

DESCRIPTION

CONTROL APPARATUS AND METHOD, MEDIUM

Technical Field

The present invention relates to control apparatus and method, medium, and to control apparatus and method, medium, for example, for carrying out the resource management when equipment connected to an IEEE1394 bus is controlled.

DRAFT
2005/2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
201000
201001
201002
201003
201004
201005
201006
201007
201008
201009
201010
201011
201012
201013
201014
201015
201016
201017
201018
201019
201020
201021
201022
201023
201024
201025
201026
201027
201028
201029
201030
201031
201032
201033
201034
201035
201036
201037
201038
201039
201040
201041
201042
201043
201044
201045
201046
201047
201048
201049
201050
201051
201052
201053
201054
201055
201056
201057
201058
201059
201060
201061
201062
201063
201064
201065
201066
201067
201068
201069
201070
201071
201072
201073
201074
201075
201076
201077
201078
201079
201080
201081
201082
201083
201084
201085
201086
201087
201088
201089
201090
201091
201092
201093
201094
201095
201096
201097
201098
201099
201100
201101
201102
201103
201104
201105
201106
201107
201108
201109
201110
201111
201112
201113
201114
201115
201116
201117
201118
201119
201120
201121
201122
201123
201124
201125
201126
201127
201128
201129
201130
201131
201132
201133
201134
201135
201136
201137
201138
201139
201140
201141
201142
201143
201144
201145
201146
201147
201148
201149
201150
201151
201152
201153
201154
201155
201156
201157
201158
201159
201160
201161
201162
201163
201164
201165
201166
201167
201168
201169
201170
201171
201172
201173
201174
201175
201176
201177
201178
201179
201180
201181
201182
201183
201184
201185
201186
201187
201188
201189
201190
201191
201192
201193
201194
201195
201196
201197
201198
201199
201200
201201
201202
201203
201204
201205
201206
201207
201208
201209
201210
201211
201212
201213
201214
201215
201216
201217
201218
201219
201220
201221
201222
201223
201224
201225
201226
201227
201228
201229
201230
201231
201232
201233
201234
201235
201236
201237
201238
201239
201240
201241
201242
201243
201244
201245
201246
201247
201248
201249
201250
201251
201252
201253
201254
201255
201256
201257
201258
201259
201260
201261
201262
201263
201264
201265
201266
201267
201268
201269
201270
201271
201272
201273
201274
201275
201276
201277
201278
201279
201280
201281
201282
201283
201284
201285
201286
201287
201288
201289
201290
201291
201292
201293
201294
201295
201296
201297
201298
201299
201300
201301
201302
201303
201304
201305
201306
201307
201308
201309
201310
201311
201312
201313
201314
201315
201316
201317
201318
201319
201320
201321
201322
201323
201324
201325
201326
201327
201328
201329
201330
201331
201332
201333
201334
201335
201336
201337
201338
201339
201340
201341
201342
201343
201344
201345
201346
201347
201348
201349
201350
201351
201352
201353
201354
201355
201356
201357
201358
201359
201360
201361
201362
201363
201364
201365
201366
201367
201368
201369
201370
201371
201372
201373
201374
201375
201376
201377
201378
201379
201380
201381
201382
201383
201384
201385
201386
201387
201388
201389
201390
201391
201392
201393
201394
201395
201396
201397
201398
201399
201400
201401
201402
201403
201404
201405
201406
201407
201408
201409
201410
201411
201412
201413
201414
201415
201416
201417
201418
201419
201420
201421
201422
201423
201424
201425
201426
201427
201428
201429
201430
201431
201432
201433
201434
201435
201436
201437
201438
201439
201440
201441
201442
201443
201444
201445
201446
201447
201448
201449
201450
201451
201452
201453
201454
201455
201456
201457
201458
201459
201460
201461
201462
201463
201464
201465
201466
201467
201468
201469
201470
201471
201472
201473
201474
201475
201476
201477
201478
201479
201480
201481
201482
201483
201484
201485
201486
201487
201488
201489
201490
201491
201492
201493
201494
201495
201496
201497
201498
201499
201500
201501
201502
201503
201504
201505
201506
201507
201508
201509
201510
201511
201512
201513
201514
201515
201516
201517
201518
201519
201520
201521
201522
201523
201524
201525
201526
201527
201528
201529
201530
201531
201532
201533
201534
201535
201536
201537
201538
201539
201540
201541
201542
201543
201544
201545
201546
201547
201548
201549
201550
201551
201552
201553
201554
201555
201556
201557
201558
201559
201560
201561
201562
201563
201564
201565
201566
201567
201568
201569
201570
201571
201572
201573
201574
201575
201576
201577
201578
201579
201580
201581
201582
201583
201584
201585
201586
201587
201588
201589
201590
201591
201592
201593
201594
201595
201596
201597
201598
201599
2015000
2015001
2015002
2015003
2015004
2015005
2015006
2015007
2015008
2015009
2015010
2015011
2015012
2015013
2015014
2015015
2015016
2015017
2015018
2015019
2015020
2015021
2015022
2015023
2015024
2015025
2015026
2015027
2015028
2015029
2015030
2015031
2015032
2015033
2015034
2015035
2015036
2015037
2015038
2015039
2015040
2015041
2015042
2015043
2015044
2015045
2015046
2015047
2015048
2015049
2015050
2015051
2015052
2015053
2015054
2015055
2015056
2015057
2015058
2015059
2015060
2015061
2015062
2015063
2015064
2015065
2015066
2015067
2015068
2015069
2015070
2015071
2015072
2015073
2015074
2015075
2015076
2015077
2015078
2015079
2015080
2015081
2015082
2015083
2015084
2015085
2015086
2015087
2015088
2015089
2015090
2015091
2015092
2015093
2015094
2015095
2015096
2015097
2015098
2015099
2015100
2015101
2015102
2015103
2015104
2015105
2015106
2015107
2015108
2015109
2015110
2015111
2015112
2015113
2015114
2015115
2015116
2015117
2015118
2015119
2015120
2015121
2015122
2015123
2015124
2015125
2015126
2015127
2015128
2015129
2015130
2015131
2015132
2015133
2015134
2015135
2015136
2015137
2015138
2015139
2015140
2015141
2015142
2015143
2015144
2015145
2015146
2015147
2015148
2015149
2015150
2015151
2015152
2015153
2015154
2015155
2015156
2015157
2015158
2015159
2015160
2015161
2015162
2015163
2015164
2015165
2015166
2015167
2015168
2015169
2015170
2015171
2015172
2015173
2015174
2015175
2015176
2015177
2015178
2015179
2015180
2015181
2015182
2015183
2015184
2015185
2015186
2015187
2015188
2015189
2015190
2015191
2015192
2015193
2015194
2015195
2015196
2015197
2015198
2015199
2015200
2015201
2015202
2015203
2015204
2015205
2015206
2015207
2015208
2015209
2015210
2015211
2015212
2015213
2015214
2015215
2015216
2015217
2015218
2015219
2015220
2015221
2015222
2015223
2015224
2015225
2015226
2015227
2015228
2015229
2015230
2015231
2015232
2015233
2015234
2015235
2015236
2015237
2015238
2015239
2015240
2015241
2015242
2015243
2015244
2015245
2015246
2015247
2015248
2015249
2015250
2015251
2015252
2015253
2015254
2015255
2015256
2015257
2015258
2015259
2015260
2015261
2015262
2015263
2015264
2015265
2015266
2015267
2015268
2015269
2015270
2015271
2015272
2015273
2015274
2015275
2015276
2015277
2015278
2015279
2015280
2015281
2015282
2015283
2015284
2015285
2015286
2015287
2015288
2015289
2015290
2015291
2015292
2015293
2015294
2015295
2015296
2015297
2015298
2015299
2015300
2015301
2015302
2015303
2015304
2015305
2015306
2015307
2015308
2015309
2015310
2015311
2015312
2015313
2015314
2015315
2015316
2015317
2015318
2015319
2015320
2015321
2015322
2015323
2015324
2015325
2015326
2015327
2015328
2015329
2015330
2015331
2015332
2015333
2015334
2015335
2015336
2015337
2015338
2015339
2015340
2015341
2015342
2015343
2015344
2015345
2015346
2015347
2015348
2015349
2015350
2015351
2015352
2015353
2015354
2015355
2015356
2015357
2015358
2015359
2015360
2015361
2015362
2015363
2015364
2015365
2015366
2015367
2015368
2015369
2015370
2015371
2015372
2015373
2015374
2015375
2015376
2015377
2015378
2015379
2015380
2015381
2015382
2015383
2015384
2015385
2015386
2015387
2015388
2015389
2015390
2015391
2015392
2015393
2015394
2015395
2015396
2015397
2015398
2015399
2015400
2015401
2015402
2015403
2015404
2015405
2015406
2015407
2015408
2015409
2015410
2015411
2015412
2015413
2015414
2015415
2015416
2015417
2015418
2015419
2015420
2015421
2015422
2015423
2015424
2015425
2015426
2015427
2015428
2015429
2015430
2015431
2015432
2015433
2015434
2015435
2015436
2015437
2015438
2015439
2015440
2015441
2015442
2015443
2015444
2015445
2015446
2015447
2015448
2015449
2015450
2015451
2015452
2015453
2015454
2015455
2015456
2015457
2015458
2015459
2015460
2015461
2015462
2015463
2015464
2015465
2015466
2015467
2015468
2015469
2015470
2015471
2015472
2015473
2015474
2015475
2015476
2015477
2015478
2015479
2015480
2015481
2015482
2015483
2015484
2015485
2015486
2015487
2015488
2015489
2015490
2015491
2015492
2015493
2015494
2015495
2015496
2015497
2015498
2015499
2015500
2015501
2015502
2015503
2015504
2015505
2015506
2015507
2015508
2015509
2015510
2015511
2015512
2015513
2015514
2015515
2015516
2015517
2015518
2015519
2015520
2015521
2015522
2015523
2015524
2015525
2015526
2015527
2015528
2015529
2015530
2015531
2015532
2015533
2015534
2015535
2015536
2015537
2015538
2015539
2015540
2015541
2015542
2015543
2015544
2015545
2015546
20155

