Progressive Growth of Generative Adversarial Networks

Stanisław Wilczyński

Uniwersytet Wrocławski

09.03.2018

GAN - przypomnienie

- Modelowanie wysoko-wymiarowych rozkładów prawdopodobieństwa
- Uczenie ze wzmocnieniem symulowanie przyszłości dla naszego agenta
- Brakujące dane i semi-supervised learning
- Rozkłady wielomodalne wiele możliwych poprawnych odpowiedzi
- Zwiększanie rozdzielczości zdjęć
- Generowanie zawartości zdjęcia, muzyka, mowa

Przykład 1 - generowanie klatek

Przykład 2 - wysoka rozdzielczość

Dyskryminator i generator

Kara, minimax i pierwsze ulepszenia

$$J^{(D)}(\theta^{(D)}, \theta^{(G)}) = -\frac{1}{2} \mathbf{E}_{x \sim p_{data}} \log D(x) - \frac{1}{2} \mathbf{E}_{z} \log(1 - D(G(z)))$$
 $J^{(G)} = -J^{(D)}$
 $J^{(G)} = -\frac{1}{2} \mathbf{E}_{z} \log D(G(z))$

- Ostatnie równanie to próba pozbycia się problemu znikającego gradientu kiedy dyskryminator jest zbyt dobry
- Równe minibatche
- Kroki gradientowe wykonujemy na zmianę

Problem 1 - liczba oczu

Problem 2 - struktura globalna

Problem 3 - przeskakiwanie między modami

Pozostałe problemy

- Zbyt konkretne odpowiedzi generatora
- Generowanie obrazów w wysokiej rozdzielczości (łatwiej poznać fałszywkę)
- Mała różnorodność wyjść z generatora (problem z modami)
- GAN są wrażliwe na duże sygnały (przy ReLU)

Co potrafią ulepszone GANy?

- Generowanie twarzy celebrytów w wysokiej rozdzielczości
- Realistyczne zdjęcia z CIFAR10, LSUN
- Przyspieszenie treningu

Stopniowy wzrost

Gładkie wprowadzenie warstwy

Zwiększenie różnorodności

- Idea: feature mapy ze statystykami z całego minibatcha
- Uzasadnienie: odróżnianie modów
- Poprzednie prace: dodatkowa warstwa z nauczalnymi wagami do obliczania statystyk
- Tutaj: liczymy odchylenie standardowe z każdej cechy (piksela) w każdej lokalizacji i bierzemy średnią ze wszystkich do S, a nowa feature mapa to macierz wypełniona S

Normalizacja

- Ochrona przed zbyt dużym sygnałem (ReLU) standardowo batch normalization i odpowiednia incjalizacja
- Wyrównany learning rate zamiast inicjalizować uważnie wagi, losujemy z N(0,1). Następnie, zawsze gdy używamy danej wagi skalujemy ją $\hat{w_i} = \frac{w_i}{C}$
- c różne dla każdej warstwy
- Efekt: Odpowiednio przeskalowany update, lepsza szybkość uczenia
- Normalizacja cech per piksel w generatorze
- Wzór

$$b_{x,y} = a_{x,y} / \sqrt{\frac{1}{N} \sum_{j=1}^{N} (a_{x,y}^{j})^{2} + \epsilon}$$

Ocenianie skuteczności generatora - MS-SSIM

- Multi-Scale Structural Similarity (MS-SSIM)
- Porównywanie statystyk między obrazkami
- Dobrze radzi sobie z wykrywaniem braku modów
- Słabo z wykrywaniem różnorodności tekstur i kolorów

