

Feladatok felosztása

- 1.2D objektum detektálás
- 2.3D objektum detektálás
- 3. Szemantikus szegmentálás
- 4. Út detektálás

2D objektum detektálás-hálozat választása

Pretrained network!

2D objektum detektálás- detektáláshálozat választása

Small network! 25 epoch

2D objektum detektálás- Validálás ($IOU \ge 0.5$)

Model summary: 213 layers, 7023610 parameters, 0 gradients, 15.8 GFLOPs

Class	Images	Labels	Р	R	mAP@.5	mAP@.5:.95:	100% 4/4 [00:06<00:00,	1.70s/it]
all	198	922	0.901	0.754	0.82	0.488		
Car	198	740	0.876	0.834	0.876	0.577		
Pedestrian	198	182	0.925	0.674	0.764	0.399		

Adatbázis fejlesztése!

Pedestrian

Nem mindent talál meg!

False objektumok!

False objektumok!

Éjszaka nem lát tökéletesen!

3D objektum detektálás

3D objektum detektálás-probléma

 $IOU \approx 2,34\%$

3D objektum detektálás-megoldás

 $IOU \approx 78,94\%$

3D objektum detektálás Koordináta transzformálás

2D képkoordináta

3D világkoordináta

3D objektum detektálás-tesztelés

3D objektum detektálás-tesztelés

Átlag : $IOU \approx 49,11\%$

Lassú!

3D objektum detektálás-tesztelés

Gyorsítás:

- > nem minden pixelt transzformálok
- > 2x gyorsabb
- \Rightarrow 15 16 ms

Átlag :*IOU* ≈ 49,01%

Szematikus szegmentálás-adatbázis elkészítés

Albumentations

1000->25000

Szematikus szegmentálás-hálozat választás

- **▶** U-NET
- Pretrained net
- +1 konvolúciós réteg-mélységi kép

Szematikus szegmentálás Értékelés-továbbfejlesztési lehetőségek!

Input Image

True Mask

Predicted Mask

Input Image

True Mask

Predicted Mask

Szematikus szegmentálás Értékelés-továbbfejlesztési lehetőségek!

Input Image

Input Image

True Mask

True Mask

Predicted Mask

Predicted Mask

Út szegmentáció-RANSAC

2D képkoordináta

3D világkoordináta

Random pontok

Út szegmentáció-RANSAC

ax + by + cz + d = 0

Út szegmentáció-RANSAC

Orientáció vizsgálat

Síkhoz való tartozás erősségének vizsgálata

Legjobb sík

Út szegmentáció Értékelés-továbbfejlesztési lehetőségek!

Út szegmentáció Értékelés-továbbfejlesztési lehetőségek!

Átlag :*IOU* ≈ 91,6%

Idő:t $\approx 34ms$

Út szegmentáció Értékelés-továbbfejlesztési lehetőségek!

- Korábbi adatok alapján útbecslés
- RGB kép felhasználása

Köszönjük a figyelmet!