Quantum state discrimination and Holevo–Helstrom theorem

Ryuhei Mori

Tokyo Institute of Technology

Discrimination of probability distributions

Discrimination of probability distributions:

- p_0 , p_1 : Known probability distributions on a finite set \mathcal{X} .
- $\lambda \in [0, 1]$: A probability of choosing the probability distributions.

- Input: $x \in \mathcal{X}$ drawn from p_0 with probability λ , and from p_1 with probability 1λ .
- Output: $i \in \{0, 1\}$ that indicates the probability distribution p_i .

Maximum probability of success: Discrimination of probability distributions

Theorem

The maximum probability of success is equal to

$$\frac{1 + \|\lambda p_0 - (1 - \lambda)p_1\|_1}{2}$$

where $||a||_1 := \sum_{x} |a(x)|$.

Proof.

Let $d: \mathcal{X} \to \{0,1\}$ be a discriminator. Assume we get 1 point if succeeds, and loose 1 point if fails. Then, expected point is bounded by

$$\begin{split} &\lambda \sum_{x \in \mathcal{X}} p_0(x) (-1)^{d(x)} + (1 - \lambda) \sum_{x \in \mathcal{X}} p_1(x) (-1)^{d(x)+1} \\ &= \sum_{x \in \mathcal{X}} (\lambda p_0(x) - (1 - \lambda) p_1(x)) (-1)^{d(x)} \le \|\lambda p_0 - (1 - \lambda) p_1\|_1. \end{split}$$

The equality is achieved by d(x) that is 0 iff $\lambda p_0(x) \geq (1-\lambda)p_1(x)$. On the other hand, the expected point is $p_{\text{succ}} - p_{\text{fail}} = 2p_{\text{succ}} - 1$.

Discrimination of quantum states

Discrimination of quantum states:

- ρ_0 , ρ_1 : Known quantum states.
- $\lambda \in [0, 1]$: A probability of choosing the quantum states.

- Input: A quantum state ρ_0 is given with probability λ , and ρ_1 is given with probability 1λ .
- Output: $i \in \{0, 1\}$ that indicates the given state ρ_i .

Maximum probability of success: Discrimination of quantum states

Theorem (Holevo-Helstrom theorem)

The maximum probability of success is equal to

$$\frac{1 + \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1}{2}$$

where $||A||_1 := \text{Tr}(\sqrt{A^{\dagger}A})$, which is a sum of the singular values of A.

Proof.

Once a measurement $(P_y)_{y\in\mathcal{Y}}$ is fixed, we get a classical probability distribution $p_0(y):=\operatorname{Tr}(\rho_0P_y)$ and $p_1(y):=\operatorname{Tr}(\rho_1P_y)$. In this case, the maximum probability of success is given by

$$\frac{1 + \|\lambda p_0 - (1 - \lambda)p_1\|_1}{2}$$

Hence, it's sufficient to show

$$\max_{(P_y)_{y \in \mathcal{Y}}} \|\lambda p_0 - (1 - \lambda)p_1\|_1 = \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1.$$

Holevo-Helstrom theorem

$$\begin{split} & \max_{(P_y)_{y \in \mathcal{Y}}} \|\lambda p_0 - (1 - \lambda) p_1\|_1 = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\lambda p_0(y) - (1 - \lambda) p_1(y)| \\ & = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\lambda \mathsf{Tr}(\rho_0 P_y) - (1 - \lambda) \mathsf{Tr}(\rho_1 P_y)| \\ & = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\mathsf{Tr}((\lambda \rho_0 - (1 - \lambda) \rho_1) P_y)| \end{split}$$

Let

$$\lambda \rho_0 - (1 - \lambda)\rho_1 = \sum_{\mathsf{x} \in \mathcal{X}} \mu_\mathsf{x} \ket{\psi_\mathsf{x}} \bra{\psi_\mathsf{x}}$$

be a spectral decomposition. Then,

$$\begin{aligned} & \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} |\mathsf{Tr}\left((\lambda \rho_0 - (1 - \lambda)\rho_1)P_y\right)| = \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} \left| \sum_{x \in \mathcal{X}} \mu_x \left\langle \psi_x \right| P_y \left| \psi_x \right\rangle \right| \\ & \leq \max_{(P_y)_{y \in \mathcal{Y}}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} |\mu_x| \left\langle \psi_x \right| P_y \left| \psi_x \right\rangle = \sum_{x \in \mathcal{X}} |\mu_x| = \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1. \end{aligned}$$

