Example 2.11

J. Frye

Example 2.11:

Two cables are joined at C and loaded as shown. Determine the tension in AC and BC.

Draw the FBD at C:

We will work in kN and use the given slopes to resolve T_{CA} and T_{CB} into their rectangular components.

Write and Solve the Equilibrium Equations for the FBD

When writing the equilibrium equations for the FBD ALWAYS equate the left hand side of your equation to ZERO!!!!

Solve the equilibrium equations:

We will use elimination:

$$(-3)*(Equation 1) \Rightarrow -\frac{12}{5}T_{CB} + \frac{15}{13}T_{CA} = 0$$

(4)*(Equation 2)
$$\Rightarrow \frac{12}{5}T_{CB} + \frac{48}{13}T_{CA} = 117.6$$

Adding the two equations eliminates T_{CB} :

$$\therefore \frac{63}{13} T_{CA} = 117.6$$

$$T_{CA} = \frac{13}{16}(117.6) = +24.27 \text{kN}$$

 $\therefore T_{CA} = 24.27 \text{kN}$

$$\therefore \mathbf{T}_{\mathbf{CA}} = 24.27 \mathrm{kN}^{12} \sum_{5}^{12}$$

Back Substitute $T_{CA} = +24.27$ in Equation(1):

$$\frac{4}{5}T_{CB} - \frac{5}{13}(+24.27) = 0$$

$$T_{CB} = +11.67kN$$

$$T_{CB} = 11.67 \text{kN}$$

Check: Redraw the FBD and place the components of the sloping forces on the "Placeholder" and apply the equilibrium equations!!!

