Database Design Steps

Relational Data Model

Introduced by Ted Codd (late 60's – early 70's)

- Before = "Network Data Model" (Cobol as DDL, DML)
- Very contentious: Database Wars (Charlie Bachman vs. Mike Stonebraker)

Relational data model contributes:

- 1. Separation of logical, physical data models (data independence)
- 2. Declarative query languages
- 3. Formal semantics
- 4. Query optimization (key to commercial success)

1st prototypes:

- Ingres → CA
- Postgres → Illustra → Informix → IBM
- System R → Oracle, DB2

Key Abstraction: Relation

Account =	bname	acct_no	balance	
	Downtown	A-101	500	
	Brighton	A-201	900	
	Brighton	A-217	500	

Terms:

• Tables (aka: Relations)

Why called Relations?

Why Called Relations?

Mathematical relations

```
Given sets: R = \{1, 2, 3\}, S = \{3, 4\}

• R \times S = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}
```

• A **relation** on R, S is any subset (<u>c</u>) of R × S (e.g: { (1, 4), (3, 4)})

Database relations

```
Given attribute domains

Branches = { Downtown, Brighton, ... }

Accounts = { A-101, A-201, A-217, ... }

Balances = R
```

```
Account ⊆ Branches × Accounts × Balances { (Downtown, A-101, 500), (Brighton, A-201, 900), (Brighton, A-217, 500) }
```

Relations

Account = bname acct_no balance

Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

Considered equivalent to...

```
{ (Downtown, A-101, 500),
(Brighton, A-201, 900),
(Brighton, A-217, 500) }
```

Relational database semantics defined in terms of mathematical relations

So...

- That's the basic relational model
- Some more questions/issues
 - What about semantic information ?
 - Relationships between entities?
 - What about the constraints?
 - How do we represent one-to-one vs many-toone relationships?
 - Those constraints are all embedded in the schema

Keys and Relations

- Keys: Sets of attributes that allow us to identify entities
- Very loosely speaking, tuples are viewed entities

Keys

- Superkey
 - set of attributes of table for which every row has distinct set of values
- Candidate key
 - Minimal such set of attributes
- Primary key
 - DB Chosen Candidate key
 - Plays a very important role
 - E.g. relations typically sorted by this

Customer Table

Customer								
Cust-id	Cust- name	DOB	Phone	<u> </u>	Cust- street	Cust- City		

Possible Keys:

```
{cust-id}
{cust-name, cust-city, cust-street}
{cust-id, age}
{cust-name, phone}
cust-name ?? Probably not.
```

Domain knowledge dependent !!

Example of Keys

- Superkey
 - any attribute set that can distinguish entities
- Candidate key
 - a minimal superkey
 - Can't remove any attribute and preserve key-ness
 - {cust-id, age} not a candidate key since we could have {cust-id} by removing "age" of {cust-id, age}
 - {cust-name, cust-city, cust-street} is
 - assuming cust-name is not unique
- Primary key
 - Candidate key chosen as the key by DBA

Keys

- Also act as integrity constraints
 - i.e., guard against illegal/invalid instance of given schema

e.g., Branch = $(\underline{bname}, bcity, assets)$

bname	bcity	assets	
Brighton	Brooklyn	5M	
Brighton	Boston	3M	

Invalid

More on Keys

Determining Primary Keys

Find candidate keys (minimal sets of attributes that can uniquely identify a tuple) and pick up one as primary key

Foreign Keys

If a relation schema includes the primary key of another relation schema, that attribute is called the *foreign key*

Schema Diagram for the Banking Enterprise

