Exploratory Data Analysis

```
In [1]: # lecture imports / dependencies
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import seaborn as sns
sns.set(style="ticks")
from sklearn.feature_extraction.text import CountVectorizer
from skimage.io import imread, imshow
```

Typical steps of ML/DM

- 1. Identify question / task
- 2. Collect data
- 3. Clean and preprocess data
- 4. Exploratory data anlysis (EDA)
- 5. Feature and model selection
- 6. Train model
- 7. Evaluate and communicate results
- 8. Deploy working system

(but not necessarily in this order...)

Today we'll discuss steps (3) and (4)

What does data look like?

Often, it is tabular (but certainly not always!).

In [6]: | titanic = sns.load_dataset("titanic") titanic.head()

Out[6]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

In [16]: titanic.dtypes

Out[16]: survived int64 pclass int64 object sex float64 age int64 sibsp int64 parch fare float64 embarked object class category who object bool adult_male deck category object embark_town alive object alone bool dtype: object

- Each row is an **object** (or training example, or sample)
- Each column is a **feature** (or variable, covariate).

Types of features

- Categorical (e.g. survived, embark_town)
- Numerical (e.g. age, fare)
- Some are more ambiguous, like pclass: is this categorical or numerical?

Converting types:

- Many of our methods are meant to work with numerical features.
- We can convert categorical to numerical.

In [11]: | pd.get_dummies(titanic, columns=["class"]).head() Out[11]: survived pclass sex age sibsp parch fare embarked who adult_male deck embark_town alive alone class_First class_Second 0 7.2500 male 22.0 0 3 1 S True NaN Southampton False 0 man no 1 female 38.0 0 71.2833 False 1 1 1 С woman False С Cherbourg yes 1 2 1 3 female 26.0 0 7.9250 False NaN Southampton True 0 woman yes 0 1 female 35.0 1 0 53.1000 S False 1 woman С Southampton False yes 0 male 35.0 0 8.0500 0 0 True NaN Southampton man no True In [12]: titanic.shape

Out[12]: (891, 15)

In [111]: titanic.describe()

Out[111]:

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

If we do this for all our features, we can now interpret objects as points in space.

In [112]: titanic_num = pd.get_dummies(titanic, columns=["sex","embarked","class","who","adult_male","deck","embark_town","alive
titanic_num.shape

Out[112]: (891, 33)

In [113]: titanic_num.head()

Out[113]:

	survived	pclass	age	sibsp	parch	fare	sex_female	sex_male	embarked_C	embarked_Q	 deck_E	deck_F	deck_G	embark_town_Ch
0	0	3	22.0	1	0	7.2500	0	1	0	0	 0	0	0	_
1	1	1	38.0	1	0	71.2833	1	0	1	0	 0	0	0	
2	1	3	26.0	0	0	7.9250	1	0	0	0	 0	0	0	
3	1	1	35.0	1	0	53.1000	1	0	0	0	 0	0	0	
4	0	3	35.0	0	0	8.0500	0	1	0	0	 0	0	0	

5 rows × 33 columns

```
In [114]: titanic_num.dtypes
Out[114]: survived
                                       int64
          pclass
                                       int64
          age
                                      float64
          sibsp
                                       int64
                                       int64
          parch
          fare
                                     float64
          sex_female
                                        uint8
          sex_male
                                       uint8
          embarked_C
                                       uint8
          embarked Q
                                       uint8
          embarked S
                                       uint8
          class_First
                                       uint8
          class_Second
                                       uint8
          class_Third
                                       uint8
          who_child
                                       uint8
          who man
                                       uint8
          who woman
                                       uint8
          adult_male_False
                                       uint8
          adult_male_True
                                       uint8
          deck_A
                                       uint8
                                       uint8
          deck B
          deck_C
                                       uint8
          deck D
                                       uint8
          deck E
                                       uint8
          deck F
                                       uint8
          deck G
                                       uint8
          embark_town_Cherbourg
                                       uint8
          embark_town_Queenstown
                                       uint8
          embark town Southampton
                                       uint8
          alive_no
                                        uint8
          alive yes
                                       uint8
          alone False
                                       uint8
          alone_True
                                       uint8
          dtype: object
```

- So we now have 891 objects and 33 features.
- In other words, each object is a point in 33-dimensional space.
- This is why multivariable calculus is a prerequisite.

