

Engenharia de Sistemas Informáticos Sistemas Embebidos e de Tempo Real Ano Letivo 2018/2019

Época Normal										
Semestral	\boxtimes	1º Teste	Anual	1º Chamada		1º Teste		2º Teste		Global
		2º Teste		2º Chamada						
Época Recurso			Época Especial				Exan	ne Especial		
Duração: 1h30min			Tolerância: 30 minutos				Com Consulta			
Durução. 1113011111	<u>'</u>		Toleranda: 30 mmates				Sem Consulta			
Docente: Sofia Miranda da Silva Portela Data:					Data: 06	6/06/2019				
Nome:							Núm	ero:		

Versão A Grupo 1 (5 valores)

(cada resposta correta vale 0,5 valores e cada resposta errada desconta 0,2 valores no grupo)

1. Verdadeiro ou Falso

Os sistemas de informação gerem estruturas de dados complexas e são dependentes do tipo de hardware.
Um escalonador preemptivo é aquele que permite substituir uma tarefa de menor prioridade por uma de prioridade superior.
Um sistema embebido pode executar vários programas.
Soft real time é quando o cumprimento das restrições causa redução da performance.
Na plataforma arduino a função Serial.println(analogvalue, HEX), imprime um ASCII no formato octal
No método de programação assíncrona, modificação nos requisitos implica modificações na estrutura do programa.
Uma Task não é proprietária de recursos.
Em programação tempo real podemos ter comunicação síncrona e comunicação assíncrona.
Escalonamento Estático pode ser usado quando se está perante um sistema com comportamento determinístico.
Uma Task possuí 4 estados: a correr, pronto a correr, morta, suspensa.

Grupo 2 (15 valores)

- 1. (1,5 valor) Indique quais são as principais caraterísticas de um sistema embebido.
- 2. (1,5 valor) Quais os desafios no design de sistemas embebidos.

3. (1 valor) O tempo de resposta a um deadline de sistema embebido de tempo real pode ser de dois tipos, descreva-os de acordo com a imagem abaixo.

- 4. (1,5 valor) Um cliente pretende fazer um sistema para gerir um parque de estacionamento. Entrega a informação que o parque terá capacidade para 100 veículos, uma entrada e uma saída. Elabore uma proposta de requisitos funcionais e nãofuncionais.
- **5. (1 valor)** Quais as vantagens e desvantagens da programação síncrona e assíncrona no âmbito dos sistemas embebidos.
- **6. (1 valor)** Nos sistemas operativos é usual a utilização de métodos de sincronização, para evitar deadlock e livelock. Descreva em que consiste um deadlock e um livelock.
- **7. (2,5 valor)** Para os seguintes 2 tipos de escalonador (FIFO e Rate-Monotonic) descreva as suas caraterísticas e ordene temporalmente as tarefas para cada escalonador.

Tarefa	Tempo execução (ms)	Período (ms)	Prioridade		
Α	10	40	1		
В	20	60	2		
С	10	80	3		
D	20	100	4		
E	20	120	5		

8. (2,5 valor) Observe o seguinte código em Arduino e explique o seu objetivo geral. Descreva igualmente o funcionamento e objetivo de cada instrução.

```
int Pin = 9;
int cnt = 0;

void setup() {
    Serial.begin(57600);
    pinMode(8, INPUT);
}

void loop()

if(digitalRead(8) == LOW)
{
    Serial.print("SETR: ");
    Serial.print(cnt);
    Serial.print(" + ");
    Serial.println(analogRead(A3));
}
```

```
for (int Value = 0 ; Value <= 255; Value++)
{
    analogWrite(Pin, Value);
    delay(5);
}

for (int Value = 255 ; Value >= 0; Value--)
{
    analogWrite(Pin, Value);
    delay(5);
}

cnt++;
}
```


9. (2,5 valor) Analise o código FreeRTOS abaixo e descreva o objetivo de cada função.

```
SemaphoreHandle t xSerialSemaphore;
void TaskDigitalRead( void *pvParameters );
void TaskAnalogRead( void *pvParameters );
void setup() {
 Serial.begin(9600);
 if ( xSerialSemaphore == NULL )
   xSerialSemaphore = xSemaphoreCreateMutex();
   if ( ( xSerialSemaphore ) != NULL )
     xSemaphoreGive ( (xSerialSemaphore ) );
 xTaskCreate(
   TaskDigitalRead
   , (const portCHAR *) "DigitalRead"
     164
   , NULL
   , NULL );
 xTaskCreate(
   TaskAnalogRead
   , (const portCHAR *) "AnalogRead"
   , 128
   , NULL
   , 1
     NULL );
                                       /*-----*/
```

```
void TaskDigitalRead( void *pvParameters __attribute__((unused)) )
 uint8 t pushButton = 2;
 pinMode (pushButton, INPUT);
 for (;;)
    int buttonState = digitalRead(pushButton);
   if ( xSemaphoreTake( xSerialSemaphore, ( TickType_t ) 5 ) == pdTRUE )
     Serial.println(buttonState);
     xSemaphoreGive ( xSerialSemaphore );
    vTaskDelay(1);
void TaskAnalogRead( void *pvParameters __attribute__((unused)) )
 for (;;)
    int sensorValue = analogRead(A0);
   if ( xSemaphoreTake( xSerialSemaphore, ( TickType t ) 5 ) == pdTRUE )
     Serial.println(sensorValue);
     xSemaphoreGive ( xSerialSemaphore );
   vTaskDelay(1);
```

void loop(){}