HY Anatomy/MSK/Rheum

Student Q showed electron micrograph (EM) pic of sarcomere + they asked what does not change length during muscle contraction + had letters at different locations. Answer = A-band.

Before you instantly freak out, relax. First look at above EM of sarcomere. Then compare with bottom images here:

All you need to know is: as the myosin and actin overlap during muscle contraction, the Hzone, I-band, and sarcomere (Z-Z) shorten. The A-band (myosin; neon-green bar above) does not change in length.

- Tropomyosin is a protein on actin that covers up myosin binding sites. During contraction, calcium is released from the sarcoplasmic reticulum and binds to troponin, causing a conformational change that releases tropomyosin from actin, thereby allowing myosin to bind.
- ATP is required to *relax* muscle (i.e., rigor mortis in the deceased due to \downarrow ATP).
- 24M + partakes in research study of muscle contraction; Q asks, on the following electron micrograph of a sarcomere, which segment will not change length? (choose the number):

Answer = #2 (A-band). In contrast, the I-band (#6), H-zone (#7), and length of sarcomere (#1; Z-Z) all shorten during contraction.

Muscle fiber type	Slow-twitch (type I)	Fast-twitch (type II)
Predominance in whom	Long-distance runners	Powerlifters; sprinters
Oxygen usage	Aerobic	Anaerobic
Glycogen content	Low	High
Fatiguability	Slow to fatigue	Quick to fatigue
Mitochondria	Many	Few
Myoglobin content (red in color)	High (more red)	Low (more white)

28M + femoral nerve injury resulting in denervation of rectus femoris; Q asks what is most likely to be seen during nerve recovery; answer = "fiber type grouping of type I and II muscle cells"; you need to know that reinnervation of muscle results in aberrant reorganization of type I and II muscle units. This aberrant reorganization is called fiber type grouping. This is answer on an NBME.

MEHLMANMEDICAL.COM

- 24M + partakes in powerlifting routine; Q asks \uparrow or \leftrightarrow for changes in muscle cell number, muscle cell size, and mitochondria; answer = \leftrightarrow muscle cell number, \uparrow muscle cell size, and \leftrightarrow mitochondria. Skeletal muscle response to activity is hypertrophy, not hyperplasia. Powerlifting is anaerobic and does not increase mitochondria.
- 20F + paraplegic following accident; Q asks what is most likely to be seen in this patient; answer = "polyubiquitination"; proteins are tagged with ubiquitin in order to be sent to the proteasome for breakdown; atrophy in the setting of inactivity = \uparrow ubiquitination.
- 31M + in wilderness for 3 weeks without food; Q asks what allows him to maintain normal serum glucose levels during this time; answer = "skeletal muscle protein" → you must know that skeletal muscle does not contain glucose-6-phosphatase and therefore does not directly carry out gluconeogenesis; glucogenic amino acids can be liberated in the fasting state from skeletal muscle, with the liver carrying out the gluconeogenesis. The kidney can also carry out gluconeogenesis.
- 16F + receives insulin injection + serum glucose lowers; Q asks why; answer = "increased glucose uptake by skeletal muscle"; both skeletal muscle and adipose tissue take up glucose via GLUT4 in response to insulin.
- Q on offline Step 1 NBME form asks why ATP does not fall appreciably during a series of muscle twitches \rightarrow answer = "ATP is quickly regenerating from creatine phosphate."
- "What do I need to know about shoulder anatomy for USMLE?" -> USMLE is known to occasionally give images of shoulder, clavicular, and humeral fractures. Spending a few moments to gain an idea of normal shoulder anatomy is not "nitpicky."