Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления				
КАФЕДРА	Системы обработ	обработки информации и управления		
Отчет по лабораторной работе № 2				
«Настройка статической и динамической IP маршрутизации внутри ЛВС» по дисциплине «Сети и телекоммуникации»				
		·		
Студент ИУ5-5	515		<u>Е.И. Бирюкова</u>	
<u>Групп</u> (Групп	<u></u>	(Подпись, дата)	(И.О.Фамилия)	
Преподаватель			А.И. Антонов	
-		(Подпись, дата)	 (И.О.Фамилия)	

Москва

Цель работы

Закрепление теоретических знаний в области конструирования и исследования характеристик локальных вычислительных сетей. Изучение способов маршрутизации внутри ЛВС при помощи программы Cisco Packet Tracer 8.2., приобретение практических навыков проектирования и моделирования работы сети, а также оценки принятых проектных решений.

Задание

Построить сеть из трех сегментов, каждый из которых состоит из С, D и Е рабочих станций соответственно. Каждый сегмент построен на базе коммутатор коммутатора, И каждый подключен отдельному маршрутизатору. Шлюзом для каждого сегмента служит соответствующий маршрутизатор. Маршрутизаторы соединены между собой с помощью интерфейса DTE. Сначала необходимо задать IP адреса сетевым интерфейсам маршрутизаторов и локальных компьютеров, и добиться возможности пересылки данных внутри подсетей. Для демонстрации работы маршрутизации использовать режим симуляции или команду tracert.

Правила задания ІР-адресов:

- 1. Компьютерам задаются IP адреса вида 192.10х.у0z.10а, где х номер группы, у номер подсети, z номер группы, а номер компьютера. Например, 17-й в списке студент группы ИУ5-34Б, будет задавать адрес первому компьютеру в 1-й подсети 192.104.117.101;
- 2. Для serial-интерфейсов IP адреса задаются аналогично 10.10x.y0z.10a
- Значения не должны выбиваться за 255.
 Далее студент копирует полученную ЛВС и вставляет её же рядом.
 Необходимо настроить:
- 1. Для 1-й ЛВС статическую маршрутизацию;
- 2. Для 2-й ЛВС динамическую маршрутизацию с использованием протокола RIP.

Ход лабораторной работы

1-ая ЛВС со статической маршрутизацией

2-ая ЛВС с динамической маршрутизацией

Контрольные вопросы

В чем отличие статической и динамической маршрутизации?
 Статическая маршрутизация:

- Администратор вручную конфигурирует маршруты на каждом маршрутизаторе.
- Маршруты не меняются автоматически, даже если топология сети изменяется.
- Простая в настройке, но менее гибкая.
- Подходит для небольших сетей с неизменной топологией.

Динамическая маршрутизация:

- Маршрутизаторы автоматически обмениваются информацией о маршрутах с помощью маршрутных протоколов.
- Маршруты автоматически обновляются при изменении топологии сети.
- Более гибкая и масштабируемая, но сложнее в настройке.
- Подходит для больших сетей с часто меняющейся топологией.

2. Что такое домен коллизии и как определить его диаметр?

Домен коллизии: Это область сети, где два или более устройств могут передавать данные одновременно, что может привести к столкновению (коллизии) данных.

Диаметр домена коллизии: Определяется как максимальное расстояние между двумя устройствами, которые могут столкнуться при передаче данных.

3. Для какого протокола маршрутизации актуален домен коллизии?

Домен коллизии актуален для протоколов, которые используют физический уровень передачи данных (например, Ethernet), где только одно устройство может передавать данные в данный момент времени.

4. Какие основные различия RIP и OSPF?

RIP (Routing Information Protocol) и OSPF (Open Shortest Path First) - это два основных маршрутных протокола, используемых в сетях.

RIP (Routing Information Protocol) - это протокол дистанционно-векторного типа, который распространяет информацию о маршрутах по всей сети. Он прост в настройке, но имеет некоторые недостатки, такие как:

- Медленная скорость конвергенции: RIP медленно реагирует на изменения топологии сети, так как обновления распространяются по всей сети.
- Низкая безопасность: RIP не обеспечивает аутентификации маршрутных обновлений, что делает его уязвимым для атак.
- Не подходит для больших сетей: Из-за медленной конвергенции и низкой безопасности RIP не рекомендуется для больших сетей.

OSPF (Open Shortest Path First) - это протокол состояния канала, который рассчитывает оптимальные маршруты на основе топологии сети. Он обладает следующими преимуществами:

- Быстрая скорость конвергенции: OSPF быстро реагирует на изменения топологии сети, так как обновления распространяются только к соседним маршрутизаторам.
- Высокая безопасность: OSPF поддерживает аутентификацию маршрутных обновлений, что делает его более безопасным.
- Подходит для больших сетей: Благодаря быстрой конвергенции и высокой безопасности OSPF широко используется в больших и сложных сетях.

RIP - это простой протокол для небольших сетей, а OSPF - более сложный, но эффективный протокол для больших сетей.

5. Модель OSI и ее уровни.

Модель OSI (Open Systems Interconnection) - это концептуальная модель сетевой архитектуры, которая разделяет сетевое взаимодействие на 7 уровней:

1. Физический уровень: Определяет физическую среду передачи данных (кабель, радиоволны).

- 2. Канальный уровень: Обеспечивает доступ к физической среде, формирует кадры.
- 3. Сетевой уровень: Определяет логические адреса (IP-адреса) и маршрутизацию данных.
- 4. Транспортный уровень: Обеспечивает надежную передачу данных между приложениями (TCP, UDP).
- 5. Сеансовый уровень: Управляет сеансами связи между устройствами.
- 6. Представления уровня: Обеспечивает преобразование данных между приложениями (кодирование, декодирование).
- 7. Прикладной уровень: Предоставляет интерфейс для пользователей и приложений (HTTP, FTP, SMTP).