## Elementi di Teoria della Computazione

#### Programma sintetico

- Nozioni preliminari
- Automi Finiti
- Macchine di Turing
- Limiti delle macchine di Turing
- La tesi di Church-Turing
- Le classi P e NP

### Teoria della computazione

Che cos'è un computer?

Modelli di computazione (computer ideali che permettono di studiare alcuni aspetti del computer reale: quali problemi possiamo risolvere con un computer, quali non possiamo risolvere? )

#### Automi finiti

Un automa finito è un modello di computer con una quantità estremamente limitata di memoria.

Che cosa possiamo fare con una macchina del genere? Tante cose utili.

dispositivi elettromeccanici: lavastoviglie, sistemi di controllo, lettori automatici, erogatori di bibite e snack, ...

 $\textbf{software} \colon \mathsf{parsing} \ (\mathsf{analisi} \ \mathsf{sintattica}) \ \mathsf{di} \ \mathsf{compilatori}, \ \mathsf{ricerca} \ \mathsf{di} \ \mathsf{parole} \ \mathsf{in} \ \mathsf{un} \ \mathsf{file}, \ \ldots$ 



- un uomo vuole trasportare sull'altra riva di un fiume una pecora, un lupo e un cavolo
- ha una barca che può contenere solo l'uomo più uno dei suoi possedimenti
- il lupo mangia la pecora se lasciati soli insieme
- la pecora mangia il cavolo se lasciati soli insieme
- come può attraversare fiume senza perdite?

Le mosse possono essere rappresentate da simboli di un alfabeto  $\Sigma = \{l, p, c, n\}$ :



- I: l'uomo attraversa con il lupo
- p: l'uomo attraversa con la pecora
- c: l'uomo attraversa con il cavolo
- n: l'uomo attraversa con niente

Una soluzione è data dalla stringa pncplnp  $\implies$  attraversa con il lupo, torna con niente, attraversa con il cavolo, ...

Ogni mossa porta da una configurazione (stato) all'altro: provoca una transizione da uno stato q a uno stato q'.

La situazione iniziale vede tutti sulla stessa riva del fiume:



Se l'uomo traghetta la pecora sull'altra sponda, la situazione diventerà:



Se da quest'ultima situazione l'uomo riporta indietro la pecora sulla riva di partenza, la situazione ritornerà quella iniziale.

Possiamo rappresentare queste transizioni provocate dalla mossa p nel seguente diagramma:



Ogni mossa porta da una configurazione (stato) all'altro: provoca una transizione da uno stato q a uno stato q'.

La situazione iniziale vede tutti sulla stessa riva del fiume:



Se l'uomo traghetta la pecora sull'altra sponda, la situazione diventerà:



Se da quest'ultima situazione l'uomo riporta indietro la pecora sulla riva di partenza, la situazione ritornerà quella iniziale.

Possiamo rappresentare queste transizioni provocate dalla mossa p nel seguente diagramma:



Una soluzione al problema può essere rappresentata da un diagramma di transizioni che parta dalla situazione iniziale:



e, evitando tutte le situazioni nelle quali il lupo mangia la pecora o la capra mangia il cavolo, termini nella configurazione finale:



Una soluzione al problema può essere rappresentata da un diagramma di transizioni che parta dalla situazione iniziale:



e, evitando tutte le situazioni nelle quali il lupo mangia la pecora o la capra mangia il cavolo, termini nella configurazione finale:



Proviamo a rappresentare le soluzioni date dalle seguenti stringhe:

- pnlpcnp
- pncplnp



Possiamo rappresentare anche le soluzioni errate (facendole terminare in uno stato *error*)?



Nota bene: ora ogni stato ha un arco per ogni possibile mossa!



- ogni stringa  $x \in \{I, p, c, n\}^*$  corrisponde a un cammino p(x) sul diagramma e viceversa
- una stringa  $x \in \{l, p, c, n\}^*$  è una soluzione se e solo se il cammino corrispondente p(x) parte dallo stato iniziale e termina nello stato finale del diagramma
- Insieme delle soluzioni:

$$\{x \in \{I, p, c, n\}^* | p(x) \text{ termina nello stato finale del diagramma}\}$$

#### Automi finiti

Modello semplice di calcolatore avente una quantità finita di memoria. È noto anche come macchina a stati finiti.

