

Bioinformatical analysis of omics expression data Part 2

Dr. Michael Turewicz^{1,2}

¹Institut für Klinische Biochemie und Pathobiochemie,

Deutsches Diabetes-Zentrum, Leibniz-Zentrum für Diabetesforschung an der Heinrich-Heine-Universität, Düsseldorf, Deutschland
²Deutsches Zentrum für Diabetesforschung (DZD), München-Neuherberg, Deutschland

Course schedule

- Part 1 (25.10.23)
 - Introduction (omics, example data, programming)
 - Data preprocessing (data inspection, normalization, missing values)
 - Exercises: R programming tutorial (part 1)
- Part 2 (08.11.23)
 - Differential expression analysis (statistics, volcano plot)
 - Exercises: R programming tutorial (part 2)
- Part 3 (15.11.23)
 - Machine learning I: Clustering (clustering, PCA)
- Part 4 (22.11.23)
 - Overrepresentation analysis (GO, Reactome)
- Part 5 (29.11.23)
 - Network analysis (STRING, Cytoscape)
- Part 6 (06.12.23)
 - Machine learning II: Classification algorithms

Recap of previous part

Omics technologies

- Information at various bimolecular levels
- High-throughput measurements (proteomics → all proteins)
- Multiple samples needed
- Problems: large data, "n << p"-problem, noisy data, missing values

Example data

- Phosphoproteomics of murine adipocytes
- 4 samples before & 4 after insulin stimulation

Data preprocessing

- · Inspection / removing meaningless data
- Normalization
- Missing value imputation

Programming (example: R)

- Needed for profound & flexible data analysis
- R code in Google Colab & Rstudio
- R tutorial part 1: basic commands & functions, vectors, matrices, data frames

Finding most interesting candidates

- High-throughput measurements of many thousands of expression values of biomolecules across samples...
- Which of them are "interesting"?
- · Depends on study design
 - Often comparing target group(s) of samples with control group(s)
 - E.g. search for differences between patients and "healthy" individuals
- Goal: list of candidates for whom we have <u>clearly proven</u> <u>differential group-specific values</u>

Finding most interesting candidates

Criteria for interesting candidates

- High difference between group means → fold change
- Clear / statistically significant difference between group means → p-value

Fold change (FC)

DDZ Deutsches Diabetes-Zentrum

- Measure for effect size (biological relevance)
- Describes how much a quantity changes from an initial value (A = mean of group 1) to a target value (B = mean of group 2)
- Definition: FC = B/A
- Calculation on non-log-transformed values (in contrast to p-values)
- For analysis & visualization often log2-fold changes used

Examples:

$$A = 20, B = 80 \Rightarrow FC = 4 \Rightarrow \log_2(FC) = 2$$

 $A = 20, B = 5 \Rightarrow FC = 1/4 \Rightarrow \log_2(FC) = -2$

5

log2(FC) is symmetrical!

In general:

Statistical tests make a justified decision about the validity or invalidity of a hypothesis (the so called **null hypothesis H**₀) using available observations.

Most important example: t-test

"Do means of two experimental groups differ significantly (considering sample size & variance)?"

Variations:

- Two sample / one sample
- Unpaired / paired design
- unequal / equal variances
- Two-sided / one-sided

Default: unpaired, two-sample & two-sided t-test with unequal variances

DDZ Deutsches Diabetes-Zentrum

- n samples for group 1: $x_1, ..., x_n$
- m samples for group 2: $y_1, ..., y_m$

Test theory:

Null hypothesis H₀: there is no difference between means Alternative hypothesis H₁: there is a difference between means

$$\mu_{x} = \mu_{y}$$

$$\mu_{x} \neq \mu_{y}$$

<u>Type I error</u>: reject H_0 when it is true (probability α)

<u>Type II error</u>: do not reject H_0 when it is false (probability β)

<u>Power</u>: Probability to reject H₀ when it is false, i.e. ability to detect true differences (probability

1-β)

	Test decision				
Truth	do not reject H_0	reject H_0			
H_0 true	©	⊗ type I error (α)			
H_0 false (H_1 true)	⊗ type II error (β)	© power (1-β)			

t-test assumes that the data follow a normal distribution (in each group)

•
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

normal distribution

- Omics values are often not normal, but log-normal distributed
- → log-transformed data follows a normal distribution
- omics data are usually log-transformed before t-test calculation

