Système d'ouverture et de fermeture de portes de tramway – Corrigé

Centrale Supelec - PSI - 2008.

Présentation

Étude du régulateur de la boucle de vitesse

Objectif

Déterminer un régulateur de vitesse permettant d'atteindre les exigences suivantes :

- écart nul en régime permanent pour une consigne de vitesse constante et un effort perturbateur, dû à la poussée des passagers, constant;
- ► marge de phase $\Delta \varphi \ge 45^\circ$ pour un modèle nominal qui sera précisé par la suite;
- ▶ bande passante la plus grande possible compte tenu de la contrainte de marge de phase;
- ► temps de réponse inférieur à 0,2 s en réponse à une variation en échelon de l'effort perturbateur.

La chaîne de régulation de vitesse est décrite par le schéma-blocs suivant où la fonction de transfert représente la chaîne de mesure de vitesse comportant un filtre du $1^{\rm er}$ ordre, de constante de temps $\tau_f=10\,{\rm ms}$, permettant de limiter l'impact des bruits de mesure et G est le gain de l'amplificateur de puissance alimentant le moteur.

On choisit d'adopter pour cette chaîne un régulateur de type proportionnel-intégral dont la fonction de transfert est : $R(p) = K_r \left(1 + \frac{1}{T_i p}\right)$.

Question 1 Au regard des exigences du cahier des charges, justifier le choix de ce type de régulateur.

On cherche d'abord à évaluer le temps de réponse vis-à-vis des perturbations.

Question 2 Déterminer la fonction de transfert en boucle fermée $T(p) = \frac{\Omega_1(p)}{F_1(p)}$ entre les perturbations dues à la poussée des passagers et la vitesse du moteur, en fonction des différentes fonctions de transfert de la figure précédente. Montrer que la réponse fréquentielle peut être approchée par la relation :

$$||T(j\omega)|| = ||H_2(j\omega)|| \cdot \min\left(||H_1(j\omega)||; \left\|\frac{1}{R(j\omega)GH_3(j\omega)}\right\|\right)$$

$$= ||H_2(j\omega)||||M(j\omega)||.$$

Pour la suite, on adopte les modèles de commande simplifiés suivants :

$$H_1(p) = \frac{10}{p}$$
 $H_2(p) = 0.05$ $H_3(p) = \frac{0.1}{1 + 0.01p}$ $G = 10$.

Afin de limiter le périmètre de l'étude, on adopte sans justification les hypothèses suivantes :

►
$$1/T_i < 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$$
;

C1-02

C2-04

▶ la situation considérée est celle de la figure suivante représentant le diagramme asymptotique de la fonction $\left\| \frac{1}{R(j\omega) GH_3(j\omega)} \right\|_{d\mathbb{B}}$ où $20 \log G_0 < 0$.

Question 3 Exprimer G_0 en fonction de K_r . En utilisant la figure précédente, tracer le diagramme asymptotique de la fonction $||H_1(j\omega)||$ (veiller au respect des pentes) et celui de $||M(j\omega)||$ en adoptant l'approximation de la question précédente.

Question 4 En déduire alors une approximation de la fonction de transfert $T(p) = \frac{\Omega_1(p)}{F_1(p)}$ en exprimant toutes les brisures en fonction de K_r et T_i .

Question 5 Proposer une nouvelle expression approchée de T(p) sous la forme $T_a(p) = \frac{N(p)}{1+\tau p}$ où N(p) est le numérateur de T(p)? En utilisant la forme approchée de $T_a(p)$, déterminer l'évolution de la vitesse $\Omega_1(t)$ en réponse à un échelon de la force de perturbation et tracer son allure.

Question 6 En se référant à des fonctions types connues donner, en fonction de T_i , un ordre de grandeur du temps de réponse vis-à-vis de la force perturbatrice.

Question 7 Justifier alors l'intérêt d'adopter pour T_i la valeur la plus petite possible.

Question 8 En vous aidant de tracés succincts de diagrammes de Bode, analyser la stabilité du système bouclé dans les deux cas : $\frac{1}{T_i} > 100 \, \mathrm{rad \, s^{-1}}$ et $\frac{1}{T_i} < 100 \, \mathrm{rad \, s^{-1}}$.

Question 9 En prenant $K_r = 1$, tracer les diagrammes de Bode asymptotiques (module et phase) de la fonction de transfert en boucle ouverte corrigée et l'allure de la courbe réelle du diagramme de phase. Veiller à effectuer ce tracé de façon à respecter une situation stable du système en boucle fermée.

Question 10 En utilisant la représentation dans le plan de Bode donnée figure suivante, déterminer quelle est la valeur $T_{i\min}$ la plus petite possible que l'on peut conférer à T_i compatible avec la marge de phase minimale exigée par le cahier des charges (cette fonction servira uniquement à calculer en plaçant judicieusement pour obtenir la marge de phase souhaitée).

Diagrammes de Bode de la fonction $A(p) = K \frac{1 + Tp}{1 + aTp}$; a < 1

Question 11 En conservant la valeur $T_{i\min}$ calculée précédemment, en déduire alors la valeur du gain K_r du régulateur permettant d'assurer la marge de phase souhaitée.

Question 12 Vérifier si le cahier des charges est validé, et conclure sur l'adéquation du régulateur calculé vis-à-vis du problème posé.