AIR FORCE FLIGHT DYNAMICS LABORATORY

DIRECTOR OF LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT PATTERSON AIR FORCE BASE OHIO

A Computer Program for Counting Load Spectrum Cycles

based on the

Range Pair Cycle Counting Method

V. A. Tischler

Technical Memorandum FBR 72-4

November 1972

This document has been approved for public release and sale; its distribution is unlimited.

A Computer Program for Counting Load Spectrum Cycles

based on the

Range Pair Cycle Counting Method

V.A. Tischler

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report was prepared by V.A. Tischler of the Solid Mechanics Branch, Structures Division, Air Force Flight Dynamics Laboratory. The work was conducted in-house under Project 1467, "Structural Analysis Methods," Task 146702, "Analysis Methods for Damaged Structures". Mr. Howard A. Wood is the Project Engineer.

The manuscript was released by the author in November 1972.

This technical memorandum has been reviewed and is approved.

FRANCIS J. JANIK, JR. Chief, Solid Mechanics Branch

Structures Division

ABSTRACT

This report presents a detailed description of a computer program based on the Range Pair Cycle Counting Method, as given in Reference 3. The Range Pair Cycle Counting Method is a procedure for generating an analysis spectrum from a given load spectrum. Examples are presented where the resulting analysis spectrum will be used as input to a crack growth analysis program.

CONTENTS

Section	·	Page
I	Introduction	1
II	Program Organization	· 3
III	Input Instructions	. 5
IV	Tabular Output	6
References		7
Figures		8
Appendix I	Sample Problems	11
	1. 14 Mission C5-A A Spectrum	12
	 5.0g Flight by Flight Spectrum 	33
Appendix II	Program Listing	40

SECTION I

INTRODUCTION

In crack propagation analysis it is necessary to have a correct representation of the load spectrum. A load spectrum obtained from tests may not be directly applicable to analysis. The Range Pair Cycle Counting Method is a means of determining an accurate analysis spectrum from the actual load spectrum. This method is briefly discussed and compared with other counting methods in References 1 and 2. A more comprehensive discussion which forms the basis for the development of the present computer program is given in Reference 3.

The computer program treats a load spectrum S as a collection of n peaks and valleys designated by x_i , $i=1,\ldots,2n$, such that if x_i is a peak then x_{j+1} is a valley, $1 \le j \le 2n-1$. The analysis spectrum is represented by a collection of m cycles $\{(a,b)_i\}, i=1,\ldots,m$, such that a_i and b_i are elements of S. The Range Pair Cycle Counting Method considers four points (x_1,x_2,x_3,x_4) at a time and the conditions for counting a cycle (x_2,x_3) are as follows:

If $x_2 > x_1$, then a cycle is counted if

 $x_2 \le x_4$ and $x_3 \ge x_1$.

Conversely, if $x_2 < x_1$, then a cycle is counted if

 $x_2 \ge x_4$ and $x_3 \le x_1$.

This method is illustrated in Figure 1.

Thus, starting at the beginning of the load spectrum the first four points x_1 , x_2 , x_3 and x_4 are considered. If x_2 and x_3 meet the above conditions, a cycle is defined and these two points are deleted from the spectrum. Consequently x_4 becomes x_2 and the next two points of the spectrum are added to again give four points. Counting continues until the four points considered do not define a cycle. Then x_1 is omitted from consideration and becomes an element of a residue spectrum. The three remaining points are updated, i.e. x_2 becomes x_1 , x_3 becomes x_2 , x_4 becomes x_3 , and x_4 is added sequentially from the load spectrum. This process continues until there are only two or three points remaining. These points are added to the residue spectrum, which is then analyzed in the same manner as the original load spectrum. Continuing in this manner a residue spectrum is

finally generated which will yield no cycles by the Range Pair Cycle Counting Method. This residue spectrum diverges to a maximum range and then converges as shown in Figure 2. Cycles are generated from the final residue spectrum as follows: Pair the highest peak with the lowest valley to form a cycle. Then moving away from this cycle in both directions, each successive peak and valley are paired together. If there is an extra peak or valley left on either side, it is omitted. This counting method is illustrated in Figure 2.

In summary, an original load spectrum is analyzed using the Range Pair Cycle Counting Method to produce an analysis spectrum plus a final residue spectrum. This final residue spectrum is then analyzed by a pairing technique to determine the remaining cycles, which are then added to those previously counted. The result is a complete analysis spectrum for use in analytical predictions.

SECTION II

PROGRAM ORGANIZATION

The Range Pair Cycle Counting program, RPCM, assumes that the input load spectrum, S, is defined by n peaks and valleys, (x_1, y_1) , and n counters k_i , $i=1,\ldots,n$, where k_i is a count of the number of times the ith peak and valley are to be repeated sequentially. The program then assigns a step number j, $j=1,\ldots,n$ to each peak and valley of S. Since the analysis spectrum is generated in disjoint parts, i.e. from the input load spectrum, from each residue spectrum, and from the final residue spectrum, the step numbers are used to sort the analysis spectrum relative to the sequencing of the initial load spectrum. Sequence becomes important particularly in crack growth analysis. When the counter k is less than 1, as can occur in a flight by flight load spectrum, the peak and valley associated with k is not analyzed by the program, but is transferred directly into the analysis spectrum and subsequently sequenced relative to its step number.

The program RPCM is divided into three parts. Each part is described below in a step-by-step manner.

Part I

- 1. The initial load spectrum S is adjusted by removing those peaks and valleys whose counter k is less than one.
- 2. The initial load spectrum S is further adjusted if for some i, the ith peak and valley are equal to the (i+1)th peak and valley, by maximizing the counter k_i .
- 3. The Range Pair Cycle Counting Method is now applied to the adjusted load spectrum, S. Program RPCM calls Subroutine DECIDE with four elements from S. Subroutine DECIDE determines whether a cycle is to be generated or whether \mathbf{x}_1 goes to the residue spectrum. Cycles are generated in Subroutine CYCGEN.

Part II

1. The Range Pair Cycle Counting Method is applied to the residue spectrum. Program RPCM calls Subroutine DECRES with four elements from the residue spectrum. Subroutine DECRES determines whether a cycle is to be generated or whether x₁ goes to the next residue spectrum. Cycles are generated in Subroutine CYCRES.

2. If the current residue spectrum has less than three points or if no additional cycles can be generated by the Range Pair Cycle Counting Method, proceed to Part III, otherwise return to Step 1.

Part III

- 1. The remaining cycles are generated from the final residue spectrum.
- 2. The analysis spectrum is sorted relative to the sequencing of the input load spectrum.

