PROBABILITIES

Zack Kertcher

Statistics for Management Fall 2016

Plan for today

- 1. Quiz
- 2. Probabilities
- 3. *Presentations

PROBABILITIES

What is it important to learn probabilities?

Probabilities and Stats

So, why do we need probabilities?

Answer business problems

What is the probability of x given y?

Match relevant modeling technique

Linear regression, logit, poisson, neg binomial, nonparametric models....

Recognize the limit of our data (and model)

Sampling, "margin of error"

Basic terms

Sample space: All possible outcomes in an experiment.

Event: An outcome in a sample space.

Probability: Likelihood that an event will occur (0 < = P < = 1)

Car dealership example

Purchased				
Planned Yes No				
Yes	100	25		
No	50	325		

What is the sample space?

What are the events?

What is the probability to buy a car at the dealership?

Car dealership example

Purchased				
Planned	Yes	No	Total	
Yes	100	25	125	
No	50	325	375	
Total	150	350	500	

Marginal probability
P(purchased)
Mutually exclusive

Sample space

What is the sample space? **500**What are the events? **Buying/not buying a car (totaling 500)**What is the probability to buy a car at the dealership? **150/500 (30%)**

Joint probability

Finding the probability of event A <u>and</u> event B

Car dealership example

	Purcha	sed		
Planned	Yes	No	Total	Joint probability
Yes	100	25	125	P(planned & didn't purchase)
No	50	325	375	
Total	150	350	500	
			1	

Sample space

What is the probability of a planned, non-purchase? 25/500 (5%)

HR example

Quit after 24 months					
Better Offer Yes No					
Yes	15	10			
No 5 70					

- ✓ What is the sample space?
- ✓ What is the probability of an employee quitting after 24 months?
- ✓ What is the probability of an employee quitting after 24 months without receiving a better offer?

General addition rule

Finding the probability of event A <u>or</u> event B

Car dealership

What is probability that a customer plans a purchase <u>or</u> actually purchases a car?

125/500+150/500-100/500 = 175/500 = **35%**

HR example

Quit after 24 months				
Better Offer	Yes	No	Total	
Yes	15	10	25	
No	5	70	75	
Total	20	80	100	

✓ What is the probability of quitting or not quitting after 24 months?

Conditional Probability

The probability of event A given (conditional) B

$$P(A|B) = P(A \& B) / P(B)$$

Car dealership

P(A|B) = P(A & B) / P(B)

Planned <u>and</u> purchased

Purchased				
Planned Yes No Total				
Yes	100	25	125	
No	50	325	375	
Total	150	350	500	

Sample space

Didn't plan <u>and</u> purchased

Of the customers who planned purchasing a car, what is the probability of actually purchasing a car? Is this probability higher than customers who haven't planned a purchase? **Yes!**

Decision Trees

Present probabilities as a "tree" with branches indicating disjoint events

HR example

Quit after 24 months				
Better Offer Yes No Total				
Yes	15	10	25	
No	5	70	75	
Total	20	80	100	

- ✓ Of those who <u>did not</u> receive a better offer, what is the probability of quitting after 24 months?
- ✓ Given this probability do you think that there is a relation between better offer and quitting?
- ✓ Draw a decision tree to describe the probabilities in the HR example

Statistical independence

The conditional probability of event A given B equals marginal probability A

$$P(A|B) = P(A)$$

Which means that the outcome of one event does not affect the other

Car dealership

Is there a difference between shoppers of premium to standard cars? Follow-up with customers asking whether they are satisfied with their purchase.

$$P(A|B) = P(A)$$

Satisfied				
Car type	Yes	No	Total	
Premium	45	5	50	
Standard	90	10	100	
Total	135	15	150	

P(satisfied | premium) = (45/150)/(50/150) = 90%P(satisfied | standard) = (90/150)/(100/150) = 90%

There is no difference. Yes. Satisfaction is statistically independent from car type.

HR example

Quit after 24 months				
Better Offer Yes No Total				
Yes	15	10	25	
No	5	70	75	
Total	20	80	100	

- ✓ Of those who <u>did not</u> receive a better offer, what is the probability of quitting after 24 months?
- ✓ Given this probability do you think that there is a relation between better offer and quitting?
- ✓ Draw a decision tree to describe the probabilities in the HR example