Partial Differential Equations

(Semester II; Academic Year 2024-25) Indian Statistical Institute, Bangalore

Midterm Exam

1. Reduce to canonical form: $u_{xx} - 2u_{xy} - 3u_{yy} + u_y = 0$.

3. Consider the PDE $xu_x + yu_y + zu_z = 3u$ in \mathbb{R}^3 .

(a) $\int_{\Omega} \frac{2x_1}{1+|x|^2} dx$, where $\Omega = \{x \in \mathbb{R}^3 : |x_1| + |x_2| + |x_3| \le 1\}$

(b) $\int_{B(\alpha,1)} \frac{\partial u}{\partial x_1} dx$, where $u = |x|^{-1}$ in \mathbb{R}^3 and $\alpha = (2,0,0)$.

(a) Solve the PDE with initial condition $u(x, y, 1) = x^2 + y^2$.

Maximum Marks: 30

(2)

(1)

(1)

(3)

(3)

Duration: 3 hrs

2. Evaluate the integrals:

(b) Is it possible to find unique solution if the initial condition is prescribed on the (1)surface $z = 1 + x^2 + y^2$? 4. Consider the following IVPs: A. $u = u_x^2 - 3u_y^2$, $u(x, 0) = x^2$, x > 0. B. $u = u_x u_y$, $u(x, 0) = x^2$, x > 0. (a) Discuss the existence and uniqueness of both IVPs. (4)(b) Solve any one the above. (3)5. Let Ω be an open, bounded set in \mathbb{R}^n . Suppose $u \in C^2(\Omega) \cap C(\bar{\Omega})$ satisfies $\Delta u = -1$ (3)in Ω , u=0 on $\partial\Omega$. Show that for $x\in\Omega$, $u(x)\geq\frac{1}{2n}(d(x,\partial\Omega))^2$. (Hint: For fixed $x_0 \in \Omega$, consider the function $u(x) + \frac{1}{2n}|x - x_0|^2$, $x \in \Omega$.) 6. Suppose u is a harmonic function in \mathbb{R}^n satisfying $|u(x)| \leq C(1+|x|^m)$, for some (3)non-negative integer m and for all $x \in \mathbb{R}^n$. Show that u is a polynomial of degree at most m. 7. Let Ω is a bounded, open subset of \mathbb{R}^n , and $u \in C^1(\Omega)$. If $\int_{\partial B} \frac{\partial u}{\partial \nu} dS = 0$ for every (3)ball B with $\bar{B} \subset \Omega$, show that u is harmonic in Ω . 8. Consider the PDE $xu_x + yu_y = 2u$ on \mathbb{R}^2 . (a) Solve the PDE with the initial condition u(x,1)=x. Determine whether the (3)solution is globally unique? If it is not, find and alternative solution on \mathbb{R}^2 .

(b) Find two solutions to the PDE with the initial condition $u(x, e^x) = xe^x$, ensuring

that these solutions do not coincide in any neighborhood of the initial curve.