In the claims:

1. (Original) A compound of Formula I:

$$(R^{4})_{n}$$
 R^{3}
 R^{5}
 R^{1}
 R^{10}
 R^{13}
 R^{10}
 R^{10}
 R^{13}
 R^{14}
 R^{14}
 R^{14}

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

0 or 1; a is b is 0 or 1; 0, 1, or 2; m is n is 0, 1, 2 or 3; 0 or 1; r is 0 or 1; s is 0, 1 or 2; t is 0, 1, or 2; u is

R¹ and R² are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷;

R³ is selected from:

- 1) Hydrogen,
- 2) C₁-C₁₀ alkyl;
- 3) C_1 - C_{10} alkyl-O-Rd,

- 4) C2-C10 alkenyl-O-Rd,
- 5) C2-C₁₀ alkynyl-O-Rd,
- 6) (C1-C6-alkylene)_nC3-C8 cycloalkyl-O-Rd,
- 7) C_1 - C_{10} alkyl- $(C=O)_b$ - NR^cR^c ,
- 8) C2-C10 alkenyl-(C=O)bNRcRc',
- 9) C2-C₁₀ alkynyl-(C=O)_bNR^cR^c',
- 10) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-(C=O)_bNR^cR^c,
- 11) C_1 - C_{10} alkyl- $S(O)_m$ -Rd,
- 12) C_2 - C_{10} alkenyl- $S(O)_m$ - R^d ,
- 13) C_2 - C_{10} alkynyl- $S(O)_m$ - R^d ,
- 14) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-S(O)_m-R^d,

said alkyl, alkenyl, alkynyl and cycloalkyl are optionally substituted with one or more substituents selected from R⁶;

R⁴ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 3) CO₂H,
- 4) halo,
- 5) CN,
- 6) OH,
- 7) ObC1-C6 perfluoroalkyl,
- 8) $O_a(C=O)_bNR^8R^9$,
- 9) $S(O)_m R^a$,
- 10) $S(O)_2NR^8R^9$,
- 11) $-OPO(OH)_2$;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁵ is selected from:

- 1) hydrogen;
- 2) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 3) $(C=O)_aO_baryl$,
- 4) CO₂H,
- 5) halo,
- 6) CN,
- 7) OH,

- 8) ObC1-C6 perfluoroalkyl,
- 9) $O_a(C=O)_bNR^8R^9$,
- $S(O)_m R^a$,
- 11) $S(O)_2NR^8R^9$,
- 12) $-OPO(OH)_2$;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁶ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 3) C2-C₁₀ alkenyl,
- 4) C2-C₁₀ alkynyl,
- 5) (C=O)_aO_b heterocyclyl,
- 6) CO₂H,
- 7) halo,
- 8) CN,
- 9) OH,
- 10) O_bC₁-C₆ perfluoroalkyl,
- 11) $O_a(C=O)_bNR^8R^9$,
- $S(O)_mR^a$,
- 13) $S(O)_2NR^8R^9$,
- 14) oxo,
- 15) CHO,
- 16) $(N=0)R^8R^9$, or
- 17) (C=O)_aO_bC₃-C₈ cycloalkyl,
- 18) $-OPO(OH)_2$;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,

- 8) (C2-C₁₀)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^{a}$,
- 14) (C0-C6)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H,
- 17) $(C=O)_rN(R^b)_2$,
- 18) $S(O)_mR^a$,
- 19) $S(O)_2N(R^b)_2$, and
- 20) $-OPO(OH)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said

monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R¹⁰ is selected from: H and F;

R¹¹ and R¹² are independently selected from: F and -CH₂F;

R¹³ and R¹⁴ are independently selected from: H and -CH₂F;

R^{ox} is absent or is oxo;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

R^b is independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e 'or S(O)₂R^a, optionally substituted with one, two or three substituents selected from R⁷;

R^cand R^c ' are independently selected from: H, (C₁-C₆)alkyl, aryl, NH₂, OH, OR^a, -(C₁-C₆)alkyl-OH, -(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e ', $S(O)_2R^a$ and -(C₁-C₆)alkyl-N(R^b)₂, wherein the alkyl is optionally substituted with one, two or three substituents selected from R⁷; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

 R^d is selected from: H, (C_1-C_6) alkyl, $-(C_2-C_6)$ alkyl-OH, $-(C_1-C_6)$ alkyl-O- (C_1-C_6) alkyl-N(R^b)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R^7 ;

Re and Re' are independently selected from: H, (C1-C6)alkyl, aryl, heterocyclyl and (C3-C6)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing,

in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R7

2. (Original) The compound according to Claim 1 of Formula II:

$$(R^{4})_{n}$$
 R^{3}
 R^{5}
 R^{1}
 R^{13}
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{14}

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

0 or 1; a is 0 or 1; b is 0, 1, or 2; m is 0, 1, 2 or 3; n is 0 or 1; r is 0 or 1; s is 0 or 1; t is 0 or 1; u is

R¹ and R² are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷;

R³ is selected from:

1) hydrogen;

- 2) C₁-C₁₀ alkyl;
- 3) C₁-C₁₀ alkyl-O-R^d,
- 4) C2-C₁₀ alkenyl-O-Rd,
- 5) C2-C₁₀ alkynyl-O-Rd,
- 6) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-O-R^d,
- 7) C_1-C_{10} alkyl- $(C=O)_b-NR^cR^c$,
- 8) C2-C₁₀ alkenyl-(C=O)_bNR^cR^c,
- 9) C2-C₁₀ alkynyl-(C=O)_bNR^cR^c,
- 10) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-(C=O)_bNR^cR^c,
- 11) C_1 - C_{10} alkyl- $S(O)_m$ - R^d ,
- 12) C_2 - C_{10} alkenyl- $S(O)_m$ -Rd,
- 13) C_2 - C_{10} alkynyl- $S(O)_m$ - R^d ,
- 14) $(C_1-C_6-alkylene)_nC_3-C_8 \text{ cycloalkyl- }S(O)_m-R^d,$

said alkyl, alkenyl, alkynyl and cycloalkyl are optionally substituted with one or more substituents selected from R^6 ;

R⁴ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- $(C=O)_aO_baryl,$
- CO_2H ,
- 4) halo,
- 5) CN,
- 6) OH,
- 7) ObC1-C6 perfluoroalkyl,
- 8) $O_a(C=O)_bNR^8R^9$,
- 9) $S(O)_m R^a$,
- $S(O)_2NR^8R^9$, and
- 11) $-OPO(OH)_2$;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁵ is selected from:

- 1) hydrogen;
- 2) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 3) $(C=O)_aO_baryl$,
- 4) CO₂H,

- 5) halo,
- 6) CN,
- 7) OH,
- 8) ObC1-C6 perfluoroalkyl,
- 9) $O_a(C=O)_bNR^8R^9$,
- 10) $S(O)_m R^a$,
- 11) $S(O)_2NR^8R^9$,

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R6 is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 3) C2-C₁₀ alkenyl,
- 4) C2-C₁₀ alkynyl,
- 5) (C=O)_aO_b heterocyclyl,
- 6) CO₂H,
- 7) halo,
- 8) CN,
- 9) OH,
- 10) ObC1-C6 perfluoroalkyl,
- 11) $O_a(C=O)_bNR^8R^9$,
- 12) $S(O)_m R^a$,
- 13) $S(O)_2NR^8R^9$,
- 14) oxo,
- 15) CHO,
- 16) $(N=0)R^8R^9$, or
- 17) (C=O)_aO_bC₃-C₈ cycloalkyl, and
- 18) $-OPO(OH)_2$;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,

- 6) CN,
- 7) (C_2-C_{10}) alkenyl,
- 8) (C_2-C_{10}) alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^a$,
- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H,
- 17) $C(O)N(R^b)_2$,
- 18) $S(O)_mR^a$,
- 19) $S(O)_2N(R^b)_2$; and
- 20) $-OPO(OH)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing,

in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R7;

R¹¹ and R¹² are independently selected from: F and -CH₂F;

 R^{13} and R^{14} are independently selected from: H and –CH₂F, provided that when t is 1, R^{14} is H; and when u is 1, R^{13} is H;

R^{ox} is absent or is oxo;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

R^b is independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e 'or S(O)₂R^a, optionally substituted with one, two or three substituents selected from R⁷;

R^cand R^c are independently selected from: H, (C₁-C₆)alkyl, aryl, NH₂, OH, OR^a, -(C₁-C₆)alkyl-OH, -(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e, S(O)₂R^a and -(C₁-C₆)alkyl-N(R^b)₂, wherein the alkyl is optionally substituted with one, two or three substituents selected from R⁷; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

Rd is selected from: H, (C1-C6)alkyl, -(C2-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl and -(C1-C6)alkyl-N(R^b)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R7;

Re and Re' are independently selected from: H, (C1-C6)alkyl, aryl, heterocyclyl and (C3-C6)cycloalkyl, optionally substituted with one, two or three substituents selected from R7; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing,

in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

3. (Original) The compound according to Claim 2 of the Formula III:

$$(R^4)_n$$
 R^5
 R^1
 R^2
 R^{14}
 R^{14}

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

a is 0 or 1;
b is 0 or 1;
m is 0, 1, or 2;
n is 0, 1 or 2;
r is 0 or 1;
s is 0 or 1;
t is 0 or 1;

 R^1 and R^2 are independently selected from: H, (C1-C6)alkyl, aryl and (C3-C6)cycloalkyl, optionally substituted with one, two or three substituents selected from R^7 ;

R4 is independently selected from:

- 1) halo,
- 2) OH,

3) O_bC₁-C₆ perfluoroalkyl,

R⁵ is selected from:

- 1) hydrogen,
- 2) halo,
- 3) OH,
- 4) O_bC₁-C₆ perfluoroalkyl,

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) O_r(C₁-C₃)perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C_2-C_{10}) alkenyl,
- 8) (C2-C₁₀)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^{a}$,
- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H, and
- 17) $C(O)N(R^b)_2$,
- 18) $S(O)_mR^a$, and
- 19) $S(O)_2N(R^b)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,

- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R¹² is selected from: F and –CH₂F;

R¹⁴ is selected from: H and -CH₂F, provided that when t is 1, R¹⁴ is H;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

R^b is independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e 'or S(O)₂R^a, optionally substituted with one, two or three substituents selected from R⁷;

R^cand R^c ' are independently selected from: H, (C₁-C₆)alkyl, aryl, NH₂, OH, OR^a, -(C₁-C₆)alkyl-OH, -(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e ', $S(O)_2R^a$ and -(C₁-C₆)alkyl-N(R^b)₂, wherein the alkyl is optionally substituted with one, two or three substituents selected from R⁷; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

Re and Re' are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

4. (Original) The compound according to Claim 3 of the Formula IV:

$$R^4$$
 R^1
 R^2
 R^4
 R^4

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

a is 0 or 1;
b is 0 or 1;
m is 0, 1, or 2;
r is 0 or 1;
s is 0 or 1;

 R^1 and R^2 are independently selected from: H and (C1-C6)alkyl, optionally substituted with one, two or three substituents selected from R^7 ;

R⁴ is independently selected from:

- 1) halo,
- 2) OH,
- 3) O_bC₁-C₆ perfluoroalkyl,

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,
- 8) (C2-C₁₀)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^{a}$,
- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H, and
- 17) $C(O)N(R^b)_2$,
- 18) $S(O)_mR^a$, and
- 19) $S(O)_2N(R^b)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)O_bC₃-C₈ cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,

- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

R^b is independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)Aryl, (C=O)heterocyclyl, (C=O)NR^eR^e or S(O)₂R^a, optionally substituted with one, two or three substituents selected from R⁷;

Rcand Rc ' are independently selected from: H, (C1-C6)alkyl, aryl, NH2, OH, ORa, -(C1-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl, (C=O)OC1-C6 alkyl, (C=O)C1-C6 alkyl, (C=O)Aryl, (C=O)heterocyclyl, (C=O)NReRe', $S(O)_2R^a$ and -(C1-C6)alkyl-N(R^b)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R7; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

Re and Re' are independently selected from: H, (C1-C6)alkyl, aryl, heterocyclyl and (C3-C6)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said

monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

- 5. (Original) A compound selected from:
- (2S)-4-(2,5-difluorophenyl)-N-[(4R,6S)-6-fluoro-1-methylazepan-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide
- (2S)-4-(2,5-difluorophenyl)-N-[(4S,6R)-6-fluoro-1-methylazepan-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide

or a pharmaceutically acceptable salt thereof.

6. (Original) The compound according to Claim 1 which is selected from:

R ₁	R ₂	R_3	R_4	. R ₅
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
N N	CH ₂ OH	Me	F	H
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N N N N N N N N N N N N N N N N N N N	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	Н

R ₁	R_2	R_3	R ₄	R ₅
S	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
OMe	CH ₂ OH	Me	F	H
N	CH ₂ OH	Me	F	Н
NOMe	CH ₂ OH	Me	F	H
Me	Me	Me	F	Н
Me		Me	F	H
Me	∕ OH	Ме	F	Н

R ₁	R ₂	R ₃	R_4	R ₅
Me	NH ₂	Me	F	H
Me	OH	Me	F	Н
Me	∕ NH ₂	Me	F	Н
Me	Ph NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	Ph	Me	F	Н
Me	NH ₂ CHF ₂	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	Н
Ме	OHF ₂	Me	F ·	H

R_1	R_2	R ₃	R_4	R_5
Me	∕ N H	Me	F	Н
Me	NH NH	Me	F	Н
Me	NH NH	Me	F	Н
Me	N O O O O O O O O O O O O O O O O O O O	Me	F	Н
Me	$N \rightarrow NH_2$	Me	F	Н
Me	N N	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	N H	Me	F	Н
Me	NO	Me	F	Н
Me	N H	Me	F	Н
Me	√ S N	Me	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	CN	F	Н
Me	CH ₂ OH		F	H
Ме	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Н
Ме	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_5
 R_7
 R_7
 R_8
 R_8
 R_8
 R_9
 R_1
 R_9

R ₁	R ₂	R ₃	R ₄	R ₅
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
N N	CH ₂ OH	Me	F	H
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N NH	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
S	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
OMe	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
NOMe	CH ₂ OH	Me	F	Н
Me	Me	Me	F	Н
Me		Me	F	Н
Me	∕ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Ме	∕ NH ₂	Me	F	Н
Ме	OH	Me	F	Н
Mẹ	\sim NH ₂	Me	F	Н
Ме	Ph NH ₂	Me	F	Н
Ме	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	\nearrow NH ₂ Ph	Me	F	Н
Me	OHF ₂	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	H
Me	\sim	Me	F	Н

R ₁	R ₂	R_3	R_4	R ₅
Me	N H	Me	F	Н
Me	NH H	Me	F	Н
Me	NH NH	Me	F	Н
Me	N O O O O O O O O O O O O O O O O O O O	Me	F	Н
Me	$N \longrightarrow NH_2$	Me	F	H
Me	N N	Me	F	Н

R_1	R ₂	R ₃	R_4	R ₅
Me	N H	Me	F	Н
Me	NO	Me	F	Н
Me		Me	F	H
Me	√ S N	Me	F	Н
Me	CH ₂ OH		F	· H
Me	CH ₂ OH		F	Н

R ₁	R ₂	R_3	R_4	R ₅
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	CN	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	H
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

R ₁	R ₂	R_3	R_4	R_5
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
N N	CH ₂ OH	Me	F	Н
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
NNNN	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
S	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
OMe	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	H
OME	CH ₂ OH	Me	F	H
Me	Me	Me	F	Н
Me		Me	F	Н
Me	OH	Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	\nearrow NH $_2$ Ph	Me	F	Н
Me	OH	Me	F	Н
Me	NH ₂	Me	F	Н
Me	\nearrow Ph \nearrow NH $_2$	·Me	F	Н
Me	OH	Me	F	Н
Ме	\sim NH ₂	Me	F	Н
Ме	→ NH ₂ Ph	Me	F	H
Me	OHF ₂	Me	F	H
Ме	CHF ₂ NH ₂	Me	F	Н
Ме	OHF ₂	Me	F	Н

R ₁	R_2	R ₃	R ₄	R ₅
Me	∕ N H	Me	F	Н
Me	NH H	Me	F	Н
Me	NH NH	Me	F	H
Me	N O O O O O O O O O O O O O O O O O O O	Me	F	Н
Me	N N N N N N N N N N	Me	F	Н
Me		Me	F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	N H	Me	F	Н
Me	N	Me	F	Н
Me	NH NH	Me	F	Н
Me	S N	Me	F	Н
Me	CH ₂ OH		F	Н
Me	` CH ₂ OH		F	Н

R ₁	R ₂	R_3	R_4	R ₅
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Ме	CH ₂ OH	CN	F	H
Me	CH ₂ OH		F	Н
Ме	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Ĥ.
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Ме	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_5
 R_7
 R_8
 R_8
 R_9
 R_1

R ₁	R ₂	R ₃	R ₄	R ₅
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	H
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	H -

R ₁	R ₂	R ₃	R ₄	R ₅
N N	CH ₂ OH	Me	F	Н
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N N N N N N N N N N N N N N N N N N N	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R_3	R_4	R_5	
S	CH ₂ OH	Me	F	Н	
N	CH ₂ OH	Me	F	H	
OM	le CH ₂ OH	Me	F	Н	
N	CH ₂ OH	Me	F	H	
OM	CH ₂ OH le	Me	F	Н	
- Me	Me	Me	F	Н	
Me		Me	F	Н	
Me	OH	Me	F	Н	

R ₁	R ₂	R ₃	R ₄	R ₅
Me	NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	NH ₂	Me	F	Н
Me	\nearrow Ph \nearrow NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	Ph	Me	F	Н
Me	NH ₂ CHF ₂	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	Н
Me	\sim	Me	F	Н

R ₁	R ₂	R_3	R_4	R ₅
Me	∕ N H	Me	F	Н
Me	H	Me	F	Н
Me	NH NH	Me	F	Н
Me	N O OMe	Me	F	Н
Me	$N \rightarrow NH_2$	Me	·	Н
Me	N N	Me	F	Н

R ₁	R ₂	R ₃	R_4	R ₅
Me	N N N	Me	F	Н
Me	NO	Me	F	Н
Me	NH NH	Me	F	Н
Me	√ S N	Me	F	Н
Me	CH ₂ OH		F	Н
Ме	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH ⁾		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	CN	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н

R ₁	R ₂	R ₃	R ₄	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Н
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

or a pharmaceutically acceptable salt or stereoisomer thereof.

7. (Original) A pharmaceutical composition that is comprised of a compound in accordance with Claim 1 and a pharmaceutically acceptable carrier.

- 8. (Original) A method of treating or preventing cancer in a mammal in need of such treatment that is comprised of administering to said mammal a therapeutically effective amount of a compound of Claim 1.
- 9. (Original) A method of treating cancer or preventing cancer in accordance with Claim 8 wherein the cancer is selected from cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung.
- 10. (Original) A method of treating or preventing cancer in accordance with Claim 8 wherein the cancer is selected from histiocytic lymphoma, lung adenocarcinoma, small cell lung cancers, pancreatic cancer, gioblastomas and breast carcinoma.
 - 11. (Canceled)
 - 12. (Canceled)
 - 13. (Canceled)
 - 14. (Canceled)
 - 15. (Canceled)
 - 16. (Canceled)
 - 17. (Canceled)
 - 18. (Canceled)
 - 19. (Canceled)
- 20. (Original) A method of treating cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with radiation therapy.
- 21. (Original) A method of treating or preventing cancer that comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with a compound selected from:

- 1) an estrogen receptor modulator,
- 2) an androgen receptor modulator,
- 3) a retinoid receptor modulator,
- 4) a cytotoxic/cytostatic agent,
- 5) an antiproliferative agent,
- 6) a prenyl-protein transferase inhibitor,
- 7) an HMG-CoA reductase inhibitor,
- 8) an HIV protease inhibitor,
- 9) a reverse transcriptase inhibitor,
- 10) an angiogenesis inhibitor,
- 11) PPAR-γ agonists,
- 12) PPAR- δ agonists,
- 13) an inhibitor of inherent multidrug resistance,
- 14) an anti-emetic agent,
- 15) an agent useful in the treatment of anemia,
- 16) an agent useful in the treatment of neutropenia,
- 17) an immunologic-enhancing drug,
- 18) an inhibitor of cell proliferation and survival signaling, and
- 19) an agent that interfers with a cell cycle checkpoint.
- 22. (Original) A method of treating cancer that comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with radiation therapy and a compound selected from:
 - 1) an estrogen receptor modulator,
 - 2) an androgen receptor modulator,
 - 3) a retinoid receptor modulator,
 - 4) a cytotoxic/cytostatic agent,
 - 5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
 - 7) an HMG-CoA reductase inhibitor,
 - 8) an HIV protease inhibitor,
 - 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor,
 - 11) PPAR-γ agonists,
 - 12) PPAR- δ agonists,
 - 13) an inhibitor of inherent multidrug resistance,
 - 14) an anti-emetic agent,
 - 15) an agent useful in the treatment of anemia,

- 16) an agent useful in the treatment of neutropenia,
- 17) an immunologic-enhancing drug,
- 18) an inhibitor of cell proliferation and survival signaling, and
- 19) an agent that interfers with a cell cycle checkpoint.
- 23. (Original) A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 and paclitaxel or trastuzumab.
 - 24. (Canceled)
 - 25. (Canceled)
 - 26. (Canceled)
- 27. (Original) A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with a proteosome inhibitor.
- 28. (Original) A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with an aurora kinase inhibitor.
 - 29. (Canceled)
- 30. (Original) A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with a serine/threonine kinase inhibitor.
- 31. (Original) A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with an inhibitor of a mitotic kinesin that is not KSP.
- 32. (Original) A method of modulating mitotic spindle formation which comprises administering a therapeutically effective amount of a compound of Claim 1.
- 33. (Original) A method of inhibiting the mitotic kinesin KSP which comprises administering a therapeutically effective amount of a compound of Claim 1.