2016 NCAA Basketball Tournament Predictions

Adarsh Srinivas | Isha Ratti | Jay Sheth

About NCAA Basketball Tournament

- The National Collegiate Athletic Association (NCAA) Men's Division I Basketball Tournament is a single elimination tournament played each spring in the United States, currently featuring 68 college basketball teams, to determine the national championship of the major college basketball teams.
- Informally known as March Madness or the Big Dance, and has become one of the most famous annual sporting events in the United States.

Objective

• To predict the winner of each possible matchup that may happen in 2016 NCAA Basketball Tournament

• To predict the top16, top 32 teams in the tournament

Data

- Source: https://www.kaggle.com/c/march-machine-learning-mania-2016/data
- The final dataset consists of:
 - **Season Detailed Results 2015:** A detailed set of game results, covering seasons 2003-2015 that includes team-level total statistics for each game (total field goals attempted, offensive rebounds, etc.)
 - **Tournament Detailed Results**: This file contains the more detailed results for tournament games from 2003 onward
 - Season Detailed Results 2016: This file contains the season statistics for 2016
- New features developed to better predict the winner
- Weighted Average of statistics calculated for every team
- The combined dataset consists of 72088 entries

Challenges

- No dependent variable in the dataset. To build predictive models, an output variable 'Result' is created. This is a dichotomous variable with values 0 or 1 indicating whether Team 1 won the match or not.
- The dataset includes statistics of every match that has been played in a season and the NCAA tournament since 2003. Prediction of matches in 2016 for every possible matchup, required the statistics of individual teams for all the matches they had played till 2015. This required a lot of data wrangling and we did this using aggregate functions, weighted arithmetic mean, merge functions etc.

Season	Daynum	Wteam	Wscore	Lteam	Lscore	Wloc	Numot	Wfgm	Wfga	W	fgm3	Wfga3	W	ftm	Wfta	Wor	Wdr	Wast	Wto	Wstl
2003	134	1421	92	1411	84	N	1	L :	32	69	11	L	29	17	26	5 1	1 30	17	12	. 5
2003	136	1112	80	1436	51	N .	() :	31	66	- 7	,	23	11	14	1	L 36	22		10
2003	136	1113	84	1272	71	. N	() :	31	59	(5	14	16	22	2 1	2	18	9	7
2003	136	1141	79	1166	73	N	() :	29	53	:	3	7	18	25	5 1	1 20	15	5 18	13
2003	136	1143	76	1301	74	N	1		27	64	7	7	20	15	23	1	3 20	17	13	1 8
2003	136	1163	58	1140	53	N	0) :	17	52		1	14	20	27	1	2 29		3 14	1 3

Feature Engineering

- Efficiency: Score + Rebound + Assist + Steal + Block Missed Field Goals Missed Free Throws
 Turn Over
- Possessions = 0.96 * (Field Goals Attempted Offensive Rebound Turn Over + (0.475 * Field Throws Attempted))
- Offensive Efficiency = Points scored * 100/ Possessions
- Defensive Efficiency = Points allowed * 100/ Possessions
- Effective field goal percentage (0.4): eFG% = FGM + 0.5 *FGM3/FGA
- Turnover percentage (0.25): TO% = TO/Possessions
- Offensive Rebound Percentage (0.2): OR% = OR / (OR + DROpponent)
- Free throw rate (0.15): FT R = FTA/ FGA

Logistic Regression

- Logistic regression is a method for fitting a regression curve, y = f(x), when y consists of proportions or probabilities, or binary coded (0,1--failure, success) data.
- When the response is a binary (dichotomous) variable, and x is numeric, logistic regression

fits a logistic curve to the relationship between x and y.

