

Проект по биоинформатике

Группа 2

Anopheles

Малярийные комары

Основные признаки представителей

- 1. Тело тёмного или чёрного цвета
- 2. При отдыхе поднимают брюхо вверх
- 3. Усики такой же длины, как жало, длинные ноги
- 4. На крыльях тёмные пятна
- 5. По размеру немного меньше обычных комаров
- 6. Распространены по всему миру, кроме крайнего Севера
- 7. Длина генома примерно 250 Mb, 4 хромосомы

Эпигенетика и устройство генома

- 1. Низкий уровень метилирования, метилируется в основном тРНК
- 2. Главный эпигенетический механизм гистоновые модификации, связанные с активацией промоторов или репрессией транскрипции
- 3. В геноме много повторов
- 4. Структура хроматина коррелирует с экспрессией генов и схожа у всех видов
- 5. Геном разделен на выделенные компартменты, коррелирующие с экспрессией генов
- 6. Более короткие TADы в A-компартменте. Более длинные в B-компартменте. Самые длинные TADы расположены в регионах с маленьким количеством генов и низкой экспрессией

Участник	Вид	Условия обитания	GC содержание
Либина Яна	Anopheles gambiae	Стоячие пресные водоёмы	45%
Рябов Олег	Anophel.es darlingi	Реки: прибрежье, заводи	48%
Векшин Кирилл	Anopheles stephensi	Стоячие пресные водоёмы	45%
Нелипович Софья	Anopheles albimanus	Стоячие пресные водоёмы	49%
Синицына Владислава	Anopheles arabiensis	Мелкие, хорошо прогреваемые водоемы	44.5%
Лазарев Никита	Anopheles sinensis	Теплые пресные водоёмы	44%
Ромашов Федор	Anopheles funestus	Мелководные пресные заросшие водоёмы	41.5%
Скворцова Ирина	Anopheles minimus	Пресные воды, холмы	42%
Волянский Никита	Anopheles coluzzii	Медленно проточные или стоячие водоемы	44.5%
Старостин Ярослав	Anopheles aquasalis	Манговые болота,	48%

Anopheles gambiae s.s.

- Scaffold N50 = 99.1 Mb, Contig N50 = 10.6 Mb
- Число статей на PubMed: 1,132
- Длина генома: 264.5 Mb
- Число генов: 15 165

- Эпигенетика и организация генома:
 - Н3К27ас активная транскрипция, Н3К27me3 подавленные гены
 - Уровень метилирования ДНК крайне низок
 - В гетерохроматине низкая плотность генов, повторяющиеся транспозоны

Anopheles darlingi

- Scaffold N50 = 95 Mb, Contig N50 = 19.2 Mb
- Число статей на PubMed: 475
- Длина генома: 181.6 Mb
- Число генов: 12 393
- Места обитания: от Мексики до Аргентины. Влажный тропический климат. обитают в прибрежных, речных и стоячих водоёмах. Температура: 17.5°C 33°C
- Эпигенетика и организация генома:
 - Н3К4me3 активные промотор, Н3К27me3 репрессивная метка Polycomb
 - НЗК9ас, НЗК27ас маркер активных энхансеров и промоторов
 - Уровень метилирования ДНК очень низкий

Anopheles stephensi

- Scaffold N50 = 88.7 Mb, Contig N50 = 38.1 Mb
- Число статей на PubMed: 2031
- Длина генома: 243.5 Mb
- Число генов: 15 394
- Места обитания: Индийский субконтинент, а также регион Ближнего Востока и Южной Азии.
- Эпигенетика и организация генома:
 - Уровень метилирования ДНК у An. stephensi крайне низок, что типично для насекомых.
 - Крупные инверсии (например, 16.5 Mbp 2Rb) связаны с адаптацией к урбанизированным условиям.
 - В гетерохроматине обнаружены 29 ранее скрытых генов, связанных с устойчивостью к инсектицидам (например, мутации в gaba и vgsc).

Anopheles albimanus

Scaffold N50 = 89 Mb, Contig N50 = 25 Mb

• Число статей на PubMed: 592

Длина генома: 172.6 Mb

Число генов: 12 945

- Эпигенетика и организация генома:
 - Обнаружена полноценная система ДНК-метилирования, ключевым ферментом которой является DNMT2; также присутствуют TET2 (деметилаза) и белок с доменом связывания с метилированными CpG (MBD).
 - В геноме выявлены основные модификации гистонов: H3K4me3(акт промотор), H3K27ac(акт энхансер), H3K9ac(акт промотор), H3K9me3(репрессивная)
 - Уровень метилирования ДНК низкий

Anopheles arabiensis

- Scaffold N50 = 95.7 Mb, Contig N50 = 23.9 Mb
- Число статей на PubMed: 1491
- Длина генома: 256.8 Mb
- Число генов: 15 763
- Места обитания: субсахарская Африка, с исключением пустынных районов Сахары, южной части ЮАР и некоторых участков бассейна Конго Температура: 14.6°C 34.4°C
- Эпигенетика и организация генома:
 - Н3К27ас—активные домены; Н3К27те3—репрессивные домены.
 - Oтсутствие CpG-метилирования: утрачены DNMT1/3; сохранён DNMT2 для tRNA
 - Ні-С анализы показывают чёткое разделение генома на активные и репрессивные компартменты, а также наличие ТАD-подобных доменов и регуляторных петель между энхансерами и промоторами

Anopheles sinensis

Scaffold N50 = 814.2 kb, Contig N50 = 30.1 kb

• Число статей на PubMed: 530

• Длина генома: 220.8 Mb

• Число генов: 19 352

- Эпигенетика и организация генома:
 - У Anopheles sinensis уровень ДНК-метилирования крайне низкий; обнаружен только фермент DNMT2, вероятно, метилирующий тРНК
 - Выявлена m6A-модификация РНК, участвующая в регуляции сперматогенеза
 - Основу эпигенетической регуляции составляют гистоновые модификации:
 активирующие (НЗК4me3, НЗК27ас, НЗК9ас) и репрессивные (НЗК9me3, НЗК27me3)

Anopheles funestus

- Scaffold N50 = 84.6 Mb, Contig N50 = 24.1 Mb
- Число статей на PubMed: 1,183
- Длина генома: 250.7 Mb
- Число генов: 14 819
- Места обитания: субсахарская Африка (Сенегал Мадагаскар). Личинки развиваются в постоянных или полупостоянных пресноводных водоёмах (болота, пруды, рисовые поля, берега рек). Диапазон развития 18–30 °С (при 15 °С и 35 °С развитие прекращается).
- Эпигенетика и организация генома:
 - НЗК27ас активная транскрипция; НЗК27me3 репрессивные области
 - Уровень метилирования ДНК крайне низок (< 0.5%)
 - В гетерохроматине низкая плотность генов и обилие транспозонов
 - В гетерохроматине локализованы гены регуляции хроматина (НР1, СВХ)

Anopheles minimus

Scaffold N50 = 89Mb, Contig N50 = 1.2 Mb

Число статей на PubMed: 141

Длина генома: 240.2 Mb

Число генов: 2 330

- Эпигенетика и организация генома:
 - Н2К27ас активная транскрипция, Н2К4те3 инициация транскрипции
 - В репродуктивных тканях относительно высокий уровень дифференциальной экспрессии
 - Встречается много консервативных long non-coding RNA последовательностей
 - Низкий уровень метилирования

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-025-11687-7

Anopheles coluzzii

- Scaffold N50 = 95.2Mb, Contig N50 = 18.8 Mb
- Число статей на PubMed: 603
- Длина генома: 262.6 Mb
- Число генов: 14616
- Места обитания: Западная (Сенегал, Гана, Нигерия) и Центральная (Камерун, Чад, Габон) Африка. Тропический и субэкваториальный климат. Оптимальная температура – 24-30 °C.
- Эпигенетика и организация генома:
 - Н2К4me3 активный маркер, Н3К27me3 репрессивный маркер
 - Характерны гетерохроматиновые области, особенно вокруг центромер и теломер
 - Крайне низкий уровень метилирования

Anopheles aquasalis

- Scaffold N50 = 90Mb, Contig N50 = 38 Mb
- Число статей на PubMed: 139
- Длина генома: 170.5 Mb
- Число генов: 12877
- Места обитания: Прибрежные регионы Центральной и Южной Америки (Бразилия, Венесуэла). Оптимальная температура – 26-30 °C.
- Эпигенетика и организация генома:
 - активный маркеры: H3K4me3 (промотер), H3K27ac (энхансер)
 - репрессивные маркеры: НЗК27me3, НЗК9me3
 - Гистоны участвуют в регуляции иммунного ответа и развития
 - Много транспозонов (до 20% генома), низкий уровень метилирования

Спасибо за внимание!

bombardini malarini