

289779US0PCT.ST25
SEQUENCE LISTING

<110> Tohata, Masatoshi
Sawada, Kazuhisa
Ozaki, Katsuya
Kobayashi, Kazuo
Ogasawara, Naotake

<120> RECOMBINANT MICROORGANISM

<130> 289779US0PCT

<140> 10/578,613
<141> 2006-05-08

<150> PCT/JP04/16891
<151> 2004-11-05

<150> JP 2003-379167
<151> 2003-11-07

<160> 122

<170> PatentIn version 3.3

<210> 1
<211> 3150
<212> DNA
<213> Bacillus sp. KSM-S237

<220>
<221> CDS
<222> (573)..(3044)

<220>
<221> sig_peptide
<222> (573)..(659)

<400> 1
gatttgcga tgcaacaggc ttatatttag aggaaatttc ttttaaattt gaatacgaa 60
taaaatcagg taaacagggtc ctgattttat tttttgagt ttttagaga actgaagatt
gaaataaaaag tagaagacaa aggacataag aaaattgcat tagtttaat tatagaaaaac 120
gccttttat aattatttat acctagaacg aaaatactgt ttcgaaagcg gtttactata
aaaccttata ttccggctct ttttaaaac aggggtaaa aattcactct agtattctaa 180
tttcaacatg ctataataaa tttgttaagac gcaatatgca tctttttt tacgatatat
gtaagcgggtt aaccttggtc tatagccga ttttagaagg gggtagatt gagtcagta 240
gtaataatat agataactta taagtttgtt agaaggcagga gagcatctgg gttactcaca
agtttttta aaactttaac gaaagcactt tcggtaatgc ttatgaattt agctatttga 300
ttcaattact ttaaaaatat ttaggaggta at atg atg tta aga aag aaa aca 360
Met Met Leu Arg Lys Lys Thr
1 5
aag cag ttg att tct tcc att ctt att tta gtt tta ctt cta tct tta 420
Lys Gln Leu Ile Ser Ser Ile Leu Ile Leu Val Leu Leu Ser Leu
10 15 20
ttt ccg gca gct ctt gca gca gaa gga aac act cgt gaa gac aat ttt 480
Phe Pro Ala Ala Leu Ala Glu Gly Asn Thr Arg Glu Asp Asn Phe
641
689

289779US0PCT.ST25

25	30	35		
aaa cat tta tta ggt aat gac aat gtt aaa cgc cct tct gag gct ggc Lys His Leu Leu Gly Asn Asp Asn Val Lys Arg Pro Ser Glu Ala Gly 40 45 50 55			737	
gca tta caa tta caa gaa gtc gat gga caa atg aca tta gta gat caa Ala Leu Gln Leu Gln Glu Val Asp Gly Gln Met Thr Leu Val Asp Gln 60 65 70			785	
cat gga gaa aaa att caa tta cgt gga atg agt aca cac gga tta cag His Gly Glu Lys Ile Gln Leu Arg Gly Met Ser Thr His Gly Leu Gln 75 80 85			833	
tgg ttt cct gag atc ttg aat gat aac gca tac aaa gct ctt tct aac Trp Phe Pro Glu Ile Leu Asn Asp Asn Ala Tyr Lys Ala Leu Ser Asn 90 95 100			881	
gat tgg gat tcc aat atg att cgt ctt gct atg tat gta ggt gaa aat Asp Trp Asp Ser Asn Met Ile Arg Leu Ala Met Tyr Val Gly Glu Asn 105 110 115			929	
ggg tac gct aca aac cct gag tta atc aaa caa aga gtg att gat gga Gly Tyr Ala Thr Asn Pro Glu Leu Ile Lys Gln Arg Val Ile Asp Gly 120 125 130 135			977	
att gag tta gcg att gaa aat gac atg tat gtt att gtt gac tgg cat Ile Glu Leu Ala Ile Glu Asn Asp Met Tyr Val Ile Val Asp Trp His 140 145 150			1025	
gtt cat gcg cca ggt gat cct aga gat cct gtt tat gca ggt gct aaa Val His Ala Pro Gly Asp Pro Arg Asp Pro Val Tyr Ala Gly Ala Lys 155 160 165			1073	
gat ttc ttt aga gaa att gca gct tta tac cct aat aat cca cac att Asp Phe Phe Arg Glu Ile Ala Ala Leu Tyr Pro Asn Asn Pro His Ile 170 175 180			1121	
att tat gag tta gcg aat gag ccg agt agt aat aat aat ggt gga gca Ile Tyr Glu Leu Ala Asn Glu Pro Ser Ser Asn Asn Asn Gly Gly Ala 185 190 195			1169	
ggg att ccg aat aac gaa gaa ggt tgg aaa gcg gta aaa gaa tat gct Gly Ile Pro Asn Asn Glu Glu Gly Trp Lys Ala Val Lys Glu Tyr Ala 200 205 210 215			1217	
gat cca att gta gaa atg tta cgt aaa agc ggt aat gca gat gac aac Asp Pro Ile Val Glu Met Leu Arg Lys Ser Gly Asn Ala Asp Asp Asn 220 225 230			1265	
att atc att gtt ggt agt cca aac tgg agt cag cgt ccg gac tta gca Ile Ile Ile Val Gly Ser Pro Asn Trp Ser Gln Arg Pro Asp Leu Ala 235 240 245			1313	
gct gat aat cca att gat gat cac cat aca atg tat act gtt cac ttc Ala Asp Asn Pro Ile Asp Asp His His Thr Met Tyr Thr Val His Phe 250 255 260			1361	
tac act ggt tca cat gct gct tca act gaa agc tat ccg tct gaa act Tyr Thr Gly Ser His Ala Ala Ser Thr Glu Ser Tyr Pro Ser Glu Thr 265 270 275			1409	
cct aac tct gaa aga gga aac gta atg agt aac act cgt tat gcg tta Pro Asn Ser Glu Arg Gly Asn Val Met Ser Asn Thr Arg Tyr Ala Leu 280 285 290 295			1457	
gaa aac gga gta gcg gta ttt gca aca gag tgg gga acg agt caa gct Glu Asn Gly Val Ala Val Phe Ala Thr Glu Trp Gly Thr Ser Gln Ala			1505	

