

Motor bridge driver for automotive applications

Datasheet - production data

Features

- Operating supply voltage 6 V to 28 V
- · Central 2 stage charge pump
- 100% duty cycle
- Full R_{DSon} down to 6 V (normal level MOSFETs)
- Control of reverse battery protection MOSFET
- · Charge pump current limited
- PWM operation up to 30 kHz
- SPI interface
- · Current sense amplifier / free configurable
- · Zero adjust for end of line trimming
- Power management: programmable free wheeling
- Sensing circuitry of external MOSFETs with embedded thermal sensors

Applications

- Wiper
- Power door
- Seat belt tensioner
- Seat positioning
- Valve tronic
- Park break
- 2H motors

Description

The L99H01 is designed to control 4 external N-channel MOS transistors in bridge configuration for DC-motor driving in automotive applications. A free configurable current sense amplifier is integrated. The integrated standard serial peripheral interface (SPI) controls all outputs and provides diagnostic information. An interface pin for the thermal sensors of the external MOSFETs is implemented.

Table 1. Device summary

Package	Order codes			
	Part number (tube)	Part number (tape and reel)	Part number (tray)	
PowerSSO-36	L99H01XP	L99H01XPTR	_	
LQFP32	_	L99H01QFTR	L99H01QF	

Contents L99H01

Contents

1	Bloc	Block diagram and pin description		
	1.1	Pinout PowerSSO-36	7	
	1.2	Pinout LQFP32	9	
2	Elec	rical specifications1	12	
	2.1	Absolute maximum ratings	12	
	2.2	ESD protection	12	
	2.3	Thermal data 1	13	
	2.4	Electrical characteristics	13	
	2.5	SPI - electrical characteristics	20	
3	Devi	e description	25	
	3.1	Dual power supply: V _S and V _{CC}	25	
	3.2	Standby mode (EN)	25	
	3.3	H-bridge control (DIR, PWM, bit FW)	25	
	3.4	Resistive low	27	
	3.5	Diagnostic functions	27	
	3.6	Overvoltage and undervoltage detection	27	
	3.7	Charge pump	28	
	3.8	Temperature warning and thermal shutdown	28	
	3.9	Short-circuit detection / drain source monitoring	28	
	3.10	Programmable cross current protection	28	
	3.11	Current sense amplifier (CSA)	29	
	3.12	Thermal sensor interface / H-bridge switch-off input	29	
		3.12.1 EXT_TS-bit = low (active off)	29	
		3.12.2 EXT_TS-bit = high (thermal sensor interface)	29	
	3.13	Watchdog	29	
4	Fund	tional description of the SPI	31	
	4.1	Signal description		
		4.1.1 Serial clock (CLK)		
		4.1.2 Serial data input (DI)	31	

L99H01 Contents

		4.1.3	Serial data output (DO)31
		4.1.4	Chip select not (CSN)
	4.2	General	data description
		4.2.1	Command byte
		4.2.2	OpCode definition
	4.3	Device r	nemory map
		4.3.1	Control and status (RAM) address map
		4.3.2	Device (ROM) address map (access with OC0 and OC1 set to '1') 34
	4.4	Global s	tatus byte
		4.4.1	SPI clock monitor and watchdog
	4.5	Detailed	byte description of status register (StatReg0) 37
	4.6	Detailed	byte description of application registers (ApplRegX) 38
		4.6.1	Description of the data byte
	4.7	Read de	evice information (ROM)
5	Pack	ages the	ermal data 43
6	Pack	age and	packing information
	6.1	ECOPA	CK [®] 44
	6.2	PowerS	SO-36 package information
	6.3	Package	es thermal data
	6.4	LQFP32	package information
	6.5	PowerS	SO-36 packing information 50
	6.6	LQFP32	packing information 51
7	Revi	sion hist	ory 52

List of tables L99H01

List of tables

Table 1.	Device summary	1
Table 2.	Pin definitions and functions	7
Table 3.	Pin definitions and functions	9
Table 4.	Absolute maximum ratings	12
Table 5.	ESD protection	12
Table 6.	Operating junction temperature	13
Table 7.	Temperature warning and thermal shutdown	13
Table 8.	Packages thermal resistance	13
Table 9.	Supply	13
Table 10.	Undervoltage detection	14
Table 11.	Watchdog	14
Table 12.	Inputs: CSN, CLK, PWM, DIR, EN and DI	15
Table 13.	Charge pump output	15
Table 14.	Gate drivers for external PowerMOS	16
Table 15.	Cross current protection time	17
Table 16.	Drain source monitoring	
Table 17.	Thermal sense interface (4.5 V < V _{CC} < 5.3 V)	17
Table 18.	Current sense amplifier	17
Table 19.	DI timing	
Table 20.	DO	20
Table 21.	DO timing	21
Table 22.	EN, CSN timing	21
Table 23.	Truth table	26
Table 24.	DI	
Table 25.	DO	32
Table 26.	Command byte	32
Table 27.	Operating code definition	
Table 28.	Control and status (RAM) address map	
Table 29.	Device (ROM) address map (access with OC0 and OC1 set to '1')	
Table 30.	STK_RESET_Q	
Table 31.	Address 0<00(hex)>:StatReg 0 - read only	
Table 32.	DS_MON - drivers relations	
Table 33.	Address 1 <01(hex)>:ApplReg1-read/write	
Table 34.	Overvoltage threshold of the Vs monitoring	
Table 35.	DIAG monitoring of source voltages	
Table 36.	Address 2 <02(hex)>: ApplReg2 – read/write	
Table 37.	Cross current protection time (t _{CCP})	
Table 38.	Multiplexer for current sense amplifier	
Table 39.	Gain of current sense amplifier	
Table 40.	Address 3 <03(hex)> : ApplReg3 – read/write	
Table 41.	External threshold voltage, factor n	
Table 42.	External threshold voltage, factor m	
Table 43.	Read device information (ROM)	
Table 44.	Address 0 <00(hex)>: ID-header - read only	
Table 45.	Address 1 <01(hex)>: product ID (LSB) - read only	
Table 46.	Address 2 <02(hex)>: product ID (MSB) - read only	
Table 47.	Address 3 <03(hex)>: SPI frame ID - read only	
Table 48	PowerSSO-36 mechanical data	46

L99H01	List of tables
	LQFP32 mechanical data

List of figures L99H01

List of figures

Figure 1.	Block diagram	7
Figure 2.	Pinning of device in PowerSSO-36 package	
Figure 3.	Pinning of device in LQFP-32 package	11
Figure 4.	Output timing diagram (active free wheeling)	19
Figure 5.	Output timing diagram (passive free wheeling)	19
Figure 6.	SPI - transfer timing diagram	22
Figure 7.	SPI - input timing	22
Figure 8.	SPI - DO valid data delay time and valid time	23
Figure 9.	SPI - DO enable and disable time	23
Figure 10.	SPI - timing of status bit 0 (fault condition)	24
Figure 11.	Global error flag diagram	36
Figure 12.	PowerSSO-36 R _{thi-amb} vs. PCB copper area in open free air condition	43
Figure 13.	PowerSSO-36 package dimensions	45
Figure 14.	LQFP32 R _{thi-amb} vs. PCB copper area in open box free air condition	47
Figure 15.	LQFP32 package dimensions	48
Figure 16.	PowerSSO-36 tube shipment (no suffix)	50
Figure 17.	PowerSSO-36 tape and reel shipment (suffix "TR")	50
Figure 18.	LQFP32 tape and reel shipment (suffix "TR")	51
Figure 10	LOED32 tray shipment (no suffix)	51

1 Block diagram and pin description

Figure 1. Block diagram

1.1 Pinout PowerSSO-36

Table 2. Pin definitions and functions

Pin	Symbol	Function	
1	GND	Ground. Reference potential, connected to slug.	
2	GNDD	Digital ground. Reference potential.	
3	V _{CCD}	Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
4	V _{CC}	Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
5	EN	Enable input. The enable input has a pull-down resistor.	
6	DIR	Direction select input for H-bridge control. This input has a pull-down current.	
7	PWM	PWM input for H-bridge control. This input has a pull-down current.	
8	CSN	Chip select not input: this input is low active and requires CMOS logic levels. The serial data transfer between L99H01 and microcontroller is enabled by pulling the input CSN to low-level. This input has a pull-up current.	

