LOG: Logique du premier ordre

Syntaxe

Définition: Alphabets

Les alphabets d'un langage du premier ordre sont les ensembles suivants :

- Un ensemble *X* de symboles de variables, $X = \{x, y, z...\}$
- Un ensemble C de symboles de constantes, $C = \{a, b, c...\}$
- Une suite d'ensemble deux-à-deux disjoints de symboles de fonctions $F = (\mathbb{F}_n)_{n \in \mathbb{N} \setminus \{0\}}$, chaque élément de \mathbb{F}_n est un symbole de fonction d'arité $n \in \mathbb{N} \setminus \{0\}$. Les éléments de F sont notés f, g, ϕ ...
- Une suite d'ensembles deux-à-deux disjoints de symboles de relations (ou symboles de prédicats), $R = (\mathbb{R}_n)_{n \in \mathbb{N}}$, chaque élément de \mathbb{R}_n est un symbole de relation d'arité n. Les éléments de R sont notés p,q,r...
- Le symbole d'égalité = ; symbole de relation que l'on distingue des autres symboles de *R*. = est d'arité 2 que l'on utilise sous forme indexée.
- L'ensemble des connecteurs logiques $\{\neg, \lor, \land, \Rightarrow, \Leftrightarrow\}$
- Deux quantificateurs ∀ ("Pour tout") et ∃ ("Il existe")
- Des symboles de ponctuation (et) et,

Les connecteurs logiques, quantificateurs et symboles de ponctuations sont communs à tous les langages du premier ordre.

Définition : Termes

Soient X un ensemble de symboles de variables, C un ensemble de constantes, F un ensemble de symboles de fonctions muni d'arité, l'ensemble des termes construits sur X, C, F est défini inductivement de la façon suivante :

- Les variables sont des termes
- Les constantes sont des termes
- Si $t_1, ..., t_n$ sont des termes et f est un symbole fonctionnel d'arité n alors $f(t_1, ..., t_n)$ est un terme
- Tous les termes sont générés par les 3 règles précédentes.

On note T(F, C, X) l'ensemble des termes construits sur X, C et F. Les termes peuvent être représentés par des arbres étiquetés par les symboles de $X \cup C \cup F$, les feuilles des armes sont éléments de $X \cup C$ alors que les noeuds internes sont des éléments de F

- Un terme est dit **clos** s'il est sans variable
- Si t est un terme, V(t) est l'ensemble des variables ayant des occurrences dans t
- *Exemple*: Soient $X = \{x, y, z...\}$ un ensemble de variables, $C = \{a, b, c\}$ un ensemble de constantes et $F = \{f[2], g[2], s[1]\}$ un ensemble de symboles fonctionnels.
 - a, x, c sont des termes (a et c sont clos)
 - -s(y), s(c), f(a,x), g(a,c), f(y,y), g(x,z), f(a,a) sont des termes
 - s(f(a, x)) est un terme
 - t = f(g(a, x)), f(s(z), f(x, b)) est un terme et $V(t) = \{x, z\}$

Proposition:

Soit une propriété P dépendant d'un terme t, pour montrer que P(t) est vraie pour tout t, il suffit de montrer les assertions suivantes :

- · Les cas de base
 - Pour toute variable x, P(x) est vraie
 - Pour toute constante c, P(c) est vraie
- Cas général : Pour tout terme $t_1, ..., t_n$ et tout symbole f de fonction d'arité $n, P(t_1), ..., P(t_n)$ implique $P(f(t_1, ..., t_n))$

Définition : Substitution

Soient X un ensemble de symboles de variables, C un ensemble de constantes, F un ensemble de symboles de fonctions. Une substitution est une application σ de X vers T(F,C) telle que $\sigma(x)=x$ sauf pour un nombre fini de variables x. Le domaine d'une substitution σ est l'ensemble des variables qui sont modifiées par cette substitution, on le note $dom(\sigma)$:

$$dom(\sigma) = \{x | x \in X \ et \ \sigma(x) \neq x\}$$

Une substitution est définie par les variables de son domaines et leur image, on dénote une substitution sous la forme suivante : $\{x_1 \mapsto t_1, ... x_n \mapsto t_n\}$

Définition :

On étend l'application des substitutions aux termes de la façon suivante, si σ est une substitution :

- $\sigma(x)$ est défini si x est une variable
- $\sigma(c) = c \text{ si } c \text{ est une constante}$
- $\sigma(f(t_1,...,t_n)) = f(\sigma(t_1),...,\sigma(t_n))$ (σ est un homomorphisme)

Définition: Unification

Soient t et t' deux termes, t et t' sont unifiables si et seulement s'il existe une substitution σ telle que $\sigma(t) = \sigma(t')$; σ s'appelle un unificateur de t et t'

Définition: Atome

Soient X un ensemble de symboles de variables, C un ensemble de constantes, F un ensemble de symboles de fonctions et R un ensemble de symboles de relations, un atome est de la forme $r(t_1,...,t_n)$ où

- r est un symbole de relation d'arité n
- $t_1,...,t_n$ sont des termes de T(F,C,X)

- Les formules de base sont les tomes construits sur les alphabets *X*, *C*, *F* et *R*
- Les règles de constructions des formules sont :
 - $\text{ si } f \in \mathcal{F}or \text{ alors } \neg f \in \mathcal{F}or$
 - si f_1 ∈ \mathcal{F} or et f_2 ∈ \mathcal{F} or alors $f_1 \lor f_2 ∈ \mathcal{F}$ or
 - si f_1 ∈ \mathcal{F} or et f_2 ∈ \mathcal{F} or alors $f_1 \land f_2 \in \mathcal{F}$ or
 - si f_1 ∈ \mathcal{F} or et f_2 ∈ \mathcal{F} or alors $f_1 \Rightarrow f_2 \in \mathcal{F}$ or
 - si f_1 ∈ \mathcal{F} or et f_2 ∈ \mathcal{F} or alors $f_1 \Leftrightarrow f_2 \in \mathcal{F}$ or
 - si f ∈ \mathcal{F} or alors $\exists x f$ ∈ \mathcal{F} or (où x est un symbole de X, une variable)
 - si $f \in \mathcal{F}$ or alors $\forall x f \in \mathcal{F}$ or (où $x \in X$)

Un langage du premier ordre est constitué des alphabets X, C, F, R et des formules construites sur ces alphabets. Propriété: Principe de

Soit une propriété P dépendant d'une formule f, pour montrer que P(f) est vraie pour toute formule f de \mathcal{F} or, il suffit de montrer :

- Cas de base : P(a) est vraie pour tout atome a
- Cas généraux : pour toute formule f, f_1 et f_2 de $\mathcal{F}or$
 - P(f) implique $P(\neg f)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \vee f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \wedge f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \Rightarrow f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \Leftrightarrow f_2)$
 - P(f) implique $P(\exists x f)$
 - P(f) implique $P(\forall x f)$

Définition : Variables libres d'une formule

Soit f une formule de la logique du premier ordre, l'ensemble des variables libres de f, noté VL(f) est défini récursivement de la façon suivante selon la forme de la formule :

- $VL(r(t_1,...,t_n)) = V(t_1) \cup ... \cup V(t_n)$ si $r(t_1,...,t_n)$ est un terme
- $VL(t_1 = t_2) = V(t_1) \cup V(t_2)$ si t_1 et t_2 sont des termes
- $VL(\neg f) = VL(f)$ si f est une formule
- $VL(f_1 \vee f_2) = VL(f_1 \wedge f_2) = VL(f_1 \Rightarrow f_2) = VL(f_1) \cup VL(f_2)$ si f_1 et f_2 sont des formules
- $VL(\exists x f_1) = VL(f_1) \setminus \{x\}$ si x est une variable et f_1 est une formule
- $VL(\forall x f_1) = VL(f_1) \setminus \{x\}$ si x est une variable et f_1 est une formule

