Miriam Jańczak

numer albumu: 229761

3 stycznia 2018 prowadzący: dr hab. Paweł Zieliński

Obliczenia naukowe

Lista 5

Opis problemu

Rozwiązanie układu równań liniowych:

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{1}$$

dla danej macierzy $\mathbf{A} \in \mathbb{R}^{n \times n}$ i wektora prawych stron $\mathbf{b} \in \mathbb{R}^n$, gdzie $n \ge 4$.

Macierz \boldsymbol{A} jest rzadką macierzą blokową o następującej strukturze:

$$A = \begin{pmatrix} A_1 & C_1 & 0 & 0 & 0 & \cdots & 0 \\ B_2 & A_2 & C_2 & 0 & 0 & \cdots & 0 \\ 0 & B_3 & A_3 & C_3 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_{v-2} & A_{v-2} & C_{v-2} & 0 \\ 0 & \cdots & 0 & 0 & B_{v-1} & A_{v-1} & C_{v-1} \\ 0 & \cdots & 0 & 0 & 0 & B_v & A_v \end{pmatrix},$$
(2)

 $v = \frac{n}{\ell}$, zakładając że n jest podzielne przez ℓ , gdzie $\ell \geqslant 2$ jest rozmiarem wszystkich kwadratowych macierzy wewnętrznych (bloków) \boldsymbol{A}_i , \boldsymbol{B}_i , \boldsymbol{C}_i , $\boldsymbol{0}$.

Macierze A_i , B_i , C_i , 0 są następującej postaci:

- (i) $\mathbf{A}_i \in \mathbb{R}^{\ell \times \ell}$, $i = 1, \dots, v$ macierze geste,
- (ii) $\mathbf{0} \in \mathbb{R}^{\ell \times \ell}$ macierz zerowa,
- (iii) $\boldsymbol{B}_i \in \mathbb{R}^{\ell \times \ell}, \ i=2,\ldots,v$ macierze z niezerowymi dwoma ostatnimi kolumnami:

$$\boldsymbol{B}_{i} = \begin{pmatrix} 0 & \cdots & 0 & b_{1\ell-1}^{i} & b_{1\ell}^{i} \\ 0 & \cdots & 0 & b_{2\ell-1}^{i} & b_{2\ell}^{i} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & b_{\ell\ell-1}^{i} & b_{\ell\ell}^{i} \end{pmatrix},$$
(3)

(iv) $C_i \in \mathbb{R}^{\ell \times \ell}$, $i = 1, \dots, v-1$ – macierze diagonalne:

$$C_{i} = \begin{pmatrix} c_{1}^{i} & 0 & 0 & \cdots & 0 \\ 0 & c_{2}^{i} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & c_{\ell-1}^{i} & 0 \\ 0 & \cdots & 0 & 0 & c_{\ell}^{i} \end{pmatrix}.$$
(4)

W celu rozwiązania układu równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$ (1) należało zastosować dwie metody:

- (a) metodę eliminacji Gaussa w wersji bez wyboru elementu głównego oraz z częściowym wyborem elementu głównego,
- (b) obliczyć rozkład LU macierzy A w wersji bez wyboru elementu głównego oraz z częściowym wyborem elementu głównego, a następnie rozwiązać układ LUx = b.

Sposób przechowywania macierzy

Macierz A dana w zadaniu posiada tylko $(\ell+3)n-3\ell$ elementów nie będących zerami $-v\cdot\ell^2$ w blokach A_i , $(v-1)\cdot 2\ell$ w blokach B_i i $(v-1)\cdot\ell$ w blokach C_i , co świadczy o tym, że A jest macierzą rzadką. Przechowywanie macierzy A w standardowy sposób (tablica dwuwymiarowa $n\times n$) byłoby więc dość nieefektywne. Aby temu zapobiec użyta została specjalna struktura do przechowywania macierzy rzadkich SparseMatrixCSC z języka Julia, w której macierze przechowywane są w skompresowanym porządku kolumnowym. W celu optymalizacji czasowej dostępu do elementów tak przechowywanej macierzy pod kątem zaimplementowanych algorytmów używano macierzy transponowanej, co jednak nie miało wpływu na ogólną ich postać, dlatego zostanie pominięte w rozważaniach.

