Tracce delle soluzioni

1. vedi dispense del corso.

2. 1.

$$G(s) = -\frac{Z_f}{Z_{t,i}} = -\frac{R + \frac{1}{sC}}{2R + \frac{R^2}{\frac{1}{sC}}} = -\frac{1 + RCs}{2RCs + R^2C^2s^2} = -\frac{1 + Ts}{Ts(2 + Ts)}$$

2.

$$G(s) = \left(-\frac{1}{T}\right) \frac{s + \frac{1}{T}}{s\left(s + \frac{2}{T}\right)}$$
 zeri: $z_1 = -\frac{1}{T}$; poli: $p_1 = 0$, $p_2 = -\frac{2}{T}$

3.
$$G(s) = \frac{-s - \frac{1}{T}}{Ts^2 + 2s}$$
 \Rightarrow $TD^2y + 2Dy = -Du - \frac{1}{T}u$

3

1)
$$0u = -2e^{-t}$$
 $0^{2}u = 2e^{-t}$ $0y = -2e^{-2t}$ $0y = 4e^{-2t}$
 $4e^{-2t} + 4(-2e^{-2t}) + 4(e^{-2t}) =$

$$= 2e^{-t} + 2(-2e^{-t}) + 2e^{-t}$$
 $0 \times 1 \times 10^{-2}$

$$Y(s) = \frac{(s+1)^{2}}{(s+2)^{2}} \cdot \frac{10}{s} - \frac{s}{(s+2)^{2}}$$

$$= \frac{40(s+1)^{2} - s^{2}}{s(s+2)^{2}}$$

$$= \frac{K_{1}}{s} + \frac{K_{2}t}{(s+2)^{2}} + \frac{K_{22}}{s+2}$$

$$= \frac{10(s+t)^{4} - s}{(s+2)^{2}} + \frac{10}{s+2}$$

$$K_{1} = \frac{10(s+t)^{4} - s^{4}}{(s+2)^{2}} = \frac{10 - 4}{s+2} = -3$$

$$K_{21} = \frac{10(s+t)^{2} - s^{4}}{s} = \frac{10 - 4}{s} = -3$$

$$K_{21} = \frac{10(s+t)^{2} - s^{4}}{s} = \frac{10 - 4}{s} = -3$$

$$K_{21} = \frac{10(s+t)^{2} - s^{4}}{s} = \frac{10 - 4}{s} = -3$$

$$(0K! \text{ Cutificity consider materials})$$

$$Y(s) = \frac{5}{2} \cdot \frac{1}{s} = -3 \cdot \frac{1}{(s+2)^{2}} + \frac{13}{2} \cdot \frac{1}{s+2}$$

$$Y(t) = \frac{5}{2} - 3te^{-2t} + \frac{13}{2}e^{-2t}$$

4. Vedi dispense dell'insegnamento.

6.

b. Del lugo delle rodici si evina che il guodogno attimo k* corrisponde alla radice dappia - 1 $1 + K^* - 1 = 0$ $1 + K^* - 1 = 0$ $5 [(s+2)^2 + 1]$ 5 = -1=> x*=2 C. $l_{z} = \frac{5}{K_{x}}$, $K_{x} = \lim_{s \to 0} \frac{s}{s[(s+2)^{2}+1]} = \frac{2}{5}$ $\ell_{r} = \frac{25}{2} = 12,5$ $d. L(s) = \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}$ $\sqrt{a} = \frac{2}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{8}{25} = -0,32$ lim on L(1'w) = - 3 T 1+dL(s)=0 obhia rodici purom. immoginarie 1+dL(s)=0 obhia rodici purom. immoginarie 1+dL(s)=0 , $\beta \stackrel{\triangle}{=} 2d$ -0,32 53+452+55+B=0 3 1 5 0 20-3=0 $\beta=20$ 2 4 β 0 \Rightarrow d=101 20-3 0 Intersersione im $-\frac{1}{d}=-\frac{1}{10}$ => MA = 10

((5) = K 5+d ; & determinate an ancellarione polo-zero $\alpha = 2 \Rightarrow L(s) = C(s)P(s) = K \Rightarrow S(s+2)$ eg. constituities: 1+ K 10 = 0 $T_a = \frac{3}{G_a}$, $T_a = 3$ AN $G_s = 1$ rad/sec. Gs = 1 quando il Nolore di K corrisponde ella radia doppia -1: $1+K \frac{10}{(-1)\cdot(1)} = 0 \implies K = \frac{1}{10} = 0.1$ C(s) = 0,1. 5 0,5 a) $L(ju) = \frac{1}{jw(ju+2)} = \frac{1}{jw(1+0.5ju)}$ M = + 00 Va Ve = 0,5 (-0,5) = -0,25 Colcolo apponimeto di MF: 0,25 = 1. cos MF MF M= = orces 0,25 = 75,5 Colcola esotta di HF: 1/(j'w) = 1 -0 W= V-2+V5 $M_F = 180^{\circ} + \text{org } L(j^{\circ}0, 4859) = 180^{\circ} - 90^{\circ} - \text{oretg} \frac{0,4859}{2}$ = 90° - 13°,66 = 76°,34 la = 0 perché il sistema è di tipo 1.

```
Un opprocció obtanotivo, più generale, per deter
il controllère è il seguente:
((5) = b15+b0 (imperiment specifice 1)
 descritto come
  Pd(s) = (s+1) (s2+xs+B)
  radici 5,2 del polinomia 5+x5+B: Re 5,2 K-1
  Six = 5+1, 5= 2-1, Re 5 < -1 4> Re Z < 0
  (Z-1)2+ 2(Z-1)+B=0
  I + (x-2) Z + B- x+1= 0
  anindi S d - 2 > 0
B - d + 1 > 0
  P_{d}(s) = s^{3} + (2+1)s^{2} + (2+\beta)s + \beta

b_{1}s + b_{2}

1 + \frac{1}{3}s + \frac{1}{(s+2)^{2}} = 0
   5(5+2)2+106,5+106. = 0
  P(s) = 53+452+(4+106,)5+106.
  So impose P_d(s) \equiv P_c(s)

(\alpha + 1) = 4 = 0 \alpha = 3 on! \beta > 2

(\alpha + 1) = 4 + 106, \beta = 1 + 106,

(\beta = 106) \beta = 106
  I poli non dominanti sono -1.5 ± 1/9-4/3
  Jaghin B: 9-4B=0, B= = (B>2 OK!)
   b_0 = \frac{9}{40} = 0.225 b_1 = \frac{5}{40} = 0.125 C(5) = \frac{0.125 \cdot 5 + 0.225}{5}
```


8.

H(z) = Z ³ .	+ 0.5 2	1 2 + 0.5;	2 + 0.5			
	iliti elb aci					dolle r	-dici
del pol	inomio	7 7 3 + 0	7.5 Z +	0.5 2	+0.5	per il	quole si
	1) >0		3204				
	1)3 a (-1						
	(-1) (5 -0.	5 + 0.	5) >0	ok!	
3)	a. < a						
	0.5	< 1	6k!				
4) [0.1>1	6n-1					
	0.5			1			
2	1		0.5	0.5			
3	- 0. 13	*	-0.25				
	1-0.7	5 >	-0.25	ok			