PHY 410 Honework 6 Solutions 1. K. + K. Ch. 5, # 6 Hibbs sum for a 2-level system 3 states: N=0 N=1 N=1 N=1 E=0 E=0 E=E X=Ea) $\frac{(N\mu - E_s)}{7} = \sum_{N \leq N} \sum_{N \leq N} \frac{N - E_s}{7}$ $\frac{3}{3} = \sum_{N \leq N} \sum_{N \leq N} \frac{N - E_s}{7}$ $\frac{-E}{7}$ $\frac{3}{3} = 1 + \lambda + \lambda = \frac{1}{3}$ $\langle N \rangle = \frac{\sum_{N,s} N \lambda^{N} - \sum_{s} / x}{3} = \frac{\lambda + \lambda e}{3}$ c) $\langle N(E) \rangle = \frac{1}{3}$ \longleftrightarrow Only the 3th with energy E contributes to the numerator for these.

 $\langle \varepsilon \rangle = \frac{\sqrt{s}}{3} \frac{\varepsilon_s}{2} \frac{\sqrt{-\varepsilon/\kappa}}{2}$

e) 4 states: N=0 N=1 N=1 N=2 E=0 E=0 E=0 E=0

 $J = \sum_{N,s(N)} N - \varepsilon_{s/\tau}$ $J = \sum_{N,s(N)} + \sum_{N,s(N)} (1+\sum_{N}\varepsilon_{s/\tau})$

2. K. + K. CLS, #8 CO poisoning

3 statu: N=0 $N_{02}=1$ $N_{co}=1$ $E_{s}=E_{B}$

a) No. CO is present, so consider only the first 2 states $3 = 1 + \lambda_{02} = \frac{1 + \lambda_{02}}{2} = \frac{\lambda_{02}}{2}$

Siven: $\lambda_{0_2} = 1.10^5$, $\langle N_{0_2} \rangle = 0.9$, find ε_A :

 $\lambda_{0_{\chi}} = 3 \langle N_{0_{\chi}} \rangle = (1 + \lambda_{0_{\chi}} = 0.9)$

 $0.1 \lambda_{0_{\chi}} = 0.9$

 $e^{-\epsilon_{A/t}} = \frac{9}{\lambda_{0_{2}}} = \frac{9}{1.10^{-5}} = 9.10^{5}$

 $\frac{-\varepsilon_{A}}{\tau} = \ln \left(9.10^{5} \right) = 13.7$ $\varepsilon_{A} = -13.7 \cdot k_{B}T = -13.7 \cdot \left(8.62.10^{-5} \text{ eV}_{K} \right) \cdot 310 \text{ K}$

E = -0,366 eV

b) With CO present, all 3 states are in play:

3 = 1 + \lambda_2 e \tag{EA/T} + \lambda_{CO} e

EB = -20.5. KBT = -20.5. 0.0267 eV = -0.548 eV

3. K. + K. Ch 6, #3 (E) allowing for double occupancy 3 states: N=0 N=1 N=2 $E_s=0$ $E_s=E_s=1E$

a) $3 = \sum_{N \leq N} \sum_{S(N)} N - \sum_{s=1}^{-\varepsilon} \frac{1 + \lambda e^{-\varepsilon}}{1 + \lambda e^{-\varepsilon}} + \lambda e^{-\varepsilon}$

 $\langle N \rangle = \frac{\sum_{N} \sum_{S(N)} N \rangle^{N-E_{S}/\nabla}}{3} = \frac{\lambda e^{-E/N} + 2\lambda^{2} - \lambda E/N}{3}$

b) 2 orbitals with same energy: N=N,+N2

4 states: N=0 $N_1=1$ $N_2=1$ N=2 $E_5=0$ $E_5=E$ $E_5=1E$

 $3 = 1 + \lambda e + \lambda e + \lambda^2 - \frac{2\xi}{\alpha}$

 $\langle N \rangle = \frac{\lambda e^{-\frac{1}{2}c} + \lambda e^{-\frac{1}{2}c}}{3}$

