```
In [1]: import requests
        import os
        from sklearn.datasets import make blobs
        import gensim
        from keras.utils.np utils import to categorical
        from yellowbrick.cluster import KElbowVisualizer
        from gensim.utils import simple preprocess
        from gensim.parsing.preprocessing import STOPWORDS
        import pandas as pd
        from xml.dom import minidom
        import xml.etree.ElementTree as ET
        from sklearn.multiclass import OneVsRestClassifier
        from sklearn.svm import SVC
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import VotingClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.naive bayes import MultinomialNB
        from sklearn.preprocessing import LabelEncoder
        from keras.preprocessing import text, sequence
        from keras import layers, models, optimizers
        from keras.models import Sequential
        from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional
        from sklearn.pipeline import Pipeline
        from sklearn.metrics import precision score, \
            recall score, confusion matrix, classification report, \
            accuracy score, fl score
        from sklearn import model selection, preprocessing, linear model, naive
         bayes, metrics, svm
        import numpy as np
        from sklearn import model selection
        df cols = ["headline","text", "bip:topics", "dc.date.published","itemi
        d", "XMLfilename"]
        rows = []
        path='C:\\Users\\Owner\\Documents\\Machine Learning\\Data2'
        column headline = np.array([])
        column itemid = np.array([])
```

```
column text = np.array([])
        column bip topics = np.array([])
        column dc date published = np.array([])
        column filename = np.array([])
        files = []
        array=[]
        def ensembleclassification(x,y,Text,cluster):
            kfold vc = model selection.KFold(n splits=2, random state=10)
            estimators = []
            v=v.values.ravel()
            mod lr = LogisticRegression()
            estimators.append(('logistic', mod lr))
            mod dt = DecisionTreeClassifier()
            estimators.append(('cart', mod dt))
            mod sv = SVC()
            estimators.append(('svm', mod sv))
            # Lines 9 to 11
            ensemble = VotingClassifier(estimators)
            results vc = model selection.cross val score(ensemble, x, y, cv=kfo
        ld vc)
            print("Accuracy for the cluster: %.6f%%." %cluster)
            print(results vc.mean())
        Using TensorFlow backend.
In [2]: for r, d, f in os.walk(path):
            for file in f:
                if '.xml' in file:
                    files.append(os.path.join(r, file))
        for Single file in files:
            tree = ET.parse(Single file)
            root = tree.getroot()
            s headline = root.find("headline").text
            column headline = np.append(column headline, s headline)
            s itemid = root.attrib.get("itemid")
            column itemid = np.append(column_itemid, s_itemid)
            s text = ""
            s bip topics = ""
```

```
code3='0'
    bip c=''
    for node in root:
        #print("tags: ", node.tag, "attribs: ", node.attrib)
        if(node.tag == 'text'):
            for textnode in node:
                if(textnode.tag == 'p'):
                    #print(dir(textnode))
                    s text = s text + " " + textnode.text
        elif(node.tag == 'metadata'):
            for metanode in node:
                #print(metanode.tag)
                if(metanode.tag == 'dc' and metanode.attrib.get("elemen
t") == 'dc.date.published'):
                    s dc date published = metanode.attrib.get("value")
                elif(metanode.tag == 'codes' and metanode.attrib.get("c
lass") == 'bip:topics:1.0'):
                    for bipnodes in metanode:
                        #print(s bip topics)
                        s bip topics = bipnodes.attrib.get("code") +
"," + s bip topics
                        if(code3=='0'):
                            bip c=bipnodes.attrib.get("code")
                            #print(bip c)
    array.append(bip c)
   #print(array)
    column text = np.append(column text, s text)
    column dc date published = np.append(column dc date published, s dc
date published)
    column bip topics = np.append(column bip topics, s bip topics)
    s xmlfilename = s itemid + "newsML.xml"
    column filename = np.append(column filename, s xmlfilename)
#print(column headline)
#print(column itemid)
#print(column text.shape)
#print(column bip topics)
#print(column dc date published)
```

```
#print(column filename)
#Yfinal = bip()
Final Table = np.column stack([column headline,column text,column bip t
opics,column dc date published,column itemid,column filename])
#print(Final Table.shape)
Final DF = pd.DataFrame(Final Table, columns = df cols)
Final bp = pd.DataFrame(array, columns =[ 'bip topics'])
#print(Final DF)
#print(Final bp)
def listToString(s):
    # initialize an empty string
    str1 = ""
   # traverse in the string
    for ele in s:
        str1 = str1 + ele + ""
    # return string
    return str1
#removing numbers
def stopwords():
    import nltk
   from nltk.corpus import stopwords
    #nltk.download('stopwords')
    slist = stopwords.words('english')
    dfcols1=['itemid','text']
    rows1 = []
    for n in files:
        clean=[]
        treec = ET.parse(n)
        rt=treec.getroot()
        id = rt.get('itemid')
```

```
for ch in rt:
            for neighbour in ch.iter('text'):
                for a in neighbour:
                    k=a.text
                    for word in k.split():
                        if word not in slist:
                            clean.append(word)
                            stext = clean
        rows1.append({"itemid":id,"text":stext})
    df = pd.DataFrame(rows1,columns= dfcols1)
    #print(df)
    return df
df=stopwords()
#converting the list to string
column text1 = np.array([])
dfcols2 =['filtered text']
i=1
for i in df.text:
        original = listToString(i)
        column text1 =np.append(original,column text1)
fdata = pd.DataFrame(column text1,columns = dfcols2)
#print(fdata)
#removing numbers
cleandig = np.array([])
coldef = ['nonum text']
for p in fdata.filtered text:
    fil = ''.join(c for c in p if not c.isdigit())
    cleandig = np.append(fil, cleandig)
numno = pd.DataFrame(cleandig,columns = coldef )
#print(numno)
#Applying stemming
```

```
from nltk.stem import PorterStemmer
from nltk.stem import LancasterStemmer
porter = PorterStemmer()
lancaster=LancasterStemmer()
column stem = np.array([])
dfcols2 =['stemmed text']
for i in numno.nonum_text:
    stem = porter.stem(i)
    column stem = np.append(stem,column stem)
fdata2 = pd.DataFrame(column stem,columns = dfcols2)
#print(fdata2)
#removing special charactera
from string import punctuation
coldef2 =['nopunc text']
column nopunc = np.array([])
from nltk.stem import PorterStemmer, WordNetLemmatizer
for pc in fdata2.stemmed text:
    nopunc = ''.join(c for c in pc if c not in punctuation)
    sent tokenized = nopunc.split(" ")
    lemmatizer = WordNetLemmatizer()
   no punc = [lemmatizer.lemmatize(word) for word in sent tokenized]
    column nopunc = np.append(nopunc,column nopunc)
fdata3 = pd.DataFrame(column nopunc, columns = coldef2)
#print(fdata3)
from sklearn.feature extraction.text import TfidfVectorizer, CountVecto
rizer
tf= TfidfVectorizer(analyzer = 'word', ngram range =(1,2), lowercase =
True, max features = 2000, min df = 1)
tf transformer = tf.fit transform(fdata3['nopunc text'])
feature tf=tf.get feature names()
features df1=pd.DataFrame(tf transformer.toarray(),columns =feature tf
features df = pd.DataFrame(tf transformer.toarray(),columns = feature tf
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make classification
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(features df, Final
bp, test size=0.3)
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import silhouette score
from sklearn import cluster
import sklearn
from sklearn.neighbors import NearestNeighbors
from sklearn.manifold import TSNE
mms = MinMaxScaler()
mms.fit(features df)
data transformed = mms.transform(features df)
k=1
K=0
Sum of squared distances = []
elbow= range(3,20)
for k in elbow:
    km = KMeans(k)
    km = km.fit(data transformed)
    Sum of squared distances.append(km.inertia )
x=elbow
y=Sum of squared distances
plt.plot(elbow, Sum of squared distances, 'bx-')
plt.xlabel('k')
plt.ylabel('Sum of squared distances')
plt.title('Elbow Method For Optimal k')
from kneed import KneeLocator
kn = KneeLocator(x, y, curve='convex', direction='decreasing',S=50)
kn.plot knee normalized()
kn.plot knee()
```

```
print(kn.knee)
plt.show()
from yellowbrick.cluster import KElbowVisualizer
from sklearn.cluster import KMeans
X, y = make blobs(n samples=1000, n features=12, centers=8, random stat
e = 42)
# Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(
    model, k=(3,20), metric='distortion', timings=False, locate elbow=T
rue)
visualizer.fit(features df) # Fit the data to the visualizer
visualizer.show()
#print(visualizer.elbow value )
Optimal NumberOf Components=visualizer.elbow value
   # Finalize and render the figure
#Optimal_NumberOf_Components=clusters[Sum of squared distances.index(mi
n(Sum of squared distances))]
#print(Optimal NumberOf Components)
\#x = range(1, len(Sum of squared distances)+1)
#y=Sum of squared distances
silhouette score values=list()
    #from kmeansplots import kmeans plot, silhouette plot
clusters=range(3, 20)
    #num clusters =2
for num clusters in clusters:
    classifier=cluster.KMeans(num clusters,init='k-means++', n init=10,
max iter=300, tol=0.0001, verbose=0, random state=None, copy x=True)
    n clusters=num clusters
```

```
km = KMeans(n clusters=num clusters)
    \#X=df
    y=km.fit(features df)
    #labels= classifier.predict(df)
    labels = km.labels
    centers = km.cluster centers
        # Create a dataframe for cluster centers (centroids)
    score = silhouette score (features df, labels, metric='euclidean')
    silhouette score values.append(sklearn.metrics.silhouette score(fea
tures df, labels , metric='euclidean', sample size=None, random state=Non
e))
plt.xlabel('number of clusters k')
plt.ylabel('Silhouette score values')
plt.plot(clusters, silhouette score values)
plt.title("Silhouette score values vs Numbers of Clusters ")
plt.show()
#Optimal NumberOf Components=clusters[silhouette score values.index(max
(silhouette score values))]
#Optimal NumberOf Components=clusters[Sum of squared distances.index(mi
n(Sum of squared distances))]
print ("Optimal number of components is:")
print ( Optimal NumberOf Components)
clusters = Optimal NumberOf Components
cluster ids = np.array([])
kmeans = KMeans(n clusters = clusters)
clustering = kmeans.fit(features df)
clusters = kmeans.labels .tolist()
centroids = kmeans.cluster centers
#print(clusters)
centroids = kmeans.cluster centers
from sklearn.utils.extmath import randomized svd
```

```
U, Sigma, VT = randomized svd(tf transformer, n components=3, n iter=10
0,
random state=122)
#printing the concepts
#Topics Visualization
import umap
import matplotlib as mpl
import matplotlib.pyplot as plt
X topics=U*Sigma
embedding = umap.UMAP(n neighbors=100, min dist=0.5, random state=12).f
it transform(X topics)
#Arranging clusters to a dataframe
cl cols = ["cluster id"]
for cl in clusters:
    cluster ids = np.append(cl, cluster ids)
cluster frame = pd.DataFrame(cluster ids,columns = cl cols)
#print(cluster frame)
plt.figure()
plt.figure(figsize=(7,5))
cmap = plt.cm.get cmap('jet', cluster frame.nunique())
plt.scatter(embedding[:, 0], embedding[:, 1], c = clusters,cmap='rainbo
w', s = 50, edgecolor='none')
print(embedding)
#plt.scatter(transformed centroids[:, 0], transformed centroids[:, 1],c
= clusters, cmap='rainbow', marker = "x", s=150, linewidths = 5, zorde
r = 10
plt.show()
```

```
cluster_table_cols = ["cluster_ids","text","biptopics"]

cluster_table = np.column_stack([cluster_ids,fdata3,array])
#print(cluster_table)
features_df['cluster_ids']=cluster_frame
features_df['Bip_topics']=Final_bp
features_df['Text']=fdata3['nopunc_text']

C:\ProgramData\Anaconda3\lib\site-packages\kneed\knee_locator.py:188:
UserWarning: No knee/elbow found
```