Opis algorytmów

 $Metoda\ eliminacji\ Gaussa\ jest$ algorytmem mającym szerokie zastosowanie w rozwiązywaniu podstawowych problemów algebry liniowej takich jak rozwiązywanie układów równań liniowych, obliczanie rzędu macierzy, jej wyznacznika, macierzy odwrotnej czy rozkładu ${\it LU}$ macierzy. Wykorzystuje ona elementarne operacje na macierzy takie jak mnożenie wiersza przez skalar czy odejmowanie od siebie dwóch wierszy.

Rozwiązywanie układów równań metodą eliminacji Gaussa

Opis działania

Zasadą działania metody eliminacji Gaussa przy rozwiązywaniu układów równań jest stopniowa eliminacja niewiadomych przez odpowiednie kombinowanie równań tak, aby zastąpić dany układ Ax = b równoważnym mu układem z macierzą trójkątną górną.

W pierwszym kroku zostaje wyeliminowana niewiadoma x_1 z n-1 równań poprzez odejmowanie dla $i=2,\cdots,n$ odpowiedniej krotności pierwszego równania od i-tego równania, aby wyzerować w nim współczynnik przy x_1 . Takie postępowanie powtarzane jest dla kolejnych niewiadomych x_k , gdzie dla $i=k+1,\cdots,n$ od i-tego równania odejmowana jest odpowiednia krotność k-tego równania.

Aby możliwe było wykonanie powyższej procedury każdy z elementów diagonalnych w macierzy musi być różny od zera. W momencie kiedy tak nie jest potrzebna jest modyfikacja algorytmu, a mianowicie zamiana wiersza z zerowym elementem na diagonali z innym który w tym miejscu nie posiada zera, w praktyce w i-tym kroku algorytmu wyszukuje się w i-tej kolumnie element (zwany elementem głównym) o największej co do modułu wartości i wiersz z takim elementem zamienia się miejscem z i-tym wierszem. Taka zamiana zawsze jest możliwa, gdyż w przeciwnym przypadku macierz byłaby osobliwa.

Ostatnim krokiem jest rozwiązanie powstałego układu z macierzą trójkątną górna za pomocą algorytmu podstawiania wstecz. Polega on na obliczeniu:

$$x_i = \frac{b_i - \sum_{j=i+1}^n}{a_{ii}}$$

dla wierszy i od n do 1.

Metoda eliminacji Gaussa ma złożoność $O(n^3)$, a algorytm podstawiania wstecz $O(n^2)$. Zatem, aby rozwiązać układ równań, trzeba wykonać łącznie $O(n^3)$ operacji.

Zastosowane modyfikacje

Jak już zostało wspomniane, macierz A jest macierzą rzadką ponadto posiada ona specyficzną blokowo-trójdiagonalną postać (2) co umożliwia zredukowanie w znacznym stopniu liczby wykonywanych operacji w stosunku do metody eliminacji Gaussa stosowanej dla macierzy gestych.

Zauważyć można, że postać macierzy A zapewnia, że wiele elementów znajdujących się pod diagonalą będzie zerami i nie będzie konieczne ich zerowanie.

Rozpatrując pierwszych $\ell-2$ kolumn widać że elementy niezerowe mogą znajdować się jedynie w bloku A_1 , a więc tylko w ℓ pierwszych rzędach. Idąc dalej, dla kolejnych ℓ kolumn wszystkie niezerowe elementy będą znajdować się najniżej w bloku B_2 albo w bloku A_3 – czyli 2ℓ pierwszych rzędach, a dla jeszcze następnych ℓ kolumn w blokach B_3 i A_4 – czyli 3ℓ pierwszych rzędach. Biorąc pod uwagę następne kolumny schemat będzie się powtarzał dając możliwość wyprowadzenia ogólnego wzoru na indeks ostatniego niezerowego elementu $e_{non,0}$ w danej kolumnie k:

$$e_{non\ 0}(k) = \min\left\{\ell + \ell \cdot \left| \frac{k+1}{\ell} \right|, n\right\}$$
 (5)

