

Lomonosov Moscow State University Faculty of Computational Mathematics and Cybernetics

Суперкомпьютерное моделирование и технологии Отчет о выполнении задания

Разработка параллельной программы решения трехмерного гиперболического уравнения Вариант 4

студент 624 группы факультета ВМК МГУ

Гладышев Глеб Юрьевич

Содержание

1	Математическая постановка дифференциальной задачи	2
2	Численный метод решения задачи	2
3	Особенности варианта	3
4	Программная реализация	3
5	Графики решений и погрешности	4
6	Расчеты времени выполнения и погрешности 6.1 OpenMP 6.2 MPI 6.3 MPI + OpenMP 6.4 MPI + CUDA	7
7	Профилирование MPI+CUDA	9
8	Выводы	10

1 Математическая постановка дифференциальной задачи

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $0 < t \le T$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u,$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z),$$

 $\frac{\partial u}{\partial t}\Big|_{t=0} = 0,$

при условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$
 $u(x, 0, z, t) = 0,$ $u(x, L_y, z, t) = 0,$
 $u(x, y, 0, t) = 0,$ $u(x, y, L_z, t) = 0,$

либо периодические граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t), \quad u_x(0, y, z, t) = u_x(L_x, y, z, t),$$

$$u(x, 0, z, t) = u(x, L_y, z, t), \quad u_y(x, 0, z, t) = u_y(x, L_y, z, t),$$

$$u(x, y, 0, t) = u(x, y, L_z, t), \quad u_z(x, y, 0, t) = u_z(x, y, L_z, t).$$

Конкретная комбинация граничных условий определяется индивидуальным вариантом задания.

2 Численный метод решения задачи

Для численного решения задачи введем на Ω сетку $\omega_{h\tau} = \overline{\omega}_h \times \omega_{\tau}$, где

$$T = T_0, \quad L_x = L_{x0}, \quad L_y = L_{y0}, \quad L_z = L_{z0},$$

$$\overline{\omega}_h = \{ (x_i = ih_x, y_j = jh_y, z_k = kh_z), \ i, j, k = 0, 1, \dots, N, \ h_x N = L_x, \ h_y N = L_y, \ h_z N = L_z \},$$

$$\omega_\tau = \{ t_n = n\tau, \ n = 0, 1, \dots, K, \ \tau K = T \}.$$

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\overline{\omega}_h$. Для аппроксимации исходного уравнения (1) с однородными граничными условиями (4)-(6) и начальными условиями (2)-(3) воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \ n = 1, 2, \dots, K - 1,$$

где Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u^n_{i-1,j,k} - 2u^n_{i,j,k} + u^n_{i+1,j,k}}{h^2} + \frac{u^n_{i,j-1,k} - 2u^n_{i,j,k} + u^n_{i,j+1,k}}{h^2} + \frac{u^n_{i,j,k-1} - 2u^n_{i,j,k} + u^n_{i,j,k+1}}{h^2}.$$

Приведенная выше разностная схема является явной — значение u_{ijk}^{n+1} на (n+1)-м шаге можно явно выразить через значения на предыдущих слоях.

Для начала счета (т.е. для нахождения u_{ijk}^2) должны быть заданы значения u_{ijk}^0 и u_{ijk}^1 , $(x_i, y_j, z_k) \in \omega_h$. Из условия (2) имеем

$$u_{ijk}^0 = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$

Простейшая замена начального условия (3) уравнением $(u^1_{ijk}-u^0_{ijk})/\tau=0$ имеет лишь первый порядок аппроксимации по τ . Аппроксимацию второго порядка по τ и h дает разностное уравнение

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$

Откуда

$$u_{ijk}^1 = u_{ijk}^0 + \frac{\tau^2}{2} \Delta_h \varphi(x_i, y_j, z_k).$$

Разностная аппроксимация для периодических граничных условий выглядит следующим образом:

$$\begin{aligned} u_{0jk}^{n+1} &= u_{Njk}^{n+1}, \quad u_{1jk}^{n+1} &= u_{N+1,j,k}^{n+1}, \\ u_{i0k}^{n+1} &= u_{iNk}^{n+1}, \quad u_{i1k}^{n+1} &= u_{iN+1,k}^{n+1}, \\ u_{ij0}^{n+1} &= u_{ijN}^{n+1}, \quad u_{ij1}^{n+1} &= u_{ijN+1}^{n+1}, \end{aligned}$$

где $i, j, k = 0, 1, \ldots, N$. Для вычисления значений $u^0, u^1 \in \gamma_h$ допускается использование аналитического значения u, которое задается в программе еще для вычисления погрешности решения задачи.

3 Особенности варианта

x	y	z	$u_{ m analytical}$		
1P	П	П	$\sin\left(\frac{3\pi}{L_x}x\right) \cdot \sin\left(\frac{2\pi}{L_y}y\right) \cdot \sin\left(\frac{2\pi}{L_z}z\right) \cdot \cos(a_t \cdot t + 4\pi), a_t = \pi\sqrt{\frac{9}{L_x^2} + \frac{4}{L_y^2} + \frac{4}{L_z^2}}$		

4 Программная реализация

Алгоритм решения задачи выглядит следующим образом:

- 1. Исходя из варианта, рассчитывается точное аналитическое решение $u_{\rm analytical}$ в узлах сетки.
- 2. Проводим разбиение области Ω между процессами.
- 3. Фиксируем временной слой (начиная с t = 0).
- 4. Используя формулы (10) и (12), находим значения u^0 и u^1 .
- 5. Пользуясь найденными u^0 и u^1 и разностным представлением уравнения (1), находим значения u в локальной области разбиения.
- 6. Передаем посчитанные граничные значения блокам-соседям.
- 7. Повторяем шаги 5-6 для внутренних блоков.
- Определяем максимальную погрешность на сетке между посчитанным и аналитическим решением.
- 9. Переходим на следующий слой по времени и повторяем шаги 2-9.

В параллельной версии программы с помощью технологии OpenMP осуществляется распараллеливание следующих фрагментов кода:

- ullet цикл по узлам сетки, вычисляющий начальное условие задачи в момент времени t=0.
- ullet цикл по внутренним узлам сетки, вычисляющий приближенное значение решения в момент времени t= au.
- цикл по внутренним узлам сетки, вычисляющий приближенное значение решения на каждом временном слое.

 цикл по всем узлам сетки, вычисляющий максимальную разницу между численным решением и аналитическим решением.

Использована директива OpenMP reduction(max:max_error), которая обеспечивает корректное объединение локальных максимальных значений от каждого потока в глобальное максимальное значение.

В представленном коде реализована параллельная программа с использованием библиотеки MPI. Работа начинается с инициализации среды MPI при помощи MPI_Init, где каждому процессу присваивается уникальный идентификатор (rank) и определяется общее количество процессов (size) с помощью MPI_Comm_rank и MPI_Comm_size.

Для распределения процессов в трёхмерной сетке используется функция MPI_Dims_create, которая автоматически определяет разбиение по осям X, Y, Z. Затем MPI_Cart_create создаёт декартову топологию, упорядочивая процессы в трёхмерной структуре. Каждый процесс определяет свои координаты в этой решётке с помощью MPI_Cart_coords.

Чтобы организовать обмен данными между соседними процессами, MPI_Cart_shift определяет соседей каждого процесса по каждой из осей, задавая их ранги в neighborRanksPrev и neighborRanksNext. Эти данные используются для передачи и получения граничных слоёв между процессами.

Глобальные размеры сетки задаются переменными Nx, Ny, Nz, а локальные размеры вычисляются для каждого процесса в зависимости от количества процессов по оси (gridDimensions) и координат процесса в сетке (gridCoordinates). Границы локального блока данных (xCoordinates, yCoordinates, oпределяются функцией initCoordinates, которая рассчитывает индексы начала и конца блока на основе шагов сетки (hx, hy, hz).

Функция communicateBoundaryLayers обеспечивает обмен граничными слоями между соседними процессами, используя буферы sendLeftX, sendRightX и их аналоги для всех осей. Передача и приём данных выполняются с помощью MPI_Sendrecv.

Начальные значения для вычислений задаются функцией updateField, которая рассчитывает значение поля и на основе аналитического решения. На каждом временном шаге данные обновляются, а вычисления производятся с использованием оператора Лапласа (computeLaplacian) и метода конечных разностей.

