CARNEGIE MELLON UNIVERSITY COMPUTER SCIENCE DEPARTMENT 15-445/645 – DATABASE SYSTEMS (FALL 2019) PROF. ANDY PAVLO

Homework #3 (by Erik Sargent)

Due: Wednesday Oct 9, 2019 @ 11:59pm

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Wednesday Oct 9, 2019.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- You have to use this PDF for all of your answers.

For your information:

- Graded out of 100 points; 2 questions total
- Rough time estimate: $\approx 1 2$ hours (0.5 1 hours for each question)

Revision: 2019/10/03 12:07

Question	Points	Score
Sorting Algorithms	40	
Join Algorithms	60	
Total:	100	

Number of Days this Assignment is Late:

Number of Late Day You Have Left:

Question 1: Sorting Algorithms	it
(a) [10 points] Assume that the DBMS has <u>five</u> buffers. How many passes does the DBM need to perform in order to sort the file? □ 8 □ 10 □ 12 □ 14 □ 15	S
(b) [5 points] Again, assuming that the DBMS has <u>five</u> buffers. What is the total I/O cost sort the file? □ 72,000,000 □ 120,000,000 □ 132,000,000 □ 144,000,000 □ 168,000,000	:0)0
(c) [10 points] What is the smallest number of buffers B that the DBMS can sort the targe file using only two passes?	
(d) [10 points] What is the smallest number of buffers B that the DBMS can sort the targ file using only four passes? \Box 50 \Box 51 \Box 52 \Box 53 \Box 172 \Box 173 \Box 174 \Box 2,450 \Box 2,45 \Box 2,452 \Box 3,000,000 \Box 3,000,001	
(e) [5 points] Suppose the DBMS has <u>ten</u> buffers. What is the largest database file (expressed in terms of N, the number of pages) that can be sorted with external merge so using <u>five</u> passes? □ 89 □ 90 □ 91 □ 65,610 □ 65,611 □ 65,612 □ 590,488 □ 590,489 □ 590,490	rt

Q1:

(d)
$$\lceil \frac{N}{B} \rceil = \frac{6,000,000}{5} = \frac{1200,000}{5} \text{ run}$$

$$1 + \lceil \frac{N}{B} \rceil = \frac{1}{11} = 12$$

(d)
$$H \lceil \log_{B^{-1}} \lceil \frac{N}{B} \rceil = 4$$
 $\log_{B^{-1}} \frac{N}{B} = 3 \Rightarrow (B^{-1})^3 = \frac{N}{B}$
 $\Rightarrow B \cdot (B^{-1})^3 = N = 60000000$
 $R = 51$, $\log_{50} 117648 = 2.98$

(e) $R = 10$
 $1 + \lceil \log_{4} \lceil \frac{N}{10} \rceil = 5$
 $\Rightarrow \log_{4} \lceil \frac{N}{10} \rceil = 4 \Rightarrow \lceil \frac{N}{10} \rceil = 6561$
 $\Rightarrow N = 65610$

Ouestion 2:	Join Algorithms	• • • • • • • • • • • • • • • • • • • •	[60 points
-------------	-----------------	---	------------

Consider relations R(a, b) and S(a, c, d) to be joined on the common attribute a. Assume that there are no indexes available on the tables to speed up the join algorithms.

- There are B = 36 pages in the buffer
- Table R spans M = 1800 pages with 100 tuples per page
- Table S spans N = 600 pages with 60 tuples per page

Answer the following questions on computing the I/O costs for the joins. You can assume the simplest cost model where pages are read and written one at a time. You can also assume that you will need <u>one</u> buffer block to hold the evolving output block and <u>one</u> input block to hold the current input block of the inner relation. You may ignore the cost of the writing of the final results.

(a) Hash join with S as the outer relation and R as the inner relation. You may ignore recurs partitioning and partially filled blocks.
i. [5 points] What is the cost of the partition phase? □ 1,800 □ 2,400 □ 3,600 □ 4,800 □ 7,200
ii. [5 points] What is the cost of the probe phase? □ 1,800 □ 2,400 □ 3,600 □ 4,800 □ 7,200
(b) [10 points] Block nested loop join with R as the outer relation and S as the inner relation \Box 31,200 \Box 31,800 \Box 32,400 \Box 33,000 \Box 33,600
(c) [5 points] Block nested loop join with S as the outer relation and R as the inner relation \Box 31,200 \Box 31,800 \Box 32,400 \Box 33,000 \Box 33,600
(d) Sort-merge join with S as the outer relation and R as the inner relation:
i. [10 points] What is the cost of sorting the tuples in R on attribute a? \Box 3,60 \Box 5,400 \Box 7,200 \Box 9,000 \Box 10,800
ii. [5 points] What is the cost of sorting the tuples in S on attribute a? \square 2,40 \square 3,000 \square 3,600 \square 4,200 \square 4,800
iii. [10 points] What is the cost of the merge phase assuming there are no duplicates the join attribute? □ 1,200 □ 1,800 □ 2,400 □ 3,600 □ 4,800
iv. [10 points] What is the cost of the merge phase in the worst case scenario? \Box 2,400 \Box 4,800 \Box 600,000 \bigvee 1,080,000 \Box 1,200,000
ullet
nested for loop
•

(i) 2. M. (It Roy B-1
$$\frac{M}{B}$$
)

= 2.1800. (It Roy B-1 $\frac{M}{B}$)

= 3600. (It Roy B-1 $\frac{M}{B}$)

= 3600. (It Roy B-1 $\frac{M}{B}$)

= 3600. (It Roy B-1 $\frac{M}{B}$)

= 2. boo (It Roy B-1 $\frac{M}{B}$)

= 1200. (It Roy B-1 $\frac{M}{$

> Nested for loop w/o buffer

M. N = 1800x boo = 1080000