Mapping Flood Waters with Satellite Imagery and Topography using Convolutional Neural Networks

Flood Events

Multispectral Imagery

Machine Learning

Ephemeral Surface Water Spatio-temporal + Spectral Variance`

Spectral Signature of object Reflection across EM bands

Supervised Learning AI CNNs

Christopher Koido-Bunt Student No. XXXXXXX

Need and Challenge

- Flood Risk intensity under a changing climate
- Developments in AI methods and imagery data availability
- "...advanced transition phase..." (Hoeser and Kuenzer, 2020) global benchmark datasets
- Effects of topography in the field of flood modelling

Current Literature Fragmented: Data Fusion, ML models, Water Mapping methods

- Two relevant studies but limited in :
 - Flood event types
 - Study area type
 - Local scale
 - MERIT global terrain dataset
 - Punching above it weight
 - o 'raw' DEM vs derived HAND TI

Observed Behaviours

- Topo. was useful in 10m models (DEM + HAND)
- DEM10m performance better in complex multi-catchment scene
- In models with DEM, target function harder to learn than BASE or HAND
- In 90m models Topo., no additional benefit or detrimental
 - Despite data imbalance
 - DEM90m failed to learn to predict water

····· HAND val min

Causes:

HAND / DEM differences

Scale-dependent differences

Model architecture

Dilation Rates: 0, 1, 2

Dilation Rates: 0. 2

Dilation Rates: 6, 12, 18

(n)

Epochs

592

1156

893

3907

3840

3908

					Epochs				
_	ó	200	400	600	800	1000	1200	1400	1600
0.12	-	Market of	april by the	of the same	HIP PAR		1	~	~
0.14 -	79			2000				اللطبا	Lite
0.16			an	Libe		Jul J	i uni	11.4	
0.20	W	1	-	<u> </u>	٠	li.			
0.20		~	واللاط		ال مال				
0.22 -			ı II.	L					
0.24 -	IN.			- 3					

HAND val

HAND train

Loss Curves of 10m Models

Model	OA	F1	mIOU	Recall	Precisio
Wodei	(%)	(%)	Water (%)	Water (%)	n Water (%)
BASE10m	79.24	36.86	12.96	13.36	24.69
DEM10m	80.53	36.22	14.02	16.06	24.82
HAND10m	88.03	36.72	15.94	18.28	26.99
BASE90m	87.55	46.14	21.47	18.17	50.98
DEM90m	81.41	35.91	0.00	0.00	0.00
HAND90m	87.24	45.18	20.77	17.90	52.40

Topo simplicity

- Topo. can improve FW mapping in CNNs on a global scale
- The training data imbalance between 10m and 90m models affected comparability
- Interesting to see model behaviours on full dataset

Future work can:

Tweak dilation rates in atrous convolutions

Assess alternative CNN architectures (backbones/conv. arms)

- Should these results be promising it opens up questions on additional uses the MERIT dataset to "peek under occlusions".
- Examine other open global ancillary data sources

Icons and Artwork

MERLL data - Yamazaki, et al., 2017, 2019 NorldFloods Sentinel-2 Data - Mateo-Garcia, et al., 2021