SECTION III

INPUT INSTRUCTIONS

Card No. (Format)	Variable Name	<u>Definition</u>
1 (8A10)	TITLE	An alphanumeric description of the load spectrum, S
2 (2I5)	NPKS	Number of peaks or valleys in the load spectrum, S
	NPUNCH	Punch flag NPUNCH # 0 implies the analysis spectrum will be punched in the input format.
3,,NPKS+2 (5x,3E10.3)	SIGMAX(I)	Ith peak of the load spectrum, S
	SIGMIN(I)	Ith valley of the load spectrum, S
	RNCYC(I)	counter k_1 of the Ith peak and valley

SECTION IV

TABULAR OUTPUT

Program RPCM gives the following output:

- 1. The input load spectrum, S.
- 2. The adjusted load spectrum as discussed in Section II.
- 3. The elements and step numbers of Residue Spectrum 1.
- 4. The elements, the step number and the counter k of the cycles generated from the adjusted load spectrum.
- 5. The elements and step numbers of Residue Spectrum 2.
- 6. Step 4 output is repeated plus any additional cycle information generated from Residue Spectrum 1.
- 7. Steps 5 and 6 are repeated for each residue spectrum until the final residue spectrum is generated.
- 8. All previous cycle output plus any additional cycle information generated from the final residue spectrum.
- 9. The Range Pair Cycle Counted spectrum, i.e., the analysis spectrum.

REFERENCES

- 1. J.B. de Jonge, "The Monitoring of Fatigue Loads," National Aerospace Laboratory NLR, The Netherlands, Report MP 70010 U.
- 2. N.E. Dowling, "Fatigue Failure Predictions for Complicated Stress Strain Histories", University of Illinois, Urbana, T.&A.M., Report No. 337, January 1971.
- 3. S. Streitmatter, "A Method of Counting Spectrum Load Cycles", North American Rockwell, Los Angeles Division, TFD-72-358, March 1972.

Figure 1

Figure 2

APPENDIX 1
SAMPLE PROBLEMS

1. 14 Mission C5-A A Spectrum

A partial plot of the input load spectrum S is given in Figure 3. The full spectrum is listed on P . It has been observed that the spectrum listing may not be a good representation of the load spectrum since some of the peaks or valley values given in the spectrum listing do not match the actual peaks and valleys on the load spectrum. This can be illustrated by steps 6 through 9 of the spectrum listing.

6	8215.0	0.0	1
7	9146.0	6846.0	5
8	6065.0	0.0	12
9	11790.0	8790.0	50

The load spectrum that these 4 steps would produce is given in Figure 4. Now considering the actual peaks and valleys shown in Figure 4, steps 6 through 9 should become

8215.0	0.0	1
9146.0	6846.0	4
9146.0	0.0	1
6065.0	0.0	11
11790.0	8790.0	50

These five steps may now be range pair counted according to the rules given. The x's on Figure 3 indicate additional places where the above type of behaviour occurs.

The program as written can handle such discrepancies in the initial load spectrum.

14 MISSION C5-A A SPECTRUM

œ
2
Ħ
SPECTQUM
LOAD
INPUT
Ŧ
Z
MALLEYS
8
PEA KS
P
NUMBER
Щ

COUNTER K	0000	5.300		7.000	00000	. 386	.0000	.0300	2.3000	0000	9.0000	0000-4	0000				2000		1.0000	000	1.0000	0000	0 00 00	2,3030	•	1.0000	2.0000	. 00 00	000	5.3000	. 30 O ú	0.0000	4.3300	1.3000		1.0000	0000				•				9000	4.000))) ()		= =	•
MINIMUM	• 6				•	•0		*684500E+04	.0	.879330E+0	4000t	2900000	120001		100001			79300E+0	790 JCE+0	29300E+0	673365+3	.704000E+04	•879300E+0		• 684600E+04	•	•0	•0		.68460CE+04		7005+0	89706E+3	.81333CE+04	850005+0	99700E+0	.544730E+3		• 684640E+04	•	•	•		1111111	. 544740	2010000	27.000.00	4000004	200000	027.20540	100000000000000000000000000000000000000		•684501E+04		•	•
SIGMA		44636643	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21270E+3	165306+1	1650úE+)	21500	14600	16500	~	354005+0	72000541			1930643	179065.43	0 0 0 0 E + 1	1790CE+3	57900E+0	20005+1	94630E+3	54006+0	17900E+3	55:0E+3	909	150CE+3	5500E+3	5530	15005+0	14630	(+30	94700E+0	49700E+3	4603	225úGE+)	13976E+3	7.00E+3	06500E+1	14600E+0	21500E+3	U6550E+1	06508E+0	715300	(*B0055	C+305000	1207054	1000000		40000E+0	70001	「+ いっっょか	06500E+0	14656E+1	71500E+J	• 606500E+J4	16500
STEP	: : :		ا ر	~	.	S		2	6 0		-		1.	71	5 H	51	15	1	17	18	5+	25.3	21	25	23	. 54	25	26	22	28	52	3.0	31	32	33	#M	35	36	37	en (ייני	D (# (V P.	n 4 f 4	7 U	n u	υ f	. t	en t	ית פיים איני	50		2.5	in i	24

117900E+35 1735400E+15 1735400E+15 19790EE+17 11790EE+1	. 606500F+34 12 - 00 000	+0+ +0+	•117930E+35 •87930CE+34 50•0000	•135400E+15 •70400E+04 29•0000	5 .129000E+05 1	5 .107000E+05	•	,	T 00	•117930E+35 •879330E+34 50•00381	.479006E+04	*1290J0E+15	5 .107000E+05	•	35 .879000E+04 50	0.	•914630E+14 •684600E+04 5•0000	.8215JJE+J4 0. 1.000D	+ O	4 0. 12	· · · · · · · · · · · · · · · · · · ·	.914600E+14 .684606E+04 5.0000	. 606.500F+14 0. 0. 12.00.00
---	--------------------------	------------	---------------------------------	--------------------------------	-----------------	---------------	---	---	------	----------------------------------	-------------	-------------	---------------	---	-------------------	----	--------------------------------	-----------------------	-----	---------	---------------------------------------	--------------------------------	------------------------------

STEP NUMBERS OF IDENTICAL PEAKS AND VALLEYS WHICH OCCUR CONSECUTIVELY IN THE LOAD SPECTRUM

52

. :						!									٠		1		i		•							:					•												:	
:						2											-					-					:	. :													;	•	•	•		٠
						'n											ļ					1															-				: :				İ	;
																	j					:					!																			٠
																	i					į					1																			
																	. ;		1			:																			•				! .	
																,						i									i !										:					٠
¥	000	9	(3)	000	9 (3	20	200	-			C	000	3 (2)			~ .			900		3 C	000	(3)	900	20	300	9 6	900		000	000			90	0))))			2	000	•		_	000	> >
COUNTER	98	3	. 00	8		9	0	30		60.	90	1.00	9 6	8	80.	60.	200.0	. 9	00.	8	3 8	8	8	8	3	.03	90.	200.00	3	4.00	5	2.00	.00	• 00	. 00	8		2.00	. 30	90	9	3 8	8	8	8 6	-
ខ្ល	+		1	Ñ	-	+	į,	N •	4		ũ	t		-		∾ เ	v +	, - .		~		+	in (Ñ	Ñ		<u>.</u>			ñ		+	r.		Ñ	•	V III	٠ 🕶		•	N		-1	Ţ.	٠.	•,
			:																																										:	
T		†0+	:		40+	•	70 +	# 10 0 9	0 10 4	40.4	70+		t 4	+0.5	+0.5		7 3	†0			40.4	•	4 C+	\$ 0 + 4		40+	† 0+	70+			404		†0+	†0+	\$ O+	. t.	† 4		3 0+			+0+	•	† 0+	\$ U	N ====================================
MINIPON		84600E+04			684630F+0		8790 GCE+0	3366	.10700CE+05	3000	879300E+3			3000	.10700CE+05	300E)))	8460CE+0			6846665		54470CE+0	3897JGE+3	3000	1997.305+34	700E	84505F+0					7.0CE	7.3CE	300E	000E	3697 JCE+04	,	68460GE+0			8460CE+0		000€	3000 3000) > >
ij		. 4			•		.879	407.	107	479		•	670	129	. 107	707.		ف			• •		445	.389	985	.199	•	. 4			. 6.84		.544	• 199	982	.810						٠.		.879	.704036E+04	17.7
	-	•	0	00	•	0						0					C)	0	-	•	0					•	-	0	0	0	0						0		(C)	-	•	0			
SIGMA			;																															•											•	
•	.9	٠.٠	.	.	t.	. بور	េ	in u	ח נה	, iv	2	↔ u	v r	, ID	نما	ıo ı	n -4		.+	.			.+	.+ 10	\ IO	10.	. ح	.		.+	* *	+. +		is	r.	v 1	.			.	.			r.	ın u	
E S	1	GE+3	1 1 1 1 1 1 1		E + 1	1	0E+1		1	12		Į:	3 3	+	E+1	7:		E+30	1	9	1 4 6 0	SE +3	E+30	+ H	10-10	ш	Ţ	1	E C	0E+30	10 H	E + D	E+0	E+3	7	1 t	7	Ė	0E+30	7	0E+3	E T	1	1	73	2
НАХІНОМ	0650	9146005+34	821538E+3	.606500E+34	1463	0653	117900E+19	3540üE+J	000346	5790CE	117930E+3	1000001	579911	7200	94600	135430	11/936E+3	914600	821530	606500	944630	606500	~	949709	22500	113976	7947367	505500 9146:0	821500	606500	821560	616510	947005+0	1397	122500	140000	7047	606500	914600	821500	606500E+7	914650	606500	17900	35406	v
	4	, or		•		9		•	•	! =	+	-		17	₹	-	- 0	•	€ 1	•	o o	9		•		ਜ਼ '	•	0		•	0	9	~	.11	÷	-	7 1	φ.	6	•	ψ e	0	9	•	.13	•
																																									•					
	··		:												•																															
																																													1	
STEP	-	N	ro .	*	·	•	σ		12	, m	4	<u>.</u>	2 7	. 8	5	() t	5 6	7	3	ני ני	. 6	6	2	2 2	m	÷ !		2 5	38	33	40	ı Mi	#	42	9	•	0 0	, ič	#	2	א ני	9	2.	60	თ :: სი ს	,

```
.194010E+15
.15790E+15
.17900E+15
.179000E+15
.179000E+15
.179000E+15
.179000E+15
.179000E+15
.1790
```

STEP

VALUE

ਜ਼ਜ਼ ੑੵਜ਼ ਲ਼ੑੑੑੑੑੑਜ਼	**************************************	. 40 M M M M M A A A A A A A A A A A A A A	66 66 66 77 77 77 8
.306500E+C4 0.314600E+C4 0.314600E+C4 0.414600E+C5 479000E+C5 479000E+C4	4000E+0 4000E+0 4000E+0 4000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0 6000E+0	.914600E+0 .389700E+0 .794700E+0 .914600E+0 .914600E+0 .194006E+0	194000E+05 *704000E+04 *117900E+05 0. 914600E+04 0.

6.8

COUNTER K		1.0000		0000	1.0000		4.0000	1.0360		9000	1.0000	28.64000	1.0000	99964	1,0000	0000		1.0000	0.00.0	000		0000	1.0000	0000		3000	1.0000	0000.4	3 C	1.3000	.0000	1.0000		1.0000	. 9000	.000.		1,000	0000	1.0000	0.00.0	0000		
HINIMUA	8460CE+3	.684630E	• (• 68460CE+04		7 4	29000E+0	C703CE+0	79300E+3	290005+0	07300E+0	4 0400000 to	790000	.684530E+9	.6846UDE		. c		.544700E+0	70GE+	967146640	4473CE+0	0+3002+0			40400E+0			0.00	9970CE+3	850005+0	*81094EE+04	04300000	4470CE+0		68460CE	• 6846UUE+U	• ·	*684600E+04		7900CE+3	764J30E+0	12910540	.87900E+04
SIGHA	.6065U0E+14 .9146GGE+14	21536E+1	06.50 24.50	14600E+3	06500E+3	179306+1	72000E+0	157930E+3	17906E+3	726.0F+1	35400E+3	<u>iii</u> ii	17 900E +U	14600E+1	21500E+0	0653GE	014600513	1400C+1	794700E+3	949706E+J	1225UUE+8	1057 0E+3	06500E+0	06500E	14676647	06500E+3	21500E+J	146368+3	606500E+0	13970E+3	122500E	49700E+3	707.700543	0650GE+	606500E+3	4600E+3	21500E+0	00200	14600E+0	06500E+7	17900E+3	5430E+3	72000E+J	.15/900E+35
STEP	₩ №	m	. 7 U		80 (ۍ د	3 +1	(P)	7 .	m +-	20	200	22	23.5	54	25	200	29	36	T E	3.3	0, 0, 0, 1	36	36	0 N	0 OF	7	7.	т.	t t	1	60 ! J	0 0	F 100	20	51	N 11	3.5 E. E.	יי ער	. 60	53.8	53	ت (د ۵ ر	V F9 Q Q

1.00000 14.03000 28.00000 49.03000 4.00000 4.00000 1.00000 1.00000 4.0300 1.00000 1.00000 1.00000 1.00000

.479300E+04 .12930CE+05 .107000E+05 .704000E+04 .87930CE+04 .684600E+04 .684600E+04 .684600E+04

.157900E+05 .172000E+15 .135400E+15 .135400E+15 .60530E+14 .924600E+14 .821500E+14 .821500E+14 .821500E+14 .821500E+14 .821500E+14 .821500E+14

67 77 77 77 77 77 77 77

Ξ
S

VALUE

.506500E+64 .194000E+05 .194000E+65 .14000E+65 .14000E+65 .194000E+65

																																															:										
COUNTER K	2	4.0000		7	0000	0000	. 3000	1.000		0000			1.0000		1.0063	.000	.0096	8.0000	9.0000	3	.000	1.0000	. 1360	1.0000	00 O Ù	1.3000	0.000.0	4.3000	.0000	1.0000	0000	1.0000	.000	4.3300	.0000	.0369	1.0000	9000	9	000000	1.0000	0000	1.0000	3.0000	0000	1.0000	3300	0000					000000	9.00.0	מיט פיי	1.0000	9.0
SIGHA Hinimum	•0	.68450GE+04	COLCADEA	0.0000000000000000000000000000000000000	. 0		. 6845J0E+04		8790365+6	704936E+0	120075640		コピノンプレビ	79306E+3	7933GE+3	129000E+3	0739CE+0	04336649	79000E+0	3.	•6845025+34	84500E+0	•0	0.	•684530E+04		44700E+	3897J0E+D	850005+	985000E+0	54470EE+0	4700E+0	•0	9	6845005+0	0.	0.	*684500E+04		4470CE+0	997 3 GE+0	95000E+0	. 81030CE+04	3897305+3	744736549	• 544 CUBE+U		0.00	0.42000400	• ·			301978.	704000510	12933EF+9	10700CE	00E+0
SI MAXIMUM	7	Ξ	7		7	7	Ξ	7	7	7	7		. 19/900E+15	7	7	÷	Ŧ	7	7	7	Ŧ	•821500E+J4	Ŧ	Ŧ	.914630E+14	7	+C+3002+34	7	.122500E+05	Ŧ	7	÷	Ŧ	+	7	7	+	Ŧ	Ŧ	7	7	Ţ,	7	7:	7 :	7 7	7 :	*9140006+14	7	7	. =	7	Ţ	Ţ	7	.157938E+35	7
STEP	#	8	,,		.	יש	7	4 0	יט	31		1 7	n . -1 •	J (6 0 ÷1	₽	20	ر. ۵	21	22	23	54	52	27	88	53	33	31	33	36	in M	36	36	37	36	ov M	41	7.5	m J	3	9	.e	eo e er e	o (Dred	2 6	7	100) K) tr	, uc	57	43	. S.	9	29	€ 9

```
11.000000
28.000000
28.000000
49.000000
11.000000
11.000000
11.000000
11.000000
11.000000
11.000000
11.000000
                                                                                                                                                                                         1.00000
1.00000
1.00000
                                                                                                                                                             .00000
                                                                                                                                                                                 .479300E+04
.704930E+04
G.
                                                                  .684600E+04
                                                                                                    .479336E+04
.704336E+34
0.
                                                                                                                               .810330E+04
.199700E+04
0.
                                                                                                                                                      .38970GE+04
0.
.479000E+04
.129000E+05
.107030E+05
.704000E+04
                                           .684500E+04
.684500E+04
.0.
 .157900E+05
.175000E+15
.135400E+15
.006500E+14
.914600E+14
.821500E+14
.821500E+14
.821500E+14
.914600E+14
.914600E+14
.914600E+14
.914600E+14
.914600E+14
.914600E+14
                                                                                                                                                                                           .117930E+15
.914630E+14
.914630E+14
                                                                                                                                                                                     117936E+35
                                                                                                                                          .7947JCE+J4
                                                                                                                                                  914536E+14
914630E+14
                                                                                                                                                               794750E+34
                                                                                                                                                                       ,9146005+04
                                                                                                                                                                              9146005+34
```


COUNTER K	9	4.0000	3030	.0000	.0000	4.9000		9.00.0	4.0000	1.00000	.3306	1,3033	• 00 00	1.0000		3 6	4.0106	1.0000	. 0000	00	4.0000	1,0000	00000	3 C	1,000		1.0300	0000	0000.4	1.0000	. 30 00	0000			1.0000	90	1.0000		4.0000	0000	4.0300	.0960	.0000	0000	4.0090	1.0000	0.0000	0000		00000°66
MINIMUM	•0	84600E+0	58450CE	•0		*68460CE+04	87900054	*017000010* *764336E+04	1293005+0	1070 J0E+0	879JJGE+0	7930CE+0	129300E+0	1070005+0	7070000	20000000	.684606E+0	.68463CE+04	•0		•68460CE+34		4470014	3897 ULE+U	851005+1	44700E+0	70 GE		.684600E+04	.684530E+3	• 0		00400000	.544700	9970CE+0		10000E+0	6476E+0	44700E+0		.68450CE+3	89	•		• 684500E+04		879300E+0	7043006407	10300621	.87900E+04
SIGMA	06500E+1	914600	2153GE+1	065CCE+3	21500E+0	14600E+1	17971	135446E+3	72430E+3	157900E+3	117900E+3	157900E+1	720005+3	135400E+3	32400E+3	6465365+1	14600E+3	21500E+J	06500E+3	215006+1	1460CE+3	065505+3	74300747	2000000	13976F+1	794786541	1650CE+3	60650GE+3	14690E+3	21500E+3	36523E+3	21500E+0	1661	94700E+3	13970E+3	22500E+3	4970CE+)	4300764	15500F+1	606500E+0	146005+3	215JUE+J	06500E+3	21500E+)	14600E+1	06500E+J	17900E+3	354JGE+0	70000	- ř-
STEP	-1		m	3	•	~ °	o o																				36																							63

25.

STEP	# # 6 #
VALUE	.606503E+C4 0. .194003E+E5

		· · · · · · · · · · · · · · · · · · ·			
COUNTER K				44444	
HINIH	34600E+0 34600E+0 34600E+0 7910CE+0 6400EE+0	.167006#405 .179006#404 .129006#404 .129006#404 .704300E#04 .879300E#04 .884630E#04	84600E+0 44700E+0 89700E+0 85000E+0 44700E+0	.684500E+34 .684500E+04 0.684500E+04 .99700E+04 .98000E+04 .984700E+04 .984700E+04 .984700E+04	0. 684630E+04. 10. 684630E+04. 0. 684600E+04. 70400CE+04. 12900E+05. 10700CE+05.
SIGHA	500E+1 500E+1 500E+1 500E+1 500E+1 600E+1 600E+1 600E+1	57930E+1 17956E+1 72506E+1 72506E+1 35406E+1 35406E+1 17906E+1 17630E+1 14630E+1	100E+3 100E+3 100E+3 100E+3 100EE+3 10		200E+3 600E+3 600E+3 600E+3 800E+3 800E+3 800E+3
31 EP	まない よの P ない P ままり P もっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ		**************************************	~ ๛ ๓ ๚ ๗ ๗ ๗ ๗ ๗ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓ ๓	, www.www.ww.ww.ww.ww.ww.ww.ww.ww.ww.ww.w

28

Why.

