Statistique

Laurent Rouvière

Septembre 2021

Contents

Quelques éléments de probabilité	2	
Introduction	2	
Quelques lois de probabilités	F	
Espérance et variance	12	
Modèle et estimation	14	
Modèle statistique	15	
Quelques exemples		
La moyenne empirique	18	
La moyenne empirique Cas gaussien	18	
Cas non gaussien	19	
Intervalles de confiance	20	

Présentation

- Pre'e-requis: Bases de ${f R}$, probabilités, statistique et programmation
- Objectifs: être capable de mettre en œuvre une démarche statistique rigoureuse pour répondre à des problèmes standards
 - estimation : ponctuelle et par intervalles
 - tests d'hypothèses
 - modèle linéaire
- Enseignant: Laurent Rouvière, laurent.rouviere@univ-rennes2.fr
 - Thèmes de recherche : statistique non-paramétrique et apprentissage statistique
 - Enseignement: probabilités, statistique et logiciels (Universités et écoles)
 - Consulting: energie (ERDF), finance, marketing.

Plan

- Théorie (modélisation statistique) et pratique sur machines (R).
- 1. Introduction à R
 - Environnement Rstudio
 - Objets R
 - Manipulation et visualisation de données
- 2. "Rappels" de probabilités
- 3. Estimation ponctuelle et par intervalle
- 4. Introduction aux tests.

Quelques éléments de probabilité

Introduction

Une problématique...

Exemple

Les iris de Fisher.

- 1. Quelle est la longueur de sépales moyenne des iris ?
- 2. Peut-on dire que cette longueur moyenne est égale à 5.6 ?
- 3. Les Setosa ont-elles des longueurs de sépales plus petites que les autres espèces ? Avec quel niveau de confiance ?

Des données

Collecte de données

- Pour répondre à ces questions on réalise des expériences.
- Exemple : on mesure les longueurs et largeurs de sépales et pétales pour 150 iris (50 de chaque espèce).

```
> data(iris)
> summary(iris)
    Sepal.Length
                     Sepal.Width
                                     Petal.Length
                                                      Petal.Width
           :4.300
                           :2.000
                                            :1.000
##
   Min.
                                                     Min. :0.100
                    Min.
                                     Min.
   1st Qu.:5.100
                    1st Qu.:2.800
                                     1st Qu.:1.600
                                                     1st Qu.:0.300
##
   Median :5.800
                    Median :3.000
                                     Median :4.350
                                                     Median :1.300
##
           :5.843
                    Mean :3.057
                                            :3.758
                                                     Mean :1.199
    Mean
                                     Mean
##
    3rd Qu.:6.400
                    3rd Qu.:3.300
                                     3rd Qu.:5.100
                                                     3rd Qu.:1.800
##
    Max.
           :7.900
                    Max.
                           :4.400
                                     Max.
                                            :6.900
                                                     Max.
                                                            :2.500
##
          Species
##
              :50
    setosa
##
    versicolor:50
##
   virginica:50
##
##
##
```

Autre exemple

- On considères deux échantillons ${\bf E1}$ et ${\bf E2}$.
- Question : la moyenne est-elle égale à 5 ?

Remarque

Plus difficile de répondre pour ${\bf E1}$ car :

- $\bullet \quad \text{Moins d'observations} \ ;$
- Dispersion plus importante.

Un autre exemple

##

Prop_A

- Deux candidats se présentent à une élection.
- On effectue un sondage, les résultats sont

```
> summary(election)
## res
## A:488
## B:512
```

- Problématique : qui va gagner ?
- Avec quel niveau de confiance peut-on répondre à cette question ?

Statistiques descriptives et visualisation

Ces approches peuvent donner une intuition pour répondre.

```
> iris %>% summarize(mean(Sepal.Length))
   mean(Sepal.Length)
## 1
               5.843333
> iris %>% group_by(Species) %>% summarize(mean(Sepal.Length))
## # A tibble: 3 x 2
    Species `mean(Sepal.Length)`
##
    <fct>
                               <dbl>
## 1 setosa
                                5.01
## 2 versicolor
                                5.94
## 3 virginica
> election %>% mutate(res_A=res=="A") %>%
    summarize(Prop_A=mean(res_A))
```

```
## 1 0.488
```


> ggplot(election)+aes(x=res)+geom_bar()

Hasard, aléa...

• La réponse à ces questions peut paraître simple.

$Premi\`ere\ r\'eponse$

- Iris : si la longueur moyenne des pétales mesurées est différente de 0.6, on répond non.
- Election : si la proportion de sondés votant pour A est supérieure à 0.5, on répond que A gagne.

Problème

- Ces réponses sont très (trop) $li\acute{e}es$ aux $donn\acute{e}es$ $observ\acute{e}es$.
- Si je recommence l'expérience (sur d'autres iris ou d'autres électeurs), les conclusions peuvent changer.
- Conclusion : il faut prendre en compte cet aléa du au choix des individus ainsi que le *nombre d'observations* et la dispersion des mesures.

Probabilités

- *Idée* : répondre à ces questions en calculant (estimant) des probabilités.
- Notation: x_1, \ldots, x_n n observations.

