

Efficient, Large-Scale Computation Techniques for the Evaluation of Side Channel Attacks

MOHAMMED MOHIUDDIN

FRANKFURT UNIVERSITY OF APPLIED SCIENCES Informatik and Ingenieurwissenschaften

INDUSTRIAL SUPERVISOR Mr. ROBERT SZERWINSKI

ACADEMIC SUPERVISOR Prof. Dr. CHRISTIAN BAUN Prof. Dr. EICKE GODEHARDT

May 30, 2016

Contents

- Introduction
 - 1.1 Need for Standard Testing Methodology
 - 1.2 Motivation of Thesis
- Concept and Design
 - 2.1 Design for Implementation on Single Node
 - 2.2 Design for Implementation on Cluster
- Implementation
 - 3.1 Implementation on Single Node
 - 3.2 Implementation on Cluster
- Results and Conclusion
 - 4.1 Results
 - 4.2 Conclusion

Side Channel Attacks

BOSCH

- Side channel attacks pose a threat to the security of cryptographic devices.
- Types of Attacks: Timing attacks, power monitoring attacks, electromagnetic attacks etc.

Testing the Vulnerability of Cryptographic Devices

- Evaluation labs and producers need to test the vulnerability of the devices in reasonable time and effort.
- Welch's t test is recommended by the Cryptographic Research Inc.
- Size of power traces is large.
- Amount of time required to compute t parameters is large.

Motivation

- Design and develop and algorithm to perform t test using parallel computations to reduce the time of execution.
- Reduce the execution time in three ways.
 - No of passes
 - Chunk size for test
 - Parallel Execution

Concept and Design

One Pass Approach

- One pass algorithm using raw moments has stability problem.
- Tobias Schneider and Amir Moradi's suggested one pass approach, avoids instabilities.

Steps Involved in Performing t test

- Central Sums
- Central Moments
- Standard Moments
- Variance
- Calculate t values
- Perform t test

Flow Diagram

Flow Diagram

10/21

BOSCH

- Usual size of power traces: 100's of millions of traces and thousands of sample points.
- Suppose: 100 million traces and 100 thousand sample points.

	Sample Point 1	Sample Point 2	Sample Point 3	Sample Point 4	Sample Point 5	Sample Point 6	
Trace 1	1	11	21	31	41	51	Т.
Trace 2	2	12	22	32	42	52	
Trace 3	3	13	23	33	43	53	
mean 1	2	12	22	32	42	52	
Trace 4	5	15	25	35	45	55	4.
Trace 5	6	16	26	36	46	56	Ю
Frace 6	7	17	27	37	47	57	
nean 2	6	16	26	36	46	56	
mean	4	14	24	34	44	54	

Introduction Concept and Design Implementation Results and Conclusion

Sample Points

	Sample Point 1	Sample Point 2	Sample Point 3	Sample Point 4	Sample Point 5	Sample Point 6
Trace 1	1	11	21	31	41	51
Trace 2	2	12	22	32	42	52
Trace 3	3	13	23	33	43	53
Trace 4	5	15	25	35	45	55
Trace 5	6	16	26	36	46	56
Trace 6	7	17	27	37	47	2 57
				•	_	
mean	4	14	24	34	44	54

Traces and Sample Points

	Sample Point 1	Sample Point 2	Sample Point 3	Sample Point 4	Sample Point 5	Sample Point 6	
Trace 1	1	11	21	31	41	51	10
Trace 2	2	12	22	32	42	52	
Trace 3	3	13	23	33	43	53	*
mean 1	2	12	22	32	42	52	
Trace 4	5	15	25	35	45	55	4
Trace 5	6	16	26	36	46	56	T (3)
Trace 6	7	17	27	37	47	57	*
mean 2	6	16	2 26	36	46	4 56	
				-	•	-	
mean	4	14	24	34	44	54	

Implementation

Class Diagram

Profiling Algorithm

IPython Parallel Environment

- Direct and Load balanced Views
- Client for single node
- Client for cluster

BOSCH

Results and Conclusion

Sample Execution of the Algorithm

BOSCH

- Size of the power traces considered is 2000 traces and 8400 sample points.
- Single Node: Time taken is approximately 110 minutes.
- On Cluster: Time taken is approximately 21 minutes.
- Speed-Up achieved on cluster is around 5 times faster to that of single node.

Hyper-threading

Conclusion and Future Enhancements

- Hyper-threading is not recommended for the developed algorithm.
- Considerable execution time can be reduced by increasing the number of machines used.
- This work tests the univariate leakages, it can be extended to test multivariate leakages.
- Same work can be implemented on a cluster of Graphical Processing Unit processors.