Здесь и далее будем считать, что $\xi \sim Be(p)$ если

$$\xi = \begin{cases} +1, c \text{ Bep. } p \\ -1, c \text{ Bep. } 1 - p \end{cases}$$

 $3a\partial a$ ча 1. Пусть $\xi_t \sim Be(1/2)$ – i.i.d., $X_t = \sum_{s=1}^t \xi_s$ – случайное блуждание. Убедитесь, что процесс $M_t = X_t^2 - t$ мартингал.

 $3a\partial a$ ча 2. Пусть $\xi_t \sim Be(p)$ – i.i.d., $p \neq 1/2$, $X_t = \sum_{s=1}^t \xi_s$ – несимметричное случайное блуждание.

- При каком α процесс $Y_t = X_t \alpha t$ является мартингалом?
- При каком β процесс $Y_t = \beta^{X_t}$ является мартингалом?

 $3adaчa\ 3.\ ($ Задача о разорении) Пусть X_t – симметричное случайное блуждание, $(\mathcal{F}_t)_{t\geq 0}$ – фильтрация, порождённая X_t . Пусть:

$$\tau = \inf_{t>0} \{ X_t = a \lor X_t = -b \}$$

где a,b>0 — целые числа. Т.е. au — первый момент времени, когда процесс X_t принимает значение a или -b.

- Убедитесь, что τ момент остановки
- Найти $\mathbb{P}(X_{\tau}=a)$
- \bullet Найти $\mathbb{E} au$

 $3a\partial a$ ча 4. (Задача о разорении) Пусть $\xi_t \sim Be(p)$ – i.i.d., $p \neq 1/2$, $X_t = \sum_{s=1}^t \xi_s$ – несимметричное случайное блуждание.Пусть:

$$\tau = \inf_{t \ge 0} \{ X_t = a \lor X_t = -b \}$$

где a, b > 0 — целые числа.

- Найти $\mathbb{P}(X_{\tau}=a)$
- ullet Найти $\mathbb{E} au$

 $3a\partial aua$ 5. Пусть X_t – квадратично-интегрируемый мартингал, докажите, что:

$$cov(X_p - X_q, X_t - X_s) = 0$$

при s < t < q < p