

Matemática Discreta

Adriana Padua Lovatte

Algoritmos para Grafos

- Grafos Direcionados e Relações Binárias; o Algoritmo de Warshall
- Caminho de Euler e Circuito Hamiltoniano
- Caminho Mínimo e Árvore Geradora Mínima
- Algoritmos de Percurso

Admita que temos um grafo simples, ponderado e conexo, onde os pesos são todos positivos. Então existe pelo um caminho entre quaisquer dois vértices *x* e *y*. De fato, pode haver vários desses caminhos.

Pergunta: Como encontrar um caminho com o menor peso?

Principais Algoritmos de Solução:

- Dijkstra Obtém o caminho mínimo entre dois nós (<u>não aceita</u> <u>arestas negativas</u>).
- Ford-Bellman Obtém o caminho mínimo entre um nó e todos os outro (Admite a existência de arestas negativas).
- Floyd-Warshall Obtém o caminho mínimo entre todos os pares de nós (Admite a existência de arestas negativas).
- Yen encontra os *K* caminhos mínimos entre todos os pares de nós.

Algoritmo de Dijkstra:

I – Inicialmente, selecione o vértice de partida e adicione caminhos com vértices adjacentes;

II – Atualize o caminho de menor comprimento e descarta o caminho que foi atualizado. Repita este passo até que o caminho de comprimento mais curto entre os nós de partida e chegada seja encontrado;

Algoritmo de Dijkstra:

III – Caso dois caminhos tenham o mesmo vértice final, descarte o de maior custo.

Encontre o caminho mínimo do nó 1 ao nó 6, no grafo a seguir:

Solução: Encontrar menor caminho entre os nós 1 e 6 (Alg. De Dijkstra)

- Passos : Escolha de rotas
- 1) 1-2 = 10 (cancela 3)
- 2) 1-3=5; At(1)
- 3) 1-3-2=9 At(2)
- 4) 1-3-5 = 11 At(4)
- 5) 1-3-2-4= 10 At(3)
- 6) 1-3-2-5= 13 (Cancela 4)
- 7) 1-3-2-4 -5=12 (Cancela 4)
- 8) 1-3-2-4 -6=13
- 9) 1-3-5-6 = 12 (Cancela 9)

Encontre o caminho mínimo do nó 1 ao nó 6 (
Exemplo anterior)								
	1	2	3	4	5	6	Nó Rot.	Custo
0	0	<mark>10</mark>	<mark>5</mark>	<mark>Inf.</mark>	<mark>Inf.</mark>	<mark>Inf.</mark>	1	O
1	0	10	<mark>5</mark>	Inf.	Inf.	Inf.	<mark>3</mark>	<mark>5</mark>
2	0	9	5	<mark>Inf.</mark>	<mark>11</mark>	<mark>Inf.</mark>	2	9
3	0	9	5	<mark>10</mark>	<mark>11</mark>	Inf.	<mark>4</mark>	<mark>10</mark>
4	0	9	5	<mark>10</mark>	<mark>11</mark>	12	5	<mark>11</mark>
5	0	9	5	10	<mark>11</mark>	12	6	12

OBS: $Inf. = \infty$

Encontrando a rota a partir da tabela anterior

De trás para frente (Nós que chegam ao nó 6). Se o custo (coluna 3) = Diferença (coluna 2), esta será a rota escolhida

Rotas dos nós adjacentes ao nó 6	Diferença da última linha da tabela	Custo
4 - 6	2	3
5 – 6	1	1

Rota escolhida 5-6

Encontrando a rota a partir da tabela anterior

De trás para frente (Nós que chegam ao nó 6). Se o custo (coluna 3) = Diferença (coluna 2), esta será a rota escolhida

Rotas dos nós adjacentes ao nó 5	Diferença da última linha da tabela	Custo
5 - 2	2	4
5 – 3	6	6
5 – 4	1	2

Rota escolhida 5 - 3

Encontrando a rota a partir da tabela anterior

De trás para frente (Nós que chegam ao nó 6). Se o custo (coluna 3) = Diferença (coluna 2), esta será a rota escolhida

Rotas dos nós adjacentes ao nó 5	Diferença da última linha da tabela	Custo
3 - 1	5	5
3 – 2	-4	4

Rota escolhida 3 - 1.

Caminho mínimo: 1 - 3 - 5 - 6

Exemplo:

Algoritmo de Dijkstra

Exercício:

Algoritmo de Dijkstra

Algoritmo de Dijkstra

- 1. Ler G = (N,A), c_{ij} (não negativo) é a "distância" entre os nós e nó de origem s.
- **2.** Iniciar variáveis $S := \emptyset$; R := N;
- 3. $d(i) := \infty \ \forall i \in \mathbb{N}; \ d(s) := 0 \ \text{e pred}(s) := 0;$
- **4.** Enquanto |S| < n fazer
- 5. Seja $i \in N$ tal que $d(i) = min\{d(j): j \in R\}$;
- 6. $S:=S \cup \{i\}; R:=R \{i\};$
- 7. **Para** $j \in N \text{ com } (i,j) \in A \text{ fazer}$
- 8. se $d(j) > d(i) + c_{ij}$ então $d(j) = d(i) + c_{ij}$;
- 9. pred(j):=i;
- 10. Fim_Para
- 11.Fim_Enquanto

Algoritmo de Dijkstra

Por que funciona?

Note o seguinte trecho do código.

```
4. Enquanto |S| < n fazer

5. Seja i \in R tal que d(i) = min\{d(j): j \in R\};

6. S:=S \cup \{i\}; R:=R - \{i\};

7. Para j \in N \ com \ (i,j) \in A fazer

8. Se d(j) > d(i) + c_{ij} então d(j) = d(i) + c_{ij};

9. pred(j):=i;

10. Fim_Para

11. Fim_Enquanto
```

Resposta: A partir de um nó o algoritmo percorre, através dos caminhos mínimos, todas da redes buscando o nó de destino.

Lista Mínima de Exercícios

Seção 6.3: Veja lista de exercícios