Correction

Partie I

1.a
$$\forall x \in \mathbb{R}, -x \in \mathbb{R} \text{ et } \varphi(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = \frac{1 - e^{2x}}{1 + e^{2x}} = -\varphi(x), \ \varphi \text{ est impaire.}$$

1.b
$$\varphi \text{ est } \mathcal{C}^{\infty} \text{ et } \varphi'(x) = \left(1 - \frac{2}{e^{2x} + 1}\right)' = \frac{4e^{2x}}{\left(e^{2x} + 1\right)^2} > 0.$$

arphi est donc strictement croissante sur $\mathbb R$.

Quand
$$x \to +\infty$$
, $\varphi(x) \sim \frac{e^{2x}}{e^{2x}} \to 1$ donc $\lim_{x \to +\infty} \varphi(x) = 1$.

La droite d'équation y = 1 est asymptote φ en $+\infty$.

Puisque
$$1-\varphi(x)=\frac{2}{e^{2x}+1}>0$$
, Γ_{φ} est en dessous de cette asymptote.

Par imparité, la droite d'équation y=-1 est asymptote à φ en $+\infty$ avec Γ_{φ} au dessus de cette asymptote.

1.c

2.a φ est continue et strictement croissante sur $\mathbb R$ donc φ réalise une bijection de $\mathbb R$ sur $I = \left| \lim_{-\infty} \varphi, \lim_{+\infty} \varphi \right[= \left] -1, 1 \right[.$

2.b
$$\varphi'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2}$$
 et $1 - \varphi^2(x) = 1 - \frac{e^{-4x} - 2e^{2x} + 1}{e^{-4x} + 2e^{2x} + 1} = \frac{4e^{2x}}{(e^{2x} + 1)^2}$.

2.c Puisque φ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, \varphi'(x) \neq 0$ on peut affirmer que φ^{-1} est dérivable et de plus :

$$(\varphi^{-1})'(x) = \frac{1}{\varphi'(\varphi^{-1}(x))} = \frac{1}{1 - (\varphi(\varphi^{-1}(x)))^2} = \frac{1}{1 - x^2}.$$

Partie II

1. L'équation fonctionnelle pour x = 0 donne f(0) = 2f(0) d'où f(0) = 0.

2.a
$$u_n = \frac{f(h) - f(0)}{h}$$
 avec $h = \frac{x}{2^n}$.

Quand $n \to +\infty$, on a $h \to 0$ et par composition $u_n \to f'(0)$.

- 2.b De part l'équation fonctionnelle : $f\left(\frac{x}{2^n}\right) = 2f\left(\frac{x}{2^{n+1}}\right)$. Donc $u_n = u_{n+1}$.
- 3. De part l'étude précédente : $u_0 = f'(0)$ et donc $\forall x \in \mathbb{R}^*, f(x) = \alpha.x$ avec $\alpha = f'(0)$. De plus cette relation est encore vraie pour x = 0.

1.
$$\varphi$$
 est dérivable en 0.

$$\forall x \in \mathbb{R}, \frac{2\varphi(x)}{1+\varphi^2(x)} = \frac{2(e^{2x}-1)(e^{2x}+1)}{(e^{2x}+1)^2+(e^{2x}-1)^2} = \frac{e^{4x}-1}{e^{4x}+1} = \varphi(2x).$$

2.a L'équation fonctionnelle pour
$$x = 0$$
 donne $f(0) = \frac{2f(0)}{1 + f^2(0)}$ d'où

$$f(0)(f^2(0)-1) = 0$$
. Par suite $f(0) = 0,1$ ou -1 .

2.b
$$-f$$
 est dérivable en 0 puisque f l'est.

$$\forall x \in \mathbb{R}, -f(2x) = -\frac{2f(x)}{1 + (f(x))^2} = \frac{2(-f(x))}{1 + (-f(x))^2}.$$

2.c
$$f(x) = \frac{2a}{1+a^2}$$
 avec $a = f(x/2)$. Or $(a-1)^2 \ge 0$ et $(a+1)^2 \ge 0$ donnent: $-(1+a^2) \le 2a \le (1+a^2)$ et par suite $-1 \le f(x) \le 1$.

3.a Quand
$$n \to +\infty$$
, on a $\frac{x}{2^n} \to 0$ et puisque f est continue en 0 (car dérivable en 0) on a

$$u_n = f\left(\frac{x}{2^n}\right) \rightarrow f(0) = 1$$
.

3.b
$$u_n = f\left(\frac{x}{2^n}\right) = \frac{2f\left(\frac{x}{2^{n+1}}\right)}{1 + \left(f\left(\frac{x}{2^{n+1}}\right)\right)^2} = \frac{2u_{n+1}}{1 + u_{n+1}^2}.$$

(
$$u_n \ge 0 \Rightarrow u_{n+1} \ge 0$$
) et ($u_n \le 0 \Rightarrow u_{n+1} \le 0$).

Par suite (u_n) est de signe constant et puisque $u_n \to 1$ on peut affirmer que la suite (u_n) est positive.

$$3. \text{d} \qquad u_{n+1} - u_n = \frac{u_{n+1}(u_{n+1}^2 - 1)}{1 + u_{n+1}^2} \leq 0 \ \text{car} \ u_{n+1} = f\left(\frac{x}{2^{n+1}}\right) \in \left[-1, 1\right].$$

Par suite (u_n) est décroissante.

 (u_n) décroît vers 1, donc $\forall n \in \mathbb{N}, u_n \ge 1$.

Or
$$u_n = f\left(\frac{x}{2^n}\right) \in [-1,1]$$
 donc $\forall n \in \mathbb{N}, u_n = 1$.

3.e Puisque
$$u_0=1$$
, on obtient $f(x)=1$ et ceci pour tout $x\in\mathbb{R}^*$. Comme ceci est de plus vrai pour $x=0$, f s'avère être constante égale à 1 .

3.f Dans le cas où
$$f(0) = -1$$
, on applique l'étude ci-dessus à $-f$ pour conclure que f est constante égale à -1 .

4.a Supposons
$$\exists x \in \mathbb{R}$$
 tel que $f(x) = 1$.

Considérons
$$(u_n)$$
 de terme général : $u_n = f\left(\frac{x}{2^n}\right)$.

Comme ci-dessus
$$u_n = \frac{2u_{n+1}}{1+u_{n+1}^2}$$
.

Par récurrence on montre alors $u_n = 1$.

Or
$$u_n \to f(0) = 0$$
, c'est absurde.

Par suite
$$\forall x \in \mathbb{R}, f(x) \neq 1$$
.

De même :
$$\forall x \in \mathbb{R}, f(x) \neq -1$$
.

4.b
$$\varphi(g(2x)) = f(2x) = \frac{2f(x)}{1 + (f(x))^2} \text{ et } \varphi(2g(x)) = \frac{2\varphi(g(x))}{1 + (\varphi(g(x)))^2} = \frac{2f(x)}{1 + (f(x))^2}.$$

L'application φ étant injective : g(2x) = 2g(x).

De plus, par composition, $\,\gamma\,$ est dérivable en $\,0\,$.

4.c De part la partie II :

$$\exists \alpha \in \mathbb{R} \ \text{ tel que } \forall x \in \mathbb{R}, g(x) = \alpha.x \ \text{ et donc } f(x) = \varphi(\alpha.x) = \frac{\mathrm{e}^{2\alpha x} - 1}{\mathrm{e}^{2\alpha x} + 1}.$$