CH

## 04 프로세스 스케줄링

## \* FCFS(First Come First Served)

| 프로세스 | 실행시간 |
|------|------|
| P1   | 24   |
| P2   | 3    |
| P3   | 3    |
| P4   | 20   |

02. 다음은 CPU에 서비스를 받으려고 도착한 순서대로 프로세스와 그 서비스 시간을 나타낸다. FCFS(First Come First Served) CPU Scheduling에 의해서 프로세스를 처리한다고 했을 경우 프로세스의 평균 대기시간을 구하시오.

| 프로세스 | 버스트 시간(초) | 다기시간     | かからと               |
|------|-----------|----------|--------------------|
|      | 24        | 0        | <b>むむ</b> Nむ<br>24 |
| P2   | 24        | 24       |                    |
| · -  | 3         | _ \      | 21)                |
| P3   | 3         | 2Π       | 30                 |
|      | <u> </u>  | <u> </u> |                    |
|      | 51        |          |                    |

03. 다음과 같은 3개의 작업에 대하여 FCFS 알고리즘을 사용할 때, 임의의 작업 순서로 얻을 수 있는 최대 평균 반환시간을 T, 최소 평균 반환시간을 t라고 가정했을 경우 T-t의 값은?

|        | <u> </u>                                | 로세스 | 실행시간      | P3 12 0 12                             |
|--------|-----------------------------------------|-----|-----------|----------------------------------------|
|        |                                         | P1  | 9         | P1 9 12 21                             |
|        |                                         | P2  | 3         | P2 3 21 24                             |
|        |                                         | P3  | 12        | ] \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| P2 3 ( | H 世<br>フ 3<br>3 12<br>2 24<br>サ 39<br>サ |     | T-t=19-13 | T=19                                   |

- 12 -

선건 - 운영체제 강적, 게이원 이 . 백분수 있다.

종류 선권-RR(라는 로비, SRT, MLQ, ,MLFQ, 비보겠-FCFS, SJF, HRN, 우선순의 ,기한부

SRT, MLQ, SJF, 우선순위 신 기아 행상 반생시킨수 있는 프로베스 알고리출 네 해전방법 = 어이싱기법 => MLFQ, HRN 적용한기법 04. 다음과 같은 3개의 작업에 대하여 FCFS 알고리즘을 사용 할 때, 임의의 작업 순서로 얻을 수 있는 최대 평균 반환시간을 T, 최소 평균 반환시간을 t라고 가정했을 경우 T-t의 값은?



HI선정 FCFS, SJF, HRN, 우선국의, 기한부

01. 다음과 같은 프로세스가 차례로 큐에 도착하였을 때, SJF 정책을 사용할 경우 가장 먼저 처리되는 작업은?

| 프로세스 | 실행시간 | :P4        |    |
|------|------|------------|----|
| P1   | 6    |            |    |
| P2   | 8    | P47 P37P17 | ρ2 |
| P3   | 4    |            |    |
| P4   | 3    |            |    |
|      | I    | J          |    |

02. 다음과 같은 프로세스들이 차례로 준비상태 큐에 들어왔을 경우 SJF 스케줄링 기법을 이용하여 제출시간이 없는 경우의 평균 실행시간은? 도착시간

|         |    |    |    | A CN H                 |   |
|---------|----|----|----|------------------------|---|
| 프로세스    | P1 | P2 | P3 | P26 0 6                |   |
| 실행시간(초) | 18 | 6  | 9  | P3 9 6 1               | 5 |
|         |    |    | I  | - P1 18 15 3           | 3 |
|         |    |    |    | 11                     |   |
|         |    |    |    | } ( <del>33</del> ≥)(1 |   |

03. 다음과 같은 작업들이 차례로 준비상태 큐에 들어왔다고 가정할 경우, SJF 기법으로 스케줄링한다면 프로세스 2의 대기시간은?

|      | 〈프로세스 목록 | 록> |      | 1 7 0 2 3 6 | 9  |
|------|----------|----|------|-------------|----|
| 프로세스 | 도착시간     |    | 실행시간 | 3 5 8       | 13 |
| 1    | 0        |    | 7    | [-[         |    |
| 2    | 1        |    | 3    | (1+3/-2     |    |
| 3    | 2        |    | 5    |             |    |
|      |          |    |      | -           |    |

