Privacy Preserving Decision Tree Prediction

Reem Younis, Assia Khateeb, Atheer Abo Foul, Aya Miari Lecturer : Dr. Adi Akavia

Laboratory in Privacy Preserving Machine Learning, University of Haifa

Email: reembyounis@gmail.com, assia.khteb@gmail.com, 19aether6@gmail.com, aia-m-211@hotmail.com

July 7, 2021

Contents

1	Introduction	2
2	Preprocessing Phase	2
	2.1 SCALING	
	2.1.1 Code	3
	2.2 POLYNOM	3
	2.2.1 Code	
	2.3 Build Tree With 1-Hot Encoding Labels	4
3	Algorithm 1	5
	3.0.1 Code	5
4	Accuracy	5
5	Results	7
	5.1 Results For Cancer Data-Set	8
	5.2 Results For Iris Data-Set	11
	5.3 Results For Wine Data-Set	14
	5.4 Conclusions	17
6	Platforms	17

Abstract.

In part b we implement cleartext soft decision tree prediction algorithm; algorithm specified in Akavia et al ECML'2020.

1 Introduction

Reference to our Github repo.

Part b of the lab is done by dividing the problem into multiple phases, each one we called it pre-processing phase.

- First pre-procssing is scaling the data.
- Second pre-procssing is preparing the polynom which is required for Algorithm 1.
- Third pre-procssing is building a tree with 1-hot encoding labels.

We predict on set of samples using Algorithm 1. Then, we present the main results of Algorithm 1 and compare it to scikit learn results.

2 Preprocessing Phase

In this section, by using preprocessing, input data is processed to produce an output data that is used in our program.

2.1 SCALING

We used the sklearn.preprocessing package which provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.

We start by re-scaling each value in the given data set, to a value in range [-1,1] (according to the article) using MinMaxScaler package from sklearn. The general formula to rescale a range between a of values [a,b] is given as:

$$x' = a + \frac{(x - min(x))(b - a)}{max(x) - min(x)}$$
 (1)

In our case [a, b] is [-1, 1] as explained above.

Reference to Feature Scaling in Wikipedia: Feature Scaling

Figure 1: DATA BEFORE SCALING

```
#Load Data and store it into pandas DataFrame objects
iris = load iris()
X = pd.DataFrame(iris.data[:, :], columns=iris.feature names[:])
print(X)
     sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0
                   5.1
                                      3.5
                                                         1.4
                                                                            0.2
                                                                             0.2
2
                   4.7
                                      3.2
                                                         1.3
                                                                            0.2
3
                   4.6
                                      3.1
                                                          1.5
                                                                             0.2
                                      3.6
                                                                            0.2
4
                   5.0
                                                          1.4
                                      . . .
145
                   6.7
                                      3.0
                                                          5.2
                                                                            2.3
146
                   6.3
                                      2.5
                                                          5.0
                                                                            1.9
147
                   6.5
                                      3.0
                                                          5.2
                                                                            2.0
                   6.2
                                      3.4
                                                          5.4
                                                                            2.3
148
                                      3.0
                                                          5.1
                                                                            1.8
```

[150 rows x 4 columns]

Figure 2: DATA AFTER SCALING

```
# preprocessing 1 - Feature scaling
# rescale a range between an arbitrary set of values [a, b] where a=-1, b=1
scaler = MinMaxScaler(feature_range=(-1, 1)) # build the scaler model
X_rescaled_features = scaler.fit_transform(X)
X_rescaled_features = pd.DataFrame(X_rescaled_features[:, :], columns=iris.feature_names[:])
print(X_rescaled_features)
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                      0.250000
                                       -0.864407
0
           -0.555556
                                                           -0.916667
1
            -0.666667
                            -0.166667
                                             -0.864407
                                                              -0.916667
                                             -0.898305
2
           -0.777778
                            0.000000
                                                              -0.916667
3
            -0.833333
                            -0.083333
                                              -0.830508
                                                               -0.916667
                            0.333333
4
           -0.611111
                                              -0.864407
                                                               -0.916667
                                  . . .
                                                   . . .
                 . . .
                                             0.423729
            0.333333
                            -0.166667
                                                               0.833333
145
146
            0.111111
                            -0.583333
                                              0.355932
                                                               0.500000
147
            0.222222
                            -0.166667
                                              0.423729
                                                               0.583333
            0.055556
                             0.166667
                                              0.491525
148
                                                               0.833333
149
            -0.111111
                            -0.166667
                                              0.389831
                                                               0.416667
```

[150 rows x 4 columns]

We next use train_test_split model from sklearn to Split data set into random train and test subsets.

Using the train parameter we build the decision tree using DecisionTreeClassifier package from sklearn, choosing 4 as the tree's max depth.

2.1.1 Code

```
def scaling(X):
    scaler = MinMaxScaler(feature_range=(-1, 1))
    X_rescaled_features = scaler.fit_transform(X)
    return X_rescaled_features
```

2.2 POLYNOM

We construct a low-degree polynomial approximation in order to approximate the step function, aiming to replace it with a soft step function.

This is done by using mean square integral solution which is the soft step function:

$$\phi = \min_{p \in p_n} \int_{-2}^{2} (I_0(x) - p(x))^2 dx$$
 (2)

Then, by adding an importance to weight of the approximation interval we maintain the sensitivity to error in the approximation is uniform over the domain. This leads to the optimization problem given in the article:

$$\phi = \min_{p \in p_n} \int_{-2}^{2} (I_0(x) - p(x))^2 w(x) \, dx \tag{3}$$

2.2.1 Code

We present our code for the polynomial approximation:

```
def polynom(degree, window):
    X = np.linspace(-2, 2, num=201)
    y1 = np.zeros(100)
    y2 = np.ones(101)
    Y = np.concatenate((y1, y2), axis=None)
# weights functions
w1 = np.concatenate((window * (np.ones(75)), np.zeros(51)), axis=None)
```

```
w2 = window * np.ones(75)
weight = np.concatenate((w1, w2), axis=None)
pf = np.polyfit(X, Y, degree, w=weight)
phi = np.polyld(pf)
return phi
```

Using sklearn numpy model we used linspace function to create an evenly spaced samples which are calculated over an interval[start,stop], the returned value is stored in parameter X.

Followed by parameter Y, the step function which maps the values [1, 100] to 0 and values [101, 201] to 1.

X represents a numpy array with values in range [-2, 2] with 201 samples.

If we choose window to be equal to 0.25 then, the array X will be divided to 3 ranges: [-2:-0.25], [-0.25:0.25] and [0.25:2]. The size of ranges [-2:-0.25] + [0.25:2] is 7/2. The values in ranges [1:75] and [127:201] have a weight of 2/7 according to the equation:

$$\int_{0}^{2} w(x) dx = 1 \tag{4}$$

while the values in range [76: 126] have weights of 0. Using polyfit model, X is fitted to Y with degree = 34 and the calculated weights above.

We perform polynomial fitting on data set using polyfit model which returns a vector of coefficients p that minimizes the squared error. Then we create a polynomial model using poly1d function, which it's return value indicates whether the polynomial's coefficients powers are in a decreasing order. The result is stored in parameter phi.

2.3 Build Tree With 1-Hot Encoding Labels

We start building our tree by calling the builtTree function in file my_tree.py.

Each tree's inner node has a field for threshold, feature and node_id.

Parameters in builtTree function:

lenHot = length of label's value.

 $index_of_max = index of argmax value.$

Using these two parameters, leaf array is built, so it's size is equal to the size of lenHot array. It's initialized with zeros, and ones in index_of_max.

Thus, we get an array of values as a form of 1 hot encoding.

Example:

Figure 3: Subtree labels before 1-hot encoding

Labels of the subtree after 1-hot encoding.

leaf = [1. 0. 0.]leaf = [0. 1. 0.]

<u>builtTree function</u> This function receives as input, the tree and node_id which is initialized to 0. Tree's nodes are numbered by post-order traversal.

Recursively, leaves values are updated to 1 hot encoding format.

<u>printTree function:</u>This function receives as input, the tree and tree's depth which is initialized to 0. For every inner node, threshold and feature are printed. However, for every leaf, only 1 hot value is printed.

printTree function recognizes whether the node is an inner node or leaf using isinstance(leaf, np.ndarray) which returns if there's an array in the current node, if True then it's a leaf.

3 Algorithm 1

3.0.1 Code

```
def Tree_Predict(T, x, phi):
    if T is None:
        return
    feature, threshold, leaf, left, right = T.getNode()
    if isinstance(leaf, np.ndarray):
        return leaf
    else:
        return (phi(x[feature] - threshold)) * Tree_Predict(right, x, phi) +
        + (phi(threshold - x[feature])) * Tree_Predict(left, x, phi)
```

Akavia's algorithm traverses all paths in the tree and computes a weighted combination of all the leaves values, where each leaf value is the 1-hot encoding of the label associated with the leaf. The output is a length L vector assigning a likelihood score to each label, which is in turn interpreted as outputting the label with the highest score.

4 Accuracy

The accuracy is calculated as the percentage of correct classification on test samples.

```
algorithm1_score = (counter / len(res_vec))*100
```

Counter is equal to the sum of correct classifications and res_vec is equal to the sum of all classifications.

To know if current classification is correct or not we compare it to Y target value of the relevant sample if they are eqaul then the prediction of algorithm 1 is correct .

test samples are decided to sent to algorithm 1 as 35% of the samples in the data-set and they are chosen randomly from the data-set.

test samples are assigned to variable X_test.

So algorithm 1 predict over all test samples, after that we calculate accuracy according to the percentage of correct predictions on test samples that algorithm 1 predict.

```
for x in X_test:
    res = algorithm1_predict(myTree, x, phi)
    res_vec.append(res)
```

We trained trees up to depth 6 and compare algorithm 1 prediction's accuracy vs. scikit learn prediction's accuracy for three data sets: iris, wine and cancer.

Table 1: iris

	Table 1.	1115
Tree depth	Algorithm 1 acc	scikit learn acc
0	22.64151	22.64151
1	62.26415	62.26415
2	94.33962	94.33962
3	86.7925	96.22642
4	100	96.22642
5	94.3396	96.22642
6	98.1132	94.33962

Table 2: wine

ruore 2.	wille
Algorithm 1 acc	scikit learn acc
38.09524	38.09524
50.79365	50.79365
90.4762	87.30159
92.0635	90.47619
90.4762	88.88889
93.6508	92.06349
96.8254	92.06349
	38.09524 50.79365 90.4762 92.0635 90.4762 93.6508

Table 3: cnacer

Tree depth	Algorithm 1 acc	scikit learn acc
0	61.5	61.5
1	87.5	87.5
2	94.5	91
3	96	96
4	94.5	91.5
5	92	92
6	96.5	92

Figure 4:
Accuracy of ours vs. Scikit-learn on iris dataset and tree depth
0-6

Figure 5: Accuracy of ours vs. Scikit-learn on Wine dataset and tree depth 0-6

Figure 6: Accuracy of ours vs. Scikit-learn on Cancer dataset and tree depth 0-6

5 Results

Example of results we got:

```
data_type = iris
max depth = 4
scikit_learn_score = 92.45283 %
WINDOW = 0
                                                             window = 0.25
                                                             polynom order = 33
window = 0
                                                             run time = 0.0499 seconds
polynom order = 0
                                                             algorithm1_score = 92.4528 %
run time = 0.0180 seconds
algorithm1_score = 32.0755 %
                                                             WINDOW = 0.5
window = 0
polynom order = 1
                                                             window = 0.5
run time =0.0150 seconds
                                                             polynom order = 0
                                                             run time = 0.0429 seconds
algorithm1_score = 90.5660 %
                                                             algorithm1_score = 32.0755 %
window = 0
polynom order = 2
run time =0.0180 seconds
algorithm1_score = 90.5660 %
                                                             window = 0.5
window = 0
                                                             polynom order = 33
polynom order = 3
                                                             run time = 0.0499 seconds
run time = 0.0190 seconds
                                                             algorithm1_score = 92.4528 %
algorithm1_score = 92.4528 %
                                                             WINDOW = 0.75
                                                             window = 0.75
window = 0
                                                             polynom order = 0
polynom order = 33
                                                             run time = 0.0259 seconds
run time = 0.0349 seconds
                                                             algorithm1_score = 32.0755 %
algorithm1_score = 92.4528 %
WINDOW = 0.25
                                                             window = 0.75
window = 0.25
                                                             polynom order = 33
polynom order = 0
                                                             run time = 0.0289 seconds
run time = 0.0439 seconds
                                                             algorithm1_score = 92.4528 %
algorithm1_score = 32.0755 %
```

For each window [0, 0.25, 0.5, 0.75] We calculate the algorithm's 1 accuracy for every polynom's degree in range [0,33]. Then we arranged all the results in tables (table 4 to 15).

