#### POINT NORMAL TRIANGLES

Rick van Veen Laura Baakman December 14, 2015

Advanced Computer Graphics

#### Point Normal triangles

POINT NORMAL TRIANGLES

December 14, 2015 Advanced Computer Graphics



Point Normal triangles

#### SINGLE PN TRIANGLE

# OVERVIEW







#### GEOMETRY

enhancement: emphasize vertices better

img/1\_single/inputPrimitive\_emphGeometry.



#### **GEOMETRY - VERTEX COEFFICIENTS**

img/1\_single/geometry\_1.png

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

$$b_{300} = P_1,$$

$$b_{030} = P_2,$$

$$b_{003} = P_3$$

Point Normal triangles

Single PN Triangle

Geometry - Vertex Coefficients

#### **GEOMETRY - VERTEX COEFFICIENTS**

img/1\_single/geometry\_1.png

 $b_{300} = (iP_1 + iP_2 + kP_3)/3$   $b_{300} = P_1,$   $b_{030} = P_2,$   $b_{003} = P_3$ 

Point Normal triangles

Single PN Triangle

Geometry - Vertex Coefficients

#### **GEOMETRY - VERTEX COEFFICIENTS**

img/1\_single/geometry\_1.png

trol net

Point Normal triangles

Single PN Triangle

Geometry - Ver

 $\begin{array}{c} b_{ij0} = (iP_1 + iP_2 + bP_2)/3 \\ \\ b_{2i0} = (iP_1 + iP_2 + bP_2)/3 \\ \\ b_{2i0} = P_1 \\ \\ b_{2i0} = P_2 \\ \\ \\ b_{2i1} = P_2 \end{array}$ 

GEOMETRY - VERTEX COEFFICIENTS

Geometry - Vertex Coefficients

#### **GEOMETRY - TANGENT COEFFICIENTS**

img/1\_single/geometry\_2.png

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N^2}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N^2}{3}$$

Point Normal triangles

Single PN Triangle

└─Geometry - Tangent Coefficients



#### GEOMETRY - TANGENT COEFFICIENTS

img/1\_single/geometry\_2.png

Point Normal triangles

Single PN Triangle
Geometry - Tang

 $\begin{aligned} & w_{ij} = (P_{i} - P_{i}) \cdot N_{i} \in \mathbb{R} \\ & b_{2m} = \frac{2P_{i} + P_{j} - m_{ij}M1}{3} \\ & \vdots \\ & b_{2m} = \frac{2P_{i} + P_{j} - m_{ij}M1}{3} \end{aligned}$ 

GEOMETRY - TANGENT COEFFICIENTS

Geometry - Tangent Coefficients

#### GEOMETRY - CENTER COEFFICIENT

img/1\_single/geometry\_3.png

$$E = (b_{210} + b_{120} + b_{02} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3$$

$$b_{111} = E + (E - V)/2$$

Point Normal triangles

—Single PN Triangle

 $\sqsubseteq$  Geometry - Center Coefficient

img/2\_single/geometry\_3.pmg

GEOMETRY - CENTER COEFFICIENT

#### GEOMETRY - CENTER COEFFICIENT

img/1\_single/geometry\_3.png

Point Normal triangles

Single PN Triangle

Geometry - Center Coefficient

GEOMETRY - CENTER COEFFICIENT

img/1\_single/geometry\_3.png

center control point

 $E = (b_{210} + b_{120} + b_{021}$ 

 $V = (P_1 + P_2 + P_3)/3,$  $b_{111} = E + (E - V)/2$ 

#### GEOMETRY - RESULT

enhancement: Set result slide to plain

img/1\_single/geometry\_4.png

Point Normal triangles

Single PN Triangle

Geometry - Result

enhancement: Set result slide to plain

ing/1\_single/goometry\_4.png

## OVERVIEW





#### CUBIC PATCH

Spacing van de for all

Plaatje?

 $\mathcal{E}^s$ , for w = 1 - u - v, u, v,  $w \ge 0$   $\sum - b_{jk} \frac{3!}{1! 1! k!} u^i v^i w^k$ 

Point Normal triangles

Single PN Triangle

Cubic patch

 $\begin{aligned} & \text{Consider Particle} \\ & \text{Drown Service of the least of the lea$ 

# OVERVIEW

./img/1\_single/recap\_inputToNormals.png

Point Normal triangles

Single PN Triangle

Overview

#### **NORMALS**

**enhancement:** emphasize normals more

img/1\_single/inputPrimitive\_emphNormal.pn;

