Count data and Poisson distribution

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Count data

• Count the **number of occurrences** in a specified **unit of** time, distance, area or volume

Examples:

- Goals in a soccer match
- Number of earthquakes
- Number of crab satellites
- Number of awards won by a person
- Number of bike crossings over the bridge

Poisson random variable

- Events occur independently and randomly
- Poisson distribution

$$P(y) = rac{\lambda^y e^{-\lambda}}{y!}$$

- λ : mean and variance
- $y = 0, 1, 2, 3, \dots$
 - Always positive
 - Discrete (not continuous)
 - Lower bound at zero, but no upper bound

Understanding the parameter of the Poisson distribution

Visualizing the response

```
import seaborn as sns
```

```
sns.distplot('y')
```


Poisson regression

Response variable

$$y \sim Poisson(\lambda)$$

• Mean of the response

$$E(y) = \lambda$$

Poisson regression model

$$log(\lambda) = \beta_0 + \beta_1 x_1$$

Explanatory variables

- Continuous and/or categorical \rightarrow Poisson regression model
- Categorical \rightarrow log-linear model

GLM with Poisson in Python

```
import statsmodels.api as sm
from statsmodels.formula.api import glm

glm('y ~ x',
    data = my_data,
    family = sm.families.Poisson())
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Interpreting model fit

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Parameter estimation

- Maximum likelihood estimation (MLE)
- Iteratively reweighted least squares (IRLS)

The response function

Poisson regression model

$$log(\lambda) = \beta_0 + \beta_1 x_1$$

• The response function:

$$\lambda = exp(\beta_0 + \beta_1 x_1)$$

or

$$\lambda = exp(eta_0) imes exp(eta_1 x_1)$$

The response function

Poisson regression model

$$log(\lambda) = \beta_0 + \beta_1 x_1$$

• The response function:

$$\lambda = exp(\beta_0 + \beta_1 x_1)$$

or

$$\lambda = exp(\beta_0) \times exp(\beta_1 x_1)$$

Interpretation of parameters

- $exp(\beta_0)$
 - The effect on the mean λ when x=0
- $exp(\beta_1)$
 - \circ The multiplicative effect on the mean λ for a 1-unit increase in x

Interpreting coefficient effect

- If $\beta_1 > 0$
 - $\circ exp(\beta_1) > 1$
 - $\circ \quad \lambda$ is $exp(eta_1)$ times larger than when x=0
- If $\beta_1 = 0$
 - $\circ exp(\beta_1) = 1$
 - $\circ \quad \lambda = exp(eta_0)$
 - Multiplicative factor is 1
 - \circ y and x are not related

- If $\beta < 0$
 - $\circ exp(\beta_1) < 1$
 - $\circ \quad \lambda \text{ is } exp(eta_1) \text{ times smaller than when}$

$$x = 0$$

Example

Example - interpretation of beta

Extract model coefficients

model.params

Intercept -0.428405
weight 0.589304

Compute the effect

np.exp(0.589304)

1.803

Confidence interval for ...

• β_1

```
print(model.conf_int())
```

```
0 1
Intercept -0.779112 -0.077699
weight 0.461873 0.716735
```

The multiplicative effect on mean

```
print(np.exp(crab_fit.conf_int()))
```

```
0 1
Intercept 0.458813 0.925243
weight 1.587044 2.047737
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

The Problem of Overdispersion

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Understanding the data


```
# mean of y
y_mean = crab['sat'].mean()
```

2.919

```
# variance of y
y_variance = crab['sat'].var()
```

9.912

Mean not equal to variance

- $variance > mean \rightarrow$ overdispersion
- $variance < mean \rightarrow$ underdispersion

Consequences:

- Small standard errors
- Small p-value

How to check for overdispersion?

Generalized Linear Model Regression Results

Dep. Variable:				sat	No.	Observations:		173
Model:				GLM	Df R	esiduals:		171
Model Family:			Po	isson	Df M	odel:		1
Link Function:				log	Scal	e:		1.0000
Method:				IRLS	Log-	Likelihood:		-458.08
Date:	Т	ue, 05	Mar	2019	Devi	ance:		560.87
Time:				21:13	Pear	son chi2:		536.
No. Iterations:				5	Cova	riance Type:		nonrobust
	coef	std	err		Z	P> z	[0.025	0.975]
	0.4284 0.5893		179 065	_	.394 .064	0.017 0.000	-0.779 0.462	-0.078 0.717

Compute estimated overdispersion

```
ratio = crab_fit.pearson_chi2 / crab_fit.df_resid
print(ratio)
```

3.134

- Ratio =1 o approximately Poisson
- Ratio $< 1 \rightarrow$ underdispersion
- Ratio > 1 o overdispersion

Negative Binomial Regression

- $E(y) = \lambda$
- $Var(y) = \lambda + \alpha \lambda^2$
- α dispersion parameter

GLM negative Binomial in Python

```
import statsmodels.api as sm
from statsmodels.formula.api import glm
```

```
model = glm('y ~ x', data = my_data,
family = sm.families.NegativeBinomial(alpha = 1)).fit()
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Plotting a regression model

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Import libraries

```
import seaborn as sns
import matplotlib.pyplot as plt
```

Crab model 'sat ~ width' is saved as model

Plot data points

```
# Adjust figure size
plt.subplots(figsize = (8, 5))
```


Add jitter

Add linear fit

Add Poisson GLM estimated values

```
crab['fit_values'] = model.fittedvalues
```



```
new_data = pd.DataFrame({'width':[24, 28, 32]})
model.predict(new_data)
```

0 1.881981


```
new_data = pd.DataFrame({'width':[24, 28, 32]})
model.predict(new_data)
```

```
0 1.8819811 3.627360
```



```
new_data = pd.DataFrame({'width':[24, 28, 32]})
model.predict(new_data)
```

```
0 1.881981
1 3.627360
2 6.991433
```


Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

