Wielka Ucieczka Traktorem

WWI 2024 – grupa 2Dzień 5 – 20 sierpnia 2024

Kombajnista Ambroży nabroił w wiosce i teraz ucieka na swoim podrasowanym traktorze. Wioska składa się z *n* skrzyżowań, niektóre z nich są połączone dwukierunkowymi drogami. Skrzyżowania są ponumerowane liczbami od 1 do *n*, przy skrzyżowaniu o numerze 1 znajduje się karczma, skąd Ambroży ucieka. Ambroży stara się udać do swojej meliny, mieszczącej się przy skrzyżowaniu o numerze *n*, najszybszą możliwą drogą. Wypisz listę wszystkich skrzyżowań, na których Ambroży może pojawić się w drodze do swej meliny (czyli listę wszystkich skrzyżowań, które leżą na jakiejś najkrótszej ścieżce ze skrzyżowania 1 do skrzyżowania *n*).

Wejście

Pierwsza linia wejścia zawiera dwie liczby $2 \le n \le 100~000$ i $1 \le m \le 200~000$, oznaczające liczbę skrzyżowań i dróg w wiosce. Kolejne m wierszy zawiera opis kolejnych dróg: liczby całkowite a,b,c: $1 \le a,b \le n$, $1 \le c \le 1000$, oznaczające drogę między skrzyżowaniami a i b, którą kombajnista Ambroży przebywa w c sekund. Może istnieć wiele dróg łączących te same skrzyżowania, jak i droga pętelka (czyli a = b).

Wyjście

Należy wypisać listę wszystkich skrzyżowań, przez które może przejechać Ambroży, w kolejności rosnącej, po jednym w linii.

Przykład

Wejście dla testu wut0:

vvejscie dia	testa water.	
10 11		
1 2 1		
1 3 1		
3 4 2		
4 5 1		
5 6 1		
5 10 2		
1 7 1		
7 8 3		
7 9 2		
9 10 2		
8 10 1		

Wyjście dla testu wut0:

Kod zadania:

Limit pamięci:

wiit

256 MB

vvyjsele dla testa wato.
1
7
8
9
10

Wyjaśnienie do przykładu: Możliwe najoptymalniejsze trasy to 1 -> 7 -> 8 -> 10 oraz 1 -> 7 -> 9 -> 10.

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$n, m \le 500$	2 s	40
2	Brak dodatkowych ograniczeń	2 s	60

