On the Practical Security of White-Box Cryptography

Thesis Defense

by Junwei Wang (王军委) on June 24, 2020

Supervisors Jean-Sébastien Coron, Sihem Mesnager **Advisors** Pascal Paillier, Matthieu Rivain

» White-Box Threat Model

To extract a cryptographic key

Where from a software implementation of cipher

» White-Box Threat Model

To extract a cryptographic key

Where from a software implementation of cipher

Whom by malwares, co-hosted applications, user themselves, · · ·

» White-Box Threat Model

White-Box Cryptography

To extract a cryptographic key

Where from a software implementation of cipher

Whom by malwares, co-hosted applications, user themselves, · · ·

How by all kinds of means

- analyze the code
- * spy on the memory
- * interfere the execution
- * • •

» Motivation and Real-World Applications

Credits to [Shamir, van Someren 99]

» Motivation and Real-World Applications

- * Why not using secure hardware?
 - * not always available
 - expensive (to produce, deploy, integrate, update)
 - * usually has a long lifecycle
 - * security breach is hard to mitigate

Credits to [Shamir, van Someren 99]

» Motivation and Real-World Applications

- * Why not using secure hardware?
 - * not always available
 - expensive (to produce, deploy, integrate, update)
 - usually has a long lifecycle
 - security breach is hard to mitigate
- * Applications
 - Digital Content Distribution
 - Mobile Payment
 - Digital Contract Signing
 - Blockchains and cryptocurrencies

Credits to [Shamir, van Someren 99]

» White-Box Compiler

[Delerablée et al. 14]

A **white-box compiler** takes as input a *secret key* and generates a "white-box secure" program implementing some specific crypto. algo. with the specified secret key.

» White-Box Compiler

White-Box Cryptography

[Delerablée et al. 14]

A **white-box compiler** takes as input a *secret key* and generates a "white-box secure" program implementing some specific crypto. algo. with the specified secret key.

- * White-box security notions
 - Unbreakability (hardness of key-extraction)
 - * One-wayness
 - * Incompressibility
 - * Traceability

» White-Box Compiler

White-Box Cryptography

[Delerablée et al. 14]

A **white-box compiler** takes as input a *secret key* and generates a "white-box secure" program implementing some specific crypto. algo. with the specified secret key.

- * White-box security notions
 - * Unbreakability (hardness of key-extraction)
 - * One-wayness
 - * Incompressibility
 - * Traceability

No provably secure unbreakable white-box compiler for standard block ciphers is known.

» Historical White-Box Compilers

Transform a cipher into a series of randomized key-dependent lookup tables.

Illustration from [Wyseur12]

» Historical White-Box Compilers

Transform a cipher into a series of randomized key-dependent lookup tables.

Illustration from [Wyseur12]

» Historical White-Box Compilers: Internal Encodings

» Historical White-Box Compilers: Internal Encodings

» Historical White-Box Compilers: Internal Encodings

» Timeline: A Cat-And-Mouse Game

- * 2002: seminal wb-DES [Chow et al. 02]
- * 2003: seminal wb-AES [Chow et al. 03]
- * 2005: variant wb-DES [Link, Neumann 05]
- * 2006: variant wb-AES [Bringer et al. 06]
- * 2009: variant wb-AES [Xiao, Lai 09]
- * 2010: variant wb-AES [Karroumi 10]
- * • •

» Timeline: A Cat-And-Mouse Game

- * 2002: seminal wb-DES [Chow et al. 02]
- * 2003: seminal wb-AES [Chow et al. 03]
- * 2005: variant wb-DES [Link, Neumann 05]
- * 2006: variant wb-AES [Bringer et al. 06]
- * 2009: variant wb-AES [Xiao, Lai 09]
- * 2010: variant wb-AES [Karroumi 10]
- * •

- * 2002: fault attack against wb-DES [Jacob et al. 02]
- * 2004: BGE attack [Billet et al. 04]
- * 2007: attack wb-DES [Goubin et al 07, Wyseur et al. 07]]
- * 2009: attack wb-AES [Michiels et al. 09]
- * 2010: attack Bringer et al. variant [De Mulder et al. 10]
- * 2012: attack Xiao-Lai variant [De Mulder et al. 12]
- * 2013: attack improvements and Karroumi variant [Lepoint et al.13]
- * •

» Obscurity as a Solution

- * All public designs are broken
- * No provably secure solution

- * Growing demand in industry
- * Huge application potential

Security through obscurity: home-made design + obfuscation

Time consuming reverse engineering + structural analysis

White-Box Cryptography

[Bos et al. 2016, Sanfelix et al. 2015]

Differential power analysis (DPA) techniques on computational leakages.

gray-box model

side-channel leakages (noisy)
e.g. power / EM / time / · · ·

white-box model

computational leakages (noisy-free) e.g. registers / accessed memory / · · ·

» Differential Computation Analysis (DCA) (cont.)

[Bos et al. 2016, Sanfelix et al. 2015]

Implying strong *linear correlation* between the sensitive variables φ_k and the leaked samples in the computational traces.

Many publicly available implementations are broken by DCA.

» WhibOx Competitions

White-Box Cryptography

* Organized as CHES CTF events

The competition gives an opportunity for researchers and practitioners to confront their (secretly designed) white-box implementations to state-of-the-art attackers

- WhibOx 2017

- * Designer: to submit the C source codes of AES-128 with secret key
- * Attacker: to reveal the hidden key
- * No need to disclose identity or underlying techniques

» WhibOx Competitions (cont.)

- * WhibOx 2017
 - * 94 submissions were **all broken** by 877 individual breaks
 - * most (86%) of them were alive for < 1 day
 - st mostly broken by DCA [Bock and Treff 20]

» WhibOx Competitions (cont.)

- * WhibOx 2017
 - * 94 submissions were **all broken** by 877 individual breaks
 - st most (86%) of them were alive for < 1 day
 - * mostly broken by DCA [Bock and Treff 20]
- * WhibOx 2019
 - * New rules encourage designers to submit "smaller" and "faster" implementations
 - * 27 submissions with 124 individual breaks
 - * 3 implementations survived, but broken after the competition

» WhibOx Competitions (cont.)

- * WhibOx 2017
 - * 94 submissions were all broken by 877 individual breaks
 - st most (86%) of them were alive for < 1 day
 - * mostly broken by DCA [Bock and Treff 20]
- * WhibOx 2019
 - st New rules encourage designers to submit "smaller" and "faster" implementations
 - 27 submissions with 124 individual breaks
 - * 3 implementations survived, but broken after the competition
- Both winning implementations due to Biryukov and Udovenko, and broken in this thesis with Goubin, Paillier and Rivain

» Thesis Contribution

- Analyze in-depth why DCA can break internal encodings and propose new efficient attacks against internal encodings
- * Propose new different advanced gray-box attack paths
- Analyze advanced gray-box countermeasures against new attack paths
- Propose data-dependency analysis with substantially improved complexity over the existing attacks
- * Break the winning challenges from two editions of WhibOx competitions

» Publications

- [RW19] Rivain and Wang. "Analysis and Improvement of Differential Computation Attacks against Internally-Encoded White-Box Implementations". In: TCHES 2019 Issue 2.
- [BRVW19] Bogdanov, Rivain, Vejre, and Wang. "Higher-Order DCA against Standard Side-Channel Countermeasures". In: COSADE 2019.
- [GPRW20] Goubin, Paillier, Rivain, and Wang. "How to reveal the secrets of an obscure white-box implementation". In: Journal of Cryptographic Engineering Volume 10 Issue 1.
- [GRW20] Goubin, Rivain, and Wang. "Defeating State-of-the-Art White-Box Countermeasures with Advanced Gray-Box Attacks". In: **TCHES 2020**Issue 3.

» Passive Gray-Box Adversary Model

White-Box Cryptography

[GRW20]

* For each of N chosen $(x^{(i)})_{1 \leq i \leq N}$, collect a computational trace of t samples

$$\boldsymbol{v}=(v_1,v_2,\cdots,v_t)$$

Build a distinguisher D:

$$(\gamma_k)_{k \in \mathcal{K}} = \mathsf{D}\left((x^{(i)})_i, (\boldsymbol{v}^{(i)})_i\right)$$

st Choose key candidate: $rgmax_{k \in \mathcal{K}} \gamma_k$

» Passive Gray-Box Adversary Model

White-Box Cryptography

[GRW20]

* For each of N chosen $(x^{(i)})_{1 \leq i \leq N}$, collect a computational trace of t samples

$$\boldsymbol{v} = (v_1, v_2, \cdots, v_t)$$

* Build a distinguisher D:

$$(\gamma_k)_{k \in \mathcal{K}} = \mathsf{D}\left((x^{(i)})_i, (v^{(i)})_i\right)$$

st Choose key candidate: $rgmax_{k \in \mathcal{K}} \gamma_k$

- * Number samples in attacked trace (window): t
- * Required number traces: N

» Outline

DCA Analysis and Improvements against Internal Encodings

Advanced Gray-Box Countermeasures and Attacks

Data-Dependency Analysis

DCA Analysis and Improvements against Internal Encodings

- $\ast\,$ DCA against Internal Encodings
- * Collision Attack

sensitive variable

input

» Internal Encoding Leakage

* $\varepsilon \circ \varphi_k$, as a result of some table look-ups, is leaked in the memory

» Internal Encoding Leakage

- * $\varepsilon \circ \varphi_k$, as a result of some **table look-ups**, is **leaked in the memory**
- st To exploit the leakage of $arepsilon\circarphi_k$, it is necessary that n>m

DCA Analysis and Improvements against Internal Encodings

- $* \ \ \textbf{DCA against Internal Encodings}$
- * Collision Attac

Based on well-established theory – Boolean correlation, instead of difference of means: for any key guess \boldsymbol{k}

$$\rho_k = \operatorname{Cor} \Big(, \Big)$$

Based on well-established theory – Boolean correlation, instead of difference of means: for any key guess \boldsymbol{k}

$$\rho_k = \operatorname{Cor}\Big(\varphi_k(\cdot)[i] , \qquad \Big)$$

Based on well-established theory – Boolean correlation, instead of difference of means: for any key guess k

$$\rho_k = \operatorname{Cor}\Big(\varphi_k(\cdot)[i] , \ \varepsilon \circ \varphi_{k^*}(\cdot)[j]\Big)$$

Based on well-established theory – Boolean correlation, instead of difference of means: for any key guess k

$$\rho_k = \operatorname{Cor}\Big(\varphi_k(\cdot)[i] , \ \varepsilon \circ \varphi_{k^*}(\cdot)[j]\Big)$$

DCA success (roughly) requires:

$$\left|\rho_{k^*}\right| > \max_{k^{\times}} \left|\rho_{k^{\times}}\right|$$

- » Distributions of ho_{k^*} and $ho_{k^ imes}$
 - st **Ideal** assumption: $ig(arphi_k ig)_k$ are mutually independent random (n,m) functions

- » Distributions of ho_{k^*} and $ho_{k^ imes}$
 - * **Ideal** assumption: $(\varphi_k)_k$ are mutually independent random (n,m) functions

Correct key guess k^* ,

$$\rho_{k^*} = 2^{2-m}N^* - 1$$

where

$$N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$$
.

Only depends on m

- » Distributions of ρ_{k*} and $\rho_{k\times}$
 - * **Ideal** assumption: $(\varphi_k)_k$ are mutually independent random (n,m) functions

Correct key guess k^* ,

$$\rho_{k^*} = 2^{2-m}N^* - 1$$

where

$$N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$$
 .

Incorrect key guess k^{\times} .

$$\rho_{k^{\times}} = 2^{2-n}N^{\times} - 1$$

where

$$N^{\times} \sim \mathcal{HG}(2^{n}, 2^{n-1}, 2^{n-1})$$
.

» Lemma

Lemma

Let $\mathcal{B}(n)$ be the set of balanced *n*-bit Boolean functions. If $f \in \mathcal{B}(n)$ and $a \stackrel{\$}{\leftarrow} \mathcal{B}(n)$ independent of f, then the balanceness of f+q is $\mathrm{B}(f+q)=4\cdot N-2^n$ where $N\sim\mathcal{HG}(2^n,2^{n-1},2^{n-1})$ denotes the size of

With

$$\operatorname{Cor}(f+g) = \frac{1}{2^n} \operatorname{B}(f+g)$$

$$ho_{k^*} = 2^{2-m}N^* - 1$$
 and $ho_{k^{\times}} = 2^{2-n}N^{\times} - 1$

where $N^* \sim \mathcal{HG}(2^m,2^{m-1},2^{m-1})$ and $N^ imes \sim \mathcal{HG}(2^n,2^{n-1},2^{m-1})$.

» Distributions of ho_{k^*} and $ho_{k^{ imes}}$

» Distributions of ho_{k^*} and $ho_{k^ imes}$

» DCA Success Rate: $|
ho_{k^*}| > \max_{k^ imes} |
ho_{k^ imes}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \geq 2m + 2$.

» DCA Success Rate: $|
ho_{k^*}| > \max_{k^ imes} |
ho_{k^ imes}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \geq 2m + 2$.

» DCA Success Rate: $|
ho_{k^*}| > \max_{k^ imes} |
ho_{k^ imes}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \geq 2m + 2$.

- * *Byte* encoding protected AES
- * DCA has failed to break it before this work

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- st Our approach: target an output byte of MixColumn in the first round

 x_1

x

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- st Our approach: target an output byte of MixColumn in the first round

 $\mathbf{Sbox}(x_1 \oplus k_1)$

 $\mathbf{Sbox}(x_2 \oplus k_2)$

 $\mathbf{Sbox}(k_3)$

 $\mathbf{Sbox}(k_4)$

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- st Our approach: target an output byte of MixColumn in the first round

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- * Our approach: target an output byte of MixColumn in the first round

 $2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2) \oplus \mathbf{Sbox}(k_3) \oplus \mathbf{Sbox}(k_4)$

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- * Our approach: target an output byte of MixColumn in the first round

 $2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2) \oplus$

- * Byte encoding protected AES
- * DCA has failed to break it before this work
- * Our approach: target an output byte of MixColumn in the first round

$$arphi_{k_1||k_2}(x_1||x_2) = 2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2)$$

$$arepsilon' = arepsilon \circ \oplus_c ,$$

$$n = 16, m = 8 , |\mathcal{K}| = 2^{16}.$$

* Attack results: \sim 1800 traces

Byte encoding can be efficiently broken

DCA Analysis and Improvements against Internal Encodings

- DCA against Internal Encodings
- * Collision Attack

N inputs & raw traces

» Collision Attack

N inputs & raw traces $\binom{N}{2}$ collision predictions & traces

» Collision Attack

N inputs & raw traces $\binom{N}{2}$ collision predictions & traces

» Collision Attack Explanation

Based on the principle:

$$\varphi_k(x_1) = \varphi_k(x_2) \Leftrightarrow \varepsilon \circ \varphi_k(x_1) = \varepsilon \circ \varphi_k(x_2)$$

» Collision Attack Explanation

Based on the principle:

$$\varphi_k(x_1) = \varphi_k(x_2) \Leftrightarrow \varepsilon \circ \varphi_k(x_1) = \varepsilon \circ \varphi_k(x_2)$$

Trace Complexity:

$$N = \mathcal{O}\left(2^{\frac{m}{2}}\right)$$

» Attack the NSC Variant

* Same to DCA: targeting at one 1-st round MixColumn output byte

$$\varphi_{k_1||k_2}(x_1||x_2) = 2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2)$$

* Attack results: 60 traces

» Contribution Summary

- * DCA against internal encodings has been analysed in depth
 - * Allows to attack wider encodings
- * Propose new class of collision attacks with very low trace complexity
- Mutual information analysis with similar trace complexity but higher computation complexity
- Hence, protecting AES with internal encodings in the beginning rounds is insufficient

••••••••

Advanced Gray-Box Countermeasures and Attacks

- * Linear Masking, Higher-Order DCA, and Linear Decoding Analysis
- * Algebraic Security and Non-Linear Masking
- \ast Shuffling

» Random Source

[BRVW19]

* Countermeasures need randomness.

» Random Source

- * Countermeasures need randomness.
- * Plaintext is the only source of randomness

» Random Source

[BRVW19]

- * Countermeasures need randomness.
- * Plaintext is the only source of randomness
- Security criteria:
 Pseudorandomness no statistical flaw
 Obscurity the design should be kept secret
 Obfuscation hard to distinguish from other intermediate variables

Advanced Gray-Box Countermeasures and Attacks

- * Linear Masking, Higher-Order DCA, and Linear Decoding Analysis
- * Algebraic Security and Non-Linear Masking
- * Shuffling

» Linear Masking [Ishai et al. 03]

* Intermediate value x is split into n shares

$$x = x_1 \oplus x_2 \cdots \oplus x_n$$

- st Shares are manipulated separately such that any subset of at most n-1 shares is independent of x
- st Resistant against (n-1)-th order DCA attacks

» Higher-Order DCA (HO-DCA)

[BVRW19]

* Trace **pre-processing**: an *n*-th order trace contains $q = {t \choose n}$ points:

Advanced Gray-Box Countermeasures and Attacks

- st The natural combination function ψ is XOR sum
- * Perform DCA attacks on the higher-order traces
- * Linear masking can be broken
 - * \exists fixed n positions in which the shares are

» Higher-Order DCA (HO-DCA)

[BVRW19]

* Trace **pre-processing**: an *n*-th order trace contains $q = {t \choose n}$ points:

Advanced Gray-Box Countermeasures and Attacks

- st The natural combination function ψ is XOR sum
- * Perform DCA attacks on the higher-order traces
- * Linear masking can be broken
 - * \exists fixed n positions in which the shares are

$$\binom{1000}{5} \approx 2^{43}$$

[GPRW20]

* Assumption: there exists a linear decoding function

$$D(v_1, v_2, \cdots, v_t) = \underbrace{a_0} \oplus \left(\bigoplus_{1 \le i \le t} \underbrace{a_i \cdot v_i} \right) = \varphi_k(x)$$

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

[GPRW20]

* Assumption: there exists a linear decoding function

$$D(v_1, v_2, \cdots, v_t) = \mathbf{a_0} \oplus \left(\bigoplus_{1 \le i \le t} \mathbf{a_i} \cdot v_i\right) = \varphi_k(x)$$

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

$$v_1^{(1)} \quad \cdots \quad v_t^{(1)} \qquad \qquad x^{(1)}$$

[GPRW20]

* Assumption: there exists a linear decoding function

$$D(v_1, v_2, \cdots, v_t) = \underbrace{a_0} \oplus \left(\bigoplus_{1 \le i \le t} \underbrace{a_i \cdot v_i} \right) = \varphi_k(x)$$

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

[GPRW20]

* Assumption: there exists a linear decoding function

$$D(v_1, v_2, \cdots, v_t) = \underbrace{a_0} \oplus \left(\bigoplus_{1 \le i \le t} \underbrace{a_i \cdot v_i} \right) = \varphi_k(x)$$

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

[GPRW20]

* Assumption: there exists a linear decoding function

$$D(v_1, v_2, \cdots, v_t) = \underbrace{a_0} \oplus \left(\bigoplus_{1 \le i \le t} \underbrace{a_i \cdot v_i} \right) = \varphi_k(x)$$

Advanced Grav-Box Countermeasures and Attacks

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

$$\begin{bmatrix} 1 & v_1^{(1)} & \cdots & v_t^{(1)} \\ 1 & v_1^{(2)} & \cdots & v_t^{(2)} \\ 1 & \vdots & \ddots & \vdots \\ 1 & v_1^{(N)} & \cdots & v_t^{(N)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \varphi_k(x^{(1)}) \\ \varphi_k(x^{(2)}) \\ \vdots \\ \varphi_k(x^{(N)}) \end{bmatrix}$$

» Linear Decoding Analysis (LDA) (cont.)

[GPRW20]

* Record the v_i 's over N executions:

$$\begin{bmatrix} 1 & v_1^{(1)} & \cdots & v_t^{(1)} \\ 1 & v_1^{(2)} & \cdots & v_t^{(2)} \\ 1 & \vdots & \ddots & \vdots \\ 1 & v_1^{(N)} & \cdots & v_t^{(N)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \varphi_k(x^{(1)}) \\ \varphi_k(x^{(2)}) \\ \vdots \\ \varphi_k(x^{(N)}) \end{bmatrix}$$

- * Linear masking is vulnerable to LDA
 - * system solvable for k^*
 - * but not for incorrect key guess k^{\times}
- * Trace Complexity $t + \mathcal{O}(1)$
- * Computation complexity $\mathcal{O}\left(t^{2.8}\cdot|\mathcal{K}|\right)$

 $1000^{2.8} \approx 2^{28}$

» Breaking WhibOx 2017 Winning Challenge with LDA

[GPRW20]

- * Small windows located for target variables
- $\overline{*}$ The 3rd s-box $\overline{t}=35, \min(n)=2 \implies \mathsf{HO} ext{-DCA: } 2^{18}, \,\,\mathsf{and}\,\,\mathsf{LDA: } 2^{22}$

Bit	Encoding coefficients				
1	000000101011100010101000000000000000000				
2	000000100110111111100000000000000000000				
3	000000001010001110111000000000000000000				
4	000000001100011101110000000000000000000				
5	000000011001000000111000000000000000000				
6	000000000100000001000000000000000000000				
7	000000100010010101010000000000000000000				
8	000000010001100000000000000000000000000				

The solution of the system of equations for each bit in the 3rd byte

» Breaking WhibOx 2017 Winning Challenge with LDA

[GPRW20]

- * Small windows located for target variables
- * The 3rd s-box $t=35, \min(n)=2$ \Longrightarrow HO-DCA: 2^{18} , and LDA: 2^{22}

Bit	Encoding coefficients				
1	000000101011100010101000000000000000000				
2	000000100110111111000000000000000000000				
3	000000001010001110111000000000000000000				
4	000000001100011101110000000000000000000				
5	000000011001000000111000000000000000000				
6	$ \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$				
7	000000100010010101010				
8	000000010001001100000000000000000000000				

The solution of the system of equations for each bit in the 3rd byte

* The 14th s-box: $t=45, \min(n)=9$ \Longrightarrow HO-DCA: 2^{49} , and LDA: 2^{23}

Advanced Gray-Box Countermeasures and Attacks

- st Linear Masking, Higher-Order DCA, and Linear Decoding Analysi.
- * Algebraic Security and Non-Linear Masking
- * Shufflin

[Biryukov and Udovenko 18]

- * Introduced by Biryukov and Udovenko at Asiacrypt 2018
- To capture LDA like algebraic attack

A d-th degree algebraically-secure non-linear masking ensures that any function of up to d degree to the intermediate variables should not compute a "predictable" variable.

» First-Degree Secure Non-Linear Masking

[Biryukov and Udovenko 18]

* Quadratic decoding function

$$(a,b,c)\mapsto ab\oplus c$$

Advanced Gray-Box Countermeasures and Attacks

- Secure gadgets for bit XOR, bit AND, and refresh
- * Provably secure composition
- But vulnerable to DCA attack

$$\mathsf{Cor}(ab \oplus c,\ c) = rac{1}{2}$$

Empirically, suggest using a combination of linear masking and non-linear masking to thwart both DCA (probing security) and LDA (algebraic security).

