Experimento 01 - Pêndulo Composto

Pedro Stringhini RA 156983 Lucas Schanner RA 156412 September 12, 2014

1 Resumo

2 Objetivos

Investigar o movimento de um pêndulo e seu comportamento relacionando as grandezas sobre ele atuantes, como o centro de massa, o momento de inércia.

3 Procedimento Experimental e Coleta de Dados

3.1 Procedimento

Um pêndulo foi montado com uma barra metálica maior e outra adicional colocada em sua extremidade inferior. Ele, depois de devidamente medido (fita métrica) e pesado (balança), foi fixado em um eixo de suspensão. No ponto mais baixo da trajetória do instrumento, foi acoplado um photogate ligado à um cronômetro inteligente adaptado a medição dos periodos (T) de oscilação do pêndulo. Assim, com o devido cuidado de acionar uma oscilação de ângulo menor que 15 graus para efeitos de aproximação, foram medidos tais períodos 7 vezes em cada uma das 6 configurações escolhidas, diferenciadas quanto às distâncias entre eixo fixo e centro de massa do pêndulo.

3.2 Dados Obtidos

As medidas da posição do centro de massa das barras, relativo à extremidade inferior do pêndulo, são:

$$x_1 = (0.0915 \pm 0.0005)M$$

 $x_2 = (0.7420 \pm 0.0005)M$

E suas Massas:

$$M_1 = (347.3 \pm 0.1)g$$

 $M_2 = (929.5 \pm 0.1)g$

As medidas de periodo tomadas estão presentes na seguinte tabela, relacionadas as distâncias do eixo de rotação à extremidade inferior do pêndulo.

4 Análise dos Resultados e Discussões

4.1 Centro de Massa

A posição do do centro de Massa relativo a extrememidade inferior pode ser calculado como

$$x_{cm} = \frac{x_1 \cdot M_1 + x_2 \cdot M_2}{M_1 + M_2} = 0.555M$$

O erro associado à essa medida, propagado a partir dos erros de x_1 , M_1 , x_2 e M_2 é de

$$\Delta x_{cm} = 0.009M$$

X (M)	Medidas de Periodo (s)							Valor Médio
1.0450	1.8866	1.8878	1.8881	1.8869	1.8867	1.8862	1.8864	1.8870 ± 0.0003
0.9900	1.8877	1.8882	1.888	1.888	1.8851	1.8874	1.8869	1.8873 ± 0.0004
0.9400	1.9018	1.9026	1.9020	1.9048	1.902	1.9016	1.8985	1.9019 ± 0.0007
0.8900	1.9341	1.9349	1.9345	1.9342	1.9335	1.9335	1.9340	1.9341 ± 0.0002
0.8400	1.9956	1.9957	1.9947	1.9947	1.9946	1.9986	1.9935	1.9953 ± 0.0006
0.7915	2.1042	2.1027	2.1027	2.1024	2.1026	2.1023	2.1019	2.1027 ± 0.0003

Table 1: Medidas do Periodo de oscilação do pêndulo e suas médias aritméticas relacionadas à distância X do eixo de rotação à extremidade inferior do pêndulo. As medidas estão em Metros e Segundos. O erro no período foi calculado com base no erro estatístico e erro instrumental do cronômetro (0.0001s). O erro instrumental em X é 0.0005M

4.2 Períodos

A equação

$$T = 2\pi \sqrt{\frac{D + \frac{k^2}{D}}{g}}$$

Pode ser reescrita como

$$T^{2}D = \frac{4\pi^{2}}{q} \cdot D^{2} + \frac{4\pi^{2}}{q} \cdot k^{2}$$

Então deve existir uma relação linear entre T^2D e D^2

D (M)	T(s)	D^2	T^2D
0.4897	1.8870	0.2399	1.74 ± 0.03
0.4347	1.8873	0.1890	1.55 ± 0.03
0.3847	1.9019	0.1480	1.39 ± 0.03
0.3347	1.9341	0.1121	1.25 ± 0.03
0.2847	1.9953	0.0811	1.13 ± 0.04
0.2362	2.1027	0.0558	1.04 ± 0.04

Table 2: Periodos de oscilação relacionados à distância D dos eixo de rotação ao centro de massa. O erro em D é constante igual a 0.009M (propagado a partir do erro em X e em x_{cm}) e o erro em T^2D foi propagado a partir do erro em D e em T.

Fazendo a regressão linear de $T^2D \times D^2$ por mínimos quadrados, obtemos os coeficientes

$$a = 3.8 \pm 0.2$$

е

$$b = 0.83 \pm 0.04$$

onde a é o coeficiente angular e b é o coeficiente linear.

Figure 1: Gráfico de T^2D em função de D^2 . Nota-se que os dados coletados se encaixam muito bem em uma projeção linear.

4.3 Gravidade

A interpretação física do coeficiente angular encontrado é

$$a = \frac{4\pi^2}{g} = 3.8 \pm 0.2$$

logo podemos encontrar g como

$$g = \frac{4\pi^2}{3.8} = 10.32$$

e seu erro associado, propagado a partir do erro em $a \in \pm 0.05$

4.4 Raio de giração

4.5 Momento de Inércia

5 Conclusões