

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

2.0 Bluetooth Speaker

ISSUED TO Compupal (Group) Corporation

No.1555 Jiashan Avenue, Jiashan 314113, Zhejiang, China

Report No.:
EUT Type:
Model Name:
Brand Name:
Test Standard:
FCC ID:

BL-SZ1660400-601
2.0 Bluetooth Speaker
OMS100BT, BSK20
Compupal, AmazonBascis
47 CFR Part 15 Subpart C
Z5Y-OMS100BT

Test conclusion:
Test Date:
Date of Issue:

Pass
Jul. 1, 2016 ~ Jul. 8, 2016
Jul. 20, 2016

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Revision History

Version Rev. 01 Issue Date Jul. 20, 2016 Revisions Content Initial Issue

TABLE OF CONTENTS

1	ADMIN	ISTRATIVE DATA (GENERAL INFORMATION)	6
	1.1	Identification of the Testing Laboratory	6
	1.2	Identification of the Responsible Testing Location	6
	1.3	Laboratory Condition	6
	1.4	Announce	6
2	PRODU	JCT INFORMATION	8
	2.1	Applicant Information	8
	2.2	Manufacturer Information	8
	2.3	Factory Information	8
	2.4	General Description for Equipment under Test (EUT)	8
	2.5	Ancillary Equipment	8
	2.6	Technical Information	9
	2.7	Additional Instructions	9
3	SUMM	ARY OF TEST RESULTS	11
	3.1	Test Standards	11
	3.2	Verdict	11
4	GENER	RAL TEST CONFIGURATIONS	12
	4.1	Test Environments	12
	4.2	Test Equipment List	12
	4.3	Description of Test Setup	13
	4.3.1	For Antenna Port Test	13
	4.3.2	For AC Power Supply Port Test	13
	4.3.3	For Radiated Test (Below 30 MHz)	14
	4.3.4	For Radiated Test (30 MHz-1 GHz)	14
	4.3.5	For Radiated Test (Above 1 GHz)	15
	4.4	Measurement Results Explanation Example	16

	4.4.1	For conducted test items:	16
	4.4.2	For radiated band edges and spurious emission test:	16
5	TEST I	TEMS	17
	5.1	Antenna Requirements	17
	5.1.1	Standard Applicable	17
	5.1.2	Antenna Anti-Replacement Construction	17
	5.1.3	Antenna Gain	17
	5.2	Number of Hopping Frequency	18
	5.2.1	Limit	18
	5.2.2	Test Setup	18
	5.2.3	Test Procedure	18
	5.2.4	Test Result	18
;	5.3	Peak Output Power	19
	5.3.1	Test Limit	19
	5.3.2	Test Setup	19
	5.3.3	Test Procedure	19
	5.3.4	Test Result	19
	5.4	Occupied Bandwidth	20
	5.4.1	Limit	20
	5.4.2	Test Setup	20
	5.4.3	Test Procedure	20
	5.4.4	Test Result	20
;	5.5	Carrier Frequency Separation	21
	5.5.1	Limit	21
	5.5.2	Test Setup	21
	5.5.3	Test Procedure	21
	5.5.4	Test Result	21
	5.6	Time of Occupancy (Dwell time)	22
	5.6.1	Limit	22
	5.6.2	Test Setup	22
	5.6.3	Test Procedure	22
	564	Test Result	22

5.7	Conducted Spurious Emission & Authorized-band band-edge	23
5.7.1	Limit	23
5.7.2	Test Setup	23
5.7.3	Test Procedure	23
5.7.4	Test Result	23
5.8	Conducted Emission	24
5.8.1	Limit	24
5.8.2	Test Setup	24
5.8.3	Test Procedure	24
5.8.4	Test Result	24
5.9	Radiated Spurious Emission	25
5.9.1	Limit	25
5.9.2	Test Setup	25
5.9.3	Test Procedure	25
5.9.4	Test Result	26
5.10	Band Edge (Restricted-band band-edge)	27
5.10.1	Limit	27
5.10.2	Test Setup	27
5.10.3	Test Procedure	27
5.10.4	Test Result	27
ANNEX A	TEST RESULT	28
A.1	Number of Hopping Frequency	28
A.2	Peak Output Power	30
A.3	20 dB and 99% bandwidth	36
A.4	Hopping Frequency Separation	40
A.5	Average Time of Occupancy	41
A.6	Conducted Spurious Emissions & Authorized-band band-edge	45
A.7	Conducted Emissions	51
A.8	Radiated Emission	53
A.9	Band Edge (Restricted-band band-edge)	62
ANNEX B	TEST SETUP PHOTOS	67
ANNEX C	EUT EXTERNAL PHOTOS	67

ANNEX D EUT INTERNAL PHOTOS67

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
A diducac	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1. The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are 832625. The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791.		
Description	All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055		