$Hy poth\`ese$

Les observations proviennent d'une certaine loi de probabilité (inconnue).

Problème

Qu'est-ce qu'une loi de probabilité ?

"Définition"

- Une loi de probabilité est un objet qui permet de mesurer ou quantifier la chance qu'un évènement se produise.
- Mathématiquement, il s'agit d'une fonction $\mathbf{P}: \Omega \to [0,1]$ telle que, pour un évènement $\omega \in \Omega$, $\mathbf{P}(\omega)$ mesure la "chance" que l'évènement ω se réalise.

Exemple

Pile ou face : P(pile) = P(false) = 1/2.
 Dé équilibré : P(1) = P(2) = ··· = P(6) = 1/6.

Quelques lois de probabilités

- Une loi de probabilité permet de visualiser/caractériser/mesurer les valeurs que peut prendre une variable.
- On distingue deux types de loi de probabilité que l'on caractérise en étudiant les valeurs possibles de la variable (et donc de l'expérience).

Variable discrète

- Si l'ensemble des valeurs que peut prendre la variable est fini ou dénombrable, la variable est discrète.
- pile ou face, nombre de voitures à un feu rouge, nombre d'aces dans un match de tennis...

Variable continue

- Si l'ensemble des valeurs que peut prendre la variable est infini ($\mathbb R$ ou un intervalle de $\mathbb R$) la variable est continue.
- Duret de trajet, taille, vitesse d'un service, longueur d'un saut...

Comment définir une loi discrète?

Pour caractériser un loi discrète, il faudra donner :

- 1. l'ensemble des valeurs possibles de la variable ;
- 2. la probabilité associée à chacune de ses valeurs.

Exemple

- Soit X la variable aléatoire qui représente le statut matrimonial d'une personne.
- ullet X peut prendre 4 valeurs : célibataire, marié, divorcé, vœuf (4 valeurs donc loi discrète).
- On caractérise sa loi

$$\mathbf{P}(X=\text{cel})=0.20,\ \mathbf{P}(X=\text{mari\'e})=0.4,\ \mathbf{P}(X=\text{div})=0.3,\ \mathbf{P}(X=\text{vœuf})=0.1.$$

Remarque

La somme des probabilités doit toujours être égale à 1.

Bernoulli

$D\'{e}finition$

La loi de Bernoulli de paramètre $p \in [0, 1]$ est définie par

- Valeurs possibles : 0 (échec) et 1 (succés)
- Proba : P(X = 0) = 1 p et P(X = 1) = p.

Exemple

- Modélisation de phénomènes à 2 issues.
- Pile ou face, ace/pas ace, acceptation/rejet, oui/non...

Le coin R

• Fonction dbinom

```
> dbinom(x,1,p)
```

• Loi de Bernoulli de paramètre 0.5

```
> dbinom(0,1,0.5)
## [1] 0.5
> dbinom(1,1,0.5)
## [1] 0.5
```

- Loi de Bernoulli de paramètre 0.8

```
> dbinom(0,1,0.8)
## [1] 0.2
> dbinom(1,1,0.8)
## [1] 0.8
```

Binomiale

- On répète n expériences de Bernoulli de paramètres $p \in [0,1]$ de façon indépendante.
- On note X_1, \ldots, X_n les n résultats.
- $\sum_{i=1}^{n} X_i$ (qui compte le nombre de 1) suit une loi Binomiale $\mathcal{B}(n,p)$.

Loi binomiale

- Valeurs possibles: $\{0, 1, \ldots, n\}$.
- Proba :

$$\mathbf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{avec} \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Exemple

Nombre de $\mathit{succ\`es}$ sur n épreuves : nombre de piles, nombre d'aces sur n services.

Le coin R

• Fonction dbinom:

```
> dinom(x,n,p)
```

• Loi binomiale $\mathcal{B}(10, 0.5)$

```
> dbinom(0,10,0.5);dbinom(5,10,0.5);dbinom(10,10,0.5)
## [1] 0.0009765625
## [1] 0.2460938
## [1] 0.0009765625
```

• Loi binomiale $\mathcal{B}(50, 0.8)$

```
> dbinom(0,50,0.8);dbinom(25,50,0.8);dbinom(50,50,0.8)
## [1] 1.1259e-35
## [1] 1.602445e-06
## [1] 1.427248e-05
```

Visualisation

Loi de Poisson

D'efinition

- Valeurs possibles : \mathbb{N} .
- Proba:

$$\mathbf{P}(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

où λ est un paramètre positif. On la note $\mathcal{P}(\lambda)$.

Exemple

- Données de comptage.
- Nombre de voitures à un feu rouge, nombre de personnes à une caisse, nombre d'admis à une épreuve...

Le coin R

• Fonction dpois :

```
> dpois(x,lambda)
```

• Loi de Poisson $\mathcal{P}(1)$

```
> dpois(0,1);dpois(5,1);dpois(10,1)
## [1] 0.3678794
## [1] 0.003065662
## [1] 1.013777e-07
```

• Loi binomiale $\mathcal{P}(10)$

```
> dpois(0,10);dpois(5,10);dpois(10,10)
## [1] 4.539993e-05
## [1] 0.03783327
## [1] 0.12511
```

Visualisation

Comment définir une loi continue ?

