

Design and Development of a Modular Reconfigurable Aerial Vehicle

Milestone 2

12/12/2023

Grupo 6

107957 – Alexandre Silva

110180 – Magner Gusse

Orientador:

Pedro Casau

Conteúdos

Contexto

Contextualização da missão, Objetivos e requisitos

Progressos

Estado atual do projeto

2

Conceitos gerados

Fase de geração de conceitos da missão

Próximos passos

Testes e objetivos a alcançar nas próximas fases

Mission Statement

Construção de veículos aéreos que funcionam de forma individual, capazes de se juntar em voo formando configurações diferentes e capazes de em conjunto realizar diversas tarefas.

Objetivos

Primários:

- Desenvolver dois módulos independentes e capazes de realizar as reconfigurações em voo.
- Estudo, comparação e seleção dos métodos de acoplamento de módulos.

Secundários:

- Rotores uni-axiais(Counter-Rotating).
- Demonstrar princípio científico e aplicabilidade.
- Otimização da estrutura.
- Extra: Ligação de um Payload.

Requisitos

Performance

- Voo estável e controladoReconfiguração em voo
- **1** 6 graus de Liberdade
- ☐ Sistema Swashplateless

Fiabilidade

- ☐ 10 minutos de voo
- Estrutura resistente
- Aviónica protegida
- Reutilizável

Design

- Simplicidade de Design
- Fácil montagem
- ☐ Fácil manutenção

Geração de conceitos

Ligação entre módulos

Criação de propostas para a ligação entre os veículos

Swashplateless

Criação de propostas para o sistema que irá direcionar os veículos.

Vantagens

- Estabilidade de voo
- Massa reduzida

Desvantagens

 Mais difícil de efetuar a ligação

Conceito 1

Vantagens

Maior estabilidade de voo

Desvantagens

- Difícil de efetuar a ligação
- Possui mais massa

Vantagens

Facilidade de ligação

Desvantagens

- Menor estabilidade
- Maior massa

Conceito 3

Estrutura da ligação

- Constitui duas peças, Macho e fêmea
- Apresenta espa
 ço para ímanes para liga
 ção mais forte

 Permite a ligação, mesmo estando um pouco desalinhados.

Conceitos do Swashplateless

35°

Ângulo	Tuning	Motor Load
Maior	Fácil	Maior
Menor	Difícil	Menor

65°

Swashplateless

Listagem de componentes

Bateria

4s e 5200 mAh

Microcontrolador

Teensy 4.1

Hélices

19cm de comprimento

Rotores

Brushless 1250KV

Listagem de componentes

Speed Controller

HobbyKing 50A

Recetor

FS-iA6B 2.4GHz

Transmissor

FS-i6X 2.4GHz

Sensor de posição angular

AS5048

Componentes - Massa

1 Módulo			
Qtn.	Mass(g) p/unit		
2	68		
2	82		
1	12		
1	475		
1	15		
1	5		
n	15		
4	11		
1	10		
	876		
	Qtn. 2 1 1 1 1 n		

Para a potência máxima de um motor, usando hélices menores, garante-se propulsão de 1200g e o requisito de 10 minutos de voo

Arquitetura

Esquematização

Esquema funcional da arquitetura eletrónica a seguir em ambos veículos.

Arquitetura

Ligações dos componentes

Ligação esquematica e funcional dos componentes escolhidos.

Work Breakdown Structure

Cumprimento de tarefas

Module Design

Gestão de recursos

A alocação de recursos humanos de forma a cumprir os objetivos traçados da melhor forma:

Magner

Percentagem de trabalho na tarefa

Alexandre

Percentagem de trabalho na tarefa

Testes a Realizar

Testes a Realizar

Propulsão

Para determinar a carga máxima que os rotores e as hélices podem suportar.

Para ter a noção da propulsão que o conjunto oferece em função da potência dada ao motor.

Testes a Realizar

https://www.youtube.com/watch?v=aEPf0QHVuMM&t=70s

Swashplateless

Teste de funcionamento do conceito e das diferentes variações.

Visando cumprir com os requisitos de performance

Mitigação dos riscos

Prazos do projeto

Divisão de recursos de forma a cumprir com os prazos estabelecidos

Testes a realizar

Para validação dos componentes críticos da arquitetura.

Complexidade técnica

Estudo prévio das ligações e dos componentes e a compatibilidade entre estes.

Reconfiguração

O desacoplamento pode não acontecer, solução com eletroimanes.

Conclusões

Arquitetura

A escolha de componentes é interdependente

Gestão

Necessária a antecipação de tarefas sempre que possível

Riscos

Realização de testes será fundamental para o projeto

Geral

Percepção do grau de dificuldade do projeto