Idea di base del funzionamento.

Sia  $\Sigma = \{a, b, c, d\}$  un insieme finito di simboli, detto **alfabeto**.

- Input = stringa w sull'alfabeto  $\Sigma$ .
- Legge i simboli di w da sinistra a destra.
- Dopo aver letto l'ultimo simbolo, l'automa indica se accetta o rifiuta la stringa input w.



Il sistema di controllo può trovarsi in uno di due possibili stati: aperto o chiuso.

Le situazioni di input rilevate dai sensori sono le seguenti.

• davanti: persona davanti la soglia

• dietro: persona dietro la soglia

• entrambi: persona davanti e persona dietro la soglia

• nessuno: nessuna persona in prossimità della porta (né davanti né dietro)



Il sistema di controllo può trovarsi in uno di due possibili stati: aperto o chiuso.

Le situazioni di input rilevate dai sensori sono le seguenti.

• davanti: persona davanti la soglia

• dietro: persona dietro la soglia

• entrambi: persona davanti e persona dietro la soglia

• nessuno: nessuna persona in prossimità della porta (né davanti né dietro)

#### Regola:

- se la porta è chiusa, si apre solo se arriva una persona davanti;
- se la porta è aperta, si chiude solo se non c'è nessuno.



Il sistema di controllo può trovarsi in uno di due possibili stati: aperto o chiuso.

Le situazioni di input rilevate dai sensori sono le seguenti.

• davanti: persona davanti la soglia

• dietro: persona dietro la soglia

• entrambi: persona davanti e persona dietro la soglia

• nessuno: nessuna persona in prossimità della porta (né davanti né dietro)

#### Regola:

- se la porta è chiusa, si apre solo se arriva una persona davanti;
- se la porta è aperta, si chiude solo se non c'è nessuno.



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input:

Allora passerà attraverso la sequenza di stati: chiuso,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti,

Allora passerà attraverso la sequenza di stati: chiuso, aperto,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro,

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno,

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno, davanti,

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso, aperto,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno, davanti, entrambi,

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso, aperto, aperto,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno, davanti, entrambi, nessuno.

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso, aperto, aperto, chiuso,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno, davanti, entrambi, nessuno, dietro,

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso, aperto, aperto, chiuso, chiuso,



Supponiamo che il sistema parta nella situazione (stato) di chiuso e riceva la seguente sequenza di input: davanti, dietro, nessuno, davanti, entrambi, nessuno, dietro, nessuno.

Allora passerà attraverso la sequenza di stati: chiuso, aperto, aperto, chiuso, aperto, aperto, chiuso, chiuso, chiuso.



- alfabeto  $\Sigma = \{a, b\}$
- insieme degli stati  $Q = \{q_1, q_2, q_3\}$
- stato iniziale  $q_1$
- stato finale q2
- per ogni stato, se si legge un simbolo dell'alfabeto (a o b), il diagramma specifica in quale stato si transisce



Se arriva in input una stringa w, il DFA si comporta come segue:

- partendo dallo stato iniziale  $q_1$ , e leggendo un simbolo alla volta, il DFA passa da uno stato all'altro
- se lo stato in cui approda leggendo l'ultimo simbolo è finale, cioè  $q_2$ , allora la stringa è accettata, altrimenti è rifiutata



stringa input: abbaa

ullet inizia nello stato  $q_1$ 



- ullet inizia nello stato  $q_1$
- legge a e resta in  $q_1$



- ullet inizia nello stato  $q_1$
- legge a e resta in  $q_1$
- legge b e transisce da  $q_1$  a  $q_2$



- ullet inizia nello stato  $q_1$
- legge a e resta in  $q_1$
- ullet legge b e transisce da  $q_1$  a  $q_2$
- legge b e resta in  $q_2$



- ullet inizia nello stato  $q_1$
- legge a e resta in  $q_1$
- legge b e transisce da  $q_1$  a  $q_2$
- legge b e resta in  $q_2$
- legge a e transisce da  $q_2$  a  $q_3$



- ullet inizia nello stato  $q_1$
- legge a e resta in  $q_1$
- legge b e transisce da  $q_1$  a  $q_2$
- legge b e resta in  $q_2$
- legge a e transisce da  $q_2$  a  $q_3$
- legge a e transisce da  $q_3$  a  $q_2$



- ullet inizia nello stato  $q_1$
- legge a e resta in q1
- legge b e transisce da  $q_1$  a  $q_2$
- legge b e resta in  $q_2$
- legge a e transisce da q2 a q3
- legge a e transisce da  $q_3$  a  $q_2$
- la stringa è accettata perché alla fine dell'input l'automa si trova in q<sub>2</sub> che è uno stato accettante



abbaa è accettata (dopo aver letto l'ultimo simbolo il DFA si trova nello stato accettante:  $q_2$ )

abaaa è rifiutata (dopo aver letto l'ultimo simbolo il DFA si trova nello stato  $q_3$  che non è accettante)

 $\epsilon$  è rifiutata (lo stato iniziale  $q_1$  non è accettante)





Un automa finito è una quintupla  $(Q, \Sigma, \delta, q_0, F)$ 

• Q è un insieme finito chiamato l'insieme degli stati



- Q è un insieme finito chiamato l'insieme degli stati
- $\Sigma$  è un insieme finito chiamato l'alfabeto



- ullet Q è un insieme finito chiamato l'insieme degli stati
- $\Sigma$  è un insieme finito chiamato l'alfabeto
- $\delta: Q \times \Sigma \rightarrow Q$  è la funzione di transizione



- ullet Q è un insieme finito chiamato l'insieme degli stati
- $\Sigma$  è un insieme finito chiamato l'alfabeto
- $\delta: Q \times \Sigma \to Q$  è la funzione di transizione
- $q_0 \in Q$  è lo stato iniziale



- Q è un insieme finito chiamato l'insieme degli stati
- $\Sigma$  è un insieme finito chiamato l'alfabeto
- $\delta: Q \times \Sigma \rightarrow Q$  è la funzione di transizione
- $q_0 \in Q$  è lo stato iniziale
- $F \subseteq Q$  è l'insieme degli stati accettanti (o finali)



La funzione di transizione  $\delta: Q \times \Sigma \to Q$  specifica per ogni stato e per ogni simbolo input, in quale stato si transisce.

 $\delta(q_i, a) \in Q$  è lo stato in cui si troverà il DFA quando, trovandosi nello stato  $q_i$ , legge il simbolo a. Ad esempio, nell'automa rappresentato sopra  $\delta(q_1, a) = q_2$ .

#### Perché si dice deterministico?

• Per ogni stato esiste una ed una sola transizione per ciascun simbolo dell'alfabeto



Definiamo  $M = (Q, \Sigma, \delta, q_0, F)$ .

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$

|                              |                                                           | a          | D     |
|------------------------------|-----------------------------------------------------------|------------|-------|
| • $\delta$ è così descritta: | $egin{array}{c}  ightarrow q_0 \ * q_1 \ q_2 \end{array}$ | <b>q</b> 0 | $q_1$ |
|                              | $* q_1$                                                   | $q_2$      | $q_1$ |
|                              | $q_2$                                                     | $q_1$      | $q_1$ |

- $q_0$  è lo stato iniziale
- $F = \{q_1\}$

### Come computa un DFA?

Sia  $M_1=(Q,\Sigma,\delta,q_0,F)$  un DFA. Consideriamo la stringa input  $w=w_1w_2\cdots w_n$ , dove  $w_i\in\Sigma$  per  $i=1,2,\ldots,n$ .

M accetta la stringa w se esiste una sequenza di stati  $r_0, r_1, \ldots, r_n$  tale che:

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1} \text{ per } i = 0, \dots, n-1$
- $r_n \in F$

Se A è l'insieme di tutte le stringhe che la macchina accetta, diciamo che A è il **linguaggio della macchina** M e scriviamo L(M) = A. Diciamo che M **riconosce** A.

# Linguaggio della macchina

#### Definizione

Se A è l'insieme di tutte le stringhe che la macchina M accetta, diciamo che A è il linguaggio della macchina M e scriviamo

$$L(M) = A$$
.

Diciamo anche che M riconosce (o accetta) A.

Ogni macchina riconosce sempre e soltanto un linguaggio. Se la macchina non accetta alcuna stringa, riconosce ancora un linguaggio: il linguaggio vuoto. In questo caso

$$L(M) = \emptyset$$
.

# Linguaggio regolare

#### Definizione

Un linguaggio è chiamato linguaggio regolare se esiste un automa finito che lo riconosce.



Qual è il linguaggio riconosciuto da questo automa  $M_1$ ?

 $L(M_1)$  è l'insieme di tutte le stringhe della forma

$${a}^*b {b, ab, aa}^*.$$

#### Equivalentemente

 $L(M_1) = \{w | w \text{ contiene almeno un } b \text{ e un numero pari di } a \text{ segue l'ultimo } b\}$  (ricordare che 0 è pari).

Quale linguaggio riconosce il seguente DFA  $M_1$ ?



Esempi di stringhe accettate: 1, 111, 00010000, 001001001000. Esempi di stringhe rifiutate: 0, 11, 010010, 0010010010100.

$$L(M_1) = \{ w \in \Sigma^* | w \text{ contiene un numero dispari di } 1 \}$$

**Esercizio:** dare un DFA che riconosca il linguaggio su  $\Sigma = \{0,1\}$  formato da tutte le stringhe con un numero pari di 1.

Quale linguaggio riconosce il seguente DFA  $\mathit{M}_2$  sull'alfabeto  $\Sigma = \{0,1\}$ ?



Esempi di stringhe accettate: 0, 1.

Esempi di stringhe rifiutate: 00, 01, 000, 101.

$$L(M_2) = \{ w \in \Sigma^* | |w| = 1 \}$$

Il complemento di  $L(M_2)$  è il linguaggio di tutte le stringhe su  $\Sigma$  che hanno lunghezza diversa da 1. Cioè  $C(L(M_2)) = \{w \in \Sigma^* | |w| \neq 1\}$ .

Progettiamo un DFA M<sub>3</sub> che riconosca

$$C(L(M_2)) = \{ w \in \Sigma^* | |w| \neq 1 \} = \{ \epsilon \} \cup \{ w \in \Sigma^* | |w| > 1 \}.$$

Progettiamo un DFA  $M_3$  che riconosca

$$C(L(M_2)) = \{ w \in \Sigma^* | \ |w| \neq 1 \} = \{ \epsilon \} \cup \{ w \in \Sigma^* | \ |w| > 1 \}.$$



- M<sub>3</sub> ha più di uno stato accettante
- lo stato iniziale di  $M_3$  è anche stato accettante

Progettiamo un DFA  $M_3$  che riconosca

$$C(L(M_2)) = \{w \in \Sigma^* | \ |w| \neq 1\} = \{\epsilon\} \cup \{w \in \Sigma^* | \ |w| > 1\}.$$



- M<sub>3</sub> ha più di uno stato accettante
- lo stato iniziale di  $M_3$  è anche stato accettante

#### Osservazione

Un DFA accetta  $\epsilon$  se e solo se il suo stato iniziale è accettante.

Sia  $M_4$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_4$ ?



Sia  $\mathit{M}_4$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_4$ ?



 $M_4$  accetta tutte (e sole) le stringhe su  $\Sigma$  che terminano con bb.

$$L(M_4) = \{w | sbb \text{ con } s \in \Sigma^*\}.$$

Sia  $M_5$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_5$ ? Ь

Sia  $M_5$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_5$ ?

