# Digital Signal Processing Fundamentals

#### **DSP Basics**

- ADC & DAC
- Signal Basics (Sine Wave)
- ADC: Sampling What's proper sampling rate?
  - Nyquist sampling rate
  - Aliasing
- Discrete Fourier Transform (DFT)
  - How to do?
  - DFT and its relationship with other transforms
  - DFT properties: symmetry, resolution
  - DFT examples
  - Using DFT in Python
- Energy vs. Power

#### Sensor Internals



#### ADC & DAC

Block diagram of a DSP system



Sample an input signal for every T seconds, which is represented using k bits

# Signal Basics





https://en.wikipedia.org/wiki/Negative\_frequency



http://1ucasvb.tumblr.com





# **Signal Basics**





T: one full cycle or period









Why are there replicas?

It's the artifact of sampling!

(due to the multiplication of impulse trains)

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-5-4842&id=336753
For more information about "replicas" please watch: https://www.youtube.com/watch?v=mxdf\_fSE2Gg

# What happens if sampling rate is too low? Aliasing



Oops, we're capturing the blue signal, instead of the red signal

This phenomenon of sinusoids changing frequency during sampling is called **aliasing**. Just as a criminal might take on an assumed name or identity (an alias), the sinusoid assumes another frequency that is not its own. Aliased signals are within the rage of sampling rate!!

# Wait! We're dealing w/ digital signals!

### Why do we need to care about aliasing?

- When you have high resolution digital signals, you may want to perform "under-sampling" (say to improve computation efficiency)
- If you're doing under-sampling, you need to remove "higher frequency" components than "under-sampling" frequency

#### **Transforms**

Fourier Transform signals that are continuous and aperiodic

Fourier Series signals that are continuous and periodic



**Discrete Time Fourier Transform** signals that are **discrete** and **aperiodic** 

Discrete Time Fourier Series signals that are discrete and periodic



https://www.dspguide.com/ch8/1.htm

#### Correlation

Correlation between two signals: x(i) and y(i)

$$\sum_{i=0}^{N} x(i)y(i)$$

### Correlation

$$\sum_{i=0}^{N} x(i)y(i)$$

Correlation between two signals: x(i) and y(i)





$$X(n)$$
 DFT  $X(k)$ 

N samples  $N$  frequency elements

• 
$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-i2\pi kn/N}$$

- Use Euler's formula:  $e^{-i\theta} = \cos \theta i \sin \theta$
- Here k ranges from 0 to N-1

• 
$$X(k) = \sum_{n=0}^{N-1} x(n) \left(\cos(2\pi kn/N) - i\sin(2\pi kn/N)\right)$$

Correlation:  

$$\sum x(n)y(n)$$
  
 $y(n) = cos(\Omega kn)$ 

Basis function!  $cos(\Omega kn)$ 

### **Fourier Series**

#### • Three different representations

| Trigonometry               | $\begin{split} x(t) &= a_0 + \sum_{k=1}^{\infty} a_k \infty s k \omega_0 t \\ &+ \sum_{k=1}^{\infty} b_k \mathrm{sin} k \omega_0 t \end{split}$ | $a_0 = \frac{1}{T} \int_T x(t) dt$ $a_k = \frac{2}{T} \int_T x(t) \cos k\omega_0 t dt$ $b_k = \frac{2}{T} \int_T x(t) \sin k\omega_0 t dt$ | $\begin{split} a_0 &= c_0 = X_0 \\ a_k &= c_k \mathrm{cos} \phi_k = X_k + X_{-k} \\ b_k &= -c_k \mathrm{sin} \phi_k = j(X_k - X_{-k}) \end{split}$ |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Simplified<br>Trigonometry | $x(t) = \sum_{k=0}^{\infty} c_k \cos\left(k\omega_0 t + \phi_k\right)$                                                                          | $c_0 = a_0, \ \phi_0 = 0$ $c_k = \sqrt{a_k^2 + b_k^2}$ $\phi_k = -\tan^{-1} \left(\frac{b_k}{a_k}\right)$                                  | $\begin{split} c_0 &= X_0 \\ c_k &= 2 X_k  \\ \phi_k &= \angle X_k \end{split}$                                                                    |
| Exponential<br>Form        | $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$                                                                                         | $X_k = \frac{1}{T} \int_{-T} x(t) e^{-jk\omega_0 t} dt$                                                                                    | $\begin{split} X_0 &= a_0 = c_0 \\ X_k &= \frac{c_k}{2} e^{j\phi_k} = \frac{1}{2} (a_k - jb_k) \\ X_{-k} &= X_k^* \end{split}$                     |









DFT 
$$X(k) = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Inverse DFT 
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

#### DFT and its relationship with other transforms

FT: Fourier Transform signals that are continuous and aperiodic

FS: Fourier Series signals that are continuous and periodic





#### **DTFT: Discrete Time Fourier Transform**

signals that are discrete and aperiodic

DTFS: Discrete Time Fourier Series signals that are discrete and periodic



https://www.dspquide.com/ch8/1.htm

#### DFT and its relationship with other transforms

**DTFT: Discrete Time Fourier Transform** 



#### Repetition of Original Signal





#### **Extract**

$$\textit{I-DFT}: x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j\Omega_{\Delta}kn}$$





**DFT** : 
$$X_N(k\Omega_{\Delta}) = \sum_{n=0}^{N-1} x[n]e^{-j\Omega_{\Delta}kn}$$

### **DFT Properties**

- Periodicity:  $x[n] = x[N+n] \iff X[k] = X[N+k]$
- Symmetry if x[n] is real: X\*[k] = X[-k]
- Convolution:  $x[n] \Box y[n] \Leftrightarrow X[k]Y[k]$

### **DFT Properties**

• If x[n] is real, X[k] is conjugate symmetric



# **DFT Properties:** Resolution

- For a given sampling frequency f<sub>s</sub>, DFT resolution can be improved by increasing # samples
- Increasing # samples
  - Capture more samples from the original signal
  - Or, do zero padding adding zeros at the end



• Find DFT of  $x[n] = \{1, 2, 3, 4\}$ 

• Find DFT of  $x[n] = \{1, 2, 3, 4\}$ 



$$= (1)(1) + (2)(1) + (3)(1) + 4(1) = 10$$

[10, 
$$-2 + j2$$
,  $-2$ ,  $-2 - j2$ ]

DC=
 $\sum x[n]$ 

- Find DFT of cos  $2\pi t \square 1$  hz signal
- Sampling frequency of 4 hz; i.e., fs = 4 hz
- Find DFT of  $x[n] = \{1, 0, -1, 0\}$



#### Find DFT of $x[n] = \{1, 0, -1, 0\}$

$$= (1)(1) + (0)(1) + (-1)(1) + (0)(1) = 0$$

$$\Delta f = 4 \text{ hz} / 4 = 1 \text{ hz}$$





fftshift rearranges a multidimensional discrete Fourier transform, represented by a multidimensional array X, by shifting the zero-frequency component to the center of X

- Find DFT of cos  $2\pi t \square 1$  hz signal
- Sampling frequency of 4 hz; i.e., fs = 4 hz
- Find DFT of  $x[n] = \{1, 0, -1, 0, 1, 0, -1, 0\}$  (N=8)



- Signal's duration = 1s
- Signal's bandwidth f<sub>b</sub> = 10khz (fixed)
- Nyquist sampling rate = 2\*f<sub>b</sub> = 20khz
- Total # of samples: N = 20khz \* 1 s = 20k
- $\Delta f = 20k hz / 20k = 1 hz$



- Signal's duration = 2s (more samples from the original data)
- Signal's bandwidth f<sub>b</sub> = 10khz (fixed)
- Nyquist sampling rate = 2\*f<sub>h</sub> = 20khz
- Total # of samples: N = 20khz \* 2 s = 40k
- $\Delta f = 20k hz / 40k = \frac{1/2 hz}{}$



- Signal's duration = 1s
- Signal's bandwidth f<sub>b</sub> = 10khz (fixed)
- Nyquist sampling rate =  $2*f_h$  = 20khz
- What happens if we increase the sampling rate?
  - $f_s > 2*f_b$  | for example,  $f_s = 40$  khz
- Total # of samples: N = 40khz \* 1 s = 40k
- $\Delta f = 40k hz / 40k = 1 hz$



- Signal's duration = 2s (more samples from the original data)
- Signal's bandwidth f<sub>b</sub> = 10khz (fixed)
- Nyquist sampling rate = 2\*f<sub>b</sub> = 20khz
- What happens if we increase the sampling rate?
  - $f_s > 2*f_b$  | for example,  $f_s = 40$  khz
- Total # of samples: N = 40khz \* 2 s = 80k
- $\Delta f = 40k hz / 80k = \frac{1/2 hz}{1}$



#### **FFT (Fast Fourier Transform)**: O(n<sup>2</sup>) $\square$ O(n log n)

#### DFT as a linear transform

$$\begin{bmatrix} F_0 \\ F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} \omega^0 & \omega^0 & \omega^0 & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \omega^3 \\ \omega^0 & \omega^2 & \omega^4 & \omega^6 \\ \omega^0 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

#### Recursive FFT

```
FFT(n, [a_0, a_1, ..., a_{n-1}]):

if n=1: return a_0

F_{even} = FFT(n/2, [a_0, a_2, ..., a_{n-2}])

F_{odd} = FFT(n/2, [a_1, a_3, ..., a_{n-1}])

for k = 0 to n/2 - 1:

\omega^k = e^{2\pi i k/n}

y^k = F_{even \ k} + \omega^k F_{odd \ k}

y^{k+n/2} = F_{even \ k} - \omega^k F_{odd \ k}

return [y_0, y_1, ..., y_{n-1}]
```

#### Recursion Unrolled conquer $f_0 - f_4 - \omega^2 (f_2 - f_6) - \omega^3 (f_1 - f_5 - \omega^2 (f_5 - f_7)) = F_7$ $f_1 - f_5 - \omega^2 (f_3 - f_7)$ $f_1 + f_5 - (f_3 + f_7)$ $f_0 + f_4 - (f_2 + f_6) - \cos^2(f_1 + f_5 - (f_3 + f_7)) = F_6$ $f_1 - f_5 + \omega^2 (f_3 - f_7)$ $f_0 - f_4 + \omega^2 (f_2 - f_6) - \omega (f_1 - f_5 + \omega^2 (f_3 - f_7)) = F_5$ f1+f5+f3+f7 $f_0 + f_4 + f_2 + f_6 - (f_1 + f_5 + f_3 + f_7) = F_4$ $f_0 - f_4 - \omega^2 (f_2 - f_6) + \omega^3 (f_1 - f_5 - \omega^2 (f_3 - f_7)) = F_3$ $f_0 - f_4 - \omega^2 (f_2 - f_6)$ $f_2 - f_6$ $f_0+f_4-(f_2+f_6)+\omega^2(f_1+f_5-(f_3+f_7)) = F_2$ fo+f4-(f2+f6) $f_0 - f_4 + \omega^2 (f_2 - f_6)$ $f_0 - f_4 + \omega^2 (f_2 - f_6) + \omega (f_1 - f_5 + \omega^2 (f_3 - f_7)) = F_1$

fo+f4+f2+f6

CSE 373: Data Structures & Algorithms

 $f_0 + f_4 + f_2 + f_6 + f_1 + f_5 + f_3 + f_7 = \mathbf{F}_0$ 

Autumn 2016

# The numpy.fft Module

| Function     | Purpose                                                                                       | Remarks                                                                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fft(s)       | Computes the forward DFT and returns the coefficients <i>F</i>                                | The returned array is a complex array.                                                                                                                                   |
| ifft(F)      | Computes the inverse DFT and returns the signal s                                             |                                                                                                                                                                          |
| fftfreq(n,d) | Computes the natural frequencies/wavenumbers. d is an optional sample spacing (default is 1). | The zero frequency is in the first position of the array, followed by the positive frequencies in ascending order, and then the negative frequencies in descending order |
| fftshift(F)  | Shifts the zero frequency to the center of the array.                                         | This can be used on either the frequencies or the spectral coefficients to put the zero frequency in the center.                                                         |

# Energy vs. Power

| Property | Continuous                                                                      | Discrete                                                                             |  |
|----------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Energy   | $E_x = \int_{-\infty}^{\infty}  x(t) ^2 dt < \infty$                            | $E_x = \sum_{n=-\infty}^{\infty}  x[n] ^2$                                           |  |
| Power    | $P_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T}  x(t) ^{2} dt < \infty$ | $P_x = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-\infty}^{\infty}  x[n] ^2 < \infty$ |  |

Energy: joule

Power: joule per second

# Power Gain (or Power Ratio)

#### Decibel - Power Gain



$$A_p = \frac{P_o}{P_i} = \frac{200}{100} = 2$$

$$A_p = 10\log_{10}\frac{200}{100} = 3dB$$
(log 2 = 0.301)

A 3dB gain is a doubling of power

#### Decibel - Power Gain



$$A_p = 10 \log_{10} \frac{100}{200} = -3dB$$

A -3dB gain is a halving of power

# Decibel (dB)

Two levels of power can be compared using a unit of measure called the *bel*.

$$B = \log_{10} \frac{P_2}{P_1}$$

The *decibel* is defined as:

$$1 \text{ bel} = 10 \text{ decibels (dB)}$$

|                         | Power ratio | Voltage ratio |                                              |               |                |
|-------------------------|-------------|---------------|----------------------------------------------|---------------|----------------|
| $-20  \mathrm{dB}$      | 0.01        | 0.1           |                                              |               |                |
| $-10  \mathrm{dB}$      | 0.1         | 0.32          | Power Ratio                                  | Voltage Ratio | Decibel Value  |
| 2 ID                    | 0.50        |               | 1 2                                          | 1<br>1.4      | 0dB<br>3dB     |
| -3  dB                  | 0.50        | 0.71          | 4                                            | 2             | 6dB            |
| 1 JD                    | 0.74        | 0.89          | 10                                           | 3.16          | 10 dB          |
| -1 dB                   | 0.74        |               | 100                                          | 10            | 20 dB          |
| 0 dB                    | <b>4</b>    | 1             | 1,000                                        | 31.6          | 30 dB          |
| U ub                    | 1           | 1             | 10,000<br>100,000                            | 100<br>316    | 40 dB<br>50 dB |
| 1 dB                    | 1.26        | 1.12          | 1,000,000                                    | 1,000         | 60 dB          |
| 1 ub                    | 1.20        | 1.12          | 10,000,000                                   | 10,000        | 80 dB          |
| 3 dB                    | 2.00        | 1.41          | 100,000,000                                  | 100,000       | 100 dB         |
| 10 dB                   | 10          | 3.16          |                                              |               |                |
| 20.10                   | 100         | 10            |                                              | n             |                |
| 20 dB                   | 100         | 10            | Power: $dB = 10\log_{10} \frac{P_2}{P_1}$    |               |                |
| 10 ID                   | 102         | 100/2         |                                              | $P_{1}$       |                |
| $n \cdot 10 \text{ dB}$ | $10^{n}$    | $10^{n/2}$    |                                              |               |                |
|                         |             |               | Amplitude: $dB = 20\log_{10}\frac{A_2}{A_1}$ |               |                |

(Voltage)

#### **DSP Basics**

- ADC & DAC
- Signal Basics (Sine Wave)
- ADC: Sampling What's proper sampling rate?
  - Nyquist sampling rate
  - Aliasing
- Discrete Fourier Transform (DFT)
  - How to do?
  - DFT and its relationship with other transforms
  - DFT properties: symmetry, resolution
  - DFT examples
  - Using DFT in Python
- Energy vs. Power