Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part II: Modeling and Phenomenology

Barney Ricca

Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1 Overview of Phenomenology
 - · Session 2 Dynamical Systems Analysis
- Day 2
 - Session 3 Sparse Identification of Nonlinear Dynamics
 - Session 4 Dynamic Mode Decomposition
- Day 3
 - · Session 5 Hidden Markov Models
 - Session 6 Machine Learning Approaches
- Day 4
 - Session 7 Putting it All Together: Lorenz
 - Session 8 Putting it All Together: Infectious Diseases

Sparse Identification of Nonlinear Dynamics

- Sparse Identification of Nonlinear Dynamics (SINDy)
 - · Estimate derivatives
 - Construct a (large) library of possible functions
 - Regularized linear regression to choose functions from the library
- No theory needed, but in the end, there is an equation
 - Phenomenology
 - · Fixed points

5

SINDy

• All differential equations can be written like this:

$$\dot{x} = f(x)$$

- x is a vector of N measurements
- The trick: Let $\dot{x} = y$. Then $\ddot{x} = \dot{y}$ and we have a vector of 2N measurements ($N \otimes x$, and $N \otimes y$)
- What is f(x)?
 - · We don't know!
 - Create a library and let SINDy figure it out

Derivative Estimation

- Lots of choices
- Important to stay as close to the original data as possible
 - Very important
- Computer science types like fourth-order centered finite differences
- GLLA, GOLD, FDA, Empirical Bayes change the 0th order data.
- Regularized derivatives are great, provided...long and not too noisy

7

Library of Functions

- What goes into the library?
 - We don't know!
- Choose all sorts of functions: polynomials (e.g., linear, quadratic, etc.), trigonometric, rational functions (e.g., (x+3)/x), etc., for a library
 - Hint: Much of the time, polynomials are sufficient to describe behaviors
- Don't Cross the streams
 - $\dot{x} = xy^2$
 - Multivariate is just like univariate, but longer

Regularized Modeling

- Pushes towards sparsity in solution
- Remember: LASSO (" L_1 norm") returns some coefficients = 0
 - Coefficients = 0 removes terms (e.g., creates a "sparse" solution)
- Make the library large
 - Within reason...round-off errors accumulate...

9

Example: Linear Oscillations

• 2nd order equation (simulate data)

$$m\ddot{x} + b\dot{x} + kx = 0$$

• Let $y = \dot{x}$

$$\dot{x} = y = f_x$$

$$\dot{y} = \frac{-by - kx}{m} = f_y$$

• Notice: solution should have only linear terms

Example: Linear Oscillations

• Try a 3rd order polynomial library for both equations

• Can investigate how well this works with noise, too.

11

Fixed Points

- We have equations, so we can find fixed points
 - Set all the derivatives equal to zero
- Stability needs a Jacobian
 - Calculus
 - Numerically
- Not a calculus course, but for polynomials, it is doable
 - Remember: A polynomial library will often model things very well

Derivatives of Polynomials

$$\frac{\partial (Ax^n)}{\partial x} = Anx^{n-1}$$

- · Multiply by the exponent
- · Drop the exponent by 1
- · Leave everything else the same
- The ∂ is a "d" but it means "only use the variable in the numerator"
- Examples

 - $\frac{\partial (5x^6)}{\partial x} = 5 * 6x^{6-1} = 30x^5$ $\frac{\partial (2y^2x^3)}{\partial x} = 2y^23x^{3-1} = 6y^2x^2$

13

Jacobian

• 1-d: Jacobian is a 1 x 1 matrix

$$J = \frac{\partial f}{\partial x}$$

• 2-d:

$$J = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} \\ \frac{\partial f_y}{\partial x} & \frac{\partial f_y}{\partial y} \end{bmatrix}$$

- After calculus, evaluate the terms at the fixed-point values
 - · Eigenvectors and eigenvalues after that

Linear Oscillator

- Fixed point: (0,0)
 - Pick values of k, b, and m for the demonstration
- Calculus Jacobian: $J = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix}$
 - Find the eigenvectors and eigenvalues
 - eigen(J)
- Numerical Jacobian
 - pracma::jacobian(f = $c(f_x, f_y)$, x0 = $c(x^*, y^*)$)

15

Example: Lorenz SINDy

Original Equations

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

- Try a polynomial library
 - We'll do 3rd order and 4th order

Mayport SINDy

- Now here's one we have no idea about
 - Ran all the tests, however, in the first seminar of this series
- Again, try a polynomial library

17

Non-polynomial Terms

• When should we include non-polynomial terms in the library?

Latent SINDy

- Little work done so far
- Possible approaches
 - Multilevel (a la GMM)
 - K-means of coefficients
 - Genetic algorithms

19

Questions

21

Next session @ UTC 1900