

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Candidates answer on the Question	n Paper.		2 1.00.0 10 111110100
Paper 2		Oc	tober/November 2010 2 hours 15 minutes
COMBINED SCIENCE			5129/02
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

International Examinations

© UCLES 2010

1 Two resistors of resistance $10\,\Omega$ and $50\,\Omega$ are connected in parallel. A cell is connected across the resistors as shown in Fig. 1.1.

For Examiner's Use

The current in the 10 Ω resistor is 0.15 A. The current in the 50 Ω resistor is 0.03 A.

Calculate

(a) the current through the cell,

(b) the potential difference across the 50Ω resistor,

(c) the charge passing through the 10Ω resistor in 5 minutes.

2

Wh	en aı	mmonia is dissolved in water, an alkaline solution is produced.	For
(a)	(i)	State the colour of Universal Indicator paper after it has been dipped into the solution.	Examiner's Use
		[1]	
	(ii)	Which ion in the solution causes it to be alkaline?	
		[1]	
(b)		en sulfuric acid is added to ammonia solution in a titration experiment, ammonium ate is produced.	
	Cor	mplete the following sentences.	
	Exa	actly 25.0 cm ³ of ammonia solution is added to a conical flask using a	
	A fe	ew drops of indicator solution are added to the conical flask and sulfuric acid is added	
	slov	wly from a until the indicator shows that the	
	solu	ution is [3]	
(c)	Am	monium sulfate contains the ammonium ion NH_4^+ and the sulfate ion SO_4^{2-} .	
	(i)	Deduce the formula of ammonium sulfate[1]	
	(ii)	State a large-scale use of ammonium sulfate.	
		[1]	

3 A satellite orbits the Earth as shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

(a) In every 24 hours the satellite travels a distance of 2.7×10^8 m at constant speed. Calculate the speed in m/s of the satellite.

(b) The satellite has a mass of 200 kg and the force on it is 45 N.Calculate the acceleration of the satellite.

acceleration =
$$m/s^2$$
 [2]

4 A flower that has been cut in half is shown in Fig. 4.1.

(a) Name the structures labelled X, Y and	(a)	Name the stru	ctures labelled	X. Y	and Z .
---	-----	---------------	-----------------	------	----------------

X	
Υ	

Z[3]

(b)	State and explain the main function of the petals of the flower.	
-----	--	--

		[0]

(c) In which part of the flower is pollen produced?

11

5 The three states of matter are solid, liquid and gas. Fig. 5.1 shows the arrangement of the particles in a solid.

For Examiner's Use

Fig. 5.1

- (a) Complete Fig. 5.1 to show the arrangement of the particles in a liquid and in a gas. [2]
- (b) State the names of each of the processes A and B.

process A	
process B	[2]

6 (a)	A physical property that cha	anges with temperature can b	e used to measure temperat	ure.
	Name two suitable physica	al properties.		
		and		[2]
(b)	State two differences betw	een laboratory and clinical lic	quid-in-glass thermometers.	
	1			
	2			
				[2]
(-)	Carra diaminatia and a a diament	and all and a second all a selections and a second	ا ما ما ما ما	
(c)		ometers contain either merciese liquids is shown in Fig. 6 melting point/°C		
(c)	Some information about the	ese liquids is shown in Fig. 6	.1.	
(c)	Some information about the	ese liquids is shown in Fig. 6 melting point/°C	.1. boiling point/°C	
(c)	Some information about the	ese liquids is shown in Fig. 6 melting point/°C -120	boiling point/°C	
(c)	Some information about the liquid alcohol mercury	ese liquids is shown in Fig. 6 melting point/°C -120 -39	boiling point/°C 78 370	
(c)	liquid alcohol mercury A liquid-in-glass thermome	ese liquids is shown in Fig. 6 melting point/°C -120 -39 Fig. 6.1	boiling point/°C 78 370 sperature of –56°C.	

7 Fig. 7.1 shows a model of digestion and absorption in the alimentary canal.

For Examiner's Use

Fig. 7.1

(a)	In th	nis model, what represents,
	(i)	the small intestine,
		[1]
	(ii)	the blood,
		[1]
((iii)	the food?
		[1]
(b)	Afte	er 20 minutes, the sugar maltose is present in the water in the beaker.
	Ехр	lain why.

5	An	electric Iron has a power rating of 1800 W.	For
	(a)	Calculate the energy converted into heat by the iron in 2 minutes.	Examiner's Use
		energy = unit [3]	
	(b)	The electric iron has a plug containing three wires. One of the wires is the live wire.	
		Name the other two wires.	
		and	

9 The following is a list of gases.

For Examiner's Use

	argon	argon carbon dioxide carbon monoxide		rbon monoxide					
	hydrogen	nitrogen	oxygen	sulfur dioxide					
•	Complete the following sentences using gases from the list. Each gas may be used once, more than once or not at all.								
(a) The gas that relights a glowing splint is									
(b) The gas th	at produces on	ly water when	it is burned is	S	[1]				
(c) A gas that is not present in polluted air is									
(d) The gas th	at is produced	during the inco	mplete comb	ustion, but not during					
complete o	combustion, of h	nydrocarbons is	S		[1]				
(e) The gas th	at is used in lig	ht bulbs is			[1]				

10 Two permanent magnets and a piece of iron are placed end-to-end on a bench as shown in Fig. 10.1.

For Examiner's Use

The poles of one magnet are shown.

Fig. 10.1

- (a) (i) The iron becomes magnetised and is attracted to the nearest permanent magnet.

 On Fig. 10.1, mark the north pole and the south pole on the iron. [1]
 - (ii) The two permanent magnets are repelling each other.On Fig. 10.1, mark the north pole and the south pole on the second permanent magnet.[1]
- (b) Fig. 10.2 shows an iron-cored transformer.

Fig. 10.2

The input is changed from alternating current to direct current.

Explain why the transformer has no output.

[4]

11	(a)	State two ways in which sexual reproduction is different from asexual reproduction.						
		1						
		2		[2]				
	(b)		lines to match the strutter to the structions. One has been	actures in the human male reproductive en done for you.				
		structure		function				
		penis		carries sperm and also urine				
		prostate gland		carries sperm but not urine				
		sperm duct		allows sperm to be released in the vagina				
			7					
		testis		produces sperm cells				
			_					
		urethra		secretes seminal fluid				

12 A mixture of aluminium and iron(III) oxide is placed in a crucible as shown in Fig. 12.1.

The reaction is started using a magnesium fuse.

The equation for the reaction is

$$Fe_2O_3 + 2Al \longrightarrow 2Fe + Al_2O_3$$

The relative molecular mass of iron(III) oxide is 160.

[A_r: Al, 27; Fe, 56].

(a)	Com	plete	the	following	sentences
-----	-----	-------	-----	-----------	-----------

	160 g of iron(III) oxide reacts with g of aluminium and produces	
	g of iron.	
	16 g of iron(III) oxide reacts with g of aluminium and produces	
	g of iron.	
	8g of iron(III) oxide producesg of iron.	[4]
(b)	State the type of reaction that the aluminium undergoes.	
		[1]

13 Light passes through a glass block as shown in Fig. 13.1. Some of the light is reflected from the surface of the glass block.

For Examiner's Use

Fig. 13.1

(a)	The angle of incidence is 44
	Calculate angle X.

X	=	0	[1]	ĺ
^	_		1 ' 1	ı

(b) (i) State an equation for calculating refractive index.

[1]

(ii) The refractive index of the glass is 1.48.Calculate the angle of refraction *r*.

$$r =$$
° [1]

14 Study the following reaction scheme.

		- ya	3 D + liqu	1G O]	Ctriarior	
				Fi	g. 14.1		
(a)	Identify su	ubstance	s A, B, C	and D .			
	gas A						
	gas B						
	liquid C						
	gas D						[4]
(b)	In what wa	ay does t	he structi	ure of ethen	e differ from that o	f ethane?	
							[1]
(c)	Two of the	e reaction	s in the s	cheme use	a catalyst.		
	Suggest w	why a cat	alyst is us	sed in these	reactions.		
							[1]

15	(a)	(i)	Define trans	piration.						
		(ii)	Where does	most transpiration	n occur in a plant?		[1]			
							[2]			
	(b)	plan	nt.	s carried out to in	nvestigate water u					
		volu wa	of	water loss by the plant	water uptake by the plant					
			0.00	6.00	12.00 time / hours	18.00	24.00			
					Fig. 15.1					
		(i)			e equal to water los					
		(ii)	(ii) A similar pattern of water uptake and water loss occurs over a period of several days.							
			State the eff	ect this pattern ha	•					

16 A metal rod and a metal ring are shown in Fig. 16.1.
At room temperature, the hole in the ring is only just large enough for the rod to be pushed through it.

For Examiner's Use

Fig. 16.1

(b)	why the heated rod will no longer pass through the metal ring.
	[1]
(a)	the method by which thermal energy is transferred through the rod,
Sta	te
One	e end of the metal rod is heated strongly. The entire rod becomes hot.

17 ¹⁸₈O and ¹⁶₈O are two isotopes of oxygen. Complete Fig. 17.1 to show the number of protons and the number of neutrons in the nucleus of an atom of ${}^{18}_{8}$ O. nucleus containing protons and neutrons. Fig. 17.1 [2] Complete Fig. 17.1 to show the electronic structure of an atom of ${}^{18}_{8}$ O. [1] **(b)** Define the term *isotope*.

2.[2]

© UCLES 2010 5129/02/O/N/10

(c) State two uses of oxygen.

18 Use words from the list to complete the sentences below.

For
Examiner's
llse

	blood	gland	kidneys	liver	nerves	target organ	
Each word	may be use	ed once, m	ore than onc	e, or not a	at all.		
Hormones	are carried	in the			from the		
that produc	es them to	the		wher	e they have	their effect.	
Most hormo	ones are re	moved by	being destroy	ed by the)		[4]

19	A stone has a	mass of 5	.4 g and a	volume o	f 1.8 cm ³
	A Storic rias a	111033 01 3	. + 9 ana a	volunic o	1 1.0 0111

(a)	Calculate its density.	

(b) Some water is placed in a measuring cylinder. The stone is then added to the water. Fig. 19.1 shows the measuring cylinder containing the stone and the water.

Calculate the volume of the water in the measuring cylinder.

volume = cm³ [1]

BLANK PAGE

TURN OVER FOR QUESTION 20

20 The effect of mercury pollution from a chemical factory is described in Fig. 20.1.

For Examiner's Use

Fig. 20.1

(a)	Which of the organisms described in Fig. 20.1 contains the highest concentration of mercury?	For Examiner's Use
	[1]	
(b)	Use Fig. 20.1 to describe how mercury gets from the factory into the small fish.	
	[3]	
(c)	The fishermen are in danger of mercury poisoning.	
	Explain why.	
	[1]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements DATA SHEET

	Group	0	He lium	19 20 F Ne Neon 10	35.5 40 C1 Ar Argon 18	80 84 Br Krypton 36	127 131 Xe lodine 54 Xenon	222 At Radon 86		173 175 Yb Lu Ytterbium Lutetium 71 T1	No Lr Nobelium Lawrencium	
		II/		16 Oxygen	32 S Sulfur (Se Selenium Bro	53	209 2 Po 6 Polonium Ast		169 173 Yb Thulium Ytterbium 69	Md Nobelium	
		>		14 Nitrogen 8	31 P Phosphorus 15	75 As Arsenic 34	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	257 Fm Fermium M	
		≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	252 Einsteinium	
		=		11 B Boron	27 A1 Aluminium 13	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	251 Californium	
nts						65 Zn Zinc 30	Cadmium 48	201 Hg Mercury		159 Tb Terbium	247 BK Berkelium	
e Eleme						Copper 29	108 Ag Silver 47	197 Au Gold 79		Gd Gadolinium 64	247 Cm Curium	
The Periodic Table of the Elements						59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu 63	243 Am Americium	
				٦		59 Co balt 27	Rhodium 45	192 Ir Indium 77		Sm Samarium 62	Putonium	
			Hydrogen			56 Fron	Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium	
						Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Nacodymium Neodymium	238 C Uranium	
							Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		141 Pr Praseodymium 59	Pa Protactinium
						51 Vanadium 23	Niobium A1	181 Ta Tan Tantalum 73		140 Cer ium 58	232 Thorium	
						48 T Titanium	2 Zirconium	178 Hf Hafnium 72	+	(0	omic mass mbol oton) number	
					-	Scandium 21	89 Y	139 La Lanthanum 57	227 AC Actinium 89	* 58–71 Lanthanoid series † 90–103 Actinoid series	 a = relative atomic mass X = atomic symbol b = atomic (proton) number 	
		=		Beryllium 4	24 Mg Magnesium	40 Calcium 20 Calcium	Strontium	137 Ba Bartum 56	226 Ra Radium 88	* 58–71 Lanthanoid serie † 90–103 Actinoid series	е Х	
		_		7 Li Lithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	* 58–7 † 90–1	Key	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).