On Parametric and Non-Parametric Techniques for Modelling Survival in Pancreatic Cancer Trials

Matthew Knowles

School of Health and Related Research, University of Sheffield, United Kingdom

Supervisor: Dr. Kate Ren

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Statistics with Medical Applications

Abstract

An investigation into improving the computational efficiency of Network Meta Analyses is presented.

Acknowledgements

I would like to thank Dr Kate Ren for her invaluable supervision throughout this project. In addition, to my colleagues at OPEN Health who I have learnt so much from, and am continually inspired by.

CONTENTS

1	Intr	roduction	6				
	1.1	Pancreatic Cancer	6				
	1.2	Treatment Landscape	6				
2	Sur	vival Analysis Bakground	7				
	2.1	Background and Survival Functions	7				
	2.2	Regression Models for Survival	7				
		2.2.1 Accelerated Failure Time (AFT) Models	7				
		2.2.2 Proportional Hazards (PH) Models	8				
3	Par	ametric Models for Survival Analysis	9				
	3.1	Model Setup	9				
	3.2	Fitting Models	10				
		3.2.1 Right Censoring	10				
		3.2.2 Interval Censoring	10				
4	Mathematical Background of Fractional Polynomials						
	4.1	Setup and Definitions	11				
	4.2	Fitting Fractional Polynomials to Data	12				
	4.3	Fractional Polynomials for Flexsurv	13				
5	Net	work Meta Analysis	14				
	5.1	Building a Network of Evidence	14				
	5.2	The Foundational Bayesian-NMA Model	14				
	5.3	Generalized Linear Models in NMAs	16				
		5.3.1 Poisson Likelihood with Log Links	16				
	5.4	Network Meta-Analysis of Survival Data					
		5.4.1 Parametric Survival Curves: Single Treatment Effect	16				
6	Sur	vival Analysis of Pancreatic Cancer Trials	17				
	6.1	Trial Data	17				
	6.2	Parametric Models	17				
7	NM	IA of Pancreatic Cancer Trials	23				
	7.1	Data	23				
	7.2	Parametric Models	24				
8	Con	nclusions and Recommendations	25				

\mathbf{A}	Incl	luded Trials	2 9
	A.1	Colucci, 2010	29
		Cunningham, 2009	
		Kindler, 2011	
		Oettle, 2005	
		Rocha Lima, 2004	
В	Sur	vival Distributions Reference	40
	B.1	Parametric Survival Models	40
		B.1.1 Exponential Model	40
		B.1.2 Gamma	
		B.1.3 Generalised Gamma	40
		B.1.4 Gompertz	40
		B.1.5 Log-Logistic	
		B.1.6 Log-Normal	
		B.1.7 Weibull	
	B.2	Selection of Survival Models	
\mathbf{C}	\mathbf{Add}	litional Survival Results	42
	C.1	Parametric Models	42
		C.1.1 OS Models Medians	42
D	The	e PCNMA Package	46
		Survival Functions	46

LIST OF FIGURES

5.1	Visualisation of combining trials into a network of evidence	15
6.1	OS Kaplan-Meier data for Gemcitabine	18
6.2	OS Kaplan-Meier data for comparators	19
6.3	Colucci 2010 Models	20
6.4	Cunningham 2009 Models	20
6.5	Kindler 2011 Models	21
6.6	Oettle 2006 Models	21
6.7	Rocha Lima 2004 Models	22
7.1	Network of evidence	23
A.1	Colucci 2010 KM Curve	30
A.2	Colucci 2010 Cumulative Hazard	31
A.3	Cunningham 2009 KM Curve	32
A.4	Cunningham 2009 Cumulative Hazard	33
	Kinder 2011 KM Curve	34
A.6	Kinder 2011 Cumulative Hazard	35
A.7	Oettle 2005 KM Curve	36
A.8	Oettle 2005 Cumulative Hazard	37
A.9	Rocha Lima 2004 KM Curve	38
A.10	Rocha Lima 2004 Cumulative Hazard	39
D.1	Fitted Models as in Flexsurv	58
	Fitted Models with fit_distribution	

CHAPTER ONE

INTRODUCTION

1.1 Pancreatic Cancer

Pancreatic cancer is the 10^{th} most common cancer in the UK, accounting for 3% of all new cases [Cancer Research UK, 2024]. Pancreatic cancer has a particularly poor prognosis. In 2016-2018, there were 9,558 deaths from 10,452 cases. Pancreatic cancer is hard to detect at early stages, meaning most people who present with symptoms already have advanced-stage pancreatic cancer. Often, patients only notice symptoms when the tumour has spread to surrounding tissues, or metastises to other organs [Kelsen et al., 1997]. The liver is the most common site of pancreatic cancer metastases [Deeb et al., 2015]. Common symptoms of pancreatic cancer include indigestion, stomach or back pain, loss of appeteite and jauncdice [Pancreatic Cancer UK, 2022].

Risk factors of pancreatic cancer include smoking, diabetes, obesity, and high-fat diets. Smoking is the dominant cause, with around 20% of cases being caused by cigarette smoking. In addition, cancers from smokers contain more genetic mutations when compared to cancers from non-smokers [Blackford et al., 2009].

1.2 Treatment Landscape

Gemcitabine (GEM) $(C_9H_{11}F_2N_3O_4)$ is a standard first-line treatment for pancreatic cancer administered intrveneously [for Health and Excellence, 2018]. GEM is also used to treat other types of cancer, including breast cancer, bladder cancer and non-small-cell lung cancer [Wong et al., 2009]. GEM can be administered alone or in combination with another medication.

SURVIVAL ANALYSIS BAKGROUND

2.1 Background and Survival Functions

Given a homogeneous population of individuals, the time of death for each individual is drawn from a continuous random variable T>0 with probability density function f(t) and distribution function $F(t)=\int_0^t f(\tau)d\tau$. Survival analysis is concerned with estimating the distribution T from Time-To-Event (TTE) data. There are two functions central to survival analysis, the survival function and hazard function.

Definition 2.1.1: Survival Function

The **Survival Function** S(t), gives the probability of an individual surviving longer than time t.

$$S(t) = P(T \ge t) = 1 - F(t) = \int_{t}^{\infty} f(\tau)d\tau$$

Definition 2.1.2: Hazard Function

The **Hazard Function** gives the risk of death at time t, given that the individual has survived up to time t.

$$h(t) = -\frac{d}{dt}\log S(t)$$

2.2 Regression Models for Survival

The survival time of patients may be dependent on several explanatory variables such as age, sex, the presence of a genetic mutation, etc. We wish to incorperate these variables into our survival functions.

