

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по дисциплине "Анализ алгоритмов"

Гема Расстояние Левенштейна и Дамерау-Левенштейн
Студент <u>Малышев И. А.</u>
руппа <u>ИУ7-51Б</u>
Эценка (баллы)
Іреподаватель: Волкова Л.Л.

Оглавление

B	веде	ние	2
1	Ана	алитическая часть	3
	1.1	Расстояние Левенштейна	3
		1.1.1 Рекусивный алгоритм нахождения расстояния Левенштейна	3
		1.1.2 Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в виде матрицы	3
		1.1.3 Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в виде 2 строк	
		матрицы	4
	1.2	Расстояние Дамерау-Левенштейна	4
		1.2.1 Рекусивный алгоритм нахождения расстояния Дамерау-Левенштейна	4
		1.2.2 Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в виде матрицы	4
	1.3	Вывод	4
1 2 3	Кон	нструкторская часть	5
	2.1	Схемы алгоритмов	5
	2.2	Вывод	10
3	Tex	нологическая часть	11
	3.1	Средства реализации	11
	3.2	Реализация алгоритмов	11
	3.3	Тестирование	14
	3.4	Вывод	15
4	Исс	следовательская часть	16
	4.1	Технические характеристики	16
	4.2	Время выполнения реализаций алгоритмов	16
	4.3	Оценка затрачиваемой памяти	17
За	аклю	очение	18
Л	итер	атура	19

Введение

Динамическое программирование - это форма вычислений, при которой следующий член вычисляется на основе предыдущего. Простейшим примером применения является вычисление чисел Фибоначчи. Кроме того, динамическое программирование может применяться и в более сложных задачах таких, как проебразование строк из одной в другую. В этом случае задача сводится к вычислению расстояния Левенштейна (редакционного расстояния) - минимального количества операций вставки, удаления символа или замены символа один на другой, необходимых для преобразования одной строки в другую. Расстояние Левенштейна применяется в:

- компьютерной лингвистике для устранения ошибок в набираемом тексте;
- в бионформатике для сравнения генов.

Поэтому **целью** данной работы является получение навыка динамического программирования на примере реализации алгоритмов редакционного расстояния.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Изучить алгоритмы расчета редакционного расстояния;
- 2. Реализовать алгоритмы подсчета редакционного расстояния;
- 3. Протестировать реализованные алгоритмы;
- 4. Провести сравнительный анализ реализаций алгоритмов по затраченному процессорному времени и памяти.

1 Аналитическая часть

В данном разделе определяются расстояния Левенштейна и Дамерау-Левенштейна, а также рассматриваются различные алгоритмы и их модификации для вычисления указанных расстояний.

1.1 Расстояние Левенштейна

Для вычисления редакционного расстояния вводятся следующие цены операций:

- замена одного символа на другой 1;
- вставка символа 1;
- удаление символа 1;
- совпадение 0.

С учётом этого вводится рекурсивная формула для вычисления расстояния Левенштейна:

$$D(s1[1..i], s2[1..j]) = \begin{cases} 0, & \text{i} = 0, \text{j} = 0 \\ i, & \text{i} > 0, \text{j} = 0 \\ j, & \text{i} = 0, \text{j} > 0 \\ \min\{ & D(s1[1..i], s2[1..j-1]) + 1 \\ D(s1[1..i-1], s2[1..j]) + 1 & \text{i} > 0, \text{j} > 0 \\ D(s1[1..i-1], s2[1..j-1]) + \begin{cases} 0, & \text{s1[i]} = \text{s2[j]} \\ 1, & \text{иначе} \end{cases} \end{cases}$$

1.1.1 Рекусивный алгоритм нахождения расстояния Левенштейна

Данный алгоритм использует для решения формулу 1.1, однако в отличие от прерыдущих является рекурсивным, а значит, для хранения промежуточных результатов используется стек. Кроме того, при этом подходе возникает проблема повторных вычислений, так как функция D(s1[1..i], s2[1..j]) будет выполняться несколько раз в разных ветвях дерева вызовов.

1.1.2 Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в виде матрицы

Данный алгоритм использует для решения задачи матрицу размером (m+1)*(n+1), где m и n - длины двух строк, одну из которых необходимо преобразовать к другой. На каждом шаге работы алгоритма заполняется одна клетка матрицы в соответствии с формулой 1.1. По окончании алгоритма результат будет находиться в последней заполненной клетке.

Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в 1.1.3 виде 2 строк матрицы

Данный алгоритм является модификацией предыдущего. Очеивдно, что на кажом шаге алгоритма используются значения из текущей и предыдущей строки матрицы, поэтому достаточно хранить только их, а не всю матрицу.