 $L(M_5) = \{w | w = saa \text{ oppure } w = sbb \text{ per qualche stringa } s\}$ 

Sia  $M_6$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_6$ ?



Sia  $M_6$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_6$ ?



 $\mathit{M}_{6}$  accetta tutte le possibili stringhe su  $\Sigma = \{\mathit{a},\mathit{b}\}$ . Cioè

$$L(M_6) = \Sigma^*$$

Sia  $M_6$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_6$ ?



 $M_6$  accetta tutte le possibili stringhe su  $\Sigma = \{a, b\}$ . Cioè

$$L(M_6) = \Sigma^*$$

#### Osservazione

Ogni DFA tale che tutti gli stati sono accettanti riconosce il linguaggio  $\Sigma^*$ .

Sia  $M_7$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_7$ ?



Sia  $M_7$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_7$ ?

$$\mathsf{start} \to q_1$$

In questo caso, l'insieme degli stati accettanti è vuoto.  $M_7$  rifiuta tutte le stringhe. Cioè

$$L(M_7)=\emptyset.$$

Sia  $M_7$  l'automa con alfabeto  $\Sigma=\{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce M<sub>7</sub>?

$$a, b$$

$$\downarrow q_1$$

In questo caso, l'insieme degli stati accettanti è vuoto.  $M_7$  rifiuta tutte le stringhe. Cioè

$$L(M_7) = \emptyset$$
.

#### Osservazione

Ogni DFA che non ha stati accettanti rifiuta tutte le stringhe: riconosce il linguaggio  $\emptyset$ .

Sia  $M_8$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce M<sub>8</sub>?



Sia  $M_8$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce M<sub>8</sub>?



- ogni a muove da destra a sinistra o viceversa
- ogni b muove dall'alto al basso o viceversa

Sia  $M_8$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_8$ ?



- ogni a muove da destra a sinistra o viceversa
- ogni b muove dall'alto al basso o viceversa

Per tornare su  $q_1$  è necessario un numero pari di spostamenti orizzontali e un numero pari di spostamenti verticali.

Sia  $M_8$  l'automa con alfabeto  $\Sigma = \{a,b\}$  rappresentato dal seguente diagramma di stato.

Quale linguaggio riconosce  $M_8$ ?



- ogni a muove da destra a sinistra o viceversa
- ogni b muove dall'alto al basso o viceversa

Per tornare su  $q_1$  è necessario un numero pari di spostamenti orizzontali e un numero pari di spostamenti verticali.

Il DFA  $M_8$  riconosce il linguaggio di stringhe su  $\Sigma$  con numero pari di a e numero pari di b.

#### Esercizi

Fornire un DFA per ciascuno dei seguenti linguaggi sull'alfabeto  $\Sigma = \{0, 1\}$ :

- insieme di tutte le stringhe che terminano con 00;
- insieme di tutte le stringhe con tre zeri consecutivi;
- insieme delle stringhe con 011 come sottostringa;
- insieme delle stringhe che cominciano, finiscono, o entrambe le cose, con 01.

# Operazioni regolari

#### Definizione

Siano A e B linguaggi. Definiamo le operazioni regolari unione, concatenazione e star (o kleene star) come segue:

- unione:  $A \cup B = \{x | x \in A \text{ o } y \in B\};$
- concatenazione:  $A \circ B = \{xy | x \in A \ e \ y \in B\};$
- star:  $A^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ e ogni } x_i \in A\}.$

```
Sia \Sigma = \{a,b,c,\ldots,z\} l'alfabeto latino di 26 lettere. Supponiamo che A = \{ \texttt{good}, \texttt{bad} \} e B = \{ \texttt{boy}, \texttt{girl} \}
```

- unione:  $A \cup B = \{ \text{good, bad, boy, girl} \}$ ;
- concatenazione:  $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\};$
- star:  $A^* = \{\epsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood,} \ldots\}$ .

#### Chiusura

Una collezione S di oggetti è chiusa per un'operazione f se applicando f a membri di S, f restituisce un oggetto ancora in S.

Ad esempio  $N = \{0, 1, 2, ...\}$  è chiuso per addizione, ma non per sottrazione.

Abbiamo visto che dato un DFA  $M_1$  che riconosce il linguaggio L, possiamo costruire un DFA  $M_2$  che riconosce il linguaggio complemento L' = C(L):

- gli stati accettanti in  $M_1$  diventano non accettanti in  $M_2$ .
- gli stati non accettanti in  $M_1$  diventano accettanti in  $M_2$ .

Quindi L regolare  $\implies C(L)$  regolare.

# Linguaggi regolari chiusi per complemento

#### Teorema

L'insieme dei linguaggi regolari è chiuso per l'operazione di complemento.

**Dimostrazione.** Sia L un linguaggio regolare su un alfabeto  $\Sigma$ . Esiste un DFA  $M=(Q,\Sigma,f,q_1,F)$  che riconosce L.

II DFA  $M' = (Q, \Sigma, f, q_1, Q - F)$  riconosce L' = C(L).

Perché funziona?

# Linguaggi regolari chiusi per complemento

#### **Teorema**

L'insieme dei linguaggi regolari è chiuso per l'operazione di complemento.

**Dimostrazione.** Sia L un linguaggio regolare su un alfabeto  $\Sigma$ . Esiste un DFA  $M = (Q, \Sigma, f, q_1, F)$  che riconosce L.

II DFA  $M' = (Q, \Sigma, f, q_1, Q - F)$  riconosce L' = C(L).

Perché funziona?

Ogni stringa in L è accettata da M (M termina in uno stato in  $q \in F$ ) e quindi rifiutata da M' (perché  $q \notin Q - F$ ).

Ogni stringa in C(L) è rifiutata da M e quindi è accettata da M'.

#### Linguaggi regolari chiusi per complemento

#### **Teorema**

L'insieme dei linguaggi regolari è chiuso per l'operazione di complemento.

**Dimostrazione.** Sia L un linguaggio regolare su un alfabeto  $\Sigma$ . Esiste un DFA  $M = (Q, \Sigma, f, q_1, F)$  che riconosce L.

II DFA 
$$M' = (Q, \Sigma, f, q_1, Q - F)$$
 riconosce  $L' = C(L)$ .

Perché funziona?

Ogni stringa in L è accettata da M (M termina in uno stato in  $q \in F$ ) e quindi rifiutata da M' (perché  $q \notin Q - F$ ).

Ogni stringa in C(L) è rifiutata da M e quindi è accettata da M'.

$$M'$$
 accetta  $x \iff x \in C(L)$ .

#### Teorema

La classe dei linguaggi regolari è chiusa per l'operazione di unione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cup L_2$ .

Dimostrazione (idea).

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di unione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cup L_2$ .

**Dimostrazione (idea).**  $L_1$  ha un DFA  $M_1$ .  $L_2$  ha un DFA  $M_2$ . Una stringa w è in  $L_1 \cup L_2$  se e solo se w è accettata da  $M_1$  oppure da  $M_2$ . Bisogna definire un DFA  $M_3$  che accetti w se e solo se w è accettata da  $M_1$  o  $M_2$ .

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di unione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cup L_2$ .

**Dimostrazione (idea).**  $L_1$  ha un DFA  $M_1$ .  $L_2$  ha un DFA  $M_2$ . Una stringa w è in  $L_1 \cup L_2$  se e solo se w è accettata da  $M_1$  oppure da  $M_2$ . Bisogna definire un DFA  $M_3$  che accetti w se e solo se w è accettata da  $M_1$  o  $M_2$ .

M<sub>3</sub> dovrà essere capace di

- tener traccia di dove l'input sarebbe se fosse contemporaneamente in input a M<sub>1</sub> e M<sub>2</sub>;
- accettare una stringa w se e solo se  $M_1$  oppure  $M_2$  accettano la stringa.

Siano  $L_1$  e  $L_2$  definiti sullo stesso alfabeto  $\Sigma$  (non si perde di generalità).

