Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΕΚΤΗ ΔΙΑΛΕΞΗ

Επίλυση μη γραμμικών εξισώσεων (1)

Θέλουμε να βρούμε τις τιμές των $x_1, x_2, ..., x_n$ που ικανοποιούν ταυτόχρονα τις εξισώσεις

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

$$f_2(x_1, x_2, \dots, x_n) = 0,$$

$$\vdots \qquad \vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0.$$

Οι μεταβλητές x_i και οι συναφτήσεις f_i είναι γενικά μιγαδικές.

Επίλυση μη γραμμικών εξισώσεων (1)

Θέλουμε να βρούμε τις τιμές των $x_1, x_2, ..., x_n$ που ικανοποιούν ταυτόχρονα τις εξισώσεις

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

$$f_2(x_1, x_2, \dots, x_n) = 0,$$

$$\vdots \qquad \vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0.$$

Οι μεταβλητές x_i και οι συναρτήσεις f_i είναι γενικά μιγαδικές.

Η ειδική περίπτωση

$$g(x,y) = 0 , \qquad h(x,y) = 0 ,$$

με τις μεταβλητές και τις συναφτήσεις αποκλειστικά πραγματικές, μποφεί να λυθεί ως εξής:

- Ορίζουμε τη μιγαδική μεταβλητή z = x + iy και τη μιγαδική συνάρτηση f(z) = g(x, y) + ih(x, y).
- Το πρόβλημα τότε ανάγεται στο f(z) = 0.

Επίλυση μη γραμμικών εξισώσεων (2)

Ανάπτυγμα Taylor για συνάςτηση πολλών μεταβλητών

Aν η συνάρτηση $f(x_1, x_2, \ldots, x_n)$

- είναι συνεχής και παραγωγίσιμη, και
- guagizoume tis timés this f kai tan paragagágan this se éna shieío $\vec{a} \equiv (a_1, a_2, \dots, a_n),$

μπορούμε να υπολογίσουμε την τιμή της σε άλλο σημείο $\vec{x} \equiv (x_1, x_2, \dots, x_n)$:

$$f(x_1, x_2, ..., x_n) = f(a_1, a_2, ..., a_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_{\vec{x} = \vec{a}} (x_i - a_i)$$

$$+ \frac{1}{2!} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \Big|_{\vec{x} = \vec{a}} (x_i - a_i) (x_j - a_j) + \cdots.$$

Επίλυση μη γραμμικών εξισώσεων (3)

Αν υποθέσουμε ότι τα \vec{x} και \vec{a} απέχουν «λίγο», μπορούμε να παραλείψουμε τους όρους δεύτερης τάξης και πάνω. Αντικαθιστούμε κάθε εξίσωση του μη γραμμικού συστήματος με το ανάπτυγμα Taylor για αυτή:

$$f_1(a_1, a_2, \dots, a_n) + \sum_{i=1}^n \frac{\partial f_1}{\partial x_i}\Big|_{\vec{x}=\vec{a}} (x_i - a_i) \approx 0,$$
 $f_2(a_1, a_2, \dots, a_n) + \sum_{i=1}^n \frac{\partial f_2}{\partial x_i}\Big|_{\vec{x}=\vec{a}} (x_i - a_i) \approx 0,$
 $\vdots \qquad \vdots$
 $f_n(a_1, a_2, \dots, a_n) + \sum_{i=1}^n \frac{\partial f_n}{\partial x_i}\Big|_{\vec{x}=\vec{a}} (x_i - a_i) \approx 0.$

To \vec{x} eínai n (ágnwsth) lúsh tou mh grammikoú susthmatos kai to \vec{a} éna geitonikó shmeío se autó.

Επίλυση μη γραμμικών εξισώσεων (4)

Ορίζουμε τον πίνακα

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix},$$

με όλες τις παραγώγους να υπολογίζονται στο (a_1,a_2,\ldots,a_n) , και το διάνυσμα

$$ec{b} = egin{bmatrix} f_1(ec{a}) \ f_2(ec{a}) \ dots \ f_n(ec{a}) \end{pmatrix} \;.$$

Επίλυση μη γραμμικών εξισώσεων (5)

Το προσεγγιστικό σύστημα γίνεται

$$\vec{b} \approx -A \cdot (\vec{x} - \vec{a}) \Rightarrow \vec{x} \approx \vec{a} - A^{-1} \cdot \vec{b}$$
.

Η τελευταία σχέση είναι αυτή που επαναληπτικά μπορεί να μας υπολογίσει το \vec{x} : αν θέσουμε στο \vec{a} την k-οστή προσέγγιση της ρίζας, $\vec{x}^{(k)}$, με $k=0,1,\ldots$, η επόμενη, πιθανόν καλύτερη, προσέγγιση $\vec{x}^{(k+1)}$ είναι

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} - A^{-1} \cdot \vec{b}$$
.

Επίλυση μη γραμμικών εξισώσεων (6)

Η επαναληπτική διαδικασία διακόπτεται όταν

- Oi apólutes timés two sunarthsewn f_i (ta stoiceía diladh tou \vec{b}) na einal «mikrés»: $\left|f_i(\vec{x}^{(k)})\right|<\varepsilon_i$, $\forall i$.
- Το μέτρο του $\vec{b}^{(k)}$ να είναι «μικρό».
- Η απόλυτη βελτίωση στα x_i να είναι «μικρή» κατά μέτρο: $\left|x_i^{(k)}-x_i^{(k-1)}\right|<\varepsilon_i.$
- Η σχετική βελτίωση στα x_i να είναι «μικρή» κατά μέτρο: $\left|\frac{x_i^{(k)}-x_i^{(k-1)}}{x_i^{(k)}}\right|<\varepsilon_i \text{ an } x_i^{(k)}\neq 0.$

Επίλυση μη γραμμικών εξισώσεων (6)

Η επαναληπτική διαδικασία διακόπτεται όταν

- Oi apólutes timés two sunarthsewn f_i (ta stoiceía diladh tou \vec{b}) na eínai «mikrés»: $\left|f_i(\vec{x}^{(k)})\right|<\varepsilon_i$, $\forall i$.
- Το μέτρο του $\vec{b}^{(k)}$ να είναι «μικρό».
- Η απόλυτη βελτίωση στα x_i να είναι «μικρή» κατά μέτρο: $\left|x_i^{(k)}-x_i^{(k-1)}\right|<\varepsilon_i.$
- Η σχετική βελτίωση στα x_i να είναι «μικρή» κατά μέτρο: $\left|\frac{x_i^{(k)}-x_i^{(k-1)}}{x_i^{(k)}}\right|<\varepsilon_i \text{ an } x_i^{(k)}\neq 0.$

Η μέθοδος που παρουσιάστηκε είναι η μέθοδος Newton-Raphson για σύστημα μη γραμμικών εξισώσεων.

Αλγόριθμος επίλυσης μη γραμμικού συστήματος

Μέθοδος Newton-Raphson για μη γραμμικά συστήματα

- 1. Επιλέγουμε μια αρχική προσέγγιση της ρίζας, $\vec{x}^{(0)}$, κοντά στην (άγνωστη) λύση.
- 2. Ελέγχουμε με ένα ή περισσότερα κριτήρια αν η τρέχουσα προσέγγιση είναι αποδεκτή ως λύση. Αν όχι, συνεχίζουμε στο επόμενο βήμα.
- 3. Υπολογίζουμε στην τρέχουσα προσέγγιση $\vec{x}^{(k)}$ $(k=0,1,\ldots)$ τον πίνακα A και το διάνυσμα \vec{b} .
- 4. An o pínakaς A είναι αντιστρέψιμος, επιλύουμε το γραμμικό σύστημα $A\cdot \vec{y}=\vec{b}$ ως προς \vec{y} . Η νέα προσέγγιση είναι $\vec{x}^{(k+1)}=\vec{x}^{(k)}-\vec{v}$.
- 5. Επαναλαμβάνουμε από το βήμα 2.