

1DI1107 - Podstawy informatyki

Mini Projekt 2

dr inż. Konrad Markowski konrad.markowski@pw.edu.pl

Politechnika Warszawska

Definicja Grafu

Graf (ang. graph) jest strukturą danych składającą się z dwóch zbiorów:

- zbioru wierzchołków V (ang. vertices),
- zbioru krawędzi E (ang. edges),

co matematycznie zapisujemy w postaci uporządkowanej pary:

$$G = (V, E)$$

 $V = \{v_1, v_2, ..., v_n\}$ – zbiór n ponumerowanych wierzchołków,

$$E = \{e_1, e_2, \dots e_m\}$$
 -zbiór m ponumerowanych krawędzi.

Każda krawędź jest parą (w grafie skierowanym parą uporządkowaną) wierzchołków grafu połączonych tą krawędzią:

$$E = \{ (u, v) : u, v \in V \}$$

W grafie zwykłym mamy wierzchołki oraz krawędzie, które łączą ze sobą pary wierzchołków grafu:

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5\}$$

$$\mathbf{e_1} = (\mathbf{v_1}, \mathbf{v_2})$$
 $\mathbf{e_2} = (\mathbf{v_2}, \mathbf{v_3})$
 $\mathbf{e_3} = (\mathbf{v_3}, \mathbf{v_5})$
 $\mathbf{e_4} = (\mathbf{v_1}, \mathbf{v_5})$
 $\mathbf{e_5} = (\mathbf{v_4}, \mathbf{v_5})$

Dane dwa wierzchołki mogą być połączone ze sobą za pomocą więcej niż jednej krawędzi, które nazywamy krawędzią wielokrotną (ang. multi-edge).

$$G = (V, E)$$

 $V = \{v_1, v_2\}, E = \{e_1, e_2\}$

$$e_1 = (v_1, v_2);$$
 $e_2 = (v_1, v_2)$
 $e_1, e_2 - krawędź wielokrotna$

Wierzchołek może łączyć się krawędzią z samym sobą. Otrzymujemy wtedy tzw. pętlę (ang. loop).

$$G = (V, E)$$
 $V = \{v_4\}; E = \{e_7\}$
 $e_7 = (v_4, v_4)$

Graf zawierający pętle lub krawędzie wielokrotne nazywamy <u>multigrafem</u>.

e₇ – pętla

- Krawędź, którą można przebywać tylko w określoną stronę, nazywa się krawędzią skierowaną (ang. directed edge). Krawędzie skierowane oznaczamy strzałkami.
- Graf zawierający krawędzie skierowane nazywamy grafem skierowanym (ang. directed graph) lub w skrócie digrafem (ang. digraph).

G = (V, E)
V = {
$$v_1, v_2, v_3, v_4, v_5$$
}
E = { $e_1, e_2, e_3, e_4, e_5, e_6$ }

$$egin{aligned} e_1 &= (v_1, v_2) \ e_2 &= (v_2, v_1) \ e_3 &= (v_2, v_3) \ e_4 &= (v_3, v_5) \ e_5 &= (v_5, v_1) \ e_6 &= (v_5, v_4) \end{aligned}$$

- Z krawędziami grafu mogą być związane dodatkowe wartości, np. pokonanie drogi z jednego miasta do drugiego może wymagać określonej ilości czasu lub energii.
- Wartości te nazywamy wagami (ang. weight), a graf posiadający takie krawędzie nazywamy grafem ważonym (ang. weighted graph).

G = (V, E)
V = {
$$v_1, v_2, v_3, v_4, v_5$$
}
E = { e_1, e_2, e_3, e_4, e_5 }

$$egin{aligned} e_1 &= (v_1, v_2, w_1) \ e_2 &= (v_2, v_3, w_2) \ e_3 &= (v_3, v_5, w_3) \ e_4 &= (v_1, v_5, w_4) \ e_5 &= (v_4, v_5, w_5) \end{aligned}$$

- Z krawędziami grafu mogą być związane dodatkowe wartości, np. pokonanie drogi z jednego miasta do drugiego może wymagać określonej ilości czasu lub energii.
- Wartości te nazywamy wagami (ang. weight), a graf posiadający takie krawędzie nazywamy grafem ważonym (ang. weighted graph).

G = (V, E)
V = {
$$v_1, v_2, v_3, v_4, v_5$$
}
E = { e_1, e_2, e_3, e_4, e_5 }

$$egin{aligned} e_1 &= (v_1, v_2, w_1) \ e_2 &= (v_2, v_3, w_2) \ e_3 &= (v_3, v_5, w_3) \ e_4 &= (v_1, v_5, w_4) \ e_5 &= (v_4, v_5, w_5) \end{aligned}$$

Sposoby reprezentacji grafów

Chcąc realizować algorytmy grafowe, będziemy zmuszeni wprowadzać różne grafy do pamięci komputera:

- Macierz sąsiedztwa
- Macierz incydencji
- Lista sąsiedztwa

Macierz sąsiedztwa

- Graf reprezentujemy za pomocą macierzy kwadratowej A o stopniu n, gdzie n oznacza liczbę wierzchołków w grafie.
- Macierz tą nazywamy macierzą sąsiedztwa (ang. adjacency matrix). Odwzorowuje ona połączenia wierzchołków krawędziami.
- Komórka A[i, j], która znajduje się w i-tym wierszu i j-tej kolumnie odwzorowuje krawędź łączącą wierzchołek startowy v_i z wierzchołkiem końcowym v_i .

• Przykład 1: Graf skierowany

- Jeśli A [i, j] ma wartość 1, to dana krawędź istnieje.
- Jeśli A [i,j] ma wartość 0, to wierzchołek v_i nie łączy się krawędzią z wierzchołkiem v_i .

• Przykład 2: Graf nieskierowany

Dla grafu nieskierowanego macierz sąsiedztwa \mathbf{A} jest symetryczna względem głównej przekątnej, ponieważ jeśli istnieje krawędź od v_i do v_j (\mathbf{A} [\mathbf{i} , \mathbf{j}] = 1), to również musi istnieć krawędź w kierunku odwrotnym, od v_i do v_i (\mathbf{A} [\mathbf{j} , \mathbf{i}] = 1).

Macierz incydencji

- Macierz incydencji (ang. incidence matrix) jest macierzą A o wymiarze n × m, gdzie n oznacza liczbę wierzchołków grafu, a m liczbę jego krawędzi.
- Każdy wiersz tej macierzy odwzorowuje jeden wierzchołek grafu.
- Każda kolumna odwzorowuje jedną krawędź.

Graf skierowany:

Zawartość komórki A [i,j] określa powiązanie (incydencję) wierzchołka v_i z krawędzią e_i w sposób następujący:

$$A[i, j] = \begin{cases} 0, \text{ jeśli } v_i \text{ nie należy do } e_j \\ 1, \text{ jeśli } v_i \text{ jest początkiem } e_j \\ -1, \text{ jeśli } v_i \text{ jest końcem } e_j \end{cases}$$

Graf nieskierowany:

Zawartość komórki A [i,j] określa powiązanie (incydencję) wierzchołka v_i z krawędzią e_i w sposób następujący:

$$A[i,j] = \begin{cases} 0, \text{ jeśli } v_i \text{ nie należy do } e_j \\ 1, \text{ jeśli } v_i \text{ należy do } e_j \end{cases}$$

Lista sąsiedztwa

- Do reprezentacji grafu wykorzystujemy tablicę n elementową A, gdzie n oznacza liczbę wierzchołków.
- · Każdy element tej tablicy jest listą.
- Lista reprezentuje wierzchołek startowy.
- Na liście są przechowywane numery wierzchołków końcowych, czyli sąsiadów wierzchołka startowego, z którymi jest on połączony krawędzią.
- Tablica ta nosi nazwę list sąsiedztwa (ang. adjacency lists).

Graf skierowany:

Graf nieskierowany:

