```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Nested Patterns Precisely

(Most of) the full definition

The semantics for pattern-matching takes a pattern *p* and a value *v* and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is _, the match succeeds and no bindings are introduced
- If *p* is (*p*1,...,*pn*) and *v* is (*v*1,...,*vn*), the match succeeds if and only if *p*1 matches *v*1, ..., *pn* matches *vn*. The bindings are the union of all bindings from the submatches
- If *p* is *C p1*, the match succeeds if *v* is *C v1* (i.e., the same constructor) and *p1* matches *v1*. The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern a::b::c::d matches all lists with >= 3 elements
- Pattern a::b::c::[] matches all lists with 3 elements
- Pattern ((a,b),(c,d))::e matches all non-empty lists of pairs of pairs