

Exercise: simple linear regression: body weight and plasma volume. Example data contain the body weight (kg) and plasma volume (literes) for eight healthy men.

1 Estimating model coefficients

weight [kg]	plasma [l]	$x_i - \overline{x}$	$y_i - \overline{y}$	$ (x_i-\overline{x})(y_i-\overline{y}) $	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	x^2
58.00	2.75						
70.00	2.86						
74.00	3.37						
63.50	2.76						
62.00	2.62						
70.50	3.49						
71.00	3.05						
66.00	3.12						

1. Calculate:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i =$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i =$$

2. Fill in columns 3rd to 6th (leave the last 2 columns for now)

SciLifeLab

3. Calculate $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} =$$

4. Calculate
$$\hat{\beta}_0$$
: $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} =$

5. Write equation for the best-fitting straight line:

2 Accuracy of the coefficient estimates

1. Fill in the remaining columns in the table above

2. Calculate
$$s$$
 $s = \sqrt{\left[\frac{\sum_{i=1}^{n}(y_i - \overline{y})^2 - \overline{\beta_1} \sum_{i=1}^{n}(x_i - \overline{x})^2}{n-2}\right]} =$

3. Calculate
$$s.e(\hat{\beta}_0) = s * \sqrt{\left[\frac{1}{n} + \frac{x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right]} =$$

4. Calculate
$$s.e(\hat{\beta}_1) = \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}} =$$

- 5. Have a look at Figure 3.3 in An Introduction to Statistical Learning and answer questions
 - What do 10 light blue lines represent on the plot (right)?
 - What is an unbiased estimator?
 - Have we underestimated or overestimated β_1 ?

3 Hypothesis testing

Is there an association between body weight and plasma volume?

- 1. Write down the null hypothesis and alternative hypothesis
- 2. Calculate t-statistics for $\hat{\beta}_1$

$$t = \frac{\hat{\beta}_1 - 0}{s.e.(\hat{\beta}_1)} =$$

- 3. Use t distribution table containing critical values of the t distribution, to check if whether the p-value for our calculated t-statistics is lower than 5% threshold? Is it lower than 1% threshold?
- 4. Can we reject the null hypothesis? Is there an association between body weight and plasma volume.

SciLifeLab

4 Prediction

Figure 1: Body weight vs. plasma volume

- 1. Given Figure 1 predict 'plasma volume' for weight values of 60, 65, and 70 kg
- 2. Calculate predicted values of 'plasma volume' for weight values of 60, 65 and 70 kg using the equation $y_i' = \hat{\beta_0} + \hat{\beta_1} x_i'$

$$y'_{60} =$$

$$y'_{65} =$$

$$y'_{70} =$$

3. Calculate standard error for the predicted 'plasma volume' for weight value of 60 kg

$$s.e.(y_i') = s\sqrt{\left[1 + \frac{1}{n} + \frac{(x_i - \overline{x_i})^2}{\sum_{i=1}^n (x_i - \overline{x_i})^2}\right]} =$$

5 Assessing the Accuracy of the Model & Correlation

- 1. Using Given Figure 1 try to calculate (estimate) the RSE. We will check which group gets results closeset to the computed ones.
- 2. Using lecture and this pen-and-paper docs, calculate R^2 , i.e. do not use computer to calculated. Hint: most of the values have been reported / calculated before. It is ok to use mobiles for adding and dividing things up.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} =$$

3. Calculate correlation

$$Cor(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = s$$