Sia 
$$M_1 = (Q_1, \Sigma, f_1, q_1, F_1)$$
 il DFA che riconosce  $L_1$ .  
Sia  $M_2 = (Q_2, \Sigma, f_2, q_2, F_2)$  il DFA che riconosce  $L_2$ .

Costruiamo il DFA  $M_3 = (Q_3, \Sigma, f_3, g_3, F_3)$ :

- $Q_3 = Q_1 \times Q_2 = \{(x,y) | x \in Q_1, y \in Q_2\}$
- L'alfabeto è lo stesso: Σ
- $f_3:Q_3 imes\Sigma o Q_3$ per ogni  $x\in Q_1,\ y\in Q_2$ , e ogni  $a\in\Sigma$ :  $f_3((x,y),a)=(f_1(x,a),f_2(y,a))$
- q<sub>3</sub> è la coppia (q<sub>1</sub>, q<sub>2</sub>)
- $F_3 = \{(x,y) \in Q_3 | x \in F_1 \text{ o } y \in F_2\}$

 $M_3$  è un DFA poiché il numero di stati in  $M_3$  è finito:  $|Q3| = |Q1| \cdot |Q2|$  ( $Q_1$  e  $Q_2$  sono insiemi finiti).

 $M_3$  riconosce  $L_1 \cup L_2$ : ogni stringa  $x \in \Sigma^*$  è accettata da  $M_1$  o da  $M_2$  se e solo se esiste una sequenza di stati di  $M_3$  che termina in uno stato in  $F_3$  (completare i dettagli per esercizio).

Si considerino due linguaggi regolari  $L_1$  e  $L_2$  su  $\Sigma = \{a,b\}$ . DFA  $M_1$  riconosce linguaggio  $L_1 = L(M_1)$  DFA  $M_2$  riconosce linguaggio  $L_2 = L(M_2)$ 



Costruiamo il DFA  $M_3=(Q_3,\Sigma,\delta,q_3,F_3)$  che riconosce  $L(M_1)\cup L(M_2)$ .  $Q_3=\{(q_1,r_1),(q_1,r_2),(q_1,r_3),(q_2,r_1),(q_2,r_2),(q_2,r_3)\}.$ 























$$f_{3}((q_{2}, r_{1}), a) = (f_{1}(q_{2}, a), f_{2}(r_{1}, a)) = (q_{1}, r_{2})$$

$$start \rightarrow \underbrace{(q_{1}, r_{1})}_{a}$$

$$b$$

$$\underbrace{(q_{2}, r_{2})}_{a}$$

$$\underbrace{(q_{2}, r_{2})}_{b}$$

$$\underbrace{(q_{2}, r_{2})}_{a}$$

$$\underbrace{(q_{2}, r_{2})}_{b}$$







$$f_3((q_2, r_2), a) = (f_1(q_2, a), f_2(r_2, a)) = (q_1, r_1)$$

$$\text{start} \rightarrow (q_1, r_1)$$

$$a$$

$$(q_1, r_2)$$

$$a$$

$$(q_2, r_2)$$

$$a$$

$$b$$

 $(q_2, r_1)$ 

Ь



$$f_3((q_2, r_2), b) = (f_1(q_2, b), f_2(r_2, b)) = (q_2, r_1)$$









$$f_3((q_2,r_3),b)=(f_1(q_2,b),f_2(r_3,b))=(q_2,r_3)$$





$$f_3((q_1, r_3), a) = (f_1(q_1, a), f_2(r_3, a)) = (q_1, r_3)$$





$$f_3((q_1, r_3), b) = (f_1(q_1, b), f_2(r_3, b)) = (q_2, r_3)$$





stati accettanti:  $F_3 = \{(q_2, r_1), (q_2, r_2), (q_2, r_3), (q_1, r_3)\}$ 



#### Teorema

La classe dei linguaggi regolari è chiusa per l'operazione di intersezione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cap L_2$ .

Dimostrazione (idea).

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di intersezione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cap L_2$ .

