1. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=3$$
 , $a_2=6$, $a_n=a_{n-1}+a_{n-2}: \forall n\geq 3$ Prove that $3\mid a_n$ for all integers $n\geq 1$.

2. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=8$$
, $a_2=4$, $a_n=a_{n-1}+a_{n-2}: \forall n\geq 3$
Prove that a_n is even for all integers $n\geq 1$.

3. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=9$$
 , $a_1=15$, $a_n=\frac{a_{n-1}\,a_{n-2}}{3}+6$: $\forall n\geq 2$
 Prove that $3|a_n$ for all integers $n\geq 0$

4. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1=1$$
 , $u_2=2$, $u_n=2u_{n-1}-u_{n-2}$: $\forall n\geq 3$
 Prove that $u_n=n$ for all positive integers n .

5. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=-1$$
 , $a_2=-\frac{1}{2}$, $a_3=-\sqrt{10}$, $a_{n+1}=a_n.a_{n-1}.a_{n-2}: \forall n\geq 3$
Prove that $a_n\leq 0$ for all positive integers n .

6. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=1$$
 , $a_2=5$, $a_{n+1}=2a_n+3$ $a_{n-1}: \forall n\geq 2$ Prove that $3^n\leq a_{n+1}\leq 2\cdot 3^n$ for all positive integers n .

7. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=1$$
 , $a_n=2a_{n-1}+1$: $\forall n\geq 1$
Prove that $a_n=2^{n+1}-1$ for all integers $n\geq 0$

8. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=3$$
, $a_2=9$, $a_3=15$, $a_{n+1}=a_n+a_{n-1}+a_{n-2}: \forall n\geq 3$
Show that a_n is an integer divisible by 3, for all integers $n\geq 1$

9. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
 , $a_1 = 1$, $a_{n+1} = 2a_n + a_{n-1} : \forall n \ge 1$

Show that a_n is odd for all integers $n \ge 0$

10. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 0$$
 , $a_1 = 4$, $a_{n+1} = -2a_n + 3 a_{n-1} : \forall n \ge 1$

Show that $a_n = 1 - (-3)^n$ for all integers $n \ge 0$

11. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 0$$
 , $a_1 = 2$, $a_{n+1} = 4a_n - 3a_{n-1} : \forall n \ge 1$

Show that $a_n = 3^n - 1$ for all integers $n \ge 0$

12. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=9$$
 , $a_1=15$, $a_2=3$ $a_n=\frac{a_{n-1}\,a_{n-2}\,a_{n-3}}{9}+6$: $\forall n\geq 3$ Show that $3|a_n$ for all integers $n\geq 0$

Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as: **13.**

$$u_1 = 1$$
 , $u_2 = 2$, $u_3 = 3$, $u_n = 3u_{n-1} - u_{n-2} - u_{n-3} - 2$: $\forall n \ge 4$

Show that $u_n = n$ for all integers $n \ge 1$.

14. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=1$$
 , $\ a_2=2$, $a_3=3$, $\ a_n=\frac{a_{n-1}+a_{n-2}+a_{n-3}}{3}$ $\ : \forall n\geq 4$

Show that $1 \le a_n \le 3$ for all integers $n \ge 1$

15. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = \frac{3}{4}$$
 , $u_2 = \frac{8}{13}$, $u_n = \frac{3 u_{n-1} + 2 u_{n-2} - 3}{3}$: $\forall n \ge 3$

Show that $u_n < 1$ for all integers $n \ge 1$

16. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 2$$
 , $u_2 = 4$, $u_n = \frac{2u_{n-1} + u_{n-2} + 8}{3}$: $\forall n \ge 3$

Show that $u_n = 2n$ for all positive integers n.

17.Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2} + 2a_{n-3} : \forall n \ge 3$

Show that $a_n \leq 3^n$ for all integers $n \geq 0$

18. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
, $a_1 = 2$, $a_n = 4a_{n-1} - 4a_{n-2}$: $\forall n \ge 2$

Prove that $a_n = 2^n$ for all nonnegative integers n.

19. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
, $a_1 = 1$, $a_n = 4a_{n-1} - 4a_{n-2}$: $\forall n \ge 2$

Show that $a_n = 2^n - n2^{n-1}$ for all integers $n \ge 0$

20. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 1$$
 , $a_2 = 3$, $a_n = a_{n-1} + a_{n-2}$: $\forall n \ge 3$

Prove that $a_n = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$ for all positive integers n.

21. Assume $\{a_n\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$: $\forall n \ge 3$

Prove that $a_n \le (\frac{1+\sqrt{5}}{2})^n$ for all positive integers n.

22. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
 , $a_1 = 1$, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$: $\forall n \ge 3$

Show that $a_n < 3^n$ for all integers $n \ge 0$

23. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$, $a_n = 5a_{n-3}$: $n = 3,4,5,...$

Show that $2|a_n$ for all integers $n \ge 0$

24. Assume $\{a_n\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$a_1 = 1$$
 , $a_2 = 2$, $a_n = 2a_{n-1} + a_{n-2}$: $\forall n \geq 2$

Prove that $a_n \le (\frac{5}{2})^n$ for all positive integers n.

25. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 2$$
 , $u_1 = 3$, $u_{n+1} = 3u_n - 2u_{n-1} - 1 : \forall n \ge 1$

Show that $u_n = n + 2$ for all integers $n \ge 0$

26. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1=0$$
 , $u_2=1$, $u_{n+1}=3u_n-2u_{n-1}-1$ for $n=2,3,4,\dots$ Show that $u_n=n-1$ for all integers $n\geq 1$

27. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 12$$
, $u_1 = 21$, $u_{n+1} = \frac{(u_n)^2 u_{n-1}}{9}$ for $n = 1,2,3,...$

Show that u_n is an integer divisible by 3, for all integers $n \ge 0$

28. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 2$$
, $u_2 = 5$, $u_{n+1} = 2u_n - u_{n-1} + 2$ for $n = 2,3,4,...$

Show that $u_n = n^2 + 1$ for all integers $n \ge 1$

29. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
, $a_1 = 4$, $a_{n+1} = 4a_n - 3a_{n-1} : \forall n \ge 1$

Show that $a_n = 1 + 3^n$ for all integers $n \ge 0$

30. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
, $a_1 = 5$, $a_{n+1} = 5a_n - 6a_{n-1}$: $\forall n \ge 1$

Show that $a_n = 2^n + 3^n$ for all integers $n \ge 0$

31. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 2$$
 , $u_1 = 6$, $u_{n+1} = 3u_n + 10u_{n-1} - 12$: $\forall n \ge 1$

Show that $u_n = 5^n + 1$ for all integers $n \ge 0$