Chapitre 12: Intégration: rappels et compléments

1 Rappels: intégration sur un segment

1.1 Primitive et intégrale sur un segment

Définition 1 (Primitive)

Soient f et F deux fonctions définies sur un intervalle I.

On dit que F est une **primitive de** f sur I si F est dérivable sur I de dérivée f:

$$\forall x \in I$$
, $F'(x) = f(x)$.

Remarque 1

Si une fonction f possède une primitive F sur un intervalle I, alors pour tout réel k, la fonction défine sur I par

$$x \in I \longrightarrow F(x) + k$$

est aussi une primitive de f sur I. De plus, toute primitive de f sur I est de cette forme.

Théorème 1

Toute fonction continue sur un intervalle I possède une primitive sur I.

Remarque 2

Une primitive F d'une fonction continue f sur I est donc de classe \mathscr{C}^1 sur I.

Proposition 1 (Théorème fondamental du calcul intégral)

Soient f une fonction définie sur un intervalle I et a, b deux éléments de I. Soit F une primitive de f sur I.

- 1. Le réel F(b) F(a) ne dépend pas du choix de la primitive F de f sur I.
- 2. On appelle **intégrale de** f **sur le segment** [a,b] et on note $\int_a^b f(t)dt$ ce réel :

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

Remarque 3

On conserve les notations de la proposition précédente.

1. On note souvent:

$$[F(t)]_a^b = F(b) - F(a) = \int_a^b f(t) dt.$$

2. Dans la notation $\int_a^b f(t)dt$, la variable t est muette, ainsi

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = F(b) - F(a).$$

3. On a

$$\int_{a}^{b} f(t)dt = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(t)dt.$$

Proposition 2

Soient f, g deux fonctions continues sur un intervalle I, a, b, c trois éléments de I et λ un réel.

1. Linéarité: on a

$$\int_{a}^{b} (f(t) + \lambda g(t)) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt.$$

2. Relation de Chasles: on a

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt.$$

3. *Positivité* : si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant 0 \Longrightarrow \int_a^b f(t)dt \geqslant 0.$$

4. *Croissance*: si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant g(t) \Longrightarrow \int_a^b f(t)dt \geqslant \int_a^b g(t)dt.$$

5. Inégalité triangulaire:

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt.$$

Proposition 3

Soit f une fonction **positive et continue** sur un segment [a,b] telle que $\int_a^b f(t)dt = 0$. Alors, f est identiquement nulle sur [a,b].

Test 1 (Voir solution.)

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Soit $n \in \mathbb{N}$. Montrer que pour tout $t \in [0,1]$, $0 \leq \frac{t^n}{1+t^2} \leq t^n$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$.
- 4. Monter que $(I_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Extension aux fonctions continues par morceaux

- Soit f une fonction définie sur un segment [a,b]. On dit que f est **continue par morceaux** sur [a,b] s'il existe une subdivision $a_0 = a < a_1 < \cdots < a_n = b$ de [a,b] telle que les restrictions de f à chaque intervalle ouvert $]a_i, a_{i+1}[$ admettent un prolongement par continuité à l'intervalle fermé $[a_i, a_{i+1}]$.
- Pour une telle fonction continue par morceaux f, on définit l'intégrale de f sur [a,b] par

$$\int_{a}^{b} f(t)dt = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(t)dt.$$

La proposition 2 reste vraie pour les fonctions continues par morceaux.

Remarque 4

Une fonction continue par morceaux sur [a,b] est donc une fonction qui est continue sur [a,b] sauf éventuellement en un nombre fini de points en lesquels elle admet tout de même des limites finies à droite et à gauche.

2

Exemple 1

1. La fonction partie entière f est continue par morceaux sur [0,2].

En effet, elle est continue sur]0,1[et]1,2[car constante sur chacun de ces intervalles. De plus,

$$\lim_{x \to 0^+} \lfloor x \rfloor = 0 \quad ; \quad \lim_{x \to 1^-} \lfloor x \rfloor = 0 \quad ; \quad \lim_{x \to 1^+} \lfloor x \rfloor = 1 \quad ; \quad \lim_{x \to 2^-} \lfloor x \rfloor = 1 \quad ;$$

 $donc\ sa\ restriction\ \grave{a}\]0,1[\ (resp.\ \grave{a}\]1,2[)\ est\ prolongeable\ par\ continuit\acute{e}\ sur\ [0,1]\ (resp.\ [1,2]).$

2. Intégrale de f sur [0,2].

$$\int_{0}^{2} f(t)dt = \int_{0}^{1} f(t)dt + \int_{1}^{2} f(t)dt \quad \text{par d\'efinition de l'int\'egrale d'une fonction continue par morceaux}$$

$$= \int_{0}^{1} 0dt + \int_{1}^{2} 1dt$$

$$= 1$$

1.2 Techniques de calcul

► Calcul de primitives « à vue »

Fonction f	Une primitive de f	sur l'intervalle :
$x \longmapsto a, a \in \mathbb{R}$	$x \longmapsto ax$	R
$x \longmapsto x^n, n \in \mathbb{N}$	$x \longmapsto \frac{x^{n+1}}{n+1}$	R
$x \longmapsto x^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{x^{a+1}}{a+1}$	\mathbb{R}_+^*
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln(x)$	\mathbb{R}_+^*
$x \longmapsto e^x$	$x \longmapsto e^x$	\mathbb{R}

TABLE 1 – Primitives usuelles

Fonction f	Une primitive de f	sur tout I tel que :
$x \longmapsto u'(x)u(x)^n, n \in \mathbb{N}$	$x \longmapsto \frac{u(x)^{n+1}}{n+1}$	<i>u</i> est dérivable sur I
$x \longmapsto u'(x)u(x)^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{u(x)^{a+1}}{a+1}$	u est dérivable et $u > 0$ sur I
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln(u(x))$	<i>u</i> est dérivable et ne s'annule pas sur I
$x \longmapsto u'(x)e^{u(x)}$	$x \longmapsto e^{u(x)}$	<i>u</i> est dérivable sur I

TABLE 2 – Primitives de fonctions composées

Exemple 2

Calculer
$$\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt$$
.
On remarque que pour tout $t \in [0, 1]$:

$$\frac{t}{\sqrt{t^2+1}} = \frac{1}{2} \frac{2t}{(t^2+1)^{\frac{1}{2}}} = \frac{1}{2} u'(t) u(t)^{-\frac{1}{2}}$$

 $où u(t) = t^2 + 1$. Donc

$$\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt = \frac{1}{2} \left[\frac{u(t)^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} \right]_0^1 = \left[u(t)^{\frac{1}{2}} \right]_0^1 = \sqrt{2} - 1.$$

Test 2 (Voir solution.)

Calculer les intégrales suivantes :

$$1. \int_e^{3e} \frac{1}{x \ln(x)} dx.$$

2.
$$\int_{0}^{2} e^{2t-1} dt$$
.

3.
$$\int_0^1 s(s^2+3)^2 ds$$
.

► Intégration par parties

Proposition 4 (Intégration par parties)

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un segment [a,b]. Alors

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt.$$

Exemple 3

Calculer
$$\int_{1}^{3} t^{2} \ln(t) dt$$
.

Les fonctions $u: t \mapsto \frac{t^3}{3}$ et $v: t \mapsto \ln(t)$ sont de classe \mathscr{C}^1 sur [1,3] et

$$\int_{1}^{3} t^{2} \ln(t) dt = \int_{1}^{3} u'(t) v(t) dt.$$

Par intégration par parties, on trouve donc

$$\int_{1}^{3} t^{2} \ln(t) dt = \left[u(t)v(t) \right]_{1}^{3} - \int_{1}^{3} u(t)v'(t) dt$$

$$= \left[\frac{t^{3} \ln(t)}{3} \right]_{1}^{3} - \int_{1}^{3} \frac{t^{2}}{3} dt$$

$$= 3^{2} \ln(3) - \frac{1}{3} \left[\frac{t^{3}}{3} \right]_{1}^{3}$$

$$= 9 \ln(3) - \frac{26}{9}$$

Test 3 (Voir solution.)

Soit
$$x \in]1, +\infty[$$
. Calculer $\int_1^x \ln(t) dt$.

► Changement de variables

Proposition 5 (Changement de variables)

Soit u une fonction de classe \mathscr{C}^1 sur [a,b] et soit f une fonction continue sur u([a,b]). Alors

$$\int_{u(a)}^{u(b)} f(x) dx = \int_{a}^{b} f(u(t)) u'(t) dt.$$

Exemple 4

Calculer $\int_{1}^{2} \frac{dt}{e^{t}+1}$ à l'aide du changement de variable $u=e^{t}$.

- 1. Transformer du avec la formule du = u'(t)dt. Ici, $du = e^t dt$ ou encore du = udt, c'est-à-dire $\frac{du}{u} = dt$.
- 2. Transformer l'expression sous l'intégrale.

$$\frac{dt}{e^t + 1} = \frac{\frac{du}{u}}{u + 1} = \frac{du}{u(u + 1)}$$

3. Transformer les bornes. u(1) = e et $u(2) = e^2$.

4. Rédaction finale:

La fonction $u: t \mapsto e^t$ est de classe \mathscr{C}^1 sur [1,2] et $u'(t) = e^t$ pour tout $t \in [1,2]$ donc:

$$\int_{1}^{2} \frac{dt}{e^{t} + 1} = \int_{1}^{2} \frac{dt}{u(t) + 1} \frac{e^{t}}{e^{t}} dt = \int_{1}^{2} \frac{dt}{u(t) + 1} \frac{u'(t)}{u(t)} dt = \int_{e}^{e^{2}} \frac{1}{u(u + 1)} du$$

 $car \ u \mapsto \frac{1}{u(u+1)} \ est \ continue \ sur \ [e, e^2].$

On remarque ensuite que pour tout $u \in [e, e^2]$,

$$\frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}$$

donc

$$\int_{1}^{2} \frac{dt}{e^{t} + 1} = \int_{e}^{e^{2}} \frac{1}{u(u+1)} du = \int_{e}^{e^{2}} \frac{1}{u} du - \int_{e}^{e^{2}} \frac{1}{u+1} du = 1 - \ln\left(\frac{e^{2} + 1}{e + 1}\right)$$

Test 4 (Voir solution.)

Soit f une fonction impaire continue sur \mathbb{R} . Montrer que pour tout $a \ge 0$

$$\int_{a}^{a} f(t)dt = 0.$$

Indication: à l'aide d'un changement de variable, montrer que $\int_0^a f(t)dt = \int_{-a}^0 f(-t)dt$

Test 5 (Voir solution.)

Soit f une fonction définie sur \mathbb{R}^*_+ par

$$\forall x \in \mathbb{R}^*_+, \quad f(x) = \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt.$$

Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.

2 Intégrales impropres

2.1 Intégrales impropres en $\pm \infty$

Définition 2 (Convergence d'une intégrale impropre en $+\infty$)

Soit f une fonction continue sur un intervalle de la forme $[a, +\infty[$.

• Si la limite suivante existe et est finie

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** $[a, +\infty[$ et on la note $\int_a^{+\infty} f(t)dt$.

• Si la limite $\int_a^{+\infty} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_a^{+\infty} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

De même:

Définition 3 (Convergence d'une intégrale impropre en $-\infty$)

Soit *f* une fonction continue sur un intervalle de la forme $]-\infty,b]$.

• Si la limite suivante existe et est finie

$$\lim_{x \to -\infty} \int_{x}^{b} f(t) dt,$$

on l'appelle intégrale impropre (ou généralisée) de f sur $]-\infty,b]$ et on la note $\int_{-\infty}^{b} f(t)dt$.

• Si la limite $\int_{-\infty}^{b} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_{-\infty}^{b} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

Méthode 1

Soit f définie sur un intervalle $[a, +\infty[$. Étudier la nature de l'intégrale impropre $\int_a^{+\infty} f(t)dt$, c'est déterminer si elle converge ou non, c'est-à-dire déterminer si

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

existe et est finie ou non. En pratique :

- 1. on commence par montrer que f est continue sur $[a, +\infty[$,
- 2. on introduit $x \in [a, +\infty[$ et on étudie si $\int_a^x f(t)dt$ admet une limite finie quand x tend vers $+\infty$.

On procède de manière analogue pour étudier la nature d'une intégrale de la forme $\int_{-\infty}^{b} f(t)dt$.

Exemple 5

1. Étudier la nature de $\int_1^{+\infty} \frac{1}{t} dt$.

La fonction $t \mapsto \frac{1}{t}$ est continue sur $[1, +\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x \in [1, +\infty[$. Alors

$$\int_{1}^{x} \frac{1}{t} dt = \left[\ln(t) \right]_{1}^{x} = \ln(x)$$

Ainsi $\lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to +\infty} \ln(x) = +\infty$. L'intégrale impropre $\int_{1}^{+\infty} \frac{1}{t} dt$ est donc divergente.

6

2. Étudier la nature de $\int_{2}^{+\infty} \frac{1}{t^2} dt$.

La fonction $t\mapsto \frac{1}{t^2}$ est continue sur $[2,+\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x\in[2,+\infty[$. Alors

$$\int_{2}^{x} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{2}^{x} = -\frac{1}{x} + \frac{1}{2}.$$

Ainsi $\lim_{x\to +\infty} \int_2^x \frac{1}{t^2} dt = \frac{1}{2}$. L'intégrale $\int_2^{+\infty} \frac{1}{t^2} dt$ est donc convergente et

$$\int_2^{+\infty} \frac{1}{t^2} dt = \frac{1}{2}.$$

3. Étudier la nature de $\int_0^{+\infty} e^{-t} dt$.

La fonction $t\mapsto e^{-t}$ est continue sur $[0,+\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x\in[0,+\infty[$. Alors

$$\int_{0}^{x} e^{-t} dt = \left[-e^{-t} \right]_{0}^{x} = -e^{-x} + 1.$$

Ainsi $\lim_{x\to +\infty} \int_0^x e^{-t} dt = 1$. L'intégrale $\int_0^{+\infty} e^{-t} dt$ est donc convergente et

$$\int_0^{+\infty} e^{-t} dt = 1.$$

Plus généralement :

Exemples de référence

- 1. L'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ converge si et seulement si $\lambda > 0$.
- 2. *Intégrale de Riemann en* $+\infty$: pour tout réel c > 0, l'intégrale $\int_{c}^{+\infty} \frac{1}{t^a} dt$ converge si et seulement si a > 1.

Test 6 (Voir solution.)

Démontrer les critères de convergence des exemples de référence.

2.2 Intégrales impropres sur un intervalle]a, b] ou [a, b]

Définition 4 (Convergence d'une intégrale impropre)

Soient a, b deux réels avec a < b.

• Soit *f* une fonction continue sur [*a*, *b*[. Si la limite suivante existe et est finie

$$\lim_{x \to b^{-}} \int_{a}^{x} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** [a,b[et on la note $\int_a^b f(t)dt$. Dans ce cas on dira que l'intégrale impropre $\int_a^b f(t)dt$ **converge**, sinon on dira qu'elle **diverge**.

• Soit *f* une fonction continue sur] *a*, *b*]. Si la limite suivante existe et est finie

$$\lim_{x \to a^+} \int_x^b f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur**]a,b] et on la note $\int_a^b f(t)dt$. Dans ce cas on dira que l'intégrale impropre $\int_a^b f(t)dt$ **converge**, sinon on dira qu'elle **diverge**.

Méthode 2

Soit f définie sur un intervalle [a,b[. Étudier la nature de l'intégrale impropre $\int_a^b f(t)dt$, c'est déterminer si elle converge ou non, c'est-à-dire déterminer si

$$\lim_{x \to b^{-}} \int_{a}^{x} f(t) dt$$

existe et est finie ou non. En pratique :

- 1. on commence par montrer que f est continue sur [a,b],
- 2. on introduit $x \in [a, b[$ et on étudie si $\int_a^x f(t)dt$ admet une limite finie quand x tend vers b^- .

On procède de manière analogue pour étudier la nature d'une intégrale d'une fonction f définie sur]a,b].

Exemple 6

1. Étudier la nature de $\int_0^2 \frac{1}{x-2} dx$.

La fonction $f: x \mapsto \frac{1}{x-2}$ est continue sur [0,2[. L'intégrale est donc impropre en 2. Soit $u \in [0,2[$. Alors

$$\int_0^u \frac{1}{x-2} dx = \left[\ln|x-2| \right]_0^u = \ln(2-u) - \ln(2).$$

Ainsi

$$\lim_{u \to 2^{-}} \int_{0}^{u} \frac{1}{x - 2} dx = -\infty.$$

L'intégrale $\int_0^2 \frac{1}{x-2} dx$ est donc divergente.

2. Étudier la nature de $\int_1^2 \frac{1}{\sqrt{t-1}} dt$.

La fonction $f: t \mapsto \frac{1}{\sqrt{t-1}}$ est continue sur]1,2]. L'intégrale est donc impropre en 1. Soit $x \in]1,2]$. Alors

$$\int_{x}^{2} \frac{1}{\sqrt{t-1}} dt = \left[2\sqrt{t-1}\right]_{x}^{2} = 2 - 2\sqrt{x-1}.$$

Ainsi

$$\lim_{x \to 1^+} \int_x^2 \frac{1}{\sqrt{t-1}} dt = 2.$$

L'intégrale $\int_{1}^{2} \frac{1}{\sqrt{t-1}} dt$ est donc convergente et vaut 2.

Exemples de référence

- 1. L'intégrale $\int_0^1 \ln(t) dt$, impropre en 0, converge.
- 2. *Intégrale de Riemann en* 0 : pour tout réel c > 0, l'intégrale $\int_0^c \frac{1}{t^a} dt$, impropre en 0, converge si et seulement si a < 1.

Test 7 (Voir solution.)

Démontrer le critère de convergence des intégrales de Riemann.

Exemple 7

Soit f une fonction continue sur a, b et prolongeable par continuité en a. Alors l'intégrale $\int_a^b f(t)dt$ est convergente.

2.3 Extension au cas des fonctions ayant un nombre fini de points discontinuité

Définition 5 (Convergence d'une intégrale plusieurs fois impropre)

Soient $-\infty \le a < b \le +\infty$ et f une fonction continue sur]a,b[.

S'il existe $c \in]a,b[$ tel que les deux intégrales impropres $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent, on dit que

l'intégrale doublement impropre $\int_a^b f(t)dt$ est convergente et on note

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt.$$

Sinon, on dira qu'elle diverge.

Remarque 5

En conservant les notations de la définition, les intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ sont des intégrales impropres respectivement en a et en b au sens des paragraphes précédents.

Méthode 3

Soit f définie sur un intervalle] a,b[. Étudier la nature de l'intégrale impropre $\int_a^b f(t)dt$, c'est déterminer si elle converge ou non. En pratique on prend n'importe quel $c \in]a,b[$ et on étudie la nature des intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ avec les méthodes précédentes.

Exemple 8

1. Étudier la nature de $\int_0^{+\infty} \frac{1}{t^2} dt$.

La fonction $f: t \mapsto \frac{1}{t^2}$ est continue sur $]0, +\infty[$. L'intégrale est donc impropre en 0 et en $+\infty$. Or, pour tout c > 0, l'intégrale $\int_0^c \frac{1}{t^2} dt$ est divergente. Ainsi l'intégrale $\int_0^{+\infty} \frac{1}{t^2} dt$ est divergente.

2. Étudier la nature de $\int_{-\infty}^{+\infty} e^{-|t|} dt$.

La fonction $f: t \mapsto e^{-|t|}$ est continue sur \mathbb{R} . L'intégrale est donc impropre en $-\infty$ et $+\infty$.

Étudions la nature des intégrales $\int_0^{+\infty} f(t)dt$ et $\int_{-\infty}^0 f(t)dt$.

- L'intégrale $\int_0^{+\infty} f(t)dt = \int_0^{+\infty} e^{-t}dt$ est convergente et vaut 1.
- L'intégrale $\int_{-\infty}^{0} f(t)dt$. Soit $x \in]-\infty,0]$. Alors

$$\int_{x}^{0} f(t)dt = \int_{x}^{0} e^{t}dt = \left[e^{t}\right]_{x}^{0} = 1 - e^{x}.$$

Ainsi $\lim_{x \to -\infty} \int_{x}^{0} f(t)dt = 1$. L'intégrale $\int_{-\infty} f(t)dt$ est donc convergente et vaut 1.

Ainsi $\int_{-\infty}^{+\infty} e^{-|t|} dt$ est convergente et

$$\int_{-\infty}^{+\infty} e^{-|t|} dt = \int_{-\infty}^{0} e^{-|t|} dt + \int_{0}^{+\infty} e^{-|t|} dt = 2.$$

Définition 6 (Extension au cas des fonctions ayant un nombre fini de points discontinuité)

Soient $-\infty \le a < b \le +\infty$ et f une fonction ayant un nombre fini de points de discontinuité sur]a,b[: il existe une subdivision $a_0 = a < a_1 \cdots < a_n = b$ de]a,b[telle que f est continue sur $]a_i,a_{i+1}[$ pour tout $i \in [0,n-1]$.

Si pour tout $i \in [0, n-1]$ les intégrales doublement impropres $\int_{a_i}^{a_{i+1}} f(t)dt$ convergent, on dit que l'inté-

grale $\int_{a}^{b} f(t)dt$ **converge** et vaut

$$\int_{a}^{b} f(t)dt = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(t)dt.$$

Sinon, on dit que l'intégrale diverge.

Exemple 9

Étudier la nature de $\int_{-\infty}^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt.$

1. Déterminer les impropretés.

La fonction $f: t \mapsto \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}}$ est continue sur $]-\infty,0[$ et sur $]0,+\infty[$. L'intégrale est impropre en $0,+\infty$ et $-\infty$.

2. Étude de $\int_0^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt.$

Pour tout $t \in]0, +\infty[$, |t| = t et l'intégrale considérée est $\int_0^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt$ qui est doublement impropre.

• Étude de $\int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt$.

La fonction $t \mapsto \frac{e^{-\sqrt{t}}}{\sqrt{t}}$ est continue sur $[1, +\infty[$ et pour tout $x \in [1, +\infty[$ on a

$$\int_{1}^{x} \frac{e^{-\sqrt{t}}}{\sqrt{t}} = \left[-2e^{-\sqrt{t}}\right]_{1}^{x} = -2\left(e^{-\sqrt{x}} - e^{-1}\right).$$

 $Donc \lim_{x \to +\infty} \int_{1}^{x} \frac{e^{-\sqrt{t}}}{\sqrt{t}} = 2e^{-1}. Ainsi, l'intégrale \int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt \ converge \ et \ vaut \ 2e^{-1}.$

• Étude de
$$\int_0^1 \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt$$
.

La fonction $t \mapsto \frac{e^{-\sqrt{t}}}{\sqrt{t}}$ est continue sur]0,1] et pour tout $x \in]0,1]$ on a

$$\int_{x}^{1} \frac{e^{-\sqrt{t}}}{\sqrt{t}} = \left[-2e^{-\sqrt{t}}\right]_{x}^{1} = -2\left(e^{-1} - e^{-\sqrt{x}}\right).$$

 $Donc \lim_{x \to 0} \int_{x}^{1} \frac{e^{-\sqrt{t}}}{\sqrt{t}} = 2 - 2e^{-1}. \text{ Ainsi, l'intégrale } \int_{0}^{1} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt \text{ converge et vaut } 2 - 2e^{-1}.$

• Conclusion : l'intégrale $\int_0^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt$ converge et vaut :

$$\int_{0}^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt = \int_{0}^{1} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt + \int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt = 2.$$

3. Étude de
$$\int_{-\infty}^{0} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt.$$

Pour tout $t \in]-\infty,0[$, |t|=-t et l'intégrale considérée est $\int_{-\infty}^{0} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt$ qui est doublement impropre.

