

Learning

Ramaditia D

Outline

- Pembelajaran Mesin
- Supervised Learning
- Data Pembelajaran
- Klasifikasi
- Evaluasi Pembelajaran Klasifikasi
- Klasifikasi dengan kNN
- Klasifikasi Naïve Bayes Classifier

Pembelajaran Mesin

 Kajian mengenai pembuatan program komputer yang secara otomatis meningkatkan atau menyesuaikan kinerjanya melalui pengalaman.

- "programming by example"
- Tujuan: menghasilkan algoritme pembelajaran yang belajar secara otomatis tanpa bantuan manusia

 Tidak menyelesaikan masalah secara langsung, program mencari metode terbaik dengan mempelajari contoh yang disediakan.

Kesulitan Membangun Expert System

• Tidak ada pakar (manusia) untuk masalah yang harus diselesaikan

Ada pakar, tetapi tidak mampu menjelaskan kepakarannya.

Masalah bersifat dinamis dimana fenomena berubah dengan cepat

 Aplikasi perlu disesuaikan/dipersonalkan untuk setiap pengguna komputer secara terpisah.

Terapan Pembelajaran Mesin

- Pengenalan huruf dan angka (character)
- Pengenalan tulisan tangan (handwriting)
- Deteksi wajah
- Penyaringan spam
- Pengenalan suara
- Pemahaman bahasa pembicaraan
- Prediksi pasar saham

- Prediksi cuaca
- Diagnosa medis
- Deteksi penipuan
- Pencocokan sidik jari (fingerprint)

Jenis Pembelajaran Mesin

- Supervised Learning
 - Model Pembelajaran Terbimbing
- Unsupervised Learning
 - Model Pembelajaran Tidak Terbimbing
- Reinforcement Learning
 - Model Pembelajaran berdasarkan reward dan punishment.

Supervised Learning

 Model Pembelajaran Terawasi yaitu "mengajarkan" model dengan pengetahuan sehingga dapat memprediksikannya di masa mendatang

Terdapat pemberian label dalam proses pembelajaran.
 Mengajarkan model dan melatihnya dengan beberapa data dari dataset yang berlabel.

• Diberikan kumpulan data pasangan *input-output*, kemudian mempelajari fungsi untuk melakukan pemetaan *input* ke *output*.

Data Pembelajaran (Dataset)

Input/Atribut/fitur

Date	Humidity	Pressure	Temperature	Rain	
January 1	93%	999.7	20	Rain	
January 2	49%	1015.5	27	No Rain	
January 3	79%	1031.1	28	No Rain	
January 4	65%	984.9	21	Rain	
January 5	90%	975.2	22	Rain	

f(inputs) = Outputs

Output/Target/Class/Label

```
f(humidity, pressure, temp) = Rain/No Rain?
f(93, 999.7, 20) = Rain
f(49, 1015.5, 27) = No Rain
f(79, 1031.1, 28) = No Rain
```

Data Pembelajaran (Dataset)

Output |

Input/Atribut/fitur

Date	Humidity	Pressure	Temperature	Rain
January 1	93%	999.7	20	Rain
January 2	49%	1015.5	27	No Rain
January 3	79%	1031.1	28	No Rain
January 4	65%	984.9	21	Rain
January 5	90%	975.2	22	Rain

f(inputs) = Outputs

f(pressure, temp) = Humidity? f(999.7, 20) = 93 f(1015.5, 27) = 49f(1031.1, 28) = 79

Pressure

Visualisasi Data

Keterangan:

Rain

No Rain

Humidity

Jenis Nilai Data

Date	Humidity	Pressure	Temperature	Rain	
January 1	93%	999.7	20	Rain	
January 2	49%	1015.5	27	No Rain	
January 3	79%	1031.1	28	No Rain	
January 4	65%	984.9	21	Rain	ı
January 5	90%	975.2	22	Rain	

Numerik

Non Numerik/Categorical

Pada data tersebut terlihat nilai data memiliki dua jenis, Yang pertama adalah angka. Data yang paling umum digunakan adalah angka. Yang kedua adalah huruf yaitu non-numerik, karena berisi karakter bukan angka.

Tipe Supervised Learning

Klasifikasi Vs Regresi

Klasifikasi adalah proses memprediksi label atau kategori kelas diskrit.

Klasifikasi Vs Regresi

Regresi adalah proses memprediksi nilai kontinu sebagai lawan dari prediksi nilai kategorikal dalam Klasifikasi.

- Klasifikasi adalah proses memprediksi label atau kategori kelas diskrit.
- Diberikan sebuah himpunan observasi berupa data tabel, lengkap dengan label class-nya

age	ed	employ	address	income	debtinc	creddebt	othdebt	default	
41	3	17	12	176	9.3	11.359	5.009	1	
27	1	10	6	31	17.3	1.362	4.001	0	
40	1	15	14	55	5.5	0.856	2.169	0	
41	1	15	14	120	2.9	2.659	0.821	0	Data
24	2	2	0	28	17.3	1.787	3.057	1)
41	2	5	5	25	10.2	0.393	2.157	0	berupa
39	1	20	9	67	30.6	3.834	16.668	0	Kategor
43	1	12	11	38	3.6	0.129	1.239	0	
24	1	3	4	19	24.4	1.358	3.278	1	
36	1	0	13	25	19.7	2.778	2.147	0	

 Model Klasifikasi harus menentukkan class dari observasi baru yang belum diberikan label class.

ge	ed	employ	address	income	debtinc	creddebt	othdebt	default
37	2	16	10	130	9.3	10.23	3.21	

Target / Class dari Klasifikasi

- Dari contoh yang sebelumnya, kita bias melihat bahwa target / class dari nasabah tersebut berupa binary
 - Memungkinkan melakukan pinjaman
 - Tidak memungkinkan melakukan pinjaman

 Pada dasarnya, klasifikasi tidak hanya dapat melakukan binary klasiifkasi tetapi juga multiclass klasifikasi.

- Sebagai contoh:
 - Kelompok A, atau B, atau C.
 - Kucing, Harimau, atau Macan
 - Bunga anggrek, melati, atau bakung

Hal Penting dalam Klasifikasi

 Hal terpenting di dalam melakukan klasifikasi adalah menentukan fitur/aspek yang dapat dengan baik mengkategorikan suatu data.

Pengukuran Evaluasi dalam Klasifikasi

- Pengukuran Evaluasi (Evaluation Metrics) mendeskripsikan performa dari model classifier kita.
- Untuk membuat Evaluation Metrics, data training dibagi menjadi dua:

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn		
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1	1	
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1	>	Training Data
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0		J
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0	1	
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0	>	Testing Data
5	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1		

Training data = Membuat *model classifier*.

Testing data = Memeriksa akurasi dari classifier

Training dan Testing Data

Confusion Matrix

- Cara membaca Confusion Matrix
- True Positive:
 - Diprediksi *True*
 - Class sebenarnya True
- True Negative
 - Diprediksi False
 - Class sebenarnya False
- False Negative:
 - Diprediksi False
 - Class sebenarnya True
- False Positive:
 - Diprediksi True
 - Class sebenarnya False

Confusion Matrix Evaluation Metric

Confusion Matrix Evaluation Metric:

• Akurasi =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

• Precision =
$$\frac{TP}{TP + FP}$$

• Recall =
$$\frac{TP}{TP + FN}$$

• F1-Score =
$$2 \times \frac{\text{Precision} \times \text{Recall}}{(\text{Precision} + \text{Recall})}$$

Harmonic Average dari Prec. & Rec.

Kelas Prediksi

Contoh Confusion Matrix

Data Test	Kelas Sebenarnya	Kelas Prediksi
1	Pos	Neg
2	Pos	Pos
3	Neg	Neg
4	Neg	Pos
5	Pos	Neg
5	Neg	Neg

Kelas Prediksi

Metode/Algoritme Pembelajaran Untuk Klasifikasi

Contoh Proses Klasifikasi

Misalkan dimiliki dataset dengan visualisasi seperti berikut:

Keterangan: Rain No Rain

Humidity

Pressure

Klasifikasi Data Baru

Keterangan:

Rain

No Rain

Unknown

Nearest-Neighbor Classification

Nearest-Neighbor merupakan metode klasifikasi yang memetakan input ke dalam kelas dari data point terdekat dari input.

Humidity

Pressure

Klasifikasi Data Baru (2)

Keterangan:

Rain

No Rain

Unknown

k-Nearest-Neighbor (kNN) Classification

k-Nearest-Neighbor merupakan metode klasifikasi yang memetakan input ke dalam kelas yang paling umum (mayoritas) dari "k" data point terdekat dari input.

Pressure

Misal k=3

Algoritme K-Nearest Neighbor

- 1. Diberikan sebuah data tidak terklasifikasi p, dan kumpulan data training P yang telah dilengkapi label classnya.
- 2. Pilih nilai dari jumlah ketetanggan *K*.
- 3. Hitung jarak antara p ke seluruh data yang ada dalam P.
- 4. Ambil *K* observasi yang merupakan data terdekat dengan *p*.
- 5. Klasifikasikan data tersebut dengan mayoritas class dari *K*-Tetangga terdekatnya.

