算法图论

云南大学数学系

李建平

2015年9月

第八章 独立集和团

8.1 独立集 (independent set)

定义8.1设G=(V,E)是一个图,S_CV,称S为(点)独立集,如果S中的任意两个顶点都不相邻。

最大独立集问题:给定一个图G,要寻找G的一个独立集S,使|S|是所有独立集中的最大者,即若S'为任意独立集,有|S'|≤|S|

最大独立集问题是NP-完备问题。

定义8.2 若S为G的最大独立集,则规定G的独立数为|S|,记为 $\alpha(G)$ 。

设G=(S,T;E)是二部图,则 $\alpha(G) \ge \max\{ |S|, |T| \}$ 。

定义8.3 设G=(V,E)是一个图,称 $C\subset V$ 为G的一个点覆盖,如果任意的边 $e=uv\in E$,有或者 $u\in C$,或者 $v\in C$ 。

最小点覆盖问题:给定一个图G,要寻找 G的一个点覆盖C,使|C|是所有点覆盖中的最 小者,即若C'为任意点覆盖,则有|C|≤|C'|。 定义8.4 若C是图G的最小点覆盖,规定 | C | 为G的点覆盖数,记为 $\beta(G)$ 。 最小点覆盖问题是NP-完备问题。

定理8.1 设G=(V,E)是一个图,则 $\alpha(G)+\beta(G)=|V|$

证明 首先有如下事实: S是G的点独立集当且仅当V-S是G的点覆盖集。事实上,若S是G的点独立集,则G的任何一边至少有一个端点在V-S中,从而V-S是点覆盖集; 反之,若C是G的点覆盖集,则不可能存在一条边的两个端点都在V-C中,故V-C是点独立集。

由此,如果S₀是G的最大独立集,C₀是G的最小点覆盖集,则有

$$\alpha(G) = S_0 \geq V - C_0 = V - \beta(G)$$

和

$$\beta(G) = |C_0| \le |V - S_0| = |V| - \alpha(G)$$

从而 $\alpha(G)+\beta(G)=|V_{\circ}|$ 证毕

从定理8.1可知,求一个图的最大独立集问题与最小点覆盖集问题是等价的。

最小点覆盖问题和最大独立集问题都是 NP-完备性问题,目前还没有多项式算法找到 它们的最优解. 但是,二部图的最小点覆盖问 题和最大独立集问题可以利用二部图匹配算 法找到最优解。

下面算法能够求得二部图G=(S, T; E)最小点覆盖和最大独立集:

- 二部图的最小点覆盖问题和最大独立集的求解算法:
- 1. 在给定的二部图G上,利用反圈法找到G的一个最大匹配M,并且得到相应的A₁,A₂,A₃,A₄;
- 2. 取集合C=A₂UA₃,于是C就是图G的最小 点覆盖集合:
- 3. 取集合I=A₁UA₄,于是I就是图G的最大独立集。

定义8.5 设G=(V,E)是一个图,M \subset E称为G的一个边独立集(或匹配),如果M中任两条边都没有公共的端点。元素个数最大的边独立集称为最大边独立集,称其最大个数为G边独立数,记为 $\alpha'(G)$ 。

定义8.6 设G=(V,E)为一个图,且不含孤立点,称 $E'\subseteq E$ 为G的一个边覆盖集,如果对任意的一个顶点u,都存在一条边e以u为端点。元素个数最小的边覆盖集称为最小边覆盖集,称其最小个数为G边覆盖数,记边覆盖数为 $\beta'(G)$ 。

定理8.2 设G=(V,E)是一个图,并且G不含孤点,即d(G)≥1,则 $\alpha'(G)+\beta'(G)=|V(G)|$ 。

8.2 团 (clique)

定义8.7 设G=(V,E)是一个图, $S\subseteq V$,称 S是一个团,如果S中的任何两个端点都相邻。进一步,若对于任意的团S',使 $|S'| \le \$$,称S为G的一个最大团。

最大团问题: 给定图G, 要寻求S ⊆ V, 使得S是一个团, 并且 | S | 达到最大。 最大团问题是NP完备的。

定理**8.3** 最大团问题等价于最大独立集问题,反之亦然。(?)

问题1 如何求二部图中的最大团问题?

问题2 如何求平面图中的最大团问题?

8.3 Ramsey定理

例 设有6个人,则一定存在3个人彼此认识 或者彼此不认识。

解:构造一个6阶图,如果第i人与第j人认识 v_iv_j把染成红色;如果第i人与第j人不认 识,把v_iv_i染成蓝色。

v₂ 对于任意的一点v₁,不 v₆。 妨设它与v₂,v₃,v₄认识, y₅ 则d_G(v₁)≥3,否则考虑 d_G(v₁)≥3。 若 v_2v_3 \in E,或 v_2v_4 \in E,或 v_3v_4 \in E,则 $v_1v_2v_3$ 构成团,或 $v_1v_2v_4$ 构成团,或 $v_1v_3v_4$ 构成团。

若 v_2v_3 ∈ E,且 v_2v_4 ∈ E,且 v_3v_4 ∈ E,则 $v_2v_3v_4$ 可构成一个独立集。 证毕

如果是**5**个人_{**v**₁}则上述结果不成立。反例 如下:

定义8.8 给定两个正整数 r_1 , r_2 , 在顶点数为n的图G中,若存在一个子图 K_{r1} 或者存在一个子图 K_{r2} ^C,称这样的最小正整数n为(由 r_1 , r_2) 所确定的)Ramsey数,记为 $R(r_1,r_2)$ 。

问题:对于给定的正整数 r_1 和 r_2 ,如何确定Ramsey数R(r_1 , r_2)? (很难)

定理8.4 (1) R(r₁,2)=r₁, R(2,r₂)=r₂

- (2) R(3,3)=6, R(3,4)=9
- (3) $R(r_1,r_2)=R(r_2,r_1)$

对于一般的 $R(r_1,r_2)$,有这样的表: 图8.2

r_1	3	4	5	6	7	8	9	10
						28/		39/
3	6	9	14	18	23	29	36	44
			25/	34/				
4		18	28	44				
			42/	51/				
5			55	94				

定理8.5 对于任意给定的正整数r₁,r₂≥2,

则 $R(r_1,r_2) \leq R(r_1,r_2-1) + R(r_1-1,r_2)$

证明:对r₁+r₂使用数学归纳法,

易知, $R(r_1,1)=1$, $R(1,r_2)=1$

 $R(r_1,2)=r_1, R(2,r_2)=r_2$

 $R(r_1,2)=r_1 \le 1+(r_1-1)=R(r_1,1)+R(r_1-1,2)$

 $R(2,r_2)=r_2 \le (r_2-1)+1=R(2,r_2-1)+R(1,r_2)$

说明对于较小的r₁+r₂,原命题成立,即此时

的 $R(r_1,r_2-1)$ 和 $R(r_1-1,r_2)$ 已经被完全确定。

记 $k=R(r_1,r_2-1)+R(r_1-1,r_2)$,对于任意的

k阶图G,其补图记为G^C,对于任意的点 v₁∈V(G),有 $d_{G}(v_{1})+d_{G^{c}}(v_{1})=k-1$ $=R(r_1,r_2-1)+R(r_1-1,r_2)$ -1 则或者d_G(v₁)≥R(r₁-1,r₂) 或者 $d_{G^c}(v_1) \ge R(r_1, r_2 - 1)$ $\stackrel{\text{def}}{=} d_G(v_1) \ge R(r_1 - 1, r_2)$ 时,说明 | N_G(v₁) | ≥R(r₁-1,r₂)。考虑由 $N_G(v_1)$ 所得到的诱导子图 $H=G[N_G(v_1)]$ 。由于 H的顶点数≥ $R(r_1-1,r_2)$,则根据归纳假设, 即R (r_1-1,r_2) 存在,有或者 H含有 r_1-1 个顶

的团,即H含有 K_{r1-1} ,再把 v_1 加上那个子图,于是G含有 K_{r1} ;或者 H含有 r_2 个顶点的独立集,即H含有 K_{r2} °,于是G含有 K_{r2} °。

类似地,可证d_Gc(v₁)≥R(r₁,r₂-1)=R(r₂-1, r₁) 时,结论也成立。

定理8.6 (Erdos and Szekeres, 1935)

$$R(r_1, r_2) \le C_{r_1 + r_2 - 2}^{r_1 - 1} = C_{r_1 + r_2 - 2}^{r_2 - 1}$$

证明: (用数学归纳法) 当 r_1 , r_2 较小时,上式成立。假设当 r_1 + r_2 <k时,上式成立,即 $R(r_1-1,r_2) \le C_{r_1+r_2-3}^{r_1-2}$ 和 $R(r_1,r_2-1) \le C_{r_1+r_2-3}^{r_1-1}$

当 $r_1+r_2=k$ 时,则利用定理8.5,有

$$R(r_1,r_2) \le R(r_1,r_2-1) + R(r_1-1,r_2)$$

$$\leq C_{r_1+r_2-3}^{r_1-2} + C_{r_1+r_2-3}^{r_1-1}$$

$$\leq C_{r_1+r_2-2}^{r_1-1} = C_{r_1+r_2-2}^{r_2-1}$$

证毕