Computer Network Architecture 计算机网络体系结构

沈航

南京工业大学

Email: hshen@njtech.edu.cn

The TCP/IP Architecture

(continued)

TCP/IP Architecture

- The TCP/IP Architecture defined by IETF
- Transparent Design
 - **♠** Everything over IP
 - **♦ IP over Everything**
 - **♦** Best-effort

OSI Model versus TCP/IP

Sending a packet from Argon to Neon **Application Application** Presentation **Presentation Session Session** Transport Transport Network Network Physical Physical argon.tcpip-lab.edu neon.tcpip-lab.edu Neon Argon "Argon" "Neon" 128.143.137.144 128.143.71.21 router137.tcpip-lab.edu router71.tcpip-lab.edu "Router137" "Router71" 128.143.137.1 128.143.71.1 0000000

Computer Network Architecture

4

30, 2025

Sending a packet from Argon to Neon

Layers in the Example

TCP 传输控制协议

TCP is a connection-oriented protocol

argon.tcpiplab.edu 128.143.137.144

October 30, 2025

lab.edu 128.143.137.1

router71.tcpip-

router137.tcpiplab.edu 128.143.71.1

00:e0:f9:23:a8:20 etwork Architecture

neon.tcpip-lab.edu 128.143.71.21

TCP (Transmission Control Protocol) TCP 传输控制协议

- TCP was specifically designed to provide a reliable end-to-end byte stream over an unreliable IP networks;
- TCP provides full duplex communication, with Flow control and Congestion control

TCP Connection Establishment

Three way handshake:

Step 1: client host sends TCP SYN segment to server with initial seq number, but no data

Step 2: server host receives SYN, replies with SYN/ACK segment

Step 3: client receives SYN/ACK, replies with ACK segment, which may contain data

Introduction to TCP

- How to convert an unreliable connection into a reliable connection:
 - TCP numbers each segment and uses an ARQ protocol to recover lost segments.
 - The sliding window protocol滑动窗口协议 is used for flow control.
 - Some versions of TCP implement *Go Back N* and other versions implement *Selective Repeat*.

The TCP Protocol

- The basic protocol used by TCP entities is the Sliding Window Protocol滑动窗口协议.
- To provide reliable transmission, the TCP must be robust enough in the face of many kinds of failures, and deal with many unexpected events.

Congestion

Load (Packets sent)

When too much traffic is offered, congestion sets in and performance degrades sharply.

TCP Congestion Control 拥塞控制

- Congestion: informally: "too many sources sending too much data too fast for *network* to handle"
- Goal of Congestion Control: limit senders as needed to ensure load on the network is "reasonable"

Congestion Control拥塞控制&Flow Control流量控制

Congestion Control拥塞控制&Flow Control流量控制

Flow control relates to the point-to-point traffic between a given sender and a given receiver. Its job is to make sure that a fast sender cannot continually transmit data faster than the receiver is able to absorb it.

Congestion Control拥塞控制 & Flow Control流量控制

Flow control frequently involves some direct feedback from the receiver to the sender to tell the sender how things are doing at the other end.

Congestion Control拥塞控制&Flow Control流量控制

Congestion control has to do with making sure the subnet is able to carry the offered traffic.

Congestion Control拥塞控制&Flow Control流量控制

It is a global issue, involving the behavior of all the hosts, all the routers, the store-andforwarding processing within the routers, and all the other factors that tend to diminish the carrying capacity of the subnet.

Background: Congestion control

- In 1988, Van JACOBSON proposed first congestion control algorithm*
- Since then, many new versions: Tahoe, Reno, New-Reno, SACK, Vegas, ...

^{*}Van JACOBSON, "Congestion Avoidance and Control", Proceedings of ACM SIGCOMM, pp. 314-329, Stanford, CA, USA, 1988.

General Principles of Congestion Control

Two types of solutions:

- Open loop开环: try to solve the problem by good design, to make sure it never occurs.
- Closed loop闭环: is based on the concept of a feedback loop反馈环路.

Closed loop Congestion Control

- 1. Monitor the system.
 - Detect when and where congestion occurs.探测什么时间, 什么地方发生拥塞。
- 2. Pass information to where action can be taken.
- 3. Adjust调整 system operation to correct the problem.

Indication of Network Congestion

- Packet drops due to lack of buffer space
- average queue lengths /
- the number of packets that time out and are retransmitted /
- ** the average packet delay /

Random Early Detection (RED)* 随机早期预测

- Early random drop随机早期丢弃
 - rather than wait for queue to become full, drop each arriving packet with some *drop probability* whenever the queue length exceeds some *drop level*

Compute average queue length

MaxThreshold MinThreshold

Aval en

October 30, 2025 AvgLen 27

Two queue length thresholds if AvgLen <= MinThreshold then enqueue the packet

October 30, 2025 28

Two queue length thresholds if MinThreshold < AvgLen < MaxThreshold then calculate probability P drop arriving packet with probability P

October 30, 2025 29

Two queue length thresholds if MaxThreshold <= AvgLen then drop arriving packet

October 30, 2025 30

RED Details (cont)

a) Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/
(MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

b) Drop Probability Curve

Tuning RED

- Probability of dropping a particular flow's packet(s) is roughly proportional to the share of the bandwidth that flow is currently getting
- MaxP is typically set to 0.02, meaning that when the average queue size is halfway between the two thresholds, the router drops roughly one out of 50 packets.

Tuning RED

If traffic is bursty, then MinThreshold should be sufficiently large to allow link utilization to be maintained at an acceptably high level.

Tuning RED

- Difference between two thresholds should be larger than the typical increase in the calculated average queue length in one RTT;
- setting MaxThreshold to twice MinThreshold is reasonable for traffic on today's Internet.

TCP Sequence Number Plot

- There is a beautiful way to plot and visualize the dynamics of TCP behaviour
- Plot packet events (data and acks) as points in 2-D space, with time on the horizontal axis, and sequence number on the vertical axis
- **Example:** Consider a 14-packet transfer

```
Key: X Data Packet
      + Ack Packet
                          X
                         \mathbf{X}^{-}
                         X
                         X
                 X
                X
                X
                X
  X
```

So What?

• What can it tell you?

■ Everything!!!◎

TCP 101 (Cont'd)

• What happens when a packet loss occurs?

- Quiz Time...
 - Consider a 14-packet Web document
 - For simplicity, consider only a single packet loss


```
Key: X Data Packet
    + Ack Packet
                    X
                    X
                    X
             X
             X
             X
             X
 X
```



```
Key: X Data Packet
    + Ack Packet
                   XX
                    X
                    X
             X
             X
             X
 X
```



```
Key: X Data Packet
     + Ack Packet
              X
 X
```

```
Key: X Data Packet
     + Ack Packet
               X
 X
```



```
Key: X Data Packet
     + Ack Packet
  X
```

TCP 101 (Cont'd)

- Main observation:
 - "Not all packet losses are created equal"
- Losses early in the transfer have a huge adverse impact on the transfer latency
- Losses near the end of the transfer always cost at least a retransmit timeout
- Losses in the middle may or may not hurt, depending on congestion window size at the time of the loss