ANALYSIS OF LFSR STRUCTURE FOR N<13 BITS

- LAURA GUIJARRO IGUACEL
- Daniel Olivares Garcés

FSR (FEEDBACK SHIFT REGISTER)

- Length N
- States of the register
- Maximun length sequence L L = 2^N -1

POLYNOMIAL: $x^4 + x^3 + 1$

Example

IMPLEMENTATION OF GALOIS

- Data Flow from left to right
- FEEDBACK FROM RIGHT TO LEFT
- INCREMENT OF THE POLYNOMIAL FROM LEFT TO RIGHT, X⁰ AS FIRST TERM

IMPLEMENTATION OF FIBONACCI

- Data Flow from left to right
- FEEDBACK FROM RIGHT TO LEFT
- DECREASES OF THE POLYNOMIAL FROM LEFT TO RIGHT, X⁰ AS LAST TERM

APLICATTION 1. LFSR OF 4 BITS

CODE

```
process (clk 500)
   begin
       if rising_edge(clk_500) then
            if BTN0 = '0' then
             dec <= "0010";
            else
            decl(3 downto 1) <= dec(2 downto 0);</pre>
            dec(0) \le dec(2) XOR dec(1);
           dec(3 downto 1) <= dec1(3 downto 1);
                   if display= "00" then
                       if dec(3) = '0' then
                           hex <= "0000";
                           position <= "0111";
                           display <= "01";
                       elsif dec(3) = '1' then
                           hex <= "0001";
                           position <= "0111";
                          display <= "01" ;
                        end if ;
                    end if :
                   if display= "01" then
                       if dec(2) = '0' then
                           hex <= "00000";
                           position <= "1011";
                           display <= "10";
                       elsif dec(2) = '1' then
                           hex <= "0001";
                           position <= "1011";
                          display <= "10";
                        end if :
                    end if ;
```

```
if display= "10" then
    if dec(1) = '0' then
       hex <= "0000";
       position <= "1101";
       display <= "11";
   elsif dec(1) = '1' then
       hex <= "0001";
       position <= "1101";
       display <= "ll" ;
    end if :
end if ;
if display= "11" then
    if dec(0) = '0' then
       hex <= "0000";
       position <= "1110";
       display <= "00";
    elsif dec(0) = 'l' then
       hex <= "0001";
       position <= "1110";
       display <= "00";
    end if ;
end if :
```

CRYPTOGRAPHY

CRYPTOGRAPHY

BLOCK CIPHER VS STREAM CIPHER

The stream cipher can be performed by means of pseudorandom sequence generators, which use a function f and a key.

Using the pseudorandom sequence every bit of the clear text is encrypted using a Boolean function, for example an XOR.

MATLAB EXAMPLE

LFSR

```
%Implementation of LFRS
s=[0 0 1 0 ] %Initial value
t=[3 \ 2] \ %function f(x) = 1+x^2+x^3
n=length(s);
c(1,:)=s;
m=length(t);
for k=1:2^n-2;
b(1) = xor(s(t(1)), s(t(2)));
if m>2:
    for i=1:m-2:
    b(i+1)=xor(s(t(i+2)), b(i));
    end
end
j=1:n-1;
s(n+1-j)=s(n-j);
s(1) = b(m-1);
c(k+1,:)=s;
end
seq=c(:,n)';
```

STREAM CYPHER

```
n=4; %length of the cypher

for i=1:2^n -1
    numero = i
    numero_binario =dec2bin(i,n)

    vector_numero_binario=num2str(numero_binario)-'0'

    codigo_cod=c(i,:)
    numero_codificado =xor (vector_numero_binario,c(i,:))
    numero_salida = xor (numero_codificado,c(i,:))

matriz_mensaje(i,:)=(vector_numero_binario)
    matriz_codificada(i,:)=(numero_codificado)
    matriz_salida(i,:)=(numero_salida)
end
```

MATLAB EXAMPLE

PSEUDORANDOM SEQUENCE

DATA MATRIX

matriz_	_mensaje	=	
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

MATLAB EXAMPLE

DATA MATRIX

matriz_me	nsaje	=	
0	0	0	1
0	0	1	o
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

CODIFIED MATRIX

MATLAB EXAMPLE

DATA MATRIX

matriz_me	ensaje	=	
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

CODIFIED MATRIX

OUTPUT MATRIX

