

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	
Robert Ann	

UB Person Number:

5 0 2 6 4 6	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
								,,

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & -3 & 0 & 0 \end{bmatrix}, -2 \Rightarrow \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix}, -3 \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ | & 0 & 1 & 0 & | & 2 & | & -1 & | & 0 & 0 \\ | & 0 & 1 & 0 & | & 2 & | & -1 & | & 0 & 0 \\ | & 0 & 1 & 0 & | & 2 & | & -1 & | & 0 & 0 \\ | & 0 & 1 & 0 & | & 2 & | & -1 & | & 0 & 0 \\ | & 0 & 1 & | & 2 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | & 2 \\ | & 0 & 0 & 1 & | & & 2 & | & 2 \\ | & 0 & 0 & 1 & | & 2 & | & 2 & | &$$

$$A^{-1} = \begin{bmatrix} -1 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{7} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$B'' = \{1 \mid 0\} \begin{bmatrix} C' \\ C' \\ C' \end{bmatrix} = 1 \Rightarrow TC'$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- **b)** Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$T(e_{i}) = T(e_{i}) + (e_{2}) = \begin{bmatrix} 1 & -2 \\ -3 \end{bmatrix} = standard mgt rect of T$$

$$T(e_{i}) = T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1-2(0) \\ 1+0 \\ 1-3(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(e_{1}) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0-2(1) \\ 0+1 \\ 0-3(1) \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & 10
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 3 & 4
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & 3
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
1 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$9) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix} 2.7 \Rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix} .7 \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} 5.2$$

John columns milling pivots - not one-to-one

$$\begin{bmatrix} 1 & 0 - 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 = 2x_3 \\ x_2 = -2x_3 \\ x_3 = x_3 \end{cases} \quad N_{Y}(A) = Ipqn\left(\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}\right)$$

$$|e + V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad T_A(V_1) = T_A(V_2) \quad \text{if and only if } V_1 = V_2 + n$$

$$|V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 2 \end{bmatrix} \quad V_2 = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

0 1 2 3 4 5 6 7 8 9 10

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

0 1 2 3 4 5 6 7 8 9 10