Analisi Matematica II

Analisi complessa

Virginia De Cicco, Pietro Mercuri Sapienza Univ. di Roma

1/26

In questa lezione vedremo che il teorema dei residui si può usare per il calcolo di alcuni integrali impropri.

Prima occorre enunciare alcuni lemmi tecnici che serviranno negli esercizi.

Lemma del grande cerchio

Lemma del grande cerchio

Sia f una funzione definita e continua in un settore angolare $\theta_1 \leq \operatorname{Arg}(z) \leq \theta_2$ (per |z| abbastanza grande) e se $\lim_{|z| \to +\infty} zf(z) = 0$, allora

$$\lim_{R\to+\infty}\int_{\gamma_R}f(z)dz=0,$$

dove γ_R è l'intersezione della circonferenza di raggio R e centro l'origine con il settore considerato.

Un esempio di settore angolare è $0 \le Arg(z) \le \pi$, che è il semipiano

$$\{z\in\mathbb{C}: \mathrm{Im}(z)\geq 0\}.$$

Illustriamo ora con un esempio l'uso del teorema dei residui e del lemma del grande cerchio per il calcolo di certi integrali impropri.

Esempio

Calcoliamo l'integrale improprio

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^4} dx.$$

Consideriamo $f(z)=rac{1}{1+z^4}$, che ha quattro poli semplici, le radici quarte di -1

$$z_1 = e^{i\frac{\pi}{4}}, \quad z_2 = e^{i\frac{3\pi}{4}}, \quad z_3 = e^{i\frac{5\pi}{4}}, \quad z_4 = e^{i\frac{7\pi}{4}},$$

o, in coordinate cartesiane, rispettivamente

$$z_1 = rac{1}{\sqrt{2}} + rac{i}{\sqrt{2}}, \quad z_2 = -rac{1}{\sqrt{2}} + rac{i}{\sqrt{2}}, \quad z_3 = -rac{1}{\sqrt{2}} - rac{i}{\sqrt{2}}, \quad z_4 = rac{1}{\sqrt{2}} - rac{i}{\sqrt{2}}.$$

Fra queste consideriamo le prime due che stanno nel semipiano

$$\{z\in\mathbb{C}: \mathrm{Im}(z)>0\}.$$

Nello stesso semipiano consideriamo la semicirconferenza γ_R di centro l'origine e raggio R abbastanza grande da contenere i poli z_1 e z_2 .

Sia γ il circuito ottenuto concatenando tale semicirconferenza con il segmento [-R,R] dell'asse delle x.

Dal teorema dei residui si ha

$$\int_{\gamma} f(z)dz = \int_{-R}^{R} f(x)dx + \int_{\gamma_R} f(z)dz = 2\pi i \sum_{k=1}^{2} \operatorname{res}(f, z_k).$$

Ma, poiché $\lim_{|z|\to +\infty} zf(z) = \lim_{|z|\to +\infty} \frac{z}{1+z^4} = 0$, si può applicare il lemma precedente e quindi

$$\lim_{|z|\to+\infty}\int_{\gamma_{P}}f(z)dz=0.$$

Ne segue che

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{R} f(x)dx = 2\pi i \sum_{k=1}^{2} \operatorname{res}(f, z_k).$$

Usando la formula vista si ha per k = 1, 2

$$res(f, z_k) = \frac{1}{4z_k^3} = \frac{z_k}{4} \frac{1}{z_k^4} = -\frac{z_k}{4},$$

dove si è usato che $z_k^4 + 1 = 0$ e quindi $z_k^4 = -1$. Quindi

$$\operatorname{res}(f, z_1) = -\frac{z_1}{4} = -\frac{1}{4\sqrt{2}} - \frac{i}{4\sqrt{2}},$$

$$\operatorname{res}(f, z_2) = -\frac{z_2}{4} = \frac{1}{4\sqrt{2}} - \frac{i}{4\sqrt{2}}.$$

Dunque

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i [\text{res}(f, z_1) + \text{res}(f, z_2)] =$$

$$= 2\pi i \left[-\frac{1}{4\sqrt{2}} - \frac{i}{4\sqrt{2}} + \frac{1}{4\sqrt{2}} - \frac{i}{4\sqrt{2}} \right] = \frac{\pi}{\sqrt{2}}.$$

Lo stesso procedimento si può usare per calcolare integrali impropri del tipo

$$\int_{-\infty}^{+\infty} f(x) dx$$

se f(z) è tale che $\lim_{|z|\to +\infty}zf(z)=0$, f(z) non ha singolarità sull'asse reale ed ha un numero finito di singolarità z_1,\ldots,z_r nel semipiano $\mathrm{Im}(z)>0$. Allora

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{r} \operatorname{res}(f, z_k).$$

Un altro lemma tecnico che si usa spesso è il seguente:

Lemma di Jordan

Sia g una funzione definita e continua in un settore angolare S contenuto nel semipiano ${\rm Im}\,z\geq 0$, cioè

$$S = \{z \in \mathbb{C} : 0 \le \theta_1 \le \operatorname{Arg}(z) \le \theta_2 \le \pi\}.$$

Supponiamo inoltre che $\lim_{|z|\to +\infty} g(z)=0$,

allora

$$\lim_{R\to+\infty}\int_{\gamma_R}g(z)e^{iz}dz=0,$$

dove γ_R è l'intersezione della circonferenza di raggio R e centro l'origine con il settore considerato.

Diamo ora un esempio in cui si usa tale lemma.

Esempio

Calcoliamo l'integrale improprio

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + b^2} dx, \quad b \in (0, +\infty).$$

Poiché

$$\frac{\cos x}{x^2 + b^2} = \operatorname{Re}\left(\frac{e^{ix}}{x^2 + b^2}\right),\,$$

si ha che

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + b^2} dx = \operatorname{Re} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + b^2} dx.$$

Consideriamo la funzione $f(z)=\frac{1}{z^2+b^2}$. Poiché $\lim_{|z|\to+\infty}f(z)=0$, dal lemma di Jordan si ha

$$\lim_{R\to +\infty} \int_{\gamma_R} \frac{e^{iz}}{z^2+b^2} dz = 0.$$

Quindi se γ è il circuito ottenuto concatenando γ_R con il segmento [-R,R] dell'asse delle x si ha

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + b^2} dx := \lim_{R \to +\infty} \int_{-R}^{R} \frac{e^{ix}}{x^2 + b^2} dx = \lim_{R \to +\infty} \int_{\gamma} \frac{e^{iz}}{z^2 + b^2} dz.$$

Ora calcoliamo quest'ultimo integrale usando i residui.

La funzione $g(z):=\frac{e^{iz}}{z^2+b^2}$ ha due poli semplici z=bi e z=-bi, di cui solo il primo cade nel semipiano $\mathrm{Im}(z)\geq 0$. Usando la solita formula si ha

$$\operatorname{res}\left(\frac{e^{iz}}{z^2+b^2},ib\right) = \frac{e^{i\cdot ib}}{2ib} = -\frac{e^{-b}}{2b}i.$$

Quindi dal teorema dei residui si ha

$$\int_{\gamma} \frac{e^{iz}}{z^2 + b^2} dz = -2\pi i \frac{e^{-b}}{2b} i = \frac{e^{-b}}{b} \pi$$

e concludendo si ha

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + b^2} dx = \operatorname{Re} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + b^2} dx =$$

$$\operatorname{Re}\left(\lim_{R\to+\infty}\int_{\gamma}\frac{e^{iz}}{z^2+b^2}dz\right)=\operatorname{Re}\left(\lim_{R\to+\infty}\frac{e^{-b}}{b}\pi\right)=\frac{e^{-b}}{b}\pi.$$

Lo stesso procedimento si può usare per calcolare integrali impropri del tipo

$$F(\omega) = \int_{-\infty}^{+\infty} e^{i\omega x} g(x) dx,$$

con ω reale positivo e g(z) tale che $\lim_{|z|\to +\infty} g(z)=0$, con un numero finito di singolarità z_1,\ldots,z_r nel semipiano $\mathrm{Im}(z)>0$ e nessuna singolarità sull'asse reale. Allora

$$F(\omega) = 2\pi i \sum_{k=1}^{r} \operatorname{res}(e^{i\omega z} g(z), z_k).$$

L'ultimo lemma tecnico che consideriamo è il seguente:

Lemma del polo semplice

Sia f una funzione analitica in un intorno forato dell'origine e abbia in tale intorno un polo semplice, allora

$$\lim_{r\to 0} \int_{\gamma_r} f(z)dz = i\pi \operatorname{res}(f,0),$$

dove γ_r è la semicirconferenza di equazione $z=re^{it}$, con $0\leq t\leq \pi$.

