PROJECT: CLUSTERING ANTARCTIC PENGUIN SPECIES

source: @allison_horst https://github.com/allisonhorst/penguins [2]

You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv

Origin of this data: Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.

The dataset consists of 5 columns.

Column	Description			
culmen_length_mm	culmen length (mm)			
culmen_depth_mm	culmen depth (mm)			
flipper_length_mm	flipper length (mm)			
body_mass_g	body mass (g)			
sex	penguin sex			

Unfortunately, they have not been able to record the species of penguin, but they know that there are **at least three** species that are native to the region: **Adelie**, **Chinstrap**, and **Gentoo**. Your task is to apply your data science skills to help them identify groups in the dataset!

```
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()
penquins_df.info()
penguins_df = pd.get_dummies(penguins_df, dtype='int')
scaler = StandardScaler()
X = scaler.fit_transform(penguins_df)
penguins_preprocessed = pd.DataFrame(data=X, columns=penguins_df.columns)
penguins_preprocessed.head(10)
inertia = []
for k in range(1, 10):
   kmeans = KMeans(n_clusters=k, random_state=42).fit(penguins_preprocessed)
   inertia.append(kmeans.inertia_)
plt.plot(range(1, 10), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.vlabel('Inertia')
plt.title('Elbow Method')
plt.show()
n_{clusters} = 4
kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(penguins_preprocessed)
penguins_df['label'] = kmeans.labels_
plt.scatter(penguins_df['label'], penguins_df['culmen_length_mm'], c=kmeans.labels_,
cmap='viridis')
plt.xlabel('Cluster')
plt.ylabel('culmen_length_mm')
plt.xticks(range(int(penquins_df['label'].min()), int(penquins_df['label'].max()) +
1))
plt.title(f'K-means Clustering (K={n_clusters})')
plt.show()
numeric_columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
stat_penguins = penguins_df[numeric_columns].groupby('label').mean()
stat_penguins
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 332 entries, 0 to 331
```

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	culmen_length_mm	332 non-null	float64
1	culmen_depth_mm	332 non-null	float64
2	flipper_length_mm	332 non-null	float64
3	body_mass_g	332 non-null	float64
4	sex	332 non-null	object

dtypes: float64(4), object(1)

memory usage: 13.1+ KB

• • •	↑↓ culi	men_len •••	\uparrow_{\downarrow}	culmen_d	• • •	\uparrow_{\downarrow}	flipper_length	•••	\uparrow_{\downarrow}
	0	43.8783018	3868	19.111	3207	547	194.764	1509	434
	1	40.2177570	0093	17.611	2149	533	189.04	6728	972
	2	49.4737704	1918	15.718	30327	869	221.540	9836	066
	3	45.5637931	L034	14.237	9310	345	212.706	8965	517