Również, poza ostatnimi ℓ wierszami, w każdym wierszu ostatnim niezerowym elementem jest element leżący na diagonali bloku C_i . Można zauważyć, że owe elementy znajdują się zawsze w odległości ℓ od elementów na diagonali macierzy A. Natomiast dla ostatnich ℓ rzędów najbardziej wysunięte na prawo elementy niezerowe leżą w n-tej kolumnie. Powyższa obserwacja pozwala na wyprowadzenie wzoru tym razem na indeks kolumny k_{last} , w której znajduje się ostatni niezerowy element w rzędzie r:

$$k_{last}(r) = \min\{r + \ell, n\}. \tag{6}$$

Oczywiście, jeżeli w danym kroku metody eliminacji Gaussa r-ty rząd odejmowany jest od rzędów pod nim, nie jest konieczne modyfikowanie elementów w kolumnach o większych od $k_{last}(r)$ indeksach.

Metoda eliminacji Gaussa prowadzi do układu z macierzą trójkątną górną, który rozwiązywany jest za pomocą algorytmu podstawiania wstecz, który w tym przypadku także poddawany jest drobnym modyfikacjom w celu ograniczenia liczby wykonywanych operacji.

Warto zauważyć tutaj, że w wyniku eliminacji Gaussa poza elementami pod diagonalą bloków C_i w macierzy A nie powstały żadne nowe elementy niezerowe. Wystarczy zatem dla każdego wiersza sumować elementy tylko do pewnej kolumny określonej wyprowadzonym wcześniej wzorem (6).

Metodę eliminacji Gaussa z opisanymi modyfikacjami przedstawia Algorytm 1.

Zakładając, że ℓ jest stałą, złożoność obliczeniowa zmodyfikowanej metody eliminacji Gaussa, wynosi O(n). Zewnętrzna pętla eliminacji Gaussa wykonuje n-1 przebiegów, środkowa maksymalnie 2ℓ , natomiast wewnętrzna maksymalnie ℓ . Z kolei w algorytmie podstawiania wstecz zewnętrzna pętla wykonuje n przebiegów, natomiast wewnętrzna maksymalnie ℓ . Jest to znacząca poprawa względem standardowej metody eliminacji Gaussa.

Algorytm 1: Eliminacja Gaussa

```
Dane wejściowe:
                                                 dana w zadaniu macierz postaci (2),
                                                 wektor prawych stron,
                                                rozmiar macierzy A,
                                                rozmiar bloku macierzy \boldsymbol{A}.
Dane wyjściowe:
                                               wektor zawierający rozwiązania układu Ax = b.
                                   \boldsymbol{x}
function eliminacja_gaussa(A, b, n, \ell)
     for k \leftarrow 1 to n-1 do
           e_{non\ 0} \leftarrow \min\left(\ell + \ell \cdot \left\lfloor \frac{\mathsf{k}+1}{\ell} \right\rfloor, n\right)
           k_{last} \leftarrow \min(\dot{\mathbf{k}} + \ell, n)
           for i \leftarrow k + 1 to e_{non \ 0} do
                if A[k][k] = 0 then
                       error współczynnik na przekątnej równy zeru
                 z \leftarrow A[i][k]/A[k][k]
                 \mathbf{A}[\mathsf{i}][\mathsf{k}] \leftarrow 0
                 for j \leftarrow k + 1 to k_{last} do
                       A[i][j] \leftarrow A[i][j] - z \cdot A[k][j]
                 \boldsymbol{b}[\mathsf{i}] \leftarrow \boldsymbol{b}[\mathsf{i}] - \mathsf{z} \cdot \boldsymbol{b}[\mathsf{k}]
     for i \leftarrow n downto 1 do
           k_{last} \leftarrow \min(i + \ell, n)
           for j \leftarrow k + 1 to k_{last} do
                \mathsf{suma} \leftarrow \mathsf{suma} + \boldsymbol{x}[\mathsf{i}] \cdot \boldsymbol{A}[\mathsf{i}][\mathsf{j}]
           x[i] \leftarrow (b[i] - suma)/A[i][i]
     return x
```