• Étude de $\int_{-\infty}^{-1} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt.$

La fonction $t \mapsto \frac{e^{-\sqrt{-t}}}{\sqrt{-t}}$ est continue sur $]-\infty,-1]$ et pour tout $x \in]-\infty,-1]$ on a

$$\int_{x}^{-1} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} = \left[2e^{-\sqrt{-t}}\right]_{x}^{-1} = 2\left(e^{-1} - e^{-\sqrt{-x}}\right).$$

 $Donc \lim_{x \to -\infty} \int_{x}^{-1} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} = 2e^{-1}. \text{ Ainsi, l'intégrale } \int_{-\infty}^{-1} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt \text{ converge et vaut } 2e^{-1}.$

• Étude de $\int_{-1}^{0} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt.$

La fonction $t \mapsto \frac{e^{-\sqrt{-t}}}{\sqrt{-t}}$ est continue sur [-1,0[et pour tout $x \in [-1,0[$ on a

$$\int_{-1}^{x} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} = \left[2e^{-\sqrt{-t}}\right]_{-1}^{x} = 2\left(e^{-\sqrt{-x}} - e^{-1}\right).$$

Donc $\lim_{x\to 0}\int_{-1}^{x}\frac{e^{-\sqrt{-t}}}{\sqrt{-t}}=2-2e^{-1}$. Ainsi, l'intégrale $\int_{-1}^{0}\frac{e^{-\sqrt{-t}}}{\sqrt{-t}}dt$ converge et vaut $2-2e^{-1}$.

• Conclusion : l'intégrale $\int_{-\infty}^{0} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt$ converge et vaut :

$$\int_{-\infty}^{0} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt = \int_{-\infty}^{-1} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt + \int_{-1}^{0} \frac{e^{-\sqrt{-t}}}{\sqrt{-t}} dt = 2.$$

4. Conclusion:

On en déduit que $\int_{-\infty}^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt$ est convergente et

$$\int_{-\infty}^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt = \int_{-\infty}^{0} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt + \int_{0}^{+\infty} \frac{e^{-\sqrt{|t|}}}{\sqrt{|t|}} dt = 4.$$

Proposition 6 (Propriétés des intégrales impropres)

Soient $-\infty \le a < b \le +\infty$ et f, g deux fonctions continues sur a, b. Soient $c \in a, b$ et λ un réel.

1. Linéarité: si $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ convergent alors $\int_a^b (f(t) + \lambda g(t))dt$ converge et

$$\int_{a}^{b} (f(t) + \lambda g(t))dt = \int_{a}^{b} f(t)dt + \lambda \int_{a}^{b} g(t)dt.$$

2. Relation de Chasles: si $\int_a^b f(t)dt$ converge alors $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent et

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt.$$

3. Positivité: si f est positive sur]a,b[et que $\int_a^b f(t)dt$ converge alors

$$\int_{a}^{b} f(t)dt \ge 0.$$

4. Si f est positive sur]a,b[et que $\int_a^b f(t)dt$ converge alors

$$\int_{a}^{b} f(t)dt = 0 \Longrightarrow \forall t \in]a, b[, f(t) = 0.$$

Méthode 4 (Techniques de calcul)

On peut utiliser les techniques de calcul comme les primitives « à vue », le changement de variable ou l'intégration par parties pour calculer des intégrales impropres :

- 1. on se ramène à une intégrale sur un segment (par exemple, pour une fonction continue sur [a,b[avec une impropreté en b, on considère $x \in [a,b[$ et on s'intéresse à l'intégrale sur le segment [a,x]);
- 2. on utilise la technique voulue (primitive « à vue », le changement de variable ou l'intégration par parties) dans cette intégrale sur un segment;
- 3. on passe à la limite (dans l'exemple, quand x tend vers b^-).

Exemple 10

1. Étudier $\int_0^{+\infty} \frac{e^t}{(1+e^t)^3} dt.$

La fonction $t \mapsto \frac{e^t}{(1+e^t)^3}$ est continue sur $[0, +\infty[$. Soit $A \in [0, +\infty[$. On a

$$\int_0^A \frac{e^t}{(1+e^t)^3} dt = \int_0^A e^t (1+e^t)^{-3} dt = \left[\frac{(1+e^t)^{-2}}{-2} \right]_0^A = \frac{1}{8} - \frac{1}{2(1+e^A)^2}$$

Donc,

$$\lim_{A \to +\infty} \int_0^A \frac{e^t}{(1+e^t)^3} dt = \frac{1}{8}.$$

Ainsi $\int_0^{+\infty} \frac{e^t}{(1+e^t)^3} dt$ est convergente et vaut $\frac{1}{8}$.

2. Étudier $\int_0^1 \ln(t) dt$.

La fonction $t \mapsto \ln(t)$ est continue sur]0,1]. Soit $x \in]0,1]$. Les fonctions $u: t \mapsto t$ et $v: t \mapsto \ln(t)$ étant de classe \mathscr{C}^1 sur [x,1], on a, par intégration par parties :

$$\int_{x}^{1} \ln(t) dt = \int_{x}^{1} u'(t) v(t) dt = [u(t) v(t)]_{x}^{1} - \int_{x}^{1} u(t) v'(t) dt$$
$$= [t \ln(t)]_{x}^{1} - \int_{x}^{1} 1 dt = -x \ln(x) - 1 + x$$

Donc, par croissance comparée

$$\lim_{x \to 0^+} \int_x^1 \ln(t) dt = \lim_{x \to 0^+} -x \ln(x) - 1 + x = -1.$$

Ainsi $\int_{a}^{1} \ln(t) dt$ est convergente et vaut -1.

3. Étudier $\int_0^1 \frac{e^{-\frac{1}{t}}}{t^2} dt$ avec le changement de variable $u = \frac{1}{t}$.

La fonction $f \mapsto \frac{e^{-\frac{1}{t}}}{t^2}$ est continue sur]0,1]. Soit $x \in]0,1]$. La fonction $u: t \mapsto \frac{1}{t}$ est de classe \mathscr{C}^1 sur [x,1]. De plus, $du = -\frac{1}{t^2}dt$. Ainsi

$$\int_{x}^{1} f(t)dt = \int_{x}^{1} \frac{e^{-\frac{1}{t}}}{t^{2}}dt = -\int_{\frac{1}{x}}^{1} e^{-u}du = \int_{1}^{\frac{1}{x}} e^{-u}du = e^{-1} - e^{-\frac{1}{x}}.$$

Donc,

$$\lim_{x \to 0^+} \int_x^1 f(t) dt = \lim_{x \to 0^+} e^{-1} - e^{-\frac{1}{x}} = e^{-1}.$$

Ainsi $\int_{0}^{1} \frac{e^{-\frac{1}{t}}}{t^{2}} dt$ est convergente et vaut e^{-1} .

Test 8 (Voir solution.)

Déterminer la nature, et le cas échéant la valeur, des intégrales suivantes.

1.
$$\int_0^{\sqrt{2}} \frac{t}{\sqrt{2-t^2}} dt$$
;

$$2. \int_0^{+\infty} u e^{-u} du;$$

3.
$$\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt \text{ en posant } u = \ln(t).$$

Convergences des intégrales de fonctions positives. 3

Proposition 7

- Soient $a < b \le +\infty$ et f une fonction continue positive sur [a,b[. L'intégrale $\int_a^b f(t)dt$ converge si et seulement si $x \mapsto \int_{-\infty}^{x} f(t) dt$ est majorée sur [a, b[.
- Soient $-\infty \le a < b$ et f une fonction continue positive sur]a,b]. L'intégrale $\int_a^b f(t)dt$ converge si et seulement si $x \mapsto \int_{x}^{b} f(t)dt$ est majorée sur]a,b].

Remarque 6

Il s'agit d'une conséquence du théorème de la limite monotone : la fonction $x \mapsto \int_a^x f(t)dt$ (resp. $x \mapsto \int_a^b f(t)dt$) est croissante sur [a,b[(resp. décroissante sur]a,b]).

Proposition 8 (Comparaison par inégalité)

- Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que, au voisinage de $b:0 \le f \le g$.
 - 1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
 - 2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.
- Soient $-\infty \le a < b$ et f, g deux fonctions continues sur]a,b] et **positives au voisinage de** a telles que, au voisinage de a: $0 \le f \le g$.
 - 1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
 - 2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.

Remarque 7

Dire qu'au voisinage de b on a $0 \le f \le g$ signifie :

$$\exists c \in [a, b] \ \forall t \in [c, b], \ 0 \leq f(t) \leq g(t).$$

Exemple 11

Étudier la nature de $\int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$.

La fonction $t \mapsto \frac{e^{-t}}{t^2}$ est continue sur $[1, +\infty[$. L'intégrale possède donc une impropreté en $+\infty$. De plus,

$$\forall t \in [1, +\infty[, \quad \frac{e^{-t}}{t^2} \leqslant \frac{1}{t^2}.$$

Or $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente (car 2 > 1). Comme les fonctions $t \mapsto \frac{1}{t^2}$ et $t \mapsto \frac{e^{-t}}{t^2}$ sont continues et positives sur $[1, +\infty[$, d'après le critère de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$ converge aussi.

Test 9 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_{1}^{+\infty} \frac{t}{t + \sqrt{t}} dt;$$

$$2. \int_1^{+\infty} \frac{dt}{e^t + e^{-t}}.$$

Proposition 9 (Comparaison par négligeabilité)

- Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que $f(t) = \underset{t \to b^-}{o} (g(t))$.
 - 1. Si $\int_{a}^{b} g(t)dt$ converge alors $\int_{a}^{b} f(t)dt$ converge.
 - 2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.
- Soient $-\infty \le a < b$ et f, g deux fonctions continues sur a,b et **positives au voisinage de** a telles que $f(t) = \underset{t \to a^+}{o} (g(t))$.

- 1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
- 2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.

Méthode 5 (Comparaison avec les exemples de référence)

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à la comparer avec l'un des exemples de référence. Par exemple, si f continue sur $[c, +\infty[$ (c>0) et positive au voisinage de $+\infty$ (raisonnement à refaire à chaque fois qu'on l'utilise) :

- 1. $si \lim_{t \to +\infty} t^a f(t) = 0$ alors $f(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^a}\right)$ donc $\int_c^{+\infty} f(t) dt$ converge $si \ a > 1$ par comparaison avec une intégrale de Riemann;
- 2. $si \lim_{t \to +\infty} t^a f(t) = +\infty$ alors $\frac{1}{t^a} = o(f(t))$ donc $\int_c^{+\infty} f(t) dt$ diverge $si \ a \le 1$ par comparaison avec une intégrale de Riemann.

On peut raisonner de manière analogue pour une impropreté en 0.

Exemple 12

1. Étudier la nature de $\int_{0}^{+\infty} e^{-t^2} dt$.

Comme pour les séries, la présence de l'exponentielle doit faire penser à un critère de négligeabilité en comparant avec une intégrale de Riemann.

- La fonction $t \mapsto e^{-t^2}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$.
- De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 e^{-t^2} = 0$ donc $e^{-t^2} = \int_{t \to +\infty} \left(\frac{1}{t^2}\right)^{t} dt$
- Les fonctions $t\mapsto e^{-t^2}$ et $t\mapsto \frac{1}{t^2}$ sont continues et positives au voisinage $de+\infty$. Attention cependant : on ne peut pas appliquer directement le critère sur $[0,+\infty[$ car l'intégrale $\int_0^{+\infty} \frac{1}{t^2} dt$ est divergente (à cause de son impropreté en 0). En revanche, d'après le critère de convergence des intégrales de Riemann en $+\infty$, on sait que $\int_1^{+\infty} \frac{1}{t^2} dt$ converge. Par le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty} e^{-t^2} dt$ converge.
- De plus $\int_0^1 e^{-t^2} dt$ est bien définie car $t \mapsto e^{-t^2}$ est continue sur [0,1]. Donc par la relation de Chasles l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ converge.
- 2. Étudier la nature de $\int_0^1 (\ln(t))^2 dt$.

La présence du logarithme doit faire penser à un critère de négligeabilité en comparant avec une intégrale de Riemann.

- La fonction $t \mapsto (\ln(t))^2$ est continue sur [0,1]. L'intégrale est donc impropre en 0.
- De plus, par croissance comparée, $\lim_{t\to 0^+} \sqrt{t} (\ln(t))^2 = 0$ donc $(\ln(t))^2 = o$
- Les fonctions $t\mapsto (\ln(t))^2$ et $t\mapsto \frac{1}{\sqrt{t}}$ sont continues et positives au voisinage de 0^+ . D'après le critère de convergence des intégrales de Riemann en 0, on sait que $\int_0^1 \frac{1}{\sqrt{t}} dt$ converge. Par le criètre de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_0^1 (\ln(t))^2 dt$ converge.

Test 10 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_{2}^{+\infty} \frac{1}{\ln(t)} dt;$$

2.
$$\int_{0}^{1} \frac{|\ln(t)|}{t^{2}} dt$$
.

Proposition 10 (Comparaison par équivalence)

- Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que $f(t) \underset{t \to b^{-}}{\sim} g(t)$. Alors $\int_{a}^{b} g(t)dt$ et $\int_{a}^{b} f(t)dt$ sont de même nature.
- Soient $-\infty \le a < b$ et f, g deux fonctions continues sur a,b et **positives au voisinage de** a telles que $f(t) \underset{t \to a^+}{\sim} g(t)$. Alors $\int_a^b g(t)dt$ et $\int_a^b f(t)dt$ sont de même nature.

Méthode 6

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à en déterminer un équivalent simple.

Exemple 13

- 1. Déterminer la nature de $\int_0^1 \frac{\sqrt{t}}{e^t 1} dt$.
 - La fonction $t\mapsto \frac{\sqrt{t}}{e^t-1}$ est continue sur]0,1]. L'intégrale est donc impropre en 0.
 - Par équivalent usuel et compatibilité avec le quotient, on a

$$\frac{\sqrt{t}}{e^t - 1} \underset{t \to 0}{\sim} \frac{\sqrt{t}}{t} = \frac{1}{\sqrt{t}}.$$

- Les fonctions $t\mapsto \frac{\sqrt{t}}{e^t-1}$ et $t\mapsto \frac{1}{\sqrt{t}}$ sont continues et positives au voisinage de 0^+ . D'après le critère de comparaison par équivalent pour les intégrales de fonctions positives, les intégrales $\int_0^1 \frac{\sqrt{t}}{e^t-1} dt$ et $\int_0^1 \frac{1}{\sqrt{t}} dt$ sont de même nature.
- Comme $\int_0^1 \frac{1}{\sqrt{t}} dt$ est une intégrale de Riemann convergente, $\int_0^1 \frac{\sqrt{t}}{e^t 1} dt$ converge aussi.
- 2. Déterminer la nature de $\int_{1}^{+\infty} (\sqrt{t+1} \sqrt{t}) dt$.
 - La fonction $t \mapsto \sqrt{t+1} \sqrt{t}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.
 - Or

$$\sqrt{t+1} - \sqrt{t} = \frac{1}{\sqrt{t+1} + \sqrt{t}} \underset{t \to +\infty}{\sim} \frac{1}{2\sqrt{t}}$$

- Les fonctions $t\mapsto \sqrt{t+1}-\sqrt{t}$ et $t\mapsto \frac{1}{2\sqrt{t}}$ sont continues et positives au voisinage de $+\infty$. D'après le critère de comparaison par équivalent pour les intégrales de fonctions positives, les intégrales $\int_1^{+\infty} (\sqrt{t+1}-\sqrt{t})dt$ et $\int_1^{+\infty} \frac{1}{2\sqrt{t}}dt$ sont de même nature.
- Comme $\int_1^{+\infty} \frac{1}{\sqrt{t}} dt$ est une intégrale de Riemann divergente, $\int_1^{+\infty} (\sqrt{t+1} \sqrt{t}) dt$ diverge aussi.

Test 11 (Voir solution.)

Déterminer la nature des intégrales suivantes.

1.
$$\int_0^1 \frac{1}{\sqrt{t^2 + t}} dt$$
;

$$2. \int_0^1 \frac{\sqrt{t}}{e^t - 1 - t} dt.$$

3.
$$\int_{0}^{+\infty} \frac{1}{t^2+1} dt$$
.

Remarque 8

Tous les résultats énoncés pour les fonctions f continues positives se transposent pour les fonctions continues négatives en considérant -f (l'important est que la fonction soit de signe constant).

4 Convergence absolue

Définition 7 (Convergence absolue)

Soient $a < b \le +\infty$ (resp. $-\infty \le a < b$, resp. $-\infty \le a < b \le +\infty$). Soit f une fonction continue sur [a,b[(resp.]a,b[), resp.]a,b[).

On dit que l'intégrale impropre $\int_a^b f(t)dt$ est **absolument convergente** si l'intégrale impropre $\int_a^b |f(t)|dt$ converge.

Proposition 11

Soient $a < b \le +\infty$ (resp. $-\infty \le a < b$).

Soit f une fonction continue sur [a,b[(resp.]a,b]). Si $\int_a^b f(t)dt$ est absolument convergente alors elle est convergente. Dans ce cas :

$$\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt.$$

Remarque 9

La réciproque est fausse : il existe des intégrales qui ne sont pas absolument convergentes mais qui sont convergentes.

5 Objectifs

- 1. Connaître les primitives de références
- 2. Connaître la nature des intégrales impropres de référence.
- 3. Connaître par coeur les critères de convergence des intégrales impropres de fonctions positives (comparaison, négligeabilité, équivalence).
- 4. Savoir déterminer la nature d'une intégrale impropre d'une fonction positive en utilisant les critères de comparaison, négligeabilité, équivalence.
- 5. Savoir montrer qu'une intégrale d'une fonction de signe quelconque est convergente en utilisant la convergence absolue.
- 6. Savoir étudier une intégrale plusieurs fois impropre.
- 7. Savoir calculer une intégrale sur un segment avec une intégration par parties, un changement de variable. Appliquer ces techniques à l'étude d'intégrales impropres.

6 Correction des tests

Correction du test 1 (Retour à l'énoncé.)

- 1. Pour tout $n \in \mathbb{N}^*$, la fonction $t \mapsto \frac{t^n}{1+t^2}$ est continue sur [0,1] donc l'intégrale I_n est bien définie.
- 2. Soit $n \in \mathbb{N}$. Soit $t \in [0,1]$, alors $1 + t^2 \ge 1$ donc par décroissance de la fonction inverse sur $]0, +\infty[$ on a

$$0 \leqslant \frac{1}{1+t^2} \leqslant 1$$

puis en multipliant membre à membre par $t^n \ge 0$ on obtient :

$$0 \leqslant \frac{t^n}{1+t^2} \leqslant t^n.$$

3. Par croissance de l'intégrale pour tout $n \in \mathbb{N}$:

$$0 \leqslant I_n \leqslant \int_0^1 t^n dt = \frac{1}{n+1}$$

4. Par le théorème d'encadrement, $(I_n)_{n\in\mathbb{N}}$ converge vers 0.

Correction du test 2 (Retour à l'énoncé.)

1. La fonction $x \mapsto \frac{1}{x \ln(x)}$ est continue sur [e, 3e] donc l'intégrale est bien définie. De plus, pour tout $x \in [e, 3e]$, on a

$$\frac{1}{x\ln(x)} = \frac{\frac{1}{x}}{\ln(x)}$$

et on reconnaît une expression de la forme $\frac{u'}{u}$ où u est la fonction logarithme. Ainsi

$$\int_{e}^{3e} \frac{1}{x \ln(x)} dx = \left[\ln(|\ln(u)|) \right]_{e}^{3e} = \ln(1 + \ln(3)).$$

2. La fonction $t \mapsto e^{2t-1}$ est continue sur [0,2] donc l'intégrale est bien définie. De plus, par linéarité de l'intégrale :

$$\int_{0}^{2} e^{2t-1} dt = \int_{0}^{2} e^{2t} e^{-1} dt = e^{-1} \int_{0}^{2} e^{2t} dt = e^{-1} \left[\frac{e^{2t}}{2} \right]_{0}^{2} = \frac{e^{4} - 1}{2e}.$$

3. La fonction $s \mapsto s(s^2 + 2)^2$ est continue sur [0,1] donc l'intégrale est bien définie. De plus, pour tout $s \in [0,1]$ on a

$$s(s^2+3)^2 = \frac{1}{2}2s(s^2+3)^2$$

et on reconnaît une expression de la forme $\frac{1}{2}u' \times u^2$ où $u: s \mapsto s^2 + 3$. Donc

$$\int_0^1 s(s^2+3)^2 ds = \frac{1}{2} \int_0^1 2s(s^2+3)^2 ds = \frac{1}{2} \left[\frac{(s^2+3)^3}{3} \right]_0^1 = \frac{37}{6}$$

Correction du test 3 (Retour à l'énoncé.)

Soit $x \in]1, +\infty[$. Les fonctions $u: t \mapsto t$ et $v: t \mapsto \ln(t)$ sont de classe \mathscr{C}^1 sur [1, x] et

$$\int_1^x \ln(t) dt = \int_1^x u'(t) v(t) dt.$$

Par intégration par parties, on trouve donc

$$\int_{1}^{x} \ln(t) dt = \left[u(t)v(t) \right]_{1}^{x} - \int_{1}^{x} u(t)v'(t) dt = x \ln(x) - x + 1.$$

Correction du test 4 (Retour à l'énoncé.)

Soit $a \in \mathbb{R}$, la fonction f est continue sur \mathbb{R} donc sur [-a, a] donc l'intégrale est bien définie. De plus, par la relation de Chasles, on a

$$\int_{-a}^{a} f(t)dt = \int_{-a}^{0} f(t)dt + \int_{0}^{a} f(t)dt.$$

Dans l'intégrale $\int_{-a}^{0} f(t)dt$ on effectue le changement de variable s = -t. Dans ce cas, ds = -dt et on obtient

$$\int_{-a}^{0} f(t)dt = \int_{a}^{0} f(-s) \times (-1)ds = -\int_{a}^{0} f(-s)ds = \int_{0}^{a} f(-s)ds.$$

Comme la variable d'intégration est une variable muette, on obtient :

$$\int_{-a}^{0} f(t)dt = \int_{0}^{a} f(-t)dt$$

et comme f est impaire, pour tout $t \in [0, a]$ f(-t) = -f(t) donc

$$\int_{-a}^{0} f(t)dt = \int_{0}^{a} f(-t)dt = -\int_{0}^{a} f(t)dt.$$

Finalement,

$$\int_{-a}^{a} f(t)dt = \int_{-a}^{0} f(t)dt + \int_{0}^{a} f(t)dt = -\int_{0}^{a} f(t)dt + \int_{0}^{a} f(t)dt = 0.$$

Correction du test 5 (Retour à l'énoncé.)

Soit f une fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}^*_+, \quad f(x) = \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt.$$

Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.

La fonction $t \mapsto \frac{\ln(1+t^2)}{e^t}$ est continue sur $\mathbb R$ donc possède une primitive F sur $\mathbb R$. Soit $x \in \mathbb R_+^*$. Alors

$$f(x) = \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt = F(x^2) - F(-\sqrt{x}).$$

- La fonction F est de classe C^1 sur $\mathbb R$ en tant que primitive d'une fonction continue sur $\mathbb R$.
- Comme $x \mapsto x^2$ est de classe C^1 sur \mathbb{R} , la composée $x \mapsto F(x^2)$ est de classe C^1 sur \mathbb{R}^* .
- Comme $x \mapsto \sqrt{x}$ est de classe C^1 sur \mathbb{R}^*_+ , la composée $x \mapsto F(-\sqrt{x})$ est de classe C^1 sur \mathbb{R}^*_+ .

Finalement, f est de classe C^1 sur \mathbb{R}_+^* en tant que combinaison linéaire de fonction de classe C^1 sur \mathbb{R}_+^* . De plus, pour tout $x \in \mathbb{R}_+^*$ on a

$$f'(x) = 2xF'(x^2) - \frac{-1}{2\sqrt{x}}F'(-\sqrt{x}) = \frac{2x\ln(1+x^4)}{e^{x^2}} + \frac{\ln(1+x)}{2\sqrt{x}e^{-\sqrt{x}}}.$$

Correction du test 6 (Retour à l'énoncé.)

1. Soit $\lambda \in \mathbb{R}$. La fonction $t \mapsto e^{-\lambda t}$ est continue sur $[0, +\infty[$ donc l'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ est impropre en $+\infty$. Soit $A \in [0, +\infty[$ et supposons $\lambda \neq 0$. On a

$$\int_0^A e^{-\lambda t} dt = \left[\frac{e^{-\lambda t}}{-\lambda} \right]_0^A = \frac{1 - e^{-\lambda A}}{\lambda}.$$

- $si \lambda > 0$ alors $\lim_{A \to +\infty} \int_0^A e^{-\lambda t} dt = \frac{1}{\lambda}$ donc l'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ est convergente.
- $si \lambda < 0$ alors $\lim_{A \to +\infty} \int_{0}^{A} e^{-\lambda t} dt = +\infty$ donc l'intégrale $\int_{0}^{+\infty} e^{-\lambda t} dt$ est divergente.
- $si \lambda = 0$ alors $\lim_{A \to +\infty} \int_0^A e^{-\lambda t} dt = \lim_{A \to +\infty} A = +\infty$ donc l'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ est divergente.

Finalement, l'intégrale donc l'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ est convergente si et seulement si $\lambda > 0$.

2. Soient c > 0 et $a \in \mathbb{R}$. La fonction $t \mapsto \frac{1}{t^a}$ est continue sur $[c, +\infty[$ donc l'intégrale $\int_c^{+\infty} \frac{1}{t^a} dt$ est impropre en

 $+\infty$. Soit $A \in [c, +\infty[$; alors

$$\int_{c}^{A} \frac{1}{t^{a}} dt = \begin{cases} \left[\frac{t^{1-a}}{1-a} \right]_{c}^{A} & \text{si } a \neq 1 \\ \left[\ln(t) \right]_{c}^{A} & \text{si } a = 1 \end{cases} = \begin{cases} \frac{A^{1-a} - c^{1-a}}{1-a} & \text{si } a \neq 1 \\ \ln(A) - \ln(c) & \text{si } a = 1 \end{cases}$$

Par conséquent,

- $si \ a > 1 \ alors \ 1 a < 0 \ et \lim_{A \to +\infty} \frac{A^{1-a} c^{1-a}}{1-a} = -\frac{c^{1-a}}{1-a} \ donc \ l'intégrale \int_{c}^{+\infty} \frac{1}{t^a} dt \ est \ convergente;$
- $si\ a < 1\ alors\ 1 a > 0\ et\lim_{A \to +\infty} \frac{A^{1-a} c^{1-a}}{1-a} = +\infty\ donc\ l'intégrale \int_{c}^{+\infty} \frac{1}{t^a} dt\ est\ divergente;$
- $si\ a=1$, $\lim_{A\to +\infty} \ln{(A)} \ln{(c)} = +\infty$ $donc\ l'intégrale \int_{c}^{+\infty} \frac{1}{t^a} dt$ est divergente.

Ainsi, $\int_{c}^{+\infty} \frac{1}{t^a} dt$ converge si et seulement si a > 1.

Correction du test 7 (Retour à l'énoncé.)

1. La fonction $t \mapsto \ln(t)$ est continue sur]0,1] donc l'intégrale $\int_0^1 \ln(t) dt$ est impropre en 0. Soit $A \in]0,1]$. Par intégration par parties, on a

$$\int_{A}^{1} \ln(t) dt = \left[u(t)v(t) \right]_{A}^{1} - \int_{A}^{1} u(t)v'(t) dt$$

où $u: t \mapsto t$ et $v: t \mapsto \ln(t)$ sont de classe \mathscr{C}^1 sur [A, 1]. Donc

$$\int_{A}^{1} \ln(t) dt = \left[u(t)v(t) \right]_{A}^{1} - \int_{A}^{1} u(t)v'(t) dt = -A\ln(A) - 1 + A.$$

Par croissance comparée, on trouve

$$\lim_{A \to 0} \int_{A}^{1} \ln(t) dt = \lim_{A \to 0} -A \ln(A) - 1 + A = -1.$$

En particulier, l'intégrale $\int_0^1 \ln(t) dt$ est convergente.

2. Soient c > 0 et $a \in \mathbb{R}$. La fonction $t \mapsto \frac{1}{t^a}$ est continue sur]0, c] donc l'intégrale $\int_0^c \frac{1}{t^a} dt$ est impropre en 0. Soit $A \in]0, c]$; alors

$$\int_{A}^{c} \frac{1}{t^{a}} dt = \begin{cases} \left[\frac{t^{1-a}}{1-a} \right]_{A}^{c} & \text{si } a \neq 1 \\ \left[\ln(t) \right]_{A}^{c} & \text{si } a = 1 \end{cases} = \begin{cases} \frac{c^{1-a} - A^{1-a}}{1-a} & \text{si } a \neq 1 \\ \ln(c) - \ln(A) & \text{si } a = 1 \end{cases}$$

Par conséquent,

- $si\ a > 1\ alors\ 1 a < 0\ et \lim_{\mathbf{A} \to 0^+} \frac{c^{1-a} \mathbf{A}^{1-a}}{1-a} = +\infty\ donc\ l'intégrale \int_0^c \frac{1}{t^a} dt\ est\ divergente;$
- $si\ a < 1\ alors\ 1 a > 0\ et \lim_{A \to 0^+} \frac{c^{1-a} A^{1-a}}{1-a} = \frac{c^{1-a}}{1-a}\ donc\ l'intégrale \int_0^c \frac{1}{t^a} dt\ est\ convergente;$
- $si\ a = 1$, $\lim_{A \to 0^+} \ln(c) \ln(A) = +\infty$ donc l'intégrale $\int_0^c \frac{1}{t^a} dt$ est divergente.

Ainsi, $\int_0^c \frac{1}{t^a} dt$ converge si et seulement si a < 1.

Correction du test 8 (Retour à l'énoncé.)

1. La fonction $t\mapsto \frac{t}{\sqrt{2-t^2}}$ est continue sur $[0,\sqrt{2}[$ donc la l'intégrale est impropre en $\sqrt{2}$. Soit $A\in [0,\sqrt{2}[$. Pour tout $t\in [0,\sqrt{2}[$, on a

$$\frac{t}{\sqrt{2-t^2}} = -\frac{1}{2} \frac{-2t}{\sqrt{2-t^2}} = -\frac{u'}{2\sqrt{u}}$$

où $u: t \mapsto 2 - t^2$ est continue et positive sur [0, A]. Ainsi,

$$\int_0^A \frac{t}{\sqrt{2-t^2}} dt = -\left[\sqrt{2-t^2}\right]_0^A = -\sqrt{2-A^2} + \sqrt{2}.$$

Donc

$$\lim_{A \to \sqrt{2}^{-}} \int_{0}^{A} \frac{t}{\sqrt{2 - t^{2}}} dt = \lim_{A \to \sqrt{2}^{-}} -\sqrt{2 - A^{2}} + \sqrt{2} = \sqrt{2}.$$

Ainsi, l'intégrale $\int_0^{\sqrt{2}} \frac{t}{\sqrt{2-t^2}} dt$ converge et vaut $\sqrt{2}$.

2. La fonction $u \mapsto ue^{-u}$ est continue sur $[0, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [0, +\infty[$. Alors, comme les fonctions $u \mapsto u$ et $u \mapsto -e^{-u}$ sont de classe C^1 sur [0, A], par intégration par parties on trouve :

$$\int_0^A u e^{-u} du = \left[-u e^{-u} \right]_0^A - \int_0^A -e^{-u} du = -A e^{-A} - e^{-A} + 1.$$

Ainsi,

$$\lim_{A \to +\infty} \int_{0}^{A} u e^{-u} du = \lim_{A \to +\infty} -A e^{-A} - e^{-A} + 1 = 1$$

Par conséquent, $\int_0^{+\infty} ue^{-u} du$ converge et sa valeur est 1.

