

de Sitter Quantum Breaking, Swampland Conjectures and Thermal Strings

Based on 2011.13956 with Ralph Blumenhagen and Christian Kneissl

Seminar Series on String Phenomenology

Andriana Makridou

Outline

- (Swampland) bounds on potentials.
- dS quantum breaking.
- Coarse graining and thermal matter.

Swampland Bounds

- Swampland programme: not all EFTs have UV completion to QG. [recent reviews: 1903.06239, 2102.01111]
 - ▶ dS conjecture: $\frac{|V'|}{V} \ge c$, $c \sim \mathcal{O}(1)$ constant. [1806.08362]
 - Trans-Planckian censorship conjecture (TCC):[1909.11063]
 - "Sub-Planckian quantum fluctuations should remain quantum."
 - Asymptotic limits of field space: $\frac{|V'|}{V} \ge \frac{2}{\sqrt{(n-1)(n-2)}}$.

No eternal inflation principle [1905.05198]

- Conditions for (no) eternal inflation by solving Fokker-Planck equation.
- For linear potential in 4d: $M_{\rm pl} \frac{|V'|}{V} > \frac{\sqrt{2}}{2\pi} \left(\frac{V}{M_{\rm pl}}\right)^{1/2}$.
- In general: $\frac{|V'|}{V} > c \cdot V^{\frac{n-2}{4}}.$
- Relation to TCC: [2008.07555]

Series of unstable dS (through bubble nucleation) ↔ scalar EFT.

TCC restricts potential, marginally excludes eternal inflation.

dS quantum breaking [1412.8077, 1701.08776]

- Corpuscular description of gravity.
- dS: coherent state of gravitons over Minkowski.
- Decoherence: initial description of state no longer valid after the quantum break time.
- For t_{cl} cl. timescale of system, α q. interaction strength: $t_Q \sim \frac{t_{cl}}{\alpha}$.
- Apply to dS: $t_{cl} \sim H^{-1}$, $\alpha \sim \left(\frac{M_{\rm pl}}{H}\right)^{n-2}$, $t_{Q} \sim \frac{M_{\rm pl}^{n-2}}{H^{n-1}}$.
- Quantum breaking due to backreaction of quantum state onto geometry.

Censoring quantum breaking [1806.10877,1810.11002]

- Claim: Quantum breaking should not occur. → Censorship of quantum breaking
- ▶ Classical effect forces faster decay of de Sitter: $t_d < t_Q$.
- For slow-rolling potential: $t_d \sim \frac{1}{\epsilon H}$.
- Can extract bound for potential:
- $\frac{|V'|}{V} > c \cdot V^{\frac{n-2}{4}}. \text{ no eternal inflation type bound}$
- Can we get the stronger dS conjecture bound?
- r.h.s V-independent : n = 2, $t_Q \sim \frac{1}{H}$.
- Need coherent state of strings? We take a different approach.

[See also: 2007.00786, 2009.04504]

Coarse graining approach [1609.01738, 1610.06637, 1703.06898]

- Idea: Study dS decoherence by tracing over states beyond the horizon.
- Write BD vacuum as entangled state in static patch.

$$ds^{2} = -(1 - H^{2}r^{2})d\tau^{2} + \frac{dr^{2}}{1 - H^{2}r^{2}} + r^{2}d\Omega_{n-2}^{2}.$$

Compute energy-momentum tensor with reduced density matrix.

$$\langle T_{\mu\nu}\rangle = Tr(\tilde{\rho}T_{\mu\nu}).$$

- New thermal matter component arises with $p_m = \frac{\rho_m}{3}$.
- H becomes time-dependent → dS decays.
- Interpret dS decay time as quantum break time.

Our setup [Generalization of 1703.06898]

• Action:
$$S_m = -\int d^n x \sqrt{-g} \left(\frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{m^2}{2} \Phi^2 + \frac{\xi_n}{2} R \Phi^2 \right)$$
. arbitrary m, n, $\xi_n = 0$

- Ansatz for solution in static coordinates: $\Phi = N_{L,\omega} f_{L,\omega}(r) Y_{L,l_1,\ldots,l_{n-3}}(\theta) e^{-i\omega\tau}$.
- Solutions continuous across horizon: $\Phi_{L,\lambda,\omega}^A + \gamma(\Phi_{L,\lambda,\omega}^B)^*$, $\gamma(\Phi_{L,\lambda,\omega}^A)^* + \Phi_{L,\lambda,\omega}^B$.
- $\text{BD vacuum: } |0_{L\lambda\omega}\rangle_{BD} = \sqrt{1-\gamma^2} \sum_{n_{L\lambda\omega}} |n_{L\lambda\omega},A\rangle \otimes |n_{L\lambda\omega},B\rangle$ A: inside horizon B: outside of horizon

$$\hat{\rho} = \prod_{L\lambda\omega} (1 - e^{-\frac{2\pi\omega}{H}}) \sum_{n_{L\lambda\omega}} e^{-\frac{2\pi\omega}{H} n_{L\lambda\omega}} |n_{L\lambda\omega}, A\rangle \langle n_{L\lambda\omega}, A|. \to \text{thermal state of } T = \frac{H}{2\pi}.$$

For $m \gg H$, $m \ll H$, at leading order in O(Hr):

$$\rho_m = \int \frac{d^{n-1}k}{(2\pi)^{n-1}} \omega \frac{1}{e^{2\pi\omega/H} - 1}, \quad p_m = \int \frac{d^{n-1}k}{(2\pi)^{n-1}} \frac{1}{n-1} \frac{\omega^2 - m^2}{\omega} \Theta_{\text{reg}}(\frac{\omega}{H}).$$

Physical consequences of coarse graining

- Integrated expressions: $\rho_m \sim \kappa_n H^n$, $p_m = \frac{1}{n-1} \rho_m$.
- $\xi \neq \xi_{conf}$: H-dep. corrections but scaling set by flat space contributions.
- ρ , p time-independent energy inflow at horizon.
- For observer at center of static patch: thermal energy density and pressure with $p = w\rho$, w > -1.
- Backreaction extra term in Friedmann equations, H time-dep. :

$$\dot{H}M_{\rm pl}^{n-2} = -\frac{\rho_m + p_m}{n-2} \implies H(t) = \frac{H_0}{\left(1 + \frac{\kappa_n(1 + w_m)(n-1)}{n-2} \frac{H_0^{n-1}}{M_{\rm pl}^{n-2}}t\right)^{1/(n-1)}}.$$

Finally can estimate: $t_Q \sim \frac{n-2}{n} \frac{M_{\rm pl}^{n-2}}{H_0^{n-1}}$. same as in Dvali et al. \to gives no eternal inflation type bound

Generalization to strings

- Would need to trace over states in stringy Hilbert space.
- Assume this gives once again E-M tensor for thermal ST in flat space.

Free energy for string gas in n dimensions.

(n+1)-dim. vacuum energy for ST compactified on Euclidean time circle.

Free energy of string at T in n flat dimensions (string frame):

$$\mathcal{F}(T) = -\frac{T}{2} \left(\frac{M_s}{2\pi}\right)^{n-1} \int_F \frac{d^2\tau}{\tau_2^2} \frac{1}{\tau_2^{n/2-1}} Z_{\text{str}}(\tau, \bar{\tau}, T).$$

with $Z_{\rm str}$ over string modes and Matsubara modes.

String thermodynamics [e.g.: hep-th/0505233]

- Winding Scherk-Schwarz orbifold (WSS):
 - Compactification on $S^1/(-1)^F S_w$ with $R=1/(2\pi T)$, S_w winding shift.
- ► WSS + modular invariance → Thermal partition function:

$$Z(T) = Z_B \mathcal{E}_0(T) - Z_F \mathcal{E}_{1/2}(T) + Z_t^{(1)} \mathcal{O}_0(T) + Z_t^{(2)} \mathcal{O}_{1/2}(T).$$

- $\textbf{Example:} \ \ Z_{IIB}(T) = \frac{1}{|\eta|^{16}} \Big((\chi_v \bar{\chi}_v + \chi_s \bar{\chi}_s) \mathcal{E}_0 (\chi_v \bar{\chi}_s + \chi_s \bar{\chi}_v) \mathcal{E}_{1/2} + \\ + (\chi_o \bar{\chi}_o + \chi_c \bar{\chi}_c) \mathcal{O}_0 (\chi_o \bar{\chi}_c + \chi_o \bar{\chi}_c) \mathcal{O}_{1/2} \Big)$
- ► Tachyonic mode for $T > \frac{1}{\sqrt{2}} \frac{M_s}{2\pi}$. Hagedorn temperature T_H
- ► T_H thermal tachyons \rightarrow indicate phase transition new d.o.f. needed!
- Atick-Witten [Nucl.Phys.B 310 (1988) 291-334]: $\mathcal{F}(T) \sim \Lambda_{0B}^{(1)} T^2$.
 - \rightarrow $\mathscr{F} \sim T^2$ generic feature after $T_H!$

$\rho(T)$ scaling at different T-regimes

Thermal partition function:
$$\mathscr{F}(T) = -\frac{T}{2} \left(\frac{M_s}{2\pi}\right)^{n-1} \int_F \frac{d^2\tau}{\tau_2^2} \frac{1}{\tau_2^{n/2-1}} Z_{\rm str}(\tau, \bar{\tau}, T)$$
.

$$T < T_H$$
 - Phase II

- Only light KK modes relevant.
- $\lim_{T\to 0} \mathscr{F} = \Lambda_0^{(1)}.$
- For $T^2 > \operatorname{Str}(M^2) : \rho \sim T^n$.
- Equation of state: $p = \frac{\rho}{n-1}$.

- $T > T_H$ Phase I
- Only light winding modes relevant.
- Universal scaling.
- For $T \gg T_H$: $\rho \sim M_s^{n-2}T^2$.
- Equation of state: $p = \rho$.

$\rho(T)$ scaling at different T-regimes

Thermal partition function:
$$\mathscr{F}(T) = -\frac{T}{2} \left(\frac{M_s}{2\pi}\right)^{n-1} \int_F \frac{d^2\tau}{\tau_2^2} \frac{1}{\tau_2^{n/2-1}} Z_{\rm str}(\tau, \bar{\tau}, T)$$
.

[Notation adapted from 2009.10077]

$T < T_H$ - Phase II

- Note: $M_s^{n-2} \sim \frac{g_s^2 M_{\rm pl}^{n-2}}{\mathscr{V}}$.
- Higher derivative corrections in Friedmann equations negligible.
- ▶ In Einstein frame, large volumes: $\rho \sim \mathcal{V}H^n$.
- Field-theoretic quantum break time modified: $t_Q \sim \frac{M_{\rm pl}^{n-2}}{\mathcal{V}H^{n-1}} \sim \frac{M_s^{n-2}}{g_s^2H^{n-1}}$.
- Quantum breaking censorship: $\frac{|V'|}{V} \ge g_s \left(\frac{H}{M_s}\right)^{\frac{n-2}{2}}$.
- Comments: 1) Scales like $V^{(n-2)/4}$ (as no eternal inflation bound).
 - 2) Stronger bound due to factor of \mathcal{V} .
 - 3) M_s instead of $M_{\rm pl}$: compatible with species scale.

[0710.4344]

$T \gg T_H$ - Phase I

- $\frac{H}{M_s}$ now of $\mathcal{O}(1)$. what about corrections?
- Assume at leading order Friedmann equations still hold.
- In Einstein frame: $\rho \sim \kappa_n \mathcal{V} H^2 \sim \kappa_n g_s^2 M_{\rm pl}^{n-2} H^2$.
- Different scaling so: $H(t) = \frac{H_0}{\left(1 + \frac{2\kappa_n g_s^2}{n-2}H_0t\right)}$.
- Quantum break time modified: $t_Q \sim \frac{1}{g_s H_0}$.
- Quantum breaking censorship: $\frac{|V'|}{V} \ge g_s$.
- Comments: 1) Bound V-independent, but not pure number.
 - 2) Weaker bound since g_s appears could it be an artefact?

Outlook and future directions

- Better understanding of high-T regime needed.
- Possible explicit verification of T^2 behaviour.
- Concrete string examples where only TCC is verified would provide a lot of support for our picture.

Thanks a lot!

What bound is relevant for us? - Bonus slide

- Many concrete examples obey phase I bound. [0711.2512, 1806.08362]
- ► For $M_s \to 0$ phase II disappears.
- Such massless string can appear at infinite distance.

Emergent string conjecture [1910.01135]