Table 2. Pin definitions and functions (continued)

Pin	Symbol	Function	
9	CLK	Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. This input has a pull-down current.	
10	DI	Serial data in: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is an 8-bit control word and the most significant bit (MSB, bit 7) is transferred first. This input has a pull-down current.	
11	DO	Serial data out: the diagnosis data is available via the SPI and this tristate-output. The output remains in tristate, if the chip is not selected by the input CSN (CSN = high).	
12, 14, 19, 20, 22	NC	Not connected.	
13	CSO	Current sense amplifier output: V _{CC} compatible.	
15	CSI1+	Current sense amplifier input: positive input 1, multiplexible.	
16	CSI1-	Current sense amplifier input: negative input 1, multiplexible.	
17	CSI2+	Current sense amplifier input: positive input 2, multiplexible.	
18	CSI2-	Current sense amplifier input: negative input 2, multiplexible.	
21	TS/ ACT_OFF	Thermal sensor interface or input to switch all driver active off.	
23	GL2	Gate driver for PowerMOS low-side switch in halfbridge 2.	
24	SL2	Source of low-side switch in halfbridge 2.	
25	GH2	Gate driver for PowerMOS high-side switch in halfbridge 2.	
26	SH2	Source/drain of halfbridge 2.	
27	SL1	Source of low-side switch in halfbridge 1.	
28	GL1	Gate driver for PowerMOS low-side switch in halfbridge 1.	
29	SH1	Source/drain of halfbridge 1.	
30	GH1	Gate driver for PowerMOS high-side switch in halfbridge 1.	
31	СР	Charge pump output.	
32	CP2+	Charge pump pin for capacitor 2, positive side.	
33	CP2-	Charge pump pin for capacitor 2, negative side.	
34	CP1+	Charge pump pin for capacitor 1, positive side.	
35	CP1-	Charge pump pin for capacitor 1, negative side.	
36	V _S	Power supply voltage (external reverse protection required). For EMI reason a ceramic capacitor as close as possible to GND is recommended.	

Figure 2. Pinning of device in PowerSSO-36 package

1. The slug is connected to pin 1.

1.2 Pinout LQFP32

Table 3. Pin definitions and functions

Pin	Symbol	Function	
1	CP2-	Charge pump pin for capacitor 2, negative side.	
2	CP1+	Charge pump pin for capacitor 1, positive side.	
3	CP1-	Charge pump pin for capacitor 1, negative side.	
4	V _S	Power supply voltage (external reverse protection required). For EMI reason a ceramic capacitor as close as possible to GND is recommended.	
5	GND	Ground. Reference potential, connected to slug.	
6	GNDD	Digital ground. Reference potential.	
7	V _{CCD}	Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
8	V _{CC}	Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
9	EN	Enable input. The enable input has a pull-down resistor.	

Table 3. Pin definitions and functions (continued)

Pin	Symbol	Function
10	DIR	Direction select input for H-bridge control. This input has a pull-down current.
11	PWM	PWM input for H-bridge control. This input has a pull-down current.
12	CSN	Chip select not input: this input is low active and requires CMOS logic levels. The serial data transfer between L99H01 and microcontroller is enabled by pulling the input CSN to low-level. This input has a pull-up current.
13	CLK	Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. This input has a pull-down current.
14	DI	Serial data in: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is an 8-bit control word and the most significant bit (MSB, bit 7) is transferred first. This input has a pull-down current.
15	DO	Serial data out: the diagnosis data is available via the SPI and this tristate-output. The output remains in tristate, if the chip is not selected by the input CSN (CSN = high).
16	CSO	Current sense amplifier output: V _{CC} compatible.
17	CSI1+	Current sense amplifier input: positive input 1, multiplexible.
18	CSI1-	Current sense amplifier input: negative input 1, multiplexible.
19	CSI2+	Current sense amplifier input: positive input 2, multiplexible.
20	CSI2-	Current sense amplifier input: negative input 2, multiplexible.
21	NC	Not connected.
22	TS/ ACT_OFF	Thermal sensor interface or external off for all gate drivers.
23	GL2	Gate driver for PowerMOS low-side switch in halfbridge 2.
24	SL2	Source of low-side switch in halfbridge 2.
25	GH2	Gate driver for PowerMOS high-side switch in halfbridge 2.
26	SH2	Source/drain of halfbridge 2.
27	SL1	Source of low-side switch in halfbridge 1.
28	GL1	Gate driver for PowerMOS low-side switch in halfbridge 1.
29	SH1	Source/drain of halfbridge 1.
30	GH1	Gate driver for PowerMOS high-side switch in halfbridge 1.
31	СР	Charge pump output.
32	CP2+	Charge pump pin for capacitor 2, positive side.

Figure 3. Pinning of device in LQFP-32 package

Electrical specifications 2

2.1 **Absolute maximum ratings**

Stressing the device above the rating listed in *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute ma	ximum	ratings
----------------------	-------	---------

Item	Symbol	Parameter	Value	Unit
4.1.1	V	Power supply voltage	-0,3 to 35	V
4.1.2	V_S	Single pulse t _{max} < 400 ms	40	V
4.2	V _{CC}	Stabilished supply voltage	-0.3 to 5.5	V
4.3	DI, DO, CLK, CSN, EN, DIR, PWM	Digital input / output voltage	-0.3 to V _{CC} + 0.3	V
4.4	CSO, TS	Analog input / output voltage	-0.3 to V _{CC} + 0.3	V
4.5	CSI1+, CSI1-, CSI2+, CSI2-	HV signal pins	-4 to V _S + 5V	V
4.6	GL2, GH2, GL1, GH1 (Gxy)	HV signal pins	Sxy - 1 to Sxy + 10; V _{CP} + 0.3	V
4.7	SL2, SH2, SL1, SH1	HV signal pins	-6 to 40	V
4.8	CP2- CP1-	HV signal pins	-0.3 to V _S + 0.3	V
4.9	CP1+	HV signal pins	V _S - 0.3 to V _S + 10	V
4.10	CP2+	HV signal pins	V _S - 0.6 to V _S + 10	V
4.11	СР	Power pin	V _S - 0.3 to V _S + 10	V

ESD protection 2.2

Table 5. ESD protection

Item	Parameter	Value	Unit
5.1	All pins	± 2 ⁽¹⁾	kV
5.2	V _S versus GND	± 4 ⁽¹⁾	kV

^{1. -} HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A. - HBM with all unzapped pins grounded.

12/53 DocID15567 Rev 6

2.3 Thermal data

Table 6. Operating junction temperature

	Item	Symbol	Parameter	Value	Unit
Ī	6.1	T _j	Operating junction temperature	-40 to 150	°C

Table 7. Temperature warning and thermal shutdown

Item	Symbol	Parameter		Min.	Тур.	Max.	Unit
7.1	T _{jTW ON}	Temperature warning threshold junction temperature	T _j	135	_	165	°C
7.2	T _{jSD ON}	Thermal shutdown threshold junction temperature	T _j increasing	155		185	ů
7.3	T _{jSD OFF}	Thermal shutdown threshold junction temperature	T _j decreasing	150		180	°C

Table 8. Packages thermal resistance

Item	Symbol	Parameter	Va	lue	Unit
item	Symbol	raiametei	PowerSSO-36	LQFP32	Oilit
8.1	R _{thj-amb}	Thermal resistance junction- ambient (max.)	58 ⁽¹⁾	80 ⁽¹⁾	°C/W

^{1.} Minimum footprint.

2.4 Electrical characteristics

 V_S = 6 V to 28 V, V_{CC} = 3 V to 5.3 V, T_j = -40°C to 150°C, unless otherwise specified.

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin.

