# Operational Transconductance Amplifier (OTA) in 45nm CMOS

YOUNGSEOK LEE

MING HSIEH DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089

#### Remark

1. Incompletion of Test measurements

2. Plotting works in slides are in low quality.

#### Outline

- 1. Introduction
- 2. Design Summary
- 3. Simulation and Analytical Results
- 4. Conclusions

#### [1] Introduction - 1

- 1. Statement of the problem
- Designing a fully differential OTA to meet the required spec

- 2. Main challenges
- Low Vdd: Overdrive Voltage Budget Issue
- 45nm technology: Biasing issue
- Large GBW product

#### [1] Introduction - 2

- 3. General approach
- Characterize the device
- Select a topology based on the required spec
- Bias and Size accordingly
- Tune the circuit for better performance

## [2] Design Summary - Overview



#### [2] Design Summary – DC operating points(1)



#### [2] Design Summary – DC operating points(2)



#### [2] Design Summary – Device Sizing

| Transistors | W/L         | Transistors | W/L        | Transistors | W/L         |
|-------------|-------------|-------------|------------|-------------|-------------|
| M1          | 166.8u/180n | M8          | 45u/210n   | M16         | 1.5u/200n   |
| M2          | 60u/45n     | M9          | 23.38u/45n | M17         | 7.586u/180n |
| M3          | 166.8u/180n | M10         | 23.38u/45n | M18         | 8.65u/180n  |
| M4          | 60u/45n     | M11         | 100u/45n   | M19         | 8.65u/180n  |
| M5          | 3.252u/45n  | M13         | 1.5u/200n  | M20         | 6.47u/180n  |
| M6          | 45u/210n    | M14         | 22u/200n   | MO          | 6.47u/180n  |
| M7          | 3.252u/45n  | M15         | 22u/200n   |             |             |

- (1) Design Strategy
- -Two stages Folded Cascode Structure
- -Frequency Compensation
- -Common Mode Feedback circuitry
- (2) Design Methdology
- -Overdrive Voltage Budget Plan
- -Sizing independent Biasing Method
- -Gain boosting ideas

#### [3] Simulation Result – Closed loop gain 58 dB



## [3] Phase Margin – Closed; 72dB



#### [3] Gain Margin – Closed; 16dB



## [3] First Stage: Gain 23dB, Fu=7.5GHz



### [3] Second Stage: Gain 37dB, Fu=3.6GHz



# [3] CMFB Small-Signal Response



## [3] Performance Summary

|                     | Target | Simulated | Units   |
|---------------------|--------|-----------|---------|
| I A <sub>vd</sub> I | > 60   | 58        | dB      |
| F <sub>u</sub>      | > 100  | 1.2       | GHz     |
| V <sub>dd</sub>     | 1      | 1         | V       |
| I <sub>DC</sub>     | < 25   | 1.96      | mA      |
| C <sub>L</sub>      | 100    | 100       | fF      |
| PM                  | > 60   | 72        | Degrees |
| GM                  | > 10   | 16.5      | dB      |

#### [4] Conclusions (1)

- 1. Highlights of the design
- Folded Cascoded Two stage OTA
- Good performance in gain and bandwidth product
- 2. Improved Suggestion
- Regulated cascodes can be utilized

### [4] Conclusions (2)

- 3. Lessons learned
- Analog Design brings a lot of result mismatch
- Balancing all transistors whose characteristics are nonlinear requires much more efforts beyond the its relatively simple analysis

#### References

- [1] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2002.
- [2] B. Ahuja, "An improved frequency compensation technique for CMOS operational amplifiers," IEEE J. Solid- State Circuits, Vol. SC-18, pp. 629-633, Dec, 1983.
- [3] F. Silveira, "A gm/Id Based Methodology for the Design of CMOS Analog Circuits and Its Application to the Synthesis of a Silicon-on-Insulator Micropower OTA, IEEE J. Solid-State, VOL 31, NO 9. Sep, 1996