Příjmení a jméno:

Úloha	1	2	3	4	5	Celkem
Maximum	10	10	10	10	10	50
Počet bodů						

1. Uvažujme množinu $M=\{(x,y,z)\in\mathbb{R}^3\mid x^2=y^2+z^2\}.$

(a) (1 b) Načrtněte množinu M.

(b) (2 b) Hledáme vzdálenost bodu (1,3,4) od M. Formulujte tuto úlohu jako optimalizační problém a rozhodněte, zda je to konvexní úloha.

(c) (7 b) Vyřešte úlohu (b) pomocí Lagrangeových multiplikátorů a napište hledanou vzdálenost bodu od množiny.

Řešení:

(a) Jedná se o sjednocení dvou kuželů zrotovaný kolem osy x.

(b) Minimalizujeme $\|\mathbf{x} - (1,3,4)\|_2$ za podmínky $\mathbf{x} \in M$. Jelikož M není konvexní množina, nejde o konvexní úlohu.

(c) Pro nalezení vzdálenosti potřebujeme najít nejbližší bod, tedy minimalizujeme $(x-1)^2 + (y-3)^2 + (z-4)^2$. Lagrangián má tvar

$$L(x; \lambda) = (x-1)^2 + (y-3)^2 + (z-4)^2 + \lambda(y^2 + z^2 - x^2).$$

Derivacemi dostaneme podmínky $2(x-1)=2\lambda x, \ 2(y-3)=-2\lambda y$ a $2(z-4)=-2\lambda z.$ Z tohoto plyne $\lambda\neq\pm 1$ a $x=\frac{1}{1-\lambda},\ y=\frac{3}{1+\lambda}$ a $z=\frac{4}{1+\lambda}.$ Dosazením do rovnici kužele dostaneme

$$\frac{1}{(1-\lambda)^2} = \frac{9}{(1+\lambda)^2} + \frac{16}{(1+\lambda)^2},$$

což má řešení $\lambda_1 = \frac{2}{3}$ a $\lambda_2 = \frac{3}{2}$. To odpovídá bodům $(3, \frac{9}{5}, \frac{12}{5})$ a $(-2, \frac{6}{5}, \frac{8}{5})$. První bod má vzdálenost $\sqrt{8}$, druhý $\sqrt{18}$. Řešení je tedy první bod.

2. Rozhodněte, zda je zadaná množina K konvexní a odpověď zdůvodněte.

(a) (2 b) K je množina všech bodů $\mathbf{x} \in \mathbb{R}^n$ splňujících $\|\mathbf{x}\|_2 \ge \alpha$, kde $\alpha > 0$.

(b) (2 b) $K = \{ \mathbf{x} \in \mathbb{R}^2 \mid 0 \le x_1 \le 1, \ x_2 \le x_1^2, \ x_2 \le 2x_1 - 1 \}.$

(c) (2 b) $K = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1^2 - 1 + e^{x_2} \le 2 \}.$

(d) (2 b) K je množina všech nezáporných řešení $\mathbf{x} \geq \mathbf{0}$ soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$.

(e) (2 b) K je množina všech $(x,y) \in \mathbb{R}^2$ splňujících $x^2 + 2xy = -y^2$.

Řešení:

- (a) Není konvexní, protože je to množina vektorů délky větší než α . Např. pro n=2 je to doplněk kruhu.
- (b) Je to konvexní polyedr, protože podmínka $x_2 \leq x_1^2$ definující nekonvexní množinu je redundatní.
- (c) K je subkontura součtu konvexních funkcí, je tedy konvexní množina.
- (d) K je konvexní, neboť jde o průnik afinního podrostoru a konvexního polyedru.
- (e) K je konvexní, protože $x^2+2xy+y^2=(x+y)^2=0$ právě tehdy, když platí y=-x, což zadává přímku.
- 3. Máme funkci $f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + 3x_2^2 + x_1x_2 + 11x_2 + 11$.
 - (a) (1 b) Vyjádřete f ve tvaru $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, kde \mathbf{A} je symetrická matice, \mathbf{b} je vektor a $\mathbf{c} \in \mathbb{R}$.
 - (b) (6 b) Nalezněte globální extrém funkce f na množině \mathbb{R}^2 , pokud existuje, a stanovte, zda jde o globální maximum nebo globální minimum.
 - (c) (3 b) Nalezněte Taylorův polynom 1. řádu funkce f v bodě (0,1) a vyjádřete ho ve tvaru $\alpha x_1 + \beta x_2 + \gamma$ pro nějaká $\alpha, \beta, \gamma \in \mathbb{R}$.

Řešení:

(a) Zřejmě
$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 3 \end{bmatrix}$$
, $\mathbf{b} = (0, 11)$, $c = 11$.

(b) $f'(\mathbf{x}) = (2x_1 + x_2, x_1 + 6x_2 + 11)$ a Hessián je $\begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}$ je pozitivně definití. Proto je v bodě (1, -2) globální minimum. Globální maximum neexistuje, protože f není shora omezená – např. hodnoty f rostou do ∞ na polopřímce $x_1 = 0, x_2 \geq 0$.

Alternativně: doplněním na čtverec dostaneme

$$f(\mathbf{x}) = (\mathbf{x} - (1, -2))^T \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} (\mathbf{x} - (1, -2)) = (\mathbf{x} - (1, -2))^T \begin{bmatrix} 1 & 0.5 \\ 0.5 & 3 \end{bmatrix} (\mathbf{x} - (1, -2)).$$

Jelikož je matice $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 3 \end{bmatrix}$ pozitivně definitní, funkce f má globální minimum v bodě (1,-2).

