SIT282 Computer Crime and Digital Forensics

Roma St Drug Manufacturing Case - Criminal Investigation Report

Investigator: Sangheetha Velayutham

Table of Contents:

1) Digital Forensics Procedure	pg 2-13
2) Digital Forensic Report	pg 14-16
3) References	pg 16

1. Explain how you downloaded the file, what precautions you took, and how you ensured its integrity.

File Download	The zip file was initially downloaded in the host windows OS. The zip file
Procedure	was then transferred into the VM via directory sharing. The zip file was saved
	in the shared folder which linked the host machine and the VM. Then the zip
	file was transferred to a directory on the Desktop called Assignment4.
Precautions	Zip file was received from a trusted source (Sandra). BitDefender antivirus
Applied	program is installed in host windows OS and it would scan for any infected
	files contained in the zip file. The option called (hide extensions for known
	file types) is unchecked.
Method used to	A copy of the zip file was made using the dd tool to preserve tampering of the
ensure Integrity	original file when investigating. Then the zip file (copy) is thoroughly
	checked to make sure none of the data is tampered with. This is done via
	hashcalc and MD5 command on the terminal. The hash value of the original
	and the copy is compared to verify that the copy is not altered.

2. Describe how you decrypt two given NTLM hash values by using OphCrack, including screen shots.

First I launched the OphCrack application. Then I pressed load -> single hash. Pasted one of the NTLM hash in the box and pressed ok. Repeated the steps for the second NTLM hash. Then pressed crack and obtained the below passwords. (NTLM hashes:

D6A21EA26063C42FC9876E4B0C51BC82:CA72B189F412A384D96B785A08176773 and

8282461A2BDAF626E6067B973FDDC643:5C305D4616C7571D5DDC6EEA5BA5C395)

3. Describe the process that you apply to open the downloaded file. Describe whether there is a relationship between this process and the information obtained in Step 2.

There is no relationship between this process and the NTLM passwords I obtained from ophcrack.

4. Describe the actual content of the encrypted file that you identified in Step 3. If there are multiple files, list their file names, types and MD5 hash values. Describe the visual contents in each file.

Content description	There were 5 image files found in the zip file where 3 of them were Jpeg,		
	1 of them was a PNG image and the other 1 was a windows bitmap image.		
	All five images were stills of the cast members from the movie Vice.		
File Name		File Type	MD5 Hash Value
ONE.bmp		Windows Bitmap	ab873ec4d5c826db5d337f5f287006d5
TWO.jpg		Jpeg Image	4da131832b963f03f990d4c545b2d533
THREE.jpg		Jpeg Image	004b451689688f2d9bb83fb3fc5607aa
FOUR.png		PNG Image	ac88ed263a80632167102c93a966f655
FIVE.jpg	•	Jpeg Image	815025ac61891bf35ea4f38d7c543db0

MD5 hash values of the files.

5. What tools will you now use to proceed your investigation and why?

Tool	Reason
Stegbreak	This tool is used to detect stenographic content in JPEG images.
S-Tools	This tool is used to hide and reveal contents in a graphic file.
JPseek	This tool is used to recover Steganography Images and reveal the hidden contents.

HxD Tool (Hex	This tool is used to compare image files, to recover corrupted files by
Editor)	using the right header, to overwrite the wrong header with the correct
	ones. This tool is also used to extract encrypted message, to reveal hidden
	images in the image file itself.
Openpuff	This tool is used to perform multimedia steganography. Also it can detect
	hidden files within the files.
Cyptool	This tool is used to encrypt a message or decrypt an encrypted message
	using many different encryptions.
Image viewer	This tool was used to view all the jpg, bmp and png images that were
	found in the files.
Text Editor	To view text files
RapidTables	To convert ASCII text into Hex numbers.
online ASCII	
Text to Hex	
Code Converter	

6. Describe how your investigation proceeded at this point, including screen shots.

First I transferred the rules.ini file and the words file from week09 directory to Extract directory where all the images were in. Then I used, Stegbreak tool to check if the 3 Jpeg images (TWO.jpg, THREE.jpg and FIVE.jpg) had any stenographic content in them. But all the jpeg images returned as no embedding found. Command example: wine ~/Desktop/win-tools/jphide\ and\ Stegbreak/stegdetect/stegbreak.exe -r rules.ini -f words TWO.ipg

Then, I used S-Tools to check if the ONE.bmp image had any contents hidden in it. Command: wine ~/Desktop/win-tools/jphide\ and\ Stegbreak/S-tool/S-Tools.exe was used to launch the S-tools application. After dragging the image onto the tool and pressing reveal it prompted for a password. I entered the NTLM password that I received from Ophcrack (DickCheney) and it revealed a text file called How.txt. I extracted that file into the extract directory. That How.txt file contained a list of instructions which let us know that there are several important information hidden in the other images.

Following the instructions, I used the JPseek tool to recover any hidden contents from Jpeg images. Since the 2nd instruction mentioned a password 'list' I entered the output to be a text file. Command: wine ~/Desktop/win-tools/jphide\ and\ Stegbreak/jpseek.exe TWO.jpg secret.txt. This also prompted for a password so based on 2nd instruction, I used the other NTLM password that I obtained from ophcrack (DonaldRumsfeld). I tried for THREE.jpg and FIVE.jpg but it said wrong passphrase and did not return anything. When I tried with TWO.jpg, it worked. The secret.txt was found in the Extract directory and it had a password list.

I noticed a pattern from this. The instructions given in the How.txt was for each image file. For instance, the first instruction was for ONE.bmp, the 2nd instruction was for TWO.jpg and the 3rd instruction would be for THREE.jpg and so on. Since JPseek and Stegbreak did not return anything for THREE.jpg, I opened the THREE.jpg in the HexEditor. Command: wine ~/Desktop/win-tools/HxD.exe. I noticed that there were multiple JPEG headers and footers found in THREE.jpg file. That meant that another jpeg image file was hidden within the THREE.jpg file.

So I copied the hex numbers from the beginning of the 2nd JPG header to its footer and pasted it in a new file. Then, I saved that file as newthree.jpg file. The newthree.jpg file had an openpuff configuration.

Then I launched the openpuff tool to see if I could reveal any hidden file from FOUR.png since this was the 4th instruction in the How.txt. Command: wine ~/Desktop/win-tools/OpenPuff/OpenPuff.exe. After adding all the passwords according to the configuration and pressing unhide, a text file called where.txt was found. I extracted the where.txt file to the extract directory.

Where.txt had a list of numbers as said in the How.txt.

Then I continued to follow the How.txt's final instruction where it mentioned an encrypted message. Previously when I used stegbreak on FIVE.jpg it returned an error saying corrupt JPEG data bad Huffman code. So I decided to open FIVE.jpg file in hex editor. I noticed that the Jpeg footer FFD9 was not found at the end of the file but in the middle. The hex numbers after the footer looked like a message was encoded with base 64 encoding.

So I copied those hex numbers after the Jpeg footer into a new HxD file and saved it as encrypted.txt as the How.txt mentioned that this would be a 'list' of names.

To decode the base 64 encoding and decrypt the message I used Cryptool. Command: wine /home/user/.wine/drive_c/Program\ Files\ \(x86\)/CrypTool/CrypTool.exe was used to launch the application. Opened the encrypted.txt file and decoded the message using base 64 decoding.

It was mentioned in the How.txt that AES encryption and a simple cipher has been used. First I, decrypted the AES encryption and it prompted for a HEX number password. There were three remaining passwords (Unitary, Executive and ChristianBale) on the password list (secret.txt) that were unused. So I tried converting Unitary, Executive and ChristianBale into hex numbers using an online converting tool and used it as the password. When I used, Unitary and Executive, the output was weird and it did not look like a list of name mentioned in How.txt. But when I used ChristianBale (hex numbers) as the password, the output looked like a list.

Then I used Caesar cipher to decrypt the message further. Tried all of the alphabets one by one to see which was the key and found out that K was used as the key. Finally, a list of names were revealed.

DIGITAL FORENSIC REPORT

7. Write a two page report for Sandra listing your findings and recommendations. Make appropriate suggestions on how a further investigation should proceed. Construct and complete a single-item evidence form as part of your report.

Overview:

A drug manufacturing location was identified in a warehouse behind Roma St Station where traces of powder was found. A laptop and 4 CDs was retrieved from the warehouse. I, Sangheetha Velayutham was assigned to this case by Sandra to analyse a zip file to retrieve any important information. I received an email from Sandra containing two NTLM hash strings retrieved from the criminal's laptop and the ZIP file from one of the CDs as attachments.

Evidence Form (Figure 1-11 of the text)

