

Hi3516CV500 DDR3L Signal Integrity Report

Date	Contents	Remarks
2018-10-16	The test is performed based on the DDR3L 1866MHz AC135 standard	
	st data in this report is the test result of the HiSilicon lote that the tests conducted by HiSilicon cannot rep	

Chipset	Hi3516CV500			
Board Name	HI3516CV500DMEB VER.A			
DRAM Part Number	MT41K256M16TW-107:P			
Oscilloscope	DSA72004C TEKTRONIX			
Temperature	25°C			
DRAM Operating Frequency	900MHz(DDR3L)			
Vdd/Vref_CA/Vref_DQ/Vcore	1.35V/0.675V/0.675V/0.9V			
DRAM_ODT	120ohm			
SOC_ODT	120ohm			
DRAM_RON	40ohm			
SOC_RON	CK=34ohm 1T(CS/CKE/ODT)=34ohm 2T=34ohm DQ=40ohm DQS=40ohm			

Signal Integrity Summary& Conclusion

	Judgment&Summary						
Measurement Item	Result	Remark					
Sequence Check	PASS						
Power Check	PASS						
Signal Integrity Check	PASS						

Power Up Initialization Sequence Check Result

SPEC

3.3.1 Power-up Initialization Sequence (Cont'd)

Ta Tb Tc Td Te Tf CK, CK# VDD, VDDQ T = 200μs T = 500μs CKE

Stable VDD to /Reset Up

Parameter	Time	Spec	Result	Remark
Stable VDD to /Reset Up	156ms	Min:200us	PASS	/RESET needs to be maintained for minimum 200us with stable power. (JEDEC spec.)

(

Power Up Initialization Sequence Check Result

CH3-CK

Parameter	Time	Spec	Result	Remark
/Reset Up To CKE Up	512us	Min:500us	PASS	After /RESET is de-asserted. Wait for another 500us until CKE becomes active.(JEDEC spec.)
tCKSRX	>30ns	Min: Max(5nCK,10ns)	PASS	Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes active.(JEDEC spec.)

(

Power Up Initialization Sequence Check Result

Parameter	Time	Spec	Result	Remark
VDD Rising Time	379us	Max:200ms	PASS	The power voltage ramp time between 300 mv to VDDmin must be no greater than 200 ms.(JEDEC spec.)
CKE Falling Edge to Reset Rising Edge	>38.4ms	Min:10ns	PASS	CKE is pulled "Low" anytime before RESET# being de-asserted (min. time 10 ns).

(

Reset Initialization Sequence Check Result

Paramet	er	Voltage	Spec	Result	Remark
Reset Low Lov Voltage	evel	164.5mV	Max: 300mV	PASS	Reset Low Level Voltage must be within 300 mV.

Average Periodic Refresh Interval Check Result

SPEC

12.2 Refresh parameters by device density

Table 61 — Refresh parameters by device density

Parameter	Symbol		512Mb	1Gb	2Gb	4Gb	8Gb	Units	Notes
REF command to ACT or REF command time	tRFC		90	110	160	300	350	ns	
Average periodic refresh	tREFI	0 °C ≤ T _{CASE} ≤ 85 °C	7.8	7.8	7.8	7.8	7.8	μs	
interval		85 °C < T _{CASE} ≤ 95 °C	3.9	3.9	3.9	3.9	3.9	μs	1

NOTE 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

Average Periodic Refresh Interval

Parameter	Time	Spec	Result	Remark
tREFI	3.84us	Max:7.8us	PASS	

Power Check Result

■ AC Peak-Peak Noise Check Result

Parameter	Spec (PK-PK)	Value (PK-PK)	Unit	Result	Position	Test Point
VDD_IO	NA	34	mV	NA	DRAM	C283
VREFCA	30	14.2	mV	PASS	DRAM	C153
VREFDQ	30	14.4	mV	PASS	DRAM	C156

VDD_IO Supply Voltage

Parameter	Spec	Value	Unit	Result	Position	Test Point
VDD_IO	Min:1.283	1.355	V	PASS	SOC	LB20
	Max:1.45	1.356	V	PASS	DDR	R174

■ Clock Signal Integrity Test Result

Parameter	Spec (Min)	Spec (Max)	Measurement data (Min)	Measurement data (Max)	Unit	Remark
Vix	-150	150	-114.33	93	mV	PASS
tCK(avg)	1.07	1.25	1.110	1.112	ps	PASS
tCH(avg)	470	530	506	508	mtCK(avg)	PASS
tCL(avg)	470	530	491	494	mtCK(avg)	PASS
tJIT(per)	-70	70	-17.3	20.5	ps	PASS
tJIT(cc)	-140	140	-15.5	18.8	ps	PASS
InputSlew-Diff- Rise	-	-	-	10.108	V/ns	-
InputSlew-Diff- Fall	-	-	-	-6.3436	V/ns	-

Signal Integrity Test Result (Clock)

CLK With Differential Measurement

©CLK Vix With High Voltage Trigger

Signal Integrity Test Result (CMD&ADDR)

■ SPEC

Symbol	Reference	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	DDR3-2133	Units
tIS(base) AC175	V _{IH/L(ac)}	200	125	65	45	-	•	ps
tIS(base) AC150	V _{IH/L(ac)}	350	275	190	170	-	-	ps
tIS(base) AC135	V _{IH/L(ac)}	-	-	-	-	65	60	ps
tIS(base) AC125	V _{IH/L(ac)}	-	-	-	-	150	135	ps
tIH(base) DC100	V _{IH/L(de)}	275	200	140	120	100	95	ps

			Altern	ate AC	125 Thr		∆tIH de: -> VIH(a					e)=VRE	F(dc)-1	35mV				
		CK,CK# Differential Slew Rate																
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4	V/ns	1.2	V/ns	1.0 V/ns		
		ΔtIS ΔtIH ΔtIS ΔtIH					ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS ΔtIH		
	2.0	68	50	68	50	68	50	76	58	84	66	92	74	100	84	108	100	
	1.5	45	34	45	34	45	34	53	42	61	50	69	58	77	68	85	84	
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50	
ADD	0.9	2	-4	2	-4	2	-4	10	4	18	12	26	20	34	30	42	46	
Slew	0.8	3	-10	3	-10	3	-10	11	-2	19	6	27	14	35	24	43	40	
rate V/ns	0.7	6	-16	6	-16	6	-16	14	-8	22	0	30	8	38	18	46	34	
	0.6	9	-26	9	-26	9	-26	17	-18	25	-10	33	-2	41	8	49	24	
	0.5							13	-32	21	-24	29	-16	37	-6	45	10	
	0.4	-3	-60	-3	-60	-3	-60	6	-52	14	-44	22	-36	30	-26	38	-10	

Command Signal Integrity Test Result

CMD /ADD	Input Setup Time (tIS)@AC150 tIS(min)(ps)	Input Hold Time (tIH)@DC100 tIH(min) (ps)	Input Slew Rate (Rising Time) (V/ns)	Input Slew Rate (Falling Time) (V/ns)
SPEC	133	150		
CS_N	552	476	2.08	-3. 16
ODT	533	491	2. 25	-2.54

Signal Integrity Test Result (CMD&ADDR)

■ 1T_CMD_ADDR CS_N

■ 1T_CMD_ADDR ODT

Address Signal Integrity Test Result

CMD /ADD	Input SetupTime (tIS)@AC150 tIS(min)(ps)	Input Hold Time (tIH)@DC100 tIH(min) (ps)	Input Slew Rate (RisingTime) (V/ns)	Input Slew Rate (FallingTime) (V/ns)
SPEC	133	150		
A4	1001.5	1069.9	3.6	-2.4734
A7	1023.1	1042.7	3.6	-2.8045

Signal Integrity Test Result (CMD&ADDR)

2T_CMD_ADDR A4

2T_CMD_ADDR A7

Signal Integrity Test Result (DATA)

■ SPEC

Symbol	Reference	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	DDR3- 1866	DDR3- 2133	Units	Notes
tDS(base) AC175	V _{IH/L(ac)} SR=1V/ns	75	25	-	-	-	-	ps	2
tDS(base) AC150	V _{IH/L(ac)} SR=1V/ns	125	75	30	10	-	-	ps	2
tDS(base) AC135	V _{IH/L(ac)} SR=1V/ns	165	115	60	40			ps	2, 3
tDS(base) AC135	V _{IH/L(ac)} SR=2V/ns	-	-	-	-	<mark>6</mark> 8	53	ps	1
tDH(base) DC100	V _{IH/L(dc)} SR=1V/ns	150	100	65	45	-	-	ps	2
tDH(base)DC100	V _{IH/L(de)} SR=2V/ns					<mark>70</mark>	55	ps	1

				AI AI	terna terna	te AC	135	∆1 Thres Thres	hold	-> VI	derat H(ac) H(dc)	=VRE	F(dc)+135	m۷. ۱	VIL(ad	c)=VF c)=VI	REF(d	lc)-13 lc)-10	5mV 00mV	,				
	DQS,DQS# Differential Slew Rate																								
		8.0	V/ns	7.0 \	V/ns	6.0 \	V/ns	5.0 \	//ns	4.0 \	V/ns	3.0 \	V/ns	2.0 \	V/ns	1.8 \	//ns	1.6	V/ns	1.4 \	V/ns	1.2	V/ns	1.0 \	V/ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	4.0	34	25	34	25	34	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.5																-	-							
	3.0	23	23 17 23 17 23 17 23 17 23 17															-							
	2.5	-	-	14	10	14	10	14	10	14	10	14	10	-	-	-	-	-	-	-	-	-	-	-	-
	2.0	-	-	-	-	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-
DQS	1.5	-	-	-	-	-	-	-23	-17	-23	-17	-23	-17	-23	-17	-15	-9	-	-	-	-	-	-	-	-
Slew rate	1.0	-	-	-	-	-	-	-	-	-68	-50	-68	-50	-68	-50	-60	-42	-52	-34	-	-	-	-	-	-
V/ns	0.9	-	-	-	-	-	-	-	-	-	-	-66	-54	-66	-54	-58	-46	-50	-38	-42	-30	-	-	-	-
	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-64	-60	-56	-52	-48	-44	-40	-36	-32	-26	-	-
	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-53	-59	-45	-51	-37	-43	-29	-33	-21	-17
	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-43	-61	-35	-53	-27	-43	-19	-27
	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-39	-66	-31	-56	-23	-40
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-38	-76	-30	-60

Signal Integrity Test Result (DATA)

■ Data Signal Integrity Test Result

Parameter	Spec	Unit	DQ7	DQ14	Remarks
Input Slew Rate(Setup-time)	-	V/ns	5.7	3.12	-
Input Slew Rate(Hold-time)	-	V/ns	-5.7	-3.51	-
Input Setup- Time(tDS)@AC135 [tDS(base)=68ps]	min:99	ps	128.65	107.41	PASS
Input Hold-Time(tDH)@DC100 [tDH(base)=70ps]	min:95	ps	214.09	241.41	PASS

■ DQ7-Write

DQ14-Write

DDR Training write window

Max WIN: 68. DQ Index: 2 3

```
[PHY0][RANK0]:
Write window of prebit-deskew:
DQ 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 RANGE
Sum WIN: 1034. Avg WIN: 64
Min WIN: 61. DQ Index: 14
```

■ DDR Training-read window

Read	win	dow	of	preb	it-d	leske	W:						
DO I	٥	4	٥	12	16	20	24	28	32	36	40	44	40

DQ	0 4	8	12	16	20	24	28	32	36	40	44 4	8	52	56	60	64	68	72	76	80	84	88	9	2 96	1	100	104	108	112	2 11	16 120	124	RANGE	DQS	DQ	WIN
0	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XXXX	XXXX	X																	XX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x00240065	0 x 35	69	66
1	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XX																	-XXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001d005d	0 x 35	61	65
2	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXX	 -																	XX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x00230065	0 x 35	68	67
3																																	0x00260067	0 x 35	71	66
4	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXX																Х	XX	XXXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x00190059	0 x 35	57	65
5	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	X																X	XXXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001c005b	0 x 35	60	64
6	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XX																XX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x0021005f	0 x 35	64	63
7	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XXX-)	XXXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001e005c	0 x 35	61	63
8	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XX																X	XXXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001d005b	0 x 38	60	63
9																																	0x00280066	0 x 38	71	63
10																																	0x00270067	0 x 38	71	65
11	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX																XX	(XX	XXXXX	XXX	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001b0058	0 x 38	58	62
12	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XX															X	(XX	XXXXX	XXΣ	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x001d0059	0 x 38	59	61
																																	0x00220060	0 x 38	65	63
14	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XXXX	XXXX	X															X	XXX	XXX	XXXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x00240060	0 x 38	66	61
15	XXXXXX	XXX	XXXXX	XXXX	XXXXX	XXXX	XXXX	XXXX	X																XXΣ	XXX	XXX	XXXX	XXX	XXXX	XXXXXX	XXXXX	0x00240061	0 x 38	67	62

Sum WIN: 1019. Avg WIN: 63 Min WIN: 61. DQ Index: 12 14 Max WIN: 67. DQ Index: 2

Thank you