

A multiplexed star electrode array for session-independent silent speech recognition

Sudharshan Sundaramahalingam Supervisor: Dr Arsam Shiraz

Silent speech recognition

Speech recognition without the use of audio signals, through other correlated bio-signals. Allows for detection of silent/mouthed speech.

Is as intuitive and fast as speech but is also:

Private and convenient in public.

Unaffected by environmental noise

Accessible to people with difficulty vocalizing

High impact applications such as:

Defense ~ 500B USD market by 2030

Human-Al interaction ~ 100B USD market by 2030

EMG-based silent speech recognition

Electromyography (EMG) signals from facial muscles is a common modality for silent speech recognition.

Typical Architecture:

Electrodes

Signal Acquisition

Digital Filters

Word Classifier

State of the art
AlterEgo (2019), 91% accuracy
over a 30-word vocabulary

Replicated state-of-the-art with a custom electrode brace

System performance requires precise electrode positions, accuracy reduces to 40% after electrode shift.

Research Question:

Investigating the impact of electrode alignment with facial muscles to maximise signal-tonoise ratio (SNR) in silent speech interfaces.

Design and Development

Develop an 8-channel electrode array capable of actively switching the orientation of its electrodes.

System Design

System Development

Main Control Board

Multiplexer Board

Full Setup

(top) multiplexed, (bottom) control

Slide 4 of 7

Experimental Procedure and Development

Identify electrode directions which maximize SNR, and investigate variability in directions due to electrode shift.

Methodology

- 1. Record one minute of noise in a relaxed state.
- Record a phonetically balanced passage that ensures a variety of speech muscle activations are sampled.
- 3. Calculate SNR using mean-squared value of noise and recorded signal.
- 4. Repeat for each electrode direction (0, 45, 90, 135) + all directions + no directions selected + control array.
- 5. Repeat across 2 sessions to sample variability in the presence of electrode shift.

Detailed view of electrode array: showing electrode directions and channels

User wearing electrodes: Arrows indicate orientation compared to figure above.

Electrodes adhered with bio-safe double-sided tape.

Key Results

Optimally oriented electrodes consistently outperform average control electrode SNR of 10 dB.

The optimal orientation of the electrode **changes significantly** between sessions.

Multiplexing can offer significant SNR improvements.

Conclusion

- A novel approach to optimizing SNR for silent speech recognition through electrode alignment is investigated.
- A multiplexing system enabling configurable electrode orientation is developed.
- Results show evidence that dynamic electrode alignment has the potential to boost SNR significantly compared to a static electrode array.
- 4. System can be improved with automatic electrode alignment for user-administrable silent speech interfaces that are robust to electrode placement.

