Package 'wafR'

March 22, 2022

171th CH 22, 2022
Title Data management and graphing for WAF
Version 0.0.0.9000
Description This package helps standardise data management and graphing for the outputs of the national wood availability forecast (WAF) produced by Margules Groome for the NZ MPI.
icense MIT + file LICENSE
Incoding UTF-8
azyData true
coxygen list(markdown = TRUE)
RoxygenNote 7.1.2
mports ggplot2, grDevices, rlang, dplyr, grid, magrittr, here, tidyr, cowplot, lemon, gtable, purrr Depends R (>= 2.10)
ba 2 bi2000 3 bi2000_squared 3 bi2000_volume 4 bi_tapercoef_aus 5 clearfellAge_line 5 conf.int 6 is_outlier 6 MagGroome_cols 7 MagGroome_pal 7 mdd 8 MG save 8

2 ba

Index		20
	YT_graph_line	19
	WAF_allrep	18
	vol_tree_safh	18
	vol_tpr_coef_sa	17
	volume_graph_line	17
	volume_graph_bar	16
	tpr_max_burkhart_safh	15
	tpha	15
	theme_MagGroome	14
	std.err	14
	spha	
	shift_legend	
	scale_fill_MagGroome	
	scale_colour_MagGroome	
	RMSE	
	QMD	
	prepare_WAF_allrep	
	ple	
	pdh	
	mth	9

ba

Basal Area - m2/ha

Description

The basal area is the area of a given section of land that is occupied by the cross-section of tree trunks and stems at the base.

Usage

```
ba(DBH, plotsize)
```

Arguments

DBH Field containing the tree DBH in cm

plotsize Area of the plot in hectares

Value

The basal area in

```
## Not run:
ba(DBH = dbh_2,plotsize = 0.02)
## End(Not run)
```

bi2000 3

|--|

Description

D Bi, H; 2000; Trigonometric variable-form taper equations for Australian Eucalypts; Forest Science 46(3) pp397-409.

Usage

```
bi2000(DBH, h, H, coefficients)
```

Arguments

DBH (diameter at breast height).
h Height for predicted diameter

H Total tree height.coefficients Equation coefficients

Value

stem diameter at h

Examples

```
## Not run:
bi2000(30,5,40,coef())
## End(Not run)
```

bi2000_squared

Taper bi2000 squared

Description

Internal function to be integrated for the integration of the Bi 2000 volume function

Usage

```
bi2000_squared(DBH, h, H, coefficients)
```

Arguments

DBH Tree DBH in cm

h Stem diameter height in m

H Tree height in m coefficients equation coefficients

bi2000_volume

Value

squared stem diameter at h

Examples

```
## Not run:
bi2000(30,5,40,coef())
## End(Not run)
```

bi2000_volume

Volume bi2000

Description

D Bi, H; 2000; Trigonometric variable-form taper equations for Australian Eucalypts; Forest Science 46(3) pp397-409.

Usage

```
bi2000_volume(DBH, stump_height, h, H, coefficients)
```

Arguments

DBH Tree diameter at breast height in cm

stump_height Tree stump height in m

h Height for predicted diameter

H Tree height in m

coefficients Equation coefficients

Value

Stem volume

```
## Not run:
bi2000_volume(30,0.3, 5,40,coef())
## End(Not run)
```

bi_tapercoef_aus 5

		_
hi	tapercoef aus	B
ŊΙ	tabelluel aus	D

BiTaper Coefficients Australia

Description

Coefficients for Australian Eucalypts and P. radiata. Eucalypt coefficients from table 1 in Bi, H; 2000; Trigonometric variable-form taper equations for Australian Eucalypts; Forest Science 46(3) pp397-409. Radiata coefficients from Table 2 in Bi, H and Long, Y. (2001) Flexible taper equation for site-specific management of Pinus radiata in NSW, Australia For. Ecol. and Management 148

Usage

```
bi_tapercoef_aus(species)
```

Arguments

species

Eucalyptus species code

Value

Coefficients for Australian Eucalypts for the Bi model

Examples

```
bi_tapercoef_aus('CMAC')
```

clearfellAge_line

Line graph showing clearfell ages

Description

Function for plotting line graphs of clearfell ages from Woodflow model outputs

Usage

```
clearfellAge_line(data, Year, value, colourVariable, WAF_form)
```

Arguments

data	Dataframe containing woodflow outputs. This will typically have been	ı produced

using e.g. Remsoft Woodstock

Year Column in df containing values for the x-axis

value Column containing values to be plotted on the y-axis. This will typically be

volume

colourVariable Variable to use for assigning fill colour to the bar graph

WAF_form Boolean indicating whether plot for WAF reporting or not. Default = TRUE

6 is_outlier

conf.int

Confidence interval

Description

Calculate the confidence limit for a confidence interval around a mean at the 95% confidence level

Usage

```
conf.int(mu)
```

Arguments

mu

The sampled variable. This might commonly be set of values calculated from inventory plots

Value

The confidence limit in the same units as mu

Examples

```
vols<-runif(20, 150, 250)
conf.int(mu = vols)</pre>
```

is_outlier

Identify outliers

Description

Function that identifies whether observations are outliers.

