Introduction to Machine Learning

Feature Selection: Introduction

Learning goals

- Too many features can be harmful in prediction
- Selection vs. extraction
- Types of selection methods

INTRODUCTION

Feature selection:

Finding a well-performing, hopefully small set of features for a task.

Feature selection is critical for

- reducing noise and overfitting
- improving performance/generalization
- enhancing interpretability by identifying most informative features

Features can be selected based on domain knowledge, or data-driven algorithmic approaches. We focus on the latter here.

MOTIVATION

- Naive view:
 - ullet More features o more information o discriminant power \uparrow
 - Model is not harmed by irrelevant features since their parameters can simply be estimated as 0.
- In practice, irrelevant and redundant features can "confuse" learners (see **curse of dimensionality**) and worsen performance.
- Example: In linear regression, R^2 is monotonically increasing in p, but adding irrelevant features leads to overfitting (capturing noise).

MOTIVATION

- In high-dimensional data sets, we often have prior information that many features are either irrelevant or of low quality
- Having redundant features can cost something during prediction (money or time)
- Many models require n > p data. Thus, we either need to
 - adapt models to high-dimensional data (e.g., regularization)
 - design entirely new procedures for p > n data
 - use filter preprocessing methods from this lecture

SIZE OF DATASETS

Many new forms of technical measurements and connected data leads to availability of extremely high-dimensional data sets.

- Classical setting: Up to around 10² features, feature selection might be relevant, but benefits often negligible.
- Datasets of medium to high dimensionality: At around 10² to 10³ features, classical approaches can still work well, while principled feature selection helps in many cases.
- **High-dimensional data**: 10^3 to 10^9 or more features. Examples: micro-array / gene expression data and text categorization (bag-of-words features). If we also have few observations, scenario is called $p \gg n$.

FEATURE SELECTION VS. EXTRACTION

Feature selection

- Creates a subset of original features x by selecting p

 features f.
- Retains information on selected individual features.

Feature extraction

- Maps p features in x to p
 extracted features f.
- Info on individual features can be lost through (non-)linear combination.

FEATURE SELECTION VS. EXTRACTION

- Both FS and FE contribute to
 1) dimensionality reduction and 2) simplicity of models
- FE can be unsupervised (PCA, multidim scaling, manifold learning) or supervised (supervised PCA, partial least squares)
- FE can produce lower dim projections which can work better than FS; whether FE+model is interpretable depends on how interpretable extracted features are

TYPES OF FEATURE SELECTION METHODS

In rest of the chapter, we introduce different types of methods for FS:

- Filters: evaluate relevance of features using statistical properties such as correlation with target variable
- Wrappers: use a model to evaluate subsets of features
- Embedded methods: integrate FS directly into specific model we look at them in their dedicated chapters (e.g., CART, L₀, L₁)

Example: embedded method (Lasso) regularizing model params with *L*1 penalty enables "automatic" feature selection:

$$\mathcal{R}_{\text{reg}}(oldsymbol{ heta}) = \mathcal{R}_{\text{emp}}(oldsymbol{ heta}) + \lambda \|oldsymbol{ heta}\|_1 = \sum_{i=1}^n \left(y^{(i)} - oldsymbol{ heta}^ op \mathbf{x}^{(i)}
ight)^2 + \lambda \sum_{j=1}^p | heta_j|$$

