

Contents

- Electron scattering in resist and substrate
- Proximity effect
- Resist interactions (positive /negative/chemically amplified resists, resist contrast)
- Dose definition
- Influence of beam energy (penetration depth)
- Resolution limits

Monte Carlo Simulations

1.4µm PMMA on Si-substrate

Resist and Substrate Interactions of e-beam

Forward scattering events

- very often
- scattering under small angles
- small-angle hence inelastic
- generation of Secondary Electrons with a few eV kinetic Energy

Backward scattering events

- occasionally
- scattering under large angles
- large angle hence mainly elastic
- high kinetic energy, range of the primary electrons

electrons with typical **few eV** kinetic energy are **responsible for** most of **-** the **resist exposure**

exposure by secondary electrons (SE_I and SE_{II})

Fragmentation of PMMA

Positive and Negative Resist

Positive Resist:

Average molecular weight reduced by exposure

→ exposed area is solved much faster in developer and thus removed

Negative Resist:

Average molecular weight increased by exposure (cross-linking of molecules)

→ <u>un</u>exposed area is removed in developer

Clearing Dose

1. Dose independent of resist thickness

Proximity Effect

Proximity effect

- depends on beam energy, substrate, pattern
- various strategies for proximity correction, for example dose variation

Scattering Range Versus Energy

Resist Contrast

Resist contrast = Slope in resist

(Mark A. McCord, <u>Introduction to Electron-Beam Lithography</u>, Short Course Notes Microlithography, 1999, SPIE's International Symposium on Microlithography 14-19 March, 1999; p. 22)

Chemically Amplified Resist

Chemically amplified resists, are modified during exposure. However the final exposure takes place during the post exposure bake, when the acids are activated.

Example: SU8

SU8 resist

Resist Contrast

Resist	Energy	Developer	Stopper	contrast	
ZEP520A	20keV	MIBK:IPA (1:1), 30s	IPA, 30s	1.1*	•
ZEP520A	10keV	MIBK:IPA (1:1), 30s	IPA, 30s	2.1*	
PMMA	20keV	pure MIBK, 2 min	IPA, 30s	16***	•
ma-N 2400	20keV	MIF 276, 120s	DI-H ₂ O, 3-5 min	-1.7**	
ma-N 2400	20keV	MIF 276, 240s	DI-H ₂ O, 3-5 min	-2.3**	
SU-8 (no post exposure bake)	20keV	SU-8 developer (MicroChem)	IPA, 60s	-0.54*	

^{*} Raith GmbH, internal information

^{**} http://www.nanophys.kth.se/nanophys/facilities/nfl/resists/ma-N240X-pdfs/ 13-MicroEngin_elsner.pdf

^{***} Rishton et al., JVST B **5 (1)**, 1986, pp.135-41

Resist Contrast

High contrast:

- + Steeper side walls
- + Greater process latitude
- + Better resolution
- + Less sensitivity to proximity effects

Low contrast:

+ 3d lithography

Example: 3Dimensional Lithography

Resist:

PMMA_50K

Resist thickness:

1.8µm

Development:

2.5min MIBK

www.raith.com

Calculation of Dose

Dose(Energy) =
$$\frac{I_{beam} \cdot T_{dwell}}{s^2}$$
 [µAs/cm²]

Dose Table for PMMA (950k)

10 kV

20 kV

30 kV

Areas

100 μC/cm² 200 μC/cm² 300 μC/cm²

SPLs

300 pC/cm 600 pC/cm 900 pC/cm

Dots

0.1 pC

0.2 pC

0.3 pC

(developer: MIBK + IPA, 1:3)

The above values are good starting points. The best way to get optimum results is to perform a dose scaling: SPLs 0.5 - 5, Dots 0.1 - 10

Dose Versus Voltage

- Increase of dose with voltage for all resists
- Graph shows general behavior

Design must be adapted to dose

Influence of Beam Energy

100 keV

- + Small scattering in resist High beam damage
- + Small proximity effect strong sample heating

20 keV

- Scattering in thick resist + Small beam damage
- + Small sample heating Strong proximity effect
- + Best electron-optical performance (classical columns)

2 keV

- + No beam damage
- High scattering in resist
- + No proximity effect Needs very thin resists
- + High throughput (high resist sensitivity)

Penetration Depth Versus Energy

Y. Lee, W. Lee, and K. Chun 1998/9, <u>A new 3 D simulator for low energy (~1keV) Electron-Beam Systems</u>

Resolution Limits

Beam resolution

- Thick resists (forward scattering)
- Thin resists (~0.5nm by diffraction, de Brogli wavelength)

Resist limits

Polymer size (~5-10nm)

23

Chemically amplified resists (acid diffusion

~50nm)

(Mark A. McCord, <u>Introduction to Electron-Beam Lithography</u>, Short Course Notes Microlithography, 1999, SPIE's International Symposium on Microlithography 14-19 March, 1999; p.63)

Resolution Limits

Secondary electron range (~5-10nm)

In practice, the best achievable resolution in polymer resists is about 20nm, with inorganic resists (currently impractical for most applications) 5nm.

(Mark A. McCord, <u>Introduction to Electron-Beam Lithography</u>, Short Course Notes Microlithography, 1999, SPIE's International Symposium on Microlithography 14-19 March, 1999; p.63)

What is Possible?

Ultra high resolution in PMMA (45nm thickness): 16nm line width in resist

