PROVA SCRITTA DI ELETTRONICA 3 LUGLIO 2007

1) Nel circuito in figura, i transistori e il diodo possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per 0< V_i < V_{cc} .

 V_{cc} = 5 V, β_F = 100, R_1 = 3 k $\Omega,~R_2$ = 100 $\Omega,~R_3$ = 5 k $\Omega,~R_4$ = 2 k $\Omega.$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia $V_{Tn}=|V_{Tp}|=V_{T}$. La rete di pull-down PD sia realizzata con transistori identici, aventi coefficiente β_{PD} , e, assumendo che il valore logico "1" sia rappresentato dai valori alti di tensione, deve realizzare la funzione logica:

Si determinino i valori di β_1 e β_{PD} in modo che il tempo di propagazione $T_{p,HL}$ sia pari a 15 ps nel caso migliore, e a 20 ps nel caso peggiore.

$$V_{dd} = 3.3 \text{ V}, C = 20 \text{ fF}, V_{T} = 0.4 \text{ V}.$$

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Osservazioni preliminari:

- i) D è schiavo di T2, quindi sarà on solo quando anche T2 è on, mentre T2 può essere on anche se D è off;
- ii) Se Q2 è on (cioè vbe2= v_{γ}), allora è in AD: infatti se fosse sat vce2=0.2V=vbe2-vbc2= v_{γ} +vcb2 , ma vcb2 deve essere ≥ 0 , quindi si avrebbe un assurdo.

Regione 1: T1 off e T2 on in AD e D on . T1 sarà off fintantoché vi<v $_{y}$.

ir2=(vcc-vu)/r2	da cui si ricava che vu=2.091 V (quindi
ir3=(vcc-vx)/r3	vx=1.341 V), valore che soddisfa tutte le hp
$ib2=(vx-v_{\gamma})/r4$	fatte.
vx=vu-v _γ	
Ma ir2+ir3= $(\beta f+1)*ib2$	Si rimane in regione 1 fintantoché T1 va on,
	quindi per vi>vγ.

Regione 2: T1 on in AD, T2 on in AD, D on

Regione 2 : T1 on in AD, T2 on in AD, D on.		
$ib1=(vi-v_{\gamma})/r1$	Risolvendo si trova che:	
ir2=(vcc-vu)/r2	vu=2.502 -0.549vi	
ir3=(vcc-vx)/r3		
$ib2=(vx-v_{\gamma})/r4$	Si rimane in questa regione fintantochè	
Ma ir $2+ir3=\beta f*ib1+(\beta f+1)*ib2$	(A) D1 va off,	
	(B) oppure T1 va sat,	
	(C) oppure T2 va off.	
(A)	vce1(=vcesat)=vce2+vdiodo (dove vce2>0), che	
Quando D va off, idiodo=0	dà un assurdo.	
ir2=(vcc-vu)/r2		
$ib1=(vi-v_{\gamma})/r1$	(C)	
vu=2.502 -0.549 vi	Invece quando T2 è off vx=vcc, allora essendo	
Ma ir2=βf*ib1 da cui si ricava che vi=1.795 V.	vdiodo=vcc-ir2-vx, Q2 può andare off sse il	
	diodo è già off.	
(B)		
Si può osservare che quando T1 va sat (ovvero	Delle condizioni succitate quella corretta è la	
vce1=0.2V), il diodo dovrà già essere off,	(A), per cui si rimane in regione 2 fintantoché	
poiché quando il diodo è on si trova che	vi<1.795 V.	
Si rimane in regione 2 per vγ <vi<1.795v.< td=""></vi<1.795v.<>		

Regione 3: T1 AD, T2 AD, D off. In queste condizioni il ramo d'ingresso è disaccoppiato da quello d'uscita. Per valutare vu posso considerare solo il ramo d'ingresso

$ib1=(vi-v_{\gamma})/r1$	Si rimane in questa regione fintantochè T1 va sat:
ir2=(vcc-vu)/r2	vu=7.5 -3.333vi=vcesat
	da cui si ricava che vi=2.19 V
Ma ir2=βf*ib1, da cui si ricava che: vu=7.5 -3.333 vi	
Si rimane in regione 3 per 1.795V <vi <2.19v<="" td=""></vi>	

Regione 4: Per vi>2.19V, T1 sat, T2 AD, D off: vu =vcesat.

Di seguito si riporta la caratteristica statica di trasferimento.

La funcione jui essere realizzata con il circuito

true è il tempo di popagazione associato alla scarica di C

attraverso il mros equivolente. Della Teoria:

tour il not equivolence. Della leoria.

$$t_{PHI} = \frac{1}{\beta_{eq}} \left(\frac{1}{(\gamma_{po} - \gamma_{f})} \cdot \left(\frac{2 \gamma_{f}}{\gamma_{po} - \gamma_{f}} + \ln \left(\frac{3 - 4 \gamma_{f}}{\gamma_{po}} \right) \right) = \frac{1}{\beta_{eq}} \cdot \frac{8.26 \, \text{Lo}}{\gamma_{f}}$$

quindi:

ceso jeggiore:

$$t_{\text{рнг, реб6}} = \frac{K}{\beta_{\text{eq, pegg}}} \rightarrow \frac{1}{\beta_{\text{eq, pegg}}} = \frac{1}{\beta_{\text{eq, pegg}}} \rightarrow \frac{1}{\beta_{\text{eq}}} + \frac{2}{\beta_{\text{eq}}} = \frac{20 \text{ no}^{-12}}{8.26 \text{ no}^{-15}} \rightarrow \beta_{\text{eq}} = \frac{661 \mu\text{A}}{\sqrt{2}}$$

село лий gliote

 $\frac{1}{\beta_{\text{eq}}} = \frac{15 \text{ no}^{-12}}{\sqrt{2}} \rightarrow \frac{1}{\beta_{\text{eq}}} = \frac{15 \text{$