Tutorial for STA2002

 $\operatorname{Kun}\,\operatorname{HUANG}(\operatorname{SDS})$

2020-10-27

Contents

Pı	rereq	uisites	5				
1	Tut	orial 1	7				
	1.1	Q1	7				
	1.2	Q2	8				
	1.3	Q3	8				
2	Tut	Tutorial 2					
	2.1	Q1	9				
	2.2	Q2	9				
	2.3	Q3	10				
	2.4		10				
3	Tut	Tutorial 3					
	3.1	Method of moment estimator(MME)	11				
	3.2	Maximum likelihood estimator(MLE)	11				
4	Confidence Interval						
	4.1	Q1	13				
	4.2	Q2	14				
	4.3	Q3	15				
	4.4	Q4	16				
	4.5	Solutions	16				
5	Simple Linear Regression 19						
	5.1	Fitting a Simple Linear Regression Model	19				
	5.2	A Toy Example	20				
6	Hypothesis Testing 21						
	6.1	Summary of Hypothesis Testing by Normal Population	21				
	6.2		24				

4 CONTENTS

Prerequisites

 $Probability\ and\ Statistics\ I(STA2001)$ is the prerequisite, which mainly includes the following contents,

- Some usual distributions, like Binomial, Poisson, Normal, Exponential, Gamma, and Chi-square distributions (Relationships among some univariate distributions(Song 2005));
- Basic terminologies, e.g., independence, expectation, variation, correlation (coefficient), Bayes, and etc;
- Large number theorem, like Central Limit Theorem(CLT).

6 CONTENTS

Tutorial 1

1.1 Q1

• Moment-generating function M(t) of a random variable X defined in D that has a density function f(x).

$$M(t) = \mathbb{E}(e^{tx}) = \int_{D} e^{tx} f(x) dx \tag{1.1}$$

$$\mathbb{E}(X^s) = M^{(s)}(0) \tag{1.2}$$

- Relationship between $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$, independent.
- How to derive a quantity following t distribution from a norm population.

$$T = \frac{\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$
(1.3)

• The t distribution is symmetric, i.e., $t_q(n) = -t_{1-q}(n), q \in (0,1)$. For example,

```
qt(0.025, 8, lower.tail = F)
```

[1] 2.306004

$$-qt(1 - 0.025, 8, lower.tail = F)$$

[1] 2.306004

• Properties of F distribution: $F_{0.95}(9,24)=\frac{1}{F_{0.05}(24,9)}$

1.2 Q2

- Standardize a norm distribution $X \in \mathcal{N}(\mu, \sigma^2)$, i.e., $\frac{X-\mu}{\sigma} \in \mathcal{N}(0, 1)$.
- The distribution of \bar{X} and S^2 .

1.3 Q3

• Central Limit Theorem(CLT)

Theorem 1.1. (Central Limit Theorem) Let X_1, \ldots, X_n be independent, identically distributed (i.i.d.) random variables with finite expectation μ , and positive, finite variance σ^2 , and set $S_n = X_1 + X_2 + \cdots + X_n$, $n \ge 1$. Then

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{L} N(0,1) \text{ as } n \to \infty.$$

- The relationship between Binomial distribution b(n,p) and Poisson distribution Pois(λ): $\infty > np = \lambda, n \to \infty$
- Aware the power of CLT.

Tutorial 2

$\mathbf{Q}\mathbf{1}$ 2.1

- Derive moments from a given pdf f(x). $EX = \int x f(x) dx$, $EX^2 = \int x f(x) dx$ $\int x^2 f(x) dx$.
- Derive variance from the first and second moments, i.e., $Var(X) = EX^2 E^2X$.
- E(aX + bY + c) = aEX + bEY + c, $Var(aX + bY + c) = a^2Var(X) + c$ $b^2Var(Y)$. The latter needs X and Y are independent.
- CLT approximation.

$\mathbf{Q2}$ 2.2

Definition 2.1 (Poisson Process). Let N(t) be the number of events happens during the time interval [0,t], if N(t) satisfies the following:

- N(0) = 0;
- has independent increments, and $\forall \tau > 0, \ P(N(t+\tau) N(t) = n) = \frac{(\lambda \tau)^n}{n!} e^{-\lambda \tau}$

we call $\{N(t), t \geq 0\}$ is a Poisson process with rate λ .

• Let $(W_n > t)$ be the n - th random event happens after time t, then $W_n \sim Gamma(n, \lambda)$. In fact, $Gamma(n, \lambda)$ can be seen as the time to be waited until the n-th event.

