WLAN と ZigBee の共存に向けた

AA(Access Point-Assisted) CTS-Blocking に関する研究

佐伯 良光

平成27年2月

修士課程 情報知能工学専攻 社会情報システム工学コース

第1章

実装

本章では、提案する AA CTS-Blocking の実装について説明する。最初にシステムの概要を述べ、次にシステムの構成、AP 選択に用いたアルゴリズムについて述べる。

1.1 システム概要

本システムでは、周辺にある WLAN AP から CTS フレームを送信させて CTS-Blocking を実現する. これにより、WLAN 通信の一時的ブロックによる効率的な ZigBee 通信の実現を目指す. また、RTS を送信する AP の選択については、AP から取得できる情報を基に最適な AP 選択アルゴリズムを考慮する.

図??に、AA CTS-Blocking システムの概要を示す。本システムは、環境内に配置された複数の ZigBee ノード及び ZigBee 基地局、制御 PC から構成される。ZigBee 基地局と制御 PC は有線接続されている。

制御 PC では、周囲に存在する WLAN AP のビーコンフレームを受信し、チャネル、受信信号強度(RSSI)を収集する。ZigBee の通信を開始する場合、周囲の AP の1つを選択して制御 PC から RTS フレームを送信する。選択された AP は RTS フレームを受信すると周囲のWLAN 端末に対して CTS フレームを送信する。制御 PC は AP からの CTS フレームを受信

すると ZigBee 基地局を用いて ZigBee ノードとの通信を開始する. WLAN AP は、その AP が提供する WLAN ネットワークに参加していない端末からの RTS フレームに対しても CTS フレームを返答するため、制御 PC では任意の AP を選択することができる.

1.2 システム構成

ここでは、システムを構成する要素について説明する。システムは ZigBee ノード、ZigBee 基地局及び制御 PC からなる。以下、詳細を述べる。

1.2.1 ZigBee J - F

本システムにおいて、測位の対象とするのは Android 端末と、専用のタグである. どちらも指定した時間間隔で周囲の AP に信号を発信する. Android 端末には信号を発信する専用のアプリをインストールする. このアプリは、GPS 測位が可能かつサーバとの通信が可能な場合、GPS 測位結果のサーバへの送信も行う. GPS と組み合わせることで、無線 LAN 測位エリア外であっても測位を行うことができるシームレスな測位環境を提供する.

図??に実際に使用する端末を示す. (Crossbow, MicaZ MPR2600J)

1.3 設計

UML(Unified Modeling Language) はソフトウェア工学におけるオブジェクトモデリング のために標準化した仕様記述言語であり、グラフィカルな記述で抽象化したシステムのモデル (UMLモデル)を生成する汎用モデリング言語である.

これを用いて本システムの設計を行った。まず、システムを構成する各機器の状態遷移を把握するために、ステートマシン図を作成した。ZigBee ノード、ZigBee 基地局、制御 PC のステートマシン図を図??、??、??に示す。図??から、ZigBee ノードは3つの状態