The maximum is achieved by
$$\mathcal{Y}=\mathcal{X}$$
 and $P_x=|\psi_x\rangle\,\langle\psi_x|$, and $\mathcal{Y}=\{0,1\}$ and $P_0=\sum_{x:\mu_x\geq 0}|\psi_x\rangle\,\langle\psi_x|$, $P_1=\sum_{x:\mu_x<0}|\psi_x\rangle\,\langle\psi_x|$.

Discrimination of pure states

The maximum probability of success for discrimination of $|\psi\rangle\langle\psi|$ and $|\varphi\rangle\langle\varphi|$ is given by

$$\|\lambda |\psi\rangle \langle \psi| - (1-\lambda) |\varphi\rangle \langle \varphi|\|_{1}$$

Let $A:=\lambda |\psi\rangle \langle \psi|-(1-\lambda)|\varphi\rangle \langle \varphi|$. Then, A has rank at most two. From

$$\begin{split} \operatorname{Tr}(A) &= \mu_0 + \mu_1 = \lambda - (1 - \lambda) \\ \operatorname{Tr}(A^2) &= \mu_0^2 + \mu_1^2 = \lambda^2 + (1 - \lambda)^2 - 2\lambda(1 - \lambda)|\langle \psi | \varphi \rangle|^2, \end{split}$$

$$2\mu_{0}\mu_{1} = (\mu_{0} + \mu_{1})^{2} - (\mu_{0}^{2} + \mu_{1}^{2}) = -2\lambda(1 - \lambda)(1 - |\langle\psi|\varphi\rangle|^{2}) \leq 0.$$

$$(\mu_{0} - \mu_{1})^{2} = (\mu_{0}^{2} + \mu_{1}^{2}) - 2\mu_{0}\mu_{1} = (\lambda + (1 - \lambda))^{2} - 4\lambda(1 - \lambda)|\langle\psi|\varphi\rangle|^{2}$$

$$||A||_{1} = |\mu_{0}| + |\mu_{1}| = |\mu_{0} - \mu_{1}| = \sqrt{1 - 4\lambda(1 - \lambda)|\langle\psi|\varphi\rangle|^{2}}.$$

Trace norm

The trace norm is the sum of the singular values. Hence, it satisfies the unitary invariance

$$||UAV||_1 = ||A||_1$$

for any unitary matrices U and V.

For

$$A = \sum_{j} \lambda_{j} \ket{\psi_{j}} \bra{\varphi_{j}}$$
 (singular decomposition)
$$U = \sum_{j} \ket{\tau_{j}} \bra{\psi_{j}}$$
 (singular decomposition)

$$|\mathsf{Tr}(\mathit{UA})| = \left|\mathsf{Tr}\left(\sum_{j} \lambda_{j} |\tau_{j}\rangle \langle \varphi_{j}|\right)\right|$$

$$\leq \sum_{i} \lambda_{j} |\mathsf{Tr}\left(|\tau_{j}\rangle \langle \varphi_{j}|\right)| = \sum_{i} \lambda_{j} |\langle \varphi_{j} | \tau_{j}\rangle| \leq \sum_{i} \lambda_{j} = ||A||_{1}$$

By setting $|\tau_j\rangle = |\varphi_j\rangle$, the equalities are satisfied. We obtain $\max_{U} |\text{Tr}(UA)| = ||A||_1$. Hence, the trace norm satisfies the triangle inequality.

$$||A + B||_1 = \max_{U} |\text{Tr}(U(A + B))| \le \max_{U} (|\text{Tr}(UA)| + |\text{Tr}(UB)|)$$

$$\le \max_{U} |\text{Tr}(UA)| + \max_{U} |\text{Tr}(UB)| = ||A||_1 + ||B||_1$$

Unitary discrimination

Discrimination of unitary operators:

- Input: A unitary operator U_0 is given with probability λ , and U_1 is given with probability 1λ as an oracle \mathcal{O} that can be used once.
- Output: $i \in \{0, 1\}$ that indicates the given unitary U_i .

