MĚŘENÍ MALÝCH PROUDŮ

Jakub Dvořák

18.10.2020

1 Úkol měření

- 1. V zapojení podle obr. 1 změřte proud germaniovou diodou v propustném směru v oblasti malých napětí (20 až 100 mV) v pěti bodech charakteristiky:
 - a) analogovým mikroampérmetrem,
 - b) číslicovým mikroampérmetrem na různých rozsazích,
 - c) pomocí převodníku proud napětí s operačním zesilovačem, u něhož před měřením určete velikost odporu zpětnovazebního rezistoru R tak, aby převod proud napětí byl 10⁻⁵ A/V.
- 2. Naměřené hodnoty vyneste do společného grafu.
- 3. Při měření dle 1a) a 1b) určete chybu metody způsobenou vnitřním odporem ampérmetru.
- 4. Z naměřených hodnot určete vnitřní odpory použitých mikroampérmetrů.

2 Schéma zapojení

Obrázek 1: Zapojení pro měření malých proudů [1]

3 Seznam použitých přístrojů

- V_2 voltmetr číslicový, typ ..., přesnost ...
- μ A₁ mikroampérmetr magnetoelektrický, tř.přes. 0,5, rozsah 150 μ A
- μ A₂ mikroampérmetr číslicový, typ GDM-8145 přesnost ±(0,3 % z rozsahu + 4 digity), rozsah 200 μ A a 2 mA
- R přesný rezistor nebo odporová dekáda, přesnost 0,1 % (příp. 0,2 %)
- Př1 přípravek s odporovým děličem a polovodičovou diodou
- Př2 přípravek s operačním zesilovačem
- U₁ zdroj proměnného stejnosměrného napětí s číslicově nastavitelnou hodnotou
- NZ napájecí zdroj pro OZ

4 Teoretický úvod

Při měření malých proudů ručními ampérmetry nastává chyba měření. Ta je dána relativně vysokým odporem bočníku ampérmetru, na kterém měříme úbytek napětí. Dle obrázku 1 je vidět, že odpor diody, která není vlivem nízkého napětí zcela otevřena, je srovnatelný s odporem ampérmetru. Vinou čehož vznikne dělič napětí se srovnatelnými úbytky napětí na diodě a na ampérmetru. Tato chyba metody jde kompenzovat zvýšením rozsahu a tedy snížením odporu. Zde se ale naměřená hodnota dostane na začátek rozsahu a vzniká zde opět nejistota měření daná *chybou rozsahu*.

5 Naměřené hodnoty

Změřená data jsou v tabulce 1.

Námi změřené hodnoty mají různé předpony i jednotky. Je proto nutné je přepočítat na jednotné jednotky. Pro číslicový ampérmetr stačí hodnoty v mA vynásobit 1000, abychom dostali μ A. Pro spočtení napětí na výstupu operačního zesilovače platí:

$$I_{in} = -I_{out}$$

$$I_{in} = -\frac{U_{out}}{R}$$

$$I_{in} = -\frac{U_{out}}{10\,000}A,$$
(1)

Vstupní napětí $\frac{U}{V}$	Ručičkový μ ampérmetr $\frac{I}{\mu A}$	GDM-8145 $\frac{I}{\mu A}$	GDM-8145 $\frac{I}{\text{mA}}$	IU Převodník $\frac{U}{V}$
v stupin napeti V	rozsah 150 μA	rozsah 200 μA	rozsah 2 mA	rozsah 2 V
0,2	0,9	1,33	0,0012	-0,0155
0,3	1,4	2,36	0,0024	-0,0277
0,4	2	3,69	0,0041	-0,0448
0,5	2,6	5,39	0,0064	-0,0684
0,6	3,3	7,48	0,0095	-0,1012
0,7	4	10	0,0136	-0,1459
0,8	4,8	12,96	0,0190	-0,2062
0,9	5,25	16,37	0,0260	-0,2867
1	6,4	20,23	0,0349	-0,3926

Tabulka 1: Změřené hodnoty

kde I_{out} je proud protékající diodou, U_{out} je měřené napětí a R je rezistor připojen mezi výstup a invertující vstup operačního zesilovače.

6 Zpracování naměřených hodnot

6.1 Převod na stejné jednotky

Jelikož hodnoty napětí byly měřeny ve voltech a jednotné jednotky jsou μA , je potřeba změřené napětí vydělit $-0, 1 \frac{A}{V}$. Přepočtené hodnoty jsou zapsány v tabulce 2 a zobrazeny v grafu 1.

Napětí na děliči $\frac{U}{V}$	Ručičkový μ ampérmetr $\frac{I}{\mu A}$	GDM-8145 $\frac{I}{\mu A}$	GDM-8145 $\frac{I}{\mu A}$	IU Převodník $\frac{I}{\mu A}$
Traperi na dener V	rozsah 150 μA	rozsah 200 μA	rozsah 2 mA	rozsah 2 V
0,02	0,9	1,33	1,2	1,55
0,03	1,4	2,36	2,4	2,77
0,04	2	3,69	4,1	4,48
0,05	2,6	5,39	6,4	6,84
0,06	3,3	7,48	9,5	10,12
0,07	4	10	13,6	14,59
0,08	4,8	12,96	19	20,62
0,09	5,25	16,37	26	28,67
0,1	6,4	20,23	34,9	39,26

Tabulka 2: Přepočtené hodnoty

Nejistotu pro ručičkový ampérmetr spočítáme pomocí vzorce

$$u(I_{rv}) = \frac{TP \cdot rozsah}{100 \cdot \sqrt{3}} = \frac{0.5 \cdot 150 \cdot 10^{-6}}{100 \cdot \sqrt{3}} = 0.433 \mu \text{ A}.$$
 (2)

Napětí na děliči	GDM-8145 $\frac{I}{\mu A}$	GDM-8145 $\frac{I}{\mu A}$
rapeti na dener	rozsah 200 µA	rozsah 2 mA
0,02	0,000139	0,001175
0,03	0,000156	0,001196
0,04	0,000179	0,001226
0,05	0,000209	0,001266
0,06	0,000245	0,001319
0,07	0,000289	0,001390
0,08	0,000340	0,001484
0,09	0,000399	0,001605
0,10	0,000466	0,001759

Tabulka 3: Nejistoty měření pro různé rozsahy a hodnoty

Nejistotu pro číslicový ampérmetr s rozsahem 200 µA spočítáme následovně:

$$i(I_v) = \frac{\delta_1 X + \delta_2 M}{100\sqrt{3}} = \frac{0.3\% \cdot I + 2 \cdot \frac{200}{20000}}{100\sqrt{3}} \,\mu\text{A} \tag{3}$$

a pro rozsah 2 mA

$$i(I_v) = \frac{\delta_1 X + \delta_2 M}{100\sqrt{3}} = \frac{0.3\% \cdot I[\mu A] + 2 \cdot \frac{2 \cdot 10^3}{20000}}{100\sqrt{3}} \mu A.$$
 (4)

Výsledné nejistoty jsou v tabulce 3.

Graf 1: Naměřené hodnoty přepočtené na μA

6.2 Nejistota IU převodníku

Pro určení nejistoty měření proudu z měření napětí musíme parciálně zderivovat rovnici 1 podle všech proměnných. Celý postup je v rovnici 5.

$$u_{OZ}(I_{oz}) = \sqrt{\left(\frac{\partial I}{\partial R} \cdot u(R)\right)^{2} + \left(\frac{\partial I}{\partial U} \cdot u(U)\right)^{2} + (u(I_{0}))^{2}}$$

$$u_{OZ}(I_{oz}) = \sqrt{\left(-\frac{U}{R^{2}} \cdot u(R)\right)^{2} + \left(\frac{1}{R} \cdot u(U)\right)^{2} + (u(I_{0}))^{2}}$$
(5)

Po dosazení dostaneme:

$$u_{OZ}(I_{oz}) = \sqrt{\left(\frac{U}{R^2} \cdot u(R)\right)^2 + \left(-\frac{1}{R} \cdot u(U)\right)^2 + \left(u(I_0)\right)^2}$$

6.3 Chyba měření mikroampérmetrů

Pro zjištění relativní hodnoty musíme nejdříve znát absolutní chybu Δ_{met} , kterou spočítáme jako

$$\Delta_{\text{met}} = N - S. \tag{6}$$

Absolutní chybu metody následně spočítáme pomocí rovnice

$$\delta_{\text{met}} = \frac{\Delta_{\text{met}}}{S}.$$
 (7)

Rovnice 7 jde poté upravit do tvaru:

$$\delta_{\text{met}} = \frac{N - S}{S},\tag{8}$$

kde N je naměřená hodnota a S je skutečná hodnota. Jelikož jsme stanovili odpor UI převodníku za nulový, můžeme hodnotu jím naměřenou považovat za skutečnou a hodnotu naměřenou ručičkovým resp. číslicovým ampérmetrem s ní porovnávat.

Jednotlivé relativní chyby pro analogový ampérmetr a číslicový ampérmetr s dvěma různými rozsahy jsou v tabulce 4.

V absolutní hodnotě jsou data v tabulce 5 Chyba metody je zobrazena v grafu 2.

6.4 Měření vnitřního odporu ampérmetru

Pro měření odporu ampérmetru musíme nejdříve znát odpor diody pro dané napětí na diodě. Bohužel po připojení ampérmetru do obvodu snížíme napětí na diodě a tím se, vinou nekonstantnosti odporu diody, její odpor sníží. Musíme proto graficky odečíst, pro jaké napájecí napětí diody a ampérmetru

Napětí na děliči	Ručičkový µampérmetr	GDM-8145	GDM-8145
reapeti na dener	rozsah 150 μA	rozsah 200 μA	rozsah 2 mA
0,02	-0,4194	-0,1419	-0,2258
0,03	-0,4946	-0,1480	-0,1336
0,04	-0,5536	-0,1763	-0,0848
0,05	-0,6199	-0,2120	-0,0643
0,06	-0,6739	-0,2609	-0,0613
0,07	-0,7258	-0,3146	-0,0679
0,08	-0,7672	-0,3715	-0,0786
0,09	-0,8169	-0,4290	-0,0931
0,1	-0,8370	-0,4847	-0,1111

Tabulka 4: Relativní chyby metody

Napětí na děliči	Ručičkový µampérmetr	GDM-8145	GDM-8145
reapen na dener	rozsah 150 μA	rozsah 200 μA	rozsah 2 mA
0,02	41,94	14,19	22,58
0,03	49,46	14,80	13,36
0,04	55,36	17,63	8,48
0,05	61,99	21,20	6,43
0,06	67,39	26,09	6,13
0,07	72,58	31,46	6,79
0,08	76,72	37,15	7,86
0,09	81,69	42,90	9,31
0,10	83,70	48,47	11,11

Tabulka 5: Relativní chyby metody v procentech

platí, že proud skrz je roven proudu pouze diodou. Tím, že bude obvodem protékat stejný proud, docílíme, že dioda bude stejně otevřena resp. její odpor bude stejný a úbytek napětí na diodě bude roven napájecímu napětí diody samotné. Rozdíl napájecího napětí diody a úbytku napětí na diodě je roven napětí na ampérmetru. Poté si s použitím ohmova zákona dopočítáme odpor ampérmetru.

6.4.1 Ručičkový ampérmetr

Podle tabulky 2 lze zjistit, že při proudu $4,48 \,\mu\text{A}$ je na diodě úbytek napětí $0,04 \,\text{A}$. Podle grafu 1 odečteme napájecí napětí pro další způsoby měření. Napájecí napětí a výsledné odpory jsou v tabulce 6.

Graf 2: Relativní chyba metody v závislosti na měřeném napětí

	Ručičkový μampérmetr	GDM-8145	GDM-8145
	rozsah 150 μA	rozsah 200 μA	rozsah 2 mA
Napájecí napětí	0,076 V	0,0446 V	0,0416 V
Výsledný odpor	$8036~\Omega$	1026Ω	357,2 Ω

Tabulka 6: Relativní chyby metody v procentech

7 Závěrečné vyhodnocení

Zjistili jsme, že při měření malých proudů je měření zatíženo relativně velkou chybou resp. relativně velkou relativní chybou. U ručičkového přístroje relativní chyba dosahovala hodnoty až 83 % a u číslicového přístroje šlo o relativní chybu 48 % v rozsahu 200 μA a 11 % v rozsahu 2 mA. Bohužel při vyšším rozsahu se posouvá hodnota na začátek rozsahu a tím se zvyšuje nejistota typu B, jak je vidět v tabulce 3. Nejlepší možností je tedy použít operační zesilovač, díky kterému docílíme téměř nulového odporu.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze