## CIV102F Quiz # 10: Friday AM December 4, 2020 Plate Buckling

Shown below is a bridge made from matboard which has an I shaped cross section which is 120 mm tall. The dashed lines indicate diaphragms which help to stiffen the I-beam to avoid local crushing.

- 1) Calculate and draw the shear force and bending moment diagrams, labeling all important values in terms of P
- 2) Calculate the values of P which causes the following:
  - a) Tensile failure (P<sub>1</sub>)
  - b) Compression failure  $(P_2)$
  - c) Shear failure in the matboard (P<sub>3</sub>)
  - d) Plate buckling failure in the flange (P<sub>4</sub>) and a buckling failure in the web (P<sub>5</sub>)
  - e) Shear buckling failure in the web (P<sub>6</sub>)
- 3) Based on your calculations, how will the bridge fail? Indicate  $P_{\text{fail}}$  and the associated mechanism.

| Matboard Properties                          |                                 |
|----------------------------------------------|---------------------------------|
| Tensile strength, $\sigma_{ult}^+ = 30$ MPa  | Young's modulus, $E = 4000$ MPa |
| Crushing strength, $\sigma_{ult}^- = -6$ MPa | Poisson's ratio, $\mu = 0.2$    |
| Shear strength, $\tau_{ult} = 4$ MPa         | Thickness, $t = 1.5$ mm         |

