

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 8. Übungsblatt

Julian Dörfler

Aufgabe A8.1 (Kodierungsfunktion) (4 Punkte)

Wir hatten in der Vorlesung eine Kodierungsfunktion cod : $\{0,1\}^* \to \mathbb{N}$ wie folgt definiert:

$$\operatorname{cod}(x) = \operatorname{bin}^{-1}(1x) - 1$$

Zeigen Sie, dass cod bijektiv ist.

Lösung A8.1 (Kodierungsfunktion) Wir zeigen zuerst, dass cod injektiv ist: Sei cod(x) = cod(y), dann ist $bin^{-1}(1x) = bin^{-1}(1y)$. Da aber 1x und 1y keine führenden Nullen haben, können diese nur die selbe Zahl darstellen, wenn x = y.

Nun zeigen wir, dass cod ebenfalls surjektiv ist: Sei also $n \in \mathbb{N}$ beliebig. Wir wählen x = bin(n+1). Hierbei enthält x in keinem Fall eine führende 0, da n+1 > 0, somit gilt immer $x_1 = 1$. Nun ist

$$cod(x_2x_3\cdots x_{|x|}) = bin^{-1}(1x_2x_3\cdots x_{|x|}) - 1$$

$$= bin^{-1}(x) - 1$$

$$= n + 1 - 1$$

$$= n.$$

Da cod also injektiv und surjektiv ist, ist cod nach Definition bijektiv.

Aufgabe A8.2 (Berechenbarkeit) (4 Punkte)

Wir sagen $x \in \mathbb{N}$ ist ein Fixpunkt einer partiellen Funktion f, wenn f(x) = x. Die Menge aller Fixpunkte von f definieren wir als

$$\operatorname{Fix}(f) := \left\{ x \in \mathbb{N} \mid f(x) = x \right\}.$$

Entscheiden Sie für die Sprache

$$L = \{i \in \mathbb{N} \mid \operatorname{Fix}(\varphi_i) \text{ ist endlich}\}\$$

für jede der folgenden Aussagen, ob diese wahr ist und beweisen Sie Ihre Antworten.

- (a) L ist eine Indexmenge.
- (b) $L \in \mathsf{REC}$
- (c) $L \in \mathsf{RE}$

(d) $L \in \text{co-RE}$.

Lösung A8.2 (Berechenbarkeit)

- (a) L ist eine Indexmenge. Sei $i \in L$ und $j \in \mathbb{N}$ mit $\varphi_i = \varphi_j$. Dann gilt aber auch $\operatorname{Fix}(\varphi_i) = \operatorname{Fix}(\varphi_j)$, insbesondere ist $\operatorname{Fix}(\varphi_j)$ ebenfalls endlich und somit $j \in L$.
- (b) Es gilt $L \notin \mathsf{REC}$. Dies zeigen wir mithilfe des Satz von Rice. Dazu hatten wir in Teilaufgabe (a) schon gezeigt, dass L eine Indexmenge ist, nun müssen wir noch zeigen, dass diese auch trivial ist:
 - $L \neq \emptyset$: Das Programm Ω terminiert auf keiner Eingabe und hat damit insbesondere keine Fixpunkte. Es gilt also Fix $(\varphi_{\Omega}) = \emptyset$ und somit $\Omega \in L$.
 - $L \neq \mathbb{N}$: Die Identitätsfunktion ist WHILE-berechenbar. Für ein Programm mit Gödelisierung g, dass die Identsfunktion berechnet gilt nun aber $\mathrm{Fix}(\varphi_g) = \mathbb{N}$, die Menge ist also unendlich und es gilt $g \notin L$.
- (c) Es gilt $L \notin \mathsf{RE}$. Aus dem expliziten Satz von Rice aus Aufgabe P8.1 gilt mit den vorherigen Teilaufgaben $\overline{H_0} \le L$. Da $\overline{H_0} \notin \mathsf{RE}$ gilt somit also auch $L \notin \mathsf{RE}$.

Alternativer Beweis: Wir reduzieren dafür vom Komplement $\overline{H_0}$ des speziellen Halteproblems mit der Reduktionsfunktion

$$f(i) := g\ddot{o}d(P_i)$$

wobei P_i das folgende Programm ist:

Gegeben m, simuliere i auf i und gib danach m aus.

Für $i \in \overline{H_0}$ hält i bei Eingabe i nicht. Das Programm P_i wird also auf keiner Eingabe terminieren und kann somit auch keine Fixpunkte haben. Es gilt also $\operatorname{Fix}(\varphi_{P_i}) = \emptyset$ und $f(i) = \operatorname{g\"od}(P_i) \in L$.

Für $i \notin \overline{H_0}$ hält i bei Eingabe i. Das Programm P_i hält also für jede Eingabe und berechnet die Identitätsfunktion. Somit gilt $\operatorname{Fix}(\varphi_{P_i}) = \mathbb{N}$ und $f(i) = \operatorname{g\"od}(P_i) \notin L$.

Da f WHILE-berechenbar ist und $\overline{H_0} \notin RE$, ist also auch $L_2 \notin RE$.

(d) Es gilt $L \notin \text{co-RE}$. Wir reduzieren dafür vom speziellen Halteproblem H_0 mit der Reduktionsfunktion

$$f(i) := g\ddot{o}d(P_i)$$

wobei P_i das folgende Programm ist:

Gegeben m, simuliere g auf g für m Schritte. Falls diese Simulation innerhalb der m Schritte terminiert divergiere, ansonsten gib m aus.

Für $i \in H_0$ existiert eine Schrittzahl $t \in \mathbb{N}$, so dass i bei Eingabe i nach t Schritten terminiert. Dann berechnet P_i auf Eingaben m < t die Identitätsfunktion und divergiert für Eingaben $m \ge t$. Es gilt also $\text{Fix}(\varphi_{P_i}) = \{0, 1, \dots, t-1\}$, insbesondere ist die Menge der Fixpunkte also endlich. Somit gilt $f(i) = \text{g\"{o}d}(P_i) \in L$.

Für $i \notin H_0$ hält i bei Eingabe i nicht. Somit berechnet P_i für alle Eingaben die Identitätsfunktion und es gilt $\operatorname{Fix}(\varphi_{P_i}) = \mathbb{N}$ und $f(i) = \operatorname{g\"{o}d}(P_i) \notin L$.

Da f WHILE-berechenbar ist und $H_0 \notin \text{co-RE}$, ist also auch $L_2 \notin \text{co-RE}$.

Aufgabe A8.3 (RE/co-RE-Vollständigkeit) (4 Punkte)

Eine Sprache L is RE-vollständig, wenn $L \in \mathsf{RE}$ und für alle $L' \in \mathsf{RE}$ gilt, dass $L' \leq L$. Eine Sprache L is co-RE-vollständig, wenn $L \in \mathsf{co-RE}$ und für alle $L' \in \mathsf{co-RE}$ gilt, dass $L' \leq L$.

- (a) Zeigen Sie, dass L RE-vollständig ist genau dann, wenn \overline{L} co-RE-vollständig ist.
- (b) Zeigen Sie, dass H RE-vollständig ist.
- (c) Zeigen Sie, dass A co-RE-vollständig ist, wobei

$$A = \{i \in \mathbb{N} \mid \forall m : \varphi_i(m) \neq m^3 \text{ oder } \varphi_i(m) \text{ ist undefiniert}\}\$$

Hinweis: Konstruieren Sie für Aufgabenteil (c) eine Reduktion von \overline{H} und verwenden Sie Aufgabenteil (a).

Lösung A8.3 (RE/co-RE-Vollständigkeit)

- (a) Sei L RE-vollständig. Dann ist $L \in RE$ und für alle $L' \in RE$ gilt $L' \leq L$. Somit gilt also $\overline{L} \in \text{co-RE}$ und für alle $L' \in RE$ gilt $\overline{L'} \leq \overline{L}$ nach Aufgabe P7.1 des siebten Präsenzblattes. $L' \in RE$ ist nun aber äquivalent zu $\overline{L'} \in RE$, also gilt $\overline{L} \in \text{co-RE}$. Da alle diese Implikationen sogar Äquivalenzen waren gilt also die Aussage.
- (b) Aus Aufgabe A6.4 wissen wir, dass $L \in \mathsf{RE}$ impliziert, dass es ein WHILE-Programm W gibt, mit $\mathsf{dom}(\varphi_W) = L$. Sei nun $f(x) := \langle W, x \rangle$. Diese Reduktionsfunktion ist offensichtlich WHILE-berechenbar. Nun gilt

$$x \in L \Rightarrow x \in \text{dom}(\varphi_W) \Rightarrow W$$
 hält auf Eingabe $x \Rightarrow \langle W, x \rangle \in H \Rightarrow f(x) \in H$ und

 $x \notin L \Rightarrow x \notin \text{dom}(\varphi_W) \Rightarrow W$ hält nicht auf Eingabe $x \Rightarrow \langle W, x \rangle \notin H \Rightarrow f(x) \notin H$.

