

# An Example

- Study: How different species of Dinoflagellates (Algae) relates to each other by studying their sterol composition
  - identify the relationships via sterol composition similarity amongst dinoflagellates
  - investigate the correspondences between the dinoflagellates sharing a similar sterol compositions and their evolutionary histories.
- Data:
  - Sterol composition of 102 dinoflagellates

Malysis method Middle Tennessee State University

# An Example Data: 58 named sterols and steroidal ketones 102 dinoflagellate species Analysis method Hierarchical Clustering based on Sterol composition data Clustering validation using multiple clustering schemes and clustering criteria







# An Example

- · Conclusion of the Study:
  - Our results indicated that several, but not all, dinoflagellate genera share similar sterol compositions
  - sterol composition of dinoflagellates has been determined, to a certain extent, by the evolutionary diversification of this lineage.

# Agglomerative vs. Divisive Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition



# Single-link vs. Complete-link

- · Difference: the way to characterize the similarity between a pair of clusters
  - single link: minimum of the distances between all pairs of patterns drawn from the two clusters
  - complete link: maximum of the distances between all pairs of patterns drawn from the two clusters
  - average link: average of the distances between all pairs of
  - patterns drawn from the two clusters
     UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
- · All use agglomerative clustering control structure

### Agglomerative clustering

- Step 1: place each pattern in its own cluster construct a list of inter-pattern distances for all distinct unordered pairs of patterns, and sort this list in ascending order
- Step through the sorted list of distances, forming for each distinct dissimilarity value dk, a graph on the patterns where pairs of patterns closer than d<sub>k</sub> are connected by a graph edge.
- If all patterns are members of a completely connected graph, stop.

## **Dendrogram**

- A Dendrogram Shows How the Clusters are Merged Hierarchically:
- Decompose data objects into several levels of nested partitioning (tree of clusters), called a dendrogram.
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each connected component forms a cluster.



### **Practice Question**

 Cluster the following six objects, using single-link and complete link agglomerative clustering methods:

|      | Gender | Age | Time | Fever | Cough |
|------|--------|-----|------|-------|-------|
| Obj1 | F      | 2   | 2    | Υ     | N     |
| Obj2 | M      | 2   | 0.5  | N     | N     |
| Obj3 | F      | 15  | 3    | Υ     | Υ     |
| Obj4 | F      | 18  | 0.5  | Υ     | N     |
| Obj5 | M      | 58  | 4    | N     | Υ     |
| Obj6 | F      | 44  | 14   | N     | Υ     |

Middle Tennessee State University

# **AGNES (Agglomerative Nesting)**

- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- · Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster



# **DIANA** (Divisive Analysis)

- · Inverse order of AGNES
- Eventually each node forms a cluster on its own



Middle Tennessee State University

### More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
  - <u>do not scale</u> well: time complexity of at least  $O(n^2)$ , where n is the number of total objects
  - can never undo what was done previously
- · Integration of hierarchical with distance-based clustering
  - BIRCH (1996) (Balanced Iterative Reducing and Clustering using Hierarchies): uses CF-tree and incrementally adjusts the quality of sub-clusters
  - <u>CURE (1998</u>): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction

- ...

Middle Tennessee State University

### • Only works with "metric" attributes

- Must have Euclidean coordinates
- Designed for very large data sets
- Time and memory constraints are explicit
- Treats dense regions of data points as sub-clusters
  - Not all data points are important for clustering
- Only one scan of data is necessary

Middle Tennessee State University

### • Incremental, distance-based approach

- Does not need the whole data set in advance
- Unique approach: distance based algorithms generally need all the data points to work
- Does not assume that the probability distributions on attributes is independent

ddle Tennessee State University

3

# Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
  - Phase 1: scan DB to build an initial in-memory CF tree (a multilevel compression of the data that tries to preserve the inherent clustering structure of the data)
  - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record.

# **Clustering Feature Vector**

Clustering Feature: CF = (N, LS, SS)

N: Number of data points

LS: 
$$\sum_{i=1}^{N} = \overrightarrow{X_i}$$
  
SS:  $\sum_{i=1}^{N} = \overrightarrow{X_i^2}$ 



CF = (5, (16,30),(54,190))

(3, 4)

(2, 6)(4, 5)

(4, 7)

(3, 8)

Given a cluster of instances  $\{\vec{X}_i\}$ , we define the centroid, the radius, and the diameter:

$$\begin{split} \vec{X0} &= \frac{\sum_{i=1}^{N} \vec{X}_i}{N} \\ R &= (\frac{\sum_{i=1}^{N} (\vec{X}_i - \vec{X0})^2}{N})^{\frac{1}{2}} \\ D &= (\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{X}_i - \vec{X_j})^2}{N(N-1)})^{\frac{1}{2}} \end{split}$$

We define the Euclidean and Manhattan distance between any two clusters as:

$$D0 = ((\vec{X0}_1 - \vec{X0}_2)^2)^{\frac{1}{2}}$$

$$D1 = |\vec{X0}_1 - \vec{X0}_2| = \sum_{i=1}^{d} |\vec{X0}_1^{(i)} - \vec{X0}_1^{(i)}|$$

We define the average inter-cluster, the average intra-cluster, and the variance increase distances as:

$$D2 = (\frac{\sum_{i=1}^{N_1} \sum_{j=N_1+1}^{N_1+N_2} (\vec{X}_i - \vec{X_j})^2}{N_1 N_2})^{\frac{1}{2}}$$

$$D3 = (\frac{\sum_{i=1}^{N_1+N_2} \sum_{j=1}^{N_1+N_2} (\vec{X_i} - \vec{X_j})^2}{(N_1+N_2)(N_1+N_2-1)})^{\frac{1}{2}}$$

$$\begin{array}{c} D4 = & (\sum_{k=1}^{N_1+N_2} (\vec{X_k} - \sum_{i=1}^{j_{N_1}+N_2} \vec{X_i})^2 \\ & - \sum_{i=1}^{N_1} (\vec{X_i} - \frac{\sum_{i=1}^{N_1} \vec{X_i}}{N_1})^2 - \sum_{j=N_1+1}^{N_1+N_2} (\vec{X_j} - \frac{\sum_{i=N_1+1}^{N_1+N_2} \vec{X_i}}{N_2})^2)^{\frac{1}{2}} \end{array}$$

# The algorithm: CF

A Clustering Feature (CF) summarizes a sub-cluster of data points.

Given a cluster  $\{\vec{X_1}, \vec{X_2}, \dots, \vec{X_N}\}$ 

$$\mathbf{CF} = (N, \vec{LS}, SS)$$

N is the number of data points  $\vec{LS} = \sum_{i=1}^{N} \vec{X}_i$   $SS = \sum_{i=1}^{N} \vec{X}_i^2$ 

$$LS = \sum_{i=1}^{N} X_i$$

$$SS = \sum_{i=1}^{N} \vec{X}_i$$

$$\mathbf{CF_1} + \mathbf{CF_2} = (N_1 + N_2, \vec{LS}_1 + \vec{LS}_2, SS_1 + SS_2)$$



- Stores significantly less then all of the data points in the sub-cluster
- A CF entry has enough information to calculate D0-D4
- · Additivity theorem allows us to incrementally merge sub-clusters



# · Each non-leaf node has at most B entries CF <sup>2</sup> CF Each leaf node has at most L CF entries which each satisfy CF CF ...BCF threshold T Node size is determined by dimensionality of data points and input parameter P (page size)

# • Recurse down from root Choose the "closest" CF and go to that node Modify the leaf – If the closest CF in the leaf can not absorb, make a new CF entry. If there is no room, split the node • Traverse back up Modifying CFs or splitting nodes

### • If we run out of space, increase T

- By increasing the threshold, CFs absorb more data
- Rebuilding "pushes" CFs over
  - The larger T allows different CFs to group together
- Reducibility theorem
  - Increasing T will result in a CF-tree as small or smaller then the original

### Phase 1: Load data into memory

- Build a CF-tree with the data
- Phase 2: Condense data
- Rebuild the CF-tree with a larger T
- Condensing is optional

### · Phase 3: Global clustering

- Use existing clustering algorithm on CF entries
- Helps fix problem where natural clusters span nodes

### · Phase 4: Cluster refining

- Do additional passes over the data set and reassign data points to the closest centroid from phase 3
- Refining is optional

Middle Tennessee State University

### Why have optional phases?

- Phase 2 allows us to resize the data set so Phase 3 runs on an optimally sized data set
- Phase 4 fixes a problem with CF-trees where some data points may be assigned to different leaf entries
- Phase 4 will always converge to a minimum
- Phase 4 allows us to discard outliers

Middle Tennessee State University

### · Input parameters:

- Memory (M): 5% of data set

- Disk space (R): 20% of M

Distance equation: D2

- Quality equation: weighted average diameter (D)

- Initial threshold (T): 0.0

- Page size (P): 1024 bytes

liddle Tennessee State University

### · Create 3 synthetic data sets for testing

- Also create an ordered copy for testing input order
- KMEANS and CLARANS require entire data set to be in memory
  - Initial scan is from disk, subsequent scans are in memory

iddle Tennessee State University

# Intended clustering



Middle Tennessee State University

# Kmeans Clustering



| 0  | 10   |      | 20     |    | 30   |      | 40     |
|----|------|------|--------|----|------|------|--------|
| DS | Time | D    | # Scan | DS | Time | D    | # Scan |
| 1  | 43.9 | 2.09 | 289    | 10 | 33.8 | 1.97 | 197    |
| 2  | 13.2 | 4.43 | 51     | 20 | 12.7 | 4.20 | 29     |
| 3  | 32.9 | 3.66 | 187    | Зо | 36.0 | 4.35 | 241    |

Middle Tennessee State University







- BIRCH works with very large data sets
   BIRCH performs faster then CLARANS or LBG, while getting better compression and nearly as
- Explicitly bounded by computational resources
  - Runs with specified amount of memory (P)
- Superior to CLARANS and KMEANS

good quality

- Quality, speed, stability and scalability

iddle Tennessee State University