UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2017-2018

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder razonadamente a las cuestiones de la opción elegida.

Para la realización de esta prueba se puede utilizar calculadora, siempre que no tenga NINGUNA de las características siguientes: posibilidad de transmitir datos, ser programable, pantalla gráfica, almacenamiento de datos alfanuméricos, operaciones con matrices, cálculo de determinantes, cálculo de derivadas, cálculo de integrales o resolución de ecuaciones. Cualquiera que tenga alguna de estas características será retirada.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Considérense las matrices
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$

- a) Calcúlese la matriz $[(A \cdot A^t)^2 2A \cdot A^t]^{11}$.
- b) Determínense el número de filas y columnas de la matriz X que verifica que $X \cdot A^t = B^t$. Justifíquese si A^t es una matriz invertible y calcúlese la matriz X.

Nota: M^t denota la matriz traspuesta de la matriz M.

Ejercicio 2. (Calificación máxima: 2 puntos)

Considérese la región del plano S definida por:

$$S = \{(x, y) \in \mathbb{R}^2 : x + 2y \ge 4; \quad x + 2y \le 12; \quad x \le 4; \quad -x + 2y \le 12\}$$

- a) Representese gráficamente la región S y calcúlense las coordenadas de sus vértices.
- b) Determínense los puntos en los que la función f(x, y) = 3x y alcanza sus valores máximo y mínimo en S, indicando el valor de f en dichos puntos.

Ejercicio 3. (Calificación máxima: 2 puntos)

Considérese la función real de variable real: $f(x) = \frac{x}{1 - 4x^2}$.

- a) Determínense los intervalos de crecimiento y decrecimiento de f.
- b) Estúdiense las asíntotas de f.

Ejercicio 4. (Calificación máxima: 2 puntos)

Se va a celebrar una carrera popular. Entre los participantes, dos de cada tres hombres y tres de cada cuatro mujeres han entrenado para la carrera.

- a) Se eligen al azar y de forma independiente un hombre y una mujer de entre los participantes. Calcúlese la probabilidad de que alguno de ellos haya entrenado para la carrera.
- b) Si el 65 % de los participantes son hombres y el 35 % mujeres y se elige un participante al azar, calcúlese la probabilidad de que sea hombre sabiendo que ha entrenado para la carrera.

Ejercicio 5. (Calificación máxima: 2 puntos)

La distancia anual, en kilómetros (km), que recorren las furgonetas de una empresa de reparto, se puede aproximar por una variable aleatoria con distribución normal de media μ km y desviación típica σ =24 000 km.

- a) Determínese el tamaño mínimo de una muestra aleatoria simple para que la amplitud del intervalo de confianza al 95 % para μ sea a lo sumo de 23 550 km.
- b) Se toma una muestra aleatoria simple de 25 furgonetas. Suponiendo que $\mu=150\,000$ km, calcúlese la probabilidad de que la distancia media anual observada, \overline{X} , esté entre 144 240 km y 153 840 km.

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el sistema de ecuaciones dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases}
 x + 3y + z &= a \\
 2x + ay - 6z &= 8 \\
 x - 3y - 5z &= 4
 \end{cases}$$

- a) Discútase el sistema en función de los valores del parámetro real a.
- b) Resuélvase para a = 4.

Ejercicio 2. (Calificación máxima: 2 puntos)

Los beneficios, en millones de euros, de una determinada inversión vienen dados por la función $f(x) = x^3 - 12x$, donde x representa cierto índice que puede tomar cualquier valor real.

- a) Determínese, en el caso de que exista, el valor del índice para el que el beneficio es mayor que el de todos los valores de un entorno suyo. ¿Cuál sería el beneficio para ese valor del índice?
- b) Supóngase que el valor actual del índice es x = 4 y que está previsto que éste experimente un incremento positivo. Justifíquese si el beneficio aumentará o disminuirá.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por

$$f(x) = \begin{cases} x^3 + 2e^x & \text{si } x < 0, \\ \frac{2}{3+x} & \text{si } x \ge 0. \end{cases}$$

- a) Determínense el dominio de f(x) y estúdiese su continuidad.
- b) Calcúlese $\int_{-1}^{0} f(x) dx$.