Daraus folgt, dass $L \leq H$. Da $H \in \mathsf{RE}$ bekannt ist, folgt dass H RE-vollständig ist.

(c) Nach Aufgabenteil (a) ist \overline{H} co-RE-vollständig.

Nun zeigen wir $\overline{H} \leq A$ durch die folgende offensichtlich WHILE-berechenbare Funktion: Gegeben $\langle g, x \rangle$, geben wir die Gödelisierung des folgenden Programms $P_{g,x}$ aus:

Gegeben m, simuliere g auf x. Danach gib m^3 aus.

Sei nun $\langle g, x \rangle \in \overline{H}$. Dann hält g auf Eingabe x nicht. Daher hält $P_{g,x}$ auf keiner Eingabe m und berechnet somit insbesondere niemals m^3 , also $f(\langle g, x \rangle) = \text{g\"od}(P_{g,x}) \in A$.

Sei nun $\langle g, x \rangle \notin \overline{H}$. Dann hält g auf Eingabe x. Daher hält $P_{g,x}$ auf jeder Eingabe m und berechnet insbesondere immer m^3 , also $f(\langle g, x \rangle) = \text{g\"od}(P_{g,x}) \notin A$.

Sei nun $L' \in \text{co-RE}$ beliebig. Dann ist $L' \leq \overline{H}$ und durch die Transitivität von \leq auch $L' \leq A$.

Bleibt also noch zu zeigen, dass $A \in \text{co-RE}$. Wir geben dazu einen Semi-Entscheider für \overline{A} an:

Bei Eingabe g, simuliere für alle Paare $\langle m, t \rangle$ g mit Eingabe m für t Schritte. Falls eine dieser Simulationen mit Ausgabe m^3 terminiert, gebe 1 aus.

A ist also co-RE-vollständig.

Aufgabe A8.4 (Universelles FOR-Programm) (4 Punkte)

In dieser Aufgabe dürfen Sie annehmen, dass es eine Gödelisierung g_{FOR} für FOR-Programme gibt¹.

- (a) Zeigen Sie, dass es *kein* universelles FOR-Programm gibt, d.h. ein FOR-Programm U_{FOR} , welches als Eingabe eine Gödelisierung $g_{\text{FOR}}(P)$ und m erhält und $\Phi_P(m)$ ausgibt.
- (b) Warum zeigt Ihr Beweis aus (a) nicht, dass es kein universelles WHILE-Programm gibt?

Lösung A8.4 (Universelles FOR-Programm)

(a) Wir nehmen an, es gibt U_{FOR} und konstruieren ein FOR-Programm p wie folgt: Bei Eingabe n wird U_{FOR} auf n und n angewendet. Danach wird das Ergebnis um 1 erhöht (es genügt, das Ergebnis nach der Simulation irgendwie zu verändern). Dann gilt:

$$\Phi_{U_{\text{FOR}}}(g_{\text{FOR}}(p), g_{\text{FOR}}(p)) = \Phi_{p}(g_{\text{FOR}}(p)) = \Phi_{U_{\text{FOR}}}(g_{\text{FOR}}(p), g_{\text{FOR}}(p)) + 1,$$

was ein Widerspruch ist.

(b) FOR-Programme können nie undefiniert sein, WHILE-Programme schon, somit können wir das Ergebnis der Ausführung des universellen WHILE-Programmes danach nicht notwendigerweise verändern.

¹Sie sollten sich aber klar machen, wie die Definition der Gödelisierungsfunktion für WHILE-Programme abgeändert werden kann um eine Gödelisierungsfunktion für FOR-Programme zu erhalten.

Aufgabe A8.5 (Halte-Orakel) (4 Bonuspunkte)

In dieser Aufgabe stellen wir eine Kette von Erweiterungen WHILE = WHILE $_0 \subsetneq$ WHILE $_1 \subsetneq$ WHILE $_2 \subsetneq \ldots$ vor, wobei jede Menge echt mächtiger ist, als die vorherige. Wir erhalten WHILE $_{i+1}$ aus WHILE $_i$, indem wir ein Halte-Orakel für Programme aus WHILE $_i$ hinzufügen²:

$$s = "x_o := \mathsf{halts}_i \ x_p \ x_m"$$
.

Die Semantik von s ist wie folgt definiert: Wenn das WHILE_i-Programm $g\ddot{o}d_i^{-1}(x_p)$ bei Eingabe x_m hält, wird 1 in x_o geschrieben, und 0 sonst. Hierbei dürfen (und sollten) Sie annehmen, dass es eine bijektive Gödelisierungsfunktion $g\ddot{o}d_i$ für WHILE_i-Programme gibt³.

- (a) Zeigen Sie, dass χ_{H_0} WHILE₁-berechenbar ist.
- (b) Finden Sie für jedes $i \geq 1$ eine Sprache deren charakteristische Funktion nicht WHILE_i-berechenbar ist (und beweisen Sie, dass Ihre Sprache nicht WHILE_i-berechenbar ist).
- (c)* Welches ist das kleinste i, so dass χ_{V_0} WHILE $_i$ berechenbar ist. Beweisen Sie Ihre Antwort.

 $\mathit{Hinweis}$: Sie dürfen - um zu zeigen, dass χ_{V_0} nicht \mathtt{WHILE}_{i-1} -berechenbar ist - annehmen, dass wenn V_0 \mathtt{WHILE}_{i-1} -entscheidbar ist und $L \leq_{i-1} V_0$ eine \mathtt{WHILE}_{i-1} -berechenbare Reduktion ist, dass dann L ebenfalls \mathtt{WHILE}_{i-1} -entscheidbar ist.

Lösung A8.5 (Halte-Orakel)

- (a) Gegeben g in x_p , führen wir $x_o := \mathsf{halts}_0 \ x_p \ x_p$ aus und geben x_o zurück.
- (b) Sei $i \geq 1$ und

$$H_i = \{j \in \mathbb{N} \mid \operatorname{g\"od}_i^{-1}(j) \text{ h\"alt auf Eingabe } j\}$$

Der Beweis, dass χ_{H_i} nicht WHILE_i-berechenbar ist, ist - bis auf die Verwendung von göd_i statt göd - derselbe Beweis, der zeigt, dass χ_{H_0} nicht WHILE-berechenbar ist.

(c) Wir zeigen zuerst, dass χ_{V_0} WHILE₂-berechenbar ist: Hierzu betrachten wir folgendes WHILE₁-Programm P:

Input: q

- 1: **loop** über alle möglichen $m \in \mathbb{N}$:
- 2: **if** halts0 g m then
- 3: Simuliere g mit Eingabe m.
- 4: Wenn diese Simulation einen Wert $\neq 0$ ausgibt, beende das Programm mit Ausgabe 1.
- 5: **else**
- 6: Beende das Programm mit Ausgabe 1.
- 7: **fi**

²Siehe Definition 7.1 (simple statements) im Vorlesungsskript.

 $^{^{3}}$ Hierbei gilt natürlich göd $_{0}$ = göd

8: end loop

Falls nun $g \in V_0$ ist, so hält g auf jeder Eingabe mit Ausgabe 0, damit divergiert P auf Eingabe g.

Falls nun $g \notin V_0$ ist, so gibt es eine Eingabe bei der g entweder divergiert oder eine Ausgabe $\neq 0$ produziert. In beiden Fällen terminiert P auf Eingabe g mit Ausgabe 1.

P (ein WHILE₁ Programm) berechnet also $\chi'_{\overline{V_0}}$.

Wir können nun aber $g \in V_0$ mit Hilfe eines WHILE₂-Programmes entscheiden, indem wir das Halte-Orakel halts₁ benutzen um zu prüfen, ob P bei Eingabe g terminiert und in diesem Fall 0 ausgeben und 1 sonst.

Wir müssen also noch zeigen, dass V_0 nicht von WHILE₁-Programmen entschieden werden kann. Dazu zeigen wir $\overline{H_1} \leq V_0$. Dies impliziert dann auch $\overline{H_1} \leq_1 V_0$ mit der selben Reduktionsfunktion.

