# OPERATION RESEARCH MC305 Lab

# ANEESH PANCHAL 2K20/MC/021



Department of Applied Mathematics,

Delhi Technological University

Submitted To -

Prof. Anjana Gupta and Ms. Anjali

# **INDEX**

| S. No. | Experiment                                                                                                                                                                              | Date         | Sign & Remark |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| 01.    | Solving Linear Programming Problem using Simplex Method in Tora                                                                                                                         | 08/Aug/2022  |               |
| 02.    | Solving Linear Programming Problem using Two Phase Method in Tora                                                                                                                       | 22/Aug/2022  |               |
| 03.    | Solving Linear Programming Problem using Big M Method in Tora                                                                                                                           | 29/Aug/2022  |               |
| 04.    | Solving Linear Programming Problem using Dual Simplex Method in Tora                                                                                                                    | 05/Sept/2022 |               |
| 05.    | Solving Linear Programming Problem and applying Sensitivity Analysis using Tora                                                                                                         | 12/Sept/2022 |               |
| 06.    | Solving Integer Programming Problem (IPP) using Branch and Bound Method in Tora                                                                                                         | 19/Sept/2022 |               |
| 07.    | To solve Transportation Problem in Tora. Finding Initial Basic Feasible Solution (IBFS) using,  1. N-W Corner Method (NWC)  2. Least Call Method (LCM)  3. Vogel's Approx. Method (VAM) | 26/Sept/2022 |               |
| 08.    | To solve Assignment Problem in Tora.                                                                                                                                                    | 10/Oct/2022  |               |
| 09.    | To implement Critical Path Method (CPM) using Tora.                                                                                                                                     | 17/Oct/2022  |               |
| 10.    | To implement Project Evaluation & Review Technique (PERT) using Tora.                                                                                                                   | 31/Oct/2022  |               |

# **TORA Software**

Link to download TORA software (.rar) files:

https://www.mediafire.com/file/myz0i84sd13osp2/Tora+System.rar/file

Link to download WinRAR (.rar file extractor):

https://www.win-rar.com/start.html?&L=0

Password for TORA software (.rar) files:

123

#### Procedure to download and start using TORA:

Download the TORA software and use the password 123 to extract the files using WinRAR. Install the setup after extraction is complete, then look for the TORA software shortcut. First and foremost, TORA will support 1024x768 resolutions. Therefore, adjust the screen's resolutions accordingly. Then launch the software and you're ready to solve the problem.

#### **History:**

In **2002**, TORA is created by **Hamdy A. Taha.** (University Professor Emeritus of Industrial Engineering with the University of Arkansas, where he taught and conducted research in operations research and simulation.)

#### **About:**

**Temporary-Ordered Routing Algorithm (TORA)** – An Operations Research Software TORA is an algorithm i.e. a mathematical set of instructions or programs (mathematical-software). Simply one can say that TORA is a **menu-driven optimization system**. It is an optimization system in the area of operations research which is very easy to use. Further, TORA is menu-driven and Windows-based which makes it very user friendly.

The software can be executed in **automated** or **tutorial mode**. The automated mode reports the final solution of the problem, usually in the standard format followed in commercial packages, while the tutorial mode keeps on giving step-wise information about the methodology and solution.

The software provides a number of tutorial features:

- 1. TORA allows both user-guided and automated use of the software
- 2. In User-guide option, steps of the algorithms are reproduced exactly as presented in the book
- **3.** All the details needed to use an algorithm are given directly on the screen, thus precluding the need for a user's manual.

#### TORA software deals with the following algorithms:

- 1. Solution of simultaneous linear equations
- 2. Linear programming
- 3. Transportation model
- **4.** Integer programming
- 5. Network models
- 6. Project analysis by CPM/PERT
- 7. Poisson queuing models
- 8. Zero-sum games

#### **Limitation of TORA Software:**

We can't use the TORA software in solving Linear Programming, Problem (LPP) when the matrix associated to the initial basis is not an identity matrix.

2K20/MC/021

# Aim:

Solving Linear Programming Problem using Simplex Method in Tora

#### Problem 1:

$$Max \ z = 2x_1 + 4x_2$$
  
 $s.t. \quad x_1 + 4x_2 \le 5$   
 $x_1 + x_2 \le 4$   
 $x_1, x_2 \ge 0$ 

# Input:

|                  | x1       | x2       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|------------------|--------|
| Var. Name        |          |          |                  |        |
| Maximize         | 2.00     | 4.00     |                  |        |
| Constr 1         | 1.00     | 4.00     | <b>&lt;</b> =    | 5.00   |
| Constr 2         | 1.00     | 1.00     | <b>&lt;</b> =    | 4.00   |
| Lower Bound      | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        |                  |        |

# **Output:**

| Iteration 1      |          |          |       |       |          |
|------------------|----------|----------|-------|-------|----------|
| Basic            | x1       | x2       | Екг   | sx4   | Solution |
| z (max)          | -2.00    | -4.00    | 0.00  | 0.00  | 0.00     |
| <b>£</b> х2      | 1.00     | 4.00     | 1.00  | 0.00  | 5.00     |
| sx4              | 1.00     | 1.00     | 0.00  | 1.00  | 4.00     |
| Lower Bound      | 0.00     | 0.00     |       |       |          |
| Upper Bound      | infinity | infinity |       |       |          |
| Unrestr'd (y/n)? | n        | n        |       |       |          |
|                  |          |          |       |       |          |
| Iteration 2      |          |          |       |       |          |
| Basic            | x1       | x2       | Екг   | sx4   | Solution |
| z (max)          | -1.00    | 0.00     | 1.00  | 0.00  | 5.00     |
| ж2               | 0.25     | 1.00     | 0.25  | 0.00  | 1.25     |
| sx4              | 0.75     | 0.00     | -0.25 | 1.00  | 2.75     |
| Lower Bound      | 0.00     | 0.00     |       |       |          |
| Upper Bound      | infinity | infinity |       |       |          |
| Unrestr'd (y/n)? | n        | n        |       |       |          |
|                  |          |          |       |       |          |
| Iteration 3      |          |          |       |       |          |
| Basic            | x1       | x2       | Екг   | sx4   | Solution |
| z (max)          | 0.00     | 0.00     | 0.67  | 1.33  | 8.67     |
| ж2               | 0.00     | 1.00     | 0.33  | -0.33 | 0.33     |
| х1               | 1.00     | 0.00     | -0.33 | 1.33  | 3.67     |
| Lower Bound      | 0.00     | 0.00     |       |       |          |
| Upper Bound      | infinity | infinity |       |       |          |
| Unrestr'd (y/n)? | n        | n        |       |       |          |
|                  |          |          |       |       |          |
|                  |          |          |       |       |          |

