Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики Кафедра прикладной математики

Курсовая работа

по дисциплине «Компьютерные сети»

на тему

Реализация протоколов автоматического запроса повторной передачи Go-Back-N и Selective Repeat

Выполнил студент гр. 5040102/00201 Чепулис М.А.

Преподаватель Баженов А.Н.

Постановка задачи

Требуется разработать систему из двух агентов, способных обмениваться данными друг с другом.

Требования к системе:

Должна моделироваться ненадёжность канала связи: с заданной вероятностью пакеты при передаче должны теряться.

Должна обеспечиваться доставка получателю всех отправленных данных, посредством протоколов автоматического запроса повторной передачи Go-Back-N(GBN) и Selective Repeat(SRP).

Реализация

Система реализована на языке программирования Python. В процессе работы создаются два потока выполнения: отправитель и получатель. Взаимодействия между ними осуществляется с помощью глобальных переменных-массивов, выполняющие роль очереди сообщений.

Программа разделена на следующие составляющие:

sender, роль которого формировать сообщения с данными. **receiver**, задача которого состоит только в том, чтобы получить сообщение и сообщить о факте доставки. **MsgQueue** – данный класс реализует сам канал коммуникации, хранит сообщения между отправкой и получением, а также имитирует их потерю.

Каждый пакет (сообщение) содержит порядковый номер в окне, собственный уникальный номер блока в качестве полезных данных, и хранит состояние (всё хорошо / потеряно).

Для запуска необходимо определить следующие параметры:

- **protocol** (GBN / SRP) протокол связи
- window_size величина скользящего окна в реализуемом протоколе связи
- **timeout** время в секундах, после отправки сообщения, после которого оно будет считаться утерянным (если не пришло подтверждение).
- **loss_probability** Вероятность (0, 1] потери сообщения при передаче.

Исходный код программы доступен по ссылке: https://github.com/MChepulis/CompNetworks-Labs/tree/main/Lab_1

Оценка и сравнение эффективности протоколов

Эффективность протоколов оценивается по двум параметрам: Коэффициенту эффективности $k=\frac{\text{кол-во пакетов для передачи}}{\text{кол-во переданных пакетов}}$

По времени от начала до конца передачи в секундах t.

Для оценки проведём серию экспериментов с различными значениями размера окна $(w, window_size)$ и вероятности потери пакетов $(p, loss_probability)$. Во всех тестах количество передаваемых пакетов равно 100, timeout = 0.2c.

Зависимость от вероятности потери пакета

Таблица 1 Зависимость эффективности протоколов от вероятности потери пакета при w=3

W	Go-Back-N		Selective repeat	
	t	k	t	k
0.0	0.62	1.00	0.42	1.00
0.1	2.69	0.83	1.41	0.87
0.2	4.32	0.74	2.64	0.75
0.3	12.53	0.47	5.48	0.54
0.5	17.48	0.38	8.53	0.42
0.6	28.75	0.27	9.95	0.34
0.7	49.30	0.18	13.81	0.24
0.8	84.44	0.11	28.68	0.15
0.9	176.84	0.06	71.19	0.07

Рисунок 1 Зависимость коэффициента эффективности от вероятности потери пакета при w=3

Pисунок 2 3ависимость времени передачи от вероятности потери пакета при w=3

Зависимость от размера окна

Таблица 2 Зависимость эффективности протоколов от размера окна при p=0.2

W	Go-Back-N		Selective repeat	
	t	k	t	k
2	7.73	0.76	3.03	0.80
3	5.55	0.68	2.63	0.74
4	5.59	0.57	2.12	0.69
5	8.19	0.40	1.68	0.53
6	4.22	0.52	1.41	0.64
7	6.24	0.37	1.39	0.50
8	3.30	0.49	1.18	0.61
9	4.32	0.39	1.15	0.53
10	4.95	0.33	1.13	0.47

Pисунок 3 Зависимость коэффициента эффективности от размера окна при p=0.2

Рисунок 4 Зависимость времени передачи от размера окна при p=0.2

Результаты

По рассмотренным выше зависимостям можно сделать следующие выводы:

- При малых (<0.2) вероятностях потери пакета эффективность протоколов практически не отличается. Далее протокол Go-Back-N всё значительнее проигрывает протоколу Selective repeat
- Зависимость от размера окна менее явная. Можно заметить, что для протокола Selective repeat эффективность улучшается с увеличением окна. Протокол Go-Back-N ведёт себя более хаотично, но общая тенденция аналогична второму протоколу.

Использованная литература

- 1. А.Н. Баженов, Компьютерные сети, курс лекций
- 2. Мануилов Г. Реализация протоколов автоматического запроса повторной передачи Go-Back-N и Selective repeat.