

Licence 1ère année, 2012-2013, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n 2 : Suites

Exercice 1

Ces suites sont-elles arithmétiques? géométriques? Le cas échéant, préciser leur raison. Dans tous les cas, calculer leur terme général u_n .

$$a) \begin{cases} u_{n+1} = -\frac{\pi u_n}{\sqrt{17}} \\ u_0 = 3 \end{cases} \qquad b) \begin{cases} u_{n+1} = 1 - u_n \\ u_0 = 0 \end{cases} \qquad c) \begin{cases} u_{n+1} = u_n^2 \\ u_0 = 1 \end{cases} \qquad d) \begin{cases} u_{n+1} = -\frac{1}{2} \left(3 - 2u_n\right) \\ u_0 = \frac{1}{2} \end{cases}$$

Exercice 2 Donner l'expression du terme général des suites suivantes :

- 1) (t_n) suite arithmétique de raison 10 telle que $t_{1000} = 0$.
- 2) (u_n) suite arithmétique telle que $u_0 = -2$ et $u_{10} = 118$.
- 2) (v_n) suite géométrique réelle telle que $v_0 = 3$ et $v_5 = -96$.
- 3) (w_n) une suite géométrique de raison -2 telle que $w_5 = 320$.

Exercice 3

Soient (x_n) et (y_n) les deux suites définies par

$$x_{n+1} = \frac{x_n - y_n}{2}$$
 et $y_{n+1} = \frac{x_n + y_n}{2}$,

pour tout n, et dont les termes initiaux sont $x_0 = 1$ et $y_0 = 0$.

On définit la suite à valeur complexe de terme général $z_n = x_n + iy_n$. Pour tout n, calculer z_{n+1} en fonction de z_n et en déduire les termes généraux de (x_n) et (y_n) ainsi que les limites de ces deux suites.

Exercice 4

Les suites suivantes sont-elles majorées? minorées? croissantes? décroissantes? convergentes?

a)
$$u_n = (-3)^n + 3^n$$
 b) $u_n = \frac{n+1000}{n+2012}$ c) $u_n = \frac{2^n}{n!}$ d) $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + \frac{1}{2^{n+1}} \end{cases}$

Exercice 5

Parmi les énoncés suivants, déterminer et prouver ceux qui sont vrais, donner un contre exemple pour les autres.

- a) Toute suite non minorée tend vers $-\infty$.
- b) Toutes suite bornée est convergente.
- c) Toute suite convergente est bornée.
- d) Si (u_n) tend vers l > 0, alors (u_n) est positive ou nulle à partir d'un certain rang.
- e) Toute suite croissante tend vers $+\infty$.
- f) Si la suite $(|u_n|)$ converge alors la suite (u_n) converge aussi.
- g) Si la suite (u_n) converge vers une limite l, alors $(|u_n|)$ converge vers la même limite.
- h) Si les suites (u_n) et (v_n) n'ont pas de limite, alors $(u_n + v_n)$ n'a pas de limite.
- i) Si la suite (u_n) converge, alors la suite $(u_{n+1} u_n)$ converge vers 0.

Exercice 6

Calculer les sommes suivantes :

$$a) \sum_{k=0}^{n} \frac{5}{2^{k}} \qquad b) \sum_{k=0}^{n} 3^{2k+1} \qquad c) \sum_{k=0}^{n} \frac{1+4^{k}}{3^{k}} \qquad d) \sum_{k=0}^{n} \frac{\cos(k\theta)}{2^{k}}$$

1

Exercice 7

Soit la suite (u_n) définie par $u_0 = 0$, $u_1 = 1$ et

$$u_{n+1} = \frac{u_n + u_{n-1}}{2} , \ \forall n \geqslant 1.$$

On pose, pour tout $n \in \mathbb{N}$, $v_n = u_{n+1} - u_n$.

- 1) Montrer que (v_n) est une suite géométrique et donner sa raison.
- 2) Écrire $\sum_{k=0}^{n} v_k$ en fonction des éléments de la suite (u_n) , et en déduire l'expression de (u_n) .
- 3) En déduire que (u_n) converge et donner sa limite.

Exercice 8

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12} , \forall n \ge 0 \end{cases}$$

- 1) Calculer u_1 et u_2 .
- 2) Montrer que la suite (v_n) définie par $v_n = u_n^2 4$ est géométrique.
- 3) En déduire la limite de la suite (v_n) puis celle de la suite (u_n) .

Exercice 9

1) Rappeler les limites des suites suivantes :

a)
$$\frac{2^n}{n^3}$$
 b) $\frac{(\log n)^2}{\sqrt{n}}$ c) $\frac{2^{\log(n)}}{n^{\log(3)}}$ d) $\frac{2^n}{n!}$

2) Ces suites convergent-elles? Si c'est la cas, donner leur limite.

a)
$$u_n = n + \cos(n)$$
 b) $u_n = \frac{4n + \sin(n)}{n^3}$ c) $u_n = \frac{3n + 5}{\sqrt{n^2 + 1}}$
d) $u_n = \frac{(n+1)(2+(-1)^n)}{n+3}$ f) $u_n = \frac{n - \log n}{n + \log n}$ g) $u_n = (-1)^n + \frac{2}{n}$
h) $u_n = \sqrt{n-2} - \frac{n}{2}$ i) $u_n = \frac{2^n}{n \log n}$ j) $u_n = \sqrt{n+1} - \sqrt{n+2}$

Exercice 10

Parmi les énoncés suivants, déterminer ceux qui sont vrais et donner un contre exemple pour les autres.

- 1) Si $u_n \leq v_n$ pour tout n, (u_n) converge vers l et (v_n) est décroissante, alors (v_n) converge vers l.
- 2) Si $u_n \leq v_n$ pour tout n, (u_n) croissante, (v_n) décroissante alors (u_n) et (v_n) convergent.
- 3) Si $u_n \leq v_n$, (u_n) croissante, (v_n) décroissante, et $(u_n v_n)$ tend vers 0, alors (u_n) et (v_n) convergent vers la même limite.
 - 4) Si $u_n \leq v_n \leq w_n$, (u_n) et (w_n) convergent, alors (v_n) converge.

Exercice 11

- 1) Soit (u_n) la suite de terme général $u_n = \frac{n^{1000}}{1,001^n}$.
- a) Déterminer la limite de u_n .
- b) À l'aide d'une calculatrice, donner une approximation de u_{10} , u_{100} , u_{1000} , u_{10000} , u_{100000} et $u_{1000000}$.
- 2) Pour tout n entier naturel non nul, on définit v_n comme le plus petit entier naturel k tel que $k^k \ge n$.
- a) Calculer les 10^{10} premiers termes de la suite (v_n) .
- b) Montrer que $\lim_{n\to\infty} v_n = +\infty$ (indication : montrer que la suite (v_n) est croissante et non majorée).

Exercice 12

Le but de cet exercice est de définir et de calculer le nombre

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$$

où apparaissent une infinité de fois les symboles $\sqrt{1}$ et +, et uniquement ces symboles. Pour ce faire, on considère la suite (ϕ_n) définie par :

$$\begin{cases} \phi_0 = 1\\ \phi_{n+1} = \sqrt{\phi_n + 1} \end{cases}$$

pour tout $n \ge 0$.

- 1) Écrire ϕ_n avec les symboles $\sqrt{1}$, 1 et + pour les premiers termes de la suite.
- 2) Montrer que la suite (ϕ_n) est croissante.
- 3) Montrer par récurrence sur n que $\phi_n \leq 2$ pour tout n.
- 4) En déduire que la suite (ϕ_n) est convergente et calculer sa limite.

Exercice 13

Soit a un réel et (u_n) la suite définie par :

$$\begin{cases} u_0 = a \\ u_{n+1} = \frac{1}{2}u_n^2 + \frac{1}{2} \end{cases}$$

pour tout $n \ge 0$.

- 1) Montrer que (u_n) est croissante.
- 2) Montrer que si (u_n) converge alors sa limite est nécessairement 1.
- 3) On suppose $a \in [0,1]$. Montrer par récurrence que $u_n \leq 1$. En déduire que (u_n) est convergente.
- 4) On suppose a > 1. Montrer que (u_n) diverge.
- 5) On suppose a < 0. Calculer u_1 . Pour quelles valeurs de a la suite (u_n) converge-t-elle?

Exercice 14

- 1) Que peut-on dire de la convergence d'une suite (u_n) qui vérifie $\lim nu_n = 0$?
- 2) Que peut-on dire de la convergence d'une suite (u_n) qui vérifie $\lim nu_n = 1$?
- 3) Que peut-on dire de la convergence d'une suite (u_n) qui vérifie $\lim nu_n = +\infty$?

Exercice 15

Soit (u_n) la suite définie par

$$u_n = \sum_{k=1}^n \frac{1}{k}$$

pour tout $n \ge 1$.

- 1) Montrer que (u_n) est croissante.
- 2) Observer que $u_{n+1} u_n$ tend vers 0. Que peut-on en déduire?
- 3) Montrer que pour tout $n \ge 1$, $u_{2n} u_n \ge \frac{1}{2}$.
- 4) En déduire que (u_n) tend vers $+\infty$.