7- Função Exponencial

Função Exponencial

Chama-se função exponencial qualquer função $f: \mathbb{R} \to \mathbb{R}$ dada por uma lei da forma $f(x) = a^x$, em que a é um número real dado, a > 0 e $a \ne 1$.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = a^x \ (a > 0 \ e \ a \neq 1)$$

Exemplos:

$$(\mathbf{a}) f(x) = 2^x$$

(b)
$$f(x) = \left(\frac{1}{2}\right)^x$$

(b)
$$f(x) = \left(\frac{1}{2}\right)^x$$
 (c) $f(x) = \left(\sqrt{2}\right)^x$ **(d)** $f(x) = e^x$

$$(\mathbf{d}) f(x) = e^x$$

Observe que, na definição acima, há restrições em relação à base a.

De fato:

- Se a < 0, nem sempre o número a^x é real, como, por exemplo, $(-3)^{\frac{1}{2}} \notin \mathbb{R}$.
- Se a = 0, temos:

$$\begin{cases} \text{se } x > 0, \, y = 0^x = 0 \text{ (função constante)} \\ \text{se } x < 0, \, \text{não se define } 0^x \text{ (por exemplo, } 0^{-3}) \\ \text{se } x = 0, \, \text{não se define } 0^0 \end{cases}$$

Se a = 1, para todo x ∈ R, a função dada por y = 1^x = 1 é constante.

Gráfico da Função Exponencial

O gráfico de uma função exponencial $f(x) = a^x$ possui um dos aspectos abaixo, dependendo do valor de a.

Propriedades:

- O gráfico da função exponencial intersecta o eixo y no ponto (0,1), pois $x=0 \Rightarrow y=a^0=1$.
- A imagem de $f(x) = a^x$ é dada por $Im(f) = \{y \in \mathbb{R} \mid y > 0\} = \mathbb{R}_+^*$.
- Quando 0 < a < 1, temos que $y = a^x$ é decrescente;
- Quando a > 1, temos que $y = a^x$ é crescente;
- Se 0 < a < 1, então a^x se aproxima de zero quando x assume valores positivos cada vez maiores;
- Se a > 1, então a^x se aproxima de zero quando x assume valores negativos cada vez menores;
- A função exponencial é injetora;

Exemplo: A figura a seguir mostra os gráficos das funções exponenciais $f(x) = a^x$, com a tomando os valores 0,2; 0,5; 0,7; 1,5; 2 e o número de Euler $e \cong 2,718$.

O último gráfico que corresponde ao gráfico da função exponencial de base e, ou seja, $f(x) = e^x$.

Essa função será importante para estudos posteriores.

Os gráficos das funções exponenciais são chamados de curvas exponenciais.

Observação:

Existem outras funções de $\mathbb R$ em $\mathbb R$ cujas leis apresentam a variável x no expoente de alguma potência, como

$$y = 3 \cdot 2^x$$
, $y = 2^{x-1} + 3$, $y = \left(\frac{1}{5}\right)^{x+3} - 1$.

Os gráficos dessas funções também são curvas exponenciais semelhantes às apresentadas no exemplo anterior e também são tratadas como funções exponenciais.

Exemplos:

(1) Construa o gráfico da função $f(x) = 2^x + 1$

Solução: Observe que o gráfico de f corresponde ao gráfico de $y = 2^x$ somado a uma unidade. Logo, para construir esse gráfico basta transladar o gráfico de $y = 2^x$ uma unidade para cima.

(2) Construa o gráfico da função $f(x) = 2^{2x-1}$.

Solução

Vamos contruir uma tabela da seguinte maneira: atribuímos valores a 2x - 1, calculamos 2^{2x-1} e finalmente x.

X	2x-1	$y=2^{2x-1}$
-1	-3	<u>1</u> 8
$-\frac{1}{2}$	-2	
0	-1	$\frac{1}{4}$ $\frac{1}{2}$
1 2 1	0	1
1	1	2
3 2 2	2	4
2	3	8

(3) Construa o gráfico da função $f(x) = 3 \cdot 2^{x-1}$.

Solução

Vamos construir uma tabela atribuindo valores a x-1 e calculando 2^{x-1} , $3 \cdot 2^{x-1}$ e x. Temos:

X	x - 1	2 ^{x-1}	$y = 3 \cdot 2^{x-1}$
-2	-3	<u>1</u> 8	<u>3</u> 8
-1	-2	1/4	<u>3</u> 4
0	-1	1 2	3 2
1	0	1	3
2	1	2	6
3	2	4	12
4	3	8	24

Equações Exponenciais

Uma **equação exponencial** é aquela que apresenta a incógnita no expoente de pelo menos uma de suas potências.

Exemplos de equações exponenciais:

$$(\mathbf{a}) \ 2^{x} = 64$$

(a)
$$2^x = 64$$
 (b) $\left(\frac{1}{9}\right)^x = 81$

(c)
$$9^x - 3^x = 72$$

Método da redução a uma base comum

Um método usado para resolver equações exponenciais consiste em reduzir ambos os membros da equação à potência de mesma base a (quando isso for possível) e, daí, aplicar a propriedade:

$$a^{x_1} = a^{x_2} \Rightarrow x_1 = x_2.$$

Essa propriedade segue do fato das funções exponenciais serem injetoras.

Exemplo: Resolva, em \mathbb{R} , as seguintes equações exponenciais.

(a)
$$2^x = 32$$

(b)
$$8^x = \frac{1}{32}$$

$$(\mathbf{c}) \left(\sqrt{3}\right)^{x} = \sqrt[3]{81}$$

(d)
$$3^{2x+1} \cdot 9^{3x+1} = 27^{x-1}$$
 (e) $5^{x-3} = 1$

(e)
$$5^{x-3} = 1$$

(f)
$$9^x + 3^x = 12$$

(g)
$$4^{x+1} - 9 \cdot 2^x + 2 = 0$$

Inequações Exponenciais

Uma inequação exponencial é aquela que apresenta a incógnita no expoente de pelo menos uma de suas potências.

Exemplos de inequações exponenciais:

(a)
$$2^x > 32$$

(b)
$$\left(\frac{1}{3}\right)^x \le 27$$

$$(\mathbf{c}) \ 4^x - 2^x \le 12$$

Método da redução a uma base comum

Este método será aplicado quando ambos os membros da inequação puderem ser representados como potências de mesma base a (a > 0 e $a \ne 1$).

Lembremos que a função exponencial $f(x) = a^x$ é crescente, se a > 1, ou decrescente, se 0 < a < 1; portanto:

- Se a > 1, tem-se: $a^{x_1} < a^{x_2} \Rightarrow x_1 < x_2$
- Se 0 < a < 1, tem-se: $a^{x_1} < a^{x_2} \Rightarrow x_1 > x_2$

Exemplo: Resolva, em \mathbb{R} , as seguintes inequações exponenciais.

(a)
$$2^x > 64$$

$$(\mathbf{b}) \left(\frac{1}{3}\right)^{x} \le 27$$

$$(\mathbf{c}) \left(\sqrt{2}\right)^x \ge 8\sqrt{2}$$

(d)
$$(0,7)^{2x-1} > 1$$

(e)
$$(3^x)^{2x-7} > \frac{1}{27}$$

(f)
$$7^x - 6 \ge 7^{1-x}$$

7- Função Logarítmica

Logaritmos

Sendo a e b números reais positivos, com $a \neq 1$, chama-se **logaritmo de** b na base a o expoente x ao qual se deve elevar a base a de modo que a potência a^x seja igual a b.

$$\log_a b = x \Leftrightarrow a^x = b$$

Dizemos que:

- a é a base do logaritmo;
- $b \in o$ lagaritmando;
- $x \in o$ logaritmo.

Exemplos:

(a)
$$\log_2 8 = 3$$
, pois $2^3 = 8$

(d)
$$\log_5 5 = 1$$
, pois $5^1 = 5$

(b)
$$\log_3 9 = 2$$
, pois $3^2 = 9$

(e)
$$\log_4 1 = 0$$
, pois $4^0 = 1$

(c)
$$\log_2 \frac{1}{4} = -2$$
, pois $2^{-2} = \frac{1}{4}$

(f)
$$\log_3 \sqrt{3} = \frac{1}{2}$$
, pois $3^{\frac{1}{2}} = \sqrt{3}$

Observação: As restrições para a (a>0 e $a\neq 1)$ e para b (b>0) indicadas na definição garantem a existência e a unicidade de $\log_a b$.

Exemplo: Calcule, usando a definição:

a) log_{₃9} 3

Façamos $\log_{\sqrt{q}} 3 = x$. Temos:

$$(\sqrt[3]{9})^x = 3 \Rightarrow (\sqrt[3]{3^2})^x = 3 \Rightarrow \sqrt[3]{3^{2x}} = 3 \Rightarrow 3^{\frac{2x}{3}} = 3 \Rightarrow \frac{2x}{3} = 1 \Rightarrow x = \frac{3}{2}$$

b) $\log_{16} 0.25$

Façamos $\log_{16} 0.25 = y$. Temos:

$$16^{y} = 0.25 \Rightarrow (2^{4})^{y} = \frac{1}{4} \Rightarrow 2^{4y} = 2^{-2} \Rightarrow 4y = -2 \Rightarrow y = -\frac{1}{2}$$

Consequências da Definição

(1) O logaritmo de 1 em qualquer base a é igual a 0.

$$\log_a 1 = 0$$
, pois $a^0 = 1$.

(2) O logaritmo da base, qualquer que seja ela, é igual a 1.

$$\log_a a = 1$$
, pois $a^1 = a$.

(3) A potência de base a e expoente $\log_a b$ é igual a b.

$$a^{\log_a b} = b$$
,

pois o logaritmo de b na base a é justamente o expoente que se deve dar à base a para que a potência fique igual a b.

(4) Se dois logaritmos em uma mesma base são iguais, então os logaritmandos também são iguais.

$$\log_a b = \log_a c \Rightarrow b = c,$$

pois $\log_a b - \log_a c \Rightarrow a^{\log_a c} = b \Rightarrow c = b$.

Notações Importantes

(i) O logaritmo de base 10 (logaritmo decimal) é representado por

$$\log_{10} x = \log x.$$

(ii) O logaritmo cuja base é o número de Euler $e \cong 2,718$ (logaritmo natural ou logaritmo neperiano) é denotado por

$$\log_e x = \ln x$$
.

Atenção!

Na área de computação é muito utilizado o logaritmo de base 2, e ele costuma ser indicado simplesmente por $\log_2 x = \log x$. Desse modo, para evitar confusão com os logaritmos decimais, verifique em qual base estão indicados os logaritmos.

Observação: As consequências da definição para o logaritmo natural ficam:

$$(1) \ln 1 = 0$$

(2)
$$\ln e = 1$$

$$(3) e^{\ln x} = x$$

Propriedades Operatórias

(1) Logaritmo do produto:

$$\log_a(b \cdot c) = \log_a b + \log_a c$$

(2) Logaritmo do quociente:

$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$

(3) Logaritmo da potência:

$$\log_a b^r = r \cdot \log_a b$$

Mudança de Base

Há situações em que nos defrontamos com um logaritmo em certa base e temos de convertê-lo a outra base. A fórmula de mudança de base é dada por:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Exemplo:

Vejamos agora como é possível obter o valor de $\log_2 5$ usando a calculadora. Podemos transformar $\log_2 5$ para base 10 ou para base **e**:

• base 10:
$$\log_2 5 = \frac{\log_{10} 5}{\log_{10} 2} \simeq \frac{0,699}{0,3010} \simeq 2,32$$

• base **e**:
$$\log_2 5 = \frac{\log_e 5}{\log_e 2} = \frac{\ell n 5}{\ell n 2} \simeq \frac{1,609}{0,693} \simeq 2,32$$

Exercícios:

(1) Calcule pela definição, os seguintes logaritmos.

 $(a) \log_2 32$

(b) $\log_3 81$

 $(\mathbf{c}) \log_8 16$

(d) $\log_{0,2} \sqrt[3]{25}$

 $(e) \log 0.01$

 $(\mathbf{f}) \ln e$

(2) Supondo $x, y \in b$ reais positivos, com $b \neq 1$ e sabendo que $\log_b x = 2$ e $\log_b y = 3$, qual é o valor de:

(a) $\log_b(xy)$

(b) $\log_b \left(\frac{x}{y}\right)$

(c) $\log_b \left(\frac{x^3}{y^2}\right)$

(d) $\log_b(b\sqrt{xy})$

(3) Qual é o valor real de x que satisfaz a equação $\log_2(x-2) + \log_2 x = 3$?