Other feature types: text data

```
In [36]: text = "The University of British Columbia (UBC) is a public research university with campuses and facilities in Briti
         One approach: bag of words features.
         # clustering of google documents
         # checking if your mail is spam or not
         # analyzing the reviews of customer on your product (positive or negative)
In [56]: cv = CountVectorizer()
         feat = cv.fit_transform([text])
In [57]: for word, idx in cv.vocabulary .items():
             print("%-14s%d" % (word, feat[0,idx]))
         the
                       1
         university
                       2
         of
                       1
         british
         columbia
                       2
         ubc
         is
         public
         research
         with
                       1
         campuses
         and
         facilities
                       1
         in
                       1
         canada
                       1
```

• Bag of words ignores the order of words but still can work well.

Other feature types: images

```
In [ ]: # facebook use images to tag friends and people (object recognition)
In [64]: img = imread("Mufic.jpg")
    plt.xticks([])
    plt.yticks([])
    imshow(img);
```


Photo credit: Wikipedia: UBC (https://en.wikipedia.org/wiki/University_of_British_Columbia#/media/File:Irving_K. Barber_Library.jpg) by CjayD (https://www.flickr.com/people/85424459@N08/), CC BY 2.0 (http://creativecommons.org/licenses/by/2.0).

```
In [65]: img.shape
```

Out[65]: (1140, 2000, 3)

- Now, again, the image is a point in space.
- But now the space is 6,840,000-dimensional!
- We'll talk about this towards the end of the course.

Data Cleaning

- ML+DM typically assume "clean" data.
- Ways that data might not be "clean":
 - noise (e.g., distortion on phone).
 - outliers (e.g., data entry or instrument error).
 - missing values (no value available or not applicable)
 - duplicated data (repetitions, or different storage formats).
- Any of these can lead to problems in analyses.
 - 1) want to fix these issues, apply data cleaning algorithms.
 - 2) some ML methods are robust to these.
 - often, ML is the best way to detect/fix these.

How much data do we need?

- A difficult if not impossible question to answer.
- Usual answer: "more is better".

- With the warning: "as long as the quality doesn't suffer".
- Another popular answer: "ten times the number of features".
 - I don't like this view. Features are not the enemy!

Feature aggregation

- Combine data to form new features
- Useful if there are few examples of a particular case

```
In [23]: titanic['deck'].value counts()
Out[23]: C
                59
                47
          D
                33
          Ε
                32
                15
          Α
                13
                 4
          Name: deck, dtype: int64
In [93]: titanic agg = titanic.copy()
          # aggregate decks A and B into the "upper" deck category
          titanic agg["upper"] = titanic agg['deck'].isin(("A","B"))
          titanic_agg.tail()
Out[93]:
                survived pclass
                                      age sibsp parch
                                                         fare embarked
                                                                         class
                                                                                  who adult_male deck embark_town alive alone upper
           886
                      0
                                 male 27.0
                                               0
                                                     0 13.00
                                                                     S Second
                                                                                  man
                                                                                            True
                                                                                                  NaN
                                                                                                        Southampton
                                                                                                                      no
                                                                                                                          True
                                                                                                                                False
           887
                             1 female 19.0
                                                     0 30.00
                                                                          First woman
                                                                                            False
                                                                                                        Southampton
                                                                                                                          True
                                                                                                                                 True
                                                                                                                     ves
                      0
                             3 female NaN
                                                     2 23.45
           888
                                                                          Third woman
                                                                                            False
                                                                                                  NaN
                                                                                                        Southampton
                                                                                                                          False
                                                                                                                                False
                                                                                                                      no
           889
                                 male 26.0
                                                     0 30.00
                                                                     С
                                                                          First
                                                                                                    С
                                                                                                                          True
                                                                                                                                False
                                                                                  man
                                                                                            True
                                                                                                          Cherbourg
                                                                                                                     ves
           890
                      0
                                 male 32.0
                                                     0 7.75
                                                                          Third
                                                                                  man
                                                                                            True
                                                                                                 NaN
                                                                                                         Queenstown
                                                                                                                      no
                                                                                                                          True False
```

(Not shown: we should still fix up the NaNs here!)

Feature selection

```
In [94]: titanic_id = titanic.copy()

# Adding an irrelevant feature
titanic_id['id'] = titanic_id.index
titanic_id.head()
```

Out[94]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone	id
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False	0
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False	1
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True	2
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False	3
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True	4

- Remove features that are not relevant to the task.
- id probably not relevant for prediction.

Feature transformation

Discretization (binning): turn numerical data into categorical

Name: age, dtype: float64

35.0

	age	(0, 20]	(20, 30]	(30, 100]
0	22.0	0	1	0
1	38.0	0	0	1
2	26.0	0	1	0
3	35.0	0	0	1
4	35.0	0	0	1

Mathematical transformsations

- e.g. log, exp, square, sqrt, etc.
- also, scaling/normalization

```
In [115]: titanic.head()
Out[115]:
               survived pclass
                                  sex age sibsp parch
                                                            fare embarked class
                                                                                    who adult male deck embark town alive alone
                     0
                                      22.0
                                                          7.2500
                                                                           Third
            0
                             3
                                 male
                                               1
                                                      0
                                                                        S
                                                                                    man
                                                                                               True
                                                                                                    NaN
                                                                                                           Southampton
                                                                                                                         no
                                                                                                                             False
            1
                     1
                             1 female
                                      38.0
                                               1
                                                         71.2833
                                                                        С
                                                                            First
                                                                                              False
                                                                                                       С
                                                                                                             Cherbourg
                                                                                                                             False
                                                                                 woman
                                                                                                                        yes
            2
                     1
                             3 female
                                      26.0
                                               0
                                                          7.9250
                                                                           Third
                                                                                                    NaN
                                                                                                           Southampton
                                                                                                                              True
                                                                                 woman
                                                                                              False
                                                                                                                        yes
                                      35.0
                                                        53.1000
                     1
                             1 female
                                               1
                                                                        S
                                                                            First
                                                                                 woman
                                                                                              False
                                                                                                           Southampton
                                                                                                                        yes
                                                                                                                             False
                     0
                                 male
                                      35.0
                                               0
                                                          8.0500
                                                                                               True NaN
                                                                                                           Southampton
                                                                                                                              True
                                                                           Third
                                                                                    man
                                                                                                                         no
 In [28]: titanic mod = titanic.copy()
           # fare --> sgrt(fare)
           titanic mod['fare'] = np.sqrt(titanic mod['fare'])
           titanic mod.head()
 Out[28]:
                                  sex age sibsp parch
               survived pclass
                                                             fare embarked class
                                                                                    who adult_male
                                                                                                     deck embark_town alive alone
            0
                      0
                             3
                                 male
                                      22.0
                                               1
                                                        2.692582
                                                                         S
                                                                            Third
                                                                                                True
                                                                                                     NaN
                                                                                                            Southampton
                                                                                                                             False
                                                      0
                                                                                     man
                                                                                                                          no
                     1
                                      38.0
                                                                                                       С
                             1 female
                                               1
                                                        8.442944
                                                                             First
                                                                                  woman
                                                                                               False
                                                                                                              Cherbourg
                                                                                                                         yes
                                                                                                                              False
```

Third

First

Third

S

woman

woman

man

False

False

True

NaN

NaN

Southampton

Southampton

Southampton

yes

yes

no

True

False

True

Example use case: something needs to be non-negative (exp) or shouldn't be non-negative (log).

0 2.815138

0 7.286975

0 2.837252

Exploratory data analysis (EDA)

26.0

35.0

35.0

0

1

0

· You should always "look" at the data first.

3 female

1 female

male

3

- But how do you "look" at features and high-dimensional objects?
 - Summary statistics
 - Visualization

0

2

3

Categorical summary statistics

- Some summary statistics for a categorical variable:
 - Frequencies of different classes.
 - Mode: category that occurs most often.

```
In [120]: | titanic['deck'].value_counts(normalize=True) # frequencies
Out[120]: C
               0.290640
               0.231527
               0.162562
               0.157635
               0.073892
               0.064039
               0.019704
          Name: deck, dtype: float64
In [121]: titanic['deck'].mode()[0]
Out[121]: 'C'
In [122]: titanic["survived"].mode()[0]
Out[122]: 0
In [123]: titanic.groupby("survived").size()
Out[123]: survived
               549
               342
          dtype: int64
```

Continuous summary statistics

Measures of location:

- **Mean**: average value.
- Median: value such that half points are larger/smaller.
- **Quantiles**: value such that *t* fraction of points are smaller.
- Measures of spread:
 - Range: minimum and maximum values.
 - Variance: measures how far values are from mean.
 - Square root of variance is **standard deviation**.
 - Intequantile ranges: difference between quantiles

In [146]: titanic.describe()

Out[146]:

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [137]: |titanic['fare'].var()

Out[137]: 2469.436845743117

Notice that the mean and std are sensitive to extreme values:

Distances and similarities

- There are also summary statistics between features.
 - Hamming distance:

Median without outlier: 7.0

- Number of elements in the vectors that aren't equal.
- Euclidean distance:
 - How far apart are the vectors?
- Correlation:
 - Does one increase/decrease linearly as the other increases?
 - Between -1 and 1.

Limitations of summary statistics

- Summary statistics can be misleading
- A famous example is <u>Anscombe's quartet (https://en.wikipedia.org/wiki/Anscombe%27s_quartet)</u>, four datasets with:
 - Almost same means.
 - Almost same variances.
 - Almost same correlations.
 - Almost same linear fits.
 - Look completely different.

C:\Users\User\anaconda3\lib\site-packages\seaborn\regression.py:580: UserWarning: The `size` parameter has been renam
ed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

Visualization

- You can learn a lot from 2D plots of the data:
 - Patterns, trends, outliers, unusual patterns.

- We'll use the matplotlib library to do most of our basic plotting.
- For fancier plots, you can try seaborn.

Basic plot

```
In [178]: x = np.linspace(0,10,100)
plt.plot(x, np.cos(x));
```


Histogram

```
In [190]: plt.hist(titanic['age'])
    plt.xlabel('age')
    plt.ylabel('frequency');
    # sns.distplot(iris["sepal_length"]);
```


Box plot

In [195]: | sns.boxplot(x="survived", y="fare", data=titanic);

In [202]: sns.boxplot(x="survived", y="age", data=titanic);

Scatterplot

```
In [208]: plt.scatter(iris['sepal_length'], iris['petal_length'])
    plt.xlabel('sepal_length')
    plt.ylabel('petal_length');
```


Scatterplot array

```
In [206]: sns.pairplot(iris, hue="species");
```


Summary

- Typical data mining steps:
 - Involves data collection, preprocessing, analysis, and evaluation.
- Object-feature representation and categorical/numerical features.
 - Transforming non-vector objects to vector representations.
- Feature transformations:
 - To address coupon collecting or simplify relationships between variables.
- Exploring data:
 - Summary statistics and data visualization.
- Post-lecture bonus slides: other visualization methods.