So simple, yet so effective

Ottavia M. Epifania University of Trento ottavia.epifania@unitn.it

Beyond Summer School

Table of contents I

- 1 Experiments with fully-crossed structures
- 2 A Classic of Psychometrics
- 3 Random Factors and Random Effects
- 4 Real data: Individual Differences

- Experiments with fully-crossed structures
 - An example: The SNARC effect
 - Scoring
- 2 A Classic of Psychometrics
 - Rasch-like parametrization of response times
- 3 Random Factors and Random Effects
 - Random structures
- 4 Real data: Individual Differences
 - GLMMs for accuracy
 - LMMs for log-time responses
 - Model comparison
 - Rasch-like estimates
 - Log-normal estimates

experiments with fully-crossed structures ●00000000	000000	00000000	000000000000000000000000000000000000000
An example: The SNARC effect			

An example: The SNARC effect

An example: The SNARC effect

Perceived on the left

Perceived on the right

An example: The SNARC effect

A sample of small numbers:

A sample of large numbers:

1, 2, 3, 4

6, 7, 8, 9

Two conditions:

The "natural" one (so-called *compatible* condition)

The "innatural" one (so-called incompatible condition)

 $t = \{1, 2, \dots, T\}$: Number of trials (condition \times stimulus \times respondent)

		Small Numbers				Large Numbers			
	Condition	1	2	3	4	6	7	8	9
Jane	Compatible	y_{cj1}	y_{cj2}	y_{cj3}	y_{cj4}	y_{cj6}	y_{cj7}	y_{cj8}	$\sum_{t=1}^{T} y_{cj}/T$
	Incompatible	y_{ij1}	y_{ij2}	y_{ij3}	y_{ij4}	y_{ij6}	y_{ij7}	y_{ij8}	$\sum_{t=1}^{T} y_{ij}/T$
Mario	Compatible	y_{cm1}	y_{cm2}	y_{cm3}	y_{cm4}	y_{cm6}	y_{cm7}	y_{cm8}	$\sum_{t=1}^{T} y_{cm}/T$
	Incompatible	y_{im1}	y_{im2}	y_{im3}	y_{im4}	y_{im6}	y_{im7}	y_{im8}	$\sum_{t=1}^{T} y_{im}/T$

Experiments with fully-crossed structures	A Classic of Psychometrics	Random Factors and Random Effects 00000000	Real data: Individual D
Scoring			

Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects 00000000	Real data: Individual E
Scoring			

$$s = \frac{\bar{X}_{\text{comp}} - \bar{X}_{\text{inc}}}{sd_{\text{pooled}}}$$

Person-level scores

$$s = \frac{\bar{X}_{\rm comp} - \bar{X}_{\rm inc}}{s d_{\rm pooled}}$$

Advantages

Ease of computation Ease of interpretation

Person-level scores

$$s = \frac{\bar{X}_{\text{comp}} - \bar{X}_{\text{inc}}}{sd_{\text{pooled}}}$$

Advantages

Ease of computation Ease of interpretation

- (Implicit) Assumptions
 - Being slow (less accurate) in one condition = being fast (or more accurate) in the opposite one: 0 means absence of bias
 - 2 All stimuli have the same impact (fixed effects)

A long tradition

i Respondents are random factors

Sampled from a larger population Need for acknowledging the sampling variability Results can be generalized to other respondents belonging to the same population

A long tradition

Respondents are random factors

Sampled from a larger population Need for acknowledging the sampling variability Results can be generalized to other respondents belonging to the same population

Stimuli/items are fixed factors

Taken to be entire population
There is no sampling variability
There is no need to generalize the

There is no need to generalize the results because the stimuli are the population

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

Linear Mixed Effects Models

Rasch model

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

Linear Mixed Effects Models

Rasch model

Rasch-like parametrization estimated with Linear Mixed Effects Models

Experiments with fully-crossed structures A Classic of Psychometrics Random Factors and Random Effects Real data: Individual I 000000000

Scoring

Sample-level differences:

Compatible and incompatible can be defined *a priori* (SNARC effect)

Individual differences:

Compatible and incompatible are defined within each respondent (Implicit Association Test)

- Experiments with fully-crossed structures
- An example: The SNARC effect
 - Scoring
- 2 A Classic of Psychometrics
 - Rasch-like parametrization of response times
- 3 Random Factors and Random Effects
 - Random structures
- 4 Real data: Individual Differences
 - GLMMs for accuracy
 - LMMs for log-time responses
 - Model comparison
 - Rasch-like estimates
 - Log-normal estimates

The Rasch Model

$$P(x_{ps}=1|\theta_p,b_s) = \frac{\exp(\theta_p - b_z)}{1 + \exp(\theta_p - b_z)}$$

 θ_p : Latent trait of person p

 $b_s\colon \text{``challenging''}$ power of stimulus s

A GLM for dichotmous responses

 $\begin{aligned} & \text{Logit link function } g: \\ & g(\eta_{ps}) = log\left(\frac{\mu_{ps}}{1-\mu_{ps}}\right) \\ & \text{Inverse } g^{-1} \end{aligned}$

$$g^{-1} = \frac{\exp(\eta_{ps})}{1+\exp(\eta_{ps})}$$

000000000 0000000 00000000 000000000000	Rasch-like parametrization of response tin	nes	
Experiments with fully-crossed structures A Classic of Psychometrics Random Factors and Random Effects Real data: Individual			000000000000000000000000000000000000000

Rasch-like parametrization of response times

Rasch-like parametrization of response times

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

$$au_p$$
: the speed of person p

 $\delta_s {:}\,$ the time intensity of stimulus s

Rasch-like parametrization of response times

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

 τ_p : the speed of person p

 $\delta_s \! : \!$ the time intensity of stimulus s

A linear model with an identity function!

$$P(\boldsymbol{x}_{ps} = 1 | \boldsymbol{\theta}_p, \boldsymbol{b}_s) = \frac{\exp(\boldsymbol{\theta}_p - \boldsymbol{b}_z)}{1 + \exp(\boldsymbol{\theta}_p - \boldsymbol{b}_z)}$$

GLM (inverse function)

$$P(x_{ps}=1) = \frac{\exp(\theta_p \,+\, b_s)}{1 + \exp(\theta_p \,+\, b_s)}$$

$$E(t_{ns}|\tau_{n},\delta_{s})=\delta_{s}- au_{n}+arepsilon$$

$$F(t \mid \sigma \quad \delta) = \delta + \sigma + c$$

- Experiments with fully-crossed structures
- An example: The SNARC effect
 - Scoring
- 2 A Classic of Psychometrics
 - Rasch-like parametrization of response times
- 3 Random Factors and Random Effects
 - Random structures
- 4 Real data: Individual Differences
 - GLMMs for accuracy
 - LMMs for log-time responses
 - Model comparison
 - Rasch-like estimates
 - Log-normal estimates

In a LM:

$$\eta = \mathbf{X}\beta$$

 \mathbf{X} : Model Matrix

 β : Coefficients

In a LM:

$$\eta = \mathbf{X}\beta$$

 \mathbf{X} : Model Matrix

 β : Coefficients

Needs to be extended:

$$\eta = \mathbf{X}\beta + \mathbf{Z}\mathbf{d}$$

Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects ○○●○○○○○	Real data: Individual D
Random structures			

The maximal model

Address all the possible sources of random variability that can be expected

The models that are self for ones aim

Given the structure of the experiments:

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Less common: Investigate the changes in the functioning of the stimuli between the associative conditions

Index	Meaning	Variable
$p = 1, \dots, P$ $s = 1, \dots, S$ $c \in \{0, 1\}$ i	Respondent Stimulus Associative condition Trial	respondents stimuli condition

Accuracy:

LMM

GLMM y = [0, 1] $y = [0, +\infty]$ (log-transformed)

Log-time response

$$\varepsilon \, \, \mathcal{N}(0,\sigma^2)$$

Model 1

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \alpha_s[i]$$

1me4 notation

y ~ 0 + condition + (1|stimuli) + (1|respondents)

Rasch-like parametrization

	GLMM	LMM
respondents stimuli	$egin{pmatrix} heta_p \ b_s \ \end{matrix}$	$\begin{matrix}\tau_p\\\delta_s\end{matrix}$

Model 2

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \beta_s[i]c_i$$

1me4 notation

Rasch-like parametrization

	GLMM	LMN
respondents stimuli	$\begin{matrix}\theta_p\\b_{sc}\end{matrix}$	$\begin{matrix}\tau_p\\\delta_{sc}\end{matrix}$

Model 3

i Mathematical Notation

$$y = \beta_c X_c + \beta_p[i] c_i + \alpha_s[i]$$

1me4 notation

y ~ 0 + condition + (1|stimuli) + (0+condition|respondents)

Rasch-like parametrization

	GLMM	LMN
respondents stimuli	$\begin{matrix}\theta_{pc}\\b_s\end{matrix}$	$\begin{matrix} \tau_{pc} \\ \delta_s \end{matrix}$

All models are wrong...

