Maths Challenge No. 6

14 November, 2022

Question 1. Consider the following function of N variables

$$S(P_1, \dots, P_N) = -\sum_{i=1}^N P_i \ln P_i \quad \text{subject to} \quad \sum_{i=1}^N P_i = 1$$
 (1)

Find the maximum value of S, and the values taken by P_i at which this maximum occurs.

Let a_1, \ldots, a_N be constants, and again consider (1), but now with an additional constraint

$$\sum_{i=1}^{N} a_i P_i = 1.$$

Show that the maximum value of S now occurs at

$$P_i = \frac{e^{-\beta a_i}}{\sum_{i=1}^N e^{-\beta a_i}},$$

where β is some constant.

Question 2. Let \mathbb{N}_+ be the set of positive integers. Consider the function $\Delta : \mathbb{N}_+ \to \mathbb{N}$ such that $\Delta(n) = \text{number of divisors of } n$. For example, $\Delta(1) = 1$, $\Delta(2) = 2$, $\Delta(6) = 4$, $\Delta(10) = 4$, and so on. Is Δ surjective (onto)?

Let $\xi: \mathbb{N}_+ \to \mathbb{N}$ be a function such that $\xi(k) = \min\{n \in \mathbb{N} | \Delta(n) \geq k\}$. For example, $\xi(2) = 2$, $\xi(3) = 4$, $\xi(4) = 6$, and so on.

Compute $\xi(5)$, $\xi(50)$, and $\xi(500)$.