Latent Dirichlet Analysis

Latent Dirichlet Analysis

- Current workhorse for topic modelling
- Each document belongs to multiple topics, i.e. has a share of each topic
 - Mixed-membership model
 - "Distribution of Distributions"
- Topic is collection of words that belong together, not a topic in semantic sense: rose * 0.05 | chocolate * 0.02 | potato * 0.25

Semantic Flexibility

Doc. 1 unemployment

Doc. 2 inflation

? Which topic/document does "rate" belong to?

Probabilistic approach

	Topic 1	Topic 2
Document A	10 min	5 min
Document B	5 min	10 min

Probabilistic approach

	Topic 1	Topic 2
Document A	10 min	5 min
Document B	5 min	10 min

- For each word, A draws a topic, which is topic 1 with $p_1 = 10/15 = 2/3$
- ► Then the word is drawn from the probability distribution associated with topic 1
- Document B draws from the same

Functioning

from: Félix Revert (2018): "An overview of topics extraction in Python with LDA"

LDA

Three important parameters

- 1. Number of topics
- 2. Prior of document topic distribution α
- 3. Prior of topic word distribution β

LDA

Three important parameters

- 1. Number of topics
- 2. Prior of document topic distribution α
- 3. Prior of topic word distribution β

$$\mathcal{L}(w) = \log p(w|\Phi,\alpha) = \sum_{d} \log p(wd|\Phi,\alpha)$$

$$perplexity(w) = exp(-1 \times \mathcal{L}(w))$$

for unseen documents w and topics Φ