模拟与数字电路

Analog and Digital Circuits

14_时序逻辑电路(2)

(数电P289-P302)

内容提纲

- 同步时序电路的设计
- 示例1 序列检测器
- 示例2 可逆六进制计数器

同步时序电路的设计

- 给定逻辑功能的要求,求相应的逻辑电路
- 设计的一般步骤
 - 建立原始状态图和原始状态表
 - 状态化简
 - 状态编码
 - 求状态方程和输出方程
 - 检查自启动
 - 选择触发器类型,求激励方程
 - 画出逻辑图

示例1一序列检测器

· 检测"111"序列,当连续输入三个"1"时,输出为 "1",否则输出为"0"

输入: 0 0 <u>1 1 1</u> 0 1 1 0 <u>1 1 1</u> 1 0

输出: 0 0 0 0 1 0 0 0 0 0 1 1 0

按Mealy型时序电路分析

(1) 建立原始状态图和原始状态表

设输入、输出变量分别为X和Z,定义电路状态

S₀: 输入"0"

S₂: 连续输入"11"

S₁: 输入"1"

S3: 连续输入"111"

原始状态表

Sn	S^{n+1}/Z		
	X = 0	X=1	
S_0	S ₀ /0	S ₁ /0	
S_1	$S_0/0$	$S_2/0$	
S_2	$S_0/0$	$S_3/1$	
S_3	$S_0/0$	S ₃ /1	

(2) 状态化简

化简后状态表

Sn	S ⁿ⁺	$^{-1}/\mathbf{Z}$
	X = 0	X=1
$\overline{S_0}$	S ₀ /0	S ₁ /0
S_1	$S_0/0$	$S_2/0$
S ₂	$S_0/0$	S ₂ /1

(3) 状态编码

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Z$		
	X = 0	X=1	
00	00/0	01/0	
01	00/0	10/0	
10	00/0	10/1	
11	xx/x	xx/x	

(4) 求出状态方程和输出方程

$$Q_1^{n+1} = X(Q_0^n + Q_1^n)$$
 $Q_0^{n+1} = X \overline{Q}_0^n \overline{Q}_1^n$

$$Z = XQ_1^n$$

(5) 检查自启动

$$\mathbf{Q}_{1}^{n+1} = \mathbf{X}(\mathbf{Q}_{0}^{n} + \mathbf{Q}_{1}^{n})$$

$$\mathbf{Q}_{0}^{n+1} = \mathbf{X} \overline{\mathbf{Q}}_{0}^{n} \overline{\mathbf{Q}}_{1}^{n}$$

$$\mathbf{Z} = \mathbf{X} \mathbf{Q}_{1}^{n}$$

状态表

O no n	•	$\overline{Q_0^{n+1}/Z}$
$Q_1^nQ_0^n$	X=0	X=1
00	00/0	01/0
01	00/0	10/0
10	00/0	10/1
11	00/0	10/1

具有自启动能力

状态图

(6) 选择触发器,求激励方程和输出方程

$$Q_1^{n+1} = X(Q_0^n + Q_1^n)$$

$$Q_0^{n+1} = X \overline{Q}_0^n \overline{Q}_1^n$$

$$Z = XQ_1^n$$

$$D_1 = X(Q_0 + Q_1)$$

$$D_0 = X \overline{Q}_0 \overline{Q}_1$$

$$Z = XQ_1^n$$

$$Z = XQ_1^n$$

(7) 画出逻辑图

设计的一般步骤(1)

• 建立原始状态图和原始状态表

- 确定输入/输出变量、电路状态数
- 定义输入/输出逻辑状态以及每个电路状态的含意
- 按设计要求画出状态转换图,或列出状态转换表

• 状态化简

- 求出最简状态图(表),以便用最少的触发器实现电路
- 合并等价状态,消去多余状态
- 等价状态: 在相同的输入下有相同的输出,且转换到相同的次态

设计的一般步骤(2)

- 状态编码: 给每个状态赋予不同的二进制代码
 - 根据状态数(M),确定触发器的数目(n)
 - n的最小值满足: $2^{n-1} < M \le 2^n$, 即 $n = \lceil \log_2 M \rceil$
- 常用编码方法
 - 顺序编码: 状态从0至M-1编号,将编号用等值的二进制数码表示
 - 循环码: 相邻代码只有1位不同
 - 独热(One-hot)码: n=M, 任意状态的代码中只有1位为 1, 其余位都是为0

设计的一般步骤(3)

• 求状态方程和输出方程

- 海状态代码代入状态表,得到状态变量和输出变量的 真值表
- 根据真值表,求出简化的状态函数和输出函数

• 检查自启动

- 画出全部状态图
- 检查是否存在无效状态之间的循环
 - 若没有, 称电路具有自启动(也称自校正)能力
 - 否则,重新定义无关项,以便消除无效循环,并求状态 方程和输出方程

设计的一般步骤 (4)

• 选择触发器类型,求激励方程

根据选择触发器的特征方程和待实现的状态方程,求 触发器的激励方程

例如,要实现状态方程: $Q_0^{n+1} = Q_0^n + Q_1^n$

- 选用D触发器: 特征方程 $Q^{n+1} = D$ ➡ $D_0 = Q_0^n + Q_1^n$
- 选用JK触发器: 特征方程 $Q^{n+1} = JQ^n + \overline{K}Q^n$

$$Q_0^{n+1} = Q_0^n + Q_1^n = Q_0^n + Q_1^n (Q_0^n + Q_0^n)$$

$$=Q_0^n + Q_1^n Q_0^n$$
 \longrightarrow $J = Q_1^n, K = 0$

选用T触发器,如何?

示例2一可逆六进制计数器

- 建立状态图和状态表
 - 设A=0加法, A=1减法; C为进位或借位

Sn	S ⁿ⁺¹ /C		
	A=0	A=1	
S_0	$S_1/0$	S ₅ /1	
S_1	$S_2/0$	$S_0/0$	
S_2	$S_3/0$	$S_1/0$	
S_3	$S_4/0$	$S_2/0$	
S_4	$S_5/0$	$S_3/0$	
S_5	$S_0/1$	S ₄ /0	

• 状态编码

- 至少需要 [log₂6] = 3位
- 顺序码: 000~101
- 独热码需要6位
- 循环码(如左图)

Q_1Q_0				
Q_2	00	01	11	10
0	S_0	$\overline{\mathbf{S}_1}$	X	$\overline{S_5}$
1	X	S_2	S_3	S_4

	Q_1Q_0			
Q_2	00	01	11	10
0	S_0	S_1	S_2	$\overline{S_3}$
1	S_5	X	X	S_4

$\mathbf{Q_2}^{\mathbf{n}}\mathbf{Q_1}^{\mathbf{n}}\mathbf{Q_0}^{\mathbf{n}}$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
42 41 40	A=0	A=1	
0 0 0	001/0	010/1	
0 0 1	101/0	000/0	
1 0 1	111/0	001/0	
1 1 1	110/0	101/0	
1 1 0	010/0	111/0	
0 1 0	000/1	110/0	
0 1 1	xxx/x	xxx/x	
1 0 0	xxx/x	xxx/x	

• 求状态方程和输出方程

• 检查自启动

$$Q_{2}^{n+1} = Q_{1}^{n} A + Q_{0}^{n} \overline{A}$$

$$Q_{1}^{n+1} = Q_{2}^{n} \overline{A} + \overline{Q_{0}}^{n} A$$

$$Q_{0}^{n+1} = Q_{2}^{n} A + \overline{Q_{1}}^{n} \overline{A}$$

$$C {=} \overline{Q}_2{}^n \ \overline{Q}_0{}^n \ (A {\oplus} Q_1{}^n)$$

x/0

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
42 41 40	A=0	A=1	
0 0 0	001/0	010/1	
0 0 1	101/0	000/0	
1 0 1	111/0	001/0	
1 1 1	110/0	101/0	
1 1 0	010/0	111/0	
0 1 0	000/1	110/0	
0 1 1	100 /0	100 /0	
1 0 0	011 /0	011 /0	

$$\begin{aligned} &Q_{2}^{n+1} = Q_{1}^{n} A + Q_{0}^{n} \overline{A} \\ &Q_{1}^{n+1} = Q_{2}^{n} \overline{A} + \overline{Q_{0}}^{n} A \\ &Q_{0}^{n+1} = Q_{2}^{n} A + \overline{Q_{1}}^{n} \overline{A} \end{aligned}$$

