Grau de Matemàtiques. Curs 2021-2022. Semestre de primavera

MÈTODES NUMÈRICS II

EXAMEN FINAL. 2 de juny de 2022

Exercici 1, sobre la pràctica 2 (1 punt)

S'ha fet un torneig de tenis entre 4 jugadors: J_1, J_2, J_3, J_4 . Cada jugador ha jugat contra uns altres dos jugadors, al millor de 3 sets. Els resultats han estat:

 J_1 ha guanyat J_2 per 2 sets a 0.

 J_1 ha guanyat J_3 per 2 sets a 1.

 J_2 ha guanyat J_4 per 2 sets a 0.

 J_3 ha guanyat J_4 per 2 sets a 1.

Es construeix una matriu $A = (a_{ij}), 4 \times 4$, associada als resultats anteriors, de la manera següent:

Si J_i ha guanyat J_j per 2 a 0, es posa $a_{ij} = 20$.

Si J_i ha guanyat J_j per 2 a 1, es posa $a_{ij} = 10$.

La resta d'elements de la matriu es posen igual a 1.

S'aplica el mètode de la potència a la matriu A, de la manera explicada a l'enunciat de la pràctica 2:

- Es calcula un vector inicial x i un vector inicial normalitzat v.
- Es van actualitzant els vectors x i v.
- (a) Escriviu la matriu A.
- (b) Quins són els vectors inicials x i v?
- (c) Feu la primera iteració del mètode (cal actualitzar x i v).
- (d) Feu una segona iteració del mètode (cal tornar a actualitzar x i v).

Nota. Escriviu totes les components de tots els vectors en forma de fracció.

Exercici 2, teoria (3 punts)

- (a) Enuncieu els dos teoremes de Gerschgorin sobre localització de valors propis, i demostreu el primer teorema.
- (b) Sistemes no lineals: convergència per a contraccions (no cal fer demostracions).
- (c) Polinomis de Txebixev: definició i propietats (no cal fer demostracions).

Exercici 3 (2 punts)

Es considera un sistema Ax = b, de 5 equacions i incògnites, amb

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & -1 & 0 & 2 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

(a) Es vol resoldre pel mètode de Jacobi. Calculeu la matriu d'iteració J, així com $||J||_{\infty}$.

Siguin $c \neq 0$ i C = diag(1, 1, c, c, 1). Calculeu la matriu $\tilde{J} = CJC^{-1}$. Per quins valors de c > 0 es verifica $\|\tilde{J}\|_{\infty} < 1$? Quin valor c > 0 fa mínim $\|\tilde{J}\|_{\infty}$? Quant val aquest mínim?

Es pot deduir del resultat anterior que el mètode de Jacobi, aplicat a Ax = b, convergeix? Raoneu-ho.

(b) Es vol resoldre també pel mètode de Gauss-Seidel. Calculeu la matriu d'iteració G i el valor $||G||_{\infty}$. Useu aquest valor per a deduir quants iterats k de Gauss-Seidel cal fer per a assegurar que l'aproximació $x^{(k)}$ té un error, en norma infinit, menor que 10^{-10} , si comencem en $x^{(0)} = 0 \in \mathbb{R}^5$.

Feu també uns càlculs similars a (a). Sigui $c \neq 0$ i C = diag(1, 1, c, c, 1). Calculeu la matriu $\tilde{G} = CGC^{-1}$. Per quins valors de c > 0 es verifica $\|\tilde{G}\|_{\infty} < 1$? Quin valor c > 0 fa mínim $\|\tilde{G}\|_{\infty}$? Quant val aquest mínim?

Exercici 4 (2 punts)

Es considera l'equació de Kepler, $f(E, M) \equiv E - e \sin(E) - M = 0$, amb $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$, la qual relaciona les anomalies (angles) mitjana M i excèntrica E de la posició d'un planeta en el seu moviment entorn del Sol. L'equació és vàlida per a òrbites el·líptiques i la constant $e \in [0, 1)$ és l'excentricitat de l'òrbita.

És evident que l'equació anterior defineix explícitament $M=M(E)=E-e\sin(E), \ \forall E\in\mathbb{R}$. Ens preguntem si també defineix implicitament E=E(M).

- (a) Demostreu que, per a qualssevols valors (E_0, M_0) que verifiquin $f(E_0, M_0) = 0$, existeix un interval $I = (M_0 \delta, M_0 + \delta)$ (per a algun valor $\delta > 0$), i existeix una funció $E = g(M), g : I \longrightarrow \mathbb{R}$, de classe C^{∞} , tals que es verifica $E_0 = g(M_0)$ i f(g(M), M) = 0, $\forall M \in I$.
 - Raoneu si l'interval I pot ser tota la recta real.
- (b) Es considera el cas particular $E_0 = M_0 = 0$. Sigui E = g(M) en un entorn de M = 0 tal que f(g(M), M) = 0 ($\forall M$ en l'entorn). Calculeu els valors g'(0), g''(0) i g'''(0) (en funció de e). Useu-los per a fer una estimació del valor E = g(1) en el cas de la Terra (e = 0.0167).
- (c) Resoleu directament $E 0.0167 \sin(E) 1 = 0$ per iteració simple. Heu d'usar una funció d'iteració adequada. Cal que trobeu E amb 6 decimals correctes. Escriviu tots els iterats que feu.

Exercici 5 (2 punts)

Es considera l'espai vectorial $E = C_{\mathbb{R}}^0([0,1])$ amb el producte escalar $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Es vol estudiar el problema de la millor aproximació de funcions de E per funcions d'uns subespais formats per funcions poligonals, tal com s'exposa a continuació.

- (a) Siguin n > 1 natural, i h = 1/n. Es defineixen n + 1 abscisses equidistants: $x_j = jh$ $(\forall j = 0 \div n)$. Per a cada $j \in \{0, 1, ..., n\}$, es considera la funció $\varphi_j(x)$ determinada per les condicions següents: $-\varphi_j \in E$.
 - $\varphi_j(x)$ pren el valor 1 en l'abscisa x_j , i pren el valor 0 en les n abscisses x_k 's diferents de x_j .
 - $\varphi_j(x)$, restringida a cada interval $[x_k, x_{k+1}]$, és un polinomi de grau menor o igual que 1 $(\forall k = 0 \div n 1)$.

Dibuixeu les gràfiques de les n+1 funcions anteriors. Demostreu que són linealment independents. El subespai vectorial que generen serà anomenat E_n^* .

Nota. Cada funció φ_j depèn de j, i també de n (per exemple, la funció φ_0 dels cas n=2 no és la mateixa que la funció φ_0 dels cas n=3). Però no escrivim explícitament la dependència de n.

- (b) En el cas n=2, doneu fórmules explícites per a les funcions φ_0 , φ_1 i φ_2 ; concretament, per a cada $\varphi_i(x)$, heu de donar una fórmula per a $x \in [0, 1/2]$ i una altra per a $x \in [1/2, 1]$.
- (c) Continuant amb el cas n=2, trobeu una base ortogonal de l'espai E_2^* ; i trobeu la millor aproximació de la funció f(x)=x per una funció de E_2^* .
- (d) Tornem al cas n > 1 qualsevol. Calculeu la matriu de Gram $(\langle \varphi_i, \varphi_j \rangle)_{i,j=0 \div n}$ associada a les funcions poligonals de l'apartat (a).
 - Indicació. Tots els seus elements tenen una expressió senzilla en funció de h. Molts són 0.