

Kevin R. Arrigo
Stanford University

Anne-Carlijn Alderkamp, Loes J. A. Gerringa, Matthew M. Mills, Charles-Edouard Thuróczy, and Gert L. van Dijken

Some Background

What is the biological pump?

- Phytoplankton live in surface
 - ocean
- Photosynthesis lowers CO₂ in
 - upper ocean
- Facilitates influx of
 - atmospheric CO₂
- New organic C sinks to bottom

Biological pump allows more

CO₂ to enter the ocean from the atmosphere

Surface nitrate concentrations (µM)

Southern Ocean has highest nitrate in the world's oceans

If all this nitrate were consumed by phytoplankton, CO₂ in the atmosphere would be dramatically reduced

Why isn't more nitrate consumed today?

The Southern Ocean has too little iron

Southern Ocean is the largest of the 3 oceanic regions where iron limits phytoplankton growth

When iron is added to Southern Ocean waters, phytoplankton bloom

So do most models of air-sea CO₂ exchange (even high resolution ones)

Ito et al. (2010)

Production important for ecosystems

Amundsen Sea

Amundsen and Pine Island polynyas

Amundsen Sea

Near ice edge

Amundsen Polynya

Photo: Dave Munroe

Intense blooms in polynyas near melting glaciers

Amundsen Sea

Response to Fe?

*DynaLiFe*13 Jan – 18 Feb 2009

ASPIRE 14 Dec 2010 – 5 Jan 2011

Amundsen Sea – Amundsen Polynya

ASPIRE

- Upwelled MCDW outflow in front of Dotson Ice Shelf Low phytoplankton biomass
- High biomass in central polynya (>20 μg Chl a L⁻¹)

Amundsen Sea – Amundsen Polynya

Fe addition bioassay experiments

Amundsen Polynya is Fe-limited in some locations

Amundsen Sea – Amundsen Polynya

Fe addition bioassay experiments

Phytoplankton in Pine Island Polynya are never Fe limited

Amundsen Sea

Ross Sea shelf: Fe limitation

Conclusions

Productivity of the Southern Ocean is limited by Fe availability

Exceptions are coastal areas, especially near melting glaciers

These receive enhanced Fe fluxes

Faster melting glaciers = more Fe released into water Most productive waters in Southern Ocean

Increasing glacial melt should:

Enhance Fe input into Antarctic shelf waters
Increase primary production in Fe-limited show regions
(e.g., part of Amundsen Sea, all of Ross Sea)
Increase biological pump
Provide more food for marine ecosystems

THANK YOU

Gert van Dijken
Kate Lowry
Casey Smith
Anne-Carlijn Alderkamp
Matt Mills
Tish Yager (ASPIRE)
Hein de Baar
Loes Gerringa
Philippe Tortell

Ocean Biology and Biogeochemistry

Cryosphere Science Program