1.2 Расстояние Дамерау-Левенштейна

Дамерау дополнил определение расстояния Левенштейна еще одной операцией, а именно операцией перестановки двух букв местами, стоимость которой тоже равна 1. Расстояние Дамерау-Левенштейна вычисляется по следующей формуле:

$$D(s1[1..i],s2[1..j]) = \begin{cases} 0, & \text{i} = 0, \text{j} = 0 \\ \text{i}, & \text{i} > 0, \text{j} = 0 \\ \text{j}, & \text{i} = 0, \text{j} > 0 \\ \min \{ & D(s1[1..i],s2[1..j-1]) + 1 \\ D(s1[1..i-1],s2[1..j]) + 1 & \text{i} > 0, \text{j} > 0 \\ D(s1[1..i-1],s2[1..j-1]) + \begin{cases} 0, & \text{s1[i]} = \text{s2[j]} \\ 1, & \text{иначе} \end{cases} \\ D(s1[1..i-2],s2[1..j-2]) + 1, & \text{если i>1, j>1, s1[i]} = \text{s2[j-1], s1[i-1]} = \text{s2[j]} \end{cases}$$

$$(1.2)$$
1.2.1 Рекусивный алгоритм нахождения расстояния Дамерау-Левенштейна

Рекусивный алгоритм нахождения расстояния Дамерау-Левенштейна

Данный алгоритм использует для решения формулу 1.2 и является рекурсивным, а значит, для хранения промежуточных результатов используется стек. Кроме того, при этом подходе возникает проблема повторных вычислений, так как функция D(s1[1..i], s2[1..i]) будет выполняться несколько раз в разных ветвях дерева.

1.2.2Нерекусивный алгоритм нахождения расстояния Левенштейна с кэшем в виде матрицы

Данный алгоритм решает проблему повторных вычислений простого рекурсивного алгоритма. При данном подходе вводится матрица размером (m+1)*(n+1), содержащая уже вычисленные промежуточные результаты. На каждом шаге работы алгоритма заполняется одна клетка матрицы в соответствии с формулой 1.2. По окончании алгоритма результат будет находиться в последней заполненной клетке.

1.3 Вывод

В данном разделе были даны определения расстояний Левенштейна и Дамерау-Левенштейна, а также рассмотрены 5 алгоритмов вычисления указанных расстояний.

2 Конструкторская часть

В данном разделе разрабатываются схемы алгоритмов на основе их описания, приведённого в аналитическом разделе.

2.1 Схемы алгоритмов

На рисунках 2.1, 2.2, 2.3, 2.4 и 2.5 показаны схемы алгоритма рекурсивного Левенштейна, нерекурсивного алгоритма Левенштейна с кэшем в виде матрицы и двух строк матрицы, рекурсивного алгоритма Дамерау-Левенштейна и нерекурсивного алгоритма с кэшем в виде матрицы соответственно.

Рис. 2.1: Схема рекурсивного алгоритма нахождения расстояния Левенштейна

Рис. 2.2: Схема рекурсивного алгоритма нахождения расстояния Левенштейна с кэшем в виде матрицы

Рис. 2.3: Схема нерекурсивного алгоритма нахождения расстояния Левенштейна с кэшем в виде двух строк матрицы

Рис. 2.4: Схема рекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна

Рис. 2.5: Схема нерекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна с кэшем в виде матрицы

2.2 Вывод

В данном разделе были построены схемы пяти алгоритмов нахождения редакционного расстояния на основе их описания, приведённого в аналитической части.

3 Технологическая часть

В данном разделе приводится реализация алгоритмов, схемы которых были разработаны в конструкторской части. Кроме того, обосновывается выбор технологического стека и проводится тестирование реализованных алгоритмов.

3.1 Средства реализации

В качестве языка программирования был выбран С#, а среду разработки – Visual Studio, т. к. я знаком с данным языком и имею представление о тестировании программ в данном языке. Время работы алгоритмов было замерено с помощью библиотеки System. Diagnostics, класса Stopwatch, который имеет методы для расчёта процессорного времени [1].

3.2 Реализация алгоритмов

В листингах 3.1 - 3.5 приведена реализации алгоритмов, описанных в 2.1.

Листинг 3.1: Функция для рекурсивного нахождения расстояния Левенштейна

```
static int LevDist(string source, int srclen, string target, int trglen)
    if (srclen * trglen == 0)
      return Math.Max(srclen, trglen);
    int substitution Cost = 0;
    if (source[srclen - 1] != target[trglen - 1])
      substitutionCost = 1;
    int deletion = \_LevDist(source, srclen - 1, target, trglen) + 1;
10
    int insertion = _{\text{LevDist}}(\text{source}, \text{srclen}, \text{target}, \text{trglen} - 1) + 1;
11
    int substitution = LevDist(source, srclen -1, target, trglen -1) + substitutionCost;
12
13
    return Minimum (deletion, insertion, substitution);
15
16
  static int LevDistRec(string source, string target) =>
17
    Lev Dist (source, source. Length, target, target. Length);
```

