Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 14 30 stycznia 2020 r.

M14.1. I punkt Niech dla $p \in \{1, 2, \infty\}$ symbol $\|\cdot\|_p : \mathbb{R}^{n \times n} \to \mathbb{R}_+$ oznacza normę macierzy indukowaną przez p-tą normę wektorową. Wykazać, że dla dowolnych macierzy $A, B \in \mathbb{R}^{n \times n}$ zachodzi nierówność

$$||AB||_p \leqslant ||A||_p ||B||_p$$
.

M14.2. 1 punkt Niech $B = [b_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą o elementach

$$b_{ii} = 1$$
 $(i = 1, 2, ..., n),$
 $b_{ij} = -1$ $(i < j),$
 $b_{ij} = 0$ $(i > j).$

Sprawdzić, że $\det B \ll \operatorname{cond}_{\infty}(B)$, gdzie $\operatorname{cond}_{\infty}(B) := \|B\|_{\infty} \|B^{-1}\|_{\infty}$. Jaki stąd wniosek?

M14.3. 1 punkt Jak ocenimy uwarunkowanie układu Ax = b, o macierzy

$$A = \left[\begin{array}{cc} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{array} \right],$$

dla $0 < \varepsilon \le 0.01$?

M14.4. I punkt Niech \tilde{x} będzie przybliżonym rozwiązaniem układu Ax = b, gdzie det $A \neq 0$, $b \neq \theta$. Niech $r := b - A\tilde{x}$ oznacza *resztę*. Wykazać, że wówczas zachodzą nierówności

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| \le \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|A\|}, \qquad \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \le \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|},$$

gdzie $x := A^{-1}b$ jest dokładnym rozwiązaniem.

M14.5. I punkt Niech $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą dominującą przekątniowo, tj. taką, że

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n).$$

Wykazać, że metoda eliminacji Gaussa bez wyboru elementów głównych zachowuje tę własność, tzn. że wszystkie macierze $A^{(k)}$ są dominujące przekątniowo. Wywnioskować stąd, że każda macierz dominująca przekątniowo jest nieosobliwa i posiada rozkład LU.

M14.6. I punkt Załóżmy, że wszystkie wartości własne λ_i macierzy $A \in \mathbb{R}^{n \times n}$ są rzeczywiste i spełniają nierówności

$$0 < \alpha \leqslant \lambda_i \leqslant \beta$$
 $(i = 1, 2, \dots, n).$

Wykazać, że metoda iteracyjna Richardsona

$$\boldsymbol{x}^{(k+1)} = (I - \tau A)\boldsymbol{x}^{(k)} + \tau \boldsymbol{b} \qquad (k \geqslant 0),$$

zastosowana do rozwiązania układu równań liniowych Ax = b, jest zbieżna, jeśli $0 < \tau < 2/\beta$.

M14.7. 1 punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, tj.

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n),$$

to $\|B_J\|_{\infty} < 1$ i metoda Jacobiego jest zbieżna.

- **M14.8.** I punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, to $||B_S||_{\infty} < 1$, a więc metoda Gaussa-Seidela jest zbieżna.
- **M14.9.** 1 punkt Niech macierz $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ spełnia warunki

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}| \qquad (j = 1, 2, \dots, n).$$

(Mówimy, że A jest macierzą z dominującą przekątną kolumnowo.)

Pokazać, że metoda iteracyjna Jacobiego, zastosowana do układu równań o macierzy A, jest zbieżna.

M14.10. I punkt Niech $T \in \mathbb{R}^{n \times n}$ będzie macierzą trójprzekątniową

$$T = \begin{bmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & b_3 & a_3 & c_3 \\ & \ddots & \ddots & \ddots \\ & & b_{n-1} & a_{n-1} & c_{n-1} \\ & & & b_n & a_n \end{bmatrix}.$$

Wyznaczyć rokład trójkątny macierzy T – przy założeniu, że istnieje.