TARGET CASE STUDY

- Q.1 (a) Data types of the columns in a table.
- A.1 (a) Going through all the tables schema in the given dataset under the schema column, these are the following datatypes present:
 - > String
 - > Integer
 - > Float
 - > Time-Stamp

Output: Below is the schema of orderitems table which contains all the data types present in all other tables.

Q.1 (b) Time Period for which the data is given.

A.1 (b) Query:

```
SELECT distinct extract (year from order_purchase_timestamp) as yearr
,min(order_purchase_timestamp) as first_purchase
,max(order_purchase_timestamp) as last_purchase
FROM `casestudy111.Target_database.orders`
group by 1
order by yearr;
```

Output:

Insights: The time period of the data spreads from 4th September 2016 to 17th October 2018.

Q.1 (c) Cities and States of the customers that ordered during the given period.

A.1 (c) Query:

Output:

Row	customer_city //	customer_state	yearr //
1	itu	SP	2016
2	poa	SP	2016
3	bage	RS	2016
4	iacu	BA	2016
5	leme	SP	2016
6	lins	SP	2016
7	maua	SP	2016
8	cambe	PR	2016
9	cotia	SP	2016
10	macae	RJ	2016

Results per page: 50 ▼ 1 − 50 of 6974

Q.2 (a) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

A.2(a) Query:

SELECT extract(year from order_purchase_timestamp) as year,extract (month from order_purchase_timestamp) as month,count(order_id) as number_of_orders FROM `casestudy111.Target_database.orders` group by 1,2 order by year,month;

Output:

` '	JOB HYFORWATIO	N RESUL		EVECULIO
Row /	year //	month //	number_of_orde	
1	2016	9	4	
2	2016	10	324	
3	2016	12	1	
4	2017	1	800	
5	2017	2	1780	
6	2017	3	2682	
7	2017	4	2404	
8	2017	5	3700	
9	2017	6	3245	
10	2017	7	4026	
11	2017	8	4331	
		Results pe	er page: 50 ▼	1 – 25 of 25

Insights:

- From the above output as well as the graph a couple of things can be understood, firstly that we see a massive change in the number of orders from the year 2016 to 2017 in Brazil mainly because in 2016 Brazil suffered one of its worst recession hits and the GDP growth was -2.1%, hence we can see the number of orders in the last quarter of 2016 being almost negligible.
- > Secondly in the year 2017 there was labour market reform which strengthened incentives for job creation and hence due to more salaried individuals the retail shopping growth increased in Brazil which can be seen by the number of orders in 2017.

Q.2(b) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)? A.2(b) Query:

A.3 (a) Query:

```
select extract(YEAR from order_purchase_timestamp) as year
,extract(MONTH from order_purchase_timestamp) as month
,count(*) as num_orders
,cus.customer_state

from `Target_database.orders` ord
   join `Target_database.customers_table` cus
   on ord.customer_id=cus.customer_id
   group by 1,2,4
   order by 1,2;
```

Output:

Row	year ▼	month ▼	num_orders ▼	customer_state ▼
1	2016	9	1	RR
2	2016	9	1	RS
3	2016	9	2	SP
4	2016	10	113	SP
5	2016	10	24	RS
6	2016	10	56	RJ
7	2016	10	3	MT
8	2016	10	9	GO
9	2016	10	40	MG
10	2016	10	8	CE
	0047	4.0		0.0

Q.3 (b) Distribution of customers across the states in Brazil.

A.3 (b) Query:

```
select customer_state
,count(distinct customer_unique_id) as num_cust
from `Target_database.customers_table`
group by 1
order by 2 desc
```

Output:

Row	customer_state	num_cust
1	SP	40302
2	RJ	12384
3	MG	11259
4	RS	5277
5	PR	4882
6	SC	3534
7	BA	3277
8	DF	2075
9	ES	1964
10	GO	1952

Results per page: $50 \checkmark 1 - 27 \text{ of } 27$

Insights: The State Sao Paulo being the most populated state in Brazil drives in the most number of customers for Target throughout the country.

Q.4 (a) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) A.4 (a) Query:

```
with t1 as(
select extract(YEAR from order_purchase_timestamp) as year
   ,sum(p.payment_value) as t_2017
from `Target_database.orders` o
join `Target_database.payments` p
on o.order_id=p.order_id
        where extract(YEAR from order_purchase_timestamp) in (2017) and extract(MONTH from order_purchase_timestamp) not in (9,10,11,12)
group by 1
order by 1
     ),
     t2 as(
select extract(YEAR from order_purchase_timestamp) as year
   ,sum(p.payment_value) as t_2018
from `Target_database.orders` o
join `Target_database.payments` p
on o.order_id=p.order_id
     where extract(YEAR from order_purchase_timestamp) in (2018) and extract(MONTH from order_purchase_timestamp) not in (9,10,11,12)
group by 1
order by 1
    )
     select t1.t_2017,t2.t_2018,
     ((t2.t\_2018-t1.t\_2017)/(t1.t\_2017))*100 as per_change
     from t1,t2;
```

Output:

Q.4 (b) Mean & Sum of price and freight value by customer state. A.4 (b) Query:

```
select c.customer_state

,round(sum(freight_value),2) as freight_sum
,round(sum(price),2) as price_sum
,round(avg(freight_value),2) as freight_avg
,round(avg(price),2) as price_avg

from `Target_database.orderitems`o
join `Target_database.orders` orde
on o.order_id=orde.order_id
join `Target_database.customers_table` c
on orde.customer_id=c.customer_id
group by 1
order by 1
```

Output:

Quer	y results		đ	♣ SAVE RESULTS ▼ ★ EXPLORE DATA ▼			\$
< .	JOB INFORMATION	RESULTS	JSON	EXECUTION	ON DETAILS	EXECUTION GR	AI >
Row /	customer_state	fr	eight_sum	price_sum	freight_avg //	price_avg	11
1	AC		3686.75	15982.95	40.07	173.73	
2	AL		15914.59	80314.81	35.84	180.89	
3	AM		5478.89	22356.84	33.21	135.5	
4	AP		2788.5	13474.3	34.01	164.32	
5	ВА		100156.68	511349.99	26.36	134.6	
6	CE		48351.59	227254.71	32.71	153.76	
7	DF		50625.5	302603.94	21.04	125.77	
8	ES		49764.6	275037.31	22.06	121.91	
9	GO		53114.98	294591.95	22.77	126.27	
10	MA		31523.77	119648.22	38.26	145.2	
11	MG		270853.46	1585308.03	20.63	120.75	
		Re	sults per page	: 50 ▼	1 – 27 of 27 	< < >	>1

Q.5(a) Calculate days between purchasing, delivering and estimated delivery. A.5(a) Query:

```
select order_id

,date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY) AS actual_delivery
,date_diff(order_estimated_delivery_date,order_purchase_timestamp,DAY) AS estimated_delivery

from `Target_database.orders`
where order_status='delivered';
```

Output:

Q.5 (b) Find time_to_delivery & diff_estimated_delivery. A.5 (b) Query:

```
select order_id
```

,date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY) AS time_to_delivery ,date_diff(order_estimated_delivery_date,order_delivered_customer_date,DAY) AS diff_estimated_delivery

 $from `Target_database.orders`;\\$

Output:

Q.5(c) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

> Top 5 states with highest average freight value - sort in desc limit 5

Query:

Output:

limit 5

Query results

> Top 5 states with highest average time to delivery.

Query:

Output:

JOB IN	FORMATION	RESULTS	JSON EX	E
Row	customer_state	•	time_to_delivery	
1	RR		27.83	
2	AP		27.75	
3	AM		25.96	
4	AL		23.99	
5	PA		23.3	
6	MA		21.2	
7	SE		20.98	
8	CE		20.54	
9	AC		20.33	
10	PB		20.12	
11	RO		19 28	

> Top 5 states where delivery is not so fast compared to estimated date.

Query:

```
select c.customer_state
,round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,DAY)),2) AS diff_estimated_delivery
,round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY)),2) AS time_to_delivery
,round(avg(freight_value),2) as average_freight

from `Target_database.orders` o
    join `Target_database.orderitems` orde
    on o.order_id=orde.order_id
    join `Target_database.customers_table` c
    on o.customer_id=c.customer_id
    group by 1
    order by 2 ASC
```

Output:

Row	customer_state ▼	diff_estimated_delive
1	AL	7.98
2	MA	9.11
3	SE	9.17
4	ES	9.77
5	BA	10.12
6	CE	10.26
7	SP	10.27
8	MS	10.34
9	SC	10.67
10	PI	10.68

Q.6 (a) Month over Month count of orders for different payment types. A.6 (a) Query:

```
select extract(YEAR from order_purchase_timestamp) as year

,extract(MONTH from order_purchase_timestamp) as month
,count(*) as num_orders
,p.payment_type

from `Target_database.orders` o
 join `Target_database.payments` p
 on o.order_id=p.order_id
 group by 1,2,4
 order by 1,2;
```

Output:

2016 2016 2016 2016 2016	9 10 10 10	3 254 63 23 2	credit_card credit_card UPI voucher debit_card
2016 2016 2016	10 10	63 23	UPI voucher
2016 2016	10	23	voucher
2016			
	10	2	debit_card
0016			
2016	12	1	credit_card
2017	1	583	credit_card
2017	1	197	UPI
2017	1	61	voucher
2017	1	9	debit_card
	_	1356	credit card
		2017 1 2017 2	

Insights: From the output and the graph we can see the payment type for the various order made from September 2016 to October 2018 we can see how credit card is the most used payment method and due to growth in technology UPI being the second most used payment type.

Q.6 (b) Count of orders based on the no. of payment installments.

A.6 (b) Query:

```
select extract(YEAR from order_purchase_timestamp) as year

,extract(MONTH from order_purchase_timestamp) as month
,count(*) as num_orders
,p.payment_installments

from `Target_database.orders` o
    join `Target_database.payments` p
    on o.order_id=p.order_id
    group by 1,2,4
    order by 1,2,4;
```

Output:

<		IOB INFOR	RMATIO	N	RESUL	rs Json	EXECUTION DETAIL
Row	1.	year	11	month	h	num_orders //	payment_installments
1			2016		9	1	1
2	2		2016		9	1	2
3	3		2016		9	1	3
4	ļ		2016		10	144	1
5	5		2016		10	30	2
6	6		2016		10	43	3
7	,		2016		10	26	4
8	3		2016		10	20	5
9)		2016		10	18	6
10)		2016		10	13	7
11			2016		10	3	8
10			0016		10	^	^

INSIGHTS

After performing in depth Exploratory Data Analysis on the Target_Brazil dataset these are the multiple insights that I have gathered:

- ➤ The data involves customers and their multiple orders made by them at the Target retail store over the years 2016-2018.
- ➤ 2016 being the year where Brazil was hit with severe recession, the GDP growth being <u>-2.1%</u>, the number of orders made throughout the last quarter was negligible.
- Moreover 2017 being the year <u>where labour market reforms</u> took place due to which incentives for job creations were strengthened and hence there is an immense increase in the retail market thus an immense growth can be seen from coming out of the recession period in the Target sales.
- ➤ Sao Paolo (SP) being the most populated state drives the maximum number of customers (40,302) where as SP was also the state where maximum of the orders was sold by the sellers (70,188)
- > Post analysis the Product category with the maximum orders were: Bed Table Bath, Health Beauty & Sport Leisure.
- > Product Category with minimum orders were: <u>Insurance & Services</u>, <u>Fashion-Children's Clothing & PC gamers</u>.
- Maximum sales revenue was generated by the Health & Beauty category.
- ➤ Apart from Credit Card there is quite an increase in the use of UPI as a payment type and almost every transaction made was done via installments.

RECOMMENDATIONS

- In order to increase revenue as well as increase number of orders the first step of action would be to <u>boost the</u> <u>categories with least orders</u> in the form of fancy marketing and ads. For e.g., Fashion Children's clothing is something that could be boosted very easily by making sure we are showcasing different clothes on the website as per seasonal change, every parent keeps their child first and would definitely go for that.
- Secondly Brazil being a massive footballing nation is always going to worship Football. <u>The Sport Leisure category could definitely become the top revenue</u> category of Target if we focus on good branding and good marketing/deals based on the football season.
- Lastly with growing technology we can see how UPI is becoming the go-to for every customer with a sudden increase in the payment type, how we can benefit from this is as via the data we can see the number of customers using the installments option making schemes and certain campaigns promoting No-cost E.M.I option and certain cashback option on the purchase of certain products via CC or UPI would definitely attract more customers as well.