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
42 41 40	A=0	A=1	
0 0 0	001/0	010/1	
0 0 1	101/0	000/0	
1 0 1	111/0	001/0	
1 1 1	110/0	101/0	
1 1 0	010/0	111/0	
0 1 0	000/1	110/0	
0 1 1	1 00/x	1 00/x	
1 0 0	111 /x	111 /x	
100	011 /x	011 /x	

这里采用了011->100->111, 也可以采用100->011->101/110

$$\begin{array}{c}
Q_{2}^{n+1} = Q_{1}^{n} A + Q_{0}^{n} \overline{A} \\
Q_{1}^{n+1} = Q_{2}^{n} \overline{A} + \overline{Q_{0}}^{n} A \\
Q_{0}^{n+1} = Q_{2}^{n} A + \overline{Q}_{1}^{n} \overline{A}
\end{array}$$

$$Q_2^{n+1} = Q_1^n A + Q_0^n \overline{A} + Q_2^n \overline{Q}_1^n \overline{Q}_0^n$$

$\overline{\mathbf{Q_2^nQ_1^nQ_0^n}}$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
Q2 Q1 Q0	A=0	A=1	
0 0 0	001/0	010/1	
0 0 1	101/0	000/0	
1 0 1	111/0	001/0	
1 1 1	110/0	101/0	
1 1 0	010/0	111/0	
0 1 0	000/1	110/0	
0 1 1	1 00/x	1 00/x	
1 0 0	111 /x	111 /x	
1 0 0	011 /x	011 /x	

$$\mathbf{Q_2}^{n+1}$$
= $\mathbf{Q_1}^{n}\mathbf{A}$ + $\mathbf{Q_0}^{n}\overline{\mathbf{A}}$ + $\mathbf{Q_2}^{n}\overline{\mathbf{Q_1}^{n}}\overline{\mathbf{Q_0}^{n}}$
 $\mathbf{Q_1}^{n+1}$ = $\mathbf{Q_2}^{n}\overline{\mathbf{A}}$ + $\overline{\mathbf{Q_0}}^{n}\mathbf{A}$ 保持不变 $\mathbf{Q_0}^{n+1}$ = $\mathbf{Q_2}^{n}\mathbf{A}$ + $\overline{\mathbf{Q_1}}^{n}\overline{\mathbf{A}}$

$\mathbf{Q^+_1} \mathbf{Q_0}\mathbf{A}$				
Q_2Q_1	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	1	1	0	$\sqrt{1}$
10	1	1	0	1
$Q_1^{n+1} = Q_2^n \overline{A} + \overline{Q_0}^n A$				

$\overline{\mathbf{Q_2^nQ_1^nQ_0^n}}$		nOon	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
Q2 Q1 Q0			A=0	A=1	
0	0	0	001/0	010/1	
0	0	1	101/0	000/0	
1	0	1	111/0	001/0	
1	1	1	110/0	101/0	
1	1	0	010/0	111/0	
0	1	0	000/1	110/0	
0	1	1	1 00/x	100 /x	
1	0	0	111 /x	111 /x	
1	0	0	011 /x	011 /x	

$$\mathbf{Q_2}^{\mathbf{n+1}}$$
= $\mathbf{Q_1}^{\mathbf{n}}\mathbf{A}$ + $\mathbf{Q_0}^{\mathbf{n}}\overline{\mathbf{A}}$ + $\mathbf{Q_2}^{\mathbf{n}}\overline{\mathbf{Q_1}^{\mathbf{n}}}\overline{\mathbf{Q_0}^{\mathbf{n}}}$
 $\mathbf{Q_1}^{\mathbf{n+1}}$ = $\mathbf{Q_2}^{\mathbf{n}}\overline{\mathbf{A}}$ + $\overline{\mathbf{Q_0}}^{\mathbf{n}}\mathbf{A}$ 保持不变 保持不变

(2 ⁺ 0	\mathbf{Q}_0	A	
Q_2Q_1	00	01	11	10
00	1)	0	0	$\overline{(1)}$
01	$\overline{0}$	0	0	0
11	0	1	1	$\overline{0}$
10		1	1	1
$\mathbf{Q_0}^{n+1} = \mathbf{Q_2}^n \mathbf{A} + \overline{\mathbf{Q}_1}^n \overline{\mathbf{A}}$				

$\overline{\mathbf{Q_2^nQ_1^nQ_0^n}}$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$		
42 41 40	A=0	A=1	
0 0 0	001/0	010/1	
0 0 1	101/0	000/0	
1 0 1	111/0	001/0	
1 1 1	110/0	101/0	
1 1 0	010/0	111/0	
0 1 0	000/1	110/0	
0 1 1	1 00/x	1 00/x	
1 0 0	111 /x	111 /x	
100	011 /x	011 /x	

• 求出对应的输出

$$\begin{array}{c|ccccc}
\mathbf{C} & \mathbf{Q_0 A} \\
\mathbf{Q_2 Q_1} & 00 & 01 & 11 & 10 \\
00 & 0 & 0 & 0 & 0 \\
01 & 0 & 0 & x & x \\
11 & 0 & 0 & 0 & 0 \\
10 & x & x & 0 & 0
\end{array}$$

$$\mathbf{C = \overline{Q_2}^n \, \overline{Q_0}^n \, (A \oplus \mathbf{Q_1}^n)}$$

或(不严格条件下):

$$C = \overline{Q_2}^n \ Q_1^n \overline{A} + Q_2^n \ \overline{Q_0}^n A$$

在011和100两种状态下的C输出虽然已经固定,但是我们不用太过关心,因为这两个状态最迟在上电后两个时钟周期就进入到正常S₀-S₅中

· 选用JK触发器,求出激励方程

$$\begin{aligned} &Q_{2}^{n+1} = Q_{1}^{n} A + Q_{0}^{n} \overline{A} + Q_{2}^{n} \overline{Q}_{1}^{n} \overline{Q}_{0}^{n} \\ &Q_{1}^{n+1} = Q_{2}^{n} \overline{A} + \overline{Q}_{0}^{n} A \\ &Q_{0}^{n+1} = Q_{2}^{n} A + \overline{Q}_{1}^{n} \overline{A} \end{aligned}$$

JK触发器特征方程:

$$Q^{n+1} = J \ \overline{Q}^n + \overline{K} \ Q^n$$

$$\begin{split} Q_0^{n+1} &= Q_2^n A + \overline{Q_1}^n \, \overline{A} \\ &= (Q_2^n A + \overline{Q_1}^n \overline{A}) \, \overline{Q_0}^n + (Q_2^n A + \overline{Q_1}^n \overline{A}) \, Q_0^n \\ & \Longrightarrow \quad J_0 = Q_2^n A + \overline{Q_1}^n \overline{A} \qquad K_0 = \overline{J_0} \\ Q_1^{n+1} &= Q_2^n \, \overline{A} + \overline{Q_0}^n A \qquad \Longrightarrow \qquad J_1 = Q_2^n \, \overline{A} + \overline{Q_0}^n A \qquad K_1 = \overline{J_1} \\ Q_2^{n+1} &= Q_1^n A + Q_0^n \, \overline{A} + Q_2^n \, \overline{Q_1}^n \, \overline{Q_0}^n \\ & \Longrightarrow \quad J_2 = Q_1^n A + Q_0^n \, \overline{A} \qquad K_2 = \overline{J_2 + \overline{Q_1}^n \, \overline{Q_0}^n} \end{split}$$

求激励方程的另一种方法

• 利用激励表和状态表求各触发器的激励方程

D触发器激励表

Qn	Q^{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

T触发器激励表

Qn	Q^{n+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

JK触发器激励表

Q ⁿ	Q^{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

RS触发器激励表

Qn	Q^{n+1}	R	S
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

激励表和状态表求激励方程

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$		
	A=0	A=1	
000	001	010	
001	101	000	
101	101	001	
111	110	101	
110	010	111	
010	000	110	
011	100	100	
100	111	111	

状态表

JK触发器激励表

Qn	Q^{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

由Q的变化情况,结合激励表,推导出各自的变化条件

画出卡诺图求JK(J₂K₂)

