ВМСиС

Лекция 3 Транзисторная логика, сумматоры

Проводники и диэлектрики

Электрический ток - это направленное движение носителей заряда

• Проводники проводят электрический ток

• Диэлектрики не проводят

Проводники (conductors)

Проводником является вещество содержащее свободные носители заряда

По типу носителей заряда проводники можно разделить на две группы:

- Проводники с электронной проводимостью металлы
- Проводники с ионной проводимостью электролиты

Диэлектрики (insulators)

Диэлектриком является вещество не проводящее или очень слабо проводящее электрический ток

- Полимеры
- Газы
- Минеральные масла и т.д.

Полупроводники (semiconductors)

Полупроводником является вещество изменяющее свою проводимость в зависимости от наличия примесей и воздействий внешней среды

Свойства полупроводников:

- Кристаллическая структура
- Ширина запрещенной зоны составляет 0.3 10 эВ
- Энергия связи электронов 1-2 эВ

Монокристаллический кремний

Выращивание кристалла

Монокристаллический кремний

Кремниевая подложка (silicon wafer)

Легирование полупроводника (doping)

Легирование - процесс внесения примеси в вещество для получения особых эффектов

При внесении примеси в кристаллическую структуру кремния, они образовывают связи:

- с получением свободных электронов n-type (negative)
- или дырок p-type (positive)

Ионная имплантация

Каким элементом легировать?

Легируем элементом с дополнительным электроном

N (negative) -тип — электронная проводимость

Легируем элементом с отсутствующим электроном P(positive)-тип — дырочная проводимость p-type material

Соединим два типа полупроводника **р-п переход**

p-type semiconductor region

The combining of electrons and holes depletes the holes in the p-region and the electrons in the n-region near the junction.

Диод — элемент содержащий один p-n переход

Обратное включение диода

Прямое включение диода

Соединим два диода — n-p-n переход

Биполярный транзистор

Подключение напряжения между коллектором и эмиттером

Подключение двух источников питания:

- 1. Низкой мощности между базой и эмиттером VBE
- 2. Высокой мощности между коллектором и эмиттером VCE

Логические элементы

Логический элемент – это схема, имеющая один или несколько входов и один выход. Каждому состоянию сигнала на входе соответствует определенный сигнал на выходе.

Элемент «HE» (NOT) - Инвертор

Элемент «НЕ» (NOT) - Инвертор

Элемент «HE» (NOT) - Инвертор

Элемент «И» (AND) - Конъюнктор

Элемент «И» (AND) - Конъюнктор

Элемент «И» (AND) - Конъюнктор

Элемент «ИЛИ» (OR) - Дизъюнктор

Элемент «ИЛИ» (OR) - Дизъюнктор

Элемент «ИЛИ» (OR) - Дизъюнктор

Элемент «И-HE» (NAND)

Элемент «И-HE» (NAND)

Элемент «ИЛИ-НЕ» (NOR)

Элемент «ИЛИ-НЕ» (NOR)

Элемент «Исключающее ИЛИ» (XOR)

Элемент «Исключающее ИЛИ» (XOR)

Двоичные сумматоры

Двоичный сумматор - основной элемент арифметико-логического устройства любой вычислительной машины. Современные АЛУ содержат сотни тысяч этих элементов

Одноразрядный ДС

X	Y	Out
0	0	0
Q	1	1
1	1	

Одноразрядный ДС с переносом - полусумматор

Α	В	ន	PO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Полный одноразрядный ДС

ΡI	Α	В	S	PO
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	0 1 1 0 1 0 0 1	0 0 0 1 0 1 1

Многоразрядный ДС

Вычитание чисел

Вычитание чисел в АЛУ заменяется сложением с отрицательным числом представленным в дополнительном коде

Для приведения к виду в дополнительном коде необходимо:

- 1. Инвертировать все биты числа
- 2. Прибавить единицу к результату
- 3. Получается число в дополнительном коде

Вычитатель

