Мінімізація скінченного автомата. Приклад:

Запишемо розбиття множини станів автомата для відношення \cong^0 :

Це відношення розбиває множину станів на дві підмножини: заключних та незаключних станів.

 $\{s_0, s_1, s_2\}$ – незаключні стани; $\{s_3, s_4, s_5\}$ – заключні стани.

Мінімізація скінченного автомата. Приклад:

Оскільки стани

$$\delta(s_2,0) = s_0 \text{ Ta } \delta(s_2,1) = s_3$$

не є 0-еквівалентними станами, бо вони належать різним класам, то в розбитті для 1-еквівалентності вони "розійдуться" по різних класах; розбиття, зумовлене відношенням \cong^1 , матиме вигляд

Мінімізація скінченного автомата. Приклад:

Під час переходу до 2-еквівалентності доведеться "розвести" стани s_0 , s_1 , бо

$$\delta(s_0,0) = s_0 \text{ Ta } \delta(s_1,0) = s_2,$$

а s_0 та s_2 належать до різних класів 1-еквівалентності.

Оскільки для всіх станів з множини $\{s_3, s_4, s_5\}$ скінченний автомат переходить в один з цих же станів, то розбиття на класи 2-еквівалентності і є шукане "найдрібніше" розбиття:

Мінімізація скінченного автомата. Приклад: Позначимо узагальнений стан для класу $\{s_3, s_4, s_5\}$ через q.