Gegeben die Gödelisierung eines \mathtt{WHILE}_1 Programmes g, gibt die Reduktionsfunktion f die Gödelisierung des folgenden \mathtt{WHILE} -Programmes P_g aus:

Input: Schrittzahl tInput: Array guessesInput: Array stepcount

- 1: Simuliere t Schritte von g auf Eingabe g, wobei der i-te Halte-Orakel-Aufruf mit guesses[i] beantwortet wird. Falls das Array guesses Länge < i hat, oder $guesses[i] \notin \{0,1\}$, so beende P_g mit Ausgabe 0. Zusätzlich speichere die Eingabe an das Halte-Orakel als p[i] und m[i]
- 2: Hält g innerhalb der t Schritte nicht, so beende P_g mit Ausgabe 0.
- 3: **loop** über alle Anfragen p[i] m[i] an das Halte-Orakel, die mit 1 beantwortet wurden.
- 4: Falls das Array stepcount eine Länge < i hat, so beende P_q mit Ausgabe 0.
- 5: Simuliere p[i] auf Eingabe m[i] für stepcount[i] Schritte.
- 6: Falls p[i] innerhalb dieser Simulation nicht terminiert beende P_g mit Ausgabe 0.
- 7: end loop
- 8: Simuliere interleaved für alle Anfragen m[i] p[i] an das Halte-Orakel, die mit 0 beantwortet wurden, m[i] auf Eingabe p[i].
- 9: Falls irgendeine dieser Simulationen terminiert, gib 0 aus.
- 10: Falls es keine Anfragen an das Halte-Orakel gab, die mit 0 beantwortet wurden, dann divergiere.

f ist WHILE und damit auch WHILE₁ berechenbar, da f nur ein neues Programm konstruiert und somit keine Halte-Orakel benötigt. P_g selbst ist ebenfalls ein WHILE-Programm, da wir zwar g simulieren, aber den halts₀-Befehl durch WHILE-berechenbare Befehle austauschen.

Falls nun $g \in \overline{H_1}$, dann terminiert das WHILE₁-Programm göd₁⁻¹(g) nicht auf Eingabe g. Falls guesses oder stepcount keine lang genugen Arrays sind, bzw guesses

einen Eintrag $\notin \{0,1\}$ enthält, so gibt P_g als Ausgabe 0 aus. Somit terminiert bei "korrekter" Simulation der Halte-Orakel-Aufrufe P_g in Zeile 2 mit Ausgabe 0. Ansonsten muss irgendein Orakel-Aufruf falsch beantwortet worden sein. Sei der i-te Orakel-Aufruf falsch beantwortet:

- p[i] hält auf Eingabe m[i], aber guesses[i] = 0: In diesem Fall wird P_g irgendwann in Zeile 9 0 ausgeben, da die Simulation von p[i] auf Eingabe m[i] hält.
- p[i] hält auf Eingabe m[i] nicht, aber guesses[i] = 1: In diesem Fall wird P_g in Zeile 6 0 ausgeben, da die Simulation von p[i] auf Eingabe m[i] nach stepcount[i] Schritten nicht halten kann.

Somit gibt P_g bei jeder Eingabe 0 aus, also $f(g) = \text{g\"od}(P_g) \in V_0$.

Falls nun $g \notin \overline{H_1}$, so existiert eine Schrittzahl t, so dass das WHILE₁-Programm $\gcd_1^{-1}(g)$ auf Eingabe g nach t Schritten hält. Wärend dieser Ausführung macht g maximal t Halte-Orakel aufrufe. Sei guesses ein Array, dass an der i-ten Stelle 1 ist, falls der i-te Aufruf des Halte-Orakels während dieser Ausführung 1 berechnet und 0 sonst. Weiterhin sei stepcount so, dass dieses wenn der i-te Aufruf des Halte-Orakels halts $_0$ x_p x_m war und mit 1 beantwortet wurde (x_p also auf Eingabe x_m hält), die Anzahl an Schritten enthält, so dass x_p bei Eingabe x_m nach stepcount[i] Schritten terminiert.

Dann wird P_g auf Eingabe t, guesses, stepcount divergieren, da die Simulation von g mit Eingabe g sich exakt so verhält, wie bei einer echten Ausführung von g auf Eingabe g, g also weiterhin nach t Schritten terminiert. Zusätzlich halten alle Programme, bei deren i-ter Halte-Orakel-Anfrage wir 1 zurückgegeben haben nach stepcount[i] Schritten, während keines der Programme bei denen wir 0 zurückgegeben haben hält. Somit divergiert P_g am Ende bei der Simulation aller negativ beantworteten Halte—Orakel Anfragen. Damit gilt $f(g) = \text{g\"od}^{-1}(P_g) \notin V_0$.

Da H_1 nicht WHILE₁-entscheidbar ist, ist auch $\overline{H_1}$ nicht WHILE₁-entscheidbar und somit ist durch die Reduktion V_0 nicht WHILE₁-entscheidbar.