Precalculus

Me. I am Him.

11/28/2022

Contents

Chapter 1		Page 1
Chapter 2		Page 2
Chapter 3		Page 3
3.1	Properties of functions and Complex Zeros 3.1 - Completing the square — 3	3
Chapter 4		Page 5
4.1	4: Composite Functions — 5 • — 5 • Exponential Functions — 5	5
4.2	Logarithmic Functions	8

List of Figures

	_																												
<i>1</i> 1	$\log_{10} x$																												10
T.1	10510 A	 		•	 •	•	 •		•		•	•	•		•	•		 •	•	•	•		•	•	•	 	 	•	T

Are You Prepared? 1.0.1: Yeet2

1

3.1 Properties of functions and Complex Zeros

3.1.1 3.1 - Completing the square

Standard: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, otherwise known as the quadratic formula. If the inside of the quadratic is < 0, there are no x-intercepts. If the inside of the quadratic is = 0, there is exactly one x-intercept. If the inside of the quadratic is > 0, there are exactly two x-intercepts. Vertex: Plug in 0 for y and solve

4.1 4: Composite Functions

4.1.1

Note:-

11/28/2022 - Didn't really do much. Just reviewed what $f \cdot g$ or f(g(x)) was.

4.1.2

4.1.3 Exponential Functions

Definition 4.1.1: Are you prepared? MAKE NEW COMMAND

- $4^3 = 8$
- $\bullet 8^{\frac{2}{3}} = 4$
- $3^{-2} = \frac{1}{9}$

Note:-

In a^n , a is known as the base whereas n is known as the exponent, index, or power.

Note:-

Law of Exponents:

- (1) $a^m \cdot a^n = a^{m+n}$ Example: $3^2 \cdot 3^5 = 3^{2+5} = 3^7 = 2187$
- (2) $(a^m)^n = a^{mn}$ Example: $(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$
- (3) $(ab)^m = a^m b^m$ Example: $(5x)^3$
- (4) $1^n = 1$ Example: $1^{1001} = 1$
- (5) $a^{-n} = \frac{1}{a^n}$ Example: $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$
- (6) $a^0 = 1$ Example: $7^0 = 1$
- (7) $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ Example: $8^{\frac{2}{3}} = \sqrt[3]{8^2} = (\sqrt[3]{8})^2 = 2^2 = 4$

Definition 4.1.2: Exponential Function

A function of the form $f(x) = a^x$ where x is a positive real number (a>0) and $a \ne 1$. The domain of f is \mathbb{R}

Example 4.1.1 (2: Graph the exponential function: $f(x) = 2^x$)

Note:-

Properties of the Exponential Function: $f(x) = a^x$, where a > 1

- 1. The domain is the set of all real numbers. The range is the set of all positive real numbers.
- 2. There are no x-intercepts. The y-intercept is 1.
- 3. The x-axis (y=0) is a horizontal asymptote as $x \to -\infty$
- 4. The function is an increasing function and is one-to-one.
- 5. The graph of f contains the points (0,1),(1,a), and (-1,1/a).
- 6. The graph of f is smooth and continuous, with no corners or gaps.

Note:-

Properties of Exponential Function: $f(x) = a^x$, where 0 < x < 1.

- 1. The domain is the set of all real numbers; the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.

- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$.
- 4. The function is an decreasing function and is one-to-one.
- 5. The graph of f contains the points (0, 1), (1, a), and (-1, 1/a).
- 6. The graph of f is smooth and continuous, with no corners or gaps.

Example 4.1.3 (Graph $f(x) = 2^{-x} - 3$ and determine the domain, range, and horizontal asymptote of f.)

- Domain: $x|x \in \mathbb{R}$ or $[-\infty, \infty]$
- Range: y|y>-3 or $[-3,\infty]$
- Horizontal Asymptote: y = -3

Example 4.1.4 (Explain the transformation of g(x) from $f(x) = e^x$)

- $g(x) = -e^{x-3}$
- $g(x) = 3e^{-x} 5$

Example 4.1.5 (6: Solve $3^{x+1} = 81$)

- $3^{x+1} = 3^4$
- x + 1 = 4
- $\bullet \ x = 3$

Example 4.1.6 (7: Solve $e^{-x^2} = (e^{x^2} \cdot \frac{1}{e^3})$)

- $\bullet \ e^{-x^2} = e^{2x} \cdot e^{-3}$
- $e^{-x^2} = e^{2x-3}$
- $\bullet -x^2 = 2x 3$
- $x^2 + 2x 3$
- $\bullet (x+3)(x-1) = 0$
- x = -3, 1

Example 4.1.7 (8: Between 9 AM and 10 PM cars arrive at burger king's drive-thru at the rate of 12 cars per hour (0.2 cars per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 9 PM)

$$F(t) = 1 - e^{-2t}$$

- (a) 63%
- (b) 99.7%
- (c) graph
- (d) other thing

4.2 Logarithmic Functions

Definition 4.2.1: Logarithmic Function:

The opposite to an exponential function. The logarithmic function to the base a, where a>0 and $a\neq 0$, is denoted and defined by $y=\log_x x$ if and only if $x=a^y$

Note:-

You can remember the format by thinking log-base-answer-exponent.

Example 4.2.1 (2: Change each exponential expression to an equivalent expression involving a logarithm.)

 $1. 1.2^3 \rightarrow$

Example 4.2.2 (3: Change each logarithmic expression to an equivalent expression involving an exponent.)

1.
$$\log_a 4 = 5 \to a^5 = 4$$

2.
$$\log_b e = -3 \to b^{-3} = e$$

3.
$$\log_3 5 = c \to 3^c = 5$$

Theorem 4.2.1

Get that exponential theorem from slides

Example 4.2.3 (4: Find he exact value of:)

1.
$$\log_2 16 = x \to x = 4$$

2.
$$\log_3 \frac{1}{27} = x \rightarrow x = -3$$
 Convert to exponential then use the rules of exponents.

3.
$$\log_4 2 = x \to x = \frac{1}{2}$$

Theorem 4.2.2 Determine the Domain of a logarithmic function:

- Domain of the logarithmic function = range of the exponential function = $(0, \infty)$

8

- Range of the logarithmic function = domain of the exponential function = $(-\infty, \infty)$

Example 4.2.4 (5: Find the domain of each logarithmic function:)

1.
$$f(x) = \log_2(x+3) \rightarrow x+3 > 0$$

•
$$x > -3 \text{ or } (-3, \infty)$$

2.
$$g(x) = \log_b(\frac{1+x}{1-x}) \to \frac{1+x}{1-x} > 0$$

• $x \neq 1, -1$. Now use a number line to find out where it applies. In this case it is -1 < x < 1 or (-1,1) or $x|x \neq 1, -1$

3.
$$h(x) = \log_{\frac{1}{2}}|x| \to |x| > 0$$

• **Domain** = \mathbb{R} where $x \neq 0$, or All Real Numbers where $x \neq 0$, or $x \mid x \neq 0$

Thanks for reading