Листинг 3.2: Функция для нерекурсивного нахождения расстояния Левенштейна с кэшем в виде матрицы

```
static int LevDistMatr(string source, string target)
2
    if (source.Length * target.Length == 0)
      return Math.Max(target.Length, source.Length);
    int n = source.Length + 1;
    int m = target.Length + 1;
    int[,] matrixD = new int[n, m];
    const int deletionCost = 1;
10
    const int insertion Cost = 1;
11
12
    for (int i = 0; i < n; i++)
13
      matrixD[i, 0] = i;
14
15
    16
^{17}
18
    for (int i = 1; i < n; i++)
19
20
     for (int j = 1; j < m; j++)
21
22
       int substitutionCost = source[i-1] == target[j-1] ? 0 : 1;
^{23}
^{24}
        matrixD[i, j] = Minimum(matrixD[i - 1, j] + deletionCost,
25
       26
27
28
    }
29
30
    return matrixD[n-1, m-1];
32 }
```

Листинг 3.3: Функция для нерекурсивного нахождения расстояния Левенштейна с кэшем в виде двух строк матрицы

```
static int LevDistTwoRows(string source, string target)
     if (source.Length * target.Length == 0)
       return Math.Max(target.Length, source.Length);
     int m = target.Length;
     int n = source.Length;
     int[,] distance = new int[2, m + 1];
     for (int j = 1; j \le m; j++)
10
       distance[0, j] = j;
11
12
     int currentRow = 0:
13
     for (int i = 1; i \le n; ++i)
14
15
       currentRow = i \% 2;
16
       distance[currentRow, 0] = i;
17
       int previousRow = (currentRow + 1) \% 2;
18
       for (int i = 1; i \le m; i++)
19
20
         int cost = target[j-1] == source[i-1]? 0 : 1;
21
         distance [currentRow, j] = Minimum (distance [previousRow, j] + 1,
22
         \  \, \mathsf{distance} \, [\, \mathsf{currentRow} \,\, , \  \, \mathsf{j} \,\, - \,\, 1 ] \, \big[ + \,\, 1 \,, \,\,
23
         distance [previous Row, j - 1] + cost);
24
25
26
     return distance[currentRow, m];
27
```

Листинг 3.4: Функция для рекурсивного нахождения расстояния Дамерау-Левенштейна

```
static int DamLevDist(string source, int srclen, string target, int trglen)
2
    if (srclen * trglen == 0)
      return Math.Max(srclen, trglen);
    int deletion = DamLevDist(source, srclen - 1, target, trglen) + 1;
    int insertion = DamLevDist(source, srclen, target, trglen -1) + 1;
    int substitution = DamLevDist(source, srclen -1, target, trglen -1) + (source[srclen
       - 1] != target [trg|en - 1] ? 1 : 0);
    int min = Minimum(deletion, insertion, substitution);
10
11
    if (srclen > 1 \&\& trglen > 1 \&\& source[srclen - 1] == target[trglen - 2] \&\& source[
12
        srclen - 2] = target[trglen - 1])
      min = Math.Min(min, DamLevDist(source, srclen - 2, target, trglen - 2) + 1);
13
14
    return min;
15
16
^{17}
  static int DamLevDistRec(string source, string target) =>
    DamLevDist(source, source.Length, target, target.Length);
```

Листинг 3.5: Функция для нерекурсивного нахождения расстояния Дамерау-Левенштейна с кэшем в виде матрицы

```
static int DamLevDistMatr(string source, string target)
    if (source.Length * target.Length == 0)
      return Math.Max(target.Length, source.Length);
    int n = source Length + 1;
    int m = target Length + 1;
    int[,] arrayD = new int[n, m];
    for (int i = 0; i < n; i++)
10
      arrayD[i, 0] = i;
11
12
    13
14
15
    for (int i = 1; i < n; i++)
16
17
      for (int j = 1; j < m; j++)
18
19
        int cost = source[i - 1] == target[j - 1]? 0 : 1;
20
^{21}
        arrayD[i, j] = Minimum(arrayD[i - 1, j] + 1,
22
        arrayD[i, j-1] + 1, 
 <math>arrayD[i-1, j-1] + cost);
23
24
25
        if (i > 1 && j > 1 && source[i − 1] == target[j − 2] && source[i − 2] == target[j −
26
          arrayD[i, j] = Math.Min(arrayD[i, j], arrayD[i - 2, j - 2] + cost);
27
28
    }
29
30
    return arrayD[n-1, m-1];
31
32 }
```

3.3 Тестирование

В таблицах 3.1 и 3.2 приведены тесты для функций нахождения редакционного расстояния.

