Tesina di modelli econometrici

Erik De Luca

7 novembre 2023

Indice

1	Tav	ola 1		2
	1.1	Model	llo senza vincoli	2
		1.1.1	Test di normalità dei residui	2
		1.1.2	Test di White per l'eteroschedasticità	2
		1.1.3	Test di RESET	3
		1.1.4	Test di CHOW	3
		1.1.5	Significatività dell'intercetta	4
	1.2	Model		4
		1.2.1	Test di normalità dei residui	4
		1.2.2	P	4
		1.2.3	Test di RESET	4
		1.2.4	Test di CHOW	5
2	Tav	ola 2		5
	2.1	Model	llo senza vincoli	5
		2.1.1		5
		2.1.2		6
		2.1.3		6
		2.1.4	Test di CHOW	6
			1000 di Ciio vi	
		2.1.5		6
	2.2		Significatività dell'intercetta	6 7
	2.2		Significatività dell'intercetta	_
	2.2	Model	Significatività dell'intercetta	7 7
	2.2	Model 2.2.1	Significatività dell'intercetta	7 7 8

Consegna

Si legga l'articolo di Mankiw, Romer and Weil (MRW) riportato in pdf nell'area risorse di Moodle e utilizzando i dati in GRETL o excel associati, relativi a 75 paesi (campione Intermediate), si replichino le stime della "Table I" e "Table II" (colonna Intermediate) dell'articolo. Per ogni modello stimato si effettuino i test di Normalità dei residui, di eteroschedasticità ed il test RESET. Inoltre si verifichi se vi sono eterogeneità nei parametri rispetto al gruppo di paesi OECD/non OECD in generale e anche in particolare con riferimento a differenze nell'intercetta del modello nei due gruppi di paesi.

Si riportino le stime, i test e i commenti in un file word o pdf da caricare in moodle.

Introduzione

Il modello di Solow afferma essenzialmente che i tassi di risparmio e la crescita della popolazione, entrambi fattori esogeni, determinano il livello di equilibrio dinamico, ovvero lo stato stazionario nel tempo. Nell'applicare tale modello a un dataset, si è scoperto che le previsioni del modello di Solow erano corrette per quanto riguarda la 'direzione' degli effetti dei regressori del modello sul reddito pro capite. Inoltre, più della metà della variazione del reddito pro capite dei Paesi analizzati poteva essere spiegata dai soli due regressori, risparmio e crescita della popolazione.

Tuttavia, il modello ha commesso un errore di stima nelle previsioni degli effetti di questi due regressori sul reddito, prevedendo un impatto molto più ampio di quello reale. Per risolvere questo problema, gli autori del modello hanno deciso di ampliare il modello includendo l'accumulazione di capitale, sia umano che fisico, che ritenevano fosse la variabile responsabile dell'errore nelle stime.

Le variabili del dataset utilizzato per la stima riguardano gli anni 1960 - 1985 e includono il tasso di crescita medio della popolazione in età lavorativa (popgrow), la quota media di investimenti reali sul PIL reale (inv), il PIL reale per la forza lavoro nel 1985 (gdp85) e la percentuale media della popolazione in età lavorativa iscritta alla scuola secondaria (school).

1 Tavola 1

1.1 Modello senza vincoli

Modello 1: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	5,34587	1,54308	3,464	0,0009
l _rateInv	1,31755	0,170943	7,708	0,0000
$1_rate 005 Pop Grow$	-2,01720	$0,\!533866$	-3,778	0,0003
Media var. dipendent	te 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residu	ıi 26,84751	E.S. della	regressione	0,610641
R^2	0,598908	R^2 corret	to	0,587767
F(2,72)	53,75507	Y P-value(F	")	$5,\!21e\!-\!15$
Log-verosimiglianza	-67,89608	Criterio d	i Akaike	141,7922
Criterio di Schwarz	148,7446	Hannan-C	Quinn	144,5682

1.1.1 Test di normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi-quadro(2) = 4,600 con p-value 0,10028. Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 .

1.1.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2 = 4,367934$, con p-value = P(Chi-quadro(5) > 4,367934) = 0,497745. Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 ovvero l'omoschedasticità e di conseguenza non avrò bisogno di testare il modello usando gli s.e. robusti.

