

IX Congress of the National Group of Bioengineering (GNB)

Palermo, Italy, 16th - 18th June 2025

Organized by University of Palermo

Prediction of TMS-evoked Potentials from Prestimulus Spectral Features: A Machine Learning Approach

Sadaf Moaveninejad¹, Antonio Luigi Bisogno², Simone Cauzzo ^{1,3}, Maurizio Corbetta², Camillo Porcaro¹

¹Biomedical Engineering Research to Advance and Innovate Translational Neuroscience (BRAIN Unit), Department of Neuroscience, University of Padova

²Department of Neuroscience and Padova Neuroscience Center, University of Padova

³ Parkinson Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-END)

Background

Brain Criticality

A state near a phase transition in which neural networks achieve optimal adaptability and computational efficiency.

TMS-EEG

Transcranial Magnetic Stimulation (TMS) combined with electroencephalography (EEG) provides a non-invasive method to study neural dynamics through TMS-evoked potentials (TEPs).

<u>TEPs</u>

Reflect cortical excitability and connectivity.

Frequency Bands in Brain Function:

- Delta (1–3 Hz): Linked to deep sleep and unconscious processes.
- Theta (4–7 Hz): Involved in memory encoding and cognitive control.
- Alpha (8–13 Hz): Associated with inhibition, sensory gating, and readiness states.
- Beta (14–30 Hz): Reflects motor preparation and top-down control.
- Gamma (31–90 Hz): Related to local processing, excitability, and cortical responsiveness.

<u>Goal</u>

To examine the predictive relationship between pre-stimulus TEP features and post-stimulus TEP variability.

Methods

Dataset:

- A publicly available TMS-EEG dataset of 20 right-handed healthy volunteers (age: 24.50 ± 4.86 years; 14 females). Available at: https://github.com/BMHLab/TEPs-PEPs
- Recorded with a 62-channel EEG system at 1 kHz.
- EEG pre-processing was performed using the **EEGLAB** and **TESA** toolboxes.

Features Extraction:

- Each trial was segmented into 2000 samples (1000 pre-stimulus, 1000 post-stimulus).
- Focused on channel C3, where TMS was applied.
- Morlet wavelet transform (constant=7) was applied to pre-stimulus window (from -800 to -200 ms).
- Power Spectral Density (PSD) was computed to the five frequency bands

Targets Variables:

- Area: Total area under the absolute post-stimulus signal (global response magnitude).
- **Peak**: The maximum amplitude of the post-stimulus signal (the most prominent response).

Fig1. Pre- and post-stimulus from a single trial TEP, with pre-stimulus features predicting post-stimulus targets, separated by the stimulus onset.

Machine Learning Pipeline

Train-Test split: 5-fold stratified cross-validation (CV) was applied at the subject level to ensure that the training and test sets contained data from non-overlapping subjects.

In each fold:

- 16 subjects → training
- 4 subjects → testing
- 3-fold cross-validation was used for

Machine learning model: A Random Forest Regressor was used to predict post-stimulus targets (Area and Peak) from pre-stimulus spectral features.

hyperparameter tuning: Input features were optimized via grid search with 3 folds cv.

Model Evaluation Metrics:

- Normalized Mean Squared Error (nMSE):
 This quantifies prediction error relative to variance. Values below 1 indicate better-thanmean prediction.
- Spearman's ρ:

This measures how well the predicted rankings match actual trial order.

 $\rho > 0.7 = strong$ 0.5–0.7 = moderate < 0.3 = weak predicted rankings and stimu tuned teste

Train-set Test-set Test-set Touch Model Features Trained Model Fredicted-Targets True-Targets True-Ranks Spearman rank correlation

Fig2. Machine learning pipeline illustrating one fold of the subject-stratified 5-fold cross-validation. Features and targets were extracted from pre- and post-stimulus EEG segments, respectively. The model was tuned and trained on data from 16 subjects, and tested on 4 held-out subjects. Performance assessed using nMSE and Spearman's ρ .

Interpretability & Visualization:

SHAP analysis: identified the most influential frequency bands. **Quartile-based visualization:** compared predicted vs. true trial groupings across response magnitude.

Results

Performance Metric Table

Target Method	nMSE [95%Confidence Interval]	Spearman's $ ho$ [95%Confidence Interval]
Area (all freq bands)	0.49 [0.44-0.54]	0.76 [0.73 – 0.78]
Peak (all freq bands)	0.8 [0.74 – 0.88]	0.6 [0.57 – 0.63]
Area (alpha band)	1.78 [1.67 – 1.9]	0.11 [0.06 – 0.16]
Peak (alpha band)	1.76 [1.65 – 1.88]	0.11 [0.07 – 0.17]

Predicting **Area** yields better results than predicting **Peak** amplitude:

- Lower nMSE
- Higher Spearman's ρ

Using all frequency bands significantly improves performance.

SHAP Summary Plot

SHAP values quantify the influence of each frequency band on model predictions. The plots show feature the importance for predicting the **Area** and **Peak** targets.

Findings:

- Gamma power is the strongest predictor for both targets.
- For Area: Gamma > Theta > Beta
- For **Peak**: Gamma > Alpha > Beta
- Alpha is more relevant to transient peak fluctuations, while **gamma** is linked to sustained excitability.

Color gradient (blue → red): indicates the range of feature values and their corresponding SHAP values

Fig3. The SHAP summary plot for the signal area vs peak target methods, highlighting the most influential features.

Quartile Plot

The trials were ranked based on the **true** and **predicted** values of the **Area** target.

The trials were divided into four quartiles in order to analyze prediction accuracy across response magnitudes.

What It Shows:

- Each subplot displays the average poststimulus EEG signal (C3) for each quartile.
- The solid blue line = predicted signal
- The dashed red line = true signal

Strong overlap across quartiles confirms:

- The model generalizes well across subjects;
- Pre-stimulus features retain meaningful information about trial-level variability.

Fig4. Averaged post-stimulus EEG trials for each quartile based on true (dashed red line) and predicted (solid blue line) target values. Results are aggregated across all folds in the subject-aware cross-validation.

Conclusion

- Machine learning successfully predicted TMS-evoked responses using pre-stimulus spectral features.
- Gamma power was the most influential feature for both signal Area and Peak.
- Alpha power was more relevant to transient Peak responses, while theta and beta contributed to Area.
- **Delta power** showed minimal impact.

These results confirm that:

- The full spectrum of frequency bands is essential for accurate prediction.
- **Gamma activity** may reflect a more excitable or desynchronized cortical state that facilitates stronger TMS responses.
- Alpha rhythms may exert inhibitory control, especially over sensorimotor areas.

Acknowledgement

This work was supported by:

HORIZON-ERC SyG (Grant No. 101071900) – *NEMESIS: Neurological Mechanisms of Injury and Sleep-Like Cellular Dynamics* (to MC, ALB, CP) **HORIZON-INFRA-2022 SERV** (Grant No. 101147319) – *EBRAINS 2.0* (to MC)

PRIN – MUR (Grant No. 20228ARNXS) (to CP and SM)

Github Repository

Find Us on GitHub! Brain Lab Unit

Download this poster in PDF using this QR code.

