

Ensayo de un Ventilador Radial

ASIGNATURA: ICM557

PROFESOR: CRISTÓBAL GALLEGUILLOS

ALUMNO: OSCAR RAMÍREZ

11/12/2020

Contenido

Objetivo3	3
Instrumentos utilizados	3
Fórmulas	1
Valores Calculados5	5
Conclusión)
Índice de tablas	
Tabla 1 Valores Medidos	3
Tabla 2 Datos	
Tabla 3 Valores Calculados	
Índice de gráficos	
Gráfico 1 P v/s Caudal	5
Gráfico 2 Gráfico Ventilador Soler y Palau	7
Gráfico 3 Potencia eléctrica v/s Caudal	3
Gráfico 4 Rendimiento v/s Caudal)

Objetivo.

Determinar el comportamiento de un ventilador radial.

Instrumentos utilizados:

Medidor de velocidad rotacional laser, termómetro, manómetro inclinado de precisión, wattmetro, amperímetro.

Valores Medidos

	VALORES MEDIDOS						
	nx	P _{e4}	ta	td	W_1	W_2	P_{atm}
	[rpm]	[mmca]	[°C]	[°C]	[kW]	[kW]	[mm _{Hg}]
1	1831	5	21	23	0,44	0,82	758,8
2	1845	30	22	23	0,34	0,7	758,8
3	1867	45	22	23	0,19	0,56	758,8
4	1867	48,5	21	23	0,14	0,52	758,8
5	1871	57	21,5	23	0,11	0,49	758,8

Tabla 1 Valores Medidos

Fórmulas

Caudal:

$$q_{vm} = \propto * s_5 * \left(\frac{2 * P_{e4}}{\rho_{05}}\right)^{\frac{1}{2}} \left[\frac{m^3}{s}\right]$$

DATOS				
\mathbf{D}_{5}	D ₅ /D ₄	α		
[mm]	[-]	[-]		
00	00	0.600		
90	0.15	0.6025		
120	0.2	0.604		
180	0.3	0.611		
300	0.5	0.641		

Pet en [Pa] en todas las fórmulas.

Tabla 2 Datos

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{V_1^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{s} \right]$$

$$S_1 = 0.070686 \ [m^2]$$

Potencia eléctrica

$$N_{elec} = W_1 + W_2 \left[kW \right]$$

Potencia Hidráulica:

$$N_h = q_{vm} * \Delta P[W]$$

Rendimiento global:

$$N_{gl} = \frac{N_h * 100}{N_{elec}}$$

Valores Calculados

	qvm	ΔΡ	V1	ρmed	Ne	Nh	ηgl
	[m3/h]	[Pa]	[m/s]	[kg/m3]	[kW]	[kW]	[%]
1	1492,20	55,47	5,86	1,20	1,26	0,02	1,82
2	1246,19	299,48	4,90	1,20	1,04	0,10	9,97
3	667,83	441,67	2,62	1,20	0,75	0,08	10,92
4	386,81	472,85	1,52	1,20	0,66	0,05	7,70
5	0,00	553,18	0,00	1,20	0,60	0,00	0,00

Tabla 3 Valores Calculados

3.4.1 Curva P -qvm

Gráfico 1 P v/s Caudal

3.4.1.1.¿Qué tipo de ventilador es? Descríbalo con detalle.

El ventilador es de tipo radial, de desplazamiento negativo. El rodete tiene álabes inclinados hacia atrás esto permite que el aire se aspire por el centro y sea expulsado por los alabes hacia afuera.

El ventilador es impulsado por un motor eléctrico, transmite la energía mediante una correa.

3.4.1.2.¿Las curvas tiene la forma esperada para ese tipo de ventilador? Tomando como referencia este gráfico de ventilador de un catálogo de Soler y Palau Ventilation group".

Gráfico 2 Gráfico Ventilador Soler y Palau

Sí, las curvas tienen la forma esperada.

3.4.2. Curva de potencia eléctrica vs caudal

Gráfico 3 Potencia eléctrica v/s Caudal

3.4.2.1.¿Cuál es la potencia máxima consumida?

La potencia máxima consumida del ventilador radial es de 1.26 [kW] a 1492 [m3/h]

3.4.2.2.¿Cuál es su posible potencia en el eje?

Considerando que los rendimientos de las correas son de un 90% y el rendimiento del motor eléctrico es de 90%, se calcula el rendimiento conjunto como 81% así se tendrá una potencia en el eje de una magnitud a la que se mide. Se obtienen los siguientes valores:

	Ne
	[kW]
1	1,0206
2	0,8424
3	0,6075
4	0,5346
5	0,486

Tabla 4 Potencia en el Eje

3.4.3. Curva de rendimiento vs caudal

Gráfico 4 Rendimiento v/s Caudal

3.4.3.1. ¿Cuál es el punto de óptimo rendimiento?

Analizando la curva, el punto de óptimo rendimiento tiene un valor del 11% a aproximadamente 900 m3/h.

Conclusión

Se observo la gran diferencia en los valores de presión que se produjo debido al cambio en el diámetro de salida del ventilador. La presión en promedio aumento 15 mmca. Esto se debe tener en cuenta según la aplicación que se vaya a dar al ventilador en la industria. La temperatura de entrada y salida casi no varía (solo aumenta 2 °C).