None

warnings.warn("No knee/elbow found")


```
Optimal number of components is:
17
[[-3.9150107 -4.4141655]
  [-4.4231253 -1.4017328]
  [-2.637821    1.1906291]
  ...
  [-3.9799144 -5.881225 ]
  [-4.037138    -6.0096693]
  [-2.8040867 -5.0335345]]

<Figure size 432x288 with 0 Axes>
```



```
In [3]: from keras.preprocessing.text import Tokenizer
        from keras.preprocessing.sequence import pad_sequences
        from sklearn.model selection import train test split
        from keras.utils.np utils import to categorical
        from sklearn.preprocessing import LabelEncoder
        from sklearn.decomposition import PCA
        import numpy as np
        clus=0
        n=len(features df.columns)
        x=pd.DataFrame()
        while(clus<Optimal NumberOf Components):</pre>
            x=pd.DataFrame(features_df[features_df['cluster_ids'] == clus])
            datax=x[x.columns[0:n-3]]
            datay=pd.DataFrame(x[x.columns[n-2:n-1]])
            Text=pd.DataFrame(x[x.columns[n-1:n]])
            n most common words = 8000
```

```
max len = 130
    tokenizer = Tokenizer(num words=n most common words, filters='!"#$%
&()*+,-./:;<=>?@[\]^ `{|}~',lower=True)
    tokenizer.fit on texts(Text.values.tolist())
    sequences = tokenizer.texts to sequences(Text.values.tolist())
    word index = tokenizer.word index
    #print('Found %s unique tokens.' % len(word index))
   X = pad sequences(sequences, maxlen=max len)
    \#print(\overline{X})
   code = np.array(datay)
    label encoder = LabelEncoder()
   vec = label encoder.fit transform(datay)
   X = np.reshape(datax, (datax.shape[0], datax.shape[1]))
    Y = to categorical(vec)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\labe
l.py:235: DataConversionWarning: A column-vector v was passed when a
1d array was expected. Please change the shape of y to (n samples, ),
for example using ravel().
 y = column or 1d(y, warn=True)
KeyboardInterrupt
                                          Traceback (most recent call
last)
<ipython-input-3-c8d8bbfd8a46> in <module>
           vec = label encoder.fit transform(datay)
           X = np.reshape(datax, (datax.shape[0], datax.shape[1]))
---> 30
           Y = to categorical(vec)
C:\ProgramData\Anaconda3\lib\site-packages\keras\utils\np utils.py in
to categorical(y, num classes, dtype)
     41
     42
           y = np.array(y, dtype='int')
---> 43
     44
           input shape = y.shape
            if input shape and input shape[-1] == 1 and len(input_sha
     45
pe) > 1:
KeyboardInterrupt:
```

```
In [4]: def ensembleclassification(x,y,Text,cluster):
            kfold vc = model selection.KFold(n splits=2, random state=10)
            estimators = []
            v=v.values.ravel()
            mod lr = LogisticRegression()
            estimators.append(('logistic', mod lr))
            mod dt = DecisionTreeClassifier()
            estimators.append(('cart', mod dt))
            mod sv = SVC()
            estimators.append(('svm', mod sv))
            # Lines 9 to 11
            ensemble = VotingClassifier(estimators)
            results vc = model selection.cross val score(ensemble, x, y, cv=kfo
        ld vc)
            print("Accuracy for the cluster: %.6f%." %cluster)
            print(results vc.mean())
        def classification(x,y,Text,cluster):
            v=v.values.ravel()
            train x, valid x, train y, valid y = model selection.train test spl
        it(x, y,random state=1)
            encoder = preprocessing.LabelEncoder()
            train y = encoder.fit transform(train y)
            valid y = encoder.fit transform(valid y)
             # Train the data on a classifier #Naive Bayes
            classifier = Pipeline([
            ('clf', OneVsRestClassifier(MultinomialNB(
                            fit prior=True, class prior=None)))])
            feature vector train=train x
            is neural net=False
            label=train y
            feature vector valid=valid x
            classifier.fit(feature vector train, label)
            # predict the labels on validation dataset
            predictions = classifier.predict(feature vector valid)
            if is neural net:
```

```
predictions = predictions.argmax(axis=-1)
            accuracy = metrics.accuracy score(predictions, valid y)
            f1 score =metrics.f1 score(predictions, valid y,average="macro")
            precision score =metrics.precision score(predictions, valid v,avera
        qe="macro")
            recall score=metrics.recall score(predictions, valid y,average = "m
        acro")
            print("Training on the classifier: ", accuracy)
            print("Training on the classifier: ", f1 score)
            print("Training on the classifier: ", precision score)
            print("Training on the classifier: ", recall score)
In [5]: def create cnn(X,Y):
            # Add an Input Layer
            from keras.models import Sequential
            from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirecti
        onal
            from keras.layers import Dense, Embedding, LSTM, SpatialDropout1D
            from keras.callbacks import EarlyStopping
            from keras.models import Model,load model
            epochs = 10
            emb dim = 128
            batch size = 256
            model = Sequential()
            model.add(Embedding(n most common words, emb dim, input length=X.sh
        ape[1]))
            model.add(SpatialDropout1D(0.7))
            model.add(LSTM(64, dropout=0.7, recurrent dropout=0.7))
            model.add(Dense(Y.shape[1], activation='softmax',name ='feature den
        se'))
            model.compile(optimizer='sqd', loss='categorical crossentropy', met
        rics=['acc'])
            print(model.summary())
            featuresnn = model.fit(X,Y, epochs=epochs, batch size=batch size,va
        lidation split=0.4, callbacks=[EarlyStopping(monitor='val loss', patience
        =3, min delta=0.0001)])
            #intermediate layer model = Model(inputs=model.input,outputs=model.
        get layer('feature dense').output)
            #intermediate layer model.summary()
```

```
feauture engg data = model.predict(X)
    feauture engg data = pd.DataFrame(feauture engg data)
    print('feauture engg data shape:', feauture engg data.shape)
    print('New Features', feauture engg data)
    print('New Features', feauture engg data)
    import matplotlib.pyplot as plt
    max features = 20000
    maxlen = 100
    batch size = 32
    X train, X test, y train, y test = train test split(feauture engg d
ata, Y, test size=0.3, random state=666)
    X train = np.reshape(X train, (X train.shape[0], X train.shape[1]))
    X test = np.reshape(X test, (X test.shape[0], X test.shape[1]))
    #Feature Extraction
    model = Sequential()
    model.add(Embedding(max features, 128, input length=Y.shape[1]))
    model.add(Bidirectional(LSTM(64)))
   model.add(Dropout(0.5))
    model.add(Dense(Y.shape[1], activation='sigmoid'))
    model.compile(loss='mean squared error', optimizer='sqd',metrics=[
'acc'1)
    print('Train...')
    history=model.fit(X train, y train,batch size=batch size,epochs=10,
validation data=[X test, y test])
    accr = model.evaluate(X test,y test)
    print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accr[
0],accr[1]))
    acc = history.history['acc']
    val acc = history.history['val acc']
    loss = history.history['loss']
    val loss = history.history['val loss']
    epochs = range(1, len(acc) + 1)
```

```
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
```

```
In [6]: from keras.preprocessing.text import Tokenizer
        from keras.preprocessing.sequence import pad sequences
        from sklearn.model selection import train test split
        from keras.utils.np utils import to_categorical
        from sklearn.preprocessing import LabelEncoder
        from sklearn.decomposition import PCA
        import numpy as np
        clus=0
        n=len(features df.columns)
        x=pd.DataFrame()
        while(clus<Optimal NumberOf Components):</pre>
            x=pd.DataFrame(features df[features df['cluster ids'] == clus])
            datax=x[x.columns[0:n-3]]
            datay=pd.DataFrame(x[x.columns[n-2:n-1]])
            Text=pd.DataFrame(x[x.columns[n-1:n]])
            n most common words = 8000
            max len = 130
            tokenizer = Tokenizer(num words=n most common words, filters='!"#$%
        &()*+,-./:;<=>?@[\]^_`{|}~',lower=True)
            tokenizer.fit on texts(Text.values.tolist())
            sequences = tokenizer.texts to sequences(Text.values.tolist())
            word index = tokenizer.word index
            #print('Found %s unique tokens.' % len(word index))
            X = pad sequences(sequences, maxlen=max len)
```

```
#print(X)
    code = np.array(datay)
    label encoder = LabelEncoder()
    vec = label encoder.fit transform(datay)
    X = np.reshape(datax, (datax.shape[0], datax.shape[1]))
    Y = to categorical(vec)
    ensembleclassification(datax,datay,Text,clus)
    create cnn(X,Y)
    clus=clus+1
Accuracy for the cluster: 0.000000%.
0.5066666666666667
WARNING: tensorflow: Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, d
ropout() uses dropout rate instead of keep prob. Please ensure that thi
s is intended.
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
```

