

1. Aritmética binaria, formatos de representación numérica y arquitectura de Von Neuman

Contenidos

- 1. Aritmética Binaria (Coma Fija)
- 2. Suma
- 3. Resta
- 4. Producto
- 5. División
- 6. Implementación de circuitos aritméticos

Aritmética binaria

¿Cómo se suma, resta multiplica y divide en binario?

- Depende de qué formato utilicemos:
 - Coma fija
 - Coma flotante
- Coma fija: similar al decimal
- Coma flotante ... hay que tener en cuenta los exponentes

Coma fija - suma

Acarreo (C) = posible exceso de la suma de una etapa numérica.

Suma de 2 bits:

Α	В	Cf	R
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Produce <u>acarreo final</u> que irá a la siguiente etapa

Coma fija - suma

Suma de dos bits con acarreo previo (Proveniente de una etapa anterior)

Suma de 3 bits:

Ср	A	В	Cf	R
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Coma fija - suma

С	1	0	1	1	1	1	1	1		1	0	
		1	0	0	1	1	0	1	,	1	1	0
	+	1	0	1	1	1	1	0	,	1	1	1
	1	0	1	0	1	1	0	0		1	0	1

Coma fija - resta

	1	1	0	1	1	0	1	,	1	1	0
+	1	0	1	1	1	1	0	,	1	1	1
	0	1	1	1	1	0	1		1	1	0
	0	0	0	1	1	1	0	,	1	1	1

Coma fija - producto

Corrimiento d	de la	coma			_					4		
Tomar bit a b	it el	multip	olicado	r		1		Ü	1	,	1	Ü
Si es 1 se co	opia e	el mul	tiplicar	ndo	X	1		1	0	,	1	1
Si es 0 todo	cerc					1		0	1		1	0
Después de c		-		1	0		1	1		0		
desplaza un b	oit a l	la izqu	iierda	1	0	0		0	0		1	0
Realizar las su	umas	s parci	ales	0	0	0		0	0			
				1	0	0		0	0		1	0
			1	0	1	1		0				
			1	1	1	1		0	0		1	0
	1	0	1	1	0			1 1 1 1 1 1 1 1				
	1	0	0	1	0	1	,	0	0		1	0

Coma fija - división

	1	1	0	,	1	1	1	0	,	1			
-	1	0	1			!	1	0	,	1	0	1	1
	0	0	1		1	1							
		_	1		0	1							
			0		1	0	0	0					
				_		1	0	1					
				-	0	0	1	1		0			
					_		1	0		1			
					'		0	0		1			

Implementación de operaciones

Dos opciones:

• Combinacional:

- ❖ Por medio de etapas en paralelo
- Problemas con los retardos en el acarreo
- Mayor velocidad a cambio de más complejidad

•Secuencial:

- Por medio de registros de desplazamiento y etapas de suma-resta combinacional
- Los retardos pueden causar problemas al integrarlos en CPUs
- ❖ Necesitan de señal de reloj para su funcionamiento

Implementación de operaciones

Otras dos opciones

Coma fija:

- ❖ Necesita de una Unidad aritmética sencilla. Se integra dentro de la CPU.
- Requiere control de errores de precisión y corrupción de la información
- ❖ Puede ser utilizada como base para realizar operaciones en coma flotante por medio de software

Coma flotante:

- Requiere una Unidad aritmética compleja.
- ❖Consume muchos recursos y tiempo de ejecución.
- ❖ Normalmente se implementa por medio procesadores específicos integrados dentro de la CPU.