Figura 1: Istogramma dei residui e curva normale

1.1.3 Test di RESET

- Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0,357307, con p value = P(F(2,70) > 0,357307) = 0,701.
- Test RESET di specificazione (solo quadrati) Statistica test: F = 0,470045, con p value = P(F(1,71) > 0,470045) = 0,495.
- Test RESET di specificazione (solo cubi) Statistica test: F = 0,444703, con p value = P(F(1,71) > 0,444703) = 0,507.

Accetto l'ipotesi nulla H_0 in tutti e tre i casi, ovvero la corretta specificazione del modello.

1.1.4 Test di CHOW

Regressione aumentata per il test Chow OLS, usando le osservazioni 1-75 Variabile dipendente: l_gdp85

		errore std.	rapporto t	p-value
const	10,7499	2,36535	4,545	2,28e-05 ***
lrateInv	1,08344	$0,\!183827$	5,894	1,25e-07 ***
1rate 005 Pop G row	$0,\!285895$	0,928888	0,3078	0,7592
OECD	-2,72927	4,47593	-0,6098	0,5440
OE_l rate Inv	-0,583547	0,680128	-0,8580	0,3939
$OE_l_rate005PopG{\sim}$	-1,02782	1,58646	-0,6479	$0,\!5192$

Media var. dipendente	8,402521	SQM var. dipendente	0,951074	p-value	
Somma quadr. residui	22,38248	E.S. della regressione	0,569547	2,28e-05 ***	
R-quadro	0,665614	R-quadro corretto	0,641384	1,25e-07 ***	
F(5, 69)	27,46972	P-value (F)	3,44e-15	0,7592	
Log-verosimiglianza	-61,07502	Criterio di Akaike	134,1500	0,5440	
Criterio di Schwarz	148,0550	Hannan-Quinn	139,7021	0,3939	
Note: SQM = scarto quadratico medio; E.S. = errore standard					

Lo scopo del Test di Chow è verificare la presenza di eterogeneità nei parametri rispetto ai gruppi di Paesi OECD vs Non OECD (differenza strutturale). Test Chow per differenza strutturale rispetto a OECD F(3,69) = 4,58823 con p-value0,0055, quindi l'ipotesi nulla viene rifiutata.

Riferendoci ai Paesi OECD, i test di nullità dei coefficienti stabiliscono che la probabilità che i coefficienti di l_rateInv (quota media di investimenti sul PIL reale) e dell'intercetta siano nulli è significativamente diversa da zero. Per le altre 4 variabili, non possiamo rifiutare l'ipotesi di nullità.

1.1.5 Significatività dell'intercetta

Valuto un nuovo modello dove includo la variabile dummy OECD, la stima del coefficiente di questa variabile rappresenterà la differenza tra i paesi OECD e quelli non. Nel modello risulta che vale 0,908721, questo mi porta a dire che i paesi OECD hanno un livello tecnologico più avanzato degli altri. Inoltre, la variabile dummy ha un p-value=0,0006, ovvero le sue stime sono significative.

Modello 2: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficiente	${\bf Errore~Std.}$	rapporto \boldsymbol{t}	p-value
const	9,90663	1,91571	5,171	0,0000
l _rateInv	1,05192	$0,\!174970$	6,012	0,0000
$l_rate005PopGrow$	-0,0186636	0,746162	-0,02501	0,9801
OECD	0,908721	$0,\!253935$	3,579	0,0006
Media var. dipendent	te 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residu	ii 22,74506	E.S. della	regressione	0,565997
R^2	0,660198	R^2 corret	to	0,645840
F(3,71)	45,98165	P-value(F	7)	$1,\!27e-16$
Log-verosimiglianza	-61,67763	Criterio d	i Akaike	131,3553
Criterio di Schwarz	140,6252	Hannan-C	Quinn	$135,\!0566$

1.2 Modello con vincoli

Il passo successivo è quello di imporre un vincolo ai coefficienti: $\ln(s) = -\ln(n+g+\delta)$ ottenendo così un nuovo modello dove verranno applicati gli stessi test usati nel primo modello.

Modello 3: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficie	ente E	rrore Std.	rapport	o t p-	value
const	7,09292	0,	145614	48,71	0,0	0000
diffVincoli	1,43096	0,	139123	$10,\!29$	0,0	0000
Media var. diper	ndente	8,40252	21 SQM	var. diper	ndente	0,951074
Somma quadr. re	esidui	27,3297	77 E.S.	della regre	ssione	0,611866
R^2		0,59170	R^2 co	orretto		0,586111
F(1,73)		105,791	7 P-val	lue(F)		7,58e-16
Log-verosimiglian	nza -	-68,5637	71 Crite	rio di Aka	ike	141,1274
Criterio di Schwa	arz	145,762	24 Hann	an-Quinn		142,9781

1.2.1 Test di normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi - quadro(2) = 6,031 con p - value = 0,04901. Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 .

