Discrete Mathematics Lecture 1

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Course Information

- Number theory: integers, ... (4)
 Combinatorics: counting, designs,... (2,6,8)
 Logic: propositions, predicates, proofs,... (1)
 Graph theory: graphs, trees, set systems ... (10,11)
 - **Discrete probability**: discrete distributions ···
 - Algebra: matrices, groups, rings and fields ...
 - Theoretical computer science: algorithms ···
 - Information theory: codes ···
 - ...

Textbook: Discrete Mathematics and Its Applications (8th edition) Kenneth H. Rosen, William C Brown Pub, 2018.

Course Information

张良峰 zhanglf week 1-8

乔文汇 qiaowh

陈昱聪 **chenyc**

郑舸 zhengge

李慕天 limt1

何旭明 hexm week 9-16

李子阳 lizy5

陈子苓 chenzl

陈雨瑶 chenyy6

Course Information

Course Materials: Lecture slides, homework questions, ...

- Piazza: https://piazza.com/class/kzjye4h1zeq4i3
- **Blackboard**: https://egate.shanghaitech.edu.cn/new/index.html

HW Submission: submit a soft copy (pdf/jpg) of HW solutions

• **Gradescope**: https://www.gradescope.com/courses/370554

Q&A: online Q&A, office hours, and tutorial sessions

- Online Q&As: post your questions to Piazza and get answers
- Instructor's Office hours: 20:00-21:00, Wednesday, SIST 2-202.i
- TAs' Tutorial Sessions: 19:50-21:30, Monday & Thursday

Evaluation:

- Attendance: 10% (random codes)
- Homework: 30% (no plagiarisms, firm deadline, ...)
- Midterm: 30% (on the first half of the course)
- Final Exam: 30% (on the second half of the course)

Divisibility

- **NOTATION:** $\mathbb{N} = \{0,1,2,...\}; \mathbb{Z} = \{0,\pm 1,...\}; \mathbb{Q} \text{ (rational)}; \mathbb{R} \text{ (real)}$ **DEFINITION:** Let $a \in \mathbb{Z} \setminus \{0\}$ and let $b \in \mathbb{Z}$.
 - a divides b: there is an integer $c \in \mathbb{Z}$ such that b = ac
 - a is a **divisor** of b; b is a **multiple** of a
- の発音し、 a|b: a divides b; $a \nmid b$: a does not divide b
- Carbon $n \in \{2,3,...\}$ is a **prime** if the only positive divisors of n are 1 and n
 - Example: 2,3,5,7,11,13,17,19,23,29, ... are all primes
 - If $n \in \{2,3,...\}$ is not a prime, then n is called a **composite**
 - Example: n is composite iff $\exists a, b \in (1, n) \cap \mathbb{Z}$ such that n = ab
- THEOREM (Fundamental Theorem of Arithmetic) Every

integer n > 1 can be uniquely written as $n = p_1^{e_1} \cdots p_r^{e_r}$, where $p_1 < \cdots < p_r$ are primes and e_1 , ..., $e_r \ge 1$.

Proof of existence: by mathematical induction on the integer n

- $n = 2: 2 = 2^1$ is a product of prime powers
- **Induction hypothesis**: suppose there is an integer k > 2 such that the theorem is true for all integer n such that $2 \le n < k$ $2 \ne 0$ 假设八个对成
- Prove the theorem is true for n = k
 - n = k is a prime
 - n = k is a product of prime powers
 - n = k is composite
 - There are integers n_1 , n_2 such that $1 < n_1$, $n_2 < n$ and $n = n_1 n_2$
 - By induction hypothesis, $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_s^{\beta_s}$
 - $p_1, \ldots, p_r, q_1, \ldots, q_s$ are primes; $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s \geq 1$
 - $n = n_1 n_2 = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \cdot q_1^{\beta_1} \cdots q_s^{\beta_s}$ is a product of prime powers

The Well-Ordering Property: Every non-empty subset of N (the set of nonnegative integers) has a least element.

THEOREM (Division Algorithm) Let $a, b \in \mathbb{Z}$ and b > 0. Then there are unique $q, r \in \mathbb{Z}$ such that $0 \le r < b$ and a = bq + r.

- Existence: Let $S = \{a bx : x \in \mathbb{Z} \text{ and } a bx \ge 0\}$. Then $S \ne \emptyset$ and $S \subseteq \mathbb{N}$ for $S \ne \emptyset$ for $S \ne \emptyset$ and $S \subseteq \mathbb{N}$ for $S \ne \emptyset$ for $S \ne \emptyset$ and $S \subseteq \mathbb{N}$ for $S \ne \emptyset$ for $S \ne \emptyset$
 - S has a least element, say $r = a bq \ge 0$
- THE If $r \ge b$, then $r b = a b(q + 1) \in S$ and r b < r.
 - The contradiction shows that $0 \le r < b$.
 - **Uniqueness:** Suppose that $q', r' \in \mathbb{Z}$, $0 \le r' < b$ and a = bq' + r'
 - Recall that $a = bq + r, 0 \le r < b$.
 - Then $b(q q') = r' r \in (-b, b)$
 - It must be the case that q = q' and thus r = r'

