

Matemática Básica

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Fevereiro de 2020

- Introdução
- 2 Proposições
- 3 Conectivos
- 4 Valores Lógicos
- Tabela Verdade
- Operações Lógicas
- Construção de Tabelas Verdade

Introdução

 A lógica é o ramo da Filosofia e da Matemática que estuda os métodos e princípios que permitem fazer distinção entre raciocínios válidos e não válidos, determinando o processo que leva ao conhecimento verdadeiro

Introdução

 A lógica é o ramo da Filosofia e da Matemática que estuda os métodos e princípios que permitem fazer distinção entre raciocínios válidos e não válidos, determinando o processo que leva ao conhecimento verdadeiro

Introdução

 A história da Lógica tem início com o filósofo grego Aristóteles (384 - 322 a.C.)

- A história da Lógica tem início com o filósofo grego Aristóteles (384 - 322 a.C.)
- Apresentou regras para que um raciocínio esteja encadeado corretamente, chegando a conclusões verdadeiras a partir de premissas verdadeiras

Introdução

 No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural

- No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural
 - Bastante imprecisa e tornaria a lógica vulnerável a erros de deduções

- No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural
 - Bastante imprecisa e tornaria a lógica vulnerável a erros de deduções
 - A flecha que voa nunca sai do lugar, pois, em cada instante de tempo ocupa uma só posição no espaço. Logo, ela está imóvel em todo o tempo

- No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural
 - Bastante imprecisa e tornaria a lógica vulnerável a erros de deduções
 - A flecha que voa nunca sai do lugar, pois, em cada instante de tempo ocupa uma só posição no espaço. Logo, ela está imóvel em todo o tempo – PARADOXO DE ZENÃO

- No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural
 - Bastante imprecisa e tornaria a lógica vulnerável a erros de deduções
 - A flecha que voa nunca sai do lugar, pois, em cada instante de tempo ocupa uma só posição no espaço. Logo, ela está imóvel em todo o tempo – PARADOXO DE ZENÃO
- Criação da lógica simbólica, formada por uma linguagem estrita e universal, constituída por símbolos específicos

- No entanto, no século XIX, alguns matemáticos e filósofos começaram a perceber que a lógica formal era insuficiente para alcançar o rigor necessário no estudo da matemática, pois utilizava a linguagem natural
 - Bastante imprecisa e tornaria a lógica vulnerável a erros de deduções
 - A flecha que voa nunca sai do lugar, pois, em cada instante de tempo ocupa uma só posição no espaço. Logo, ela está imóvel em todo o tempo – PARADOXO DE ZENÃO
- Criação da lógica simbólica, formada por uma linguagem estrita e universal, constituída por símbolos específicos
- Linguagem rigorosa e livre de ambiguidades

Sentenças ou Proposições

 Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo

- Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo
- Frase que pode ser verdadeira ou falsa

- Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo
- Frase que pode ser verdadeira ou falsa
- Transmitem pensamentos: afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes

- Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo
- Frase que pode ser verdadeira ou falsa
- Transmitem pensamentos: afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes
- Exemplos
 - Vasco da Gama descobriu o Brasil

- Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo
- Frase que pode ser verdadeira ou falsa
- Transmitem pensamentos: afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes
- Exemplos
 - Vasco da Gama descobriu o Brasil
 - A Lua é um satélite da Terra

- Todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo
- Frase que pode ser verdadeira ou falsa
- Transmitem pensamentos: afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes
- Exemplos
 - Vasco da Gama descobriu o Brasil
 - A Lua é um satélite da Terra
 - Fortaleza é a capital do Ceará

Sentenças ou Proposições

• Exercício. Considere as seguintes frases e decida se elas são proposições ou não:

- Exercício. Considere as seguintes frases e decida se elas são proposições ou não:
 - Dez é menor que sete

- Exercício. Considere as seguintes frases e decida se elas são proposições ou não:
 - Dez é menor que sete
 - Como você vai?

- Exercício. Considere as seguintes frases e decida se elas são proposições ou não:
 - Dez é menor que sete
 - Como você vai?
 - Existem formas de vida em outros planetas do universo

- Exercício. Considere as seguintes frases e decida se elas são proposições ou não:
 - Dez é menor que sete
 - Como você vai?
 - Existem formas de vida em outros planetas do universo
- A lógica proposicional estende a lógica formal aristotélica, acrescentando-lhe uma linguagem simbólica que proporciona maior precisão e expressividade

- Exercício. Considere as seguintes frases e decida se elas são proposições ou não:
 - Dez é menor que sete
 - Como você vai?
 - Existem formas de vida em outros planetas do universo
- A lógica proposicional estende a lógica formal aristotélica, acrescentando-lhe uma linguagem simbólica que proporciona maior precisão e expressividade
- A lógica proposicional relaciona os juízos de verdadeiro ou falso entre várias proposições, independente do significado de cada uma delas

Sentenças ou Proposições

• A Lógica Matemática adota como regras fundamentais do pensamento os seguintes princípios (ou axiomas)

- A Lógica Matemática adota como regras fundamentais do pensamento os seguintes princípios (ou axiomas)
 - PRINCÍPIO DA NÃO CONTRADIÇÃO: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo

- A Lógica Matemática adota como regras fundamentais do pensamento os seguintes princípios (ou axiomas)
 - 1 PRINCÍPIO DA NÃO CONTRADIÇÃO: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo
 - PRINCÍPIO DO TERCEIRO EXCLUÍDO: Toda proposição ou é verdadeira ou é falsa

- A Lógica Matemática adota como regras fundamentais do pensamento os seguintes princípios (ou axiomas)
 - 1 PRINCÍPIO DA NÃO CONTRADIÇÃO: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo
 - 2 PRINCÍPIO DO TERCEIRO EXCLUÍDO: Toda proposição ou é verdadeira ou é falsa
- A Lógica Matemática é uma lógica bivalente

Proposições Simples e Proposições Compostas

 Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma

- Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma
- As **proposição simples** geralmente são designadas pelas letras latinas minúsculas **p**, **q**, **r**, **s**,....

- Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma
- As proposição simples geralmente são designadas pelas letras latinas minúsculas p, q, r, s,....
 - Letras proposicionais

- Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma
- As proposição simples geralmente são designadas pelas letras latinas minúsculas p, q, r, s,....
 - Letras proposicionais
- Exemplos.
 - p: Carlos é careca

- Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma
- As proposição simples geralmente são designadas pelas letras latinas minúsculas p, q, r, s,....
 - Letras proposicionais
- Exemplos.
 - p: Carlos é careca
 - q: Pedro é estudante

- Chama-se proposição simples ou atômica aquela que não contém nenhuma outra proposição como parte integrante de si mesma
- As proposição simples geralmente são designadas pelas letras latinas minúsculas p, q, r, s,....
 - Letras proposicionais
- Exemplos.
 - p: Carlos é careca
 - q: Pedro é estudante
 - r: 25 é um quadrado perfeito

Proposições Simples e Proposições Compostas

 Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples

- Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples
- As **proposição compostas** geralmente são designadas pelas letras latinas maiúsculas P, Q, R, S,....

- Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples
- As **proposição compostas** geralmente são designadas pelas letras latinas maiúsculas P, Q, R, S,....
 - Letras proposicionais

- Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples
- As proposição compostas geralmente são designadas pelas letras latinas maiúsculas P, Q, R, S,....
 - Letras proposicionais
- Exemplos.
 - P: Carlos é careca e Pedro é estudante

- Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples
- As proposição compostas geralmente são designadas pelas letras latinas maiúsculas P, Q, R, S,....
 - Letras proposicionais
- Exemplos.
 - P: Carlos é careca e Pedro é estudante
 - Q: Carlos é careca ou Pedro é estudante

- Chama-se proposição composta ou molecular aquela formada pela combinação de duas ou mais proposições simples
- As proposição compostas geralmente são designadas pelas letras latinas maiúsculas P, Q, R, S,....
 - Letras proposicionais
- Exemplos.
 - P: Carlos é careca e Pedro é estudante
 - Q: Carlos é careca ou Pedro é estudante
 - R: Se Pedro é estudante, então é feliz

Conectivos Lógicos

• Chama-se **conectivos** palavras usadas para formar novas proposições a partir de outras

Conectivos Lógicos

- Chama-se **conectivos** palavras usadas para formar novas proposições a partir de outras
- Exemplos.
 - P: Carlos é careca e Pedro é estudante
 - Q: Carlos é careca ou Pedro é estudante
 - R: Se Pedro é estudante, então é feliz
 - S: Não está chovendo
 - T: O triângulo ABC é equilátero, se e somente se, é equiângulo

Conectivos Lógicos

- Chama-se conectivos palavras usadas para formar novas proposições a partir de outras
- Exemplos.
 - P: Carlos é careca e Pedro é estudante
 - Q: Carlos é careca ou Pedro é estudante
 - R: Se Pedro é estudante, então é feliz
 - S: Não está chovendo
 - T: O triângulo ABC é equilátero, se e somente se, é equiângulo
- Os conectivos usuais em Lógica Matemática
 "e". "ou". "não", "se ... então", "se e somente se ..."

Valores Lógicos das Proposições

• Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico:

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico: V(p) = V
 - q: O Sol gira em torno da Terra

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico: V(p) = V
 - q: O Sol gira em torno da Terra Valor lógico:

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico: V(p) = V
 - q: O Sol gira em torno da Terra Valor lógico: V(q)=F

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico: V(p) = V
 - ullet q: O Sol gira em torno da Terra Valor lógico: V(q)=F
 - r: 2 é raiz da equação $x^2 + 3x 4 = 0$

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - p: O mercúrio é mais pesado que a água Valor lógico: V(p) = V
 - ullet q: O Sol gira em torno da Terra Valor lógico: V(q)=F
 - r: 2 é raiz da equação $x^2 + 3x 4 = 0$ Valor lógico:

- Chama-se valor lógico de uma proposição p e indica-se por V(p) a verdade (V) se a proposição é verdadeira e a falsidade se a proposição é falsa (F)
- Assim, o que o princípio da não contradição e do terceiro excluído afirmam é que:
 - Toda a proposição tem um, e só um, dos valores V, F
- Exemplos. Considere as proposições:
 - • p: O mercúrio é mais pesado que a água - Valor lógico: V(p) = V
 - ullet q: O Sol gira em torno da Terra Valor lógico: V(q)=F
 - r: 2 é raiz da equação $x^2 + 3x 4 = 0$ Valor lógico: V(r) = F

Tabela Verdade

 Pelo Princípio do Terceiro Excluído, toda proposição simples p é verdadeira ou é falsa

 Pelo Princípio do Terceiro Excluído, toda proposição simples p é verdadeira ou é falsa

	p
1	V
2	F

 Pelo Princípio do Terceiro Excluído, toda proposição simples p é verdadeira ou é falsa

	p
1	V
2	\overline{F}

 O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes, ficando por eles univocamente determinando

 Pelo Princípio do Terceiro Excluído, toda proposição simples p é verdadeira ou é falsa

	p
1	V
2	F

- O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes, ficando por eles univocamente determinando
- Para determinar o valor lógico de uma proposição composta dada, quase sempre usa-se um dispositivo denominado tabela verdade

 Pelo Princípio do Terceiro Excluído, toda proposição simples p é verdadeira ou é falsa

	p
1	V
2	F

- O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes, ficando por eles univocamente determinando
- Para determinar o valor lógico de uma proposição composta dada, quase sempre usa-se um dispositivo denominado tabela verdade
 - Dispõe-se todos os valores lógicos possíveis da proposição composta correspondentes a todas as possíveis atribuições de valores lógicos às proposições simples componentes

Tabela Verdade

Tabela Verdade

	p	q
1	V	V

Tabela Verdade

	p	q
1	V	V
2	V	F

Tabela Verdade

	p	q
1	V	V
2	V	F
3	F	V

	p	q
1	V	V
2	V	F
3	F	V
4	F	\overline{F}

Tabela Verdade

Tabela Verdade

	p	q	r
1	V	V	V

Tabela Verdade

	p	q	r
1	V	V	V
2	V	V	F

Tabela Verdade

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V

Tabela Verdade

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F

Tabela Verdade

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V

Tabela Verdade

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V
6	F	V	F

Lógica

Tabela Verdade

ullet Exemplos. Considere uma proposição composta cujas proposições simples componentes são $p,\ q$ e r

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V
6	F	V	F
7	F	F	V

Lógica

Tabela Verdade

ullet Exemplos. Considere uma proposição composta cujas proposições simples componentes são $p,\ q$ e r

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V
6	F	V	F
7	F	F	V
8	F	F	F

Negação (\sim)

 Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira

- Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira
- ullet "Não p" tem o valor lógico oposto daquele de p

- Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira
- ullet "Não p" tem o valor lógico oposto daquele de p
- ullet A negação de p indica-se com a notação " $\sim p$ "

- Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira
- ullet "Não p" tem o valor lógico oposto daquele de p
- A negação de p indica-se com a notação " $\sim p$ "
- O valor lógico da negação de uma proposição é dado pela seguinte tabela verdade

p	$\sim p$
V	F
F	V

Negação (\sim)

- Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira
- ullet "Não p" tem o valor lógico oposto daquele de p
- A negação de p indica-se com a notação " $\sim p$ "
- O valor lógico da negação de uma proposição é dado pela seguinte tabela verdade

p	$\sim p$
V	F
F	V

• $V(\sim p) = \sim V(p)$

- Chama-se negação de uma proposição p a proposição representada por "não p" cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira
- ullet "Não p" tem o valor lógico oposto daquele de p
- ullet A negação de p indica-se com a notação " $\sim p$ "
- O valor lógico da negação de uma proposição é dado pela seguinte tabela verdade

p	$\sim p$
V	F
F	V

•
$$V(\sim p) = \sim V(p)$$

$$\bullet \sim V = F, \sim F = V$$

- Exemplos:
 - ① p: Roma é capital da França

- Exemplos:
 - $oldsymbol{0}$ p : Roma é capital da França (F)

- Exemplos:

- Exemplos:

- Exemplos:
 - ① p: Roma é capital da França (F) $\sim p$: Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$

- Exemplos:
 - ① p: Roma é capital da França (F) $\sim p:$ Roma **não** é capital da França (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França

Negação (\sim)

Exemplos:

① p: Roma é capital da França - (F) $\sim p:$ Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França

Negação (\sim)

Exemplos:

① p: Roma é capital da França - (F) $\sim p:$ Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França ② q:2+3=5

Negação (\sim)

• Exemplos:

① p: Roma é capital da França - (F) $\sim p:$ Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França ② q:2+3=5 - (V)

Negação (\sim)

Exemplos:

① p: Roma é capital da França - (F) $\sim p:$ Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França ② q:2+3=5 - (V) $\sim q:2+3\neq 5$

Negação (\sim)

Exemplos:

① p: Roma é capital da França - (F) $\sim p:$ Roma **não** é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ **Não é verdade que** Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França ② q:2+3=5-(V) $\sim q:2+3\neq 5-(F)$

Negação (\sim)

- 1 p: Roma é capital da França (F) $\sim p:$ Roma não é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ Não é verdade que Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França 2 a: 2+3=5-(V)
- ② q: 2+3=5 (V) $\sim q: 2+3 \neq 5$ - (F) $V(\sim q) = \sim V(q) = \sim V = F$

Negação (\sim)

- 1 p: Roma é capital da França (F) $\sim p:$ Roma não é capital da França - (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ Não é verdade que Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França
- ② q: 2+3=5-(V) $\sim q: 2+3 \neq 5-(F)$ $V(\sim q) = \sim V(q) = \sim V = F$

Negação (\sim)

