SBML Model Report

Model name: "Cursons2015 - Regulation of ERK-MAPK signaling in human epidermis"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Kun Yang¹, Rahuman Sheriff² and Emma Louise Fairbanks³ at June 22nd 2017 at 9:52 a.m. and last time modified at November second 2017 at 11:35 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity	
compartment types	0	compartments	2	
species types	0	species	7	
events	5	constraints	0	
reactions	0	function definitions	0	
global parameters	25	unit definitions	2	
rules	13	initial assignments	0	

Model Notes

Cursons2015 - Regulation of ERK-MAPK signaling in human epidermisModel comparing the abundance ofphosphorylated MAPK signalling proteins and calcium signalling in the epidermis.

¹Beijing National Laboratory for Molecular Sciences

²EMBL-EBI, sheriff@ebi.ac.uk

³EMBL-EBI, efairbanks@ebi.ac.uk

This model is described in the article:Regulation of ERK-MAPK signaling in human epidermis.Cursons J, Gao J, Hurley DG, Print CG, Dunbar PR, Jacobs MD, Crampin EJ.BMC Syst Biol 2015; 9: 41

Abstract:

The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to determine cell fate within a homeostatic tissue environment has not been fully characterized. We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation formalism. These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling. Our data demonstrate an extended phosphoprotein profile of ERK-MAPK signaling cascade components across the epidermis in situ, and statistical associations in these data indicate canonical ERK-MAPK interactions underlie this spatial profile of ERK-MAPK activation. Using mathematical modelling we have demonstrated that spatially varying calcium signaling components across the epidermis may be sufficient to maintain the spatial profile of ERK-MAPK signaling cascade components in a cell-autonomous manner. These findings may have significant implications for the wide range of cancer drugs which therapeutically target ERK-MAPK signaling components.

This model is hosted on BioModels Database and identified by: BIOMD0000000659.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of six unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name substance

Definition mmol

2.2 Unit unit_0

Name 1

Definition dimensionless⁰

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.6 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
c n	cytoplasm nucleus		3 3	1 0.5	litre 1	2	

3.1 Compartment c

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment ${\bf n}$

This is a three dimensional compartment with a constant size of 0.5 litre.

Name nucleus

4 Species

This model contains seven species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
pRaf_cyto	Rafc	С	$mmol \cdot l^{-1}$	\Box	
pMEK_cyto	MEKc	С	$mmol \cdot l^{-1}$		\mathbf{Z}
pERK_cyto	ERKc	С	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
pMEK_nuc	MEKn	n	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
pERK_nuc	ERKn	n	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
Ca	Ca	С	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
CaM_memb	CaM	С	$\text{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$

5 Parameters

This model contains 25 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
numTissuePos	Tissue Pos		0.500	dimensionless ⁰	
	1100000		2.357	dimensionless ⁰	\mathbf{Z}
numCytoToNucVo					
numCaInputBase			0.754	dimensionless ⁰	Z
numCaInputAmp	-		0.092	dimensionless ⁰	Z
numCaMInputBas			0.363	dimensionless ⁰	$\mathbf{Z}_{\underline{j}}$
$numCaMInputAm_1$	•		0.485	dimensionless ⁰	\square
numHillCoeff	Hill_Coeff		1.400	dimensionless ⁰	
numHillWeight	Hill_Weight		1.000	dimensionless ⁰	
numHillMax	Hill_Max		1.000	dimensionless ⁰	
numHillTau	Hill_Tau		1.000	dimensionless ⁰	\square
numHillEC50	Hill_EC50		0.500	dimensionless ⁰	\square
numMEKCytoToN	ud VIE KanCtoN		0.050	dimensionless ⁰	
numMEKNucToCy	td WAE KanNtoC		0.500	dimensionless ⁰	
numERKCytoToNud ERKaf itoN			0.010	dimensionless ⁰	$\overline{\mathbb{Z}}$
numERKNucToCytd ERaKaiN toC			0.010	dimensionless ⁰	$\overline{\mathbf{Z}}$
numHillBeta	Hill_Beta		2.560	dimensionless ⁰	$\overline{\mathbf{Z}}$
numHillK	$Hill_{-}K$		1.370	dimensionless ⁰	
funcHillCaToRa	a : Hill_CaToRaf		0.783	dimensionless ⁰	
funcHillCaMTol	R af ill_CaMToRaf		0.747	dimensionless ⁰	
funcHillERKToRaf			0.162	dimensionless ⁰	
funcHillRafToM HK ill_RafToMEK			0.502	dimensionless ⁰	
funcHillMEKToE HKCl yto			0.820	dimensionless ⁰	
_MEKToERKCyto					
funcHillMEKTol	•		0.388	dimensionless ⁰	
_MEKToERKNuc					_
funcHillERKTol	funcHillERKToE HKNLE RKToERKn		0.162	dimensionless ⁰	
$\verb numTotalRafInput for al RafInput s$			0.000	dimensionless ⁰	

6 Rules

This is an overview of 13 rules.

