ER Model- Part 4

EER Features

Extended E-R(EER) Features

- Some aspects of a database may be more aptly expressed by certain extensions to the basic E-R model.
- Extended E-R features
 - specialization,
 - generalization,
 - higher- and lower-level entity sets,
 - attribute inheritance, and
 - aggregation.

Specialization

- Top-down design process; we designate sub-groupings within an entity set that are distinctive from other entities in the set.
- These sub-groupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- For example, the entity set *person* may be further classified as one of the following:
 - employee.
 - student.
- The process of designating subgroupings within an entity set is called **specialization**.

Specialization

• Higher- and lower-level entity sets also may be designated by the terms **superclass** and **subclass**, respectively

Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higher-level entity set.
- Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- The terms specialization and generalization are used interchangeably.

Attribute Inheritance & participation inheritance

- A crucial property of the higher- and lower-level entities created by specialization and generalization is **attribute inheritance**.
- The attributes of the higher-level entity sets are said to be **inherited** by the lower-level entity sets.
- A lower-level entity set (or subclass) also inherits participation in the relationship (participation inheritance) sets in which its higher-level entity (or superclass) participates.

Consider the ternary relationship proj_guide, which we saw earlier

Suppose we want to record evaluations of a student by a guide on a

project

- Relationship sets eval_for and proj_guide represent overlapping information
 - Every eval_for relationship corresponds to a proj_guide relationship
 - However, some proj_guide relationships may not correspond to any eval_for relationships
 - So we can't discard the proj_guide relationship
- Eliminate this redundancy via aggregation
 - Treat relationship as an abstract entity
 - Allows relationships between relationships
 - Abstraction of relationship into new entity

- Eliminate this redundancy via aggregation without introducing redundancy, the following diagram represents:
 - A student is guided by a particular instructor on a particular project
 - A student, instructor, project combination may have an associated evaluation

Reduction of EER features to Relational Schema

- Representation of Generalization/Specialization
- Method 1:
 - Form a schema for the higher-level entity
 - Form a schema for each lower-level entity set, include primary key of higher-level entity set and local attributes

schema	attributes	person <u>ID</u>
person	ID, name, street, city	name street city
student employee	ID, tot_cred ID, salary	employee
		salary

instructor

rank

student tot credits

secretary hours_per_week

 Drawback: getting information about, an employee requires accessing two relations, the one corresponding to the low-level schema and the one corresponding to the high-level schema

Representation of Generalization/Specialization

- Method 2: (for disjoint)
 - Form a schema for each entity set with all local and inherited attributes

```
employee(<u>id</u>, name, street, city, salary) student(<u>id</u>, name, street, city, tot_credit)
```

• Drawback: *name*, *street* and *city* may be stored redundantly for people who are both students and employees

- To represent aggregation, create a schema containing
 - Primary key of the aggregated relationship,
 - The primary key of the associated entity set
 - Any descriptive attributes
- In our example:
 - The schema eval for is:
 - eval_for (s_ID, project_id, i_ID, evaluation_id)
 - The schema proj_guide is redundant.