Progetto Statistica Numerica

Dataset: Brain Weight in Humans (Anubhab Swain) Hotel Bookings Analysis (The Devastator)

Federico Malservigi

0001115961

2024-2025

I Dataset selezionati

Hotel Bookings Analysis (The Devastator)

Descrizione:

Il dataset contiene informazioni dettagliate sulle prenotazioni alberghiere, inclusi dati sui clienti, durata del soggiorno, richieste speciali, tariffe, cancellazioni, e altro.

Per l'analisi sono state selezionate solo alcune colonne, ritenute rilevanti:

Colonne utilizzate:

- lead_time, stays_in_weekend_nights, stays_in_week_nights, adults, children babies, adr, total_of_special_requests (numeriche)
- is_canceled (categorica)

Dimensione finale del dataset:

118.896 righe × 9 colonne

Dataset per la Regressione

Brain Weight in Humans (Anubhab Swain)

Descrizione:

Dataset derivato da uno studio medico contenente dati su dimensioni della testa e peso del cervello, oltre a genere e fascia d'età.

Variabili utilizzate per la regressione:

- Head Size (cm³) (numerica continua)
- Brain Weight (grams) (numerica continua)

Dimensione finale del dataset:

237 righe × 2 colonne

EDA Univariata (Hotel Bookings Analysis)

Istogrammi

EDA Bivariata (Hotel Bookings Analysis)

In questo Scatter plot possiamo notare un aumento del Prezzo medio giornaliero della camera quando il numero di giorni tra la data di prenotazione e la data di arrivo è più breve, sottolineando una proporzionalità inversa tra le due variabili

EDA Multivariata

(Hotel Bookings Analysis)

Le correlazioni più forti confermano che:

• **Lead time** influisce positivamente sul rischio di cancellazione.

• **Richieste speciali** influiscono negativamente sul rischio di cancellazione.

 Prezzo medio giornaliero della camera è influenzato positivamente soprattutto dal numero di adulti e bambini

Classificazione (Hotel Bookings Analysis)

Dataset ridotto al 5% (5924 righe) per motivi computazionali, mantenendo la rappresentatività.

Target: **is_canceled**

Suddivisione ottimale: 70% training – 15% validation – 15% test

Modello scelto: **SVM** lineare, configurazione ottimale:

{'kernel': 'linear', 'C': 10}

Accuratezza test set: 67.83%

Circa 2 prenotazioni su 3 sono classificate correttamente.

Tuning degli Iperparametri (Hotel Bookings Analysis)

Kernel	Degree	С	Gamma	Accuratezza Media sulla Validation Set
Linear	N/A	10	N/A	0.6977
Poly	2	10	N/A	0.6696
Poly	3	10	N/A	0.6727
Rbf	N/A	10	'scale'	0.6609

Studio statistico sui risultati della valutazione

(Hotel Bookings Analysis)

L'addestramento del del modello è stato fatto 20 volte. Di ogni metrica di errore abbiamo quanti un SRS(20)

Statistiche delle accuratezze:

☐ Media: 0.6863

☐ Deviazione standard: 0.0146

☐ Minimo: **0.6535**

☐ Massimo: **0.7222**

☐ Mediana: 0.6879

=== INFERENZA STATISTICA === Intervallo di confidenza al 95.0%: (0.6793, 0.6933)

Regressione Lineare Semplice

(Brain Weight in Humans)

Variable indipendente -> Head Size(cm^3)

Variable dipendente -> Brain Weight (grams)

Intercetta (B0): 319.83

Pendenza (B1): 0.2648

Coefficiente di semplice di determinazione (R^2)(test set): 0.70

MSE: 4617.92

Per ogni aumento di 1 cm³ nella dimensione cranica, il peso del cervello aumenta in media di 0.2648 grammi.

Analisi di Normalità dei residui (Test set)

(Brain Weight in Humans)

Shapiro-Wilk p-value: 0.8087

I residui seguono una distribuzione normale (non rifiutiamo H0)

