

Machine Learning with Graphs (MLG)

HW3: Model Design & Comparison for Recommendation Models

Deadline: **2021.05.21 (Fri.)** 23:59

Submission: Code (.py/.ipynb) and Report (PDF)

標題	觀看次數	觀看小時	
MLG-2020 01-5 Centrality Prediction	127	28.5079	HW1
MLG-2020 00 Course Intro	97	8.7164	
MLG-2020 01 Graph Structure	86	15.6874	HW1
MLG-2020 01-3 Centrality Analysis	83	15.4437	HW1
MLG-2020 02-1 Network Properties	61	16.1875	HW1
MLG-2020 03-1 Link Prediction	60	18.5091	HW2
MLG-2020 HW2	60	4.3949	HW2
MLG-2020 01-4 Eigenvector Centrality	59	7.7755	HW1
MLG-2020 04-1 High-Order Link Prediction	56	8.4266	HW2
MLG-2020 01-2 Graph Search	55	6.9471	HW1
MLG-2020 03-2 LP on Attributed Graphs	48	10.7277	HW2
MLG-2020 02-2 Graph Generation: ER Model	47	10.8395	noHW
MLG-2020 02-3 Graph Generation: BA Model	46	5.2461	noHW
MLG-2020 02-4 Graph Generation: WS Model	40	4.3228	noHW
MLG-2020 05-1 Community Detection: Basic	38	6.9724	noHW
MLG-2020 04-2 Signed Link Prediction	36	2.7258	noHW
MLG-2020 06-1 RecSys: Collaborative Filtering	25	4.7612	
MLG-2020 05-3 Community Detection: Louvain & LPA	21	3.3071	noHW
MLG-2020 05-2 Community Detection: Edge-Removal	21	6.0457	noHW
MLG-2020 04-3 Dynamic Link Prediction	17	1.478	noHW
MLG-2020 04-4 Link Prediction on Knowledge Graphs	15	4.2244	noHW
MLG-2020 06-2 RecSys: Matrix Factorization	14	3.364	
MLG-2020 07-1 RecSys: BPR Bayesian Personalized Ranking	9	2.3756	
MLG-2020 06-3 RecSys: Factorization Machine	7	1.5435	

The Main Expected Performance Table

	MovieLens		Yelp		Douban Book				
	RMSE	Recall@10	NDCG@10	RMSE	Recall@10	NDCG@10	RMSE	Recall@10	NDCG@10
UCF-s									
UCF-p									
ICF-s									
ICF-p									
MF			10 T	/pica	I Rec	Sys M	letho	ods T	
FM									
BPR-MF									
BPR-FM									
GBDT+LR									
XGB+LR									
FNN									
IPNN									
OPNN									
PIN									
ССРМ		1	NN O.	-base	ed Ke	cSys	Vietr	nods	
NeuMF						_			
WD									
DeepCross									
NFM			2 Pac	ont N	INLha	sed N	/loth	ods	
DeepFM) NEC	ent i		Seu I	лепі	ous I	
5選3 (自行加			机	台口	≐□≐+□	的NN	一十二	E	
rows)			→ N/		口又口「	וועוען	7777	7	
Your own NN									

RecSys Models to be Compared

10 Typical Approaches

- 1) User-based CF [**UCF-s**] (cosine as similarity)
- 2) User-based CF [**UCF-p**] (Pearson correlation as similarity)
- 3) Item-based CF [ICF-s] (cosine as similarity)

Lecture 6

- 4) Item-based CF [ICF-p] (Pearson correlation as similarity)
- 5) Matrix Factorization [MF] (varying k-dim latent factor)
- 6) Factorization Machine [FM] (varying k-dim latent factor)
- 7) Matrix Factorization with BPR [BPR-MF]
- 8) Factorization Machine with BPR [BPR-FM]
- 9) Pre-training via GBDT for LR [GBDT-LR]
- 10) Pre-training via XGBoost for LR [XGB-LR]

Lecture 7

RecSys Models to be Compared

- 10 NN-based approaches
- 1) FM-supported Neural Networks [FNN]
- 2) Product-based Neural Networks
 - Inner-Product NN [IPNN]
 - Outer-Product NN [OPNN]
 - Product-network in Network [PIN]
- 3) Convolutional Click Prediction Model [CCPM]
- 4) NCF Neural Matrix Factorization [NeuMF]
- 5) Wide&Deep [**WD**]
- 6) Deep Crossing [DeepCross]
- 7) Neural Factorization Machine [NFM]
- 8) Deep Factorization Machine [DeepFM]

Lecture 8

RecSys Models to be Compared

Select 3 from 5 Recent NN-based approaches:

- 1) Attentional Factorization Machines (AFM)
 Learning the Weight of Feature Interactions via Attention Networks (IJCAI 2017)
- 2) Collaborative Memory Networks (CMN)

 Collaborative Memory Network for Recommendation Systems (SIGIR 2018)
- 3) xDeepFM
 Combining Explicit and Implicit Feature Interactions for RecSys (KDD 2018)
- 4) Deep Interest Network (DIN)

 Deep Interest Network for Click-Through Rate Prediction (AAAI 2019)

5) DeepGBM

A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks (KDD 2019)

Dataset 1: MovieLens 100K

Entity	#Entity
User	943
Age	8
Occupation	21
Movie	1,682
Genre	18

Relation	#Relation
User - Movie	100,000
User - User (KNN)	47,150
User - Age	943
User - Occupation	943
Movie - Movie (KNN)	82,798
Movie - Genre	2,861

Dataset 2: Yelp

Entity	#Entity
User	16,239
Business	14,284
Compliment	11
Category	511
City	47

Relation	#Relation
User - Business	198,397
User - User	158,590
User - Compliment	76,875
Business - City	14,267
Business - Category	40,009

Dataset 3: Douban Book

Entity	#Entity
User	13,024
Book	22,347
Group	2,936
Location	38
Author	10,805
Publisher	1,815
Year	64

Relation	#Relation
User - Book	792,062
User - Group	1,189,271
User - User	169,150
User - Location	10,592
Book - Author	21,907
Book - Publisher	21,773
Book - Year	21,192

Evaluation Settings

- Evaluation metrics:
 - (1) RMSE (real-valued), (2) Recall@10 (binary),
 - (3) NDCG@10 (binary)
- Data filtering: remove users whose #interactions < 3
- Data splitting: 5-Fold Cross Evaluation
 - Test data: Randomly select 20% user-item interactions
 - Randomly split the remaining data into training (70%) and validation (10%) sets
 - Validation set is used for hyperparameter tuning
 - Report the average scores of RMSE, Recall, NDCG over 5 testing sets
- For Recall & NDCG, transform the ratings into binary implicit feedback as ground truth, indicating whether the user has interacted with the specific item
- [Important!!] Be sure to fairly do all comparisons under the same experimental settings

Task Requirements

- Q1: Compared with the typical methods, can our NN-based approaches achieve comparable accuracy? Why?
 - Are recent NN-based methods even better? Why?
- Q2: Are there any hyperparameters in each model that significantly affect the performance?
 - You may need to conduct hyperparameter studies for some modes, find the best hyperparameters, and explain why such settings are good
- Q3: Can you create a new end-to-end NN that combine the advantages of nicely-performed methods to beat all methods?
 - You MUST at least design one novel NN-based method by yourself, and have it compared with all methods
 - No matter you beat them or fail, explain the possible reasons
- Q4: What if I cannot successfully complete some (e.g., 8, 7, 2) of 10 typical, 10 NN-based, 3/5 recent method?
 - Just try your best to have 13 compared method. Do as many as you can.
 - You own method is definitely required

Reference Packages (but not limited)

- Surprise https://github.com/NicolasHug/Surprise
- Spotlight https://github.com/maciejkula/spotlight
- LightFM https://github.com/lyst/lightfm/
- DeepCTR https://github.com/shenweichen/DeepCTR
- NeuRec https://github.com/wubinzzu/NeuRec
- RecQ https://github.com/Coder-Yu/RecQ
- Bonus: implement all required models by yourself using PyTorch
- We recommend you to read the original papers of all required models so that you can understand to come up with your own method, and make systematic and correct comparison
 - At least you can find the key hyperparameters in the papers

HW3 Submission

- HW3 Report + Code submission via Moodle
 - Deadline: May 21, (Fri) 2021, 23:59
 - Submit your code: .py or .ipynb (preferred)
 - Submit report (PDF): \geq 15 pages (you cannot include code in report)
- Content in the report
 - 1) Introduction
 - 2) Methodology: briefly describe all of the compared methods, and describe the details of your own method
 - 3) Experimental analysis, along with analysis and insights
 - Report your experimental settings, hyperparameter setting of each method
 - Compare and report the required methods and your own method
 - Explain WHY your prediction is so GOOD or so BAD!
 - Present any insights based on your results
 - Do hyperparameter analysis
 - Refer to the slide "Task Requirements"
 - 4) Conclusions
 - Explain the novelty of your method, summarize your findings
 - □ Point out how to improve in the future
 - 5) Citations (if you use any methods or papers)