Distributed Memory Programming (2D)

ICS632: Principles of High Performance Computing

Henri Casanova (henric@hawaii.edu)

Fall 2015

Outline

- 1 Introduction
- 2 Matrix Multiplication
- 3 Conclusion

Grid/Torus of Processors

2-D Data Distribution

- We'll only consider 2-D square matrices
- There is thus a natural "block" data distribution:

$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{0,3}$	$A_{0,4}$
$A_{1,0}$	$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,0}$	$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,0}$	$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

■ Each of the p processes holds a $N/p \times N/p$ matrix block of an $N \times N$ matrix

How do Matrices Get Distributed?

- You can do whatever you want, but what about libraries?
- Option #1 Centralized: when calling a function (e.g., matrix multiplication) the input data is available on a single "master" machine (perhaps in a file) the input data must then be distributed among workers the output data must be undistributed and returned to the "master" machine (perhaps in a file)
 - More natural/easy for the user
 - The library makes data distribution decisions transparently
 - Prohibitively expensive if one does sequences of operations!!
- Option #2 Distributed: When calling a function (e.g., matrix multiplication), one assumes that the input is already distributed and the output is left distributed
 - More work for the user
 - May lead to "redistribution" of data in between calls, which is harder for the user and may be costly
- Most current software adopt the distributed approach
- We always assume that the data is magically already distributed

Outline

- 1 Introduction
- 2 Matrix Multiplication
- 3 Conclusion

Outer-Product Algorithm

- Let's see one classic matrix-multiplication algorithm
- Consider the k-i-j order:

```
for (k=0; k < N; k++)
for (i=0; i < N; i++)
for (j=0; j < N; j++)
    C[i][j] += A[i][k] * B[k][i];</pre>
```

- This is a sequence of N outer-products!
 - Multiply a column vector by a row vector


```
for (k=0; k < N; k++)
// Multiply a column of A by a row of B
for (i=0; i < N; i++)
for (j=0; j < N; j++)
C[i][j] += A[i][k] * B[k][i];</pre>
```



```
for (k=0; k < N; k++)
// Multiply a column of A by a row of B
for (i=0; i < N; i++)
for (j=0; j < N; j++)
C[i][j] += A[i][k] * B[k][i];</pre>
```



```
for (k=0; k < N; k++)
// Multiply a column of A by a row of B
for (i=0; i < N; i++)
for (j=0; j < N; j++)
    C[i][j] += A[i][k] * B[k][i];</pre>
```


So What??

- Why do we care about thinking of matrix multiplication this way???
 - Note that in principles there are n^3 ! possible sequential algorithms
- Because it's possible to have a very elegant parallel algorithm
- Let's see a small example for a 4×4 grid of processors...

The Outer-Product Algorithm

$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{0,3}$	$A_{0,4}$
$A_{1,0}$	$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,0}$	$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,0}$	$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{0,0}$	$B_{0,1}$	$B_{0,2}$	$B_{0,3}$	$B_{0,4}$
$B_{1,0}$	$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,0}$	$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,0}$	$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,0}$	$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$C_{0,0}$	$C_{0,1}$	$C_{0,2}$	$C_{0,3}$	$C_{0,4}$
$C_{1,0}$				
$C_{2,0}$		_		
$C_{3,0}$				
$C_{4,0}$	$C_{4,1}$	$C_{4,2}$	$C_{4,3}$	$C_{4,4}$

```
for (k=0; k < N; k++)
for (i=0; i < N; i++)
for (j=0; j < N; j++)
// Block operations
C_{[i,]} += A_{[i,k]} * B_{[k,j]});
```

- At step k, processor (i, j) needs $A_{i,k}$ and $B_{k,j}$
- If j = k, processor (i, j) already has A_{i,k}, otherwise it must receive it from processor (i, k)
- If i = k, processor (i, j) already has $B_{k,j}$, otherwise it must receive it from processor (k, j)

Communication Pattern

- From the previous slide:
 - At step k, processor (i,j) needs $A_{i,k}$ and $B_{k,j}$
 - If j = k, processor (i, j) already has $A_{i,k}$, otherwise it must receive it from processor (i, k)
 - If i = k, processor (i,j) already has $B_{k,j}$, otherwise it must receive it from processor (k,j)
- Therefore, at step k = 0, ..., p 1:
 - ∀i, processor (i, k) broadcasts its block of A to all processors in row i
 - $\forall j$, processor (k,j) broadcasts its block of B to all processors in column j
- Let's see it on a picture...

Communication Pattern: k = 1

The Outer-Product Algorithm

```
p = sqrt(num_procs());
int A[N/p][N/p],B[N/p][N/p],C[N/p][N/p];
int bufferA[N/p][N/p], bufferB[N/p][N/p];
(myrow, mycol) = my_2D_rank()
for (int k=0; k < p; k++) {
  // Broadcast A along rows
  BroadcastRow((myrow,k), A, bufferA, N/p * N/p);
  // Broadcast B along columns
  BroadcastColumn((k,mycol), B, bufferB, N/p * N/p);
  // Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd() function)
  if ((mvrow == k) && (mvcol == k))
    MatrixMultiplyAdd(C, A, B, N/p, N/p);
  else if (myrow == k)
    MatrixMultiplyAdd(C, bufferA, B, N/p, N/p);
  else if (mycol == k)
    MatrixMultiplyAdd(C, A, bufferB, N/p, N/p);)
  else
    MatrixMultiplyAdd(C, bufferA, bufferB, N/p, N/p);)
```

Performance Analysis

- \blacksquare β : time to do a row/column broadcast
- \blacksquare γ : time to compute a block
- No overlap: time = $p \times (\beta + \beta + \gamma)$
- Some overlap: time = $\beta + \beta + (p-1) \max(\beta + \beta, \gamma) + \gamma$
- This algorithm is in fact asymptotically optimal

Grid vs. Ring

- On a Ring, with a 1-D data distribution we already have an asymptotically optimal algorithm (same ideas as for the 1-D Matrix Vector multiply)
- So who cares about this more complex algorithm?
- If N is huge, we don't care
- But in fact, using a 2-D distribution reduces communication costs
- The algorithm sends less data overall
- And it can be proven that even if the underlying platform is not a torus, the 2-D algorithm is still better than the 1-D algorithm

Other Matrix Multiplication Algorithms

- People have come up with many algorithms
 - Cannon (1969)
 - Fox (1987)
 - Snyder (1992)
 - ...
- They all correspond to "cruising" through the operations in different (possibly really confusing) order
- Some begin by shuffling things around in each matrix!

- If N >> p, then blocks are large
- This can be a problem as it limits parallelism
- One "swiss army knife" solution is to use a 2-D Block Cyclic Distribution
 - Doesn't matter which way the computation "moves", we should be ok...
- Let's see what that looks like...

What One Processor Holds

Fun local/global indices computations!

- All algorithms we've seen so far can be implemented with the 2-D Block Cyclic distribution
- If you don't abstract it away a bit, the code becomes horrendous
- But you'd get performance benefits from it
- For instance, the ScaLAPACK library recommends 2-D block cyclic distributions
 - It actually supports other distributions

Outline

- 1 Introduction
- 2 Matrix Multiplication
- 3 Conclusion

What was all this????

- These lecture notes are representative of "traditional" parallel computing
- Similar algorithms have been studied for decades, their performance analyzed in depth
 - Using various models/assumptions
- We have a programming assignment on this topic...
- The main caveat of all this material is that when the assumptions break down, or when the platform becomes is very complex, then many difficulties arise
- For instance, when the platform is heterogeneous...