}$. Затрати сировини від двох виробів $a_{1,1}x_1 + a_{1,2}x_2$ і ці затрати не повинні перебільшувати запасів сировини, тобто $a_{1,1}x_1 + a_{1,2}x_2 \leq b$. Отже, маємо наступне ЗЛП:

$$\mathcal{C}(x_1,x_2) = c_1x_1 + c_2x_2 o \max \ egin{cases} a_{1,1}x_1 + a_{1,2}x_2 \leq b \ 0 \leq x_1 \leq n_1 \ 0 \leq x_2 \leq n_2 \ x_1,x_2 \in \mathbb{Z} \end{cases}$$

Умова. Підставимо числа з мого варіанту ($b=116, n_1=16, n_2=14, a_{1,1}=6, a_{1,2}=5, c_1=32, c_2=24$):

$$\mathcal{C}(x_1,x_2) = 32x_1 + 24x_2 = 8(4x_1 + 3x_2) o ext{max} \ egin{cases} 6x_1 + 5x_2 \leq 116 \ 0 \leq x_1 \leq 16 \ 0 \leq x_2 \leq 14 \ x_1,x_2 \in \mathbb{Z} \end{cases}$$

Знову починаємо з обмежень. Обмеження $0 \le x_1 \le 16, 0 \le x_2 \le 14$ описує прямокутник зі сторонами 16, 14, тобто множину:

Далі будуємо пряму $6x_1+5x_2=116$ і обираємо нижчу напівплощину (тобто ту, що містить точку (0,0)). Після цього беремо перетин з нашим "прямокутником". Отримаємо:

Або якщо обрізати верхній правий кут прямокутника:

Далі будуємо множину прямих $\{4x_1+3x_2=\gamma\mid\gamma\in\mathbb{R}\}$. Якщо помалювати, то можна побачити, що ця пряма повинна перетинати точку, що є перетином прямих $x_1=16$ та $6x_1+5x_2=116$, тобто:

Нескладно бачити, що перетином є точка (16,4). В цій точці цільова функція досягає значення

$$\mathcal{C}(16,4) = 32 \cdot 16 + 24 \cdot 4 = 608$$

Відповідь. Потрібно виробити 16 одиниць продукції Π_1 та 4 одиниці продукції Π_2 , що дасть прибуток у 608 грошових одиниць.

Завдання 4.

Умова. За допомогою симплекс методу з алгебраїчними перетвореннями, знайти розв'язок задачі лінійного програмування:

$$\mathcal{C}(x_1,x_2) = x_1 - x_2 o ext{max} \ egin{cases} x_1 + 2x_2 \leq 10 \ 3x_1 + 2x_2 \leq 18 \ x_1 - x_2 \geq -3 \ 4x_1 - x_2 \leq 35 \ x_1, x_2 \geq 0 \end{cases}$$

Розв'язок. Допомовнимо нашу систему рівнянь:

$$egin{cases} x_1+2x_2+x_3=10\ 3x_1+2x_2+x_4=18\ x_1-x_2-x_5=-3\ 4x_1-x_2+x_6=35\ x_i\geq 0,\ i=\overline{1,6} \end{cases}$$

Далі виражаємо x_3, x_4, x_5, x_6 через x_1, x_2 :

$$egin{cases} x_3 = 10 - x_1 - 2x_2 \ x_4 = 18 - 3x_1 - 2x_2 \ x_5 = 3 + x_1 - x_2 \ x_6 = 35 - 4x_1 + x_2 \end{cases}$$

Як бачимо вільні члени усі додатні, а отже маємо розв'язок (0,0,10,18,3,35).

Повернімося до цільової функції. Маємо:

$$\mathcal{C}(x_1,x_2) = x_1 - x_2 = 0 - (-x_1 + x_2)$$

Бачимо, що у виразі $-x_1+x_2$ єдиний від'ємний додаток — це $-x_1$. Далі згідно виразу для x_3,x_4,x_5,x_6 , знаходимо значення $\{10/1,18/3,-3/1,35/4\}$ та знаходимо мінімальний додатній з них. В цьому випадку — це 6, що відповідає x_4 . Отже, змінюємо x_1 та x_4 (поки зміню лише для однієї строчки):

$$egin{cases} x_3 = 10 - x_1 - 2x_2 \ x_1 = 6 - rac{2}{3}x_2 - rac{1}{3}x_4 \ x_5 = 3 + x_1 - x_2 \ x_6 = 35 - 4x_1 + x_2 \end{cases}$$

Підставляємо у цільову функцію:

$$\mathcal{C} = x_1 - x_2 = 6 - rac{2}{3}x_2 - rac{1}{3}x_4 - x_2 = 6 - \left(rac{5}{3}x_2 + rac{1}{3}x_4
ight) o \max$$

Оскільки $x_2, x_4 \geq 0$, то $\frac{5}{3}x_2 + \frac{1}{3}x_4 \geq 0$ і тому $\mathcal{C} \leq 6$ і тому максимум функції \mathcal{C} досягається при $\mathcal{C} = 6$. Якщо зробити залежність x_1, x_3, x_5, x_6 через x_2, x_4 , то отримаємо оптимальний розв'язок (6,0,4,0,9,11).

