Algorithm Analysis Report

Harry CHICHEPORTICHE , Theo DE MORAIS

March 9, 2025

1 Matrix Chain Multiplication

1.1 Solve the Parenthesization Problem by Hand

Consider the matrices:

• $A_1:10\times 30$

• $A_2:30 \times 5$

• $A_3:5\times 60$

• $A_4:60 \times 15$

• $A_5:15\times 10$

Using the recursive formula:

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \}$$
 (1)

We construct the memoization table step by step: $\,$

$i \setminus j$	1	2	3	4	5
1	0	1500	4500	10500	12000
2		0	9000	13500	16500
3			0	4500	6000
4				0	2250
5					0

The optimal split points stored in s are:

$i \backslash j$	2	3	4	5
1	1	2	2	4
2		2	3	3
3			3	4
4				4

Thus, the optimal parenthesization is: ((A1 (A2 A3)) (A4 A5)).

1.2 Dynamic Programming Implementation

```
1 import sys
3 def matrix_chain_order(p):
      n = len(p) - 1
      m = [[0] * n for _ in range(n)]
      s = [[0] * n for _ in range(n)]
6
      for 1 in range (2, n + 1):
8
          for i in range(n - 1 + 1):
9
               j = i + 1 - 1
               m[i][j] = sys.maxsize
               for k in range(i, j):
12
                   q = m[i][k] + m[k + 1][j] + p[i] * p[k + 1] * p[j + 1]
13
                   if q < m[i][j]:</pre>
14
                       m[i][j] = q
                        s[i][j] = k
16
17
      return m, s
18
 def main():
19
      p = [10, 30, 5, 60, 15, 10]
      m, s = matrix_chain_order(p)
22 \if __name__ == "__main__":
      main()
```

1.3 Greedy Approach

There is no greedy choice that applies because the problem exhibits optimal substructure but not the greedy-choice property.

2 Fractional and 0-1 Knapsack

2.1 0-1 Knapsack Problem Implementation

The 0-1 Knapsack Problem is solved using dynamic programming. The goal is to compute the maximum value that can be obtained without exceeding the knapsack's capacity. The following Python code implements the 0-1 knapsack problem:

The dynamic programming approach fills the table based on whether or not to include an item in the knapsack. The result is stored in a table, and the maximum value is returned at the bottom-right corner.

2.2 Fractional Knapsack Problem Implementation

The Fractional Knapsack Problem is solved using a greedy approach. The items are sorted based on their value-to-weight ratio, and we select the items with the highest ratio to maximize the value of the knapsack.

```
def fractional_knapsack(weights, values, capacity):
    items = sorted(zip(weights, values), key=lambda x: x[1] / x[0],
    reverse=True)
    max_value = 0
    for weight, value in items:
        if capacity >= weight:
            max_value += value
            capacity -= weight
        else:
            max_value += (value / weight) * capacity
            break
    return max_value
```

The greedy algorithm ensures that we maximize the total value by selecting items in the order of their value-to-weight ratio, considering fractions of items when necessary.

2.3 Conclusion

Both the 0-1 and Fractional Knapsack Problems are essential in optimization tasks. The 0-1 knapsack problem requires dynamic programming for an exact solution, while the fractional knapsack problem can be solved more efficiently using a greedy approach. These implementations provide solutions to two variations of the knapsack problem, each suited to different kinds of constraints.

3 Greedy + Dynamic (Coin Change Problem)

Problem Statement

Given an array of coin denominations $c_1 < c_2 < \cdots < c_n$, the objective is to determine the **fewest coins** needed to achieve a total sum N.

1. Greedy Solution

The greedy algorithm selects the largest coin denomination that does not exceed the remaining amount N. It repeats this process until the remaining amount becomes zero.

Algorithm:

- Sort the coins in decreasing order.
- At each step, pick the largest coin less than or equal to the remaining amount.
- Subtract its value from the remaining amount.
- Repeat until the amount is zero.

Example: Coin denominations: $\{1, 5, 10, 25\}$

Target sum: N = 63

- Pick 25: remaining 38
- Pick 25: remaining 13
- Pick 10: remaining 3
- Pick 1, 1, 1: remaining 0

Total coins used: 6.

```
def greedy_coin_change(coins, N):
    coins.sort(reverse=True)
    result = []

for coin in coins:
    while N >= coin:
    N -= coin
    result.append(coin)
return result
```

2. Limitation of Greedy Solution

The greedy algorithm does not always yield an optimal solution. Consider the following example:

Coin denominations: $\{1, 5, 11\}$

Target sum: N = 15

Greedy choice:

- Pick 11: remaining 4
- Pick 1, 1, 1, 1: total of 5 coins.

Optimal solution:

• Pick 5, 5, 5: total of 3 coins.

The greedy algorithm fails because it makes local optimal choices without considering global optimality.

3. Dynamic Programming Solution

Dynamic programming guarantees an optimal solution for any currency system. It builds a solution by solving all subproblems from 1 to N.

Idea:

- Create an array dp where dp[i] represents the minimum number of coins needed to make amount i.
- Initialize dp[0] = 0.
- For each i from 1 to N, compute:

$$dp[i] = \min_{c_j \le i} \left(dp[i - c_j] + 1 \right)$$

```
def dp_coin_change(coins, N):
    dp = [float('inf')] * (N + 1)
    dp[0] = 0

for i in range(1, N + 1):
    for coin in coins:
        if i - coin >= 0:
              dp[i] = min(dp[i], dp[i - coin] + 1)

return dp[N] if dp[N] != float('inf') else -1
```

Example:

- Coin denominations: $\{1, 5, 11\}$
- Target sum: N = 15
- dp[15] = 3 (three 5 coins)

4. Is the Norwegian Coin System Greedy-Optimal?

Norwegian coins: $\{1, 5, 10, 20\}$

Test cases:

- N = 30: Greedy picks 20 + 10 = 30 (2 coins) \Rightarrow optimal.
- N = 23: Greedy picks 20 + 1 + 1 + 1 = 23 (4 coins) \Rightarrow optimal.
- N = 40: Greedy picks 20 + 20 = 40 (2 coins) \Rightarrow optimal.

Conclusion: The Norwegian coin system is **greedy-optimal**, because:

- Every larger coin is either a multiple of a smaller one, or no better combination exists.
- The greedy algorithm always yields the optimal result for any amount.

5. Running Time Analysis

• Greedy Algorithm:

- Time complexity: $O(N/c_{\rm max})$ (in worst case, N divided by largest coin).
- Space complexity: O(1)
- Limitation: Not guaranteed to be optimal for all currency systems.

• Dynamic Programming Algorithm:

- Time complexity: $O(N \times m)$, where m is the number of coin denominations.
- Space complexity: O(N)
- Advantage: Always returns the optimal solution.

Conclusion

- The greedy algorithm is simple and fast but only works with specific coin systems.
- Dynamic programming guarantees an optimal solution and works for all coin systems but requires more computation time and memory.
- The Norwegian coin system allows the greedy algorithm to always produce optimal solutions.