_	
Rewrite	
KAMIC. TO	
revolue	

	Rewrite.
Final Q1 (a)	Let 52 denotes getting first success on 2nd trial.
	Want to know P(A=G S2)
	$P(A=G S_2) = P(S_2 A=G) \cdot P(A=G) / P(S_2)$
	P(C, 10-C)
	$P(S_2 A = G) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ $P(S_2 B = G) = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{3}$
	Since A=G and B=G are all cases,
	$P(S_2) = P(S_2 A=G) - P(A=G) + P(S_2 B=G) - P(B=G)$
	Note that $P(A=G) = P(B=G) = \frac{1}{5}$ $P(52) = \frac{1}{4} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{1}{2} = \frac{1}{5} + \frac{1}{7} = \frac{17}{72}$
9	$\frac{7(52)}{7} = \frac{4 \cdot 2}{7} + \frac{7}{7} = \frac{7}{7}$
	P(A-G C) = P(C A-G) P(A-G) / P(C)
	$P(A=G S_2) = P(S_2 A=G) \cdot P(A=G) / P(S_2)$ = $\frac{1}{4} \cdot \frac{1}{2} / \frac{17}{72}$
	$= \frac{9}{15}$
Q, W.	Let S3 denotes getting first success on 3rd tord.
	Want to know P(B=R152).
	P(B=R S3) = P(S3 B=R) - P(B=R) / P(S3)
	$P(S_3 B=R) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{4}{27}$
	$P(S_3 A=R) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$
	P(S3) = P(S2 B=R) · P(B=R) + P(S3 A=R) · P(A=R)
	$=\frac{1}{27}\cdot\frac{1}{2}+\frac{1}{8}\cdot\frac{1}{2}=\frac{2}{27}+\frac{1}{16}=\frac{59}{432}$
	P(B=R153) = P(S2 B=R) P(B=R) / P(S3).
	$P(B=R S_2) = P(S_2 B=R) \cdot P(B=R) / P(S_2).$ $= \frac{4}{27} \cdot \frac{1}{2} / \frac{59}{432}$ $= \frac{32}{59}$
	$= \frac{52}{59}$

Q. W. Let R. denotes getting report that the facility had green	chips
getting first success on second trial.	,
Let Rz denotes getting report that facility tested red	one gets
first success on third trial	J
Let My denotes the match that A = G B=R.	
Let Mz denotes the match A=R and B=G.	
Want to know P(M, IR, Rz) (R, Rz) denotes getting.	oth report!
P(M, R, R2) = P(R, R2 M) · P(M) / P(R, R2).	1
Since gotting first success in these two facilities are independ	lent.
$P(R_1, R_2 \mid M_1) = P(R_1 \cap R_2 \mid M_1)$	
= P((R1/M)) (R2/M))	
= P(RIMI) - P(RIMI)	
$=\frac{1}{2},\frac{1}{2},\frac{2}{8},\frac{2}{3},\frac{1}{3}=\frac{1}{27}$	
Similarly P(R, R> M>) = P(R, M>) - P(R> M>)	y
$= \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{30}$	
Note that P(M1) = P(M2) = = and	
P(R1, R2) = P(R1, R2 M1) - P(M1) + P(R1, R2 M2) - P(M2)	
$=\frac{1}{2}(\frac{1}{2}+\frac{1}{36})=\frac{7}{216}$	
P(M, R, R2) = P(R, R2 M) - P(M) / P(R, R2)	
$=\frac{1}{20}\cdot\frac{1}{2}\left(\frac{7}{216}\right)$	ling.
Y ₁	
With combined reports, the probability that A is green and B is	red esual 5
	1
	1000

Rewrite .		
Qz (b).	Known X ~ E12> Y~ E(1) X, Y independent.	
	Want to know distribution of 2x and P(2x < y)	
	Since X~ E(2), the colf of X Fx(x) = P(x <x) 1-<="" =="" td=""><td>e -20x (x>0)</td></x)>	e -20x (x>0)
	the colf of 2x F2x(x) = P(2X < x)	<u>/</u>
	$= P(x < \frac{x}{2})$	
	$=1-e^{-x}$	P1
	$f_{2x}(x) = \frac{d}{dx} F_{2x}(x) = e^{-x}$	1
	This 2x ~ E(1). with poly fex (m = e-x.	
4	and the state of t	
	P(2x < y) = Jo Jo e-x. e-y dx dy.	
	$= \int_0^{\infty} \left(\int_0^{y} e^{-x} dx \right) e^{-y} dy$	
	$=\int_{0}^{\infty}(-e^{-2y}+e^{-y})dy$	
	$=(\frac{1}{2}e^{-2y}-e^{-y}) _{0}^{\infty}$	
	and the state of t	
	<u>'</u>	
	3 .	

Rewrite	
Q4 (a). Let C clearbes number of C solmon in to hours	
Lot S denotes # 5 solmen in t hours.	
Let N denotes total # salmon in to hours, N=S+C.	
$k_{nown} : N \sim P_0(56), P(c) = \frac{2}{5} P(s) = \frac{2}{5}$	
For each fish, it's either C or S,	
the event that getting $x \in Salmon$ among $(x+y)$ fishes is $C \sim Bin(\frac{2}{5}, N = C+5)$.	binomizel.
$P(C=x \mid N=C+S=x+y) = {x+y \choose x} = {x+y \choose x} = {x+y \choose x}$	
$P(C=x,S=y \mid N=C+S=x+y) = P(C=x \mid N=C+S=x+y) = \frac{(x+y)!}{x!y!} = \frac{x}{x!y!}$	5 J
$N \sim P_0$ (st), $P(N=x+y) = e^{-st} st^{(x+y)} / (x+y)!$	
$P(C=\alpha, S=y) = P(C=\alpha, S=y \mid N=\alpha+y) \cdot P(N=\alpha+y)$	
$= \left(\frac{(x+y)!}{x!y!} \left(\frac{2}{5}\right)^{x} \cdot \left(\frac{3}{5}\right)^{y}\right) \cdot \left(e^{-st}(s+x)\right) \cdot \left(e^{-st}(s+x)\right)$	
$= \left(\left(\frac{2}{5} \right)^{\alpha} \cdot \left(\frac{3}{5} \right)^{\beta} \cdot e^{-5t} \cdot \left(5t \right)^{\alpha+\beta} \right) / (\alpha! \cdot \beta!)$	
$= ((2t)^{x} \cdot (3t)^{y} \cdot e^{-2t} \cdot e^{-3t}) / (x! \cdot y!)$	
$= (e^{-2t} (2t)^{\alpha}/\alpha() \cdot (e^{-3t} \cdot (3t)^{9})/9!$	
$= P(P_0(2b) = \alpha) \cdot P(P_0(3b) = y).$	
This proves C and S are independent, for P(SNC) = P(S).	PCO).
	7
Ψ.	

P(entern (A) =
$$\frac{1}{3}$$
) | $\frac{1}{3}$ (entered (B) = $\frac{1}{3}$)

In green

P(1st not entern and 2nd entern | $\frac{1}{4}$) = $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{$

a.
$$P(x = y) = \int_{0}^{\infty} \int_{0}^{y} 2e^{-2x} \cdot e^{-y} dx dy$$

$$= \int_{0}^{\infty} -e^{-2x} \cdot e^{-y} \Big|_{0}^{y} dy$$

$$= \int_{0}^{\infty} -e^{-3y} + e^{-y} dy$$

$$= \frac{1}{3}e^{-3y} - e^{-y} \Big|_{0}^{\infty}$$

$$= |-\frac{1}{3} = \frac{7}{3}$$

b. 2x still exponential distribution. V why
$$f(2x) = 2e^{-4x}.$$

$$f(2x) = 2e$$

$$P(2x < y) = \int_{0}^{2} \int_{0}^{2} \frac{1}{2} e^{-\frac{1}{2}y} e^{-\frac{1}{2}y} dx dy.$$

