DS 7

Durée 3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et *a fortiori* durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1.

- 1. (a) Donner un DL à l'ordre 2 de $(1+x)^x 1$ en 0.
 - (b) Donner un DL à l'ordre 2 de $\sqrt{1-x}-\cos(x)+\frac{x}{2}$ en 0.
 - (c) En déduire la limite suivante $\lim_{x\to 0} \frac{(1+x)^x 1}{\sqrt{1-x} \cos(x) + \frac{x}{2}}$.
- 2. Calculer la limite suivante : $\lim_{x\to 1} \frac{\ln x}{x^2-1}$
- 3. (a) Montrer que le $DL_2(0)$ de $e^t e^{\frac{t}{t+1}} = t^2 + o(t^2)$
 - (b) Soit $f(x) = x^2 \left(e^{\frac{1}{x}} e^{\frac{1}{x+1}} \right)$. A l'aide du changment de variable $X = \frac{1}{x}$ calculer

$$\lim_{x \to +\infty} f(x)$$

(c) Interpréter géométriquement le résultat.

Correction 1.

1. Tout d'abord on rappelle que $(1+x)^x = \exp(x \ln(1+x))$. Donnons ensuite les DL à l'ordre 2 en 0 des fonctions présentes dans l'expression :

$$\ln(1+x) = x - \frac{x}{2} + o(x^2)$$

$$\exp(x) = 1 + x + \frac{x^2}{2} + o(x^2)$$

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^2)$$

$$\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} + o(x^2)$$

On a donc:

$$\sqrt{1-x} - \cos(x) + \frac{x}{2} = \frac{5}{8}x^2 + o(x^2)$$

et $x \ln(1+x) = x^2 + o(x^2)$ donc

$$(1+x)^x - 1 = x^2 + o(x^2)$$

Finalement

$$\frac{(1+x)^x - 1}{\sqrt{1-x} - \cos(x) + \frac{x}{2}} = \frac{x^2 + o(x^2)}{\frac{5}{8}x^2 + o(x^2)} = \frac{1 + o(1)}{\frac{5}{8} + o(1)}$$

Et donc

$$L_1 = \frac{8}{5}.$$

2. On pose le changement de variable X = x - 1 ie. x = X + 1 et on étudie la fonction $g_2(X) = \frac{\ln(X+1)}{(X+1)^2-1}$ en 0. Calculons sa limite en 0 à l'aide des développement limités.

$$g_2(X) = \frac{X + o(X)}{X^2 + 2X} = \frac{1 + o(1)}{2 + X}$$

Ainsi $\lim_{X\to 0}g_2(X)=\frac{1}{2}$ ce qui donne grâce au changment de variable :

$$L_2 = \frac{1}{2}$$

3. On fait le changement de variable $X = \frac{1}{x}$ et et on étudie la fonction $g_3(X) = \frac{1}{X^2}(e^X - e^{\frac{X}{X+1}})$ en 0. Calculons sa limite en 0 à l'aide des développement limités.

$$e^X = 1 + X + \frac{1}{2}X^2 + o(X^2)$$

et

$$\frac{X}{X+1} = X\frac{1}{1+X} = X(1-X+X^2+o(X^2)) = X-X^2+o(X^2)$$

D'où

$$e^{\frac{X}{X+1}} = 1 + X - X^2 + \frac{1}{2} (X - X^2)^2 + o(X^2)$$
$$= 1 + X - \frac{1}{2} X^2 + o(X^2)$$

On a finalement:

$$e^{X} - e^{\frac{X}{X+1}} = 1 + X + \frac{1}{2}X^{2} - (1 + X - \frac{1}{2}X^{2}) + o(X^{2})$$
$$= X^{2} + o(X^{2})$$

et donc

$$g_3(X) = \frac{X^2 + o(X^2)}{X^2} = 1 + o(1)$$

Le changement de variable donne $\lim_{x\to+\infty} f_3(x) = \lim_{X\to+0} g_3(X) = 1$

$$L_3 = 1$$

Exercice 2 (D'après Agro 2015).

- 1. Montrer que la fonction sinus réalise une bijection de $[-\pi/2, \pi/2]$ dans [-1, 1]. On note alors A la réciproque de la fonction $\begin{vmatrix} [-\pi/2, \pi/2] & \to & [-1, 1] \\ x & \longmapsto & \sin x. \end{vmatrix}$
- 2. Déterminer A(1/2) et A(0).
- 3. Soit x appartenant à [-1,1], montrer que $\cos(A(x)) = \sqrt{1-x^2}$.
- 4. On admet que A est dérivable sur]-1,1[. Montrer que pour tout $x \in]-1,1[$ on a :

$$A'(x) = \frac{1}{\sqrt{1 - x^2}}$$

- 5. (a) Déterminer le développement limité à l'ordre un de la fonction $t \mapsto \frac{1}{\sqrt{1+t}}$.
 - (b) Montrer que la fonction A admet un développement limité à l'ordre 3 en 0 donné par

$$A(x) = x + \frac{x^3}{6} + o\left(x^3\right)$$

Correction 2.

1. La fonction sin est continue et dérivable sur $[-\pi/2, \pi/2]$ et on a pour tout $x \in [-\pi/2, \pi/2]$, $\sin'(x) = \cos(x)$. De plus sur $]-\pi/2, \pi/2[$, $\cos(x) > 0$, donc sin est strictement croissante sur $[-\pi/2, \pi/2]$. Le théorème de la bijeciton assure que sin réalise une bijection de $[-\pi/2, \pi/2]$ sur l'ensemble image, ici $\sin(-\pi/2) = -1$ et $\sin(\pi/2) = 1$ donc $\sin([-\pi/2, \pi/2]) = [-1, 1]$

2. A(1/2) est la valeur θ tel que $\sin(\theta) = \frac{1}{2}$ et $\theta \in [-\pi/2, \pi/2]$ on obtient donc

$$A(1/2) = \frac{\pi}{6}$$

De même A(0) est la valeur θ tel que $\sin(\theta) = 0$ et $\theta \in [-\pi/2, \pi/2]$ on obtient donc

$$A(0) = 0$$

3. Pour tout $u \in \mathbb{R}$ on a $\cos^2(u) + \sin^2(u) = 1$. En appliquant cette égalité à A(x) pour $x \in [-1, 1]$ on obtient :

$$\cos^2(A(x)) + \sin^2(A(x)) = 1$$

Or par définition de A, sin(A(x)) = x donc

$$\cos^2(A(x)) = 1 - x^2$$

Finalement comme $A(x) \in [-\pi/2, \pi/2], \cos(A(x)) > 0$ et ainsi

$$\cos(A(x)) = \sqrt{1 - x^2}$$

- 4. (a) $\frac{1}{\sqrt{1+t}} = (1+t)^{-1/2} = 1 \frac{1}{2}t + o(t)$
 - (b) Le DL de A' à l'ordre 2 est donné par

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{1}{2}x^2 + o(x^2)$$

En intégrant on obtient

$$A(x) = A(0) + x + \frac{1}{2} \frac{x^2}{3} + o(x^3)$$

Comme A(0) = 0 on a bien

$$A(x) = x + \frac{x^3}{6} + o(x^3)$$

Exercice 3. Roudoudou le hamster vit une vie paisible de hamster. Il a deux activités : manger et dormir... On va voir Roudoudou à 00h00 (n = 0). Il est en train de dormir.

- Quand Roudoudou dort à l'heure n, il y a 7 chances sur 10 qu'il dorme à l'heure suivante et 3 chances sur 10 qu'il mange à l'heure suivante.
- Quand Roudoudou mange à l'heure n, il y a 2 chances sur 10 qu'il dorme à l'heure suivante et 8 chances sur 10 qu'il mange à l'heure suivante.

On note D_n l'événement 'Roudoudou dort à l'heure n' et M_n 'Roudoudou mange à l'heure n'. On note $d_n = P(D_n)$ et $m_n = P(M_n)$ les probabilités respectives.

