接尾辞木に基づくLZ77とLPF配列の変種の計算

クップル・ドミニク

M&D データ科学センター 東京医科歯科大学

論文紹介

"Non-Overlapping LZ77 Factorization and LZ78 Substring Compression Queries with Suffix Trees." Algorithms 14(2): 44 (2021)

この発表

Lempel-Ziv 77 (LZ77) 分解の変種

■ 重複なし Lempel-Ziv 77

longest previous factor 表 (LPF) の変種:

- LPnF: longest previous non-overlapping factor 表研究の寄与
 - LPnF の 2*n* ビット表現
 - 上記の分解と表を O(n lg n) 時間で計算できる少メモリーアルゴリズム

設定 & 例

- T: 入力のテキスト, n-1 := |T| は T の長さを示す
- \blacksquare Σ は T のアルファベット, $\sigma := |\Sigma|$ は Σ のサイズを示す
- \blacksquare \$ < $c \forall c \in \Sigma$

i	1	2	3	4	5	6	7	8	9	10	11
<i>T</i> \$	a	b	b	a	b	b	a	b	a	b	\$
LPF	0	0	1	5	4	3	2	3	2	1	0
LPnF	0	0	1	3	3	3	2	3	2	1	0

簡潔な表現

Sadakane'07: PLCP 配列の 2n ビット表現

- PLCP[*i*] は (*T*\$)[*i*..] と辞書式順序 で直接の前の接尾辞の共通接頭辞 の長さ
- $(T\$)[n] = \$ \Rightarrow \mathsf{PLCP}[n] = 0$
- ightharpoonup PLCP[i] $\leq n \; \forall \; i \in [1..n]$

簡潔な表現

Sadakane'07: PLCP 配列の 2n ビット表現

- PLCP[*i*] は (*T*\$)[*i*..] と辞書式順序 で直接の前の接尾辞の共通接頭辞 の長さ
- $(T\$)[n] = \$ \Rightarrow \mathsf{PLCP}[n] = 0$
- ightharpoonup PLCP[i] $\leq n \; \forall \; i \in [1..n]$

簡潔な表現

Sadakane'07: PLCP 配列の 2n ビット表現

- - PLCP[i] ≤ $n \forall i \in [1..n]$ ■ PLCP[i] > PLCP[i − 1] − 1
 - \blacksquare よって、 $\mathsf{PLCP}[i] \mathsf{PLCP}[i-1] + 1 \ge 0$
 - \Rightarrow 1進数で値 $\mathsf{PLCP}[i] \mathsf{PLCP}[i-1] + 1$ を格納した場合、以下のようになる
 - $\sum_{i=1}^{n}(\mathsf{PLCP}[i]-\mathsf{PLCP}[i-1]+1)=\mathsf{PLCP}[n]+n=n$ 、ただし $\mathsf{PLCP}[0]:=0$

同様に表現できる関連な配列

引用	配列	分解
Sadakane'07 Belazzougui and Cunial'14	PLCP matching statistics	lcpcomp (Dinklage+'17) Relative LZ (Ziv+'93)
Bannai,Inenaga,K.'17	LPF	LZ77
この発表 K.'21	LPnF LPnrF	重複なし LZ 逆 LZ (Kolpakov+'09)
11: 21	E1 1111	Z LZ (ITOIPAKOV 09)

■ 引用: 2n ビット表現の提案

既存研究

	引用	時間	ビット
LPnF:	Crochemore, Tischler'11 Crochemore+'12 Ohlebusch, Weber'19:	$\mathcal{O}(n)$	$O(n \lg n)$ $O(n \lg n)$ $O(n \lg n)$

- 2n ビット表現で、 $\mathcal{O}(n \lg n)$ ビットの計算領域は最適だと見なすことができなくなる
- 時間をなるべく増大させずに、計算領域を減らすことができる?

研究結果

- $\epsilon > 0$ は任意に選択可能である定数
- 基本時間量: $\mathcal{O}(\epsilon^{-1}n)$
- $lacktriangle t_{\mathsf{SA}} = \mathsf{log}^\epsilon_\sigma \, \mathit{n}$: 接尾辞配列の access 時間

分解	ビット	計算時間
重複なしLZ ・ LPnF	$(1+\epsilon) n \lg n + \mathcal{O}(n) \ \mathcal{O}(\epsilon^{-1} n \lg \sigma)$	$\mathcal{O}(\epsilon^{-1} \mathit{n}) \ \mathcal{O}(\epsilon^{-1} \mathit{nt}_{SA})$

T = abbabbabab

T = abbabbabab

根から葉 λ まで辿る、ただし λ の接尾辞番号は項の開始位置を一致する

T = abbabbabab

sn(1) = 1

- 根から葉λまで辿る、ただし λ の接尾辞番号は項の開始位置を一 致する
- 部分木の最小の接尾辞番号は < sn(\(\lambda\)) に限り、続ける

- 根から葉λまで辿る、ただし λ の接尾辞番号は項の開始位置を一 致する
- 部分木の最小の接尾辞番号は < sn(λ) に限り、続ける

T = a|b|babbabab

- 根から葉 λ まで辿る、ただし λ の接尾辞番号は項の開始位置を一致する
- 部分木の最小の接尾辞番号は < sn(λ) に限り、続ける
- 辿り着いた最も下の頂点は参照を 「目撃」する
- 参照の出現は重複しないと確認

T = a|b|b|abbabab

- 根から葉λまで辿る、ただし λ の接尾辞番号は項の開始位置を一 致する
- 部分木の最小の接尾辞番号は < sn(λ) に限り、続ける
- 辿り着いた最も下の頂点は参照を 「目撃」する
- 参照の出現は重複しないと確認
- 重複したら、項を刈る

T = a|b|b|abb|abab

- sn(w): 頂点 w の部分木の中に最小の 接尾辞番号
- strdepth(w): 頂点 w の文字列深さ
- 頂点 v:辿り着いた最も下の頂点
- 頂点 *u*: *v* の親

項の長さは以下の選択の最大値

- \blacksquare min(sn(λ) sn(ν), strdepth(ν))
- \blacksquare min(sn(λ) sn(u), strdepth(u))

$$T = a|b|b|abb|abab$$
\$

重複なし LZ : 纏め

重複なし LZ を計算できるアルゴリズムを提案した。

- *O(n)* 回関数 sn(·) を呼び出す
- $lacksymbol{\square}$ $\mathcal{O}(z)$ 回関数 $\operatorname{strdepth}(\cdot)$ を呼び出す、ただし z は項の個数

LPnF を同様に計算できる

- 各葉を項の開始位置として扱う
- 根からではなく、接尾辞木リンクから計算し始めた場合、追加される文字列の長さに線形的な時間で木の走査が可能
- $\Rightarrow \mathcal{O}(n)$ 回 $\mathsf{sn}(\cdot)$ 及び $\mathsf{strdepth}(\cdot)$ を呼び出す

 $sn(\cdot)$ または $strdepth(\cdot)$ を呼び出すための時間は?

接尾辞木

Farach-Colton+'00 の接尾辞木構築アルゴリズム

- **■** *O*(*n*) 時間
- *O*(*n* lg *n*) ビットの計算領域

少メモリーの O(n) 時間構築アルゴリズム:

- 1. Fischer+'18:
 - $^{ op}$ $(1+\epsilon)$ n $\lg n + \mathcal{O}(n)$ ビット、ただし $\epsilon \in (0,1]$
 - au $\mathsf{sn}(\cdot)$ と $\mathsf{strdepth}(\cdot)$ を $t_{\mathsf{SA}} = \mathcal{O}(1/\epsilon)$ 時間で計算できる
- 2. Munro+'17,Belazzougui+'20:
 - \square $\mathcal{O}(n \lg \sigma) \ \forall \gamma \$
 - \Box 接尾辞配列のサンプリングで $t_{\mathsf{SA}} = \log^{\epsilon}_{\sigma} n$ を満たす

纏め

- \blacksquare アルゴリズムは $\mathcal{O}(n)$ 回関数 $\operatorname{sn}(\cdot)$ 及び $\operatorname{strdepth}(\cdot)$ を呼び出す
- 各関数呼び出しは t_{SA} 時間が必要

接尾辞木の表現

表現	領域 (ビット)	t _{SA}
1 2	$(1+\epsilon) n \lg n + 1/\epsilon^{-1} \mathcal{O}(n) \ \mathcal{O}(n \lg \sigma)$	$rac{\mathcal{O}(1/\epsilon)}{\mathcal{O}(\log_{\sigma}^{\epsilon} n)}$

未解決問題

- $O(n \log \sigma)$ ビット + O(n) 時間で LPF 表の変種を計算できる? O(r) ワードの領域, r は Burrows–Wheeler transform (BWT) の個数を示す
 - matching statistics: Bannai, Gagie, I'20
 - LPF: Prezza,Rosone'20
 - 重複なし LZ77 なら、 Policriti,Prezza'18 のアルゴリズムを応用できる 既存 項を計算しながら、 BWT を更新 提案 その変わりに項の長さを決定したあと BWT を 更新
 - □ LPnF の計算について応用は現状困難:
 - 両方に、BWT に文字を挿入と削除すべき
 - $\Rightarrow \sum_{i=1}^n \mathsf{LPnF}[i] = \mathcal{O}(n^2)$ の演算
 - LPnF の *O*(*r*) 領域で計算できるアルゴリズムがまだ提案されていない

ご清聴ありがとうございました