#
PAIR COUNTING
O RANGE
2
•
SPECTRUM
M LAST RESIDUE
LAST
FROM
GENERATED
CYCLES

					٠																																															
COUNTER K	0 0 0	0000	0000	.306.	. 00 00	7000°	1,3000	0.00.00	0000			1.000	0000	1.3000	8.0000	. 3000	1.0000	00000		1,0000	.0000	1.0000	. 36 60	00000	23.30000		1.000	9000.	.000.	1.0000	. 0000		1.0000	300	1.0000	0000	1.0060		1.0000	3000	4.0000	1.0900	. 00 00	9000			9.00.6	4.0000	1.0000	000	0000	0000.
HUNIKIH	c	.634630E+0	w	•		• 66463GE+04		79300E+0		2337540	70.000040	# ロードリコウファンの • # ロードリコウファンの • # # # # # # # # # # # # # # # # # #	2900E+0	C7300E+3	0+300543	.3790J0E+J	1	すの + 担当の Q + の W	12000-02	• "	*634500E+04		4470CE+0	89736E+0	4 0 + M30 C (M80) •	04100100	447005+0		*68463CE+04	.68-600E+0	• (J. 6845110F404		.5447305+0	997.JCE+0	85000E+0	ACOCCE+3	047,405+0	47.10E	,	• 684530E+04	• 6845 3 66+0	e e		. 5545565454	04330	0.305.00	29100E+0	C7330E+9	.879306E+04	7900CE+0	30 JGE+0
SIGPA		14638E+	21500E+J	0653GE+J	215G0E+)	14600E+3	06500E+0	17966E+3	354ULE+J	72000E+0	1700011	17900E+1	72600E+1	35400E+1	35400E+3	17900E+)	06530E+3	146306+1	1200612	215a0F+1	14606E+3	0653BE+3	94766E+3	49700E+3	*122500E+05	13370643	606500F+0	16590E+1	14660E+1	21500E+)	C650vE+1	215006+3	06500E+3	9470GE+3	13970E+3	22500E+0	9497866+3	949700E+0	06530E+3	06520E+1	146J0E+3	21500E+0	06538E+3	21500E+1	14500E+4	12000543	354065+)	72005E+3	57910E+3	17956E+	57900E+0	72000E+)
STEP		٠ ٨		J	9	7	6 0 ·																		33																											

RANGE PAIR CYCLE COUNTED SPECTRUN

														•				•		,																									
COUNTER K	12.00000	4.00000	1.00000	24.30050	1.000000	1.00500	1.00	50.00000	6.0	100	1.0000	0000	1.00000	000	1.0000	1.900	00000000	1.0006	000	000	1.00000	0000	1.000	000	-	. 33.30	4.0000	1.0000	3.00000	1.00000	. 00 00	1.60000	9 0	.000	1.00000	0000	1.0000	.0000	4.000		1.000	9	000	1.00000	20.00
MA MINIHUM	• 9	• 6845005+04	•6846068+34		104=104888. • 0	• 0	•0	*87930CE+34	* 7543365+04	0.	.1C703CE+05	*8796365+84	70+33006/7*	• 129336E+35	0.	.1C7336E+35		7040000407	•0	.6845305+04	.684506E+04	•0	,	.684630E+34	• (.3897005+3	• 60	* 44000000 * 44000000000000000000000000	+0+3000586 •	. 544700E+34	* 1997UJE + J4 * 544700F + 04	• 0	.684600E+34	.6845305+04	• 0	•0		• •	\$64Z00E+04	.19970LE+64	*985100E+34			30000
SIGMA	. 60650CE+14	.914600E+34 .914666F+34	*821500E+14	*606500E+14	404300CT20*	*914600E+34	E+0	7900E+3	.1324000+13 1132000F+13	4000E+1	3	• 117936E+15	7	.172000E+35	• 194000E+05	- 13540GE+15	1179065+35	.117900E+35	. 606 500E +34	• 914630E+34	.914508E+84 .821536E+34	.666530E+14	. 821500E+04	• 914600E+14	• 91.4500E+14 • 616506E+14		• 949760E+34	*148000E+05	500	10	Ξ:	**************************************	1	73	.821500E+04	7	E+3	₽: •	+ 73745714 • 414 625 625 625 625 625 625 625 625 625 625	Ŧ	7	*1225J0E+15	40 440E+1	40+300/6+C•	
STEP		N M	· • •	ru a	۰,	6 0	σ ;	D +	12	13	् र स्र	5 7	7.	89	19	2 C	25	23	4.0	22	27	28	53	3.5	1 22	33	45	3 4	37	38	or c	7 t	42	m a	r 47	46	24	3 0 0	n :a	51	.52	53	+ u	56	!

N. 10. 10.

2. 5.0g Flight by Flight Spectrum

5.35 FLIGHT BY FLIGHT SPECTRUM
THE NUMBER OF PEAKS OR VALLEYS IN THE INPUT LOAD SPECTRUM = 74

COUNTER K	333	0	· , ,	10100 H	٠. د د		Ü	1.0		. 1	3 (m	100 100 100 101	2	(3) (3) (4) (4)		-		3	00000 W	ខា (ខា (ខា (ਵਾ (7.70		1000 T	010000 K	3 :	១ (1.30000	m i	3 6	7 (2) 7 (2) 7 (3) 8 (4)	0000	1.03000	1.30000	3	er er	900	5 (5 (30 30 30 4	ים מי		-	-	350000	17.3855
HINIHUM	÷	.231JOCE+02	7	7 4	23000E+9			.2300005+32	* 152300E+32	0 0 4 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 15253EF+32	.230036E+32	.2300065+02	.1523362+32	Not 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 557 00 05 + 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	• 1500.001	.11206CE+12	*15230CE+02	*152JJCE+02	20100TTT •	.11698CE+32	.22033CE+31	• 1160JUE+J2	EP+301019++	. 2254354464.	•116305E+32	.111096E+02	. 22003CE+01	* 203000E+02	- 2043000E400	• 26303CE+02	.263336E+32	*20300E+02	•24310CE+02	. 203000E+02	*20303CE+D2	* 19814514			40000E+0				- 164000E+02	ว ห •
SIGMA																									:					•																
МАХІНИН	.4230305+12	.49308E+12	77+ 17779050 •	. 5956065432	.456guuE+12	.4796305+12	.342000E+32	.2830065+12	* 308000E+12	3030000012	. 308030E+32	. E68336E+32	. 456000E+02	.30806cE+12	. 66.50 Ulter + 5.0	3.440000F+3C	+308030E+32	.3450JūE+12	.308000E+12	. 568660E+12	26.47000000	.408330E+32	30 40	.299000E+02			.5046.CE+32	.4083335+32	.593006E+32	. 517 UNDER + 32	44050005435	.735636E+32	.778600E+12	.51700CE+32	3	2	3	5 E		201000000000000000000000000000000000000	20	.36700CE+12	.395CuCE+12	900	.307036E+12	3
																														:																
STEP	↔	N 1	7 -	1	9	۷.	6 0 1) -	12	1 P)	14	E -			9 6	·>	21	25		,	2.0	27	6) (6) (n 4.	, F	35	r) 10	# U	2 K	3 N	900	39	9	41	٠ د د	7 -	† 4	1 4	7	8)	ው ታ	(3) (5)	51	70 H	, ה
,															:		•			:										•																
		-	-		:															:																										
-					!													-		:					:					:																•
!										i					1	•				3	4				:					!						•			•			;				

