

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Gradient Descent

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\boldsymbol{\theta_1} = \boldsymbol{\theta_1} - \alpha \frac{d\boldsymbol{J}(\boldsymbol{\theta_1})}{d\boldsymbol{\theta_1}}$$

number	size	#bedrooms	# floors	Price(y)
1	100	2	1	
2	150	3	2	175000
•••			***	
m			•••	

N: #features = 3

M: #training data

 x_i : i th data in training set

 x_j^i : j th feature of i th data in training set

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$y = [y^1, y^2, ..., y^m]^T \in R^{m * (n+1)}$$

$$X = [x^1, x^2, ..., x^m]^T \in R^{m * (n+1)}$$

$$\vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} , \quad \vec{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1} \qquad h_{\theta}(x) = x^T \theta = \theta^T x$$

Cost function

$$J(\overrightarrow{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$e^{i} = x^{T} \theta - y_{i} \longrightarrow e = X\theta - y \longrightarrow J(\theta) = \frac{1}{2m} e^{T} e^{T}$$

$$e$$
, $X\theta$, $y \in \mathbb{R}^m$

Gradient Descent

Repeat until convergence:

For j=0,...,n

$$\theta_j = \theta_j - \alpha \frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j}$$

$$\frac{dJ(\theta_0, \theta_1)}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$

$$\frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i) x_j^i$$
(j=0,...,n, $x_0^i = 1$)

$$\frac{dJ(\theta)}{d\theta} = \frac{1}{m}X^T e^{-\frac{m+1}{2}}$$

حجم محاسبات ضرب ماتریس

$$A \in \mathbb{R}^{m \times p}$$
, $B \in \mathbb{R}^{p \times n}$ \longrightarrow $AB \in \mathbb{R}^{m \times n}$ $(2p-1) \ mn \ flops$

Calculating $e^{O(pmn)}$:

$$m(2n+1)$$
 (ضرب و جمع) \longrightarrow $O(mn)$ $M(2n+1)$ (تفریق) \longrightarrow $O(mn)$ $M(n+1)$ $M(n+1)$

مفهوم هندسي

$$\min_{W} ||y - XW||_2 = \min ||e||_2$$

تعداد ویژگی * تعداد داده

Span of X:

فضایی که توسط ستون های X پوشش داده می شود. هر بردار در این فضا به صورت U = XW انشان داده می شود. و به آن span(X) می گویند. U بهینه که به صورت U نشان داده می شود برداری است که e = y - U بشان داده می شود برداری است که e = y - U بر span(X) باید span(X) باید انتخاب شود که بر ابر با نگاشت y در span(X) باشد.

Feature Scaling

$$x_1^i$$
 , x_2^i , ... , x_n^i $-1 \le x_j \le 1$

$$0 < x_1 < 1000$$
 $x_1: \frac{size}{1000}$
 $0 < x_2 < 5$
 $x_2: \frac{\#bedrooms}{5}$

Contour Plot

Gradient descent without scaling

قطر بزرگ:2a

قطر کوچک :2b

Gradient descent after scaling variables

$$\begin{array}{l} 0 \leq x_1 \leq 1 \\ 0 \leq x_2 \leq 1 \end{array}$$

$$\frac{w_1^2}{a^2} + \frac{w_2^2}{a^2} = 1$$

Feature Scaling

Scaled features:

•
$$0 \le x_1 \le 3$$

•
$$-3 \le x_1 \le 3$$

•
$$-2 \le x_2 \le 0.5$$

$$\bullet -\frac{1}{3} \le x_2 \le \frac{1}{3} \checkmark$$

Need scaling:

$$-100 \le x_3 \le 100$$
 *

$$-0.001 \le x_4 \le 0.001$$

Feature Scaling

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^i$$

$$bedroom^* = \frac{bedroom - 2.5}{5}$$

$$size^* = \frac{size - 300}{2000}$$

Creating New Features

Creating New Features

We can use:

$$\begin{array}{c} x\,,\,x^2\,,\,x^3\,,\sqrt{x}\\ \theta_0\,+\theta_1\,x+\theta_2\sqrt{x} \end{array}$$

Need scaling:

$$x: 0,..., 1000$$

 $x^2: 0,..., 10^6$
 $x^3: 0,..., 10^9$