Chapter 1: Construction of the Manifold

Manifolds The structure of a manifold

The structure of a manifold

It is fruitful to *construct* the manifold rather than *define* it. We also insist on working with open sets of Banach spaces instead coordinate functions as our primary data.

We will be working in the category of C^p Banach spaces (all Banach spaces are assumed to be over \mathbb{R}). Its morphisms are C^p morphisms: the maps which are continuously p-times differentiable (but not necessarily linear). Note that if $p \geq 0$, every toplinear morphism is a C^p morphism, and every toplinear isomorphism is a C^p isomorphism. However, a bijective C^p morphism is usually not a C^p isomorphism.

Definition 1.1: Chart

Let X be a non-empty set. A chart on X modelled on a Banach space E is a tuple (U, φ) , such that $U \subseteq X$, $\varphi(U) = \hat{U}$ is an open subset of E, and φ is a bijection into \hat{U} .

Definition 1.2: Compatibility

Let (U,φ) and (V,ψ) be charts on X modelled on E, they are called C^p compatible if $U\cap V=\varnothing$, or

- $\varphi(U \cap V)$ and $\psi(U \cap V)$ are both open subsets of E, and
- the transition map $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ is a C^p isomorphism between open subsets of E.

It should be clear that compatibility is an equivalence relation on the space of charts of X (that are modelled on E).

Remark 1.1

We sometimes omit the $model\ space\ E$ if it is understood.

Definition 1.3: Atlas

A C^p atlas on a non-empty set X modelled on E is a pairwise C^p compatible collection of charts $\{(U_\alpha, \varphi_\alpha)\}$ whose union over the domains cover X.

Remark 1.2

If we are working 'in category' we sometimes say two charts are *compatible* or even *smoothly compatible* to mean that they are C^p compatible. This comes from the viewpoint that when we work in the category of C^p manifolds, being smoother than C^p is simply 'smooth enough'.

Let X be a non-empty set, equipped with a C^p at las $\{(U_{\alpha}, \varphi_{\alpha})\}$ modelled on E. If α and β both index the at las, we write $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$.

Suppose $U_{\alpha\beta}$ is non-empty. Then, (by definition) the images $\varphi_{\alpha}(U_{\alpha\beta})$, $\varphi_{\beta}(U_{\alpha\beta})$ are both open subsets of E, and we will denote the transition map by

Manifolds The structure of a manifold

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} = \varphi_{\beta\alpha^{-1}} : \varphi_{\alpha}(U_{\alpha\beta}) \to \varphi_{\beta}(U_{\alpha\beta})$$
 (1)

If $p \in (U, \varphi)$, we write \hat{p} for $\varphi(p)$ if there is no room for ambiguity. From Definitions 1.2 and 1.3, the compatibility relation on charts descends into a compatibility relation on the space of atlases, whose properties are summarized in the following note.

Note 1.1

Let Ω be a non-void set equipped with an equivalence relation \sim . Then, \sim descends into an equivalence relation onto the set of all subsets of equivalence classes of Ω . Suppose A and B are both subsets of an equivalence class [A] and [B] respectively. Then $A \sim B$ iff for every $x \in A$, and $y \in B$ implies $x \sim y$ iff $A \cup B$ is also a subset of an equivalence class iff $[A] \sim [B]$.

[A] is the maximal subset of Ω that contains A as a subset, that is also a subset of an equivalence class (namely, itself).

Definition 1.4: Structure determined by an atlas

The maximal atlas that contains \mathcal{A} as a subset is called the C^p structure determined by \mathcal{A} . This maximal atlas is unique, by note 1.1.

Definition 1.5: Manifold

A C^p manifold modelled on E is a non-empty set X with a C^p structure modelled on E. We sometimes refer to the manifold as the smooth structure, rather than the set X itself. Man^p refers to the category of C^p manifolds.

Proposition 1.1: E is a manifold

Let $p \ge 1$. The identity map $\mathrm{id}_E : E \to E$ defines an atlas on E, which determines a structure called the standard C^p structure on E or standard structure on E if the class of morphisms is understood.

Furthermore, open subsets of E are manifolds as well.

Proposition 1.2: Topology is unique on a manifold

Let X be a manifold modelled on E, it has a unique topology such that the domain for each chart in its smooth structure is open, and each chart is a homeomorphism onto its range (with respect to the subspace topology of E).

Proof. We offer a sketch of the proof. Fix a chart (U, φ) , it is clear that U has to be in the topology of X, and because $\varphi: U \to \hat{U}$ is required to be a homeomorphism, we duplicate all the open sets in \hat{U} by using the inverse image through φ . The collection of all such inverse images form a sub-basis, thus defines a unique topology as is well known.

Manifolds Morphisms in Man^p

There is an alternate way of thinking about this 'induced topology'. Given a chart domain, there exists a unique coarsest topology such that all charts with the same chart domain are homeomorphisms onto their images. We can stitch these weak topologies together to form a ambient topology on X, as the chart domains cover X.

Remark 1.3

The topology generated is not necessarily Hausdorff, nor second countable. So X may not admit partitions of unity, but for our current purposes we will work with this general definition.

Morphisms in Man^p

Definition 2.1: C^p morphisms between manifolds

Let X and Y be C^p manifolds over the spaces E and F. A map $F: X \to Y$ is a morphism in Man^p if for every $p \in X$, there exists charts (U, φ) in X and (V, ψ) in Y such that the image F(U) is contained in V, and the conjugation of F with respect to the two charts is C^p smooth between open subsets of Banach spaces.

$$F_{UV} \stackrel{\triangle}{=} \psi F \varphi^{-1} \in C^p(\hat{U}, \hat{V}) \tag{2}$$

The map defined in eq. (2) is called the *coordinate representation of F*.

Remark 2.1

We have deliberately omitted the phrase 'with respect to the charts $(U, \varphi), (V, \psi)$ ', and the subscript in $F_{U,V}$ should indicate that the charts themselves are not important. Rather we should focus our attention on the chart domains. We also say $F_{U,V}$ is a coordinate representation about p for brevity. Consistent with our notation for the chart domains and \hat{p} , we write $\hat{F} = F_{U,V}$ where U,V are suitably chosen.

Definition 2.1 may leave one unsatisfied with the definition for smoothness between manifolds. The first question that comes to mind is: why do we require the image F(U) be contained in another chart domain in Y? Two main reasons:

- 1. It is easily verified that the C^p maps between open subsets of Banach spaces satisfy the usual functoral properties in its category. The definition of smoothness between Banach spaces is a purely local one, and it is defined between open subsets; and recall: every chart domain U in a manifold X corresponds to an open subset $\hat{U} \subseteq E$ in the model space. The requirement that F(U) must be contained in a single chart domain of Y is a relic of the original definition.
- 2. Suppose f is a map between E and F, and the restriction of f onto a family of open subsets $U_{\alpha} \subseteq E$ is C^p for $p \geq 0$. If $\{U_{\alpha}\}$ is an open cover for E, then f is continuous. Proposition 2.1 shows this equally holds for manifolds.

Manifolds Tangent spaces

Proposition 2.1

Every C^p morphism between manifolds is a continuous map, and the composition of C^p morphisms is again a morphism.

Proof. The first claim follows immediately from eq. (2), since p is arbitrary, choose any neighbourhood W of F(p), by shrinking this neighbourhood, it suffices to assume it is a subset of the chart domain V. The charts on X and Y are homeomorphisms, and unwinding the formula shows that $F|_{U} = \psi^{-1}F_{U,V}\varphi$, so that

$$U \cap F^{-1}(W) = (F|_U)^{-1}(W)$$
 is open in X

To prove the second, let X_3 be manifolds modelled over E_3 , and F_1 , F_2 is smooth between X_i such that $F_2 \circ F_1$ makes sense. Since $\overline{F_1}$ is smooth, there a pair of charts $(U_i, \varphi_i) \in X_i$ for i = 1, 2 about each $p \in X_1$ such that F_{1U_1,U_2} is C^p between open subsets.

 $F_2(F_1(p))$ induces another pair of charts $(V_i, \psi_i) \in X_i$ for i = 2, 3. Since F_2 is smooth, it is continuous. $F_1^{-1} \circ F_2^{-1}(V_3)$ is open in X_1 , and we can shrink all of our charts so that $F_2F_1(U_1)$ is contained in V_3 . Finally, because C^p morphisms between open subsets of Banach spaces is closed under composition, $F_{U_1 \cap F_1^{-1}F_2^{-1}(V_3),V_3}$ is smooth.

Remark 2.2

To conclude this section, manifolds hereinafter will be assumed of class C^p , where $p \geq 1$.