» Combination of Linear Masking and Non-linear Masking

[GRW20]

- * Three possible natural combinations:
 - 1. apply linear masking on top of non-linear masking

$$x = (a_1 \oplus a_2 \oplus \cdots \oplus a_n)(b_1 \oplus b_2 \oplus \cdots \oplus b_n) \oplus (c_1 \oplus c_2 \oplus \cdots \oplus c_n)$$

2. apply non-linear masking on top of linear masking

$$x = (a_1b_1 \oplus c_1) \oplus (a_2b_2 \oplus c_2) \oplus \cdots \oplus (a_nb_n \oplus c_n)$$
.

3. merge the two maskings into a new encoding

$$x = ab \oplus c_1 \oplus c_2 \oplus \cdots \oplus c_n$$
.

 For first two combinations, the combined masking gadgets can be simply derived from the original gadgets of both schemes.

» Higher-Degree Decoding Analysis (HDDA)

[GPRW20]

- st Assume the decoding function is of degree d
- st Trace **pre-processing**: a d-th degree trace contains all monomials of degree < d

- * Perform LDA attacks on the higher-degree traces
- * Higher-degree trace samples: $\sum_{i=0}^{d} {t \choose d} = {t+d \choose d} \ll t^d$
- st Complexity: $\mathcal{O}ig(t^{2.8d}\cdot |\mathcal{K}|ig)$, practical when t,d are small.

$$d = 2 \Rightarrow t < 487$$

$$t = 100 \Rightarrow d < 5$$

Advanced Gray-Box Countermeasures and Attacks

- st Linear Masking, Higher-Order DCA, and Linear Decoding Analysi.
- * Algebraic Security and Non-Linear Masking
- st Shuffling

» Shuffling

- * The order of execution is randomly chosen for each run of the implementation.
- * To increase noise in the adversary's observation

- * Not enough in white-box model: traces can be aligned by memory
- * Thus, the memory location of shares has to be shuffled.

» HO-DCA and Integrated HO-DCA against Masking and Shuffling

[BRVW19]

- * \nexists n fixed locations for all shares
- * Shuffling degree is λ
 - st correlation score decreased by a factor of λ
 - st attack slow down by a factor of λ^2
- st Integrate values from all λ slots
 - * correlation score decreased by a factor of $\sqrt{\lambda}$
 - * attack slow down by a factor of λ

» Multivariate HO-DCA

[BRVW19]

- * The multivariate HO-DCA optimizes the attack by exploiting joint information of the higher-order samples on the secrets
- * Based on a maximum likelihood distinguisher

$$\gamma_k = \Pr\left(K = k | (\mathbf{V}^{(i)})_i = (\mathbf{v}^{(i)})_i \wedge (X^{(i)})_i = (x^{(i)})_i\right)$$

* We show that

$$\gamma_k \propto \prod_{i=1}^N \mathsf{C}_k(oldsymbol{v}^{(i)}, x^{(i)})$$

where the counter

 $\mathsf{C}_k(v,x) := \mathsf{the} \ \mathsf{number} \ \mathsf{of} \ n\mathsf{-tuples} \quad \mathit{s.t.} \quad v_{j_1} \oplus \cdots \oplus v_{j_n} = \varphi_k(x) \quad \mathsf{in} \ \mathsf{one} \ \mathsf{trace}.$

	linear masking		linear	linear + NL masking		
	trace	computation	trace	computation		
without shuffling						
LDA / HDDA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8}\right)$	$\mathcal{O}\left(t^{2}\right)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight)$		

	linear masking		linear + NL masking		
	trace	computation	trace	computation	
without shuffling					
LDA / HDDA HODCA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	$\begin{array}{c} \mathcal{O}\left(t^2\right) \\ 4 \ c \end{array}$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	

	linear masking		linear + NL masking		
	trace	computation	trace	computation	
without shuffling					
LDA / HDDA HODCA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	$rac{\mathcal{O}\left(t^{2} ight)}{4\ c}$	$rac{\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight)}{\mathcal{O}(\mathcal{K} \cdot t^n)}$	
with shuffling of degree λ					
HO-DCA	$c \lambda^2$	$\mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda^2 ight)$	$4 c \lambda^2$	$\overline{\mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda^2 ight)}$	

	linear masking		linear	linear + NL masking	
	trace	computation	trace	computation	
without shuffling					
LDA / HDDA HODCA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	$\mathcal{O}\left(t^{2} ight)$ $4\ c$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	
with shuffling of degree λ					
HO-DCA Intg. HO-DCA	$c \lambda^2 \\ c \lambda$	$\mathcal{O}\left(\mathcal{K} \cdot t^n \cdot \lambda^2\right)$ $\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$	$\begin{array}{c} 4 c \lambda^2 \\ 4 c \lambda \end{array}$	$\mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda^2 ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda ight)$	

	linear masking		linear	linear + NL masking		
	trace	computation	trace	computation		
without shuffling						
LDA / HDDA HODCA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$	$\mathcal{O}\left(t^{2}\right)$ $4c$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight)$		
with shuffling of degree λ						
HO-DCA Intg. HO-DCA MV HO-DCA	$egin{array}{c} c \lambda^2 \ c \lambda \ \mathcal{O}(t^n) \end{array}$	$egin{aligned} \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda^2 ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{2n} ight) \end{aligned}$	$4c\lambda^2 \\ 4c\lambda$	$\mathcal{O}\left(\mathcal{K} \cdot t^n \cdot \lambda^2\right)$ $\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$		

Note that c is some small empirical factor

Data-Dependency Analysis

- * Data-Dependency Graph
- * Data-Dependency Analysis against Masking Combinations

Data-Dependency Analysis

- * Data-Dependency Graph
- st Data-Dependency Analysis against Masking Combination

» Data Dependency Graph

[GPRW20]

- * White-box adversary also observes data-flow.
- * Data-dependency graph (DDG) can visually reveal the structure of the implementation.

- Data-dependency can extract computation clusters and determines the location of sensitive computation
 - * Round: \sim 28 k nodes
 - * S-box cluster: \sim 500 nodes
 - * Trace windows containing targets: ~ 50 nodes

Data-Dependency Analysis

- * Data-Dependency Grap
- * Data-Dependency Analysis against Masking Combinations

$$(x_1, x_2, \cdots, x_n), (y_1, y_2, \cdots, y_n) \mapsto (z_1, z_2, \cdots, z_n)$$
 s.t. $\bigoplus x_i \cdot \bigoplus y_i = \bigoplus z_i$.

$$(x_1,\ x_2,\cdots,\ x_n),\ (y_1,\ y_2,\cdots,\ y_n)\ \mapsto\ (z_1,\ z_2,\cdots,\ z_n)\quad \text{s.t.}\bigoplus_i x_i\cdot\bigoplus_i y_i=\bigoplus_i z_i\ .$$

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

$$(x_1,\ x_2,\cdots,\ x_n),\ (y_1,\ y_2,\cdots,\ y_n)\ \mapsto\ (z_1,\ z_2,\cdots,\ z_n)\quad \text{s.t.}\bigoplus_i x_i\cdot\bigoplus_i y_i=\bigoplus_i z_i\ .$$

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

$$(x_1,\ x_2,\cdots,\ x_n),\ (y_1,\ y_2,\cdots,\ y_n)\ \mapsto\ (z_1,\ z_2,\cdots,\ z_n)\quad \text{s.t.}\bigoplus_i x_i\cdot\bigoplus_i y_i=\bigoplus_i z_i\ .$$

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

» AND Gadget for Linear Masking

[Ishai et al. 03]

$$(x_1,\ x_2,\cdots,\ x_n),\ (y_1,\ y_2,\cdots,\ y_n)\ \mapsto\ (z_1,\ z_2,\cdots,\ z_n)\quad \text{s.t.}\bigoplus_i x_i\cdot\bigoplus_i y_i=\bigoplus_i z_i\ .$$

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

» AND Gadget for Linear Masking

[Ishai et al. 03]

$$(x_1, x_2, \cdots, x_n), (y_1, y_2, \cdots, y_n) \mapsto (z_1, z_2, \cdots, z_n) \quad \text{s.t.} \bigoplus_i x_i \cdot \bigoplus_i y_i = \bigoplus_i z_i$$

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

Each x_i is multiplied with all shares of y: $(y_i)_i$, vice versa.

[GRW20]

* Find co-operands of each node for \otimes

- ∗ Find co-operands of each node for ⊗
 - Collecting data-dependency (DD) traces
 - * Sum co-operands values

- st Find co-operands of each node for \otimes
- * Collecting data-dependency (DD) traces
 - * Sum co-operands values
- * Launch HO-DCA attacks on DD traces
 - * Biased variables can be covered in DD trace

- * Find co-operands of each node for \otimes
- * Collecting data-dependency (DD) traces
 - * Sum co-operands values
- * Launch HO-DCA attacks on DD traces
 - * Biased variables can be covered in DD trace
- Computation complexity substantially improved

- * Find co-operands of each node for \otimes
- * Collecting data-dependency (DD) traces
 - * Sum co-operands values
- * Launch HO-DCA attacks on DD traces
 - * Biased variables can be covered in DD trace
- Computation complexity substantially improved
- Successfully applied to break WhibOx 2019 winning implementations

» Attack Comparison

	linear masking		linear	linear + NL masking			
	trace	computation	trace	computation			
without shuffling							
LDA/HDDA HODCA DD-DCA	$t + \mathcal{O}(1)$ c c	$egin{array}{c} \mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t ight) \end{array}$	$\begin{array}{c} \mathcal{O}\left(t^2\right) \\ 4 \ c \\ 4 \ c \end{array}$	$egin{array}{c} \mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight) \ \mathcal{O}(\mathcal{K} \cdot t^n) \ \mathcal{O}(\mathcal{K} \cdot t) \end{array}$			

» Attack Comparison

	linear masking		linear	linear + NL masking			
	trace	computation	trace	computation			
without shuffling							
LDA/HDDA HODCA DD-DCA	$t + \mathcal{O}(1)$ c c	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight) \ \mathcal{O}(\mathcal{K} \cdot t^n) \ \mathcal{O}(\mathcal{K} \cdot t)$	$egin{array}{c} \mathcal{O}\left(t^2 ight) \ 4\ c \ 4\ c \end{array}$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{n} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t ight)$			
with shuffling of degree λ							
HO-DCA Intg. HO-DCA MV HO-DCA DD-DCA	$c \lambda^2$ $c \lambda$ $\mathcal{O}(t^n)$ $c \lambda^2$	$egin{aligned} \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot \lambda^2 ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot \lambda ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^{2n} ight) \ \mathcal{O}\left(\mathcal{K} \cdot t\cdot \lambda^2 ight) \end{aligned}$	$4 c \lambda^2$ $4 c \lambda$ $4 c \lambda^2$	$egin{aligned} \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot \lambda^2 ight) \ \mathcal{O}\left(\mathcal{K} \cdot t^n\cdot \lambda ight) \end{aligned}$			

» Attack Comparison

	linear masking		linear + NL masking					
	trace	computation	trace	computation				
without shuffling								
LDA/HDDA	$t + \mathcal{O}(1)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2.8} ight)$	$\mathcal{O}\left(t^{2} ight)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{5.6} ight)$				
HODCA	c	$\mathcal{O}(\mathcal{K} \cdot t^n)$	4 c	$\mathcal{O}(\mathcal{K} \cdot t^n)$				
DD-DCA	c	$\mathcal{O}(\mathcal{K} \cdot t)$	4 c	$\mathcal{O}(\mathcal{K} \cdot t)$				
with shuffling of degree λ								
HO-DCA	$c \lambda^2$	$\mathcal{O}\left(\mathcal{K} \cdot t^n \cdot \lambda^2\right)$	$4 c \lambda^2$	$\mathcal{O}\left(\mathcal{K} \cdot t^n\cdot\lambda^2 ight)$				
Intg. HO-DCA	$c\lambda$	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$	$4~c~\lambda$	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$				
MV HO-DCA	$\mathcal{O}(t^n)$	$\mathcal{O}\left(\mathcal{K} \cdot t^{2n} ight)$						
DD-DCA	$c \lambda^2$	$\mathcal{O}\left(\mathcal{K} \cdot t\cdot \lambda^2 ight)$	$4 c \lambda^2$	$\mathcal{O}\left(\mathcal{K} \cdot t\cdot \lambda^2 ight)$				
Intg. DD-DCA	$c \lambda$	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda)$	4 λ	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda)$				

Note that c is some small empirical factor

» Thesis Summary

- * This thesis concentrates on practical security of white-box cryptography
 - * Demonstrated the capabilities of gray-box adversary in white-box model
 - * Understood why gray-box attacks work against internal encodings
 - Proposed new gray-box attacks
 - Quantified different gray-box attack performances against different countermeasures
- * A good level of practical resistance against these attacks can be achieved
 - * under an assumption of adversary's uncertainty on attacked window within a full computation trace
 - * for some choice of the parameters for countermeasures
 - * Stressed the importance to hide structural knowledge of implementation

» Future Research Perspectives

- * To ensure the uncertainty assumption on the attacked trace window
 - * to counter data-dependency leakage
 - * circuit obfuscation
- st To build formal security arguments in passive gray-box attack model, *e.g.* to show that
 - * the proposed attacks are somehow optimal
 - st and the best the adversary can do can be made arbitrarily hard
- * To construct higher-degree algebraically-secure gadgets

On the Practical Security of White-Box Cryptography

Thesis Defense

by Junwei Wang (王军委) on June 24, 2020

Supervisors Jean-Sébastien Coron, Sihem Mesnager
Advisors Pascal Paillier, Matthieu Rivain