• t-test statistic (for the special case m = n, i.e. equal group sizes):

$$t = \frac{\delta}{\sqrt{\frac{1}{n} (\sigma_X^2 + \sigma_Y^2)}}$$

- $\delta = \bar{x} \bar{y}$: difference of mean values of the two groups
- *n*: number of samples in each group
- σ_X^2 , σ_Y^2 : variances in the two groups
- Question: If H₀ is true, what values for t are typical?
- $\rightarrow t$ follows a t-distribution

							t(x,y)\$t
1	0.33	-0.19	-2.23	-0.18	1.95	-0.19	-1.16
2	1.51	0.50	0.48	1.41	-0.28	-0.42	0.87
3	0.46	1.22	0.24	1.45	-0.65	1.08	0.02

Random numbers from a normal distribution for which H_0 is true

t-test: p-value

DDZ

- Reject H_0 , if observed value of t is 'too extreme'
- Area under the density curve equals a probability of 1
- The p-value is the probability that under H_0 the value of the test statistic is at least as extreme as the one calculated from the data
- H_0 is rejected, if the p-value is less than a predefined (!) significance level α (usually $\alpha =$ 0.05)

$$t = 1.77$$

$$\Rightarrow p = 0.15$$

$$t = 3.00$$

 $\Rightarrow p = 0.04$

t-test: power

$$t = \frac{\delta}{\sqrt{\frac{1}{n} (\sigma_X^2 + \sigma_Y^2)}}$$

Different situations, where H_0 is false:

draw rai	Power				
Setting	n	δ	σ	est	theo
I	10	2	1	1.00	0.99
II $n\downarrow$	5	2		0.77	
III $\delta \uparrow$	10	4	1	1.00	1.00
ΙV σ↑	10	2	1.5	0.79	0.80

Power increases for:

- Higher sample sizes
- Higher group mean differences
- Smaller standard deviation (variance)

	Test decision				
Truth	do not reject H_0	reject H_0			
H_0 true	©	⊗ type I error (α)			
H_0 false (H_1 true)	⊗ type II error (β)	© power (1-β)			

Multiple testing problem

- Usually thousands of tests are performed per omics data set
- Problem: Multiple tests → inflation of false positives
- E.g., in 100 tests, at least 1 test has p < 0.05, although there is no difference between the means !!!

Number of tests (m)	Significance level α per test	Cumulated type I error (= π)
1	0.05	0.05
2	0.05	0.0975
3	0.05	0.142625
5	0.05	0.2262191
10	0.05	0.4012631
100	0.05	0.9940795
1,000	0.05	1
10,000	0.05	1

P-value adjustment

m: number of conducted tests

Family-wise error rate (FWER):

- Probability of obtaining at least one false positive, if H₀ is true for all tests
- P-values can be corrected by Bonferroni method (multiplication of p-values with m)
 ⇒ FWER < 0.05

False discovery rate (FDR):

- FDR = $\frac{\text{# false positives}}{\text{# all significant proteins}}$
- Correct p-values by **Benjamini-Hochberg method**: (\Rightarrow FDR \leq 0.05)

$$\widetilde{p}_{(m)} = p_{(m)}$$

$$\widetilde{p}_{(i)} = \min \left(p_{(i)} \cdot \frac{m}{i}, \widetilde{p}_{(i+1)} \right)$$

P-value adjustment

- p-values are enlarged
- → less proteins are significant, i.e. have a p-value below 0.05
- → remaining significant proteins are more reliable

Under H0, p-values follow a continuous uniform distribution between 0 and 1

Volcano plot

- For each protein, you have now calculated a p-value and a fold change
- Volcano plot shows $-\log_{10}(p value)$ vs. $\log_2(FC)$

- Promising biomarker candidates usually have a small p-value (≤ 0.05) and a large fold change (|FC| ≥ 2)
- i.e. these proteins show up in the left and right upper corners of the volcano plot
- Usually, the original p-values are used, proteins that are significant after FDR-correction can be coloured

