Strongly coupled Bose-Fermi mixtures in 2d

[Phys. Rev. A 105, 013317 (2022)]

Félix Rose Collab.: J. von Milczewski and Richard Schmidt

Laboratoire de Physique Théorique et Modélisation CY Cergy Université May 25th, 2023

Motivation

Why study mixtures !?

- Standard paradigm of quantum matter: weakly interacting quasiparticles (= perturbation theory).
 - E.g.: Fermi Liquids, BCS superconductors...
- Many interesting cases beyond: topology, strong correlations...
- Encountered in solid state systems or ultracold atoms.
- Polaron / mixtures : examples of such systems!
 - Interesting in themselves and for engineering strong correlations.

Introduction: polaron

- Landau 1933:
 polaron = electron + lattice phonons.
 - E.g.: effective mass, mobility.
- In solids: weak coupling.
- Fröhlich model: linear coupling.

$$\hat{V}_{e-ph} \sim \hat{c}_k^{\dagger} \hat{c}_{k-q} \hat{a}_q + h.c.$$

Extensively studied: weak/strong coupling expansion, Feynman path integral, Monte Carlo...

Devreese & Alexandrov R. Prog. Phys. '09, Devreese 1012.4576

"Modern" interest

- Laboratory for strongly correlated phases of matter:
 - Ultracold atoms.
 - 2d semiconductors and transition metal dichalcogenides (TMD).

- Polaron = impurity in bath + cloud of excitations.
- Interplay of few-body and many-body physics: starting point for the study of mixtures.

Fermi polaron

- Spin-imbalanced Fermi mixtures, $n_{\uparrow/\downarrow}$.
 - Motivation: interplay with BCS.
- Phases:
 - weak imbalance → superfluidity.
 - Strong imbalance → normal phase.

Limit $n_{\uparrow} \rightarrow 0$: impurity, polaron.

Phase diagram of normal phase: Fermi Seas of majority + minority polarons!

[Chevy PRA '06; Chevy & Mora, R. Prog. Phys. '10]

Equation of state at unitarity

h: pressure, vs. $\eta: \mu_{\uparrow}/\mu_{\downarrow}$

Dots: experiment, dashed: polaron
Dotted: MC, red: superfluid
[Nascimbene et al. Nature 2010]

Bose polarons

- Fermi polaron studied on its own [Schirotzek, ..., Zwierlein PRL '09]
- Bose polaron: rich physics (Efimov, etc.)... but 3-body loss
- Measurements of spectral functions of impurities in BECs:

...Bose-Fermi mixtures?

- Next step: mixtures!
- Realization of strongly-correlated phases.
- Phase transition between polaronic Na condensate and fermionic KNa molecules

[Duda, ...Bloch et al., Nat. Phys. '23]

...and solid state

[Sidler, ..., Imamoglu Nat. Phys. '16]

- 2d transition metal dichalcogenides / semiconductors.
- Bosons = excitons, composite of electron + hole.
- Fermions = free carriers.
- Observations: polaron, exciton fluid, checkerboard phases...

[Ma et al., Nature '21] [Lagoin et al., Nat Mater. '23]

Rich phase diagram expected

What do we know about Bose-Fermi mixtures?

- Phase diagram: studied in 3d.
 - *p*-wave superconductivity.

[Kinnunen et al. PRL '18]

Enhanced superfluidity.

[Enss & Zwerger EPJ B '09]

• 2d? Enhanced quantum fluctuations.

2d phase diagram?

- Known limits:
- Bose polaron 1
 - Variational, diagrams
- Fermi polaron 2
 - Variational, renormalization, diagramatics
- Unexplored! 3

We focus on the Fermi polaron limit I.e. extending from 2 to 3.

Start: Fermi polaron

- Ground states:
- Polaron $\sim \sum_{k,q} b_{p+q-k}^{\dagger} c_k^{\dagger} c_q |FS_N\rangle$
- Molecule $\sim \sum_{k} b_{p-k}^{\dagger} c_{k}^{\dagger} |FS_{N-1}\rangle$

3d: well understood!

[Schmidt & Enss, PRA '11]

Importance of bound state

- $d \leq 2$: Any attractive interaction \rightarrow bound state, ϵ_B !
 - Theory needs to take it into account.

Importance of bound state

d = 2 Fermi polaron:
 Basic variational → no transition!

[Zöllner et al. PRA '11]

Contradiction with Monte Carlo.

[Bertaina AIP '12 ; Kroiss & Pollet PRB '14; Vlietnick et al. PRA '14]

• 3-body terms in molecule necessary! [Parish PRA '11]

Consequences for field theory

 To describe strongly-correlated mixture: field theory

- Bound state: also an issue!
- T-matrix approach: works in 3d, not in 2d!
- Equivalent to Chevy variational method.

[Combescot et al. PRL '07]

Field theoretical approach

Action:

$$S = \int_{X} \psi^* \left(\partial_{\tau} - \frac{\nabla^2}{2m_F} - \mu_{\psi} \right) \psi + \phi^* \left(\partial_{\tau} - \frac{\nabla^2}{2m_B} - \mu_{\phi} \right) \phi + g \psi^* \phi^* \phi \psi$$
Interaction

 ϕ :boson, ψ : fermion

Quartic interaction: extended Fröhlich model

Fröhlich: expansion about condensate

Two channel action

φ:boson, ψ: fermiont: molecule field!

$$S = \int \psi^* G_{\psi}^{-1} \psi + \phi^* G_{\phi}^{-1} \phi + t^* G_t^{-1} t + h(\psi^* \phi^* t + \text{h.c.})$$
G: propagators

Fermion + boson bind into molecule

- Equivalent when $h \to \infty$.
- Easier to treat molecule: lower-order correlations.

Renormalization group concept

- Strongly correlated problem: many degrees of freedom correlated over all scales.
- Renormalization group: integrate iteratively dofs from short to long distances.

E.g. spin block RG

→ Running Hamiltonian.

- The running Hamiltonian contains all couplings allowed by symmetry.
- Renormalization group: integrate iteratively dofs from short to long distances.

Effective action formalism

FRG: implementation of Wilsonian RG

- in momentum space
- At the level of the effective action

$$\mathcal{Z}[J] = \int \mathcal{D}[\varphi] \exp\left(-S[\varphi] + \int_{x} J\varphi\right), \qquad \Gamma[\phi] = -\ln \mathcal{Z}[J] + \int_{x} J\phi.$$

Example with ϕ^4 theory; J: external source.

- Vertices $\delta^n \Gamma / \delta \phi^n$: physical information
 - $\Gamma(\phi \to \text{const.}) = U(\phi)$: effective potential \to thermodynamics
 - $\Gamma^{(2)} = [G]^{-1}$: inverse propagator.

(NB: fermions = Grassman variables: Γ only meaningful through expansion)

The FRG in a nutshell

• Similar in concept to Wilsonian RG, degrees of freedom are progressively integrated out. $S_{\text{eff.}}^{\text{Wilson}}[\phi, \{g_{i,k}\}]$

Implemented by adding to S a "mass-like" term:

$$S \to S_k = S + \Delta S_k,$$

$$\Delta S_k[\varphi] = \frac{1}{2} \int_q \varphi(q) R_k(q) \varphi(q).$$

 R_k : modes at momenta $\leq k$ get a very large mass.

• k-dependent effective action $\Gamma \to \Gamma_k$.

$$\Gamma_{k=\Lambda} = S \xrightarrow{\text{RG flow}} \Gamma_{k=\Lambda} = \Gamma$$

Exact flow equation:

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_k \left(\Gamma_k^{(2)}[\phi] + R_k \right)^{-1} \right\}$$

[Wetterich, PLB '93; Morris, IJMP '94; Ellwanger, ZPC '94]

Application to mixtures

Ansatz: Gradient + vertex expansion

$$\Gamma_{k} = \int_{P} \left\{ \psi_{P}^{*} G_{\psi,k}^{-1}(P) \psi_{P} + \phi_{P}^{*} G_{\phi,k}^{-1}(P) \phi_{P} + t_{P}^{*} G_{t,k}^{-1}(P) t_{P} \right\} + \int_{X} h_{k} (\psi_{X}^{*} \phi_{X}^{*} t_{X} + \text{h.c}) + \lambda_{k} \psi_{X}^{*} t_{X}^{*} t_{X} \psi_{X}$$

- Incorporates 2-body effects
- Running propagators, include:
 - quasiparticle weight;
 - detuning.

Fermion-molecule interaction: 3-body effect!

Flow equations

Projection of the flow of Γ ~all possible 1-loop diagrams

2D Polaron-molecule transition

polaron / molecule energies vs $\epsilon_{\rm F}/\epsilon_{\rm B}$

Green: molecule energies

Red : polaron energies

Dashed /solid: without/with three-body correlations

3-body correlations crucial to recover transition!

