TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
1	INTRODUCTION	4
	1.1 PROJECT OVERVIEW	4
	1.2 PURPOSE	4
2	LITERATURE SURVEY	6
	2.1 EXISTING PROBLEM	6
	2.2 SURVEY WORKS	6
	2.3 PROBLEM STATEMENT	9
3	IDEATION & PROPOSED SOLUTION	10
	3.1 EMPATHY MAP CANVAS	10
	3.2 IDEATION & BRAINSTORMING	11
	3.3 PROPOSED SOLUTION	14
	3.4 PROBLEM SOLUTION FIT	16
4	REQUIREMENTS ANALYSIS	17

	4.1 FUNCTIONAL REQUIREMENTS	17
	4.2 NON-FUNCTIONAL REQUIREMENTS	17
5	PROJECT DESIGN	18
	5.1 DATA FLOW DIAGRAMS	18
	5.2 SOLUTION & TECHNOLOGY ARCHITECTURE	19
	5.3 USER STORIES	21
6	PROJECT PLANNING & SCHEDULING	22
	6.1 SPRINT PLANNING & ESTIMATION	22
	6.2 SPRINT DELIVERY SCHEDULE	24
	6.3 REPORT FROM JIRA	24
7	CODING & SOLUTIONING	27
	7.1 FEATURE 1	27
	7.2 FEATURE 2	27
8	TESTING	29
	8.1 TEST CASES	29
		35

8.2 USER ACCEPTANCE TESTING

9	RESULTS	36
	9.1 PERFORMANCE METRICS	36
10	ADVANTAGES & DISADVANTAGES	37
11	CONCLUSION	38
12	FUTURE SCOPE	39
13	APPENDIX	40
	13.1 SOURCE CODE	40
	13.2 GITHUB & PROJECT DEMO LINK	43
14	REFERENCES	49

CHAPTER - 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Recommendation system is a technique, which provides users with information, which he/she may be interested in or accessed in the past. Traditional recommender techniques such as content and collaborative filtering used in various applications such as education, social media, marketing, entertainment, e-governance and many more. Content-based and collaborative filtering has many advantages and disadvantages and they are useful in specific applications. Sparsity and cold start problems are major challenges in content and collaborative filtering. Challenges of content and collaborative filtering can be solved by using hybrid filtering. Hybrid filtering combines the features of two recommender systems like content and collaborative; content-based filtering improves the classification accuracy and collaborative model easily gives the best-predicted result of a latent factor model.

1.2 PURPOSE

At present, swimming pools are built in hotels, sport clubs, schools and private residences. Although there have been various regulations put into place to reduce drowning accidents in some countries, communities still experience many drowning incidents. Accordingly, a real-time system that will track swimmers in a pool using machine learning techniques and prevents drowning accidents is proposed. Automating such a process will provide the communities with an efficient way of detecting drowning incidents that may occur while swimming. Existing drowning detection technologies can be categorized into two types: vision based systems and wearable sensor based systems . Vision based systems are classified according to the positions of the cameras. They mainly depend on two types of cameras: underwater cameras and above water cameras .

CHAPTER - 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

There are currently many devices to detect drowning of a person but the visionable and wearable devices used may malfunction due to the continuous use of it in underwater and the software used also does not give a good accuracy rate for drowning. Many devices also use Bluetooth connection for alerting and alarming purpose which may or may not be audible in crowded place.

2.2 SURVEY WORKS

2.1 Detection of early dangerous state in deep water of indoor swimming pool based on surveillance video (Fan Wang ET AL,14 JUNE 2021)

This paper gives an outlook for early detection of dangerous condition in the deep-water zone of swimming pool based on video surveillance. This paper proposes feature extraction, feature expression and assessment criteria, which includes a method for evaluating normal swimming speed based on the time series of swimmers, a method for calculating an upright state that is not limited by the camera angle, and the rules for evaluating dangerous state. They collected real-life data from the swimming pool and conducted experiments related to it. This method can easily and efficiently detect the swimmer who is in danger at an early stage and provide necessary rescue reminders to lifeguards on time.

