ПРЯМА ЧЕРЕЗ ДВА ОРТОЦЕНТРИ

Хілько Данило Ігорович,

Ècole normale supèrieure de Paris

В 2014 році на Європейську олімпіаду для дівчат (ЕСМО 2014 [1]) автором запропоновано таку задачу (сформульовану нижче у вигляді теореми).

Теорема 1. На сторонах AB та AC гострокутного трикутника ABC відмічено відмінні від вершин точки D та E відповідно так, що DB = CE. Прямі CD та BE перетинаються в точці F. Тоді ортоцентр трикутника BFC, ортоцентр трикутника EFD і середина M дуги BAC описаного кола трикутника ABC лежать на одній прямій D1.

Нам потрібна проста, але дуже важлива і корисна лема. Тут і надалі в формулюваннях лем, задач та тверджень будемо користуватися позначеннями, які введено раніше.

Лема 1. DM = EM.

Доведення. Маємо зі вписаних кутів $\angle MCA = \angle MBA$ (рис. 1). Оскільки M – середина дуги BAC, то $\angle MCB = \angle MBC$, тобто трикутник BMC рівнобедрений і BM = MC. Тоді трикутники CEM і BDM рівні, звідки DM = EM.

3ауваження 1. До того ж, оскільки трикутники <math>CEM і BDM рівні, то $\angle MEC =$

Рис. 1

 $= \angle MDB$, тобто $\angle ADM = \angle AEM$. Отже, точки A, M, E, D лежать на одному колі.

Цю лему можна перекласти «фізикозоологічною» мовою: якщо з вершин В і C одночасно починають рух дві комахи, що рухаються по відрізках ВА та СА у бік точки A з однаковими швидкостями, то в будь-який момент часу комахи будуть рівновіддаленими від точки M. До того ж, згідно із зауваженням, комахи, а також точки A, M належать одному колу. Ця мова і цей принцип дотичні до методу лінійної неперервності в геометрії, який дозволяє, застосувавши деяки загальні факти, довести твердження для загального випадку, перевіривши кілька часткових. Докладніше про цей метод можна дізнатися з матеріалів Ф. Івлева [2].

 $^{^1}$ Насправді, задача формулювалася трохи інакше: якщо DB = BC = CE, треба довести, що на одній прямій з ортоцентром трикутника EFD і точкою M лежить інцентр трикутника ABC. Читач може переконатися, що за цієї умови інцентр ABC збігається з ортоцентром BFC.

Рис. 2

Сюжет леми – мандрівний. Він часто з'являється в олімпіадних задачах, а за допомогою цієї леми, а також інших, на перший погляд, не надто вибагливих фактів можна розв'язати дуже складні геометричні задачі. Докладніше дивіться статтю А. Полянського [3], а також матеріали занять його гуртка [4]. Цю статтю також можна розглядати як подальше дослідження сюжету.

Для простоти викладу в усіх доведеннях будемо вважати, що точки розташовані саме так, як на відповідному рисунку. Хоча звичайно міркування можна узагальнити і на інші конфігурації.

Доведення теореми 1. Позначимо ортоцентри трикутників BFC та DFE через H_1 і H_2 . Розглянемо кола ω_1 і ω_2 , що побудовані на відрізках BD і CE відповідно як на діаметрах (рис. 2). Будемо доводити, що у кожної з точок H_1, H_2, M однаковий степінь відносно кіл ω_1 і ω_2 . Тоді всі вони належать радикальній осі кіл ω_1 і ω_2 , яка є прямою.