2.2.1 Accelerated Failure Time (AFT) Models

Let x be a vector of explanatory variables for each individual in a trial. The survival function can be extended to include this,

$$S(t, \mathbf{x}) = \mathbf{S_0}(\mathbf{t}(\mathbf{x})).$$

Here, $S_0(t) = S(t, \mathbf{x} = \mathbf{0})$, i.e the survival function at baseline. We define the density and hazard functions accordingly,

$$f(t, \mathbf{x}) = f_0(t\Psi(\mathbf{x})) (\mathbf{x})$$

$$h(t, \mathbf{x}) = h_0(t\Psi(\mathbf{x})) (\mathbf{x}).$$

This is equivalent to defining a random variable T such that

$$T = T_0/\Psi(\mathbf{x}).$$

Here, T_0 has survivor function S_0 . It is required that $\Psi(\mathbf{x}) \geq \mathbf{0}$ and $\Psi(\mathbf{0}) = \mathbf{1}$ [[NOTE TO MATT: WHY?]], leading to the natural choice

$$\Psi(\mathbf{x}) = \exp(-\beta' \mathbf{x}).$$

We can then write

$$T = T_0/\Psi(\mathbf{x})$$

$$\implies E(T) = E(T_0)/E(e^{-\beta'x})$$

$$= E(T_0)/e^{-\beta'x}$$

$$= E(T_0)e^{\beta'x}$$

In practice, we assume a distribution for T, and estimate parameters using maximum likelihood estimation.

2.2.2 Proportional Hazards (PH) Models

Let h_0 represent the hazard function for an individual at baseline. In addition, let **x** be a vector of explanatory variables. The proportional hazards model, also known as the Cox model [Cox, 1972] is then given by

$$h(t, \mathbf{x}) = \mathbf{e}^{\beta' \mathbf{x}} \mathbf{h_0}(\mathbf{t}) \tag{2.1}$$

Consider the following defintion.

Definition 2.2.1: Semi Parametric Model

A statistical model is a parameterised family of distributions $\{P_{\theta}: \theta \in \Theta\}$. For a parametric model, $\Theta \subseteq \mathbb{R}^k$ for $k \in \mathbb{N}$. Similarly, for a non-parametric model, $\Theta \subseteq V$, where V is some (possibly infinite) dimensional space V. A **Semi-parametric** model is a statistical model with both parametric and non-parametric components. For a semi-parametric model we have $\Theta \subseteq \mathbb{R}^k \times V$.

The Cox model is semi-parametric then β is of finite dimension and $h_0(t)$ is infinite-dimensional and does not need to be specified.

PARAMETRIC MODELS FOR SURVIVAL ANALYSIS

This chapter discusses the parametric models commonly used in Survival Analysis. In particular, the seven parametric models recommended by NICE in TSD [Latimer, 2011]. All parametric model fitting for this project was performed in R using the flexsurv package [Jackson, 2016]. The first section outlines how the flexsurv package works.

3.1 Model Setup

The general model of a flexsurv survival model takes the form

$$f(t|\mu(\mathbf{z}), \alpha(\mathbf{z})).$$
 (3.1)

Equation 3.1 gives the probability density for death at time $t \geq 0$. The mean or location of the distribution is given by $\mu = \alpha_0$. The remaining parameters, $\alpha^1 = (\alpha_1, \dots, \alpha_R)$ are called ancillary parameters.

Chapter 2 discussed AFT and PH models. Under the flexsurv framework, if the hazard function, $h(t) = \frac{f(t)}{S(t)}$, can be factorised as

$$h(t|\alpha, \mu(\mathbf{z})) = \mu(\mathbf{z})\mathbf{h_0}(\mathbf{t}|\alpha).$$

Then we have a PH model. On the other hand, an AFT model would be written as

$$S(t|\mu(\mathbf{z}), \alpha) = \mathbf{S_0}(\mu(\mathbf{z})\mathbf{t}/\alpha).$$

All parameters may depend on \mathbf{z} , a vector of covariates. This is done through the link-transformed linear models

$$g_0(\mu(\mathbf{z})) = \gamma_0 + \beta_0^{\mathbf{T}} \mathbf{z}$$

$$g_r(\alpha_r(\mathbf{z})) = \gamma_r + \beta_\gamma^{\mathbf{T}} \mathbf{z}$$
(3.2)

g is usally chosen to be log() if the parameter is positive, or the identity function if the parameter is unrestricted.

Flexsurv contains several built-in models. Appendix B.1 presents these models.

3.2 Fitting Models

Let t_i , $i \in \{1, ..., n\}$, be a sample of times from n individuals. Define c_i such that

$$c_i = \begin{cases} 1 & \text{if } t_i \text{ is an observed death time} \\ 0 & \text{if } t_i \text{ is censored} \end{cases}.$$

Introduce s_i , which are delayed-entry times. This means for an individual i who is delayed-entry, the survival time is only observed conditionally on individual i having survived up to time s_i . $s_i = 0$ when there is no delayed-entry.

3.2.1 Right Censoring

In the case of right-censoring and nothing else, the likelihood for the parameters $\theta = \{\gamma, \beta\}$ required in Equation 3.2 is given by

$$l(\theta|\mathbf{t}, \mathbf{c}, \mathbf{s}) = \frac{\prod_{i:c_i=1} \mathbf{f}_i(\mathbf{t}_i) \prod_{i:c_i=0} \mathbf{S}_i(\mathbf{t}_i)}{\prod_i \mathbf{S}_i(\mathbf{s}_i)}$$
(3.3)

3.2.2 Interval Censoring

In the case of interval-censoring, where the survival time is censored on (t_i^{\min}, t_i^{\max}) , the likelihood for $\theta = \{\gamma, \beta\}$ is

$$l(\theta|\mathbf{t}^{\min}, \mathbf{t}^{\max}, \mathbf{c}, \mathbf{s}) = \frac{\prod_{i:c_i=1} \mathbf{f}_i(\mathbf{t}_i) \prod_{i:c_i=0} \left(\mathbf{S}_i(\mathbf{t}_i^{\min}) - \mathbf{S}_i(\mathbf{t}_i^{\max}) \right)}{\prod_i \mathbf{S}_i(\mathbf{s}_i)}$$
(3.4)

Maximum Likelihood Estimation is performed in R using the analytic derivatives of Equation 3.3 and/or Equation 3.4.

MATHEMATICAL BACKGROUND OF FRACTIONAL POLYNOMIALS

The seminal paper on fractional polynomials is [Royston and Altman, 1994]. This chapters introduces the mathematical background of Fractional Polynmials.

4.1 Setup and Definitions

For a single covariate x > 0, an initial definition of a fractional polynomial may take the form

$$\phi_m(x,\zeta,\mathbf{p}) = \zeta_0 + \sum_{i=1}^m \mathbf{x}^{(\mathbf{p}_j)}$$

Where $m \in \mathbb{N}$, $\mathbf{p} = (\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_m}) \in \mathbb{R}^{\mathbf{m}}$ with $p_1 < p_2 < \dots < p_m$ and $\zeta = (\zeta_0, \zeta_1, \zeta_2, \dots, \zeta_m) \in \mathbb{R}^{\mathbf{m}+1}$. Note that the $x^{(p_j)}$ term is the Box-Tidwell Transformation

Definition 4.1.1: Box-Tidwell Transformation

The **Box-Tidwell Transformation** for a variable x and power p is given by

$$x^{(p)} = \begin{cases} x^p & \text{if } p \neq 0\\ \log(x) & \text{if } p = 0 \end{cases}$$

Recall, a conventional (real-valued) polynomial of degree m in a variable x is given by

$$f(x) = \sum_{j=0}^{m} a_j x^j = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m.$$

Then it follows that $f(x) = \phi_m(x, \zeta, \mathbf{p})$ with $\zeta = (\mathbf{a_0} = \mathbf{0}, \mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_m})$ and $\mathbf{p} = (\mathbf{1}, \mathbf{2}, \mathbf{3}, \dots \mathbf{m})$. However, the current definition does not account for the situation where two concurrent powers are equal. Before giving the general form of a fractional polynomial, the following function that extends the Box-Tidwell transform must be considered.

Let j = 1, 2, ..., m. Then

$$H_j(x) = \begin{cases} x^{(p_j)} & \text{if } p_j \neq p_{j-1} \\ H_{j-1}(x)\log(x) & \text{if } p_j = p_{j-1} \end{cases}.$$

By default, $H_0(x) = 1 \ \forall \ X$.

Definition 4.1.2: Fractional Polynomial

For arbitrary powers $p_1 \leq p_2 \leq \cdots \leq p_m$ and $p_0 = 0$ a **Fractional Polynomial** is of the form

$$\phi_m(x,\zeta,\mathbf{p}) = \sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{m}} \zeta_{\mathbf{j}} \mathbf{H}_{\mathbf{j}}(\mathbf{x})$$

The following example is chosen given the context of survival analysis.

Example 4.1.1: m = 2 Fractional Polynomial

Consider the set of powers $\mathbf{p} = (-2, -1)$ and let $\zeta = 1$. Then we have

$$\phi(x) = \sum_{j=0}^{2} H_j(x)$$

$$= H_0(x) + H_1(x) + H_2(x)$$

$$= 1 + \frac{1}{x^2} + \frac{1}{x}$$

A sketch of this polynomial can be seen below.

4.2 Fitting Fractional Polynomials to Data

The set of powers **p** for fitting fractional polynomials must be considered. The paper by [Royston and Altman, 1994] presents the set $\{-2, -1, -0.5, 0, 0.5, 1, 2, \dots, \max(3, m)\}$. However, some of these models will not be acceptable in a survival analysis context. This is because of the conditions on any survival function S(t). Firstly S(0) = 1, so if a S(0) is undefined, it is not a valid survival function. Further, a survival must be monotonically decreasing.

Definition 4.2.1: Monotonically Decreasing

Let $f(x) : \mathbb{R}^+ \to \mathbb{R}$ be a differentiable function. f is **monotonically decreasing** over \mathbb{R}^+ if for any $x, y \in \mathbb{R}^+$ with x < y, $f(x) \ge f(y)$. Equivalently, $f'(x) \le 0 \forall x \in \mathbb{R}^+$

Example 4.2.1: Invalid Survival Fractional Polynomial

Let m=2, $\mathbf{p}=(-2,1)$ and $\zeta=1$. Then we have

$$\phi(x) = \sum_{j=0}^{2} H_j(x)$$

$$= H_0(x) + H_1(x) + H_2(x)$$

$$= 1 + \frac{1}{x^2} + x$$

This is clearly undefined at x = 0, But consider the first and second derivatives of this function.

$$\frac{d\phi}{dx} = 1 - 2x^{-3}$$
$$\frac{d^2\phi}{dx^2} = 6x^{-4}$$

There is a local minimum at $x = 2^{1/3}$, which is an inflection point in this case, meaning the curve starts increasing again after this point, which is not allowed in survival analysis, but also, the only real root is at x = -1.4656, which means for x > 0, there is no point at which the function reaches 0, and hense cannot be used to model survival, as not everyone would be able to die.

It would be possible to include 0 by setting the first ζ term to a sufficiently negative value to translate the curve down, but this does not escape the undefined at X = 0 issue.

In order to get around this issue, a survival function that uses a fractional polynomial must be written piecewise.

Definition 4.2.2: Fractional Polynomial Survival Function

Let $t \in \mathbb{R}^+$. For arbitrary powers $p_1 \leq p_2 \leq \ldots \leq p_m$ and p_0 , a Fractional Polynomical Survival Function takes the form

$$S(t) = \begin{cases} 1 & \text{if } t = 0\\ \phi_m(t, \zeta, \mathbf{p}) = \sum_{\mathbf{j} = \mathbf{0}}^{\mathbf{m}} \zeta_{\mathbf{j}} \mathbf{H}_{\mathbf{j}}(\mathbf{t}) & \text{otherwise} \end{cases}$$

4.3 Fractional Polynomials for Flexsurv

NETWORK META ANALYSIS

5.1 Building a Network of Evidence

Consider a set of N two-arm clinical trials. In each trial $i \in 1, ..., N$, the patients are randomised to recieve a treatment A_i , or a placebo P_i . This can be represented as N graphs with two nodes, A_i and P_i , connected by an edge representing the trial comparing A_i and P_i . It is useful at this stage to recall the formal definition of an (undirected) graph.

Definition 5.1.1: Graph

A **Graph** is an ordered triple $G = (V, E, \varphi)$. Where V is a set of nodes, E is a set of edges, and $\varphi : E \to \{\{x,y\}|x,y \in V \text{ such that } x \neq y\}$ is an **incidence function** mapping every edge to a pair of verticesa.

We can construct N graphs under the formal definition. Namely, for trial T_i , we have $G_i = (V_i, E_i, \varphi_i)$ where $V_i = \{A_i, P_i\}$, $E_i = \{T_i\}$ and $\varphi_i : E_i \to \{\{x, y\} | x, y \in V_i \text{ such that } x \neq y\}$. For construction of the graphs, we can drop the subscript on P_i , and take the placebo as a reference treatment. This is done under the assumption that the effect of placebo is constant across all trials. This is a strong assumption, and implications of this are discussed later. Under this assumption however, each V_i now contains a common element, P.

Let

$$V_{trts} = \bigcup_{i=1}^{N} V_{i}$$

$$E_{trials} = \bigcup_{i=1}^{N} E_{i}.$$

The incidence function becomes

$$\varphi: E_{trials} \to \{\{x,y\} | x, y \in V_{trts} \text{ such that } x = P\}.$$

Then the ordered triple $G = (V_{trts}, E_{trials}, \varphi)$ is the network of evidence given by these two arm trials that forms the basis of a network meta analysis. This process expands to trials that compare more than two treatments by weighting the edges by the number of trials making that particular comparison.

5.2 The Foundational Bayesian-NMA Model

The development of the core NMA model in this section follows that of [Dias et al., 2018].

Figure 5.1: Visualisation of combining trials into a network of evidence

In this dissertation, trials with only two treatment arms were considered, we therefore develop the NMA model in this context. We also consider only random effects models, as it relies on less assumptions about the underlying population in the trials. The literature review performed for this dissertation was not particularly systematic, and therefore random effects models are more appropriate. Consider N two-arm trials. In a random effects model, each study $i \in M$ provides an estimate of the study-specific treatment effects δ_i , 12 between treatment 1 and 2 in study i. The $\delta_{i,12}$ are subject to the exchangeability assumption, which means the trial-specific treatment effects for each $i \in M$ come from a commond distribution, known as the random effects distribution. A common choice for this distribution is the normal distribution, such that

$$\delta_{i,12} \sim N(d_{12}, \sigma_{12}^2) \tag{5.1}$$

The d_{12} term in Equation 5.1 is the pooled effect of t reatment 2 compared with 1. This is the primary parameter of interest in an NMA. It follows that by setting σ_{12}^2 in Equation 5.1 gives the fixed effects model. Under a Bayesian framework, priors are required for the parameters that will be estimated. Since the data obtained from a study or trial should give the most weight to the estimated treatment effects, non-informative priors are used. The pooled treatment effect is assumed to be able to take any value in \mathbb{R} , so we may use $d_{12} \sim N(0, 100)$ as a non-informative prior. For the σ_{12}^2 term in Equation 5.1 has the constraint $\sigma_{12} > 0$, so a uniform distribution with a lower bound at 0 is an appropriate prior.

Consider Figure 5.1. The above model is equivalent to making five comparisons. One for each A_n with the reference P ($n=1,\ldots,5$). But suppose a comparison of A_2 with A_3 was to be made. In the general framework, we want to compare treatments 1 and 3 from the evidence in the N trials. Assume that the $\delta_{i,13}$ $N(d_{13},\sigma_{13}^2)$ are exchangable. By transitivity, we obtain $\delta_{i,23} = \delta_{i,13} - \delta_{i,12} \sim N(d_{23},\sigma_{23}^2) \implies d_{23} = d_{13} - d_{12}$ [Lu and Ades, 2009]. Further to this result, we have $\sigma_{23}^2 = \sigma_{12}^2 + sigma_{13}^2 - 2\rho_{23}\sigma_{12}\sigma_{13}$, where ρ_{23} is the correlation between the relative effects of treatment 3 compared to treatment 1 and of treatment 2 compared to treatment 1. If the patient populations are similar in the trials being considered, it is reasonable to assume that $\sigma_{12}^2 = \sigma_{13}^2 = \ldots = \sigma^2$.

Remark 5.2.1: Notation

As not all studies compare the same treatments, some notation must be introduced to distinguish between arm k of trial i and the treatment compared in that arm. The trial-specific treatment effects of the treatment in arm k, relative to the treatment in arm 1 of trial i are $\delta_{ik} \sim N(d_{t_{i1}}, t_{ik}, \sigma^2)$.

Under this notiation, a trial comparing treatment 1 and 2 we have $d_{12} = d_{t_{i1},t_{ik}}$ and for a trial comparing treatment 2 and treatment 3, $d_{23} = d_{t_{i1},t_{ik}}$. In an NMA, only the d_1k are estimated, and are given the non-informative priort $d_{1k} \sim N(0,100^2)$.

5.3 Generalized Linear Models in NMAs

A meta-analysis model can be written in the form of a Generalised Linear Model as follows,

$$g(\gamma) = \theta_{ik}$$

$$= \mu_i + \delta_{ik}. \tag{5.2}$$

In the above, g is an appropriately chosen link function, θ_{ik} represents a continuous measure of the treatment effect in arm k of trial i. Further, μ_i and δ_{ik} are the trial-specific effects of the treatment in arm 1 of trial i and the trial-specific treatment effects of the treatment in arm k relative to the treatment of arm k in trial i. A more concrete definition of δ_{ik} is

$$\delta_{ik} \sim \begin{cases} 0 & \text{if } k = 1\\ N(d_{1,t_{ik}} - d_{1,t_{i1}}, \sigma^2) & \text{if } k > 1 \end{cases}.$$

Where d_{12} is the relative effect of treatment 2 compared with treatment 1 over some scale. Equation 5.2 is the random effects model. The fixed effect model is given by the similar result

$$g(\gamma) = \theta_{ik} \tag{5.3}$$

$$= \mu_i + d_{1,t_{ik}} - d_{1,t_{i1}} \tag{5.4}$$

The remained of this subsection contains information about models relevant to survival outcomes.

5.3.1 Poisson Likelihood with Log Links

Let r_{ik} be the number of events occurring during the trial followup period.

5.4 Network Meta-Analysis of Survival Data

5.4.1 Parametric Survival Curves: Single Treatment Effect

We assume a parametric survival model across the studies in the network, and obtain an acceleration factor or constant hazard ratio to incorperate in an NMA.

Example 5.4.1: Weibull NMA

ssume the survival times in study *i* follow a Weibull model, and that the treatment effect acts only on the scale parameter of this model. Define the treatment-specific hazard function $h_{ik}(u) = \lambda_{ik}\varphi_i u^{\varphi_i-1}$ and implement the NMA assuming the treatment effects on $\alpha_{0,ik} = \log(\lambda_{ik}\varphi_i)$, which gives the model

$$\log(h_{ik}(u)) = \alpha_{0,ik} + \alpha_{1,i}\log(u) \tag{5.5}$$

$$\alpha_{0,ik} = \mu_0, i + \delta_{0,ik} \tag{5.6}$$

$$\delta_{0,ik} = N(d_{0,1t_{ik}} - d_{0,1t_{i1}}, \sigma^2)$$
(5.7)

. In the above, $\alpha_{1,i}=(\varphi_i-1)$. The α terms describe the hazard over time, and the pooled results are log-HRs.

SURVIVAL ANALYSIS OF PANCREATIC CANCER TRIALS

6.1 Trial Data

Figure 6.1 and Figure 6.2 present the OS KM curves for GEM and the comparators, respectively. In addition, Table 6.1 presents the median OS estimates by study for GEM and the comparator treatment. In all studies except Oettle, GEM had a higher median OS. Note that more information about each included trial is given in Section A.

