Structural Transformation and the Transmission of Monetary Policy

Tiago Bernardino

IIES, Stockholm University

October 22, 2025

Job Market Mock Talk

Economic Growth Goes Hand in Hand with Structural Transformation

Source: U.S. B.E.A. Table 2.3.5

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

Prices of Services Adjust Less Frequently

Source: Nakamura & Steinsson (2008)

Data Implied duration Rob: Bils & Klenow (2004)

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

- ► How does structural transformation change monetary policy transmission?
 - How does the services share matter for the consumption responses to changes in the interest rate?

- ► How does structural transformation change monetary policy transmission?
 - How does the services share matter for the consumption responses to changes in the interest rate?
- ► Three empirical facts:
 - 1. The consumption responses to monetary policy have increased over time

- ► How does structural transformation change monetary policy transmission?
 - How does the services share matter for the consumption responses to changes in the interest rate?

► Three empirical facts:

- 1. The consumption responses to monetary policy have increased over time
- 2. The responses to monetary policy correlate with the aggregate service share

► How does structural transformation change monetary policy transmission?

- How does the services share matter for the consumption responses to changes in the interest rate?

► Three empirical facts:

- 1. The consumption responses to monetary policy have increased over time
- 2. The responses to monetary policy correlate with the aggregate service share
- 3. Services share increases along the income distribution

How does structural transformation change monetary policy transmission?

- How does the services share matter for the consumption responses to changes in the interest rate?

► Three empirical facts:

- 1. The consumption responses to monetary policy have increased over time
- 2. The responses to monetary policy correlate with the aggregate service share
- 3. Services share increases along the income distribution

► Dynamic quantitative macro model

- 1. Build a two-sector Heterogeneous-Agent New Keynesian model
 - sectors differ in terms of price rigidities
 - households have non-homothetic preferences matching demand composition differences

► How does structural transformation change monetary policy transmission?

- How does the services share matter for the consumption responses to changes in the interest rate?

► Three empirical facts:

- 1. The consumption responses to monetary policy have increased over time
- 2. The responses to monetary policy correlate with the aggregate service share
- 3. Services share increases along the income distribution

► Dynamic quantitative macro model

- 1. Build a two-sector Heterogeneous-Agent New Keynesian model
 - sectors differ in terms of price rigidities
 - households have non-homothetic preferences matching demand composition differences
- 2. Estimate the model with different sectoral productivities
 - generates the services share increase

- ► How does structural transformation change monetary policy transmission?
 - How does the services share matter for the consumption responses to changes in the interest rate?

► Three empirical facts:

- 1. The consumption responses to monetary policy have increased over time
- 2. The responses to monetary policy correlate with the aggregate service share
- 3. Services share increases along the income distribution

▶ Dynamic quantitative macro model

- 1. Build a two-sector Heterogeneous-Agent New Keynesian model
 - sectors differ in terms of price rigidities
 - households have non-homothetic preferences matching demand composition differences
- 2. Estimate the model with different sectoral productivities
 - generates the services share increase
- 3. Policy experiment: increase in the nominal interest rate
 - compare monetary policy transmission across economies with different service shares

Preview of the Quantitative Model Results

- 1. Structural Transformation and Monetary Policy Transmission:
 - over the past 50 years, the rise in services made monetary policy 21% more powerful

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

Preview of the Quantitative Model Results

1. Structural Transformation and Monetary Policy Transmission:

- over the past 50 years, the rise in services made monetary policy 21% more powerful

2. Mechanisms:

- price rigidities: structural transformation $\implies \uparrow$ price rigidities $\implies \uparrow$ aggregate effects
- non-homothetic preferences: additional precautionary savings motive ⇒ ↓ aggregate effects

Preview of the Quantitative Model Results

1. Structural Transformation and Monetary Policy Transmission:

- over the past 50 years, the rise in services made monetary policy 21% more powerful

2. Mechanisms:

- price rigidities: structural transformation $\implies \uparrow$ price rigidities $\implies \uparrow$ aggregate effects
- non-homothetic preferences: additional precautionary savings motive ⇒ ↓ aggregate effects

3. Heterogeneity and Welfare:

- structural transformation enlarges the inequalities generated by contractionary monetary policy

Related Literature and Contribution

- 1. **Long-run trends and monetary policy transmission** *e.g:* Boivin and Giannoni (2006), Galesi and Rachedi (2019), Pancrazi and Vukotić (2019), Leahy and Thapar (2022). Mangiante (2025)
 - ⇒ Study the impact of structural transformation

Related Literature and Contribution

1. Long-run trends and monetary policy transmission

e.g: Boivin and Giannoni (2006), Galesi and Rachedi (2019), Pancrazi and Vukotić (2019), Leahy and Thapar (2022), Mangiante (2025)

