Faculty of Science

Raster Analysis

Thomas Balstrøm

Department of Geosciences and Natural Resource Management

tb@ign.ku.dk

Today's programme:

9.00-9.45 AM: Lecture on Raster Analysis, part 1 9.55-10.20 AM: Lecture on Raster Analysis, part 2 10.25-11.00 AM: Lecture on Cost Distance analysis

11.00-12.00 AM: Exercise

12.00 AM - 1.00 PM: Lunch break

1.00-2.00 PM: Exercise continued

2.00-2.35 PM: Lecture on datasets involved in the exercise

2.35-3.45 PM: Exercise continued

3.45-4.00 PM: Wrap up

Agenda

- Introduction to the raster based GIS-datamodel
- When to use it?
- How to use it?
- Map Algebra and cartographic modelling
- Analysis examples

Literature

1990 2013 2002

Raster data – qualitative vs. quantitative data sets

Qualitative (discontinuous) data set: integers to represent a class relationship – like land use

Quantitative (continuous) data set: values according to a linear, calibrated scale – like terrain elevations relative to a vertical datum

10 = agriculture

20 = forest

30 = urban

Raster - definitions

- A cell is referenced by a row/column-position
- All cells in a raster have the same geometric shape and size (spatial resolution)
- If the number of rows and columns, the size of one cell and its orientation are known, the world coordinates to all other cells can be derived
- The topology is implicit the neighbours are easily identified

Vector vs. raster?

Raster point features

Polyline features

Raster line features

Polygon features

Raster polygon features

- Efficient storage
- Easy programming
- Fast computations

Simple combinations of rasters (cover)

	- 1		5		70	80
80	80	80	80	80	80	80
	70			80	80	
					80	80
				80		80
	70			80	90	80
				90		80
				90	90	

Browns Pond, Petersham, Massachusetts

Other ponds nearby

This figure's cells are found by subtracting the values in the OtherPonds raster from the values in the BrownPond raster. So, what do the values represent?

Facts about the raster based GIS data model

- Introduced during the 1970's due to an increasing demand for analysis of digital satellite data.
- Image processing systems
 → development of tools for
 spatial analysis.
- Separate development of vector and raster based GIS data models since the 1990's.
- Today well integrated

From pixel based classifications ...

.. to object oriented feature extractions

Analysis of laser scanned elevation models (LIDAR)

Map Algebra functions overview

Functions: Local

Focal

Zonal

Global

Map algebra and cartographic modelling

Map Algebra is a modelling language defined by C.D. Tomlin designed to manipulate raster based data.

The basic elements are **objects** and **actions**

Objects are input and output rasters

Actions are operators and functions

Exampel 1: **Local addition** of values cell by cell for two days' precipitation by simple addition of two rasters with calibrated, quantitative data values

0	5	5
0	0	0
5	5	5

Example 2: **Local addition** of two rasters with qualitative data values

0 = open land

0 = private 0 = open land, private, <math>5 = forest, private

5 = forest

10 = state 10 = open land, state, 15 = forest, state

Local functions

Per-cell functions that calculate a new value for each individual cell based on a mathematical function on one raster or a stack of rasters

Example:

TwoDaysPrecipitation = LocalSum of PrecipitationDay1 and PrecipitationDay1

Other local functions: Trigonometric (sin, cos, tan ...), logarithmic, truncate, reclassify

Local functions: Renumbering using the Reclassify tool

16	16	16	19
16	16	19	19
12	12	19	19
12	12	12	19

2	2	2	1
2	2	1	1
3	3	1	1
3	3	3	1

Reclassification schema

$$\begin{array}{c} 19 \rightarrow 1 \\ 16 \rightarrow 2 \\ 12 \rightarrow 3 \end{array}$$

Local functions: Renumbering using the Reclassify tool

Local functions: Reclassify using the CON tool

Inraster

1	1	0	0
	1	2	2
4	0	0	2
4	0	1	1

If expression = True If expression = False

Outraster = Con(Inraster, 40, 30, "Value >=2")

Outraster

30	30	30	30
	30	40	40
40	30	30	40
40	30	30	30

Local functions: Reclassify using the SetNull tool

Assigns NODATA value to specific cells

Functions - overview

Functions:

Local

Focal

Zonal

Global

Focal functions

Per-neighbour functions that calculate a new value for each individual cell based on a search within a specific neighborhood.

Example:

NumberOfTreeSpecies =

FocalVariation of Trees within 1

Other focal functions: Sum, min, max, majority, range

Variable 'neighborhoods' (donuts, wedges ...)

Focal functions: Slope

Slope calculation, Vagar, The Faroe Islands (4x4 km)

Focal functions: Slope

The maximum slope in percent may be determined from identifying the biggest difference in elevation values for a center cell and its 8 neighbours, and dividing this number by the horizontal distance.

191	214	218
180	196	203
172	184	195

In which direction is the steepest slope (cell size is 100 meters)?

Focal functions: Slope (former Esri method)

The maximum slope in percent may be determined from identifying the biggest difference in elevation values for a center cell and its 8 neighbours, and dividing this number by the horizontal distance.

191	214	218		-3,5%	18,0%	15,6%
180	196	203	→	-16,0%		7,0%
172	184	195		-17,0%	-12,0%	-0,7%

Focal function: Slope (alternative method, Bolstad)

Z_1	Z_2	Z_3
42	45	47
Z_4	Z _o	Z_5
40	44	49
Z_6	Z ₇	Z ₈
44	48	52

for
$$Z_0$$
:
 $dZ/dx = (49 - 40)/20 = 0.45$
 $dZ/dy = (45 - 48)/20 = -0.15$
slope = atan $[(0.45)^2 + (-0.15)^2]^{0.5}$
= 25.3°

Slope% = $(0.45^2 + (-0.15)^2)^{0.5} * 100 = 47.3\%$

Focal functions: Aspect

Aspect calculation, Vagar, The Faroe Islands (4x4 km)

Fokal function: Aspect

Aspect is defined as the direction of the steepest slope

$$\alpha = 180 - a tan \left(\frac{\left(\frac{dZ}{dy} \right)}{\left(\frac{dZ}{dx} \right)} \right) + 90 \left(\frac{\left(\frac{dZ}{dx} \right)}{\left| \frac{dZ}{dx} \right|} \right)$$

When using values from Bolstad's calculation of slope:

$$a = 180 - atan(-0.15/0.45) + 90(0.45/0.45)$$

$$a = 180 + 18 + 90 = 288^{\circ}$$

Functions - overview

Functions:

Local

Focal

Zonal

Global

Zonal functions

Calculates a value for each cell in one raster determined by zonal masks in a second raster

Example:

ElevationVsTemperature = ZonalMean of Temperatures in ElevationZones

Other zonal functions: Sum, minimum, maximum

Functions - overview

Functions:

Local

Focal

Zonal

Global

Global functions: Interpolation

Calculate missing values based on existing ones.

Example: Inverse distance weighthing interpolation.

InterpolatedTemperature = GlobalInterpolation of Temperature

Global functions: Euclidean distances / Distance Accumulation

Every cell gets a value telling the distance to the nearest source cell.

Next, the Reclassify tool may be used to slice the data into, say, 16 classes.

Global functions: Nearest neighbour allocation

Every cell gets a value telling which source cell is nearest.

Method = Creation of Thiessen polygons

Global functions: Visibility analysis

Parameters for controlling the viewshed analysis

Working on rasters in ArcGIS

 Enable the Spatial Analyst extension → Locate the right tools

- Spatial Analyst Tools.tbx

 - 🗄 🦠 Map Algebra

 - Neighborhood

 - Raster Creation

 - Solar Radiation

 - 🕀 🦠 Zonal

Working on rasters in ArcGIS

Working on rasters in ArcGIS – layer files

