ANSWERS TO END-OF-CHAPTER PROBLEMS

CHAPTER - 6

Q 6.2)
$$\omega_B = \frac{\lambda t a^2 \omega_A(0)}{(M_B + \lambda t)b^2}$$

Q 6.3)
$$\omega = \frac{mv}{R(M+2m)}$$

Q 6.5)
$$N_1=1674.04 lb$$
; $N_2=924.04 lb$

Q 6.6)
$$N_1 = \frac{1}{2}Mg - \frac{2Mv^2}{(2R+d)}\frac{L}{d}$$

$$N_2 = \frac{1}{2}Mg + \frac{2Mv^2}{\left(2R+d\right)}\frac{L}{d}$$

Q 6.7)
$$\frac{5ML^2}{12}$$

Q 6.9) Rod will undergo SHM with angular frequency
$$\omega = \sqrt{\frac{\mu g}{l}}$$

Q 6.10)
$$\tau = \sqrt{2} \frac{\mu MgR}{1 + \mu^2}$$

Q 6.11)
$$I_0 = \frac{2FL}{\omega_0^2}$$

Q 6.12)
$$M_1(M_2 + M_3)l_1 = 4M_2M_3l_2$$

Q 6.13) In (a) angular momentum and in case
$$v_f = \frac{r}{R} v_0$$

(b) kinetic energy is conserved $v_f = v_0$

Q 6.14)
$$(a)\tau_B = \frac{Mgl}{2}$$
 $(b)\alpha = \frac{3g}{2l}$

Q 6.15)
$$T = 2\pi \sqrt{\frac{R^2 + l^2}{gl}}$$

Q 6.16)
$$l = \frac{R}{\sqrt{2}}$$

Q 6.17)
$$\omega = \sqrt{\frac{15k}{4M} - \frac{3g}{2l}}$$

Q 6.18)
$$T = 2\pi \sqrt{\frac{(MR^2/2) + (M+m/3)l^2}{(M+m/2)gl}}$$

If disk is free to rotate then $T = 2\pi \sqrt{\frac{(M+m/3)l}{(M+m/2)g}}$

Q 6.19)
$$(a) \omega = \sqrt{\frac{2C}{MR^2}}$$

$$(b)(1)\omega = \sqrt{\frac{C}{3MR^2}}$$
 $(2)\theta_{\text{max}} = \frac{\theta_0}{\sqrt{3}}$

Q 6.20)
$$|\vec{F}| = Mg\sqrt{\frac{10}{16}}$$
; angle with horizontal axis = $\tan^{-1}\left(\frac{1}{3}\right)$

Q 6.23)
$$(a) a + A = R\alpha$$
 If $a = 2A$ then $\alpha = \frac{3A}{R}$

(b)
$$\alpha = \frac{4mg}{R(M+3m)}; \quad a = \frac{3m-M}{(M+3m)}g; \quad A = \frac{M+m}{(M+3m)}g$$

Q 6.24)
$$A = \frac{4g}{5}$$

Q 6.25)
$$l = \frac{7v_0^2}{10g\sin\theta}$$

Q 6.26) Sphere will reach first.

$$Q 6.27) F = \frac{3\mu MgR}{(2b+R)}$$

Q 6.28)
$$Sin \theta = \frac{Mg}{F} - \frac{b}{\mu R}$$

Q 6.29) a)
$$T = \frac{Mg R^2}{(2b^2 + R^2)}$$
 b) $Mg + \frac{2Mv^2}{\pi b}$

Q 6.31)
$$\omega_f = \frac{\omega_0}{3}$$

Q 6.32)
$$\omega_R = \frac{\omega_0 M}{m+M}$$

Q 6.33)
$$(a)\varpi = \frac{I_0\varpi_0}{I_0 + mR^2}$$
 $(b)v = \sqrt{\frac{I_0^2\varpi_0^2R^2}{\left(I_0 + mR^2\right)^2} + 2gh + \frac{I_0\varpi_0^2R^2}{\left(I_0 + mR^2\right)}}$

Q 6.35)
$$L < 2R$$

Q 6.37)
$$(a)v_f = v_0 \left(\frac{\frac{4m}{M} - 1}{\frac{4m}{M} + 1}\right); \quad (b)v_f = v_0 \left(\frac{\frac{3m}{M} - 1}{\frac{3m}{M} + 1}\right)$$

Q 6.39) (a) The system will rotate about its CM with
$$\varpi = \frac{6v_0}{5l}$$

Q 6.40)
$$(a)l-b/\sqrt{2}$$
; $(b)l+b/2$