Table 9. Supply

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
9.1	V _S	Operating supply voltage range		6		28	V
9.2	V _{VS_OV1}	Overvoltage disable high threshold 1	SPI: OVT = 1	28	30.5	32	V
9.3	V _{VS_OV1H}	Overvoltage threshold 1 hysteresis		0.57	0.77	1.07	V
9.4	V _{VS_OV2}	Overvoltage disable high threshold 2	SPI: OVT = 0	18	20	22	V
9.5	V _{VS_OV2H}	Overvoltage threshold 2 hysteresis		0.42	0.62	0.82	V

Table 9. Supply (continued)

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
9.6	V _{VS_UV}	Undervoltage disable low threshold		4.7	4.9	5.1	V
9.7	V _{VS_UVH}	Undervoltage threshold hysteresis		0.2	0.3	0.4	V
9.8.1	1.	V DC cumply current	V _S = 13 V; V _{CC} = 5 V; Active mode; Outputs floating	4.5	5.5	6.5	mA
9.8.2	I _S	V _S DC supply current	$V_S = 6 \text{ V to } 28 \text{ V};$ $V_{CC} = 5.0 \text{ V};$ Active mode; Outputs floating	2.5		18	mA
9.9	I _{SL}	V _S quiescent supply current	V _S = 13 V; V _{CC} = 0 V; Standby mode; T _{Test} = -40°C, 25°C; Outputs floating			5	μА
9.10	I _{CC}	V _{CC} DC supply current	$V_S = 13 \text{ V}; V_{CC} = 5 \text{ V};$ active mode	1.5	1.8	2.5	mA
9.11	I _{CC}	V _{CC} quiescent supply current	V _{CC} = 5 V; standby mode	30	70	150	μА
9.12	I _{CCd}	V _{CCd} supply current	$V_S = 13 \text{ V};$ $V_{CC} = V_{CCd} = 5 \text{ V};$ active mode	250	500	750	μА

Table 10. Undervoltage detection

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
10.1	V _{POR OFF}	Power-on reset threshold	V _{CC} increasing	2.2	2.55	2.8	V
10.2	V _{POR ON}	Power-on reset threshold	V _{CC} decreasing	2.0	2.25	2.6	V
10.3	V _{POR hyst}	Power-on reset hysteresis	V _{POR OFF} - V _{POR ON}	0.2	0.3	0.4	V

Table 11. Watchdog

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
11.1	T _{WDTO}	Watchdog time out	_	50	60	100	ms

Table 12. Inputs: CSN, CLK, PWM, DIR, EN and DI

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
12.1	V _{in L}	Low-level input voltage		0.3 * V _{CC}	0.4 * V _{CC}		V
12.2	V _{in H}	High-level input voltage			0.6 * V _{CC}	0.7 * V _{CC}	V
12.3	V _{in Hyst}	Input voltage hysteresis		0.1 * V _{CC}			V
12.4	I _{CSN in}	Pull-up current at input CSN	$V_{CSN} = V_{CC} - 1.5 V$	-50	-25	-10	μA
12.5	I _{CLK in}	Pull-down current at input CLK	V _{CLK} = 1.5 V	10	35	50	μΑ
12.6	I _{DI in}	Pull-down current at input DI	V _{DI} = 1.5 V	10	35	50	μA
12.7	I _{DIR in}	Pull-down current at input DIR	V _{DIR} = 1.5 V	10	35	50	μΑ
12.8	I _{PWM in}	Pull-down current at input PWM	V _{PWM} = 1.5 V	10	35	50	μΑ
12.9	R _{EN in}	Pull-down resistance at input EN	$V_{EN} = V_{CC}$	100	210	480	kΩ
12.10	C _{in} ⁽¹⁾	Input capacitance at input CSN, CLK, DI, DIR and PWM	0 V < V _{CC} < 5.3 V		10	15	pF

^{1.} Value of input capacity is not measured in production test. Parameter guaranteed by design.

Table 13. Charge pump output

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
13.1.1			$V_S = 6 \text{ V}; I_{CP} = 15 \text{ mA}$	V _S + 6	V _S + 7	V _S + 7.5	V
13.1.2	V_{CP}	voltage	V _S = 10 V; I _{CP} = 15 mA	V _S + 11	V _S + 12	V _S + 13.5	V
13.1.3			V _S > 12 V; I _{CP} = 15 mA	V _S + 11	V _S + 12	V _S + 13.5	V
13.2	I _{CP}	Charge pump output current	f _{CP} = f _{SYS_CLK} / 32; V _S = 14 V; V _{CP} = V _S + 10 V	26	38	48	mA
13.3	V _{CP_LOW}	Charge pump low threshold voltage		V _S + 4.5	V _S + 5	V _S + 5.5	V
13.4.1	f	Clock frequency	V _{CC} = 5 V	3	4	4.5	MHz
13.4.2	'SYS_CLK	SYS_CLK (internal oscillator)	V _{CC} = 3 V	2.4	3.3	3.5	MHz
13.5	T _{CP}	Charge pump low filter time			64		μs

Table 14. Gate drivers for external PowerMOS

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Driv	vers for external high-side Po	owerMOS			
14.1	I _{GHx(on)}	Turn on current (SOURCE stage)	T _j = 25 °C ⁽¹⁾	0.3	0.5 ⁽²⁾	0.8	Α
14.2.1	р	On-resistance of	$V_{SHx} = 0 \text{ V; } I_{GHx} = 50 \text{ mA;}$ $T_j = 25^{\circ}\text{C}$	3	4	5	W
14.2.2	R_{GHx}	SINK stage	$V_{SHx} = 0 \text{ V; } I_{GHx} = 50 \text{ mA;}$ $T_j = 125^{\circ}\text{C}$	4.5	5.3	7	W
14.3	V _{GHxH}	Gate on voltage	Outputs floating	V _{SHx} + 8 V	V _{SHx} + 10 V	V _{SHx} + 12 V	V
14.4	R _{GSHx}	Passive Gate clamp resistance		11	13	15	kΩ
		Dri	vers for external low-side Po	werMOS			
14.5	I _{GLx(on)}	Turn on current (SOURCE stage)	$T_j = 25^{\circ}C^{(1)}$	0.3	0.5 ⁽²⁾	0.8	Α
14.6.1		On-resistance of	$V_{SLx} = 0 \text{ V}; I_{GHx} = 50 \text{ mA};$ $T_j = 25^{\circ}\text{C}$	3	4	5	W
14.6.2	R_{GLx}	SINK stage	$V_{SLx} = 0 \text{ V; } I_{GHx} = 50 \text{ mA;}$ $T_j = 125^{\circ}\text{C}$	4.5	5.3	7	W
14.7	V_{GLxH}	Gate on voltage		V _{SLx} + 8 V	V _{SLx} + 10 V	V _{SLx} + 12 V	V
14.8	R _{GSLx}	Passive gate clamp resistance		11	13	15	kΩ
			Timing of the drivers				
14.9	t _{GHxHL}	Propagation delay time high to low	$V_{VS} = 13.5 \text{ V; } V_{SHx} = 0;$ $R_G = 30 \Omega; C_G = 4.7 \text{ nF}$	0.8	1.4	1.9	μs
14.10	t _{GLxHL}	Propagation delay time low to high	$V_{VS} = 13.5 \text{ V}; V_{SLx} = 0;$ $R_G = 30 \Omega; C_G = 4.7 \text{ nF}$	0.6	1.2	1.8	μs
14.11	t _{GHxr2}	Rise time	$V_{VS} = 13.5 \text{ V}; V_{SHx} = 0;$ $R_G = 0 \Omega; C_G = 4.7 \text{ nF}$	45		170	ns
14.12	t _{GHxf2}	Fall time	$V_{VS} = 13.5 \text{ V}; V_{SHx} = 0;$ $R_G = 0 \Omega; C_G = 4.7 \text{ nF}$	60		210	ns
14.13	t _{GLxr2}	Rise time	$V_{VS} = 13.5 \text{ V}; V_{SLx} = 0;$ $R_G = 0 \Omega; C_G = 4.7 \text{ nF}$	45		170	ns
14.14	t _{GLxf2}	Fall time	$V_{VS} = 13.5 \text{ V}; V_{SLx} = 0;$ $R_G = 0 \Omega; C_G = 4.7 \text{ nF}$	60		210	ns

^{1.} Indirect measurement, parameter measured dynamically using 100 nF load capacitor and evaluating the slew rate.

^{2.} Average value.

