

Edexcel A Level Maths: Pure

6.1 Exponential & Logarithms

Contents

- ★ 6.1.1 Exponential Functions
- * 6.1.2 Logarithmic Functions
- ***** 6.1.3 "e"
- * 6.1.4 Derivatives of Exponential Functions

6.1.1 Exponential Functions

Your notes

Exponential Functions

Exponential functions

• Exponential functions of the form $y = a^x$ with a > 0 are considered at A level

Exponential graphs

- All graphs of the form $y = a^x$ will pass through (0, 1) because $a^0 = 1$
- The x-axis is an asymptote

Copyright © Save My Exams. All Rights Reserved

a > 1

- Where **x < 0** the higher value of **a** is the "lower" graph
- Where **x > 0** the higher value of **a** is the "higher" graph
- a > 1 is exponential growth (see Exponential Growth & Decay)

Your notes

Copyright © Save My Exams. All Rights Reserved

0 < a < 1

- Where **x < 0** the higher value of **a** is the "lower" graph
- Where x > 0 the higher value of a is the "higher" graph
- 0 < a < 1 is exponential decay

Copyright © Save My Exams. All Rights Reserved

What about when a = 1?

Head to www.savemyexams.com for more awesome resources

• You may like to think about why a = 1 is **not** considered... If a = 1, $y = 1^x = 1$ for all values of x

On the same diagram sketch the graphs of $y = 4^x$ and $y = 0.25^x$.

Mark any points where the graphs cross the coordinate axes and make any asymptotes clear.

Page 4 of 23

6.1.2 Logarithmic Functions

Your notes

Logarithmic Functions

Logarithmic functions

Copyright © Save My Exams. All Rights Reserved

- $\mathbf{a} = \mathbf{b}^{\mathbf{x}}$ and $\log_{\mathbf{b}} \mathbf{a} = \mathbf{x}$ are equivalent statements
- a > 0
- **b** is called the base
- Every time you write a logarithm statement say to yourself what it means
 - log₃ 81 = 4 "the power you raise 3 to, to get 81, is 4"
 - log_p q = r "the power you raise p to, to get q, is r"

Logarithm rules

• A logarithm is the inverse of raising to a power so we can use rules to simplify logarithmic functions

Copyright © Save My Exams. All Rights Reserve

How do I use logarithms?

Head to www.savemyexams.com for more awesome resources

e.g. WRITE
$$\frac{2^{\log_3 81} + 3^{\log_{10} 1000}}{5^{\log_5 5}}$$
 IN THE FORM $\frac{a}{b}$

Your notes

WHERE a AND b ARE INTEGERS TO BE FOUND.

$$\frac{2^{\log_3 8^4} + 3^{\log_{10} 1000}}{5^{\log_5 5}} = \frac{16 + 27}{5}$$
$$= \frac{43}{5}$$

Copyright © Save My Exams. All Rights Reserved

• Recognising the rules of logarithms allows expressions to be simplified

e.g. WITHOUT USING A CALCULATOR, EVALUATE $log_364\sqrt{2}$

RECOGNISE 64 AND √2 ARE POWERS OF 2

- Recognition of common powers helps in simple cases
 - Powers of 2: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, ...
 - Powers of 3: $3^0 = 1$, $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$, ...
 - The first few powers of 4, 5 and 10 should also be familiar

For more awkward cases a calculator is needed

e.g. USE A CALCULATOR TO EVALUATE $\log_{10} 32 + \log_2 12 - \log_3 19$ GIVING YOUR ANSWER TO 3 SIGNIFICANT FIGURES

• Calculators can have, possibly, three different logarithm buttons

Copyright © Save My Exams. All Rights Reserved

• This button allows you to type in any number for the base

Copyright © Save My Exams. All Rights Reserved

Natural logarithms (see "e")

Copyright © Save My Exams. All Rights Reserved

- Shortcut for base 10 although SHIFT button needed
- Before calculators, logarithmic values had to be looked up in printed tables

Notation

Copyright © Save My Exams. All Rights Reserved

- 10 is a common base
 - log₁₀ x is abbreviated to log x or lg x
- The value **e** is another common base
 - log_e x is abbreviated to ln x
- $(\log x)^2 \neq \log x^2$

Worked example

Solve the equation $2^{2x+3} - 41(2^x) + 5 = 0$, giving your answers correct to 3 significant figures.

$$2^{2x+3} - 41(2^x) + 5 = 0$$

HIDDEN QUADRATIC

$$2^{3} \times 2^{2x} - 41(2^{x}) + 5 = 0$$

$$8(2^{x})^{2} - 41(2^{x}) + 5 = 0$$

REWRITE

LET
$$y=2^x$$
: $8y^2-41y+5=0$

SUBSTITUTION NOT ESSENTIAL

$$(8y-1)(y-5) = 0$$

USE CALCULATOR TO SOLVE

$$2^{x} = \frac{1}{8}$$
 $2^{x} = 5$
 $x = \log_{2} \frac{1}{8}$ $x = \log_{2} 5$

USE LOGARITHMS

x = 2.32 (3sf)

6.1.3 "e"

Your notes

"e" Exponential Function

What is e, the exponential function?