Время выполнения программы измеряется через MPI_Wtime. Максимальное время среди всех процессов определяется при помощи MPI_Reduce и выводится процессом с нулевым рангом. Завершение работы программы и освобождение ресурсов происходит с вызовом MPI_Finalize.

В параллельной версии MPI+CUDA для работы с памятью и реализации редукции использовалась библиотека thrust. С помощью nvprof было выполнено профилирование и подсчитано время, затраченное на работу различных функций программы.

Проверка корректности выполнения параллельных версий программ проверялась сопоставлением результатов работы программ с результатами работы последовательной версии. Ошибки вычисления функции на каждом временном слое выводились в файл мастер-процессом и сравнивались с ошибками последовательной версии. Полученные одинаковые значения позволяют предположить правильность работы программ.

5 Графики решений и погрешности

Графики для аналитической функции, вычисленной функции и погрешности вычисления для $L=1,\ N=128$

Численное решение:

Аналитическое решение:

Погрешность:

6 Расчеты времени выполнения и погрешности

6.1 OpenMP

Таблица 1: Анализ производительности с различными параметрами сетки

Входные	Число OpenMP	Число точек	Время ре-	Ускорение <i>S</i>	Погрешность
данные L	нитей в процессе	сетки N^3	шения Т		δ
1	1	128^{3}	3.34371	1	3.98742e-06
1	2	128^{3}	1.91444	1.74657	3.98742e-06
1	4	128^{3}	1.08232	3.08939	3.98742e-06
1	8	128^{3}	0.622881	5.36814	3.98742e-06
1	16	128^{3}	0.304624	10.97651	3.98742e-06
1	1	256^{3}	26.4043	1	8.00743e-06
1	2	256^{3}	13.9152	1.89751	8.00743e-06
1	4	256^{3}	7.14958	3.69312	8.00743e-06
1	8	256^{3}	4.98064	5.30139	8.00743e-06
1	16	256^{3}	3.03546	8.69861	8.00743e-06
π	1	128^{3}	3.32794	1	4.04025e-07
π	2	128^{3}	1.72477	1.92949	4.04025e-07
π	4	128^{3}	0.919064	3.62101	4.04025e-07
π	8	128^{3}	0.608638	5.46785	4.04025e-07
π	16	128^{3}	0.304545	10.9275805	4.04025e-07
π	1	256^{3}	26.4894	1	8.11441e-07
π	2	256^{3}	13.2944	1.99252	8.11441e-07
π	4	256^{3}	6.74646	3.92641	8.11441e-07
π	8	256^{3}	3.65854	7.24042	8.11441e-07
π	16	256^{3}	3.14987	8.40968	8.11441e-07

