UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA ALGEBRAICA II (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0243**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Geometría Algebraica I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Introducir los métodos modernos de la geometría algebraica, concretamente se introducirá la teoría de esquemas, cohomología de gavillas y algunas de sus aplicaciones.

NUM. HORAS	UNIDADES TEMÁTICAS
25	1. Esquemas
	1.1 Gavillas.
	Pregavillas. La pregavilla estructural. Gavillas de grupos. Morfismos
	de gavillas. Las fibras de una gavilla.
	1.2 El espectro de un anillo.
	Definición de espectro. Propiedades de los puntos de un espectro. La
	topología espectral. Irreducibilidad. Dimensión.
	1.3 Esquemas afines (pre-esquemas).
	Definición de esquema afín, y de esquema. La categoría de esquemas
	afines. Variedades y esquemas afines. Campos de definición. Subes-
	quemas afines cerrados. El funtor de puntos de un esquema afín.
	Pegado de esquemas. Reducibilidad y nilpotentes. Condiciones de fi-
	nitud. Especialización.
	1.4 Productos de esquemas.
	Definición de producto. Esquemas de grupos.

25	2. Propiedades locales de esquemas
	2.1 Módulos casi-coherentes.
	2.2 Módulos coherentes.
	2.3 Conos tangentes.
	2.4 Diferenciales y no-singularidad.
	2.5 Morfismos étale.
	2.6 Parámetros de uniformización.
	2.7 No-singularidad y la propiedad de dominios de factorización úni-
	ca.
	2.8 Variedades normales y normalización.
	2.9 El teorema principal de Zariski.
	2.10 Morfismos planos y suaves.
30	3. Cohomología
	3.1 Cohomología de gavillas
	3.2 Cohomología de esquemas Noetherianos afines.
	3.3 Cohomología de Cech.
	3.4 Cohomolgía de espacios proyectivos.

BIBLIOGRAFÍA BÁSICA:

- 1. Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Berlin: Springer-Verlag, 1995.
- 2. Grothendieck, A., Dieudonné, J. A., *Eléments de Géometrie Algébraique III/1*, Paris: Pub. Math. IHES 11, 1961.
- 3. Matsummura, H., Commutative Algebra, New York: W. A. Benjamin, Inc., 1979.
- 4. Mumford, D., *The Red Book of Varieties and Schemes*, Second, expanded edition, LNM 1358, Berlin; Heidelberg: Springer, 1999.
- 5. Pfister, G., Local Analytic Geometry. Basic Theory and Applications, Advanced Lectures in Mathematics, Germany: Ed. Vieweg, 2000.
- 6. Serre, J. P., Faisceaux algébraiques cohérents, Ann. of Math. (2), 61, 1955.
- 7. Shafarevich, I. R., *Basic Algebraic Geometry*, Grundlerhren der mathematischen Wissenchaften 213, Berlin; Heidelberg: Springer-Verlag, 1977.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Fulton, W., Algebraic Curves. An Introduction to Algebraic Geometry, New York: W. A. Benjamin, Inc., 1969.
- 2. Walker, R., Algebraic Curves, New York: Dover, 1962.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.