A KNN Lazy Learner

 K-NN tergolong sebagai Lazy Learner karena pembelajaran nya hanya membandingkan suatu data-baru dengan sekumpulan data latih yang sudah ada

- K-NN baru bekerja mengukur jarak ketika dilakukan klasifikasi.
- Malas Belajar berarti tidak perlu untuk belajar atau melatih model dan semua titik data yang digunakan pada saat prediksi.

Jarak denga Tetangga

- Untuk menemukan titik yang terdekat yang terdekat, harus menemukan jarak antara titiknya.
- Jarak antara titik dapat menggunakan ukuran jarak:
 - Euclidean
 - Cosine
 - Hamming
 - Manhattan
 - Minkowski

K-NN dengan Euclidean Distance

Mencari Jarak Antara 2 Titik di 2D

$$D(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

Contoh Kasus

 Terdapat beberapa data yang berasal dari survey questioner tentang klasifikasi kualitas kertas tissue apakah baik atau jelek, dengan objek training dibawah ini menggunakan dua attribute yaitu daya tahan terhadap asam dan kekuatan.

X1 = Daya tahan asam (detik)	X2 = Kekuatan (Kg/m²)	Y = Klasifikasi
8	4	Baik
4	5	Jelek
4	6	Jelek
7	in7f. rm	Baik Baik
5	6	Jelek
6	5	Baik

Contoh Kasus

 Akan diproduksi kembali kertas tissue dengan attribute X1=7 dan X2=4, tanpa harus mengeluarkan biaya untuk melakukan survey, maka dapat diklasifikasikan kertas tissue tersebut termasuk yang baik atau jelek.

•

X1 = Daya tahan asam (detik)	X2 = Kekuatan (kg/m ²)	Square distance to query distance (7,4)
8	4	$(8-7)^2 + (4-4)^2 = 1$
4	5	$(4-7)^2 + (5-4)^2 = 10$
4	6	$(4-7)^2 + (6-4)^2 = 13$
7 infor	natikalogi	$(7-7)^2 + (7-4)^2 = 9$
5	6	$(5-7)^2 + (6-4)^2 = 8$
6	5	$(6-7)^2 + (5-4)^2 = 2$

Contoh Kasus

X1= Daya tahan asam (detik)	X2= Kekuatan (Kg/m²)	Square distance to query distance (7,4)	Jarak terkecil	Apakah termasuk nearest neighbor (K)	Y= kategori nearest neighbor
8	4	$(8-7)^2 + (4-4)^2 = 1$	1	Ya	Baik
4	5	$(4-7)^2 + (5-4)^2 = 10$	5	Tidak	-
4	6	$(4-7)^2 + (6-4)^2 = 13$	6	Tidak	<u>.</u>
1117 501	majance	$(7-7)^2 + (7-4)^2 = 9$	4	Ya	Baik
5	6	$(5-7)^2 + (6-4)^2 = 8$	3	Ya	Jelek
6	5	$(6-7)^2 + (5-4)^2 = 2$	2	Ya	Baik

Dengan mengurutkan jarak terkecil, semisal diambil K=3, maka perbandingan nya adalah 2 (Baik) >1 (Jelek). Maka dapat disimpulkan kertas tissue dengan attribute **X1=7** dan **X2=4** masuk ke kelas **Baik.**

△ K-NN dengan Cosine Similarity

Mencari Kemiripan antara 2 Titik di 2D dengan Sudut yang terbentuk dari vektor 2 titik tersebut

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$$

Naive Bayes

 Merupakan sebuah metode klasifikasi menggunakan metode probabilitas dan statistik yg dikemukakan oleh ilmuwan Inggris Thomas Bayes

 Merupakan metode pembelajaran klasifikasi untuk menentukan peluang terjadinya sesuatu apabila suatu kejadian lain telah terjadi

 Ciri utama dari Naïve Bayes Classifier ini adalah asumsi yg sangat kuat (naif) akan independensi dari masing-masing kondisi/kejadian.

Teorema Bayes

 Teorema bayes adalah sebuah metode untuk mencari sebuah kemungkinan kejadian baru dari kejadian-kejadian yang sudah diketahui sebelumnya.

 Antara teorema bayes dengan teori peluang terdapat hubungan yang sangat erat, karena untuk membuktikan Teorema Bayes tidak terlepas dari penggunaan teori peluang, dengan kata lain teori peluang adalah konsep dasar bagi teorema bayes.

Teorema Bayes

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Diagram Venn dua event A dan B dalam U (semesta)

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)} ; P(B) \neq 0$$

Teorema Bayes untuk klasifikasi

$$V_{NB} = arg max P(v_j|a)$$

Untuk banyak input/atribut

$$V_{NB} = arg max P(v_j|a_1,a_2,...,a_n)$$

Keterangan:

 V_{NB} = Kelas hasil klasifikasi Naïve Bayes $P(v_i|a)$: probabilitas kelas v_i jika a telah terjadi

Asusmi Independen (naif) Naïve Bayes

Teorema Bayes untuk klasifikasi:

$$V_{NB} = arg max P(v_j|a_1, a_2, ..., a_n)$$

Keterangan:

P(v_i): probabilitas kelas v_i

P(a_i|v_i): probabilitas atribut a_i pada v_i

$$V_{NB} = \arg \max \frac{P(a_1, a_2, ..., a_n | v_j) P(v_j)}{P(a_1, a_2, ..., a_n)}$$
 \longrightarrow $V_{NB} = \arg \max P(a_1, a_2, ..., a_n | v_j) P(v_j)$

$$P(a_1, a_2, ..., a_n | v_j) = P(a_1 | v_j) P(a_2 | v_j, a_1) P(a_3 | v_j, a_1, a_2) ... P(a_n | v_j, a_1, a_2, ..., a_{n-1})$$

Asumsi Independen (naif):
$$P(a_1, a_1, ..., a_n | v_j) = \prod_i P(a_i | v_j)$$

Keputusan Naïve Bayes

Keputusan Naïve Bayes ditentukan berdasarkan rumus berikut :

$$V_{\text{NB}} = \operatorname{arg\,max} P(v_j) \prod_{i} P(a_i|v_j)$$

- P(v_i): probabilitas kelas v_i
- P(a_i|v_j): probabilitas atribut a_i pada v_j

 Yaitu dengan cara mengalikan semua peluang kejadian untuk setiap kelas, lalu membandingkannya untuk menentukan keputusan akhir

Contoh Kasus Naïve Bayes

- Diketahui data set berikut.
- Tentukan apakah keputusan permainan jika outlook=sunny, temp=cool, humidity=high, windy=true

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes

outlook	temp.	humidity	windy	play
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Contoh Pengerjaan Naïve Bayes

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes

outlook	temp.	humidity	windy	play
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

outlook		temperature			humidity			windy			play		
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3	hot	2	2	high	3	4	false	6	2	9	5
overcast	4	0	mild	4	2	normal	6	1	true	3	3		
rainy	3	2	cool	3	1								

Contoh Model Probabilitas

outlook		temperature			humidity			windy			play		
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3	hot	2	2	high	3	4	false	6	2	9	5
overcast	4	0	mild	4	2	normal	6	1	true	3	3		
rainy	3	2	cool	3	1								

outlook		temperature			humidity			windy			play		
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2/9	3/5	hot	2/9	2/5	high	3/9	4/5	false	6/9	2/5	9/14	5/14
overcast	4/9	0/5	mild	4/9	2/5	normal	6/9	1/5	true	3/9	3/5		
rainy	3/9	2/5	cool	3/9	1/5								

Proses Klasifikasi

outlook	temp.	humidity	windy	play
sunny	cool	high	true	?

$$\begin{split} v_{\text{NB}} &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) \prod_i P(a_i | v_j) \\ &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) P(\text{outlook} = \text{sunny} | v_j) P(\text{temp} = \text{cool} | v_j) \\ P(\text{humidity} = \text{high} | v_j) P(\text{windy} = \text{true} | v_j) \end{split}$$

outlook		temperature			humidity			windy			play		
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2/9	3/5	hot	2/9	2/5	high	3/9	4/5	false	6/9	2/5	9/14	5/14
overcast	4/9	0/5	mild	4/9	2/5	normal	6/9	1/5	true	3/9	3/5		
rainy	3/9	2/5	cool	3/9	1/5								

```
P(\text{play} = \text{yes}) = 9/14 P(\text{play} = \text{no}) = 5/14

P(\text{yes})P(\text{sunny}|\text{yes})P(\text{cool}|\text{yes})P(\text{high}|\text{yes})P(\text{true}|\text{yes})

= 9/14 \cdot 2/9 \cdot 3/9 \cdot 3/9 \cdot 3/9 = 0.0053

P(\text{no})P(\text{sunny}|\text{no})P(\text{cool}|\text{no})P(\text{high}|\text{no})P(\text{true}|\text{no})

= 5/14 \cdot 3/5 \cdot 1/5 \cdot 4/5 \cdot 3/5 = 0.0206
```

$$v_{\text{NB}} = \underset{v_j \in \{\text{yes,no}\}}{\max} P(v_j) P(\text{sunny}|v_j) P(\text{cool}|v_j) P(\text{high}|v_j) P(\text{true}|v_j)$$

$$= \text{no}$$