What we claim is:

1. A compound of matter having the formula:

wherein R^1 is $-CH_2OH$, $-C(=O)NR^5R^6$;

10

15

20

25

R² is selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, aryl, heterocyclyl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, SO₂NR²⁰COR²², SO₂NR²⁰CON(R²⁰)₂, N(R²⁰)₂, N(R²⁰)₂ NR²⁰COR²², NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, CON(R²⁰)₂, CON(R²⁰)₂, NR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OCON(R²⁰)₂, COON(R²⁰)₂, and OCON(R²⁰)₂ and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, NO₂, alkyl, CF₃, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CO₂R²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, CN, and OR²⁰;

 R^3 , R^4 are each individually selected from the group consisting of hydrogen, C_{1-15} alkyl, C_{2-15} alkenyl, C_{2-15} alkynyl, heterocyclyl, aryl, and heteroaryl, halo, NO_2 , CF_3 , CN, OR^{20} , SR^{20} , $N(R^{20})_2$, $S(O)R^{22}$, SO_2R^{22} , $SO_2N(R^{20})_2$, $SO_2NR^{20}COR^{22}$, $SO_2NR^{20}CO_2R^{22}$, $SO_2NR^{20}CON(R^{20})_2$, $N(R^{20})_2$, wherein the alkyl, alkenyl, alkynyl, aryl, heterocyclyl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO_2 , heterocyclyl, aryl, heteroaryl, $N(R^{20})_2$, $N(R^{20})_2$,

SO₂NR²⁰CO₂R²², SO₂NR²⁰CON(R²⁰)₂, N(R²⁰)₂ NR²⁰COR²², NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, CONR²⁰SO₂R²², NR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OC(O)R²⁰, C(O)OCH₂OC(O)R²⁰, and OCON(R²⁰)₂ and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, NO₂, alkyl, CF₃, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CO₂R²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, CN, and OR²⁰;

R⁵ and R⁶ are each individually selected from H, C₁₋₁₅ alkyl with from 1 to 2 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, SO₂NR²⁰COR²², SO₂NR²⁰CON(R²⁰)₂, N(R²⁰)₂, N(R²⁰)₂, NR²⁰CO₂R²², NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, CON(R²⁰)₂, CON(R²⁰)₂, NR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OC(O)R²⁰, C(O)OCH₂OC(O)R²⁰, and OCON(R²⁰)₂, and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, NO₂, alkyl, CF₃, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CO₂R²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰), CN, and OR²⁰;

10

20

25

30

 R^{20} is selected from the group consisting of H, C_{1-15} alkyl, C_{2-15} alkenyl, C_{2-15} alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, heterocyclyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, CN, O- C_1 alkyl, CF₃, aryl, and heteroaryl; and

 R^{22} is a member selected from the group consisting of C_{1-15} alkyl, C_{2-15} alkenyl, C_{2-15} alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, heterocyclyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, CN, O- C_{1-6} alkyl, CF₃, and heteroaryl wherein, when R^1 is CH₂OH, and R^3 is H and R^4 is H, and the pyrazole ring is attached through C^4 , then R^2 is not H.

2. The compound of claim 1 wherein R² is selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkynyl, aryl, heterocyclyl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, COR²⁰, CO₂R²⁰, CON(R²⁰)₂, and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is

10

15

20

25

30

WO 00/78778 PCT/US00/17095 45

optionally substituted with halo, alkyl, CF, CN, and OR²⁰;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, C_{1.15} alkyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, heteroaryl, halo, NO₂, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, COR²⁰, CO₂R²⁰, CON(R²⁰)₂, wherein the alkyl, alkynyl, aryl, heterocyclyl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF_3 , CN, OR^{20} , SR^{20} , $N(R^{20})_2$, $S(O)R^{22}$, SO_2R^{22} , $SO_2N(R^{20})_2$, COR^{20} , CO_2R^{20} , CON(R²⁰), and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, alkyl, CF, CN, and OR²⁰;

R⁵ and R⁶ are each individually selected from H, and C₁₋₁₅ alkyl having from 1 to 2 substituents independently selected from the group consisting of aryl, heteroaryl, CF₃, OR²⁰, and wherein each optional heteroaryl, and aryl substituent is further optionally substituted with halo, alkyl, and CF₃;

R²⁰ is a member selected from the group consisting of H, C₁₋₆ alkyl, aryl, and heteroaryl; and

 R^{22} is a member selected from the group consisting of $C_{1.6}$ alkyl, aryl, and heteroaryl, wherein the alkyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from halo, alkyl, CN, O-C₁₋₆ alkyl, and CF₃.

