Compactness via Henkin's method and ultraproducts

Introductory Model Theory

October 14-21, 2021

1 "Nice" formulas

Definition 1. • A term $t(\bar{x})$ is "nice" if t is a variable or a constant.

• An atomic formula is "nice" if it has one of the forms

$$t_1(\bar{x}) = t_2(\bar{x})$$

$$R(t_1(\bar{x}), \dots, t_m(\bar{x}))$$

$$f(t_1(\bar{x}), \dots, t_m(\bar{x})) = t_{m+1}(\bar{x}),$$

where t_1, \ldots, t_{m+1} are nice terms and R and f are m-ary relation and function symbols.

• A formula is "nice" if it is built from nice atomic formulas using \exists, \land, \neg .

For example, in the language of ordered rings $L = \{0, 1, +, \times, -, <\}$, the formulas x = y and x + 1 = 0 and 0 < 1 are nice, but x + y = z + w and $\forall x : (x = y)$ are not.

Exercise 2. Every formula is equivalent to a nice formula.

For example, $x + 1 < y \lor 0 = 1 + 1$ is equivalent to

$$\neg (\neg (\exists z : (x+1=z) \land z < y) \land \neg (1+1=0)).$$

2 Compactness via Henkin's method

These notes roughly follow Section 2.1 of Dave Marker's textbook *Model Theory: An intro*duction. Let $A \subseteq_f B$ mean " $A \subseteq B$ and A is finite." Let $T \models \phi$ mean "every model of T satisfies ϕ ."

Definition 3. Let T be an L-theory.

- T is satisfiable if there is a model $M \models T$.
- T is finitely satisfiable if every $T_0 \subseteq_f T$ is satisfiable.

- T is complete if for every L-sentence ϕ , either $\phi \in T$ or $\neg \phi \in T$.
- T has the witness property if for every L-formula $\phi(x)$, if $(\exists x : \phi(x)) \in T$, then there is a constant symbol c such that $\phi(c) \in T$.

Lemma 4. Let T be a finitely satisfiable L-theory. Then there is a finitely satisfiable complete L-theory $T' \supseteq T$.

Proof. By Zorn's lemma there is a $T'\supseteq T$ which is maximal among finitely satisfiable L-theories. We claim T' is complete. Otherwise there is a sentence ϕ with $\phi \notin T'$ and $\neg \phi \notin T'$. By maximality, $T' \cup \{\phi\}$ isn't finitely satisfiable, so there is $T_1 \subseteq_f T'$ with $T_1 \models \neg \phi$. Similarly, $\neg \phi \notin T'$ implies there is $T_2 \subseteq_f T$ with $T_2 \models \phi$. Then $T_1 \cup T_2$ is not satisfiable, a contradiction.

Lemma 5. Let T be a finitely satisfiable L-theory. Let $\phi(x)$ be an L-formula such that $(\exists x \ \phi(x)) \in T$. Let $L' = L \cup \{c\}$ where c is a new constant symbol. Then $T \cup \{\phi(c)\}$ is a finitely satisfiable L'-theory.

Proof. Otherwise, there is $T_0 \subseteq_f T$ with $T_0 \cup \{\phi(c)\}$ unsatisfiable. Without loss of generality $\exists x \ \phi(x) \in T_0$. Take $M \models T_0$. Then $M \models \exists x \ \phi(x)$. There is some $b \in M$ such that $M \models \phi(b)$. Expand M to an L'-structure by taking $c^M = b$. Then $M \models \phi(c)$, so $M \models T_0 \cup \{\phi(c)\}$, a contradiction.

Proposition 6. Let T be a finitely satisfiable L-theory. Then there is a language $L' \supseteq L$ and a theory $T' \supseteq T$ such that T' is finitely satisfiable, complete, and has the witness property.

Proof. Build increasing chains

$$L_0 \subseteq L_1 \subseteq \cdots$$

 $T_0 \subseteq T_1 \subseteq \cdots$

where T_i is a finitely satisfiable L_i -theory as follows:

- If n = 0, take $L_0 = L$ and $T_0 = T$.
- If n > 0 and n is odd, take $L_n = L_{n-1}$ and T_n a complete L_n -theory extending T_{n-1} . (Lemma 4.)
- If n > 0 and n is even: let $\{\phi_i(x) : i \in I\}$ enumerate the L_{n-1} -formulas such that $(\exists x \ \phi_i(x)) \in T_{n-1}$. Let $L_n = L_{n-1} \cup \{c_i : i \in I\}$ where the c_i are new constant symbols. Let $T_n = T_{n-1} \cup \{\phi_i(c_i) : i \in I\}$. Then T_n is finitely satisfiable by Lemma 5.

Finally, let $L' = \bigcup_{i=0}^{\infty} L_i$ and $T' = \bigcup_{i=0}^{\infty} T_i$. Then T' is finitely satisfiable because each T_i is. T' is complete because of the odd steps. T' has the witness property by the even steps. \square

Lemma 7. Suppose T is finitely satisfiable and complete. Suppose $T_0 \subseteq_f T$ and $T_0 \models \phi$. Then $\phi \in T$.

Proof. Otherwise $\neg \phi \in T$. But $T_0 \cup \{\neg \phi\}$ isn't satisfiable.

Lemma 8. Suppose T is a finitely satisfiable, complete L-theory with the witness property. Let ϕ, ψ be sentences and $\theta(x)$ be a formula.

- 1. $\neg \phi \in T \iff \phi \notin T$.
- 2. $\phi \land \psi \in T \iff (\phi \in T \text{ and } \psi \in T)$.
- 3. $(\exists x \ \theta(x)) \in T \iff (there \ is \ a \ constant \ symbol \ c \ such \ that \ \theta(c) \in T).$

Proof. 1. $\phi \in T$ or $\neg \phi \in T$ by completeness. If $\phi \in T$ and $\neg \phi \in T$, then T isn't finitely satisfiable.

- 2. Both directions hold by Lemma 7.
- 3. The witness property gives \Rightarrow , and Lemma 7 gives \Leftarrow .

Proposition 9. Suppose T is a finitely satisfiable, complete L-theory with the witness property. Then T has a model.

Proof. Let \mathcal{C} be the set of constant symbols. For $c, d \in \mathcal{C}$, let $c \sim d$ mean that $(c = d) \in T$. Claim. \sim is an equivalence relation.

Proof. If $(c = d) \in T$ and $(d = e) \in T$, then $(c = e) \in T$ by Lemma 7. Symmetry and reflexivity are similar.

Let $M = \mathcal{C}/\sim$. Let c^* denote the equivalence class of $c \in \mathcal{C}$. Make M an L-structure as follows:

- $c^M = c^*$.
- If R is an n-ary relation symbol, define

$$R^M(c_1^*,\ldots,c_n^*) \iff (R(c_1,\ldots,c_n) \in T).$$

Why is this well-defined? If $c_i^* = d_i^*$ for $1 \le i \le n$, then $c_i \sim d_i$, so $(c_i = d_i) \in T$. Then

$$\{c_1 = d_1, \dots, c_n = d_n, R(c_1, \dots, c_n)\} \models R(d_1, \dots, d_n)$$

so Lemma 7 gives $R(c_1, \ldots, c_n) \in T \implies R(d_1, \ldots, d_n) \in T$.

• If f is an n-ary function symbol, define

$$f(c_1^*, \dots, c_n^*) = c_{n+1}^* \iff (f(c_1, \dots, c_n) = c_{n+1}) \in T.$$

Why is this well-defined? The previous argument shows there is a well-defined relation $R_f \subseteq M^{n+1}$ such that

$$R_f(c_1^*, \dots, c_n^*, c_{n+1}^*) \iff (f(c_1, \dots, c_n) = c_{n+1}) \in T.$$

Then we need R_f to be the graph of a function $M^n \to M$. Fix some c_1, \ldots, c_n .

- $-(\exists x: f(c_1,\ldots,c_n)=x) \in T$ by Lemma 7, so the witness property gives some $d \in \mathcal{C}$ with $(f(c_1,\ldots,c_n)=d) \in T$, and then $R_f(c_1^*,\ldots,c_n^*,d^*)$ holds.
- If $R_f(c_1^*, \ldots, c_n^*, d^*)$ and $R_f(c_1^*, \ldots, c_n^*, e^*)$, then

$$(f(c_1, \dots, c_n) = d) \in T$$
$$(f(c_1, \dots, c_n) = e) \in T$$

so
$$(d = e) \in T$$
 (Lemma 7), and $d^* = e^*$.

This shows R_f is a function.

Now M is an L-structure.

Claim. $\phi \in T \iff M \models \phi$, for any sentence ϕ .

Proof. By Exercise 2 we may assume ϕ is nice. Proceed by induction on ϕ .

- If ϕ is a nice atomic formula, then $M \models \phi \iff \phi \in T$ by choice of the *L*-structure on M.
- If ϕ is $\neg \psi$, then

$$M \models \phi \iff M \not\models \psi$$

 $\iff \psi \notin T$ by induction
 $\iff \phi \in T$ by Lemma 8(1).

- If ϕ is $\psi \wedge \theta$, use induction and Lemma 8(2) instead.
- If ϕ is $\exists x \ \psi(x)$, use induction and Lemma 8(3) instead. \square_{Claim}

By the claim, $M \models T$.

We call the model constructed in the proof of Proposition 9 the "canonical model" of T. It is uniquely characterized up to isomorphism by the fact that every element of M is named by a constant symbol.

Theorem 10 (Compactness theorem). If T is finitely satisfiable then T is satisfiable.

Proof. By Proposition 6, we can find $T' \supseteq T$ that is finitely satisfiable, complete, and has the witness property. Then T' has a model by Proposition 9.

3 Ultraproducts

Let I be a set, and let $\mathcal{P}(I)$ be its powerset.

Definition 11. A filter on I is a set $\mathcal{F} \subseteq \mathcal{P}(I)$ satisfying the following:

- If $X, Y \in \mathcal{F}$, then $X \cap Y \in \mathcal{F}$.
- If $X \subseteq Y \subseteq I$ and $X \in \mathcal{F}$, then $Y \in \mathcal{F}$.
- $I \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$.

Definition 12. A family S has the *finite intersection property* (FIP) if for any $X_1, \ldots, X_n \in S$, we have $\bigcap_{i=1}^n X_i \neq \emptyset$.

Lemma 13. If $S \subseteq \mathcal{P}(I)$ has the FIP, then there is a filter $\mathcal{F} \supseteq S$.

Proof. Let \mathcal{F} be the set of $X \subseteq I$ such that there are $Y_1, \ldots, Y_n \in \mathcal{S}$ with $X \supseteq \bigcap_{i=1}^n Y_i$. (Note $\bigcap_{i=1}^n Y_i = I$ when n = 0.) Then \mathcal{F} is a filter containing \mathcal{S} .

Definition 14. An *ultrafilter* on I is a filter \mathcal{U} such that for any $X \subseteq I$, $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$.

Lemma 15. If \mathcal{F} is a filter on I, then there is an ultrafilter $\mathcal{U} \supseteq \mathcal{F}$.

Proof. By Zorn's lemma, there is a maximal filter $\mathcal{U} \supseteq \mathcal{F}$. We claim \mathcal{U} is an ultrafilter. Otherwise, there is $X \subseteq I$ with $X \notin \mathcal{U}$ and $I \setminus X \notin \mathcal{U}$. By maximality, $\mathcal{U} \cup \{X\}$ is not contained in a filter, and does not have FIP. So there are $Y_1, \ldots, Y_n \in \mathcal{U}$ such that $X \cap \bigcap_{i=1}^n Y_i = \emptyset$. As \mathcal{U} is a filter, $Y := \bigcap_{i=1}^n Y_i \in \mathcal{U}$. Then $X \cap Y = \emptyset$, so $Y \subseteq I \setminus X$.

Similarly, $I \setminus X \notin \mathcal{U}$ implies there is $Z \in \mathcal{U}$ with $Z \subseteq X$. Then $Y \cap Z \subseteq (I \setminus X) \cap X = \emptyset$, so $\emptyset = Y \cap Z \in \mathcal{U}$, a contradiction.

Now suppose that M_i is a non-empty L-structure for every $i \in I$, and \mathcal{U} is an ultrafilter on I. Let

$$P = \{ f : I \to \bigcup_{i \in I} M_i \mid \forall i \in I : f(i) \in M_i \}.$$

P is usually denoted $\prod_{i \in I} M_i$. Let $L' = L \cup \{c : c \in P\}$, where the c are new constant symbols. Make M_i into an L'-structure by interpresting $c \in P$ as $c(i) \in M_i$.

