Luca Flabbi¹ Mauricio Teiada²

¹University of North Carolina - Chapel Hill

²Universidad Diego Portales and Millenium Nucleus LM²C²

Teiada gratefully acknowledges financial support from FONDECYT grant No 11196296 and ANID - MILENIO - NCS 2022_045.

Bolivian Conference on Development Economics - November 2023

Motivation

000

- In an influential paper published in 1983. Flinn and Heckman asked: "Are Unemployment and out of the Labor Force Behaviorally Distinct Labor Force States?"
 - ▶ Relevance: Labor economists had started to study labor market dynamics with richer theoretical and empirical models.
- ▶ The study of labor market dynamics in economies with high informality is experiencing a similar transformation.
 - It is necessary to take a stand on: What are the relevant labor market states? What transitions between labor market states should we focus on?
 - Current debate: Informal employee vs. informal self-employed.

Introduction 000

> Question: Should we differentiate between informal workers who are hired as employees and those who are working as self-employed?

Why:

- Aggregating or differentiating these two labor market states is relevant for estimation and policy.
- Both approaches have been used by influential papers, without producing a consensus in the literature.

What do we do:

- ▶ We conduct non-parametric tests (of equality of empirical distributions).
- We develop and estimate a search model where we directly impose (and test) the same behavior

Introduction 000

> Literature that estimate (or calibrate) search models aggregating unregistered employees and self-employed or excluding the self-employed.

```
[Haanwinckel and Soares (2021); Meghir, Narita, and Robin (2015);
Charlot, Malherbet, and Ulus (2013); Bosch and Esteban-Pretel
(2012); Albrecht, Navarro, and Vroman (2009)]
```

Literature that estimate (or calibrate) a search model and strongly differentiate between the two states

```
[Bobba, Flabbi, and Levy (2022); Bobba, Flabbi, Levy, and Tejada
(2021): Narita (2020)]
```

Papers beyond the search literature that take a stand in the debate.

```
[Esteban-Pretel and Kitao (2021); Ulyssea (2018); Granda and Hamann
(2015): Almeida and Carneiro (2012)]
```

We use data for Colombia: A country with high levels of informality and good quality data.

Gran Encuesta Integrada de Hogares (GEIH): Monthly household survey that focuses on labor market outcomes.

- Individual characteristics (gender, age, years of schooling)
- Labor market states:

Data

- Unemployed.
- Formal employment (full-time employees who contribute to the social security).
- Informal employment (full-time informal employees + self-employed working 48+ hours a week (top coded at 100 hours)).
- Ongoing durations in unemployment and employment states (in months).
- Labor income and weekly hours worked:
 - Real monthly wages (in US dollars of December 2016).

Flabbi and Tejada

	Unemployed	Formal	Informal E	Informal SE
	v = u	v = f	v = i	v = s
Duration	(months):			
E[t v]	4.0	64.8	32.8	105.7
SD[t v]	6.9	76.6	53.1	103.9
Labor Inco $E[x v]$ $SD[x v]$	ome (US dollars — —	per hour): 1.42 0.55	1.06 0.36	1.07 0.56
Labor Ma v	rket States (Pro 0.09	portion of t 0.40	the Labor Ford 0.12	e): 0.39

NOTE: The sample consists of 25-55-year-old men living in urban areas, who have completed at most secondary education and work full-time when employed

Kaplan-Meier Survival Functions

Flabbi and Tejada

Empirical CDF of accepted hourly wages

Flabbi and Tejada

Kolmogorov-Smirnov Test of Equality of Distributions

	Statistic	P-value			
H₀: Informal E d Values	uration distribution $=$ Informal SE duratio 0.3869	n distribution: 0.0000			
H_0 : U duration d Values	istribution before Informal $E = U$ duration 0.0326	distribution before Informal SE 0.0177			
$H_0:$ Informal E labor income distribution = Informal SE labor income distribution Values 0.1106 0.0000					

 $\operatorname{Note}\colon \mathsf{E}$ denotes employees, SE self-employed, and U unemployed.

