Pós-Graduação em Ciência de Dados

Professora Cecília Pereira de Andrade

e

Professor Ricardo Sovat

ightharpoonup O espaço de dimensão n ou n-dimensional é constituído de todas a n-uplas ordenadas e representadas por \mathbb{R}^n

$$\mathbb{R}^{n} = \{(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) \mid \mathbf{x}_{i} \in \mathbb{R}\}$$

A maneira de se trabalhar nesses espaços é idêntica àquela vista em \mathbb{R}^2 e \mathbb{R}^3 .

- ► Se u= $(x_1, x_2,, x_n)$ e v = $(y_1, y_2,, y_n)$ ∈ \mathbb{R}^3 e α ∈ \mathbb{R}
- $u = v \leftrightarrow x_1 = y_1, x_2 = y_2, ..., x_n = y_n$.
- $\mathbf{v} = (\mathbf{x}_1 + \mathbf{y}_1, \mathbf{x}_2 + \mathbf{y}_2, \dots, \mathbf{x}_n + \mathbf{y}_n).$
- $\mathbf{v} = \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{v}_2 \cdot \mathbf{y}_2 + \dots + \mathbf{v}_n \cdot \mathbf{y}_n$
- $|u| = \sqrt{u \cdot u} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$

ightharpoonup O vetor u= $(x_1, x_2,, x_n)$ pode aparecer com a notação matricial

$$\mathbf{u} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

e também todas as operações vistas anteriormente.

Seja um conjunto V, não-vazio, sobre o qual são definidas as operações adição e multiplicação por escalar:

 $\forall \ u,v \in V, \ u+v \in V$ $\forall \ \alpha \in \mathbb{R} \ , \ \forall \ u \in V, \ \alpha u \in V$

O conjunto V com essas duas operações é chamado **espaço vetorial** se forem verificados os seguintes aximoas:

A) Em relação à adição:

$$A_1$$
) $(u + v) + w = u + (v + w)$, $\forall u,v, w \in V$
 A_2) $u + v = v + u$, $\forall u,v \in V$
 A_3) $\exists 0 \in V$, $\forall u \in V$, $u + 0 = u$
 A_4) $\forall u \in V$, $\exists (-u) \in V$, $u + (-u) = 0$

A) Em relação à multiplicação por escalar:

$$M_1$$
) $(\alpha\beta)u = \alpha(\beta u)$
 M_2) $(\alpha+\beta)u = \alpha u + \beta u$
 M_3) $\alpha(u + v) = \alpha u + \alpha v$
 M_4) $1u = u$

 \forall u,v, w \in V e \forall α , $\beta \in \mathbb{R}$

Observações:

- 1) Os elementos do espaço vetorial são chamados vetores, independemente da sua natureza.
- 2) Se na definição tivéssemos tomado para os escalares o conjunto C, V seria um espaço vetorial complexo.

- Exemplos:
- 1) \mathbb{R}^n com as operações usuais
- 2) O conjunto M(m,n) das matrizes m x n com as operações usuais.
- 3) O conjunto $P_n = \{ a_0 + a_1x + a_2x^2 + a_nx^n; a_i \in \mathbb{R} \}$ dos polinômios com coeficientes reais de grau \leq n, mais o polinômio nulo.

Subespaços Vetoriais

Sejam V um espaço vetorial e S um subconjunto não-vazio de V. S é **subespaço vetorial** de V se S é um espaço vetorial em relação à adição e à multiplicação definidas em V.

- 1) Para quaisquer u, $v \in S$, tem-se u + $v \in S$.
- 2) Para quaisquer $\alpha \in \mathbb{R}$, $u \in S$, tem-se $\alpha u \in S$.

Subespaços Vetoriais

Exemplo:

Os subespaços triviais de $V = \mathbb{R}^3$ são $\{(0,0,0)\}$ e o próprio \mathbb{R}^3 .

Os subespações próprios do \mathbb{R}^3 são as retas e os planos que passam pela origem.

Combinação linear

Sejam os vetores $v_1, v_2, ..., v_n$ do espaço vetorial V e os escalares $a_1, a_2, ..., a_n$. Qualquer vetor $v \in \mathbb{R}$ da forma

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

É uma combinação linear dos vetores v₁,v₂, ..., v_n.

Subespaços Vetoriais

► Exemplo: No espaço vetorial P_2 dos polinômios de grau ≤ 2 , o polinômio v= $7x^2+11x-26$ é combinação linear dos polinômios

$$v_1 = 5x^2 - 3x + 2 e v_2 = -x^2 + 5x - 8$$

pois
$$v = 3v_1 + 4v_2$$
.

Subespaços Gerados

Seja V um espaço vetorial. Consideremos um conjunto $A=\{v_1,v_2,...,v_n\}$ C V, $A \neq 0$.

O conjunto S de todos os vetores de V que são combinações lineares dos vetores de A é um subespaço vetorial de V.

Subespaços Gerados

► O subespaço S diz-se **gerado** pelos vetores $v_1, v_2, ..., v_n$, ou gerado pelo conjunto A, e representa-se por:

$$S=[v_1, v_2, ..., v_n]$$
 ou $S=G(A)$.

Os vetores v₁,v₂, ..., v_n são chamados geradores do subespaço S, enquanto A é o conjunto gerador de S.

Subespaços Gerados

Exemplo: Os vetores i=(1,0) e j=(0,1) geram o espaço vetorial \mathbb{R}^2 , pois qualquer (x,y) $\in \mathbb{R}^2$, é combinação linear de i e j:

$$(x,y) = xi+yj = x(1,0)+y(0,1) = (x,0) + (0,y) = (x,y)$$

Então:

$$[i,j] = \mathbb{R}^2$$

Espaços Vetoriais Finitamente Gerados

► Um espaço vetorial V é finitamente gerado se existe um conjunto finite A, A C V, tal que V=G(A).

ightharpoonup Exemplo: \mathbb{R}^2

Dependência e Independência Linear

- Seja V um espaço vetorial e A={v₁,v₂, ..., v_n} C V.
- Consideremos a equação $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$. (1)
- O conjunto A diz-se linearmente independente (Ll), ou os vetores v₁,v₂, ..., v_n são Ll caso a Equação (1) admita apenas a solução trivial.

Se existirem soluções a_i ≠ 0, diz-se que o conjunto A é linearmente dependente (LD) os que vetores v₁,v₂, ..., v_n são LD.

Dependência e Independência Linear

► Exemplos:

1) No espaço vetorial $V = \mathbb{R}^3$, os vetores $v_1 = (2, -1, 3)$, $v_2 = (-1, 0, 2)$ e $v_3 = (2, -3, 1)$ formam um conjunto linearmente depentende, pois $3v_1 + 4v_2 - v_3 = 0$.

$$a(2,-1,3) + b(-1,0,2) + c(2,-3,1) = (0, 0, 0)$$

(2a-b+2c, -a-3c, 3a+2b+c) = (0,0,0)

$$a=3$$
, $b=4$ e $c=-1$

Dependência e Independência Linear

► Exemplos:

2) No espaço vetorial $V = \mathbb{R}^4$, os vetores $v_1 = (2,2,3,4)$, $v_2 = (0,5,-3,1)$ e $v_3 = (0,0,4,-2)$ formam um conjunto linearmente indepentende.

$$a(2,2,3,4)+b(0,5,-3,1)+c(0,0,4,-2)=(0,0,0,0)$$

(2a, 2a+5b, 3a-3b+4c, 4a+b-2c)=(0,0,0,0)
 $a=0, b=0 e c=0.$

▶ Base de um espaço vetorial

Um conjunto $B=\{v_1,v_2, ..., v_n\}$ C V é uma base do espaço vetorial V se:

- BéLI;
- B gera V.

Exemplo: $B=\{(1,1), (-1,0)\}$ é base de \mathbb{R}^2 .

B é LI, pois a(1,1)+b(-1,0)=(0,0) implica:

$$\begin{cases} a-b=0 \\ a=0 \end{cases}$$
 e daí a = b = 0.

Exemplo: $B=\{(1,1), (-1,0)\}$ é base de \mathbb{R}^2 .

II) B gera \mathbb{R}^2 , pois para todo (x,y) $\in \mathbb{R}^2$, tem-se:

$$(x,y)=a(1,1)+b(-1,0)$$

$$\begin{cases} a - b = x \\ a = y \end{cases}$$
 e daí a = y e b=y-x.

▶ Dimensão de um espaço vetorial

Seja V um espaço vetorial. Se V possui uma base com n vetores, então V tem dimensão n.

Notação: dim V = n

Se V não possui base, dim V = 0.

Se V tem uma base com infinitos vetores, então dim V = ∞.

► Exemplo:

1) dim $\mathbb{R}^2 = 2$;

2) dim \mathbb{R}^n = n;

3) $\dim \{0\} = 0$.

Tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais.

Variáveis são vetores

Chamadas funções vetoriais

ightharpoonup T: $V \rightarrow W$

► Cada $v \in V$ tem um só vetor imagem $w \in T$, indicado por w=T(w).

Exemplo: Seja T: $\mathbb{R}^2 \to \mathbb{R}^3$, definada por

$$T(x,y)=(3x, -2y, x-y).$$

$$T(2,1)=(3.2, -2.1, 2-1)=(6,-2,1)$$

Sejam V e W espaços vetoriais. Uma aplicação T: V → W é chamada transformação linear de V em W se:

i)
$$T(u+v)=T(u)=T(v)$$

ii)
$$T(\alpha u) = \alpha T(u)$$

para todo u, v ϵ V e para todo α ϵ \mathbb{R} .

► OBS: T: V → V é chamado **operador linear.**

Exemplo: T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x,y)=(3x,-2y,x-y) é linear.

De fato, sejam $u=(x_1,y_1)$ e $v=(x_2,y_2)$ vetores de \mathbb{R}^2 .

- T(u+v) = T(x₁+ x₂, y₁ + y₂) T(u+v) = $(3(x_1+x_2), -2(y_1+y_2), (x_1+x_2)-(y_1+y_2))$ T(u+v) = $(3x_1+3x_2, -2y_1-2y_2, x_1+x_2-y_1-y_2)$ T(u+v) = $(3x_1, -2y_1-2y_2, x_1-y_1) + (3x_2, -2y_2, x_2-y_2)$ T(u+v) = T(u) + T(v).
- Para todo $\alpha \in \mathbb{R}$ e para qualquer $(x_1,y_1) \in \mathbb{R}$

$$T(\alpha u) = T(\alpha x_1, \alpha y_1)$$

$$T(\alpha u) = (3 \alpha x_1, -2 \alpha y_1 - 2y_2, \alpha x_1 - \alpha y_1)$$

$$T(\alpha u) = \alpha (3x_1, -2y_1 - 2y_2, x_1 - y_1)$$

$$T(\alpha u) = \alpha T(u)$$

► Obs: Se T é uma transformação linear, então T(0)=0.

De fato, se considerarmos α =0 em ii), temos: T(0)=T(0.v)=0.T(v) = 0.

A recíproca não é verdadeira.

Exemplo: T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x,y)=(x²,3y).

Exemplos:

- ► I: $V \rightarrow V$, I(v)=v (identidade);
- ightharpoonup T: V \rightarrow W, T(v)=0 (nula);
- T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(v)= -v (simetria);
- T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(v)= (x,y,0) (projeção ortogonal)
- Seja o espaço V=P_n, dos polinômios de grau ≤n.
 A aplicação D: De la policidad de grau ≤n.
- A aplicação D: $P_n \rightarrow P_n$, que leva f $\in P_n$, em sua derivada f' é linear.

Exemplos:

Considere $A=\begin{bmatrix}1&2\\-2&3\\0&4\end{bmatrix}$. Essa matriz determina a transformação $T_A\colon\mathbb{R}^2\to\mathbb{R}^3$, T(v)=Av, que é linear.

Seja
$$v=(x,y) \in \mathbb{R}^2$$
,

$$\begin{bmatrix} 1 & 2 \\ -2 & 3 \\ 0 & 4 \end{bmatrix} v = \begin{bmatrix} x + 2y \\ -2x + 3x \\ 4y \end{bmatrix}$$
e portanto, $T_A(x,y) = (x+2y, -2x+3y, 4y)$

Núcleo de uma transformação linear

► Chama-se núcleo de uma transformação linear T: $V \rightarrow W$ ao conjunto de todos os vetores $v \in V$ que são trasnformados em $0 \in W$.

►Notação: N(T) ou ker(T)

 $N(T) = \{v \in V \mid T(v) = 0\}$

Núcleo de uma transformação linear

Exemplo:

Determine o núcleo da transformação T: $\mathbb{R}^2 \to \mathbb{R}^2$, T(x,y)=(x+y,2x-y).

T(x,y)=(0,0) implica que (x+y,2x-y)=(0,0)

Logo,
$$\begin{cases} x + y = 0 \\ 2x - y = 0 \end{cases}$$
 e daí x = 0 e y=0.

Portanto, $N(T) = \{(0,0)\}.$

Imagem de uma transformação linear

► Chama-se imagem de uma transformação linear T: $V \rightarrow W$ ao conjunto dos vetores $w \in W$ que são imagens de pelo menos um vetor $V \in V$.

►Notação: Im(T) ou T(v)

►Im(T)={w ϵ W|T(v)=w, para algum v ϵ v}

Imagem de uma transformação linear

▶ Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z)= (x,y,0) a projeção orthogonal do \mathbb{R}^3 sobre o plano xy.

A imagem de T é o próprio plano xy.

Im(T)=
$$\{(x,y,0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\}$$

$$N(T) = \{(0,0,z) | z \in \mathbb{R} \}$$

Seja V um espaço vetorial de dimensão finite e T: V → W uma transformação linear. Então:

 $\dim N(T) + \dim Im(T) = \dim V$

Exemplo: determinar o núcleo e a imagem do operador linear

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
, T(x,y,z)=(x+2y-z, y+2z,x+3y+z).

$$ightharpoonup N(T) = \{ (x,y,z) \in \mathbb{R}^3 \mid T(x,y,z) = (0,0,0) \}.$$

De
$$(x+2y-z, y+2z,x+3y+z) = (0,0,0)$$

temos a solução geral $(5z, -2z, z), z \in \mathbb{R}$.

Logo,

$$N(T) = \{ (5z,-2z,z) \mid z \in \mathbb{R} \}$$

$$= \{ 5(5,-2,1) \mid z \in \mathbb{R} \}$$

$$= [(5,-2,1)].$$

Note que dim (N(T)) = 1. Logo, pelo teorema, dim (Im(T)) deverá ser 2.

► Im(T) = { (a,b,c) $\in \mathbb{R}^3$ | T(x,y,z)=(a,b,c)}

ightharpoonup (a,b,c) $m \in Im(T)$ se existe (x,y,z) $m \in \mathbb{R}^3$ tal que

$$(x+2y-z, y+2z,x+3y+z) = (a,b,c)$$

O sistema só terá solução se a + b - c = 0.

Logo,
$$Im(T) = \{(a,b,c) \in \mathbb{R}^3 \mid a + b - c = 0)\}$$

 \triangleright O vetor imagem T(x,y,z) pode ser expresso como:

$$(x+2y-z, y+2z,x+3y+z) = (x,0,x)+(2y,y,3y)+(-z,2z,z)$$

ou

$$(x+2y-z, y+2z,x+3y+z) = x(1,0,1)+y(2,1,3)+z(-1,2,1)$$

Portanto, Im(T) = [(1,0,1), (2,1,3), (-1,2,1)].

Sejam T: V → W uma transformação linear, A uma base de V e B uma base de W.

► SPG, vamos assumer dim V=2 e dim W = 3.

$$A = \{v_1, v_2\} \in B = \{w_1, w_2, w_3\}$$

 $V = X_1V_1 + X_2V_2 \text{ ou } V_A = (X_1, X_2)$

 $T(v) = y_1w_1 + y_2w_2 + y_3w_3$ ou $T(v)_B = (y_1, y_2, y_3)$

Por outro lado,

$$T(v) = T(x_1v_1 + x_2v_2) = x_1T(v_1) + x_2T(v_2)$$

ightharpoonup Como T(v₁) e T(v₂) são vetores de W

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + a_{31}w_3$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + a_{32}w_3$$

Substituindo em $T(v) = x_1T(v_1) + x_2T(v_2)$ temos

$$T(v) = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(v a_{12}w_1 + a_{22}w_2 + a_{32}w_3)$$

$$T(v) = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(v a_{12}w_1 + a_{22}w_2 + a_{32}w_3)$$

$$T(v) = w_1(a_{11}x_1 + a_{12}x_2) + w_2(a_{21}x_1 + a_{22}x_2) + w_3(a_{31}x_1 + a_{32}x_2)$$

- Comparando com $T(v) = y_1w_1 + y_2w_2 + y_3w_3$ temos:
- $y_1 = a_{11}x_1 + a_{12}x_2$
- $y_2 = a_{21}x_1 + a_{22}x_2$
- $y_1 = a_{31}x_1 + a_{32}x_2$

Matricialmente:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Simbolicamente:

$$[\mathsf{T}(\mathsf{v})]_\mathsf{B} = [\mathsf{T}]_B^A [\mathsf{v}]_\mathsf{A}$$

Observações:

1) A matriz $[T]_B^A$ é de ordem 3x2 quando dim V=2 e dim W = 3.

2) As colunas da matriz $[T]_B^A$ são componentes das imagens dos vetores da base A em relação à base B.

► Exemplo: Seja T: $\mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z)=(2x-y+z, 3x+y-2z), linear. Consideremos as bases $A=\{v_1,v_2,v_3\}$, com $v_1=(1,1,1)$, $v_2=(0,1,1)$, $v_3=(0,0,1)$ e $B=\{w_1,w_2\}$, sendo $w_1=(2,1)$ e $w_2=(5,3)$.

T(v₁) = T(1,1,1) = (2,2) = $a_{11}(2,1) + a_{21}(5,3)$ Portanto, a_{11} = -4 e a_{21} = 2.

T(v₂) = T(0,1,1) = (0,-1) = $a_{12}(2,1) + a_{22}(5,3)$ Portanto, a_{12} = 5 e a_{22} = -2.

T(v₃) = T(0,0,1) = (1,-2) = $a_{13}(2,1) + a_{23}(5,3)$ Portanto, a_{13} = 13 e a_{23} = -5.

Portanto,

$$[T]_B^A = \begin{bmatrix} -4 & 5 & 13 \\ 2 & -2 & -5 \end{bmatrix}.$$

Adição

Sejam $T_1: V \to W$ e $T_2: V \to W$. Chama-se **soma** das transformações lineares T_1 e T_2 à transformação linear

$$T_1 + T_2 : V \to W, (T_1 + T_2)(v) = T_1(v) + T_2(v), \forall v \in V.$$

Multiplicação por escalar

Sejam T: $V \to W$ e $\alpha \in \mathbb{R}$. Chama-se **produto** de T pelo escalar α à transformação linear

$$(\alpha T)(v) = \alpha T(v), \forall v \in V.$$

Composição

Sejam $T_1: V \to W$ e $T_2: W \to U$. Chama-se aplicação composta de T_1 com T_2 , à transformação linear

 $(T_1 \circ T_2)(v) = T_2(T_1(v)), \forall v \in V.$

Exemplo 1:

Sejam $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ transformações lineares definidas por

$$T_1(x,y) = (x+2y, 2x-y,x) e T_2(x,y) = (-x,y,x+y).$$

$$T_1 + T_2$$

$$(T_1 + T_2)(x,y) = T_1(x,y) + T_2(x,y)$$

$$(T_1 + T_2)(x,y) = (x+2y, 2x-y,x) + (-x,y,x+y) = (2y, 2x,2x+y)$$

Exemplo1:

►
$$3T_1 - 2T_2$$

 $(3T_1 - 2T_2)(x,y) = (3T_1)(x,y) - (2T_2)(x,y)$
 $(3T_1 - 2T_2)(x,y) = 3T_1(x,y) - 2T_2(x,y)$
 $(3T_1 - 2T_2)(x,y) = 3(x+2y, 2x-y,x) - 2(-x,y,x+y)$
 $(3T_1 - 2T_2)(x,y) = (5x+6y, 6x-5y, x-2y)$

Exemplo 2:

Sejam S e T operadores lineares no \mathbb{R}^3 definidos por S(x,y) = (2x,y) e T(x,y)=(x,x-y).

