LIKELIHOOD REPRESENTATIONS FOR DISCRETELY OBSERVED STOCHASTIC PROCESSES

Frank van der Meulen (Vrije Universiteit Amsterdam)

Moritz Schauer (Chalmers University of Technology & University of Gothenburg)

Bergamo-Waseda Workshop on Inference for Stochastic Processes and Applications January 27, 2023

Problem setting

Setting

- A stochastic process X on a tree.
- At a branching vertex, the process evolves (conditionally) independent over the branches.
- Probability distribution depends on unknown θ .

- • latent vertex
- o leaf/observation-vertex

Aims

General aims:

- 1. sampling values at ●, conditional on values at ○;
- 2. estimating parameters in kernels;
- 3. not just on a tree, but on a general Directed Acyclic Graph (DAG).

Specific aim for this talk:

Derive a representation for the likelihood for a diffusion on a tree.

Likelihood can be expressed as expectation of a path functional:

$$L(\boldsymbol{\theta}) = C_{\boldsymbol{\theta}} \, \mathbb{E}_{\boldsymbol{\theta}} \, \omega_{\boldsymbol{\theta}}(X^{\circ}).$$

Motivational example from phylogenetics: Wright-Fisher diffusion on a tree

- Consider a population of diploid individuals. Alleles (A, a).
- X_t : probability of allele of type **A** at time t.
- Species may diverge... Consider a directed tree where along each branch

$$dX_t = (\theta_1(1 - X_t) + \theta_2 X_t) dt + \sqrt{X_t(1 - X_t)} dW_t.$$

Diffusion approximation to Wright-Fisher model with mutation for diploid individuals.

- \bullet Edge to observation $\overset{u}{\bullet}$
- $x_v \mid x_u \sim \text{Bin}(2n, x_u)$ Observed number of alleles of type **A** among n individuals.

Related literature: state-space models – hidden Markov models

Well-known filtering, smoothing algorithms dating back to 1960-1970.

- Finite state space: Baum-Welch, Viterbi, forward-backward algorithm.
- Linear Gaussian models: Kalman filter, Rauch-Tung-Striebel smoother.
- Linear stochastic differential equations: Kalman-Bucy filter & smoother.

Recently much work on SMC (twisted particle samplers, controlled SMC).

Backward Filtering Forward

Sampling

Working example

- Edge $r \to s$: $x_s \mid x_r \sim \Pi$ prior distribution on x_s .
- Edges $s \to t$ and $t \to u$: a diffusion process evolves for a fixed time-span:

$$dX_t = b_{\theta}(t, X_t) dt + \sigma_{\theta}(t, X_t) dW_t.$$

$$X_{t+h} \approx X_t + hb_{\theta}(t, X_t) + \sigma_{\theta}(t, X_t) N(0, h).$$

• Edges $u \to v$ and $t \to w$:

$$x_v \mid x_u \sim \Lambda_{\theta}(x_u, \cdot)$$
 $x_w \mid x_t \sim \Lambda_{\theta}(x_t, \cdot).$

Computing the likelihood

• Likelihood:

$$L(\theta) := p_{\theta}(x_v, x_w) = \int p_{\theta}(x_v, x_w \mid x_s) \Pi(dx_s).$$

• Incorporate x_t

$$p_{\theta}(x_v, x_w \mid x_s) = \int p_{\theta}(x_t \mid x_s) p_{\theta}(x_v, x_w \mid x_t, x_s) dx_t.$$

• Branches evolve independently, conditional on x_t :

$$p_{\theta}(x_v, x_w \mid x_t) = p_{\theta}(x_v \mid x_t) p_{\theta}(x_w \mid x_t).$$

• Incorporate x_u

$$p_{\theta}(x_v \mid x_t) = \int p_{\theta}(x_u \mid x_t) p_{\theta}(x_v \mid x_u) \, \mathrm{d}x_u.$$

Backward Information Filter: recursive computation of the likelihood, starting from the leaves back to the root.

Computing the likelihood: Markov kernels

 \bullet Initialise from the leaves: assume $\Lambda(x;\,\mathrm{d} y)=\lambda(x,y)\nu(\,\mathrm{d} y)$ and set

$$h_{u \to v}(x) = \lambda(x, x_v)$$
 $h_{t \to w}(x) = \lambda(x, x_w).$

- Collect incoming "message": $h_u(x) = h_{u \to v}(x)$.
- On edge $t \to u$ assume Markov kernel $\kappa_{t,u}$.

$$h_{t \to u}(x) = \int \kappa_{t,u}(x, dy) h_u(y).$$

- Collect incoming "messages": $h_t(x) = h_{t \to u}(x) h_{t \to w}(x)$.
- On edge $s \to t$ assume Markov kernel $\kappa_{s,t}$.

$$h_{s \to t}(x) = \int \kappa_{s,t}(x, dy) h_t(y).$$

• Collect incoming "message": $h_s(x) = h_{s o t}(x)$.

$$L(\theta) = \int \Pi(dx) h_s(x).$$

Backward Information Filter

Computing the likelihood consists of composing:

- $\int \kappa(x, dy)h(y) dy$;
- pointwise product $h_1(x)h_2(x)$ (collecting incoming messages).

Difficulties:

- $\kappa(x, dy)$ not known on [s, t] and [t, u];
- $\int \kappa(x, dy)h(y) dy$ cannot be computed in closed-form;
- ullet For computations, we need a finite-dimensional representation of h.

Sampling from the smoothing distribution

- Conditional process follows the same dependency structure as the unconditional process.
- Sample x_s from

$$\Pi^{\star}(dy) := \frac{h_s(y)\Pi(dy)}{\int h_s(y)\Pi(dy)}.$$

• On edge $s \to t$ sample x_t from

$$\kappa_{s,t}^{\star}(x, dy) := \frac{\kappa_{s,t}(x, dy)h_t(y)}{\int \kappa_{s,t}(x, dy)h_t(y)}.$$

• Etc.

an edge

Continuous-time transition over

Rethinking the discrete-time case

- Edge \xrightarrow{s} \xrightarrow{t} with diffusion evolving. Suppose $x \mapsto h_t(x)$ is given; wish to find $x \mapsto h_s(x)$.
- We have just seen that

$$h_s(x) = \int h_t(y) \kappa_{s \to t}(x, dy) = \mathbb{E} [h_t(X_t) \mid X_s = x].$$

• Define for $\tau \in [s,t]$

$$h(\tau, x) := \mathbb{E}\left[h_t(X_t) \mid X_\tau = x\right].$$

Well-known that h solves the Cauchy problem

$$(\mathcal{A}h)(\tau,x) := (\mathcal{L}h + \partial_{\tau}h)(\tau,x) = 0$$
, subject to $h(t,\cdot) = h_t(\cdot)$,

with \mathcal{L} the infinitesimal generator of X.

Approximating *h*

- Solving Kolmogorov backward equation is usually very difficult.
- Key idea: solve Kolmogorov's backward equation for simplified dynamics: solve backwards in time

$$(\widetilde{\mathcal{A}}g)(\tau,x)=0\quad \text{subject to}\quad g(t,\cdot)=g_t(\cdot)$$
 to get $g_s(\cdot)=g(s,\cdot).$

- Is this valid? If so, how to correct for the approximation made?
- Not knowing transition probabilities remains a problem!

The more technical part

Change of measure (1/3)

Characterisation ¹: for $\tau \in [s, t]$

$$f(\tau, X_{\tau}) - \int_{s}^{\tau} (\mathcal{A}f)(z, X_{z}) dz$$

is a martingale iff

$$M_{\tau} = \frac{f(\tau, X_{\tau})}{f(s, X_s)} \exp\left(-\int_s^{\tau} \frac{\mathcal{A}f}{f}(z, X_z) dz\right)$$

is a martingale (which then satisfies $\mathbb{E}\,M_t=\mathbb{E}\,M_s=1$).

The more technical part

¹Cf. Palmowski & Rolski Bernoulli 8, 2002.

Change of measure (2/3)

• Take $f \equiv h$ (recall Ah = 0). Define measure

$$\mathbb{P}^{\star}(B) = \mathbb{E}\left[\frac{h(t, X_t)}{h(s, x_s)}; B\right]$$

This is the law of the conditioned process.

Doob's h-transform.

