Reinforcement Learning

Gong Ying 2023.11.17

Contents

- Basic terminologies
 - Return and value

Basic terminologies

Agent

State: s

Action: a

Reward: r

Policy: $\pi(a|s)$

State transition: p(s'|s,a)

Basic terminologies

Markov property

In state transitions, S_{t+1} only depends on S_t and A_t , but does not depends on history states or actions.

Return and discounted return

$$U_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots$$

Value function

action-value function
optimal action-value function
state-value function

Action-value function:

Evaluates the value of a certain action a in state s.

 $Q_{\pi}(s_t, a_t)$ is conditional expectation of U_t in terms of S_{t+1} , $A_{t+1}, ..., S_n, A_n$. It is affected by π .

- Optimal action-value function
 - State-value function

- Action-value function
- Optimal action-value function:

```
Q_*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t), excluding the effect of policy \pi, only depending on s_t and a_t.
```

State-value function

- Action-value function
- Optimal action-value function
 - State-value function:

Evaluates the value of state s with policy π , excluding the effect of a.

 $V_{\pi}(s_t)$ is expectation of A_t .

Thank you.