2.2 Automated and Intelligent System for Monitoring Swimming Pool Safety Based on the IoT and Transfer Learning (Aziz Alotaibi, 6 DECEMBER 2020)

Recently, desegregation the net of Things and pc vision has been created use in pool automatic police investigation systems. many studies are place forth to beat off-time police investigation drowning prevalence supported employing an order of videos to trace human motion and position. This paper proposes associate economical and reliable detection system that produces use of one image to seek out and classify drowning objects, to stop drowning prevalence. The projected system utilizes the IoT associated transfer learning to supply an intelligent and automatic answer for off-time observation pool safety. additionally, a specialised transfer-learning-based model utilizing a model pretrained on "ImageNet", which may bring out the foremost helpful and sophisticated options of the captured image to differentiate between humans, animals, and different objects, has been projected. The projected system aims to scale back human interference by process and causing the classification results to the owner's mobile device.

2.3 The Visible Behaviour of Drowning Persons: A Pilot Observational Study Using Analytic Software and a Nominal Group Technique (Aida Carballo-Fazanes ET AL,22 SEPTEMBER 2020)

This was Associate in Nursing associate experimental study of drowning videos determined by twenty international specialists within the field of water safety. For measuring, every video was analysed with Lance observation software system by four participants. A Nominal cluster Technique generated input for the chemical analysis and also the 2 principal investigators conducted

a post-hoc analysis. study confirms previous assumptions of drowning behaviour and provides novel evidence-based info regarding the massive type of visible behaviours of drowning persons. New behaviours, that primarily embody high-frequency resurfacing throughout a struggle for fewer than two min and backward water edge, are recognised during this study.

2.4 Computer Vision Enabled Drowning Detection System (Upulie Handalage ET AL, 2021)

The current systems expected to handle the matter of guaranteeing safety at swimming pools have vital issues thanks to their technical aspects, like underwater cameras and method aspects like the requirement for human intervention within the rescue mission. the employment of an automatic visual-based observation system will facilitate to scale back drownings and assure pool safety effectively. This study introduces a revolutionary technology that identifies drowning victims in a very minimum quantity of your time and dispatches an automatic drone to save lots of them. mistreatment convolutional neural network (CNN) models, it will notice a drowning person Whenever such a scenario like this is often detected, the expansive tube-mounted self-driven drone can endure a rescue mission, sounding Associate in Nursing alarm to tell the near lifeguards. The system additionally keeps a watch out for probably dangerous actions that would lead to drowning. This system's ability to save lots of a drowning victim in underneath a second has been incontestable in example experiments' performance evaluations.

2.5 The Swimmers Motion Detection Using Improved VIBE Algorithm (Atif Iqbal ET AL,17 NOVEMBER 2020)

This paper planned a unique methodology for drowning person detection within the swimming bath victimisation video pictures. For

background extraction and to update the precise motion space from the complete video victimisation frame by frame distinction ambiance algorithmic rule is employed. Static and dynamic options are detected to acknowledge the conventional swimmer and drowning person. the current invention discloses video-based swimming pools drowning event detection methodology. within the detection method Time of map (Tom), the strategy is employed to enhance the standard ambiance result. The sequence of video pictures of the swimming bath is collected in time period by employing a camera put in higher than the water surface, that principally includes 3 steps of swimmer's detection, swimmers trailing and drowning person behaviour analysis. within the side of swimmer detection, AN improved ambiance swimmer detection algorithmic rule is planned, and therefore the algorithmic rule is employed to work out the swimmer's position. The swimmer trailing and particle filter supported the colour distribution model that is combined with the closest neighbour information association algorithmic rule to realize trailing of multiple swimmers. within the analysis of drowning behaviour, 3 characteristics of drowning behaviour are planned to work out whether or not the swimmer is drowning. The invention will monitor the swimming bath in time period through the camera put in higher than the water surface in a very real public swimming place, and mechanically discover the drowning person, that has nice engineering application worth.