Vediamo ora l'uso di questo lemma con il seguente esempio:

Esempio

Calcoliamo l'integrale improprio

$$\int_0^{+\infty} \frac{\sin x}{x} dx := \lim_{\substack{r \to 0 \\ R \to +\infty}} \int_r^R \frac{\sin x}{x} dx.$$

Consideriamo la funzione $f(z) = \frac{e^{iz}}{z}$ e sia γ il circuito β_{rR} ottenuto prendendo le due semicirconferenze di raggio r ed R, con r < R, concatenate con i segmenti [-R, -r] e [r, R] dell'asse delle x.

Poiché

$$e^{iz}=1+iz-\frac{z^2}{2}+\ldots$$

si ha

$$f(z) = \frac{e^{iz}}{z} = \frac{1}{z} + i - \frac{z}{2} + \dots$$

che ha un polo semplice in z=0 con residuo $res(f,0)=c_{-1}=1$. Quindi f non ha singolarità all'interno del circuito considerato e quindi

$$\int_{\beta_{rR}} \frac{e^{iz}}{z} dz = 0.$$

D'altra parte

$$\int_{\beta_{rR}} \frac{e^{iz}}{z} dz = \int_{-R}^{-r} \frac{e^{ix}}{x} dx - \int_{\gamma_r} \frac{e^{iz}}{z} dz + \int_r^R \frac{e^{ix}}{x} dx + \int_{\gamma_R} \frac{e^{iz}}{z} dz.$$

Ricordiamo che

$$\frac{e^{ix}}{x} = \frac{\cos x}{x} + i \frac{\sin x}{x}$$

e che $\frac{\cos x}{x}$ è dispari, mentre $\frac{\sin x}{x}$ è pari. Quindi

$$0 = \int_{\beta_{rR}} \frac{e^{iz}}{z} dz = -\int_{\gamma_r} \frac{e^{iz}}{z} dz + 2i \int_r^R \frac{\sin x}{x} dx + \int_{\gamma_R} \frac{e^{iz}}{z} dz.$$

Passando al limite per $r \rightarrow 0$ dal lemma del polo semplice si ha

$$\lim_{r\to 0} \int_{\gamma_r} \frac{e^{iz}}{z} dz = i\pi \operatorname{res}(f,0) = i\pi$$

e dal lemma di Jordan per $R o +\infty$ si ha

$$\lim_{R\to+\infty}\int_{\gamma_R}\frac{\mathrm{e}^{iz}}{z}dz=0.$$

Quindi

$$0 = -i\pi + 2i\int_0^{+\infty} \frac{\sin x}{x} dx,$$

da cui

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Lo stesso procedimento si può usare per calcolare integrali impropri del tipo

$$\int_{-\infty}^{+\infty} f(x) dx$$

dove f(z) ha un certo numero p_1,\ldots,p_n di poli semplici sull'asse reale e un certo numero di singolarità z_1,\ldots,z_r nel semipiano $\mathrm{Im}(z)>0$ e se $\lim_{|z|\to+\infty}zf(z)=0$.

In tal caso si ha

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{r} \operatorname{res}(f(z), z_k) + \pi i \sum_{j=1}^{n} \operatorname{res}(f(z), p_j).$$

Analogamente,

$$\int_{-\infty}^{+\infty} e^{i\omega x} g(x) dx = 2\pi i \sum_{k=1}^{r} \operatorname{res}(e^{i\omega z} g(z), z_k) + \pi i \sum_{i=1}^{n} \operatorname{res}(e^{i\omega z} g(z), p_j),$$

se g(z) ha un certo numero p_1,\ldots,p_n di poli semplici sull'asse reale e un certo numero di singolarità z_1,\ldots,z_r nel semipiano $\mathrm{Im}(z)>0$ e se $\lim_{|z|\to+\infty}g(z)=0$.