6.2 MPI

Таблица 2: Анализ производительности с различными параметрами сетки

Входные	Число МРІ	Число точек	Время ре-	Ускорение <i>S</i>	Погрешность
данные L	процессов	сетки N^3	шения Т		δ
1	1	128^{3}	8.27669	1	3.98744e-06
1	2	128^{3}	4.31723	1.91712	3.98744e-06
1	4	128^{3}	2.29078	3.61304	3.98744e-06
1	8	128^{3}	1.30512	6.34170	3.98744e-06
1	10	128^{3}	4.97012	1.6653	3.98744e-06
1	16	128^{3}	0.87159	9.49608	3.98744e-06
1	20	128^{3}	0.795861	10.3997	3.98744e-06
1	32	128^{3}	0.65704	12.59693	3.98744e-06
1	1	256^{3}	64.04690	1	8.00759e-06
1	2	256^{3}	32.62930	1.96286	8.00759e-06
1	4	256^{3}	16.99500	3.76857	8.00759e-06
1	8	256^{3}	9.45677	6.7726	8.00759e-06
1	10	256^{3}	34.8285	1.83892	8.00759e-06
1	16	256^{3}	7.21225	8.88029	8.00759e-06
1	20	256^{3}	4.53177	14.13286	8.00759e-06
1	32	256^{3}	4.85620	13.18869	8.00759e-06
π	1	512^{3}	589.397	1	1.60438e-05
π	10	512^{3}	125.508	3.06767	1.60438e-05
π	20	512^{3}	59.5438	18.4759	1.60438e-05
π	1	128^{3}	8.08089	1	4.04025e-07
π	2	128^{3}	4.23362	1.90874	4.04025e-07
π	4	128^{3}	3.70684	2.17999	4.04025e-07
π	8	128^{3}	1.26281	6.39913	4.04025e-07
π	10	128^{3}	4.88576	1.65397	4.04025e-07
π	16	128^{3}	1.09307	7.39284	4.04025e-07
π	20	128^{3}	0.825526	9.788778	4.04025e-07
π	32	128^{3}	0.499441	16.17987	4.04025e-07
π	1	256^{3}	64.45800	1	8.11442e-07
π	2	256^{3}	32.57080	1.97901	8.11441e-07
π	4	256^{3}	17.02980	3.78501	8.11441e-07
π	8	256^{3}	9.52857	6.76471	8.11441e-07
π	10	256^{3}	33.9424	1.899	8.11441e-07
π	16	256^{3}	4.82382	13.36244	8.11441e-07
π	20	256^{3}	4.47272	14.41136	8.11441e-07
π	32	256^{3}	2.97843	21.6416	8.11441e-07
π	1	512^{3}	589.397	1	1.62641e-06
π	10	512^{3}	192.132	3.06767	1.62641e-06
π	20	512^{3}	31.9008	18.4759	1.62641e-06

$6.3 \quad MPI + OpenMP$

Везде число нитей OpenMP=4

Таблица 3: Анализ производительности с различными параметрами сетки

Входные	Число МРІ	Число точек	Время ре-	Ускорение S	Погрешность
данные L	процессов	сетки N^3	шения Т	_	δ
1	1	128^{3}	6.79814	1	3.98744e-06
1	2	128^{3}	9.62519	0.70629	3.98744e-06
1	4	128^{3}	11.3649	0.59817	3.98744e-06
1	8	128^{3}	14.0331	0.48444	3.98744e-06
1	16	128^{3}	10.2732	0.66174	3.98744e-06
1	32	128^{3}	25.3954	0.26769	3.98744e-06
1	1	256^{3}	34.9094	1	8.00759e-06
1	2	256^{3}	22.8497	1.52778	8.00759e-06
1	4	256^{3}	35.8495	0.97378	8.00759e-06
1	8	256^{3}	13.4166	2.60196	8.00759e-06
1	16	256^{3}	9.2506	3.77374	8.00759e-06
1	32	256^{3}	19.3432	1.80474	8.00759e-06
π	1	128^{3}	2.22027	1	4.04025e-07
π	2	128^{3}	7.59362	0.29239	4.04025e-07
π	4	128^{3}	9.08707	0.24433	4.04025e-07
π	8	128^{3}	6.70878	0.33095	4.04025e-07
π	16	128^{3}	16.8566	0.13172	4.04025e-07
π	32	128^{3}	13.104	0.16943	4.04025e-07
π	1	256^{3}	16.9434	1	8.11442e-07
π	2	256^{3}	33.0304	0.51296	8.11441e-07
π	4	256^{3}	26.9937	0.62768	8.11441e-07
π	8	256^{3}	32.7482	0.51738	8.11441e-07
π	16	256^{3}	23.2874	0.72758	8.11441e-07
π	32	256^{3}	17.2685	0.98117	8.11441e-07

Гибридная программа MPI+OpenMP с числом нитей 4 демонстрирует значительно худшую производительность по сравнению с программой, использующей только MPI. Это связано с существенными накладными расходами. Помимо затрат на межпроцессные коммуникации, использование OpenMP увеличивает нагрузку, так как потоки обрабатывают относительно небольшую часть данных, выделенных процессу. В результате на графиках при увеличении числа процессов часто наблюдается замедление работы программы.

