mTAN: Multi-Time Attention Networks

For Irregularly Sampled Time Series

Satya Narayan Shukla, Benjamin Marlin

University of Massachusetts Amherst

Irregularly Sampled Time Series

Time series with non-uniform time intervals between successive measurements

Challenges

- Each time series observed at arbitrary time points
- · Different data cases may have different numbers of observations
- Lack of alignment of observation time points across different dimension in multivariate case
- Most machine learning models typically assume fully-observed, fixed-size feature representations

mTAN: Multi-Time Attention Networks

- Continuous-time interpolation-based models
- · Continuous-time embedding coupled with Time Attention
- · Replace the use of a fixed similarity kernel
- More representational flexibility than previous interpolation-based models
- · Time Embedding

$$\phi_h(t)[i] = \begin{cases} \omega_{0h} \cdot t + \alpha_{0h}, & \text{if} \quad i = 0\\ \sin(\omega_{ih} \cdot t + \alpha_{ih}), & \text{if} \quad 0 < i < d_r \end{cases}$$

Multi-Time Attention

Input Query time point *t*, keys and values in form of observation time points and values

Output J dimensional embedding at time t

$$\begin{aligned} \text{mTAN}(t, \mathbf{s})[j] &= \sum_{h=1}^{H} \sum_{d=1}^{D} \hat{x}_{hd}(t, \mathbf{s}) \cdot U_{hdj} \\ \hat{x}_{hd}(t, \mathbf{s}) &= \sum_{i=1}^{L_d} \kappa_h(t, t_{id}) x_{id} \\ \kappa_h(t, t_{id}) &= \frac{\exp\left(\phi_h(t) W V^T \phi_h(t_{id})^T / \sqrt{d_k}\right)}{\sum_{i'=1}^{L_d} \exp\left(\phi_h(t) W V^T \phi_h(t_{i'd})^T / \sqrt{d_k}\right)} \end{aligned}$$

Learning the time embeddings provides **mTAN** with flexibility to learn complex temporal kernel functions $\kappa_h(t,t')$

3

Encoder-Decoder Framework

• Discretized mTAN or mTAND, produce output representation at a given set of reference time points $\mathbf{r} = [r_1, ..., r_T]$

Generative Process

$$\mathbf{z}_{k} \sim p(\mathbf{z}_{k})$$
 $\mathbf{h}_{RNN}^{dec} = \mathsf{RNN}^{dec}(\mathbf{z})$
 $\mathbf{h}_{TAN}^{dec} = \mathsf{mTAND}^{dec}(\mathbf{t}, \mathbf{h}_{RNN}^{dec})$
 $\mathbf{x}_{id} \sim p(\mathbf{x}_{id}|f^{dec}(\mathbf{h}_{i,TAN}^{dec})[d])$

Inference Network

$$\begin{aligned} \mathbf{h}_{\text{TAN}}^{\textit{enc}} &= \text{mTAND}^{\textit{enc}}(\mathbf{r}, \mathbf{s}) \\ \mathbf{h}_{\textit{RNN}}^{\textit{enc}} &= \text{RNN}^{\textit{enc}}(\mathbf{h}_{\textit{TAN}}^{\textit{enc}}) \\ \mathbf{z}_k &\sim q(\mathbf{z}_k | \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2) \\ \boldsymbol{\mu}_k &= f_{\mu}^{\textit{enc}}(\mathbf{h}_{k,\textit{RNN}}^{\textit{enc}}) \\ \boldsymbol{\sigma}_k^2 &= \exp(f_{\sigma}^{\textit{enc}}(\mathbf{h}_{k,\textit{RNN}}^{\textit{enc}})) \end{aligned}$$

Learning

 Maximize a normalized variational lower bound on the log marginal likelihood based on ELBO

Unsupervised Learning

$$\begin{split} \mathcal{L}_{\text{NVAE}}(\theta, \gamma) &= \sum_{n=1}^{N} \frac{1}{\sum_{d} L_{dn}} \Big(\mathbb{E}_{q_{\gamma}(\mathbf{z}|\mathbf{r}, \mathbf{s}_{n})} [\log p_{\theta}(\mathbf{x}_{n}|\mathbf{z}, \mathbf{t}_{n})] - D_{\text{KL}}(q_{\gamma}(\mathbf{z}|\mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z})) \Big) \\ D_{\text{KL}}(q_{\gamma}(\mathbf{z}|\mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z})) &= \sum_{i=1}^{T} D_{\text{KL}}(q_{\gamma}(\mathbf{z}_{i}|\mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z}_{i})) \end{split}$$

$$\log p_{\theta}(\mathbf{x}_n|\mathbf{z},\mathbf{t}_n) = \sum_{d=1}^{D} \sum_{j=1}^{L_{dn}} \log p_{\theta}(\mathbf{x}_{jdn}|\mathbf{z},\mathbf{t}_{jdn})$$

Supervised Learning

$$\begin{split} \mathcal{L}_{\text{Sup}}(\theta, \gamma, \delta) &= \mathcal{L}_{\text{NVAE}}(\theta, \gamma) + \lambda \mathbb{E}_{q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s}_n)} \log p_{\delta}(y_n | \mathbf{z}) \\ y^* &= \underset{y \in \mathcal{Y}}{\text{arg max}} \ \mathbb{E}_{q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s})} [\log p_{\delta}(y | \mathbf{z})] \end{split}$$

5

Experiments

- mTAN performs better than state-of-the-art models
- \cdot 1 \sim 2 orders of magnitude faster training

Table 1: PhysioNet: Interpolation

Model	MSE (×10 ⁻³)
RNN-Impute	3.243 ± 0.275
$RNN extstyle - \Delta_t$	3.520 ± 0.276
RNN-Decay	3.215 ± 0.276
RNN GRU-D	3.384 ± 0.274
RNN-VAE	5.390 ± 0.249
ODE-RNN	2.361 ± 0.086
L-ODE (RNN)	3.907 ± 0.252
L-ODE (ODE)	2.118 ± 0.271
mTAND-Full	0.424 ± 0.018

Table 2: PhysioNet: Classification

Model	AUC Score	time
RNN-Impute	0.764 ± 0.016	0.5
RNN- Δ_t	0.787 ± 0.014	0.5
RNN-Decay	0.807 ± 0.003	0.7
RNN GRU-D	0.818 ± 0.008	0.7
RNN-VAE	0.515 ± 0.040	2.0
ODE-RNN	0.833 ± 0.009	16.5
L-ODE-RNN	0.781 ± 0.018	6.7
L-ODE-ODE	0.829 ± 0.004	22.0
IP-Nets	0.819 ± 0.006	1.3
mTAND-Enc	0.854 ± 0.001	0.08
mTAND-Full	0.858 ± 0.004	0.19