VM Address Translation

- Virtual Address Space
 - *V* = {0, 1, ..., N−1}
- Physical Address Space
 - $P = \{0, 1, ..., Assignment Project Exam Help \}$
- Address Translationps://tutorcs.com
 - MAP: $V \rightarrow P \cup \{\emptyset\}$
 - For virtual addre Chat: cstutorcs
 - MAP(a) = a' if data at virtual address a is at physical address a' in P
 - $MAP(a) = \emptyset$ if data at virtual address a is not in physical memory
 - Either invalid or stored on disk

Summary of Address Translation Symbols

- **Basic Parameters**
 - $N = 2^n$: Number of addresses in virtual address space
 - $M = 2^m$: Number of addresses in physical address space
 - P = 2^p: Page size (bytes)
 Assignment Project Exam Help
 Components of the virtual address (VA)
- - **TLBI**: TLB index https://tutorcs.com
 - **TLBT**: TLB tag
 - **VPO**: Virtual pagewifethat: cstutorcs
 - VPN: Virtual page number
- Components of the physical address (PA)
 - **PPO**: Physical page offset (same as VPO)
 - **PPN:** Physical page number
 - **CO**: Byte offset within cache line
 - CI: Cache index
 - CT: Cache tag

Address Translation With a Page Table

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction