Komplebre fall: 
$$2 = a + ib$$
,  $a, b \in \mathbb{R}$ ,  $i^2 = -1$ 

Ebremped:  $\frac{2i}{i+2} = \frac{3}{2+2}$  (442) (242)

 $2i(2+2) = 3(i+2)$ 
 $4i+2i2 = 3i+32 \Rightarrow -32+2i2 = -ia = (-3+2i)2 = -i$ 
 $\Rightarrow 2 = \frac{-i}{-3+2i} = \frac{-i}{(-3+2i)(+3-2i)} = \frac{3i+2i^2}{(-3+2i)(+3-2i)} = \frac{-2+3i}{13}$ 
 $= -\frac{2}{13} + i \cdot \frac{3}{13}$ 

Konjugarjan: 
$$Z = a+ibr$$
 Ebrumph:  $Z = 3-4i$ 

Den beningarle  $\overline{Z} = a-ibr$   $\overline{Z} = 3+4i$ 
 $\overline{Z} = 3-4i = 3+4i$ 
 $\overline{Z} = 3-4i = 3+4i$ 
 $\overline{Z} = 3-6-4i = 3+64i$ 
 $\overline{Z} = 3-6-4i$ 
 $\overline{Z} = 3-6-6$ 
 $\overline{Z}$ 



Z= 04 il

Dal reelle Adlel a: Z=a+i0  $\begin{array}{c}
1 = 0+1i \\
4-a+i0
\end{array}$   $\begin{array}{c}
q = a+i0
\end{array}$ 



the med multiplihagion og dirigan?

## Digresjon: Trigonometri:

| u           | Dimu | cosy |
|-------------|------|------|
| 0           | O    | 1    |
| MIC         | 7/2  | V3/2 |
| 71/4        | V2/2 | V2/2 |
| $\pi_{l_3}$ | V3/2 | 1/2  |
| 7/2         | 1    | Ò    |



Cos u + sin 2 u= 1

COS(NHV)= coor coor\_ since since

Din(wy) = since cost + cosh sinv

## 0=& (theta)



r: modulus til 2

9: argumentet til 2

Sammanhenger: 
$$\alpha = r \cosh^2 , b = r \sinh^2 r \cosh^2 + r \cosh^2 +$$

Ebempet: r=4, d= \( \frac{\pi}{3} \) Huc en a og l?



$$\alpha = r \cos \theta = 4 \cos \frac{\pi}{3} = 4 \cdot \frac{1}{2} = 2$$

$$\alpha = r \cos \beta = 4 \cos \frac{\pi}{3} = 4 \cdot \frac{1}{2} = 2$$

$$b = r \sin \beta = 4 \sin \frac{\pi}{3} = 4 \cdot \frac{1}{2} = 2 \cdot \frac{1}{3}$$

$$\sqrt{3}$$

Hrilken venkel i annen hubband han sinns lik 1/2? J=377

Kompleks multiplikagen: Z=arib = \(\alpha\cos\bar{1}\_2 + i \alpha\cos\bar{1}\_2 + i \alpha\alpha\cos\bar{1}\_2 + i \alpha\alpha\cos\bar{1}\_2 + i \alpha\alpha\cos\bar{1}\_2 - \alpha\





Element: 
$$Z = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$$
  $W = \frac{\sqrt{3}}{2} + i \frac{1}{2}$   $Y_1 = 1, \sqrt{3} = \frac{\pi}{4}$   $Y_2 = \frac{\pi}{4}$   $Y_3 = \frac{\pi}{4}$   $Y_4 = \frac{\pi}{4}$   $Y_5 = \frac{\pi}{4}$   $Y_5 = \frac{\pi}{4}$   $Y_6 = \frac{\pi}{4}$   $Y_7 = \frac{\pi}{4}$   $Y_8 = \frac{\pi}{4$