2.6 A novel drowning detection method for safety of swimmers (Ajil Roy ET AL,16 DECEMBER 2018)

9

Effective drowning detection ways area unit essential for the security of

swimmers. during this paper, a unique style of drowning detection technique addressing several limitations of prevailing drowning detectors is projected. The projected technique ensures detection of drowning and news at the sooner stages. The projected drowning detection technique is additionally a generic resolution that suites totally different water bodies from pools to oceans, and an economically viable technique helpful for each low- and middle-income countries. The paradigm of the drowning detection technique is developed and model of the system is simulated in Proteus style suite. The results of the simulation and hardware experimentation are according.

2.7 Automated Vision-based Surveillance System to Detect Drowning Incidents in Swimming Pools (Abdel Ilah N. Alshbatat ET AL,26 JULY 2020)

This paper projected an amount system that will track swimmers throughout a pool victimization machine learning techniques and prevents drowning accidents is projected. The system consists of a Raspberry Pi with the Raspbian package, a Pixy camera, Associate in Nursing Arduino Nano board, stepper motors, Associate in Nursing device, and motor drivers. The projected system depends on the colour-based formula to position and rescue swimmers World Health Organization unit of measurement drowning. The device then sends Associate in Nursing alarm to the lifeguards. The results from experiments indicate that the system contains a particular capability to look at and track swimmers, thereby enabling it to mitigate and curb the number of deaths by drowning.

2.3 PROBLEM STATEMENT DEFINITION

Problem	l am a	I'm trying	But	Because	Which
Statement		to			makes
(PS)					me feel
PS-1	Beginner	Learn	l am	There is no one	Insecure
		Swimming	scared of	to monitor	
			drowning		
PS-2	Lifeguard	Save people	It's a	Monitoring all	Incautious
			difficult	people at same	
			job	time is not	
				possible	
PS-3	Parent	Teach my	I can't pay	I can't watch	Anxious
		children to	attention	them all	
		swim	to all	simultaneously	

CHAPTER-3

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

Fig 3.1 Empathy Map canvas

3.2 BRAINSTORMING AND IDEA PRIORITIZATION

Fig 3.2 (A) Brainstorming And Idea Prioritization

Fig 3.2 (B) Brainstorming And Idea Prioritization

Fig 3.2 (C) Brainstorming And Idea Prioritization

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to	Abnormal behaviour real-time object
	be solved)	detection and prevent from drowning.
2.	Idea / Solution description	We use Vibe algorithm (vibration) for
		drowning detection.
		Also, we use YOLO version 6 object
		detection algorithm.
3.	Novelty / Uniqueness	We predict the exact position of the
		swimmer using skeleton where he
		drowns. Also give alert at the same time.
4.	Social Impact/ Customer	Yearly 1.2 million unplanned deaths occur
	Satisfaction	globally due to drowning.
		It is the helpful solution for the one who
		doesn't know much swimming.
5.	Business Model (Revenue Model)	Since there is a system to detect drowning
		and ensure safety of the simmers, most of
		them will be interested to learn
		swimming.
		It can increase the number of people who
		comes to swimming pool.
6.	Scalability of the Solution	It can monitor a wide area which
		increases the possibility of locating the
		swimmer in danger in different locations
		simultaneously and alerts the lifeguard
		accordingly.
		It gives high accuracy and easy to detect.

3.4 PROBLEM STATEMENTS

Problem	l am a	I'm trying	But	Because	Which
Statement		to			makes
(PS)					me feel
PS-1	Beginner	Learn	l am	There is no one	Insecure
		Swimming	scared of	to monitor	
			drowning		
PS-2	Lifeguard	Save people	It's a	Monitoring all	Incautious
			difficult	people at same	
			job	time is not	
				possible	
PS-3	Parent	Teach my	I can't pay	I can't watch	Anxious
		children to	attention	them all	
		swim	to all	simultaneously	

3.5 PROBLEM SOLUTION FIT

CUSTOMER SEGMENTS(S)	CUSTOMER LIMITATIONS	AVAILABLE SOLUTIONS
Developers and Ordinary	It will be in affordable price	(PROS AND CONS)
people, Organization and	and User-friendly device	A device exists which
Trainers		gets the data and after
		training the model,
		predicts the results.
		Various software and
		device have been
		developed but not
		gives accuracy rate
PROBLEMS/ PAINS	PROBLEM ROOT/ CAUSE	BEHAVIOR ITS
(ITS FREQUENCY)	Since there is no proper	INTENSITY
Trainer can't monitor all	system for drowning	Research about
the swimmers at a time	detection, the possibilities of	drowning people
No proper system to detect	unplanned dead are high so	Search for solution in
drowning	there is a need for developing	online
Chances of drowning is	a proper system that gives	Seek suggestion from
high	accuracy on drowning	other
	detection	
TRIGGERS TO ACT	YOUR SOLUTION	CHANNELS OF
When he finds so many un	A device is developed using	BEHAVIOR (ONLINE)
expected drowning	VIBE algorithm and YOLOv4	Social media, blogs
	and detects the drowning	
	people	
	It provides various	
	functionalities such as alerting	
	by alarm and shows the exact	
EMOTIONS	position of a drowning of	OFFLINE
(BEFORE/ AFTER)	object	Software developers
Before: Tensed		and Friends
After: Relaxed		

Fig 3.5 Problem Solution

CHAPTER-4

REQUIREMENTS ANALYSIS

4.1 Functional Requirements:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration/Login	Via Email Via Phone number
FR-2	User confirmation	Confirmation Via OTP Confirmation Via Email
FR-3	User location	User location will be detected.

4.2 Non-functional Requirements:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Eco-friendly and user-friendly
NFR-2	Security	Acts as a life guard for swimmers
NFR-3	Reliability	Suitable for all swimming pool and can be used by all swimmers
NFR-4	Performance	It can detect the body movements of a drowning person which has a high accuracy rate.
NFR-5	Availability	It is accessible at any time.
NFR-6	Scalability	It works more efficiently the life span is high which is comfortable for all users.

CHAPTER-5

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

Fig 5.1 DATA FLOW DIAGRAM

5.2 SOLUTION ARCHITECTURE

Fig 5.2 SOLUTION ARCHITECTURE

5.2 TECHNOLOGY ARCHITECTURE

Fig 5.2 TECHNOLOGY ARCHITECTURE

5.4 USER STORIES

User Type	Functional	User	User Story/ Task	Acceptance	Priority	Release
	Requireme	Story		criteria		
	nt(Epic)	Numb				
		er				
Customer	Installation	USN-1	They set the camera	The software	High	Sprint-1
			and install and	is installed in		
(Supervisor)			configure thesystem	the device		
(Supervisor)			in swimming pools			
	Pre-processing	USN-2	Train and test the	Train the	High	Sprint-1
			device	model by		
				using		
				datasets		
	Detection	USN-3	The swimmers are	Camera	High	Sprint -2
	ofdrowning		monitored by the	surveillance		
			device whichis			
			connected to band	5		
		USN-4	Swimmers are	Detection of	High	Sprint-1
			detected by their	drowning		
			actionsand device			
		11611 5	connected	A1t		0 110
	Alarm rings	USN -5	Alarm rings	Alert	High	Sprint-3
			Whenthe system detectsabnormal	thelifeguard		
			behavior of a			
Trainer	Saves	USN-6	person The trainer	Saves	High	Sprint-3
ITAIIIEI	the	0314-0	savesthe	the life	nigii	Spriiit-s
	person		swimmer who	of		
	person		alarm rings	people		
Administrator	Register	USN-7	Register into the	Admin can	Medium	Sprint-2
Administrator	Register	03117	application and	access the	iviculani	Spriit 2
			confirm the	account		
			registration by OTP	decount		
			send			
	Login	USN-8	Login and manage	Manage system	Medium	Sprint-2
			the application	,		
			andallow sensor to			
			track the location			
		USN-9	Tracks the location	Storage the	Medium	Sprint-2
				database		-