- 1. Justifier que $d_n + m_n = 1$.
- 2. Montrer rigoureusement que

$$d_{n+1} = 0,7d_n + 0,2m_n$$

- 3. Exprimer de manière similaire m_{n+1} en fonction de d_n et m_n .
- 4. Soit A la matrice

$$A = \frac{1}{10} \left(\begin{array}{cc} 7 & 2 \\ 3 & 8 \end{array} \right).$$

Résoudre en fonction de $\lambda \in \mathbb{R}$ l'équation $AX = \lambda X$ d'inconnue $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

- 5. Soit $P = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ Montrer que P est inversible et calculer P^{-1} .
- 6. Montrer que $P^{-1}AP = \frac{1}{5} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$
- 7. Calculer D^n où $D = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$
- 8. En déduire que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 3(1/2)^n + 2 & -2(1/2)^n + 2 \\ -3(1/2)^n + 3 & 2(1/2)^n + 3 \end{pmatrix}$.
- 9. En déduire la valeur de d_n en fonction de n.

Correction 3.

- 1. D_n et M_n forment un système complet d'événements donc $d_n + m_n = 1$.
- 2. On cherche à calculer $d_{n+1} = P(D_{n+1})$ On applique la formule des probabilités totales avec le SCE (M_N, D_N)

$$d_{n+1} = P(D_{n+1} | M_n)P(M_n) + P(D_{n+1} | D_n)P(D_n)$$

= $P(D_{n+1} | M_n)m_n + P(D_{n+1} | D_n)d_n$

L'énoncé donne : $P(D_{n+1} \mid M_n) = \frac{2}{10}$ et $P(D_{n+1} \mid D_n) = \frac{7}{10}$ et donc

$$d_{n+1} = 0,7d_n + 0,2m_n$$

3. On cherche à calculer $m_{n+1} = P(M_{n+1})$ On applique la formule des probabilités totales avec le SCE (M_N, D_N)

$$m_{n+1} = P(M_{n+1} | M_n)P(M_n) + P(M_{n+1} | D_n)P(D_n)$$

= $P(M_{n+1} | M_n)m_n + P(M_{n+1} | D_n)d_n$

L'énoncé donne : $P(M_{n+1} | M_n) = \frac{8}{10}$ et $P(M_{n+1} | D_n) = \frac{3}{10}$ et donc

$$m_{n+1} = 0,3d_n + 0,8m_n$$

4. On obtient le système d'équations

$$\begin{cases} 7x + 2y = 10\lambda x \\ 3x + 8y = 10\lambda y \end{cases}$$

$$\iff \begin{cases} (7 - 10\lambda)x + 2y = 0 \\ 3x + (8 - 10\lambda)y = 0 \end{cases} \iff \begin{cases} 3x + (8 - 10\lambda)y = 0 \\ (7 - 10\lambda)x + 2y = 0 \end{cases}$$

$$L_2 \leftarrow 3 * L_2 - (7 - 10\lambda)L_1$$

$$L_2 \leftarrow 3 * L_2 - (7 - 10\lambda)L_1$$

$$\iff \begin{cases} 3x + (8 - 10\lambda)y &= 0 \\ (-100\lambda^2 + 150\lambda - 50)y &= 0 \end{cases} \iff \begin{cases} (7 - 10\lambda)x + 2y &= 0 \\ (2\lambda^2 - 3\lambda + 1)y &= 0 \end{cases} \iff \begin{cases} (7 - 10\lambda)x + 2y &= 0 \\ (2\lambda - 1)(\lambda - 1)y &= 0 \end{cases}$$

Le système est de Cramer pour $(2\lambda - 1)(\lambda - 1) \neq 0$ et l'unique solution est alors $(0, 0)$.

Pour $\lambda = 1$ on obtient \iff $\begin{cases} -3x + 2y &= 0 \\ 0 &= 0 \end{cases}$ et les solutions sont de la forme :

$$\{(2a,3a) \mid a \in \mathbb{R}\}$$

Pour $\lambda = \frac{1}{2}$ on obtient \iff $\begin{cases} 2x + 2y &= 0 \\ 0 &= 0 \end{cases}$ et les solutions sont de la forme :

$$\{(a, -a) \mid a \in \mathbb{R}\}\$$

5. Le determinant de P vaut $det(P) = 3 + 2 = 5 \neq 0$ donc P est inversible. Son inverse vaut

$$P^{-1} = \frac{1}{5} \left(\begin{array}{cc} 3 & -2 \\ 1 & 1 \end{array} \right)$$

6. Ce n'est que du calcul.

7.

$$D^n = \left(\begin{array}{cc} \frac{1}{2^n} & 0\\ 0 & 1 \end{array}\right)$$

A prouver par récurrence ou dire que c'est du cours pour des matrices diagonales.