Ejercicio 4. (Calificación máxima: 2 puntos)

Sean A y B dos sucesos de un experimento aleatorio tales que P(A) = 0'4, P(B) = 0'6 y $P(A \cup B) = 0$ '8. Calcúlese:

- a) $P(\overline{A} \cap B)$.
- b) $P(\overline{A \cup B} \mid A)$.

Nota: \overline{S} denota el suceso complementario del suceso S.

Ejercicio 5. (Calificación máxima: 2 puntos)

Una empresa quiere lanzar un producto al mercado. Por ello desea estimar la proporción de individuos, P, que estarían dispuestos a comprarlo.

- a) Asumiendo que la proporción poblacional es P=0'5, determínese el tamaño mínimo necesario de una muestra de individuos para garantizar que, con una confianza del 95%, el margen de error en la estimación no supere el 3% (\pm 3%).
- b) Se tomó una muestra aleatoria simple de 450 individuos de los cuales 90 afirmaron que comprarían el producto. Obténgase un intervalo de confianza del 90 % para la proporción de individuos que estarían dispuestos a comprar el producto.

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
-	,,,,,	,,,,	,,,,	,,,,,	, , , ,	,,,,,	,,,,	,,,,	,,,,,	,00
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Cálculo correcto dela matriz (A·A ^t) ² -2 A·A ^t	
Determinación correcta de la dimensión de X0,25 puntos	s.
Justificación de la inexistencia de la inversa de At0,25 puntos	
Cálculo correcto de la matriz X0,50 punto	S
Ejercicio 2. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Representación correcta de la región S0,50 puntos	S.
Determinación correcta de los vértices0,50 puntos Apartado (b): 1 punto.	S.
Cálculo correcto de las abscisas del máximo y del mínimo0,50 punto	
Determinación correcta de los valores máximo y mínimo0,50 punto	S.
Ejercicio 3. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Determinación correcta de la derivada0,50 punto	s.
Determinación correcta de los intervalos de crecimiento y decrecimiento0,50 puntos	s.
Apartado (b): 1 punto.	
Determinación correcta de la asíntota horizontal	
Determinación correcta de las asíntotas verticales0,50 punto:	S.
Ejercicio 4. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Planteamiento correcto0,50 punto	s.
Cálculo correcto de la probabilidad pedida0,50 punto Apartado (b): 1punto.	S.
Planteamiento correcto0,50 punto	
Cálculo correcto de la probabilidad pedida0,50 punto	S.
Ejercicio 5. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Cálculo correcto de z _{w2} 0,25 punto	S.
Expresión correcta de la fórmula del tamaño0,25 punto	
Obtención correcta del intervalo del tamaño0,50 puntos	S.
Apartado (a): 1 punto.	
Expresión correcta de la distribución de la media muestral	
Planteamiento de la probabilidad	
Cálculo correcto de la probabilidad0,50 punto	JS.

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Cálculo correcto del determinante y valores críticos0,50 puntos. Discusión correcta,50 puntos.
Apartado (b): 1 punto.
Solución correcta del sistema1,00 punto.
Ejercicio 2. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Cálculo correcto de la derivada0,25 puntos
Cálculo correcto del máximo relativo0,25 puntos.
Interpretación correcta de las respuestas en el contexto del problema0,50 puntos. Apartado (b): 1 punto.
Cálculo correcto del signo de la derivada0,25 puntos.
Determinación correcta del decrecimiento0,25 puntos.
Interpretación correcta de las respuestas en el contexto del problema0,50 puntos.
Ejercicio 3. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Determinación correcta del dominio
Estudio de la continuidad si x ≠ 0
Estudio de la continuidad en x=00,50 puntos.
Apartado (b): 1 punto.
Planteamiento correcto
Determinación correcta de la primitiva0,50 puntos.
Cálculo correcto de la integral definida0,25 puntos.
Ejercicio 4. (Puntuación máxima: 2 puntos).
Apartado (a): 1 punto.
Planteamiento correcto
Cálculo correcto de la probabilidad pedida
Planteamiento correcto0,50 puntos.
Cálculo correcto de la probabilidad pedida0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos).
Apartado (a): 1 punto.
Cálculo correcto de Z _{α/2}
Expresión correcta de la fórmula del error
Obtención correcta del tamaño0,50 puntos. Apartado (b): 1 punto.
Cálculo correcto de z _{w2} 0,25 puntos.
Expresión correcta del intervalo0,25 puntos.
Cálculo correcto del intervalo de confianza0,50 puntos.

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.