Metody Probabilistyczne i Statystyka

 Z_1

- 1. Wykazać, że:
 - (a) jeśli A jest zdarzeniem losowym takim, że P(A)=1, to dla każdego innego zdarzenia B z tej samej przestrzeni probabilistycznej $P(A\cup B)=1$ oraz $P(A\cap B)=P(B)$;
 - (b) jeśli A jest zdarzeniem losowym takim, że P(A)=0, to dla każdego innego zdarzenia B z tej samej przestrzeni probabilistycznej $P(A\cap B)=0$ oraz $P(A\cup B)=P(B)$;
 - (c) jeśli A i B są zdarzeniami losowymi z tej samej przestrzeni probabilistycznej takimi, że $P(A)=0,7,\ P(B)=0,8,$ to $P(A\cap B)\geqslant 0,5.$
- 2. Niech a i b będą wielkościami losowymi z przedziału [-1;1]. Obliczyć prawdopodobieństwo zdarzenia, że równanie kwadratowe $ax^2 + bx + 1 = 0$ ma:
 - (a) dwa różne pierwiastki rzeczywiste;
 - (b) dwa równe pierwiastki;
 - (c) dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $x_1 \cdot x_2 > 0$.
- 3. Rzucamy pięć razy symetryczną kostką do gry. Obliczyć prawdopodobieństwo, że w pięciu rzutach największa zaobserwowana liczba oczek będzie:
 - (a) nie większa niz 4;
 - (b) równa 4.
- 4. Ustawiamy w pewnej kolejności n różnych przedmiotów, gdzie $n \ge 2$. Następnie mieszamy je ze sobą i ustawiamy ponownie w przypadkowy sposób (zakładamy, że wszystkie ustawienia sa jednakowo prawdopodobne). Stosując wzór włączeń i wyłączeń obliczyć prawdopodobieństwo, że co najmniej jeden z tych przedmiotów stoi na poprzednio zajmowanym miejscu.
- 5. Henio i Mariusz przyjdą, niezależnie od siebie, do czytelni czasopism w ciągu najbliższej godziny. Henio spędzi tam 12 minut, a Mariusz 24 minuty. Jakie jest prawdopodobieństwo, że Henio i Mariusz spotkają się? Obliczyć prawdopodobieństwo, że Henio przyjdzie dokładnie po 10 minutach od chwili przyjścia Mariusza.
- 6. Bolek i Lolek rzucają na zmianę prawidłową kostką sześcienną tak długo, dopóki któryś z nich nie wyrzuci dwójki lub trójki. Zabawę rozpoczyna Bolek. Obliczyć prawdopodobieństwo zdarzeń:
 - (a) Bolek rzuci k razy, $k = 1, 2, \ldots$;
 - (b) Lolek rzuci k razy, $k = 0, 1, \ldots$;
 - (c) Bolek i Lolek rzucą tyle samo razy.
- 7. Na odcinku [0; 1] umieszczono losowo punkty L i M. Obliczyć prawdopodobieństwo zdarzeń:
 - (a) środek odcinka LM należy do przedziału [0; 1/3];
 - (b) z L jest bliżej do M niż do zera.
- 8. W koszu z przecenionymi butami znajduje się *n* par butów. *n* klientów wyciągnęło na chybił trafił po 2 buty. Obliczyć prawdopodobieństwo, że każdy klient wylosuje:
 - (a) but lewy i but prawy;
 - (b) pare butów.