HOHE ASSIGNMENT - 1

0 let As be the Event by E_1 machine

As be event by E_2 machine

then $P(A_1) = 50 \cdot 1/2 P(A/A_1) = 4 \cdot 1/6 = 1/25$ $P(A_3) = 25 \cdot 1/6 = 1/4 P(A/A_3) = 5 \cdot 1/6 = 1/20$

The probability that picked bulb is detective $P(A) = (A_1) \cdot P(A/A_1) + P(A_2) \cdot P(A/A_2) + P(A_3) \cdot P(A/A_3)$

(2) let it be D the event that coin is toss with head

b) let it be the event that we get a head and we toss a coin $P(D \neq H) = 2$

By Baye's theorem
P(D/H) = P(H/D).P(D)

$$P(H/D) \cdot P(D) + P(H/D^2)$$

7) No. of breakdown x has a bionomial distribution which can approximated by Pn(x)

x = 2000 x 0.0004

= 0.8

 $P(x \ge 2) = 1 - 3 (x \le 1)$ = 1 - 0.8088 = 6.1912

8) The poisson distribution gives probabilities for each possible no of chocochips but as a cookie can't contain 2 different members we add the probabilities for the possible value of 1,2 Hence

 $\Delta \left(Y^{2}/3\right) = \frac{e^{-\chi} \times 0}{0!} + \frac{e^{-\chi} \lambda^{1}}{1!} + \frac{e^{-\chi} \lambda^{2}}{2!}$ $e^{-\chi} \left(1 + \chi + \frac{\lambda^{2}}{2}\right)$

10.) P(c) = 0.3 P(v|c) = 0.65 P(5) = 0.5 P(v|5) = 0.82 P(c) = 0.2 P(v|2) = 0.50By Baye's theorem P(5|u) = P(v|5) P(5)P(v)

- P(Vn) (CUSUL))

$$P(vc) + P(vs) + P(vL)$$

 $P(vlc) \cdot P(c) + P(vls) \cdot P(s) + P(vlL) \cdot P(L)$

= 0.65 x 0.3 + 0.82 x 0.5 + 0.5 x 0.2

= 0.705

= 0.5816

9) Let t be the Event that baby is reunited with its mother need P(E, UEZEZ) where we can use the result

Pair wise foint Probabilités are equal to $\frac{1}{6}$ "P(E|E1) = P(E2/E1) · P(E1) - $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

P(E, E, E3) - 1

Probability = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{6} - \f

- 1-3

= 2/3.

Probability of section
$$B = \frac{6}{18} = \frac{1}{3}$$

But from question; there are 6 sections.

The age of all 6 are different.

From B Section will $\frac{1}{6}$

Probability = $\frac{1}{6}$

6.)
$$P = 0.2$$
 and $N = 4$

P($x = 2$) = $6 \times (9.2)^2 \times (0.8)^2$

= 6.1536

P($x < 2$) = $P(x = 6) + P(x - 1)$

= 0.8192

P($x > 2$) = $1.P(x > 2)$

1- $(0.8192 + 0.1536)$ = 0.0272

b)
$$N=8$$
, $P=0.1$
 $P(x=2) - 8C_2 (0.1)^2 (0.9)^6$
 $= 0.1488$
 $P(x=2) = P(x=0) + P(x=1)$
 $= 0.8131$
 $P(x>2) = 1-P(x=2)$
 $1-(0.813+0.1488)$
 $= 0.0381$

c)
$$n=16$$
, $P=0.05$
 $P(x=2) = 16 C_2 (0.05)^2 (0.95)^2$
 $= 0.1463$
 $P(x=2) = 1-P (x=2)$
 $= 1-(0.463 + 0.8108)$
 $= 0.0429$

d)
$$M = 64$$
, $P = 0.0125$
 $P(x=2) = 64 C_2 (0.0125)^2 (0.0875)^6$
 $= 0.1444$
 $P(x<2) = P(x=0) + P(x=1)$
 $= 0.8093$
 $P(x>2) = 1-P(x \le 2)$
 $= 1 - (0.1444 + 0.8093)$
 $= 0.0463$