178 Eltonásen Hagamoen Grani lagahaugen Søndre Haugerud Norges Kartbakgrunn: Statens Kartverk vassdrags- og energidirektorat EUREF89 WGS84 Kartdatum: Projeksjon: UTM 33N

Nedbørfeltgrenser, feltparametere og vannføringsindekser er automatisk generert og kan inneholde feil. Resultatene må kvalitetssikres.

Lavvannskart

0	CAB2		Feltparametere					
Fylke: Aker			Areal (A)	2,5 km²				
Vassdrag: Leira			Effektiv sjø (S _{eff})	0,0 %				
vassarag. Lena			Elvelengde (E _L)	2,6 km				
			Elvegradient (E _G)	16,9 m/km				
Vannføringsindeks, se merknader			Elvegradient ₁₀₈₅ (G ₁₀₈₅)	14,5 m/km				
			Feltlengde(F _L)	2,6 km				
Middelvannføring (61-90)		1/(s*km²	Π min	131 moh.				
Alminnelig lavvannføring		1/(s*km²)	⁾ H ₁₀	140 moh.				
5-persentil (hele året)		· 1/(s*km²)) H ₂₀	150 moh.				
5-persentil (1/5-30/9)		l/(s*km²)	⁾ Н ₃₀	156 moh.				
5-persentil (1/10-30/4	4) 1,0	1/(s*km²)	H ₄₀	162 moh. 168 moh.				
Base flow	8,6	5 l/(s*km²)) H ₅₀					
BFI	0,3		H ₆₀	175 moh.				
171:			H ₇₀	182 moh.				
Klima			H ₈₀	188 moh.				
Klimaregion		Ost	H ₉₀	194 moh.				
Årsnedbør	846	mm	H _{max}	226 moh.				
Sommernedbør	392	mm	Bre	0,0 %				
Vinternedbør	454	mm	Dyrket mark	54,8 %				
Årstemperatur	4,0	°C	Myr	0,0 %				
Sommertemperatur	12,4	°C	Sjø	0,0 %				
Vintertemperatur	-2,0	°C	Skog	39,4 %				
Temperatur Juli	15,1	°C	Snaufjell	0,0 %				
Temperatur August	14,1	°C	Urban	5,1 %				

1) Verdien er editert

Det er generelt stor usikkerhet i beregninger av lavvannsindekser. Resultatene bør verifiseres mot egne observasjoner eller sammenlignbare målestasjoner.

I nedbørfelt med høy breprosent eller stor innsjøprosent vil tørrværsavrenning (baseflow) ha store bidrag fra disse lagringsmagasinene.

Flomberegning

Vassdragsnr.: 002.CAB2
Kommune: Nannestad
Fylke: Akershus

Vassdrag: Leira

Flomverdiene viser størrelsen på kulminasjonsflommer for ulike gjentaksintervall. De er beregnet ved bruk av et formelverk som er utarbeidet for nedbørfelt under ca 50 km2. Feltparametere som inngår i formelverket er areal, effektiv sjøprosent og normalavrenning (l/s*km²). For mer utdypende beskrivelse av formelverket henvises det til NVE—Rapport 7/2015 «Veileder for flomberegninger i små uregulerte felt». Det pågar fortsatt forskning for å Det pågar fortsatt forskning for å bestemme klimapåslag for momentanflommer i små nedbørfelt. Frem til resultatene fra disse prosjektene foreligger anbefales et klimapåslag på 1.2 for døgnmiddelflom og 1.4 for kulminasjonsflom i små nedbørfelt.

Leira	
Areal (km²)	2,54
Klimafaktor	1,4

	$Q^{\mathbf{M}}$		Q5	Q 10	Q 20	Q 50	Q 100	Q 200
	m3/s	l/(s*km²)			~	_		
Flomfrekvensfaktorer	-	-	1,25	1,48	1,72	2,09	2,41	2,77
95% intervall øvre grense (m³/s)	3,1	1212,5	3,9	4,8	5,7	7,1	8,4	9,6
Flomverdier (m³/s)	1,7	685	2,2	2,6	3,0	3,6	4,2	4,8
95% intervall nedre grense (m³/s)	1,0	387	1,2	1,4	1,6	1,9	2,1	2,4
Flommer med klimapåslag (m³/s)		959,1	2,2	3,6	4,2	5,1	5,9	6,7

Beregningene er automatisk generert og kan inneholde feil. Det er generelt stor usikkerhet i denne typen beregninger. Resultatene må verifiseres mot egne observasjoner eller sammenlignbare målestasjoner. Resultatene er ikke gyldig som grunnlag til flomberegninger for klassifiserte dammer.