Versuchsprotokoll E6

Elektrische Resonanz

7.01.2015

Alexander Schlüter, Josh Wewers, Frederik Edens

Gruppe 15/mi
alx.schlueter@gmail.com
joshw@muenster.de
f_eden01@wwu.de

Inhaltsverzeichnis

1.	Einf	führung	1
	1.1.	Serienresonanzkreis	1
	1.2.	Parallelresonanzkreis	1
2.	Vers	such: Serienresonanzkreis	1
3.	Vers	such: Parallelresonanzkreis	2
	3.1.	$10k\Omega$ Widerstand	2
	3.2.	∞ Widerstand	5
	3.3.	$2k\Omega$ Widerstand	7
	3.4.	Innenwiderstand der Spule	9
4.	Disl	kussion	10
	4.1.	Parallelresonanzkreis	10
Α.	Anh		11
	A.1.	Fehlerrechnung	11
		A.1.1. Stromstärke	
	A.2.	Herleitung	11

1. Einführung

Resonanzkreise werden im allgemeinen als Frequenzfilter genutzt, um das Empfangen von nur speziellen Frequenzen zu ermöglichen.

1.1. Serienresonanzkreis

Der Strom I wird wie folgt berechnet:

$$|I| = \frac{|U|}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
 (1.1)

1.2. Parallelresonanzkreis

2. Versuch: Serienresonanzkreis

Wir überprüfen den aus Gleichung (1.1) erwarteten Zusammenhang, indem wir die obigen Daten mit gnuplot gegen die Funktion I(C) fitten. Wir erhalten:

Parameter	für 500Ω	für 200Ω	für 0Ω
R	$(694 \pm 326)\Omega$	$(385 \pm 283)\Omega$	$(30 \pm 2041)\Omega$
L	$(94,06 \pm 0,53) \mathrm{H}$	$(93,88 \pm 0,24) \mathrm{H}$	$(93,84 \pm 0,16) \mathrm{H}$

Tabelle 1: Fit

Es fällt eine gute Übereinstimmung in den Werten für L auf. Dagegen haben die R-Werte jeweils einen so hohen Fehler, dass sie fast unbrauchbar sind.

Abbildung 1: Fit der Stromstärke in Abhängigkeit des Kehrwertes der Kapazität

Obwohl die Werte direkt gegen den aus der Theorie erwarteten Zusammenhang Gleichung (1.1) gefittet wurden, ist ein großer Unterschied zwischen Fit und Messwerten erkennbar. Der Ort des Maximums wird vom Fit noch recht gut getroffen, jedoch weichen die Höhe des Maximums sowie der Abfall stark ab: Die Messwerte fallen deutlich langsamer als der Fit zu beiden Seiten des Maximums.

3. Versuch: Parallelresonanzkreis

An dem Aufbau 2 wird eine Spannung von $U_{\approx}=\pm 5V$ mit einer Frequenz von $F=(1\pm 0,005)kHz$ angelegt und es wird der Spannungsabfall am 10Ω Widerstand für unterschiedliche Kapazitäten und Widerstände R_p bestimmt. Der Fehler der Kapazität war mit 1% der eingestellten Kapazität gegeben und der Fehler der Spannung ergab sich aus der Genauigkeit des Messgeräts. Die Stromstärke konnte nun nach der Formel $I=\frac{U}{R}$ berechnet werden. Mit der gleichen Formel wurde mit Hilfe der Gauß'sches Fehlerfortpflanzung der Fehler der Stromstärke bestimmt (Siehe Anhang).

Abbildung 2: Aufbau eines Parallelresonanzkreises

3.1. $10k\Omega$ Widerstand

Im folgenden wurde die Werte von C und I im Diagramm aufgetragen.

Dem anscheinend polynomischen Verlaufs nach wurden die Messwerte beider Prozesse zusammen gegen die Funktion $I(C) = a \cdot x^6 + b \cdot x^5 + c \cdot x^4 + d \cdot x^3 + e \cdot x^2 + f \cdot x + g$ mit gnuplot nach dem least-squares-Verfahren gefittet.