simultaneous control of three nodes or more, and there is a plurality of nodes (controllers) for controlling other equipment (target), there gives rise to a problem that it is difficult or realize to offer mediation between the control nodes (controllers) and to attain development of application softwares in which compatibility is present between nodes.

On the other hand, recently, for the purpose of making the most of characteristics of IEEE1394 capable of actually providing data transmission speed at a high speed and at relatively low cost and capable of solving the problem, the technique called HAVi (Home Audio/Video interoperability) has ben developed.

The HAVi will be described briefly hereinafter.

With the recent conspicuous growth of digital AV equipment market, it is expected that the time will come in future when users can connect the equipment to construct a network in individual home. Accordingly, in order that the equipment on the home network cooperate and operate, each equipment need be provided with a middle ware for control and management of the network. Further, even where equipment of different makers are connected, in order that the network normally operates and the equipment can be used mutually, a common specification to which the middle ware should conform is indispensable thereto.

The HAVi is contemplated as a specification for AV equipment corresponding to the home network making use of IEEE1394. The software in conformity to the HAVi functions as a middle ware arranged between an application and OS (Vendor

Specific Platform) in collecting functions used in common for an application as shown in FIG. 21, and in digital AV equipment in conformity to the HAVi on which the former is mounted, mutual use between equipment and mutual utilization of function become enabled. The HAVi has characteristics having a plug and play, mutual operability of equipment, and expandability of a network. Accordingly, when equipment in conformity to HAVi is connected to a network, the software in conformity to HAVi immediately detects the connection of equipment automatically due to the plug and play function, whereby the procedure as the network is taken to realize the expandability with respect to the function of equipment connected.

That is, in the HAVi, a user merely connects various equipment, due to the plug and play function, by a digital interface such as IEEE1394 to enable construction of a home network. Accordingly, even where for example, new equipment is connected to or removed from the network, the equipment can communicate each other to recognize that the network be updated, so that the network can correspond to an arrangement of new equipment without stopping the function.

Further, in the equipment based on the HAVi specification, not only mutual connection and mutual operation between equipment but also co-owning of function between equipment on the network become enabled due to the mutual operability of equipment. For example, by operating certain equipment, it is possible to make use of function of other equipment not possessed by the former.

Furthermore, in the HAVi, the expansion of function is possible such that a new

function used in a future new home network application is used on the home network already used by a user, due to the expandability of the network. That is, the specification of HAVi defines the function that usable application programs and user interface softwares in other equipment are incorporated into the own through the network to use them, enhancing the way of pleasure and the convenience of new AV equipment as home network equipment, and having the expandability corresponding to the function to be effective in future. Accordingly, where new equipment or function is developed, that equipment is merely connected to the network already constructed to enable operation thereof.

As described above, the HAVi is possible to detect or control equipment in conformity to HAVi despite the difference in equipment makers, and further, the HAVi application is possible to control individual devices in different equipment. For example, as equipment such as a digital VTR and an audiophile, there can be listed a tuner, a display, an Amp, a stream converter, a clock function, an internet access function, and a modem. According to HAVi, for example, these devices can be operated directly from an application such as a set top box (STB).

The HAVi specification is determined in order to correspond to various requests of the home network in the digital AV environment based on the IEEE1394, and the basic specification thereof defines the exchange of messages and events on the IEEE1394, the ability detection of devices over the whole network and registration, and softwares for management of a digital AV stream and control of devices. As a byte

code of the HAVi, Java (Trademark) is employed in order to realize the devices on the network and functions thereof, without depending on a platform, and a bidirectional application and a user interface can be provided. The application in conformity to HAVi based on the Java is loaded on the device to enable download through the modem and the internet. Further, in the HAVi, a resource manager is loaded to process a conflict of the using right of devices, manage a scheduled event such as reserved telerecordings of digital VTR, and monitor a network whether or not a device is removed after registration.

Main software elements defined in the HAVi basic specification include, as shown in FIG. 21, CMM (IEEE1394 Communication Media Manager), EM (Event Manager), Registry, MS (Messaging System), DCM (Device Control Module), DCM manager, DDI controller (Data Driven Interaction Controller), SMGR (Stream Manager), and Resource Manager.

The CMM functions as an interface between the IEEE1394 and each software element.

The EM informs other software elements about the status change of the network (for example, equipment is newly connected to or disconnected from the network).

The MS functions as an API (Application Programming Interface) in which software elements of equipment on the network communicate each other. It is noted that API is an interface positioned between an application and OS or a middle ware.

The DCM control equipment. An application program controls equipment through the DCM. For this reason, the application program itself need not consider the difference between the individual equipment.

The DCM manager updates DCM. When new equipment is additionally connected to the network, DCM necessary for the equipment is newly added to automatically correspond to updating of the network.

The registry controls and store information about the software module.

The DDI controller takes charge of GUI (Graphical User Interface) of a display block of equipment. This corresponds to a variety of displays from a display of a text alone to a display of graphics.

The SMGR monitors and manages a flow of stream data of IEEE1394 such as a picture and a voice or sound on the network.

The resource manager manages the resource of the network.

The HAVi classifies the device on the network into four categories, i.e. FAV (Full AV Device), IAV (Intermediate AV Device), BAV (Base AV Device), and LAV (Legacy AV Device).

That is, as shown in FIG. 22, the FAV is a device provided with all software elements (all elements marked by check marks in the figure) of HAVi; the IAV is a device provided with software elements (elements marked by check marks in the figure) other than the executing environment of the byte code of Java; the BAV is a device for supporting only HAVi SDD (HAVi Self Describing Device) data and DCM;

and LAV is a device other than IEEE1394 not corresponding to HAVi or IEEE1394. It is noted that in the figure, softwares in which a check mark is surrounded by [] are option, indicating that the software element may not be provided as the case may be.

FIG. 23 shows one constitutional example of a case where these four categories of devices are connected to a IEEE1394 bus. In the FIG. 23 example, FAV an IAV enable control by DCM with respect to BAV and LAV.

Incidentally, there is contemplated a case where a target corresponding to LAV mentioned in HAVi capable of delivering and receiving an AV/C command of IEEE1394, a controller corresponding to LAV mentioned in HAVi capable of delivering and receiving an AV/C command of IEEE1394, and a controller corresponding to FAV and LAV mentioned in HAVi are present in the same network.

For example, where the controller corresponding to the LAV and the controller in conformity to the HAVi simultaneously control a single LAV on the network as a target, the LAV as the target is to be controlled by a plurality of controllers to possibly give rise to inconvenience.

For example, as shown in FIG. 24, where STB (Set Top Box) 202 which is LAV mentioned in HAVi, STB 201 which is FAV mentioned in HAVi, and digital VTR (for example, such as digital VHS) 203 which is LAV mentioned in HAVi are such that in the network connected by the IEEE1394 bus, both the STB 201 and STB 202 operate as a controller, and the digital VTR 203 is a target, when these two STB 201 and 202 attempt to carry out operation of the digital VTR 203 simultaneously, confliction

occurs. That is, since STB 202 operated as a controller is LAV, it is not put under an obligation to have a resource manager, and since LAV is not a model in conformity to HAVi, it is not put under an obligation to carry out communication between controllers, thus giving rise to confliction. For example, where in the midst of telerecording by the digital VTR 203 by the control from one STB 201, a stop command is supplied from the other STB 202, the digital VTR 203 becomes stopped despite the telerecording is in the midst.

Accordingly, where a plurality of controllers capable of controlling a single target are present on the network, and a controller which is LAV not in conformity to HAVi is present in the controllers, there occurs inconvenience that the single target is controlled by the plurality of controllers unless some resource managements are carried out.

Also in the case of network as shown, for example, in FIGS. 25 to 27, in addition to the FIG. 24 example, confliction occurs.

That is, where a controller 208 which is FAV having FCM for LAV corresponding to a reserve command, a controller 207 which is FAV, and a target 209 which is LAV not corresponding to a reserve command are a network connected by IEEE1394 bus, as shown in the example of FIG. 25, since the target 209 is LAV and does not correspond to the reserve command, even if the controller should have a resource manager, resource management could not be done. Accordingly, when these two controllers 207 and 208 attempt to carry out operation of the target 209,

confliction similar to that mentioned above occurs.

Where a controller 214 having FCM for BAV not corresponding to a reserve command, a controller 213 which is FAV, and a target 215 which is BAV not corresponding to a reserve command are a network connected by IEEE1394 bus, as shown in the example of FIG. 26, since the target 215 is BAV of a model in conformity to HAVi but does not correspond to the reserve command, even if the controller should have a resource manager, resource management could not be done. Accordingly, even if all the networks should be constructed by the model in conformity to HAVi, when these two controllers 213 and 214 attempt to carry out operation of the target 209, confliction similar to that mentioned above occurs.

Further, where in a network in which a controller 217 which is LAV without resource manager, a controller 216 which is likewise IAV without resource manager, and a target 218 which is LAV or BAV (BAV having own DCM, FCM) are connected by IEEE1394 bus, as shown in the example of FIG. 27, the controllers make reservations at a target, since both the controllers 216 and 217 are LAV and have not source manager, the resource management cannot be done. Accordingly, when these two controllers 216 and 217 attempt to carry out operation of the target 218, confliction similar to that mentioned above occurs.

Where a control object device which is a target is under the control of single equipment which is a controller, all control request from other control equipment are eliminated whereby confliction of control between control equipment can be avoided.

However, by the mere response of the elimination to the control requests, the aforementioned other control equipment cannot distinguish whether the state that the control equipment occupies the control object device or the state that the control object device cannot be controlled for separate reasons. For example, where the digital VTR 203 in the FIG. 24 example receives a control request of reproduction in a power-off state, it repeats a response representative of rejection despite control is not occupied by anybody. Accordingly, the control equipment is necessary to know the state of the control object device in further detail.

Further, in the case of a network constructed by merely by LAV on which a resource manager is not actually mounted, since the respective LAV has no resource manager representative of the occupied state of a control object device, it is not possible to know whether or not certain control equipment obtains possessory rights to control the control object device.

Moreover, in the case of a network system having no equipment in conformity to HAVi, since a function representative of the occupied state of the control object device is not present, the respective control equipment cannot know easily the occupied state of control of the control object device.

Disclosure of the Invention

The present invention has been accomplished in view of the circumstances noted above, and has its object to provide a control apparatus and method, medium

wherein even in the case where control equipment in conformity to a fixed standard, control equipment not in conformity to a fixed standard, and a control object device capable of being controlled by the control equipment are mixed on a network, inconvenience that these control equipment simultaneously control the control object device not in conformity to a fixed standard can be avoided.

The control apparatus and method according to the present invention detects the using circumstances of the control object device to control the control object device on the basis of the detected result whereby solving the above-mentioned problem.

As the above-described control object device, there can be listed, as examples, recording and or reproducing equipment, a digital versatile disc device, a digital video cassette recorder, a tape coder, a compact disc device, a minidisc device, office selecting equipment, an amplifier and so on.

Further, the control apparatus and method according to the present invention judges whether or not the control object device is usable on the basis of the detected result, and when judged to be unusable, an alarm signal is produced, the alarm signal capable of being displayed. In judging whether usable or unusable, it is possible to judge whether or not the control object device is usable on the basis of the result of decision of presence or absence of the setting of the possessory rights or of the detected result.

Further, in the control apparatus and method according to the present invention, the status change of the control object device is detected, and the using circumstances

of the control object device is detected in accordance with the detected result of the status change. Or, the using circumstances of the control object device may be detected from the status itself of the control object device. As the status change of the control object device, there can be listed a change of a control status value of a disc device or a change of a control status value of a tape device or a change of a control status value of a semiconductor device, a change of a value of a record passage time counter or a change of a value of a reproducing passage time counter, a change of a value of a tape counter or a change of a field value or a change of a track number, and an office number as the status itself.

Furthermore, in the control apparatus and method according to the present invention, the detection of the using circumstances of the control object device can be carried out every given time. Further, the control apparatus and method according to the present invention decide the presence or absence of the setting of possessory rights with respect to the control object device, and when the decision of possessory rights with respect to the control object device cannot be done, the detection of the using circumstances of the control object device is also carried out. Further, whether or not the control object device is usable is judged on the basis of the result of decision of the presence or absence of the setting of the possessory rights or the detected result. The decision of the presence or absence of the setting of the possessory rights is carried out on the basis of a fixed standard. As the fixed standard, there can be listed an IEEE1394 Standard, and the network can be an IEEE1394 bus.

Further, in detecting the using circumstances, performed are that ON/OFF of a power supply of the control object device is judged, and in accordance with the result of the judgment of the state of a power supply, the using circumstances of the control object device is detected; that whether the control object device is recording and/or reproducing equipment is judged, and the using circumstances of the control object device is detected in accordance with the result of the equipment judgment; and that whether or not the control object device is office selecting equipment is judged, and the using circumstances of the control object device is detected in accordance with the result of the equipment judgment. When the control object device is the recording and/or reproducing equipment, whether or not the status of the recording and/or reproducing equipment is decided is judged whereby the using circumstances of the recording and/or reproducing equipment is detected, and when the control object device is the office selecting equipment, whether or not the office selecting status of the office selecting equipment is decided is judged whereby the using circumstances of the office selecting equipment is detected.

The control object device is one or all equipment except the own connected on the network.

Next, the medium according to the present invention causes an information processing apparatus to execute a program which includes a step of detecting the using circumstances of a control object device and a step of controlling the control object device on the basis of the result of the detection.

Brief Description of the Drawings

FIG. 1 is a view showing the constitution of a bus system to which the present invention is applied.

FIG. 2 is a view showing the constitution of a set top box and a digital VTR in FIG. 1.

FIG. 3 is a flow chart used in explanation of a flow of the whole control object device monitoring operation in a control object device monitoring function section.

FIG. 4 is a flow chart used in explanation of a detailed flow of Step 4 in the flow chart of FIG. 3.

FIG. 5 is a flow chart used in explanation of a concrete flow of Step 10 in the flow chart of FIG. 4.

FIG. 6 is a flow chart used in explanation of a concrete flow of operation of a target control according to a HAVi module group based on a report from the control object device monitoring function section.

FIG. 7 is a view used in explanation of a format of a FCP frame

FIG. 8 is a view used in explanation of a command register and a response register.

FIG. 9 is a view used in explanation of a format of an AV/C command frame.

FIG. 10 is a view used in explanation of a format of an AV/C response frame.

FIG. 11 is a view used in explanation of a command type.

FIG. 12 is a view used in explanation of a sub-unit type.

FIG. 13 is a view used in explanation of a sub-unit ID.

FIG. 14 is a view used in explanation of a format of a reserve control command.

FIG. 15 is a view used in explanation of a priority stored.

FIG. 16 is a view used in explanation of a format of a reserve status command.

FIG. 17 is a view used in explanation of a response code.

FIG. 18 is a view used in explanation of a quick transaction of AV/C.

FIG. 19 is a view used in explanation of a delayed transaction of AV/C.

FIGS. 20 A to H are views used in explanation of a medium.

FIG. 21 is a view used in explanation of main software elements defined in the HAVi basic specification.

FIG. 22 is a view used in explanation of FAV, IAV, BAV, and LAV mentioned in HAVi.

FIG. 23 is a view showing a constitutional example where devices of four categories, FAV, IAV, BAV, and LAV are connected to an IEEE1394 bus.

FIG. 24 is a view used in explanation of problems where a FAV controller and an LAV controller in conformity to HAVi on a network.

FIG. 25 is a view used in explanation of problems where a controller which FAV having FCM for LAV corresponding to a reserve command and a controller which is FAV control a target which is LAV not corresponding to a reserve command.

FIG. 26 is a view used in explanation of problems where a controller (214) of FAV uploads DCM not corresponding to a reserve command from BAV, and a

controller (214) of FAV controls a target (215) of BAV to an interface.

FIG. 27 is a view used in explanation of problems where two controllers which are IAV without resource manager control a target which is LAV or BAV BAV having own DCM and FCM)

Best Mode for Carrying out the Invention

The preferred embodiments of the present invention will be described hereinafter with reference to the drawings.

FIG. 1 shows one constitutional example of an IEEE1394 to which the present invention is applied. In this one constitutional example, a set top box (STB) 24 which is a device corresponding to FAV mentioned in HAVi and IAV corresponding to a resource manager, an LAV controller (for example, STB) 22 corresponding to LAV mentioned in HAVi, and a digital VTR (for example, a digital VHS tape recorder) 23 which is a device corresponding to LAV mentioned in HAVi are connected to an IEEE1394 bus 21. In FIG. 1, the digital VTR is shown as a control object device, which is however one example, and the present invention can be also applied to various recording and/or reproducing devices, for example, such as a digital versatile disc or digital video disc (DVD) device, a digital video cassette recorder, a tape coder, and a minidisc (MD) device, a reproducing device such as a compact disc (CD) device, and others such as a semiconductor device, an office selecting device (tuner), an amplifier (Amp) and so on.

In this constitution, the digital VTR 23 is a target, and the set top box 24 and the LAV controller 22 are controllers for controlling the digital VTR 23.

The set top box 24 receives an electric wave broadcast from a satellite not shown through a parabola antenna 31 to output it to an IRD (Integrated Receiver/Decoder) module 41. The IRD module 41 decodes and processes a signal supplied from the parabola antenna 31. An application module 42 controls The IRD module 41 and an IEEE1394 module 44 in response to an operating signal generated when a remote controller (not shown) or an operating panel 43 provided on the main body of the set top box 24 is operated by a user. The IEEE1394 module 44 executes interface processing with respect to the IEEE1394 bus 21. The application module 42, the IRD module 41, and the IEEE1394 module 44 are respectively modules in conformity to HAVi, and in FIG. 1, the modules in conformity to HAVi are shown collectively as a HAVi module group 45.

Further, the set top box 24 is provided with a control object device monitoring function section 40 for monitoring the control status of a control object device such as LAV connected to the IEEE1394 bus 21. The detailed operation of the control object device monitoring function section 40 will be described later.

FIG. 2 shows a further detailed constitutional example of the set top box 24 and the digital VTR 23. The IRD module 41 of the set top box 24 receives a signal from a fixed transponder of a satellite out of signals supplied to a tuner 51 from the antenna 31 in response to a command from a CPU (Central Processing Unit) 71 and outputs

it to a front end part 52. The front end part 52 decodes the signal input from the tuner 51 to output it to a descramble circuit 53.

The descramble circuit 53 descrambles data supplied from the front end part 52 on the basis of code key information of a contract channel stored in an IC card (not shown) mounted on the IRD module 41, and outputs it to a demultiplexer 54. The demultiplexer 54 rearranges data supplied from the descramble circuit 53 every channel , removes a component of the channel corresponding to a command from CPU 71 (a command from a user), outputs a video stream comprising a video packet to a MPEG (Moving Picture Experts Group) video decoder 55, and outputs an audio stream comprising an audio packet to a MPEG audio decoder 58.

