Greedy Algorithms 2

Jie Wang

University of Massachusetts Lowell Department of Computer Science

Independent Systems Greedy

- Want to figure out exactly when a greedy strategy does produce optimal solution. We first look at maximization.
- Independent system: Let E be a finite set and I a collection of subsets of E. Call (E,I) an independent system if E is closed under inclusion:

If
$$A \in \mathcal{I}$$
 and $B \subset A$ then $B \in \mathcal{I}$.

- Example 1: E is any set of vectors in some vector space; \mathcal{I} is a collection of sets of linearly independent vectors.
- Example 2: E is a set of edges of an undirected graph; \mathcal{I} is the collection of all acyclic sets of edges.
- Example 3: E is the edges of an undirected graph; $\mathcal I$ is the collection of sets of independent edges (i.e. no more than one edge sharing a vertex).

Activity Selection

Example 4:

- E is the set of all intervals $[s_i, f_i]$.
- ullet I is a collection of subsets of non-overlapping intervals in E.
- Then (E, \mathcal{I}) is an independent system for permissable activities.

MAX-ISS and Greedy Algorithm

- Maximum Independent Subset (MAX-ISS):
 - Find $I \in \mathcal{I}$ such that c(I) is maximum.
 - c is a cost function: $E \to R^+$.
- Greedy Algorithm: Sort elements of E such that

$$c(e_1) \geq c(e_2) \geq \cdots \geq c(e_n).$$

```
1 I = \emptyset

2 for i = 1 to n

3 if I \cup \{e_i\} \in \mathcal{I}

4 I = I \cup \{e_i\}

5 return I
```

Approximation Ratio

• Let $F \subseteq E$. A set $I \subseteq F$ is maximal independent subset of F if no independent subset of F contains I as a proper subset. Let

$$u(F) = \min\{|I| \mid I \text{ is a maximal independent subset of } F\}$$

 $v(F) = \max\{|I| \mid I \text{ is an independent subset of } F\}$

• **Theorem 1.** Let I_G be the solution obtained from the Greedy Algorithm and I^* a maximum solution to MAX-ISS . Then

$$1 \le \frac{c(I^*)}{c(I_G)} \le \max_{F \subseteq E} \frac{u(F)}{v(F)}.$$

Proof

- Let $E = \{e_1, e_2, \dots, e_n\}$ with $c(e_1) \ge c(e_2) \ge \dots \ge c(e_n)\}$.
- Let $E_i = \{e_1, \dots, e_i\}$. Then $I_i = E_i \cap I_G$ is a maximum independent subset of E_i .
 - If not, let $e_j \in E_i I_G$ such that $I_i \cup \{e_j\}$ is independent.
 - The set I at the beginning of the j-th iteration of the Greedy Algorithm is a subset of I_G .
 - Thus, $I \cup \{e_j\} \subseteq I_i \cup \{e_j\}$, and hence independent.
 - This implies that e_j must be included to I_G by the Greedy Algorithm at the j-th iteration, contradicting to $e_i \notin I_G$.
- Thus, $|I_i| \geq u(E_i)$.
- It follows from $E_i \cap I^*$ being independent that $|E_i \cap I^*| \leq v(E_i)$.
- For $i = 1, \dots, n$,

$$|\mathit{I}_{i}| - |\mathit{I}_{i-1}| = egin{cases} 1, & \text{if } e_{i} \in \mathit{I}_{G}, \\ 0, & \text{otherwise}. \end{cases}$$

Proof Continued

Then

$$c(I_G) = \sum_{e_i \in I_G} c(e_i) = \sum_{i=1}^n c(e_i)(|I_i| - |I_{i-1}|)$$

$$= \sum_{i=1}^{n-1} |I_i|(c(e_i) - c(e_{i-1})) + |I_n|c(e_n)$$

$$\geq \sum_{i=1}^{n-1} u(E_i)(c(e_i) - c(e_{i-1})) + u(E_n)c(e_n).$$

Likewise,

$$c(I^*) = \sum_{i=1}^{n-1} |I_i^*|(c(e_i) - c(e_{i-1})) + |I_n^*|c(e_n),$$

where $I_i^* = E_i \cap I^*$.

Proof Continued

Let

$$r = \max_{F \subseteq E} \frac{v(F)}{u(F)},$$

then $r \geq 1$. We have

$$c(I^*) \leq \sum_{i=1}^{n-1} v(E_i)(c(e_i) - c(e_{i+1})) + v(E_n)c(e_n)$$

$$\leq \sum_{i=1}^{n-1} r \cdot u(E_i)(c(e_i) - c(e_{i-1})) + r \cdot u(E_n)c(e_n)$$

$$\leq r \cdot c(I_G). \quad \Box$$

Matroids

• A matroid is an independent system (E, \mathcal{I}) such that for any $F \subseteq E$:

$$v(F) = u(F)$$
.

- Note: this is a weaker definition than the one used in the textbook.
- A weighted matroid is a matroid where there is a weight for each element, and |A| is defined to be

$$w(A) = \sum_{e \in A} w(e).$$

Matroid Example 1

Graph matroid: For a given graph G, let E be the set of edges and \mathcal{I} the family of edge sets that form an acyclic subgraphs of G. Then (E,\mathcal{I}) is a matroid.

• **Proof**. Let $F \subseteq E$. Suppose that the subgraph (V_F, F) has m connected components. Then the maximal acyclic subgraph for each connected component $C = (V_C, E_C)$ is simply a spanning tree of C with $|V_C| - 1$ edges. Thus, every maximal acyclic subgraph of (V_F, F) has exactly |V| - m edges. \square

Matroid Example 2

Example 2. Let (E, \mathcal{I}) be an independent system. For any $A \in \mathcal{I}$, let

$$C_A = \{B \subseteq E \mid A \not\subset B\}.$$

Then C_A is a matroid.

Proof. Let $F \subseteq E$.

- If $A \not\subset F$, then $F \in C_A$ and has a unique maximal independent subset of F, that is, itself. Hence, u(F) = v(F) = |F|.
- If $A \subseteq F$, then every maximal independent subset of F must be in the form of $F \{e\}$ for some $e \in A$. Thus, u(A) = v(A) = |F| 1. \square

Activity Selections

The following independent system (E, \mathcal{I}) for activity selections is not a matroid, where

- E is the set of all intervals $[s_i, f_i]$.
- ullet ${\cal I}$ is a family of subsets of non-overlapping intervals in ${\cal E}.$
 - **Proof**. Let $E = \{[1,6],[2,3],[3,4],[4,5]\}$, $A = \{[1,6]\}$, $B = \{[2,3],[3,4],[4,5]\}$.
 - Both $A \in \mathcal{I}$ and $B \in \mathcal{I}$ and both are maximal.
 - But |A| < |B|.

Greedy Algorithm for MAX-ISS and Matroid

Theorem 2. An independent system (E, \mathcal{I}) is a matroid iff for any cost function c, the greedy algorithm for MAX-ISS produces an optimal solution for any instance.

Proof. Theorem 1 provides the "only if" part. For the "if" part, supposed that (E, \mathcal{I}) is not a matroid.

- There is a subset $F \subseteq E$ such that F has two maximal independent subsets I and I' with |I| > |I'|.
- Let $\epsilon \in (0, 1/|I'|)$. Construct a cost function c as follows:

$$c(e) = egin{cases} 1+\epsilon, & ext{if } e \in I', \ 1, & ext{if } e \in I-I', \ 0, & ext{if } e \in E-(I \cup I'). \end{cases}$$

Clearly, c(I) > c(I').

• Since c(e') > c(e) for $e' \in I'$ and $e \in I$, the greedy algorithm for MAX-ISS produces the solution set I'. A contradiction.

Matroids

- By the definition of matroids, an independent system is a matroid iff all maximal independent subsets have the same size. This gives rise to the following stronger definition of Matroid (this is the definition used in the textbook):
- An independent system (E,\mathcal{I}) is a matroid if it satisfies the the following exchange property:
 - If $A \in \mathcal{I}$, $B \in \mathcal{I}$, and |A| < |B|, then there exists $e \in B A$ such that $A \cup \{e\} \in \mathcal{I}$.
- Note that the exchange property is a stronger condition, for it implies that all maximal independent subsets have the same size. However, the other direction may not hold.

Submodularity Greedy For MIN

- For maximization MAX greedy there are independent subset systems and matroids.
- For MIN greedy there is submodularity.
- Let f be a function: $2^E \to R^+$. Function f is submodular if for any $A, B \in 2^E$:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

Minimum Set Cover

- Given a collection C of subsets of a set E, find a subcollection C' of C with minimum cardinality such that every element of E appears in a subset in C'.
- For a subcollection A of C, define

$$f(A) = \big| \bigcup_{S \in A} S \big|.$$

- Then $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$. Thus, function f is submodular.
- Greedy Algorithm
 - 1 $A = \emptyset$
 - 2 while |E| > f(A)
 - Choose $S \in C$ such that $f(A \cup \{S\})$ is maximum
 - 4 $A = A \cup \{S\}$

Analysis

- Suppose that S_1, S_2, \dots, S_k are selected by the greedy algorithm in order.
- Let $C_i = \{S_1, \cdots, S_i\}$. Then

$$f(C_{i+1})-f(C_i)\geq \frac{|E|-f(C_i)}{opt}.$$

- What is the upper bound of k?
- It can be shown that, if $A \subseteq B$ implies that $\Delta_X f(A) \ge \Delta_X f(B)$, then $k \le opt \cdot (1 + \ln \gamma)$, where $\gamma = \max_{1 \le i \le k} \{|S_i|\}$.
- It can be shown that, $A \subseteq B \Rightarrow \Delta_X f(A) \ge \Delta_X f(B)$ iff f is submodular and f is monotone increasing (i.e., $A \subseteq B \Rightarrow f(A) \le f(B)$.
- Theorem 3. The greedy algorithm produces an approximation within $(\ln n + 1)$ from the optimal.

Meaning of Submodularity

- The earlier the better!
- Monotone increasing gain!

Well, so much for greedy algorithms for now. We will revisit this issue later.