AN INTRODUCTION TO **HUMAN SPATIAL HEARING**

Richard O. Duda CIPIC Interface Laboratory **UC** Davis

http://phosphor.cipic.ucdavis.edu

October 12, 2000

OVERVIEW

- · Physics of sound
- · Acoustic cues for sound localization
- Azimuth
- Elevation
- Range
- · Head-related transfer functions (HRTFs)
- · Approaches to synthesizing spatial sound
- · Opportunities and challenges

MULTIPATH PROPAGATION

AXIOM I

The sound pressure at the two ear drums is a sufficient stimulus.

Producing the same sound pressure will produce the same auditory perception.

Caveats:

- · Bone conduction
- Adaptation
- Conflicting visual cues
- · Conflicting expectations

AXIOM II

Exact reproduction of the sound pressure is not necessary for producing the same auditory perception.

The limitations of neural responses allow different (and simpler) stimuli to produce the same response.

Examples:

• Bandwidth (20 Hz to 20 kHz) Amplitude (1-dB resolution) Monaural phase (2-ms resolution) Latency (10-ms resolution) • Spectral fine structure (critical bands, Q = 8)

AXIOM III

Although it is not necessary to reproduce all of the cues exactly, conflicting cues degrade perception.

Key engineering challenge -- find the most cost-effective approximation.

ASSESSING THE ELLIPSOIDAL TORSO MODEL

- Five parameters; still easily customized
- Provides an elevation cue
 - Significant below 3 kHz
 - · Ineffective in median plane
- Only one component of a full model

SPATIAL SOUND SYSTEMS

Multichannel

Two-channel: headphones

Two-channel: crosstalk-canceled loud speakers

umd00_systen

MULTICHANNEL SYSTEMS

Pros

- · Works with a large audience
- · No customization needed
- Conceptually simple

Cons

- · Speakers must be distant
- Many channels needed for full 3-D
- Space consuming, expensive

umd00_system

TWO-CHANNEL: HEADPHONES

Pros

- Can reproduce full 3-D with only 2 channels
- · Private and non-interfering
- . Conceptually simple

Cons

- · Uncomfortable for extended use
- Clumsy for a large audience
- Requires customization for full 3-D
- Difficult to achieve frontal externalization

umd00_systems

TWO-CHANNEL: CROSSTALK-CANCELED LOUD SPEAKERS

Pros

- Can reproduce full 3-D with only 2 channels
- Unencumbered listening

Cons

- Small "sweet spot"
- Cannot be used with a large audience
- Requires customization for full 3-D
- Difficult to get near or rear locations

umd00_system

APPROACHES TO CUSTOMIZATION

- · Measure exact HRTF for each person
 - Acoustic
- Computational
- · Nearest-neighbor
 - Trial and error
- Anthropometry
- Scale a standard HRTF
 - Global
 - Pinna/head/torso components
- Use an adaptive model
 - Match to anthropometry
 - Match to exact HRTF

CHALLENGES AND OPPORTUNITIES

- Frequency range (combining partial HRTFs)
- · Elevation perception
 - Front/back confusion
 - · Low elevations
- Range perception
 - Headphones: externalization
 - Median plane
 - Frontal
 - Speakers: back locations
- Transducers
 - Headphone compensation
 - Loudspeaker "sweet spot"
- · Latency in dynamic systems
- Room acoustics

umauu_prooie