

2019 智能嵌入式实训系统 通讯协议

目录

一、平板电脑向竞赛平台发送命令的数据结构3
二、竞赛平台向平板电脑上传数据结构6
三、平板电脑向 AGV 智能运输机器人发送命令的数据结构7
四、竞赛平台运行状态表 9
五、道闸标志物数据结构10
六、平板电脑向 LED 显示标志物发送命令的数据结构12
七、立体显示标志物控制指令结构14
八、语音播报标志物控制指令结构17
九、平板电脑向磁悬浮 无线充电标志物发送命令数据结构21
十、平板电脑向智能 TFT 显示器 (A/B) 标志物发送命令数据结构 22
十一、ETC 标志物回传数据结构24
十二、立体车库(A/B)控制指令数据结构25
十三、 智能交通 (A/B) 标志物27
十四、 竞赛平台 (主车/从车) 向

十五、	烽火台标志物修改六字节报警码的数据结构	30
附录)	修订记录	31

一、平板电脑向竞赛平台发送命令的数据结构

0X55	0XAA	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包头 主指令			副指令			包尾	

数据由八个字节组成,前两个字节为数据包头固定不变,第三个字节为主指令,第四个字节至第六个字节为副指令,第七个字节是主指令和三位副指令的直接求和并对256(十进制)取余得到校验值(以下校验和如无特殊说明均以此计算得到),第八个字节是数据包尾,固定不变。

注意: 在本协议中数据格式若无特殊说明, 一般默认格式为十六进制。

1.1 主指令序号表

表 1.1.1 主指令序号表

农 1.1.11 工用 471,73 农						
主指令说明						
竞赛平台停止						
竞赛平台前进						
竞赛平台后退						
竞赛平台左转 (循迹状态)						
竞赛平台右转 (循迹状态)						
竞赛平台循迹						
码盘清零						
保留						
保留						
前三字节红外数据						
后三字节红外数据						
发射六字节红外数据						
指示灯						

0X30	蜂鸣器				
0X40	保留				
0X50	相框照片上翻				
0X51	相框照片下翻				
0X61	光源档位加 1				
0X62	光源档位加 2				
0X63	光源档位加 3				
0X80	竞赛平台上传 AGV 智能运输机器人数据				
0X90	语音识别控制命令				

1.2 主指令对应副指令说明表

表 1.2.1 主指令对应副指令表

主指令		副指令	
0X01	0X00	0X00	0X00
0X02	速度值	码盘低八位	码盘高八位
0X03	速度值	码盘低八位	码盘高八位
0X04	速度值	0X00	0X00
0X05	速度值	0X00	0X00
0X06	速度值	0X00	0X00
0X07	0X00	0X00	0X00
0x08	速度值	角度低八位	角度高八位
0x09	速度值	角度低八位	角度高八位
0X10	红外数据[1]	红外数据[2]	红外数据[3]
0X11	红外数据[4]	红外数据[5]	红外数据[6]
0X12	0X00	0X00	0X00
0X20	0X01/0X00(开/关) 左灯	0X01/0X00(开/ 关)	0X00

		右灯		
0X30	0X01/0X00(开/关)	0X00	0X00	
0X40	保留	保留	保留	
0X50	0X00	0X00	0X00	
0X51	0X00	0X00	0X00	
0X60	0X00	0X00	0X00	
0X61	0X00	0X00	0X00	
0X62	0X00	0X00	0X00	
0X63	0X00	0X00	0X00	
0X80	0X01/0X00	0X00	0X00	
0.780	(允许/禁止)	0.700	0.700	
0.000	0X01/0X00	0X00	0X00	
0X90	(开启/关闭)	0200	UAUU	

速度值: 取值范围为 (0~100)

码盘值: 取值范围为 (0~65635)

二、竞赛平台向平板电脑上传数据结构

表 2.1 竞赛平台向平板电脑上传数据结构

0X55	0XAA /0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx
包	头	运行 状态	光敏 状态	超声波低八位	超声波高八位	光照 低八位	光照 高八位	码盘 低八位	码盘 高八位	角度 低八位	角度 高八位

