

Lab 7

1. Here is some Python code to create a list of the eight planets:

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"]

- (a) Write a line of code to print the fourth planet, which should be "Mars" (don't just print "Mars", access the element from inside the list)
- (b) Write some code to tell you the position of "Saturn" within the list
- (c) A new planet is discovered! It is named "Minerva" (after another Roman god). The planet orbits past Neptune. Write some code to add this planet to the "planets" list.
- (d) The planet "Earth" is to be renamed to "Terra". Write some code to make this happen.
- (e) "Mars" was "accidentally" destroyed by Elon Musk. Write some code to remove it from the list.
- (f) Write some code to loop over every planet in the list and print its position and name. Example output: Planet 1 is Mercury Planet 2 is Venus etc...
- 2. Write a Python program to plot the first N terms of the Fibonacci sequence (term value on the y axis, term number on the x). N is supplied by the user. Make sure to label your axes!
- 3. A physics student is measuring the acceleration vs mass for a cart being pulled by a constant force. Here is her data:

Mass [kg]	Acceleration [m·s ⁻¹]
0.1	302.6
0.2	147.3
0.3	97.6
0.4	72.7
0.5	62.8
0.6	46.4
0.7	42.5
0.8	38.8
0.9	34.6
1.0	29.3

Make a graph of acceleration vs mass. You should use a scatter plot to show data points like this. Calculate the average acceleration and plot it as a horizontal line using the pyplot.axhline function

4. Modify your projectile motion code (homework 2) so that it graphs x_{max} vs θ (like what I showed in class). Make sure to label your axes. Add a vertical line (you can use pyplot.axvline) to show which θ value maximizes x_{max} .