Unitary discrimination

If algorithm call the oracle $\mathcal O$ on a state $|\psi\rangle$, we get either of $U_0\,|\psi\rangle$ or $U_1\,|\psi\rangle$.

Then, the maximum probability of success is given by

$$\begin{split} & \max_{|\psi\rangle} \|\lambda \textit{U}_0 \left| \psi \right\rangle \left\langle \psi \right| \, \textit{U}_0^\dagger - (1 - \lambda) \textit{U}_1 \left| \psi \right\rangle \left\langle \psi \right| \, \textit{U}_1^\dagger \|_1 \\ & = \max_{|\psi\rangle} \sqrt{1 - 4\lambda (1 - \lambda) |\left\langle \psi \right| \, \textit{U}_0^\dagger \textit{U}_1 \left| \psi \right\rangle |^2} \end{split}$$

For $V:=U_0^\dagger U_1$, let $V=\sum_x \mu_x \left| \varphi_x \right\rangle \left\langle \varphi_x \right|$ be a spectral decomposition. Note that $|\mu_x|=1$ for all x. Let $|\psi\rangle=\sum_x \alpha_x \left| \varphi_x \right\rangle$. Then, $\langle \psi |\ U_0^\dagger U_1 \left| \psi \right\rangle = \sum_x |\alpha_x|^2 \mu_x$, which is a convex combination of $(\mu_x)_x$. Let θ_{cover} be the smallest angle that covers all eigenvalues $(\mu_x)_x$. Then, $\min_{|\psi\rangle} |\langle \psi |\ U_0^\dagger U_1 \left| \psi \right\rangle| = \cos(\frac{\theta_{\text{cover}}}{2})$ if $\theta_{\text{cover}} \leq \pi$, and 0 otherwise.

The diamond distance

The diamond distance D is defined by

$$D(A,B) := \max_{|\psi\rangle} \|A|\psi\rangle \langle \psi| A^{\dagger} - B|\psi\rangle \langle \psi| B^{\dagger}\|_{1}.$$

Then, D is unitary invariant, i.e., D(UAV, UBV) = D(A, B) for any unitary matrices U and V.

$$\begin{split} D(A,B) &= \max_{|\psi\rangle} \|A\,|\psi\rangle\,\langle\psi|\,A^\dagger - B\,|\psi\rangle\,\langle\psi|\,B^\dagger\|_1 \\ &= \max_{|\psi\rangle} \|A\,|\psi\rangle\,\langle\psi|\,A^\dagger - C\,|\psi\rangle\,\langle\psi|\,C^\dagger + C\,|\psi\rangle\,\langle\psi|\,C^\dagger - B\,|\psi\rangle\,\langle\psi|\,B^\dagger\|_1 \\ &\leq \max_{|\psi\rangle} (\|A\,|\psi\rangle\,\langle\psi|\,A^\dagger - C\,|\psi\rangle\,\langle\psi|\,C^\dagger\|_1 + \|C\,|\psi\rangle\,\langle\psi|\,C^\dagger - B\,|\psi\rangle\,\langle\psi|\,B^\dagger\|_1) \\ &\leq \max_{|\psi\rangle} \|A\,|\psi\rangle\,\langle\psi|\,A^\dagger - C\,|\psi\rangle\,\langle\psi|\,C^\dagger\|_1 + \max_{|\psi\rangle} \|C\,|\psi\rangle\,\langle\psi|\,C^\dagger - B\,|\psi\rangle\,\langle\psi|\,B^\dagger\|_1 \\ &= D(A,C) + D(C,B) \end{split}$$

The diamond distance D satisfies the triangle inequality.

Assignment

- ① Show the maximum probability of success for discriminating $|0\rangle$ and $|+\rangle$ given with the uniform probability.
- 2 Show a binary optimal measurement for the discrimination of $|0\rangle$ and $|+\rangle$ given with the uniform probability.
- (3) Show the maximum probability of success for discriminating I and $R_Z(\theta)$ given with the uniform probability. Show the input state $|\psi\rangle$ for the oracle as well.
- 4 [Advanced] Show the maximum probability of success for discriminating $R_{\mathbf{v}}(\theta)$ and $R_{\mathbf{w}}(\eta)$ given with the uniform probability.