STEP HUMBERS OF IDENTICAL PEAKS AND VALLEYS WHICH OCCUR CONSECUTIVELY IN THE LOAD SPECTRUM

2.0

A Section

X X	;		, ,		ر د د	0	000		0.0	000	0	600	, =) () () () () : 	.a .	,	900	S S	000	000	3	000	000	٠,		000	000	3		3	iù iù	0	9	2	03 0 3 0	000	3000	i i	J ii i	300	0.0	i i i	נטנ	ن ن ن	000	000	נים מוסים	0	9	0	0	٠ د	30000	00000
COUNTER		•	7				1.0	13.4	_	0	7	, -	•	•	•	? ?	3 (? '	•	•		٠,	9	7.1	•	•		7	1.0	3•4	1.0	1.0	.,		٠,	Ξ.		•	~	•	ŝ		1.0	•	6.3	17.0	1.0	3	1.1	c	C 3 ·	C • 1	[:]	•	٠	٠	1.0
A HINIMUM		20110001124	ロト 出ってつけつ	31300510	3103CE+0	33736E+0	•0	ؿ	0.35E+0	52000E+0	32590E+8	544JCCCS	245000	100000000000000000000000000000000000000		240000000000000000000000000000000000000	0.500072	525.35.45	123305+3	52000E+0	113365+0	20,306.+3	160005+0	20004EE+0	1633CE+û	200005+0	153355+0	30E+	15000E+0	1130CE+3	23036E+0	03330E+0	636362+0	0300EE+0	0333CE+8	0303C±+0	0333CE+0	0900CE+3	4000004	C433CE+0	40336640	6430CE+0	C+33CE+3	3306+0	04390049	40000E+0	0+300000	0000C+0	0133CE+0	04330600	001365+3	0.00000	0+300	700005+0	0+30000	300	300E+0
SIGPA MAXIMUM		2407067	95 0 0 0 0 0	95000c+0	9301CE+1	66306+1	00E+0	4200CE+J	83246E+)	800000	8300000	(TEOL 2 a C	で と いっこう ひゅう		111111111111111111111111111111111111111	5+33555 5+3355 50 50 50 50 50 50 50 50 50 50 50 50 5	900000+1	0 + 13 n n n 8	45000にサ	u8331E+ 3	99000E+1	9636E+1	C+300080	C+0001E+1	90368+3	993105+1	990066+1	38010E+3	4010E+3	5048E+3	3000E+3	7336E+J	2000E+)	6000E+3	7835CE+3	17036E+3	10E+3	£	10E+1	1993	30E+3	0+200	GE+)	3CE+3	105+3	16E+3	1CE+3	3	3	Ξ	3	=	.476636E+12	7	=	100	38000E+0
STEP	•	,	N.		ı,	٠		œ			1 -	1 6	21	* L	12	91	10		21	22	54	25	26	27	23	59	36.	31	32	333	34	35	36	(d. B)	39	0.4	45	74	46	24	84	. 64		51	52	53	54	55	26	23	56	55	9.	61	29		49
•					-				:						•																																٠		•		:						
		:																															:						:											•							

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

.151306E+02 .23030EE+02 .25030EE+02 .151306E+02 .253136E+02 .15100E+02 .252336E+02 .222336E+02 .222336E+02

.306000E+12 .396000E+12 .456000E+12 .306000E+12 .583000E+12 .583000E+12 .366000E+12

65 67 72 73 74

MIGTAROS	
COUNTER	
ניוטאט	
OT 40	
BUNK	

	COUNTER K	. 3000	9000.	. 3000	000		3 6		0000	.5000	.33.00	3000°	300		.000	.3363	.000.	3000	300	1000	.0366	33.00	.0000	0300		9000	0000	. 30 u i	. 3600	0.00		. המני המני	.0000	. טֿ טֿ נֿ נֿ			0.000	.6550	. 56 50	5.00000		3005	. 33 00	6000.	. 3356. 	0000	3053	0.00
			-																																													
									•																																							
	MINIM	.2770366+02		31036E+0	.231330E+02	2313066+8	30000 +0.	30336E+3	520005+0	523065+0	3000E+3	520 JEE+0	Z 6 3 3 5 5 5 5 3	330005	520 165+0	523965+3	270305+0	201111111		12000E+0	5230CE+3	113366+3	2000E+0	16306E+3	20000EH+0	04486666	153362+0	200002+0	110365+0	163365+3		13 to 0 to 10 to 1	030005+0	0+336709	0 4 M D D 0 9 D D 4 D D D 0 9 D D D D D D D D D D D D D D D	037765+0	9330CE+3	98936E+3	0+390049	4000E	0+200040	430312+3	043306+3	400000	C+33000	0.000000	403066+0	100000
	i.	• 20	r	الباتي			. • 		i. La	.39	٠.	5 ,																																				
SIGM												4.2						:																				,										
	MAXIMUH	C+30C	930005+1	6€000€	49300064	41000004	3420100141	283036E+3	3083505+1	5830006+3	328635E+3	303000004	120000000000000000000000000000000000000	140000	0800UE+3	99 550 8+3	680.06E+3	200000000	14 14 14 14 14 14 14 14 14 14 14 14 14 1	3080005+3	2993325+3	2990008+1	993365+3	08035543		T+ 4377766	T+1100066	080005+3	24により日本の	E+30000000	950000F4	12030543	360335+3	780635+3	17 UGUE + 1	400.30E+3	563JGE+3	640068+3	950005+3	295888E+12 267836E+12	950006+0	980005+3	0713CE+3	07 000E+)	28 con F + 1	6693088+3	646306+3	700365+3
	·		•	•	•	•	•	•		•	•	• .					•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	• 1	• •	•	•	•	• •	•	•	•		•		•	•	•	•	•	•
	e.									٠.								,	_			_													_	_			_			_	_					
	STE	***	N		5 1				5	1	= :	71	7 -	12	16	17	6									0 6												43		 					7. 1. C.			55
		;																:																				٠					1					

.200000E+02 .200000E+02 .200000E+02 .1140000E+01 .114000E+01 .151000E+02 .230000E+02 .222000E+02 .222000E+02 .222000E+02 .222000E+02 .222000E+02 .222000E+02

.526000E+12 .25400E+12 .25400E+12 .25400E+12 .338000E+12 .31600E+12 .31600E+12 .31600E+12 .36500E+12 .36500E+12 .36500E+12 .36500E+12

