EXPRESIONES ALGEBRAICAS

EJERCICIOS

Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 € menos, expresa algebraicamente lo que cuestan:

- a) Cuatro libros.
- b) Diez bolígrafos.
- c) La mitad de lo que cuestan seis libros.
- d) Cinco libros más tres bolígrafos.
- e) Cinco libros con un descuento de 3 €.
- f) Dos bolígrafos y seis libros.
- g) Tres bolígrafos y dos libros.
- h) Seis libros y un bolígrafo.
- a) 4x
- b) $10 \cdot (x 7)$ c) $\frac{6x}{2}$
- d) $5x + 3 \cdot (x 7)$ e) 5x 3
- f) $6x + 2 \cdot (x 7)$
- q) $3 \cdot (x-7) + 2x$ h) 6x + x 7

Si x es un número natural, escribe las expresiones algebraicas que representan:

- a) El doble de ese número.
- b) La tercera parte del mismo.
- c) Su cubo.
- d) Su anterior.
- e) Su posterior.
- f) Su triple más tres unidades.
- g) La mitad de su triple.
- h) El cuádruple más cuatro unidades.
- i) El doble de su posterior.
- a) 2x

- d) x 1
- f) 3x + 3

- g) $\frac{3x}{2}$
- h) 4x + 4
- i) $2 \cdot (x + 1)$

Calcula el valor numérico de las siguientes expresiones algebraicas para los valores que se dan:

a)
$$12x + y$$

si
$$x = 2$$
, $y = 3$

b)
$$\frac{xy}{3}$$

si
$$x = 3$$
, $y = 4$

c)
$$(2x)^2$$

si
$$x = 2$$

d)
$$\frac{a^2-b}{a}$$

si
$$a = 4$$
, $b = 6$

e)
$$\frac{1}{3}x^2 + 2y$$

si
$$x = 3$$
, $y = 2$

http://www.McGraw-Hill.es

a)
$$12 \cdot 2 + 3 = 24 + 3 = 27$$

b)
$$\frac{3 \cdot 4}{3} = 4$$

c)
$$(2 \cdot 2)^2 = 16$$

d)
$$\frac{4^2-6}{4} = \frac{16-6}{4} = \frac{10}{4} = \frac{5}{2}$$

e)
$$\frac{1}{3} \cdot 3^2 + 2 \cdot 2 = 3 + 4 = 7$$

Halla la expresión algebraica que representa el área de la siguiente figura y calcula su valor numérico, sabiendo que las bases miden 5 cm y que la altura de ambos triángulos es 7 cm.

$$A = 2 \cdot \frac{b \cdot h}{2} \Leftrightarrow A = 2 \cdot \frac{5 \cdot 7}{2} \Leftrightarrow A = 35 \text{ cm}^2$$

Señala cuántos términos hay en cada una de las siguientes expresiones algebraicas. En caso de ser polinomios, concreta de qué tipo son:

- a) 3mn²
- b) $3v^2 + 2xy 1$
- c) $\frac{5}{2}x + 1$
- d) 4ab 2b + a
- e) $7x^2z + z + 2$
- f) 2ya

Expresión algebraica	Términos	Tipo	
3mn²	1	Monomio	
$3y^2 + 2xy - 1$	3	Trinomio	
$\frac{5}{2}x+1$	2	Binomio	
4ab – 2b + a	3	Trinomio	
$7x^2z+z+2$	3	Trinomio	
2ya	1	Monomio	

Describe estas expresiones algebraicas (monomio, binomio, trinomio, etc.), e indica la parte literal, el coeficiente y el grado de cada término:

a)
$$9a^3b^4 + 3$$
 b) $4y^2z^3 - 5y$

b)
$$4y^2z^3 - 5y$$

c)
$$8z + y - 2y^5$$

d)
$$\frac{3}{4}m^4$$

e)
$$7a + 4b^2a - 2b + 1$$
 f) x

Expresión algebraica	Tipo	Parte literal	Coeficiente	Grado
$9a^3b^4 + 3$	Binomio	a³b⁴	9, 3	7
$4y^2z^3-5y$	Binomio	y^2Z^3 , y	5, –5	5
$8z + y - 2y^5$	Trinomio	<i>z</i> , <i>y</i> , <i>y</i> ⁵	8, 1, –2	5
$\frac{3}{4}$ m ⁴	Monomio	m⁴	$\frac{3}{4}$	4
$7a + 4b^2a - 2b + 1$	Cuatrinomio	a, b²a, b	7, 4, –2, 1	3
X	Monomio	X	1	1

Halla el resultado de las siguientes operaciones con monomios:

a)
$$5z + 6z + z$$

b)
$$10x^2 - 7x^2 + x^2$$

c)
$$6yx + 4xy + yx$$

d)
$$2n^2m + 3n^2m$$

e)
$$\frac{3}{4}x - 2x + x$$

f)
$$a^2 + 3a^2 + 9ab$$

b)
$$4x^2$$

d)
$$5n^2m$$

e)
$$-\frac{1}{4}x$$

f)
$$4a^2 + 9ab$$

Realiza la multiplicación de los siguientes monomios:

b)
$$3b^2 \cdot \frac{1}{2}b$$

d)
$$4y \cdot (-4)y^2$$

a)
$$15x^3$$

a)
$$15x^3$$
 b) $\frac{3}{2}b^3$

d)
$$-16y^3$$

Indica cuáles de estas igualdades son correctas y cuáles son incorrectas. Razona tu respuesta:

a)
$$3a + a = 4a^2$$

b)
$$5x + x + x = 7x$$

c)
$$\frac{1}{2}x^2 + \frac{1}{2}x^2 = x^2$$
 d) $2n^2 + 3n^2 - 5n^2 = 0$

d)
$$2n^2 + 3n^2 - 5n^2 = 0$$

e)
$$3zy + 5zy = 8yz$$

f)
$$5x^2 + 2x = 7x^3$$

10 Realiza la división de los siguientes monomios:

$$(a) \frac{24a^4}{6a^2}$$

b)
$$\frac{4ab}{2b}$$

c)
$$\frac{12m^2}{15m}$$

$$d) \frac{-9x^2y^2}{3x}$$

e)
$$\frac{12y^5}{6v^2}$$

$$f) \frac{6y^8x}{3x^3y}$$

a)
$$\frac{24a^4}{6a^2} = 4a^2$$

b)
$$\frac{4ab}{2b} = 2a$$

c)
$$\frac{12m^2}{15m} = \frac{4m}{5}$$

d)
$$\frac{-9x^2y^2}{3x} = -3xy^2$$

e)
$$\frac{12y^5}{6y^2} = 2y^3$$

f)
$$\frac{6y^8x}{3y^3y} = \frac{2y^7}{y^2}$$

11 Dados los polinomios:

$$A(x) = 12x^6 + 6x^4 + 3x + 2$$

$$B(x) = 4x^6 - 4x^4 + 2$$

$$C(x) = 4x^4 - 5x^3 + x - 1$$

Calcula las siguientes operaciones:

a)
$$A(x) + B(x) + C(x)$$

b)
$$A(x) - B(x)$$

c)
$$B(x) + A(x)$$

d)
$$C(x) - A(x)$$

a)
$$A(x) + B(x) + C(x)$$

$$12x^{6} + 6x^{4} + 3x + 2$$

$$4x^{6} - 4x^{4} + 2$$

$$4x^{4} - 5x^{3} + x - 1$$

$$16x^{6} + 6x^{4} - 5x^{3} + 4x + 3$$

b)
$$A(x) - B(x)$$

$$\begin{array}{r}
 12x^6 + 6x^4 + 3x + 2 \\
 -4x^6 + 4x^4 - 2 \\
 \hline
 8x^6 + 10x^4 + 3x
 \end{array}$$

c)
$$B(x) + A(x)$$

$$4x^{6} - 4x^{4} + 2$$

$$12x^{6} + 6x^{4} + 3x + 2$$

$$16x^{6} + 2x^{4} + 3x + 4$$

d)
$$C(x) - A(x)$$

$$4x^{4} - 5x^{3} + x - 1$$

$$-12x^{6} - 6x^{4} - 3x - 2$$

$$-12x^{6} - 2x^{4} - 5x^{3} - 2x - 3$$

RESIONES ALGEBRAICAS

http://www.McGraw-Hill.es

Haz la suma o resta de los polinomios:

a)
$$\left(\frac{3}{4}z^2 + 5z^3 - 3z\right) + \left(\frac{1}{2}z^2 + 4z^3 + z\right)$$

b)
$$(3n^5 - 4n^2 + 5) - (2n^5 + 6n^2 + 3)$$

c)
$$(m^3 + 3m + 7) - (m^3 - 2m + 1)$$

d)
$$(y^{10} + 3y^3 - y) + ((y^5)^2 - 4y^2 + 5y + 8)$$

a)
$$\frac{\frac{3}{4}z^2 + 5z^3 - 3z}{\frac{1}{2}z^2 + 4z^3 + z}$$
$$\frac{\frac{5}{4}z^2 + 9z^3 - 2z}{\frac{5}{4}z^2 + 9z^3 - 2z}$$

b)
$$3n^5 - 4n^2 + 5$$

 $-2n^5 - 6n^2 - 3$
 $n^5 - 10n^2 + 2$

c)
$$m^3 + 3m + 7$$

 $-m^3 + 2m - 1$
 $5m + 6$

d)
$$y^{10} + 3y^3 - y$$

 $y^{10} - 4y^2 + 5y + 8$
 $2y^{10} + 3y^3 - 4y^2 + 4y + 8$

[13] Calcula las multiplicaciones siguientes y reduce al máximo el resultado:

a)
$$(-z)^2 \cdot (z^3 + z^2 - 5z)$$
 b) $7y \cdot (6y^2 + 3y - 3)$

b)
$$7y \cdot (6y^2 + 3y - 3)$$

c)
$$(-2m)^2 \cdot (3m^2 + 2m)$$
 d) $x^6 \cdot (2x^2 - 4x + 3)$

d)
$$x^6 \cdot (2x^2 - 4x + 3)$$

e)
$$3x \cdot \left(\frac{1}{3}x + x^2\right)$$

f)
$$\frac{1}{3}x \cdot (9x^2 + 27)$$

a)
$$z^3 + z^2 - 5z$$

 z^2
 $z^5 + z^4 - 5z^3$

b)
$$6y^2 + 3y - 3$$

$$\frac{7y}{42y^3 + 21y^2 - 21y}$$

c)
$$3m^2 + 2m$$

$$\frac{4m^2}{12m^4 + 8m^3}$$

d)
$$2x^2 - 4x + 3$$

$$x^6$$

$$2x^8 - 4x^7 + 3x^6$$

e)
$$\frac{\frac{1}{3}x + x^2}{3x}$$
$$\frac{3x}{x^2 + 3x^3}$$

f)
$$9x^2 + 27$$

$$\frac{1}{3}x$$

$$3x^3 + 9x$$

14 Teniendo en cuenta los polinomios:

$$A(x) = 5x^{5} + 3x^{4} - 4x^{2} + \frac{1}{2}x - 2$$

$$B(x) = 3x^{2} + x - 2$$

$$C(x) = 7x - 10x^{2} + 10$$

$$D(x) = \frac{1}{5}x^{2} + 2x + 2$$

Calcula:

- a) $A(x) \cdot B(x)$
- b) $-A(x) \cdot C(x)$
- c) $C(x) \cdot B(x)$
- d) $B(x) \cdot C(x)$
- e) $A(x) \cdot C(x)$
- f) $D(x) \cdot C(x)$
- g) $D(x) \cdot B(x)$
- h) $-D(x) \cdot B(x)$

i)
$$A(x) \cdot (-D(x))$$

a)
$$A(x) \cdot B(x)$$

$$5x^{5} + 3x^{4} - 4x^{2} + \frac{1}{2}x - 2$$

$$3x^{2} + x - 2$$

$$-10x^{5} - 6x^{4} + 8x^{2} - x + 4$$

$$5x^{6} + 3x^{5} - 4x^{3} + \frac{1}{2}x^{2} - 2x$$

$$15x^{7} + 9x^{6} - 12x^{4} + \frac{3}{2}x^{3} - 6x^{2}$$

$$15x^{7} + 14x^{6} - 7x^{5} - 18x^{4} - \frac{5}{2}x^{3} + \frac{5}{2}x^{2} - 3x + 4$$

b)
$$-A(x) \cdot C(x)$$

$$-5x^{5} - 3x^{4} + 4x^{2} - \frac{1}{2}x + 2$$

$$-7x - 10x^{2} + 10$$

$$-50x^{5} - 30x^{4} + 40x^{2} - 5x + 20$$

$$50x^{7} + 30x^{6} - 40x^{4} + 5x^{3} - 20x^{2}$$

$$-35x^{6} - 21x^{5} + 28x^{3} - \frac{7}{2}x^{2} + 14x$$

$$50x^{7} - 5x^{6} - 71x^{5} - 70x^{4} + 33x^{3} + \frac{33}{2}x^{2} + 9x + 20$$

c)
$$C(x) \cdot B(x)$$

$$-10x^{2} + 7x + 10$$

$$3x^{2} + x - 2$$

$$20x^{2} - 14x - 20$$

$$-10x^{3} + 7x^{2} + 10x$$

$$-30x^{4} + 21x^{3} + 30x^{2}$$

$$-30x^{4} + 11x^{3} + 57x^{2} - 4x - 20$$

d) $B(x) \cdot C(x)$

$$3x^{2} + x - 2$$

$$7x - 10x^{2} + 10$$

$$30x^{2} + 10x - 20$$

$$-30x^{4} - 10x^{3} + 20x^{2}$$

$$21x^{3} + 7x^{2} - 14x$$

$$-30x^{4} + 11x^{3} + 57x^{2} - 4x - 20$$

e) $A(x) \cdot C(x)$

$$5x^{5} + 3x^{4} - 4x^{2} + \frac{1}{2}x - 2$$

$$-10x^{2} + 7x + 10$$

$$50x^{5} + 30x^{4} - 40x^{2} + 5x - 20$$

$$35x^{6} + 21x^{5} - 28x^{3} + \frac{7}{2}x^{2} - 14x$$

$$-50x^{7} - 30x^{6} + 40x^{4} - 5x^{3} + 20x^{2}$$

$$-50x^{7} + 5x^{6} + 71x^{5} + 70x^{4} - 33x^{3} - \frac{33}{2}x^{2} - 9x - 20$$

f) $D(x) \cdot C(x)$

$$\frac{1}{5}x^{2} + 2x + 2$$

$$-10x^{2} + 7x + 10$$

$$2x^{2} + 20x + 20$$

$$\frac{7}{5}x^{3} + 14x^{2} + 14x$$

$$-2x^{4} - 20x^{3} - 20x^{2}$$

$$-2x^{4} - \frac{93}{5}x^{3} - 4x^{2} + 34x + 20$$

g) $D(x) \cdot B(x)$

$$\frac{1}{5}x^{2} + 2x + 2$$

$$3x^{2} + x - 2$$

$$-\frac{2}{5}x^{2} - 4x - 4$$

$$\frac{1}{5}x^{3} + 2x^{2} + 2x$$

$$\frac{3}{5}x^{4} + 6x^{3} + 6x^{2}$$

$$\frac{3}{5}x^{4} + \frac{31}{5}x^{3} + \frac{38}{5}x^{2} - 2x - 4$$

http://www.McGraw-Hill.es

h) $-D(x) \cdot B(x)$

$$-\frac{1}{5}x^{2}-2x-2$$

$$3x^{2}+x-2$$

$$\frac{2}{5}x^{2}+4x+4$$

$$-\frac{1}{5}x^{3}-2x^{2}-2x$$

$$-\frac{3}{5}x^{4}-6x^{3}-6x^{2}$$

$$-\frac{3}{5}x^{4}-\frac{31}{5}x^{3}-\frac{38}{5}x^{2}+2x+4$$

i) $A(x) \cdot (-D(x))$

$$5x^{5} + 3x^{4} - 4x^{2} + \frac{1}{2}x - 2$$

$$-\frac{1}{5}x^{2} - 2x - 2$$

$$-10x^{5} - 6x^{4} + 8x^{2} - x + 4$$

$$-10x^{6} - 6x^{5} + 8x^{3} - x^{2} + 4x$$

$$-x^{7} - \frac{3}{5}x^{6} + \frac{4}{5}x^{4} - \frac{1}{10}x^{3} + \frac{2}{5}x^{2}$$

$$-x^{7} - \frac{53}{5}x^{6} - 16x^{5} - \frac{26}{5}x^{4} + \frac{79}{10}x^{3} + \frac{37}{5}x^{2} + 3x + 4$$

