

Building prediction models with Amazon Redshift and Amazon ML

Julien Simon, Technical Evangelist, AWS

Lyon Data Science – 07/01/2016

julsimon@amazon.fr @julsimon

You're more than welcome to tweet about this presentation Pictures too ©

@julsimon @aws_actus @LyonDataScience #aws #redshift #AmazonML

Navigating the seven seas of Big Data

You need a better boat, not a bigger one

- Let's face it, Big Data is great fun until:
- a) terabytes of data are lost forever
- b) tons of money are spent on non-scalable systems
- c) months are wasted on plumbing
- d) all of the above...

How about simple, cost-efficient, managed services that non-experts could use to build Big Data apps?

Real-time analytics

Amazon Redshift

an enterprise-level, petabyte scale, fully managed data warehousing service

Column-oriented database
Optimized for OLAP and BI workloads
Based on PostgreSQL 8.0.2

- SQL is all you need to know
- PostgreSQL ODBC and JDBC drivers are supported
- https://docs.aws.amazon.com/fr_fr/redshift/latest/dg/c_redshiftand-postgres-sql.html

Free tier: https://aws.amazon.com/fr/redshift/free-trial/
Available on-demand from \$0.25 / hour / node (us-east-1)
As low as \$0.094 / hour / node (us-east-1, 3-year RI)

Amazon Redshift architecture

Parallel processing

Columnar data storage

Data compression

Query optimization

Compiled code

Workload management

Instance types

Dense Storage Node Types

Node Size	vCPU	ECU	RAM (GiB)	Slices Per Node	Storage Per Node	Node Range	Total Capacity
ds1.xlarge	2	4.4	15	2	2 TB HDD	1-32	64 TB
ds1.8xlarge	16	35	120	16	16 TB HDD	2-128	2 PB
ds2.xlarge	4	13	31	2	2 TB HDD	1-32	64 TB
ds2.8xlarge	36	119	244	16	16 TB HDD	2-128	2 PB

Dense Compute Node Types

Node Size	vCPU	ECU	RAM (GiB)	Slices Per Node	Storage Per Node	Node Range	Total Capacity
dc1.large	2	7	15	2	160 GB SSD	1-32	5.12 TB
dc1.8xlarge	32	104	244	32	2.56 TB SSD	2-128	326 TB

Case study: Photobox

http://www.lemagit.fr/etude/Photobox-consolide-et-analyse-ses-donnees-avec-AWS-RedShift

Maxime Mezin, Data & Photo Science Director:

"L'entrepôt de données ne comportait que les données du site e-commerce liées aux ventes. Alors que nous avions la volonté d'intégrer des données du service clients et des données d'analyse (...) Nous avions atteint la limite du stockage de la base Oracle, et cela ne marchait pas très bien en termes de performances"

"Avec Redshift, la rapidité d'exécution des traitements a été multipliée par 10. Sans parler de la vitesse de chargement des données"

"On paie en fonction de la quantité de données que l'on va stocker. Chez Google, cela était plus compliqué"

- 2 Redshift clusters: 1 for historical data, 1 for real-time processing (SSD)
- TCO divided by 7 (90K€→13K€)

Case study: Financial Times

https://aws.amazon.com/solutions/case-studies/financial-times/

- BI analysis of customer usage, to decide which stories to cover
- Conventional data warehouse built using Microsoft technologies
- Scalability issues, impossible to perform real-time analytics → Amazon Redshift PoC
- Amazon Redshift performed so quickly that some analysts thought it was malfunctioning ©

John O'Donovan, CTO:

"Some of the queries we're running are 98 percent faster, and most things are running 90 percent faster (...) and the ability to try Redshift out before having to invest a significant amount of capital was a huge bonus."

"Amazon Redshift is the single source of truth for our user data."

"Being able to explore near-real-time data improves our decision making massively. We can make decisions based on what's happening now rather than what happened three or four days ago."

Amazon Redshift performance

No indexes, no partitioning, etc.

Distribution key

- How data is spread across nodes
- EVEN (default), ALL, KEY

Sort key

- How data is sorted inside of disk blocks
- Compound and interleaved keys are possible

Both are crucial to query performance!

Universal Pictures

DEMO #1

Demo gods, I'm your humble servant, please be good to me

Create tables: no key (1), sort key (2), sort key + distribution key (3)

Load 1 billion lines (~45GB) from Amazon S3

Run queries (A, B, C) on a 4-node cluster

Resize the cluster

Amazon Machine Learning

A managed service for building ML models and generating predictions

Integration with Amazon S3, Redshift and RDS
Data transformation, visualization and exploration
Model evaluation and interpretation tools
API for inspection and automation
API for batch and real-time predictions

\$0.42 / hour for analysis and model building (eu-west-1)

\$0.10 per 1000 batch predictions

\$0.0001 per real-time prediction

Amazon ML prediction algorithms

Binary attributes → binary classification

Categorical attributes → multi-class classification

Numeric attributes → linear regression

Code samples on https://github.com/awslabs/machine-lear-ning-samples

Case study: BuildFax

https://aws.amazon.com/solutions/case-studies/buildfax/

BuildFax: On-Demand Property Condition.