$$= \int_{0}^{2} -\frac{1}{2} e^{-\frac{1}{2}y} e^{-\frac{1}{2}y} dy$$

$$= \int_{0}^{2} -\frac{1}{2} e^{-\frac{1}{2}y} e^{-\frac{1}{2}y} dy$$

$$= \frac{1}{2} \int_{0}^{2} -e^{-\frac{1}{2}y} + e^{-\frac{1}{2}y} dy$$

$$= \frac{1}{2} P(x < y) = \frac{1}{3}$$

$$= \int_{W}^{\infty} 2e^{-3x} dx \cdot \int_{W}^{\infty} e^{-9} dy$$

$$= \left(-e^{-3x} |_{W}^{\infty}\right) \cdot \left(-e^{-9} |_{W}^{\infty}\right)$$

$$= e^{-3w}$$

50 W ~ 5 (3) with mean 3

= P(2A) U P(2B) U P(2AB) U P(20) 3. D. i P(first tono have some) = 0.4.0.4 + 0.2.0.2 +0.1.0.1 +0.3.0.3 P(first two have some | neither 0) = P(2A) UP(2B) UP(2AB) P(neither 0) = 04.0.4 + 0.3.0.3 + 0.1.0.1 (1-0.3) (1-0.3) b. ; bet X denotes # people have A. X~N(1000, 0.4) P(X 2370) = P(N(1000,014) 2369.5) by correction ii bet y denotes # people have H" YN PO () = (000 · 0.4 · 0.001) = Po (0.4) P(Y=1) = P(Po(O4)=1). C. i P(2 have some) = P(2A) 1 P(2B) 1 P(2AB) 1 P(2D) = 4 = + 10.0 + 10. = + 10.0 + 10. = $=\frac{12+2+6}{90}=\frac{2}{5}$ 11. P (2 have some | neither 0) = P(2A) 1 P(2B)) / P(not 20) 0

```
N= C+5. N~ Po (56).
U. (a). P(C=x|S=y) = P(C=x,S=y|N=(x+y)/P(N=x+y)
          P(N=x+y) = e^{-5t} (5t)^{x+y} / (x+y)!
            (C= x, S=y IN = (x+y) ~ U (x+y),
     (b) i Shee 5, C are poisson distribution and indep.
           # of C N Bin (25, =)
             ZCC) = 25. = = 10.
             Var(1) = 25. 3- 3 = 6.
        ii c~ Po (2.4) = Po (80), since S, C inclep.
              12(0)= 80 Tun= 10-1/=4
              JECND = 8. Jorden
    (C). 1 N=>3
                 12 ' S=10 4
S=16.
       In 8 am - 12pm. CIN BM (25, =), Z (4) = 10 Var (4) = 6.
       In 12pm - 4pm Cz constant Z(c) = 20-10=10 Var(c)= 9.
       2 4-> 8. CAN PO(2.4) ECG) = 8 Varcy = 8.
        E(c) = 10+10+8=28
        Voi (c) = 6+0+8 = 14.
```

```
5. fxy(xy) = e-y 0 < x < y < 0 0 other.
a. fx (n) = fx e-y dy
           = -e^{-y} / \frac{\pi}{2}
           = 0-M. 0 < M < 5.
       from = 0 otherwise since fxy =0.
     f(XIX) (pla) = fxx (xxy) / fxix)
              = e / e - x = e - y + x. 0 < x < y < 7
       feyexx(v)a) =0 other wise shee fxy =0.
      E (YIX=x) = Jx y fxix (yim) dy
                  = Jaye-0+x dy
              = - ye-y+x - e-y+x | 0
      Var (X|X=x) = 7= ( Y2(X=x) - 7= ( Y1x=x) >
                = 1 x y e - v + x dy - (A+1)2
      7= (Y) = 7= ( ]= (Y1X))
            = E(x+1) = E(x)+1 = 2
       Var (Y) = El Var (YIX) + Var (EcylX)
              = 7=(1) + Var (x+1)
              = 1+ Var(x).
```

W= Y-X.

P(W = w | X = x) = P (Y - X = w | X = x) = P(X < x+w | X = a).

fy1x (y1x) = e-y+x.

FYIX (x+w) = I x+w e-y+x ofy Note Yzx. = -e-9+x/x+w $= -e^{-w} + e^{\circ}$

this shows XW functionally independent. (why

P(WEW | X=x) = P (WEW) = F Y | x (x+w) = -e-w+1. fruin = of Fyix/dw = e-w o = w = w.