

Enunciados de Problemas de Química Física II

Cinética Química

1) A nitramida (NH_2NO_2) decompõe-se em meio básico dando óxido nitroso (N_2O) e água (H_2O). A reação é de 1ª ordem.

$$NH_2NO_2(I) \rightarrow N_2O(g) + H_2O(I)$$

Foram adicionados 50 mg de NH_2NO_2 a 15 $^{\circ}C$ a um dado volume de tampão de fostato contendo 0.15 M de HPO_4^{2-} e 0.10 M de $H_2PO_4^{-}$ acetato de sódio, pH=7.4. Passados 70 minutos já se tinham libertado 6.19 mL de gás (volume de gás seco a 15 $^{\circ}C$ e a P=1 atm). Calcular o tempo de semi-reação a esta temperatura.

2) A isomerização cis-trans do 1,2-dimetilciclopropano a 450°C é uma reação de 1ª ordem reversível. A composição da mistura em percentagem molar é dada na tabela seguinte:

t (s)	0	45	90	225	270	360	495	8
% trans	0	10.8	18.9	37.7	41.8	49.3	56.5	70.0

Calcule a constante de equilíbrio e as constantes cinéticas da reação direta e inversa.

R:
$$k_1=2,33x10^{-3} \text{ s}^{-1}$$
, $k_{-1}=1x10^{-3} \text{ s}^{-1}$, $K=2,33$

3) O peróxido de hidrogénio (H₂O₂) decompõe-se lentamente na ausência de catalisador para dar água e oxigénio.

$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$$

O processo é catalisado, por exemplo, na presença de ácido bromídrico e foi sugerido o sequinte mecanismo:

(pK_a
$$\approx \infty$$
) HBr \rightleftharpoons H⁺ + Br⁻ (equilíbrio rápido)
H₂O₂ + H⁺ + Br⁻ \rightarrow H₂O + HOBr
H₂O₂ + HOBr \rightarrow H₂O + O₂ + H⁺ + Br⁻

- a) "A velocidade de reação é diretamente proporcional à quantidade de ácido bromídrico adicionado". Prove esta afirmação.
- b) Diga toda a informação que pode tirar segundo a Teoria do Complexo Ativado, ao efetuar esta reação na presença de um eletrólito (NaCl), além de ácido bromídrico 0.05 M, sabendo que para [NaCl]=0.5 M a constante de velocidade observada para 25 °C é de 0.10 s⁻¹ e para [NaCl]=1.5 M é de 0.03 s⁻¹ à mesma temperatura.

R: a)
$$v=2K_ak_2[H_2O_2][HBr]$$
; b) $Z_AZ_B=-1$

4) Seja a reação reversível dada num só passo $A \xrightarrow[k_1]{k_1} B$ para a qual a variação da concentração de A e de B no tempo é dada tipicamente pela figura junta.

$$\frac{[A]}{[A]_0} = \frac{k_{-1} + k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$$

$$\frac{[B]}{[A]_0} = \frac{k_1 - k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$$

Sabendo que a 0.17 s e a 25° C se atinge uma concentração de B que é metade da concentração de equilíbrio de B ([B]_{eq}) e que a constante de equilíbrio a esta temperatura é 3, calcule k_1 e k_{-1} .

R:
$$k_1=3 \text{ s}^{-1}$$
, $k_{-1}=1 \text{ s}^{-1}$,

- 5) Uma reação em fase gasosa do tipo 2 A(g) \rightarrow B(g), de 2ª ordem em relação a A, dá-se em toda extensão num reator de volume e temperatura constantes, e possui um tempo de semi-reação de 1 hora para uma pressão inicial de A de 1.00 bar. Supondo que não há nenhum B no instante inicial, quais serão as pressões parciais de A e de B e a pressão total ao fim de
 - a) 1 h
 - **b)** 2 h
 - c) quando a reação acaba

R: a)
$$p_A=0.50$$
 bar, $p_B=0.25$ bar, $P_t=0.75$ bar

b) a)
$$p_A=0.33$$
 bar, $p_B=0.33$ bar, $P_t=0.66$ bar

c) a)
$$p_A=0$$
 bar, $p_B=0.50$ bar, $P_t=0.50$ bar

6) Um exemplo da chamada dependência anti-Arrhenius da temperatura é o que se observa com a reação entre o óxido nítrico e o oxigénio molecular,

$$2 NO_{(g)} + O_{2(g)} \rightarrow 2 NO_{2(g)},$$

sendo a cinética de 3ª ordem global.

