第三章 微分中值定理与导数应用

第四节 函数的单调性与曲线的凹凸性

主讲 武忠祥 教授

一、函数单调性的判别方法

- 定理1 设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,则
 - (1)如果在 (a,b) 内 $f'(x) \ge 0$, 且等号只在有限个点上成立, 则 f(x) 在 [a,b] 上单调增加;
 - (2)如果在 (a,b) 内 $f'(x) \le 0$, 且等号只在有限个点上成立, 则 f(x) 在 [a,b] 上单调减少;
- 例1 确定 $f(x) = e^x x 1$ 的增减区间

例2 试证 x > 0 时, $x - \frac{x^3}{6} < \sin x < x$

二、曲线的凹凸性与拐点

定义 设函数 f(x) 在区间 I 上连续,如果对

I上任意两点 x_1, x_2 恒有

$$f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凹的;如果恒有

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凸的.

定理2 设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内二阶可导,

(1)若在 (a,b) 内 f''(x) > 0, 则 f(x) 在 [a,b] 上的图形是凹的;

(2)若在 (a,b) 内 f''(x) < 0, 则 f(x) 在 [a,b] 上的图形是凸的.

例3 判定曲线 $y = x^3$ 的凹凸性.

例4 求下列曲线的凹、凸区间及拐点

1)
$$f(x) = x^4 - 6x^3 + 12x^2 + x + 1$$
;

2)
$$g(x) = e^{-x^2}$$
;

3)
$$h(x) = \sqrt[3]{x}$$
;

内容小结

1.可导函数单调性判别

2.曲线凹凸与拐点的判别

$$f''(x) > 0, x \in I$$
 ⇒ 曲线 $y = f(x)$ 在 I 上向上凹 $f''(x) < 0, x \in I$ ⇒ 曲线 $y = f(x)$ 在 I 上向上凸

拐点 一连续曲线上的凹凸分界点

作业 P150: 3(2)(4)(7); 4; 5(2)(4); 6; 10(1)(2); 11(3); 13; 14; 16.