Ocenianie skuteczności generatora - SWD

 Dystans Wassersteina - jak duży jest koszt przeniesienia jednej chmury punktów na drugą

$$W(X, Y)^2 = \min_{\sigma} \sum_{i=1}^{N} ||X_i - Y_{\sigma(i)}||^2$$

 Sliced Wasserstein Distance (SWD) - w celu zredukowania kosztów obliczeń, aproksymujemy dystans Wassersteina rzutami na wektory długości 1 (w jednowymiarowym przypadku jest wzór na najlepszą permutację) i bierzemy średnią

$$W(\hat{X}, Y) = \int_{\theta \in \Theta} \min_{\sigma} \sum_{i=1}^{N} |\langle X_i - Y_{\sigma(i)}, \theta \rangle|^2 d\theta$$

Ocenianie skuteczności generatora - piramida Laplace'a

- Piramida Laplace'a poziomy rozdzielczości zdjęcia (od 16×16 do 128×128)
- Przebig oceny
 - ① Losujemy 16384 obrazków i dla każdego z nich i każdego poziomu piramidy bierzemy 128 jego deskryptorów (wycinki wielkości $7 \times 7 \times 3$)
 - Normalizujemy deskryptory przez średnią i odchylenie standardowe na każdym kolorze
 - **3** Obliczamy $SWD(\{x_i\}, \{y_i\})$

Użyte kary

- Przyczyna: zredukowanie szansy na znikanie gradientu
- Least Squares GAN logarytm w karze zastępujemy kwadratem
- Wasserstein GAN Gradient Penalty szukanie dyskryminatora odpowiedniej postaci, a dodatkowa kara do WGAN, żeby tą postać wymusić

Twarze celebrytów

 CelebA - nieustandaryzowany zbiór obrazów celebrytów (wiele osób, rożne profile, szumy)

Generator	Act.	Output shape	Params	Discriminator	Act.	Output shape	Params	
Latent vector	-	512 × 1 × 1	-	Input image	-	3 × 1024 × 1024	-	
Conv 4×4	LReLU	$512 \times 4 \times 4$	4.2M	Conv 1×1	LReLU	$16 \times 1024 \times 1024$	64	
Conv 3×3	LReLU	$512 \times 4 \times 4$	2.4M	Conv 3×3	LReLU	$16 \times 1024 \times 1024$	2.3k	
Upsample	-	512 × 8 × 8	-	Conv 3 × 3	LReLU	$32 \times 1024 \times 1024$	4.6k	
Conv 3×3	LReLU	512 × 8 × 8	2.4M	Downsample	-	32 × 512 × 512	-	
Conv 3×3	LReLU	512 × 8 × 8	2.4M	Conv 3 × 3	LReLU	32 × 512 × 512	9.2k	
Upsample	-	512 × 16 × 16	-	Conv 3 × 3	LReLU	64 × 512 × 512	18k	
Conv 3×3	LReLU	512 × 16 × 16	2.4M	Downsample	-	$64 \times 256 \times 256$	-	
Conv 3×3	LReLU	512 × 16 × 16	2.4M	Conv 3 × 3	LReLU	64 × 256 × 256	37k	
Upsample	-	512 × 32 × 32	-	Conv 3×3	LReLU	$128 \times 256 \times 256$	74k	
Conv 3×3	LReLU	$512 \times 32 \times 32$	2.4M	Downsample	-	$128 \times 128 \times 128$	-	
Conv 3×3	LReLU	$512 \times 32 \times 32$	2.4M	Conv 3×3	LReLU	128 × 128 × 128	148k	
Upsample	-	512 × 64 × 64	-	Conv 3×3	LReLU	$256 \times 128 \times 128$	295k	
Conv 3×3	LReLU	$256 \times 64 \times 64$	1.2M	Downsample	-	$256 \times 64 \times 64$	-	
Conv 3×3	LReLU	$256 \times 64 \times 64$	590k	Conv 3 × 3	LReLU	256 × 64 × 64	590k	
Upsample	-	256 × 128 × 128	-	Conv 3 × 3	LReLU	512 × 64 × 64	1.2M	
Conv 3×3	LReLU	$128 \times 128 \times 128$	295k	Downsample	-	512 × 32 × 32	-	
Conv 3×3	LReLU	$128 \times 128 \times 128$	148k	Conv 3 × 3	LReLU	512 × 32 × 32	2.4M	
Upsample	-	128 × 256 × 256	-	Conv 3 × 3	LReLU	512 × 32 × 32	2.4M	
Conv 3×3	LReLU	$64 \times 256 \times 256$	74k	Downsample	-	$512 \times 16 \times 16$	-	
Conv 3×3	LReLU	$64 \times 256 \times 256$	37k	Conv 3×3	LReLU	512 × 16 × 16	2.4M	
Upsample	-	64 × 512 × 512	-	Conv 3×3	LReLU	$512 \times 16 \times 16$	2.4M	
Conv 3×3	LReLU	32 × 512 × 512	18k	Downsample	-	$512 \times 8 \times 8$	-	
Conv 3×3	LReLU	$32 \times 512 \times 512$	9.2k	Conv 3×3	LReLU	512 × 8 × 8	2.4M	
Upsample	-	$32 \times 1024 \times 1024$	-	Conv 3 × 3	LReLU	$512 \times 8 \times 8$	2.4M	
Conv 3×3	LReLU	$16 \times 1024 \times 1024$	4.6k	Downsample	-	$512 \times 4 \times 4$	-	
Conv 3×3	LReLU	$16 \times 1024 \times 1024$	2.3k	Minibatch stddev	-	513 × 4 × 4	-	
Conv 1×1	linear	$3 \times 1024 \times 1024$	51	Conv 3 × 3	LReLU	512 × 4 × 4	2.4M	
Total trainable	parameters		23.1M	Conv 4×4	LReLU	512 × 1 × 1	4.2M	
				Fully-connected	linear	$1 \times 1 \times 1$	513 23.1M	
Total trainable parameters								

