Summary of Annotations

general-purpose learning procedure.

Page 1 #1 Underline Representation learning #2 Highlight speech rec- ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics #3 Underline 错综复杂 #4 Highlight Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search #5 Highlight these applications make use of a class of techniques called deep learning. #6 Underline pixel #7 Squiggly Supervised learning #8 Underline 'knobs' #9 Underline The most common form of machine learning, deep or not, is super-vised learning #10 Underline layers of features are not designed by human engineers: they are learned from data using a

state-of-the-art
Page 2
#1 Hadarlina
#1 Underline
elaborate
#2 Squiggly
stochastic gradient descent (SGD).
#3 Underline
distort
Page 3
#1 Underline
rectangular
#2 Underline (jindongwang)
Recent theoretical and empirical results strongly suggest that local minima are not a serious issue in general
#3 Underline
泛化
#4 Underline
intricate
#5 Underline
respect to
#6 Underline
the ReLU typically learns much faster in networks with many layers
#7 Underline
infeasible.

#11 Underline

combinato- rially
Page 4
#1 Underline (jindongwang)
very large numbers, but almost all of them have very similar values of the objec- tive function
#2 Underline (jindongwang)
Once deep learning had been rehabilitated, it turned out that the pre-training stage was only needed for small data sets.
#3 Underline (jindongwang)
the role of the pooling layer is to merge semantically similar features into one.
#4 Underline
reconstruct
#5 Underline
advent
#6 Highlight
speech recognition
#7 Highlight
sound wave
#8 Underline
'pre-training' several layers of progressively more complex feature detectors using this reconstruction objective, the weights of a deep network could be initialized to sensible values
#9 Underline
adjacent
#10 Highlight
ConvNets

#8 Underline

#11 Highlight
1D for signals and sequences, including language
#12 Highlight
2D for images or audio spectrograms; and
#13 Highlight
3D for video or volumetric images
#14 Underline
filter bank
#15 Underline
motif
#16 Squiggly
if a motif can appear in one part of the image, it could appear anywhere, hence the idea of units at different locations sharing the same weights and detecting the same pattern in different parts of the array
#17 Underline
semantically
#18 Underline
compositional
#19 Underline
hierarchies,
#20 Underline
cortex
#21 Underline
ventral
#22 Underline
reminiscent

#23 Underline
Since the early 2000s, ConvNets have been applied with great success to the detection
#24 Underline
segmentation
Page 5
#1 Underline
amenable
#2 Underline
halving
#3 Underline
componential
#4 Underline
expo- nential advantages
#5 Underline
Distributed representations
Page 6
#1 Underline
logic-inspired
#2 Underline
paradigm,
#3 Underline
corpora.
#4 Underline
problematic

#5 Underline

training them has proved to be problematic because the backpropagated gradients either grow or shrink at each time step, so over many time steps they typically explode or vanish

#6 Underline

after reading an English sentence one word at a time, an English 'encoder' network can be trained so that the final state vector of its hidden units is a good representation of the thought expressed by the sentence. This thought vector can then be used as the initial hidden state of (or as extra input to) a jointly trained French 'decoder' network, which outputs a prob- ability distribution for the first word of the French translation

Page 7

#1 Underline
all the layers share the same weights.
#2 Underline (jindongwang)
combine representation learning with complex reasoning
#3 Underline
augment
#4 Underline
LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks
#5 Underline
Neural Turing Machine
#6 Underline
manipulation.
#7 Underline
catalytic
#8 Underline
reviving interest

#9 Underline	
infancy,	
#10 Underline	
被动视觉系统	
#11 Highlight	

Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks.