```
Juan Marin - JM2797
CM 20254Data Structures and Algorithms
Problem sheet 1 question 2
```

Total T(n): 3n + 4 + X(n)

2b) To find the complexity class of my unoptimized repeatString() I recorded the time taken for n=1, 100, 500, 1000, 1500, 2000, 2500, 5000 and 10000, repeating each n and finding the average, the standard deviation and using an confidence interval of 95%, with 20,000 repetitions for each n. These are the results:

n	Time taken (average)/seconds	T(n)/T(1)
1	0.0000013628769	1
100	0.00000854110445	6.27
500	0.00000600781065	72.4
1000	0.00024960970365	183
1500	0.0005709921591	429
2000	0.0008894715218	653
2500	0.0013733629162	1001
5000	0.0065211313841	4780
10000	0.0222380713754	16300

With this data I can come to the conclusion that the complexity class is $\Theta(n^2)$. I came to this conclusion by examining the relation between the average time taken for n=1 and bigger results like n=2500 n=5000 and n=10000. By using the formula $T=an^2$ for some number a we can see that when we carry out the operation $T(n)/T(1)/n^2$ we get the following results: 0.0001606, 0.0001683 and 0.00163, meaning that the multiple of n^2 , a is close to that and the rest of the formula (bn + c) can be ignored.

2c) To find the complexity class of my optimized repeatString() I recorded the time taken for n=1, 100, 1000, 10000, 50000, 100000 repeating each n and finding the average with 50,000 repetitions for each n. These are the results:

n	Time taken (average)/seconds	T(n)/T(1)
1	5.95E-08	1
100	1.55E-06	26
1000	9.20E-06	155
10000	8.38E-05	1410
50000	3.93E-04	6610
100000	1.09E-03	18400

With this data I can come to the conclusion that the complexity class is $\Theta(n)$. I came to this conclusion by examining the relation between the average time taken for n=1 and bigger results like n=10000 n=50000 and n=100000. By using the formula T=an for some number a we can see that when we carry out the operation T(n)/T(1)/n we get the following results: 0.141, 0.132 and 0.184, meaning that the multiple of n a is close to that and the rest of the formula (+ c) can be ignored.