Computer Architecture

Tutorial 1 – Boolean Algebra - Answers

1) Write the Truth Table for the following Boolean expression: $R = A \cdot B + C'$

A	В	С	C'	A • B	$R = A \bullet B + C'$
0	0	0	1	0	1
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

2) Simply the following Boolean Expressions to its simplest form Help

a)
$$R = A + A' \cdot B$$
 $R = (A + A') \cdot (A + B)$

Distributive Rule

Provider. Completion Rule

Simplification Rule

b)
$$R = A \cdot (A'AB) dA$$
 We Canal powcodest ibutive Rule $= 0 + A \cdot B$ Negation Rule $= A \cdot B$ Simplification Rule

c)
$$R = (A + C) \cdot (A \cdot D + A \cdot D') + A \cdot C + C$$

 $R = (A + C) \cdot (A \cdot (D + D')) + A \cdot C + C$
 $= (A + C) \cdot A + A \cdot C + C$
 $= A \cdot A + C \cdot A + A \cdot C + C$
 $= A \cdot A + C \cdot C + C$
 $= A \cdot A + C \cdot C + C$
1. $(A + C) + C = A \cdot (1 + C) + C - C$
 $A + C + C = A + C$
Distributive Rule

Idempotent Rule

Distributive Rule

Simplification Rule