Лекция 10 Рекуррентные нейронные сети и внимание

Машинное обучение **Андрей Фильченков** / Сергей Муравьев

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов
- В презентации используются материалы курсов:
 - Д. Полыковского и др. «Нейронные сети в машинном обучении»
 - А. Алексеева «Введение в обработку естественного языка»
 - A. Ng "Recurrent neural networks"
- Слайды доступны: shorturl.at/ltVZ3
- Видео доступны: shorturl.at/hjyAX

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Области применения

- Временные ряды
- Естественные языки
- Речь
- Динамические системы
- Изображения и видео

• В целом, произвольные последовательности

Методы обработки последовательностей

- Спектральные
- Временные
- Частотно-временные

Вероятностные графические модели

Временной ряд можно рассматривать как результат стохастического процесса в предположении о некоторых условных независимостях

- Скрытые марковские модели
- Динамические байесовские сети

Рекуррентная нейронная сеть

Сеть с петлями или развернутая сеть без петель

Развернутая RNN

В развернутом виде сигнал проходит по идентичным ячейкам

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Сети прямого распространения

- Несколько теорем о том, что FNN может аппроксимировать произвольную функцию
- FNN можно декомпозировать для того, чтобы последовательно считать частные производные по графу
- Широко распространены

Рекуррентные нейронные сети

- Биологические нейронные сети рекуррентны
- RNN моделирует динамические системы
- Чуть менее распространены
- Любая машина Тьюринга может быть представлена полносвязной RNN с функцией активации сигмоида

Сеть Хопфилда

- Ассоциативная память
- Сети могут показывать стабильное поведение, осциллировать или показывать хаотическое поведение.

Backpropagation through time

Развернутые RNN

Ограничив максимальную длину, можно провести backpropagation through time

Совместные веса

Проблема в том, что веса должны оставаться одинаковыми

Обратное распространение ошибки можно легко изменить

Для того, чтобы
$$w_i = w_j$$
, нужно, чтобы $w_i^{(0)} = w_j^{(0)}$ и $\Delta w_i^{(k)} = \Delta w_j^{(k)}$ $\forall k$. Для этого:
$$\Delta w_i^{(k)} = \Delta w_j^{(k)} \coloneqq \frac{\delta L}{\delta w_i} + \frac{\delta L}{\delta w_i}$$

Анализ RNN

Преимущества:

- Могут аппроксимировать не функции, но системы
- Является частью «экосистемы» нейронных сетей

Недостатки:

- Требует много времени для обучения
- Исчезающие / взрывающиеся градиенты
- Всегда меняют предыдущий сигнал

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Долгая краткосрочная память

Идея: скрытые состояния не очень хорошо хранят информацию, вместо этого можно выделить отдельный блок для памяти.

Эта идея реализуется в модуле долгой краткосрочной памяти (LSTM)

Модуль LSTM

Блок памяти используется в LSTM для хранения глобального состояния Ячейка параметрическая

Лента

Лента (conveyor belt) используется для накопления информации

Фильтр забывания

Фильтр забывания (forget layer) определяет, что нужно забыть

Фильтр входа

Фильтр входа (input layer) определяет, что нужно записать в память

Обновление памяти

После вычислений, обновляем хранимое в памяти

$$C_t = f_t \times C_{t-1} + i_t \times \tilde{C}_t$$

Обновление скрытого состояния

Фильтр скрытого состояния определяет, как его изменить

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \times \tanh(C_t)$$

LSTM со смотровыми глазками

Через смотровые глазки (peephole connections) память используется для обновления себя и скрытого состояния

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Gated restricted unit

Можно уменьшить число операций, поменяв операторы и храня все в h

Анализ ячеек памяти

Достоинства:

- Могут работать удаленными во времени зависимостями
- Нет затухания / взрыва градиента

Недостатки:

- Требуют много времени для обучения
- Все еще забывают длинные зависимости

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Добавление обратного направления

Не только предыдущая информация может быть полезна для обработки текущего сигнала

He said "Teddy bears are on sail!" He said "Teddy Roosevelt was a great President!"

Двунаправленная рекуррентная нейронная сеть

Двунаправленная RNN (Bidirectional RNN, biRNN)

Многослойная рекуррентная нейронная сеть

a) 2-layer Recurrent Neural Network (RNN)

b) Unfolded 2-layer Recurrent Neural Network (RNN)

Классификация рекуррентных нейронных сетей

Seq2Seq

• Состоит из кодировщика (encoder) и декодировщика (decoder)

- Получает на вход одну последовательность, возвращает другую
- Ячейки могут быть любой сложности

Работа Seq2Seq модели

Между кодировщиком и декодировщиком передается вектор, кодирующий предложение

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Предпосылка для механизма внимания

Предложение очень сложно (невозможно) закодировать одним вектором.

