Linear Programming, Modelling & Solution

Anthony Catterwell

March 16, 2019

Derivation

We have

$$f = \overline{\mathbf{c}}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N$$
$$\overline{A}\mathbf{x} = \mathbf{b} = B\mathbf{x}_B + N\mathbf{x}_N$$

combining the two gives us:

$$f = \hat{f} + \hat{\mathbf{c}}_N^T \mathbf{x}_N$$

$$= \{\mathbf{c}_B^T \hat{\mathbf{b}}\} + \{\mathbf{c}_N - N^T B^{-T} \mathbf{c}_B\} \mathbf{x}_N$$

$$= \{\mathbf{c}_B^T B^{-1} \mathbf{b}\} + \{\mathbf{c}_N - N^T B^{-T} \mathbf{c}_B\} \mathbf{x}_N$$

where

$$\widehat{\mathbf{c}}_N = \mathbf{c}_N - N^T B^{-T} \mathbf{c}_B$$

$$\widehat{f} = \mathbf{c}_B^T \widehat{\mathbf{b}}$$

 \hat{f} is the objective value when $\mathbf{x}_N = \mathbf{0}$ (so $\mathbf{x}_B = \hat{\mathbf{b}}$)

LP Theory: Analysis of LPs in standard form

Definition: Feasible Vertex I

The vertex of the feasible region K is a point $\mathbf{x} \in K$ which does not lie strictly within any line segment joining two points in K.

Theorem 1: A unique optimal solution is a vertex

If an LP has a unique optimal solution then it is a vertex.

Theorem 2: Non-unique optimal solution at a vertex

If an LP has a non-unique optimal solution then there is an optimal solution at a vertex.

Definition: Feasible Vertex II

A vertex of the feasible region K is a point $\mathbf{x} \in K$ with

- \bullet *n* zero components
- m non-negative components uniquely defined by $\overline{A}\mathbf{x} = \mathbf{b}$

LP Theory: Basic feasible solutions and optimality conditions for LP problems

Definition: A basic solution

The point $\mathbf{x} \in \mathbb{R}^{n+m}$ is a **basic solution** of an LP problem in standard form if there is a **partition** of $\{1, 2, \dots, n+m\}$ into

- A set \mathcal{N} of n indices of **non-basic variables** with value zero
- A set \mathcal{B} of n indices of **basic variables** whose values are then uniquely defined by the m equations.

Why can't we just work with vertices?

- A vertex is also a point with n zero components and m non-negative components uniquely defined by $\overline{A}\mathbf{x} = \mathbf{b}$
- \bullet A degenerate vertex has more than n zero components
 - More than on partition of $\{1, 2, \ldots, n+m\}$ into sets \mathcal{N} and \mathcal{B} is possible
 - There may be more than one basic solution at a degenerate vertex.

Theorem 3: A sufficient optimality condition for LP problems

A point $\mathbf{x} \in K$ is an optimal solution of an LP problem if it is a basic feasible solution with non-positive reduced costs $\hat{\mathbf{c}}_N = \mathbf{c}_N - N^T B^{-T} \mathbf{c}_B \leq 0$

The simplex algorithm

Description of the simplex algorithm

- 1. If the reduced costs are non-positive then **stop**The solution is optimal
- 2. Determine the non-basic variable $x_{q'}$ with the most positive reduced cost
- 3. Determine the feasible direction **d** when $x_{q'}$ is increased from zero
- 4. If no basic variable is zeroed on $\mathbf{x} + \alpha \mathbf{d}$ then **stop**

The LP is unbounded

- 5. Determine the first basic variable $x_{p'}$ to be zeroed on $\mathbf{x} + \alpha \mathbf{d}$
- 6. Make $x_{p'}$ non-basic and $x_{q'}$ basic
- 7. Go to 1

Definition of the simplex algorithm

Given a basic feasible solution \mathbf{x} with \mathcal{B} and \mathcal{N}

- 1. If $\hat{\mathbf{c}}_N \leq \mathbf{0}$ then stop (with $\hat{\mathbf{c}}_N = \mathbf{c}_N N^T B^{-T} \mathbf{c}_B$)
 The solution is optimal
- 2. Determine the index $q' \in \mathcal{N}$ of the variable $x_{q'}$ with the most positive reduced cost \widehat{c}_q q' is the qth entry in \mathcal{N} .
- 3. Let $\hat{\mathbf{a}}_q = B^{-1}\mathbf{a}_q$, where \mathbf{a}_q is column q of N
- 4. If $\hat{\mathbf{a}}_q \leq \mathbf{0}$ then stop

The LP is unbounded

- 5. Determine the index $p' \in \mathcal{B}$ of the variable $x_{p'}$ corresponding to $p = \operatorname{argmin}_{i=1,\widehat{\mathbf{a}}_{iq}>0}^m \frac{\widehat{b}_i}{\widehat{a}_{iq}}$ (with $\widehat{\mathbf{b}} = B^{-1}\mathbf{b}$) p' is the pth entry in \mathcal{B}
- 6. Exchange indices p' and q' between \mathcal{B} and \mathcal{N} to yield a new basic feasible solution
- 7. Go to 1

Obtaining the initial basic feasible solution

As the initial basic feasible solution, try the "all slack" basis (i.e. starting at the origin)

$$\mathcal{B} = \{n + 1, \dots, n + m\} \text{ and } \mathcal{N} = \{1, \dots, n\}$$

So we have:

- $\hat{\mathbf{b}} = \mathbf{b}$
- $\widehat{\mathbf{c}}_N = \mathbf{c}$
- Basis is feasible iff $b \ge 0$

How to start if $b \ngeq 0$

Can't use the "all-slack" basis (because the origin is not in the feasible region)

- If $\mathbf{b} \not\geq \mathbf{0}$ then, for each constraint i, subtract an **artificial variable** $x_{n+m+i} \geq 0$
- Replace the objective $f = \overline{\mathbf{c}}^T \mathbf{x}$ with the **Phase I** objective $f = -\sum_{i=1}^m x_{n+m+i}$ (i.e. the negated sum of infeasibilities)

The Phase I problem

Construct an initial basic feasible solution as follows: For i = 1, ..., m

If $b_i \geq 0$

- Slack $x_{n+i} = b_i \ge 0$ is basic
- Artificial $x_{n+m+i} = 0$ is non-basic
- Column i of B is \mathbf{e}_i

If $b_i < 0$

- Slack x_{n+i} is non-basic
- Artificial $x_{n+m+i} = -b_i > 0$ is basic
- Column i of B is $-\mathbf{e}_i$

Basis matrix B is non-singular and, by construction, $\hat{\mathbf{b}} \geq \mathbf{0}$

At an optimal solution of the Phase I problem

The simplex algorithm drives f up towards zero.

At an optimal basic feasible solution x of the Phase I problem:

If f = 0

ullet The values of the original and slack variables at x yield a basic feasible solution for the original LP

If f < 0

- The artificial variables cannot all be driven to zero
- The original LP is **infeasible**

If the Phase I problem is solved with f = 0 (and all artificial variables being in \mathcal{N})

- 1. Remove the artificial variables from the problem (they are now zero)
- 2. Revert to the original objective function
- 3. Solve the original Phase II problem

Does the algorithm terminate?

- If $\hat{\mathbf{b}}$ has any zero components then \mathbf{x} is a **degenerate** vertex
- \bullet There may be several basic feasible solutions at ${\bf x}$
- If $\hat{b}_p = 0$ then $\overline{\alpha} = 0$ so the simplex algorithm does not move to a new vertex
- It may never leave!

Sensitivity and fair prices

Sensitivity theory and weak duality

• LP Duality

For the following LP problem

maximise
$$f = \mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$

The dual LP problem is

minimise
$$f = \mathbf{b}^T \mathbf{y}$$
 subject to $A^T \mathbf{y} \ge \mathbf{c}$

• Theorem 6 Weak duality theorem

If x and y are feasible solutions of the primal and dual problems respectively, then

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{v}$$

- Weak duality theorem consequences
 - If the primal problem (P) is unbounded, then the dual problem (D) is infeasible
 - If the dual problem (D) is unbounded, then the primal problem (P) is infeasible

Strong duality and the tableau simplex method

For the primal LP

maximise
$$f = \mathbf{c}^T \mathbf{x}$$
 subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

If \mathbf{x}^* is an optimal basic feasible solution for the problem in standard form then

• The optimal solution of

minimise
$$f = \mathbf{b}^T \mathbf{y}$$
 subject to $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$

is
$$\mathbf{y}^* = \pi = \mathbf{B}^{-T} \mathbf{c}_B$$

- The optimal objective values are equal: $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$
- Conclusions
 - Only one of (P) and (D) need ever be solved
 - Leads to the (practically preferred) dual simplex method.