ECG Graph Monitorin With 3 Lead Placeme

0 0 0 0 สมาชิกในกลุ่ม

65010039 นายกลวัชร อินทร์แป็น

65010297 นายณัฐคนัย สังข์โพธิ์

65010329 นายณัฐวุฒิ ฉายอ่วม

1. ภาพรวมโครงงาน

ที่มาและความสำคัญ

กลุ่มของเราเล็งเห็นถึงความสำคัญของปัญหาโรคหัวใจ สถิติสาธารณสุขของประเทศไทยในปี 2564 พบว่า ''โรคหัวใจขาด เลือด'' เป็นสาเหตุการเสียชีวิตของคนไทยมากเป็นอันดับ 4 รองจากโรคมะเร็ง โรคหลอดเลือดในสมอง และปอดบวม โดย โรคหัวใจขาดเลือด คร่าชีวิตคนไทยปีละประมาณ 20,000 คน หรือราว 33 คน ต่อประชากร 1 แสนคน นอกจากนี้ในช่วง 16 ปี วิทยาลัยการแพทย์อเมริกัน ได้ทำการศึกษา (2000- 2016) สัดส่วนของคนอายุน้อยที่หัวใจวาย เพิ่มจำนวนขึ้น 2% ต่อปีในช่วง 10 ปีหลัง

นี่คือแรงบันดาลใจของพวกเราในการจะสร้างนวัตกรรมที่เกี่ยวกับคลื่นหัวใจ ซึ่งมันน่าจะดีไม่น้อยทีเดียวหากว่าเรานั้น สามารถเช็คดูคลื่นหัวใจของตนเองนั้นได้ตลอดเวลา นั่นเป็นเหตุผลที่เพียงพอแล้วที่เราจะสร้างนวัตกรรมที่มีชื่อว่า ECG Graph Monitoring with 3 Lead Placement

วงจรสำหรับโปรเจค

อุปกรณ์

- บอร์ค ESP 8266	า ตัว		
- เซนเซอร์ Electrode Pad		- 20 kΩ Resistor	2 ตัว
	O)	- 100 $k\Omega$ Resistor	า ตัว
- AD620	า ตัว	- 39 kΩ Resistor	4 ตัว
- TL072ACD	8 ฅว	- 9.1 kΩ Resistor	2 ตัว
- 5.6 kΩ Resistor	า ตัว	- 10 uF Capacitor	2 ตัว
- 33 kΩ Resistor	า ตัว	- 0.1 uF Capacitor	2 ตัว
- 10 kΩ Resistor	า ตัว		2 กาง 6 ตัว
- 499.9 kΩ Resistor	า ตัว	- 100 nF Capacitor	OAII

การออกแบบวงจร

การออกแบบวงจร

การออกแบบวงจร

• Input: โดยส่วนของ Input นั้น จะรับค่าจากเซนเซอร์ที่มีชื่อ Electrode Pad ซึ่งค่าที่ได้จะเป็นคลื่นไฟฟ้า (ECG) นั่นเอง

• **Process**: จะนำกราฟ (ECG) ที่ได้นั้นมาผ่านวงจรที่ได้ออกแบบไว้ ซึ่งในวงจรนั้นจะเป็นวงจร

Op-amp ซึ่ง ทำหน้าที่ขยายรูปกราฟและกรองความถี่ ทำให้เรานั้นสามารถนำข้อมูลไป

ใช้งานและตรวจสอบข้อมูลต่างๆได้ง่ายขึ้นและมีความแม่นยำอีกด้วย

• กราฟที่ได้รับจาก ECG

• กราฟที่ผ่านวงจรที่เราได้ออกแบบไว้

Output

หลังจากเราได้รูปกราฟที่ผ่านวงจรที่เราออกแบบไว้แล้วนั้น เราจะนำข้อมูลต่างๆ Plot ผ่านบอร์ด ESP 8266 และนำมาและแสดงผลผ่านทางหน้าจอ

ประโยชน์และผลลัพท์ที่ใด้

• กราฟ ECG กับตำแหน่งกราฟและข้อมูลต่างๆ

ประโยชน์และผลลัพท์ที่ได้

• ECG กับการวินิฉัยโรคต่างๆ เบื้องต้น

รูปกราฟ	การวินิฉัยเบื้องต้น
ช่วงเวลา QT สั้น	แคลเซียมสูงในเลือดเนื่องจากยาบางชนิด, ความผิดปกติทาง
	พันธุกรรมบางอย่าง, ภาวะโพแทสเซียมสูง
ช่วงเวลา QT ยาว	แคลเซียมสูงในเลือด, ยาบางชนิด, ความผิดปกติทางพันธุกรรมบางอย่าง
คลื่น T แบนหรือคว่ำ	หัวใจขาดเลือด, ภาวะโพแทสเซียมสูง, หัวใจห้องล่างซ้ายโตเกิน, ผลกระทบ
	จากยาพวก
	<u>ดิจอกซิน</u> (Digoxin), ยาบางชนิด
คลื่น T เฉียบพลันสุดชีด	อาจเป็นอาการแรกของกล้ามเนื้อหัวใจตายเฉียบพลัน, เมื่อคลื่น T กลายเป็น
	ที่โดดเด่นมากขึ้น, สมมาตร, และแหลม
คลื่น T ขึ้นสูงสุด, คลื่น QRS	ภาวะโพแทสเซียมสูง, รักษาด้วย calcium chloride, กลูโคสและอินซูลิน
กว้าง, คลื่น PR ยาว, คลื่น	หรือการล้างไต
QT สั้น	
คลื่น U โดดเด่น	ภาวะโพแทสเซียมสูง

2. การวิเคราะห์วงจร

การวิเคราะห์วงจร

1. CMRR

ค่า CMRR ของ AD620A อยู่ในช่วง 100 - 120

 $dB_{CMRR} = 120 dB$

CMRR =

20log(Ad/Ac)

 $\frac{v}{0}$ 120 = 20log(Ad/Ac)

 $10^6 = (Ad/Ac)$

 $Ac = 10^{\circ}-6 Ad$

** แต่ Ac <<< Ad

vo ประมาณได้ว่า Adv เ

Common Mode

Vic = (V1+V2)/2

Vic = V1/2

 $Ac = Voc/\underline{Vic} = Voc/(V1/2)$

Ac = 2(Voc/V1)

Differentail Mode

Ad = Vod/Vid = Vod/(V1-V2)

Ad = Vod/V1

V0 = AdV1 + ((AcV1)/2)

2. HIGH - PASSFILTER

การคำนวนความถี่ Cutoff ในวงจร High-pass

filter ann fc
1/(2(pi)(R1*R2*C1*C2)^1/2)

fc = $1/(2(3.14)((33k ohm ^2))$

 $(100F^2))^1/2)$

fc = 1/(2*3.14*33k ohm*10uF)

** คาวมูลี่ที่มีคุ่าต่ำกว่า 0.482Hz จะผ่านไม่ได้

3. NON - INVERTING

การคำนวนหา Voltage gain ในวงจร non-

$$V0/Vi = 1 + (499.9 \text{ k ohm/} 10 \text{ k}$$

ohm)

$$V0/Vi = 1 + 49.99$$

4. BUFFER

วงจร

Buffer

** ใช้ส่งผ่านแรงคัน Input ไปยัง Outputi

5. LOW - PASS FILTER

การคำนวนความถี่ Cutoff ในวงจร Low-pass

filteงจรกรองสัญญาณความถี่ต่ำ

จาก f cutoff

จาก fc = 1/(2(pi)(R5*R6*C5*C6)^1/2)

 $fc = 1/(2(3.14)((20k ohm ^2) * (0.1uF^2))^1/2)$

fc = 79.58 Hz

** ความถี่ที่มีค่าสูงกว่า 79.58Hz จะผ่านไม่ได้

6. NON - INVERTING

การคำนวนหา Voltage gain ในวงจร non-

$$VU/VI = I + (IUU + Onm/IU + K)$$

$$Ohm)$$

$$V0/Vi = 1 + 10$$

7. BAND PASS FILTER

** กรองความถี่ให้อยู่ในช่วงที่กำหนด

8-9. NOTCH FILTER

การคำนวนหาความถี่ Cutoff และความถี่ notch

ในวงจร notch filter

$$fL = 1/(2(pi)*(R9+R10)C7)$$

$$fL = 20.4 Hz$$

$$fH = 1/(2(pi)*(R11)C)$$

$$fH = 349.8 Hz$$

$$fN = ((20.4)*(349.8))^{1/2}$$

$$fN = 84.5 Hz$$

** f notch = 84.5 Hz

ความถี่ในช่วง 84.5

Hz

จะผ่านไปยัง op-

amp

ไม่ได้

3. การเชื่อมต่อกับวงจรไมโครคอนโทลเลอร์

การเชื่อมต่อกับวงจรที่ออกแบบไว้

การเชื่อมต่อกับวงจรจริง

4. ผลการทคสอบ

5. Source code


```
sketch_apr29a.ino
   1
       int ecgValue = 0, count = 0;
       void setup() {
   4
       // initialize the serial communication:
   5
       Serial.begin(115200);
   6
   9
       void loop() {
  10
  11
         ecgValue = analogRead(A0);
  12
         // send the value of analog input 0:
  13
          ecgValue = map(ecgValue, 250, 400, 0, 100); //to flatten the ecg values a bit
  14
  15
  16
         Serial.println(ecgValue);
  17
         delay(20);
  18
  19
```