Для того, чтобы его обработать, можно смотреть не на одно скрытое состояние, а на все скрытые состояния.

Использование векторов скрытых состояний

Веса, контекст и внимание

Механизм внимания

Attention weights

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

Context vector

$$\boldsymbol{c}_t = \sum_s \alpha_{ts} \bar{\boldsymbol{h}}_s$$

Attention vector

$$\boldsymbol{a}_t = f(\boldsymbol{c}_t, \boldsymbol{h}_t) = \tanh(\boldsymbol{W}_{\boldsymbol{c}}[\boldsymbol{c}_t; \boldsymbol{h}_t])$$

Name	Alignment score function
Content-base attention	$ ext{score}(m{s}_t,m{h}_i) = ext{cosine}[m{s}_t,m{h}_i]$
Additive(*)	$\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = \mathbf{v}_a^ op \operatorname{tanh}(\mathbf{W}_a[oldsymbol{s}_t; oldsymbol{h}_i])$
Location- Base	$lpha_{t,i}= ext{softmax}(\mathbf{W}_as_t)$ Note: This simplifies the softmax alignment to only depend on the target position.
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.
Dot-Product	$ ext{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$
Scaled Dot- Product(^)	$\begin{aligned} &\mathrm{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^{\scriptscriptstyle \intercal} \boldsymbol{h}_i}{\sqrt{n}} \\ &\mathrm{Note: very \ similar \ to \ the \ dot-product \ attention \ except \ for \ a \ scaling \ factor;} \\ &\mathrm{where \ n \ is \ the \ dimension \ of \ the \ source \ hidden \ state.} \end{aligned}$

Похожесть слов

Обсуждение внимания

- Обучается так же, как и другие блоки
- Позволяет обрабатывать более длинные последовательности
- В целом, улучшает производительность
- Может применяться в произвольных сетях
- Добавляет больше параметров

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Основная идея

- Внимание отлично находит похожести между векторами
- Попробуем отказаться от скрытых состояний и просто будем искать похожесть внутри входящей последовательности

• Это называется само-внимание (self-attention)

Общая архитектура

Устройство блоков внутри

• Все блоки одинакового размера, но с разными весами

Обработка входа

• Слова обрабатываются по отдельности, но не независимо

Кратко про self-attention

Больше голов

• На какое слово с большей вероятностью будет похоже входящее слово?

Больше голов

- На какое слово с большей вероятностью будет похоже входящее слово?
- На себя.

• Добавим больше голов

Дополнительные трюки

- Positional encoding
- Layer normalization
- Skip-connections
- Masked multi-head attention

Анализ трансформера

Достоинства:

- Распараллеливаемо
- State-of-the-art качество работы
- Потенциально интерпретируемые результаты

Недостатки:

- Очень много параметров
- Нестабильно обучается
- Фиксированная длина предложений

План лекции

- Последовательности и временные ряды
- Рекуррентные нейронные сети
- Модуль памяти
- Больше связей
- Механизм внимания
- Трансформеры
- Векторные представления слов

Вопрос о представлении текста

Модели машинного обучения работают с текстами.

Как получить векторное представление текста?

One-hot encoding

- Зафиксируем размер словаря |V|
- Пронумеруем все слова i(w)
- Будем представлять каждое слово *w* в виде вектора

$$(0_1, \dots, 0_{i(w)-1}, 1_{i(w)}, 0_{i(w)+1}, \dots, 0_{|V|})$$

Основная идея Word2Vec

Дистрибутивная гипотеза (Harris, 1954): слова, встречающиеся в похожем контексте, вероятно, будут иметь похожий смысл

Основная идея: будет характеризовать слова контекстом, в котором они встречаются

Continuous bag of words

Будем предсказывать слово по контексту

Функция потерь

 $-\log \Pr(w_i|\operatorname{context}(w_i))$

Skip-gram

Будем предсказывать контекст по слову

Функция потерь

 $-\log \Pr(\operatorname{context}(w_i)|w_i)$

Как обучить?

- Будем показывать пары слов в контексте, $(w_i | \text{context}_i(w_i))$
- Выберем подвыборку, чаще выкидывая часто встречаемые слова
- Heгативное сэмплирование (negative sampling) для создания отрицательных примеров

Свойства Word2Vec

Современные эмбеддинги

- **BERT** и порожденные им модели
- ELMO
- FastText
- RusVectōrēs (для русского языка)