Density Estimation

Nearest Neighbors (NN) Classifier

CS 6316 – Machine Learning Fall 2017

OUTLINE

- Preface
- K-NN Classifiers
- Definition
- Choosing "k"
- K-NN as a ML algorithm
- K-NN vs 1NN
- Feature weighting
- Minimizing EPE Expected Prediction Error
- Bias-Variance Trade-off

Preface

- Often times we are aware of the underlying densities
- In most situations, however, the true distributions are unknown and must be estimated from data
 - Two approaches are commonplace:
 - Parameter estimation
 - Non-parametric density estimation

Preface

- Parameter estimation
 - Assume a particular form for the density (e.g. Gaussian), so only the parameters (e.g. mean and variance) need to be estimated
 - Maximum Likelihood
 - Bayesian Estimation
- Non-parametric density estimation
 - Assume NO knowledge about the density
 - Kernel Density Estimation
 - K Nearest Neighbor ← will concentrate on this!

Preface

- We can divide the large variety of **classification approaches** into roughly three major types:
 - 1. Discriminative
 - Directly estimate a decision rule/boundary
 - E.g. decision tree (done), SVM
 - 2. Generative
 - Build a generative statistical model
 - E.g. Bayesian networks
 - 3. Instance based classifiers
 - Use observation directly (no models)
 - E.g. K nearest neighbors (this lecture!)

K Nearest Neighbors

Classifier

Material adapted from Ricardo Osuna slides & Dr. Qi slides

Nearest neighbor classifiers

Basic idea:

• If it walks like a duck, quacks like a duck, then it is probably a *duck*!

Nearest neighbor classifiers

In this example, K = 3

- Requires three inputs:
 - 1. The set of stored training samples
 - 2. Distance metric to compute distance between samples ("closeness")
 - 3. The value of *k*, i.e., the number of nearest neighbors to retrieve

Nearest neighbor classifiers

In this example, K = 3

- New unknown* sample arrives ... now what?!:
 - 1. Using distance metric, compute distance to other training records ("closeness")
 - 2. Identify k nearest neighbors (hence the name!)
 - 3. Use class labels of nearest neighbors to determine the class label of unknown record (i.e. by taking a majority vote)

^{*} Unknown means unlabeled

- The kNN rule is a very intuitive method that classifies unlabeled examples based on their similarity to examples in the training set
- For a given unlabeled example x_u , find the k "closest" labeled examples in the training data set and assign x_u to the class that appears most frequently within the k-subset

- In this example there are three classes and the goal is to find a class label for the unknown example x_u
- Let's use the Euclidean distance and a value of k = 5 neighbors
- Of the 5 closest neighbors, 4 belong to ω_1 and 1 belongs to ω_3 , so x_u is assigned to ω_1 , the predominant class

- Compute distance between two points:
 - For example, Euclidean distance

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Can use Cosine distance for text
- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the k-nearest neighbors
 - Weight the votes according to distance, example: weight factor $w = 1 / d^2$

• K-nearest neighbors of a sample x are data points that have the k smallest distances to x

1-Nearest Neighbor

• Voronoi diagram:

- Partitioning of a plane into regions based on distance to points in a specific subset of the plane
- If a new point falls within a region, it is clear which is the closest point (and what the label is)

The kNN classifier: choosing k

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points

from other classes

The kNN classifier: choosing k

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points

from other classes

- If k is small:
 - Flexible
 - Varies a lot
- If *k* is large:
 - Smooth
 - Varies little

kNN as a Machine Learning algorithm

- kNN is considered a lazy learning algorithm
 - Defers data processing until it receives a request to classify unlabeled data
 - Replies to a request for information by combining its stored training data
 - Discards the constructed answer and any intermediate results
- Does not build model explicitly
- Classifying unknown samples is relatively expensive
 - → kNN: all training samples; SVM: num support vectors
- kNN is a local model (vs. global model of linear classifiers)

kNN as a Machine Learning algorithm

- Opposed to eager learning algorithm which:
 - Compiles its data into a compressed description or model
 - A density estimate or density parameters
 - A graph structure and associated weights
 - Discards training data after compilation of the model
 - Classifies incoming patterns using the induced model (which is retained for future requests)

kNN as a Machine Learning algorithm

- Tradeoffs
 - Lazy algorithms have fewer computational costs than eager algorithms during training
 - Lazy algorithms have greater storage requirements and higher computational costs on recall
- However, has advantages ...
 - Simple implementation
 - Use of local info, which can yield highly adaptive behavior
 - Lends itself very easily to parallel implementations

