Logic, First Course, Winter 2020. Week 4, Lecture 1, Handout.

a = "Alyssa"b = "Bryan"

d = "Daisy"

c = "Christina"

Predicate logic and atomic statements

L = "is a lawyer" M = "is a musician" H = "likes hockey" S = "likes soccer"	
The name 'Predicate logic' comes from the idea that thing properties. When paired with objects, they form propositi predicate logic extends propositional logic.	
Alyssa is a lawyer and Bryan is a musician.	
Alyssa is not a musician and Bryan is not a law	yer.
]
If Christina likes hockey then Daisy likes hocke	y.

Christina likes hockey or Daisy likes soccer.

Motivating quantifiers

Consider the following three sentences:

Sentence

Alyssa is nice.

Someone is nice.

Eveyrone is nice.

The quantifiers

Our solution is to translate these as follows, where we follow the key that Nx = x is nice, and a = Alyssa:

Sentence	Translation	Typed	Pronunciation	Colloquial pronunciation
Alyssa is nice.	Na	Na	Na	a has N
Someone is nice.	∃ <i>x Nx</i> .	ExNx	There is <i>x</i> such that <i>Nx</i>	There is x such that x has N
Everyone is nice.	∀ x Nx	AxNx	For all x (pause), Nx	For all x (pause), x has N

In this we use the following symbols:

Symbol Name Handwritten Typed

Multiple variables

The existential quantifier is a way of saying that *there is* a solution which makes the corresponding "equation" true. Let's first practice with respect to the following familiar key:

If someone is a lawyer, then Alyssa is a lawyer or Bryan is a lawyer. If someone is a lawyer and someone is a musician, then Alyssa is a lawyer and Daisy is a musician. If someone likes soccer and is a musician, then Christina likes soccer and Christina is a musician, or Daisy likes soccer and Daisy is a musician. The universal quantifier is usually a way of stating generalizations or laws. It is a way of saying that everyone/everything has to have some property or feature. Let's translate with the following key: a = "Alyssa" b = "Bryan" c = "Christina" d = "Daisy" C = "is drinking coffee" T = "is drinking tea" W = "is wide awake" If everyone is drinking coffee or tea, then everyone is wide awake.

	everyone is drinking coffee or everyone is drinking tea, then everyone is ide awake.
	veryone drinking coffee or everyone drinking tea is a sufficient condition or everyone drinking coffee or tea.
	veryone drinking coffee or everyone drinking tea is not a sufficient ondition for everyone drinking coffee or for everyone drinking tea.
D Ca	aisy is not drinking coffee and Christina is not drinking tea, and it is not the ase that everyone is drinking coffee or everyone is drinking tea.
e	are some examples with multiple universal quantifiers.
	everyone is drinking coffee and everyone is wide awake, then Bryan is rinking coffee and Bryan is wide awake.
	everyone is wide awake and not everyone is drinking tea, then Bryan is rinking coffee.

If Daisy is not wide awake and Daisy is not drinking tea, then not everyone is wide awake and not everyone is drinking tea.

Translation schemas

Quantifiers are also very good at capturing the truth-conditions of statements about "some" and "all" which connect two properties. Here are some common translation schemas:

Schema	Translation	Schema Negated	Translation of Negation
Some F are G	$\exists x (Fx \land Gx)$	No F are G	$\neg (\exists x (Fx \land Gx))$
Some F are not G	$\exists x (Fx \land \neg Gx)$	No F are not G	$\neg (\exists x (Fx \land \neg Gx))$
All F are G	$\forall \ x \ (Fx \to Gx)$	Not all <i>F</i> are <i>G</i>	$\neg(\forall \ x \ (Fx \to Gx))$
All <i>F</i> are not <i>G</i>	$\forall \ x \ (Fx \to \neg Gx)$	Not all <i>F</i> are <i>G</i>	$\neg (\forall x (Fx \to Gx))$

Note that in these schemas the "some"-statements are translated with an existential quantifier together with a conjunction, while the "all"-statements are translated with a universal quantifier together with an arrow statement.

Let us practice with these translation schemas with respect to the following examples:

C = "is cheerful"

F = "is festive"

G = "is a geography major"

L = "is a law student"

R = "is relaxed"

T = "likes table-tennis"

Е	every law student is cheerful and some geography majors are cheerful.	
n the following, remember that "but" would just be translated by "and":		
S	Some geography majors are relaxed but no law students are relaxed.	
S	Some geography majors are not festive, but no law students are not festive.	
٨	lot all law students like table-tennis.	
lf	all law students are relaxed, then all geography majors are festive.	
lf	all law students are cheerful, then some law students are festive.	

These is a handout written for Logic, First Course, Winter 2020. It is run on the Carnap software, which is an:

An Open Tower project. Copyright 2015-2019 G. Leach-Krouse <gleachkr@ksu.edu> and J.

