propriedades constantes. Justifique resumidamente a forma da curva encontrada.

- Uma esfera oca, com raio interno  $r_1$ , e raio externo  $r_2$ , possui temperaturas superficiais  $T_1$  e  $T_2$ , respectivamente, onde  $T_1 > T_2$ . Esboce a distribuição de temperatura em um sistema de coordenadas T-r, considerando a condução unidimensional em regime estacionário com propriedades constantes. Justifique resumidamente a forma da curva encontrada.
- Considere condução de calor unidimensional, em regime estacionário, através do sólido de forma simétrica mostrado na figura.



Supondo que não haja geração interna de calor, desenvolva uma expressão para a condutividade térmica k(x) para as seguintes condições: A(x) = (1 - x),  $T(x) = 300 (1 - 2x - x^3)$  e q = 6000 W, onde A está em metros quadrados, T em kelvins e x em metros.

Sum cone truncado sólido trabalha como um suporte de um sistema que mantém a superfície da face superior (truncada) a uma temperatura  $T_1$ , enquanto sua base encontrase a uma temperatura  $T_2 < T_1$ .



A condutividade térmica do sólido depende da temperatura de acordo com a relação  $k=k_o-aT$ , em que a é uma constante positiva. A superfície lateral do cone é isolada. As seguintes grandezas aumentam, diminuem ou permanecem constantes ao longo da direção positiva do eixo x: taxa de transferência de calor  $q_x$ , fluxo de calor  $q_x''$ , condutividade térmica k e gradiente de temperatura dT/dx?

2.6 Para se determinar o efeito que tem a dependência da condutividade térmica em relação à temperatura sobre a distribuição de temperatura em um sólido, considere um material para o qual essa dependência possa ser representada pela expressão

$$k = k_o + aT$$

em que  $k_o$  é uma constante positiva e a é um coeficiente que pode ser positivo ou negativo. Esboce a distribuição de temperatura em regime estacionário, associada com a transferência de calor através de uma parede plana para os três casos: a > 0, a = 0 e a < 0.

2.7 Transferência unidimensional de calor por condução em regime estacionário sem geração interna de calor ocorre no sistema mostrado. A condutividade térmica do material é 25 W/m · K, enquanto a espessura da parede L é de 0,5 m.

$$T_1$$
  $T_2$   $T_2$ 

Determine as grandezas desconhecidas para cada caso mostrado na tabela a seguir e esboce a distribuição de temperatura, indicando a direção do fluxo de calor.

| Caso | $T_1$ | $T_2$ | dT/dx<br>(K/m) | $q_x''$ $(W/m^2)$ |   |
|------|-------|-------|----------------|-------------------|---|
| 1    | 400 K | 300 K |                |                   | - |
| 2    | 100°C |       | -250           |                   |   |
| 3    | 80°C  |       | +200           |                   |   |
| 4    |       | −5°C  |                | 4000              |   |
| 5    | 30°C  |       |                | -3000             |   |

2.8 Considere condições de regime estacionário para a condução unidimensional de calor através de uma parede plana com condutividade térmica  $k = 50 \text{ W/m} \cdot \text{K}$  e espessura L = 0.25 m, sem geração interna de calor.



Determine o fluxo de calor e a grandeza desconhecida para cada caso mostrado na tabela a seguir e esboce a distribuição de temperatura, indicando a direção do fluxo de calor.

| Caso | $T_1(^{\circ}\mathbb{C})$ | <i>T</i> <sub>2</sub> (°C) | dT/dx (K/m)      |
|------|---------------------------|----------------------------|------------------|
| 1    | 50                        | -20                        | gg x a 1 ado dia |
| 2    | -30                       | -10                        |                  |
| 3    | 70                        |                            | 160              |
| 4    |                           | 40                         | -80              |
| 5    |                           | 30                         | 200              |