Algebra zbiorów

Zbiór jest pojęciem pierwotnym, czyli pojęciem którego nie definiujemy. Podobnie pojęciem pierwotnym jest punkt.

Oznaczenia:

a∈A - element a należy do zbioru A

a ∉ A - element a nie należy do zbioru A

A ⊆ B - A zawiera się w B

2^A - zbiór wszystkich podzbiorów zbioru A

 $2^A = \{B: B \subseteq A\}$

Jeżeli zbiór A jest n-elementowy ma 2ⁿ podzbiorów

Podstawowe zbiory liczbowe

N - liczby naturalne (z zerem)

 \mathbb{N}_k liczby naturalne większe bądź równe k

Z - liczby całkowite

Q - liczby wymierne

R - liczby rzeczywiste

C - liczby zespolone

Zbiór możemy określić:

1. wymieniając jego elementy

Np. A= $\{a_1, a_2, ..., a_n\}$,

2. podając własność, jaką spełniają elementy zbioru i tylko one

Np. B={n ∈ N : $n \le 20$ }

Zbiorem **skończonym** nazywamy zbiór mający dokładnie n elementów, gdzie n jest liczbą naturalną lub zerem. Zbiór pusty zaliczamy więc również do zbiorów skończonych.

Zbiory **nieskończone** zawierają nieskończoną ilość elementów, np. zbiór liczb parzystych.

Zbiory X i Y nazywamy **równolicznymi**, jeśli istnieje bijekcja $f: X \rightarrow Y$.

Dla zbiorów równolicznych X i Y stosujemy oznaczenie $X \sim Y$.

Zbiory skończone są równoliczne ⇔ mają tyle samo elementów.

Każdy zbiór A, który jest równej mocy ze zbiorem liczb naturalnych, nazywamy **przeliczalnym**. Jeżeli więc A jest zbiorem przeliczalnym, to jest równoliczny ze zbiorem liczb naturalnych.

Moc zbioru przeliczalnego oznaczamy $\aleph 0$ – **alef zero** (\aleph – pierwsza litera alfabetu hebrajskiego).

Zbiór nazywamy **co najwyżej przeliczalnym**, jeśli jest skończony lub przeliczalny.

Zbiór nazywamy **nieprzeliczalnym**, jeśli nie jest zbiorem co najwyżej przeliczalnym.

Zbiór A jest nieprzeliczalny ⇔ nie można wszystkich elementów zbioru A ustawić w ciąg. Elementów zbioru nieprzeliczalnego nie da się ponumerować.

Przykład: Zbiór liczb rzeczywistych z przedziału (0, 1) jest nieprzeliczalny.

Uwaga: Moc zbioru R nazywamy continuum i oznaczamy gotycką literą c.

Zachodzi c $\neq 80$, ponieważ R $\sim N$.

Twierdzenie Cantora:

Zbiór liczb rzeczywistych R jest wyższej mocy niż zbiór liczb naturalnych N, co zapisujemy |N| < |R| lub $\aleph 0 < 2^{\aleph 0} = c$

Równość zbiorów

Zbiory są równe, gdy mają dokładnie te same elementy

$$A = B \Leftrightarrow [A \subset B \land B \subset A]$$

Suma zbiorów A i B

Jest to zbiór tych wszystkich elementów, które należą do zbioru A lub do zbioru B.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Iloczyn zbiorów A i B

Jest to zbiór tych wszystkich elementów, które należą do zbioru A i do zbioru B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

Różnica zbiorów A i B

Jest to zbiór tych wszystkich elementów, które należą do zbioru A i nie należą do zbioru B.

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

Dopełnienie zbioru A do zbioru X (A')

Jest to zbiór tych wszystkich elementów, które należą do zbioru X i nie należą do zbioru A.

$$A' = \{x : x \in X \land x \notin A\}$$

Para uporządkowana

Dane są zbiory X i Y . Parę uporządkowaną o poprzedniku $x \in X$ i następniku $y \in Y$ oznaczamy symbolem (x, y).

Przyjmujemy, że dwie pary uporządkowane (x_1, y_1) i (x_2, y_2) są równe wtedy i tylko wtedy, gdy $x_1 = x_2$ i $y_1 = y_2$.

Uogólnieniem pojęcia pary uporządkowanej jest n-ka uporządkowana (x_1, x_2, \ldots, x_n) .

Iloczyn kartezjański zbiorów A i B

Jest to zbiór wszystkich par uporządkowanych (x,y), gdzie x jest elementem zbioru A i y jest elementem zbioru B.

$$AxB = \{(x, y) : x \in A \land y \in B\}$$

Przykład

Iloczyn kartezjański zbiorów $X=\{1,2,3\}$ i $Y=\{4,7\}$ zawiera 6 par uporządkowanych: $X\times Y=\{(1,4),(1,7),(2,4),(2,7),(3,4),(3,7)\}$.

Można tworzyć iloczyn kartezjański zbioru ze sobą, tzn. X×X.

Prawa działań na zbiorach

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup A = A$$

$$A \cap A = A$$

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Prawa De Morgana

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

Różnica symetryczna

Różnicą symetryczną zbiorów X i Y nazywamy zbiór:

$$X \div Y = (X \setminus Y) \cup (Y \setminus X).$$

Dla dowolnych zbiorów X i Y spełniona jest następująca równość:

$$X \div Y = (X \cup Y) \setminus (X \cap Y).$$

Dla dowolnych zbiorów X, Y i Z zachodzą następujące własności:

- (1) $X \div Y = Y \div X$,
- (2) $X \div (Y \div Z) = (X \div Y) \div Z$,
- (3) $X \div \emptyset = X$, (4) $X \div X = \emptyset$.