BASKIN SCHOOL OF ENGINEERING

SAM Program, Statistics Track

2018 First Year Exam: June 11, 2018

INSTRUCTIONS

Please complete all problems on the **supplied exam papers**. Write your exam ID number and problem number on each page. Use only the **front side** of each page.

Some formulas that may be useful:

• The density function of the exponential distribution with rate parameter $\lambda > 0$ (mean $1/\lambda$, variance $1/\lambda^2$) is given by

$$f(x) = \lambda \exp(-\lambda x), \quad x > 0.$$

• The density function of the gamma distribution with shape parameter $\alpha > 0$ and rate parameter $\beta > 0$ (mean α/β , variance α/β^2) is given by

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x), \quad x > 0.$$

• The density function of the beta distribution with shape parameters $\alpha > 0$ and $\beta > 0$ is given by

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 < x < 1.$$

• The density of the generalized inverse Gaussian distribution with parameters a>0, b>0, and $p\in\mathbb{R}$ is given by

$$f(x) = C \, x^{p-1} \, \exp\{-(ax+b/x)/2\}, \quad x>0 \; ,$$

where C is the normalizing constant.

• The probability mass function of the Poisson distribution with mean $\mu > 0$ is given by

$$f(x) = \frac{e^{-\mu}\mu^x}{x!}, \quad x = 0, 1, 2, \dots$$

Problem 1 (AMS 203):

- 1. (60%) Let X_1, \ldots, X_n be an independent and identically distributed (i.i.d.) sample from an exponential distribution with rate parameter λ . Let $Y = X_1 + \ldots + X_n$.
 - (a) (25%) Show that Y follows a gamma distribution with shape parameter n and rate parameter λ .
 - (b) (15%) Identify the asymptotic distribution of $\sqrt{n}\{(Y/n) (1/\lambda)\}$, and specify its parameters. Justify your answer.
 - (c) (20%) Consider a random variable Z with conditional distribution, $Z \mid Y = y$, given by a Poisson distribution with mean y. Derive the marginal distribution of Z.
- 2. (40%) Let X_1, X_2 be i.i.d. exponential random variables with rate parameter λ . Let U be a random variable which is uniformly distributed on [0,1]. Suppose that U, X_1 , and X_2 are independent. Let $Z = (X_1 + X_2)U$. Prove that Z is an exponential random variable with rate λ .

Problem 2 (AMS 205B):

Let $X_1, ..., X_n \stackrel{iid}{\sim} U(-\theta, \theta)$, where $\theta > 0$ is an one-dimensional unknown parameter.

- 1. (30%) Is $(X_{(1)}, X_{(n)})$ minimal sufficient for θ ? Provide an argument supporting your answer.
- 2. (20%) Let $h(X_1,...,X_n) = \max\{|X_1|,...,|X_n|\}$. Prove that $h(X_1,...,X_n)$ is a complete statistic for θ .
- 3. (20%) Show that the conditional distribution of $h(X_1,..,X_n)$ given $|X_1|/|X_3|$ is the same as the marginal distribution of $h(X_1,...,X_n)$.
- 4. (30%) Provide the likelihood ratio test statistic for testing $H_0: \theta = 2$ vs. $H_1: \theta \neq 2$.

Problem 3 (AMS 206B):

We are given a coin and are interested in the probability θ of observing heads when the coin is flipped. An experiment is conducted by flipping the coin (independently) in a series of trials. Suppose we have the observations of x heads and y tails (let n = x + y).

- 1. (25%) Suppose that we do not have enough information to specify a model for the "series of trials" and consider two possibilities:
 - (Binomial) Suppose a fixed number of independent Bernoulli trials, n, are performed and let y be the number of tails out of the n trials.
 - (Negative Binomial) Suppose that independent trials are performed until the y-th tail occurs and we let n denote the number of trials needed for this.

Will the inference for θ be the same under the binomial and the negative binomial distribution models or not? Provide a full justification for your answer.

2. (75%) Let $x \mid \theta \sim \text{Binom}(n, \theta)$, with known n. Consider a two-component mixture of beta distributions prior for θ , more specifically:

$$\theta \sim g_1(\theta) = \epsilon \operatorname{Be}(\alpha_1, \beta_1) + (1 - \epsilon) \operatorname{Be}(\alpha_2, \beta_2),$$
 (3.1)

with $0 < \epsilon < 1$ and $\alpha_1, \beta_1, \alpha_2, \beta_2 > 0$.

- (a) (25%) Find the marginal distribution $m_1(x)$.
- (b) (25%) Derive the posterior distribution for θ given x.
- (c) (25%) Consider a Bayesian hypothesis test, $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$, for specified θ_0 . Assume the prior under the alternative is $g_1(\theta)$ in (3.1). Let ρ_0 be the prior probability that $\theta = \theta_0$. Find the posterior probability of H_0 , $\pi(H_0 \mid x)$.

Problem 4 (AMS 207):

To obtain a robust linear regression model, we consider an error distribution given by a double exponential, instead of a normal. As for the Student's t-distribution case, it is possible to use the fact that the double exponential is a scale mixture of normals to obtain an efficient Gibbs sampler for exploring the posterior distribution of the model parameters. More specifically, consider the model

$$Y = X\beta + \varepsilon; \quad Y, \varepsilon \in \mathbb{R}^n, \ X \in \mathbb{R}^{n \times p}, \ \beta \in \mathbb{R}^p$$

where

$$p(\varepsilon \mid \sigma^2) = \prod_{i=1}^n \frac{1}{2\sqrt{\sigma^2}} e^{-|\varepsilon_i|/\sqrt{\sigma^2}}$$
.

Consider a non-informative prior $p(\boldsymbol{\beta}, \sigma^2) \propto 1/\sigma^2$.

1. (20%) Use the fact that

$$\frac{1}{2\sqrt{\sigma^2}}e^{-|\varepsilon_i|/\sqrt{\sigma^2}} = \int_0^\infty \left(\frac{1}{\sqrt{2\pi}\sqrt{s^2}}e^{-\varepsilon_i^2/(2s^2)}\right) \left(\frac{1}{2\sigma^2}e^{-s^2/(2\sigma^2)}\right) ds^2$$

to write the likelihood as a scale mixture of normals.

- 2. (35%) Introduce latent variables in order to write the model as a hierarchical normal linear model.
- 3. (45%) Obtain and identify the posterior full conditional distributions for all the parameters of the hierarchical model.

Problem 5 (AMS 256):

1. (50%) Consider the model

$$y_i = \alpha + \sin(x_i + \beta) + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2), \quad i = 1, ..., n.$$
 (5.1)

Here $y_1, ..., y_n$ are the responses and $x_1, ..., x_n$ are the predictors. Assume $\sum_{i=1}^n \sin(x_i) = \sum_{i=1}^n \cos(x_i) = \sum_{i=1}^n \sin(2x_i) = 0$.

- (a) (20%) Represent (5.1) in the form of a linear model with vector of regression coefficients $(\alpha, \cos(\beta), \sin(\beta))$. (Hint: $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$.)
- (b) (30%) Provide the explicit form of the least squares estimators of the parameters in the linear model representation.
- 2. (50%) Consider the two-way ANOVA model $y_{ij} = \mu + \zeta_i + \lambda_j + \epsilon_{ij}$, $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, i = 1, ..., 3 and j = 1, ..., 4.
 - (a) (30%) Express the above equations in the form of $\mathbf{y} = \mathbf{X}\boldsymbol{\gamma} + \boldsymbol{\epsilon}$, and specify \mathbf{y} , \mathbf{X} and $\boldsymbol{\gamma}$. What is the rank(\mathbf{X})? How many constraints are required to make the predictor matrix full column rank?
 - (b) (20%) Is $\zeta_1 \zeta_3 + \lambda_4 \lambda_1$ estimable?