Рекурренты. Алгебра.

1. Пусть последовательность $a_0, a_1, ..., a_n, ...$ задана рекуррентным соотношением

$$a_{n+2} + p_1 a_{n+1} + p_0 a_n = 0$$
 (для всех целых $n \ge 0$),

а также начальными членами a_0 , a_1 . Предположим, что квадратное уравнение $x^2 + p_1x + p_0 = 0$ имеет два различных корня λ_1, λ_2 .

(a) Проверьте, что для любых чисел c_1, c_2 последовательность $a_n = c_1 \lambda_1^n + c_2 \lambda_2^n$ удовлетворяет условию

$$a_{n+2} + p_1 a_{n+1} + p_0 a_n = 0.$$

(б) Докажите, что любая последовательность, удовлетворяющая условию

$$a_{n+2} + p_1 a_{n+1} + p_0 a_n = 0$$
,

обязательно имеет вид $a_n = c_1 \lambda_1^n + c_2 \lambda_2^n$ для некоторых чисел c_1, c_2 .

- **2.** В обозначениях предыдущей задачи предположим, что квадратное уравнение $x^2 + p_1x + p_0 = 0$ имеет один корень λ (кратности 2).
 - (a) Проверьте, что для любых чисел c_1, c_2 последовательность $a_n = (c_1 n + c_2) \lambda^n$ удовлетворяет условию

$$a_{n+2} + p_1 a_{n+1} + p_0 a_n = 0.$$

(б) Докажите, что любая последовательность, удовлетворяющая условию

$$a_{n+2} + p_1 a_{n+1} + p_0 a_n = 0,$$

обязательно имеет вид $a_n = (c_1 n + c_2) \lambda^n$ для некоторых чисел c_1, c_2 .

- 3. С помощью задач 1,2 найдите формулу общего члена последовательности
 - (a) $a_1 = 2, a_2 = 1, a_n = a_{n-1} + 12a_{n-2};$
 - **(6)** $a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2};$
 - **(B)** $b_1 = 2, b_2 = 12, b_n = 4b_{n-1} 4b_{n-2}.$
- **4.** Найдите остаток от деления на 4 целого числа $(3+\sqrt{7})^{2024}+(3-\sqrt{7})^{2024}$
- **5.** Пусть x_1 и x_2 корни квадратного уравнения $x^2 6x + 1 = 0$. Докажите, что при любом натуральном n число $x_1^n + x_2^n$ является целым и не делится на 5.
- **6.** Последовательность задана рекуррентно: $a_1 = \frac{1}{2}, a_1 + a_2 + ... + a_n = n^2 a_n$. Найдите формулу общего члена.
- **7.** Последовательность $\{a_i\}$ задана рекурентно: $a_0 = a, a_{n+1} = 2^n 3a_n$. При каких значениях a последовательность является монотонно возрастающей?
- **8.** Дано натуральное число *n*. Найдите наибольшую степень двойки, на которую делится число

 $\left| \left(3 + \sqrt{11} \right)^{2n-1} \right|$.