Question number	Scheme	Marks
8 (a)	$BN = 10\cos 60^{\circ}$	M1
	= 5 (cm)*	A1cso [2]
(b)	$FN^2 = 10^2 - 5^2 = 75$ or $FN = 10\sin 60 = 5\sqrt{3}$ or $FN = 5\tan 60$	M1
	$NE = \sqrt{12^2 + 75} = 14.7986 \approx 14.8$ (cm)	M1A1 [3]
(c)	Let R be the midpoint of FN and P be the point on AD that corresponds to point N on BC .	
	$\angle RPN = \tan^{-1} \left(\frac{\sqrt{75}/2}{12} \right) = 19.84167^{\circ} \approx 19.8^{\circ}$	M1A1 [2]
(d)	Let the perpendicular from Y to line BC meet BC at Z	
	$AY = \sqrt{AZ^2 + ZY^2} = \sqrt{12^2 + 6.5^2 + \left(\frac{\sqrt{75}}{2}\right)^2} = \sqrt{205}$	M1A1
	$FC = \sqrt{FN^2 + NC^2} = \sqrt{75 + 3^2} = \sqrt{84} \Rightarrow FY = \sqrt{21}$	M1
	So $EY = \sqrt{12^2 + 21} = \sqrt{165}$	M1
	$\angle AYE = \cos^{-1}\left(\frac{205 + 165 - 100}{2 \times \sqrt{205} \times \sqrt{165}}\right) = 42.7745^{\circ} \approx 42.8^{\circ}$	M1A1 [6]
Total 13 mar		

(a)	M1	Use cosine or sine in triangle <i>BNF</i> , or any complete method.	
		$BN = 10\cos 60^{\circ} \text{ or } \cos 60^{\circ} = \frac{BN}{10} \text{ or } \frac{BN}{\sin 30} = \frac{10}{\sin 90} \text{ or } BN = 10\sin 30$	
		or $FN = 10\sin 60 = 5\sqrt{3}$ and $BN^2 = 10^2 - (5\sqrt{3})^2$	
		(may use any single letter instead of BN)	
	A1	BN = 5 (cm) Correct answer from correct working. (Answer given.)	
	cso	Must show a calculation in the form $BN =$ e.g. $BN = 10\cos 60$	
(b)	M1	Use Pythag or trig to find a numerical expression for FN or FN^2	
		eg $FN^2 = 10^2 - 5^2$ (= 75) or $FN = 10\sin 60$ (= $5\sqrt{3} = 8.66$) or $FN = 5\tan 60$	
	M1	Use Pythag with their FN to find a numerical expression for NE,	
		eg $NE = \sqrt{12^2 + (5\sqrt{3})^2} \ (= \sqrt{219})$	
	A1	NE = 14.8 (cm) given to 3SF.	
(c)	M1	Use tangent with their <i>FN</i> , eg tan $RPN = \left(\frac{\frac{1}{2}\sqrt{75}}{12}\right)$ or any complete method.	
	A1	19.8° given to 1DP.	

(d)	M1	Complete method to find AY
		eg $AY = \sqrt{(12^2 + 6.5^2) + \left(\frac{\sqrt{75}}{2}\right)^2} = (14.31)$ (allow their FN)
	A1	$AY = \sqrt{205}$ (= 14.31) (may be implied by subsequent working)
	M1	Complete method to find <i>FY</i>
		eg $FC = \sqrt{75 + 3^2} \left(= \sqrt{84} \right) \Rightarrow FY = \frac{1}{2} \sqrt{84} \left(= \sqrt{21} \right)$ (allow their FN)
		eg $FC = \sqrt{8^2 + 10^2 - 2 \times 8 \times 10\cos 60} \left(= \sqrt{84} \right) \Rightarrow FY = \frac{1}{2} \sqrt{84} \left(= \sqrt{21} = 4.58 \right)$
	M1	Method to find EY using their FY (correct or from a correct method)
		eg $EY = \sqrt{12^2 + 21} \ (= \sqrt{165} = 12.84)$
	M1	Substitute their values for AY and EY into the cosine rule used in triangle AYE.
		$\cos AYE = \left(\frac{205 + 165 - 100}{2 \times \sqrt{205} \times \sqrt{165}}\right) \text{ oe}$
	A1	$\angle AYE = 42.8^{\circ}$ given to 1DP.
		Allow more than 1DP if 1DP was penalised in part (c).