CSE251: Electronic Devices and Circuits

Lecture: 20 - 22 - BJT

Prepared By:

Yeasin Arafat Pritom (YAR)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: ext.yeasin.arafat@bracu.ac.bd

Transistors as Digital Switch

- Transistors are 3 terminal non-linear devices, can be used as switch
- 2 types –

Voltage Controlled,

Current Controlled

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET) are voltage controlled
- Control, $C = V_{GS}$. The IV characteristics $(I_{DS} \text{ vs } V_{DS})$ depends on V_{GS}
- Actual dependency is complex.
- Will start with a simple (but approximate) one **S-Model** (Switch Model)

Bipolar Junction Transistor

- Current-controlled transistor, 3 terminals Base, Emitter, Collector
- IV between C and E $(I_C \ vs \ V_{CE})$ is controlled by base current, I_B
- IV is quite like MOSFET, but there are some differences
- We can use a S-model here too, but controlled by I_B (instead of V_{GS})

BJT vs MOSFET - Differences

BJT

Current controlled, I_B controls (I_C vs V_{CE})

Base current, I_B , is the control. Hence $I_E \neq I_C$, rather $I_E = I_C + I_B$

MOSFET

Voltage controlled, V_{GS} controls (I_{DS} vs V_{DS})

Gate current, I_G , is always **0**. Hence $I_S = I_D = I_{DS}$.

BJT vs MOSFET - Differences

Current in **active** region changes linearly with control I_B . Hence, $I_C \propto I_B$

Current in **Saturation** region changes quadratically with control V_{GS} . Hence, $I_{DS} \propto V_{GS}^2$

BJT vs MOSFET - Differences

Current in **active** region changes linearly with control I_B . Hence, $I_C \propto I_B$

Current in **Saturation** region changes quadratically with control V_{GS} . Hence, $I_{DS} \propto V_{GS}^2$

BJT vs MOSFET - Similarities

- Saturation mode for small V_{CE} (< 0.2 V)
- Approximately Short circuit in **Saturation** mode $(I_B \text{ HIGH})$
- Open circuit in **Cutoff** mode ($I_B = 0$)
- Can use as a switch ⇒ S-Model!

- **Triode** mode for small $V_{DS}(< V_{OV})$
- Approximately Short circuit in **Triode** mode $(V_{GS} \text{ HIGH})$
- Open circuit in **Cutoff** mode ($V_{GS} < V_T = 0$)
- Can use as a switch ⇒ S-Model!

MOSFET S-Model

- The MOSFET (approximately) behaves like a switch
- $C = V_{GS}$. Here, $C = "0" \Rightarrow V_{GS} < V_T$, and $C = "1" \Rightarrow V_{GS} > V_T$

BJT S-Model

	Representation
Logic 0	$I_B = 0$
Logic 1	$I_B > I_{TH}$, $I_B = HIGH$

- The BJT (approximately) behaves like a switch
- $C = I_B$. Here, $C = "0" \Rightarrow I_B = 0$, and $C = "1" \Rightarrow I_B > I_{TH}$

Current-Controlled Logic Gates using BJT

- Just replace switches with BJTs!
- Major problem: Cannot cascade! (Why?)

Input Logic Variable:

Current

Voltage

• Output Logic Variable: 5 V

BJT Inverter (NOT Gate)

 $5\,\mathrm{V}$

BJT NAND Gate

BJT NOR Gate

From Current Controlled to Voltage Controlled

How to convert current I into voltage V? $\stackrel{I}{\sim} V$

$$V_i = I_B R_B + v_{BE}$$

$$I_B = \frac{V_i - v_{BE}}{R_B}$$

 v_{BE} depends on I_B .

How?

Logic Gates using BJT

- Just replace switches with BJTs! and add a Resistor to the Base terminal
- Major problem: Cannot cascade! (Why?) Can be cascaded.
 - Input Logic Variable: Current Voltage
 - Output Logic Variable:

BJT NAND Gate

BJT NOR Gate

 \circ out

Parameters of BJT

A BJT can be thought of as two "pn" junctions placed back-to-back.

Parameters of BJT

A BJT can be thought of as two "pn" junctions placed back-to-back.

Modes	BE Junction	v_{BE}	CB Junction	v_{CB}	$v_{\it CE}$
Cut-off	Reverse Bias	$v_{BE} < 0.7 \text{ V}$	Reverse Bias	$v_{CB} > -0.5 \text{ V}$	
Active	Forward Bias	$v_{BE}=0.7~\mathrm{V}$	Reverse Bias	$v_{CB} > -0.5 \text{ V}$	$v_{CE} > 0.2 \text{ V}$
Saturation	Forward Bias	$v_{BE}=0.7~\mathrm{V}$	Forward Bias	$v_{CB} = -0.5 \text{ V}$	$v_{CE} = 0.2 \text{ V}$
Reverse Active	Reverse Bias	$v_{BE} < 0.6 \text{ V}$	Forward Bias	$v_{CB} = -0.5 \text{ V}$	$v_{CE} < 0.2 \text{ V}$

$$v_{CE} = v_{CB} + v_{BE}$$

Parameters of BJT: Active Mode

Equivalent circuit of an npn-BJT in **Active Mode**

Current relationships between the three currents in an npn BJT.

$$v_{CE} = v_{CB} + v_{BE}$$

Parameters of BJT: Saturation Mode

Equivalent circuit of an npn-BJT in **Saturation Mode**

Current relationships between the three currents in an npn BJT.

$$I_B + I_C = I_E$$

$$I_{C(sat)} < \beta I_B$$

$$I_C \neq \alpha I_E$$

β: Common Emitter Current Gain

α: Common Base Current Gain

Only valid for **Saturation** mode

Figure 6.20 A simplified equivalent-circuit model of the saturated transistor.

$$v_{CE} = v_{CB} + v_{BE}$$

Parameters of BJT

A BJT can be thought of as two "pn" junctions placed back-to-back.

Modes	Conditions!
Cut-off	$v_{BE} < 0.7 V$ and $v_{CB} > -0.5 V$
Active	$oldsymbol{v_{BE}} = oldsymbol{0}.oldsymbol{7}oldsymbol{V}$
Saturation	$oldsymbol{v_{BE}} = oldsymbol{0}.oldsymbol{7}oldsymbol{V}$
Reverse Active	$v_{BC} = 0.5 V$ and $v_{EC} > 0.2 V$

$$v_{CE} = v_{CB} + v_{BE}$$

Solving Circuits with MOSFET BJT

- Use Method of Assumed State!
- Three steps:
 - Assume: One of the modes (Cutoff, Triode Saturation, Saturation Active)
 - Solve: Use corresponding equation and KCL + KVL with currents
 - **Verify**: Check if the conditions of V_{GS} v_{BE} and V_{DS} v_{CE} are satisfied. If not, repeat.
- Might need to solve quadratic equation $(ax^2 + bx + c = 0)$.
- If we get two roots, choose the one that's <u>favorable</u> to your assumption

MOSFET Problem 1

Analyze the circuit to find i_D and v_{O2} using the Method of Assumed State. Here, the input of the MOSFET is $v_{O1} = 1 V$.

You must validate your assumptions.

Assume: One of the modes (Cutoff, Triode, Saturation) Let the MOSFET be in **SATURATION**

Solve: corresponding equations:

Equation:
$$i_D = \frac{2-v_{o2}}{1} = \frac{k}{2}(v_{o1} - V_T)^2$$

Solving Equations →

$$v_{o2} = 2 - \frac{4}{2}(1 - 0.2)^2 \text{ V}$$

 $v_{o2} = (2 - 1.28) \text{ V} = 0.72 \text{ V}$

Verify: For saturation condition $\rightarrow v_{DS} > v_{GS} - V_T$ Here, $v_{GS} - V_T = (1 - 0.2) \text{ V} = 0.8 \text{ V}$ $v_{DS} = v_{O2} = 0.72 \text{ V} > 0.8 \text{ V}$

Assumption is Wrong!

$$v_{o1} = 1 \text{ V}$$

MOSFET Problem 1

Analyze the circuit to find i_D and v_{02} using the Method of Assumed State. Here, the input of the MOSFET is $v_{01} = 1 V$.

You must validate your assumptions.

Assume:

Let the MOSFET be in **TRIODE**

Solve:

Equation:
$$i_D = \frac{2 - v_{o2}}{1} = k \left(v_{o1} - V_T - \frac{v_{o2}}{2} \right) v_{o2}$$

Solving Equations →

$$2 - v_{o2} = 4\left(0.8 - \frac{v_{o2}}{2}\right)v_{o2}$$
$$2v_{o2}^2 - 4.2v_{o2} + 2 = 0$$

$$v_{o2} = 1.37 \text{ V} \text{ or } 0.73 \text{ V}$$

Verify: For triode condition $\rightarrow v_{DS} < v_{GS} - V_T$ Here, $v_{GS} - V_T = (1 - 0.2) \text{ V} = 0.8 \text{ V}$ $v_{DS} = v_{O2} = 0.73 \text{ V} < 0.8 \text{ V}$

Assumption is Correct!

Analyze the circuit to find I_C and v_{out} using the Method of Assumed State. Here, the input of the BJT is $V_i = 1 V$. You must validate your assumptions.

Assume:

Let the BJT be in **ACTIVE** mode

So,
$$v_{BE} = 0.7 V$$

 $v_{CE} > 0.3 V$

Solve:

Equations:
$$I_B = \frac{V_i - v_{BE}}{R_B} = \frac{1 - 0.7}{100} \text{ mA} = 3 \text{ } \mu\text{A}$$

$$I_C = \beta I_B = 100 \times 3 \times 10^{-3} \text{ mA} = 0.3 \text{ mA}$$

$$v_{out} = 10 - I_C R_C = (10 - 0.3 \times 3) \text{ V} = 9.1 \text{ V}$$

Verify: For **ACTIVE** condition $\rightarrow v_{CE} > 0.3 \text{ V}$

Here,
$$v_{CE} = v_{out} = 9.1 \text{ V} > 0.3 \text{ V}$$

Assumption is Correct!

Analyze the circuit to find I_C and v_{out} using the Method of Assumed State. Here, the input of the BJT is $V_i = 5 V$. You must validate your assumptions.

Assume:

Let the BJT be in **ACTIVE** mode

So, 1

$$v_{BE}=0.7 V$$

$$v_{CE} > 0.2 \text{ V}$$

Solve:

Equations:

$$I_B = \frac{V_i - v_{BE}}{R_B} = \frac{5 - 0.7}{100} \text{ mA} = 43 \text{ }\mu\text{A}$$

$$I_C = \beta I_B = 100 \times 43 \times 10^{-3} \text{ mA} = 4.3 \text{ mA}$$

$$v_{out} = 10 - I_C R_C = (10 - 4.3 \times 3) \text{ V} = -2.9 \text{ V}$$

Verify: For **ACTIVE** condition $\rightarrow v_{CE} > 0.2 \text{ V}$

Here,
$$v_{CE} = v_{out} = -2.9 \text{ V} > 0.2 \text{ V}$$

Assumption is Wrong!

Analyze the circuit to find I_C and v_{out} using the Method of Assumed State. Here, the input of the BJT is $V_i = 5 V$. You must validate your assumptions.

Assume:

Let the BJT be in **Saturation** mode

$$v_{BE} = 0.7 V$$
 and $\frac{I_C}{I_R} < \beta$

$$\frac{I_C}{I_B} < \beta$$

 $v_{CE} = 0.2 \text{ V}$

Solve:

$$I_B = \frac{V_i - v_{BE}}{R_B} = \frac{5 - 0.7}{100} \text{ mA} = 43 \text{ }\mu\text{A}$$

$$I_C = \beta I_B \frac{10 - v_{CE}}{R_C} = \frac{10 - 0.2}{3} \text{ mA} = 3.27 \text{ mA}$$

$$v_{out} = v_{CE} = 0.2 \text{ V}$$

Verify: For **Saturation** condition $\rightarrow \frac{I_C}{I_R} < \beta$

Here,
$$\beta = 100$$

$$\frac{I_C}{I_B} = \frac{3.27}{0.043} = 76 < 100$$

Assumption is Correct!

Analyze the circuit to find I_B , I_C , I_E and v_{out} using the Method of Assumed State. You must validate your assumptions.

Assume:

Let the BJT be in **Active** mode

So,

$$v_{BE}=0.7\ V$$

$$v_{CE} > 0.2 \text{ V}$$

Solve:

Equations:

$$I_E = \frac{v_E - (-10)}{10} = \frac{-0.7 + 10}{10} \text{ mA} = 0.93 \text{ mA}$$

$$I_B = \frac{1}{\beta}I_C = \frac{1}{\beta} \cdot \alpha I_E = \frac{1}{\beta} \cdot \frac{\beta}{\beta+1}I_E = \frac{1}{\beta+1}I_E = 9.21 \,\mu\text{A}$$

$$v_{out} = v_C = 10 - 3I_C = 10 - 3\beta I_B$$

= $(10 - 3 \cdot 100 \cdot 9.207 \times 10^{-3})V$
= 7.237 V

Analyze the circuit to find I_B , I_C , I_E and v_{out} using the Method of Assumed State. You must validate your assumptions.

Assume:

Let the BJT be in **Active** mode

So,

$$v_{BE} = 0.7 V$$

$$v_{CE} > 0.2 \text{ V}$$

Solve:

Equations:

$$I_E = 0.93 \text{ mA}$$

$$I_B = 9.21 \, \mu A$$

$$v_{out} = v_C = 7.237 \text{ V}$$
 $v_B = 0 \text{ V}$

$$v_R = 0 \text{ V}$$

$$v_E = -0.7 \text{ V}$$

Verify: For **ACTIVE** condition $\rightarrow v_{CE} > 0.2 \text{ V}$

Here,
$$v_{CE} = (7.237 + 0.7) \, \mathbf{V} = \mathbf{7.937} \, \mathbf{V} > 0.2 \, \mathbf{V}$$

Assumption is Correct!