

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars Zero

Machine Learning

Content-based recommendations

Content-base	ed recomi	nende	r systems Carol (3)	Nu = 4 Nu = 4 Dave (4)	, n _m =5		(1) = [0, 0]
(8-	→ 6°°	9 (1)	9 (1)	9(4)	_		15
X -> Love at last	5	5	0	0	->[→ ?	۱ ۱
Romance forever	5	?	?	0	→	→	1
Cute puppies of love	(74.9F	4	0	?	4	→	
Nonstop car chases	0	0	5	4	->	→	
Swords vs. karate	0	0	5	5	→	→	p=5

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longleftrightarrow \Theta^{(1)} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 54.95$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = rating by user j on movie i (if defined)$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- \rightarrow $x^{(i)}$ = feature vector for movie i
- ightharpoonup For user j , movie i , predicted rating: $(\theta^{(j)})^T(x^{(i)})$

 $m^{(j)} = \text{no. of movies rated by user } j$ To learn $\theta^{(j)}$:

$$\min_{Q_{(i)}} \frac{1}{2^{\frac{1}{2}}} \sum_{i:r(i,j)=1}^{2^{\frac{1}{2}}} \frac{\left((Q_{(i)})_{i}(x_{(i)}) - A_{(i,i)}\right)_{j}}{\left((Q_{(i)})_{i}(x_{(i)}) - A_{(i,i)}\right)_{j}} + \frac{1}{2^{\frac{1}{2}}} \sum_{k=1}^{\infty} (Q_{(i)}^{k})_{k}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

 $\frac{2(\theta_{ij}^{(i)},...,\theta_{(N^n)})}{2(\theta_{ij}^{(i)},...,\theta_{(N^n)})}$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

Problem n	\checkmark	1	Xo=[
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X Love at last	≈ 5	>> 5	7 0	7 0	11.0	\$ O.	0
Romance forever	5	?	?	0	?	?	x0= [1:6]
Cute puppies of love	Ş	4	0	?	?	?	(0.0]
Nonstop car chases	0	0	5	4	?	Ş	~(1)
Swords vs. karate	0	0	5	?	?	?	~ ~ ~
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$a^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(i) (i) (i)	(6") ¹ x" ² 25 (6") ² 1 ² x" ² 2 (6") ² x" ² ("0 (6") ² x" ² ("0 (6") ² x" ² x"("0 (6") ² x" ² x"("0 (6") ² x" ² x"("0)

Andrew Ng

Optimization algorithm

Given $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

$$\Rightarrow \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given
$$\underline{x^{(1)}, \dots, x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$

Given
$$\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

$$= \sum_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

 \Rightarrow Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

$$= \sum_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ r^{(n_m)} \ \theta^{(1)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^$$

$$\Rightarrow \lim_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering algorithm

- XOCI XERN, OER" Collaborative filtering algorithm

 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- \rightarrow 2. Minimize $J(x^{(1)},\ldots,x^{(n_m)},\theta^{(1)},\ldots,\theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, ..., n_u, i = 1, ..., n_m$:

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters θ and a movie with (learned) features x , predict a star rating of $\underline{\theta^T x}$.

$$\left(\bigcirc_{(i)} \right)_{\perp} (\times_{(i)})$$

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)			
Love at last	5	5	0	0			
Romance forever	5	?	?	0			
Cute puppies of love	,	4	0	;			
Nonstop car chases	0	0	5	4			
Swords vs. karate	0	0	5	?			
	↑	1	1	1			

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering

$$(Q_{d)}_{(i)}(x_{(i)})$$

Predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) \\ (\theta^{(2)})^T(x^{(1)}) \\ \vdots \\ (\theta^{(2)})^T(x^{(2)}) \end{bmatrix} \dots (\theta^{(n_u)})^T(x^{(1)}) \\ \vdots \\ (\theta^{(n_u)})^T(x^{(n_u)}) \\ (\theta^{(2)})^T(x^{(n_m)}) \dots (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \\ \vdots \\ -(x^{(n_{m})})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(n)})^{\mathsf{T}} - (o^{(n)})^{\mathsf{T}} - (o^{($$

-> Low rank matrix factorization

Finding related movies

For each product i, we learn a feature vector $\underline{x^{(i)}} \in \mathbb{R}^n$.

How to find movies j related to movie i?

small
$$||x^{(i)} - x^{(j)}|| \rightarrow movie i ord i cre "similar"$$

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		ΓL	J	0	0	
→ Love at last	_5	5	0	0	5,0			5	$0 \\ 2$	0	?
Romance forever	5	?	?	0	. ♀	V $-$	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$: 1		U 2	; 2
Cute puppies of love	?	4	0	?	. □	I =	0	4 0	5	: 1	?
Nonstop car chases	0	0	5	4	∫ D			0	5	4 0	?
💙 Swords vs. karate	0	0	5	?	S O		Γ_{Ω}	U	9	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^$$

Mean Normalization:

For user j, on movie i predict:

$$\Rightarrow (\Theta^{(i)})^{T}(\chi^{(i)}) + \mu_{i}$$

User 5 (Eve):