1.3 Laboratory Condition

Ambient Temperature	20 to 25°C
Ambient Relative Humidity	45% - 55%
Ambient Pressure	100 kPa - 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v3.4.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without

prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Compupal (Group) Corporation
Address	No.1555 Jiashan Avenue, Jiashan 314113, Zhejiang, China

2.2 Manufacturer Information

Manufacturer	Compupal (Group) Corporation
Address	No.1555 Jiashan Avenue, Jiashan 314113, Zhejiang, China

2.3 Factory Information

Factory	Compupal (Group) Corporation
Address	No.1555 Jiashan Avenue, Jiashan 314113, Zhejiang, China

2.4 General Description for Equipment under Test (EUT)

EUT Type	2.0 Bluetooth Speaker
Model Name Under Test	OMS100BT
Series Model Name	OMS100BT, BSK20
Description of Model	The equipment model OMS100BT and BSK20 are 2.0 Bluetooth
name differentiation	Speaker, the Circuit and PCB Layout are same, only the model name
Tidino dinoronidation	and brand name is different.
Hardware Version	Rev A
Software Version	Rev A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A
Network and Wireless	Bluetooth 4.1 + EDR
connectivity	Diuelouli 4.1 + EDR

Note: Bluetooth 4.1 only contain classic Bluetooth module.

2.5 Ancillary Equipment

	Battery	
	Brand Name	N/A
	Model No.	N/A
Ancillary Equipment 1	Serial No.	N/A
	Capacitance	2600 mAh
	Rated Voltage	3.7 V
	Extreme Voltage	N/A
Ancillary Equipment 2	USB Data Cable	
Ancillary Equipment 2	Length (Approx.)	23.4 cm

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Modulation Technology	FHSS
Modulation Type	GFSK, ∏/4-DQPSK, 8-DPSK
Transfer Rate	1 Mbps, 2 Mbps, 3 Mbps
Fraguency Dange	The frequency range used is 2402 MHz – 2480 MHz;
Frequency Range	The frequency block is 2400 MHz to 2483.5 MHz.
Number of channel	79 (at intervals of 1 MHz)
Tested Channel	0 (2402 MHz), 39 (2441 MHz), 78 (2480 MHz).
Antenna Type	PCB Antenna
Antenna Gain	1 dBi (All involve the antenna gain test item, has been included in the
Antenna Gam	final results)
About the Product	The equipment is 2.0 Bluetooth Speaker, only the Bluetooth 4.1 + EDR
About the Floudt	was tested in this report.

2.7 Additional Instructions

EUT Software Settings:

Mode	⊠ Bluetooth test mode loop back enabled.
Wiode	EUT is controlled over CBT / CMU.

The samples Bluetooth software Test Tool to enter Test mode through the base station control fixed frequency.

Power level setup in software							
Test Software Version	Bluetooth softwa	Bluetooth software Test Tool					
Mode	Channel	Frequency (MHz)	Soft Set				
	CH0	2402					
DH5	CH39	2441					
	CH78	2480					
	CH0	2402	TX LEVEL is built-in set				
2DH5	CH39	2441	parameters and cannot be				
	CH78	2480	changed and selected.				
	CH0	2402					
3DH5	CH39	2441					
	CH78	2480					

Run Software:

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
	47 CFR Part 15, Subpart		
1	С	Miscellaneous Wireless Communications Services	
	(10-1-15 Edition)		
	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless	
2	AINSI 603. 10-2013	Devices	

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict
1	Antenna Requirement	15.203		Pass Note 1
2	Number of Hopping Frequency	15.247(a)	ANNEX A.1	Pass
3	Peak Output Power	15.247(b)	ANNEX A.2	Pass
4	Occupied Bandwidth	15.247(a)	ANNEX A.3	Pass
5	Carrier Frequency Separation	15.247(a)	ANNEX A.4	Pass
6	Time of Occupancy (Dwell time)	15.247(a)	ANNEX A.5	Pass
7	Conducted Spurious Emission	15.247(d)	ANNEX A.6	Pass
	& Authorized-band band-edge	10.217 (d)	7111127771.0	
8	Conducted Emission	15.207	ANNEX A.7	Pass
9	Radiated Spurious Emission	15.209	ANNEX A.8	Pass
9	Radiated Spullous Effission	15.247(d)	ANNLA A.O	F a 3 3
10	Band Edge(Restricted-band	15.209	ANNEX A.9	Pass
10	band-edge)	15.247(d)	AININEA A.9	F d S S

Note 1: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

Note 2: Because of the modulation of Π /4-DQPSK same as 8-DPSK, and the test results are basically the same with them, so we chose 8-DPSK as a typical representative to appear on the report. Another we will show all the modes on the RF output power test item.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% - 55%		
Atmospheric Pressure	100 kPa - 102 kPa		
Temperature	NT (Normal Temperature)	20℃ to +25℃	
Working Voltage of the EUT	NV (Normal Voltage)	3.7 V	

