STOR 455 STATISTICAL METHODS I

Jan Hannig

Redo interactions in homework

- Import the body fat data set, Ch07ta01.txt in the extra data sets. Include all pair-wise interactions among three explanatory variables Use F-test to see if the interaction terms are significant. Also produce the variance inflation factors for the model with interactions.
- See the solutions!

Project

- I have decided to assign a project. It will be part of the midterm exam score (10% of the final grade).
- The two in-class midterm score make 40% of the grade.
- Due December 2.
- There are three files (info, more info and data)

Remedial Measures

- Discard outlier
 - or alternatively use robust procedure such as weighted least squares, Generalized linear models, nonparametric methods, ...
- Transformation data to
 - Linearize mean response
 - Stabilize variance/Achieve normality

Box-Cox Transformations

Also called power transformations

$$Y' = Y^{\lambda}$$
 or $Y' = (Y^{\lambda} - 1)/\lambda$

— In the second form, the limit as λ approaches zero is the (natural) log

Important Special Cases

- $\lambda = 1$, Y' = Y¹, no transformation
- $\lambda = .5$, Y' = Y^{1/2}, square root
- $\lambda = -.5$, Y' = Y^{-1/2}, one over square root
- $\lambda = -1$, Y' = Y⁻¹ = 1/Y, inverse
- $\lambda = 0$, $(Y' = (Y^{\lambda} 1)/\lambda)$, log is the limit

Box-Cox Details

- We can estimate λ by including it as a parameter in a non linear model
- $Y^{\lambda} = \beta_0 + \beta_1 X + \xi$
- Choose λ that give the best fit
- SAS code is in proc transreg

Plutonium Example

- Detecting plutonium 238 using alpha counts
- X: plutonium activity
- Y: observed alpha counts per second
- Relationship depend on measurement device
- Four standard aluminum/plutonium rods tested, each 4 to 10 times

```
proc transreg data=plu;
model boxcox(y)=identity(x);
run;
```

The TRANSREG Procedure Box-Cox Transformation Information for y							
•							
Lambda	K-Sqt	are Log Like					
-3.00	0.09	-22.8128					
-2.75	0.10	-10.5162					
-2.50	0.12	1.5873					
-2.25	0.14	13.4530					
-2.00	0.17	25.0222					
-1.75	0.20	36.2187					
-1.50	0.25	46.9457					
-1.25	0.31	57.0871					
-1.00	0.38	66.5173					
-0.75	0.47	75.1246					
-0.50	0.57	82.8497					
-0.25	0.67	89.7200					
0.00	0.76	95.8371					
0.25	0.84	101.2188					
0.50 +	0.90	105.2423 *					
0.75	0.92	105.7181 <					
1.00	0.92	100.6558					
1.25	0.89	91.9689					
1.50	0.84	82.2649					
1.75	0.79	72.5284					
2.00	0.74	62.9473					
2.25	0.69	53.5043					
2.50	0.65	44.1498					
2.75	0.61	34.8407					
3.00	0.58	25.5459					

< - Best Lambda

^{* - 95%} Confidence Interval

^{+ -} Convenient Lambda

```
*Data transformation;
data plu1;
  set plu;
   where NOT (x EQ 0 AND y GE
   0.09);
   sqy=sqrt(y);
   sqx=sqrt(x);
   run;
proc print data=plu1;
run;
* transform y and x;
proc reg data=Plu1;
 model sqy = sqx;
 plot sqy*sqx rstudent.*p. r.*nqq.;
run;
```


Root MSE 0.02477 R-Square 0.9450
Dependent Mean 0.18483 Adj R-Sq 0.9424
Coeff Var 13.40098
Parameter Estimates

Parameter Standard							
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	0.07301	0.00783	9.32	<.0001		
sqx	1	0.05731	0.00302	19.00	<.0001		

- The final model we fit is $sqrt(y)=0.07301+0.05731*sqrt(x)+\xi$
- Be careful when interpreting the predicted values are sqrt(y), to get a predicted value for y need to square!

Steps in Data Analysis

- Plot and investigate the data!
 - %scatter.sas
 - proc univariate, proc means, proc print
- Run some exploratory models, look for outliers
 - Recode categorical variables, add interaction
 - Look for transformations
 residual plots & proc transreg
- Do a model selection
 - proc reg, %allsubsreg.sas

Steps in Data Analysis

- Fit the final model
 - Run tests, compute predictions, answer scientific questions
- Make sure that your results make sense and write a report.

SENIC Data

- Info about 113 hospitals between 1975 and 1976
- Variables: id, length of stay, age, infection risk, routine culturing ratio, routine chest X-ray ratio, number of beds, medical school affiliation, region (1=NE, 2=NC, 3=S, 4=W), average daily census, number of nurses, available facilities
- File AppendixC01.txt in the extra data sets

Recode the variable

```
data hospital1;
set hospital;
region1=0; region2=0; region3=0;
if region=1 then region1=1;
if region=2 then region2=1;
if region=3 then region3=1;
output;
run;
proc print data=hospital1; run;
```

Run various models

- Now the exploration begins. Start with the full model.
- proc GLM might simplify some of the notation

Proc GLMn (only use with caution)

```
ods graphics on;
proc glm data=hospital PLOTS=(DIAGNOSTICS
RESIDUALS);
class school region;
 model risk= stay | age | culture | xray | beds |
school | region | census | nurses | facilities@2;
run;
ods graphics off;
```