Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

Exercice 6:

On donne les grammaires pour les langages suivants :

3) $L_3 = \{a^i b^j / i \ge j+1, j \ge 0\}$

Exemples: $L_3 = \{a, aab, aaab, aaaa, aaabb, aaaaab,, \}$

Ici les deux parties du mot sont dépendantes : on ne peut pas générer les a et les b séparément.

 $i \ge j+1 \iff j+k+1 / k \ge 0$

dans ce cas : $a^i b^j = a^{k+1} a^j b^j$ (par remplacement de i)

Donc, une grammaire pour L₃ est la suivante :

 $G=<T, N, S, P> où T=\{a,b\}$ $N=\{S, A, B\}$ P:

 $S \rightarrow AB$

 $A \rightarrow aA/a$ /* la partie des a seuls avec au moins un a^*/a

B \rightarrow aBb / ε /* la partie $a^{j}b^{j}$ qui est de la forme $a^{n}b^{n}*/$

Cette grammaire n'est pas de type 3 à cause de la première et la quatrième règle. Elle est de type 2 car toutes les règles sont de la forme $A \rightarrow \alpha$, $A \in N$ et $\alpha \in (T \cup N)^*$

Remarque: Puisque = j+k+1, on peut écrire $a^i b^j = a^j a^{k+1} b^j$ avec $j,k \ge 0$ et dans ce cas on peut avoir une autre grammaire pour ce langage qui est la suivante :

G=<T, N, S, P> où T= $\{a,b\}$ N= $\{S\}$ P:

S→ aS / aSb / a /*avec chaque b à droite il y a un a à gauche mais on peut avoir des a supplémentaires à gauche. Minimum un a*/

4) $L_4 = \{c^n \ w \ / \ w \in \{a,b\}^* \ \text{et} \ | \ w | = n \ \text{et} \ n \ge 0\}$

Exemples: $L_4 = \{ \varepsilon, ca, cb, ccaa, ccba, cccaba, cccbba...., ccc...(a <math>\cup$ b) (a \cup b) (a \cup b), ... \} Les mots de L_4 sont composés de **n** occurrences de la lettre **c** suivis d'un mot de longueur **n** (composé de **n** lettres, chacune peut être **a** ou **b**).

Donc, une grammaire pour L₄ est la suivante :

 $G=<T, N, S, P> où T=\{a,b,c\} N=\{S\} P:$

 $S \rightarrow cSa / cSb / \varepsilon$

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

Pour chaque \mathbf{c} à gauche, il y a un \mathbf{a} ou un \mathbf{b} à droite. La sortie se fait par $\mathbf{\epsilon}$. Cette grammaire est de type 2.

```
5) L_5 = \{a^{2m} b^{2n} c^{2p} / 2m + n + 1 = p, n \ge 1 \text{ et } m, p \ge 0 \}
Exemples: L_5 = \{bbcccc, aabbcccccccc, ... \}
```

D'après la condition, on remplace \mathbf{p} par $2\mathbf{m}+\mathbf{n}+1$ dans la forme des mots et on obtient : $\mathbf{a^{2m}} \mathbf{b^{2n}} \mathbf{c^{2p}} = \mathbf{a^{2m}} \mathbf{b^{2n}} \mathbf{c^2} \mathbf{c^{2n}} \mathbf{c^{4m}}$ avec $n \ge 1$ et $m \ge 0$

Dans la nouvelle forme des mots, les correspondances sont les suivantes :

Pour 2 **a** à gauche (extérieur), ça leur correspond 4 **c** à droite : $\frac{\mathbf{a}^{2m}}{\mathbf{b}^{2n}} \mathbf{c}^2 \mathbf{c}^{2n} \frac{\mathbf{c}^{4m}}{\mathbf{c}^{4m}}$ Pour 2 **b** à gauche (intérieur), ça leur correspond 2 **c** à droite : $\mathbf{a}^{2m} \frac{\mathbf{b}^{2n}}{\mathbf{c}^{2}} \mathbf{c}^2 \frac{\mathbf{c}^{2n}}{\mathbf{c}^{4m}}$ Il y a 2 **c** au milieu.

Donc, une grammaire pour L₄ est la suivante :

```
G=<T, N, S, P> où T=\{a,b,c\} N=\{S, A\} P:
```

```
S→ aaScccc / A
A→ bbAcc / bbcccc
/* pour 2 a à gauche, ça correspond 4 c à droite*/
/* pour 2 b à gauche, ça correspond 2 c à droite. La sortie par bbcccc car au moins n=1 et donc p=2*/
```

Cette grammaire est de type 2.

```
6) L_6 = \{a^m b^n c^p / m > n \text{ ou } 2n \le p \text{ et } m, n, p \ge 0 \}
```

```
Exemples: L_5 = \{a, acc, aabcc, bcc, aabbcccc, ...\}
```

Ici, il y a deux conditions combinées par un ou. Donc, on peut voir L₆ comme étant l'union de deux langages : le premier respectant la première condition et le deuxième respectant la deuxième condition.