(4) Resolva, em \mathbb{R} , as seguintes equações:

- a) $2 \cdot \log_7 (x + 3) = \log_7 (x^2 + 45)$
- **b)** $\log (4x 1) \log (x + 2) = \log x$
- c) $3 \cdot \log_5 2 + \log_5 (x 1) = 0$

Função Logarítmica

Dado um número real a, com a > 0 e $a \neq 1$, chama-se função logarítmica de base a a função $f: \mathbb{R}_+^* \to \mathbb{R}$ dada pela lei $f(x) = \log_a x$.

$$f: \mathbb{R}_+^* \to \mathbb{R}, f(x) = \log_a x \ (a > 0 \ e \ a \neq 1)$$

Exemplos de funções logarítmicas:

(a)
$$f(x) = \log_2 x$$
 (b) $f(x) = \log x$ (c) $f(x) = \ln x$

$$\mathbf{(b)}\ f(x) = \log x$$

$$(\mathbf{c}) f(x) = \ln x$$

Exemplo: Determine o domínio da função $f(x) = \log_{(x-2)}(5-2x)$.

Devemos ter:

•
$$5 - 2x > 0 \Rightarrow -2x > -5 (-1) \Rightarrow 2x < 5 \Rightarrow x < \frac{5}{2}$$

- $x 2 > 0 \Rightarrow x > 2$
- $x-2 \neq 1 \Rightarrow x \neq 1+2 \Rightarrow x \neq 3$

Fazendo a intersecção das três condições, obtemos

$$D(f) = \left\{ x \in \mathbb{R} : 2 < x < \frac{5}{2} \right\}.$$

Gráfico da Função Logarítmica

O gráfico de uma função logarítmica $f(x) = \log_a x$ possui um dos aspectos abaixo, dependendo do valor de a.

Propriedades:

- O gráfico da função logarítmica intersecta o eixo x no ponto (1,0), pois $\log_a 1 = 0$.
- Quando 0 < a < 1, temos que $y = \log_a x$ é decrescente.
- Quando a > 1, temos que $y = \log_a x$ é crescente.
- A imagem de f é o conjunto dos números reais, ou seja, $Im(f) = \mathbb{R}$.
- A função logarítmica é bijetora.
- Se 0 < a < 1, temos que: quando x se aproxima de zero por valores positivos, o gráfico de f se aproxima de $+\infty$.
- Se a > 1, temos que: quando x se aproxima de zero por valores positivos, o gráfico de f se aproxima de $-\infty$.

Exemplo: A figura a seguir mostra os gráficos das funções $f: \mathbb{R}_+ \to \mathbb{R}$ dadas por $f(x) = \log_a(x)$, com a tomando os valores 0,2; 0,5; 0,7; 1,5; 2 e o número de Euler e.

Uma atenção especial para o último gráfico que corresponde ao gráfico da função logarítmica de base e, ou seja, $f(x) = \log_e(x)$, que é chamada de função logarítmica natural e é denotada por $f(x) = \ln(x)$.

Relação entre Função Exponencial e Função Logarítmica

Pode-se provar que a função exponencial de base a $(y = a^x)$ e a função logarítmica de base a $(y = \log_a x)$ são funções inversas uma da outra.

Desse modo são válidas as seguintes relações:

$$a^{\log_a(x)} = x$$
, para todo $x > 0$

$$\log_a(a^x) = x$$
, para todo $x \in \mathbb{R}$

Revisitando as Equações Exponenciais

Existem equações exponenciais que não podem ser reduzidas a uma igualdade de potências de mesma base. Para resolver esse tipo de equação utilizamos os logaritmos.

Exemplo: Resolva a equação $3^x = 5$.

1º modo: Usar a definição de logaritmo

Da definição de logaritmo, segue que $3^x = 5 \Rightarrow x = \log_3 5$.

