Generalized Bilateral Exchange

John Wong

Agenda

- 1. Motivation
- 2. Demonstration
- 3. Psuedo-code
- 4. Shuffling
- 5. Extensions
- 6. More visualizations

Motivation

Two agents trading two goods is already pretty gnarly to solve.

Motivation

Two agents trading two goods is already pretty gnarly to solve.

What if we increase the number of agents to three? Or four? Or any arbitrary A?

Motivation

Two agents trading two goods is already pretty gnarly to solve.

- What if we increase the number of agents to three? Or four? Or any arbitrary A?
- Or what if we increase the number of goods to N?

Demonstration

Pseudo-code

```
initialize Market(agents = A, goods = N):
  generate goods list
  for 1:A:
    initialize agent
    generate N random elasticities that sum to 1
    generate N random inventories
execute exchange(days = 1):
  shuffle agents list and goods list
  FOR a in 1:A:
    pair agent a with agents a+y until a+y = A
    FOR n in 1:N
      FOR q in n+z to N:
        agent with higher MRS(n, q) offers n
        other agent offers q
        WHILE trade increases both agents' utilities:
          trade one n for one q
```

1. Agents are stored in a list of agents that is never shuffled.

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 & a_{10} \end{bmatrix}$$

1. Agents are stored in a list of agents that is never shuffled.

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 & a_{10} \end{bmatrix}$$

2. We create a duplicate list of indices.

$$[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10]$$

1. Agents are stored in a list of agents that is never shuffled.

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 & a_{10} \end{bmatrix}$$

2. We create a duplicate list of indices.

$$[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10]$$

3. Shuffle list of indices:

$$[4 \ 9 \ 6 \ 1 \ 10 \ 2 \ 8 \ 5 \ 3 \ 7]$$

1. Agents are stored in a list of agents that is never shuffled.

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 & a_{10} \end{bmatrix}$$

2. We create a duplicate list of indices.

$$[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10]$$

3. Shuffle list of indices:

$$[4 \ 9 \ 6 \ 1 \ 10 \ 2 \ 8 \ 5 \ 3 \ 7]$$

4. Retrieve agent (a_4, a_9) , then (a_4, a_6) , and so forth.

Extensions: random strategies

```
execute exchange(days = 1):
  shuffle agents list and goods list
  FOR a in 1:A:
    pair agent a with agents a+y until a+y = A
    FOR n in 1:N
      FOR q in n+z to N:
        agent with higher MRS(n, q) offers n
        other agent offers q
        WHILE trade increases both agents' utilities:
          draw u from U[0.1]
          TF u < threshold
            break
          trade one n for one q
```

Extensions: networks

```
initialize Market(..., friends = 3):
  . . .
  create Phonebook
  for 1:A:
    sample agents list for 3 friends
    store friends' indices in dictionary
    append dictionary to Phonebook
execute exchange(days = 1):
  shuffle agents list and goods list
  FOR a in 1:A:
    FOR p in Phonebook[a]:
      FOR n in 1:N
        FOR q in n+z to N:
          agent with higher MRS(n, q) offers n
          other agent offers q
          WHILE ...
```

More visualizations!

- 1. Inventory over time
- 2. Utilities over time
- 3. Multilateral Edgeworth box