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2015.07.16	2016.07.15
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	177746	2015.07.16	2016.07.15
Signal Generator	ROHDE&SCHWARZ	SMB100A	260592	2016.07.01	2017.06.30
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2015.07.16	2016.07.15
Spectrum Analyzer	AGILENT	E4440A	MY45304434	2015.10.15	2016.10.14
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2015.07.14	2016.07.13
LISN	SCHWARZBECK	NSLK 8127	8127-687	2015.07.14	2016.07.13
Bluetooth Tester	ROHDE&SCHWARZ	CBT	101005	2015.07.16	2016.07.15
Power Splitter	KMW	DCPD-LDC	1305003215	2016.07.01	2017.06.30
Power Sensor	ROHDE&SCHWARZ	NRP-Z21	103971	2015.07.21	2016.07.20
Attenuator (20 dB)	KMW	ZA-S1-201	110617091		
Attenuator (6 dB)	KMW	ZA-S1-61	1305003189		
DC Power Supply	ROHDE&SCHWARZ	HMP2020	18141664	2015.07.17	2016.07.16
Temperature Chamber	ANGELANTIONI SCIENCE	NTH64-40A	1310	2015.08.07	2016.08.06
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2015.07.22	2017.07.21
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2015.07.22	2017.07.21
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2015.07.22	2017.07.21
Test Antenna- Horn(15-26.5 GHz)	SCHWARZBECK	BBHA 9170	9170-305	2015.07.22	2017.07.21
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2015.02.28	2017.02.27
Shielded Enclosure	ChangNing	CN-130701	130703		

4.3 Description of Test Setup

4.3.1 For Antenna Port Test

4.3.2 For AC Power Supply Port Test

(Diagram 2)

4.3.3 For Radiated Test (Below 30 MHz)

(Diagram 3)

4.3.4 For Radiated Test (30 MHz-1 GHz)

(Diagram 4)

4.3.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

4.4 Measurement Results Explanation Example

4.4.1 For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

4.4.2 For radiated band edges and spurious emission test:

Per part 15.35(c), the EUT Bluetooth average emission level could be determined by the peak emission level applying duty cycle correction factor, to represent averaging over the whole pulse train.

The average level is derived from the peak level corrected with "Duty cycle correction factor".

Average Emission Level (dBuV/m) = Peak Emission Level (dBuV/m) + Duty cycle correction factor (dB)

Duty cycle correction factor (dB) = 20 * log (Duty cycle).

Duty cycle = on time / 100 milliseconds

On time = dwell time * hopping number in 100 ms

For example: bluetooth with dwell time 2.9 ms and 3 hops in 100 ms, then

Duty cycle correction factor (dB) = 20 * log ((2.9 * 3) / 100) = -21.21 dB

Following shows an average computation example with duty cycle correction factor = -21.21 dB, and the peak emission level is 45.61 dBuV/m.

Example:

Average Emission Level (dBuV/m) = Peak Emission Level (dBuV/m) + duty cycle correction factor (dB) = 45.61 + (-21.21) = 24.4 (dBuV/m)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Standard Applicable

FCC §15.203 & 15.247(b)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description			
The antenna is An embedded-in	The antenna is wel	ded on the mainboard, o	can't be repl	aced by the
	consumer	PCB Antenna		
			_	
Reference Documents	Item		RF Chip	
Photo	RID COMMITTEE CO			

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5.2 Number of Hopping Frequency

5.2.1 Limit

FCC §15.247(a) (1) (iii)

Frequency hopping systems operating in the 2400 MHz to 2483.5 MHz bands shall use at least 15 hopping frequencies.

5.2.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

5.2.4 Test Result

Please refer to ANNEX A.1.

5.3 Peak Output Power

5.3.1 Test Limit

FCC § 15.247(b)

For frequency hopping systems that operates in the 2400 MHz to 2483.5 MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1 Watt.

5.3.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Occupied Bandwidth

5.4.1 Limit

FCC §15.247(a)

Measurement of the 20dB bandwidth of the modulated signal.

5.4.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate, Allow the trace to stabilize.

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Carrier Frequency Separation

5.5.1 Limit

FCC §15.247(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.5.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

5.5.4 Test Result

Please refer to ANNEX A.4.

5.6 Time of Occupancy (Dwell time)

5.6.1 Limit

FCC §15.247(a)

Frequency hopping systems in the 2400 MHz - 2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.6.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The average time of occupancy on any channel within the Period can be calculated with formulas:

For DH1 package type

```
{Total of Dwell} = {Pulse Time} * (1600 / 2) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4 s * {Number of Hopping Frequency}
```

For DH3 package type

```
{Total of Dwell} = {Pulse Time} * (1600 / 4) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4 s * {Number of Hopping Frequency}
```

For DH5 package type

```
{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4 s * {Number of Hopping Frequency}
```

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

5.6.4 Test Result

Please refer to ANNEX A.5

5.7 Conducted Spurious Emission & Authorized-band band-edge

5.7.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.7.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.7.3 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

5.7.4 Test Result

Please refer to ANNEX A.6.

5.8 Conducted Emission

5.8.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBμV)			
(MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
0.50 - 30	60	50		

5.8.2 Test Setup

See section 4.3.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.8.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.8.4 Test Result

Please refer to ANNEX A.7.

5.9 Radiated Spurious Emission

5.9.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. Field Strength ($dB\mu V/m$) = 20*log[Field Strength ($\mu V/m$)].
- 2. In the emission tables above, the tighter limit applies at the band edges.
- For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 4. For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.9.2 Test Setup

See section 4.3.3 to 4.3.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.9.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.9.4 Test Result

Please refer to ANNEX A.8.

5.10Band Edge (Restricted-band band-edge)

5.10.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

5.10.2 Test Setup

See section 4.3.3 to 4.3.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5 10 3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.10.4 Test Result

Please refer to ANNEX A.9.

ANNEX A TEST RESULT

A.1 Number of Hopping Frequency

Test Data

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	Pass
8-DPSK	2400 - 2483.5	79	15	Pass

Test plots

GFSK 2.4 GHz ~ 2.4415 GHz

GESK 2 4415 GHz ~ 2 4835 GHz

8-DPSK 2.4 GHz ~ 2.4415 GHz

8-DPSK 2.4415 GHz ~ 2.4835 GHz

A.2 Peak Output Power

Test Data

GFSK Mode:

Channal	Measured Output Peak Power		Limit		Vordict	
Channel	dBm	mW	dBm	mW	Verdict	
Low	3.31	2.14			Pass	
Middle	2.95	1.97	30	1000	Pass	
High	2.52	1.79			Pass	

∏/4-DQPSK Mode:

Channel	Measured Output Peak Power		Limit		Verdict	
Chamilei	dBm	mW	dBm	mW	verdict	
Low	4.40	2.75			Pass	
Middle	4.09	2.56	30	1000	Pass	
High	3.66	2.32			Pass	

8-DPSK Mode:

Channel	Measured Output Peak Power		Limit		Verdict
	dBm	mW	dBm	mW	verdict
Low	4.81	3.03			Pass
Middle	4.56	2.86	30	1000	Pass
High	4.03	2.53			Pass

Test plots

GFSK LOW CHANNEL

GFSK MIDDLE CHANNEL

GFSK HIGH CHANNEL

Π/4-DQPSK LOW CHANNEL

∏/4-DQPSK MIDDLE CHANNEL

∏/4-DQPSK HIGH CHANNEL

8-DPSK LOW CHANNEI

8-DPSK MIDDLE CHANNEL

8-DPSK HIGH CHANNEL

A.3 20 dB and 99% bandwidth

Test Data

GFSK Mode:

Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	1.072	0.903
Middle	0.985	0.908
High	0.977	0.900

8-DPSK Mode:

Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	1.278	1.171
Middle	1.283	1.173
High	1.276	1.178

Test plots

GFSK LOW CHANNEL

GFSK MIDDLE CHANNEL

GFSK HIGH CHANNEL

8-DPSK LOW CHANNEL

8-DPSK MIDDLE CHANNEL

8-DPSK HIGH CHANNEL

A.4 Hopping Frequency Separation

Test Data

Note: The systems operate with an output power no greater than 125 mw, the data provided in the section A.2.

Mode	Frequency separation (MHz)	Max 20 dB Bandwidth (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Verdict
GFSK	1.000	1.072	0.715	Pass
8-DPSK	1.005	1.283	0.855	Pass

Test Plots

GFSK

8-DPSK

A.5 Average Time of Occupancy

Test Data

GFSK Mode:

DH Packet	Pulse Width (ms)	Total of Dwell (ms)	Limit (sec)	Verdict
DH 1	0.387	123.748	0.4	Pass
DH 3	1.620	259.208	0.4	Pass
DH 5	2.873	306.463	0.4	Pass

8-DPSK Mode:

DH Packet	Pulse Width (ms)	Total of Dwell (ms)	Limit (sec)	Verdict
DH 1	0.400	128.004	0.4	Pass
DH 3	1.640	262.408	0.4	Pass
DH 5	2.893	308.596	0.4	Pass

Test Plots

GFSK DH3

GFSK DH5

8-DPSK DH1

8-DPSK DH3

8-DPSK DH5

A.6 Conducted Spurious Emissions & Authorized-band band-edge

Test Data

GFSK Mode:

	Measured Max. Out of	Limit (d		
Channel	Band Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-44.36	3.02	-16.98	Pass
Middle	-48.10	2.64	-17.36	Pass
High	-47.32	1.81	-18.19	Pass

8-DPSK Mode:

	Measured Max. Out of	Limit (d		
Channel	Band Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-45.42	2.72	-17.28	Pass
Middle	-46.20	2.32	-17.68	Pass
High	-48.25	2.10	-17.90	Pass

