Lecture 6 Aggregate Expenditure and Output in the Short Run

Fei Tan

Department of Economics Chaifetz School of Business Saint Louis University

E3120 Intermediate Macroeconomics
October 2, 2021

Aggregate Expenditure

- Keynes identified four categories of expenditures
 - consumption (C): expenditure by consumers
 - planned investment (l'): expenditure by firms (NO unplanned changes in inventories)
 - government purchases (G): expenditure by gov't, not including transfer payments
 - net exports (NX): net expenditure by foreigners, exports (EX) – imports (IM)
- Goods market equilibrium/IS relation

$$\underline{\underline{Y}}_{\text{GDP}} = \underbrace{C + I' + G + NX}_{\text{aggregate expenditure (AE)}}$$

actual investment = planned investment

The Road Ahead...

- Aggregate expenditure model
- Determinants of aggregate expenditure
- Income, consumption, and saving
- Graphing goods market equilibrium
- Multiplier effect
- Aggregate demand curve: first pass

Aggregate Expenditure Model

- A macro model that determines <u>short-run</u> output
 - relation between AE (total spending/demand) and GDP (total production/supply)
 - key assumptions: constant price level & no growth
- How AE model works
 - ▶ AE > GDP \Rightarrow inventories $\downarrow \Rightarrow$ (Y,N) \uparrow
 - ▶ AE < GDP \Rightarrow inventories $\uparrow \Rightarrow$ (Y,N) \downarrow
 - AE = GDP ⇒ inventories unchanged ⇒ goods market equilibrium
- GDP fluctuates due to changes in AE

Determinants of Consumption

Consumption function

$$C = C(Y_D) = c_0 + c_1 Y_D, \qquad Y_D = Y - T$$

- Some notations
 - ightharpoonup C = consumption
 - ► *T* = net taxes (taxes net of transfers)
 - $ightharpoonup Y_D$ = disposable income
 - $ightharpoonup c_1$ = marginal propensity to consume (MPC)
 - $ightharpoonup c_0 = autonomous consumption$
- Other determinants of consumption
 - wealth, expected future income, real interest rate (price of consumption today relative to tomorrow), price level
- Determinants of other components in AE

Consumption Function

- Relation b/w consumption and income (source: BEA)
- ► MPC = slope of consumption function

U.S. Consumption

- Real consumption, 1979-2017 (source: BEA)
- Consumption follows smooth, upward trend

U.S. Investment

- ► Real investment, 1979-2017 (source: BEA)
- Investment is subject to larger changes than consumption

U.S. Government Purchases

- ► Real government purchases, 1979-2017 (source: BEA)
- Government purchases grew steadily in most years

U.S. Net Exports

- ► Real net exports, 1979-2017 (source: BEA)
- Net exports were negative in most years

Income, Consumption, and Saving

Marginal propensity to consume/save

$$\frac{\Delta Y_D}{\Delta Y_D} = \frac{\Delta C}{\Delta Y_D} + \frac{\Delta S}{\Delta Y_D} \quad \Rightarrow \quad 1 = \mathsf{MPC} + \mathsf{MPS}$$

- Some remarks
 - ▶ ∆ means 'change in'
 - ► MPC = $\Delta C/\Delta Y_D = \Delta C/\Delta Y$
 - ▶ $\Delta S/\Delta Y_D$ = marginal propensity to save (MPS)
- Example: consumption increases from \$8,000 to \$8,600 as national income increases from \$9,000 to \$10,000

$$\mathsf{MPC} = \frac{\$8,6000 - \$8,000}{\$10,000 - \$9,000} = 0.6, \ \mathsf{MPS} = 1 - \mathsf{MPC} = 0.4$$

Solving for Equilibrium Output

Equilibrium output

$$Y = c_0 + c_1(Y - T) + I + G + NX$$

 $\Rightarrow Y = \frac{1}{1 - c_1} [c_0 + I + G + NX - c_1 T]$

- Some remarks
 - ▶ autonomous spending: $c_0 + I + G + NX c_1T$
 - ▶ multiplier: $1/(1-c_1) > 1$ ($0 < c_1 < 1$) autonomous spending $\uparrow \Rightarrow Y \uparrow$ more than one for one
- ► Example: $C = 500 + .5Y_D$, $Y_D = Y T$, T = 600, I = 300, G = 2000, and NX = 0

$$Y = 5000$$
, multiplier = 2

Goods Market Equilibrium

▶ 45°-line diagram or Keynesian cross

Goods Market Equilibrium (Cont'd)

Graphing Economic Recession

Paradox of thrift: short-run vs. long-run

Graphing Multiplier Effect

Example: Multiplier Effect

Round	Change in I	Change in C	Change in Y
1	\$100	\$0	\$100
2	\$0	\$75	\$75
3	\$0	\$56	\$56
4	\$0	\$42	\$42
÷	:	÷	÷

- **Example:** MPC = 0.75, $I \uparrow$ by \$100
- Calculate multiplier

$$\Delta Y = \$100 \times (1 + \mathsf{MPC} + \mathsf{MPC}^2 + \mathsf{MPC}^3 + \cdots)$$

$$\Rightarrow \quad \mathsf{multiplier} = \frac{\Delta Y}{\Delta I} = \frac{1}{1 - \mathsf{MPC}} = 4 \quad \mathsf{(why?)}$$

Higher MPC leads to higher multiplier

Effect of Price Level Change

- ▶ $P \uparrow (\downarrow) \Rightarrow$ real value of wealth $\downarrow (\uparrow) \Rightarrow C \downarrow (\uparrow)$
- ▶ $P \uparrow (\downarrow) \Rightarrow \text{exports} \downarrow (\uparrow), \text{ imports} \uparrow (\downarrow) \Rightarrow NX \downarrow (\uparrow)$
- ▶ $P \uparrow (\downarrow)$ with unchanged money supply $\Rightarrow i \uparrow (\downarrow) \Rightarrow I \downarrow (\uparrow)$

Aggregate Demand Curve: First Pass

Price Level	Equilibrium Real GDP
97	\$10.2 trillion
100	10.0 trillion
103	9.8 trillion

 Inverse relation between price level and real GDP, known as aggregate demand curve

Readings & Exercises

- Readings
 - ► HO: chapter 12
 - ► BJ: lecture 2 (sec. 1, 2, 3) (supplementary)
- Exercises
 - ► HO: problem 1.4, 2.11 & 3.12 (in-class quiz), 4.9, 4.13, D12.1