

12_____ січня______ 20_24__ р

Вчитель: Родіна Алла Олегівна

Тема: Розв'язування типових вправ з теми «Сума кутів трикутника» **Мета:**

- Навчальна: закріпити знання, отримані на попередніх уроках;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: закріплення знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Актуалізація опорних знань

- Чому дорівнює сума кутів трикутника?
- Чи може трикутник мати два тупих кути? Чому?
- Чому дорівнює сума гострих кутів прямокутного трикутника?
- Якою ϵ градусна міра кожного кута рівностороннього трикутника? Чому?
- У трикутнику один з двох кутів дорівнює сумі двох інших кутів. Який це трикутник?
- Скільки гострих кутів може мати будь-який трикутник?

III. Розв'язування задач

№1

Знайдіть кут або сторону, що позначені знаком запитання:

Розв'язання:

1)
$$\angle A = 180^{\circ} - 100^{\circ} = 80^{\circ}$$
 (суміжні кути) $\angle C = 180^{\circ} - 130^{\circ} = 50^{\circ}$ (суміжні кути) (за теоремою $\angle B = 180^{\circ} - \angle A - \angle C = 180^{\circ} - 80^{\circ} - 50^{\circ} = 50^{\circ}$ про суму кутів трикутника)

2)
$$\angle V = 90^{\circ}$$
 (за теоремою про вертикальні кути) (сума гострих кутів $\angle V = 90^{\circ} \rightarrow \angle N = 90^{\circ} - 45^{\circ} = 45^{\circ}$ прямокутного трикутника дорівнює 90°) $\angle M = \angle N \rightarrow \Delta MVN \rightarrow \Delta MVN$ рівнобедрений $\rightarrow VM = VN = 3,5$ см

3)
$$\angle R = 180^{\circ} - \angle P - \angle T$$
 (за теоремою про суму кутів трикутника) $\angle R = 180^{\circ} - 32^{\circ} - 74^{\circ} = 74^{\circ}$ $\angle R = \angle T = 74^{\circ} \rightarrow \Delta TPR$ рівнобедрений $\rightarrow PT = PR = 5$ см

Математика НОВА LEOMETPIЯ, 7 КЛАС

4) Розглянемо Δ*LKM*:

$$\angle K = 90^{\circ}$$
 (суміжні кути)
 $\angle L = 180^{\circ} - \angle M - \angle K$ (за теоремою про суму кутів трикутника)
 $\angle L = 180^{\circ} - 30^{\circ} - 90^{\circ} = 60^{\circ}$

Розглянемо ΔLHK :

$$\angle KHL = 90^{\circ}$$
 (суміжні кути)
 $\angle KLH = 60^{\circ}$ (сума гострих кутів
 $\angle LKH = 90^{\circ} - 60^{\circ} = 30^{\circ}$ прямокутного трикутника
дорівнює 90°)

Відповідь: 1) 50°; 2) 3,5 см; 3) 5 см; 4) 30°

№2

Кути трикутника відносяться як 1: 4: 5. Знайдіть найбільший кут трикутника.

Розв'язання:

Нехай
$$∠1 = x$$
, тоді $∠2 = 4x$, $∠3 = 5x$

Так як сума кутів трикутника дорівнює 180°, можемо скласти рівняння:

$$x + 4x + 5x = 180^{\circ}$$

$$10x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{10} = 18^{\circ}$$

$$\angle 3 = 5x = 5 \cdot 18^{\circ} = 90^{\circ}$$

Відповідь: 90°

№4

Якщо один з кутів рівнобедреного трикутника дорівнює 60°, то трикутник – рівносторонній. Доведіть це твердження розглянувши два випадки.

Розглянемо 1-й випадок, кут при вершині дорівню ϵ 60 $^\circ$

Дано:

$$\Delta ABC$$
 — рівнобедрений; $\angle B = 60^{\circ}$; AC — основа;

Довести:

ΔАВС − рівносторонній;

Доведення:

$$\angle B = 60^{\circ} \rightarrow \angle A + \angle C = 180^{\circ} - 60^{\circ} = 120^{\circ}$$
 (за теоремою про суму кутів трикутника)

$$\left. \begin{array}{c} \Delta ABC$$
 — рівнобедрений $\right| \rightarrow \ \angle A = \angle C \quad \ \ \,$ (як кути при основі рівнобедреного трикутника)

$$\angle A = \angle C = \frac{\angle A + \angle C}{2} = \frac{120^{\circ}}{2} = 60^{\circ}$$

Розглянемо 2-й випадок, кут при основі дорівню ϵ 60°

 ΔABC — рівнобедрений; $\angle A = 60^{\circ}$;

AC – основа;

Довести:

 ΔABC – рівносторонній;

Доведення:

$$\Delta ABC$$
 – рівнобедрений AC – основа $\angle A = 60^{\circ}$ $\angle A = \angle C = 60^{\circ}$ $\angle A = \Delta C = 60^{$

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (за теоремою про суму кутів трикутника) $\angle B = 180^{\circ} - \angle A - \angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$

Так як в 1-му і 2-му випадку всі кути $\triangle ABC$ по 60° , то $\triangle ABC$ – рівносторонній.

Доведено

.**№**4

У рівнобедреному трикутнику одна зі сторін дорівнює 12 см і один з кутів дорівнює 60°. Знайдіть периметр трикутника.

Розв'язання:

У попередній задачі ми довели, що коли один з кутів рівнобедреного трикутника дорівнює 60°, то трикутник – рівносторонній. Отже:

$$P_{\Delta} = 12 \cdot 3 = 36 \text{ cm}$$

Відповідь: 36 см

Один з кутів трикутника дорівнює 73°, а другий на 17° більший за третій. Знайдіть невідомі кути трикутника.

Розв'язання:

Нехай:

x — третій кут трикутника;

 $x + 17^{\circ}$ - другий кут трикутника;

73° – перший кут трикутника;

Тоді:

За теоремою про суму кутів трикутника:

$$x + x + 17^{\circ} + 73^{\circ} = 180^{\circ}$$

 $2x = 90^{\circ}$

$$2x = 90^{\circ}$$

 $x = \frac{90^{\circ}}{2} = 45^{\circ}$

Отже:

Другий кут дорівнює $x + 17^{\circ} = 45^{\circ} + 17^{\circ} = 62^{\circ}$

Третій кут дорівнює $x = 45^{\circ}$

Відповідь: 73°; 62°; 45°

№6

Знайдіть кути рівнобедреного трикутника, якщо один з них удвічі більший за інший. Скільки випадків слід розглянути?

Розглянемо 1-й випадок, кут при вершині удвічі більший за кут при основі:

Дано:

 ΔABC – рівнобедрений;

AC – основа;

∠В удвічі більший за кут при основі;

Знайти:

$$\angle A - ?$$

$$\angle B - ?$$

$$\angle C - ?$$

Розв'язання:

 $\angle A = \angle C$ (як кути при основі рівнобедреного трикутника)

Нехай:

$$\angle B = 2x$$

Тоді:

$$\angle A = \angle C = x$$

За теоремою про суму кутів трикутника:

$$\angle A + \angle B = \angle C = 180^{\circ}$$

$$x + 2x + x = 180^{\circ}$$

$$4x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{4} = 45^{\circ}$$

Отже:

$$\angle B = 2x = 90^{\circ}$$

$$\angle A = \angle C = x = 45^{\circ}$$

Відповідь для 1-го випадку: 45°; 45°; 90°

Розглянемо 2-й випадок, кут при основі удвічі більший за кут при вершині:

Дано:

 ΔABC – рівнобедрений;

AC – основа;

∠А удвічі більший за кут при вершині;

Знайти:

$$\angle A - ?$$

$$\angle B - ?$$

$$\angle C - ?$$

Розв'язання:

 $\angle A = \angle C$ (як кути при основі рівнобедреного трикутника)

Нехай:

$$\angle A = \angle C = 2x$$

To∂i:

$$\angle B = x$$

За теоремою про суму кутів трикутника:

$$\angle A + \angle B = \angle C = 180^{\circ}$$

$$2x + x + 2x = 180^{\circ}$$

$$5x = 180^{\circ}$$

$$\angle B = x = 36^{\circ}$$

 $\angle A = \angle C = 2x = 2 \cdot 36^{\circ} = 72^{\circ}$

Відповідь для 2-го випадку: 36°; 72°; 72°

IV. Підсумок уроку

- Дати відповідь на запитання учнів
- Індивідуальна робота з учнями, що не зрозуміли матеріал

Домашне завдання V.

У трикутнику ABC проведено бісектрису AM. Знайдіть $\angle MAC$, якщо $\angle B = 55^{\circ}, \angle C = 40^{\circ}$

