## 计算机视觉与模式识别作业四(2021版本)

| 姓名: | 刘沛鑫    | 学号: | 2195011999 |
|-----|--------|-----|------------|
| 班级: | 计算机 93 | 得分: |            |

1、给定一幅分辨率为  $9 \times 9$ ,图像深度为 8bit 的灰度图,同时给定线性几何变换的参数 A 和 b,变换后的几何位置[x', y']<sup>T</sup>和变换前的像素位置[x, y] $^{T}$ 之间存在变换关系如下所示:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} + b$$

|   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |    |    |    |    |    |    |    |
|---|-----------------------------------------|----|----|----|----|----|----|----|
| 1 | 10                                      | 19 | 28 | 37 | 46 | 55 | 64 | 73 |
| 2 | 11                                      | 20 | 29 | 38 | 47 | 56 | 65 | 74 |
| 3 | 12                                      | 21 | 30 | 39 | 48 | 57 | 66 | 75 |
| 4 | 13                                      | 22 | 31 | 40 | 49 | 58 | 67 | 76 |
| 5 | 14                                      | 23 | 32 | 41 | 50 | 59 | 68 | 77 |
| 6 | 15                                      | 24 | 33 | 42 | 51 | 60 | 69 | 78 |
| 7 | 16                                      | 25 | 34 | 43 | 52 | 61 | 70 | 79 |
| 8 | 17                                      | 26 | 35 | 44 | 53 | 62 | 71 | 80 |
| 9 | 18                                      | 27 | 36 | 45 | 54 | 63 | 72 | 81 |

## 尝试:

- (1) 、假设图像现在围绕着它的中心点逆时针方向旋转 90°, 试问 A 和 b 分别是多少?
- (2) 、试问旋转后的图像是什么?
- (3) 、写出后向变换的伪代码,首先确定变换后的区域,然后遍历输出 图像的像素点位置,计算它在输入图像中的对应位置。
- (1) 设图像左上角为坐标原点(0,0),向下和向右分别为 x 轴和 y 轴,则图像的中心点坐标为(4,4)。绕中心点逆时针方向旋转  $90^\circ$  ,在此坐标系中对应旋转角度  $\theta=90^\circ$

所以

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

由此得到

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$b = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

(2) 旋转后的图像的每个像素用矩阵表示如下:

(3) 假设原图像的区域是 $w \times h$  (即  $9 \times 9$ )

变换后的区域是 $new_w \times new_h$  (在此例中也为  $9 \times 9$ ),且

$$new_w = [|w \times cos\theta + h \times sin\theta|]$$
  
 $new_h = [|h \times cos\theta + w \times sin\theta|]$ 

逆变换

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{pmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} - b \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} 0 \\ 8 \end{bmatrix}$$

等价于

$$\begin{cases} x = y' \\ y = 8 - x' \end{cases}$$

后向变换代码:

new\_w = math.ceil(abs(w\*cosTHETA + h\*sinTHETA))
new\_h = math.ceil(abs(h\*cosTHETA + w\*sinTHETA))
for i in range(new w):

for j in range(new h):

x=i #此处根据旋转角度不同而不同

y=8-i #此处根据旋转角度不同而不同

x = int(x)

y = int(y)

if  $x \ge 0$  and  $x \le w$  and  $y \ge 0$  and  $y \le h$ :

Out 
$$img[i,j] = In img[x,y]$$

2、 如果我们现在拍摄了一幅图像, 它的直方图如下所示:



尝试:

- (1) 、描述这幅图像的缺陷;
- (2) 、如果采用一个灰度变换去校正这幅图像,灰度变换函数应该如何设计, 试举例说明,并且描述该函数的扩展/压缩特性。
- (3) 、如果采用直方图均衡来校正这幅照片,尝试通过伪代码描述矫正的过程。
- (1) 这幅图像的像素值集中分布在区间[0, a],未能有效利用量化范围,图像总体偏暗。
- (2)由于这幅图像的像素值集中分布在低灰度区,需要扩展低灰度区,可以使 用线性变换来实现。

$$t = \begin{cases} \frac{255}{a}s, & s \le a \\ 255, & s > a \end{cases}$$

该函数将低灰度区[0, a]扩展到[0, 255], 将高灰度区[a, 255]压缩到[255, 255]。

(3) 假设原图像的大小是 $w \times h$ 

#统计 1-256 灰度

s = numpy.zeros(256)

for i in range(w):

for j in range(h):

s[In img[i,j]] += 1

#统计概率密度

for i in range(256):

p[i] = s[i]/(h\*w\*1.0)

