

deeplearning.ai

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Andrew Ng

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ duri = de a Tos $\left(\begin{array}{cccc} n & \overline{t} & \overline{t} & \overline{t} & \overline{t} \end{array} \right)$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$Z^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$Z^{(1)} = g^{(1)}(Z^{(1)})$$

$$Z^{(1)} = \left[Z^{(1)}(Z^{(1)}) + Z^{(1)}(Z^{(1)}) \right]$$

$$Z^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$Z^{(1)} = g^{(1)}(Z^{(1)})$$

$$Z^{(1)} = g^{(1)}(Z^{(1)})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[1]} * g^{[1]}(z^{[1]})$$

Andrew Ng