

Classificazione dei bosoni elettrodeboli con una rete neurale al Large Hadron Collider

7 Novembre 2024

Candidato:

Jacopo Lancione

Relatore:

Prof. Emanuele Roberto Nocera

Sommario

- Introduzione
 - I HC
 - Machine Learning
- Dataset
 - Decadimenti dei bosoni
 - Preprocessing
- Reti Neurali
 - Architettura e principi
 - Risultati dell'allenamento

Large Hadron Collider

3/13

L'anello di accelerazione + grande del cern (foto del logo), parliamo del CMS da cui arrivano i miei dati, in cui si producono particelle in abbondanza,

(foto del cern e dl cms)

Del CMS mi interessa giusto introdurre il fatto che ci siano dei calorimetri perché alcuni loro parametri sono tra le feature Si produce un enorme mole di dati e per trattarli si utilizzano anche tecniche di machine learning (e così passo alla prox slide) E posso accennare molto rapidamente al Nobel di quest'anno

Machine Learning

In questa slide devo far passare il concetto di labeled e unlabeled data (posso anche metterle come item) e la separazione del dataset in train test e validation (per il caso supervised)

Unsupervised Learning

Supervised Learning

- Clustering
- Riduzione dimensionale

- Classificazione
- Riconoscimento di immagini e testo

Qua dicendo che il mio progetto ruota attorno ad un problema di classificazione passo alla prox slide

Machine Learning

In questa slide devo far passare il concetto di labeled e unlabeled data (posso anche metterle come item) e la separazione del dataset in train test e validation (per il caso supervised)

Unsupervised Learning

Supervised Learning

- Clustering
- Riduzione dimensionale

- CLASSIFICAZIONE
- Riconoscimento di immagini e testo

Qua dicendo che il mio progetto ruota attorno ad un problema di classificazione passo alla prox slide

Il Progetto di tesi

Che sia chiaro dove si colloca il mio progetto: affrontare un problema di classificazione binaria (logistic regression), nell'ambito della Fisica delle alte energie

Immagine classica del modello std e 1 di 1 rete neurale giusto per dire rapidamente il Cosa e il Come

il mio obiettivo: allenare 1 rete che distingua al meglio tra i 2 canali di decadimento

II Dataset

Decadimenti di Z e W

7/13

Diciamo subito qlche dettaglio in + sul dataset (e magari mettiamolo anche a fondo slide, il riferimento a dove ho scaricato i dati) qua posso mettere i diagrammi di Feynman dei decadimenti, giusto per mettere qualcosa sotto gli occhi al pubblico Elencare le features ie la cinematica di interesse e anche le variabili lasciate da parte in riferimento al rivelatore

Preprocessing

Racconto di come ho trattato i dati: la storia del chi2 (vogliamo dirla? nn ne conosco i dettagli purtroppo), la astione dgli outlier Qua mostriamo sicuramente i pairplot che sono la cosa più indicativa, magari anche i boxplot? -> in questa maniera escono + slides (e qua posso sprecarmi con il logaritmo e lo questione del'approccio scartato con le sigma)

Raccontiamo la storia di correlazioni evidenti che permetterebbero una facile classificazione, nel caso + semplice attraverso 1 appl lineare

I concetti da far passare sono 2: è meglio è avere 1 dataset uniforme, quindi scaliamo tutto e ci sbarazziamo degli outlier, evitare di introdurre ridondanze (ie guardare in faccia i dati con pairplot)

9/13

Reti Neurali

L'architettura

Qua bisogna introdurre i parametri su cui ho agito: numero di layer, nodi, attivazione, algoritmo di ottimizzazione (questo nella slide successiva)

E devo spiegare come funziona la questione dei parametri (pesi e bias) e dove si introduce la non linearità (attivazione) Questa slide la organizzerei come un elenco .ntato a sx e una bella immagine con cui io riesca a spiegare tutto

Loss function Algoritmi di ottimizzazione

L'idea di 1 loss function da minimizzare (come se fosse un'energia), qsta nn è semplice da spiegare visivamente, di questa metterei proprio la formula così la commento un attimo

Algoritmo (sarebbe carino accennare al learning rate e al momento e all'adattività degli algoritmi)

Immagini di allenamenti significativi, magari anche in cui si veda l'overfitting

Risultati

E qua ci va una carrellata di rock curves che può tranquillamente occupare + slides, quali voglio scegliere come significative? Con algoritmi diversi e mostrando bene il test point

Conclusioni

- Le reti neurali si prestano molto bene a compiti di particle identification
- Sono degli strumenti molto flessibili e quindi il mio progetto è facilmente generalizzabile ad altre necessità/misure
- Ho identificato una classe di modelli equivalenti

studi futuri: provare a combinare i dataset e allenare una rete su quelli per distinguere i bosoni uno dall'altro

Conclusioni

- Le reti neurali si prestano molto bene a compiti di particle identification
- Sono degli strumenti molto flessibili e quindi il mio progetto è facilmente generalizzabile ad altre necessità/misure
- · Ho identificato una classe di modelli equivalenti

studi futuri: provare a combinare i dataset e allenare una rete su quelli per distinguere i bosoni uno dall'altro

Grazie a tutti!