1.6

04. 다음과 같은 Task List에서 SJF방식으로 Scheduling할 경우 Task 2의 종료 시간을 구하시오. (단, 도착시간에 상관없이 실행시간을 기준으로 종료시간을 구하시오.)

| ~~~ |        |             | - 1    | CM •       | ٣ |
|-----|--------|-------------|--------|------------|---|
|     |        | ⟨Task List⟩ |        | 1606       | • |
|     | Task   | 도착시간        | 실행시간   | 2 3 7 1    | 1 |
|     | Task 1 | 0           | 6 4 79 | ] 34 1  11 | ! |
|     | Task 2 | 1           | 3      | 6-1        |   |
|     | Task 3 | 2           | 4      | (6+3)-2    |   |
|     |        |             |        | _          |   |

|                    | 실행시간 | 프로세스 |
|--------------------|------|------|
| 2 3                | 6    | P-1  |
|                    | 3    | P-2  |
| ] \( \bar{\chi} \) | 8    | P-3  |
| ] ) (              | 7    | P-4  |
|                    | ,    | 1 7  |

07. 다음과 같이 P1, P2, P3, P4 프로세스가 동시에 준비 상태 큐에 도착했을 때 SJF(Shortest Job First) 스케줄 링 알고리즘에서 평균 반환시간과 평균 대기시간을 쓰시오. (단, 프로세스 간 문맥교환에 따른 오버헤드는 무시하며, 주어진 4개의 프로세스 외에 처리할 다른 프로세스는 없다고 가정한다.)

| 〈프로세. | 스 목록〉 | CM HE      |
|-------|-------|------------|
| 프로세스  | 실행시간  | 3404       |
| P1    | 5     | 1549       |
| P2    | 6     | 26915      |
| P3    | 4     | 49 15 24   |
| P4    | 9     | q (28 4152 |
|       |       | · + (      |
| :此处   | 13    | () ()      |

CU7 1

08. 다음은 프로세스가 준비 상태 큐에 도착한 시간과 프로세스를 처리하는 데 필요한 실행 시간을 보여준다. 비선점형 SJF(Shortest Job First) 스케줄링 알고리즘을 사용할 경우, 프로세스들의 대기시간 총합을 구하시오. (단, 프로세스 간 문맥 교환에 따른 오버헤드는 무시하며, 주어진 4개 프로세스 외에 처리할 다른 프로세스는 없다고 가정한다.)

| 짜이고 기정인 | <u> </u> |           |      | Y CN AE     |
|---------|----------|-----------|------|-------------|
|         |          | 〈프로세스 목록〉 |      | PI 30 0 3°  |
|         | 프로세스     | 도착시간      | 실행시간 | P2 10 25 35 |
|         | P1       | 0         | 30   | P4 10 25 35 |
|         | P2       | 5         | 10   | P3 15 40 55 |
|         | Р3       | 10        | 15   |             |
|         | P4       | 15        | 10   |             |

:.90

※ HRN(Highest Response-ratio Next)
→

신智시ひと = HHKNひと

- 01. HRN 스케줄링 기법에서 우선순위를 구하는 식을 쓰시오. (디지기 시간 + 서비스시간) /서비스시간
- 02. HRN(Highest Response-ratio Next) 방식으로 스케줄링할 경우, 입력된 작업이 다음과 같을 때 우선순위가 가장 높은 작업은?

| 작업 | 대기시간 | 서비스시간      |  |
|----|------|------------|--|
| А  | 8    | 2 75       |  |
| В  | 10   | 6 -)2,X    |  |
| С  | 15   | /   -) \ X |  |
| D  | 20   | 8 3X       |  |

03. HRN 스케줄링 방식에서 입력된 작업이 다음과 같을 때 우선순위가 가장 높은 것은?

| 작업 | 대기시간 | 서비스(실행)시간 |                 |
|----|------|-----------|-----------------|
| А  | 5    | 20 -      | →1.x            |
| В  | 40   | 20 -      | <del>-</del> 23 |
| С  | 15   | 45        | -) (.×          |
| D  | 20   | 2 -       | -) lı           |

04. HRN 방식으로 스케줄링 할 경우, 입력된 작업이 다음과 같을 때 우선순위가 높은 순서부터 차례로 옳게 나열 한 것은? : C7D7A7B

| 작업 | 대기시간 | 서비스(실행)시간 |
|----|------|-----------|
| А  | 40   | 20        |
| В  | 20   | 20 -      |
| C  | 70   | 10        |
| D  | 120  | 30 -      |