Volcanoplot

Goal: list of candidates

• E.g., top 20 list of phosphopeptides sorted according to p-value and FC

Peptide ID	Modifications 🔻	FC ↓↓	p-value 🔻	Adj. p-value	Basal1 🔻	Basal2 🔻	Basal3 🔻	Basal4	Insulin1 🔻	Insulin2	Insulin3	Insulin4
P31750_peptide2	P31750 2xPhospho	87.759	1.00E-17	1.80E-16	630424	NA	NA	NA	50854105.7	56748133.2	53937850.6	66060762.5
Q91V92_peptide5	Q91V92 1xPhospho	76.389	1.00E-17	1.80E-16	365200.875	NA	NA	NA	18304132.6	28179874.2	27617663.7	30173615.6
Q60823_peptide2	Q60823 2xPhospho	61.726	1.00E-17	1.80E-16	391435.188	5295027.65	2064519.27	NA	98298839.2	122817396	132223911	135915099
Q9Z120_peptide1	Q9Z120 1xPhospho	59.368	1.00E-17	1.80E-16	NA	NA	368242.827	NA	25278608.6	16221798.1	22371727.7	21363576.2
P62754_peptide1	P62754 3xPhospho	58.029	1.00E-17	1.80E-16	132964376	115745575	88336907.5	70498239.6	5273357626	5482982170	6529024054	5500987554
Q3UPF5_peptide1	Q3UPF5 3xPhospho	55.58	1.00E-17	1.80E-16	1321675.5	NA	NA	1216819.49	46805297	64310257.9	78871339.2	77251959.9
Q61409_peptide11		51.747	1.00E-17	1.80E-16	1054045.75	994530.441	1094527.15	NA	50056270.5	42749707.9	71931937.2	58231950.5
Q60876_peptide6	Q60876 3xPhospho	48.543	1.00E-17	1.80E-16	2450149.52	3887475.35	1218929.51	1192042.64	90657018.4	106706158	77068720	65951887.9
Q8BSK8_peptide5	Q8BSK8 1xPhospho	47.575	1.00E-17	1.80E-16	438437.25	NA	NA	NA	19652045.1	19467464.5	23411671.4	22139707.3
Q9QZQ1_peptide2	Q9QZQ1 1xPhosph	45.662	1.00E-17	1.80E-16	1779093	2028343.57	2630561.25	2326267.68	90538602.2	107507126	96409359.5	104953921
Q61409_peptide13	Q61409 1xPhospho	45.139	1.00E-17	1.80E-16	3462868.75	5801882.22	4316337.31	3943713.43	218861197	212524391	170486066	163215416
Q8K3A9_peptide3	Q8K3A9 1xPhospho	44.651	1.00E-17	1.80E-16	5703.89014	NA	NA	NA	52094.7211	379647.555	246306.627	263341.943
O70405_peptide15	O70405 2xPhospho	41.604	1.00E-17	1.80E-16	443341.813	NA	NA	NA	18736060.7	18185062.1	18708450.2	18145959.1
Q69ZS7_peptide1	Q69ZS7 1xPhospho	41.419	1.00E-17	1.80E-16	441748.656	NA	NA	680786.613	19914047.7	21432643.3	25907033	25382133.9
Q3UR85_peptide1	Q3UR85 1xPhospho	38.857	1.00E-17	1.80E-16	NA	NA	551828.909	NA	28871425.6	24805324.8	18535045.7	15695373.7
Q9CW46_peptide5	Q9CW46 1xPhosph	38.717	1.00E-17	1.80E-16	NA	NA	88985.1395	77512.1016	2512392.47	3042619.82	3398112.3	3642486.71
P42128_peptide4	P42128 2xPhospho	37.731	1.00E-17	1.80E-16	845668.688	495542.055	NA	NA	17804434.3	29783485.8	28000820.3	33508440.4
P62754_peptide5	P62754 3xPhospho	36.156	1.00E-17	1.80E-16	10185576	9222357.74	8766475.33	3376205.11	471642161	325093580	252502586	153500204
E9PYH6_peptide2	E9PYH6 2xPhospho	35.877	1.00E-17	1.80E-16	1019608.13	3314505.19	1914659	2002022.6	64315163.8	72497853.2	76069086.9	68056702.1
Q6P5E6_peptide2	Q6P5E6 1xPhospho	34.864	1.00E-17	1.80E-16	363606.469	1143499.06	581036.554	397762.632	12694787.1	25750223.3	20228799.1	17225119.7

Hands on part!

Exercises

• Exercise 2

- https://drive.google.com/drive/folders/1vmewprs0gkpakU8idbgt exDlwmGVUJz3?usp=sharing
- Work through part 2 of the given R tutorial (video & slides)
- Solve tutorial exercises 2.2 2.10
- Please send me your solutions as an ".R"-file

Thank you!

