8-Bit Serial-Input/Parallel-Output Shift Register

This 8-bit shift register features gated serial inputs and an asynchronous reset. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip flop to the low level at the next clock pulse. A high level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered clocking occurs or the low-to-high level transition of the clock input. All inputs are diodeclamped to minimize transmission-line effects.

- Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

LOGIC DIAGRAM

PIN $14 = V_{CC}$ PIN 7 = GND

PIN ASSIGNMENT

AI 10	ı≟] v cc
A2 🛘 2	13 р Он
Q _ 4 🛘 3	12
ов 🗆 –	ս ⊉ დ⊭
Q C 🛚 5	κDQE
QD⊈ń	9 🛘 RESET
GNID 🛚 7	в ∄ съсж

FUNCTION TABLE

Inputs		Outputs	
Reset	Clock	A1 A2	$Q_A Q_B Q_H$
L	X	ΧX	L L L
Н	/	ΧX	no change
Н		H D	$D \ Q_{An} \ \ Q_{Gn}$
Н		DН	$D \ Q_{An} \ \ Q_{Gn}$
Н		L L	$L Q_{An} \ \ Q_{Gn}$

D = data input

X = don't care

 Q_{An} - Q_{Gn} = data shifted from the previous stage on a rising edge at the clock input.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
$V_{\rm IN}$	Input Voltage	7.0	V
V_{OUT}	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	4.75	5.25	V
V_{IH}	High Level Input Voltage	2.0		V
V_{IL}	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-0.4	mA
I_{OL}	Low Level Output Current		8.0	mA
T_{A}	Ambient Temperature Range	0	+70	°C
f_{clock}	Clock Frequency	0	25	MHz
t_{su}	Setup Time, A1 or A2 to Clock	15		ns
$t_{\rm h}$	Hold Time, Clock to A1 or A2	5		ns
$t_{ m w}$	Pulse Width, Clock	20		ns
$t_{ m w}$	Pulse Width, Reset	20		ns
t _{rec}	Recovery Time	5		ns

DC ELECTRICAL CHARACTERISTICS over full operating conditions

			Guaranteed Limit		
Symbol	Parameter	Test Conditions	Min	Max	Unit
V_{IK}	Input Clamp Voltage	$V_{CC} = min$, $I_{IN} = -18 \text{ mA}$		-1.5	V
V_{OH}	High Level Output Voltage	$V_{\rm CC}$ = min, $I_{\rm OH}$ = -0.4 mA	2.7		V
V_{OL}	Low Level Output Voltage	$V_{CC} = min, I_{OL} = 4 mA$		0.4	V
		$V_{CC} = min, I_{OL} = 8 mA$		0.5	
I_{IH}	High Level Input Current	$V_{CC} = \text{max}, V_{IN} = 2.7 \text{ V}$		20	mA
		$V_{CC} = \text{max}, V_{IN} = 7.0 \text{ V}$		0.1	mA
I_{IL}	Low Level Input Current	$V_{CC} = \text{max}, V_{IN} = 0.4 \text{ V}$		-0.4	mA
I_{O}	Output Short Circuit Current	$V_{CC} = max, V_O = 0 V$ (Noote 1)	-20	-100	mA
I_{CC}	Supply Current	$V_{CC} = max (Note 2)$		27	mA

Note 1: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 2: ξ_C is measured with outputs open, serial inputs grouned, the clock input at 2.4 V, and a momentary ground, then 4.5 V applied.

AC ELECTRICAL CHARACTERISTICS (T_A =25°C, V_{CC} = 5.0 V, C_L = 15 pF, R_L = 2 k Ω , t_r =15 ns, t_f = 6.0 ns)

Symbol	Parameter	Min	Max	Unit
$t_{\rm PLH}$	Propagation Delay Time, Clock to Q		27	ns
$t_{ m PHL}$	Propagation Delay Time, Clock to Q		32	ns
$t_{ m PHL}$	Propagation Delay Time, Reset to Q		36	ns
t_{su}	Setup Time, A1 or A2 to Clock	15		ns
$t_{\rm h}$	Hold Time, Clock to A1 or A2	5		ns
t_{w}	Pulse Width, Clock	20		ns
t_{w}	Pulse Width, Reset	20		ns

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

NOTES A. C_L includes probe and jig capacitance. B. All diodes are 1N916 or 1N3064.

Figure 3. Switching Waveform

Figure 4. Test Circuit

TIMING DIAGRAM

