Часть I | Основы алгебраической геометрии

1. Пусть $V \subset k^n$, $W \subset k^m$ – аффинные многообразия, и

$$V \times W = \{(x_1, \dots, x_n, y_1, \dots, y_m) \in k^{n+m} :$$

$$(x_1, \ldots, x_n) \in V, (y_1, \ldots, y_m) \in W$$
.

Докажите, что $V \times W$ является аффинным многообразием в k^{n+m} .

- 2. Докажите, что
 - (a) $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle$.
 - (b) $\langle 2x^2 + 3y^2 11, x^2 y^2 3 \rangle = \langle x^2 4, y^2 1 \rangle$.
- 3. Покажите, что $\mathbf{V}(x + xy, y + xy, x^2, y^2) = \mathbf{V}(x, y)$.
- 4. Покажите, что $\mathbf{I}(\mathbf{V}(x^n, y^m)) = \langle x, y \rangle$ для любых n и m натуральных.
- 5. Пусть $V={\bf V}(y-x^2,z-x^3)$ скрученная кубика. Докажите, что ${\bf I}(V)=\left\langle y-x^2,z-x^3\right\rangle$. Докажите, что y^2-xz лежит в ${\bf I}(V)$, выразив этот многочлен через $y-x^2$ и $z-x^3$.
- 6. Докажите, что $\mathbf{I}(\mathbf{V}(x-y)) = \langle x-y \rangle$.
- 7. Пусть $V \subset \mathbb{R}^3$ кривая, заданная параметризацией (t, t^3, t^4) . Докажите, что V аффинное многообразие. Найдите $\mathbf{I}(V)$.
- 8. Поделите многочлен $f=x^7y^2+x^3y^2-y+1$ на упорядоченные наборы $F_{12}=(xy^2-x,x-y^3)$ и $F_{21}=(x-y^3,xy^2-x)$, используя deglex с x>y и lex с x>y.
- 9. Вычислите остаток от деления многочлена $f = xy^2z^2 + xy yz$ на $F = (x-y^2, y-z^3, z^2-1)$. Мономиальный порядок выберите по своему усмотрению.
- 10. Используя алгоритм деления докажите, что любой $f \in \mathbb{R}[x,y,z]$ можно записать в виде

$$f = a_1(y - x^2) + a_2(z - x^3) + r,$$

где r зависит только от x.

- 11. Пусть $V \subset \mathbb{R}^3$ кривая, заданная параметризацией (t, t^m, t^n) , где $n, m \geq 2$. Докажите, что V аффинное многообразие. Найдите $\mathbf{I}(V)$.
- 12. Пусть $u=(u_1,\ldots,u_n)\in\mathbb{R}^n$ вектор с положительными координатами такой, что u_1,\ldots,u_n линейно независимы над \mathbb{Q} . Тогда для $x^\alpha,x^\beta\in M_n$ определим взвешенный порядок

$$x^{\alpha} >_{u} x^{\beta} \Leftrightarrow \langle u, \alpha \rangle > \langle u, \beta \rangle$$
,

где
$$\langle u, \alpha \rangle := u_1 \alpha_1 + \ldots + u_n \alpha_n$$
.

Докажите, что взвешенный порядок является мономиальным порядком на $k[x_1,\ldots,x_n].$

13. Пусть $I = \langle g_1, g_2, g_3 \rangle \subset \mathbb{R}^3[x, y, z]$, где

$$g_1 = xy^2 - xz + y$$
, $g_2 = xy - z^2$, $g_3 = x - yz^4$.

Используя lex с x>y>z, приведите пример $g\in I$ такого, что lt $g\not\in \langle \operatorname{lt} g_1, \operatorname{lt} g_2, \operatorname{lt} g_3 \rangle.$

- 14. Пусть $I=\langle f_1,\dots,f_s\rangle$ идеал такой, что $\langle \operatorname{lt} f_1,\dots,\operatorname{lt} f_s\rangle$ строго меньше, чем $\langle \operatorname{lt}(I)\rangle$. Докажите, что существует $f\in I$ такой, что его остаток от деления на f_1,\dots,f_s является ненулевым.
- 15. Пусть I идеал в $k[x_1,\ldots,x_n]$. Докажите, что набор $G=\{g_1,\ldots,g_t\}$ является базисом Гребнера тогда и только тогда, когда старший член любого многочлена из I делится на некоторый lt g_i .