- Une loi continue prend une infinit'e de valeurs (sur un intervalle ou sur $\mathbb R$ tout entier).
- Pour la caractériser on utilisera une fonction de densité qui permettra de mesurer la probabilité que la variable appartienne à un intervalle.
- Cette probabilité se déduit de l'aire sous la densité.

Exemple

Si Xadmet pour densité f,alors

$$\mathbf{P}(X \in [a, b]) = \int_a^b f(x) \, \mathrm{d}x.$$

Question

$$P(X \in [0, 2]) = ???$$

R'eponse

$$\mathbf{P}(X \in [0, 2]) = \int_0^2 f(x) \, \mathrm{d}x \simeq 0.48.$$

Densité

D'efinition

Une densité de probabilité est donc une fonction $f:\mathbb{R}\to\mathbb{R}$ qui doit vérifier les trois propriétés suivantes :

- 1. Elle doit être positive : $f(x) \ge 0 \ \forall x \in \mathbb{R}$;
- 2. Elle doit être intégrable.
- 3. Son intégrale sur $\mathbb R$ doit être égale à un :

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$$

Remarques

- Attention: pour une variable continue X on a toujours

$$\mathbf{P}(X=x) = \int_{x}^{x} f(x) \, \mathrm{d}x = 0.$$

- On s'intéresse à des probabilités pour intervalles ou des réunions d'intervalles.
- Ces probabilités se déduisent à partir d'aires, et donc d'intégrales.

Loi uniforme

D'efinition

La loi uniforme sur un intervalle $\left[a,b\right]$ admet pour densité

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon.} \end{cases}$$

On la note $\mathcal{U}_{[a,b]}$.

Interprétation

Les valeurs de X sont réparties uniformément sur l'intervalle [a, b].

Le coin R

• Densité : fonction dunif

```
> dunif(-1,0,1);dunif(0.5,0,1);dunif(2,0,1)
## [1] 0
## [1] 1
## [1] 0
```

• Fonction de répartition : $F(x) = \mathbf{P}(X \le x)$ avec punif :

```
> punif(0,0,1);punif(0.2,0,1);punif(0.5,0,1)
## [1] 0
## [1] 0.2
## [1] 0.5
```

• Calcul de probabilités :

$$\mathbf{P}(X \in [0.1, 0.4]) = \mathbf{P}(X \le 0.4) - \mathbf{P}(X < 0.1).$$

```
> punif(0.4,0,1)-punif(0.1,0,1)
## [1] 0.3
```

La loi normale

D'efinition

La loi normale ou loi gaussienne de paramètre $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}^+$ admet pour densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

On la note $\mathcal{N}(\mu, \sigma^2)$.

Remarque

- μ représente le tendance centrale de la loi, on parle de valeur moyenne.
- σ^2 représente la dispersion de la loi autour de la valeur moyenne, on parle(ra) de variance.
- Elle permet de modéliser des phénomènes centrés en une valeur.
- C'est la loi limite du théorème central limite.

Exemples pour différents (μ, σ^2)

Le coin R

 \bullet Densité : fonction dnorm

```
> dnorm(0,0,1);dnorm(0.05,0,1);dnorm(0.95,0,1)
## [1] 0.3989423
## [1] 0.3984439
## [1] 0.2540591
```

• Fonction de répartition : $F(x) = \mathbf{P}(X \le x)$ avec pnorm :

```
> pnorm(0,0,1);pnorm(2,0,1);pnorm(-2,0,1)
## [1] 0.5
## [1] 0.9772499
## [1] 0.02275013
```

• Calcul de probabilités :

$$P(X \in [0,1]) = P(X \le 1) - P(X < 0).$$

```
> pnorm(1,0,1)-pnorm(0,0,1)
## [1] 0.3413447
```

Loi exponentielle

D'efinition

La loi exponentielle de paramètre $\lambda>0$ admet pour densité

$$f(x) = \lambda \exp(-\lambda x), \quad x \in \mathbb{R}^+.$$

On la note $\mathcal{E}(\lambda)$.

Exemple

• Cette loi est souvent utilisée pour modéliser des durées de vie (composant électronique, patients atteint d'une pathologie...).

Visualisation

Le coin R

- Densité : fonction dexp

```
> dexp(1,1);dexp(3,1)
## [1] 0.3678794
## [1] 0.04978707
```

• Fonction de répartition : $F(x) = \mathbf{P}(X \le x)$ avec pexp :

```
> pexp(1,1);pexp(5,1)
## [1] 0.6321206
## [1] 0.9932621
```

• Calcul de probabilités :

$$P(X \in [2, 4]) = P(X \le 4) - P(X < 2).$$

```
> pexp(4,1)-pexp(2,1)
## [1] 0.1170196
```

Espérance et variance

Motivations

- Loi de probabilité : $pas\ toujours\ facile\ à interpréter$ d'un point de vue pratique.
- Objectif: définir des indicateurs (des nombres par exemple) qui permettent d'interpréter une loi de probabilité (tendance centrale, dispersion...).