The MPEG video decoder 55 decodes the video stream input and outputs it to a NTSC encoder 56. The NTSC encoder 56 converts video data input from the MPEG video decoder 55 into video data of the NTSC system, further D/A converts it into a D/A converter circuit 57, and outputs it to a monitor 61.

The MPEG audio decoder 58 decodes the audio stream supplied from the demultiplexer 54 in the MPEG system, restores PCM (Pulse Code Modulation) audio data before being compressed and coded, and outputs it to a D/A converter circuit 59. The D/A converter circuit 59 converts the PCM audio data into an analog audio signal of a left channel and an analog audio signal of a right channel to supply them to a loudspeaker (not shown) of the monitor 61.

The output of the MPEG audio decoder 58 is input into an IEEE1394 interface

81 of the IEEE1394 module 44, and enables outputting it to the IEEE1394 from the IEEE1394 interface 81, if necessary.

In this embodiment, the application module 42 is composed of a CPU for controlling parts of the set top box 24, a RAM (Random Access Memory) 72, and a work RAM 73.

In the RAM 72, programs processed by the CPU 71 are suitably developed. In the work RAM 73 are suitably stored data required in executing various processes by the CPU 71.

In this embodiment, the IEEE1394 is composed of an IEEE1394 interface 81.

On the other hand, in the digital VTR 23, a mechanical section 112 is provided with a mechanism for recording and reproducing a digital audio signal and a digital video signal, operation of which is controlled by a mechanical control CPU 113.

The digital audio signal and the digital video signal reproduced from a video tape in the mechanical section 112 are sent to a signal processing circuit 111.

Further, in the digital VTR 23, an analog video signal, a ground wave television signal, and for example a BS (satellite broadcast) signal can be input into a terminal 101, a terminal 102, and a terminal 103, respectively. The ground wave television signal and the BS signal are suitably selected by a changeover switch 104 and received by a BS/ground wave tuner 106. A BS signal or a ground wave television signal output from the BS/ground wave tuner 106 and an analog video signal are sent to the signal processing circuit 111 suitably selected by a changeover switch 107.

The signal processing circuit 111 applies signal processing corresponding to a signal selected out of the analog vide signal, BS signal and ground wave television signal, or a digital audio signal and a digital video signal reproduced from a video tape by the mechanical section 112, and a digital audio signal and a digital video signal supplied through the IEEE1394 if necessary to produce an audio signal and a video signal to be output to a television set. Where the digital VTR 23 is a VTR provided with a function corresponding to the MPEG encode and decode processing, the signal processing circuit 111 also takes charge of the MPEG encode and decode processing. The audio signal and the video signal produced by the signal processing circuit 111 is sent to a television set connected to a terminal 114.

A mode control CPU 109 of the digital VTR 23 control parts of the digital VTR 23. The mode control CPU 109 executes various processes on the basis of data and programs suitably stored in RAM.

An IEEE1394 interface 110 executes interface processing with respect to the IEEE1394 bus 21. The IEEE1394 interface 110 delivers control data supplied, for example, from the set top box 24 and the LAV controller 22 to the mode control CPU 109 through the IEEE1394 bus 21. The IEEE1394 interface 110 outputs a digital audio signal and a digital video signal supplied, for example, from the set top box 24 to the signal processing circuit 111 through the IEEE1394 bus 21.

It is noted that both the set top box 24 as a controller and the LAV controller 22 which is LAV are possible to control the digital VTR 23 which is LAV.

Accordingly, where the set top box 24 and the LAV controller 22 simultaneously control the digital VTR 23 as a target, there possibly occurs inconvenience that the digital VTR 23 is simultaneously controlled by the set top box 24 and the LAV controller 22.

In view of the above, in the present embodiment, by the provision of the control object device monitoring function section 40 in the set top box 24 corresponding to FAV and IAV mentioned in HAVi, it is possible to avoid the occurrence of simultaneous control with respect to LAV as mentioned above.

That is, in the present embodiment, the control object device monitoring function section 40 of the set top box 24 inquires about statuses of devices connected to the IEEE1394 bus 21 to thereby monitor whether the present status of a device (a control object device) intended to be controlled as a target by the set top box 24 is the status placed under the control (under the operation) of other equipment, result of which is fed back to the HAVi module group 45, and further, the HAVi module group 45 displays, upon receipt of the monitoring result, to give a user on the set top box 24 side a warning, for example, thereby enabling avoidance of occurrence of the above-described inconvenient in advance.

Now, the control object device monitoring function section 40 performs, as an example of a concrete procedure for realizing the control object device monitoring function, detection if, by polling the status of a target, the target is controlled by the other equipment at present. The control object device monitoring function section 40

in the present embodiment also performs judgment, prior to the above-described detection, if the possessory rights of equipment caused by a reserve command out of AV/C commands in the IEEE1394 are already set to the target. If the possessory rights caused by the AV/C reserve command is not set, the above-described detection is carried out. In the case of the present embodiment, where whether or not the control object device caused by the reserve command is reserved is unclear, monitoring of the using circumstances of the control object device becomes more positive by using the above-described detecting means, but the monitoring of the using circumstances of the control object device is enabled even merely by the above-described detecting means. The reserve command in the AV/C command will be described in detail later.

FIG. 3 shows a flow of the whole equipment monitoring operation in the control object device monitoring function section 40. It is noted that in the control object device monitoring operation described below, the set top box 24 may perform with respect to all the equipment on the network or merely with respect to the specific control object device.

In FIG. 3, the control object device monitoring function section 40 inquires, first, as the processing of Step S1, of the individual control object devices connected to the IEEE1394 bus 21 about the possessory state by the reserve status command, and then, judges, as the processing of Step 2, if being occupied, or not occupied, or unclear, or making re-inquiry, depending on the contents of the response from the individual control object devices. Where the response is stable, and the return value

within the response packet is one other than "0" which is a value defined in the AV/C command, judgment is made to be occupied. On the other hand, where the response is stable, and the return value within the response packet is "0" which is a value defined in the AV/C command, judgment is made not to be occupied. On the other hand, where the response is "not implement" and "rejected", and where the response is not returned and the fixed response-waiting time has passed, judgment is made to be unclear. Where the response is in transition, an inquiry is made again by the reserve status command.

In the Step S2, where the control object device having been judged to be reserved is present, that is, where the control object device is present which is judged that the response to the issue of the reserve status command is stable, the return value within the response packet is a value other than "0" and the possessory rights of equipment is already set, the control object device monitoring function section 40 puts up, as the processing of Step S3, "1" on a flag showing that the control object device is already controlled by other equipment (called a flag during control in the present embodiment).

On the other hand, where in the Step S2, in the case of the control object device having been judged not to be reserved by the reserve status command, that is, in the case of the judgment in which the return value within the response packet with respect to the reserve status command is "0" and the possessory rights of equipment is not set, the control object device monitoring function section 40 proceeds to the processing of

Step S5, and puts up a flag during control showing that the control object device is not controlled.