CHAPTER-6 PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story <i>l</i> Task	Story Points	Priority	Team Members
	Registration	USN-1	I can register for the application by entering my phone number.	1	High	GokulramS B
		USN-2	I will receive confirmati on box once I have registered forthe application.	2	Low	DeebakRaaj V P S
		USN-3	I can also regis thr		Medium	GopinathS B
Sprint-1		USN-4	I can login into the application by enteringemail or phone number &password.	1	High	Barath R
	Login	USN-5	In prediction page, the data uploaded will help the user to mo	2	Medium	GopinathS B
	Dataset collection	USN-6	The datasetcollect ed will give highaccuracy	2	High	Barath R

			on the			
			drowning			
			details of the			
	Data Dua	110117	person.		11.1	
	Data Pre-	USN-7	The dataset is	4	High	GokulramS B
	processing		extracted and			
			is used totrain			
			the model.			
Sprint-2	Train the	USN-8	We will train	8	High	DeebakRaajV P S
	model		the model.			
		USN-9	We will test	6	High	GopinathS B
			the model.			
Sprint-3	Detection	USN-10	The	3	High	Barath R
			testedmodel			
			will be loaded.			
		USN-11	То	5		Gokulram S B
			identify		Medi	
			the		um	
			person			
			by			
			collecti			
			ng real-			
			time data.			
		USN-12	The data	8	High	DeebakRaajV P S
		0311 12	collected		riigii	Deebakkaajv 1 3
			at present			
			is			
			checked			
			with the			
			pre-			
			feeded			
			data.			
Sprint-4	Alert	USN-13	When the	7	High	GopinathS B
			abnormal			
			movement			
			is detected,			
			the system			
			will ring an			
			alarm to			
			notify the			
			lifeguard to			
			rescue the			
			person.			

	USN-14	We will be able drowning			
			3	Medi	Barath R
_		User can	2	Low	DeebakRaajV P S
Logout	USN-15	logout of the			
		application.			

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	SprintStart Date	Sprint End Date (Planne d)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	12	01 Nov 2022
Sprint-2	18	6 Days	31 Oct 2022	05 Nov 2022	16	06 Nov 2022
Sprint-3	16	6 Days	07 Nov 2022	12 Nov 2022	13	13 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022	11	19 Nov 2022

6.3 REPORT FROM JIRA SPRINT 1

Fig 6.3 (A) Report From Jira

SPRINT 2

Fig 6.3 (B) Report From Jira

SPRINT 3

Fig 6.3 (C) Report From Jira

SPRINT 4

Fig 6.3 (D) Report From Jira

CHAPTER-7 CODING & SOLUTIONING

7.1 FEATURE 1

Al transfroms CCTV cameras into smart cameras. It helps to analyzes the images captured by the CCTV cameras, effectively by seeing through the water and allowing the system to track swimmers to find whether they are drowning. webcam = cv2.VideoCapture(image.filename)

```
t0 = time.time()
centre0 = np.zeros(2)
isDrowning = False
while True:
  status, frame = webcam.read()
  if not status:
    print("Could not read frame")
    exit()
  bbox, label, conf = cv.detect common objects(frame)
  if(len(bbox)>0):
      bbox0 = bbox[0]
      centre = [0,0]
      centre = [(bbox0[0]+bbox0[2])/2,(bbox0[1]+bbox0[3])/2]
      hmov = abs(centre[0]-centre0[0])
      vmov = abs(centre[1]-centre0[1])
      x=time.time()
```

```
threshold = 10
      if(hmov>threshold or vmov>threshold):
         print(x-t0, 's')
         t0 = time.time()
         isDrowning = False
      else:
         print(x-t0, 's')
         if((time.time() - t0) > 10):
           isDrowning = True
      print('bbox: ', bbox, 'centre:', centre, 'centre0:', centre0)
      print('Is he drowning: ', isDrowning)
      centre0 = centre
  out = draw_bbox(frame, bbox, label, conf,isDrowning)
  cv2.imwrite('image.jpg',out)
  if isDrowning:
    playsound('alarm.mp3')
  cv2.imshow("Real-time object detection", out)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break
webcam.release()
cv2.destroyAllWindows()
```

7.1 FEATURE 2

Here the swimmer is detected and the features of images are extracted and image are processed which helps to find the drowning person.

if isDrowning:

playsound('alarm.mp3')

cv2.imshow("Real-time object detection", out)

CHAPTER-8 CODING & SOLUTIONING

8.1 TEST CASES

Test case ID	Component	Test Scenario	Steps To Execute	Expected Result	Test Data	Actual	Status
						result	
PredictionPage_TC_O	Prediction	Verify user is	1.Click URL and go	Prediction Page		Working as	Pass
01	Page	able to see the	2.Click on Register option on	displayed		expected	
		Prediction page	the navigation bar				
			3. After Login into application				
			4. Verify Prediction page is				
			displayed or not				
PredictionPage_TC_O	Prediction	Verify File	1.Click URL and go	File upload for		Working as	Pass
O2	Page	upload for	2.Click on Register option on	detection		expected	
		detection	the navigation bar				
			3. After Login into application				
			4.choose a file for detection in				
			prediction page				

Test case ID	Component	Test Scenario	Steps To Execute	Expected Result	Test Data	Actual	Status
						result	
LoginPage_TC_O	Index Page	Verify user is able	1.Click URL and go	Login page should		Working as	Pass
01		to see the Login	2.Click on Login option on	display		expected	
		page	the navigation bar				
			3. Verify login page				
			displayed or not				
LoginPage_TC_O	Login page	Verify the UI	UI elements:	Application should		Working as	Pass
O2		elements in Login	a. email text box	show below UI		expected	
			b. password text box	elements:			
			c. Login button	a. email text box			
			d. new customer? Create	password text box			
			account link	c. Login button with			
			e. Last password? Forgot	orange colour			
			password	d. new customer?			
				Create account link			
				e. Last password?			
				Forgot password			
LoginPage_TC_O	Login page	Verify user is able	1.Enter URL and click go	Login into the	Email:	Working as	Pass
O3		to log into	2.Click on Login option on	prediction page	2k19cse005@kiot.ac	expected	
		application with	the navigation bar		.in		
		Valid credentials	3. Enter Valid email in		password:		
			Email text box		Ajitha@52		
			4.Enter valid password in				
			password text box				

VIRTUAL EYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

			5.Click on login button				
LoginPage_TC_004	Login page	Verify user is able to log into application with Invalid credentials	1.Enter URL and click go 2. Click on Login option on the navigation bar 3.Enter Invalid password or email 5.Click on login button	Application should show 'Invalid email or password ' validation message.	Email: 2k19cse005@kiot.ac .in password: Ajitha#12	Working as expected	Pass

VIRTUAL EYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

Test case ID	Component	Test Scenario	Steps To Execute	Expected Result	Test Data	Actual	Status
						result	
RegisterPage_TC_O	Index Page	Verify user is	1.Click URL and go	Register page		Working as	Pass
01		able to see the	2.Click on Register option on	displayed		expected	
		Register page	the navigation bar				
			3. Verify Register page				
			displayed or not				
RegisterPage_TC_O	Register	Verify the UI	UI elements:	Application should		Working as	Pass
O2	page	elements in	a. email text box	show below UI		expected	
		Regsiter	b. password text box	elements:			
			c. Username	a. email text box			
			d. Register button	b. password text box			
			e. already have an account?	c. Username			
			Login	d. Register button			
				e. already have an			
				account? Login			

VIRTUAL EYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

RegisterPage_TC_O	Register	If user don't	1.Enter URL and click go	Application should	Email:	Working as	Pass
03	page	have an	2.Click on Register option on	show 'Registration	2k19cse005@kiot.ac.	expected	
		account?	the navigation bar	Successfully please	in		
		Register	3. Enter Username	login using your	password:		
		User has able	4. Enter Valid email in email	details' validation	Ajitha@52		
		to register	text box	message.			
			5.Enter valid password in				
			password text box				
			6. Re-enter the password for				
			confirmation				
			7.Click on Register button				
LoginPage_TC_004	Register	If user have an	1.Enter URL and click go	Application should	Email:	Working as	Pass
	page		0 Clists on Destate on the con-	1 1 41 1	01:40005-01:5-4		
	page	account?	2.Click on Register option on	show ' Already a	2k19cse005@kiot.ac.	expected	
	page	account?	the navigation bar 3. Enter	snow Already a member please login	in	expected	
	page	account?		· · · · · · · · · · · · · · · · · · ·		expected	
	радс	account?	the navigation bar 3. Enter	member please login	in	expected	
	радс	account?	the navigation bar 3. Enter Username	member please login using your details'	in	expected	
	радс	account?	the navigation bar 3. Enter Username 4. Enter Valid email in email	member please login using your details'	in	expected	
	радс	account?	the navigation bar 3. Enter Username 4. Enter Valid email in email text box	member please login using your details'	in	expected	
	радс	account?	the navigation bar 3. Enter Username 4. Enter Valid email in email text box 5.Enter valid password in	member please login using your details'	in	expected	
	радс	account?	the navigation bar 3. Enter Username 4. Enter Valid email in email text box 5.Enter valid password in password text box	member please login using your details'	in	expected	

VIRTUAL EYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

Test case ID	Component	Test Scenario	Steps To Execute	Expected Result	Test Data	Actual	Status
						result	
LogoutPage_TC_O	Prediction	Verify user is	1.Click URL and go	Logout page displayed		Working as	
01	Page	able to see the	2.Click on Register option on the			expected	
		Prediction page	navigation bar				
			3. After Login into application				
			4. prediction page displayed				
			5. In prediction page, click the				
			logout option in navigation bar				
			6. Verify logout page displayed or				
			not				

8.2 User Acceptance Testing

1 Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

1 Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severi ty 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	7 7

2 Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3

VIRTUAL EYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

CHAPTER-9 RESULTS

9.1 Performance Metrics

S.N	Paramet	Values	Screenshot
о.	er		
1	Accuracy	Drowning Detected- NO	
	Score		
		Accuracy Score - 73	
2	Accuracy	Drowning Detected- YES	1. Seal transition of transition (Contraction Contraction Contract
	Score		
		Accuracy Score - 73	

CHAPTER-10 ADVANTAGES AND DISADVANTAGES

ADVANTAGES

The system consists of a Raspberry Pi with the Raspbian operating system, a Pixy camera, an Arduino Nano board, stepper motors, an alarm system, and motor drivers. The proposed system is based on the color-based algorithm to position and rescue swimmers who are drowning. The device then sends an alarm to the lifeguards. To verify the performance of the proposed system, a prototype has been developed, implemented, and tested. The results from experiments indicate that the system has a unique capability to monitor and track swimmers, thereby enabling it to mitigate and curb the number of deaths by drowning

DISADVANTAGES

Our model will give lesser results while the video is less in quality. Also we cannot detect drowning in a crowded area. This model is less efficient in low light. This model is only applicable for swimming pools not for rivers and lakes.

CHAPTER-11 CONCLUSION

This promotes the people to learn swimming without any fear. It also prevents many accidental deaths. By using this algorithm, we can predict the drowning person accurately. The system will be implemented in Python and use the opency for object detection, playsound for alarm. We used Flask framework in our backend for better results. The accuracy score of our model is 73%.

CHAPTER-12 FUTURE SCOPE

The speed of the AI can be increased by increasing the speed of the detection. YOLO v3 can detect upto 80 objects, we can increase the number of objects by training the algorithm for detecting more objects. The accuracy of the model can be increased by improving the YOLO v3 algorithm. We can train the algorithm for detecting multiple swimmers at a time.

