

## Python Avançado

Capítulo 1. Machine Learning

Aula 1.1. O cenário do aprendizado de máquina.

Prof. Rennan Alves





#### Nesta Aula

- ☐ O que é Aprendizado de Máquina?
- Por que utilizar o Aprendizado de Máquina?
- ☐ Tipos de Sistemas do Aprendizado de Máquina.
- Principais desafios do Aprendizado de Máquina.



#### **ARTIFICIAL INTELLIGENCE**

Programs with the ability to learn and reason like humans

#### **MACHINE LEARNING**

Algorithms with the ability to learn without being explicitly programmed

#### **DEEP LEARNING**

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

### Introdução



- O Cenário do Aprendizado de Máquina:
  - Reconhecimento Ótico de Caracteres (ORC).
  - Filtro de Spam.
- Por onde começa e termina o Aprendizado de Máquina?



Aprendizado de Máquina é a ciência (e a arte) da programação de computadores para que eles possam aprender com os dados.







Aprendizado de maquina é o campo de estudo que dá aos computadores a habilidade de aprender sem ser explicitamente programado.

- Arthur Samuel, 1959





- O Cenário do Aprendizado de Máquina:
  - Reconhecimento Ótico de Caracteres (ORC).
  - Filtro de Spam.
- Por onde começa e termina o Aprendizado de Máquina?





Abordagem Tradicional, Gerón (2019)





Abordagem de Aprendizado do ML, Gerón (2019)





Adaptando-se automaticamente à mundança, Gerón (2019)





O Aprendizado de Máquina pode ajudar no ensino dos humanos, Gerón (2019)



# Resumindo, o Aprendizado de Máquina é ótimo para:

- Problemas para os quais as soluções existentes exigem muita configuração manual ou longas listas de regras: um algoritmo de Aprendizado de Máquina geralmente simplifica e melhora o código.
- Problemas complexos para os quais não existe uma boa solução quando utilizamos uma abordagem tradicional: as melhores técnicas de Aprendizado de Máquina podem encontrar uma solução.
- Ambientes flutuantes: um sistema de Aprendizado de Máquina pode se adaptar a novos dados.
- Compreensão de problemas complexos e grandes quantidades de dados.



XP:

- O que é Aprendizado de Máquina?
- Por que utilizar o Aprendizado de Máquina?
- Tipos de Sistemas do Aprendizado de Máquina.
- Principais desafios do Aprendizado de Máquina.

#### Próxima aula



☐ Tipos de Sistemas do Aprendizado de Máquina.





## Python Avançado

Capítulo 1. Machine Learning

Aula 1.2. Tipos de Sistemas do Aprendizado de Máquina.

Prof. Rennan Alves



### XP:

#### Nesta Aula

- O que é Aprendizado Supervisionado.
- ☐ O que é Não Supervisionado.
- O que é Aprendizado Semi-Supervisionado.
- ☐ O que é Aprendizado por Reforço.



- Serem ou não treinados com supervisão humana
   (supervisionado, não supervisionado, semi-supervisionado e aprendizado por reforço);
- Se podem ou n\u00e3o aprender rapidamente, de forma incremental (aprendizado on-line versus aprendizado por lotes).







• Se funcionam simplesmente comparando novos pontos de dados com pontos de dados conhecidos, ou se detectam padrões em dados de treinamento e criam um modelo preditivo, como os cientistas (aprendizado baseado em instâncias versus aprendizado baseado em modelo). Por onde começa e termina o Aprendizado de Máquina?









Existem quatro categorias principais de aprendizado: supervisionado, não supervisionado, semi-supervisionado e por reforço.



#### Aprendizado Supervisionado

Um conjunto de treinamento rotulado para aprendizado supervisionado (por exemplo, classificação de spam),



Fonte: Gerón (2019)



#### Aprendizado Supervisionado

Prever um alvo de valor numérico é outra tarefa típica, como o preço de um carro a partir de um conjunto de características (quilometragem, idade, marca etc.) denominadas previsores. Esse tipo de tarefa é chamada de **regressão**. Para treinar o sistema, você precisa fornecer muitos exemplos de carros, incluindo seus previsores e seus labels (ou seja, seus preços).



Fonte: Gerón (2019)





Curiosidade: O estranho nome REGRESSÃO é um termo de estatística introduzido por Francis Galton, enquanto estudava o fato de que os filhos de pessoas altas tendem a ser mais baixos do que os pais. Como as crianças eram mais baixas, ele chamou essa alteração de regressão à média. Este nome foi aplicado aos métodos utilizados por ele para analisar as correlações entre variáveis.



# Alguns dos algoritmos mais importantes do aprendizado supervisionado

- k-Nearest Neighbours
- Regressão Linear
- Regressão Logística
- Máquinas de Vetores de Suporte (SVM)
- Árvores de Decisão e Florestas Aleatórias
- Redes Neurais\*



#### Aprendizado Não Supervisionado



Conjunto de treinamento não rotulado para aprendizado não supervisionado, Gerón (2019)



# Alguns dos algoritmos mais importantes do aprendizado supervisionado

- Clustering
- Visualização e redução da dimensionalidade
- Aprendizado da regra da associação
- Redes Neurais Artificiais





Gerón (2019)



### Detecção de anomalias



Gerón (2019)



#### Aprendizado Semi-supervisionado



Gerón (2019)



### Aprendizado por Reforço



#### Conclusão



- O que é Aprendizado Supervisionado.
- O que é Não Supervisionado.
- O que é Aprendizado Semi-Supervisionado.
- O que é Aprendizado por Reforço.