15 Calcula las siguientes identidades notables:

- a) $(x + 2)^2$
- b) $(2x-3)^2$
- c) $(3x^2 4x)^2$
- d) $(x + 2) \cdot (x 2)$
- e) $\left(\frac{2}{3}x 3\right)^2$
- f) $(2x-5) \cdot (2x+5)$
- a) $(x + 2)^2 = x^2 + 4x + 4$
- b) $(2x-3)^2 = 4x^2 12x + 9$
- c) $(3x^2 4x)^2 = 9x^4 24x^3 + 16x^2$
- d) $(x + 2) \cdot (x 2) = x^2 4$
- e) $\left(\frac{2}{3}x 3\right)^2 = \frac{4}{9}x^2 4x + 9$
- f) $(2x-5) \cdot (2x+5) = 4x^2 25$

Indica si las siguientes igualdades son ciertas:

a) $(5x + 8)^2 = 5x^2 + 8^2$

b)
$$\left(\frac{1}{2}y + 2z\right) \cdot \left(\frac{1}{2}y - 2z\right) = \frac{1}{4}y^2 - 4z^2$$

- c) $(3m m^2)^2 = 9m^2 6m^3 + m^4$
- a) Falsa.
- b) Verdadera.
- c) Verdadera.

EXPRESIONES ALGEBRAICAS

http://www.McGraw-Hill.es

EJERCICIOS PROPUESTOS

EXPRESIONES ALGEBRAICAS. EL LENGUAJE ALGEBRAICO

■ La variable x representa un número natural. Expresa en función de él:

- a) Su cuádruple.
- b) El doble de su posterior.
- c) La mitad de su anterior más cuatro unidades.

b)
$$2(x + 1)$$

b)
$$2(x+1)$$
 c) $\frac{x-1}{2}+4$

Expresa algebraicamente los siguientes enunciados:

- a) Las dos terceras partes del cuadrado de un número.
- b) El cuadrado del doble de un número.
- c) El triple de un número más tres.
- d) El triple de un número, más tres.

a)
$$\frac{2}{3}x^2$$

c)
$$3(x+3)$$

d)
$$3x + 3$$

Expresa algebraicamente el área del dibujo:

$$A = a \cdot c + b \cdot c + \frac{b \cdot h}{2}$$

4 Expresa algebraicamente el valor de la siguiente diagonal:

$$d = \sqrt{a^2 + b^2}$$

VALOR NUMÉRICO DE UNA EXPRESIÓN **ALGEBRAICA**

■ Halla el valor numérico de las siguientes expresiones algebraicas:

a)
$$x^2 + 2x$$

$$\sin x = 2$$

b)
$$x^2 + 2x + mx$$

$$si x = 1, m = -1$$

si
$$x = 2, m = \frac{1}{2}$$

d)
$$xy - x^3$$

$$si x = 4, y = 3$$

a)
$$x^2 + 2x = 2^2 + 2 \cdot 2 = 4 + 4 = 8$$

b)
$$x^2 + 2x + 2m = 1^2 + 2 \cdot 1 + 2 \cdot (-1) = 1 + 2 - 2 = 1$$

c)
$$2m + mx = 2 \cdot \frac{1}{2} + \frac{1}{2} \cdot 2 = 1 + 1 = 2$$

d)
$$xy - x^3 = 4 \cdot 3 - 4^3 = 12 - 64 = -52$$

Copia en tu cuaderno y completa la siguiente tabla indicando el valor numérico de cada expresión:

	x = -1	<i>x</i> = 0	$x=\frac{1}{2}$	x = 2
$\chi^3 - \chi$	0	0	$-\frac{3}{8}$	6
$6x-\frac{x^2}{2}$	$-\frac{13}{2}$	0	23 8	10
$x \cdot (10 - 6x)$	-16	0	7 2	-4
$2\cdot(x-1)-3$	- 7	-3	-4	-1

La velocidad de un cuerpo en movimiento viene definida por la siguiente expresión: $v = \frac{e}{t}$, donde v es el valor de dicha velocidad, e el espacio recorrido y t el tiempo que ha estado en movimiento. Si un cuerpo ha recorrido 500 metros en 30 segundos, ¿cuál es su velocidad?

$$v = \frac{500}{30} \Leftrightarrow v = 16,\hat{6} \text{ m/s}$$

Escribe las siguientes expresiones algebraicas de manera que queden ordenadas de menor a mayor en función de su valor numérico en x = -3.

a)
$$x^2 + 2x - x$$

b)
$$3x^2 + 10x$$

c)
$$x^3 + 2x - 7$$

a)
$$(-3)^2 + 2 \cdot (-3) - (-3) = 9 - 6 + 3 = 6$$

b)
$$3 \cdot (-3)^2 + 10 \cdot (-3) = 3 \cdot 9 - 30 = 27 - 30 = -3$$

c)
$$(-3)^3 + 2 \cdot (-3) - 7 = -27 - 6 - 7 = -40$$

Tipo

Trinomio

Binomio

Trinomio

Monomio

Binomio

Binomio

Parte

literal

 x^2y , y

 nm^3, x

 X^2 , X

 $X^2 y Z$

 x^2y

 ym^5, x

Coeficiente

12, 15, -2

 $-2, \frac{1}{2}$

1, 1, -2

Grado

3

4

2

4

3

6

■ Halla el valor numérico en cada caso:

a)
$$m^2 + nx - m + 7$$

si
$$m = 4$$
, $n = -1$, $x = 2$

b)
$$2xy - x + y^2 + 2y$$

$$si x = 3, y = 5$$

c)
$$7m - \frac{1}{2}x^2 - 12$$

$$\sin m = 2, x = 2$$

d)
$$8y^3 - 7y^2 + y - 2$$

$$siy = -2$$

e)
$$x^2 + 2xy + y^2$$

$$si x = 3, y = -2$$

$$si x = 3, y = -2$$

a)
$$m^2 + nx - m + 7 = 4^2 + (-1) \cdot 2 - 4 + 7 = 17$$

b)
$$2xy - x + y^2 + 2y = 2 \cdot 3 \cdot 5 - 3 + 5^2 + 2 \cdot 5 =$$

= $30 - 3 + 25 + 10 = 62$

c)
$$7m - \frac{1}{2}x^2 - 12 = 7 \cdot 2 - \frac{1}{2} \cdot 2^2 - 12 = 14 - 2 - 12 = 0$$

d)
$$8y^3 - 7y^2 + y - 2 = 8 \cdot (-2)^3 - 7 \cdot (-2)^2 + (-2) - 2 =$$

= -64 - 28 - 2 - 2 = -96

e)
$$x^2 + 2xy + y^2 = 3^2 + 2 \cdot 3 \cdot (-2) + (-2)^2 = 9 - 12 + 4 = 1$$

coeficiente y cuál es la parte literal de cada monomio.

a)
$$-\frac{x^2yz}{2}$$

Expresión

algebraica

 $12x^2y + 15y - 2$

 $-2nm^3 + \frac{1}{2}x$

 $x^2 + x - 2$

 $\frac{3}{5}$ ym⁵ – x

b)
$$(2xy)^2 + x + \frac{1}{2}$$

c)
$$\frac{3}{4}xy + 5$$

d)
$$mnx + \frac{x^2}{2} - \frac{4}{5}$$

MONOMIOS Y POLINOMIOS

■10 ■ Explica con tus propias palabras el significado de los términos:

- a) Monomio.
- b) Polinomio.
- c) Término.
- d) Coeficiente.
- e) Binomio.
- f) Factor.
- a) Monomio es una expresión algebraica formada por la multiplicación de números, letras o números y letras.
- b) Polinomio es una expresión algebraica formada por la suma o resta de monomios no semejantes.
- c) Término es la expresión algebraica formada por un monomio.
- d) Coeficiente es la parte numérica de un monomio.
- e) Binomio es el polinomio formado por dos monomios no semejantes.
- f) Factor es cada una de las cantidades que se multiplican para formar un producto.

Clasifica las siguientes expresiones algebraicas, e indica el coeficiente y la parte literal de cada uno de los monomios. ¿Cuántos términos tiene cada uno?

a)
$$12x^2y + 15y - 2$$

b)
$$-2nm^3 + \frac{1}{2}x$$

c)
$$x^2 + x - 2$$

d)
$$\frac{3}{5}x^2yz$$

e)
$$\frac{-x^2y}{2} + 1$$

f)
$$\frac{3}{5}ym^5 - x$$

Expresión algebraica	Tipo	Parte literal	Coeficiente	Grado
$-\frac{x^2yz}{2}$	Monomio	x²yz	$-\frac{1}{2}$	4
$(2xy)^2 + x + \frac{1}{2}$	Trinomio	$(xy)^2, x$	$4, 1, \frac{1}{2}$	4
$\frac{3}{4}xy + 5$	Binomio	ху	$\frac{3}{4}$, 5	2
$mnx + \frac{x^2}{2} - \frac{4}{5}$	Trinomio	mnx, x²	$1, \frac{1}{2}, -\frac{4}{5}$	3

■ Describe los siguientes polinomios, indicando el número de términos que lo componen y cuáles son los coeficientes y las partes literales de cada uno.

a)
$$A(x) = 64x^3 + 24x^2$$

b)
$$B(x) = 6x + 3x - 5x - 4$$

c)
$$C(x) = 8x - 28x^3 + 6x^3 - 49x^5 - 20$$

d)
$$D(x) = 6x + 3x - 6x - 4$$

Expresión algebraica	Tipo	Parte literal	Coeficiente	N.º de términos
$64x^3 + 24x^2$	Binomio	X^3, X^2	64, 24	2
6x + 3x - 5x - 4 = 4x - 4	Binomio	х	4, -4	2
$8x - 28x^3 + 6x^3 - 49x^5 - 20 =$ $= -49x^5 - 22x^3 + 8x - 20$	Cuatrinomio	X^5, X^3, X	-49, -22, 8, -20	4
6x + 3x - 6x - 4 = 3x - 4	Binomio	х	3, -4	2

PRESIONES ALGEBRAICAS

http://www.McGraw-Hill.es

■14 ■ ;Son ciertas las siguientes afirmaciones? Razó-

- a) La parte literal del término independiente es x.
- b) El coeficiente del monomio xy^2 es cero.
- c) Todos los binomios están compuestos por dos mono-
- d) Dos términos de un polinomio son semejantes si tienen la misma parte literal.
- a) Falsa, el término independiente no tiene parte literal.
- b) Falsa, es 1.
- c) Cierta.
- d) Cierta.

OPERACIONES CON MONOMIOS

15 Qué condiciones deben cumplir dos monomios para que se puedan sumar o restar? ¿Ocurre lo mismo en el caso de multiplicar o dividir monomios?

Para que se puedan sumar o restar tienen que tener la misma parte literal. No ocurre lo mismo para multiplicar o para dividir.

■ Reduce al máximo las siguientes expresiones:

- a) $x^2 + 3x + 5x^2 x + 2$
- b) $2x^5 x^2 + 7x^2 x^5 1$
- c) $2x^3 x^3 + 2$
- d) $x^2 7x^2 + 30$
- a) $6x^2 + 2x + 2$
- b) $x^5 + 6x^2 1$

c) $x^3 + 2$

d) $-6x^2 + 30$

17 ■ Calcula:

- a) $6x^2 + 3x^2$
- b) $5y^2 + y^2$
- c) $m^3 + 10m^3 + 3m^3$
- d) $-9x^6 + 3x^6 x^6$
- a) $9x^{2}$

b) 6y²

c) $14m^3$

d) $-7x^6$

■18 ■ Opera los siguientes monomios:

a) $(7x) \cdot y$

- b) $(2x^5) \cdot x^2$
- c) $(-2x^2) \cdot x$
- d) $\left(\frac{3y}{4}\right) \cdot y^2$
- a) $(7x) \cdot y = 7xy$
- b) $(2x^5) \cdot x^2 = 2x^7$
- c) $(-2x^2) \cdot x = -2x^3$
- d) $\left(\frac{3y}{4}\right) \cdot y^2 = \frac{3}{4}y^3$

19 Realiza las siguientes operaciones:

a)
$$\frac{(2z)^3}{\frac{1}{2}z} + 3z^2$$

b)
$$\frac{-\frac{3}{4}xy}{\frac{1}{4}xy} + \frac{1}{4}xy$$

c) $2z \cdot z^2$

- d) $\frac{-2m^3}{3} \cdot \frac{(3m)^2}{m^2}$
- e) $3m \cdot m^3 m^4$

a)
$$\frac{(2z)^3}{\frac{1}{2}z} + 3z^2 = \frac{8z^3}{\frac{1}{2}z} + 3z^2 = 16z^2 + 3z^2 = 19z^2$$

b)
$$\frac{-\frac{3}{4}xy}{\frac{1}{4}xy} + \frac{1}{4}xy = -3 + \frac{1}{4}xy$$

- c) $2z \cdot z^2 = 2z^3$
- d) $\frac{-2m^3}{3} \cdot \frac{(3m)^2}{m^2} = -6m^3$
- e) $3m \cdot m^3 m^4 = 3m^4 m^4 = 2m^4$

20 III Opera:

- b) $2x \cdot (5x + x^2) x^3 + 5x^2$
- c) $\left(\frac{7}{2}xy\right) \cdot (2xy)$
- d) $4x^3 + 5x^3$
- e) $-6m^2 + m^2$
- a) $\frac{7xy + 2xy}{2xy} = \frac{9xy}{2xy} = \frac{9}{2}$
- b) $2x \cdot (5x + x^2) x^3 + 5x^2 = 10x^2 + 2x^3 x^3 + 5x^2 = 15x^2 + x^3$
- c) $\left(\frac{7}{2}xy\right) \cdot (2xy) = 7x^2y^2$
- d) $4x^3 + 5x^3 = 9x^3$
- e) $-6m^2 + m^2 = -5m^2$

¿Son ciertas las siguientes igualdades?

- a) $\left(-\frac{1}{2}xy\right) \cdot (2x^2y) = -x^3y$ b) $\frac{-\frac{1}{4}m^2}{\frac{1}{4}m^2} = 1$
- c) $\frac{x^2 \cdot y^2 \cdot z^2}{xyz} = x^3y^3z^3$
 - d) $6x + 2x^2 6x \cdot 2x^2 = 0$

- a) Falsa.
- b) Falsa.
- c) Falsa.
- d) Falsa.

22 Copia en tu cuaderno y une las columnas:

■ Contesta si es verdadero o falso:

- a) Un monomio con coeficiente negativo no se puede multiplicar por otro.
- b) El resultado de la multiplicación entre dos monomios es siempre otro monomio.
- c) Para sumar dos monomios, los coeficientes han de ser iguales.
- d) A la hora de dividir polinomios, primero se dividen los coeficientes y después la parte literal.
- e) Para multiplicar monomios, las partes literales han de ser semejantes.
- a) Falsa.
- b) Verdadera.
- c) Falsa.

- d) Falsa.
- e) Falsa.

24 Calcula mentalmente:

- a) $7mx^2 + x^2m 5x^2m$
- b) 6y + 4y 10y
- c) $4x^2 + x^2 + 5x^2$
- d) $2 \cdot (4xm + 5xm)$

a) 3mx²

b) 0

c) $10x^2$

d) 18xm

OPERACIONES CON POLINOMIOS

■ Haz la suma o resta de los siguientes polinomios:

a)
$$(2x + 3x^2 + 2) + (4x^2 + 2x + 1)$$

b)
$$(5m^2 + 3m + m^3) + (2m^2 + 2m - m^3)$$

c)
$$(3x^2 + 2x^4 + 3x) - (-x^2 + x^4 + 2x)$$

d)
$$(2x^3-2)-(3x^3-2x+2)$$

a)
$$(2x + 3x^2 + 2) + (4x^2 + 2x + 1) = 7x^2 + 4x + 3$$

b)
$$(5m^2 + 3m + m^3) + (2m^2 + 2m - m^3) = 7m^2 + 5m$$

c)
$$(3x^2 + 2x^4 + 3x) - (-x^2 + x^4 + 2x) = x^4 + 4x^2 + x$$

d)
$$(2x^3 - 2) - (3x^3 - 2x + 2) = -x^3 + 2x - 4$$

26 Opera:

- a) $10x \cdot (6x^2 + 3x)$
- b) $6x^2 \cdot (x^2 + x^4 + 3x^4)$
- c) $3x^2 \cdot (2x + 3x^2 x)$
- d) $5x \cdot (3x^2 1)$

a)
$$10x \cdot (6x^2 + 3x) = 60x^3 + 30x^2$$

b)
$$6x^2 \cdot (x^2 + x^4 + 3x^4) = 6x^4 + 6x^6 + 18x^6$$

c)
$$3x^2 \cdot (2x + 3x^2 - x) = 6x^3 + 9x^4 - 3x^3$$

d)
$$5x \cdot (3x^2 - 1) = 15x^3 - 5x$$

Realiza la multiplicación de los siguientes polinomios:

a)
$$(3x + 2x^2 + 7) \cdot (4x - 2x^2 + 3)$$

b)
$$(2x^3 + x) \cdot (5x^2 - 2x + 3)$$

c)
$$(-3x^2 + 2) \cdot (5x^2 + x^3 + 2)$$

d)
$$(2x-2) \cdot (3x+3)$$

e)
$$(3x^4 - 2x + 5) \cdot (x^2 - x)$$

a)
$$2x^{2} + 3x + 7$$

$$-2x^{2} + 4x + 3$$

$$6x^{2} + 9x + 21$$

$$8x^{3} + 12x^{2} + 28x$$

$$-4x^{4} - 6x^{3} - 14x^{2}$$

$$-4x^{4} + 2x^{3} + 4x^{2} + 37x + 21$$

b)
$$5x^{2}-2x+3$$

$$2x^{3}+x$$

$$5x^{3}-2x^{2}+3x$$

$$10x^{5}-4x^{4}+6x^{3}$$

$$10x^{5}-4x^{4}+11x^{3}-2x^{2}+3x$$

c)
$$x^{3} + 5x^{2} + 2$$

$$-3x^{2} + 2$$

$$2x^{3} + 10x^{2} + 4$$

$$-x^{5} - 15x^{4} - 6x^{2}$$

$$-x^{5} - 15x^{4} + 2x^{3} + 4x^{2} + 4$$

$$2x-2$$

$$3x+3$$

$$6x-6$$

$$6x^2-6x$$

$$6x^2-6$$

e)
$$3x^{4} - 2x + 5$$

$$x^{2} - x$$

$$-3x^{5} + 2x^{2} - 5x$$

$$3x^{6} - 2x^{3} + 5x^{2}$$

$$3x^{6} - 3x^{5} - 2x^{3} + 7x^{2} - 5x$$

EXPRESIONES ALGEBRAICAS

28 Realiza las siguientes operaciones:

a)
$$\left[\left(\frac{1}{2} x^2 \right)^2 - 2x^3 - x \right] + (x^4 + 3x^3 + 2x)$$

b)
$$\left(\frac{x^3}{2} + x^2 + \frac{3}{5}\right) - \left(-x^3 - 2x^2 + \frac{3}{4}\right)$$

c)
$$2(x+y) - \frac{1}{2}x - \frac{1}{2}y + 3$$

d)
$$\frac{x^2}{3} - \frac{1}{3}x^2 + 2$$

e)
$$\frac{1}{4}y^5 - \frac{2}{4}y^5 + y^2 + 3y^4 + \frac{3}{4}y^5 - y^5$$

a)
$$\frac{5}{4}x^4 + x^3 + x$$

b)
$$\frac{3x^3}{2} + 3x^2 - \frac{3}{20}$$

c)
$$\frac{3}{2}x + \frac{3}{2}y + 3$$

d) 2

e)
$$-\frac{2}{4}y^5 + y^2 + 3y^4$$

29 III Opera:

a)
$$\frac{3}{8}m(m+n^2)+mn^2$$

b)
$$\left(-4x^2 + \frac{1}{3}xy - 2\right) \cdot \left(\frac{1}{2}x^2 - xy + 2\right)$$

c)
$$[4(x+y)-3x-y] \cdot (2x+y)$$

d)
$$[3(a \cdot b)^2 + 2] \cdot (x - 2y)$$

a)
$$\frac{3}{8}m^2 + \frac{3}{8}mn^2 + mn^2 = \frac{3}{8}mn^2 + \frac{11}{8}mn^2$$

b)
$$-2x^4 + \frac{25}{6}x^3y - 9x^2 + \frac{4}{3}xy - 4 - \frac{1}{3}x^2y^2$$

c)
$$2x^2 + 7xy + 3y^2$$

d)
$$3a^2b^2x - 6a^2b^2y - 4y + 2x$$

Opera y reduce al máximo las siguientes expresiones:

a)
$$5x \cdot (x + 2) - x^2$$

b)
$$x^2 \cdot (x + 1) + x^2$$

c)
$$xy + 3y \cdot (x + y)$$

a)
$$4x^2 + 10x$$

b)
$$x^3 + 2x^2$$

c)
$$4xy + 3y^2$$

http://www.**McGraw-Hill**.es

Realiza las siguientes operaciones entre polinomios:

a)
$$\left(y^3 - \frac{1}{3}y\right) \cdot \left(y^2 + \frac{1}{2}y\right)$$

b)
$$2 \cdot (6-a) + 4a - 6 + a - 4 - 6a - 4$$

c)
$$12x \cdot \left(\frac{2}{3}x\right)^2 - 6x \cdot (-2x)^2 + 2x^2$$

d)
$$\frac{3}{4}x \cdot (-4x^2) \cdot \left(-\frac{1}{2}x^2\right) - \frac{3}{2}x \cdot (-x^2)$$

a)
$$y^5 + \frac{1}{2}y^4 - \frac{1}{3}y^3 - \frac{1}{6}y^2$$
 b) $-3a - 2$

c)
$$-\frac{56}{3}x^3 + 2x^2$$
 d) $\frac{3}{2}x^5 + \frac{3}{2}x^3$

Realiza las siguientes operaciones y reduce al máximo la expresión algebraica resultante.

a)
$$4 \cdot (x + b) + (-2) \cdot (x + b)$$

b)
$$10 \cdot (2 - 4x) - 6 \cdot (4x - 2)$$

c)
$$3(x^2-1)-\frac{1}{2}(x+2)\cdot\frac{1}{2}(2x+1)$$

d)
$$(3x + 2)^2 + 3x^3 - 10x - 2$$

a)
$$2x + 2b$$

b)
$$-64x + 32$$

c)
$$\frac{5}{2}x^2 - \frac{5}{4}x - \frac{1}{2}$$

d)
$$3x^3 + 9x^2 + 2x + 2$$

Dados los polinomios $A(x) = x^2 + 4x + 4$ y $B(x) = 2x^2 + x - 2$, comprueba que la multiplicación de polinomios cumple la propiedad conmutativa, es decir, $A(x) \cdot B(x) = B(x) \cdot A(x)$.

$$2x^2 + x - 2$$

$$-2x^2 - 8x - 8$$

$$x^3 + 4x^2 + 4x$$

$$2x^4 + 8x^3 + 8x^2$$
$$2x^4 + 9x^3 + 10x^2 - 4x - 8$$

$$B(x) \cdot A(x) \qquad \qquad 2x^2 + x - 2$$

$$8x^2 + 4x + 4$$

$$8x^3 + 4x^2 - 8x$$

$$2x^4 + x^3 - 2x^2$$

$$2x^4 + 9x^3 + 10x^2 - 4x - 8$$

34 III Opera:

a)
$$3x \cdot (4xy + 2x) - 2 \cdot \left(x^2y + \frac{1}{2}x\right)$$

b)
$$(5x^2 + 3x + 2) \cdot (4x - 3) - x^3 + 5x^4$$

c)
$$(3x^2y + yx^2 - y) - \left(\frac{1}{2}y + 3x^2 + 4x^4\right)$$

d)
$$(4a^2 - b^2) \cdot (b^2 + a) - (a^3 + 2b^4) \cdot 3$$

a)
$$3x \cdot (4xy + 2x) - 2 \cdot \left(x^2y + \frac{1}{2}x\right) =$$

= $12x^2y + 6x^2 - 2x^2y - x = 10x^2y + 6x^2 - x$

b)
$$(5x^2 + 3x + 2) \cdot (4x - 3) - x^3 + 5x^4 =$$

= $20x^3 - 15x^2 + 12x^2 - 9x + 8x - 6 - x^3 + 5x^4 =$
= $5x^4 + 19x^3 - 3x^2 - x - 6$

c)
$$(3x^2y + yx^2 - y) - \left(\frac{1}{2}y + 3x^2 + 4x^4\right) =$$

= $3x^2y + yx^2 - y - \frac{1}{2}y - 3x^2 - 4x^4 =$
= $4yx^2 - \frac{3}{2}y - 3x^2 - 4x^4$

d)
$$(4a^2 - b^2) \cdot (b^2 + a) - (a^3 + 2b^4) \cdot 3 =$$

= $4a^2b^2 + 4a^3 - b^4 - b^2a - 3a^3 - 6b^4 =$
= $4a^2b^2 + a^3 - 7b^4 - b^2a$

IDENTIDADES NOTABLES

III ¿Qué son las identidades notables? Explícalo ayudándote con ejemplos.

Son multiplicaciones entre binomios que se pueden expresar de forma sencilla sin necesidad de operar por el procedimiento habitual.

Halla las siguientes identidades notables y comprueba que, operando de la forma habitual, se obtiene el mismo resultado.

a)
$$(3x^2 + 2)^2$$

b)
$$(4m^2 - 2m) \cdot (5m^2 + 3m)$$

c)
$$(5 - y^2)^2$$

d)
$$(5x - 2)^2$$

e)
$$(x-4) \cdot (x+4)$$

f)
$$(2a-2)^2$$

a)
$$(3x^2 + 2)^2 = 9x^4 + 12x^2 + 4$$

b)
$$(4m^2 - 2m) \cdot (5m^2 + 3m) \Rightarrow \text{No es identidad notable.}$$

c)
$$(5 - y^2)^2 = 25 - 12y^2 + y^4$$

d)
$$(5x - 2)^2 = 25x^2 - 20x + 4$$

e)
$$(x-4) \cdot (x+4) = x^2 - 16$$

f)
$$(2a-2)^2 = 4a^2 - 8a + 4$$

[37] [11] ¿Son ciertas las siguientes igualdades?

a)
$$(5a^2b + 2)^2 = (5a^2b)^2 + 20a^2b + 4$$

b)
$$\frac{(2+x)^2}{2}$$
 = 2 + 2x + x

c)
$$(xy - 3x) \cdot (xy + 3x) = x^2y^2 - 9x^2$$

d)
$$(x^2 + 1) \cdot (x^2 - 1) = x^4 - 1$$

a)
$$\frac{x^2 + 2x + 1}{x + 1}$$

b)
$$\frac{(a+b)\cdot(-b+a)}{a^2-b^2}$$

c)
$$\frac{9x^2 - 100}{3x - 10}$$

d)
$$\frac{25-2x+x^2}{(5-x)^2}$$

a)
$$\frac{x^2 + 2x + 1}{x + 1} = \frac{(x + 1)^2}{x + 1} = x + 1$$

b)
$$\frac{(a+b)\cdot(-b+a)}{a^2-b^2} = \frac{a^2-b^2}{a^2-b^2} = 1$$

c)
$$\frac{9x^2 - 100}{3x - 10} = \frac{(3x - 10) \cdot (3x + 10)}{3x - 10} = 3x + 10$$

d)
$$\frac{25-10x+x^2}{(5-x)^2} = \frac{-(-x+5)^2}{(5-x)^2} = -1$$

Basándote en las identidades notables factoriza las siguientes expresiones:

a)
$$a^2 + 2ax + x^2$$

b)
$$4a^2 + 4a + 1$$

d)
$$9 - 6y + y^2$$

a)
$$(a + x)^2$$

b)
$$(2a + 1)^2$$

c)
$$(9-2x) \cdot (9+2x)$$

d)
$$(v-3)^2$$

40 Opera teniendo en cuenta las identidades notables:

a)
$$\frac{49a^2-25}{8a-a+5}+5a$$

b)
$$\frac{(64-16xy+x^2y^2)\cdot(8-xy)}{(8-xy)^3}$$

a)
$$\frac{49a^2 - 25}{8a - a + 5} + 5a = \frac{(7a + 5) \cdot (7a - 5)}{7a + 5} + 5a =$$

b)
$$\frac{(64 - 16xy + x^2y^2) \cdot (8 - xy)}{(8 - xy)^3} = \frac{(8 - xy)^2 \cdot (8 - xy)}{(8 - xy)^3} = 1$$