```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
final_ma_data = pd.read_csv('/Users/avanthpakanati/Desktop/ECON:HLTH Research Seminar /Homew
/var/folders/2q/wzjp_2kd355b8clhzqwmytb40000gn/T/ipykernel_86398/1280282546.py:7: DtypeWarni:
  final_ma_data = pd.read_csv('/Users/avanthpakanati/Desktop/ECON:HLTH Research Seminar /Hom
#QUESTION 1
final_ma_data.columns = final_ma_data.columns.str.lower()
# Remove SNPs and removing 800-series plans
final_ma_data = final_ma_data[final_ma_data['snp'] != 'Yes']
final_ma_data = final_ma_data[~final_ma_data['planid'].astype(str).str.startswith('800')]
# Remove prescription drug-only plans (PDPs)
final_ma_data = final_ma_data[~final_ma_data['plan_type'].str.contains('PDP', na=False)]
# Group by year and county to count number of plans
plan_counts = (
    final_ma_data.groupby(['year', 'county'])
    .reset_index(name='plan_count')
plan_counts = plan_counts[plan_counts['plan_count'] <= 50]</pre>
# box and whisker plot of plan counts by year
plt.figure(figsize=(12, 6))
plan_counts.boxplot(column='plan_count', by='year')
plt.title('Distribution of Plan Counts by County Over Time')
plt.suptitle('')
plt.xlabel('Year')
plt.ylabel('Number of Plans')
```

plt.grid(True)
plt.tight_layout()

plt.show()


```
final_ma_data_2 = final_ma_data.copy()

final_ma_data_filtered = final_ma_data_2[final_ma_data_2['year'].isin([2010, 2012, 2015])]

star_counts = (
    final_ma_data_filtered.groupby(['star_rating', 'year'])
    .size()
    .unstack(fill_value=0)
    .sort_index()
)

star_ratings = sorted(star_counts.index)
```

```
x = np.arange(len(star_ratings))
width = 0.25
#plotting
plt.figure(figsize=(10, 6))
plt.bar(x - width, star_counts[2010], width=width, label='2010')
                   star_counts[2012], width=width, label='2012')
plt.bar(x,
plt.bar(x + width, star_counts[2015], width=width, label='2015')
plt.xticks(x, star_ratings)
plt.xlabel('Star Rating')
plt.ylabel('Number of Plans')
plt.title('Star Ratings (2010, 2012, 2015)')
plt.legend(title='Year')
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt.tight_layout()
plt.show()
```



```
#QUESTION 3
avg_benchmark_pay = final_ma_data.groupby('year')['ma_rate'].mean().reset_index()
```

```
#ploting average benchmark payment 2010-2015
plt.figure(figsize=(10, 6))
plt.plot(avg_benchmark_pay['year'], avg_benchmark_pay['ma_rate'], marker='o')
plt.title('Average Benchmark Payment(2010-2015)')
plt.xlabel('Year')
plt.ylabel('Average Benchmark Payment')
plt.grid(True)
plt.show()

#Calculating the rise in average benchmark payment from 2010 to 2015
benchmark_2010 = avg_benchmark_pay[avg_benchmark_pay['year'] == 2010]['ma_rate'].values[0]
benchmark_2015 = avg_benchmark_pay[avg_benchmark_pay['year'] == 2015]['ma_rate'].values[0]
rise = benchmark_2015 - benchmark_2010

print(rise)
```


-21.236870591187085

```
#QUESTION 4

final_ma_data_copy = final_ma_data.copy()
final_ma_data_copy['ma_share'] = final_ma_data_copy['avg_enrolled'] / final_ma_data_copy['avg
final_ma_data_copy = final_ma_data_copy.groupby('year')['ma_share'].mean().reset_index()

plt.figure(figsize=(10, 6))
plt.plot(final_ma_data_copy['year'], final_ma_data_copy['ma_share'], marker='o')
plt.title('Average Share of Medicare Advantage (2010-2015)')
plt.xlabel('Year')
plt.ylabel('Average Share of Medicare Advantage')
plt.grid(True)
plt.show()
```

Index(['year', 'ma_share'], dtype='object')


```
#Question 5
final_data_2 = final_ma_data.copy()
```

```
final_2010 = final_data_2[final_data_2['year'] == 2010]
rating variables = [
    "breastcancer_screen", "rectalcancer_screen", "cv_cholscreen", "diabetes_cholscreen",
    "glaucoma test", "monitoring", "flu vaccine", "pn vaccine", "physical health",
    "mental_health", "osteo_test", "physical_monitor", "primaryaccess",
    "hospital followup", "depression followup", "nodelays", "carequickly",
    "overallrating_care", "overallrating_plan", "calltime",
    "doctor_communicate", "customer_service", "osteo_manage",
    "diabetes_eye", "diabetes_kidney", "diabetes_bloodsugar",
    "diabetes_chol", "antidepressant", "bloodpressure", "ra_manage",
    "copd_test", "betablocker", "bladder", "falling", "appeals_timely", "appeals_review"
]
final_2010["raw_rating"] = final_2010[rating_variables].mean(axis=1, skipna=True)
columns = [
    "contractid", "planid", "fips", "avg_enrollment", "state", "county", "raw_rating",
    "partc_score", "avg_eligibles", "avg_enrolled", "risk_ab",
    "Star_Rating", "ma_rate", "plan_type", "partd"
]
final_2010 = final_2010[columns]
final_2010 = final_2010[final_2010["plan_type"] == "HMO/HMOPOS"]
final_2010["rounded_30"] = np.where(
    (final_2010["raw_rating"] >= 2.75) &
    (final_2010["raw_rating"] < 3.00) &
    (final_2010["Star_Rating"] == 3.0), 1, 0)
final_2010["rounded_35"] = np.where(
    (final 2010["raw rating"] >= 3.25) &
    (final_2010["raw_rating"] < 3.50) &
    (final 2010["Star Rating"] == 3.5), 1, 0)
final_2010["rounded_40"] = np.where(
    (final_2010["raw_rating"] >= 3.75) &
    (final_2010["raw_rating"] < 4.00) &
    (final_2010["Star_Rating"] == 4.0), 1, 0)
final_2010["rounded_45"] = np.where(
```

```
(final_2010["raw_rating"] >= 4.25) &
    (final_2010["raw_rating"] < 4.50) &
    (final_2010["Star_Rating"] == 4.5), 1, 0)
final_2010["rounded_50"] = np.where(
    (final_2010["raw_rating"] >= 4.75) &
    (final_2010["raw_rating"] < 5.00) &
    (final_2010["Star_Rating"] == 5.0), 1, 0)
summary = (
    final_2010[final_2010["Star_Rating"].isin([3.0, 3.5, 4.0, 4.5, 5.0])]
    .groupby("Star_Rating")
    .agg(
        count_30=("rounded_30", "sum"),
        count_35=("rounded_35", "sum"),
        count_40=("rounded_40", "sum"),
        count_45=("rounded_45", "sum"),
        count_50=("rounded_50", "sum")
    .reset_index()
)
summary["rounded"] = (
    summary["count_30"] +
    summary["count_35"] +
    summary["count_40"] +
    summary["count_45"] +
    summary["count_50"]
summary = summary [['Star_Rating', 'rounded']]
summary
```

/var/folders/2q/wzjp_2kd355b8clhzqwmytb40000gn/T/ipykernel_86398/952615848.py:18: SettingWith A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidfinal_2010["raw_rating"] = final_2010[rating_variables].mean(axis=1, skipna=True)

	Star_Rating	rounded
0	3.0	2504
1	3.5	1675
2	4.0	66
3	4.5	0
4	5.0	0

```
#QUESTION 6
# Make sure market share is computed

# Make sure market share is computed
final_2010['mktshare'] = final_2010['avg_enrolled'] / final_2010['avg_eligibles']

# 3 star
final_2010['score_3'] = final_2010['raw_rating'] - 2.75
final_2010['treat_3'] = (final_2010['star_Rating'] == 3.0).astype(int)
final_2010['score_treat_3'] = final_2010['score_3'] * final_2010['treat_3']

# Filter to within 0.125 bandwidth
final_2010_bw = final_2010[final_2010['score_3'].between(-0.125, 0.125)].copy()

reg1 = smf.ols("mktshare ~ score_3 + treat_3", data=final_2010_bw).fit()
print(reg1.summary())
```

OLS Regression Results

Dep. Variable: mktshare R-squared: 0.006 Model: OLS Adj. R-squared: 0.005 Least Squares F-statistic: Method: 5.400 Date: Wed, 09 Apr 2025 Prob (F-statistic): 0.00459 Time: 09:46:25 Log-Likelihood: 1090.8 No. Observations: AIC: 1699 -2176.

Df Residuals: 1696 BIC: -2159.

Df Model: 2 Covariance Type: nonrobust

=========	=======	========	:=======		:========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.2211	0.014	16.011	0.000	0.194	0.248
score_3	0.1759	0.066	2.652	0.008	0.046	0.306
treat_3	0.0328	0.014	2.386	0.017	0.006	0.060
Omnibus:		50).098 Durl	oin-Watson:		1.230
Prob(Omnibus)	:	C	0.000 Jar	que-Bera (JE	3):	52.890
Skew:		C).418 Prol)(JB):		3.27e-12
Kurtosis:		2	2.782 Cond	d. No.		29.8
	=======	=======				========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $$\tt OLS \ Regression \ Results$

			=====	=====			
Dep. Variable	e:	mkts	hare	R-sq	uared:		0.050
Model:			OLS	Adj.	R-squared:		0.049
Method:		Least Squ	ares	F-st	atistic:		54.29
Date:	,	Wed, 09 Apr	2025	Prob	(F-statistic)	:	1.06e-23
Time:		09:4	6:25	Log-	Likelihood:		1192.4
No. Observati	ions:		2049	AIC:			-2379.
Df Residuals	:		2046	BIC:			-2362.
Df Model:			2				
Covariance Ty	ype:	nonro	bust				
=========			=====	=====			
	coef	std err		t	P> t	[0.025	0.975]
Intercept	0.2661	0.009	29	.135	0.000	0.248	0.284
score_35	0.4818	0.049	9	.890	0.000	0.386	0.577
treat_35	-0.0297	0.010	-3	.122	0.002	-0.048	-0.011
======================================		======== 107	.506	===== Durb	======== in-Watson:		1.022
Prob(Omnibus)):	0	.000	Jarq	ue-Bera (JB):		119.050
Skew:		0	.572	Prob			1.41e-26
Kurtosis:		2	.710	Cond	. No.		22.1
=========			=====		=========		=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
# 3.5 star

final_2010['score_35'] = final_2010['raw_rating'] - 3.25
final_2010['treat_35'] = (final_2010['Star_Rating'] == 3.5).astype(int)
final_2010['score_treat_35'] = final_2010['score_35'] * final_2010['treat_35']

# Filter to within 0.125 bandwidth
final_2010_bw_2 = final_2010[final_2010['score_35'].between(-0.125, 0.125)].copy()

# Estimate with pyfixest
reg2 = smf.ols("mktshare ~ score_35 + treat_35", data=final_2010_bw_2).fit()
print(reg2.summary())
```

OLS Regression Results

						=======
Dep. Variable: mktshare			R-squared:			0.050
Model:			Adj.	R-squared:		0.049
	Least Squar	res	F-sta	tistic:		54.29
Wed	d, 09 Apr 2	025	Prob	(F-statistic):		1.06e-23
	09:46	:55	Log-I	ikelihood:		1192.4
:	20	049	AIC:			-2379.
	20	046	BIC:			-2362.
		2				
	nonrob	ust				
		=====				=======
coef	std err		t	P> t	[0.025	0.975]
.2661	0.009	29	. 135	0.000	0.248	0.284
.4818	0.049	9.	890	0.000	0.386	0.577
.0297	0.010	-3	122	0.002	-0.048	-0.011
Omnibus:		===== 506	 Durbi	.n-Watson:		1.022
	0.0	000	Jarqu	ue-Bera (JB):		119.050
	0.	572	Prob([JB):		1.41e-26
			~ .			22.1
	coef 	Least Square Wed, 09 Apr 20 09:46 20 20 20 20 20 20 20 20 20 20 20 20 20	OLS Least Squares Wed, 09 Apr 2025 09:46:55 : 2049 2046 2 nonrobust	OLS Adj. Least Squares F-sta Wed, 09 Apr 2025 Prob 09:46:55 Log-I : 2049 AIC: 2046 BIC: 2 nonrobust coef std err t 2661 0.009 29.135 .4818 0.049 9.890 .0297 0.010 -3.122 107.506 Durbi 0.000 Jarqu 0.572 Prob(OLS Adj. R-squared: Least Squares F-statistic: Wed, 09 Apr 2025 Prob (F-statistic): 09:46:55 Log-Likelihood: 2049 AIC: 2046 BIC: 2 nonrobust coef std err t P> t .2661 0.009 29.135 0.000 .4818 0.049 9.890 0.000 .0297 0.010 -3.122 0.002 107.506 Durbin-Watson: 0.000 Jarque-Bera (JB): 0.572 Prob(JB):	OLS Adj. R-squared: Least Squares F-statistic: Wed, 09 Apr 2025 Prob (F-statistic): 09:46:55 Log-Likelihood: 2049 AIC: 2046 BIC: 2 nonrobust coef std err t P> t [0.025 .2661 0.009 29.135 0.000 0.248 .4818 0.049 9.890 0.000 0.386 .0297 0.010 -3.122 0.002 -0.048 107.506 Durbin-Watson: 0.000 Jarque-Bera (JB): 0.572 Prob(JB):

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#QUESTION 7		
#QUESTION 8		
#QUESTION 9		

QUESTION 10 - Add some analsysis