Tutorial on Proofs

Homework 1

So far...

+ DEFINITION

- * ASSUMPTIONS
- + SCHEME/PROOF

So far...

DEFINITION

Security in presence of an eavesdropper of single cipher text

- + ASSUMPTIONS
- + SCHEME/PROOF

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

→ DEFINITION

Security in presence of an eavesdropper of single cipher text

+ Assumptions

Security in presence of an eavesdropper of single cipher text

- + Assumptions
- + SCHEME/PROOF

- **+** ASSUMPTIONS
- * SCHEME/PROOF

new realistic adversary

+ DEFINITION

+ Assumptions

C*,C4,C3,C2,C1

+ SCHEME + PROOFS!

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

* ASSUMPTIONS

+ SCHEME + PROOFS!

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

+ Assumptions

Pseudorandom Functions

+ SCHEME + PROOFS!

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

+ SCHEME + PROOFS!

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

+ SCHEME + PROOFS!

Encryption scheme from PRF

DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

+ SCHEME + PROOFS!

Encryption scheme from PRF

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

Intuitive Definition:

Intuitive Definition:

Intuitive Definition:

Even after observing many ciphertexts c1, c2, c3...

Intuitive Definition:

Even after observing many ciphertexts c1, c2, c3... on messages of her choice!!!

Definition: Intuition "mi" C*,C4,C3,C2,C1 Dec ** Dec ** C*,C4,C3,C2,C1 C*,C4,C3,C2,C1

Ci

Intuitive Definition:

Even after observing many ciphertexts c1, c2, c3... on messages of her choice!!!

 m_i

Is this definition too strong?

Real world Attacks:

```
World War II
```

- (a) US- Intelligence
- (b) British Intelligence

Chosen Plaintex Attack:

Formal Definition

PrivK - CPA-Game

"training"

PrivK - CPA-Game

PrivK - CPA-Game

"training"

PrivK - CPA-Game

"challenge"

 $Pr[A \text{ guesses b}] \le 1/2 + negl(n)$

 $Pr[A \text{ guesses b}] \le 1/2 + negl(n)$

Indistinguishable CPA-security =

Chosen Plaintext Attack

 $Pr[A \text{ guesses b}] \le 1/2 + negl(n)$

The CPA indistinguishability experiment $PrivK_{A,\Pi}^{cpa}(n)$:

- 1. A random key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to A. We call c the challenge ciphertext.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$, and outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. (In case $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1$, we say that \mathcal{A} succeeded.)

Can we construct a scheme that is secure under this definition?

Can we construct a scheme that is secure under this definition?

Yes but it has to be randomized.

Randomized Enc (k,)

input

output

input

Randomized Enc (k,)

input

output

input

output

 m_1

Randomized Enc (k,)

input output

input

output

 $m_1 \longrightarrow$

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C^2$

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 m_1

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow$

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

 m_2

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

 m_2

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

 $m_2 \longrightarrow c_2$

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C$

 $m_2 \longrightarrow c_2$

• •

..

input

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C^2$

 $m_2 \longrightarrow C_2$

• •

..

input

output

 m_1

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C$

 $m_2 \longrightarrow C_2$

• •

. .

input output

 m_1

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C$

 $m_2 \longrightarrow C_2$

. .

. .

input output

 $m_1 \longrightarrow y$

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C$

 $m_2 \longrightarrow C_2$

• •

..

input output

 $m_1 \longrightarrow y$

 m_1

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C^2$

 $m_2 \longrightarrow C_2$

• •

..

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow$

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C^2$

 $m_2 \longrightarrow C_2$

• •

. .

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow W$

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C^2$

 $m_2 \longrightarrow C_2$

...

.. ..

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow W$

 m_2

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C^2$

 $m_2 \longrightarrow C_2$

..

.. ..

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow W$

 m_2

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

 $m_2 \longrightarrow C_2$

...

.. ..

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow W$

 $m_2 \longrightarrow Z$

Randomized Enc (k,)

input output

 $m_1 \longrightarrow C_1$

 $m_1 \longrightarrow C_1$

 $m_2 \longrightarrow C_2$

...

.. .

input output

 $m_1 \longrightarrow y$

 $m_1 \longrightarrow W$

 $m_2 \longrightarrow Z$

..

• •

Randomized Enc (k,)

input output m_1 m_1 m_2

Deterministic:

depends only on m and k

Randomized:

depends on m and k and fresh random values

In class exercise.

Theorem. If an encryption scheme has a deterministic* Enc function, then it cannot be CPA-secure

In class exercise.

Theorem. If an encryption scheme has a deterministic* Enc function, then it cannot be CPA-secure

- What does it mean that Enc is deterministic?
- How can a CPA-adversary exploit that to win the game?

Attack

How to construct a CPA-secure Encryption scheme?

Pseudo - OTP

 $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$

Gen (n)	Enc (m, k)	Dec (c,k)
s <-{0,1}n		
k <- G(s)	c = m⊕k	m = c ⊕ k

G: $\{0,1\}^n \rightarrow \{0,1\}^{l(n)}$

Is Pseudo-OTP CPA-secure?

Gen (n)	Enc (m, k)	Dec (c,k)
s <-{0,1}n		
k <- G(s)	c = m⊕k	m = c⊕k

 $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$

How can we make Pseudo-OTP CPA -Secure?

ndom

Gen (n)	Enc (m, k)	Dec (c,k)
s <-{0,1}n		
k <- G(s)	c = m ⊕ k	m = c ⊕ k

Today

DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

+ SCHEME + PROOFS!

Encryption scheme from PRF

new realistic adversary

Today

new realistic adversary

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

+ SCHEME + PROOFS!

Encryption scheme from PRF

Pseudo-random Generator

Pseudo-random Generator

- Deterministic after fixed **key**

$$F_{\mathbf{k}}(x) = y$$

key n-bits

- Input Output n-bits n-bits
- input 1 out 1 input 2 out 2 out 3 input 3 input 4 out 4
- Deterministic after fixed key
- We don't write down the truth table

Truly Random Functions

Truly Random Functions

Is a PRF deterministic?

Truly Random Functions

Is a Truly Random Function deterministic?

Truly Random Functions

input 1 out 1 input 2 out 2 input 3 out 3 input 4 out 4

Is a PRF deterministic?

PRF GAME!

Distribution **Truly** Random Functions

Distribution Pseudo-random Functions

PRF GAME!

Distribution **Truly** Random Functions

Distribution Pseudo-random Functions

PRF GAME!

Distribution **Truly** Random Functions

Distribution Pseudo-random Functions

Indistinguishability of Pseudorandom functions

Formally

Understanding the definition

MyF(k,x)

- 1. compute $y = k \oplus x$
- 2. output y

Understanding the definition

MyF(k,x)

- 1. compute $y = k \oplus x$
- 2. output y

Is MyF a pseudorandom function?

DEFINITION 3.24 Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. We say F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f_n(\cdot)}(1^n) = 1] \right| \le \mathsf{negl}(n),$$

where $k \leftarrow \{0,1\}^n$ is chosen uniformly at random and f_n is chosen uniformly at random from the set of functions mapping n-bit strings to n-bit strings.

Theory:

Theory:

Theory:

Theory:

Weaker building blocks allow to build sophisticated primitives

Theory: PRG -> PRF

Theory: PRG -> PRF

Any idea?

PRF for 2-bit inputs

key F(k, 01)G G 00 10 01

F(k, 01)

F(k, x)

Theorem:

Assume that G is a PRG.

Then F is a Pseudo-random Function.

Hybrid game 1

How many hybrids for n bits?

Today

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

+ ASSUMPTIONS

Pseudorandom Functions

PRG —> F

+ SCHEME + PROOFS!

new realistic adversary

Today

new realistic adversary

+ DEFINITION

Chosen Plaintext Attack (CPA) Security

* ASSUMPTIONS

Pseudorandom Functions

PRG

—>

PRF

+ SCHEME + PROOFS!

Encryption scheme from PRF

pseudo- OTP (PRG)

pseudo "many time" pads (PRF)

Tutorial on Proofs

Homework 1 (rules)

NO CLASS next week