5.1 Results For Cancer Data-Set

Cancer Tree:

```
feature = 22 threshold = -0.41192
    feature = 27 threshold = 0.28384
      feature = 27 threshold = -0.23814
           feature = 28 \text{ threshold} = -0.99980
               leaf = [1. 0.]
               leaf = [0. 1.]
           feature = 1 threshold = -0.23266
               leaf = [0. 1.]
               leaf = [1. 0.]
      leaf = [1. 0.]
   feature = 6 \text{ threshold} = -0.65742
      feature = 1 \text{ threshold} = -0.38282
           leaf = [0. 1.]
           feature = 15 threshold = -0.72109
               leaf = [1. 0.]
               leaf = [0. 1.]
      feature = 7 \text{ threshold} = -0.57465
           feature = 9 \text{ threshold} = -0.49326
               leaf = [1. 0.]
               leaf = [0. 1.]
           feature = 1 \text{ threshold} = -0.70172
               leaf = [1. 0.]
               leaf = [1. 0.]
```


Figure 7: Cancer Tree Figure (Before 1 Hot Encoding) With Max Depth = 4

Table 4:

	Dataset:	Cancer				
	scikit learn scor					
	max depth = 4					
Window	Polynom Degree	Runtime (sec)	Score (%)			
	0	0.0788	37			
	1	0.0798	75.5			
	2	0.0927	75.5			
	3	0.1087	92			
	4	0.1077	92			
	5	0.1197	92.5			
	6	0.1137	92.3			
	7	0.1117				
	8	0.1137	95.5			
	9	0.1177	93.3			
	10	0.1027				
	11	0.1137	96			
	12	0.1117] 90			
	13	0.1167	96.5			
	14	0.1117	70.5			
	15	0.1227	97			
0	16	0.1206	71			
V	17	0.1316				
	18	0.1326	96.5			
	19	0.1247] 70.5			
	20	0.1426				
	21	0.1416	96			
	22	0.1326	, ,			
	23	0.1277	96.5			
	24	0.1526	70.5			
	25	0.1307				
	26	0.1735				
	27	0.1706				
	28	0.167				
	29	0.128	96			
	30	0.148				
	31	0.152				
	32	0.156				
ı	33	0.144				

Table 5:

	Dataset:	Cancer	
	scikit learn scor	re =94.50000 %	
	max de	pth = 4	
Window	Polynom Degree	Runtime (sec)	Score (%)
	0	0.084	37
	1	0.08	75.5
	2	0.104	/3.3
	3	0.1	92
	4	0.092	92
	5	0.104	92.5
	6	0.104	92.3
	7	0.092	
	8	0.116	95.5
	9	0.096	95.5
	10	0.1	
	11	0.12	96
	12	0.104] 90
	13	0.12	96.5
	14	0.128	90.3
	15	0.108	97
0.25	16	0.12	91
0.23	17	0.12	
	18	0.144	96.5
	19	0.128	90.5
	20	0.128	
	21	0.124	96
	22	0.136	
	23	0.144	96.5
	24	0.124	70.5
	25	0.164	
	26	0.136	
	27	0.14	
	28	0.136	
	29	0.144	96
	30	0.132	
	31	0.152	
	32	0.168	
	33	0.16	

	Tab Dataset:	ole 6:	
	scikit learn scor		
	max de		
Window	Polynom Degree	Runtime (sec)	Score (%)
	0	0.08	37
	1	0.104	
	2	0.08	75.5
	3	0.104	0.0
	4	0.092	92
	5	0.084	02.5
	6	0.112	92.5
	7	0.1	
	8	0.096	05.5
	9	0.12	95.5
	10	0.096	
	11	0.104	96
	12	0.124	90
	13	0.1	96.5
	14	0.1	90.3
	15	0.2	97
0.5	16	0.128	91
0.5	17	0.132	
	18	0.116	96.5
	19	0.136	90.3
	20	0.124	
	21	0.12	96
	22	0.136	
	23	0.14	96.5
	24	0.14	70.5
	25	0.136	
	26	0.132	
	27	0.136	
	28	0.14	
	29	0.156	96
	30	0.148	

31

32 33 0.16 0.148

0.152

Table 7: Dataset: Cancer				
scikit learn score = 94.50000 %				
	max dej			
Window	Polynom Degree	Runtime (sec)	Score (%)	
	0	0.084	37	
	1	0.1	7.5.5	
	2	0.08	75.5	
	3	0.108	02	
	4	0.088	92	
	5	0.084	02.5	
	6	0.104	92.5	
	7	0.104		
	8	0.092	05.5	
	9	0.116	95.5	
	10	0.104		
	11	0.112	96	
	12	0.104	90	
	13	0.144	96.5	
	14	0.12	90.5	
	15	0.12	97	
0.75	16	0.112	91	
0.73	17	0.124		
	18	0.128	96.5	
	19	0.128	90.5	
	20	0.124		
	21	0.14	96	
	22	0.156	70	
	23	0.1721	96.5	
	24	0.1728	70.5	
	25	0.1754		
	26	0.1767		
	27	0.1746		
	28	0.2059		
	29	0.1549	96	
	30	0.156		
	31	0.136		
	32	0.156		
	33	0.148		

5.2 Results For Iris Data-Set

Iris Tree:

```
\label{eq:feature} \begin{split} &\text{feature} = 2 \; \text{threshold} = -0.45762 \\ &\text{leaf} = [1. \; 0. \; 0.] \\ &\text{feature} = 2 \; \text{threshold} = 0.30508 \\ &\text{feature} = 3 \; \text{threshold} = 0.29166 \\ &\text{leaf} = [0. \; 1. \; 0.] \\ &\text{feature} = 1 \; \text{threshold} = -0.08333 \\ &\text{leaf} = [0. \; 0. \; 1.] \\ &\text{leaf} = [0. \; 1. \; 0.] \\ &\text{feature} = 3 \; \text{threshold} = 0.33333 \\ &\text{feature} = 0 \; \text{threshold} = -0.02777 \\ &\text{leaf} = [0. \; 1. \; 0.] \\ &\text{leaf} = [0. \; 0. \; 1.] \\ &\text{leaf} = [0. \; 0. \; 1.] \end{split}
```


Figure 8: Iris Tree Figure (Before 1 Hot Encoding) With Max Depth = 4

	Tab	ole 8:			
	Datase				
	scikit learn scor				
	max depth = 4				
Window	Polynom Degree	Runtime (sec)	Score (%)		
	0	0.018	32.0755		
	1	0.015	90.566		
	2	0.018	90.300		
	3	0.019			
	4	0.016			
	5	0.0279	92.4528		
	6	0.018	92.4326		
	7	0.017			
	8	0.017			
	9	0.016			
	10	0.015	94.3396		
	11	0.0159	94.3390		
	12	0.015			
	13	0.0189			
	14	0.019			
	15	0.0239			
0	16	0.0199			
U	17	0.0249			
	18	0.018			
	19	0.0179			
	20	0.0209			
	21	0.0189			
	22	0.0209			
	23	0.0249	92.4528		
	24	0.0309			
	25	0.0259			
	26	0.024			
	27	0.0219			
	28	0.0209			
	29	0.0219			
	30	0.02			
	31	0.0219			
	32	0.0299			
	33	0.0349			

	Table	e 9:				
	Datase					
	scikit learn score = 92.45283% max depth = 4					
Window	Polynom Degree	Runtime (sec)	Score (%)			
	0	0.0439	32.0755			
	1	0.0259	00.566			
	2	0.017	90.566			
	3	0.0149				
	4	0.016				
	5	0.0289	02.4529			
	6	0.0339	92.4528			
	7	0.0229				
	8	0.0289				
	9	0.0299				
	10	0.0369	94.3396			
	11	0.0219	94.3390			
	12	0.0279				
	13	0.0439				
	14	0.0329				
	15	0.0489				
0.25	16	0.0379				
0.23	17	0.0349				
	18	0.0219				
	19	0.0189				
	20	0.0209				
	21	0.0219				
	22	0.0209				
	23	0.0489	92.4528			
	24	0.1007				
	25	0.0718				
	26	0.0349				
	27	0.0349				
	28	0.0479				
	29	0.0329				
	30	0.0449				
	31	0.0349				
	32	0.0559				
	33	0.0499				

