Midterm Test

(Time allowed: 90 minutes) March 19, 2023

NOTE: Answer <u>ALL</u> 8 questions. Show all intermediate steps, except Question 1 and Question 2.

- 1. (10 points) Are the following statements necessarily true (Y) or not (N)?
 - (1) An XNOR gate output is LOW if both its inputs is HIGH.
 - (2) Minimization with a K-map may result in multiple possible solutions.
 - (3) Decoders are logic circuits with many outputs and inputs that convert coded inputs into coded outputs.
 - (4) It is possible to build an AND gate with multiple NOR gates.
 - (5) The dual symbol for a NAND gate is a negative-OR symbol.
 - (6) In Boolean Algebra, the addition of two values is equivalent to the logical OR function.
 - (7) The right-most bit in a signed binary number is the sign bit.
 - (8) Fan-out is the minimum number of similar gates that a given gate can drive.
 - (9) When a Boolean variable is multiplied by its complement, the result is 0.
 - (10) A parity generator can be implemented using exclusive-OR gates.

- (1) N
- (2) Y
- (3) N
- (4) Y
- (5) Y
- (6) Y
- (7) N
- (8) N
- (9) Y
- (10) Y

- 2. (10 points) Provide your answers to the following short questions.
 - (1) For a periodic digital waveform with 20ms period and 5ms pulse width, write down its frequency and duty cycle;
 - (2) Determine the even parity bit for the BCD number 00010100;
 - (3) Subtract 173_{16} from BCD_{16} , write down the result;
 - (4) Convert binary 101101 to Gray code;
 - (5) A ternary numeral system (also called base 3 or trinary) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). Ternary most often refers to a system in which the three digits are all non-negative numbers; specifically 0, 1, and 2. Convert the fractional ternary number 10.2 to decimal (round to the nearest hundredth).

- (1) 50Hz, 25%;
- (2) 0;
- $(3) A5A_{16};$
- (4) 111011;
- (5) 3.67.

- 3. (15 points) Perform each of the following calculations of the signed numbers. Show your work.
 - (1) 00001001 00000010;
 - $(2) 01010010 \times 111111110;$
 - (3) $01001011 \div 00011001$.

- (1) 00000111 in Figure 1;
- (2) 101011100 in Figure 2;
- (3) 00000011 in Figure 3.

Figure 1: Q3-1 solution.

Figure 2: Q3-2 solution.

Figure 3: Q3-3 solution.

4. (10 points) For the logic circuit and the input waveforms shown in Figure. 4, respectively, answer the following questions.

Figure 4: Combinational logic circuit and input waveform for Q.4.

- (1) (5 points) Derive the expression of the output X and draw its waveform;
- (2) (5 points) Assuming that the output of gate G3 is open, derive the expression of the output X and draw its waveform.

(1)
$$X = \bar{A}E + \bar{B}E + CE + \bar{D}E$$

Figure 5: Output waveform of X for Q.4(1).

(2) X = E

Figure 6: Output waveform of X for Q.4(2).

- 6 –
- **5.** (20 points) A circuit that compares two 2-bit numbers, $A = \{A_1, A_0\}$ and $B = \{B_1, B_0\}$, and produces the output $C = \{C_1, C_0\}$ as follows:
 - C equals to the lowest input (for example if A = 11 and B = 10, then C = 10);
 - C is a don't care if A = B.
 - (1) (5 points) Write down the truth table;
 - (2) (5 points) Use Karnaugh Map to simplify the Boolean expression of the outputs C_1 and C_0 , show your work step by step;
 - (3) (5 points) Sketch the C_1 logic diagram of the circuit, using **NAND** gates only (You **CANNOT** assume that complementary inputs are directly available, i.e. $\bar{A}_1, \bar{A}_0, \bar{B}_1, \bar{B}_0$ are NOT available);
 - (4) (5 points) Given the input waveforms as shown in Figure 7, draw the output C_1 waveform for your design circuit in (3).

Figure 7: The input waveforms for Q.5.

- (1) The solution is shown in Table 1.
- (2) The Karnaugh Map is shown in Figure 8. $C_1 = \bar{A}_1 \bar{A}_0 \bar{B}_1 \bar{B}_0 + \bar{A}_1 A_0 \bar{B}_1 B_0 + A_1 B_1;$ $C_0 = \bar{A}_1 \bar{A}_0 \bar{B}_1 \bar{B}_0 + A_1 \bar{A}_0 B_1 \bar{B}_0 + A_0 B_0 + \bar{A}_1 A_0 B_1 + A_1 \bar{B}_1 B_0.$
- (3) The C_1 logic diagram of the circuit is shown in Figure 9.
- (4) The output C_1 waveform is shown in Figure 10.

A_1	A_0	B_1	B_0	C_1	C_0
0	0	0	0	X	X
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	X	X
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	X	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	X	X

Table 1: The truth table.