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
15.1	t _{CCP0}	Cross current protection time	_	_	250 ⁽²⁾	_	
15.2	t _{CCP1}	Cross current protection time	_	250	500	750	
15.3	t _{CCP2}	Cross current protection time	_	500	750	1000	
15.4	t _{CCP3}	Cross current protection time	_	700	1000	1300	ne
15.5	t _{CCP4}	Cross current protection time	_	950	1250	1570	ns
15.6	t _{CCP5}	Cross current protection time	_	1160	1500	1880	
15.7	t _{CCP6}	Cross current protection time	_	1360	1750	2180	
15.8	t _{CCP7}	Cross current protection time	_	1560	2000	2480	

^{1.} Test conditions: $V_{CC} = 5 \text{ V}, V_{S} = 13.5 \text{ V}$

Table 16. Drain source monitoring

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
16.1	V _{SCd1}	Drain - source threshold voltage	_	0.15	0.5	0.7	V
16.2	V _{SCd2}	Drain - source threshold voltage	_	0.45	1	1.25	V
16.3	V _{SCd3}	Drain - source threshold voltage	_	0.9	1.5	1.8	V
16.4	V _{SCd4}	Drain - source threshold voltage	_	1.4	2	2.35	٧
16.5	t _{SCd}	Drain - source filtertime	_		6		μs

Table 17. Thermal sense interface (4.5 V < $V_{\rm CC}$ < 5.3 V)

Item	Symbol	Р	arameter	Min.	Тур.	Max.	Unit
17.1	I _{TS_bias}	Output bias current		200	250	300	μΑ
17.2	V _{th_TS}	TS threshold voltage	V _{TS} < V _{CC} - 1 V n = number of diodes m = programmed level (0 to 7)		n * (0.31 + m * 0.03)		V

Table 18. Current sense amplifier⁽¹⁾

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit					
DC parameters												
18.1	V _{ICM}	Input voltage range – common mode		-4		V _{CP} - 8 V	V					
18.2	V _{IOFF50}	Input offset voltage	Gain = 50	-11	-4	3	mV					
18.3	V _{IOFF20}	Input offset voltage	Gain = 20	-23	-8	7	mV					
18.4	V _{IOFF10}	Input offset voltage	Gain = 10	-30	-10	10	mV					
18.5	S.5 V _{IOFF-T50} /ΔT Input offset voltage drift vs. temperature		Gain = 50		-10 ⁽²⁾		μV/°K					

^{2.} Not tested

Table 18. Current sense amplifier⁽¹⁾ (continued)

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
18.6	V _{IOFF-T20} /ΔT	Input offset voltage drift vs. temperature	Gain = 20		-18 ⁽²⁾		μV/°K
18.7	V _{IOFF-T10} /ΔT	Input offset voltage drift vs. temperature	Gain = 10		-27 ⁽²⁾		μV/°K
18.8	V _{IOFF-O_50}	Input offset voltage with offset compensation	Gain = 50	-3.5	-1	1.5	mV
18.9	V _{IOFF-O_20}	Input offset voltage with offset compensation	Gain = 20	-6	-2	4	mV
18.10	V _{IOFF-O_10}	Input offset voltage with offset compensation	Gain = 10	-10	-3	6	mV
18.11	P _{SRR_50}	Power supply rejection ratio	Gain = 50	39			dB
18.12	P _{SRR_20}	Power supply rejection ratio	Gain = 20	31			dB
18.13	P _{SRR_10}	Power supply rejection ratio	Gain = 10	25			dB
18.14	CMRR	Input common mode rejection	T _j = 25°C, DC	60			dB
18.15	Gain ₅₀	Gain		46.75	50	53.25	
18.16	Gain ₂₀	Gain		19	20	21	
18.17	Gain ₁₀	Gain		9.5	10	10.5	
18.18.1	V	High-level output voltage	I _{OUT} = 2 mA	V _{CC} - 250 mV			V
18.18.2	V_{CSOh}	Trigit-level output voltage	I _{OUT} = 200 μA	V _{CC} - 50 mV	V _{CC} - 20 mV		V
18.19.1	V	Low-level output voltage	I _{OUT} = -2 mA		100	250	mV
18.19.2	V _{CSOI}	Low-level output voltage	I _{OUT} = -200 μA		15	50	mV
		Dynamic	parameters				
18.20	SRcso_10	CSO slew rate	Gain = 10; RL = 1 k Ω ,; CL = 22 pF		2.8	4	V/µs
18.21	SRcso_20	CSO slew rate	Gain = 20; RL = 1 k Ω ,; CL = 22 pF		3	4.5	V/µs
18.22	SRcso_50	CSO slew rate	Gain = 50; RL = 1 k Ω ,; CL = 22 pF		4.4	6	V/µs
18.23	I _{CSI_10}	CSI input current	Gain = 10	-114	-102	-90	μΑ
18.24	I _{CSI_20}	CSI input current	Gain = 20	-80	-72	-64	μΑ
18.25	I _{CSI_50}	CSI input current	Gain = 50	-39	-33	-27	μΑ

^{1.} Test conditions: $V_S = 13 \text{ V}, V_{CC} = 5 \text{ V}$

^{2.} Not tested, guaranteed by design.

Figure 4. Output timing diagram (active free wheeling)

SPI - electrical characteristics 2.5

 V_S = 6 V to 28 V, V_{CC} = 3 V to 5.3 V, T_j = -40°C to 150°C, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin.

Table 19. DI timing⁽¹⁾

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
19.1	t _{CLK}	Clock period	_	1000	_		ns
19.2	t _{CLKH}	Clock high time	_	400	_		ns
19.3	t _{CLKL}	Clock low time	_	400	_		ns
19.4	t _{set CSN}	CSN setup time, CSN low before rising edge of CLK		400			ns
19.5	t _{set CLK}	CLK setup time, CLK high before rising edge of CSN		400			ns
19.6	t _{set DI}	DI setup time	_	200	_		ns
19.7	t _{hold DI}	DI hold time	_	200	_		ns
19.8	t _{r in}	Rise time of input signal DI, CLK, CSN	_			100	ns
19.9	t _{f in}	Fall time of input signal DI, CLK, CSN	_		_	100	ns

^{1.} DI timing parameters tested in production by a passed / failed test: $T_j = -40^{\circ}\text{C}$ / $+25^{\circ}\text{C}$: SPI communication @ 2 MHz. $T_j = +125^{\circ}\text{C}$: SPI communication @ 1.25 MHz.

Table 20. DO

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
20.1	V_{DOL}	Low-level output voltage	I _D = -4 mA		0.2	0.4	V
20.2	V _{DOH}	High-level output voltage	I _D = 4 mA	V _{CC} - 0.4	V _{CC} - 0.2		V
20.3	I _{DOLK}	Tristate leakage current	$V_{CSN} = V_{CC};$ $0 \text{ V} < V_{DO} < V_{CC}$	-10		10	μΑ
20.4	C _{DO} ⁽¹⁾	Tristate input capacitance	V _{CSN} = V _{CC} ; 0 V < V _{CC} < 5.3 V		10	15	pF

^{1.} Value of input capacity is not measured in production test. Parameter guaranteed by design.

20/53 DocID15567 Rev 6

Table 21. DO timing

			olo 211 DO tillilling				
Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
21.1	t _{r DO}	DO rise time	$C_L = 100 \text{ pF};$ $I_{load} = -1 \text{ mA}$	_	80	140	ns
21.2	t _{f DO}	DO fall time	C _L = 100 pF; I _{load} = 1 mA	1	50	100	ns
21.3	t _{en DO tri L}	DO enable time from tristate to low-level	$C_L = 100 \text{ pF}; I_{load} = 1 \text{ mA};$ pull-up load to V_{CC}		100	250	ns
21.4	t _{dis DO L tri}	DO disable time from low-level to tristate	C_L = 100 pF; I_{load} = 4 mA; pull-up load to V_{CC}		380	450	ns
21.5	t _{en DO tri H}	DO enable time from tristate to high-level	C _L = 100 pF; I _{load} = -1 mA; pull-down load to GND	_	100	250	ns
21.6	t _{dis DO H tri}	DO disable time from high-level to tristate	$C_L = 100 \text{ pF};$ $I_{load} = -4 \text{ mA};$ pull-down load to GND	_	380	450	ns
21.7	t _{d DO}	DO delay time	$V_{DO} < 0.3 V_{CC};$ $V_{DO} > 0.7 V_{CC}; C_L = 100 pF$		50	250	ns

Table 22. EN, CSN timing

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
22.1	t _{r DO}	DO rise time	$C_L = 100 \text{ pF};$ $I_{load} = -1 \text{ mA}$		80	140	ns
22.2	t _{f DO}	DO fall time	$C_L = 100 \text{ pF};$ $I_{load} = 1 \text{ mA}$		50	100	ns
22.3	t _{CSN_HI,min}	CSN HI time, active mode:the min high time between two independent SPI commands.	Transfer of SPI- command to input register	2			μs

GAPGCFT00685

CSN high to low: DO enabled CSN time CLK DI: data will be accepted on the rising edge of CLK signal actual data new data DO: data will change on the falling edge of CLK signal status information DO CSN low to high: actual data is fault bit transferred to output power switches e.g.OUT1 old data actual data time

Figure 6. SPI - transfer timing diagram

22/53 DocID15567 Rev 6

Figure 8. SPI - DO valid data delay time and valid time

Figure 10. SPI - timing of status bit 0 (fault condition)

L99H01 Device description

3 Device description

3.1 Dual power supply: V_S and V_{CC}

The power supply voltage V_S supplies the charge-pump. An internal charge-pump is used to drive the high-side switches and the low-side switches. The logic supply voltage V_{CC} (3.3 V / 5 V) is used for the logic part and the SPI of the device. Due to the independent logic supply voltage the control and status information is not lost, even if the supply voltage V_S is switched-off. In case of power-on (V_{CC} increases from undervoltage to $V_{POR\ OFF}$ = 2.5 V, typical) the circuit is initialized by an internally generated power-on reset (POR). If the voltage V_{CC} decreases under the minimum threshold ($V_{POR\ ON}$ = 2.2 V, typical), the outputs are switched-off and the status registers are cleared.

3.2 Standby mode (EN)

The L99H01 is activated with enable input high signal. For enable input floating (not connected) or $V_{EN}=0$ V the device is in standby mode. All latched data are cleared and the inputs and outputs are switched-off. In the standby mode the current at V_S is less than 5 μ A (1 μ A) for CSN = high (DO in tristate). If $V_{CC} > V_{POR\ OFF}$ and EN = high the device enters the active mode. In the active mode the charge-pump and the diagnostic functions are active.

3.3 H-bridge control (DIR, PWM, bit FW)

The DIR and PWM inputs control the drivers of the external H-bridge transistors. The motor direction can be chosen with the DIR input, the duty cycle and frequency with the PWM input. With the SPI registers FW and FW-PAS 4 different free wheeling modes (2 active and 2 passive) can be selected using the high-side transistors or the low-side transistors. Unconnected inputs are defined by internal pull-down current.

Table 23. Truth table

N°		(Contro	l pins	Cor	ntrol bits	s Failure bits			Output pins			;	SPI DO	Comment			
N	EN	DIR	PWM	TS/ACT_OFF	FW	FW_PAS	CP_LOW	ov	UV	sc	TSD	WDTO	GH1	GL1	GH2	GL2	GL_ER	Comment
1	0	Χ	Χ	Х	Х	X	X	Χ	Х	Х	Χ	Х	RL	RL	RL	RL	Т	Standby mode
2	1	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	RL	RL	RL	RL	1	Power-on reset
3	1	Х	Х	0	Х	0	0	0	0	0	0	0	L	L	L	L	0	EXT_TS = 1 (external thermal shutdown)
4	1	Χ	Χ	0	Х	0	0	0	0	0	0	0	L	L	L	L	0	EXT_TS = 0 (active Off)
5	1	Χ	Х	1	Χ	Х	1	0	0	0	0	0	RL	RL	RL	RL	1	Charge pump voltage too low
6	1	Χ	Х	1	Χ	X	0	0	0	0	1	0	RL	RL	RL	RL	1	Internal thermal shutdown
7	1	Χ	Х	1	Χ	X	0	1	0	0	0	0	Ш	L	Ш	L	1	Overvoltage
8	1	Χ	Х	1	Χ	X	0	0	1	0	0	0	L	L	Ш	L	1	Undervoltage
9	1	Χ	Х	1	Χ	X	0	0	0	1	0	0	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	0	Short-circuit ⁽¹⁾
10	1	Χ	Х	1	Χ	X	0	0	0	0	0	1	L	L	L	L	1	Watchdog time out
11	1	0	1	1	Χ	X	0	0	0	0	0	0	L	Н	Ι	L	0	-
12	1	Χ	0	1	0	0	0	0	0	0	0	0	L	Н	L	Н	0	Act. free wheeling mode LS
13	1	0	0	1	0	1	0	0	0	0	0	0	L	Н	Ш	L	0	Pass. free wheeling mode LS
14	1	1	0	1	0	1	0	0	0	0	0	0	L	L	Ш	Н	0	Pass. free wheeling mode LS
15	1	1	1	1	Χ	X	0	0	0	0	0	0	Н	L	L	Н	0	-
16	1	Х	0	1	1	0	0	0	0	0	0	0	Н	L	Η	L	0	Act. free wheeling mode HS
17	1	0	0	1	1	1	0	0	0	0	0	0	L	L	Н	L	0	Pass. free wheeling mode HS
18	1	1	0	1	1	1	0	0	0	0	0	0	Н	L	L	L	0	Pass. free wheeling mode HS

^{1.} Only the halfbridge (low-side and high-side) where one MOSFET is in short-circuit condition is switched-off. Both MOSFET'S of the other halfbridge remain active and driven by DIR and PWM.

L99H01 Device description

Symbols:

- x: Don't care
- 1: Logic high or active
- 0: Logic low or not active
- **H**: Output in source condition
- L: Output in sink condition
- RL: Resistive low (see Section 3.4)
- T: Tristate
- FW: Free wheeling
- FW_PAS: Free wheeling passive
- CP_LOW: Charge pump low
- OV: Overvoltage
- **UV**: Undervoltage
- SC: Short-circuit
- TSD: Thermal shutdownGL_ER: Global error flag

3.4 Resistive low

The resistive output mode protects the L99H01 and the H-bridge in the standby mode and in some failure modes (internal and external thermal shutdown (TSD), charge pump low (CP_LOW), stucked reset (STK_RESET_Q) and power-on reset (PORES). When a gate driver changes into the resistive output mode due to a failure a sequence is started. In this sequence the concerning driver is switched in sink condition for 32 µs to 64 µs to ensure a fast switch-off of the H-bridge transistor. Afterwards the driver is switched in the resistive output mode (resistive path to source).

3.5 Diagnostic functions

The diagnostic functions (over load, power supply over- and undervoltage, charge pump low, watchdog, temperature warning and internal/external thermal shutdown) are internally filtered and the condition has to be valid for at least 64 µs (6 µs for a short-circuit) before the corresponding status bit in the status registers is set. The filters are used to improve the noise immunity of the device. The internal temperature warning function is intended for information purpose and does not change the state of the output drivers. On the contrary, the over load condition switches the corresponding halfbridge in sink condition. The internal thermal shutdown condition and charge pump low disable all drivers (resistive low). The external thermal shutdown, watchdog, over- and undervoltage condition switch all driver in sink condition. The microcontroller needs to clear the status bits to reactivate the drivers.

3.6 Overvoltage and undervoltage detection

If the power supply voltage V_S rises above the overvoltage threshold V_{VS_OVH} (typical 20 V / 30 V), all gate driver stages are switched in sink condition to protect the H-bridge and the load, setting the OV bit. Two values for the overvoltage threshold can be selected with the SPI. When the voltage V_S drops below the undervoltage threshold

Device description L99H01

 V_{VS_UV} , all gate driver stages are switched in the sink condition to avoid driving the power devices without sufficient gate driving voltage (increased power dissipation), setting the UV bit. In both cases, overvoltage and undervoltage detection, the charge pump is disabled. If the supply voltage V_S recovers from UV/OV to normal operating voltage range and if the OV_UV_RD is set to 0, then the charge pump is automatically enabled. In any case, regardless of the OV_UV_RD bit value, the microcontroller needs to clear the status register to reactivate the gate drivers.

3.7 Charge pump

The charge pump uses 2 external capacitors. The output of the charge pump has a current limitation. In standby mode and after overvoltage, undervoltage or a thermal shutdown has been triggered the charge pump is disabled. If the charge pump output voltage remains too low for longer than T_{CP} , all gate drivers are switched-off (resistive output, see Section 3.4). The CP_LOW bit has to be cleared through a software reset to reactivate the gate drivers.

3.8 Temperature warning and thermal shutdown

If junction temperature rises above T_{jTWON} the temperature warning flag TW is set and is detectable via the SPI. If junction temperature increases above the second threshold T_{jSDON} , the thermal shutdown bit (TSD) is set. The gate drivers and the charge pump are switched-off to protect the device. The gates of the H-bridge are discharged by the resistive low mode (see Section 3.4). In order to reactivate the output stages the junction temperature must decrease below T_{jSDOFF} and the thermal shutdown bit has to be cleared by the microcontroller.

3.9 Short-circuit detection / drain source monitoring

The drain - source voltage of each activated external MOSFET of the H-bridge is monitored by comparators to detect shorts to ground or battery. If the voltage drop over the external MOSFET exceeds the threshold voltage V_{SCd} for longer than the short current detection time t_{SCd} the corresponding gate driver switches the external MOSFET off and the corresponding drain source monitoring flag (DS_MON [3:0]) is set. Until this failure flag is resetted the corresponding half bridge is in sink condition. The DS_MON bits have to be cleared through a software reset to reactivate the gate drivers. The drain source monitoring has a filter time of 6 μ s. This monitoring is only active when the corresponding gate driver is in source condition. The threshold voltage V_{SCd} can be programmed in 4 steps between 0.5 V and 2 V with the SPI.

