Representational Similarity Analysis (RSA) Workshop

Büşra Tanrıverdi

Temple University Coding Outreach Group 7.13.2022

Intro: Why use RSA?

- Workshop Tutorials
 - Part-1: Item (Trial)-Level RSA: Within subject
 - Part-2: Item (Trial)-Level RSA: Across subjects
 - Part-3: Predict behavior from ROI-RSA

• Outro: Significance testing, additional resources

Intro: Why use RSA?

- Workshop Tutorials
 - Part-1: Item (Trial)-Level RSA: Within subject
 - Part-2: Item (Trial)-Level RSA: Across subjects
 - Part-3: Predict behavior from ROI-RSA

• Outro: Significance testing, additional resources

What is RSA?

RSA is a statistical technique that

- Computes a measure of similarity between different measures
 - (Instead of directly analyzing the relationship between one measure and another)
- Compares these similarities to each other
- Pioneered by Kriegeskorte, Mur, and Bandettini (2008, Frontiers in System Neuroscience)

Highly flexible, allowing us to link:

Neural and behavioral data

Highly flexible, allowing us to link:

- Neural and behavioral data
- Different scales of neural data

Highly flexible, allowing us to link:

- Neural and behavioral data
- Different scales of neural data
- Different modalities of neural data

Highly flexible, allowing us to link:

- Neural and behavioral data
- Different scales of neural assessments
- Different modalities of neural data
- Data from different groups/species

Neural RSA

 Assumption: if two stimuli evoke a similar response in a set of voxels, they share something in their representation as they are supported by overlapping neural populations.

Neural RSA

 Assumption: if two stimuli evoke a similar response in a set of voxels, they share something in their representation as they are supported by overlapping neural populations.

Typically, RSA is conducted on average voxel-wise patterns associated with a particular condition (e.g., viewing houses vs. viewing faces), or on trial-by-trial voxel-wise patterns.

Neural RSA

 Assumption: if two stimuli evoke a similar response in a set of voxels, they share something in their representation as they are supported by overlapping neural populations.

oTypically, RSA is conducted on average voxel-wise patterns associated with a particular condition (e.g., viewing houses vs. viewing faces), or on trial-by-trial voxel-wise patterns.

Kriegeskorte, Mur, & Bandettini (2008)

Intro: Why use RSA?

- Workshop Tutorials
 - Part-1: Item (Trial)-Level RSA: Within subject
 - Part-2: Item (Trial)-Level RSA: Across subjects
 - Part-3: Predict behavior from ROI RSA

• Outro: Significance testing, additional resources & examples

Intro: Why use RSA?

- Workshop Tutorials
 - Part-1: Item (Trial)-Level RSA: Within subject
 - Part-2: Item (Trial)-Level RSA: Across subjects
 - Part-3: Predict behavior from ROI-RSA

• Outro: Significance testing, additional resources

Significance Testing

To test the relatedness of two similarity matrices (RSMs):

1. Correlate the two RSMs you obtained

Significance Testing

To test the relatedness of two similarity matrices (RSMs):

- 1. Correlate the two RSMs you obtained
- 2. Simulate null correlations between your two RSMs
 - Randomize the condition labels (by reordering rows and columns of one of the two similarity matrices you'd like to compare)
 - Then compute the correlation between the two RSMs with random labels
 - Repeat these steps a number of times (e.g., 10,000 times) to obtain a distribution of null correlations (i.e., the two RSMs are unrelated)

Significance Testing

To test the relatedness of two similarity matrices (RSMs):

- 1. Correlate the two RSMs you obtained
- 2. Simulate null correlations between your two RSMs
 - Randomize the condition labels (by reordering rows and columns of one of the two similarity matrices you'd like to compare)
 - Then compute the correlation between the two RSMs with random labels
 - Repeat these steps a number of times (e.g., 10,000 times) to obtain a distribution of null correlations (i.e., the two RSMs are unrelated)
- 3. Compare your "true" correlation (from step1) to the null distribution (from step2)
 - Reject the null hypothesis with a false positive rate of α , if the true correlation is within the top α X 100% of the simulated distribution.

Additional Resources

Literature

- Kriegeskorte et al., 2008
 - The original paper that introduced RSA
- Popal et al., 2019
 - An RSA how-to and why-to guide aimed for the social neuroscience community
- Dimsdale-Zucker & Ranganath, 2018
 - An in-depth RSA guide aimed for memory researchers

Packages in other languages

- <u>Dartbrains</u> Python
- <u>PyMVPA</u> Python
 - Includes searchlight analysis
- Brain imaging analysis kit
- NeuroRA
- RSA toolbox MATLAB
 - By <u>Kriegeskorte's</u> group.