

Kurzfrage 3 – (15 Punkte) Verständnisfragen

Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind. **Falsche** Antworten führen zu einem **Punktabzug**.

Aussage		richtig	falsch
Wie	e sieht die Übertragungsfunktion eines PI-Reglers aus?		
1.	$G_R(s) = K_P + K_I s.$		X
2.	$G_R(s) = K_P + K_I \frac{1}{s}.$	X	
3.	$G_R(s) = K_P \left(1 + \frac{1}{sT_n} \right).$	X	
4.	$G_R(s) = K_R \frac{1 + sT_n}{sT_n}.$	X	
We	lche Aussagen gelten allgemein für Übertragungsfunktionen?		
5.	Wenn sie ausschließlich konjugiert komplexe Pole haben, sind sie instabil.		X
6.	Wenn Sie ausschließlich, Polstellen, gleichgültig ob reell oder konjugiert komplex, mit negativem Realteil haben, sind sie stabil.	X	
7.	Wenn sie Nullstellen mit positivem Realteil haben, sind die instabil.		X
We	Iche Aussagen über bleibende Regeldifferenzen sind richtig?	,	
8.	Bei Reglern ohne I-Anteil kommt es immer zu bleibenden Regelabweichungen.		X
9.	Eine bleibende Regelabweichung kann durch Erhöhen der Regler- Verstärkung reduziert werden (Stabilität vorausgesetzt).	X	
10.	Um eine bleibende Regelabweichung bei rampenförmiger Führungsgröße zu vermeiden, muss der offene Regelkreis 2 Integratoren enthalten $\left(\frac{1}{s^2}\right)$.	X	
11.	Durch einen I-Anteil im Regler lässt sich ein bleibender Regelfehler unabhängig von der Führungsgröße und der Streckenübertragungsfunktion vermeiden.		X
We	Iche Aussagen gelten für die Übertragungsfunktion $G(s) = \frac{K_P}{1+2 d T_0 s + T_0}$	² s ² ?	
12.	Für $0 < d < 1$ hat die Übertragungsfunktion konjugiert komplexe Pole.	X	
13.	Für $d>1$ ist die Übertragungsfunktion schwingungsfähig.		X
14.	Für $d>0$ ist die Übertragungsfunktion stabil.	X	
15.	Für $d=1$ besitzt die Übertragungsfunktion einen doppelten reellen Pol.	X	

Au	efgab: 3	
• a	WOK beginnt in Polen dis offeren Kreis	5ra
	m Aste cada in der Nullstelle des offe	the Workings
4	10 K stellt lage der Pole des geschlossen Reg	cl Unreises
	in Abhangiy Krit der Rzylorverstär Kung	
<u>b)</u>	Zan Skizzieren wird die Übertrogungs fan Ktion	drs offen
	Kreises 60(3)=6R(5) 65(5) benötigt:	
•	60(s) = KR 1+ Tns Tns (1+s)	18
	Mullstellen: SN = - Ton	
	$Polstellen: Sp_1 = 0$ $Sp_2 = -1$	2 P 3 P
d)	Stabilitat: Alle Pole des geschlossen-1	Regal Mercises
	in der linken s- Halbebenne:	
	A) Fur K>0 stabil B) Fur K>0 stabil	
	c) Fur 1/20 stabil	
	1)) Für all, K>0 instabil	3 P
e)	System genan dann schwingung, Fahry, wenn	Pole des
	geschlossen Rigel Kreises einen Imaginateil bes	iten:
	A) Nicht schwingugsfahly	
	B) " (C) Schwingungsfühig	
•	1) Nicht schwingungs fahing	3 p