On va étudier les deux conditions séparément :

```
Condition 1) m > n \Leftrightarrow m = n + k avec k > 0.
Dans ce cas : a^m b^n c^p = a^k a^n b^n c^p avec n,p \ge 0 et k > 0 (k, n, p sont indépendants)
Donc la grammaire est : G_1 = \langle T_1, N_1, S_1, P_1 \rangle où T_1 = \{a,b,c\} N_1 = \{S_1, A_1, B_1, C_1\} P_1:
```

```
S_1 \rightarrow A_1 B_1 C_1 /* les trois parties du mot */

A_1 \rightarrow aA_1 / a /* la première partie : une suite aléatoire de a. La sortie par a (k>0)*/

B_1 \rightarrow aB_1 b / \epsilon /* la deuxième partie : la séquence a^n b^n. La sortie par \epsilon */

C_1 \rightarrow cC_1 / \epsilon /* la troisième partie : une suite aléatoire de c. La sortie par \epsilon */
```

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

Condition 2) $p \ge 2n \Leftrightarrow p = 2n+j$ avec $j \ge 0$.

Dans ce cas : $a^m b^n c^p \Leftrightarrow a^m b^n c^{2n} c^j$ avec m, n, $j \ge 0$ (m, n, j sont indépendants)

Donc la grammaire est:

 $G_2 = \langle T_2, N_2, S_2, P_2 \rangle$ où $T_2 = \{a,b,c\}$ $N_2 = \{S_2, A_2, B_2, C_2\}$ P_2 :

 $S_2 \rightarrow A_2B_2C_2$ /* les trois parties du mot */

 $A_2 \rightarrow aA_2 / \epsilon$ /* la première partie : une suite aléatoire de a. La sortie par ϵ */

 $B_2 \rightarrow bB_2 cc / ε$ /* la deuxième partie : la séquence aⁿbⁿ. La sortie par ε */

 $C_2 \rightarrow cC_2 / \epsilon$ /* la troisième partie : une suite aléatoire de c. La sortie par ϵ */

Ainsi, on obtient la grammaire globale, en ajoutant juste un nouvel axiome S et une nouvelle règle $S \rightarrow S_1 / S_2$ et en maintenant toutes les productions de G_1 et de G_2 .

Ainsi, la grammaire qui génère L₆ est la suivante :

G=
$$\langle T, N, S, P \rangle$$
 où T= $\{a,b,c\}$ N= $N_1 \cup N_2 \cup \{S\}$, P= $P_1 \cup P_2 \cup \{S \rightarrow S_1 / S_2\}$

Remarques : les non terminaux de la grammaire globale, sont ceux de la première, plus ceux de la deuxième, plus S (nouvel axiome). S_1 et S_2 ne sont plus axiomes. L'ensemble des productions de la grammaire globale est composé des productions de la première grammaire, plus celles de la deuxième en leur ajoutant la règle $S \rightarrow S_1 / S_2$.

Cette grammaire est de type 2.

8)
$$L_8 = \{ w \in \{a,b,c\} * / | w|_c = 3p+1, p \ge 0 \}$$

Exemples : $L_8 = \{$ c, cb, acab, cccc, bacaacabbebeaa, ccebebaaaa, ... $\}$ Les mots de L_8 sont composés des mots où le nombre de **c** est un multiple de 3 plus 1 (3p+1). Aucune condition sur le nombre de **a** ou le nombre de **b**.

Remarque : d'une manière générale, le nombre de **c** dans un mot quelconque peut être : soit un multiple de 3, soit un multiple de 3 plus 1, soit un multiple de 3 plus 2. Notons qu'un nombre multiple de 3 plus 3 est multiple de 3.

On peut écrire $|w|_c = r$ [3] qui se lit le nombre de c est congrue à r modulo 3 avec $r \in \{0, 1, 2\}$. Donc, on peut répartir les mots de X^* en 3 classes d'équivalences (3p, 3p+1 et 3p+2).

Si on ajoute une lettre \mathbf{a} ou \mathbf{b} à un mot, le nombre de \mathbf{c} reste inchangé mais si on ajoute un \mathbf{c} , il augmente de 1 (modulo 3), comme illustré dans le tableau suivant :

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

w c\lettre	a	b	c
$ \mathbf{w} _{\mathbf{c}} = 3\mathbf{p}$	3p	3p	3p+1
$ w _c = 3p+1$	3p+1	3p+1	3p+2
$ w _c = 3p+2$	3p+2	3p+2	3p

Donc, une grammaire pour L₈ est la suivante :

$$G= où T=\{a,b,c\} N=\{S, A, B\}$$

S: représente les mots qui ont le nombre de c multiple de 3 (3p)

A : représente les mots qui ont le nombre de c multiple de 3 plus 1 (3p+1).

B: représente les mots qui ont le nombre de c multiple de 3 plus 2 (3p+2).

L'ensemble des productions P est :

S→ aS/bS/cA /* Si on génère a ou b, le nombre de c ne change pas. Si on génère c, il devient 3p+1*/

A → aA / bA / cB / ε /* Si on génère a ou b, le nombre de c ne change pas. Si on génère c, il devient 3p+2. Ici, on peut s'arrêter à n'importe quel moment*/

B→ aB/bB/cS /* Si on génère a ou b, le nombre de c ne change pas. Si on génère c, il redevient 3p*/

Cette grammaire est de type 3.