Loan Default Prediction Project

AMAN SHARMA

Project Overview

Objective:

- Develop a machine learning model to predict loan default risks.
- Provide insights to help financial institutions make data-driven decisions.

Dataset:

- Records: 10,000 borrowers
- Features: Age, Income, Loan Amount, Credit Score, Interest Rate, etc.
- Target Variable: Loan_Status (Default or Non-Default)

Problem Statement

► The Challenge:

- Loan defaults lead to significant financial losses.
- Traditional credit scoring methods are not always reliable.

► The Solution:

- Use machine learning to build a predictive model that identifies high-risk borrowers.
- Improve decision-making and reduce financial risk.

Exploratory Data Analysis (EDA)

Key Insights:

 Loan default rate is around 10%, leading to class imbalance

• 'Income' shows significant outliers, as observed in the boxplot.

 Most features show weak correlations, indicating minimal multicollinearity, which reduces the need for feature elimination based on correlation alone.

Data Preprocessing

Steps Taken:

- Handled missing values in Gender and Employment Status.
- Encoded categorical variables.
- Scaled numerical features using MinMaxScaler.
- Addressed class imbalance using SMOTE.
- Remove Outliers using IQR method

Model Development

- ► Approach:
- Tested Logistic Regression and Random Forest.
- Selected Random Forest for the best performance.

Insights & Recommendations

- Lenders should focus on high-risk borrowers identified by the model.
- Adjust interest rates dynamically based on borrower risk.
- Implement stricter approval criteria for long-duration loans.

Model Evaluation

Performance Metrics:

Metric	Score
Accuracy	92%
Precision	89%
Recall	98%
F1-Score	93%
ROC-AUC	98%

Confusion Matrix:

