PRINTABLE VERSION

Quiz 6

Question 1

Given $f(x)=\dfrac{7}{\sqrt{x+2}}$ which of the following expressions will represent f'(x)?

a)
$$\bigcap_{h o 0} \frac{7}{\sqrt{x+h+2}}$$

b)
$$\lim_{h o x} \frac{\left(rac{7}{\sqrt{x+h+2}}
ight) - \left(rac{7}{\sqrt{x+2}}
ight)}{h}$$

c)
$$\frac{\left(\frac{7}{\sqrt{x+h+2}}\right)-\left(\frac{7}{\sqrt{x+2}}\right)}{h}$$

d)
$$\lim_{h o 0} rac{\left(rac{7}{\sqrt{x+h+2}}
ight)-\left(rac{7}{\sqrt{x+2}}
ight)}{h}$$

e)
$$\lim_{h o 0} \left(rac{7}{\sqrt{x+2}} + h
ight) - \left(rac{7}{\sqrt{x+2}}
ight)$$

Question 2

$$\lim_{h \to 0} \frac{\frac{1}{6+h} - \frac{1}{6}}{h} =$$

- a) Odoes not exist
- **b)** $\bigcirc \frac{1}{6}$
- c) $0 \frac{1}{36}$
- **d)** 0
- **e)** $0 \frac{1}{6}$

Question 3

The limit $\lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$ represents the derivative of a function f at a number c. Determine f and c.

a)
$$\bigcirc f(x) = (2+x)^2$$
, $c = -2$

b)
$$\bigcirc f(x) = x^2, c = 2$$

c)
$$f(x) = (2+x)^2$$
, $c=2$

d)
$$\bigcirc f(x) = (2-x)^2$$
, $c=4$

e)
$$\bigcirc f(x) = x^2$$
, $c = 4$

Question 4

The limit $\lim_{h\to 0} \frac{\cos\left(\frac{\pi}{6}+h\right)-\frac{\sqrt{3}}{2}}{h}$ represents the derivative of a function f at a number c. Determine f and c.

a)
$$Of(x) = \cos(1/6\pi x)$$
, $c = \frac{\sqrt{3}}{2}$

b)
$$\bigcirc f(x) = \cos(x)$$
, $c = \frac{\pi}{6}$

c)
$$Of(x) = -\cos(x), c = \frac{\sqrt{3}}{2}$$

d)
$$\bigcirc f(x) = \cos(1/6\pi x), c = \frac{\pi}{6}$$

e)
$$\bigcirc f(x) = \cos(x)$$
, $c = \frac{\sqrt{3}}{2}$

Question 5

Given that $f(x)=6\,x^2-2\,x$ and c=4, find f'(c) by forming the difference quotient, $\dfrac{f(c+h)-f(c)}{h}$, and taking the limit as h o 0

- **a)** 88
- **b)** 12
- **c)** 046
- **d)** 0-2
- **e)** 00

Print Test

Question 6

Given that $f(x)=-2\,x^2-3\,x$, find f'(x) by forming the difference quotient, $\dfrac{f(x+h)-f(x)}{h}$, and taking the limit as h o 0

- **b)** $\bigcirc f'(x)$ does not exist.
- c) 0-4x-3
- **d)** 04x+3
- **e)** 04x-3

Question 7

The graph of a function f is shown in the figure.

At which numbers c is f continuous but not differentiable?

- a) Every where differentiable
- **b)** At c = -4, c = -2, c = 1 and c = 7
- c) \bigcirc At c=4
- **d)** At c = 1
- **e)** At c = -4

Question 8

Given that

$$f(x) = \left\{egin{array}{ll} 2x & x < -1 \ -x^2 - 1 & x \geq -1 \end{array}
ight.$$

and c = -1, find f'(c), if it exists.

- **a)** 03
- **b)** 0 1
- c) \bigcirc 2
- **d)** 01
- e) f'(-1) does not exist

Question 9

Determine the values of the constants B and C so that the function given below is differentiable.

$$f(x) = \left\{ egin{array}{ll} 9\,x^2 & x \leq 1 \ Bx + C & x > 1 \end{array}
ight.$$

a)
$$\bigcirc \{B = -18, C = 27\}$$

b)
$$\bigcirc \{B=18, C=-9\}$$

c)
$$\bigcirc \{B = -36, C = -9\}$$

d)
$$\bigcirc \{B = 18, C = 36\}$$

e)
$$\bigcirc \{B=18, C=45\}$$

Question 10

If f(-4)=2 and f'(-4)=-6, find the equation of the tangent line to f at x=-4.

a)
$$y = -6x - 22$$

b)
$$y = -6x + 2$$

c)
$$y = 2x - 6$$

d)
$$0 y = 2x + 2$$

e)
$$y = -6x + 26$$