# Данные и метрики BatchNorm

Иван Карпухин



# Преподаватель



#### Иван Карпухин

Профессионально занимаюсь машинным обучением более 6 лет

Проекты (Тинькофф, VK, Яндекс):

- Голосовая биометрия
- Распознавание лиц и текстов
- Виртуальный аватар
- Исследования

#### Задание

- **S** 3 минуты
- **С** Анонимно
- 🖈 Ссылка в чате

Обсудим через несколько слайдов



https://forms.gle/te9K251Zz1sSEy6n6

#### ML сложнее чем кажется

#### В теории:



#### ML сложнее чем кажется

#### На практике:



#### ML сложнее чем кажется

#### На практике:



# Данные Train/dev/test

#### Bias / variance recap

Train set и Validation set из одного распределения

Bias - величина ошибки на Train Variance - разница ошибок Validation и Train

Описывают соответствие модели и данных

Терминология из анализа MSE\*



 $<sup>^*\</sup> https://en.wikipedia.org/wiki/Bias\%E2\%80\%93 variance\_tradeoff\#Bias\%E2\%80\%93 variance\_decomposition\_of\_mean\_squared\_error$ 

# Bias / variance recap





#### Основные вопросы

- Какие корпусы нужны?
- Какого размера?
- Из какого распределения?

#### Train / test

#### Причина 1

- Алгоритм переобучается под Train
- Нужен независимый Test для оценки

#### Причина 2

- Train большой, но из другого домена
- Теst от заказчика





#### Train / test

Отбираем модели по Test метрикам

=> переобучаемся под Test

Увеличить Test?





#### Train / test

Отбираем модели по Test метрикам

=> переобучаемся под Test

Увеличить Test?

Сперва оценить степень переобучения





## Development set

Отбираем модели по Test метрикам

=> переобучаемся под Test

<u>Решение:</u> Dev корпус



| Корпус | Размер*             | Распределение  | Назначение    |
|--------|---------------------|----------------|---------------|
| Train  | 10.000 - 10.000.000 | М.б. смещенное | Обучение      |
| Dev    | 1000 - 100.000      | Несмещенное    | Отбор модели  |
| Test   | 1000 - 100.000      | Несмещенное    | Оценка модели |

<sup>\*</sup> В некоторых задачах, особенно unsupervised и NLP, размер может заметно отличаться

# Проблема

$$Error_{dev} - Error_{train} = 0.1$$

На сколько переобучилась модель? Как улучшить качество на Dev?



# Проблема

 $Error_{dev} - Error_{train} = 0.1$ 

Train - смещённый

Dev - несмещённый

Уменьшать число параметров?

Увеличивать Train?

Искать несмещённые данные для Train?



## Train-dev set





# Data quality

Хотим улучшить качество модели за счет данных

- Собрать новых данных?
- Почистить имеющиеся?

## Data quality

- Шумных данных нужно больше
- Количество может компенсировать качество



#### Итоги про данные

- Dataset size is not all you need
- Распределение данных важно
- Quality / dataset size trade-off
- Переобучаемся не только под train, но и под dev (и даже под test)
- Dev и Test стоит иногда менять
- Если train и dev из разных источников, можно выделить train-dev

# Вопросы



# Pasmep test set

#### Процесс оценки



Ү\* - правильный ответ

$$Error = \begin{cases} 0, Y = Y^* \\ 1, Y \neq Y^* \end{cases}$$

Error - случайная величина Bernoulli(p)

р - вероятность ошибки модели

#### Задача оценки

N0 - число правильных классификаций

N1 - число ошибок

Pазмер Test: N = N1 + N0

Error - случайная величина Bernoulli(p)

р - вероятность ошибки модели

$$P(p=x|N_0,N_1)?$$

$$P(p = x | N_0, N_1) = \frac{P(N_0, N_1 | p = x) P(p = x)}{\int_{y} P(N_0, N_1 | p = y) P(p = y) dy}$$

$$P(p = x | N_0, N_1) = \frac{P(N_0, N_1 | p = x) P(p = x)}{\int_{y} P(N_0, N_1 | p = y) P(p = y) dy}$$
$$P(p = x) : Uniform(0, 1)$$

$$P(p = x | N_0, N_1) = \frac{P(N_0, N_1 | p = x) P(p = x)}{\int_y P(N_0, N_1 | p = y) P(p = y) dy}$$