**Dimostrazione (idea).**  $L_1$  ha un DFA  $M_1$ .  $L_2$  ha un DFA  $M_2$ . Una stringa w è in  $L_1 \cap L_2$  se e solo se w è accettata sia da  $M_1$  sia da  $M_2$ . Bisogna definire un DFA  $M_3$  che accetti w se e solo se w è accettata da entrambe le macchine  $M_1$  e  $M_2$ .

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di intersezione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cap L_2$ .

**Dimostrazione (idea).**  $L_1$  ha un DFA  $M_1$ .  $L_2$  ha un DFA  $M_2$ . Una stringa w è in  $L_1 \cap L_2$  se e solo se w è accettata sia da  $M_1$  sia da  $M_2$ . Bisogna definire un DFA  $M_3$  che accetti w se e solo se w è accettata da entrambe le macchine  $M_1$  e  $M_2$ .

M<sub>3</sub> dovrà essere capace di

- tener traccia di dove l'input sarebbe se fosse contemporaneamente in input a M<sub>1</sub> e M<sub>2</sub>;
- accettare una stringa w se e solo se sia  $M_1$  sia  $M_2$  accettano la stringa.

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di intersezione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \cap L_2$ .

**Dimostrazione (idea).**  $L_1$  ha un DFA  $M_1$ .  $L_2$  ha un DFA  $M_2$ . Una stringa w è in  $L_1 \cap L_2$  se e solo se w è accettata sia da  $M_1$  sia da  $M_2$ . Bisogna definire un DFA  $M_3$  che accetti w se e solo se w è accettata da entrambe le macchine  $M_1$  e  $M_2$ .

M<sub>3</sub> dovrà essere capace di

- tener traccia di dove l'input sarebbe se fosse contemporaneamente in input a M<sub>1</sub> e M<sub>2</sub>;
- accettare una stringa w se e solo se sia  $M_1$  sia  $M_2$  accettano la stringa.

Occorre definire un DFA  $M_3$  che accetta w se e solo se w è accettata da  $M_1$  e  $M_2$ .

- Fornire la definizione formale di M<sub>3</sub>
- Mostrare che  $M_3$  accetta w se e solo se w è accettata sia da  $M_1$  che da  $M_2$ .



### Linguaggi regolari chiusi per concatenazione

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di concatenazione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \circ L_2$ .

**Come dimostrarlo?** Si potrebbe procedere come fatto finora: partire da un DFA  $M_1$  che riconosce  $L_1$  e un DFA  $M_2$  che riconosce  $L_2$  e costruire un DFA  $M_3$  che riconosca  $L_1 \circ L_2$ .

Come costruire  $M_3$ ? L'automa  $M_3$  dovrebbe accettare una stringa w se e solo se essa può essere divisa in due parti tali che la prima parte è accettata da  $M_1$  e la seconda parte è accettata da  $M_2$ .

Il problema è che  $M_3$  non sa dove finisce la prima parte e dove comincia la seconda. Si dovrebbero analizzare tutte le possibilità: troppo laborioso!

#### Linguaggi regolari chiusi per concatenazione

#### **Teorema**

La classe dei linguaggi regolari è chiusa per l'operazione di concatenazione. Cioè, se  $L_1$  e  $L_2$  sono linguaggi regolari, allora lo è anche  $L_1 \circ L_2$ .

**Come dimostrarlo?** Si potrebbe procedere come fatto finora: partire da un DFA  $M_1$  che riconosce  $L_1$  e un DFA  $M_2$  che riconosce  $L_2$  e costruire un DFA  $M_3$  che riconosca  $L_1 \circ L_2$ .

Come costruire  $M_3$ ? L'automa  $M_3$  dovrebbe accettare una stringa w se e solo se essa può essere divisa in due parti tali che la prima parte è accettata da  $M_1$  e la seconda parte è accettata da  $M_2$ .

Il problema è che  $M_3$  non sa dove finisce la prima parte e dove comincia la seconda. Si dovrebbero analizzare tutte le possibilità: troppo laborioso!

Lasciamo per il momento in sospeso il problema e introduciamo un nuovo argomento: il non determinismo.