入Q	$_2$ ⁿ Q_1 ^r	$Q_0^n A$	4
$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$		J ₂ K ₂ J ₁	K ₁ J ₀ K ₀
A=0	A=1	A=0	A=1
001	010	0x0x1x	0x1x0x
101	000	1x0xx0	0x0xx1
101	001	x01xx0	x10xx0
110	101	x0x0x1	x0x1x0
010	111	x1x00x	x0x01x
000	110	0xx10x	1xx00x
100	100	1xx1x1	1xx1x1
111	111	x01x1x	x01x1x
	Q ₂ ⁿ⁺¹ Q· A=0 001 101 101 110 010 000 100	$\begin{array}{c c} Q_2^{n+1}Q_1^{n+1}Q_0^{n+1} \\ A=0 & A=1 \\ \hline 001 & 010 \\ 101 & 000 \\ 101 & 001 \\ 110 & 101 \\ \hline 010 & 111 \\ \hline 000 & 110 \\ \hline 100 & 100 \\ \hline \end{array}$	A=0 A=1 A=0 001 010 0x0x1x 101 000 1x0xx0 101 001 x01xx0 110 101 x0x0x1 010 111 x1x00x 000 110 0xx10x 100 100 1xx1x1

$$\mathbf{J_2} = \mathbf{Q_1}^{\mathbf{n}} \mathbf{A} + \mathbf{Q_0}^{\mathbf{n}} \overline{\mathbf{A}}$$

$$\mathbf{K}_2 = \mathbf{Q}_1^{\mathbf{n}} \, \overline{\mathbf{Q}_0}^{\mathbf{n}} \overline{\mathbf{A}} + \overline{\mathbf{Q}_1}^{\mathbf{n}} \, \mathbf{Q}_0^{\mathbf{n}} \overline{\mathbf{A}}$$

和第一种方法推导的结果做对比:

$$\mathbf{J}_2 = \mathbf{Q}_1^{\mathbf{n}} \mathbf{A} + \mathbf{Q}_0^{\mathbf{n}} \overline{\mathbf{A}}$$

$$\begin{bmatrix} \mathbf{2} & \mathbf{Q_0 A} & \mathbf{K_2} & \mathbf{Q_0 A} \\ 00 & 01 & 11 & 10 & \mathbf{Q_2 Q_1} & 00 & 01 & 11 & 10 \\ \hline 0 & 0 & 0 & 1 & 00 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 01 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 10 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix}$$

$$\mathbf{K}_2 = \mathbf{J}_2 + \overline{\mathbf{Q}}_1{}^{\mathbf{n}} \, \overline{\mathbf{Q}}_0{}^{\mathbf{n}}$$

达到功能一致, 表达式一致

画出卡诺图求JK(J₁K₁)

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$		$J_2K_2 J_1$	$K_1 J_0 K_0$
	A=0	A=1	A=0	A=1
000	001	010	0x0x1x	0x1x0x
001	101	000	1x0xx0	0x0xx1
101	101	001	x01xx0	x10xx0
111	110	101	x0x0x1	x0x1x0
110	010	111	x1x00x	x0x01x
010	000	110	0xx10x	1xx00x

100

111

1xx1x1

x01x1x

1xx1x1

x01x1x

条件填入Q2ⁿQ1ⁿQ0ⁿA

$$\mathbf{J}_1 = \mathbf{Q}_2^{\mathbf{n}} \ \overline{\mathbf{A}} + \overline{\mathbf{Q}}_0^{\mathbf{n}} \mathbf{A}$$

$$\mathbf{K}_1 = \overline{\mathbf{Q}}_2{}^{\mathbf{n}} \overline{\mathbf{A}} + \mathbf{Q}_0{}^{\mathbf{n}} \mathbf{A}$$

和第一种方法推导的结果做对比:

${f J_1}$		\mathbf{Q}_0	A	
Q_2Q_1	00	01	11	10
00	0	1	0	0
01	Q	1	0	0
11	1	1	0	(1)
10	1	1	0	1

达到功能一致, 表达式一致

011

100

100

111

$$\mathbf{J_1} = \mathbf{Q_2}^{\mathbf{n}} \overline{\mathbf{A}} + \overline{\mathbf{Q_0}}^{\mathbf{n}} \mathbf{A}$$

$$K_1 = \overline{J_1}$$

画出卡诺图求 $JK(J_0K_0)$

 $Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$ $Q_2{}^nQ_1{}^nQ_0{}^n$ $J_2K_2 J_1K_1 J_0K_0$ A=0A=1 A=0A=1000 001 010 0x0x1x0x1x0x001 101 000 1x0xx0 0x0xx1 101 101 001 x01xx0 x10xx0 111 110 101 x0x0x1x0x1x0 110 010 111 x1x00x x0x01x