Point Normal triangles

O-21-21-21

Normals



#### NORMALS - THEORY

img/1\_single/linearVsQuadraticNormals\_line

adratic

└─Normals - theory

Point Normal triangles

Single PN Triangle

img/1\_single/linearVaQuadra schorma

NORMALS - THEORY

#### NORMALS - THEORY

img/1\_single/linearVsQuadraticNormals\_line

img/1\_single/linearVsQuadraticNormals\_qua@

 img/1\_single/linear/sQuadra icNormals\_lin linear

img/1\_single/linear/sQuadra icNormals\_lun quadudc

# NORMALS - EXAMPLE





#### NORMALS - THEORY

img/1\_single/computingNormals.png

$$v_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_i - P_i) \cdot (P_i - P_i)} \in \mathbb{R}$$

 $h_{110} - N_1 + N_2 - V_{12}(P_2 - P_1)$ 

Point Normal triangles

Single PN Triangle

Normals - theory

#### NORMALS - THEORY

img/1\_single/computingNormals.png

Point Normal triangles

Single PN Triangle

Normals - theory

Normals - theory

#### NORMALS - RESULT

enhancement: Set result slide to plain

img/1\_single/normals.png

Point Normal triangles
Single PN Triangle
Normals - result



# OVERVIEW





#### QUADRATIC PATCH

Plaatje

 $n: \mathbb{R}^2 \to \mathbb{R}^3$ , for w = 1 - u - v,  $u, v, w \ge 0$  $n(u, v) = \sum_{n=1}^{\infty} n^n u^n v^n v^n$ 

 $= n_{200}w^2 + n_{020}u^2 + n_{002}v^2$ 

 $+ n_{110}wu + n_{011}uv + n_{101}wv$ 

Point Normal triangles

Single PN Triangle

Quadratic Patch

QUADRATIC PATCH 
$$\begin{split} n: \mathbb{R}^2 \to \mathbb{R}^2, & \text{ for } w = 1-u \to v, u, v, w \geq 0 \\ & n(u,v) = \sum_{i=1,i+1,3} n_{i}u^iv^iw^i \\ & - n_{i}u^iv^i \to n_{i}u^iv^i + n_{i}u^iv^i \\ & + n_{i}u^iv^i + n_{i}u^iv^i + n_{i}u^iv^i \\ & + n_{i}u^iv^i + n_{i}u^iv^i + n_{i}u^iv^i \end{split}$$

### LEVEL OF DETAIL



Point Normal triangles

Single PN Triangle

Level Of Detail



# OVERVIEW





#### A TRIANGLE MESH

#### **PROPERTIES**

"PN triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles." <sup>1</sup>

<sup>1</sup>Vlachos et al.

Point Normal triangles 2015-12-09 —A Triangle Mesh

└─ Properties

"PN triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles."

#### CONTINUITY

-

- $C^1$  continuity in the vertex points
- C<sup>0</sup> continuity everywhere else

<sup>2</sup>liao and Alexander

Point Normal triangles

O-Z1S102
Continuity

PN triangles have?
- c' continuity in the vertex points
- c" continuity everywhere else

"yea and Anzender



./img/2\_mesh/bl/ungA2eMesh/bi/gingA2e的kaddesh/imgA2eMesh/

Point Normal triangles

O-21-20

—Sharp Edges



SEPARATE NORMALS

img/2\_mesh/cracksNormals.ipmg/2\_mesh/cracks.png

Point Normal triangles

A Triangle Mesh

Separate Normals

#### **GRAPHICS PIPELINE**

#### **HARDWARE - PIPELINES**

img/3\_pipeline/pipelineDifferences\_oldOpenGL.png

2015

Point Normal triangles

Graphics Pipeline

Hardware - Pipelines

#### HARDWARE - PIPELINES

img/3\_pipeline/pipelineDifferences\_oldOpenGL.png

img/3\_pipeline/pipelineDifferences\_newOpenGL.png

Point Normal triangles

Graphics Pipeline

Hardware - Pipelines

Point Normal triangles

Imp/1, pipeline/pipelineDifferences, glodypedia.

2001

Ling/1, pipeline/pipelineDifferences, medipedia.

2005

2006

#### CONCLUSION

Point Normal triangles

Conclusion

Conclusion

CONCLUSION

# CONCLUSION CONCLUSION Point Normal triangles 2015-12-09 └─ Conclusion └─conclusion Some conclusion?



#### FIGUUR 13 UIT PAPER

QUESTIONS?

Point Normal triangles
—Conclusion



#### REFERENCES

beamengronainticalceppidlfp J Alexander. "Parallel feature-preserving mesh smoothing". In: Computational Science and Its Applications—ICCSA 2005. Springer, 2005, pp. 1180–1189.

beamer boonar did Meking bifd. Crack-free point-normal triangles using adjacent edge normals. 2010.

beamer Mortastetcale "Opd Fed PN triangles". In: Proceedings of the 2001 symposium on Interactive 3D graphics. ACM. 2001, pp. 159–166.

#### 

-09

2015