Um dos mecanismos propostos para esta reação foi o seguinte:

Reação 1:
$$2NO \xrightarrow{k_1} N_2O_2$$

Reação 2:
$$N_2O_2 \xrightarrow{k_{-1}} 2NO$$

$$\begin{array}{ll} \textit{Reação 1:} & 2NO \xrightarrow{k_1} N_2O_2 \\ \textit{Reação 2:} & N_2O_2 \xrightarrow{k_{-1}} 2NO \\ \textit{Reação 3:} & N_2O_2 + O_2 \xrightarrow{k_2} 2NO_2 \end{array} \hspace{0.5cm} (lento)$$

Sabendo que as energias de ativação para cada reação são de E₁=79.5 kJmol⁻¹, E₋₁=205 kJmol⁻¹ e E₂=84 kJmol⁻¹, calcule a energia de ativação global segundo este mecanismo. Justifique a resposta.

R:
$$E_a = -41.5 \text{ kJ mol}^{-1}$$

7) Seguiu-se a composição da reação em fase gasosa 2A → 3B por medição da pressão total em função do tempo, obtendo-se os seguintes resultados:

t/min	0	4	8	12	16	20	
p/bar	1.250	1.298	1.342	1.381	1.416	1.448	

Calcular a ordem e a constante de velocidade da reação, admitindo que no instante inicial a pressão parcial de B era de 0.25 bar e justificando todas as opções que tomar.

- 8) Os seguintes gráficos representam a variação da concentração normalizada para $[A]_0$ das espécies A e B ao longo do tempo para uma reação do tipo A \Leftrightarrow B perto do equilíbrio, a 3 temperaturas diferentes, de modo que $T_1 < T_2 < T_3$
 - a) Sabendo que as concentrações das espécies são dadas por

$$\frac{[A]}{[A]_0} = \frac{k_{-1} + k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}} \qquad \frac{[B]}{[A]_0} = \frac{k_1 - k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$$

e que as curvas se cruzam para T_3 a t=2.0 segundos, calcule as constantes cinéticas da reação direta (k_1) e inversa (k_{-1}) a esta temperatura.

b) Calcule a constante de equilíbrio para cada temperatura e diga se a reação é endotérmica ou exotérmica, justificando a sua resposta.

R: a)
$$k_1=0.39 \text{ s}^{-1}$$
, $k_{-1}=0.098 \text{ s}^{-1}$, b) endotérmica

9) A reação

$$N_2O_2(g) \rightarrow 2 NO(g)$$

é de 1^a ordem em relação a N_2O_2 . Derive uma expressão para a variação da pressão parcial de NO em função do tempo.

R:
$$[NO]=2[N_2O_2]_0(1-e^{-kt})$$

10) Calcule as constantes de velocidade direta e inversa para a reação no estado líquido, $H^++OH^-\rightarrow H_2O$, sabendo que o estudo desta cinética foi efetuado por um método de relaxação com salto de temperatura para 298K. A resposta do sistema foi seguida por medidas de condutividade e apresentou um tempo de relaxação de 37 μ s. Dados: $K_w(298K)=0.98\times10^{-14}$ e $\tau=1/\langle k_1([OH^-]_{298K}+[H^+]_{298K})+k_2\rangle$

R:
$$k_1=1,4x10^{11} M^{-1}s^{-1}, k_2=1,4x10^{-3} s^{-1},$$

11) A reação A→P nem sempre se dá num único passo. Um mecanismo proposto compreende 3 passos elementares onde duas moléculas de reagente colidem formandose um excesso de energia numa delas, tornando-se essa molécula energeticamente excitada que finalmente decai para produtos.

$$A + A \xrightarrow{k_1} A^* + A$$

$$A^* + A \xrightarrow{k_2} P$$

a)Utilizando a aproximação do estado estacionário à molécula excitada, A*, chegue à equação de velocidade de formação do produto P.

b)Demonstre que se o passo com a constante de velocidade k_2 for muito lento, é possível simplificar a constante de velocidade global e, se expressar as constantes k_1 e k_1 em função da constante de equilíbrio (grandeza termodinâmica), a equação de velocidade global dependerá apenas de uma constante cinética — a do passo determinante. Comente.

