3/04/25: Exam #2 Review Session (Guided Notes) (Zoom ID: 865 7158 3488)

Announce: (Exam #2 Review Session, Working Exam #2 from Spring 2024)

- Homework (Mastering Engineering)
 - Homework #7 (Due Tuesday: 3/04/2025)
 - Homework #8 (Due Tuesday: 3/18/2025)
- Lab #2 (Mesh and Node Analysis, AC Sources, and d'Arsonval Meters):
 - o Group A: Sections E, F, G, H, N (This Week: 3/03/2025 3/07/2025)
 - Bring a printed copy of the Lab Data Sheet (page 9 of Lab #2 PDF document)
 - Online Students (Group A): Watch Videos Lab2 01 through Lab2 06
 - □ Attend Online Lab Hours (Questions, Help): (See D2L Announcement: Thurs 3-4pm, Sat&Sun 11am-Noon)
 - Group B: Sections M, I, L, J, K, O: Lab Report #1 (Due Wednesday: 3/05/2025)
 - o Group B: Sections M, I, L, J, K, O: Pre-lab #2 (Due Friday: 3/07/2025)
- Review Lecture for Exam #2 on Tuesday (3/04/2025)
- No Class (Friday, 3/07/2025)
- Exam #2: Topics: Chapter 4 and Homework Sets 5, 6, and 7. Practice Exams on D2L (Exam #2 Material)
 - Main Campus Students: Thursday (3/06/2025)
 - Online Students: Friday Sunday (3/07/2025 3/09/2025)
- Spring Break (Next Week: 3/10/2025 3/14/2025): No Class Sessions
- Textbook Material:
 - Reading Chapter Five: Operational Amplifiers

Goals: (Exam #2 Review Session, Working Exam #2 from Spring 2024)

Question	Percent
5: Question 5 (5.5556 pts)	22.2
3: Question 3 (5.5556 pts)	40.7
9: Question 9 (11.1111 pts)	53.7
6: Question 6 (5.5556 pts)	55.6
4: Question 4 (5.5556 pts)	61.1
10: Question 10 (11.1111 pts)	61.1
1: Question 1 (5.5556 pts)	66.7

Color: White

University of Arizona

Department of Electrical & Computer Engineering

ECE 220 Basic Circuits

Examination 2

February 29, 2024

T. QUESTION T (3.3330 PES)	U T. T
10: Question 10 (11.1111 pts)	61.1
1: Question 1 (5.5556 pts)	66.7
7: Question 7 (11.1111 pts)	66.7
12: Question 12 (11.1111 pts)	66.7
8: Question 8 (11.1111 pts)	70.4
11: Question 11 (11.1111 pts)	70.4
2: Question 2 (5.5556 pts)	88.9

February 29, 2024

 $\underline{\text{Closed book/notes}}, \text{calculators allowed up to level of TI89, TI Inspire CAS, or HP50}.$

Part I: 6 questions Part II: 6 questions

Part II questions are worth twice as much as Part I questions.

1. Find v.

- a) 0.40 V
- b) -0.40 V
- c) 2.40 V
- d) -1.00 V
- e) none of these

- 2. Find v .
- a) 1.25 V
- b) 1.0 V
- c) 4.25 V
- d) 5.00 V
- e) none of these

3. What is v_{TH} for the following circuit with respect to the terminals a and b?

- a) 10 V
- b) 5 V
- c) 0 V
- d) -10 V

none of these

4. What value of R_L yields the maximum possible power being absorbed by R_L ?

- a) 16.0Ω
- b) 11.0Ω
- c) 8.50Ω
- d) 10.0Ω
- e) none of these

5. How many supermesh equations would be needed to find the mesh currents in this circuit?

- a) 2 supermeshes
- b) 1 supermesh
- c) 0 supermeshes
- d) 3 supermeshes
- e) none of these

- 6. Find v.
- a) 4.0 V
- b) 10.0 V
- c) 2.0 V
- d) 6.0 V
- e) none of these

Part II.

7. Find the complex phasor current **V**.

- a) $2.0 \angle 90.0^{\circ} A$
- b) 2.0∠ 90.0° A
- $\frac{\left(\frac{1}{\sqrt{2}}\right) \angle 0.0^{\circ} \text{ A} }{2.0 \angle 0.0^{\circ} \text{ A} }$
- e) none of these

- 8. Find i.
- a) 2.00 A
- b) 5.00 A
- c) 3.00 A
- d) 3.50 A
- e) none of these

- 9. Find v.
- a) 6.40 V
- b) 8.00 V
- c) 4.00 V
- d) 1.60 V
- e) none of these

10. Find R_{TH} with respect to a and b.

- a) 0.17Ω
- b) 0.50Ω
- c) 2.00Ω
- d) 6.00Ω
- e) none of these

11. Find *i* .

- a) 0.33 A
- b) 1.00 A
- c) 1.83 A
- d) 2.00 A
- e) none of these

- 12. Given circuits (i) and (ii), find v_o in circuit (iii).
- a) 0.75 V
- b) 0.50 V
- c) 0.00 V
- d) 0.25 V
- e) none of these