1.2.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2 = 1,683358$, con p - value = P(Chi - quadro(2) > 1,683358) = 0,430986. Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 ovvero l'omoschedasticità e di conseguenza non avrò bisogno di testare il modello usando gli s.e. robusti.

1.2.3 Test di RESET

- Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0,259749, con p value = P(F(2,71) > 0,259749) = 0,772.
- Test RESET di specificazione (solo quadrati) Statistica test: F=0,478325, con p-value=P(F(1,72)>0,478325)=0,491.

Figura 2: Istogramma dei residui e curva normale

• Test RESET di specificazione (solo cubi) Statistica test: F=0,467759, con p-value=P(F(1,72)>0,467759)=0,496

1.2.4 Test di CHOW

Regressione aumentata per il test Chow OLS, usando le osservazioni 1-75 Variabile dipendente: l_gdp85 coefficiente errore std. rapporto t p-value 5,44e-056 *** 7,23380 48,21const 0,150055 1,57e-07 *** ${\rm diffVincoli}$ 1,07037 0,183934 5,819 **OECD** 1,39058 0,839354 1,657 0,1020 OE_diffVincoli -0,516523 0,594840 -0.86830,3881

Test Chow per differenza strutturale rispetto a OECD F(2,71) = 6,48079 con p-value = 0,0026.

2 Tavola 2

2.1 Modello senza vincoli

Modello 4: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	4,42701	1,15525	3,832	0,0003
l _rateInv	0,700367	$0,\!150583$	4,651	0,0000
$l_rate005PopGrow$	-1,49978	0,403216	-3,720	0,0004
l_school	0,730549	$0,\!0952292$	7,671	0,0000
Media var. dipenden	te 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residu	ii 14,67963	E.S. della	regressione	$0,\!454704$
R^2	0,780692	R^2 corret	to	0,771425
F(3,71)	84,24848	P-value(F	7)	2,44e-23
Log-verosimiglianza	$-45,\!25687$	Criterio d	li Akaike	$98,\!51375$
Criterio di Schwarz	107,7837	′ Hannan–(Quinn	102,2151

2.1.1 Test di normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi - quadro(2) = 2,123 con p - value = 0,34593.

Figura 3: Istogramma dei residui e curva normale

2.1.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2 = 8,594657$, con p-value = P(Chi-quadro(9) > 8,594657) = 0,475500. Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 ovvero l'omoschedasticità e di conseguenza non avrò bisogno di testare il modello usando gli s.e. robusti.

2.1.3 Test di RESET

- Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0,765695, con p value = P(F(2,69) > 0,765695) = 0,469.
- Test RESET di specificazione (solo quadrati) Statistica test: F = 1,553304, con p value = P(F(1,70) > 1,5533) = 0,217.
- Test RESET di specificazione (solo cubi) Statistica test: F=1,552062, con p-value=P(F(1,70)>1,55206)=0,217.

Accetto l'ipotesi nulla H_0 in tutti e tre i casi, ovvero la corretta specificazione del modello.

2.1.4 Test di CHOW

Regressione aumentata per il test Chow OLS, usando le osservazioni 1-75

Variabile dipendente: l_gdp85 coefficiente errore std. rapporto t p-value 4,56e-06 *** const 8,97318 1,79850 4,989 0,0006 *** l_rateInv 0,561413 0,156657 3,584 l_rate005PopGrow 0,699517 0,5111 0,6110 0,357497 7,116 l_school 0,672092 0,0944468 9,38e-010 *** OECD -3,87108 3,67721 -1,0530,2963 0,529155 -0,53910,5916 OE_l_rateInv -0.285280 $OE_1_rate005PopG\sim$ 0,2390 -1,43300 1,20606 -1,188 OE_l school 0,0954788 0,392687 0,8086 0,2431

Test Chow per differenza strutturale rispetto a OECD F(4,67) = 3,20338 con p-value = 0,0181.

2.1.5 Significatività dell'intercetta

Valuto un nuovo modello dove includo la variabile dummy OECD, la stima del coefficiente di questa variabile rappresenterà la differenza tra i paesi OECD e quelli non. Nel modello risulta che vale

Media var. dipendente	8,402521	SQM var. dipendente	0,951074
Somma quadr. residui	$12,\!32292$	E.S. della regressione	$0,\!428864$
R-quadro	0,815900	R-quadro corretto	0,796666
F(7, 67)	$42,\!41903$	P-value (F)	$3,\!25e\text{-}22$
Log-verosimiglianza	-38,69437	Criterio di Akaike	$93,\!38874$
Criterio di Schwarz	111,9286	Hannan-Quinn	100,7915
37 (003 (1	1. D.O.	1 1

Note: SQM = scarto quadratico medio; E.S. = errore standard

0,653649, in questo caso il valore si è ridotto perché in parte assorbito dalla variabile school. Inoltre, la variabile dummy ha un p-value=0,0006, ovvero le sue stime sono significative.

Modello 5: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficiente	Errore Std.	rapporto \boldsymbol{t}	p-value
const	7,77511	1,46517	5,307	0,0000
lrateInv	0,554643	0,147099	3,771	0,0003
$l_rate005PopGrow$	-0,100235	0,559922	-0,1790	0,8584
l_school	0,676875	0,0903430	7,492	0,0000
OECD	0,653649	$0,\!193536$	$3,\!377$	0,0012
Media var. dipendent	e 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residu	i 12,62269	E.S. della	regressione	0,424646
R^2	0,811422	R^2 correct	5O	0,800646
F(4,70)	75,29969	P-value(F	')	1,29e-24
Log-verosimiglianza	-39,59570	Criterio d	i Akaike	89,19139
Criterio di Schwarz	100,7788	Hannan-C	Quinn	93,81813

2.2 Modello con vincoli

Il passo successivo è quello di imporre due vincoli ai coefficienti:

- 1. $\ln(s) \ln(n + g + \delta)$
- 2. $\ln(SCHOOL) \ln(n + g + \delta)$

Ottenendo così un nuovo modello dove verranno applicati gli stessi test usati nel primo modello.

[ht] Modello 6: OLS, usando le osservazioni 1–75 Variabile dipendente: l_gdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	4,59047	0,335481	13,68	0,0000
$diff_{inv_pop}Grow$	0,709078	$0,\!137653$	5,151	0,0000
$diff_school_popGrow$	0,733038	$0,\!0930925$	7,874	0,0000
Media var. dipendente	e 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residui	14,68416	E.S. della	regressione	0,451605
R^2	0,780624	R^2 corrette	0	0,774531
F(2,72)	128,1020	P-value (F))	1,92e-24
Log-verosimiglianza	$-45,\!26844$	Criterio di	Akaike	96,53687
Criterio di Schwarz	103,4893	Hannan-Q	uinn	99,31291

2.2.1 Test di normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi - quadro(2) = 2,228 con p - value = 0,32831.

Figura 4: Istogramma dei residui e curva normale

2.2.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2 = 5,926438$, con p-value = P(Chi-quadro(5) > 5,926438) = 0,313443 Con $\alpha = 0,05$ accetto l'ipotesi nulla H_0 ovvero l'omoschedasticità e di conseguenza non avrò bisogno di testare il modello usando gli s.e. robusti.

2.2.3 Test di RESET

- Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0,616863, con p value = P(F(2,70) > 0,616863) = 0,543.
- Test RESET di specificazione (solo quadrati) Statistica test: F = 1,248747, con p value = P(F(1,71) > 1,24875) = 0,268.
- Test RESET di specificazione (solo cubi) Statistica test: F=1,242627, con p-value=P(F(1,71)>1,24263)=0,269.

2.2.4 Test di CHOW

Regressione aumentata per il test Chow

OLS, usando le osservazioni 1-75 Variabile dipendente: l_gdp85

			-	
	coefficiente	errore std.	rapporto t	p-value
const	4,92194	$0,\!356267$	13,82	1,50e-021 ***
$diff_{inv_pop}Grow$	$0,\!553830$	0,160293	3,455	0,0009 ***
$diff_school_popG{\sim}$	0,662344	0,0965627	6,859	2,39e-09***
OECD	$0,\!255007$	1,88835	$0,\!1350$	0,8930
$OE_diff_inv_popG{\sim}$	-0,270960	$0,\!483568$	-0,5603	0,5771
$OE_diff_school_p \sim$	0,106228	0,400233	0,2654	0,7915

Test Chow per differenza strutturale rispetto a OECD F(3,69) = 2,40774 con p-value = 0,0745