Para obter esse valor, podemos usar uma calculadora científica, aplicando a fórmula da mudança de base:

$$x = \log_3 5 = \frac{\log 5}{\log 3} \cong \frac{0,6990}{0,4771} \cong 1,465.$$

2º modo: Aplicar logaritmo nos dois lados da equação

Aplicando logaritmo decimal em ambos os membros da equação $3^x = 5$, obtemos:

$$\log 3^x = \log 5 \Rightarrow x \cdot \log 3 = \log 5 \Rightarrow x = \frac{\log 5}{\log 3} \cong 1,465.$$

Exemplos

- (1) Seja $f: \mathbb{R} \to]1, +\infty[$ dada por $f(x) = 2^x + 1.$
- (a) Obtenha a lei que define f^{-1} .
- (b) Represente $f \in f^{-1}$ no mesmo plano cartesiano.

Solução:

(a) Vamos isolar o x na expressão da função $y=2^x+1$.

Temos que:

$$y = 2^x + 1 \Rightarrow 2^x = y - 1$$
.

Aplicando logaritmo na base 2 dos dois lados da equação, obtemos:

$$\log_2(2^x) = \log_2(y - 1)$$
$$\Rightarrow x = \log_2(y - 1)$$

Trocando x e y de lugar, obtemos que a função inversa de f é dada por

$$f^{-1}(x) = \log_2(x - 1).$$

(b) Gráficos de f e f^{-1} no mesmo plano cartesiano.

(2) Daqui a t anos o valor de uma máquina será $V(t) = 50(0.8)^t$ milhares de reais. Daqui a quanto tempo seu valor se reduzirá à metade? (Dado: $\log 2 = 0.3010$).

Solução:

Observe que, no presente momento, a máquina custa $V(0) = 50(0.8)^0 = 50$ mil reais.

Queremos determinar o tempo para que seu valor se reduza à metade, ou seja, queremos obter t tal que V(t)=25, ou seja,

$$50(0.8)^t = 25 \Rightarrow (0.8)^t = \frac{25}{50} \Rightarrow (0.8)^t = \frac{1}{2}$$
.

Aplicando logaritmo na base 10 em ambos os membros, obtemos:

$$\log(0.8)^t = \log\left(\frac{1}{2}\right) \Rightarrow t \cdot \log(0.8) = \log\left(\frac{1}{2}\right) \Rightarrow t = \frac{\log\left(\frac{1}{2}\right)}{\log\left(\frac{8}{10}\right)}.$$

Temos que

$$\log\left(\frac{1}{2}\right) = \log 1 - \log 2 = 0 - 0.3010 = -0.3010.$$

$$\log\left(\frac{8}{10}\right) = \log 8 - \log 10 = \log(2^3) - 1 = 3\log 2 - 1 = 3(0,3010) - 1 = -0,097.$$

Logo, $t = \frac{-0,3010}{-0.097} = 3,1030$, ou seja, o valor se reduzirá à metade em aproximadamente 3,10 anos.

(3) Uma peça metálica foi aquecida até atingir a temperatura de 50 °C. A partir daí, a peça resfriará de forma que, após t minutos, sua temperatura (em graus Celsius) será igual a $30 + 20e^{-0.2t}$. Usando a aproximação $\ln 2 = 0.7$, determine em quantos minutos a peça atingirá a temperatura de 35 °C.

Solução:

Queremos encontrar t de modo que T(t) = 35, ou seja,

$$30 + 20e^{-0.2t} = 35 \Rightarrow 20e^{-0.2t} = 5 \Rightarrow e^{-0.2t} = \frac{5}{20} = \frac{1}{4}$$
.

Aplicando o logaritmo natural nos dois lados da igualdade, obtemos:

$$\ln(e^{-0.2t}) = \ln\left(\frac{1}{4}\right)$$

$$\Rightarrow -0.2t = \ln 1 - \ln 4$$

$$\Rightarrow -0.2t = 0 - \ln(2^2)$$

$$\Rightarrow -0.2t = -2\ln 2$$

$$\Rightarrow t = \frac{-2(0.7)}{-0.2} = 7.$$

Portanto, a peça atingirá a temperatura de 35 °C em t=7 minutos.