

Enxames de Partículas Particle Swarm Intelligence

Gisele L. Pappa

Introdução

- Enxames de partículas consistem em um conjunto de algoritmos inspirados no comportamento natural de grupos
- Criados para simular sociedades de indivíduos
 - Esses indivíduos estão trabalhando em um problema, e sendo influenciados por seus vizinhos

Inspiração

• Proposto por Eberhart and Kennedy em 1995, inspirado no comportamento social de pássaros e peixes

Introdução

- Inspiração vem de um conjunto de conceitos diferentes porém relacionados aos de insetos sociais:
 - Psicologia social
 - Interações entre indivíduos
 - Inteligência é resultado de interações entre os indivíduos (e adaptação)

Idéias Básicas - PSO

- Em PSO, partículas não tem autonomia ou especialização
- Paralelo com seres humanos
 - Interações levam a mudanças
 - Comportamento social ajuda os indivíduos de uma espécie a se adaptarem ao ambiente

Princípios básicos de adaptação cultural UF MG CONTROLLIBRIO CONTROLLIBRI CONTROLLIBRIO CONTROLLIBRI (de acordo com a psicologia)

- Avaliar todo organismo precisa avaliar estímulos
 - Pré-requisito para a aprendizagem detectar estímulos positivos ou negativos
- Comparar as pessoas se comparam umas com as outras
 - Essas comparações nos levam a melhorar
- Imitar as pessoas tendem a imitar o comportamento de outras (especialmente das bem sucedidas)
- Poucos animais são capazes de imitar uns aos outros DEPARTAMENTO DE

Idéia básicas - PSO

- Partícula representa um indivíduo com 2 tipos de informação:
 - Experiência própria (ele sabe que escolhas foram as melhores no passado)
 - Conhecimento de outros indivíduos, suas escolhas e sucesso associado
- Utiliza o conceito de uma partícula com uma velocidade se movendo num hiperespaço de busca (velocidade e posição)

Componentes Principais

- Um conjunto de partículas
- Cada partícula representa uma solução candidata
 - Elementos da partícula representam parâmetros a ser otimizados
- Uma partícula possui
 - Uma coordenada no espaço de busca (\mathbf{x}_i)
 - Uma velocidade (v_i)

O algoritmo PSO

- Velocidade é responsável pelo processo de otimização
- Esquecer ou aprender são vistos como aumentar ou diminuir o valor da posição da partícula
- Conceito de melhor posição (fitness)
 - Altera a velocidade para nos levar a essa posição
- Indivíduos interagem com um número k de vizinhos

O algoritmo PSO

- Cada partícula ajusta sua velocidade dinamicamente de acordo com sua experiência e a dos vizinhos
- Cada partícula modifica sua posição de acordo com:
 - Posição e velocidade atuais
 - Distância para o pbest
 - Distância para o gbest

Fluxograma PSO

O algoritmo PSO

• Atualização da posição e velocidade da partícula:

$$\mathbf{x}_{i}(t) = \mathbf{x}_{i}(t-1) + \mathbf{v}_{i}(t)$$

$$\mathbf{v}_{i}(t) = \omega \mathbf{v}_{i}(t-1) + \mathbf{c}_{1} \varphi_{1}(\mathbf{p}_{i} - \mathbf{x}_{i}(t-1)) + \mathbf{c}_{2} \varphi_{2}(\mathbf{p}_{g} - \mathbf{x}_{i}(t-1))$$

 \mathbf{P}_{i} = local onde a melhor fitness do indivíduo foi encontrada (vetor cognitivo)

 P_g = local onde a melhor fitness do melhor vizinho foi encontrada (vetor social)

Vizinhança

• Diversos tipos:

Anel

Focal

$$\mathbf{v}_i(t) = \mathbf{\omega} \mathbf{v}_i(t-1) + \mathbf{c}_1 \mathbf{\varphi}_1(\mathbf{p}_i - \mathbf{x}_i(t-1)) + \mathbf{c}_2 \mathbf{\varphi}_2(\mathbf{p}_g - \mathbf{x}_i(t-1))$$

- i representa uma dimensão da partícula
- ω : constante de inércia (mantém partículas em movimento)
- $C_{1,2}$: constantes que afetam o quanto cada uma das melhores partículas afetam a partícula atual
- ϕ_1 escalar (taxa de aprendizagem)

- ω : constante de inércia (mantém partículas em movimento)
 - Se >= 1, velocidade aumenta ao longo do tempo
 - Swarm diverge
 - Partículas não conseguem mudar de posição para encontrar regiões mais promissoras
 - Se $0 < \omega < 1$, partículas desaceleram
 - Convergência depende dos valores de c₁ e c₂
- Normalmente é inicializado com 1
 - Linearmente reduzido ao longo das iterações

