Control Systems - 7 Semester DCSE - Week 9

Observer based state feedback controller design

Recalling again, we know that there are 3 types of techniques to design controllers which are:

- Full-state feedback controller or state feedback controller
- Observer-based state feedback controller
- PID Controller

Recalling again, we know that there are 3 types of techniques to design controllers which are:

- Full-state feedback controller or state feedback controller
- Observer-based state feedback controller
- PID Controller

Last week, we studied (and then simulated) the design of full-state feedback controller and its pre-requisites.

Today, we will study the design and pre-requisites of observer-based state feedback controller.

What is the difference between state feedback and observer-based state feedback controller?

It depends on matrix ${m C}$ whether it is identity matrix or not. What is meant by matrix ${m C}$?

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

What is meant by y = Cx + Du?

When we can measure all the state-space variables using sensors or devices, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = x(t) + Du(t)$$

When we can measure all the state-space variables using sensors or devices, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = x(t) + Du(t)$$

Can we measure or sense all the state-space variables?

- The sensors may be highly priced (or not economical/competetive to buy) e.g. camera in washing machine
- The sensors may require long wires and cables (or support mechanisms)
- ullet The sensors may not be highly reliable e.g. a temperate sensor may not indicate a change of 2^o temperature
- The sensor may not be available in market

When we can NOT measure or sense all the state-space variables, but some of the state-space variables, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

When we can NOT measure or sense all the state-space variables, but some of the state-space variables, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

For example:

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Bu(t)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

When we can NOT measure or sense all the state-space variables, but some of the state-space variables, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

For example:

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Bu(t)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

If such a system is unstable, how can we stabilize it using controller?

When we can NOT measure or sense all the state-space variables, but some of the state-space variables, then we write the following:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

For example:

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Bu(t)$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

If such a system is unstable, how can we stabilize it using controller? Observer-based state feedback controller may be the possible solution in such a scenario

Observer based state feedback controller

There are 3 pre-requisites to full-fill before we can proceed to design of observerbased state feedback controller.

- Matrix C must NOT be equal to identity and matrix D must be equal to zero (or absent)
- The system must pass controllability test.
- The system must pass observability test.

Observer based state feedback controller

There are 3 pre-requisites to full-fill before we can proceed to design of observerbased state feedback controller.

- Matrix C must NOT be equal to identity and matrix D must be equal to zero (or absent)
- The system must pass controllability test.
- The system must pass observability test.

The first 2 pre-requisites seem easy or familiar but what is observability test. Let us study observability test.

Pre-req 3: Observability Test

A system is observable or it passes observability test if the following criteria is satisfied:

- ullet First, determine the order of the system and call it n.
- ullet Second, using n, construct matrix Q follows:

$$Q = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$
 (1)

- ullet Third, compute rank of matrix Q
- ullet Finally, check if rank of matrix Q is equal to n or not.

If rank(Q) = n, then the system is observable and we can proceed to design of controller, otherwise STOP. No controller can be designed.

Observer Design

An observer is also called estimator - it estimates the unmeasured state-space variables.

What is estimate called in urdu?

Observer Design

An observer is also called estimator - it estimates the unmeasured state-space variables.

What is estimate called in urdu?

So, if you are doing Andaza, it must be good andaza. In control systems literature, good andaza means observer must be stable.

Example

Check whether do we need to design a controller for the following system:

$$egin{bmatrix} \left[rac{dx_1}{dt}
ight] = \left[egin{matrix} 2 & 3 \ 0 & 5 \end{matrix}
ight] \left[egin{matrix} x_1 \ x_2 \end{matrix}
ight] + \left[egin{matrix} 1 \ 2 \end{matrix}
ight] u(t) \ y = \left[egin{matrix} 1 & 0 \end{matrix}
ight] \left[egin{matrix} x_1 \ x_2 \end{matrix}
ight] \end{split}$$

If we need a controller, identify which controller to design, and then design it and place the eigenvalues at (-3, -5). If you need observer, then place observer eigen values at (-10, -20).

Checking Stability to know whether we require a controller

First, we check stability of this system. The eigenvalues of this system can be obtained from $det(\lambda I-A)=0$

Checking Stability to know whether we require a controller

First, we check stability of this system. The eigenvalues of this system can be obtained from $det(\lambda I - A) = 0$

$$det(\lambda I - A) = det \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$$
$$= det \begin{bmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 5 \end{bmatrix}$$
$$= (\lambda - 2)(\lambda - 5) - (0)(-3)$$
$$= (\lambda - 2)(\lambda - 5) - (0)$$
$$= (\lambda - 2)(\lambda - 5)$$

The eigenvalues of matrix A are at 2 and 5, which indicates it is an unstable system.

Deciding controller type

Now, which controller to choose?

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Deciding controller type

Now, which controller to choose?

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

As matrix C is NOT equal to identity matrix, we proceed to design of observer-based state feedback controller.

Let us compute now pre-requisite number ${\bf 2}$ which is the controllability test.

In this case n =

Let us compute now pre-requisite number 2 which is the controllability test.

In this case n=2, we matrix P would have the following shape:

$$P = \begin{bmatrix} B & AB \end{bmatrix}$$

Let us compute now pre-requisite number 2 which is the controllability test.

In this case n=2, we matrix P would have the following shape:

$$P = \begin{bmatrix} B & AB \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 8 \\ 2 & 10 \end{bmatrix}$$

$$det(P) = -6$$

As determinant P is non-zero, so rank(P)=2, and it passes controllability test.

Let us compute now pre-requisite number 2 which is the controllability test.

In this case n=2, we matrix P would have the following shape:

$$P = \begin{bmatrix} B & AB \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 8 \\ 2 & 10 \end{bmatrix}$$

$$det(P) = -6$$

As determinant P is non-zero, so $rank(P)=\mathbf{2}$, and it passes controllability test.

Let us proceed to Observability Test.

Prerequisite 3 - Observability Test

Let us compute now pre-requisite number 3 which is the observability test.

In this case n=

Prerequisite 3 - Observability Test

Let us compute now pre-requisite number 3 which is the observability test.

In this case n=2, we matrix Q would have the following shape:

$$Q = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \tag{2}$$

$$det(Q) = 3$$

As determinant Q is non-zero, so rank(Q)=2, and it passes observability test.

Prerequisite 3 - Observability Test

Let us compute now pre-requisite number 3 which is the observability test.

In this case n=2, we matrix Q would have the following shape:

$$Q = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \tag{2}$$

$$det(Q) = 3$$

As determinant Q is non-zero, so rank(Q)=2, and it passes observability test.

Let us proceed to design of controller now.

Design Steps - Observer Design

To design controller, first we need to design observer and then state feedback controller as follows:

Observer:

- ullet Construct matrix L whose size is transpose the size of C
- ullet Populate matrix L with elements starting from l_1 , l_2 and so on
- ullet Post-multiply C with L to obtain LC, and then compute det(sI-(A-LC))
- Obtain the desired characteristic equation for observer and compare coefficients to obtain the values of l_1 , l_2 , and so on

Design Steps - Controller Design

State feedback Controller:

- ullet Construct matrix K whose size is transpose the size of B
- ullet Populate matrix K with elements starting from k_1 , k_2 and so on
- ullet Pre-multiply B with K to obtain BK, and then compute det(sI-(A-BK))
- Obtain the desired characteristic equation and compare coefficients to obtain the values of k_1 , k_2 , k_3 and so on

$$L = egin{bmatrix} l_1 \ l_2 \end{bmatrix}$$

$$egin{aligned} L &= egin{bmatrix} l_1 \ l_2 \end{bmatrix} \ LC &= egin{bmatrix} l_1 & 0 \ l_2 & 0 \end{bmatrix} \end{aligned}$$

$$L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$

$$LC = \begin{bmatrix} l_1 & 0 \\ l_2 & 0 \end{bmatrix}$$

$$A - LC = \begin{bmatrix} 2 - l_1 & 3 \\ -l_2 & 5 \end{bmatrix}$$

$$sI - (A - LC) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 2 - l_1 & 3 \\ -l_2 & 5 \end{bmatrix}$$

$$sI - (A - LC) = \begin{bmatrix} l_1 + s - 2 & -3 \\ l_2 & s - 5 \end{bmatrix}$$

$$sI-(A-LC)=egin{bmatrix} s-2+k_1 & -3+k_2 \ 2k_1 & 2k_2+s-5 \end{bmatrix}$$
 $det(sI-(A-LC))=$

$$sI - (A - LC) = \begin{bmatrix} s - 2 + k_1 & -3 + k_2 \\ 2k_1 & 2k_2 + s - 5 \end{bmatrix}$$
$$det(sI - (A - LC)) = s^2 + (l_1 - 7)s + (3l_2 - 5l_1 + 10)$$

Now lets compare it with desired characteristic equation:

$$(s+10)(s+20) = s^2 + 30s + 20$$

Compare coefficients to obtain values of l_1 and l_2 .

$$K = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$

$$K = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$

$$BK = \begin{bmatrix} k_1 & k_2 \\ 2k_1 & 2k_2 \end{bmatrix}$$

$$BK = \begin{bmatrix} k_1 & k_2 \\ 2k_1 & 2k_2 \end{bmatrix}$$

$$A - BK = \begin{bmatrix} 2 - k_1 & 3 - k_2 \\ 0 - 2k_1 & 5 - 2k_2 \end{bmatrix}$$

$$sI - (A - BK) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 2 - k_1 & 3 - k_2 \\ 0 - 2k_1 & 5 - 2k_2 \end{bmatrix}$$

$$sI - (A - BK) = \begin{bmatrix} s - 2 + k_1 & -3 + k_2 \\ 2k_1 & 2k_2 + s - 5 \end{bmatrix}$$

 $K = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$

$$sI - (A - BK) = \begin{bmatrix} s - 2 + k_1 & -3 + k_2 \\ 2k_1 & 2k_2 + s - 5 \end{bmatrix}$$

$$det(sI - (A - BK)) =$$

$$sI - (A - BK) = \begin{bmatrix} s - 2 + k_1 & -3 + k_2 \\ 2k_1 & 2k_2 + s - 5 \end{bmatrix}$$
$$det(sI - (A - BK)) = s^2 + (k_1 + 2k_2 - 7)s + (-4k_2 + 10)$$

Now lets compare it with desired characteristic equation:

$$(s+3)(s+5) = s^2 + 8s + 15$$

Compare coefficients to obtain values of k_1 and k_2 .