IN2010 Oblig 1

4. september 2020

Innlevering

Last opp filene dine på Devilry. Innleveringsfristen er fredag 18. september 2020, kl. 23:59.

Vi anbefaler så mange som mulig om å sammarbeide i små grupper på *opp til tre*. Dere må selv opprette grupper i Devilry, og levere som en gruppe (altså, ikke last opp individuelt hvis dere jobber som en gruppe).

Filene som skal leveres er:

- Én PDF som skal hete IN2010-oblig1.pdf
- Én mappe som skal hete oppgave1/ som inneholder
 - Teque. java som inneholder main
 - (og eventuelt) så mange java-filer du ønsker
- Én mappe som skal hete oppgave3/ som inneholder
 - BalanceArray.java som inneholder en main
 - BalanceHeap.java som inneholder en main
 - (og eventuelt) så mange java-filer du ønsker

Oppgave 1: Teque

Oppgaven er hentet fra Kattis¹. Vi følger samme format på inputog output, slik at oppgaven deres kan lastes opp på Kattis, men dette er *ikke* et krav. Det er heller ikke nødvendig å oppfylle tidskravet som Kattis stiller.

¹https://open.kattis.com/problems/teque

Deque, eller double-ended queue, er en datastruktur som støtter effektiv innsetting på starten og slutten av en kø-struktur. Den kan også støtte effektivt oppslag på indekser med en array-basert implementasjon. (Merk at Java ikke tilbyr en Deque med effektiv oppslag på indekser.)

Dere skal utvide idéen om deque til teque, eller triple-ended queue, som i tillegg støtter effektiv innsetting i midten. Altså skal teque støtte følgende operasjoner:

 $push_back(x)$ sett elementet x inn bakerst i køen.

 $push_front(x)$ sett elementet x inn fremst i køen.

push_middle(x) sett elementet x inn i midten av køen. Det nylig insatte elementet x blir nå det nye midtelementet av køen. Hvis k er størrelsen på køen før innsetting, blir x satt inn på posisjon $\lfloor (k+1)/2 \rfloor$.

get(i) printer det i-te elementet i køen.

Merk at vi bruker 0-baserte indekser.

Input

Første linje av input består av et heltall N, der $1 \le N \le 10^6$, som angir hvor mange operasjoner som skal gjøres på køen.

Hver av de neste N linjene består av en streng S, etterfulgt av et heltall. Hvis S er push_back, push_front eller push_middle, så er S etterfulgt av et heltall x, slik at $1 \le x \le 10^9$. Hvis S er get, så S etterfult av et heltall i, slik at $0 \le i < (\text{størrelsen på køen})$.

Merk at du ikke trenger å ta høyde for ugyldig input på noen som helst måte, og du kan trygt anta at ingen get-operasjoner vil be om en indeks som overstiger størrelsen på køen.

Output

For hver $\mathsf{get} ext{-}\mathsf{operasjon},$ print verdien som ligger på den $i ext{-}\mathsf{te}$ indeksen av køen.

Eksempel-input	Eksempel-output
9	3
${\tt push_back}~9$	5
${\tt push_front}\ 3$	9
${\tt push_middle}\ 5$	5
${\sf get}\ 0$	1
get 1	
${ t get}\ 2$	
${\tt push_middle}\ 1$	
get 1	
${\sf get}\ 2$	

Oppgaver

- (a) Skriv et Java-program som leser input fra stdin og printer output slik som beskrevet ovenfor. Vi stiller ingen strenge krav til kjøretid. Du kan bruke hva du vil fra Java sitt standard-bibliotek.
- (b) Oppgi en verste-tilfelle kjøretidsanalyse av samtlige operasjoner (push_back, push_front, push_middle og get) ved å bruke O-notasjon. I analysen fjerner vi begrensningen på N, altså kan N være vilkårlig stor.
- (c) Hvis vi vet at N er begrenset, hvordan påvirker det kompleksiteten i Onotasjon?

Oppgave 2: Binærsøk

I forelesningen ble det nevnt at datastrukturen kan påvirke kjøretiden på en algoritme. Gi et worst-case estimat av algoritmen nedenfor, som implementerer binærsøk over lenkede lister. Oppgi estimatet ved bruk av O-notasjon. Hvordan påvirker valget av datastruktur kjøretidskompleksiteten i dette tilfellet?

```
Algorithm 1: Binærsøk med lenkede lister
   Input: En ordnet lenket liste A og et element x
    Output: Hvis x er i listen A, returner true ellers false
 1 Procedure BinarySearch(A, x)
        low \leftarrow 0
 2
        high \leftarrow |A| - 1
 3
        \mathbf{while} \ \mathsf{low} \leq \mathsf{high} \ \mathbf{do}
 4
             i \leftarrow \lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \rfloor
 5
             if A.get(i) = x then
 6
                  return true
             else if A.get(i) < x then
                 \mathsf{low} \leftarrow i + 1
 9
             else if A.get(i) > x then
10
                 \mathsf{high} \leftarrow i-1
11
        end
12
        return false
```

Oppgave 3: Bygge balanserte søketrær

I denne oppgaven ønsker vi å bygge et helt balansert binært søketre. Vi definerer dette som et tre hvor ingen løvnoder har forskjell i dybde på større enn 1. Dette binære søketreet er ikke selvbalanserende.

Du trenger ikke implementere et binært søketre. Alt du trenger å gjøre er å printe ut elementene du får som input i en rekkefølge som garanterer at vi får et balansert tre dersom vi legger elementene inn i binærtreet ved bruk av vanlig innsetting.

Eksempel-input	Eksempel-output
0	5
1	8
2	10
3	9
4	7
5	6
6	2
7	4
8	3
9	1
10	0
-	3 1 0

- (a) Du har fått et *sortert array* med heltall. Print ut elementene i en rekkefølge slik at hvis de blir plassert i et binært søketre i den rekkefølgen så resulterer dette i et *balansert* søketre.
- (b) Nå skal du løse det samme problemet ved bruk av *heap*. Input og output er det samme som i oppgave (a). Det første programmet ditt må gjøre er å plasere alle elementene på en PriorityQueue².

En viktig begrensning: Algoritmen din kan ikke bruke andre datastrukturer enn heap, men til gjengjeld kan du bruke så mange heaper du vil! De eneste operasjonene du trenger å bruke fra Java sin PriorityQueue (som implementerer en heap) er: size(), offer() og poll(). Merk at offer() svarer til push(), og poll() svarer til pop().

 $^{^2} https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html$