

LARGE LANGUAGE MODELS AS A PROXY FOR HUMAN EVALUATION IN ASSESSING THE COMPREHENSIBILITY OF DISORDERED SPEECH TRANSCRIPTION

Katrin Tomanek¹, Jimmy Tobin¹, Subhashini Venugopalan¹, Richard J.N. Cave^{1,2}, Katie Seaver^{1,3}, Jordan Green^{1,3}, Rus Heywood¹,

¹Google Research, ²Language and Cognition, UCL, ³MGH Institute of Health Professions,

{katrintomanek, jtobin}@google.com

Introduction

WER treats all errors the same

- Word Accuracy and Word Error Rate (WER) are measures of syntactic accuracy and errors of an automatic speech recognition (ASR) model, but they don't measure comprehensibility.
- On atypical speech (e.g. disordered speech), WER is often
 >20 and sometimes >60 for certain etiologies and severities.
- Individuals with disordered speech may still benefit from an ASR model with relatively high WER, provided that meaning is preserved.
- We aim to create a system that will automatically assess the ability of an ASR model to convey the user's intended message.

Error Type	Predicted Transcript	Actual Transcript	Word Acc.
Deletion	Come right back _	Come right back please	0.75
	I have a head_	I have a headache	0.75
Contraction	I'm a bit overwhelmed	I am a bit overwhelmed.	0.60
Normalization	play Beyoncé	play Beyonce	0.50
	Okay 9:30 five	Okay, nine thirty five.	0.50
Proper Noun	Here are TV shows by Hugh Griffiths	Here are TV shows by Hugh Griffith	0.86
	First do you know how the story ends	Faust, do you know how the story ends?	0.88
Repetition	What are you are you trying to say to me	What are you trying to say to me?	0.75

Method

Classifiers Predicting Meaning Preservation

- Logistic Regression model on BERTScore+WER
- Logistic Regression model on cosine similarity of sentence embeddings (SentT5, 11b)
- Prompt-tuned LLMs: Flan-T5-XXL (11b) and Flan-cont-PaLM (62b)

Example 1 Input Sequence Ground truth: {no no there are fifteen hundred total}. Transcription: {no no there are 50 energy total}. Transcript preserves the meaning of the ground truth: { Target Sequence no} Example 2 Input Sequence Ground truth: {He's huggable and lovable and a good with people.}. Transcription: {He's huggable and laughable and a good with people}. Transcript preserves the meaning of the ground truth: { Target Sequence yes}

Model Deployment Decisions

- Personalized ASR models [2] need to be quality checked (usually manually by Speech & Language Pathologists) before deploying to users.
- Word Accuracy does not distinguish well between high and low quality models.
- LATTEScore (LLMs to Assess TranscripTion Error Score) gives better model quality assessment.

 $LATTEScore = \frac{\text{\# Predicted Meaning Preserved}}{\text{\# Total Examples}} \times 100$

References

[1] MacDonald et al. Disordered Speech Data Collection: Lessons Learned at 1 Million Utterances from Project Euphonia. Interspeech 2021

[2] Green et al. Automatic Speech Recognition of Disordered Speech: Personalized Models Outperforming Human Listeners on Short Phrases. Interspeech 2021

Dataset

Transcript Comprehensibility Dataset

- 4731 tuples of ground truth (from Euphonia corpus [1]) and (erroneous) ASR transcript along with human-rated meaning preservation label
- Significant inter-annotator agreement when assessing meaning preservation, Cohen's $\kappa = 0.7$

Error	Meaning	Description	# Examples (%)	Example
Severity	Preserved			
0	yes	Meaning is completely	900 (19%)	G: I would be fascinated to know your answers.
		preserved		T: I <i>will</i> be fascinated to know your answers.
1	yes	Some errors, but meaning	1145 (24%)	G: Yeah I have one basically every day.
		is mostly preserved.		T: Yeah I have <i>I'm</i> basically every day.
2	no	Major errors, significant	2686 (57%)	G: How large is that file?
		loss of intended meaning.		T: How large is a funnel?

Results

Classifiers Performance (ROC-AUC)

	Full	Sliced by severity		
Approach	set	SEV	MOD	MILD
	(940)	(467)	(302)	(149)
BERTScore+WER	0.791	0.753	0.791	0.856
SentT5 Emb Sim	0.857	0.813	0.879	0.899
Flan-T5 XXL	0.878	0.836	0.923	0.890
Flan-cont-PaLM	0.900	0.863	0.944	0.903

LATTEScore to Distinguish Model Quality

Conclusion

- We propose a new approach to assess ASR model performance based on comprehensibility rather than syntax preservation.
- LLM-based classifiers perform very well in this task and outperform other classifiers.
- LATTEScore better predicts how useful a model will be to the end user.
- Beyond speech impairment, LLM-based classifiers can be useful for low-resource languages where human evaluation is challenging.
- Future work will explore using multi-lingual LLMs for zero-shot performance in other languages.