Теория Меры 3: Интегрирование

3.1. Измеримые функции

Определение 3.1. Пусть дано пространство M с заданной на нем σ -алгеброй $\mathfrak U$. Мы говорим, что подмножество M измеримо, если оно лежит в $\mathfrak U$.

Пусть — топологическое пространство. **Алгебра борелевских множеств** — это сигмаалгебра, порожденная открытыми подмножествами. Множество называется измеримым по Борелю, если оно лежит в этой алгебре, то есть получено счетными объединениями и пересечениями открытых и замкнутых множеств. **Борелевская мера** есть счетно-аддитивная мера на этой сигма-алгебре.

Пусть M_1, M_2 – пространства с заданными на них σ -алгебрами \mathfrak{U}_1 и \mathfrak{U}_2 . Функция $f: M_1 \longrightarrow M_2$ называется **измеримой**, если прообраз каждого измеримого множества измерим, то есть

$$f^{-1}(U) \subset \mathfrak{U}_1$$
,

для любого $U \subset \mathfrak{U}_2$.

Если M – пространство с сигма-алгеброй, а $f: M \longrightarrow \mathbb{R}$ вещественно значная функция, мы говорим, что f измерима, если прообраз измеримого по Борелю множества измерим.

Задача 3.1. Пусть M — пространство с борелевской мерой, а $f: M \longrightarrow \mathbb{R}$ непрерывная функция. Докажите, что f измерима.

Задача 3.2. Пусть M — пространство с заданной на нем σ -алгеброй \mathfrak{U} , а $f:M\longrightarrow \mathbb{R}$ произвольная функция. Докажите, что следующие свойства равносильны

- а. $f^{-1}[a,b]$ измеримо для любого отрезка [a,b]
- б. $f^{-1}[a,b]$ измеримо для любого интервала]a,b[
- в. $f^{-1}]-\infty,b]$ измеримо для любого луча $]-\infty,b]$
- г. Φ ункция f измерима

Задача 3.3 (*). Пусть $M = \mathbb{Z}_p$ – пространство целых p-адических чисел, а \mathfrak{U} – алгебра открытозамкнутых подмножеств. Докажите, что любая непрерывная функция на M измерима относительно \mathfrak{U} .

Задача 3.4 (!). Пусть

$$f_1, f_2: M \longrightarrow \mathbb{R}$$

некоторые функции на пространстве с сигма-алгеброй. Докажите, что эти функции измеримы тогда и только тогда, когда функция

$$f_1 \times f_2 : M \longrightarrow \mathbb{R}^2$$

измерима по отношению к борелевской сигма-алгебре на \mathbb{R}^2 .

Задача 3.5. Докажите, что сумма и произведение измеримых функций $f_1, f_2: M \longrightarrow \mathbb{R}$ измеримо.

Указание. Воспользуйтесь предыдущей задачей

Задача 3.6 (*). Докажите, что пространство измеримых функций на \mathbb{R} по мощности больше континуума.

Определение 3.2. Функция $f: M \longrightarrow \mathbb{R}$ называется **ступенчатой**, если она принимает не более чем счетное количество разных значений

Задача 3.7. а. Докажите, что ступенчатая функция измерима тогда и только тогда, когда $f^{-1}(a)$ измеримо для любого $a \in \mathbb{R}$.

б. [*] Приведите пример неизмеримой (и неступенчатой) функции, для которой это выполняется

Определение 3.3. Пусть $f_i: M \longrightarrow \mathbb{R}$ – последовательность функций. Напомним, что f_i равномерно сходится к $f: M \longrightarrow \mathbb{R}$, если для каждого $\varepsilon > 0$ найдется N такой, что $|f - f_i| < \varepsilon$ при i > N.

Задача 3.8. Для функции $f: M \longrightarrow \mathbb{R}$, обозначим за f_n функцию вида $x \longrightarrow \frac{1}{n}[nf(x)]$, где [...] обозначает целую часть. Докажите, что $\{f_n\}$ равномерно сходится к f.

Задача 3.9 (!). Дана измеримая функция $f: M \longrightarrow \mathbb{R}$. Докажите, что f есть предел равномерно сходящейся последовательности ступенчатых измеримых функций

Указание. Воспользуйтесь предыдущей задачей

Задача 3.10. Пусть f – предел равномерно сходящейся последовательности измеримых функций. Докажите, что f измерима.

Указание. Докажите, что счетное объединение измеримых множеств измеримо. Представьте $f^{-1}(]-\infty,c[)$ как объединение $\bigcup f_i^{-1}(]-\infty,c-\varepsilon[$, где $|f-f_i|<\varepsilon.$

Задача 3.11. Пусть $f_i: M \longrightarrow \mathbb{R}$ невозрастающая последовательность измеримых функций. Докажите, что предел $\lim f_i$ измерим (если он существует).

