lecture 12: Sessional

NFA to DPA Conversion.

2- When NFA do not have an NUN transition.

 $\mathcal{E}_{1}h = T_{3}au_{5}it_{1}im$. P = State.

old States $Z_{1} = 9^{\circ}$ $Z_{2} = (q_{\circ}, q_{1})$ $Z_{3} = (q_{1}, q_{2})$ $Z_{5} = 9^{3}$ $Z_{6} = 9^{1}$

Ty cusifien at 'c' $Z_{2} = (q_{0}, q_{1}, q)$ $Z_{2} = (q_{0}, q_{1}, q)$ $Z_{5} = (q_{0}, q_{1}, q)$ $Z_{5} = q_{3}$ $Z_{3} = q$

NFA Transitions. with 2: Null E-NPA-٤ old State E-dosurc (90) = (40, 91, 92) 59,13 E- closurc(q1) = { q1, q2} -9,0 £ 9.03 fq23. E - Closurc(92) z {92} 9,1 + 9,2

$$z_{2}^{2} = \{q_{1}, q_{2}\}, \quad z_{4}^{2} = \{q_{1}, q_{2}\}, \quad z_{5}^{2} = \{q_{2}, q_{2}\}, \quad z_{5$$

1).
$$(a+b)^{+}$$
 $(aa+bb)$ $(a+b)^{+}$.

 $(a+b)^{+}$ $(aa+b)^{+}$ $(aa+b$

2) aa (a+b) + bb.

