1)

From the graph of the variable in levels, we can clearly see that it presents an upward trend which is quite linear, therefore it's not I(0).

By taking the first difference, the series now looks much more stationary, even if the mean it's not exactly zero and the variance is not always constant; however, for now we can conclude that it's I(1), and then we'll test it.

2)

Levels

First differences

Sample: 1970M01 2021M01 Included observations: 613 Sample (adjusted): 1970M02 2021M01 Included observations: 612 after adjustments

Included observation								s: 612 after adjustme	nts				
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.995	0.995	610.38	0.000			1	0.472	0.472	136.97	0.000
	j .j. j	2	0.991	-0.005	1216.1	0.000	· i	i i	2	0.310	0.113	196.35	0.000
		3	0.986	-0.003	1817.2	0.000	· Þ	do	3	0.176	-0.009	215.56	0.000
1		4	0.982	-0.001	2413.7	0.000	· Þ	· b	4	0.156	0.065	230.54	0.000
ı		5	0.977	-0.004	3005.6	0.000	· =	<u> </u>	5	0.230	0.165	263.24	0.000
	ili	6	0.972	-0.002	3592.8	0.000	· Þ	· =	6	0.253	0.099	302.86	0.000
		7	0.968	-0.001	4175.5	0.000	· 		7	0.231	0.040	335.93	0.000
		8	0.963	0.002	4753.7	0.000	· 	<u> </u>	8	0.288	0.159	387.41	0.000
1		9	0.959	-0.003	5327.3	0.000	· 	· 	9	0.301	0.123	443.91	0.000
		10	0.954	-0.006	5896.4	0.000	· 	l ili	10	0.259	0.024	485.67	0.000
	(1)	11	0.949	-0.010	6460.8	0.000	· 	· b	11	0.235	0.044	520.32	0.000
1		12	0.945	-0.006	7020.6	0.000	· Þ		12	0.180		540.72	
		13			7575.7		· 	· b	13		0.058	566.22	
1		14			8126.2		' P	(t)	14			579.79	
1		15			8672.0		' 	100	15	0.163		596.58	
ı		16			9213.3	0.000	' =	(t)	16	0.127		606.79	
1	1	17			9749.9	0.000	' !	ļ •	17	0.157		622.44	
1	1	18			10282.	0.000	' I	ļ • •	18		-0.018	636.50	
1	1	19			10809.		' !	ļ '] i	19	0.173		655.44	
1	1	20			11332.		' !	ļ ' P	20	0.185		677.19	
1	1	21			11850.		'.	ļ 10	21		-0.017	691.92	
	1	22			12364.	0.000	' !	ļ 1 <mark>1</mark> 1	22		-0.017	701.14	
1	1	23			12873.	0.000	' <u>P</u>	ļ <u>"</u> !	23		-0.022	705.74	
1	! !! !	24			13377.	0.000	·P	ļ i ļi	24	0.061		708.12	
1	! '!' !	25			13877.	0.000	·P	ļ "	25			709.74	
'	! '!' !	26			14373.	0.000	'"	<u> </u>	26			712.66	
1	! '!' !	27			14863.		' <u>"</u>	ļ " !'	27			713.84	
1	' '	28			15349.	0.000	<u>'</u> !!	']'	28			716.95	
1	' '	29			15831.		' <u>P</u> '	ļ " !'	29			718.27	
1	' '	30			16308.		'!"	']'	30			720.18	
1	' '	31			16781.			']'	31			721.04	
1	' '	32			17249.		'!'	! " !	32			721.12	
	' '	33			17712.		. рі . Б	' 	33			721.94	
·	' '	34			18171.		<u> </u>	<u>"</u> "	34			725.58	
'	' '	35			18626.	0.000	Τ.	! "!	35			725.85	
	1 1	36	0.830	-0.003	19076.	0.000	ılı	"	36	-0.019	-0.048	726.09	0.000

Second differences

Sample (adjusted): 1970M03 2021M01 Included observations: 611 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.345	-0.345	73.080	0.000
ı l ı	□ '	2	-0.023	-0.161	73.404	0.000
□ i	□ '	3	-0.112	-0.206	81.120	0.000
ď,	<u> </u>	4	-0.088	-0.259	85.871	0.000
ı j ı	□ '	5	0.053	-0.158	87.579	0.000
ı j ı	•	6	0.049	-0.078	89.039	0.000
Щ·	□ -	7	-0.087	-0.198	93.698	0.000
ı þ i	=	8	0.034	-0.156	94.425	0.000

In the correlogram of the variable in levels, the ACF presents a very slow decay, confirming that the series is not I(0). Passing to the first differences, instead, we see a quick decay after 1 or 2 lags, even if there are some following lags that shows value not very close to zero. However, if we analyze the correlogram of the second differences, then it's clear that there is the problem of "over-difference", since an artificial negative correlation is introduced.

In conclusion, we can state that the series is I(1).

