Алгебра ДЗ 3

Гольдберг Дмитрий Максимович

Группа БПМИ248

Сколько элементов порялков 2, 5, 10 и 25 в группе $\mathbb{Z}_2 \times \mathbb{Z}_{10} \times \mathbb{Z}_{25}$?

Решение:

1. Элементы порядка 2 это элементы, для которых выполнено

$$\begin{cases} 2g_1\equiv 0\pmod{2}\\ 2g_2\equiv 0\pmod{10}\Rightarrow \text{всего }2\cdot 2\cdot 1-1=3\text{ элемента}\\ 2g_3\equiv 0\pmod{25} \end{cases}$$

2. Элементы порядка 5 это элементы, для которых выполнено

$$\begin{cases} 5g_1\equiv 0\pmod{2}\\ 5g_2\equiv 0\pmod{10}\Rightarrow \text{всего }1\cdot 5\cdot 5-1=24\text{ элемента}\\ 5g_3\equiv 0\pmod{25} \end{cases}$$

3. Элементы порядка 10 это элементы, для которых выполнено

$$\begin{cases} 10g_1 \equiv 0 \pmod{2} \\ 10g_2 \equiv 0 \pmod{10} \Rightarrow \text{всего } 2 \cdot 10 \cdot 5 - 24 - 3 - 1 = 72 \text{ элемента}(\text{вычитаем еще элементы порядков 2 и 5}) \\ 10g_3 \equiv 0 \pmod{25} \end{cases}$$

4. Элементы порядка 25 это элементы, для которых выполнено

$$\begin{cases} 25g_1\equiv 0\pmod{2}\\ 25g_2\equiv 0\pmod{10}\Rightarrow \text{всего }1\cdot 5\cdot 25-24-1-=100\text{ элеменов}(\text{вычитаем еще элементы порядка }5)\\ 25g_3\equiv 0\pmod{25} \end{cases}$$

Ответ:

3, 24, 72, 100

Сколько подгрупп порядков 3 и 21 в нециклической абелевой группе порядка 63?

Решение:

Пусть |A|=63 —группа из условия. Тогда $A\simeq \mathbb{Z}_3\times \mathbb{Z}_3\times \mathbb{Z}_7$. Пусть $H\subseteq A, |H|=3\Rightarrow H\simeq \mathbb{Z}_3$. Групп порядка 3 столько, сколько элементов порядка 3 в группе A делить пополам, так как в \mathbb{Z}_3 два элемента порядка 3. Элементов порядка 3 в A 8(ищем по аналогии с первым номером) \Rightarrow 4 подгруппы порядка 3.

Пусть $H\subseteq A, |H|=21.$ $H\simeq \mathbb{Z}_7\times \mathbb{Z}_3\simeq Z_{21}.$ Найдём количество элементов порядка 21 в $\mathbb{Z}_{21}.$ Это есть $\varphi(21)=12.$ Элементов порядка 21 в A ровно $3\cdot 3\cdot 7-8-7=48$ (вычитаем элементы порядка 3 и порядка 7). Итого подгрупп порядка 21 ровно $\frac{48}{12}=4.$

Ответ:

4, 4

При каком наименьшем $n \in \mathbb{N}$ группа $\mathbb{Z}_{15} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20}$ изоморфна прямому произведению n циклических групп?

Решение:

Заметим, что

$$\begin{split} \mathbb{Z}_{15} &\simeq \mathbb{Z}_5 \times \mathbb{Z}_3 \\ \mathbb{Z}_{18} &\simeq \mathbb{Z}_2 \times \mathbb{Z}_9 \\ \mathbb{Z}_{20} &\simeq \mathbb{Z}_5 \times \mathbb{Z}_4 \\ \Rightarrow \mathbb{Z}_{15} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20} &\simeq \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_4 &\simeq \mathbb{Z}_6 \times \mathbb{Z}_5 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_4 &\simeq \mathbb{Z}_{30} \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_9 &\simeq \mathbb{Z}_{30} \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_9 &\simeq \mathbb{Z}_{30} \times \mathbb{Z}_9 \times$$

Значит исходная группа изоморфна прямому произведению двух циклических групп. Это и есть наименьшее значение, так как $n \neq 1$. Если n = 1, то $\exp(\mathbb{Z}_{15} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20}) = \text{HOK}(15, 18, 20) = 180$, но порядок группы равен $15 \cdot 18 \cdot 20 \neq 180 \Rightarrow$ группа не является цикличной $\Rightarrow n \neq 1$.

Ответ:

2

Пусть k — наибольший порядок элементов конечной абелевой группы A. Докажите, что порядок любого элемента A делит k.

Решение: