Контрольные вопросы и задачи к главе 4, раздел 10

Задание 3. (Функциональные и степенные ряды.)

3.1. Найдите область сходимости функциональных рядов:

a)⁰
$$\sum_{n=1}^{\infty} \frac{1}{n^{x+3}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^{2x^2-3x+2}};$$
 B) $\sum_{n=0}^{\infty} (2x+3)^n$.

B)
$$\sum_{n=0}^{\infty} (2x+3)^n$$

3.2. Найдите радиус сходимости, интервал сходимости степенных рядов:

$$\mathbf{a})^{\mathbf{O}} \sum_{n=1}^{\infty} \frac{2^n}{n(n+1)} x^n$$

6)
$$\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n+1}} (x+3)^n$$
;

a)^O
$$\sum_{n=1}^{\infty} \frac{2^n}{n(n+1)} x^n$$
; **6)** $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n+1}} (x+3)^n$; **B)** $\sum_{n=1}^{\infty} \frac{(x+2)^n}{3^n (n+1)(n+2)}$.

3.3. Разложение функций в степенные ряды.

Разложите заданные функции в степенные ряды (по степеням x). Укажите интервал сходимости полученных рядов.

a)
$$f(x) = x \ln(1 + x^2);$$

6)
$$f(x) = x$$
 arctg x :

B)
$$f(x) = x \sin x^2$$
;

$$f(x) = \frac{x}{4+x^2}$$
;

a)
$$f(x) = x \ln(1 + x^2);$$
 6) $f(x) = x \arctan x;$ $f(x) = \frac{x}{4 + x^2};$ $f(x) = \frac{x + 4}{(x - 1)(x + 5)}.$

3.4. Вычислите интеграл, разлагая подынтегральную функцию в ряд и ограничиваясь двумя первыми, отличными от нуля, членами разложения.

a)⁰
$$\int_{0}^{1} e^{\frac{x^{2}}{3}} dx$$
;

$$\mathbf{6)} \int_{0}^{1} \cos \sqrt{x} \ dx;$$

B)
$$\int_{0}^{0.8} \frac{\ln(1+x^2)}{x} dx.$$

3.5. Найдите три первых, отличных от нуля члена разложения в степенной ряд функции y = y(x), являющейся решением дифференциального уравнения, удовлетворяющего заданному начальному условию:

a)
$$y' = 2e^y + xy$$
, $y(0) = 0$; **6)** $y' = \cos x + y^2$, $y(0) = 1$;

B)
$$y' = x^2 + y^2$$
, $y(0) = 2$.

- 3.6. Дайте понятие равномерно сходящегося функционального ряда. Найдите все значения x, при которых ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ сходится раномерно.
- 3.7. Сформулируйте свойства равномерно сходящихся функциональных рядов. Можно ли почленно дифференцировать ряд $\sum_{n=1}^{\infty} \frac{\sin n^2 x}{n^2 + 1}$? Ответ обосновать.
- **3.8.** Что такое степенной ряд? Ряд $\sum_{n=1}^{\infty} a_n x^n$ расходится в точке $x_0 = -2$. С помощью теоремы Абеля установите, какое из следующих утверждений справедливо: А) этот ряд сходится абсолютно в точке $x_1 = -1$; В) этот ряд сходится в точке $x_2 = 0$; С) этот ряд расходится в точке $x_3 = 3$; D) нет правильного ответа.
- 3.9. Что значит разложить функцию в степенной ряд? Зависят ли коэффициенты такого разложения от способа его получения?

Разложив в ряд Маклорена функцию $f(x) = x/(1+x^2)$, найдите $f^{(2n+1)}(0)$.

- **3.10.** Разложите функцию $y = \operatorname{tg} x$ в ряд Тейлора по степеням $(x \pi/4)$, выписав первые 3 члена, отличные от нуля.
 - *3.11. Вычислите приближённо с точностью до 10^{-3} , оценив погрешность по признаку

Лейбница для знакочередующегося ряда: $\int_{0.5}^{0.5} e^{-x^2} dx$.

3.12. Выпишите два первых, отличных от нуля члена разложения в ряд по степеням xрешения уравнения y'' = 2xy' + 4y, удовлетворяющего начальным условиям y(0) = 0, y'(0) = 1.

Ответы на контрольные вопросы и задачи к главе 4, раздел 10

Задание 3. (Функциональные и степенные ряды.)

3.1. a)
$$x \in (-2; +\infty)$$
.

3.2.a)
$$R = 1/2$$
; $|x| < 1/2$.

3.3. a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{2n+1}$$
, $|x| < 1$; Γ) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{2n}} x^{2n-1}$, $|x| < 2$. **3.4.** a) $10/9$.

3.5. a)
$$2x + 2x^2 + \frac{10}{3}x^3$$
.

3.6.
$$(-\infty; +\infty)$$
. **3.** 7. Нет, нельзя, так как ряд $\sum_{n=1}^{\infty} \left(\frac{\sin n^2 x}{n^2 + 1}\right)'$ расходится.

3.8. B), C). 3.9.
$$(-)^n (2n+1)!$$
 3.10. $tg x = 1 - 2(1-\pi/4) + 2(1-\pi/4)^2 + ...$ 3.*11. 0.458. 3.12. $y = x + x^3 + ...$

3.*11. 0.458. **3.12.**
$$y = x + x^3 + ...$$