Espérance

Définition

L'espérance d'une variable aléatoire X est le $r\acute{e}el$ défini par :

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbf{P}(\omega).$$

Interprétation

- La formule ci-dessus ne sera d'aucun intérêt pratique, elle permet juste de comprendre l'interprétation de l'espérance.
- L'espérance revient à intégrer les valeurs de la v.a.r. X pour chaque évènement ω pondéré par la mesure de probabilité de chaque évènement.
- Elle s'interprète ainsi en terme de valeur moyenne prise par X.

Calculs d'espérance

• Pour les calculs d'espérance, on distingue les cas discrets et continus.

$Propri\acute{e}t\acute{e}$

• Cas discret:

$$\mathbf{E}[X] = \sum_{\text{valeurs possibles de } X} x \mathbf{P}(X = x).$$

• Cas continu:

$$\mathbf{E}[X] = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

où f est la densité de X.

Exemples

Loi	Espérance
$\mathcal{B}(p)$	p
$\mathcal{B}(n,p)$	np
$\mathcal{P}(\lambda)$	λ
$\mathcal{U}_{[a,b]} \ \mathcal{N}(\mu,\sigma^2)$	$\frac{a+b}{2}$
$\mathcal{N}(\mu, \sigma^2)$	μ

Variance

Définition

- La variance de X, notée $\mathbf{V}[X],$ est définie par :

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mathbf{E}[X])^2 \right] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

• Sa racine carrée positive $\sigma[X]$ est appelée écart-type de X.

Interpr'etation

- La variance est un réel positif.
- Elle mesure l'écart entre les valeurs prises par X et l'espérance (moyenne) de X \Longrightarrow interprétation en terme de dispersion.

Exemple

- 1. Loi de Bernoulli $\mathcal{B}(p)$: $\mathbf{V}[X] = p(1-p)$;
- 2. Loi uniforme sur [0,1] : $\mathbf{V}[X]=1/12$;
- 3. Loi uniforme sur [1/4, 3/4] : V[X] = 1/48;

Espérance et variance de quelques lois classiques

X	$\mathbf{E}[X]$	V[X]	
$\mathcal{B}(p)$	p	p(1-p)	
$\mathcal{B}(n,p)$	p	np(1-p)	
$\mathcal{P}(\lambda)$	λ	λ	
Lois discrètes			

X	$\mathbf{E}[X]$	V[X]
$\mathcal{U}_{[a,b]}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	μ	σ^2
$\mathcal{E}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Lois continues

Modèle et estimation

L'exemple du décathlon

• On s'intéresse aux performances de décathloniens au cours de deux épreuves (jeux olympiques et décastar)

Quelques problèmes

- 1. Quelle est la distribution de la variable vitesse au $100 \mathrm{m}$?
- 2. Les performances aux decastar et aux jeux olympiques sont-elles identiques ?
- 3. Quelles sont les disciplines les plus *influentes* sur le classement ?
- 4. Existe t-il un lien entre les performances au 100m et les autres disciplines ?
- 5. Si oui, peut-on le quantifier?

Les données

• Pour tenter de répondre à ces questions, on dispose des performances d'une vingtaine de décathloniens au cours de deux épreuves :

```
> head(decathlon)
          100m Long.jump Shot.put High.jump 400m 110m.hurdle Discus Pole.vault
## SEBRLE 11.04
               7.58 14.83 2.07 49.81 14.69 43.75
         10.76
                   7.40
                          14.26
                                    1.86 49.37
                                                                     4.92
## CLAY
                                                    14.05 50.72
## KARPOV 11.02
                   7.30 14.77
                                    2.04 48.37
                                                    14.09 48.95
                                                                     4.92
## BERNARD 11.02
                   7.23 14.25
                                   1.92 48.93
                                                    14.99 40.87
                                                                     5.32
## YURKOV 11.34
                   7.09
                        15.19
                                   2.10 50.42
                                                    15.31 46.26
                                                                     4.72
## WARNERS 11.11
                  7.60 14.31
                                  1.98 48.68
                                                    14.23 41.10
                                                                     4.92
##
         Javeline 1500m Rank Points Competition
## SEBRLE
           63.19 291.7 1 8217 Decastar
            60.15 301.5
                          2 8122
## CLAY
                                    Decastar
## KARPOV
            50.31 300.2
                       3 8099
                                    Decastar
## BERNARD
            62.77 280.1
                         4 8067
                                    Decastar
## YURKOV
            63.44 276.4
                          5 8036
                                     Decastar
## WARNERS
          51.77 278.1
                             8030
                                     Decastar
```

Statistiques descriptives (capital)

Modèle statistique

- On s'intéresse d'abord uniquement à la variable 100m.
- On dispose de n = 41 observations x_1, \ldots, x_n

Question

Peut-on dire que le temps moyen au $100\mathrm{m}$ pour les décathloniens est de 10.99 ?

Hazard, aléa...

- Le résultat de 10.99 dépend des conditions dans lesquelles l'expérience a été réalisée.
- Si on re-mesure les performances de nouvelles compétitions, il est fort possible qu'on n'obtienne pas la même durée moyenne.

Remarque

- Nécessité de prendre en compte que le résultat observé dépend des conditions expérimentales.
- Ces conditions expérimentales vont cependant être difficiles à caractériser précisément.
- On dit souvent que le hasard ou l'aléa intervient dans ces conditions.
- $\bullet \quad \text{L'approche } \textit{statistique} \text{ prend en compte le } \textbf{nombre et la dispersion } \text{ des observations pour apporter une réponse}.$

Modèle statistique

• Pour prendre en compte cet aléa, on fait l'hypothèse que les observations x_i sont issues d'une loi de probabilité \mathbf{P}_i (inconnue).

Echantillon i.i.d

- Si les mesures x_i sont faites de façons indépendantes et dans des conditions identiques, on dit que x_1, \ldots, x_n sont n observations indépendantes et de même loi \mathbf{P} .
- \bullet On emploi souvent le terme échantillon i.i.d (indépendant et identiquement distribué).

Le problème statistique

Estimer

- La loi P ainsi que toutes ses quantités dérivées (espérance, variance) est et sera toujours inconnue.
- Le travail du statisticien sera d'essayer de retrouver, ou plutôt d'estimer, cette loi ou les quantités d'intérêt qui dépendent de cette loi.

Quelques exemples

Efficacité d'un traitement

- On souhaite tester l'efficacité d'un nouveau traitement (autorisé) sur les performances d'athlètes.
- On traite n = 100 patients athlètes.
- A l'issue de l'étude, 72 patients ont amélioré leurs performances.

Mod'elisation

- On note $x_i = 1$ si le $i^{\text{ème}}$ athlète a amélioré, 0 sinon.
- Les x_i sont issues d'une loi de Bernoulli de paramètre inconnu $p \in [0,1]$.
- Si les individus sont choisis de manière indépendante et ont tous la même probabilité de progresser (ce qui peut revenir à dire qu'ils sont au même niveau), il est alors raisonnable de supposer que l'échantillon est i.i.d.

Le problème statistique

Estimer le paramètre p :

$$p = \mathbf{P}(X = 1) = \mathbf{P}(\text{"Athlète améliore"}).$$

$Exemple\ d'estimateur$

- Il parait naturel d'estimer p par la proportion d'athlètes dans l'échantillon qui ont amélioré leur performance.
- Cela revient à estimer p par la moyenne (empirique) des x_i :

$$\hat{p} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Durée de trajet

- On s'intéresse à la durée de trajet moyenne "domicile/travail".
- Expérience : je mesure la durée de trajet domicile/travail pendant plusieurs jours.
- Je récolte n=100 observations :

```
> summary(duree_ht)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.62 16.42 18.46 19.37 21.88 30.20
```

X	Paramètre	Estimateur
$\mathcal{B}(p)$	p	\bar{x}_n
$\mathcal{P}(\lambda)$	λ	\bar{x}_n
$\mathcal{U}_{[0, heta]}$	θ	$2\bar{x}_n$
$\mathcal{E}(\lambda)$	λ	$1/\bar{x}_n$
	μ	\bar{x}_n
$\mathcal{N}(\mu, \sigma^2)$	et	
	σ^2	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}_n)^2$

Mod'elisation

Les données sont issues d'une loi inconnue ${\bf P}.$

Le problème statistique

Estimer l'espérance (moyenne) μ de la loi ${\bf P}.$

$Exemple\ d'estimateur$

Là encore, un estimateur naturel de μ est donné par la moyenne empirique

$$\hat{\mu} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

Le modèle gaussien

Cadre

- x_1, \ldots, x_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- Le problème : estimer $\mu = \mathbf{E}[X]$ et $\sigma^2 = \mathbf{V}[X]$.

Exemple d'estimateurs

 \bullet Moyenne empirique:

$$\hat{\mu} = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

• Variance empirique :

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Autres exemples

Conclusion

De nombreux estimateurs sont construits à partir de la moyenne empirique \bar{x}_n .

La moyenne empirique

Remarque

• De nombreux estimateurs sont construits à partir de la moyenne empirique

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- La moyenne empirique est une variable aléatoire.
- Elle va donc posséder une loi, une espérance, une variance...

Cas gaussien

- On se place tout d'abord dans le cas où les observations suivent une loi quussienne.
- On considère alors X_1, \ldots, X_n un échantillon i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.

$Propri\acute{e}t\acute{e}$

- Dans le cas gaussien, la moyenne empirique \bar{X}_n suit une loi normale $\mathcal{N}(\mu, \sigma^2/n)$.
- On a ainsi

$$\mathbf{E}[\bar{X}_n] = \mu \quad \text{et} \quad \mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}.$$

Conclusion

- \bar{X}_n est centrée autour de μ .
- Sa dispersion dépend de σ^2 et n.