2.3 Q3

Proposition 2.1. Suppose the random variable X has a pdf f(x), let Y = T(X), where $T : \mathbb{R} \to \mathbb{R}$ is an invertible transformation. Then the pdf g(y) of Y is

$$g(y) = f(T^{-1}(y)) \frac{dT^{-1}(y)}{dy}$$

For example, suppose $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = aX + b \sim \mathcal{N}(a\mu + b, (a\sigma)^2)$.

2.4 Q4

Theorem 2.1 (Chebyshev's Inequality). Let X be a random variable with finite mean μ and variance $\sigma^2 > 0$. Then $\forall k > 0$,

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Additionally, let $k\sigma = \varepsilon$, the above becomes,

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

Tutorial 3

3.1 Method of moment estimator(MME)

Suppose that the problem is to estimate k unknown parameters $\boldsymbol{\theta} := (\theta_1, \theta_2, ..., \theta_k)^T$ characterizing the distribution $f_X(x; \boldsymbol{\theta})$ of the random variable X. Suppose the first k moments of the true distribution can be expressed by the function of $\boldsymbol{\theta}$, i.e.,

$$\mu_1 \equiv \mathrm{E}[W] = g_1(\theta_1, \theta_2, \dots, \theta_k) \tag{3.1}$$

$$\mu_2 \equiv \mathrm{E}\left[W^2\right] = g_2\left(\theta_1, \theta_2, \dots, \theta_k\right)$$
 (3.2)

$$\vdots (3.3)$$

$$\mu_k \equiv \mathrm{E}\left[W^k\right] = g_k\left(\theta_1, \theta_2, \dots, \theta_k\right)$$
 (3.4)

Suppose a sample of size n is drawn, having the values of $x_1, x_2, ..., x_n$, let

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_i^j, j = 1, 2, ..., k$$
(3.5)

Solve the above k equations, we derive the method of moment estimator of θ .

3.2 Maximum likelihood estimator(MLE).

Suppose we have a sample of size $n, X_1, ..., X_n$ i.i.d drawn from a population distribution $f_X(x; \boldsymbol{\theta}), \boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_k)^T$. Define the likelihood function to be

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta})$$

The log-likelihood function is defined by $\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta})$. The maximum likelihood estimator $\hat{\boldsymbol{\theta}}$ is determined to maximize $L(\boldsymbol{\theta})$, i.e.,

$$\hat{\boldsymbol{\theta}} = \max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}) \tag{3.6}$$

Confidence Interval

Definition 4.1 (Confidence Interval). Given a sample $X_1, X_2, ..., X_n$ of the population $X \sim f(x;\theta)$ and $\alpha \in [0,1]$, a $(1-\alpha)$ confidence interval $(a(X_1, X_2, ..., X_n), b(X_1, X_2, ..., X_n))$ for the parameter θ is defined such that,

$$P[a(X_1, X_2, ..., X_n) < \theta < b(X_1, X_2, ..., X_n)] = 1 - \alpha$$
(4.1)

Interpretation and misunderstanding

4.1 Q1

Definition 4.2 (t-distribution). Suppose $X \sim N(0,1)$, $U \sim \chi^2(n)$, and X are independent from Y, then $\frac{X}{\sqrt{U/n}}$ has a (student) t distribution with n degrees of freedom, i.e.,

$$\frac{X}{\sqrt{U/n}} \sim t(n)$$

Confidence Interval of normal population $X_i \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2), i = 1, 2, ..., n$. We have

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}), \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 (4.2)

It can be proved that \bar{X} and S^2 are independent. Then,

$$\frac{\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
 (4.3)

We call such a method the pivotal approach. A pivotal quantity or pivot is a function of observations and unobservable parameters such that the function's

probability distribution does not depend on the unknown parameters. For example, $\frac{\bar{X}-\mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0,1)$ is a pivot. From (4.3), we derive the $(1-\alpha)$ confidence interval for the mean μ when σ^2 is unknown, i.e.,

$$\bar{X} \pm t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}} \tag{4.4}$$

qt(0.05/2, 8, lower.tail = F)

[1] 2.306004

qnorm(0.01/2, lower.tail = F)

[1] 2.575829

4.2 Q2

Theorem 4.1 (Welch's t-interval). Let $X_1, X_2, ..., X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m \overset{i.i.d.}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent random variables. Then an approximate $(1-\alpha)$ C.I. for $\mu_X - \mu_Y$ is

$$\bar{X} - \bar{Y} \pm t_{\alpha/2}(r) \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}$$

where

$$r = \left[\frac{\left(\frac{S_{X}^{2}}{n} + \frac{S_{X}^{2}}{m}\right)^{2}}{\frac{1}{n-1} \left(\frac{S_{X}^{2}}{n}\right)^{2} + \frac{1}{m-1} \left(\frac{S_{Y}^{2}}{m}\right)^{2}} \right]$$

Let $X_1, X_2, ..., X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m \overset{i.i.d.}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent random variables. We have the following,

$$\bar{X} \sim \mathcal{N}(\mu_X, \frac{\sigma_X^2}{n}), \quad \bar{Y} \sim \mathcal{N}(\mu_Y, \frac{\sigma_Y^2}{n})$$
 (4.5)

$$\frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi^2(n-1), \quad \frac{(m-1)S_Y^2}{\sigma_Y^2} \sim \chi^2(m-1)$$
 (4.6)

The two samples are independent, hence,

$$\bar{X} - \bar{Y} \sim \mathcal{N}(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m})$$
 (4.7)

• $\sigma_X = \sigma_Y = \sigma$ and σ is known, then,

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}} \sim \mathcal{N}(0, 1) \tag{4.8}$$

4.3. Q3 15

• $\sigma_X = \sigma_Y = \sigma$ and σ is unknown, then,

$$\frac{(n-1)S_X^2 + (m-1)S_Y^2}{\sigma^2} \sim \chi^2(n+m-2)$$
 (4.9)

$$\frac{(n-1)S_X^2 + (m-1)S_Y^2}{\sigma^2} \sim \chi^2(n+m-2) \qquad (4.9)$$

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y) / \left(\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}\right)}{\sqrt{\frac{(n-1)S_X^2 + (m-1)S_Y^2}{\sigma^2(n+m-2)}}} \sim t(n+m-2) \qquad (4.10)$$

- $\sigma_X \neq \sigma_Y$ and they are both unknown, use Welch's t-interval or CLT approximation.
- m = n, then $Z_i = X_i Y_i \sim \mathcal{N}(\mu_X \mu_y, \sigma_Z)$ since $(X_i, Y_i)^T \sim$ $\mathcal{N}((\mu_X, \mu_Y)^T, \Sigma)$. Then the same technique in Q1 can be used.

```
qt(0.05 / 2, 8, lower.tail = F)
```

[1] 2.306004

4.3 $\mathbf{Q3}$

If $X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$ are independent, then

$$\frac{X/n}{Y/m} \sim F(n,m)$$

Therefore, with samples from two independent normal population, i.e., let $X_1, X_2, ..., X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m \overset{i.i.d.}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent dent, we have a pivot

$$\frac{\frac{(n-1)S_X^2}{\sigma_X^2}/(n-1)}{\frac{(m-1)S_Y^2}{\sigma_Y^2}/(m-1)} = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(n-1, m-1)$$
(4.11)

```
alpha \leftarrow 0.02
qf(alpha / 2, 12, 8, lower.tail = F)
```

[1] 5.666719

qf(alpha / 2, 8, 12, lower.tail = F)

[1] 4.499365

$$F_{1-\alpha/2}(r_1, r_2) = \frac{1}{F_{\alpha/2}(r_2, r_1)}$$
(4.12)

4.4 Q4

According to the central limit theorem(CLT), we have an approximate pivot

$$\frac{\bar{X} - EX}{\sqrt{VarX}} \to \mathcal{N}(0,1) \tag{4.13}$$

```
qnorm(0.05 / 2, lower.tail = F)
```

[1] 1.959964

4.5 Solutions

4.5.1 Q1

```
x \leftarrow c(21.5, 18.95, 18.55, 19.4, 19.15, 22.35, 22.9, 22.2, 23.1)
t.test(x, conf.level = 0.95)
##
##
    One Sample t-test
##
## data: x
## t = 33.738, df = 8, p-value = 6.506e-10
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 19.47149 22.32851
## sample estimates:
## mean of x
##
        20.9
n \leftarrow qnorm(0.1/2, lower.tail = F)^2 * var(x) / (0.5)^2
print(n)
## [1] 37.37708
4.5.2
        Q2
```

```
x <- c(1612, 1352, 1456, 1222, 1560, 1456, 1924)
y <- c(1082, 1300, 1092, 1040, 910, 1248, 1092, 1040, 1092, 1288)
t.test(x,y, var.equal = FALSE, conf.level = 0.95)

##
## Welch Two Sample t-test
##
## data: x and y</pre>
```

t = 4.235, df = 8.5995, p-value = 0.002427

4.5. SOLUTIONS 17

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 181.7191 604.9095
## sample estimates:
## mean of x mean of y
## 1511.714 1118.400
```

Note that R use $t_{\alpha/2}(8.6)$, so the result of C.I. is different from what we use where the df=8 in t distribution. The pdf of t distribution is

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} \tag{4.14}$$

where ν is the degree of freedom.

4.5.3 Q3

