The z Transform

EPD 30.114 ADVANCED FEEDBACK & CONTROL

Role of the z Transform

- Recall that the Laplace Transform was a crucial mathematical tool in the analysis and synthesis of <u>continuous-time</u> control systems which are described using <u>linear time-invariant (LTI) differential</u> equations
- The z Transform plays a similar role in the analysis and synthesis of discrete-time control systems which are described using linear timeinvariant (LTI) difference equations
- With the z transform method, the solutions to the LTI difference equations become algebraic in nature (now in z rather than s)
- For the rest of the class, we will only consider discrete-time systems (sampling only, no amplitude quantization) that have periodic sampling
- Representation of Discrete-Time signals:
 - Let T be the sampling period, a sequence of discrete value sampled from x(t):

$$x(kT) = x(0)$$
 , $x(T)$, $x(2T)$, $x(3T)$, \cdots $x(k) = x(0)$, $x(1)$, $x(2)$, $x(3)$, \cdots Explicit expression with T

Definition of the z Transform

• Consider a time function x(t) for t>0, the sampled values of x(t), if the sampling period was T is expressed by:

$$x(kT) = x(0)$$
, $x(T)$, $x(2T)$, ... $x(k) = x(0)$, $x(1)$, $x(2)$, ...

• The z transform of x(t) is denoted by X(z) and described by:

$$\mathcal{Z}[x(t)] = X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} x(k)z^{-k}$$
Blast from the past!
$$\mathcal{L}[f(t)] = F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$$

Where: z is a complex variable

 \mathcal{Z} is the z Transform Operator

X(z) is the z Transform of x(t)

- Because the z transform can be expressed as a series, the z^{-k} indicates the position in time at which the amplitude x(kT) occurs
- z Transform is also linear! $\mathcal{Z}[a_1x_1(t) + a_2x_2(t)] = a_1X_1(z) + a_2X_2(z)$

Geometric Series

- Before we continue, we need to refresh a fairly important theorem in mathematics!
- To motivate, let's tell a joke!

An infinite number of mathematicians walk into a bar...

The first one orders a beer.

The second one orders half a beer.

The third one orders a fourth of a beer.

The bartender stops them, pours two beers and says, "You're all a bunch of idiots."

• The punchline?
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$

It is derived from the Geometric Power Series where:

$$\boxed{1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}} \quad \text{Series converges if } |x| < 1} \qquad \boxed{1 + 2x + 3x^2 + \dots = \frac{1}{(1 - x)^2}}$$

Remember this series, we will use it again shortly!

zT of Elementary Functions

The Unit-Step Function: (Unit-Step Sequence)

$$x(t) = \begin{cases} 1(t) & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$x(kT) = x(k) = 1$$
 $k = 0, 1, 2, 3, \cdots$

The Unit-Ramp Function:

$$x(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$x(kT) = kT k = 0,1,2,3,\cdots$$
$$x(k) = k$$

$$X(z) = \sum_{k=0}^{\infty} 1z^{-k} = 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$

$$= \frac{1}{1 - z^{-1}}$$

$$= \frac{z}{z - 1}$$
Laplace
$$X(z)$$

Laplace Transform

$$X(s) = \frac{1}{s}$$

$$X(z) = \sum_{k=0}^{\infty} kTz^{-k} = T\left(z^{-1} + 2z^{-2} + 3z^{-3} + \cdots\right)$$

$$= Tz^{-1}\left(1 + 2z^{-1} + 3z^{-2} + \cdots\right)$$

$$= \frac{Tz^{-1}}{\left(1 - z^{-1}\right)^{2}}$$

$$= \frac{Tz}{\left(z - 1\right)^{2}}$$

$$X(s) = \frac{1}{s^{2}}$$

zT of Elementary Functions

The Exponential Function:

The Exponential Function:
$$x(t) = \begin{cases} e^{-at} & t \ge 0 \\ 0 & t < 0 \end{cases} \qquad X(z) = \sum_{k=0}^{\infty} e^{-akT} z^{-k} = 1 + e^{-aT} z^{-1} + e^{-2aT} z^{-2} + e^{-3aT} z^{-3} + \cdots$$

$$x(kT) = e^{-akT} \qquad k = 0, 1, 2, 3, \cdots \qquad = \frac{1}{1 - e^{-aT} z^{-1}} \qquad X(s) = \frac{1}{s + a}$$

$$= \frac{z}{z - e^{-aT}}$$

The Sinusoidal Function:

$$x(t) = \begin{cases} \sin \omega t & t \ge 0 \\ 0 & t < 0 \end{cases} \qquad X(z) = \mathcal{Z} \left[\frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right) \right]$$

$$= \frac{1}{2j} \left(\frac{1}{1 - e^{j\omega T} z^{-1}} - \frac{1}{1 - e^{-j\omega T} z^{-1}} \right)$$

$$= \frac{z^{-1} \sin \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}} = \frac{z \sin \omega T}{z^{2} - 2z \cos \omega T + 1}$$

zT of Elementary Functions

The Polynomial Function:

The Polynomial Function:
$$x(k) = \begin{cases} a^k & k = 0, 1, 2, 3, \dots \\ 0 & k < 0 \end{cases}$$

$$X(z) = \sum_{k=0}^{\infty} a^k z^{-k} = 1 + az^{-1} + a^2 z^{-2} + a^3 z^{-3} + \dots$$

$$= \frac{1}{1 - az^{-1}}$$
 No Laplace Equivalent!
$$= \frac{z}{z - a}$$

The Unit-Impulse Sequence:

$$x(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

$$X(z) = 1$$

Similar to Unit-Impulse Function

$$X(s) = 1$$

Properties of zT

- Similar to the Laplace Transform, there are several properties for zT
 - Unlike LT, there is no more differentiation and integration properties as they no longer exist in discrete signals
- Linearity:

$$\mathcal{Z}[a_1 x_1(t) + a_2 x_2(t)] = a_1 X_1(z) + a_2 X_2(z)$$

• Multiplicative (Scaling):

$$\mathcal{Z}\Big[a^k x(k)\Big] = X(a^{-1}z)$$

Time Shift:

$$\mathcal{Z}[x(t-nT)] = z^{-n}X(z)$$

$$\mathcal{Z}\left[x(t+nT)\right] = z^{n} \left[X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k}\right]$$

zT Pairs

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	_	_	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1
2.	_	_	$ \begin{array}{ccc} S_0(n-k) \\ 1 & n=k \\ 0 & n \neq k \end{array} $	z ^{-k}
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e^{-akT}	$\frac{1}{1 - e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2 z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}$
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1 - e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{\left(e^{-aT}-e^{-bT}\right)z^{-1}}{\left(1-e^{-aT}z^{-1}\right)\left(1-e^{-bT}z^{-1}\right)}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$

zT Pairs

	T	I	I	
12.	$\frac{2}{(s+a)^3}$	t ² e ^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^{2}e^{-aT}\left(1+e^{-aT}z^{-1}\right)z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^{3}}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{\left[\left(aT - 1 + e^{-aT}\right) + \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-1}\right]z^{-1}}{\left(1 - z^{-1}\right)^2\left(1 - e^{-aT}z^{-1}\right)}$
14.	$\frac{\omega}{s^2 + \omega^2}$	sin ωt	sin <i>wkT</i>	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos ωt	cos <i>∞kT</i>	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin ωt	e ^{-akT} sin <i>∞kT</i>	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	e ^{-at} cos <i>wt</i>	e ^{-akT} cos <i>@kT</i>	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	_	_	a^k	$\frac{1}{1-az^{-1}}$
19.	_	_	a^{k-1} $k = 1, 2, 3,$	$ \frac{1-az^{-1}}{1-az^{-1}} $ $ \frac{z^{-1}}{1-az^{-1}} $ $ z^{-1} $
20.	_	_	ka ^{k-1}	$(1-az^{-1})^2$
21.	_	_	k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	_	_	k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$

Exercise:

• Find the z-Transform of: x(t) = 1(t-T)x(t) = 1(t-4T)

$$\mathcal{Z}[1(t-T)] = z^{-1}\mathcal{Z}[1(t)] = z^{-1}\frac{1}{1-z^{-1}} = \frac{z^{-1}}{1-z^{-1}}$$

$$\mathcal{Z}[1(t-4T)] = z^{-4}\mathcal{Z}[1(t)] = z^{-4}\frac{1}{1-z^{-1}} = \frac{z^{-4}}{1-z^{-1}}$$

