Reinforcement Learning Seminar

Boyeon Kim

Department of Mathematics, School of Mathematics and Computing Mathematics Yonsei University

January 13, 2023

- \blacktriangleright Goal1 : Reproduce the SLIAR optimal control by uning PMP
- ► Method : PMP (Adjoint)

SLIAR Model

► SLIAR Model Equations and structure.

$$\begin{cases} S' &= -\beta(1-\sigma)S\Lambda - \nu S \\ L' &= \beta(1-\sigma)S\Lambda - \kappa L \\ I' &= p\kappa L - \alpha I - \tau I \\ A' &= (1-p)\kappa L - \eta A \end{cases} \text{ with } \Lambda = \epsilon L + (1-q)I + \delta A$$

Fig. 1. SEIAR epidemic model.

SLIAR model parameters

Start	0	β	7.26e-07
End	300	σ	0
S0	1e06	κ	0.526
L0	0	α	0.224
IO	1	$ au_{max}$	0.05
A0	0	ν_{max}	0.01
R_0	1.9847	ϵ	0.224
P	1	q	0.5
Q	1e06	p	0.667
R	1e06	δ	1
W	0		

$$\min_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$$

subject to

$$\begin{cases} S' &= -\beta(1-\sigma)S\Lambda - \nu S \\ L' &= \beta(1-\sigma)S\Lambda - \kappa L \\ I' &= p\kappa L - \alpha I - \tau I \\ A' &= (1-p)\kappa L - \eta A \end{cases} \quad with \quad \Lambda = \epsilon L + (1-q)I + \delta A$$

► Method : PMP(Adjoint)

ightharpoonup P = 1, Q = 1E6, R = 1E6, ν_{max} = 0.01, learning rate : 0.1

► Method : PMP(Adjoint)

▶ P = 1, Q = 1E6, R = 1E6, $\nu_{max} = 0.01$, learning rate : 0.001

- ► Method : PMP(Adjoint)
- ▶ P = 1, Q = 1E6, R = 1E6, $\nu_{max} = 0.01$, learning rate : 1e-04

► Method : PMP(Adjoint)

 \blacktriangleright P = 1, Q = 1E6, R = 1E6, $\nu_{max} = 0.01,$ learning rate : 1e-06

- ightharpoonup Goal2 : 2-constraint optimal control
- ightharpoonup Method : DQN

 $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$

► Method : DQN

ightharpoonup P = 1, Q = 1E6, R = 1E6, ν_{max} = 0.01, τ_{max} = 0.05, iteration : 2000

- $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$
- ► Method : DQN
- ightharpoonup P = 1, Q = 1E6, R = 1E6, ν_{max} = 0.01, τ_{max} = 0.05, iteration : 5000

- $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$
- ► Method : DQN
- ightharpoonup P = 1, Q = 1E6, R = 1E6, ν_{max} = 0.01, τ_{max} = 0.05, iteration : 7000

- $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$
- ► Method : DQN
- ightharpoonup P = 1, Q = 1E6, R = 1E6, ν_{max} = 0.01, τ_{max} = 0.05, iteration : 10000

1-constraint result of DQN

- $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$
- ► Method : DQN
- ightharpoonup P = 1, Q = 1e6, R = 1e6 ν_{max} = 0.01, iteration : 10,000

1-constraint result of DQN

- $\qquad \qquad \mathbf{min}_{u \in \mathcal{U}_{ad}} \int_0^T PI(t) + Q\nu^2(t) + R\tau^2(t) + W\sigma^2(t)dt$
- ► Method : DQN
- ightharpoonup P = 1, Q = 1e6, R = 1e6 τ_{max} = 0.05, iteration : 10,000