3.10 Programmable cross current protection

The external Power MOSFET's transistors in H-bridge (two halfbridges) configuration are switched-on with an additional delay time $t_{\rm CCP}$ to prevent cross current in the halfbridge. The cross current protection time $t_{\rm CCP}$ can be programmed with the SPI.

28/53 DocID15567 Rev 6

L99H01 Device description

3.11 Current sense amplifier (CSA)

The current sense amplifier (CSA) is specially designed for current shunt automotive applications. It is a bidirectional, single-supply difference amplifier for amplifying small differential voltages in a wide common mode voltage range (-4 V to (V_{CP} - 8) V). It supports the current measurement at two shunts. The result of respective shunt can be multiplexed to the microcontroller compatible output voltage by a SPI command.

A gain of 50, 20 or 10 is SPI programmable. The inputs (CSI1+ / CSI1- and CSI2+ / CSI2-) are build as a transconductance stage. Therefore a series resistor (for filtering etc.) should not exceed 50 Ω to keep the additional gain error below 1%.

The output works at half scale: $V_{CSO0} = (0.5 * V_{CC}) V$ for $V_{IDIFF} = 0 V$. An internal offset measurement is in normal mode available with the "OFF_CAL" SPI-bit. If this bit is set to logic "1" the input pins are disconnected from the amplifier and a virtual zero input differential voltage is selected.

3.12 Thermal sensor interface / H-bridge switch-off input

The TS/ACT_OFF pin is configurable by SPI with the EXT_TS bit. This pin could be used as temperature sensor interface for the H-bridge or external off for all gate drivers. The output bias current ITS_bias is on for EN = high.

3.12.1 EXT TS-bit = low (active off)

The TS/ACT_OFF input is used as a logic driver control input, without filter delay and without latching the information.

Pulling the TS/ACT_OFF pin below the programmed threshold all gate drivers are switched-off and the OT EXT bit is set.

Increasing the voltage at TS/ACT_OFF pin above the programmed threshold the device remains to the status set by DIR and PWM-pins and the OT_EXT bit is reseted.

The threshold is programmable by SPI with the registers EXTTH_5:0.

3.12.2 EXT_TS-bit = high (thermal sensor interface)

With the thermal sensor interface external diodes can be used to control the temperature of the external H-bridge. When the diode forward voltage decreases below the reference voltage for longer than the internal filter time (64 µs) the OT_EXT bit is set and the driver switches in resistive low (see Section 3.4: Resistive low).

In this mode the OT_EXT-status-bit has to be cleared to reactivate the gate drivers.

The threshold is programmable by SPI with the registers EXTTH_5:0.

3.13 Watchdog

The tasks of the watchdog is to monitor the microcontroller during normal operation within a nominal trigger cycle of 60 ms. The microcontroller has to restart the watchdog timer by sending the watchdog restart bit via SPI repeatedly within the watchdog time T_{WDTO} . If no correct watchdog service is sent from the microcontroller, all gate drivers switch in sink

Device description L99H01

condition and the watchdog time out bit (WDTO) is set. Once the watchdog times out, the gate drivers can only be reactivated by sending a software reset.

4 Functional description of the SPI

4.1 Signal description

4.1.1 Serial clock (CLK)

This input signal provides the timing of the serial interface. Data present at serial data input (DI) is latched on the rising edge of serial clock (CLK). Data on Serial Data Out (DO) is shifted out at the falling edge of serial clock (CLK).

The serial clock CLK must be active only during a frame (CSN low phase). Any other switching of CLK close to any CSN edge could generate setup/hold violations in the SPI logic of the device.

4.1.2 Serial data input (DI)

This input is used to transfer data serially into the device. Values are latched on the rising edge of serial clock (CLK).

4.1.3 Serial data output (DO)

This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of serial clock (CLK).

DO also reflects the status of the <*Global Error Flag*> (<*Global Status Byte*>[7]) while CSN is low and no clock signal is present.

4.1.4 Chip select not (CSN)

When this input signal is high, the communication interface of the device is deselected and serial data output (DO) is high impedance. Driving this input low enables the communication. The communication must start and stop on a low-level of serial clock (CLK).

The SPI can be driven by a microcontroller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0.

For timing details and figures refer to Section 2.5.

4.2 General data description

The SPI communication is based on a SPI interface structure using CSN (chip select not), DI (serial data in), DO (serial data out/error) and CLK (serial clock) signal lines.

Each DI communication frame consists of a *Command Byte>* which is followed by 1 *Abta Byte>*.

The data returned on DO within the same frame always starts with the *<Global Status Byte>*, which provides general status information about the device. This byte is followed by 1 *<Data Byte>* (*'In-frame-response'*).

Table 24. DI

		Co	mmar	nd byt	е			DI - data byte							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC1	OC0	A5	A4	А3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0

Table 25, DO

	Global Status byte) - da	nta b	yte		
15	15 14 13 12 11 10 9 8									5	4	3	2	1	0
GL_ER	GL_ER FE STK_RESET_Q TSD TW UV OV WDTO										D4	D3	D2	D1	D0

4.2.1 Command byte

Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (<Read>, <Write>, <Fault Reset>, <Read Device Information>) and a 6-bit address.

Table 26. Command byte

Command byte												
MSB	MSB											
Оро	Op code Address											
OC1	OC0	A5	A4	А3	A2	A1	A0					

Comments:

OCx: Operating code

Ax: Address

4.2.2 OpCode definition

Table 27. Operating code definition

OC1	OC0	Meaning
0	0	<write mode=""></write>
0	1	<read mode=""></read>
1	0	<clear status=""></clear>
1	1	<read device="" information=""></read>

The <Write Mode> and <Read Mode> operations allow access to the RAM of the device.

The *Clear Status* operation is used to read a status register and subsequently clear its content.

<Read Device Information> allows access to the ROM area which contains device related information such as <ID-Header>, <Product Code>, <Silicon Version and Category> and <SPI-frame-ID>.

More detailed descriptions of the device information are available in Section 4.7.

4.3 Device memory map

4.3.1 Control and status (RAM) address map

Table 28. Control and status (RAM) address map

Name	Access	Address						Content								
				A4	А3	A2	A 1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Stat Reg0	Read/ Clear	0	0	0	0	0	0	DS_MON_3	DS_MON_2	DS_MON_1	DS_MON_0	0	0	OT_EXT	CP_LOW	
Appl Reg1	Read/ Write	0	0	0	0	0	1	RWD	FW_PAS	OFF_CAL	CLK_SPCTR	OVT	OV_UV_R D	DIAG_1	DIAG_0	
Appl Reg2	Read/ Write	0	0	0	0	1	0	RWD	COPT_2	COPT_1	COPT_0	FW	MCSA	GCSA_1	GCSA_0	
Appl Reg3	Read/ Write	0	0	0	0	1	1	RWD	EXT_TS	EXTTH_5	EXTTH_4	EXTTH_3	EXTTH_2	EXTTH_1	EXTTH_0	

4.3.2 Device (ROM) address map (access with OC0 and OC1 set to '1')

Table 29. Device (ROM) address map (access with OC0 and OC1 set to '1')

Table 23. Device (NOM) address map (access with OCO and OC) set to 1)															
Name	Access	Address						Content							
		A5	A4	А3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
ID-Header	Read device	0	0	0	0	0	0	FAM_1	FAM_0	NR_PI_5	NR_PI_4	NR_PI_3	NR_PI_2	NR_PI_1	NR_PI_0
Product Code 1	Read device	0	0	0	0	0	1	PR_ID_7	PR_ID_6	PR_ID_5	PR_ID_4	PR_ID_3	PR_ID_2	PR_ID_1	PR_ID_0
Product Code 2	Read device	0	0	0	0	1	0	PR_ID_15	PR_ID_14	PR_ID_13	PR_ID_12	PR_ID_11	PR_ID_10	PR_ID_9	PR_ID_8
SPI-Frame-ID	Read device	0	0	0	0	1	1	BR	AR5	AR4	AR3	32 bits	24 bits	16 bits	8 bits
Reserved	Read device	1	1	1	1	1	1	Reserved, accessing this address is recognized as a failure, the device enters a fail-safe state (see <i>Table 30: STK_RESET_Q</i>).							

4.4 Global status byte

This byte is shifted out first at DO at every SPI access.

The GL_ER bit is present at DO with the falling edge of CSN.

This byte could be reseted with the command <clear status>.

