CPT 122 - Introduction to computer Hardware

Module 2 Unit 1 - Introduction to Different Parts of a Computer System

Content

Overview of Computer Hardware Components	3
Understanding the Central Processing Unit (CPU)	4
Exploring the Motherboard and Its Components	5
Unveiling the Role of Memory in Computer Systems	6
Storage Devices and Their Functions	7
Powering Up: The Importance of Power Supply Unit	9
Input and Output Devices Demystified	10
Enhancing System Capabilities with Expansion Cards	12

Overview of Computer Hardware Components

The Central Processing Unit (CPU)

- > Known as the brain of the computer, the CPU executes instructions and processes data.
- ➤ Key components include the Control Unit (CU), Arithmetic Logic Unit (ALU), and Registers and Cache.
- Understanding CPU performance factors like Clock Speed (measured in gigahertz) and Cores is crucial for assessing processing capabilities.

The Motherboard

- > Serving as the central hub, the motherboard connects all components and peripherals.
- > Key components on the motherboard include the Chipset, facilitating data flow, and BIOS/UEFI, initializing hardware during booting.

Memory (RAM and ROM)

- > RAM provides temporary data storage for seamless operation, with DDR4 and DDR5 being prevalent types.
- > ROM stores essential firmware and system instructions, crucial for system boot-up.
- > Increased RAM capacity enhances multitasking and performance in memory-intensive activities.

Storage Devices

- ➤ Hard Disk Drives (HDD) offer large storage capacities, while Solid-State Drives (SSD) provide faster read/write speeds.
- > Hybrid Drives (SSHD) combine HDD storage capacity with SSD speed.
- ➤ Interfaces like SATA, NVMe, and M.2 connect storage devices to the motherboard, enhancing data transfer speeds.

Power Supply Unit (PSU)

- ➤ The PSU converts electrical power for computer components, distributing power efficiently.
- > Key specifications include Wattage, indicating total power output, and Efficiency.

Understanding the Central Processing Unit (CPU)

Introduction to the CPU

- > The Central Processing Unit (CPU) is often referred to as the brain of the computer.
- > Responsible for executing instructions and processing data.

Components of the CPU

- Control Unit (CU)
- > Arithmetic Logic Unit (ALU)
- > Registers and Cache temporary storage areas holding data needed during processing.

CPU Performance Factors

- > Clock Speed, measured in gigahertz (GHz),
- > determines how quickly instructions are processed.

Cores and Threads

- > Enable handling multiple tasks simultaneously.
- Modern CPUs have multiple cores for enhanced performance.

CPU Architecture

- > Defines the design and instruction set the CPU can execute. Examples include ARM and x86.
- > Impacts compatibility and performance.

Exploring the Motherboard and Its Components

Chipset

- The silicon backbone of the motherboard
 Acts as a communication hub
- > Facilitates data flow between different hardware components

BIOS/UEFI

- > Firmware that initializes and tests hardware during the booting process
- > Provides runtime services for the operating system

Slots

- > Connectors on the motherboard
- > Expansion cards like GPUs, sound cards, and network cards can be inserted
- > Enhances system functionality

Ports

- > Inputs or connection points where components plug in
- > Includes USB for peripherals, HDMI for monitors, and Ethernet for network connectivity

Form Factors

The physical size and shape of the motherboard Determines the case size it fits into.

Unveiling the Role of Memory in Computer Systems

RAM (Random Access Memory)

RAM serves as temporary data storage during computer operation, enabling rapid reading and writing of data to support seamless application functioning and system processes.

ROM (Read-Ofily Memory)

➤ ROM stores essential firmware and system instructions that are retained even when the computer is powered off, crucial for booting up the system.

DDR4 and DDR5

- ➤ Different types of RAM are available, with DDR4 and DDR5 being prevalent.
- DDR5 offers superior speeds and performance, enhancing multitasking abilities and boosting performance in memory- intensive activities like gaming and video editing.

Cache

➤ A smaller, faster memory that stores frequently accessed data from the main memory, aiding in quicker data retrieval for the CPU during processing.

Memory Capacity

➤ Increased RAM capacity enhances multitasking abilities and overall system performance, particularly in memory—intensive tasks.

Storage Devices and Their Functions

Hard Disk Drives (HDD)

- > Traditional storage devices utilizing spinning disks for data read/write operations
- > Offering large storage capacities at cost-effective rates

Solid-State Drives (SSD)

- Modern storage devices employing flash memory for data storage
- Delivering faster read/write speeds and enhanced performance compared to HDDs

Storage Devices and Their Functions

Hybrid Drives (SSHD)

- Combining the high storage capacity of HDDs with the speed of SSDs
- Utilizing solid-state storage to cache frequently accessed data

Storage Interfaces

- > SATA (Serial ATA): Common interface connecting HDDs and SSDs to the motherboard
- NVMe (Non-Volatile Memory Express): Advanced interface for SSDs, providing higher data transfer speeds by connecting directly to the PCIe bus
- > M.2: Form factor for SSDs compatible with both SATA and NVMe interfaces

Powering Up: The Importance of Power Supply Units

Introduction to Power Supply Units (PSUs)

- > PSU is a critical component in a computer system.
- Responsible for converting electrical power from an outlet into usable power for various hardware components.

Wattage and Power Output

- > Indicates the total power output available.
- ➤ Higher wattage necessary for systems with more powerful components.

Efficiency Ratings

- > Efficiency ratings such as 80 Plus Bronze, Silver, Gold, Platinum, and Titanium.
- ➤ Higher ratings indicate higher efficiency in power conversion.

Power Distribution

- > PSU distributes power to essential components like the motherboard, CPU, GPU, and other hardware.
- Ensures smooth and reliable operation of the computer system.

Compatibility and Performafice

- > Ensuring compatibility with the motherboard and providing sufficient power are crucial.
- > A well-functioning PSU is vital for the overall performance and longevity of a computer system.

Input and Output Devices

Input Devices

- > Keyboard: Used for typing text and commands.
- > Mouse: Enables pointing, clicking, and navigating the user interface.
- > Scanner: Utilized for digitizing physical documents.
- > Webcam: Used for capturing video and images.

Combination Devices

- > **Touchscreens**: Allow direct interaction with the display.
- > Multifunction Printers: Combine printing, scanning, copying, and faxing functions.

Output Devices

- Monitor: Displays visual output from the computer.
 Printer: Produces physical copies of digital documents.
- > Speakers: Outputs sound from the computer.

Input and Output Devices

Importance of Input and Output Devices

- > Input devices enable users to provide data and commands to the computer.
- > Output devices convey information from the computer to the user.
- Combination devices serve both input and output functions, enhancing user interaction with the system.

Key Considerations

- > Understanding the role of input and output devices is crucial for effective user-computer interaction.
- Choosing the right input and output devices can significantly impact user experience and productivity.
- > Proper maintenance and utilization of these devices are essential for optimal system performance.

Enhancing System Capabilities with Expansion Cards

Graphics Cards (GPUs)

- > Enhance a computer's ability to render graphics
- Crucial for tasks like gaming, video editing, and 3D rendering

Sound Cards

- > Improve audio output quality
- Add advanced audio processing capabilities to the system

Network Interface Cards (NICs)

Provide wired or wireless network connectivity Enable seamless communication

USB Expansion Cards

Add additional USB ports to the computer Expand connectivity options for peripherals and devices

Installing Expansion Cards

- > Inserting them into the appropriate PCIe slots on the motherboard
- > Ensuring compatibility and sufficient power supply for optimal performance

