

社会人のためのデータサイエンス演習

第2週:課題の補講 Excel分析演習

講師名:菅 由紀子

講義内容

補講

● 課題の補講 Excel分析演習

Microsoft® Office の他のバージョンや他の分析ツールを利用している場合は、ヘルプやインターネットなどで各自で調査し、該当機能に置き換えて参照してください。

[※]Microsoft®, Microsoft® Office Excel® は、米国 Microsoft Corporation の、米国およびその他の国における登録商標または商標です。

[※]本資料は、Microsoft Corporation と提携しているものではなく、また、Microsoft Corporationが許諾、後援、その他の承認をするものではありません。

[※]本資料の本文では、©、®、™などの表記は割愛いたします。

[※]本資料ではデータ分析ツールとして Microsoft® Office Excel® 2019 を利用しています。

第2週のまとめ

Analysisの具体的手法

分布 / 比較 / 傾向

KGIとそれに関連する要因の関係を分析する

時間

時系列

分析ツールの有効化

Excelの分析ツールとは

- ✓ エクセルのアドイン機能の一つ
- ✓ 関数などを使用せずに簡単なパラメータの 入力のみでデータ分析の実行が可能。
- ✔ 初心者でも分析の実行が簡単に行える

分析ツールを有効化すると データのメニュー内に 「データ分析」が表示される

細設定

分析ツールの有効化

手順①

Excelのメニューから[ファイル]→[オプション]
→ [アドイン] と進み、
[管理]ボックスから[Excelアドイン]を選択して
[設定]ボタンを押下

手順②

[分析ツール]にチェックを入れて、[OK]を押すと 分析ツールアドインを有効化となる。

④[設定]を押す

基本統計量とは

データの基本的な特徴を記述したり要約するために必要な指標。 位置を表す値、ばらつきを表す値、分布の形状を表す値などさまざまな特徴を持つ。

代表値について(動画: 2-3 1変数の状況の把握②(代表値の活用)より)

位置を示す代表値

• 平均值

• 中央値

• 最頻値

ばらつきを示す代表 値

•標準偏差

分布の形を示す代表 値 • 尖度

• 歪度

平均値 分布の位置や重心の状況を表す値

中央値 分布をデータの全データサンプルを下位半分

と上位半分に分ける値

最頻値 最も多い度数(頻度)を示す値

標準偏差 分布の平均値の周りのばらつき度合いを表す値

尖度 ピークへの集中度合いを表す指標。

金度 分布の左右への非対称性を表す代表値 3 によいほど カナヤヤ のハケマ オステ

〇に近いほど左右対称の分布であることを示す。

あるグループの男性の身長を測ったデータがあります。 データの特徴を把握するために、基本統計量を算出してみましょう。

身長	(cm)
	183
w _o	167
43	175
43	164
16	174
*	170
	179
	172
	171
	166
	175
	172
	174
<u></u>	170

手順① データ分析ツールを起動

①[データ]をクリック

②[データ分析]をクリック

手順② ダイアログが表示されたら、 [基本統計量]を選択

手順③ [入力範囲] に基本統計量を算出する データ範囲であるセルA1~A15を選択し、 出力オプションを設定

③[基本統計量]を選択

4) 算出結果が出力される

	Α	В	С
1	身長		
2			
3	平均	172.285714	
4	標準誤差	1.34421255	
5	中央値(メジ	172	
6	最頻値(モー	175	
7	標準偏差	5.02958282	
8	分散	25.2967033	
9	尖度	0.45209596	
10	歪度	0.41742602	
11	範囲	19	
12	最小	164	
13	最大	183	
14	合計	2412	
15	標本数	14	
16			
17			

【補足】

基本統計量は、関数で算出することも可能 (以下の数式を、値を出したいセルに入力)

平均 = AVERAGE(データ範囲)

中央値 = MEDIAN(データ範囲)

最頻値 = MODE (データ範囲)

標準偏差 = STDEV(データ範囲)

分散 = VAR(データ範囲)

尖度 = KURT(データ範囲)

歪度 = SKEW(データ範囲)

最小 = MIN(データ範囲)

最大 = MAX(データ範囲)

合計 = SUM(データ範囲)

標本数 = COUNT(データ範囲)

- 平均、中央、最頻値 ⇒概ね170cm台前半に集中
- 標準偏差 ⇒仮に正規分布であった場合、167~177cmの間に68.3%のサンプルが入る

正規分布とは

ばらつきを伴う事象の分布として、自然界などで最もよく観測される 分布

平均を μ 、標準偏差を σ としたとき、 区間(μ - σ , μ + σ)に入る確率は68.3%、区間(μ - 2σ , μ + 2σ)に入る確率は95.4%

- 同じ身長データから度数分布表を作成し、ヒストグラムを描く
 - 手順① Excelで元データに加えて階級間隔を指定する表を用意 基本統計量において最小値164cm、最大値183cmのため、 今回は階級間隔を160cm~185cmの間で5cm刻みとして設定

		А	В	С
	1	身長(cm)		身長階級(cm)
	2	183		160
	3	167		165
元データ	4	175		170
	5	164		175
	6	174		180
	7	170		185
	8	179		
	9	172		
	10	171		
	11	166		
	12	175		
	13	172		
	14	174		
	15	170		
	16			
	17			

①階級間隔の表を追加。

このとき、数値は上限値を示すことに注意。

例) 165

⇒160超~165以下 を示す

手順② データ分析ツールを起動

②[データ]をクリック

③[データ分析]をクリック

手順③ ヒストグラムを選択

⑤OKをクリック

手順④ [入力範囲] にデータ範囲であるセルA1~A15を、 [データ区間] に階級間隔であるC1~C7を選択し、出力オプションを設定

⑥ラベルを含むデータの範 囲を選択

⑩OKをクリック

⑦階級間隔の範囲を選択

- 手順⑤ 度数分布表とヒストグラムが同時に出力
- 手順⑥ ヒストグラムのグラフを右クリックして[データ系列の書式設定]を選択

⑩[データ系列の書式設定]を クリック

手順⑦ データ系列の書式設定で[要素の間隔]を0%設定する。

③ [要素の間隔]を0%にする

手順⑧ ヒストグラムが完成

- データが集中しているの(ピーク)は170cm超~175cm以下
- データは160cm超~185cm以下の範囲内
- データは175cm以下に偏る

- 1変数の状況把握のために、ヒストグラムを用いる
- ヒストグラムの元になる表を度数分布表という

度数分布表

ヒストグラム

身長階級(cm)	頻度
160.0	0
165.0	1
170.0	4
175.0	7
180.0	1
185.0	1
次の級	0