Exercise

• Consider a function y(k) which is defined as a sum of functions x(h) such that

$$y(k) = \sum_{h=0}^{k} x(h)$$

Find the z transform of y(k)

$$y(k) = x(0) + x(1) + \dots + x(k-1) + x(k)$$
$$y(k-1) = x(0) + x(1) + \dots + x(k-1)$$

Subtracting:

$$y(k) - y(k-1) = x(k)$$

Taking zT:

$$\mathcal{Z}[y(k) - y(k-1)] = \mathcal{Z}[x(k)]$$
$$Y(z) - z^{-1}Y(z) = X(z)$$

$$Y(z) = \frac{1}{1 - z^{-1}} X(z)$$

Initial & Final Value Theorem (IVT, FVT)

• IVT: If x(t) has the z transform X(z) and if the limit exists, $\lim_{z\to\infty} X(z)$

Then the initial value x(0) of x(t) or x(k) is given by:

$$x(0) = \lim_{z \to \infty} X(z)$$

Why? Easy!

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0) + x(1)z^{-1} + x(2)z^{-2} + \cdots$$

■ **FVT:** Suppose that x(k), where x(k)=0 for k<0, has the z transform X(z) and that all the poles of X(z) lie **inside the unit circle**, with exception of the pole at z=1. The final value of x(k) as k approaches infinity is:

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} \left[\left(1 - z^{-1} \right) X(z) \right]$$

Why?

$$\mathcal{Z}[x(k)] = X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$$

$$\mathcal{Z}[x(k-1)] = z^{-1}X(z) = \sum_{k=0}^{\infty} x(k-1)z^{-k}$$

$$\sum_{k=0}^{\infty} x(k)z^{-k} - \sum_{k=0}^{\infty} x(k-1)z^{-k} = X(z) - z^{-1}X(z)$$

$$\lim_{z \to 1} \left[\sum_{k=0}^{\infty} x(k)z^{-k} - \sum_{k=0}^{\infty} x(k-1)z^{-k} \right] = \lim_{z \to 1} \left[\left(1 - z^{-1} \right) X(z) \right]$$

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} \left[\left(1 - z^{-1} \right) X(z) \right]$$

Exercise

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} \left[\left(1 - z^{-1} \right) X(z) \right]$$

■ Determine the final value of x(t) (or x(k)) of $X(z) = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-aT}z^{-1}}$ a > 0

$$x(\infty) = \lim_{z \to 1} \left[\left(1 - z^{-1} \right) \left[\frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-aT} z^{-1}} \right] \right]$$
$$= \lim_{z \to 1} \left[1 - \frac{1 - z^{-1}}{1 - e^{-aT} z^{-1}} \right] = 1$$

For the given X(z), it was actually the z Transform of:

$$x(t) = 1 - e^{-at}$$

zT Properties

	x(t) or $x(k)$	$Z\{x(t)\}$ or $Z\{x(k)\}$
1.	ax(t)	aX(z)
2.	$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$
3.	x(t+T) or $x(k+1)$	zX(z)-zx(0)
4.	x(t+2T)	$z^2X(z)-z^2x(0)-zx(T)$
5.	x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$
6.	x(t+kT)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(T)-\ldots-zx(kT-T)$
7.	x(t-kT)	$z^{-k}X(z)$
8.	x(n+k)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(1)-\ldots-zx(k1-1)$
9.	x(n-k)	$z^{-k}X(z)$
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$
11.	kx(k)	$-z\frac{d}{dz}X(z)$
12.	$e^{-at}x(t)$	$X(ze^{aT})$

zT Properties

		1
13.	$e^{-ak}x(k)$	$X(ze^a)$
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
15.	$ka^kx(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$
16.	x(0)	$\lim_{z \to \infty} X(z) \text{if the limit exists}$
17.	$x(\infty)$	$\lim_{z \to 1} \left(1 - z^{-1} \right) X(z) $ if $\left(1 - z^{-1} \right) X(z)$ is analytic on and outside the unit circle
18.	$\nabla x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z)-zx(0)
20.	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$
21.	$\frac{\partial}{\partial a}x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$
23.	$\sum_{k=0}^{n} x(kT)y(nT - kT)$	X(z)Y(z)
24.	$\sum_{k=0}^{\infty} x(k)$	X(1)