```
r1 <- 9 - 1
r2 <- 13 - 1
sx <- 128.41 / 12
sy <- 36.72 / 8
alpha <- 0.02
ci2 <- sx / sy * c(qf(1 - alpha / 2, r1, r2, lower.tail = F), qf(alpha / 2, r1, r2, lower.tail = ci <- sqrt(ci2)
print(ci2)
## [1] 0.4114085 10.4895333
print(ci)</pre>
```

[1] 0.6414113 3.2387549

4.5.4 Q4

$$\hat{p}_1 \pm z_{0.05/2} \sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1}}$$

```
n1 <- 194
n2 <- 162
y1 <- 28
y2 <- 11
p1 <- y1 / n1
s1 <- sqrt(n1 * p1 * (1 - p1)) / n1
p1 + c(-1, 1) * qnorm(0.05/2, lower.tail = F) * s1</pre>
```

[1] 0.0948785 0.1937813

$$z_{\alpha/2}\sqrt{\frac{\hat{p}_1\left(1-\hat{p}_1\right)}{n}} = \varepsilon$$

[1] 208.8321

$$(\hat{p}_1 - \hat{p}_2) - z_{0.05} \sqrt{\frac{\hat{p}_1 (1 - \hat{\rho}_1)}{n_1} + \frac{\hat{\rho}_2 (1 - \hat{p}_2)}{n_2}}$$

[1] 0.02370925

Simple Linear Regression

Consider a simple linear regression model,

$$Y = \alpha + \beta(X - \bar{X}) + \varepsilon, \tag{5.1}$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. Given X is not random, we have,

$$Y \sim \mathcal{N}(\alpha + \beta(X - \bar{X}), \sigma^2)$$
 (5.2)

5.1 Fitting a Simple Linear Regression Model

Suppose we a series of samples (x_i, y_i) , i = 1, 2, ..., n and we want to fit a simple linear regression which has the form of (5.1). Then the fitted $(\hat{\alpha}, \hat{\beta})$ should minimize the residual, i.e.,

$$(\hat{\alpha}, \hat{\beta}) = \underset{\alpha, \beta \in \mathbb{R}}{\operatorname{arg \, min}} \sum_{i=1}^{n} (y_i - \alpha - \beta(x_i - \bar{x}))^2$$
 (5.3)

Solving (5.3), we derive

$$\hat{\alpha} = \bar{y}, \hat{\beta} = \frac{\sum_{i=1}^{n} y_i (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (5.4)

Noting that $y_i = \alpha + \beta(x_i - \bar{x}) + \varepsilon_i \sim \mathcal{N}(\alpha + \beta(x_i - \bar{x}), \sigma^2)$, we have

$$\hat{\alpha} = \bar{y} \sim \mathcal{N}(\alpha, \frac{\sigma^2}{n}) \tag{5.5}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} y_i (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sim \mathcal{N}(\beta, \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2})$$
 (5.6)

The MLE for σ is

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[y_{i} - \hat{\alpha} - \hat{\beta} (x_{i} - \bar{x}) \right]^{2}$$
(5.7)

5.2 A Toy Example

```
# Simulated data
\#'y = 4 + 3x + \epsilon
x \leftarrow runif(20, min = 5, max = 20)
y < -4 + 3 * x + rnorm(20)
slr \leftarrow lm(y \sim x)
summary(slr)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
        Min
                  1Q Median
                                    3Q
## -2.25867 -0.65772 -0.03311 0.51021 1.96094
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.68150 0.69319 5.311 4.76e-05 ***
## x
                3.01429
                           0.05077 59.367 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.093 on 18 degrees of freedom
## Multiple R-squared: 0.9949, Adjusted R-squared: 0.9946
## F-statistic: 3524 on 1 and 18 DF, p-value: < 2.2e-16
names(slr)
## [1] "coefficients" "residuals"
                                        "effects"
                                                        "rank"
## [5] "fitted.values" "assign"
                                        "qr"
                                                        "df.residual"
                        "call"
                                        "terms"
                                                        "model"
## [9] "xlevels"
fitted(slr)
                   2
                            3
          1
                                     4
                                              5
                                                       6
## 52.94912 34.45901 23.39097 26.15008 43.89705 63.73809 59.54406 24.01895
                 10
                           11
                                    12
                                             13
                                                      14
                                                               15
## 52.71892 61.02429 19.08463 50.77696 55.04924 33.73152 58.23259 53.07383
         17
                 18
                           19
## 19.04014 38.87171 41.55155 32.51280
```

Hypothesis Testing

6.1 Summary of Hypothesis Testing by Normal Population

Let samples $X_1, X_2, ..., X_n$ draw from a normal population $\mathcal{N}(\mu_X, \sigma_X^2)$, then,

	Distribution Under H_0	Critical Region
$H_0: \mu = \mu_0, <\text{br}> \sigma \text{ known}$	$rac{ar{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$	$H_1: \mu > \mu_0, \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha < \text{br} > H_1: \mu$
$H_0: \mu = \mu_0, <$ br>> σ unknown	$\frac{\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)}{\sqrt{\frac{(n-1)S_X^2}{\sigma^2}/(n-1)}} < \text{br} > = \frac{\bar{X}-\mu_0}{S_X/\sqrt{n}} \sim t(n-1)$	$H_1: \mu > \mu_0, \frac{\bar{X} - \mu_0}{S_X / \sqrt{n}} \ge t_\alpha (n-1) < \text{br}$
$H_0: \sigma^2 = \sigma_0^2$	$\sqrt{\frac{(n-1)S_X^2}{\sigma_0^2}} \sim \chi^2(n-1)$	$H_1: \sigma^2 > \sigma_0^2, \frac{(n-1)S_X^2}{\sigma_0^2} \ge \chi_\alpha(n-1) < 0$

Null Hypothesis	Distribution Under H_0	Critical Region
$H_0: \mu = \mu_0, \sigma$	$\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$	$H_1: \mu > \mu_0, \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$
known	, ,	$H_1: \mu > \mu_0, \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$ $H_1: \mu < \mu_0, \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \le$
		$z_{1-\alpha} = -z_{\alpha} H_1 : \mu \neq$
		$\mu_0, \left \frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right \ge z_{\alpha/2}$
$H_0: \mu = \mu_0, \sigma$	$\frac{\sqrt{n(\bar{X}-\mu_0)/\sigma}}{\sqrt{\frac{(n-1)S_X^2}{\sigma^2}/(n-1)}}$	$H_1: \mu > \mu_0, \frac{\bar{X} - \mu_0}{S_X / \sqrt{n}} \ge$
unknown	$\sqrt{\frac{(n-1)\delta_X}{\sigma^2}}/(n-1)$	$t_{\alpha}(n-1)$ $H_1:\mu<$
	$=\frac{\bar{X}-\mu_0}{S_X/\sqrt{n}}\sim t(n-1)$	$\mu_0, \frac{X - \mu_0}{S_X / \sqrt{n}} \le t_{1-\alpha} (n-1)$
		$H_1: \mu \neq \mu_0, \left \frac{\bar{X}-\mu_0}{S_X/\sqrt{n}}\right \geq$
		$t_{lpha/2}$

Null Hypothesis	Distribution Under H_0	Critical Region
$H_0: \sigma^2 = \sigma_0^2$	$\frac{(n-1)S_X^2}{\sigma_0^2} \sim \chi^2(n-1)$	$H_1: \sigma^2 > \sigma_0^2, \frac{(n-1)S_X^2}{\sigma_0^2} \ge$
		$\chi_{\alpha}(n-1)$
		$H_1: \sigma^2 < \sigma_0^2, \frac{(n-1)S_X^2}{\sigma_0^2} \le$
		$\chi_{1-\alpha}(n-1)H_1:\sigma^2\neq$
		σ_0^2 , $\frac{(n-1)S_X^2}{\sigma_0^2} \ge \chi_{\alpha/2}(n-1)$
		or $\frac{(n-1)S_X^{\frac{0}{2}}}{\sigma_0^2} \le \chi_{1-\alpha/2}(n-1)$

Let samples $X_1, X_2, ..., X_n$ draw from a normal population $\mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m$ from another normal population $\mathcal{N}(\mu_Y, \sigma_Y^2)$.

Null Hypothesis	Distribution Under H_0
	$Z_1 = rac{ar{X} - ar{Y}}{\sqrt{rac{\sigma_2^2}{X} + rac{\sigma_2^2}{Y}}} \sim \mathcal{N}(0, 1)$
$H_0: \mu_X = \mu_Y, < \text{br} > \sigma_X = \sigma_Y = \sigma, \text{ unknown}$	$T_1 = \frac{(\bar{X} - \bar{Y})/\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}}{\sqrt{\frac{(n-1)S_X^2 + (m-1)S_Y^2}{\sigma^2}/(n+m-2)}} < \text{br} > = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(e^{\frac{1}{2}(1-x)S_X^2 + (m-1)S_Y^2})$
$H_0: \mu_X = \mu_Y, <\text{br}>\sigma_X \neq \sigma_Y, \text{ unknown}$	$T_2 = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim t(r), \langle \text{br} \rangle r = \left[\frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{S_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_Y^2}{m}\right)} \right]$ $D_i := X_i - Y_i \langle \text{br} \rangle \sim \mathcal{N}(\mu_X - \mu_Y, \sigma_Z^2) \langle \text{br} \rangle \text{transform}$
$H_0: \mu_X = \mu_Y, \langle \text{br} \rangle m = n$	$D_i := X_i - Y_i < \text{br} > \sim \mathcal{N}(\mu_X - \mu_Y, \sigma_Z^2) < \text{br} > \text{transform}$
$H_0: \sigma_X^2 = \sigma_Y^2$	$F = \frac{\frac{(n-1)S_X^2}{\sigma_X^2}/(n-1)}{\frac{(m-1)S_Y^2}{\sigma_Y^2}/(m-1)} = \frac{S_X^2}{S_Y^2} < \text{br} > \sim F(n-1, m-1)$

Null Hypothesis	Distribution Under H_0	Critical Region
$ \frac{H_0: \mu_X = \mu_Y,}{\sigma_X = \sigma_Y = \sigma, \text{ known}} $	$Z_1 = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim$	$H_1: \mu_X > \mu_Y, Z_1 \ge $ $z_{\alpha}H_1: \mu_X <$
	$\mathcal{N}(0,1)$	$\mu_Y, Z_1 \le z_{1-\alpha} = $ $-z_{\alpha}H_1: \mu_X \ne $ $\mu_Y, Z_1 \ge z_{\alpha/2}$
$H_0: \mu_X = \mu_Y,$ $\sigma_X = \sigma_Y = \sigma,$ unknown	$T_{1} = \frac{(\bar{X} - \bar{Y})/\sqrt{\frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{m}}}{\sqrt{\frac{(n-1)S_{X}^{2} + (m-1)S_{Y}^{2}}{\sigma^{2}}/(n+m-2)}}$ $= \frac{\bar{X} - \bar{Y}}{S_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n+m-2)$	$H_1: \mu_X > \mu_Y, T_1 \ge t_{\alpha}(n+m-2)H_1: \mu_X < t_{\alpha}$

6.1. SUMMARY OF HYPOTHESIS TESTING BY NORMAL POPULATION23

Null Hypothesis	Distribution Under H_0	Critical Region
$ \frac{H_0: \mu_X = \mu_Y, \sigma_X \neq \sigma_Y, \text{unknown}}{\sigma_Y, \text{unknown}} $	$T_2 = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim t(r),$ $r = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim t(r),$	$H_1: \mu_X > \mu_Y, T_2 \ge t_{\alpha}(r)H_1: \mu_X < t_{\alpha}($
	$T_2 = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim t(r),$ $r = \left[\frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{S_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_Y^2}{m}\right)^2}\right]$	$\mu_Y, I_2 \le -t_{\alpha}(r)H_1.$ $\mu_X \ne \mu_Y, T_2 \ge t_{\alpha/2}(r)$
$H_0: \mu_X = \mu_Y, m = n$	$D_i := X_i - Y_i$	
	$\sim \mathcal{N}(\mu_X - \mu_Y, \sigma_Z^2)$	
	transform it into the one	
	sample situation with	
	σ_Z^2 unknown	
$H_0: \sigma_X^2 = \sigma_Y^2$	$F = \frac{\frac{\sigma_X^2}{\sigma_X^2}/(n-1)}{\sigma_X^2} =$	$H_1: \sigma_Y^2 > \sigma_Y^2, F >$
0 · · · X · · Y	$F = \frac{\frac{(n-1)S_X^2}{\sigma_X^2}/(n-1)}{\frac{(m-1)S_Y^2}{\sigma_Y^2}/(m-1)} =$	$F_{\alpha}(n-1, m-1)H_1$:
	$\frac{S_X^2}{S_Y^2} \sim F(n-1, m-1)$	$\sigma_V^2 < \sigma_V^2, F <$
	$\frac{\overline{S}_Y^2}{\overline{S}_Y^2} \sim F(n-1, m-1)$	$F_{1-\alpha}^{\Lambda}(n-1,m-1)H_1:$
		$\sigma_{Y}^{/} = \sigma_{Y}^{2}, F >$
		$F_{\alpha/2}(n-1, m-1)$ or
		,
		$F \le F_{1-\alpha/2}(n-1, m-1)$

We next consider the situation of testing proportion. Let $X_i \overset{i.i.d.}{\sim} Bernoulli(p_X)$ drawn from a specific event and $Y_i \overset{i.i.d.}{\sim} Bernoulli(p_Y)$. We want to infer p_X and the relationship between p_X and p_Y . Let $Z = \sum_{i=1}^n X_i \sim Bin(n,p)$. $\hat{p} := \frac{Z}{n}$ is an unbiased estimator for p. According to the central limit theorem(CLT), we have,

$$\hat{p} \to \mathcal{N}(p, \frac{p(1-p)}{n}), n \to \infty$$
 (6.1)

Under $H_0: p_X=p_Y=p, \ \hat{p}_{XY}:=\frac{\sum\limits_{i=1}^n X_i+\sum\limits_{i=1}^m Y_i}{n+m}$ is an unbiased estimator of p. Since,

$$\mathbb{E}(\hat{p}_{XY}) = \frac{\sum_{i=1}^{n} \mathbb{E}X_i + \sum_{i=1}^{m} \mathbb{E}Y_i}{n+m} = \frac{np+mp}{m+n} = p$$
 (6.2)

Null Hypothesis	Distribution Under H_0	Criticall Region
$H_0: p = p_0$	$Z_p = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \stackrel{approx}{\sim} N(0, 1)$	$H_1: p > p_0, Z_p \ge$
	$Z_{XY} = \frac{\hat{p}_{X} - \hat{p}_{Y}}{\sqrt{\frac{\hat{p}_{XY}(1 - \hat{p}_{XY})}{n} + \frac{\hat{p}_{XY}(1 - \hat{p}_{XY})}{m}}} < \text{br} > \overset{apprrox}{\sim} \mathcal{N}(0, 1), \hat{p}_{XY} := \frac{\sum_{i=1}^{n} X_{i} + \sum_{i=1}^{m} Y_{i}}{n + m}$	$H_1: p_X > p_Y, Z$

Null Hypothesis Distribution Under H_0		Criticall Region
$ \frac{H_0:}{p = p_0} $ $ H_0:$ $ p_X = p_Y $	$Z_p = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \overset{approx}{\sim} N(0, 1)$ $Z_{XY} = \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\frac{\hat{p}_{XY}(1 - \hat{p}_{XY})}{n} + \frac{\hat{p}_{XY}(1 - \hat{p}_{XY})}{m}}}$ $\overset{approx}{\sim} \mathcal{N}(0, 1), \hat{p}_{XY} := \sum_{i=1}^n X_i + \sum_{i=1}^m Y_i$ $\overset{i=1}{n+m}$	$\begin{array}{ll} H_1: p > p_0, & Z_p \geq z_\alpha H_1: p < \\ p_0, & Z_p \leq z_{1-\alpha} H_1: p \neq \\ p_0, & Z_p \geq z_{\alpha/2} \\ H_1: p_X > p_Y, & Z_{XY} \geq z_\alpha H_1: \\ p_X < p_Y, & Z_{XY} \leq z_{1-\alpha} H_1: \\ p_X \neq p_Y, & Z_{XY} \geq z_{\alpha/2} \end{array}$

6.2 Exercise

Exercise 6.1. To measure air pollution in a home, let X and Y equal the amount of suspended particulate matter (in g/m3) measured during a 24-hour period in a home in which there is no smoker and a home in which there is a smoker, respectively. We shall test the null hypothesis $H_0: \sigma_X^2/\sigma_Y^2 = 1$ against the one-sided alternative hypothesis $H_1: \sigma_X^2/\sigma_Y^2 > 1$. Suppose both samples are drawn from normal distribution.

- 1. If a random sample of size n = 9 yielded $\bar{x} = 93$ and $S_x = 12.9$ while a random sample of size m = 11 yielded y = 132 and $S_y = 7.1$, define a critical region and give your conclusion if $\alpha = 0.05$.
- 2. Now test $H_0: \mu_X = \mu_Y$ against $H_1: \mu_X < \mu_Y$ if $\alpha = 0.05$. $t_{0.05}(11) = 1.796$

Solutions:

1. To test $H_0: \sigma_X^2 = \sigma_Y^2$ against $H_1: \sigma_X^2 > \sigma_Y^2$ under normal populations.

$$F = \frac{S_x^2}{S_y^2} = \frac{12.9^2}{7.1^2} = 3.30 > 3.07 = F_{0.05}(8, 10)$$
 (6.3)

So we reject H_0 and conclude that $\sigma_X^2 \neq \sigma_Y^2$.

2. To test $H_0: \mu_X = \mu_Y$ against $H_1: \mu_X < \mu_Y$ under normal populations with variance not being equal.

$$r = \left[\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}} \right] = \left[\frac{\left(\frac{12.9^2}{9} + \frac{7.1^2}{13}\right)^2}{\frac{(12.9^2/9)^2}{9 - 1} + \frac{(7.1^2/11)^2}{11 - 1}} \right] = 11, \quad t_{1 - 0.05}(11) = -t_{0.05}(11) = -1.796$$

