In the Claims:

Please amend Claims 1, 9 and 20 as follows (the changes in these Claims are shown with strikethrough for deleted matter and underlines for added matter). A complete listing of the claims is listed below with proper claim identifiers.

- (Twice Amended) A polishing head in an apparatus for chemicallymechanically polishing semiconductor wafers, the polishing head comprising:
- a first side having at least a portion thereof operably connectable with a spindle on the apparatus, the spindle applying a downward mechanical force to the semiconductor wafer during planarization; and
- a second side opposite the first side, the second side having a substantially (b) spherical cap shape comprising an outer region adapted to apply a first force onto a semiconductor wafer against a polishing pad, and an inner region adapted to apply a second force onto the semiconductor wafer against the polishing pad, the first force being greater than the second force, and wherein the first force and the second force cause the polishing pad to planarize the semiconductor wafer substantially uniformly;

wherein the shape of the spherical cap distributes the downward mechanical force applied by the spindle as the first and second forces applied by the outer and inner regions of the spherical cap.

- 2. (Original) The polishing head of claim 1 wherein the substantially spherical cap shape is concave relative to the semiconductor wafer.
- 3. (Original) The polishing head of claim 2 wherein an angle defined by a point of contact between the concave substantially spherical cap shape and the semiconductor wafer is less than 10 degrees.'
- 4. (Original) The polishing head of claim 2 wherein an angle defined by a point of contact between the concave substantially spherical cap shape and the semiconductor wafer is less than 5 degrees.
- 5. (Original) The polishing head of claim 1 wherein the substantially spherical cap shape is convex relative to the semiconductor wafer.
- 6. (Original) The polishing head of claim 1 wherein the second side further comprises a flat rim around the outer perimeter of the substantially spherical cap shape.

- 7. (Original) The polishing head of claim 6 wherein the flat rim has a width of less than about 5 mm.
- 8. (Original) The polishing head of claim 1 wherein the apparatus for chemically-mechanically polishing semiconductor wafers is a TERES apparatus.
- 9. (Twice Amended) A method of polishing a semiconductor wafer in a chemical mechanical polishing apparatus, the method comprising:
- (a) providing a chemical mechanical polishing apparatus having a polishing head comprising a first side having at least a portion thereof in contact with a spindle on the apparatus, and a second side opposite the first side, the second side having a substantially spherical cap shape comprising an outer region and an inner region;
- (b) securing the semiconductor wafer in the polishing head, the semiconductor wafer having a center region and a perimeter region;
 - (c) inserting a polishing pad in the apparatus;
- (d) applying with the spindle a downward mechanical force to the semiconductor wafer, wherein the spherical cap shape distributes the downward mechanical force applied by the spindle as a first force applied by the outer region of the spherical cap shape and a second force applied by the inner region of the spherical cap shape applying a first force using the outer region of the spherical cap shape, the first force tending to press a perimeter region of the semiconductor wafer against a polishing pad;
- (e) applying a second force using the inner region of the spherical cap shape, and the second force tending to press a center region of the semiconductor wafer against the polishing pad, the first force being greater than the second force; and
- (f)(e) polishing the semiconductor wafer such that the first force and the second force cause the polishing pad to remove semiconductor surface at substantially the same rate in the center region and in the perimeter region of the semiconductor wafer.
- 10. (Once amended) The method of claim 9 wherein steps (d), and (e), and (f) are performed simultanteously.
- 11. (Original) The method of claim 9 wherein during the polishing step (d), the polishing pad rotates about an axis substantially perpendicular to the semiconductor wafer.
- 12. (Original) The method of claim 9 wherein during the polishing step (d), the polishing pad remains stationary.

- 13. (Original) The method of claim 9 wherein during the polishing step (d), the semiconductor wafer is stationary.
- 14. (Original) The method of claim 9 wherein during the polishing step (d), the semiconductor wafer rotates about an axis in the center region of the semiconductor that is perpendicular to the surface of the semiconductor wafer.
 - 15. (Cancelled).
- 16. (Original) The method of claim 9 wherein the second side also has a flat rim surrounding the substantially spherical cap shape.
- 17. (Original) The method of claim 16 wherein the first force is applied to the perimeter region of the semiconductor using both the flat rim surrounding the substantially spherical cap shape and the outer region of the substantially spherical cap shape.
- 18. (Original) The method of claim 9 wherein the substantially spherical cap shape is concave relative to the semiconductor wafer.
- 19. (Twice Amended) A polishing head in an apparatus for chemically-mechanically polishing semiconductor wafers, the polishing head comprising:
- (a) a first side having at least a portion thereof operably connectable with a spindle on the apparatus, the spindle applying a downward mechanical force to the semiconductor wafer during planarization; and
- (b) a second side opposite the first side, the second side having a flat rim surrounding a substantially spherical cap shape that is concave relative to a semiconductor wafer, the spherical cap shape comprising an outer region that, in conjunction with the flat rim, is adapted to apply a first force onto a semiconductor wafer against a polishing pad, and an inner region adapted to apply a second force onto the semiconductor wafer against the polishing pad, the first force being greater than the second force, and wherein the first force and the second force cause the polishing pad to planarize the semiconductor wafer substantially uniformly;

wherein the the spherical cap shape distributes the downward mechanical force applied by the spindle as the first and second forces applied by the outer and inner regions of the spherical cap.

20. (Once Amended) A polishing head for chemically-mechanically polishing semiconductor wafers, the polishing head comprising:

- (a) a first side having at least a portion thereof operably connectable with a spindle on the apparatus, the spindle applying a downward mechanical force to the semiconductor wafer during planarization; and
- (b) a second side opposite the first side, the second side having a substantially spherical cap having a concave shape relative to the semiconductor wafer to be polished comprising an outer region adapted to apply a first force and an inner region adapted to apply a second force, wherein the concave shape of the spherical cap distributes the downward mechanical force applied by the spindle as the first and second forces applied by the outer and inner regions of the spherical cap.