$$= \int dx \left[e^{(x^2 + y^2 + x - y + C)} \right]$$

= $e^{(x^2 + y^2 + x - y + C)} + g(y)$ (integrating with respect to x)

Here, g(y) represents a constant of integration that depends on y.

Now, we differentiate F(x, y) with respect to y and set it equal to the second equation:

$$\partial F/\partial y = \partial/\partial y (e^{(x^2 + y^2 + x - y + C) + g(y)})$$

= (2y - x - 1)e^(x^2 + y^2 + x - y + C)

Comparing the coefficients of $e^{(x^2 + y^2 + x - y + C)}$, we have:

$$2y - x - 1 = 0$$

Rearranging this equation gives:

$$2y = x + 1$$

 $y = (1/2)x + 1/2$

Therefore, the solution to the differential equation (2x - y + 1)dx + (2y - x - 1)dy = 0 is y = (1/2)x + 1/2.

4. A. By using truth tables, check whether the propositions $\sim (p \land q)$ and $(\sim p) \lor (\sim q)$ are logically equivalent or not?

To check the logical equivalence of the propositions \sim (p \land q) and (\sim p) \lor (\sim q), we can create truth tables for both propositions and compare their outputs.

The truth values for p and q and for $\sim\!\!(p\! \bigwedge \! q)$ is :

p	q	$p \land q$	~(p \land q)
Т	Т	Т	F
Т	F	F	Т
F	Т	Т	Т
F	F	Т	Т