College of Engineering Pune

Tutorial on Ordinary Differential Equation

1. Verify that the following functions are solutions of the corresponding differential equations.

(a)
$$y = \sin^{-1} xy$$
, $xy' + y = y'\sqrt{1 - x^2y^2}$

(b)
$$x^2 + y^2 = 1$$
, $x + yy' = 0$

(c)
$$y = ce^{-x} + x^2 - 2x$$
, $y' + y = x^2 - 2$

(d)
$$y^2 - 2x^2 = c$$
, $yy' = 2x$

(e)
$$y = e^{x^2} \int_0^x e^{-t^2} dt$$
, $y' = 2xy + 1$

2. Obtain the general solution of each of the following differential equations:

(a)
$$y' = \frac{1}{(x+1)(x^2+1)}$$

(b)
$$y' = \frac{y^2 - xy}{x^2 + xy}$$

(c)
$$xy' = y + x\cos^2(y/x)$$

(d)
$$y' = \frac{-x + 2y - 1}{4x - 3y - 6}$$

(e)
$$(2x^2 + 3y^2 - 7)xdx = (3x^2 + 2y^2 - 8)ydy$$

3. Find the perticular solution of each of the following differential equations:

(a)
$$x^3(\sin y)y' = 2;$$
 $y(x) \to \pi/2 \text{ as } x \to +\infty$

(b)
$$y' = y(y^2 - 1);$$
 $y(0) = 2$

(c)
$$(x+2)y' - xy = 0;$$
 $y(0) = 1$

(d)
$$y' + \frac{y-x}{y+x} = 0;$$
 $y(1) = 1.$

(e)
$$y' = (y - x)^2$$
; $y(0) = 2$

(f)
$$e^x y' = 2(x+1)y^2$$
; $y(0) = 1/6$.

4. Show that the following differential equations are exact and hence obtain their general solution.

(a)
$$3x(xy-2)dx + (x^3+2y)dy = 0$$

(b)
$$(\cos x \cos y - \cot x)dx - \sin x \sin ydy = 0$$

(c)
$$(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$$

(d)
$$(\sin x \cosh y)dx - (\cos x \sinh y)dy = 0.$$

(e)
$$(\frac{\cos y}{x+3})dx - (\sin y \ln(5x+15) - 1/y)dy = 0$$

5. Verify that $1/x^2$, $1/y^2$, 1/xy, $1/(x^2+y^2)$ are integrating factors of the differential equation

$$-ydx + xdy = 0$$

.

- 6. Verify that $(y+1)/x^4$ is an integrating factor of the differential equation 3(y+1)dx = 2xdy. Solve it by using this IF and otherwise.
- 7. Solve the following differential equations:

(a)
$$(2\cos y + 4x^2)dx = x\sin ydy$$

- (b) $ye^{x/y}dx + (y xe^{x/y})dy = 0$
- (c) $(2x + e^y)dx + xe^y dy = 0$
- (d) $(x+y^2)dy dx = 0$
- (e) $(x+y)^2y'=1$
- (f) $y' x^{-1}y = x^{-1}y^2$.
- (g) $xy' = y(\ln y \ln x)$
- (h) $(xy + x^3y^3) \frac{dy}{dx} = 1$
- (i) $e^y y' e^y = 2x x^2$
- (i) $y' + 4xy = e^{-2x^2}$; y(0) = -4
- (k) $6y^2dx x(2x^3 + y)dy = 0$
- (1) $\cos y \sin 2x dx + (\cos^2 y \cos^2 x) dy = 0$
- 8. For a differential equation Mdx + Ndy = 0, if $\frac{\frac{\partial M}{\partial y} \frac{\partial N}{\partial x}}{N}$ is a function of x alone i.e f(x), then prove that $e^{\int f(x)dx}$ is an IF of the given equation.
- 9. Obtain the solutions of following differential equations:
 - (a) $xdy = (y + x^2 + 9y^2)dx$
 - (b) $(4xy + 3y^2 x)dx + x(x + 2y)dy = 0$
 - (c) $y xy' = y'y^2e^y$
 - (d) y' = cosecx ycotx
 - (e) $2(y+1)y' \frac{2}{x}(y+1)^2 = x^4$
 - (f) $(4xy + 3y^4)dx + (2x^2 + 5xy^3)dy = 0$
- 10. Verify that the given functions are linearly independent solutions of of the given differential equation. Hence write the general solution and solve the given initial value problem.
 - (a) $y'' + 9y = 0, y(0) = 4, y'(0) = 6, y_1 = \cos 3x, y_2 = \sin 3x$
 - (b) $4x^2y'' 3y = 0, y(1) = 3, y'(1) = 2.5, y_1 = x^{-1/2}, y_2 = x^{3/2}$
- 11. Using the method of reduction of order, obtain the second linearly independent solution of the following differential equations:
 - (a) $xy'' + 2y' + xy = 0, y_1 = (\sin x)/x$
 - (b) $(1-x^2)y'' 2xy' + 2y = 0, y_1 = x$
- 12. Obtain a general solution of the following differential equations:
 - (a) 25y'' + 40y' + 16y = 0 (b) $y'' + 4y' + (4 + \omega^2)y = 0$
 - (c) $y'' k^2 y = 0$
- (d) 2y'' 9y' = 0
- (e) $y'' 2\sqrt{2}y' + 2.5y = 0$ (f) 4y'' + 16y' + 17y = 0
- (g) $(9D^2 + 6D + 1)y = 0$
- (h) $(D^2 + \pi(\pi 1)D \pi^3)y = 0$
- 13. Solve the following boundary value problems:
 - (a)y'' 25y = 0, $y(-2) = y(2) = \cosh 10$ (b) y'' + 2y' + 2y = 0; y(0) = 1, $y(\pi/2) = 0$
- 14. Solve the following initial value problems:
 - (a) $x^2y'' 2xy' + 2y = 0, y(1) = 1.5, y'(1) = 1$
 - (b) $x^2y'' + xy' + 9y = 0, y(1) = 2, y'(1) = 0$
 - (c) $(x^2D^2 + 3xD + 1)y = 0, y(1) = 3, y'(1) = -4$

15. Using the method of undetermined coefficients, obtain a real general solution of following nonhomogeneous differential equations:

(a)
$$y'' - y' - 2y = 3e^{2x}$$

(b)
$$3y'' + 10y' + 3y = 9x + 5\cos x$$

(c)
$$y'' + 6y' + 9y = 50e^{-x}\cos x$$
 (d) $y'' + 2y' + 10y = 25x^2 + 3$

(d)
$$y'' + 2y' + 10y = 25x^2 + 3$$

(e)
$$y'' + 4y' + 4y = 18\cosh x$$

(f)
$$y'' + y' = 2 + 2x + x^2$$

16. Using the method of variation of parameters, obtain a real general solution of following nonhomogeneous differential equations:

(a)
$$y'' - 4y' + 4y = e^{2x}/x$$

(b)
$$y'' + 9y = sec3x$$

(c)
$$y'' - 4y' + 5y = e^{2x} cosecx$$

(d)
$$(D^2 + 6D + 9)y = 16e^{-3x}/(x^2 + 1)$$

(e)
$$y'' + 4y' + 4y = e^{-2x}/x^2$$
; $x > 0$

17. Solve the following differential equations:

(a)
$$(D^4 + 4D^3 + 8D^2 + 8D + 4)y = 0$$

(b)
$$(D^4 + 10D^2 + 9)y = 0$$

(c)
$$(D^5 - 3D^4 + 3D^3 - D^2)y = 0$$

(d)
$$y''' - y' = 2x^2 e^x$$

(e)
$$(D^3 + 3D^2 + 3D + 1)y = e^{-x} \sin x$$