МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (Государственный технический университет)

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

по курсам

«ТЕОРИЯ ОПТИМИЗАЦИИ u ЧИСЛЕННЫЕ МЕТОДЫ»

«МЕТОДЫ ОПТИМИЗАЦИИ»

АЛГОРИТМЫ МЕТОДОВ БЕЗУСЛОВНОЙ МИНИМИЗАЦИИ, РЕАЛИЗОВАННЫЕ В ЛАБОРАТОРНОМ ПРАКТИКУМЕ

С.Ю. Лунева

Москва, 2004

Содержание

Методы первого порядка	2
(1) Метод градиентного спуска	2
(2) Метод градиентного наискорейшего спуска	4
(3) Метод покоординатного спуска	6
(4) Метод Гаусса-Зейделя (наискорейшего покоординатного спуска)	7
(5) Метод сопряженных градиентов	8
Методы второго порядка	10
(6) Метод Ньютона	10
(7) Метода Ньютона-Рафсона	11
Методы нулевого порядка	12
(8) Метод конфигураций (Хука-Дживса)	12
(9) Метод Нелдера-Мида (деформируемого многогранника)	14
(10) Метод случайного поиска (адаптивный метод случайного спуска)	17

Методы первого порядка

(1) Метод градиентного спуска

Алгоритм метода:
$$X^{k+1} = X^k - t_k \nabla f(X^k)$$
 (1.1)

здесь:

$$\Box$$
 $d^k = -\nabla f(X^k)$ - направление антиградиента функции; (1.2)

 \Box t_k - шаг <u>выбирается</u> из условия убывания функции в точках последовательности:

$$f(X^{k+1}) < f(X^k)$$
. (1.3)

Геометрическая интерпретация метода:

Основной критерий окончания метода:

Построение последовательности заканчивается в точке, для которой:

$$\left\| \nabla f(X^k) \right\| < \varepsilon$$
 , где ε - заданное малое положительное число, (1.4)

здесь
$$\left\| \nabla f(X^k) \right\| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$

Начальные параметры метода: X^0 , t_0 , ϵ .

<u>Изменяемый параметр метода</u>: величина шага $\,t_{k}^{}\,.$

Особенности реализации алгоритма. Вопрос о величине шага на каждой итерации решается пользователем, причем шаг может быть, как уменьшен, если не выполняется условие (1.3), так и увеличен, если скорость сходимости алгоритма невысока (по субъективной оценке пользователя).

Рекомендации по выбору параметров метода

Согласно алгоритму метода, каждая последующая точка X^{k+1} в методе градиентного спуска ищется в направлении $-\nabla f(X^k)$ направлении антиградиента функции, построенном в текущей точке X^k . Поэтому, если направление антиградиента в текущей точке приблизительно совпадает с направлением на минимум (согласно чертежу), шаг следует увеличить, чтобы ускорить процесс сходимости, если же направление антиградиента сильно отличается от направления на минимум, шаг уменьшают, в противном случае функция может уменьшиться несущественно или даже возрасти.

На нижнем рисунке слева представлен случай, когда текущий шаг следует увеличить, а на рисунке справа – когда нужно уменьшить

Текущий шаг нужно увеличить

Текущий шаг нужно уменьшить

(2) Метод градиентного наискорейшего спуска

Алгоритм метода:
$$X^{k+1} = X^k - t_k \nabla f(X^k)$$
 (2.1)

здесь

$$\Box$$
 $d^k = -\nabla f(X^k)$ - направление антиградиента функции (2.2)

 t_k - шаг <u>вычисляется</u> из условия наибольшего убывания функции в точках последовательности, построенной по закону (2.1): $t_k = argmin[f(X^{k+1})]$ (2.3)

Геометрическая интерпретация метода

В методе наискорейшего градиентного спуска последующая точка X^{k+1} минимизирую щей последовательности также ищется в направлении $-\nabla f(X^k)$ - направлении антиградиента функции, построенном в текущей точке, но условия вычисления шага позволяют определить наилучшее положение точки X^{k+1} на этом направлении. Как видно из чертежа, точка X^1 принимает на направлении спуска $d^0 = -\nabla f(X^0)$ предельное положение, которое характеризуется тем, что линия уровня, проходящая через точку X^1 касается направления спуска, а, следовательно, в точках минимизирующей последовательности, построенной по методу градиентного наискорейшего спуска выполняется условие:

$$\nabla f(X^k) \perp \nabla f(X^{k+1}) \implies (\nabla f(X^k), \nabla f(X^{k+1})) = 0$$
(2.4)

Основной критерий окончания метода:

Построение последовательности заканчивается в точке, для которой:

$$\left\| \nabla f(X^k) \right\| < \epsilon$$
 , где $\, \epsilon$ - заданное малое положительное число. (2.5)

При решении задачи поиска оптимального шага $t_k = arg \min(f(X^{k+1}))$, функция $f(X^{k+1})$ становится функцией одой переменной $\phi(t_k)$, т.к. $X^{k+1} = X^k - t_k \nabla f(X^k)$, а X^k и $\nabla f(X^k)$ известны. Следовательно, задача о поиске оптимального шага t_k - это задача $f(X^{k+1}) = \phi(t_k) \to \min$, которая в лабораторной работе решается численно методом дихотомии (см. [2], глава II, §5, п. 5.1.4.) на отрезке [a,b] с заданной точностью ϵ_D .

Начальные параметры метода: X^0 , ϵ , ϵ_D .

<u>Изменяемые параметры метода</u>: отрезок для уточнения шага [a, b].

Особенности реализации алгоритма. Вопрос о границах отрезка [a,b] на каждой итерации решается пользователем.

Рекомендации по выбору параметров метода.

При задании на каждой итерации отрезка [a,b] для уточнения шага, следует помнить, что искомое решение может лежать как внутри, так и на границе интервала [a,b].

Проиллюстрируем ситуацию, при которой шаг t_k вычисляется численно методом дихотомии. Для этого построим график функции $f(X^{k+1}) = \phi(t_k)$, которая в случае если f(X) является квадратичной функцией, имеет вид: $f(X^{k+1}) = \phi(t_k) = At_k^2 + Bt_k + C$.

Для вычислений по методу дихотомии должен быть задан отрезок для уточнения оптимального значения шага.

Как видно из чертежа, если в качестве отрезка будет выбран $[a_1,b_1]$, оптимальное значение шага при котором функция $f(X^{k+1}) = \varphi(t_k)$ принимает минимальное значение, окажется внутри отрезка и метод с заданной точностью ϵ_D отыщет это значение, если же отрезок будет $[a_2,b_2]$ в качестве результата счета по методу дихотомии будет получено значение $t_k = b_2$ - как дающее наименьшее значение функции $f(X^{k+1}) = \varphi(t_k)$ на отрезке, аналогично при выборе отрезка $[a_3,b_3]$ будет получено значение $t_k = a_3$.

Таким образом, отрезок для уточнения оптимального шага должен быть достаточно большим, чтобы гарантировано включать искомое значение шага. Признаками неверного задания отрезка [a,b] являются: отсутствие касания траектории спуска из точки X^k и линии уровня функции через точку X^{k+1} , а также равенство величины оптимального шага величине одной из границ отрезка [a,b].

(3) Метод покоординатного спуска

Алгоритм метода:
$$X^{k+1} = X^k - t_k \left[\nabla f(X^k) \right]_{\text{пр на } X_i}$$
 (3.1)

здесь:

$$\Box$$
 $d^k = -\left[\nabla f(X^k)\right]_{\text{пр на } x_i}$ - проекция на ось x_i антиградиента функции (3.2)

 $\ \square \ t_k$ - шаг выбирается из условия убывания функции в точках последовательности:

$$f(X^{k+1}) < f(X^k) \tag{3.3}$$

Геометрическая интерпретация метода

Основной критерий окончания метода:

Построение последовательности заканчивается в точке, для которой:

$$\left\|
abla f(X^k) \right\| < \epsilon$$
 , где $\, \epsilon$ - заданное малое положительное число. (3.4)

Начальные параметры метода: X^0 , t_0 , ϵ .

<u>Изменяемые параметры метода</u>: величина шага t_k и направление проекции антиградиента (здесь абсциссы – ось x, ординаты – ось y)

Особенности реализации алгоритма. Вопрос о величине шага на каждой итерации решается пользователем, причем шаг может быть, как уменьшен, если не выполняется условие (3.3), так и увеличен, если скорость сходимости алгоритма невысока (по субъективной оценке пользователя). Вопрос о выборе направления оси для проекции антиградиента, также решается пользователем на каждой итерации.

(4) Метод Гаусса-Зейделя (наискорейшего покоординатного спуска)

Алгоритм метода:
$$X^{k+1} = X^k - t_k \left[\nabla f(X^k) \right]_{\text{пр на } X_i}$$
 (4.1)

здесь:

$$\Box$$
 $d^k = -\left[\nabla f(X^k)\right]_{\text{пр на }x_i}$ - проекция на ось x_i антиградиента функции (4.2)

 \Box t_k - шаг <u>вычисляется</u> из условия наибольшего убывания функции в точках последовательности, построенной по закону (4.1): $t_k = argmin[f(X^{k+1})]$ (4.3)

Геометрическая интерпретация метода

<u>Основной критерий окончания метода:</u> Построение последовательности заканчивается в точке, для которой:

$$\left\|
abla f(X^k) \right\| < \epsilon$$
 , где $\, \epsilon$ - заданное малое положительное число. (4.4)

Задача о поиске оптимального шага t_k (задача $f(X^{k+1}) = \phi(t_k) \to min$) решается численно методом дихотомии (см. [2], глава II, §5, п. 5.1.4.) на отрезке [a,b] с заданной точностью ϵ_D . (см. пояснения к методу наискорейшего спуска).

Начальные параметры метода: X^0 , ϵ , ϵ_D .

<u>Изменяемые параметры метода</u>: отрезок для уточнения шага [a,b].

Особенности реализации алгоритма. Вопрос о границах отрезка [a,b] на каждой итерации решается пользователем. Направление проекции градиента меняется циклически: сначала спуск в направлении оси абсцисс, затем – ординат и т.д.

Рекомендации по выбору параметров метода.

Отрезок [а, b] задается из тех же соображений, что и в методе наискорейшего спуска.

(5) Метод сопряженных градиентов

(Для квадратичных функций метод сопряженных градиентов называется методом Флетчера-Ривса)

Алгоритм метода:
$$X^{k+1} = X^k + t_k d^k$$
 (5.1)

здесь:

$$\Box \quad \mathbf{d}^0 = -\nabla \mathbf{f}(\mathbf{X}^0) \tag{5.2}$$

$$\Box \quad d^{k} = -\nabla f(X^{k}) + \beta_{k-1} d^{k-1}$$
 (5.3)

$$\square \quad \beta_{k-1} = \frac{\left\| \nabla f(X^k) \right\|^2}{\left\| \nabla f(X^{k-1}) \right\|^2}$$
(5.4)

Из формул (5.2) и (5.5) следует, что первая итерация метода сопряженных градиентов совпадает с первой итерацией метода наискорейшего спуска.

Геометрическая интерпретация метода

Основной критерий окончания метода:

Построение последовательности заканчивается в точке, для которой:

$$\left\| \nabla f(X^k) \right\| < \epsilon$$
 , где $\, \epsilon$ - заданное малое положительное число. (5.6)

Вычисление величины β_{k-l} по формуле (5.4) обеспечивает для квадратичных функций построение последовательности H-сопряженных направлений $d^0, d^1, \dots, d^k, \dots$, для которых $(d^i, Hd^j) = 0, \ \forall i, j = 0, 1, \dots, k; \ i \neq j$. При этом в точках последовательности $\{X^k\}$ градиенты функции f(X) взаимно перпендикулярны, т.е. $(\nabla f(X^k), \nabla f(X^{k+1})) = 0, \ k = 0, 1, \dots$

Задача о поиске оптимального шага t_k (задача $f(X^{k+1}) = \phi(t_k) \to \min$) решается численно методом дихотомии (см. [2], глава II, §5, п. 5.1.4.) на отрезке [a,b] с заданной точностью ϵ_D . (см. пояснения к методу наискорейшего спуска).

Начальные параметры метода: X^0 , ϵ , ϵ_D .

<u>Изменяемые параметры метода</u>: отрезок для уточнения шага [a,b].

Особенности реализации алгоритма. Вопрос о границах отрезка [a,b] на каждой итерации решается пользователем.

