Local-Access Generators

Amartya Shankha Biswas, Ronitt Rubinfeld, Anak Yodpinyanee CSAIL, MIT

Partial Sampling from a Distribution

Full Sampling $R \sim \mathsf{D}$ in $\mathcal{O}(T)$ time Do we need to spend $\mathcal{O}(T)$ upfront?

Problem Statement

A local-access generator of a random object $R \sim D$, provides indirect access to R' with a query oracle s.t.

► All query responses (partial samples) are consistent

The distribution of R' is ϵ -close to D in L_1 distance

Trivial Example - Sampling G(n,p)

Model: N vertex undirected graph: edge probability p

Query Model: Given vertices u, v, is $(u, v) \in E$?

Just a collection of $\frac{N(N-1)}{2}$ Bernoulli RVs with bias p.

Find Next-Neighbor (skip-sampling)

Adjacency List query: Return neighbors of v in order. $\mathbb{P}[k \text{ non-neighbors before next-neighbor}] = p(1-p)^k$

- ► Can sample from this distribution in $\mathcal{O}(1)$ time [ELMR17]
- ► Avoid sampling each 0 separately

Issue: Adjacency matrix is symmetric So, each zero must also appear in the corresponding column of \boldsymbol{v}

If the sampled neighbor is a 0, discard and resample.

Cannot afford too many re-samplings.

Bucketing-Generator & Random-Neighbor Queries

Problem: next-neighbor cannot "jump" to a random potential neighbor of vBucketing Divide each row of the adjacency matrix into contiguous buckets \Rightarrow random neighbor of $v \approx$ random neighbor in a random bucket of v

Problem: Do NOT know deg(v): Must return each neighbor with prob. 1/deg(v)Rejection Sampling Normalize probability of returning any specific neighbor

Problem: next-neighbor cannot "jump" to a random potential neighbor of v \Rightarrow suffice to show that **any neighbor** is returned with the **equal** probability

#neighbors in each bucket

 $\sim \Theta(1)$ in expectation, $O(\log n)$ max w.h.p. \Rightarrow #buckets \sim #neighbors

 $\Pr[u \text{ returned}] = \frac{1}{\text{\#buckets}} \times \frac{1}{\text{\#neighbors in bucket}} \times \frac{\text{\#neighbors in bucket}}{\textit{O}(\log n)} \sim \frac{\Omega(1/\log n)}{\text{\#neighbors}}$

 $\Pr[\text{some neighbor returned}] \sim \Omega(1/\log n) \Rightarrow O(\log n) \text{ tries suffices}$

Data Structure Buckets contains set of known neighbors, and "filled" marker \Rightarrow "fill" with expected $\Theta(1)$ next-neighbor queries $O(\log n)$ time *per query* \Rightarrow random-neighbor succeeds in $O(\log n)$ tries O(m+n) space usage

Stochastic Block Model

Communities $\{C_i\}_{i\in[r]}$ partition V: If $u\in C_i, v\in C_j$, then $\mathbb{P}_{(u,v)\in E}=p_{ij}$.

Given sizes of each comunity C_i and a range of length ℓ

- ► Count number of occurrences of each community in any contiguous range
- ightharpoonup Sample from $Multivariate\ Hypergeometric\ Distribution$

$$\Pr[\mathbf{S}_{\ell}^{\mathbf{C}} = \langle s_1, \dots, s_r \rangle] = \frac{\binom{C_1}{s_1} \cdot \binom{C_2}{s_2} \cdots \binom{C_r}{s_r}}{\binom{B}{\ell}} \quad \text{where } \ell = \sum_{i=1}^r s_i \text{ and } B = \sum_{i=1}^r C_i$$

$$\text{Use [GGN10]}$$

Multivariate Hypergeometric Distribution

[GGN10] solves the special case of r=2 and $B=2\ell$.

COUNTING-GENERATOR

- ▶ Extending to $B \neq 2\ell$: Divide ℓ into dyadic segments.
- ▶ Extending to r > 2: Make a tree with a leaf for each C_i . Every branch in the tree is equivalent to a 2-splitting.
- ▶ Use Counting-Generator to sample community counts
- ▶ Run the BUCKETING-GENERATOR as before.

Work in Progress

Graph Coloring: Glauber Dynamics

Find random k-coloring for graph with max degree Δ

Global Algorithm (for $k > 2\Delta$)

- Sample $\mathcal{O}(n \log n)$ (vertex, color) pairs: $\{(v_1, c_1), (v_2, c_2), (v_3, c_3), \cdots, (v_r, c_r)\}$
- For steps $i \in [1 \cdots r]$
- If no neighbor of v_i has color c_i set v_i 's color to c_i .
- Else, do nothing

Local Algorithm (for $k = \Theta(\Delta \log n)$)

- ► Given v, what is color(v) (in some random coloring)?
- ► Locally sample occurrences of (v, \star) using the Count $Splitting\ Generator$
- Sample (w, \star) if necessary, where w is neighbor of v
- ▶ Query tree is bounded for $k = \Theta(\Delta \log n)$