#统计累计概率分布

 $\mathbf{f}[0] = \mathbf{p}[0]$ 

**for i in range(1,256):** 

f[i] = f[i-1] + p[i]

#对灰度值进行映射,均衡化

for i in range(w):

for j in range(h):

 $Out_{img[i,j]} = round(255*f[In_{img[i,j]]})$ 

3、如果我们采用查找表的方式来实现如下的伽马变换:

$$t = s^2$$

试问:下表中变换后的值应该是多少?

| 1 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|---|----|----|----|----|----|----|----|----|-----|
| 0 | 2  | 4  | 6  | 10 | 14 | 19 | 25 | 32 | 39  |

假设像素深度是8bit,用T和S表示像素值,分别归一化为t和s,则

$$t = \frac{T}{255}$$

$$s = \frac{S}{255}$$

由  $t = s^2$ 可得

$$T=\frac{S^2}{255}$$

变换结果如表中所示。

4、给定一幅分辨率为 9 × 9, 图像深度为 3bit 的灰度图,:

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 6 | 7 | 6 | 3 | 5 | 3 | 0 | 5 | 6 |
| 2 | 7 | 1 | 7 | 5 | 2 | 3 | 3 | 7 | 1 |
| 3 | 1 | 7 | 5 | 1 | 7 | 5 | 7 | 7 | 7 |
| 4 | 7 | 7 | 0 | 5 | 0 | 5 | 2 | 4 | 2 |
| 5 | 5 | 3 | 6 | 0 | 3 | 6 | 4 | 1 | 1 |
| 6 | 0 | 6 | 7 | 2 | 3 | 2 | 1 | 1 | 2 |
| 7 | 2 | 1 | 5 | 0 | 6 | 5 | 6 | 2 | 4 |
| 8 | 4 | 3 | 6 | 0 | 6 | 5 | 2 | 6 | 3 |
| 9 | 7 | 7 | 5 | 6 | 1 | 1 | 4 | 2 | 2 |

(1) 、计算这幅图像的直方图

- (2) 、对这副图像进行直方图均衡
- (3) 、尝试分析为什么直方图均衡能够实现图像增强的目的。

## (1) 直方图统计如下

N = [7, 11, 11, 9, 5, 12, 12, 14]



P = [0.0864, 0.1358, 0.1358, 0.1111, 0.0617, 0.1481, 0.1481, 0.1728]



## (2) 累计概率分布 $F_s = \sum_{i=0}^{s} P_i$ F = [0.0864, 0.2222, 0.358, 0.4691, 0.5309, 0.679, 0.8272, 1]

灰度变换  $T_s = Round(7 \times F_s)$ 

| $T_0$ | <i>T</i> <sub>1</sub> | $T_2$ | <i>T</i> <sub>3</sub> | $T_4$ | <i>T</i> <sub>5</sub> | $T_6$ | $T_7$ |
|-------|-----------------------|-------|-----------------------|-------|-----------------------|-------|-------|
| 1     | 2                     | 3     | 3                     | 4     | 5                     | 6     | 7     |



- (3)因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中,处理后对比度变大,清晰度变大,所以能有效增强图像。
- 5、给定一个 100×100 的图像,在不申请额外存储空间的情况下,尝试对该图像进行顺时针方向的 90°旋转,并且给出伪代码。

在不申请额外存储空间的情况下,可以对 100×100 图像的 50 层逐层旋转,直接在原始图像上进行修改。

```
for layer in range(50):

start = layer

end = 99-layer

for i in range(end-start):

temp = img[start][start+i]

img[start][start+i] = img[end-i][start]

img[end-i][start] = img[end][end-i]

img[end][end-i] = img[start+i][end]

img[start+i][end] = temp
```