Biais et variance

- \bar{X}_n tombe toujours en moyenne sur μ . On dit que c'est un estimateur sans biais de μ .
- Sa précision augmente lorsque :
 - $-\ \sigma^2$ diminue (difficile à contrôler) ;
 - n augmente (lorsqu'on augmente le nombre de mesures).

Cas non gaussien

- On dispose ici d'un échantillon X_1, \ldots, X_n i.i.d. (de $m\hat{e}me\ loi$).
- La loi est quelconque (discrète, continue...). On note $\mu = \mathbf{E}[X_1]$ et $\sigma^2 = \mathbf{V}[X_1]$.

Propriété

On a

$$\mathbf{E}[\bar{X}_n] = \mu \quad \text{et} \quad \mathbf{V}[\bar{X}_n] = \frac{\sigma^2}{n}.$$

Commentaires

- L'espérance et la variance de \bar{X}_n sont identiques au cas gaussien.
- Les remarques faites dans le cas gaussien restent donc valables.
- Seul changement : on ne connaît pas ici la loi de \bar{X}_n (juste son espérance et sa variance).
- Dans de nombreuses applications (intervalles de confiance, tests statistiques), on a besoin de connaître la loi de \bar{X}_n .
- · On rappelle que, dans le cas gaussien,

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

• Interprétation : $\mathcal{L}(\bar{X}_n) = \mathcal{N}(\mu, \sigma^2/n)$.

La puissance du TCL

- Le théorème central limite stipule que, sous des hypothèses très faibles, on peut étendre ce résultat (pour n grand) à "n'importe quelle" suite de variables aléatoires indépendantes.
- C'est l'un des résultats les plus impressionnants et les plus utilisés en probabilités et statistique.

Le TCL

Théorème Central Limite (TCL)

Soit X_1, \dots, X_n un n-échantillon i.i.d. On note $\mathbf{E}[X_i] = \mu, \mathbf{V}[X_i] = \sigma^2$ et $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On a alors

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$
 quand $n \to \infty$.

- Les hypothèses sont faibles : on demande juste des v.a.r i.i.d. qui admettent une variance.
- Conséquence : si n est suffisamment grand, on pourra approcher la loi de \bar{X}_n par la loi $\mathcal{N}(\mu, \sigma^2/n)$.
- On pourra écrire $\mathcal{L}(\bar{X}_n) \approx \mathcal{N}(\mu, \sigma^2/n)$ mais pas

$$\mathcal{L}(\bar{X}_n) \stackrel{\mathcal{L}}{\to} \mathcal{N}(\mu, \sigma^2/n).$$

TCL pour modèle de Bernoulli

- X_1, \ldots, X_n i.i.d. de loi de Bernoulli de paramètre $p \in [0, 1]$.
- On a donc $\mathbf{E}[X_1] = p$ et $\mathbf{V}[X_1] = p(1-p)$.

TCL

On a d'après le TCL

$$\sqrt{n} \frac{\bar{X}_n - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$
 quand $n \to \infty$.

Conséquence

On peut donc approcher la loi de la moyenne empirique \bar{X}_n par la loi

$$\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$
.

- Approximation TCL pour le modèle de Bernoulli $\mathcal{B}(1/2)$ avec n=50,100,200,500.

Intervalles de confiance

Motivations

- Donner une seule valeur pour estimer un paramètre peut se révéler trop ambitieux.
- Exemple: la performance est de 72% lorsque on prend le traitement (alors qu'on ne l'a testé que sur 100 athlètes).
- Il peut parfois être plus raisonnable de donner une réponse dans le genre, la performance se trouve dans l'intervalle [70%, 74%] avec une confiance de 90%.

Un exemple

Remarque

- Ces deux échantillons sembelent avoir (à peu près) la même moyenne.
- Cependant, l'échantillon 2 semble être plus précis pour estimer cette moyenne.
- X_1, \ldots, X_n un échantillon i.i.d. de loi ${\bf P}$ inconnue.
- Soit θ un paramètre inconnu, par exemple $\theta = \mathbf{E}[X]$.

D'efinition

Soit $\alpha \in]0,1[$. On appelle intervalle de confiance pour θ tout intervalle de la forme $[A_n,B_n]$, où A_n et B_n sont des fonctions telles que :

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

D'efinition

Si $\lim_{n\to\infty} \mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha$, on dit que $[A_n, B_n]$ est un intervalle de confiance asymptotique pour θ au niveau $1 - \alpha$.

Construction d'IC

- Un intervalle de confiance pour un paramètre inconnu θ se construit généralement à partir d'un estimateur de θ dont on connaît la loi.
- A partir de la loi de $\hat{\theta}$, on cherche deux bornes A_n et B_n telle que

$$\mathbf{P}(\theta \in [A_n, B_n]) = 1 - \alpha.$$

Remarque

A priori, plus α est petit, plus l'intervalle aura un grande amplitude.

Exemple

- X_1, \ldots, X_n i.i.d. de loi normale $\mathcal{N}(\mu, 1)$.
- Question: IC de niveau 0.95 pour μ ?