## **Conclusion:**

Using Simplex Method, we get the solution of LPP as  $x_1=3.67$  and  $x_2=0.33$  2 K 20/MC/021

## Problem 2:

$$\begin{aligned} Max \ z &= 3x_1 + 2x_2 \\ s. \ t. \quad 2x_1 + x_2 &\leq 2 \\ 3x_1 + 4x_2 &\geq 12 \\ x_1, x_2 &\geq 0 \end{aligned}$$

# Input:

|                  | x1       | x2       | Enter <, >, or = | R.H.S. |  |
|------------------|----------|----------|------------------|--------|--|
| Var. Name        |          |          |                  |        |  |
| Maximize         | 3.00     | 2.00     |                  |        |  |
| Constr 1         | 2.00     | 1.00     | <b>&lt;</b> =    | 2.00   |  |
| Constr 2         | 3.00     | 4.00     | >=               | 12.00  |  |
| Lower Bound      | 0.00     | 0.00     |                  |        |  |
| Upper Bound      | infinity | infinity |                  |        |  |
| Unrestr'd (y/n)? | n        | n        |                  |        |  |

## **Output:**



| Phase 1 (Iter 1  |          |          |       |       |      |          |
|------------------|----------|----------|-------|-------|------|----------|
| Basic            | x1       | x2       | Sx3   | sx4   | Rx5  | Solution |
| z (min)          | 3.00     | 4.00     | -1.00 | 0.00  | 0.00 | 12.00    |
| sx4              | 2.00     | 1.00     | 0.00  | 1.00  | 0.00 | 2.00     |
| Rx5              | 3.00     | 4.00     | -1.00 | 0.00  | 1.00 | 12.00    |
| Lower Bound      | 0.00     | 0.00     |       |       |      |          |
| Upper Bound      | infinity | infinity |       |       |      |          |
| Unrestr'd (y/n)? | n        | n        |       |       |      |          |
|                  |          |          |       |       |      |          |
| Phase 1 (Iter 2  |          |          |       |       |      |          |
| Basic            | x1       | x2       | Sx3   | sx4   | Rx5  | Solution |
| z (min)          | -5.00    | 0.00     | -1.00 | -4.00 | 0.00 | 4.00     |
| ж2               | 2.00     | 1.00     | 0.00  | 1.00  | 0.00 | 2.00     |
| Rx5              | -5.00    | 0.00     | -1.00 | -4.00 | 1.00 | 4.00     |
| Lower Bound      | 0.00     | 0.00     |       |       |      |          |
| Upper Bound      | infinity | infinity |       |       |      |          |
| Unrestr'd (y/n)? | n        | n        |       |       |      |          |
|                  |          |          |       |       |      |          |

#### **Conclusion:**

We can't use simplex method here because we have  $\geq$  constraint. Hence, we use Two Phase method for this problem.

Using Two Phase Method, we get no feasible solution for the given LPP.

# Problem 3:

$$\begin{aligned} \mathit{Max} \ z &= 3x_1 + 2x_2 \\ \mathit{s.t.} \quad -x_1 + 2x_2 &\leq 4 \\ x_1 - x_2 &\leq 3 \\ x_1, x_2 &\geq 0 \end{aligned}$$

# Input:

|                  | x1       | x2       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|------------------|--------|
| Var. Name        |          |          |                  |        |
| Maximize         | 3.00     | 2.00     |                  |        |
| Constr 1         | -1.00    | 2.00     | <b>&lt;</b> =    | 4.00   |
| Constr 2         | 1.00     | -1.00    | <=               | 3.00   |
| Lower Bound      | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        |                  |        |

# **Output:**

| •                |          |          |      |      |          |
|------------------|----------|----------|------|------|----------|
| Iteration 1      |          |          |      |      |          |
| Basic            | ×1       | x2       | Екг  | sx4  | Solution |
| z (max)          | -3.00    | -2.00    | 0.00 | 0.00 | 0.00     |
| 8ж3              | -1.00    | 2.00     | 1.00 | 0.00 | 4.00     |
| sx4              | 1.00     | -1.00    | 0.00 | 1.00 | 3.00     |
| Lower Bound      | 0.00     | 0.00     |      |      |          |
| Upper Bound      | infinity | infinity |      |      |          |
| Unrestr'd (y/n)? | n        | n        |      |      |          |
|                  |          |          |      |      |          |
| Iteration 2      |          |          |      |      |          |
| Basic            | x1       | x2       | Екг  | sx4  | Solution |
| z (max)          | 0.00     | -5.00    | 0.00 | 3.00 | 9.00     |
| sx3              | 0.00     | 1.00     | 1.00 | 1.00 | 7.00     |
| х1               | 1.00     | -1.00    | 0.00 | 1.00 | 3.00     |
| Lower Bound      | 0.00     | 0.00     |      |      |          |
| Upper Bound      | infinity | infinity |      |      |          |
| Unrestr'd (y/n)? | n        | n        |      |      |          |
|                  |          |          |      |      |          |
| Iteration 3      |          |          |      |      |          |
| Basic            | x1       | x2       | Екг  | sx4  | Solution |
| z (max)          | 0.00     | 0.00     | 5.00 | 8.00 | 44.00    |
| ж2               | 0.00     | 1.00     | 1.00 | 1.00 | 7.00     |
| х1               | 1.00     | 0.00     | 1.00 | 2.00 | 10.00    |
| Lower Bound      | 0.00     | 0.00     |      |      |          |
| Upper Bound      | infinity | infinity |      |      |          |
| Unrestr'd (y/n)? | n        | n        |      |      |          |
|                  |          |          |      |      |          |
|                  |          |          |      |      |          |

# **Conclusion:**

Using Simplex Method, we get the solution of LPP as  $x_1=\ 10$  and  $x_2=\ 7$ 

#### Aim:

Solving Linear Programming Problem using Two Phase Method in Tora

#### **Problem:**

$$Min z = 2x - 3y + 6z$$

$$s.t. \quad 3x - 4y - 6z \le 2$$

$$2x + y + 2z \ge 11$$

$$x + 3y - 2z \le 5$$

$$x, y, z \ge 0$$

First of all, standardize the given problem,

$$Min z = 2x - 3y + 6z$$
s.t.  $3x - 4y - 6z + s_1 = 2$ 
 $2x + y + 2z - s_2 = 11$ 
 $x + 3y - 2z + s_3 = 5$ 
 $x, y, z, s_1, s_2, s_3 \ge 0$ 

Let us take Initial Basic Feasible Solution for the given problem,

$$x = y = z = 0$$

Putting these values we get,

$$s_1 = 2$$
,  $s_2 = -11$  and  $s_3 = 5$ 

Which contradict the basic solution conditions that  $s_1, s_2, s_3 \ge 0$ 

So, we can't use simplex method here. Hence, we use Two Phase method for this problem.

# Input:

|                  | x1       | x2       | х3       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|----------|------------------|--------|
| Var. Name        |          |          |          |                  |        |
| Minimize         | 2.00     | -3.00    | 6.00     |                  |        |
| Constr 1         | 3.00     | -4.00    | -6.00    | <=               | 2.00   |
| Constr 2         | 2.00     | 1.00     | 2.00     | >=               | 11.00  |
| Constr 3         | 1.00     | 3.00     | -2.00    | <b>&lt;</b> =    | 5.00   |
| Lower Bound      | 0.00     | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        | n        |                  |        |

# **Output:**

| Phase 1 (Iter 1<br>Basic   | x1            | ж2            | хЗ       | Sx4   | sx5   | Rx6     | sx7   | Solution |
|----------------------------|---------------|---------------|----------|-------|-------|---------|-------|----------|
| z (min)                    | 2.00          | 1.00          | 2.00     | -1.00 | 0.00  | 0.00    | 0.00  | 11.00    |
| 2 (mm)<br>21 <sup>th</sup> | 3.00          | -4.00         | -6.00    | 0.00  | 1.00  | 0.00    | 0.00  | 2.00     |
| Rx6                        | 2.00          | 1.00          | 2.00     | -1.00 | 0.00  | 1.00    | 0.00  | 11.00    |
| sx7                        | 1.00          | 3.00          | -2.00    | 0.00  | 0.00  | 0.00    | 1.00  | 5.00     |
| Lower Bound                | 0.00          | 0.00          | 0.00     | 0.00  | 0.00  | 0.00    | 1.00  | 3.00     |
| Upper Bound                | infinity      | infinity      | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           |               |               |          |       |       |         |       |          |
| Uniesti a tyrnj?           | n             | n             | n        |       |       |         |       |          |
| DI 100 0                   |               |               |          |       |       |         |       |          |
| Phase 1 (Iter 2            |               |               |          | 0.4   | _     | В.О     | -     | 0.1.0    |
| Basic                      | х1            | х2            | х3       | Sx4   | sx5   | Rx6     | sx7   | Solution |
| z (min)                    | 0.00          | 3.67          | 6.00     | -1.00 | -0.67 | 0.00    | 0.00  | 9.67     |
| x1                         | 1.00          | -1.33         | -2.00    | 0.00  | 0.33  | 0.00    | 0.00  | 0.67     |
| Rx6                        | 0.00          | 3.67          | 6.00     | -1.00 | -0.67 | 1.00    | 0.00  | 9.67     |
| sx7                        | 0.00          | 4.33          | 0.00     | 0.00  | -0.33 | 0.00    | 1.00  | 4.33     |
| Lower Bound                | 0.00          | 0.00          | 0.00     |       |       |         |       |          |
| Upper Bound                | infinity      | infinity      | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           | n             | n             | n        |       |       |         |       |          |
|                            |               |               |          |       |       |         |       |          |
|                            |               |               |          |       |       |         |       |          |
| Phase 1 (Iter 3            |               |               |          |       |       |         |       |          |
| Basic                      | х1            | x2            | х3       | Sx4   | sx5   | Rx6     | sx7   | Solution |
| z (min)                    | 0.00          | 0.00          | 0.00     | 0.00  | 0.00  | -1.00   | 0.00  | 0.00     |
| x1                         | 1.00          | -0.11         | 0.00     | -0.33 | 0.11  | 0.33    | 0.00  | 3.89     |
| х3                         | 0.00          | 0.61          | 1.00     | -0.17 | -0.11 | 0.17    | 0.00  | 1.61     |
| sx7                        | 0.00          | 4.33          | 0.00     | 0.00  | -0.33 | 0.00    | 1.00  | 4.33     |
| Lower Bound                | 0.00          | 0.00          | 0.00     |       |       |         |       |          |
| Upper Bound                | infinity      | infinity      | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           | n             | n             | n        |       |       |         |       |          |
| Onicsa a gyrij:            |               |               | •        |       |       |         |       |          |
| Phase 2 (Iter 4            |               |               |          |       |       |         |       |          |
|                            |               |               |          | C 4   | -     | D.C     |       | 0.1.0    |
| Basic                      | x1            | x2<br>6.44    | х3       | Sx4   | sx5   | Rx6     | sx7   | Solution |
| z (min)                    | 0.00          |               | 0.00     | -1.67 | -0.44 | blocked | 0.00  | 17.44    |
| x1                         | 1.00          | -0.11         | 0.00     | -0.33 | 0.11  | 0.33    | 0.00  | 3.89     |
| х3                         | 0.00          | 0.61          | 1.00     | -0.17 | -0.11 | 0.17    | 0.00  | 1.61     |
| sx7                        | 0.00          | 4.33          | 0.00     | 0.00  | -0.33 | 0.00    | 1.00  | 4.33     |
| Lower Bound                | 0.00          | 0.00          | 0.00     |       |       |         |       |          |
| Upper Bound                | infinity      | infinity      | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           | n             | n             | n        |       |       |         |       |          |
|                            |               |               |          |       |       |         |       |          |
| Phase 2 (Iter 5            |               |               |          |       |       |         |       |          |
| Basic                      | х1            | x2            | жЗ       | Sx4   | sx5   | Rx6     | sx7   | Solution |
|                            | 0.00          | 0.00          | 0.00     | -1.67 | 0.05  | blocked | -1.49 | 11.00    |
| z (min)                    |               |               |          |       |       |         |       |          |
| χΊ                         | 1.00          | 0.00          | 0.00     | -0.33 | 0.10  | 0.33    | 0.03  | 4.00     |
| х3                         | 0.00          | 0.00          | 1.00     | -0.17 | -0.06 | 0.17    | -0.14 | 1.00     |
| x2                         | 0.00          | 1.00          | 0.00     | 0.00  | -0.08 | 0.00    | 0.23  | 1.00     |
| Lower Bound                | 0.00          | 0.00          | 0.00     |       |       |         |       |          |
| Upper Bound                | infinity      | infinity      | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           | n             | n             | n        |       |       |         |       |          |
|                            |               |               |          |       |       |         |       |          |
| Phase 2 (Iter 6            |               |               |          |       |       |         |       |          |
| Basic                      | x1            | x2            | кЗ       | Sx4   | sx5   | Rx6     | sx7   | Solution |
| z (min)                    | -0.50         | 0.00          | 0.00     | -1.50 | 0.00  | blocked | -1.50 | 9.00     |
| sx5                        | 9.75          | 0.00          | 0.00     | -3.25 | 1.00  | 3.25    | 0.25  | 39.00    |
| х3                         | 0.63          | 0.00          | 1.00     | -0.38 | 0.00  | 0.38    | -0.13 | 3.50     |
| x2                         | 0.75          | 1.00          | 0.00     | -0.25 | 0.00  | 0.25    | 0.25  | 4.00     |
| Lower Bound                | 0.73          | 0.00          | 0.00     | -0.23 | 0.00  | 0.20    | 0.20  | 4.00     |
|                            |               |               |          |       |       |         |       |          |
| Upper Bound                | infinity<br>n | infinity<br>n | infinity |       |       |         |       |          |
| Unrestr'd (y/n)?           |               |               | n        |       |       |         |       |          |

# **Conclusion:**

Using 2 Phase Method, we get the solution of LPP as  $x_2=\ 4$  and  $x_3=\ 3.5$ 

# Aim:

Solving Linear Programming Problem using Big M Method in Tora

#### **Problem:**

$$\begin{aligned} \mathit{Max} \ z &= x_1 - x_2 + 3x_3 \\ s. \ t. \quad x_1 + x_2 &\leq 20 \\ x_1 + x_3 &= 5 \\ x_2 + x_3 &\geq 10 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

First of all, standardize the given problem,

$$\begin{aligned} \mathit{Max} \ z &= x_1 - x_2 + 3x_3 \\ s.t. \quad x_1 + x_2 + s_1 &= 20 \\ x_1 + x_3 &= 5 \\ x_2 + x_3 - s_2 &= 10 \\ x_1, x_2, x_3, s_1, s_2 &\geq 0 \end{aligned}$$

Let us take Initial Basic Feasible Solution for the given problem,

$$x_1 = x_2 = x_3 = 0$$

Putting these values we get,

$$s_1 = 20$$
 and  $s_2 = -10$ 

Which contradict the basic solution conditions that  $s_1, s_2 \ge 0$ 

So, we can't use simplex method here. Hence, we use Big M method for this problem.

# Input:

|                  | x1       | х2       | х3       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|----------|------------------|--------|
| Var. Name        |          |          |          |                  |        |
| Maximize         | 1.00     | -1.00    | 3.00     |                  |        |
| Constr 1         | 1.00     | 1.00     | 0.00     | <b>&lt;</b> =    | 20.00  |
| Constr 2         | 1.00     | 0.00     | 1.00     | =                | 5.00   |
| Constr 3         | 0.00     | 1.00     | 1.00     | >=               | 10.00  |
| Lower Bound      | 0.00     | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        | n        |                  |        |

# **Output:**

| Iteration 1      |          |          |          |        |      |        |       |          |
|------------------|----------|----------|----------|--------|------|--------|-------|----------|
| Basic            | x1       | ж2       | к3       | Sx4    | sx5  | Rx6    | Bx7   | Solution |
| z (max)          | -101.00  | -99.00   | -203.00  | 100.00 | 0.00 | 0.00   | 0.00  | -1500.00 |
| sx5              | 1.00     | 1.00     | 0.00     | 0.00   | 1.00 | 0.00   | 0.00  | 20.00    |
| Rx6              | 1.00     | 0.00     | 1.00     | 0.00   | 0.00 | 1.00   | 0.00  | 5.00     |
| Rx7              | 0.00     | 1.00     | 1.00     | -1.00  | 0.00 | 0.00   | 1.00  | 10.00    |
| Lower Bound      | 0.00     | 0.00     | 0.00     |        |      |        |       |          |
| Upper Bound      | infinity | infinity | infinity |        |      |        |       |          |
| Unrestr'd (y/n)? | n        | n        | n        |        |      |        |       |          |
|                  |          |          |          |        |      |        |       |          |
| Iteration 2      |          |          |          |        |      |        |       |          |
| Basic            | x1       | ж2       | кЗ       | Sx4    | 8х5  | Rx6    | Bx7   | Solution |
| z (max)          | 102.00   | -99.00   | 0.00     | 100.00 | 0.00 | 203.00 | 0.00  | -485.00  |
| sx5              | 1.00     | 1.00     | 0.00     | 0.00   | 1.00 | 0.00   | 0.00  | 20.00    |
| х3               | 1.00     | 0.00     | 1.00     | 0.00   | 0.00 | 1.00   | 0.00  | 5.00     |
| Rx7              | -1.00    | 1.00     | 0.00     | -1.00  | 0.00 | -1.00  | 1.00  | 5.00     |
| Lower Bound      | 0.00     | 0.00     | 0.00     |        |      |        |       |          |
| Upper Bound      | infinity | infinity | infinity |        |      |        |       |          |
| Unrestr'd (y/n)? | n        | n        | n        |        |      |        |       |          |
|                  |          |          |          |        |      |        |       |          |
| Iteration 3      |          |          |          |        |      |        |       |          |
| Basic            | x1       | ж2       | ж3       | Sx4    | sx5  | Rx6    | Bx7   | Solution |
| z (max)          | 3.00     | 0.00     | 0.00     | 1.00   | 0.00 | 104.00 | 99.00 | 10.00    |
| sж5              | 2.00     | 0.00     | 0.00     | 1.00   | 1.00 | 1.00   | -1.00 | 15.00    |
| хЗ               | 1.00     | 0.00     | 1.00     | 0.00   | 0.00 | 1.00   | 0.00  | 5.00     |
| х2               | -1.00    | 1.00     | 0.00     | -1.00  | 0.00 | -1.00  | 1.00  | 5.00     |
| Lower Bound      | 0.00     | 0.00     | 0.00     |        |      |        |       |          |
| Upper Bound      | infinity | infinity | infinity |        |      |        |       |          |
| Unrestr'd (y/n)? | n        | n        | n        |        |      |        |       |          |

# **Conclusion:**

Using Big M Method, we get the solution of LPP as  $x_2=\ 5$  and  $x_3=\ 5$ 

# Aim:

Solving Linear Programming Problem using Dual Simplex Method in Tora

#### **Problem:**

Min 
$$z = 2x_1 + 2x_2 + 4x_3$$
  
s. t.  $2x_1 + 3x_2 + 5x_3 \ge 2$   
 $3x_1 + x_2 + 7x_3 \le 3$   
 $x_1 + 4x_2 + 6x_3 \le 5$   
 $x_1, x_2, x_3 \ge 0$ 

# Input:

|                  | x1       | x2       | х3       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|----------|------------------|--------|
| Var. Name        |          |          |          |                  |        |
| Minimize         | 2.00     | 2.00     | 4.00     |                  |        |
| Constr 1         | 2.00     | 3.00     | 5.00     | >=               | 2.00   |
| Constr 2         | 3.00     | 1.00     | 7.00     | <b>&lt;</b> =    | 3.00   |
| Constr 3         | 1.00     | 4.00     | 6.00     | <b>&lt;</b> =    | 5.00   |
| Lower Bound      | 0.00     | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        | n        |                  |        |

