Name

Register Name	Register Number	Usage	
\$zero	0	Constant 0	
\$at	1	Reserved for assembler	
\$v0, \$v1	2, 3	Function return values	
\$a0 - \$a3	4 – 7	Function argument values	
\$t0 - \$t7	8 - 15	Temporary (caller saved)	
\$s0 - \$s7	16 - 23	Temporary (callee saved)	
\$t8, \$t9	24, 25	Temporary (caller saved)	
\$k0, \$k1	26, 27	Reserved for OS Kernel	
\$gp	28	Pointer to Global Area	
\$sp	29	Stack Pointer	
\$fp	30	Frame Pointer	
\$ra	31	Return Address	

The Execution Time Equation:

Execution time= Instructions * Cycles/Instruction * Time/cycle

Amdahl's Law:

 $Time_{optimized} = Time_{unaffected} + Time_{affected}/optimizationFactor$

Baseline multicycle: Operations in each cycle; {B=3,R=4, SW=4, LW=5} cycles

Step	R-type	Memory	Branch
Instruction Fetch	IR = Mem[PC]		
	PC = PC + 4		
Instruction Decode/	A = Reg[IR[25-21]]		
register fetch	B = Reg[IR[20-16]]		
	ALUout = PC + (sign-extend(IR[15-0]) << 2)		
Execution, address	ALUout = A op B	ALUout = A +	if (A==B) then
computation, branch		sign-	PC=ALUout
completion		extend(IR[15-0])	
Memory access or R-	Reg[IR[15-11]] =	memory-data =	
type completion	ALUout	Mem[ALUout]	
		or	
		Mem[ALUout]=	
		В	
Write-back		Reg[IR[20-16]] =	
		memory-data	