DS 102 Discussion 1 Wednesday, September 2, 2020

1. **ROC Curves.** In lecture we defined and discussed ROC curves, or "receiver operating characteristic" curves. ROC curves plot the true positive rate (TPR) and false positive rates (FPR) for a binary classifier at different decision thresholds. Recall that the TPR and FPR are defined as:

$$TPR = \frac{\text{\# true positives}}{\text{\# positives}}, \quad FPR = \frac{\text{\# false positives}}{\text{\# negatives}},$$

where "true positives" are examples where the model made a positive decision and the label was positive, and "positives" are examples where the label was positive.

In this exercise, we will consider the ROC curve on an example dataset. Let Y be the label, X_1, X_2 be features, and consider the model function $f(X_1, X_2) = 3X_1 + 2X_2 + 1$.

Table 1: Example dataset

	1			
Y	$f(X_1,X_2)$	X_1	X_2	
0	-1	-1	0.5	
1	-0.5	-1	0.75	
0	0	-1	1	
1	1	0.2	-0.3	
1	0.25	-0.25	0	
0	0.25	-0.05	-0.3	

(a) Plot the ROC curve for the model $f(X_1, X_2)$ with respect to the label Y.

(b) Suppose that we can choose two decision thresholds α_1 and α_2 , and for each data example, we flip a coin to decide which decision threshold to use for that example. Choose α_1 and α_2 , and probabilities for using α_1 and α_2 , such that in expectation, the true positive rate is $\frac{1}{3}$ and the false positive rate is $\frac{1}{3}$.

(c) Is it possible to choose two decision thresholds α_1, α_2 and probabilities of using each decision threshold such that the expected true positive rate is $\frac{1}{3}$, and the expected false positive rate is $\frac{2}{3}$?

The Neyman-Pearson Lemma offers one solution. To be concrete, we focus on the case of hypothesis testing. We call the probability of a false positive under null hypothesis H_0 the significance level α of a test, and we call the probability of a true positive under the alternative hypothesis H_1 the power of a test.

The Neyman-Pearson formulation prescribes the following point on the ROC curve: fix a significance level you are willing to tolerate, then pick the point that maximizes power. The Neyman-Pearson Lemma prescribes how to achieve this point:

Lemma (Neyman & Pearson, 1933) Suppose $\theta_1 < \theta_0$. For any significance level $\alpha \in [0,1]$, the following likelihood-ratio test maximizes power among all tests with level at most α :

$$\delta(x) = \begin{cases} Reject \ Null & : \quad \frac{f_{\theta_0}(x)}{f_{\theta_1}(x)} \le \eta \\ Accept \ Null & : \quad \frac{f_{\theta_0}(x)}{f_{\theta_1}(x)} > \eta \end{cases}$$

where f_{θ_0} , f_{θ_1} are the likelihoods under the null and alternative distributions, respectively, and η is the real value such that $Pr(\delta(X) = 1 \mid H_0) = \alpha$.

Example. Suppose that you have a sample from a distribution with probability density function $f_{\theta}(x) = \theta x^{\theta-1}$ where 0 < x < 1. You would like to design a test to discern between the null hypothesis that $\theta = 4$, and the alternative hypothesis that $\theta = 3$.

(a) Derive the most powerful test for this problem such that the significance level is less than α .

(b) What is the power of the test, $Pr(\delta(X) = 1 \mid H_1)$?