Таблица 4: Анализ производительности с различными параметрами сетки

Входные	Число МРІ	Число ОМР	Число точек	Время ре-	Ускорение <i>S</i>	Погрешность
данные L	процессов	нитей	сетки N^3	шения Т		δ
1	1	1	128^{3}	8.75989	1	3.98744e-06
1	1	20	128^{3}	1.7543	4.9933	3.98744e-06
1	1	40	128^{3}	0.722399	12.12611	3.98744e-06
1	1	80	128^{3}	1.18963	7.36354	3.98744e-06
1	1	160	128^{3}	1.5523	5.64317	3.98744e-06
1	1	1	256^{3}	534.639	1	3.98744e-06
1	1	20	256^{3}	434.154	1.2415	3.98744e-06
1	1	40	256^{3}	402.602	1.32796	3.98744e-06
1	1	80	256^{3}	399.083	1.33967	3.98744e-06
1	1	160	256^{3}	596.492	0.8963	3.98744e-06
1	2	1	128^{3}	12.4376	1	3.98744e-06
1	2	20	128^{3}	17.6084	0.70634	3.98744e-06
1	2	40	128^{3}	24.3897	0.50995	3.98744e-06
1	2	80	128^{3}	64.9352	0.19154	3.98744e-06
1	2	1	256^{3}	486.685	1	3.98744e-06
1	2	20	256^{3}	483.263	1.0071	3.98744e-06
1	2	40	256^{3}	576.884	0.84365	3.98744e-06
1	2	80	256^{3}	567.913	0.8570	3.98744e-06

$6.4 \quad MPI + CUDA$

CUDA со 128 потоками в одном блоке

Таблица 5

Входные	Число МРІ	Число точек	Число GPU	Время ре-	Погрешность
данные L	процессов	сетки N^3		шения Т	δ
1	1	512^{3}	1	5.46489	1.74656e-09
1	2	512^{3}	2	3.61453	1.74656e-09
π	1	512^{3}	1	13.1153	1.77233e-10
π	2	512^{3}	2	7.11973	1.77233e-10

7 Профилирование MPI+CUDA

Для оценки времени выполнения различных частей программы были проведены замеры с использованием утилиты nvprof. Программа запускалась на одном MPI-процессе с различными размерами сетки $N=128,\ 256$ и 512. Общее время, затраченное на выполнение основных функций, представлено в таблицах.

Таблица 6: Времена выполнения основных функций при $L=1,\,p=1$

Имя функции	Время выполнения
N	=128
computeLayerErrorKernel()	27.006 ms
updateFieldKernel()	3.1602 ms
initializeU1Kernel()	169.54 us
initializeField()	205.77 us
N	=256
computeLayerErrorKernel()	202.39 ms
updateFieldKernel()	24.960 ms
initializeU1Kernel()	1.3360 ms
initializeField()	1.6409 ms
N	=512
computeLayerErrorKernel()	1.50482 s
updateFieldKernel()	211.01 ms
initializeU1Kernel()	10.662 ms
initializeField()	13.304 ms

Таблица 7: Времена выполнения вспомогательных функций при $L=1,\, p=1$

Имя функции	Время выполнения				
m N=128					
cudaMemcpyAsync	32.984 ms				
cudaDeviceSynchronize	29.565 ms				
cudaMalloc	223.83 ms				
cudaLaunchKernel	1.7302 ms				
cudaFree	406.46 us				
$\mathbf{N} =$	256				
cudaMemcpyAsync	349.84 ms				
cudaDeviceSynchronize	228.70 ms				
cudaMalloc	183.97 ms				
cudaLaunchKernel	2.0977 ms				
cudaFree	797.19 us				
$\mathbf{N} =$	512				
cudaMemcpyAsync	2.80755 s				
cudaDeviceSynchronize	1.72791 s				
cudaMalloc	198.96 ms				
cudaLaunchKernel	2.3508 ms				
cudaFree	3.7970 ms				

8 Выводы

В ходе работы были разработаны последовательная и четыре параллельные программы (OpenMP, MPI, MPI+OpenMP, MPI+CUDA) для численного решения трехмерного гиперболического уравнения с использованием явной разностной схемы. Для вычисления максимальной погрешности и предотвращения состояния гонки применялся механизм редукции с функцией «максимум».

Несмотря на неизбежные дополнительные затраты при выполнении параллельных программ, можно заключить, что использование параллельного алгоритма для решения этой задачи существенно сокращает время вычисления значений функции и обеспечивает более высокую точность результатов.