Inference

Synopsis

something about toothgrowth

Data Summary

supp	dose	meanlen	varlen
OJ	0.5	13.23	19.8890
OJ	1.0	22.70	15.2956
OJ	2.0	26.06	7.0493
VC	0.5	7.98	7.5440
VC	1.0	16.77	6.3268
VC	2.0	26.14	23.0182

OJ seems to do more.

hypothesis tests: OJ is better than VC higher dose is better growth per dose?

growth per dose, (or oj >< VC, two sided) dosage - test 0.5 vs 2.0, 0.5 vs 1.0, 1.0 vs 2.0 Dosage regardless of method method regardless of dose method - growth per unit dose

t distribution assumes data iid normal "but it is robust" to this unequal variance (the variances above are not equal) https://github.com/bcaffo/courses/blob/master/06_StatisticalInference/08_t $^{\circ}$ slide 21

Can't use paired test, because we can't compute the differences (we have 60 seperate hamsters, not 10 that were fed vitamin c multiple times via different methods). independent group t intervals (unequal variance), with alternative that the difference is not equal to zero (mu2.0 - mu 0.5)

Go over math in first section/method analysis section, make a bunch of tests

Appendix

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
```

```
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
head(ToothGrowth)
##
      len supp dose
## 1 4.2
            VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
            VC 0.5
## 4 5.8
            VC 0.5
## 5 6.4
            VC 0.5
            VC 0.5
## 6 10.0
ToothGrowth %>% group_by(supp,dose) %>% summarise(meanlen=mean(len),varlen=var(len))
## Source: local data frame [6 x 4]
## Groups: supp [?]
##
##
       supp dose meanlen
                             varlen
##
     <fctr> <dbl>
                    <dbl>
                              <dbl>
## 1
         OJ
             0.5
                    13.23 19.889000
## 2
         OJ
                    22.70 15.295556
              1.0
## 3
         OJ
             2.0
                  26.06 7.049333
## 4
         VC
              0.5
                    7.98 7.544000
## 5
         VC
              1.0
                    16.77 6.326778
         VC
              2.0
                    26.14 23.018222
vc <-ToothGrowth %>% filter(supp=='VC')
oj <-ToothGrowth %>% filter(supp=='0J')
moose<-t.test(x=oj$len,y=vc$len,paired=F)</pre>
moose
##
   Welch Two Sample t-test
##
##
## data: oj$len and vc$len
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean of x mean of y
   20.66333 16.96333
ggplot(data=ToothGrowth,aes(x=len)) + geom_histogram(aes(fill=..count..),binwidth=2) + facet
```


Figure 1: plot of chunk plotdose2

Check some of this stuff. We're running tests on lots of different subgroups, using the same data more than once. Should we be correcting/accounting for multiple testing?

```
doses<-c(0.5,1.0,2.0)

for (i in 1:2)
{
    for (j in (i+1):3)
    {
        print(paste(doses[i],' vs ',doses[j]))
        groupa<- ToothGrowth %>% filter(dose ==doses[i])
        groupb<- ToothGrowth %>% filter(dose ==doses[j])
        test<-t.test(x=groupa$len,y=groupb$len,paired=F)</pre>
```

```
}
}
## [1] "0.5 vs 1"
##
##
   Welch Two Sample t-test
##
## data: groupa$len and groupb$len
## t = -6.4766, df = 37.986, p-value = 1.268e-07
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean of x mean of y
      10.605
                19.735
##
##
## [1] "0.5 vs 2"
##
##
   Welch Two Sample t-test
##
## data: groupa$len and groupb$len
## t = -11.799, df = 36.883, p-value = 4.398e-14
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean of x mean of y
##
      10.605
                26.100
##
## [1] "1 vs 2"
##
##
   Welch Two Sample t-test
##
## data: groupa$len and groupb$len
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean of x mean of y
      19.735
                26.100
ggplot(data=ToothGrowth,aes(x=len)) + geom_histogram(aes(fill=..count..),binwidth=2) + facet
for (i in 1:3)
```

print(test)

Figure 2: plot of chunk plotdose

```
{
    ojdose<-ToothGrowth %>% filter(dose == doses[i] ) %>% filter(supp == '0J')
    vcdose<-ToothGrowth %>% filter(dose == doses[i] ) %>% filter(supp == 'VC')
    test<-t.test(x=ojdose$len,y=vcdose$len,paired=F)</pre>
        print(test)
}
##
##
   Welch Two Sample t-test
##
## data: ojdose$len and vcdose$len
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean of x mean of y
##
       13.23
                  7.98
##
##
   Welch Two Sample t-test
##
##
## data: ojdose$len and vcdose$len
## t = 4.0328, df = 15.358, p-value = 0.001038
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.802148 9.057852
## sample estimates:
## mean of x mean of y
##
       22.70
                16.77
##
##
##
   Welch Two Sample t-test
##
## data: ojdose$len and vcdose$len
## t = -0.046136, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean of x mean of y
##
       26.06
                 26.14
ggplot(data=ToothGrowth,aes(x=len)) + geom_histogram(aes(fill=..count..),binwidth=2) + facet
```


Figure 3: plot of chunk plot