S o T $(S \circ T)(x,y) = S(T(x,y)) = S(x,x-y) - (2x, x-y)$

To S $(T \circ S)(x,y) = T(S(x,y)) = T(2x,y) = (2x, 2x-y).$

Entende-se por transformações lineares planas as transformações de \mathbb{R}^2 em \mathbb{R}^2 .

► Veremos algumas de especial importância e suas interpretações geométricas.

- ▶ Reflexões
- Refexão em torno do eixo dos x

Leva cada ponto (x,y) para sua imagem (-x,-y), simétrica em relação ao eixo x.

T: $\mathbb{R}^2 \to \mathbb{R}^2$ ou T(x,y) = (x, -y) (x,y) \mapsto (x,-y)

Refexão em torno do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-x, y)
(x,y) \mapsto (-x,y)

Refexão na origem

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-x, -y)
(x,y) \mapsto (-x,-y)

Refexão na origem

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-x, -y)
(x,y) \mapsto (-x,-y)

Refexão em torno da reta y=x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (y, x)

 $(x,y) \mapsto (y,x)$

Refexão em torno da reta y=-x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-y, -x)
(x,y) \mapsto (-y,-x)

- ▶ Dilatações e Contrações
- ▶ Dilatação ou contração na direção do vetor

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) $\mapsto \alpha(x,y)$, $\alpha \in \mathbb{R}$

▶ Dilatação ou contração na direção do eixo dos x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (α x,y), $\alpha > 0$

Note que:

se α > 1, T dilata o vetor se 0 < α < 1, T contrai o vetor

▶ Dilatação ou contração na direção do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x, α y), $\alpha > 0$

▶ Dilatação ou contração na direção do eixo dos y

Note que, se α = 0, temos a projeção orthogonal do plano sobre o eixo dos x.

$$(x,y) \mapsto (x, 0)$$

- ▶ Cisalhamentos
- ► Cisalhamento na direção do eixo dos x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x + α y, y)

► Cisalhamento na direção do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x, y+ α x)

Rotação

A rotação do plano em torno da origem, que faz cada ponto descrever um ângulo θ , determina

$$\mathsf{T}_{\theta}:\mathbb{R}^2\to\mathbb{R}^2$$

 $(x,y) \mapsto (x\cos \theta - y\sin \theta, x\sin \theta + y\cos \theta)$

▶ Rotação

Matriz da transformação:

$$[\mathsf{T}_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

▶ Rotação

Desejamos a imagem do vetor v=(4,2) pela rotação

de $\theta = \pi/2$

$$[T(4,2)] = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$[T(4,2)] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 ou $[T(4,2)] = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$

ightharpoonup São as transformações de \mathbb{R}^3 em \mathbb{R}^3 .

Examinaremos as reflexões e as rotações.

- ▶ Reflexões
- ► Reflexões em relação aos planos coordenados

A reflexão em relação ao plano xOy leva cada ponto (x,y,z) na sua imagem (x,y,-z), simétrica em relação ao plano xOy.

(x, y, z)

(x, y, -z)

T(x,y,z) = (x,y,-z)

► Reflexões em relação aos eixos coordenados

A reflexão em relação ao eixo x é o operador liner definido por

$$T(x,y,z) = (x,-y,-z)$$

► Reflexões na origem

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

(x,y) \mapsto (-x, -y, -z)

Rotação

Vamos mostrar a rotação do espaço em torno do eixo dos x, que faz cada ponto descrever um ângulo θ .

```
T_{\theta}: \mathbb{R}^3 \to \mathbb{R}^3
(x,y,z) \mapsto (xcos \theta - ysen \theta, xsen \theta + ycos \theta,z)
```

▶ Rotação

Matriz da transformação:

$$[\mathsf{T}_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