Variabel	Wert	Fehler
a	14329,9	±4004
b	-24283,7	± 6033
c	14789,3	±3449
d	-3881,36	±930
e	429,052	$\pm 118, 6$
f	-37,299	$\pm 6,064$
g	6,311	$\pm 0,088$

Tabelle 3: Linearer Fit zu Abbildung 3

Daraus ergibt sich ein Minimum von

$$I_{min} = (0,702 \pm 0,035)mA \Rightarrow I_{min} \cdot \sqrt{2} = (0,993 \pm 0,053)mA$$
 (3.1)

mit $C_{min}=0,285\mu F$ und $C_1=0,257\mu F$ und $C_2=0,314\mu F$ mit jeweils 1% Fehler.

Kapazität C [µF]	Fehler [µF]	Spannung U [mV]	Fehler [mV]	Stromstärke I [mA]	Fehler [mA]
0,000	0,000	62,900	0,100	6,290	0,315
0,050	0,001	52,100	0,100	5,210	0,261
0,100	0,001	41,500	0,100	4,150	0,208
0,147	0,001	31,500	0,100	3,150	0,158
0,150	0,002	30,800	0,100	3,080	0,154
0,180	0,002	24,500	0,100	2,450	0,123
0,210	0,002	18,300	0,100	1,830	0,092
0,240	0,002	12,600	0,100	1,260	0,064
0,253	0,003	10,500	0,100	1,050	0,053
0,270	0,003	8,400	0,100	0,840	0,043
0,289	0,003	7,400	0,100	0,740	0,038
0,300	0,003	7,900	0,100	0,790	0,041
0,321	0,003	10,500	0,100	1,050	0,053
0,330	0,003	12,000	0,100	1,200	0,061
0,360	0,004	17,800	0,100	1,780	0,090
0,390	0,004	24,000	0,100	2,400	0,120
0,420	0,004	30,500	0,100	3,050	0,153
0,425	0,004	31,500	0,100	3,150	0,158
0,450	0,005	37,000	0,100	3,700	0,185
0,500	0,005	47,600	0,100	4,760	0,238
0,900	0,009	132,200	0,100	13,220	0,661

Tabelle 2: Messwerte mit einem $10k\Omega$ Widerstand

Für die Spule lässt sich nun sagen, dass

$$L = \frac{1}{(2\pi f)^2 \cdot C} = 88,88mH \tag{3.2}$$

$$\Delta L = \sqrt{\left(\frac{\Delta f}{2\pi^2 f^3 C}\right)^2 + \left(\frac{\Delta C}{2\pi^2 f^2 C^2}\right)^2} = 1,24mH \tag{3.3}$$

So ergibt sich für die Spule $L = (88, 88 \pm 1, 24)mH$.

Der Verlustwiderstand der Schaltung ergibt sich aus

$$R_1 = \frac{1}{2\pi f(C_2 - C_1)} = 2792,192\Omega \tag{3.4}$$

Abbildung 3: $10k\Omega$ Widerstand

$$\Delta R_1 = \sqrt{\left(\frac{\Delta f}{\pi f^2(C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_2}{\pi f(C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_1}{\pi f(C_2 - C_1)}\right)^2} = 27,82\Omega \quad (3.5)$$

3.2. ∞ Widerstand

Kapazität C [μF]	Fehler [µF]	Spannung U [mV]	Fehler [mV]	Stromstärke I [mA]	Fehler [mA]
0,000	0,000	63,000	0,100	6,300	0,330
0,080	0,001	45,600	0,100	4,560	0,249
0,110	0,001	39,200	0,100	3,920	0,220
0,140	0,001	32,600	0,100	3,260	0,191
0,170	0,002	26,000	0,100	2,600	0,164
0,200	0,002	19,500	0,100	1,950	0,140
0,230	0,002	13,100	0,100	1,310	0,120
$0,\!260$	0,003	7,100	0,100	0,710	0,106
$0,\!269$	0,003	5,600	0,100	$0,\!560$	0,104
$0,\!289$	0,003	4,000	0,100	0,400	0,102
0,305	0,003	5,600	0,100	$0,\!560$	0,104
0,320	0,003	8,300	0,100	0,830	0,108
$0,\!350$	0,004	14,600	0,100	1,460	0,124
0,380	0,004	21,100	0,100	2,110	0,145
0,410	0,004	27,900	0,100	2,790	$0,\!172$
0,440	0,004	34,400	0,100	3,440	0,199
0,470	0,005	41,000	0,100	4,100	0,228
0,500	0,005	47,400	0,100	4,740	$0,\!257$

Tabelle 4: Messwerte mit einem unendlichem Widerstand

Im folgenden wurde die Werte von C und I im Diagramm aufgetragen.