· \$\bar{\alpha} \alpha
APPENDIX II
PROGRAM LISTING

PROGRAM	RPCH TRACE CDC 6610 FTN V3.0-320A OPT=0 11/20/72 15.44.26. PAGE 1
	PROGRAM RPCM(INPUT, TAPES=INPUT, OUTPUT, TAPEG=OUTPUT, PUNCH)
	C THIS PROGRAM EMPLOYS THE RANGE PAIR CYCLE COUNTING METHOD TO GENERATE AN C ANALYSIS SPECTRUM FROM A GIVEN LOAD SPECTRUM
S	INPUT CARD 1. TITLE =
. :	FORMAT 8A10 CARD 2. NPKS = NUMBE
0	C NPUNCH FLAG SUCH THAT NPUNCH C NOT EQUAL TO ZERO IMPLIES PUNCH
1 1 1	SKI
5	C CARDS 3,, NPKS+2. SIGHAX(I) = ITH PEAK OF THE LOAD SPECTRUM C SIGHIM(I) = ITH VALLEY OF THE LOAD SPECTRUM C ROUNTER K OF THE ITH PEAK AND JALLEY C FORMAT EX SETAIN
50	PROS (INFORMATION NEED
23.57	ARRAY NAME Sighax KK #
30	SIGMIN RNCYC NSTEP
	RES RESIDUE SPECTRUM INDEX STEP NUMBERS OF ELEMENTS IN RES CYCLE ROBE PAIR COUNTED OF THE
38	NECYG K COUNERS OF 142 CYCLES OF 146 UNSORTED ANALYSIS SPECTRUH NNSTEF STEP NUMBERS OF ELEMENTS OF THE NPKS +
. .	C ISAVE JALUES OF NSTEP(J) SUCH THAT RNCYG(J) 99 C ISAVE 1.6 AND VALUES OF NSTEP(J) SUCH C THAT SIGMAN(J-1) = SIGMAN(J) AND C SIGMIN(J-1) = SIGMIN(J)
ស្	C COMMON/MDEC/SIGMAX(9CD),SIGMIN(9CD),NSTEP(9CJ),LR,KWAX,KMIN,K31 COMMON/MDECR/RES(14CD),INDEX(14CD),IND1,IND2,IND4,KIND COMMON/MCYG/CYCLE(9GG,2),RNECYC(9GG),NNSTEP(9CG) COMMON/MCYG/CYCLE(9GG,2),RNECYC(9GG),TITLE(8)
. 00	NPUNCH = 0 READ(5,18) (TITLE(I) IF (EOF(5))9000,9130 FORMAT(8A10)
	9303 STOP 9130 READ(5,95) NPKS,NPUNCH 95 FORMAT(1415)

PROGRAM	A PCM	TRACE	CDC 6636 FTN V3.0-323A OPT=0 11	11/20/72 15,44.26.	PAGE	N
9	REAC 101 FORN 00 6 8000 NSTE WRIT 19 FORN 23 FORN	READ(5,101) (SIGMAX(I), SIGHIN(I), RNCVC(I), FORMAT(5x,3E10.3) DO 8.CJ I = 1, NPKS NSTEP(I) = I WRITE(6.19) (TITLE(I), I = 1,8) FORMAT(111,8A10) WRITE(6.20) NPKS FORMAT(111,8A10)	RNCVC(I), I = 1,NPKS) OR JALLEYS IN THE INPUT LOAD SPE			
•	22 22	332	INIMUM,13X, I = 1,NPKS)	·		
92	SORT C COUN	SORT THROUGH THE LOAD SPECTRU4 - PL COUNTER K IS LESS THAN 1.9 J = 1	- PULL OUT THOSE PEAKS AND VALLEYS WHOSE	HOSE		
2 7 98	NPES E CHANGE E CHANG	ES = 1 YNO = 130 AX = 0 13C I = 1,NPKS ESTEMAYT:				
es Ro	X2 = 5X X2 = 0 CALL C LSAVE L J = J DIRSN INFESN	XZ = SIGMIN(I) CALL CYGEN(X1,XZ ,RNCYC(I), VSTEP(I)) ISAVE(J) = I J = J + 1 JCNINUE J JMAX = J - 1 NFKSN = NPKS - JMAX	(1)			
a s	15 C. 18 C.	(16,23) (ISAJE(K), K = 1,9JMAX (16,23) (ISAJE(K), K = 1,9JMAX (11 (140,93HSTEP NUMBERS OF THO (12) = 1,9JMAX (13) - (1-1) = 1,9JMAX (13) - (1-1) = 1,9JMAX (14) - (1-1) = 1,9JMAX (15) - (1-1) = 1,9JMAX (16) - (1-1) = 1,9JMAX (17) - (1-1)	() SE PEAKS AND VALLEYS IN THE LOAD THAN 1.L//(1717)			
100	DO 1 SIGH SIGH NSTG RNCZ 115 CONT	DO 115 II = I,NPKN SIGHAX(II) = SIGHAX(II+1) SIGNIN(II) = SIGHIN(II+1) NSTEP(II) = NSTEP(II+1) CONTINUE CONTINUE				
105	HRITH HRITH C 200 CONT C SORT	WRITE(6,24) NPKSN WRITE(6,22) WRITE(6,25) (NSTEP(I),SIGMAX(I),SIGMI CONTINUE SORT THROUGH THE LOAD SPECTRUM DATA -	N(I),RNCYC(I), I = 1,NPKSN) COMBINE STEPS WITH IDENTICAL	PEAKS		

. : . . . !

										
	;			. !			:			
m										
PAGE			:		1	1				
15.44.26.		:		;				•		
11/20/72 15		:							*	
OPT=3 11/2		:	Эн 90 Эн				:		: : : :	. :
-326A OP		•	JALLEYS HHISH OG			PAIR COUNTING I = 1,NPKSN)				
) FTN V3.0-326A			9							
009 202	0 TO 300		TICAL TRUP//			JECTRON DATA PUJUSIEU FUR KANGE I),SIGHAK(I),SIGMIN(I),RNCYC(I), E ADJUSTEO LOAD SPECTRUM				
	SIGMAX(1-1)) GO SIGMIN(1-1)) GO	RNGYG(I)	1, 1 0 F A D		(1+1) S	MAX(I),SI		10 400		· :
		NCYC(I-1) +	E(K), K P NUMBER IN THE	GO TO 311 KN HAX(II+1) HIN(II+1) P(II+1)	—	_ T		1.0) 60	.	
TRACE	I = 2,NPKSN GMAX(I) .NE. GWIN(I) .NE.	H	HAITE(6,26) (ISAVE FORMAT(140,904STEP 1008 CONSECUTIVELY I = ISAVE(1) - (J-	NPKN) R IJ NP	RNCYC(II) = RNCYC(I CONTINUE CONTINUE NPKSN = NPKSN - JMA HRITE(6,24) NPKSN			0 0 YC(I) • 6T•	SIGHAK(I) SIGHIN(I) SIGHIN(I) = NSTEP(I) + 1	0.1 SIGMAX(I) SIGMIN(I) = NSTEP(I) = IND3
RPCH	J = 1 DC 336 I = 29N IF (SIGMAX(I) IF (SIGMIN(I)	ISAVE(J)	26 FOWAT (140,9 100P CONSECUT 100 311 J = 1 1 = ISAVE(J)	NPKN = NPK IF (I .EQ. OC 316 II : SIG41X(II) SIGMIN(II) NSTEP(II) :				KMIN = 6 KMAX = 0 LR = C K31 = 0 LIF (RNCYC(I)		T C C C C C C C C C C C C C C C C C C C
	ၒ	303	Ñ.		316 311 22	ပပ	6933	#		.
PROGRAM	115	126	125	130	135	140	145	156	155	16¢ 165
					••	•	•	· ·	7	