Remarques:

- Une variable est libre si elle possède une occurrence qui n'est pas sous l'influence d'un quantificateur
- Une formule f est dite close si et seulement si VL(f) = 0

Définition : variables liées d'une formule

L'ensemble des variables liées (ou muettes) VM(f) d'une formule f est défini récursivement selon la forme de la formule de la façon suivante :

- $VM(r(t_1,...,t_n)) = \emptyset$ si r est un symbole de relation et $t_1,...,t_n$ sont des termes (i.e. $r(t_1,...,t_n)$ est un atome), de même $VM(t_1 = t_2) = \emptyset$
- $VM(\neg f) = VM(f)$ si f est une formule
- $VM(f_1 \vee f_2) = VM(f_1) \cup VM(f_2)$ si f_1 et f_2 sont des formules, de même $VM(f_1 \wedge f_2) = VM(f_1 \Rightarrow f_2) = VM(f_1) \cup VM(f_2)$
- $VM(\forall x f) = VM(f) \cup \{x\}$ si x est une variable et f une formule
- $VM(\exists x f) = VM(f) \cup \{x\}$ si x est une variable et f une formule

Remarque:

Les variables liées (ou muettes) sont celles qui sont sous l'influence d'un quantificateur Définition : formule polie

Une formule f est polie si et seulement si les 2 conditions suivantes sont vérifiées :

- $VL(f) \cap VM(f) = \emptyset$
- Deux occurrences d'une même variable liée correspondent à la même occurrence de quantificateur

Définitions: formule close, clôtures

- Une formule **close** est une formule sans variables libres
- Soit f une formule dont les variables libres sont $x_1,...,x_n$. La **clôture universelle** de f est la formule $\forall x_1... \forall x_n f$
- Soit f une formule dont les variables libres sont $x_1,...,x_n$. La **clôture existentielle** de f est la formule $\exists x_1...\exists x_n f$

Sémantique

Définition : valuation

Soient X un ensemble de variables et E un ensemble, une valuation δ des variables de X est une application de X vers E: $\delta: X \to E$ Définition :

Soient δ une valuation de X vers E et $e \in E$, $\delta[x := E]$ est la valuation définie par :

- $\delta[x := e](y) = \delta(y)$ si $y \neq x$
- $\delta[x := e](x) = e$

Autrement dit, $\delta[x := e]$ coïncide avec δ sauf en x ou elle vaut e

Définition: interprétation

Soit $\mathcal L$ un langage du premier ordre , une interprétation I pour $\mathcal L$ est déterminée par les données suivantes :

- Un ensemble E non vide appelé le domaine de l'interprétation I on le note aussi |I|
- A chaque constante c on associe $I(c) \in E$
- A chaque symbole de fonction f d'arité n, on associe une application $I(f): E^n \to E$
- A chaque symbole de relation r d'arité n, on associe une relation I(r) sur E^n , c'est-à-dire une application $I(r): E^n \to \{0,1\}$
- Au symbole d'égalité = on fait correspondre l'égalité = sur E, c'est-à-dire =: $E \times E \rightarrow \{0,1\}$

Définition : Interprétation d'un terme

Soient I une interprétation de domaine E et δ une valuation, la valeur du terme t dans l'interprétation I relativement à la valuation δ est un élément de E noté $val_I(t,\delta)$ et défini par induction sur la structure des termes :

- Si *t* est une variable *x* alors $val_I(x, \delta) = \delta(x)$
- Si t est une constate c alors $val_I(c, \delta) = I(c)$
- Si t est de la forme $f(t_1,...,t_n)$ alors $val_I(f(t_1,...,t_n),\delta) = I(f)(val_I(t_1,\delta),...,(val_I(t_n,\delta))$

Définition:

Soit I une interprétation de domaine E, soit δ une valuation des variables et soit Φ une formule du premier ordre. La valeur de la formule Φ dans l'interprétation I par rapport à la valuation δ notée $val_I(\Phi, \delta)$ est un élément de $\mathbb{B} = \{0,1\}$ défini inductivement sur la structure des formules de la façon suivante :

- $val_I(r(t_1,...,t_n),\delta) = I(r)(val_I(t_1,\delta),...,val_I(t_n,\delta))$
- $val_I(t_1 = t_2), \delta) = val_I(t_1, \delta) = val_I(t_2, \delta)$
- $val_I(\neg \Phi, \delta) = \overline{val_I(\Phi, \delta)}$
- $val_I(\Phi_1 \vee \Phi_2, \delta) = val_I(\Phi_1, \delta) + val_I(\Phi_2, \delta)$
- $val_I(\Phi_1 \wedge \Phi_2, \delta) = val_I(\Phi_1, \delta).val_I(\Phi_2, \delta)$
- $val_I(\Phi_1 \Rightarrow \Phi_2, \delta) = \overline{val_I(\Phi_1, \delta)} + val_I(\Phi_2, \delta)$
- $val_I(\forall x\Phi, \delta) = \begin{cases} 1 \text{ si pour tout \'el\'ement } e \text{ de } E, & val_I(\Phi, \delta[x := E] = 1 \\ 0 \text{ sinon} \end{cases}$
- $val_I(\exists x \Phi, \delta) = \begin{cases} 1 \text{ s'il existe un \'el\'ement } e \text{ de } E, & val_I(\Phi, \delta[x := E] = 1 \\ 0 \text{ sinon} \end{cases}$

Proposition:

Pour I fixé, $val_I(\Phi, \delta)$ ne dépend de δ que par l'intermédiaire des variables libres de Φ

Définition: modèle

Soient \mathcal{L} un langage du premier ordre, I une interprétation de \mathcal{L} , Φ une formule de \mathcal{L} et \mathcal{A} un ensemble de formules de \mathcal{L}

- I est un modèle de Φ si et seulement si pour toute valuation δ , $val_I(\Phi, \delta) = 1$
- I est un modèle de $\mathcal A$ si et seulement si I est un modèle de chacune des formules de $\mathcal A$
- \mathcal{A} est contradictoire si et seulement si \mathcal{A} n'a pas de modèle

Proposition

- I est un modèle de Φ si et seulement si I est un modèle de la clôture universelle de Φ
- I est un modèle de $\mathcal A$ si et seulement si I est un modèle des clôtures universelles des formules de $\mathcal A$

Définitions: Déduction sémantique, théorème

Soient Φ une formule et A un ensemble de formules

- On dit que Φ se **déduit sémantiquement** de A si et seulement si tout modèle de A est un modèle de Φ , on note $A \models \Phi$
- Φ est un **théorème** (de la logique du premier ordre) si et seulement si toute interprétation est un modèle de Φ , on note $\models \Phi$
- On dit que deux formules Φ et Ψ sont équivalentes si et seulement si $\Phi \Leftrightarrow \Psi$ est un théorème de la logique du premier ordre, on note $\models \Phi \Leftrightarrow \Psi$

Système basé sur la résolution et les clauses

Définitions : Soit α une formule de la logique du premier ordre

- α est un théorème de la logique du premier ordre si et seulement si tout interprétation I est un modèle de α si et seulement si pour toute interprétation I, pour toute valuation δ , $val_I(\alpha,\delta)=1$
- Si α est une formule close, α est un théorème de la logique du premier ordre si et seulement si pour toute interprétation I, val_I(α) = 1

Définition : clause

Une clause est un disjonction de littéraux Définition : Forme prénexe

Une formule α est sous forme prénexe si elle est de la forme $Q_1x_1...Q_nx_n\alpha'$ où

- $Q_i = \forall$ ou $Q_i = \exists$ et α' est une formule sans quantificateurs
- $Q_1x_1...Q_nx_n$ est le préfixe de α et α' la matrice de α
- Le préfixe peut être vide

Théorème:

Toute formule polie est équivalente à une formule sous forme prénexe.

