

Acta Crystallographica Section E

#### **Structure Reports**

**Online** 

ISSN 1600-5368

# 2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile

## Shaaban K. Mohamed,<sup>a</sup> Mehmet Akkurt,<sup>b</sup>\* Muhammad N. Tahir,<sup>c</sup> Antar A. Abdelhamid<sup>a</sup> and Mustafa R. Albayati<sup>a</sup>

<sup>a</sup>Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, <sup>b</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and <sup>c</sup>University of Sargodha, Department of Physics, Sargodha, Pakistan

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 26 June 2012; accepted 28 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma(C-C) = 0.003$  Å; R factor = 0.045; wR factor = 0.115; data-to-parameter ratio = 15.3.

The 4*H*-pyran ring of the title compound,  $C_{17}H_{16}N_2O_2$ , is nearly planar [maximum deviation = 0.077 (2) Å] and the cyclohexene ring adopts a flattened chair conformation [puckering parameters:  $Q_T = 0.435$  (2) Å,  $\theta = 122.0$  (3)° and  $\varphi = 53.5$  (3)°]. The 4*H*-pyran ring is almost perpendicular to the benzene ring [dihedral angle = 87.23 (8)°] and is almost coplanar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8)°]. In the crystal, inversion-related molecules are linked by pairs of intermolecular N $-H\cdots$ N hydrogen bonds, forming inversion dimers with  $R_2^2(12)$  ring motifs. These dimers are further connected by N $-H\cdots$ O and C $-H\cdots$ N hydrogen bonds, forming a layer structure extending parallel to (012). Molecules within the layers interact with each other via C $-H\cdots\pi$  interactions.

#### **Related literature**

For the biological background to tetrahydro-4-chromene and fused tetrahydro-4-chromene compounds, see: Alvey *et al.* (2009); Symeonidis *et al.* (2009); Narender & Gupta (2009). For the synthesis of similar chromene compounds, see: Yadav *et al.* (2009); Mohamed *et al.* (2012*a,b,c*). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, *see*: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

#### **Experimental**

Crystal data

 $\begin{array}{lll} {\rm C_{17}H_{16}N_2O_2} & \gamma = 80.035 \; (6)^{\circ} \\ M_r = 280.32 & V = 743.71 \; (19) \; {\rm \AA}^3 \\ {\rm Triclinic}, P{\rm \bar{I}} & Z = 2 \\ a = 8.5931 \; (9) \; {\rm \mathring{A}} & {\rm Mo} \; {\rm K\alpha} \; {\rm radiation} \\ b = 8.7409 \; (14) \; {\rm \mathring{A}} & \mu = 0.08 \; {\rm mm}^{-1} \\ c = 11.0695 \; (19) \; {\rm \mathring{A}} & T = 296 \; {\rm K} \\ \alpha = 72.626 \; (4)^{\circ} & 0.30 \times 0.23 \times 0.20 \; {\rm mm} \\ \beta = 70.088 \; (3)^{\circ} \end{array}$ 

Data collection

Bruker Kappa APEXII CCD 8982 measured reflections diffractometer 2916 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2005)  $R_{\rm int} = 0.075$   $R_{\rm int} = 0.075$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.045 & 191 \ {\rm parameters} \\ wR(F^2) = 0.115 & {\rm H-atom\ parameters\ constrained} \\ S = 0.91 & \Delta\rho_{\rm max} = 0.20\ {\rm e\ \mathring{A}^{-3}} \\ 2916\ {\rm reflections} & \Delta\rho_{\rm min} = -0.17\ {\rm e\ \mathring{A}^{-3}} \end{array}$ 

 Table 1

 Hydrogen-bond geometry ( $\mathring{A}$ ,  $^{\circ}$ ).

 $\it Cg1$  and  $\it Cg2$  are the centroids of the 4H-pyran ring (O1/C8/C9/C11–C13) and the benzene ring (C1–C6), respectively.

| D $ H···A$                | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------|------|-------------------------|-------------------------|-----------------------------|
| $N2-H2A\cdots N1^{i}$     | 0.86 | 2.31                    | 3.168 (2)               | 175                         |
| $N2-H2B\cdots O2^{ii}$    | 0.86 | 2.18                    | 3.017(2)                | 164                         |
| C2−H2···N1 <sup>iii</sup> | 0.93 | 2.53                    | 3.277 (2)               | 138                         |
| $C6-H6\cdots Cg1$         | 0.93 | 2.79                    | 3.128 (2)               | 102                         |
| $C7-H7A\cdots Cg2^{iv}$   | 0.96 | 2.87                    | 3.640(2)                | 138                         |

Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z+2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

This project was supported financially by the Higher Education Ministry of Egypt in collaboration with Manchester Metropolitan University. We thank Sargodha and Erciyes Universities for providing X-ray analysis and data refinement facilities.

#### organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5250).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012a). Acta Cryst. E68, o1414–o1415.
- Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). *Acta Cryst.* E68, o1965–o1966.
- Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Younes, S. H. H. (2012c). *Acta Cryst.* E68, o2178–o2179.
- Narender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913–3916.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139–1142.
- Yadav, J. S., Subba Reddy, B. V., Biswas, S. K. & Sengupta, S. (2009). Tetrahedron Lett. 50, 5798–5801.

Acta Cryst. (2012). E68, o2315-o2316 [doi:10.1107/S1600536812029480]

## 2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbo-nitrile

## Shaaban K. Mohamed, Mehmet Akkurt, Muhammad N. Tahir, Antar A. Abdelhamid and Mustafa R. Albayati

#### Comment

Tetrahydro-4-chromene are an extensive class of bioactive compounds with antimicrobial, antifungal and antioxident properties (Symeonidis *et al.*, 2009; Narender & Gupta, 2009; Alvey, *et al.*, 2009). In a continuation to our on-going study of the synthesis and biological characterization of a new series of tetrahydro-4-chromenes (Mohamed *et al.*, 2012a,b,c), we report here the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the C12–C17 cyclohexene ring of (I) is in a flattened chair conformation [puckering parameters (Cremer & Pople, 1975) are  $Q_T = 0.435$  (2) Å,  $\theta = 122.0$  (3) ° and  $\varphi = 53.5$  (3) °]. The O1/C8/C9/C11—C13 4*H*-pyran ring is nearly planar with a maximum deviation of 0.077 (2) Å for C8 and is almost perpendicular to the C1–C6 benzene ring [dihedral angle = 87.23 (8)°] and is almost co-planar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8) °]. All bond lengths (Allen *et al.*, 1987) and angles of (I) are within normal ranges and are comparable to similar structures (Yadav *et al.*, 2009; Mohamed *et al.*, 2012*a,b,c*).

In the crystal, a pair of intermolecular N—H···N hydrogen bonds link the main molecules into an inversion dimer, generating an  $R_2^2$ (12) graph-set motif (Bernstein *et al.*, 1995; Table 1, Fig. 2). The dimers are further connected by N—H···O and C—H···N hydrogen bonds, forming a layer of molecules parallel to (0 - 1 2) (Table 1, Fig. 2). In addition, the layers are interconnected by weak C—H··· $\pi$  interactions.

#### **Experimental**

A mixture of 168 mg (1 mmol) (4-methybenzylidene)propanedinitrile, 112 mg (1 mmol) cyclohexane-1,3-dione in presence of 61 mg ethanolamine as catalyst was refluxed in 40 ml ethanol. The reaction mixture was monitored by TLC till completion after 6 h. A solid product was deposited on cooling at room temperature and collected by filtration. The crude product was recrystallized from ethanol in excellent yield (89%). Single crystals suitable for X-ray analysis were grown upon slow evaporation of the solution of (I) in ethanol over two days [*M.p.*: 477 K].

#### Refinement

H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with  $U_{iso}(H) = 1.5 U_{eq}(O)$  for methyl groups and  $U_{iso}(H) = 1.2 U_{eq}(C, N)$  for others.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* 

(Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).



Figure 1

The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.



Figure 2

A view of the dimers formed by pairs of N—H···N hydrogen bonds, with an  $R^2_2(12)$  motif and the N—H···O and C—H···N hydrogen bonds connecting the dimers with each other, to form a two dimensional network. H atoms not involved in hydrogen bonds have been omitted for clarity.

#### 2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3- carbonitrile

Crystal data

Z = 2 $C_{17}H_{16}N_2O_2$  $M_r = 280.32$ F(000) = 296Triclinic, P1 $D_{\rm x} = 1.252 \; {\rm Mg \; m^{-3}}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1 a = 8.5931 (9) Å Cell parameters from 245 reflections b = 8.7409 (14) Å $\theta = 3.2 - 18^{\circ}$  $\mu = 0.08 \text{ mm}^{-1}$ c = 11.0695 (19) Å $\alpha = 72.626 (4)^{\circ}$ T = 296 K $\beta = 70.088 (3)^{\circ}$ Prism, white  $y = 80.035 (6)^{\circ}$  $0.30 \times 0.23 \times 0.20 \text{ mm}$  $V = 743.71 (19) \text{ Å}^3$ 

Data collection

Bruker Kappa APEXII CCD 8982 measured reflections diffractometer 2916 independent reflections Radiation source: fine-focus sealed tube 1704 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.075$ Graphite monochromator Detector resolution: 0.81 pixels mm<sup>-1</sup>  $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$  $h = -10 \rightarrow 10$  $\omega$  scans Absorption correction: multi-scan  $k = -10 \rightarrow 10$ (SADABS; Bruker, 2005)  $l = -13 \rightarrow 13$ 

Refinement

 $T_{\min} = 0.975, T_{\max} = 0.984$ 

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.045$ Hydrogen site location: inferred from  $wR(F^2) = 0.115$ neighbouring sites S = 0.91H-atom parameters constrained 2916 reflections  $w = 1/[\sigma^2(F_0^2) + (0.0535P)^2]$ 191 parameters where  $P = (F_0^2 + 2F_c^2)/3$ 0 restraints  $(\Delta/\sigma)_{\text{max}} < 0.001$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm max} = 0.20 \text{ e Å}^{-3}$  $\Delta \rho_{\min} = -0.17 \text{ e Å}^{-3}$ direct methods

Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement.** Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|    | x             | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|---------------|--------------|--------------|-----------------------------|
| O1 | -0.07181 (12) | 0.43638 (14) | 0.69952 (11) | 0.0628 (4)                  |
| O2 | 0.48905 (15)  | 0.45532 (14) | 0.66064 (13) | 0.0747 (5)                  |
| N1 | 0.17338 (17)  | 0.0029(2)    | 0.50277 (16) | 0.0766 (7)                  |

| N2   | -0.17035 (15) | 0.27899 (18) | 0.62146 (15) | 0.0698 (6)  |
|------|---------------|--------------|--------------|-------------|
| C1   | 0.31349 (18)  | 0.13607 (18) | 0.74881 (16) | 0.0458 (6)  |
| C2   | 0.46472 (18)  | 0.04982 (19) | 0.71440 (17) | 0.0543 (6)  |
| C3   | 0.5138 (2)    | -0.0768 (2)  | 0.8064(2)    | 0.0625 (7)  |
| C4   | 0.4143 (2)    | -0.1234(2)   | 0.93584 (19) | 0.0590 (7)  |
| C5   | 0.2636 (2)    | -0.0370(2)   | 0.97073 (18) | 0.0657 (7)  |
| C6   | 0.2129 (2)    | 0.0905 (2)   | 0.87951 (18) | 0.0600 (7)  |
| C7   | 0.4678 (3)    | -0.2645 (2)  | 1.0359 (2)   | 0.0882 (9)  |
| C8   | 0.25982 (17)  | 0.27363 (18) | 0.64590 (16) | 0.0469 (5)  |
| C9   | 0.11699 (18)  | 0.23365 (18) | 0.61288 (15) | 0.0478 (6)  |
| C10  | 0.14572 (18)  | 0.1067 (2)   | 0.55221 (17) | 0.0546 (6)  |
| C11  | -0.03611 (19) | 0.3100(2)    | 0.64164 (16) | 0.0510(6)   |
| C12  | 0.0570(2)     | 0.49540 (19) | 0.71581 (16) | 0.0532 (6)  |
| C13  | 0.21195 (19)  | 0.42714 (18) | 0.68865 (16) | 0.0501 (6)  |
| C14  | 0.3443 (2)    | 0.5090(2)    | 0.69385 (17) | 0.0606 (7)  |
| C15  | 0.2972 (3)    | 0.6633 (2)   | 0.7339 (2)   | 0.0896 (10) |
| C16  | 0.1214 (3)    | 0.6772 (3)   | 0.8221 (2)   | 0.0916 (10) |
| C17  | -0.0012 (2)   | 0.6426 (2)   | 0.7642 (2)   | 0.0730 (8)  |
| H2   | 0.53500       | 0.07760      | 0.62750      | 0.0650*     |
| H2A  | -0.16480      | 0.20220      | 0.58610      | 0.0840*     |
| H2B  | -0.26260      | 0.33580      | 0.64380      | 0.0840*     |
| Н3   | 0.61690       | -0.13230     | 0.78020      | 0.0750*     |
| H5   | 0.19410       | -0.06510     | 1.05790      | 0.0790*     |
| Н6   | 0.11000       | 0.14640      | 0.90610      | 0.0720*     |
| H7A  | 0.46800       | -0.22940     | 1.11020      | 0.1320*     |
| H7B  | 0.57750       | -0.30710     | 0.99470      | 0.1320*     |
| H7C  | 0.39190       | -0.34660     | 1.06630      | 0.1320*     |
| Н8   | 0.35430       | 0.29220      | 0.56420      | 0.0560*     |
| H15A | 0.31220       | 0.75200      | 0.65440      | 0.1080*     |
| H15B | 0.37140       | 0.67300      | 0.78000      | 0.1080*     |
| H16A | 0.09460       | 0.78500      | 0.83470      | 0.1100*     |
| H16B | 0.11120       | 0.60230      | 0.90860      | 0.1100*     |
| H17A | -0.10870      | 0.62860      | 0.83160      | 0.0880*     |
| H17B | -0.01380      | 0.73320      | 0.69100      | 0.0880*     |
|      |               |              |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| O1 | 0.0490 (6)  | 0.0667 (8)  | 0.0832 (9)  | 0.0047 (6)   | -0.0251 (6)  | -0.0344 (7)  |
| O2 | 0.0619 (8)  | 0.0720 (9)  | 0.0993 (11) | -0.0152 (7)  | -0.0439(7)   | -0.0076(8)   |
| N1 | 0.0584 (9)  | 0.0903 (12) | 0.1034 (14) | 0.0059(8)    | -0.0308(9)   | -0.0570(11)  |
| N2 | 0.0474 (8)  | 0.0865 (11) | 0.0946 (12) | 0.0048 (7)   | -0.0334 (8)  | -0.0434(10)  |
| C1 | 0.0436 (8)  | 0.0481 (10) | 0.0555 (11) | -0.0082(7)   | -0.0234(8)   | -0.0154(8)   |
| C2 | 0.0481 (9)  | 0.0560 (11) | 0.0611 (12) | -0.0029(8)   | -0.0190(8)   | -0.0165 (9)  |
| C3 | 0.0561 (10) | 0.0559 (11) | 0.0830 (15) | 0.0054 (8)   | -0.0338 (10) | -0.0200 (11) |
| C4 | 0.0720 (12) | 0.0509 (11) | 0.0668 (14) | -0.0103(9)   | -0.0387(11)  | -0.0105 (10) |
| C5 | 0.0681 (12) | 0.0726 (13) | 0.0562 (12) | -0.0116 (10) | -0.0232(9)   | -0.0085 (10) |
| C6 | 0.0503 (9)  | 0.0679 (12) | 0.0623 (13) | -0.0004(8)   | -0.0202(9)   | -0.0166 (10) |
| C7 | 0.1123 (17) | 0.0642 (13) | 0.0970 (16) | -0.0023 (12) | -0.0601 (13) | -0.0042 (12) |
| C8 | 0.0406 (8)  | 0.0533 (10) | 0.0510 (10) | -0.0051 (7)  | -0.0192 (7)  | -0.0128 (8)  |
|    |             |             |             |              |              |              |

| C9  | 0.0471 (9)  | 0.0521 (10) | 0.0512 (10) | -0.0020 (7)  | -0.0218 (7)  | -0.0168 (9)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C10 | 0.0412 (9)  | 0.0674 (12) | 0.0648 (12) | 0.0009(8)    | -0.0240(8)   | -0.0252 (10) |
| C11 | 0.0471 (9)  | 0.0579 (11) | 0.0553 (11) | -0.0020(8)   | -0.0227(8)   | -0.0184 (9)  |
| C12 | 0.0593 (10) | 0.0506 (10) | 0.0574 (11) | -0.0043(8)   | -0.0262(8)   | -0.0154(9)   |
| C13 | 0.0554 (10) | 0.0466 (10) | 0.0542 (11) | -0.0068(8)   | -0.0278(8)   | -0.0072(8)   |
| C14 | 0.0668 (12) | 0.0536 (11) | 0.0692 (13) | -0.0112 (9)  | -0.0391 (10) | -0.0027(9)   |
| C15 | 0.1010 (16) | 0.0667 (14) | 0.129(2)    | -0.0138 (12) | -0.0598 (15) | -0.0332 (14) |
| C16 | 0.1157 (19) | 0.0743 (15) | 0.1070 (18) | -0.0041 (13) | -0.0471 (15) | -0.0426 (14) |
| C17 | 0.0797 (13) | 0.0606 (12) | 0.0857 (15) | 0.0013 (10)  | -0.0297 (11) | -0.0281 (11) |

#### Geometric parameters (Å, °)

| Geometric parameters (A, ') |             |             |             |
|-----------------------------|-------------|-------------|-------------|
| O1—C11                      | 1.377 (2)   | C12—C13     | 1.334 (2)   |
| O1—C12                      | 1.383 (2)   | C13—C14     | 1.470 (3)   |
| O2—C14                      | 1.222 (2)   | C14—C15     | 1.492 (3)   |
| N1—C10                      | 1.146 (2)   | C15—C16     | 1.501(3)    |
| N2—C11                      | 1.332 (2)   | C16—C17     | 1.516 (3)   |
| N2—H2A                      | 0.8600      | C2—H2       | 0.9300      |
| N2—H2B                      | 0.8600      | С3—Н3       | 0.9300      |
| C1—C8                       | 1.518 (2)   | C5—H5       | 0.9300      |
| C1—C2                       | 1.378 (2)   | C6—H6       | 0.9300      |
| C1—C6                       | 1.386 (2)   | C7—H7A      | 0.9600      |
| C2—C3                       | 1.378 (3)   | C7—H7B      | 0.9600      |
| C3—C4                       | 1.374 (3)   | C7—H7C      | 0.9600      |
| C4—C7                       | 1.515 (3)   | C8—H8       | 0.9800      |
| C4—C5                       | 1.375 (3)   | C15—H15A    | 0.9700      |
| C5—C6                       | 1.382 (3)   | C15—H15B    | 0.9700      |
| C8—C9                       | 1.514 (2)   | C16—H16A    | 0.9700      |
| C8—C13                      | 1.500(2)    | C16—H16B    | 0.9700      |
| C9—C10                      | 1.407 (2)   | C17—H17A    | 0.9700      |
| C9—C11                      | 1.347 (2)   | C17—H17B    | 0.9700      |
| C12—C17                     | 1.483 (2)   |             |             |
| C11—O1—C12                  | 118.57 (13) | C15—C16—C17 | 112.04 (18) |
| H2A—N2—H2B                  | 120.00      | C12—C17—C16 | 110.62 (17) |
| C11—N2—H2A                  | 120.00      | C1—C2—H2    | 119.00      |
| C11—N2—H2B                  | 120.00      | C3—C2—H2    | 119.00      |
| C2—C1—C6                    | 117.40 (15) | C2—C3—H3    | 119.00      |
| C6—C1—C8                    | 121.94 (15) | C4—C3—H3    | 119.00      |
| C2—C1—C8                    | 120.65 (15) | C4—C5—H5    | 119.00      |
| C1—C2—C3                    | 121.21 (16) | C6—C5—H5    | 119.00      |
| C2—C3—C4                    | 121.73 (17) | C1—C6—H6    | 120.00      |
| C3—C4—C7                    | 121.45 (17) | C5—C6—H6    | 120.00      |
| C3—C4—C5                    | 117.22 (17) | C4—C7—H7A   | 109.00      |
| C5—C4—C7                    | 121.33 (18) | C4—C7—H7B   | 110.00      |
| C4—C5—C6                    | 121.66 (17) | C4—C7—H7C   | 110.00      |
| C1—C6—C5                    | 120.78 (17) | H7A—C7—H7B  | 109.00      |
| C9—C8—C13                   | 109.01 (13) | H7A—C7—H7C  | 109.00      |
| C1—C8—C9                    | 111.87 (13) | H7B—C7—H7C  | 109.00      |
| C1—C8—C13                   | 112.47 (13) | C1—C8—H8    | 108.00      |

