Lista 2 - Topologia 2025

- **Zad. 1** Niech X, Y będą przestrzeniami metrycznymi. Załóżmy, że \mathcal{B} jest taką rodziną zbiorów otwartych Y, że każdy zbiór otwarty $U \subseteq Y$ jest sumą elementów \mathcal{B} . Pokaż, że następujące warunki są równoważne ciągłości funkcji $f: X \to Y$:
 - a) $f^{-1}[F]$ jest domknięty dla każdego domkniętego $F \subseteq Y$,
 - b) $f^{-1}[B]$ jest otwarty dla każdego $B \in \mathcal{B}$.

Wywnioskuj, że aby sprawdzić ciągłość funkcji $f\colon X\to Y$ wystarczy sprawdzać otwartość przeciwobrazów kul.

- **Zad. 2** Pokaż, że ciąg (x_n) elementów przestrzeni metrycznej X jest zbieżny wtedy i tylko wtedy, gdy dla każdego zbioru otwartego U od pewnego momentu wszystkie wyrazy (x_n) należą do U.
- **Zad. 3** Udowodnij, że w przestrzeni metrycznej zbiór A jest otwarty wtedy i tylko wtedy, gdy A^c jest domknięty.
- **Zad. 4** Rozważmy \mathbb{R} z metryką euklidesową. Podaj przykład funkcji $f: \mathbb{R} \to \mathbb{R}$ takiej, że
 - a) funkcja f jest ciągła, ale istnieje zbiór otwarty $U \subseteq \mathbb{R}$ taki, że obraz f[U] nie jest otwarty,
 - b) dla każdego zbioru otwartego $U\subseteq\mathbb{R}$ obraz f[U] jest otwarty, ale funkcja f nie jest ciągła.
- **Zad. 5** Niech $f: \mathbb{R}^2 \to \mathbb{R}^2$ będzie dana wzorem f(x) = x. Przedyskutuj, kiedy f jest funkcją ciągłą w zależności od tego, w które z klasycznych metryk wyposażymy dziedzinę i przeciwdziedzinę (przy czym w poczet klasycznych metryk na \mathbb{R}^2 zaliczamy metrykę euklidesową, miasto, maksimum, centrum i dyskretną).