Math 1010 - Homework 10

Problem 1

Let

$$f_n(x) = \frac{nx}{1 + nx^2}$$

1. Find the pointwise limit of (f_n) for all $x \in (0, \infty)$.

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{1 + nx^2} = \lim_{n \to \infty} \frac{x}{\frac{1}{n} + x^2} = \frac{x}{x^2} = \frac{1}{x}$$

2. Is the convergence uniform on $(0, \infty)$?

Let $\varepsilon > 0$.

$$|f_n(x) - f(x)| = \left| \frac{nx}{1 + nx^2} - \frac{1}{x} \right|$$

$$= \left| \frac{nx^2}{x(1 + nx^2)} - \frac{1 + nx^2}{x(1 + nx^2)} \right|$$

$$= \left| -\frac{1}{x(1 + nx^2)} \right| = \frac{1}{x(1 + nx^2)}$$

Therefore, any choice of n to make $|f_n(x) - f(x)|$ will depend on x so the convergence is not uniform on $(0, \infty)$.

3. Is the convergence uniform on (0,1)?

Let $\varepsilon = 1$. Then

$$|f_n(x) - f(x)| = \frac{1}{x + nx^3}$$

If we choose $x = \frac{1}{4}$ then

$$\left| f_n(\frac{1}{4}) - f(\frac{1}{4}) \right| = \frac{1}{1/4 + n(1/64)} = \frac{64}{16 + n}$$

so we need n > 48 to make $|f_n(\frac{1}{4}) - f(\frac{1}{4})| < 1$.

However, if we chose $x = \frac{1}{2}$, then

$$\left| f_n(\frac{1}{2}) - f(\frac{1}{2}) \right| = \frac{1}{1/2 + n/8} = \frac{8}{4+n}$$

so we just need n > 4 to make $\left| f_n(\frac{1}{2}) - f(\frac{1}{2}) \right| < 1$.

Therefore, the convergence is not uniform on (0,1).

4. Is the convergence uniform on $(1, \infty)$?

 $x \ge 1$ implies that

$$|f_n(x) - f(x)| = \frac{1}{x + nx^3} < \frac{1}{1+n} < \frac{1}{n}$$

Therefore, to bound $|f_n(x) - f(x)| < \varepsilon$, we need $n > \frac{1}{\varepsilon}$ which is independent of x. The convergence is uniform on $(1, \infty)$.

Problem 2

Using the Cauchy Criterion for convergent sequences of real numbers (Thm. 2.6.4 in the book), supply a proof for the Cauchy Criterion for Uniform Convergence (Thm. 6.2.5 in the book). First define a candidate for f(x) and then argue that $f_n \to f$ uniformly.

The Cauchy Criterion for uniform convergence says a sequence of functions (f_n) defined on $A \subseteq \mathbb{R}$ converges uniformly on A iff $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \varepsilon$ whenever $n, m \ge N$ and $x \in A$.

The Cauchy Criterion for convergent sequences of real numbers says a sequence converges iff it is a Cauchy sequence.

Suppose $(f_n) \to f$ uniformly. Then $\exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$ whenever $n \geq N$ and $x \in A$. Choose m > N. Then

$$|f_n(x) - f_m(x)| = |f_n(x) - f_m(x) - f(x)| + |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

so (f_n) is a Cauchy sequence.

Suppose now that $\exists N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$ whenever $n, m \ge N$ and $x \in A$. Then, by the Cauchy Criterion for Convergent Sequences, (f_n) converges to some limit L.

Define f(x) = L. then

$$|f_n(x) - f(x)| = |f_n(x) - f(x)| + |f_m(x) - f_m(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

By assumption, $|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$. By pointwise convergence of (f_n) , if we choose m sufficiently large, we have $|f_m(x) - f(x)| = |f_m(x) - L| < \frac{\varepsilon}{2}$. Therefore, $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$ and $x \in A$ so (f_n) converges uniformly to f.

Problem 3 (Arzela-Ascoli Theorem)

A sequence of functions (f_n) defined on a set $E \subset \mathbb{R}$ is called *equicontinuous* if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \varepsilon$ for all $n \in \mathbb{N}$ and $|x - y| < \delta$ in E.

For each $n \in \mathbb{N}$, let f_n be a function defined on [0,1]. If (f_n) is bounded on [0,1] – that is, there exists an M > 0 such that $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and $x \in [0,1]$ – and if the collection of functions (f_n) is equicontinuous, follow these steps to show that (f_n) contains a uniformly convergent subsequence.

1. Explain why the construction in Exercise 6.2.13 (see below) produces a subsequence (f_{n_k}) that converges at every rational point in [0,1]. To simplify notation, set $g_k = f_{n_k}$. It remains to show that (g_k) converges uniformly on all of [0,1].

We proved in class that \mathbb{Q} is countable. Let $A = \{x \in [0,1] \cap \mathbb{Q}\}$. Since $A \subseteq \mathbb{Q}$, A is countable (not finite by density of \mathbb{Q} in \mathbb{R}).

Further, since $A \subseteq [0, 1]$, (f_n) is defined on A and is bounded on A by assumption. By Exercise 6.2.13, there exists a subsequence (f_{n_k}) that converges pointwise on A.

2. Let $\varepsilon > 0$. By equicontinuity, there exists a $\delta > 0$ such that

$$|g_k(x) - g_k(y)| < \frac{\varepsilon}{3}$$

for all $|x-y| < \delta$ and $k \in \mathbb{N}$. Using this δ , let r_1, r_2, \dots, r_m be a *finite* collection of rational points with the property that the union of the neighborhoods $V_{\delta}(r_i)$ contains [0, 1].

Explain why there must exist an $N \in \mathbb{N}$ such that

$$|g_s(r_i) - g_t(r_i)| < \frac{\varepsilon}{3}$$

for all $s, t \ge N$ and r_i in the finite subset of [0, 1] just described. Why does having the set $\{r_1, r_2, \dots, r_m\}$ be finite matter?

Since r_i is a rational point in [0,1], we have that (g_k) converges at r_i . Therefore, it is Cauchy so $\exists N_i \in \mathbb{N}$ such that $|g_s(r_i) - g_t(r_i)| < \frac{\varepsilon}{3}$ for all $s, t \geq N$.

We want the sequence to converge for all r_i , so we take $N = \max\{N_1, N_2, \dots, N_m\}$. However, taking a maximum of a set requires that the set be finite. The supremum would not suffice because our domain is limited to \mathbb{N} (axiom of completeness).

3. Finish the argument by showing that, for an arbitrary $x \in [0,1]$,

$$|g_s(x) - g_t(x)| < \varepsilon$$

for all $s, t \geq N$.

By the triangle inequality,

$$|g_s(x) - g_t(x)| = |g_s(x) - g_t(x) + g_s(r_i) - g_s(r_i) + g_t(r_i) - g_t(r_i)|$$

= $|g_s(x) - g_s(r_i)| + |g_t(x) - g_t(r_i)| + |g_s(r_i) - g_t(r_i)|$

for any r_i in the finite subset of [0, 1].

By (2), for all $s, t \geq N$, we have $|g_s(r_i) - g_t(r_i)| < \frac{\varepsilon}{3}$.

By the definition of $\{r_i\}_{i=1}^m$, we have that any $x \in [0,1]$ is in $V_{\delta}(r_i)$ for some r_i . Therefore, $|x - r_i| < \delta$. By equicontinuity, $|g_s(x) - g_s(r_i)| < \frac{\varepsilon}{3}$ and $|g_t(x) - g_t(r_i)| < \frac{\varepsilon}{3}$.

$$|g_s(x) - g_t(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Result from Exercise 6.2.13: Let $A = \{x_1, x_2, x_3, \dots\}$ be a countable set. For each $n \in \mathbb{N}$, let f_n be defined on A and assume there exists an M > 0 such that $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and $x \in A$. Then there exists a subsequence of (f_n) that converges pointwise on A. (This a version of the Bolzano–Weierstrass Thm. for bounded sequences of functions).

Problem 4

Consider the sequence of functions defined by

$$g_n(x) = \frac{x^n}{n}.$$

1. Show (g_n) converges uniformly on [0,1] and find $g = \lim g_n$. Show that g is differentiable and compute g'(x) for all $x \in [0,1]$.

Let $\varepsilon > 0$. Since $x \le 1$, $g_n(x) \le \frac{1}{n}$. Therefore, $N > \frac{1}{\varepsilon}$ will suffice to make $|g_n(x) - 0| < \varepsilon$ for all $n \ge N$ and $x \in [0, 1]$. Thus, $\lim g_n = 0$.

Clearly, g is differentiable since g(x) = 0 for all $x \in [0,1]$. Therefore, g'(x) = 0 for all $x \in [0,1]$.

2. Now, show that (g'_n) converges on [0,1]. Is the convergence uniform? Set $h = \lim g'_n$ and compare h and g'. Are they the same?

$$\lim_{n \to \infty} g'_n = \lim_{n \to \infty} x^{n-1} = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Notice

$$\left| g_n'(\frac{1}{2}) - h(\frac{1}{2}) \right| < \frac{1}{3} \implies n \ge 3$$
$$\left| g_n'(\frac{9}{10}) - h(\frac{9}{10}) \right| < \frac{1}{3} \implies n \ge 12$$

so the convergence is not uniform.

We have g'(x) = 0 for all $x \in [0,1]$ and $h = \mathbf{1}_{x=1}(x)$ so $h \neq g'$.

Problem 5

Use the Mean Value Theorem to supply a proof for Theorem 6.3.2 from the book. To get started, observe that the triangle inequality implies that, for any $x \in [a, b]$ and $m, n\mathbb{N}$,

$$|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|.$$

Theorem 6.3.2: Let (f_n) be a sequence of differentiable functions defined on the closed interval [a, b] and assume (f'_n) converges uniformly to g on [a, b]. If there exists a point $x_0 \in [a, b]$ such that $(f_n(x_0))$ converges, then (f_n) converges uniformly. Moreover, $f = \lim_{n \to \infty} f_n$ is differentiable and f'(x) = g(x) for all $x \in [a, b]$.

Proof: Let (f_n) be differentiable on [a,b] and assume $(f'_n) \to g$ uniformly on [a,b]. Suppose $\exists x_0 \in [a,b]$ so $(f_n(x_0))$ converges.

Let $\varepsilon > 0$. We want to show that (f_n) converges uniformly, i.e. $\exists K \in \mathbb{N}$ for which $\forall n, m \geq K$,

$$|f_n(x) - f_m(x)| < \varepsilon$$

Using the triangle inequality,

$$|f_n(x) - f_m(x)| = |f_n(x) - f_m(x) + f_n(x_0) - f_m(x_0) + f_n(x_0) - f_m(x_0)|$$

$$\leq |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|$$

By assumption, $\exists x_0 \in [a, b]$ so $\exists N \in \mathbb{N}$ for which $\forall n, m \geq N$,

$$|f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$$

Now let $h(x) = f_n(x) - f_m(x)$. Since $f_n(x)$ is differentiable for all $x \in [a, b]$ and $n \in \mathbb{N}$, $h'(x) = f'_n(x) - f'_m(x)$ by the Algebraic Differentiability Theorem.

Since $(f'_n) \to g$ uniformly, by the Cauchy Criterion, $\exists M \in \mathbb{N}$ such that $\forall m, n \geq M$,

$$|f_n'(x) - f_m'(x)| < \varepsilon_0$$

for all $x \in [a, b]$.

Therefore, $|h'(x)| < \varepsilon_0$.

By the mean value theorem, $\exists c \in [x_0, x]$ such that

$$h'(c) = \frac{h(x) - h(x_0)}{x - x_0} = \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0}$$

Therefore,

$$|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|$$

= $|h'(c)(x - x_0)| + |f_n(x_0) - f_m(x_0)|$

Using our earlier convergence bounds, $\forall n, m \ge \max\{N, M\}$,

$$|f_n(x) - f_m(x)| \le |\varepsilon_0(x - x_0)| + \frac{\varepsilon}{2}$$

Since $x, x_0 \in [a, b], |x - x_0| \le b - a$. If we let $\varepsilon_0 = \frac{\varepsilon}{2(b-a)}$, then

$$|f_n(x) - f_m(x)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

so by the Cauchy Criterion, (f_n) converges uniformly.

Since $(f_n) \to f$ uniformly, it converges pointwise on [a,b] and by assumption $(f'_n) \to g$ uniformly. Therefore, by the Differentiable Limit Theorem $f = \lim f_n$ is differentiable and f'(x) = g(x) for all $x \in [a,b]$.