- The exponential function is $y = e^x$
 - **e** is an irrational number
 - e≈2.718
- As with other exponential graphs $y = e^x$
 - passes through (0, 1)
 - has the x-axis as an asymptote

What is the big deal with e?

• $y = e^x$ has the particular property

$$\frac{dy}{dx} = e^x$$

• ie for every real number \mathbf{x} , the gradient of $\mathbf{y} = \mathbf{e}^{\mathbf{x}}$ is also equal to $\mathbf{e}^{\mathbf{x}}$ (see Derivatives of Exponential Functions)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Copyright © Save My Exams. All Rights Reserved

x	у	dy/dx
-1	0.3678	0.3678
0	1	1
1	2.7182	2.7182
2	7.3890	7.3890

Copyright © Save My Exams. All Rights Reserved

The negative exponential graph

- $y = e^{-x}$ is a reflection in the y-axis of $y = e^{x}$
- They are of the form y = f(x) and y = f(-x) (see Transformations of Functions Reflections)

Copyright © Save My Exams. All Rights Reserved

What is exponential growth and decay?

- $y = Ae^{kx}(k > 0)$ is exponential growth
- $y = Ae^{-kx}(k > 0)$ is exponential decay
- **A** is the initial value
- **k** is a (usually positive) constant

• "-" is used in the equation making clear whether it is growth or decay

Worked example

- (a) On the same diagram sketch the graphs of
 - (i) $y = e^x$
 - (ii) $y = e^{3x}$
- (b) On the same diagram sketch the graphs of
 - (i) $y = e^{-x}$
 - (ii) $y = e^{-7x}$

Page 16 of 23

6.1.4 Derivatives of Exponential Functions

Your notes

Derivatives of Exponential Functions

What is the derivative of e?

• $y = e^x$ has the particular property

$$\frac{dy}{dx} = e^x$$

• ie for every real number \mathbf{x} , the gradient of $\mathbf{y} = \mathbf{e}^{\mathbf{x}}$ is also equal to $\mathbf{e}^{\mathbf{x}}$ (see Derivatives of Exponential Functions)

Yournotes

×	у	dy/dx
-1	0.3678	0.3678
0	1	1
1	2.7182	2.7182
2	7.3890	7.3890

Copyright © Save My Exams. All Rights Reserved

- **e≈2.718** (see "e")
- Recall that the derivative is the gradient function for a curve (see First Principles Differentiation)

Graphs and derivatives related to e

■ The derivative of $y = e^{kx}$ is

$$\frac{dy}{dx} = ke^{kX}$$

Page 19 of 23

• The derivative of $y = e^{-kx}$ is

$$\frac{dy}{dx} = -ke^{-kx}$$

Examiner Tip

- Remember that (like π) **e** is a **number**.
- Exam questions can ask for answers to be given as exact values in terms of e (see the Worked Example below).

Worked example

Find, in terms of e, the gradient at x=3 for each of the following functions ...

- (a) $y = e^x$
- (b) $y = e^{5x}$
- (c) $y = e^{-x}$
- (d) $y = 3e^{2x}$
- (e) $y = 5e^{-4x}$

a)

$$y = e^x$$

 $\frac{dy}{dx} = e^x$

$$\frac{dy}{dx} = e^3$$

AT x=3

Copyright © Save My Exams. All Rights Reserved

Your notes

b)
$$y = e^{5x} \qquad \frac{dy}{dx} = 5e^{5x}$$

$$AT x = 3, \qquad \frac{dy}{dx} = 5e^{5x}$$

$$\frac{dy}{dx} = 5e^{45}$$

c)
$$y=e^{-x}$$
 $\frac{dy}{dx} = -e^{-x}$ $\frac{dy}{dx} = -ke^{-kx}$

AT x=3, $\frac{dy}{dx} = -e^{-3}$ $k=1$

$$\frac{dy}{dx} = -e^{-3} = -\frac{1}{e^3}$$

Copyright O Save My Exams. All Rights Reserved

Save my exams

d)
$$y=3e^{2x}$$
 $\frac{dy}{dx}=6e^{2x}$ $\frac{dy}{dx}=ke^{kx}$

AT x=3, $\frac{dy}{dx}=6e^{2x3}$ 3 IS A CONSTANT SO IS MULTIPLIED BY k

 $\frac{dy}{dx}=6e^{6}$

Save my exams

e)
$$y=5e^{-4x}$$
 $\frac{dy}{dx}=-20e^{-4x}$ $\frac{dy}{dx}=-ke^{-kx}$

AT x=3, $\frac{dy}{dx}=-20e^{-4x3}$ 5 IS A CONSTANT

$$\frac{dy}{dx}=-20e^{-4x}$$

Save my exams