说明:此数据有十二个字节组成。其中前两个字节为包头,包头的第一字节为 0X55 不变,第二位分为两种情况,0XAA 代表 这组数据是竞赛平台的数据,0X02 代表这组数据是 AGV 智能运输机器人的数据;第三个字节,为竞赛平台或 AGV 智能运输机器人运行状态;第四位字节为 0 或 1,为竞赛平台或 AGV 智能运输机器人任务板上当前光敏状态;第五位与第六位字节,为竞赛平台或 AGV 智能运输机器人当前超声波数据;第七位与第八位字节,为竞赛平台或 AGV 智能运输机器人当前环境中光照强度数据;第九位和第十位字节,为竞赛平台或 AGV 智能运输机器人当前码盘值。第十一字节和第十二字节,为竞赛平台电子罗盘角度值(AGV 竞赛平台无角度数据)。

三、平板电脑向 AGV 智能运输机器人发送命令的数据结构

3.1 竞赛平台控制 AGV 智能运输机器人指令结构

表 3.1 平板电脑向 AGV 智能运输机器人发送命令的数据结构

0X55	0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包	头	主指令	副指令			校验和	包尾

说明: 平板电脑控制 AGV 智能运输机器人,其指令结构和平板电脑控制竞赛平台的指令结构除去包头不完全一致之外,主指令和副指令是完全一致的。校验和同上定义,包尾固定不变。

3.2 AGV 智能运输机器人回传数据到竞赛平台指令

0X55	0X02	0X80	0X00/0X01 (关闭/打开)	0X00	0X00	0Xxx	0XBB
包	头	主指令	副指令		校验和	包尾	

说明: AGV 智能运输机器人返回的数据包含竞赛平台运行状态、光敏状态、超声波数据、光照数据、码盘值。平板电脑接收 AGV 智能运输机器人的返回数据需要两个指令: 一是 AGV 智能运输机器人回传数据到竞赛平台指令; 二是竞赛平台上传 AGV 智能运输机器人数据指令。

3.3 AGV 智能运输机器人平台 OpenMV 摄像头相关协议

表 3.3.1 Arduino 向 OpenMV 发送命令的数据结构

0X55	0X02	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包	头	主指令		副指令		校验和	包尾

表 3.3.2 Arduino 向 OpenMV 发送命令的数据结构

主指令	主指令说明
0X91	保留
0X92	识别二维码

表 3.3.3 Arduino 向 OpenMV 发送命令的数据结构

主指令	副指令1	副指令 1	副指令1
0X91	保留	保留	保留
0X92	0X01 (开启识别)	0X00	0X00
	0X02 (关闭识别)	0X00	0X00

表 3.3.4 OpenMV 向 Arduino 返回命令的数据结构

帧	头	数据类型	识别状态	数据区长度	数据区		帧尾
0X55	0X02	0X91	保留	0Xxx	0X	0Xxx	
			0X01 (识	0V	0.0		
			别成功)	0Xxx	0X	XX	
0V55	N.55 0N02 0N02		0X02 (识	OW	0.00	000	0XBB
0X55	0X02	0X92	别失败)	0Xxx	0X00	0x00	UADD
			0X03 (IE	0V	0.000	0.000	
			在识别)	0Xxx	0X00	0X00	

说明:该数据帧头、数据类型、帧尾为固定格式,数据区长度取值范围为 0~43,识别状态为 0x01 识别成功 ,0x02 识别失败,0x03 正在识别。当返回识别成功时数据区为识别结果(数据长度不定但最大不会超过 43 个字节),当返回识别失败或正在识别数据时数据区为固定长度二个字节 0x00。

四、竞赛平台运行状态表

表 4.1 竞赛平台运行状态表

	状态说明
0X00	循迹状态
0X01	十字路口状态
0X02	转弯完成
0X03	前进、后退完成
0X04	出循迹线
0X05	道闸打开
0X4A	语音芯片上电初始化成功后,芯片自动发送回传
0X41	语音芯片收到正确的命令帧
0X45	语音芯片收到错误的命令帧
0X4E	语音芯片处在正在合成状态, 收到状态查询命令帧
0X4F	语音芯片处在空闲状态, 收到状态查询命令帧;
UA4F	或一帧数据合成结束,芯片处于空闲状态
0X06	ETC 系统打开成功
0X07	交通灯标志物进入识别模式
0X08	交通灯未能进入识别模式
0X09	立体车库到达第一层
0X0A	立体车库到达第二层
0X0B	立体车库到达第三层
0X0C	立体车库到达第四层
0X11	立体车库前侧、后侧红外都触发
0X22	立体车库前侧、后侧红外都未触发
0X12	立体车库前侧红外触发、后侧红外未触发
0X21	立体车库前侧红外未触发、后侧红外触发

五、道闸标志物数据结构

5.1 道闸标志物控制数据结构

表 5.1 竞赛平台(主车/从车)向道闸标志物发送控制指令数据结构

包	头	主指令	副指令			效验和	包尾
0X55	0X03	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:本组数据由八个字节构成,包括两字节固定包头,一字节主指令,三字节副指令,一字节校验和,一字节包尾。

表 5.2 主指令数据结构说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明	
0X01	0X01/0X02	0X00	0X00	道闸闸门开关控制	
0201	(打开/关闭)	07.00	02100	但例例门八江即	
0X10	0Xxx	0Xxx	0Xxx	车牌前三位数据 (ASCII)	
0X11	0Xxx	0Xxx	0Xxx	车牌后三位数据 (ASCII)	
0X20	0X01	0X00	0X00	道闸状态回传	

说明: 道闸控制可发送固定开启指令控制,同时当发送车牌信息时也可开启。道闸状态需发送请求返回指令得到,(不会自动回传)。

5.2 道闸标志物回传数据结构

表 5.3 道闸标志物向竞赛平台 (主车/从车) 回传数据结构

包	头	主指令	副指令			效验和	包尾
0X55	0X03	0X01	0X00	0Xxx (闸门状态)	0X00	0Xxx	0XBB

说明: 道闸标志物回传的副指令结构中, 副指令第二位为道闸门开关状态。

表 5.4 道闸标志物回传数据副指令第二位说明

副指令[1]	状态说明
0X05	闸门已开启

六、平板电脑向 LED 显示标志物发送命令的数据结构

6.1 平板电脑向 LED 显示标志物发送命令的数据结构

表 6.1.1 平板电脑向 LED 显示标志物发送命令的数据结构

0X55	0X04	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包	头	主指令	副指令		校验和	包尾	

说明:本组数据由八个字节构成,包括两字节固定包头,一字节主指令,三字节副指令,一字节校验和,一字节包尾。

6.2 控制 LED 显示标志物主指令说明

表 6.2.1 控制 LED 显示标志物主指令

主指令	指令说明
0X01	数据写入第一排数码管
0X02	数据写入第二排数码管
0X03	LED 显示标志物进入计时模式
0X04	LED 显示标志物第二排显示距离

6.3 控制 LED 显示标志物主指令对应副指令

控制 LED 显示标志物主指令对应副指令如下表 6.3.1 所示

表 6.3.1 控制 LED 显示标志物主指令对应副指令

主指令	副指令				
0X01	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]		
0X02	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]		
0.002	0X00/0X01/0X02	0.000	0.00		
0X03	(关闭/打开/清零)	0X00	0X00		

说明: LED 显示标志物在第二排显示距离时, 第二位和第三位副指令中的 "x" 代

表要显示的距离值(注意:距离显示格式为十进制)。

七、立体显示标志物控制指令结构

7.1 立体显示标志物控制指令结构

表 7.1 所示

0XFF	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx
起始位	模式	数据[1]	数据[2]	数据[3]	数据[4]

说明: 立体显示标志物控制指令共有六字节,其中第一字节为起始位固定不变,第二字节为模式编号,第三~第六字节为可变数据,需要注意的是立体显示标志物是通过红外控制的。

7.1.1 模式说明

表 7.1.1 立体显示标志物控制指令模式说明

模式	说明		
0X20	接收前四位车牌信息模式		
0X10	接收后两位车牌信息与两位坐标信息模式并显示		
0X11	显示距离模式		
0X12	显示图形模式		
0X13	显示颜色模式		
0X14	显示路况模式		
0X15	显示默认模式		

7.1.2 车牌显示模式数据说明

表 7.1.2 车牌显示模式数据说明

模式	数据[1]	数据[2]	数据[3]	数据[4]
0X20	车牌[1]	车牌[2]	车牌[3]	车牌[4]
0X10	车牌[5]	车牌[6]	横坐标	纵坐标

说明:在车牌显示模式下,车牌信息包括六个车牌字符和地图上某个位置的横纵坐标,共八个字符(注意:车牌信息格式为字符串格式)。

7.1.3 距离显示模式数据说明

表 7.1.3 距离显示模式数据说明

模式	数据[1]	数据[2]	数据[3]	数据[4]
0X11	距离十位	距离个位	0X00	0X00

说明:在距离显示模式下,数据[1]~数据[2]为需要显示的距离信息(注意:距离显示格式为十进制)。其余位为 0X00,保留不用。

7.1.4 图形显示模式数据说明

表 7.1.4 图形显示模式数据说明

模式	数据[1]	数据[2]~数据[4]	说明
	0X01	均为 0X00	矩形
	0X02	均为 0X00	圆形
	0X03	均为 0X00	三角形
0X12	0X04	均为 0X00	菱形
UX12	0X05	均为 0X00	梯形
	0X06	均为 0X00	饼图
	0X07	均为 0X00	靶图
	0X08	均为 0X00	条形图

说明: 在图形显示模式下, 数据[1]为获取的图形信息。其余位为 0X00, 保留不用。

7.1.5 颜色显示模式数据说明

表 7.1.5 颜色显示模式数据说明

模式	数据[1]	数据[2]~数据[4]	说明	
0X13	0X01	均为 0X00	红色	

0X02	均为 0X00	绿色
0X03	均为 0X00	蓝色
0X04	均为 0X00	黄色
0X05	均为 0X00	紫色
0X06	均为 0X00	青色
0X07	均为 0X00	黑色
0X08	均为 0X00	白色

说明: 在图形显示模式下,数据[1]为获取的颜色信息。其余位为 0X00,保留不用。

7.1.6 路况显示模式数据说明

表 7.1.6 路况显示模式数据说明

模式	数据[1] 数据[2]~数据[4] 说明		说明
0V14	0X01 均为 0X00		隧道有事故,请绕行
0X14	0X02	均为 0X00	前方施工,请绕行

说明: 在图形显示模式下, 数据[1]为获取的路况信息。其余位为 0X00, 保留不用。

7.1.7 默认显示模式数据说明

表 7.1.7 默认显示模式数据说明

模式	数据[1]	数据[1] 数据[2]~数据[4] 说明	
0X15	0X01	0X00	显示默认信息

说明:在此模式下,立体显示标志物为默认显示状态。

八、语音播报标志物控制指令结构

8.1 语音数据帧结构

表 8.1.1 语音数据帧结构

帧头	数据区长度	数据区	
0XFD	0Xxx,0Xxx	data	

说明: 所有语音控制命令都需要用"帧"的方式进行封装后传输。帧结构由帧头标志、数据区长度和数据区三部分组成。在本协议中为保证无线通信质量,规定每帧数据长度不超过 200 字节(包含帧头、数据区长度、数据)。

8.2 状态查询命令数据帧

表 8.2.1 状态查询命令数据帧

帧头	数据区长度		数据区
0XFD	高字节 低字节		命令字
UAFD	0X00	0X01	0X21

说明:通过该命令获取相应参数,来判断 TTS 语音芯片是否处在合成状态,返回 0X4E 表明芯片仍在合成中,返回 0X4F 表明芯片处于空闲状态。

8.3 语音合成命令数据帧

表 8.3.1 语音合成命令数据帧

帧头	数据区长度		数技		Σ
0XFD	高字节	低字节	命令字	文本编码格式	待合成文本
UAFD	0XHH	0XLL	0X01	0X00~0X03	

表 8.3.2 文本编码格式说明

文本编码格式说明				
	取值参数	文本编码格式		
1Byte 表示文	0X00	GB2312		
本的编码格式,	0X01	GBK		
取值为 0~3	0X02	BIG5		
	0X03	UNICODE		

特别说明: 当语音芯片正在合成文本的时候, 如果又接收到一帧有效的合成命令帧,

芯片会立即停止当前正在合成的文本,转而合成新收到的文本。

8.4 停止合成语音命令数据帧

表 8.4.1 停止合成语音命令数据帧

帧头	数据区	长度	数据区
0XFD	高字节 低字节		命令字
υλΓυ	0X00	0X01	0X02

说明: 命令字 0X02 停止合成语音命令

8.5 暂停合成语音命令数据帧

表 8.5.1 暂停合成语音命令数据帧

帧头	数据区	长度	数据区
0XFD	高字节	低字节	命令字
UAFD	0X00	0X01	0X03

说明: 命令字 0X03 暂停合成语音命令

8.6 恢复合成语音命令数据帧

表 8.6.1 恢复合成语音命令数据帧

帧头	数据区	长度	数据区
0XFD	高字节		命令字
UAFD	0X00	0X01	0X04

说明: 命令字 0X04 恢复合成语音命令

8.7 状态回传

语音芯片在上电初始化成功时会向上位机发送一个字节的"初始化成功"回传,初始化不成功时不发送此回传;在收到一个命令帧后会判断此命令帧正确与否,如果命令帧正确返回"收到正确命令帧"回传,如果命令帧错误则返回"收到错误命令帧"回传;在收到状态查询命令时,如果芯片正处于合成状态则返回"芯片忙碌"回传,如果芯片处于空闲状态则返回"芯片空闲"回传。在一帧数据合成完毕后,会自动返回一次"芯片空闲"的回传。返回状态值如下表 8.7.1 所示。

表 8.7.1 语音状态回传表

回传数据类型	回传数据	触发条件				
初始化成功	0X4A	芯片初始化成功				
收到正确命令帧	0X41	收到正确的命令帧				
收到错误命令帧	0X45	收到错误的命令帧				
ᡮ ┡┺╬ ╌ ┰╕	0X4E	收到"状态查询命令",芯片处于合成文本状态				
芯片忙碌	UX4E	回传 0X4E				
		当一帧数据合成完以后,芯片进入空闲状态回传				
芯片空闲	0X4F	0X4F; 当芯片收到"状态查询命令", 芯片处于				
		空闲状态回传 0X4F				

上位机接收语音芯片状态返回数据结构详见"二、竞赛平台向平板电脑上传数据结构"中运行状态位,以及"七、竞赛平台运行状态表"。

8.8 语音控制指令

表 8.8.1 语音控制指令

0X55	0X06	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包	头	主指令	副指令		校验和	包尾	

表 8.8.2 语音控制命令主指令说明

主指令	说明
0X10	特定语音命令
0X20	随机语音命令

在主指令 0X10 下,第一副指令为特定语音命令编号,第二、三副指令保留为 0X00;在主指令 0X20 下,第一副指令为 0X01,表示开启随机语音命令,第二、三副指令保留为 0X00;如下表 8.8.3 所示:

表 8.8.3 语音控制命令主指令对应副指令说明

主指令	副指令[1]	副指令[2]、[3]
	0X01 : 语音唤醒词,如语音驾驶等,可修改	0X00
	0X02 : 语音控制命令 -> 向右转弯	0X00
0X10	0X03 : 语音控制命令 -> 禁止右转	0X00
UXIU	0X04 : 语音控制命令 -> 左侧行驶	0X00
	0X05 : 语音控制命令 -> 左行被禁	0X00
	0X06 : 语音控制命令 -> 原地掉头	0X00
0X20	0X01 : 随机语音命令 随机出现特定语音命令 2~6	0X00

九、平板电脑向磁悬浮 无线充电标志物发送命令数据结构

表 9.1 板电脑向磁悬浮 无线充电标志物发送命令数据结构

0X55	0X0a	0X01	0X01/0X00 (打开/关闭)	0X00	0X00	0Xxx	0XBB
包	头	主指令	副指令			校验和	包尾

说明:本组数据由八个字节构成,包括两字节固定包头,一字节主指令,三字节副指令,一字节校验和,一字节包尾。主指令 0X01 代表控制无线充电标志物指令,第一位副指令 0X01 控制无线充电标志物打开,0X02 控制无线充电标志物关闭,后两位副指令保留不用。需要注意的是,该标志物瞬间启动电流比较大,所以我们只开放了开启命令,10S 之后系统自动关闭。

十、平板电脑向智能 TFT 显示器 (A/B) 标志物发送命令数据结构

表 10.1 平板电脑向智能 TFT 显示器 (A/B) 标志物发送命令数据结构

0X55	0X0B/0X08	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB
包头		主指令		副指令		校验和	包尾

说明:本组协议由八个字节构成,包括两字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0B 为 TFT 显示器 A 标志物协议包头、0X08 为 TFT 显示器 B 标志物协议包头),一字节主指令,三字节副指令,一字节校验和,一字节包尾。

表 10.2 智能 TFT 显示器标志物控制主指令说明

主指令	说明
0X10	图片显示模式
0X20	车牌显示模式数据 A(ASCII)
0X21	车牌显示模式数据 B (ASCII)
0X30	计时模式
0X40	HEX 显示模块
0X50	距离显示模式 (十进制)

表 10.3 主指令

主指令	副指令	副指令	副指令	说明
工担々	[1]	[2]	[3]	が少っ
	03/00	0X01 ~	03/00	
	0X00	0X20	0X00	由第二副指令指定显示那张图片
0X10	0X01	0X00	0X00	图片向上翻页
	0X02	0X00	0X00	图片向下翻页
	0X03	0X00	0X00	图片自动向下翻页显示, 间隔时间 10S
0X20	0Xxx	0Xxx	0Xxx	车牌前三位数据 (ASCII)
0X21	0Xxx	0Xxx	0Xxx	车牌后三位数据 (ASCII)

				-
	0X00	0X00	0X00	计时模式关闭
0X30	0X01	0X00	0X00	计时模式打开
	0X02	0X00	0X00	计时模式清零
0X40	0Xxx	0Xxx	0Xxx	六位显示数据(HEX 格式)
0X50	0X00	0X0x	0Xxx	距离显示模式 (十进制)

十一、ETC 标志物回传数据结构

表 11.1 ETC 标志物回传数据结构

0X55	0X0C	0X01	0X01	0X06	0Xxx	0X08	0XBB
包	包头 主指令			副指令		校验和	包尾

说明:本组数据由八个字节构成,包括两字节固定包头,一字节主指令,三字节副指令,一字节校验和(固定位 0x08),一字节包尾。副指令第二位为(0x06)开启成功返回状态。

十二、立体车库 (A/B) 控制指令数据结构

表 12.1 平板电脑向立体车库 (A/B) 标志物发送命令数据结构

0X55	0X0D/0X05	0Xxx	0Xxx	0Xxx	0X00	0Xxx	0XBB
包头		主指令		副指令		校验和	包尾

说明:本组协议由八个字节构成,包括两字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0D 为立体车库 A 标志物协议包头、0X05为立体车库 B 标志物协议包头),一字节主指令,三字节副指令,一字节校验和,一字节包尾。

表 12.2 主指令说明

主指令	说明			
0X01	控制指令			
0X02	请求返回指令			

表 12.3 副指令说明

主指令	副指令	副指令	副指令	说明
	[1]	[2]	[3]	100-10-10-10-10-10-10-10-10-10-10-10-10-
03/01	0X01	0X00	0X00	到达第一层
	0X02	0X00	0X00	到达第二层
0X01	0X03	0X00	0X00	到达第三层
	0X04	0X00	0X00	到达第四层
0.000	0X01	0X00	0X00	请求返回车库位于第几层
0X02	0X02	0X00	0X00	请求返回前后侧红外状态

表 12.4 立体车库 (A/B) 标志物向竞赛平台 (主车/从车) 返回命令数据结构

0X55	0X0D/0X05	0X03	0Xxx	0Xxx	0X00	0Xxx	0XBB
包头		主指令		副指令		校验和	包尾

表 12.5 主副指令说明

主指令	副指令	副指令[2]	副指令[3]	说明	
	0X01 0X00		返回车库位于第一层		
	0X01	0X02	0X00	返回车库位于第二层	
		0X03	0X00	返回车库位于第三层	
0X03		0X04	0X00	返回车库位于第四层	
	0X02	(前侧)	(后侧)		
		0X01(触 发)	0X01(触 发)	返回前后侧红外状态	
		0X02(未触发)	0X02(未触发)		

十三、智能交通 (A/B) 标志物

13.1 智能交通灯 (A/B) 标志物控制数据结构

表 13.1.1 竞赛平台(主车/从车)向智能交通灯 (A/B) 标志物发送数据结构

包头 主指令		副指令			校验和	包尾	
0X55	0X0E/0X0F	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

说明:本组协议由八个字节构成,包括两字节包头(TFT 显示器标志物 A 和 B 除第二包头不一致以外其他数据结构一致,其中 0X0E 为智能交通灯 A 标志物包头、0X0F 为智能交通灯 B 标志物包头),一字节主指令,三字节副指令,一字节校验和,一字节包尾。

表 13.1.2 主指令说明

主指令	说明			
0X01	进入识别模式			
0X02	请求确认识别结果			

表 13.1.3 主副指令说明

主指令	副指令[1]	副指令[2]	副指令[3]	说明
0X01	0X00	0X00	0X00	进入识别模式
	0X01 (红灯)	0X00 0X00		识别结果为红色请求确认
0X02	0X02 (绿灯)	0X00	0X00	识别结果为绿色请求确认
	0X03 (黄灯)	0X00	0X00	识别结果为黄色请求确认

13.2 智能交通灯 (A/B) 标志物回传数据结构

表 13.2.1 智能交通灯 (A/B) 标志物向竞赛平台(主车/从车)返回数据结构

包头 主指令		副指令			校验和	包尾	
0X55	0X0E/0X0F	0X01	0X01	0Xxx	0X00	0Xxx	0XBB

表 13.2.2 主指令说明

副指令 2	说明			
0X07	进入识别模式			
0X08	未能进入识别模式			

十四、竞赛平台 (主车/从车) 向

自动评分终端返回语音识别结果数据结构

包	头	序号	副指令			固定码	包尾
0XAF	0X06	0Xxx	0X02	0X00	0X00	0X01	0XBB

序号说明

主指令	语音播报内容说明
0X01	保留
0X02	向右转弯
0X03	禁止右转
0X04	左侧行驶
0X05	左行被禁
0X06	原地掉头

说明:

数据包头与包尾保持不变;

序号: 竞赛平台 (主车/从车) 通过语音识别模块, 识别语音播报系统发出语音的编

号;

(该序号与语音播报内容仅供训练使用)。

副指令: 固定不变,第一副指令必须为0X02;

固定码: 0X01 固定不变。

十五、烽火台标志物修改六字节报警码的数据结构

表 15.1 竞赛平台 (主车/从车) 修改六字节报警码数据结构

包	头	主指令	副指令		校验和	包尾	
0X55	0X07	0Xxx	0Xxx	0Xxx	0Xxx	0Xxx	0XBB

表 15.2 主指令说明

主指令	副指令	副指令	副指令	说明
	[1]	[2]	[3]	远 坍
0X10	0Xxx	0Xxx	0Xxx	开启码前三字节
0X11	0Xxx	0Xxx	0Xxx	开启码后三字节

注意事项:

- 1、烽火台六字节开启码修改完成标志物将自动开启一次表示更新成功;
- 2、烽火台标志物修改完成掉电不丢失;
- 3、按键 S4 可将烽火台标志物恢复为默认开启码。

附录 I 修订记录

	2017 年智能小车通信协议					
修订版	修订时	修订内容	备注			
本	间					
V1.0		1、在 2016 年基础上修订此版本。				
	2017.03. 10	2、增加语音播报标志物语音控制命令。				
		3、新增标志物磁悬浮 无线充电标志物控制				
		命令。				
		4、新增智能 TFT 显示器标志物控制命令。				
		5、新增语音识别控制命令。				
		6、新增 ETC 系统打开返回标志位。				
		1.在 2017 年基础上修订此版本。				
	2018.04.	2、增加道闸标志物返回数据协议。				
V2.0	03	3、增加 ETC 标志物返回数据协议。				
	03	4、竞赛平台增加角度回传功能。				
		4、竞赛平台控制增加指定角度转弯。				
	2019.04	1.增加 OpenMV 相关协议。				
V3.0	2018.04.	2.增加立体车库相关协议。				
		3.增加智能交通灯相关协议。				
		1. 增加道闸发送指定车牌开启协议, 同时兼				
V4.0	2018.05.	容发送指定命令开启协议				
V4.0	10	2. 道闸标志物状态返回修改为指令请求返				
		回。不支持自动返回。				
	2018.05. 10	1. 增加竞赛平台向自动评分终端返回语音识				
V4.1		别结果数据结构。				
		2. 修改语音播报指定指令播报内容。				
V4.2	2019.05.	1. 开放从车权限可控制、接收标志物信息。				
v ↔.∠	11	2. 新增 TFT 显示器 (B) 标志物、立体车库				

		(B)、智能交通灯 (B) 的指令协议。	
		3. 增加 OpenMV 相关协议	
		4. 修改道闸标志物接收到任意完整车牌信息	
		即开启道闸。	
		5. 新增烽火台修改六字节开启码数据协议	
V4.3 2019.10		1. 修改校验和计算方式 (将主指令和三位副	
	2019.10.	指令的直接求和并对 0XFF 取余得到校验和	
	10	改为主指令和三位副指令的直接求和并对	
		256 取余得到校验和,其余不变)。	