

Birla Institute of Technology & Science, Pilani Work Integrated Learning Programmes Division Second Semester 2024-2025

Digital Learning Handout

Part A: Content Design

Course Title	DATA STRUCTURES AND ALGORITHMS DESIGN	
Course No(s)	SE ZG519/SS ZG519	
Credit Units	5	
Credit Model	X-X-X	
	(XX Hours of Class-room Instruction + XX Hours of Case-studies/Tutorials/Laboratories + XX Hours of Student Preparation)	
Instructors	Prof. Rajib Ranjan Maiti (LEAD), Febin Vahab	
Version No:		
Date:	16/01/2025	

Course Description:

The course includes the lesson to design, implement and apply a set of basic and advanced data structures, including trees, graphs and bloom filters. The course also includes important algorithm design techniques, like greedy, dynamic programming, map reduce etc. and their applications to develop solutions for sorting, searching, graph searching, networking and number theory. The course also includes the techniques to measure the performance of algorithm in terms of their time complexity.

Course Objectives

No	Course Objective			
CO1	Equip students with the ability to analyse the performance and correctness of			
	algorithms using theoretical foundations and asymptotic notations, preparing them for			
	advanced study and professional application in algorithm design.			
CO2	Enable students to proficiently analyse and solve recursive algorithms through the			
	understanding and application of recurrence relations, the Master Theorem, and various			
	methods for solving recurrences.			
CO3	3 Ensure that students gain a deep understanding of both elementary and advanced da			
	structures, including their implementation, applications, and optimization techniques,			
	to solve complex computational problems effectively.			
CO4	Provide students with the knowledge and skills to implement and utilize advanced dat			
	structures such as hash tables, AVL trees, k-d trees, and Bloom filters, focusing or			
	collision handling, rehashing, and other optimization techniques.			
CO5	Train students in employing various algorithm design techniques such as greedy			
	methods, divide and conquer, and dynamic programming to develop efficient solutions			
	for a wide range of computational problems.			

Commented [1]: Course description should be as per Senate approved document

Format No: QF.02.01 Rev:3 Dt 30.12.24

C06

Foster a comprehensive understanding of computational complexity theory, including the classification of problems into P and NP classes, the concept of NP-completeness, and the application of polynomial-time reducibility to significant computational problems.

Text Book(s):

T1 Algorithms Design: Foundations, Analysis and Internet Examples Michael T. Goodrich, Roberto Tamassia, 2006, Wiley (Students Edition)

Reference Book(s) & other resources:

R1	Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, Third Ed,
	2009, PHI
R2	Data Structures, Algorithms and Applications in Java, Sartaj Sahni, Second Ed, 2005, Universities Press

Learning Outcomes: Students will be able to

LO1	Demonstrate the ability to analyse the efficiency of algorithms using asymptotic notation and characterize their run-time complexities. Understand and apply concepts such as best case, average case, and worst case scenarios, as well as the correctness of algorithms.
LO2	Develop the skills to analyse recursive algorithms using recurrence relations and the Master Theorem. Solve recurrence relations using methods such as substitution and recursion trees to specify the runtime of recursive algorithms.
LO3	Implement and utilize various data structures including stacks, queues, lists, trees (binary trees, AVL trees, k-d trees), heaps, and graphs. Analyse and optimize the operations associated with these data structures for different applications.
LO4	Understand and implement advanced data structures such as hash tables, including collision handling methods, and Bloom filters. Apply these data structures to solve complex problems efficiently.
LO5	Employ algorithm design techniques such as the greedy method, divide and conquer, and dynamic programming to solve various computational problems. Implement algorithms for problems like the knapsack problem, shortest path problems, and task scheduling.
LO6	Understand the fundamental concepts of computational complexity, including P and NP classes, NP-completeness, and polynomial-time reducibility. Apply these concepts to problems such as CNF SAT and the Clique problem, and comprehend the implications of the Cook-Levin theorem.

