Blatt 5) Aufgale
$$\pm$$
)

(i) $3^{a+b} \stackrel{!}{=} \underbrace{1}^{a+b} h_1(3) = a h_1(3) + b h_1(3)$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e b h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1(3) \cdot e h_1(3) \stackrel{!}{=} 3 \quad 3b$$

$$= a h_1(3) \cdot e h_1$$

(ii) Win haben
$$M_3 = \{g \in C : |g| \in \{1,2\}\}$$

win haben $M_3 = \{g \in C : |g| \in \{1,2\}\}\}$

(iii) Win haben $M_3 = \{g \in C : |g| \in \{1,2\}\}\}$

(iv) $g = x + ig$ and $g = g \in G$
 $g \in G$
 g

=> 2My = My \My = U { 3 \in (3) = I + RII } U (100)

$$\int_{8}^{4} \frac{1}{3} dy = \int_{1}^{4} \frac{1}{3} dy$$

(int)
$$\int_{0}^{\infty} Re(3) d3 = \int_{0}^{2\pi} R^{2} cos(t) i e^{it} dt$$

$$= R^{2} \int_{0}^{2\pi} cos(t)^{2} - Ain(t) cos(t) dt$$

$$= R^{2} \int_{0}^{2\pi} cos(t)^{2} dt - R^{2} \int_{0}^{2\pi} ain(t) cos(t) dt$$

$$= R^{2} \int_{0}^{2\pi} cos(t)^{2} dt - R^{2} \int_{0}^{2\pi} ain(t) cos(t) dt$$

$$= R^{2} \int_{0}^{2\pi} cos(t)^{2} dt - R^{2} \int_{0}^{2\pi} ain(t) cos(t) dt + TT = \int_{0}^{2\pi} ain(t) cos(t) dt$$

$$= \int_{0}^{2\pi} ain(t) cos(t) dt + \int_{0}^{2\pi} ain(t) cos(t) dt$$