⇒ Study the impact of structural transformation

2. Household heterogeneity and monetary policy transmission

e.g: Gornemann et al. (2016), McKay et al. (2016), Kaplan et al. (2018), Auclert (2019), Hagedorn et al. (2019), Broer et al. (2020), Cravino et al. (2020), Luetticke (2021)

⇒ Study the role of heterogeneous demand composition for MP transmission

Related Literature and Contribution

1. Long-run trends and monetary policy transmission

- e.g: Boivin and Giannoni (2006), Galesi and Rachedi (2019), Pancrazi and Vukotić (2019), Leahy and Thapar (2022), Mangiante (2025)
- ⇒ Study the impact of structural transformation

2. Household heterogeneity and monetary policy transmission

e.g: Gornemann et al. (2016), McKay et al. (2016), Kaplan et al. (2018), Auclert (2019), Hagedorn et al. (2019), Broer et al. (2020), Cravino et al. (2020), Luetticke (2021)

⇒ Study the role of heterogeneous demand composition for MP transmission

3. Non-homotheticities for business cycle analysis

e.g: Jaimovich et al. (2019), Andreolli et al. (2024), Olivi et al. (2024), Orchard (2025), Boehnert et al. (2025), Orchard (2025), Becker (2024)

⇒ HANK with non-homothetic preferences

Plan of the Talk

- 1. Empirical Analysis
- 2. Model
- 3. Taking the Model to the Data
- 4. Structural Transformation and the Transmission of Monetary Policy
- 5. Extension: Structural Transformation and Supply Shocks
- 6. Conclusion

Empirical Analysis

#1: Monetary Policy Consumption Response Increases over Time

- Data:
 - Total personal expenditure (BEA Tables)
 - Romer and Romer (2023) narrative MP shocks Details

Intro **Empirics** Model Calibration Monetary Policy Supply Shocks Conclusion

#1: Monetary Policy Consumption Response Increases over Time

- Data:
 - Total personal expenditure (BEA Tables)
 - Romer and Romer (2023) narrative MP shocks Details
- ► Using Jordà (2005) local projections, I estimate:

$$\Delta \log C_{t+h|t-1} = \alpha_h + \beta_h \epsilon_t^M + \gamma_h X_t + \epsilon_{t+h}$$
, for $h = \{0, 1, ..., 12\}$

- β_h gives the impulse response estimates
- MP shocks scaled by size of the interest rate change
- X_t are 12 months lags of ϵ^M and C

#1: Monetary Policy Consumption Response Increases over Time

ıntro **Empirics** Model Calibration Monetary Policy Supply Shocks Conclusion

#2: Monetary Policy Responses Correlate with Service Share

Data:

- Galesi and Rachedi (2019) SVAR model (Y_t, π_t, i_t) estimates with sign restriction identification
- 20-year average service share from national accounts

#2: Monetary Policy Responses Correlate with Service Share

Data:

- Galesi and Rachedi (2019) SVAR model (Y_t, π_t, i_t) estimates with sign restriction identification
- 20-year average service share from national accounts

ntro **Empirics** Model Calibration Monetary Policy Supply Shocks Conclusion

#3: Services Share Increases along the Income Distribution

Data: U.S. Consumer Expenditure Survey

Intro **Empirics** Model Calibration Monetary Policy Supply Shocks Conclusion

#3: Services Share Increases along the Income Distribution

Data: U.S. Consumer Expenditure Survey

ntro **Empirics** Model Calibration Monetary Policy Supply Shocks Conclusion

Model

Model Overview

A two-Sector HANK model with non-homothetic preferences

Intro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion

Overview

- ▶ **Incomplete markets:** idiosyncratic productivity shocks and a borrowing constraint
- ▶ **Income sources:** labor earnings, asset returns, and dividends

Intro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion

Overview

- ▶ **Incomplete markets:** idiosyncratic productivity shocks and a borrowing constraint
- ▶ **Income sources:** labor earnings, asset returns, and dividends
- ▶ **Preferences:** consumption (c_t) , and labor (h_t) :

$$\mathcal{U} = \mathbb{E}_{o} \sum_{t=o}^{\infty} \beta^{t} u(c_{t}, h_{t})$$

-c is implicitly defined through a non-homothetic CES aggregator (Comin et al., 2021):

$$1 = (\Omega c^{\epsilon})^{\frac{1}{\sigma}} c_{s}^{\frac{\sigma-1}{\sigma}} + (c)^{\frac{1}{\sigma}} c_{g}^{\frac{\sigma-1}{\sigma}}$$

– Note: if $\epsilon=$ 1, we recover the standard (homothetic) CES aggregator

Overview

- ▶ **Incomplete markets:** idiosyncratic productivity shocks and a borrowing constraint
- ▶ **Income sources:** labor earnings, asset returns, and dividends
- ▶ **Preferences:** consumption (c_t) , and labor (h_t) :

$$\mathcal{U} = \mathbb{E}_{\mathsf{O}} \sum_{t=\mathsf{O}}^{\infty} \beta^t u(c_t, h_t)$$

-c is implicitly defined through a non-homothetic CES aggregator (Comin et al., 2021):

$$1 = (\Omega c^{\epsilon})^{\frac{1}{\sigma}} c_{s}^{\frac{\sigma-1}{\sigma}} + (c)^{\frac{1}{\sigma}} c_{g}^{\frac{\sigma-1}{\sigma}}$$

– Note: if $\epsilon=$ 1, we recover the standard (homothetic) CES aggregator

Two-stage budgeting:

- Intertemporal consumption-savings decision with endogenous labor supply choice
- Intratemporal consumption allocation between goods and services

The intratemporal sectoral expenditure allocation

▶ Given $\{p_m\}_{m \in \{g,s\}}$ and c, households solve the following **expenditure minimization problem**:

$$\begin{split} \min_{\{c_{\mathsf{S}},c_{g}\}} E\left(c_{\mathsf{S}},c_{g};p_{\mathsf{S}},p_{g}\right) &= p_{g}c_{g} + p_{\mathsf{S}}c_{\mathsf{S}} \\ \text{s.t. } \left(\Omega c^{\epsilon}\right)^{\frac{1}{\sigma}} c_{\mathsf{S}}^{\frac{\sigma-1}{\sigma}} + (c)^{\frac{1}{\sigma}} c_{g}^{\frac{\sigma-1}{\sigma}} &= 1 \end{split}$$

The intratemporal sectoral expenditure allocation

▶ Given $\{p_m\}_{m \in \{q,s\}}$ and c, households solve the following **expenditure minimization problem**:

$$egin{aligned} \min_{\{c_{\mathsf{S}},c_{g}\}} E\left(c_{\mathsf{S}},c_{g};p_{\mathsf{S}},p_{g}
ight) &= p_{g}c_{g} + p_{\mathsf{S}}c_{\mathsf{S}} \\ ext{s.t. } \left(\Omega c^{\epsilon}
ight)^{\frac{1}{\sigma}} c_{\mathsf{S}}^{\frac{\sigma-1}{\sigma}} + (c)^{\frac{1}{\sigma}} c_{g}^{\frac{\sigma-1}{\sigma}} &= 1 \end{aligned}$$

► Solution: (Hicksian) demands

$$c_g = \left(\frac{p_g}{E}\right)^{-\sigma} c^{1-\sigma} \text{ and } c_s = \left(\Omega \frac{p_s}{E}\right)^{-\sigma} c^{\epsilon(1-\sigma)}$$

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

Static non-homothetic CES illustration

Empirics

The intertemporal consumption-savings decision problem

The intertemporal recursive representation of the household problem:

$$\begin{split} V(\omega,b;\Xi) &= \max_{\{c,b',h\}} \ u(c,h) + \beta \mathbb{E}\left[V(\omega',b';\Xi')\right] \\ \text{s.t.} \ E + p_b b' &= w \omega h + (p_b + i)b + T + D \\ E &= \left[\left(p_g c\right)^{1-\sigma} + \Omega \left(p_s c^{\epsilon}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \\ \Xi' &= \Psi(\Xi) \\ c &\geq \mathsf{o}, \ b' \geq \mathsf{o}, \ h \in (\mathsf{o},\mathsf{1}), \end{split}$$

with
$$u(C,h) = \frac{c^{1-\gamma}-1}{1-\gamma} - \chi \frac{h^{1+\eta}}{1+\eta}$$
 and $\omega \sim \text{log-AR(1)}$

- Dividends are distributed according to households' productivity

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

II. Firms

The final producer

- Two representative final sector producers indexed by m: goods and services
- Each **final producer** aggregates a continuum of intermediate inputs, *j*:

$$Q_{m} = \left(\int_{0}^{1} q_{m}(j)^{\frac{\theta_{m}-1}{\theta_{m}}} dj\right)^{\frac{\theta_{m}}{\theta_{m}-1}}$$

Intro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion

II. Firms

The final producer

- Two representative final sector producers indexed by m: goods and services
- Each **final producer** aggregates a continuum of intermediate inputs, *j*:

$$Q_{m} = \left(\int_{0}^{1} q_{m}(j)^{\frac{\theta_{m}-1}{\theta_{m}}} dj\right)^{\frac{\theta_{m}}{\theta_{m}-1}}$$

▶ Given sectoral demand Q_m and prices $p_m(j)$, the **demand for the intermediate input** j is

$$q_m(j) = \left(\frac{p_m(j)}{P_m}\right)^{-\theta_m} Q_m,$$

with $P_m = \left(\int_0^1 p_m(j)^{1-\theta_m}\right)^{\frac{1}{1-\theta_m}}$ being the price in sector m

II. Firms

Intermediate producers

▶ Operate under **monopolistic competition** producing with a linear technology on labor

$$q_m(j) = Z_m n_m(j)$$

Intro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion 16/33

II. Firms

Intermediate producers

Operate under monopolistic competition producing with a linear technology on labor

$$q_m(j) = Z_m n_m(j)$$

Intermediate firms adjust prices subject to an adjustment cost as in Rotemberg (1982):

$$\Phi_{m}(p_{m,t}(j), p_{m,t-1}(j)) = \frac{\theta_{m}}{2\kappa_{m}} \left[\log \left(\frac{p_{m,t}(j)}{p_{m,t-1}(j)} \right) \right]^{2} Q_{m,t} P_{m,t}$$

Intro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion 16/33

II. Firms

Intermediate producers

Operate under monopolistic competition producing with a linear technology on labor

$$q_m(j) = Z_m n_m(j)$$

Intermediate firms adjust prices subject to an adjustment cost as in Rotemberg (1982):

$$\Phi_{m}(p_{m,t}(j), p_{m,t-1}(j)) = \frac{\theta_{m}}{2\kappa_{m}} \left[\log \left(\frac{p_{m,t}(j)}{p_{m,t-1}(j)} \right) \right]^{2} Q_{m,t} P_{m,t}$$

The solution of the firm's problem yields the New-Keynesian Phillips Curve:

$$\log(1 + \pi_{m,t}) = \frac{\kappa_m}{\theta_m} \left(1 - \theta_m + \theta_m \frac{w_t}{Z_m P_{m,t}} \right) + \frac{1}{1 + i_t} (1 + \pi_{m,t+1}) \log(1 + \pi_{m,t+1}) \frac{Q_{m,t+1}}{Q_{m,t}}$$

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 16/33

III. Government and Monetary Authority

► There is a **government** that collects taxes to finance interest on public debt

$$p_{b,t}B = \int (p_{b,t} + i_t)b_t d\Xi + T_t$$

► The monetary authority sets nominal interest rate according to a Taylor rule

$$i_t = i_{SS} + \phi \pi_{t-1} + \varepsilon_t^{M}$$

with $\varepsilon^{\rm M}\sim$ AR(1), and π being the CPI inflation

ntro Empirics **Model** Calibration Monetary Policy Supply Shocks Conclusion 17/33

Taking the Model to the Data

Model Estimation

Strategy and Procedure

- Goal of the model: represent the U.S economy...
 - long-run: economic activity shift towards services
 - **short-run:** cross-section heterogeneity on income, wealth, and demand composition

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 18/33

Model Estimation

Strategy and Procedure

- Goal of the model: represent the U.S economy...
 - long-run: economic activity shift towards services
 - **short-run:** cross-section heterogeneity on income, wealth, and demand composition
- ... to study how structural transformation changes MP transmission
 - compare dynamics around two steady-states: 1970 vs. 2019
 - steady-states only differ in terms of sectoral productivity levels

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 18/33

Model Estimation

Strategy and Procedure

- Goal of the model: represent the U.S economy...
 - long-run: economic activity shift towards services
 - **short-run:** cross-section heterogeneity on income, wealth, and demand composition
- ... to study how structural transformation changes MP transmission
 - compare dynamics around two steady-states: 1970 vs. 2019
 - steady-states only differ in terms of sectoral productivity levels
- Start with the 2019 steady-state:
 - 1. **Demand estimation:** to obtain the price and income elasticities
 - using price and consumption data, estimate the level of non-homotheticity
 - 2. **Pre-estimated parameters:** directed observed parameters in the data
 - including sectoral productivity growth rates and price rigidities
 - 3. Simulated method of moments: hours worked and service share
 - match the values in 2019

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 18/33

1. Demand Estimation

The relative Hicksian demand

 \blacktriangleright Preferences depend on the income elasticity, ϵ , and price elasticity, σ

