

NORMALITY TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Shapiro-Wilk

Anderson-Darling

SHAPIRO-WILK

SHAPIRO-WILK

The <u>Shapiro-Wilk</u> normality test calculates a statistic based on the correlation between the data and the corresponding normal distribution; effective for sample size ($n \le 50$).

Shapiro Function

shapiro () is a statistical tool used to perform the Shapiro-Wilk test for normality.

Syntax

w_stat, p_value = stats.shapiro(data)

Null Hypothesis

 H_o : Normal data

Alternative Hypothesis

 H_a : Non-normal data (p-value $\leq \alpha$)

EXERCISE

Perform <u>Shapiro-Wilk</u> normality test for the given dataset.

dataset

"<u>defects-data-30-samples.csv</u>"

Solution

Let
$$\alpha = 0.05$$

Null Hypothesis

 H_o : Normal data

Alternative Hypothesis

 H_a : Non-normal data (p-value ≤ 0.05)

ANDERSON-DARLING

ANDERSON-DARLING

The Anderson-Darling normality test provides a more sensitive test by giving weight to the tails of the distribution; effective for larger sample size (n > 50).

Anderson Function

anderson () is a statistical tool used to perform the Aderson-Darling test for normality.

Syntax

Null Hypothesis

 H_o : $A^2 \le \text{critical value}$ (Normal data)

Alternative Hypothesis

 H_a : $A^2 >$ critical value (Non-normal data)

EXERCISE

Perform **Anderson-Darling** normality test for the given dataset.

dataset

"<u>defects-dataset.csv</u>"

Solution

Let $\alpha = 0.05$

Null Hypothesis

 H_o : $A^2 \le \text{critical value}$ (Normal data)

Alternative Hypothesis

 H_a : $A^2 >$ critical value (Non-normal data)

LABORATORY

