2005:2:6

Thomas Forster

May 10, 2014

Contents

(a)

Don't think (at this stage) of what the action actually is: think of it as a black box. (This is a plot point for part (d)). $x \sim y$ if x can be sent to y by the action(!) of a permutation. (I know they say bijection not permutation but, in the only realistic cases you are going to have to think about, all the bijections of A that are of any interest will in fact be permutations). This relation is symmetric beco's the inverse of a permutation is a permutation; it's transitive beco's the composition of two permutations is a permutation; finally it's reflexive beco's of $\mathbb{1}_A$.

(b)

These equivalence classes are called *orbits*. This is nice: the orbit of aplanet is all the places a planet can get sent to; the orbit of an element of X is the set of things it can be moved to by the action of Bij(A).

When you look at e_x and its definition, don't panic. e_x is going to be a function from Bij(A) to $[x]_{\sim}$. Take some time out to think along the following lines If i have an $x \in X$ in my mind, and i want to define a function $Bij(A) \to [x]_{\sim}$ —using x—what function can i dream up? Think about it for a bit, and you will come up with the definition the examiners have supplied. Do this **before** attempting to understand the definition.

Here, with e_x , we are thinking of $x * \sigma$ not as the result of doing σ to x but as the result of doing x to σ . The result is the same, you're just thinking of it differently.

What has to happen for e_x to be surjective? It has to be that, for every $y \in [x]_{\sim}$, there is a $\sigma \in Bij(A)$ that sends x to y. But $[x]_{\sim}$ is precisely the set of things that x can be sent to in this way! The fact that e_x is surjective can be expressed as $|Bij(A)| \geq^* |[x]_{\sim}|$ and \geq^* is the same as \geq when all numbers concerned are finite, so we infer $n! \geq |[x]_{\sim}|$.

(c)

- (i) Clearly n!.
- (ii) Reality check (always useful in cases like this!) the answer had better be a whole number. There are |X| things in X and they are divided amongst equivalence classes each of size n!, so there must be |X|/n! (= m/n! if |X| = m) of these equivalence classes.

(d)

Key here is to read the definition carefully so you are sure you know what is going on. In fact, a possibly even better idea is to think ... How might Bij(A) act on the set of injections $A \hookrightarrow B$? Then you get 6 fairly easy marks. I think there is a background assumption that A and B are both finite.

There are two situations to consider: $|A| \leq |B|$ and |A| > |B|. In the second case Inj(A,B) is the empty set.

References