

X3-Class HiPerFET™ **Power MOSFET**

IXFA90N20X3

= 200V90A $12.8 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ra	atings
V _{DSS}	T _J = 25°C to 150°C	200	V
V _{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C, $R_{_{\rm GS}}$ = 1M Ω	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _c = 25°C	90	А
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	220	Α
I _A	T _C = 25°C	45	Α
E _{AS}	$T_c = 25^{\circ}C$	1.5	J
dv/dt	$I_{\rm S} \leq I_{\rm DM}, V_{\rm DD} \leq V_{\rm DSS}, T_{\rm J} \leq 150^{\circ} \rm C$	20	V/ns
P_{D}	T _C = 25°C	390	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	g 300	°C
dT/dt	Heating / Cooling rate, 175°C - 210°C	50	°C/min
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force	1065 / 2.214.6	N/lb
Weight		2.5	g

Features

- International Standard Package
- Low $R_{DS(ON)}$ and Q_{G} • Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	ζ
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1.5 \text{mA}$	2.5		4.5	V
GSS	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			5	μΑ
	T _J = 125°C			300	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			12.8	mΩ

Symbol	Test Conditions	Characteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Inless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	40	67	S
\mathbf{R}_{Gi}	Gate Input Resistance		1.4	Ω
C _{iss}			5420	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		930	pF
C _{rss}			4	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		420	pF
C _{o(tr)}	Time related $\int_{0.8}^{0.8} V_{DS} = 0.8 \cdot V_{DSS}$		1300	pF
t _{d(on)}	Resistive Switching Times		22	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		26	ns
t _{d(off)}	$R_{\rm G} = 5\Omega$ (External)		62	ns
t,	n _g = 352 (External)		13	ns
$Q_{g(on)}$			78	nC
Q _{qs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		23	nC
Q _{gd}			22	nC
R _{thJC}				0.32 °C/W

Source-Drain Diode

Symbol Test Conditions Chara (T, = 25°C, Unless Otherwise Specified) Min.		acteristic Values Typ. Max			
I _s	V _{GS} = 0V			90	Α
I _{sm}	Repetitive, pulse Width Limited by $T_{_{JM}}$			360	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 45A$, -di/dt = 100A/ μ s $V_R = 100V$		95 360 7.6		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 45A$ Value vs.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

DC

100

10ms

1,000

 $V_{\rm DS}$ - Volts

Fig. 15. Maximum Transient Thermal Impedance

1000

100

0.1

 $T_J = 150^{\circ} C$ $T_C = 25^{\circ} C$ Single Pulse

10

lo - Amperes