Указание. Докажите, что $f^{-1}(]-\infty,c[)=\cup f_i^{-1}(]-\infty,c[).$

Задача 3.12. Пусть f_i счетный набор измеримых функций. Докажите, что функции $\sup\{f_i\}$ и $\inf\{f_i\}$ также измеримы.

Указание. Докажите, что максимум и минимум конечного числа измеримых функций измерим. Затем напишите

$$\inf_{i} \{f_i\} = \lim_{j \to \infty} \inf_{i < j} \{f_i\}$$

и воспользуйтесь предыдущей задачей.

Задача 3.13 (!). Пусть f предел поточечно сходящейся последовательности $\{f_i\}$ измеримых функций. Докажите, что f измерима.

Указание. Сведите задачу к случаю, когда f_i монотонно возрастает, с помощью

$$\lim f_i = \lim_{i \to \infty} \sup_{j > i} \{f_j\}$$

Определение 3.4. Пусть $f_i: M \longrightarrow \mathbb{R}$ последовательность измеримых функций. Мы говорим, что $\{f_i\}$ сходится почти всюду к f, еслу f_i поточечно сходится к f вне множества меры 0.

Задача 3.14 (!). Пусть $\{f_i\}$ сходится почти всюду к f. Докажите, что f измеримо (по Лебегу).

Задача 3.15 (*). (Теорема Егорова) Пусть (M,μ) пространство, снабженное σ -алгеброй и мерой, а $\{f_i: M \longrightarrow \mathbb{R}\}$ последовательность функций, которая сходится почти всюду к f. Предположим, что $\mu(M) < \infty$. Докажите, что для любого ε найдется подмножество $E_\varepsilon \subset M$, $\mu(E_\varepsilon) \leqslant \varepsilon$, такое, что $\{f_i\}$ равномерно сходится вне E_ε к f.

3.2. Интегрируемые функции

Пусть $f: M \longrightarrow \mathbb{R}$ – ступенчатая функция, а $\{\alpha_i\}$ множество ее значении. Запишем f в виде $f = \sum \alpha_i \chi_{U_i}$, где $U_i := f^{-1}(\alpha_i)$, а χ_{U_i} характеристическая функция множества U_i .

Определение 3.5. Пусть M пространство, снабженное σ -алгеброй и мерой μ , а $f = \sum \alpha_i \chi_{U_i}$ ступенчатая измеримая функция. Функция f называется **ступенчатой интегрируемой**, если ряд $\sum |\alpha_i| \mu(U_i)$ сходится.

Задача 3.16 (!). Докажите, что интегрируемые ступенчатые функции образуют линейное пространство

Определение 3.6. Пусть f — измеримая функция. Мы говорим, что f равна нулю почти везде, если f=0 вне множества меры нуль. Мы говорим, что измеримые функции f и g эквивалентны, если f-g равна нулю почти везде, В этом случае говорится, что f равно g почти всюду.

Замечание. В теории меры функции, эквивалентные почти всюду, отождествляются. В тех случаях, когда понятно, о чем речь, мы не будем специально оговаривать этого.

Задача 3.17 (!). Рассмотрим такую функцию на пространстве интегрируемых ступенчатых функций:

$$|f|_1 := \sum |\alpha_i| \mu(U_i).$$

Докажите, что эта функция – норма на пространстве классов эквивалентности ступенчатых интегрируемых функций.

Задача 3.18. Пусть f — измеримая функция на \mathbb{R} , а $\{f_i\}$ — последовательность измеримых функций, равномерно сходящихся к f. Всегда ли $\{f_i\}$ будет последовательностью Коши относительно метрики, заданной нормой $|\cdot|_1$?

Задача 3.19. Пусть f – измеримая функция на \mathbb{R} , а $\{f_i\}$ последовательность измеримых функций, такая, что $\{f_i\}$ последовательность Коши относительно $|\cdot|_1$, сходящаяся к f. Верно ли, что $\{f_i\}$ равномерно сходится к f?

Определение 3.7. Пусть f — функция на топологическом пространстве M. Мы говорим, что f — функция \mathbf{c} компактным носителем, если f=0 вне компактного подмножества M.

Задача 3.20 (!). Пусть f – измеримая функция с компактным носителем на \mathbb{R}^n .

- а. Рассмотрим последовательность ступенчатых функций $\{f_i\}$, определенную в Задаче 3.8. Докажите, что $\{f_i\}$ это последовательность Коши относительно метрики, заданной нормой $|\cdot|_1$.
- б. Пусть $\{f_i\}$ последовательность ступенчатых функций с носителем в компактном множестве K, равномерно сходящаяся к f. Докажите, что $\{f_i\}$ это последовательность Коши относительно метрики, заданной нормой $|\cdot|_1$.

Задача 3.21 (*). Пусть M — пространство с σ -алгеброй, наделенное мерой μ такой, что $M = \bigcup U_i$, где $U_0 \subset U_1 \subset U_2 \subset ...$ — измеримые множестvа конечной меры. Пусть задана измеримая функция $f: M \longrightarrow \mathbb{R}$. Докажите, что существует последовательность $\{g_i\}$ ступенчатых измеримых функций, которая равномерно сходится к f, причем $\{g_i\}$ это последовательность Коши относительно $|\cdot|_1$.

Указание. Пусть мера $U_i \setminus U_{i-1}$ равна a_i , а $\{f_i\}$ – последовательность, построенная из f как в Задаче 3.8. Положим g_k на $U_l \setminus U_{l-1}$ равным $f_{2^l[ka_l]+1}$. Докажите, что $\{g_i\}$ равномерно сходится к f, и $\lim |f - g_i|_1 = 0$.

Определение 3.8. Пусть последовательность Коши интегрируемых измеримых ступенчатых функций равномерно сходится к функции f. Тогда f называется **интегрируемой функцией**. Пространство таких функций (определенных с точностью до равенства почти всюду) называется **пространством** L_1 -**интегрируемых функций**, и обозначается $L_1(M)$.

Задача 3.22. Пусть M пространство с мерой такое, что $\mu(M) < \infty$. Докажите, что любая измеримая ограниченная функция на M интегрируема.

Задача 3.23 (!). Пусть $\{f_i\}$, $\{g_i\}$ последовательности Коши ступенчатых функций, равномерно сходящихся к одной и той же функции h. Докажите, что $\lim_{} \left|f_i\right|_A - g_i\Big|_A = 0$ на каждом измеримом подмножестве $A \subset M$ конечной меры. Докажите, что h однозначно определяется классом эквивалентности $\{f_i\}$.

Замечание. В этой ситуации мы говорим, что h есть предел последовательности f_i

Определение 3.9. Пусть f — ступенчатая измеримая интегрируемая функция, $f = \sum \alpha_i \chi_{U_i}$. **Интеграл** f — это число

$$\int_{M} f\mu := \sum \alpha_{i} \mu(U_{i}).$$

Задача 3.24. Пусть $\{f_i\}$ — последовательность Коши интегрируемых ступенчатых функций. Докажите, что $\int_M f_i \mu$ сходится

Определение 3.10. Пусть f – интегрируемая функция, полученная как предел последовательности Коши $\{f_i\}$. Определим **интеграл** Лебега f как

$$\int f\mu := \lim \int_M f_i \mu.$$

Задача 3.25. Докажите, что это определение корректно. Докажите, что интеграл задает непрерывный линейный функционал на пространстве интегрируемых функций.

Задача 3.26. Пусть $f: M \longrightarrow \mathbb{R}$ — неотрицательная интегрируемая функция. Докажите, что $\int f \mu \geqslant 0$, и равенство достигается только если f=0 почти всюду.

Задача 3.27. Пусть f, g измеримые функции, причем $f \geqslant |g|$, а f интегрируема. Докажите, что g также интегрируема, и $\int f \mu \geqslant \int g \mu$.

Задача 3.28. Пусть $f: M \longrightarrow \mathbb{R}$ интегрируемая функция. Докажите, что $f|_{M'}$ интегрируема, для любого измеримого подмножества $M' \subset M$.

Задача 3.29 (!). Пусть $f: M \longrightarrow \mathbb{R}$ – произвольная функция. Докажите, что f интегрируема тогда и только тогда, когда интегрируем |f|.

Определение 3.11. Пусть M – произвольное множество. σ -кольцо $\mathfrak{U} \subset 2^M$ на M есть кольцо подмножеств, замкнутое относительно счетных объединений. Зарядом, или обобщенной мерой на \mathfrak{U} называется счетно-аддитивная (не обязательно положительная) функция $\mathfrak{U} \longrightarrow \mathbb{R}$.

Задача 3.30. Пусть σ – заряд на σ -кольце $\mathfrak{U} \subset 2^M$, а $E_i \in \mathfrak{U}$ – последовательность непересекающихся множеств. Докажите, что ряд $\sum \sigma(E_i)$ абсолютно сходится.

Задача 3.31 (*). (разложение Жордана) Определим $\sigma^+(E)$ как супремум $\sup_{F^+\subset E}\sigma(F^+)$ по всем измеримым подмножествам $F^+\subset E$, и $\sigma^-(E)$ как $-\inf_{F^-\subset E}\sigma'(F^-)$. Докажите, что σ^+ , σ^- - это неотрицательные меры на (M,\mathfrak{U}) , и $\sigma=\sigma^+-\sigma^-$.

Задача 3.32 (*). (разложение Хана) В условиях предыдущей задачи, докажите, что

$$\sup_{F^+ \subset E} \sigma(F^+)$$

И

$$\inf_{F^- \subset E} \sigma'(F^-)$$

реализуются на подмножествах F^- и F^+ . Более того, можно выбрать их таким образом, что $F^- \coprod F^+ = E$.