Report: Команда 25

Краткое описание проекта

Текущий прогресс

Дальнейшие планы

Структура проекта

Текущая структура проекта

Функционал MVP

Вспомогательная техническая функциональность

Инструкции

Инструкции по развёртыванию docker контейнера

Метанастройки streamlit-app.py

Пользовательская инструкция

Краткое описание проекта

Название проекта: Распознавание пневмонии на рентгенограмме органов грудной клетки.

Сейчас занимаемся задачей классификации.

Текущий прогресс

- 1. Собраны данные, проведён разведочный анализ данных. Выяснилось, что данных достаточно и они хорошего качества. Есть классы и bbox для задачи детекции.
- 2. Построили бейзлайн.
 - а. Особенности: хотели чтобы датасет помещался в память, и чтобы модели не обучались дольше 5-10 минут.
 - b. Попробовали обучение без сжатия изображений, со сжатием, классику сv (SIFT и HOG), снижение размерности при помощи SVD-разложения.
 - с. Наилучшие результаты показало SVD-разложение.
 - d. Попробовали линейные и нелинейные модели классификации.
 - е. Нелинейные модели дают небольшой прирост в качестве.

Бейзлайн:

PCA via SVD(1024x1024 \rightarrow 128) + SVM(rbf kernel)

В MVP выбрали облегченную версию модели бейзлайна. Т.к. приоритезировали быстродействие и занимаемую память. SVD(from 1024x1024 → 128) весит больше 1Гб.

Resize(1024x1024 → 128x128) + PCA via SVD(128x128 → 32) + Random Forest

Сделали MVP, состоящий из fastapi(бэкенд) и streamlit(фронт).

Дальнейшие планы

Классификация изображений с использованием deep	Ориентировочно в 3
learning моделей.	модуле
Реализация задачи сегментации. Выявление лёгочных затемнений, характерных для пневмонии.	Ориентировочно в 4 модуле

Структура проекта

Текущая структура проекта

- FastAPI-приложение
 - o fastapi_app.py
 - o data_models.py
- Streamlit-приложение
 - o streamlit_app.py

Планируем добавить

• Telegram-бот

Функционал MVP

Фронт Streamlit комплементарен FastAPI бэкенду. То есть MVP состоит из двух частей и суммарно реализует функциональность:

- 1. Получение предсказания на одном изображении (наша модель или дообученная)
- 2. Загрузить свой датасет
- 3. Проводить эксперименты: дообучать различные доступные модели на загруженных данных.
- 4. Оценка качества экспериментов: метрики и графики.
- 5. При инициализации сервиса подгружаются: предобученная модель, дополнительный датасет

Инструкции: развёртывание, дальнельная разработка и использование

Инструкции по развёртыванию docker контейнера

- 1. Клонируем репозиторий
 - a. git clone

https://github.com/Amlaith/medical_diseases_recognition.git

- 2. Переходим в директорию с четвертым чекпоинтом
 - a. cd checkpoint_4_service
- 3. Запускаем контейнеры
 - a. docker-compose up
- 4. Открываем streamlit-приложение в браузере
 - a. http://localhost:8501/

fastapi_app.py

Идейно бэкенд берёт на себя максимальную долю вычислений, так как при деплое может использоваться бесплатная версия Streamlit Cloud.

Метанастройки streamlit_app.py

Настройка визуальных эффектов успеха

```
NEW_YEAR_EDITION = True
```

Если True, то визуальным эффектом будет снег, иначе шарики.

Указывать root бэкэнда, к которому надо обращаться. Та ссылка, по которой будет показано "App is healthy" или его аналог.

BASE_URL = "http://localhost:8000/" # Root backend endpoint

Пользовательская инструкция

Как получить предсказание по картинке

- 1. Перейти на страницу «Получение предсказаний»
- 2. Загрузить изображение. Либо получить демо.
- 3. Нажать на кнопку
- 4. Увидеть результат

Как дообучить модель

- 1. Выбрать данные для дообучения.
 - а. Загрузить свой датасет: архив с изображениями и labels.csv
 - b. Скачать демо датасета, затем его загрузить.
 - с. Использовать датасет по умолчанию
- 2. Дообучить модель.

- а. Можно выбрать некоторые гиперпараметры
- 3. Сравнить свою модели/свои модели с нашей дефолтной на вкладке «Сравнение моделей».
 - а. Посмотреть на метрики
 - b. Посмотреть на графики

Демонстрация работы

YouTube плейлист