Задачи

Лесни

Задача 1.1

Да се докаже, че $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Задача 1.2

Да се докаже, че $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$

Задача 1.3

Да се докаже, че $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$

Задача 1.4

Да се докаже, че $5^{2n+1}+2^{2n+1}$ се дели на 7 за всяко $n\in\mathbb{N}$

Задача 1.5

Да се докаже, че $f_{n+1}<\left(\frac{7}{4}\right)^n$, където f_{n+1} е (n+1)-вото число на Фибоначи.

Задача 1.6

Да се докаже, че за всяко цяло число $n \geq 2$ е в сила, че $\prod_{k=1}^n \left(1 - \frac{1}{\sqrt{k}}\right) < \frac{2}{n^2}$

Задача 1.7 - Задачи за самоподготовка по Дискретни структури - 2021/2022 - Добромир Кралчев

Да се докаже, че $\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{3n+1}>1$ за всяко $n\geq 1$

Задача 1.8 - Kenneth H. Rosen

Да се докаже, че за всяко $n \in \mathbb{N}$

$$\sum_{k=1}^{2^n} \frac{1}{k} \le 1 + n$$

Задача 1.9 - семестриално контролно - КН - 2018

Разглеждаме безкрайната числова редица, определена по следния начин $a_0 = 7, a_{n+1} = \sqrt{5a_n + 31}$ за всяко естествено число n. Докажете, че всички челенове на редицата са по-малки от 10.

По-забавни

Задача 2.1 - домашно - КН - 2021

Да се докаже, че
$$\sum_{X\subseteq\{1,2,\dots,n\}} \prod_{y\in X} y = (n+1)!.$$

Задача 2.2

Да се докаже, че сумата на първите n нечетни числа е точен квадрат за всяко $n \in \mathbb{N}$.

Задача 2.3

Да се докаже, $1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2$ за всяко $n \in \mathbb{N}^+$.

Задача 2.4 - Записки на Ангел Димитриев

Да се докаже, че всяко $n \in \mathbb{N}^+$ може да се представи като сума на **различни** степени на двойката.

Задача 2.5

Да се докаже, че всяко естествено число $n \geq 2$ може да се представи като произведение на прости числа.

Задача 2.6

Да се докаже, че всяка сума $n \geq 12$ може да се направи с банкноти от 4 и 5 лева.

Задача 2.7 - Kenneth H. Rosen

Да се докаже, че всяка дъска с квадратчета с размери $2^n \times 2^n$ с едно квадратче премахнато може да се покрие с правоъгълни троминота (могат да се въртят).

Правоъгълно тромино

Задача 2.8 - Любен Балтаджиев

Нека редицата на простите числа да бъде $p_1, p_2, p_3, ...$, където $p_1 = 2, p_2 = 3, ...$. Да се докаже, че $p_n < 2^{2n}$.

Hint: докажете първо, че $p_{n+1} \leq p_1 p_2 ... p_n + 1$ като разгледате делимостта на дясната страна на неравенството.

Решения