• The logistic function is:

$$y = [\exp(b0 + b1x)] / [1 + \exp(b0 + b1x)]$$

b0 and b1= the regression coefficients

Logistic Regression

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1 top+T1torp+T1ftr+T2score+T2Eff+T2poss+T2O E+T2DE+T2efg+T2top+T2torp+T2ftr	0.6716
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1to rp+T1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T 2top+T2torp+T2ftr	0.716418

Support Vector Machine

- A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane
- In other words, given labeled training data (*supervised learning*), the algorithm outputs an optimal hyperplane which categorizes new examples
- The SVM algorithm is based on finding the hyperplane that gives the largest minimum distance to the training examples
- The optimal separating hyperplane *maximizes* the margin of the training data
- Two types of non-linear kernels are used for this project; La placian and Radial Basis function

SVM (Laplacian)

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1tor p+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+T2efg+T2t op+T2torp+T2ftr	
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T1ftr+ T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2torp+T2ftr	

Decision Tree

- Recursive partitioning is a fundamental tool in data mining
- It helps us explore the structure of a set of data, while developing easy to visualize decision rules for predicting a categorical (classification tree) or continuous (regression tree) outcome
- Tree methods such as CART (classification and regression trees) can be used as alternatives to logistic regression. It is a way that can be used to show the probability of being in any hierarchical group.
- Boosted Trees are used for this classification problem

Decision Tree

Decision Trees

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	0.6417
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T 1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2to rp+T2ftr	0.6567

Random Forest

- A **Random Forest** classifier uses a number of decision trees, in order to improve the classification rate
- It uses multiple models for better performance than just using a single tree model
- In addition because many sample are selected in the process a measure of variable importance can be obtain and this approach can be used for model selection

Random Forest

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	0.6567
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+T 1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2to rp+T2ftr	0.6865

Neural Network

- A neuron defines a relationship between the input signals received from dendrites and the output signal
- Input signals are summed and passed to activation function f
- Training means learning the values for the weights that will best approximate the output labels in our training set (x,y)
- Original values for the weights are random

Neural Network

Feature Combination	Accuracy
T1score+T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+ T1torp+T1ftr+T2score+T2Eff+T2poss+T2OE+T2DE+ T2efg+T2top+T2torp+T2ftr	0.67167
T1Eff+T1poss+T1OE+T1DE+T1efg+T1top+T1torp+ T1ftr+T2Eff+T2poss+T2OE+T2DE+T2efg+T2top+T2 torp+T2ftr	0.716418

Results

Model	Correct	Accuracy
Neural Network		0.716418
Logistic Regression		0.716418
Boosting		0.686567
Random Forest		0.686567
SVM (Laplacian)		0.671642
SVM (Radial Basis)		0.656716
Decision Trees	44	0.656716

NCAA 2016 Tournament Bracket Prediction

QUALIFYII	VG	ROUND O	F 64	RO	UND O	F 32	RO	UND O	F 16	QUA	ATERI	FINALS	SEMII	FINALS	5	FINALS		
1276	1409	1195	1314		1314 X		×		1314	×	3	×	×		1393	×	×	
1192	1195	1451	1462		1458	1462	×	×			1393	1438	13	28 X				
1435	1455	1372	1452	×	×			1235	1438		1242	×						
1221	1380	1246	1392		1231	1246		1211	1393		1328	×						
		1151	1231		1139	1438		1242	1268									
		1276	1323	x		1393		1274 X										
		1338	1458		1211	1428		1181 X										
		1344	1425	х		1235		1328	1401									
		1214	1438		1163	1242												
		1277	1292		1234	1437												
		1201	1428		1274	1455												
		1233	1235	X		1268												
		1114	1345		1332	1386												
		1211	1371		1328	1433												
		1173	1393			1401												
		1139	1403		1181 X													
		1122	1242															
		1421	1437															
		1138	1274															
		1143	1218															
		1268	1355															
		1112	1455															
		1234	1396	_														
		1160	1163															
		1332	1380	_														
		1167	1328	_														
		1401	1453	_														
		1181	1423															
		1124	1463															
		1320	1400															
		1333	1433	_														
		1153	1386															
								-										

Any Questions?

