Assignment 5

Link to this Assignment Link to top of repository

1. Preparation tasks

1.1 Figure with connection of push buttons on Nexys A7 board

Source link When the push button is pressed the input value is 1 (high).

1.2 Timing table

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary	
2 ms	200 000	x"3_0D40"	b"0011_0000_1101_0100_0000"	
4 ms	400 000	x"6_1A80"	b"0110_001_1010_1000_0000"	
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"	
250 ms	25 000 000	x"17D_7840"	b"0001_0111_1101_0111_1000_0100_0000"	
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"	
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"	
2. Bidirectional counter				

2.1 Listing of VHDL process p_cnt_up_down

```
p_cnt_up_down : process(clk)
   if rising_edge(clk) then
       if (reset = '1') then
                                       -- Synchronous reset
          s_cnt_local <= (others => '0'); -- Clear all bits
       -- TEST COUNTER DIRECTION HERE
          if (cnt_up_i = '1') then
             s_cnt_local <= s_cnt_local + 1;</pre>
          elsif (cnt_up_i = '0') then
             s_cnt_local <= s_cnt_local - 1;</pre>
          end if;
       end if;
   end if;
end process p_cnt_up_down;
```

-- Reset generation process p_reset_gen : process

2.2 Listing of VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd

```
s_reset <= '0';
         wait for 12 ns;
          -- Reset activated
          s_reset <= '1';</pre>
          wait for 73 ns;
         s_reset <= '0';
          wait;
      end process p_reset_gen;
      -- Data generation process
      p_stimulus : process
         report "Stimulus process started" severity note;
         -- Enable counting
                <= '1';
         s_en
          -- Change counter direction
          s_cnt_up <= '1';
          wait for 380 ns;
          s_cnt_up <= '0';
          wait for 320 ns;
          -- Disable counting
          s_en <= '0';
         report "Stimulus process finished" severity note;
      end process p_stimulus;
2.3 Screenshot with simulated time waveforms
                                                        450.000 ns
                                                                                                         650.000 ns
 Name
            Value
                                350.000 ns
                                            400.000 ns
                                                                    500.000 ns
                                                                                550.000 ns
                                                                                             600.000 ns
                                                                                                                     700.000 ns
   s_cl...0MHz
  s reset
  l₀ s_en
```

22 23 24 25 26 27 28 29 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

la [1] [0] ¼ c_CN…DTH 5

3.1 Listing of VHDL code from source file top.vhd

-- Instance (copy) of clock_enable entity

clk => CLK100MHZ, reset => BTNC,

clk_en0 : entity work.clock_enable generic map(g_MAX => 250000000 -- 250ms

port map(

3. Top level

le s_cnt_up 0

30

₩ s_cnt[4:0]

la [4] l [3] l [2]

ce_o => s_en);

```
-- Instance (copy) of cnt_up_down entity
bin_cnt0 : entity work.cnt_up_down
    generic map(
         g_CNT_WIDTH => 4
    port map(
        clk => CLK100MHZ,
         reset => BTNC,
         en_i => s_en,
        cnt_up_i => SW,
         cnt_o => s_cnt
    );
-- Display input value on LEDs
LED(3 downto 0) <= s_cnt;</pre>
-- Instance (copy) of hex_7seg entity
hex2seg : entity work.hex_7seg
    port map(
        hex_i
                   => s_cnt,
         seg_o(6) \Rightarrow CA,
         seg_o(5) \Rightarrow CB,
         seg_o(4) \Rightarrow CC,
         seg_o(3) \Rightarrow CD,
         seg_o(2) \Rightarrow CE,
         seg_o(1) => CF,
         seg_o(0) \Rightarrow CG
    );
                                                           top
                             clk_en0
                                                     bin_cnt0
```

