Deep Q-Network

Prof. Subrahmanya Swamy

Infeasibility of Tabular Approaches

Small state space: Q-Table Feasible

Continuous or Large state space: Not feasible!

Go Game

Features: Cart-Pole Example

Cartpole: The goal is to balance the pole by applying forces in the left or right direction

State Features $s = (s_1, s_2, s_3, s_4)$

State 5	Min	Max
Cart Position s ₁	-4.8	4.8
Cart Velocity s ₂	-Inf	Inf
Pole Angle s ₃	~ 24°	~ 24°
Pole Angular Velocity \$\(s_4 \)	-Inf	Inf

a Action Features

0: Push the cart to the LEFT

1: Push the cart to the RIGHT

Q-Function Approximation: Architecture Choices

Neural Network-based Function Approximation

State Features $s = (s_1, s_2, s_3, s_4)$

Actions Features a

Neural Network Weights

Function approx. for Q^*

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}\left[\left(Q^*(s, a) - Q_{\theta}(s, a)\right)^2\right]$$

SGD:
$$\theta_{new} = \theta_{old} + 2 \alpha \left(Q^*(s, a) - Q_{\theta}(s, a) \right) \nabla Q_{\theta}(s, a)$$

Challenge: Q^* unknown

Bellman Equation:
$$Q^*(S_t, A_t) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} Q^*(S_{t+1}, a')] \approx R_{t+1} + \gamma \max_{a'} Q_{\theta}(S_{t+1}, a')$$

Solution:
$$\theta_{new} = \theta_{old} + 2 \alpha \left(R_{t+1} + \gamma \max_{a'} Q_{\theta}(S_{t+1}, a') - Q_{\theta}(S_t, A_t) \right) \nabla Q_{\theta}(S_t, A_t)$$

Q-Learning with Fn Approx: A Naïve Approach

- Initialize θ parameters randomly
- Repeat for each episode:
 - Initialize S_0 randomly
 - Repeat for each time-step t in the episode:
 - Obtain $Q_{\theta}(S_t, a)$ for all actions through a neural network forward pass
 - Sample action $A_t \sim \epsilon$ -greedy w.r.t. $Q_{\theta}(S_t, a)$
 - Take action A_t and observe R_{t+1} and S_{t+1}
 - $target = R_{t+1} + \gamma \max_{a'} Q_{\theta}(S_{t+1}, a')$
 - Update $\theta = \theta + \alpha \left(target Q_{\theta}(S_t, A_t) \right) \nabla Q_{\theta}(S_t, A_t)$ using backprop
- Output: $\pi^*(s) \approx greedy(Q_{\theta}(s, a))$

Issues with Naïve Q function approx.

- 1. Non-Stationary Target Minimize $\mathbb{E}\left[\left(Q^*(s,a)-Q_{\theta}(s,a)\right)^2\right]$
 - Target $Q^*(s,a) \approx r + \gamma \max_{a'} Q_{\theta}(s',a')$
 - Minimize $\mathbb{E}\left[\left(r + \gamma \max_{\mathbf{a}'} Q_{\theta}(s', \mathbf{a}') Q_{\theta}(s, \mathbf{a})\right)^2\right]$

Solution: Fixed-Target Q-Network

Issues with Na $\"{\text{i}}$ ve Q function approx.

1. Non-Stationary Target

- Update $\theta = \theta + \alpha \left(target Q_{\theta}(S_t, A_t) \right) \nabla Q_{\theta}(S_t, A_t)$
- During the training process θ keeps changing
- The target depends on θ
- Since target keeps changing making it difficult to converge

Solution: Fixed-Target Q-Network

Fixed Target Q-Network

Maintain an additional neural network for calculating target

Calculate $target = R_{t+1} + \gamma \max_{a'} Q_{\theta}^{-}(S_{t+1}, a')$

Update train network $\theta = \theta + \alpha \left(target - Q_{\theta}(S_t, A_t) \right) \nabla Q_{\theta}(S_t, A_t)$

How to choose the target network weights θ^- ?

How to choose target weights θ^- ?

- Initialize $\theta^- = \theta$
- Repeat:
 - keep θ^- fixed for N time steps and update train weights θ
 - Update $\theta^- = \theta$ target weights to the latest train weights

S_1 S_2 $Q_{\theta^-}(s, Left)$ $Q_{\theta^-}(s, Right)$ $Q_{\theta^-}(s, Right)$ $Q_{\theta^-}(s, Right)$

2. Train for N time steps

$$target = R_{t+1} + \gamma \max_{a'} Q_{\theta^{-}}(S_{t+1}, a')$$

$$\theta = \theta + \alpha \left(target - Q_{\theta}(S_t, A_t) \right) \nabla Q_{\theta}(S_t, A_t)$$

1. Freeze

3. Update
$$\theta^- = \theta$$

Issues with Naïve Q function approx.

2. Non i.i.d training samples: Leads to Instability

Sequence of samples during training in

- Supervised learning: i.i.d
- Reinforcement learning: Correlated

Solution:

- Store Last D time-steps data in a replay buffer
- Pick a random data sample from the replay buffer to train

Memory Replay Buffer

DQN Pseudo Code (with Target Network and Replay Buffer)

- Initialize train and target Q-network weights θ and θ^-
- Repeat for each episode:
 - Initialize S_0 randomly
 - Repeat for each time-step t in the episode:
 - Sample action $A_t \sim \epsilon$ -greedy w.r.t. $Q_{\theta}(S_t, a)$
 - Take action A_t and observe R_{t+1} and S_{t+1}
 - Store the data $(S_t, A_t, R_{t+1}, S_{t+1})$ in the replay buffer
 - Select a random data sample (s, a, r, s') from the replay buffer
 - $target = r + \gamma \max_{a'} Q_{\theta}^{-}(s', a')$
 - Update train weights $\theta = \theta + \alpha \left(target Q_{\theta}(s, a) \right) \nabla Q_{\theta}(s, a)$
 - If $t \pmod{N} == 0$:
 - Update target weights $\theta^- = \theta$
- Output: $\pi^*(s) \approx greedy(Q_{\theta}(s, a))$

Enhancements to DQN

- Double DQN
 - DQN overestimates Q-values due to maximization bias

$$\max_{a} Q(s, a)$$

• Uses two Q-networks to resolve bias

$$Q_1(s, \arg\max_a Q_2(s, a))$$

- Duelling DQN
 - Splits Q-value into state-value V(s) and advantage A(s,a) functions:

$$Q(s,a) = V(s) + A(s,a)$$

This separation improves learning stability and efficiency