Рекомендации по выбору параметров метода.

Отрезок [a, b] задается из тех же соображений, что и в методе наискорейшего спуска.

Доказано, что для функций, имеющих минимум, метод Флетчера-Ривса $\underline{\text{сходится}}$ за конечное число шагов, не превышающее число переменных функции f(X).

Замечание. Т.к. шаг t_k на каждой итерации вычисляется численно с точностью ϵ_D , за счет накопления ошибки, метод сопряженных градиентов в отдельных случаях может сходиться для квадратичной функции за число итераций, превышающее число переменных на 1.

Методы второго порядка

(6) Метод Ньютона

Алгоритм метода:
$$X^{k+1} = X^k - H^{-1}(X^k)\nabla f(X^k)$$
 (6.1)

здесь:

$$\Box$$
 $d^k = -H^{-1}(X^k)\nabla f(X^k)$ - направление спуска (6.2)

$$\Box \quad \mathbf{t}_{\mathbf{k}} = 1 \tag{6.3}$$

Геометрическая интерпретация метода для квадратичной функции:

Основной критерий окончания метода:

Построение последовательности заканчивается в точке, для которой:

$$\left\| \nabla f(X^k) \right\| < \epsilon$$
 , где $\, \epsilon$ - заданное малое положительное число. (6.4)

Начальные параметры метода: X^0 , ϵ .

Особенностью метода Ньютона является то, что при $\mathrm{H}(\mathrm{X}^0) > 0$ метод позволяет отыскать минимум квадратичной функции за одну итерацию.

(7) Метода Ньютона-Рафсона

Алгоритм метода:
$$X^{k+1} = X^k - t_k H^{-1}(X^k) \nabla f(X^k)$$
 (7.1)

здесь:

$$\Box$$
 $d^k = -H^{-1}(X^k)\nabla f(X^k)$ - направление спуска (7.2)

 $\ \square\ \ t_k$ - шаг <u>выбирается</u> из условия убывания функции в точках последовательности:

$$f(X^{k+1}) < f(X^k)$$
. (7.3)

Геометрическая интерпретация метода для квадратичной функции:

<u>Основной критерий окончания метода:</u> Построение последовательности заканчивается в точке, для которой:

$$\left\| \nabla f(X^k) \right\| < \epsilon$$
 , где ϵ - заданное малое положительное число. (7.4)

Начальные параметры метода: X^0 , ϵ .

<u>Изменяемый параметр метода</u>: величина шага $\,t_k^{}$.

Методы нулевого порядка

(8) Метод конфигураций (Хука-Дживса)

Метод представляет собой комбинацию *исследующего (исследовательского) поиска* с циклическим изменением переменных и ускоряющего *поиска по образцу*.

Процесс поиска минимума функции всегда начинается с исследующего поиска.

Исследующий поиск осуществляется вдоль координатных направлений, результатом его являются так называемые точки базиса, в которых вычисляется значение функции f(X).

Поиск по образцу осуществляется в направлении, соединяющем де последующие точки базиса. В точках полученных «по образцу» значение функции не вычисляется, они служат лишь для проведения в них исследующего поиска.

Алгоритм метода (на примере функции двух переменных):

- 1) Задается начальная точка X^0 и начальные значение приращений dx^0, dy^0 . Точка X^0 называется точкой старого базиса.
- 2) Проводится исследующий поиск, в результате которого каждая координата новой точки X^{k+1} вычисляется по алгоритму:

$$x^{k+1} = \begin{cases} x^k + dx^k, & \text{если } f(x^k + dx^k, y^k) < f(x^k, y^k) \\ x^k - dx^k, & \text{если } f(x^k - dx^k, y^k) < \min \Big(f(x^k, y^k), f(x^k + dx^k, y^k) \Big) \\ x^k, & \text{в противном случае} \end{cases}$$

$$y^{k+1} = \begin{cases} y^k + dy^k, & \text{если } f(x^k, y^k + dy^k) < f(x^k, y^k) \\ y^k - dy^k, & \text{если } f(x^k, y^k - dy^k) < \min \Big(f(x^k, y^k), f(x^k, y^k + dy^k) \Big) \\ y^k, & \text{в противном случае} \end{cases}$$

В результате исследующего поиска получается точка X^{k+1}

Если при этом $\boldsymbol{X}^{k+1} \neq \boldsymbol{X}^k$, то \boldsymbol{X}^{k+1} - точка нового базиса.

Если $X^{k+1} = X^k$, то исследующий поиск неудачен. В этом случае необходимо уменьшить значения приращений dx^k, dy^k и повторить исследующий поиск.

Удачный исследующий поиск

Здесь $X^{c\delta}$ - точка старого базиса, $X^{H\delta}$ - точка нового базиса

Неудачный исследующий поиск

- 3) Из точки нового базиса может быть:
 - □ продолжен исследующий поиск со старыми или новыми значениями приращений (шаг 2) алгоритма)
 - \square проведен поиск по образцу по алгоритму: $X^{obp} = X^k + t_k(X^k X^{k-1})$

Удачный поиск по образцу

Неудачный поиск по образцу

В точке $X^{oбp}$ значение функции не вычисляется, из этой точки проводится исследующий поиск, в результате которого получается точка $X^{u\pi}$.

Если $X^{^{\Pi\Pi}} \neq X^{^{oбp}}$, то точка $X^{k+1} = X^{^{\Pi\Pi}}$ становится точкой нового базиса, а X^k - точкой старого базиса. Если $X^{^{\Pi\Pi}} = X^{^{oбp}}$, то поиск по образцу считается неудачным, точки $X^{^{\Pi\Pi}}, X^{^{oбp}}$ - аннулируются, при этом точка X^k остается точкой нового базиса, а X^{k-1} - точкой старого базиса.

4) Процедура 3) повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $dx^k \le \epsilon, \quad dy^k \le \epsilon$

<u>Начальные параметры метода:</u> X^0 , ϵ , начальные значение приращений dx^0, dy^0 .

<u>Изменяемый параметр метода</u>: величины приращений $\,dx^{\,k}\,,dy^{\,k}\,.$

(9) Метод Нелдера-Мида (деформируемого многогранника)

Алгоритм метода (на примере функции двух переменных):

1) Задается начальная система точек (многогранник), включающая в себя точки: $X^{0(1)}, X^{0(2)}, X^{0(3)}$

2) Вычисляется значение функции во всех точках многогранника и выбирается:

лучшая точка
$$X^{(\pi)}$$
: $f(X^{(\pi)}) = \min_{i} \left[f(X^{k(i)}) \right]$ (здесь k - номер итерации, i - номер точки)

худшая точка
$$X^{(x)}$$
 : $f(X^{(x)}) = \max_{i} \left[f(X^{k(i)}) \right]$

Далее заданная система точек перестраивается, для этого:

3) Строится центр тяжести системы заданных точек за исключением худшей:

$$X^{(ii)} = \frac{1}{n} \left(\sum_{i=1}^{n=1} X^{k(i)} - X^{(x)} \right)$$

(для функции 2-х переменных точка $X^{(II)}$ - середина отрезка, соединяющего точки за исключением

4) Выполняется операция *отражение* худшей точки через центр тяжести: $X^{(\text{отр})} = X^{(\text{II})} + \alpha \cdot (X^{(\text{II})} - X^{(\text{X})}),$

$$X^{(\text{orp})} = X^{(\text{II})} + \alpha \cdot (X^{(\text{II})} - X^{(\text{X})})$$

здесь $\alpha > 0$ - параметр отражения (рекомендуемое значение $\alpha = 1$).

5) Формируется новая система точек (многогранник). Для этого в точке $X^{(\text{отр})}$ вычисляется значение функции, полученное значение сравнивается с $f(X^{(\pi)})$:

 $egin{align*} \Box & \text{если } f(X^{(\text{отр})}) < f(X^{(\pi)}) \ \text{ выполняется операция } \underline{\textit{растяжение}} : \\ X^{(\text{pct})} & = X^{(\pi)} + \gamma (X^{(\text{отр})} - X^{(\pi)}) \ , \end{aligned}$

$$X^{(pcr)} = X^{(II)} + \gamma (X^{(orp)} - X^{(II)})$$

здесь $\gamma > 0$ $(\gamma \neq 0)$ - параметр растяжения (рекомендованное значение $\gamma \in [2,3]$)

При этом если $f(X^{(pcr)}) < f(X^{(orp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(pcr)}$, если же $f(X^{(pcr)}) \ge f(X^{(orp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(orp)}$.

 $= \text{ если } f(X^{(\pi)}) \leq f(X^{(\text{отр})}) < f(X^{(x)}) \text{ выполняется операция} \underline{\textit{сжатие}} : \\ X^{(\text{сж})} = X^{(\pi)} + \beta(X^{(x)} - X^{(\pi)}),$

здесь $\beta > 0 \quad (\beta \neq 0)$ - параметр сжатия (рекомендованное значение $\beta \in [0.4, 0.6]$).

Кафедра «Математической кибернетики» МАИ, 2004

При этом если $f(X^{(cж)}) < f(X^{(orp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(cж)}$, если же $f(X^{(cж)}) \ge f(X^{(orp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(orp)}$.

если $f(X^{(\text{отр})}) \ge f(X^{(x)})$ выполняется операция <u>редукции</u>: при этом формируется новый многогранник, содержащий точку $X^{(\pi)}$ с уменьшенными вдвое сторонами: $X^{k+l(i)} = X^{(\pi)} + 0.5(X^{k(i)} - X^{(\pi)}), \quad i = 1..n+1$

Т.о. в результате выполнения этого пункта алгоритма формируется новая система точек (многогранник), причем в случае возникновения операций растяжения и сжатия перестраивается только одна точка - $X^{(x)}$, в случае возникновения операции редукции – все точки, за исключением $X^{(\pi)}$.

6) Процедура 2)-5) повторяется до выполнения критерия окончания счета.

 $\underline{\text{Основной критерий окончания метода:}} \sqrt{\frac{1}{n+1} \sum_{i=1}^{n+1} \left[f(X^{k(i)}) - f(X^{(\mathfrak{U})}) \right]^2} \leq \epsilon$

<u>Начальные параметры метода:</u> $X^{0(1)}, X^{0(2)}, X^{0(3)}, \epsilon$.

(10) Метод случайного поиска (адаптивный метод случайного спуска)

Алгоритм метода (на примере функции двух переменных):

- 1) Задается начальная точка X^0 и начальное значение параметра \mathbf{r}_0 .
- 2) Строится система пробных точек (обычно 5-8 точек): $X^{\pi p(i)} = X^k + r_k \xi^i$, здесь k номер итерации, ξ^k случайный вектор единичной длины, i номер пробной точки.

Построенные пробные точки оказываются лежащими на гиперсфере радиуса r_k (в случае двух переменных – на окружности радиуса r_k).

Для каждой пробной точки вычисляется значение функции $f(X^{\pi p(i)})$.

№ точки	X	У	f(X)
1			1(11)
2			
2			
0			
2			

- 3) Из полученного набора выбирается наилучшая точка $X^{(\pi)}$, для которой $f(X^{(\pi)}) = min[f(X^{\pi p(i)})]$. Выбор осуществляется пользователем.
- 4) Проверяется условие: $f(X^{(\pi)}) < f(X^k)$:
- □ если условие выполнено, то система пробных точек считается удачной, далее возможно два продолжения алгоритма:

4.1)
$$X^{k+1} = X^{(\pi)}$$

4.2) в направлении, соединяющем точки X^k и $X^{(\pi)}$ делается ускоряющий шаг: $X^{k+1} = X^{(\pi)} + \lambda (X^{(\pi)} - X^{(k)})$, в этом случае, если оказывается, что $f(X^{k+1}) \ge f(X^k)$, принимается $X^{k+1} = X^{(\pi)}$

Удачная система пробных точек

если условие не выполняется, делается попытка построить новую удачную систему пробных точек.
 Если при этом пробная окружность целиком накрывает текущую линию уровня, текущий радиус т_к должен быть уменьшен.

Неудачная система пробных точек (возможна повторная попытка)

Неудачная система пробных точек (необходимо уменьшить радиус)

5) Процедура 2)-4) повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $r_k \le \epsilon$

<u>Начальные параметры метода:</u> X^0 , ϵ , начальное значение радиуса r_0 .

<u>Изменяемый параметр метода</u>: величина радиуса $\, r_k \, . \,$