8. On prouve tout d'abord par récurrence que pour tout $n:Q(n):"A^n=PD^nP^{-1}"$. Initialisation. La proposition est vraie pour n=0 les deux cotés valent l'identité.

On suppose Q(n) vraie pour un $n \in \mathbb{N}$ fixé. On a $A^n = PD^nP^{-1}$ et donc

$$A^{n+1} = APD^nP^{-1}$$

$$= PDP^{-1}PD^nP^{-1}$$

$$= PD\operatorname{Id}D^nP^{-1}$$

$$= PDD^nP^{-1}$$

$$= PD^{n+1}P^{-1}$$

Ensuite c'est du calcul.

9. Et d'après les questions 2 et 3 on a

$$A\binom{d_n}{m_n} = \binom{d_{n+1}}{m_{n+1}}$$

et par récurrence

$$A^n \binom{d_0}{m_0} = \binom{d_n}{m_n}$$

D'après l'énoncé $d_0 = 1$ c'est l'événement certain, et donc

$$\binom{d_n}{m_n} = \frac{1}{5} \binom{3(1/2)^n + 2}{-3(1/2)^n + 3}$$

En particulier

$$d_n = \frac{1}{5}(3(1/2)^n + 2)$$

Exercice 4. On dispose d'une urne contenant initialement b boules blanches et r boules rouges. On fait des tirages successifs dans cette urne en respectant à chaque fois le protocole suivant :

- Si la boule tirée est de couleur blanche, on la remet et on ajoute une boule blanche
- Si la boule tirée est de couleur rouge, on la remet et on ajoute une boule rouge.

On appelle B_i l'événement "tirer une boule blanche au *i*-iéme tirage" et on note $p_i = P(B_i)$.

- 1. Calculer p_1 en fonction de b et r.
- 2. Montrer que $p_2 = \frac{b}{b+r}$.
- 3. On a tiré une boule blanche au deuxième tirage. Donner alors la probabilité que l'on ait tiré une boule blanche au premier tirage en fonction de b et r.
- 4. On appelle E_n l'événément

 E_n : " On tire que des boules blanches sur les n premiers tirages "

et F_n l'événement

 F_n : "On tire pour la première fois une boule rouge au n-ième tirage"

- (a) Exprimer E_n à l'aide des événements $(B_k)_{k \in [\![1,n]\!]}$
- (b) Exprimer F_n à l'aide de E_{n-1} et B_n
- 5. Pour tout $k \geq 2$ calculer $P_{E_{k-1}}(B_k)$.
- 6. Calculer $P(E_n)$ en fonction de b, r et n puis $P(F_n)$.
- 7. On souhaite modéliser informatiquement cette expérience. On va utiliser la lettre 'B' pour désigner les boules blanches et 'R' pour les rouges.
 - (a) Créer une fonction **urne** qui prend en argument le nombre de boules blanches et rouges, et retourne une liste correspondant à l'urne initiale. (Cette liste n'a pas à être "mélangée")
 - (b) Créer une fonction **tirage** qui prend en argument une liste correspondant à une urne, modélise le tirage d'une boule alétoirement dans cette urne, affiche la couleur de la boule tirée et retourne une liste correspondant à l'urne aprés l'ajout de la boule de la couleur tirée.
 - (c) Créer une fonction compte qui prend une liste correspondant à une urne et retourne le nombre de boules blanches contenues dans l'urne.
 - (d) Créer une fonction expérience qui prend en argument le nombre de boules blanches et rouges initial et N le nombre de tirages effectués et retourne le nombre de boules blanches dans l'urne aprés N tirages.

Correction 4.

