If we use this equation, then the above method yields the smallest erg-If we use this equation, then the largest eigen value and the corresponding eigen vector of

Example 4.10. Determine the largest eigen

atrix 1 2.

Sol. Let the initial approximation to the eigen vector corresponding to the largest

the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

eigen value of A be $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Then $AX = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \lambda^{(1)} X^{(1)}$ So the first approximation to the eigen value is $\lambda^{(1)} = 5$ and the corresponding eigen

vector is $X^{(1)} = \begin{bmatrix} 1 \\ 0.2 \end{bmatrix}$.

 $AX^{(1)} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 5.8 \\ 1.4 \end{bmatrix} = 5.8 \begin{bmatrix} 1 \\ 0.241 \end{bmatrix} = \lambda^{(2)} X^{(2)}$

Thus the second approximation to the eigen-value is $\lambda^{(2)} = 5.8$ and the corresponding

eigen vector is $X^{(2)} = \begin{bmatrix} 1 \\ 0.241 \end{bmatrix}$, repeating the above process, we get

$$AX^{(2)} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.241 \end{bmatrix} = 5.966 \begin{bmatrix} 1 \\ 0.248 \end{bmatrix} = \lambda^{(3)} X^{(3)}$$

$$AX^{(3)} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.249 \end{bmatrix} = 5.994 \begin{bmatrix} 1 \\ 0.250 \end{bmatrix} = \lambda^{(4)} X^{(4)}$$

$$AX^{(4)} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.250 \end{bmatrix} = 5.999 \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = \lambda^{(5)} X^{(5)}$$

$$AX^{(5)} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 0.25 \end{bmatrix} = \lambda^{(6)} X^{(6)}$$

Clearly $\lambda^{(5)} = \lambda^{(6)}$ and $X^{(5)} = X^{(6)}$ upto 3 decimal places. Hence the largest eigen-value is

S and the corresponding eigen vector is $\begin{vmatrix} 1 \\ 0.25 \end{vmatrix}$.

Example 4.11. Find the largest eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 9 \end{bmatrix}$ using power method. Take $[1, 0, 0]^T$ as initial eigen vector.

Sol. Let the initial approximation to the required eigen vector be X = [1, 0, 0]'.

 $AX = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -0.5 \\ 0 \end{bmatrix} = \lambda^{(1)} X^{(1)}$

So the first approximation to the eigen value is 2 and the corresponding eigen vector $X^{(1)} = [1, -0.5, 0]'$.

$$AX^{(1)} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 2.5 \\ -2 \\ 0.5 \end{bmatrix} = 2.5 \begin{bmatrix} 1 \\ -0.8 \\ 0.2 \end{bmatrix} = \lambda^{(2)} X^{(2)}$$

Repeating the above process, we get

$$AX^{(2)} = 2.8 \begin{bmatrix} 1 \\ -1 \\ 0.43 \end{bmatrix} = \lambda^{(3)} X^{(3)}; \qquad AX^{(3)} = 3.43 \begin{bmatrix} 0.87 \\ -1 \\ 0.54 \end{bmatrix} = \lambda^{(4)} X^{(4)};$$

$$AX^{(4)} = 3.41 \begin{bmatrix} 0.80 \\ -1 \\ 0.61 \end{bmatrix} = \lambda^{(5)} X^{(5)}; \qquad AX^{(5)} = 3.41 \begin{bmatrix} 0.76 \\ -1 \\ 0.65 \end{bmatrix} = \lambda^{(6)} X^{(6)}$$

$$AX^{(6)} = 3.41 \begin{bmatrix} 0.74 \\ -1 \\ 0.67 \end{bmatrix} = \lambda^{(7)} X^{(7)}$$

Clearly $\lambda^{(6)} = \lambda^{(7)}$ and $X^{(6)} = X^{(7)}$ approximately.

Hence the largest eigen value is 3.41 and the corresponding eigen-vector is [0.74, -1, 0.67]'.

Example 4.12. Obtain by power method, the numerically dominant eigen value and eigen vector of the matrix.

$$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$
 (Anna, B. Tech., 2007)

Sol. Let the initial approximation to the eigen vector be X = [1, 1, 1]'. Then

$$AX = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ -18 \end{bmatrix} = -18 \begin{bmatrix} -0.444 \\ 0.222 \\ 1 \end{bmatrix} = \lambda^{(1)}X^{(1)}$$

So the first approximation to eigen value is -18 and the corresponding eigen vector is [-0.444, 0.222, 1]'.

Now
$$AX^{(1)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} -0.444 \\ 0.222 \\ 1 \end{bmatrix} = -10.548 \begin{bmatrix} 1 \\ -0.105 \\ -0.736 \end{bmatrix} = \lambda^{(2)}X^{(2)}$$

 \therefore The second approximation to the eigen value is -10.548 and the eigen vector is [1, -0.105, -0.736]'.

