Chapter2 Perfectly-Secret Encryption

本章问题

- 1. perfectly-secret的定义是什么?
- 2. 什么是一次一密OTP, OTP的性质是?
- 3. Perfect secrecy的局限性?

问题答案:

Question 1

Definition 1:

$$Pr[M = m | C = c] = Pr[M = m]$$

Definition 2:

$$Pr[C = c|M = m] = Pr[C = c]$$

Definition 3:

$$Pr[C=c|M=m_1]=Pr[C=c|M=m_0]$$

Definition 4:

定义实验 $PrivK^{eav}_{A,\Pi}$:

- 1. A outputs $m_0, m_1 \in M$;
- 2. $k \leftarrow Gen(\cdot); b \leftarrow \{0,1\}; c \leftarrow Enc_k(m_b);$
- 3. Given c, A outputs $b' \in \{0,1\}$;
- 4. if b=b',output 1, ohterwise 0;

$$Pr[PrivK_{A,\Pi}^{eav}=1]=rac{1}{2}$$

证明定义等价

条件概率相关公式:

1.
$$P(B|A) = \frac{P(AB)}{P(A)}$$

2.
$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)\cdots P(A_n|A_1A_2\cdots A_{n-1})$$

3. (全概率公式)
$$P(A) = \sum_{i=1}^n P(B_i) P(A|B_i)$$

4. (贝叶斯公式)
$$P(B_i|A)=rac{P(AB^i)}{P(A)}=rac{P(B_i)P(A|B_i)}{\sum_i P(B_i)P(A|B_i)}$$

Question 2

Definition

Then OTP is defined as follows:

- Fix an $\ell > 0$, and let $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^{\ell}$.
- The key generation algorithm Gen draws the key k from $\mathcal{K} = \{0,1\}^{\ell}$ uniformly at random.
- Given $k, m \in \{0, 1\}^{\ell}$, the encryption algorithm Enc outputs $c := k \oplus m$.
- Given $k, c \in \{0, 1\}^{\ell}$, the decryption algorithm Dec outputs $m' := k \oplus c$.

Theorem

OTP is perfectly-secret

Question 3

For a perfectly-secret encryption scheme $\Pi = (Gen, Enc, Dec)$ over a message space \mathcal{M} , let \mathcal{K} be its associated key space. Then $|\mathcal{K}| \geq |\mathcal{M}|$.