Results: transition position

		$-\log(\epsilon_B/2\epsilon_F)/2$	
	Theoretical approach	$(\epsilon_B/\epsilon_F)^*$	$= \log(k_F a_{2D})$
	fRG (present work)	18.78	-1.12
[Parish PRA '1	1] Basic variational [56]	9.9	-0.8
[Parish Levinsen PRA '13	B] High-order variational [59]	14	-0.97
[Kroiss Polett PRB '14	4] Diag. MC [60]	18.1 ± 7.2	-1.1 ± 0.2
[Vlietink et al PRB '14	4] Diag. MC [61]	13.4 ± 4	-0.95 ± 0.15
[Bertaina AIP '12	2] Diffusion MC [58]	≈15	≈ -1
[Koschorreck et al Nature '12	2] Experiment [113,114]	11.6 ± 4.6	-0.88 ± 0.2

Good agreement with other theoretical predictions + experiment!

Results for the vertices

$$\Gamma_k \sim \lambda_k \psi_x^* t_x^* t_x \psi_x$$

- $\tilde{\lambda}$: 3-body vertex, attractive fermion-molecule interaction.
- Molecule:
 ϵ_B large → mean-field correct.
- Polaron: suppression of $\tilde{\lambda}$. In-medium effects.
- Molecule energy:
 → 0 linearly at "transition".

 $(\tilde{\lambda}: \text{rescaled by } h_{k=0} \text{to get } h \to \infty \text{ limit})$

Finite boson density?

• Limit $0 < n_B \ll n_F$: fermion bath not renormalized

- Molecular phase:
 - All bosons \rightarrow molecules $n_t > 0$, $n_\phi = 0$

Mixed phase:

• Coexistence polaron / molecules $n_t > 0, n_\phi > 0$

Molecular

Mixed

• No pure polaron phase: mixing $h\sqrt{n_\phi}(t^*\phi + \text{h.c.}) \rightarrow \text{hybridization}$

 $\epsilon_{\scriptscriptstyle F}/\epsilon_{\scriptscriptstyle B}$

Phase diagram

0.006 Mixed Phase 0.005 $n_{\phi} > 0$ 0.004 $\begin{aligned} & \text{Molecular Phase} \\ & n_{\phi} = 0, n_t > 0 \end{aligned}$ 0.0020.001 10^{-4} 10^{-3} 10^{-2} 10^{-5} $n_{B} n_{B}/\epsilon_{B}$

Simple mean-field picture

$$H^{MF} = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \psi_{\mathbf{k}}^{\dagger} \psi_{\mathbf{k}} + \frac{\varepsilon_{\mathbf{k}}}{2} t_{\mathbf{k}}^{\dagger} t_{\mathbf{k}} + (\varepsilon_{\mathbf{k}} + \Delta E(\epsilon_F/\epsilon_B)) \phi_{\mathbf{k}}^{\dagger} \phi_{\mathbf{k}}$$

$$\frac{n_B}{\epsilon_B} = \frac{\Delta E(\epsilon_F/\epsilon_B)}{2\pi\epsilon_B} , \frac{n_F}{\epsilon_B} = \frac{\epsilon_F}{4\pi\epsilon_B} + \frac{\Delta E(\epsilon_F/\epsilon_B)}{2\pi\epsilon_B}$$

Interactions: destabilise MF towards mixed phase

Spectral functions

Difficulty: analytic continuation $i\omega_n \to \omega + i \ 0^+$.

Solution: continuation of the flow equations.

In practice: solve flow eqns. in 2 steps.

1st step: as before, derivative expansion

 2^{nd} step: no projection onto $(p, \omega) = 0$.

Conclusion

- Polaron / mixtures: rich strong coupling physics.
- FRG: valuable tool to explore mixtures, can include bound state / n-body correlations.
- Outlook:
 - Bosons: condensate description, effect on superfluidity
 - Fermions: momentum dependence of vertices → Fermi surface topology, bath renormalization at $n_R \sim n_F$... Phys. Rev. A 105, 013317 (2022)

Collaborators:

Jonas von Milczewski

Richard Schmidt

Questions?

arXiv:2104.14017,

Vertex rescaling

- We assume $h \to \infty$ for equivalence of 1- and 2- channel models.
- Results invole h → rescaling!
- E.g. 3-body limit: $m_{t,k} = \frac{h^2}{8\pi} \log\left(1 + \frac{2k^2}{\epsilon_B}\right),$ $A_{t,k} = 1 + \frac{h^2}{8\pi} \left(\frac{1}{\epsilon_B + 2k^2} \frac{1}{\epsilon_B + 2\Lambda^2}\right).$ For $h \to \infty$, then $\lambda_{k=0} = -h^2/\epsilon_B$

$$\widetilde{\lambda} = \frac{\lambda_{k=0} \epsilon_F}{h_{k=0}^2}$$
, $\widetilde{m_t} = m_{t,k=0}/h_{k=0}^2$

Polaron SF

$$\frac{\epsilon_B}{\epsilon_F} = 1, 10, 20$$

Molecule SF

