

Fruit classification from images using deep learning

PHÂN LOẠI TRÁI CÂY DỰA TRÊN HÌNH ẢNH BẰNG PHƯƠNG PHÁP HỌC SÂU

TRẦN HOÀNG KHANH, DƯƠNG DUY KHANG, NGUYỄN NGỌC HẢI

INTRODUCTION

Problems definition:

- Input: Image of a fruit.
- Output: Name of the fruit in the picture.

Challenge:

- Distinguish between fruits that are similar alike can be difficulties
- Natural changes in fruit over time can confuse results.

Thesis Goal: Train a deep learning model to classify images of fruits and vegetables into food groups that are grouped by semantic proximity.

DATASETS

- Data source: Oltean, Mihai (2018), "Fruits 360 dataset", Mendeley Data, V1, DOI: 10.17632/rp73yg93n8.1
- Quantity: 56671 samples from 69 type of fruit, including 39829 samples (training set) and 16842 samples (test set).

PROPOSED METHOD

Use photographic techniques to capture images of fruits

Collect Images

Remove image background before using

convert to 100x100 image and randomly flip image

Preprocessing

Convert RGB image → HSV + Grayscale, then combine 2 channels into 4-channel image (HSV + Gray).

RGB image

Grayscale image

Build Model

Build a CNN architecture for classification consisting of 4 convolution layers (kernel 3×3, ReLU, max-pooling) and 2 fully connected layers.

EXPERIMENTS

Special cases through the experimental process

- Beets are often confused with Apple and Blackberry.
- Lemons are often confused with Limes

• Plums are often confused with Red Cherries and Pomegranate.

The model has learned effectively, without overfitting or underfitting.

RESULTS

	MODEL_NAME	ACCURACY	TIME_SEC
0	EfficientNetB0	0.410409	3107.27
1	DenseNet121	0.975641	3185.87
2	CNN_model	0.980556	2915.29
3	ResNet50	0.645114	3126.94

Designing a model that fits the problem will more suitable than just relying on complex available architectures.

The model performs better than models such as **DenseNet121**, **ResNet50** and **EfficientNetB0**