	PROGRAM	RPGH TRACE	CDC 6603 FTN V3.0-320A OPT=0 11/20/72 15.44.26. PAGE	3
		#		-
		K31 = 0 If (RNCYC(I) .EQ. 1.() GD TO \$		
	170	KINY II 4		
	,	6 0 TO 415		
		GYCNO = RNCYC(I)		
	175	1030 GALL DECIDE(X1,X2,X3,X4,KEY,I,CYC 1030 GO TO (13,10,30),KGYGEN	KEY, I, CYGNO, KCYGEN)	
		IS THE TE TO THE TE TO THE SE		
		I = I + 1 IF (I -LE, MPKSN) GO TO 5		
	180	RES(LR+1) = X1		-
		INDEX(LR+1) = INDI		•
		INDEX(LR+2) = IND2 LRMAX = LR + 2		
	185	GO TO 2003		***************************************
		د		
		IF (I .LE. NPKSN) GO TO 31 RESCIR+1) = X1		
٠	196	RES(LR+2) = X2	The second of th	
		~ "	45	
		INDEX(LR+2) = IND2		-
	195	INDEX(LR+3) = IND3 LRHAX = LR + 3		
		60 TO 2453		•
		IND		
	236	KARX H H Kaln H c		٠.
		K31 = 1 32 IF (RNCYC(I) .GT. 1.0) G0 T0 40		
		60 10 6		
	205			
		60 TO 415		:
	210	XXII II		
	·	K31 = 0		
		60 TO 32		
:		INDIA = STATED(I)	The second of th	
	215	KAIN H 2		
	i	6c T0		
	1	430 KEY = 1 IF (KB .NE. 5) GO TO 416		
	226		and week to contain the second	

RNCYC(KP) = RNCYC(KP) + 1.0

633 CONTINUE

330

PAGE	
15,44,26.	
11/20/72	
CDC 6600 FTN V3.3-320A OPT=0 11/20/72 15.44.26.	CONTINUE KPMAX = KP MRITE(6,2010) HRITE(6,2010) HRITE(6,20
TRACE	605 CONTINUE KPHAX = KP WRIFE(6,2010) 1313 FORMAT(1411,48X,33H) WRITE(6,22) WRITE(6,22) IF (NPUNCH .e.O. 0) PUNCH 1.02, (SIGMAX 102 FORMAT(5X,3F10.2) END
RPCM	23 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
PROGRAM	S c

15.44.26.
11/20/72
0PT=0
COC 6600 FTN V3.3-326A OPT=0
FTN
9600
200
iii
TRACE
DECIDE
3ROUTINE

PAGE			!					:			·
15.44.26.	:		;					:		i :	
11/20/72		X4 CONDITIONS	:		:		:				
NE DECIDE TRACE COC 6600 FIN V3.J-326A OPT=0	SUBROUTINE DECIDE(X1,X2,X3,X4,KEY,I,CYCNO,KCYGEN) COMMON/MDEC/SIGMAX(9CC),SIGMIN(9G0),NSTEP(9G0),LR,KMAX,KMIN,K31 COMMON/MDECR/RES(1460),INDEX(1460),IND1,IND2,IND3,IND4,KIND COMMON/MCYG/CYCLE(9G0,2),RNECYC(9G0),NNSTEP(9G0) COMMON/MCGDE/L,LIND	C THIS SUBROUTINE DECIDES WHETHER OR NOT THE VALUES X1, X2,X3, AND C FROM THE ADJUSTED LOAD SPECTRJM SATISFY THE RANGE PAIR COUNTING	KFIRST = 0 IF (K31 .NE. J) GO TO 11 10 IF (X3 .LE. X2) GC TO 200 11 IF (X2 .GT. X1) GO TO 210	1F (XZ -LI- X3) 6G TO 151 151 IF (XZ -GT- X3) 6G TO 151 CALL CYCGEN(X3,X2,1.0,NSTEP(I)) GO TO 152 151 GALL CYCGEN(X2,X3, 1.0,NSTEP(I))		.6T. X4 .0R. X3 .	1 0 0 - Z -	C ADD X1 TO THE RESIDUE SPECTRUM C	500 LR = LR + 1 RES(LR) = x1 INDEX(LR) = IND1 X1 = X2 X2 = X3	X3 = X4 IND2 = IND2 IND3 = IND4 KCYGEN = 3 IF (KEY • NE. 0) GO TO 110	113 GO TO (1153,1200,1500), KCYGEN 1150 IF (CYCNO .6T. 1.0) GC TO 1151 IF (CYCNO .EQ. 0.3) RETUP: 1153 CYCNO = CYCNO - 1.3 GO TO 1152 1151 IF (LINO .EQ. 1) GO TO 1153
SUBROUTINE	w		۔ ت	w	a	ស		ις.	•	S	יא ט
			:	15		25	30	35	3	<u>ម</u> ្ន	א מ

15.44.26.
11/20/72
0PT=0
V3.0-320A
FIR
6600
200

SUBROUTINE DECIDE TRACE

PAGE

			**												Manufacture of the second process of the second sec							and the second s			
IF (IND3 .NE. IND4) GG TO 1153 RNECYC(L) = RNECYC(L) + CYCNO - 2.0 CYCNO = 1.0	1152 IF (KHAX .NE. 1) GO TO 111 X3 = SIGHIN(I) IND3 = NSTEP(I)	u	KATA T T T T T T T T T T T T T T T T T T		1260 IF (CYCNO .Eq. 6.6) RETURN CYCNO = CYCNO = 1.0	X3 = SIGMAX(I)	(I)NIHDIS = 5X	50 TO 143	111 X3 = SIGMAX(I)	3	CACAO M CACAO + 4.5) 	113 IND3 = NSTEP(I)	IND = IND3		09 (IF (CYCNO .EQ. D.D) RETURN CYCNO = CYCNO - 1.0		ALIAX II II		SI	NAME OF STREET	WILL II	60 TO 10	END
	09		u d	3			9.2			7	ņ			u. a	0		ري 100	à i		26				95	

PAGE

1X2 .6T. X4..0R. X3 .LT. X1) G0 T0 500 '0 150

100

35

500

9

IF (J .GT. LRMAX) 60 TO 336

300

SUBROUTINE DECRES TRACE

INDEX(K) = IND1 INDEX(K+1) = IND2 LRMAX = K + 1 RETURN	315 K = K + 1 RES(K) = X1 RES(K+1) = X2 RES(K+2) = RES(J+1) TNDFX(K) = TND1	1	RES(K) = X2 RES(K+1) = X3 RES(K+2) = X4 INDEX(K) = IN	X H
•	9	S.	9	5

PAGE

SUBROUTINE CYCRES(Y1,Y2, CYC.)F,NSTEPP) COMMON/MCYG/CYCLE(900,2),RNECYC(900),NNSTEP(900) COMMON/MCGOE/L,LIND

THIS SUBROUTINE GENERATES CYCLES FOR THE ANALYSIS SPECTRUP FROH DATA SUPPLIED BY SUBROUTINE DECRES

0000

L = L + 1 GYCLE(L,1) = Y1 GYCLE(L,2) = Y2 RNCYC(L) = CYCPF NNSTEP(L) = NSTEPP RETURN ENO

10