MAT3253 Tutorial 1

TA: Zhiyuan Wan

I give proof synopsis in this documents, the detailed explanation can be referred in live tutorials. I understand THIS week's video quality is not HD, so feel free to ask questions.

1 Inequality

- 1. Triangle Inequality
 - Prove: for any $a, b \in C, |a+b| \le |a| + |b|$
 - Step 1: Consider $|a+b|^2$ and write it out as by the definition of square of modulus.
 - Step 2: Use the property $Re(z) \leq |z|$, for $z = a\bar{b}$
 - Step 3: Obtain $|a+b|^2 \le (|a|+|b|)^2$
 - Extend the result for any finite summation above by induction.
 - Give the condition for equality.
 - Equality occurs if and only if $\frac{a_i}{a_j} > 0, \forall i, j$
 - Intuition here is that triangle inequality is an equality when the terms are **positive** multiples of one another, i.e., lie on the same line in complex plane.
 - Prove: Given $\forall i = 1, \dots, n, |a_i| < 1, \lambda_i \ge 0$ and $\sum \lambda_i = 1, then |\sum \lambda_i a_i| < 1$
 - Apply the result above for summing a finite number of terms directly.
- 2. Cauchy's Inequality
 - \bullet Prove (Lagrange's Identity): $|\sum_1^n a_ib_i|^2=(\sum_1^n|a_i|^2)(\sum_1^n|b_i|^2)-\sum_{i< j}|a_i\bar{b_j}-a_j\bar{b_i}|^2$
 - Not required, but the proof is quite tedious and is straightforward expansion of the squares.
 - Prove: $|\sum_{1}^{n} a_i b_i|^2 \le (\sum_{1}^{n} |a_i|^2)(\sum_{1}^{n} |b_i|^2)$
 - Step 1: Consider the fact $\sum_{i=1}^{n} |a_i \lambda b_i|^2 \ge 0$, true for any complex number λ .
 - Step 2: As a result, $\lambda \sum \bar{a_i}\bar{b_i} + \bar{\lambda} \sum a_ib_i \leq \sum |a_i|^2 + |\lambda|^2 \sum |bi|^2$
 - Step 3: Set $\lambda = \frac{\sum_{1}^{n} a_i b_i}{\sum_{1}^{n} |b_i|^2}$, Cauchy's inequality follows.
 - **Step 4**: Obtain from step 1 that the equality criterion is that a_i is proportional to $\bar{b_i}, \forall i$.