Da Casalvieri-De Cicco

Si utilizzi il lemma del grande cerchio per calcolare il seguente integrale improprio:

$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2i}.$$

Soluzione: Il prolungamento analitico della funzione integranda è il seguente

$$f(z)=\frac{1}{z^2+2i}.$$

Tale funzione è data dal rapporto di due funzioni intere e quindi le sue singolarità coincidono con i numeri complessi che ne annullano il denominatore:

$$z^2 + 2i = 0 \Leftrightarrow z^2 = -2i.$$

Per determinare le radici quadrate di -2i conviene passare in rappresentazione esponenziale $z=\rho e^{i\theta}$, cosicché

$$z^{2} = -2i \Leftrightarrow \rho^{2} e^{2i\theta} = 2e^{-i\frac{\pi}{2}} \Leftrightarrow \begin{cases} \rho = \sqrt{2}, \\ \theta_{k} = -\frac{\pi}{4} + k\pi, \end{cases} \qquad k = 0, 1.$$

Da Casalvieri-De Cicco

Dunque le singolarità di f(z) sono

$$z_1 = \sqrt{2}e^{-i\frac{\pi}{4}} = \sqrt{2}\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) = 1 - i$$

$$z_2 = \sqrt{2}e^{i\frac{3}{4}\pi} = \sqrt{2}\left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = -1 + i$$

entrambi poli semplici.

Si ha dunque che

$$\int_{\gamma_R} \frac{dz}{z^2 + 2i} = 2\pi i \operatorname{res}\left(\frac{1}{z^2 + 2i}, -1 + i\right)$$

dove γ_R è la semicirconferenza di centro l'origine e raggio R, posta nel semipiano ${\rm Im}\ z\geq 0.$

Da Casalvieri-De Cicco

Poiché

$$\lim_{|z|\to+\infty} zf(z) = \lim_{|z|\to+\infty} \frac{z}{z^2 + 2i} = 0$$

si può applicare il lemma del grande cerchio. Si ha che

$$\operatorname{res}\left(\frac{1}{z^2 + 2i}, -1 + i\right) = \lim_{z \to -1 + i} \frac{1}{(z - 1 + i)(z + 1 - i)} (z + 1 - i)$$
$$= \frac{1}{-1 + i - 1 + i} = \frac{1}{2(i - 1)},$$

e quindi, per tale lemma,

$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2i} = 2\pi i \operatorname{res}\left(\frac{1}{z^2 + 2i}, -1 + i\right) = \frac{2\pi i}{2(i - 1)} = \frac{\pi i}{i - 1} = \frac{\pi}{2}(1 - i).$$

Appello del 22 febbraio 2011

- (i) Si enunci il lemma di Jordan.
- (ii) Utilizzando tale lemma, si calcoli il seguente integrale

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^3 + i} dx.$$

Soluzione: (ii)

La funzione $f(z) = \frac{e^{iz}}{z^3 + i}$ ha tre poli semplici: i, $\frac{\sqrt{3}}{2} - \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} - \frac{1}{2}i$. Di questi solo i cade nel semipiano $\mathrm{Im}(z) > 0$.

Usando il lemma di Jordan si ha

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^3 + i} dx = 2\pi i \operatorname{res}\left(\frac{e^{iz}}{z^3 + i}, i\right) = -\frac{2\pi i}{3e}.$$

Appello del 30 maggio 2012

Usando i metodi della variabile complessa si calcolino i seguenti integrali

(i)

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x^2 + 4} dx,$$

(ii)

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 4} dx.$$

Appello del 30 maggio 2012

Soluzione:

(i) L'integrale

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x^2 + 4} dx = 0,$$

essendo dispari la funzione integranda.

(ii) Ricordando che $\cos x = \mathrm{Re}(e^{ix})$ e usando il lemma di Jordan si ha che l'integrale

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 4} dx = \operatorname{Re} \left(\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + 4} dx \right) = \operatorname{Re} \left(2\pi i \operatorname{res} \left(\frac{e^{iz}}{z^2 + 4}, 2i \right) \right) =$$

$$= \operatorname{Re} \left(2\pi i \frac{e^{2i^2}}{4i} \right) = \operatorname{Re} \left(\pi \frac{e^{-2}}{2} \right) = \frac{\pi}{2e^2}.$$

Appello del 31 marzo 2005

Si calcoli, usando il teorema dei residui, il seguente integrale

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + ix} dx.$$

Soluzione:

La funzione

$$f(z) = \frac{1}{z^2 + iz}$$

ha due poli semplici z = 0 e z = -i.

Usando il lemma del polo semplice, si ha

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + ix} dx = \pi i \operatorname{res} \left(\frac{1}{z^2 + iz}, 0 \right) = \pi.$$