## **Output:**

| Iteration 1      |          |          |          |       |      |      |          |
|------------------|----------|----------|----------|-------|------|------|----------|
| Basic            | x1       | x2       | кЗ       | Sx4   | sx5  | 8ж6  | Solution |
| z (min)          | -2.00    | -2.00    | -4.00    | 0.00  | 0.00 | 0.00 | 0.00     |
| Sx4              | -2.00    | -3.00    | -5.00    | 1.00  | 0.00 | 0.00 | -2.00    |
| sx5              | 3.00     | 1.00     | 7.00     | 0.00  | 1.00 | 0.00 | 3.00     |
| вж6              | 1.00     | 4.00     | 6.00     | 0.00  | 0.00 | 1.00 | 5.00     |
| Lower Bound      | 0.00     | 0.00     | 0.00     |       |      |      |          |
| Upper Bound      | infinity | infinity | infinity |       |      |      |          |
| Unrestr'd (y/n)? | n        | n        | n        |       |      |      |          |
|                  |          |          |          |       |      |      |          |
| Iteration 2      |          |          |          |       |      |      |          |
| Basic            | x1       | x2       | кЗ       | Sx4   | sx5  | 8x6  | Solution |
| z (min)          | -0.67    | 0.00     | -0.67    | -0.67 | 0.00 | 0.00 | 1.33     |
| ж2               | 0.67     | 1.00     | 1.67     | -0.33 | 0.00 | 0.00 | 0.67     |
| sx5              | 2.33     | 0.00     | 5.33     | 0.33  | 1.00 | 0.00 | 2.33     |
| sx6              | -1.67    | 0.00     | -0.67    | 1.33  | 0.00 | 1.00 | 2.33     |
| Lower Bound      | 0.00     | 0.00     | 0.00     |       |      |      |          |
| Upper Bound      | infinity | infinity | infinity |       |      |      |          |
| Unrestr'd (y/n)? | n        | n        | n        |       |      |      |          |
|                  |          |          |          |       |      |      |          |

## **Conclusion:**

Using Dual Simplex Method, we get the solution of LPP as  $x_2 = 0.67$ 

## Aim:

Solving Linear Programming Problem and applying Sensitivity Analysis using Tora

#### **Problem:**

$$\begin{aligned} & \textit{Max } z = 50x_1 + 60x_2 + 55x_3 \\ & \textit{s.t.} x_1 + x_2 + x_3 \le 100 \\ & 2x_1 + 3x_2 + 2x_3 \le 300 \\ & 2x_1 + 3x_2 + 2x_3 \ge 250 \\ & x_1 + 2x_3 \ge 60 \\ & x_1, x_2, x_3 \ge 0 \end{aligned}$$

## Input:

|                  | x1       | x2       | х3       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|----------|------------------|--------|
| Var. Name        |          |          |          |                  |        |
| Maximize         | 50.00    | 60.00    | 55.00    |                  |        |
| Constr 1         | 1.00     | 1.00     | 1.00     | <=               | 100.00 |
| Constr 2         | 2.00     | 3.00     | 2.00     | <=               | 300.00 |
| Constr 3         | 2.00     | 3.00     | 2.00     | >=               | 250.00 |
| Constr 4         | 1.00     | 0.00     | 2.00     | >=               | 60.00  |
| Lower Bound      | 0.00     | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        | n        |                  |        |

#### **Output:**

| Output.    |                   |                     |                 |              |   |
|------------|-------------------|---------------------|-----------------|--------------|---|
| Variable   | Value             | Obj Coeff           | Obj Val Contrib |              | _ |
| x1:        | 0.00              | 50.00               | 0.00            |              |   |
| x2:        | 70.00             | 60.00               | 4200.00         |              |   |
| x3:        | 30.00             | 55.00               | 1650.00         |              |   |
| Constraint | RHS               | Slack-/Surplus+     |                 |              |   |
| 1 (<)      | 100.00            | 0.00                |                 |              |   |
| 2 (<)      | 300.00            | 30.00-              |                 |              |   |
| 3 (>)      | 250.00            | 20.00+              |                 |              |   |
| 4 (>)      | 60.00             | 0.00                |                 |              |   |
|            |                   | ***Sensitivity Anal | lysis***        |              |   |
| Variable   | Current Obj Coeff | Min Obj Coeff       | Max Obj Coeff   | Reduced Cost |   |
| x1:        | 50.00             | -infinity           | 57.50           | 7.50         |   |
| x2:        | 60.00             | 55.00               | infinity        | 0.00         |   |
| x3:        | 55.00             | 40.00               | 60.00           | 0.00         |   |
| Constraint | Current RHS       | Min RHS             | Max RHS         | Dual Price   |   |
| 1 (<)      | 100.00            | 93.33               | 110.00          | 60.00        |   |
| 2 (<)      | 300.00            | 270.00              | infinity        | 0.00         |   |
| 3 (>)      | 250.00            | -infinity           | 270.00          | 0.00         |   |
| 4 (>)      | 60.00             | 0.00                | 100.00          | -2.50        |   |

**Q1.** State the optimal Solution.

Soln.

Optimal Solution is  $x_2 = 70$  and  $x_3 = 30$ 

 ${\bf Q2.}$  What is the optimal Objective Function value ?

Soln.

Optimal Objective Function Value is  $z_{max} = 5850$ 

Q3. What would happen to the Objective Function if,

- a) RHS of constraint 1 increases by 5
- b) RHS of constraint 4 changes to 44

#### Soln.

a) Min obj. coeff. for constraint 1 is 93.33 and Max obj. coeff. for constraint 1 is 110
 But the Objective Value will increase by 300 as dual price is 60 for constraint 1
 New Objective Function Value = 5850 + 300 = 6150