## \*\* SRT(Shortest Remaining Time)

01. 다음 표는 단일 CPU에 진입한 프로세스의 도착시간과 처리하는 데 필요한 실행시간을 나타낸 것이다, 프로세 스 간 문맥 교환에 따른 오버헤드는 무시한다고 할 때, SRT(Shortest Remaining Time) 스케줄링 알고리즘을 사용한 경우 네 프로세스의 평균 반환시간(Turnaround Time)을 쓰시오.

| 프로세스 | 도착시간 | 실행시간 |
|------|------|------|
| P1   | 0    | 8    |
| P2   | 2    | 4    |
| P3   | 4    | 1    |
| P4   | 6    | 4    |

02. 다음 표는 단일 CPU에 진입한 프로세스의 도착시간과 처리하는 데 필요한 실행시간을 나타낸 것이다. 프로세 스 간 문맥 교환에 따른 오버헤드는 무시한다고 할 때, SRT(Shortest Remaining Time) 스케줄링 알고리즘을 사용한 경우 네 프로세스의 평균 반환시간(Turnaround Time)을 쓰시오.

| 1   |                |                |                 |                          |
|-----|----------------|----------------|-----------------|--------------------------|
|     | 프로세스           | 도착시간           | 실행시간            |                          |
|     | P1             | 0              | 150             |                          |
|     | P2             | 2              | XXO             |                          |
|     | P3             | X              | XO              |                          |
|     | P4             | 5              | Ko              |                          |
| P1, | ~ P2 ~ P3<br>2 | P2 ~ P4<br>2 4 | ~PI<br>5 1<br>2 | CU) 41.24<br>9 16<br>1 5 |
|     |                | - 16 -         | 7               | 26                       |

$$\frac{P^{2} \sim P^{2} \sim P^{3} - P^{2} \sim P^{4} \sim P^{3}}{2}$$

13 P3 <sup>2</sup> ρ2 SRT IL P4 4 P2 2 P1 ~2 6 Mak 도각 깍찝 86 4× \* Ð ρı 此 신 TH 2 P2 PI 8 9 Iη P3 4 5 6 P4 0 4 P4 .: )

03. 다음은 프로세스가 준비 상태 큐에 도착한 시간과 프로세스를 처리하는 데 필요한 실행시간을 보여준다. 선점형 스케줄링 알고리즘인 SRT(Shortest Remaining Time) 알고리즘을 사용할 경우, 프로세스들의 대기시간 총합은? (단, 프로세스 간 문맥 교환에 따른 오버헤드는 무시하며, 주어진 4개 프로세스 외에 처리할 다른 프로세스는 없다고 가정한다.)

| 프로세스 | 도착 시간 | 실행 시간   |
|------|-------|---------|
| P1   | 0     | 30 5k 0 |
| P2   | 5     | 1050    |
| P3   | 10    | 150     |
| P4   | 15    | 160     |

01. 라운드 로빈(Round-Robin) 방식으로 스케줄링 할 경우, 입력된 작업이 다음과 같고 각 작업의 CPU 할당 시간이 4시간일 때, 모든 작업을 완료하기 위한 CPU의 사용 순서를 옳게 나열하시오.

|    |        |                   | A     |
|----|--------|-------------------|-------|
| 작업 | 입력시간   | 수행시간              | 4 4 4 |
| А  | 10:00  | ※시간 米             | B - ( |
| В  | 10:30  | 1841간 1640        | ~4~~  |
| С  | 12:00  | 1년 1/1 <b>/</b> 3 | ~C    |
|    |        | 717               | 7     |
|    | : ABCA | BC BC C           |       |

02. 라운드 로빈(Round-Robin) 방식으로 스케줄링 할 경우, 입력된 작업이 다음과 같고 각 작업의 CPU 할당 시간이 3시간일 때, CPU의 사용 순서를 나열하시오.

| 작업 | 입력시간  | 수행시간           |
|----|-------|----------------|
| А  | 10:00 | 5시간 <b>갓 ᆼ</b> |
| В  | 10:30 | 10시간 맛나/0      |
| С  | 12:00 | 15시간 12962     |

03. 준비상태 큐에 프로세스 A, B, C가 차례로 도착하였다. 라운드 로빈(Round Robin)으로 스케줄링할 때 타임 슬라이스를 4초로 한다면 평균 반환시간을 구하시오. (단, 도착시간은 염두에 두지 않는다.)