289779US0PCT.ST25

300	305	310	
agt gga gac ggt ggt cct tac ttt gat gaa gca gat gta tgg att gaa Ser Gly Asp Gly Gly Pro Tyr Phe Asp Glu Ala Asp Val Trp Ile Glu 315 320 325			1553
ttt tta aat gaa aac aac att agc tgg gct aac tgg tct tta acg aat Phe Leu Asn Glu Asn Asn Ile Ser Trp Ala Asn Trp Ser Leu Thr Asn 330 335 340			1601
aaa aat gaa gta tct ggt gca ttt aca cca ttc gag tta ggt aag tct Lys Asn Glu Val Ser Gly Ala Phe Thr Pro Phe Glu Leu Gly Lys Ser 345 350 355			1649
aac gca acc aat ctt gac cca ggt cca gat cat gtg tgg gca cca gaa Asn Ala Thr Asn Leu Asp Pro Gly Pro Asp His Val Trp Ala Pro Glu 360 365 370 375			1697
gaa tta agt ctt tct gga gaa tat gta cgt gct cgt att aaa ggt gtg Glu Leu Ser Leu Ser Gly Glu Tyr Val Arg Ala Arg Ile Lys Gly Val 380 385 390			1745
aac tat gag cca atc gac cgt aca aaa tac acg aaa gta ctt tgg gac Asn Tyr Glu Pro Ile Asp Arg Thr Lys Tyr Thr Lys Val Leu Trp Asp 395 400 405			1793
ttt aat gat gga acg aag caa gga ttt gga gtg aat tcg gat tct cca Phe Asn Asp Gly Thr Lys Gln Gly Phe Gly Val Asn Ser Asp Ser Pro 410 415 420			1841
aat aaa gaa ctt att gca gtt gat aat gaa aac aac act ttg aaa gtt Asn Lys Glu Leu Ile Ala Val Asp Asn Glu Asn Asn Thr Leu Lys Val 425 430 435			1889
tcg gga tta gat gta agt aac gat gtt tca gat ggc aac ttc tgg gct Ser Gly Leu Asp Val Ser Asn Asp Val Ser Asp Gly Asn Phe Trp Ala 440 445 450 455			1937
aat gct cgt ctt tct gcc aac ggt tgg gga aaa agt gtt gat att tta Asn Ala Arg Leu Ser Ala Asn Gly Trp Gly Lys Ser Val Asp Ile Leu 460 465 470			1985
ggt gct gag aag ctt aca atg gat gtt att gtt gat gaa cca acg acg Gly Ala Glu Lys Leu Thr Met Asp Val Ile Val Asp Glu Pro Thr Thr 475 480 485			2033
gta gct att gcg gcg att cca caa agt agt aaa agt gga tgg gca aat Val Ala Ile Ala Ala Ile Pro Gln Ser Ser Lys Ser Gly Trp Ala Asn 490 495 500			2081
cca gag cgt gct gtt cga gtg aac gcg gaa gat ttt gtc cag caa acg Pro Glu Arg Ala Val Arg Val Asn Ala Glu Asp Phe Val Gln Gln Thr 505 510 515			2129
gac ggt aag tat aaa gct gga tta aca att aca gga gaa gat gct cct Asp Gly Lys Tyr Lys Ala Gly Leu Thr Ile Thr Gly Glu Asp Ala Pro 520 525 530 535			2177
aac cta aaa aat atc gct ttt cat gaa gaa gat aac aat atg aac aac Asn Leu Lys Asn Ile Ala Phe His Glu Glu Asp Asn Asn Met Asn Asn 540 545 550			2225
atc att ctg ttc gtg gga act gat gca gct gac gtt att tac tta gat Ile Ile Leu Phe Val Gly Thr Asp Ala Ala Asp Val Ile Tyr Leu Asp 555 560 565			2273
aac att aaa gta att gga aca gaa gtt gaa att cca gtt gtt cat gat Asn Ile Lys Val Ile Gly Thr Glu Val Glu Ile Pro Val Val His Asp			2321

289779US0PCT.ST25

570	575	580		
cca aaa gga gaa gct gtt ctt cct tct gtt ttt gaa gac ggt aca cgt Pro Lys Gly Glu Ala Val Leu Pro Ser Val Phe Glu Asp Gly Thr Arg 585	590	595	2369	
caa ggt tgg gac tgg gct gga gag tct ggt gtg aaa aca gct tta aca Gln Gly Trp Asp Trp Ala Gly Glu Ser Gly Val Lys Thr Ala Leu Thr 600	605	610	615	2417
att gaa gaa gca aac ggt tct aac gcg tta tca tgg gaa ttt gga tat Ile Glu Glu Ala Asn Gly Ser Asn Ala Leu Ser Trp Glu Phe Gly Tyr 620	625	630	635	2465
cca gaa gta aaa cct agt gat aac tgg gca aca gct cca cgt tta gat Pro Glu Val Lys Pro Ser Asp Asn Trp Ala Thr Ala Pro Arg Leu Asp 635	640	645		2513
ttc tgg aaa tct gac ttg gtt cgc ggt gag aat gat tat gta gct ttt Phe Trp Lys Ser Asp Leu Val Arg Gly Glu Asn Asp Tyr Val Ala Phe 650	655	660		2561
gat ttc tat cta gat cca gtt cgt gca aca gaa ggc gca atg aat atc Asp Phe Tyr Leu Asp Pro Val Arg Ala Thr Glu Gly Ala Met Asn Ile 665	670	675		2609
aat tta gta ttc cag cca cct act aac ggg tat tgg gta caa gca cca Asn Leu Val Phe Gln Pro Pro Thr Asn Gly Tyr Trp Val Gln Ala Pro 680	685	690	695	2657
aaa acg tat acg att aac ttt gat gaa tta gag gaa gcg aat caa gta Lys Thr Tyr Thr Ile Asn Phe Asp Glu Leu Glu Ala Asn Gln Val 700	705		710	2705
aat ggt tta tat cac tat gaa gtg aaa att aac gta aga gat att aca Asn Gly Leu Tyr His Tyr Glu Val Lys Ile Asn Val Arg Asp Ile Thr 715	720	725		2753
aac att caa gat gac acg tta cta cgt aac atg atg atc att ttt gca Asn Ile Gln Asp Asp Thr Leu Leu Arg Asn Met Met Ile Ile Phe Ala 730	735	740		2801
gat gta gaa agt gac ttt gca ggg aga gtc ttt gta gat aat gtt cgt Asp Val Glu Ser Asp Phe Ala Gly Arg Val Phe Val Asp Asn Val Arg 745	750	755		2849
ttt gag ggg gct gct act act gag ccg gtt gaa cca gag cca gtt gat Phe Glu Gly Ala Ala Thr Thr Glu Pro Val Glu Pro Glu Pro Val Asp 760	765	770	775	2897
cct ggc gaa gag acg cca cct gtc gat gag aag gaa gcg aaa aaa gaa Pro Gly Glu Glu Thr Pro Pro Val Asp Glu Lys Glu Ala Lys Lys Glu 780	785		790	2945
caa aaa gaa gca gag aaa gaa gag aaa gaa gca gta aaa gaa gaa aag Gln Lys Glu Ala Glu Lys Glu Glu Lys Glu Ala Val Lys Glu Glu Lys 795	800		805	2993
aaa gaa gct aaa gaa gaa aag aaa gca gtc aaa aat gag gct aag aaa Lys Glu Ala Lys Glu Glu Lys Lys Ala Val Lys Asn Glu Ala Lys Lys 810	815	820		3041
aaa taatctatta aactagttat agggtatct aaaggctga tgttagatctt Lys				3094
ttagataacc ttttcttgc ataactggac acagagttgt tattaaagaa agtaag				3150

<210> 2
<211> 824
<212> PRT
<213> *Bacillus* sp. KSM-S237

<400> 2

Met Met Leu Arg Lys Lys Thr Lys Gln Leu Ile Ser Ser Ile Leu Ile
1 5 10 15

Leu Val Leu Leu Leu Ser Leu Phe Pro Ala Ala Leu Ala Ala Glu Gly
20 25 30

Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn Asp Asn Val
35 40 45

Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu Val Asp Gly
50 55 60

Gln Met Thr Leu Val Asp Gln His Gly Glu Lys Ile Gln Leu Arg Gly
65 70 75 80

Met Ser Thr His Gly Leu Gln Trp Phe Pro Glu Ile Leu Asn Asp Asn
85 90 95

Ala Tyr Lys Ala Leu Ser Asn Asp Trp Asp Ser Asn Met Ile Arg Leu
100 105 110

Ala Met Tyr Val Gly Glu Asn Gly Tyr Ala Thr Asn Pro Glu Leu Ile
115 120 125

Lys Gln Arg Val Ile Asp Gly Ile Glu Leu Ala Ile Glu Asn Asp Met
130 135 140

Tyr Val Ile Val Asp Trp His Val His Ala Pro Gly Asp Pro Arg Asp
145 150 155 160

Pro Val Tyr Ala Gly Ala Lys Asp Phe Phe Arg Glu Ile Ala Ala Leu
165 170 175

Tyr Pro Asn Asn Pro His Ile Ile Tyr Glu Leu Ala Asn Glu Pro Ser
180 185 190

Ser Asn Asn Asn Gly Gly Ala Gly Ile Pro Asn Asn Glu Glu Gly Trp
195 200 205

Lys Ala Val Lys Glu Tyr Ala Asp Pro Ile Val Glu Met Leu Arg Lys
210 215 220

Ser Gly Asn Ala Asp Asp Asn Ile Ile Ile Val Gly Ser Pro Asn Trp
225 230 235 240

289779US0PCT.ST25

Ser Gln Arg Pro Asp Leu Ala Ala Asp Asn Pro Ile Asp Asp His His
245 250 255

Thr Met Tyr Thr Val His Phe Tyr Thr Gly Ser His Ala Ala Ser Thr
260 265 270

Glu Ser Tyr Pro Ser Glu Thr Pro Asn Ser Glu Arg Gly Asn Val Met
275 280 285

Ser Asn Thr Arg Tyr Ala Leu Glu Asn Gly Val Ala Val Phe Ala Thr
290 295 300

Glu Trp Gly Thr Ser Gln Ala Ser Gly Asp Gly Gly Pro Tyr Phe Asp
305 310 315 320

Glu Ala Asp Val Trp Ile Glu Phe Leu Asn Glu Asn Asn Ile Ser Trp
325 330 335

Ala Asn Trp Ser Leu Thr Asn Lys Asn Glu Val Ser Gly Ala Phe Thr
340 345 350

Pro Phe Glu Leu Gly Lys Ser Asn Ala Thr Asn Leu Asp Pro Gly Pro
355 360 365

Asp His Val Trp Ala Pro Glu Glu Leu Ser Leu Ser Gly Glu Tyr Val
370 375 380

Arg Ala Arg Ile Lys Gly Val Asn Tyr Glu Pro Ile Asp Arg Thr Lys
385 390 395 400

Tyr Thr Lys Val Leu Trp Asp Phe Asn Asp Gly Thr Lys Gln Gly Phe
405 410 415

Gly Val Asn Ser Asp Ser Pro Asn Lys Glu Leu Ile Ala Val Asp Asn
420 425 430

Glu Asn Asn Thr Leu Lys Val Ser Gly Leu Asp Val Ser Asn Asp Val
435 440 445

Ser Asp Gly Asn Phe Trp Ala Asn Ala Arg Leu Ser Ala Asn Gly Trp
450 455 460

Gly Lys Ser Val Asp Ile Leu Gly Ala Glu Lys Leu Thr Met Asp Val
465 470 475 480

Ile Val Asp Glu Pro Thr Thr Val Ala Ile Ala Ala Ile Pro Gln Ser
485 490 495

Ser Lys Ser Gly Trp Ala Asn Pro Glu Arg Ala Val Arg Val Asn Ala
500 505 510

289779US0PCT.ST25

Glu Asp Phe Val Gln Gln Thr Asp Gly Lys Tyr Lys Ala Gly Leu Thr
515 520 525

Ile Thr Gly Glu Asp Ala Pro Asn Leu Lys Asn Ile Ala Phe His Glu
530 535 540

Glu Asp Asn Asn Met Asn Asn Ile Ile Leu Phe Val Gly Thr Asp Ala
545 550 555 560

Ala Asp Val Ile Tyr Leu Asp Asn Ile Lys Val Ile Gly Thr Glu Val
565 570 575

Glu Ile Pro Val Val His Asp Pro Lys Gly Glu Ala Val Leu Pro Ser
580 585 590

Val Phe Glu Asp Gly Thr Arg Gln Gly Trp Asp Trp Ala Gly Glu Ser
595 600 605

Gly Val Lys Thr Ala Leu Thr Ile Glu Glu Ala Asn Gly Ser Asn Ala
610 615 620

Leu Ser Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser Asp Asn Trp
625 630 635 640

Ala Thr Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu Val Arg Gly
645 650 655

Glu Asn Asp Tyr Val Ala Phe Asp Phe Tyr Leu Asp Pro Val Arg Ala
660 665 670

Thr Glu Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro Pro Thr Asn
675 680 685

Gly Tyr Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn Phe Asp Glu
690 695 700

Leu Glu Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr Glu Val Lys
705 710 715 720

Ile Asn Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr Leu Leu Arg
725 730 735

Asn Met Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe Ala Gly Arg
740 745 750

Val Phe Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr Thr Glu Pro
755 760 765

Val Glu Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro Pro Val Asp
770 775 780

289779US0PCT.ST25

Glu	Lys	Glu	Ala	Lys	Lys	Glu	Gln	Lys	Glu	Ala	Glu	Lys	Glu	Glu	Lys
785				790				795						800	
Glu	Ala	Val	Lys	Glu	Glu	Lys	Glu	Ala	Lys	Glu	Glu	Lys	Lys	Ala	
			805				810						815		
Val	Lys	Asn	Glu	Ala	Lys	Lys	Lys								
			820												

<210> 3
<211> 3332
<212> DNA
<213> *Bacillus* sp. KSM-64

<220>
<221> CDS
<222> (610)..(3075)

<220>
<221> sig_peptide
<222> (610)..(696)

<400>	3														
agtacttacc	attttagagt	caaaagatag	aagccaaagca	ggatttgccg	atgcaaccgg										60
ctttatattta	gagggaaattt	ctttttaaat	tgaatacgg	ataaaaatcag	gtaaacaggt										120
cctgatttta	ttttttgaa	ttttttgag	aactaaagat	tgaaatagaa	gtagaagaca										180
acggacataa	gaaaattgta	ttagtttaa	ttatagaaaa	cgctttcta	taattattta										240
tacctagaac	gaaaatactg	tttcgaaagc	ggtttactat	aaaaccttat	attccggctc										300
tttttttaaa	cagggggta	aaattcactc	tagtattcta	atttcaacat	gctataataa										360
atttgtaaga	cgcaatatac	atctttttt	tatgatattt	gtaagcggtt	aaccttgc										420
tatatgccga	tttaggaagg	ggtagattg	agtcaagtag	tcataattta	gataacttat										480
aagttgttga	gaagcaggag	agaatctggg	ttactcacaa	gttttttaaa	acattatcga										540
aagcactttc	ggttatgctt	atgaattttag	ctatggatt	caattacttt	aataattttta										600
ggaggtaat	atg atg tta	aga aag aaa	aca aag cag	ttg att tct	tcc att										651
	Met Met Leu	Arg Lys	Lys Thr	Lys Gln	Leu Ile	Ser Ser	Ile								
1		5		10											
ctt att tta	gtt tta	ctt cta	tct tta	ttt ccg	aca gct	ctt gca	gca								699
Leu Ile	Leu Val	Leu Leu	Leu Ser	Leu Phe	Pro Thr	Ala Leu	Ala Ala								
15		20		25		30									
gaa gga aac	act cgt	gaa gac	aat ttt	aaa cat	tta tta	ggt aat	gac								747
Glu Gly Asn	Thr Arg	Glu Asp Asn	Phe Lys	His Leu	Leu Gly	Asn Asp									
	35		40		45										
aat gtt aaa	cgc cct	tct gag	gct ggc	gca tta	caa tta	caa gaa	gtc								795
Asn Val Lys	Arg Pro	Ser Glu	Ala Gly	Ala Leu	Gln Gln	Glu Val									
50		55		60											
gat gga caa	atg aca	tta gta	gat caa	cat gga	gaa aaa	att caa	tta								843
Asp Gly Gln	Met Thr	Leu Val	Asp Gln	His Gly	Glu Lys	Ile Gln	Leu								
65		70		75											
cgt gga atg	agt aca	cac gga	tta caa	tgg ttt	cct gag	atc ttg	aat								891

289779US0PCT.ST25

289779US0PCT.ST25

Phe	Thr	Pro	Phe	Glu	Leu	Gly	Lys	Ser	Asn	Ala	Thr	Ser	Leu	Asp	Pro
355								360							365

ggg	cca	gac	caa	gta	tgg	gta	cca	gaa	gag	tta	agt	ctt	tct	gga	gaa	1755
Gly	Pro	Asp	Gln	Val	Trp	Val	Pro	Glu	Glu	Leu	Ser	Leu	Ser	Gly	Glu	
																370
																375
																380
tat	gta	cgt	gct	cgt	att	aaa	ggt	gtg	aac	tat	gag	cca	atc	gac	cgt	1803
Tyr	Val	Arg	Ala	Arg	Ile	Lys	Gly	Val	Asn	Tyr	Glu	Pro	Ile	Asp	Arg	
																385
																390
																395
aca	aaa	tac	acg	aaa	gta	ctt	tgg	gac	ttt	aat	gat	gga	acg	aag	caa	1851
Thr	Lys	Tyr	Thr	Lys	Val	Leu	Trp	Asp	Phe	Asn	Asp	Gly	Thr	Lys	Gln	
																400
																405
																410
gga	ttt	gga	gtg	aat	gga	gat	tct	cca	gtt	gaa	gat	gta	gtt	att	gag	1899
Gly	Phe	Gly	Val	Asn	Gly	Asp	Ser	Pro	Val	Glu	Asp	Val	Val	Ile	Glu	
																415
																420
																425
																430
aat	gaa	gcg	ggc	gct	tta	aaa	ctt	tca	gga	tta	gat	gca	agt	aat	gat	1947
Asn	Glu	Ala	Gly	Ala	Leu	Lys	Leu	Ser	Gly	Leu	Asp	Ala	Ser	Asn	Asp	
																435
																440
																445
gtt	tct	gaa	ggt	aat	tac	tgg	gct	aat	gct	cgt	ctt	tct	gcc	gac	ggt	1995
Val	Ser	Glu	Gly	Asn	Tyr	Trp	Ala	Asn	Ala	Arg	Leu	Ser	Ala	Asp	Gly	
																450
																455
																460
tgg	gga	aaa	agt	gtt	gat	att	tta	ggt	gct	gaa	aaa	ctt	act	atg	gat	2043
Trp	Gly	Lys	Ser	Val	Asp	Ile	Leu	Gly	Ala	Glu	Lys	Leu	Thr	Met	Asp	
																465
																470
																475
gtg	att	gtt	gat	gag	ccg	acc	acg	gta	tca	att	gct	gca	att	cca	caa	2091
Val	Ile	Val	Asp	Glu	Pro	Thr	Thr	Val	Ser	Ile	Ala	Ala	Ile	Pro	Gln	
																480
																485
																490
ggg	cca	tca	gcc	aat	tgg	gtt	aat	cca	aat	cgt	gca	att	aag	gtt	gag	2139
Gly	Pro	Ser	Ala	Asn	Trp	Val	Asn	Pro	Asn	Arg	Ala	Ile	Lys	Val	Glu	
																495
																500
																505
																510
cca	act	aat	ttc	gta	ccg	tta	gga	gat	aag	ttt	aaa	gcg	gaa	tta	act	2187
Pro	Thr	Asn	Phe	Val	Pro	Leu	Gly	Asp	Lys	Phe	Lys	Ala	Glu	Leu	Thr	
																515
																520
																525
ata	act	tca	gct	gac	tct	cca	tcg	tta	gaa	gct	att	gcg	atg	cat	gct	2235
Ile	Thr	Ser	Ala	Asp	Ser	Pro	Ser	Ile	Glu	Ala	Ile	Ala	Met	His	Ala	
																530
																535
																540
gaa	aat	aac	aac	atc	aac	aat	atc	att	ctt	ttt	gta	gga	act	gaa	ggt	2283
Glu	Asn	Asn	Asn	Ile	Asn	Asn	Ile	Ile	Leu	Phe	Val	Gly	Thr	Glu	Gly	
																545
																550
																555
gct	gat	gtt	atc	tat	tta	gat	aac	att	aaa	gta	att	gga	aca	gaa	gtt	2331
Ala	Asp	Val	Ile	Tyr	Leu	Asp	Asn	Ile	Lys	Val	Ile	Gly	Thr	Glu	Val	
																560
																565
																570
gaa	att	cca	gtt	gtt	cat	gat	cca	aaa	gga	gaa	gct	gtt	ctt	cct	tct	2379
Glu	Ile	Pro	Val	Val	His	Asp	Pro	Lys	Gly	Glu	Ala	Val	Leu	Pro	Ser	
																575
																580
																585
gtt	ttt	gaa	gac	ggt	aca	cgt	caa	ggt	tgg	gac	tgg	gct	gga	gag	tct	2427
Val	Phe	Glu	Asp	Gly	Thr	Arg	Gln	Gly	Trp	Asp	Trp	Ala	Gly	Glu	Ser	
																595
																600
																605
ggt	gtg	aaa	aca	gct	tta	aca	att	gaa	gaa	gca	aac	ggt	tct	aac	gcg	2475
Gly	Val	Lys	Thr	Ala	Leu	Thr	Ile	Glu	Glu	Ala	Asn	Gly	Ser	Asn	Ala	
																610
																615
																620
tta	tca	tgg	gaa	ttt	gga	tac	cca	gaa	gta	aaa	cct	agt	gat	aac	tgg	2523

289779US0PCT.ST25

Leu Ser Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser Asp Asn Trp	
625 630 635	
gca aca gct cca cgt tta gat ttc tgg aaa tct gac ttg gtt cgc ggt	2571
Ala Thr Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu Val Arg Gly	
640 645 650	
gaa aat gat tat gta act ttt gat ttc tat cta gat cca gtt cgt gca	2619
Glu Asn Asp Tyr Val Thr Phe Asp Phe Tyr Leu Asp Pro Val Arg Ala	
655 660 665 670	
aca gaa ggc gca atg aat atc aat tta gta ttc cag cca cct act aac	2667
Thr Glu Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro Pro Thr Asn	
675 680 685	
ggg tat tgg gta caa gca cca aaa acg tat acg att aac ttt gat gaa	2715
Gly Tyr Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn Phe Asp Glu	
690 695 700	
tta gag gaa gcg aat caa gta aat ggt tta tat cac tat gaa gtg aaa	2763
Leu Glu Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr Glu Val Lys	
705 710 715	
att aac gta aga gat att aca aac att caa gat gac acg tta cta cgt	2811
Ile Asn Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr Leu Leu Arg	
720 725 730	
aac atg atg atc att ttt gca gat gta gaa agt gac ttt gca ggg aga	2859
Asn Met Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe Ala Gly Arg	
735 740 745 750	
gtc ttt gta gat aat gtt cgt ttt gag ggg gct gct act act gag ccg	2907
Val Phe Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr Thr Glu Pro	
755 760 765	
gtt gaa cca gag cca gtt gat cct ggc gaa gag acg ccg cct gtc gat	2955
Val Glu Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro Pro Val Asp	
770 775 780	
gag aag gaa gcg aaa aaa gaa caa aaa gaa gca gag aaa gaa gag aaa	3003
Glu Lys Glu Ala Lys Lys Glu Gln Lys Glu Ala Glu Lys Glu Glu Lys	
785 790 795	
gaa gca gta aaa gaa gaa aag aaa gaa gct aaa gaa gaa aag aaa gca	3051
Glu Ala Val Lys Glu Glu Lys Lys Glu Ala Lys Glu Glu Lys Lys Ala	
800 805 810	
atc aaa aat gag gct acg aaa aaa taatctaata aactagttat agggttatct	3105
Ile Lys Asn Glu Ala Thr Lys Lys	
815 820	
aaaggctcga tgcagatctt ttagataacc ttttttgca taactggaca tagaatggtt	3165
attaaagaaa gcaagggtgtt tatacgatat taaaaaggta gcgattttaa attgaaacct	3225
ttaataatgt cttgtatag aatgatgaag taatctaaga gggggaaacg aagtgaaaac	3285
ggaaatttct agttagaagaa aaacagacca agaaatactg caagctt	3332

<210> 4
<211> 822
<212> PRT
<213> Bacillus sp. KSM-64

<400> 4

Met Met Leu Arg Lys Lys Thr Lys Gln Leu Ile Ser Ser Ile Leu Ile
Page 11

289779US0PCT.ST25

1

5

10

15

Leu Val Leu Leu Leu Ser Leu Phe Pro Thr Ala Leu Ala Ala Glu Gly
20 25 30

Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn Asp Asn Val
35 40 45

Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu Val Asp Gly
50 55 60

Gln Met Thr Leu Val Asp Gln His Gly Glu Lys Ile Gln Leu Arg Gly
65 70 75 80

Met Ser Thr His Gly Leu Gln Trp Phe Pro Glu Ile Leu Asn Asp Asn
85 90 95

Ala Tyr Lys Ala Leu Ala Asn Asp Trp Glu Ser Asn Met Ile Arg Leu
100 105 110

Ala Met Tyr Val Gly Glu Asn Gly Tyr Ala Ser Asn Pro Glu Leu Ile
115 120 125

Lys Ser Arg Val Ile Lys Gly Ile Asp Leu Ala Ile Glu Asn Asp Met
130 135 140

Tyr Val Ile Val Asp Trp His Val His Ala Pro Gly Asp Pro Arg Asp
145 150 155 160

Pro Val Tyr Ala Gly Ala Glu Asp Phe Phe Arg Asp Ile Ala Ala Leu
165 170 175

Tyr Pro Asn Asn Pro His Ile Ile Tyr Glu Leu Ala Asn Glu Pro Ser
180 185 190

Ser Asn Asn Asn Gly Gly Ala Gly Ile Pro Asn Asn Glu Glu Gly Trp
195 200 205

Asn Ala Val Lys Glu Tyr Ala Asp Pro Ile Val Glu Met Leu Arg Asp
210 215 220

Ser Gly Asn Ala Asp Asp Asn Ile Ile Ile Val Gly Ser Pro Asn Trp
225 230 235 240

Ser Gln Arg Pro Asp Leu Ala Ala Asp Asn Pro Ile Asp Asp His His
245 250 255

Thr Met Tyr Thr Val His Phe Tyr Thr Gly Ser His Ala Ala Ser Thr
260 265 270

Glu Ser Tyr Pro Pro Glu Thr Pro Asn Ser Glu Arg Gly Asn Val Met
Page 12

275 280 285
Ser Asn Thr Arg Tyr Ala Leu Glu Asn Gly Val Ala Val Phe Ala Thr
290 295 300

Glu Trp Gly Thr Ser Gln Ala Asn Gly Asp Gly Gly Pro Tyr Phe Asp
305 310 315 320

Glu Ala Asp Val Trp Ile Glu Phe Leu Asn Glu Asn Asn Ile Ser Trp
325 330 335

Ala Asn Trp Ser Leu Thr Asn Lys Asn Glu Val Ser Gly Ala Phe Thr
340 345 350

Pro Phe Glu Leu Gly Lys Ser Asn Ala Thr Ser Leu Asp Pro Gly Pro
355 360 365

Asp Gln Val Trp Val Pro Glu Glu Leu Ser Leu Ser Gly Glu Tyr Val
370 375 380

Arg Ala Arg Ile Lys Gly Val Asn Tyr Glu Pro Ile Asp Arg Thr Lys
385 390 395 400

Tyr Thr Lys Val Leu Trp Asp Phe Asn Asp Gly Thr Lys Gln Gly Phe
405 410 415

Gly Val Asn Gly Asp Ser Pro Val Glu Asp Val Val Ile Glu Asn Glu
420 425 430

Ala Gly Ala Leu Lys Leu Ser Gly Leu Asp Ala Ser Asn Asp Val Ser
435 440 445

Glu Gly Asn Tyr Trp Ala Asn Ala Arg Leu Ser Ala Asp Gly Trp Gly
450 455 460

Lys Ser Val Asp Ile Leu Gly Ala Glu Lys Leu Thr Met Asp Val Ile
465 470 475 480

Val Asp Glu Pro Thr Thr Val Ser Ile Ala Ala Ile Pro Gln Gly Pro
485 490 495

Ser Ala Asn Trp Val Asn Pro Asn Arg Ala Ile Lys Val Glu Pro Thr
500 505 510

Asn Phe Val Pro Leu Gly Asp Lys Phe Lys Ala Glu Leu Thr Ile Thr
515 520 525

Ser Ala Asp Ser Pro Ser Leu Glu Ala Ile Ala Met His Ala Glu Asn
530 535 540

Asn Asn Ile Asn Asn Ile Ile Leu Phe Val Gly Thr Glu Gly Ala Asp

545 550 555 560

val Ile Tyr Leu Asp Asn Ile Lys Val Ile Gly Thr Glu Val Glu Ile
 565 570 575

Pro Val Val His Asp Pro Lys Gly Glu Ala Val Leu Pro Ser Val Phe
 580 585 590

Glu Asp Gly Thr Arg Gln Gly Trp Asp Trp Ala Gly Glu Ser Gly Val
 595 600 605

Lys Thr Ala Leu Thr Ile Glu Glu Ala Asn Gly Ser Asn Ala Leu Ser
 610 615 620

Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser Asp Asn Trp Ala Thr
 625 630 635 640

Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu Val Arg Gly Glu Asn
 645 650 655

Asp Tyr Val Thr Phe Asp Phe Tyr Leu Asp Pro Val Arg Ala Thr Glu
 660 665 670

Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro Pro Thr Asn Gly Tyr
 675 680 685

Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn Phe Asp Glu Leu Glu
 690 695 700

Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr Glu Val Lys Ile Asn
 705 710 715 720

Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr Leu Leu Arg Asn Met
 725 730 735

Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe Ala Gly Arg Val Phe
 740 745 750

Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr Thr Glu Pro Val Glu
 755 760 765

Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro Pro Val Asp Glu Lys
 770 775 780

Glu Ala Lys Lys Glu Gln Lys Glu Ala Glu Lys Glu Glu Lys Glu Ala
 785 790 795 800

Val Lys Glu Glu Lys Lys Glu Ala Lys Glu Glu Lys Lys Ala Ile Lys
 805 810 815

Asn Glu Ala Thr Lys Lys

<210> 5
<211> 2343
<212> DNA
<213> *Bacillus* sp. pHSP-K38

<220>
<221> CDS
<222> (580)..(2067)

<220>
<221> sig_peptide
<222> (580)..(627)

289779US0PCT.ST25

gtg atg aat cat aaa atg gga gct	gat ttt acg gag gca gtc caa gct	978	
Val Met Asn His Lys Met Gly Ala	Asp Phe Thr Glu Ala Val Gln Ala		
120	125	130	
gtt caa gta aat cca acg aat cgt	tgg cag gat att tca ggt gcc tac	1026	
Val Gln Val Asn Pro Thr Asn Arg	Trp Gln Asp Ile Ser Gly Ala Tyr		
135	140	145	
acg att gat gcg tgg acg ggt ttc	gac ttt tca ggg cgt aac aac gcc	1074	
Thr Ile Asp Ala Trp Thr Gly Phe	Asp Phe Ser Gly Arg Asn Asn Ala		
150	155	160	165
tat tca gat ttt aag tgg aga tgg	ttc cat ttt aat ggt gtt gac tgg	1122	
Tyr Ser Asp Phe Lys Trp Arg Trp	Phe His Phe Asn Gly Val Asp Trp		
170	175	180	
gat cag cgc tat caa gaa aat cat	att ttc cgc ttt gca aat acg aac	1170	
Asp Gln Arg Tyr Gln Glu Asn His	Ile Phe Arg Phe Ala Asn Thr Asn		
185	190	195	
tgg aac tgg cga gtg gat gaa gag	aac ggt aat tat gat tac ctg tta	1218	
Trp Asn Trp Arg Val Asp Glu Glu	Asn Gly Asn Tyr Asp Tyr Leu Leu		
200	205	210	
gga tcg aat atc gac ttt agt cat	cca gaa gta caa gat gag ttg aag	1266	
Gly Ser Asn Ile Asp Phe Ser His	Pro Glu Val Gln Asp Glu Leu Lys		
215	220	225	
gat tgg ggt agc tgg ttt acc gat	gag tta gat ttg gat ggt tat cgt	1314	
Asp Trp Gly Ser Trp Phe Thr Asp	Glu Leu Asp Leu Asp Gly Tyr Arg		
230	235	240	245
tta gat gct att aaa cat att cca	ttc tgg tat aca tct gat tgg gtt	1362	
Leu Asp Ala Ile Lys His Ile Pro	Phe Trp Tyr Thr Ser Asp Trp Val		
250	255	260	
cgg cat cag cgc aac gaa gca gat	caa gat tta ttt gtc gta ggg gaa	1410	
Arg His Gln Arg Asn Glu Ala Asp	Gln Asp Leu Phe Val Val Gly Glu		
265	270	275	
aat tgg aag gat gac gta ggt gct	ctc gaa ttt tat tta gat gaa atg	1458	
Tyr Trp Lys Asp Asp Val Gly Ala	Leu Glu Phe Tyr Leu Asp Glu Met		
280	285	290	
aat tgg gag atg tct cta ttc gat	gtt cca ctt aat tat aat ttt tac	1506	
Asn Trp Glu Met Ser Leu Phe Asp	Val Pro Leu Asn Tyr Asn Phe Tyr		
295	300	305	
cgg gct tca caa caa ggt gga agc	tat gat atg cgt aat att tta cga	1554	
Arg Ala Ser Gln Gln Gly Gly Ser	Tyr Asp Met Arg Asn Ile Leu Arg		
310	315	320	325
gga tct tta gta gaa gcg cat ccg	atg cat gca gtt acg ttt gtt gat	1602	
Gly Ser Leu Val Glu Ala His Pro	Met His Ala Val Thr Phe Val Asp		
330	335	340	
aat cat gat act cag cca ggg gag	tca tta gag tca tgg gtt gct gat	1650	
Asn His Asp Thr Gln Pro Gly Glu	Ser Leu Glu Ser Trp Val Ala Asp		
345	350	355	
tgg ttt aag cca ctt gct tat gcg	aca att ttg acg cgt gaa ggt ggt	1698	
Trp Phe Lys Pro Leu Ala Tyr Ala	Thr Ile Leu Thr Arg Glu Gly Gly		
360	365	370	
aat cca aat gta ttt tac ggt gat	tac tat ggg att cct aac gat aac	1746	
Tyr Pro Asn Val Phe Tyr Gly Asp	Tyr Tyr Gly Ile Pro Asn Asp Asn		
375	380	385	

289779US0PCT.ST25

att tca gct aaa aaa gat atg att gat gag ctg ctt gat gca cgt caa Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu Leu Asp Ala Arg Gln 390 395 400 405	1794
aat tac gca tat ggc acg cag cat gac tat ttt gat cat tgg gat gtt Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe Asp His Trp Asp Val 410 415 420	1842
gta gga tgg act agg gaa gga tct tcc tcc aga cct aat tca ggc ctt Val Gly Trp Thr Arg Glu Gly Ser Ser Arg Pro Asn Ser Gly Leu 425 430 435	1890
gcg act att atg tcg aat gga cct ggt ggt tcc aag tgg atg tat gta Ala Thr Ile Met Ser Asn Gly Pro Gly Ser Lys Trp Met Tyr Val 440 445 450	1938
gga cgt cag aat gca gga caa aca tgg aca gat tta act ggt aat aac Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn 455 460 465	1986
gga gcg tcc gtt aca att aat ggc gat gga tgg ggc gaa ttc ttt acg Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr 470 475 480 485	2034
aat gga gga tct gta tcc gtg tac gtg aac caa taacaaaaag ctttgagaag Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 490 495	2087
ggattcctcc ctaactcaag gctttcttta tgtcgcttag ctttacgctt ctacgacttt gaagcttggg gatccgtcga gacaaggtaa aggataaaac agcacaattc caagaaaaac acgattttaga acctaaaaag aacgaatttg aactaactca taaccgagag gtaaaaaaaaag aacgaagtgc agatcagggta atgagtttat aaaataaaaaa aagcacctga aaagggtct ttttttgatg tctaga	2147 2207 2267 2327 2343

<210> 6
<211> 496
<212> PRT
<213> *Bacillus* sp. pHSP-K38

<400> 6

Met Met Leu Arg Lys Lys Thr Lys Gln Leu Gly Arg Pro Ala Gln Ala 1 5 10 15
Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 20 25 30
Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Ala Leu 35 40 45
Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 50 55 60
Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 65 70 75 80
Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 85 90 95

Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn
100 105 110

Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr
115 120 125

Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp
130 135 140

Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser
145 150 155 160

Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe
165 170 175

Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Ile Phe Arg
180 185 190

Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn
195 200 205

Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val
210 215 220

Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp
225 230 235 240

Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr
245 250 255

Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu
260 265 270

Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe
275 280 285

Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu
290 295 300

Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Ser Tyr Asp Met
305 310 315 320

Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala
325 330 335

Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu
340 345 350

Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu
355 360 365

289779US0PCT.ST25

Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly
370 375 380

Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu
385 390 395 400

Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe
405 410 415

Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg
420 425 430

Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser
435 440 445

Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp
450 455 460

Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp
465 470 475 480

Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln
485 490 495

<210> 7
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 7
aaggatgata atccgtcccc tg

22

<210> 8
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 8
gttatccgct cacaattcgg atggcatca atcactag

38

<210> 9
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 9
cgtcgtgact gggaaaactg cgaaatcaga cggtgtac

38

<210> 10		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 10		20
cgtcgcctat cggcgggac		
<210> 11		
<211> 25		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 11		25
atgtatatag gaggttggtg gtatg		
<210> 12		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 12		38
gttatccgct cacaattcgc tctgacatgt caacctcc		
<210> 13		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 13		38
cgtcgtgact gggaaaacag atgagaaagg aggagaag		
<210> 14		
<211> 23		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 14		23
ataactgtta ctatataatg gcc		
<210> 15		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		

<223> Synthetic DNA

<400> 15
gctggggatg acgaatccga

20

<210> 16
<211> 38
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 16
gttatccgct cacaattctc accttcatta tggaccac

38

<210> 17
<211> 38
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 17
cgtcgact gggaaaacca ccgtctcgac aaattccg

38

<210> 18
<211> 20
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 18
gttgccaagc gcgatatagg

20

<210> 19
<211> 25
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 19
tatacaggga ttatcagtat tgagc

25

<210> 20
<211> 38
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 20
gttatccgct cacaattctt ttctccttgt tggatctg

38

<210> 21
<211> 38

<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 21		38
cgtcgtgact gggaaaacgg ggataacgat ttatgaag		
<210> 22		
<211> 30		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 22		30
ttttgtaata atgatatgaa gctagtgttg		
<210> 23		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 23		20
atatccagcc ctgccttttc		
<210> 24		
<211> 58		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 24		58
ctgtgtgaaa ttgttatccg ctcacaattc gaaatttcct cctaaagcga tcataacg		
<210> 25		
<211> 51		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 25		51
gtcgaaaaaacgtcggtt actgggaaaacccacaagct gctaacgtta c		
<210> 26		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 26		20
tcctgtttgg gctcctgttg		

<210> 27		
<211> 26		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 27		26
tgttatgta tggcggcctg cggac		
<210> 28		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 28		38
gttatccgct cacaattcag ctttccatat atctcacc		
<210> 29		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 29		38
cgtcggtact gggaaaacac ggtctgctga tgactgac		
<210> 30		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 30		20
gcgtttactt aagatgtcga		
<210> 31		
<211> 29		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 31		29
tttcgttagcgt ttcggcaaat tgagttaag		
<210> 32		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		

289779US0PCT.ST25

<223> Synthetic DNA

<400> 32	
gttatccgct cacaattcct tactttcata cggttcac	38

<210> 33	
<211> 38	
<212> DNA	
<213> Artificial	

<220>	
<223> Synthetic DNA	

<400> 33	
cgtcgact gggaaaacga gacgtggcgc tcaccaac	38

<210> 34	
<211> 29	
<212> DNA	
<213> Artificial	

<220>	
<223> Synthetic DNA	

<400> 34	
cggttaaaaa aaagaatatc gcggacagc	29

<210> 35	
<211> 20	
<212> DNA	
<213> Artificial	

<220>	
<223> Synthetic DNA	

<400> 35	
tgcgcgtgcc cgccggagag	20

<210> 36	
<211> 38	
<212> DNA	
<213> Artificial	

<220>	
<223> Synthetic DNA	

<400> 36	
gttatccgct cacaattcaa ggtgtagaac ttccgttg	38

<210> 37	
<211> 38	
<212> DNA	
<213> Artificial	

<220>	
<223> Synthetic DNA	

<400> 37	
cgtcgact gggaaaacac catcaacagc ccctacac	38

<210> 38	
<211> 24	

289779US0PCT.ST25

<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 38
tcaaataaag gcggcattca gtcc

24

<210> 39
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 39
ataatggtagt ccaaattccac gc

22

<210> 40
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 40
gttatccgct cacaattcat tcagtcatat gtatcacc

38

<210> 41
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 41
cgtcgtgact gggaaaacga tccatcatac acagcatg

38

<210> 42
<211> 28
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 42
caacttctcaa cgaggggat ttcacatc

28

<210> 43
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 43
taatggagga gagaaggccg

20

<210> 44		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 44		38
gttatccgct cacaattcag tcgcccata agcatgag		
<210> 45		
<211> 42		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 45		42
cgtcgact gggaaaacac caaaaaatgc tgagctgaca gc		
<210> 46		
<211> 26		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 46		26
ttgccaatga tgaggaaaaa ggaacc		
<210> 47		
<211> 26		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 47		26
ctgaacgtct tgaataaaaa agcagg		
<210> 48		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 48		38
gttatccgct cacaattcgc tgaagttca tatccatc		
<210> 49		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		

289779US0PCT.ST25

<223> Synthetic DNA

<400> 49
cgtcgact gggaaaacat tccgtcatcg gcagcgag 38

<210> 50
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 50
agcggtttac aagttggagg 20

<210> 51
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 51
atttcagaag gcataacttca ag 22

<210> 52
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 52
gttatccgct cacaattcca tacttggtgt tgtcatcg 38

<210> 53
<211> 40
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 53
cgtcgact gggaaaacca taatcagtaa aaaggcggtc 40

<210> 54
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 54
ttctgaccgc tctggcaacc 20

<210> 55
<211> 20

<212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 55
 ataatgccccg cttcccaacc

20

<210> 56
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 56
 gttatccgct cacaattccg atcctcagct cctttgtc

38

<210> 57
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 57
 cgtcgtgact gggaaaactc atctgataacc gattaacc

38

<210> 58
 <211> 20
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 58
 caactgaatc cgaaggaatg

20

<210> 59
 <211> 20
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 59
 tcggggtcat gccgagcggt

