Department of Mathematics Indian Institute of Technology Patna B.Tech. II year (Autumn Semester 2020-21)

Tutorial Sheet-1: MA201 (Complex Analysis)

- 1. Show that the field of complex numbers $\mathbb C$ is not ordered.
- 2. Prove the followings:
- (i) $|z_1 \pm z_2| \le |z_1| + |z_2|$, (ii) $||z_1| |z_2|| \le |z_1 \pm z_2|$, (iii) $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$, and then write the simplified expression for $|z_1 z_2|^2$. (iv) $\sqrt{2}|z| \ge |Re(z)| + |Im(z)|$.
- 3. Use principle of mathematical induction to prove $\left|\sum_{i=1}^{n} z_i\right| \leq \sum_{i=1}^{n} |z_i|$, where z_1, z_2, \ldots, z_n are some complex numbers.
- 4. Show that $Re(z_1\overline{z}_2) \leq |z_1\overline{z}_2|$, for any two complex numbers z_1 and z_2 . Under what conditions these two quantities will be equal. Show that in that case, $|z_1 + z_2| = |z_1| + |z_2|$ and $|z_1 - z_2| = ||z_1| - |z_2||$.
- 5. Let p(z) be a polynomial of degree n, where $p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ with all coefficients being real. Show that if z_1 is a root of p(z), then so is \overline{z}_1 .
- 6. Find the locus of the followings:
- (ii) $Re(z^2) \le 1$, (iii) |z 4i| + |z + 4i| = 10,
- (i) $Re(\frac{1}{\bar{z}}) = 2,$ (iv) $|z z_0| = k|z z_1|, k \neq 1.$
- 7. Find $|\sin z|$ at $z = \pi + i \ln(2 + \sqrt{5})$, where ln is the natural logarithm.
- 8. If α is a complex number such that $|\alpha| < 1$, prove that $|\frac{z-\alpha}{1-\bar{\alpha}z}| < 1$, if |z| < 1 and $|\frac{z-\alpha}{1-\bar{\alpha}z}| = 1$, if |z| = 1.
- 9. Show that $z + \frac{1}{z}$ is real iff Im(z) = 0 or |z| = 1.
- 10. If |z| = 1, prove that $|z^2 z + 1| \le 3$ and $|z^2 2| \ge 1$.
- $\begin{array}{ll} \text{11. Find the upper bounds for the followings:} \\ (i) \mid_{\frac{1}{z^4-4z^2+3}} \mid \quad (ii) \mid_{\frac{-1}{z^4-5z+1}} \mid \quad (ii) \mid_{\frac{1}{z^4-5z^2+6}} \mid \quad \text{where } |z|=2. \end{array}$
- 12. Establish the identity $1+z+z^2+\cdots+z^n=\frac{1-z^{n+1}}{1-z},\ z\neq 1,$ and hence prove that:
- (i) $1 + \cos \theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin((n + \frac{1}{2})\theta)}{2\sin\frac{\theta}{2}}$,
- (ii) $\sin \theta + \dots + \sin n\theta = \frac{\cos \frac{\theta}{2} \cos((n + \frac{1}{2})\theta)}{2\sin \frac{\theta}{2}}$. Here n is any positive integer and $0 < \theta < 2\pi$.
- 13. Solve the followings:
- (i) $x^8 16 = 0$ (ii) $x^6 + i + 1 = 0$ (iii) $z^4 4z^3 + 6z^2 4z + 5 = 0$ given that i is a root. (iv) $z^{3/2} = 4\sqrt{2} + i4\sqrt{2}$.
- 14. Find the four zeros of the polynomial $z^4 + 4$, and represent it into quadratic factors with real coefficients.
- 15. Evaluate the followings:
- (i) $(-\sqrt{3}-i)^{-6}$ (ii) Find polar form of $\frac{\sqrt{2}+i\sqrt{6}}{-1+i\sqrt{3}}$, and then write in the form of x+iy,

- (iii) Compute $(2-2i)^5$ (iv) $(0.5+0.5i)^{10}$.
- 16. Find the sum of the p^{th} powers of the roots of the equation $z^n = 1$, where p is a positive integer.
- 17. Let the equation $z^n = 1$ have the roots $1, z_1, z_2, ..., z_{n-1}$, then show that $(1 z_1)(1 z_2) ... (1 z_{n-1}) = n$.
- 18. Prove the identity: $\sin(\pi/n)\sin(2\pi/n)\dots\sin(\pi(n-1)/n) = \frac{n}{2^{n-1}}$.
- 19. Prove the identity: $z^{2n} 1 = (z^2 1) \prod_{k=1}^{n-1} (z^2 2z \cos(k\pi/n) + 1)$. Hence show that $\sin(\pi/2n) \sin(2\pi/2n) \dots \sin(\pi(n-1)/2n) = \frac{\sqrt{n}}{2^{n-1}}$.