Exercise 1 Let g(x) = x - 5, and h(x) = x - 4.

Choose the correct statement regarding the form of the limit and evaluate the limit. Possible answers include a number, $+\infty$, $-\infty$ and DNE.

$$\lim_{x \to 4} \frac{h(x)}{g(x)} = \boxed{0}$$

Choose all correct statements.

Select All Correct Answers:

- (a) The limit is of determinate form. \checkmark
- (b) The limit is of indeterminate form.
- (c) The limit is of the form $\frac{0}{0}$.
- (d) The limit is of the form $\frac{\#}{0}$.

$$\lim_{x \to 4^+} \frac{g(x)}{h(x)} = \boxed{-\infty}$$

Choose all correct statements.

Select All Correct Answers:

- (a) The limit is of determinate form. \checkmark
- (b) The limit is of indeterminate form.
- (c) The limit is of the form $\frac{0}{0}$.
- (d) The limit is of the form $\frac{\#}{0}$. \checkmark

$$\lim_{x \to 4^{-}} \frac{g(x)}{h(x)} = \boxed{+\infty}$$

Choose all correct statements.

Select All Correct Answers:

- (a) The limit is of determinate form. \checkmark
- (b) The limit is of indeterminate form.
- (c) The limit is of the form $\frac{0}{0}$.
- (d) The limit is of the form $\frac{\#}{0}$. \checkmark

$$\lim_{x \to 4} \frac{g(x)}{h(x)} = \boxed{DNE}$$

Choose all correct statements.

Select All Correct Answers:

- (a) The limit is of determinate form. \checkmark
- (b) The limit is of indeterminate form.
- (c) The limit is of the form $\frac{0}{0}$.
- (d) The limit is of the form $\frac{\#}{0}$. \checkmark

Exercise 1.1 Let
$$g(x) = \frac{2}{x+3} - \frac{1}{x+2}$$
, and $h(x) = x-4$.

(a) Evaluate the limit.

$$\lim_{x \to 4} g(x) = \lim_{x \to 4} \frac{\boxed{x+1}}{(x+2)(x+3)} = \boxed{\frac{5}{42}}$$

(b) Choose all correct statements regarding the form of the limit.

$$\lim_{x \to 4} \frac{\frac{2}{x+3} - \frac{1}{x+2}}{x-4}$$

Choose all correct statements.

Select All Correct Answers:

- (i) The limit is of determinate form. \checkmark
- (ii) The limit is of indeterminate form.

- (iii) The limit is of the form $\frac{0}{0}$.
- (iv) The limit is of the form $\frac{\#}{0}$. \checkmark

Exercise 1.1.1 Evaluate the limit. Possible answers include a number, $+\infty$, $-\infty$ and DNE.

$$\lim_{x \to 4+} \frac{\frac{2}{x+3} - \frac{1}{x+2}}{x-4} = \boxed{+\infty}$$

Justify your answer by choosing the correct statement.

Select All Correct Answers:

- (a) The numerator is negative and the denominator is positive and approaching zero.
- (b) The numerator is positive and the denominator is positive and approaching zero. ✓
- (c) The numerator is positive and the denominator is negative and approaching zero.
- (d) The numerator is negative and the denominator is negative and approaching zero.

Exercise 1.1.1.1 Evaluate the limit. Possible answers include a number, $+\infty$, $-\infty$ and DNE.

$$\lim_{x \to 4^{-}} \frac{\frac{2}{x+3} - \frac{1}{x+2}}{x-4} = \boxed{-\infty}$$

Justify your answer by choosing the correct statement.

Select All Correct Answers:

- (a) The numerator is negative and the denominator is positive and approaching zero.
- (b) The numerator is positive and the denominator is positive and approaching zero.
- (c) The numerator is positive and the denominator is negative and approaching zero. \checkmark

(d) The numerator is negative and the denominator is negative and approaching zero.
Exercise 1.1.1.1.1 Evaluate the limit. Possible answers include a number, $+\infty$, $-\infty$ and DNE . $\lim_{x\to 4}\frac{\frac{2}{x+3}-\frac{1}{x+2}}{x-4}=\boxed{DNE}$
Justify your answer by choosing the correct statement.
Select All Correct Answers:
(a) The limit from the left is not equal to the limit from the right. \checkmark
(b) The limit from the left is equal to the limit from the right.