cosc 363 Assignment 2

<u>Due</u>: Friday, **31**st **May** 11:55pm.

Dropdead date (15% penalty): 7th June, 11:55pm

Refraction vs Transparency

A transparent object should <u>not</u> be modelled as a special case of a refractive surface with $\eta_1 = \eta_2 = 1$

Box

A shear transformation of a box (trivial to implement): 0.5 marks

Rotational transformation of a box: 1 mark

Cylinder

• See slide [09]-38

$$(x - x_c)^2 + (z - z_c)^2 = R^2$$

 $x = x_0 + d_x t$ $z = z_0 + d_z t$

$$\mathbf{n} = (x - x_c, 0, z - z_c)$$

Cylinder + Shear

$$[x - (x_c + ky)]^2 + (z - z_c)^2 = R^2$$

$$x = x_0 + d_x t; \quad y = y_0 + d_y t; \quad z = z_0 + d_z t;$$

$$\mathbf{n} = (x - x_c - ky , 0, z - z_c)$$

Note: This is an approximation.

Submission

- Provide build details/command in the report
- Please submit report in PDF format only
- Please package the files as a zip file (not rar, gz, 7z etc.)