- ① p: Roma é capital da França (F) $\sim p:$ Roma não é capital da França (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ Não é verdade que Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França
- ② q: 2+3=5-(V) $\sim q: 2+3 \neq 5-(F)$ $V(\sim q) = \sim V(q) = \sim V = F$
- $\begin{tabular}{ll} \hline \textbf{3} & r: {\sf Todos} \ {\sf os} \ {\sf homens} \ {\sf s\~ao} \ {\sf elegantes} \\ & \sim r: {\sf Nem} \ {\sf todos} \ {\sf os} \ {\sf homens} \ {\sf s\~ao} \ {\sf elegantes} \\ \end{tabular}$

Negação (\sim)

- ① p: Roma é capital da França (F) $\sim p:$ Roma não é capital da França (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ Não é verdade que Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França
- ② q: 2+3=5 (V) $\sim q: 2+3 \neq 5$ - (F) $V(\sim q) = \sim V(q) = \sim V = F$
- $oldsymbol{4}$ s : Nenhum homem é elegante

Negação (\sim)

• Exemplos:

- ① p: Roma é capital da França (F) $\sim p:$ Roma não é capital da França (V) $V(\sim p) = \sim V(p) = \sim F = V$ $\sim p:$ Não é verdade que Roma é a capital da França $\sim p:$ É falso que Roma é a capital da França
- ② q: 2+3=5 (V) $\sim q: 2+3 \neq 5$ - (F) $V(\sim q) = \sim V(q) = \sim V = F$
- 4 s: Nenhum homem é elegante $\sim s$: Algum homem é elegante

Negação e Conjuntos

 A operação de negação lógica está relacionada com o complemento de um conjunto

Negação e Conjuntos

 A operação de negação lógica está relacionada com o complemento de um conjunto

 $\bullet \sim A = \{x \in U | x \notin A\}$

Negação e Conjuntos

 A operação de negação lógica está relacionada com o complemento de um conjunto

- - p:x pertence a A

Negação e Conjuntos

 A operação de negação lógica está relacionada com o complemento de um conjunto

- $\bullet \sim A = \{x \in U | x \notin A\}$
 - p:x pertence a A
 - $\bullet \sim p: x$ não pertence a A

Conjunção (∧)

 Chama-se conjunção de duas proposições p e q a proposição representada por "p e q" cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos

- Chama-se conjunção de duas proposições p e q a proposição representada por "p e q" cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- \bullet A conjunção "p e q " indica-se com a notação " $p \wedge q$ "

- Chama-se conjunção de duas proposições p e q a proposição representada por "p e q" cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- ullet A conjunção "p e q" indica-se com a notação " $p \wedge q$ "
- O valor lógico da conjunção de duas proposições é dado pela seguinte tabela verdade

- Chama-se conjunção de duas proposições p e q a proposição representada por "p e q" cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- ullet A conjunção "p e q" indica-se com a notação " $p \wedge q$ "
- O valor lógico da conjunção de duas proposições é dado pela seguinte tabela verdade

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Conjunção (∧)

- Chama-se conjunção de duas proposições p e q a proposição representada por "p e q" cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- \bullet A conjunção "p e q " indica-se com a notação " $p \wedge q$ "
- O valor lógico da conjunção de duas proposições é dado pela seguinte tabela verdade

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

• $V(p \wedge q) = V(p) \wedge V(q)$

- Exemplos:
 - $\mathbf{0}$ p: A neve é branca

- Exemplos:
 - lacksquare p: A neve é branca <math>(V)

Conjunção (∧)

• Exemplos:

Conjunção (∧)

- Exemplos:
 - ① p: A neve 'e branca (V) q: 2 < 5 (V)

Conjunção (∧)

• Exemplos:

 $\bullet \ p: \mbox{A neve \'e branca - } (V)$

q: 2 < 5 - (V)

 $p \wedge q$: A neve é branca $\mathbf{e} \ 2 < 5$

Conjunção (∧)

• Exemplos:

 $\begin{array}{l} \textbf{0} \quad p: \mbox{A neve \'e branca - } (V) \\ q: 2 < 5 \text{ - } (V) \\ p \wedge q: \mbox{A neve \'e branca } \textbf{e} \ 2 < 5 \\ V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V \end{array}$

Conjunção (∧)

Exemplos:

```
① p: A neve é branca - (V) q: 2 < 5 - (V) p \wedge q: A neve é branca e 2 < 5 V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V ② p: \pi > 4
```

Conjunção (∧)

```
① p: A neve é branca - (V) q: 2 < 5 - (V) p \wedge q: A neve é branca e 2 < 5 V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V ② p: \pi > 4 - (F)
```

Conjunção (∧)

• Exemplos:

 $\begin{array}{l} \bullet \quad p: \mbox{A neve \'e branca - } (V) \\ q: 2 < 5 - (V) \\ p \wedge q: \mbox{A neve \'e branca e } 2 < 5 \\ V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V \\ \bullet \quad p: \pi > 4 - (F) \\ q: 7 \'e \mbox{um n\'umero primo} \end{array}$

Conjunção (∧)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \wedge q: A$ neve é branca e 2 < 5 $V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V)

Conjunção (∧)

```
1 p: A neve é branca - (V) q:2<5 - (V) p \wedge q: A neve é branca e 2<5 V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V 2 p:\pi>4 - (F) q:7 é um número primo - (V) p \wedge q:\pi>4 e 7 é um número primo
```

Conjunção (∧)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \wedge q: A$ neve é branca $\mathbf{e} \ 2 < 5$ $V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V$ ② $p: \pi > 4 - (F)$ q: 7 é um número primo - (V) $p \wedge q: \pi > 4$ $\mathbf{e} \ 7$ é um número primo $V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F$

Conjunção (∧)

• Exemplos:

1 p: A neve é branca - (V) q:2<5 - (V) $p \land q:$ A neve é branca **e** 2<5 $V(p \land q) = V(p) \land V(q) = V \land V = V$ **2** $p:\pi>4$ - (F) q:7 é um número primo - (V) $p \land q:\pi>4$ **e** 7 é um número primo $V(p \land q) = V(p) \land V(q) = F \land V = F$ **3** $p:sen \frac{\pi}{2} = 0$

Conjunção (∧)

```
\begin{array}{l} \textbf{1} & p: \text{A neve \'e branca - } (V) \\ & q: 2 < 5 \text{ - } (V) \\ & p \wedge q: \text{A neve \'e branca } \textbf{e} \ 2 < 5 \\ & V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V \\ \textbf{2} & p: \pi > 4 \text{ - } (F) \\ & q: 7 \text{ \'e um n\'umero primo - } (V) \\ & p \wedge q: \pi > 4 \text{ e} \ 7 \text{ \'e um n\'umero primo} \\ & V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F \\ \textbf{3} & p: sen \ \frac{\pi}{2} = 0 \text{ - } (F) \end{array}
```

Conjunção (∧)

```
1 p: A neve é branca - (V) q: 2 < 5 - (V) p \wedge q: A neve é branca e 2 < 5 V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V 2 p: \pi > 4 - (F) q: 7 é um número primo - (V) p \wedge q: \pi > 4 e 7 é um número primo V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F 3 p: sen \frac{\pi}{2} = 0 - (F) q: cos \frac{\pi}{2} = 1
```

Conjunção (∧)

• Exemplos:

 $\begin{array}{l} \textbf{1} & p: \text{A neve \'e branca - }(V) \\ & q: 2 < 5 \text{ - }(V) \\ & p \land q: \text{A neve \'e branca } \textbf{e} \ 2 < 5 \\ & V(p \land q) = V(p) \land V(q) = V \land V = V \\ \textbf{2} & p: \pi > 4 \text{ - }(F) \\ & q: 7 \text{ \'e um n\'umero primo - }(V) \\ & p \land q: \pi > 4 \text{ e} \ 7 \text{ \'e um n\'umero primo} \\ & V(p \land q) = V(p) \land V(q) = F \land V = F \\ \textbf{3} & p: sen \frac{\pi}{2} = 0 \text{ - }(F) \\ & q: cos \frac{\pi}{2} = 1 \text{ - }(F) \\ \end{array}$

