PROJEKTOWANIE

DANE

PARAMETRY MATERIAŁOWE

SIŁY WEWNĘTRZNE

Beton

Stal fyk= MPa

$\begin{aligned} M_{Ed} &= \\ M_{Ek} &= \\ M_{Ek,lt} &= \\ V_{Ed} &= \end{aligned}$

PARAMETRY GEOMETRYCZNE

 $b_{eff} =$

B = h =

 $\begin{array}{lll} h &=& h_f &=\\ a_1 &=& b_{eff,t} = \end{array}$

 $a_2 = h_{f,t} =$

Leff=

WYNIKI

STAN GRANICZNY NOŚNOŚCI

ZBROJENIE PODŁUŻNE

A_{s1,req}= cm²

 $A_{s1,prov} = cm^2$

ф

 $A_{s2,req} = cm^2$

 $A_{s2,prov} = cm^2$

ф

ZBROJENIE POPRZECZNE

strzemiona:

ф

ф

n_{sw1}=

S1=

pręty odgięte:

n_{sw2}=

S2=

STAN GRANICZNY UŻYTKOWALNOŚCI

w =

f =

PARAMETRY DODATKOWE

Przekrój betonowy:

 $I_c = cm^4$

 $x_c =$

m

m

m

Siła krytyczna:

Faza I:

 $I_I =$

 cm^4

 $x_I =$

Zbrojenie symetryczne:

 $\rho_s =$

%

Faza II:

 $I_{II} =$

 cm^4

 $x_{II} =$

 $N_B =$

Zbrojenie niesymetryczne:

 $N_B =$

kN

kN

 $\rho_s =$

%

Pozostałe:

 $\sigma_{\scriptscriptstyle S} =$

MPa

 $S_{r,max} =$

mm

 $\varphi_{ef} =$

[-]

 $\varepsilon_{cs} =$

· [-]