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

19/33

1. Demand Estimation

The relative Hicksian demand

- lacktriangle Preferences depend on the income elasticity, ϵ , and price elasticity, σ
- ▶ The relative **Hicksian demand** between the service sector and the goods sector is:

$$\log\left(\frac{\nu_{\text{s,t}}}{\nu_{g,t}}\right) = (\mathbf{1} - \sigma)\log\left(\frac{p_{\text{s,t}}}{p_{g,t}}\right) + (\mathbf{1} - \sigma)\left(\epsilon - \mathbf{1}\right)\log\left(\frac{E_{t}}{p_{g,t}}\right) + (\epsilon - \mathbf{1})\log\nu_{g,t} + \log(\Omega),$$

where v_{mt} is the expenditure share in sector m at time t

Intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion 19/33

1. Demand Estimation

The relative Hicksian demand

- lacktriangle Preferences depend on the income elasticity, ϵ , and price elasticity, σ
- ▶ The relative **Hicksian demand** between the service sector and the goods sector is:

$$\log\left(\frac{\nu_{\text{s,t}}}{\nu_{g,t}}\right) = (\mathbf{1} - \sigma)\log\left(\frac{p_{\text{s,t}}}{p_{g,t}}\right) + (\mathbf{1} - \sigma)\left(\epsilon - \mathbf{1}\right)\log\left(\frac{E_{t}}{p_{g,t}}\right) + (\epsilon - \mathbf{1})\log\nu_{g,t} + \log(\Omega),$$

where v_{mt} is the expenditure share in sector m at time t

- ightharpoonup Using GMM, estimate σ and ϵ
 - 1. Use household-level consumption data (CEX)
 - 2. Controls: dummies for age groups, number of earners, and family size
 - 3. IV Rel. Prices: average price across regions excluding the own region
 - 4. IV Expenditure: annual household income and the income quintile of the household
- **Estimation results:** $\epsilon =$ 1.73 and $\sigma =$ 0.234 Details

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 1

2. External Calibrated Parameters

Parameter	Description	Value	Source
I. Household	1		
β	Discount factor	0.99	Standard (quarterly model)
γ	CRRA	1.20	Standard
η	Frisch elasticity	1.00	Chetty et al. (2011)
$ ho_{z}$	Persistence of idiosync. productivity	0.99	Krueger et al. (2016)
σ_{Z}	Std. dev. of idiosync. productivity	0.10	Krueger et al. (2016)
II. Firm			
$ heta_{m{g}}$	Elasticity of substitution (goods)	5.8	Marto (2024)
$ heta_{ extsf{S}}$	Elasticity of substitution (services)	4.7	Marto (2024)
$\kappa_{m{g}}$	Price adjustment cost (goods)	8.5	Section 2
κ_{S}	Price adjustment cost (services)	89.2	Section 2
Z_g^{2019}	Goods productivity	1	standardized
$Z_{\rm S}^{2019}$	Services productivity	0.6	match 2019 relative price

intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion 20/33

3. Simulated Method of Moments

- Parameters with SMM: χ , and Ω
- ▶ Use them to match 2 moments: average hours worked and agg. service share in 2019
- ► I match the moments in the steady-state
- ► Goal: minimize loss function

$$\min_{\chi,\Omega} \mathcal{L} = ||M_m - M_d||$$

Intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion 21

3. Simulated Method of Moments

- Parameters with SMM: χ , and Ω
- ▶ Use them to match 2 moments: average hours worked and agg. service share in 2019
- ▶ I match the moments in the steady-state
- ► Goal: minimize loss function

$$\min_{\chi,\Omega} \mathcal{L} = ||M_m - M_d||$$

Moment	Model Mom.	Data Mom. Data Source		Parameter	Param. Value	
Average hours worked	0.217	0.212	OECD	χ	30.0	
Average service share 2019	0.673	0.678	BEA	Ω	7.0	

ıntro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion

Taking the Model to 1970

- What I do:
 - 1. Start from 2019: service share = 67.3%
 - 2. Change sectoral productivities (Z_g, Z_s) :
 - goods = 2.2%/year
 - services = 1.1%/year

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 22/33

Taking the Model to 1970

- ► What I do:
 - 1. Start from 2019: service share = 67.3%
 - 2. Change sectoral productivities (Z_q, Z_s) :
 - goods = 2.2%/year
 - services = 1.1%/year
- My theory of structural transformation:
 - 1. Cost-disease channel: productivity growth differentials change the relative price

$$\frac{p_{s}}{p_{g}} = \mu \frac{Z_{g}}{Z_{s}}$$

- $-\mu$ is the ratio of markups
- 2. Non-homotheticity channel: creates an inc. effect that shifts consumption toward "luxuries"

$$C_m = Z_m N_m$$

Intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion

Model Fit

Long-run

intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion

Model Fit

Long-run

► Hours worked: decline 0.1%/year (data 1980–2023: -0.1%/year)

Intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion

23/33

Model Fit Engel curve 2000

Short-run

Intro Empirics Model **Calibration** Monetary Policy Supply Shocks Conclusion

Model Fit Engel curve 2000

Short-run

Average annual MPC: 28% (data: 20 - 60%) MPC distribution

24/33

Share of Hand-to-Mouth: 23.4% (data: 17.3%) Wealth Dist.