For any L'-sentence ϕ , let $[\phi] = \{i \in I : M_i \models \phi\}$. Note:

- $\bullet \ [\phi \wedge \psi] = [\phi] \cap [\psi].$
- $[\neg \phi] = I \setminus [\phi].$

Lemma 16. Let $T = \{ \phi \in L' : [\phi] \in \mathcal{U} \}$. Then T is finitely satisfiable and complete, and has the witness property.

Proof. Finite satisfiability: suppose $\phi_1, \ldots, \phi_n \in T$. Then $[\phi_i] \in \mathcal{U}$ so $S := [\bigwedge_{i=1}^n \phi_i] = \bigcap_{i=1}^n [\phi_i] \in \mathcal{U}$. Then $S \neq \emptyset$. If $i \in S$ then $M_i \models \{\phi_1, \ldots, \phi_n\}$.

Completeness: given ϕ , $[\phi]$ and $[\neg \phi]$ are complementary, so one is in \mathcal{U} . Witness property: suppose $S = [\exists x \ \phi(x)] \in \mathcal{U}$. Define $c \in P$ as follows:

- If $i \in S$, then $M_i \models \exists x \ \phi(x)$. Take $c(i) \in M_i$ so that $M_i \models \phi(c(i))$.
- If $i \notin S$, take c(i) =anything in M_i .

Then
$$i \in S \implies M_i \models \phi(c)$$
, so $[\phi(c)] \supseteq S \in \mathcal{U}$. Then $[\phi(c)] \in \mathcal{U}$ and $\phi(c) \in T$.

Definition 17. Let T be as in Lemma 16. The *ultraproduct* $\prod_{i \in I} M_i / \mathcal{U}$ is defined to be the canonical model of T as constructed in Proposition 9—the unique model of T in which every element is named by a constant symbol.

Remark 18. If $c, d \in \prod_{i \in I} M_i$, then $c^* = d^*$ if and only if $(c = d) \in T$ if and only if $[c = d] \in \mathcal{U}$ if and only if $\{i \in I : M_i \models c = d\} \in \mathcal{U}$ if and only if $\{i \in I : c(i) = d(i)\} \in \mathcal{U}$. Therefore, $\prod_{i \in I} M_i / \mathcal{U}$ is $\prod_{i \in I} M_i$ modulo the equivalence relation

$$c \sim d \iff \{i \in I : c(i) = d(i)\} \in \mathcal{U}.$$

Remark 19. Let R be an m-ary relation symbol. Let $c_1, \ldots, c_m \in \prod_{i \in I} M_i$. Then $R(c_1^*, \ldots, c_m^*)$ holds in the ultraproduct if and only if $R(c_1, \ldots, c_m) \in T$ if and only if $\{i \in I : M_i \models R(c_1, \ldots, c_m)\} \in \mathcal{U}$ if and only if $\{i \in I : M_i \models R(c_1(i), \ldots, c_m(i))\} \in \mathcal{U}$.

So the relation R on the ultraproduct is defined by

$$R(c_1,\ldots,c_m) \iff \{i \in I : M_i \models R(c_1(i),\ldots,c_m(i))\}.$$

Remark 20. Let f be an m-ary function symbol. Let $c_1, \ldots, c_m \in \prod_{i \in I} M_i$. Define $d(i) = f^{M_i}(c_1(i), \ldots, c_m(i))$ for $i \in I$. Then $d \in \prod_{i \in I} M_i$, and $M_i \models d = f(c_1, \ldots, c_m)$ for all i. Therefore the ultraproduct thinks $d = f(c_1, \ldots, c_m)$.

The preceding three remarks give the usual definition of ultraproducts.

Theorem 21 (Łoś's theorem). Let M be an ultraproduct $\prod_{i \in I} M_i / \mathcal{U}$. Let $\phi(x_1, \ldots, x_m)$ be an L-formula. Let c_1, \ldots, c_m be elements of $\prod_{i \in I} M_i$. Then

$$M \models \phi(c_1, \ldots, c_m) \iff \{i \in I : M_i \models \phi(c_1(i), \ldots, c_m(i))\} \in \mathcal{U}.$$

Specializing to the case where ϕ is an L-sentence,

$$M \models \phi \iff \{i \in I : M_i \models \phi\} \in \mathcal{U}.$$

Proof.
$$M \models \phi(c_1, \ldots, c_m) \iff [\phi(c_1, \ldots, c_m)] \in \mathcal{U} \iff \{i \in I : M_i \models \phi(c_1, \ldots, c_m)\} \in \mathcal{U} \iff \{i \in I : M_i \models \phi(c_1(i), \ldots, c_m(i))\} \in \mathcal{U}.$$

If M is a structure and \mathcal{U} is an ultrafilter on I, the *ultrapower* $M^{\mathcal{U}}$ is $\prod_{i \in I} M/\mathcal{U}$, i.e., the ultraproduct where $M_i = M$ for all i.

Example. Suppose $L = \{+, \times, 0, 1, \leq\}$ and $I = \mathbb{N}$ and $M_i = \mathbb{R}$ for all i. Then the ultrapower $\mathbb{R}^{\mathcal{U}}$ can be described as follows:

- The product $\prod_{i\in\mathbb{N}}\mathbb{R}=\mathbb{R}^{\mathbb{N}}$ is the set of functions $f:\mathbb{N}\to\mathbb{R}$. We think of f as an infinite tuple $(f(0),f(1),f(2),f(3),\ldots)$.
- The ultrapower is $\mathbb{R}^{\mathbb{N}}$ modulo the equivalence relation

$$(x_0, x_1, x_2, \ldots) \sim (y_0, y_1, y_2, \ldots)$$

 $\iff \{i \in \mathbb{N} : x_i = y_i\} \in \mathcal{U}.$

• The order \leq is defined by

$$(x_0, x_1, x_2, \ldots) \leq (y_0, y_1, y_2, \ldots)$$

 $\iff \{i \in \mathbb{N} : x_i \leq y_i\} \in \mathcal{U}.$

• Addition is given by

$$(x_0, x_1, x_2, \ldots) + (y_0, y_1, y_2, \ldots)$$

= $(x_0 + y_0, x_1 + y_1, x_2 + y_2, \ldots)$

• Multiplication is given by

$$(x_0, x_1, x_2, \ldots) \cdot (y_0, y_1, y_2, \ldots)$$

= $(x_0y_0, x_1y_1, x_2y_2, \ldots)$

• Negation is given by

$$-(x_0, x_1, x_2, \ldots) = (-x_0, -x_1, -x_2, \ldots)$$

• $1 = (1, 1, 1, \ldots)$ and $0 = (0, 0, 0, \ldots)$.

If ϕ is a sentence, then by Łoś's theorem, $\mathbb{R}^{\mathcal{U}} \models \phi$ iff

$$\{i \in \mathbb{N} : \mathbb{R} \models \phi\} \in \mathcal{U}.$$

If $\mathbb{R} \models \phi$, this set is $\mathbb{N} \in \mathcal{U}$, and if $\mathbb{R} \not\models \phi$, this set is $\emptyset \notin \mathcal{U}$. Therefore $\mathbb{R}^{\mathcal{U}} \models \phi \iff \mathbb{R} \models \phi$, or equivalently, $\mathbb{R}^{\mathcal{U}} \equiv \mathbb{R}$.

We can use ultraproducts and Łoś's theorem to give another proof of compactness.

Theorem 22 (Compactness theorem). If T is a finitely satisfiable L-theory, then T is satisfiable.

Proof. Let $\{M_i : i \in I\}$ be a collection of L-structures containing at least one representative from every elementary equivalence class. For ϕ an L-sentence, let $[\phi] = \{i \in I : M_i \models \phi\}$. Let $\mathcal{S} = \{[\phi] : \phi \in T\}$. We claim \mathcal{S} has FIP. Otherwise, there are $\phi_1, \ldots, \phi_n \in T$ such that $[\bigwedge_{i=1}^n \phi_i] = \bigcap_{i=1}^n [\phi_i] = \emptyset$. But T is finitely satisfiable, so there is some $N \models \bigwedge_{i=1}^n \phi_i$. There is some $M_i \equiv N$, and then $i \in [\bigwedge_{i=1}^n \phi_i] = \emptyset$, a contradiction.

So there is an ultrafilter \mathcal{U} on I containing \mathcal{S} . Let $M = \prod_{i \in I} M_i / \mathcal{U}$. Then for $\phi \in T$, we have

$$\{i \in I : M_i \models \phi\} = [\phi] \in \mathcal{S} \subseteq \mathcal{U},$$

so $M \models \phi$ by Łoś's theorem. Thus $M \models T$.

4 Applications of compactness

Theorem 23 (Löwenheim-Skolem). Let T be an L-theory. Suppose T has an infinite model, or that for every $n < \omega$ T has a model of size > n. Then for any $\kappa \ge |L|$, T has a model of size κ .

Proof. Let L' be L plus new constant symbols c_{α} for $\alpha < \kappa$. Let T' be T plus the sentences $c_{\alpha} \neq c_{\beta}$ for $\alpha < \beta < \kappa$.

Claim. T' is finitely satisfiable.

Proof. Let $T_0 \subseteq_f T'$. Then there is $S \subseteq_f \kappa$ such that

$$T_0 \subseteq T \cup \{c_{\alpha} \neq c_{\beta} : \alpha, \beta \in S, \ \alpha < \beta\}.$$

Take $M \models T$ with $|M| \ge |S|$. Expand M to an L'-structure by interpreting c_{α} for $\alpha \in S$ as distinct elements of M (and define c_{α} randomly for $\alpha \notin S$). Then $M \models T_0$.

By compactness, T' has a model M. Then the c_{α}^{M} are pairwise distinct, so $|M| \geq \kappa$. By Downward Löwenheim-Skolem (also called Löwenheim's theorem), we can find an elementary substructure $N \leq M$ with $|N| = \kappa$. Then $N \equiv M$, so $N \models T$.

Given an L-structure M, let L(M) be L plus a new constant symbol for each element of M. Then M is naturally an L(M)-structure.

Definition 24. The *elementary diagram* of M is the set of L(M)-sentences true in M. It is denoted eldiag(M).

Poizat calls this the diagram of M, and writes it T(M). Some authors use "diagram" to mean the quantifier-free part of $\operatorname{eldiag}(M)$.

Remark 25. Suppose $N \models \operatorname{eldiag}(M)$. Define $f: M \to N$ to be the map sending $c \in M$ to its interpretation $c^N \in N$. Then

$$M \models \phi(a_1, \dots, a_n) \iff \phi(a_1, \dots, a_n) \in \operatorname{eldiag}(M) \iff N \models \phi(f(a_1), \dots, f(a_n)).$$

So $f: M \to N$ is an elementary embedding. Conversely, if $f: M \to N$ is an elementary embedding then N is naturally a model of $\operatorname{eldiag}(M)$.

Theorem 26. If $M_1 \equiv M_2$, then there is a structure N and elementary embeddings $M_1 \to N$ and $M_2 \to N$.

Proof. Note eldiag (M_i) is closed under conjunction for i = 1, 2.

Claim. $\operatorname{eldiag}(M_1) \cup \operatorname{eldiag}(M_2)$ is finitely satisfiable.

Proof. Otherwise, there is $\phi \in \text{eldiag}(M_1)$ and $\psi \in \text{eldiag}(M_2)$ with $\phi \wedge \psi$ being unsatisfiable. We can write ϕ as $\phi(\bar{a})$ for some L-formula ϕ and \bar{a} in M_1 . Similarly, we can write ψ as $\psi(\bar{b})$ for some L-formula ψ and \bar{b} in M_2 .

Then $M_2 \models \psi(\bar{b})$, so $M_2 \models \exists \bar{x} \ \psi(\bar{x})$, so $M_1 \models \exists \bar{x} \ \psi(\bar{x})$. Take \bar{c} in M_1 with $M_1 \models \psi(\bar{c})$. Expand M_1 to an $(L(M_1) \cup L(M_2))$ -structure by interpreting b_i as c_i . Then $M_1 \models \phi(\bar{a}) \land \psi(\bar{b})$, a contradiction. \square_{Claim}

By compactness, there is $N \models \operatorname{eldiag}(M_1) \cup \operatorname{eldiag}(M_2)$. Then there are elementary embeddings $M_1 \to N$ and $M_2 \to N$.