Dem anscheinend polynomischen Verlaufs nach wurden die Messwerte beider Prozesse zusammen gegen die Funktion $I(C) = a \cdot x^6 + b \cdot x^5 + c \cdot x^4 + d \cdot x^3 + e \cdot x^2 + f \cdot x + g$ mit gnuplot nach dem least-squares-Verfahren gefittet.

Variabel	Wert	Fehler
a	27020,7	± 6518
b	-44927,8	± 10090
$^{\mathrm{c}}$	27579,5	± 5963
d	-7512,98	± 1669
e	901,99	$\pm 219, 9$
f	-59,7594	$\pm 11,03$
g	6,309	$\pm 0,122$

Tabelle 5: Linearer Fit zu Abbildung 4

Abbildung 4: $\infty\Omega$ Widerstand

Daraus ergibt sich ein Minimum von

$$I_{min} = (0,580 \pm 0,037) mA \Rightarrow I_{min} \cdot \sqrt{2} = (0,820 \pm 0,047) mA$$
 (3.6)

mit $C_{min}=0,285\mu F$ und $C_1=0,25\mu F$ und $C_2=0,32\mu F$ mit jeweils 1% Fehler.

Für die Spule lässt sich nun sagen, dass

$$L = \frac{1}{(2\pi f)^2 \cdot C} = 88,88mH \tag{3.7}$$

$$\Delta L = \sqrt{\left(\frac{\Delta f}{2\pi^2 f^3 C}\right)^2 + \left(\frac{\Delta C}{2\pi^2 f^2 C^2}\right)^2} = 1,24mH \tag{3.8}$$

So ergibt sich für die Spule $L = (88, 88 \pm 1, 24)mH$.

Der Verlustwiderstand der Schaltung ergibt sich aus

$$R_1 = \frac{1}{2\pi f(C_2 - C_1)} = 2273,642\Omega \tag{3.9}$$

$$\Delta R_1 = \sqrt{\left(\frac{\Delta f}{\pi f^2(C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_2}{\pi f(C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_1}{\pi f(C_2 - C_1)}\right)^2} = 29,00\Omega \quad (3.10)$$

Kapazität C $[\mu F]$	Fehler $[\mu F]$	Spannung U [mV]	Fehler [mV]	Stromstärke I [mA]	Fehler [mA]
0,000	0,000	64,200	0,100	6,420	0,336
0,080	0,001	48,200	0,100	4,820	0,261
0,110	0,001	42,500	0,100	4,250	0,235
0,140	0,001	37,000	0,100	3,700	0,210
0,170	0,002	31,600	0,100	3,160	0,187
0,198	0,002	27,100	0,100	2,710	0,168
0,200	0,002	26,800	0,100	2,680	0,167
0,230	0,002	22,800	0,100	2,280	0,152
0,260	0,003	20,300	0,100	2,030	0,142
0,289	0,003	19,200	0,100	1,920	0,139
0,320	0,003	20,500	0,100	2,050	0,143
$0,\!350$	0,004	23,600	0,100	2,360	0,155
$0,\!375$	0,004	27,100	0,100	2,710	0,168
0,380	0,004	27,800	0,100	2,780	0,171
0,410	0,004	33,000	0,100	3,300	0,193
0,440	0,004	38,400	0,100	3,840	0,216
0,470	0,005	44,200	0,100	4,420	0,243
0,500	0,005	49,800	0,100	4,980	0,268

Tabelle 6: Messwerte mit einem $2k\Omega$ Widerstand

Abbildung 5: $2k\Omega$ Widerstand

3.3. $2k\Omega$ Widerstand

Im folgenden wurde die Werte von C und I im Diagramm aufgetragen.

