Lecture 18: Elements of Dynamic Programming COMS10007 - Algorithms

Dr. Christian Konrad

02.04.2019

Elements of Dynamic Programming

Solving a Problem with Dynamic Programming:

- Identify optimal substructure
- @ Give recursive solution
- Compute optimal costs
- Construct optimal solution

Discussion:

- Steps 1 and 2 requires studying the problem at hand
- Steps 3 and 4 are usually straightforward

Step 1: Identify Optimal Substructure

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to ${\bf P}$ contains within it optimal solutions to subproblems of ${\bf P}$.

Examples: Let OPT be optimal solution

• POLE-CUTTING: If *OPT* cuts at position k then cuts within $\{1,\ldots,k-1\}$ form opt. solution to pole of len. k, and cuts within $\{k+1,\ldots,n\}$ form opt. solution to pole of len. n-k.

• MATRIX-CHAIN-PARENTHESIZATION: If in *OPT* final multiplication is $A_{1k} \times A_{(k+1)n}$ then *OPT* contains optimal parenthesizations of $A_1 \times \cdots \times A_k$ and $A_{k+1} \times \cdots \times A_n$

$$(A_1 \times (A_2 \times A_3)) \times ((A_4 \times A_5) \times A_6)$$

Step 2. Give Recursive Solution

Define Table for Storing Optimal Solutions to Subproblems:

Optimal substructure indicates how subproblems look like

- Pole-Cutting:
 - OPT contains optimal solutions to shorter lengths
 - \rightarrow Store optimal solutions for every length in $\{1, \ldots, n\}$ (table of length n)
- Matrix-Chain-Parenthesization:

OPT contains optimal parenthesizations for subproducts

$$A_i \times \cdots \times A_i$$

 \rightarrow Store optimal parenthesizations for every subproduct

$$A_i \times \cdots \times A_j$$
 (table of size n^2)

Step 2. Give Recursive Solution (2)

Express Optimal Solutions Recursively:

POLE-CUTTING: (p_k: price for selling a pole of length k)
 m[i] := maximum revenue to pole of length i

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

• Matrix-Chain-Parenthesization:

$$m[i,j] := \min$$
. # scalar mult. to compute $A_i \times A_{i+1} \times \cdots \times A_j$

$$m[i,j] = \min_{i \le k < j} m[i,k] + m[k+1,j]$$

+ "cost for computing $A_{ik} \times A_{(k+1)j}$ "

Two Possibilities:

- Bottom-up
- Top-down with memoization

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
-	-	-	-	-	-	-	-	-	-	-

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

 $m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$

0	1	2	3	4	5	6	7	8	9	10
-	-	-	-	-	-	-	-	-	-	-

Initialize base cases: m[0] = 0 and $m[1] = p_1$

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	-	-	-	-	-	-	-	-	-

Initialize base cases: m[0] = 0 and $m[1] = p_1$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[2] = \max\{p_1 + m_1, p_2 + m_0\} = \max\{1 + 1, 5 + 0\} = 5$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[2] = \max\{p_1 + m_1, p_2 + m_0\} = \max\{1 + 1, 5 + 0\} = 5$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

 $m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	-	-	-	-	-	-	-	-

$$m[3] = \max\{p_1 + m_2, p_2 + m_1, p_3 + m_0\} = \max\{1 + 5, 5 + 1, 8 + 0\} = 8$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

 $m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	-	-	-	-	-	-	-

$$m[3] = \max\{p_1 + m_2, p_2 + m_1, p_3 + m_0\} = \max\{1+5, 5+1, 8+0\} = 8$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	-	-	-	-	-	-	-

$$m[4] = \max\{p_1 + m_3, p_2 + m_2, p_3 + m_1, p_4 + m_0\} = \max\{1 + 8, 5 + 5, 8 + 1, 9\} = 10$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

 $m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	-	-	-	-	-	-

$$m[4] = \max\{p_1 + m_3, p_2 + m_2, p_3 + m_1, p_4 + m_0\} = \max\{1 + 8, 5 + 5, 8 + 1, 9\} = 10$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[5] = \max\{p_1 + m_4, p_2 + m_3, p_3 + m_2, p_4 + m_1, p_5 + m_0\} = \max\{1 + 10, 5 + 8, 8 + 2, 9 + 1, 10\} = 13$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

 $m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	-	-	-	-	-

$$m[5] = \max\{p_1 + m_4, p_2 + m_3, p_3 + m_2, p_4 + m_1, p_5 + m_0\} = \max\{1 + 10, 5 + 8, 8 + 2, 9 + 1, 10\} = 13$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

. . .

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	17	18	22	25	30

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	17	18	22	25	30

The maximum revenue obtainable for a pole of length 10 is 30

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

	0	1	2	3	4	5	6	7	8	9	10
ĺ	0	1	5	8	10	13	17	18	22	25	30

But how can we find out how to cut the pole?

Step 4: Construct Optimal Solution

Keep Track of Optimal Choices: store optimal choices in array s

```
Require: Integer n, array p of length n with prices

Let r[0 \dots n] be a new array

r[0] \leftarrow 0

for j = 1 \dots n do

r[j] \leftarrow -\infty

for i = 1 \dots j do

r[j] \leftarrow \max\{r[j], p[i] + r[j - i]\}

return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

- s[i] contains position of first cut in optimal solution
- Easy to reconstruct all cuts

Step 4: Construct Optimal Solution

Keep Track of Optimal Choices: store optimal choices in array s

```
Require: Integer n, array p of length n with prices
  Let r[0...n] be a new array, let s[1...n] be a new array
  r[0] \leftarrow 0
  for j = 1 \dots n do
     r[i] \leftarrow -\infty
     for i = 1 \dots i do
        if p[i] + r[j-i] > q then
           r[i] \leftarrow p[i] + r[i-i]
           s[i] \leftarrow i
  return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

- s[i] contains position of first cut in optimal solution
- Easy to reconstruct all cuts

Subproblem Graph and Runtime

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Runtime of Dynamic Programming Algorithm:

- Total number of subproblems t
- Maximum number of subproblems a subproblem depends on s
- Runtime: $O(s \cdot t)$ (assuming that computing solution takes time O(s))

