Review for Midterm

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Mar 16, 2022

Statistical modeling

• To figure out the joint distribution of random variables of interest

Random vector

- Mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$
- Model: $\mathbf{X}_1, \dots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} (\mu, \Sigma)$
 - Unbiased estimators for μ and Σ are sample mean vector $\bar{\mathbf{X}}$ and sample covariance matrix \mathbf{S} , respectively.

Multivariate normal (MVN)

- Standard normal random vector: entries are iid of N(0,1)
- (General) MVN
 - Defined upon a standard normal random vector via an affine transformation
 - Characterized by μ and Σ
- Properties on MVN
 - Affine-transformed MVN random vector is still of MVN
 - If $[\mathbf{X}_1^\top, \mathbf{X}_2^\top]^\top \sim MVN$, then $\mathbf{X}_1 \perp \mathbf{X}_2 \Leftrightarrow \text{cov}(\mathbf{X}_1, \mathbf{X}_2) = 0$

- ..

- Model: $\mathbf{X}_1, \dots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} MVN_p(\mu, \mathbf{\Sigma}), n > p$
 - Checking and improving the normal assumption
 - $-\hat{\boldsymbol{\mu}}_{\mathrm{ML}} = \tilde{\mathbf{X}} \text{ and } \hat{\boldsymbol{\Sigma}}_{\mathrm{ML}} = n^{-1}(n-1)\mathbf{S}$
 - Sampling distribution of $\hat{oldsymbol{\mu}}_{\mathrm{ML}}$ and $\hat{oldsymbol{\Sigma}}_{\mathrm{ML}}$
 - Inference on μ and Σ
 - * Likelihood ratio test (LRT)
 - · Hypotheses
 - · Name of approach
 - · Value of test statistic
 - · Rejection region/p-value
 - · Conclusion: e.g., at the α level, we reject/do not reject H0, i.e., we believe. . .
 - * Confidence region for an unknown vector: a dual problem of hypothesis testing
 - * Simultaneous confidence intervals:
 - · Construct a CI for each random scalar of interest, e.g., entries of μ , simultaneously
 - · To make sure the coverage probability of the intersection of multiple CIs is at least $1-\alpha$

- Model: $\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1} \stackrel{\text{iid}}{\sim} MVN_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), n_1 > p, \text{ and } \mathbf{X}_{21}, \dots, \mathbf{X}_{2n_2} \stackrel{\text{iid}}{\sim} MVN_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}), n_2 > p$
 - Inference on $\mu_1 \mu_2$ via LRT

Multivariate analysis of variance (MANOVA)

- One-way MANOVA
 - Model: $\mathbf{X}_{ij} = \boldsymbol{\mu} + \boldsymbol{\tau}_i + \mathbf{E}_{ij}$ with $\mathbf{E}_{ij} \stackrel{\text{iid}}{\sim} MVN_p(\mathbf{0}, \boldsymbol{\Sigma})$ and $\sum_i \boldsymbol{\tau}_i = 0$ Testing $H_0: \boldsymbol{\tau}_1 = \cdots = \boldsymbol{\tau}_m = 0$ v.s. $H_1:$ otherwise
 - - * Sums of squares and cross products matrices (SSP)
 - * Wilk's lambda test (a modification of LRT)
- Two-way MANOVA
 - Model: $\mathbf{X}_{ijk} = \boldsymbol{\mu} + \boldsymbol{\tau}_i + \boldsymbol{\beta}_j + \boldsymbol{\gamma}_{ij} + \mathbf{E}_{ijk}$ with $\mathbf{E}_{ijk} \stackrel{\text{iid}}{\sim} MVN_p(\mathbf{0}, \boldsymbol{\Sigma}), i = 1, \dots, m, j = 1, \dots, b,$ $k = 1, \ldots, n$
 - * τ_i : the main effect of factor 1 at level i
 - * β_i : the main effect of factor 2 at level j
 - * γ_{ij} : the interaction of factors 1 and 2 whose levels are i and j, respectively
 - * Identifiability: $\sum_{i} \boldsymbol{\tau}_{i} = \sum_{j} \boldsymbol{\beta}_{j} = \sum_{i} \boldsymbol{\gamma}_{ij} = \sum_{j} \boldsymbol{\gamma}_{ij} = \mathbf{0}$ Testing first the interaction (via the Wilk's lambda test) and then main effects if the interaction is insignificant
- Testing the equality of covariance matrices
 - Model: m independent samples, where

*
$$\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1} \stackrel{\text{iid}}{\sim} MVN_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

*
$$\mathbf{X}_{m1}, \dots, \mathbf{X}_{mn_m} \overset{\text{iid}}{\sim} MVN_p(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$$

* $\mathbf{X}_{m1}, \dots, \mathbf{X}_{mn_m} \stackrel{\text{iid}}{\sim} MVN_p(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ - Testing $H_0: \boldsymbol{\Sigma}_1 = \dots = \boldsymbol{\Sigma}_m$ v.s. $H_1:$ otherwise via the Box's M test statistic (a modification of

Multivariate linear model

- Linear model: responses are linear functions with respect to unknown parameters
- Model
 - Population version

*
$$\mathrm{E}([Y_1,\ldots,Y_p]^\top \mid X_1,\ldots,X_q) = \mathbf{B}^\top [1,X_1,\ldots,X_q]^\top$$

* $\mathrm{cov}([Y_1,\ldots,Y_p]^\top \mid X_1,\ldots,X_q) = \mathbf{\Sigma} > 0$

$$* \operatorname{cov}([Y_1, \dots, Y_p]^{\top} \mid X_1, \dots, X_q) = \Sigma > 0$$

- Sample version

$$\frac{\mathbf{Y}}{n \times p} = \frac{\mathbf{X}}{n \times (q+1)} \frac{\mathbf{B}}{(q+1) \times p} + \frac{\mathbf{E}}{n \times p}$$

- * $\mathbf{Y} = [Y_{ij}]_{n \times p}$
- * Design matrix

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{q1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \cdots & X_{nq} \end{bmatrix}_{n \times (q+1)}$$

$$\cdot \ \operatorname{rk}(\mathbf{X}) = q + 1$$

- * $\mathbf{E} = [\mathbf{E}_{1}, \dots, \mathbf{E}_{n}]^{\top}$, where \mathbf{E}_{i}^{\top} is the *i*th row of \mathbf{E}
- * Assume the independence across i, i.e.,

$$Y_{i1}, \dots, Y_{ip}, X_{i1}, \dots, X_{iq} \stackrel{\text{iid}}{\sim} [Y_1, \dots, Y_p, X_1, \dots, X_q]^\top$$

- $\mathbf{E}_1,\ldots,\mathbf{E}_n$ $\overset{\mathrm{iid}}{\sim} (\mathbf{0}_p,\mathbf{\Sigma})$
- Relationship with univariate linear model and MANOVA
- Least squares (LS) estimation (without normality assumption) and maximum likelihood (ML) estimation (assuming the conditional distribution of $[Y_1, \dots, Y_p]^{\top}$ is of MVN)

- Inference on $\mathbf{B}^{\top} \boldsymbol{a}$ and \mathbf{Y}_0 : confidence region and prediction region
- Model comparison/selection
 - Testing for nested models
 - * H_0 : $E(\mathbf{Y} \mid \mathbf{X}) = \mathbf{X}_{(0)} \mathbf{B}_{(0)}$ (nested model) vs. H_1 : $E(\mathbf{Y} \mid \mathbf{X}) = \mathbf{X}_{(0)} \mathbf{B}_{(0)} + \mathbf{X}_{(1)} \mathbf{B}_{(1)}$ (full model)
 - Comparing non-nested models
 - * Information criteria
- Model checking
 - Multivariate influence measures
 - * Outliers identification via the (externally) Studentized residuals and Cook's distance
 - Normality of residuals