

Radio Test Report

Application for Grant of Equipment Authorization

FCC Part 22 and IC RSS-132 [869MHz – 894MHz]

FCC Part 27 and IC RSS-130 [746MHz – 756MHz]

FCC ID: VBNAHBCA-01 IC ID: 661W-AHBCA

Product Name: Airscale Base Transceiver Station Remote Radio Head Model: AHBCA

> Applicant: Nokia Solutions and Networks 6000 Connection Drive Irving, TX 75039

> Test Sites: Nokia Solutions and Networks
> 6000 Connection Drive
> Irving, TX 75039
> and
> National Technical Systems – Plano

Plano, TX 75074

Test Dates: June 11 - 20, 2018

Total Number of Pages: 149

1701 E Plano Pkwy #150

Prepared By:

Approved By:

Christian Booker EMI Engineer

Journ Jostan

Reviewed By:

Kimberly Zavala Quality Assurance Rep.

Jeffrey Viel

General Manager

REVISION HISTORY

Rev#	Date	Comments	Modified By
0	6/26/18	Initial Draft	Christian Booker
1	6/27/18	Changes made per customer request	Christian Booker
2	7/2/18	Changes made per TCB request	Christian Booker

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS SUMMARY FCC Part 22 Subpart H and IC RSS-132 Issue 3 (Base Stations Operating in the 86	
FCC Part 27 Subpart C and IC RSS-130 Issue 1 (Base Stations Operating in the 74	6 to 756MHz Band) 8
Extreme Conditions	g
Measurement Uncertainties	S
EQUIPMENT UNDER TEST (EUT) DETAILS	
EUT Hardware	13
Enclosure	13
Support Equipment	13
Auxillary Equipment	14
EUT Interface Ports	14
EUT External Interfaces	15
EUT Operation	16
EUT Software	16
Modifications	16

TESTING	17
Measurement Procedures	17
Antenna Port Conducted RF Measurement Test Setup Diagrams	19
Test Measurement Equipment	20
APPENDIX A: ANTENNA PORT TEST DATA FOR BAND 5 (869-894MHZ) 21	
RF Output Power	22
Emission Bandwidth (26 dB down and 99%)	30
Antenna Port Conducted Band Edge	35
Transmitter Antenna Port Conducted Emissions	48
Frequency Stability/Accuracy	98
APPENDIX B: ANTENNA PORT TEST DATA FOR BAND 13 (746-756MHZ) 99	
RF Output Power	100
Emission Bandwidth (26 dB down and 99%)	106
Antenna Port Conducted Band Edge	109
Transmitter Antenna Port Conducted Emissions	123
Transmitter Antenna Port Conducted Emissions in 1559MHz to 1610MHz Frequency Range	137
Transmitter Radiated Spurious Emissions	144
Frequency Stability/Accuracy	149

SCOPE

Tests have been performed on Nokia Solutions and Networks product Airscale Base Station Remote Radio Head (RRH) Model AHBCA, pursuant to the relevant requirements of the following standard(s) to obtain device certification against the regulatory requirements of the Federal Communications Commission (FCC) and Innovation, Science and Economic Development Canada (ISED).

- Code of Federal Regulations (CFR) Title 47 Part 2
- (Radio Standards Specification) RSS-Gen Issue 4 November 2014
- CFR 47 Part 22 Subpart H
- RSS-132 Issue 3 January 2013
- CFR Title 47 Part 27 Subpart C
- RSS-130 Issue 1 October 2013

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards:

ANSI C63.26-2015 ANSI C63.4-2014 ANSI TIA-603-D FCC KDB 971168 D01 v02r02 FCC KDB 971168 D03 v01 FCC KDB 662911D01 v02r01 TIA-102.CAAA-D

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC and ISED requirements.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of Nokia Solutions and Networks product Airscale Base Station Remote Radio Head (RRH) Model AHBCA and therefore apply only to the tested sample. The sample was selected and prepared by Hobert Smith and John Rattanavong of Nokia Solutions and Networks.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA and Canada, the device requires certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on Model AHBCA. No additional models were described or supplied for testing.

STATEMENT OF COMPLIANCE

The tested sample of Nokia Solutions and Networks product Airscale Base Transceiver Station Remote Radio Head (RRH) Model AHBCA complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

The following tables provide a summary of the test results:

FCC Part 22 Subpart H and IC RSS-132 Issue 3 (Base Stations Operating in the 869 to 894MHz Band)

		AHBCA o	perating in 869MHz to 894MHz Frequency Band		
FCC	IC	Description	Measured	Limit	Results
Transmitter	Modulation, ou	itput power and other ch	naracteristics		
§22.905	RSS-132 Section 5.1	Frequency Ranges	LTE1.4: 869.7 – 893.3MHz LTE3: 870.5 – 892.5MHz LTE5: 871.5 – 891.5MHz LTE10: 874.0 – 889.0MHz	869.0MHz to 894.0MHz	Pass
§2.1047	RSS-132 Section 5.2	Modulation Type	QPSK, 16QAM, 64QAM and 256QAM for LTE 1.4, LTE3, LTE5 & LTE10	Digital	Pass
§22.913	RSS-132 Section 5.4	Output Power	Highest Conducted Power Output RMS: 46.31dBm ERP depends on antenna gain which is unknown	1000W ERP	Pass
	RSS-132 Section 5.4	Peak to Average Power Ratio	Highest Measured PAPR: 8.09dB	13dB	Pass
	RSS-Gen Section 6.6	99% Emission Bandwidth	LTE1.4: 1.1170MHz LTE3: 2.7118MHz LTE5: 4.4956MHz LTE10: 8.9998MHz	Remain in Block	Pass
§22.917(b)		26dB down Emission Bandwidth	LTE1.4: 1.260MHz LTE3: 2.931MHz LTE5: 4.844MHz LTE10: 9.664MHz	Remain in Block	Pass
Transmitter	Spurious Emis	sions ¹			
\$22.047	RSS-132	At the antenna terminals	< -19dBm	-19dBm per Transmit Chain	Pass
§22.917	Section 5.5	Field Strength	53 dBuV/m at 3m Eq. to -42 dBm EIRP	-13dBm EIRP	Pass
Other Detail	s				
§2.1057	RSS-132 Section 5.3	Frequency Stability	0.003ppm	1.5ppm	Pass
§1.1310	RSS102	RF Exposure	N/A		Pass ²

Note 1: Based on 100kHz RBW. In the 1MHz immediately outside and adjacent to the frequency block a RBW of at least 1% of the emission bandwidth was used. The measurement bandwidth is 100kHz for measurements more than 1MHz from the band edge.

Note 2: Applicant's declaration on a separate exhibit based on hypothetical antenna gains.

869MHz to 894MHz Band Emission Designators									
Channel	Channel LTE-QF		PSK LTE-16QAM		LTE-64QAM		LTE-256QAM		
Bandwidth	FCC	IC	FCC	IC	FCC	IC	FCC	IC	
1.4M	1M26F9W	1M12F9W	1M25F9W	1M11F9W	1M24F9W	1M11F9W	1M25F9W	1M11F9W	
3M	2M93F9W	2M71F9W	2M93F9W	2M71F9W	2M92F9W	2M71F9W	2M93F9W	2M70F9W	
5M	4M84F9W	4M49F9W	4M83F9W	4M47F9W	4M84F9W	4M50F9W	4M84F9W	4M50F9W	
10M	9M65F9W	8M98F9W	9M62F9W	9M00F9W	9M66F9W	8M98F9W	9M65F9W	8M97F9W	
Note: FCC based o	Note: FCC based on 26dB emission bandwidth; IC based on 99% emission bandwidth.								

FCC Part 27 Subpart C and IC RSS-130 Issue 1 (Base Stations Operating in the 746 to 756MHz Band)

	AHBCA operating in the 746MHz to 756MHz Frequency Band							
FCC	IC	Description	Measured	Limit	Results			
Transmitter M	Iodulation, outpu	it power and other chara	cteristics					
27.5(b)	RSS-130 Section 4.2	Frequency Ranges	LTE5: 748.5 – 753.5MHz LTE10: 751.0MHz	746.0 – 756.0MHz	Pass			
2.1033(c)(4)	RSS-130 Section 4.1	Modulation Type	QPSK, 16QAM, 64QAM and 256QAM for LTE5 & LTE10	Digital	Pass			
27.50(b)	RSS-130 Section 4.4	Output Power	Highest Conducted Power Output RMS: 46.22dBm ERP depends on antenna gain which is unknown	1000W ERP	Pass			
	RSS-130 Section 4.4	Peak to Average Power Ratio	Highest Measured PAPR: 8.02dB	13dB	Pass			
2.1049	RSS-Gen Section 6.6	99% Emission Bandwidth	LTE5: 4.4951MHz LTE10: 8.9922MHz	Remain in Block	Pass			
		26dB down Emission Bandwidth	LTE5: 4.849MHz LTE10: 9.672MHz	Remain in Block	Pass			
Transmitter S	purious Emissio	ns						
27.52(a)	RSS-130	At the antenna terminals	< -19dBm	-19dBm per Transmit Chain	Pass ¹			
27.53(c)	Section 4.6.1	Field strength	53 dBuV/m at 3m Eq. to -42 dBm ERP	-13 dBm ERP	Pass			
27.53(c)(3)	RSS-130 Section 4.6.2	At the Ant terminals: Maximum emissions in 763-775 MHz and 793-806MHz bands	Conducted emissions were less than -55.329dBm for RBW of 6.25kHz	-52dBm per 6.25kHz bandwidth	Pass ²			
27.53f	RSS-130 Section 4.6.2	At the Ant terminals: Maximum emissions in 1559-1610MHz band	Conducted emissions were not observed above measurement instrumentation noise floor or less than -99dBW/MHz	EIRP≤ Wideband: -76dBW/MHz Discrete: -86dBW/MHz	Pass ³			
Other Details								
27.54	RSS-130 Sec 4.3	Frequency Stability	Stays within authorized frequency block 0.002ppm	Stays within block	Pass			
1.1310	RSS102	RF Exposure	N/A		Pass ⁴			
	•							

Note 1: Based on 100kHz RBW. In the 100kHz immediately outside and adjacent to the frequency block a RBW of 30kHz was used. The measurement bandwidth is 100kHz for measurements more than 100kHz from the band edge. See Section 27.53(c)(5) and RSS 130 4.6 for details. Note 2: Section 27.53(c)(3) and RSS-130 4.6.2 requires an emission limit of -46dBm for any 6.25 kHz bandwidth between frequency bands 763-775 MHz and 793-806MHz. Adjusting for the four port MIMO requirement the emission limit in these frequency ranges is -52 dBm [i.e.: Limit = -46 dBm/6.25kHz (FCC/IC Limit) – 6dB (4 port MIMO)].

Note 3: Section 27.53(f) and RSS 130 4.6.2(b), the EIRP limit for the frequency range 1559-1610 MHz is -70dBW/MHz for wideband signals and -

80dBW for discrete emissions of bandwidths less than 700Hz. Adjusting for the four port MIMO requirement, the limit is -76 dBW [-70 dBW -10 log (4)] for wideband signals and -86dBW [-80 dBW -10 log (4)] for discrete emissions. Note 4: Applicant's declaration on a separate exhibit based on hypothetical antenna gains.

746MHz to 756MHz Band Emission Designators								
Channel LTE-QPSK LTE-16QAM LTE-64QAM LTE-256QAM						6QAM		
Bandwidth	FCC	IC	FCC	IC	FCC	IC	FCC	IC
5M	4M85F9W	4M49F9W	4M83F9W	4M47F9W	4M84F9W	4M49F9W	4M85F9W	4M50F9W
10M 9M65F9W 8M98F9W 9M63F9W 8M99F9W 9M67F9W 8M99F9W 9M64F9W 8M97F9W								
10M 9M65F9W 8M98F9W 9M63F9W 8M99F9W 9M67F9W 8M99F9W 9M64F9W 8M97F9W Note: FCC based on 26dB emission bandwidth; IC based on 99% emission bandwidth.								

Extreme Conditions

Frequency stability is determined over extremes of temperature and voltage.

The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

Measurement Uncertainties

Measurement uncertainties of the test facility based on a 95% confidence level are as follows:

Test	Uncertainty
Radio frequency	± 0.2ppm
RF power conducted	±1.2 dB
RF power radiated	±3.3 dB
RF power density conducted	±1.2 dB
Spurious emissions conducted	±1.2 dB
Adjacent channel power	±0.4 dB
Spurious emissions radiated	±4 dB
Temperature	±1°C
Humidity	±1.6 %
Voltage (DC)	±0.2 %
Voltage (AC)	±0.3 %

EQUIPMENT UNDER TEST (EUT) DETAILS

General

The equipment under test (EUT) is a Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) Remote Radio Head (RRH) module, model AHBCA. The AHBCA remote radio head is a multistandard multicarrier radio module designed to support LTE, and narrow band IoT (internet of things) operations (in-band, guard band, standalone). The scope of testing in this effort is for LTE-FDD operations.

The AHBCA RRH has four transmit/four receive antenna ports (4TX/4RX for Band 5 and 4TX/4RX for Band 13). Each antenna port supports 3GPP frequency band 5 (BTS Rx: 824 to 849 MHz/BTS TX: 869 to 894 MHz) and 3GPP frequency band 13 (BTS Rx: 777 to 787 MHz/BTS TX: 746 to 756 MHz). The maximum RF output power of the RRH is 160 Watts (40 watts per carrier, 40 watts per antenna port). The RRH can be operated as a 4x4 MIMO, 2x2 MIMO or as non-MIMO. The TX and RX instantaneous bandwidth cover the full operational bandwidth. The RRH supports LTE bandwidths of 1.4, 3, 5 and 10MHz for 3GPP frequency band 5 operations. The RRH supports LTE bandwidths of 5 and 10MHz for 3GPP frequency band 13 operations. The RRH supports four LTE downlink modulation types (QPSK, 16QAM, 64QAM and 256QAM). Multi-carrier operation is supported.

The RRH has external interfaces including DC power (DC In), ground, transmit/receive (ANT), external alarm (EAC), optical CPRI (OPT) and remote electrical tilt (RET). The RRH with applicable installation kit may be pole or wall mounted. The RRH may be configured with optional cooling fan.

The AHBCA LTE channel numbers and frequencies are as follows:

	Downlink	Downlink		LTE Channe	el Bandwidth	
	EARFCN	Frequency (MHz)	1.4 MHz	3 MHz	5 MHz	10 MHz
	2400	869.0	Band Edge	Band Edge	Band Edge	Band Edge
	2407	869.7	Bottom Ch			
	2415	870.5		Bottom Ch		
a	2425	871.5			Bottom Ch	
3,6						
1, 2,	2450	874.0				Bottom Ch
۸nt						
AHBCA Band 5 (Ant 1, 2, 3, 4)	2525	881.5	Middle Ch	Middle Ch	Middle Ch	Middle Ch
and						
A B	2600	889.0				Top Channel
HB(
▼	2625	891.5			Top Channel	
	2635	892.5		Top Channel		
	2643	893.3	Top Channel			
	2650	894.0	Band Edge	Band Edge	Band Edge	Band Edge

AHBCA Downlink Band Edge LTE Band 5 Frequency Channels

Multicarrier Test Case: Dual Carriers at the Lower Band Edge 869.7MHz (ARFCN 2407) & 871.1MHz (ARFCN 2421) and a Single Carrier at the Upper Band Edge 893.3MHz (ARFCN 2643).

	Downlink	Downlink	LTE Channe	l Bandwidth
	EARFCN	Frequency (MHz)	5 MHz	10 MHz
	5180	746.0	Band Edge	Band Edge
4				
2, 3,	5205	748.5	Bottom Channel	
AHBCA Band 13 (Ant 1,	5230	751	Middle Channel	Bottom Channel Middle Channel Top Channel
A Ba				
HBC	5255	753.5	Top Channel	
Ā				
	5280	756	Band Edge	Band Edge

AHBCA Downlink Band Edge LTE Band 13 Frequency Channels

Multicarrier Test Case: Dual Carriers at the Lower and Upper Band Edges 748.5MHz (ARFCN 5205) and 753.5MHz (ARFCN 5255). Two carriers cover the entire channel bandwidth so three carrier operation is not available.

Multiband Multicarrier Test Case: A total of three carriers at 13 watts per carrier. One LTE10 carrier at Band 13 middle channel (ARFCN 5230 at 751MHz). Two LTE1.4 carriers at Band 5 top channel and top channel-1 (ARFCN 2643 at 893.3MHz and ARFCN 2629 at 891.9MHz).

EUT Hardware

The EUT hardware used in testing on June 11 - 20, 2018.

Company	Model	Description	Part/Serial Number	FCC ID/IC Number
Nokia Solutions and Networks	AHBCA	AirScale BTS RRH	Part#: 474241A.101 Serial#: BL1818M0028	FCC ID: VBNAHBCA-01 IC ID: 661W-AHBCA

Enclosure

The EUT enclosure is made of heavy duty aluminum.

Support Equipment

Company	Model	Description	Part/Serial Number	FCC ID/IC Number
Nokia Solutions and Networks	ASIA	Airscale System Module	Part#: 473095A.203 Serial#: AH173111443	N/A
НР	Elite Book 6930p	Laptop PC	N/A	N/A
Dell	Studio XPS	Instrumentation PC	N/A	N/A

Auxillary Equipment

Company	Description	Part Number	Serial Number						
Nokia	FOUC 10GHz SFP Module	473842A.101	KR16180010011						
NONIA	(Plugs into RRH Opt Ports)	473042A.101	KKIOIOOOIOOII						
RLC Electronics	1.1GHz High Pass Filter ¹	F-14699	0050						
Weinschel	Attenuator 40dB-250 Watt ¹	58-40-43-LIM	TC909						
Weinschel	Attenuator 20dB-150 Watt ¹	66-20-33	BZ2075						
Huber & Suhner	RF Cable – 0.5 meter ¹	Sucoflex 104	553624/4						
Huber & Suhner	RF Cable - 1 meter ¹	Sucoflex 106	297370						
Note 1: Used only in a	Note 1: Used only in antenna port RF conducted emission testing.								

EUT Interface Ports

The I/O cabling configuration during testing was as follows:

Cable	Туре	Shield	Length	Used in Test	Quantity	Termination
Power Input	Power	No	~ 3 m	Yes	1	Power Supply
Earth	Earth	No	~ 1 m	Yes	1	Lab earth ground
Antenna	RF	Yes	~ 3 m	Yes	4	50Ω Loads
External Alarm	Signal	Yes	~ 3 m	Yes	1	Un-terminated
Remote Electrical Tilt	Signal	Yes	~ 3 m	Yes	1	Un-terminated
Multimode Optical	Optical	No	>6 m	Yes	1	System Module

AHBCA Connector Layout:

EUT External Interfaces

Name	Qty	Connector Type	Purpose (and Description)
DC In	1	Quick Disconnect	2-pole Power Circular Connector
GND	1	Screw lug (2xM5/1xM8)	Ground
ANT	4	4.3-10	RF signal for Transmitter/Receiver (50 Ohm)
Unit	1	LED	Unit Status LED
EAC	1	MDR26	External Alarm Interface (4 alarms)
OPT	2	SFP+ cage	Optical CPRI Interface up to 10 Gps.
RET	1	8-pin circular connector conforming to IEC 60130-9 – Ed.3.0	AISG 2.0 to external devices
Fan	1	Molex Microfit	Power for RRH Fan. Located on the side of RRH.

EUT Operation

During testing, the EUT was transmitting continuously with 100% duty-cycle at full power on all chains.

EUT Software

The laptop PC connects to the System Module over the LMP (Ethernet) port. The system module controls the RRH via the optical (CPRI) interface. The laptop is used for changing configuration settings, monitoring tests and controlling the BTS. The following software versions are used for the testing:

(1) RRH Unit Software: FRM58.06.R11

(2) System Module Software: FL18SP_ENB_0000_000015_000000

(3) BTS Site Manager: BTS Site EM - FL18SP_0000_000485_000000

Modifications

No modifications were made to the EUT during testing.

TESTING

General Information

Antenna port measurements were taken with NTS personnel (Daniel Ramirez) at Nokia premises located at 6000 Connection Drive; Irving, Texas 75309.

Radiated emissions and frequency accuracy/stability measurements were taken at NTS Plano branch located at 1701 E Plano Pkwy #150 Plano, TX 75074.

Radiated spurious emissions measurements were taken at the NTS Plano Anechoic Chamber listed below. The sites conform to the requirements of ANSI C63.4-2014: "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" and CISPR 16-1-4:2010-04: "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus — Antennas and test sites for radiated disturbance measurements". They are on file with the FCC and Industry Canada.

Site	Registratio	Location			
Site	FCC	Canada	Location		
Chamber 1	A2LA Accredited Designation Number US1077	IC 4319A-2	1701 E Plano Pkwy #150 Plano, TX 75074.		

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

Measurement Procedures

The output power, emission bandwidth, conducted spurious and conducted band edge measurements were performed with a spectrum analyzer. The carrier frequency accuracy/stability measurements were performed with a LTE signal analyzer. The EUT was operated at maximum RF output power for all tests. While measuring one transmit chain, the others were terminated with termination blocks. All measurements were corrected for the insertion loss of the RF network (attenuators, filters, and cables) inserted between the RF port of the EUT and the spectrum analyzer. Block diagrams and photographs of the test setups are provided below.

The 26dB emission bandwidth was measured in accordance with Section 4.1 of FCC KDB 971168 D01 v02r02. The 99% occupied bandwidth was measured in accordance with Section 6.6 of RSS-Gen Issue 4. For both measurements, an occupied bandwidth built-in function in the spectrum analyzer was used and Keysight Benchvue Software was used to capture the spectrum analyzer screenshots. Spectrum analyzer settings are shown on their corresponding plots in test results section.

The emissions at the band edges were captured with Keysight Benchvue Software with settings described in the corresponding sections of the FCC and IC regulatory requirements. Spectrum analyzer settings are shown on their corresponding plots in test results section.

Peak and average output power measurements were performed in accordance with FCC KDB 971168 D01 v02r02. Measurements were performed with the built-in power meter function found in the spectrum analyzer and the screenshots were captured using Keysight Benchvue Software.

Peak to average power ratio (PAPR) was calculated in accordance with Section 5.7.2 of FCC KDB 971168 D01 v02r02. Spectrum analyzer settings are shown on their corresponding plots in test results section.

Conducted spurious emissions were captured with Keysight Benchvue Software across the 9kHz-9GHz frequency span. A high pass filter was used to reduce measurement instrumentation noise floor for the frequency ranges above 1.1GHz. The total measurement RF path loss of the test setup (attenuators, high pass filter and test cables) were accounted for by the spectrum analyzer reference level offset. Spectrum analyzer settings are described in the corresponding test result section.

For frequency stability/accuracy measurements, the EUT was placed inside a temperature chamber with all support and test equipment located outside of the chamber. Temperature was varied across the specified range in 10 degree increments and EUT was allowed enough time to stabilize at each temperature step (a minimum of 30 minutes per step). The input voltage was varied as required by FCC/IC regulatory requirements. An LTE signal analyzer as detailed in the test equipment section was used for frequency stability/accuracy measurements.

Transmitter radiated spurious emissions measurements were made in accordance with ANSI C63.4-2014 by measuring the field strength of the emissions from the device at 3m test distance. The eirp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Only emissions within 20dB of this limit are subjected to a substitution measurement in accordance with TIA-603. Both preliminary and final measurements were performed at the same FCC listed test chamber. Preliminary scans were performed with TILE6 software. This software corrected the measurements for antenna factors, cable losses and pre-amplifier gains. Both polarizations of the receiving antenna were scanned from 30MHz to 9GHz with a peak detector (RBW=100kHz, VBW=300kHz, with trace max hold over multiple sweeps). Based on the preliminary scan results, frequencies of interest have been maximized via rotating the EUT 360 degrees and varying the height of the test antenna (1m to 4m). Final measurements were also taken with the peak detector as described above. A biconilog antenna was used for 30MHz-1GHz range. A double ridged waveguide horn antenna was used for 1-9GHz range. The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. EUT was placed on a non-conductive RF transparent structure to provide 80cm height from the ground floor. A motorized turntable allowed it to be rotated during testing to determine the angle with the highest level of emissions.