Repeating the above process

$$AX^{(2)} = -18.948 \begin{bmatrix} -0.930 \\ 0.361 \\ 1 \end{bmatrix} = \lambda^3 X^{(3)}; AX^{(3)} = -18.394 \begin{bmatrix} 1 \\ -0.415 \\ -0.981 \end{bmatrix} = \lambda^{(4)} X^{(4)}$$

$$AX^{(4)} = -19.698 \begin{bmatrix} -0.995 \\ 0.462 \\ 1 \end{bmatrix} = \lambda^{(5)} X^{(5)}; AX^{(5)} = -19.773 \begin{bmatrix} 1 \\ -480 \\ -0.999 \end{bmatrix} = \lambda^{(6)} X^{(6)}$$

$$AX^{(6)} = -19.922 \begin{bmatrix} -0.997 \\ 0.490 \\ 1 \end{bmatrix} = \lambda^{(7)} X^{(7)}; AX^{(7)} = -19.956 \begin{bmatrix} 1 \\ -0.495 \\ -0.999 \end{bmatrix} = \lambda^{(8)} X^{(8)}$$

Since $\lambda^{(7)} = \lambda^{(8)}$ and $X^{(7)} = X^{(8)}$ approximately, therefore the dominant eigen value and

ne corresponding eigen vector are given by

en vector are given by
$$\lambda^{(8)}X^{(8)} = 19.956 \begin{bmatrix} -1\\0.495\\0.999 \end{bmatrix} i.e., \ 20 \begin{bmatrix} -1\\0.5\\1 \end{bmatrix}$$

Hence the dominant eigen value is 20 and eigen vector is [-1, 0.5, 1]'.

PROBLEMS 4.2

1. Find the eigen values and eigen vectors of the matrices

$$(a)\begin{bmatrix}1&4\\3&2\end{bmatrix}$$

$$(b)\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$$

Find the latent roots and the latent vectors of the matrices

(a)
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 (J.N.T.U., B. Tech., 2005)

Find the latent roots and the latent vectors of old
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 (J.N.T.U., B. Tech., 2005) (b) $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ (Rohtak, B. Tech., 2012)

$$(c) \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(V.T.U., B.E., 2013)

3. Using Cayley-Hamilton theorem, find the inverse of

$$\begin{pmatrix}
i & 1 & 2 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

(U.P.T.U., B. Tech., 2006)

$$(ii)\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

$$(iii) \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

(ii) $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ (iii) $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ (Anna, B. Tech., 2013) 4. Using Gerschgorim circles, find the limits of the eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

4.12. JACOBI'S METHOD

Let A be a given real symmetric matrix. Its eigen values are real and there exists a real orthogonal matrix B such that $B^{-1}AB$ is a diagonal matrix D. Jacobi's method consists of diagonalising A by applying a series of orthogonal transformations B_1 , B_2 , ..., B_r such that their product B satisfies the equation $B^{-1}AB = D$.

For this purpose, we choose the numerically largest non-diagonal element a_{ij} and form

a 2 × 2 submatrix
$$A_1 = \begin{bmatrix} a_{ij} & a_{ij} \\ a_{ji} & a_{jj} \end{bmatrix}$$
.

where $a_{ij} = a_{ji}$, which can easily be diagonalised.

Consider an orthogonal matrix
$$B_1 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 so that $B_1^{-1} = B_1'$.

Then
$$B^{-1}A_1B_1 = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} a_{ii}\cos^2\theta + a_{jj}\sin^2\theta + a_{ij}\sin2\theta, & a_{ij}\cos2\theta + \frac{1}{2}(a_{jj} - a_{ii})\sin2\theta \\ a_{ij}\cos2\theta + \frac{1}{2}(a_{jj} - a_{ii})\sin2\theta, & a_{ii}\sin^2\theta + a_{jj}\cos^2\theta - a_{ij}\sin2\theta \end{bmatrix}$$
(1)

Now this matrix will reduce to the diagonal form, if $a_{ij} \cos 2\theta + \frac{1}{2} (a_{jj} - a_{ii}) \sin 2\theta = 0$

i.e. if
$$\tan 2\theta = \frac{2a_{ij}}{a_{ii} - a_{jj}} \qquad \dots (2)$$

This equation gives four values of θ , but to get the least possible rotation, we choose $-\pi/4 \le \theta \le \pi/4$.

Thus (1) reduces to a diagonal matrix.

As a next step, the largest non-diagonal element (in magnitude) in the new rotated matrix is found and the above procedure is repeated using the orthogonal matrix B_2 .

In this way, a series of such transformations are performed so as to annihiliate the non-diagonal elements. After making r transformations, we obtain

$$B_r^{-1} B_{r-1}^{-1} ... B_1^{-1} A B_1 ... B_{r-1} B_r = B^{-1} A B_1$$

As $r \to \infty$, $B^{-1}AB$ approaches a diagonal matrix whose diagonal elements are the eigenvalues of A.