3. La fonction $t \mapsto \frac{\ln(t)}{t^2}$ est continue sur $[1, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [1, +\infty[$. La fonction $u : t \mapsto \ln(t)$ est continue sur [1, A] donc, en effectuant le changement de variable $u = \ln(t)$, on obtient $du = \frac{1}{t}dt$ donc

$$\int_{1}^{A} \frac{\ln(t)}{t^{2}} dt = \int_{1}^{A} \frac{u(t)}{e^{u(t)}} u'(t) dt = \int_{0}^{\ln A} \frac{u}{e^{u}} du = \int_{0}^{\ln A} u e^{-u} du = -\frac{\ln A}{A} - \frac{1}{A} + 1$$

en réutilisant la question précédente. Ainsi,

$$\lim_{A \to +\infty} \int_{1}^{A} \frac{\ln(t)}{t^2} dt = \lim_{A \to +\infty} -\frac{\ln A}{A} - \frac{1}{A} + 1 = 1.$$

Donc $\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$ converge et vaut 1.

Correction du test 9 (Retour à l'énoncé.)

1. La fonction $t\mapsto \frac{t}{t+\sqrt{t}}$ est continue sur $[1,+\infty[$ donc l'intégrale est impropre en $+\infty$.

Soit $t \ge 1$. *Alors* $\sqrt{t} \le t$ *donc*

$$t + \sqrt{t} \le 2t$$

et par décroissance de la fonction inverse sur $]0,+\infty[$ on en déduit :

$$\forall t \in [1, +\infty[, \frac{t}{t + \sqrt{t}} \geqslant \frac{1}{2}]$$

Les fonctions $t\mapsto \frac{t}{t+\sqrt{t}}$ et $t\mapsto \frac{1}{2}$ sont continues et positives sur $[1,+\infty[$ donc, d'après le théorème de comparaison pour les intégrales de fonctions positives, comme $\int_1^{+\infty} \frac{1}{2} dt$ diverge, l'intégrale $\int_1^{+\infty} \frac{t}{t+\sqrt{t}} dt$ diverge aussi

2. La fonction $t\mapsto \frac{1}{e^t+e^{-t}}$ est continue sur $[1,+\infty[$ donc l'intégrale est impropre en $+\infty$. Or,

$$\forall t \geqslant 1, \quad \frac{1}{e^t + e^{-t}} \leqslant \frac{1}{e^t} = e^{-t}.$$

Les fonctions $t\mapsto \frac{1}{e^t+e^{-t}}$ et $t\mapsto e^{-t}$ sont continues et positives sur $[1,+\infty[$ donc, d'après le théorème de comparaison pour les intégrales de fonctions positives, comme $\int_1^{+\infty} e^{-t} dt$ converge (exemple de référence), l'intégrale $\int_1^{+\infty} \frac{dt}{e^t+e^{-t}}$ converge aussi.

Correction du test 10 (Retour à l'énoncé.)

1. La fonction $t\mapsto \frac{1}{\ln(t)}$ est continue sur [2, $+\infty$ [donc l'intégrale est impropre en $+\infty$. De plus,

•
$$\lim_{t \to +\infty} \frac{\frac{1}{t}}{\frac{1}{\ln(t)}} = \lim_{t \to +\infty} \frac{\ln(t)}{t} = 0 \ donc \ \frac{1}{t} = \underset{t \to +\infty}{o} \left(\frac{1}{\ln(t)}\right);$$

• les fonctions $t\mapsto \frac{1}{\ln(t)}$ et $t\mapsto \frac{1}{t}$ sont continues et positives sur [2,+ ∞ [;

•
$$\int_{2}^{+\infty} \frac{1}{t} dt$$
 diverge.

Par le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_{2}^{+\infty} \frac{1}{\ln(t)} dt$ est divergente.

2. La fonction $t\mapsto \frac{|\ln(t)|}{t^2}$ est continue sur]0,1] donc l'intégrale est impropre en 0. De plus,

•
$$\lim_{t \to 0^+} \frac{\frac{1}{t^2}}{\frac{|\ln(t)|}{t^2}} = \lim_{t \to 0^+} \frac{1}{|\ln(t)|} = 0 \ donc \ \frac{1}{t^2} = \int_{t \to 0^+} \left(\frac{|\ln(t)|}{t^2}\right);$$

- les fonctions $t \mapsto \frac{|\ln(t)|}{t^2}$ et $t \mapsto \frac{1}{t^2}$ sont continues et positives sur]0,1];
- $\int_0^1 \frac{1}{t^2} dt$ diverge.

Par le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_0^1 \frac{|\ln(t)|}{t^2} dt$ diverge aussi.

Correction du test 11 (Retour à l'énoncé.)

1. La fonction $t \mapsto \frac{1}{\sqrt{t^2+t}}$ est continue sur]0,1]. L'intégrale est impropre en 0.

•
$$\sqrt{t^2+t} \sim_{t\to 0^+} \sqrt{t}$$
 donc $\frac{1}{\sqrt{t^2+t}} \sim_{t\to 0^+} \frac{1}{\sqrt{t}}$;

• les fonctions $t \mapsto \frac{1}{\sqrt{t^2 + t}}$ et $t \mapsto \frac{1}{\sqrt{t}}$ sont continues et positives sur]0,1]

D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_0^1 \frac{1}{\sqrt{t^2+t}} dt$ et $\int_0^1 \frac{1}{\sqrt{t}} dt$ sont de même nature. Comme $\int_0^1 \frac{1}{\sqrt{t}} dt$ converge (intégrale de Riemann convergente en 0^+), l'intégrale $\int_0^1 \frac{1}{\sqrt{t^2+t}} dt$ converge aussi.

- 2. La fonction $t\mapsto \frac{\sqrt{t}}{e^t-1-t}$ est continue sur]0, 1]. L'intégrale est impropre en 0.
 - par DL usuels, on sait que

$$e^{t} - 1 - t = \frac{t^{2}}{2} + \underset{t \to 0}{o}(t^{2}).$$

En particulier, $e^t - 1 - t \sim_{t \to 0} \frac{t^2}{2}$ et par compatibilité de la relation d'équivalence avec le passage au quotient, on déduit l'équivalent suivant

$$\frac{\sqrt{t}}{e^t - 1 - t} \underset{t \to 0^+}{\sim} \frac{2}{t^{\frac{3}{2}}}.$$

• les fonctions $t \mapsto \frac{\sqrt{t}}{e^t - 1 - t}$ et $t \mapsto \frac{2}{t^{\frac{3}{2}}}$ sont continues et positives sur]0, 1].

D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_0^1 \frac{2}{t^{\frac{3}{2}}} dt$ et $\int_0^1 \frac{\sqrt{t}}{e^t - 1 - t} dt$ sont de même nature. Comme $\int_0^1 \frac{2}{t^{\frac{3}{2}}} dt$ diverge (intégrale de Riemann divergente en 0^+), l'intégrale $\int_0^1 \frac{\sqrt{t}}{e^t - 1 - t} dt$ diverge aussi.

- 3. La fonction $t\mapsto \frac{1}{t^2+1}$ est continue sur $[0,+\infty[$. L'intégrale est donc impropre en $+\infty$.
 - $t^2 + 1 \sim_{t \to +\infty} t^2 donc \frac{1}{t^2 + 1} \sim_{t \to +\infty} \frac{1}{t^2}$;
 - les fonctions $t\mapsto \frac{1}{t^2+1}$ et $t\mapsto \frac{1}{t^2}$ sont continues et positives sur $[1,+\infty[$.

 $D'après\ le\ critère\ d'équivalence\ pour\ les\ intégrales\ de\ fonctions\ positives,\ on\ en\ déduit\ que\ \int_1^{+\infty}\frac{1}{t^2+1}dt\ et\ \int_1^{+\infty}\frac{1}{t^2}dt\ sont\ de\ même\ nature.\ Comme\ \int_1^{+\infty}\frac{1}{t^2}dt\ converge\ (intégrale\ de\ Riemann\ convergente\ en\ +\infty),$ $l'intégrale\ \int_1^{+\infty}\frac{1}{t^2+1}dt\ converge\ aussi.$

Enfin, comme $t\mapsto \frac{1}{t^2+1}$ est continue sur [0,1], l'intégrale $\int_0^1 \frac{1}{t^2+1} dt$ est bien définie et par la relation de Chasles on déduit que $\int_0^{+\infty} \frac{1}{t^2+1} dt$ converge.

 \triangle Comme dans l'exemple 12, on ne peut pas appliquer directement le critère sur $[0, +\infty[$ car l'intégrale la fonction $t\mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!) .