DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

Tutorial and practice problems on Single Variable Calculus

MA-101: Mathematics-I Tutorial Problem Set - 12 November 13, 2013

PART-A (Tutorial)

1. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists, where $c \in \mathbb{R}$. Prove that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

Give an example of an $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which f''(c) does not exist but the above limit exists.

Solution: Define F(h) := f(c+h) + f(c-h) - 2f(c). Then $F(h) \to 0$ and $\lim F'(h)/2h \to f''(c)$ as $h \to 0$. Hence by L'Hospital rule, $\lim_{h\to 0} F(h)/h^2 = f''(c)$.

For the converse, consider f(x) := x|x| for $x \in \mathbb{R}$. Then for c := 0, the given limit exists although f''(0) does not exist (here f'(x) = 2|x| for $x \in \mathbb{R}$).

2. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) := x^3 + 2x + 1$. Show that $f^{-1}: \mathbb{R} \to \mathbb{R}$ exists. Assume that f^{-1} is differentiable and determine $(f^{-1})'(1), (f^{-1})'(4)$ and $(f^{-1})'(-2)$.

Solution: Since $f'(x) = 3x^2 + 2 > 0$ for $x \in \mathbb{R}$, f is strictly increasing. Consequently, f^{-1} exists. By chain rule, we have $(f^{-1})'(f(x)) = 1/f'(x)$. Now f(0) = 1, f(1) = 4, f(-1) = -1 give the desired results.

3. Find the points of local extrema of the following functions on the specified domain:

(i)
$$f(x) := x|x^2 - 12|$$
 for $-2 \le x \le 3$; (ii) $f(x) := 1 - (1-x)^{2/3}$ for $0 \le x \le 2$.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := 2x^4 + x^4 \sin(1/x)$ for $x \neq 0$ and f(0) := 0. Show that f has a global minimum at c := 0, but f'(x) takes both negative and positive values in every neighbourhood of 0.

Solution: Note that $f(x) = x^4(2 + \sin(1/x)) \ge 0$ for all $x \in \mathbb{R}$. Hence f has global minimum at 0. Now for $x \ne 0$, we have $f'(x) = 8x^3 + 4x^3\sin(1/x) - x^2\cos(1/x)$. For $n \ge 2$, we have $f'(1/2n\pi) = 1/n^3\pi^3 + 0 - 1/4n^2\pi^2 < 0$ and $f'(2/(4n+1)\pi) > 0$. Hence the result follows.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x + 2x^2 \sin(1/x)$ for $x \neq 0$ and f(0) := 0. Show that f'(0) = 1, but f is not monotone on any neighbourhood of 0.

Solution: That f'(0) = 1 is easy to see. Now for $x \neq 0$, we have $f'(x) = 1 + 4x \sin(1/x) - 2\cos(1/x)$. Thus for $n \in \mathbb{N}$, we have $f'(1/2n\pi) = 1 + 0 - 2 < 0$ and $f'(1/(4n+1)\pi) = 1 - 0 + 2 > 0$. Hence the assertion follows.

- 6. Show that $|\sin(x) \left(x \frac{x^3}{6} + \frac{x^5}{120}\right)| < \frac{1}{5040}$ for $|x| \le 1$.
- 7. Derive the Taylor series of $f(x) := \log(1+x)$ at $x_0 = 0$ and determine the radius of convergence.

Solution: We have $f^{(n)}(x) = (-1)^{n-1}(n-1)!(1+x)^{-n}$ for $n \in \mathbb{N}$. The Taylor's series of f at 0 is given by $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$. The radius of convergence of the Taylor series is 1, that is, the Taylor series converges for |x| < 1 and diverges for |x| > 1.

8. Suppose that $f \in R([a,b])$ and $P_n \in \mathcal{P}([a,b])$ is such that $||P_n|| \to 0$ as $n \to \infty$. Show that $\lim_{n\to\infty} S(P_n,f) = \int_a^b f(t)dt$.

Solution: Choose $\epsilon > 0$. Then there exists $\delta > 0$ such that for any $P \in \mathcal{P}([a,b])$ with $||P|| < \delta \Rightarrow |S(P,f) - \int_a^b f(t)dt| < \epsilon$. Since $||P_n|| \to 0$ as $n \to \infty$, there exists $m \in \mathbb{N}$ such that $n \ge m \Rightarrow ||P_n|| < \delta \Rightarrow |S(P_n,f) - \int_a^b f(t)dt| < \epsilon$. Hence the result follows.

9. Define $f:[0,1] \to \mathbb{R}$ by f(x) := 0 if x is rational and f(x) = 1/x if x is irrational. Show that $f \notin R([a,b])$. Show that there exists partitions $P_n \in \mathcal{P}([a,b])$ with $||P_n|| \to 0$ as $n \to \infty$ such that $\lim_{n \to \infty} S(P_n, f)$ exists.

Solution: Since f is unbounded, $f \notin R([a,b])$. In the Riemann sum $S(P,f) := \sum f(c_i)(x_i - x_{i-1})$, choose c_i to be rational numbers. Then S(P,f) = 0. Hence the assertion follows.

10. Let $f:[a,b]\to\mathbb{R}$ be continuous. Show that there exists $c\in(a,b)$ such that $\int_a^b f(t)dt=(b-a)f(c)$. If $g:[a,b]\to\mathbb{R}$ is continuous and $\int_a^b f(t)dt=\int_a^b g(t)dt$ then show that $f(\lambda)=g(\lambda)$ for some $\lambda\in(a,b)$.

Solution: Let m and M be the global minimum and global maximum of f on [a,b]. Then $m(b-a) \leq \int_a^b f(t)dt \leq M(b-a) \Rightarrow m \leq (\int_a^b f(t)dt)/(b-a) \leq M$. Hence by the IVT, there exists $c \in (a,b)$ such that $f(c)(b-a) = \int_a^b f(t)dt$.

Next, set h := f - g. Then there exists $c \in (a, b)$ such that $h(c)(b - a) = \int_a^b h(t)dt = 0$. Consequently, f(c) = g(c).

PART-B (Homework/Practice problems)

- 1. Let $f, g : [0, 1] \to \mathbb{R}$ be given by $f(x) := x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0, and $g(x) := x^2$. Then f and g are differentiable on [0, 1] and $g'(x) \neq 0$ on (0, 1). Show that $\lim_{x\to 0} f(x) = 0 = \lim_{x\to 0} g(x)$ and that $\lim_{x\to 0} f(x)/g(x)$ does not exist. Does this contradict L'Hospital rule?
 - Next, consider $g(x) := \sin(x)$ and show that $\lim_{x\to 0} f(x)/g(x) = 0$ but $\lim_{x\to 0} f'(x)/g'(x)$ does not exist. Does this contradict L'Hospital rule?
- 2. Determine the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$, where a_n is given by:
 - (i) $1/\log(n), n \ge 2$; (ii) $n^n/n!$; (iii) $(n!)^2/(2n)!$; (iv) $n^p/n!$.

Solution: The radius of convergence R is given by $1/R = \lim_{n\to\infty} |a_{n+1}|/|a_n| = \lim_{n\to\infty} |a_n|^{1/n}$.

- (i) By ratio test, we have R=1.
- (ii) Again by ratio test, we have R = 1/e.
- (iii) By ratio test, we have R=4.
- (iv) The ratio test shows that $R = \infty$.

3. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) := e^{-1/x^2}$ for $x \neq 0$ and f(0) := 0. Show (by induction) that $f^{(n)}(0) = 0$ for $n \in \mathbb{N}$. Is f represented by its Taylor series in a neighbourhood of 0? What is the moral of this example?