 $\frac{2\lambda e^{-\frac{\varepsilon}{\hbar}}(1+\lambda e)}{(1+\lambda e^{-\frac{\varepsilon}{\hbar}})^2} = \frac{2\lambda e^{-\frac{\varepsilon}{\hbar}}}{1+\lambda e^{-\frac{\varepsilon}{\hbar}}}$ Notice:

 $\langle N \rangle = 2 \frac{1}{\lambda e^{+1}} = \lambda \frac{1}{(\epsilon - \mu)/c_{+1}} = \lambda f(\epsilon)$

4. K. + K. Ch 6, # 12 Ideal gas in 20 Follow the approach of Ch. 6 (which I did in class) using the Grand Convolical Ensemble to get the Classical distribution function: $(\mu - E)/\tau$ a) Sum over all orbitals 5 to get the average number of particles: $\langle N \rangle = \sum_{s} \int_{\epsilon} (\epsilon_{s}) = \sum_{s} \frac{(\mu - \epsilon_{s})}{\epsilon} \int_{\epsilon} \frac{\mu_{\tau}}{\epsilon} \sum_{s} e^{-\epsilon_{s}/\epsilon}$ (N) = e Z, I will calculate Z, using periodic boundary conditions You can also use hard wall boundary conditions if you prefer. $Es/\tau = A^{\kappa}$ area of box $-E(k)/\tau$ $Z_1 = \sum_{s} e = \frac{A^{\kappa}}{(2\pi)^2} \int_{0}^{2\pi} d^3k e$ $= \frac{A}{(2\pi)^2} \int_{0}^{2\pi} 2\pi k \, dk = \frac{k^2k^2}{2m\tau}$ polar $= \frac{A}{(2\pi)^2} \int_{0}^{2\pi} 2\pi k \, dk = \frac{k^2k^2}{2m\tau}$ polar coordinates $Z_{1} = \frac{A}{2\pi} \cdot \frac{-m\tau}{k^{2}} = \frac{Am\tau}{2\pi k^{2}}$ Replace (N) with N $\frac{M/\tau}{2} = \frac{N}{A} = \frac{N}{A} \frac{2\pi h}{m x} = \frac{m}{m x}$

when the quantum concentration in 20 is defined

by

$$M_{20} = \frac{m\tau}{2\pi L^{2}}$$
 $M = \tau \ln (n/n_{a})$ when $n = \frac{N}{A}$
 $L = \frac{N}{2\pi L^{2}} \ln (N', \tau, A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (N', \tau, A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (N', \tau, A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (N', \tau, A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_{a}A) = \frac{N}{2\pi L^{2}} \ln (n_{a}A)$
 $L = \frac{N}{2\pi L^{2}} \ln (n_$

5.
$$\mathcal{K}. + \mathcal{K}. \quad \mathcal{C}l. S, \# 10$$

($N\mu - \varepsilon_{S}(N)$)/ χ

a) $\langle N^{2} \rangle = \frac{\sum_{N} \sum_{S(N)} N^{2} e}{N S(N)} \frac{3}{3} \frac{(N\mu - \varepsilon_{S})}{4} \frac{1}{2} = \chi^{2} \frac{3}{3} \frac{3}$

$$h) \left\langle (\Delta N)^{2} \right\rangle = \left\langle N^{2} \right\rangle - \left\langle N \right\rangle^{2} = \frac{\tau^{2}}{3} \frac{\partial 3}{\partial \mu^{2}} - \left(\frac{\tau}{3} \frac{\partial 3}{\partial \mu}\right)^{2}$$
using $\left\langle N \right\rangle^{2} = \frac{\tau}{3} \frac{\partial 3}{\partial \mu}$

$$\frac{\partial \langle N \rangle}{\partial \mu} = \frac{\tau}{3} \frac{\partial^2 3}{\partial \mu^2} + \tau \frac{\partial 3}{\partial \mu} \cdot \left(-\frac{1}{3^2} \frac{\partial 3}{\partial \mu}\right) \quad \text{and chain}$$
rule

Compare with formula for $\langle (\Delta N)^2 \rangle$ to see that $\langle (\Delta N)^2 \rangle = \gamma \frac{\partial \langle N \rangle}{\partial \mu}$