| C8—C9—C10      | 117.75 (14)  | C9—C8—H8        | 108.00       |
|----------------|--------------|-----------------|--------------|
| C8—C9—C11      | 123.56 (15)  | C13—C8—H8       | 108.00       |
| C10—C9—C11     | 118.67 (16)  | C14—C15—H15A    | 109.00       |
| N1—C10—C9      | 178.20 (19)  | C14—C15—H15B    | 109.00       |
| N2—C11—C9      | 127.76 (17)  | C16—C15—H15A    | 109.00       |
| O1—C11—N2      | 110.71 (15)  | C16—C15—H15B    | 109.00       |
| O1—C11—C9      | 121.53 (15)  | H15A—C15—H15B   | 108.00       |
| O1—C12—C17     | 110.90 (15)  | C15—C16—H16A    | 109.00       |
| O1—C12—C13     | 123.06 (15)  | C15—C16—H16B    | 109.00       |
| C13—C12—C17    | 126.03 (17)  | C17—C16—H16A    | 109.00       |
| C8—C13—C12     | 122.92 (16)  | C17—C16—H16B    | 109.00       |
| C8—C13—C14     | 117.92 (15)  | H16A—C16—H16B   | 108.00       |
| C12—C13—C14    | 119.08 (15)  | C12—C17—H17A    | 110.00       |
| C13—C14—C15    | 117.94 (17)  | C12—C17—H17B    | 109.00       |
| O2—C14—C13     | 120.64 (16)  | C16—C17—H17A    | 110.00       |
| O2—C14—C15     | 121.34 (18)  | C16—C17—H17B    | 109.00       |
| C14—C15—C16    | 113.52 (19)  | H17A—C17—H17B   | 108.00       |
|                |              |                 |              |
| C11—O1—C12—C17 | 173.14 (14)  | C1—C8—C9—C10    | -64.06 (19)  |
| C12—O1—C11—N2  | -173.77 (14) | C1—C8—C13—C14   | 70.02 (19)   |
| C12—O1—C11—C9  | 6.5 (2)      | C9—C8—C13—C12   | 11.5 (2)     |
| C11—O1—C12—C13 | -5.9 (2)     | C9—C8—C13—C14   | -165.32 (14) |
| C8—C1—C2—C3    | -179.03 (16) | C8—C9—C11—N2    | -177.03 (16) |
| C2—C1—C6—C5    | -0.2(3)      | C10—C9—C11—O1   | -179.21 (15) |
| C8—C1—C6—C5    | 178.89 (16)  | C10—C9—C11—N2   | 1.1 (3)      |
| C6—C1—C2—C3    | 0.0(3)       | C8—C9—C11—O1    | 2.6 (2)      |
| C2—C1—C8—C9    | 110.95 (17)  | O1—C12—C13—C8   | -4.0(3)      |
| C2—C1—C8—C13   | -125.98 (17) | O1—C12—C13—C14  | 172.80 (14)  |
| C6—C1—C8—C9    | -68.1 (2)    | C17—C12—C13—C8  | 177.11 (16)  |
| C6—C1—C8—C13   | 55.0 (2)     | C17—C12—C13—C14 | -6.1(3)      |
| C1—C2—C3—C4    | 0.4(3)       | O1—C12—C17—C16  | 162.42 (15)  |
| C2—C3—C4—C5    | -0.8(3)      | C13—C12—C17—C16 | -18.6(3)     |
| C2—C3—C4—C7    | 178.95 (18)  | C8—C13—C14—O2   | 2.0(2)       |
| C3—C4—C5—C6    | 0.6(3)       | C8—C13—C14—C15  | 178.87 (15)  |
| C7—C4—C5—C6    | -179.08 (18) | C12—C13—C14—O2  | -174.91 (16) |
| C4—C5—C6—C1    | -0.2(3)      | C12—C13—C14—C15 | 1.9 (2)      |
| C1—C8—C9—C11   | 114.11 (17)  | O2—C14—C15—C16  | -156.13 (19) |
| C13—C8—C9—C10  | 170.93 (14)  | C13—C14—C15—C16 | 27.0 (2)     |
| C13—C8—C9—C11  | -10.9(2)     | C14—C15—C16—C17 | -51.4 (2)    |
| C1—C8—C13—C12  | -113.18 (18) | C15—C16—C17—C12 | 46.3 (2)     |

#### Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the 4H-pyran ring (O1/C8/C9/C11-C13) and the benzene ring (C1-C6), respectively.

| <i>D</i> —H··· <i>A</i>            | <i>D</i> —H | $H\cdots A$ | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|------------------------------------|-------------|-------------|-----------|-------------------------|
| N2—H2A···N1 <sup>i</sup>           | 0.86        | 2.31        | 3.168 (2) | 175                     |
| N2—H2 <i>B</i> ···O2 <sup>ii</sup> | 0.86        | 2.18        | 3.017(2)  | 164                     |
| C2—H2···N1 <sup>iii</sup>          | 0.93        | 2.53        | 3.277 (2) | 138                     |

| C6—H6··· <i>Cg</i> 1                         | 0.93 | 2.79 | 3.128 (2) | 102 |
|----------------------------------------------|------|------|-----------|-----|
| C7—H7 <i>A</i> ··· <i>Cg</i> 2 <sup>iv</sup> | 0.96 | 2.87 | 3.640(2)  | 138 |

Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z+2.