| Variable                                            | Value                          | Obj Coeff                          | Obj Val Contrib                        |                                     |  |
|-----------------------------------------------------|--------------------------------|------------------------------------|----------------------------------------|-------------------------------------|--|
| x1:                                                 | 0.00                           | 50.00                              | 0.00                                   |                                     |  |
| x2:                                                 | 75.00                          | 60.00                              | 4500.00                                |                                     |  |
| x3:                                                 | 30.00                          | 55.00                              | 1650.00                                |                                     |  |
| Constraint                                          | RHS                            | Slack-/Surplus+                    |                                        |                                     |  |
| 1 (<)                                               | 105.00                         | 0.00                               |                                        |                                     |  |
| 2 (<)                                               | 300.00                         | 15.00-                             |                                        |                                     |  |
| 3 (>)                                               | 250.00                         | 35.00+                             |                                        |                                     |  |
| 4 (>)                                               | 60.00                          | 0.00                               |                                        |                                     |  |
|                                                     |                                | ***Sensitivity Analy               | ysis***                                |                                     |  |
| Variable                                            | Current Obj Coeff              | Min Obj Coeff                      | Max Obj Coeff                          | Reduced Cost                        |  |
| x1:                                                 | 50.00                          | -infinity                          | 57.50                                  | 7.50                                |  |
|                                                     |                                |                                    | 31.30                                  | 7,50                                |  |
| x2:                                                 | 60.00                          | 55.00                              | infinity                               | 0.00                                |  |
|                                                     | 60.00<br>55.00                 |                                    |                                        |                                     |  |
| х3:                                                 |                                | 55.00                              | infinity                               | 0.00                                |  |
| x3:<br>Constraint                                   | 55.00                          | 55.00<br>40.00                     | infinity<br>60.00                      | 0.00<br>0.00                        |  |
| x3:<br>Constraint<br>1 (<)                          | 55.00<br>Current RHS           | 55.00<br>40.00<br>Min RHS          | infinity<br>60.00<br>Max RHS           | 0.00<br>0.00<br>Dual Price          |  |
| x2:<br>x3:<br>Constraint<br>1 (<)<br>2 (<)<br>3 (>) | 55.00<br>Current RHS<br>105.00 | 55.00<br>40.00<br>Min RHS<br>93.33 | infinity<br>60.00<br>Max RHS<br>110.00 | 0.00<br>0.00<br>Dual Price<br>60.00 |  |

b) Min obj. coeff. for constraint 4 is 0 and Max obj. coeff. for constraint 4 is 0

But the Objective Value will increase by 40 as dual price is -2.5 for constraint 4

New Objective Function Value = 5850 + 40 = 5890

| Variable   | Value             | Obj Coeff            | Obj Val Contrib |              |  |
|------------|-------------------|----------------------|-----------------|--------------|--|
| x1:        | 0.00              | 50.00                | 0.00            |              |  |
| x2:        | 78.00             | 60.00                | 4680.00         |              |  |
| x3:        | 22.00             | 55.00                | 1210.00         |              |  |
| Constraint | RHS               | Slack-/Surplus+      |                 |              |  |
| 1 (<)      | 100.00            | 0.00                 |                 |              |  |
| 2 (<)      | 300.00            | 22.00-               |                 |              |  |
| 3 (>)      | 250.00            | 28.00+               |                 |              |  |
| 4 (>)      | 44.00             | 0.00                 |                 |              |  |
|            |                   | *** Sensitivity Anal | ysis***         |              |  |
| Variable   | Current Obj Coeff | Min Obj Coeff        | Max Obj Coeff   | Reduced Cost |  |
| x1:        | 50.00             | -infinity            | 57.50           | 7.50         |  |
| x2:        | 60.00             | 55.00                | infinity        | 0.00         |  |
| x3:        | 55.00             | 40.00                | 60.00           | 0.00         |  |
| Constraint | Current RHS       | Min RHS              | Max RHS         | Dual Price   |  |
| 1 (<)      | 100.00            | 90.67                | 107.33          | 60.00        |  |
| 2 (<)      | 300.00            | 278.00               | infinity        | 0.00         |  |
| 3 (>)      | 250.00            | -infinity            | 278.00          | 0.00         |  |
| 4 (>)      | 44.00             | 0.00                 | 100.00          | -2.50        |  |

#### **Conclusion:**

Constraint 1 will not affect the optimal solution if the objective coefficient will lie in [93.33,110] with dual price of 60. Constraint 4 will not affect the optimal solution if the objective coefficient will lie in [0,100] with dual price of -2.5. Constraint 2 will not affect the optimal solution and objective function value if the objective coefficient will lie in  $[270,\infty)$ .

Constraint 3 will not affect the optimal solution and objective function value if the objective coefficient will lie in  $(-\infty,270]$ .

2K20/MC/021

## Aim:

Solving Integer Programming Problem (IPP) using Branch and Bound Method in Tora.

#### **Problem:**

$$Max \ z = 7x_1 + 9x_2$$
  
 $s.t. \quad -x_1 + 3x_2 \le 6$   
 $7x_1 + x_2 \le 35$   
 $x_1, x_2 \ge 0$  and integer

#### Input:

|                  | x1       | x2       | Enter <, >, or = | R.H.S. |
|------------------|----------|----------|------------------|--------|
| Var. Name        |          |          |                  |        |
| Maximize         | 7.00     | 9.00     |                  |        |
| Constr 1         | -1.00    | 3.00     | <=               | 6.00   |
| Constr 2         | 7.00     | 1.00     | <b>&lt;</b> =    | 35.00  |
| Lower Bound      | 0.00     | 0.00     |                  |        |
| Upper Bound      | infinity | infinity |                  |        |
| Unrestr'd (y/n)? | n        | n        |                  |        |
| Integer (y/n)?   | у        | у        |                  |        |

## **Output:**



#### **Conclusion:**

Using Branch and Bound Method, we get the solution of Integer Programming Problem (IPP) as  $x_1=4$  and  $x_2=3$ 

# Aim:

To solve Transportation Problem in Tora.

Finding Initial Basic Feasible Solution (IBFS) using,

- 1. North-West Corner Cell Method (NWC)
- 2. Least Call Cell Method (LCM)
- 3. Vogel's Approximation Method (VAM)

#### **Problem:**

|        | $d_1$ | $d_2$ | $d_3$ | $d_4$ | Supply |
|--------|-------|-------|-------|-------|--------|
| $O_1$  | 6     | 14    | 21    | 23    | 12     |
| $O_2$  | 26    | 12    | 18    | 16    | 17     |
| $O_3$  | 14    | 20    | 21    | 14    | 20     |
| $O_4$  | 9     | 11    | 18    | 16    | 11     |
| Demand | 14    | 18    | 20    | 8     |        |

# Input:

|            |          | D1    | D2    | D3    | D4    | Supply |
|------------|----------|-------|-------|-------|-------|--------|
|            | S/D Name |       |       |       |       |        |
| S1         | 01       | 6.00  | 14.00 | 21.00 | 23.00 | 12     |
| S2         | 02       | 26.00 | 12.00 | 18.00 | 16.00 | 17     |
| <b>S</b> 3 | 03       | 14.00 | 20.00 | 21.00 | 14.00 | 20     |
| <b>S4</b>  | 04       | 9.00  | 11.00 | 18.00 | 16.00 | 11     |
| Demand     |          | 14    | 18    | 20    | 8     |        |

