Cryptographic Hardness of PPAD via Non-Interactive Arguments

Pavel Hubáček

Chethan Kamath

Krzysztof Pietrzak

Alon Rosen

Guy Rothblum

Nir Bitansky

Justin Holmgren

Alex Lombardi

Omer Paneth

Ron Rothblum

Polynomial-Parity Argument on Digraphs (PPAD)

Class of Total Search Problems

Polynomial-Parity Argument on Digraphs (PPAD)

Class of Total Search Problems

Can we use Cryptography to show PPAD Hardness?

Polynomial-Parity Argument on Digraphs (PPAD)

Class of Total Search Problems

Can we use Cryptography to show PPAD Hardness?

End of Line (EOL)

End of Line (EOL)

Goal: Find
$$v$$
 such that $P(S(v)) \neq v$ or $S(P(v)) \neq v \neq 0^n$

Sink of Verifiable Line (SVL)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(T,\sigma_T)=1$

Promise:

 $Verifier(i, \sigma_i) = 1 \iff Successor^{i-1}(1, \sigma_1)$

SVL not in TFNP

SVL Reduces to EOL

If path is verifiable, then Predecessor is for free. Use [Bennett'89] ideas of reversible computation via pebbling.

SVL Reduces to EOL

SVL Reduces to EOML

PPAD

Obfustopia

Obfuscation Approach to EOL Hardness

[Bitansky-Paneth Rosen'15, Garg-Pandey-Srinivasan'16, Hubáček-Yogev'17]

- 1. Generate labels σ_i to be pseudorandom (PRF).
- 2. Obfuscate Successor and Verifier to hide PRF key.

Intuition: Must make "oracle" calls to traverse the graph.

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(T,\sigma_T)=1$

Promise:

$$Verifier(i, \sigma_i) = 1 \iff Successor^{i-1}(1, \sigma_1)$$

SVL not in TFNP

within T steps

wants to delegate computation to

No PPT $\overline{\mathbb{S}}$ can produce accepting Π if

Sink of Verifiable Line (SVL)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(T,\sigma_T)=1$

Promise:

 $Verifier(i, \sigma_i) = 1 \iff Successor^{i-1}(1, \sigma_1)$

SVL not in TFNP

Reduce to SVL from #SAT

Reduce to SVL from #SAT

$$\varphi(z_1,\cdots,z_n)$$
 (S,V,N)

Reduce to SVL from #SAT

$$V\left(i,\,y_i,\overline{\pi_i}\right) = \text{ACCEPT} \iff y_i \text{ is the } \# \text{ of } \vec{z} \leq i \text{ such that } \varphi(\vec{z}) = 1$$

$$S\left(i, y_{i}, \overline{\pi_{i}}\right) = i + 1, y_{i+1}, \overline{\pi_{i+1}}$$

$$V\left(i,\,y_i,\overline{\pi_i}\right) = \text{ACCEPT} \iff y_i \text{ is the } \# \text{ of } \vec{z} \leq i \text{ such that } \varphi(\vec{z}) = 1$$

Sink of Verifiable Line (SVL)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(i,\sigma_T)=1$

Promise:

 $Verifier(i, \sigma_i) = 1 \iff Successor^{i-1}(1, \sigma_1)$

SVL not in TFNP

Sink of Verifiable Line (SVL)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(i,\sigma_T)=1$

Promise:

 $Verifier(i, \sigma_i) = 1 \iff Successor^{i-1}(1, \sigma_1)$

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

Goal: Find (T,σ_T) for $T\in n^{\omega(1)}$ such that $\operatorname{Verifier}(i,\sigma_T)=1$

Promise:

$$Verifier(i, \sigma_i) = 1 \Leftarrow Successor^{i-1}(1, \sigma_1)$$

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

Goal: For $T \in n^{\omega(1)}$

- 1. Find (T,σ_T) such that ${\sf Verifier}(T,\sigma_T)=1$
- 2. Find (i, σ) such that $(i, \sigma_i) \neq \mathsf{Successor}^{i-1}(1, \sigma_1)$ but $\mathsf{Verifier}(i, \sigma_i) = 1$

Promise:

$$\mathsf{Verifier}(i,\sigma_i) = 1 \; \Leftarrow \; \mathsf{Successor}^{i-1}(1,\sigma_1)$$

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

Goal: For $T \in n^{\omega(1)}$

- 1. Find (T,σ_T) such that ${\sf Verifier}(T,\sigma_T)=1$
- 2. Find (i, σ) such that $(i, \sigma_i) \neq \text{Successor}^{i-1}(1, \sigma_1)$ but $\text{Verifier}(i, \sigma_i) = 1$

Promise:

$$\mathsf{Verifier}(i,\sigma_i) = 1 \; \Leftarrow \; \mathsf{Successor}^{i-1}(1,\sigma_1)$$

rSVL Reduces to EOML

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

Goal: For $T \in n^{\omega(1)}$

- 1. Find (T,σ_T) such that ${\sf Verifier}(T,\sigma_T)=1$
- 2. Find (i, σ) such that $(i, \sigma_i) \neq \text{Successor}^{i-1}(1, \sigma_1)$ but $\text{Verifier}(i, \sigma_i) = 1$

Promise:

$$\mathsf{Verifier}(i,\sigma_i) = 1 \; \Leftarrow \; \mathsf{Successor}^{i-1}(1,\sigma_1)$$

Arithmetization of SAT

Arithmetization

Arithmetization of SAT

Arithmetization

Number of $\vec{z} \in \{0,1\}^n$ such that $\varphi(\vec{z}) = 1$ is

$$y = \sum_{\vec{z} \in \{0,1\}^n} p(\vec{z})$$

p(0,0,0), 0 p(0,0,1), 1 p(0,1,0), 1 p(0,1,1), 1 p(1,0,0), 0 p(1,0,1), 0 p(1,1,0), 1 p(1,1,1), 0

For $T = 2^n$, number of proofs is O(T)!

Merge proofs into a single proof in poly(n) time

For $T = 2^n$, number of proofs is O(1)!

For $T = 2^n$, number of proofs is O(1)!

Non-standard assumptions.

For $T = 2^n$, number of proofs is O(1)!

Non-standard assumptions.

Proofs not computationally unique.

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

Prover

 $(p(z_1, \dots, z_n), y, N = 2^n)$

$$\sum_{z \in \{0,1\}^n} p(z) = y$$

$$(p(z_1, ..., z_n), y, N = 2^n)$$

$$p_1(X) = \sum_{z_2, ..., z_n \in \{0,1\}} p(X, z_2, ..., z_n)$$

$$p_1(0), p_1(1), ..., p_1(d)$$

$$p_1(0) + p_1(1) \stackrel{?}{=} y$$

$$\beta_1 \leftarrow_R \mathbb{F}$$

$$y_1 = p_1(\beta_1)$$

$$(p(\beta_1, ..., z_n), y_1, N/2)$$

Outline-and-Batch [Bitansky-C-Holmgren-Kamath-

Lombardi-Paneth-Rothblum'22]

- 1. Downward self reduction to d+1 statements of size N/2.
- 2. Batch d+1 statements into a single randomized statement of size N/2 using verifier randomness β .

p(0,0,1)

p(0,0,0)

p(0,0,0)

p(0,0,2)

Fiat-Shamir (FS) Methodology

Assumption: There exists a hash function such that the transformation is sound.

Incremental Merge

Incremental Merge

By Fiat-Shamir, the randomized reduction to smaller instance is non-interactive.

rSVL Labels:

rSVL Labels:

Merged and discarded

Haven't reached yet

Merged and discarded

rSVL Labels:

rSVL Labels:

rSVL Labels:

rSVL Labels:

Verifying i-th state:

- 1. Determine which nodes are active in i-th step of depth first traversal.
- 2. Verify proofs in each active node.

Depth first traversal of the (d+1)-ary tree

Putting it together

Compute $\sum_{z \in \{0,1\}^n} p(z)$ in a continuous verifiable manner

Compute root of (d+1)-ary tree

steps

$$P(N) = (d+2)P(N/2) + poly(n)$$

Proof size

$$S(N) = S(N/2) + poly(n)$$

Basic Idea: Long Computation + SNARGs

Basic Idea: Long Computation + SNARGs

Reduce Iterated Squaring to rSVL

Basic Idea: Long Computation + SNARGs

Reduce Iterated Squaring to rSVL

Outline and Batch for Iterated Squaring

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19, Ephraim-Freitag-Komargodski-Pass'20]

PPAD Hardness from Standard Cryptographic Assumptions

Open Problems

PPAD from poly LWE (proof of quantum hardness).

PPAD hardness without implying CLS hardness.

PPAD from Factoring.

Thank you. Questions?

Arka Rai Choudhuri
arkarai.choudhuri@ntt-research.com