Jeremy Immanuel Putra Tandjung Professor Wooyoung Kim CSS 422 05/23/2020

Q1. Consider the logic gate circuit shown below

(1)
$$\sim$$
 (\sim (a \oplus c) + \sim b) * \sim ((b+d) * \sim b)

(2)

a	b	С	d	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

(3) Also attached on canvas submission

(4) I apologize for the dark header, as the logisim on my ubuntu defaults to dark mode even when I changed my ubuntu system theme to light mode.

a b c d | x

a	b	С	d	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1 1 0
0	1	1	1	1
1	0	0	0	0
1	0	0	1 0	0
1	0	1	0	0
1	0	1 0 0	1 0	0 1 1
1	1	0	0	1
1	1		1 0	1
0 0 0 0 0 0 1 1 1 1 1	1	1		0
1	1	1	1	0

Q2. Design a combinational circuit system.

(1)

a	b	С	Α	В	С
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

(2) & (3)

A K-map

	~x~y	~xy	xy	x~y
~Z	0	1	1	0
~Z	0	1	1	1

$$A = y + xz$$

B K-map

	~x~y	~xy	xy	x~y
~Z	1	0	0	1
~Z	1	0	1	0

$$B = \sim_X \sim_Y + \sim_Y \sim_Z + xyz$$

C K-map

	~x~y	~xy	xy	x~y
~Z	0	0	1	1
~Z	1	1	0	0

$$C = \sim_{XZ} + x \sim_{Z} = x \oplus z$$

(4) Also attached in canvas submission

(5)

X	y	z	A	В	C	
x	у	z	Α	В	С	
0	0	0	0	1	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	1	0	1	
1	0	0	0	1	1	
1	0	1	1	0	0	
1	1	0	1	0	1	
1	1	1	1	1	0	

Q3. Combinational circuit and Full Adder

(1)

X	У	Z	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2) S K-map

	~x~y	~xy	ху	x~y
~Z	0	1	0	1
~Z	1	0	1	0

$$S = {\sim}x{\sim}yz + {\sim}xy{\sim}z + xyz + x{\sim}y{\sim}z$$

(3) C K-map

	~x~y	~xy	xy	x~y
~Z	0	0	1	0
Z	0	1	1	1

$$C = xy + yz + xz$$

(4)
$$(x \oplus y) \oplus z == \sim x \sim yz + \sim xy \sim z + xyz + x \sim y \sim z$$

$$(x \oplus y) \oplus z = (\sim xy + x \sim y) \oplus z$$

= $\sim (\sim xy + x \sim y)z + (\sim xy + x \sim y) \sim z$
= $(x + \sim y)(\sim x + y)z + \sim xy \sim z + x \sim y \sim z$
= $x \sim xz + xyz + \sim x \sim yz + \sim yyz + \sim xy \sim z + x \sim y \sim z$
= $x \sim xz + xyz + \sim x \sim yz + \frac{\sim yyz}{\sim yyz} + \sim xy \sim z + x \sim y \sim z$
= $xyz + \sim x \sim yz + \sim xy \sim z + x \sim y \sim z$

(5)
$$xy + (x \oplus y)z == xy + yz + xz$$

$$xy + (x \oplus y)z$$
 = $xy(1+z) + x\sim yz + \sim xyz$
= $xy + xyz + x\sim yz + \sim xyz$
= $xy + xz(y+\sim y) + \sim xyz$
= $xy + xz + \sim xyz$
= $xy(1+z) + xz + \sim xyz$
= $xy + xyz + xz + \sim xyz$
= $xy + xyz + xz + \sim xyz$
= $xy + xz + xyz + \sim xyz$
= $xy + xz + yz(x+\sim x)$
 $xy + xz + yz(x+\sim x)$
 $xy + xz + yz(x+\sim x)$

Q4. Design a sequential circuit

A(t)	B(t)	x	у	Z	A(t+1)	B(t+1)
0	0	0	0	0	0	0
0	0	0	1	1	1	0
0	0	1	0	1	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	1
0	1	0	1	1	1	0
0	1	1	0	1	0	1
0	1	1	1	1	1	0
1	1	0	0	0	0	0
1	1	0	1	1	1	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0
1	0	0	0	0	0	0
1	0	0	1	1	1	0
1	0	1	0	1	0	0
1	0	1	1	1	0	1

Q5.

(1) State diagram

(2) Excitation table

Cu	Current state Next state					Excit	ation				
Q2	Q1	Q0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0	1	1	1	1	Х	1	Х	1	Х
1	1	1	1	1	0	x	0	X	0	х	1
1	1	0	1	0	1	x	0	X	1	1	Х
1	0	1	1	0	0	x	0	0	Х	Х	1
1	0	0	0	1	1	x	1	1	Х	1	Х
0	1	1	0	1	0	0	X	X	0	х	1
0	1	0	0	0	1	0	X	X	1	1	Х
0	0	1	0	0	0	0	Х	0	Х	Х	1

(3) J2 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	0	0	0
Q2	X	X	Х	Х

$$J2 = \sim Q1 \sim Q0$$

K2 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	x	X	x	x
Q2	1	0	0	0

$$K2 = \sim Q1 \sim Q0$$

J1 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	0	х	X
Q2	1	0	Х	Х

 $J1 = \sim Q0$

K1 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	X	х	0	1
Q2	Х	Х	0	1

 $K1 = \sim Q0$

J0 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	Х	Х	1
Q2	1	Х	Х	1

J0 = 1

K0 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	Х	1	1	Х
O2	Х	1	1	Х

K0 = 1

(5)

Q2	Q1	Q0
Х	Х	Х
0	0	0
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0
1	1	1

Extra Credit

Х	Υ	Carry in	S(t)	Carry-out (t)	S(t+1)	Carry-out (t+1)
0	0	0	0	1	1	1
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	0	1	0	0	1	1
1	1	0	0	0	0	0
1	1	1	1	0	0	0