Pstat 105 Lab C

Kendall Brown Fall 2017

Q1a. Plot of Beta(6,2) CDF vs Grades Empirical CDF

```
grades=c(40,71.7,81.7,83.3,93.3,97.5)/100
quant=seq(1/6,1,1/6)
plot(grades, quant, type="l",xlim=c(0,1),ylim = c(0,1),xlab="Grade in Decimal",ylab = "Probability Grad curve(pbeta(x,6,2),add=T,col="blue")
```

Plot of Grade ECDF vs B(6,2) CDF


```
Q1b.Plot of Gn(t)
gecdf=ecdf(grades)
Gnt=(sqrt(6))*(gecdf(grades)-grades)
plot(gecdf(grades),Gnt,col="red",type="l")
```


Q1c.Ks test for beta distribution of grades.

```
ks.test(grades,"pbeta",6,2)

##

## One-sample Kolmogorov-Smirnov test

##

## data: grades

## D = 0.2906, p-value = 0.5955

## alternative hypothesis: two-sided

#Taking 0<U1<U2<U3<...<U6<1

#from the D statistic D=.2906, D+=max(1-U6,5/6-U5,2/3-U4,1/2-U3,1/3-U2,1/6-U1) or D-=max(U1,U2-1/6,U3-1)

#since 0<Ui<1, D+ implies that if U6<.7094 then Ui<.7094, similarly if U1>.2906 then Ui>.2906

#From this we can calculate the exact P-value

epv=(.7094^5)+(.7094)^5

epv #Exact P-value
```

[1] 0.3593237

Q1d. From this P-value we fail to reject the null hypothesis, there is not enough evidence to suggest the data does not follow B(6,2).

Q1e. It would be difficult to preform a chi-squared test here because we have very few samples to distribute enough amongst bins to calculate the X2 test statistic.

Q2a.Histogram and Normal Curve of Shoulder Data

```
shoulder=read.table("C:/Users/kebro/Desktop/PSTAT 105/shoulder.txt",header = TRUE)
hist(shoulder$Shoulder,main="Histogram of Shoulder Data",breaks = 25,probability = TRUE,col="azure2")
ssd=sd(shoulder$Shoulder)
sm=mean(shoulder$Shoulder)
curve(dnorm(x,mean=sm,sd=ssd),add = TRUE,col="firebrick1",lw=2)
```

Histogram of Shoulder Data

Q2b.Tests of Shoulder Data

```
#lillie.test(shoulder$Shoulder)
#cum.test(shoulder$Shoulder)
#ad.test(shoulder$Shoulder)
```

From the observer P-Values we reject the notion of normality in this dataset.

Q2c.Tests of Shoulder Data by Gender

```
mshoulder=subset(shoulder,Gender=="Male")
fshoulder=subset(shoulder,Gender=="Female")
#Male Shoulders
#lillie.test(mshoulder$Shoulder)
#cum.test(mshoulder$Shoulder)
#ad.test(mshoulder$Shoulder)
#Female Shoulders
#lillie.test(fshoulder$Shoulder)
#cum.test(fshoulder$Shoulder)
#ad.test(fshoulder$Shoulder)
```

From the observed P-values we conclude that there is not enough evidence to reject normality amongst male shoulderwidth, but there is enough to reject normality amongst female shoulder width.

Q2d. Normaility Tests for Adjusted Shoulder Width

```
amshoulder=mshoulder$Shoulder-mean(mshoulder$Shoulder)
afshoulder=fshoulder$Shoulder-mean(fshoulder$Shoulder)
ashoulder=c(amshoulder,afshoulder)
#lillie.test(ashoulder)
#cum.test(ashoulder)
#ad.test(ashoulder)
```

From the observed P-Values, we reject normality at the .05 level after adjusting for the population means. However, we fail to reject normality at the .01 level.

Q2e. Based on previous results, I do not believe it would be wise to assume normality and preform a two sampled t-test.

```
EarthquakeData <- read.csv("C:\\Users\\kebro\\Desktop\\PSTAT 105\\EarthquakeData.htm", header = TRUE, st
eq.hour <- as.integer(substr(EarthquakeData$Time,1,2))
eq.min <- as.integer(substr(EarthquakeData$Time,3,4))
eq.sec <- as.numeric(substr(EarthquakeData$Time,5,8))</pre>
```

Q3a. Chi-Squared Test for Uniformity Across Hours of Day.

```
pph=rep((1/24),24)
disteqh=(hist(eq.hour,breaks = seq(0,24,1),xlab="Hour of Day", main="Histogram of Earthquakes per Hour
```

Histogram of Earthquakes per Hour of Day


```
chisq.test(disteqh$counts,p=pph)
```

##
Chi-squared test for given probabilities

```
##
## data: disteqh$counts
## X-squared = 161.43, df = 23, p-value < 2.2e-16
Q3b. KS-Test of Hourly Data.
eq.time=(3600*eq.hour)+(60*eq.min)+eq.sec #Converting time of day to seconds past midnight.
ecdfeq=sort(eq.time)/86400 #With 86400 secs/day we can get the ecdf of the time data.
ecdfuni=seq(0,1,length=1826) #Uniform CDF of seconds past in a day with 1826 intervals
Dp=(ecdfuni-ecdfeq)
Dm=(ecdfeq-ecdfuni)
max(Dp) #Dplus value
## [1] 0.01319614
max(Dm) #Dminus value
## [1] 0.01251513
Dmax=max(max(Dp),max(Dm)) #D test statistic
Q3c. P-value of KS.Test
n=c(1,2,3,4,5,6,7,8,9,10)
pv=2*sum(((-1)^{(n-1)})*exp(-2*1826*(n^2)*(Dmax^2)))#Approximating P-Value with 10 sums.
pv#Approximated p-Value given D statistic
## [1] 0.908189
Q3d&e.Histogram with breaks every 15 mins with
hist(eq.time,breaks = seq(0,86400,900),main="Histogram with breaks every 15 mins",xlab="Seconds past Mi
lines(density(eq.time,bw=3600,kernel="gaussian"),col="tan",lw=3) #BW is an hour
lines(density(eq.time,bw=3600*2,kernel="gaussian"),col="red",lw=3) #BW is two hours
lines(density(eq.time,bw=3600*4,kernel="gaussian"),col="blue",lw=3) #BW is four hours
lines(density(eq.time,bw=3600/2,kernel="gaussian"),col="black",lw=3) #BW is 30 mins
```

Histogram with breaks every 15 mins

I believe that the 2 and 4 hour bandwidths gave kernels that were too smooth. As such I believe the 1 hour bandwidth to be bettwe than both the 2 and 4 hour bandwidths, but not as good as the 30 min bandwidth which. It is a bit rough but it matches the underlying histogram a bit better. Q3f.

```
hist(eq.time,breaks = seq(0,86400,900),main="Histogram with breaks every 15 mins over a 24 hour period" lines(density(eq.time,bw="nrd",kernel="gaussian"),col="tan",lw=3) #BW is the nrd lines(density(eq.time,bw="ucv",kernel="gaussian"),col="red",lw=3) #BW is the ucv lines(density(eq.time,bw="SJ",kernel="gaussian"),col="blue",lw=3) #BW is the SJ
```

Histogram with breaks every 15 mins over a 24 hour period

I would say that the UCV bandwidth method is the most accurate bandwidth of NRD, UCV, and SJ as it appears to match the histogram's distribution well.

Q3g.Fixing cyclical data.

```
seq.time=sort(eq.time)
histeq=hist(eq.time,breaks = seq(0,86400,900),main="Histogram with breaks every 15 mins over a 24 hour deneq=density(c(eq.time,seq.time[1739:1826]-86400,seq.time[0:68]+86400),bw="ucv",kernel="gaussian",from #Took the first's and last's hour of datapoints and affixed them to the ends of the set used them to ap #the density at hour 0 and hour 24.
lines(deneq,col="red",lw=3)
```

Histogram with breaks every 15 mins over a 24 hour period


```
snow <- scan("snow.txt")</pre>
```

Q4a. Histogram of Snow.txt

hists=hist(snow,breaks=50,main="Histogram of Snow.txt",col="blue",probability = T,xlab="Inches of snowf
dsnow=density(snow,bw="SJ",kernel="rectangular")
lines(dsnow,lw=2,col="red")

Histogram of Snow.txt


```
Q4b.
Estimation at 2000
c2000=sum(hists$counts[20:22])
c2000
density(snow,bw="SJ",kernel="rectangular",from=1900,to=2100)
##
## Call:
   density.default(x = snow, bw = "SJ", kernel = "rectangular",
                                                                    from = 1900, to = 2100)
##
##
## Data: snow (499 obs.);
                            Bandwidth 'bw' = 18.62
##
##
##
          :1900
                          :3.108e-05
   Min.
   1st Qu.:1950
                   1st Qu.:1.243e-04
   Median:2000
                   Median :1.865e-04
##
##
   Mean
           :2000
                   Mean
                          :1.686e-04
##
   3rd Qu.:2050
                   3rd Qu.:2.175e-04
   Max.
           :2100
                   Max.
                          :3.108e-04
c2100=sum(hists$counts[1:22])
c1900=sum(hists$counts[1:20])
Fht=(c2100-c1900)/499/(2*18.62)
sv=.0001686/(2*499*(18.62^2))
d2000=.0001686
```

```
cint=c(d2000-1.96*sqrt(sv/499),d2000+1.96*sqrt(sv/499))
cint
```

[1] 0.0001666632 0.0001705368

With a bandwidth of 18.62 and a rectangular Kernel, we have a sample density of .0001686 based off of 25 observations. 95% confidence interval {0.0001666632, 0.0001705368}

Q4c. Prob of snowfall in a year

```
sort(snow)[183]
## [1] 0
psnow=183/499
psnow #Probability a station sees a warm winter
## [1] 0.3667335
```

Q4d. Density where snow!=0.

```
hists=hist(snow,breaks=50,main="Histogram of Snow.txt",col="blue",probability = T,xlab="Inches of snowf lines(density(snow,bw="SJ",kernel="gaussian",from=1,to=6009),lw=2,col="red") lines(density(snow,bw="nrd",kernel="gaussian",from=1,to=6009),lw=2,col="yellow") lines(density(snow,bw=15,kernel="gaussian",from=1,to=6009),lw=2,col="tan2")
```

Histogram of Snow.txt

The 15 bandwidth looks nice. Density for snow>0 is approximately 1.4*10^-4

Q4e.As a guess I would say that the bias of the estimate is rather significant as the data is quite obviously skewed towards lower values.