СЕМ, лекция 4

(2020-10-22)

Случайни величини

 $V = (\Omega, \mathscr{A}, \mathbb{P})$ - вероятностно пространство.

Случайната величина X не е нито случайна, нито величина. Тя е грубо казано функция/изображение, което съпоставя на всяко елементарно събитие w от Ω - някакво реално число.

За да бъде X случайна величина, тя трябва да удовлетворява някакви критерии.

<u>Дефиниция</u>: (**Случайна величина**) Нека V е вероятностно пространство. Тогава $X:\Omega\to\mathbb{R}$ е случайна величина, тогава когато $\forall a< b,\,a,b\in\mathbb{R}$ е в сила $X^{-1}\left((a,b)\right)\in\mathscr{A}$, където $X^{-1}(B)=\{w\in\Omega\,|\,X(w)\in B\}$. Т.е. трябва да имаме

възможността да кажем каква е вероятността x да е между a и b.

Всички елементарни събития, към които, като приложим изображението X отиват в интервала (a,b) са множеството B.

<u>Факт</u>: Вярно е, че $X^{-1}(I) \in \mathcal{A}$, ако $I = (a,b]; \ I = \{a,b\}; \ I = \{x\}, \ x \in \mathbb{R}$. Всеки интервал (a,b) от \mathbb{R} има прообраз $B \subseteq \Omega$ и се изпраща в него с $X^{-1}\left((a,b)\right)$. Някой интервали може да се изпращат в празното множество \emptyset .

Това изображение $X:\Omega\to\mathbb{R}$ се нарича случайна величина, ако може да придаваме вероятност на прообразите му - на всички множества, които изпращаме във всеки един интервал.

<u>Теорема</u> (**Свойства на случайни величини**): Нека V е вероятностно пространство и X и Y са случайни величини $(X,Y:\Omega\to\mathbb{R})$. Тогава е в сила:

- а) $aX \pm bY$ е случайна величина, $\forall a, b \in \mathbb{R}$;
- б) cX е случайна величина, $\forall c \in \mathbb{R}$ (частен случай на а) : a=c и b=0);
- в) XY е случайна величина;
- г) ако $\mathbb{P}(Y=0)=0$, то $\frac{X}{Y}$ е случайна величина.

Случайните величини са функции, за които не може да знаем как действат навсякъде, тъй като това би било или твърде сложно или твърде скъпо, а в някои случаи може дори да не е ясно как да въведем пространството от елементарни събития Ω .

Дискретни случайни величини

<u>Дефиниция</u>: (**Индикаторна функция**) Нека Ω е множество от елементарни събития и $H \subseteq \Omega$. Тогава $1_H (1_{\{H\}})$ се нарича индикаторна функция, ако

и
$$H\subseteq\Omega$$
. Тогава 1_H $(1_{\{H\}})$ се нарича индикаторна функция, ако $1_H=\begin{cases} 1, & \text{ако } w\in H\\ 0, & \text{ако } w\in\overline{H} \end{cases}$. Грубо казано: $1_H:\Omega\to\mathbb{R}$.

<u>Лема</u>: Нека V е вероятностно пространство и $H\in \mathscr{A}$. Тогава $1_H:\Omega\to\mathbb{R}$ е случайна величина.

Доказателство:

Ако
$$X(w):=1_H(w)$$
, то $X^{-1}\left(\{0\}\right)=\overline{H}$, а $X^{-1}\left(\{1\}\right)=H$.

$$\forall a < b \text{ е вярно, че } X^{-1}(a,b) = \begin{cases} \emptyset, & \text{ако } a \geq 1 \text{ или } b \leq 0 \text{ или } a > 0 \text{ и } b < 1 \\ \Omega, & \text{ако } 0 \in (a,b) \text{ и } 1 \in (a,b) \\ H, & \text{ако } 1 \in (a,b) \text{ и } 0 \notin (a,b) \\ \overline{H}, & \text{ако } 1 \notin (a,b) \text{ и } 0 \in (a,b) \end{cases}$$

