МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа № 3.2.1 Сдвиг фаз в цепи переменного тока

> Климова Екатерина Группа Б01-108

Цель работы: изучить влияние активного сопротивления, индуктивности и емкости на сдвиг фаз между током и напряжением в цепи переменного тока.

В работе используются: генератор звуковой частоты (3Γ); двухканальный осциллограф (9O); магазин емкостей; магазин сопротивлений; катушка индуктивности; резисторы; универсальный измеритель импеданса (LCR-метр).

1 Аннотация

В работе предлагается исследовать зависимость сдвига фаз между током и напряжением от сопротивления в RC- и RLC-цепи; определить добротности колебательного контура, сняв зависимость сдвига фаз от частоты вблизи резонанса; оценить диапазон работы фазовращателя.

2 Теоретические сведения

2.1 Вынужденные колебания

Рассмотрим процессы, протекающие в RLC-контуре, подключенном к источнику внешней ЭДС, изменяющейся по гармоническому закону $\varepsilon = \varepsilon_0 \cos \omega t + \varphi_0$. Тогда для напряжения в конденсаторе получим уравнение:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon_0 \cos \omega t + \varphi_0, \tag{1}$$

Рис. 1. Последовательный контур с внешней ЭДС

решение которого будет состоять из общего решения однородного дифференциального уравнения и какого-либо частного решения данного уравнения с правой частью. Для нахождения этого частного решения воспользуемся **методом комплексных амплитуд**. То есть пусть некоторая комплексная функция f(t) является решением линейного дифференциального уравнения с вещественными коэффициентами и комплексной правой частью; тогда вещественная часть этой функции Ref(t) является решением того же уравнения, в правой части которого стоит вещественная часть прежнего выражения, а мнимая часть Imf(t) — решением уравнения с мнимой правой частью. Тогда уравнение (1) станет выглядеть так:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon, \tag{2}$$

где $\varepsilon_0 e^{i\varphi}$ называется **комплексной амплитудой**. Определим величину Z — **импеданс**, или комплексное сопротивление, — характеристику колебательного контура на заданной частоте:

$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{1}{i\omega C}$.

Активным сопротивлением называется действительная часть Z, реактивным — мнимая: $ImZ = \omega L - \frac{1}{\omega C}$. Импедансы контура и его отдельных элементов могут быть представлены в показательной форме:

$$Z = Z_0 e^{i\psi},\tag{3}$$

где Z_0 — модуль комплексного числа, $\psi = argZ$ — его аргумент. Для импеданса рассматриваемого последовательного контура находим:

$$Z_0 = \sqrt{(ReZ)^2 + (ImZ)^2} = \frac{R}{\cos \psi_I},$$
 (4)

$$\operatorname{tg}\psi_{I} = \frac{ImZ}{ReZ} = \frac{\omega L - \frac{1}{\omega C}}{R}.$$
 (5)

Так, действительная часть тока в контуре:

$$I(t) = \frac{\varepsilon_0}{R} \cos \psi_I \cos(\omega t + \varphi_0 - \psi_I). \tag{6}$$

Как видно из (6), угол ψ_I , определяемый отношением мнимой и действительной частей импеданса, представляет собой сдвиг фаз между напряжением на последовательном контуре и током в нем, причем положительные значения этого угла соответствуют отставанию фазы тока, а отрицательные — опережению. В общем случае, когда к источнику последовательно подключены резистор, конденсатор и катушка, сдвиг фазы тока лежит в пределах $-\pi/2 < \psi_I < \pi/2$. От этого угла также зависит амплитуда силы тока.

2.2 Векторные диаграммы

Решения, полученные методом комплексных амплитуд, допускают простую геометрическую интерпретацию. Комплексное число, например, напряжение $\varepsilon = \varepsilon_0 e^{i(\omega t + \varphi_0)}$, представляется на комплексной плоскости вектором, длина которого равна ε_0 , а угол, составляемый этим вектором с вещественной осью, равен $(\omega t + \varphi_0)$ — фазе напряжения. Вектор напряжения вращается со скоростью ω против часовой стрелки. Удобно перейти к системе координат, которая сама вращается с такой угловой скоростью. В этой системе вектор ε будет представлен покоящимся вектором $\varepsilon_0 e^{i\varphi}$, а векторы \mathbf{I}_0 , \mathbf{U}_{C0} , \mathbf{U}_{L0} , \mathbf{U}_{R0} тоже будут неподвижны, но окажутся сдвинутыми по углу относительно вектора φ_0 . Вектор \mathbf{I}_0 , как показано выше, сдвинут от вектора φ_0 на угол ψ_I . Построенная таким образом диаграмма называется векторной.

2.3 Нахождение фазового сдвига

Можно предложить два способа измерения разности фаз.

В *первом способе* два сигнала U_1 и U_2 подаются на горизонтальную (канал X) и вертикальную (канал Y) развертки осциллографа. Смещение луча по горизонтали и вертикали определяется выражениями

$$x = x_0 \cos \omega t$$
, $y = y_0 \cos (\omega t + \psi)$,

где ψ — сдвиг фаз между напряжениями U_1 и U_2 , а x_0 и y_0 — амплитуда напряжений, умноженные на коэффиенты усиления соответствующих каналов осциллографа. Исключив время, найдем, что

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \frac{2xy}{x_0 y_0} \cos \psi = \sin^2 \psi.$$

Полученное выражение определяет эллипс, описываемый электронным лучом на экране осциллографа (рис. 2). Ориентация эллипса зависит как от искомого угла ψ , так и от усиления каналов осциллографа. Для расчета сдвига фаз можно измерить отрезки $2y_{x=0}$ и $2y_0$ и, подставляя эти значения в уравнение эллипса, найти

$$\psi = \pm \arcsin\left(\frac{y_{x=0}}{y_0}\right). \tag{7}$$

Рис. 2. Эллипс на экране осциллографа

Для правильного измерения отрезка $2y_{x=0}$ важно, чтобы центр эллипса лежал на оси y.

Второй способ заключается в непосредственном измерении сдвига фаз между сигналами на экране двухканального осциллографа. Напряжения U_1 и U_2 одновременно подаются на входные каналы Θ 0 при включенной внутренней горизонтальной развертке. При этом сигналы одновременно отображаются на экране. Измерение разности фаз в таком случае удобно проводить следующим образом:

- 1. подобрать частоту горизонтальной развертки, при которой на экране укладывается чуть больше половины периода синусоиды;
- 2. отцентрировать горизонтальную ось;
- 3. измерить расстояние x_0 между нулевыми значениями одного из сигналов, что соответствует разности фаз π ;
- 4. измерить расстояние x между нулевыми значениями двух синусоид и пересчитать сдвиг по фазе: $\psi = \pi x/x_0$. На рис. 3 синусоиды на экране ЭО сдвинуты по фазе на $\pi/2$.

3 Экспериментальная установка

Схема установки для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 3. Эталонная катушка L, магазин емкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения — звуковому генератору (3Γ).

Рис. 3. Схема установки для исследования сдвига фаз между током и напряжением

Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению, — с генератора. Оба сигнала подаются на 90, имеющий два канала вертикального отклонения. Измерение разности фаз можно проводить одним из двух описанных выше способов.

На практике часто используются устройства, называемые фазовращателями (0 < ψ < π). Схема фазовращателя, применяемого в данной работе, изображена на рис. 4. Она содержит два одинаковых резистора R_1 , смонтированных на отдельной плате, магазин сопротивлений R и магазин емкостей C.

Рис. 4. Схема установки для исследования фазовращателя

Найдем, как зависит сдвиг фаз между входным напряжением $U_{\rm bx}=U_0\cos\omega t$ (точки 1 и 2 на рис. 4) и выходным напряжением $U_{\rm bbx}$ (точки 3 и 4) от соотношения между импедансами сопротивления R и емкости C. Для соответствующих комплексных амплитуд имеет место соотношение:

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{2} \frac{R + \frac{i}{\omega C}}{R - \frac{i}{\omega C}}.$$
 (8)

Числитель и знаменатель (8) — комплексно-сопряженные величины, модули которых одинаковы. Поэтому амплитуда выходного напряжения не зависит от R и всегда равна $U_0/2$. Сдвиг фаз между выходным и входным напряжениями равен

$$\psi = \arg \frac{U_{\text{\tiny BMX}}}{U_{\text{\tiny BX}}} = 2 \arctan \frac{1}{\omega RC}.$$
(9)

Он может меняться от $\psi = \pi$ при $R \to 0$ до $\psi = 0$ при $R \to \infty$.

4 Ход работы

4.1 Исследование сдвига фаз в *RC*-цепи

Для начала соберем схему, изображенную на рис. 3, и занесем в таблицу 1 некоторые параметры установки:

$r, O_{\rm M}$	R_L , Om
12.2	31.5

Таблица 1. Некоторые параметры установки

Здесь r — дополнительное сопротивление, R_L — сопротивление катушки. Установим рабочую частоту $\nu=1$ к Γ ц, закоротим катушку (так как хотим исследовать RC-цепь), подключив оба провода, идущих к ней, к одной клемме, и установим на магазине емкостей C=0.5 мк Φ . Тогда реактивное сопротивление цепи: $X_1=1/(\omega C)=1/(2\pi\nu C)\approx 318$ Ом. Меняя сопротивление R от 0 до $10X_1$, измерим сдвиг фаз ψ для каждого значения R. Результаты измерений занесем в таблицу 2:

R, Om	х, дел	x_0 , дел	ψ , рад	ωCR_{Σ}	$ctg(\psi)$
0	8.00	17.00	1.48	0.04	0.09
159	6.50	18.50	1.10	0.54	0.50
318	4.50	17.50	0.81	1.04	0.96
636	3.00	20.00	0.47	2.04	1.96
954	2.00	20.00	0.31	3.04	3.08
1272	1.50	20.00	0.24	4.03	4.17
1908	1.00	20.00	0.16	6.03	6.31

Таблица 2. Расчеты и измерения для определения разности фаз в RC-цепи

Построим график зависимости $\operatorname{ctg}(\psi) = f(\omega C R_{\Sigma})$, где $R_{\Sigma} = R + r$ — суммарное сопротивление в цепи:

Рис. 5. График зависимости котангенса фазового сдвига в цепи от ωCR_{Σ}

Уравнение полученной зависимости указано на графике. Теперь рассчитаем теоретически, каким должен быть наклон получившейся прямой. Как известно, полный импеданс RLC-цепочки равен:

$$Z_{RLC} = R_{\Sigma} + i\omega L + \frac{1}{i\omega C}.$$
 (10)

В соответствии с (5), tg $\psi_I=\frac{ImZ}{ReZ}=\frac{\omega L-\frac{1}{\omega C}}{R_\Sigma}$, откуда, учитывая, что в нашем случае L=0, получаем:

$$\operatorname{ctg}(\psi) = \omega R_{\Sigma} C,$$

то есть исследуемый график зависимости должен представлять прямую с коэффициентом наклона 1. Как видно из рис. 5, экспериментальное значение коэффициента наклона -1.05, погрешность равна примерно 12% (систематическая погрешность + погрешность расчета делений x и x_0 и погрешность определения коэффициента наклона при помощи МНК), следовательно, экспериментальная зависимость отлично сходится с теорией.

4.2 Исследование сдвига фаз в RL-цепи

В уже собранной согласно рис. 3 схеме закоротим теперь магазин емкостей и установим $\nu=1$ к Γ ц и L=50 м Γ н. Тогда реактивное сопротивление: $X_2=\omega L=2\pi\nu L=314$ Ом. Аналогично предыдущему пункту будем менять сопротивление R от 0 до $10X_2$, фиксируя значение сдвига фаз для каждого значения сопротивления. Результаты занесем в таблицу 3:

R, Om	х, дел	x_0 , дел	ψ , рад	$R_{\Sigma}/(\omega L)$	$ctg(\psi)$
0	8.50	19.00	1.41	0.14	0.17
157	6.00	19.00	0.99	0.64	0.65
314	4.50	19.00	0.74	1.14	1.09
628	2.50	19.00	0.41	2.14	2.28
942	2.00	19.00	0.33	3.14	2.91
1260	1.50	19.00	0.25	4.15	3.95
1908	1.00	19.00	0.17	6.21	5.99

Таблица 3. Расчеты и измерения для определения разности фаз в RL-цепи

Построим график зависимости вида $\operatorname{ctg}(\psi) = f(R_{\Sigma}/(\omega L))$, где $R_{\Sigma} = R + R_L + r$ – суммарное сопротивление в цепи:

Рис. 6. График зависимости котангенса фазового сдвига в цепи от $R_{\Sigma}/(\omega L)$

Как видно из уравнения зависимости, указанного на графике, коэффициент наклона полученной прямой равен приблизительно 0.95. Проверим это значение при помощи теории. Из уравнений (5) и (10), учитывая, что $C \to \infty$, получим, что в данном случае:

$$\operatorname{ctg}(\psi) = \frac{R_{\Sigma}}{\omega L},$$

что означает, что коэффициент наклона должен быть равен единице, то есть экспериментальное значение почти совпало с рассчитанным теоретически.

4.3 Исследование зависимости сдвига фаз от частоты в RCL- цепи

В схеме, уже собранной согласно рис. 3, установим R=0, L=50 мГн, C=0.5 мкФ. Рассчитаем резонансную частоту при данных параметрах установки: $\nu_0=\frac{1}{2\pi\sqrt{LC}}=1006.6$ Гц, что совпало с экспериментальным наблюдением (при резонансе наблюдается нулевой сдвиг фаз между током и напряжением — формула (5)). Исследуем сдвиг фаз на интервале частот 850-1150 Гц ($|\psi|<\pi/3$) при R=0 Ом и R=100 Ом. Занесем результаты измерений и расчетов в таблицу 4:

ν, Гц	x_0 , дел	х, дел	ν/ν_0	ψ , рад	R, Om
850	19.00	7.00	0.844	1.157	
900	17.50	5.50	0.894	0.987	
940	17.00	4.00	0.934	0.739	
970	16.30	2.20	0.964	0.424	
990	16.00	1.20	0.984	0.236	
1000	39.00	1.10	0.993	0.089	0
1010	38.00	1.00	1.003	0.083	
1030	37.00	4.00	1.023	0.340	
1060	36.50	7.00	1.053	0.602	
1100	35.00	10.00	1.093	0.898	
1150	33.50	11.00	1.142	1.032	
850	19.00	3.50	0.844	0.579	
900	17.50	2.50	0.894	0.449	
940	16.70	1.30	0.934	0.245	
970	16.00	1.00	0.964	0.196	
990	15.70	0.50	0.984	0.100	
1000	39.00	0.10	0.993	0.008	100
1010	38.00	0.05	1.003	0.004	
1030	36.00	1.50	1.023	0.131	
1060	36.00	2.50	1.053	0.218	
1100	35.50	4.00	1.093	0.359	
1150	33.00	5.50	1.142	0.524	

Таблица 4. Расчеты и измерения для определения сдвига фаз в *RLC*-цепи

Построим график зависимости сдвига фаз ψ от отношения частот ν/ν_0 при R=0 Ом, где ψ выразим в долях π . По уровню ψ , соответствующему приблизительно $\pi/4$, сможем определить добротность по формуле $Q=\frac{\nu_0}{2\Delta\nu}$, где $2\Delta\nu$ — ширина графика при сдвиге фаз $\psi=\pi/4$.

ψ (v/v₀) для R = 0 Ом в долях π

Рис. 7. График зависимости фазового сдвига в долях π в цепи от отношения текущей частоты к резонансой (при R=0)

Как видно из графика, ширина $2\Delta\nu\approx0.15$, то есть добротность: $Q_0=7.1$. Теоретическое значение добротности при R=0: $Q_0=\frac{1}{R_\Sigma}\sqrt{\frac{L}{C}}=7.2$, что неплохо согласуется со значением, полученным экспериментальным путем.

Аналогично построим график зависимости сдвига фаз ψ от отношения частот ν/ν_0 при R=100 Ом, где ψ выразим в долях π .

Рис. 8. График зависимости фазового сдвига в долях π в цепи от отношения текущей частоты к резонансой (при $R=100~{
m Om})$

Очевидно, из такого графика сложно оценить добротность по уровню $\psi = \pi/4$, поэтому сделаем это при $\psi = \pi/8$.

$$tg(\pi/8) = \frac{\omega L - \frac{1}{\omega C}}{R} = Q \frac{(\frac{\omega}{\omega_0})^2 - 1}{\frac{\omega}{\omega_0}} = Q \frac{(1+x)^2 - 1}{(1+x)^2} \approx Q \cdot 2x_{\psi=\pi/8},$$

откуда добротность $Q_{100}=2.1$. Рассчитаем теоретическое значение добротности: $Q_{100}=2.2$, что снова близко к экспериментальному. Для наглядности занесем полученные значения в таблицу 5:

	R = 0 Om	R = 100 Om
$Q_{ m эксп}$	7.1	2.1
Q_{reop}	7.2	2.2

Таблица 5. Теоретические и экспериментальные значения добротности контура для различных значений сопротивления

4.4 Исследование работы фазовращателя

Соберем схему, изображенную на рис. 4, и установим C=0.5 мк Φ , $\nu=1$ к Γ ц. Подберем сопротивление, при котором сдвиг фаз между входным и выходным напряжениями равен $\pi/2$, — это R=1920 Ом. При этом теоретическое значение $R=\frac{1}{\omega C}=2$ к Ω м. Как видно, значения совпадают в пределах погрешности.

Теперь построим векторную диаграмму для фазовращателя:

Рис. 9. Векторная диаграмма фазовращателя

Треугольник (123) равнобедренный и прямоугольный, $\mathbf{U}_{in} \perp \mathbf{U}_{out}$ — векторы входного и выходного напряжений ортогональны.

5 Вывод

В ходе лабораторной работы были изучены зависимости сдвига фаз между током и напряжением от сопротивления в RC- $(\operatorname{ctg}(\psi) = \omega R_\Sigma C)$, RL- $(\operatorname{ctg}(\psi) = \frac{R_\Sigma}{\omega L})$ и RLC-контурах. Для RLC-контура были определены значения добротности с резистором R=100 Ом и без него, оба значения оказались близки к рассчитанным теоретически. Также было проведено исследование работы фазовращателя: собрана схема, определено сопротивление, при котором сдвиг фаз между входным и выходным напряжениями равен $\pi/2$ (R=1920 Ом), построена векторная диаграмма.