<u>一种选择区域的方法是,</u> 从一个包含 $z^{(\tau)}$ 的具有某个宽度 w 的区域开始,然后测试每个端点,看它们是否位于切片内部。如果有端点没在切片内部,那么区域在增加 w 值的方向上进行扩展,知道端点位于区域外。然后, z' 的一个样本被从这个区域中均匀抽取。如果它位于切片内,那么它就构成了 $z^{(\tau+1)}$ 。如果它位于切片外,那么区域收缩,使得 z' 组成一个端点,并且区域仍然包含 $z^{(\tau)}$ 。然后,另一个样本点从这个缩小的区域中均匀抽取,以此类推,直到找到位于
切片内部的一个 z 值。) 切片采样可以应用于多元分布中,方法是按照吉布斯采样的方式重复地对每个变量进行采样。这要求对于每个元素 z_i ,我们能够计算一个正比于 $p(z_i \mid z_{\setminus i})$ 的函数。