Conjunção (∧)

```
1 p: A neve é branca - (V) q: 2 < 5 - (V) p \wedge q: A neve é branca e 2 < 5 V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V 2 p: \pi > 4 - (F) q: 7 é um número primo - (V) p \wedge q: \pi > 4 e 7 é um número primo V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F 3 p: sen \frac{\pi}{2} = 0 - (F) q: cos \frac{\pi}{2} = 1 - (F) p \wedge q: sen \frac{\pi}{2} = 0 e cos \frac{\pi}{2} = 1
```

Conjunção (∧)

```
\bullet p : A neve é branca - (V)
    q:2<5-(V)
    p \wedge q: A neve é branca e 2 < 5
    V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V
2 p: \pi > 4 - (F)
    q:7 é um número primo - (V)
    p \wedge q : \pi > 4 e 7 é um número primo
    V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F
3 p: sen \frac{\pi}{2} = 0 - (F)
    q : \cos \frac{\pi}{2} = 1 - (F)
    p \wedge q : sen \frac{\pi}{2} = 0 e cos \frac{\pi}{2} = 1
    V(p \wedge q) = V(p) \wedge V(q) = F \wedge F = F
```

Conjunção e Conjuntos

Conjunção e Conjuntos

 A operação de conjunção lógica está relacionada com a interseção de conjuntos

• $x \in A \cap B$, se $x \in A$ e $x \in B$

Conjunção e Conjuntos

- $x \in A \cap B$, se $x \in A$ e $x \in B$
 - p:x pertence a A

Conjunção e Conjuntos

- $x \in A \cap B$, se $x \in A$ e $x \in B$
 - ullet p:x pertence a A
 - q:x pertence a B

Conjunção e Conjuntos

- $x \in A \cap B$, se $x \in A$ e $x \in B$
 - p:x pertence a A
 - ullet q:x pertence a B
 - $p \wedge q : x$ pertence a A **e** x pertence a B

Disjunção (∨)

Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q" cujo valor lógico é a verdade (V) quando ao menos uma proposição p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas

- Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q" cujo valor lógico é a verdade (V) quando ao menos uma proposição p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas
- \bullet A disjunção "p ou q " indica-se com a notação " $p\vee q$ "

- Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q" cujo valor lógico é a verdade (V) quando ao menos uma proposição p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas
- ullet A disjunção "p ou q" indica-se com a notação " $p\lor q$ "
- O valor lógico da disjunção de duas proposições é dado pela seguinte tabela verdade

- Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q" cujo valor lógico é a verdade (V) quando ao menos uma proposição p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas
- A disjunção "p ou q" indica-se com a notação " $p \lor q$ "
- O valor lógico da disjunção de duas proposições é dado pela seguinte tabela verdade

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Disjunção (∨)

- Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q" cujo valor lógico é a verdade (V) quando ao menos uma proposição p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas
- \bullet A disjunção "p ou q " indica-se com a notação " $p\vee q$ "
- O valor lógico da disjunção de duas proposições é dado pela seguinte tabela verdade

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

• $V(p \lor q) = V(p) \lor V(q)$

- Exemplos:
 - $\mathbf{0}$ p: A neve é branca

- Exemplos:
 - lacksquare p: A neve é branca <math>(V)

- Exemplos:

- Exemplos:
 - ① p: A neve 'e branca (V) q: 2 < 5 (V)

Disjunção (∨)

• Exemplos:

 $\textbf{ 1} \ p: \mathsf{A} \ \mathsf{neve} \ \mathsf{\acute{e}} \ \mathsf{branca} \ \mathsf{-} \ (V)$

q: 2 < 5 - (V)

 $p \vee q$: A neve é branca $\mathbf{ou}\ 2 < 5$

Disjunção (∨)

• Exemplos:

 $\begin{array}{l} \textbf{0} \quad p: \mbox{A neve \'e branca - } (V) \\ q: 2 < 5 \text{ - } (V) \\ p \lor q: \mbox{A neve \'e branca ou } 2 < 5 \\ V(p \lor q) = V(p) \lor V(q) = V \lor V = V \end{array}$

Disjunção (∨)

```
① p: A neve é branca - (V) q: 2 < 5 - (V) p \lor q: A neve é branca ou 2 < 5 V(p \lor q) = V(p) \lor V(q) = V \lor V = V ② p: \pi > 4
```

Disjunção (∨)

```
① p: A neve é branca - (V) q: 2 < 5 - (V) p \lor q: A neve é branca ou 2 < 5 V(p \lor q) = V(p) \lor V(q) = V \lor V = V ② p: \pi > 4 - (F)
```

Disjunção (∨)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \lor q: A$ neve é branca **ou** 2 < 5 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo

Disjunção (∨)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \lor q: A$ neve é branca **ou** 2 < 5 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V)

Disjunção (∨)

```
① p: A neve é branca - (V)

q: 2 < 5 - (V)

p \lor q: A neve é branca ou 2 < 5

V(p \lor q) = V(p) \lor V(q) = V \lor V = V

② p: \pi > 4 - (F)

q: 7 é um número primo - (V)

p \lor q: \pi > 4 ou 7 é um número primo
```

Disjunção (∨)

• Exemplos:

1 p: A neve é branca - (V) q: 2 < 5 - (V) $p \lor q: A$ neve é branca **ou** 2 < 5 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$ **2** $p: \pi > 4 - (F)$ q: 7 é um número primo - (V) $p \lor q: \pi > 4$ **ou** 7 é um número primo $V(p \lor q) = V(p) \lor V(q) = F \lor V = V$

Disjunção (∨)

```
1 p: A neve é branca - (V) q: 2 < 5 - (V) p \lor q: A neve é branca ou 2 < 5 V(p \lor q) = V(p) \lor V(q) = V \lor V = V 2 p: \pi > 4 - (F) q: 7 é um número primo - (V) p \lor q: \pi > 4 ou 7 é um número primo V(p \lor q) = V(p) \lor V(q) = F \lor V = V 3 p: sen \frac{\pi}{2} = 0
```

Disjunção (∨)

```
1 p: A neve é branca - (V) q: 2 < 5 - (V) p \lor q: A neve é branca ou 2 < 5 V(p \lor q) = V(p) \lor V(q) = V \lor V = V 2 p: \pi > 4 - (F) q: 7 é um número primo - (V) p \lor q: \pi > 4 ou 7 é um número primo V(p \lor q) = V(p) \lor V(q) = F \lor V = V 3 p: sen \frac{\pi}{2} = 0 - (F)
```

Disjunção (∨)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \lor q: A$ neve é branca **ou** 2 < 5 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V) $p \lor q: \pi > 4$ **ou** 7 é um número primo $V(p \lor q) = V(p) \lor V(q) = F \lor V = V$ ③ $p: sen \frac{\pi}{2} = 0$ - (F) $q: cos \frac{\pi}{2} = 1$

Disjunção (∨)

• Exemplos:

1 p: A neve é branca - (V) q: 2 < 5 - (V) $p \lor q: A$ neve é branca **ou** 2 < 5 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$ **2** $p: \pi > 4 - (F)$ q: 7 é um número primo - (V) $p \lor q: \pi > 4$ **ou** 7 é um número primo $V(p \lor q) = V(p) \lor V(q) = F \lor V = V$ **3** $p: sen \frac{\pi}{2} = 0 - (F)$ $q: cos \frac{\pi}{2} = 1 - (F)$

Disjunção (∨)

```
1 p: A neve é branca - (V) q:2<5 - (V) p \lor q: A neve é branca ou 2<5 V(p\lor q)=V(p)\lor V(q)=V\lor V=V 2 p:\pi>4 - (F) q:7 é um número primo - (V) p\lor q:\pi>4 ou 7 é um número primo V(p\lor q)=V(p)\lor V(q)=F\lor V=V 3 p:sen\frac{\pi}{2}=0 - (F) q:cos\frac{\pi}{2}=1 - (F) p\lor q:sen\frac{\pi}{2}=0 ou cos\frac{\pi}{2}=1
```

Disjunção (∨)

```
\bullet p : A neve é branca - (V)
   q:2<5-(V)
   p \lor q: A neve é branca ou 2 < 5
   V(p \lor q) = V(p) \lor V(q) = V \lor V = V
2 p: \pi > 4 - (F)
   q:7 é um número primo - (V)
   p \vee q : \pi > 4 ou 7 é um número primo
   V(p \lor q) = V(p) \lor V(q) = F \lor V = V
3 p : sen \frac{\pi}{2} = 0 - (F)
   q : \cos \frac{\pi}{2} = 1 - (F)
   p \vee q : sen \frac{\pi}{2} = 0 ou cos \frac{\pi}{2} = 1
   V(p \lor q) = V(p) \lor V(q) = F \lor F = F
```

Disjunção e Conjuntos

Disjunção e Conjuntos

 A operação de disjunção lógica está relacionada com a união de conjuntos

• $x \in A \cup B$, se $x \in A$ ou $x \in B$

Disjunção e Conjuntos

- $x \in A \cup B$, se $x \in A$ ou $x \in B$
 - p:x pertence a A

Disjunção e Conjuntos

- $x \in A \cup B$, se $x \in A$ ou $x \in B$
 - p:x pertence a A
 - \bullet q:x pertence a B

Disjunção e Conjuntos

- $x \in A \cup B$, se $x \in A$ ou $x \in B$
 - p:x pertence a A
 - \bullet q:x pertence a B
 - $p \lor q : x$ pertence a A ou x pertence a B

Disjunção Exclusiva (⊻)

• Na linguagem comum a palavra "ou" tem dois sentidos

- Na linguagem comum a palavra "ou" tem dois sentidos
 - P : Carlos é médico **ou** professor

- Na linguagem comum a palavra "ou" tem dois sentidos
 - P : Carlos é médico **ou** professor
 - ullet Q: Mário é alagoano ${oldsymbol{ou}}$ gaúcho

- Na linguagem comum a palavra "ou" tem dois sentidos
 - P : Carlos é médico **ou** professor
 - ullet Q : Mário é alagoano ${f ou}$ gaúcho
- Na proposição P diz-se que "ou" é inclusivo

- Na linguagem comum a palavra "ou" tem dois sentidos
 - P: Carlos é médico **ou** professor
 - Q : Mário é alagoano **ou** gaúcho
- Na proposição P diz-se que "ou" é inclusivo
- ullet Na proposição Q diz-se que "ou" é exclusivo

Disjunção Exclusiva (∑)

Chama-se disjunção exclusiva de duas proposições p e q a proposição representada por "ou p ou q" cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeira, e a falsidade (F) quando as proposições p e q são ambas verdadeiras ou ambas falsas

- Chama-se disjunção exclusiva de duas proposições p e q a proposição representada por "ou p ou q" cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeira, e a falsidade (F) quando as proposições p e q são ambas verdadeiras ou ambas falsas
- A disjunção exclusiva "ou p ou q" indica-se com a notação " $p \veebar q$ "

- Chama-se disjunção exclusiva de duas proposições p e q a proposição representada por "ou p ou q" cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeira, e a falsidade (F) quando as proposições p e q são ambas verdadeiras ou ambas falsas
- A disjunção exclusiva "ou p ou q" indica-se com a notação " $p \veebar q$ "
- O valor lógico da disjunção exclusiva de duas proposições é dado pela seguinte tabela verdade

- Chama-se disjunção exclusiva de duas proposições p e q a proposição representada por "ou p ou q" cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeira, e a falsidade (F) quando as proposições p e q são ambas verdadeiras ou ambas falsas
- A disjunção exclusiva "ou p ou q" indica-se com a notação " $p \veebar q$ "
- O valor lógico da disjunção exclusiva de duas proposições é dado pela seguinte tabela verdade

p	q	$p \vee q$
V	V	F
V	F	V
F	V	V
\overline{F}	F	F

Disjunção (∨)

- Exemplos:

Disjunção (∨)

1
$$p:2 \in par - (V)$$

Disjunção (∨)

```
1 p: 2 \in par - (V) q: 2 \in impar
```

Disjunção (∨)

```
1 p: 2 \in par - (V) q: 2 \in impar - (F)
```

Disjunção (V)

```
 \begin{array}{l} \bullet \quad p: 2 \ \text{\'e par - } (V) \\ q: 2 \ \text{\'e impar - } (F) \\ p \veebar q: \text{Ou } 2 \ \text{\'e par ou } 2 \ \text{\'e impar} \end{array}
```

Disjunção (V)

```
 \begin{array}{l} \bullet \quad p: 2 \ \text{\'e par - } (V) \\ q: 2 \ \text{\'e \'impar - } (F) \\ p \veebar q: \text{Ou } 2 \ \text{\'e par ou } 2 \ \text{\'e \'impar} \\ V(p \veebar q) = V(p) \veebar V(q) = V \veebar F = V \end{array}
```

Disjunção (∨)

```
 \begin{array}{l} \bullet \quad p: 2 \ \'{e} \ par - \big(V\big) \\ q: 2 \ \'{e} \ \'{impar} - \big(F\big) \\ p \ \veebar q: Ou \ 2 \ \'{e} \ par \ ou \ 2 \ \'{e} \ \'{impar} \\ V(p \ \veebar q) = V(p) \ \veebar V(q) = V \ \veebar F = V \\ \bullet \quad p: 2 \ \'{e} \ par \end{array}
```

Disjunção (∨)

```
① p: 2 \neq par - (V)

q: 2 \neq par - (F)

p \vee q: 0 = par =
```

Disjunção (∨)

```
1 p:2 é par - (V)

q:2 é ímpar - (F)

p \veebar q:0 u 2 é par ou 2 é ímpar

V(p \veebar q) = V(p) \veebar V(q) = V \veebar F = V

2 p:2 é par - (V)

q:2 é primo
```

Disjunção (∨)

```
① p:2 é par - (V)

q:2 é ímpar - (F)

p \veebar q:0 u 2 é par ou 2 é ímpar

V(p \veebar q) = V(p) \veebar V(q) = V \veebar F = V

② p:2 é par - (V)

q:2 é primo - (V)
```

Disjunção (∨)

```
1 p: 2 \neq par - (V)

q: 2 \neq par - (F)

p \vee q: 0u \neq par \neq 0u \neq par \neq 0u \neq 0u \neq 0u

V(p \vee q) = V(p) \vee V(q) = V \vee F = V

2 p: 2 \neq par - (V)

q: 2 \neq primo - (V)

p \vee q: 0u \neq 0u \neq 0u \neq 0u \neq 0u
```

Disjunção (∨)

```
① p: 2 \text{ \'e par - } (V)

q: 2 \text{ \'e \'impar - } (F)

p \veebar q: \text{Ou } 2 \text{ \'e par ou } 2 \text{ \'e \'impar}

V(p \veebar q) = V(p) \veebar V(q) = V \veebar F = V

② p: 2 \text{ \'e par - } (V)

q: 2 \text{ \'e primo - } (V)

p \veebar q: \text{Ou } 2 \text{ \'e par ou } 2 \text{ \'e primo}

V(p \veebar q) = V(p) \veebar V(q) = V \veebar V = F
```

Condicional (\rightarrow)

• Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos

Condicional (ightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "

Condicional (\rightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "
 - p é chamado de **antecedente** e q **consequente**
 - ullet ightarrow é o símbolo de implicação

Condicional (ightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "
 - p é chamado de **antecedente** e q **consequente**
 - ullet ightarrow é o símbolo de implicação
- Lê-se da seguinte maneira:

Condicional (ightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "
 - p é chamado de **antecedente** e q **consequente**
 - \rightarrow é o símbolo de implicação
- Lê-se da seguinte maneira:
 - p é condição suficiente para q

Condicional (\rightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "
 - p é chamado de **antecedente** e q **consequente**
 - \rightarrow é o símbolo de implicação
- Lê-se da seguinte maneira:
 - ullet p é condição suficiente para q
 - ullet q é condição necessária para p

Condicional (\rightarrow)

- Chama-se condicional uma proposição representada por "se p então q" cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade nos demais casos
- A condicional de duas proposições "p e q" indica-se com a notação " $p \to q$ "
 - p é chamado de **antecedente** e q **consequente**
 - ullet ightarrow é o símbolo de implicação
- Lê-se da seguinte maneira:
 - ullet p é condição suficiente para q
 - ullet q é condição necessária para p
- Observe que a partir de uma afirmação verdadeira obrigatoriamente deve-se chegar a uma conclusão verdadeira para que a proposição composta $p \to q$ seja verdadeira

Condicional (\rightarrow)

• O valor lógico da condicional de duas proposições é dado pela seguinte tabela verdade

Condicional (\rightarrow)

 O valor lógico da condicional de duas proposições é dado pela seguinte tabela verdade

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Condicional (\rightarrow)

 O valor lógico da condicional de duas proposições é dado pela seguinte tabela verdade

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

$$\bullet \ V(p \to q) = V(p) \to V(q)$$

Condicional (\rightarrow)

- Exemplos:
 - $\mathbf{0}$ p: A neve é branca

Condicional (\rightarrow)

- Exemplos:
 - lacksquare p: A neve é branca <math>(V)

Condicional (\rightarrow)

• Exemplos:

Condicional (\rightarrow)

- Exemplos:
 - ① p: A neve 'e branca (V) q: 2 < 5 (V)

Condicional (\rightarrow)

• Exemplos:

 $\begin{array}{l} \bullet \quad p: \mbox{A neve \'e branca - }(V) \\ q: 2 < 5 \text{ - }(V) \\ p \rightarrow q: \mbox{\bf Se neve \'e branca então } 2 < 5 \end{array}$

Condicional (\rightarrow)

• Exemplos:

 $\begin{array}{l} \textbf{0} \quad p: \mbox{A neve \'e branca - (V)} \\ q: 2 < 5 \text{ - (V)} \\ p \rightarrow q: \mbox{\bf Se neve \'e branca então } 2 < 5 \\ V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V \\ \end{array}$

Condicional (\rightarrow)

• Exemplos:

 $\begin{array}{l} \textbf{0} \quad p: \mbox{A neve \'e branca - (V)} \\ q: 2 < 5 \text{ - (V)} \\ p \rightarrow q: \mbox{Se neve \'e branca então } 2 < 5 \\ V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V \\ \mbox{2} \quad p: \pi > 4 \\ \end{array}$

Condicional (\rightarrow)

• Exemplos:

 $\begin{array}{l} \textbf{0} \quad p: \mbox{A neve \'e branca - (V)} \\ q: 2 < 5 \text{ - (V)} \\ p \rightarrow q: \mbox{Se neve \'e branca ent\~ao} \ 2 < 5 \\ V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V \\ \mbox{2} \quad p: \pi > 4 \text{ - (F)} \end{array}$

Condicional (\rightarrow)

• Exemplos:

① p: A neve é branca - (V) q:2<5 - (V) $p\to q:$ Se neve é branca então 2<5 $V(p\to q)=V(p)\to V(q)=V\to V=V$ ② $p:\pi>4$ - (F)q: 7 é um número primo

4□ > 4□ > 4□ > 4□ > 4□ > 9

Condicional (\rightarrow)

• Exemplos:

 $\begin{array}{l} \textbf{1} \quad p: \text{A neve \'e branca - } (V) \\ q: 2 < 5 \text{ - } (V) \\ p \rightarrow q: \textbf{Se} \text{ neve \'e branca então } 2 < 5 \\ V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V \\ \textbf{2} \quad p: \pi > 4 \text{ - } (F) \\ q: 7 \text{ \'e um n\'umero primo - } (V) \end{array}$

Condicional (\rightarrow)

• Exemplos:

① p: A neve é branca - (V) q:2<5 - (V) $p \rightarrow q:$ Se neve é branca então 2<5 $V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V$ ② $p:\pi>4$ - (F) q: 7 é um número primo - (V) $p \rightarrow q:$ Se $\pi>4$ então 7 é um número primo

Condicional (\rightarrow)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p o q: \mathbf{Se}$ neve é branca **então** 2 < 5 V(p o q) = V(p) o V(q) = V o V = V ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V) $p o q: \mathbf{Se} \ \pi > 4$ **então** 7 é um número primo V(p o q) = V(p) o V(q) = F o V = V

Condicional (\rightarrow)

• Exemplos:

```
① p: A neve é branca - (V) q: 2 < 5 - (V) p 	o q: Se neve é branca então 2 < 5 V(p 	o q) = V(p) 	o V(q) = V 	o V = V ② p: \pi > 4 - (F) q: 7 é um número primo - (V) p 	o q: Se \pi > 4 então 7 é um número primo V(p 	o q) = V(p) 	o V(q) = F 	o V = V ③ p: sen \frac{\pi}{2} = 1
```

Condicional (\rightarrow)

• Exemplos:

```
\begin{array}{l} \textbf{1} \quad p: \text{A neve \'e branca - } (V) \\ q: 2 < 5 \text{ - } (V) \\ p \to q: \textbf{Se} \text{ neve \'e branca então } 2 < 5 \\ V(p \to q) = V(p) \to V(q) = V \to V = V \\ \textbf{2} \quad p: \pi > 4 \text{ - } (F) \\ q: 7 \text{ \'e um n\'umero primo - } (V) \\ p \to q: \textbf{Se} \; \pi > 4 \text{ então } 7 \text{ \'e um n\'umero primo } V(p \to q) = V(p) \to V(q) = F \to V = V \\ \textbf{3} \quad p: sen \; \frac{\pi}{2} = 1 \text{ - } (V) \end{array}
```

Condicional (\rightarrow)

• Exemplos:

1 p: A neve é branca - (V) q: 2 < 5 - (V) p o q: Se neve é branca **então** 2 < 5 V(p o q) = V(p) o V(q) = V o V = V **2** $p: \pi > 4$ - (F) q: 7 é um número primo - (V) p o q: Se $\pi > 4$ **então** 7 é um número primo V(p o q) = V(p) o V(q) = F o V = V **3** $p: sen \frac{\pi}{2} = 1$ - (V) $q: cos \frac{\pi}{2} = 1$

Condicional (\rightarrow)

• Exemplos:

1 p: A neve é branca - (V) q: 2 < 5 - (V) p o q: Se neve é branca **então** 2 < 5 V(p o q) = V(p) o V(q) = V o V = V **2** $p: \pi > 4$ - (F) q: 7 é um número primo - (V) p o q: Se $\pi > 4$ **então** 7 é um número primo V(p o q) = V(p) o V(q) = F o V = V **3** $p: sen \frac{\pi}{2} = 1$ - (V) $q: cos \frac{\pi}{2} = 1$ - (F)

Condicional (\rightarrow)

• Exemplos:

1
$$p: A$$
 neve é branca - (V) $q: 2 < 5$ - (V) $p \to q: \mathbf{Se}$ neve é branca **então** $2 < 5$ $V(p \to q) = V(p) \to V(q) = V \to V = V$ **2** $p: \pi > 4$ - (F) $q: 7$ é um número primo - (V) $p \to q: \mathbf{Se} \ \pi > 4$ **então** 7 é um número primo $V(p \to q) = V(p) \to V(q) = F \to V = V$ **3** $p: sen \frac{\pi}{2} = 1$ - (V) $q: cos \frac{\pi}{2} = 1$ - (F) $p \to q: \mathbf{Se} \ sen \frac{\pi}{2} = 1$ **então** $cos \frac{\pi}{2} = 1$

Condicional (\rightarrow)

• Exemplos:

1
$$p: A$$
 neve é branca - (V) $q: 2 < 5$ - (V) $p o q: \mathbf{Se}$ neve é branca **então** $2 < 5$ $V(p o q) = V(p) o V(q) = V o V = V$ **2** $p: \pi > 4$ - (F) $q: 7$ é um número primo - (V) $p o q: \mathbf{Se} \ \pi > 4$ **então** 7 é um número primo $V(p o q) = V(p) o V(q) = F o V = V$ **3** $p: sen \frac{\pi}{2} = 1 - (V)$ $q: cos \frac{\pi}{2} = 1 - (F)$ $p o q: \mathbf{Se} \ sen \frac{\pi}{2} = 1$ **então** $cos \frac{\pi}{2} = 1$ $V(p o q) = V(p) o V(q) = V o F = F$

Bicondicional (\leftrightarrow)

• Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos

- Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos
- A bicondicional de duas proposições "p e q" indica-se com a notação " $p \leftrightarrow q$ "

- Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos
- A bicondicional de duas proposições "p e q" indica-se com a notação " $p \leftrightarrow q$ "
- Lê-se da seguinte maneira:

- Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos
- A bicondicional de duas proposições "p e q" indica-se com a notação " $p \leftrightarrow q$ "
- Lê-se da seguinte maneira:
 - ullet p é condição necessária e suficiente para q

- Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos
- A bicondicional de duas proposições "p e q" indica-se com a notação " $p \leftrightarrow q$ "
- Lê-se da seguinte maneira:
 - ullet p é condição necessária e suficiente para q
 - ullet q é condição necessária e suficiente para p

- Chama-se bicondicional uma proposição representada por "p se somente se q" cujo valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas e a falsidade (F) nos demais casos
- A bicondicional de duas proposições "p e q" indica-se com a notação " $p \leftrightarrow q$ "
- Lê-se da seguinte maneira:
 - p é condição necessária e suficiente para q
 - ullet q é condição necessária e suficiente para p
- Observe que a bicondicional reflete a noção de condicional "nos dois sentidos"

Bicondicional (\leftrightarrow)

• O valor lógico da bicondicional de duas proposições é dado pela seguinte tabela verdade

Bicondicional (\leftrightarrow)

 O valor lógico da bicondicional de duas proposições é dado pela seguinte tabela verdade

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Bicondicional (\leftrightarrow)

 O valor lógico da bicondicional de duas proposições é dado pela seguinte tabela verdade

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

$$\bullet \ V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$$

- Exemplos:
 - $\mathbf{0}$ p: A neve é branca

- Exemplos:
 - lacksquare p: A neve é branca <math>(V)

Bicondicional (\leftrightarrow)

- Exemplos:

Bicondicional (\leftrightarrow)

- Exemplos:

Bicondicional (\leftrightarrow)

• Exemplos:

① p: A neve é branca - (V) q:2<5 - (V) $p\leftrightarrow q:$ A neve é branca se e somente se 2<5

Bicondicional (\leftrightarrow)

• Exemplos:

Bicondicional (\leftrightarrow)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \leftrightarrow q: A$ neve é branca **se e somente se** 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$ ② $p: \pi > 4$

4□ > 4♠ > 4 = > 4 = > 9 < </p>

Bicondicional (\leftrightarrow)

• Exemplos:

- \bullet p : A neve é branca (V)q:2<5-(V) $p \leftrightarrow q$: A neve é branca se e somente se 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$
- **2** $p: \pi > 4 (F)$

Bicondicional (\leftrightarrow)

• Exemplos:

- ① p: A neve é branca (V) q: 2 < 5 (V) $p \leftrightarrow q: A$ neve é branca **se e somente se** 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$ ② $p: \pi > 4$ (F)
- $p: \pi > 4$ (F) q: 7 é um número primo

Bicondicional (\leftrightarrow)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \leftrightarrow q: A$ neve é branca **se e somente se** 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V)

Bicondicional (\leftrightarrow)

• Exemplos:

- ① p: A neve é branca (V) q: 2 < 5 - (V) $p \leftrightarrow q: A$ neve é branca **se e somente se** 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V)
 - $p \leftrightarrow q: \pi > 4$ se e somente se $\ 7$ é um número primo

Bicondicional (\leftrightarrow)

• Exemplos:

 $\begin{array}{l} \textbf{1} \quad p: \text{A neve \'e branca - } (V) \\ q: 2 < 5 \text{ - } (V) \\ p \leftrightarrow q: \text{A neve \'e branca se e somente se } 2 < 5 \\ V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V \\ \textbf{2} \quad p: \pi > 4 \text{ - } (F) \\ q: 7 \text{ \'e um n\'umero primo - } (V) \\ p \leftrightarrow q: \pi > 4 \text{ se e somente se } 7 \text{ \'e um n\'umero primo} \end{array}$

 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow V = F$

Bicondicional (\leftrightarrow)

• Exemplos:

1 p: A neve é branca - (V) q:2<5 - (V) $p\leftrightarrow q:$ A neve é branca se e somente se 2<5 $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=V \leftrightarrow V=V$ 2 $p:\pi>4$ - (F) q: 7 é um número primo - (V) $p\leftrightarrow q:\pi>4$ se e somente se 7 é um número primo $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=F\leftrightarrow V=F$ 3 $p:sen \frac{\pi}{2}=0$

Bicondicional (\leftrightarrow)

• Exemplos:

1 p: A neve é branca - (V) q:2<5 - (V) $p\leftrightarrow q:$ A neve é branca se e somente se 2<5 $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=V \leftrightarrow V=V$ 2 $p:\pi>4$ - (F) q: 7 é um número primo - (V) $p\leftrightarrow q:\pi>4$ se e somente se 7 é um número primo $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=F\leftrightarrow V=F$ 3 $p:sen \frac{\pi}{2}=0$ - (F)

Bicondicional (\leftrightarrow)

• Exemplos:

1 p: A neve é branca - (V) q:2<5 - (V) $p\leftrightarrow q:$ A neve é branca se e somente se 2<5 $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=V\leftrightarrow V=V$ 2 $p:\pi>4$ - (F) q: 7 é um número primo - (V) $p\leftrightarrow q:\pi>4$ se e somente se 7 é um número primo $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=F\leftrightarrow V=F$ 3 $p:sen \frac{\pi}{2}=0$ - (F) $q:cos \frac{\pi}{2}=1$

Bicondicional (\leftrightarrow)

• Exemplos:

1 p: A neve é branca - (V) q:2<5 - (V) $p\leftrightarrow q:$ A neve é branca se e somente se 2<5 $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=V\leftrightarrow V=V$ 2 $p:\pi>4$ - (F) q: 7 é um número primo - (V) $p\leftrightarrow q:\pi>4$ se e somente se 7 é um número primo $V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=F\leftrightarrow V=F$ 3 $p:sen\frac{\pi}{2}=0$ - (F) $q:cos\frac{\pi}{2}=1$ - (F)

Bicondicional (\leftrightarrow)

• Exemplos:

① p: A neve é branca - (V) q: 2 < 5 - (V) $p \leftrightarrow q: A$ neve é branca se e somente se 2 < 5 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$ ② $p: \pi > 4$ - (F) q: 7 é um número primo - (V) $p \leftrightarrow q: \pi > 4$ se e somente se 7 é um número primo $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow V = F$ ③ $p: sen \frac{\pi}{2} = 0$ - (F) $q: cos \frac{\pi}{2} = 1$ - (F) $p \leftrightarrow q: sen \frac{\pi}{2} = 0$ se e somente se $cos \frac{\pi}{2} = 1$

Bicondicional (\leftrightarrow)

• Exemplos:

 \bullet p : A neve é branca - (V)

 $\begin{array}{l} q:2<5\text{ - }(V)\\ p\leftrightarrow q:\text{A neve \'e branca se e somente se }2<5\\ V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=V\leftrightarrow V=V\\ \text{2}\quad p:\pi>4\text{ - }(F)\\ q:7\text{ \'e um n\'umero primo - }(V)\\ p\leftrightarrow q:\pi>4\text{ se e somente se }7\text{ \'e um n\'umero primo}\\ V(p\leftrightarrow q)=V(p)\leftrightarrow V(q)=F\leftrightarrow V=F\\ \text{3}\quad p:sen\ \frac{\pi}{2}=0\text{ - }(F)\\ q:cos\ \frac{\pi}{2}=1\text{ - }(F)\\ p\leftrightarrow q:sen\ \frac{\pi}{2}=0\text{ se e somente se }cos\ \frac{\pi}{2}=1\\ \end{array}$

 $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow F = V$

Tabela Verdade de uma Proposição Composta

 Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas

- Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas
- Exemplos:
 - $\bullet \ P(p,q) = \sim p \lor (p \to q)$

- Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas
- Exemplos:
 - $\bullet \ P(p,q) = \sim p \lor (p \to q)$
 - $Q(p,q) = (p \leftrightarrow \sim q) \land q$

- Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas
- Exemplos:
 - $\bullet \ P(p,q) = \sim p \lor (p \to q)$
 - $\bullet \ \ Q(p,q) = (p \leftrightarrow \sim q) \land q$
 - $\bullet \ R(p,q,r) = (p \to \sim q \vee r) \wedge (q \vee (p \leftrightarrow \sim r))$

- Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas
- Exemplos:
 - $P(p,q) = \sim p \lor (p \to q)$
 - $Q(p,q) = (p \leftrightarrow \sim q) \land q$
 - $\bullet \ R(p,q,r) = (p \to \sim q \lor r) \land (q \lor (p \leftrightarrow \sim r))$
- Com o emprego das tabelas verdade das operações lógicas fundamentais é possível construir a tabela verdade de qualquer proposição composta

- Proposições simples podem ser combinadas através de conectivos para gerar proposições compostas
- Exemplos:
 - $\bullet \ P(p,q) = \sim p \lor (p \to q)$
 - $Q(p,q) = (p \leftrightarrow \sim q) \land q$
 - $\bullet \ R(p,q,r) = (p \to \sim q \lor r) \land (q \lor (p \leftrightarrow \sim r))$
- Com o emprego das tabelas verdade das operações lógicas fundamentais é possível construir a tabela verdade de qualquer proposição composta

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
 - **Teorema.** A tabela verdade de uma proposição composta com n proposições simples componentes contém 2^n linhas

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
 - **Teorema.** A tabela verdade de uma proposição composta com n proposições simples componentes contém 2^n linhas
- Como construir a tabela

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
 - Teorema. A tabela verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas
- Como construir a tabela
 - Se há n proposições simples componentes p_1, p_2, \cdots, p_n , então a tabela contém 2^n linhas

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
 - Teorema. A tabela verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas
- Como construir a tabela
 - Se há n proposições simples componentes p_1, p_2, \cdots, p_n , então a tabela contém 2^n linhas
 - À 1ª proposição simples p_1 atribui-se $\frac{2^n}{2}=2^{n-1}$ valores V , seguidos de $\frac{2^n}{2}=2^{n-1}$ valores F

- Determinação do número de linhas da tabela
 - O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
 - Teorema. A tabela verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas
- Como construir a tabela
 - Se há n proposições simples componentes p_1, p_2, \cdots, p_n , então a tabela contém 2^n linhas
 - À 1ª proposição simples p_1 atribui-se $\frac{2^n}{2}=2^{n-1}$ valores V, seguidos de $\frac{2^n}{2}=2^{n-1}$ valores F
 - À 2^a proposição simples p_2 atribui-se $\frac{2^n}{4}=2^{n-2}$ valores V, seguidos de 2^{n-2} valores F, seguidos de 2^{n-2} valores V, seguidos, finalmente, de $\frac{2^n}{4}=2^{n-2}$ valores F

Tabela Verdade de uma Proposição Composta

• Determinação do número de linhas da tabela

- O número de linhas da tabela verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dada pelo seguinte teorema
- Teorema. A tabela verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas

Como construir a tabela

- Se há n proposições simples componentes p_1, p_2, \cdots, p_n , então a tabela contém 2^n linhas
- À 1ª proposição simples p_1 atribui-se $\frac{2^n}{2}=2^{n-1}$ valores V, seguidos de $\frac{2^n}{2}=2^{n-1}$ valores F
- À 2^a proposição simples p_2 atribui-se $\frac{2^n}{4}=2^{n-2}$ valores V, seguidos de 2^{n-2} valores F, seguidos de 2^{n-2} valores V, seguidos, finalmente, de $\frac{2^n}{4}=2^{n-2}$ valores F
- À k-ésima proposição simples $p_k(k \le n)$ atribui-se alternadamente $\frac{2^n}{2^k} = 2^{n-k}$ valores V seguidos de igual número de valores F

Uso de Parênteses

 É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:
 - $(p \wedge q) \vee r$

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:
 - $(p \wedge q) \vee r$
 - $p \wedge (q \vee r)$

Uso de Parênteses

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:
 - $(p \wedge q) \vee r$
 - $p \wedge (q \vee r)$

que não têm o mesmo significado

Uso de Parênteses

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:
 - $(p \wedge q) \vee r$
 - $p \wedge (q \vee r)$

que não têm o mesmo significado

• Note que em $(p \wedge q) \vee r$ o conectivo principal é \vee e em $p \wedge (q \wedge r)$ o conectivo principal é \wedge

Uso de Parênteses

- É óbvia a necessidade de usar parênteses na simbolização das proposições, que devem ser colocados para evitar qualquer tipo de ambiguidade
- Colocando parênteses na expressão $p \land q \lor r$, podemos ter as seguintes proposições:
 - $(p \wedge q) \vee r$
 - $p \wedge (q \vee r)$

que não têm o mesmo significado

- Note que em $(p \wedge q) \vee r$ o conectivo principal é \vee e em $p \wedge (q \wedge r)$ o conectivo principal é \wedge
- Por outro lado, em muitos casos, os parênteses podem ser suprimidos, a fim de simplificar as proposições simbolizadas, desde que, claro, ambiguidade alguma venha aparecer

Uso de Parênteses

 A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - **2** Negação (\sim)

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - $oldsymbol{2}$ Negação (\sim)
 - S Conjunção (∧) e disjunção (∨)

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - 2 Negação (\sim)
 - S Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - $oldsymbol{2}$ Negação (\sim)
 - S Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)
 - **⑤** Bicondicional (↔)

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - 2 Negação (\sim)
 - S Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)
 - Bicondicional (↔)
- Portanto, o conectivo mais "fraco" é "~" e o mais "forte" é "→"

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - 2 Negação (\sim)
 - 3 Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)
 - Bicondicional (↔)
- Portanto, o conectivo mais "fraco" é "~" e o mais "forte" é "→"
- ullet Exemplo. A proposição $p o q \leftrightarrow s \wedge r$ é uma bicondicional

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - 2 Negação (\sim)
 - 3 Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)
 - Bicondicional (↔)
- Portanto, o conectivo mais "fraco" é "~" e o mais "forte" é "→"
- Exemplo. A proposição $p \to q \leftrightarrow s \wedge r$ é uma bicondicional
 - Para convertê-la em uma condicional deve-se usar parênteses:

- A supressão de parênteses nas proposições se faz mediante algumas convenções, das quais a seguinte ordem de precedência entre os conectivos é convencionada:
 - Conectivos entre parênteses, dos mais internos para os mais externos
 - **2** Negação (\sim)
 - 3 Conjunção (∧) e disjunção (∨)
 - **4** Condicional (\rightarrow)
 - Bicondicional (↔)
- Portanto, o conectivo mais "fraco" é "~" e o mais "forte" é "→"
- Exemplo. A proposição $p \to q \leftrightarrow s \wedge r$ é uma bicondicional
 - Para convertê-la em uma condicional deve-se usar parênteses:

$$p \to (q \leftrightarrow s \land r)$$

Matemática Básica

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Fevereiro de 2020