

Figure A Vue de dessus d'un modèle cinématique étendu de type « bicyclette » dans le cas d'une trajectoire rectiligne $\mathcal T$ à suivre par le robot (configuration pour laquelle $\theta < 0$ et $y_F, y_{G_2}, y_R < 0$). Les roues médianes 5 et 6 peuvent être orientées en pivotant respectivement autour de $(F, \vec{z}_F) = (F, \vec{z}_2)$ et $(R, \vec{z}_R) = (R, \vec{z}_2)$.

Figure B Problématique de la marche en crabe due au glissement du robot sur un sol naturel en pente (à gauche) et situation où le couple de variables (y_{G_2}, θ) est bien asservi au point de fonctionnement (0,0) (à droite)

Figure C Diagramme d'état décrivant l'alternance des états de pilotage du vérin électrique de l'intercep

Question 22

Figure D

Figure E Modélisation de l'outil intercep et de sa lame en position déployée (à gauche) et en position de retrait (à droite) en vue de dessus (barre palpeuse non représentée).