# **Output:**

1. North-West Corner Cell Method (NWC)

|        |          |            |              | ze u or v<br>=0 ▼ |                 |          |        |  |
|--------|----------|------------|--------------|-------------------|-----------------|----------|--------|--|
|        |          | Next Itera | ation All It | erations \        | Write to Printe | r        |        |  |
| Iter 1 | ObjVal = | 903.00     | D1           | D2                | D3              | D4       | Supply |  |
|        | Name     |            |              |                   |                 |          |        |  |
|        |          |            | ∨1=6.00      | v2=-8.00          | v3=-7.00        | v4=-9.00 |        |  |
|        |          |            | 6.00         | 14.00             | 21.00           | 23.00    |        |  |
| S1     | 01       | u1=0.00    | 12           |                   |                 |          | 12     |  |
|        |          |            | 0.00         | -22.00            | -28.00          | -32.00   |        |  |
|        |          |            | 26.00        |                   | 18.00           | 16.00    |        |  |
| S2     | 02       | u2=20.00   | 2            | 15                |                 |          | 17     |  |
|        |          |            | 0.00         | 0.00              | -5.00           | -5.00    |        |  |
|        |          |            | 14.00        |                   | 21.00           | 14.00    |        |  |
| 53     | 03       | u3=28.00   |              | 3                 | _17             |          | 20     |  |
|        |          |            | 20.00        | 0.00              | 0.00            | 5.00     |        |  |
|        |          |            | 9.00         | 11.00             |                 |          |        |  |
| S4     | 04       | u4=25.00   |              |                   | 3               | 8        | 11     |  |
|        |          |            | 22.00        | 6.00              | 0.00            | 0.00     |        |  |
|        | Demand   |            | 14           | 18                | 20              | 8        |        |  |

# 2. Least Call Cell Method (LCM)

|           |          |           |           | lize u or v<br>I=0 ▼ |                 |         |        |
|-----------|----------|-----------|-----------|----------------------|-----------------|---------|--------|
|           |          | Next Iter | ation All | Iterations '         | Write to Printe | er      |        |
| Iter 1    | ObjVal = | 805.00    | D1        | D2                   | D3              | D4      | Supply |
|           | Name     |           |           |                      |                 |         |        |
|           |          |           | v1=6.00   | v2=8.00              | v3=14.00        | v4=7.00 |        |
|           |          |           | 6.0       | 0 14.00              | 21.00           | 23.00   |        |
| S1        | 01       | u1=0.00   | 12        |                      |                 |         | 12     |
|           |          |           | 0.00      | -6.00                | -7.00           | -16.00  |        |
|           |          |           | 26.0      | 12.00                | 18.00           | 16.00   |        |
| <b>S2</b> | 02       | u2=4.00   |           | 9                    | 8               |         | 17     |
|           |          |           | -16.00    | 0.00                 | 0.00            | -5.00   |        |
|           |          |           | 14.0      | 20.00                | 21.00           | 14.00   |        |
| <b>S3</b> | 03       | u3=7.00   |           |                      | 12              | 8       | 20     |
|           |          |           | -1.00     | -5.00                | 0.00            | 0.00    |        |
|           |          |           | 9.0       | 11.00                | 18.00           | 16.00   |        |
| S4        | 04       | u4=3.00   | 2         | 9                    |                 |         | 11     |
|           |          |           | 0.00      | 0.00                 | -1.00           | -6.00   |        |
|           | Demand   |           | 14        | 18                   | 20              | 8       |        |

# 3. Vogel's Approximation Method (VAM)

|        |          |            |              | ze u or v<br>=0 ▼ |                 |         |        |
|--------|----------|------------|--------------|-------------------|-----------------|---------|--------|
|        |          | Next Itera | ation All It | erations \        | Write to Printe | г       |        |
| Iter 1 | ObjVal = | 805.00     | D1           | D2                | D3              | D4      | Supply |
|        | Name     |            |              |                   |                 |         |        |
|        |          |            | v1=6.00      | ∨2=8.00           | √3=14.00        | v4=7.00 |        |
|        |          |            | 6.00         | 14.00             | 21.00           | 23.00   |        |
| S1     | 01       | u1=0.00    | 12           |                   |                 |         | 12     |
|        |          |            | 0.00         | -6.00             | -7.00           | -16.00  |        |
|        |          |            | 26.00        | 12.00             | 18.00           | 16.00   |        |
| S2     | 02       | u2=4.00    |              | 9                 | 8               |         | 17     |
|        |          |            | -16.00       | 0.00              | 0.00            | -5.00   |        |
|        |          |            | 14.00        | 20.00             | 21.00           | 14.00   |        |
| S3     | 03       | u3=7.00    |              |                   | 12              | 8       | 20     |
|        |          |            | -1.00        | -5.00             | 0.00            | 0.00    |        |
|        |          |            | 9.00         | 11.00             | 18.00           | 16.00   |        |
| S4     | 04       | u4=3.00    | 2            | 9                 |                 |         | 11     |
|        |          |            | 0.00         | 0.00              | -1.00           | -6.00   |        |
|        | Demand   |            | 14           | 18                | 20              | 8       |        |

#### **Conclusion:**

The Initial Basic Feasible solution for the given Transportation problem is given in the Tableau above. The Optimum Objective Value of given Transportation Problem using,

- 1. North-West Corner Cell Method (NWC) is 903
- 2. Least Call Cell Method (LCM) is 805
- 3. Vogel's Approximation Method (VAM) is 805

## Aim:

To solve Assignment Problem in Tora.

#### **Problem:**

| Workers | Job A | Job B | Job C | Job D |
|---------|-------|-------|-------|-------|
| 1       | 10    | 25    | 15    | 20    |
| 2       | 15    | 30    | 12    | 15    |
| 3       | 35    | 20    | 5     | 25    |
| 4       | 17    | 25    | 24    | 20    |

# Input:

|            |          | D1    | D2    | D3    | D4    | Supply |
|------------|----------|-------|-------|-------|-------|--------|
|            | S/D Name | Α     | В     | С     | D     |        |
| S1         | 1        | 10.00 | 25.00 | 15.00 | 20.00 | 1      |
| S2         | 2        | 15.00 | 30.00 | 12.00 | 15.00 | 1      |
| <b>S</b> 3 | 3        | 35.00 | 20.00 | 5.00  | 25.00 | 1      |
| <b>S4</b>  | 4        | 17.00 | 25.00 | 24.00 | 20.00 | 1      |
| Demand     |          | 1     | 1     | 1     | 1     |        |
|            |          |       |       |       |       |        |

# **Output:**



#### **Conclusion:**

The Optimum Objective Value of given Assignment problem is 55. Assignment of Jobs: Job A to 1, Job B to 4, Job C to 3 and Job D to 2. 2K20/MC/021

# Aim:

To implement Critical Path Method (CPM) using Tora.

