Finite State Machines - Automaton

- synchronous FSM clocked by clock signal and [[Clock Frequency]]
- each clock period has defined current state
- machine advances into next defined state after each rising edge

State Diagram

- defines sequence of states
- initial state defined
- circle with symbolic names for each state
- arrows define sequence
 - can be described in state transition table

present state	in	next state
Α	0	В
Α	1	В
В	0	Α
В	1	С
С	0	Α
С	1	С

- may have inputs which influence next state
- may also have outputs
 - written into state circles
 - called Moore machines

Mapping State Diagram to Hardware

• state encoding

state	encoding	
Α	00	
В	01	
С	10	
_		

- state transition table
 - next state logic
 - next s0 = $((\sim s1) \& (\sim s0) \& (\sim in)) | ((\sim s1) \& (\sim s0) \& in)$
 - $_*$ next s1 = ((~s1) & s0 & in) | (s1 & (~s0) & in)

present in s1 s0		in	next s1 s0	
0	0	0	0	1
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	Х	Х
1	1	1	Х	Х

ullet output function

^{-2, 3, 4 =&}gt; 3 bit output

$$o2 = ~s1 & ~s0$$

$$o1 = (^s1 & s0) | (s1 & ^s0)$$

$$00 = \text{~s1 \& s0}$$

• structural diagram of FSM

the state is stored in a register

• hardware implementation

$System Verilog\ Implementation$