Hopping Mode:

	Measured Max. Out of	Limit (d		
Mode	Band Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
GFSK	-44.12	4.05	-15.95	Pass
8-DPSK	-45.55	4.28	-15.72	Pass

Test Plots

GFSK High CHANNEL, BAND EDGE

GFSK High CHANNEL , SPURIOUS 30 MHz \sim 3 GHz

GFSK High CHANNEL , SPURIOUS 3 GHz \sim 25 GHz

8-DPSK LOW CHANNEL, BAND EDGE

8-DPSK LOW CHANNEL , SPURIOUS 30 MHz ~ 3 \$ 8-DPSK LOW CHANNEL , SPURIOUS 3 GHz ~ 25 GHz \$ GHz \$

8-DPSK MIDDLE CHANNEL , SPURIOUS 30 MHz ~ 3 GHz

8-DPSK MIDDLE CHANNEL , SPURIOUS 3 GHz \sim 25 GHz

8-DPSK High CHANNEL, BAND EDGE

8-DPSK High CHANNEL , SPURIOUS 30 MHz \sim 3 8-DPSK High CHANNEL , SPURIOUS 3 GHz \sim 25 GHz

GFSK Hopping BAND EDGE (LOW) 🔆 Agilent Display 2.403 167 GH 2.86 dBm Ref 15 dBm ●Peak #Atten 30 dB Full Screen Display Line -17.14 dBm Off 4 3 2 Limits Center 2.400 000 GHz Res BW 100 kHz Marker Trace Span 10 MHz Sweep 1 ms (601 pts) Active Fctn Position #VBW 300 kHz Title Preferences Copyright 2000-2012 Agilent Technologies

GFSK Hopping Mode, SPURIOUS 30 MHz ~ 3 GHz

GFSK Hopping Mode, SPURIOUS 30 3GHz ~ 25 GHz

A.7 Conducted Emissions

Note 1: The EUT is working in the Normal link mode.

Note 2: Power supply is DC 5.0V from USB port by laptop.

Test Data and Plots

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.15	57.2	11.00	65.9	8.70	Peak	L Line	Pass
1**	0.15	37.4	11.00	55.9	18.50	AV	L Line	Pass
2	0.39	43.8	11.00	59.1	15.30	Peak	L Line	Pass
2**	0.39	33.1	11.00	49.1	16.00	AV	L Line	Pass
3	1.12	32.2	11.00	56.0	23.80	Peak	L Line	Pass
3**	1.12	20.6	11.00	46.0	25.40	AV	L Line	Pass
4	2.59	31.9	11.00	56.0	24.10	Peak	L Line	Pass
4**	2.59	20.6	11.00	46.0	25.40	AV	L Line	Pass
5	4.53	34.8	11.00	56.0	21.20	Peak	L Line	Pass
5**	4.53	24.1	11.00	46.0	21.90	AV	L Line	Pass
6	14.65	35.2	11.00	60.0	24.80	Peak	L Line	Pass
6**	14.65	23.5	11.00	50.0	26.50	AV	L Line	Pass

PHASE N

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.15	58.2	11.00	65.9	7.70	Peak	N Line	Pass
1**	0.15	48.1	11.00	55.9	7.80	AV	N Line	Pass
2	0.19	52.3	11.00	65.0	12.70	Peak	N Line	Pass
2**	0.19	38.3	11.00	55.0	16.70	AV	N Line	Pass
3	0.37	42.8	11.00	59.6	16.80	Peak	N Line	Pass
3**	0.37	29.0	11.00	49.6	20.60	AV	N Line	Pass
4	0.72	34.4	11.00	56.0	21.60	Peak	N Line	Pass
4**	0.72	27.1	11.00	46.0	18.90	AV	N Line	Pass
5	1.83	37.3	11.00	56.0	18.70	Peak	N Line	Pass
5**	1.83	23.1	11.00	46.0	22.90	AV	N Line	Pass
6	4.61	32.5	11.00	56.0	23.50	Peak	N Line	Pass
6**	4.61	22.2	11.00	46.0	23.80	AV	N Line	Pass

A.8 Radiated Emission

Duty cycle correction factor for average measurement.

DH5 on time/100 ms(Count Pulses) Plot on Channel 39

DH5 on time/100 ms(One Pulse) Plot on Channel 39

Note:

- 1. Duty cycle = on time/100 milliseconds = 3* 2.893 / 100 =8.68 %
- 2. Duty cycle correction factor = 20*log (Duty cycle) = -21.23 dB
- 3. 3DH5 has the highest duty cycle and is reported.

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1 GHz, according the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note 3: The EUT is working in the Normal link mode below 1 GHz.