20

<210> 60
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 60
 gttatccgct cacaattcca atgttgccat tttcatcc

38

<210> 61		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 61		38
cgtcgtact gggaaaacctt gtacgagaat caacgctg		
<210> 62		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 62		20
cacggcaatg catttttcgg		
<210> 63		
<211> 21		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 63		21
agatctgtcg gccaggtta c		
<210> 64		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 64		38
gttatccgct cacaattctg atttttctgt catgtctc		
<210> 65		
<211> 38		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 65		38
cgtcgtact gggaaaacgg tagagatgtg caccgaaa		
<210> 66		
<211> 20		
<212> DNA		
<213> Artificial		

<223> Synthetic DNA

<400> 66
gagtcagacg gcatcgatga

20

<210> 67
<211> 23
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 67
ttctgattca ttttcaactgc tgg

23

<210> 68
<211> 38
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 68
gttatccgct cacaattcaa cggataattc ttccaatc

38

<210> 69
<211> 37
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 69
cgtcgtact gggaaaactg tccatgaagt caaatcc

37

<210> 70
<211> 20
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 70
cgctgaaata ttctctcgca

20

<210> 71
<211> 21
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 71
cgccgctttc accgcggatt c

21

<210> 72
<211> 38

<212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 72
 gttatccgct cacaattcct ttgaccactg tatgaacc 38

<210> 73
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 73
 cgtcgtgact gggaaaacac tcgtctaacg aataatcc 38

<210> 74
 <211> 20
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 74
 tgtcatcacg gaatttgacg 20

<210> 75
 <211> 30
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 75
 ccaaattatc ctttgtgagc gcggaatcag 30

<210> 76
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 76
 gttatccgct cacaattccg tagatcgtaa tattgctc 38

<210> 77
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 77
 cgtcgtgact gggaaaacag ctttagaaagt caaccaag 38
 Page 31

<210> 78		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 78		20
ttttagcattc agcacaagcc		
<210> 79		
<211> 21		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 79		21
tgttagcagaa gcagtcgaat t		
<210> 80		
<211> 40		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 80		40
ctaatgggtg ctttagttga caattacgca gctgtcatgt		
<210> 81		
<211> 41		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 81		41
ctgccccgtt agttgaagaa ctgataaaacc gtgaaaaagt g		
<210> 82		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 82		20
cctttgaaaa aggctcccggt		
<210> 83		
<211> 29		
<212> DNA		
<213> Artificial		
<220>		

289779US0PCT.ST25

<223> Synthetic DNA

<400> 83

gttttccaag tctgccgata aaaatatgc

29

<210> 84

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 84

gttatccgct cacaattcat gcttcatgta cctacacc

38

<210> 85

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 85

cgtcgtgact gggaaaacca attaacgatt cgcatacc

38

<210> 86

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 86

aaaaagaaga agtcacagta cagaacgtgg

30

<210> 87

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 87

atttttcgcc atcttgaatt ttc

23

<210> 88

<211> 40

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 88

ctaatgggtg cttagttgg atgatcctct cgttgaactg

40

<210> 89

<211> 39

<212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 89
 ctgccccgtt agttgaaggg atgagccttc agaaaagtt

39

<210> 90
 <211> 20
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 90
 gccggacaga gatctgtatg

20

<210> 91
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 91
 gaagaagggtt tttatgttga cgctttttg cccaaatactg tataa

45

<210> 92
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 92
 caaaaaagcg tcaacataaa aacc ttcttc aactaacggg gcagg

45

<210> 93
 <211> 30
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 93
 aagacgagta cttttctctc taaatcactt

30

<210> 94
 <211> 30
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 94
 aactcgtatca aatggtgaca ggacagcatc

30

<210> 95
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 95
 ggagaataaa gaccctttc aactaaagca cccatttagtt caaca 45

<210> 96
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 96
 tgcttttagtt gaagagggtc tttattctcc cacagggttt cgttt 45

<210> 97
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 97
 ttttatattt acagcgagtt ggcgttaaat gaatgaagcg ataga 45

<210> 98
 <211> 45
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 98
 atttaacgcc aactcgctgt aatataaaaaa ctttcttcaa ctaac 45

<210> 99
 <211> 30
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic DNA

<400> 99
 ttgattgatg ataaattcag gcaggtgcag 30

<210> 100
 <211> 30
 <212> DNA
 <213> Artificial

<220>

289779US0PCT.ST25

<223> Synthetic DNA

<400> 100

caaagcttga gaaatgttcc catgctcttg

30

<210> 101

<211> 45

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 101

caggaggaac atatctcttc aactaaagca cccatttagtt caaca

45

<210> 102

<211> 45

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 102

tgcttagtt gaagagatat gttcctcctg ttccgggctg ccccg

45

<210> 103

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 103

attccagtta ctcgtaatat agttg

25

<210> 104

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 104

gttatccgct cacaattcac ttcatcatcc attagctc

38

<210> 105

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Synthetic DNA

<400> 105

cgtcgtgact gggaaaaacct gctccaaatc cgatttcc

38

<210> 106

<211> 23

<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 106		23
gtcctgcatt tttcgaagtc tgg		
<210> 107		
<211> 30		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 107		30
tacacatcct tcaaacaagt ctgaacaaac		
<210> 108		
<211> 45		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 108		45
tgcttttagtt gaagattacc agttccataa ttccacacctg ccgac		
<210> 109		
<211> 45		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 109		45
tttttatatt acagcgtgtg tataccattt tatctgtaga tacga		
<210> 110		
<211> 30		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 110		30
gctatgtatca ttgttaacgaa aggaaagggg		
<210> 111		
<211> 45		
<212> DNA		
<213> Artificial		
<220>		
<223> Synthetic DNA		
<400> 111		45
ttatggaaact ggtatatcttc aactaaagca cccatttagtt caaca		

<210> 112
<211> 45
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 112
caatggata cacacgctgt aatataaaaa ctttcttcaa ctaac 45

<210> 113
<211> 30
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 113
aatctgaaca agaaaaagga gctgctcctc 30

<210> 114
<211> 45
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 114
tgcttagtt gaagaattca atctccctcc atgtcagctt attta 45

<210> 115
<211> 45
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 115
tttttatatt acagcagaaa cgccctgaaat gaaccggccc tatag 45

<210> 116
<211> 30
<212> DNA
<213> Artificial

<220>
<223> Synthetic DNA

<400> 116
tgtttagacaa aggtagaacg tctgcttatac 30

<210> 117
<211> 45
<212> DNA
<213> Artificial

<220>

289779US0PCT.ST25

<223> Synthetic DNA

<400> 117
ggaggagat tgaattcttc aactaaagca cccatttagtt caaca 45<210> 118
<211> 45
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 118
atttcaggcg tttctgctgt aatataaaaa ccttcttcaa ctaac 45<210> 119
<211> 18
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 119
gaatttgtgag cggtataac 18<210> 120
<211> 18
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 120
gttttcccag tcacgacg 18<210> 121
<211> 19
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 121
caactaaagc acccattag 19<210> 122
<211> 18
<212> DNA
<213> Artificial<220>
<223> Synthetic DNA<400> 122
cttcaactaa cggggcag 18