Алгебра 2 семестр ПИ, Лекции

Собрано 19 мая 2022 г. в 11:15

Содержание

1.	Системы линейных уравнений	1
	1.1. Ранг матрицы	1
	1.2. Структура решений СЛУ	
	1.3. Неоднородные СЛУ	
2 .	Линейные отображения векторных пространств	6
	2.1. Матрица линейного отображения	6
	2.2. Линейные операторы	8
	2.3. Инвариантные подпрастранства	10
	2.4. Собственные векторы и числа	11
	2.5. Жорданова нормальная форма	
	2.6. Теорема Гамильтона-Кэли	
	2.7. Билинейные формы	
	2.7.1. Замена базиса	
	2.8. Квадратичные формы	
	$2.8.1.~{ m K}$ вадратичная форма над ${ m \mathbb{R}}$	
	2.8.2. Теорема Якоби	
	2.8.3. Ортогональные преобразования	
3.	Элементы теории полей	21
	3.1. Факторкольцо	21
	3.2. Расширение полей	23

Раздел #1: Системы линейных уравнений

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

$$A = (a_{ij})$$
 — матрица коэффициентов, $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Определение 1. Решение СЛУ (*) называется $\alpha_1, ..., \alpha_n \in K$: при $x_i = \alpha_i$ все уравнения становятся верными.

Определение 2. СЛУ (*) совместна, если З хотя бы одно решение. Иначе - несовместна.

1.1. Ранг матрицы

 $A - m \times n, A = (A_1, A_2, ..., A_m), A_i -$ строки. $A = (A^1, A^2, ..., A^n), A^j -$ столбцы.

Определение 3. Строчным (столбцовым) рангом матрицы A называется максимальное число ЛНЗ строк (столбцов).

Иначе, количество элементов в базисе $\langle A_1,...,A_m \rangle (\langle A^1,...,A^n \rangle)$.

Теорема 1. Строчный и столбцовый ранги совпадают.

Обозначение: $\operatorname{rank} A$.

Определение 4. Минором матрицы $A-m\times n$ k-го порядка называется определитель, составленный из элементов матрицы A, стоящих на k выбранных строках и на k выбранных столбцов.

Пример. $\begin{pmatrix} 1 & 4 & 8 & -3 \\ 2 & 5 & 9 & -4 \\ 3 & 6 & -2 & -5 \end{pmatrix}$. Если вы выберем вторую и третью строку, а также первый и

последний столбец, то минор второго порядка:

$$\begin{array}{c|cc} 2 & -4 \\ 3 & -5 \end{array}$$

Теорема 2. Ранг матрицы A равен наибольшему порядку минора, отличного от нуля.

Теорема 3 (Связь определителя с рангом матрицы). $A - n \times n$. Тогда $\operatorname{rank} A < n \Leftrightarrow \det A = 0$.

Доказательство. \Rightarrow . rank $A < n \Rightarrow$ строки $A_1, ..., A_n$ ЛЗ, т.е. $\exists \alpha_1, ..., \alpha_n \in K$: $\alpha_1 A_1 + \alpha_2 A_2 + ... + \alpha_n A_n = 0$ (α_i не все равны нулю). Пусть $\alpha_1 \neq 0 \Rightarrow A_1 = -\frac{\alpha_2}{\alpha_1} A_2 - ... - \frac{\alpha_n}{\alpha_1} A_n$. Обнулим первую строку: прибавим к ней A_2 , умноженную на $-\frac{\alpha_2}{\alpha_1}$, A_3 , умноженную на $-\frac{\alpha_3}{\alpha_1}$ и т.д. Поскольку теперь первая строка целиком нулевая, то $\det A = 0$.

 \Leftarrow . Индукция $n = 1 \Rightarrow a_{11} = 0.$ $n - 1 \rightarrow n.$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

Можем считать, что $A^1 \neq 0, a_{11} \neq 0$. Домножим первую строку на $-\frac{a_{21}}{a_{11}}$ и прибавляем ко второй строке. Затем домножаем первую строку на $-\frac{a_{31}}{a_{11}}$ и прибавляем ко третьей строке и т.д.

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a'_{22} & \cdots & a'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a'_{n2} & \cdots & a'_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a'_{22} & \cdots & a'_{2n} \\ \vdots & \ddots & \vdots \\ a'_{n2} & \cdots & a'_{nn} \end{vmatrix}$$

По предположению $A_2', ..., A_n' - J$ 3. $\begin{cases} A_2' = A_2 - \frac{a_{21}}{a_{11}} \cdot A_1 \\ ... \\ A_n' = A_n - \frac{a_{n1}}{a_{11}} \cdot A_1 \end{cases}$ $0 = \alpha_2 A_2' + ... + \alpha_n A_n' = (...)A_1 + \alpha_2 \cdot A_2 + ... + \alpha_n A_n \Rightarrow A_1, ..., A_n - J$ 3 \Rightarrow rank A < n.

Определение 5. Элементарными преобразованиями над строками (столбцами) называется

- 1. Перестановка строк (столбцов).
- 2. Умножение строки (столбца) на $\lambda \neq 0$.
- 3. Прибавление к одной строке (столбцу) другой строки (столбца), умноженной на $\lambda \neq 0$.

Теорема 4. При элементарных преобразованиях ранг матрицы не меняется.

Доказательство. 1,2 — очевидно. $(A_1,...,A_i,...,A_j,...,A_n) \rightarrow (A_1,...,A_i+\lambda A_j,...,A_j,...,A_n)$

Определение 6. Матрица называется трапецевидной, если у неё в \forall ненулевой строке число нулей слева различно.

Замечание. rank трапецевидной матрицы равен числу ненулевых строк.

Теорема 5 (О вычислении ранга). Любую матрицу с помощью элементарных преобразований можно привести к трапецевидной.

1.2. Структура решений СЛУ

Определение 7. СЛУ (*) называется однородной, если все свободные члены равны нулю.

Определение 8. Нулевое решение однородной СЛУ называется тривиальным. Любое другое решение – нетривиальным.

Лемма 1. Пусть Y, Z – решения $AX = 0 \Rightarrow \alpha Y + \beta Z$ – тоже решение, $\alpha, \beta \in K$.

Доказательство.

$$AY = 0, AZ = 0 \Rightarrow A(\alpha Y + \beta Z) = \alpha AY + \beta AZ = 0$$

Теорема 6 (Структура решений однородной СЛУ). $AX = 0, A - m \times n, n$ – число неизвестных, $r = \operatorname{rank} A \Rightarrow \exists n - r \ \Pi H \exists$ решений $X_1, ..., X_{n-r} : \forall$ решение $X = \alpha_1 X_1 + ... + \alpha_{n-r} X_{n-r}$.

