

Catalog

WES-Seq (Whole Exome Sequencing)

Analysis Process


```
source activate wes
GATK=/home/jmzeng/biosoft/gatk4/gatk-4.0.6.0/gatk
ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
snp=/public/biosoft/GATK/resources/bundle/hg38/dbsnp_146.hg38.vcf.gz
indel=/public/biosoft/GATK/resources/bundle/hg38/Mills_and_1000G_gold_standard.indels.hg38.vcf
for sample in {7E5239.L1,7E5240,7E5241.L1}
echo $sample
# Elapsed time: 7.91 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" MarkDuplicates \
    -I $sample.bam \
    -0 ${sample}_marked.bam \
    -M $sample.metrics \
    1>${sample}_log.mark 2>&1
## Elapsed time: 13.61 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" FixMateInformation \
    -I ${sample}_marked.bam \
    -O ${sample}_marked_fixed.bam \
    -SO coordinate \
    1>${sample}_log.fix 2>&1
samtools index ${sample}_marked_fixed.bam
## 17.2 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" BaseRecalibrator \
    -R $ref \
    -I ${sample}_marked_fixed.bam \
    --known-sites $snp \
    --known-sites $indel \
    -0 ${sample}_recal.table \
    1>${sample}_log.recal 2>&1
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" ApplyBQSR \
    -I ${sample}_marked_fixed.bam \
    -bqsr ${sample}_recal.table \
    -O ${sample}_bqsr.bam \
    1>${sample}_log.ApplyBQSR 2>&1
## 使用GATK的HaplotypeCaller命令
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" HaplotypeCaller \
     -R $ref \
     -I ${sample}_bqsr.bam \
      --dbsnp $snp \
      -0 ${sample}_raw.vcf \
      1>${sample}_log.HC 2>&1
done
```


Databases:

NCBI (*The National Center for Biotechnology Information*): https://www.ncbi.nlm.nih.gov/

EMBL (The European Bioinformatics Institute): https://www.ebi.ac.uk/

DDBJ (): https://www.ddbj.nig.ac.jp/index-e.html

Plant Genome DB: http://ensembl.gramene.org/genome_browser/index.html

Human/Mouse/Zebrafish: http://asia.ensembl.org/index.html

Fungi(真菌) Genome Database: http://asia.ensembl.org/index.html

Bacteria Genome Database: http://bacteria.ensembl.org/index.html

Biodb Collection (benben-miao): https://biodb.neocities.org/

Softwares:

GATK4: https://software.broadinstitute.org/gatk/

Samtools: http://samtools.sourceforge.net/

Vcftools: http://vcftools.sourceforge.net/

BWA: http://bio-bwa.sourceforge.net/

2. Transcripto mics

Eukaryotic reference transcriptome

Eukaryotic referenceless transcriptome

LncRNA-Seq (Long No Code RNA)

ceRNA-Seq(competing endogenous RNAs)

circRNA-Seq(Circular RNA)

FastQC (Quality Control): http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Hisat2(Map to Complete Genome): http://www.psc.edu/user-resources/software/hisat2

Bowtie2(Map to Complete Genome): http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

STRING(Interaction of genes or proteins): https://string-db.org/

R(A beautiful data computer and visual language): https://www.r-project.org/

Rstudio(IDE for R): https://rstudio.com/

DESeq2(Differential Expression Sequences): https://bioconductor.org/packages/release/bioc/html/DESeq2.html

clusterProfiler(GO and KEGG): https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

3. Microorga nism

16S、18S、ITS Sequences

"S" (settling speed) represents a measure of the settling speed, not the mass. The sedimentation speed of each subunit is affected by both its shape and its mass.

Prokaryotic ribosomes have a total of 70S containing 23S, 16S and 5S.

Eukaryotic ribosomes have a total of 80S, including 28S, 18S, 5.8S and 5S.

Metagenomic Sequencing

Metagenomic sequencing is a method that uses high-throughput sequencing technology to complete the detection and functional analysis of the genomes of all species in the microbial community.

Microbial transcriptome sequencing
Microbial transcriptome sequencing technology is a method for sequencing single colony microbial transcripts.

Metagenomic Sequencing

CARD

Software/ Database

FastQC (Quality Control): http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Cutadapt (Remove adapt at reads): https://cutadapt.readthedocs.io/en/stable/

Qiime2 (microbiome bioinformatics platform): https://qiime2.org/

LEfSe (Difference analysis): https://bitbucket.org/biobakery/biobakery/wiki/lefse

Vegan (Statistics): https://www.rdocumentation.org/packages/vegan/versions/2.4-2

Pheatmap (Heatmap): https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12/topics/pheatmap

kEGG (Kyoto Encyclopedia of Genes and Genomes): https://www.kegg.jp/

GO (Gene Ontology) : http://geneontology.org/

MetaCyc (Database of metabolic pathways): https://metacyc.org/

EggNOG (Clusters of Orthologous Groups of proteins): http://eggnogdb.embl.de/

CAZy (Enzyme) :http://www.cazy.org/

ENZYME (Enzyme): https://enzyme.expasy.org/

- 1.Identification of Protein Glue Strips
- 2. Identification of protein interactions
- 3. Proteome full spectrum identification

4. Proteomics

Quantitative Proteome

- 1.DDA(Data Dependent Acquisition): Label-free, iTRAQ/TMT
- 2.DIA(Data Independent Acquisition): DIA, SWATH

Proteome

- 1.Phosphorylated (磷酸化) proteome
- 2.Acetylated (乙酰化) protein
- 3.Ubiquitinated (泛素化) proteome
- 4.N-glycosylated (糖基化) protein
- 5.Succinylated (琥珀酰化) protein
- 6.Propionylated (丙酰化) proteome

Software/ Database

Mascot (Protide search engineer): http://www.matrixscience.com/

Uniprot (Most Protein Database): https://www.uniprot.org/

Maxquant (Protide search engineer): https://www.maxquant.org/

SEQUEST: http://www.thermo.com

pFind (Search protein): http://www.pfind.net/

ExPAsy(Expert Protein Analysis): https://www.expasy.org/

STRING(Interaction of genes or proteins): https://string-db.org/

R(A beautiful data computer and visual language): https://www.r-project.org/

Rstudio(IDE for R): https://rstudio.com/

5. Metabolo mics

Untargeted metabolomics

Qualitative and quantitative analysis of all small molecule compounds (molecular weight less than 1000) in biological samples.

Targeted metabolomics

Targeted metabolomics targeted analysis of a single or a small amount of target metabolites in biological samples, and the absolute abundance information of target metabolites obtained by comparison analysis with standards.

Broadly targeted metabolome

Combines advantages of nontargeted and targeted metabolite detection technology.

AB Sciex QTRAP® 4500 LC-MS/MS

Database of primary and secondary metabolites (more than 2,200 substances)
Medical metabolite database (more than 1500 substances)

Untargeted metabolomics

Software/ Database

MetaboAnalyst(statistical, functional and integrative analysis of metabolomics data)

: https://www.metaboanalyst.ca/home.xhtml

XCMX: https://xcmsonline.scripps.edu/

R: https://www.r-project.org/

MetaboDiff: https://github.com/andreasmock/MetaboDiff/

MetaboAnalystR: https://github.com/xia-lab/MetaboAnalystR

Cytoscape: https://cytoscape.org/

FELLA (Interpretation and enrichment for metabolomics data)

: http://www.bioconductor.org/packages/release/bioc/html/FELLA.html

Prcomp (Principle component analysis)

: https://www.rdocumentation.org/packages/twidlr/versions/0.0.0.9000/topics/prcomp

MetaCyc: https://metacyc.org/

BioCyc: https://biocyc.org/

Corrplot: https://cran.r-project.org/web/packages/corrplot/index.html

mzCloud: https://www.mzcloud.org/

ChIP-Seq
Chromatin immunoprecipitation

BS-Seq Bisulfite Sequencing ATAC-seq
Assay for Transposase-Accessible Chromatin

RRBS-Seq
Reduced Representation Bisulfite Sequencing

6. Epigenomi cs

RIP-seq RNA Binding Protein Immunoprecipitation Assay

> MeRIP m⁶A-Seq Methylated RNA Immunoprecipitation