Usage

```
is_outlier(x, type = "both", outlier_range = 1.5)
```

Arguments

x The variable of interest

type Choose whether to identify 'high', 'low', or 'both' types of outliers. Default is

'both'.

outlier_range The number of times outside the IQR that an observation is deemed to be an

outlier. Default = 1.5.

```
x \leftarrow rnorm(n = 1000, mean = 100) # Create a normally distributed dataset is_outlier(x) # Find outliers boxplot(x) # Plot x to visualise the outliers
```

MagGroome_cols 7

 ${\tt MagGroome_cols}$

Extract Margules Groome colour hex codes

Description

Function to extract Margules Groome colours as hex codes

Usage

```
MagGroome_cols(...)
```

Arguments

... Character name of MagGroome_colors

Value

hex code for Margules Groome Colour

Examples

```
MagGroome_cols('mgcblue')
```

MagGroome_pal

Return function to interpolate a Mag Groome color palette

Description

Return function to interpolate a Mag Groome color palette

Usage

```
MagGroome_pal(palette = "main", reverse = FALSE, ...)
```

Arguments

palette Character name of palette in MagGroome_palettes

reverse Boolean indicating whether the palette should be reversed

... Additional arguments to pass to colorRampPalette()

```
MagGroome_pal('main') (10)
```

8 MG_save

mdd MDD

Description

Calculate the plot mean dominant DBH

Usage

```
mdd(DBH, H, plotsize)
```

Arguments

DBH Field containing the tree DBHs in cm

H Field containing the tree heights in m

plotsize Plot area in ha

Value

Mean dominant DBH (cm)

Examples

```
dbh<-runif(20, 20 ,30)
h<-runif(20, 25, 35)
plot.size <- 0.06
mdd(DBH = dbh, H = h, plotsize = plot.size)</pre>
```

MG_save

Save plots in the MG report style

Description

Convenience function for saving plots in the style needed for the Margules Groome report output. PNG files produced are suitable for copying directly into Word docs.

Usage

```
MG_save(plt, height, fileName)
```

Arguments

plt ggplot object to be saved

height Height in cm of the figure in the document. A single panel is often 10 cm but

greater heights are suggested for multiple panel plots.

fileName File name for the output. Should end with .png

mth 9

mth	Mean Top Height	

Description

The average height of the primary leaders of the largest 100 trees per hectare where largest is measured in terms of the dbh of the primary leader of that tree.

Usage

```
mth(DBH, H, plotsize)
```

Arguments

DBH Field containing the tree DBH values in cm measured in the plot

H Field containing the tree height measurements in m.

plotsize Area of the plot in hectares

Value

The mean top height of the plot.

Examples

```
## Not run:
mth(DBH = dbh_m, H = h_m, plotsize = 0.05)
## End(Not run)
```

pdh

Predominant Mean Height

Description

The average height of the primary leaders of the largest 100 trees per hectare where largest is measured in terms of the height of the primary leader of that tree.

Usage

```
pdh(DBH, H, plotsize)
```

Arguments

DBH Tree DBH in cm

H Total tree height in m.

plotsize Plot area in ha

Value

The predominant top height of the plot.

prepare_WAF_allrep

Examples

```
## Not run:
mth(DBH, H, plotsize)
## End(Not run)
```

ple

Probably limit of error (PLE) around a mean

Description

Calculate the PLE around a mean at the 95% confidence level. This statistic is commonly used in forest inventory analysis in NZ and Australia

Usage

```
ple(mu)
```

Arguments

mu

The sampled variable. This might commonly be set of values calculated from inventory plots

Value

The PLE in percent

Examples

```
vols<-runif(20, 150, 250)
ple(mu = vols)</pre>
```

prepare_WAF_allrep

Prepare WAF allrep data

Description

Function that transforms data from the allrep output of Remsoft Woodstock

Usage

```
prepare_WAF_allrep(df, startYear, cutOverYear)
```

Arguments

df The WAF allrep file.
startYear Simulation start year.
cut0verYear simulation cutover year.

QMD 11

QMD

Quadratic mean DBH

Description

Calculate the quadratic mean DBH

Usage

QMD(DBH)

Arguments

DBH

tree DBH values

Value

Quadratic mean DBH

Examples

```
## Not run:
QMD(DBH = dap)
## End(Not run)
```

RMSE

RMSE

Description

Calculate the RMSE

Usage

```
RMSE(predicted, actual)
```

Arguments

predicted Predicted value actual Actual values

Value

Root mean square error

scale_colour_MagGroome

Color scale constructor for MagGroome colors

Description

Color scale constructor for MagGroome colors

Usage

```
scale_colour_MagGroome(palette = "main", discrete = TRUE, reverse = FALSE, ...)
```

Arguments

palette	Character name of palette in MagGroome_palettes
discrete	Boolean indicating whether color aesthetic is discrete or not
reverse	Boolean indicating whether the palette should be reversed
•••	Additional arguments passed to discrete_scale() or scale_color_gradientn(), used respectively when discrete is TRUE or FALSE

Examples

```
scale_colour_MagGroome()
```

```
scale_fill_MagGroome Fill scale constructor for MagGroome colours
```

Description

Fill scale constructor for MagGroome colours

Usage

```
scale_fill_MagGroome(palette = "main", discrete = TRUE, reverse = FALSE, ...)
```

Arguments

palette	Character name of palette in MagGroome_palettes
discrete	Boolean indicating whether color aesthetic is discrete or not
reverse	Boolean indicating whether the palette should be reversed
•••	Additional arguments passed to discrete_scale() or scale_fill_gradientn(), used respectively when discrete is TRUE or FALSE

```
scale_fill_MagGroome()
```

shift_legend 13

 $shift_legend$

Shift legend

Description

Shift legend into empty facets in a multipanel ggplot.

Usage

```
shift_legend(p)
```

Arguments

p

The ggplot2 multi-panel object.

spha

SPHA

Description

Return stems per hectare

Usage

```
spha(DBH, plotsize)
```

Arguments

DBH

Field containing the tree DBH in cm

plotsize

Area of the plot in hectares

Value

Stems per hectare with a DBH greater than 0

```
## Not run:
spha(DBH = dap,plotsize = 0.02)
## End(Not run)
```

14 theme_MagGroome

std.err

Standard error

Description

Calculate the standard error of a sample

Usage

```
std.err(mu)
```

Arguments

mu

The sampled variable. This might commonly be set of values calculated from inventory plots

Value

The standard error in the same units as mu

Examples

```
vols<-runif(20, 150, 250)
std.err(mu = vols)</pre>
```

theme_MagGroome

Margules Groome plotting theme for ggplots

Description

Function for Margules Groome general and WAF plotting theme for ggplots. Once appllied you can further customise using theme

Usage

```
theme_MagGroome(WAF = FALSE)
```

Arguments

WAF

Boolean indicating whether plot for WAF reporting or not. Default = FALSE

```
theme_MagGroome(WAF = FALSE)
```

tpha 15

Description

Function to return the number of trees per hectare

Usage

```
tpha(TreeNo, plotsize)
```

Arguments

TreeNo Tree name

plotsize Plot size in hectares

tpr_max_burkhart_safh Stem taper

Description

Max and Burkhart taper function with regression coefficients from the South African forestry hand-book

Usage

```
tpr_max_burkhart_safh(DBH, H, h, coefficients)
```

Arguments

DBH Tree DBH in cm

H Tree height in m

h Stem height

coefficients Equation coefficients

Value

stem diameter at height h

16 volume_graph_bar

volume_graph_bar

Bar graph showing woodflow volumes

Description

Function for plotting bar graphs of volumes from Woodflow model outputs

Usage

```
volume_graph_bar(
  data,
  value,
  Year,
  fillvariable,
  WAF_form = TRUE,
  Species_select = "Radiata_pine",
  ylim = 7e+06
)
```

Arguments

data	Dataframe containing woodflow outputs. This will typically have been produced

using e.g. Remsoft Woodstock

value Column containing values to be plotted on the y-axis. This will typically be

volume

Year Column in df containing values for the x-axis

fillvariable Variable to use for assigning fill colour to the bar graph

WAF_form True/False indicating whether plot for WAF reporting or not. Default = TRUE

Species_select Which species is being plotted if this is a WAF report output, Default = 'Radi-

ata_pine'

ylim Maximum value for the y axis

```
data("WAF_allrep")
volume_graph_bar(data = WAF_allrep,
value = value, Year = Year,
fillvariable = Ownership,
WAF_form = TRUE,
Species_select = 'Radiata_pine')
```

volume_graph_line 17

volume_graph_line

Line graph showing woodflow volumes

Description

Function for plotting line graphs of volumes from Woodflow model outputs

Usage

```
volume_graph_line(
  data,
  value,
  Year,
  colourvariable,
  WAF_form = TRUE,
  Species_select = "Radiata_pine",
  ylim = 7e+05
)
```

Arguments

data Dataframe containing woodflow outputs. This will typically have been produced

using e.g. Remsoft Woodstock

value Column containing values to be plotted on the y-axis. This will typically be

volume

Year Column in df containing values for the x-axis

colourvariable Variable to use for assigning fill colour to the bar graph

WAF_form True/False indicating whether plot for WAF reporting or not. Default = TRUE

Species_select Which species is being plotted if this is a WAF report output, Default = 'Radi-

ata_pine'

ylim Maximum value for the y axis

vol_tpr_coef_sa

SA Vol TPR coefficients

Description

Coefficients for the volume and taper equation from the South African Forestry handbook

Usage

```
vol_tpr_coef_sa(species)
```

Arguments

species

Species code

18 WAF_allrep

Value

Returns equation coefficients for South Africa.

Examples

```
vol_tpr_coef_sa('EGRA')
```

vol_tree_safh

Estimate tree volume

Description

Estimate tree volume from DBH and height using functions from the South African Forestry Handbook. These species are available. 'A. mearnsii', 'A. melanoxylon', 'C. equisetifolia', 'E. camaldulensis', 'E. cladocalyx', 'E. diversicolor', 'E. fastigata', 'E. globulus', 'E. grandis', 'E. maculata', 'E. nitens', 'E. grandis x camaldulensis', 'P. canariensis', 'P. caribea', 'P. elliotti', 'P. patula', 'P. pinaster', 'P. radiata', 'P. taeda', 'T. grandis'

Usage

```
vol_tree_safh(DBH, H, coefficients)
```

Arguments

DBH Tree DBH in cm

H Tree height in m

coefficients Equation coefficients

Value

Returns tree volume in cubic metres

WAF_allrep

Simple Woodflow example for Marlborough.

Description

A dataset containing the recoverable volumes for a scenario in Marlborough. Data extracted from the allrep report.

Usage

```
WAF_allrep
```

YT_graph_line 19

Format

A data frame with 62 rows and 10 variables:

Output Output identifier produced by Woodstock

VariableName Name of the variable contained in the value field

WSR Wood supply region

Species Species code

Ownership Code

Action Model action that generated the data

PeriodText Model period when the action occurred

value value of VariableName produced

Year Calendar year when the action occurred

Scenario Wood flow modelling scenario used to generate the data ...

Source

http://www.margulesgroome.com

YT_graph_line

Line graph showing yield tables

Description

Function for plotting line graphs of clearfell ages from Woodflow model outputs

Usage

```
YT_graph_line(data, Year, value, colourVariable, WAF_form)
```

Arguments

data Dataframe containing woodflow outputs. This will typically have been produced

using e.g. Remsoft Woodstock

Year Column in df containing values for the x-axis

value Column containing values to be plotted on the y-axis. This will typically be

volume

colourVariable Variable to use for assigning fill colour to the bar graph

WAF_form Boolean indicating whether plot for WAF reporting or not. Default = TRUE

Index

```
* datasets
    WAF_allrep, 18
ba, 2
bi2000, 3
bi2000_squared, 3
bi2000_volume, 4
bi_tapercoef_aus, 5
clearfellAge_line, 5
conf.int, 6
is_outlier, 6
MagGroome_cols, 7
{\tt MagGroome\_pal}, {\tt 7}
mdd, 8
MG\_save, 8
mth, 9
pdh, 9
ple, 10
prepare_WAF_allrep, 10
QMD, 11
RMSE, 11
scale_colour_MagGroome, 12
scale_fill_MagGroome, 12
shift_legend, 13
spha, 13
std.err, 14
theme_MagGroome, 14
tpha, 15
tpr_max_burkhart_safh, 15
vol_tpr_coef_sa, 17
vol_tree_safh, 18
volume_graph_bar, 16
volume_graph_line, 17
{\tt WAF\_allrep,\,18}
YT_graph_line, 19
```