Завдання 5.

Запишемо ЗЛП у загальному вигляді. Нехай ми виробили вироби 1,2,3 у кількості $x_1,x_2,x_3,(x_i\geq 0)$, відповідно. Тоді обладнання першого типу (A) ми використовували $a_{1,1}x_1+a_{1,2}x_2+a_{1,3}x_3$ годин і це число не повинно перебільшувати Φ_1 . Аналогічно для інших виробів: наприклад для обладнання другого типу будемо мати умову $a_{2,1}x_1+a_{2,2}x_2+a_{2,3}x_3\leq \Phi_2$. Тому якщо позначити матрицю

$$\mathbf{W} = egin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \ a_{2,1} & a_{2,2} & a_{2,3} \ dots & dots & dots \ a_{n,1} & a_{n,2} & a_{n,3} \end{bmatrix}, \; \mathbf{\Phi} = egin{bmatrix} \Phi_1 \ \Phi_2 \ dots \ \Phi_n \end{bmatrix}, \; \mathbf{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

То маємо систему обмежень

$$\mathbf{W}_{\mathbf{X}} < \mathbf{\Phi}$$

Окрім цього $\mathbf{x} \geq \theta$. При цьому прибуток $\mathcal{C}(\mathbf{x}) = \mathbf{s}^T\mathbf{x}$ (тут ми позначили $\mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}$) потрібно максимізувати. Отже наша завдання формулюється наступним чином:

$$egin{aligned} \mathcal{C}(\mathbf{x}) &= \mathbf{s}^T \mathbf{x}
ightarrow \max \ \mathbf{W} \mathbf{x} \leq \mathbf{\Phi} \ \mathbf{x} \geq \mathbf{ heta} \end{aligned}$$

Умова для мого варіанту виглядає наступним чином:

$$\mathcal{C}(x_1,x_2,x_3)=6x_1+5x_2+7x_3 o \max$$

при обмеженні

$$egin{bmatrix} 6 & 1 & 0 \ 3 & 0 & 4 \ 1 & 5 & 1 \ 0 & 3 & 4 \ 2 & 3 & 2 \ \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ \end{bmatrix} \leq egin{bmatrix} 60 \ 80 \ 80 \ 50 \ 50 \ 56 \ \end{bmatrix}, \ x_i \geq 0 \ (i = \overline{1,3})$$

Тобто:

$$\mathcal{C}(x_1,x_2,x_3) = 6x_1 + 5x_2 + 7x_3
ightarrow \max \ egin{dcases} 6x_1 + x_2 \leq 60 \ 3x_1 + 4x_3 \leq 80 \ x_1 + 5x_2 + x_3 \leq 80 \ 3x_2 + 4x_3 \leq 50 \ 2x_1 + 3x_2 + 2x_3 \leq 56 \ x_1, x_2, x_3 \geq 0 \end{cases}$$

Введемо додаткові змінні до системи обмежень:

$$egin{cases} 6x_1+x_2+x_4=60\ 3x_1+4x_3+x_5=80\ x_1+5x_2+x_3+x_6=80\ 3x_2+4x_3+x_7=50\ 2x_1+3x_2+2x_3+x_8=56 \end{cases}$$

Побудуємо сімплекс-таблицю:

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	B
x_4	6	1	0	1	0	0	0	0	60
x_5	3	0	4	0	1	0	0	0	80
x_6	1	5	1	0	0	1	0	0	80
x_7	0	3	4	0	0	0	1	0	50
x_8	2	3	2	0	0	0	0	1	56
\mathcal{C}	-6	-5	-7	0	0	0	0	0	0

Бачимо, що (0,0,0,60,80,80,50,56) — допустимий розв'язок. Бачимо, що через останньої строчки -7 — мінімальна. Тому беремо колонку зі значенням x_3 і ділимо значення зі стовпця B на значення у колонці x_3 . Маємо набір $\{80/4,80/1,50/4,56/2\}=\{20,80,12.5,28\}$, з яких мінімальний — це 12.5. Отже змінюємо місцями x_3 та x_7 . Для цього спочатку ділимо строку з x_7 на 4:

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	B
x_4	6	1	0	1	0	0	0	0	60
x_5	3	0	4	0	1	0	0	0	80
x_6	1	5	1	0	0	1	0	0	80
x_3	0	$\frac{3}{4}$	1	0	0	0	$\frac{1}{4}$	0	$\frac{25}{2}$
x_8	2	3	2	0	0	0	0	1	56
\mathcal{C}	-6	-5	-7	0	0	0	0	0	0

А далі віднімаємо від кожної строчки де $x_3 \neq 0$ строку з x_7 , помножену на значення x_3 у данної строчки. Тобто

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	B
x_4	6	1	0	1	0	0	0	0	60
x_5	3	-3	0	0	1	0	-1	0	30
x_6	1	$\frac{17}{4}$	0	0	0	1	$-\frac{1}{4}$	0	$\frac{135}{2}$
x_3	0	$\frac{3}{4}$	1	0	0	0	$\frac{1}{4}$	0	$\frac{25}{2}$
x_8	2	$\frac{3}{2}$	0	0	0	0	$-\frac{1}{2}$	1	31
\mathcal{C}	$\overline{-6}$	$\frac{1}{4}$	0	0	0	0	0	0	$\frac{175}{2}$

Тепер беремо -6 з останнього рядка, що відповідає стовпцю x_1 (всі значення у стопці B додатні). Діливо значення у стовпці B на ненульові коефіцієнти перед x_1 , тобто отримуємо набір $\{60/6,30/3,135/2,31/2\}=\{10,10,67.5,15.5\}$. Тому можемо або змінити x_1 на x_4 , або на x_5 . Зробимо обмін x_1,x_4 , тому ділимо строчку з x_4 на 6:

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	B
x_1	1	$\frac{1}{6}$	0	$\frac{1}{6}$	0	0	0	0	10
x_5	3	-3	0	0	1	0	-1	0	30
x_6	1	$\frac{17}{4}$	0	0	0	1	$-\frac{1}{4}$	0	$\frac{135}{2}$
x_3	0	$\frac{3}{4}$	1	0	0	0	$\frac{1}{4}$	0	$\frac{25}{2}$
x_8	2	$\frac{3}{2}$	0	0	0	0	$-\frac{1}{2}$	1	31
\mathcal{C}	-6	$\frac{1}{4}$	0	0	0	0	0	0	$\frac{175}{2}$

Далі зануляємо усе від x_1 :

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	B
x_1	1	$\frac{1}{6}$	0	$\frac{1}{6}$	0	0	0	0	10
x_5	0	$-\frac{7}{2}$	0	$-\frac{1}{2}$	1	0	-1	0	0
x_6	0	$\frac{49}{12}$	0	$-\frac{1}{6}$	0	1	$-\frac{1}{4}$	0	$\frac{115}{2}$
x_3	0	$\frac{3}{4}$	1	0	0	0	$\frac{1}{4}$	0	$\frac{25}{2}$
x_8	0	$\frac{7}{6}$	0	$-\frac{1}{3}$	0	0	$-\frac{1}{2}$	1	11
\mathcal{C}	0	$\frac{5}{4}$	0	1	0	0	0	0	$\frac{295}{2}$

Отже цільова функція $\mathcal{C}=\frac{295}{2}-\left(\frac{5}{4}x_2+x_4\right)$ і оскільки $x_2,x_4\geq 0$, то максимум цільової функції дорівнює $\frac{295}{2}$ при оптимальному розв'язку

максимум цільової функції дорівнює
$$\frac{200}{2}$$
 при оптимальному розв $(10,0,12.5,0,0,57.5,0,11)$, тобто при значенні $\mathbf{x}=\begin{bmatrix} 10\\0\\12.5 \end{bmatrix}$.

Відповідь. Якщо виробити сировину у кількості (10,0,12.5) то отримаємо максимальний прибуток 147.5.

Завдання 6.

Умова. До цієї задачі лінійного програмування скласти двоїсту задачу. Розв'язати цю задачу графічним методом, а двоїсту задачу симплекс-методом.

Початкова задача:

$$\mathcal{C}(x_1,x_2) = 3x_1 + 4x_2 o \max \ egin{cases} 3x_1 + 2x_2 \leq 8 \ x_1 + 4x_2 \leq 10 \ x_1,x_2 \geq 0 \end{cases}$$

Розв'язок. Спочатку розв'яжемо початкову задачу графічним методом. Побудуємо прямі $3x_1+2x_2=8, x_1+4x_2=10$ та оберемо відповідні півплощини:

Також врахуємо $x_1, x_2 \geq 0$ та оберемо чотирикутник, що є перетином усіх отриманих напівплощин:

Будуємо сімейство прямих $3x_1+4x_2=\gamma, \gamma\in\mathbb{R}$ та збільшуємо γ наскільки зможемо. З малюнку видно, що максимум досягається у точці перетинання прямих $3x_1+2x_2=8$ та $x_1+4x_2=10$:

Перетин легко знаходиться: $(x_1,x_2)=(\frac{6}{5},\frac{11}{5})$, тому максимум досягається при значенні $\mathcal{C}(6/5,11/5)=\frac{62}{5}=12.4$.