3. The compound of claim 1 wherein R² is selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, C₂₋₁₅ aryl, and heteroaryl, wherein the alkyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, S(O)R²², CO₂R²⁰, CON(R²⁰)₂, and wherein each optional heteroaryl, and aryl substituent is optionally substituted with halo, alkyl, CF, CN, and OR²⁰;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, C_{1,15} alkyl, C_{2-15} aryl, heteroaryl, halo, CF_3 , CN, OR^{20} , SR^{20} , $S(O)R^{22}$, CO_2R^{20} , and $CON(R^{20})_2$, wherein the alkyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, S(O)R²², CO₂R²⁰, and CON(R²⁰)₂, and wherein each optional heteroaryl, and aryl substituent is optionally substituted with halo, alkyl, CF, CN, and OR²⁰;

R⁵ and R⁶ are each individually selected from H, and C₁₋₁₅ alkyl having from 1 to 2 substituents selected from CF,;

R²⁰ is selected from H, and C₁₋₆; and R^{22} is $C_{1.6}$ alkyl.

4. The compound of claim 1 wherein R^2 is independently selected from the group consisting of hydrogen, C_{1-15} alkyl, C_{2-15} aryl, and heteroaryl, wherein the alkyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF_3 , CN, OR^{20} , CO_2R^{20} , and $CON(R^{20})_2$, and wherein each optional heteroaryl, and aryl substituent is optionally substituted with halo, alkyl, CF_3 and CN;

 R^3 and R^4 are each individually selected from the group consisting of hydrogen, $C_{1.15}$ alkyl, $C_{2.15}$ aryl, heteroaryl, halo, CF_3 , CN, OR^{20} , CO_2R^{20} , and $CON(R^{20})_2$, wherein the alkyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF_3 , CN, OR^{20} , CO_2R^{20} , and $CON(R^{20})_2$, and wherein each optional heteroaryl, and aryl substituent is optionally substituted with halo, alkyl, CF_3 or CN;

 R^{5} and R^{6} are each individually selected from H, and C_{1-15} alkyl;

R²⁰ is selected from H, and C₁₋₆; and

 R^{22} is C_{1-6} alkyl.

15

20

25

30

5. The compound of claim 1 wherein R² is independently selected from the group consisting of hydrogen, C₁₋₁₅ alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, OR²⁰, aryl, CF₃, CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ or CN;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, aryl, halo, CF₃, and CN, wherein the alkyl, and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, CF₃, CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ or CN;

 R^5 and R^6 are each individually selected from H, and C_{1-15} alkyl; and R^{20} is selected from H, and C_{1-6} .

6. The compound of claims 1 or 2 or 3 or 4 or 5 having the following formula wherein the point of attachment of the pyrazole ring is C-4.

10

15

20

7. The compound of claims 1 or 2 or 3 or 4 or 5 having the following formula wherein the point of attachment of the pyrazole ring is C-3.

8. The compound of claims 1 or 2 or 3 or 4 or 5 having the following formula 5 wherein the point of attachment of the pyrazole ring is C-5.

- 9. The compound of claims 6 or 7 or 8 wherein $R^1 = CH_2OH$;
- 10. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is independently selected from the group consisting of hydrogen, C₁₋₁₀ alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, OR²⁰, aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN;

R³ and R⁴ are each individually- selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, aryl, halo, CF₃, and CN, wherein the alkyl, and aryl substituents are optionally substituted with a substituent independently selected from the group consisting of halo, CF₃, and CN; and

R²⁰ is selected from H, and C₁₋₆ alkyl;

11. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is independently selected from the group consisting of hydrogen, C_{1.8} alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, OR²⁰, aryl, CF₃, and

5

10

15

20

25

30

CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, C_{1.3} alkyl, aryl, halo, CF₃, CN; and

R²⁰ is selected from H, and C₁₋₆ alkyl.

12. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is independently selected from the group consisting of hydrogen, C_{1.8} alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, OR²⁰, aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, methyl, and halo; and

R²⁰ is selected from H, and C₁₋₆;

13. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is independently selected from the group consisting of hydrogen, C₁₋₈ alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with 1 substituent selected from the group consisting of halo, aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are each individually selected from the group consisting of hydrogen, and methyl.

14. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is selected from the group consisting of hydrogen, and C₁₋₈ alkyl that is optionally substituted with 1 substituent selected from the group consisting of aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are each individually selected from the group consisting of hydrogen, and methyl.

15. The compound of claim 6 wherein R¹ is -CH₂OH;

R² is selected from the group consisting of hydrogen, and C_{1.8} alkyl that is optionally substituted with one aryl substituent that is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are each hydrogen.

16. The compound of claim 6 wherein R¹ is -CH₂OH;

WO 00/78778 PCT/US00

 R^2 is selected from the group consisting of hydrogen, and C_{1-6} alkyl that is optionally substituted with aryl that is optionally substituted with alkyl; and

R³ and R⁴ are each hydrogen.

5

10

15

20

25

30

17. The compound of claim 7 wherein R¹ is -CH₂OH;

 R^2 is selected from the group consisting of hydrogen, and C_{1-8} alkyl that is optionally substituted with 1 substituent selected from the group consisting of aryl, CF_3 , and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF_3 and CN; and

R³ and R⁴ are each individually selected from hydrogen, and methyl.

18. The compound of claim 7 wherein R¹ is -CH₂OH;

R² is selected from the group consisting of hydrogen, and C_{1.8} alkyl that is optionally substituted with 1 substituent selected from the group consisting of aryl, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are each hydrogen.

19. The compound of claim 7 wherein R¹ is -CH₂OH;

 R^2 is selected from the group consisting of hydrogen, and C_{1-6} alkyl that is optionally substituted with aryl that is optionally substituted with alkyl; and

R³ and R⁴ are each hydrogen.

20. The compound of claim 8 wherein R' is -CH₂OH;

R² is selected from the group consisting of hydrogen, and C₁₋₆ alkyl;

R³ is selected from the group consisting of hydrogen, C₁₋₆ alkyl, and aryl, wherein the alkyl, and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN; and

 R^4 is selected from the group consisting of hydrogen and $C_{1.6}$ alkyl.

21. The compound of claim 8 wherein R¹ is -CH₂OH;

R² is selected from the group consisting of hydrogen, and methyl;

 R^3 and R^4 are each independently selected from the group consisting of hydrogen, and C_{1-6} alkyl, that is optionally substituted with aryl that is optionally substituted with alkyl; and

R⁴ is selected from hydrogen and methyl.

22. The compound of claim 6 wherein R¹ is -CONHEt;

R² is selected from the group consisting of hydrogen, and C_{1.8} alkyl that is optionally substituted with 1 substituent selected from the group consisting of aryl, CF₃, and CN, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ and CN;

WO 00/78778 PCT/US

and

5

10

15

20

R³ and R⁴ are each individually selected from the group consisting of hydrogen, and methyl.

23. The compound of claim 6 wherein R¹ is -CONHEt;

R² is selected from the group consisting of hydrogen, and C_{1.8} alkyl that is optionally substituted with 1 aryl substitutent of aryl, that is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are each hydrogen.

24. The compound of claim 6 wherein R¹ is -CONHEt;

R² is selected from the group consisting of hydrogen, and C₁₋₆ alkyl that is optionally substituted with aryl that is optionally substituted with alkyl; and

R³ and R⁴ are hydrogen.

25. The compound of claim 7 wherein R¹ is -CONHEt;

R² is selected from the group consisting of hydrogen, and C_{1.8} that is optionally substituted with 1 aryl substituent that is optionally substituted with halo, alkyl, CF₃ and CN; and

R³ and R⁴ are hydrogen.

26. The compound of claim 7 wherein R¹ is -CONHEt;

 R^2 is independently selected from the group consisting of hydrogen, and C_{1-6} alkyl that is optionally substituted with aryl that is optionally substituted with alkyl; and

R³ and R⁴ are each hydrogen.

27. The compound of claim 8 wherein R¹ is -CONHEt; and

R² is selected from hydrogen, and methyl;

R³ and R⁴ are each individually selected from the group consisting of hydrogen, and C₁₋₆ alkyl, wherein the alkyl, is optionally substituted with aryl that is optionally substituted with alkyl; and

R⁴ is selected from hydrogen and methyl.

- 28. The compound of claim 1 wherein the compound is selected from (4S,2R,3R,5R)-2-{6-amino-2-[1-benzylpyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol,
- 30 (4S,2R,3R,5R)-2-[6-amino-2-(1-pentylpyrazol-4-yl)purin-9yl]-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-[6-amino-2-(1-methylpyrazol-4-yl)purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-(methylethyl)pyrazol-4-yl)pyrazol-4-yl)pyrazol-4-

yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-(3phenylpropyl)pyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-(4-t-butylbenzyl)pyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-(6-amino-2-pyrazol-4-ylpurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-pent-4-enylpyrazol-4-v1]purin-9-v1}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-decylpyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol. (4S,2R,3R,5R)-2-{6-amino-2-[1-(cyclohexylmethyl)pyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-(2-phenylethyl)pyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, 10 (4S,2R,3R,5R)-2-{6-amino-2-[1-(3cyclohexylpropyl)pyrazol-4-yl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[1-(2-cyclohexylethyl)pyrazol-4-yl]purin-9-yl}-5-

- 29. A method for stimulating coronary vasodilatation in a mammal by administering to the mammal a therapeutically effective amount of a compound of claim 1 that is sufficient to stress the heart and induce a coronary steal situation for the purposes of imaging the heart.
 - 30. The method of claim 25 wherein the therapeutically effective amount ranges from about 0.01 to about 100 mg/kg weight of the mammal.
 - 31. The method of claim 29 wherein the mammal is a human.

(hydroxymethyl)oxolane-3,4-diol, and mixtures thereof.

15

20

- 32. A pharmaceutical composition of matter comprising the compound of claim 1 and one or more pharmaceutical excipients.
- 33. The pharmaceutical composition of matter of claim 32 wherein the pharmaceutical composition is in the form of a solution.
- 34. The pharmaceutical composition of matter of claim 32 wherein the composition is useful as an anti-inflammatory, in adjunctive therapy with angioplasty, as a platelet aggregation inhibitor, and as an inhibitor of platelet and neutrophil activation.