Temporal Graphs

Algorithmic Gems for Graphs, Probabilities and Processes Winter semester 24/25

1 Motivation

- Route finding in transportation networks
- distributed networks \rightarrow analysis of various properties
- dissemination processes

2 Basic Terms and definitions

Definition

A labeled graph [1, page 94] is a triple $G = (V, E, \lambda)$ where:

- V, E is a graph
- $\lambda: V \cup E \to Z$ is a mapping of nodes and edges to a set of labels Z

Definition

A temporal graph [2, page 243] is is triple $G = (V, E, \lambda)$ where:

- V, E is a graph
- $\lambda: E \to 2^N$ is a mapping edges to a set natural numbers (time steps when this edge is active)

2.1 Notation for convenience \rightarrow [2, p. 243ff]

- $\lambda(G)$ temporal graph with respect to G
- $\lambda(E)$ multiset of all labels
- $|\lambda| = \sum_{e \in E} |\lambda(e)|$
- $\lambda_{min} = min\{l \in \lambda(E)\}$
- $\lambda_{max} = max\{l \in \lambda(E)\}$

• $\alpha(\lambda) = \lambda_{max} - \lambda_{min} + 1$ - lifetime of a temporal graph $\lambda(G)$

Definition: static expansion of a graph

The static expansion of a temporal graph D = (V, A) with $V = \{u_1, u_2, ..., u_n\}$ is a DAG H = (S, E) with:

$$S = \{u_{ij} | \lambda_{min} - 1 \le i \le \lambda_{max}, 1 \le j \le n\}$$

and

$$E = \{(u_{(i-1)j}, u_{ij'}) | \lambda_{min} \le i \le \lambda_{max} \land$$

$$1 \le j, j' \le n \land (j = j' \lor (u_j, u_{j'}) \in A(i)))\}$$

3 Journeys

Definition: temporal/time respecting walk

A **temporal** or **time-respecting walk** W of a temporal graph D = (V, A) is an alternating sequence of of nodes and times $(u_1, t_1, u_2, t_2, ..., u_{k-1}, t_{k-1}, u_k)$ where

- $\forall 1 \leq i \leq k-1 : ((u_i, u_{i+1}), t_i) \in A$ and
- $1 \le i \le k 2 : t_i < t_{i+1}$
- t_1 departure time
- t_{k-1} arrival time
- $t_{k-1} t_1 + 1$ duration/temporal length

Definition: Journey

A **journey** is a is a temporal walk with pairwise distinct nodes $\hat{=}$ a journey of D is a path of the underlying static graph of D that uses strictly increasing edge-labels.

Definition: Foremost Journey

A u-v journey J is called foremost from time $t \in N$ if it departs after time t and its arrival time is minimized.

Definition: Temporal distance

The **temporal distance** from a node u to at time t to a node v is defined as the duration of a foremost journey from u to v that departs at time t.

Definition: Temporal diameter d

The minimum integer d such that there exists a foremost journey from every node $(u,t) \in V \times \{0,1,...,\alpha-d\}$ to every node $v \in V$ with duration at most d.

References

- [1] Swarnendu Ghosh, Nibaran Das, Teresa Gonçalves, Paulo Quaresma, and Mahantapas Kundu. The journey of graph kernels through two decades. *Computer Science Review*, 27:88–111, 2018.
- [2] Othon Michail. An Introduction to Temporal Graphs: An Algorithmic Perspective, pages 308–343. Springer International Publishing, Cham, 2015.