import pandas as pd

In [1]:

21BDS0340 - Abhinay Dinesh Srivatsa

```
import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from statsmodels.tsa.seasonal import seasonal_decompose
         from sklearn.linear model import LinearRegression
         from sklearn.preprocessing import LabelEncoder, StandardScaler
         from sklearn.decomposition import PCA, FactorAnalysis
         from sklearn.cluster import SpectralClustering, KMeans, AgglomerativeClus
         from scipy.cluster.hierarchy import dendrogram, linkage
         from sklearn.manifold import MDS
         from minisom import MiniSom
         from sklearn.metrics import mean absolute error, root mean squared error,
         data = pd.read_csv("NaturalGas.csv")
In [2]:
         data
Out[2]:
              rownames state statecode
                                          year consumption price eprice oprice Iprice
           0
                                          1967
                                                      313656
                                                               1.42
                                                                      2.98
                                                                                     1.47
                       1
                           NY
                                      35
                                                                              7.40
           1
                      2
                           NY
                                      35
                                         1968
                                                      319282
                                                               1.38
                                                                       2.91
                                                                              7.77
                                                                                     1.42
           2
                      3
                           NY
                                      35 1969
                                                      331326
                                                               1.37
                                                                      2.84
                                                                              7.96
                                                                                     1.38
           3
                      4
                                      35
                                          1970
                                                      346533
                                                               1.40
                                                                      2.87
                                                                              8.33
                                                                                     1.37
                           NY
           4
                      5
                           NY
                                      35
                                           1971
                                                      352085
                                                               1.50
                                                                      3.07
                                                                              8.80
                                                                                     1.40
          ...
         133
                    134
                           CA
                                          1985
                                                      527495
                                                               5.72
                                                                             30.58
                                        5
                                                                       7.78
                                                                                     5.84
                    135
                           CA
                                          1986
                                                               5.14
                                                                             44.15
                                                                                     5.72
         134
                                                      464307
                                                                      7.95
         135
                    136
                           CA
                                          1987
                                                      503473
                                                               5.26
                                                                      8.03
                                                                             35.24
                                                                                     5.14
         136
                    137
                           CA
                                         1988
                                                      497138
                                                               5.64
                                                                      8.69
                                                                             34.02
                                                                                     5.26
         137
                    138
                           CA
                                        5 1989
                                                      514276
                                                               5.59
                                                                      9.45
                                                                             44.44
                                                                                     5.64
```

138 rows × 11 columns

Module 2 - Data Transformations

```
In [3]: # data deduplication
  deduplicated = data.drop_duplicates()
  deduplicated
```

Out[3]:	ı	rownames	state	statecode	year	consumption	price	eprice	oprice	Iprice
	0	1	NY	35	1967	313656	1.42	2.98	7.40	1.47
	1	2	NY	35	1968	319282	1.38	2.91	7.77	1.42
	2	3	NY	35	1969	331326	1.37	2.84	7.96	1.38
	3	4	NY	35	1970	346533	1.40	2.87	8.33	1.37
	4	5	NY	35	1971	352085	1.50	3.07	8.80	1.40
	•••									•••
	133	134	CA	5	1985	527495	5.72	7.78	30.58	5.84
	134	135	CA	5	1986	464307	5.14	7.95	44.15	5.72
	135	136	CA	5	1987	503473	5.26	8.03	35.24	5.14
	136	137	CA	5	1988	497138	5.64	8.69	34.02	5.26
	137	138	CA	5	1989	514276	5.59	9.45	44.44	5.64
	138 rov	vs × 11 colu	ımns							
In [4]:		cking mis ng = data ng	_							
Out[4]:	price epric opric lpric heati incom	code mption e e e e	0 0 0 0 0 0 0 0							
In [5]:		ning the jut(data.ye		=4, labels	=["q1'	', "q2", "q3"	, "q4"])		
Out[5]:				138, dtype		egory ' < 'q3' < 'c	14']			

Module 3 - Correlation ANalysis and Time Series Analysis

```
In [6]: # univariate analysis
    # checking consumption range
    plt.boxplot(data.consumption)
    plt.show()
```



```
In [7]: # checking pie chart of state
    state_counts = data.state.value_counts()
    plt.pie(state_counts, labels=state_counts.index)
    plt.show()
```



```
In [8]: # bivariate analysis
# checking price vs. year for state NY
ny_data = data[data.state == "NY"]
plt.plot(ny_data.year, ny_data.price)
plt.show()
```


In [9]: # checking income vs. consumption
 plt.scatter(data.income, data.consumption)
 plt.show()

In [10]: # multivariate analysis
 numeric_data = data.drop(["rownames", "state"], axis=1)
 sns.heatmap(numeric_data.corr(), cmap="mako", annot=True, fmt=".2f")

Out[10]: <Axes: >


```
In [11]: # time series analysis
    ts_data = data.copy()
    ts_data.year = pd.to_datetime(ts_data.year, format="%Y")
    ts_data.set_index("year", inplace=True)
    ts_data
```

Out[11]:		rownames	state	statecode	consumption	price	eprice	oprice	Iprice	hε
	year									
	1967- 01-01	1	NY	35	313656	1.42	2.98	7.40	1.47	
	1968- 01-01	2	NY	35	319282	1.38	2.91	7.77	1.42	
	1969- 01-01	3	NY	35	331326	1.37	2.84	7.96	1.38	
	1970- 01-01	4	NY	35	346533	1.40	2.87	8.33	1.37	
	1971- 01-01	5	NY	35	352085	1.50	3.07	8.80	1.40	
	•••		•••			•••	•••	•••	•••	
	1985- 01-01	134	CA	5	527495	5.72	7.78	30.58	5.84	
	1986- 01-01	135	CA	5	464307	5.14	7.95	44.15	5.72	
	1987- 01-01	136	CA	5	503473	5.26	8.03	35.24	5.14	
	1988- 01-01	137	CA	5	497138	5.64	8.69	34.02	5.26	

138 rows × 10 columns

138

CA

1989-

01-01

5

514276 5.59 9.45 44.44

5.64

In [13]: # moving average of income for state CA
 ma = ca_data.income.rolling(window=3).mean()
 plt.plot(ca_data.income)
 plt.plot(ma)
 plt.show()

In [14]: # seasonal decomposition of heating for state CA
 decomposed = seasonal_decompose(ts_data.heating, model='additive', period
 decomposed.plot()
 plt.show()

Module 4 - Data Summarisation and Visualisation

Out[15]:

	rownames	statecode	year	consumption	price	epri
count	138.000000	138.00000	138.000000	138.000000	138.000000	138.0000
mean	69.500000	27.00000	1978.000000	252901.478261	3.422319	5.0535
std	39.981246	15.68811	6.657415	184478.131559	2.169215	2.5778
min	1.000000	5.00000	1967.000000	9430.000000	0.680000	1.9800
25%	35.250000	10.00000	1972.000000	49103.500000	1.380000	2.4325
50%	69.500000	29.00000	1978.000000	300835.500000	2.775000	4.5200
75%	103.750000	44.00000	1984.000000	346428.750000	5.310000	7.2825
max	138.000000	45.00000	1989.000000	637289.000000	8.060000	10.8600

```
In [16]: # kurtosis and skewness for consumption
kurt = data.consumption.kurt()
skew = data.consumption.skew()
print(f"{kurt}, {skew}")
```

 $-0.9746765850042207, \ 0.18689627507055256$

```
In [17]: # 2D statistical analysis
# correlation between consumption and income
```

```
c = data.consumption.corr(data.income)
print(f"{c}")
```

0.558558951233098

```
In [18]: # covariance between price and income
c = data.price.cov(data.income)
print(f"{c}")
```

2723.491923294193

```
In [19]: # bar plot between year and income
plt.bar(data.year, data.income)
```

Out[19]: <BarContainer object of 138 artists>

Module 5 - Clustering Algorithms

```
In [20]: # preprocessing data for clustering
    data.drop("rownames", axis=1, inplace=True)

le = LabelEncoder()
    state_encoded = le.fit_transform(data.state)
    data.state = state_encoded
    le.classes_

Out[20]: array(['CA', 'FL', 'MI', 'NY', 'TX', 'UT'], dtype=object)

In [21]: # reducing dimensions to plot
    p = PCA(2)
    reduced = p.fit_transform(data)

In [22]: # spectral clustering
    sc = SpectralClustering()
```

```
clusters = sc.fit_predict(data)

plt.scatter(reduced[:, 0], reduced[:, 1], c=clusters)
plt.show()
```

/Users/abhi/Programming/exploratory-data-analysis/env/lib/python3.12/site-packages/sklearn/manifold/_spectral_embedding.py:329: UserWarning: Graph i s not fully connected, spectral embedding may not work as expected. warnings.warn(


```
In [23]: # k-means clustering
km = KMeans(6)
clusters = km.fit_predict(data)

plt.scatter(reduced[:, 0], reduced[:, 1], c=clusters)
plt.show()
```



```
In [24]: # agglomerative clustering
ac = AgglomerativeClustering(6, linkage="ward")
clusters = ac.fit_predict(data)

plt.scatter(reduced[:, 0], reduced[:, 1], c=clusters)
plt.show()
```



```
In [25]: # dendrogram
links = linkage(data, method="ward")
```

30/10/2024, 11:17

```
dendrogram(links, show_leaf_counts=False)
plt.show()
```


Module 6 - Dimensionality Reduction

```
In [26]: # principle component analysis - reducing to 2D
p = PCA(2)
reduced = p.fit_transform(data)

plt.scatter(reduced[:, 0], reduced[:, 1])
plt.show()
```



```
In [27]: # singular value decomposition
U, S, VT = np.linalg.svd(data)
U.shape, S.shape, VT.shape
```

Out[27]: ((138, 138), (10,), (10, 10))

```
In [28]: # reconstructing from singluar value decomposition
S_mat = np.zeros(data.shape)
np.fill_diagonal(S_mat, S)
reconstructed = np.dot(U, np.dot(S_mat, VT))
pd.DataFrame(reconstructed)
```

Out[28]:		0	1	2	3	4	5	6	7	8	
	0	3.000000e+00	35.0	1967.0	313656.0	1.42	2.98	7.40	1.47	6262.0	1090:
	1	3.000000e+00	35.0	1968.0	319282.0	1.38	2.91	7.77	1.42	6125.0	11370
	2	3.000000e+00	35.0	1969.0	331326.0	1.37	2.84	7.96	1.38	6040.0	11578
	3	3.000000e+00	35.0	1970.0	346533.0	1.40	2.87	8.33	1.37	6085.0	11580
	4	3.000000e+00	35.0	1971.0	352085.0	1.50	3.07	8.80	1.40	5907.0	1165
	•••					•••			•••		
	133	1.043889e-13	5.0	1985.0	527495.0	5.72	7.78	30.58	5.84	2694.0	14368
	134	7.311560e-14	5.0	1986.0	464307.0	5.14	7.95	44.15	5.72	2192.0	14580
	135	7.602678e-14	5.0	1987.0	503473.0	5.26	8.03	35.24	5.14	2502.0	1491
	136	5.850017e-14	5.0	1988.0	497138.0	5.64	8.69	34.02	5.26	2366.0	15340
	137	5.847746e-14	5.0	1989.0	514276.0	5.59	9.45	44.44	5.64	2420.0	15532

138 rows × 10 columns

In [29]: # comparing it to original data
data

Λ.	. de	$\Gamma \cap$	\cap T	١.
Ul	JT.	LZ	91	

	state	statecode	year	consumption	price	eprice	oprice	Iprice	heating
0	3	35	1967	313656	1.42	2.98	7.40	1.47	6262
1	3	35	1968	319282	1.38	2.91	7.77	1.42	6125
2	3	35	1969	331326	1.37	2.84	7.96	1.38	6040
3	3	35	1970	346533	1.40	2.87	8.33	1.37	6085
4	3	35	1971	352085	1.50	3.07	8.80	1.40	5907
•••	•••		•••		•••	•••	•••	•••	
133	0	5	1985	527495	5.72	7.78	30.58	5.84	2694
134	0	5	1986	464307	5.14	7.95	44.15	5.72	2192
135	0	5	1987	503473	5.26	8.03	35.24	5.14	2502
136	0	5	1988	497138	5.64	8.69	34.02	5.26	2366
137	0	5	1989	514276	5.59	9.45	44.44	5.64	2420

138 rows × 10 columns

```
In [30]: # factor analysis
fa = FactorAnalysis(2)
factors = fa.fit_transform(data)

plt.scatter(factors[:, 0], factors[:, 1])
plt.show()
```



```
In [31]: # multidimensional scaling
  mds = MDS(2)
  reduced = mds.fit_transform(data)

plt.scatter(factors[:, 0], factors[:, 1])
  plt.show()
```



```
In [32]: # scaling the data
sc = StandardScaler()
```

```
# self organising maps
size = 6
som = MiniSom(size, size, input_len=scaled.shape[1], sigma=1, learning_ra
som.random_weights_init(scaled)
som.train(scaled, 100)

U = som.distance_map().T
sns.heatmap(U, cmap="mako", annot=True, fmt=".2f")
plt.show()
```


Module 7 - Model Development and Evaluation

```
In [33]: # linear regression between heating and income for state CA
lr = LinearRegression()
lr.fit(ca_data.heating.values.reshape(-1, 1), ca_data.income.values)
plt.scatter(ca_data.heating, ca_data.income)
plt.plot(ca_data.heating, lr.predict(ca_data.heating.values.reshape(-1, 1
plt.show()
```



```
In [34]: # regression metrics
y_true = ca_data.income.values
y_pred = lr.predict(ca_data.heating.values.reshape(-1, 1))
mae = mean_absolute_error(y_true, y_pred)
rmse = root_mean_squared_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)

print(f"Mean absolute error: {mae}")
print(f"Root mean squared error: {rmse}")
print(f"R^2 score: {r2}")
```

Mean absolute error: 928.1284743763293 Root mean squared error: 1104.4346868510531

R^2 score: 0.39566198520333606