

Guewen HESLAN - Bijan VALILOU

Janvier 2021

Contents

1	Introduction	2
2	Présentation des données	2
3	Le modèle	3
	3.1 Les variables explicatives choisies	3
	3.2 Équation du modèle	4

1 Introduction

L'objectif ce projet est d'expliquer la quantité de diesel consommée par les camions à partir des autres variables proposées et d'effectuer des prévisions à horizon 2025. Nous allons donc tenter de répondre à la question suivante : quels déterminants agissent dans la formation de la quantité de pétrole consommée par les camions ? Pour y répondre nous allons proposé un modèle économétrique et le confronter à divers tests afin d'évaluer sa validité.

2 Présentation des données

Nous disposons d'un jeu de données comprenant huit séries réunissant des données de 1985 à 2019.

Table 1: Consommation de gazole des camions

Année	Quantité trans- portée par routes	Quantité trans- portée par train	Prix du disel (eu- ros/litre de diesel)	Quantité de diesel consommé (en milliers de tonnes)	PIB en monnaie constante (base 100=2014)	Indice des prix à la consom- mation (base 100=2015)	Quantité de diesel consommé des camions (en milliers de tonnes)	PIB en volume (en milliards d'euros 2014)
1985	128.42	56.06	0.60	11467	7.576890e+11	61.28	7999.56	1253.77
1986	134.60	52.69	0.52	12364	8.145960e+11	62.83	8378.00	1283.07
1987	144.52	52.71	0.50	13309	8.559830e + 11	64.90	8874.91	1315.94
1988	161.11	52.95	0.49	14903	9.252150e + 11	66.65	10083.36	1378.36
1989	168.64	53.71	0.52	16472	$9.971210e{+11}$	68.98	11026.46	1438.23
1990	197.02	52.24	0.54	17908	$1.053546e{+}12$	71.19	12847.49	1480.29
1991	202.67	52.43	0.55	18729	1.091705e + 12	73.48	13088.60	1495.80
1992	208.34	51.18	0.53	19824	$1.130983e{+}12$	75.21	13520.35	1519.72
1993	204.24	45.58	0.56	20711	1.142119e + 12	76.80	13736.33	1510.17
1994	219.27	48.87	0.59	21735	1.179867e + 12	78.07	13944.66	1545.79
1995	234.50	48.27	0.59	22869	1.218273e + 12	79.47	14175.76	1578.35
1996	238.55	50.11	0.65	23489	$1.252266e{+}12$	81.04	14106.16	1600.65
1997	246.95	54.25	0.68	24566	1.292777e + 12	82.02	14718.88	1638.05
1998	257.65	54.10	0.64	25667	$1.351896e{+12}$	82.55	15658.43	1696.83
1999	266.86	54.54	0.69	26667	$1.400999e{+}12$	83.00	16588.18	1754.89
2000	276.86	57.73	0.85	27355	$1.478585e{+}12$	84.39	16920.64	1823.74
2001	290.43	51.72	0.80	28684	$1.538200e{+12}$	85.77	16846.18	1859.92
2002	293.38	51.29	0.77	29670	$1.587829e{+}12$	87.42	17155.59	1881.04
2003	296.99	48.06	0.79	30081	$1.630666e{+}12$	89.25	17034.63	1896.53
2004	314.90	46.35	0.88	30762	1.704019e + 12	91.16	17539.55	1950.19
2005	314.15	40.70	1.03	31048	1.765905e + 12	92.76	17707.32	1982.63
2006	327.61	41.18	1.07	31891	$1.848151e{+12}$	94.31	18073.35	2031.19
2007	339.95	42.61	1.09	32958	1.941360e + 12	95.71	17911.82	2080.44
2008	327.44	40.44	1.27	32827	1.992380e + 12	98.41	17474.79	2085.74
2009	284.40	32.13	1.00	32881	1.936422e+12	98.49	16954.37	2025.81
2010	300.40	29.96	1.15	33588	1.995289e + 12	100.00	17245.84	2065.31
2011	300.16	34.18	1.34	34049	2.058369e + 12	102.11	17561.67	2110.59
2012	283.45	32.55	1.40	34120	2.088804e+12	104.11	17591.77	2117.20
2013	292.00	32.00	1.35	34272	2.117189e + 12	105.01	17653.77	2129.40
2014	288.50	32.20	1.28	34407	2.149765e + 12	105.54	17703.04	2149.76
2015	281.50	34.30	1.15	34803	2.198432e+12	105.58	17757.19	2173.69
2016	287.70	32.60	1.11	34777	2.234129e+12	105.77	17809.40	2197.50
2017	307.70	33.42	1.23	34690	2.297242e+12	106.86	18328.21	2247.86
2018	317.30	31.98	1.44	33626	2.363306e+12	108.84	17270.02	2289.78
2019	322.30	31.58	1.44	32770	2.437635e+12	110.05	16344.30	2331.98

Econométrie II

2

Présentation des variables

3 Le modèle

3.1 Les variables explicatives choisies

Six variables sont proposées dans le but d'expliquer la quantité de diesel consommée par les camions (sans compter l'ensemble des transformations possibles). Afin d'obtenir un modèle pertinent nous avons réalisé différents choix justifiés.

Nous avons immédiatement exclu la quantité de diesel consommée au total qui comprend la variable que l'on tente d'expliquer : la consommation globale de diesel semble davantage être une conséquence qu'une cause de l'évolution de la quantité de diesel consommé par les camions.

On pourrait supposer que la quantité acheminée par rail soit le témoin d'une substitution entre les différents modes d'acheminement des marchandises. Même si le transport par route connaît une croissance forte tandis que celui par rail décroît comme les figures 1 et 2 le montrent, on peut observer la forte différence d'échelle entre les utilisation des deux modes de transport. On remarque également que les variations qui suivent après les années 2000 n'entraîne pas de réponse significative sur l'une comme sur l'autre. L'évolution du transport ferroviaire ne semble pas être un déterminant du transport routier, mais une conséquence de l'évolution de facteurs structurels et politiques comme Pierre Zembri l'a mis en lumière.

Nous avons finalement choisis trois variables pour notre modèle :

- 1. La quantité de transport par route : La consommation de diesel des camions est à la fois liés à la distance et à la masse de marchandises transportées.
- 2. Le PIB en volume : L'indicateur principal de l'activité économique française.
- 3. Le prix du diesel déflaté: On l'exprime également en volume : on pose le rapport entre prix nominal

du diesel et indice des prix à la consommation pour obtenir le prix réel sur la base 2015.

3.2 Équation du modèle

$$Q_{DCamion} = \beta_0 + \beta_1 * PIB + \beta_2 * \frac{P_{diesel}}{IPC} + \beta_3 * Q_{route} + \varepsilon$$
 (1)

Le premier modèle trouvé suit l'équation 1 avec les variables :

 $Q_{DCamion}\,:$ La quantité de diesel consommée par les camions

PIB: Le PIB français en volume

 P_{diesel} : Le prix du diesel

IPC : L'indice des prix à la consommation

 Q_{route} : La quantité de marchandises transportées par route

 β_n : Le coefficient associé à la n-ième variable explicative

Toutes les variables obtenues sont significatives car la probabilité qu'elles soient nul est inférieur à 5%. Le coefficient de détermination R^2 est de 95% ce qui signifie une forte adéquation entre le modèle et les données observées.

Nous allons effectuer un ensemble de tests sur le premier modèle estimer afin de voir quelles manipulations sont nécessaires pour accroître la validité du modèle.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1767	790.8	2.235	0.03277
x1	-378013	120267	-3.143	0.003667
$\mathbf{x2}$	4.242	1.423	2.98	0.005559
x3	36.89	5.615	6.57	2.449e-07

Table 3: Fitting linear model: $y \sim x$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
35	721.2	0.9475	0.9424

[,1] ## [1,] 0.5667082

Econométrie II

4

Recursive CUSUM test

Table 4: Test de Chow de 1999 à 2003

	statistic	p.value	method	data.name
1999	c(F = 10.7641179888783)	c(F =	Chow test	y ~ x
2000	c(F=11.17276760355)	2.38893676115515e-05) c(F = 1.77208419261943e-05)	Chow test	y ~ x
2001	c(F=11.3979272051564)	c(F = 1.50725877964275e-05)	Chow test	y ~ x
2002	c(F=10.5854028432303)	c(F = 2.72788003993218e-05)	Chow test	y ~ x
2003	c(F=10.0026924784759)	c(F = 4.24242733156888e-05)	Chow test	$y \sim x$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	117.4	1670	0.07026	0.9445

Econométrie II

	Estimate	Std. Error	t value	$\Pr(> t)$
x1	-294623	141025	-2.089	0.04528
$\mathbf{x2}$	-365083	120331	-3.034	0.004947
x3	4.871	1.525	3.195	0.003283
x4	37.35	5.607	6.661	2.231e-07

Table 6: Fitting linear model: y \sim x

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
35	718.3	0.9496	0.9429

[,1] ## [1,] 0.5232029

Fig.8 Comparaison des résidus et des valeurs estimées par le modèle 1

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2808	1188	-2.363	0.0253
x1	-194890	93923	-2.075	0.04729
$\mathbf{x2}$	-330704	79145	-4.178	0.0002599
x3	6.94	1.049	6.613	3.572 e-07
x4	32.37	3.754	8.625	2.268e-09

Table 8: Fitting linear model: y $\sim x$

Observations	Residual Std. Error	R^2	Adjusted R^2
33	470.3	0.9795	0.9766

[,1] ## [1,] 0.7389764

Colour

Résidus

Valeur estimée de y par le modèle

Valeur réelle de y

Année

Fig.9 Comparaison des résidus et des valeurs estimées par le modèle 2

Table 9: Breusch-Godfrey test for serial correlation of order up to 2: y ~ x

Test statistic	df	P value
15.81	2	0.0003685 * * *

Table 10: Jarque Bera Test: res

Test statistic	df	P value
0.2348	2	0.8892

statistic	p.value	parameter	method	alternative
10.25	0.2477	8	White's Test	greater

Table 12: studentized Breusch-Pagan test: y ~ x

Test statistic	df	P value
2.284	4	0.6836

 $\mbox{\tt \#\#}$ Valeur de l'erreur quadratique moyenne RMSE (sur les années 2018 et 2019) : 2529.973

Econométrie II 7

Table 13: Tableau des prévisions de 2017 à 2025

Année	Valeur de la prévison	Borne inférieure	Borne supérieure	Ecart-type de prévision
2018	18988.78	17975.96	20001.61	495.9313
2019	19482.35	18456.25	20508.46	502.4317
2020	19858.63	18795.74	20921.52	520.4458
2021	21008.34	19703.37	22313.30	638.9760
2022	22111.04	20643.57	23578.52	718.5499
2023	22885.86	21488.09	24283.63	684.4200
2024	22927.70	21603.50	24251.89	648.3924
2025	23390.82	22030.94	24750.69	665.8657