Open Science Toolbox:

Leveraging Methodological Reforms to Accelerate Research

ICPS Paris March 2019

ALL SLIDES: https://osf.io/tve2q/

2019-03-08 (updated: 2019-03-09)

Investigating Variation in Replicability across Sample and Setting

Richard Klein

Univ. Grenoble Alpes

4/44

Theoretical concern

Theoretical concern

Why Most Published Research Findings
Are False
John P.A. Ioannidis

Journal of Personality and Social Psychology 2011, Vol. 100, No. 3, 407-425 © 2011 American Psychological Association 0022-3514/11/\$12.00 DOI: 10.1037/a0021524

Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect

Daryl J. Bem Comell University

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant

Joseph P. Simmons¹, Leif D. Nelson², and Uri Simonsohn¹

¹The Wharton School, University of Pennsylvania, and ²Haas School of Business, University of California, Berkeley

Evidence of a problem

- Reproducibility Project: Psychology (OSC, 2015)
 - ~40/100 replicated
- Social Sciences Replication Project (Camerer et al., 2018)
 - 13/21 replicated
- Multiple large-scale Registered Reports

Addressing the problem

Addressing the problem

- Many potential causes for replication failures
 - False positives
 - Incompetent replicators
 - Unknown moderators (imprecise theory?)
 - Contextual differences
 - o Etc.

Addressing the problem

- Many potential causes for replication failures
 - False positives
 - Incompetent replicators
 - Unknown moderators (imprecise theory?)
 - Contextual differences
 - o Etc.
- Solution depends on the cause

Addressing the problem

- Many potential causes for replication failures
 - False positives
 - Incompetent replicators
 - Unknown moderators (imprecise theory?)
 - Contextual differences
 - o Etc.
- Solution depends on the cause
- What should we expect of replications? What does replication "look like"? (statistically, practically)

11 / 44

Large collaborations of researchers replicating the same findings. Each project examines a different aspect of replication.

Large collaborations of researchers replicating the same findings. Each project examines a different aspect of replication.

• 5 "Many Labs" projects completed or in-progress.

Large collaborations of researchers replicating the same findings. Each project examines a different aspect of replication.

- 5 "Many Labs" projects completed or in-progress.
- I'm presenting Many Labs 2 (December)

Large collaborations of researchers replicating the same findings. Each project examines a different aspect of replication.

- 5 "Many Labs" projects completed or in-progress.
- I'm presenting Many Labs 2 (December)
- Same thing as Many Labs 1 (2014), but much bigger.

• **Goal:** Replicate studies all around the world, compare variation by context/population.

- **Goal:** Replicate studies all around the world, compare variation by context/population.
- Replicated 28 studies

- **Goal:** Replicate studies all around the world, compare variation by context/population.
- Replicated 28 studies
 - Selected for impact, diversity of content, possibility for variation across sites (more at osf.io/8cd4r/)

- **Goal:** Replicate studies all around the world, compare variation by context/population.
- Replicated 28 studies
 - Selected for impact, diversity of content, possibility for variation across sites (more at osf.io/8cd4r/)
 - Split across two study "packages" due to length

- **Goal:** Replicate studies all around the world, compare variation by context/population.
- Replicated 28 studies
 - Selected for impact, diversity of content, possibility for variation across sites (more at osf.io/8cd4r/)
 - Split across two study "packages" due to length
 - o Computerized in Qualtrics, random presentation order

- **Goal:** Replicate studies all around the world, compare variation by context/population.
- Replicated 28 studies
 - Selected for impact, diversity of content, possibility for variation across sites (more at osf.io/8cd4r/)
 - Split across two study "packages" due to length
 - o Computerized in Qualtrics, random presentation order
 - Each reviewed by original authors or other experts (Registered Report)

Many Labs 1 Map (2014)

Many Labs 2 Map (2018)

24/44

- 125 samples
- 36 countries
- 16 languages
- 15,305 participants

• 14/28 successful

• 14/28 successful

- 14/28 successful
- 21/28 smaller effect
- Med. original d = 0.60
- Med. replication d = 0.15

- 14/28 successful
- 21/28 smaller effect
- Med. original d = 0.60
- Med. replication d = 0.15
- (boring)

11/28 Q < .001Sig. variability

- 11/28 Q < .001
 - Sig. variability
- HOWEVER:
 - \circ 26/28 Tau \leq 0.1
 - Often 0

- 11/28 Q < .001
 - Sig. variability
- HOWEVER:
 - \circ 26/28 Tau \leq 0.1
 - Often 0
- Wait... what?

- 11/28 Q < .001
 - Sig. variability
- HOWEVER:
 - \circ 26/28 Tau \leq 0.1
 - Often 0
- Wait... what?
- Mostly sampling error
 - \circ N = ~80 per site

- Low variation across sample/context
 - Despite translation, culture, population differences

- Low variation across sample/context
 - Despite translation, culture, population differences
 - Not reasonable to assume sample moderators; test empirically

- Low variation across sample/context
 - Despite translation, culture, population differences
 - o Not reasonable to assume sample moderators; test empirically
 - Good news for global collaboration

- Low variation across sample/context
 - Despite translation, culture, population differences
 - o Not reasonable to assume sample moderators; test empirically
 - o Good news for global collaboration
- Furthers understanding of replication
 - o Informs power analysis (Kenny & Judd, 2019)

- Low variation across sample/context
 - Despite translation, culture, population differences
 - o Not reasonable to assume sample moderators; test empirically
 - Good news for global collaboration
- Furthers understanding of replication
 - Informs power analysis (Kenny & Judd, 2019)
- Replication rate aligns with other projects
 - Is this meaningful?

- Low variation across sample/context
 - Despite translation, culture, population differences
 - Not reasonable to assume sample moderators; test empirically
 - Good news for global collaboration
- Furthers understanding of replication
 - Informs power analysis (Kenny & Judd, 2019)
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly (and robust replicability is a feasible goal)
 - Failed replications =/= false positive

- Low variation across sample/context
 - Despite translation, culture, population differences
 - Not reasonable to assume sample moderators; test empirically
 - Good news for global collaboration
- Furthers understanding of replication
 - Informs power analysis (Kenny & Judd, 2019)
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly (and robust replicability is a feasible goal)
 - Failed replications =/= false positive
- Open data: https://osf.io/8cd4r/
 - CC0, free use

43 / 44

Thanks!

Special thanks to co-leads Fred Hasselman, Michelangelo Vianello, and Brian Nosek + 186 other co-authors.

Great time to get involved (cos.io/about/news/)

@raklein3 raklein22@gmail.com