Доказательство. $A = (A^1, ..., A^n), A^1, ..., A^r - ЛНЗ$ столбцы \Rightarrow

$$\begin{cases} A^{r+1} = \beta_{r+1} \ _1A^1 + \ldots + \beta_{r+1} \ _nA^r \\ \ldots \\ A^n = \beta_n \ _1A^1 + \ldots + \beta_n \ _rA^r \end{cases}$$

$$X_1 = \begin{pmatrix} \beta_{r+1 \ 1} \\ \vdots \\ \beta_{r+1 \ r} \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, X_2 = \begin{pmatrix} \beta_{r+2 \ 1} \\ \vdots \\ \beta_{r+2 \ r} \\ 0 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, ..., X_{n+r} = \begin{pmatrix} \beta_{n \ 1} \\ \vdots \\ \beta_{n \ r} \\ 0 \\ \vdots \\ -1 \end{pmatrix} - \text{решения. Они ЛНЗ.}$$

Пусть
$$Z = \begin{pmatrix} x_1^* \\ \vdots \\ x_r^* \\ \vdots \\ x_n^* \end{pmatrix}$$
 – решение. Рассмотрим $Y = Z + x_{r+1}^* X_1 + x_{r+2}^* X_2 + \dots + x_n^* X_{n-r}$. $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ –

Получили следующую систему линейных уравнений: $\{y_1A_1 + ... + y_rA_r = 0.$

Ho
$$A_1, ..., A_r - \Pi H3 \Rightarrow Y = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow 0 = Z + x_{r+1}^* X_1 + x_{r+2}^* X_2 + ... + x_n^* X_{n-r}.$$

Определение 9. $\forall n-r$ ЛНЗ решений однородной системы линейных уравнений называется фундаментальной системой решений, решение вида $X = \alpha_1 X_1 + ... + \alpha_{n-r} X_{n-r} -$ общее решение.

1.3. Неоднородные СЛУ

$$AX = B, A - m \times n, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

 \overline{A} = ($A \mid B$) – расширенная матрица $m \times (n+1)$.

Теорема 7 (Кронекера-Капелли). (*) — совместна \Leftrightarrow rank A = rank \overline{A} .

Доказательство. \Rightarrow . AX = B — совместна \Rightarrow \exists решение $x_1A^1 + ... + x_nA^n = B \Rightarrow B$ — линейная комбинация $A^1, ..., A^n \Rightarrow \operatorname{rank} A = \operatorname{rank} \overline{A}$. \Leftarrow . $\operatorname{rank} A = \operatorname{rank} \overline{A} = r \Rightarrow \exists A^1, ..., A^r - \exists A^1, ..., A^r, B - \exists A^2, ..., A^r, B = \alpha_1A^2 + ... + \alpha_rA^r$, не

$$\Leftarrow$$
. гапк $A = r$ алк $A = r \Rightarrow \exists A^{2}, ..., A^{r} - \exists A^{2}, ..., A^{r}, B - \exists A^{2}, ..., A^{r} \Rightarrow B = \alpha_{1}A^{2} + ... + \alpha_{r}A^{r}$, не все $\alpha_{i} = 0 \Rightarrow (\alpha_{1}, ..., \alpha_{r}, 0, ..., 0)$ – решение системы.

Теорема 8 (О структуре решений неоднородной СЛУ). AX = B, $\operatorname{rank} A = r, n$ – число неизвестных, система совместна. X_* – какое-то решение СЛУ, $X_1, ..., X_{n-r}$ – фундаментальные решения AX = 0. Тогда любое решение (*) имеет вид $X = \alpha_1 X_1 + ... + \alpha_{n-r} X_{n-r} + X_*, \alpha_1, ..., \alpha_{n-r} \in K$.

Доказательство.
$$AX_* = B \Rightarrow AX = AX_* \Rightarrow A(X - X_*) = 0 \Rightarrow X - X_* = \alpha_1 X_1 + ... + \alpha_{n-r} X_{n-r}$$
.

Пример (Решение СЛУ методом Гаусса).

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ x_1 + x_2 + 2x_3 + 2x_4 = 2 \\ 2x_1 + 2x_2 + 3x_3 + 3x_4 = 6 \end{cases} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 4 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 3 & 3 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 & \beta \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & 4 & \alpha \\ 0 & 1 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 0 & \alpha \\ 0 & 0 & 0 & 1 & \beta \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ -2 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Раздел #2: Линейные отображения векторных пространств

Определение 10. V, W – векторные пространства над K. Отображение $f: V \to W$ называется линейным, если:

- 1. $f(x+y) = f(x) + f(y) \ \forall x, y \in V$
- 2. $f(\alpha x) = \alpha f(x) \ \forall x \in V, \alpha \in K$

Замечание. $1, 2 \sim f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \ \forall x, y \in V, \alpha, \beta \in K.$

Определение 11. $\text{Hom}(V, W) = \{f : V \to W - \text{линейныe}\}$

Лемма 2. $\operatorname{Hom}(V,W)$ – векторное пространство над K.

Доказательство. $f, g \in \text{Hom}(V, W), (f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x) \Rightarrow f+g, \alpha f \in \text{Hom}(V, W).$

Определение 12. $f \in \text{Hom}(V, W)$, $\ker f = \{x \in V : f(x) = 0\}$ — ядро отображения f, $\operatorname{Im} f = \{f(x), x \in V\}$ — образ f.

Лемма 3. $\ker f \subset V, \operatorname{Im} f \subset W - \operatorname{подпространства}.$

Доказательство. $x, y \in \ker f, f(x+y) = f(x) + f(y) = 0 + 0 = 0 \Rightarrow x+y \in \ker f$. Аналогично, $f(\alpha x) = \alpha f(x) = 0 \Rightarrow \alpha x \in \ker f \ \forall \alpha \in K \Rightarrow \ker f$ – подпространство.

Упражнение. Im f – подпространство.

Теорема 9. $f \in \text{Hom}(V, W)$.

- 1. f инъективно $\Leftrightarrow \ker f = \{0\}$.
- 2. f сюръективно \Leftrightarrow Im f = W.

Доказательство. \Leftarrow . $x_1 \neq x_2$, если $f(x_1) = f(x_2) \Rightarrow f(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 \in \ker f \Rightarrow x_1 - x_2 = 0$!? \Rightarrow . Пусть $x \in \ker f, x \neq 0 \Rightarrow f(x) = f(0) = 0$!?.

2.1. Матрица линейного отображения

 $e_1,...,e_n$ — базис $V,e_1',...,e_m'$ — базис $W,f\in \mathrm{Hom}(V,W)$ $x\in V,x=x_1e_1+...+x_ne_n,x_i\in K,f(x)=x_1f(e_1)+...+x_nf(e_n)$ \Leftrightarrow задать f значит задать

 $f(e_i), i = 1, ..., n.$

$$\begin{cases} f(e_1) = a_{11}e'_1 + a_{21}e'_2 + \dots + a_{m1}e'_m \\ \dots \\ f(e_n) = a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{mn}e'_m \end{cases}$$

Определение 13. Матрицей $f \in \text{Hom}(V, W)$ в базисе $e_1, ..., e_n$ и $e'_1, ..., e'_m$ назыается

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} f(e_1) & f(e_2) & \cdots & f(e_n) \end{pmatrix}$$

Теорема 10. 1. $\operatorname{Hom}(V,W)$ взаимно-однозначно соответствует M(m,n,K).