, C	Brisbane Special	Investigative Unit	
-	<u>-</u>	0	
This form is to be used for only one piece of evidence. Fill out a separate form for each piece of evidence.			
Case No:	DrugRomaSt_20092021	Unit Number:	DrugRomaSt_17
Investigator:	Sangheetha Velayutham	Oint ivanioci.	DrugRomast_17
Nature of Case:	Illegal Drug Manufacturii	າຕ	
rvature or case.	megai Diug Manuiactum	18	
Location where	Warehouse behind		
evidence was obtained:	Roma St Station in		
	Brisbane		
Item #	Description of evidence	Vendor Name	Model No/Serial No.
ID			
123654	CD containing a suspicious ZIP file	N/A	N/A
Evidence Recovered	Moti	Date & Time:	10 th May 2021, 3:20
by:			am
Evidence Placed in	Evidence placed in	Date & Time	10 th May 2021, 4.30
Locker:	Forensics Lab Evidence		am
	Locker by Moti		
Evidence Processed by	Description	of Evidence	Date & Time
Moti	Obtained the CD		10 th May 2021, 3:20
			am
Moti	Stored the CD in the		10 th May 2021, 4.30
	lab's Evidence locker		am
Sandra	Analyses CD in lab.		10 th May 2021, 9.30
	-		am
Sandra	Make 3 copies of the		10 th May 2021, 11.00
	CD. Stores 2 copies in		am
	the lab and distributes		
	the 3 rd copy to		
	colleagues. Sends a		
	copy of Zip file to		
	Sangheetha		
	Velayutham.		
Sangheetha	Makes a copy of zip file		10 th May 2021, 3.00
Velayutham	and it is stored on		pm
•	virtual machine,		_
	Directory =		
	/Desktop/Assignment4		
			Page 1 of 1 <

Recommendation:

My steps should be retraced to see if the same results that I got can be obtained. Save all the retrieved files carefully to prevent tampering. There were two unused passwords in the password list (Unitary, Executive). Figure out what the two passwords are for. Maybe it can be used to access any account.

Summary of steps:

- 1. Made a copy of zip file to ensure integrity of file (dd tool).
- 2. Verified the integrity by checking the hash values with the given hash value (hashcalc tool and md5 command).
- 3. Used Ophcrack to crack both the NTLM hashes and obtained two passwords (DickCheney and DonaldRumsfeld).
- 4. Used the frackzip tool to obtain the password of the zip file (password: vice).
- 5. Used the password obtained from frackzip (vice) to extract all files in the zip file to another directory called Extract.
- 6. Stegbreak tool was used to see if there was any hidden content in the jpeg files. None was found.
- 7. S-Tools was used to reveal a hidden text file (how.txt) from ONE.bmp.
- 8. The How.txt had instructions on where important details were hidden.
- 9. Jpseek tool was used to reveal a password list from TWO.jpg image using one of the NTLM password (DonaldRumsfeld).
- 10. THREE.jpg image was opened using HxD hex editor tool. An image file was hidden within the THREE.jpg.
- 11. The hidden image file was extracted into a new file. The hidden image file had an openpuff configuration.
- 12. Openpuff tool was used to unhide hidden contents of FOUR.jpg. The openpuff configuration that was found was used and a text file (Where.txt) was revealed.
- 13. FIVE.jpg had a corrupt jpeg data, so it was opened in HxD tool. There was a base 64 encoded message after the JPEG footer.
- 14. The encoded message was then decoded using base 64 decoding in Cryptool. Then the decoded message was decrypted as the How.txt mentioned that the message was encrypted using AES algorithm.
- 15. Later the message was further decrypted using Caesar cipher (K as key) revealing a list of names.

What was recovered?:

Image File	Content recovered from Image file	
ONE.bmp	How.txt (recovered using S-tools) –	
	contained instructions on where important	
	details are hidden	
TWO.jpg	secret.txt (recovered using JPseek) -	
	password list with 6 passwords	
THREE.jpg	newthree.jpg (hidden image file – recovered	
	using HxD editor) - Openpuff configuration	
	with 3 of the passwords from secret.txt	
FOUR.png	Where.txt (recovered using OpenPuff) – list	
	of numbers (15 numbers)	
FIVE.jpg	encrypted.txt (encrypted message – obtained	
	using HxD editor and decrypted the message	
	using Cryptool) – list of names (15 names)	

Interpretation:

The How.txt was instructions for the accused to know where important details are hidden in the image files. The password list was the various passwords they used via various tools to hide information. The newthree.jpg clearly stated the openpuff password configuration. The list of numbers found in where.txt are most probably Australian mobile numbers of drug dealers/buyers/fellow drug manufacturers. The list of names found may also be of drug dealers/buyers/fellow drug manufacturers. Since there are 15 names and 15 numbers, the numbers could be the mobile number of the people who the names belong to.

Suggestions:

Firstly, contact the relevant communications service provider to check the owners of the mobile numbers obtained. The mobile numbers and the list of names can also be checked in the police database. Check if the any of the names are related to any drug incident. If the numbers belong to the list of names that was obtained, then check each people's background to see if anything relates to drug incidents. Call each of them in for questioning. Then if there are evidence connecting them to any drug incidents, their mobile numbers can be tracked to find them. If the numbers do not match the list of names we have, then call each of them in for questioning and see if they know anything related to the warehouse drug manufacturing incident.

Reference:

RapidTables (2021.) ASCII to Hex | Text to Hex Code Converter, RapidTables, accessed 20 September 2021.

Winzip (2021.) Potentially Unsafe File Types, Winzip, accessed 20 September 2021.