

Documento de Pruebas de Proyecto

Módulo hardware de criptografía ligera orientado al internet de las cosas

CIATEQ

Versión 1.0a

Histórico de Revisiones

Date	Descripción	Autor(es)
xx/xx/xxxx	<descripción></descripción>	<autor(es)></autor(es)>
	■ item;	
xx/xx/xxxx	■ item;	<autor(es)></autor(es)>

ÍNDICE

1.	. Introducción		3	
	1.1.	Vista Geral del Documento	3	
	1.2.	Definiciones	3	
	1.3.	Acrónimos y abreviaciones	3	
	1.4.	Prioridades de los Requisitos	4	
2.	Req	uisitos Funcionales	4	
	2.1.	Requisitos Funcionales	4	
	2.2.	Requisitos Técnicos de los Requisitos Funcionales	5	
3.	Requisitos no Funcionales			
4.	Dependencias		6	
5.	Refe	erencias	7	

1. Introducción

1.1. Vista Geral del Documento

En este documento se redacta la información necesaria para realizar las pruebas al módulo hardware para seguridad basado en el estándar [1].

- **Requisitos funcionales** Lista de todos los requisitos funcionales.
- **Requisitos no funcionales** Lista de todos los requisitos no Funcionales.
- **Dependencias** Conjunto de dependencias de IP-cores previstos.
- Notas Lista de notas presentadas en el documento.
- **Referencias** Lista de todos los textos referenciados en el documento.

1.2. Definiciones

Término	Descripción
Requisitos Funcionales	Requisitos que hacen funcional al sistema, son las capacidades que debe tener el sistema entregado.
Requisitos Técnicos	Requisitos del sistema que definen características re- ferentes a técnicas, algoritmos, tecnologías y especi- ficidades de los requerimientos funcionales.
Requisitos No Funcionales	Requisitos de los módulos entregables. Se refieren a las capacidades no funcionales del sistema como un todo y que especifican necesidades del usuario final.
Dependencias	Requisitos de reuso de IP-cores, describiendo las funciones que cada uno de estos módulos debe realizar.

1.3. Acrónimos y abreviaciones

Sigla	Descripción
FR	Requisito Funcional
TR	Requisito Técnico
NFR	Requisito No Funcional
D	Dependencia

1.4. Prioridades de los Requisitos

Prioridad	Característica	
Importante	Requisito para que el sistema sea entregado.	
Esencial	Requisito que debe ser implementado para que el sistema funcione.	
Deseable	Requisito que no compromete el funcionamento del sistema.	

2. Requisitos Funcionales

En un sistema HSM, un controlador maestro envía peticiones de servicios continuamente al HSM, entonces, el HSM responde a dichas peticiones con servicios de seguridad. Debido a que hay muchas solicitudes del controlador maestro, el HSM debe responder a las solicitudes muy rápidamente. Para este propósito, el microcontrolador y otros módulos FPGA deben estar altamente optimizados [2].

En esta etapa del desarrollo del HSM, no se determina cómo tomará forma el progreso del software que utilizará los servicios del HSM, los requisitos existentes definen las funcionalidades del sistema y los algoritmos que se implementarán en FPGA para el cifrado, el *hashing*, firma digital y la generación de llaves.

2.1. Requisitos Funcionales

[FR1] Cada llave debe ser usada por una sola función criptográfica

Descripción: The HSM ensures that each cryptographic key is only used

for a single cryptographic function and only for its intended

purpose.

Nivel de Prioridad: Importante

[FR2] Cálculo de resumen (hash) de mensajes

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[FR3] Cifrado asimétrico de mensajes

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[FR4] Cifrado simétrico de mensajes

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[FR5] Cálculo de números pseudo-aleatorios

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[FR6] Proveer un contador monotónico

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[FR7] Creación de llaves internamente

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

2.2. Requisitos Técnicos de los Requisitos Funcionales

[TR1] Requisitos Técnicos de FR1

- Los datos que serán utilizados llegan bloque a bloque al HSM
- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

[TR2] Requisitos Técnicos de FR2

- Los datos que serán utilizados llegan bloque a bloque al HSM
- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

[TR3] Requisitos Técnicos de FR3

El algoritmo utilizado es AES-128

[TR4] Requisitos Técnicos de FR4

Los datos que serán utilizados llegan bloque a bloque al HSM

- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

[TR5] Requisitos Técnicos de FR5

- Los datos que serán utilizados llegan bloque a bloque al HSM
- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

[TR6] Requisitos Técnicos de FR6

- Los datos que serán utilizados llegan bloque a bloque al HSM
- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

[TR7] Requisitos Técnicos de FR7

- Los datos que serán utilizados llegan bloque a bloque al HSM
- El algoritmo utilizado es SHA-256
- El hash se envía a una dirección especificada previamente

3. Requisitos no Funcionales

[NFR1] Nombre del Requisito

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

[NFR2] Nombre del Requisito

Descripción: Descripción breve y objetiva.

Nivel de Prioridad: Importante

4. Dependencias

[D1] Nombre del IP-core

Descripción breve y objetiva del IP-core y referencia al documento.

[D2] Nombre del IP-core

Descripción breve y objetiva del IP-core y referencia al documento.

5. Referencias

- [1] IEEE, "leee guide for software verification and validation plans," *IEEE Std 1059-1993*, pp. 1–87, April 1994.
- [2] M. Wolf and T. Gendrullis, "Design, implementation, and evaluation of a vehicular hardware security module," in *Information Security and Cryptology ICISC 2011* (H. Kim, ed.), (Berlin, Heidelberg), pp. 302–318, Springer Berlin Heidelberg, 2012.