Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) . Les opérations sur les limites sont effectuées sans démonstation à ce stade de l'année. Les exercices se porteront sur le chapitre 5 et le chapitre 6. C'est un bon prétexte de faire utiliser les formules de trigonométrie, qui ne sont pas encore acquises. Les calculs de primitives du chapitre 6 ne se prêtent pas à une formalisation extrême.

Chapitre 5 : fonctions usuelles, équations fonctionnelles

- Fonction valeur absolue. Parité, variations, continuité, non dérivabilité en 0. Inégalités triangulaires. Pour tous réels x, y, min(x, y) = (x + y |x y|)/2, max(x, y) = (x + y + |x y|)/2.
- Fonctions polynomiales et rationnelles. Degré, coefficient dominant, limites en $\pm \infty$. Dérivée d+1-ième d'une fonction polynomiale de degré d. Racines. Fonction rationnelle, limites en $\pm \infty$.
- Fonctions circulaires. Démonstrations géométriques de leur (\star) continuité et de la (\star) dérivabilité du sinus en 0, (\star) cos' = -sin, sin' = cos. Variations, dérivées n-ièmes. Tangente, dérivabilité, tan' = 1 + tan², variations, limites. Inégalités $\forall x \in \mathbb{R}, |\sin(x)| \le |x|, \forall x \in [0, \pi/2], \sin(x) \ge 2x/\pi$.
- Logarithmes. (*) Toute fonction f dérivable de \mathbb{R}^{+*} dans \mathbb{R} vérifie $\forall (x,y) \in (\mathbb{R}^{+*})^2$, f(xy) = f(x) + f(y) ssi $\exists a \in \mathbb{R}, \forall x \in \mathbb{R}^{+*}, f(x) = a \int_1^x dt/t$. Logarithme népérien. $\forall x > 0, \forall q \in \mathbb{Q}, \ln(x^q) = q \ln(x)$. Variations, bijectivité du logarithme dans \mathbb{R} . Inégalité $\forall x > -1$, $\ln(1+x) \le x$ avec égalité ssi x = 0. Logarithme en base a avec a réel strictement positif différent de 1.
- Exponentielle. L'exponentielle est défine par : Il existe une unique fonction f dérivable de $\mathbb R$ dans $\mathbb R$ telle que f'(0) = 1 et $\forall (x,y) \in \mathbb R^2$, f(x+y) = f(x)f(y), elle est notée exp. Valeurs strictement positives et $\forall x \in \mathbb R, \forall q \in \mathbb Q$, $\exp(qx) = \exp(x)^q$. (*) L'exponentielle est l'unique solution du problème de Cauchy y' = y, y(0) = 1. (*) $\exp^{\mathbb R^{+*}}$ est la réciproque du logarithme népérien (preuve par dérivation). Inégalité $\forall x \in \mathbb R$, $\exp(x) \geq 1 + x$ avec égalité ssi x = 0.
- Fonctions puissances. Pour tout réel α , pour tout réel x strictement positif, $x^{\alpha} = \exp(\alpha \ln(x))$. Prolongement en 0 lorsque $\alpha \ge 0$. (*) Propriétés $\ln(x^{\alpha}) = \alpha \ln(x)$, $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$, $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$, $(x^{\alpha})^{\beta} = x^{\alpha\beta}$. Dérivabilité sur \mathbb{R}^{+*} et $\forall x > 0$, $(x^{\alpha})' = \alpha x^{\alpha-1}$. Variations, limites, représentations graphiques. (*) Croissances comparées du logarithme et des fonctions puissances en 0 et $+\infty$, de l'exponentielle et des fonctions puissances en $\pm\infty$.
- Fonctions hyperboliques. (\star) Toute fonction de I dans $\mathbb R$ définie sur un intervalle centré en 0 admet un unique décomposition en partie paire et impaire. Cosinus hyperbolique, sinus hyperbolique. Signes, dérivées, variations, limites, représentations graphiques. Bijections induites. $\mathrm{ch}^2 \mathrm{sh}^2 = 1$, formules d'addition. Tangente hyperbolique, imparité, dérivabilité, $\mathrm{th}' = 1 \mathrm{th}^2$, limites, représentation graphique. Formule d'addition.
- Fonctions circulaires réciproques. Dérivabilité sur]-1,1[, $(\star) \forall x \in]-1,1[$, $\operatorname{arcsin}'(x)=1/\sqrt{1-x^2}$, $\operatorname{arccos}'(x)=-1/\sqrt{1-x^2}$. Représentations graphiques. Arctangente, (\star) dérivabilité et $\forall x \in \mathbb{R}$, $\operatorname{arctan}'(x)=1/(1+x^2)$, limites, représentation graphique.

Chapitre 6 : calcul intégral

Notion d'intégrale, primitives

« Définition » en termes d'aires sous la courbe. Linéarité, relation de Chasles, croissance. Primitive, théorème fondamental du calcul intégral (*) preuve dans le cas d'une fonction à valeurs réelles monotone. Intégration par parties, changement de variables. Notation $\int_{-\infty}^{\infty} f(t)dt \text{ pour désigner une primitive de } f \text{ continue. Catalogue de primitives classiques via le chapitre précédent et les dérivées de fonctions usuelles. (*) Primitive de <math>x \mapsto \exp(ax)\cos(bx)$ et de $x \mapsto \exp(ax)\sin(bx)$ avec a et b réels. Primitive de a has a in a and a and a and a in a and a in a and a in a

Équations différentielles linéaires du premier ordre

Equation différentielle (E)y'+ay=b avec a et b continues de l dans $\mathbb C$. Equation homogène (E_h) associée. Structure des solutions. (\star) Ensemble des solutions de (E_h) . Ensemble des solutions de (E). Existence et unicité de la solution du problème de Cauchy. Recherche de solutions particulières : en notant A une primitive de $a, x \mapsto e^{-A(x)} \int_{x_0}^x b(t) \exp(A(t)) dt$ est une solution particulière, Variation de la constante, Superposition. Formes particulières : b polynomiale, exponentielle, circulaire. Exemples de raccordement de solutions d'une équation différerentielle non résolue. Le théorème de la limite de la dérivée n'a pas été vu en cours.

Équations différentielles linéaires du second ordre à coefficients constants

Equation différentielle (E)y'' + ay' + by = f avec a et b dans $\mathbb C$ et $f:I \to \mathbb C$ continue. Equation homogène (E_h) associée. Structure des solutions. Polynôme caractéristique de (E). (\star) Ensemble des solutions à valeurs complexes de (E_h) . Description des solutions réelles de (E_h) dans le cas a,b réels. Existence et unicité de la solution du problème de Cauchy (admis). Recherche de solutions particulières lorsque f est polynomiale ou exponentielle.

* * * * *