1 Double Integrals over Rectangles

The Riemann sum

$$\int_{a}^{b} f(x) dx = \lim_{n \to \inf} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

FIGURE 1

4 Volumes and Double Integrals

Form the subrectangles

$$F_{ij} = \begin{bmatrix} x_{i-1}, x_y \end{bmatrix} \times \begin{bmatrix} y_{i-1}, y_i \end{bmatrix} = \left\{ (x,y) \mid x_{i-1} \leq x \leq x_i, y_{j-1} \leq y \leq y_j \right\}$$

each with area $\Delta A = \Delta x \Delta y$.

Definition: Double Integral

The **double integral** of f over the rectangle R is

$$\iint\limits_R f(x,y) \, dA = V = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A$$

EXAMPLE 1. Estimate the volume

$$R = [0, 2] \times [0, 2], \quad z = 16 - x^2 - 2y^2$$

Divide R into 4 squares and choose the sample point to be the upper right corner of each square R_{ij} .

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$
$$= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$$
$$= 13(1) + 7(1) + 10(1) + 4(1) = 34$$

Q EXAMPLE. If $R = \{(x,y)| -1 \le x \le 1, -2 \le y \le 2\}$, evaluate

$$\iint\limits_{R} \sqrt{1-x^2} \, dA$$

Since $\sqrt{1-x^2} \ge 0$, we can interpreting it as a volume. $x^2+z^2=1$ and $z \ge 0$. $\iint \sqrt{1-x^2} \, dA = \frac{1}{2\pi} (1)^2 \times 4 = 2\pi$

$$\iint\limits_{R} \sqrt{1 - x^2} \, dA = \frac{1}{2} \pi (1)^2 \times 4 = 2\pi$$

The Midpoint Rule

Take $(x_i *, y_i *) = (\overline{x_i}, \overline{y_i})$ (the middle point between x_i, x_{i-1}).

Note. Double integral as a bolume is valid only when f is a positive function. So in the previous example, the integral is not a volume.

4 Average Value

The average value of f(x) on (a,b) is $f_{ave} = \frac{1}{b-a} \int_a^b f(x) dx$.

Definition: Average Value

The average value of f(x,y) on a rectangle R is

$$f_{\text{ave}} = \frac{1}{A(R)} \iint\limits_{R} f(x, y) \, dA$$

If $f(x,y) \ge 0$, the equation $A(R) \times f_{\text{ave}} = \iint_R f(x,y) dA$ says that it has the same V as a box with base R and height f_{ave} .

Properties of Double Integrals

The linearity of the integral $(+,c\times).$

If $f(x,y) \ge g(x,y)$ for all $(x,y) \in R$, then

$$\iint\limits_{R} f(x,y) \, dA \ge \iint\limits_{R} g(x,y) \, dA$$

4 Iterated Integrals

 $\int_{c}^{d} f(x,y) dy$ means that x is fixed and f(x,y) is integrated with respect y from $c \to d$. (partial integration with respect to y).

Definition: Iterated Integral

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

work from the inside out.

Q EXAMPLE.

(a)

$$\int_0^3 \int_1^2 x^2 y \, dy \, dx = \int_0^3 \left[\int_1^2 x^2 y \, dy \right] dx$$
$$= \int_0^3 \frac{3}{2} x^2 \, dx = \frac{x^3}{2} = \frac{27}{2}$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy = \int_{1}^{2} \left[\int_{0}^{3} x^{2} y \, dx \right] dy$$
$$= \int_{1}^{2} 9y \, dy = 9 \frac{y^{2}}{2} \bigg|_{1}^{2} = \frac{27}{2}$$

Definition: Fubini's Theorem

If f is continuous on $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint\limits_{B} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

FIGURE 1

TEC Visual 15.2 illustrates Fubini's Theorem by showing an animation of Figures 1 and 2.

FIGURE 2

 $V = \int_{a}^{b} A(x) \, dx$

where A(x) is the area of the surface that is perpendicular to the x-axis.

$$A(x) = \int_{c}^{d} f(x, y) \, dy$$

Definition: Special case

In case f(x,y) = g(x)h(y),

$$\iint\limits_{B} g(x)h(y) dA = \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy$$

Q EXAMPLE. $R = [0, \pi/2] \times [0, \pi/2]$, then

$$\iint_{R} \sin x \cos y \, dA = \int_{0}^{\pi/2} \sin x \int_{0}^{\pi/2} \cos y \, dy$$
$$= \left[-\cos x \right]_{0}^{\pi/2} \left[\sin y \right]_{0}^{\pi/2} = 1 \cdot 1 = 1$$

& Double Integrals over General Regions

The double integral of f over D is

$$\iint\limits_D f(x,y) \, dA = \iint\limits_R F(x,y) \, dA$$

graph of F

where $F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$

FIGURE 4

FIGURE 3

$$D = \{(x,y)|a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

FIGURE 5 Some type I regions

Definition: Type I

If f is continuous on a type I region D such that

$$D = \{(x,y)|a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_{D} f(x,y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

which leads to the definition for **Type II**,

$$\iint\limits_{D} f(x,y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) \, dx \, dy$$

 $y = 1 + x^{2}$ $y = 1 + x^{2}$ $y = 2x^{2}$

• EXAMPLE. $y = 2x^2, y = 1 + x^2$, evaluate $\iint_D (x + 2y) dA$.

$$\int_{D} (x+2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x+2y) dy dx$$

$$= \int_{-1}^{1} \left[xy + y^{2} \right]_{y-2x^{2}}^{y=1+x^{2}} dx$$

$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= \frac{32}{15}$$

FIGURE 8

FIGURE 13

FIGURE 14

Q EXAMPLE. Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y.x = 0, z = 0.

$$D = \{(x,y) \mid 0 \le x \le 1, x/2 \le y \le 1 - x/2\}$$

FIGURE 15

D as a type I region

Q EXAMPLE.

$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) dy dx = \iint_{D} \sin(y^{2}) dA$$

$$D = \{(x, y) \mid 0 \le x \le 1, x \le y \le 1\}$$

can be transformed to

$$x = 0$$
 D
 $x = y$

FIGURE 16

D as a type II region

$D = \{(x,y) \mid 0 \le y \le 1, 0 \le x \le y\}$

$$\int_0^1 \int_0^y \sin(y^2) \, dx \, dy = \int_0^1 \left[x \sin(y^2) \right]_{x=0}^{x=y} \, dy$$
$$= \int_0^1 y \sin(y^2) \, dy$$
$$= -\frac{1}{2} \cos(y^2) \Big]_0^1 = \frac{1}{2} (1 - \cos 1)$$

Properties 1: Double Integrals

Beside sum and constant multiplier.

■ If $f(x,y) \ge g(x,y)$ for all $(x,y) \in D$.

$$\iint\limits_{D} f(x,y) \, dA \ge \iint\limits_{D} g(x,y) \, dA$$

■ If $D = D_1 \cup D_2$, and they don't overlap except perhaps on their bound daries

$$\iint\limits_{D} f(x,y) \, dA = \iint\limits_{D} f(x,y) \, dA + \iint\limits_{D} f(x,y) \, dA$$

FIGURE 17

■ Since $\iint_D 1 dA = A(D)$, so if $m \le f(x,y) \le M$ for all $(x,y) \in D$.

$$mA(D) \le \iint\limits_D f(x,y) \, DA \le MA(D)$$

Q EXAMPLE. Estimate $\iint_D e^{\sin x \cos y} dA$, where D is the disk with center the origin and r = 2. Since $-1 \le \sin x \le 1$ and $-1 \le \cos y \le 1$, we have $-1 \le \sin x \cos y \le 1$. Therefore

$$e^{-1} \le e^{\sin x \cos y} \le e^{1}$$

$$\frac{4\pi}{e} \le \iint\limits_{\mathcal{D}} e^{\sin x \cos y} \, dA \le 4\pi e$$

2 Double Integrals in Polar Coordinate

FIGURE 3 Polar rectangle

FIGURE 4 Dividing *R* into polar subrectangles

Divide into m subinterval $[r_{i-1}, r_i]$ of $\Delta r = (b-a)/m$ and n subinterval of $(\beta - \alpha)/n$.

 \blacksquare Then the center of the polar subrectangles has polar coordinate

$$r_i * = \frac{1}{2} (r_{i-1} + r_i), \quad \theta_j * = \frac{1}{2} (\theta_{j-1} + \theta_j)$$

■ And the area

$$\Delta A_i = \frac{1}{2} (r_i + r_{i-1}) (r_i - r_{i-1}) \Delta \theta$$
$$= r_i^* \Delta r \Delta \theta$$

Definition: Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R $(0 \le a \le r \le b, \alpha \le \theta \le \beta, \text{ where } 0 \le \beta - \alpha \le 2\pi), \text{ then }$

$$\iint\limits_R f(x,y) \ dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

FIGURE 5

$$\iint\limits_{D} f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

FIGURE 7

 $D = \{(r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, \, h_1(\theta) \leqslant r \leqslant h_2(\theta)\}$

Q EXAMPLE. Find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

$$D = \left\{ (r,\theta) \mid -\pi/4 \leq \theta \leq \pi/4, 0 \leq r \leq \cos 2\theta \right\}$$

FIGURE 8

So the area is

$$A(D) = \iint_{D} dA = \int_{-\pi/4}^{\pi/4} \int_{0}^{\cos 2\theta} r \, dr \, d\theta$$
$$= \int_{-\pi/4}^{\pi/4} \left[\frac{1}{2} r^{2} \right]_{0}^{\cos 2\theta} = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos 2\theta^{2} \, d\theta$$
$$= \frac{1}{4} \int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) \, d\theta = \frac{1}{4} \left[\theta + \frac{1}{4} \sin 4\theta \right]_{-\pi/4}^{\pi/4} = \frac{\pi}{8}$$