TDS3651 Visual Information Processing

Filtering Lecture 3

Faculty of Computing and Informatics

Multimedia University

prepared by Lai-Kuan, Wong
modified by Yuen Peng, Loh

Lecture Outline

- Image Filtering
- Correlation and Convolution
- Image Sharpening
- Non-linear filters

Previously

Applications of Filtering

De-noising

Salt and pepper noise

Super-resolution

Moving beyond pixel □ pixel

 What if there is insufficient knowledge of how to transform a pixel?

Depending on what we want to achieve, we can use **neighboring pixels** to help provide more information

Motivation: Noise reduction

- Capturing multiple images of the same static scene will not result in identical images
 - Likely: Environmental changes, sensor noise, camera shake, etc.

Motivation: Noise reduction

 Sometimes noises can be introduced during transmission of signals or compression of data

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Neighborhood Processing a.k.a. Filtering

- Idea: Modify the value of the pixel f(x,y) based on a small neighbourhood of pixels surrounding it
- If we wish to "soften" the noise in the image, how should we modify?
 - A. Get minimum pixel
 - B. Get maximum pixel
 - C. Get average pixel
 - D. Use a preset value

To try solve this...

- Idea: Let's replace each pixel with an average of all the values in its neighbourhood
- Assumptions:
 - Expect pixels to be "like" their neighbours
 - Expect noise processes to be independent from pixel to pixel

Result

"Masking" or Filtering

- Run a "mask" or "filter" across the entire image
- Mask corresponds to the neighbourhood that we wish to process

"Masking" or Filtering

 Let's say we multiply element-by-element the 3x3 mask/filter against a 3x3 part of the image, what are the values in the mask to achieve the averaging effect?

Let's take a look in 1-D

- Let's replace each pixel with an average of all the values in its neighbourhood (also called "moving average")
- 1D example

Moving average

- Let's replace each pixel with an average of all the values in its neighbourhood
- What's this neighbourhood?

Moving average

- Moving average has equal uniform weights in the neighborhood
- Example: [1 1 1 1 1] / 5

Weighted moving average

- Moving average with non-uniform weights
- Example: [1 4 6 4 1] / 16

Finish: Moving average in 2D

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	٥	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	60	90	90	90	60	30
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
10	20	30	30	30	30	20	10
10	10	10	0	0	0	0	0

Finish: Moving average in 2D

G[x,y]

Correlation and Convolution

•. Say the averaging window size is $2k + 1 \times 2k + 1$:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$
Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

 Generalize to allow different weights depending on neighbouring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u,v]F[i+u,j+v]}_{Non-uniform\ weights}$$

90

Steps:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

Move v (column) first

- Filter size = $(2k + 1) \times (2k + 1)$ If filter size = 3×3 , then k = 1
- 2. When i = 2, j = 9, F[2,9] is the center pixel From u = -k = -1, v = -k = -1F[i + u, i + u] = F[2 - 1.9 - 1] = F[1.8]
- Multiply with corresponding filter value
- Repeat until u = k = 1, v = k = 1F[i + u, i + u] = F[2 + 1.9 + 1] = F[3.10]
- Sum all values and place in G[i, j] = G[2,9]

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

• Cross-correlation: $G = H \otimes F$

- Summary:
 - Filtering an image: Replace each pixel with a linear combination of its neighbors
 - The filter "kernel" or "mask" H(u, v) is the prescription for the weights in the linear combination

• What values belong in the kernel *H* for the moving average example?

$$G = H \otimes F$$

Filter #1: Moving Average

al filtered

 What can we expect from the output if the filter size is 5 x 5 or 7 x 7 instead of 3 x 3?

Boundary issues

- What about near the edge?
 - Filter window falls off the edge of the input image, some pixels are not defined ⇒ Need to extrapolate
 - Some common padding methods:
 - Constant value (with 0's we get zero-padding)
 - Wrap around
 - Copy edge
 - numpy.pad has a lot more options!

Gaussian filter

 What if we want the nearest neighbouring pixels to have more influence on the output?

Smoothing with Gaussian filter

Gaussian filter parameters

- What parameters are important?
- (1) Size of kernel or mask

 Note: Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filter parameters

- What parameters are important?
- (2) Variance of Gaussian: determines extent of smoothing

σ parameter

 The σ parameter is the "scale" or "width" or "spread" of the Gaussian kernel ⇒ controls the amount of smoothing

Properties of Smoothing

- Values are positive
- Sum to 1 ⇒ constant regions same as input
- Amount of smoothing proportional to mask size
- "Low-pass" filtering, remove "high-frequency" components

Filtering an impulse signal

 What is the result of filtering the impulse signal (image) F with an arbitrary kernel H?

Filtering an impulse signal

 What is the result of filtering the impulse signal (image) F with an arbitrary kernel H?