CHAPTER-13 APPENDIX

13.1 SOURCE CODE

```
import cvlib as cv
from cvlib.object_detection import draw_bbox
import cv2, time
import numpy as np
from playsound import playsound
from flask import Flask, render_template, request, redirect,url_for
from cloudant.client import Cloudant
app=Flask(__name__)
client = Cloudant.iam("1fab0e8d-d938-42eb-b57d-421eccb4ed8e-bluemix",
"xSZm4--d0FbxVsGtFtbnAoC1nrl3SnnZ_tjD0voMQ21C", connect = True)
my_database = client.create_database('my_database')
@app.route("/")
def home():
  return render_template('index.html')
@app.route("/register" , methods = ['GET' , 'POST'])
def register():
  if request.method == "POST":
    x = [x \text{ for } x \text{ in request.form.values()}]
    data = {
```

```
'email':x[0],
       'password':x[1]
     }
     query = {'data' : {'$eq' : data}}
     docs = my_database.get_query_result(query)
     print(len(docs.all()))
     if(len(docs.all()) == 0):
       url = my_database.create_document(data)
       return render_template('login.html')
  return render_template('register.html')
@app.route('/login')
def login():
  return render_template('login.html')
@app.route('/afterlogin', methods=['POST'])
def afterlogin():
  user = request.form['username']
  passw = request.form['pass']
  print(user, passw)
  query = {'email': {'$eq': user}}
  docs = my_database.get_query_result(query)
  print(docs)
  print(len(docs.all()))
  if (len(docs.all()) == 0):
```

```
return render_template('login.html', pred="The username is not found.")
  else:
    if ((user == docs[0][0]['email']) and passw == docs[0][0]['password']):
       return redirect("/prediction")
     else:
       return render_template('login.html', pred="Invalid email or password")
@app.route("/prediction", methods = ['GET', 'POST'])
def predict():
  if request.method == 'POST':
     image = request.files['file']
     webcam = cv2.VideoCapture(image.filename)
     t0 = time.time()
     centre0 = np.zeros(2)
     isDrowning = False
     while True:
       status, frame = webcam.read()
       if not status:
         print("Could not read frame")
         exit()
       bbox, label, conf = cv.detect common objects(frame)
       if(len(bbox)>0):
            bbox0 = bbox[0]
            centre = [0,0]
            centre = [(bbox0[0]+bbox0[2])/2,(bbox0[1]+bbox0[3])/2]
```

```
hmov = abs(centre[0]-centre0[0])
     vmov = abs(centre[1]-centre0[1])
     x=time.time()
     threshold = 10
     if(hmov>threshold or vmov>threshold):
       print(x-t0, 's')
       t0 = time.time()
       isDrowning = False
     else:
       print(x-t0, 's')
       if((time.time() - t0) > 10):
          isDrowning = True
     print('bbox: ', bbox, 'centre:', centre, 'centre0:', centre0)
     print('Is he drowning: ', isDrowning)
     centre0 = centre
out = draw_bbox(frame, bbox, label, conf,isDrowning)
cv2.imwrite('image.jpg',out)
if isDrowning:
  playsound('alarm.mp3')
cv2.imshow("Real-time object detection", out)
if cv2.waitKey(1) \& 0xFF == ord('q'):
  break
```

```
webcam.release()
    cv2.destroyAllWindows()
    return render_template('prediction.html')

if __name__=="__main__":
    app.run(debug=True)
```

13.2 GITHUB & PROJECT DEMO LINK

Github link: https://github.com/IBM-EPBL/IBM-Project-18743-1659689161

Demo Link: https://www.youtube.com/embed/Z4SANL4fk50

CHAPTER-14 REFERENCE

- **1.** Wang, Fan, Yibo Ai, and Weidong Zhang. "Detection of early dangerous state in deep water of indoor swimming pool based on surveillance video." *Signal, Image and Video Processing* 16.1 (2022): 29-37.
- **2.** Alotaibi, Aziz. "Automated and intelligent system for monitoring swimming pool safety based on the IoT and transfer learning." *Electronics* 9.12 (2020): 2082.
- **3.** Carballo-Fazanes, Aida, Joost JLM Bierens, and International Expert Group to Study Drowning Behaviour. "The visible behaviour of drowning persons: A pilot observational study using analytic software and a nominal group technique." *International journal of environmental research and public health* 17.18 (2020): 6930.
- **4.** Handalage, Upulie, et al. "Computer Vision Enabled Drowning Detection System." *2021 3rd International Conference on Advancements in Computing (ICAC)*. IEEE, 2021.
- **5.** Hayat, Muhammad Aftab, et al. "The swimmers motion detection using improved vibe algorithm." *2019 International Conference on Robotics and Automation in Industry (ICRAI)*. IEEE, 2019.
- **6.** Roy, Ajil, and K. Srinivasan. "A novel drowning detection method for safety of swimmers." *2018 20th National Power Systems Conference* (NPSC). IEEE, 2018.
- **7.** Alshbatat, Abdel Ilah N., et al. "Automated vision-based surveillance system to detect drowning incidents in swimming pools." *2020 Advances*

in Science and Engineering Technology International Conferences (ASET). IEEE, 2020.