6.1 Rule numCytoToNucVolRatio

Rule numCytoToNucVolRatio is an assignment rule for parameter numCytoToNucVolRatio:

$$numCytoToNucVolRatio = 2 + 5 \cdot \frac{numTissuePos}{7}$$
 (1)

6.2 Rule funcHillCaToRaf

Rule funcHillCaToRaf is an assignment rule for parameter funcHillCaToRaf:

$$funcHillCaToRaf = \frac{numHillWeight \cdot numHillBeta \cdot [Ca]^{numHillCoeff}}{numHillK^{numHillCoeff} + [Ca]^{numHillCoeff}}$$
 (2)

6.3 Rule funcHillCaMToRaf

Rule funcHillCaMToRaf is an assignment rule for parameter funcHillCaMToRaf:

$$funcHillCaMToRaf = \frac{numHillWeight \cdot numHillBeta \cdot [CaM_memb]^{numHillCoeff}}{numHillK^{numHillCoeff} + [CaM_memb]^{numHillCoeff}}$$
 (3)

6.4 Rule funcHillERKToRaf

Rule funcHillERKToRaf is an assignment rule for parameter funcHillERKToRaf:

$$funcHillERKToRaf = \frac{numHillWeight \cdot numHillBeta \cdot [pERK_nuc]^{numHillCoeff}}{numHillK^{numHillCoeff} + [pERK_nuc]^{numHillCoeff}}$$
(4)

6.5 Rule funcHillRafToMEK

Rule funcHillRafToMEK is an assignment rule for parameter funcHillRafToMEK:

$$funcHillRafToMEK = \frac{numHillWeight \cdot numHillBeta \cdot [pRaf_cyto]^{numHillCoeff}}{numHillK^{numHillCoeff} + [pRaf_cyto]^{numHillCoeff}}$$
 (5)

6.6 Rule funcHillMEKToERKCyto

Rule funcHillMEKToERKCyto is an assignment rule for parameter funcHillMEKToERKCyto:

$$funcHillMEKToERKCyto = \frac{numHillWeight \cdot numHillBeta \cdot [pMEK_cyto]^{numHillCoeff}}{numHillK^{numHillCoeff}} + [pMEK_cyto]^{numHillCoeff}$$
 (6)

6.7 Rule funcHillMEKToERKNuc

Rule funcHillMEKToERKNuc is an assignment rule for parameter funcHillMEKToERKNuc:

$$funcHillMEKToERKNuc = \frac{numHillWeight \cdot numHillBeta \cdot [pMEK_nuc]^{numHillCoeff}}{numHillK^{numHillCoeff} + [pMEK_nuc]^{numHillCoeff}}$$
 (7)

6.8 Rule funcHillERKToERKNuc

Rule funcHillERKToERKNuc is an assignment rule for parameter funcHillERKToERKNuc:

$$funcHillERKToERKNuc = \frac{numHillWeight \cdot numHillBeta \cdot [pERK_nuc]^{numHillCoeff}}{numHillK^{numHillCoeff} + [pERK_nuc]^{numHillCoeff}}$$
(8)

6.9 Rule pRaf_cyto

Rule pRaf_cyto is a rate rule for species pRaf_cyto:

$$\frac{d}{dt}pRaf_cyto = \frac{1}{numHillTau} \cdot (numTotalRafInputs \cdot numHillMax - [pRaf_cyto])$$
 (9)

6.10 Rule pMEK_cyto

Rule pMEK_cyto is a rate rule for species pMEK_cyto:

$$\frac{d}{dt}pMEK_cyto = \frac{1}{numHillTau} \cdot \left(funcHillRafToMEK \cdot numHillMax - [pMEK_cyto] - numMEKCytoToNucParam \cdot [pMEK_cyto] + \frac{1}{numCytoToNucVolRatio} \cdot numMEKNucToCytoParam \cdot [pMEK_nuc] \right)$$

$$(10)$$

6.11 Rule pERK_cyto

Rule pERK_cyto is a rate rule for species pERK_cyto:

$$\frac{d}{dt}pERK_cyto = \frac{1}{numHillTau} \cdot \left(funcHillMEKToERKCyto \cdot numHillMax - [pERK_cyto] - numERKCytoToNucParam \cdot [pERK_cyto] + \frac{1}{numCytoToNucVolRatio} \cdot numERKNucToCytoParam \cdot [pERK_nuc] \right)$$

$$(11)$$

6.12 Rule pMEK_nuc

Rule pMEK_nuc is a rate rule for species pMEK_nuc:

$$\frac{d}{dt}pMEK_nuc = \frac{1}{numHillTau} \cdot ([pMEK_nuc] - numMEKNucToCytoParam \cdot [pMEK_nuc] + numCytoToNucVolRatio \cdot numMEKCytoToNucParam \cdot [pMEK_cyto])$$
(12)

6.13 Rule pERK_nuc

Rule pERK_nuc is a rate rule for species pERK_nuc:

$$\frac{d}{dt}pERK_nuc = \frac{1}{numHillTau} \cdot ((funcHillMEKToERKNuc - funcHillERKToERKNuc) \\ \cdot numHillMax - [pERK_nuc] - numERKCytoToNucParam \cdot [pERK_nuc] \\ + numCytoToNucVolRatio \cdot numERKNucToCytoParam \cdot [pERK_cyto])$$

$$(13)$$

7 Events

This is an overview of five events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event Position_0

Name Position 0

$$numTissuePos \ge 0 \tag{14}$$

Delay
$$0 \tag{15}$$

Assignments

$$Ca = numCaInputBaseline + numCaInputAmp \cdot \frac{numTissuePos}{5}$$
 (16)

$$CaM_memb = numCaMInputBaseline + numCaMInputAmp \cdot \frac{numTissuePos + 1}{2}$$
 (17)

7.2 Event Position_1

Name Position 1

$$numTissuePos \ge 1 \tag{18}$$

Assignment

$$CaM_memb = numCaMInputBaseline + numCaMInputAmp \cdot exp(1 - numTissuePos) (20)$$

7.3 Event Position_5

Name Position 5

$$numTissuePos \ge 5 \tag{21}$$

(27)

Delay
$$0 \tag{22}$$

Assignments

$$Ca = numCaInputBaseline + numCaInputAmp \cdot \frac{7 - numTissuePos}{2}$$
 (23)

$$CaM_memb = 0 (24)$$

7.4 Event Total_Rafc_input_less_than_0

Name Total Rafe input less than 0

Trigger condition

$$funcHillCaToRaf - funcHillCaMToRaf - funcHillERKToRaf \le 0$$
 (25)

Delay
$$0 \tag{26}$$

$\label{eq:assignment} {\tt numTotalRafInputs} = 0$

7.5 Event Total_Raf_input_greater_than_0

Name Total Raf input greater than 0

Trigger condition

$$funcHillCaToRaf - funcHillCaMToRaf - funcHillERKToRaf > 0$$
 (28)

$$\begin{array}{ccc} \textbf{Delay} & & & & \\ 0 & & & & \\ \end{array} \tag{29}$$

Assignment

 $numTotalRafInputs = funcHillCaToRaf - funcHillCaMToRaf - funcHillERKToRaf \quad (30)$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species pRaf_cyto

Name Rafc

Initial concentration $0.5 \text{ } \text{mmol} \cdot l^{-1}$

Involved in rule pRaf_cyto

One rule determines the species' quantity.

8.2 Species pMEK_cyto

Name MEKc

Initial concentration $0.8 \text{ mmol} \cdot 1^{-1}$

Involved in rule pMEK_cyto

One rule determines the species' quantity.

8.3 Species pERK_cyto

Name ERKc

Initial concentration $0.7 \text{ } \text{mmol} \cdot l^{-1}$

Involved in rule pERK_cyto

One rule determines the species' quantity.

8.4 Species pMEK_nuc

Name MEKn

Initial concentration $0.4 \text{ mmol} \cdot 1^{-1}$

Involved in rule pMEK_nuc

One rule determines the species' quantity.

8.5 Species pERK_nuc

Name ERKn

Initial concentration $0.2 \text{ } \text{mmol} \cdot l^{-1}$

Involved in rule pERK_nuc

One rule determines the species' quantity.

8.6 Species Ca

Name Ca

Initial concentration $0.7632 \text{ } \text{mmol} \cdot l^{-1}$

Involved in events Position_0, Position_5

two events influence the species' quantity.

8.7 Species CaM_memb

Name CaM

Initial concentration $0.72675 \text{ } \text{mmol} \cdot l^{-1}$

Involved in events Position_0, Position_1, Position_5

three events influence the species' quantity.

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany