Resonances and linearization: vector field case

Let x' = X(x) = Ax + u(x), such that u(0) = 0 and Du(0) = 0.

If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A we write

$$m \cdot \lambda$$
 for $m_1 \lambda_1 + \ldots + m_n \lambda_n$,

being $m \in \mathbb{Z}_+^n$ and $|m| = m_1 + \ldots + m_n$.

In this setting we call resonance to

$$\lambda_j = m \cdot \lambda, \qquad m \in \mathbb{Z}_+^n, \quad |m| \ge 2, \quad j \in \{1, \ldots, n\}.$$

To each resonace $\lambda_j = m \cdot \lambda$ we associate the monomial $x^m e_j$ and we call it resonant monomial

Definition (Poincaré's and Siegel's domains for vector fields)

Given $\lambda = (\lambda_1, \dots, \lambda_n)$, we say that λ is in the Poincaré domain if

$$Re(\lambda_i) > 0$$
, $\forall i$ or $Re(\lambda_i) < 0$, $\forall i$

Otherwise (the real part of different eigenvalues have different sign or some eigenvalues have real part equal to zero), we say that λ is in the Siegel domain.

Theorem (Poincaré's Theorem for vector fields)

Let X be analytic in some open U, $0 \in U$ and X(0) = 0. Assume the eigenvalues of A are in the Poincaré domain and they are non resonant. Then, X is locally analytically conjugate to its lineal part A in a neighbourhood of 0.

Theorem (Siegel's Theorem for vector fields)

Let X be analytic in some open U, $0 \in U$ and X(0) = 0. Assume the eigenvalues of A are in the Siegel domain and satisfy the Diophantine condition: $\exists C, \tau > 0$ such that

$$|\lambda_j - m \cdot \lambda| \ge \frac{C}{|m|^{\tau}}, \quad \forall m \in \mathbb{Z}_+^n, \ |m| \ge 2, \ 1 \le j \le n$$
:

Then, X is locally analytically conjugate to its linear part A in a neighbourhood of 0.

Normal forms for vector fields

Theorem (Normal forms)

Let $X(x) = Ax + X_2(x) + ... + X_r(x) + o(||x||^r)$. There exists a polynomial change of variables that transforms X into

$$Y(y) = Ay + X_2^{(r)}(y) + \ldots + X_r^{(r)}(y) + o(\|y\|^r)$$
, where $X_k^{(r)}(y) = \sum_{\substack{|m|=k \ \lambda_j=m\cdot\lambda}} c_{m,j} y^m e_j$

Theorem (Sternberg's theorem for attractors)

Given X(x) as before, $Spec(A) = \{\lambda_1, \ldots, \lambda_n\}$ such that:

- 1) $Re(\lambda_i) < 0$
- 2) $\lambda_i \neq m \cdot \lambda$
- Let $k > \frac{\max\{|Re(\lambda_i)|\}}{\min\{|Re(\lambda_i)|\}}$. Then, if $X \in \mathcal{C}^k$, we have that X is \mathcal{C}^k -locally conjugate to its lineal part A in a neighbourhood of the origin.

Sketch of the proof of the normal form theorem for vector fields

Assume that A is in diagonal form.

Suppose we have made consecutive changes of variables $x=y+h_\ell(y)$, $2\leq \ell \leq k-1$ and we have reached

$$x' = Ax + X_2^{(r)}(x) + \ldots + X_{k-1}^{(r)}(x) + X_k(x) + o(||x||^k).$$

Now we perform the change $x = y + h_k(y)$, $h_k \in E_k$, to obtain

$$y' + Dh_k(y)y' = A(y + h_k(y)) + X_2^{(r)}(y + h_k(y)) + \ldots + X_{k-1}^{(r)}(y + h_k(y)) + X_k(y + h_k(y)) + o(||y||^k),$$

$$y' = [Id + Dh_{k}(y)]^{-1}[Ay + X_{2}^{(r)}(y) + \dots + X_{k-1}^{(r)}(y) + Ah_{k}(y) + (\|y\|^{k})]$$

$$= Ay + X_{2}^{(r)}(y) + \dots + X_{k-1}^{(r)}(y) + Ah_{k}(y) + X_{k}(y) - Dh_{k}(y)Ay + o(\|y\|^{k})$$