$$P(p = x) : Uniform(0, 1)$$

$$P(N_0, N_1 | p = x) = x^{N_1} (1 - x)^{N_0}, x \in [0, 1]$$

$$P(p = x | N_0, N_1) = \frac{P(N_0, N_1 | p = x) P(p = x)}{\int\limits_y P(N_0, N_1 | p = y) P(p = y) dy}$$

$$P(p = x) : Uniform(0, 1)$$

$$P(N_0, N_1 | p = x) = x^{N_1} (1 - x)^{N_0}, x \in [0, 1]$$



$$P(p = x | N_0, N_1) = Beta(N_1 + 1, N_0 + 1) = \frac{x^{N_1}(1 - x)^{N_0}}{B(N_1 + 1, N_0 + 1)}$$

#### Доверительный интервал

Доверительный интервал с уровнем доверия alpha = 0.95?

$$PPF_p(\alpha) = x : P(p \le x) = \alpha$$

$$\Delta = PPF(\alpha + \frac{1-\alpha}{2}) - PPF(\frac{1-\alpha}{2})$$



## Примеры







Mean Error = 0.01

Mean Error = 0.1

Mean Error = 0.3

# Вопросы



# Метрики



#### Виды метрик

#### Технические

- оценивают подсистемы
- выявляют возможности для улучшений

#### Продуктовые

- связаны с бизнесом
- оценивают систему целиком
- одно число

#### Метрики из статей и стандартов

• сравнение с конкурентами

# Пример: трекинг людей





# Пример: трекинг людей





# Пример: трекинг людей





## Технические метрики



## Продуктовые метрики

#### Задача:

- у заказчика есть база сотрудников с фото
- нужно найти посторонних людей на видео с камеры

Какое число выбрать в качестве продуктовой метрики?

## Продуктовые метрики

#### Какие параметры важны:

- скорость работы пайплайна (ms / frame)
- частота ложных срабатываний (1 / hour)
- вероятность правильной классификации постороннего

Как сделать одно число?

## Вариант 1: усреднение

- 1. Можно связать частоту ложных срабатываний с вероятностью правильной классификации сотрудника
- 2. Вероятности правильной классификации сотрудника и постороннего можно усреднить (mean, harmonic mean)

Как быть с быстродействием?

## Вариант 2: ограничение

#### Какие параметры важны:

- скорость работы пайплайна (ms / frame)
- частота ложных срабатываний (1 / hour)
- вероятность правильной классификации постороннего

- 1. Ложные срабатывания допустимы не чаще 1 / час (в среднем)
- 2. Нужно обрабатывать кадр быстрее 200ms на CPU
- => остается один свободный параметр вероятность обнаружения постороннего

## Вопросы





## Проблема



## Проблема



## Проблема



## Нормировка



#### Во время тренировки:

- Вычесть среднее по батчу
- Разделить на STD батча
- Умножить на обучаемый scale
- Добавить обучаемый bias

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\}; Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

#### Во время тренировки:

- Вычесть среднее по батчу
- Разделить на STD батча
- Умножить на обучаемый scale
- Добавить обучаемый bias

#### В свёрточных сетях:



**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ **Output:**  $\{y_i = BN_{\gamma,\beta}(x_i)\}$  $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean  $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance  $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize  $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

#### Во время тренировки:

- Вычесть среднее по батчу
- Разделить на STD батча
- Умножить на обучаемый scale
- Добавить обучаемый bias

#### Следствия:

- Поведение зависит от данных батча
- Поведение зависит от размера батча

Что делать в inference если нет батча?

**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ **Output:**  $\{y_i = BN_{\gamma,\beta}(x_i)\}$  $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean  $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance  $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize  $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

#### Во время тренировки:

- Вычесть среднее по батчу
- Разделить на STD батча
- Умножить на обучаемый scale
- Добавить обучаемый bias

При тестировании используются средние и STD усредненные по traininig set

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\}; Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

## Пример



## Пример



#### Зачем так сложно

- Если использовать скользящие средние в train, обучение может взорваться
- Появляется разница между train и test
- Иногда это благо, т.к. вносит регуляризацию

## До или после активации



## Batchnorm summary

- BN ускоряет обучение CNN и FC сетей
- BN позволяет использовать больший Learning Rate
- BN вносит разницу между train и test
- При больших batch size разница меньше, а статистики устойчивие

## Вопросы



# Спасибо за внимание)