1. On a $p_1 = P(B_1)$. Comme il y a b boules et b+r boules en tout, on en déduit que $P(B_1) = \frac{b}{b+r}$

$$p_1 = \frac{b}{b+r}$$

2. On utilise le système complet d'événements $(B_1, \overline{B_1})$, la formule des probabilités totales donnent :

$$p_2 = P(B_2) = P(B_2|B_1)P(B_1) + P(B_2|\overline{B_1})P(\overline{B_1})$$

Si on a tiré une boule blanche au tirage 1, il y a b+1 boules blanches dans l'urne et r boules rouges, donc

$$P(B_2|B_1) = \frac{b+1}{b+r+1}$$

De même, si on a tiré une boule rouge au tirage 1, il y a b boules blanches dans l'urne et r+1 boules rouges, donc

$$P(B_2|\overline{B_1}) = \frac{b}{b+r+1}$$

D'après le calcul de p_1 , on sait que $P(\overline{B_1})=1-P(B_1)=1-\frac{b}{b+r}=\frac{r}{b+r}$ Ainsi

$$p_{2} = \frac{b+1}{b+r+1} \frac{b}{b+r} + \frac{b}{b+r+1} \frac{r}{b+r}$$

$$= \frac{(b+1)b}{(b+r+1)(b+r)} + \frac{br}{(b+r+1)(b+r)}$$

$$= \frac{(b+1+r)b}{(b+r+1)(b+r)}$$

$$= \frac{b}{b+r}$$

$$p_2 = \frac{b}{b+r}$$

3. On cherche à calculer $P(B_1|B_2)$ et on utilise pour cela la formule de Bayes :

$$P(B_1|B_2) = \frac{P(B_2|B_1)P(B_1)}{P(B_2)}$$

Or on a vu que $P(B_1) = P(B_2)$ donc

$$P(B_1|B_2) = P(B_2|B_1)$$

Ainsi

$$P(B_1|B_2) = \frac{b+1}{b+r+1}$$

4. (a) $E_n = B_1 \cap B_2 \cap \cdots \cap B_n$.

(b)
$$F_n = E_{n-1} \cap \overline{B_n}$$
.

5. Si l'événement E_{k-1} est réalisé, on a tiré que des boules blanches sur les k-1 premiers tirages. Il y a donc b+k-1 boules blanches et b+k-1+r boules au total. Donc

$$P(B_k|E_{k-1}) = \frac{b+k-1}{b+k-1+r}$$

6. On utilise la formule des probabilités conditionnelles et on obtient :

$$P(E_n) = P(B_1)P(B_2|B_1)P(B_3|B_2 \cap B_1)\dots P(B_n|B_{n-1} \cap \dots \cap B_2 \cap B_1)$$

Remarquons que les termes du produit sont de la forme $P(B_k|E_{k-1})$ que l'on a calculé à la question précédente. On a donc

$$P(E_n) = P(B_1) \prod_{k=2}^{n} P(B_k | E_{k-1})$$

$$= \frac{b}{b+r} \frac{b+2-1}{b+2-1+r} \frac{b+3-1}{b+2-1+r} \dots \frac{b+n-1}{b+n-1+r}$$

$$= \frac{b}{b+r} \frac{b+1}{b+1+r} \frac{b+2}{b+2+r} \dots \frac{b+n-1}{b+n-1+r}$$

$$= \frac{(b+n-1)!}{(b-1)!} \frac{(b+r-1)!}{(b+n-1+r)!}$$

7. On en déduit la valeur de $P(F_n)$ de nouveau en utilisant la formule des proababilités conditionnelles :

$$P(F_n) = P(E_{n-1} \cap \overline{B_n}) = P(E_{n-1})P(\overline{B_n}|E_{n-1})$$

Si l'événement E_{n-1} est réalisé, il y a r boules rouges et b+n-1+r boules au total. Donc

$$P(F_n) = \frac{r}{b+n-1+r}$$

8. (a) def urne(b,r):

L=['B' for i in range(b)] +['R' for i in range(n)]

з return (L)

```
(b) from random import randint
 2 def tirage(L):
            nouvel urne=L[:]
            k=randint(0, len(L)-1)
  5
            if L[k]=='B':
              print('Boule blanche')
              nouvel urne=nouvel urne+['B']
            else:
              print('Boule Rouge')
 10
              nouvel_urne=nouvel_urne+['R']
 11
            return(nouvel_urne)
 12
(c)
  2 def compte(L):
     b=0
     for e in L:
       if e=='B':
  5
          b=b+1
  6
     return(b)
(d) def experience (b, r, N):
     U=urne(b,r)
     for k in range (N):
       U=tirage(U)
     boule_b=compte(U)
 5
     return(boule_b)
```