CS 181: NATURAL LANGUAGE PROCESSING

Lecture 4: Dynamic Programming & Minimum String Edit Distance

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

CATCHING TYPOS

- Recognizing misspellings easy check dictionary
 - But lots of suffixes and prefixes: use fsa!
- What about making corrections to isolated words?
 - Look for spellings that are "close" to word
- Context-dependent errors detection/correction
 - Transpositions may accidentally create real words!

SPELLING CORRECTION

- Map words into equivalence classes that likely hold correct spelling.
 - CS 51 lab: canonize words by removing vowels and doubled consonants: <u>canonize lab</u>
 - Find all words w/same canonization as word.
- Alternatively, develop metric and find real world closest to word.
 - * Use minimum edit distance

MINIMUM EDIT DISTANCE

- Can convert any word to another by series of additions, deletions, and substitutions.
 - Once specify cost of each operation then can measure distance between them
 - We'll use 1 for cost of addition/deletion, 2 for substitution.
 - Use same algorithm if choose different costs, but get different answer.

EXAMPLE

- Convert "INTENTION" to "EXECUTION"
- INTENTION

EXAMPLE

- ** Convert "INTENTION" to "EXECUTION"

cost = 1

EXAMPLE

- Convert "INTENTION" to "EXECUTION"
- **ETENTION** subst E for N

cost = 3

EXAMPLE

- Convert "INTENTION" to "EXECUTION"
- \blacksquare EXENTION subst X for T

cost = 5

EXAMPLE

- Convert "INTENTION" to "EXECUTION"
- EXECTION subst C for N

cost = 7

EXAMPLE

- Convert "INTENTION" to "EXECUTION"
- * EXECUTION insert U

cost = 8

OPTIMALITY

- How can we know if that is the minimal edit distance?
- Check all possible conversions? Too many!

SOLVING PROBLEMS

- Optimal substructure property: The optimal solutions to a problem contain optimal solutions to its subproblems.
- * Ex: Shortest distance from LA to NYC
 - If shortest path goes through Chicago then portion of the path from LA to Chicago and from Chicago to NYC are also optimal.

DYNAMIC PROGRAMMING

- If problem has overlapping subproblems (solve same problem repeatedly) & optimal substructure property then can use dynamic programming.
- Key idea is to save solutions to subproblems so don't have to recalculate
- Memoization!
- * Can do top-down or bottom-up
 - We'll do bottom-up

MINIMUM EDIT DISTANCE

- What is minimal cost of transforming v to w?
- * Transform to problem with subproblems.
- Define distance[i,j] to be min cost of transforming v[1..i] to w[1..i]
- Does it satisfy optimal substructure property?
- Does it have overlapping subproblems?

MINIMUM EDIT DISTANCE

- Let |v| = m, |w| = n
- Consider last move in aligning. 3 choices:
 - Add move: Take moves changing v to w[1:n-1] & insert w[n]
 - Delete move: Take moves changing v[1:m-1] to w & delete v[m]
 - Replace move: Take moves changing v[1:m-1] to w[1:n-1] & change v[m] to w[n]

MINIMUM EDIT DISTANCE

* Recursive solution:

$$distance[i-1,j] + ins_cost(w_i) \\ distance[i-1,j-1] + sub_cost(w_i,v_j) \\ distance[i,j-1] + del_cost(v_j)$$

```
\begin{split} & ins\_cost = 1 \\ & del\_cost = 1 \\ & sub\_cost = 0 \ if \ w_i = v_i, \ 2 \ otherwise \end{split}
```

DISTANCE[I,J]

	#	P	A	R	K
#	0 ←	-1 ←	<u> </u>	- 3 ←	<u>-</u> 4
S	1 -	$\frac{1}{2}$	- 3 ←	_4 ←	5
P	$\frac{1}{2}$	1 ←	<u> </u>	- 3 ←	- 4
A	3	$\frac{1}{2}$	1 ←	<u> </u>	— 3
N	4	3	2 ←	3 ←	- 4
K	5	4	3 ←	-4	3

Recover edits from table

```
{\tt def\ minEditDist(target,\ source):}
  n = len(target)
  m = len(source)
  \# m+1 \ rows, \ n+1 \ cols
  distance = [[0 \text{ for i in range}(n+1)] \text{ for j in range}(m+1)]
  for col in range(1,n+1):
     distance[0][col] = distance[0][col-1] + 1
  for row in range(1,m+1):
     distance[row][0] = distance[row-1][0] + 1
  for col in range(1,n+1):
     for row in range(1,m+1):
       distance[row][col] = min(
          distance[row-1][col] + 1,
          distance[row][col-1] + 1,
          distance[row-1][col-1]+substCost(source[row-1],target[col-1]))
  return \; distance [m][n]
```

VARIANTS & IMPROVEMENTS

- Needleman-Wunch distance: cost of substitution varies depending on characters
 - E.g., distance btn characters nearby is less
- Want to match names: Kim Barry Bruce, Kim B. Bruce, K. B. Bruce, Kim Bruce, K. Bruce.
 - One idea: n character gap costs less than n gaps of length 1.

N-GRAMS

N-GRAMS

- N-gram is sequence of N words that occur sequentially in text
- * Determine probabilities of N-grams
- Use to predict which word is most likely to be correct in context.
- Can help in spelling correction

USING CONTEXT

- Spell-checking:
 - They are leaving in about 15 minuets.
- Part of speech tagging
 - Which meaning of "dogs"
- * Machine translation
- Speech & handwriting recognition
 - Compare possible word decodings
- * Authorship identification

WHICH IS MOST PROBABLE?

- First Example:
 - ... I think they're OK ...
 - ... I think there OK ...
 - ... I think their OK ...
- **Second Example:**
 - ... by the way, are they're likely to ...
 - ... by the way, are there likely to ...
 - ... by the way, are their likely to ...

WHICH IS MOST PROBABLE?

- * Third Example:
- How do you wreck a nice beach?
- How do you recognize speech?
- * Fourth Example:
 - * Put the file in the folder
 - Put the file and the folder

COUNTING WORDS

- * Types vs Tokens
 - "They picnicked by the pool, then lay back on the grass and looked at the stars"
 - 16 tokens, 14 types
 - Shakespeare: 884,647 tokens, 29,006 types
 - Also interested in number of lemmas
 - Remove affixes

LANGUAGE MODELS

- Develop a "language model" to help us predict the likelihood of strings.
- In English:
 - $P(the\ big\ dog) > P(dog\ big\ the) > P(dgo\ gib\ eth)$
- * How can the computer know this?
- * Each sentence is sequence w₁, ..., w_n
- * How determine $P(w_1, ..., w_n)$

N-GRAMS

- Computes a probability for observed input
- Probability is likelihood of observation being generated by same source as training data.
- Different models arise from different training sets: English vs. French
- Problems!

ANY QUESTIONS?