Теорія груп і симетрія Представлення груп

Олександр Зенаєв

Представлення груп

Нехай G — група, V — векторний простір (див. [2] розділ 2.1). Представлення (representation) групи G на V — це гомоморфізм груп

$$\rho: G \rightarrow GL(V),$$

який кожному елементу $g \in G$ ставить у відповідність оборотний лінійний оператор ho(g) на V, так що

$$\rho(g_1g_2)=\rho(g_1)\rho(g_2),\quad \forall g_1,g_2\in \textit{G}.$$

- Якщо у векторному просторі обрати базис, то лінійні оператори можна ототожнити з матрицями D розміром $N \times N$. Тоді це N-розмірне матричне представлення групи.
- Це спосіб реалізувати абстрактну групу у вигляді матриць (лінійних операторів), які діють на вектори.
- Іншими словами: представлення це гомоморфізм однієї групи в іншу групу (лінійних операторів, або матриць)
- ullet $D(e) = \mathbb{I}$ (одиничний елемент групи представлений одиничною матрицею)
- Група можа мати різні матричні представлення
- Якщо існує такий інваріантний підпростір $W \in V$ що $\rho(g)w \in W, \forall w \in W, \forall g \in G,$ то це підпредставлення G на W
- Приклад представлення діедричної групи D₄: див. [1], розділ 2.1.1

Які бувають представлення груп

- Представлення називається точним (вірним, faithful), якщо це ізоморфізм, тобто різним елементам групи відповідають різні оператори
- ullet Представлення називається унітарним, якщо $D(g)D(g)^\dagger=\mathbb{I}$ для будь-якого $g\in G$
 - $D^{\dagger} = (D^T)^*$
- ullet Представлення $D(g)=\mathbb{I}$ для всіх $g\in G$ називається тривіальним
 - ▶ таке представлення є точним лише для групи з одним елементом е
- ullet Представлення $D(g),\ D'(g)$ називаються еквівалентними, якщо існує матриця S така що $S^{-1}D(g)S=D'(g)$ для будь-якого $g\in G$
 - еквівалентні представлення пов'язані зі зміною базису
- Нехай (ρ_1, V_1) та (ρ_2, V_2) два представлення групи G. Пряма сума цих представлень визначається на просторі $V_1 \oplus V_2$ так:

$$(\rho_1\oplus\rho_2)(g) \ = \ \begin{pmatrix}
ho_1(g) & 0 \ 0 &
ho_2(g) \end{pmatrix}, \quad \forall g\in G.$$

ightharpoonup тобто дія групи на $V_1 \oplus V_2$ відбувається незалежно на кожному компоненті

Звідні і незвідні представлення

- Незвідне представлення, або ippen (irreducible representation, irrep) не має нетривіальних підпредставлень: єдині інваріантні підпростори весь простір або нуль
- В іншому випадку представлення називається звідним (reducible): це представлення групи в просторі, для якого існує інваріантний підпростір щодо відповідних лінійних перетворень. Таке представлення можна привести до блочної форми:

$$ho(g) \ = \ egin{pmatrix}
ho_1(g) & * \ 0 &
ho_2(g) \end{pmatrix}, \quad orall g \in G$$

- ightharpoonup $ho_1(g)$ та $ho_2(g)$ представлення на підпросторах V_1 та V_2
- ▶ * деякі елементи, що можуть бути ненульовими
- нульовий блок гарантує, що V₁ є підпредставленням
- ▶ для матричного представлення існує матриця S така що

$$S^{-1}D(g)S = egin{pmatrix} D_1(g) & D_{12}(g) \ 0 & D_{2}(g) \end{pmatrix}, & orall g \in G.$$

- Повністю звідне представлення (completely reducible / semisimple) можна розкласти на пряму суму незвідних представлень
- \bullet Кожне незвідне представлення автоматично є повністю звідним
 - ▶ його неможливо розкласти на менші підпредставлення, тому розклад містить лише одну іррепу – саму себе
 - іншими словами: ірреп це атомарне представлення, яке вже є прямою сумою одного компоненту

Характер представлення

ullet Характер представлення групи: для представлення ho: G o GL(V)

$$\chi_{\rho}(g)=\operatorname{Tr}(
ho(g)),\quad g\in G.$$

- Незалежний від вибору базису.
- Два незвідних представлення мають різні характери.
- Використовується для побудови та аналізу таблиць характерів.
- Приклад для групи \mathbb{Z}_N (додавання цілих чисел за модулем):
 - ▶ Для групи $\mathbb{Z}_N = \{0, 1, \dots, N-1\}$ всі незвідні представлення є одновимірними.
 - ▶ m-те представлення діє як

$$\rho_m(k) = e^{2\pi i m k/N}, \quad m = 0, 1, \dots, N-1.$$

Характер збігається з самим представленням:

$$\chi_m(k) = \operatorname{Tr}(\rho_m(k)) = e^{2\pi i m k/N}.$$

- ightharpoons Таблиця характерів \mathbb{Z}_N складається з N різних рядків для $m=0,\ldots,N-1$.
- ► Наприклад, для Z₄ таблиця характерів:

	0	1	2	3
χ0	1	1	1	1
	1	i	-1	-i
χ_1 χ_2	1	-1	1	-1
χз	1	-i	-1	i

Класи спряженості. Характер як класова фукнція

 \bullet Для елемента ${\it g} \in {\it G}$ його клас спряженості визначається як (див. [1] розділ1.5)

$$CI(g) = \{ h^{-1}gh \mid h \in G \}.$$

• Характер представлення групи є класовою функцією: $\chi_{\rho}(h^{-1}gh)=\chi_{\rho}(g)$. Для представлення $\rho:G\to GL(V)$ маємо

$$\chi_{\rho}(g) = \operatorname{Tr}(\rho(g)).$$

Тоді для будь-яких $g, h \in G$:

$$\chi_{\rho}(h^{-1}gh) = \operatorname{Tr}(\rho(h^{-1}gh)) = \operatorname{Tr}(\rho(h^{-1})\rho(g)\rho(h)).$$

Використовуючи інваріантність сліду при циклічних перестановках:

$$\operatorname{Tr}(\rho(h^{-1})\rho(g)\rho(h)) = \operatorname{Tr}(\rho(g)) = \chi_{\rho}(g).$$

 Оскільки характер представлення групи залежить лише від класу спряженості елемента, таблиці характерів складаються по класах спряженості, а не по окремих елементах.