Deliverable 3 – CBAM

DANILO DELL'ORCO 0300229

Roadmap

Introduzione Definizione decisione e alternative Attributi di qualità Valutazione alternative Valutazione rischio Calcolo beneficio alternative Valutazione costo alternative Calcolo desiderabilità alternative Classifica Conclusioni

Introduzione (1/2)

- Si vuole sviluppare un software in ambiente Java per la *gestione di un'isola ecologica*.
- Tale applicazione, chiamata *BeEcological*, deve offrire diverse funzionalità ad utenti e proprietari di un centro.
 - Un utente può effettuare una prenotazione verso un centro
 - Un proprietario può confermare o declinare una prenotazione

Introduzione (2/2)

- E' necessario definire l'architettura software del sistema.
 - Scelta della struttura del sistema e dei componenti software da utilizzare nel progetto.

- Si vuole applicare a tale scopo Cost Benefit Analysis Method
 - Tecnica decisionale che permette di selezionare la migliore tra diverse alternative, valutando per ognuna costi e benefici

Decisione e Alternative

- Per l'implementazione di BeEcological è necessario l'utilizzo di un **DBMS**, al fine di mantenere la *persistenza* dei dati relativi agli utenti, ai centri, e a tutte le richieste di prenotazione effettuate.
- Sono state individuate tre possibili alternative: PostgreSQL, MySQL, MongoDB.

Attributi di Qualità

- 1. Performance
- 2. Security
- 3. Modifiability
- 4. Availability
- 5. Interoperability
- 6. Integrability

Attributi di Qualità - Descrizione

- Le **performance** indicano la velocità del DBMS nelle operazioni di lettura/scrittura delle tabelle.
- La **security** specifica quanto il database sia privo di vulnerabilità.
- La modifiability indica la facilità con cui è possibile apportare modifiche all'interno del DB.
- L' availability indica per quanto tempo il database è effettivamente accessibile, rispetto al tempo totale in cui è attivo
- L' interoperability indica quanto facilmente il DBMS può comunicare servizi esterni
- L' integrability indica quanto facilmente il DBMS può essere integrato all'interno di altri sistemi

Attributi di Qualità - Contributo

1.	Performance	20
2.	Security	14
3.	Modifiability	22
4.	Availability	9
5.	Interoperability	15
6.	Integrability	20

Valutazione Alternative - PostgreSQL

1. Performance	0.0	✓ DBMS Altamente scalabile, capace di gestire anche terabytes di dati.	
2. Security	0.5	✓ Offre supporto nativo a JSON.	
3. Modifiability	-0.3	✓ Offre moltissime interfacce e funzioni predefinite.	
4. Availability	1.0		
5. Interoperability	0.5	Configurazione iniziale complessa.	
6. Integrability	0.7	Velocità di lettura non ottimale quando il carico di lavoro è troppo pesante	
		Documentazione carente	

Valutazione Alternative - MySQL

 Performance 	0.2	✓ Facilità di configurazione e utilizzo	
2. Security	0.0	✓ Facilità di integrazione con altri database e linguaggi	
3. Modifiability	0.9	✓ Ampia documentazione disponibile	
4. Availability	-0.3		
5. Interoperability	0.7	Non presenta supporto nativo ad alcune funzioni come incremental backups	
6. Integrability	0.8	Non offre una buona scalabilità orizzontale rispetto al numero di tabelle	

Valutazione Alternative- MongoDB

1.	Performance	0.9
2.	Security	-0.2
3.	Modifiability	0.4
4.	Availability	0.7
5.	Interoperability	0.3
6.	Integrability	0.8

- ✓ Offre prestazioni elevate in lettura/scrittura
- ✓ Offre supporto nativo a JSON e ad altri documenti NoSQL.
- ✓ Molto semplice da utilizzare
- Non utilizza SQL come query language, sono necessari dei tool per tradurre le query da SQL a MongoDB.
- Configurazione iniziale complessa.
- La configurazione di default presenta diverse vulnerabilità

Rischio

- PostgreSQL: 0.1
 - PostgreSQL presenta un basso rischio dovuto alla mancanza di documentazione presente in rete. Durante il processo di sviluppo potrebbe rivelarsi particolarmente laboriosa l'implementazione delle funzionalità più complesse.
- MySQL: 0
 - MySQL non presenta *alcun rischio*, in quanto il team di sviluppo ha familiarità con tale DBMS. L'ampia documentazione presente in rete garantisce inoltre un maggiore supporto allo sviluppo di funzionalità più elaborate.
- MongoDB: 0.3
 - MongoDB presenta un *rischio* in quanto non utilizza *query SQL* come la maggior parte dei DBMS. Potrebbe quindi rivelarsi molto più complessa l'interazione con il sistema, rendendo necessario l'utilizzo di un tool esterno per la conversione delle query.

Beneficio

$$Benefit(AS_i) = \sum_{j=1}^{7} ((Cont_{ij} * QAscore_j)) * |Risk_i - 1|$$

$$Benefit(PostgreSQL) = (20 * 0.0 + 14 * (0.5) + 22 * (-0.3) + 9 * 1.0 + 15 * 0.5 + 20 * 0.7) * (1 - 0.1)$$

 $Benefit(PostgreSQL) = 27.81$

$$Benefit(MySQL) = (20 * 0.2 + 14 * 0.0 + 22 * 0.9 + 9 * (-0.3) + 15 * 0.7 + 20 * 0.8) * (1)$$

 $Benefit(MySQL) = 47.6$

$$Benefit(MongoDB) = (20 * 0.9 + 14 * (-0.2) + 22 * 0.4 + 9 * 0.7 + 15 * 0.3 + 20 * 0.8) * (1 - 0.3)$$

 $Benefit(MongoDB) = 35.56$

Costo

- Tutti e tre i software presi in considerazione sono disponibili con licenza gratuita open source
- Il costo delle tre alternative è considerato come unitario
 - \circ Cost(PostgreSQL) = 1
 - \circ Cost(MySQL) = 1
 - \circ Cost(MongoDB) = 1

Desiderabilità

$$Desiderabiliy(AS_i) = \frac{Benefit(AS_i)}{Cost(AS_i)}$$

$$Desiderabiliy(PostgreSQL) = \frac{Benefit(PostgreSQL)}{Cost(PostgreSQL)} = 27.81$$

$$Desiderabiliy(MySQL) = \frac{Benefit(MySQL)}{Cost(MySQL)} = 47.6$$

$$Desiderabiliy(MongoDB) = \frac{Benefit(MongoDB)}{Cost(MongoDB)} = 35.56$$

Classifica

- 1. MySQL
- 2. MongoDB
- 3. PostgreSQL

Conclusioni

- MySQL rappresenta la migliore scelta tra i DBMS considerati, in quanto è quello che offre un maggiore score di desiderabilità.
 - Desiderabiliy(MySQL) = 47.6
- MongoDB risulta essere una scelta accettabile, avendo raggiunto uno score di desiderabilità non troppo inferiore a MySQL.
 - Desiderabiliy(MongoDB) = 35.56
 - Inferiore del 27% rispetto a MySQL
- PostgreSQL rappresenta invece una alternativa sconsigliabile rispetto alle altre
 - Desiderabiliy(PostgreSQL) = 27.81
 - Inferiore del 22% rispetto a MongoDB
 - Inferiore del 41% rispetto a MySQL

Riferimenti

- [1] https://www.keycdn.com/blog/popular-databases
- [2] https://acodez.in/list-popular-databases
- [3] https://www.xplenty.com/blog/which-database/
- [4] https://stackoverflow.com/questions/6475228/postgresqls-security-compared-to-mysql-etc
- [5] <u>https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features</u>
- [6] https://db-engines.com/en/system/MongoDB%3BMySQL%3BPostgreSQL