R:
$$v=k_1k_2[A]^2/(k_2+k_{-1}[A])$$
; b) $v=Kk_2[A]$

12) A aproximação ao estado estacionário é largamente utilizada no esclarecimento de esquemas cinéticos, nomeadamente em inúmeras reações orgânicas que ocorrem através da ionização inicial de uma ligação C-H. Um exemplo importante é a bromação do dicianometano: $CH_2(CN)_2 + Br_2 \rightarrow BrCH(CN)_2 + H^+ + Br^-$, cujo mecanismo pode ser representado por:

$$\begin{array}{c} k_1 \\ \text{CH}_2(\text{CN})_2 \rightarrow \text{CH}(\text{CN})_2^- + \text{H}^+ \\ \\ k_1 \\ \text{CH}(\text{CN})_2^- + \text{H}^+ \rightarrow \text{CH}_2(\text{CN})_2 \\ \\ \text{CH}(\text{CN})_2^- + \text{Br}_2 \rightarrow \text{BrCH}(\text{CN})_2 + \text{Br} - \\ \end{array}$$

- a) Deduza a equação de velocidade de formação do dicianobromometano, d[BrCH(CN)₂]/dt, aplicando a aproximação do estado estacionário ao anião CH(CN)₂.
- b) Mostre que, quando a concentração de bromo é muito superior à concentração do ião H⁺, é possível simplificar a equação de velocidade deduzida em a), tornando-se numa cinética de 1ª ordem onde o passo determinante é a ionização do CH₂(CN)₂.

R:
$$dP/dt=k_1k_2[CH_2(CN)_2][Br_2]/(k_1[H^+]+k_2[Br_2])$$
; b) $dP/dt=k_1[CH_2(CN)_2]$

13) A decomposição do ozono na presença de excesso de O2, dá-se segundo o mecanismo

$$O_3 + M \xrightarrow{k_1} O_2 + O \cdot + M$$

$$O_2 + O \cdot + M \xrightarrow{k_{-1}} O_3 + M$$

$$O \cdot + O_3 \xrightarrow{k_2} 2O_2$$

em que M é uma substância inerte cuja função é absorver a energia libertada na produção de O.

Deduza a lei de velocidade aplicando a aproximação do estado estacionário a O·.

R:
$$d[O_3]/dt=2k_1k_2[O_3]^2[M]/(k_{-1}[O_2][M]+k_2[O_3])$$

14) O mecanismo de catálise heterogénea ácida S+HA→HA+P dá-se através da formação da forma ácida do substrato, SH⁺, por transferência do protão do ácido HA e posteriormente a forma ácida do substrato reage, não com a molécula do solvente, mas com a base conjugada do ácido.

$$\begin{array}{c} S + HA \xrightarrow{\quad k_1 \quad} SH^+ + A^- \\ SH^+ + A^- \xrightarrow{\quad k_{-1} \quad} S + HA \\ SH^+ + A^- \xrightarrow{\quad k_2 \quad} HA + P \end{array}$$

Chegue à expressão da velocidade para a formação do produto P aplicando a aproximação de estado estacionário ao intermediário SH⁺.

R:
$$dP/dt=k_1k_2[S][HA]/(k_{-1}+k_2)$$

15) O éter dimetílico gasoso sofre uma decomposição a temperaturas elevadas que é uma reação de 1ª ordem

$$CH_3OCH_3 \rightarrow CH_4 + H_2 + CO$$

Introduziu-se uma quantidade de éter num balão a 504 °C e mediu-se a pressão ao longo do tempo.

t(s)	390	777	1587	3155	∞
p (mm Hg)	408	480	624	779	931

Calcular a constante cinética e o tempo de semi-reação para esta temperatura.

R:
$$k = 5x10^{-4} \text{ s}^{-1}$$
; $t_{1/2} = 1530 \text{ s}$

16 – A hidrólise do acetato de etilo

$$CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$$

foi seguida a 25 ºC ao longo do tempo, tendo-se obtido os seguintes resultados:

t(s)	0	178	273	531	866	1510	1918	2401
10 ³ [x] (M)	0.00	0.88	1.16	1.88	2.56	3.35	3.77	4.06

onde x representa a concentração dos produtos. As concentrações iniciais são, para o NaOH de 9.8×10^{-3} M e para o $CH_3COOC_2H_5$ de 4.86×10^{-3} M.

Determinar a ordem da reação e a constante cinética.