"Amazon Machine Learning democratizes the process of building predictive models. It's easy and fast to use, and has machine-learning best practices encapsulated in the product, which lets us deliver results significantly faster than in the past"

Joe Emison, Founder & Chief Technology Officer

Other Amazon ML use cases

ICAO classifies and categorizes international aviation incidents daily

Plans to train ML models to predict fuel efficiency based on vehicle metadata, to push near-real-time data to customers

Securely sorts millions of mail pieces for clients every day for tremendous cost savings then brings it to the USPS for delivery

DEMO #2

Demo gods, I know I'm pushing it, but please don't let me down now

Load data from Amazon S3 to Redshift and explore Train and evaluate a regression model with Amazon ML Perform batch prediction from data stored in Amazon S3

Load data from Amazon Redshift

Train and evaluate a regression model with Amazon ML

Create a real-time prediction API

Perform real-time prediction from Java app

(https://raw.githubusercontent.com/juliensimon/aws/master/ML/MLSample.java)

Thank you! Let's keep in touch ©

Want to start a local AWS User Group? https://aws.amazon.com/fr/usergroups/

Many events and meetups in 2016 all across France

→ Please follow us at @aws_actus @julsimon

AWS Summit Paris: 31/05/2016 (free!) https://aws.amazon.com/fr/paris16/

BONUS SLIDES

Row storage vs columnar storage

	SSN	Name	Age	Addr	City	St
	101259797	SMITH	88	899 FIRST ST	JUNO	AL
	892375862	CHIN	37	16137 MAIN ST	POMONA	CA
١	318370701	HANDU	12	42 JUNE ST	CHICAGO	IL

101259797|SMITH|88|899 FIRST ST|JUN0|AL 892375862|CHIN|37|16137 MAIN ST|POMONA|CA 318370701|HANDU|12|42 JUNE ST|CHICAGO|IL

Block 1 Block 2 Block 3

SSN	Name	Age	Addr	City	St
101259797	SMITH	88	899 FIRST ST	JUNO	AL
892375862	CHIN	37	16137 MAIN ST	POMONA	CA
318370701	HANDU	12	42 JUNE ST	CHICAGO	IL

101259797 |892375862| 318370701 468248180 378568310 231346875 317346551 770336528 277332171 455124598 735885647 387586301

Block 1

Amazon Redshift & Machine Learning resources

Documentation

https://aws.amazon.com/documentation/redshift/ https://aws.amazon.com/documentation/machine-learning/

Big Data videos from AWS re:Invent 2015

https://blogs.aws.amazon.com/bigdata/post/Tx3D3UYOXB9XG6Z/Videos-now-available-for-AWS-re-Invent-2015-Big-Data-Analytics-sessions

If you're going to watch only one: https://www.youtube.com/watch?v=K7o5OIRLtvU

More Amazon Redshift resources

Articles by Werner Vogel, CTO, Amazon.com

http://www.allthingsdistributed.com/2012/11/amazon-redshift.html

http://www.allthingsdistributed.com/2013/02/amazon-redshift-resilience.html

http://www.allthingsdistributed.com/2013/05/amazon-redshift-designing-for-security.html

Tuning Amazon Redshift

https://docs.aws.amazon.com/fr fr/redshift/latest/dg/t Sorting data.html

https://docs.aws.amazon.com/fr fr/redshift/latest/dg/t Distributing data.html

http://blogs.aws.amazon.com/bigdata/post/Tx31034QG0G3ED1/Top-10-Performance-Tuning-Techniques-for-Amazon-Redshift

Creating and deleting an Amazon Redshift cluster

← probably not what you want!

\$ aws redshift **create-cluster** --cluster-identifier CLUSTER_NAME --node-type dc1.large --number-of-nodes 4 --db-name DATABASE_NAME --master-username USER_NAME --master-user-password USER PASSWORD

--publicly-accessible

Connecting to Amazon Redshift with psql

\$ psql -h xxx.redshift.amazonaws.com -p 5439-d DB_NAME -U USER_NAME

Force SSL:

\$ psql -h xxx.redshift.amazonaws.com -p 5439
-U USER_NAME "dbname=DB_NAME sslmode=require"

Loading data from Amazon S3 to Amazon Redshift

COPY command example

```
$ copy TABLE_NAME
from 's3://BUCKET_NAME/FOLDER_NAME/'
region 'eu-west-1'
credentials 'aws_access_key_id=MY_ACCESS_KEY;
aws_secret_access_key=MY_SECRET_KEY'
delimiter ',' bzip2 maxerror 1000;
```

View last 10 load errors

select * from stl_load_errors order by starttime desc limit 10;

Resizing an Amazon Redshift cluster

- \$ aws redshift modify-cluster
- --cluster-identifier mycluster
- --number-of-nodes 8

Listing Amazon ML models

\$ aws machinelearning describe-ml-models
--query "Results[*].{Name:Name, Id:MLModelId,
Type:MLModelType}"

