

Controlo de Sistemas *Erro estacionário*

Alexandra Moutinho

Dep. Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, (alexandra.moutinho@tecnico.ulisboa.pt)

Aula anterior

- Resposta em frequência
 - Diagrama de Nyquist
- Análise de estabilidade
 - Critério de Nyquist

• Erro estacionário

Erros do anel fechado

- Erros num sistema de controlo devem-se a vários fatores:
 - Variações da referência de entrada originam erros no período transiente e podem causar erros estacionários
 - Imperfeições (ex. atrito, folgas), envelhecimento e deterioração dos componentes do sistema causam erros estacionários
 - Tipo do sistema pode limitar o seguimento de certos tipos de referência, originando erros estacionários

Erro estacionário do anel fechado

 Erro estacionário do anel fechado: diferença entre o valor da referência (o que se pretende atingir) e o valor da variável controlada (saída do sistema) em regime estacionário

Objetivo: erro estacionário de seguimento nulo

$$e_{SS} = \lim_{t \to +\infty} [r(t) - y(t)] = 0$$

$$e_{SS} = \lim_{s \to 0} s[R(s) - Y(s)] = 0$$

Teorema do valor final válido para sistemas estáveis!

Erro estacionário do anel fechado

- Exemplos de requisito de controlo de precisão (erro estacionário nulo):
 - Plataforma cirúrgica robotizada, RAVEN I, desenvolvida no laboratório de BioRobotics da University of Washington)

Erro estacionário do anel fechado

- Exemplos de requisito de controlo de precisão (erro estacionário nulo):
 - Aterragem autónoma de drones (exemplo de aterragem num veículo terrestre, trabalho desenvolvido pela University of Waterloo)

Exemplo: Antena de radiotelescópio

- Num sistema de controlo de posição de antena pode-se pretender seguir:
 - Um satélite geoestacionário
 - Um satélite com velocidade constante
 - Um míssil em aceleração

Figure 7.1
© John Wiley & Sons, Inc. All rights reserved.

Entradas típicas

Tipos de entradas utilizadas na avaliação de erros estacionários

$$(r(t) \equiv posição)$$

Table 7.1

Erros estacionários

Entrada em rampa

- Output 1: sem erro estacionário
 Output 2: com erro estacionário
 finito
- Output 3: com erro estacionário infinito

Entrada em degrau

Output 1: sem erro estacionário
 Output 2: com erro estacionário

Figure 7.2

© John Wiley & Sons, Inc. All rights reserved.

• Considere-se o sistema em anel fechado com realimentação unitária, com G(s) a FT do anel direto

$$\begin{cases} E(s) = R(s) - C(s) \\ C(s) = \frac{G(s)}{1 + G(s)} R(s) \end{cases} \qquad E(s) = R(s) \left(1 - \frac{G(s)}{1 + G(s)} \right) = R(s) \frac{1}{1 + G(s)}$$

• Para um sistema em <u>anel fechado estável</u> (condição para a validade de aplicação do teorema do valor final):

$$e_{SS} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} sR(s) \frac{1}{1 + G(s)}$$

Figure 7.3 © John Wiley & Sons, Inc. All rights reserved.

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} sR(s) \frac{1}{1 + G(s)}$$

- O erro estacionário e_{ss} depende:
 - Da referência do sistema de controlo, R(s)
 - Degrau, rampa, parábola
 - Da função de transferência do ramo direto, G(s)

•
$$G(s) = \frac{(s+z_1)(s+z_2)...}{s^t(s+p_1)(s+p_2)...}$$
, com $t = 0,1,...$ o tipo do sistema $G(s)$

- Entrada: degrau unitário, r(t) = 1(t), $R(s) = \frac{1}{s}$ $e_{ss}^{\text{degrau}} = \lim_{s \to 0} sR(s) \frac{1}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}$
- $\lim_{s\to 0} G(s) = G(0) = K_p$: ganho estático do anel direto, e coeficiente de erro estático de posição
- $t = 0: K_p = \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = K, e_{ss, t0}^{\text{degrau}} = \frac{1}{1+K}$
- $t = 1: K_p = \frac{(0+z_1)(0+z_2)...}{0^1(0+p_1)(0+p_2)...} = \infty, e_{ss, t1}^{\text{degrau}} = \frac{1}{1+\infty} = 0$
- t = 2: $K_p = \frac{(0+z_1)(0+z_2)...}{0^2(0+p_1)(0+p_2)...} = \infty$, $e_{ss,t2}^{\text{degrau}} = \frac{1}{1+\infty} = 0$

- Entrada: rampa unitária, r(t) = t * 1(t), $R(s) = \frac{1}{s^2}$ $e_{ss}^{rampa} = \lim_{s \to 0} sR(s) \frac{1}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$
- $\lim_{s\to 0} sG(s) = K_v$: coeficiente de erro estático de velocidade

•
$$t = 0$$
: $K_v = 0 \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = 0$, $e_{ss,t0}^{\text{rampa}} = \frac{1}{0} = \infty$

•
$$t = 1: K_v = \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = K, e_{ss,t1}^{\text{rampa}} = \frac{1}{K}$$

•
$$t = 2: K_v = \frac{(0+z_1)(0+z_2)...}{0(0+p_1)(0+p_2)...} = \infty, e_{ss, t2}^{\text{rampa}} = \frac{1}{\infty} = 0$$

- Entrada: parábola unitária, $r(t) = \frac{t^2}{2} * 1(t)$, $R(s) = \frac{1}{s^3}$ $e_{ss}^{\text{parábola}} = \lim_{s \to 0} sR(s) \frac{1}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$
- $\lim_{s\to 0} s^2 G(s) = K_a$: coeficiente de erro estático de aceleração

•
$$t = 0$$
: $K_a = 0^2 \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = 0$, $e_{ss,t0}^{\text{parábola}} = \frac{1}{0} = \infty$

•
$$t = 1: K_a = 0 \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = 0, e_{ss, t1}^{\text{parábola}} = \frac{1}{0} = \infty$$

•
$$t = 2: K_a = \frac{(0+z_1)(0+z_2)...}{(0+p_1)(0+p_2)...} = K, e_{ss,t2}^{\text{parábola}} = \frac{1}{K}$$

O erro estacionário e_{ss} depende da referência do sistema de controlo, R(s), e do tipo (número de polos na origem) da função de transferência do ramo direto, G(s)

entrada ess, tipo	Degrau $R(s) = \frac{A}{s}$	Rampa $R(s) = \frac{A}{s^2}$	Parábola $R(s) = \frac{A}{s^3}$
G(s) tipo 0	$\frac{A}{1+K_p}$	∞	∞
G(s) tipo 1	0	$\frac{A}{K_{v}}$	∞
<i>G</i> (<i>s</i>) tipo 2	0	0	$\frac{A}{K_a}$

• Determine o erro estacionário do seguinte sistema, quando sujeito às entradas 5u(t), 5tu(t) e $5t^2u(t)$, com u(t) a função degrau unitário

Figure 7.5

© John Wiley & Sons, Inc. All rights reserved.

Transformada de Laplace das entradas

•
$$\mathcal{L}[5u(t)] = 5\frac{1}{s} = \frac{5}{s}$$

•
$$\mathcal{L}[5tu(t)] = 5\frac{1}{s^2} = \frac{5}{s^2}$$

•
$$\mathcal{L}\left[5t^2u(t)\right] = 5\frac{2}{s^3} = \frac{10}{s^3}$$

•
$$\mathcal{L}[t^n u(t)] = \frac{n!}{s^{n+1}}$$

- 1. Verificar estabilidade do anel fechado
 - Eq. caraterística do anel fechado:

$$1 + G(s) = 0$$
, $s = -2$, $s = -125$

- 2. Verificar tipo do anel direto
 - Sistema sem polos na origem: tipo 0
- 3. Determinar $e_{ss}^{\mathrm{entrada}}$ de acordo com a <u>tabela</u>

•
$$K_p = \lim_{s \to 0} G(s) = 20, e_{ss}^{\text{degrau}} = \frac{5}{1 + K_p} = \frac{5}{1 + 20} = \frac{5}{21}$$

•
$$K_v = \lim_{s \to 0} sG(s) = 0, e_{ss}^{\text{rampa}} = \frac{5}{K_v} = \frac{5}{0} = \infty$$

•
$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$
, $e_{ss}^{\text{parábola}} = \frac{10}{K_a} = \frac{10}{0} = \infty$


```
>> G=tf([120 240],conv([1 3],[1 4]));
>> Gaf=feedback(G,1);
>> roots(Gaf.den{1}) %verificar estabilidade AF
ans =
 -124.9837
   -2.0163
>> t=0:0.1:5; %vetor tempo
>> u1=5*ones(size(t)); %vetor entrada em degrau
>> u2=5*t; %vetor entrada em rampa
>> u3=5*t.^2; %vetor entrada em parábola
>> figure, lsim(Gaf,u1,t) %resposta no tempo
>> figure, lsim(Gaf,u2,t)
>> figure, lsim(Gaf,u3,t)
```


 Repita os gráficos para um intervalo de tempo maior, para melhor ver a divergência da saída relativamente à entrada (erro estacionário infinito) nos casos de entrada em rampa e parábola

• Determine o erro estacionário do seguinte sistema, quando sujeito às entradas 5u(t), 5tu(t) e $5t^2u(t)$, com u(t) a função degrau unitário

Figure 7.6
© John Wiley & Sons, Inc. All rights reserved.

1. Verificar estabilidade do anel fechado

• Eq. caraterística do anel fechado:

$$1 + G(s) = 0, s = -1.9, s = -6.1, s = -98.9$$

- 2. Verificar tipo do anel direto
 - Sistema com 1 polo na origem: tipo 1
- 3. Determinar $e_{ss}^{
 m entrada}$ de acordo com a <u>tabela</u>

•
$$K_p = \lim_{S \to 0} G(S) = \infty, e_{SS}^{\text{degrau}} = \frac{5}{1 + K_p} = \frac{5}{1 + \infty} = 0$$

•
$$K_v = \lim_{s \to 0} sG(s) = 100, e_{ss}^{\text{rampa}} = \frac{5}{K_v} = \frac{5}{100} = \frac{1}{20}$$

•
$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$
, $e_{ss}^{\text{parábola}} = \frac{10}{K_a} = \frac{10}{0} = \infty$

 Um sistema em anel fechado com realimentação unitária tem a seguinte FT no anel direto:

$$G(s) = \frac{10(s+20)(s+30)}{s(s+25)(s+35)}$$

- a) Determine o erro estacionário para as seguintes entradas: 15u(t), 15tu(t) e $15t^2u(t)$, com u(t) a função degrau unitário
- b) Repita para

$$G(s) = \frac{10(s+20)(s+30)}{s^2(s+25)(s+35)(s+50)}$$

Especificações de erro estacionário

- Coeficiente de amortecimento ξ , tempo de estabelecimento t_s , tempo de pico t_p , e máximo sobreimpulso M_p são utilizados como especificações de desempenho da resposta transiente do sistema controlado
- Coeficiente de erro estático de posição K_p , coeficiente de erro estático de velocidade K_v , e coeficiente de erro estático de aceleração K_a , podem ser utilizados como especificações para o erro estacionário do sistema controlado

Especificações de erro estacionário

- Para um sistema controlado com especificação $K_v=1000$, conclui-se que
 - O sistema tem de ser estável
 - A entrada de teste é a entrada em rampa
 - O sistema é tipo 1, uma vez que <u>apenas estes sistemas</u> têm K_v contante não nulo
 - O erro estacionário desejado entre a entrada em rampa e a saída é $\frac{1}{K_v}$ por unidade de declive

Para o sistema de controlo de posição da antena de radiotelescópio, com FT

$$G(s) = \frac{6.63}{s(s+1.71)(s+100)}$$

controlador $G_c(s) = K$ e realimentação unitária:

- a) Determine o erro estacionário em termos do ganho do controlador K, para entradas unitárias em degrau, rampa e parábola
- b) Determine o valor de *K* de modo a obter um erro de 10% em regime estacionário

Figure 7.1

© John Wiley & Sons, Inc. All rights reserved.

a) Anel direto: $KG(s) = \frac{K6.63}{s(s+1.71)(s+100)}$ $e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} sR(s) \frac{1}{1 + KG(s)}$ $K_p = \lim_{s \to 0} KG(s) = \infty, e_{ss}^{\text{degrau}} = \frac{1}{1 + K_p} = \frac{1}{1 + \infty} = 0$ $K_v = \lim_{s \to 0} sKG(s) = 0.039K, e_{ss}^{\text{rampa}} = \frac{1}{K_v} = \frac{1}{0.039K} = \frac{25.79}{K}$

$$K_a = \lim_{s \to 0} s^2 KG(s) = 0, e_{ss}^{\text{parábola}} = \frac{1}{K_a} = \frac{1}{0} = \infty$$

b) Determine o valor de K de modo a obter um erro de 10% em regime estacionário

$$G(s) = \frac{6.63}{s(s+1.71)(s+100)}$$

Um sistema de tipo 1 apenas tem erro estacionário constante, não nulo, para entrada em rampa, dado por

$$e_{ss}^{\text{rampa}} = \frac{25.79}{K} = 0.1 \iff K = 257.9$$

Verificar que K = 257.9 está dentro dos valores de K que garantem a estabilidade do anel fechado!

Erros estacionários em sistemas com perturbação

Sistemas de controlo com realimentação são utilizados para compensar o efeito de perturbações e entradas indesejadas

Figure 7.11 O John Wiley & Sons, Inc. All rights reserved.

$$C(s) = G_2(s)D(s) + G_2(s)G_1(s)E(s) = R(s) - E(s)$$

$$C(s) = G_2(s)D(s) + G_2(s)G_1(s)E(s) = R(s) - E(s)$$

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s)$$

Erros estacionários em sistemas com perturbação

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s)$$

• Aplicando o teorema do valor final (válido se o sistema for estável)

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s) - \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

$$e_{ss}^R \text{ devido a } R(s), \qquad e_{ss}^D \text{ devido a } D(s)$$
analisado anteriormente

Erros estacionários em sistemas com perturbação

• Assuma-se $D(s) = \frac{1}{s}$:

$$e_{ss}^{D} = -\lim_{s \to 0} \frac{sG_{2}(s)}{1 + G_{1}(s)G_{2}(s)} D(s)$$

$$= -\frac{1}{\lim_{s \to 0} \frac{1}{G_{2}(s)} + \lim_{s \to 0} G_{1}(s)}$$

• O erro estacionário produzido por uma perturbação em degrau unitário pode ser reduzido aumentando o ganho estático de $G_1(s)$ ou diminuindo o ganho estático de $G_2(s)$

Determine o erro estacionário devido a uma perturbação em degrau unitário para o sistema

Figure 7.13

© John Wiley & Sons, Inc. All rights reserved.

• Verificar estabilidade do anel fechado. Equação caraterística do anel fechado: $1 + G_1(s)G_2(s) = 0$, polos $s = -12.5 \pm 29.0j$

•
$$e_{SS}^D = -\frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)} = -\frac{1}{0 + 1000} = -0.001$$

• No caso genérico, $H(s) \neq 1$

$$\begin{cases} Y(s) = G_c(s)G_p(s)E(s) \\ E(s) = R(s) - H(s)Y(s) \\ E_t(s) = R(s) - Y(s) \end{cases} \begin{cases} E(s) = R(s) - H(s)G_c(s)G_p(s)E(s) \\ E_t(s) = R(s) - G_c(s)G_p(s)E(s) \end{cases}$$

$$\begin{cases} E(s) = R(s) - H(s)G_c(s)G_p(s)E(s) \\ E_t(s) = R(s) - G_c(s)G_p(s)E(s) \end{cases}$$

$$\begin{cases} E(s) = \frac{1}{1 + H(s)G_c(s)G_p(s)} R(s) \\ E_t(s) = R(s) - \frac{G_c(s)G_p(s)}{1 + H(s)G_c(s)G_p(s)} R(s) \end{cases}$$

$$E_t(s) = \left(1 - \frac{G_c(s)G_p(s)}{1 + H(s)G_c(s)G_p(s)}\right)R(s)$$

• Para o sistema estável, o erro estacionário de seguimento, e_{ss} , é dado por

$$e_{t_{SS}} = \lim_{s \to 0} s E_t(s)$$

$$= \lim_{s \to 0} s \left(1 - \frac{G_c(s) G_p(s)}{1 + H(s) G_c(s) G_p(s)} \right) R(s)$$

 É possível fazer uma análise mais simples do erro estacionário por manipulação do diagrama de blocos

- O erro estacionário, $e_{t_{SS}}$, depende
 - Da referência
 - Degrau, rampa, parábola
 - Do tipo da FT do anel direto

$$\frac{G_c(s)G_p(s)}{1 + H(s)G_c(s)G_p(s) - G_c(s)G_p(s)}$$

Para casa

Para o sistema de controlo de posição da antena de radiotelescópio, com FT

$$G(s) = \frac{6.63}{s(s+1.71)(s+100)},$$

controlador $G_c(s) = K$ e sensor de posição H(s) = 1.1, determine o erro estacionário em termos do ganho do controlador K, para entradas unitárias em degrau, rampa e parábola

Figure 7.1

© John Wiley & Sons, Inc. All rights reserved.

Kahoot

https://create.kahoot.it/details/at10-erros-estacionarios/3fbe92a3-22d6-4e8b-b431-b35ca1d7cec9

Próximas aulas

- Caracterização das acções básicas de Controlo:
 P, I, D (frequência e tempo).
- O controlador PID.

Referências/fontes usadas

Control Systems Engineering, Norman Nise, John Wiley & Sons (6ª edição),
 2011

Controlo de Sistemas, Miguel Ayala Botto, AEIST Press, 2008

Modern Control Engineering, K. Ogata, Prentice-Hall International (4ª edição), 2002

Feedback Control of Dynamic Systems, Gene F. Franklin, J. David Powell,
 Abbas Emami-Naeini, Pearson (6ª edição), 2010