REPORT-3

Jaiveer Kiran S. K ee22b042 MAY 2025

MOS Characterization:

- Gm/Id parameter is used as a key design parameter because it is independent of the size of the MOSFET and the range of values is limited to 1-30.
- More suited for small channel mosfets as well.

TSMC 180nm Nmos:

TSMC 180nm Pmos:

Resistors:

• Here R1 = R and R2 = M * R.

 \bullet From the above simulation R = 1k and M = 5 seems a better choice.

Figure 1: Vref when R and M values are varied simultaneously

Opamp

:

- I value is varied to find a better fit.
- \bullet a Reference inverter is taken with fixed no. of fingers,When I is varied the region of operation (GM/Id) is also varied.
- I value chosen: 1uA.

Figure 2: Vref when I is varied between 0.1uA to 10uA

Bandgap reference voltage generator:

Figure 3: Reference voltage generated

Figure 4: Error in Vref wrt values at $40^{\circ}\mathrm{C}$

Figure 5: CTAT and PTAT

Observations:

- \bullet From earlier analysis, R2= 5 K.
- To balance the slopes R1= 1 K.
- \bullet CTAT slope observed: -2.1689 mV/C.
- $\bullet~\mathrm{Vref} = 1.1107178~\mathrm{V.Range}$ of errors: (-24mV to 6mV).