Your name: Shi Bo

Problem Set 1, due Thursday, September 23, at 1230pm: section 1.4 #35; section 1.5 #38; section 2.2 #7; and section 2.2 #8.

Problem 1

Show that the collection of Borel sets is the smallest σ -algebra that contains the closed sets.

Proof: Denote \mathscr{B} as the collection of Borel sets, and $\sigma(\mathscr{F})$ as the smallest σ -algebra containing \mathscr{F} for any collection of sets F. Consider that \mathscr{F} is the collection of closed sets of \mathbb{R} and $F \in \mathscr{F}$. Then, $\mathbb{R} \setminus \mathcal{F}$ is an open set, by the definition of Borel set, therefore $\mathbb{R} \setminus \mathcal{F} \in \mathscr{B}$. So we can conclude that $\mathscr{F} \subset \mathscr{B}$, since $\mathcal{F} = \mathbb{R} \setminus (\mathbb{R} \setminus \mathcal{F}) \in \mathscr{B}$, which implies that $\sigma(\mathscr{F}) \in \mathscr{B}$. Next, consider the collection of open sets A of \mathbb{R} for which $a \in A$. We can see that $\mathbb{R} \setminus a \in \mathscr{F}$, then $a = \mathbb{R} \setminus (\mathbb{R} \setminus a) \in \sigma(\mathscr{F})$, which implies that A is a subset of $\sigma(\mathscr{F})$. Hence, we conclude $\sigma(A) \subseteq \sigma(\mathscr{F}) = \mathscr{B}$.

Problem 2

We call an extended real number a cluster point of a sequence $\{a_n\}$ if a subsequences converges to this extended real number. Show that $\liminf\{a_n\}$ is the smallest cluster point of $\{a_n\}$ and $\limsup\{a_n\}$ is the largest cluster point of $\{a_n\}$.

Proof: First, we denote the largest cluster point of $\{a_n\}$ by a_{large} and the smallest cluster point of $\{a_n\}$ by a_{small} . Then, if $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}=+\infty$, since $\sup_{k\geq n}\{a_k\}$ is monotone increasing, hence $\sup_{k>n} \{a_k\} = +\infty$ for any n>N. Therefore, there is $n_1\in\mathbb{N}$ such that $a_{n_1}>1$ and $n_2\in\mathbb{N}$ such that $a_{n_2} > 2 \dots$ i.e. $\{a_{n_k}\} \to +\infty$ as $k \to \infty$. So, $+\infty$ is a cluster point and $a_{large} = +\infty$, i.e. $a_{large} = \lim_{n \to \infty} \sup_{k \ge n} \{a_k\}.$ If $\lim_{n \to \infty} \sup_{k \ge n} \{a_k\} < +\infty$, then $\lim_{n \to \infty} \sup \{a_k\} = -\infty$ or a bounded real number. Suppose a is any cluster of $\{a_n\}$, then there is a subsequence of $\{a_n\}$ such that $a_{n_i} \to a$ as $i\to\infty. \text{ Hence, for any } n\in\mathbb{N} \text{ , we have } n_i\geq i\geq n \text{ and } a_{n_i}\leq \sup_{k\geq n}\{a_k\} \text{ , } a=\lim_{i\to\infty}a_{n_i}\leq \sup_{k\geq n}\{a_k\}$ and $a_{large} \leq \lim_{n \to \infty} \sup_{k \geq n} \{a_k\}$. On the other hand, for any y > a, there are finitely many terms of $\{a_n\}$ in $[y, +\infty]$ at most. So, there is $N \in \mathbb{N}$ such that when k > N, we have $a_k < y$, i.e. $\sup_{k > n} \{a_k\} \leq y$ for n>N, i.e. $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}\leq y$. Let $y\to a^+$, then $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}\leq a_{large}$. Consequently, $a_{large} = \lim_{n \to \infty} \sup_{k \ge n} \{a_k\}$. If $\lim_{n \to \infty} \sup_{k \ge n} \{a_k\} = -\infty$, since $\inf_{k \ge n} \{a_k\}$ is monotone decreasing, hence $\inf_{k\geq n}\{a_k\}=-\infty$. For any n>N, choose n_1 such that $a_{n_1}<-1$ and $n_2>n_1$ such that $a_{n_2}<-2\ldots$ So we get a subsequence $\{a_{n_i}\}$ of $\{a_n\}$ and $a_{n_i} \to -\infty$, i.e. $-\infty$ is a cluster point and is the smallest. So $a_{small} = \lim_{n \to \infty} \inf_{k \ge n} \{a_k\}$. If $\lim_{n \to \infty} \inf_{k \ge n} \{a_k\} > -\infty$, then $\lim_{n \to \infty} \inf_{k \ge n} \{a_k\} = +\infty$ or a bounded real number. Let a be any cluster point of $\{a_n\}$, then there is a subsequence $\{a_{n_i}\}$ and $a_{n_i} \to a, (i \to \infty)$. For $\text{any } n \in \mathbb{N}, \, n_i \geq i \geq n, \, \text{hence } a_{n_i} \geq \inf_{k \geq n} \{a_k\}, \, a = \lim_{i \to \infty} a_{n_i} \geq \inf_{k \geq n} \{a_k\} \, \, \text{and} \, \, a \geq \lim_{n \to \infty} \inf_{k \geq n} \{a_k\},$ so $a_{small} \ge \lim_{n \to \infty} \inf_{k \ge n} \{a_k\}$. On the other hand, for any $y \ge a_{small}$, there are at most finitely many terms of $\{a_n\}$ in $(-\infty, y]$. Therefore, there is N such that $a_k > y$ when k > N. So, $\inf_{k > n} \{a_k\} \ge y$ when n > N. So, we have $\inf_{k\geq n}\{a_k\}\geq y$, i.e. $\lim_{n\to\infty}\inf_{k\geq n}\{a_k\}\geq y$. Let $y\to a_{small}^-$, then $\lim_{n\to\infty}\inf_{k\geq n}\{a_k\}\geq a_{small}$. Consequently, $a_{small} = \lim_{n \to \infty} \inf_{k > n} \{a_k\}$.

Problem 3

A set of real numbers is said to be a G_{δ} set provided it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a G_{δ} set G for which

$$E \subseteq G$$
 and $m^*(G) = m^*(E)$

Proof: Given set E is bounded and then we know that the outer measure of E is finite, $m^*(E) < \infty$. Consider a countable collection of nonempty, open, bounded intervals $\{I_{n,j}\}_{j=1}^{\infty}$ for any n, which covers E. So, we have

$$\sum_{j=1}^{\infty} m^*(I_{n,j}) \le m^*(E) + 1/n, \forall n \in \mathbb{N}$$

Now, define $G = \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq 1} I_{n,j}$ and $\bigcup_{j \geq 1} I_{n,j}$ is open for all n, and contains E. By definition and monotonicity of m^* , we have

$$m^*(E) \le m^*(G) \le m^*(\bigcup_{j=1}^{\infty} I_{n,j}) \le \sum_{j=1}^{\infty} m^*(I_{n,j}) \le m^*(E) + 1/n$$

Your name: Shi Bo

This inequality holds for all n, then we can conclude that for any bounded set E, there exists a G_{δ} set for which $E \subseteq G$ and $m^*(E) = m^*(G)$.

Problem 4

Let B be the set of rational numbers in the interval [0,1], and let $\{I_k\}_{k=1}^n$ be a finite collection of open intervals that covers b.Prove that $\sum_{k=1}^n m^*(I_k) \ge 1$.

Proof: Given that $\{I_k\}_{k=1}^n$ be a finite collection of open intervals that covers B, where $B = \mathbb{Q} \cap [0,1]$. Then, we have $B \subset \bigcup_{k=1}^n I_k$, or say $\mathbb{Q} \cap [0,1] \subseteq \bigcup_{k=1}^n I_k$. Next, we take closure on both sides for $\mathbb{Q} \cap [0,1] \subseteq \bigcup_{k=1}^n I_k$, we will have

$$[0,1] \subseteq \bigcup_{k=1}^n \overline{I_k}$$

Then, by the monotonicity and subadditivity of m^* , the following inequality holds,

$$1 = m^*([0,1]) \le m^*(\bigcup_{k=1}^n \overline{I_k}) \le \sum_{k=1}^n m^*(\overline{I_k}) = \sum_{k=1}^n m^*(I_k)$$

Hence, we conclude that $\sum_{k=1}^{n} m^*(I_k) \ge 1$.