

Integrationsverfahren zur Simulation im Zeitbereich

Simon Kerschbaum

13.12.2013

Integrationsverfahren zur Simulation im Zeitbereich

Agenda

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

Was ist das?

- Analytische Berechnung von komplexen Systemen nicht möglich (z.B.: Energieversorgungsnetz)
- Verwendung des PC als Simulationsmedium
- Aufgabe: Lösung von Anfangswertproblemen: $\dot{x}(t)=f(x,t),\quad x(0)=x_0 \quad \text{führt zu Integration: } x(t)=x_0+\int\limits_0^t \dot{x}(t)\mathrm{d}t$
- Numerische Approximation erforderlich: $x_i = ?$
- → Integrationsverfahren

Integrationsverfahren zur Simulation im Zeitbereich

Agenda

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

i(t)

 $u_{C}(t)$

 $u_R(t)$

Ein Beispielsystem

- Entladung eines Kondensators:
- Modellbildung durch Spannungsund Strombeziehungen:

$$u_C(t) = u_R(t) := u(t) \qquad u_C(t) = u_0 + \frac{1}{C} \int_0^t i(t) dt$$

$$-u_C(t) = u_1(t) \qquad -1$$

$$\dot{u}(t) = \frac{-u_R(t)}{R}$$
 $\dot{u}(t) = \frac{-1}{RC}u(t), \quad u(0) = u_0$

$$\dot{x} = \lambda x, \quad x(0) = 1$$

hier:
$$\lambda = -1$$
, $\dot{x} = -x$

Integrationsverfahren zur Simulation im Zeitbereich

Ein Beispielsystem

- hier: $\lambda = -1$, $\dot{x} = -x$
- Tatsächliche Lösung: $x(t) = x_0 e^{\lambda t}$

Die einfachsten Verfahren

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

Das explizite Euler-Verfahren

- Wahl der Schrittweite:
 T = 0.5
- Annahme konstanter
 Steigung

$$x_{i+1} = x_i + T \cdot \dot{x}$$

$$x_{i+1} = (1 - T)x_i$$

$$x_1 = x(0) = 1 \Rightarrow x_2 = 0.5$$

Das explizite Euler-Verfahren

- Wahl der Schrittweite:
 T = 2.1
- **Instabilität** bei zu großer Schrittweite!

Das implizite Euler-Verfahren

 Annahme der Steigung des Intervallendes:

$$x_{i+1} = x_i + T \cdot f(x_{i+1})$$

 $x_{i+1} = x_i - T \cdot x_{i+1}$

 (Nichtlineare) Gleichung muss gelöst werden

$$x_{i+1} = \frac{x_i}{1+T}$$

Keine Instabilität

Die Trapezregel

 Mittelwert der Steigungen von explizitem und implizitem Euler:

$$x_{i+1} = T \cdot \frac{1}{2} (f(x_i) + f(x_{i+1}))$$

Implizite Gleichung
 → Auflösen

$$x_{i+1} = x_i \frac{1 - T/2}{1 + T/2}$$

Keine Instabilität

Die Trapezregel

Bessere Ergebnisse als Euler-Verfahren:
 Konsistenzordnung p:

$$e(t) = \mathcal{O}(T^p)$$

- Euler: p=1

- Trapez: p=2

Problem:

implizite Gleichung $x_{i+1} = T \cdot \frac{1}{2} (f(x_i) + f(x_{i+1}))$ nicht lösbar oder Rechenaufwand zu groß

- →explitizes Verfahren benötigt
- \rightarrow Idee: Schätzung des unbekannten Wertes x_{i+1} durch expliziten Euler

$$\rightarrow$$
 Heun-Verfahren: $x_{i+1} = T \cdot \frac{1}{2} \Big(f(x_i) + f(x_i + Tf(x_i)) \Big)$

Das Heun-Verfahren

• Hier:

$$x_{i+1} = x_i(1 - T + \frac{T^2}{2})$$

 Instabilität bei zu großer Schrittweite!

Stabilitätsbetrachtungen

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

Stabilitätsbetrachtungen

• Stabilitätsgebiet S: Bereich, in dem $T \cdot \lambda_i$ liegen müssen, damit Verfahren stabil

 λ_i : Eigenwerte der Dynamikmatrix A in System $\dot{x} = Ax$

Quelle: nach Deuflhard, P.; Bornemann, F.: Numerische Mathematik. II: Integration gewöhnlicher Differentialgleichungen

Schrittweitensteuerung

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

Schrittweitensteuerung

- Bisher: konstante Schrittweite T
- Gedanke: Anpassung der Schrittweite in jedem Schritt:
 - Starke Änderung → kleine Schrittweite
 - Schwache Änderung → große Schrittweite
- Ziel: Verringerung der Rechenzeit
- Vorgabe von Toleranz und T_0

Schrittweitensteuerung

Ablauf:

Zusammenfassung und Ausblick

- Was ist das?
- Ein Beispielsystem
- Die einfachsten Verfahren
- Stabilitätsbetrachtungen
- Schrittweitensteuerung
- Zusammenfassung und Ausblick

Zusammenfassung

- Verfahren unterschiedlicher Konsistenzordnung
- Explizite / Implizite Verfahren
 - Implizit: + Stabilitätsverhalten
 - Rechenaufwand/Auflösen der Gleichung (Realisierbarkeit)
 - Explizit: vice versa
- Schrittweitensteuerung
 - Kann Rechenaufwand verringern
 - Wahl der Toleranz von wesentlicher Bedeutung

Ausblick

- Erhöhung der Stützstellen (allgemeine Runge-Kutta-Verfahren)
- Eingebettete Runge-Kutta-Verfahren (zur Schrittweitensteuerung)
- Mehrschrittverfahren
- Prädiktor-Korrektor-Verfahren