Null Hypothesis: CPILFESL has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 9 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-2.021077	0.5881
Test critical values:	1% level	-3.973346	
	5% level	-3.417289	
	10% level	-3.131040	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPILFESL)

Method: Least Squares Date: 02/10/25 Time: 18:11

Sample (adjusted): 1970M11 2021M01 Included observations: 603 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPILFESL(-1)	-0.003200	0.001583	-2.021077	0.0437
D(CPILFESL(-1))	0.360072	0.040735	8.839360	0.0000
D(CPILFESL(-2))	0.096923	0.043170	2.245168	0.0251
D(CPILFESL(-3))	-0.091009	0.043609	-2.086909	0.0373
D(CPILFESL(-4))	-0.027968	0.043483	-0.643198	0.5203
D(CPILFESL(-5))	0.137963	0.043152	3.197102	0.0015
D(CPILFESL(-6))	0.072257	0.043463	1.662499	0.0969
D(CPILFESL(-7))	-0.051211	0.045023	-1.137435	0.2558
D(CPILFESL(-8))	0.127644	0.044509	2.867848	0.0043
D(CPILFESL(-9))	0.158386	0.043256	3.661558	0.0003
С	0.195365	0.058162	3.358993	0.0008
@TREND("1970M01")	0.001243	0.000619	2.009237	0.0450

Wald Test: Equation: FULL_MODEL

Test Statistic	Value	df	Probability
F-statistic	2.048491	(2, 591)	0.1298
Chi-square	4.096981	2	0.1289

Null Hypothesis: C(2)=0, C(3)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(2)	0.001245	0.000619
C(3)	-0.003204	0.001585

Restrictions are linear in coefficients.

CPILFESL in levels:

The DF test on the most general model (i.e. with both the intercept and the trend) suggest that there is a unit root

➤ 9 lags

2° step of DF test: The F-test on $\beta = \phi = 0$ suggest that we can remove the coefficient β from the model (indeed the series does not show a quadratic trend)

Null Hypothesis: CPILFESL has a unit root

Exogenous: Constant

Lag Length: 9 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-0.238806	0.9308
Test critical values:	1% level 5% level	-3.440965 -2.866115	
	10% level	-2.569265	

3° step of DF test: Also in the model with only the constant, H₀ cannot be rejected

Wald Test:

C(2)

Equation: ONLY_INTERCEPT

Test Statistic	Value	df	Probability		
F-statistic Chi-square			0.0005 0.0005		
Null Hypothesis: C(1)=0, C(2)=0 Null Hypothesis Summary:					
Normalized Restr	riction (= 0)	Value	Std. Err.		
C(1)		0.093144	0.028229		

Restrictions are linear in coefficients.

4° step of DF test: The F-test on $\alpha = \phi = 0$ suggest that we should maintain α in the model (as expected, since the series shows a clear linear trend).

Now we can go back to the output of the DF test on the model with only the constant, and by confronting the t-Statistic of ϕ with the critical values of the normal distribution, we cannot reject H_0 and thus conclude that the series has a unit root.

Null Hypothesis: D(CPILFESL) has a unit root

-2.59E-05

Exogenous: Constant, Linear Trend

Lag Length: 8 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-4.022720 -3.973346 -3.417289 -3.131040	0.0085

0.000108

DF test on the differenced series: now the null hypothesis on the presence of a unit root is immediately rejected with a high significance, and therefore we conclude that the series is I(1).

^{*}MacKinnon (1996) one-sided p-values.

^{*}MacKinnon (1996) one-sided p-values.

Λ	1
_	
	•

	AIC	BIC
ARIMA (3,1,3)	-0.552687	-0.494952
ARIMA (3,1,4)	-0.552614	-0.487662
ARIMA (4,1,2)	-0.558335	-0.500600
ARIMA (4,1,4)	-0.549931	-0.477762
ARIMA (5,1,3)	-0.552786	-0.480618
ARIMA (5,1,4)	-0.562206	-0.482820
ARIMA (5,1,5)	-0.577630	-0.491028

I've selected 7 models which produced white noise residuals, and computed their AIC and BIC. As we can see, the model with the lowest AIC is not the same as the one with the lowest BIC. Therefore, since we're working with a quite large sample (>600 observations), we could use the BIC as the main criterion and thus select the ARIMA(4,1,2) model, which is more parsimonious than the ARIMA(5,1,5). On the other hand, the models with the lowest AIC tend to be the better one for forecasting (as we'll see in the next point).

5)

		RMSE	MAE
A DIMA (4.1.2)	Static	0.43323	0.258485
ARIMA(4,1,2)	Dynamic	0.499433	0.30254
ADIMA/E 1 E)	Static	0.410075	0.239171
ARIMA(5,1,5)	Dynamic	0.479745	0.290611

As expected, the model which forecasts the best among the two (by using both the *Root Mean Squared Error* and the *Mean Absolute Error* as criteria) is the ARIMA(5,1,5), both in static and dynamic forecasts.