Eine Testaufgabe zur FEM in einer Dimension

Aufgabe 1

Gegeben sei folgende partielle Differentialgleichung:

$$-\frac{\partial}{\partial x}\left(\alpha(x)\frac{\partial\Phi}{\partial x}\right) + \beta(x)\Phi = f(x)$$

Für die Funktionen $\alpha(x)$, $\beta(x)$, f(x) gelte folgendes:

$$\alpha(x) = \begin{cases} 3 & 1.5 \le x \le 2.7 \\ x^2 & sonst \end{cases} \qquad \beta(x) = \begin{cases} \frac{x}{1+x} & 1 \le x \le 2 \\ x^2 & sonst \end{cases} \qquad f(x) = \begin{cases} x & 2 \le x \le 4 \\ 1+x & sonst \end{cases}$$

- a) Lösen Sie die obige Differentialgleichung im Interval
l $1 \le x \le 4$ mit der Randbedingung $\Phi|_{Rand} = e^x$
- b) Lösen Sie die obige Differentialgleichung im Interval
l $1\leq x\leq 4$ mit der Randbedingung $\alpha(x)\frac{\partial\Phi}{\partial\vec{n}}+x\Phi|_{Rand}=x^3$
- c) Lösen Sie die obige Differentialgleichung im Intervall $1 \le x \le 4$ mit der Randbedingung $\Phi(4)=2$ und $2\frac{\partial\Phi}{\partial x}|_{x=1}=6$

Hinweis zu den Lösungen:

Achten Sie im c)-Teil auf die allgemeine Form des Robin-Randes: $\left(\alpha \frac{\partial \Phi}{\partial x}, 0, 0\right) \cdot \vec{n} + \gamma \Phi = q$

In Ileas finden Sie die Lösungen zu dem Problem:

Netz1D_p.dat enthält die x-Werte des Netzes. Laden mit p=np.loadtxt('Netz1D_p.dat', dtype=float)
Elemente1D_t.dat enthält die Elemente des Netzes. Laden mit t=np.loadtxt('Elemente1D_t.dat', dtype=int)
Netz1D_Matrix_K.dat enthält die globale Matrik K. Laden mit K=np.loadtxt('Netz1D_Matrix_K.dat', dtype=float)
Netz1D_Vector_D.dat enthält die rechte Seite D. Laden mit D=np.loadtxt('Netz1D_Vector_D.dat', dtype=float)
Netz1D_LoesungA.dat enthält die Lösung zu a). Laden mit sol=np.loadtxt('Netz1D_LoesungA.dat', dtype=float)

Vergleichen Sie nun Ihre Lösung mit der Lösung sol, z.B. mit plt.plot(sol-IhreLoesung); plt.show(). Der Fehler sollte kleiner als 10^{-11} sein.

Rechenzeit, Teil a) für 10000 Knoten 2.5s + 14.48s

 $\frac{\partial \Phi}{\partial X} = 0.681599$; $\Phi = 1.68529$