	Tab	le 10:	
	Datase		
	scikit learn scor		
	max de	pth = 4	
Window	Polynom Degree	Runtime (sec)	Score (%)
	0	0.0429	32.0755
	1	0.022	90.566
	2	0.0229	90.500
	3	0.0209	
	4	0.0199	
	5	0.0219	92.4528
	6	0.0239	72.4320
	7	0.0219	
	8	0.0329	
	9	0.0249	
	10	0.0249	94.3396
	11	0.0379	74.3370
	12	0.0349	
	13	0.0299	
	14	0.0239	
	15	0.0239	
0.5	16	0.0319	
0.5	17	0.0279	
	18	0.0219	
	19	0.0219	
	20	0.0199	
	21	0.0189	
	22	0.0748	
	23	0.1237	92.4528
	24	0.0219	
	25	0.0259	
	26	0.0229	
	27	0.0279]
	28	0.0249	
	29	0.0239	
	30	0.0279]
	31	0.0349	
	32	0.026	
	33	0.0209	

	Tabl Datase	le 11:	
	scikit learn scor		
	max de		
Window	Polynom Degree	Runtime (sec)	Score (%)
	0	0.0259	32.0755
	1	0.0319	00.566
	2	0.0269	90.566
	3	0.0279	
	4	0.0309	
	5	0.0299	02.4520
	6	0.0269	92.4528
	7	0.0239	
	8	0.0199	
	9	0.0319	
	10	0.0239	04 2206
	11	0.0199	94.3396
	12	0.0279	
	13	0.0219	
	14	0.02	
	15	0.0249	
0.75	16	0.0229	
0.73	17	0.0239	
	18	0.0229	
	19	0.0219	
	20	0.0239	
	21	0.0239	
	22	0.0219	
	23	0.0349	92.4528
	24	0.0369	
	25	0.0419	
	26	0.0299	
	27	0.0279	1
	28	0.0289	1
	29	0.0369	1
	30	0.0399	1
	31	0.0309	1
	32	0.0269	
	33	0.0289	1

5.3 Results For Wine Data-Set

Wine Tree:

```
feature = 6 threshold = -0.16877
feature = 9 threshold = -0.56569
leaf = [0. 1. 0.]
feature = 6 threshold = -0.55274
leaf = [0. 0. 1.]
feature = 10 threshold = -0.61788
leaf = [0. 0. 1.]
leaf = [0. 1. 0.]
feature = 12 threshold = -0.36305
feature = 1 threshold = 0.23320
leaf = [0. 1. 0.]
leaf = [1. 0. 0.]
feature = 4 threshold = 0.42391
leaf = [1. 0. 0.]
leaf = [0. 1. 0.]
```


Figure 9: Wine Tree Figure (Before 1 Hot Encoding) With Max Depth = 4

Table 12:

	Dataset	<u>le 12:</u> : Wine		
	scikit learn score = 93.65079 %			
$\max \text{ depth} = 4$				
Window	Polynom Degree	Runtime (sec)	Score (%)	
	0	0.0152	46.0317	
	1	0.0112	55.556	
	2	0.0126	55.5556	
	3	0.0116	76.1905	
	4	0.0126		
	5	0.012	04.127	
	6	0.0122	84.127	
	7	0.0124		
	8	0.0127	92.0635	
	9	0.0247	92.0033	
	10	0.0225		
	11	0.0203		
	12	0.0176		
	13	0.0178	95.2381	
	14	0.0175		
	15	0.0157		
	16	0.0145		
0	17	0.0147		
	18	0.0148		
	19	0.0152		
	20	0.0155		
	21	0.022		
	22	0.0219		
	23	0.0193		
	24	0.0225		
	25	0.0235		
	26	0.0178		
	27	0.0167		
	28	0.0166		
	29	0.0172		
	30	0.0173		
	31	0.0173		
	32	0.0233		
	33	0.0226		
	34	0.0234		

Table 13:

Dataset: Wine					
	scikit learn score = 93.65079 %				
max depth = 4					
Window	Polynom Degree	Runtime (sec)	Score (%)		
	0	0.0159	46.0317		
	1	0.0135	55.5556		
	2	0.0146			
	3	0.0131	76 1005		
	4	0.012	76.1905		
	5	0.0124	84.127		
	6	0.0123	04.127		
	7	0.0126			
	8	0.0131	92.0635		
	9	0.0131	72.0033		
	10	0.0154			
	11	0.0196			
	12	0.0175			
	13	0.0187	95.2381		
	14	0.0202			
	15	0.0187			
	16	0.017			
0.25	17	0.0148			
	18	0.0149			
	19	0.0153			
	20	0.0153			
	21	0.0152			
	22	0.0221			
	23	0.0205			
	24	0.0226			
	25	0.0205			
	26	0.02			
	27	0.0169			
	28	0.0167			
	29	0.0173			
	30	0.0176			
	31	0.0174			
	32	0.0175			
	33	0.0254			
	34	0.027			

Table	14
ataset:	Wi

	Tab.	le 14: • Wine		
	Dataset: Wine			
scikit learn score = 93.65079 % max depth = 4				
Window	Polynom Degree	Runtime (sec)	Score (%)	
Williadw	0	0.0147	46.0317	
	1	0.0147	40.0317	
	2	0.025	55.5556	
	3	0.0165		
	4	0.0123	76.1905	
	5	0.0128		
	6	0.0132	84.127	
	7	0.0134		
	8	0.0136	02.0625	
	9	0.0136	92.0635	
	10	0.0212		
	11	0.0159		
	12	0.0165		
	13	0.0182	95.2381	
	14	0.0173		
	15	0.0238		
	16	0.0153		
0.5	17	0.0152		
	18	0.0156		
	19	0.016		
	20	0.0162		
	21	0.0206		
	22	0.0191		
	23	0.0214		
	24	0.0243		
	25	0.0215		
	26	0.0185		
	27	0.0178		
	28	0.0174		
	29	0.0176		
	30	0.0179		
	31	0.0182		
	32	0.0249		
	33	0.0227		
	34	0.0202		

Table 15:

	Dataset: Wine			
	scikit learn score = 93.65079 %			
$\max depth = 4$				
Window	Polynom Degree	Runtime (sec)	Score (%)	
	0	0.0122	46.0317	
	1	0.0144	55 5556	
	2	0.0149	55.5556	
	3	0.0125	76 1005	
	4	0.0119	76.1905	
	5	0.0121	84.127	
	6	0.0121	04.127	
	7	0.0124		
	8	0.0126	92.0635	
	9	0.0129	92.0033	
	10	0.013		
	11	0.0175	95.2381	
	12	0.0185		
	13	0.0197		
	14	0.0173		
	15	0.0184		
	16	0.0211		
0.75	17	0.0165		
	18	0.0163		
	19	0.0161		
	20	0.0159		
	21	0.016		
	22	0.0161		
	23	0.0198		
	24	0.0217		
	25	0.0219		
	26	0.023		
	27	0.0239		
	28	0.0172		
	29	0.0178		
	30	0.0173		
	31	0.0176		
	32	0.0178		
	33	0.0258		
	34	0.0243		

5.4 Conclusions

Finally we derive from the results above, the desired conclusion:

- ★The greater the tree's depth, the more branched which leads to a higher score.
- \star For all the 4 windows: [0, 0.25, 0.5, 0.75] that sent to the polynom we got the same accuracy results for all polynoms from degree 0 to degree 33, but they different in the running time.
- ★The greater the window, the higher the runtime by an approx difference of 1%.
- ★The greater the polynom's degree, the higher the score for Algorithm 1. Occasionally happens that the score is decreased by at most 3%.
- ★After several code runs, the average polynomial degree that gave us the best score is 15.
- \pm According to Figure 4,5 and 6 we can observe that our score results are similar to scikit-learn results. For example, in Figure 5, when the tree's depth is in range [3,5] both results are identical.
- ★Since Cancer tree is more branched, we can observe that the accuracy score is higher than other's datasets.

6 Platforms

- · Jupyter lab
- pycharm, python 3.9
- · overleaf.com
- excel