Таблица 3.1: Тестирование алгоритмов нахождения расстояния Левенштейна

Входные строки	Результат	Ожидаемый результат
ckat, kot	2	2
abc, defg	4	4
abcd, abcd	0	0

Таблица 3.2: Тестирование алгоритмов нахождения расстояния Дамерау-Левенштейна

Входные строки	Результат	Ожидаемый результат
ckat, kot	2	2
abc, defg	4	4
abcd, abcd	0	0
abcd, badc	2	2

Все тесты пройдены успешно.

3.4 Вывод

В данном разделе были реализованы 5 алгоритмов нахождения редакционного расстояния с помощью выбранных средств разработки. Кроме того, реализованные алгоритмы были протестированы.

4 Исследовательская часть

В данном разделе проводится сравненительный анализ реализованных алгоритмов по процессорному времени и по затрачиваемой памяти.

4.1 Технические характеристики

Все нижепреведенные замеры времени проведены на процессоре: Intel Core i7, 4 GHz, 4-ядерный.

4.2 Время выполнения реализаций алгоритмов

Для сравнительного анализа времени выполнения реализаций алгоритмов проведен эксперимент. Для замеров были сформированы строки, с суммарной длиной, варьирующейся от 6 до 24 включительно с шагом 2.

Время измерялось 1000 раз для каждой пары строк, после усреднялось. Время на графике (рис. 4.1) представлено в микросекундах.

Рис. 4.1: Зависимость времени от суммарной длины строк

Время для всех реализаций представлено в таблице 4.1.

Таблица 4.1: Зависимость	затрачиваемого	процессорного	времени о	от суммарной	длины	строк для	4 алгорит-
MOB							

Суммарная длина строк	Лев. Рек.	Лев. Матр.	Лев. 2 Стр.	ДамЛев. Рек.	ДамЛев. Матр.
6	1.31	0.30	0.28	0.79	0.31
8	3.79	0.41	0.38	4.34	0.47
10	19.92	0.66	0.63	23.21	0.66
12	106.72	0.82	0.81	122.97	1.02
14	571.67	1.13	1.06	654.56	1.27
16	3128.63	1.50	1.30	3609.66	1.76
18	17262.44	1.73	1.59	20235.26	2.43

4.3 Оценка затрачиваемой памяти

Алгоритмы вычисления расстояний Левенштейна и Дамерау — Левенштейна не отличаются друг от друга с точки зрения использования памяти, следовательно, достаточно рассмотреть лишь разницу рекурсивной и матричной реализаций этих алгоритмов.

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящих строк, соответственно, максимальный расход памяти вычисляется по формуле (4.1)

$$(\mathcal{C}(S_1) + \mathcal{C}(S_2)) \cdot (2 \cdot \mathcal{C}(\text{string}) + 2 \cdot \mathcal{C}(\text{int}) + \mathcal{C}(\text{bool})), \tag{4.1}$$

где \mathcal{C} — оператор вычисления размера, S_1 , S_2 — строки, int — целочисленный тип, string — строковый тип, bool - логический тип.

Использование памяти при итеративной реализации теоретически вычисляется по формуле (4.2).

$$(\mathfrak{C}(S_1) + 1) \cdot (\mathfrak{C}(S_2) + 1) \cdot \mathfrak{C}(int) + 5 \cdot \mathfrak{C}(int) + 2 \cdot \mathfrak{C}(string)$$

$$(4.2)$$

Вывод

Рекурсивный алгоритм вычисления расстояния Левенштейна работает на порядок дольше итеративных реализаций, время его работы увеличивается в геометрической прогрессии. На словах длиной 9 символов, матричная реализация алгоритма вычисления расстояния Левенштейна превосходит по времени работы рекурсивную почти в 10000 раз. Версия с двумя строками работает немного быстрее матричной реализации.

Алгоритм вычисления расстояния Дамерау — Левенштейна используется для решения других задач, поэтому говорить о его отставании от алгоритма вычисления расстояния Левенштейна, исходя из временных затрат, некорректно.

По расходу памяти алгоритмы с использованием матрицы проигрывают рекурсивному: максимальный размер используемой памяти в них растёт как произведение длин строк, в то время как у рекурсивного алгоритма — как сумма длин строк.

Заключение

В рамках данной лабораторной работы были решены следующие задачи:

- изучены и реализованны 5 алгоритмов расчета редакционного расстояния;
- протестированы реализованные алгоритмы;
- проведён сравнительный анализ алгоритмов по затраченному процессорному времени и памяти.

Поставленная цель, состоящая в получении навыка динамического программирования на примере реализации алгоритмов редакционного расстояния, достигнута.

Литература

1. Свойство Process.UserProcessorTime [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ruru/dotnet/api/system.diagnostics.stopwatch?view=net-5.0. Дата обращения: 01.10.2021