Antenna Port Conducted RF Measurement Test Setup Diagrams

The following setups were used in the RF conducted emissions testing. Photographs of the test setups are also provided.

Setup for 9kHz to 150kHz, 150kHz to 20MHz, 20MHz to 700MHz, and 700MHz to 1.1GHz Measurements

Photograph of 9kHz to 150kHz, 150kHz to 20MHz, 20MHz to 700MHz, and 700MHz to 1.1GHz Test Setup

Setup for 1.1GHz to 9GHz Measurements

Photograph of 1.1GHz to 9GHz Test Setup

Test Measurement Equipment

NTS	Description	Manufacturer	Model	Calibration	Calibration
Equipment #				Duration	Due Date
WC025240	Spectrum Analyzer	Agilent	E4446A	12 Months	3/3/2019
WC021478	Preamp	HP	8449B	12 Months	3/19/2019
WC021480	Preamp	MITEQ	AM-1431-	12 Months	10/16/2018
			N1179-WP		
WC021206	Small Horn Antenna	ETS	3115	12 Months	1/12/2019
WC020917	Biconilog Antenna	ETS	3142D	24 Months	1/15/2019
WC021208	Antenna	EMCO	3116	12 Months	11/15/2018
WC038434	Preamp	MITEQ	JS32-		10/13/2018
			00104000-	12 Months	
			62-5P		
WC038515	Digital Multimeter	OWON	B35T	24Months	5/30/2019
120194 ¹	PSA Spectrum Analyzer	Agilent	E4440A	12 Months	10/25/2018
NM04509 ¹	Network Analyzer	Rohde & Schwarz	ZVL 3	12 Months	02/03/2019
NM06345 ¹	Network Analyzer	Keysight	E5063A	12 Months	11/20/2018
NM04508 ²	MXA Signal Analyzer	Agilent	N9020A	24 Months	5/2/2019

Note 1: Customer equipment used in antenna port RF conducted emission testing.

Note 2: Customer equipment used in LTE frequency accuracy/stability measurements.

APPENDIX A: ANTENNA PORT TEST DATA FOR BAND 5 (869-894MHZ)

All conducted RF measurements in this section were made at AHBCA antenna ports. The test setup used is provided below.

Test Setup Used for Conducted RF Measurements on AHBCA

RF Output Power

RF output power has been measured in both Peak and RMS Average terms for each Band 5 (869 to 894MHz) transmit chain at the middle channel for 256QAM modulation and LTE5 bandwidth. Peak to average power ratio (PAPR) has been calculated as described in Section 5.7.2 of KDB971168 D01 v02r02 and all results are presented in tabular form below.

Antenna	LTE Bandwidth	LTE - 256QAM					
Antenna	LIE Balluwiutii	Peak (dBm)	Average (dBm)	PAPR (dB)			
Port 1 Middle Channel	5M	53.90	46.08	7.82			
Port 2 Middle Channel	5M	54.01	46.23	7.78			
Port 3 Middle Channel	5M	53.85	46.04	7.81			
Port 4 Middle Channel	5M	53.90	46.15	7.75			

The variation in RMS output power levels between the antenna ports is 0.19 dB per data sample provided above. Pre-compliance testing (and testing of similar EUTs) shows that the output power variation between antenna ports is small (the output ports are essentially electrically identical). The highest power port was selected as the worst case.

Pre-compliance testing has shown that the output power variation between modulation types is small. Antenna port 2 power output measurements for the LTE5 bandwidth for all modulation types on the middle (center) channel are provided below.

		Modulation Type						
	QF	PSK	16QAM		64QAM		256QAM	
	Peak	Ave	Peak	Ave	Peak	Ave	Peak	Ave
	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Antenna Port 2								
Middle Channel	54.07	46.22	53.99	46.21	54.02	46.24	54.01	46.23
LTE5								

The output power variation between modulation types is small in this measurement snapshot (and from past efforts on similar hardware as well). The variation of average power output versus modulation type is 0.03dB for the data snapshot provided. The variation of peak power output versus modulation type is 0.08dB for the data snapshot provided. All power measurements in this report (except the sample test noted above) were performed with the EUT operating with 256QAM modulation.

Based on the results above, Port 2 had the highest RMS average power for Band 5 (represents the worst case) and therefore it was selected for all the remaining antenna port tests. Port 2 has the highest combined RMS average power for Band 5 + Band 13.

Subsequently output power levels on bottom, middle, and top channels in all 4 LTE channel bandwidths using 256QAM modulation type were tested only at Port 2 and the results presented below. The highest measured values are highlighted.

Antonno		LTE	- 256QA	M
Antenna LTE Channel	LTE Bandwidth	Peak (dBm)	Ave (dBm)	PAPR (dB)
	1.4M	53.03	46.02	7.01
Port 2	3M	53.67	46.21	7.46
Bottom Channel	5M	54.08	46.22	7.86
Chamie	10M	54.34	46.31	8.03
2 2	1.4M	53.31	46.24	7.07
Port 2 Middle	3M	53.76	46.23	7.53
Channel	5M	54.01	46.23	7.78
Chamie	10M	54.31	46.22	8.09
	1.4M	52.85	45.91	6.94
Port 2	3M	53.55	46.09	7.46
Top Channel	5M	53.97	46.19	7.78
	10M	54.28	46.29	7.99

The data provided in the table shows (and testing of similar EUTs) that the output RMS power variation between channel bandwidths at the center frequency channel is small (0.02dB).

All measurement results are provided in the following pages. The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset.