In order to study the terms of order k in the previous equation:

$$Ah_k(y) + X_k(y) - Dh_k(y)Ay$$

we introduce the operator:

$$L_k: E_k \longrightarrow E_k, \qquad (L_k h)(x) = Dh(x)Ax - Ah(x)$$

Lemma

Assuming A is a diagonal matrix,

$$\{x^m e_j \mid |m| = k, j \in \{1, \dots, n\}\}$$

is a basis of eigenvectors of L_k . The corresponding eigenvalues are

$$m \cdot \lambda - \lambda_j$$

Proof: The operator L_k is defined by $(L_k h)(x) = Dh(x)Ax - Ah(x)$

Hence,

$$L_k(x^m e_i) = (m \cdot \lambda - \lambda_i) x^m e_i.$$

In particular, in the case there are no resonances of order k, L_k becomes exhaustive.

We write $E_k = \operatorname{Ker} L_k \oplus \operatorname{Im} L_k$

and

$$X_k(y) = X_k^{(r)}(y) + X_k^{(nr)}(y) \in \operatorname{Ker} L_k \oplus \operatorname{Im} L_k.$$

Therefore,

$$X_k^{(r)}(y) + X_k^{(nr)}(y) - Dh_k(y) + Ah_k(y) = X_k^{(r)}(y) + X_k^{(nr)}(y) - (L_k h_k)(y) = X_k^{(r)}(y),$$

where we have taken

$$L_k h_k = X_k^{(nr)}$$

Center manifolds for maps

Let $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$, U open set, $0 \in U$ and f(0) = 0.

Let A = Df(0).

Let $Spec(A) = \sigma^s \cup \sigma^c \cup \sigma^u \subset \mathbb{C}$ and consider the decomposition of \mathbb{R}^n corresponding to this splitting of the spectrum:

$$\mathbb{R}^n = E^s \oplus E^c \oplus E^u.$$

Center manifold theorem for maps

Theorem

Let f be as before such that $f \in \mathcal{C}^r$, $r \ge 1$. Then, there exists a manifold W^c such that:

- 1) W^c is invariant by f,
- 2) $T_0 W^c = E^c$,
- 3) W^c is C^r .

This manifold is called center manifold.

Remark

- 1) There is not uniqueness for W^c by imposing $T_0W^c=E^c$ and W^c invariant. But, if $f\in\mathcal{C}^r$ and $W^c=graph(\varphi)$, the Taylor expansion up to order r of φ is unique.
- 2) As we will see by means of an example, $f \in \mathcal{C}^{\omega}$ does not imply $W^c \in \mathcal{C}^{\omega}$.
- 3) Even more, $f \in \mathcal{C}^{\omega}$ does not imply $W^c \in \mathcal{C}^{\infty}$.

Center manifold computations

Given a map f such that f(0) = 0 we write it as

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + g(x,y) \\ By + h(x,y) \end{pmatrix}$$

with

$$Spec(A) \subset \{\lambda | |\lambda| = 1\}, \qquad Spec(B) \subset \{\lambda | |\lambda| \neq 1\}$$

and

$$g(0,0) = h(0,0) = 0,$$
 $Dg(0,0) = Dh(0,0) = 0.$

We look for W^c as an invariant graph of some function φ . We write

$$f\begin{pmatrix} x \\ \varphi(x) \end{pmatrix} = \begin{pmatrix} Ax + g(x, \varphi(x)) \\ B\varphi(x) + h(x, \varphi(x)) \end{pmatrix}.$$

The invariance condition by f of the graph of arphi is

$$B\varphi(x) + h(x, \varphi(x)) = \varphi(Ax + g(x, \varphi(x))). \tag{1}$$

Assuming $\varphi \in \mathcal{C}^r$, we can expand:

$$\varphi(x) = \varphi_2(x) + \varphi_3(x) + \dots$$
 with $\varphi_k \in E_k$

and substitute this expansion into (1).

Comparing terms of the same order we can obtain $arphi_j$ recursively.

Reduction to the center manifold

One can reduce the study of the dynamics on the center manifold on the whole n-dimensional space to the one of the lower-dimensional map:

$$x \longmapsto Ax + g(x, \varphi(x))$$

This map is called the reduced map to the center manifold.

Application to stability

Remark

If at least one of the eigenvalues of B has modulus greater than one, then $W^u \neq \{0\}$ and 0 is unstable.

Theorem (Stability Theorem)

If $Spec(B) \subset \{\lambda | |\lambda| < 1\}$, then the character of 0 (stable, asymptotically stable or unstable) as a fixed point of f is the same as the character of 0 corresponding to f reduced to W^c

Remark

In the case that W^c is one-dimensional, it is very easy to study the stability of 0. Indeed, in this case, if the eigenvalue is 1, the reduced map is

$$x \mapsto x + a_k x^k + \dots$$

The origin is asymptotically stable when k is odd and $a_k < 0$.

Theorem

Using the previous notation, if $f \in \mathcal{C}^1$ there exists a topological conjugation from f to \tilde{f} , being

$$\tilde{f}(x,y) = \begin{pmatrix} Ax + g(x,\varphi(x)) \\ By \end{pmatrix}.$$

Center manifolds for vector fields

We can develop an analogous theory for vector fields X. Assume X(0) = 0.

We write $\mathbb{R}^n=E^s\oplus E^c\oplus E^u$, where now E^c is the spectral subspace generated by the eigenvalues that have real part equal to zero.

If X is C^r , $r \ge 1$, there exists an invariant manifold (by the flow of X), tangent to E^c at 0 of class C^r . We denote it by W^c .

We can write the system in the form

$$\begin{cases} x' = Ax + g(x, y) \\ y' = By + h(x, y) \end{cases}$$

with

$$\lambda \in Spec(A) \Leftrightarrow Re(\lambda) = 0, \qquad \lambda \in Spec(B) \Leftrightarrow Re(\lambda) \neq 0$$

and

$$g(0,0) = h(0,0) = 0,$$
 $Dg(0,0) = Dh(0,0) = 0.$

In these variables there exists φ such that $W^c_{loc} = \{(x,y)|\ y = \varphi(x)\}$ with $\varphi(0) = 0$, $D\varphi(0) = 0$.

Invariance equation for φ

Here we find an equation for φ .

Let (x(t), y(t)) be the solution such that $(x(0), y(0)) = (x_0, y_0)$.

The invariance by X of W^c means that if $(x_0, y_0) \in W^c$, $(x(t), y(t)) \in W^c$ and hence $y(t) = \varphi(x(t))$ for all t.

Differentiating both sides of $y(t) = \varphi(x(t))$ we have

$$y'(t) = D\varphi(x(t))x'(t).$$

Substituting $y = \varphi(x)$ into the equation:

$$\begin{cases} x'(t) = Ax(t) + g(x(t), \varphi(x(t))) \\ y'(t) = B\varphi(x(t)) + h(x(t), \varphi(x(t))). \end{cases}$$

Then

$$B\varphi(x(t)) + h(x(t), \varphi(x(t))) = D\varphi(x(t))[Ax(t) + g(x(t), \varphi(x(t)))].$$

Evaluating at t = 0 and writing (x, y) instead of (x_0, y_0) :

$$B\varphi(x) + h(x, \varphi(x)) = D\varphi(x)[Ax + g(x, \varphi(x))].$$

The condition

$$B\varphi(x) + h(x, \varphi(x)) = D\varphi(x)[Ax + g(x, \varphi(x))]$$

is a partial differential equation that let us to find, together with $\varphi(0)=0$ and $D\varphi(0)=0$ the Taylor polynomial of φ at 0. If the equation is C^{∞} we can obtain its (formal) power series.

Reduced equation

We call

$$x' = Ax + g(x, \varphi(x))$$

the reduced equation to the center manifold.

Stability

Theorem

Suppose that all eigenvalues of B have negative real part. Then the character (stable, asymptotically stable, unstable) of the origin as an equilibrium point of the reduced equation $x' = Ax + g(x, \varphi(x))$ is the same as the one of the original equation.

When E^c is one dimensional the reduced equation is a one dimensional equation. The only center eigenvalue is 0. The reduced equation is of the form

$$x' = a_n x^n + a_{n+1} x^{n+1} + ..., n \ge 2.$$

If $a_n \neq 0$, the stability is easy to study.

