Client's ref.: P2003-010 File: 0697-10221-US/final/dennis

What is claimed is:

1	1. A feedback control I/O buffer driven by a system
2	voltage, comprising:
3	an input/output circuit comprising a first PMOS
4	transistor and a first NMOS transistor and having
5	an I/O port coupled to an I/O pad, wherein the first
6	PMOS transistor has an N-well region, a gate of the
7	first NMOS transistor receives a first gate control
8	signal, and a drain of the first PMOS transistor
9	serves as the I/O port;
10	a N-well control circuit coupled to I/O pad to control
11	the voltage level at the N-well region of the first
12	PMOS transistor according to the feedback signal
13	output from the inverter; and
14	a P-gate control circuit receiving a second gate control
15	signal and being output to the gate of the first
16	PMOS transistor, wherein the P-gate control
17	circuit comprises:
18	a transmission gate having a second NMOS transistor
19	and a second PMOS transistor, the sources of
20	which are coupled to the second gate control
21	signal, and the gates of which are coupled to
22	the system voltage and the N-well control
23	circuit respectively; and
24	a third PMOS transistor having a drain and a source
25	coupled to the gate and the floating N-well
26	region of the first PMOS transistor
27	respectively, and a gate coupled to the system
28	voltage.

- 2. The feedback control I/O buffer as claimed in Claim
 1, wherein the N-well control circuit adjusts the voltage
 level at the N-well region of the first PMOS transistor to
 the voltage level of the input voltage when the input voltage
 exceeds the system voltage.
 - 3. The feedback control I/O buffer as claimed in Claim 2, wherein the N-well control circuit adjusts the voltage level at the N-well region of the first PMOS transistor to the voltage level of the system voltage when the input voltage is lower than the system voltage.
 - 4. The feedback control I/O buffer as claimed in Claim 1, wherein the input/output circuit further comprises a fourth NMOS transistor having a source and drain coupled to the I/O pad and the drain of the first NMOS transistor respectively, and a gate coupled to the system voltage.
 - 5. The feedback control I/O buffer as claimed in Claim 4, wherein the N-well control circuit comprises:
 - a fourth PMOS transistor having a source coupled to the I/O pad, a gate coupled to the system voltage, and a drain coupled to the N-well region of the first PMOS transistor;
 - a fifth PMOS transistor having a gate coupled to the system voltage, a source coupled to the I/O pad, and a drain;
 - a sixth PMOS transistor having a gate coupled to the drain of the fifth PMOS transistor, a drain coupled to the system voltage, and a source coupled to the N-well region of the first PMOS transistor; and

14 a fourth NMOS transistor having a source and drain 15 coupled to the I/O pad and the gate of the sixth PMOS transistor, and a gate coupled to the system 16 17 voltage. 1 6. An input/output buffer, comprising: 2 a floating N-well; 3 a first NMOS transistor having a gate coupled to a first 4 gate control signal, and a source coupled to the 5 ground; 6 a second NMOS transistor having gate coupled to a system 7 voltage, a source coupled to a drain of the first 8 NMOS transistor and a drain coupled to an I/O pad; 9 a third NMOS transistor having a gate coupled to the 10 system voltage, and a drain coupled to the I/O pad; 11 a first PMOS transistor having a source coupled to the 12 system voltage, and a drain coupled to I/O pad; 13 a second PMOS transistor having a source coupled to the 14 I/O pad, a gate coupled to the system voltage, and 15 a drain coupled to floating N-well; 16 a third PMOS transistor having a source coupled to I/O 17 pad, a gate coupled to the system voltage, and a 18 drain coupled to a source of the third NMOS 19 transistor; 20 a fourth PMOS transistor having a gate coupled the drain 21 of the third PMOS transistor, a drain coupled to 22 the system voltage, and a source coupled to the 23 floating N-well; 24 a transmission gate including a fifth PMOS transistor 25 and a fourth NMOS transistor, wherein the sources

Client's ref.: P2003-010 File: 0697-10221-US/final/dennis

26	of which are coupled to a second gate control
27	signal, the drains of which are coupled to the gate
28	of the first PMOS transistor, and the gates of which
29	are coupled to a drain of the third PMOS transistor
30	and the system voltage respectively; and
31	a sixth PMOS transistor having a gate coupled to the
32	system voltage, a drain coupled to the gate of the
33	first PMOS transistor and a source coupled to the
34	floating N-well and the source of the fourth PMOS
35	transistor; wherein the floating N-well is
36	connected to the substrate on which the first to
37	sixth PMOS transistors are formed.