Test Data and Plots

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	142.73	25.77	-23.41	43.5	17.73	Peak	268.80	100	Vertical	Pass
2	220.07	21.16	-19.93	46.0	24.84	Peak	178.20	100	Vertical	Pass
3	285.77	25.24	-18.02	46.0	20.76	Peak	360.00	100	Vertical	Pass
4	363.84	32.51	-15.94	46.0	13.49	Peak	248.60	100	Vertical	Pass
5	389.78	39.13	-15.22	46.0	6.87	Peak	255.30	100	Vertical	Pass
6	441.90	34.98	-14.31	46.0	11.02	Peak	2.80	100	Vertical	Pass

30 MHz to 1 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	118.73	25.94	-21.56	43.5	17.56	Peak	171.50	100	Horizontal	Pass
2	205.77	28.08	-19.96	43.5	15.42	Peak	37.80	100	Horizontal	Pass
3	285.77	34.42	-18.02	46.0	11.58	Peak	356.40	100	Horizontal	Pass
4	363.84	39.73	-15.94	46.0	6.27	Peak	58.00	100	Horizontal	Pass
5	389.78	34.51	-15.22	46.0	11.49	Peak	304.30	100	Horizontal	Pass
6	493.79	30.20	-13.21	46.0	15.80	Peak	224.80	100	Horizontal	Pass

Note: The marked spikes near 2400 MHz with circle should be ignored because they are Fundamental signal. <u>Test Data and Plots (1 GHz ~ 10th Harmonic)</u>

GESK LOW CHANNEL 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2295.74	49.20	-0.32	74	24.80	Peak	331.7	150	Vertical	Pass
2	2402.19	85.05	-0.25	74	-11.05	Peak	266.8	150	Vertical	N/A
3	5825.61	46.78	15.46	74	17.23	Peak	134.9	150	Vertical	Pass
4	10368.97	46.76	18.21	74	27.24	Peak	52.2	150	Vertical	Pass
5	15245.84	46.40	12.93	74	27.60	Peak	30.8	150	Vertical	Pass
6	21555.74	42.51	11.52	74	31.49	Peak	322.3	150	Vertical	Pass

GESK LOW CHANNEL 1 GHz to 25 GHz, ANT F

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2384.45	47.45	-0.55	74	26.55	Peak	91	150	Horizontal	Pass
2	2401.69	92.68	-0.30	74	-18.68	Peak	67	150	Horizontal	N/A
3	4804.96	53.85	13.79	74	20.15	Peak	279.8	150	Horizontal	Pass
4	9964.64	49.09	20.20	74	24.91	Peak	295.5	150	Horizontal	Pass
5	12480.45	42.81	10.68	74	31.19	Peak	32.8	150	Horizontal	Pass
6	23951.75	47.32	11.93	74	26.68	Peak	304.8	150	Horizontal	Pass

GFSK MIDDLE CHANNEL 1 GHz to 25 GHz. ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2296.19	48.51	-0.32	74	25.49	Peak	178.5	150	Vertical	Pass
2	2440.22	85.45	-0.26	74	-11.45	Peak	310.4	150	Vertical	N/A
3	5821.84	46.06	15.48	74	17.95	Peak	294.4	150	Vertical	Pass
4	6932.20	47.71	15.55	74	26.29	Peak	317.6	150	Vertical	Pass
5	16441.76	46.17	9.10	74	27.84	Peak	171.7	150	Vertical	Pass
6	24420.97	46.16	11.62	74	27.84	Peak	160.9	150	Vertical	Pass

GFSK MIDDLE CHANNEL 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2383.72	47.09	-0.53	74	26.91	Peak	348	150	Horizontal	Pass
2	2440.24	92.82	-0.23	74	-18.82	Peak	54.8	150	Horizontal	N/A
3	4880.48	53.87	13.77	74	20.13	Peak	124.1	150	Horizontal	Pass
4	11739.19	46.44	15.10	74	27.56	Peak	27.8	150	Horizontal	Pass
5	14393.10	42.51	20.44	74	31.49	Peak	296.7	150	Horizontal	Pass
6	20068.22	45.24	9.17	74	28.76	Peak	0.2	150	Horizontal	Pass

GFSK HIGH CHANNEL 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2292.01	47.80	-0.31	74	26.20	Peak	308.1	150	Vertical	Pass
2	2480.39	84.83	-0.23	74	-10.83	Peak	237.8	150	Vertical	N/A
3	5822.97	47.05	15.47	74	16.96	Peak	27	150	Vertical	Pass
4	11177.62	45.58	18.59	74	28.42	Peak	87.8	150	Vertical	Pass
5	17866.47	47.91	9.38	74	26.09	Peak	0.6	150	Vertical	Pass
6	24291.18	45.82	11.85	74	28.18	Peak	113.6	150	Vertical	Pass

GFSK HIGH CHANNEL 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2379.89	47.50	-0.55	74	26.50	Peak	66.1	150	Horizontal	Pass
2	2480.34	93.51	-0.26	74	-19.51	Peak	238.8	150	Horizontal	N/A
3	4962.94	52.09	13.74	74	21.91	Peak	112.9	150	Horizontal	Pass
4	6819.88	47.02	17.99	74	26.98	Peak	37	150	Horizontal	Pass
5	12457.99	43.82	9.86	74	30.18	Peak	238.3	150	Horizontal	Pass
6	22094.84	47.67	8.34	74	26.33	Peak	298	150	Horizontal	Pass

8-DPSK LOW CHANNEL 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2295.40	49.17	-0.32	74	24.83	Peak	223	150	Vertical	Pass
2	2402.17	85.23	-0.27	74	-11.23	Peak	270.1	150	Vertical	N/A
3	5823.30	46.14	15.47	74	17.87	Peak	252.3	150	Vertical	Pass
4	8369.80	44.86	14.99	74	29.14	Peak	34.1	150	Vertical	Pass
5	16379.37	44.94	9.70	74	29.06	Peak	246.5	150	Vertical	Pass
6	22623.96	46.30	11.29	74	27.70	Peak	239.9	150	Vertical	Pass

8-DPSK LOW CHANNEL 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2384.55	48.59	-0.44	74	25.41	Peak	231.9	150	Horizontal	Pass
2	2401.69	93.97	-0.21	74	-19.97	Peak	238.2	150	Horizontal	N/A
3	4800.78	53.82	13.74	74	20.18	Peak	166.7	150	Horizontal	Pass
4	6415.56	42.64	16.96	74	31.36	Peak	325.6	150	Horizontal	Pass
5	15994.59	42.97	10.18	74	31.03	Peak	158.3	150	Horizontal	Pass
6	24151.41	46.22	8.35	74	27.78	Peak	358.7	150	Horizontal	Pass

8-DPSK MIDDLE CHANNEL 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2295.41	48.25	-0.32	74	25.75	Peak	331.5	150	Vertical	Pass
2	2440.87	84.31	-0.27	74	-10.31	Peak	213.6	150	Vertical	N/A
3	5820.50	46.88	15.46	74	17.13	Peak	213.8	150	Vertical	Pass
4	11009.15	43.77	20.15	74	30.23	Peak	198.7	150	Vertical	Pass
5	12802.00	43.55	8.71	74	30.46	Peak	237.8	150	Vertical	Pass
6	21036.61	41.59	9.08	74	32.41	Peak	211.9	150	Vertical	Pass

8-DPSK MIDDLE CHANNEL 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2381.67	47.50	-0.44	74	26.50	Peak	31.3	150	Horizontal	Pass
2	2440.02	92.11	-0.26	74	-18.11	Peak	350.2	150	Horizontal	N/A
3	4860.26	52.76	13.74	74	21.24	Peak	341.7	150	Horizontal	Pass
4	7415.14	42.93	19.94	74	31.07	Peak	3.6	150	Horizontal	Pass
5	17492.10	44.44	8.73	74	29.56	Peak	112.4	150	Horizontal	Pass
6	18344.84	50.35	10.20	74	23.65	Peak	317.6	150	Horizontal	Pass

8-DPSK HIGH CHANNEL 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2295.35	49.50	-0.32	74	24.50	Peak	290.5	150	Vertical	Pass
2	2480.03	84.48	-0.21	74	-10.48	Peak	15.7	150	Vertical	N/A
3	5825.83	46.18	15.51	74	17.83	Peak	253.1	150	Vertical	Pass
4	9818.64	42.39	14.27	74	31.61	Peak	212.6	150	Vertical	Pass
5	13727.54	42.88	20.05	74	31.12	Peak	113.7	150	Vertical	Pass
6	20527.45	45.36	8.43	74	28.64	Peak	104.1	150	Vertical	Pass

8-DPSK HIGH CHANNEL 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2382.55	47.22	-0.54	74	26.78	Peak	202	150	Horizontal	Pass
2	2480.33	93.09	-0.27	74	-19.09	Peak	107.3	150	Horizontal	N/A
3	4961.95	52.05	13.77	74	21.95	Peak	112.4	150	Horizontal	Pass
4	10301.58	45.31	20.24	74	28.69	Peak	4.9	150	Horizontal	Pass
5	13249.17	45.12	9.02	74	28.88	Peak	339.7	150	Horizontal	Pass
6	24610.65	47.62	9.94	74	26.38	Peak	284.6	150	Horizontal	Pass

Hopping Mode:

GFSK MODE 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	2296.81	49.48	-0.32	74	24.52	Peak	157.9	150	Vertical	Pass
2	2402.23	84.24	-0.23	74	-10.24	Peak	148.1	150	Vertical	N/A
3	5823.59	45.77	15.47	74	18.24	Peak	134.2	150	Vertical	Pass
4	7639.77	46.98	13.80	74	27.02	Peak	266.6	150	Vertical	Pass
5	15589.02	46.97	10.68	74	27.03	Peak	345.5	150	Vertical	Pass
6	18303.25	46.88	11.64	74	27.12	Peak	80	150	Vertical	Pass

