Diese Kopfleiste bitte unbedingt ausfüllen! Familienname, Vorname (bitte durch eine Leerspalte trennen) Bereich Berufsnummer IHK-Nummer Prüflingsnummer 5 5 1 1 9 6 Termin: Mittwoch, 10. Mai 2017 Sp. 1-2 Sp. 3-6 Sp. 7-9 Sp. 10-14

Abschlussprüfung Sommer 2017

1

Ganzheitliche Aufgabe I Fachqualifikationen Fachinformatiker Fachinformatikerin Anwendungsentwicklung

5 Handlungsschritte mit Belegsatz 90 Minuten Prüfungszeit 100 Punkte

Bearbeitungshinweise

 Der vorliegende Aufgabensatz besteht aus insgesamt 5 Handlungsschritten zu je 25 Punkten.

<u>In der Prüfung zu bearbeiten sind 4 Handlungsschritte,</u> die vom Prüfungsteilnehmer frei gewählt werden können.

Der nicht bearbeitete Handlungsschritt ist durch Streichung des Aufgabentextes im Aufgabensatz und unten mit dem Vermerk "Nicht bearbeiteter Handlungsschritt: Nr. ... " an Stelle einer Lösungsniederschrift deutlich zu kennzeichnen. Erfolgt eine solche Kennzeichnung nicht oder nicht eindeutig, gilt der 5. Handlungsschritt als nicht bearbeitet.

- Füllen Sie zuerst die Kopfzeile aus. Tragen Sie Ihren Familiennamen, Ihren Vornamen und Ihre Prüflings-Nr. in die oben stehenden Felder ein.
- Lesen Sie bitte den Text der Aufgaben ganz durch, bevor Sie mit der Bearbeitung beginnen.
- 4. Halten Sie sich bei der Bearbeitung der Aufgaben genau an die Vorgaben der Aufgabenstellung zum Umfang der Lösung. Wenn z. B. vier Angaben gefordert werden und Sie sechs Angaben anführen, werden nur die ersten vier Angaben bewertet.
- Tragen Sie die frei zu formulierenden Antworten dieser offenen Aufgabenstellungen in die dafür It. Aufgabenstellung vorgesehenen Bereiche (Lösungszeilen, Formulare, Tabellen u. a.) des Arbeitsbogens ein.
- 6. Sofern nicht ausdrücklich ein Brief oder eine Formulierung in ganzen Sätzen gefordert werden, ist eine **stichwortartige Beantwortung** zulässig.
- Verwenden Sie nur einen Kugelschreiber und schreiben Sie deutlich und gut lesbar. Ein nicht eindeutig zuzuordnendes oder unleserliches Ergebnis wird als falsch gewertet.
- Zur Lösung der Rechenaufgaben darf ein nicht programmierter, netzunabhängiger Taschenrechner ohne Kommunikationsmöglichkeit mit Dritten verwendet werden.
- Wenn Sie ein gerundetes Ergebnis eintragen und damit weiterrechnen müssen, rechnen Sie (auch im Taschenrechner) nur mit diesem gerundeten Ergebnis weiter.
- Für Nebenrechnungen/Hilfsaufzeichnungen können Sie das im Aufgabensatz enthaltene Konzeptpapier verwenden. Dieses muss vor Bearbeitung der Aufgaben herausgetrennt werden. Bewertet werden jedoch nur Ihre Eintragungen im Aufgabensatz.

Nicht bearbeiteter Handlungsschritt ist Nr.

Wird vom Korrektor ausgefüllt!

Bewertung

Für die Bewertung gilt die Vorgabe der Punkte in den Lösungshinweisen. Für den abgewählten Handlungsschritt ist anstatt der Punktzahl die Buchstabenkombination "AA" in die Kästchen einzutragen.

Gemeinsame Prüfungsaufgaben der Industrie- und Handelskammern. Dieser Aufgabensatz wurde von einem überregionalen Ausschuss, der entsprechend § 40 Berufsbildungsgesetz zusammengesetzt ist, beschlossen. Die Vervielfältigung, Verbreitung und öffentliche Wiedergabe der Prüfungsaufgaben und Lösungen ist nicht gestattet. Zuwiderhandlungen werden zivil- und strafrechtlich (§§ 97 ff., 106 ff. UrhG) verfolgt. – © ZPA Nord-West 2017 – Alle Rechte vorbehalten!

Korrekturrand

Die Handlungsschritte 1 bis 5 beziehen sich auf die folgende Ausgangssituation:

Sie sind Mitarbeiter/-in der BioScan GmbH, Astadt, einem Softwaredienstleister im Bereich Biometrie. Die BioScan GmbH erstellt Software zur Erfassung und Auswertung verschiedener biometrischer Daten.

Sie sollen vier der folgenden fünf Aufgaben erledigen:

- 1. Ein UML-Klassendiagramm erstellen
- 2. Eine Funktion zur Auswertung von Fingerabdrücken erstellen
- 3. Ein UML-Aktivitätsdiagramm erstellen
- 4. Ein ER-Diagramm erstellen
- 5. SQL-Anweisungen für eine Datenbank erstellen

1. Handlungsschritt (25 Punkte)

Die BioScan GmbH soll eine Software zur Erkennung und Speicherung von Fingerabdrücken und Handflächenabdrücken erstellen. Zur Vorbereitung der Programmierung soll ein UML-Klassendiagramm erstellt werden.

a) In einem UML-Klassendiagramm können die folgenden Beziehungen vorkommen. Beschreiben Sie jeweils kurz

aa) Assoziation.

2 Punkte

ab) Vererbung.

2 Punkte

ac) Komposition.

2 Punkte

b) Für eine Person sollen von der linken und rechten Hand jeweils folgende Abdrücke gespeichert werden:

F1 bis F5: Abdrücke der fünf Finger

H1 und H2: Abdrücke der Handflächenbereiche

Zu jedem Abdruck sollen ein Bild und ein String gespeichert werden.

Die Zeichenkette enthält Beschreibungen derjenigen Merkmale des Abdrucks, die beim Vergleich von Fingerabdrücken verwendet werden.

Die Zeichenkette wird von der Methode berechneZeichenkette() anhand des Bildes berechnet.

Die Algorithmen zur Berechnung der Zeichenketten sind für Fingerabdruck und Handflächenabdruck unterschiedlich.

Es existiert bereits folgende Klasse *Abdruck*, die für das Klassendiagramm verwendet werden soll.

Abdruck

- -: Bild
- -: String
- +berechneZeichenkette()

Erstellen Sie auf der Folgeseite ein UML-Klassendiagramm, das ...

- die Klassen Person, Hand, Finger, Handflächenbereich, Abdruck, AbdruckFinger, AbdruckHandfläche darstellt.
- die Beziehungen zwischen den Klassen mit ihren Kardinalitäten angibt.
- Geben Sie an, in welchen Klassen die Methode berechneZeichenkette() überschrieben werden muss.

19 Punkte

Hinweis: Notation zum UML-Klassendiagramm, siehe Seite 2 im Belegsatz

UML-Klassendiagramm	Korrekturrand

2. Handlungsschritt (25 Punkte)

Um herauszufinden, von welcher Person ein Fingerabdruck stammt, soll dieser mit Fingerabdrücken in einer Datenbank verglichen werden. Zu jedem in der Datenbank gefundenen Fingerabdruck wird ein Score ermittelt, der den Prozentsatz der Übereinstimmung angibt. Bei vollständiger Übereinstimmung beträgt der Score 100 %.

Die vorhandene Funktion *suche(abdruck)* gibt ein Array *matches* aus, das zu jedem gefunden Fingerabdruck einen Score, eine Personen-ID und eine Finger-ID enthält.

Die BioScan GmbH soll nun die Prozedur *auswertung* erstellen, die eine Fingerabdrucksuche durchführt und nur Daten der Fingerabdrücke ausgibt, deren Scores oberhalb eines bestimmten Schwellenwertes liegen.

Der Prozedur werden die folgenden drei Parameter übergeben

abdruck	Zeichenkette; Werte des Fingerabdruckbildes als Zeichenkette
schwelle	ganzzahliger Wert; Werte: 1 bis 100; gibt einen Score an, ab dem Fingerabdrücke aufgelistet werden sollen
finger	ganzzahliger Wert; 0 = Unbekannter Finger; 1 = Daumen rechts 10 = Kleiner Finger links

Folgende Funktionen und Prozeduren sollen verwendet werden:

Funktion	Beschreibung		
suche(abdruck)	Durchsucht die Datenbank nach Fingerabdrücken, die Übereinstimmungen (Matches) mit dem der Prozedur übergebenen Fingerabdruck aufweisen. Bei einem Match werden die Übereinstimmung in Prozent (score), die Personen-ID und die Finger-ID (1, 2 10) in einem Array vom Datentyp <i>Match</i> gespeichert: Match: {score: Integer; idPerson: Integer; idFinger: Integer}.		
laenge(array)	Liefert die Länge des Arrays		
loesche(array, position)	Löscht das Array-Element an der entsprechenden Position, die Array-Länge verkürzt sich dabei um 1. Das 1. Array-Element liegt an Position 0.		

Zurückgegeben werden soll ein Array vom Datentyp Match:

 Das Array soll nur die Daten derjenigen Fingerabdrücke enthalten, deren Scores oberhalb des mit dem Übergabeparameter schwelle übergebenen Wertes liegen.

 Ist der Finger-Typ bekannt, von dem der Abdruck stammt (Übergabewerte finger = 1 bis 10), dann sollen nur Daten zu diesem Finger-Typ in das zurückzugebende Array übernommen werden, z. B. nur Daten zu rechten Zeigefingern (idfinger = 2), bei denen eine Übereinstimmung festgestellt wurde.

 Ist der Finger-Typ nicht bekannt, von dem der Abdruck stammt (Übergabewert finger = 0), dann sollen die Daten zu allen Finger-Typen (idfinger = 1 bis 10) in das zurückzugebende Array übernommen werden, bei denen eine Übereinstimmungen festgestellt wurde.

Das Array soll nach Score absteigend sortiert sein. Der Sortieralgorithmus muss selbst erstellt werden.

Beispiel:

Array matches vom Typ Match, das von der Funktion *suche*(*abdruck*) erstellt wird:

score	idPerson	idFinger	
85	93334	2	
80	48774	1	
98	56446	2	
71	33961	10	
21	73447	2	
81	49982	2	

Array, das von der Prozedur auswertung zurückgegeben werden soll.

Übergabewerte: schwelle = 80 und finger = 2

score	idPerson	idFinger	
98	56446	2	
85	93334	2	
81	49982	2	

Stellen Sie auf der Folgeseite den Algorithmus der Prozedur auswertung in Pseudocode oder in einem Struktogramm oder als Programmablaufplan dar.

Korrekturrand

Die BioScan GmbH soll ein System zur Fingerabdruck-Recherche erstellen.

a) Zur Vorbereitung der Programmierung des Systems zur Recherche soll ein UML-Aktivitätsdiagramm erstellt werden.

Die Recherche im System soll wie folgt organisiert werden:

- Ein Auftraggeber schickt einen Fingerabdruck (FA) zur Identifizierung an den Operator.
- Der Operator prüft, ob die Qualität des FA in Ordnung ist.
- Ist die Qualit\u00e4t nicht ok, dann schickt der Operator eine entsprechende Information an den Auftraggeber und die Auftragsbearbeitung ist beendet.
- Ist die Qualität ok, dann führt der Operator eine Suche nach entsprechenden FAs durch.
- Werden keine FAs mit Übereinstimmungen gefunden, schickt der Operator eine entsprechende Info an den Auftraggeber und die Auftragsbearbeitung ist beendet.
- War die Suche erfolgreich, werden vom Operator parallel ein Report erstellt und die Auftragsdaten an den Supervisor verschickt.
- Der Supervisor protokolliert die Auftragsdaten und schickt eine Info an den Operator, dass die Daten protokolliert wurden.
- Nachdem der Report erstellt und die Info vom Supervisor verschickt wurden, versendet der Operator den Report an den Auftraggeber und die Auftragsbearbeitung ist beendet.

Stellen Sie auf der Folgeseite den geschilderten Ablauf in einem UML-Aktivitätsdiagramm dar. Hinweis: Notation zum UML-Aktivitätsdiagramm, siehe Seite 3 im Belegsatz.

20 Punkte

b) Das Suchergebnis liegt im Array matches vor. Zu jedem im System gefundenen Fingerabdruck wird ein Score angegeben.

Array matches

score	idPerson
21	73447
85	93334
80	48774
98	56446
81	49982

Im Report soll eine Auswertung des Suchergebnisses ausgegeben werden. Dazu soll der minimale Score-Wert im Array *matches* ermittelt werden.

Beispiel:

Auswertung:

minimaler Score = 21

Stellen Sie den Algorithmus als Teil einer Prozedur in Pseudocode, in einem Struktogramm oder Programmablaufplan dar.

5 Punkte

Fortsetzung 3. Handlungsschritt →

Fortsetzung 3. Handlungsschritt		Korrekturrand
UML-Aktivitätsdiagramm	-	
		1-500-100-100-100-100-100-100-100-100-10
2	•	
*		

4. Handlungsschritt (25 Punkte)

Die BioScan GmbH soll für eine Polizeikreisbehörde eine Datenbank erstellen, in der die Daten von Vorgängen erfasst werden, die bislang in folgender Excel-Tabelle gespeichert wurden. Die Namen der Beschuldigten sind geschwärzt.

Erfassung von Vorgängen

Vor- gangs- ID	Delin- quent- ID	An- rede	Delinquent	Geburts- datum	Adresse	Delikt	Datum	Dokument	Bearbeiter
301	5645	Herr	,	28.02.1970	01234 AStadt Kernweg 12	Raub	02.04.2017	Personal- ausweis, Fahrerlaubnis	Hansen, Klaus
302	1213	Herr	,	06.06.2000	02566 Bstadt Müller-Str. 1	Drogen- missbrauch	02.02.2014	Personal- ausweis	Müller, Marcel
303	7887	Herr	,	01.07.1988	03669 Astadt Franzgasse 3	Fahrerflucht, Drogen- missbrauch	30.3.2017	Reisepass, Fahrerlaubnis	Hansen, Klaus
304	4545	Frau		16.08.1991	02566 Bstadt Burgplatz 16	Drogen- missbrauch	12.4.2017	Personal- ausweis	Wagner, Wolfram
305	1213	Herr	,	06.06.2000	02566 Bstadt Müller-Str. 1	Körper- verletzung	08.03.2015	Personal- ausweis	Hansen, Klaus

Erstellen Sie auf der Folgeseite für die geforderte Datenbank ein relationales Datenmodell in der dritten Normalform.

- Geben Sie den Tabellen und Attributen selbsterklärende Namen.
- Nennen Sie je Tabelle alle erforderlichen Attribute.
- Kennzeichnen Sie Primärschlüssel mit PK und Fremdschlüssel mit FK.
- Zeichnen Sie die Beziehungen mit deren Kardinalitäten ein.

Hinweis: Die Adresse des Delinquenten soll in diesem ersten Entwurf noch nicht normalisiert werden.

Die BioScan GmbH entwickelt ein System zur Zugangskontrolle. Dazu wurde bereits folgende Datenbank entwickelt und mit Testdaten gefüllt.

Hinweis: SQL-Syntax, siehe Seiten 4 und 5 im Belegsatz

Person

PersID	Nachna- me	Vorname	Strasse	Plz	Ort
101	Müller	Max	Müllerweg 1	52335	Köln
202	Meier	Willi	Testweg 12	43333	Dortmund
404	Wester	Klaus	Hauptstr. 13	55667	Köln
404	Wester	Klaus	Hauptstr. 13	5566/	K

Zugang

RaumID	PersID	ZeitVon	ZeitBis
1	101	08:00	10:00
1	202	10:00	14:00
2	101	14:00	18:00
5	202	08:00	18:00

