

- This is a symmetrical differential amplifier, with M_1 and M_2 operating in saturation mode.
- When there is no differential input voltage $(v_{ID} = v_{GS1} v_{GS2} = 0)$ the tail current divides evenly between the two arms $(i_{D1} = i_{D2} = I/2)$.
- The gate to source voltages must then also be equal: $V_{GS0} = v_{GS1} = v_{GS2}$.
- And $\frac{I}{2} = K_N (V_{GS0} V_t)^2$ where $K_N = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$.
- (a) What is the minimum differential input voltage (v_{ID}) that can be applied to cause all current to flow through M_1 ? Please write expression in terms of $V_{GSO} V_t$.
- (b) What is the common mode rejection ratio? What is it for this circuit (assume differential input and differential output)?

Problem 5

Please describe the major sub-circuits of an op-amp, and the critical design considerations of each.