Elliptic Curve Cryptosystems - ECC Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

November 29, 2019

Overview

- Another public key cryptography algorithm (in addition to RSA).
- 160-bit key length is equivalent in cryptographic strength to 1024-bit RSA.
 - 313-bit ECC is equivalent to 4096-bit RSA
- Elliptic curves as algebraic/geometric entities have been studied extensively for the past 150 years.
 - Studies revealed a rich and deep theory suitable to cryptographic usage.
- First proposed for cryptographic usage in 1985 independently by Neal Koblitz and Victor S. Miller

Overview

- Many cryptosystems require the use of algebraic groups.
 - Discrete logarithm as a hard problem
 - Elliptic curves may be used to form elliptic curve groups
 - Discrete logarithm problem in elliptic curve groups
 - Elliptic curves received their name from their relation to elliptic integrals

$$\int\limits_{z_1}^{z_2} \frac{dx}{\sqrt{x^3+ax+b}} \text{ and } \int\limits_{z_1}^{z_2} \frac{xdx}{\sqrt{x^3+ax+b}}$$

- Used in the computation of the arc length of ellipses.

A Geometric Approach

• Elliptic curves over real numbers $y^2 = x^3 + ax + b$

A Geometric Approach

No intersection!?

Abstraction:

we say the line intersects with the curve at infinity.

<u>Definition</u>:

the intersection point is called "point at infinity" and denoted as O.

Additive Inverse

$$y^2 = x^3 + ax + b$$

•
$$Q + P = O \rightarrow Q = -P = > -(x, y) = (x, -y)$$

Addition Law 1/3

The elliptic curve equation

$$-E: y^2 = x^3 + ax + b$$

• Two points on *E*:

-
$$P = (x_p, y_p)$$
 and $Q = (x_q, y_q)$

- Addition
 - $-R = P + Q = (x_r, y_r).$
- ullet The line L going through P and Q can be written as

$$-\ y=\lambda x+\beta$$
 where $\lambda=(y_q-y_p)/(x_q-x_p)$ (the slope when $P\neq Q$) $\beta=y_p-\lambda x_p,$ then $y=\lambda(x-x_p)+y_p$

Addition Law 2/3

• If
$$P \neq Q$$
,

$$- (\lambda x + \beta)^2 = x^3 + ax + b$$

$$- x^3 - \lambda^2 x^2 + (a - 2\lambda\beta)x + b - \beta^2 = 0$$

We know

$$-(x - x_p)(x - x_q)(x - x_r) = 0$$

- $x^3 - (x_p + x_q + x_r)x^2 + (x_p x_q + x_p x_r + x_q x_r)x - x_p x_q x_r = 0$

• Therefore,

$$\begin{array}{l} - \ \lambda^2 = x_p + x_q + x_r \\ - \ x_r = \lambda^2 - (x_p + x_q) \\ - \ - y_r = \lambda (x_r - x_p) + y_p \\ - \ y_r = \lambda (x_p - x_r) - y_p \end{array}$$

Addition Law 3/3

- If P=Q,
 - slope of the tangent can be calculated
 - by differentiating the curve equation at $P = (x_p, y_p)$

$$-y^2 = x^3 + ax + b$$

$$-2y_p y' = 3x_p^2 + a \to \lambda = (3x_p^2 + a)/2y_p$$

• Thus the tangent line is

$$-y = \lambda(x - x_p) + y_p$$

• The point $R = 2P = (x_r, y_r)$

$$- (x - x_p)^2 (x - x_r) = 0$$

$$-x^3 - (x_r + 2x_p)x^2 + (2x_px_r + x_p^2)x - x_p^2x_r = 0$$

$$-x_r = \lambda^2 - 2x_p$$

$$- y_r = \lambda(x_p - x_r) - y_p$$

Discriminant of a Curve

- We are interested in curves that are non-singular.
- Geometrically, this means that the curve has no self-intersections, cusps, or isolated points.
- To guarantee this for the discriminant Δ , we should have
- $\Delta = -16(4a^3 + 27b^2) \neq 0$

Elliptic Curves over GF(p)

- Solutions to
 - $y^2 = x^3 + ax + b \mod p$, where $0 \le a, b < p$ forms the elliptic curve group.
 - Each solution is called a point on the curve.
- Two Points:

–
$$P=(x_p,y_p)$$
 and $Q=(x_q,y_q)$, where $0 \leq x_p,y_p,x_q,y_q < p$

- Point Addition Rule:
 - $-R = (x_r, y_r) = P + Q$
 - If $P \neq Q \rightarrow \lambda = (y_p y_q)/(x_p x_q) \mod p$
 - If $P = Q \rightarrow \lambda = (3x_p^2 + a)/2y_p \mod p$
 - $-x_r = \lambda^2 x_p x_q \bmod p$
 - $-y_r = -y_p + \lambda(x_p x_r) \bmod p$

