Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

Given a corpus A, encoded as $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and corpus B encoded as $\begin{pmatrix} 4 \\ 7 \\ 2 \end{pmatrix}$, What is the euclidean distance between the two documents?

1 / 1 point

- 5.91608
- O 35
- 2.43
- O None of the above
- Orrect
 Yes, this is correct.
- 2. Given the previous problem, a user now came up with a corpus C defined as $\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ and you want to recommend a document that is similar to it. Would you recommend document A or document B?

1/1 point

- Document A
- O Document B
- **⊘** Correct

That is correct

3. Which of the following is true about euclidean distance?

1 / 1 point

- When comparing similarity between two corpuses, it does not work well when the documents are of different sizes.
- **⊘** Correct

That is correct.

- It is the norm of the difference between two vectors.
- **⊘** Correct

That is correct.

- ☐ It is a method that makes use of the angle between two vectors
- ☐ It is the norm squared of the difference between two vectors.
- 4. What is the range of a cosine similarity score, namely $s, \,$ in the case of information retrieval where the vectors are positive?

1 / 1 point

- $\qquad \qquad -1 \leq s \leq 1$
- $\quad \square \ -\infty \leq s \leq \infty$
- $0 \le s \le 1$
- **⊘** Correct

That is correct.

- $\qquad \qquad -1 \leq s \leq 0$
- The cosine similarity score of corpus A = $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and corpus B = $\begin{pmatrix} 2 \\ 8 \\ 1 \end{pmatrix}$ is equal to ?

1/1 point

0.08512565307587486

	○ 0○ 1.251903○ -0.3418283	
	○ Correct This is correct.	
6.	We will define the following vectors, USA = $\binom{5}{6}$, Washington = $\binom{10}{5}$, Turkey = $\binom{3}{1}$, Ankara = $\binom{9}{1}$, Russia = $\binom{5}{5}$, and Japan = $\binom{4}{3}$. Using only the following vectors, Ankara is the capital of what country? Please consider the cosine similarity score in your calculations.	1/1 point
	✓ Japan✓ Russia✓ Morocco⑥ Turkey	
	Correct Yes, you should compute (USA - Washington) + Ankara and then compare that vector to the country vectors to decide.	
7.	Please select all that apply. PCA is we used to reduce the dimension of your data;	1/1 point
	 ✓ visualize word vectors; ✓ Correct This is correct. 	
	make predictions; label data.	
8.	Please select all that apply. Which is correct about PCA? You can think of an eigenvector as an uncorrelated feature for your data.	1/1 point
	⊘ Correct That is correct.	
	The eigenvalues tell you the amount of information retained by each feature.	
	Correct This is correct.	
	☐ If working with features in different scales, you do not have to mean normalize. ✓ Computing the covariance matrix is critical when performing PCA	
	Correct This is correct.	
9.	In which order do you perform the following operations when computing PCA?	1/1 point
	• mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data.	
	\bigcirc mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data.	
	oget Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize.	
	Oget Σ the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data.	

10. Vector space models allow us to		
✓ To represent words and documents as vectors.		
☑ build useful applications including and not limited to, information extraction, machine translation, and chatbots.		
✓ create representations that capture similar meaning.		

1/1 point

This is correct.

build faster training algorithms