

Translate to

Generate Audio

- 1. <u>तंत्र द्राक्ष लागवडीचे</u>
- 2. मातीसंदर्भातील घटक

तंत्र द्राक्ष लागवडीचे

मध्यम व हलक्या जिमनीत द्राक्ष वेलीची वाढ चांगली होते. जिमनीतून पाण्याचा चांगला निचरा आणि क्षारता कमी असणे या गोष्टी द्राक्ष उत्पादनाच्या दृष्टीने महत्त्वाच्या असतात. जिमनीचे भौतिक गुणधर्म उदा. मातीचा पोत, मातीची रचना, खोली व पाणी धरून ठेवण्याची क्षमता, त्याचबरोबर रासायनिक गुणधर्म (मातीचा सामू व क्षारता इ. घटक) तपासूनच द्राक्ष लागवडीचा विचार करावा.

नवीन द्राक्ष लागवडीचा कालावधी सुरू होत आहे. हे लक्षात घेऊन आतापासूनच नवीन लागवडीची पूर्वतयारी सुरू करायला हरकत नाही. पूर्वीच्या काळाच्या तुलनेत आताची परिस्थिती पूर्णपणे बदलली आहे. द्राक्ष पिकातून चांगला नफा मिळवायचा असेल, तर लागवडीच्या नियोजनापासूनच योग्य ती काळजी घेणे महत्त्वाचे असते. द्राक्ष बाग उभारणीमध्ये हवामानाच्या परिस्थितीची महत्त्वाची भूमिका असते, त्यामुळे द्राक्ष लागवड करताना हवामानातील घटकांचा विशेषतः तापमान, सूर्यप्रकाश, पर्जन्यमान व सापेक्ष आर्द्रता या गोष्टींचा प्रामुख्याने विचार करणे गरजेचे आहे.

1) तापमान

द्राक्षवेलीच्या वाढीकरिता उष्ण व कोरड्या हवामानाची आवश्यकता असते. घडाच्या पक्कतेच्या काळात येणारा पाऊस हानिकारक असतो. वेलीच्या वाढीच्या काळामध्ये तापमान 40 अंश से.पेक्षा जास्त वाढल्यास फलधारणेवर विपरीत परिणाम होतो, उत्पादनात घट येते. त्याचप्रमाणे फळछाटणीनंतर कमीत कमी तापमान 15 अंश से.च्या खाली आल्यास डोळे फुटण्यास अडचणी येतात.

2) पर्जन्यमान

अधिक पावसाच्या प्रदेशामध्ये द्राक्ष लागवड अयोग्य ठरते. कारण खरड छाटणीनंतर सूक्ष्म घडनिर्मितीच्या काळात जास्त पाऊस असल्यास घडनिर्मिती होत नाही. फळ छाटणीनंतर जर बागेत जास्त पाऊस आला, तर विविध रोगांचा प्रादुर्भाव होऊन बागेत नुकसान होते. फळपक्कतेच्या कालावधीमध्ये जर पाऊस झाला, तर मणी तडकण्याची विकृतीसुद्धा जास्त दिसून येते.

3) सापेक्ष आर्द्रता

बागेमध्ये पाण्याचा कमी - अधिक वापर व पाऊस यावर त्या वातावरणातील आईता अवलंबून असते. बागेत जास्त आईता असलेल्या ठिकाणी विविध रोगांचा प्रादुर्भाव होत असतो, त्यामुळे द्राक्ष लागवडीकरिता जागेची निवड करताना सापेक्ष आईतेचा विचार करणे आवश्यक असते. बागेत हवा खेळती राहिल्यास आईता वाढणार नाही.

मातीसंदर्भातील घटक

द्राक्षबाग लागवड कोणत्याही प्रकारच्या जिमनीमध्ये शक्य होत असली, तरी मध्यम व हलक्या जिमनीत वेलीची वाढ चांगली होते. जिमनीतून पाण्याचा चांगला निचरा आणि क्षारता कमी असणे या गोष्टी द्राक्ष उत्पादनाच्या दृष्टीने महत्त्वाच्या असतात. जिमनीचा भौतिक गुणधर्म उदा. मातीचा पोत, मातीची रचना, खोली व पाणी धरून ठेवण्याची क्षमता, त्याचबरोबर रासायनिक गुणधर्म (मातीचा सामू व क्षारता इ. घटक) इत्यादी बाबींचा द्राक्षवेलीसाठी जिमनीची निवड करताना विचार करावा.