Нехай DK_1 , EK_2 — висоти трикутника DFE; BL_1 , CL_2 — висоти трикутника BFC. Тоді, оскільки $\angle DL_1B = \angle DK_1B =$ = $\angle CL_2E$ = $\angle CK_2E$ = 90°, точки L_1, K_1 належать ω_1 , а точки L_2 , K_2 належать ω2. Тоді степені точок можна записати так: $p(H_1, \omega_1) = H_1L_1 \cdot H_1B$, $p(H_1, \omega_2) =$ $= H_1L_2 \cdot H_1C, \ p(H_2, \omega_1) = H_2K_1 \cdot H_2D,$ $p(H_2, \omega_2) = H_2K_2 \cdot H_2E$. З іншого боку, маємо $\angle DK_1E = \angle DK_2E = \angle BL_1C =$ = $\angle BL_2C$ = 90°, тому чотирикутники DK_1K_2E і BL_1L_2C вписані. Звідси $H_2K_1 \times$ $\times H_2D = H_2K_2 \cdot H_2E, H_1L_1 \cdot H_1B =$ $H_1L_2 \times H_1C$, а тому степені точки H_1 , а також точки H_2 , рівні відносно кіл ω_1 і ω_2 . Тому H_1 і H_2 належать радикальній oci ω_1 , ω_2 .

Залишається показати, що точка M також належить радикальній осі ω_1 , ω_2 . Нехай O_1 і O_2 — центри ω_1 і ω_2 відповідно. Зрозуміло, що O_1 — середина BD, а O_2 — середина CE. Тоді BO_1 = CO_2 , отже можна застосувати лему 1 для точок O_1 і O_2 . За лемою O_1M = MO_2 . Тоді $p(M, \omega_1)$ = MO_1^2 — O_1D^2 =

 $MO_1^2 - BD^2/4 = MO_2^2 - CE^2/4 = MO_2^2 - O_2C^2 = p(M, \omega_2)$. Отже, M також належить радикальній осі кіл ω_1 і ω_2 .

Наша мета — дослідити властивості прямої H_1H_2 . Ми вже багато знаємо про одну з точок перетину H_1H_2 з описаним колом ABC — це середина дуги BAC. Що можна сказати про іншу точку?

Теорема 2. Нехай пряма H_1H_2 вдруге перетинає описане коло ABC в точці T. Позначимо через A' точку, яка є симетричною до A відносно серединного перпендикуляра відрізка BC. Тоді точки T, H_2 , F і A' лежать на одному колі.

Для доведення теореми 2 нам потрібна підготовка.

Розглянемо коло ω із центром у точці M і радіусом MA. Очевидно, що ω проходить через A'. Згідно із зауваженням до леми 1, точки A, M, E, D лежать на

одному колі. Позначимо його через γ . Нехай γ вдруге перетинає ω в точці Z, а пряма A'Z вдруге перетинає γ в точці V.

Твердження 1. Прямі AZ і DE паралельні, а точка V лежить на серединному перпендикулярі до відрізка BC.

Доведення. Зрозуміло, що MA = MZ (рис. 3). За лемою 1 MD = ME. Тоді маємо такі рівності менших дуг кола γ : MA = MZ, MD = ME. Тоді AD = ZE як дуги, звідки маємо рівність відповідних відрізків. Це означає, що чотирикутник DAZE— трапеція.

Запишемо $\angle AMV = \angle AZV = 180^\circ - \angle AZA' = 180^\circ - (180^\circ - \angle AMA'/2) =$ = $\angle AMA'/2$. Бачимо, що пряма MV є бісектрисою кута $\angle AMA'$. Оскільки AM = MA', трикутник AMA' – рівнобедрений, а тому пряма MV є перпендикулярною до хорди AA' описаного кола ABC. Отже, MV – діаметр цього кола, тобто серединний перпендикуляр відрізка BC,

Рис. 3

Рис. 4

бо уже доведено, що M належить цьому серединному перпендикуляру. \Box

Наступний факт є ключовим для доведення задачі 2, хоча він дуже цікавий і сам по собі.

Твердження 2. Точка F належить nps-мій A'Z.

Доведення. Будемо доводити, що точка F належить прямій VZ (рис. 4). Для цього застосуємо кутову форму оберненої теореми Чеви до трикутника DVE і прямих DC, EB, VZ. За кутовою формою оберненої теореми Чеви достатньо показати, що

$$\frac{\sin \angle EDC}{\sin \angle CDV} \cdot \frac{\sin \angle DVZ}{\sin \angle ZVE} \cdot \frac{\sin \angle VEB}{\sin \angle BED} = 1.$$