Тепер побудуємо двоїсту задачу. Маємо 2 змінні (y_1,y_2) і тепер нам потрібно мінімізувати функцію:

$$\mathcal{L}(y_1,y_2)=8y_1+10y_2
ightarrow \min$$

Тепер побудуємо транспоновану матрицю коефіцієнтів:

$$\mathbf{A} = egin{bmatrix} 3 & 2 \ 1 & 4 \end{bmatrix}
ightarrow \mathbf{A}^T = egin{bmatrix} 3 & 1 \ 2 & 4 \end{bmatrix}$$

I тому маємо нові обмеження (поки знаки нерівностей залишимо під запитанням):

$$egin{cases} 3y_1 + y_2 \ (?) \ 3 \ 2y_1 + 4y_2 \ (?) \ 4 \ & \Longrightarrow \ \begin{cases} 3y_1 + y_2 \ (?) \ 3 \ y_1 + 2y_2 \ (?) \ 2 \end{cases} \end{cases}$$

Випишемо обмеження на y_i . Для цього візьмемо знаки нерівностей в "великих" умовах з початкового завдання і "інвертуємо їх": $y_1,y_2\geq 0$. Знак для нерівностей просто продублюємо з умов на x_i :

$$egin{cases} 3y_1+y_2 \geq 3 \ y_1+2y_2 \geq 2 \end{cases}$$

Остаточно двоїста задача виглядає наступним чином:

$$\mathcal{L}(x_1,x_2) = 8y_1 + 10y_2 o \min \ egin{cases} 3y_1 + y_2 \geq 3 \ y_1 + 2y_2 \geq 2 \ y_1,y_2 \geq 0 \end{cases}$$

Розширемо систему рівнянь з обмеженнями:

$$\left\{egin{aligned} 3y_1+y_2-y_3&=3\ y_1+2y_2-y_4&=2\ y_1,y_2,y_3,y_4&\geq 0 \end{aligned}
ight.$$

Виражаємо y_3, y_4 через y_1, y_2 :

$$egin{cases} y_3 = -3 + 3y_1 + y_2 \ y_4 = -2 + y_1 + 2y_2 \end{cases}$$

Вільні члени обидва від'ємні. Отже, візьмемо мінімальний з них (в нашому випадку це -3) та тому змінимо y_1, y_3 . Тому:

$$y_1=1-rac{1}{3}y_2+rac{1}{3}y_3$$

Підставивши в друге рівняння, отримаємо

$$y_4 = -2 + 1 - rac{1}{3}y_2 + rac{1}{3}y_3 + 2y_2 = -1 + rac{5}{3}y_2 + rac{1}{3}y_3$$

Вільний член -1, тому поміняємо y_4 та y_2 :

$$\frac{5}{3}y_2 = 1 - \frac{1}{3}y_3 + y_4 \implies y_2 = \frac{3}{5} - \frac{1}{5}y_3 + \frac{3}{5}y_4$$

Підставляємо у перше рівняння:

$$y_1 = 1 - rac{1}{3} \left(rac{3}{5} - rac{1}{5} y_3 + rac{3}{5} y_4
ight) + rac{1}{3} y_3 = 1 - rac{1}{5} + rac{1}{15} y_3 - rac{1}{5} y_4 + rac{1}{3} y_3 = rac{4}{5} + rac{2}{5} y_3 - rac{1}{5} y_4$$

Отже, остаточно маємо

$$egin{cases} y_1 = rac{4}{5} + rac{2}{5}y_3 - rac{1}{5}y_4 \ y_2 = rac{3}{5} - rac{1}{5}y_3 + rac{3}{5}y_4 \end{cases}$$

Тому допустимий розв'язок $(rac{4}{5},rac{3}{5},0,0)$. Підставляємо у наш вираз $\mathcal{L}(y_1,y_2)$:

$$\mathcal{L}(y_1,y_2) = 8y_1 + 10y_2 = rac{32}{5} + rac{16}{5}y_3 - rac{8}{5}y_4 + 6 - 2y_3 + 6y_4 = rac{62}{5} + \left(rac{6}{5}y_3 + rac{22}{5}y_4
ight)$$

Бачимо, що $\mathcal{L}_{\min}=rac{62}{5}$, що збігається з відповіддю, коли ви розв'язували графічним методом. Цей мінімум досягається при $y_1=rac{4}{5},y_2=rac{3}{5}.$

Індивідуальні завдання

18