Online Routing of Virtual Circuits

- CT Network Theory Seminar -

Wenkai Dai

Communication Technologies Group Computer Science Department University of Vienna

April 12, 2021

Outlines

- Online Virtual Circuits Routing Problems
- 2 Lower Bound for Online Virtual Circuits Routing

3 Introduction to Doubling Approach

Introduction

• Permanent: no rerouting once a route assigned unless failures

The Online Virtual Circuits Routing Problem

Input:

- An edge-weighted graph G = (V, E, u), where |V| = n, |E| = m, and a capacity function $u : E \mapsto \mathbb{R}^+$;
- Each request r_i : $r_i = (s_i, t_i, p(i))$, is to request a path from s_i to t_i in G using bandwidth p(i);
- Normalization: for each request r_i , $\forall e \in E$, $p_e(i) = \frac{p(i)}{u(e)}$;
- A sequence of requests: $\sigma = (r_1, r_2, \ldots, r_k)$.

Definitions:

- Online algorithm \mathscr{A} assigns routes $\mathscr{P} = \{P_1, P_2, \dots, P_k\}$;
- Offline algorithm \mathscr{A}^* assigns routes $\mathscr{P}^* = \{P_1^*, P_2^*, \dots, P_k^*\};$
- Given a set of routes \mathcal{P} , relative load after the first j requests:

$$\ell_e(j) = \sum_{\substack{i: e \in P_i \\ i \le j}} p_e(i), \qquad \ell_e^*(j) = \sum_{\substack{i: e \in P_i^* \\ i \le j}} p_e(i)$$

The Online Virtual Circuits Routing Problem (2)

Definitions:

- Online algorithm \mathscr{A} assigns routes $\mathscr{P} = \{P_1, P_2, \dots, P_k\}$;
- Offline algorithm \mathscr{A}^* assigns routes $\mathscr{P}^* = \{P_1^*, P_2^*, \dots, P_k^*\};$
- Given a set of routes P, relative load after the first j requests:

$$\ell_e(j) = \sum_{\substack{i: e \in P_i \\ i \le j}} p_e(i), \qquad \ell_e^*(j) = \sum_{\substack{i: e \in P_i^* \\ i \le j}} p_e(i);$$

Maximum Load:

$$\lambda(j) = \max_{e \in E} \ell_e(j), \qquad \lambda^*(j) = \max_{e \in E} \ell_e^*(j);$$

• Abbreviations: $\lambda = \lambda(k)$ and $\lambda^* = \lambda^*(k)$.

Objective of \mathscr{A} : Minimize λ/λ^*

Algorithm 1 Algorithm Assign-Route

```
1: procedure Assign-Route(p, s, t, G, \vec{l}, \Lambda, \beta)
          /*\Lambda: current estimate of \lambda *;
 2:
 3:
          /*\beta: designed performance guarantee of the algorithm;
         \forall e \in E, p_e := \frac{p}{u(e)}; > Normalize each given bandwidth
 4:
        \forall e \in E, \, \tilde{p}_e := \frac{p_e}{\Lambda};
\forall e \in E, \, \tilde{\ell}_e := \frac{\ell_e}{\Lambda};
 5:
                                                                     Normalization by Λ
 6:
                                                                     Normalization by Λ
           \forall e \in E : c_e := a^{\tilde{\ell}_e + \tilde{p}_e} - a^{\tilde{\ell}_e}:
 7:
           Let P be the shortest path from s to t in G w.r.t. costs c_e;
 8:
           if \exists e \in P : \ell_e + p_e > \beta \land then
 9:
                b := fail
10:
11:
           else
12:
                \forall e \in P : \ell_e := \ell_e + p_e; b := success;
     return (P, \vec{\ell}, b);
```

Theorem 1.1

If $\lambda^* \leq \Lambda$, then there exits $\beta = O(\log n)$ such that Algorithm Assign-Route never fails. Thus, the relative load on an edge never exceeds $\beta\Lambda$

Proof.

- Assume we know Λ , s.t., $\lambda^*(j) \le \lambda^* \le \Lambda$
- Consider state after j request, where $1 \le j \le k-1$
- Define potential function:

$$\Phi\left(j\right) = \sum_{e \in F} \alpha^{\tilde{\ell}_{e}(j)} \left(\gamma - \tilde{\ell}_{e}^{*}(j)\right), \text{ where constants: } \alpha, \gamma > 1;$$

• First to show Φ is not increasing if $\lambda^* \leq \Lambda$

Proof (Cont.)

• Let online (offline) algorithm assign the route P_{j+1} (P_{j+1}^*) to the (j+1)-th request;

$$\Phi(j) = \sum_{e \in E} \alpha^{\tilde{\ell}_e(j)} \left(\gamma - \tilde{\ell}_e^*(j) \right)$$

• Compute $\Phi(j+1) - \Phi(j)$ as follows:

$$\sum_{e \in P_{j+1}} \left(\gamma - \tilde{\ell}_e^*(j) \right) \left(\alpha^{\tilde{\ell}_e(j+1)} - \alpha^{\tilde{\ell}_e(j)} \right) - \sum_{e \in P_{j+1}^*} \alpha^{\tilde{\ell}_e(j+1)} \tilde{p}_e(j+1)$$

- By $(x + \Delta(x))(y + \Delta(y)) = y\Delta(x) + (x + \Delta(x))\Delta(y)$
- Let $x = \boldsymbol{\alpha}^{\tilde{\ell}_e(j)}$, $y = (\boldsymbol{\gamma} \tilde{\ell}_e^*(j))$
- $\Delta(x)$ and $\Delta(y)$ denote the changed values of x and y between $\Phi(j)$ and $\Phi(j+1)$.

Proof (Cont.)

- Let online (offline) algorithm assign the route P_{j+1} (P_{j+1}^*) to the (j+1)-th request;
- Bound $\Phi(j+1) \Phi(j)$ as follows:

$$\begin{split} &\sum_{e \in P_{j+1}} \left(\gamma - \tilde{\ell}_e^*(j) \right) \left(\alpha^{\tilde{\ell}_e(j+1)} - \alpha^{\tilde{\ell}_e(j)} \right) - \sum_{e \in P_{j+1}^*} \alpha^{\tilde{\ell}_e(j+1)} \tilde{p}_e(j+1) \\ & \leq \sum_{e \in P_{j+1}} \gamma \left(\alpha^{\tilde{\ell}_e^*(j) + \tilde{p}_e(j+1)} - \alpha^{\tilde{\ell}_e(j)} \right) - \sum_{e \in P_{j+1}^*} \alpha^{\tilde{\ell}_e(j)} \tilde{p}_e(j+1) \\ & \leq \sum_{e \in P_{j+1}^*} \left(\gamma \left(\alpha^{\tilde{\ell}_e^*(j) + \tilde{p}_e(j+1)} - \alpha^{\tilde{\ell}_e(j)} \right) - \alpha^{\tilde{\ell}_e(j)} \tilde{p}_e(j+1) \right) \\ & = \sum_{e \in P_{j+1}^*} \alpha^{\tilde{\ell}_e(j)} \left(\gamma \left(\alpha^{\tilde{p}_e(j+1)} - 1 \right) - \tilde{p}_e(j+1) \right). \end{split}$$

Proof (Cont.)

$$\Phi\left(j+1\right) - \Phi\left(j\right) \leq \sum_{e \in P_{i+1}^*} \alpha^{\tilde{\ell}_e(j)} \left(\gamma \left(\alpha^{\tilde{\rho}_e(j+1)} - 1\right) - \tilde{\rho}_e(j+1)\right)$$

ullet Offline assigns the route P_{j+1}^* for the (j+1)-th request, then

$$\forall e \in P_{j+1}^* : 0 \le \tilde{p}_e(j+1) \le \lambda^*/\Lambda \le 1.$$

- To prove $\Phi(j+1) \Phi(j) \le 0$, we need to show $\gamma(\alpha^x 1) \le x$ for $x \in [0, 1]$. It is true for $\alpha = 1 + 1/\gamma$
- Clearly, $\Phi(0) = \gamma m$;
- Recall $\Phi(j) = \sum_{e \in E} \alpha^{\tilde{\ell}_e(j)} \left(\gamma \tilde{\ell}_e^*(j) \right)$ and $\tilde{\ell}_e^*(j) \le 1$
- Thus, $\Phi(j) = \sum_{e \in E} \alpha^{\tilde{l}_e(j)} \left(\gamma \tilde{l}_e^*(j) \right) \le \gamma m$
- Since $\gamma > 1$, then

$$\max_{e \in E} \ell_e(k) \le \Lambda \cdot \log_a \left(\frac{\gamma_m}{\gamma - 1} \right) = O(\Lambda \log n).$$

- How to decide Λ : easy to approximate Λ by at most four;
- First stage: $\Lambda = \min_e \tilde{p}_e(1) = \min_e p(1)/u(e)$
- Iterates: A new stage starts when Assign-Route fails, and double the value of Λ and ignore all requests routed in previous phases.
- In the final stage: we can have $\Lambda \leq 4\lambda^*$

Theorem 1.1

Algorithm Assign-Route can achieve $O(\log n)$ -competitive ratio with respect to load.

Lower Bound $\Omega(\log n)$ for Routing

- Directed network: $\exists u, v \in V$, s.t., $c(u, v) \neq c(v, u)$;
- Lower bound $\Omega(\log n)$: there exists a special case for directed network, where the load of online algorithm cannot be better than optimal algorithm by the factor log n
- Oblivious adversary: generate requests independently of the outcome of online algorithm
- The lower bound also holds randomized algorithm against an oblivious adversary

Proof of Lower Bound $\Omega(\log n)$

- The source $s \in V$, and n nodes $V' = \{v_1, \ldots, v_n\}$, s.t., $(s, v_i) \in E$, where $v_i \in V'$;
- For each $1 \le i \le \log n$, divide V' to 2^{i-1} sets $V_{i,j}$:
 - for each $j=1,\ldots,2^{i-1}$, there is a sink $S_{i,j}$, and each node in the current set $V_{i,j}$ has a link to $S_{i,j}$
- Each link has a unit capacity.
- For each phase $1 \le i \le \log n$, $n/2^i$ requests from s to a sink $S_{i,j}$ for $1 \le j \le 2^{i-1}$ and each request needs a unit bandwidth.
- To show: online algorithm causes $\log n/2$ load on some edge (s, v_j) , where $v_j \in V'$, but optimal (offline) algorithm has the load one on all edges

- Offline: there are at most n requests, we could find n edge-disjoint paths.
- Claim for online: at the end of phase i, for the sink $S_{i,j}$, the average of expected load for (s, v_l) , where $v_l \in V_{i,j}$, is $\geq i/2$
 - For $1 \le i \le \log n$, it holds for i = 1
 - Assume it holds for the phase i, s.t., the average expected load for nodes in $V_{i,j}$ is i/2, where $|V_{i,j}| = n/2^{i-1}$.
 - Now, at the phase i+1, let $V_{i,j} = V_{i+1,j'} \cup V_{i+1,j'+1}$, where $|V_{i+1,j'}| = |V_{i,j}|/2 = n/2^i$;
 - There are $n/2^{i+1}$ requests for nodes in $V_{i+1,j'}$ (sink $S_{i+1,j'}$)
 - Thus, the average expected load for nodes in $V_{i+1,j'}$: i/2 + 1/2 = (1+i)/2 (claim is true)
 - Finally, for the last phase $i = \log n$, then the load is at last $\log n/2$

Doubling Approach

Theorem 3.1

For any load balancing problem, let ALG_{Λ} be a parameterized online algorithm satisfying $OPT(\sigma) \leq \Lambda \implies ALG_{\Lambda}(\sigma) \leq c \cdot \Lambda$. Then there is an algorithm ALG s.t., for all σ , $ALG(\sigma) \leq 4c \cdot OPT(\sigma)$.

- ALG executes in stages, each stage correspond to the most recent estimate of Λ .
- Stage 0, $\Lambda_0 = \mathrm{OPT}(j=0)$, easy to compute the optimal for the first job.
- Each stage j, ALG uses ALG_{Λ} to assign jobs until it fails and start a new stage by doubling Λ (ignoring previous stages for assigning jobs)
- Stage k, $\Lambda = 2^k \Lambda_0$

Proof of Doubling Approach

Proof.

- To prove $ALG(\sigma) \le 4c \cdot OPT(\sigma)$ for any sequence σ
- Suppose ALG terminates at the stage *h*.
- If h = 0, it is clear $ALG(\sigma) \le c \cdot OPT(\sigma)$
- Let r be the first job for the stage h, and σ_j denotes the subsequence processed in stage j
- Clearly, stage h-1 failed on $\sigma_{h-1}r$, while ALG_Λ has $\Lambda=2^{h-1}\Lambda_0$
- Thus, $OPT(\sigma) \ge OPT(\sigma_{h-1}r) > 2^{h-1}\Lambda_0$
- Moreover $ALG(\sigma) = \sum_{i=0}^{h} ALG(\sigma_i) \le \sum_{i=0}^{h} c \cdot 2^{j} \Lambda_0 = c \left(2^{h+1} 1\right) \Lambda_0 \square$

Questions & Answers

Thanks for your Listening, and welcome your questions!

