LOCALIZZAZIONE INDOOR BASATA SU BEACON BLUETOOTH A BASSA POTENZA ATTRAVERSO TECNICHE DI DEEP LEARNING

Relatore: Prof. GianLuigi Ferrari Candidato: Marco Pampaloni

Anno Accademico: 2019/2020 24 Luglio 2020

- I sistemi di Localizzazione Indoor sono oggetto di interesse in vari contesti:
 - Navigazione guidata in edifici complessi
 - Gestione dei flussi
 - Contingentazione
- Diverse soluzioni al problema:
 - Tecnologie e sensori ad-hoc
 - Utilizzo di segnali wireless preesistenti

- La soluzione proposta sfrutta i segnali emessi da Beacon BLE e i relativi valori RSSI
- I Beacon sono disposti all'interno dell'edificio

 I segnali vengono raccolti registrandone la propogazione poll'edificie

propagazione nell'edificio

- Si cerca di trovare un modello che utilizzi i valori RSSI per predire la posizione dell'utente
- Vari approcci possibili:
 - Machine Learning
 - Triangolazione (poco efficace)

- Il Deep Learning è un insieme di tecniche e algoritmi capaci di approssimare funzioni in modo automatico
- Una rete neurale è un modello matematico capace di apprendere dai dati
- La soluzione proposta utilizza una serie di reti neurali convoluzionali (CNN) e di multi layer perceptron (MLP)

- Le reti neurali convoluzionali (CNN) applicano l'operazione di convoluzione all'input
- Vengono prodotte diverse feature map a partire da un input (in figura l'applicazione di un filtro bidimensionale)

- È proposto un sistema di localizzazione indoor basato su Machine Learning e sui segnali emessi dai Beacon BLE
- Il sistema prototipale è stato testato presso i locali dell'ASL Toscana Nord Ovest di Pisa e del Consorzio Metis
- Nell'edificio dell'ASL sono stati installati 15 Beacon e sono stati raccolti i campionamenti per parte del primo piano dello stabile
- I Beacon sono dei microcontrollori ESP32 singolarmente programmati per emettere segnali broadcast BLE con una frequenza di 50Hz

Architettura

Laurea Triennale in Informatica

Topologia della rete neurale sviluppata

- Input principale e input ausiliari
 - \circ Sensore magnetico (α)
 - Posizione precedente dell'utente (y_{old})
 - Coefficiente memoria residua (μ)
- Layer convoluzionali
- Output principale e output ausiliario

- Per sviluppare e addestrare la rete neurale è stato utilizzato TensorFlow:
 - Permette di definire funzionalmente architetture neurali complesse
 - Consente di calcolare automaticamente la derivata di grafi di computazione e applicare il metodo del gradiente per l'addestramento
- Sono state sfruttate le risorse di calcolo gratuite di Google Colab e quelle a pagamento di altri provider (cloud GPU)
- È stato utilizzato TensorFlow Lite per la compressione del modello e il deploy sull'applicativo mobile

- Varie criticità dovute all'approccio data-driven della soluzione proposta:
 - Difficoltà nella raccolta dati (dataset limitato)
 - Dati incostanti (rumore di fondo e perturbazione dei segnali)
- Vengono proposte varie tecniche di arricchimento dei dati per risolvere questi problemi

- I segnali wireless sono naturalmente soggetti a rumore
- Questo fa sì che l'output del modello subisca delle fluttuazioni
- Possibili soluzioni:
 - Campionamento con Sliding Window
 - Utilizzo di sensori inerziali
 - Filtro di Kalman
- L'uso di un filtro di Kalman, insieme ai dati dell'accelerometro, permette di migliorare la stabilità del modello

Interfaccia grafica dell'applicazione Mobile Sviluppata

Risultati Sperimentali

Laurea Triennale in Informatica

Modello	MAE	RMSE	MaxAE
Baseline Ensemble	$0.3070 \\ 0.2592$	$0.6716 \\ 0.5536$	3.001 2.4693

- Il sistema di localizzazione indoor sviluppato ha mostrato come il Deep Learning possa essere una valida opzione in questo contesto
- L'addestramento del modello di ML è praticabile anche su hardware relativamente economico
 - Soluzioni di cloud computing a basso costo sono una valida alternativa al problema dell'addestramento
- Alcune criticità sono emerse durante lo sviluppo del sistema:
 - Difficoltà nella raccolta dati (dispendiosa)
 - Necessità di introdurre tecniche di stabilizzazione

- Il modello di machine learning esposto ha permesso di progettare un sistema di localizzazione indoor con una precisione media di circa 30cm
- L'utilizzo di un ensemble di modelli ha ridotto l'errore medio a circa 26cm
- La stabilità del sistema e le risorse richieste per utilizzarlo lo rendono fruibile su sistemi mobile con ridotte capacità computazionali
- La raccolta dei dati rimane la principale criticità dei sistemi di ML. Un approccio sintetico di generazione dei segnali (simulatore BLE) è una possibile soluzione al problema

Ringrazio il Consorzio Metis per avermi permesso di lavorare in autonomia a questo progetto.

Grazie per l'attenzione.

