Сравним

Определение 1. Целые числа a и b называют сравнимыми по модулю целого ненулевого числа c, если a-b делится на c.

Определение 2. Целые числа a и b называют сравнимыми по модулю целого ненулевого числа c, если a и b дают одинаковые остатки при делении на c. Обозначение $a \equiv b$ или $a \equiv b \pmod{c}$.

- 1. Докажите, что определения равносильны (если выполнено одно, то выполнено и другое).
- 2. Докажите свойства сравнений:
- а) если $a \equiv b$ и $b \equiv c$, то $a \equiv c$;
- б) если $a \equiv b$ и $c \equiv d$, то $a \pm c \equiv b \pm d$; в) если $a \equiv b$ и $c \equiv d$, то $a \pm c \equiv b \pm d$; в) если $a \equiv b$ и $c \equiv d$, то $ac \equiv bd$;
- **3.** Что больше: $2^{100} + 3^{100} + 4^{100}$ или 4^{101} ?
- 4. Найдите остаток выражения $1000 \cdot 1001 \cdot 1002 \cdot 1003 998 \cdot 997 \cdot 996 \cdot 995$ при делении на 999.
- Может ли оказаться, что в некоторый момент шахматного турнира, в котором участвуют 11 семиклассников, каждый сыграл по 3 партии?
- **6.** Докажите, что $\overline{abcdef} \equiv a+b+c+d+e+f$.
- 7. На доске написано три различных натуральных числа a, b, c каждую минуту робот стирает числа и пишет вместо них a+b-c,c+b-a,c+a-b. Докажите, что через некоторое время на доске появится отрицательное число.
- 8. На двух параллельных прямых отметили по n точек и соединили отрезками все точки с одной прямой с всеми точками с другой прямой. Сколько получилось точек пересечения?
- 9. Докажите, что произведение k последовательных натуральных чисел делится на k!. Вспомните задачу про $\frac{2008!}{(251!)^8}$.
- 10. Пусть A произведение всех нечетных чисел от 1 до 2009, B произведение всех четных чисел от 2 до 2010. Докажите, что A+B делится на 2011.