За твердженням 1 DAZE – трапеція, тому, згідно із теоремою синусів,

$$\frac{\sin \angle DVZ}{\sin \angle ZVE} = \frac{DZ}{ZE} = \frac{AE}{AD}.$$

Далі застосуємо теорему синусів для трикутників DEC і DVC:

$$\frac{\sin \angle EDC}{CE} = \frac{\sin \angle DEC}{CD},$$

$$\frac{\sin \angle VDC}{VC} = \frac{\sin \angle DVC}{DC},$$

звідки

$$\frac{\sin \angle EDC}{\sin \angle CDV} = \frac{CE}{VC} \cdot \frac{CD \cdot \sin \angle DEC}{CD \cdot \sin \angle DVC} =$$
$$= \frac{\sin \angle DEC \cdot CE}{\sin \angle DVC \cdot VC}.$$

Аналогічно із трикутників DEB і BEV

$$\frac{\sin \angle DEB}{BD} = \frac{\sin \angle BDE}{BE},$$
$$\frac{\sin \angle VEB}{VB} = \frac{\sin \angle BVE}{BE},$$

звідки

$$\begin{split} \frac{\sin \angle VEB}{\sin \angle BED} &= \frac{VB}{BD} \cdot \frac{BE \cdot \sin \angle BVE}{BE \cdot \sin \angle BDE} = \\ &= \frac{\sin \angle BVE \cdot VB}{\sin \angle BDE \cdot BD}. \end{split}$$

Рис. 5

Після підстановки отримуємо, що потрібно довести рівність

$$\frac{\sin \angle DEC \cdot CE}{\sin \angle DVC \cdot VC} \cdot \frac{AE}{AD} \cdot \frac{\sin \angle BVE \cdot VB}{\sin \angle BDE \cdot BD} = 1.$$

За умовою BD = CE, а за твердженням 1 точка V лежить на серединному перпендикулярі до відрізка BC разом із точкою M. Тому VB = VC і $\angle MVC = \angle MVB$. Крім того, як уже неодноразово сказано, M – середина дуги DAE кола γ , тому $\angle DVC = \angle BVE$. Тоді після спрощення отримуємо, що достатньо довести таке:

$$\frac{\sin \angle DEC \cdot AE}{\sin \angle BDE \cdot AD} = 1,$$

що ε простим наслідком теореми синусів для трикутника DAE.

Доведення теореми 2. Нехай прямі FZ і DE перетинаються в точці Q (рис. 5). Внаслідок тверджень 1 і 2 $\angle DQF = \angle AZF = 180^\circ - \angle AZA' = \angle AMA'/2$. Тоді, оскільки $H_2F \perp DE$, $\angle A'FH_2 = 90^\circ + \angle DQF = 90^\circ + \angle AMA'/2$. З іншого боку, $\angle H_2TA' = \angle MTA' = \angle ATA'/2$. Звідси $\angle H_2TA' + \angle H_2FA' = 90^\circ + \angle AMA'/2 + \angle ATA'/2 = 90^\circ + 90^\circ = 180^\circ$, отже чотирикутник TH_2FA' вписаний.

Нехай коло ω вдруге перетинає прямі AB і AC в точках X і Y (рис. 6).

Зауваження 2. Точки X, Y можна охарактеризувати й інакше. $\angle MYC = 180^{\circ} - \angle MYA = 180^{\circ} - \angle MAC = 180^{\circ} - \angle MCB = \angle MAB$. Також $\angle ABM = \angle ACM$. Отже, трикутники MAB і MYC

Рис. 6

подібні за двома кутами, а оскільки AM = MY, то вони рівні. Аналогічно, трикутники ВХМ і МАС рівні. Звідси X – така точка на BA, що BX = CA, а Y – така точка на CA, що CY = = BA. Тобто точки X і Y є *крайніми* nоложеннями точок D і E, коли одна з цих точок збігається з вершиною A. Справді, точки D та E обираються на ВА і СА довільним чином, але так, щоби задовольняти умову BD = CE, тож, якщо брати D = A, то E = Y, а якщо E = A, то D = X. Останне є скоріше філософським аргументом, хоча б тому, що ми обмежилися розгляданням точок D і E всередині відрізків BA, CA, але цей аргумент висвітлює природу точок X, Y.

Наша остаточна мета: довести наступну теорему.