Solution: It can be shown by induction that $f^{(n)}(x) = P_n(1/x)e^{-1/x^2}$, where P_n is a polynomial of degree 3n. It is easy to see that $f^{(n)}(x) \to 0$ and $\frac{f^{(n)}(x)}{x} \to 0$ as $x \to 0$. Hence $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. This shows that f cannot be represented by a power series in a neighbourhood of 0 even though f is infinitely differentiable.

Moral: The requirement that a function be represented by a power series (so called *real analytic* function) is more demanding than the smoothness requirement.

4. Let $f:[a,b]\to\mathbb{R}$ be continuous such that $f(x)\geq 0$ for all $x\in [a,b]$ and $\int_a^b f(x)\,dx=0$. Show that f(x)=0 for all $x\in [a,b]$.

Solution: Assume that $f(c) \neq 0$ for some $c \in (a,b)$, so that f(c) > 0. Since f is continuous at c, there exists $\delta > 0$ such that $|f(x) - f(c)| < \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$. This implies that $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$. So $\int_a^b f(x) \, dx = \int_a^{c - \delta/2} f(x) \, dx + \int_{c - \delta/2}^b f(x) \, dx + \int_{c + \delta/2}^b f(x) \, dx \geq \frac{1}{2}\delta f(c) > 0$, a contradiction. Almost similar arguments work if c = a or c = b.

5. For each of the function f given below, determine the intervals on which f is increasing/decreasing. Also, determine the intervals of convexity/concavity, points of local extrma, and points of inflection.

 $\text{(i) } f(x) := 2x^3 + 2x^2 - 2x - 1; \ \ \text{(ii) } f(x) := x^2/(x^2 + 1); \ \ \text{(iii) } f(x) := 1 + 12|x| - 3x^2, x \in [-2, 5].$

Give an example of a nonconstant function $f:(-1,1)\to\mathbb{R}$ such that f has a local extremum (i.e. a maximum or a minimum) at 0 as well as a point of inflection at 0.

Solution: (i) Note that f'(x) = 2(x+1)(3x-1). Thus f'(x) > 0 in $(-\infty, -1) \cup (1/3, \infty)$ so that f is strictly increasing in those intervals, and f'(x) < 0 in (-1, 1/3) so that f is strictly decreasing in that interval. This shows that f has a local maximum at x = -1 and a local minimum at x = 1/3.

Since f''(x) = 12x + 4, we conclude that f is convex in $(-1/3, \infty)$ and concave in $(-\infty, -1/3)$ with a point of inflection at x = -1/3.

- (ii) Since $f'(x) = 2x/(1+x^2)^2$, we conclude that f is increasing in $(0,\infty)$ and decreasing in $(-\infty,0)$. Further, $f''(x) = -\frac{2(3x^2-1)}{(x^2+1)^3}$ implies that f''(x) > 0 if $|x| < 1/\sqrt{3}$, and f''(x) < 0 if $|x| > 1/\sqrt{3}$. Therefore, f is convex in $(-1/\sqrt{3}, 1/\sqrt{3})$ and concave in $\mathbb{R} \setminus (-1/\sqrt{3}, 1/\sqrt{3})$ with the points $x = \pm 1/\sqrt{3}$ being the points of inflection.
- (iii) f is not differentiable at x=0; f(0)=1. Further f'(x)=0 at $x=\pm 2$, f'(x)<0 in $(-2,0)\cup(2,5]$, f'(x)>0 in (0,2), and f''(x)=-6 in $(-2,0)\cup(0,5)$. Thus f is concave in $(-2,0)\cup(0,5)$, decreasing in $(-2,0)\cup(2,5)$, and increasing in (0,2). Further f has a global maximum at $x=\pm 2$.

Define $f: [-1,1] \to \mathbb{R}$ be $f(x) := \begin{cases} -\sin(\pi x), & \text{if } x \in [-1,0], \\ x^2, & \text{if } x \in [0,1]. \end{cases}$ Then f is concave on [-1,0] and convex on [0,1]. Note that f(0) = 0 is the global minimum of f.