2.
$$e_1, ..., e_n$$
 — базис $V, e'_1, ..., e'_m$ — базис $W, x \in V \to X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, f(x) \in W \to Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}, f \to A$ $\Rightarrow AX = Y$.

Доказательство. 1. $f \to A$ отображение однозначно определяется $f(e_i) \Rightarrow A$ определена однозначно. С другой стороны, взяв произвольную матрицу В, можем построить по ней отображение q.

2. $f \to A = (a_{ij}), 1 \le i \le n, 1 \le j \le m$.

$$f(x) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) =$$

$$= x_1(a_{11}e'_1 + a_{21}e'_2 + \dots + a_{m1}e'_m) + \dots + x_n(a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{mn}e'_m) =$$

$$= \underbrace{(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)}_{y_1} e'_1 + \dots + \underbrace{(a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)}_{y_m} e'_m \Rightarrow Y = AX$$

Следствие. 1. $\dim \operatorname{Hom}(V, W) = \dim V \cdot \dim W$

- 2. $\alpha, \beta \in K, f, g \in \text{Hom}(V, W), f \to A, g \to B$ в фиксированных базисах $\Rightarrow \alpha f + \beta g \to \alpha A + \beta B$.
- 3. $f: V \to W, g: W \to U \Rightarrow g \circ f: V \to U, g \circ f(x) = g(f(x))$. Фиксируем базисы, $f \to A, g \to B \Rightarrow g \circ f \to BA$

Доказательство. 1. Соответствие матриц.

- 2. $(\alpha f + \beta g)(e_i) = \alpha f(e_i) + \beta g(e_i) \in \alpha A + \beta B$.
- 3. $V \to n, W \to l, U \to m, A \to l \times n, B \to m \times l$ $g \circ f(e_i) = g(\sum_{k=1}^l a_{ki} e_k') = \sum_{k=1}^n a_{ki} g(e_k') = \sum_{k=1}^l a_{ki} \sum_{j=1}^m b_{jk} e_j'' = \sum_{j=1}^m \sum_{k=1}^l b_{jk} a_{ki} e_j'', \text{ где } b_{jk} a_{ki} \to k$

Теорема 11. $f: V \to W$, dim V, dim $W < \infty$

$$\Rightarrow$$
 dim ker f + dim Im f = dim V

Доказательство. $\ker f \subset V, e_1, ..., e_k$ - базис $\ker f$. Дополним до базиса $V: e_1, ..., e_k, e_{k+1}, ..., e_n$ – базис V.

$$x \in V, f(x) \in \text{Im } f \ f(x) = x_{k+1} f(e_{k+1}) + ... + x_n f(e_n) \in \text{Im } f$$
 $f(e_1) = ... = f(e_k) = 0 \Rightarrow \text{Im } f = \langle f(e_{k+1}), ..., f(e_n) \rangle$. Надо доказать, что $f(e_{k+1}), ..., f(e_n) - \text{пнз}$

Предположим обратное. $\alpha_{k+1}f(e_{k+1})+\ldots+\alpha_nf(e_n)=0 \Rightarrow f(\alpha_{k+1}e_{k+1}+\ldots+\alpha_ne_n)=0 \Rightarrow \alpha_{k+1}e_{k+1}+\ldots+\alpha_ne_n$ $\dots + \alpha_n e_n \in \ker f = \langle e_1, \dots, e_k \rangle$ — невозможно.

 $\dim \ker f = k, \dim V = n, \dim \operatorname{Im} f = n - k.$

2.2. Линейные операторы

Определение 14. Линейным оператором называется линейное отображение $a: V \to V$, т.е. $a \in \text{Hom}(V, V)$.

Обозначается $\operatorname{End} V = \operatorname{Hom}(V, V)$.

Определение 15. Тождественным отображением называется отображение $id: x \to x$ (любой вектор переходит сам в себя)

Определение 16. Если a линейный оператор, то b – обратный линейный оператор к a, если $b \circ a = a \circ b = id$

Пример. 1. Нулевой оператор.
$$0 \in \text{End } V$$
. $0(x) = 0$. $0 \to \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} = 0$

- 2. Оператор подобия. $\forall x \in V \ ax = \lambda x \to \begin{pmatrix} \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda \end{pmatrix}$
- 3. Оператор поворота в \mathbb{R}^2 . $z \to z e^{i\varphi}$ поворот на φ . Зафиксируем базис 1, $i \Rightarrow a(1) = \cos \varphi + i \sin \varphi$, $a(i) = i(\cos \varphi + i \sin \varphi) = -\sin \varphi + i \cos \varphi$ $\to \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$
- 4. Оператор дифференцирования. $V = \mathbb{R}[x]$. $\frac{d}{dx}f \to f'$, зафиксируем базис 1, x, x^2, x^3 .

Оператор дифференцирования.
$$V = \mathbb{R}[x]$$
. $\frac{d}{dx}f \to f'$, зафиксируем оазис $-1, x, x^2, x^3$. $\frac{d}{dx}(1) = 0$, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$, $\frac{d}{dx}(x^3) = 3x^2$. Тогда матрица имеет вид: $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Возьмём другой базис $-1, x+1, x^2+x+1, x^3+x^2+x+1$.

Посчитаем значения: $\frac{d}{dx}(1) = 0$, $\frac{d}{dx}(x+1) = 1$, $\frac{d}{dx}(x^2+x+1) = 2x+1$, $\frac{d}{dx}(x^3+x^2+x+1) = 2x+1$

$$3x^2 + 2x + 1$$
.
Матрица имеет вид: $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Определение 17.
$$(e_i), (e_i')$$
 — базисы V, $\dim V = n$. Разложим $\begin{cases} e_1' = c_{11}e_1 + c_{21}e_2 + \ldots + c_{n1}e_n \\ \ldots & \text{.} \end{cases}$ Тогда матрица вида $C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$ называется матрицой перехода от базиса (e_i) к (e_i') .

Теорема 12 (Преобразование координат вектора при переходе к другому базису). V – вектор-

ное пространство над полем K,
$$(e_i)$$
, (e'_i) – базисы V, $x \in V$, $x \to X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ – координаты

вектора в базисе (e_i) . $x \to X' = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$ – координаты вектора в базисе (e_i') , C – матрица перехода от (e_i) к (e_i') .

- 1. X = CX'
- 2. C обратима $(\det C \neq 0)$

Доказательство. 1.
$$x = x_1'e_1' + ... + x_n'e_n' = x_1'(c_{11}e_1 + c_{21}e_2 + ... + c_{n1}e_n) + ... + x_n'(c_{1n}e_1 + c_{2n}e_2 + ... + c_{nn}e_n) = \underbrace{(c_{11}x_1' + c_{12}x_2' + ... + c_{1n}x_n')}_{x_1} e_1 + ... + \underbrace{(c_{n1}x_1' + c_{n2}x_2' + ... + c_{nn}x_n')}_{x_n} e_n$$

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$

2. $\forall X \ X = CX'$ по доказанному, тогда $X = CX' = CDX \Rightarrow CD = E \Rightarrow \det C \neq 0$.

Теорема 13 (Изменение матрицы линейного оператора при переходе к другому базису). V – векторное пространство, $\dim V = n, a \in \operatorname{End} V$, фиксируем базисы $(e_i), (e'_i), A$ – матрица оператора в базисе $(e_i), A'$ – в базисе $(e'_i), C$ – матрица перехода от (e_i) к (e'_i) .

$$\Rightarrow A' = C^{-1}AC$$

Определение 18. Матрицы $A, B \in M(n, K)$ называются подобными, если $\exists C \in M(n, K)$: $A = C^{-1}BC, A \sim B$

Теорема 14. Отношение подобия матриц – отношение эквивалентности.

Доказательство. Самостоятельно.

2.3. Инвариантные подпрастранства

Определение 19. Подпространство U пространства V называется инвариантным (неизменным) под действием оператора a, если $\forall x \in I, ax \in U$

Лемма 4. $U \subset V, a \in \text{End } V$

$$U$$
— а-инвариантно $\Leftrightarrow \exists$ базис $V: A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, B = \dim U \times \dim U$

Доказательство. U – а-инвариантно. Выберем базис U: $e_1,...,e_k$ и дополним его до базиса

$$V$$
 матрицы a $ae_i = b_{1i}e_1 + \dots + b_{ki}e_k \Leftrightarrow \begin{pmatrix} b_{1i} & \cdot \\ b_{ki} & \cdot \\ 0 & \cdot \\ 0 & \cdot \end{pmatrix}$

Лемма 5. $U, W \subset V, a \in \text{End } V$

$$V = U \oplus W, U, W$$
 — а-инвариантны $\Leftrightarrow \exists$ базис $A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$
 $B = \dim U \times \dim U$ $C = \dim W \times \dim W$

$$B = \dim U \times \dim U, C = \dim W \times \dim W$$

Доказательство.
$$V = U \oplus V$$
, выберем $U: e_1, ..., e_k, W: e_{k+1}, ..., e_n$ $a(e_i) \in U, i = 1, ..., k, a(e_j) \in W, j = k+1, ..., n \Leftrightarrow A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$

Пример. 1.
$$V = M(2,\mathbb{R})$$
 $a: X \to X^T, X \in M(2,\mathbb{R})$ $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $a(E_{11}) = E_{11}, \quad a(E_{12}) = E_{21}, \quad a(E_{21}) = E_{12} \quad a(E_{22}) = E_{22}$
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \langle E_{11} \rangle \oplus \langle E_{12}, E_{21} \rangle \oplus \langle E_{22} \rangle = V \text{ инвариантны}$$

2.
$$V = K[x]_3$$
 $a: \frac{d}{dx}(f \to f')$ $1, x, x^2, x^3$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\frac{d}{dx}} :< 1, x, x^2 > \to < 1, x > \subset < 1, x, x^2 >$$

2.4. Собственные векторы и числа

Определение 20. Собственным вектором оператора а называется ∀ ненулевой вектор одномерного инвариантного подпространства.

Определение 21. х - собственный вектор, $ax = \lambda x$, тогда $\lambda =$ собственное число, ассоциированное вектору x $a \to A, x \to X$ $AX = \lambda X \Rightarrow (A - \lambda E)X = 0$

Определение 22. Характеристическим многочленом оператора а (матрицы A) называется $\chi_a(t) = \det(A - tE)$

Теорема 15 (О собственных числах). Все собственные числа оператора а и только они являются корнями характеристического многочлена.

Доказательство. $AX = \lambda X \Leftrightarrow (A - \lambda E)X = 0$ – имеет ненулевое решение $\Leftrightarrow \det(A - \lambda E)X = 0 \Leftrightarrow$ все собственные числа корни $\chi_a(t)$

Лемма 6 (Независимость собственных чисел от выбора базиса). Характеристические многочлены оператора а в разных базисах совпадают.

Доказательство.
$$a(e_i) \to A \quad (e_i') \to A' \quad C$$
 — матрица перехода от (e_i) к (e_i') $A' = C^{-1}AC \quad \chi_a(t) = \det(A' - tE) = \det(C^{-1}AC) = \det(C^{-1}AC - t \cdot C^{-1}C) = \det(C^{-1}(A - tE)C) = \det(C^{-1} \cdot \det(A - tE) \cdot \det C = \det(A - tE) = \chi_a(t)e_i$

Теорема 16 (Линейная независимость собственных векторов). Собственные векторы, соответствующие различным собственным числам, линейно независимы.

Доказательство. n=1 — очевидно. Пусть доказали при n-1. Индукционный переход: $n-1 \to n: V_1, V_2, ..., V_n$ — собственные векторы $aV_i = \lambda_i V_i, \quad \lambda_1, ..., \lambda_n$ — различны Пусть $V_1, V_2, ..., V_n$ — линейно зависимы. Тогда $\alpha_1 V_1 + \alpha_2 V_2 + ... + \alpha_n V_n = 0, \alpha_i \in K \Rightarrow$ под действием а: $\alpha_1 \lambda_1 V_1 + \alpha_2 \lambda_2 V_2 + ... + \alpha_n \lambda_n V_n = 0$ Будем считать, что $\lambda_1 \neq 0 \Rightarrow \alpha_1 \lambda_1 V_1 + \alpha_2 \lambda_2 V_2 + ... + \alpha_n \lambda_n V_n - \lambda_1 (\alpha_1 V_1 + ... + \alpha_n V_n) = \alpha_2 (\lambda_2 - \lambda - 1) V_2 + ... + \alpha_n (\lambda_n - \lambda_1) V_n = 0 \Rightarrow$ по предположению индукции $\alpha_2 = ... = \alpha_n = 0$

Определение 23. Оператор а называется диагонализируемым, если существует базис та-

кой, что
$$A = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{pmatrix}$$

Теорема 17 (Критерий диагонализируемости). Если $\chi_a(t)$ имеет n различных корней ($n = \dim V$) над рассматриваемым полем, то оператор а – диагонализируем.

Доказательство. В качестве базиса берём собственные векторы.

Пример. Оператор поворота
$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 — недиагонализируем над $\mathbb R$

Лемма 7. Над полем С любой оператор имеет одномерное инвариантное подпространство.

Определение 24. Кратность λ как кратность корня $\chi_a(t)$ = 0 называется алгебраической кратностью собственного числа.

Определение 25. λ — собственное число, $V^{\lambda} = \{x \in V : ax = \lambda x\}$ dim V^{λ} — геометрическая кратность собственного числа λ

Пример.
$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
 $\chi_a(t) = \begin{vmatrix} \lambda - t & 0 \\ 0 & \lambda - t \end{vmatrix} = (A - tE) = (\lambda - t)^2 \Rightarrow \lambda$ собственное число алгебраической кратности 2. $(A - \lambda E)X = 0$ $(\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\dim V^{\lambda} = 2$ — геометрическая кратность

Пример.
$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

$$\chi_a(t) = \begin{vmatrix} \lambda - t & 1 \\ 0 & \lambda - t \end{vmatrix} = (\lambda - t)^2 \Rightarrow \text{ алгебраическая кратность } \lambda = 2$$

$$\left(\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad V^{\lambda} = <\begin{pmatrix} 1 \\ 0 \end{pmatrix} >$$

$$\dim V^{\lambda} = 1 - \text{геометрическая кратность}$$

Лемма 8. Геометрическая кратность собственного числа $\lambda \leqslant$ алгебраической кратности

Доказательство. V^{λ} – инвариантно относительно а, V^{λ} = $\{x: ax = \lambda x\}$

По лемме:
$$a \to \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$
 $B - m \times m, \dim V^{\lambda} = m$

$$a\Big|_{V^{\lambda}} = \chi_a\Big|_{V}^{\lambda} = (t - \lambda)^m$$

$$a|_{V^{\lambda}} = \chi_{a}|_{V}^{\lambda} = (t - \lambda)^{m}$$

$$\chi_{a} = \det\left(\begin{pmatrix} B & C \\ 0 & d \end{pmatrix} - tE\right) = (t - \lambda)^{m}p(t) \Rightarrow \text{алгебраическая кратность } \lambda \geqslant m$$

Теорема 18 (Критерий диагонализируемости). $a \in \text{End } V$ – диагонализируема ⇔ 1. Все собственные числа $\in K$ 2. \forall собственных чисел λ алгебраическая кратность = геометрическая кратность

2.5. Жорданова нормальная форма

Определение 26. Жордановой клеткой порядка m соответствующей собственному числу

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ \vdots & \lambda & & \vdots \\ 0 & & \ddots & 1 \\ 0 & \dots & & \lambda \end{pmatrix}$$

Пример. 1. $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$

$$2. \left(\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{array} \right)$$

Определение 27. ЖН Φ оператора $a \in \operatorname{End} V$ называется

$$\begin{pmatrix} J_{k_1}()\lambda_1) & & & & \\ & J_{k_2}()\lambda_2) & & & \\ & & \ddots & & \\ & & & J_{k_n}()\lambda_n) \end{pmatrix}$$

Определение 28. Базис, в котором оператор а имеет ЖНФ называется жордановом

Теорема 19 (ЖНФ). 1. Над алгебраическим замкнутым полем $\forall a \in \text{End } V$ имеет ЖНФ

2. ЖНФ определена с точностью до перестановки клеток

Теорема 20. $a \in \text{End } V$ имеет ЖНФ над произвольным полем \Leftrightarrow характеристический многочлен раскладывается на линейные множители

2.6. Теорема Гамильтона-Кэли

Определение 29.
$$f(x) = a_n x^n + ... + a_1 x + a_0 \in K[x]$$
 $A - -m \times m$ $f(A) = a_n A^N + ... + a_i A + a_0 E$, $E - -m \times m$ — многочлен от матрицы

Определение 30. $a \in \text{End } V$ $f(a) = a_n \cdot a^n + ... + a_1 \cdot a + a_0 \cdot \text{id}$ — многочлен от оператора

Теорема 21 (Гамильтона-Кэли). $\chi_a(A) = 0, a \in \text{End } V, a \to A \in M(m, K)$

```
Доказательство. \chi_a(t) = \det(tE - A)
B = tE - A, \widetilde{B} = (B_{ij})^T — взаимная матрица
\widetilde{B} = \begin{pmatrix} c_{11}^{m-1}t^{m-1} + \dots + c_{11}^0 & \dots \\ c_{12}^{m-1}t^{m-1} + \dots + c_{12}^0 & \dots \end{pmatrix} = t^{m-1}B_{m-1} + t^{m-2}B_{m-2} + \dots + B_0
\widetilde{B} \cdot B = \det(tE - A) \cdot E
(t^{m-1}B_{m-1} + \dots + B_0) \cdot (tE - A) = (a_mt^m + \dots + a_0) \cdot E
Приравняем коэффициенты, домножим: t^m : B_m - 1 = a_mE \mid \cdot A^m
t^{m-1} : B_{m-2} - B_{m-1}A = a_{m-1}E \mid \cdot A^{m-1}
...
t : B_0 - B_1A = a_1E \mid \cdot A
1 : -B_0A = a_0E \mid \cdot E
Вычтем строки: \Rightarrow 0 = \chi_a(A)
```

2.7. Билинейные формы

Определение 31. $f: V \times V \to K$ линейное по каждому аргументу называется билинейным отображением, то есть выполняется

1.
$$f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z)$$

2. $f(x, \alpha y + \beta z) = \alpha f(x, y) + \beta f(x, z)$
 $(e_i)_{i=1}^n - \text{базис } V, \ x = \sum_{i=1}^n x_i e_i, \ y = \sum_{j=1}^n y_j e_j$
 $f(x, y) = f(\sum_i x_i e_i, \sum_j y_j e_j) = \sum_{i,j=1}^n x_i, y_j f(e_i, e_j)$

Определение 32. $B = (b_{ij}), b_{ij} = f(e_i, e_j), 1 \le i, j, \le n$

В – матрица билинейной формы
$$f(X) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Rightarrow f(x,y) = X^T B Y$$

Пример. 1. Скалярное произведение
$$(x,y) = x_1y_1 + \dots + x_ny_n = (x_1,\dots,x_n)\begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}\begin{pmatrix} y_1 & & \\ & \vdots & & \\ & y_n & & \end{pmatrix}$$

2. $f, g \in C[a, b], (f, g) = \int_a^b f(x)g(x)dx$

Определение 33. Билинейные формы f

- 1. Симметрические: $f(x,y) = f(y,x) \forall x,y \in V$ $B = B^T$ (симметрическая матрица)
- 2. Кососимметрические: $f(x,y) = -f(y,x) \forall x,y \in V$ $B = B^T$ (кососимметрическая матрица)

2.7.1. Замена базиса

Теорема 22 (Преобразование матрицы билинейной формы при изменении базиса). $f: V \times V \to V$ K в базисе $(e_i): B$, в базисе $(e'_i): B'$ Тогда $B' = C^T B C$

Доказательство.
$$x \to X$$
 в базисе $(e_i), X'$ в базисе $(e_i')X = CX',$ $y \to Y$ в $(e_i), Y'$ в $(e_i'), Y = CY'$ $f(x,y) = X^T BY = (CX')^T B(CY') = X'^T C^T BCY' = X'^T B'Y' \Rightarrow B' = C^T BC$

2.8. Квадратичные формы

Определение 34. Квадратичной формой $Q:V\to K$, ассоциированной с некоторой симметрической билинейной формой $f: V \times V \to K$, называется q(x) = f(x,x)

Матрица квадратичной формы
$$A$$
 $(A = A^T)$ $q(x) = X^T A X, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Матрица квадратичной формы
$$A$$
 $(A = A^T)$ $q(x) = X^T A X, X = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$ $q(x) = (x_1, ..., x_n) \begin{pmatrix} a_{11} \\ \vdots \\ a_n n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i,h=1}^n a_{ij} x_i y_j$ — однородный многочлен 2 степени от $a_{ij} = a_{ji} \quad a_{ij} x_i x_j + a_{ji} x_i x_j = 2a_{ij} x_i x_j$ $q(x) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le u < j \le n} a_{ij} x_i x_j$

$$a_{ij} = a_{ji} \quad a_{ij}x_ix_j + a_{ji}x_ix_j = 2a_{ij}x_ix_j$$

$$q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le u < j \le n} a_{ij} x_i x_j$$

Определение 35. Каноническим видом квадратичной формы называется $\sum_{i=1}^{n} \lambda_i x_i^2$

Определение 36. Базис, в котором квадратичная форма имеет канонический вид, называется каноническим.

Замечание. Замена переменной ↔ переход к другому базису

Теорема 23 (Преобразование Лагранжа). V – векторное пространство над полем K, $charK \neq 2 \Rightarrow \forall q: V \rightarrow K$ может быть приведена к каноническому виду (\exists базис: q имеет канонический вид)

Доказательство. $q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{i < j}^{a_{ij}} x_i x_j$ q = 0 — доказывать нечего, будем считать $q \neq 0$.

- 1. Пусть $a_{11}=0,\,\exists i>1:a_{ii}\neq 0\Rightarrow$ сделаем замену $y_i=x_1,x_i=y_1\Rightarrow a_11y_1^2+...,$ где $a_{11}\neq 0$
- 2. $a_{ii} = 0 \forall i = 1, ..., n \Rightarrow \exists a_{ij} \neq 0, i < j \Rightarrow x_i = y_i + y_j, x_j = y_i y_j$ $a_{ij}x_ix_j \to a_{ij}(y_i + y_j)(y_i - y_j) = a_{ij} \cdot y_i^2 - a_{ij}y_j^2 \Rightarrow$ по п.1 можно считать, что $a_{11} \neq 0$
- 3. Индукция

База: n = 1 $q(x) = a_{11}x_1^2$

Индукционный переход: $n-1 \rightarrow n, a_{11} \neq 0$ в силу пункта один

$$q(x) = a_{11} \left(x_1^2 + \frac{2a_{12}}{a_{11}} x_1 x_2 + \frac{2a_{13}}{a_1 1} x_1 x_3 + \dots + \frac{2a_{1n}}{a_{11}} x_1 x_n \right) + \varphi(x_2, \dots, x_n) = a_{11} \left(x_1^2 + \frac{2a_{12}}{a_{11}} x_1 x_2 + \dots + \frac{2a_{1n}}{a_{11}} x_1 x_n \right) + a_{11} \left(\left(\frac{a_{12}}{a_{11}} x_2 \right)^2 + \dots + \dots \right) - (\dots) + \varphi(x_2, \dots, x_n) = a_{11} \left(x_1 + \frac{a_{12}}{a_{11}} x_2 + \dots + \frac{a_{1n}}{a_{11}} x_n \right)^2 - \psi(x_2, \dots, x_n) = a_{11} y_1^2 + b_{22} z_1^2 + \dots + b_{nn} z_n^2$$

2.8.1. Квадратичная форма над $\mathbb R$

 $\lambda_1 x_1^2 + \ldots + \lambda_n x_n^2$

Если находимся над полем \mathbb{C} , тогда $y_i = \sqrt{\lambda_i} x_i \Rightarrow y_1^2 + \ldots + y_r^2, r$ – ранг формы, $r \leqslant n$ Над \mathbb{R} ситуация иная. $\lambda_i > 0$ $y_i = \sqrt{\lambda_i} x_i$, $\lambda_j < 0$ $y_i = \sqrt{-\lambda_j} x_j \Rightarrow y_1^2 + \ldots + y_s^2 - y_{s+1}^2 - \ldots - y_r^2$

Определение 37. Говорят, что квадратичная форма приведена к нормальному виду, если она представляет собой сумму чистых квадратов $(y_1^2 + ... + y_s^2 - y_{s+1}^2 - ... - y_r^2)$.

Определение 38. Ранг квадратичной формы равен рангу соответствующей матрицы. $\operatorname{rank} q = \operatorname{rank} A$

Теорема 24 (Закон инерции квадратичных форм). $q: V \to \mathbb{R}$ — квадратичная форма. $\dim V = n$, $\operatorname{rank} q = r$

Параметры s и r-s при приведении квадратичной формы к нормальному виду не зависят от базиса.

Доказательство. A — матрица квадратичной формы в базисе $(e_i) \Rightarrow C^TAC$ — матрица квадратичной формы в базисе (e_i') , где C — матрица перехода от e_i к (e_i') , $\det C \neq 0$ Несложно показать, что количество линейно независимых строк одинаково у A и C^TAC . rank A = rank C^TAC = r (было доказано)

Предположим, что в базисе (e_i) квадратичная форма имеет следующий вид: $q=x_1^2+\ldots+x_s^2-x_{s+1}^2-\ldots-x_r^2$

А в базисе $(e'_i): q = x_q^2 + ... + x_t^2 - x_{t+1}^2 - ... - x_r^2$

Предположим, что t < s Рассмотрим два подпространства пространства $V: U_1 = < e_1, ..., e_s > U_2 = < e'_{t+1}, ..., e'_n >$

Рассмотрим размерность подпространства U_1 + U_2 :

 $\dim(U_1 + U_2) \le n$

С другой стороны $\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2) = s + n - t - \dim(U_1 \cap U_2) \Rightarrow \dim(U_1 \cap U_2) \geqslant s + n - t - n = s - t > 0 \Rightarrow x \in U_1 \cap U_2, \quad q(x) > 0, x \in U_1; \quad q(x) < 0, x \in U_2 \Rightarrow$ противоречие

Определение 39. Предположим, что квадратичная форма приведена. Тогда числа s и r-s называются индексами инерции или положительным и отрицательным индексами инерции. А пары чисел (s,r-s) — сигнатура квадратичной формы.

Замечание (Мотивация изучения квадратичных форм). Квадратичные формы нужны, чтобы исследовать экстремумы функций. $f(x) - f(x_0) = \sum f'_{x_i} \Delta x_i + \sum f''_{x_i x_j} \Delta x_i \Delta x_j + ...$

Определение 40. Всё рассматриваем над \mathbb{R} $q:V \to \mathbb{R}$ называется

- 1. Положительно определенной, если $q(x) > 0 \ \forall x \neq 0, x \in V$
- 2. Отрицательно определенной, если $q(x) < 0 \ \forall x \neq 0$
- 3. Положительно полуопределенной, если $q(x) \geqslant 0 \ \forall x$
- 4. Отрицательной полуопределенной, если $q(x) \le 0 \ \forall x$
- 5. Неопределенной, если $q(x) \cdot q(y) < 0 \quad \exists x,y \in V$

Пример. n = 2

1.
$$x^2 + y^2$$

2.
$$-x^2 - y^2$$

3.
$$x^2 - 2xy + y^2$$

4. –

5.
$$x^2 - y^2$$

2.8.2. Теорема Якоби

Определение 41.
$$A=\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{\nu} \end{pmatrix}$$

$$\Delta_1=a_{11},\Delta_2=\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},\dots,\Delta N=\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$
 — Главные миноры $\Delta_0=1$

Определение 42. $charK \neq 2$

 $f(x,y) = \frac{1}{2}(q(x+y)-q(x)-q(y))$ называется билинейной формой, полученной поляризацией квадратичной формы q

Упражнение. Показать, что f(x,y) – билинейная форма $q(x) = f(x,x) \ \ q(ax) = a^2 q(x)$

Определение 43. Если q положительно/отрицательно определена/полуопределена, то её поляризация f(x,y) называется положительно/отрицательно определенной/полуопределенной

Определение 44. Матрица A называется положительно определенной, если соответствующая ей билинейная форма положительно определена.

Теорема 25. Матрица A (Над \mathbb{R}) — положительно определенная \Leftrightarrow \exists невырожденная C : A = $C^T \cdot C$

Доказательство. А – положительно определена \Leftrightarrow соответствующая ей билинейная форма f(x,y) положительно определена, q(x) – положительно определена. \Leftrightarrow \exists базис: матрица квадратичной формы q – E $(x_1^2 + ... + x_n^2) \Leftrightarrow \exists$ матрица перехода C : E = $C^TAC \Leftrightarrow A$ = $(C^T)^{-1} \cdot C^{-1}$

Теорема 26 (Якоби, критерий положительной определенности). Теорема верна для любого поля, но в основном мы находимся над \mathbb{R} $q:V \to K, char K \neq 2, q \to A, \Delta_i \neq 0, i=1,...,n \Rightarrow \exists$ базис $(e_i'):q(x)=\frac{\Delta_0}{\Delta_1}x_1^2+\frac{\Delta_1}{\Delta_2}x_2^2+...+\frac{\Delta_{n-1}}{\Delta_n}x_n^2$

```
Доказательство. По индукции. n=1q(x)=a_{11}x_1^2=\frac{1}{a_{11}}(a_{11}x_1)^2 Индукционный переход: n-1\to n (e_i),i=1,...,n- исходный переход: n-1\to n исходный переход: n-1\to n исходный переход: n-1\to n вычеркнули последнюю строчку и столбец. n-1\to n n-1\to n
```

Следствие. $q:V \to \mathbb{R}$ – квадратичная форма

Тогда отрицательный индекс инерации q равен числу перемен знака в последовательности $\Delta_0, \Delta_1, ..., \Delta_n$

```
Теорема 27 (Критерий Сильвестра). q: V \to \mathbb{R} q – положительно определена \Leftrightarrow \Delta_i > 0, i = 1, ..., n
```

```
Доказательство. \Leftarrow . Очевидно. \Rightarrow . По индукции. n=1 q=a_{11}x_1^2, a_{11}>0 Индукционный переход: n-1\to n U=< e_1,...,e_{n-1}> \overline{q}=q\big|_U — положительно определена \Rightarrow \Delta_i>0, i=1,...,n-1 q — положительно определена \Rightarrow A —положительно определена \Rightarrow A=C^TC\Rightarrow \Delta_n=\det A=(\det C)^2>0
```

2.8.3. Ортогональные преобразования

Определение 45. X = CY — замена переменных. Соответствует переходу от одного базиса к другому.

Определение 46. Матрица C называется ортогональной, если она обладает следующим свойством $C^TC = E \Leftrightarrow \sum_{k=1}^n c_{ik}c_{jk} = \begin{cases} 1, i=j \\ 0, i\neq j \end{cases} \Leftrightarrow \sum_{k=1}^n c_{ki}c_{kj} = \begin{cases} 1, i=j \\ 0, i\neq j \end{cases}$

Пример.
$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
, $\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

Теорема 28. $\forall q:V\to\mathbb{R}$ \exists ортогональное преобразование $C:q=\lambda_1x_1^2+\ldots+\lambda_nx_n^2,\lambda_i$ — собственные числа матрицы A

Раздел #3: Элементы теории полей

Пример. Примеры полей: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p, K(x)$.

Notation. $\mathbb{Z}_p = \mathbb{F}_p$ – конечное поле с p элементами.

Определение 47. Если $K \subset L, K, L$ — поля, то K называется *подполем* поля L, а L — расширением поля K.

Определение 48. Если в поле K нет подполей, отличных от K, то поле называется npo-cmым.

Теорема 29 (О простых подполях). Любое поле содержит простое подполе, изоморфное либо полю \mathbb{Q} , либо \mathbb{F}_p .

Доказательство. Возьмем единицу и будем прибавлять её к самой себе. Если char K = 0, то таким образом мы сможем получить любое целое число. К тому же, у нас есть противоположные по знаку числа, а значит $\mathbb{Z} \subset K$. Более того, в поле есть также и обратные числа, а значит и $\mathbb{Q} \subset K$.

Если же char
$$K = p$$
, то $\underbrace{1 + ... + 1}_{p} = 0$. Рассмотрим множество $\{0, 1, ..., p - 1\} = \mathbb{F}_{p}$.

Пример. $\mathbb{R}(i) = \mathbb{C}$.

3.1. Факторкольцо

Пусть R – ассоциативное коммутативное кольцо с 1, K – поле.

Определение 49. Множество $I \subset R$ называется udeanom кольца R, если

- 1. I аддитивная группа кольца R
- $2. \ \forall r \in R \ \forall a \in I \ ra \in I$

Пример. $I = \{0\}$.

Пример. $R = \mathbb{Z}, I = m\mathbb{Z}.$

Пример. R = K[x]. Тогда $I = \{ f \in K[x] : f(a) = 0 \}$.

Пример. $a_1, ..., a_N \in R$. Тогда $I = \{r_1 a_1 + ... + r_n a_n, r_I \in R, i = 1, ..., n\}$.

Определение 50. $I = \{r_1a_1 + ... + r_na_n, r_i \in R\}$ – идеал, порожденный $a_1, ..., a_n \in R$.

Notation. $I = (a_1, ..., a_n)$ – идеал, порожденный $a_1, ..., a_n \in R$.

Определение 51. Если идеал I = (a), то он называется *главным*.

Определение 52. Если в области целостности R любой идеал является главным, то R – кольцо главных идеалов.

Теорема 30 (Кольцо многочленов – кольцо главных идеалов). У любого $I \neq (0)$ идеала в K[x] $\exists !$ нормированный $f \in K[x] : I = (f)$.

Доказательство. Выберем среди $f \in I$ многочлен с наименьшей степенью. Пусть

$$f = a_n x^n + \dots, \quad a_n \neq 0$$

Тогда $g = a_n^{-1} f \in I$.

