PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-094193

(43) Date of publication of application: 07.04.1995

(51)Int.Cl.

HO1M 6/06 HO1M 4/42

(21)Application number: 05-239893

....

(71)Applicant: TOSHIBA BATTERY CO LTD

(22)Date of filing:

27.09.1993

(72)Inventor: HIKATA SEIICHI

MIYASAKA KOJIRO MAEDA MUTSUHIRO KOBAYASHI KAZUNARI

(54) MANGANESE DRY BATTERY

(57)Abstract:

PURPOSE: To provide a manganese dry battery free from environmental pollution, not containing cadmium and lead, which may cause environmental pollution, in a zinc alloy negative can.

CONSTITUTION: In a manganese dry battery using a zinc alloy negative can, 30-8000ppm bismuth and 10-1000ppm at least one of alkali earth metals (Mg, Ca, Sr, Ba) based on the weight of zinc are contained in the zinc alloy. The negative can holds sufficient mechanical strength and corrosion resistance without containing cadmium and lead, which may cause environmental pollution, in the zinc alloy.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-94193

(43)公開日 平成7年(1995)4月7日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

H 0 1 M 6/06 4/42 Z

庁内整理番号

審査請求 未請求 請求項の数1 OL (全 7 頁)

(21)出願番号	特顯平5-239893	. (71) 出願人 000003539
		東芝電池株式会社
(22)出願日	平成5年(1993)9月27日	東京都品川区南品川3丁目4番10号
		(72)発明者 日方 誠一
		東京都品川区南品川三丁目4番10号 東芝
		電池株式会社内
		(72)発明者 宮坂 幸次郎
		東京都品川区南品川三丁目4番10号 東芝
		電池株式会社内
		(72)発明者 前田 睦宏
		東京都品川区南品川三丁目4番10号 東芝
		電池株式会社内
		(74)代理人 弁理士 猪股 祥晃
		最終頁に続く

(54) 【発明の名称】 マンガン乾電池

(57)【要約】

【目的】亜鉛合金負極缶に環境汚染の原因となるカドミウムおよび鉛を含有しないで、しかも従来の負極缶と同等の機械的強度および耐蝕性を付与した無公害性のマンガン乾電池を提供することを目的とする。

【構成】亜鉛合金の負極を用いたマンガン乾電池において、前記亜鉛合金が環境汚染の原因となるカドミウムおよび鉛を含有せず、それによって低下する機械的強度および耐蝕性を、亜鉛重量に対して30~8000ppmのビスマスと10~1000ppmのアルカリ土類金属(Mg, Ca, Sr, Ba)の1種または2種以上を含有せしめることによって保持し、従来と同等の機械的強度および耐蝕性を有することを特徴とする。

【特許請求の範囲】

【請求項1】 亜鉛合金の負極を用いたマンガン乾電池 において、前記亜鉛合金が鉛およびカドミウムを含有せ ず、かつ亜鉛重量に対して30~8000ppmのビス マスと10~1000ppmのアルカリ土類金属(M g, Ca, Sr, Ba) の1種または2種以上を含有す ることを特徴とするマンガン乾電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は亜鉛合金の負極を用いた 10 マンガン乾電池に関する。

[0002]

【従来の技術】マンガン乾電池の構造を図1に示す。図 1において、1は亜鉛(負極)、2はセパレータ、3は 正極合剤、4は炭素棒、5は封口体、6は正極端子板、 7は負極端子板、8は絶縁チューブ、9は外装缶であ る。マンガン電池の負極には古くから容器を兼ねる亜鉛 缶(以下、負極缶という)が用いられてきた。ところで この亜鉛缶には、その製缶加工の際に必要な延伸性や機 械的強度を付与し、また負極缶の内容物である電解液に 20 対して耐蝕性を保持させる目的で、200~600pp mのカドミウムと50ppmより多い鉛を含んだ亜鉛合 金が用いられてきた。

【0003】しかしながら、この亜鉛合金に含まれるカ ドミウムと鉛は、微量であるが人体に有害であり、その 消費量が多くなるにつれて、産業廃棄物や家庭廃棄物に 混入し、環境汚染の原因物質として問題となってきた。 現在、その防止が急務となっているが、その対策として マンガン乾電池の負極缶にカドミウムや鉛を含まない亜 鉛合金の使用が強く望まれている。

[0004]

【発明が解決しようとする課題】しかしながら、従来か ら使用されている亜鉛合金から単にカドミウムを除いて 調製した亜鉛合金は、カドミウム含有亜鉛合金と比較し て機械的強度がかなり低く、乾電池製造工程で傷や変形 が生じて内部短絡の原因となる。また、亜鉛合金から単 に鉛を除いて調製した亜鉛合金は、鉛含有合金と比較し て電池内の電解液によって腐食を受けやすくなり、長期 貯蔵性が大幅に低下する。

【0005】本発明は上記状況に対処してなされたもの 40 で、亜鉛合金の負極を用いたマンガン乾電池において、 亜鉛合金にカドミウムおよび鉛を含有せず、しかも従来 の負極缶と同等の機械的強度および耐蝕性を有するマン ガン乾電池を提供することを目的とする。

[0006]

【課題を解決するための手段】前記目的を達成するため に、本発明のマンガン乾電池は、負極として用いる亜鉛 合金が亜鉛重量に対して30~8000ppmのビスマ スと10~1000ppmのアルカリ土類金属 (Mg, Ca, Sr, Ba)の1種または2種以上を含有するこ とを特徴とする。

[0007]

【作用】本発明において亜鉛合金の成分として含有され るビスマスは、亜鉛合金に耐蝕性を付与させる。ビスマ スの量が30ppm未満の成分配合では、その効果は若 干あるものの満足すべき耐蝕性は得られない。また、ビ スマスが8000ppmを越えると腐食を抑制する効果 はあるものの含有量に対して顕著な効果は得られず、む しろ製造コストを増大させるため好ましくない。このビ スマスの添加による亜鉛合金の電解液に対する耐蝕性の 向上の作用機構はまだ明らかでない。

2

【0008】また、本発明においてアルカリ土類金属 (Mg, Ca, Sr, Ba)は、亜鉛合金に機械的強度 を付与するとともに、ビスマスを配合することによって 悪化する圧延加工性を改善させる。これらのアルカリ土 類金属の量は、10ppm未満では十分に圧延加工性を 改善することができず、1000ppmを越える場合に は亜鉛合金の耐蝕性が不十分になる。なお、アルカリ土 類金属の配合は1種でも2種以上でもよく、上記した成 分量を逸脱しない限り効果がある。

【0009】なお、亜鉛にはその精練の過程で不可避的 にppm単位の銅、鉄、カドミウム、鉛等の不純物が混 入するが、本発明ではこの程度の不可避的不純物の存在 は問題にならない。

[0010]

【実施例】本発明の実施例を以下に説明する。電解精練 した純度99. 99重量%以上の亜鉛地金を用い、これ にビスマス、マグネシウム、カルシウム、ストロンチウ ムおよびバリウムをそれぞれ表 1 および表 2 に示すよう 30 に配合して合金試料を調製し、実施例1~96とした。 比較のために、鉛およびカドミウムを含有する従来品を 比較例1 (表3参照) とし、また、鉛およびカドミウム を含有せず、ビスマスおよびアルカリ土類金属を含有す るが、ビスマスおよびアルカリ土類金属の量が本発明の 範囲を逸脱する亜鉛合金を比較例2~27 (表4参照) として用意した。

【0011】これらの合金について、下記の試験評価を 行なった。ここで、nは各例における試料個数である。 1) 腐食減量(n=3)

後記する3) 圧延加工性の試験で得られた亜鉛合金ペレ ットを燐片状黒鉛とほう酸との混合物を潤滑剤として衝 撃押出法によって負極缶を作製した。その負極缶を切り 開き、50×50mmの試料片を作製し、表面を#40 0~1200の紙やすりで滑らかになるまで研磨し、ア ルカリ脱脂、水洗、乾燥の後、秤量して予め用意したマ ンガン乾電池用電解液に浸漬し、45℃恒温内で100 時間貯蔵した。貯蔵後試料片を取り出して水洗、乾燥、 秤量した。試料片の重量減を求め、その値を試料片の表 面積で除して腐食減量(mg/cm²)とした。

【0012】2) 電池からのガス発生量(n=5)

3

純度70%以上の二酸化マンガン60重量部、アセチレンブラック10重量部および酸化亜鉛0.6重量部をよく混合し、これに塩化亜鉛濃度25%重量、塩化アンモニウム濃度2.0重量%の電解液49重量部を加えてよく混合し、均一な正極合剤を調製し、これを正極とした。一方、負極には、上記1)の腐食減量試験で得られた負極缶を用い、セパレータは電解液保持用の澱粉をクラフト紙に塗布したものを用意した。これらの材料を用いてR20形乾電池を作製した。作製電池を流動パラフィンを満たしたメスシリンダー内に入れて60℃に貯蔵し、発生するガスをシリンダー内に上方置換した。貯蔵期間は20日間とし、上方置換したガス量を読んだ。

【0013】3) 圧延加工性

試料合金 (厚さ20mm 幅100mm 長さ500mm) を、厚さが5mmの板になるように温度180~220 $^{\circ}$ の加熱ローラープレスで圧延した。圧延後、試料合金板を対角が31.0mmのR20形六角ペレットに打ち抜き、得られたペレットの個数を数え、同じ操作を行った有鉛合金から得られたペレットの個数を100%とし、それとの比較数値を圧延加工性(%)とした。

【0014】なお、圧延加工性が悪い試料合金は圧延時に合金板の表面および両端付近にひびや割れが発生し、 打ち抜いたペレットにひび割れや欠けが生じ、得られる 正常なペレットの個数が少なくなる。

[0015]

【表1】

्

[0016]

2.77

		7				8		
.io.	合金組成 (ppm)					腐食減量	ガス発生量	圧延加工性
				(mg/cm²)	(ml)	(%)		
L	Bi .	Ag	Ca	Sr	Ba			
49	8000	100	0	0	0	2.76	121	96
50	8000	0	100	0	0	2.75	120	97
51	8000	0	0	100	0	2.77	122	97
52	8000	0	0	0	100	2.79	123	96
53	8000	500	0	0	S	2.75	120	98
54	8000	0	500	. 0	0	2.78	122	99
55	0008	0	0	500	0	2.79	123	98
56	8000	. 0	0	0	500	2.77	123	99
57	8000	1000	0	0	0	2.76	121	100
58	8000	0	1000	0	0	2.77	122	- 100
59	8000	0	0	1000	0	2.78	122	100
60	8000	0	0	0	1000	2.76	121	100
81	30	10	10	0	0	4.55	170	95
62	30	500	500	0	0	4.57	172	100
63	30	10	0	10	0	4.56	171	i 95
64	30	500	Ö	500	Ô	4.57	172	100
65	30	10	Ö	0	10	4.56	171	96
66	30	500	Ŏ	B	500	4.57	171	100
67	30	0	10	10	O	4.58	172	96
88	30	Ö	500	500	Ö	4.59	173	100
69	30	Ď	10	0	10	4.56	171	96
70	30	Ď	500	Ö	500	4.58	172	100
71	30	ō	ا	10	10	4.59	173	96
72	30	Ö	ا	500	500	4.58	172	100
73	1000	100	100	0	Ö	3.04	136	96
74	1000	100	0	100	Ö	3.05	136	97
75	1000	100	Ō	0	100	3.04	135	96
76	1000	0	100	100	0	3.06	137	97
77	1000	ŏ	100	0	100	3.06	138	98
78	1000	Ö	100	100	100	3.07	138	99
79	5000	500	500	100	0	2.96	132	100
80	5000	500	0	500	Ö	2.96	132	100
81	5000	500	Ö	0	500	2.97	133	100
82	5000	0	500	500	000	2.98	134	100
83	5000	ő	500	000	500	2.97	133	100
84	5000	Ö	. 0	500	500	2.97	133	100
85	8000	100	100	0	0	2.74	119	99
86	8000	500	500	Ö	Ö	2.75	120	100
87	8000	100	0	100	lő	2.76	121	99
88	8000	500	·ŏ	500	ŏ	2.75	120	100
89	8000	100	l ŏ	0	100	2.75	121	99
90	8000	500	ŏ	ŏ	500	2.76	121	100
91	8000	000	100	100	000	2.76	122	99
92	8000	0	500	500	0	2.77	122	100
93	8000	. 0	100	300	100	2.77	122	99
94	8000	0	500	0	500	2.78	123	100
95	8000	ő	0	100	100	2.76	122	99
98	8000	٥	0	500	500	2.77	123	100
100	1 0000	<u>, u</u>	1 V	1 200	1 100	1 6.11	1 160	100