	Treatment = GEM			Treatment = Comparator			
	Median Survival	L95% CI	U95%CI	Median Survival	L95% CI	U95%CI	
Colucci	8.5157	7.412	10.2119	7.2514	6.3844	8.7499	
Cunningham	6.0892	5.4991	7.34	7.1984	6.3016	7.9773	
Kindler	9.9477	7.2714	11.1849	9.0388	7.0821	10.3769	
Oettle	6.1769	5.5159	7.2945	6.4053	5.4246	6.9519	
Rocha Lima	6.7424	5.6812	7.9758	6.3989	4.8554	7.6321	

Table 6.1: Median OS data (in months) from each of the studies, along with lower and upper 95% confidence intervals

6.2 Parametric Models

For each study, the standard seven parametric models were fit to each treatment arm, up to a maximum time of five years. Figure 6.3 to Figure 6.7 present the fitted models for each study. The median estimates given for each treatment arm of the studies are presenteed in Table C.5 Table C.5.

Figure 6.1: OS Kaplan-Meier data for Gencitabine

Figure 6.2: OS Kaplan-Meier data for comparators

Figure 6.3: Colucci 2010 Models

Figure 6.4: Cunningham 2009 Models

Figure 6.5: Kindler 2011 Models

Figure 6.6: Oettle 2006 Models

Figure 6.7: Rocha Lima 2004 Models

NMA OF PANCREATIC CANCER TRIALS

7.1 Data

The NMA is performed on median survival estimates given by the best fitting survival model to each treatment arm in each study. We use the medians given by the survival estimates as opposed to the trial data to account for heterogeneity between the trials.

The multinma package requires a standard error for each median value, which we do not have by default. We calculate it from the 95% confidence interval by

$$SE = \frac{(U_{95} - L_{95})}{2 * qnorm(0.975) * \sqrt{n}}.$$

Where n is the number of patients in the trial, and $qnorm(0.975) \approx 1.96$ is the Z-value for a 95% confidence interval for a N(0,1) distribution. L_{95} and U_{95} give the values of the upper and lwoer 95% CI values for a given model. Figure 7.1 presents the network of evidence used in the NMA.

Figure 7.1: Network of evidence

Distribution	Treatment	Median	L95	U95	Study	n	SE
Gompertz	GEM	8.5075	7.0869	9.9992	0.9992 Colucci		14.8588
Generalised Gamma	GEM-CIS	7.3009	6.2111	8.5350	Colucci	400	11.8569
Log-Logistic	GEM	5.9954	5.4301	6.6452	Cunningham	533	7.1564
Generalised Gamma	GEM-CAP	7.2947	6.5520	8.1846	Cunningham	533	9.6151
Exponential	GEM	10.1538	8.5389	12.2304	Kindler	632	23.6750
Exponential	GEM-AXI	9.8440	8.0901	11.9280	Kindler	632	24.6133
Generalised Gamma	GEM	6.1225	5.4602	6.9002	Oettle	565	8.7319
Gamma	GEM-PEM	6.5691	5.9814	7.2575	Oettle	565	7.7381
Gamma	GEM	6.7650	5.9708	7.6333	Rocha Lima	360	8.0471
Weibull	GEM-IRI	6.2512	5.3539	7.3042	Rocha Lima	360	9.4399

Table 7.1: Input data for the parametric NMA

7.2 Parametric Models

Table 7.1 presents the input data used for the parametric NMA.

CHAPTER **EIGHT**

CONCLUSIONS AND RECOMMENDATIONS

What have we found?

BIBLIOGRAPHY

- [Blackford et al., 2009] Blackford, A., Parmigiani, G., Kensler, T. W., Wolfgang, C., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Eshleman, J. R., et al. (2009). Genetic mutations associated with cigarette smoking in pancreatic cancer. *Cancer research*, 69(8):3681–3688.
- [Cancer Research UK, 2024] Cancer Research UK (2024). Pancreatic cancer statistics.
- [Colucci et al., 2010] Colucci, G., Labianca, R., Di Costanzo, F., Gebbia, V., Cartenì, G., Massidda, B., Dapretto, E., Manzione, L., Piazza, E., Sannicolo, M., et al. (2010). Randomized phase iii trial of gemcitabine plus cisplatin compared with single-agent gemcitabine as first-line treatment of patients with advanced pancreatic cancer: the gip-1 study.
- [Cox, 1972] Cox, D. R. (1972). Regression models and life-tables. *Journal of the Royal Statistical Society: Series B (Methodological)*, 34(2):187–202.
- [Cunningham et al., 2009] Cunningham, D., Chau, I., Stocken, D. D., Valle, J. W., Smith, D., Steward, W., Harper, P. G., Dunn, J., Tudur-Smith, C., West, J., et al. (2009). Phase iii randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. *Journal of Clinical Oncology*, 27(33):5513–5518.
- [Deeb et al., 2015] Deeb, A., Haque, S.-U., and Olowokure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? *Journal of gastrointestinal oncology*, 6(3):E48.
- [Dias et al., 2018] Dias, S., Ades, A. E., Welton, N. J., Jansen, J. P., and Sutton, A. J. (2018). Network meta-analysis for decision-making. John Wiley & Sons.
- [for Health and Excellence, 2018] for Health, N. I. and Excellence, C. (2018). Pancreatic cancer in adults: diagnosis and mangement.
- [Jackson, 2016] Jackson, C. H. (2016). flexsurv: a platform for parametric survival modeling in r. *Journal of statistical software*, 70.
- [Kelsen et al., 1997] Kelsen, D. P., Portenoy, R., Thaler, H., Tao, Y., and Brennan, M. (1997). Pain as a predictor of outcome in patients with operable pancreatic carcinoma. *Surgery*, 122(1):53–59.
- [Kindler et al., 2011] Kindler, H. L., Ioka, T., Richel, D. J., Bennouna, J., Létourneau, R., Okusaka, T., Funakoshi, A., Furuse, J., Park, Y. S., Ohkawa, S., et al. (2011). Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. *The lancet oncology*, 12(3):256–262.
- [Latimer, 2011] Latimer, N. (2011). Nice dsu technical support document 14: survival analysis for economic evaluations alongside clinical trials-extrapolation with patient-level data. Report by the Decision Support Unit.

- [Lu and Ades, 2009] Lu, G. and Ades, A. (2009). Modeling between-trial variance structure in mixed treatment comparisons. *Biostatistics*, 10(4):792–805.
- [Oettle et al., 2005] Oettle, H., Richards, D., Ramanathan, R., Van Laethem, J.-L., Peeters, M., Fuchs, M., Zimmermann, A., John, W., Von Hoff, D., Arning, M., et al. (2005). A phase iii trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. *Annals of Oncology*, 16(10):1639–1645.
- [Pancreatic Cancer UK, 2022] Pancreatic Cancer UK (2022). Signs and symptoms of pancreatic cancer.
- [Rocha Lima et al., 2004] Rocha Lima, C. M., Green, M. R., Rotche, R., Miller Jr, W. H., Jeffrey, G. M., Cisar, L. A., Morganti, A., Orlando, N., Gruia, G., and Miller, L. L. (2004). Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. *Journal of Clinical Oncology*, 22(18):3776–3783.
- [Royston and Altman, 1994] Royston, P. and Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 43(3):429–453.
- [Wickham and Henry, 2023] Wickham, H. and Henry, L. (2023). purr: Functional Programming Tools. R package version 1.0.2, https://github.com/tidyverse/purr.
- [Wong et al., 2009] Wong, A., Soo, R. A., Yong, W.-P., and Innocenti, F. (2009). Clinical pharmacology and pharmacogenetics of gemcitabine. *Drug metabolism reviews*, 41(2):77–88.

Appendices

INCLUDED TRIALS

This appendix presents the trial data for each trial included in this study. It should be noted that due to having to digitise the survival data, as opposed to having IPD, there may be some slight discrepencies between the numbers presented here, and in the original publications. Table A.1 presents the hazard ratios

Study	Comparator	HR	L95	U95	Time (Months)
Colucci	GEM+CIS	1.0746	0.8729	1.3227	36
Cunningham	GEM+CAP	0.8249	0.6928	0.9820	27
Kindler	GEM+AXI	1.0606	0.8132	1.3835	13
Oettle	GEM+PEM	0.9826	0.8186	1.1796	24
RochaLima	GEM+IRI	1.0365	0.8305	1.2936	30

Table A.1: Hazard ratios for each study

A.1 Colucci, 2010

The Colucci et. al study [Colucci et al., 2010] compared Gemcitabine plus Cistplatin (GEM+CIS) with Gemcitabine (GEM) in a total of 400 patients.

Figure A.1: Colucci $2010~\mathrm{KM}$ Curve

Figure A.2: Colucci 2010 Cumulative Hazard

Figure A.3: Cunningham 2009 KM Curve

A.2 Cunningham, 2009

The Cunningham et. al study [Cunningham et al., 2009] compared Gemcitabine plus Capecitabine (GEM+CAP) with Gemcitabine (GEM) in a total of 533 patients.

Figure A.4: Cunningham 2009 Cumulative Hazard

Figure A.5: Kinder 2011 KM Curve

A.3 Kindler, 2011

The Cunningham et. al study [Kindler et al., 2011] compared Gemcitabine plus Axitinib (GEM+AXI) with Gemcitabine (GEM) in a total of 632 patients.

Figure A.6: Kinder 2011 Cumulative Hazard

Figure A.7: Oettle 2005 KM Curve

A.4 Oettle, 2005

The Cunningham et. al study [Oettle et al., 2005] compared Gemcitabine plus Pemetrexed (GEM+PEM) with Gemcitabine (GEM) in a total of 565 patients.

Figure A.8: Oettle 2005 Cumulative Hazard

Figure A.9: Rocha Lima 2004 KM Curve

A.5 Rocha Lima, 2004

The Cunningham et. al study [Rocha Lima et al., 2004] compared Gemcitabine plus Irinotecan (GEM+IRI) with Gemcitabine (GEM) in a total of 360 patients.

Figure A.10: Rocha Lima 2004 Cumulative Hazard

SURVIVAL DISTRIBUTIONS REFERENCE

This appendix outlines the mathematical definitions of the parametric and non-parametric survival models used in this project. In addition, some information on model selection is given.

B.1 Parametric Survival Models

B.1.1 Exponential Model

The survival function for the exponential model is given by

$$S(t|\lambda) = \exp(-\lambda t)$$

for $\lambda > 0$.

B.1.2 Gamma

The survival function for the gamma model is give by

$$S(t|a,\mu) = 1 - \int_0^t \frac{x^{a-1} \exp(-x/\mu)}{\mu^a \Gamma(a)} dx$$

for $\mu > 0, a > 0$.

B.1.3 Generalised Gamma

The survival function for the generalised gamma model, by default, uses the Prentice parameterisation [REFERENCE]. The survival function is given by

$$S(t|\mu,\sigma,Q) = \begin{cases} S_G(\frac{\exp(Qw)}{Q^2}|\frac{1}{Q^2},1) & \text{if } Q > 0\\ S_L(t|\mu,\sigma) & \text{if } Q = 0\\ 1 - S_G(\frac{\exp(Qw)}{Q^2}|\frac{1}{Q^2},1) & \text{if } Q < 0 \end{cases}$$

Where S_G, S_L are the survival functions gor the gamma and log-normal distributions respectively. In addition, $w = \frac{\log(t) - \mu}{\sigma}$. Where $\sigma > 0$.

B.1.4 Gompertz

The survival function for the Gompertz model is given by

$$S(t|a,b) = \exp(-(b/a)\exp(at) - 1)$$

for b > 0.

Remark B.1.1: Gompertz special case

Strictly speaking, a < 0 is permitted, however, this causes the survival function to take the form $S(t|a,b) = \exp(b/a\exp(at) - 1)$. We therefore have, using the fact that $\lim_{t\to\infty} \exp(at) = 0$,

$$S(t) = \exp(b/a \exp(at) - 1)$$

$$\lim_{t \to \infty} S(t) = \lim_{t \to \infty} \exp(b/a \exp(at) - 1)$$

$$\lim_{t \to \infty} S(t) = \exp(-1).$$

Therefore, S(t) tending to a non-zero probability as $t \to \infty$ is clinically inplausible.

B.1.5 Log-Logistic

The survival function for the log-logistic model is given by

$$S(t|a,b) = \frac{1}{1 + (t/b)^a}$$

for a > 0, b > 0.

B.1.6 Log-Normal

The survival function for the log-normal model is given by

$$S(t|\mu,\sigma) = 1 - \int_0^t \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2\sigma^2}\right) dx$$

for $\sigma > 0$.

B.1.7 Weibull

The AFT Weibull parameterisation is used in this project. The survival function for the AFT Weibull is given by

$$S(t|\mu, a) = \exp(-(t/\mu)^a)$$

B.2 Selection of Survival Models

Selecting the survival model for a given study is done for the GEM arm only, as this is the reference treatment. Akiakie's Information Criterion (AIC) [REFERENCE] is used.

Definition B.2.1: Akaikie's Information Criterion

For a given set of models, the **Akaike's Information Criterion (AIC)** score is given by

$$AIC = 2k - 2\log(\hat{L}).$$

Where k is the number of parameters in the model, and \hat{L} be the maximised value of the likelihood function for the model.

When selecting models based on AIC score, the lowest scoring model is considered the best fitting model. The intrinsic value of the scores is irrelevant, only their values relative to one another. Models with an AIC score of ≤ 2 of the best fitting model are also considered well-fitting models.

APPENDIX C

ADDITIONAL SURVIVAL RESULTS

C.1 Parametric Models

C.1.1 OS Models Medians

Distribution	Treatment	Median	L95	U95
Observed	GEM	8.5157	7.412	10.2119
	GEM-CIS	7.2514	6.3844	8.7499
Exponential	GEM	8.1234	6.9493	9.4466
	GEM-CIS	7.6616	6.6008	8.9021
Gamma	GEM	8.7724	7.6247	10.003
	GEM-CIS	8.0314	6.9656	9.1877
Generalised Gamma	GEM	8.2727	7.1396	9.6683
	GEM-CIS	7.3009	6.2946	8.5681
Gompertz	GEM	8.5075	7.2161	9.8798
	GEM-CIS	7.3675	6.1209	8.7140
Log-logistic	GEM	8.0213	6.9556	9.2219
	GEM-CIS	7.1097	6.1058	8.2559
Log-normal	GEM	7.6805	6.6084	8.8155
	GEM-CIS	6.8680	5.9323	8.0454
Weibull	GEM	8.8475	7.7009	10.2251
	GEM-CIS	7.9688	6.7904	9.3044

Table C.1: Median OS given by parametric models in the Colucci study

Distribution	Treatment	Median	L95	U95
Observed	GEM	6.0892	5.4991	7.3400
	GEM-CAP	7.1984	6.3016	7.9773
Exponential	GEM	5.6085	4.9624	6.3901
	GEM-CAP	6.6375	5.8911	7.5465
Gamma	GEM	6.4666	5.8425	7.1250
	GEM-CAP	7.4944	6.7405	8.3269
Generalised Gamma	GEM	6.1874	5.5036	7.0080
	GEM-CAP	7.2947	6.4937	8.1853
Gompertz	GEM	6.4492	5.6250	7.2386
	GEM-CAP	7.3936	6.4646	8.3530
Log-logistic	GEM	5.9954	5.3559	6.6976
	GEM-CAP	7.0087	6.2950	7.7824
Log-normal	GEM	5.7668	5.1624	6.4003
	GEM-CAP	6.6665	5.9897	7.5201
Weibull	GEM	6.6091	5.9635	7.3700
	GEM-CAP	7.6326	6.8715	8.5703

Table C.2: Median OS given by parametric models in the Cunningham study

Distribution	Treatment	Median	L95	U95
Observed	GEM	9.9477	7.2714	11.185
	GEM-AXI	9.0388	7.0821	10.377
Exponential	GEM	10.1538	8.3617	12.2346
	GEM-AXI	9.8440	8.0866	11.9079
Gamma	GEM	8.2747	7.3351	9.3104
	GEM-AXI	8.1444	7.0687	9.2525
Generalised Gamma	GEM	8.4180	7.3651	10.0551
	GEM-AXI	8.3027	7.2284	9.8471
Gompertz	GEM	8.4702	7.6250	9.3354
	GEM-AXI	8.3951	7.5094	9.4282
Log-Logistic	GEM	8.3027	7.2623	9.5072
	GEM-AXI	8.1373	7.1005	9.3542
Log-normal	GEM	8.5320	7.3888	9.8280
	GEM-AXI	8.4620	7.2940	9.8507
Weibull	GEM	8.2853	7.3825	9.3263
	GEM-AXI	8.1662	7.2363	9.2119

Table C.3: Median OS given by parametric models in the Kindler study

Distribution	Treatment	Median	L95	U95
Obserced	GEM	6.1769	5.5159	7.2945
	GEM-PEM	6.4053	5.4246	6.9519
Exponential	GEM	5.8920	5.1904	6.6821
	GEM-PEM	5.9741	5.2446	6.7782
Gamma	GEM	6.4966	5.8781	7.1511
	GEM-PEM	6.5691	5.9370	7.2294
Generalised Gamma	GEM	6.1225	5.4698	6.8491
	GEM-PEM	6.2246	5.5628	7.0092
Gompertz	GEM	6.5459	5.7562	7.3281
	GEM-PEM	6.6121	5.7187	7.3890
Log-Logistic	GEM	6.0681	5.4335	6.7508
	GEM-PEM	6.1365	5.4998	6.9122
Log-normal	GEM	5.9424	5.3308	6.6071
	GEM-PEM	6.0029	5.3325	6.6544
Weibull	GEM	6.6223	5.9917	7.3652
	GEM-PEM	6.6945	6.0326	7.4350

Table C.4: Median OS given by parametric models in the Oettle study

Distribution	Treatment	Median	L95	U95
Observed	GEM	6.7424	5.6812	7.9758
	GEM-IRI	6.3989	4.8554	7.6321
Exponential	GEM	6.0863	5.2315	7.0918
	GEM-IRI	5.8213	5.0071	6.8319
Gamma	GEM	6.7650	5.9739	7.6337
	GEM-IRI	6.1703	5.3646	7.1195
Generalised Gamma	GEM	6.4347	5.5706	7.4502
	GEM-IRI	6.1123	5.1773	7.3023
Gompertz	GEM	6.8572	5.8092	7.9001
	GEM-IRI	6.2212	5.1709	7.3794
Log-Logistic	GEM	6.2578	5.4026	7.2107
	GEM-IRI	5.7680	4.9301	6.8834
Log-normal	GEM	6.0975	5.2549	7.0205
	GEM-IRI	5.3922	4.6066	6.4738
Weibull	GEM	6.8985	6.0681	7.9502
	GEM-IRI	6.2512	5.3474	7.2818

Table C.5: Median OS given by parametric models in the Rocha Lima study

THE PCNMA PACKAGE

To facilitiate the analysis conducted in this project, an R package was constructed. Performing the analysis in this way ensures easy reproducibility for further analysis in the future. The package is roughly split into two parts: survival code, and NMA code.

D.1 Survival Functions

The central function in the package for survival analysis is the *fit_distribution* function. This function is a wrapper around the *flexsurvreg* function from flexsurv. It is designed to take a list object containing the names of distributions and the associated argument to pass that distribution to flexsurv. For example,

```
distributions <- list("Weibull" = "weibull")</pre>
```

The reason for defining the distributions in this way is because the default Flexsurv arguments are somewhat untitely. For example, the exponential distribution is passed as just "exp". The beauty of the fit_distribution function is that several distributions can be passed with a tidier name, which flexsurvreg never sees. This purely aesthetic change can be seen by comparing Figure D.1, and Figure D.2.

Any default flexsurv distribution will work with fit_distribution, it just needs a suitable name in the list object. The fit_distribution function itself doesn't actually fit any distributions. There is a sub-function, .fit_distribution which takes a single distribution as an argument, and some data on which to fit that distribution. This function takes the "weibull" element of the above list and passes it to flexsurv. The fit_distribution function maps .fit_distribution across the list of distributions, using the purrr::map function [Wickham and Henry, 2023]. After some data cleaning, the object that is returned by fit_distribution is given the class "fitted_distribution".

Several S3 methods exist for objects of class "fitted_distribution", these are plot.fitted_distribution, summary.fitted_distribution, and coef.fitted_distribution. These functions allow for plotting fitted models, accessing information such as AIC scores, and accessing the model coefficients respectively.

