

Getting started with logical modelling

David Shorthouse Ben Hall This exercise aims to get you exposed to all the steps of generating and analysing a logical model based on biological data (in this case transcriptomics)

The idea is for you to see the entire "pathway" behind generating a dynamic model from data, so that you can more easily place each tool we will cover over the week in context

~15/20 minute intro, then a practical exercise

Please ask questions!

Expectation

Complex –omics data

Al wizardry

Biological mechanisms Explainability

Reality

Some tools:

Celldesigner Cytoscape

CaSQ

Explainability

MaBoSS CellCollective BioModelAnalyzer CoLoMoTo

Dynamic model

Pathways + enriched sets of genes

Static disease map

Some tools:

Enrichment plot: CHR1P31

General idea (very similar to bioinformatics):

- Some stages of this process can be automated to some extent
- Manual curation and intervention is **almost always required** along this process
- A dynamic model can be analysed in different ways with different tools, to give insights into different facets of the network

Disclaimer

Our workflow today is not necessarily "best practice", and our example is arbitrary and simple

APC – Adenomatous Polyposis Coli

Loss of function mutations are present in %80 of colorectal cancers

Well-understood as a mediator of the WNT pathway

In King et al. (2016), a colorectal cancer cell line that is mutant for APC is restored to WT

RNA-seq analysis is performed

https://doi.org/10.1016/j.gdata.2016.02.001

Genomics Data 7 (2016) 293-296

Contents lists available at ScienceDirect

Genomics Data

journal homepage: www.elsevier.com/locate/gdata

Differential RNA-seq analysis comparing APC-defective and APC-restored SW480 colorectal cancer cells

Lauren E. King ^{a,b,c,1}, Christopher G. Love ^{b,c,d,1}, Oliver M. Sieber ^{b,c,d,e,f}, Maree C. Faux ^{a,b,c}, Antony W. Burgess ^{a,b,c,f,*}

https://github.com/shorthouse-lab/Dynamic_modelling_getting_started

Github contains all the data needed to run everything, and jupyter-notebooks with code

Some dependencies are required before running everything (from the readme):

```
conda env create -f environment.yml
conda activate quickstart
curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$PATH:$HOME/.cargo/bin"
pip install gseapy casq
```

Some basic RNAseq analysis to check the experiment has worked

Identify sets of differentially expressed genes and pathways

	Gene_set	Term	Overlap	P-value	Adjusted P-value	Ola P- value	Old Adjusted P-value	Odds Ratio	Combined Score
0	MSigDB_Hallmark_2020	TNF-alpha Signaling via NF-kB	2/200	0.005157	0.027504	0	0	22.212121	117.000045
1	MSigDB_Hallmark_2020	Interferon Gamma Response	2/200	0.005157	0.027504	0	0	22.212121	117.000045
2	MSigDB_Hallmark_2020	Inflammatory Response	2/200	0.005157	0.027504	0	0	22.212121	117.000045
16	KEGG_2021_Human	Cytokine- cytokine receptor interaction	4/295	0.000014	0.000356	0	0	38.680412	432.021505
17	KEGG_2021_Human	Rheumatoid arthritis	3/93	0.000016	0.000356	0	0	82.912500	917.527195
18	KEGG_2021_Human	Viral protein interaction with cytokine and cy	3/100	0.000019	0.000356	0	0	76.902062	834.256871
19	KEGG_2021_Human	Chemokine signaling pathway	3/192	0.000136	0.001867	0	0	39.285714	349.817130

Generate static interaction networks

Build a basic map

Add some dynamics

Do some basic analysis

Files are all in the course github:

Download and run the jupyter notebooks:

Once finished with the notebooks you could:

- Add extra genes from the pathway analysis
- Think about ways of connecting other genes of interest
- What questions could you ask of this network? How would you improve it to answer those questions?

Ask us questions!