Structural Transformation &

Monetary Policy Transmission

Monetary Policy Shock

- Economy is at the steady-state SS policy functions
- ▶ Monetary shock: the Central Bank increases the nominal interest rate by 100 bp
 - Unexpected and never-to-occur again (Boppart et al., 2018)
 - Once it is realized, agents have full information about its path
 - Shock follows an AR(1) with persistent $\rho_{M}=$ 0.5
- ► I solve for a 1st order approximation of the impulse response functions

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion

25/33

Monetary Policy Shock

- Economy is at the steady-state SS policy functions
- ▶ Monetary shock: the Central Bank increases the nominal interest rate by 100 bp
 - Unexpected and never-to-occur again (Boppart et al., 2018)
 - Once it is realized, agents have full information about its path
 - Shock follows an AR(1) with persistent $\rho_{M}=$ 0.5
- ► I solve for a 1st order approximation of the impulse response functions
- Monetary policy shock operates through:
 - Direct channel: income and substitution effects
 - Indirect channel: GE effects through wages and taxes

Intro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion

Response to Monetary Policy Demand Composition

Aggregate Responses to a 100 bp Contractionary Shock: 1970 vs 2019

ntro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion 26/33

Structural Transformation and Monetary Policy More years

Aggregate Responses to a 100 bp Contractionary Shock: 1970 vs 2019

Monetary Policy

Decomposing the Effects

Goal: separate heterogeneous price rigidities from non-homothetic preferences

- 1. Understand the role of heterogeneous price rigidities:
 - price rigidities only have a role in the transition
 - set $\kappa_q = \kappa_s$ (Hagedorn et al., 2019)
- 2. Understand the role of non-homothetic preferences
 - set $\epsilon = 1$
 - recalibrate model to match service share in 1970 and 2019 using Ω

Intro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion

27/33

The Role of Heterogeneous Price Rigidities and Non-Homotheticity

	(1) Baseline		(2) Homog. κ_m		(3) Homothetic		
	1970	2019	1970	2019	1970	2019	
Service share	51.3	67.3	51.3	67.3	51.0	67.2	
MPC		7.6	8.1	7.6	8.6	8.4	
Consump. response (% change vs. 1970)		20.6		3.5		24.1	
Price of goods response (% change vs. 1970)		13.7		5.9		6.3	
Price of serv. response (% change vs. 1970)		10.7		5.9		3.5	

ntro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion

27/33

The Role of Heterogeneous Price Rigidities and Non-Homotheticity

Low-wealth households decrease their consumption more than high-wealth households

ntro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion 28/33

Sectoral Consumption Responses by Wealth Position Consumption & Labor

Low-wealth households decrease their consumption more than high-wealth households

Monetary Policy 28/33

Welfare Cost of Monetary Policy

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 29/33

Welfare Cost of Monetary Policy

ntro Empirics Model Calibration **Monetary Policy** Supply Shocks Conclusion 29/33

Structural Transformation and the Welfare Costs of Monetary Policy

Structural Transformation increases the welfare inequality costs of MP

Monetary Policy

Negative Supply Shocks

Structural Transformation &

Extension: What is the Role of Services for Economic Resilience?

- ► **Goal:** Compare the effects of supply shocks with different demand compositions
 - compare the 1970-economy (50% services) and the 2019-economy (68% services).

Setup:

- 1. Economy is at the Steady-State
- 2. Unexpected shock in the sectoral productivity (same for both sectors: $\Delta Z_m/Z_m=-5\%$)
 - Unexpected and never to occur again
 - Once it is realized, agents have full information about its path
 - Shock is persistent, but after one year is halfway to the SS value

Intro Empirics Model Calibration Monetary Policy Supply Shocks Conclusion 30/33

Structural Transformation and Supply Shocks

Aggregate responses to a negative 5% aggregate TFP shock

31/33

ntro Empirics Model Calibration Monetary Policy **Supply Shocks** Conclusion

Structural Transformation and Supply Shocks

Higher services share makes the economy less responsive to supply shocks

31/33

ntro Empirics Model Calibration Monetary Policy **Supply Shocks** Conclusion

The Role of Non-Homotheticity and Heterogeneous Price Rigidities

	(1) Baseline		(2) Homog. κ_m		(3) Homothetic	
	1970	2019	1970	2019	1970	2019
Service share	51.3	67.3	51.3	67.3	51.0	67.2
MPC	8.1	7.6	8.1	7.6	8.6	8.4
Consump. response (% change vs. 1970)	-3	7.3	-	9.2		19.9
Price of goods response (% change vs. 1970)	8	.3	(0.9		4.9
Price of serv. response (% change vs. 1970)	6	.9	(0.9		4.1

