

POLITECNICO DI MILANO SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

TESI DI LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING

TITLE

Author:

Paolo Paterna

Student ID (Matricola):

852548

Supervisor (Relatore):

Prof. Raffaela Mirandola

Co-Supervisor (Correlatore):

Ph.D. Diego Perez-Palacin

Contents

Lis	st of F	igures	Ш
Lis	st of 1	Tables Tables	III
Ac	know	rledgment	V
ΑŁ	strac	t (Italian version)	IX
ΑŁ	strac	t	IX
1	Intro	oduction	1
2	Stat	e of the Art	3
	2.1	Self-Adaptive Software Systems	3
	2.2	Tele Assistance: A Self-Adaptive Service-Based System Examplar	7
	2.3	The SOLAR Framework	7
Αŗ	pend	ices	9
Bi	bliogr	raphy	9

List	of	Fig	ures

2.1	The Dimensions														5
2.2	A SASS														7

			List o	f Tabl	es
2.1	MAPE and Dimensions	 	 		7

Acknowledgments

Abstract (Italian version)

	Abstract

CHAPTER 1

Introduction

CHAPTER 2

State of the Art

2.1 Self-Adaptive Software Systems

In modern-day applications, software complexity has extremely increased thanks to the spread of highly available and faster wireless connection such as in the Internet of Things (IoT) ambit. Since software is often deployed in dynamic contexts, where requirements, environment assumptions and usage profiles varies continuously, software complexity increased over time to the point where it is often composed by a number of sub-components and/or sub-services that work together in order to offer a service to the users. This is the case of service-oriented applications – also called Service Based Systems (SBS) – that are composed by multiple *services* and *components*. In these systems, services offered by third-party providers are dynamically composed into workflows to deliver complex functionalities, so SBSs rely on self adaptation to cope with the uncertainties associated with third-party services as the loose coupling of services makes a reconfiguration feasible. Without adaptation, the application is prone to degraded performance because of faulty components, messages lost between services or delays due to an increasing number of users.

During the past decade a lot of research has been made in this scope but the engineering of adaptive systems remains a incredible challenge.[1] In order to

solve the problem, **Self-Adapting Software Systems** (**SASS**) are born. These are flexible systems that can adapt themselves to their contextual needs and can do so with the highest performance and availability. General discussion concerning the issue and the state of the art in the design and implementation have been presented.[1][2][3][4][5][6][7]

These kind of systems have some fundamental properties called auto-managing that are:

- Auto-configuration
- Auto-recovery in case of failure
- Auto-optimization
- Auto-protection

All these properties can be grouped in two more abstract concepts which are self-awareness and context-awareness.

Self-Awareness is the ability of the system to be able to monitor itself in terms of available resources and behavior.

Context-Awareness is the ability of the system to understand the environment where it is working, using the information provided by its components, and adapt itself to all the changes that can occur during its normal operational status. To better understand how a SASS works we need to answer some simple questions:

- Who is adapting?
- Which adaptation is required?
- When is necessary to adapt?
- Where is needed to change something?
- Why is needed an adaptation?
- How we achieve this goal?

During the past years have been developed some dimensions that help to answer all this simple questions: *Time*, *Reason*, *Level*, *Technique* and *Adaptation Control* shown in figure 2.1.

Who is adapting? As the name suggests, it's the system itself that changes something in order to preserve some given constraint.

Figure 2.1: The Dimensions to analyze adaptation.[8]

Which adaptation is required? The *Technique* dimension is the one that answers this question in fact the software engineer can change either the parameters or the system can be considered as a set of components. The former case allows to fine tuning the system at the expense of an higher complexity, the latter is called composite vision and permits the systems to cooperate exchanging algorithms and much more important, reusing components which improve performance because failed or defected components can be replaced.

When is necessary to adapt? The *Time* dimension is crucial in this situation. There are three typical approaches: the reactive one is the more traditional one which states that an adaptation is needed only after a causative event. The other two approaches are more interesting and they are predictive and proactive. The former studies the system before any event and calculate the need of an adaptation, the latter applies and adaptation despite an event and improves the performance. From the user perspective the proactive approach is the best because it doesn't interrupt the operation of the system in any load but it is the more complicated to implement. Monitoring continuously the system is a costly task to do, on the other side an adaptive monitoring is simple that analyze only specific aspect and/or resources and intervenes only if needed.

Where is needed to change something? In general a SASS is composed by two main part: the the Adaptability Logic (AL) and the Managed Resource (MR). The former in general doesn't change, the latter is composed at the base of the hardware and of the software such as the operating system or, in case of dis-

tributed systems, the middleware that control the hardware; at a higher level of the application. These are the parts that require adaptation. To answer this question is needed to decide at which level the operation has to be applied without neglecting the relationship between the MR and the AL which is composed by the network that connects them and/or the view of the communication patterns. Thus *Level* is the considered dimension.

Why is needed an adaptation? In this case, *Reason* is the right dimension. There can be one or more reason because a system needs adaptation such as a change in the available resources, a change in the environment or a change in the user base of the system.

How we achieve this goal? The answer to this question is more complicated than the others because it needs a new topic called *Adaptation Control*.

2.1.1 Adaptation Control

In the literature can be found 2 approaches: the *internal approach* that intertwine the adaptation logic with the system resources, which has problems with the maintainability and scalability of the system, and the *external approach* that splits the system into adaptation logic and managed resources, which increases maintainability and scalability through modularization.

The control unit needs a metric in order to decide how to adapt and in literature are present different metrics: models, rules and policies, goal or utility functions [9].

Another aspect of the adaptation logic is the degree of decentralization. If we have a system with limited resources then a centralized adaptation logic has to be preferred but with greater systems a decentralized AL can improve performance and every sub-system can communicate with another with different patterns of communication. Of course hybrid technique can be made mixing the previous approaches.

Adaptation Logic Issues

As said before a SASS is composed of managed resources and the adaptation logic; it can be represented by the tuple SASS = (AL, MR). $AL = a_1, \ldots, a_n$, with a_i representing a logic element, monitors the environment (M), analyzes the data for change (A), plans adaptation (P) and control the execution of the adaptation (E): these are known as MAPE cycle or MAPE functionality[10]. $MR = mr_1, \ldots, mr_n$, with mr_i representing a resource, is the set of resources such as hardware with software, smart-phones, robotics or unmanned vehicles. Figure 2.2 shows a SASS where the dashed line represent the system border. The di-

Figure 2.2: A SASS ($AL = Adaptation\ Logic,\ MR = Managed\ Resources,\ U = User(s),$ $C = Context,\ M,A,P,E = MAPE\ functionality).[8]$

mension can therefore be mapped to the MAPE functionalities as shown in table 2.1.

	Time	Reason	Level	Technique
Monitoring	Continuos	What to moni-	Identification	
		tor	of the levels	
Analyzing	Algorithms de-	Where to ana-	_	_
	pend on reac-	lyze		
	tive or proac-			
	tive dimension			
Planning	_	What should be	Adaptation	Plans for per-
		influenced by	plans address	forming the
		planning	these levels	techniques
Executing	_	_	Execution of	Execution of
			the change on	the change on
			the levels	the levels

Table 2.1: Relation of the MAPE Activities and the Dimensions

2.2 Tele Assistance: A Self-Adaptive Service-Based System

2.3 The SOLAR Framework

However working on the adaptability of a system can impact other quality attributes such as performance, reliability or maintainability and in the worst case improving adaptability can decrease part, if not all, of these attributes as stated in [11]: quality attributes can never be achieved in isolation, the achievement of any one will have an effect, sometimes positive and sometimes negative, on the achievement of others.

Find a balance between these quality attributes is often a challenging task because sometimes they're conflicting each other, e.g. lower cost and higher

Chapter 2. State of the Art

availability, so find an adaptability value that can meet all the requisites is, as a consequence, a challenging task too.

Bibliography

- [1] R. de Lemos et al. Software engineering for self-adaptive systems: A second research roadmap, volume 7475 of Lecture Notes in Computer Science. Springer, 2013.
- [2] M.C. Huebscher and J.A. McCann. A survey of autonomic computing degrees, models, and applications. *ACM Comput. Surv.* 40, 3, 2008.
- [3] M. Salehie and L. Tahvildari. Self-adaptive software: landscape and research challenges. *ACM Trans. Auton. Adapt. Syst. 4*, 2:1–42, 2009.
- [4] B.H Cheng et al. *Software Engineering for Self-Adaptive Systems: A Research Roadmap*, volume 5525. Springer, 2009.
- [5] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling dimensions of self-adaptive software systems. In *Software engineering for self-adaptive systems*, volume 5525, pages 27–47. Springer, 2009.
- [6] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based approach to self-adaptive software. *IEEE Intell. Syst.* 14, 3:54–62, 1999.
- [7] R. Calinescu, C. Ghezzi, M.Z. Kwiatkowska, and R. Mirandola. Self-adaptive software needs quantitative verification at runtime. *Commun. ACM* 55, 9:69–77, 2012.
- [8] Felix Maximilian Roth, Christian Krupitzer, et al. A survey on engineering approaches for self-adaptive systems. In *Pervasive and Mobile Computing*, volume 17, pages 184–206. Elsevier, 2015.
- [9] P. Lalanda, J. A. McCann, and A. Diaconescu. Autonomic computing, 2013.
- [10] J. O. Kephart and D. M. Chess. The vision of autonomic computing. *IEEE Computer 36*, 1:41–50, 2003.
- [11] L. Bass, P. Clements, and R. Kazman. *Software Architecture in Practice, 2nd edn. SEI Series in software engineering.* Addison-Wesley Pearson Education, Boston, 2003.