(c) Taylorův polynom prvního řádu funkce f v bodě (0,1) je

$$T_1(\mathbf{x}) = f(0,1) + f'(0,1)(\mathbf{x} - (0,1)).$$

Protože f(0,1) = 25 a f'(0,1) = (1,17), dostaneme

$$T_1(\mathbf{x}) = x_1 + 17x_2 + 8.$$

- 4. Máme data $(x_1, y_1), \ldots, (x_n, y_n)$ a snažíme se zjistit jejich závislost pomocí $y \approx f(x; \mathbf{w})$, kde $f(x; \mathbf{w}) = xe^{w_1} + x^2w_2$. Ve výsledcích nesmí být obecné derivace (například g'), ale musí být spočteny. Případné inverze matic se počítat nemusí.
 - (a) (2 b) Formulujte hledání neznámých parametrů jako úlohu nelineárních nejmenších čtverců.
 - (b) (5 b) Napište iterace gradientní a Newtonovy metody.
 - (c) (1 b) Napište, za jaké podmínky selže Newtonova metoda v první iterací.
 - (d) (2 b) Napište konkrétní data (tedy specifikujte n a poté $(x_1, y_1), \ldots, (x_n, y_n)$) a počáteční iteraci, pro které Newtonova metoda selže v první iteraci.

Řešení:

- (a) Jedná se o minimalizaci $\frac{1}{2}\sum_{i=1}^{n}(x_ie^{w_1}+x_i^2w_2-y_i)^2$.
- (b) Pro tyto metody potřebujeme spočítat derivaci a Hessián. Derivace má tvar

$$\begin{bmatrix} \sum_{i=1}^{n} (x_i e^{w_1} + x_i^2 w_2 - y_i) x_i e^{w_1} \\ \sum_{i=1}^{n} (x_i e^{w_1} + x_i^2 w_2 - y_i) x_i^2 \end{bmatrix}$$

a Hessián se rovná

$$\begin{bmatrix} \sum_{i=1}^{n} (2x_i e^{w_1} + x_i^2 w_2 - y_i) x_i e^{w_1} & e^{w_1} \sum_{i=1}^{n} x_i^3 \\ e^{w_1} \sum_{i=1}^{n} x_i^3 & \sum_{i=1}^{n} x_i^4 \end{bmatrix}.$$

Při updatech je nutno myslet na to, že se dělají pro \mathbf{w} a ne pro x.

- (c) Newtonova metoda selže, pokud je Hessián singulární.
- (d) Což nastane například pro n=1 a $x_1=0$.
- 5. Máme data $\mathbf{a}_1, \dots, \mathbf{a}_{500} \in \mathbb{R}^3$. Hledáme rovinu procházející počátkem, která minimalizuje součet čtverců vzdáleností k těm bodům. Uvažujeme matici $\mathbf{A} = [\mathbf{a}_1 \dots \mathbf{a}_{500}] \in \mathbb{R}^{3 \times 500}$ a víme, že matice $\mathbf{A}\mathbf{A}^T$ má vlastní čísla $\sqrt{6}, 1, 3$ a jim odpovídající jednotkové vlastní vektory $\frac{1}{\sqrt{2}}(0, 1, 1), \frac{1}{\sqrt{6}}(2, 1, -1), \frac{1}{\sqrt{3}}(1, -1, 1)$.

- (a) (3 b) Formulujte tuto úlohu jako optimalizační problém.
- (b) (6 b) Nalezněte hledanou rovinu a popište ji pomocí báze.
- (c) (1 b) Jaká bude optimální hodnota úlohy (chyba proložení)?

Řešení:

- (a) Prokládáme body lineárním podprostorem kodimenze 1. Tedy úlohu můžeme vyjádřit jako minimalizaci $\sum_{i=1}^{500} |\mathbf{x}^T \mathbf{a}_i|^2 = \|\mathbf{x}^T \mathbf{A}\|^2 = \mathbf{x}^T \mathbf{A} \mathbf{A}^T \mathbf{x}$, kde $\mathbf{x} \in \mathbb{R}^3$ splňuje $\|\mathbf{x}\| = 1$. Zde \mathbf{x} vyjadřuje směr přímky, která je ortogonálním doplňkem hledané roviny.
- (b) Spektrální rozklad $\mathbf{A}\mathbf{A}^T = \mathbf{V}\Lambda\mathbf{V}^T$, kde $\lambda_1 = 1 \le \lambda_2 = \sqrt{6} \le \lambda_3 = 3$ a odpovídající sloupce \mathbf{V} jsou podle toho seřazeny. Řešením \mathbf{x} je vlastní vektor $\mathbf{v}_1 = \frac{1}{\sqrt{6}}(2,1,-1)$ odpovídající nejmenšímu vlastnímu číslu. Hledaná rovina je popsána ortonormální bází $(\mathbf{v}_2,\mathbf{v}_3) = (\frac{1}{\sqrt{2}}(0,1,1),\frac{1}{\sqrt{3}}(1,-1,1))$.
- (c) Chyba je optimální hodnota $\mathbf{v}_1^T \mathbf{A} \mathbf{A}^T \mathbf{v}_1 = \lambda_1 = 1.$