LTE5 Channel Power Plots at Middle Channel and 256QAM Modulation:

Port 1 - LTE5_ Middle Channel_Peak

Port 2 - LTE5_Middle Channel_Peak

Port 3 - LTE5_ Middle Channel_Peak

Port 4 - LTE5_ Middle Channel_Peak

Port 1 - LTE5_ Middle Channel_Average

Port 2 - LTE5_Middle Channel_Average

Port 3 - LTE5_ Middle Channel_Average

Port 4 - LTE5_ Middle Channel_Average

LTE5 Channel Power Plots for Antenna Port 2 at Middle Channel and all Modulation Types:

LTE5_ Middle Channel_QPSK_Peak

LTE5_Middle Channel_16QAM_Peak

LTE5_ Middle Channel_64QAM_Peak

LTE5 Middle Channel 256QAM Peak

LTE5_Middle Channel_16QAM_Average

LTE5_ Middle Channel_64QAM_Average

LTE5 Middle Channel 256QAM Average

LTE1.4 Channel Power Plots for Antenna Port 2 and 256QAM Modulation:

LTE1.4_Bottom Channel_Peak

LTE1.4_Bottom Channel_Average

LTE1.4_Middle Channel_Peak

LTE1.4_Middle Channel_Average

LTE1.4_Top Channel_Peak

LTE1.4_Top Channel_Average

LTE3 Channel Power Plots for Antenna Port 2 and 256QAM Modulation:

LTE3_Bottom Channel_Peak

LTE3_Bottom Channel_Average

LTE3_Middle Channel_Peak

LTE3_Middle Channel_Average

LTE3_Top Channel_Peak

LTE3_Top Channel_Average

LTE5 Channel Power Plots for Antenna Port 2 and 256QAM Modulation:

LTE5_Bottom Channel_Peak

LTE5_Bottom Channel_Average

LTE5_Middle Channel_Peak

LTE5_Middle Channel_Average

LTE5_Top Channel_Peak

LTE5_Top Channel_Average

LTE10 Channel Power Plots for Antenna Port 2 and 256QAM Modulation:

LTE10_Bottom Channel_Peak

LTE10_Bottom Channel_Average

LTE10_Middle Channel_Peak

LTE10_Middle Channel_Average

LTE10_Top Channel_Peak

LTE10_Top Channel_Average

Emission Bandwidth (26 dB down and 99%)

Emission bandwidth measurements were made at antenna port 2 on the middle channel with maximum RF output power. All available LTE modulations (QPSK, 16QAM, 64QAM, 256QAM) were used. All available LTE channel bandwidths (1.4MHz, 3MHz, 5MHz, and 10MHz) were used. The results are provided in the following table. The largest emission bandwidths in each channel type are highlighted.

LTC			Modulation Type							
LTE Ch	QPSK		16QAM		64QAM		256QAM			
BW	26dB	99%	26dB	99%	26dB	99%	26dB	99%		
DVV	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)		
1.4M	1.260	1.1170	1.245	1.1090	1.244	1.1086	1.246	1.1088		
3M	2.931	2.7107	2.927	2.7057	2.918	2.7118	2.929	2.7043		
5M	4.839	4.4860	4.827	4.4733	4.838	4.4956	4.844	4.4946		
10M	9.654	8.9787	9.620	8.9998	9.664	8.9766	9.646	8.9735		

Emission bandwidth measurement data are provided in the following pages.

LTE1.4 Emission Bandwidth Plots on the Middle Channel for Antenna Port 2:

LTE1.4_QPSK

LTE1.4_64QAM

LTE1.4_16QAM

LTE1.4_256QAM

LTE3 Emission Bandwidth Plots on the Middle Channel for Antenna Port 2:

LTE3_QPSK

LTE3 64QAM

LTE3_16QAM

LTE3 256QAM

LTE5 Emission Bandwidth Plots on the Middle Channel for Antenna Port 2:

LTE5_QPSK

LTE5 64QAM

LTE5_16QAM

LTE5 256QAM

LTE10 Emission Bandwidth Plots on the Middle Channel for Antenna Port 2:

LTE10_QPSK

LTE10 64QAM

LTE10_16QAM

LTE10 256QAM

Antenna Port Conducted Band Edge

Conducted band edge measurements were made at RRH antenna port 2. The RRH was operated at the band edge frequencies with all modulation types (QPSK, 16QAM, 64QAM, 256QAM) for 1.4MHz, 3MHz, 5MHz and 10MHz LTE bandwidths. The multicarrier test cases are based upon KDB 971168 D03v01 requirements using three carriers.

The limit of -19dBm was used in the certification testing. The limit is adjusted to -19dBm [-13dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

Measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces. In the 1MHz bands outside and adjacent to the frequency block, a resolution bandwidth of 1% of the emission bandwidth was used. In the 1 to 20MHz frequency range outside the band edge (i.e.: 848 to 868MHz and 895 to 915MHz bands) a 100kHz RBW and 300kHz VBW was used.

The results are summarized in the following table. The highest (worst case) emissions from the measurement data are provided. The worst case (highest) measurement is -19.622 dBm.

Channel BW, Carrier Frequency, Carrier Power		QPSK (dBm)		16QAM (dBm)		64QAM (dBm)		256QAM (dBm)	
Band 5	Band 13	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор
LTE1.4, BC & TC, 40W	Carrier Off	-23.487	-23.532	-24.598	-24.393	-24.396	-25.427	-23.823	-23.753
LTE3, BC & TC, 40W	Carrier Off	-20.547	-20.199	-20.428	-19.622	-20.246	-19.981	-20.146	-20.191
LTE5, BC & TC, 40W	Carrier Off	-22.950	-22.318	-21.811	-23.527	-22.444	-21.952	-22.264	-23.021
LTE10, BC & TC, 40W	Carrier Off	-22.513	-23.445	-22.755	-23.140	-21.934	-22.881	-21.554	-22.613
Multicarrier LTE1.4, BC, BC+1 & TC, 13W + 13W + 13W	Carrier Off	-24.148	-23.782	-24.234	-24.850	-23.049	-25.024	-23.727	-26.013
Multicarrier LTE1.4, TC-1 & TC, 13W + 13W	LTE10, MC, 13W	-37.767	-26.472	-37.618	-26.237	-36.366	-26.058	-37.169	-28.001

The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset. The display line on the plots reflects the required limit.

Conducted band edge measurements are provided in the following pages.

Band 5 LTE1.4 40W Carrier Lower Band Edge Plots for Antenna Port 2:

LTE1.4_QPSK_Bottom Channel_848 to 868MHz

LTE1.4 64QAM Bottom Channel 848 to 868MHz

LTE1.4_256QAM_Bottom Channel_848 to 868MHz

LTE1.4_QPSK_Bottom Channel_868 to 870MHz

LTE1.4 16QAM Bottom Channel 868 to 870MHz

LTE1.4 64QAM Bottom Channel 868 to 870MHz

LTE1.4_256QAM_Bottom Channel_868 to 870MHz

Band 5 LTE1.4 40W Carrier Upper Band Edge Plots for Antenna Port 2:

LTE1.4_QPSK_Top Channel_893 to 895MHz

LTE1.4 16QAM Top Channel 893 to 895MHz

LTE1.4_64QAM_Top Channel_893 to 895MHz

LTE1.4_256QAM_Top Channel_893 to 895MHz

LTE1.4_QPSK_Top Channel_895 to 915MHz

LTE1.4 16QAM Top Channel 895 to 915MHz

LTE1.4 64QAM Top Channel 895 to 915MHz

LTE1.4_256QAM_Top Channel_895 to 915MHz

Band 5 LTE3 40W Carrier Lower Band Edge Plots for Antenna Port 2:

LTE3 QPSK Bottom Channel 848 to 868MHz

LTE3 64QAM Bottom Channel 848 to 868MHz

LTE3_256QAM_Bottom Channel_848 to 868MHz

LTE3_QPSK_Bottom Channel_868 to 870MHz

LTE3 16QAM Bottom Channel 868 to 870MHz

LTE3 64QAM Bottom Channel 868 to 870MHz

LTE3_256QAM_Bottom Channel_868 to 870MHz

Band 5 LTE3 40W Carrier Upper Band Edge Plots for Antenna Port 2:

LTE3_QPSK_Top Channel_893 to 895MHz

LTE3 16QAM Top Channel 893 to 895MHz

LTE3_64QAM_Top Channel_893 to 895MHz

LTE3_256QAM_Top Channel_893 to 895MHz

LTE3_QPSK_Top Channel_895 to 915MHz

LTE3_16QAM_Top Channel_895 to 915MHz

LTE3 64QAM Top Channel 895 to 915MHz

LTE3_256QAM_Top Channel_895 to 915MHz

Band 5 LTE5 40W Carrier Lower Band Edge Plots for Antenna Port 2:

LTE5 QPSK Bottom Channel 848 to 868MHz

Res BW 100 kHz VBW 300 kHz Sweep 6.4 ms (8001 pts)

LTE5_64QAM_Bottom Channel_848 to 868MHz

LTE5_256QAM_Bottom Channel_848 to 868MHz

LTE5_QPSK_Bottom Channel_868 to 870MHz

LTE5 16QAM Bottom Channel 868 to 870MHz

LTE5 64QAM Bottom Channel 868 to 870MHz

LTE5_256QAM_Bottom Channel_868 to 870MHz

Band 5 LTE5 40W Carrier Upper Band Edge Plots for Antenna Port 2:

LTE5_QPSK_Top Channel_893 to 895MHz

LTE5 16QAM Top Channel 893 to 895MHz

LTE5_64QAM_Top Channel_893 to 895MHz

LTE5_256QAM_Top Channel_893 to 895MHz

LTE5_QPSK_Top Channel_895 to 915MHz

LTE5_16QAM_Top Channel_895 to 915MHz

LTE5 64QAM Top Channel 895 to 915MHz

LTE5_256QAM_Top Channel_895 to 915MHz

Band 5 LTE10 40W Carrier Lower Band Edge Plots for Antenna Port 2:

LTE10 QPSK Bottom Channel 848 to 868MHz

LTE10 16QAM Bottom Channel 848 to 868MHz

LTE10 64QAM Bottom Channel 848 to 868MHz

LTE10_256QAM_Bottom Channel_848 to 868MHz

LTE10 QPSK Bottom Channel 868 to 870MHz

LTE10 16QAM Bottom Channel 868 to 870MHz

LTE10 64QAM Bottom Channel 868 to 870MHz

LTE10_256QAM_Bottom Channel_868 to 870MHz

Band 5 LTE10 40W Carrier Upper Band Edge Plots for Antenna Port 2:

LTE10_QPSK_Top Channel_893 to 895MHz

LTE10 16QAM Top Channel 893 to 895MHz

LTE10_64QAM_Top Channel_893 to 895MHz

LTE10_256QAM_Top Channel_893 to 895MHz

LTE10_QPSK_Top Channel_895 to 915MHz

LTE10_16QAM_Top Channel_895 to 915MHz

LTE10 64QAM Top Channel 895 to 915MHz

LTE10_256QAM_Top Channel_895 to 915MHz

Band 5 Multicarrier LTE1.4 13W + 13W + 13W Carriers Lower Band Edge Plots for Antenna Port 2:

LTE1.4_QPSK_Bot Channel_848 to 868MHz

LTE1.4 16QAM Bot Channel 848 to 868MHz

LTE1.4 64QAM Bot Channel 848 to 868MHz

LTE1.4_256QAM_Bot Channel_848 to 868MHz

LTE1.4_QPSK_Bot Channel_868 to 872MHz

LTE1.4 16QAM Bot Channel 868 to 872MHz

LTE1.4 64QAM Bot Channel 868 to 872MHz

LTE1.4_256QAM_Bot Channel_868 to 872MHz

Band 5 Multicarrier LTE1.4 13W + 13W + 13W Carriers Upper Band Edge Plots for Antenna Port 2:

LTE1.4_QPSK_Top Channel_893 to 895MHz

LTE1.4 16QAM Top Channel 893 to 895MHz

LTE1.4 64QAM Top Channel 893 to 895MHz

LTE1.4_256QAM_Top Channel_893 to 895MHz

LTE1.4_QPSK_Top Channel_848 to 915MHz

LTE1.4 16QAM Top Channel 848 to 915MHz

LTE1.4_64QAM_Top Channel_848 to 915MHz

LTE1.4_256QAM_Top Channel_848 to 915MHz

Band 5 LTE1.4 13W + 13W Carriers and Band 13 LTE10 13W Carrier Lower Band Edge Plots for Ant Port 2:

LTE1.4_QPSK_Bot Channel_848 to 894MHz

LTE1.4 16QAM Bot Channel 848 to 894MHz

LTE1.4 64QAM Bot Channel 848 to 894MHz

LTE1.4_256QAM_Bot Channel_848 to 894MHz

Multi-Band Multi-Carrier Scan_726 to 915MHz

Multi-Band Multi-Carrier Scan_726 to 915MHz

Multi-Band Multi-Carrier Scan 726 to 915MHz

Multi-Band Multi-Carrier Scan_726 to 915MHz

Band 5 LTE1.4 13W + 13W Carriers and Band 13 LTE10 13W Carrier Upper Band Edge Plots for Antenna Port 2:

LTE1.4_QPSK_Top Channel_891 to 895MHz

LTE1.4 16QAM Top Channel 891 to 895MHz

LTE1.4 64QAM Top Channel 891 to 895MHz

LTE1.4_256QAM_Top Channel_891 to 895MHz

LTE1.4_QPSK_Top Channel_895 to 915MHz

LTE1.4 16QAM Top Channel 895 to 915MHz

LTE1.4 64QAM Top Channel 895 to 915MHz

LTE1.4_256QAM_Top Channel_895 to 915MHz

zTransmitter Antenna Port Conducted Emissions

Transmitter conducted emission measurements were made at RRH antenna port 2. Measurements were performed over the 9kHz to 9GHz frequency range. Two test configurations are needed for conducted spurious emission measurements to prove compliance for the 3GPP Band 5 transmitters. The first test will be with the 3GPP Band 5 transmitters enabled at 40 watts per carrier (the 3GPP Band 13 transmitters will not be enabled). The second test will be with the 3GPP Band 5 and the 3GPP Band 13 transmitters enabled simultaneously at 40 watts/antenna port. The multicarrier test cases are based upon KDB 971168 D03v01 requirements using three carriers.

The RRH was operated (on Band 5 and Band 13) with all LTE modulation types (QPSK, 16QAM, 64QAM and 256QAM) for all available LTE bandwidths (Band 5: 1.4MHz, 3MHz, 5MHz and 10MHz; Band 13: 5MHz and 10MHz). The same LTE bandwidth was used for both frequency bands when available. If the same LTE bandwidth for both bands was not available then the smallest LTE bandwidth was used.

The test configuration	parameters are	provided below:
	p a a c c c c . c a. c	p. o

3GPP Band 5 Transmission Parameters			3GPP Band 13 Transmission Parameters			
Carrier	Channel	Carrier	Carrier Channel		Carrier	
Frequency	Bandwidth	Power	Frequency Bandwidth		Power	
881.5MHz (Mid Ch)	LTE1.4	40 Watts	Carrier Idle/Off	N/A	0 Watts	
881.5MHz (Mid Ch)	LTE3	40 Watts	Carrier Idle/Off	N/A	0 Watts	
881.5MHz (Mid Ch)	LTE5	40 Watts	Carrier Idle/Off	N/A	0 Watts	
881.5MHz (Mid Ch)	LTE10	40 Watts	Carrier Idle/Off	N/A	0 Watts	
869.7, 871.1 and 893.3MHz	LTE1.4	13+13+13	Carrier Idle/Off	rrier Idle/Off N/A		
(BC, BC+1, and TC)		Watts				
881.5MHz (Mid Ch)	LTE1.4	20 Watts	751MHz (Mid Ch)	LTE5	20 Watts	
881.5MHz (Mid Ch)	LTE3	20 Watts	751MHz (Mid Ch) LTE5		20 Watts	
881.5MHz (Mid Ch)	LTE5	20 Watts	751MHz (Mid Ch) LTE5		20 Watts	
881.5MHz (Mid Ch)	LTE10	20 Watts	751MHz (Mid Ch) LTE10		20 Watts	
892.9 and 893.3MHz	LTE1.4	13+13	751MHz (Mid Ch) LTE10		13 Watts	
(TC-1 and TC)		Watts				

The limit of -19dBm was used in the certification testing. The limit is adjusted to -19dBm [-13dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter. The required measurement parameters include a 100kHz bandwidth with power measured in average value (since transmitter power was measured in average value).

Measurements were performed with a spectrum analyzer using a peak detector with max hold over 50 sweeps (except for the 700MHz to 1100MHz frequency range). Measurements for the 700MHz to 1100MHz frequency range were performed with the spectrum analyzer in the RMS average mode over 100 traces.

The limit for the 9kHz to 150kHz frequency range was adjusted to -39dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 100kHz [i.e.: -39dBm = -19dBm - 10log(100kHz/1kHz)]. The required limit of -19dBm with a RBW of $\ge 100kHz$ was used for all other frequency ranges. The spectrum analyzer settings that were used for this test are summarized in the following table.

Frequency Range	RBW	VBW	Number of Data Points	Detector	Sweep Time	Max Hold over	Offset Note 1
9kHz to 150kHz	1kHz	3kHz	8001	Peak	Auto	50 Sweeps	39.9dB
150kHz to 20MHz	100kHz	300kHz	8001	Peak	Auto	50 Sweeps	40.0dB
20MHz to 700MHz	300kHz	910kHz	8001	Peak	Auto	50 Sweeps	40.2dB
700MHz to 1.1GHz	100kHz	300kHz	8001	Average	Auto	Note 2	40.2dB
1.1GHz to 9GHz	2MHz	6MHz	8001	Peak	Auto	50 Sweeps	22.5dB

Note 1: The total measurement RF path loss of the test setup (attenuators, filters and test cables) is accounted for by the spectrum analyzer reference level offset.

Note 2: Max Hold not used and instead measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces.

A high pass filter was used to reduce measurement instrumentation noise floor for the frequency ranges above 1100MHz. The total measurement RF path loss of the test setup (attenuators, high pass filter and test cables) as shown in the table is accounted for by the spectrum analyzer reference level offset. The display line on the plots reflects the required limit.

Conducted spurious emission plots/measurements are provided in the following pages.

Band 5 LTE1.4 Ch BW _ QPSK _ Middle Channel (881.5MHz) at 40 watts/carrier:

9kHz to 150kHz

150kHz to 20MHz

20MHz to 700MHz

700MHz to 1.1GHz

1.1GHz to 9GHz