110

100

111

0xx10x

1xx1x1

x01x1x

1xx00x

1xx1x1

x01x1x

条件填入Q2ⁿQ1ⁿQ0ⁿA

$$\mathbf{J_0} = \mathbf{Q_2}^{\mathbf{n}} \mathbf{A} + \overline{\mathbf{Q_1}}^{\mathbf{n}} \overline{\mathbf{A}}$$

$$\mathbf{K}_0 = \mathbf{Q}_1^{\mathbf{n}} \overline{\mathbf{A}} + \overline{\mathbf{Q}}_2^{\mathbf{n}} \mathbf{A}$$

和第一种方法推导的结果做对比:

达到功能一致, 表达式一致

010

011

100

000

100

111

$$\mathbf{J_0} = \mathbf{Q_2}^{\mathbf{n}} \mathbf{A} + \overline{\mathbf{Q_1}}^{\mathbf{n}} \overline{\mathbf{A}} \qquad \mathbf{K}$$

$$\mathbf{K}_0 = \overline{\mathbf{J}_0}$$

示例2一可逆六进制计数器

T触发器激励表

Qn	Q^{n+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

• 状态编码

- 二进制码: 000~101

- T触发器实现

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$		T ₂ T	$_{1}T_{0}$
	A=0	A=1	A=0	A=1
S0:000	001	101	001	101
S1:001	010	000	011	001
S2:010	011	001	001	011
S3:011	100	010	111	001
S4:100	101	011	001	111
S5:101	000	100	101	001
S6:110	XXX	XXX	XXX	XXX
S7:111	XXX	XXX	XXX	XXX

	_			
$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1$	$^{n+1}Q_0^{n+1}$	T_2T	₁ T ₀
	A=0	A=1	A=0	A=1
S0:000	001	101	001	101
S1:001	010	000	011	001
S2:010	011	001	001	011
S3:011	100	010	111	001
S4:100	101	011	001	111
S5:101	000	100	101	001
S6:110	XXX	XXX	XXX	XXX
S7:111	XXX	XXX	XXX	XXX

画出卡诺图求T

$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1$	$^{n+1}Q_0^{n+1}$	T_2T	₁ T ₀
	A=0	A=1	A=0	A=1
S0:000	001	101	001	101
S1:001	010	000	011	001
S2:010	011	001	001	011
S3:011	100	010	111	001
S4:100	101	011	001	111
S5:101	000	100	101	001
S6:110	111	101	001	011
S7:111	010	110	101	001

验证自启动:

先写出 $T_2T_1T_0$, (圈中x->1,否则x->0) 再根据Q₂ⁿQ₁ⁿQ₀ⁿ求出Q₂ⁿ⁺¹Q₁ⁿ⁺¹Q₀ⁿ⁺¹ 可能上电后:

	Γ_{2}	Q_0	A		
Q_2Q_1	00	01	11	10	
00	0	1	0	0	
01	0	O	0	1	
11	X	X	X	X	→ 1
10	0	\bigcap	0	1	

$$\mathbf{T}_2 = \overline{\mathbf{Q}_1}^{\mathbf{n}} \overline{\mathbf{Q}_0}^{\mathbf{n}} \mathbf{A} + (\mathbf{Q}_2^{\mathbf{n}} + \mathbf{Q}_1^{\mathbf{n}}) \overline{\mathbf{A}}$$

$$T_2 = \overline{Q_1}^n \overline{Q_0}^n A + (Q_2^n + Q_1^n) \overline{A} \qquad T_1 = \overline{Q_2}^n Q_0^{\overline{n}} A + (Q_2^n + Q_1^n) \ \overline{Q_0}^n \ A$$

$$T_0=1$$

-				
$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1$	$^{n+1}Q_0^{n+1}$	T	$_{2}T_{1}T_{0}$
	A=0	A=1	A=0) A=1
S0:000	001	101	001	101
S1:001	010	000	011	001
S2:010	011	001	001	011
S3:011	100	010	111	001
S4:100	101	011	001	111
S5:101	000	100	101	001
S6:110	011	001	101	111
S7:111	010	010	101	101

验证自启动:

扩展
$$T_2 = \overline{Q_1}^n \overline{Q_0}^n A + (Q_2^n + Q_1^n) \overline{A} + Q_2^n Q_1^n$$

求出输出C, 画出逻辑图(略)

7	Γ_2	$\mathbf{Q_0}\mathbf{A}$	
Q_2Q_1	00	01 11	10
00	0	1/0	0
01	0	0 0	1
11	X	X X	x 1
10	0	\bigcap 0	1

7	Γ_{1}	\mathbf{Q}_0	A	
Q_2Q_1	00	01	11	10
00	0	0	0	1
01	0	1	0	1
11	X	X	X^{I}	X
10	0	1	0	0

$$T_1 = \overline{Q}_2^n Q_0^{\overline{n}} A + (Q_2^n + Q_1^n) \overline{Q}_0^n A$$

$$T_0 = 1$$

作业

- 电子技术基础-数字部分
- · P355-356 (同步逻辑设计):
 - -6.3.2, 6.3.4, 6.3.5, 6.3.6, 6.3.7

The End

彩蛋时间: Mealy实现 vs Moore实现

按Moore型时序电路分析

(1) 建立原始状态图和原始状态表

设输入、输出变量分别为X和Z,定义电路状态

S₀: 输入"0"

S2: 连续输入"11"

S₁: 输入"1"

S3: 连续输入"111"

原始状态表

Sn	S ⁿ⁺	Z	
.	X=0	X=1	
S_0	S_0	S_1	0
$egin{array}{c} \mathbf{S_0} \\ \mathbf{S_1} \end{array}$	$egin{array}{c} \mathbf{S_0} \\ \mathbf{S_0} \\ \mathbf{S_0} \\ \mathbf{S_0} \end{array}$	$egin{array}{c} \mathbf{S_2} \\ \mathbf{S_3} \\ \mathbf{S_3} \end{array}$	0
S_2	S_0	S_3	0
S ₂ S ₃	S_0	S_3	1

- (2) 状态化简: 已经是最简
- (3) 状态编码: 顺序码

(4) 求出状态方程和输出方程 S=[Q1,Q0]

Q_{1}^{n+1}			O_0^{n+1}		
$Q_1^n Q_0^n$ 00	0	1	Q_0^{n+1} $Q_1^n Q_0^n$	0	1
00	0	0	00	0	1
01	0	1	01	0	0
11	0	1	11	0	1
10	0	1	10	N	

$$\mathbf{Q_1}^{n+1} = \mathbf{X}(\mathbf{Q_0}^n + \mathbf{Q_1}^n)$$

$$\mathbf{Q}_0^{\mathbf{n}+1} = \mathbf{X} \left(\mathbf{Q}_0^{\mathbf{n}} + \mathbf{Q}_1^{\mathbf{n}} \right)$$

状态表					
Sn	S ⁿ⁺	-1	Z		
<u> </u>	X=0				
00	00	0			
01	00	0			
10	00	0			
11	00	11	1		

$$\mathbf{Z} = \mathbf{Q_0^n} \mathbf{Q_1^n}$$

(6) 选择触发器,求激励方程

$$Q_1^{n+1} = X(Q_0^n + Q_1^n)$$

$$Q_0^{n+1} = X(\overline{Q_0^n} + Q_1^n)$$

$$Q_0^{n+1} = X(\overline{Q_0^n} + Q_1^n)$$

$$Q_0^{n+1} = D$$

$$Z = Q_0Q_1$$

$$Q_1^{n+1} = D$$

$$Z = Q_0Q_1$$

$$Z = Q_0Q_1$$

(7)画出逻辑图

检查时序图

$$\mathbf{Q_1}^{n+1} = \mathbf{X}(\mathbf{Q_0}^n + \mathbf{Q_1}^n)$$

$$\mathbf{Q_0}^{n+1} = \mathbf{X} \ (\mathbf{Q_0}^n + \mathbf{Q_1}^n)$$

$$\mathbf{Z} = \mathbf{Q_0}\mathbf{Q_1}$$

无误!

- Moore型,仅在时钟边沿考察
- 输出与时钟严格同步,至少持续一个周期,不会产生"毛刺"