Yet More Bonding

Chemistry, Life, the Universe & Everything – Cooper & Klymkowsky

Metals

- Shiny
- Conduct electricity
- Malleable
- May be colored (gold, copper, etc) silver is colorless
- How does bonding in metals explain their properties?

Bonding in metals

- •Atomic orbitals (lots of them) combine with each other to form molecular orbitals (an equal number)
- •As the number of MOs increases, the energy distance between them decreases.

Bonding in metals

- •Atomic orbitals (lots of them) combine with each other to form molecular orbitals (an equal number)
- •As the number of MOs increases, the energy distance between them decreases.
- •Forming bands of MOs of almost continuous energy
- •Electrons can move freely between MOs.

Extended MO's

Bands in Extended Solids

Properties of metals

Because electrons can move freely around, metals conduct electricity

Because atoms can move with respect to one another, metals are malleable.

-Absorption of a photon will promote an electron to a higher energy level.

It immediately falls back down – emitting a photon – the metal shines (but not in the dark – why not?)

-The metal interacts with light of many wavelengths, so the metal appears white or colorless (silvery).

Graphene – one atom thick sheet (Nobel Prize 2010)

Diamonds

- Sparkly, translucent
- Hard
- High "melting" and "boiling" points
- Why?

Bonding in Diamond

Each carbon forms 4 bonds to 4 identical carbons.

The bonds arrange themselves towards the corners of a 4 sided figure (a tetrahedron)

We call this geometry **tetrahedral**

The C-C-C bond angle is ~109°

If you wanted to "melt" diamond (tetrahedral carbon) what would have to happen? (draw a picture)

Why do metals melt and diamonds do not?

How come carbon forms 4 identical bonds in diamond?

- [He] 2s² 2p²
- 4 valence electrons in atom in different types of orbitals
- Should give different types of bonds, but the evidence indicates that all four bonds are identical

Models of Bonding

Molecular Orbital

- Atomic orbitals combine to form an equal number of molecular orbitals
- Each orbital can contain up to two electrons
- Electrons in bonding orbitals stabilize the system
- Electrons in anti-bonding orbital make it less stable

Valence Bond

- Atomic Orbitals overlap to form a bond
- Each bond made up of two electrons
- How to explain the idea that C forms 4 identical bonds in diamond?
 - Hybridized orbitals

Bonding in tetrahedral C

- Hybridized atomic orbitals (sp³) give rise to strong directed bonds.
 - Giving rise to high mp/decomposition temperature – because these bonds have to be broken to melt diamond (in fact diamond decomposes rather than "melts")
- These bonds are "sigma bonds"

Sigma bonds

Comparison of diamond and graphite

Diamond

- High mp
- Hard
- Brittle (breaks along planes)
- Translucent (lets light through)
- Does not conduct electricity

Graphite

- High mp
- Soft
- Slippery
- Grey, shiny
- · Conducts electricity

Diamond and graphite are made out of carbon atoms only – how can they have such different properties?

Sigma and pi bonds

Sigma and pi bonds

Graphite

- Has a "localized" sigma bond framework (explained by overlap of hybridized orbitals)
- Has a "delocalized" pi network over the whole sheet of atoms (explained by delocalized pi molecular orbitals)

Graphite properties explained

- Slippery sheets can slide over each other only "held together" by LDF's
- Graphite conducts electricity because it has delocalized pi MOs over the whole structure
- Shiny because it can absorb and emit photons (just like metals)