THE PERSON NAMED IN THE PE

Docket No.: 1781-0181P

What Is Claimed Is:

1 2

3

4

5

6

7

8

8

1

2

3

1

2

1.	A finger print minutiae extraction method comprising:
	acquiring fingerprint image data;

partitioning said fingerprint image data into at least one data block corresponding to a local area of said image data;

generating a histogram function of a contrast level of said image data corresponding to said data blocks; and

performing a histogram transformation of said histogram function,

wherein said histogram transformation is adapted to the contrast level of said local area of said fingerprint image data and pre-enhanced fingerprint image data is generated with local enhancement.

2. The method of claim 1, further comprising:

partitioning said fingerprint image data into a plurality of data blocks, each of said plurality of blocks corresponding to a different local area of said image data and at least one of said plurality blocks having a contrast level different than a second of said plurality of data blocks,

wherein said histogram transformation is adapted to said different contrast levels of said plurality of blocks and pre-enhanced fingerprint image data is generated with local enhancement for a plurality of local areas of said image data.

- 3. The method of claim 1, wherein said histogram transformation includes using an objective function with a relatively high value at both endpoints of an intensity interval and a relatively low value at a middle of said intensity interval.
- 4. The method of claim 1, wherein noise and distortions in said image data are reduced.

5

1 2

1

2

3

4 5

- The method of claim 1, wherein said histogram transform maps said 5. histogram function to a specific function according to a mapping algorithm including
 - $x \mapsto \arg\min_{y} \{ y \mid \int_{0}^{x} g(t)dt < f(y) \}$
- wherein f(x) is a target histogram function and said target histogram function has low value at the mid-point and has a high value at the endpoint of the interval.
 - 6. The method of claim 1, further comprising:
- performing orientation filtering on said pre-enhanced data using directional convolution for two dimensional digital image processing,

wherein said pre-enhanced image data is smoothed and enhanced.

7. The method of claim 6, wherein the following algorithm is used in said orientation filtering

$$g(i, j, k) = \sum_{l=1}^{M} f(i + y_{offset}(l), j + x_{offset}(l)) \times h(l).$$

- 8. The method of claim 1, further comprising:
- thinning said fingerprint image data to remove false connections of ridges in said data,
- wherein said thinning includes applying a first table and a second table to a plurality of pixels using an algorithm.
 - 9. The method of claim 1, further comprising generating a first table and a second table using rules for character data and biological data.
 - 10. The method of claim 9, wherein said rules for biological data include If $P_1*P_7*P_8=1$ and $P_2+P_6>0$ and $P_3+P_5=0$ then $LUT_1(P)=0$;

If
$$P_5 * P_6 * P_7 = 1$$
 and $P_4 + P_8 > 0$ and $P_1 + P_3 = 0$ then $LUT_1(P) = 0$;

If
$$P_1*P_2*P_3=1$$
 and $P_4+P_8>0$ and $P_5+P_7=0$ then $LUT_2(P)=0$; and

If
$$P_3*P_4*P_5=1$$
 and $P_2+P_6>0$ and $P_1+P_7=0$ then $LUT_2(P)=0$,

6	wherein A(P) is a number of 0-1 patterns in an order set P ₁ , P ₂ , P ₃ , P ₄ , P ₅ , P ₆
7	P ₇ , P ₈ , P ₁ , where P _i , i=1,,8, are 8-neighbors of a pixel in a clockwise direction, and
8	B(P) is a number of nonzero neighbors of P.
1	11.A method for fingerprint registration and verification from minutiae comprising:
2	performing a Hough transform on fingerprint image data and generating
3	evidences in lattice bins;
4	counting the evidences accumulated in said lattice bin;
5	shifting a lattice;
6	determining the number of evidences in each bin of said shifted lattice;
	repeating said shifting and counting in each direction of said lattice until a
8	bin is completely overlapped with its diagonal neighbor,
9	wherein shifting the lattice enhances the spatial resolution of the Hough
8 9 10 11	transform.
12 200	
1	12. The method of claim 10, wherein said shifting said lattice occurs at a
	predetermined step size.
	13. The method of claim 10, wherein said shifting the lattice partitions each
2	bin into blocks, each block is assigned a number equal to the number of evidences
3	in the corresponding bin, the numbers of the overlapped blocks are summed and
4	transform parameters are specified using the block that corresponds to the highest
5	sum.
1	14. The method of claim 10, further comprising:
2	determining the maximum number of evidence counts in the bins;
3	determining the maximum number of evidence counts in the bins; determining transformation parameters corresponding to the bins with the
4	maximum evidence counts;
5	
6	determining the variance of said transformational parameters; determining a matching score of a fingerprint image and a template
v	ucicinining a marching Score of a findernrint image and a template

fingerprint image based on said variance of the transformational parameters and said

7 8

maximum number of counts.

1	15. The method of claim 13, wherein the matching score is determined using a
2	sigmoid nonlinear function.
1	16. A system for biological data matching comprising:
2	an image reader for acquiring personal biological image data;
3	a template of biological image data;
4	a pre-enhancing unit adapted to pre-enhance said personal biological
5	image data according to local and global areas of contrast;
6	an image smoothing and enhancement filter for enhancing said pre-
7	enhanced image data;
8	an orientation data thinner for removing false data in said personal
9	biological image data;
7 8 10 11	a registration unit for aligning said personal biological image data with
11	said template image data; and
12	a matching score generating unit for determining if said biological data
13	matches said template print.
T.	
	17. The system of claim 15, wherein said personal biological image data and
2	said temple image data include a fingerprint, iris, voice, hand geometry, face, or palm
3	pattern.

Docket No.: 1781-0181P

1

2

3

4

1

2

3

- 18. The system of claim 15, further comprising:
 a database including a plurality of templates of biological image data,
 wherein said system determines which template of said plurality of
 templates in said database matches said personal biological image data.
 - 19. The system of claim 15, wherein said registration unit aligns said image data with said template using a Hough transform and shifts a lattice to enhance the spatial resolution of the Hough transform.
 - 20. The system of claim 15, wherein said pre-enhancing unit enhances local areas of contrast by partitioning said image data into image data blocks, generating a histogram function of a contrast level of said image data corresponding to said data blocks, and performing a histogram transformation of said histogram function.