Part B: Learning Plan

Contact	List of Topic	Sub-Topics	Reference
Session	Title		

Format No: QF.02.01 Rev:3 Dt 30.12.24

Commented [2]: With edition and year of publication

Commented [3]: latest edition of book

		1	T1 1 1 1 2	
	Analyzing	1.1 Algorithms and it's Specification	T1: 1.1, 1.2	
	Algorithms	1.2 Random Access Machine Model		
1	Theoretical	1.3 Notion of best case, average case and worst		
	Foundation	case		
		1.4. Notion of Algorithm Correctness		
		2.1. Characterizing Run Time	T1:1.1.4	
		2.1.1. Use of asymptotic notation	R1: 4.3,4.4,4.5	
	Characterizing	2.1.2. Big-Oh, Omega and Theta Notations		
2	Run Time	2.2. Analyzing Recursive Algorithms		
	Kun Tinic	2.2.1. Recurrence relations		
		2.2.2. Specifying runtime of recursive algorithms		
		2.2.3. Master Theorem		
		3.1. Stacks ADT, Implementation and	R1:10.1	
	F1	Applications	R1:17.1	
	Elementary Data	3.2. Queues ADT, Implementation and	R1:10.2	
3	Structures	Applications		
	Structures	3.3. Amortized Analysis -Stack, Queue operations-Aggregate Method		
		3.4. List ADT, Implementation and Applications		
		4.1. Trees	T1: 2.3	
		4.1.1. Terms and Definition		
		4.1.2. Tree ADT		
	Non-Linear	4.1.3. Applications		
	Data Structures	4.2. Binary Trees		
4		4.2.1. Properties		
	Structures	4.2.2. Representations (Array Based and Linked		
		Structure)		
		4.4.3. Binary Tree traversal (In Order, Pre Order,		
		Post Order)		
		4.3.4. Applications	70.6	
		5.1. Definition and Properties	R2:6	
	Heaps	5.2. Representations (Array Based and Linked)		
5	Псарз	5.3. Insertion and deletion of elements		
		5.4. Heap sort		
		5.5. Priority Queue	24.004	
		6.1. Terms and Definitions	R1: 22.1,	
		6.2. Properties	22.2,22.3	
_	Graphs	6.3. Representations (Edge List, Adjacency list,		
6	3. mps	Adjacency Matrix)		
		6.4. Graph Traversals (Depth First and Breadth		
	First Search)			
		6.5. Applications		

		7.1. Directed Graph and Reachability-Floyd- Warshall's Transitive Closure	R1:25.2
		7.2. Dictionaries	R2:11
	Graphs (contd) and	7.2.1. Dictionary ADT, Applications	
-		7.2.2. Hash Tables	
7		7.2.3. Notion of Hashing and Collision	
	Dictionaries	7.3. Methods for Collision Handling	
		7.3.1. Separate Chaining	
		7.3.2. Notion of Load Factor	
		7.3.3. Rehashing	
	Methods for	8.1. Open Addressing [Linear &Quadratic	R2:11
8	Collision	Probing, Double Hash]	
0	Handling	8.2. Applications Universal Hashing	
	(Continued)	8.3. Introduction to Bloom Filters, Applications	
9	Binary Search 9.1. BST Operations Applications		T1:3.1,3.2
,	Tree	9.2. AVL trees	
	AVL Trees	10.1. Rank and Range Queries, Performance	T1:12.1
10	(Contd.) and K-D	10.2. k-d Trees	T1:12.3.2
10	trees	10.2.1. Representation	
		10.3. Range and NN Queries	
	Algorithm	11.1. Design Principles and Strategy	T1: 5.1
	Design	11.2. Fractional Knapsack Problem	
11	Techniques		
	Greedy		
	Method	10.1.16.	T1 50511
	Greedy	12.1. Minimum Spanning Tree	T1: 7.3,7.1.1
12	Method	12.2. Shortest Path Problem - Djikstra's Algorithm	
	(Continued)	12.1 D ' D' '1 1G()	T1. 5 2 2 4 1
12	Divide and	13.1. Design Principles and Strategy	T1: 5.2.2, 4.1
13	Conquer	13.2. Integer Multiplication Problem	
		13.3. Merge Sort	T1: 5.3
14	Dynamic	14.1. Design Principles and Strategy	11: 5.5
	Programming	14.2. Matrix Chain Product Problem	T1: 7.2
	Comple	15.1. All-pairs Shortest Path Problem	T1: 7.2
15	Complexity	15.2. Complexity Classes	11. 15.1
	Classes	15.2.1. Definition of P and NP classes and	
-		examples 16.1. Understanding NP-Completeness: CNF	T1: 13
	Complexity	16.1. Understanding NP-Completeness: CNF SAT	11.13
16	Complexity Classes	16.1.1. Cook-Levin theorem	
16			
	(Continued)	16.2. Polynomial time Reducibility:	
L		16.2.1. CNF SAT	

