Period of Examinations Winter Semester 2019/20

Course of study: Robotics / Module: SE 5 2910

Examination		•••		
Points: 70				
Duration of ex	amination: 120 Minu	ites		
Please write le	egibly!			
Date:				
Name: _				
Register No.:_				
Study Course	:			
Hints:				
Make sure that	you enter your matrice	ulation number in the I	neader of each examination	on sheet.
boxes (☒) with	the correct answers	or enter the solution	e correct. Please mark th s into the appropriate fie tion of points within the sa	eld ().
Example:				
(2 points)				
☐ wrong	□ wrong	⊠ wrong	⊠ wrong	
🔀 right	☐ right	⊠ right	🔀 right	
☐ wrong	□ wrong	☐ wrong	🗷 wrong	
🔀 right	⊠ right	☐ right	☐ right	
2 points	1 point	0 points	0 points	

A planar robot with two joints is considered. The first joint is a prismatic one, while the second is revolute. Furthermore $q_1>0$ and $-\frac{\pi}{2}\leq q_2\leq \frac{\pi}{2}$ holds.

a) (3 Points)

Draw the necessary local coordinate systems due to the Denavit-Hartenberg algorithm in the illustration of the robot under consideration.

b) (4 Points)

Compute the parameters according to the Denavit-Hartenberg algorithm of the robot under consideration.

θ	0	9-2
d	9-	0
а	L	L2
α	19	0

Appendix:

Denavit-Hartenberg algorithm

Definition of the coordinate systems:

- 1. Definition of the initial coordinate system at the base of the robot. The z₀-axis lies within the axis of movement of the first joint in direction of the kinematic chain. Define the x₀- and y₀-axes in order to generate an orthogonal right-handed system.
- 2. For i=1,...,n-1 do the following steps:
- 3. The z_i-axis is to arrange in direction of the axis of movement of joint i+1 (rotational or translational joint)
- 4. The origin of coordinate system lies within the intersection point of the z_{i-} and z_{i-1-} axes or within the intersection point of the z_{i-} axis with the collective perpendicular of the z_{i-} and z_{i-1-} axes
- 5. In case of an intersection of z_{i-1}- and z_i-axis, the x_i-axis is orthogonal to both z_{i-1}- and z_i-axis. Otherwise the x_i-axis lies in direction of the perpendicular between z_i- and z_{i-1}-axis.
- 6. Choose the y_i-axis in order to generate an orthogonal right-handed system (x,y,z)_i.
- 7. Definition of the TCP coordinate system: The z_n -axis lies in direction of z_{n-1} -axis. The x_n -axis is orthogonal to both z_n and z_{n-1} -axis.

Denavit-Hartenberg parameters:

- θ_i Angle between x_{i-1} -axis and x_i -axis around the z_{i-1} -axis-
- d_i Distance from origin of coordinate system $(x,y,z)_{i-1}$ to the intersection point of z_{i-1} -axis and x_i -axis, measured along the z_{i-1} -axis.
- a_i Distance from intersection point of z_{i-1} -axis and x_i -axis to the origin of coordinate system $(x,y,z)_i$, measured along the x_i -axis (or the shortest distance between z_{i-1} -axis and z_i -axis).
- α_i Angle between the z_{i-1} -axis and z_i -axis around the x_i -axis.

Transformation matrix

$$\begin{aligned} \mathbf{A}_i &= \mathrm{Rot}_{z,\theta_i} \mathrm{Trans}_{z,d_i} \mathrm{Trans}_{x,a_i} \mathrm{Rot}_{x,\alpha_i} = \\ &\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

c) (4 points)

Compute the local transformation matrices Ai.

$$\mathbf{A_1} = \begin{bmatrix} 1 & 0 & 0 & L_1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 9_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{2} = \begin{bmatrix} C_{2} & -S_{2}C_{2} & 0 & L_{2}C_{3} \\ S_{2} & C_{2} & 0 & L_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d) (4 points)

Compute the forward kinematics of the robot under consideration.

$$x = \frac{L_1 + L_2 C_2}{y}$$

$$y = 0$$

$$z = \frac{Q - L_2 S_2}{z}$$

e) (4 points)

Compute the inverse kinematics of the robot under consideration.

$$q_{1} = \frac{\sum -L_{2} \sin \left(\cos^{2}\left(\frac{x-L_{1}}{L_{2}}\right)\right)}{\left(\cos^{2}\left(\frac{x-L_{1}}{L_{2}}\right)\right)}$$

$$q_{2} = \frac{\cos^{2}\left(\frac{x-L_{1}}{L_{2}}\right)}{\left(\frac{L_{2}}{L_{2}}\right)}$$

f) (4 points)

Compute the Jacobian of the robot under consideration.

g) (4 points)

Calculate possible singular configurations of the robot under consideration.

$$\det\left(\left(\frac{1}{2}\right)\right) = L_{2}S_{2}$$
The singularity happens when
$$\det\left(\left(\frac{1}{2}\right)\right) = 0 \implies \sin(\theta_{2}) = 0$$

$$-\frac{\pi}{2} > \theta_{2} > \frac{\pi}{2}$$
:. There are singularly at $\theta_{2} = 0$ degrees

Task 2: (8 points)

 $X = (L_1 + g_2) C_1$ $Y = (L_1 + g_2) S_1$

A planar robot with a rotational and a prismatic joint is considered.

a) (4 points)

Compute the Jacobian matrix of the system under consideration

$$\mathbf{J} = \begin{bmatrix} -(L_1 + q_2)S_1 \\ L_1 + q_2 \end{bmatrix} C_1$$

9₂ - C₁

b) (4 points)

For a current configuration $q = \begin{bmatrix} \frac{\pi}{4} & \frac{1}{4} \end{bmatrix}'$, $\dot{x} = \begin{bmatrix} 1 & \frac{1}{2} \end{bmatrix}'$ and $l_1 = \frac{3}{4}$ holds. Compute the appropriate joint velocities.

$$\dot{q}_1 = \frac{-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4}}{2} = \frac{-\sqrt{2}}{4}$$

$$\dot{q}_2 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} \leq \frac{3\sqrt{2}}{4}$$

Matriculation number.:

Task 3: (3 points) Label all blocks in the diagram

Task 4: (2 points)

Is the given matrix a rotation matrix (give an explanatory statement)?

$$\mathbf{R} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0.5 & 0 & 0 \end{bmatrix}$$

no, because $\det(R)=0 \neq 1$ alse R' doesn't exist

which mean $R^T \neq R^T$ not orthogonal

Task 5: (30 points)

1.) (2 points)

How many degrees of freedom does the end effector of a spatial robot have at maximum?

- □ 3
- □ 2
- X 6
- □ 8
- 2.) (2 points)

Which of the statements concerning a rotation matrix **R** are true?

- \Box $R^T = R$
- \mathbf{X} $\mathbf{R}^{\mathsf{T}} = \mathbf{R}^{-1}$
- \square $\mathbf{R}^{\mathsf{T}} = -\mathbf{R}$
- □ R=-R

3.) (2 points)
What are the properties of a rotation matrix R ?
💢 R is orthogonal.
□ R is diagonal.□ R is singular.
4.) (2 points)
How many solutions does the forward kinematics of a spatial serial manipulator usually have?
□ 3 □ 6
□ 6 X 1
□ none
5.) (2 points)
The mapping of the joint velocities onto the end effector <u>velocities</u> by use of a Jacobian is
Inear.□ non-linear.
singular.
proportional.(2 points)
How many independent parameters does a rotation matrix have at maximum to describe the orientation of a coordinate system with respect to another coordinate system?
□ 9
□ 1
7.) (2 points)
The upper left 3x3 sub-matrix of a homogenous
transformation matrix has the meaning of a translation.
▼ rotation.
□ bias. □ scaling.

Matriculation number.:

8.) (2 points)
The norm of a row or a column of a rotation matrix is equal to
$\begin{array}{c} X & 1. \\ \Box & \pi. \\ \Box & \frac{\pi}{2}. \\ \Box & -1. \end{array}$
9.) (2 points)
The workspace of a plain robot with two rotational joints can have the shape of a circle. a circular ring. a square. an ellipse.
10.) (2 points)
In which cases is the pseudo-inverse of a Jacobian typically used?
 □ The Jacobian is square and diagonal. □ The TCP is outside the workspace. ☑ The Jacobian is of non-square type. ☑ The number of joints is larger than the amount of degrees of freedom of the end effector.
11.) (2 points)
Singularities appear typically if the Jacobian matrix is singular. the robot is in a stretched position. the Jacobian matrix is square. the end effector leaves the planned path.
12.) (2 points)
How many possible solutions does the inverse kinematics of the pictured robot have, assuming only the position of the tool center point is given? one solution no solution two solutions infinite amount of solutions
13.)(2 points)
What is the dimension of the Jacobian of a robot with 7 actuators and 6 end effector degrees of freedom? □ 7x6 □ 6x7x6 ★ 6x7

□ 6x6

Matriculation number.:

Matriculation number.:
14.) (2 points)
How many variables of a transformation matrix (as used in robotics for the description of the kinematical relationship of two links coupled by a joint) depend on time? 4 3 2 1
15.) (2 points)
How many actuators does a robot need at least, assuming three independent degrees of freedom for the end effector are required? 1 actuator 6 actuators 3 actuators 5 actuators

Appendix:

Denavit-Hartenberg algorithm

Definition of the coordinate systems:

- 1. Definition of the initial coordinate system at the base of the robot. The z₀-axis lies within the axis of movement of the first joint in direction of the kinematic chain. Define the x₀- and y₀-axes in order to generate an orthogonal right-handed system.
- 2. For i=1,...,n-1 do the following steps:
- 3. The z_i-axis is to arrange in direction of the axis of movement of joint i+1 (rotational or translational joint)
- 4. The origin of coordinate system lies within the intersection point of the z_{i-} and z_{i-1-} axes or within the intersection point of the z_{i-} axis with the collective perpendicular of the z_{i-} and z_{i-1-} axes
- 5. In case of an intersection of z_{i-1}- and z_i-axis, the x_i-axis is orthogonal to both z_{i-1}- and z_i-axis. Otherwise the x_i-axis lies in direction of the perpendicular between z_i- and z_{i-1}-axis.
- 6. Choose the y_i-axis in order to generate an orthogonal right-handed system (x,y,z)_i.
- 7. Definition of the TCP coordinate system: The z_n -axis lies in direction of z_{n-1} -axis. The x_n -axis is orthogonal to both z_n and z_{n-1} -axis.

Denavit-Hartenberg parameters:

- θ_i Angle between x_{i-1} -axis and x_i -axis around the z_{i-1} -axis-
- d_i Distance from origin of coordinate system $(x,y,z)_{i-1}$ to the intersection point of z_{i-1} -axis and x_i -axis, measured along the z_{i-1} -axis.
- a_i Distance from intersection point of z_{i-1} -axis and x_i -axis to the origin of coordinate system $(x,y,z)_i$, measured along the x_i -axis (or the shortest distance between z_{i-1} -axis and z_i -axis).
- α_i Angle between the z_{i-1} -axis and z_i -axis around the x_i -axis.

Transformation matrix

$$\begin{aligned} \mathbf{A}_i &= \mathrm{Rot}_{z,\theta_i} \mathrm{Trans}_{z,d_i} \mathrm{Trans}_{x,a_i} \mathrm{Rot}_{x,\alpha_i} = \\ &\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$