Project 1 (0.2 points)

- Input: non-zero natural number n
- Output:
 - 1. the number of partitions on a set $A = \{a_1, \ldots, a_n\}$
 - 2. the partitions on a set $A = \{a_1, \dots, a_n\}$ and their corresponding equivalence relations (for $n \leq 8$)

Example:

- Input: n=3
- Output:
 - 1. the number of partitions on a set $A = \{a_1, a_2, a_3\}$ is 5
 - 2. using the notation $\Delta_A = \{(a_1, a_1), (a_2, a_2), (a_3, a_3)\}$, the partitions on a set $A = \{a_1, a_2, a_3\}$ and their corresponding equivalence relations are:

$$\{a_1\}, \{a_2\}, \{a_3\}\} \leadsto \Delta_A$$

$$\{a_2, a_3\}, \{a_1\}\} \leadsto \Delta_A \cup \{(a_2, a_3), (a_3, a_2)\}$$

$$\{a_1, a_2\}, \{a_3\}\} \leadsto \Delta_A \cup \{(a_1, a_2), (a_2, a_1)\}$$

$$\{a_1, a_3\}, \{a_2\}\} \leadsto \Delta_A \cup \{(a_1, a_3), (a_3, a_1)\}$$

Project 2 (0.2 points)

- Input: non-zero natural number n
- Output:
 - 1. the number of associative operations on a set $A = \{a_1, \ldots, a_n\}$
 - 2. the operation table of each associative operation (for $n \leq 4$)

Example:

- Input: n = 2
- Output:
 - 1. the number of associative operations on a set $A = \{a_1, a_2\}$ is 8

$$\begin{pmatrix} a_1 & a_1 \\ a_1 & a_1 \end{pmatrix}, \begin{pmatrix} a_1 & a_1 \\ a_1 & a_2 \end{pmatrix}, \begin{pmatrix} a_1 & a_1 \\ a_2 & a_2 \end{pmatrix}, \begin{pmatrix} a_1 & a_2 \\ a_1 & a_2 \end{pmatrix}, \begin{pmatrix} a_1 & a_2 \\ a_2 & a_1 \end{pmatrix}, \begin{pmatrix} a_1 & a_2 \\ a_2 & a_2 \end{pmatrix}, \begin{pmatrix} a_2 & a_1 \\ a_1 & a_2 \end{pmatrix}, \begin{pmatrix} a_2 & a_1 \\ a_1 & a_2 \end{pmatrix}.$$