

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

No Additional M	Materials are required.		
	swer on the Question Paper.		
			2 hours 15 minutes
Paper 2		Octo	ober/November 2011
COMBINED SO	CIENCE		5129/21
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

This document consists of **19** printed pages and **1** blank page.

UNIVERSITY of CAMBRIDGE
International Examinations

DC (SM/CGW) 34443/2

© UCLES 2011

1 Three samples of human blood **A**, **B** and **C**, are mixed with three salt solutions of different concentrations.

For Examiner's Use

The blood samples are then observed under the microscope.

The results are shown in Fig. 1.1

blood sample	observations
Α	cells are small and wrinkled
В	cells are normal in size and shape
С	no cells can be seen

Fig. 1.1

(a)	What type of blood cell would be seen in the largest numbers in each of the samples ${\bf A}$ and ${\bf B}$?
	[1]
(b)	Which blood sample is mixed with the most concentrated salt solution?
	[1]
(c)	Explain the observation for blood sample C .
	[2]

(a) Explain the difference between speed and velocity.

.....[1]

- **(b)** Use Fig. 2.1 for the following.
 - (i) Complete the following sentence.

The acceleration of the cyclist is zero from

......seconds toseconds. [1]

(ii) Calculate how far the cyclist travels between the times of 9 seconds and 13 seconds.

distance = m [2]

(c) Further along the road, the cyclist stops the bicycle.

Complete the following sentence about energy.

As the cyclist uses the brakes, energy is converted

intoenergy. [2]

Met	hane is a hydrocarbon.	
(a)	State the name of the homologous series to which methane belongs.	
		[1]
(b)	Methane is used as a fuel.	
	The equation for the combustion of methane is	
	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	
	The relative molecular mass $M_{\rm r}$ of methane is 16. [$A_{\rm r}$: C, 12; O, 16]	
	Complete the following sentences.	
	16 g of methane reacts with g of oxygen and produces g	of
	carbon dioxide.	
	1.6 g of methane reacts with g of oxygen and produces g	ı of
	carbon dioxide.	
	0.4 g of methane produces g of carbon dioxide.	[4]
(c)	State the test for oxygen.	
	test	
	result	
		[2]
_		

4 Complete Fig. 4.1.

3

particle	relative mass	relative charge
proton	1	
neutron		
electron	negligible	-1

Fig. 4.1

[3]

For Examiner's Use

5 Fig. 5.1 shows the structure of the heart in section as seen from the front.

Fig. 5.1

(a)	What type of tissue is the heart mainly composed of?
	[1]
(b)	When the chamber labelled Y contracts, what happens to
	(i) valve W ,[1]
	ii) valve X ?[1]
(c)	When chamber Z contracts, what effect does this have on the blood in that chamber?
	[2]
(d)	How does the composition of the blood in chamber Z differ from that in chamber Y ?
	[6]

A pupil places a pin in front of a plane mirror so that he can see an image of the pin. Light from the pin is incident on the plane mirror as shown in Fig. 6.1. The position of the image of the pin is also shown.

For Examiner's Use

image of pin

Fig. 6.1

- (a) On Fig. 6.1 draw
 - (i) the normal where the ray is incident on the mirror,

[1]

(ii) the reflected ray.

[1]

(b) The pin is moved to the right, towards the mirror.

How does the position of the image of the pin move?

.....[1]

(c) Light is an example of a transverse wave.

Name an example of a longitudinal wave.

.....[1]

7 Chlorine is a diatomic gas in Group VII of the Periodic Table.

For Examiner's Use

(a) Complete Fig. 7.1 to show the outer shell electrons in a molecule of chlorine.

Fig. 7.1

[2]

(b) State how the boiling point of the elements in Group VII changes as the group is descended.

.....[1]

(c) State one industrial use of chlorine.

.....[1]

(d) Fig. 7.2 shows chlorine being bubbled into potassium iodide solution.

Fig. 7.2

State the names of the two products of the reaction between chlorine and potassium iodide.

..... and [2]

For Examiner's Use

8

			type
	a condom is used		chemical
	a spermicide is used		mechanical
a	ne couple avoid intercourse t certain times during the nenstrual cycle		surgical
	ne woman's oviducts are ut and tied off		natural
i)	Name a birth control method t	Fig. 8.1	the use of hormones
-	Which method of birth control Explain how.		against HIV infection?
	method		
	explanation		
	cribe two advantages for the b	aby of breast-fee	eding instead of bottle-feeding.
esc			

9	A circuit contains a cell, a lamp, an ammeter and a variable resistor all connected in series.		
	(a)	In the space below, draw a diagram of this circuit.	Examiner's Use
		[3]	
	(b)	When the current in the lamp is 0.2 A, the potential difference across the lamp is 1.8 V.	
		Calculate	
		(i) the resistance of the lamp,	
		resistance = unit [3]	
		(ii) the power of the lamp.	
		power = W [2]	

10 Study the following reaction scheme.

For Examiner's Use

(a) (i) Name the catalyst used to speed up the reaction between nitrogen and hydrogen in the manufacture of ammonia.

.....[1]

(ii) Balance the equation for the formation of ammonia.

$$N_2 + \dots NH_3$$
 [1]

(iii) Ammonia solution turns Universal Indicator blue. Suggest the pH of the solution.

.....[1]

(b) Name acid X and state the type of reaction that occurs between acid X and ammonia.

acid **X**[1] type of reaction[1]

a)	Define an <i>ei</i>	nzyme.					
							[2]
b)	Fig. 11.1 she temperature		effect of pH on the	he activity of th	ne enzyme am	ylase at two d	ifferent
	enzyme activity				40°C	°C	
		1	5	7	9	. 11	
		•	J	,	pl	н ''	
				Fig. 11.1			
	Use Fig. 11.	1 to descr	ribe how this en	zyme's activity	is affected by		
	(i) tempera	ature,					
	(ii) pH						
							[2]

12 A copper saucepan containing cold water is heated as shown in Fig. 12.1.

Fig. 12.1

(a)	Nan	ne the process by which heat is transferred through the copper.	
		[1]
(b)	The	water at the bottom of the saucepan is heated.	
	Ехр	lain how the rest of the water becomes hot.	
		[3]
(c)		hot water is placed in a container that is then sealed with a cork. water is required to stay warm for as long as possible.	
	Stat	e the advantage of	
	(i)	using a plastic container rather than a metal container,	
		[1]
	(ii)	using a white, rather than black, outer surface for the container.	
		[1]

13 The following is a list of apparatus.

For
Examiner's
Use

		balance	measurinç	ı cylinder	condenser	
		filter funnel	burette	pipette	thermomet	er
(a)			e one piece of appa nts is carried out.	ratus which m u	ust be used when e	ach of the
	Eac	ch piece of appa	ratus may be used or	ice, more than	once or not at all.	
	(i)	distilling a mixt	ture of ethanol and wa	ıter		[1]
	(ii)	separating mu	d from muddy water .			[1]
	(iii)	finding the volu	ume of a liquid			[1]
(b)	Fro	m the list, comp	lete the following sent	ence.		
	Dur	ing a titration	experiment, an alka	li is measured	into a conical flas	k using a
				and an acid	is added to the alk	ali using a
						[2]

14 Fig. 14.1 shows an alveolus in the lungs.

Fig. 14.1

(a)	State two ways in which the structure of alveoli allows the efficient exchange of gases between blood and air.
	1
	2
	[2]
(b)	Name a substance that is excreted through the alveoli.
	[1]
(c)	Explain why air pollution by smoke or soot causes the alveoli to be less efficient for gas exchange.
	[2]

15 Study the following reaction scheme.

For Examiner's Use

(i) process A,	[-	1]
----------------	----	----

- (b) State the name of the substances, present in yeast, which cause process A to occur.
 -[1]
- (c) Complete the following sentences.

The ethene molecules are known as the units. [2]

For Examiner's Use

16	(a)	State a test to show the difference between magnetic and non-magnetic materials.
		[1]
	(b)	Iron and steel are both magnetic materials.
		Describe a difference between the magnetic properties of iron and steel.
		[1]
17	A sp	pacecraft has a mass of 50 000 kg and the accelerating force is 225 000 N.
	(a)	Calculate the acceleration of the spacecraft.
		acceleration = units [3]
	(b)	The spacecraft is ejecting exhaust gases. The accelerating force does not change but the acceleration increases.
		Explain why the acceleration increases.
		[1]

18 Fig. 18.1 shows a food chain.

For Examiner's Use

grass → wildebeest → cheetah

Fig. 18.1

(a)	A food chain shows the energy flow in an ecosystem.
	In this food chain, how does the amount of energy in the cheetahs compare with the amount of energy in the grass?
	[1]
(b)	There are fewer cheetahs than wildebeest.
	Use ideas of energy flow in food chains to explain why.
	[2]
(2)	M/h at turns of augustians a inspectant in the appropriate and appropriate form the propriate and appriary.
(c)	What type of organisms, important in the ecosystem, are not shown in this food chain?
	[1]

19 Fig. 19.1 shows the arrangement of the electrons in the atoms of six different elements, **R–W**.

The letters are not the chemical symbols of the elements.

For Examiner's Use

atom	R	S	Т	U	V	W
electron arrangement	2,8,6	2,8,4	2,6	2,8,8	2,7	2,2

Fig. 19.1

Use the letters in Fig. 19.1 to answer the following questions.

Each letter may be used once, more than once or not at all.

(a)	Which element has an atomic number 14?	[1]
(b)	Which element has a nucleon number 16 and has an isotope that contains 8 neutro	ns?
		[1]
(c)	Which two elements are in the same group of the Periodic Table?	
	and	[2]
(d)	Which element does not form an acidic oxide?	[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET

The Periodic Table of the Elements	Group	0	1	11 12 14 16 19 20	27 28 31 32 35.5 40 A1 Silcon Phosphorus Silcon Phosphorus CI Ar 13 14 15 16 17 17 18	56 59 59 64 65 70 73 75 79 Fe Co Ni Cu Zn Ga Ge As Se	Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallum Germanium Arsenic Selenium Bromine 24 25 26 27 28 29 30 31 32 34 35 34 35	96 TC Ru Rh Pd Ag Cd In 115 119 122 128 127 Mobydodenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Cadmium Tin Antimony Tellunium Tollunium Indinum In<	184 186 190 192 195 197 W Re Os Ir Pt Au Tungsten Rhentum Osmium Iridium Platitum Gold 74 75 76 77 78 79		141 Pr
ments							30				
f the Ele							59	47	79		
c Table o	Group						Cobalt	Rhodium Pal	192 Ir Iridium Pie		
e Periodi			1 T Hydrogen			. 26 D	Iron		190 Os		
Ē			-	J		Mn			186 Re thenium		
							romium	96 Mo Molybdenum 42	184 W ungsten		
						51	Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ce
						89 F	Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1
						%	Scandium 21	89 Y	139 La Lanthanum 57 *	227 Ac Actinium 89	id series series
		=		9 Be Beryllium	24 Mg Magnesium	∂ Ω	Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	* 58-71 Lanthanoid series † 90-103 Actinoid series
		_		7 Lithium	23 Na Sodium	® ×	Potassium 19	85 Rb Rubidium 37	CS Caesium 55	223 Fr Francium 87	58-71 L 90-103

<u>+</u> (<u>ٽ</u>	Ceri
* 58-71 Lanthanoid series	+ 90_103 Actinoid series	

Oerium (28	232
Actinoid series		a = relative atomic mass
90-103 Actin		ď
+		

	Ø	a = relative atomic mass
Key	×	X = atomic symbol
	b	b = atomic (proton) number

	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium
	58	59	09	61	62	63	64	92	99	29
a = relative atomic mass	232	231	238	237	244	243	247	247	251	252
X = atomic symbol		Ъа	⊃	Ν	Pu	Am	C	簽	ర	Es
10 dans (20 day) 0 moto = 0		Protactinium	Uranium	Neptunium	Plutonium	Americium	Ourium	Berkelium	Californium	Einsteinium
o = atolinic (proton) number	06	91	92	93	94	95	96	26	86	66

260 Lr Lawrencium

259 Nobelium

258 **Md**

257 **Fm** Fermium 100

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).