Further, in Step S2, where the control object device is present which cannot be judged, depending on the reserve status command, whether or not the reservation is made, that is, where the response is “not implemented” and “rejected”, or where the response is not returned to make judgment that the fixed waiting time has passed and being unclear, the control object device monitoring function section 40 proceeds to the processing of Step S4. Where the response is “in transition”, the procedure proceeds to Step 1 in order to make reinquiry by the reserve status command.

In the processing of Step S4, the control object device monitoring function section 40 judges, by the detection, whether or not the control object device is controlled by other equipment. That is, in this case, the control object device monitoring function section 40 tries to make polling the status of the control object device thereby making detection whether or not the device is controlled by other equipment. The detailed flow of the Step 4 will be described later. In the Step S4, where judgment is made such that the device is controlled by other equipment (where detection is made that control is present), the control object device monitoring function section 40 puts up, as the processing of Step S3, “1” on a flag during control showing that the control object device is already controlled by other equipment.

On the other hand, in the Step S4, where judgment is made such that the device is not controlled by other equipment (where detection is made that control is absent),

the control object device monitoring function section 40 puts up, as the processing of Step S5, "0" on a flag during control showing that the control object device is not controlled by other equipment.

Next, FIG. 4 shows a detailed flow of the processing of Step 4 in FIG. 3.

First, the control object device monitoring function section 40 clears (initializes), as Step 9 of FIG. 4, both values of a status change counter for counting the status change of the control object device and a detection counter for counting the number of times of monitoring operation to "0". The status change of the control object device is different depending on to which the control object device belongs. For example, where the control object device is a disc device, the status change is a change of control status value of the disc device, where the control object device is a tape device, the status change is a change of control status value of the tape device, and where the control object device is a semiconductor device, the status change is a change of control status value of the semiconductor device. As more concrete examples of the status changes of the control object device, there can be listed, for example, such as a change of a recording passage time counter in a recording and reproducing device, a change of a reproducing passage time counter, a change of a frame value, a change of a field value, a change of a track number, a change of a tape counter value in case of a tape device, and an office number in case of a tuner.

Next, with respect to the control object device judged to be unclear in Step S2 in FIG. 3, the control object device monitoring function section 40 obtains, as the

processing of Step 10 in FIG. 4, the present mode information of the control object device by reception of AV/C commands to judge the using circumstances. Mode information here include, where the control object device is a digital VTR, a value of a tape counter in a mechanical mode (mechanical states (such as play, and stop)), and a value of power ON/OFF. The control object device monitoring function section 40 obtains these values. After the processing of Step S10, The control object device monitoring function section 40 proceeds to the processing of Step S11.

When proceeding to Step S11, the control object device monitoring function section 40 compares the thus obtained mode information with the previous value already obtained. In the present embodiment, as the mode information, for example, a tape counter value of a digital VTR is obtained for comparison. Where the mode information is obtained for the first time, the processing of the Step S11 is passed. In the Step S11 processing, where as the result of comparison between the previous mode information and the mode information obtained this time, judgment is made that the value changed, the procedure proceeds to the processing of Step S13, and where judgment is made that there is no change, the procedure proceeds to the processing of Step S12.

The control object device monitoring function section 40 proceeds, when proceeded to the processing of Step S13, to the processing of Step S 14 after the internal status change counter value has been incremented by 1, and when proceeded to the processing of Step S12, proceeds to the processing of Step S14 leaving the

internal status change counter value. The status change counter is prepared for all the control object devices judged to be unclear in Step S2 of FIG. 3.

When proceeds to the processing of Step S14, the control object device monitoring function section 40 judges whether or not the status change counter value is larger than a fixed value (for example, 5); where judgment is made to be larger than the fixed value, the procedure proceeds to Step S16, and where judgment is made to be smaller than the fixed value, the procedure proceeds to Step S15.

When proceeds to Step S16 upon judgment that the status change counter value is larger than the fixed value in the processing of Step S14, the control object device monitoring function section 40 decides that the control object device corresponding to the status change counter value is controlled by other equipment (for example, the LAV controller 22 in FIG. 1).

On the other hand, when proceeds to Step S16 upon judgment that the status change counter value is smaller than the fixed value in the processing of Step S14, the control object device monitoring function section 40 decides that the control object device corresponding to the status change counter value is not controlled by other equipment (for example, the LAV controller 22 in FIG. 1).

By the judgment of these Steps S16 and S15, the control object device monitoring function section 40 obtains the result of judgment as to the presence or absence of control in the processing of Step S4 in FIG. 3. That is, where in Step S16, decision is made that the control object device is controlled by the other controller, the

result of judgment (predicted result) that the control is present is obtained in Step S4 in FIG. 3, whereby in Step S3 of FIG. 3, "1" is put up on a flag during control. On the other hand, where in Step S15, decision is made that the control object device is not controlled by the other controller, the result of judgment (detected result) that the control is absent is obtained in Step S4 in FIG. 3, whereby in Step S5 of FIG. 3, "0" is put up on a flag during control.

After the processing of the Steps S15 and S16, the control object device monitoring function section 40 judges, as the processing of Step S17, whether or not a fixed time set to be longer time than the time intervals where the status change of the control object device occurs has passed. For example, the time twice of the time required for incrementing a tape counter by 1 is set. After the passage of the fixed time in Step S17, the control object device monitoring function section 40 judges, as the processing of Step S18, a value of the detection counter is increased (increment) by 1 (+1). Then, the control object device monitoring function section 40 judges, as the processing of Step S19, whether the detection processing whether or not the state changed is repeated, or is returned to the original processing. That is, the control object device monitoring function section 40 returns, as the processing of Step S19, to the processing of Step S10 if the value of the detection counter is, for example, smaller than 6, returns to the original processing if the value of the detection counter is larger than 6, and performs the branch processing to Step S3 an Step S5 in FIG. 3 according to the detected results obtained in Step S15 and Step S16 (whether or not

the control object device is controlled by other control equipment).

While the aforementioned FIG. 4 flow chart has been described taking up the digital VTR as the control object device, as an example, it is noted that the present invention can be also applied to other equipment not limiting to the digital VTR. In the following, a disc drive (such as a disc recorder and a disc player), VTR, other various players, a tuner, and an amplifier are taken up as examples of the control object devices, and in the case of these control object devices, a concrete example of the processing carried out in Step S10 in a flow chart of FIG. 4 is shown in FIG. 5.

In FIG. 5, the control object device monitoring function section 40 first inquires, as the processing of Step S31, about the power supply state of the control object device, and then judges, as the processing of Step S32, whether the power supply of the control object device is ON or OFF. Where judgment is made in Step S32 that the power supply of the control object device is OFF, the processing of the control object device monitoring function section 40 directly proceeds to Step S12 (not shown in FIG. 4), whereas where judgment is made that the device is ON, proceeds to the processing of Step 33.

When proceeds to the processing of Step S33, the control object device monitoring function section 40 judges whether the control object device is , equipment having recording function and/or reproducing function, for example, such as a disc drive, VTR, and a player or equipment other than the former, and where judgement is made that it is equipment having recording function and or reproducing

function, the procedure proceeds to the processing of Step S34, otherwise the procedure proceeds to Step S36.

When proceeds to the processing of Step S34, the control object device monitoring function section 40 inquires about the present mechanical state of the control object device of the equipment having recording function and or reproducing function, and then judges, as the processing of Step S35, whether or not the mechanical state is decided.

As the processing of judgment whether or not the mechanical state in Step S35 is decided, the control object device monitoring function section 40 judges that the mechanical state of the equipment is decided or unclear according to the contents of the response from the control object device, for example.

That is, the control object device monitoring function section 40 first transmits a status command which is one of AV/C commands for inquiring about the mechanical state of the equipment to equipment (for example, VTR) having recording function and/or reproducing function. When the response to this inquiry is stable, the control object device monitoring function section 40 judges that the mechanical state is decided. Where the response is not obtained and the response waiting time has passed, it judges to be unclear.

On the other hand, where the state is "In Transition", other responses are received, or "Not Implemented" or "Rejected" is returned, and the response is not obtained and the response waiting time has passed, the control object device

monitoring function section 40 judges to be unclear.

Where in Step S35, judgment is made that the mechanical state is decided, the processing of the control object device monitoring function section 40 proceeds to Step S11 of FIG. 4. On the other hand, Where in Step S35, judgment is made that the mechanical state is not decided, the processing of the control object device monitoring function section 40 directly proceeds to Step S13 of FIG. 4 (not shown in FIG. 4).

With respect to the above-described “Stable”, “In Transition”, “Not Implemented”, and “Rejected”, there is described in detail in Reference 1, “AV/C Digital Interface Command Set General Specification Version 3.0 (issued by 1394TA AVWG), page 17 (7.3 Status commands), description of which is therefore omitted.

When in the Step S33, judgment is made of equipment other than equipment having recording function and/or reproducing function, and the procedure proceeds to the processing of Step S36, the control object device monitoring function section 40 judges whether or not the control object device is, for example, a tuner. Where judgment is made in Step S36 that the control object device is not a tuner (for example, an amplifier is included here), the processing of the control object device monitoring function section 40 proceeds to Step S13 of FIG. 4, and where judgment is made that the device is not a tuner, the procedure proceeds to the processing of Step S37.

When the procedure proceeds to the processing of Step S37, the control object device monitoring function section 40 inquires of the control object device (tuner)

about the present office selecting state, and judges, as the processing of Step S38, whether or not the state of the office selection is coincided.

For judging whether or not the state of the office selection is coincided, the control object device monitoring function section 40 first obtains the access right to a tuner subunit status descriptor as data base having the state of the tuner described therein by an open descriptor control command which is one of AV/C commands. Next, the control object device monitoring function section 40 reads out a source plug status area having office selecting information described therein by a read descriptor control command which is one of AV/C commands.

The control object device monitoring function section 40 judges the state of the office selection by the response of the inquiring commands.

That is, for example, when the response of a command for obtaining the access right of data base in which the first tuner state is described is “Accepted”, the control object device monitoring function section 40 obtains the access right of the data base, and the procedure proceeds to next command processing.

On the other hand, when the response is “Rejected” or “Not Implemented”, the control object device monitoring function section 40 cannot obtain the access right and judges that the office selecting state is unclear. Then, the procedure proceeds directly to Step S13 (not shown in FIG. 4).

Further, when the response is “Interim”, the control object device monitoring function section 40 awaits till the response is returned. However, where the response

is not returned and the response waiting time has passed, judgment is made of unclear, and the procedure proceeds directly to Step S13 (not shown in FIG. 4).

Next, when the response of a command for reading out a source plug status in which office selecting information is present is “Accepted”, the control object device monitoring function section 40 can obtain office selecting information, and evaluates the data status and the information type status of a source plug status area in which the read-out office selecting information is present to decide the office selecting state.

Judgment is made whether or not the office being already used by the control object device is coincided with the office desired to be used by the control equipment. In the case of the same, judgment is made to be controllable, and the procedure proceeds directly to Step S12 (not shown in FIG. 4). On the other hand, in the case of difference, the control is regarded to be impossible, and the procedure proceeds directly to Step S13 (not shown in FIG. 4).

The above-described open descriptor control command is described in detail in Reference 1, page 49, “10.1 OPEN DESCRIPTOR Command”, details of which are omitted. The above-described read descriptor control command is described in detail in Reference 1, page 55, “10.2 READ DESCRIPTOR Command”. The above-described tuner subunit status descriptor is described in detail in Reference 1, page 26 “4.3 Tuner subunit descriptor”, and page 28, “source plug status [x] fields”. The “Accepted”, “Interim”, “Not Implement”, and “Rejected” are described in detail in Reference 1, “AV/CDigital Interface Command Set General Specification Version 3.0

issued by 1394TA AVWG, page 16 (7.2 Control commands).

Next, FIG. 6 shows a flow of the processing where a set top box 24 (a HAVi module group 40, particularly an application module 42) provided with the control object device monitoring function section 40 control the desired control object device as a target.

In FIG. 6, the HAVi module group 40 of the set top box 24 judges, as the result of a report as to the occupation of each control object device obtained by the monitoring of the individual object devices conducted by the control object device monitoring function section 40 as mentioned above, that is, using the flag during control, as the processing of Step S20, whether the flag during control of the control object device as a target is "1" or "0".

Where in Step S20, judgement is made that the flag during control of the control object device as a target is "0", the HVI module group 40 controls the control object device according to the normal control routine since the control object device is not controlled by other equipment (for example, the LAV controller 22 in FIG. 1).

On the other hand, where in Step S20, judgement is made that the flag during control of the control object device as a target is "1", the HVI module group 40 produces a warning indicating signal, for example, "This device is used for others and cannot be used." to output it to a monitor 61 or the like, since the control object device is controlled by other equipment (for example, the LAV controller 22 in FIG. 1) and cannot be controlled. Thereby, the user of the set top box 24 is possible to know that

the device cannot be controlled.

As described above, according to the present embodiment, it is possible that one equipment cannot be operated simultaneously by a plurality of controllers.

While in the example of FIG. 1 described above, the control object device monitoring function is provided within the device (set top box 24) in conformity to the HAVi, and the control object device monitoring function section 40 is prepared separately from the HAVi module group 45 so that the report of the monitored result by the control object device monitoring function section 40 is notified to the HAVi module group 45, it is noted that the control object device monitoring function can be also included in DCM as one function of the HAVi.

Further, according to the present embodiment, in the control object device monitoring function, the monitoring operation as described above is carried out whereby for example, even in the constitution as shown in FIGS. 25, 26 and 27, confliction can be avoided.

Furthermore, also, for example, in the network constituted merely by equipment corresponding to only the conventional AV/C command, if means for monitoring devices (control object device monitoring function section) within the network is provided, the monitoring operation similar to that mentioned above can be similarly realized.

A series of processings as described above can be executed by the hardware, but can be also executed by the software. Where the series of processings are executed by

the software, a computer in which a program constituting the software is incorporated into the set top box 24 as an exclusive-use hardware, or various programs are installed, whereby they can be installed in, for example, a general-use personal computer capable of executing various functions.

A reserve command of AV/C commands will be described hereinafter.

The reserve command and the response corresponding thereto are provided as one kind of the AV/C command and the response. The AV/C command and the response are transmitted by FCP (Function Control Protocol provided by IEC-1883. FCP is provided to capsule a command for controlling equipment and a response within asynchronous block write transactions of IEEE standard 1394-1995, format of which is constitute as shown in FIG. 7.

As shown in FIG. 7, at the head is arranged a packet header, a FCR frame is then arranged, and finally, data CRC is arranged.

At the head of the packet header is arranged destination ID. The destination ID represents ID of a node to which the packet is transferred. In the figure, t1 indicates a transaction label, representing a unique tag added to the packet from the node. In the figure, rt indicates a retry code, representing a code relating to retry.

In FIG. 7, tcode represents a transaction code, value of which is 0001 in this example. This 0001 represents that this block is a write-in request for the data block.

In FIG. 7, pri represents a priority, by which value, arbitration in a link layer is carried out.

Source ID represents ID of a node for delivering the packet. A destination offset represents an address of a register in which a command or a response of the packet is written.

That is, for example, as shown in FIG. 8, the set top box 24 connected to an IEEE1394 bus has a register 141 within an IEEE1394, and a digital VTR23 has a register 131 within an IEEE1394 interface 110. For example, the digital VTR 23 allows a command and a response transferred through the IEEE1394 bus 21 from the other node to hold in an address of the register 131 provided by the destination offset. Similarly, the set top box 24 also allows a command and a response transferred from the other node to store in an address provided by the destination offset of the register 141. The set top box 24 and the digital VTR 23 read out the command or response stored in these registers 141 and 131.

In FIG. 7, a data length represents a data length in a data field. In the succeeding 2 bytes, a value 0 is described. The final header CRC represents an erroneous detection symbol within the packet header.

In the FCP frame in a pay-load portion is arranged a CTS (Command/Transaction Set) as first 4 bits. In the case of the V/C transaction, the CTS has a value of 0000. Next, FCP data are arranged. The details of th FDP data are shown in FIGS. 9 and 10. FIG. 9 shows a FCP frame of an AV/C command frame, and FIG. 10 shows a FCP frame of an AV/C response frame

In FIG. 9, ctype indicates a command type, and values provided therein means

as shown in FIG., 11. That is, the value 0 means CONTROL, and the value 1 represents STATUS.

A `subunit_type` represents a kind of subunit which is an object of this command, value 0 thereof means that the kind of subunit is a video monitor, and value 3 represents a disc recorder or player, as shown in FIG. 12

A subunit ID is used as an instant number in case where an expansion subunit type is defined. Values 0 to 4 represent instant numbers, and a value 5 represents that the subunit ID represents that the subunit ID is expanded to next byte, as shown in FIG. 13.

In FIG. 9, opcode represents an operation cord, and in case of reserve, its value is 01, as shown in FIG. 14. Next to the opcode, operand [0] to operand [n], and in case of FIG. 14, n=1 are arranged. A priority is arranged in the operand [0]. This priority provides a relative priority order incidental to a command. The value 9 means that no controller reserves its node. Values I to F mean that a target has reservation for a controller. The value 4 of priority is a standard priority used by a controller.

A target in a free state (not reserved) is reserved by a controller which issues a reserve control command. The target stores a row of texts incidental to the priority reserved, and node ID of 16 bits of a controller. ASCII characters are inserted up to 12 bytes into a text following the priority.

A value held when the value of priority is received by the target is converted as shown in FIG. 15. For example, values 0 and 1 are held as the priority. Values 2 to E

(16 antilogarism) are held as priority and value E. Value F is held as priority.

The node (target) rejects, when reservation of a fixed controller is held, a control command other than the command type reserve of a control issued from other controllers.

When a reserve control command is received from one and the same controller holding reservation, it is accepted. This allows an original controller to make priority resulting from the reservation higher or lower.

When a reserve control command is received from a controller other than controllers having made reservation, the target rejects its command as long as the priority is not higher than the priority of the present reservation. When a new priority is higher than the present priority, a new reservation is established.

Where a reserve control command is issued to an AV unit having a subunit holding reservation of equal or higher priority, the reserve control command returns a rejected response.

Where a reserve control command is issued to an AV unit not including a subunit having equal or higher priority, the reservation is established.

Where a control command is issued to a subunit within the AV unit reserved by a controller other than controllers which issued a control command, its control command is rejected.

The AV unit resets, when a bus reset is detected, priority of the reservation to 0, and set all of reservation node ID and reservation text to 1. The AV unit rejects all

commands of a command type of a control except the reserve command till the reservation is established or till 10 seconds pass. This procedure allows an original reservation holder to re-establish reservation after the bus reset.

Each controller never issue a reserve control command within 10 seconds from the bus reset except the case where reservation has been established for the target prior to the bus reset. Since the node ID of the AV unit is changed after the bus reset, a controller which desires to establish the reservation examines the node unique ID.

From the these circumstances, the target presumes that a reserve command received within 10 seconds of the bus reset to receive the reservation.

The controller is able to request the present state of reservation by issuing a reserve command having a field of a command type of STATUS shown in FIG. 16.

The AV/C response frame shown in FIG. 10 is also basically constituted similarly to the AV/C command frame shown in FIG. 9, but a response is arranged in place of ctype in FIG. 9. This response means a response code, and values 0 to F represents the meaning shown in FIG. 17. For example, there represents that the value 8 is not adapted (not implemented) to the command request, and that the value 9 accepted the command requested. Further, there represents that the value A rejected the corresponding command.

As shown in FIG. 18, when a controller issues an AV/C command to a target, the target issues it where a response can be issued within 100 ms to the command.

On the other hand, as shown in FIG. 19, where after receipt of a command,

corresponding processing cannot be completed within 100 ms, an INTERIM response is issued before 100 ms pass. Afterwards, when the processing is completed, the target issues a final response.

In the following, a medium used for the purpose of installing a program for executing a series of processings described above, for example, in a computer to place it executable by the computer will be described with reference to FIG. 20 taking as an example the case where the computer is a general-use personal computer.

A program can be presented for a user in the state being preinstalled in a hard disc 302 and a semiconductor memory 303 as a recording medium housed in a personal computer, as shown in FIG. 20A.

Alternatively, a program may be stored temporarily or permanently in recording media such as a floppy disc 311 shown in FIG. 20B, CD-ROM (Compact Disc-Read Only Disc) 312 shown in FIG. 20C, MO (Magneto-Optical) disc 313, shown in FIG. 20D, DVD (Digital Versatile Disc) 314 shown in FIG. 20E, a magnetic disc 315 shown in FIG. 20F, and a semiconductor memory 316 shown in FIG. 20G, and can be presented as a package software.

Further, the program can be, as shown in FIG. 20H, transferred by way of wireless from a download site 321 to a personal computer 323 through a man-made satellite 322 for digital satellite broadcasting, and transferred by way of wire to a personal computer 301 through a network 331 such as a local area network and an internet; and in the computer 301, the program can be stored in a hard disc 302 housed

therein.

The medium termed in the present embodiment means a conception in a broad sense including all these media.

It is noted in the present embodiment that the steps of described programs presented by the media include a processing carried out in a manner of time series in order described, of course, and a processing executed in parallel or individually even not always being processed in a manner of time series.

Industrial Applicability

According to the control apparatus and method, medium of the present invention, the using circumstances of a control object device is detected, and control of the control object device is carried out on the basis of the detected result, whereby even where for example, a control apparatus in conformity to a fixed standard, a control apparatus not in conformity to a fixed standard, and a control object device that can be controlled by the respective control apparatuses are mixed, for example, on a network, there can be avoided inconvenience the control object devices not in conformity to a fixed standard are controlled by the respective control apparatuses simultaneously.