[0017]

* *【表3】

No.	合金組	戊(ppm)	原食減量 (ng/cn²)	ガス発生量(ml)	庄延加工性 (%)
	Pb	Cd		<u> </u>	
	1600	400	4.68	181	100

[0018]

【表4】

No.	合金組成 (ppm)					腐食減量 (嗎/cu²)	ガス発生量 (回)	庄延加工性 (%)
	Bi	Mg	Ca	Sr	Ba	(-3, 4-2)	((,0,
2	10	0	0	0	0	4.51	165	48
3	30	0	0	0	. 0	4.52	166	. 51 .
4	30	5	0	0	a	4.54	158	63
5	30	0	5	0	0	4.55	169	63
6	30	0	0	5	0	4.54	158	62
7	30	0	D	0	5	4.55	169	62
8	30	2000	0	0	0	4.86	185	100
9	30	0	2000	0	0	4.89	188	100
10	30	0	D	2000	O	4.87	186	100
11	30	0	0	Q	2000	4.90	189	100
12	8000	0		0	٥	2.73	118	65
13	8000	5	0	0	0	2.78	121	71
14	8000	0	5	0	Ō	2.76	121	71
15	8000	0	D	5	0	2.77	122	70
16	8000	0	0	0	5	2.76	122	70
17	8000	2000	0	0	0	3.25	150	100
18	8000	0	2000	0	0	3.26	150	100
19	8000	0	0	2000	0	3.28	152	100
20	8000	0	0	0	2000	3.27	151	100
21	8000	1000	1000	0	0	3.28	151	100
22	8000	1000	0	1000	0	3.29	152	100
23	8000	1000	0	0	1000	3.26	150	100
24	8000	0	1000	1000	0	3.27	153	100
25	8000	0	1000	0	1000	3.27	151	100
26	8000	0	0	1000	1000	3.29	155	100
27	10000	0	0	0	0	2.65	110	73

【0019】これらの表から明らかなように、カドミウ ムおよび鉛を含有していない亜鉛合金において、ビスマ ス濃度が増加するほど亜鉛合金の腐食が著しく抑制され ることが分かる。また、マグネシウム、カルシウム、ス トロンチウム、バリウムの合計配合量が10~1000 30 池を提供することができる。 p p m の範囲であれば、圧延加工性は問題ないことが分 かる。

【0020】以上の結果、ビスマスを30~8000p pm、アルカリ土類金属を10~1000ppmの範囲 で配合すれば、カドミウムおよび鉛を含有していない亜 鉛合金において耐蝕性および圧延加工性が満足すべきも のとなることが分かった。

[0021]

【発明の効果】以上説明したように、本発明によればカ ドミウムおよび鉛を配合せずに耐蝕性および圧延加工性 のよい負極用亜鉛合金が得られ、低公害のマンガン乾電

【図面の簡単な説明】

【図1】マンガン乾電池の縦断面図。

【符号の説明】

1…亜鉛(負極)、2…セパレータ、3…正極合剤、4 …炭素棒、5…封口体、6…正極端子板、7…負極端子 板、8…絶縁チューブ、9…外装缶。

フロントページの続き

(72)発明者 小林 一成 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内