Some Examples

- Three-class 2D problem with non-linearly separable, multimodal likelihoods
- We use the kNN rule (k=5) and the Euclidean distance
- The resulting decision boundaries and decision regions are shown below

Some Examples

- Two-dim 3-class problem with unimodal likelihoods with a common mean; these classes are also not linearly separable
- We used the kNN rule (k = 5), and the Euclidean distance as a metric

kNN versus 1NN

kNN versus 1NN

- The use of large values of k has two main advantages
 - Yields smoother decision regions
 - Provides probabilistic information, i.e., the ratio of examples for each class gives information about the ambiguity of the decision
- However, too large a value of k is detrimental
 - It destroys the locality of the estimation
 - since farther examples are taken into account
 - It increases the computational burden

kNN and feature weighting

kNN is sensitive to noise since it is based on the Euclidean distance

- To illustrate this point, consider the example below
 - · The first axis contains all the discriminatory information
 - The second axis is white noise, and does not contain classification information
- In a first case, both axes are scaled properly
 - kNN (k = 5) finds
 decision boundaries
 fairly close to the optimal

- In a second case, the scale of the second axis has been increased 100 times
 - kNN is biased by the large values of the second axis and its performance is very poor

Decision Boundaries in Global vs. Local Models

linear regression

15-nearest neighbor

1-nearest neighbor

- Global
- Stable
- Can be inaccurate
- K acts as a smoother
- Local
- Accurate
- Unstable

Decision Boundaries in Global vs. Local Models

- Global
- Stable
- Can be inaccurate

- K acts as a smoother
- Local
- Accurate
- Unstable

Training Error from kNN Lesson Learned

- When k = 1
- No misclassification (on training):Overtraining
- Minimizing training error is not always good (e.g. 1-NN)

Statistical Decision Theory

- Random input vector: X
- Random output variable: Y
- Joint distribution: Pr(X,Y)
- Loss function: L(Y, f(X))

• Expected prediction error (EPE):

Consider population distribution

$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x))Pr(dx, dy)$$

$$e.g. = \int (y - f(x))^2 \Pr(dx, dy)$$

kNN for minimizing EPE

• For squared error loss (also called L2), best estimator for EPE (theoretically) is conditional mean

$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x))Pr(dx, dy)$$

Conditional mean:
$$\hat{f}(x) = E(Y|X = x)$$

- Nearest neighbor methods are the direct implementation (approximation)
- Nearest neighbors assumes that f(x) is well approximated by a locally constant function

Bias-Variance Trade-off EPE:

$$EPE(f(x_0) = noise^2 + bias^2 + variance)$$

Unavoidable error

Error due to Incorrect assumptions

Error due to Variance of training samples

Bias-Variance Trade-off EPE:

More General Setting!

 θ : true value (normally unknown)

 $\widehat{\theta}$: estimator

 $\overline{\theta}$: $E[\widehat{\theta}]$ (mean, i.e. expectation of the estimator)

• Bias $E[(\overline{\theta} - \theta)^2]$

- Measures accuracy or quality of the estimator
- Low bias implies on average we will accurately estimate true parameter or function from training data
- <u>Variance</u> $E[(\widehat{\theta} \overline{\theta})^2]$
 - Measures precision or specificity of the estimator
 - Low variance implies the estimator does not change much as the training set varies

Bias-Variance Trade-off / Model Selection

<KNN(large k) / Regression(small d)

KNN(small k) / Regression(large d)>

Expected test error and CV error → good approximation of EPE