The Iterated Mod Problem

Soham Chatterjee

Chennai Mathematical Institute

July 24, 2025

Contents

- 1 Iterated Integer Mod (IIM) Problem
 - Introduction
 - Circuit Value Problem
 - NANDCVP \leq_1 IIM
- 2 Super Increasing 0-1 Knapsack Problem
 - Introduction
 - Super Increasing Knaspsack Problem is P-complete
- 3 Polynomial Iterated Mod Problem (PIM)
 - Introduction
 - Matrix Inversion
 - PIM is in NC

Introduction

- This paper is Iterated Mod Problem by Karloff and Ruzzo [KR89]
- Sequential algorithm for computing gcd is based on Euclidean Algorithm $r_0=a,\,r_1=b.$ Then

$$r_2 = r_0 \mod r_1$$
, $r_3 = r_1 \mod r_2$, ...

gcd is the last nonzero r_i .

- But parallel complexity of gcd is poorly understood. Fastest parallel algorithm takes $O\left(\frac{n}{\log n}\right)$ time [CG90]
- gcd for polynomials is in NC
- The problem we will study related to the gcd problem. It is given integers or polynomials $x, m_n, m_{n-1}, \ldots, m_1$ find if

$$((x \text{ mod } m_n) \text{ mod } m_{n-1}) \cdots) \text{ mod } m_1) = 0$$

Iterated Integer Mod Problem Introduction

Problem:

Given positive integers $x, m_n, m_{n-1}, \dots, m_1$ find if

$$((x \bmod m_n) \bmod m_{n-1}) \cdots) \bmod m_1) = 0$$

Theorem

Iterated Iinteger $Mod \in P$

For any 2 numbers a and b, a mod b is in P. Here we are doing n iterated mods. So it still takes polynomial time. So IIM \in P.

Circuit Value Problem

Theorem ([Lad75])

Circuit Value Problem is P-complete.

 Enough to take CVP for circuits with only NAND gates, NANDCVP

$$Gates{\in}[G]$$

Input Variables:= y_i , $i \in [r]$, Input Bits:= Y_i , $i \in [r]$

$NANDCVP <_1 IIM$

Log-Space Reduction

Let n = 2G.

- x is n + 1-bit integer whose ith bit is Y_j if the ith edge is incident from the input y_j . Otherwise it is 1.
- $1 \le g \le G$

$$m_{2g}=2^{2g}+2^{2g-1}+\sum_{\begin{subarray}{c}jth\ edge\\out-edge\ from\ g\end{subarray}}2^j\ and\ m_{2g-1}=2^{2g-1}$$

Remark: Here m_{2g} and m_{2g-1} simulate the gate g

NANDCVP ≤₁ IIM I

Correctness

Theorem

Let $x_{G+1}=x$. And for all $1 \le g \le G$ $x_g=((\cdots((x \text{ mod } m_{2G}) \text{ mod } m_{2G-1}) \cdots \text{ mod } m_{2g}) \text{ mod } m_{2g-1})=0$. Then:

- **1** For all $1 \le g \le G + 1$, $x_g \le 2^{2g-1}$
- ② For all $1 \le g \le G+1$, $0 \le j \le 2g-1$ if the jth edge is an outgoing edge from an input node or from a gate h such that $h \ge g$ then x_g 's jth bit is the value carried by jth edge otherwise 1

$NANDCVP \leq_l IIM II$

Correctness

Prove by downward induction:

Base Case (g = G + 1): We have $x < 2^{2(G+1)-1} = 2^{2G+1} = 2^{n+1}$. True as x is n-bit number. And second condition follows by constuction. Let the theorem holds for all g > k.

$\mathrm{NANDCVP} \leq_{l} \mathrm{IIM} \ \mathrm{III}$

Correctness

Part (a): $x_k = (x_{k+1} \text{ mod } m_{2k}) \text{ mod } m_{2k-1}. \ m_{2k-1} = 2^{2k-1}. \text{ So } x_k \text{ has } 2k-1 \text{ bits so } x_k < 2^{2k-1}. \text{ So Part (a) is proved.}$

$NANDCVP \leq_l IIM IV$

Correctness

Part (b):

- The only bits differ between x_{k+1} and x_k are the bits corresponding to edges incident on kth vertex (in and out). In x_{k+1} the jth bits are 1 if jth edge going out from gate k.
- The 2k and 2k 1th edges are in edges of gate k. So in x_{k+1} the (2k)th and (2k-1)th bits are the value carried by the (2k) and (2k-1)th edges. Two cases to consider:

$NANDCVP \leq_l IIM V$

Correctness

Both (2k) and (2k+1)th bits are 1:

$$m_{2k} \le x_{k+1} < 2m_{2k}$$
. So

$$(x_{k+1} \text{ mod } m_{m_{2k}}) \text{ mod } m_{2k-1} = x_{k+1} - m_{2k}$$

So in x_{2k} at output bits position of m_{2k} the 1 in replaced by 0

At least one of the bits is 0:

$$x_{k+1} < m_{2k} \implies x_{k+1} \mod m_{2k} = x_{k+1}$$

So in x_{2k} at output bits position of m_{2k} has 1.

IIM is P-complete

 $x_1 < 2^1$ is the value carried by the 0th edge, value of the CVP instance.

Theorem

 $NANDCVP \leq_l Iterated Integer Mod$

Theorem

Integer Iterated Mod Problem is P-complete

Super Increasing Knaspsack Problem (SIK) Introduction

Definition (0-1 Knapsack Problem)

Given an integer w and a sequence of integers w_1, w_2, \ldots, w_n is there a sequence of 0-1 valued variables $x_1, \ldots x_n$ such that $w = \sum_{i=1}^n x_i w_i$.

- 0-1 Knapsack Problem is known to be NP-complete. [GJ90]
- A knapsack instance is called super increasing (SIK) if each weight w_i is larger than the sum of the previous weights i.e. for all $2 \le i \le n$ we have $w_i > \sum\limits_{i=1}^{i-1} w_j$

Super Increasing Knaspsack Problem (SIK) Introduction

Theorem

Super Increasing Knaspsack Problem $\in P$

Greedy strategy considering the w_i in decreasing order gives a linear time algorithm for solving super increasing knapsack problem.

Soham Chatterjee The Iterated Mod Problem 14 / 35

SIK is P-complete I

Theorem

If w_1, \ldots, w_n are such that $\forall \ i \in [n-1] \sum\limits_{k=1}^{r} w_k < w_{i+1}$ then there is a

0-1 sequence of variables x_1, \ldots, x_n such that $\sum\limits_{i=1}^n x_i w_i = w$ iff

 $((\cdots((w \text{ mod } w_n) \text{ mod } w_{n-1})\cdots) \text{ mod } w_2) \text{ mod } w_1=1$

SIK is P-complete II

Observe: The previous reduction the modulo numbers doesn't satisfy super increasing knapsack condition.

 Need to find another reduction of NANDCVP to IIM where modulo numbers are super increasing to work with above theorem !!

SIK is P-complete III

- Let x is n + 1-length base 4 number whose ith digit is Y_j if the ith edge is incident from the input y_j . Otherwise it is 1.
- $1 \le g \le G$

$$m_{2g} = 4^{2g} + 4^{2g-1} + \sum_{\substack{\text{jth edge}\\ \text{out-edge from g}}} 4^j$$

$$m_{2g-0.5} = 4^{2g} - 4^{2g-1} = 3 \times 4^{2g-1}$$
, $m_{2g-1} = 4^{2g-1}$

SIK is P-complete IV

Define for all $1 \le g \le G$, $x_g = (((\cdots (((x \text{ mod } m_{2G}) \text{ mod } m_{2G-0.5}) \text{ mod } m_{2G-1}) \cdots) \text{ mod } m_{2g}) \text{ mod } m_{2g-0.5}) \text{ mod } m_{2g-1} = 0 \text{ and } x_{G+1} = x.$

•
$$x_g \le 4^{2g-1}$$
 for all $1 \le g \le G+1$

SIK is P-complete V

Theorem

For all $1 \le g \le G+1$, $0 \le j \le 2g-1$ if the jth edge is an outgoing edge from an input node or from a gate h such that $h \ge g$ then x_g 's jth bit is the value carried by jth edge otherwise 1