Also the corresponding columns of $B = B_1 B_2 \dots B_r$, are the eigen vectors of A.

Example 4.13. Using Jacobi's method, find all the eigen values and the eigen vectors

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \sqrt{2} & \frac{2}{\sqrt{2}} \\ \frac{1}{2} & \sqrt{2} & 1 \end{bmatrix}.$$

Sol. Here the largest non-diagonal element is $a_{13} = a_{31} = 2$. Also $a_{11} = 1$ and $a_{33} = 1$.

 $\tan 2\theta = \frac{2a_{13}}{a_{11} - a_{23}} = \frac{2 \times 2}{1 - 1} \to \infty$ $2\theta = \pi/2$ or $\theta = \pi/2$

Then

$$B_1 = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \text{ and } B_1^{-1} = B'$$

The first transformation gives

$$D_{1} = B_{1}^{-1} A B_{1} = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix} \times \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Now the largest non-diagonal element is $a_{12} = a_{21} = 2$. Also $a_{11} = 3$ and $a_{22} = 3$.

$$\tan 2\theta = \frac{2\alpha_{12}}{\alpha_{11} - \alpha_{22}} = \frac{2 \times 2}{0} \rightarrow \infty.$$

$$2\theta = \pi/2 \quad \text{or}, \quad \theta = \pi/4.$$

Then

$$B_2 = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The second transformation gives

$$B_{2}^{-1}D_{1}B_{2} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
Hence the eigen values of the

Hence the eigen values of the given matrix are 5, 1, -1 and the corresponding eigens are the columns of ectors are the columns of

$$B = B_1 B_2 = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/2 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 e. A disadvantage of Jacobi's method is that the element of the subsequent.

Note. A disadvantage of Jacobi's method is that the element annihiliated by a transformation, may main zero during the subsequent transformations. Come not remain zero during the subsequent transformations. Given's ence

Example 4.14. Obtain using Jacobi's method, all the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0.5 \\ 1 & 1 & 0.25 \\ 0.5 & 0.25 & 2 \end{bmatrix}$$

Sol. Here the largest non-diagonal element is $a_{12} = 1$.

Also $a_{11} = 1$, $a_{22} = 1$.

$$\therefore \qquad \tan 2\theta = \frac{2\alpha_{12}}{\alpha_{11} - \alpha_{12}} = \frac{2 \times 1}{0} \to \infty.$$

$$2\theta = \frac{\pi}{2} \quad \text{or} \quad \theta = \frac{\pi}{4}.$$

Then

.e.,

$$B_{1} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } B_{1}^{-1} = B_{1}'$$

:. The first transformation is

$$\begin{split} D_1 &= B_1^{-1} A B_1 = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1/2 \\ 1 & 1 & 1/4 \\ 1/2 & 1/4 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 2 & 0 & 3\sqrt{2}/8 \\ 0 & 0 & -\sqrt{2}/8 \\ 3\sqrt{2}/8 & -\sqrt{2}/8 & 2 \end{bmatrix} \end{split}$$

Now the largest non-diagonal element of + D_1 is $a_{13} = 3\sqrt{2}/8$. Also $\alpha_{11} = 2$, $\alpha_{33} = 2$.

$$\therefore \qquad \tan 2\theta = \frac{2\alpha_{13}}{\alpha_{11} - \alpha_{33}} \to \infty, i.e., \ 2\theta = \frac{\pi}{2} \text{ or } \theta = \frac{\pi}{4}.$$

Then

$$B_2 = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$$

:. The second transformation gives

$$D_2 = B_2^{-1} D_1 B_2 = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 3\sqrt{2}/8 \\ 0 & 0 & -\sqrt{2}/8 \\ 3\sqrt{2}/8 & -\sqrt{2}/8 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2.530 & -0.125 & 0 \\ -0.125 & 0 & -0.125 \\ 0 & -0.125 & 1.47 \end{bmatrix}$$

Repeating the above steps, we obtain

$$B_3 = \begin{bmatrix} 0.998 & 0.049 & 0 \\ -0.049 & 0.998 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$D_3 = B_3^{-1} D_2 B_3 = \begin{bmatrix} 2.536 & -0.000 & 0.006 \\ -0.000 & -0.006 & -0.125 \\ 0.006 & -0.125 & 1.469 \end{bmatrix}$$

Hence the eigen values of A are 2.536, -0.006, 1.469 approximately and the

Hence the eigen values of
$$A$$
 are 2.555, sponding eigen vectors are the columns of $B = B_1 B_2 B_3 = \begin{bmatrix} 0.531 & -0.721 & -0.444 \\ 0.461 & 0.686 & -0.562 \\ 0.710 & 0.094 & 0.698 \end{bmatrix}$

4.12 CIVEN'S METHOD