#### CS 3100, Models of Computation, Spring 20, Lec15

Ganesh Gopalakrishnan School of Computing University of Utah Salt Lake City, UT 84112

URL: bit.ly/3100s20Syllabus



#### Recap

- DFA → Purely right-linear
- Take purely right-linear productions and reverse each rule to obtain a purely left-linear production system
  - By doing so, we would have reversed the language of a DFA
  - This result (after reversal) is also regular
  - Thus we can argue that purely left-linear productions also denote regular languages
- Thus, purely right-linear and purely left-linear productions denote regular languages
- With mixed linearity, we don't have this guarantee
  - S -> ( A | "
  - A -> S ) "

## Recap

- Consistency:
  - Are we producing ONLY legal strings?
  - S -> a S b S | " as a single rule is consistent (it is not complete)
  - Proof by induction:
    - Assume that the RHS "S" are consistent; showthat the LHS "S" are consistent
- Completeness:
  - Are we producing ALL legal strings?
  - S -> a S b S | b S a S | " makes it complete for "equal a's and b's"
    - Assume that all strings of length <= N and in the language of interest are derivable.</li>
       Show that the next eligible length of stings are derivable
- Proof by visualizing the strings
  - "hill/valley" plots

# Which are CFL and which aren't? (intuitively)

- 1.  $L_{P0} = \{w : w \in \Sigma^*\}$
- 2.  $L_{P1} = \{ww^R : w \in \Sigma^*\}$
- 3.  $L_{P2} = \{waw^R : a \in (\{\varepsilon\} \cup \Sigma), w \in \Sigma^*\}$
- 4.  $L_{eq01} = \{0^n 1^n : n \ge 0\}$
- 5.  $L_{ww} = \{ww : w \in \Sigma^*\}$
- 6.  $L_{w\#w} = \{w\#w : w \in \Sigma^*\}$ , where # is a separator.
- 7.  $L_{eq010} = \{0^n 1^n 0^n : n \ge 0\}$
- 8.  $L_{eq012} = \{0^n 1^n 2^n : n \ge 0\}$

# How to prove that a language is NOT a CFL?

- We have a Pumping Lemma for CFLs!
- Used to show that a given language is not context-free
- Usage similar to the regular-language pumping lemma
- The "pump" happens for a different reason
  - Long strings have tall parse trees
  - In any tall parse tree, some nonterminal repeats along a tree path
  - This gives us the opportunity to generate LONGER or SHORTER strings

### Consider this CFG... let's show the pump.

```
S -> ( S ) | T | ''
T -> [ T ] | T T | ''
```

## Summary of Example

```
OR, this
Given that this
              We infer that this
derivation exists:
                 derivation exists:
                                           derivation exists:
S \Rightarrow (S)
                  S \Rightarrow (S)
                                           S \Rightarrow (S)
 => (( T ))
                  => (( T ))
                                             => (( T ))
 => (( [ T ] ))
               => (( [ T ] ))
                                            => (( ))
 => (( [[[ T ]]] ))
                    => ...
                    => (( [[[[[[ T ]]]]]])))
                    => (( [[[[[[ ]]]]]]])))
```

```
S -> ( S ) | T | ''
T -> [ T ] | T T | ''
```

## CFL PL in Pictures



Height IVI + 1 max. branching factor =

# The CFL PL finally! (pictures)

**Theorem 11.9:** Given any CFG  $G = (N, \Sigma, P, S)$ , there exists a number p such that given a string w in L(G) such that  $|w| \ge p$ , we can split w into w = uvxyz such that |vy| > 0,  $|vxy| \le p$ , and for every  $i \ge 0$ ,  $uv^i xy^i z \in L(G)$ .

## The CFL PL finally! (words)

- Suppose  $L_{ww}$  were a CFL.
- Then the CFL Pumping Lemma would apply.
- Let p be the pumping length associated with a CFG of this language.
- Consider the string  $0^p 1^p 0^p 1^p$  which is in  $L_{ww}$ .
- The segments v and y of the Pumping Lemma are contained within the first  $0^p 1^p$  block, in the middle  $1^p 0^p$  block or in the last  $0^p 1^p$  block, and in each of these cases, it could also have fallen entirely within a  $0^p$  block or a  $1^p$  block.
- In each case, by pumping up or down, we will then obtain a string that is not within  $L_{ww}$ .

# Context-free Grammars (CFG)

A context-free grammar is a four-tuple  $(N, \Sigma, S, P)$ , where

- N is a set of **nonterminals**. In  $L_{Dyck}$ , S is the only nonterminal.
- $\Sigma$  is a set of **terminals**. In  $L_{Dyck}$ , the terminals are ( and ). The name "terminals" suggests places when the recursion of the context-free production rules terminates.  $\varepsilon$  itself can be viewed as a terminal, although strictly speaking, it is not. When we define P below, we will allow the right-hand sides of production rules to contain  $\{(N \cup \Sigma)^*\}$ . From that point of view,  $\varepsilon$  (ASCII '') is an empty string of terminals.
- S is the start symbol which is one of the nonterminals. In our example, the start symbol is S.
- *P* is a set of **production rules** which are of the form:
  - N → { $(N \cup \Sigma)^*$ , and read "N derives a string of other N and  $\Sigma$  items." Such strings are called **sentential forms**. A terminal-only string is called a **sentence**.

## A complete exercise

Show that

{ w w : w in Sigma\* } is not a CFL but its complement is a CFL

## An exercise on consistency and completeness

#### Consider the CFG

```
S -> ( W S | "
W -> ( W W | )
```

What language does S generate? Prove via Consis. Compl.

- Consistency: State the consistency goals of S and W
  - Prove the consistency of S and W
- Completenes: State the completeness goals of S and W
  - Prove the completeness goals of S and W

# The Makeup Midterm question

#1 > #0

Draw hill-valley plots

Dissect the plot

Express as a CFG!