CLASE 15: FUNCIONES BIYECTIVAS COMPOSICION

· Recordemos:

Sea f: A - B une función.

1. Decimos que fo invectire si

Yx,,xz∈A Cm x, ≠xz, f(xi) ≠ f(xz)

 $(<=) - ((x_1) = ((x_2) =) \times_1 = \times_2)$

2.- Decimos que fos sobreyectiva si tyeB, 3xeA ta f(x)=y

(Obs: Si B=Recf, enhances f & Sobreyechiva)

• DEF: Sea f.A. Buna función. Decimos yne f es biyectiva si f es inyectiva y sobreyectiva:

•
$$E_j: f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2x+1$ as biyechiva

· Inyechiva:

$$f(Y_1) = f(X_2) \implies 2X_1 + 1 = 2X_2 + 1$$
 $\Rightarrow 2X_1 = 2X_2$
 $\Rightarrow X_1 = X_2$

· Solve:

See yell:
$$f(x) = y$$
 $(x) = y$
 $(x) = y$

Es decir,
$$f(\frac{y-1}{z}) = y$$
, $\frac{y-1}{z} \in \mathbb{R}$

• Ej: See
$$f:A \longrightarrow B$$

 $x \longmapsto -x^2-4x+2$

Encuentre AyB de modo gre & Sea biyective.

Hoy muchos solnaines:

2.-
$$f(x) = -x^{2} + 4x + 2$$

= $-(x^{2} + 4x) + 2$
= $-(x^{2} + 4x + 4) + 2 + 4$
= $-(x^{2} + 4x + 4) + 2 + 6$

$$A = [-2, \infty)$$

$$B = (-\infty, 6]$$

$$A = (-\infty, -2]$$

$$B = (-\infty, 6]$$

4.-
$$A = (-\infty, -2)$$
, $B = (-\infty, 6)$

$$f(x) = -x^2 - 4x + 2$$

$$B = [-3,2] \cup (4,6)$$

· DEF: Finaison compressive

See $g:A \longrightarrow B y f:B \longrightarrow C$ funcions. Definino le funcion compreshe de f y g: $(f \circ g)(x) = f(g(x))$

Dom fog = {xEA: gx | EB} = {xEDmg: yx | EDom f}

• Ej:
$$f(x) = 2x + 1$$
 Dom $f = \mathbb{R}$
 $g(x) = x^2$ Dom $g = \mathbb{R}$

<u>Sol</u> :

•
$$f \circ g(x) = f(g(x))$$

= $f(x^2)$; $f(u) = 2u + 1$
= $2x^2 + 1$

$$-g \circ f(x) = g(f(x))$$

$$= g(2x+1) ; g(u) = u^{2}$$

$$= (2x+1)^{2}$$

Obs: fog & gof en general

•
$$f \cdot f(x) = f(f(x))$$

= $f(2x+1)$; $f(u) = 2u+1$
= $2(2x+1)+1$
= $4x+3$

$$g \cdot g(x) = g(g(x))$$

$$= g(x^{2}) ; g(u) = u^{2}$$

$$= (x^{2})^{2}$$

$$= x^{4}$$

• Ej: Sea F(x)=√x²+4. Expression F como Composición de da funciones.

$$51: F(3) = ?$$

$$3 \mapsto 3^2 \mapsto 3^2 + 4 \mapsto \sqrt{3^2 + 4}$$

$$g(x)=x^2+4$$
, $f(u)=\sqrt{u}$, $F=f\circ g$

Tombién sirre:

$$F(x) = f(g(h\omega))$$

$$= f \circ g \circ h(x)$$

• Ej:
$$F(x) = \sqrt{1 + \frac{1}{x^2 + 1}}$$

$$X \longmapsto_{X}^{2} \xrightarrow{f_{2}} X^{2} + 1 \xrightarrow{f_{3}} \frac{1}{X^{2} + 1} \xrightarrow{f_{1}} 1 + \frac{1}{X^{2} + 1} \xrightarrow{f_{2}} \sqrt{1 + \frac{1}{X^{2} + 1}}$$

$$f_1(x)=x^2$$
 $f_4(x_3)=x_3+1$

$$\oint_{Z} \langle x_{1} \rangle = X_{1} + 1 \qquad \oint_{S} \langle x_{4} \rangle = \sqrt{X_{4}}$$

$$f_3(x_2) = \frac{1}{x_2}$$
 => $F = f_5 \circ f_4 \circ f_5 \circ f_2 \circ f_1$

• Ej:
$$f(x) = 2x + 1$$
, Don $f = \mathbb{R}$
 $g(x) = \sqrt{x}$, Don $g = [0, \infty)$

•
$$f \circ g(x) = 2\sqrt{x} + 1$$

•
$$g \circ f(x) = \sqrt{2x+1}$$

Dong of =
$$\{x \in Donf: f(x) \in Dong\}$$

= $\{x \in \mathbb{R}: 2x+1 \ge 0\}$
= $\{x \in \mathbb{R}: x \ge -\frac{1}{2}\}$

$$=\left[-\frac{1}{2},\infty\right)$$

• Obs: Sea f: A → B una función biyectiva, es docir,

YYEB, 3! XEA by f(x)= Y

Dado y EB, sea x EA dado por sohe d'efinición.
Podemos escribia x=g(x), g:B - A

DEF: See f:A→B uma función biyective. Pour y & B, definimos f (y) & A bel que

 $f'(y) = x \Leftrightarrow y = f(x)$.

De pote modo, obtenemos una función

$$f^{-1}: B \longrightarrow A$$
 $y \longmapsto f^{-1}(y)$.

Este funcion se conoce coma la función inversa de f.

Alamos, se hene

$$\bar{\xi}'(\hat{\xi}(y)) = x \quad \forall x \in A$$

 $\hat{\xi}'(\hat{\xi}(y)) = y \quad \forall y \in B$

Dom
$$f^{-1} = B = \text{Rec } f$$

Rec $f^{-1} = A = Dom f$