17) A composição da reação em fase gasosa 2A→B foi seguida por medida de pressão total em função do tempo, obtendo-se os seguintes resultados:

t(s)	0	100	200	300	400
p (mm Hg)	400	322	288	268	256

Qual a ordem da reação e a constante cinética?

18) A 378°C, o t_{1/3} para a decomposição térmica de 1ª ordem do óxido de etileno é 575 min e a energia de ativação da reação de 217 kJ mol⁻¹. A partir destes dados, calcular o tempo necessário para decompôr 75% do óxido de etileno a 450°C.

R: 13,3 min

19) Sabendo que as velocidades iniciais da reação entre A e B para diferentes concentrações iniciais dos reagentes são:

v ₀ /M s-1	[A] ₀ /M	[B] ₀ /M
5x10 ⁻⁴	0,1	0,1
2x10 ⁻³	0,2	0,1
1x10 ⁻³	0,1	0,2

calcular a ordem da reação em relação a A e a B e a velocidade da reação quando [A]=0,15 M e [B]=0,25 M à mesma temperatura.

R:
$$v=0.5[A]^2[B]$$
; $v=2.81x10^{-3}$ M s⁻¹

20) Seja
$$I_2 + I = \frac{k_1}{k_2} I_3$$

Esta reação foi estudada usando técnicas de saltos de temperatura induzidos por laser, analisando a relaxação do sistema. Os tempos de relaxação foram medidos para várias concentrações de equilíbrio, a 25ºC.

[l ⁻]x10 ³ /M	$[I_2]x10^3/M$	τ/ns
0,57	0,36	71
1,58	0,24	50
2,39	0,39	39
2,68	0,16	38
3,45	0,14	32

- a) Calcular k₁ e k₋₁.
- b) Comparar os resultados com K=720.

R: a)
$$k_1=6x10^9$$
 M⁻¹s⁻¹, $k_2=8x10^6$ s⁻¹, b) K=750

21) O mecanismo de Rice-Herzfeld para a decomposição do acetaldeído é o seguinte:

CH ₃ CHO → CH ₃ • + CHO•	k_1
$\text{CH}_3^{\bullet} + \text{CH}_3\text{CHO} \rightarrow \text{CH}_4 + \text{CH}_2\text{CHO}^{\bullet}$	k_2
$CH_2CHO^{\bullet} \rightarrow CO + CH_3^{\bullet}$	k_3
$2CH_3^{\bullet} \rightarrow C_2H_6$	k_4

- a) Determinar a taxa de formação de metano.
- b) As energias de ativação dos diferentes passos reacionais são:

Ea₁= 318 kJ mol⁻¹, Ea₂= 42 kJ mol⁻¹, Ea₃= 75 kJ mol⁻¹, Ea₄= 0 kJ mol⁻¹, Calcular a energia de ativação da formação do metano.

R: a)
$$v=(k_2^2k_1/k_4)^{1/2}[CH_3CHO]^{3/2}$$
, b) Ea=201 kJ mol⁻¹,

22) O Citrato de Sildenafil, cuja fórmula química estrutural é aqui apresentada, é designado quimicamente por Citrato de 1-[[3-(6,7-dihidro-1-metil-7-oxo-3-propil-1 *H*-pirazole[4,3-*d*]pirimidina-5-il)-4-etoxifenil]sulfonil]-4-metilpiperazina e é o princípio ativo do VIAGRA®.

É um pó branco com uma solubilidade de 3.5 g dm⁻³ em água e possui uma massa molar de 666.7 g mol⁻¹. O seu mecanismo de ação é hoje muito falado na terapia oral da disfunção erétil¹.

O mecanismo fisiológico de ereção do pénis envolve a libertação de óxido nítrico (NO) no corpo cavernoso durante a estimulação sexual. O NO ativa a enzima guanilate ciclase, resultando um aumento dos níveis de monofosfato de guanosina cíclica (cGMP), produzindo a relaxação muscular no corpo cavernoso e permitindo a entrada do fluxo de sangue. O Citrato de Sildenafil não tem efeito direto na relaxação, mas aumenta o efeito do óxido nítrico, inibindo a fosfodiesterase tipo 5 (PDE 5) que é a responsável pela degradação do cGMP.

Na figura seguinte está representada a concentração de Citrato de Sildenafil no plasma de um homem em ng/ml em função do tempo (em horas) após a administração de uma dose de 100 mg.

23) Estudou-se a reação entre o ião persulfato $(S_2O_8^{2-})$ e o ião ferricianeto $(Fe(CN)_6^{4-})$ a 35 $^{\circ}$ C. O método utilizado foi a espetrofotometria, medindo-se a absorvância da solução a 420 nm. Para este comprimento de onda o ferricianeto é praticamente transparente e o coeficiente de extinção molar do persulfato é de $1060\pm10~M^{-1}cm^{-1}$. Usando uma célula de 1 cm de percurso ótico, mediu-se a velocidade inicial da reação, expressa em variação da absorvância por unidade de tempo para várias concentrações iniciais dos reagentes, obtendo-se os seguintes resultados:

[S ₂ O ₈ ²⁻]/M	3x10 ⁻³	2x10 ⁻³	1x10 ⁻³	1x10 ⁻³	1x10 ⁻³	1x10 ⁻³	1x10 ⁻³
[Fe(CN) ₆ ⁴⁻]/M	1x10 ⁻³	1x10 ⁻³	1x10 ⁻³	1.5x10 ⁻³	2x10 ⁻³	2.5x10 ⁻³	3x10 ⁻³
- <u>dA</u> x10 ⁵ /s ⁻¹ dt	2.05	1.30	0.62	1.45	2.40	3.52	5.00

- a) Determinar as ordens parciais da reação em relação ao persulfato e ao ferricianeto.
- b) Calcular as constantes de velocidade da reação para as condições indicadas.

24) O Santo Sudário de Turim, a mortalha de linho que segundo a História envolveu o corpo de Cristo, foi vendida no início da década de 80 por alguns milhões de contos. Em 1988, 3 laboratórios independentes calcularam a idade verdadeira desta peça pelo método de decaimento radioativo do ¹⁴C por emissão de uma partícula beta e um antineutrino e formação de um átomo de ¹⁴N. Esta reação de 1ª ordem é muito lenta, demorando 5730±40 anos para que uma dada quantidade de ¹⁴C se reduza para metade desse valor. Enquanto um ser está vivo, a razão ¹⁴C/¹²C é constante e igual a 1/10¹² e o nº de desintegrações de ¹⁴C observadas são de 0.260 por segundo. Quando um ser

morre, deixa de haver renovação do ¹⁴C, a razão ¹⁴C/¹²C baixa e o nº de desintegrações também.

As amostras do Santo Sudário apresentavam entre 0.241 e 0.238 desintegrações de ¹⁴C por segundo. Qual a datação da mortalha?

25) A seguinte reação é considerada de 2ª ordem em relação ao reagente A

$$2A(g) \rightarrow 2B(g) + C(g)$$

Seguiu-se a variação da pressão do sistema no tempo para uma dada temperatura, tendo-se obtido:

tempo	16,7 min	170 min	27,5 h	10 dias
P (bar)	0,495	0,529	0,651	0,734

Considerando a reação como completa, calcule a constante cinética e o tempo de semirreação a essa temperatura.

26) Para uma dada reação do tipo $A + 2B \Rightarrow C + 2D$ registaram-se, a 17 °C, os seguintes valores:

v ₀ / M s ⁻¹	[A] ₀ / M	[B] ₀ / M
0,0063	0,21	0,70
0,0041	0,15	0,90
0,0125	0,21	1,39
0,0208	0,38	0,70

Determine a lei de velocidade da reação.

27) A reação N_2O_2 (g) \rightarrow 2 NO (g) é de 1ª ordem em relação a N_2O_2 . Prove que assim é, sabendo que no instante inicial já existe 0.25 bar de NO e que a pressão total do sistema varia da seguinte maneira em função do tempo. (3,5 val)

t / min 1 2 3 5 20 100
$$p_t$$
 / bar 2,30 2,62 2,85 3,14 3,45 3,45

28) Para uma dada reação do tipo **A + 2B ⇒ C + 2D** registaram-se, a 17°C, os seguintes valores, sendo os volumes referentes às seguintes soluções-mãe: solução-mãe de A com concentração de 0,5 M e concentração-mãe de B com 2,1 M:

v ₀ / 10 ⁻⁵ M s ⁻¹	Vol A / mL	Vol B / mL	Vol H ₂ O / mL	Vol total / mL
7,64	42	33	25	100
5,08	30	43	27	100
12,0	42	52	6	100
18,2	76	24	0	100
2,26	20	43	37	100

Determine a lei de velocidade da reação.