Нехай K – основа висоти трикутника BFC, що проведена з вершини F (рис. 7).

Теорема 3. Пряма TA' проходить через точку K.

Твердження 3. Пряма XY проходить через середину відрізка H_1H_2 .

Рис. 7

Доведення. Покажемо, що

$$\frac{\sin \angle BTK}{\sin \angle KTC} = \frac{\sin \angle B}{\sin \angle C}.$$

Якщо виконується ця рівність, то, оскільки $\angle BTK + \angle KTC = \angle B + \angle C$, за відомим фактом $\angle BTK = \angle B$, звідки випливає, що пряма TK проходить через A' (рис. 7).

За теоремою синусів, застосованою до трикутників BKT, TKC,

$$\frac{\sin \angle BTK}{BK} = \frac{\sin \angle BKT}{BT},$$
$$\frac{\sin \angle KTC}{KC} = \frac{\sin \angle CKT}{TC},$$

звідки

 $\frac{\sin \angle BTK}{\sin \angle KTC} = \frac{TC}{KC} \cdot \frac{BK}{BT} = \frac{\sin \angle H_1MC}{\sin \angle BMH_1} \cdot \frac{BK}{KC}.$ Із теореми синусів, застосованої до трикутників MBH_1 , MH_1C ,

$$\frac{\sin \angle BMH_1}{BH_1} = \frac{\sin \angle MBH_1}{MH_1},$$
$$\frac{\sin \angle H_1MC}{H_1C} = \frac{\sin \angle MCH_1}{MH_1}.$$

Легко перевірити, що

$$\frac{BK}{BH_1} = \sin \angle FCB, \ \frac{CK}{CH_1} = \sin \angle FBC.$$

Із цього всього виводимо, що

$$\begin{split} \frac{\sin \angle BTK}{\sin \angle KTC} &= \frac{\sin \angle CMH_1}{\sin \angle H_1MB} \cdot \frac{BK}{KC} = \\ &= \frac{\sin \angle MCH_1}{\sin \angle MBH_1} \cdot \frac{CH_1}{BH_1} \cdot \frac{BK}{CK} = \\ &= \frac{\sin \angle MCH_1}{\sin \angle MBH_1} \cdot \frac{\sin \angle FCB}{\sin \angle FBC}. \end{split}$$

Чому дорівнюють кути $\angle MBH_1$ і $\angle MCH_1$? Виконаємо їх підрахунок, позначивши $\alpha = \angle A/2$:

$$\angle MBH_1 = \angle MBC - \angle H_1BC =$$

$$= 90^{\circ} - \alpha - (90^{\circ} - \angle FCB) = \angle FCB - \alpha.$$

Аналогічно $\angle MCH_1 = \angle FBC - \alpha$. Таким чином, застосовуючи тригонометричні формули,

$$\frac{\sin \angle BTK}{\sin \angle KTC} = \frac{\sin(\angle FBC - \alpha)/\sin \angle FBC}{\sin(\angle FCB - \alpha)/\sin \angle FCB} =$$
$$= \frac{\cos \alpha - \cot \angle FBC \sin \alpha}{\cos \alpha - \cot \angle FCB \sin \alpha}.$$

Легко бачити із трикутника, утвореного точками B, E і проекцією E на BC, що

$$\cot FBC = \frac{BC - CE \cos \angle C}{CE \sin \angle C}.$$

Аналогічно

$$\cot FCB = \frac{BC - BD \cos \angle B}{BD \sin \angle B}.$$

Достатньо довести, що

$$(\cos \alpha - \cot \angle FBC \sin \alpha) \cdot \sin \angle C =$$

$$= (\cos \alpha - \cot \angle FCB \sin \alpha) \cdot \sin \angle B,$$

або, після підстановки котангенсів,

$$\sin \angle C \cos \alpha - \sin \alpha \cdot \frac{BC - CE \cos \angle C}{CE} =$$

$$= \sin \angle B \cos \alpha - \sin \alpha \cdot \frac{BC - BD}{BD \sin \angle B}.$$

3 урахуванням умови CE = BD ця рівність рівносильна

$$\sin \angle C \cos \alpha + \cos \angle C \sin \alpha =$$

= $\sin \angle B \cos \alpha + \cos \angle B \sin \alpha$,

або

$$\sin(\angle C + \alpha) = \sin(\angle B + \alpha)$$
,

яка є очевидною, бо

$$\angle C + \alpha + \angle B + \alpha = 180^{\circ}$$
.

Твердження 4. Точка, що є симетричною до H_1 відносно BC, належить описаному колу точок T, H_2 , F, A' (див. теорему 2).

Доведення. Позначимо через H_1' точку, симетричну H_1 відносно BC (рис. 7). Тоді $H_1K = KH_1'$. Як відомо, $KF \cdot KH_1 = KB \cdot KC$, тобто $H_1'K \cdot KF = BK \cdot KC$. Зрозуміло, що $BK \cdot KC = TK \cdot KA'$. Отже, $TK \cdot KA' = KF \cdot KH_1'$, тобто точки A', F, T, H_1' лежать на одному колі.

Твердження 5. Пряма XY проходить иерез F.

Доведення. Застосуємо обернене твердження теореми Менелая для трикутника BAE і точок X,Y,F (рис. 8). Достатньо довести, що

$$\frac{BX}{XA} \cdot \frac{AY}{YE} \cdot \frac{EF}{FB} = 1.$$

З іншого боку, згідно із теоремою Менелая для трикутника ABE і прямої DC,

$$\frac{EF}{FB} \cdot \frac{BD}{DA} \cdot \frac{AC}{CE} = 1.$$

Підставимо значення EF/FB у рівність, яку хочемо довести:

$$\frac{BX}{XA} \cdot \frac{AY}{YE} \cdot \frac{DA}{BD} \cdot \frac{CE}{AC} = 1.$$

За умовою BD = CE, а згідно із зауваженням 2, BX = AC, AY = AX, AD = YE, тобто ліва частина попередньої рівності справді рівна 1.

Рис. 8

Нехай пряма XY перетинає H_1H_2 в точці N.

Твердження 6. Точки T, K, F, N належать одному колу.

Доведення. Зрозуміло, що AM — бісектриса зовнішнього кута при вершині A, XA = XB - AB = AC - CY = AY (див. рис. 6 і зауваження 1), тобто трикутник XAY рівнобедрений. Тоді бісектриса AM кута XAY є також висотою в цьому трикутнику. Тому $XY \perp AM$. Звідси, враховуючи те, що X,Y,F колінеарні, $\angle FNT = 90^\circ - \angle AMT = 90^\circ - \angle BCT - \angle A'TC = 90^\circ - \angle BKC = \angle FKA' = 180^\circ - \angle FKT$, тобто точки T,K,F,N лежать на одному колі (рис. 8).

Доведення теореми 3. Маємо два кола: коло, на якому лежать точки H_1' , T, H_2 , F, A'; а також коло, на якому лежать T, K, F, N (рис. 8). Обчислимо степінь точки H_1 відносно цих двох кіл: $H_1N \cdot H_1T = H_1F \times H_1K$, $H_1H_2 \cdot H_1T = H_1F \cdot H_1H_1'$. Однак $H_1H_1' = 2H_1K$, звідки маємо рівність $H_1F \cdot H_1H_1' = 2H_1F \cdot H_1K$, а тому $H_1H_2 \times H_1T = 2H_1N \cdot H_1T$, тобто $H_1H_2 = 2H_1N$. Отже, N – середина H_1H_2 .

ЛІТЕРАТУРА

- [1] European Girls' Mathematical Olympiad 2014, Antalya, Turkey: Problems and Solutions [Електронний ресурс]. Режим доступу: http://egmo2014.tubitak.gov.tr/index.html
- [2] Материалы занятий кружков Ф. А. Ивлева: Линейность-1 [Электронный ресурс]. Режим доступа: http://geometry.ru/materials/kruzhki_big.php
- [3] *Полянский А.* Воробьями по пушкам / А. Полянский // Квант. 2012. № 2.
- [4] Материалы занятий кружков А. Полянского: Воробьями по пушкам и окрестности [Электронный ресурс]. Режим доступа: http://geometry.ru/materials/kruzhki_big.php