Einführung in die Theoretische Informatik Aufgabenhandbuch

Efe Kamasoglu

 $\mathrm{May}~8,~2023$

1 Tutorium 1

1.1 Beweistechniken für Sprachen

- $A \Longrightarrow B$:
 - 1. Annahme: A ist wahr
 - 2. Zeige B unter der Annahme
- A gdw. B / A ⇐⇒ B:
 - 1. Zeige $A \iff B$
 - 2. Zeige $A \Longrightarrow B$
- Beweis per Kontraposition für $A \Longrightarrow B$:
 - 1. Zeige $\neg B \Longrightarrow \neg A$
- Beweis per Induktion für $A \Longrightarrow A^n$:
 - 1. Annahme: A
 - 2. Induktionsanfang: Zeige, dass A^n für n=0 gilt
 - 3. Induktionshypothese: A^n gilt unter der Annahme für eine feste aber beliebige $n\in\mathbb{N}$
 - 4. Induktionsschritt: Zeige, dass A^{n+1} unter der Annahme und der Hypothese gilt
- Beweis durch Widerspruch für A:
 - 1. Nehme an, dass $\neg A$ wahr ist
 - 2. Leite logische Konsequenzen aus dieser Annahme her
 - 3. Zeige, dass die Konsequenzen zum Widerspruch führen
- Widerlegen mithilfe eines Gegenbeispiels

2 Tutorium 2

2.1 Strukturelle Induktion

Um zu beweisen, dass eine Eigenschaft P(r) für alle regulären Ausdrücke gilt.

- 1. Zeige $P(\emptyset)$
- 2. Zeige $P(\epsilon)$
- 3. Zeige P(a) für alle $a \in \Sigma$
- 4. Unter der Annahme $P(\alpha)$ und $P(\beta)$ (I.H.), zeige $P(\alpha\beta)$ \rightarrow verwende $L(\alpha\beta) = L(\alpha)L(\beta)$

- 5. Unter der Annahme $P(\alpha)$ und $P(\beta)$ (I.H.), zeige $P(\alpha \mid \beta)$ \rightarrow verwende $L(\alpha \mid \beta) = L(\alpha) \cup L(\beta)$
- 6. Unter der Annahme $P(\alpha)$ (I.H.), zeige $P(\alpha^*)$ \rightarrow verwende $L(\alpha^*) = L(\alpha)^*$

<u>Beispiel:</u> empty(r) entscheidet, ob $L(r) = \emptyset$. Zeige die Korrektheit der Konstruktion:

(a) Konstruktion

• $empty(\emptyset) = true$

• $empty(\alpha\beta) = empty(\alpha) \lor empty(\beta)$

• empty(a) = false

• $empty(\alpha \mid \beta) = empty(\alpha) \land empty(\beta)$

• $\mathsf{empty}(\epsilon) = \mathsf{false}$

• empty(α^*) = false

Korrektheit Wir zeigen $L(r) = \emptyset \iff \mathsf{empty}(r)$ mittels struktureller Induktion.

Fall
$$r = \emptyset$$
, $r = \mathsf{a}$, $r = \epsilon$. Trivial.

Fall $r = \alpha^*$.

Wir haben $\epsilon \in L(\alpha^*) \neq \emptyset \iff \neg \mathsf{empty}(\alpha^*)$. Die Aussage gilt per Definition von empty.

Fall $r = \alpha \beta$.

Als Induktions hypothesen erhalten wir $L(\alpha)=\emptyset\iff \mathsf{empty}(\alpha)$ und $L(\beta)=\emptyset\iff \mathsf{empty}(\beta).$

Es gilt

$$\begin{split} L(\alpha\beta) = \emptyset &\iff L(\alpha)L(\beta) = \emptyset \\ &\iff L(\alpha) = \emptyset \lor L(\beta) = \emptyset \\ &\stackrel{\text{I.H.}}{\Longleftrightarrow} & \text{empty}(\alpha) \lor \text{empty}(\beta) = \text{empty}(\alpha\beta). \end{split}$$

Fall $r = \alpha \mid \beta$.

Es gelten dieselben Induktionshypothesen wie im vorherigen Fall.

Wir haben

$$\begin{split} L(\alpha \,|\, \beta) &= \emptyset \iff L(\alpha) \cup L(\beta) = \emptyset \\ &\iff L(\alpha) = \emptyset \land L(\beta) = \emptyset \\ &\stackrel{\text{I.H.}}{\iff} \text{empty}(\alpha) \land \text{empty}(\beta) = \text{empty}(\alpha \,|\, \beta). \end{split}$$