#### **Problem:**

Consider the following table summarizing the details of a project,

| Activity | Precedence | Duration |  |
|----------|------------|----------|--|
| Α        | -          | 3        |  |
| В        | Α          | 5        |  |
| С        | Α          | 4        |  |
| D        | В          | 6        |  |
| Е        | В, С       | 7        |  |
| F        | D. F       | 4        |  |

# Input:

| Row | From Node | To Node | Activity Symbol | Duration |
|-----|-----------|---------|-----------------|----------|
| 1   | 1         | 2       | A               | 3.00     |
| 2   | 2         | 3       | В               | 5.00     |
| 3   | 2         | 4       | С               | 4.00     |
| 4   | 3         | 5       | D               | 6.00     |
| 5   | 3         | 6       | E               | 7.00     |
| 6   | 4         | 6       | E               | 7.00     |
| 7   | 5         | 7       | F               | 4.00     |
| 8   | 6         | 7       | F               | 4.00     |
|     |           |         |                 |          |

# **Output:**

| Mode                |                                                                                                               |                                                                                                                                                                                 | Backward Pass                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Node                | Earliest Time                                                                                                 | Step                                                                                                                                                                            | Node                                                                                                                                                                                                                                                        | Latest Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1                   | 0.00                                                                                                          | 8                                                                                                                                                                               | 7                                                                                                                                                                                                                                                           | 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 2                   | 3.00                                                                                                          | 9                                                                                                                                                                               | 5                                                                                                                                                                                                                                                           | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 3                   | 8.00                                                                                                          | 10                                                                                                                                                                              | 6                                                                                                                                                                                                                                                           | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 4                   | 7.00                                                                                                          | 11                                                                                                                                                                              | 3                                                                                                                                                                                                                                                           | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 5                   | 14.00                                                                                                         | 12                                                                                                                                                                              | 4                                                                                                                                                                                                                                                           | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6                   | 15.00                                                                                                         | 13                                                                                                                                                                              | 2                                                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 7                   | 19.00                                                                                                         | 14                                                                                                                                                                              | 1                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Forward pass comple | eted                                                                                                          | Backward pass completed                                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Duration            | Earliest Start                                                                                                | Latest Completion                                                                                                                                                               | Total Float                                                                                                                                                                                                                                                 | Free Float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3.00                | 0.00                                                                                                          | 3.00                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                     |                                                                                                               |                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4.00                | 3.00                                                                                                          | 8.00                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6.00                | 8.00                                                                                                          | 15.00                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                     | 8.00                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7.00                | 7.00                                                                                                          | 15.00                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4.00                | 14.00                                                                                                         | 19.00                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                     |                                                                                                               |                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>Forward pass comple<br>Duration<br>3:00<br>5:00<br>4:00<br>6:00<br>7:00<br>4:00 | 2 3.00 3 8.00 4 7.00 5 14.00 6 15.00 7 19.00 Forward pass completed  Duration Earliest Start  3.00 3.00 4.00 3.00 4.00 3.00 6.00 8.00 7.00 8.00 7.00 7.00 4.00 14.00 4.00 14.00 | 2 3.00 9 3 8.00 10 4 7.00 111 5 14.00 12 6 15.00 13 7 19.00 14  Forward pass completed Backs  Duration Earliest Start Latest Completion  3.00 0.00 3.00 8.00 4.00 3.00 8.00 4.00 3.00 8.00 6.00 8.00 15.00 7.00 8.00 15.00 7.00 7.00 15.00 4.00 14.00 19.00 | 2       3.00       9       5         3       8.00       10       6         4       7.00       11       3         5       14.00       12       4         6       15.00       13       2         7       19.00       14       1         Forward pass completed       Backward pass completed         Duration       Earliest Start       Latest Completion       Total Float         3.00       3.00       3.00       0.00         5.00       3.00       3.00       0.00         4.00       3.00       8.00       1.00         4.00       3.00       15.00       1.00         7.00       7.00       15.00       1.00         4.00       14.00       19.00       1.00         4.00       15.00       1.00         4.00       15.00       1.00         4.00       15.00       1.00 |  |  |

## **Conclusion:**

The Critical activities for project completion are *Activity A, B, E & F*The minimum duration for the completion of the project is *19 units*.

# Aim:

To implement Project Evaluation & Review Technique (PERT) using Tora.

#### **Problem:**

The following table shows the jobs of a network along with their time estimation,

| Activity | Activity Symbol | Optimistic Time (a) | Most Likely Time (m) | Pessimistic Time (b) |
|----------|-----------------|---------------------|----------------------|----------------------|
| 1-2      | Α               | 3                   | 5                    | 7                    |
| 1-3      | В               | 4                   | 6                    | 8                    |
| 2-3      | С               | 1                   | 3                    | 5                    |
| 2-4      | D               | 5                   | 8                    | 11                   |
| 3-5      | E               | 1                   | 2                    | 3                    |
| 3-6      | F               | 9                   | 11                   | 13                   |
| 4-5      | Dummy           | 0                   | 0                    | 0                    |
| 4-6      | G               | 1                   | 1                    | 1                    |
| 5-6      | Н               | 10                  | 12                   | 14                   |

## Input:

| Row | From Node | To Node | Activity Symbol | a     | m     | b     |
|-----|-----------|---------|-----------------|-------|-------|-------|
| 1   | 1         | 2       | A               | 3.00  | 5.00  | 7.00  |
| 2   | 1         | 3       | В               | 4.00  | 6.00  | 8.00  |
| 3   | 2         | 3       | С               | 1.00  | 3.00  | 5.00  |
| 4   | 2         | 4       | D               | 5.00  | 8.00  | 11.00 |
| 5   | 3         | 5       | E               | 1.00  | 2.00  | 3.00  |
| 6   | 3         | 6       | F               | 9.00  | 11.00 | 13.00 |
| 7   | 4         | 5       | Dummy           | 0.00  | 0.00  | 0.00  |
| 8   | 4         | 6       | G               | 1.00  | 1.00  | 1.00  |
| 9   | 5         | 6       | H               | 10.00 | 12.00 | 14.00 |

#### **Output:**

| Node | Longest Path Based on Mean Durations | Mean Duration | Std. Deviation |  |
|------|--------------------------------------|---------------|----------------|--|
| 2    | 1-2                                  | 5.00          | 0.67           |  |
| 3    | 1-2-3                                | 8.00          | 0.94           |  |
| 4    | 1-2-4                                | 13.00         | 1.20           |  |
| 5    | 1-2-4-5                              | 13.00         | 1.20           |  |
| 6    | 1-2-4-5-6                            | 25.00         | 1.37           |  |

#### **Conclusion:**

The Critical activities for project completion are *Activity A, D, Dummy & H*The Expected duration for the completion of the project is *25 units*.