Зміст

8	Магазинні автомати			1
	8.1	Магазинні автомати		
		8.1.1	Мова магазинного автомату	2
		8.1.2	Магазинний автомат за KC-граматикою	3
	8.2 Контрольні запитання		ольні запитання	4

8 Магазинні автомати

8.1 Магазинні автомати

Магазинний автомат M — це сімка $M = \langle Q, \Sigma, \Gamma, q_0, j_0, \sigma, F \rangle$, де:

- $Q = \{q_0, q_1, \dots, q_{m-1}\}$ множина станів магазинного автомату;
- $\Sigma = \{a_1, a_2, \dots, a_n\}$ основний алфавіт;
- $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_k\}$ допоміжний алфавіт (алфавіт магазина);
- $q_0 \in Q$ початковий стан магазинного автомату;
- $j_0 \in \Gamma^{\star}$ початковий вміст магазину;
- $\sigma: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$.
- $F \subseteq Q$ множина заключних станів автомата M.

Поточний стан магазинного автомата M описується конфігурацією. Конфігурація магазинного автомата M — це трійка (q,ω,j) , де $q\in Q$, $\omega\in \Sigma^{\star},\ j\in \Gamma^{\star}$. Серед конфігурацій магазинного автомата M виділимо дві:

- початкова конфігурація (q_0, ω, j_0) , де $q_0 \in Q$, ω вхідне слово $(\omega \in \Sigma^*)$, $j_0 \in \Gamma^*$;
- заключна конфігурація $(q_f, \varepsilon, \varepsilon)$, $q_f \in F$. В загальній теорії магазинних автоматів іноді як заключну конфігурацію розглядають (q_f, ε, j_f) , де (q_f, j_f) фіксована пара. Можна довести, що визначення заключної конфігурації виду $(q_f, \varepsilon, \varepsilon)$ не зменшує потужності класу магазинних автоматів.

 $Taкт \ pofomu \ ($ позначається \models) магазинного автомата M — це перехід від однієї конфігурації до іншої, а точніше:

$$(q_1, a\omega, \gamma_1 j) \models (q_2, \omega, \gamma_2 j)$$
 if $(q_2, \gamma_2) \in \sigma(q_1, a, \gamma_1)$

Робота магазинного автомата M (позначається \models^*) — це послідовність тактів роботи, а точніше: $(q_1, \omega_1, j_1) \models^* (q_2, \omega_2, j_2)$ тоді і тільки тоді, коли

$$(q_1, \omega_1, j_1) \models (q_1^1, \omega_1^1, j_1^1) \models (q_1^2, \omega_1^2, j_1^2) \models \dots \models (q_1^n, \omega_1^n, j_1^n) \models (q_2, \omega_2, j_2).$$

Операції \models та \models * можна трактувати як бінарні відношення на відповідних кортежах. Тоді робота магазинного автомата M — це рефлексивнотранзитивне замикання бінарного відношення \models .

8.1.1 Мова магазинного автомату

Мова, яку розпізнає магазинний автомат M — позначається L(M) — це множина слів $\omega \in \Sigma^*$, які задовольняють умові:

$$L(M) = \{ \omega | \exists q_f \in F : (q_0, \omega, j_0) \models^* (q_f, \varepsilon, \varepsilon) \}.$$

Зафіксуємо наступні результати теорії магазинних автоматів:

- Не існує алгоритму перетворення недетермінованого магазинного автомата у еквівалентний йому детермінований магазинний автомат.
- 2. Існує алгоритм, який вирішує проблему порожньої множини L(M) для конкретного магазинного автомата.
- 3. Існує алгоритм, який за час, пропорційний $O(n^3)$ перевіряє, чи належить $\omega \in \Sigma^*$ мові, яку розпізнає магазинний автомат M.
- 4. Клас мов, які розпізнаються магазинними автоматами, співпадає з класом мов, що породжуються КС-граматиками.

На основі сформульованих вище результатів для лівосторонньої стратегії виводу $\omega \in \Sigma^*$ в G запропонуємо наступне твердження: для довільної КС-граматики G можна побудувати магазинний автомат M такий, що L(G) = L(M). При цьому автомат буде моделювати лівосторонню стратегію виводу ω в G.

8.1.2 Магазинний автомат за КС-граматикою

Нехай $G = \langle N, \Sigma, P, S \rangle$ — КС-граматика. Побудуємо відповідний магазинний автомат $M = \langle Q, \Sigma, \Gamma, q_0, j_0, \sigma, F \rangle$:

- $Q = \{q_0\}$ множину станів автомата складає один стан q_0 ;
- $\Gamma = N \cup \Sigma$ допоміжний алфавіт;
- $j_0 = S$ початковий вміст магазина;
- функцію σ визначимо так:
 - якщо $A \mapsto \omega_1 \mid \omega_2 \mid \ldots \mid \omega_p$ належить P, то

$$\sigma(q_0, \varepsilon, A) = \{(q_0, \omega_1), (q_0, \omega_2), \dots, (q_0, \omega_n)\}.$$

— також поповнимо множину значень функції σ наступними значеннями:

$$\sigma(q_0, a_i, a_i) = \{(q_0, \varepsilon)\}, \quad a_i \in \Sigma.$$

Для слова $\omega \in \Sigma^*$, $|\omega| = n$ покажемо, якщо ми за m кроків безпосереднього виводу $S \Rightarrow^m \omega$, то відповідний автомат за (m+n) кроків допустить ω . Зробимо перший крок безпосереднього виведення $S \Rightarrow x_1x_2 \dots x_k$ тоді магазинний автомат з початкової конфігурації (q_0, ω, S) перейде в наступну конфігурацію $(q_0, \omega, x_1x_2 \dots x_k)$. Далі розглянемо наступні ситуації:

- коли x_1 термінал a_1 (тобто $\omega = a_1\omega_1$), тоді МП-автомат виконає наступний такт: $(q_0, a_1\omega_1, a_1x_2 \dots x_k) \models (q_0, \omega_1, x_2 \dots x_k)$;
- коли x_1 нетермінал, тоді в схемі P граматики G виберемо правило виду $x_1 \mapsto y_1 y_2 \dots y_l$, зробимо наступний крок безпосереднього виведення: $S \Rightarrow y_1 \dots y_l x_2 \dots x_k$. При таких умовах автомат перейде в наступну конфігурацію:

$$(q_0, \omega, x_1 x_2 \dots x_k) \models (q_0, \omega, y_1 y_2 \dots y_l x_2 \dots x_k).$$

Очевидно, якщо слово ω виводиться за m кроків, то МП-автомат зробить $m + |\omega|$ кроків та розпізнає ω . Таким чином, L(G) = L(M).

8.2 Контрольні запитання

- 1. Що таке магазинний автомат?
- 2. Що таке конфігурація магазинного автомату?
- 3. Які конфігурації магазинного автомату називаються початковою і заключною?
- 4. Що таке такт роботи і робота магазинного автомату?
- 5. Яку мову розпізнає магазинний автомат?
- 6. Що таке проблема порожньої множини L(M)?
- 7. Як за КС-граматикою G побудувати магазинний автомат M такий, що L(G) = L(M)?
- 8. Яку стратегію виведення ω в G реалізує побудований у попередньому питанні автомат, і яка обчислювальна складність алгоритму розпізнавання слова ω ?