GFSK MODE 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2381.09	48.87	-0.55	74	25.13	Peak	230.2	150	Horizontal	Pass
2	2401.68	93.38	-0.27	74	-19.38	Peak	286.1	150	Horizontal	N/A
3	4805.89	53.83	13.77	74	20.17	Peak	272.5	150	Horizontal	Pass
4	8448.42	44.57	14.29	74	29.43	Peak	261.7	150	Horizontal	Pass
5	17564.89	43.57	9.06	74	30.43	Peak	114.9	150	Horizontal	Pass
6	20138.10	45.24	11.21	74	28.76	Peak	230.8	150	Horizontal	Pass

8-DPSK MODE 1 GHz to 25 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2292.70	48.08	-0.32	74	25.92	Peak	93.9	150	Vertical	Pass
2	2402.17	86.01	-0.26	74	-12.01	Peak	344.9	150	Vertical	N/A
3	5823.60	45.60	15.51	74	17.41	Peak	160.5	150	Vertical	Pass
4	9088.60	43.87	14.44	74	30.13	Peak	308	150	Vertical	Pass
5	17273.71	49.49	8.58	74	24.51	Peak	232.9	150	Vertical	Pass
6	20018.30	45.61	12.31	74	28.39	Peak	274.9	150	Vertical	Pass

8-DPSK MODE 1 GHz to 25 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	2382.07	47.50	-0.46	74	26.50	Peak	165.9	150	Horizontal	Pass
2	2401.67	93.42	-0.34	74	-19.42	Peak	95.6	150	Horizontal	N/A
3	4805.92	52.99	13.74	74	21.01	Peak	156.4	150	Horizontal	Pass
4	6179.70	43.22	18.58	74	30.78	Peak	216.8	150	Horizontal	Pass
5	14465.89	44.67	11.50	74	29.33	Peak	100.9	150	Horizontal	Pass
6	20667.22	45.43	10.97	74	28.58	Peak	74.6	150	Horizontal	Pass

A.9 Band Edge (Restricted-band band-edge)

Test Data

Note 1: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

Note 2: The test data all are tested in the vertical and horizontal antenna which the trace is max hold. So these plots have shown the worst case.

Note 3: The average levels were calculated from the peak level corrected with duty cycle correction factor (21.23 dB) derived from 20log (dwell time/100 ms).

For example: Average level = 45.09 dBuV/m - 21.23 (dB) = 23.86 dBuV/m.

Test Mode	Test Channel	Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Remark	Verdict
GFSK	Low	2390	45.09	74	28.91	PEAK	Pass
GFSK	LOW	2390	23.86	54	30.14	AVERAGE	Pass
GFSK	ШСП	2483.5	47.65	74	26.35	PEAK	Pass
GFSK	HIGH	2483.5	26.42	54	27.58	AVERAGE	Pass
8-DPSK	Low	2390	45.09	74	28.91	PEAK	Pass
0-DF3K		2390	23.86	54	30.14	AVERAGE	Pass
8-DPSK	HIGH	2483.5	47.65	74	26.35	PEAK	Pass
0-DP3K		2483.5	26.42	54	27.58	AVERAGE	Pass
CESK/Honning)	Low	2390	44.48	74	29.52	PEAK	Pass
GFSK(Hopping)		2390	23.25	54	30.75	AVERAGE	Pass
CECK/Hanning	HIGH	2483.5	50.84	74	23.16	PEAK	Pass
GFSK(Hopping	пібп	2483.5	29.61	54	24.39	AVERAGE	Pass
8-DPSK	Low	2390	44.86	74	29.14	PEAK	Pass
(Hopping)	Low	2390	23.63	54	30.37	AVERAGE	Pass
8-DPSK	LIICH	2483.5	45.62	74	28.38	PEAK	Pass
(Hopping)	HIGH	2483.5	24.39	54	29.61	AVERAGE	Pass

Test Plots

GFSK LOW CHANNEL, PEAK

Date: 6.JUL.2016 18:18:34

GESK HIGH CHANNEL PEAK

Date: 6.JUL.2016 18:20:18

8-DPSK LOW CHANNEL, PEAK

Date: 6.JUL.2016 18:26:14

8-DPSK HIGH CHANNEL PEAK

Date: 6.JUL.2016 18:25:00

Hopping Mode:

GFSK LOW FREQUENCY BAND, PEAK

Date: 6.JUL.2016 18:22:19

GFSK HIGH FREQUENCY BAND, PEAK

Date: 6.JUL.2016 18:21:18

8-DPSK LOW FREQUENCY BAND, PEAK

Date: 6.JUL.2016 18:23:14

8-DPSK HIGH FREQUENCY BAND, PEAK

Date: 6.JUL.2016 18:24:07

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ1660400-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ1660400-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ1660400-AI.PDF".

--END OF REPORT--