Table 30. STK_RESET_Q

Bit	15	14	13	12	11	10	9	8
Name	GL_ER	FE	STK_RESET_Q	TSD	TW	UV	OV	WDTO
<default></default>	0	0	1	0	0	0	0	0

Comments:

- **GL_ER**: Global error flag. This signal is a logical OR among all the errors of all the channels of the device.
- **FE**: Frame error. If the number of clock pulses within the previous frame is not 16 the frame is ignored and this bit is set.
- STK_RESET_Q: If a stuck at '1' on SPI_DI during any SPI frame occurs, or if a power-on reset occurs. STK_RESET_Q is reset ('1') with any SPI command. When STK_RESET_Q is active ('0'), the gate drivers are switched-off (see Section 3.4: Resistive low).

After a startup of the circuit the STK_RESET_Q is active because of the POR pulse and the gate drivers are switched-off. The Gate drivers can only be activated after the STK_RESET_Q has been reset with a SPI command.

- TSD: Thermal shutdown due to an internal sensor. All the gate drivers and the charge pump must be switched-off (see <u>Section 3.4</u>: <u>Resistive low</u>). The gate drivers can only be activated after the TSD has been reset with a SPI command.
- TW: Thermal warning
- UV: Logical OR among the filtered undervoltage signals.
- **OV**: Logical OR among the filtered overvoltage signals.
- WDTO: Watchdog time out.

Failures of < Global Status Register>[8:14] are always linked to the < Global Error Flag>.

The *<Global Error Flag>* is generated by an OR combination of all failure events of the device (*<Global Status Register>*[8:14]).

The flag is reflected via the DO pin while CSN is held low and no clock signal is available. The flag remains as long as CSN is low. This operation does not cause the <communication error> bit in the <Global Status Byte> to be set.

4.4.1 SPI clock monitor and watchdog

SDI
SCK

RWD
ApplRegx
bit 7

Watchdog Failure

CSN

ClockMonitor

Global Status Byte

GAPGCFT00670

Figure 11. Global error flag diagram

1. Writing a "1" to RWD - bit in ApplRegx restarts the internal watchdog counter.

The clock monitor counts the number of clock pulses during a communication frame (while CSN is low). If the number of SCK pulses does not correspond with the frame width indicated in the <SPI-frame-ID> (ROM address 03hex) the frame is ignored and the bit <frame error> in the <Global Status Byte> is set.

Note:

Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended.

4.5 Detailed byte description of status register (StatReg0)

The read operation starts always with the command byte followed by 1 data byte. The content of the send data byte has to be '0'. The content of the addressed register is shifted out at DO within the same frame ('in-frame response').

The device uses 1 status register to monitor the state of the device. *Table 31* shows the address and the content of the register.

	Table 31. Address 000(nex)>.otativeg 0 - read only									
Bit	7	6	5	4	3	2	1	0		
Name	DS_MON_3	DS_MON_2	DS_MON_1	DS_MON_0	Χ	Χ	OT_EXT	CP_LOW		
<default></default>	0	0	0	0	0	0	0	0		

Table 31, Address 0<00(hex)>:StatReg 0 - read only(1)

Comments:

• **DS_MON[3:0]**: If max drain source voltage exceeds the defined thresholds, the DS_MON are set and the corresponding drivers go to sink mode. The DS_MON bits have to be cleared through a software reset to reactivate the drivers.

Register	Deactivated driver					
DS_MON_3	High-side 2					
DS_MON_2	High-side 1					
DS_MON_1	Low-side 2					
DS_MON_0	Low-side 1					

Table 32. DS MON - drivers relations

- OT_EXT: Depending on EXT_TS bit following two meanings exist:
 - EXT_TS = low (active off):
 TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back.
 Details are discribed in Section 3.12.1.
 - EXT_TS = high (thermal sensor interface):
 TS/ACT_OFF pin is used as thermal sensor interface for external temperature diodes. Details are discribed in Section 3.12.2.
- CP_LOW: If a charge pump output voltage low occurs, all gate drivers must be switched-off (resistive low). The CP_LOW bit has to be cleared through a software reset to reactivate the gate driver.

^{1.} The errors of the status register are not linked to the <Global Error Flag>.

4.6 Detailed byte description of application registers (ApplRegX)

The write/read operation starts always with a command byte followed by 1 data byte.

4.6.1 Description of the data byte

The device uses 3 application registers to configure the device. Note that the last row shows the logic levels during a reset phase.

Table 33. Address 1 <01(hex)>:ApplReg1-read/write

Bit	7	6	5	4	3	2	1	0
Name	RWD	FW_PAS	OFF_CAL	CLK_SPCTR	OVT	OV_UV_ RD	DIAG1	DIAG0
<default></default>	0	0	0	0	0	0	0	0

Comments:

- RWD: Restarts the watchdog counter
- FW_PAS: Enables passive free wheeling according to Table 23
- OFF_CAL: Offset calibration mode for CSA
- **OVT:** Overvoltage threshold
- **CLK_SPCTR**: Switch the clock to the charge pump
 - **0**: 125 Khz (50% duty cycle)
 - 1: pulses train (max = 8 μs, min = 2 μs) to optimize power spectrum

Table 34. Overvoltage threshold of the Vs monitoring

OVT	Threshold
0	20 V
1	29 V

- OV_UV_RD: Over/undervoltage recovery disabled.
 - 0: If V_S recovers from OV/UV condition to normal operating voltage range, the charge pump is automatically enabled;
 - 1: If V_S recovers from OV/UV condition to normal operating voltage range, the charge pump remains disabled;

In both cases the microcontroller has to clear the status register to enable the gate drivers

• **DIAG[1:0]**: Drain source monitoring threshold voltage

Table 35. DIAG monitoring of source voltages

DIAG[1]	DIAG[0]	Monitoring threshold voltage
0	0	V _{SCD1} = 0.5 V
0	1	V _{SCD2} = 1 V
1	0	V _{SCD3} = 1.5 V
1	1	V _{SCD4} = 2 V

Table 36. Address 2 <02(hex)>: ApplReg2 - read/write

Bit	7	6	5	4	3	2	1	0
Name	RWD	COPT_2	COPT_1	COPT_0	FW	MCSA	GCSA_1	GCSA_0
<default></default>	0	0	0	0	0	0	0	0

Comments:

- RWD: Restarts the watchdog counter
- **COPT[2:0]**: Filter time to protect the two external halfbridges against cross current.

Table 37. Cross current protection time (t_{CCP})

COPT_2	COPT_1	COPT_0	Protection time
0	0	0	250 ns
0	0	1	500 ns
0	1	0	750 ns
0	1	1	1000 ns
1	0	0	1250 ns
1	0	1	1500 ns
1	1	0	1750 ns
1	1	1	2000 ns

- FW: Selects high-side or low-side free wheeling
- MCSA: Multiplexer for current sense amplifier.

Table 38. Multiplexer for current sense amplifier

MCSA	Selected amplifier
0	CSA2 (CSI2+ / CSI2-)
1	CSA1 (CSI1+ / CSI1-)

GCSA[1:0]: Gain of the current sense amplifier.

Table 39. Gain of current sense amplifier

GCSA_1	GCSA_0	Gain
0	0	10
0	1	20
1	0	50
1	1	Not applicable

Table 40. Address 3 <03(hex)>: ApplReg3 - read/write

Bit	7	6	5	4	3	2	1	0
Name	RWD	EXT_TS	EXTTH_5	EXTTH_4	EXTTH_3	EXTTH_2	EXTTH_1	EXTTH_0
<default></default>	0	0	0	0	0	0	0	0

Comments:

- RWD: Restarts the watchdog counter
- **EXT_TS**: The bit select the mode of the input pin TS/ACT_OFF:
 - EXT_TS = low (active off):
 TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back.
 Details are discribed in Section 3.12.1.
 - EXT_TS = high (thermal sensor interface):
 TS/ACT_OFF pin is used as thermal sensor interface for external temperature diodes. Details are discribed in Section 3.12.2.
- EXTTH[5:0]: Determines the threshold of the external thermal shutdown/warning

Table 41. External threshold voltage, factor n

EXTTH_5	EXTTH_4	EXTTH_3	n
0	0	0	7
0	0	1	6
0	1	0	5
0	1	1	4
1	0	0	3
1	0	1	2
1	1	0	1
1	1	1	0

Table 42. External threshold voltage, factor m

EXTTH_2	EXTTH_1	EXTTH_0	m
0	0	0	7
0	0	1	6
0	1	0	5
0	1	1	4
1	0	0	3
1	0	1	2
1	1	0	1
1	1	1	0

40/53 DocID15567 Rev 6

Equation 1

$$V_{th} = n * (0.31 + m * 0.03) V$$

The purpose of factor n is to determine the number of external temperature sense diodes (in series). With factor m the level of the threshold voltage can be fine tuned.

4.7 Read device information (ROM)

The device information is stored at the ROM addresses defined below and is read using the respective operating code.

Table 43. Read device information (ROM)

Op code		Address	Device information	
OC1	OC0	Ax	Device information	
1	1	00H	<id-header></id-header>	
1	1	01H	<product 1="" code=""></product>	
1	1	02H	<product 2="" code=""></product>	
1	1	03H	<spi-frame-id></spi-frame-id>	
1	1	3FH	Reserved, accessing this address is recognized as a failure, the device enters a fail-safe state (see <i>Table 30: STK_RESET_Q</i>).	

The <ID-Header> indicates the product family and specifies how many bytes of device information are available.

7 2 1 Bit 6 5 3 0 FAM_1 NR_PI_2 NR PI 5 NR PI 4 NR PI 3 NR_PI_1 NR_PI_0 Name FAM 0 0 0 0 0 0 <default> 1 1 0

Table 44. Address 0 <00(hex)> : ID-header - read only(1)

- **FAM[1:0]**: Family identifier, FAM[1:0] = [0:1] stands for ASSPs.
- NR PI[5:0]: Number of product information bytes.

The <Product Code 1 and 2> represents a unique identifier of the device and version.

Table 45. Address 1 <01(hex)>: product ID (LSB) - read only (1)

Bit	7	6	5	4	3	2	1	0
Name	PR_ID_7	PR_ID_6	PR_ID_5	PR_ID_4	PR_ID_3	PR_ID_2	PR_ID_1	PR_ID_0
<default></default>	0	0	0	0	0	0	0	1

1. Addressable only through a read device information command.

^{1.} Addressable only through a read device information command.

Table 46. Address 2 <02(hex)>: product ID (MSB) - read only⁽¹⁾

Bit	7	6	5	4	3	2	1	0
Name	PR_ID_15	PR_ID_14	PR_ID_13	PR_ID_12	PR_ID_11	PR_ID_10	PR_ID_9	PR_ID_8
<default></default>	0	0	1	0	1	Х	Х	Х

^{1.} Addressable only through a read device Information command.

The *<SPI-frame-ID>* (ROM address 03H) provides information about the register width (1, 2, 3 bytes) and the availability of 'burst mode read' option.

Table 47. Address 3 <03(hex)>: SPI frame ID - read only(1)

Bit	7	6	5	4	3	2	1	0
Name	BR	AR5	AR4	AR3	32 bits	24 bits	16 bits	8 bits
<default></default>	0	0	0	0	0	0	1	0

^{1.} Addressable only through a Read Device Information command.

Comments:

- BR: Burst mode read. Not supported
- AR5: Address width reduction. Not supported
- AR4: Address width reduction. Not supported
- AR3: Address width reduction. Not supported
- 32 bits: 32 bits frame width. Not supported
- 24 bits: 24 bits frame width. Not supported
- 16 bits: 16 bits frame width, 8 bits command and 8 bits data
- 8 bits: 8 bits frame width. Not supported

5 Packages thermal data

^{1.} Layout condition of R $_{th}$ and Z $_{th}$ measurements (PCB: double layer, thermal vias, FR4 area = 129 mm x 60 mm, PCB thickness =1.6 mm, Cu thickness =70 μ m (front and back side), Copper areas: from minimum pad layout to 8 cm²).

6 Package and packing information

6.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

6.2 PowerSSO-36 package information

⊕ 0.1 M A B LEAD COPLANARITY (Body **⊳** B E (Body width) Gauge plane 0.25 GAPGCFT00671

Figure 13. PowerSSO-36 package dimensions

5//

Table 48. PowerSSO-36 mechanical data

0	Millimeters						
Symbol	Min.	Тур.	Max.				
А	2.15	-	2.45				
A2	2.15	-	2.35				
a1	0	-	0.1				
b	0.18	-	0.36				
С	0.23	-	0.32				
D ⁽¹⁾	10.10	-	10.50				
E ⁽¹⁾	7.4	-	7.6				
е	-	0.5	-				
e3	-	8.5	-				
F	-	2.3	-				
G	-	-	0.1				
Н	10.1	-	10.5				
h	-	-	0.4				
k	0°	-	8°				
L	0.55	-	0.85				
M	-	4.3	-				
N	-	-	10°				
0	-	1.2	-				
Q	-	0.8	-				
S	-	2.9	-				
Т	-	3.65	-				
U	-	1	-				
X	4.1	-	4.7				
Y	6.5	-	7.1				

^{1. &}quot;D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side (0.006").

6.3 Packages thermal data

Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias, FR4 area = 78 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness =70 μm (front and back side), copper areas: from minimum pad layout to 8 cm²).

6.4 LQFP32 package information

Figure 15. LQFP32 package dimensions

577

Table 49. LQFP32 mechanical data

Dim	Millimeter						
Dim.	Min.	Тур.	Max.				
А			1.60				
A1	0.05		0.15				
A2 ⁽¹⁾	1.35	1.40	1.45				
b	0.30	0.37	0.45				
С	0.09		0.20				
D	8.80	9.00	9.20				
D1	6.80	7.00	7.20				
D3		5.60					
E	8.80	9.00	9.20				
E1	6.80	7.00	7.20				
E3		5.60					
е		0.80					
L	0.45	0.60	0.75				
L1		1.00					
K	0°	3.5°	7°				
ccc			0.10				

LQFP stands for low profile quad flat pachage. Low profile: Body thickness (A2 = 1.40 mm)

6.5 PowerSSO-36 packing information

Figure 16. PowerSSO-36 tube shipment (no suffix)

Figure 17. PowerSSO-36 tape and reel shipment (suffix "TR")

6.6 LQFP32 packing information

4.0±0.1 (II) 0.30±0,05 F 1.75±0,1 Do ø1,55±0,05 Ē D(#1,6±0,1 CHAW 1.5 SECTION Y-Y Во to centreline of pocket. Ko K1 0.3 ± 0.05 Measured from centreline of sprocket DETAIL 'X' hale to centreline of packet. Other material available. ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED,

Figure 18. LQFP32 tape and reel shipment (suffix "TR")

Revision history L99H01

7 Revision history

Table 50. Document revision history

Date	Revision	Changes
17-Apr-2009	1	Initial release.
19-Aug-2009	2	Updated <i>Figure 4</i> . Removed items 17.16, 17.18 and 17.20 of the <i>Table 18: Current sense amplifier</i> . Added <i>Table 15: Cross current protection time Table 18: Current sense amplifier</i> . - V _{IOFF50} , V _{IOFF20} , V _{IOFF10} : added min/typ/max value, deleted "T _j = 25 °C" for test condition - V _{IOFF-T50} /ΔT: changed symbol (it was V _{IOFF-T50}), updated whole row. - V _{IOFF-T20} /ΔT: changed symbol (it was V _{IOFF-T20}), updated whole row. - V _{IOFF-T10} /ΔT: changed symbol (it was V _{IOFF-T10}), updated whole row. - V _{IOFF-50} , V _{IOFF-20} , V _{IOFF-10} : added min/typ/max value - Gain50, Gain20, Gain10: added min/typ/max value - Setting time: deleted row Added <i>Figure 5: Output timing diagram (passive free wheeling)</i> Updated <i>Table 23: Truth table</i> . Updated <i>Section 3.9</i> , <i>Section 3.11</i> , <i>Section 3.12.1</i> and <i>Section 3.12.2</i> . <i>Table 30: STK_RESET_Q</i> : changed title (it was "Global status byte") Updated <i>Table 43</i> .
20-Apr-2010	3	Updated the CP value in Table 4: Absolute maximum ratings
30-Apr-2012	4	Table 9: Supply: - V _{VS_OV1} : changed symbol (it was V _{VS_OVH1}) - V _{VS_OV1} : changed symbol (it was V _{VS_OVH1}) - V _{VS_OV2} : changed symbol (it was V _{VS_OVH2}) - V _{VS_OV2} : changed symbol (it was V _{VS_OVH2}) - V _{VS_OV2} : changed symbol (it was V _{VS_OVH2}) - V _{VS_UV} : changed symbol (it was V _{VS_UV}) Updated Section 3.6: Overvoltage and undervoltage detection and Section 3.7: Charge pump Section 4.6.1: Description of the data byte: - updated OV_UV_RD bit description Table 48: PowerSSO-36 mechanical data: - L: updated values
21-Jun-2013	5	Updated Table 17: Thermal sense interface (4.5 V < V _{CC} < 5.3 V)
19-Sep-2013	6	Updated disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID15567 Rev 6