• Take $f \equiv g$ (recall $\widetilde{\mathcal{A}}g = 0$). Define measure

$$\mathbb{P}^{\circ}(B) = \mathbb{E}\left[\frac{g(t, X_t)}{g(s, X_s)} \exp\left(-\int_s^t \frac{\mathcal{A}g}{g}(\tau, X_{\tau}) dz\right); B\right]$$

This is the law of the guided process.

The more technical part

Change of measure (3/3)

What process is X under \mathbb{P}° ?

$$\mathcal{L}^{\circ} f = g^{-1} \left(\mathcal{L} f g - f \mathcal{L} g \right).$$

Then under \mathbb{P}° , with $r(\tau,x) = \nabla_x \log g(\tau,x)$

$$dX_{\tau}^{\circ} = b(\tau, X_{\tau}^{\circ}) d\tau + \sigma \sigma'(\tau, X_{\tau}^{\circ}) r(\tau, X_{\tau}^{\circ}) d\tau + \sigma(\tau, X_{\tau}^{\circ}) dW_{\tau}.$$

Likelihood ratio (correction term):

$$\frac{\mathrm{d}\mathbb{P}^{\star}}{\mathrm{d}\mathbb{P}^{\circ}} = \frac{h(t, X_{t}^{\circ})}{g(t, X_{t}^{\circ})} \frac{g(s, X_{s}^{\circ})}{h(s, X_{s}^{\circ})} \underbrace{\exp\left(\int_{s}^{t} \frac{\mathcal{A}g}{g}(\tau, X_{\tau}^{\circ}) \, \mathrm{d}\tau\right)}_{\omega(X_{[s,t]}^{\circ})}.$$

Note that

$$\mathcal{A}g = \partial_t g + \mathcal{L}g = \underline{\partial_t g} + \widetilde{\mathcal{L}g} + \left(\mathcal{L} - \widetilde{\mathcal{L}}\right)g.$$

The more technical part

Backward Filtering Forward

Guiding

Backward Filtering

Backward Information Filter for simplified dynamics.

- Initialise $g_{u \to v}(x) = \lambda(x, x_v)$ and $g_{t \to w}(x) = \lambda(x, x_w)$.
- $g_u(x) = g_{u \to v}(x)$
- On $t \to u$ solve backwards $\widetilde{\mathcal{A}}g = 0$ subject to $g(u, \cdot) = g_u(\cdot)$. This gives $g_{t \to u}(x) = g(t, x)$.
- On $s \to t$ solve backwards $\widetilde{\mathcal{A}}g = 0$ subject to $g(u, \cdot) = g_t(\cdot)$. This gives $g_{s \to t}(x) = g(s, x)$.
- $g_s(x) = g_{s \to t}(x)$.
- $g_r(x) = \int g_s(x) \Pi(dx)$.

Forward Guiding

Forward sample guided process.

ullet Sample X_s° from

$$\Pi^{\circ}(dy) = \frac{\Pi(dy)g_s(y)}{\int \Pi(dy)g_s(y)}.$$

- ullet sample X° on [s,t]
- ullet sample X° on [t,u]
- $\bullet \ \ \text{Sample} \ X_v^\circ \sim \Lambda(X_u^\circ, \cdot) \ \ \text{and} \ \ X_w^\circ \sim \Lambda(X_t^\circ, \cdot).$

Likelihood representation

- \mathbb{P}^* : law of true conditioned process (using h).
- \mathbb{P}° : law of guided process (using g).

$$\frac{\mathrm{d}\mathbb{P}^{\star}}{\mathrm{d}\mathbb{P}^{\circ}}(X^{\circ}) = \frac{h_{s}(X_{s}^{\circ})/\int h_{s}(x)\Pi(\,\mathrm{d}x)}{g_{s}(X_{s}^{\circ})/\int g_{s}(x)\Pi(\,\mathrm{d}x)} \\
\times \frac{h_{t}(X_{t}^{\circ})}{g_{t}(X_{t}^{\circ})} \frac{g_{s}(X_{s}^{\circ})}{h_{s}(X_{s}^{\circ})} \omega(X_{[s,t]}^{\circ}) \\
\times \frac{h_{u}(X_{u}^{\circ})}{g_{u}(X_{u}^{\circ})} \frac{g_{t}(X_{t}^{\circ})}{h_{t}(X_{t}^{\circ})} \omega(X_{[t,u]}^{\circ}) \\
\frac{\mathrm{d}\mathbb{P}^{\star}}{\mathrm{d}\mathbb{P}^{\circ}}(X^{\circ}) = \frac{\int g_{s}(x)\Pi(\,\mathrm{d}x)}{\int h_{s}(x)\Pi(\,\mathrm{d}x)} \omega(X_{[s,u]}^{\circ})$$

Main result

Bidirectional scheme:

- 1. Backwards Filtering (for simplified process).
- 2. Forward simulate Guided process.

