UDAAN 2024

Circles

DHA-02

1. In the given figure, O is the centre of the circle and BCD is tangent to it at C. Prove that $\angle BAC + \angle ACD = 90^{\circ}$.

2. In the figure, PQ is tangent at a point R of the circle with centre O. If $\angle TRQ = 30^{\circ}$, $\angle PRS$.

3. In figure, AB is a chord of circle and PQ is a tangent at point B of the circle. If $\angle AOB = 110^{\circ}$, then $\angle ABQ$ is

- $(A) 45^{\circ}$
- (B) 70°
- (C) 55°
- (D) 35°
- 4. 'O' is the centre of the circle. PQ is tangent to the circle and secant PAB passes through the centre O. If PQ = 5 cm and PA = 1 cm, then radius of the circle is:
 - (A) 8 cm
- (B) 12 cm
- (C) 10 cm
- (D) 6 cm
- 5. If PA and PB are tangents from outside point 'P' such that PA = 10 cm and \angle APB = 60° . Find the length of chord AB.

6. In the given figure PQ, and PR are tangents to the circle with centre O such that $\angle QPR = 50^{\circ}$, then find $\angle OQR$.

7. In fig., PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm. If PA \(\perp \) PB, then find the length of each tangent.

- **8.** Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
- 9. In the given figure, PA and PB are tangents to a circle from an external point P such that PA = 4 cm and $\angle BAC = 135^{\circ}$. Find the length of chord AB.

Note: Kindly find the Video Solution of DHAs Questions in the DPPs Section.

Answer Key

2. (60°)

3. (C)

5.

4. (B)

(10 cm)

6. (25°)

7. (4 cm)

8. (Proof)

9. $(4\sqrt{2} \text{ cm})$