Powyżej został rozpatrzony wariant metody eliminacji Gaussa bez wyboru elementu głównego, czasami jednak lepiej sprawdza się algorytm z tzw. częściowym wyborem (umożliwia rozwiązanie układu kiedy na diagonali macierzy pojawiają się elementy zerowe), w tym wypadku oznacza to wybranie wiersza, dla którego element w eliminowanej kolumnie i ma największą co do modułu wartość i zamienienie go z i-tym wierszem (po zamianie eliminacja jest kontynuowana w zwykły sposób).

W praktyce taka zamiana wierszy bywa kosztowna, szczególnie kiedy operacje wykonywane są na dużych macierzach, dlatego przy metodzie eliminacji Gaussa z wyborem elementu głównego pierwszą wprowadzoną zmianą jest stworzenie wektora permutacji wierszy (p), w którym pamiętane jest na jakiej aktualnie pozycji w macierzy znajduje się dany wiersz. Wpływ tego zabiegu na algorytm jest taki, że zamiast odwołania do konkretnego wiersza zostaje wykonane odwołanie do jego pozycji w wektorze permutacji.

Wybór elementu głównego sprawia również, że niemożliwe jest zachowanie wyliczonych wartości k_{last} , gdyż odejmowanie wierszy w innej kolejności, może doprowadzić do powstania nowych elementów niezerowych. Konieczne jest zatem nowe, szersze oszacowanie k_{last} . Zauważyć moż-

na, że w czasie eliminowania współczynników z $\ell-2$ pierwszych kolumn najdalszy niezerowy element można stworzyć w kolumnie z indeksem 2ℓ – poprzez odejmowanie ℓ -tego wiersza, który w tej kolumnie posiada niezerowy element. Podczas eliminowania współczynników z kolejnych ℓ kolumn najdalszy niezerowy element można stworzyć w kolumnie z indeksem 3ℓ , analogicznie poprzez odejmowanie 2ℓ -tego wiersza, który w tej kolumnie posiada niezerowy element. Stosowanie powyższego rozumowania dla dalszych kolumn prowadzi do uzyskania nowego wzoru na k_{last} , mianowicie:

$$k_{last}(k) = \min\left\{2\ell + \ell \cdot \left\lfloor \frac{k+1}{\ell} \right\rfloor, n\right\}.$$
 (7)

Podobne ograniczenie zastosowane jest również podczas wykonywania algorytmu podstawiania wstecz – nie powstają żadne nowe elementy niezerowe poza tymi już uwzględnionymi, jedyną zmianą jest uwzględnienie permutacji wiersza, co jednak w zasadzie nie wpływa na szacowaną wartość.

Metodę eliminacji Gaussa z częściowym wyborem elementu głównego przedstawia Algorytm 2

Złożoność obliczeniowa zmodyfikowanej metody eliminacji Gaussa z częściowym wyborem elementu głównego jest gorsza niż bez wyboru elementu głównego z powodu zastosowanych szerszych ograniczeń na k_{last} , jednak przy założeniu, że ℓ jest stałą nie wpływa to na ogólną złożoność O(n).

Rozkład LU

Opis działania

Układy równań liniowych z niektórymi typami macierzy da się rozwiązać w sposób stosunkowo łatwy, takimi macierzami są np. macierze trójkątne – górna i dolna. Idea rozkładu $\boldsymbol{L}\boldsymbol{U}$ macierzy \boldsymbol{A} jest taka, żeby przedstawić ją za pomocą iloczynu

$$A = LU, \tag{8}$$

macierzy trójkątnej dolnej \boldsymbol{L} z elementami na przekątnej równymi 1 i macierzy trójkątnej górnej \boldsymbol{U} , za pomocą których układ równań da się rozwiązać w stosunkowo łatwy sposób.

Taki rozkład można uzyskać za pomocą znanej już metody eliminacji Gaussa. Metoda ta przekształca macierz \boldsymbol{A} do macierzy trójkątnej górnej, która stanie się macierzą \boldsymbol{U} . Macierz \boldsymbol{L} zostaje stworzona poprzez zapamiętanie mnożników użytych do eliminacji kolejnych współczynników macierzy \boldsymbol{A} i tak mnożnik użyty do wyzerowania elementu a_{ij} zapisujemy w i-tym wierszu i j-tej kolumnie macierzy \boldsymbol{L} . Cały rozkład $\boldsymbol{L}\boldsymbol{U}$ można przeprowadzić bezpośrednio na macierzy \boldsymbol{A} oszczędzając w ten sposób pamięć.

Złożoność obliczeniowa wyznaczenia rozkładu LU to $O(n^3)$, umożliwia on jednak stosunkowo szybkie rozwiązywanie wielu układów równań w których macierz jest taka sama, a zmienia się wektor prawych stron. W tym wypadku eliminacja Gaussa o dużej złożoności wykonywana jest tylko raz, a rozwiązywanie układów dzieli się na dwa etapy:

$$\begin{cases} Lz = b \\ Ux = z, \end{cases} \tag{9}$$

co dzięki postaci macierzy L i U (macierze trójkątne) można wykonać w $O(n^2)$ operacji.

Algorytm 2: Eliminacja Gaussa z częściowym wyborem elementu głównego

```
Dane wejściowe:
                                          \boldsymbol{A}
                                                          dana w zadaniu macierz postaci (2),
                                                          wektor prawych stron.
                                                          rozmiar macierzy A,
                                                          rozmiar bloku macierzy A.
Dane wyjściowe:
                                          \boldsymbol{x}
                                                — wektor zawierający rozwiązania układu Ax = b.
function eliminacja_gaussa_z_elementem_głównym(A, b, n, \ell)
      p \leftarrow \{i : i \in \{1, ..., n\}\}
      for k \leftarrow 1 to n-1 do
             \begin{split} e_{non~0} \leftarrow \min\left(\ell + \ell \cdot \left\lfloor \frac{\mathsf{k} + 1}{\ell} \right\rfloor, n\right) \\ k_{last} \leftarrow \min\left(2\ell + \ell \cdot \left\lfloor \frac{\mathsf{k} + 1}{\ell} \right\rfloor, n\right) \end{split}
             for i \leftarrow k + 1 to e_{non \ 0} do
                    r_{\max} \leftarrow \mathsf{m} \ \mathrm{takie}, \ \mathrm{\dot{z}e} \colon \boldsymbol{A}[\mathsf{p}[\mathsf{m}]][\mathsf{k}] = \max(|\boldsymbol{A}[\mathsf{p}[\mathsf{q}]][\mathsf{k}]| : \mathsf{q} \in \{\mathsf{i}, \dots, e_{non\ 0}\})
                    if p[r_{\text{max}}] = 0 then
                           error macierz osobliwa
                    swap (p[k], p[r_{max}])
                    z \leftarrow A[p[i]][k]/A[p[k]][k]
                    A[p[i]][k] \leftarrow 0
                    for j \leftarrow k + 1 to k_{last} do
                           A[p[i]][j] \leftarrow A[p[i]][j] - z \cdot A[p[k]][j]
                    \boldsymbol{b}[\mathsf{p}[\mathsf{i}]] \leftarrow \boldsymbol{b}[\mathsf{p}[\mathsf{i}]] - \mathsf{z} \cdot \boldsymbol{b}[\mathsf{p}[\mathsf{k}]]
      for i \leftarrow n downto 1 do
             k_{last} \leftarrow \min\left(2\ell + \ell \cdot \left\lfloor \frac{p[i]+1}{\ell} \right\rfloor, n\right)
             for j \leftarrow k + 1 to k_{last} do
                    \mathsf{suma} \leftarrow \mathsf{suma} + x[\mathsf{j}] \cdot A[\mathsf{p}[\mathsf{i}]][\mathsf{j}]
             x[i] \leftarrow (b[p[i]] - suma)/A[p[i]][i]
      return x
```

Zastosowane modyfikacje

Rozkład LU dla macierzy A w postaci 2 jest wyznaczany w sposób bardzo podobny do metody eliminacji Gaussa. Jednak zamiast zerowania elementów a_{ik} podstawiane są mnożniki $z = a_{ik}/a_{kk}$, które stanowią elementy macierzy L.

Złożoność obliczeniowa wyznaczenia takiego rozkładu jest w oczywisty sposób taka sama, co złożoność dla metody eliminacji Gaussa bez wyboru elementu głównego (Algorytm 1) czy z częściowym jego wyborem (Algorytm 2), a więc, przy założeniu, że ℓ jest stałą, wynosi O(n).

W celu rozwiązania układu równań liniowych Ax = b, gdzie A = LU czyli LUx = b należy podzielić obliczenia na dwa etapy 9. Drugi etap obliczeń czyli rozwiązanie układu Ux = z nie różni się w zasadzie niczym od algorytmu podstawiania wstecz, nie ulega także zmianie wartość k_{last} , która wskazuje na to do której kolumny w danym wierszy należy sumować. Aby rozwiązać układ Lz = b należy zastosować algorytm podstawiania w przód, który jest podobny do algorytmu podstawiania wstecz, jednak zaczyna się od pierwszego wiersza i sumowane są elementy z kolumn coraz dalszych, a nie coraz wcześniejszych. Algorytm obliczania Lz = b został oczywiście odpowiednio zoptymalizowany ze względu na specyficzną postać macierzy. Warto zauważyć że elementy zerowe w macierzy L są na tych samych indeksach co te w macierzy

A. Niepotrzebne jest więc rozpoczynanie sumowania od pierwszej kolumny dla każdego wiersza. W zasadzie takie sumowanie ma miejsce tylko dla ℓ pierwszych wierszy. Dla kolejnych ℓ wystarczy sumować od kolumny $\ell-1$, a dla jeszcze dalszych ℓ kolumny $2\ell-1$, itd. Tę zależność można przedstawić za pomocą następującego ogólnego wzoru:

$$k_{from}(r) = \max\left\{\ell \cdot \left| \frac{r-1}{\ell} \right| - 1, 1\right\}. \tag{10}$$

Metode rozwiązania układu równań liniowych za pomocą rozkładu LU macierzy A prezentuje Algorytm 3.

Złożoność obliczeniowa rozwiązywania układu równań liniowych z rozkładu LU wynosi O(n), ponieważ rozwiązanie Ux=z ma taką samą złożoność jak w metodzie Gaussa, a rozwiązanie Lz = b w oczywisty sposób ma także zbliżoną do tej złożoność.

```
Algorytm 3: Rozwiązywanie układu równań przy użyciu rozkładu LU.
  Dane wejściowe:
                                            macierz (2) po przekształceniu do postaci, gdzie nad przekatną znaj-
                                            dują się elementy macierzy U, a pod przekątną L,
                                            wektor prawych stron.
                                           rozmiar macierzy A,
                                           rozmiar bloku macierzy A.
  Dane wyjściowe:
                                x – wektor zawierający rozwiązania układu Ax = b.
  function rozwiązanie LU(A, b, n, \ell)
       for i \leftarrow 1 to n do
            suma \leftarrow 0
           k_{from} \leftarrow \min\left(\ell \cdot \left| \frac{\mathsf{i}-1}{\ell} \right|, n\right)
            for j \leftarrow k_{from} to i-1 do
                \mathsf{suma} \leftarrow \mathsf{suma} + \mathsf{z}[\mathsf{j}] \cdot \boldsymbol{A}[\mathsf{i}][\mathsf{j}]
            z[i] = b[i] - suma
       for i \leftarrow n downto 1 do
            \mathsf{suma} \leftarrow 0
            k_{last} \leftarrow \min(i + \ell, n)
            for j \leftarrow i + 1 to k_{last} do
                 \mathsf{suma} \leftarrow \mathsf{suma} + \boldsymbol{x}[\mathsf{i}] \cdot \boldsymbol{A}[\mathsf{i}][\mathsf{i}]
```

Wyniki

return x

 $x[i] \leftarrow (z[i] - suma)/A[i][i]$

Wnioski