Figure 8: The Karnaugh Map.

Figure 9: The C_1 logic diagram of the circuit.

Figure 10: The output C_1 waveform.

- **6.** (15 points) Design a magnitude comparator circuit for 2-bit binary numbers $A = \{A_1, A_0\}$ and $B = \{B_1, B_0\}$. The outputs are X, Y, and Z, where X = 1 if A > B; X = 0 otherwise. Y = 1 if A < B; Y = 0 otherwise. Z = 1 if Z = 0 otherwise.
 - (1) (9 points) Fill in the truth table in Table 2 for the three outputs of the comparator and write down the standard SOP forms for X, Y and Z;

A_1	A_0	B_1	B_0	X(A > B)	Y(A < B)	Z(A=B)
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Table 2: The truth table of a magnitude comparator circuit for 2-bit binary numbers

(2) (6 points) Implement Z logic diagram of the circuit using a 74HC154 decoder as shown in Figure 11 and one or several NAND gates (Connect ALL input pins as needed; You may assume that complementary inputs, if needed, are directly available, i.e. $\bar{A}_1, \bar{A}_0, \bar{B}_1, \bar{B}_0$ are available).

Figure 11: The 74HC154 decoder.

(1) The truth table is shown in Table 3. The standard SOP forms are

$$X = \bar{A}_1 A_0 \bar{B}_1 \bar{B}_0 + A_1 \bar{A}_0 \bar{B}_1 \bar{B}_0 + A_1 \bar{A}_0 \bar{B}_1 B_0 + A_1 A_0 \bar{B}_1 \bar{B}_0 + A_1 A_0 \bar{B}_1 B_0 + A_1 A_0 B_1 \bar{B}_0$$

$$Y = \bar{A}_1 \bar{A}_0 \bar{B}_1 B_0 + \bar{A}_1 \bar{A}_0 B_1 \bar{B}_0 + \bar{A}_1 \bar{A}_0 B_1 B_0 + \bar{A}_1 A_0 B_1 \bar{B}_0 + \bar{A}_1 A_0 B_1 B_0 + A_1 \bar{A}_0 B_1 B_0$$

$$Z = \bar{A}_1 \bar{A}_0 \bar{B}_1 \bar{B}_0 + \bar{A}_1 A_0 \bar{B}_1 B_0 + A_1 \bar{A}_0 B_1 \bar{B}_0 + A_1 A_0 B_1 B_0$$

(2) The Z logic diagram of the circuit is shown in Figure 12.

A_1	A_0	B_1	B_0	X(A > B)	Y(A < B)	Z(A=B)
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Table 3: The truth table of a magnitude comparator circuit for 2-bit binary numbers

Figure 12: The Z logic diagram of the circuit.

7. (10 points) Consider the boolean expressions as follows,

$$D_0 = X\bar{S}_1\bar{S}_0 + YS_1\bar{S}_0$$

$$D_1 = X\bar{S}_1S_0 + YS_1S_0$$

$$D_2 = XS_1\bar{S}_0 + Y\bar{S}_1\bar{S}_0$$

$$D_0 = XS_1S_0 + Y\bar{S}_1S_0$$

Design a circuit to implement the boolean expressions using 1-of-4 decoders as shown in Figure 13 and NAND gates, where the truth table of 1-of-4 decoder is shown in Table 4. (Connect ALL input pins as needed. You may assume that complementary inputs, if needed, are directly available - e.g., both A_0 and \bar{A}_0 are available).

Figure 13: A 2-line-to-4-line (1-of-4) decoder.

EN	A_1	A_0	OUT_0	OUT_1	OUT_2	OUT_3
0	X	X	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Table 4: The truth table of 2-line-to-4-line (1-of-4) decoder

Solution: The designed circuit is shown in Figure 14.

Figure 14: Q7 solution.

8. (10 points) In Chapter 6, we have studied a simplified method of multiplexing two four-bit BCD numbers to a single BCD-to-7-segment decoder as shown in Figure 15. Note that the 74HC157 is a quad 2-input multiplexer. If the data-select line is LOW, the multiplex passes A bits (A_3, A_2, A_1, A_0) to the BCD-to-7-segment decoder. In contrast, if the data-select line is HIGH, the multiplex passes B bits (B_3, B_2, B_1, B_0) to the BCD-to-7-segment decoder.

Figure 15: Simplified 7-segment display multiplexing logic from the textbook.

Now, we would like to extend this design to multiplexing THREE four-bit BCD numbers with only ONE additional multiplexer and one additional data-select line.

- (1) (5 points) Design and draw the data-select input waveform for both S_1 and S_2 ;
- (2) (5 points) Complete the circuit shown in Figure 16 by properly connecting all the components, assuming that the third BCD C is represented by (C_3, C_2, C_1, C_0)

Figure 16: Multiplexing three four-bit BCD numbers.

Figure 17: Solution for Q.8.