Parcial 2

Juan Sebastián Valbuena Bermúdez UNIVERSIDAD NACIONAL DE COLOMBIA ELECTRODINÁMICA 2

8 de noviembre de 2016

Soluciones

Todos los programas, simulaciones (graficas) y gif animados se encuentran en el siguiente repositorio: https://github.com/jusvalbuenabe/Parcial-2-Electro.git

Punto 1

Sea una lámina plana de espesor d cuya permitividad se corresponde con el modelo de plasma para altas frecuencias ($\omega >> \omega_o$, $\omega >> \Gamma$), es decir, $\varepsilon(\omega) = \varepsilon_0(1 - \omega_p^2/\omega^2)$. Dicha lámina está rodeada de vacío. Considere la incidencia de ondas planas que están linealmente polarizadas.

1.a

Escriba la matriz de transferencia de la estructura tomando como planos de referencia dos planos situados por fuera de la lámina pero a una distancia infinitesimal de esta, es decir, en $z = 0^-$ y $z = d^+$. Solución

Se divide el espacio en tres regiones:

- Región 1: z < 0, con permitividad $\varepsilon = \varepsilon_0$
- Región 2: 0 < z < d, con permitividad $\varepsilon = \varepsilon(\omega)$
- Región 3: d < z, con permitividad $\varepsilon = \varepsilon_0$

La matiz de transferencia T se puede escribir como el producto de tres matrices:

$$T = T_{12}T_2T_{23}$$

donde T_{12} es la matriz de transferencia correspondiente a la interfaz entre las regiones 1 y 2, T_2 es la matriz de propagación en el plasma y T_{23} es la matriz de transferencia correspondiente a la interfaz entre las regiones 2 y 3. Estas matrices se escriben como sigue:

$$T_{12} = \frac{1}{2Y_1} \begin{bmatrix} Y_1 + Y_2 & Y_1 - Y_2 \\ Y_1 - Y_2 & Y_1 + Y_2 \end{bmatrix}$$

$$T_2 = \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix}$$

$$T_{23} = \frac{1}{2Y_2} \begin{bmatrix} Y_2 + Y_3 & Y_2 - Y_3 \\ Y_2 - Y_3 & Y_2 + Y_3 \end{bmatrix}$$

Se ha usado la convención en la que Y_i es la admitancia del medio i. En este caso $Y_1=Y_3=\sqrt{\frac{\varepsilon_0}{\mu_0}}$ y $Y_2 = \sqrt{\frac{\varepsilon(\omega)}{\mu_0}}$. Adicionalmente $k(\omega)$ es el número de onda correspondiente a la frecuencia angular ω . Para el plasma se tiene la siguiente realción de disperción:

$$k(\omega) = \frac{\omega n(\omega)}{c} = \frac{\omega \sqrt{\varepsilon_p \mu_0}}{c^2} = \frac{\omega}{c} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} = \frac{1}{c} \sqrt{\omega^2 - \omega_p^2}$$

Simplificando se tiene que la matriz de transferencia es:

$$T = \frac{1}{4\varepsilon_0\sqrt{\varepsilon_r(\omega)}} \begin{bmatrix} \sqrt{\varepsilon_0} + \sqrt{\varepsilon(\omega)} & \sqrt{\varepsilon_0} - \sqrt{\varepsilon(\omega)} \\ \sqrt{\varepsilon_0} - \sqrt{\varepsilon(\omega)} & \sqrt{\varepsilon_0} + \sqrt{\varepsilon(\omega)} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} \sqrt{\varepsilon(\omega)} + \sqrt{\varepsilon_0} & \sqrt{\varepsilon(\omega)} - \sqrt{\varepsilon_0} \\ \sqrt{\varepsilon(\omega)} - \sqrt{\varepsilon_0} & \sqrt{\varepsilon(\omega)} + \sqrt{\varepsilon_0} \end{bmatrix}$$

$$T = \frac{1}{4\sqrt{\varepsilon_r(\omega)}} \begin{bmatrix} 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \\ 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + 1 & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - 1 \\ \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - 1 & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + 1 \end{bmatrix}$$

$$T = \frac{1}{4\sqrt{\varepsilon_r(\omega)}} \begin{bmatrix} e^{-idk} \left(\sqrt{1 - \frac{\omega_p^2}{\omega^2}} + 1\right)^2 - e^{idk} \left(\sqrt{1 - \frac{\omega_p^2}{\omega^2}} - 1\right)^2 & \frac{\omega_p^2}{\omega^2} \left(-e^{-idk} + e^{idk}\right) \\ -\frac{\omega_p^2}{\omega^2} \left(-e^{-idk} + e^{idk}\right) & e^{idk} \left(\sqrt{1 - \frac{\omega_p^2}{\omega^2}} + 1\right)^2 - e^{-idk} \left(\sqrt{1 - \frac{\omega_p^2}{\omega^2}} - 1\right)^2 \end{bmatrix}$$

1.b

Grafique los coeficientes de transmisión, t y t', y de reflexión r y r', mostrando separadamente sus correspondientes módulos y fases en función de la frecuencia ω .

Estos coeficientes se calculan a partir de la siguiente relación de los coeficientes conde la matriz de transferencia:

$$T = \begin{bmatrix} \frac{1}{t} & -\frac{r'}{t} \\ \frac{r}{t} & t' - \frac{rr'}{t} \end{bmatrix}$$

Para los resultados numéricos se tomo $c=1,\,\omega_p=1$ y $d=2\lambda_p=2\frac{2\pi c}{\omega_p}$. En las figuras 1, 2, 3 y 4 se muestran las gráficas de los coeficiente $t,\,r,\,t'$ y r', respectivamente.

Figura 1: Coeficiente de transmisión t

Figura 2: Coeficiente de reflexión \boldsymbol{r}

Figura 3: Coeficiente de transmisión t^\prime

Figura 4: Coeficiente de reflexión r^\prime

1.c

Grafique las transmitancias, T y T', y las reflectancias R y R', en función de ω . De Paso, compruebe si T + R = 1 y T' + R' = 1. Las transmitancias y reflectancias se pueden calcular a partir de los coeficientes de transmisión y reflexión como sigue:

$$T = \frac{Y_{out}}{Y_{in}}|t|^2$$
$$R = |r|^2$$

En las figura 5 y 6 se muestra las gráficas de las transmitancias y las reflectancias respectivamente. En la figura 7 se muestran las gráficas de R + T y R' + T'.

Figura 5: Transmitancias T y T'

Figura 6: Reflectancias R y R'

Figura 7: Suma de la reflectancia y la transmitancia. Con estas gráficas se confirma que R+T=1

1.d

Asumiendo que la onda incide desde la izquierda, grafique el campo eléctrico en función de la coordenada z, desde z=-d hasta z=2d.

Al asumir que la onda incide desde la izquierda se tiene que el campo en la z=d es

$$\begin{pmatrix} E_2^+ \\ E_2^- \end{pmatrix} = \begin{pmatrix} E_2^+ \\ 0 \end{pmatrix}$$

Con esta condición se calcula y se gráfica el campo como función de la coordenada z. Se obtuvo el campo eléctrico para distintas frecuencias ω menores y mayores que ω_p . Las figuras 8, 9, 10, 11 y 12 muestran las gráficas del campo eléctrico total E_T y las componentes E_1^+ y E_1^- para $\omega/\omega_p=0.5,\ 0.95,\ 0.999,\ 1.05$ y 1,5, respectivamente.

Figura 8: Campo eléctrico para $\omega = 0.5\omega_p$

Figura 9: Campo eléctrico para $\omega=0.95\omega_p$

Figura 10: Campo eléctrico para $\omega=0{,}999\omega_p$

Figura 11: Campo eléctrico para $\omega=1{,}05\omega_p$

Figura 12: Campo eléctrico para $\omega = 1.5\omega_p$

Punto 2

Sea una geometría similar a la del problema 1, pero ahora asuma que el medio que se coloca a la derecha la lamina es un dieléctrico de permitividad 2ε . Dar respuesta nuevamente a las mismas preguntas del prolema 1.

2.a

Con esta nueva geometría, la matriz de transferencia se modifica como sigue:

$$T = \frac{1}{4\sqrt{\varepsilon_r(\omega)}} \begin{bmatrix} 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \\ 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} \\ \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + \sqrt{2} \end{bmatrix}$$

2.b

En las figuras 13, 14, 15 y 16 se muestran las gráficas de los coeficiente t, r, t' y r', respectivamente.

Figura 13: Coeficiente de transmisión t

Figura 14: Coeficiente de reflexión r

Figura 15: Coeficiente de transmisión t^\prime

Figura 16: Coeficiente de reflexión r^\prime

2.c

En las figura 25 y 26 se muestra las gráficas de las transmitancias y las reflectancias respectivamente. En la figura 27 se muestran las gráficas de R + T y R' + T'.

Figura 17: Transmitancias T y T'

Figura 18: Reflectancias R y R'

2.d

Al igual que en el punto 1.d se calculo el campo para distintos frecuencias ω . Los resultados de la simulación se pueden encontrar en el repositorio junto a un gif animado que muestra la progpagación respecto al tiempo para cada frecuencia. La figuras 20, muestran las gráficas del campo eléctrico total E_T para $\omega/\omega_p=0.5,\ 0.95,\ 1.05\ \mathrm{y}\ 1.5.$

Figura 19: Suma de la reflectancia y la transmitancia. Con estas gráficas se confirma que R+T=1

Figura 20: Campo electrico total para distintas frecuencias ω

Punto 3

3.a

Con esta nueva geometría, la matriz de transferencia se modifica como sigue:

$$T = \frac{1}{8\sqrt{\varepsilon_r(\omega)}\sqrt{2}} \begin{bmatrix} 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \\ 1 - \sqrt{1 - \frac{\omega_p^2}{\omega^2}} & 1 + \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} \\ \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} + \sqrt{2} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ 0 & e^{ik(\omega)d} \end{bmatrix} \begin{bmatrix} e^{-ik(\omega)d} & 0 \\ \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} & \sqrt{1 - \frac{\omega_p^2}{\omega^2}} - \sqrt{2} \end{bmatrix} \end{bmatrix}$$

3.b

En las figuras 21, 22, 23 y 24 se muestran las gráficas de los coeficiente t, r, t' y r', respectivamente.

Figura 21: Coeficiente de transmisión t

Figura 22: Coeficiente de reflexión \boldsymbol{r}

Figura 23: Coeficiente de transmisión t^\prime

Figura 24: Coeficiente de reflexión r'

3.c

En las figura 25 y 26 se muestra las gráficas de las transmitancias y las reflectancias respectivamente. En la figura 27 se muestran las gráficas de R+T y R'+T'.

Figura 25: Transmitancias T y T^\prime

Figura 26: Reflectancias R y R^\prime

Figura 27: Suma de la reflectancia y la transmitancia. Con estas gráficas se confirma que R+T=1

3.d

Al igual que en el punto 1.d se calculo el campo para distintos frecuencias ω . Los resultados de la simulación se pueden encontrar en el repositorio junto a un gif animado que muestra la propagación respecto al tiempo para cada frecuencia. La figuras 28, muestra las gráficas del campo eléctrico total E_T para $\omega/\omega_p=0.5,\ 0.95,\ 1.05\ \mathrm{y}\ 1.5$.

Figura 28: Campo electrico total para distintas frecuencias ω