4.(a) Since
$$\frac{d}{dx}h'(x)\mu''(x) = h''(x)\mu''(x) + \mu'''(x)h'(x)$$
, $h''(x)\mu''(x) = \frac{d}{dx}h'(x)\mu''(x) - \mu'''(x)h'(x)$

$$\int_{a}^{b} \mu''(x)h''(x)dx = \int_{a}^{b} \frac{d}{dx}h'(x)\mu''(x) - \mu'''(x)h'(x)dx$$

$$= \int_{a}^{b} \frac{d}{dx}h'(x)\mu''(x)dx - \int_{a}^{b} \mu'''(x)h'(x)dx$$

$$= h'(b)\mu''(b) - h'(a)\mu''(a) - \int_{a}^{b} \mu'''(x)h'(x)dx$$

by fundamental theorem of calculus

$$= -\int_{a}^{b} \mu'''(x)h'(x)dx$$

since $\mu(x)$ is linear at a and b ,

since $\mu(x)$ is linear at a and b, $\mu''(a) = \mu''(b) = 0$

$$= -\int_{x_1}^{x_n} \mu'''(x) h'(x) dx$$

since $\mu(x)$ is linear in $[a, x_1)$ and $(x_n, b]$, $\mu'''(x) = 0$

$$= -\sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} \mu'''(x)h'(x)dx$$

by the properties of integral

4.(b) Since $\mu(x)$ is cubic in $[x_1, x_n]$. $\mu'''(x)$ is constant. Hence $\mu'''(x) = c_i$ where $x \in [x_i, x_{i+1}]$ and c_i is the coefficient of x^3 in the cubic function times 6.

4.(c)

From part (b), let $\mu'''(x) = c_i$ where $x \in [x_i, x_{i+1}]$.

$$\int_{x_i}^{x_{i+1}} \mu'''(x)h'(x)dx$$

$$= \int_{x_i}^{x_{i+1}} c_i h'(x)dx$$

$$= c_i \int_{x_i}^{x_{i+1}} h'(x)dx$$

by the properties of integral

$$=c_i(h(x_{i+1})-h(x_i))$$

by fundamental theorem of calculus

4.(d)

Since both g(x) and $\mu(x)$ pass through points (x_i, y_i) for all i, $h(x_i) = g(x_i) - \mu(x_i) = 0$ for all i.

$$\int_{a}^{b} \mu''(x)h''(x)dx = -\sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} \mu'''(x)h'(x)dx \quad \text{by part (a)}$$

$$= -\sum_{i=1}^{n-1} c_{i}(h(x_{i+1}) - h(x_{i})) \quad \text{by part (c)}$$

$$= 0$$

4.(e) Since,

$$\int_{a}^{b} \mu''(x)h''(x)dx = \int_{a}^{b} \mu''(x)(g''(x) - \mu''(x))dx$$
$$= \int_{a}^{b} \mu''(x)g''(x)dx - \int_{a}^{b} (\mu''(x))^{2}dx$$
$$= 0$$

So, $\int_{a}^{b} \mu''(x)g''(x)dx = \int_{a}^{b} (\mu''(x))^{2}dx$ Also,

$$\int_{a}^{b} \mu''(x)h''(x)dx = \int_{a}^{b} (\mu''(x) + g''(x) - g''(x))h''(x)dx$$

$$= \int_{a}^{b} (g''(x) - h''(x))h''(x)dx$$

$$= \int_{a}^{b} g''(x)h''(x)dx - \int_{a}^{b} (h''(x))^{2}dx$$

$$= \int_{a}^{b} g''(x)(g''(x) - \mu''(x))dx - \int_{a}^{b} (h''(x))^{2}dx$$

$$= \int_{a}^{b} (g''(x))^{2}dx - \int_{a}^{b} \mu''(x)g''(x)dx - \int_{a}^{b} (h''(x))^{2}dx$$

$$= \int_{a}^{b} (g''(x))^{2}dx - \int_{a}^{b} (\mu''(x))^{2}dx - \int_{a}^{b} (h''(x))^{2}dx$$

$$= \int_{a}^{b} (g''(x))^{2}dx - \int_{a}^{b} (\mu''(x))^{2}dx - \int_{a}^{b} (h''(x))^{2}dx$$

Hence, $\int_a^b (g''(x))^2 dx - \int_a^b (\mu''(x))^2 dx = \int_a^b (h''(x))^2 dx \ge 0$ since, $(h''(x))^2 \ge 0$. Thus, $\int_a^b (g''(x))^2 dx \ge \int_a^b (\mu''(x))^2 dx$ $\int_a^b (h''(x))^2 dx = 0$ if and only if $(h''(x))^2 = 0$ $\int_a^b (g''(x))^2 dx = \int_a^b (\mu''(x))^2 dx$ if and only if $(h''(x))^2 = 0$ which is equivalent to $g(x) = \mu(x)$

4.(f)

Let $\mu(x)$ be a natural cubic spline with knots at each value x_i , i = 1, ..., n. By part (e), $\int_a^b (g''(x))^2 dx \ge \int_a^b (\mu''(x))^2 dx$, so $\lambda \int_a^b (g''(x))^2 dx \ge \lambda \int_a^b (\mu''(x))^2 dx$ for $\lambda \ge 0$. By assumption $\mu(x_i) = y_i$ for all i, $\sum_{i=1}^n (y_i - \mu(x_i))^2 = 0$. Since $(y_i - g(x_i))^2 \ge 0$, $\sum_{i=1}^n (y_i - g(x_i))^2 \ge \sum_{i=1}^n (y_i - \mu(x_i))^2$.

$$\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int_a^b (g''(x))^2 dx$$

$$\geq \sum_{i=1}^{n} (y_i - \mu(x_i))^2 + \lambda \int_a^b (\mu''(x))^2 dx$$

$$= \lambda \int_a^b (\mu''(x))^2 dx$$

 $\implies \min_g \left[\sum_{i=1}^n (y_i - g(x_i))^2 + \lambda \int_a^b (g''(x))^2 dx \right] = \lambda \int_a^b (\mu''(x))^2 dx$ Therefore the minimizer must be a natural cubic spline with knots at each value $x_i, i = 1, \dots, n$.