Rjesenje simplexa s auditornih (predavanja - Primjer 11) uz pomoc dualne simplex metode © by mama

RJESENJE I OBJASNJENJE ZADATKA S AUDITORNIH(na satu):

$$min(z)=8x_1 + 6x_2$$

 $10x_1 + 8x_2 >= 20$
 $6x_1 + 12x_2 >= 16$
 $x_1, x_2 >= 0$

sad jednadžbe ogranicenja izjednacimo sa desnom stranom:

$$10x_1 + 8x_2 - x_3 = 20$$

 $6x_1 + 12x_2 - x_4 = 16$,
gdje su $x_1, x_2, x_3, x_4 >= 0$

posto nevidimo bazicne varijable $(+1x_n)$, napravimo ih tako da dobivene jednadbe pomnozimo s -1 a z maximizirajmo:

$$\max(z') = -z = -8x_1 - 6x_2 \rightarrow z' + 8x_1 + 6x_2 = 0$$

- $10x_1 - 8x_2 + x_3 = -20$
- $6x_1 - 12x_2 + x_4 = -16$,
gdje su $x_1, x_2, x_3, x_4 >= 0$

1. ITERACIJA

e sad kad smo dobili bazicne varijable i maximizirali z uvrstimo jednadzbe u tablicu:

baza	X ₁	X ₂	X ₃	X ₄	desna strana
z'	8	6	0	0	0
X ₃	-10	-8	1	0	-20
X ₄	-6	-12	0	1	-16

U tablici vidimo da sa desne strane imamo -20 i -16, sto je nemoguce rjesenje jer bazicne varijable ne smiju biti negativne! Zbog toga idemo rjesenje napraviti mogucim na nacin da s desne strane nemamo negativnih vrijednosti (osim u retku funkcije cilja z').

Koraci iteracije:

- 1. izbor izlazne bazicne varijable takve da se umanji prekoracenje dopustenih granica.
- 2. izbor ulazne nebazicne varijable takve da ima negativni koeficijent u retku izlazne bazicne varijable (nuzni uvjet), te da svojim jedinicnim prirastom najmanje pokvari funkciju cilja, tj. da zadrzi zadovoljenima uvjete optimalnosti.
- ->Prvi korak iteracije bi se mogao obijasniti ovako:

uzimamo redak koji nasem nemogucem rjesenju pridonosi najvise, a to je onaj negativniji (-20), znaci uzimamo redak gdje je x_3 , sto znaci da je x_3 nasa izlazna bazicna varijabla.

Pa oznacimo prvi korak u tablici:

baza	X ₁	X ₂	X ₃	X ₄	desna strana	
z'	8	6	0	0	0	
X ₃	-10	-8	1	0	-20	
X ₄	-6	-12	0	1	-16	

->Drugi korak iteracije:

za ulaznu nebazicnu varijablu odabrat cemo onu koja ima po **apsolutnoj vrijednosti** manji kvocijent koeficijenta iz funkcije cilja i **negativnog** koeficijenta u retku izlazne bazicne varijable (u nasem slucaju x₃).

Pokusajmo rijesit drugi korak: x_1 ->8/10, x_2 ->6/8. Manji kvocijent ima x_2 , pa ce x_2 biti nasa ulazna bazicna varijabla. Oznacimo to u tablici:

baza	X ₁	X ₂	X ₃	X ₄	desna strana
z'	8	6	0	0	0
X ₃	-10	-8	1	0	-20
X ₄	-6	-12	0	1	-16

Sad rjesimo problem tako da u crveno oznacenoj celiji bude 1, a ispod i iznad 0. Napravit cemo tako da redak podijelimo sa -8.

baza	x ₁	X ₂	X ₃	X ₄	desna strana
z'					
X ₂	5/4	1	-1/8	0	5/2
X ₄					

Sad novodobiveni drugi redak pomnozimo s -6 i oduzmomo ga od prvog retka tako da dobijemo iznad 0:

baza	X ₁	X ₂	X ₃	x_4	desna strana
z'	1/2	0	3/4	0	-15
X ₂	5/4	1	-1/8	0	5/2
X ₄					

I za kraj drugi redak pomnozimo s -12 i oduzmimo ga od zadnjeg retka tako da 0 dobijemo ispod:

baza	X ₁	X ₂	X ₃	X ₄	desna strana
z'	1/2	0	3/4	0	-15
X ₂	5/4	1	-1/8	0	5/2
X ₄	9	0	-3/2	1	14

I to je nase rjesenje. Rjesenje se moze iscitati kada nemamo negativnih varijabli desno, nemamo negativnih koeficijenata u f cilja.

Pa iscitajmo rjesenja (gledamo varijable u prvom stupcu i njihove vrijednosti u zadnjem stupcu, kojih nema one su =0):

 $x_1 = 0$

 $x_2 = 5/2$

 $x_3 = 0$

 $x_4 = 14$

z=-15

POKRACENO RJESENJE (s auditornih na materijalima):

E amo sad to rijesit tako da u pocetku pokratimo jednadbe sa 2:

 $min(z)=8x_1+6x_2$

 $10x_1 + 8x_2 >= 20/:2 --> 5x_1 + 4x_2 >= 10$

 $6x_1 + 12x_2 >= 16/:2 --> 3x_1 + 6x_2 >= 8$

 $x_1, x_2 >= 0$

sad jednadžbe ogranicenja izjednacimo sa desnom stranom:

$$5x_1 + 4x_2 - x_3 = 10$$

$$3x_1 + 6x_2 - x_4 = 8$$
,

gdje su
$$x_1, x_2, x_3, x_4 >= 0$$

pomnozimo ih s -1 i z maximizirajmo:

$$max(z') = -z = -8x_1 - 6x_2 \rightarrow z' + 8x_1 + 6x_2 = 0$$

$$-5x_1 - 4x_2 + x_3 = -10$$

$$-3x_1 - 6x_2 + x_4 = -8$$

Uvrstimo to u tablicu i rjesimo po koracima dual-simplexa:

Iteracija	baza	X ₁	X ₂	X ₃	X ₄	desna strana
	z'	8	6	0	0	0
1	X ₃	-5	-4	1	0	-10
	X ₄	-3	-6	0	1	-8
	z'	1/2	0	3/2	0	-15
2	X ₂	5/4	1	-1/4	0	5/2
	X ₄	9/2	0	-3/2	1	7

Sada iscitajmo rjesenja iz tablice:

 $x_1 = 0$

 $x_2 = 5/2$

 $x_3 = 0$

 $x_4 = 7$

z=-15

Dualni simplex je objasnjen u Kalpićevoj knjizi Operacijska istrazivanja. Knjiga je dostupna na materijalima, a objasnjenje metode pocinje na stranici 38 (2.1.9. Dualnost). Do stranice 41 je teorija, a na stranici 41 (2.1.9.1. Dualna simpleksna metoda) pocinju primjeri.