1. (b) (i)

Correlation Values	Pelvic	Pelvic tilt	Lumbar	Sacral scope	Pelvic radius	Grade of
	incidence		lordosis angle			spondylolisthesis
Pelvic incidence		0.629	0.717	0.815	-0.248	0.639
Pelvic tilt			0.433	0.062	0.033	0.398
Lumbar lordosis angle				0.598	-0.080	0.533
Sacral scope					-0.342	0.524
Pelvic radius						-0.026

 Values in green indicate variables that exhibit a weak correlation. Future work would consist of sampling out the correlated features from the data that exhibit moderate to high correlation to examine the performance of KNN (e.g. computation time).

(b) (ii)

AB: larger spread than NO, higher average, Outliers far from max

NO: very small spread

AB: lots of outliers, smaller mean NO: higher mean, smaller spread

AB: lots of outliers, higher mean

NO: small spread

AB: larger spread

NO: small spread, slightly lower mean than AB

AB: larger spread, higher mean, more outliers

NO: lower mean

AB: outliers farther from maximum

NO: small spread

Based off the testing accuracies for tested k-values: $k^* = 16$ or $k^* = 49$.

k*	Testing Error	Confusion Matrix	True Pos Rate	True Neg Rate	Precision	F-Score
16	0.11	[[70 0] [11 19]]	0.633	1.0	1.0	0.7755
49	0.11	[[69 1] [10 20]]	0.667	0.986	0.952	0.784

- Note, the F-score and TPR for k*=49 is slightly higher, though TNR and precision is lower. However, k*=49 is preferred to prevent overfitting. The training error is higher than the testing error for both k* values, hence both k* values provide a decent generalized model.
- Training error is higher than the testing error for k in between [4,118], so these values in this range provide a generalized model as well.
- The training and test error exhibit a decreasing yet jagged behavior as the number of neighbors decrease.
- Average training error: 0.2284353741496601
 Average testing error: 0.20542857142857163
- Increasing the number of neighbors becomes useless after k = 136 since both the test and train error begin to converge to a maximum error value of approximately 0.3 and 0.35, respectively.

- Achieve a low test error rate for training set sizes N=10,20,and 30, then the error spikes until N=100. After N = 100, the test error declines slightly linearly until N=210.
- The test error rate eventually declines as we increase the size of our test set.

(d) (i) Using Minkowski, $k^*=21$. Below is a table of the reported errors for various p-values, and Chebychev distance metrics.

Metric	k*	Test Error
Minkowski	21	0.10
p = 0.100000	21	0.16
p = 0.200000	21	0.15
p = 0.300000	21	0.14
p = 0.400000	21	0.12
p = 0.500000	21	0.12
p = 0.600000	21	0.13
p = 0.700000	21	0.13
p = 0.800000	21	0.12
p = 0.900000	21	0.12
p = 1.000000	21	0.10
Chebychev	21	0.11
Mahalanobis	1	0.17

- As we increase p by 0.1, our test error declines; reaching a maximum when p=1 (aka using the Minkowski distance).
- BESTP = 1.00

(e) Using weighted voting, reported is the minimum test error found over $k \in \{1,6,11,16,...,196\}$

euclidean 0.10
manhattan 0.10
chebyshev 0.11