

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

<u>http://www.cs.princeton.edu/~wayne/kleinberg-tardos</u>

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection

Approximation algorithms: well-established field

Coping with NP-completeness

Q. Suppose I need to solve an **NP**-hard optimization problem. What should I do?

- A. Sacrifice one of three desired features.
 - i. Runs in polynomial time.
 - ii. Solves arbitrary instances of the problem.

iii. Finds optimal solution to problem.

 ρ -approximation algorithm.

Runs in polynomial time.

DACRIFICHIAMO CIO' NON AVENDO UNA 502UZIONEOMM VOGLIAMO APPRO SSI MARE

- Solves arbitrary instances of the problem
- Finds solution that is within ratio ρ of optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what is optimum value.

Def.

An α -approximation algorithm for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α the value of an optimal solution.

SIDICE ANCHE RAPPORTO DI OTTI MISSA SIONE

 $\check{\alpha}$: approximation ratio or approximation factor

minimization problem:

- <u>α≥1</u>
- for each returned solution x, $cost(x) \le \alpha OPT(x)$

maximization problem:

- <u>α≤1</u>
- for each returned solution x, value(x) $\geq \alpha$ OPT(x)

10 APPROJIMATO V 10 VOLTE

SECTION 11.1

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection

Load balancing

Input. m identical machines; $n \ge m$ jobs, job j has processing time t_j .

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i. The load of machine i is $L[i] = \sum_{j \in S[i]} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_i L[i]$.

Load balancing. Assign each job to a machine to minimize makespan.

Claim. Load balancing is hard even if m = 2 machines.

Pf. Partition \leq_P Load-Balance.

NP-complete by Exercise 8.26

Load balancing: list scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine i whose load is smallest so far.

```
LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
FOR i = 1 TO m
       L[i] \leftarrow 0. \longleftarrow load on machine i
       S[i] \leftarrow \emptyset. \longleftarrow jobs assigned to machine i
FOR j = 1 TO n
       i \leftarrow \operatorname{argmin}_{k} L[k]. machine i has smallest load
       S[i] \leftarrow S[i] \cup \{j\}. assign job j to machine i
       L[i] \leftarrow L[i] + t_j. update load of machine i
RETURN S[1], S[2], ..., S[m].
```

Implementation. $O(n \log m)$ using a priority queue for loads L[k].

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^* .

DIPENDE DALL'ISTANS

Lemma 1. For all k: the optimal makespan $L^* \geq t_k$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_k t_k$. Pf.

The total processing time is $\sum_k t_k$.

- The total processing time is $\Sigma_k t_k$.
- One of m machines must do at least a 1/m fraction of total work. •

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L[i] of bottleneck machine i. \longleftarrow machine that ends up
 - Let *j* be last job scheduled on machine *i*.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L[i] - t_j$; hence $L[i] - t_j \le L[k]$ for all $1 \le k \le m$.

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L[i] of bottleneck machine i. \longleftarrow machine that ends up
 - Let j be last job scheduled on machine i.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L[i] - t_j$; hence $L[i] - t_j \le L[k]$ for all $1 \le k \le m$.
 - Sum inequalities over all k and divide by m:

$$L[i] - t_j \leq \frac{1}{m} \sum_k L[k]$$

$$= \frac{1}{m} \sum_k t_k$$
Lemma 2 \longrightarrow \leq L^* .

Now,
$$L=L[i]=(L[i]-t_j)+t_j\leq 2L^*$$
 .
$$\stackrel{\leq L^*}{\uparrow} \stackrel{\leq L^*}{\uparrow}$$

- Q. Is our analysis tight? NON POSSIAM
- A. Essentially yes.

Ex: m machines, first m(m-1) jobs have length 1, last job has length m.

list scheduling makespan = 19 = 2m - 1

					machine 2 idle	
					machine 3 idle	
					machine 4 idle	
m = 10					machine 5 idle	
					machine 6 idle	
					machine 7 idle	
					machine 8 idle	
					machine 9 idle	
					machine 10 idle	
				ı		
	0			9		19

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, first m(m-1) jobs have length 1, last job has length m.

optimal makespan = 10 = m

m = 10

0

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing times; then run list scheduling algorithm.

```
LPT-LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
SORT jobs and renumber so that t_1 \ge t_2 \ge ... \ge t_n.
FOR i = 1 TO m
      L[i] \leftarrow 0. \longleftarrow load on machine i
       S[i] \leftarrow \emptyset. \longleftarrow jobs assigned to machine i
FOR j = 1 TO n
       i \leftarrow \operatorname{argmin}_{k} L[k]. machine i has smallest load
       S[i] \leftarrow S[i] \cup \{j\}. assign job j to machine i
      L[i] \leftarrow L[i] + t_j. update load of machine i
RETURN S[1], S[2], ..., S[m].
```

Load balancing: LPT rule

Observation. If bottleneck machine i has only 1 job, then optimal.

Pf. Any solution must schedule that job. •

Lemma 3. If there are more than m jobs, $L^* \geq 2 t_{m+1}$. Pf.

- Consider processing times of first m+1 jobs $t_1 \ge t_2 \ge ... \ge t_{m+1}$.
- Each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. ■

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. [similar to proof for list scheduling]

- Consider load L[i] of bottleneck machine i.
- assuming machine i has at least 2 jobs, Let j be last job scheduled on machine i. \longleftarrow we have $j \ge m+1$

$$L = L[i] = (L[i] - t_j) + t_j \leq \frac{3}{2} L^*$$
 as before $\longrightarrow \le L^* \le \frac{1}{2} L^*$ Lemma 3 (since $t_{m+1} \ge t_j$)

Load balancing: LPT rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

- Pf. More sophisticated analysis of same algorithm.
- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

Ex.

- m machines
- n = 2m + 1 jobs
- 2 jobs of length m, m+1, ..., 2m-1 and one more job of length m.
- Then, $L/L^* = (4m-1)/(3m)$

SECTION 11.2

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection