Lecture 18: Σ_2^1 Sets

In this lecture we extend the results of the previous lecture to Σ_2^1 sets.

Tree representations of Σ_2^1 sets

Analytic sets are projections of closed sets. Closed sets are in $\mathbb{N}^{\mathbb{N}}$ are infinite paths through trees on ω .

We call a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ *Y-Souslin* if *A* is the projection $\exists^{Y^{\mathbb{N}}}[T]$ of some [T], where *T* is a tree on $\mathbb{N} \times Y$, i.e. $A = \exists^{Y^{\mathbb{N}}}[T] = \{\alpha \colon \exists y \in Y^{\mathbb{N}}(\alpha, y) \in [T]\}.$

Theorem 18.1 (Shoenfield, 1961): Every Σ_2^1 set is ω_1 -Souslin. In particular, if A is Σ_2^1 then there is a tree $T \in L$ on $\mathbb{N} \times \omega_1$ such that $A = \exists^{(\omega_1)^{\mathbb{N}}}[T]$.

Proof. Assume first *A* is Π_1^1 . There is a recursive tree *T* on $\mathbb{N} \times \mathbb{N}$ (and hence, in *L*, since 'being recursive' is definable) such that

$$\alpha \in A \iff T(\alpha)$$
 is well-founded.

Hence, $\alpha \in A$ if and only if there exists an order preserving map $\pi: T(\alpha) \to \omega_1$. We recast this in terms of getting an infinite branch through a tree. Let $\{\sigma_i : i \in \mathbb{N}\}$ be a recursive enumeration of $\mathbb{N}^{<\mathbb{N}}$. We may assume for this enumeration that $|\sigma_i| \leq i$. We define a tree \widetilde{T} on $\mathbb{N} \times \omega_1$ by

$$\widetilde{T} = \{ (\sigma, \tau) : \forall i, j < |\sigma| \left[\sigma_i \supset \sigma_i \land (\sigma \mid |\sigma_i|, \sigma_i) \in T \rightarrow \tau(i) < \tau(j) \right] \}.$$

It is easy to see that \widetilde{T} is in L, since it is definable from T and ω_1 . Furthermore, if $\alpha \in A$, then the existence of an order-preserving map $\pi : T(\alpha) \to \omega_1$ implies that there is an infinite path (α, η) through \widetilde{T} . Conversely, if such a path (α, η) exists, then it is easy to see that there is an order preserving map $\pi : T(\alpha) \to \omega_1$. Hence we have

$$\alpha \in A \longleftrightarrow \exists \eta \in (\omega_1)^{\mathbb{N}} (\alpha, \eta) \in [\widetilde{T}] \longleftrightarrow \alpha \in \exists^{(\omega_1)^{\mathbb{N}}} [\widetilde{T}],$$

so *A* is of the desired form.

Now we extend the representation to Σ^1_2 . If A is Σ^1_2 , then there is a Π^1_1 set $B\subseteq \mathbb{N}^\mathbb{N}\times\mathbb{N}^\mathbb{N}$ such that $A=\exists^{\mathbb{N}^\mathbb{N}}B$. Since $B\in\Pi^1_1$, we can employ the tree representation of Π^1_1 to obtain a tree T over $\mathbb{N}\times\mathbb{N}\times\omega_1$ such that $B=\exists^{(\omega_1)^\mathbb{N}}[T]$. Now we recast T as a tree T' over $\mathbb{N}\times\omega_1$ such that $\exists^{(\omega_1)^\mathbb{N}}[T']=\exists^{(\omega_1)^\mathbb{N}}B$. This

is done by using a bijection between $\mathbb{N} \times \omega_1$ and ω_1 . This way we can cast the $\mathbb{N} \times \omega_1$ component of T into a single ω_1 component, and thus transform the tree T into a tree T' over $\mathbb{N} \times \omega_1$ such that $\exists^{(\omega_1)^{\mathbb{N}}}[T'] = \exists^{(\omega_1)^{\mathbb{N}}}[B]$.

Σ_2^1 sets as unions of Borel sets

We can use Shoenfield's tree representation to extend Corollary 17.8 to Σ_2^1 sets.

Theorem 18.2 (Sierpiński, 1925): Every Σ_2^1 set is a union of \aleph_1 -many Borel sets.

Sierpinski's original proof used AC. The following proof does not make use of choice.

Proof. Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be Σ_2^1 . By Theorem 18.1 there exists a tree T on $\mathbb{N} \times \omega_1$ such that $A = \exists^{(\omega_1)^{\mathbb{N}}}[T]$. For any $\xi < \omega_1$ let

$$T^{\xi} = \{ (\sigma, \eta) \in T : \forall i \le |\eta| \ \eta(i) < \xi \}.$$

Since the cofinality of ω_1 is greater than ω (this can be proved without using AC), every $d:\omega\to\omega_1$ has its range included in some $\xi<\omega_1$. Thus we have

$$A = \bigcup_{\xi < \omega_1} \exists^{(\omega_1)^{\mathbb{N}}} [T^{\xi}].$$

For all $\xi < \omega_1$, the set $\exists^{(\omega_1)^{\mathbb{N}}}[T^{\xi}]$ is Σ_1^1 , because the tree T^{ξ} is a tree on a product of countable sets and hence is isomorphic to a tree on $\mathbb{N} \times \mathbb{N}$. By Corollary 17.9, each Σ_1^1 set is the union of \aleph_1 many Borel sets, from which the result follows.

Again, an immediate consequence of this theorem is (using the perfect set property of Borel sets):

Corollary 18.3: Every Σ_2^1 set has cardinality at most \aleph_1 or has a perfect subset and hence cardinality 2^{\aleph_0} .

Absoluteness of Σ^1_2 relations

Shoenfield used the tree representation of Σ_2^1 sets to establish an important absoluteness result for Σ_2^1 sets of reals.

Suppose $A \subseteq \mathbb{N}^{\mathbb{N}}$ is Σ_2^1 . Then, by the Kleene Normal Form there exists a bounded formula $\varphi(\alpha, \beta_0, \beta_1, m)$ such that

$$\alpha \in A \iff \exists \beta_0 \, \forall \beta_1 \, \exists m \, \varphi(\alpha, \beta_0, \beta_1, m).$$

Let M be in inner model of ZF, i.e. M is transitive and contains all ordinals. Since arithmetical formulas can be interpreted in ZF, M contains all recursive predicates over \mathbb{N} . In particular, since the truth of the bounded formula φ depends only on finite initial segments of α , β_0 , β_1 , it defines a recursive predicate $R_{\varphi}(\alpha, \beta_0, \beta_1, m) = R_{\varphi}(\sigma, \tau_0, \tau_1, m)$, which in turns defines a subset of \mathbb{N}^4 that is contained in M. Hence we can define the *relativization* of A to M as

$$A^{M}(\alpha) \iff \exists \beta_0 \in M \ \forall \beta_1 \in M \ \exists m \ R(\alpha, \beta_0, \beta_1, m).$$

We say that *A* is **absolute for** *M* if for any $\alpha \in M$,

$$A^{M}(\alpha) \iff A(\alpha).$$

Absoluteness itself can be extended and relativized in a straightforward manner to predicates analytical in some $\gamma \in \mathbb{N}^{\mathbb{N}} \cap M$.

Theorem 18.4 (Shoenfield Absoluteness): Every $\Sigma_2^1(\gamma)$ predicate and every $\Pi_2^1(\gamma)$ predicate is absolute for all inner models M of ZFC such that $\gamma \in M$. In particular, all Σ_2^1 and Π_2^1 relations are absolute for L.

Proof. We show the theorem for Σ_2^1 predicates. For the relativized version, one uses the *relative constructible universe* $L[\gamma]$, see Jech [2003] or Kanamori [2003].

Let A be a Σ_2^1 relation. For simplicity, we assume that A is unary. Fix a tree representation of A as a projection of a Π_1^1 set. So, let T be a recursive tree on $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that

$$\alpha \in A \iff \exists \beta \ T(\alpha, \beta) \text{ is well-founded.}$$

Note that T is in M.

Now assume $\alpha \in M$ and $\alpha \in A^M$. So there is a $\beta \in M$ such that $T(\alpha, \beta)$ is well-founded in M. This is equivalent to the fact that in M there exists an order preserving mapping $\pi : T(\alpha, \beta) \to \operatorname{Ord}^M$. Since M is an inner model and T is the same in V and M, such a mapping exists also in V. Hence $T(\alpha, \beta)$ is well-founded in V and thus $\alpha \in A$.

For the converse assume that $\alpha \in A \cap M$. Now we use the tree representation of A given by Theorem 18.1. Let $U \in L \subseteq M$ be a tree on $\mathbb{N} \times \omega_1$ such that $A = \exists^{(\omega_1)^{\mathbb{N}}} U$. This means that for any $\alpha \in \mathbb{N}^{\mathbb{N}}$,

 $\alpha \in A \iff U(\alpha)$ is not well-founded.

So $\alpha \in A \cap M$ implies that there exists no order preserving map $U(\alpha) \to \omega_1$. But then such a map cannot exist in M either. So, $U(\alpha)$ is a tree in M which is ill-founded in the sense of M. Thus, by Shoenfield's Representation Theorem relativized to M, $\alpha \in A^M$.

Absoluteness for Π_2^1 follows by employing the same reasoning, using that the complement is Σ_2^1 .

By analyzing the proof one sees that it actually suffices that M is a transitive \in -model of a certain finite collection of axioms ZF such that $\omega_1 \subseteq M$.

The result is the best possible with respect to the analytical hierarchy, since the statement

$$\exists \alpha \ [\alpha \notin L]$$

is Σ_3^1 , but cannot be absolute for M = L.

Shoenfield's Absoluteness Theorem also holds for sentences rather than formulae, with a similar proof. This means a Σ^1_2 statement is true in L if and only if it holds in V. This has an important consequence regarding the significance of principles like CH for analysis. Many results of classical analysis are Σ^1_2 statements. The Absoluteness Theorem says that if they can be established under V = L (and hence in a world where CH holds), they can be established in ZF alone.

Another consequence concerns the complexity of reals defined by analytical relations

Corollary 18.5: If $X \subseteq \omega$ is Σ_2^1 , then $X \in L$. In particular, every Σ_2^1 real (and hence every Π_2^1 real) is in L.

Proof. Let X be Σ_2^1 via some formula φ . Since $\omega \in L$, and since L is an inner model of ZF, it satisfies the axiom of separation (relativized to L) for φ . So the set $X^L = \{a \in \omega : \varphi^L(a)\}$ is in L. It is clear that the representation and absoluteness results also hold for subsets of ω . (Change the notation to include subsets of ω .) Absoluteness for φ implies that $X^L \cap L = X \cap L$, but since $X \subseteq \omega$, we have $X = X \cap L$ and $X^L \cap L = X^L$, and hence $X \in L$.

We cannot extend this to Σ^1_2 sets of reals. In the proof of the Corollary, it is crucial that ω , the set over which we apply separation, is in L. This is not longer the case for sets of reals. For example, the set of all reals is clearly Σ^1_2 , but unless V=L, it is not contained in L.