Example 1/3

- $E: y^2 = x^3 + 2x + 1 \mod 5$
 - $-\Delta = -16(4a^3 + 27b^2) = -16(4 \times 2^3 + 27) \mod 5 \equiv -1(4) \equiv 1$
 - The points on E are the pairs $(x,y) \mod 5$ that satisfies the equation, along with the point at infinity.
- The possibilities for x are $GF(5) = \{0, 1, 2, 3, 4\}$

$$-x = 0 \rightarrow y^2 \equiv 1 \mod 5 \rightarrow y =$$

$$-x = 1 \rightarrow y^2 \equiv 4 \mod 5 \rightarrow y =$$

$$-x=2 \rightarrow y^2 \equiv 3 \mod 5 \rightarrow y =$$

-
$$x = 3 \rightarrow y^2 \equiv 4 \bmod 5 \rightarrow y =$$

$$-x = 4 \rightarrow y^2 \equiv 3 \mod 5 \rightarrow y =$$

- Therefore the points are
 - -(0,1), (0,4), (1,2), (1,3), (3,2), (3,3), (0,0)

Example 2/3

- Let us compute (1,3) + (3,2).
- The slope
 - $-\lambda = 2$
- The first coordinate

$$-x_r = \lambda^2 - x_p - x_q \bmod p$$

$$-x_r = 4 - 1 - 3 = 0$$

$$-y_r = -y_p + \lambda(x_p - x_r) \bmod p$$

$$-y_r = -3 + 2(1 - 0) = -1 = 4$$

- The resulting point
 - -(1,3) + (3,2) = (0,4)
 - is also on the curve (closed)

Example 3/3

- Let us take P = (1,3)
- Compute P + P = 2P = (3, 2)
- P + 2P = 3P = (0, 4)
- P + 3P = 4P = (0, 1)
- P + 4P = 5P = (3,3)
- P + 5P = 6P = (1, 2)
- P + 6P = 7P = (0,0)
- P + 7P = 8P = (1,3)

Another Example

•
$$E: y^2 = x^3 + x + 3 \mod 7$$

- Points: $(4,1), (4,6), (5,0), (6,1), (6,6), (0,0)$

- Group order: 6

• $P = (5,0)$

- $2P = (0,0), 3P = (5,0)$

• $Q = (4,1)$

- $2Q = (6,6), 3Q = (5,0), 4Q = (6,1), 5Q = (4,6), 6Q = (0,0)$

• $S = (6,1)$

- $2S = (6,6), 3S = (0,0), 4S = (6,1)$

Number of Points on Curve

- Generally, it is not easy to count the points on a curve.
- Assume that the underlying field K (the field over which the elliptic curve is constructed) has p elements
- Then for the number of points n on the curve E defined over K, we can write

$$|n-p-1| < 2\sqrt{p}$$

Hasse bound (1930s)

Example: Number of Points on Curve

• Previous example:

$$-E: y^2 = x^3 + 2x + 1 \mod 5$$

- The points on E are the pairs $(x, y) \mod 5$ that satisfies the equation, along with the point at infinity.
- The points are (0,1), (0,4), (1,2), (1,3), (3,2), (3,3) and O=(0,0).
- Therefore, $\#E(F_5)=n=7$ $|n-p-1|<2\sqrt{p}\rightarrow |7-5-1|=1<4.472$

Elliptic Curve DL Problem

- Scalar Multiplication:
- Q = kP, where P and Q are points, k is an integer $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$
- Scalar multiplication is repeated point addition

$$\begin{array}{ll} \text{Example: } Q = 53P & 53 = (110101)_2 \\ Q = \mathcal{O} & Q = 12P + P = 13P \\ Q = 2O + P = P & Q = 26P \\ Q = 2P + P = 3P & Q = 52P + P \\ Q = 6P & Q = 52P + P \end{array}$$

Binary Right-to-Left Algorithm

Binary Right-to-Left Algorithm

```
Input: P a point on the curve and k \ge 1 an integer
Output: Q = kP
 1: Q := \mathcal{O}; T := P
2: while k \neq 0 do
3: if k is odd then
4: Q := Q + T
5: end if
6: k := k/2
7: if k \neq 0 then
         T := 2T
8.
9:
      end if
10: end while
11: return Q
```

EC/DL Problem

- Definition:
 - Given points P and Q in the group, find a number k such that Q=kP
 - VERY HARD PROBLEM!
- In cryptographic schemes based on elliptic curves, the most time consuming operation is the scalar multiplication.
- The security of the elliptic curve cryptosystems depends on the size of k.
- In real applications k is large.
- The minimum bit length of k is 256 for commercial applications.

Elliptic Curve Cryptosystems

- Discrete logarithm problem (DLP) over elliptic curves is harder than the DLP over integers $\mod p$.
- The most efficient method for computing DL, which is the "index calculus method", seems to have no counterpart for elliptic curves.
- Therefore, it is possible to use much smaller primes or finite fields with elliptic curves to achieve the same level of security.

Elliptic Curve Cryptosystems

- The complexity of discrete logarithm algorithms
 - Index-calculus method:
 - Minimum security requirement in $\mathbb{Z}_p^*:(p-1)>2^{2048}$
 - Shanks's algorithm (baby-step giant-step)
 - Complexity $(n)^{\frac{1}{2}}$
 - Minimum security requirement: $(n) > 2^{112}$
 - Ohlig-Hellman algorithm:
 - $n = p_1 p_2 p_3 \dots p_j$ complexity $O((p_j)^{\frac{1}{2}})$ Minimum security requirement: $(n) > 2^{112}$
- This is why 224-bit ECDL is equivalent in cryptographic strength to 2048-bit DL.

Elliptic Curve Cryptosystems

- It is easy to change classical systems based on DL into one using elliptic curves:
 - Change modular multiplication to elliptic curve point addition.
 - Change modular exponentiation to multiplying an elliptic curve point by an integer (scalar point multiplication).

ECDH Key Exchange

- $E: y^2 = x^3 + ax + b \mod p$.
- Base point P on an elliptic curve. ord(P) = n

Alice

- **2** Computes $Q_A = s_A P$
- Publishes Q_A
- Ocomputes k_{AB} $k_{AB} = s_A Q_B$ $k_{AB} = s_A s_B P$

Bob

- ② Computes $Q_B = s_B P$
- Publishes Q_B
- $\begin{array}{c} \textbf{Omputes} \ k_{BA} \\ k_{BA} = s_B Q_A \\ k_{BA} = s_B s_A P \end{array}$

Session key:
$$k = k_{AB} = k_{BA} = s_A s_B P$$

Example: ECDH Key Exchange

- $E: y^2 = x^3 + x + 7206 \mod 7211$
- a base point P = (3, 5).
- $s_A = 12$
- $s_B = 23$
- $Q_A = s_A P = 12 \times (3,5) = (1794,6375).$
- $Q_B = s_B P = 23 \times (3,5) = (3861,1242)$
- $s_A Q_B = 12 \times (3861, 1242) = (1472, 2098).$
- $s_B Q_A = 23 \times (1794, 6375) = (1472, 2098).$

DSA - Signature Scheme

- Domain parameters: (q, p, g)
- Key pair: $0 < s_A < q$ and $\beta = g^{s_A} \mod p$
- Signature generation:
 - h = H(m)
 - $-r = (g^k \bmod p) \bmod q \text{ and } s = k^{-1}(h + s_A r) \bmod q.$
- Signature verification
 - $-h = H(m), u_1 = s^{-1}h \mod q \text{ and } u_2 = s^{-1}r \mod q.$
 - $-v = (g^{u_1}\beta^{u_2} \bmod p) \bmod q.$
 - Bob accepts the signature if and only if v=r.

EC Digital Signature Algorithm

ECDSA

- Alice wants to sign a message m.
- Domain parameters
 - \bullet An elliptic curve E over GF(p) and a base point P on the curve
 - ullet base point P is a generator.
 - ullet The number of points on E, n is known and assume n also a prime integer
- She chooses a secret integer $s_A < n-1$ and computes $Q_A = s_A P$.
- Curve parameters (i.e. a, b, p, and P) and her public key Q_A are published
- s_A is kept private.

ECDSA

- Signing the message m:
 - She computes h = HASH(m)
 - ② She selects a random integer k such that 0 < k < n.
 - \odot computes $R = kP = (x_r, y_r)$
 - $r = x_r \mod n$
 - $s = k^{-1}(h + s_A r) \mod n.$
 - Alice's signature for m is (r, s).
- ullet Verifying the signature given m and Q_A and curve parameters
 - **1** Bob computes h = HASH(m)
 - 2 $u_1 = s^{-1}h \mod n$ and $u_2 = s^{-1}r \mod n$

 - $v = x_v \mod n$
 - **3** Accepts if $v = r \mod n$.