1) मातीचा पोत

मातीचा पोत ठरवताना त्यामध्ये वाळू व चिकनमातीच्या कणांचे प्रमाण विचारात घेतले जाते. त्यावरून मातीची पाणी धरून ठेवण्याची क्षमता, कॅटायन विनिमय दर, निचरा व पाण्याचा जिमनीतील शिरकाव निश्चित होतो. वाळूच्या कणांचे जेवढे प्रमाण जास्त, तेवढे मातीमधील हवा खेळण्याचे प्रमाण, तसेच पाण्याचे वहन चांगले होते, निचरा चांगला होतो; परंतु या जिमनीची पाणी धरून ठेवण्याची क्षमता कमी असते. याउलट काळ्या चिकणमातीमध्ये पाणी चांगल्याप्रकारे धरून ठेवले जाते; परंतु पाण्याचा निचरा चांगला होत नाही, त्यामुळे द्राक्ष लागवडीसाठी या दोन्हींचा मध्य साधून मध्यम प्रकारच्या जिमनीची निवड योग्य ठरते.

2) मातीची रचना

मातीमधील कणांची रचना जिमनीची प्रतवारी (भारी, मध्यम व हलकी) या प्रकारामध्ये मोडते. भारी जिमनीत पाण्याचा निचरा न झाल्याने इतर समस्या उद्भवतात, तर खूप हलक्या जिमनीत पाण्याच्या दुर्भिक्षाचे परिणाम जाणवतात, त्यामुळे द्राक्ष लागवडीसाठी मध्यम प्रकारच्या जिमनीची निवड करावी. या जिमनीत मुळांची वाढ अतिशय चांगल्याप्रकारे होते; तसेच पाण्याचा निचरा झाल्याने क्षारतेची समस्या लवकर उद्भवत नाही व उपचारांनी टाळता येते.

3) जिमनीची खोली

वेलीच्या मुळांचा विस्तार व वाढ यावर जिमनीच्या खोलीचा परिणाम होतो. खुंटांची मुळे जास्त खोलवर आणि लांबवर पसरत असल्याने कोणत्याही प्रकारच्या जिमनीत लागवड करता येणे शक्य असते. भारी जिमनीत देखील खुंटाची मुळे पाच फुटांपर्यंत चांगल्या प्रकारे वाढलेली आढळून येतात; परंतु स्वमुळावरील वेलींच्या बाबतीत मुळांचा मुख्य विस्तार प्रामुख्याने दोन फुटांपर्यंत आढळून येतो. यामुळे जिमनीच्या खोलीचा विचार लागवडीच्या दृष्टीने आवश्यक असतो. कमी खोलीच्या किंवा वरच्या थरात कठीण खडक असलेल्या ठिकाणी चर घेऊन किंवा रिपिंग करून मुळांच्या विस्तारासाठी अनुकूल वातावरण तयार करणे शक्य असते.

जमिनीचा सामू

द्राक्षाची लागवड साधारणतः 6.5 ते 8.0 सामू असलेल्या जिमनीत आढळून येते. कमी किंवा जास्त सामुळे उपलब्ध होणाऱ्या अपायकारक घटकांचा परिणाम वेलीच्या वाढीवर होत असतो.

4) जिमनीची क्षारता

क्षारता ही मातीमध्ये उपलब्ध क्षारांच्या प्रमाणानुसार ठरविली जाते. यासाठी "विद्युत वाहकता" या प्रमाणाचा वापर केला जातो. विद्युत वाहकता ही मिली मोज प्रति सेंटिमीटर या एककाने मोजली जाते. जिमनीत जेवढे क्षार जास्त, तेवढी विद्युतवाहकता वाढत जाते. चार मिली मोज प्रति सेंटिमीटरपेक्षा अधिक क्षार असलेल्या जिमनीस खार जमीन म्हणून संबोधले जाते. अशा प्रकारची जमीन द्राक्ष लागवडीसाठी पूर्णपणे अयोग्य असते. अधिक क्षारतेमुळे वेलीची वाढ खुंटते व पानांवर जळल्यासारख्या खुणा दिसून येतात.

या सर्व गोष्टींचा विचार करूनच नवीन द्राक्ष बाग लागवडीचे नियोजन आणि आखणीस सुरवात करावी.

स्त्रोतः अग्रोवन

अंतिम सुधारित : 10/8/2020

© C-DAC.All content appearing on the vikaspedia portal is through collaborative effort of vikaspedia and its partners. We encourage you to use
and share the content in a respectful and fair manner. Please leave all source links intact and adhere to applicable copyright and intellectual property guidelines and laws.
property guidelines and laws.