Pour ce faire, on réalise ces 3 opérations :

- 1. Élimination de \Leftrightarrow et \Rightarrow
- 2. Descente des négations jusqu'aux atomes
- 3. Remontée des quantificateurs dans la formule jusqu'à obtenir une formule prénexe

Définition:

Soit $\alpha = Q_1 x_1 ... Q_k x_k \alpha'$ une formule prénexe dont l'ensemble des variables libres est $\{y_1, ..., y_r\}$, on suppose que $Q_1 x_1 ... Q_s x_s$ contient seulement des quantificateurs universels et que le quantificateur $Q_{s+1} x_{s+1} est \exists x_{s+1}$.

Soit un nouveau symbole fonctionnel φ d'arité r+s

La skolémisation de la variable x_{s+1} consiste à remplacer dans α' toutes les occurrences de x_{s+1} par le terme $\varphi(y_1,...,y_r,x_1,...,x_s)$. La transformée de Skolem de α est obtenue en skolémisant toutes les variables existentielles de α , on la note α^s **Théorème**:

Soit α une formule prénexe et soit α^s la formule de Skolem de α

- $\alpha^s \Rightarrow \alpha$ est un théorème de la logique du premier ordre
- Soit une interprétation I et une valuation δ telle que $val_I(\alpha, \delta) = 1$ alors il existe un enrichissement I' de I tel que $val_{I'}(\alpha^s, \delta) = 1$ (Un enrichissement consiste à étendre I aux symboles de Skolem de α^s)
- Si de plus α est une formule close, α admet un modèle si et seulement si α^s admet un modèle
- Soit A un ensemble de formules closes, et soit A^s l'ensemble des formules de Skolem de A. A admet un modèle si et seulement si A^s admet un modèle

Définition:

Soit \mathcal{L} un langage de la logique du premier ordre. Soit $Cl(\mathcal{L})$ l'ensemble des clauses construites sur \mathcal{L} . Le système formel $\mathcal{S} = (Cl(\mathcal{L}), \emptyset, \mathcal{R})$ suivant est appelé système formel de Robinson. $\mathcal{R} = \{resolution, fact^+, fact^-\}$

• Règle de résolution :

$$\frac{c_1 \vee r(s_1,...,s_n) \vee c_2, c_3 \vee \neg r(t_1,...,t_n) \vee c_4}{\sigma(c_1 \vee c_2 \vee c_3 \vee c_4)} \ (Resolution)$$

• Règle de factorisation positive :

$$\frac{c_1 \vee r(s_1,...,s_n) \vee c_2 \vee r(t_1,...,t_n) \vee c_3}{\sigma(c_1 \vee r(s_1,...,s_n) \vee c_2 \vee c_3} \ (fact^+)$$

• Règle de factorisation négative :

$$\frac{c_1 \vee r(s_1,...,s_n) \vee c_2 \vee \neg r(t_1,...,t_n) \vee c_3}{\sigma(c_1 \vee \neg r(s_1,...,s_n) \vee c_2 \vee c_3} \ (fact^-)$$

Où:

- $-c_1,c_2,c_3,c_4$ sont des causes
- $-r(s_1,...,s_n)$ et $r(t_1,...,t_n)$ sont des atomes
- σ est un unificateur principal de $r(s_1,...,s_n)$ et de $r(t_1,...,t_n)$

Théorème de Robinson :

Soit \mathcal{C} un ensemble de clauses. \mathcal{C} est contradictoire si et seulement si il existe une démonstration de \square avec hypothèses dans \mathcal{C} . On a donc les équivalences suivantes :

$$A \models \alpha$$

ssi

 $\mathcal{C}(\mathcal{A}) \cup \mathcal{C}(\alpha)$ est contradictoire

ssi

$$C(\alpha) \cup C(\neg \alpha) \vdash_{Resolution} \Box$$