Wyniki na CelebA

	CELEBA					LSUN BEDROOM						
Training configuration	Sliced Wasserstein distance ×10 ³				MS-SSIM	Sliced Wasserstein distance ×10 ³					MS-SSIM	
	128	64	32	16	Avg		128	64	32	16	Avg	i i
(a) Gulrajani et al. (2017)	12.99	7.79	7.62	8.73	9.28	0.2854	11.97	10.51	8.03	14.48	11.25	0.0587
(b) + Progressive growing	4.62	2.64	3.78	6.06	4.28	0.2838	7.09	6.27	7.40	9.64	7.60	0.0615
(c) + Small minibatch	75.42	41.33	41.62	26.57	46.23	0.4065	72.73	40.16	42.75	42.46	49.52	0.1061
(d) + Revised training parameters	9.20	6.53	4.71	11.84	8.07	0.3027	7.39	5.51	3.65	9.63	6.54	0.0662
(e*) + Minibatch discrimination	10.76	6.28	6.04	16.29	9.84	0.3057	10.29	6.22	5.32	11.88	8.43	0.0648
(e) Minibatch stddev	13.94	5.67	2.82	5.71	7.04	0.2950	7.77	5.23	3.27	9.64	6.48	0.0671
(f) + Equalized learning rate	4.42	3.28	2.32	7.52	4.39	0.2902	3.61	3.32	2.71	6.44	4.02	0.0668
(g) + Pixelwise normalization	4.06	3.04	2.02	5.13	3.56	0.2845	3.89	3.05	3.24	5.87	4.01	0.0640
(h) Converged	2.42	2.17	2.24	4.99	2.96	0.2828	3.47	2.60	2.30	4.87	3.31	0.0636

Czas treningu

Twarze celebrytów - CelebA-HQ

Pozostałe przykłady

- Zdjęcia z Appendixu H
- Film prezentacja wyników

Bibliografia

NIPS 2016 tutorial: Generative adversarial networks. *CoRR*, abs/1701.00160, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.

CoRR, abs/1710.10196, 2017.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to texture mixing. In Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexander M. Bronstein, and Michael M. Bronstein, editors, SSVM, volume 6667 of Lecture Notes in Computer Science, pages 435–446. Springer, 2011.