Dem anscheinend polynomischen Verlaufs nach wurden die Messwerte beider Prozesse zusammen gegen die Funktion $I(C) = a \cdot x^6 + b \cdot x^5 + c \cdot x^4 + d \cdot x^3 + e \cdot x^2 + f \cdot x + g$ mit gnuplot nach dem least-squares-Verfahren gefittet.

Variabel	Wert	Fehler
a	6919,65	$\pm 909, 9$
b	-11829,1	±1414
\mathbf{c}	7273,85	$\pm 838, 5$
d	-1880,89	$\pm 235, 2$
e	220,707	$\pm 30,92$
f	-29,17	$\pm 1,547$
g	6,42	$\pm 0,017$

Tabelle 7: Linearer Fit zu Abbildung 5

Daraus ergibt sich ein Minimum von

$$I_{min} = (1,95 \pm 0,140)mA \Rightarrow I_{min} \cdot \sqrt{2} = (2,7577 \pm 0,160)mA$$
 (3.11)

mit $C_{min}=0,285\mu F$ und $C_1=0,194\mu F$ und $C_2=0,38\mu F$ mit jeweils 1% Fehler.

Für die Spule lässt sich nun sagen, dass

$$L = \frac{1}{(2\pi f)^2 \cdot C} = 88,88mH \tag{3.12}$$

$$\Delta L = \sqrt{\left(\frac{\Delta f}{2\pi^2 f^3 C}\right)^2 + \left(\frac{\Delta C}{2\pi^2 f^2 C^2}\right)^2} = 1,24mH \tag{3.13}$$

So ergibt sich für die Spule $L = (88, 88 \pm 1, 24)mH$.

Der Verlustwiderstand der Schaltung ergibt sich aus

$$R_1 = \frac{1}{2\pi f(C_2 - C_1)} = 855,67\Omega \tag{3.14}$$

$$\Delta R_1 = \sqrt{\left(\frac{\Delta f}{\pi f^2 (C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_2}{\pi f (C_2 - C_1)}\right)^2 + \left(\frac{\Delta C_1}{\pi f (C_2 - C_1)}\right)^2} = 8,56\Omega \quad (3.15)$$

3.4. Innenwiderstand der Spule

Bei der direkten Bestimmung des Innenwiderstands der Spule mit Hilfe des Multimeters ergab sich

$$R_{innen} = (18, 9 \pm 0, 1)\Omega \tag{3.16}$$

Bei der Bestimmung aus den Resonanzkurven nutzt man den Umstand, dass bei $R_p = \infty$ gilt

$$R_i = \frac{(2\pi f)^2 L^2}{R} = 31,186 \tag{3.17}$$

4. Diskussion

4.1. Parallelresonanzkreis

Die Werte für die Induktivität der Spule stimmten bei allen Messungen überein, es gab nur Unterschiede außerhalb des Messgenauigkeit. Die Werte für den Innenwiderstand der Spule hingegen weichen deutlich von einander ab. Dies liegt nicht mehr im Rahmen der Messungenauigkeiten und ist auf eine Erwärmung der Spule oder andere Einflüsse zurück zuführen.

A. Anhang

A.1. Fehlerrechnung

A.1.1. Stromstärke

$$\Delta I = \sqrt{\left(\frac{\Delta U}{R}\right)^2 + \left(\frac{U \cdot 5\% \cdot R}{R^2}\right)^2} \tag{A.1}$$

A.2. Herleitung

$$|I_{min}|\sqrt{2} = \frac{|U|}{R}\sqrt{2} = \sqrt{\frac{1}{R^2} + (\omega C - \frac{1}{\omega L})^2} \cdot |U|$$

$$\Rightarrow \frac{2}{R^2} = \frac{1}{R^2} + (\omega C - \frac{1}{\omega L})^2$$

$$\Rightarrow \frac{1}{R} = \omega_0 C_1 - \frac{1}{\omega_0 L} \text{ oder } \frac{1}{R} = \omega_0 C_2 + \frac{1}{\omega_0 L}$$

$$\Rightarrow \frac{2}{R} = \omega_0 C_1 - \omega_0 C_2$$

$$\iff R = \frac{2}{\omega_0 (C_1 - C_2)}$$