Sprint 2

Задача: Получить рабочую модель для прогона на протезе

Изменения вводных относительно Sprint 1:

- Новые данные для двух разных пилотов
- Ещё что-то важное, чего я не заметил

team:

<u>Q Alex1iv</u> - Александр

<u>Q Yvalexx</u> - Алексей

🞧 <u>MapleBloom</u> - Марина

<u>Qhoittoken</u> - Михаил

<u>Qostrebko</u> - Олег

Таргеты разных пилотов

Проверим какие датчики у пилотов активные:

Активных датчиков: первый пилот: 16 второй пилот: 16

Пассивных датчиков: первый пилот: 34 второй пилот: 34

Номера этих датчиков совпадают: True

Гипотезы для проверки:

- 1. Датчики **взаимозаменяемы** (при разных монтажах /пилотах показания датчика A могут быть сняты с датчика B)
- 2. Существует отчетливый паттерн показаний датчиков для конкретных жестов (данный паттерн может перемещаться в пространстве датчиков)
- 3. На free movements протез должен реагировать спокойствием
- 4. Конструкция с классификатором предпроцессинге для **определения NOGO** позволит существенно улучшить метрики
- 5. Задачу можно и нужно решить без нейросетей
- 6. **Сглаживание команд** на выходе можно организовать по сколь угодно большому накоплению предыдущей информации, с реальной задержкой по выходному сигналу **в 1 единицу времени**

Пилот 1, диапазон [0:870]

Пилот 2, диапазон [330:1200]

Повторяющийся паттерн жестов для обоих пилотов может быть полезен при препроцессинге. Особенно если в препроцессинг мы добавляем классификатор. Как-будто это может ощутимо улучшить качество предсказаний (если модель на входе уже "знает", что от неё ждут на выходе)

Разобьём таргет на зоны

- 1 Сгибание от положения покоя
- 2 Зона покоя (расслабленная рука)
- 3 Разгибание от положения покоя

Зона покоя привязана к **10-му** и **60-му** квантилю Всё ещё хочу попробовать прикрутить классификатор на предпроцессинг.

Сюда можно было бы прикрутить классификатор, хотя бы не явный классификатор (на конструкте if... else...)

Базовые модели на объединённых данных (без пред и пост обработки)

	lr_pilot_1	lr_pilot_2	vr_pilot_1	vr_pilot_2	en_pilot_1	en_pilot_2	xgb_pilot_1	xgb_pilot_2	lgb_pilot_1	lgb_pilot_2
INDEX										
ENC0	144.452417	149.452798	112.900060	118.686712	143.110811	154.396532	92.579431	132.193758	86.738974	152.108946
ENC1	101.116083	117.938012	88.186855	84.640438	100.382778	122.247244	57.232394	77.110563	60.442739	102.552523
ENC2	117.696557	108.818361	93.291931	70.456218	116.366246	111.354833	72.078710	48.156578	78.668825	59.070663
ENC3	107.812676	180.603738	86.885266	101.398573	105.482038	182.943771	65.373375	66.720286	72.426480	98.867079
ENC4	413.214784	105.420510	346.636066	80.025143	415.856617	102.187213	293.561001	62.553216	284.330516	122.703637
ENC5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	0.000001	0.000000	0.000000
MSE mean	147.382086	110.372236	121.316696	75.867847	146.866415	112.188265	96.804152	64.455734	97.101256	89.217141

Подсвечены наиболее точные предсказания: Зелёным для первого пилота Голубым для второго пилота

xgboost.XGBRegressor (оптимизирован optun'ой) lightgbm.LGBMRegressor (оптимизирован optun'ой)

Тройка фаворитов:

- MultiOutputRegressor(VotingRegressor(DecisionTreeRegressor()LassoLars())
- 2. xgboost.XGBRegressor()
- 3. MultiOutputRegressor(lightgbm.LGBMRegressor())

Время инференса на разных базовых моделях (данные по тысяче прогонов)

```
runs = []

for i in np.arange(1000):
    start_time = time.time()

preprocessing(omg_sample)
    inference(preprocessing(omg_sample))
    postprocessing(model_vr.predict([preprocessing(omg_sample)]))

commands(postprocessing(model_vr.predict([preprocessing(omg_sample)])),
        postprocessing(model_vr.predict([preprocessing(omg_sample)])))

run_time = pd.Series((time.time() - start_time))
    runs.append(run_time)
```

За время инференса принят промежуток: от поступления показаний датчиков до выдачи команды протезу Для усреднения результатов время измерялось: 1000 раз

	model_vr	model_xgb	model_lgb
25%	0.006533	0.003104	0.017601
mean	0.009060	0.007444	0.021726
75%	0.010713	0.009987	0.024906

Модель обучена на протокольных жестах обоих пилотов Предсказания для:

первого пилота, жесты по протоколу

первого пилота, свободные жесты

ENC1 61.849117 ENC2 77.117477 ENC3 71.455411 ENC4 298.688294 ENC0 137.832500 ENC1 320.229200 ENC2 470.573900 ENC3 391.351500 ENC4 659.926400

как-то неприятно

Модель обучена на свободных жестах обоих пилотов Предсказания для:

первого пилота, жесты по протоколу

первого пилота, свободные жесты

ENC0 435.057427 ENC1 464.522363 ENC2 392.008421 ENC3 447.472805 ENC4 687.425870

как-то совсем неприятно

ENC0 46.283500 ENC1 37.229200 ENC2 39.490400 ENC3 49.364500 ENC4 180.440400

Модель обучена на всех доступных данных Предсказания для:

первого пилота, жесты по протоколу

ENC3

ENC4

127.193263

359.715351

первого пилота, свободные жесты

ENC3

ENC4

88.2130

298.0554

- 1. Данные для моделирования последовательно соединённые данные 2-х пилотов (train протокольных жестов и free_movements), дополнительно нарезанные sklearn.model_selection.TimeSeriesSplit
- 2. Подготовлены к работе **3 модели** (VotingRegressor, XGBRegressor, LGBMRegressor)
- 3. Предпроцессинг **добавляем 1 признак** (которая является флагом действия/бездействия)
- 4. Постпроцессинг:
 - **дискретизация таргетов** на заданное количество диапазонов (по умолчанию 20 диапазон, по 5 единиц в каждом)
 - **сглаживатель пиков** по предыдущим показаниям с шагом 3, даёт задержку между предсказанием и выводом на протез в 1 временной шаг

Укрупнённый фрагмент отработки модели для тестовых данных первого пилота ENC2, ENC3

в диапазоне [6700:7070] дискретизация 20 по 5 сглаживание по 3 шагам (что даёт реальную задержку между снятием сигнала и отправкой команды 30мс)

Вопросы:

- 1. Как подаётся NOGO (при отсутствии изменений сигналов датчиков выше заданного порога?)
- 2. Насколько гладкий сигнал должен быть на выходе (чтобы протез не испытывал "биение"?)
- Как протез должен реагировать на пики (резкие изменения показаний датчиков?)