fraud_2025_mm_dd (whistleblowers and financial Fraud)

Starting from Subsection 5.2 (line 116) change of notation: "C" compensation changed to "R" reward. \Rightarrow R (revenue) was changed to B (benefit)

#1: CaseMode := Sensitive

#2: InputMode := Word

Num employees per type

#3: N :∈ Real (0, ∞)

time discount factor (used in Subsection 5.1)

#4: $\tau :\in Real(0, 1)$

probability of conviction based on WB info

#5: $\lambda \in \text{Real}(0, 1)$

initial fraud loss before recovery

#6: L :∈ Real (0, ∞)

fraction of recovered amount

#7: $\rho :\in \text{Real } (0, 1)$

Parameter of WB discomfort from WB (disutility parameter)

#8: $\delta :\in \text{Real } (0, \infty)$

concavility/convexity of WB utility w.r.t. type

#9: γ :∈ Real (0, ∞)

Total and fraction of recovered money that paid to WB

#10: C :∈ Real (0, ∞)

#11: c :∈ Real (0, 1)

WB probability (endogenous).

#12: pw : Real (0, 1]

fraud prob (endogeneous)

#13: pf : Real (0, 1]

Penalty on convicted fraudster

#14: F :∈ Real [0, ∞)

eq (1): utility of a WB

#15: $u = \lambda \cdot C - \delta \cdot d^{\gamma}$

eq (2): dhat

#16: $0 = \lambda \cdot C - \delta \cdot d^{\gamma}$

#17: SOLVE(0 = $\lambda \cdot C - \delta \cdot d^{\gamma}$, d)

#18:

 $pw = dhat = \left(\frac{C \cdot \lambda}{\delta}\right)^{1/\gamma}$

Date: 10/18/2025

< 1 if

#19: $\left(\frac{C \cdot \lambda}{\delta}\right)^{1/\gamma} < 1$

#20: SOLVE
$$\left(\left(\frac{C \cdot \lambda}{\delta}\right)^{1/\gamma} < 1, C\right)$$

#21:

$$0 < C < \frac{\delta}{\lambda}$$

eq (3) net revenue maximization

#22: er =
$$pw \cdot \lambda \cdot (\rho \cdot L - C)$$

#23: er =
$$\left(\frac{C \cdot \lambda}{\delta}\right)^{1/\gamma} \cdot \lambda \cdot (\rho \cdot L - C)$$

eq (4) Appendix B

#24:
$$\frac{d}{dC} \left(er = \left(\frac{C \cdot \lambda}{\delta} \right)^{1/\gamma} \cdot \lambda \cdot (\rho \cdot L - C) \right)$$

eq (B.1)

#25:
$$0 = \frac{\frac{(1-\gamma)/\gamma - 1/\gamma (\gamma + 1)/\gamma}{c} \cdot (L \cdot \rho - C \cdot (\gamma + 1))}{\gamma}$$

#26:
$$\frac{d}{dC} \frac{d}{dC} \left(er = \left(\frac{C \cdot \lambda}{\delta} \right)^{1/\gamma} \cdot \lambda \cdot (\rho \cdot L - C) \right)$$

#27:
$$-\frac{\frac{(1-2\cdot\gamma)/\gamma-1/\gamma}{\circ}\cdot\delta}{2}$$

< 0 if

#28:
$$C \cdot (\gamma + 1) + L \cdot \rho \cdot (\gamma - 1) > 0$$

#29: SOLVE(
$$C \cdot (\gamma + 1) + L \cdot \rho \cdot (\gamma - 1) > 0$$
, C)

#30:
$$C > \frac{L \cdot \rho \cdot (1 - \gamma)}{\gamma + 1}$$

#31: SOLVE(C
$$\cdot \delta$$
 $\cdot \lambda$ $\cdot (L \cdot \rho - C \cdot (\gamma + 1))$, C)

#32:
$$\operatorname{Cstar} = \frac{L \cdot \rho}{\gamma + 1}$$

explaining Figure 2 horizontal axis

Cstar = δ/λ when

#33:
$$\frac{L \cdot \rho}{\gamma + 1} = \frac{\delta}{\lambda}$$

Result 2b

#34:
$$\frac{d}{d\gamma} \left(\text{Cstar} = \frac{L \cdot \rho}{\gamma + 1} \right)$$

#35:
$$0 > -\frac{L \cdot \rho}{2}$$

$$(\gamma + 1)$$

erstar is not in the paper.

#36: erstar =
$$\left(\frac{\frac{\mathsf{L} \cdot \mathsf{p}}{\gamma + 1}}{\delta} \cdot \lambda \cdot \left(\mathsf{p} \cdot \mathsf{L} - \frac{\mathsf{L} \cdot \mathsf{p}}{\gamma + 1} \right) \right)$$

#37:
$$\operatorname{erstar} = \gamma \cdot \delta - \frac{1/\gamma}{\gamma} \left(\frac{L \cdot \lambda \cdot \rho}{\gamma + 1} \right) (\gamma + 1)/\gamma$$

#38:
$$\frac{d}{d\gamma} \left(\text{erstar} = \gamma \cdot \delta - \frac{1/\gamma}{\gamma} \cdot \left(\frac{L \cdot \lambda \cdot \rho}{\gamma + 1} \right)^{(\gamma + 1)/\gamma} \right)$$

#39:
$$\delta = \frac{1/\gamma}{\gamma} \cdot \left(\frac{1 \cdot \lambda \cdot \rho}{\gamma + 1}\right)^{(\gamma + 1)/\gamma} \cdot \ln\left(\frac{1 \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 1)}\right)$$

eq (5): optimal probability

#40:
$$pw = \left(\frac{L \cdot \lambda \cdot \rho}{\delta \cdot (\chi + 1)}\right)^{1/\gamma}$$

Result 3 and Figure 3

#41:
$$pw = \left(\frac{\lambda \cdot x}{\delta \cdot (x + 1)}\right)^{1/\gamma}$$

#42:
$$\frac{d}{dx} \left(pw = \left(\frac{\lambda \cdot x}{\delta \cdot (\gamma + 1)} \right)^{1/\gamma} \right)$$

#43:

$$x \frac{(1-\gamma)/\gamma}{\sqrt{\frac{\delta \cdot (\gamma+1)}{\lambda}}} - \frac{1/\gamma}{\gamma}$$

$$0 < \frac{1}{\gamma}$$

Date: 10/18/2025

#44: $\frac{d}{dx} \frac{d}{dx} \left(pw = \left(\frac{\lambda \cdot x}{\delta \cdot (\gamma + 1)} \right)^{1/\gamma} \right)$

 $x \frac{(1-2\cdot\gamma)/\gamma}{\cdot(1-\gamma)\cdot\left(\frac{\delta\cdot(\gamma+1)}{\lambda}\right)^{-1/\gamma}}$

#45:

> 0 iff $\gamma < 1$.

#46:
$$\frac{d}{d\delta} \left(pw = \left(\frac{L \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 1)} \right)^{1/\gamma} \right)$$

#47:

$$\delta = \frac{\delta \left(\frac{(\gamma + 1)}{\gamma} \cdot \left(\frac{L \cdot \lambda \cdot \rho}{\gamma + 1}\right)^{1/\gamma}}{\gamma}$$

$$0 > -\frac{1}{\gamma}$$

*** Section 4: Incentives to commit fraud

eq (6): Fraud expected payoff

#48: epayoff = L - $pw \cdot \lambda \cdot (\phi + \rho \cdot L)$

#49: $L - pw \cdot \lambda \cdot (\varphi + \rho \cdot L) \geq 0$

#50: SOLVE(L - pw· λ ·(ϕ + ρ ·L) \geq 0, λ)

#51:

$$\lambda \leq \frac{L}{pw \cdot (L \cdot \rho + \phi)}$$

eq (7): λhat

#52:
$$\lambda hat = \frac{L}{pw \cdot (L \cdot \rho + \phi)}$$

 λ hat < 1 if

#53:
$$\frac{L}{pw \cdot (L \cdot \rho + \phi)} < 1$$

#54: $L < pw \cdot (L \cdot \rho + \phi)$

#55: SOLVE(L < pw·(L· ρ + ϕ), pw)

#56:

$$\sum_{\nu} \frac{L}{L \cdot \rho + \Phi}$$

eq (8): expected conviction rate

#57:
$$e\lambda = \int_{0}^{\lambda hat} \lambda d\lambda$$

#58:

$$e\lambda = \frac{\lambda hat}{2}$$

eq (9): whistleblowing probability pw (for $\chi=1$)

#60:
$$pw = \left(\frac{C \cdot \lambda}{\delta}\right)^{1/1}$$

$$pw = \frac{C \cdot \lambda}{\delta}$$

$$\begin{array}{ccc}
& & & 2 \\
& & & L \\
\hline
C \cdot & & & 2 & 2 \\
pw & = & & & 2 \\
& & & & 2 \cdot pw \cdot (L \cdot \rho + \phi) \\
\hline
extracting pw
\end{array}$$

extracting pw

#64:
$$pw = -\frac{2/3 \frac{1}{3} \frac{2}{3} \frac{2}{3}}{1/3 \frac{2}{3} \frac{2}{4 \cdot \delta} \cdot (L \cdot \rho + \phi)} - \frac{2/3 \frac{1}{3} \frac{2}{3} \frac{2}{3}}{4 \cdot \delta} \times \frac{2/3 \frac{1}{3} \frac{2}{3}}{4 \cdot \delta} \times \frac{2}{3} \times$$

$$\frac{\sqrt{3 \cdot 2} \quad \frac{1/3}{\cdot i \cdot C} \quad \frac{2/3}{\cdot L}}{\sqrt{3 \cdot 2} \quad \frac{1/3}{4 \cdot \delta} \quad \frac{2/3}{\cdot (L \cdot \rho + \phi)}} \quad \vee \quad pw = \frac{2/3}{2} \quad \frac{1/3}{2} \quad \frac{2/3}{2} \quad \frac{2/3}{1/3} \quad \frac{2/3}{2 \cdot \delta} \quad \frac{2/3}{1/3} \quad \frac{2/3$$

eq (9)

#65: pw =
$$\frac{2/3 \quad 1/3 \quad 2/3}{2 \quad \cdot C \quad \cdot L}$$

$$\frac{1/3}{2 \cdot \delta \quad \cdot (L \cdot \rho + \phi)}$$

eq (10) pf

eq (10) Ελ

#67:
$$e\lambda = \frac{ \begin{array}{c} 2/3 & 2/3 & 2/3 \\ 2 & \cdot L & \cdot \delta \end{array}}{2/3} \\ \frac{2/3}{2 \cdot C} \cdot (L \cdot \rho + \phi) \end{array}$$

eq (11) Boundaries on C: Cmin and Cmax

C in which pf ≤ 1 implies

#68:
$$\frac{\frac{1/3}{2} \cdot L \cdot \delta}{\frac{1/3}{C} \cdot (L \cdot \rho + \phi)} \leq 1$$

#69:
$$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$$

#70: SOLVE(2 ·L ·
$$\delta$$
 \leq C ·(L· ρ + ϕ) , C)

c_min below

#71:
$$C \ge \frac{2 \cdot L \cdot \delta}{L \cdot \rho + \phi}$$

Range of C in which $pw \le 1$

#72:
$$\frac{2/3 \quad 1/3 \quad 2/3}{2 \quad \cdot C \quad \cdot L} \leq 1$$
$$2 \cdot \delta \quad \cdot (L \cdot \rho + \phi)$$

2/3 1/3 2/3 1/3 2/3
#73: 2
$$\cdot$$
C \cdot L $\leq 2 \cdot \delta \cdot (L \cdot \rho + \phi)$

c_max below

#75:
$$0 \le C \le \frac{2 \cdot \delta \cdot (L \cdot \rho + \phi)}{2}$$

c_max - c_min =

#76:
$$\frac{2 \cdot \delta \cdot (L \cdot \rho + \phi)^{2}}{2} - \frac{2 \cdot L \cdot \delta}{L \cdot \rho + \phi}$$

#77:
$$\frac{3 \quad 3}{2 \cdot \delta \cdot (L \cdot (\rho - 1) + 3 \cdot L \cdot \rho \cdot \phi + 3 \cdot L \cdot \rho \cdot \phi + \phi)}$$

$$\frac{2}{L \cdot (L \cdot \rho + \phi)}$$

>0 if

3 3 2 2 2 3 #78:
$$2 \cdot \delta \cdot (L \cdot (\rho - 1) + 3 \cdot L \cdot \rho \cdot \phi + 3 \cdot L \cdot \rho \cdot \phi + \phi) > 0$$

Date: 10/18/2025

$$\wedge \phi > L \cdot (1 - \rho)$$

#81:
$$\phi > L \cdot (1 - \rho)$$

eq (12) Expected net fraud loss

#82: eloss = pf·(L - pw·e
$$\lambda$$
·(ϕ + ρ ·L - C))

deriving FOC and SOC

#83: eloss =
$$\frac{\frac{1/3}{2} \cdot L \cdot \delta}{\frac{1/3}{C} \cdot (L \cdot \rho + \phi)} \cdot \left(L - \frac{\frac{2/3}{3} \cdot 1/3}{\frac{2}{C} \cdot (L \cdot \rho + \phi)} \cdot \frac{\frac{2/3}{3} \cdot \frac{2/3}{2} \cdot 2/3}{\frac{2}{C} \cdot (L \cdot \rho + \phi)} \cdot \frac{\frac{2/3}{3} \cdot \frac{2/3}{2} \cdot 2/3}{\frac{2/3}{2 \cdot \delta} \cdot (L \cdot \rho + \phi)} \cdot \frac{2/3}{2 \cdot \delta} \cdot \frac{2/3}$$

File: fraud_2025_10_18.dfw Date: 10/18/2025 Time: 3:11:57 PM

#84: eloss =
$$\frac{2/3 \ 4/3 \ 1/3 \ 1/3 \ 1/3 \ 2/3 \ 1/3 \ 4/3 \ 1/3 \ 1/3}{2 \cdot L \cdot \delta \cdot (C \cdot L \cdot \delta \ + 2 \cdot C \cdot (L \cdot \rho \ + \phi) \ - L \cdot \delta \cdot (L \cdot \rho \ + \phi))}{2/3}$$

$$\frac{2/3 \ 2 \cdot C \cdot (L \cdot \rho \ + \phi)}{2/3 \ 2 \cdot C \cdot (L \cdot \rho \ + \phi)}$$

Appendix C eq (C.1): FOC

eq (C.2): SOC

#89:
$$C \cdot L \cdot \delta = 2/3 \cdot 1/3 + 2/4 \cdot 3 \cdot 1/3 \cdot 1/3 + 2/4 \cdot \delta \cdot (L \cdot \rho + \phi) = 0$$

=> not solvable => requires numerical simulations.

Derivation of Result 4(b) Recall c_min and c_max

#91: $c_{min} = \frac{2 \cdot L \cdot \delta}{L \cdot \rho + \phi}$

#92:

$$c_{max} = \frac{2 \cdot \delta \cdot (L \cdot \rho + \phi)^{2}}{2}$$

eq (C.3): SOC evaluated at c_min

#93:

$$-\frac{2 \quad 2}{1 \cdot \rho + 2 \cdot L \cdot (\delta + \rho \cdot \phi) + \phi} < 0$$

$$36 \cdot L \cdot \delta$$

eq (C.4): Evaluating SOC at c_max

#94:

< 0 if [not in paper]</pre>

#95:
$$L \cdot (4 \cdot \rho - 5) + 2 \cdot L \cdot (2 \cdot \phi - \delta \cdot \rho) - 2 \cdot \delta \cdot \phi < 0$$