Construction de l'IC

- Estimateur : $\hat{\mu} = \bar{X}_n$.
- Loi de l'estimateur : $\mathcal{L}(\hat{\mu}) = \mathcal{N}(\mu, 1/n)$.
- On déduit

$$\mathbf{P}\left(\hat{\mu} - q_{1-\alpha/2} \frac{1}{\sqrt{n}} \le \mu \le \hat{\mu} + q_{1-\alpha/2} \frac{1}{\sqrt{n}}\right) = 1 - \alpha.$$

- Un intervalle de confiance de niveau $1-\alpha$ est donc donné par

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{1}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{1}{\sqrt{n}}\right].$$

Quantiles

- $q_{1-\alpha/2}$ désigne le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.
- Il est défini par

$$\mathbf{P}\left(X \le q_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2}.$$

Définition

Plus généralement, le quantile d'ordre α d'une variable aléatoire X est défini par le réel q_{α} vérifiant

$$\mathbf{P}(X \le q_{\alpha}) \ge \alpha$$
 et $\mathbf{P}(X \ge q_{\alpha}) \ge 1 - \alpha$.

- Les quantiles sont généralement renvoyés par les logiciels statistique:

```
> c(qnorm(0.975),qnorm(0.95),qnorm(0.5))
## [1] 1.959964 1.644854 0.000000
```

Une exemple à la main

• n = 50 observation issues d'une loi $\mathcal{N}(\mu, 1)$:

```
> head(X)
## [1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056
```

• Estimation de μ :

```
> mean(X)
## [1] 4.546947
```

• Intervalle de confiance de niveau 95% :

```
> binf <- mean(X)-qnorm(0.975)*1/sqrt(50)
> bsup <- mean(X)+qnorm(0.975)*1/sqrt(50)
> c(binf,bsup)
## [1] 4.269766 4.824128
```

Loi normale (cas réel)

- X_1, \ldots, X_n i.i.d de loi $\mathcal{N}(\mu, \sigma^2)$.
- On a vu qu'un IC pour μ est donné par

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

$Probl\`eme$

- Dans la vraie vie, σ est inconnu!
- L'intervalle de confiance n'est donc pas calculable.

Idée

1. Estimer σ^2 par

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

2. Et considérer l'IC :

$$\left[\hat{\mu} - q_{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}, \hat{\mu} + q_{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}\right]. \tag{1}$$

$Probl\`eme$

• On a bien

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

• mais

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\widehat{\sigma}} \neq \mathcal{N}(0, 1)$$

• Pour avoir la loi de

$$\sqrt{n}\frac{\bar{X}_n - \mu}{\widehat{\sigma}} \neq \mathcal{N}(0, 1)$$

avec

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

• il faut définir d'autres lois de probabilité.

La loi normale (Rappel)

Définition

- Une v.a.
rXsuit une loi normale de paramètres
 $\mu \in \mathbb{R}$ et $\sigma^2 > 0$ admet pour densité

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

$Propri\acute{e}t\acute{e}s$

- $\mathbf{E}[X] = \mu \text{ et } \mathbf{V}[X] = \sigma^2.$
- Si $X \sim N(\mu, \sigma^2)$ alors

$$\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Loi du χ^2

Définition

- Soit X_1, \ldots, X_n n variables aléatoires réelles indépendantes de loi $\mathcal{N}(0,1)$. La variable $Y = X_1^2 + \ldots + X_n^2$ suit une loi du *Chi-Deux à n degrés de liberté*. Elle est notée $\chi^2(n)$.
- $\mathbf{E}[Y] = n \text{ et } \mathbf{V}[Y] = 2n.$

Loi de Student

Définition

- Soient X et Y deux v.a.r. indépendantes de loi $\mathcal{N}(0,1)$ et $\chi^2(n)$. Alors la v.a.r.

$$T = \frac{X}{\sqrt{Y/n}}$$

suit une loi de student à n degrés de liberté. On note $\mathcal{T}(n)$.

- $\mathbf{E}[T] = 0 \text{ et } \mathbf{V}[T] = n/(n-2).$
- Lorsque n est grand la loi de student à n degrés de liberté peut être approchée par la loi $\mathcal{N}(0,1)$.

L'egende

Densités des lois de student à 2, 5, 10 et 100 degrés de liberté (bleu) et densité de la loi $\mathcal{N}(0,1)$ (rouge).

Loi de Fisher

Définition

• Soient X et Y deux v.a.r indépendantes de lois $\chi^2(m)$ et $\chi^2(n)$. Alors la v.a.r

$$F = \frac{X/m}{V/m}$$

suit une loi de Fisher à m et n degrés de liberté. On note $\mathcal{F}(m,n)$.

• Si $F \sim \mathcal{F}(m, n)$ alors $1/F \sim \mathcal{F}(n, m)$.

Théorème de Cochran

- X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$.
- On note

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Théorème de Cochran

On a alors

- 1. $(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$.
- 2. \bar{X}_n et S^2 sont indépendantes.
- 3. On déduit

$$\sqrt{n}\frac{\bar{X}_n - \mu}{S} \sim \mathcal{T}(n-1).$$

Remarque

1 et 3 sont très importants pour construire des intervalles de confiance.