- c₁ e c₂ : Controla *exploration* e *exploitation*
- Exploration habilidade de explorar regiões do espaço de busca
- Exploitation habilidade de se concentrar em uma região ao redor de uma área promissora e refinar a busca

Inércia é substituída por um fator de constrição χ (+ apropriado)

$$\mathbf{v}_i(t) = \mathbf{\chi} \ \mathbf{v}_i(t-1) + \mathbf{c}_1 \mathbf{\varphi}_1(\mathbf{p}_i - \mathbf{x}_i(t-1)) + \mathbf{c}_2 \mathbf{\varphi}_2(\mathbf{p}_g - \mathbf{x}_i(t-1))$$

$$\chi = \frac{2}{|2 - \beta - \sqrt{\beta^2 - 4\beta}|}$$
$$\beta = c_1 + c_2$$

$$\mathbf{v}_{i}(t) = \mathbf{\chi} \ \mathbf{v}_{i}(t-1) + \mathbf{c}_{1} \mathbf{\phi}_{1}(\mathbf{p}_{i} - \mathbf{x}_{i}(t-1)) + \mathbf{c}_{2} \mathbf{\phi}_{2}(\mathbf{p}_{g} - \mathbf{x}_{i}(t-1))$$

$$\mathbf{\chi} = \frac{2}{12 - \beta - \sqrt{\beta^{2} - 4\beta 1}}$$

- Foi mostrado que:
 - β < 4 enxame converge lentamente para a solução
 - $\beta > 4$ convergência é rápida e garantida
- Assume-se c1 e c2 = 2.05 para garantir convergência

Movimentos das Partículas

Partículas 1 e 2 vão em direção ao Gbest e a seu Pbest no espaço n-dimensional

Fluxograma PSO

Demo

. Global optimum

Tipos de PSO

- Existem dois tipos de algoritmos básicos
 - Um para dados contínuos
 - Mais utilizado e, consequentemente, mais estudado
 - Outro para dados binários

PSO para dados contínuos

- Uma partícula consiste em um vetor de números reais (valores das variáveis)
- Notação para a partícula i: $x_i = \langle x_{i1}, ..., x_{ij}, ..., x_{iD} \rangle$ onde $x_{ij} = o$ valor da coordenada j da partícula i e j = 1,..., número de variáveis (número de dimensões: D)

PSO para dados contínuos

- A velocidade de uma partícula é um vetor de números reais adicionado a posição da partícula em um espaço de tempo (uma iteração)
- Atualização da posição e velocidades da partícula:

$$\mathbf{x}_{i}(t) = \mathbf{x}_{i}(t-1) + \mathbf{v}_{i}(t)$$

$$\mathbf{v}_i(t) = \omega \mathbf{v}_i(t-1) + \mathbf{c}_1 \varphi_1(\mathbf{p}_i - \mathbf{x}_i(t-1)) + \mathbf{c}_2 \varphi_2(\mathbf{p}_g - \mathbf{x}_i(t-1))$$

PSO para dados contínuos

- Para evitar que a partícula saia do espaço de busca, devemos limitar a velocidade
- Para cada dimensão (variável) j, j = 1,..., D:

se
$$v_{ij}(t) > V_{max}$$
 então
$$v_{ij}(t) = V_{max}$$
 senão se $v_{ij}(t) < -V_{max}$ então
$$v_{ij}(t) = -V_{max}$$

A inércia minimiza esse problema

Parâmetros do PSO

- Número de iterações
- Número de partículas
 - (10—50) são normalmente suficientes
- C₁ (importância do vetor cognitivo)
- C₂ (importância do vetor social)
 - Usualmente iniciam seus valores com 2.05
- $\varphi_{1e} \varphi_{2}$ taxas de aprendizagem

Otimizando os parâmetros de um Jogo de Corrida

Objetivo

• Encontrar o melhor caminho a ser seguido pelos carros controlados pelo computador em um jogo de corrida

Parâmetros

- Cada partícula representa um conjunto de 10 parâmetros que representam o caminho a ser percorrido
- 20 partículas são distribuídas no espaço
- O algoritmo roda 100 iterações
- A fitness é dada pelo tempo que o carro leva para completar uma volta

Resultados

- Jogador humano leva em média 70s para completar uma volta
- Primeira iteração do algoritmo: melhor partícula tinha um tempo de 80s, e a média de todas as partículas era de 115 s
- Final da execução: a melhor partícula completava a volta em 63s, tornando o computador imbatível por um usuário humano

Bibliografia

- 1. http://www.swarmintelligence.org/
- 2. http://www.swarmintelligence.org/tutorials.php
- 3. Kennedy, J. and Eberhart, R. C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. pp. 1942-1948, 1995
- 4. http://www.gamasutra.com/features/20051213/ villiers_01.shtml