Който и интервал (a,b) да вземем - изходите ще са един от 4-те възможни: $\emptyset,\,\Omega,\,H$ и \overline{H} , които са σ алгебра. Т.е. дефиницията е изпълнена (за всеки случай $X^{-1}\left((a,b)\right)\in\mathscr{A}\Rightarrow X=1_H$ е сучайна величина). С това лемата е доказана.

$$\mathcal{H}\subseteq\mathcal{A}:X(w)=1_H(w)\in\{0,1\}$$

$$H = \{ w \in \Omega \mid X(w) = 1 \} = \{ X = 1 \}$$

$$\overline{H} = \{ w \in \Omega \mid X(w) = 0 \} = \{ X = 0 \}$$

Имаме две възможности:
$$\mathbb{P}(X=1) = p$$
 и $\mathbb{P}(X=0) = q = 1-p, p \in [0,1]$ github.com/andy489

Нека $V^*=(\Omega^*, \mathscr{A}^*, \mathbb{P}^*)$ е друго вероятностно пространство и $\mathscr{H}^*\subseteq \mathscr{A}: X^*=1_{H^*}$ е вероятността $\mathbb{P}(X^*=1)=p\Rightarrow$ вероятностно тези две случайни величини X и X^* не са различими.

Означения (за удобство):

$$\overline{x} = egin{cases} (x_1, x_2, \, \dots, \, x_n) - n \ \text{различни числа} \ (x_1, \, x_2, \, \dots, \, x_k, \, \dots) - \ \text{изброимо много различни числа} \end{cases}$$

V е вероятностно пространство.

$$\mathscr{H}=\left\{egin{aligned} H_1,\,\ldots,\,H_n \ \text{пълна група от събития във }V \ (H_i)_{i\geq 1},\ \text{където }H_i\in A;\ H_i\cap H_j=\emptyset,\ i\neq j,\ \bigcup_{i=1}^\infty H_i=\Omega \end{aligned}
ight.$$

<u>Дефиниция</u>: (**Дискретна случайна величина**) Нека V е вероятностно пространство. Дадени са \overline{x} и \mathscr{H} . Тогава

$$X(w) = \sum_{j=1}^n x_j 1_{H_j}(w) \; \left($$
 или когато имаме изброим брой: $X(w) = \sum_{i=1}^\infty x_j 1_{H_j}(w)
ight)$ се

нарича дискретна случайна величина (взима или n различни или най-много изброимо много на брой различни стойности умножени по индикаторната функция). Кратък запис: $X = \sum_i x_j 1_{H_j}$.

$$H_j = \{X = x_j\} = \{w \in \Omega \mid X(w) = x_j\}$$

Дефиниция: (Разпределение на дискретна случайна величина)

Нека $X = \sum_{i} x_{j} 1_{H_{j}}$ е дискретна случайна величина. Тогава таблицата

i	X	x_1	x_2	•••	x_k	•••
	$\mathbb{P}(X=x_j)$	p_1	p_2	•••	p_k	•••

където $\mathbb{P}(X=x_j)=p_j=\mathbb{P}(H_j)$ и $\sum_{j=1}^{n}p_j=1$, се нарича разпределение на X.

 \oplus Измерваме дните, в които дадено CPU работи (функционира) и X случайната величина, която измерва броя на тези дни. Може да моделираме X по два начина:

-
$$X \in \mathbb{N}_0^+ = \{0, 1, 2, \dots\}$$

-
$$X \in \{0, 1, 2, \dots, 1000\}$$

X	0	1	2		$\sum_{i=1}^{\infty} p_i = 1$
P	p_0	p_1	p_2	•••	j=0
X	0	1	•••	1000	$\sum_{n=1}^{1000}$
P	p_0	p_1		p_{1000}	$\sum_{j=0}^{n} p_j - 1$

Дефиниция: (Хистограма) Графиката по-долу се нарича хистограма:

 \oplus Хвърляме два зара. X и Y са случайните величини - точките от 1 до 6, съответно паднали се на $1^{-\mathsf{BИЯ}}$ зар. Z = X + Y.