Intro Empirics Model Calibration Monetary Policy **Supply Shocks** Conclusion

Conclusion

- ▶ **This paper:** Sectoral composition matters for the transmission of monetary policy
- Using a quantitative dynamic model:
 - The rise in the services share from 1970 to 2019 increased monetary non-neutrality by 21%

Intro Empirics Model Calibration Monetary Policy Supply Shocks **Conclusion**

Conclusion

- ▶ **This paper:** Sectoral composition matters for the transmission of monetary policy
- Using a quantitative dynamic model:
 - The rise in the services share from 1970 to 2019 increased monetary non-neutrality by 21%
- ▶ **Policy implications**: common monetary policy with countries at different development levels

Intro Empirics Model Calibration Monetary Policy Supply Shocks **Conclusion**

Conclusion

- ▶ **This paper:** Sectoral composition matters for the transmission of monetary policy
- Using a quantitative dynamic model:
 - The rise in the services share from 1970 to 2019 increased monetary non-neutrality by 21%
- ▶ **Policy implications**: common monetary policy with countries at different development levels

Thank You!

Intro Empirics Model Calibration Monetary Policy Supply Shocks **Conclusion**

Appendix

Prices in the Service Sector are Stickier Garb

Data and Methodology

- **Data:** Summary statistics about price frequency assembled by Nakamura and Steinsson (2008)
 - Source: BLS monthly microdata that underlies the U.S. CPI, covering 70% of expenditures

Category	Weight	Median Freq. (Regular)	Median Freq. (All)
Processed food	8.2	10.5	25.9
Unprocessed food	5.9	25.0	37.3
Household furnishing	5.0	6.0	19.4
Apparel	6.5	3.6	31.0
Transportation goods	8.3	31.3	31.3
Recreation goods	3.6	6.0	11.9
Other goods	5.4	15.0	15.5
Utilities	5.3	38.1	38.1
Vehicle fuel	5.1	87.6	87.6
Travel	5.5	41.7	42.8
Services (excl. travel)	38.5	6.1	6.6
All sectors	100.0	8.7	19.4

Methodology: Aggregate by goods and services categories (BEA classification)

Fact #1: Robustness (Back)

Implied Duration

Fact #1: Robustness (Back)

Using Bils and Klenow (2004) dataset

Romer and Romer (2023) Monetary Policy Shocks (Back)

Date	Shock
October 1947	(-)
August 1955	(-)
September 1958	(-)
December 1968	(-)
January 1972	(+)
April 1974	(-)
August 1978	(-)
October 1979	(-)
May 1981	(-)
December 1988	(-)
September 2022	(-)

Fact #2: Data details (Back)

Consumer Expenditure Survey (CEX)

- curated by the US BLS
- used to compute the relative importance of goods and services in the CPI basket

Coverage

- time frame: between 2000 and 2022
- each wave has between 5 000 8 000 households

Consumption and Expenditure data

- household expenditure by broad categories (e.g., food at home, education)
- demographic variables (income, age, household composition, etc)

Fact #2: Methodology details (Back)

- 1. Household sample selection:
 - keep those who participate in the 4 waves
 - household head age between 25 and 64
- 2. Divide households into 5 income groups (similar to Aguiar and Bils, 2015):
 - income = pre-tax income + alimony + gifts + gambling winnings + inheritance
 - regress income on household size, average age of household earners head, and no income earners
 - from the regression residuals build 5 income groups
- 3. Classify expenditure by **economic activity**:
 - Services: Food Away, Shelter, Education, Public Transportation, Health Care, Utilities, Personal Care, Entertainment, Other Vehicle Expenses
 - Goods: Food and Alcohol at Home, Motor Vehicles, Apparel, Tobacco and Gasoline
- 4. Compute the average share of consumption in services along time

Fact #2: Robustness Back

Excluding old households

Fact #2: Robustness Back

Including bottom and top 5%

Static non-homothetic CES illustration (Sak)

Comparison with Stone-Geary class

Competitive Equilibrium Back

Definition: A competitive equilibrium is a sequence of lump-sum transfers T_t ; interest rates i_t ; value functions V_t with policy functions $\hat{c}_{g,t}$, $\hat{c}_{s,t}$, \hat{h}_t and \hat{b}_t ; prices p_t^b , p_t^g , p_t^s , and w_t ; profits $\pi_{g,t}$ and $\pi_{s,t}$; and a law of motion Ψ , such that:

- 1. V_t satisfies the Bellman Equation, with the solution given by the policy functions $\hat{c}_{g,t}$, $\hat{c}_{s,t}$, \hat{h}_t and \hat{b}_t given sequences of lump-sum taxes, prices, interest rate and dividends.
- 2. Firms maximize profits, which are distributed in the form of dividends to households.
- 3. The government runs a balanced budget.
- 4. For all Ξ_t , the asset, labor, and goods markets clear.
- 5. The aggregate law of motion of the distribution, Ψ , is generated by the savings policy function.

