Table de transformées de Laplace

	f(t)	F(s)
Pl	1 ou $u(t)$	$\frac{1}{s}$
P2	1	$\frac{1}{s^2}$
Р3	t^n (n entier positif)	$\frac{n!}{s^{n+1}}$
P4	e^{-nt}	$\frac{1}{s+a}$
P5	te ^{-at}	$\frac{1}{(s+a)^2}$
P6	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
P7	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
P8	$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
P9	$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
P10	$t\sin(\omega t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
P11	$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
P12	$t^n, n \in \mathbb{R}, n > -1$	$\frac{\Gamma(n+1)}{s^{n+1}}$
P13	u(t-a)	$\frac{e^{-as}}{s}$
P14	$\delta(t)$	1
P15	$\delta(t-a)$	e^{-as}
P16	$\frac{df}{dt} = f'(t)$	sF(s)-f(0)
P17	$\frac{d^2f}{dt^2} = f''(t)$	$s^2 F(s) - s f(0) - f'(0)$
P18	$\frac{d^n f}{dt^n} = f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$
P19	$e^{-a\tau}f(t)$	F(s+a)
P20	t''f(t)	$(-1)^n \frac{d^n}{ds^n} F(s)$
P21	g(t)u(t-a)	$e^{-as}\mathcal{L}\{g(t+a)\}$