	2										
P	<u>1</u> 36	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	<u>6</u> 36	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Сумата от точките на два зара

Смяна на променливите на дискретни случайни величини

X - сл. вел., $g:\mathbb{R} \to \mathbb{R}; \ Y=g(X)$ - искаме да знаем дали Y е случайна величина.

Ако $X=\sum_j x_j 1_{H_j}$, то $Y=\sum_j g(x_j) 1_{H_j}$ е случайна величина и ако положим $y_i=g(x_j)$, то $Y=\sum_j y_j 1_{H_j}$.

За $g(x_m)=g(x_k)$, $m \neq k$ ще получим повтаряемост на някои стойности, но това няма да е грешка, просто за удобство и икономичност може да ги обединим като $\mathcal{H}=H_m\cup H_k$.

 \oplus Имаме някакво СРU. $X=\sum_{j=0}^{\infty}j1_{\{H_j\}}$, където $H_j=\{\mathit{CPU}$ работи точно j дни $\}$

$$Y=g(X)$$
, където $g(n)=egin{cases} 0, & ext{ako } n=0 \ 1, & ext{ako } n\geq 1 \end{cases}$

				Ω H_0
X 0	1	2		
\mathbb{P} p_0	p_1	p_2	•••	H_k H_2 0 1 2
Y = g(X)	0		1	Ω H_0
P	p_0	$p_1 + p_2$	2 +	$\left(\begin{array}{c} \\ \\ \\ \end{array}\right) H_i $

 $X,\,Y$ - дискретни случайни величини, $g:\mathbb{R} imes\mathbb{R}\to\mathbb{R}$. Тогава $Z=g(Z,\,Y)$ е дискретна случайна величина.

X	x_1	x_2	•••
P	p_1	p_2	•••

$$\sum_{i} p_i = 1$$

Y	y_1	<i>y</i> ₂	
P	q_1	q_2	•••

$$\sum_{i} q_i = 1$$

$$Z = \sum_{i} \sum_{j} g(x_{i}, y_{j}) 1_{\{X = x_{i}, Y = y_{j}\}}$$

$$H_1 = \{X = x_1\}; \ H_2 = \{X = x_2\}; \ \dots$$

$$\tilde{H}_1 = \{Y = y_1\}; \ \tilde{H}_2 = \{Y = y_2\}; \ \dots$$

$$T_{ij} = H_i \cap \tilde{H}_i$$

Независимост на дискретни случайни величини

<u>Дефиниция</u>: (**Независимост на дискретни сл. вел.**) Нека X, Y са дискретни случайни величини във вероятностното пространство $\it V$. Тогава

$$X \perp \!\!\! \perp Y \qquad \Leftrightarrow \mathbb{P}(X = x_j; \ Y = y_k) = \mathbb{P}(X = x_j \cap Y = y_k) \stackrel{def.}{=}$$

X и Y са независими

$$= \mathbb{P}(X = x_j) \mathbb{P}(Y = y_k), \, \forall j, k.$$

$$\Theta \qquad \Omega = \{(0,0); (0,1); (1,0); (1,1)\}; \mathcal{A} = 2^{\Omega};$$

$$\mathbb{P}\left(\{0,0\}\right) = \mathbb{P}\left(\{0,1\}\right) = \mathbb{P}\left(\{1,0\}\right) = \mathbb{P}\left(\{1,1\}\right) = \frac{1}{4}$$
 (имаме равномерна вероятност върху четирите елемента). Това е математическа конструкция на

простия пример с хвърлянето на две монети.

$$X:\Omega o \mathbb{R}$$
 $X(w)=w(1).$ Например $X\left(\{0,\,1\}\right)=0$ 1-ва кордината

$$Y:\Omega o \mathbb{R}$$
 $Y(w)=w(2)$. Например $Y(\{0,\,1\})=1$ 2-ра кордината

Тоест, първата монета е "тура", а втората монета - "ези" (ако сме дефинирали събитието "ези" с $1^{-\text{Ца}}$ (за успех)) .

X и Y са независими $(X \perp\!\!\!\perp Y)$, т.к. $\mathbb{P}(X=i,\,Y=j)=\mathbb{P}(X=i)\mathbb{P}(Y=j)$, $\forall i,j\in\{0,1\}.$

<u>Дефиниция</u>: (Функция на разпределение на случайна величина) Нека X е сл. вел. във вероятностно пространство V. Тогава $F_X(x) = \mathbb{P}(X < x), \ \forall x \in (-\infty, \infty),$ се нарича функция на разпределение на X.

и
$$x_1 < x_2 < x_3 < \dots$$

 x_2

 x_3

$$\Rightarrow F_X(x) = \begin{cases} 0, & \text{ako } x \leq x_1 \\ p_1, & \text{ako } x \in (x_1, x_2] \\ p_1 + p_2, & \text{ako } x \in (x_2, x_3] \\ \dots \\ p_1 + \dots + p_k, & \text{ako } x \in (x_k, x_{k+1}] \end{cases}$$

стъпаловидна (нарастваща функция)

Свойства: $\lim_{x\to\infty} F_X = 1$, $\lim_{x\to-\infty} F_X = 0$.

Математическо очакване (за дискретни случайни величини)

Дефиниция: Нека
$$X$$
 е дискретна сл. вел. Ако $\sum_j x_j p_j$ е добре деф. (т.е. е крайна), то $\mathbb{E} X = \sum_j x_j p_j = \sum_j \underbrace{x_j}_{\text{възможна}} \times \underbrace{\mathbb{P}(X = x_j)}_{\text{вероятност за}}$ е очакването на X .

Когато имаме краен брой стойности - тяхната сума ще е винаги добре дефинирана. Обаче, когато имаме изброимо много стойности, то тогава може сумата да не е крайна.

$$\bigoplus_{i=1}^n x_j p_j < \infty \Rightarrow \mathbb{E} X = \sum_{j=1}^n x_j p_j$$
 винаги съществува.

$$\oplus$$
 Ако X е такава случайна величина, че $\mathbb{P}(X=x_j)=\frac{6}{\pi^2} imes\frac{1}{j^2},\,j\geq 1.$ Тогава

$$\sum_{j=1}^{\infty} \mathbb{P}(X=j) = rac{6}{\pi^2} \sum_{j=1}^{\infty} rac{1}{j^2} = 1$$
, тъй като $\sum_{j=1}^{\infty} rac{1}{j^2} = rac{\pi^2}{6}$. Но тази случайна величина

няма очакаване, тъй като

$$\mathbb{E} X = \sum_{j=1}^{\infty} j \times \frac{6}{\pi^2} \times \frac{1}{j^2} = \frac{6}{\pi^2} \sum_{j=1}^{\infty} \frac{1}{j} = \frac{6}{\pi^2} \times (\underbrace{\text{хармоничния ред}}_{\text{не схожда}}) = \infty.$$

Коментар: $f(a) = \sum_{i} (x_i - a^2) p_i$ е функция на a и тя се минимизира, когато $a = \mathbb{E}X$.

 $\min f(a) = f(\mathbb{E}X)$. Т.е. $\mathbb{E}X$ минимизира квадратичната грешка.

$$\bigoplus$$
 Ако имаме равномерно разпределение върху $\{x_1,\,x_2,\,\ldots,\,x_n\}$, то тогава $\mathbb{E} X = \sum_{j=1}^n x_j imes rac{1}{n} = rac{1}{n} \sum_{j=1}^n x_j = \overline{X}$ (което е средно аритметичното на X).

Средно аритметичното е математическото очакване на равномерното разпределение върху дадени точки.