1. Demand Estimation (Back)

Results

$$\log\left(\frac{\nu_{\mathrm{s},\mathrm{t}}^{n}}{\nu_{\mathrm{g},\mathrm{t}}^{n}}\right) = (1-\sigma)\log\left(\frac{p_{\mathrm{s},\mathrm{t}}^{n}}{p_{\mathrm{g},\mathrm{t}}^{n}}\right) + (1-\sigma)\left(\varepsilon-1\right)\log\left(\frac{E_{\mathrm{t}}^{n}}{p_{\mathrm{g},\mathrm{t}}^{n}}\right) + \left(\varepsilon-1\right)\log\nu_{\mathrm{g},\mathrm{t}}^{n} + \zeta^{n} + \xi_{\mathrm{t}}^{n},$$

	(1)	(2)	(3)
σ	0.209	0.176	0.234
V	(0.044)	(0.039)	(0.051)
ϵ	1.619	1.667	1.731
e	(0.061)	(0.058)	(0.080)
Region FE	N	Υ	Υ
Year $ imes$ Quarter FE	N	N	Υ
		·	·

Short-run household behavior: quarterly marginal propensity to consume

Short-run household behavior: wealth distribution

Wealth Statistic	Data	Model
Mean wealth	4.1	4.4
Median wealth	1.5	1.8
Wealth, bottom 50%	2.5%	3.1%
Wealth, top 10%	49.9%	48.6%
HtM share	17.3%	23.4%

Steady-State Policy Functions

Frontier: MP Response and Services Share Garb

Monetary Policy and Demand Composition

MP contractions shift expenditure towards goods

Demand Composition: Decomposition Gazo

Non-homotheticity accounts for around half of the differences in the response

Demand Composition: Decomposition Garb

Differences in the price rigidities account for the other half

Counterfactuals: income vs substitution effects

Two forces that drive the increase in services:

- 1. Higher **income** makes consumption shift toward "luxuries"
- 2. changes in the **relative prices** change consumption composition

	(1) 1970 (bsl)	(1) 2019 (bsl)	(2) Income effect	(3) Substitution effect
Consump. response (vs. 1970)	-	20.64	11.52	14.02
Relative price	1.00	1.68	1.00	1.68
SS consumption	0.03	0.05	0.05	0.03
Service share	51.34	67.30	58.09	61.22

 \Rightarrow Income and price effect have the same relevance for the amplification of MP transmission

Heterogenous Responses Back

References

- Aguiar, M. and Bils, M. (2015). Has Consumption Inequality Mirrored Income Inequality? *American Economic Review*, 105(9):2725–2756.
- Andreolli, M., Rickard, N., and Surico, P. (2024). Non-essential business-cycles. *Mimeographed, London Business School*.
- Auclert, A. (2019). Monetary Policy and the Redistribution Channel. American Economic Review, 109(6):2333–2367.
- Becker, J. (2024). Do Poor Households Pay Higher Markups in Recessions? Working paper.
- Bils, M. and Klenow, P. J. (2004). Some Evidence on the Importance of Sticky Prices. *Journal of Political Economy*, 112(5):947–985.
- Boehnert, L., de Ferra, S., Mitman, K., and Romei, F. (2025). High Non-Tradable Consumption, Inequality, and Weak Monetary Policy. *Working Paper*.
- Boivin, J. and Giannoni, M. P. (2006). Has Monetary Policy Become More Effective? The Review of Economics and Statistics, 88(3):445–462.
- Boppart, T., Krusell, P., and Mitman, K. (2018). Exploiting MIT Shocks in Heterogeneous-Agent Economies: the Impulse Response as a Numerical Derivative. *Journal of Economic Dynamics and Control*, 89:68–92.
- Broer, T., Harbo Hansen, N.-J., Krusell, P., and Öberg, E. (2020). The New Keynesian Transmission Mechanism: A Heterogeneous-Agent Perspective. *The Review of Economic Studies*, 87(1):77–101.
- Chetty, R., Guren, A., Manoli, D., and Weber, A. (2011). Are Micro and Macro Labor Supply Elasticities Consistent? A Review of Evidence on the Intensive and Extensive Margins. *American Economic Review*, 101(3):471–475.
- Comin, D., Lashkari, D., and Mestieri, M. (2021). Structural Change with Long-run Income and Price Effects. *Econometrica*, 89(1):311–374.
- Cravino, J., Lan, T., and Levchenko, A. A. (2020). Price Stickiness along the Income Distribution and the Effects of Monetary Policy. *Journal of Monetary Economics*, 110:19–32.
- Galesi, A. and Rachedi, O. (2019). Services Deepening and the Transmission of Monetary Policy. Journal of the European