Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа

Линейные стационарные системы

Выполнил студент гр. 3530901/80201 И.С. Иванов

Преподаватель: Н.В. Богач

Санкт-Петербург 2021

Содержание

1	Упражнение №1	5
2	Упражнение №2	8
3	Выводы	12

Список иллюстраций

1	Сигнал выстрела	5
2	Спектр сигнала выстрела	6
3	Сигнал скрипки	6
4	Сигнал после обработки	7
5	Полученный сигнал	8
6	Спектр сигнала	9
7	Логарифмический спектр	9
8	Сигнал записи	10
9	Результат	10

Листинги

1	Считывание и обработка сигнала	5
2	Считывание импульсной характеристики	8

1 Упражнение №1

В первом упражнении необходимо просмотреть примеры из файла chap10.ipynb. Далее изменить пример, чтобы устранить лишнюю ноту в начале фрагмента.

Начнем с звука выстрела.

```
from thinkdsp import read_wave

response = read_wave('Sounds/180960__kleeb__gunshot.wav')

start = 0.12
response = response.segment(start=start)
response.shift(-start)

response.truncate(2**16)
response.zero_pad(2**17)

response.normalize()
response.plot()
decorate(xlabel='Time (s)')
```

Листинг 1: Считывание и обработка сигнала

Рис. 1: Сигнал выстрела

Построим спектр.

Рис. 2: Спектр сигнала выстрела

Теперь возьмем звук скрипки и проделаем тоже самое.

Рис. 3: Сигнал скрипки

После умножим ДПФ сигнала на передаточную функцию, преобразуем обратно в сигнал и выведем на экран.

Рис. 4: Сигнал после обработки

При прослушивании получившегося сигнала можно сделать вывод, что "затекшей" ноты в начале больше нет.

2 Упражнение №2

В втором упражнении необходимо смоделировать двумя способами звучание записи в том пространстве, где была измерена импульсная характеристика, как сверткой замой записи с импульсной характеристикой, так и умножением ДПФ записи на вычислительный фильтр.

Считаем импульсную характеристику из библиотеки OpenAir. Окружение Central Hall, University of York.

```
response = read_wave('Sounds/ir_row_11_sl_centre.wav')

start = 0
response.shift(-start)

response.normalize()
response.plot()
decorate(xlabel='Time (s)')
```

Листинг 2: Считывание импульсной характеристики

Рис. 5: Полученный сигнал

Получим спектр сигнала.

Рис. 6: Спектр сигнала

Посмотрим на спектр в логарифмическом масштабе.

Рис. 7: Логарифмический спектр

Смоделируем звучание записи, под нахождение в комнате записи импульсной характеристики.

Считаем файл и посмотрим его график.

Рис. 8: Сигнал записи

Также была обрезана запись звука до длины импульсной характеристики.

Выполним умножение в частотной области и преобразуем обратно во временную. Выведем результат.

Рис. 9: Результат

Представим полученный сигнал в виде аудио. Далее воспользуемся методом convolve для свертки.

В результате выполнения был получен звук играющий в помещении импульсной характеристики.

3 Выводы

В результате выполнения данной лабораторной работы были получены знания о свертке сигналов. Была модифицирована запись игры на скрипке, в которой была убрана первая нота. Также было произведено моделирование звучание записи в помещении.