BEST AVAILABLE COPY

SEMICONDUCTOR DEVICE	
Patent Number:	JP8018009
Publication date:	1996-01-19
Inventor(s):	FUKUMOTO HARUTSUGU; others: 03
Applicant(s):	NIPPONDENSO CO LTD
Requested Patent:	
Application Number:	JP19940152365 19940704
Priority Number(s):	
IPC Classification:	H01L27/04; H01L21/822
EC Classification:	
Equivalents:	JP3401918B2
***************************************	Abstract
PURPOSE:To provide a semiconductor device wherein a voltage is applied to a MOSFET by a single power supply and the threshold voltage of the same MOSFET is controlled. CONSTITUTION:On a single crystalline silicon substrate 1, SOI layers 3 and 4 are formed through a buried insulation layer 2. On the SOI layer 3, an N- channel MOSFET 7 is formed, and on the SOI layer 4, a P-channel MOSFET 10 is formed. On the single crystalline silicon substrate 1, SOI layers 12 and 13 are formed through the buried insulation layer, and further, on the SOI layer 12, an N-channel MOSFET 16 is formed, and on the SOI layer 13, a P- channel MOSFET 19 is formed. A bias voltage circuit 21 is constituted at the MOSFETs 16 and 19, and bias voltage is generated by the bias voltage circuit 21, and then, through a wiring 25, bias voltage is applied to the single crystalline silicon substrate 1.	

Data supplied from the esp@cenet database - I2 -

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-18009

(43)公開日 平成8年(1996)1月19日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FI

技術表示箇所

HO1L 27/04 21/822

HO1L 27/04

G

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号

特願平6-152365

(71)出顧人 000004260

日本電装株式会社

(22)出願日

平成6年(1994)7月4日

愛知県刈谷市昭和町1丁目1番地

(72)発明者 福本 暗継

爱知県刈谷市昭和町1丁目1番地 日本電

装 株式会社内

(72)発明者 市川 浩司

愛知県刈谷市昭和町1丁目1番地 日本電

装 株式会社内

(72)発明者 浅井 昭喜

愛知県刈谷市昭和町1丁目1番地 日本電

装 株式会社内

(74)代理人 弁理士 恩田 博宜

最終頁に続く

(54) 【発明の名称】 半導体装置

(57)【要約】

【目的】 単一電源にてMOSFETに電圧を印加する とともに同MOSFETのしきい値電圧を制御すること が可能となる半導体装置を提供することにある。

【構成】 単結晶シリコン基板1上に埋め込み絶縁体層 2を介してSOI層3, 4が形成されている。SOI層 3にはNチャネルMOSFET7が形成され、SOI層 4にはPチャネルMOSFET10が形成されている。 単結晶シリコン基板1上に埋め込み絶縁体層2を介して SOI層12, 13が形成され、SOI層12にはNチ ャネルMOSFET16が形成され、SOI層13には PチャネルMOSFET19が形成されている。MOS FET16, 19にてバイアス電圧回路21が構成さ れ、バイアス電圧回路21にてバイアス電圧が生成さ れ、配線25を通して単結晶シリコン基板1にバイアス 電圧が印加される。

【特許請求の範囲】

【請求項1】 半導体基板上に絶縁体層を介して単結晶 半導体層からなるMOSFETが配置され、少なくとも 当該MOSFETのチャネル領域に対向した前記絶縁体 層内あるいは前記半導体基板に電極を配置し、当該電極 にバイアス電圧を印加するようにした半導体装置におい て

前記半導体基板上に絶縁体層を介して単結晶半導体層からなるバイアス電圧回路を形成し、当該バイアス電圧回路により前記バイアス電圧を生成するようにしたことを 10 特徴とする半導体装置。

【請求項2】 請求項1に記載の半導体装置において、 バイアス電圧回路は発振回路と当該発振回路の出力信号 により駆動されるチャージポンプ回路を有することを特 徴とする半導体装置。

【請求項3】 請求項1に記載の半導体装置において、前記電極と対向する位置での単結晶半導体層にモニタ用半導体素子を形成し、当該モニタ用半導体素子により前記バイアス電圧回路の出力電圧を制御するようしたことを特徴とする半導体装置。

【請求項4】 請求項1に記載の半導体装置において、前記バイアス電圧回路をMOSFETにて構成し、当該MOSFETの少なくともチャネル領域に対向した前記絶縁体層内あるいは前記半導体基板に、前記バイアス電圧回路によりバイアス電圧が印加される電極と電気的に分離した第2の電極を配置し、当該第2の電極を所定電位にしたことを特徴とする半導体装置。

【請求項5】 請求項4に記載の半導体装置において、前記バイアス電圧回路によりバイアス電圧が印加される電極と対向する位置での単結晶半導体層にモニタ用半導体素子を形成し、当該モニタ用半導体素子により前記バイアス電圧回路の出力電圧を制御するようしたことを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は半導体装置に係り、特にSOI(Silicon On Insulator)構造を採用したMOSFETを有する半導体装置に関するものである。

[0002]

【従来の技術】従来より半導体装置の高速化・高集積化が進められる中で絶縁体上の単結晶シリコン層(SOI層)に形成したMOSFETの研究が行われている。特に、SOI層の厚さがMOSFETのチャネル領域の最大空乏層幅よりも薄くチャネル形成時にSOI層が完全に空乏化するような場合(以下、これを薄膜SOIMOSFETという)には、バルクシリコン基板上に形成したMOSFETに比ベショートチャネル効果が制御できるとかチャネル中の垂直方向の電界が緩和されるため実効移動度が向上する等の優れた特性を示すことが知られ

ている。

【0003】MOSFETを相補型MOS回路に適用する場合、MOSFETはノーマリーオフ(NチャネルMOSFETのしきい値電圧が、正)状態にあることが必要である。しかしながら、前記のような薄膜SOIMOSFETで従来用いられているN*ポリシリコンゲートを用いたNチャネル薄膜SOIMOSFETは、しきい値電圧が負となりやすく、エンハンスメント型(ノーマリーオフ型)のMOSFETを形成することが難しかった。そこで、外部電源により基板に所定の電圧を印加し、しきい値電圧を制御していた。例えば、特開平2-294076号公報ではN型基板(P型基板)に形成したNチャネルMOSFET(PチャネルMOSFET)毎に絶縁体層を介して不純物拡散層からなる電極を設け、負電圧(正電圧)を印加してMOSFETのしきい値電圧を制御している。

2

[0004]

【発明が解決しようとする課題】ところが、この方法では外部電源に数ボルト程度の負電圧が必要となり、単電 20 源 I Cが構成できなかった。

【0005】そこで、この発明の目的は、単一電源にて MOSFETに電圧を印加するとともに同MOSFET のしきい値電圧を制御することが可能となる半導体装置 を提供することにある。

[0006]

【課題を解決するための手段】請求項1に記載の発明は、半導体基板上に絶縁体層を介して単結晶半導体層からなるMOSFETが配置され、少なくとも当該MOSFETのチャネル領域に対向した前記絶縁体層内あるいは前記半導体基板に電極を配置し、当該電極にバイアス電圧を印加するようにした半導体装置において、前記半導体基板上に絶縁体層を介して単結晶半導体層からなるバイアス電圧回路を形成し、当該バイアス電圧回路により前記バイアス電圧を生成するようにした半導体装置をその要旨とする。

【0007】請求項2に記載の発明は、請求項1に記載の半導体装置において、バイアス電圧回路は発振回路と 当該発振回路の出力信号により駆動されるチャージポン プ回路を有する半導体装置をその要旨とする。

【0008】請求項3に記載の発明は、請求項1に記載の半導体装置において、前記電極と対向する位置での単結晶半導体層にモニタ用半導体素子を形成し、当該モニタ用半導体素子により前記バイアス電圧回路の出力電圧を制御するようした半導体装置をその要旨とする。

【0009】請求項4に記載の発明は、請求項1に記載の半導体装置において、前記バイアス電圧回路をMOSFETにて構成し、当該MOSFETの少なくともチャネル領域に対向した前記絶縁体層内あるいは前記半導体基板に、前記バイアス電圧回路によりバイアス電圧が印加される電極と電気的に分離した第2の電極を配置し、

当該第2の電極を所定電位にした半導体装置をその要旨 とする。

【0010】請求項5に記載の発明は、請求項4に記載の半導体装置において、前記バイアス電圧回路によりバイアス電圧が印加される電極と対向する位置での単結晶半導体層にモニタ用半導体素子を形成し、当該モニタ用半導体素子により前記バイアス電圧回路の出力電圧を制御するようした半導体装置をその要旨とする。