$$(6.4)$$

6.2. EXERCISE 25

$$t = \frac{\bar{x}_1 - \bar{y}_2}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} = \frac{93 - 132}{\sqrt{\frac{12.9^2}{9} + \frac{7.1^2}{11}}} \approx -8.119 < t_{0.95} = -1.796 \Rightarrow \text{ Reject } H_0$$
(6.5)

Exercise 6.2. Let Y be b(192, p). We reject $H_0: p = 0.75$ and accept $H_1: p > 0.75$ if and only if $Y \ge 152$. Use the normal approximation to determine

1.
$$\alpha = P(Y \ge 152; p = 0.75)$$
.

2.
$$\beta = P(Y < 152)$$
 when $p = 0.80$.

Solution:

Proportion for one sample. n = 192

1. $\sum_{i=1}^{n} X_i = 152$, according to CLT and half-unit correction

$$z = \frac{x - np}{\sqrt{np(1 - p)}} = \frac{151.5 - 192(0.75)}{\sqrt{192(0.75)(1 - 0.75)}} \approx 1.25, z \stackrel{approx}{\sim} \mathcal{N}(0, 1) \quad (6.6)$$

$$\alpha = P(Y \ge 152; p = 0.75) = P(Y > 151.5) = P(z > 1.25) = 0.1056 \quad (6.7)$$

2. p = 0.8 now, similarly,

$$z = \frac{x - np}{\sqrt{np(1 - p)}} = \frac{151.5 - 192(0.80)}{\sqrt{192(0.8)(1 - 0.8)}} \approx -0.38$$

$$\beta = P(Y < 152) = P(Y < 151.5) = P(z < -0.38) = P(z > 0.38) = 0.3520$$
(6.9)

Exercise 6.3. Let p equal the proportion of drivers who use a seat belt in a state that does not have a mandatory seat belt law. It was claimed that p = 0.14 An advertising campaign was conducted to increase this proportion. Two months after the campaign, y = 104 out of a random sample of n = 590 drivers were wearing their seat belts. Was the campaign successful?

- 1. Define the null and alternative hypotheses.
- 2. Define a critical region with an $\alpha = 0.01$ significance level. $z_{0.01} = 2.326$
- 3. What is your conclusion?

Solution:

- 1. $H_0: p = 0.14$ against $H_1: p > 0.14$
- 2. One sided proportion problem, $z_{0.01} = 2.326$.

$$C = \{z : z \ge 2.326\}$$
 where $z = \frac{y/n - 0.14}{\sqrt{(0.14)(0.86)/n}}$ (6.10)

3. For this problem, y = 104, n = 590, the value of test statistics is,

$$z = \frac{104/590 - 0.14}{\sqrt{(0.14)(0.86)/590}} = 2.539 > 2.326 \tag{6.11}$$

Hence, we reject H_0 and conclude that the advertising campaign indeed increases this proportion.

Exercise 6.4. For developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of babies with a low birth weight (below 2500 grams). We shall test $H_0: p_1 = p_2$ against the alternative hypothesis $H_1: p_1 > p_2$

- 1. Define a critical region that has an $\alpha=0.05$ significance level. $z_{0.05}=1.645$
- 2. If respective random samples of sizes $n_1=900$ and $n_2=700$ yielded $y_1=135$ and $y_2=77$ babies with a low birth weight, what is your conclusion?
- 3. What would your decision be with a significance level of $\alpha=0.01?~z_{0.01}=2.326$
- 4. What is the *p*-value of your test?

Solution:

Two samples proportion problem with $H_0: p_1 = p_2$ against $H_1: p_1 > p_2$.

1.

$$C = \{ z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}} \ge 1.645 \}$$
 (6.12)

where $\hat{p}_1 = y_1/n_1$, $\hat{p}_2 = y_2/n_2$, and $\hat{p} = \frac{y_1+y_2}{n_1+n_2}$.

2. Calculate the test statistic,

$$z = \frac{0.15 - 0.11}{\sqrt{(0.1325)(0.8675)(1/900 + 1/700)}} = 2.341 > 1.645$$
 (6.13)

Hence, we reject H_0 and conclude that the proportions of babies with a low birth weight in Africa is larger than that in Americas.

- 3. Since $z = 2.341 > 2.326 = z_{0.01}$, we reject H_0 and conclude that the proportions of babies with a low birth weight in Africa is larger than that in Americas.
- 4. The p-value is

6.2. EXERCISE 27

$$P(z \ge 2.341) = 0.0096 \tag{6.14}$$

where z asymptotically follows $\mathcal{N}(0,1)$.

Song, Wheyming Tina. 2005. "Relationships Among Some Univariate Distributions." IIE Transactions 37 (7): 651-56.