RMarkdown Teaser

Workshop: Einführung in R

28.06.2022

Markdown

R Markdown Dokument

Das hier ist ein R Markdown Dokument. Es kann R Code ausführen und die Ergebnisse darstellen. Damit lassen sich z.B. automatisierte Berichte erzeugen, die mit neuen Daten vorgefertige Analysen ausführen.

Formatierung

Mit ein paar einfachen Tricks kann man ein schönes und ev. interaktives **HTML- oder pdf-Dokument** erstellen.

Z.B. mit # Überschrift bzw. ## Überschrift kann man Überschriften in unterschiedlicher Größe erzeugen.

Bilder

Es lassen sich auch Bilder integrieren.

Codeblöcke

Man kann Codeblöcke anzeigen:

```
# Das ist ein R Codeblock
# Der Code hier funktioniert und liefert einen Output

radius <- 3
flaeche <- radius ^ 2 * pi</pre>
```

Ein Kreis mit Radius 3cm hat die Fläche 28.2743339cm².

Schöne Tabellen

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

${\bf Be is piel daten satz}$

Iris Beispieldaten

Der 'iris' Datensatz beinhaltet 150 Messungen der Blattlängen und -breiten von 3 verschiedenen Lilienspezies. Er ist in RStudio integriert und kann direkt verwendet werden.

Sepal und Petal sind verschiedene Blattarten:

 $Figure \ 1: \ Iris$

Ein erster Überblick über die Daten:

head() zeigt die ersten 6 Reihen oder Einzelwerte an: head(iris)

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                         3.5
                                      1.4
                                                  0.2 setosa
## 2
             4.9
                         3.0
                                      1.4
                                                  0.2 setosa
## 3
             4.7
                         3.2
                                      1.3
                                                  0.2 setosa
## 4
             4.6
                          3.1
                                      1.5
                                                   0.2 setosa
## 5
             5.0
                         3.6
                                                   0.2 setosa
                                      1.4
             5.4
                         3.9
                                      1.7
                                                   0.4 setosa
# summary() berechnet für jede Spalte Minimum, Maximum, Quartile, Mean, Median:
summary(iris)
##
    Sepal.Length
                    Sepal.Width
                                    Petal.Length
                                                    Petal.Width
##
  Min.
           :4.300
                   Min.
                          :2.000
                                   Min.
                                           :1.000
                                                   Min.
                                                          :0.100
  1st Qu.:5.100
                   1st Qu.:2.800
                                   1st Qu.:1.600
                                                   1st Qu.:0.300
##
## Median :5.800
                   Median :3.000
                                   Median :4.350
                                                   Median :1.300
          :5.843
## Mean
                   Mean
                          :3.057
                                   Mean
                                          :3.758
                                                   Mean
                                                          :1.199
## 3rd Qu.:6.400
                   3rd Qu.:3.300
                                   3rd Qu.:5.100
                                                   3rd Qu.:1.800
## Max.
          :7.900
                   Max.
                          :4.400
                                   Max.
                                          :6.900
                                                   Max.
                                                          :2.500
##
          Species
## setosa
              :50
## versicolor:50
## virginica:50
##
##
# str() zeigt die Datenstruktur der Variablen an
str(iris)
## 'data.frame':
                   150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species
                 : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
Grafiken
```

Grafiken

In R kann man schnell und einfach Grafiken erstellen:

```
plot(x=iris$Sepal.Width, y=iris$Petal.Width)
```


Mit zusätzlichen Argumenten in der Funktion kann man die Graphik verschönern und erweitern:

Breite von Petal und Sepal

Shiny Apps

Shiny Apps

Shiny Apps sind browserbasierte Programme mit graphischer Nutzeroberfläche, die sich relativ leicht und schnell erstellen lassen.

Ein Beispiel: https://shiny.rstudio.com/gallery/kmeans-example.html.

Machine Learning

Machine Learning

Viele Algorithmen für maschinelles Lernen sind in R verfügbar. Z.B. random forest, eine Erweiterung von Decision Trees für Klassifizierung oder Regression.

```
library(randomForest)

rf <- randomForest(Species ~ ., data=iris)
# Das Modell sagt anhand der Maße der Blätter die Spezies voraus

rf

##

## Call:
## randomForest(formula = Species ~ ., data = iris)
##

Type of random forest: classification
##

Number of trees: 500

## No. of variables tried at each split: 2
##</pre>
```

```
OOB estimate of error rate: 4%
## Confusion matrix:
             setosa versicolor virginica class.error
## setosa
               50
                            0
                                     0
                                               0.00
                                      3
## versicolor
                 0
                            47
                                               0.06
                  0
                                     47
                                               0.06
## virginica
                            3
predict(rf, iris[75, 1:4]) # Vorhersage für Zeile 75 anhand des Modells
##
          75
## versicolor
## Levels: setosa versicolor virginica
iris[75, 5] # Wahre Klasse in Zeile 75
## [1] versicolor
## Levels: setosa versicolor virginica
```