Raum

RaumID	RaumTyp	GebID	MerkID
1	Besprechungsraum	2	1
2	Labor	2	2
3	Labor	1	2
4	Labor	1	2
5	Besprechungsraum	1	1
6	Labor	3	2
7	Labor	3	2
8	Labor	3	2

Gebaeude

GebID	Bezeichnung	Strasse	Plz	Ort
1	Forschung H	Heinrich-Hertz-Str. 12	50501	Köln
2	Forschung U	Heinrich-Hertz-Str. 14	50501	Köln
3	Forschung I	Heinrich-Hertz-Str. 16	50501	Köln
4	Verwaltung	Transalee 22	50555	Köln

Merkmal

MerkID	Merkmal
1	Fingerabdruck
2	Iris

Erstellen Sie die SQL-Anweisungen für folgende Ausgaben:

a) Liste aller Gebäude mit deren Räumen jeweils aufsteigend sortiert nach Gebäudebezeichnung und Raumtyp.

5	Ы	11	n	K.	t	e
-		~	٠.	•	٠	_

GebID	Bezeichnung	Strasse	Plz	Ort	RaumID	RaumTyp	GebID	MerkID
1	Forschung H	Heinrich-Hertz-Str. 12	50501	Köln	5	Besprechungsraum	1	1
1	Forschung H	Heinrich-Hertz-Str. 12	50501	Köln	3	Labor	1	2
1	Forschung H	Heinrich-Hertz-Str. 12	50501	Köln	4	Labor	1	2
3	Forschung I	Heinrich-Hertz-Str. 16	50501	Köln	6	Labor	3	2
3	Forschung I	Heinrich-Hertz-Str. 16	50501	Köln	7	Labor	3	2
3	Forschung I	Heinrich-Hertz-Str. 16	50501	Köln	8	Labor	3	2
2	Forschung U	Heinrich-Hertz-Str. 14	50501	Köln	1	Besprechungsraum	2	1
2	Forschung U	Heinrich-Hertz-Str. 14	50501	Köln	2	Labor	2	2
4	Verwaltung	Transallee 22	50555	Köln	NULL	NULL	NULL	NULL

b) Liste aller Daten, die in der Tabelle Zugang gespeichert sind und die dazugehörigen Personendaten Siehe Ergebnis:

5 Punkte

Korrekturrand

PersID	Nachname	Vorname	Straße	Plz	Ort	RaumID	PersID	ZeitVon	ZeitBis
NULL	NULL	NULL	NULL	NULL	NULL	1	101	08:00	10:00
NULL	NULL	NULL	NULL	NULL	NULL	1	101	14:00	18:00
101	Müller	Max	Müllerweg 1	52335	Köln	2	202	10:00	14:00
101	Müller	Max	Müllerweg 1	52335	Köln	5	202	08:00	18:00

c) Anzahl der Räume, die bei der Zugangskontrolle das Merkmal Fingerabdruck beziehungsweise das Merkmal Iris prüfen Siehe Ergebnis: 6 Punkte

Merkmal	AnzahlRaeume
Fingerabdruck	2
Iris	6

d) Liste der Zugangsdaten von Max Müller

Hinweis: Es ist nur der Name, nicht die PersID bekannt.

Siehe Ergebnis:

6 Punkte

Nachname	Vorname	RaumID	ZeitVon	ZeitBis
Müller	Max	1	10:00	14:00
Müller	Max	5	08:00	18:00

Fortsetzung 5. Handlungsschritt

e) Liste mit allen Personen aus dem PLZ-Gebiet 50000 bis 59999 Siehe Ergebnis:

3 Punkte

PersID	Nachname	Vorname	Straße	Plz	Ort
101	Müller	Max	Müllerweg 1	52335	Köln
404	Wester	West	Hauptstr. 13	55667	Köln

PRÜFUNGSZEIT – NICHT BESTANDTEIL DER PRÜFUNG!

Wie beurteilen Sie nach der Bearbeitung der Aufgaben die zur Verfügung stehende Prüfungszeit?

1 Sie hätte kürzer sein können.

2 Sie war angemessen.

3 Sie hätte länger sein müssen.

ZPA	FI	Ganz	I Anw	12

Korrekturrand