#96: SOLVE(L
$$\cdot$$
(4· ρ – 5) + 2·L·(2· ϕ – δ · ρ) – 2· δ · ϕ < 0, ϕ)

$$\#97: \qquad \text{IF}\left(2\cdot\mathsf{L} - \delta < 0, \ \varphi > \frac{\mathsf{L}\cdot(\mathsf{L}\cdot(4\cdot\rho - 5) - 2\cdot\delta\cdot\rho)}{2\cdot(\delta - 2\cdot\mathsf{L})}\right) \vee \ \text{IF}\left(2\cdot\mathsf{L} - \delta > 0, \ \varphi < \frac{\mathsf{L}\cdot(\mathsf{L}\cdot(4\cdot\rho - 5) - 2\cdot\delta\cdot\rho)}{2\cdot(\delta - 2\cdot\mathsf{L})}\right)$$

Proving Result 4b:

eq (C.5): Loss evaluated at c_min

#98:
$$eloss_cmin = \frac{2 \quad 2}{L \cdot (L \cdot \rho + 2 \cdot L \cdot (\delta + \rho \cdot \phi) + \phi)}$$
$$2 \quad 2 \cdot (L \cdot \rho + \phi)$$

eq (C.6): Loss evaluated at c_max

eq (C.7) eloss_cmin - eloss_cmax =

#100:
$$\frac{\frac{2}{L \cdot (L \cdot \rho + 2 \cdot L \cdot (\delta + \rho \cdot \phi) + \phi)}{2} - \frac{2}{L \cdot (L \cdot (2 \cdot \rho - 1) + 2 \cdot L \cdot (\delta \cdot \rho + \phi) + 2 \cdot \delta \cdot \phi)}{2} - \frac{2}{2 \cdot (L \cdot \rho + \phi)}$$

#101:
$$\frac{L \cdot (L \cdot (\rho - 2 \cdot \rho + 1) + 2 \cdot L \cdot (1 - \rho) \cdot (\delta - \phi) - \phi \cdot (2 \cdot \delta - \phi))}{2}$$

> 0 if

2 2 #102: L
$$\cdot$$
(ρ - 2 \cdot ρ + 1) + 2 \cdot L \cdot (1 - ρ) \cdot (δ - ϕ) - ϕ \cdot (2 \cdot δ - ϕ) > 0

2 2 #103: SOLVE(L
$$\cdot (\rho - 2 \cdot \rho + 1) + 2 \cdot L \cdot (1 - \rho) \cdot (\delta - \phi) - \phi \cdot (2 \cdot \delta - \phi) > 0, \phi$$
)

#104:
$$(\phi < L \cdot (1 - \rho) + 2 \cdot \delta \wedge \phi < L \cdot (1 - \rho)) \vee (\phi > L \cdot (1 - \rho) + 2 \cdot \delta \wedge \phi > L \cdot (1 - \rho))$$

#105:
$$\phi > L \cdot (1 - \rho) + 2 \cdot \delta \wedge \phi > L \cdot (1 - \rho)$$

which is the condition specified in Result 4b.

** Subsection 5.1: Wait to inflate

eq (13) Delay yields higher utility if

#106:
$$\tau \cdot \left(\frac{\lambda \cdot (\rho \cdot 2 \cdot L)}{1 + \gamma} - \delta \cdot d \right) > \frac{\lambda \cdot (\rho \cdot L)}{1 + \gamma} - \delta \cdot d$$

#107: SOLVE
$$\left(\tau \cdot \left(\frac{\lambda \cdot (\rho \cdot 2 \cdot L)}{1 + \gamma} - \delta \cdot d\right) > \frac{\lambda \cdot (\rho \cdot L)}{1 + \gamma} - \delta \cdot d^{\gamma}, \tau\right)$$

#108: IF
$$\begin{cases} \gamma \\ \delta \cdot d \cdot (\gamma + 1) - 2 \cdot L \cdot \lambda \cdot \rho < 0, \ \tau > \frac{\delta \cdot d \cdot (\gamma + 1) - L \cdot \lambda \cdot \rho}{\gamma} \\ \delta \cdot d \cdot (\gamma + 1) - 2 \cdot L \cdot \lambda \cdot \rho \end{cases}$$
 \vee IF
$$\begin{cases} \gamma \\ \delta \cdot d \cdot (\gamma + 1) - 2 \cdot L \cdot \lambda \cdot \rho > 0, \ \tau < 0 \end{cases}$$

$$\frac{\delta \cdot d \cdot (\gamma + 1) - L \cdot \lambda \cdot \rho}{\gamma \atop \delta \cdot d \cdot (\gamma + 1) - 2 \cdot L \cdot \lambda \cdot \rho}$$

#109:
$$\tau > \tau$$
bar =
$$\frac{\delta \cdot d \cdot (\gamma + 1) - L \cdot \lambda \cdot \rho}{\delta \cdot d \cdot (\gamma + 1) - 2 \cdot L \cdot \lambda \cdot \rho}$$

eq (14)

#110:
$$\tau \cdot (\lambda \cdot c_bar - \delta \cdot d) \le \frac{\lambda \cdot (\rho \cdot L)}{1 + \gamma} - \delta \cdot d$$

#111: SOLVE
$$\left(\tau \cdot (\lambda \cdot c_bar - \delta \cdot d') \le \frac{\lambda \cdot (\rho \cdot L)}{1 + \gamma} - \delta \cdot d', c_bar\right)$$

#112:
$$c_bar \leq \frac{\delta \cdot d \cdot (\gamma + 1) \cdot (\tau - 1) + L \cdot \lambda \cdot \rho}{\lambda \cdot \tau \cdot (\gamma + 1)}$$

#113:
$$c_{bar} \leq \frac{\delta \cdot d \cdot (\tau - 1)}{\lambda \cdot \tau} + \frac{L \cdot \rho}{\tau \cdot (\gamma + 1)}$$

as $\tau \rightarrow 1$,

#114:
$$\lim_{\tau \to 1-} \left(c_bar \le \frac{\delta \cdot d \cdot (\gamma + 1) \cdot (\tau - 1) + L \cdot \lambda \cdot \rho}{\lambda \cdot \tau \cdot (\gamma + 1)} \right)$$

#115:
$$c_{bar} \leq \frac{c \cdot \rho}{\gamma + 1}$$

** Subsection 5.2: Multiple WBs

Modfied utility level of d

#116:
$$u = \lambda \cdot \frac{R}{dhat} - \delta \cdot d^{\gamma}$$

#117:
$$0 = \lambda \cdot \frac{R}{dhat} - \delta \cdot dhat$$

eq (15)

#118: SOLVE
$$\left(0 = \lambda \cdot \frac{R}{dhat} - \delta \cdot dhat^{\gamma}, dhat\right)$$

#119:

$$dhat = \left(\frac{R \cdot \lambda}{\delta}\right)^{1/(\gamma + 1)}$$

dhat < 1 if

#120:
$$\left(\frac{R \cdot \lambda}{\delta}\right)^{1/(\gamma + 1)} < 1$$

#121: SOLVE
$$\left(\frac{R \cdot \lambda}{\delta} \right)^{1/(\gamma + 1)} < 1, R$$

#122:

$$0 < R < \frac{\delta}{\lambda}$$

deriving eq (16) dhat_mult - dhat_single

#123:
$$\left(\frac{R \cdot \lambda}{\delta}\right)^{1/(\gamma + 1)} - \left(\frac{R \cdot \lambda}{\delta}\right)^{1/\gamma}$$

#124:
$$\left(\frac{R \cdot \lambda}{\delta}\right)^{1/(\gamma + 1)} - \left(\frac{R \cdot \lambda}{\delta}\right)^{1/\gamma}$$

must be < 0

eq (17): Reward choice

#125: eb =
$$\left(\frac{R \cdot \lambda}{\delta}\right)^{1/(1 + \gamma)} \cdot \lambda \cdot (\rho \cdot L - R)$$

Appendix D and derivation of (18)

#126:
$$\frac{d}{dR} \left(eb = \left(\frac{R \cdot \lambda}{\delta} \right)^{1/(1 + \gamma)} \cdot \lambda \cdot (\rho \cdot L - R) \right)$$

#127:
$$0 = \frac{-\frac{\gamma}{(\gamma + 1)} - \frac{1}{(\gamma + 1)} (\gamma + 2)}{(\gamma + 2)} \frac{(\gamma + 2)}{(\gamma + 1)} \cdot (L \cdot \rho - R \cdot (\gamma + 2))}{(\gamma + 1)}$$

#128:
$$\frac{d}{dR} \frac{d}{dR} \left(eb = \left(\frac{R \cdot \lambda}{\delta} \right)^{1/(1 + \gamma)} \cdot \lambda \cdot (\rho \cdot L - R) \right)$$

#129:
$$0 > -\frac{R \cdot (2 \cdot \gamma + 1)/(\gamma + 1) - 1/(\gamma + 1) (\gamma + 2)/(\gamma + 1)}{2 \cdot (L \cdot \gamma \cdot \rho + R \cdot (\gamma + 2))}$$

$$- \frac{\gamma}{(\gamma + 1)} - \frac{1}{(\gamma + 1)} \frac{(\gamma + 2)}{(\gamma + 1)}$$
#130: SOLVE(R $\cdot \delta$ $\cdot \lambda$ $\cdot (L \cdot \rho - R \cdot (\gamma + 2))$, R) eq (18)

$$R = \frac{L \cdot \rho}{\gamma + 2}$$

dhat =
$$\left(\frac{L \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 2)}\right)^{1/(\gamma + 1)}$$

dhat < 1 if

#133:
$$\left(\frac{\mathsf{L} \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 2)}\right)^{1/(\gamma + 1)} < 1$$

#134: SOLVE
$$\left(\frac{L \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 2)} \right)^{1/(\gamma + 1)} < 1, L$$

$$0 < L < \frac{\delta \cdot (\gamma + 2)}{\lambda \cdot \rho}$$

#136: SOLVE
$$\left(\frac{L \cdot \lambda \cdot \rho}{\delta \cdot (\gamma + 2)} \right)^{1/(\gamma + 1)} < 1, \delta$$

$$\frac{1}{\delta} < \frac{\gamma + 2}{1 \cdot \lambda \cdot \rho} \wedge \delta > 0$$

Result 6: comparing R multiple with R single. R_mult - R_single =

#138:
$$\frac{\mathsf{L} \cdot \mathsf{p}}{\mathsf{y} + \mathsf{2}} - \frac{\mathsf{L} \cdot \mathsf{p}}{\mathsf{y} + \mathsf{1}}$$

$$-\frac{L \cdot \rho}{(\gamma + 1) \cdot (\gamma + 2)} < 0$$

Discussions about shares after Result 6:

#140: 1 -
$$\frac{1}{2 + \gamma}$$

#141:

$$\frac{\gamma + 1}{\gamma + 2}$$

** Subsection 5.3: Calibrations

#142: R_star_single =
$$\frac{L \cdot \rho}{\gamma + 1}$$

#143: SOLVE
$$\left(R_{\text{star_single}} = \frac{L \cdot \rho}{\gamma + 1}, \gamma \right)$$

#144:

$$\gamma_{single} = \frac{L \cdot \rho}{R_{star_single}} - 1$$

#145: R_star_multiple =
$$\frac{L \cdot \rho}{\gamma + 2}$$

#146: SOLVE
$$\left(R_{\text{star_multiple}} = \frac{L \cdot \rho}{\gamma + 2}, \gamma \right)$$

#147:

$$\gamma_{multiple} = \frac{L \cdot \rho}{R_{star_multiple}} - 2$$

let r define rate of reward

#148:
$$r = \frac{R}{\rho \cdot L}$$

#149:
$$\gamma_single = \frac{1}{r_single} - 1$$

Then,

#150:
$$\gamma_{multiple} = \frac{1}{r_{multiple}} - 2$$

inverting for the discussion after Table 3

#151: SOLVE
$$\left(\gamma_{\text{multiple}} = \frac{1}{r_{\text{multiple}}} - 2, r_{\text{multiple}} \right)$$

#152:
$$r_{multiple} = \frac{1}{\gamma_{multiple}}$$

#153: r_multiple =
$$\frac{1}{1+2}$$

#154:
$$r_{multiple} = \frac{1}{3}$$