	16.3. Clique	

Experiential Learning Components:

Describe objective, outcome of Experiential Learning Component and the lab infrastructure needed (virtual, remote, open source etc..) number of lab exercises needed, etc.

1. Lab work: NA

2. Project work: NA

3. Case Study: NA

4. Simulation: NA

5. Work Integrated Learning Assignment: NA

6. Design work/ Field work: NA

Objective of Experiential Learning Component:

Scope of Experiential Learning Component:

Lab Infrastructure:

List of Experiments: NA

Exp No.	Experiment Title	Reference to handout module/section
1.		
2.		

Commented [4]: added common nomenclature as experiential learning component instead of lab. Added simulation and work integrated Learning Assignment

Commented [5]: Mention which component will be used in Experiential Learning. For rest of components mark it as NONE

Eg:

Commented [6]: If required add Instruction Schedule

Format No: QF.02.01 Rev:3 Dt 30.12.24

Evaluation Scheme:

Legend: EC = Evaluation Component: AN = After Noon Session: FN = Fore Noon Session

Evaluation	Name	Type (Open	Weight	Duration	Day, Date,
Component		book, Closed			Session, Time
	(Quiz, Lab, Project, Mid-	book,			
	term exam, End semester exam, etc.)	Online, etc.)			
EC – 1*	Quiz	Online	10%	1 week	February 17-27, 2025
	Assignment/Lab Assignment	Online	20 %	10 days	April 1-10,
	/ Lab Exams				2025
EC - 2	Mid-Semester Test	Closed Book	30%	2 hours	22/03/2025
EC - 2					(FN)
EC 2	Comprehensive Exam	Open Book	40%	2 ½	24/05/2025
EC - 3				Hours	(FN)

 $EC1* (20\% - 30\%): Quiz (optional): 5-10 \%, Lab Assignment/Assignment: 20\% - 30\% \\ Syllabus for Mid-Semester Test (Closed Book): Topics in Contact session: 1 to 8$

Syllabus for Comprehensive Exam (Open Book): All topics

Important Links and Information:

eLearn Portal: https://elearn.bits-pilani.ac.in

Students must visit the eLearn portal regularly and stay updated with the latest announcements and deadlines.

<u>Contact Sessions:</u> Students should attend the online lectures as per the schedule provided on the eLearn portal.

Evaluation Guidelines:

- 1. EC-1 consists of either two Assignments or three Quizzes. Students will attempt them through the course pages on the eLearn portal. Announcements will be made on the portal in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted.
- 3. For Open Book exams: "open book" means text/ reference books (publisher copy only) and does not include any other learning material. No other learning material will be permitted during the open book examinations. For Detailed Guidelines refer to the attached document. <u>EC3 Guidelines</u>
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam, which will be made available on the eLearn portal. The Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the online lectures, and take all the prescribed evaluation components such as Assignments/Quizzes, Mid-Semester Tests and Comprehensive Exams according to the evaluation scheme provided in the handout.

Format No: QF.02.01 Rev:3 Dt 30.12.24

Commented [7]: If required describe the EC1 evaluation components and its weightage in detailed manner (including Lab components/simulation components) atc.

Format No: QF.02.01 Rev:3 Dt 30.12.24