Find the useful model via model comparison: AIC and BIC

The lower the value, the better the model

AIC, BIC, and model complexity:

Total number of parameters: β and Γ NOT the levels in d

Model 2 and Model 3: Same complexity, different focus

The chosen model is the least wrong model given the models considered: Relativity applies everywhere

- Experiments with fully-crossed structures
- An example: The SNARC effect
- Scoring
- 2 A Classic of Psychometrics
 - Rasch-like parametrization of response times
- 3 Random Factors and Random Effects
 - Random structures
- 4 Real data: Individual Differences
 - GLMMs for accuracy
 - LMMs for log-time responses
 - Model comparison
 - Rasch-like estimates
 - Log-normal estimates

The Implicit Association Test

12 Object stimuli

White people faces

Black people faces

16 Attribute stimuli

Positive attributes

Good, laughter, pleasure, glory, peace, happy, joy, love

Negative attributes

Evil, bad, horrible, terrible, nasty, pain, failure, hate

Get set

library(lme4) # Fitting LMMs
library(ggplot2) # Plots

The data

```
respondent condition
                         stimuli accuracy latency
1
              Whitegood
                             hate
                                               1224
             Whitegood
                             bf14
                                               5160
3
                                               1214
             Whitegood laughter
             Whitegood
                             bf56
                                               1143
5
              Whitegood
                             evil
                                                827
                              wf3
6
             Whitegood
                                               1859
```

Number of trials \times condition \times respondent:

table(data\$respondent, data\$condition)

	Whitebad	Whitegood
1	60	60
2	60	60
3	60	60
4	60	60
5	60	60
6	60	60

GLMMs for accuracy		
experiments with fully-crossed structures	OOOOOO	00000000000000000000000000000000000000

GLMMs for accuracy

```
Experiments with fully-crossed structures A Classic of Psychometrics Random Factors and Random Effects Real data: Individual I
                                                                                           GLMMs for accuracy
```

```
Model 1: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]})
accuracy1 = glmer(accuracy ~ 0 + condition + (1|stimuli) + (1|respondent),
                      data = data.
                      family = "binomial")
```

Model 2: $y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]}c_i)$ accuracy2 = glmer(accuracy ~ 0 + condition + (0 + condition|stimuli) + (1 respondent), data = data. family = "binomial")

Model 3: $y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]}c_i)$ accuracy3 = glmer(accuracy ~ 0 + condition + (1|stimuli) + (0 + condition respondent), data = data. familv = "binomial")

Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects 00000000	Real data: Individual D
LMMs for log-time responses			

LMMs for log-time responses

Model 1: $y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i$ logtime1 = lmer(log(latency) ~ 0 + condition + (1|stimuli) + (1|respondent), data = data, REML = FALSE)

Model 2:
$$y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]} c_i + \varepsilon_i$$
 logtime2 = lmer(log(latency) ~ 0 + condition + (0 + condition|stimuli) +

$$(1|\text{respondent}),$$

$$\text{data} = \text{data},$$

$$\text{REML} = \text{FALSE})$$

$$\text{Model 3: } y_i = \alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]} c_i + \varepsilon_i$$

$$\text{logtime3} = \text{lmer}(\text{log}(\text{latency}) \sim 0 + \text{condition} + (1|\text{stimuli}) + (0 + \text{condition}|\text{respondent}),$$

$$\text{data} = \text{data},$$

$$\text{REML} = \text{FALSE})$$

	Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects	Real data: Individual D
7	Model comparison			
	Woder companson			

Important!

The use of the anova() function is just for the convenience of having all the information on the same page!

anova(accuracy1, accuracy2, accuracy3)

```
Data: data
Models:
accuracy1: accuracy ~ 0 + condition + (1 | stimuli) + (1 | respondent)
accuracy2: accuracy ~ 0 + condition + (0 + condition | stimuli) + (1 | respondent)
accuracy3: accuracy ~ 0 + condition + (1 | stimuli) + (0 + condition | respondent)
                 AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
         4 4144.3 4172.1 -2068.1 4136.3
accuracv1
accuracy2 6 4141.3 4183.1 -2064.7 4129.3 6.9271 2
                                                         0.03132 *
accuracy3 6 4145.2 4187.0 -2066.6 4133.2 0.0000 0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


The use of the anova() function is just for the convenience of having all the information on the same page!

```
anova(logtime1, logtime2, logtime3)
```

Useful Models:

GLMMs Model~2 θ_p b_{WGRB} and b_{RGWB}

The IAT effect is mostly due to variations in the *stimuli functioning* between conditions, while the performance of the respondents seems unaltered

Results should be interpreted together!

The IAT effect is mostly due to variations in the *performance of the respondents* between conditions, while the functioning of the stimuli appears not affected

Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects	Real data: Individual E
Rasch-like estimates			

Rasch-like estimates

Rasch-like estimates

 θ_{I}

Rasch-like estimates

b_{WGBB} and b_{WGBB}

Rasch-like estimates

Experiments with fully-crossed structures 000000000	A Classic of Psychometrics	Random Factors and Random Effects 00000000	Real data: Individual D
Log-normal estimates			

$\tau_{\rm WGBB}$ and $\tau_{\rm BGWB}$

8