[0011]

【0012】このように、同一の半導体基板上に絶縁体層を介してMOSFETとバイアス電圧回路とが形成されるので、単一電源を用いてMOSFETに電圧を印加するとともに同MOSFETのしきい値電圧を制御することが可能となる。

【0013】請求項2に記載の発明によれば、請求項1 に記載の発明の作用に加え、バイアス電圧回路の発振回 路から発振信号が出力され、この信号によりチャージポ ンプ回路が駆動されて所望のバイアス電圧が生成され る。このような簡単な回路にて昇圧回路が構成される。

【0014】請求項3に記載の発明によれば、請求項1に記載の発明の作用に加え、モニタ用半導体素子によりバイアス電圧回路の出力電圧が制御される。請求項4に記載の発明によれば、請求項1に記載の発明の作用に加え、バイアス電圧回路がMOSFETにて構成され、当該MOSFETの少なくともチャネル領域に対向した絶縁体層内あるいは半導体基板に、バイアス電圧回路によりバイアス電圧が印加される電極と電気的に分離した第2の電極が配置され、当該第2の電極が所定電位にされる。よって、バイアス電圧回路のMOSFETが安定して動作する。

【0015】請求項5に記載の発明によれば、請求項4に記載の発明の作用に加え、バイアス電圧回路によりバイアス電圧が印加される電極と対向する位置での単結晶 半導体層にモニタ用半導体素子が形成され、当該モニタ 用半導体素子によりバイアス電圧回路の出力電圧が制御 される。

[0016]

【実施例】

(第1実施例)以下、この発明を具体化した第1実施例 を図面に従って説明する。

【0017】図1に半導体装置の断面構造図を示す。半 50 3,24は連通している。バイアス電圧回路21と単結

導体基板としての単結晶シリコン基板1上にSiO2からなる埋め込み絶縁体層2が配置され、その埋め込み絶縁体層2の上に単結晶半導体層としての薄膜の単結晶シリコン層(以下、SOI層という)3,4が設置されている。SOI層3にはゲート酸化膜5を介してN*ポリシリコンゲート電極6を有するNチャネルMOSFET7が形成されている。又、SOI層4にはゲート酸化膜8を介してN*ポリシリコンゲート電極9を有するPチャネルMOSFET10が形成されている。SOI層3,4の膜厚は、MOSFET7,10のチャネル領域の最大空乏層幅よりも薄く設定されており、チャネル形

3,4の膜厚は、MOSFET7,10のチャネル領域の最大空乏層幅よりも薄く設定されており、チャネル形成時には完全に空乏化する厚さになっている。又、NチャネルMOSFET7とPチャネルMOSFET10とからなるC-MOS回路11において、PチャネルMOSFET10のソース電極Sには外部から電源電圧Voo(例えば、3ボルト)が供給されるようになっている。

【0018】又、同一シリコン基板1上に同一埋め込み 絶縁体層2を介してSOI層3, 4と同様に複数の単結 晶半導体層としての薄膜の単結晶シリコン層(以下、S OI層という) 12, 13が形成されている。SOI層 12, 13には半導体素子が形成され、これらの素子は C-MOS回路11と共通の電源電圧Vooから所望のバ イアス電圧を発生させるバイアス電圧回路21の一部を なしている。例えば、図1においては、SOI層13に はゲート酸化膜17を介してN* ポリシリコンゲート電 極18を有するNチャネルMOSFET19が形成され ている。SOI層12には酸化膜14を介して対向電極 であるポリシリコン電極15を有するコンデンサ16が 形成されている。MOSFET19は通常MOSFET 7,10と同時に形成されるため、SOI層13の膜厚 は、MOSFET19のチャネル領域の最大空乏層幅よ りも薄く設定されており、チャネル形成時には完全に空 乏化する厚さとなるが、必ずしもSOI層13の膜厚は 完全空乏化条件を満足する必要はなく、必要であればチ ャネル領域の最大空乏層幅よりも厚く設定してもよい。 又、コンデンサ16を形成するSOI層12のポリシリ コン電極15と対向する領域には、ポリシリコン電極1 5に電圧が印加された際にもSOI層に空乏層が形成さ れないよう十分高濃度に不純物をドーピングしておく と、コンデンサの容量を一定値に維持させておくことが

アス電圧回路21が形成されている。 【0019】SOI層3,4,12,13上を含む埋め 込み絶縁体層2上には層間絶縁膜22が形成されてい る。層間絶縁膜22にはバイアス電圧印加用開口部(コ ンタクトホール)23が形成されている。又、埋め込み 絶縁体層2にはバイアス電圧印加用開口部(コンタクト

できる。このようにして、単結晶シリコン基板1上に絶

縁体層 2 を介して薄膜の単結晶シリコン層からなるバイ

ホール) 24が形成され、バイアス電圧印加用開口部2

晶シリコン基板1とは、バイアス電圧印加用開口部2 3,24内を延びる配線25にて電気的に接続されてい る。

【0020】バイアス電圧回路21には、前述のC-M OS回路11と共通の電源電圧Voo (例えば、3ボル ト)が外部から供給されるようになっており、バイアス 電圧回路21とC-MOS回路11とは共通電源(単一 電源)が用いられている。

【0021】そして、バイアス電圧回路21にて負の極 性をもつバイアス電圧Va が生成され、そのバイアス電 圧VB は配線25を通して電極として機能する単結晶シ リコン基板1に印加される。このようにして、バイアス 電圧回路21により負の極性をもつ基板バイアス電圧V B が印加される。尚、本実施例では、配線25が単結晶 シリコン基板1と接触する領域に、シリコン基板1と同 一導電型の高濃度不純物拡散領域26が形成され、高濃 度不純物拡散領域26にてオーミックコンタクトがとら れている。

【0022】ここで、単結晶シリコン基板1に負の電圧 を印加する理由について説明する。図2には、Nチャネ ル、Pチャネル各MOSFET7、10のしきい値電圧 Vr と基板バイアス電圧VB との関係、即ち、しきい値 電圧VT の基板バイアス電圧VB による依存性の一例を 示す。ここで、NチャネルMOSFET7に関してはチ ャネル領域の不純物濃度を変化させて基板バイアス電圧 VB が0ボルトの時のしきい値電圧Vェ を変えた4種類 のMOSFETそれぞれの特性が示してある。又、基板・ バイアス電圧VB に対するしきい値電圧VT の変化の割 合は、埋め込み絶縁体層2, SOI層3, 4, ゲート酸 化膜5,8の膜厚等に依存するが、図2においては一例 30 としてそれぞれの膜厚が370nm,85nm,16n mの場合について示した。V_B = 0 ボルトの時のしきい 値電圧Vi はチャネル領域での不純物濃度により変化さ せることも可能であるので、特性との兼ね合いで適当な 不純物濃度とバイアス電圧との組み合わせから所望のV т 値を選択すればよい。例えば、バイアス電圧Vв がО ボルトの時に $V_T = 0$. 05ボルトのNチャネルMOS $FETEV_T = -0.89$ ボルトのP チャネルMOSFETの両方に-6ボルトのバイアス電圧を印加すると、 $2\pi V_{\rm T} = 0.37 \pi \nu$, $V_{\rm T} = -0.43 \pi \nu$ 40 トとなり、NチャネルMOSFETのしきい値電圧Vt を大きくし、PチャネルMOSFETのしきい値電圧V 7 の絶対値を下げることができる。その結果、通常では 使用できないしきい値電圧が「0」ボルト以下のNチャ ネルMOSFETあるいは正の小さな値(0.3ボルト 程度以下)のNチャネルMOSFETを用いることがで

【0023】尚、C-MOS構成にしたPチャネルMO SFETについては、実際にチャネル領域に印加される バイアス電位VB は電源電圧をVDDとすると、VB -V 50 DD となることを考慮しておく必要がある。

【0024】ここで、単結晶シリコン基板1に印加する 負電圧がある値を越えるとSOI層内での埋め込み絶縁 体層側にチャネルが形成されMOSFETがノーマリー オン状態になってしまうため、バイアス電圧には下限が あることになる。この値はいわゆるバックゲートのVt 値であり、埋め込み絶縁体層、SOI層、ゲート酸化膜 の膜厚やチャネル領域での不純物濃度等に依存するが、 図2に示した場合には-10ボルト程度以下の値とな る。又、バイアス電圧VBはその電圧を印加しない場合 に比べ電圧印加による効果を発揮させるべく-2ボルト 以上必要である。これらの結果、バイアス電圧VB とし ては望ましくはー2~-10ボルト程度の値に設定され る。このとき、外部に負電圧を印加するための別電源を 設置することは全体の構成が複雑になり好ましくない が、ここで必要となる程度の負電圧はMOSFETを用 いた昇圧回路により生成可能であることから、SOI型 MOSFET7, 10を形成した同一基板1上に同様の SOI型MOSFET16、19から構成されたバイア ス電圧回路21を配置することにより、外部から印加す る電圧としては単一電源にて動作させることが可能とな る。

【0025】バイアス電圧回路21の具体的構成を、図 3に示す。バイアス電圧回路21は、インバータを用い たCR発振回路27とチャージポンプ回路28からな る。CR発振回路27は、CR発振器29とバッファ用 インバータ30,31とスイッチ32と周波数可変用抵 抗33とスイッチ用インバータ34からなる。CR発振 器29は通常のCR発振器であって、インバータ35, 36,37とコンデンサ38と抵抗39,40から構成 されている。スイッチ32は制御電圧端子Pconからの 制御電圧によりオン・オフする。制御電圧端子Pcon か らの制御電圧は、論理HiあるいはLowレベルの2値 信号である。又、チャージポンプ回路28はダイオード 41, 42, 43, 44とコンデンサ45, 46, 4 7, 48で構成され、負電圧出力端子Pout から負の電 圧を出力するようになっている。負電圧出力端子Pout は図1に示す配線25と接続され、負電圧出力端子Pou t の負電圧は単結晶シリコン基板1へのバイアス電圧V в となる。

【0026】次に、このように構成したバイアス電圧回 路21の動作を説明する。電源投入する以前において は、単結晶シリコン基板1の電位がグランド電位になっ ている。この状態から電源が投入されると(ICのスイ ッチがオンされると)、外部システムから制御電圧端子 Pcon にHiレベル信号が入力される。すると、CR発 振回路27のスイッチ32は導通状態になり、CR発振 回路27は抵抗40と33との並列抵抗と、コンデンサ 38との時定数で決定される周波数で高速に発振する。 これにより、チャージポンプ回路28が高速に動作する

ため、負電圧出力端子 Pout からの負電圧出力は、グランドレベルから急速に負電圧に変化する。

【0027】そして、負電圧出力端子Poutからの負電圧出力が所定の電位になると、その時点で外部システムから制御電圧端子PconにLowレベル信号が入力される。その結果、スイッチ32は非導通状態になり、CR発振回路27は抵抗40とコンデンサ38との時定数で決定される低い周波数で発振する。これにより、チャージポンプ回路28の負電圧出力端子Poutからの負電圧出力は維持されたまま発振周波数だけが低くなる。このように、負電圧出力端子Poutからの負電圧出力が所定の電位になると、制御電圧端子PconにLowレベル信号が入力されるので、バイアス電圧回路21における発振による消費電流が増大することがない。つまり、チャージポンプ回路28の負電圧出力が維持されたまま発振周波数だけが低くなるので、発振による消費電力の低減が図れる。

【0028】このように本実施例では、単結晶シリコン 基板1上に埋め込み絶縁体層2を介してSOI層3,4 からなるMOSFET7, 10が配置され、少なくとも MOSFET7, 10のチャネル領域に対向した単結晶 シリコン基板1を電極として単結晶シリコン基板1にバ イアス電圧VB を印加するようにした半導体装置におい て、単結晶シリコン基板1上に埋め込み絶縁体層2を介 してSOI層12,13からなるバイアス電圧回路21 を形成し、バイアス電圧回路21によりバイアス電圧V B を生成するようにした。よって、MOSFET7, 1 0のチャネル領域のポテンシャル分布が変化して、しき い値電圧Vr を所望の値に制御性よくシフトさせること ができる。このように、同一の単結晶シリコン基板1上 30 に同一の埋め込み絶縁体層2を介してMOSFET7, 10とバイアス電圧回路21とが形成されるので、単一 電源を用いてMOSFET7,10に電圧を印加すると ともに同MOSFET7, 10のしきい値電圧を制御す ることが可能となる。

【0029】又、バイアス電圧回路21は、CR発振回路27とCR発振回路27の出力信号により駆動されるチャージポンプ回路28を有するものとした。よって、簡単な回路にて昇圧回路を構成できる。

【0030】さらに、NチャネルMOSFET7とPチャネルMOSFET10に同じバイアス電圧 V_B を印加すればよいので、特開 $\Psi2-294076$ 号公報のように各MOSFETのチャネル部に独立した電極を設ける必要がなくなる。より詳細には、N $^+$ ポリシリコンゲート電極を用いた完全空乏型のSOI-MOSFETにおいて、NチャネルMOSFET7においてはエンハンスメント型すなわち V_T の値を正にするためにはチャネル領域の不純物濃度を高くする必要があり、このことはチャネル移動度(キャリア移動度)の低下をもたらす。さらに、不純物濃度が高くなるに伴って V_T のSOI層膜

厚依存性が大きくなる。即ち、SOI層の膜厚ばらつきによるVI 値のばらつきが顕在化することになり、このことは種々の性能のばらつきにつながる。又、PチャネルMOSFET10においてVIの絶対値を小さくするためにはチャネル領域にP型の不純物を添加していわゆるアキュミュレーションモードにする必要があるが、その結果ショートチャネル効果の増大等の悪影響を招く。これに対し、本実施例では、単結晶シリコン基板1に負のバイアス電圧VBを印加することで、チャネル領域の不純物濃度を低く保ちつつ、NチャネルMOSFET7に対してはしきい値電圧VIを高くし、PチャネルMOSFET10に対してはしきい値電圧VIの絶対値を低くできる。即ち、Nチャネル、Pチャネル各MOSFETに共通な電圧を印加することにより、簡単な構造でV

8

【0031】尚、この実施例の応用として、次のような態様にて具体化してもよい。即ち、前記実施例ではC-MOS回路11(NチャネルMOSFET7とPチャネルMOSFET10)にバイアス電圧VBを印加する場合について説明したが、C-MOS回路11ではなく、NチャネルMOSFETのみ、あるいは、PチャネルMOSFETのみにバイアス電圧VBを印加する場合に具体化してもよい。

T 値の制御が可能となる。

【0032】さらに、MOSFET7,10の下方全体にバイアス電圧を印加する必要はなく、MOSFETの少なくともチャネル領域に対向した領域における単結晶シリコン基板1にバイアス電圧を印加すればよい。

【0033】又、バイアス電圧回路21はMOSFETによらずバイポーラトランジスタ等により構成してもよい。又、図1においてバイアス電極となる単結晶シリコン基板1の上の単結晶半導体層としての薄膜の単結晶シリコン層(SOI層)にバイアス電圧VBの変化をモニタするためのモニタ用MOSFET(モニタ用半導体素子)を形成する。そして、このモニタ用MOSFETを有する制御電圧発生回路54をバイアス電圧回路21と同様に同一単結晶シリコン基板1上に設け、図3に示すように制御電圧発生回路54の出力信号を制御電圧端子Pconに接続し、モニタ用MOSFET55のしきい値電圧に対応した信号により制御電圧をHi, Lowレベルに切り替えてバイアス電圧回路21の発振周波数を制御してもよい。その結果、外部システムからの制御電圧信号は不要となる。

【0034】さらには、図7に示すように、モニタ用MOSFET55のしきい値電圧に対応してHi, Lowレベルに切り替えた制御電圧をANDゲート56に印加することにより、バイアス電圧回路の出力電圧を制御してもよい。その結果、バイアス電圧回路の出力電圧によって変化したモニタ用MOSFET55のしきい値電圧によりバイアス電圧回路の出力電圧をフィードバック制のできる。即ち、同一基板上に形成した制御電圧発生回

路54によりバイアス電圧を確実に所定値に設定しC-MOS回路11を構成するMOSFETのしきい値電圧を所望の値に制御することができることになる。尚、バイアス電圧回路21は、モニタ用MOSFET55のしきい値電圧に応じてその出力電圧を制御可能な回路構成であれば、本実施例に示した回路構成以外の構成であってもよいことはいうまでもない。さらに、モニタ用半導体素子はMOSFETの他にもバイポーラトランジスタ等でもよい。

【0035】本実施例においては、バイアス電圧回路2 1は制御電圧信号により制御される構成としたが、特に 必要がなければ本回路構成において発振周波数あるいは 出力電圧を制御する機能を除いて、単に一定のバイアス 電圧を発生させる回路構成としてもよいことはいうまで もない。

(第2実施例) 次に、第2実施例を第1実施例との相違 点を中心に説明する。

【0036】図4に第2実施例を示す。本実施例では、 C-MOS回路11に対応する位置に電極49を設ける とともに、バイアス電圧回路21に対応する位置に電極 50を設けている。

【0037】具体的に説明していくと、絶縁体層2内におけるC-MOS回路11の下方には第1のバイアス電極49が埋設されているとともに、バイアス電圧回路21の下方には第2のバイアス電極50が前記第1のバイアス電極49とは電気的に絶縁された状態で埋設されている。つまり、絶縁体層2内でのバイアス電圧回路21と対向した領域に配置された第2のバイアス電極50が、同一基板上のSOI型MOSFETからなるその他の半導体集積回路に対向した領域に配置された第1のバイアス電極49と電気的に絶縁されている。本構造は、例えば公知のウエハ貼り合わせ法を用いたSOI基板の製造技術により、貼り合わせ前に例えばポリシリコンからなるバイアス電極49,50を形成しておくことにより実現することができる。

【0038】又、第1のバイアス電極49にバイアス電圧回路21によって発生された電圧が印加され、第2のバイアス電極50にはこれと異なる電圧、例えば接地電位(GND)に設定されている。この結果、バイアス電圧回路21に用いられるMOSFET16,19のVT値はバイアス電圧回路21の出力であるバイアス電圧VBの値にかかわらず一定の値に設定することができる。よって、バイアス電圧回路21のMOSFET16,19のしきい値電圧VTを固定できる。

【0039】又、第1のバイアス電極49と対向する位置での単結晶半導体層としての薄膜の単結晶シリコン層(SOI層)にバイアス電圧VBの変化をモニタするためのモニタ用MOSFET(モニタ用半導体素子)が形成されている。そして、このモニタ用MOSFETを有する制御電圧発生回路54を図3にて一点鎖線で示すよ

うに制御電圧ラインに設け、モニタ用MOSFET55 のしきい値電圧に対応した信号により制御電圧をHi, Lowレベルに切り換えてバイアス電圧回路21の出力 電圧を制御している。尚、モニタ用半導体素子はMOS FETの他にもバイポーラトランジスタ等でもよい。

10

【0040】このように本実施例では、単結晶シリコン 基板 1上に埋め込み絶縁体層 2を介してSOI層 12, 13からなるバイアス電圧回路 21を形成し、バイアス電圧回路 21によりバイアス電圧VBを生成し、埋め込み絶縁体層 2内の第1のバイアス電極 49にバイアス電圧VBを印加するようにした。その結果、単一電源を用いてMOSFET7, 10に電圧を印加するとともにMOSFET7, 10のしきい値電圧を制御することが可能となる。

【0041】又、バイアス電圧回路 21のMOSFET 16, 19の少なくともチャネル領域に対向した埋め込み絶縁体層 2内に、バイアス電圧回路 21によりバイアス電圧VB が印加される第1のバイアス電極 49と電気的に分離した第2のバイアス電極 50を配置し、第2のバイアス電極 50を所定電位にした。よって、バイアス電圧回路 21のMOSFET 16, 19が安定して動作し、バイアス電圧回路 21をバイアス電圧VB の影響を受けずに動作させることができる。

【0042】さらに、バイアス電圧回路21によりバイアス電圧VBが印加される第1のバイアス電極49と対向する位置でのSOI層にモニタ用MOSFETを形成し、モニタ用MOSFETによりバイアス電圧回路21の出力電圧を制御するようした。よって、バイアス電圧VBを確実に所定値にできる。

【0043】尚、本実施例の応用として、以下のような 態様にて具体化してもよい。

(イ) 図5に示すように、実施してもよい。つまり、図4に示すようにC-MOS回路11とバイアス電圧回路21のそれぞれに対向する領域にシリコン基板1とは異なるバイアス電極49,50を配置するのではなく、図5に示すようにどちらか一方のバイアス電極として単結晶シリコン基板1をそのまま用いる。図5では、バイアス電圧回路21のためのバイアス電極として単結晶シリコン基板1を用いている。この場合、配線51が単結晶シリコン基板1と接触する領域にはオーミックコンタクト形成のため、シリコン基板1と同一導電型の高濃度不純物拡散領域52が形成されている。

(ロ)図6に示すように、単結晶シリコン基板1内に異なる導電型の領域を設けてPN接合により2つの電極を分離してもよい。図6に示した場合には、バイアス電圧回路21によって発生された負電圧がC-MOS回路11に対向した位置に形成されたP型不純物拡散領域53に印加される。又、単結晶シリコン基板1としてN型基板を用いることによりバイアス電圧回路21に対向した50位置はN型領域となる。このように、PN接合によりC

-MOS回路11とバイアス電圧回路21に対向した各 領域を電気的に分離することができる。尚、本実施例に おいてはN型基板を用いた例について示したが、同様に P型基板を用いることも可能である。この場合には、バ イアス電圧回路21に対向した位置にN型不純物拡散領 域を設けておく。基板すなわちP型領域であるC-MO S回路11に対向した位置に負電位を印加し、バイアス 電圧回路21に対向したN型領域には接地電位である0 ボルトを印加する。C-MOS回路11領域よりもバイ アス電圧回路21領域の方が面積が小さい場合には、P 型基板を用いた場合の方がPN接合面積が小さくなるの でPN接合の逆方向リーク電流を低減できる。尚、バイ アス電圧が正の場合には、図6に示した領域53、及び 単結晶シリコン基板1の導電型をそれぞれ図6と逆の導 電型にすればよい。

(ハ) 図4においてC-MOS回路11 (NチャネルM OSFET7とPチャネルMOSFET10) にバイア ス電圧VBを印加する場合について説明したが、C-M OS回路11ではなく、NチャネルMOSFETのみ、 あるいは、PチャネルMOSFETのみにバイアス電圧 20 VB を印加する場合に具体化してもよい。

(二) 図4においてMOSFET7, 10の下方全体に バイアス電圧を印加する必要はなく、MOSFETの少 なくともチャネル領域に対向した領域に第1のバイアス 電極49を配置し、同電極49にバイアス電圧を印加す ればよい。

(ホ) バイアス電圧回路21はMOSFETによらずバ イポーラトランジスタ等により構成してもよい。

(へ) 図4, 5, 6においてはバイアス電圧回路21の 下方全体にバイアス電極(50,1)を配置したが、バ 30 …PチャネルMOSFET、PチャネルMOSFET、 イアス電圧回路21のMOSFET16,19の少なく ともチャネル領域に対向した領域にバイアス電極(5 0, 1)を配置すればよい。

[0044]

【発明の効果】以上詳述したように請求項1に記載の発 明によれば、単一電源にてMOSFETに電圧を印加す るとともに同MOSFETのしきい値電圧を制御するこ とが可能となる優れた効果を発揮する。

12

【0045】請求項2に記載の発明によれば、請求項1 に記載の発明の効果に加え、簡単な回路構成することが できる。請求項3に記載の発明によれば、請求項1に記 載の発明の効果に加え、バイアス電圧を確実に所定値に 10 することができる。

【0046】請求項4に記載の発明によれば、請求項1 に記載の発明の効果に加え、バイアス電圧回路のMOS FETを安定して動作させることができる。請求項5に 記載の発明によれば、請求項4に記載の発明の効果に加 え、バイアス電圧を確実に所定値にすることができる。

【図面の簡単な説明】

【図1】第1実施例の断面構造図である。

【図2】バイアス電圧としきい値電圧との関係を示す特 性図である。

【図3】バイアス電圧回路のブロック図である。

【図4】第2実施例の断面構造図である。

【図5】第2実施例の応用例の断面構造図である。

【図6】第2実施例の他の応用例の断面構造図である。

【図7】バイアス電圧回路のブロック図である。

【符号の説明】

1…単結晶シリコン基板、2…埋め込み絶縁体層、3… SOI層、4…SOI層、7…NチャネルMOSFE T、10…PチャネルMOSFET、12…SOI層、 13…SOI層、16…NチャネルMOSFET、19 21…バイアス電圧回路、27…CR発振回路、28… チャージポンプ回路、49…第1のバイアス電極、50 …第2のバイアス電極、55…モニタ用MOSFET

【図1】

【図4】

【図5】

【図6】

【図7】

フロントページの続き

(72) 発明者 松本 宗昭

愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.