Soham Chatterjee The Iterated Mod Problem 19 / 35

SIK is P-complete VI

- Prove by downward induction. Base case g = G + 1 is true.
- x_{k+1} and x_k differs at the positions corresponding to the edges incident on kth vertex.
- 2k and 2k 1th edges are in-edges of vertex k so they are the values carried by 2k and 2k 1th edges

SIK is P-complete VII

If both of them 1:

$$\begin{split} 4m_{2k} > x_{k+1} \ge m_{2k} \implies x_{k+1} \text{ mod } m_{2k} = x_{k+1} - m_{2k} < 4^{2k-1} \\ (x_{k+1} - m_{2k} \text{ mod } m_{2k-0.5}) \text{ mod } m_{2k-1} = x_{k+1} - m_{2k} \end{split}$$

In x_k the positions where m_{2k} has 1 will have 0.

SIK is P-complete VIII

If at least one of them 0:

 $x_{k+1} \mod m_{2k} = x_{k+1}$. In x_k positions where m_{2k} has 1 will have 1.

$$x_{k+1} = a \times 4^{2k} + b \times 4^{2k-1} + c$$
 where $a, b \in \{0, 1\}$

•
$$a = 1, b = 0$$
:

$$(x_{k+1} \text{ mod } m_{2k-0.5}) \text{ mod } m_{2k-1} = 1 \times 4^{2k-1} + c \text{ mod } m_{2k-1} = c$$

• a = 0:

$$(x_{k+1} \text{ mod } m_{2k-0.5}) \text{ mod } m_{2k-1} = b \times 4^{2k-1} + c \text{ mod } m_{2k-1} = c$$

SIK is P-complete IX

After m_1 , $x_1 < 2^1$ is the value carried by the 0th edge, the value of the CVP.

 Notice: The modulos satisfies the super increasing knapsack problem.

Since

$$\sum_{g=1}^k m_{2g} + m_{2g-0.5} + m_{2g-1} = \sum_{g=1}^k m_{2g} + 4^{2g} < 4^{2k+1} = m_{2(k+1)-1}$$

SIK is P-complete X

- $\begin{array}{ll} \text{ Sum of weights till } m_{2(k+1)-1} \\ = & (\text{sum of weights till } m_{2k}) + m_{2(k+1)-1} \\ < & 2 \times 4^{2(k+1)-1} < 3 \times 4^{2(k+1)-1} = m_{2(k+1)-0.5} \end{array}$
- Sum of weights till $m_{2(k+1)-0.5}$ = $(\text{sum of weights till } m_{2k}) + m_{2(k+1)-1} + m_{2(k+1)-0.5}$ $< 2 \times 4^{2(k+1)-1} + 3 \times 4^{2(k+1)+1}$ = $4^{2(k+1)} + 4^{2(k+1)-1} < m_{2(k+1)}$

SIK is P-complete XI

Theorem

 $NANDCVP \leq_1 Super Increasing Knapsack$

Theorem

Super Increasing Knapsack Problem is P-complete.

Polynomial Iterated Mod Problem

Definition (Polynomial Iterated Mod Problem)

Given univariate polynomials $a(x),\,b_1(x),\ldots,b_n(x)$ over a field $\mathbb F$ compute the residue

$$((\cdots((a(x) \text{ mod } b_1(x)) \text{ mod } b_2(x))\cdots) \text{ mod } b_{n-1}(x)) \text{ mod } b_n(x)$$

• A polynomial mod can't test for two bits

$$(10)_2 \mod (11)_2 = (10)_2 \text{ but } (x^2 + 0x) \mod (x^2 + x) = 0x^2 - x$$

Theorem

Polynomial Iterated Mod Problem is in P

Lower Triangular Matrix Inversion

Theorem ([Hel74],[Hel78])

For any field \mathbb{F} , lower triangular matrix inversion is in Arithmetic – NC

Theorem ([BvzGH82],[BCP84])

Lower triangular matrix inversion is in NC over finite fields and $\mathbb Q$

Reduction I

$$\begin{split} & \text{Given } a(x), b_1(x), \dots, b_n(x) \text{ over } \mathbb{F}. \\ & b_0(x) = r_0(x) = a(x) \text{ and } d_i = \text{deg } b_i(x) \text{ for all } 0 \leq i \leq n. \\ & \text{Assume } d_0 \geq d_1 > \dots > d_n \\ & a(x) = q_1(x)b_1(x) + r_1(x) \\ & = q_1(x)b_1(x) + q_2(x)b_2(x) + r_2(x) \\ & \vdots \\ & = q_1(x)b_1(x) + \dots + q_n(x)b_n(x) + r_n(x) \\ & \vdots \\ & = q_1(x)b_1(x) + \dots + q_n(x)b_n(x) + r_n(x) \end{split}$$

Reduction II

The coefficient of x^j in a(x), $b_i(x)$, $q_i(x)$, $r_i(x)$ are a_j , $b_{i,j}$, $q_{i,j}$, $r_{i,j}$.

- $\deg q_1 = d_0 d_1$, $\deg q_i \le d_{i-1} d_i 1$
- Compare the coefficients of x^j in both direction.
- $(d_0 + 1) \times (d_0 + 1)$ matrix M. Denote the variable matrix for coefficients of q_i and r_n as X

Reduction III

 d_0 – i-th entry of MX is coefficient of degree i. $d_k \le i < d_{k-1}$.

$$r_n(x) + \sum_{i=K+1}^n q_i(x)b_i(x)$$
 doesn't take part in coefficient of x^i .

$$i = d_k + (d_{k-1} - d_k - 1 - (d_{k-1} - 1 - i)) = d_k + (i - d_k)$$

Can't go lower $(d_{k-1} - d_k - 1 - (d_{k-1} - 1 - i))$ for coefficient of q_k

$$\mathrm{d}_0 - \mathrm{i} = (\mathrm{d}_0 - \mathrm{d}_1 + 1) + (\mathrm{d}_1 - \mathrm{d}_2) + \cdots (\mathrm{d}_{k-2} - \mathrm{d}_{k-1}) + (\mathrm{d}_{k-1} - 1 - \mathrm{i})$$

So M has at (d_0-i,d_0-i) th entry b_{k,d_k} and after that all entries are 0 in that row. Hence M is lower triangular.

Matrix is non-singular since the diagonal entries are the leading coefficients of $b_i(\boldsymbol{x})$

Reduction IV

We need to inverse M which is in Arithmetic – NC for general fields and for finite fields, \mathbb{Q} it is in NC.

Theorem

Iterated Polynomial Mod Problem is in NC for finite field and $\mathbb Q$ and in Arithmetic – NC for general field.

Introduction
Matrix Inversion
PIM is in NC

Thank You!

References I

[BCP84] A Borodin, S Cook, and N Pippenger.
Parallel computation for well-endowed rings and space-bounded probabilistic machines.
Inf. Control, 58(1–3):113–136, jul 1984.

[BvzGH82] Allan Borodin, Joachim von zur Gathen, and John Hopcroft.

Fast parallel matrix and gcd computations.

In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS '82, page 65–71, USA, 1982. IEEE Computer Society.

[CG90] Benny Chor and Oded Goldreich.
 An improved parallel algorithm for integer GCD.
 Algorithmica, 5(1):1-10, 1990.

References II

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[Hel74] Don Heller.

A determinant theorem with applications to parallel algorithms.

SIAM J. Numer. Anal., 11(3):559–568, jun 1974.

[Hel78] Don Heller.
 A survey of parallel algorithms in numerical linear algebra.
 SIAM Rev., 20(4):740-777, oct 1978.

[KR89] Howard J. Karloff and Walter L. Ruzzo.
 The iterated mod problem.
 Information and Computation, 80(3):193–204, 1989.

Introduction Matrix Inversion PIM is in NC

References III

[Lad75] Richard E. Ladner.

The circuit value problem is log space complete for p. SIGACT News, 7(1):18-20, jan 1975.

Soham Chatterjee The Iterated Mod Problem 35 / 35