ureWarning: The default value of gamma will change from 'auto' to 'scal

e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning)

WARNING: tensorflow: Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, d ropout() uses dropout rate instead of keep prob. Please ensure that thi s is intended.

WARNING: tensorflow: Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, d ropout() uses dropout rate instead of keep prob. Please ensure that thi s is intended.

WARNING: tensorflow: Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, d ropout() uses dropout rate instead of keep prob. Please ensure that thi s is intended.

WARNING: tensorflow: Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, d ropout() uses dropout rate instead of keep prob. Please ensure that thi s is intended.

Model: "sequential 1"

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_1 (Spatial	(None, 2000, 128)	0
lstm_1 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 13)	845

Total params: 1,074,253 Trainable params: 1,074,253 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow core\python\framework\indexed slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 29 samples, validate on 20 samples
Epoch 1/10
acc: 0.0000e+00 - val loss: 2.5551 - val acc: 0.0000e+00
Epoch 2/10
acc: 0.0345 - val loss: 2.5518 - val acc: 0.3000
Epoch 3/10
acc: 0.1034 - val loss: 2.5487 - val acc: 0.3000
Epoch 4/10
acc: 0.0690 - val loss: 2.5468 - val acc: 0.3000
Epoch 5/10
29/29 [========== ] - 5s 173ms/step - loss: 2.5544 -
acc: 0.1379 - val loss: 2.5450 - val acc: 0.3000
Epoch 6/10
acc: 0.1724 - val loss: 2.5432 - val acc: 0.3000
Epoch 7/10
acc: 0.0345 - val loss: 2.5436 - val acc: 0.3000
Epoch 8/10
29/29 [========== ] - 5s 170ms/step - loss: 2.5466 -
acc: 0.1724 - val loss: 2.5401 - val acc: 0.3000
Epoch 9/10
acc: 0.2069 - val loss: 2.5376 - val acc: 0.3000
Epoch 10/10
acc: 0.1379 - val loss: 2.5352 - val acc: 0.3000
feauture engg data shape: (49, 13)
New Features
              0
                           2
 5
       6
0.085566 \quad 0.076043 \quad 0.074692 \quad 0.073555 \quad 0.073504 \quad 0.078299 \quad 0.07451
  0.085566 0.076043 0.074692 0.073555 0.073504 0.078299 0.07451
  0.085566 0.076043 0.074692 0.073555 0.073504 0.078299 0.07451
```

4							
4 3 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
4 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
5 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
6 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
7 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
8 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
9 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
10 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
11 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
12 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
13 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
14 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
15 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
16 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
17 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
18 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
19 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
20 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
21 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451

22 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
23 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
24 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
25 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
26 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
27 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
28 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
29 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
30 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
31 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
32 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
33 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
34 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
35 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
36 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
37 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
38 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
39 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
40 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
41	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451

```
0.085566 0.076043 0.074692 0.073555 0.073504 0.078299 0.07451
   0.085566 0.076043 0.074692 0.073555
                                           0.073504
43
                                                     0.078299
                                                               0.07451
4
   0.085566
             0.076043 0.074692
                                 0.073555
                                           0.073504
                                                     0.078299
                                                               0.07451
             0.076043 0.074692 0.073555
   0.085566
                                           0.073504 0.078299
                                                               0.07451
             0.076043 0.074692 0.073555
                                           0.073504
   0.085566
                                                     0.078299
                                                               0.07451
   0.085566 0.076043 0.074692 0.073555
                                           0.073504 0.078299
                                                               0.07451
             0.076043 0.074692 0.073555 0.073504 0.078299
48
   0.085566
                   8
                                                           12
                                       10
                                                 11
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
   0.077338
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
   0.077338
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
   0.077338
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                                 0.076539
                                           0.074379
   0.077338
                       0.084099
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
10
                                                     0.078192
                                           0.074379
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                                     0.078192
11
12
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
   0.077338
                                                     0.078192
13
                       0.084099
             0.073279
                                 0.076539
                                           0.074379
14
   0.077338
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
15
                                                     0.078192
             0.073279
   0.077338
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
17
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
18
                                                     0.078192
19
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338 0.073279
                                           0.074379
                                 0.076539
20
                       0.084099
                                                     0.078192
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
                                                    0.078192
```

```
0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
    0.077338
            0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
24
    0.077338
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
                       0.084099
   0.077338
             0.073279
                                 0.076539
                                           0.074379
                                                     0.078192
26
             0.073279
                       0.084099
27
    0.077338
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
28
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
29
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
30
   0.077338
                                                     0.078192
             0.073279
   0.077338
                       0.084099
                                 0.076539
                                           0.074379
31
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
32
    0.077338
                                                     0.078192
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
33
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
34
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
35
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
36
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
37
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
38
                                                     0.078192
39
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
40
41
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
42
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
43
                                                     0.078192
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
44
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
45
                                                     0.078192
   0.077338 0.073279 0.084099
46
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338 0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338 0.073279 0.084099 0.076539 0.074379
                                                    0.078192
New Features
                       0
                                1
                                          2
                                                    3
            6
    0.085566 0.076043 0.074692 0.073555 0.073504 0.078299 0.07451
    0.085566 0.076043 0.074692 0.073555 0.073504 0.078299
    0.085566 0.076043 0.074692 0.073555 0.073504 0.078299
                                                               0.07451
    0.085566 0.076043 0.074692 0.073555
                                           0.073504 0.078299
                                                               0.07451
    0.085566 \quad 0.076043 \quad 0.074692 \quad 0.073555 \quad 0.073504 \quad 0.078299 \quad 0.07451
```

5 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
6 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
7 7 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
8 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
9 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
10 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
11 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
12 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
13 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
14 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
15 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
16 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
17 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
18 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
19 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
20 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
21 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
22 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
23 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
24	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451

4							
25 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
26 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
27 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
28 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
29 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
30 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
31 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
32 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
33 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
34 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
35 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
36 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
37 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
38 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
39 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
40 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
41 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
42 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451
4 43 4	0.085566	0.076043	0.074692	0.073555	0.073504	0.078299	0.07451

```
0.085566 0.076043 0.074692 0.073555 0.073504 0.078299 0.07451
    0.085566 0.076043 0.074692 0.073555
45
                                           0.073504 0.078299
                                                               0.07451
             0.076043 0.074692 0.073555
                                           0.073504
    0.085566
                                                     0.078299
                                                               0.07451
47
    0.085566 0.076043 0.074692 0.073555 0.073504 0.078299
                                                               0.07451
             0.076043 0.074692 0.073555 0.073504 0.078299
48
    0.085566
                                                 11
                                                           12
          7
                   8
                              9
                                       10
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                            0.074379
                                                      0.078192
                       0.084099
             0.073279
                                 0.076539
                                           0.074379
    0.077338
                                                      0.078192
             0.073279
                       0.084099
    0.077338
                                 0.076539
                                           0.074379
                                                     0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                      0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                      0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
    0.077338
                                                     0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
    0.077338
                                                      0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
10
                                                      0.078192
    0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
11
                                                      0.078192
             0.073279
                                           0.074379
12
   0.077338
                       0.084099
                                 0.076539
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                      0.078192
13
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
14
                                                      0.078192
15
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
16
17
   0.077338
             0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
             0.073279
                       0.084099
   0.077338
                                 0.076539
                                           0.074379
                                                     0.078192
18
             0.073279
                       0.084099
                                 0.076539
19
   0.077338
                                           0.074379
                                                      0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
20
                                                      0.078192
             0.073279
                                 0.076539
                                           0.074379
                       0.084099
21
    0.077338
                                                      0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
22
                                                      0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
23
                                                     0.078192
   0.077338
             0.073279
                       0.084099
                                 0.076539
                                           0.074379
                                                      0.078192
24
   0.077338 0.073279
                       0.084099
                                 0.076539
                                           0.074379
25
                                                      0.078192
   0.077338 0.073279 0.084099
                                 0.076539
                                           0.074379
                                                     0.078192
```