|         | 7:10    |       |      | A 17 | 9 26  |
|---------|---------|-------|------|------|-------|
| 프로세스    | A       | В     | С    | B 4  | 4 8   |
| 실행시간(초) | 17 1394 | , Aco | 5 KO | C 5  | 12 17 |
|         | A B C   | A (   | A A  | A    | 11    |
|         | 4~4~1   | 4 4 1 | 4 4  | 1    | 3 (51 |

04. 프로세스들의 도착 시간과 실행 시간이 다음과 같다. CPU 스케줄링 정책으로 라운드 로빈(Round-Robin) 알고 리즘을 사용할 경우 평균 대기시간을 구하시오. (단, 시간 할당량은 10초이다.)

| 작업      | 도착시간 | 실행      | ]      | ch | H  |
|---------|------|---------|--------|----|----|
| P1      | 0    | 20 0    | 10     | D  | 0  |
| P2      | 6    | 18 80   | 18     | 20 | 38 |
| P3      | 14   | 80      | 5      | 6  | 11 |
| P4      | 15   | 12/20   | 12     | 19 | 31 |
| P5      | 19   | 20      | .2     | 16 | () |
| 10 10 5 |      | 8 2 561 | -<br>- | 61 |    |

05. 다음 표와 같이 작업이 제출되었을 때, 라운드 로빈 정책을 사용하여 스케줄링할 경우 평균 반환시간을 구하시오. (단, 작업할당 시간은 4시간으로 한다.) - / 8 25

|       |         |           |             |   |               | -  |
|-------|---------|-----------|-------------|---|---------------|----|
| 18,27 |         |           |             | 1 |               |    |
| 1102  | 작업      | 제출시간      | 실행시간        | 4 | $\mathcal{M}$ | AF |
| 1111  | P1      | 0         | 84 p        | 8 | 12            | 20 |
| 4_    | P2      | 1         | \$0         | 4 | 3             | n  |
| 73    | P3      | 2         | 88 Xp       | 9 | (5            | 24 |
| 77    | P4      | 3         | 840         | 5 | ĺή            | 22 |
| 5/    | 1 2     | 3 4       | 3 4 3       |   |               | 1/ |
|       | 30 4 LE | ~ /4 ~ /4 | 4 ~ i~  ~ i |   |               | ή3 |

| 작업 | 도착시간 | 실행     |
|----|------|--------|
| P1 | 0    | 5 8 po |
| P2 | 1    | 1551   |
| P3 | 3    | XXO    |

$$\frac{1}{2}$$
  $\frac{2}{2}$   $\frac{3}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{3}{2}$   $\frac{2}{1}$   $\frac{2}{2}$   $\frac{3}{2}$   $\frac{2}{1}$ 

## 응답시간=반환시간

07. 아래의 프로세스 P1, P2, P3을 시간 할당량(Time Quantum)이 2인 RR(Round-Robin) 알고리즘으로 스케줄 링할 때, 평균 응답시간으로 옳은 것은? (단, 응답시간이란 프로세스의 도착시간부터 처리가 종료될 때까지의 시간을 말한다. 계산 결과값을 소수점 둘째자리에서 반올림한다.)

|        |      |      | 1 (1 (  | М   | 41  |
|--------|------|------|---------|-----|-----|
| 프로세스   | 도착시간 | 실행시간 | / M     | )۳( |     |
| P1     | 0    | 3/10 | 3       | 2   | 5   |
| P2     | 1    | XXO  | 4       | 4   | 8   |
| P3     | 3    | 20   | って      | 2   | 4   |
| 1 7 1  | 3 2  | 9,0  | 9       |     | ٦l  |
| 2~2~1~ | 2~2  | 2111 | 7 = 5.n |     | (1) |

08. 다음 표에서 보인 4개의 프로세스들을 시간 할당량(Time Quantum)이 5인 라운드 로번(Round-Robin) 스케 줄링 기법으로 실행시켰을 때 평균 반환시간을 구하시오.

| 프로세스 | 도착시간 | 실행시간   | N  | $\alpha$ |
|------|------|--------|----|----------|
| P1   | 0    | 2050   | Q  | (o       |
| P2   | 1    | 15/050 | 15 | 24       |
| P3   | 3    | 810    | 6  | 22       |
| P4   | 6    | 840    | 9  | 20       |