Visão e Processamento de Imagens - Avaliação única - Parte II Preste atenção para as regras da prova

- 1- O fonte latex (.tex) da prova será disponibilizado para facilitar que você não tenha que copiar o enunciado das questões. Todas as questões devem ser respondidas no mesmo arquivo.
- 2- A prova é **individual**. É permitido a consulta a livros, apontamentos ou Internet, desde que devidamente referenciada. Não é permitida a consulta a colegas, amigos, família, cachorro, papagaio e etc.
- 3- A prova deve ser entregue diretamente no Paca, assim como todos os códigos e imagens devem ser entregues no mesmo arquivo comprimido. **Duração da prova: 14 dias**.
- 4- Cada questão vale 20 pontos (pois são apenas 3 questões) para a graduação e 15 pontos para a pós-graduação (pois são 4 questões).
- Q1. Para fazer esta questão, leia primeiro o artigo abaixo:
 - http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-85.pdf
 - Faça um resumo do artigo de acordo com as indicações que deixei no paca (artigos sobre como fazer um resumo).

TODO

- Implemente o método ELA (Error Level Analysis) em Python (apresente o **algoritmo** na prova e anexe o código em Python no arquivo zip).

Abaixo o trecho onde o algoritmo efetivamente foi implementado. O código completo está em source/ela.py.

```
import os
from PIL import Image, ImageChops, ImageEnhance
from time import gmtime, strftime

# you can change the image directory here
HOAX_IMAGES = './HoaxImages/'

def check_image(img_path, scale=20.0, show=False):
    """ Compute the Error Level Analysis for the given
    image

    Save a copy of the given image changing its quality
        level,
    in our case 95%, and compute the difference between
        this
    image over the original. In addition, a scale is
        also
        applied to the final result for better viewing.
    References:
```

```
http://blackhat.com/presentations/bh-dc-08/Krawetz/
  Whitepaper/bh-dc-08-krawetz-WP.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/
  EECS-2015-85.pdf
11 11 11
try:
    img = Image.open(img_path)
except FileNotFoundError:
    print ("File '"+ img_path +"' not found.")
    return
# check the image format for JPEG only
if img.format is not 'JPEG':
    log(img_path + ' is not a JPEG file')
    return
log("Image size "+ str(img.size[0]) + "x" + str(img
  .size[1]))
short_file_name = os.path.splitext(img_path)[0]
# save a copy of the image with a different
  inferior quality level
resaved_path = short_file_name + '_resaved'
img.save(resaved_path, 'JPEG', quality=95)
resaved_img = Image.open(resaved_path)
# compute the difference between the given image
  and the image
# generated applying a scale to increase the
  brightness
ela_img = ImageChops.difference(img, resaved_img)
ela_img = ImageEnhance.Brightness(ela_img).enhance(
  scale)
ela_img.save(short_file_name + '_ela.png')
if (show):
    ela_img.show()
os.remove(resaved_path)
```

- Teste seu algoritmo com as imagens que deixei no paca para este exercício. Quantas imagens seriam consideradas modificadas por esse método? Comente o resultado, comparando com a sua intuição.

Uma vez submetida a imagem ao *Error Level Analysis*, pode-se perceber pelo resultado que a região manipulada terá um nível de erro diferente das regiões não manipuladas. Logo, o nível de erro irá expor a região manipulada rotulando as

regiões com maior alteração após a imagem ser salva com um nível de qualidade inferior [1].

Na Figura 1b, podemos ver o resultado do ELA na imagem dada. As regiões com maior chance de ter alterações são as que apresentam os pixels com maior brilho, uma vez que a alteração da imagem causa instabilidade nestas áreas.

(1a) Imagem original

(1b) Imagem com o resultado do ELA

Os resultados foram avaliados de acordo com o brilho das bordas que devem ser semelhantes no resultado da aplicação do ELA na imagem. Além disso, regiões de cores e texturas semelhantes na imagem original, independentemente da cor, também devem ter cores aproximadamente similares no ELA [2].

Isto posto, um total de 23 imagens foram consideradas alteradas de acordo com o método e avaliação a posteriori.

Q2. Esta questão refere-se à transformada de Fourier.

- Encontre a transformada de Fourier da função:

$$f(x) = \begin{cases} 7 & \text{if } -5 < x < 5 \\ 0 & \text{caso contrário} \end{cases}$$

Por definição, temos que a transformada de Fourier de um pulso retangular de largura D e altura A tem a forma dada por:

$$F(\omega) = ADsinc\left(\frac{\omega D}{2}\right) = AD\frac{sin\left(\frac{\omega D}{2}\right)}{\frac{\omega D}{2}}$$

A função f(x) pode ser representada graficamente como:

Onde:

$$f(x) = \begin{cases} A, & x \in \left[\frac{-D}{2}, \frac{D}{2}\right] \\ 0, & x \notin \left[\frac{-D}{2}, \frac{D}{2}\right] \end{cases}$$

Logo, temos que A = 7 e D = 10 e, portanto, a transformada de Fourier da função f(x) é:

$$F(\omega) = AD \frac{\sin(\frac{\omega D}{2})}{\frac{\omega D}{2}}$$

$$= 7 * 10 \frac{\sin(\frac{\omega 10}{2})}{\frac{\omega 10}{2}}$$

$$= 70 \frac{\sin(\frac{\omega 10}{2})}{\frac{\omega 10}{2}}$$

$$= 70 \frac{\sin(5\omega)}{5\omega}$$

– Encontre a transformada de Fourier da função $g(x) = f(x)\cos \omega_0 x$, sabendo que a transformada de Fourier de f(x) é dada por $F(\omega)$

Tomando a propriedade da modulação:

$$\mathcal{F}[x(t)cos(\omega_0 t)] = \frac{1}{2} [F(\omega + \omega_0) + F(\omega - \omega_0)]$$

Temos que a transformada de Fourier da função g(x) é:

$$G(\omega) = \frac{1}{2}F(\omega + \omega_0) + \frac{1}{2}F(\omega - \omega_0)$$

– Ache a inversa da transformada de Fourier de $G(\omega) = 20 \frac{\sin 5\omega}{5\omega} e^{-3\omega i}$ Por ora, ignorando a exponencial complexa de $G(\omega)$, podemos obter os valores de A e D:

$$20\frac{\sin(5\omega)}{5\omega} = AD\frac{\sin(\frac{\omega D}{2})}{\frac{\omega D}{2}}$$
$$5\omega = \frac{\omega D}{2}$$
$$10\omega = \omega D$$
$$D = \frac{10\omega}{\omega} = 10$$
$$AD = 20$$
$$A10 = 20$$
$$A = 2$$

Como vimos no primeiro item do exercício 2, sabemos que:

$$f(x) = A.rect(x) = \begin{cases} A, & x \in \left[\frac{-D}{2}, \frac{D}{2}\right] \\ 0, & x \notin \left[\frac{-D}{2}, \frac{D}{2}\right] \end{cases}$$
$$A.rect\left(\frac{x}{D}\right) \xrightarrow{\mathscr{F}} ADsinc\left(\frac{\omega D}{2}\right)$$

O que nos dá a forma do pulso retangular:

$$f(x) = 2.rect\left(\frac{x}{10}\right) = \begin{cases} 2, & x \in [-5, 5] \\ 0, & x \notin [-5, 5] \end{cases}$$

Considerando agora a exponencial complexa, sabemos que ela representa um deslocamento no tempo, que é 3 neste caso e, portanto:

$$2.rect\left(\frac{x-3}{10}\right) \xrightarrow{\mathscr{F}} 20 \frac{\sin 5\omega}{5\omega} e^{-3\omega i}$$

$$g(x) = 2.rect\left(\frac{x-3}{10}\right) = \left\{ \begin{array}{ll} 2, & -2 < x < 8 \\ 0, & \text{caso contrário} \end{array} \right.$$

- Calcule a DFT do sinal $f = \{1, 3, 5, 3, 1\}$ A DFT é dada por:

$$F(k) = \sum_{n=0}^{N-1} f(n)e^{-jk\frac{2\pi}{N}n}$$

Para realizar os cálculos devemos utilizar a identidade de Euler:

$$e^{-j\pi} = \cos \pi - j \sin \pi$$

Devemos utilizar a seguinte equação para calcular a DFT do sinal dado por f(x):

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-jk\frac{2\pi}{N}n}, \quad para \quad k = 0, 1, 2, ..., N-1$$

Temos que N=5, logo:

$$\begin{split} X[0] &= (1e^0 + 3e^0 + 5e^0 + 3e^0 + 1e^0) \\ X[1] &= (1e^0 + 3e^{-j1\frac{2\pi}{5}1} + 5e^{-j1\frac{2\pi}{5}2} + 3e^{-j1\frac{2\pi}{5}3} + 1e^{-j1\frac{2\pi}{5}4}) \\ X[2] &= (1e^0 + 3e^{-j2\frac{2\pi}{5}1} + 5e^{-j2\frac{2\pi}{5}2} + 3e^{-j2\frac{2\pi}{5}3} + 1e^{-j2\frac{2\pi}{5}4}) \\ X[3] &= (1e^0 + 3e^{-j3\frac{2\pi}{5}1} + 5e^{-j3\frac{2\pi}{5}2} + 3e^{-j3\frac{2\pi}{5}3} + 1e^{-j3\frac{2\pi}{5}4}) \\ X[4] &= (1e^0 + 3e^{-j4\frac{2\pi}{5}1} + 5e^{-j4\frac{2\pi}{5}2} + 3e^{-j4\frac{2\pi}{5}3} + 1e^{-j4\frac{2\pi}{5}4}) \\ X[0] &= (1 + 3 + 5 + 3 + 1) \\ X[1] &= (1 + 3e^{-j\frac{2\pi}{5}} + 5e^{-j\frac{4\pi}{5}} + 3e^{-j\frac{6\pi}{5}} + 1e^{-j\frac{8\pi}{5}}) \\ X[2] &= (1 + 3e^{-j\frac{4\pi}{5}} + 5e^{-j\frac{6\pi}{5}} + 3e^{-j\frac{12\pi}{5}} + 1e^{-j\frac{16\pi}{5}}) \\ X[3] &= (1 + 3e^{-j\frac{6\pi}{5}} + 5e^{-j\frac{12\pi}{5}} + 3e^{-j\frac{18\pi}{5}} + 1e^{-j\frac{24\pi}{5}}) \\ X[4] &= (1 + 3e^{-j\frac{8\pi}{5}} + 5e^{-j\frac{16\pi}{5}} + 3e^{-j\frac{24\pi}{5}} + 1e^{-j\frac{32\pi}{5}}) \end{split}$$

Calculando cada componente com a relação de Euler e substituindo os resultados na equação acima:

$$e^{-j\frac{2\pi}{5}} = \cos(\frac{2\pi}{5}) - jsen(\frac{2\pi}{5}) = 0,30902 - 0,95106j$$

$$e^{-j\frac{4\pi}{5}} = \cos(\frac{4\pi}{5}) - jsen(\frac{4\pi}{5}) = -0,80902 - 0,58779j$$

$$e^{-j\frac{6\pi}{5}} = \cos(\frac{6\pi}{5}) - jsen(\frac{6\pi}{5}) = -0,80902 + 0,58779j$$

$$e^{-j\frac{6\pi}{5}} = \cos(\frac{8\pi}{5}) - jsen(\frac{8\pi}{5}) = 0,30902 - 0,95106j$$

$$e^{-j\frac{12\pi}{5}} = \cos(\frac{12\pi}{5}) - jsen(\frac{12\pi}{5}) = 0,30902 - 0,95106j$$

$$e^{-j\frac{16\pi}{5}} = \cos(\frac{16\pi}{5}) - jsen(\frac{16\pi}{5}) = -0,80902 + 0,58779j$$

$$e^{-j\frac{18\pi}{5}} = \cos(\frac{18\pi}{5}) - jsen(\frac{18\pi}{5}) = 0,30902 + 0,95106j$$

$$e^{-j\frac{24\pi}{5}} = \cos(\frac{24\pi}{5}) - jsen(\frac{24\pi}{5}) = -0,80902 - 0,58779j$$

$$e^{-j\frac{32\pi}{5}} = \cos(\frac{32\pi}{5}) - jsen(\frac{32\pi}{5}) = 0,30902 - 0,95106j$$

Temos então que o resultado da DFT é:

$$X[f] = 13, -4.236067 - 3.077683j, 0.236067 + 0.726542j,$$

 $0.236067 - 0.726542j, -4.236067 + 3.077683j$

Q3. – Calcule (apresente os cálculos) dos descritores de Fourier das figuras 3a e 3b. Lembre-se que os pontos da borda do quadrado serão representados por pontos no plano de Argand-Gauss. Isto é, cada ponto no plano passa a ser um número complexo e a borda passa a ser um vetor de pontos complexos, como num sinal, mas com valores complexos.

TODO

Para confirmar que seus cálculos estão corretos, implemente um programa em Python que receba como entrada um vetor de números complexos (que são as coordenadas das bordas) e retorne os descritores de Fourier do vetor de entrada. Você pode usar as funções fornecidas pela biblioteca NUMPY para facilitar a programação.

TODO

 Para reconstruir a curva, faça uma função que receba um vetor com os descritores de Fourier, um número N de descritores a serem usados e grafique os pontos num plano cartesiano (para fazer a mesma figura que fizemos nos slides das aulas 15 e 16.

TODO

Q4. Apenas para os alunos de pós-graduação

- Leia o artigo do Torre e do Poggio ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-768.pdf e faça um resumo de acordo com as indicações que deixei no paca (artigos sobre como fazer um resumo).
- O que é um problema mal-posto?
- O que é regularização?
- Qual a importância do teorema apresentado no artigo?
- O que são filtros de banda limitada? Qual a sua importância no artigo?
- Quais são os métodos de encontrar borda apresentados no artigo?

Referências

[1] Neal Krawetz. "A Picture's Worth...." Em: Black Hat Briefings DC 2 (2008), pp. 16–20.

[2] Yan Zhao, Anthony Sutardja e Omar Ramadan. Digital Image Manipulation Forensic. 2015. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-85.html.