The model

- We use a four-state partial equilibrium search model: unemployment u, informal self-employment s, formal employment f, and informal employment i.
- Let U and E(x, y) be the steady-state values of unemployment and employment.

$$\rho U = b + \sum_{v=s,f,i} \lambda(v) \left[\int \max \left\{ E(x,v) - U, 0 \right\} dG(x|v) \right]$$
$$\rho E(x,v) = x \left[1 - \tau \iota_{v=f} \right] + \theta \iota_{v=f} + \eta(v) \left[U - E(x,v) \right]$$

- The reservation labor income $x^*(v) = \frac{\rho U \theta \iota_{v=f}}{1 \tau \iota_{v=f}}$, with $\theta = \tau \rho U$.
- Steady-state equilibrium: $u\lambda(v)[1-G(x^*(v)|v)]=\eta(v)v$.
- The null hypothesis of behaviorally indistinguishable informal states is:

$$\begin{cases} \lambda(s) = \lambda(i) \\ \eta(s) = \eta(i) \\ G(x|s) = G(x|i) \end{cases}$$

Estimation

- ▶ We estimate the model by maximum likelihood. The null hypothesis is directly tested by using the LR test.
- ► The identification strategy follow standard arguments:
 - Durations provide direct information to identify hazard rates.
 - Labor incomes identify wage offers distributions under recoverable parametric distribution [Flinn and Heckman (1982)]: we assume that G(x|v) are log-normal with parameters $\{\mu(v), \sigma(v)\}.$
 - ▶ The flow utility of unemployment (b) and the discount rate (ρ) are jointly identified. We set $\rho = 0.12$ [Moore, et.al. (2020)] to recover b.
 - We set $\tau = 0.16$ [Fernandez and Villar (2017)] and recover θ from condition $\theta = \tau \rho U$.
- ▶ To account for the possibility of labor income being measured with error, we incorporate measurement error in the estimation procedure: $x^o = x \times \epsilon$

Estimated parameters

Parameters	Unrestricted			Restricted		
	Formal	Informal E	Informal SE	Formal	Informal E	Informal SI
	v = f	v = i	v = s	v = f	v = i	v = s
$\lambda(v)$	0.0897 0.0553 0.0529		0.097	7 0.0446		
` '	(0.0015)	(0.0012)	(0.0009)	(0.0015)	(0.0007)	
$\eta(v)$	0.0157	, , , , ,		0.0159	0.0115	
./(-/	(0.0001)	(0.0006)	(0.0001)	(0.0001)	(0.0001)	
$\mu(v)$	0.2956	0.0071	-0.0500	0.2957	-0.0363	
, , ,	(0.0033)	(0.0055)	(0.0001)	(0.0068)	(0.0068)	
$\sigma(v)$	0.3145	0.3434	0.5048	0.3141	0.4723	
	(0.0099)	(0.0098)	(0.0058)	(0.0222)	(0.0142)	
Ь	-1.7205		-1.6053			
	(0.0839)			(0.0954)		
θ	0.0106		0.0160			
	(0.0048)		(0.0060)			
Log-Likelihood	-470885.0		-480498.0			
LR Statistic			19226.0			
P-value	- 0.0000					

 $\operatorname{NOTE}:$ Bootstrapped standard errors in parenthesis. E denotes employees, and SE self-employed.

Implied labor market outcomes

Values	Unrestricted			Restricted		
	Formal	Informal E	Informal SE	Formal	Informal E	Informal SE
	v = f	v = i	v = s	v = f	v = i	v = s
Employme $E[t v]$ $E[x v]$ $SD[x v]$	63.5 1.412 0.207	31.5 1.068 0.143	104.4 1.080 0.339	63.0 1.412 0.207	1.	6.8 078 291
Unemploy $E[t u]$	Unemployment: $E[t u]$ 5.1				5.4	

- ▶ The paper performs both a parametric and non-parametric analysis to address a fundamental question in the growing literature using search models to study labor market informality
- Both analyses strongly reject the equality of the two labor market states, cautioning against aggregating them in a common "informality state".
- ▶ The sources of the difference are the high dispersion of informal self-employment income offers and the low duration of informal employee jobs.