

Teste de Software

Prof. Marcos Rodrigo momo, M.Sc. marcos.momo@ifsc.edu.br

Gaspar, maio 2021.

Roteiro aula 7

- Gravação
- Calendário
- Teste manual e teste automático
- Teste estáticos e teste dinâmico
- Tipos de testes

Cronograma das aulas módulo 2

Observação: não termos mais aula no sábado 5 encontros

MÓDULO 2: 24/05 – 26/06 (5 sem anas)								
2ª feira	3ª feira	4ª feira	5ª feira	6ª feira	sábado			
						07:20:00		
						08:15:00		
					prog.internet II	09:10:00		
					prog.internet II			
						11:20:00		
						13:30:00		
teste de software	prog internet II	progriptorpot II				18:30:00		
	prog.internet II	prog.internet II						
teste de software	prog.internet II	prog.internet II	TCC2			19:25:00		
teste de software	prog.internet II		TCC2			20:40:00		
teste de software	prog.internet II					21:35:00		

Teste manual

- Os testes manuais são realizados por um humano
- Realizar cenários de testes de forma manual
- A grande vantagem nessa técnica é a sensibilidade humana
 - Cores, disposição dos componentes (qualidade)
 - Alteração do cenário de teste durante a execução
 - Por exemplo: conta de login >= 5 caracteres, realizar teste fora desse limite

Teste manual Exemplo

Testa a funcionalidade de login do SIGAA

Teste automático

- Diz respeito a código
- Envolve programador
- Envolve programação pesada e o custo pode ser elevado
- Custos para essa atividade podem chegar até 30% do custo de todo o projeto
 - Portanto, não necessariamente os testes automáticos significaram ganho de produção ou será rápido de fazer em relação ao teste manual
 - Exemplo: realizar o teste de login manual será mais rápido em relação ao teste automático, considerando que terei de implementar o teste

Teste automático

- Posso criar testes automáticos para todas as funcionalidades do mesmo sistema
- A vantagem é que quando se cria todos os testes automáticos, é possível testar todas as funcionalidades de forma muito rápida
- Um número de testes muito grande podem ser realizados em muito pouco tempo

Teste automático exemplo

Teste automático

- Portanto...
- Os testes automáticos levam bastante tempo para serem implementados, mas depois de prontos, levam pouquíssimo tempo para serem realizados
- Inclusive, possibilita que testes sejam realizados todos os dias de forma automática
 - Por exemplo: realizar cenários de testes bem específicos (segurança) todos os dias fora do horário de expediente
- Dilema aqui é o custo para criar testes automáticos

Testes manuais X Testes automáticos

Testes Manuais	Testes Automáticos		
Velocidade de execução baixa	Execução muito rápida		
Repetitivo e Cansativo	Não cansam e não sentem preguiça.		
Não exige tecnologias	Exige domínio de tecnologias específicas		
Alto custo a cada execução	Alto custo apenas na criação		
Possuem limitações quando o teste envolve situações de grande paralelismo	Permite testar situações impossíveis de testar manualmente		
Podem explorar além do cenário de teste, quando necessário	Faz apenas o programado para fazer		
Podem avaliar questões visuais como cores e formas	Não avaliam questões visuais		
Podem avaliar questões de usabilidade	Não avaliam questões de usabilidade		

Testes manuais X Testes automáticos

- Os testes automáticos, podem ser melhor utilizados principalmente, nos testes de unidade e teste de integração
- Nas outras partes do sistema, podem significar um custo muito excessivo, nesse caso realizamos os testes manuais

Mas afinal, quem leva a melhor?

- Devido à complexidade do processo de desenvolvimento, Controlar a Qualidade de Sistemas nem sempre é uma tarefa fácil para as empresas
- Para ajudar nesse desafio, tanto testes manuais como automatizados devem ser utilizados

Testes estáticos

- Os testes estáticos tem como objetivo analisar o código sem executá-lo
- Busca verificar se as boas práticas de programação foram adotadas e obedecidas
- Nesse teste se analisa o código fonte, portanto, é um teste "Caixa Branca"
- Existem ferramentas que fazem este teste automaticamente
 - Ex.: Findbugs

Testes estáticos Tipos de verificações realizadas

- Código está documentado?
- Variáveis e constantes possuem boa nomenclatura?
- Código está organizado e com boa legibilidade?
- Existem possíveis NullPointers não tratados pelo programador?
- O programador obedeceu à arquitetura do sistema ao codificar?
- As conexões com o banco de dados estão sendo fechadas após utilizadas?

Testes estáticos (análise estática) Exemplo

Testes estáticos (análise estática)

- Nesse tipo de teste é importante uma estruturação dos itens a serem testados
 - Por exemplo: check list para fazer as verificações e apontar aquilo que precisa ser ajustado

Testes estáticos (análise estática)

Projeto / Sistema:

Revisor:

Data da Revisão:

DD/MM/AAAA

#	# Item		Artefato com Erro	Correções a Serem Realizadas		
1	1 O código está documentado conforme os padrões da empresa?		Método CalculadoraDeJuros.calculajuros();	Faltou	tou documentar o método apontado.	
2	Os arquivos e classes estão com nomenclatura significativa?	Sim				
3	As variáveis e constantes estão com nomenclatura significativa?	Sim				
4	Existe algum loop sem condição de parada?	Sim				
5	Existe algum ponto de NullPointer não tratado?	Sim				
6	Existe alguma variável não inicializada?	Não	Método CalculadoraDejuros.calculajuros();	A variáve		
7	O código obedece à arquitetura pré-definida para o sistema?	Não	Método CalculadoraDeluros.calculajuros();	A abertura		
8	Foi realizado o tratamento de exceções?	Não	Método CalculadoraDeJuros.calculajuros();	Não está se		
9		Sim			Responsável pela Correção	
10		Sim				
				-		

Teste dinâmico

- Nesse teste o objetivo é validar o sistema através de sua execução, ou seja, na forma dinâmica
- Utiliza o método tradicional:
 - 1 insere uma entrada
 - 2 executa o sistema e
 - 3 confere a saída.

Teste estático e Teste dinâmico

- As análises estáticas e dinâmicas se complementam
 - A cada parte do sistema desenvolvido, pode se aplicar o teste dinâmico
 - Muito comum ser realizado por peer review
 - Pode ser utilizado técnicas check list estruturado

Teste de desempenho

 Nesse teste o objetivo é verificar e validar o desempenho do sistema no que diz respeito ao seu tempo de resposta para determinadas operações

• Exemplos:

- Tempo de resposta de um sistema bancário para processar uma operação
- Tempo de resposta do facebook para fazer upload de fotos
- Tempo de resposta de um robô médico para responder a comandos

Teste de desempenho Ferramenta Jmeter

Teste de usabilidade

 Nesse teste o objetivo é testar e validar os aspectos que envolvem a experiência do usuário ao utilizar o sistema

Exemplos:

- Estética de um website
- Definição e disposição de cores da interface do aplicativo
- Tipo de interface a ser utilizada
- Touch screen? Gestos? Sensível ao som?
- Ajuda on-line e contextual
- Manual do usuário

Teste de usabilidade Exemplo

Teste de usabilidade Exemplo

Teste de segurança

- Nesse teste o objetivo é verificar e validar a proteção do sistema contra invasões ou acesso não autorizado a informações
- Exemplos:
 - Sites com acesso restrito
 - Tráfego de informações criptografadas

Teste de segurança Exemplo

Teste de portabilidade

- Nesse teste o objetivo é verificar e validar o funcionamento do sistema em diferentes plataformas e dispositivos, nas quais o sistema está proposto a funcionar
- Exemplos:
 - IOS, Android, etc.
 - Smarphones, Tablets, Notebooks, etc.

Teste de portabilidade Exemplo

Teste de stress

- Nesse teste o objetivo é testar e validar o comportamento do sistema em condições extremas
- O stress no sistema pode abranger cargas de trabalho extremas, memória insuficiente, hardware e serviços indisponíveis ou recursos compartilhados limitados
- Executados o quanto antes para se ter o tempo necessário para corrigir ou melhorar o desempenho do sistema conforme necessário
- Exemplos:
 - Sobrecarga de acesso a um website
 - Sobrecarga de processamento em um sistema de gestão de clientes
 - Ex.: extração de relatórios grandes em paralelo

Teste de stress Ferramenta Jmeter

Teste de stress e Teste de desempenho

- Podemos utilizar o Jmeter para fazer o teste de stress, assim como no teste de desempenho
- A diferença do teste de desempenho e stress
 - Teste de desempenho: cria cenário de teste no sistema para situações curriqueiras, situações de normalidade do dia a dia e medindo o tempo de resposta dele
 - Teste de stress: cria cenário de teste no sistema para condições adversas, em situações extremas e ver se ele continua respondendo em um tempo aceitável

Resumo da implementação de testes na prática de desenvolvimento de software