Tangent spaces

The next question that we will address is taking derivatives of smooth maps between manifolds. There is no reason to demand C^p smoothness between maps, or even a C^p category of manifolds if we cannot borrow something 'more' other than the morphisms on open sets.

Suppose U is an open subset of E and $f: U \to Y$ is C^p for $p \ge 1$. The derivative Df(x) is a linear map $E \to F$, not from U to F (U might not even be a vector space). This suggests the 'derivative' of a morphism $F: X \to Y$ between manifolds can in some sense be interpreted as the *ordinary derivative* of its coordinate representation $DF_{U,V}(\hat{p})$, adhering to our principle of using open sets.

But there is a problem with this 'derivative': it is a chart dependent interpretation of the derivative. With infinitely many charts in X and Y, this definition becomes useless. To see this, let X be a manifold modelled on E and $p \in X$. If $g: X \to Y$ is a morphism, and (U_1, φ_1) , (U_2, φ_2) are charts defined about p such that the representations $g_{U_1,V}$ and $g_{U_2,V}$ are morphisms. Writing $p_i = \varphi_i p$, and $\varphi_{1,2} = \varphi_2 \varphi_1^{-1}$ (because it goes from the domain U_1 to U_2), a simple computation yields

$$Dg_{U_1,V}(p_1)(v) = D(\psi g \varphi_2^{-1} \varphi_2 \varphi_1^{-1})(p_1)(v)$$

$$= Dg_{U_2,V}(p_2) \left(D\varphi_{1,2}(p_1)(v) \right)$$

$$= Dg_{U_2,V}(p_2) \circ D\varphi_{1,2}(p_1) \cdot (v)$$
(3)

where $\cdot(v)$ denotes the evaluation at $v \in E$, and is assumed to be left associative over composition. The computation in eq. (3) suggests that interpreting the derivative by pre-conjugation is dependent on

Manifolds Tangent spaces

the chart being used to interpret the derivative. In fact, $D\varphi_{1,2}(p_1)$ can be replaced with any toplinear isomorphism on E (relabel $\varphi_2 = A\varphi_1$ where $A \in \text{Laut}(E)$), so the right hand side of eq. (3) can be interpreted as $Dg_{U_2,V}(p_2)(w)$ where w is any vector in E.

Definition 3.1: Concrete tangent vector

Let X be a manifold on E, and $p \in X$. If (U, φ) is any chart containing p, for each $v \in E$ we call (U, φ, p, v) a concrete tangent vector at p that is interpreted with respect to the chart (U, φ) . The disjoint union of

$$\bigcup_{v \in E} \{(U, \varphi, p, v)\} \tag{4}$$

is called the *concrete tangent space at* p interpreted with respect to (U, φ) and inherits a TVS structure from E.

Fix a point p in a manifold X. Suppose (U_i, φ_i) are charts containing p, from eq. (3) we see that there exists a natural correspondence between the interpretations of the concrete tangent space, namely

$$(U_1, \varphi_1, p, v_1) \sim (U_2, \varphi_2, p, v_2)$$
 iff $v_2 = D\varphi_{1,2}(p_1)(v_1)$ (5)

where $p_i = \varphi_i p$.

Definition 3.2: Tangent vector

A tangent vector (or an abstract tangent vector) at p is defined as an equivalence class of concrete tangent vectors at p, under the relation in eq. (5).

From eq. (5), since $D\varphi_{1,2}(x)$ is a toplinear automorphism on E, this correspondence is a bijection. This means the set of tangent vectors at p inherits a TVS structure from E, as p is in the domain of at least one chart (U,φ) . This is because the concrete tangent space defined in eq. (4) admits an obvious (linear) isomorphism with E, and each abstract tangent vector admits a unique interpretation with respect to (U,φ) .

Definition 3.3: Tangent space

The tangent space at p, denoted by T_pX is the set of all tangent vectors at p. It is toplinearly isomorphic to the model space E.

Definition 3.4: Differential of a morphism

Note 3.1: Interpretation using co-product

There is another way of interpreting the construction above. Each concrete tangent space is toplinearly isomorphic to E, the projection maps onto $\{p\}$ and E can be glued together using the universality of the coproduct, where $\{p\}$ is interpreted as a 0-dimensional vector space. The construction of T_pM follows by invoking the property of the quotients.