Возьмем произвольный $h \in I$ и поделим его на g, т.е.

$$h = gq + r$$
, $g, r \in K[x], \deg r < \deg g$

Тогда $r = h - gq \in I$. Получаем противоречие, а значит $r = 0 \Rightarrow I = (g)$.

Докажем теперь однозначность. Пусть $I = (g_1), I = (g_2)$. Тогда

$$g_1=c_1\cdot g_2,\quad c_1\in R,\qquad g_2=c_2\cdot g_1,\quad c_2\in R$$

Поэтому

$$g_1 = c_1 \cdot c_2 \cdot g_1 \Rightarrow c_1 \cdot c_2 = 1 \Rightarrow c_1 = c_2 = 1$$

Пример. $\mathbb{R}[x]$.

- $(x^2 + 1) = \{f(x) \cdot (x^2 + 1)\}$
- $(x-1) = \{f(x) \cdot (x-1)\}$
- $(x^2 5x + 4) = \{f(x)(x^2 5x + 4)\}$

Определение 53 (Конструкция факторкольца). I – идеал, R – ассоциативное коммутативное кольцо с 1. Рассмотрим

$$R/I = \{r + I, r \in R\}$$

Будем говорить, что r и r' сравнимы по $\mod I$ и писать $r \equiv r' \pmod{I}$, если $r - r' \in I$. Определим сложение и умножение на R/I.

1.
$$\overline{r} + \overline{s} = \overline{r+s}$$
, r.e. $(r+I) + (s+I) = r+s+I$

2.
$$\overline{r} \cdot \overline{s} = \overline{rs}$$
, r.e. $(r+I) \cdot (s+I) = rs + I$.

Теорема 31 (Корректность определения операций). Операции сложения и умножения в факторкольце определены корректно.

Доказательство. 1. Самостоятельно

2. $r \equiv r' \mod I$, $s \equiv s' \mod I$. Тогда

$$\overline{r}' \cdot \overline{s}' = (r'+I) \cdot (s'+I) = r' \cdot s' + I = (r+a) \cdot (s+b) + I = rs + rb + as + ab + I = rs + I = \overline{r} \cdot \overline{s}$$

Третье равенство верно, т.к. $r \equiv r' \mod I \Leftrightarrow r = r' + a, a \in I$. Аналогично, $s' = s + b, b \in I$.

Теорема 32. R/I – кольцо.

Определение 54. Множество R/I называется факторкольцом.

3.2. Расширение полей

Определение 55. Поле $K(\theta_1,...,\theta_n)$ – минимальное поле, содержащее само поле K и элементы $\theta_1,...,\theta_n$.

Определение 56 (Простое расширение). Если $L = K(\theta), \theta \notin K$, то L – простое расширение.

Пример. $\mathbb{R}(i)$

Пример. $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d}, a, b \in \mathbb{Q}\}, d$ – свободное от квадратов.

Пример. $\mathbb{Q}(\sqrt[n]{d}) = \{a_0 + a_1 \sqrt[n]{d} + a_2 \sqrt[n]{d^2} + ... + a_{n-1} \sqrt[n]{d^{n-1}}, a_i \in \mathbb{Q}, i = 0, ..., n-1\},$ где $\forall p \ d \not \mid p^n, p$ – простое.

Пример. $\mathbb{Q}(\pi) \simeq \mathbb{Q}(x)$. π – трансцендентный элемент.

Определение 57. Элемент $\theta \in L$ алгебраичен над полем K, если θ – корень многочлена $f \in K[x]$. Иначе, θ – трансцендентный элемент над K.

Определение 58. Пусть $K \subset L$ и $\theta \in L$ – алгебраичен над K. Нормированный многочлен минимальной степени $f \in K[x] : f(\theta) = 0$ называется минимальным многочленом. Степень минимального многочлена – это степень элемента θ над K.

Теорема 33 (Неприводимость минимального многочлена). Пусть $K \subset L, \theta$ – алгебраичен над K, f – минимальный многочлен θ . Тогда

- 1. f неприводим над K;
- 2. Если $g \in K[x] : g(\theta) = 0$, то f|g.

Доказательство. 1. Предположим, что f приводим. Тогда $f = h_1 h_2, \deg h_i \geqslant 1, i = 1, 2$. Тогда

$$f(\theta) = 0 \Rightarrow h_1(\theta)h_2(\theta) = 0 \Rightarrow h_i(\theta) = 0$$

Но $\deg h_i < \deg f$, а значит мы получили противоречие минимальности f. Отсюда, f — неприводим.

2. Поделим g на f:

$$g = f \cdot q + r$$
, $\deg r < \deg f$

Тогда

$$g(\theta) = f(\theta) \cdot q(\theta) + r(\theta) \Rightarrow r(\theta) = 0 \Rightarrow r = 0$$

Откуда получаем, что f|g.

Определение 59. Пусть $K \subset L$. Рассмотрим L как векторное пространство над полем K. Тогда *степенью расширения* L над K называется размерность размерность векторного пространства L над K.

Notation. $[L:K] = \dim_K L$ – степень расширения L над K.

Замечание. Расширение называется конечным, если [L:K] < ∞.

Теорема 34. Любое конечное расширение является алгебраичным.

Доказательство. Пусть $K \subset L$, [L:K] = n. Возьмем произвольный элемент $\theta \in L$ и рассмотрим его степени: $1, \theta, \theta^2, ..., \theta^{n-1}, \theta^n$. Этот набор элементов – линейно зависимый, поэтому существует $a_i \in K$ такие, что

$$a_0 + a_1\theta + \dots + a_n\theta^n = 0$$

где не все a_i нулевые. А это и значит, что существует $g \in K[x] : g(\theta) = 0$.

Теорема 35. Пусть $K \subset L \subset M$. Предположим, что $[L:K], [M:L] < \infty$. Тогда расширение M над K конечно и $[M:K] = [M:L] \cdot [L:K]$.

Теорема 36 (Структура простых алгебраичных расширений). Пусть $K \subset K(\theta)$, где θ – алгебраичен над K, $\theta \notin K$; f – минимальный многочлен θ , $\deg f = n$. Тогда

- 1. $K(\theta) \simeq K[x]/(f)$;
- 2. $[K(\theta):K]$ = n и $\{1,\theta,\theta^2,...,\theta^{n-1}\}$ базис $K(\theta)$ над K;
- 3. Если $\alpha \in K(\theta)$ алгебраичен над K, то степень элемента α делит n.

Пример. $\mathbb{F}_2 = \{0, 1\}$. Рассмотрим неприводимый многочлен 2-й степени над \mathbb{F}_2 :

$$f = x^2 + x + 1, \qquad \theta$$
 — корень

 $\mathbb{F}_2[x]/(x^2+x+1) = \{0,1,x,x+1\}.$

$$x \cdot x \equiv x + 1 \pmod{x^2 + x + 1}$$
$$x(x+1) \equiv 1$$
$$(x+1)(x+1) \equiv x$$