Lista 4: pontos críticos e otimização

1 de abril de 2025

- 1. Seja $A \in M_{n \times n}(\mathbb{R})$ uma matriz simétrica e $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ seus autovalores. Mostre que A é definida positiva (resp. definida negativa) se, e somente se, $\lambda_i > 0$ (resp. $\lambda_i < 0$) para todo $i = 1, \ldots, n$.
- 2. Seja $f(x,y) = (y-x^2)(y-2x^2)$. Mostre que a origem é um ponto crítico degenerado. Mostre que a restrição de f a qualquer reta pela origem tem mínimo local na origem, mas a origem $n\tilde{ao}$ é um mínimo local de f. [Dica: considere os conjuntos onde f > 0 e f < 0.]
- 3. Seja $U \subset \mathbb{R}^2$ um aberto, $f \in C^2(U)$ e $p \in U$ um ponto crítico de f. Sejam $a = \frac{\partial^2 f}{\partial x^2}(p)$, $b = \frac{\partial^2 f}{\partial x \partial y}(p)$ e $c = \frac{\partial^2 f}{\partial y^2}(p)$. Mostre que:
 - (a) Se $ac b^2 < 0$, então p é um ponto de sela de f.
 - (b) Se $ac b^2 > 0$ e a > 0, então p é um ponto de mínimo local de f.
 - (c) Se $ac b^2 > 0$ e a < 0, então p é um ponto de máximo local de f.

O que você pode dizer sobre o caso $ac - b^2 = 0$?

- 4. Determine os extremos locais e globais de $f(x,y) = xy xy^2 + x^2y$.
- 5. Estude os pontos críticos de $f(x, y, z) = (x + z^2)e^{x(y^2 + z^2 + 1)}$ e determine se f tem extremos locais ou globais.
- 6. (Qualificação 2006, 2013) Seja $M_{n\times n}(\mathbb{R})\cong\mathbb{R}^{n^2}$ o espaço das matrizes reais $n\times n$. Mostre que o máximo da função $f:\mathbb{R}^{n^2}\to\mathbb{R}$ definida por $f(x)=\det(x)$ restrita à esfera $\sum_{i,j=1}^n x_{ij}^2=n$ é atingido por uma matriz ortogonal e vale 1.
- 7. (Qualificação 2010, 2013)
 - (a) Seja $U \subset \mathbb{R}^n$ um aberto e $f: U \to \mathbb{R}$ uma função de classe C^2 . Dizemos que um ponto crítico $a \in U$ é $n\tilde{a}o$ -degenerado quando a matriz hessiana de f em a é invertível. Mostre que, se $a \in U$ é um ponto crítico não-degenerado, então a é um ponto crítico isolado.
 - (b) Mostre que a recíproca do resultado contido no item anterior é falsa, mesmo no caso em que f não é constante.
- 8. (Qualificação 2012) Seja $U\subset \mathbb{R}^n$ um aberto convexo.
 - (a) Mostre que, se f é convexa de classe C^2 , então sua forma quadrática hessiana é não-negativa em todos os pontos de U (isto é, $\langle Hf(x)v,v\rangle\geq 0$ para todo $x\in U$ e todo $v\in\mathbb{R}^n$). [Sugestão: considere a função $\varphi(t)=f(x+tv)$ com $x\in U, x+v\in U$ e $t\in[0,1]$. Depois, use o fato que, no caso n=1 e f de classe C^2 , ser convexa é equivalente a $f''(t)\geq 0$ para todo t em U.]
 - (b) Mostre que, se f é convexa e de classe C^2 , então todo ponto crítico de f é um ponto de mínimo global.

¹Dica (não estava na qualificação): obtenha primeiro a equação $\nabla f(a+v) = Hf(a)v + o(\|v\|)$, quando $v \to 0$.

- 9. (Qualificação 2009) Seja Ω um aberto convexo em \mathbb{R}^n e $F:\Omega\to\mathbb{R}$ uma função de classe C^2 , estritamente convexa em Ω , isto é, uma função cuja hessiana é definida positiva em todo ponto de Ω . Mostre que a aplicação $\nabla F:\Omega\to\mathbb{R}^n$ é injetiva.
- 10. Determine os extremos locais da função $f(x, y, z) = x \ln(x) + y \ln(y) + z \ln(z)$ restrita ao plano x + y + z = 2025.
- 11. (Qualificação 2018) Seja $S(0,r)=\{x\in\mathbb{R}^3:x_1^2+x_2^2+x_3^2=r^2\}$ a esfera de raio r centrada na origem.
 - (a) Calcule o maior valor da função $f(x) = x_1^2 x_2^2 x_3^2$ com $x \in S(0,r)$.
 - (b) Mostre que, se a, b, c são números reais não-negativos, então $(abc)^{1/3} \le (a+b+c)/3$.
- 12. (Qualificação 2019) Dados $A=\{(x,y)\in\mathbb{R}^2:x>0,y>0\}$ e $p,q\in\mathbb{R}$ positivos tais que 1/p+1/q=1, sejam $f,g:A\to\mathbb{R}$ definidas por

$$f(x,y) = \frac{x^p}{p} + \frac{x^q}{q}, \qquad g(x,y) = xy.$$

- (a) Sejam c > 0 (uma constante positiva arbitrária) e (x_c, y_c) o ponto de mínimo da função f restrita à curva definida pela equação g(x, y) = c. Usando multiplicadores de Lagrange, mostre que $x_c^p = y_c^q$.
- (b) Usando o item anterior, mostre que $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$ para todos $x, y \geq 0$.
- 13. (Qualificação 2023) Ache os valores máximo e mínimo de z onde (x,y,z) satisfazem aos vínculos $x^2+y^2=z^2+1$ e x+y+2z=0.
- 14. Determine os extremos locais da função $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ dada pelo produto interno euclidiano $f(x,y) = \langle x,y \rangle$, restrita à esfera unitária $||x||^2 + ||y||^2 = 1$. Deduza a desigualdade de Schwarz.