Introduction to Theoretical Computer Science, Fall 2024 Assignment 6 Solutions

- Q1. (a) True. Every Turing machine semidecides exactly one language, which is L(M).
 - (b) False. If a Turing machines does not always halt, then it does not decides any language.
- Q2. Since L is a recursive language, it is decided by some Turing machine $M=(K,\Sigma,\delta,s,\{y,n\})$. We can obtain a Turing machine that decides \overline{L} by exchanging the role of y and n, so \overline{L} is recursive.
- Q3. (a) $A_w = \{w : D \text{ accepts } w\}$
 - (b) Yes. A_w can be decided by the following Turing machine.

$$M =$$
on input $w :$

- 1. run D on w
- 2. if D accepts w
- 3. accept w
- 4. else
- 5. reject w
- (c) Note that $A_w = L(D)$. Since D is an arbitrary DFA, it follows that any regular language is recursive.
- Q4. Suppose Turing machine M decides EQ_{DFA} . We construct a Turing machine M' that decides A_L as follows.

$$M' =$$
on input " D " :

- 1. construct a DFA D_0 with $L(D_0) = L$
- 2. run M_{EQ} on "D" " D_0 "
- 3. output the result

The reduction is $f("D") = "D""D_0"$ where $L(D_0) = L$.