

Plano de Ensino

- Apresentação, Expressões Regulares, Gramática Regular.
- Autômatos Finitos Determinísticos.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de AFND para AFD.
- Autômatos Finitos com Movimentos Vazios.
- Conversão de Autômatos AFε para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.

Livro-Texto

- Bibliografia Básica:
 - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5ª ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
 - » LEWIS, Ricki. Elementos da Teoria da Computação.
 2ª ed. Porto Alegre: Bookman, 2004.
 - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

7. Autômatos com Pilha - Introdução

- Da mesma forma que uma Autômato Finito está associado a uma Linguagem Regular, os Autômatos com Pilha também; só que neste caso associados à Linguagem Livre de Contexto.
- Este tipo de autômato é similar ao Autômato Finito, incluindo uma pilha de memória auxiliar, sendo esta independente da fita de entrada e sem limite máximo de tamanho ("infinita").

7. Autômatos com Pilha - Introdução

 A unidade de controle possui um número finito e predefinido de estados. Possui uma cabeça de fita e uma cabeça de pilha.

7. Autômatos com Pilha - Introdução

- Cabeça da fita → unidade de leitura a qual acessa uma célula da fita de cada vez e movimenta-se exclusivamente para direita. É possível testar se a entrada foi lida completamente.
- Cabeça da pilha → movimenta-se para baixo (ou para a esquerda) ao gravar e para baixo (ou para a direita) ao ler um símbolo. Acessa um símbolo de cada vez, estando sempre posicionada no topo. A leitura exclui o símbolo lido. É possível testar se a pilha está vazia. Em uma mesma operação de gravação é possível armazenar uma palavra composta por mais de um símbolo. Neste caso, o símbolo do topo é o mais à esquerda da palavra gravada.

7. Autômatos com Pilha - Introdução

- A pilha é dividida em células, armazenando, cada uma um símbolo do alfabeto auxiliar (pode ser igual ao alfabeto de entrada). Em uma estrutura de pilha, a leitura/gravação ocorre sempre na mesma extremidade (topo).
- O programa é uma função parcial que, dependendo do estado corrente, símbolo lido da fita e símbolo lido da pilha, determina o novo estado e a palavra a ser gravada. Possui a facilidade de movimento vazio, permitindo mudar de estado sem ler da fita.

7. Autômatos com Pilha - Introdução

- O modelo Autômato com Pilha possui duas definições* universalmente aceitas que diferem no critério de parada do autômato, como segue:
 - » O valor inicial da pilha é vazio e o autômato pára aceitando ao atingir um estado final.
 - » A pilha contém, inicialmente, um símbolo especial denominado símbolo inicial da pilha. Não existem estados finais e o autômato pára aceitando quando a pilha estiver vazia.
- * As 2 definições possuem o mesmo poder computacional.

7. Autômatos com Pilha - Introdução

- Um Autômato com Pilha é composto por 4 partes:
- » Fita → análoga à do AF.
- » Pilha → memória auxiliar que pode ser usada livremente para leitura/gravação.
- » Unidade de controle → reflete o estado corrente da máquina. Possui uma cabeça de fita e uma cabeça de pilha.
- » Programa ou função de transição → função que comanda a leituras da fita, a leitura/gravação da pilha e define o estado da máquina.

7. Autômatos com Pilha - APD

Anhanguera

■ Definição: um APD é uma 6-upla:

M = (Σ , Q, δ , q₀, F, V) onde:

- $\Sigma \rightarrow$ alfabeto de símbolos de entrada.
- Q -> conjunto de estados possíveis do autômato o qual é finito.
- $\delta \, \, o \, {\rm função}$ programa ou função transição: δ : $Qx(\Sigma \cup \{\epsilon,?\})x(V \cup \{\epsilon,?\}) {\rightarrow} 2^{QxV^*} \text{ (função parcial)}$
- $q_0 \rightarrow$ estado inicial, tal que $q_0 \in Q$.
- $F \rightarrow$ conjunto de estados finais tal que $F \subseteq Q$.
- $V \rightarrow$ alfabeto auxiliar ou alfabeto da pilha.

7. Autômatos com Pilha - APD

 O símbolo ε na leitura/gravação indica que nenhum valor será retirado ou inserido na pilha.

- <u>Símbolos</u> a → símbolo lido da fita A → símbolo lido da pilha α → símbolo gravado na pilha

7. Autômatos com Pilha - APD

• Exemplo 1: Considere a linguagem L₁={w | w possui colchetes balanceados} reconhecida pelo APD M_1 = ({[,]}, {q_0}, $\delta_1,$ $q_0,$ {q_0}, {[}) onde δ_1 é como abaixo, representado na forma de um grafo, reconhece a linguagem L_1 .

$$\begin{array}{c|c} \boldsymbol{\delta_1} & ([\,,\boldsymbol{\epsilon}) & (\,]\,,[\,) \\ \hline \boldsymbol{q_0} & \{\,q_0,[\,\} & \{\,q_0,\boldsymbol{\epsilon}\,\} \end{array}$$

$$-(q_0)$$
 $(],[,\epsilon),([,\epsilon,[)$

Anhanguera 7. Autômatos com Pilha - APD w = [[[]]]] (reconhecida pelo Autômato M_1) Símb. lido Símb. não-lidos Est. Atual Pilha [[[][]]] 3 [[][]]] q_0 [][]]] q_0 [[1[11] 111 q_0 []]] [[q_0]]] 111 q_0]] [[\mathbf{q}_0 \mathbf{q}_0 3 \mathbf{q}_0 3

w = [[]]	(não reconheci	da pelo Aut	ômato M₄)
Símb. Lido	Símb. não-lidos		Pilha
ε	[[]]]	-	ε
[[]]]	q_0	[
[111	q_0	1]
]	11	q_0	[
]]	q_0	ε
-]	\mathbf{q}_0	ε

7. Autômatos com Pilha - APD

w = bacab (reconhecida pelo Autômato M₂)

Símb. Lido	Símb. não-lidos	Est. Atual	Pilha
8	bacab	-	ε
b	acab	q_0	b
a	cab	q_0	ab
c	ab	q_0	ab
a	b	q_1	b
b	ε	$\mathbf{q_1}$	8

7. Autômatos com Pilha - APND

- Definição: um APND é uma 6-upla:
- $M = (\sum, Q, \delta, q_0, F, V)$ onde:
 - $\Sigma \rightarrow$ alfabeto de símbolos de entrada.
 - Q → conjunto de estados possíveis do autômato o qual é finito.
 - δ → função programa ou função transição: δ: Qx(Σ∪{ε,?})x(V∪{ε,?})→2QxV* (função parcial)
 - $q_0 \rightarrow$ estado inicial, tal que $q_0 \in Q$.
 - $\mathsf{F} \boldsymbol{\rightarrow} \mathsf{conjunto} \mathsf{ de} \mathsf{ estados} \mathsf{ finais} \mathsf{ tal} \mathsf{ que} \mathsf{ F} \subseteq \mathsf{Q}.$
 - V → alfabeto auxiliar ou alfabeto da pilha.

7. Autômatos com Pilha - APND

- O símbolo ϵ na leitura/gravação indica que nenhum valor será retirado ou inserido na pilha.

- $\begin{array}{c} \mathbf{v} \\ \underline{Simbolos} \\ \varepsilon \rightarrow \text{movimento não-determinístico} \\ \mathbf{A} \rightarrow \text{símbolo lido da pilha} \\ \alpha \rightarrow \text{símbolo gravado na pilha} \end{array}$

7. Autômatos com Pilha - APND

■ Exemplo 3: considere a linguagem $\begin{array}{l} \textbf{L}_3 = \{w \mid w \text{ possui o formato ww}^t\} \text{ reconhecida pelo APND} \\ \textbf{M}_3 = (\{a, b, c\}, \{\ q_0, q_1\}, \delta_3, q_0, \{q_1\}, \{a, b\}) \text{ onde } \delta_3 \acute{e} \\ \text{como abaixo, representado na forma de um grafo,} \\ \text{reconhece a linguagem L}_3. \end{array}$

$\boldsymbol{\delta}_2$	(a, ε)	(b, ε)	(8, 8)	(a,a)	(b,b)
\mathbf{q}_0	$\{q_0, a\}$	{q ₀ , b}	(q_1, ϵ)	-	-
$\mathbf{q_{1}}$	-	-	-	$\{\boldsymbol{q}_1,\boldsymbol{\epsilon}\}$	$\{q_1,\epsilon\}$

7. Autômatos com Pilha - APND

w = aabbaa (reconhecida pelo Autômato M₃)

Símb. Lido	Símb. não-lidos	Est. Atual	Pilha
8	aabbaa	-	ε
a	abbaa	$ \mathbf{q}_0 $	a
a	bbaa	$ \mathbf{q}_0 $	aa
b	baa	q_0	baa
ε	baa	q_0	baa
b	aa	q_1	aa
a	a	q_1	a
a	ε	q_1	ε

7. Autômatos com Pilha - APND

w = abbaa (não reconhecida pelo Autômato M₃)

Símb. Lido	Símb. não-lidos	Est. Atual	Pilha
ε	abbaa	-	ε
a	bbaa	q_0	a
b	baa	q_0	ab
3	baa	q_0	ab
b	aa	q_1	a
a	a	q_1	ε
	a	$\mathbf{q_1}$	ε