Likelihood can be expressed as expectation of a path functional.

$$L(\theta) = \int g_s(x) \Pi(dx) \times \mathbb{E} \,\omega(X_{[s,u]}^{\circ}).$$

How to solve the Kolmogorov Backward Equation?

For $\tau \in (s,t]$,

$$(\widetilde{\mathcal{L}}g + \partial_{\tau}g)(\tau, x) = 0, \qquad g(t, \cdot) = g_t(\cdot).$$

Examples/strategies:

1. If $\widetilde{\mathcal{L}}$ is the infinitesimal generator of a linear diffusion process, then

$$\log g(\tau, x) = c(\tau) + F(\tau)'x + x'H(\tau)x$$

with ODE-system for $(H(\tau), F(\tau), c(\tau))$.

2. Ansatz $g(\tau, x) = \sum_{j} c(\tau) \psi_{j}(t)$. Derive ODE for $c(\tau)$.

Numerical example

Example: branching diffusion

SDE on a tree where on each branch

$$\mathrm{d}X_t = \tanh. \left(\begin{bmatrix} -\theta_1 & \theta_1 \\ \theta_2 & -\theta_2 \end{bmatrix} X_t \right) \, \mathrm{d}t + \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \, \mathrm{d}W_t.$$

Numerical example

On each branch

$$\mathrm{d}X_t = \tanh. \left(\begin{bmatrix} -\theta_1 & \theta_1 \\ \theta_2 & -\theta_2 \end{bmatrix} X_t \right) \, \mathrm{d}t + \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \, \mathrm{d}W_t.$$

- Backward filter a linear process.
- Write X° as pushforward of (ξ, Z) , with $\xi = (\theta_1, \theta_2, \sigma_1, \sigma_2)$
- MCMC on (ξ, Z)

Implementation in MitosisStochasticDiffEq.jl by Frank Schäfer (MIT).

Numerical example

Numerical example

Wrap-up / conclusions

Wrap-up

Backward Filtering Forward Guiding: framework for doing likelihood based inference in directed acyclic graphs, where transitions over edges may correspond to the evolution of a stochastic process for a certain time span.

- Defining guided processes on graphical models (for "non-tree"-case: see preprint).
- Both discrete-time and continuous-time transitions incorporated.
- Approach is general and not restricted to diffusions on a tree.
- Not covered: compositionality results (some category theory, see earlier versions on arXiv).

Ongoing: SPDEs, SDEs on manifolds, chemical reaction networks.

Open postdoc position at VU Amsterdam.

Wrap-up / conclusions

References

- Continuous-discrete smoothing of diffusions
 MIDER, SCHAUER, VDM, Electronic Journal of Statistics
 - Bayesian inference for partially observed diffusions in SSM.
- Automatic Backward Filtering Forward Guiding for Markov processes and graphical models, VDM AND SCHAUER, arXiv, submitted.
 - A generalisation to Markov processes on graphical models including ideas on compositionality from category theory.
- \bullet Introduction to Automatic Backward Filtering Forward Guiding, $\mathrm{V}\mathrm{D}\mathrm{M},$ arXiv, submitted.
 - Gentle introduction to the more advanced paper.
- Conditioning continuous-time Markov processes by guiding, CORSTANJE,
 VDM AND SCHAUER, to appear in Stochastics.
 - Derivation of conditions for $\mathbb{P}^\star \ll \mathbb{P}^\circ$ for general continuous-time Markov processes.
- Inference in Hidden Markov Models, CAPPÉ, MOULINES AND RYDÉN
 Good source on filtering, smoothing, parameter estimation in HMM.

Wrap-up / conclusions 27