Intervals, Transformations, and Slope Solution (version 66)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7,-1) \cup (4,9)$
Negative	$(-10, -7) \cup (-1, 4)$
Increasing	$(-10, -4) \cup (2, 6)$
Decreasing	$(-4,2) \cup (6,9)$
Domain	(-10,9)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 66)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=21$ and $x_2=77$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 21 & 54 \\ 54 & 77 \\ 62 & 21 \\ 77 & 62 \\ \end{array}$$

$$\frac{g(77) - g(21)}{77 - 21} = \frac{62 - 54}{77 - 21} = \frac{8}{56}$$

The greatest common factor of 8 and 56 is 8. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{7}$$

2