#### Próxima aula



☐ Principais Desafios do Aprendizado de Máquina.



## Python Avançado

Capítulo 1. Machine Learning

Aula 1.3. Principais Desafios do Aprendizado de Máquina.

Prof. Rennan Alves



#### Nesta Aula

XP:

- ☐ Principais desafios sobre Aprendizado de Máquina.
- Quantidade Insuficiente de Dados de Treinamento.
- Dados de Baixa Qualidade.
- Testando e Validando.



 Em suma, uma vez que a sua tarefa principal é selecionar um algoritmo de aprendizado e treiná-lo em alguns dados, as duas coisas que podem dar errado são: "algoritmos ruins" e "dados ruins". Comecemos com exemplos de dados ruins.







Para que uma criança aprenda o que é uma maçã, é
preciso que você aponte para uma maçã e diga "maçã"
(possivelmente repetindo algumas vezes esse
procedimento).









#### Dados de Treinamento Não Representativos

- Ao utilizar um conjunto de treinamento não representativo, treinamos um modelo que dificilmente fará previsões precisas.
- É crucial utilizar um conjunto de treinamento
   representativo nos casos em que desejamos generalizar.



### Dados de Baixa Qualidade

- Se algumas instâncias são claramente outliers, isso pode ajudar a descartá-las ou tentar manualmente a correção dos erros.
- Se faltam algumas características para algumas instâncias, você deve decidir se deseja ignorar completamente esse atributo, se deseja ignorar essas instâncias, preencher os valores ausentes, ou treinar um modelo com a característica e um modelo sem ela, e assim por diante.





- Entra lixo, sai lixo.
- - Seleção das características.
  - Extração das características.
  - Criação de novas características ao coletar novos dados.



### Testando e Validando

- A única maneira de saber o quão bem um modelo generalizará em novos casos é de fato testá-lo em novos casos.
- A taxa de erro em novos casos é chamada de erro de generalização (ou erro fora da amostra) e, ao avaliar seu modelo no conjunto de teste, você obtém uma estimativa desse erro.



É comum utilizar 80% dos dados para treinamento e reservar 20% para o teste.





- Principais desafios sobre Aprendizado de Máquina.
- Quantidade Insuficiente de Dados de Treinamento.
- Dados de Baixa Qualidade.
- 🛘 Testando e Validando.

### Próxima Aula

XP:

Abordaremos conceitos sobre regressão linear.





# Python Avançado

Capítulo 1. Machine Learning

Aula 1.4. Regressão Linear

Prof. Rennan Alves



### Nesta aula

**XP**e

- ☐ O que é Regressão ?
- Correlação.
- Interpretando a Correlação.
- ☐ Definição de Regressão.
- Regressão Linear.

# O que é regressão?

- Observação de Características.
- Variáveis Dependentes e Independente.



Peso x Altura - Adaptado - https://statisticsbyjim.com/basics/correlations/









- A correlação entre duas variáveis indica a que o valor da variável dependente y altera de acordo com a variável independente x, vamos seguir com um exemplo.
- O peso (variável dependente y) de uma pessoa, varia de acordo com a sua altura (variável independente x).





- A correlação entre duas variáveis indica a que o valor da variável dependente y altera de acordo com a variável independente x, vamos seguir com um exemplo.
- O peso (variável dependente y) de uma pessoa, varia de acordo com a sua altura (variável independente x).





- Neste caso, falaremos do coeficiente de correlação de Pearson. O coeficiente de correlação indica a força e direção do relacionamento linear entre duas variáveis contínuas.
  - 0 valor de -1.
  - O valor de 0 (zero).
  - O valor de 1.



## Interpretando a Correlação









# Interpretando a Correlação





## Regressão Linear

#### • Modo Representativo:

- y=b0 + b1.X
- y: é a variável dependente, ou seja, o valor previsto.
- X: é a variável independente, ou seja, a variável preditora.
- **b0**: é o coeficiente que intercepta ou que corta o eixo y.
- **b1**: é o coeficiente que define a inclinação da reta.



## **Modelo Representativo**

 O objetivo é encontrar as melhores estimativas para os coeficientes, que minimizam os erros na previsão de y a partir de X.

Podemos estimar *b1* como:

```
b1 = soma(( Xi - média(x) ) * ( yi - média(y) )) / soma((xi - média(x)) <sup>2</sup>)
```

# XP:

### Erro Padrão



Podemos acrescentar o erro padrão à equação e, de uma forma geral, ficaria da seguinte forma:

$$y = b0 + b1.X1 + e$$
  
Onde:

•e: é o erro padrão.





# Coeficiente de Determinação R<sup>2</sup>

 O valor do R² ou R-squared é uma medida estatística que nos mostra o quão próximos os dados estão ajustados à linha de regressão. É um valor de 0 à 1 que, quanto mais próximo de 1, melhor o ajuste e menor o erro associado.

#### R<sup>2</sup> = Variação explicada / Variação total

- 0% indica que o modelo n\u00e3o explica nada da variabilidade dos dados de resposta ao redor de sua m\u00e9dia.
- 100% indica que o modelo explica toda a variabilidade dos dados de resposta ao redor de sua média.

### Conclusão

XP<sub>e</sub>

- Correlação.
- Interpretando a Correlação.
- Definição de Regressão.
- Regressão Linear.

### Próxima aula



Abordaremos aula prática sobre regressão linear.

