Learning Objectives:

- 1. Understand the intuitive definition of the limit of a function at a given point.
- 2. The left hand and right hand limits of a function at a given point.
- 3. Intuitive definition of an infinite limit.
- 4. What are vertical asymptotes to the graph of a function?

We see that the values of $f(x) = \frac{x}{x+4}$ are getting closer and closer to 2 as x approaches 4. We write this as

$$\lim_{x \to 4} \frac{x^2}{x+4} = 2 \ .$$

Notice that f(4) = 2.

$$h = |x-a|$$
 $x \to a$ means that x lies in $(a-h, a) \cup (a, a+h)$

Intuitive definition of a limit

 $x \to a$ means that $x \to a$ lies in $(a-h, a) \cup (a, a+h)$
 $x \to a$ means that $x \to a$ lies in $(a-h, a) \cup (a, a+h)$

Let f be a function defined on both sides of a except possibly at a itself. Suppose that f(x) becomes arbitrarily close to the number L (written as $f(x) \to L$) as x approaches a ($x \to a$). Then we say that the limit of f(x) as x approaches a is L and we write

$$\lim_{x \to a} f(x) = L$$

Note that in general:

- 1. The number a may or may not be in the domain of the function f.
- 2. We may not always have $\lim_{x \to a} f(x) = f(a)$.

Example 1.

Guess the value of
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$
.

Note that I is not in the domain of
$$f(x) = \frac{x-1}{x^2-1}$$

$$\lim_{x \to 1} \frac{x-1}{x^2-1} = \frac{1}{2}$$

x < 1	f(x)
0.5	0.666667
0.9	0.526316
0.99	0.502513
0.999	0.500250
0.9999	0.500025

(guessed	from	table
----------	------	-------

$$\alpha^2 - b^2 = (\alpha - b)(\alpha + b)$$

$$x > 1$$
 $f(x)$

 1.5
 0.400000

 1.1
 0.476190

 1.01
 0.497512

 1.001
 0.499750

 1.0001
 0.499975

-	
1	0.5

Example 2 Estimate the value of $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^{3/4}}$.

Note that 0 is not in the domain of $f(t) = \sqrt{12+9} - 3$

t	$\frac{\sqrt{t^2+9}-3}{t^2}$	li	W	Jt2+9 -3	= 1
±1.0	0.162277	f-) 0	+2	6
±0.5	0.165525				
±0.1	0.166620				
±0.05	0.166655				
±0.01	0.166666 —	7			
		6			

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±0.001	0.166667
±0.0001	0.166670
± 0.00001	0.167000
± 0.000001	0.000000

Celculators may lies

 $\chi \rightarrow \Diamond$ One-sided limits

means
$$x$$
 lies in $(a-h,a) \cup (a,a+h)$

Right hand limit: When *x* approaches *a* from the right, that is, through values larger than *a*, the limit obtained is called right-hand limit and is written as

$$\lim_{x \to a^+} f(x) = L .$$

Left hand limit: When x approaches a from the left, that is, through values smaller than a, the limit obtained is called left-hand limit and is written as

$$\lim_{x \to a^{-}} f(x) = L .$$

Guess the value of $\lim_{t \to 0} H(t)$.

LHL H(t) =
$$\lim_{t\to 0} H(t) = \lim_{t\to 0} 0 = 0$$

RHL H(t) = $\lim_{t\to 0} H(t) = \lim_{t\to 0} 1 = 1$

Chappy of H(t)

LH1 H(t) = $\lim_{t\to 0} H(t) = \lim_{t\to 0} 1 = 1$

Sim H(t)

Dim H(t)

Dim

Example 4.

The graph of a function g is shown below.

Use it to state the values:

1.
$$\lim_{x \to 2^{-}} g(x)$$
. = 3

$$2. \lim_{x \to 2^+} g(x). \longrightarrow =$$

3.
$$\lim_{x\to 2} g(x)$$
. \longrightarrow divide.

4.
$$\lim_{x \to 5^{-}} g(x)$$
. = 2

5.
$$\lim_{x \to 5^+} g(x)$$
. $\implies = 2$

6.
$$\lim_{x \to 5} g(x) = 2$$

$$\Rightarrow$$
 $g(5) = 1$

Intuitive Definition of Infinite Limits Let f be a function defined on both sides of a except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a,

and

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a,

Example 5.

Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists.

$$\frac{x}{2} \qquad f(x) = \frac{1}{x^2}$$

$$\frac{1}{2} = \frac{1}{2} = 100$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 100$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Vertical Asymptote

The vertical line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$1. \lim_{x \to a} f(x) = \infty$$

$$2. \lim_{x \to a^{-}} f(x) = \infty$$

$$3. \lim_{x \to a^+} f(x) = \infty$$

$$4. \lim_{x \to a} f(x) = -\infty$$

$$5. \lim_{x \to a^{-}} f(x) = -\infty$$

$$6. \lim_{x \to a^+} f(x) = -\infty$$

Example 6.

Find
$$\lim_{x \to 3^{-}} \frac{2x}{x-3}$$
, $\lim_{x \to 3^{+}} \frac{2x}{x-3}$ and $\lim_{x \to 3} \frac{2x}{x-3}$.

Is x = 3 a vertical asymptote of $f(x) = \frac{2x}{x - 3}$?

$$\frac{1}{x^{-3}} \frac{2x}{x^{-3}} = -\infty$$

$$\begin{array}{ccc} RHL & \frac{2x}{x-3} = \infty \\ x \rightarrow 3 & x-3 \end{array}$$

$$2.9 \qquad \frac{2(2.9)}{-0.1} = -2(29)$$

$$\chi$$
 $f(\chi)$

$$\frac{1}{1} = -2(29)$$

$$\frac{2(2.99)}{-0.01} = -3(299)$$

$$\frac{2.999}{2.999} = -2(299)$$

$$\lim_{x \to 3} \frac{2x}{x-3} = dine$$

$$\lim_{x \to 3} \frac{2x}{x-3} = d \cdot n \cdot e$$

Ves, 2=3 is a vertical asymptote