Ideal理想

DEFINITION: Let $I \subseteq \mathbb{Z}$ be nonempty. I is called an **ideal** of \mathbb{Z} if

- $a, b \in I \Rightarrow a + b \in I$; and
- $a \in I$, $r \in \mathbb{Z} \Rightarrow ra \in I$
 - Example: $d\mathbb{Z} = \{0, \pm d, \pm 2d, ...\}$ is an ideal of \mathbb{Z} for all $d \in \mathbb{Z}$

THEOREM: Let *I* be an ideal of \mathbb{Z} . Then $\exists d \in \mathbb{Z}$ such that $I = d\mathbb{Z}$

- If $I = \{0\}$, then d = 0;
- Otherwise, let $S = \{a \in I : a > 0\}$.
 - $S \subseteq \mathbb{N}$ and $S \neq \emptyset$
 - due to well-ordering property, S has a least element, say $d \in S$.
 - $d\mathbb{Z} \subseteq I$
 - $d \in I \Rightarrow dr \in I \text{ for any } r \in \mathbb{Z}$
 - $I \subseteq d\mathbb{Z}$
 - $\forall x \in I, x = dq + r, 0 \le r < d$
 - $r = x dq \in I, 0 \le r < d$
 - r = 0 // otherwise, there is a contradiction
 - $x = dq \in d\mathbb{Z}$

Ideal

DEFINITION: Let I_1, I_2 be ideals of \mathbb{Z} . Then the **sum** of I_1 and I_2 is defined as $I_1 + I_2 = \{x + y : x \in I_1, y \in I_2\}$

THEOREM: If I_1 , I_2 are ideals of \mathbb{Z} , then $I_1 + I_2$ is an ideal of \mathbb{Z} .

- $\forall a, b \in I_1 + I_2, a + b \in I_1 + I_2$
 - $\exists x_1, x_2 \in I_1, y_1, y_2 \in I_2$ such that $a = x_1 + y_1; b = x_2 + y_2$
 - $a + b = (x_1 + x_2) + (y_1 + y_2) \in I_1 + I_2$
- $\forall a \in I_1 + I_2, r \in \mathbb{Z}, ra \in I_1 + I_2$
 - $\exists x \in I_1, y \in I_2 \text{ such that } a = x + y$
 - $ra = (rx) + (ry) \in I_1 + I_2$

EXAMPLE: $3\mathbb{Z} + 5\mathbb{Z} = \mathbb{Z}$; $4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z}$

- $3\mathbb{Z} + 5\mathbb{Z} \subseteq \mathbb{Z}$: this is obvious
- $\mathbb{Z} \subseteq 3\mathbb{Z} + 5\mathbb{Z}$:
 - For every $n \in \mathbb{Z}$, $n = 3 \cdot (2n) + 5 \cdot (-n) \in 3\mathbb{Z} + 5\mathbb{Z}$

QUESTION: $a\mathbb{Z} + b\mathbb{Z} = ?$

Greatest Common Divisor

DEFINITION: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

- **common divisor**: an integer d such that d|a, d|b
- **greatest common divisor** gcd(a, b): the largest common divisor
 - relatively prime: gcd(a, b) = 1

THEOREM: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

Then $a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$.

• $\{a,b\} \neq \{0\} \Rightarrow a\mathbb{Z} + b\mathbb{Z} \neq \{0\}$

- without loss of generalorsity
- There exists $d \in \mathbb{Z} \setminus \{0\}$ such that $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. W.l.o.g., d > 0.
 - d is a common divisor of a, b: $a \cdot 1 + b \cdot 0 \in d\mathbb{Z}$
 - *d* is greatest: Suppose that *d'* is a common divisor of *a*, *b*
 - d'|a,d'|b
 - $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z} \Rightarrow d = as + bt$ for some integers s, t
 - d'|d and thus $d' \le d$

THEOREM: There exist $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.

FTA Proof

THEOREM: If $a, b, c \in \mathbb{Z}$, $c \mid ab$ and gcd(c, a) = 1, then $c \mid b$.

- There exist s, t such that $1 = \gcd(a, c) = as + ct$.
 - b = bas + bct
 - $c|ab, c|ct \Rightarrow c|(bas + bct) \Rightarrow c|b$

THEOREM: If p is a prime and p|ab, then p|a or p|b.

- p|a: done
- $p \nmid a \Rightarrow \gcd(p, a) = 1$
 - $gcd(p, a) = 1 \land p|ab \Rightarrow p|b$

Fundamental Theorem of Arithmetic: proof of uniqueness

- Suppose that $n = p_1 \cdots p_r = q_1 \cdots q_s$, where p_i , q_j are all primes
 - $p_1|n \Rightarrow p_1|q_1 \cdots q_s \Rightarrow p_1|q_j \text{ for some } j \Rightarrow p_1 = q_j$
 - W.l.o.g., we suppose that j=1. Then $p_2\cdots p_r=q_2\cdots q_s$
 - The theorem is true by induction.

FTA Applications

THEOREM: Suppose that $a=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, $b=p_1^{\beta_1}\cdots p_r^{\beta_r}$. Then $d:=p_1^{\min(\{\alpha_1,\beta_1\})}\cdots p_r^{\min(\{\alpha_r,\beta_r\})}=\gcd(a,b)$.

- *d* is a common divisor of *a*, *b*
- *d* is largest among the common divisors
 - Suppose that d' is a common divisor of a, b
 - $d' = p_1^{e_1} \cdots p_r^{e_r}$
 - $d'|a \Rightarrow e_i \leq \alpha_i$ for all $i \in [r]$; $d'|b \Rightarrow e_i \leq \beta_i$ for all $i \in [r]$
 - $e_i \leq \min\{\alpha_i, \beta_i\}$ for all $i \in [r]$

THEOREM: There are infinitely many primes.

- Suppose there are only n primes: $p_1, ..., p_n$
- By FTA, $N = p_1 \cdots p_n + 1$ must be the product of primes
- $\exists i \in [n]$ such that $p_i | N$
- But $p_i \nmid N$

Equivalence Relation

DEFINITION: Let *A*, *B* be two sets. A **binary relation** from *A* to

B is a subset $R \subseteq A \times B$. // aRb means $(a, b) \in R$

EXAMPLE: $R = \{(a, a) : a \in \mathbb{Z}^+\}$ is a binary relation from \mathbb{Z}^+ to \mathbb{Z}^+

• aRb means that a = b; R is "="

DEFINITION: Let A be a set. An **equivalence relation**

R on A is a binary relation R from A to A such that

- **Reflexive**: aRa for all $a \in A$
- **Symmetric**: $aRb \Rightarrow bRa$ for all $a, b \in A$
- **Transitive**: $aRb, bRc \Rightarrow aRc$ for all $a, b, c \in A$

DEFINITION: The **equivalence class** of $a \in A$ is the set

$$[a]_R = \{x \in A : xRa\}$$

Congruence

THEOREM: Let $n \in \mathbb{Z}^+$. Then $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b)\}$ is an equivalence relation on \mathbb{Z} (from \mathbb{Z} to \mathbb{Z}).

- R is a binary relation from \mathbb{Z} to \mathbb{Z}
 - Reflexive: $n|(a-a) \Rightarrow aRa$
 - Symmetric: $aRb \Rightarrow n|(a-b) \Rightarrow n|(b-a) \Rightarrow bRa$
 - Transitive: $aRb, bRc \Rightarrow n|(a-b), n|(b-c) \Rightarrow n|(a-c) \Rightarrow aRc$

DEFINITION: Let $n \in \mathbb{Z}^+$ and $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b) \}$.

- The notation $a \equiv b \pmod{n}$ means that aRb.
 - $a \equiv b \pmod{n}$ is called a **congruence**
 - Read as: a is congruent to b modulo n
 - *n* is called the **modulus** of the congruence
 - $a \not\equiv b \pmod{n}$: $(a,b) \notin R$, or equivalently $n \nmid (a-b)$
 - Read as: a is not congruent to b modulo n

Congruence

- **THEOREM:** Let $n \in \mathbb{Z}^+$. For any $a \in \mathbb{Z}$, there is a unique integer r such that $0 \le r < n$ and $a \equiv r \pmod{n}$.
 - **Existence**: by division algorithm, $\exists q, r \in \mathbb{Z} \text{ s.t. } 0 \le r < n, a = qn + r$
 - $a \equiv r \pmod{n}$
 - **Uniqueness**: suppose that $0 \le r' < n$ and $a \equiv r' \pmod{n}$
 - $|r r'| < n \text{ and } r \equiv r' \pmod{n}$
 - |r r'| < n and n|(r r')
 - r = r'
- **DEFINITION:** Let $a, n \in \mathbb{Z}$ and n > 0. Then there are unique integers q, r such that $0 \le r < n$ and a = nq + r.
 - We define $a \mod n$ as r.

Residue Class

DEFINITION: Let $\alpha \in \mathbb{R}$.

- $[\alpha]$: **floor** of α , the largest integer $\leq \alpha$
- $[\alpha]$: **ceiling** of α , the smallest integer $\geq \alpha$
 - If a = bq + r, then $q = \lfloor a/b \rfloor$ and r = a bq
- **DEFINITION:** Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. We denote the equivalence class of a under the equivalence relation mod n with $[a]_n$ and call it the **residue class of** a mod n.
 - $[a]_n = a + n\mathbb{Z} = \{a + nx : x \in \mathbb{Z}\}$
 - any element of $[a]_n$ is a **representative** of $[a]_n$

EXAMPLE:
$$[0]_6 = \{0, \pm 6, \pm 12, ...\}; [1]_6 = \{..., -11, -5, 1, 7, 13, ...\}; ...$$