Several examples:

Example 1:

We look for the center manifold of (0,0) for the system

$$\left\{ \begin{array}{l} x'=-x^3 \\ y'=-y \end{array} \right., \qquad DX(0,0)=\left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right).$$

The explicit solutions are obtained as

$$x' = -x^3$$
 $\Rightarrow \frac{1}{2x^2} - \frac{1}{2x_0^2} = t$ if $x_0 \neq 0$, $x(t) = \frac{x_0}{(1+2x_0^2t)^{1/2}}$.
 $y' = -y$ $\Rightarrow \ln\left(\frac{y_0}{y}\right) = t$ if $y_0 \neq 0$, $y(t) = e^{-t}y_0$.

Equating t from the above equations we obtain the solutions are contained in y = y(x) where

$$\frac{y_0}{y} = \exp\left(\frac{1}{2x^2} - \frac{1}{2x_0^2}\right).$$

Therefore,

$$y(x) = c \exp\left(\frac{-1}{2x^2}\right), \qquad c = y_0 \exp\left(\frac{1}{2x_0^2}\right).$$

Then, maps h that satisfy the invariance condition are:

$$\varphi(x, c_1, c_2) = \begin{cases} c_1 \exp\left(\frac{-1}{2x^2}\right) & x < 0 \\ 0 & x = 0 \\ c_2 \exp\left(\frac{-1}{2x^2}\right) & x > 0 \end{cases}$$

which is a biparametric family of center manifolds of class \mathcal{C}^{∞} . This example shows the lack of uniqueness of W^c .

Example 2:

Example that shows we cannot expect analyticity for a center manifold even if $f\in\mathcal{C}^\omega$, as has been asserted in previous pages. The system is

$$\left\{ \begin{array}{l} x'=-x^3 \\ y'=-y+x^2 \end{array} \right., \qquad DX(0,0)=\left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right).$$

Suppose that the equation has an analytic center manifold. We can then look it as the graph of φ having a power series: $y = \varphi(x) = a_2x^2 + a_3x^3 + \dots$

We derive the invariance condition:

$$y' = D\varphi(x)x',$$

$$-y + x^2 = D\varphi(x)(-x^3),$$

$$-\varphi(x) + x^2 = D\varphi(x)(-x^3),$$

$$x^3 D\varphi(x) - \varphi(x) + x^2 = 0.$$

Substituting the expansion we get

$$x^{3}\left(\sum_{n\geq2}na_{n}x^{n-1}\right)-\left(\sum_{n\geq2}a_{n}x^{n}\right)+x^{2}=0.$$

$$\left(\sum_{n\geq 2} n a_n x^{n+2}\right) - \left(\sum_{n\geq 0} a_{n+2} x^{n+2}\right) + x^2 = 0$$

Comparing terms of the same degree:

$$\begin{array}{rcl} -a_2+1 & = & 0 \ , \\ & -a_3 & = & 0 \ , \\ \\ na_n-a_{n+2} & = & 0 \ , \qquad \forall n \geq 2. \end{array}$$

Then, it is immediate to deduce that the odd coefficients are zero and the even ones satisfy the recursive relation $a_2 = 1$, $a_{n+2} = na_n$. Therefore, for all $n \ge 0$,

$$a_{2n+1}=0,$$
 $a_{2n}=(2n-2)(2n-4)...2=2^{n-1}(n-1)!$

Then, coefficients of the power expansion of h grow as a factorial as we increase n, so the power series is not convergent and h is not analytic.

Example 3:

This example shows that we cannot expect φ to be \mathcal{C}^{∞} even if $f \in \mathcal{C}^{\omega}$. The system of equations is:

$$\left\{ \begin{array}{l} x' = -\varepsilon x - x^3 \\ y' = -y + x^2 \\ \varepsilon' = 0 \end{array} \right., \qquad DX(0,0,0) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Suppose there exists $\varphi(x,\varepsilon) \in \mathcal{C}^{\infty}$, defined on $(-\delta,\delta) \times (-\delta,\delta)$ whose graph is W_{loc}^{ε} .

Choose $n > \frac{1}{2\delta}$, $n \ge 2$, and consider $\varphi(x, \frac{1}{2n})$, which is \mathcal{C}^{∞} on $(-\delta, \delta)$. Then, by Taylor's Theorem, there exist coefficients a_0, \ldots, a_{2n} such that

$$\varphi(x,\frac{1}{2n}) = \sum_{i=0}^{2n} a_i x^i + O(x^{2n+1})$$

The invariance condition for graph of φ gives

$$\begin{split} y' &= D_t(\varphi(x,\varepsilon)) = D_x \varphi(x,\varepsilon) x' + D_\varepsilon \varphi(x,\varepsilon) \varepsilon' \ , \\ -y + x^2 &= D_x \varphi(x,\varepsilon) (-\varepsilon x - x^3) \ , \\ -\varphi(x,\varepsilon) + x^2 &= D_x \varphi(x,\varepsilon) (-\varepsilon x - x^3) \ . \end{split}$$

If x = 0 we get $\varphi(0, \varepsilon) = 0$. Taking derivatives:

$$\begin{split} -D_{x}\varphi(x,\varepsilon) + 2x &= D_{xx}\varphi(x,\varepsilon)(-\varepsilon x - x^{3}) + D_{x}\varphi(x,\varepsilon)(-\varepsilon - 3x^{2}) ,\\ -D_{x}\varphi(0,\varepsilon) &= D_{xx}\varphi(0,\varepsilon)0 + D_{x}\varphi(0,\varepsilon)(-\varepsilon) \\ (1-\varepsilon)D_{x}\varphi(0,\varepsilon) &= 0 . \end{split}$$

So, taking ε small enough (smaller than 1), $D_x \varphi(0, \varepsilon)$ has to be 0.

Therefore, the coefficients a_0 , a_1 of the Taylor polynomial of $\varphi(., \frac{1}{2n})$ are 0. Now we can replace $\varphi(., \frac{1}{2n})$ by its Taylor polynomial of order 2n on the invariance condition for φ :

$$\begin{split} -\varphi(x,\varepsilon) + x^2 &= D_x \varphi(x,\varepsilon) (-\varepsilon x - x^3) \;, \\ -\sum_{i=2}^{2n} a_i x^i + O(x^{2n+1}) + x^2 &= \left[\sum_{i=2}^{2n} i a_i x^{i-1} + \tilde{O}(x^{2n}) \right] \left(\frac{-1}{2n} x - x^3 \right) \;, \\ -\sum_{i=2}^{2n} a_i x^i + x^2 + \frac{1}{2n} \sum_{i=2}^{2n} i a_i x^i + \sum_{i=2}^{2n} i a_i x^{i+2} &= O(x^{2n+1}) + \tilde{O}(x^{2n}) \left(\frac{-1}{2n} x - x^3 \right) \;, \\ -\sum_{i=2}^{2n} a_i x^i + x^2 + \frac{1}{2n} \sum_{i=2}^{2n} i a_i x^i + \sum_{i=1}^{2n} (i-2) a_{i-2} x^i &= O(x^{2n+1}) \;. \end{split}$$

Therefore, proceeding as in the previous example, solving the equations for the coefficients at each degree:

$$-a_2 + 1 + \frac{1}{2n} 2a_2 = 0 \quad \Rightarrow \quad a_2 = \frac{1}{1 - \frac{1}{n}} \neq 0$$

$$-a_3 + \frac{3}{2n} a_3 = 0 \quad \Rightarrow \quad a_3 = 0$$

$$-a_i + \frac{i}{2n} a_i + (i - 2) a_{i-2} = 0 \quad \Rightarrow \quad (1 - \frac{i}{2n}) a_i = (i - 2) a_{i-2} , \quad 4 \le i \le 2n.$$

Then for $4 \le i \le 2n-2$, i even, we can write (since $1 - \frac{i}{2n} \ne 0$)

$$a_i = \frac{i-2}{1-\frac{i}{2n}}a_{i-2} = \ldots = \frac{(i-2)(i-4)\ldots 2}{(1-\frac{i}{2n})(1-\frac{i-2}{2n})\ldots (1-\frac{4}{2n})}a_2, \quad 4 \leq i \leq 2n-2.$$

for even values of i. In particular: $a_{2n-2} \neq 0$. However, when i = 2n,

$$0 \cdot a_{2n} = (2n-2)a_{2n-2} \neq 0$$

reaching the wished contradiction.