IC pour la loi gaussienne

IC pour μ

On déduit du résultat précédent qu'un IC de niveau $1-\alpha$ pour μ est donné par

$$\left[\bar{X}_n - t_{1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X}_n + t_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\,$$

où $t_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à n-1 ddl.

IC pour σ^2

Un IC de niveau $1-\alpha$ pour σ^2 est donné par

$$\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}}, \frac{(n-1)S^2}{\chi_{\alpha/2}}\right]$$

où $\chi_{1-\alpha/2}$ et $\chi_{\alpha/2}$ sont les quantiles d'ordre $1-\alpha/2$ et $\alpha/2$ de loi $\chi^2(n-1)$.

Exemple (IC pour μ)

• n = 50 observation issues d'une loi $\mathcal{N}(\mu, \sigma^2)$:

```
> head(X)
## [1] 3.792934 5.277429 6.084441 2.654302 5.429125 5.506056
```

• Estimation de μ :

```
> mean(X)
## [1] 4.546947
```

• Estimation de σ^2 :

```
> S <- var(X)
> S
## [1] 0.783302
```

• Intervalle de confiance de niveau 95% :

```
> binf <- mean(X)-qt(0.975,49)*sqrt(S)/sqrt(50)
> bsup <- mean(X)+qt(0.975,49)*sqrt(S)/sqrt(50)
> c(binf,bsup)
## [1] 4.295420 4.798474
```

• On peut obtenir directement l'intervalle de confiance à l'aide de la fonction t.test:

```
> t.test(X)$conf.int
## [1] 4.295420 4.798474
## attr(,"conf.level")
## [1] 0.95
```

Autre exemple


```
> t.test(df1$value)$conf.int[1:2]
## [1] 3.990982 6.563659
> t.test(df2$value)$conf.int[1:2]
## [1] 4.887045 5.074667
```

Conclusion

Sans surprise, on retrouve bien qu'on est plus précis avec l'échantillon 2.

Exemple (IC pour σ^2)

• On obtient l'IC pour σ^2 à l'aide de la formule

$$\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}}, \frac{(n-1)S^2}{\chi_{\alpha/2}}\right]$$

- On peut donc le calculer sur R :

```
> binf <- 49*S/qchisq(0.975,49)
> bsup <- 49*S/qchisq(0.025,49)
> c(binf,bsup)
## [1] 0.5465748 1.2163492
```

Application décathlon

- IC de niveau 95% pour la longueur moyenne en saut en longueur :

```
> t.test(decathlon$Long.jump)$conf.int
## [1] 7.160131 7.359869
## attr(,"conf.level")
## [1] 0.95
```

• IC de niveau 95% pour la temps moyen au $1500\mathrm{m}$:

```
> t.test(decathlon$`1500m`)$conf.int
## [1] 275.3403 282.7094
## attr(,"conf.level")
## [1] 0.95
```

• IC de niveau 90% pour la temps moyen au 1500m :

```
> t.test(decathlon$`1500m`,conf.level=0.90)$conf.int
## [1] 275.9551 282.0946
## attr(,"conf.level")
## [1] 0.9
```

Remarque

L'IC à 95% a une amplitude plus grande que celui à 90% (c'est normal).

Comparer des moyennes

Question (fréquente)

- Peut-on dire que deux populations ont les mêmes catactéristiques ?
- Ou plus simplement que deux caractéristiques ont la même moyenne ?

Observations

- X_1, \ldots, X_{n_1} observations pour la population 1.
- Y_1, \ldots, Y_{n_2} observations pour la population 2.

Exemple

$Id\acute{e}e$

Utiliser des IC pour décider.

Comparer des moyennes.

- Approche : constuire un IV pour $\mu_X \mu_Y$ et regarder si 0 est à l'intérieur de l'IC
- $M\'{e}thode$: trouver la loi de $\bar{X} \bar{Y}$.
- Résultat : cette loi est proche d'un loi Gaussienne. On peut montrer plus préciséement que

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}}}$$

suit un loi de Student à ν degrés de liberté (ν par de forme explicite pour ν).

- On déduit de ces résultats des IC pour $\mu_X \mu_Y$.
- On reprend les deux échantillons des diapos précédentes.

```
> t.test(df1$value,df2$value)
##
## Welch Two Sample t-test
##
## data: df1$value and df2$value
## t = -55.526, df = 81.644, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.134079 -1.986443
## sample estimates:
## mean of x mean of y
## 2.965286 5.025547</pre>
```

Conclusion

0 n'étant pas dans l'intervalle de confiance, on peut penser que les moyennes sont proches.

```
> t.test(df3$value,df4$value)
##
## Welch Two Sample t-test
##
## data: df3$value and df4$value
## t = 0.05457, df = 52.455, p-value = 0.9567
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3040912  0.3210965
## sample estimates:
## mean of x mean of y
## 4.015909  4.007406
```

Conclusion

0 étant dans l'intervalle de confiance, on peut penser que les moyennes sont proches.

• Les procédures de test statistique permettront de préciser cette méthodologie.