Basic Inferencial Data Analysis

Vijayeshswari Palakurthi

6/5/2020

Data and packages: Let's load the "ToothGrowth" data (available in the datasets package) and some relevant library packages used in this project

```
library(datasets)
library(ggplot2)
library(reshape2)
library(dplyr)
data(ToothGrowth)
```

Here are some explanations from the help page of the package:

Description: The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of vitamin C and coded as VC).

Format: A data frame with 60 observations on 3 variables. [,1] len numeric Tooth length [,2] supp factor Supplement type (VC or OJ). [,3] dose numeric Dose in milligrams/day

Exploratory analysis: Let's create a boxplot of the growth vs. the delivery method.

```
g = ggplot(ToothGrowth, aes(supp, len,fill =supp))
g =g +geom_boxplot()
g
```


This is a boxplot using the 2 variables dose and delivery method:

Some first observations: * The growth seems to increase with the dose * The growth seems to be more important when the guinea pig is fed orange juice instead of vitamin C, but this effect seems to dissipate as the dose increases.

Tooth growth comparison: We'll use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. As the number of observations is small, let's use Gossett's T tests for our analysis.

Conclusion: The difference between the means is significant between the guinea pigs receiving a 0.5 mg/day dose and a 2 mg/day dose. In the 2 other cases, the hypothesis between a difference in the means can't be confirmed when using a 95% confidence interval.