Convolution

- Convolution:
 - Flip the filter in both dimensions
 (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$\uparrow$$
Notation for convolution operator
$$F[x,y]$$

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i - u,j - v]$$
1. Filter size = $(2k+1) \times (2k+1)$
If filter size = 3×3 , then $k=1$

2. When $i=2,j=9,F[2,9]$ is the center pixel From $u=-k=-1,v=-k=-1$

P[4 0]

Steps:

- Filter size = $(2k + 1) \times (2k + 1)$
- From u = -k = -1, v = -k = -1F[i - u, i - u] = F[2 + 1.9 + 1] = F[3.10]
- Multiply with corresponding filter value
- 4. Repeat until u = k = 1, v = k = 1F[i - u, i - u] = F[2 + 1.9 + 1] = F[1.8]
- Sum all values and place in G[i, j] = G[2,9]

	j								FL	1,8]		
1	0	0	0	0	0	0	0	0	0	0	F	[2,9]	
ı	0	0	0	0	0	0	0	0	0	0			
ı	0	0	0	90	90	90	90	90	0	0	- <i>F</i>	[3,1]	0]
ı	0	0	0	90	90	90	90	90	0	0		_	_
ı	0	0	0	90	90	90	90	90	0	0		0	0
ı	0	0	0	90	0	90	90	90	0	0		0_	0
ı	0	0	0	90	90	90	90	90	0	0		-/-	
ı	0	0	0	0	0	0	0	0	0	0		90	0
1	0	0	90	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0			
					_								

To simplify, the convolution can be converted to correlation by flipping the filter horizontally and vertically

0	0	0		9	
0	0	0	\otimes	6	
90	0	0		3	

$$= (0 \times 9) + (0 \times 8) + (0 \times 7) + (0 \times 6) + (0 \times 5) + (0 \times 4) + (90 \times 3) + (0 \times 2) + (0 \times 1)$$

$$= 270 = G[2,9]$$

Convolution vs. Cross-correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$
$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

Important! If the kernel is symmetric, Convolution = Correlation

Convolution is useful when dealing in the frequency domain (Fourier transform) to enable easy combination of more than 1 filter. Nice explanation on the differences: http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf

- In some cases, filters are separable ⇒ can be factored into two steps
 - Convolve all rows
 - Convolve all column

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

- What is the complexity of filtering an n × n image with an m × m kernel?
 - $O(n^2m^2)$

What if the kernel is separable?

• Is this separable? If yes, what is the separable version?

	1	1		1
1	1	1		1
$\frac{1}{K^2}$:	:	1	::
	1	1		1

$$\frac{1}{K}$$
 1 1 \cdots 1

What does this filter do?

• Is this separable? If yes, what is the separable version?

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$\frac{1}{16}$ 1 4	6	4	1
--------------------	---	---	---

What does this filter do?

• Is this separable? If yes, what is the separable version?

$$\frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

What does this filter do?

• Is this separable? If yes, what is the separable version?

	1	-2	1
$\frac{1}{4}$	-2	4	-2
	1	-2	1

$$\frac{1}{2}$$
 1 -2 1

• What does this filter do?

Image Sharpening

Intuition of Filtering

Original

Filtered (no change)

Intuition of Filtering

Intuition of Filtering

Sharpening

 Sharpening by filtering: Accentuates differences with local average

This is also related to a process called Unsharp masking

Unsharp masking

- A process used many years in the publishing industry to sharpen images
- Details = Original image Smoothened image
- Sharpened image = Original image + Details

Getting a sharpened image

What does blurring take away?

Adding the details back...

Sharpening Filter

Amount of sharpening

- Details = Original image Smoothened image
- Sharpened image = Original image + Details
 - How can we control the amount of sharpening that is applied?

The strength of the details/smoothing filter!

Non-linear Filters

Non-linear filtering

So far, we look at linear filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$
 Linear combination of multiplied terms
$$G = H \star F$$

- What about non-linear filtering?
- Can the choice of filter H[u,v] produce non-linear filtering?

- A type of order-statistics filter "statistical estimator"
- No new pixel values are introduced

 Removes spikes: Good for impulse, salt & pepper noise

 Stray white pixels (very high values) or stray black pixels (very low values) can be dealt with

• Example:

- Applying 7x7 median filter (middle pic) : broccoli loses details
- Applying 7x7 multi-stage median filter: less smoothing occurs, some details are maintained

Multi-stage median filter:

 Median of a set of different median filters (obtained in different neighbourhoods)

```
y_{ij} = med(z_1, z_2, z_3, z_4)
z_1 = med(\{x_{uv} | x_{uv} \in N_{ij}^1\})
z_2 = med(\{x_{uv} | x_{uv} \in N_{ij}^2\})
z_3 = med(\{x_{uv} | x_{uv} \in N_{ij}^3\})
z_4 = med(\{x_{uv} | x_{uv} \in N_{ij}^4\})
```

Preserves sharp corners

 Drawback: Tend to be better at rejecting outliers but not so good at handling noise without outliers (e.g. Gaussian white noise)

- Averaging filter / weighted average filter
 - too much blurriness, noise remains but smoothened

Alpha-trimmed mean filter

- Select the average of the values within a window which excludes a percent of the largest and smallest values in the neighbourhood
- Delete $\alpha/2$ lowest and $\alpha/2$ highest values in the neighbourhood S_{XY} , find average of remaining pixels:

$$\hat{f}(x,y) = \frac{1}{mn - \alpha} \sum_{(s,t) \in S_{XY}} g_r(s,t)$$

Alpha-trimmed mean filter

• How should α be chosen?

Summary

Linear filtering – Convolution

- Smoothing by filtering
- Sharpening by filtering
- Unsharp masking

Non-linear filtering

- Median filter
- Alpha-trimmed mean filter
- Next: Edge detection

Recommended Reading

- [Gonzalez & Woods] Chapter 3
- [Forsyth & Ponce] Chapter 8 & 10