Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

To determine the best number of store formats that we are going to use, we carry out the analysis of k-centroids with the grouping of k-means up to k = 6. According to the diagnoses, k = 3 gave better results, I will use k = 3 since it has the most adjusted range and the highest mean

K-Means Cluster Assessment Report Summary Statistics Adjusted Rand Indices: Minimum -0.017586 0.160572 0.233487 0.194525 0.199847 1st Quartile 0.331405 0.360047 0.290918 0.297775 0.3291 Median 0.50922 0.449275 0.369318 0.356473 0.391028 Mean 0.483091 0.471181 0.400553 0.402583 0.404771 3rd Quartile 0.684317 0.60705 0.491089 0.51004 0.466073 0.952939 0.792638 0.710494 0.671814 0.70233 Maximum Calinski-Harabasz Indices: 3 4 5 Minimum 10.08049 10.31461 12.07535 10.2825 10.26468 1st Quartil 18.47876 16.12846 14.26142 12.79008 12.1468 Median 20.0651 16.91185 15.25384 13.5505 12.63094 Mean 18.98125 16.71651 14.97491 13.57496 12.77785 3rd Quartile 20.75959 17.81834 15.78629 14.32361 13.58031 22.41555 18.88515 16.93911 16.10526 15.30862 Maximum

Adjusted Rand Indices

Calinski-Harabasz Indices

K-Means Cluster Assessment Report

Summary Statistics
Adjusted Rand Indices:

	2	3
Minimum	-0.009475	0.160572
1st Quartile	0.300167	0.3675
Median	0.509294	0.485542
Mean	0.4824	0.46864
3rd Quartile	0.684314	0.579146
Maximum	0.952939	0.810255

Calinski-Harabasz Indices:

	2	3
Minimum	10.74087	10.31461
1st Quartile	18.84013	16.2691
Median	20.14129	16.93783
Mean	19.19178	16.68079
3rd Quartile	20.88525	17.63599
Maximum	22.41555	18.80655

2. How many stores fall into each store format?

Cluster 1 25 stores Cluster 2 35 stores Cluster 3 25 stores

Summary Report of the K-Means Clustering Solution Analisis_Cluster

Solution Summary

Call:

 $stepFlexclust(scale(model.matrix(\sim-1 + X._Produce + X._Meat + X._General_Merchandise + X._Frozen_Food + X._Floral + X._Dry_Grocery + X._Deli + X._Dairy + X._Bakery, the.data)), k = 3, nrep = 10, FUN = kcca, family = kccaFamily("kmeans"))$

Cluster Information:

Cluster	Size	Ave Distance	Max Distance	Separation
1	25	2.099985	4.823871	2.191566
2	35	2.475018	4.412367	1.947298
3	25	2.289004	3.585931	1.72574

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

We can see that cluster 3 is the most positive in percentage of sales of general merchandise against group 1, which is the most negative in percentages, we can deduce that these two clusters are the most different in percentage of sales of general merchandise, the group 2 has a great magnitude in edibles, fruits and vegetables, dairy and frozen food

Summary Report of the K-Means Clustering Solution Analisis Cluster

Solution Summary

Call:

 $stepFlexclust(scale(model.matrix(\sim-1 + X._Produce + X._Meat + X._General_Merchandise + X._Frozen_Food + X._Floral + X._Dry_Grocery + X._Deli + X._Dairy + X._Bakery, the.data)), k = 3, nrep = 10, FUN = kcca, family = kccaFamily("kmeans"))$

Cluster Information:

Cluster	Size	Ave Distance	Max Distance	Separation
1	25	2.099985	4.823871	2.191566
2	35	2.475018	4.412367	1.947298
3	25	2,289004	3,585931	1.72574

Convergence after 8 iterations.

Sum of within cluster distances: 196.35034.

	XProduce	XMeat	XGeneral_Merchandise	XFrozen_Food	XFloral	XDry_Grocery	XDeli
1	-0.655028	0.614147	-0.674769	-0.261597	-0.663872	0.528249	0.824834
2	0.812883	-0.384631	-0.329045	0.435129	0.71741	-0.594802	-0.46168
3	-0.483009	-0.075664	1.135432	-0.347583	-0.340502	0.304474	-0.178482
	XDairy	XBakery					
1	-0.215879	0.428226					
2	0.655893	0.312878					
3	-0.702372	-0.866255					

Plots

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with

Random Seed = 3 to test differences in models.)

We use the StoreDemographicData.csv file, we run an improved model, decision trees and random forests, the respective accuracies are

Model Comparison Report					
Fit and error measures					
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
Decission_Tree_Model	0.6471	0.6667	0.5000	1.0000	0.5000
Forest_Model	0.7059	0.7500	0.5000	1.0000	0.7500
Boosted_Mod	0.7647	0.8333	0.5000	1.0000	1.0000

Observing the previous results, we will use the boosted model since it has the highest precision and the highest F1 score.

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	3
S0089	2
S0090	2
S0091	3
S0092	2
S0093	3
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

plots gives us the opportunity to apply an analysis of the model's own parameters. We use the storesdata.csv, we create the graphs to understand the trend, seasonality and error, it can be seen that there is seasonality and the error tends to decrease over time. we have seasonality multiplicatively, the trend does not exist and the error multiplicatively.

We can see in the graphs that the correlation is seasonal and positive, that is why the term AR must be used

An increasing seasonality is also observed, use the term I (1) in the seasonal model as MA (0), the final model will be ARIMA (1,1,0) (1,1,0) 12 and comparing the 4 models, we observe the results in the following plot.

ARIMA(1,0,0)(0,1,0) 12 model summary

Information Criteria:

AIC AICc BIC 698.826 699.4576 701.0081

In-sample error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
-266969.0261863	1385800.3176478	961223.1119023	-1.2966989	4.3808849	0.512182	-0.1664465

The highest AIC (1279.4) is from the ETS (M, N, M), also a better fit is appreciated, so I decide to use ETS (M, N, M)

3. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Date	Period	Existing Store	New Stores
2,016	1	21,136,641.781775	2,491,319.093207
2,016	2	20,507,039.12384	2,408,384.783604
2,016	3	23,506,565.982355	2,833,157.321387
2,016	4	22,208,405.755153	2,679,433.371626
2,016	5	25,380,147.771963	3,054,885.876482
2,016	6	25,966,799.465113	3,106,151.779247
2,016	7	26,113,792.565116	3,132,699.144598
2,016	8	22,899,285.769116	2,776,154.195458
2,016	9	20,499,583.908226	2,451,565.941438
2,016	10	19,971,242.820704	2,401,771.574835
2,016	11	20,602,665.916965	2,477,301.916348
2,016	12	21,073,222.081854	2,452,170.069396

Before you submit

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.