Package 'PancSurv'

March 9, 2024

Type Package

Title Parametric and Non-Parametric Survival Models in Pancreatic Cancer Trials
Version 0.1
Date 2023-06-27
Author Matthew Knowles
Maintainer Matthew Knowles <mattknowles314@gmail.com></mattknowles314@gmail.com>
Description This package contains the functions and data for my MSc Thesis, concerning the use of parametric and non-parametric models for survival in pancreatic cancer
License MIT + file LICENSE
RoxygenNote 7.2.3
Encoding UTF-8
R topics documented:
.fit_distribution boxTid coef.fitted_distribution
fit_distribution
fit_model

 2 boxTid

 $.fit_distribution$

Fit a single survival distribution

Description

This function is a wrapper on 'flexsurv::flexsurvreg', and fits a single distribution to the specified data.

Usage

```
.fit_distribution(distribution, data, strata = "Treatment")
```

Arguments

 ${\tt distribution} \qquad A \ single \ distribution$

data An IPD dataset

strata Strata for the RHS of the 'survival::Surv' function

Value

A [flexsurv::flexsurvreg] object

boxTid

Box-Tidwell Transformation

Description

Box-Tidwell Transformation

Usage

boxTid(x, p)

Arguments

x A real value

p The p-value to raise x to

coef.fitted_distribution 3

```
coef.fitted_distribution
```

Coefficients of fitted models

Description

Coefficients of fitted models

Usage

```
## S3 method for class 'fitted_distribution'
coef(fit, studies, ...)
```

Arguments

fit A [PCNMA::fitted_distribution] object
... for S3 consistency

fit_distribution

Fit survival distributions to a dataset.

Description

This function extends the 'PCNMA:::.fit_distribution' function, by fitting a given set of distributions to a TTE dataset.

Usage

```
fit_distribution(distributions, data, strata = "Treatment", maxT = 60)
```

Arguments

distributions A list of distributions

data An IPD dataset

strata Stratification variables

maxT maximum time to calculate fitted values at

Value

A dataframe with fitted values

4 gen_network

fit_model

Run an NMA

Description

Run an NMA

Usage

```
fit_model(network, L, link = "log", iter, seed)
```

Arguments

network A [multinma::nma_data] object

L Character string specifying a likelihood function

link Character string specifying a link function (defaults to "log")

... Other parameters to pass to [multinma::nma]

gen_network

Generate a network of evidence

Description

Generate a network of evidence

Usage

```
gen_network(net_data, ref)
```

Arguments

net_data A dataset created by [PCNMA::gen_network_data]

ref A character reference treatment

Value

A [mutlinma::nma_data] object

gen_network_data 5

gen_network_data

Generate network data

Description

Generate network data

Usage

```
gen_network_data(data, ref)
```

Arguments

data A date extraction dataset

ref A character reference treatment

Value

A dataframe

Н

H-function for FPs

Description

H-function for FPs

Usage

```
H(x, P, zeta, j)
```

Arguments

x A real value

P A vector of powers

zeta A vector of zeta values

j The index

6 km_estimates

hr

Hazard Ratio

Description

Hazard Ratio

Usage

```
hr(TTE, strata = "1")
```

Arguments

TTE A TTE dataframe strata A strata variable

 $km_estimates$

Generate KM estimates

Description

Generate Kaplan-Meier estimates from a TTE object. Uses 'ggsurvfit::survfit2' to generate KM estimates. Only requires strata to be specified.

Usage

```
km_estimates(TTE, strata = "1")
```

Arguments

TTE

A TTE dataframe

Value

A [PCNMA::km_obj] object

phi 7

phi

Fractional Polynomial Function

Description

Fractional Polynomial Function

Usage

```
phi(x, m, P, zeta)
```

Arguments

x A real valye

m The degree of the polynomial

P A vector of powers

zeta A vector of zeta values

plot.fitted_distribution

Plot a fitted distributions object

Description

Creates a plot for a result of 'PCNMA::fit_distribution'.

Usage

```
## S3 method for class 'fitted_distribution'
plot(fit, CI = FALSE, km = FALSE, alpha = 0.5, linewidth = 1, ...)
```

Arguments

fit A 'PCNMA::fitted_distribution' object

CI Include a confidence interval? km Add the original KM curve?

... For S3 consistency

8 plot_aic

plot.km_obj

Plot a KM curve

Description

Plot a KM curve

Usage

```
## $3 method for class 'km_obj'
plot(
   fit,
   type = "survival",
   risk.table = TRUE,
   break.x.by = 5,
   xMax = 40,
   risktable.height = 0.3,
   ...
)
```

Arguments

fit A 'PCNMA::km_obj' object

type See 'ggsurvfit::ggsurvfit' for details.

risk.table Add numbers at risk?

break.x.by A numeric value for splitting x axis

xMax The maximum time value to plot

risktable.height

The proportion of the figure to be taken up by the risk table

For S3 consistency

Value

A plotted km curve

plot_aic

Plot AIC Bar plot

Description

Plot AIC Bar plot

Usage

```
plot_aic(model)
```

plot_network 9

Arguments

model A [PCNMA::fitted_distribution] object

Description

Plot a network of evidence

Usage

```
plot_network(network, ...)
```

Arguments

network A network dataset

save_nma_summary Write model summary to xlsx

Description

Write model summary to xlsx

Usage

```
save_nma_summary(nma, PARAMCD, effects, model_type)
```

Arguments

nma A [mutinma::stan_data] object

PARAMCD one of OS or PFS

model_type one of parametric or fp

effect type

10 summary.km_obj

```
summary.fitted\_distribution
```

Summary of a set of fitted models

Description

Summary of a set of fitted models

Usage

```
## S3 method for class 'fitted_distribution'
summary(
   fit,
   AIC = FALSE,
   median = FALSE,
   strata = c("Colucci", "Cunningham", "Oettle", "Kindler", "RochaLima")
)
```

Arguments

fit

A 'PCNMA::fitted_distributions' object.

summary.km_obj

Summarise KM data

Description

Summarise KM data

Usage

```
## S3 method for class 'km_obj'
summary(fit, ...)
```

Arguments

fit

A 'PCNMA::km_obj' object

Value

A summary table of the KM data

Index

```
boxTid, 2
{\tt coef.fitted\_distribution, 3}
fit\_distribution, 3
fit_{model}, 4
gen_network, 4
gen_network_data, 5
H, 5
hr, 6
\text{km\_estimates}, \textcolor{red}{6}
\verb|plot.fitted_distribution|, 7
\verb"plot.km_obj, 8"
\verb"plot_aic, 8"
plot_network, 9
save_nma_summary, 9
\verb|summary.fitted_distribution|, 10
\verb|summary.km_obj|, \\ 10
```


Figure D.1: Fitted Models as in Flexsurv

Figure D.2: Fitted Models with $fit_distribution$