```
0.077338 0.073279 0.084099
                                        0.074379 0.078192
                               0.076539
28
   0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
   0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
30 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
31 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
32 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
   0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
34 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
  0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
35
36 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
37 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
38 0.077338 0.073279 0.084099 0.076539
                                        0.074379 0.078192
39 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
40 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
41 0.077338 0.073279 0.084099 0.076539
                                        0.074379 0.078192
42 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
43 0.077338 0.073279 0.084099 0.076539
                                        0.074379 0.078192
44 0.077338 0.073279 0.084099 0.076539
                                        0.074379 0.078192
45 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
46 0.077338 0.073279 0.084099
                               0.076539
                                        0.074379 0.078192
47 0.077338 0.073279 0.084099 0.076539
                                        0.074379 0.078192
48 0.077338 0.073279 0.084099 0.076539 0.074379 0.078192
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
cc: 0.0294 - val loss: 0.2478 - val acc: 0.0000e+00
Epoch 4/10
cc: 0.0294 - val loss: 0.2475 - val acc: 0.0000e+00
Epoch 5/10
cc: 0.0588 - val loss: 0.2472 - val acc: 0.0000e+00
Epoch 6/10
cc: 0.0000e+00 - val loss: 0.2468 - val acc: 0.0000e+00
Epoch 7/10
cc: 0.0294 - val loss: 0.2464 - val acc: 0.0000e+00
Epoch 8/10
cc: 0.0294 - val loss: 0.2461 - val acc: 0.0000e+00
Epoch 9/10
34/34 [============= ] - 0s 3ms/step - loss: 0.2468 - a
cc: 0.0882 - val_loss: 0.2457 - val acc: 0.0000e+00
Epoch 10/10
cc: 0.0294 - val loss: 0.2454 - val acc: 0.0000e+00
Test set
Loss: 0.245
Accuracy: 0.000
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in

0.22. Specify a solver to silence this warning.
 FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.

"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 1.000000%.

0.2916666666666663 Model: "sequential_3"

Layer (type)	Output	Shape	Param #
embedding_3 (Embedding)	(None,	2000, 128)	1024000
spatial_dropout1d_2 (Spatial	(None,	2000, 128)	0
lstm_3 (LSTM)	(None,	64)	49408
feature_dense (Dense)	(None,	11)	715
			

Trainable params: 1,074,123 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow

_core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 28 samples, validate on 20 samples
Epoch 1/10
acc: 0.1786 - val loss: 2.3933 - val acc: 0.2000
Epoch 2/10
acc: 0.1429 - val loss: 2.3921 - val acc: 0.2000
Epoch 3/10
acc: 0.1429 - val loss: 2.3905 - val acc: 0.2000
Epoch 4/10
acc: 0.2143 - val loss: 2.3886 - val acc: 0.2000
Epoch 5/10
acc: 0.1429 - val loss: 2.3879 - val acc: 0.2000
Epoch 6/10
acc: 0.1429 - val loss: 2.3861 - val acc: 0.2000
Epoch 7/10
acc: 0.1429 - val loss: 2.3835 - val acc: 0.2000
Epoch 8/10
28/28 [============== ] - 5s 175ms/step - loss: 2.3638 -
acc: 0.1071 - val loss: 2.3817 - val acc: 0.2000
Epoch 9/10
```

```
acc: 0.2143 - val loss: 2.3793 - val acc: 0.2000
Epoch 10/10
acc: 0.2143 - val loss: 2.3772 - val acc: 0.2000
feauture engg data shape: (48, 11)
New Features
                              2
                                     3
  0.103338    0.08965    0.089459    0.093925    0.088819    0.085258
                                             0.095513
  0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
  0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
  0.103338 0.08965 0.089459 0.093925 0.088819 0.085258
                                             0.095513
  0.095513
  0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
  0.103338    0.08965    0.089459    0.093925    0.088819    0.085258
                                             0.095513
10 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
11 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
12 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
13 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
14 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258
                                             0.095513
  0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
```

16	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
17	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
18	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
19	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
20	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
21	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
22	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
23	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
24	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
25	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
26	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
27	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
28	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
29	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
30	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
31	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
32	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
33	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
34	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
35	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513

```
36 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
   0.103338 0.08965
                    0.089459
                              0.093925 0.088819 0.085258
                                                          0.095513
   0.103338 0.08965
                    0.089459
                              0.093925
                                       0.088819
                                                0.085258
                                                          0.095513
39 0.103338 0.08965 0.089459
                              0.093925 0.088819 0.085258
                                                          0.095513
40 0.103338 0.08965
                     0.089459
                              0.093925 0.088819
                                                 0.085258
                                                          0.095513
41 0.103338 0.08965
                    0.089459 0.093925 0.088819 0.085258 0.095513
42 0.103338 0.08965
                    0.089459
                              0.093925 0.088819 0.085258 0.095513
   0.103338 0.08965
                    0.089459
                              0.093925 0.088819
                                                0.085258
                                                          0.095513
44 0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
   0.103338 0.08965 0.089459
                              0.093925 0.088819
                                                0.085258
                                                          0.095513
   0.103338 0.08965
                    0.089459
                              0.093925 0.088819 0.085258
                                                          0.095513
   0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
                  8
                                     10
   0.089762 0.085391 0.089192
                               0.089693
   0.089762 0.085391 0.089192
                               0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192
                              0.089693
   0.089762 0.085391 0.089192
                              0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192
                               0.089693
   0.089762 0.085391 0.089192
                              0.089693
   0.089762 0.085391 0.089192
                              0.089693
   0.089762 0.085391 0.089192
                              0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192 0.089693
```

```
0.089762 0.085391 0.089192
                                  0.089693
    0.089762 0.085391 0.089192
                                  0.089693
    0.089762
             0.085391
14
                       0.089192
                                  0.089693
    0.089762
             0.085391
                       0.089192
15
                                  0.089693
    0.089762
             0.085391
                       0.089192
                                  0.089693
16
             0.085391
                       0.089192
17
    0.089762
                                  0.089693
    0.089762
             0.085391
                       0.089192
18
                                  0.089693
19
    0.089762
             0.085391
                       0.089192
                                  0.089693
             0.085391
                       0.089192
20
    0.089762
                                  0.089693
             0.085391
    0.089762
                       0.089192
21
                                  0.089693
             0.085391
                       0.089192
22
    0.089762
                                  0.089693
             0.085391
                       0.089192
23
    0.089762
                                  0.089693
    0.089762
             0.085391
                       0.089192
                                  0.089693
24
    0.089762
             0.085391
                       0.089192
                                  0.089693
             0.085391
                       0.089192
26
    0.089762
                                  0.089693
             0.085391 0.089192
    0.089762
                                  0.089693
27
    0.089762
             0.085391
                       0.089192
                                  0.089693
28
29
    0.089762
             0.085391 0.089192
                                  0.089693
    0.089762
             0.085391
                       0.089192
30
                                  0.089693
31
    0.089762
             0.085391
                       0.089192
                                  0.089693
             0.085391 0.089192
32
    0.089762
                                  0.089693
             0.085391
33
    0.089762
                       0.089192
                                  0.089693
    0.089762
             0.085391 0.089192
34
                                  0.089693
             0.085391
35
    0.089762
                       0.089192
                                  0.089693
             0.085391
36
    0.089762
                       0.089192
                                  0.089693
    0.089762
             0.085391
                       0.089192
                                  0.089693
37
    0.089762
             0.085391
                       0.089192
38
                                  0.089693
             0.085391
39
    0.089762
                        0.089192
                                  0.089693
             0.085391
                       0.089192
    0.089762
                                  0.089693
40
    0.089762
             0.085391
                       0.089192
                                  0.089693
41
             0.085391
                       0.089192
42
    0.089762
                                  0.089693
             0.085391
43
    0.089762
                       0.089192
                                  0.089693
    0.089762
             0.085391
                       0.089192
                                  0.089693
             0.085391
                       0.089192
    0.089762
                                  0.089693
45
    0.089762
             0.085391
                       0.089192
46
                                  0.089693
    0.089762
             0.085391 0.089192
47
                                 0.089693
New Features
                       0
                                1
                                                    3
                                                              4
          6
    0.103338 0.08965 0.089459 0.093925 0.088819 0.085258 0.095513
```

1	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
2	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
3	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
4	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
5	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
6	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
7	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
8	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
9	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
10	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
11	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
12	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
13	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
14	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
15	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
16	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
17	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
18	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
19	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513

20	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
21	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
22	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
23	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
24	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
25	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
26	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
27	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
28	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
29	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
30	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
31	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
32	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
33	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
34	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
35	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
36	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
37	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
38	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513
39	0.103338	0.08965	0.089459	0.093925	0.088819	0.085258	0.095513

```
41 0.103338 0.08965
                  0.089459
                           0.093925 0.088819 0.085258 0.095513
  0.103338 0.08965
                  0.089459
                           0.093925 0.088819 0.085258
                                                     0.095513
43 0.103338 0.08965
                  0.089459
                           0.093925 0.088819 0.085258
                                                    0.095513
44 0.103338 0.08965
                   0.089459
                           0.093925 0.088819
                                            0.085258
                                                     0.095513
   0.103338 0.08965
                  0.089459 0.093925 0.088819 0.085258 0.095513
                  0.089459
                           0.093925 0.088819 0.085258 0.095513
   0.103338 0.08965
   8
                                 10
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192
                           0.089693
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192
                           0.089693
   0.089762 0.085391 0.089192
                           0.089693
   0.089762 0.085391 0.089192
                           0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192
                           0.089693
11
   0.089762 0.085391 0.089192
12
                           0.089693
   0.089762 0.085391 0.089192 0.089693
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192 0.089693
15
   0.089762 0.085391 0.089192
                           0.089693
16
   0.089762 0.085391 0.089192
                            0.089693
   0.089762 0.085391 0.089192 0.089693
18
19 0.089762 0.085391 0.089192 0.089693
```

```
0.089762 0.085391 0.089192
                                0.089693
21 0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
22
                                0.089693
   0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
24
                                0.089693
            0.085391 0.089192
25
   0.089762
                                0.089693
   0.089762 0.085391 0.089192
                                0.089693
26
27
   0.089762 0.085391 0.089192
                                0.089693
28
   0.089762 0.085391 0.089192
                                0.089693
29 0.089762 0.085391 0.089192
                                0.089693
30
   0.089762 0.085391 0.089192
                                0.089693
31 0.089762 0.085391 0.089192
                                0.089693
32 0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
                                0.089693
34 0.089762 0.085391 0.089192
                                0.089693
35
   0.089762 0.085391 0.089192
                                0.089693
36
   0.089762 0.085391 0.089192
                                0.089693
37 0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
38
                                0.089693
39 0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
                                0.089693
41 0.089762 0.085391 0.089192
                                0.089693
42 0.089762 0.085391 0.089192
                                0.089693
   0.089762 0.085391 0.089192
                                0.089693
43
44 0.089762 0.085391 0.089192
                                0.089693
45 0.089762 0.085391 0.089192
                                0.089693
46 0.089762 0.085391 0.089192
                               0.089693
47 0.089762 0.085391 0.089192 0.089693
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
_core\python\framework\indexed_slices.py:424: UserWarning: Converting s
parse IndexedSlices to a dense Tensor of unknown shape. This may consum
e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
acc: 0.1515 - val loss: 0.2530 - val acc: 0.0667
Epoch 2/10
cc: 0.0909 - val loss: 0.2527 - val acc: 0.0667
Epoch 3/10
cc: 0.1515 - val loss: 0.2524 - val acc: 0.0667
Epoch 4/10
cc: 0.1212 - val loss: 0.2521 - val acc: 0.0667
Epoch 5/10
cc: 0.0909 - val loss: 0.2519 - val acc: 0.0667
Epoch 6/10
cc: 0.0606 - val loss: 0.2515 - val acc: 0.0667
Epoch 7/10
cc: 0.0909 - val loss: 0.2512 - val acc: 0.0667
Epoch 8/10
33/33 [============== ] - 0s 3ms/step - loss: 0.2516 - a
cc: 0.1212 - val loss: 0.2509 - val acc: 0.0667
Epoch 9/10
cc: 0.1212 - val_loss: 0.2506 - val acc: 0.0667
Epoch 10/10
cc: 0.1515 - val loss: 0.2503 - val acc: 0.0667
Test set
Loss: 0.250
Accuracy: 0.067
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a

rray was expected. Please change the shape of y to (n samples,), for e xample using ravel(). y = column or 1d(y, warn=True)C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:469: FutureWarning: Default multi class will be changed to 'auto' in 0.22. Specify the multi class option to silence this warning. "this warning.", FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:469: FutureWarning: Default multi class will be changed to 'auto' in 0.22. Specify the multi class option to silence this warning. "this warning.", FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning)

Accuracy for the cluster: 2.000000%.

0.7521770682148041 Model: "sequential 5"

Layer (type)	Output Shape		Param #
embedding_5 (Embedding)	(None, 2000,	128)	1024000
spatial_dropout1d_3 (Spatial	(None, 2000,	128)	0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 63 samples, validate on 42 samples
Epoch 1/10
- acc: 0.0635 - val loss: 2.3870 - val acc: 0.1190
Epoch 2/10
- acc: 0.1429 - val loss: 2.3831 - val acc: 0.1190
Epoch 3/10
- acc: 0.0952 - val loss: 2.3800 - val acc: 0.2381
Epoch 4/10
63/63 [============== ] - 21s 336ms/step - loss: 2.3893
- acc: 0.1429 - val loss: 2.3764 - val acc: 0.2381
Epoch 5/10
- acc: 0.1270 - val loss: 2.3731 - val acc: 0.2381
Epoch 6/10
- acc: 0.1111 - val loss: 2.3700 - val acc: 0.2381
Epoch 7/10
- acc: 0.1746 - val loss: 2.3666 - val acc: 0.2381
Epoch 8/10
```

```
- acc: 0.1746 - val loss: 2.3634 - val acc: 0.2381
Epoch 9/10
- acc: 0.1429 - val loss: 2.3608 - val acc: 0.2381
Epoch 10/10
- acc: 0.1746 - val loss: 2.3578 - val acc: 0.2381
feauture engg data shape: (105, 11)
New Features
                  0
                          1
                                  2
                                          3
                                                  4
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
3
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
6
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
8
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
11
12
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
   0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
```

14	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
15	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
16	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
17	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
18	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
19	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
20	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
21	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
22	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
23	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
24	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
25	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
26	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
27	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
28	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
29	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
75	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
76	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
77	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336

78	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
79	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
80	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
81	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
82	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
83	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
84	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
85	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
86	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
87	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
88	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
89	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
90	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
91	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
92	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
93	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
94	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
95	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
96	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336

```
0.103975 0.094459
                       0.088708 0.092196 0.095157 0.0862
97
                                                            0.083336
    0.103975 0.094459
                       0.088708 0.092196 0.095157 0.0862
                                                            0.083336
98
    0.103975 0.094459
                       0.088708 0.092196 0.095157
                                                    0.0862
99
                                                            0.083336
    0.103975 0.094459
                       0.088708
                                 0.092196 0.095157
                                                    0.0862
                                                            0.083336
101 0.103975 0.094459
                       0.088708
                                0.092196 0.095157
                                                    0.0862
                                                            0.083336
                       0.088708 0.092196 0.095157 0.0862
102 0.103975 0.094459
                                                            0.083336
                       0.088708 0.092196 0.095157
                                                   0.0862
103 0.103975 0.094459
                                                            0.083336
104 0.103975 0.094459 0.088708 0.092196 0.095157 0.0862 0.083336
          7
                    8
                                       10
    0.086715
              0.085092
                        0.091684
                                 0.092477
    0.086715
             0.085092
                       0.091684
                                 0.092477
    0.086715
              0.085092
                       0.091684
                                 0.092477
    0.086715
              0.085092
                       0.091684
                                 0.092477
    0.086715
              0.085092
                       0.091684
                                 0.092477
    0.086715
              0.085092
                       0.091684
                                 0.092477
    0.086715
             0.085092
                       0.091684
                                 0.092477
    0.086715
             0.085092
                       0.091684
                                 0.092477
    0.086715
             0.085092
                       0.091684
                                 0.092477
    0.086715 0.085092 0.091684
                                 0.092477
9
    0.086715 0.085092
10
                       0.091684
                                 0.092477
    0.086715 0.085092 0.091684
11
                                 0.092477
    0.086715 0.085092
12
                       0.091684
                                 0.092477
13
    0.086715
             0.085092
                       0.091684
                                 0.092477
    0.086715 0.085092
                       0.091684
14
                                 0.092477
    0.086715
              0.085092
                                 0.092477
15
                       0.091684
    0.086715
             0.085092
16
                       0.091684
                                 0.092477
    0.086715
              0.085092
17
                       0.091684
                                 0.092477
    0.086715
              0.085092
                       0.091684
18
                                 0.092477
    0.086715
             0.085092
19
                       0.091684
                                 0.092477
    0.086715
             0.085092
20
                       0.091684
                                 0.092477
```

```
0.086715
               0.085092
                          0.091684
21
                                     0.092477
22
     0.086715
               0.085092
                          0.091684
                                     0.092477
23
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
24
                          0.091684
                                     0.092477
25
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
                          0.091684
26
               0.085092
                                     0.092477
     0.086715
27
               0.085092
                          0.091684
                                     0.092477
28
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
                                     0.092477
29
          . . .
                     . . .
75
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
76
                                     0.092477
77
               0.085092
     0.086715
                          0.091684
                                     0.092477
78
     0.086715
               0.085092
                          0.091684
                                    0.092477
79
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
                                     0.092477
80
     0.086715
               0.085092
81
                          0.091684
                                     0.092477
82
     0.086715
               0.085092
                          0.091684
                                     0.092477
83
     0.086715
               0.085092
                          0.091684
                                     0.092477
84
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
85
                          0.091684
                                     0.092477
     0.086715
                                     0.092477
86
               0.085092
                          0.091684
     0.086715
               0.085092
87
                          0.091684
                                     0.092477
     0.086715
               0.085092
88
                          0.091684
                                     0.092477
89
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
90
                                     0.092477
     0.086715
               0.085092
91
                          0.091684
                                     0.092477
92
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
93
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
                                     0.092477
94
     0.086715
               0.085092
95
                          0.091684
                                     0.092477
96
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
97
                          0.091684
                                     0.092477
     0.086715
               0.085092
98
                          0.091684
                                     0.092477
     0.086715
               0.085092
                          0.091684
99
                                     0.092477
     0.086715
100
               0.085092
                          0.091684
                                     0.092477
101
     0.086715
               0.085092
                          0.091684
                                     0.092477
     0.086715
               0.085092
102
                          0.091684
                                     0.092477
    0.086715
103
               0.085092
                          0.091684
                                     0.092477
```

104	0.086715	0.085092	0.091684	0.092477			
New	rows x 11 Features	columns]	0	1	2	3	4
5 0	6 0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
1	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
2	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
3	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
4	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
5	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
6	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
7	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
8	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
9	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
10	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
11	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
12	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
13	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
14	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
15	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
16	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336

17	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
18	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
19	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
20	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
21	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
22	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
23	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
24	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
25	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
26	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
27	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
28	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
29	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
75	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
76	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
77	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
78	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
79	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
80	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336

81	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
82	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
83	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
84	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
85	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
86	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
87	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
88	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
89	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
90	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
91	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
92	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
93	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
94	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
95	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
96	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
97	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
98	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336
99	0.103975	0.094459	0.088708	0.092196	0.095157	0.0862	0.083336

```
100 0.103975 0.094459
                        0.088708 0.092196 0.095157 0.0862
                                                              0.083336
101 0.103975 0.094459
                        0.088708
                                  0.092196 0.095157 0.0862
                                                              0.083336
102 0.103975 0.094459
                        0.088708
                                  0.092196 0.095157
                                                      0.0862
                                                               0.083336
    0.103975 0.094459
                        0.088708
                                  0.092196 0.095157
                                                      0.0862
                                                              0.083336
103
    0.103975 0.094459
                        0.088708 0.092196 0.095157
                                                      0.0862
                                                              0.083336
           7
                     8
                                        10
                              9
              0.085092
                        0.091684
    0.086715
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
             0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                         0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                         0.091684
                                  0.092477
    0.086715
9
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
10
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
11
                                  0.092477
    0.086715
              0.085092
12
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
13
                                  0.092477
    0.086715
              0.085092
14
                        0.091684
                                  0.092477
15
    0.086715 0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
16
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
17
    0.086715
              0.085092
18
                        0.091684
                                  0.092477
19
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
20
                                  0.092477
    0.086715
              0.085092
21
                         0.091684
                                   0.092477
    0.086715
22
              0.085092
                        0.091684
                                  0.092477
23
    0.086715
              0.085092
                        0.091684
                                  0.092477
    0.086715
              0.085092
                        0.091684
                                  0.092477
24
    0.086715
              0.085092
25
                         0.091684
                                  0.092477
    0.086715
              0.085092
26
                         0.091684
                                  0.092477
```

```
0.086715
               0.085092
27
                          0.091684
                                    0.092477
28
     0.086715
               0.085092
                          0.091684
                                    0.092477
29
     0.086715
               0.085092
                          0.091684
                                    0.092477
75
     0.086715
               0.085092
                          0.091684
                                    0.092477
     0.086715
76
               0.085092
                          0.091684
                                    0.092477
     0.086715
               0.085092
                         0.091684
                                    0.092477
77
     0.086715
               0.085092
78
                          0.091684
                                    0.092477
     0.086715
               0.085092
79
                          0.091684
                                    0.092477
80
     0.086715
               0.085092
                         0.091684
                                    0.092477
81
               0.085092
     0.086715
                          0.091684
                                    0.092477
82
     0.086715
               0.085092
                         0.091684
                                    0.092477
83
     0.086715
               0.085092
                          0.091684
                                    0.092477
84
     0.086715
               0.085092
                          0.091684
                                    0.092477
85
     0.086715
               0.085092
                          0.091684
                                    0.092477
     0.086715
               0.085092
                          0.091684
                                    0.092477
86
     0.086715
               0.085092
                          0.091684
87
                                    0.092477
88
     0.086715
               0.085092
                          0.091684
                                    0.092477
89
     0.086715
               0.085092
                          0.091684
                                    0.092477
90
     0.086715
               0.085092
                          0.091684
                                    0.092477
     0.086715
               0.085092
                          0.091684
91
                                    0.092477
     0.086715
               0.085092
                                    0.092477
92
                          0.091684
93
     0.086715
               0.085092
                          0.091684
                                    0.092477
     0.086715
               0.085092
                          0.091684
94
                                    0.092477
95
     0.086715
               0.085092
                          0.091684
                                    0.092477
     0.086715
               0.085092
                         0.091684
96
                                    0.092477
     0.086715
               0.085092
97
                          0.091684
                                    0.092477
98
     0.086715
               0.085092
                         0.091684
                                    0.092477
     0.086715
               0.085092
99
                          0.091684
                                    0.092477
    0.086715
               0.085092
                         0.091684
                                    0.092477
100
    0.086715
               0.085092
101
                          0.091684
                                    0.092477
102
    0.086715
               0.085092
                          0.091684
                                    0.092477
    0.086715
               0.085092
                         0.091684
103
                                    0.092477
    0.086715
               0.085092
104
                          0.091684
                                    0.092477
[105 rows x 11 columns]
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow

core\python\framework\indexed slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. Train on 73 samples, validate on 32 samples Epoch 1/10 acc: 0.0685 - val loss: 0.2513 - val acc: 0.0000e+00 Epoch 2/10 cc: 0.0411 - val loss: 0.2508 - val acc: 0.0000e+00 Epoch 3/10 cc: 0.0274 - val loss: 0.2504 - val acc: 0.0000e+00 Epoch 4/10 cc: 0.0137 - val loss: 0.2499 - val acc: 0.0000e+00 Epoch 5/10 cc: 0.0411 - val loss: 0.2495 - val acc: 0.0000e+00 Epoch 6/10 cc: 0.0137 - val loss: 0.2490 - val acc: 0.0000e+00 Epoch 7/10 cc: 0.0548 - val loss: 0.2486 - val acc: 0.0000e+00 Epoch 8/10 cc: 0.0274 - val loss: 0.2481 - val acc: 0.0000e+00 Epoch 9/10 cc: 0.0411 - val loss: 0.2477 - val acc: 0.0000e+00 Epoch 10/10 cc: 0.0548 - val loss: 0.2472 - val acc: 0.0000e+00 Test set Loss: 0.247 Accuracy: 0.000

Accuracy: 0:000

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
 FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 3.000000%.

Layer (type)	Output	Shape	Param #
embedding_7 (Embedding)	(None,	2000, 128)	1024000
spatial_dropout1d_4 (Spatial	(None,	2000, 128)	0
lstm_7 (LSTM)	(None,	64)	49408
feature_dense (Dense)	(None,	13)	845

Total params: 1,074,253 Trainable params: 1,074,253 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 18 samples, validate on 13 samples
Epoch 1/10
acc: 0.0000e+00 - val loss: 2.5605 - val acc: 0.3077
Epoch 2/10
acc: 0.0000e+00 - val loss: 2.5608 - val acc: 0.3077
Epoch 3/10
acc: 0.2222 - val loss: 2.5601 - val acc: 0.3077
Epoch 4/10
acc: 0.0000e+00 - val loss: 2.5610 - val acc: 0.0000e+00
Epoch 5/10
acc: 0.1111 - val loss: 2.5626 - val acc: 0.0000e+00
Epoch 6/10
acc: 0.1667 - val loss: 2.5633 - val acc: 0.0000e+00
feauture engg data shape: (31, 13)
New Features
                         2
                                3
                                      4
                                            5
     6 \
  0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
  0.081132 \quad 0.07765 \quad 0.07435 \quad 0.074306 \quad 0.07475 \quad 0.075221 \quad 0.079338
  0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
```

3	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
4	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
5	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
6	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
7	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
8	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
9	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
10	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
11	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
12	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
13	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
14	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
15	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
16	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
17	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
18	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
19	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
20	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
21	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338

```
22 0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                                 0.075221 0.079338
24 0.081132 0.07765 0.07435
                               0.074306 0.07475
                                                 0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                                 0.075221 0.079338
26 0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
27 0.081132 0.07765 0.07435 0.074306 0.07475
                                                 0.075221 0.079338
   0.081132 \quad 0.07765 \quad 0.07435 \quad 0.074306 \quad 0.07475 \quad 0.075221 \quad 0.079338
   0.081132 \quad 0.07765 \quad 0.07435 \quad 0.074306 \quad 0.07475 \quad 0.075221 \quad 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
                                       10
                                                11
                                                        12
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215
                                0.078146
                                           0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215
                                          0.07538
                                0.078146
                                                   0.07902
                                          0.07538
    0.077158 0.076336 0.077215
                                0.078146
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                           0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215
                                0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
11
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
                                                   0.07902
12
                                          0.07538 0.07902
   0.077158 0.076336 0.077215 0.078146
   0.077158 0.076336 0.077215
                                0.078146
                                           0.07538
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146
                                          0.07538
15
                                                   0.07902
                                          0.07538
   0.077158 0.076336 0.077215 0.078146
16
                                                   0.07902
   0.077158 0.076336 0.077215
                                0.078146
                                          0.07538
17
                                                   0.07902
   0.077158 0.076336 0.077215 0.078146 0.07538 0.07902
```

```
0.077158 0.076336 0.077215 0.078146
                                        0.07538
                                                0.07902
   0.077158 0.076336 0.077215 0.078146
                                        0.07538 0.07902
                                        0.07538 0.07902
21 0.077158 0.076336 0.077215 0.078146
22 0.077158 0.076336 0.077215 0.078146
                                        0.07538
                                                0.07902
   0.077158 0.076336 0.077215 0.078146
                                        0.07538
                                                0.07902
24 0.077158 0.076336 0.077215 0.078146
                                        0.07538
                                                0.07902
                                        0.07538 0.07902
   0.077158 0.076336 0.077215 0.078146
26 0.077158 0.076336 0.077215 0.078146
                                        0.07538 0.07902
27 0.077158 0.076336 0.077215 0.078146
                                        0.07538
                                                0.07902
28 0.077158 0.076336 0.077215 0.078146
                                        0.07538 0.07902
29 0.077158 0.076336 0.077215 0.078146
                                        0.07538 0.07902
30 0.077158 0.076336 0.077215 0.078146
                                        0.07538 0.07902
New Features
                     0
                             1
                                               3
                                                       4
        6 \
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132  0.07765  0.07435  0.074306  0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132  0.07765  0.07435  0.074306  0.07475
                                               0.075221 0.079338
11 0.081132 0.07765 0.07435 0.074306 0.07475
                                               0.075221 0.079338
   0.081132 0.07765 0.07435 0.074306 0.07475 0.075221 0.079338
```

13	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
14	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
15	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
16	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
17	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
18	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
19	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
20	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
21	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
22	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
23	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
24	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
25	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
26	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
27	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
28	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
29	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
30	0.081132	0.07765	0.07435	0.074306	0.07475	0.075221	0.079338
	7	8	9	1	0 1	.1 12	

```
0.077158
             0.076336 0.077215 0.078146
                                           0.07538
                                                    0.07902
                                           0.07538
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                                    0.07902
                                           0.07538
                       0.077215
    0.077158
             0.076336
                                 0.078146
                                                    0.07902
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
                                 0.078146
                                           0.07538
    0.077158
             0.076336
                       0.077215
                                                    0.07902
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
                                 0.078146
   0.077158
             0.076336
                       0.077215
                                           0.07538
                                                    0.07902
7
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
             0.076336 0.077215
                                 0.078146
                                           0.07538
    0.077158
                                                    0.07902
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
             0.076336 0.077215
                                 0.078146
                                           0.07538
10
   0.077158
                                                    0.07902
             0.076336
                       0.077215
                                 0.078146
11
   0.077158
                                           0.07538
                                                    0.07902
             0.076336 0.077215
                                 0.078146
                                           0.07538
12 0.077158
                                                    0.07902
             0.076336 0.077215
                                0.078146
                                           0.07538
13
   0.077158
                                                    0.07902
                                           0.07538
             0.076336 0.077215
                                 0.078146
14
   0.077158
                                                    0.07902
15
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
16
                                                    0.07902
                                           0.07538
17
   0.077158
             0.076336 0.077215
                                 0.078146
                                                    0.07902
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                           0.07538
18
                                                    0.07902
                                           0.07538
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                                    0.07902
19
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
20
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
21
                                                    0.07902
                                           0.07538
22
   0.077158
             0.076336 0.077215
                                 0.078146
                                                    0.07902
23
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
   0.077158
             0.076336
                       0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
25
                                                    0.07902
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
26
                                                    0.07902
27
   0.077158
             0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
28 0.077158 0.076336 0.077215
                                 0.078146
                                           0.07538
                                                    0.07902
   0.077158 0.076336 0.077215
                                           0.07538
                                 0.078146
                                                    0.07902
30 0.077158 0.076336 0.077215 0.078146
                                           0.07538
                                                   0.07902
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 21 samples, validate on 10 samples
Epoch 1/10
acc: 0.0476 - val loss: 0.2507 - val acc: 0.2000
Epoch 2/10
cc: 0.0952 - val loss: 0.2506 - val acc: 0.2000
Epoch 3/10
cc: 0.1429 - val loss: 0.2504 - val acc: 0.2000
Epoch 4/10
cc: 0.1429 - val loss: 0.2503 - val acc: 0.2000
Epoch 5/10
cc: 0.1429 - val loss: 0.2501 - val acc: 0.2000
Epoch 6/10
cc: 0.0952 - val loss: 0.2500 - val acc: 0.2000
Epoch 7/10
cc: 0.0476 - val loss: 0.2499 - val acc: 0.2000
Epoch 8/10
cc: 0.0476 - val loss: 0.2497 - val acc: 0.2000
Epoch 9/10
cc: 0.0952 - val loss: 0.2496 - val acc: 0.2000
Epoch 10/10
cc: 0.0476 - val loss: 0.2494 - val acc: 0.2000
Test set
Loss: 0.249
Accuracy: 0.200
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'

in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 4.000000%.

0.4107142857142857 Model: "sequential_9"

Layer (type)	Output	Shape	Param #
embedding_9 (Embedding)	(None,	2000, 128)	1024000
spatial_dropout1d_5 (Spatial	(None,	2000, 128)	0
lstm_9 (LSTM)	(None,	64)	49408
feature_dense (Dense)	(None,	13)	845
Total names 1 074 252			

Total params: 1,074,253

Irainable params: 1,0/4,253 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 33 samples, validate on 23 samples
Epoch 1/10
acc: 0.0909 - val loss: 2.5653 - val acc: 0.0870
Epoch 2/10
33/33 [============= ] - 5s 157ms/step - loss: 2.5922 -
acc: 0.0000e+00 - val loss: 2.5651 - val acc: 0.0870
Epoch 3/10
33/33 [============= ] - 5s 151ms/step - loss: 2.5609 -
acc: 0.0909 - val loss: 2.5642 - val acc: 0.0870
Epoch 4/10
acc: 0.1818 - val loss: 2.5638 - val acc: 0.0870
Epoch 5/10
acc: 0.1212 - val loss: 2.5629 - val acc: 0.0870
Epoch 6/10
33/33 [============ ] - 5s 152ms/step - loss: 2.5324 -
acc: 0.1212 - val loss: 2.5620 - val acc: 0.0870
Epoch 7/10
acc: 0.0909 - val loss: 2.5615 - val acc: 0.0000e+00
Epoch 8/10
acc: 0.0909 - val loss: 2.5607 - val acc: 0.0000e+00
Epoch 9/10
acc: 0.2424 - val loss: 2.5609 - val acc: 0.0000e+00
Fnoch 10/10
```

acc: 0.0000e+00 - val loss: 2.5603 - val acc: 0.0000e+00 feauture engg data shape: (56, 13) New Features 1 2 3 4 6 $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.0766130.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ $0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613$ 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 11 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 12 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 13 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 14 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 15 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613 16 0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613

17	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
18	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
19	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
20	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
21	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
22	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
23	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
24	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
25	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
26	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
27	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
28	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
29	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
30	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
31	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
32	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
33	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
34	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
35	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
36	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613

37	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
38	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
39	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
40	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
41	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
42	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
43	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
44	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
45	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
46	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
47	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
48	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
49	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
50	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
51	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
52	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
53	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
54	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
55	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613

	7	8	9	10	11	12
0	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
1	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
2	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
3	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
4	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
5	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
6	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
7	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
8	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
9	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
10	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
11	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
12	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
13	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
14	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
15	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
16	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
17	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
18	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
19	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
20	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
21	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
22	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
23	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
24	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
25	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
26	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
27	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
28	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
29	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
30	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
31	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
32	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
33	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
34	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
35	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115
36	0.075664	0.078086	0.072491	0.08222	0.077028	0.079115

```
0.075664
             0.078086 0.072491
                                0.08222
                                         0.077028
                                                   0.079115
   0.075664
             0.078086
                      0.072491
                                0.08222
                                         0.077028
                                                   0.079115
   0.075664
                                0.08222
             0.078086
                      0.072491
                                         0.077028
                                                  0.079115
   0.075664
             0.078086
                      0.072491
                                0.08222
                                         0.077028
40
                                                   0.079115
   0.075664
             0.078086
                      0.072491
                                0.08222
                                         0.077028
                                                   0.079115
                                0.08222
   0.075664
             0.078086
                      0.072491
                                         0.077028
                                                   0.079115
   0.075664
             0.078086
                      0.072491
                                0.08222 0.077028
                                                   0.079115
                      0.072491
                                0.08222
   0.075664
             0.078086
                                         0.077028
                                                   0.079115
   0.075664
             0.078086 0.072491
                                0.08222 0.077028
                                                   0.079115
             0.078086 0.072491
                                0.08222 0.077028
   0.075664
                                                   0.079115
46
             0.078086 0.072491
                                0.08222 0.077028
47
   0.075664
                                                   0.079115
   0.075664 0.078086 0.072491
                                0.08222 0.077028
                                                  0.079115
             0.078086 0.072491
                                0.08222 0.077028
   0.075664
                                                   0.079115
             0.078086 0.072491
                                0.08222 0.077028
   0.075664
                                                   0.079115
  0.075664
             0.078086 0.072491
                                0.08222 0.077028
51
                                                   0.079115
   0.075664
             0.078086 0.072491
                                0.08222
                                         0.077028
                                                   0.079115
   0.075664 0.078086 0.072491
                                0.08222
                                        0.077028
                                                  0.079115
            0.078086 0.072491
                                0.08222
   0.075664
                                         0.077028
                                                   0.079115
             0.078086 0.072491 0.08222 0.077028
   0.075664
                                                  0.079115
New Features
                      0
                              1
                                        2
                                                 3
                                                           4
5
         6
   0.075227 0.07785
                     0.078088 0.07483 0.080502 0.072284 0.076613
   0.075227
             0.07785
                     0.078088
                               0.07483 0.080502 0.072284 0.076613
   0.075227
             0.07785
                      0.078088
                               0.07483
                                        0.080502 0.072284 0.076613
   0.075227
             0.07785
                     0.078088
                               0.07483 0.080502 0.072284 0.076613
   0.075227
             0.07785
                      0.078088
                               0.07483
                                        0.080502
                                                  0.072284
                                                           0.076613
   0.075227
             0.07785
                     0.078088
                               0.07483 0.080502 0.072284
                                                           0.076613
   0.075227
             0.07785
                     0.078088
                                        0.080502
                                                  0.072284
                               0.07483
                                                           0.076613
   0.075227
             0.07785
                     0.078088
                               0.07483
                                        0.080502
                                                  0.072284
                                                           0.076613
   0.075227 0.07785 0.078088
                               0.07483 0.080502 0.072284 0.076613
```

9	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
10	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
11	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
12	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
13	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
14	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
15	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
16	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
17	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
18	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
19	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
20	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
21	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
22	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
23	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
24	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
25	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
26	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
27	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
28	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613

29	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
30	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
31	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
32	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
33	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
34	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
35	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
36	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
37	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
38	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
39	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
40	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
41	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
42	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
43	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
44	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
45	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
46	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613
47	0.075227	0.07785	0.078088	0.07483	0.080502	0.072284	0.076613

```
0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613
   0.075227 \quad 0.07785 \quad 0.078088 \quad 0.07483 \quad 0.080502 \quad 0.072284 \quad 0.076613
   0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613
51 0.075227
             0.07785
                      0.078088
                                0.07483 0.080502 0.072284 0.076613
52 0.075227 0.07785
                      0.078088
                                0.07483 0.080502 0.072284
                                                             0.076613
   0.075227 0.07785
                      0.078088
                                0.07483 0.080502 0.072284 0.076613
   0.075227 0.07785 0.078088
                                0.07483 0.080502 0.072284 0.076613
   0.075227 0.07785 0.078088 0.07483 0.080502 0.072284 0.076613
                    8
                                      10
                                                 11
                                                           12
    0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
                                                     0.079115
    0.075664
             0.078086
                       0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
             0.078086
                       0.072491
                                 0.08222
    0.075664
                                          0.077028
                                                    0.079115
                                 0.08222
    0.075664
             0.078086 0.072491
                                          0.077028
                                                    0.079115
    0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
    0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
             0.078086 0.072491
                                 0.08222
                                          0.077028
    0.075664
                                                    0.079115
             0.078086 0.072491
                                 0.08222
    0.075664
                                          0.077028
                                                    0.079115
    0.075664
             0.078086 0.072491
                                 0.08222 0.077028
                                                    0.079115
    0.075664
             0.078086 0.072491
                                 0.08222 0.077028
                                                    0.079115
   0.075664
             0.078086 0.072491
                                 0.08222 0.077028
                                                    0.079115
10
             0.078086 0.072491
                                 0.08222 0.077028
11
    0.075664
                                                    0.079115
             0.078086 0.072491
                                 0.08222
    0.075664
                                          0.077028
                                                    0.079115
             0.078086 0.072491
                                 0.08222
    0.075664
                                          0.077028
                                                    0.079115
14
   0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
   0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
15
                                                    0.079115
   0.075664 0.078086 0.072491
                                 0.08222
                                          0.077028
16
                                                    0.079115
    0.075664
             0.078086 0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
                                 0.08222
             0.078086 0.072491
    0.075664
                                          0.077028
                                                    0.079115
    0.075664
             0.078086
                       0.072491
                                 0.08222
                                          0.077028
                                                    0.079115
   0.075664 0.078086 0.072491
                                 0.08222 0.077028
                                                    0.079115
```

```
0.075664
                        0.072491
                                  0.08222
21
              0.078086
                                            0.077028
                                                      0.079115
22
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
    0.075664
23
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
                                                      0.079115
24
25
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
                                                      0.079115
                                  0.08222
26
    0.075664
              0.078086
                        0.072491
                                            0.077028
                                                      0.079115
27
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
              0.078086
                        0.072491
                                   0.08222
28
    0.075664
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
29
                                                      0.079115
                        0.072491
                                  0.08222
    0.075664
              0.078086
                                            0.077028
                                                      0.079115
30
                                  0.08222
31
    0.075664
              0.078086
                        0.072491
                                            0.077028
                                                      0.079115
32
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
              0.078086
                        0.072491
                                  0.08222
33
    0.075664
                                            0.077028
                                                      0.079115
              0.078086
                        0.072491
                                  0.08222
34
    0.075664
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
35
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
                                                      0.079115
37
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
38
                                                      0.079115
    0.075664
                                  0.08222
                                            0.077028
              0.078086
                        0.072491
                                                      0.079115
39
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
40
    0.075664
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
41
                                                      0.079115
                        0.072491
42
    0.075664
              0.078086
                                   0.08222
                                            0.077028
                                                      0.079115
                                   0.08222
43
    0.075664
              0.078086
                        0.072491
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
44
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
45
                                                      0.079115
              0.078086
                        0.072491
                                   0.08222
                                            0.077028
46
    0.075664
                                                      0.079115
                        0.072491
                                  0.08222
47
    0.075664
              0.078086
                                            0.077028
                                                      0.079115
48
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
                                  0.08222
    0.075664
              0.078086
                        0.072491
                                            0.077028
49
                                                      0.079115
              0.078086
                        0.072491
                                  0.08222
50
    0.075664
                                            0.077028
                                                      0.079115
              0.078086
                        0.072491
                                   0.08222
    0.075664
                                            0.077028
                                                      0.079115
51
52
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
                        0.072491
                                  0.08222
53
    0.075664
              0.078086
                                            0.077028
                                                      0.079115
    0.075664
              0.078086
                        0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
55 0.075664
              0.078086 0.072491
                                  0.08222
                                            0.077028
                                                      0.079115
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow core\python\framework\indexed slices.py:424: UserWarning: Converting s

e a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape." Train on 39 samples, validate on 17 samples Epoch 1/10 acc: 0.0769 - val loss: 0.2487 - val acc: 0.0000e+00 Epoch 2/10 cc: 0.0256 - val loss: 0.2485 - val acc: 0.0000e+00 Epoch 3/10 cc: 0.0769 - val loss: 0.2482 - val acc: 0.0000e+00 Epoch 4/10 acc: 0.0513 - val loss: 0.2480 - val acc: 0.0000e+00 Epoch 5/10 cc: 0.0256 - val loss: 0.2477 - val acc: 0.0000e+00 Epoch 6/10 cc: 0.0256 - val loss: 0.2475 - val acc: 0.0000e+00 Epoch 7/10 cc: 0.0769 - val loss: 0.2472 - val acc: 0.0000e+00 Epoch 8/10 39/39 [============] - 0s 12ms/step - loss: 0.2465 acc: 0.0769 - val loss: 0.2470 - val acc: 0.0000e+00 Epoch 9/10 cc: 0.0000e+00 - val loss: 0.2467 - val acc: 0.0000e+00 Epoch 10/10 acc: 0.0513 - val_loss: 0.2465 - val acc: 0.0000e+00 17/17 [========] - Os 2ms/step Test set Loss: 0.246 Accuracy: 0.000

parse IndexedSlices to a dense Tensor of unknown shape. This may consum


```
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n samples, ), for e
xample using ravel().
 y = column or 1d(y, warn=True)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfqs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
Accuracy for the cluster: 5.000000%.
0.72727272727273
Model: "sequential 11"
```

Output Shape

Param #

Layer (type)

```
embedding 11 (Embedding)
                     (None, 2000, 128)
                                        1024000
spatial dropout1d 6 (Spatial (None, 2000, 128)
                                        0
lstm 11 (LSTM)
                     (None, 64)
                                        49408
feature dense (Dense)
                     (None, 6)
                                        390
Total params: 1,073,798
Trainable params: 1,073,798
Non-trainable params: 0
None
C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
core\python\framework\indexed slices.py:424: UserWarning: Converting s
parse IndexedSlices to a dense Tensor of unknown shape. This may consum
e a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape.
Train on 13 samples, validate on 9 samples
Epoch 1/10
cc: 0.0769 - val loss: 1.7614 - val acc: 0.6667
Epoch 2/10
- acc: 0.2308 - val loss: 1.7515 - val acc: 0.6667
Epoch 3/10
- acc: 0.1538 - val loss: 1.7430 - val acc: 0.6667
Epoch 4/10
- acc: 0.0769 - val loss: 1.7348 - val acc: 0.6667
Epoch 5/10
acc: 0.3077 - val loss: 1.7256 - val acc: 0.6667
```

val lacci 1 7150 val acci 0 6667

Epoch 6/10

2661 0 0760

```
acc: v.v/o9 - Val loss: 1./159 - Val acc: v.ooo/
Epoch 7/10
acc: 0.3846 - val loss: 1.7078 - val acc: 0.6667
Epoch 8/10
acc: 0.4615 - val loss: 1.6999 - val acc: 0.6667
Epoch 9/10
acc: 0.3846 - val loss: 1.6906 - val acc: 0.6667
Epoch 10/10
acc: 0.5385 - val loss: 1.6812 - val acc: 0.6667
feauture engg data shape: (22, 6)
New Features
                           1
                                   2
                                           3
                                                   4
  5
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
7
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
10 0.200715 0.161119 0.165218 0.157915 0.157654 0.157379
11 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
12 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
13 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
14 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
15 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
16 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
17 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
18 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
19 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
20 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
21 0.200715 0.161119 0.165218 0.157915
                                   0.157654 0.157379
                                   2
New Features
                   0
                           1
                                           3
                                                   4
```

```
0.200715  0.161119  0.165218  0.157915  0.157654  0.157379
   0.200715 0.161119 0.165218 0.157915
                                         0.157654 0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                         0.157654
                                                  0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                         0.157654
3
                                                  0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                        0.157654 0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                         0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                         0.157654 0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                        0.157654
                                                  0.157379
   0.200715 0.161119 0.165218
                               0.157915
                                         0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                         0.157654 0.157379
   0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
11 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
12 0.200715 0.161119 0.165218 0.157915
                                         0.157654 0.157379
13 0.200715 0.161119 0.165218
                               0.157915
                                         0.157654 0.157379
14 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
15 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
16 0.200715 0.161119 0.165218
                               0.157915
                                        0.157654 0.157379
17 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
  0.200715 0.161119 0.165218
                              0.157915
                                        0.157654 0.157379
19 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
20 0.200715 0.161119 0.165218 0.157915
                                        0.157654 0.157379
21 0.200715 0.161119 0.165218 0.157915 0.157654 0.157379
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
cc: 0.2000 - val loss: 0.2484 - val acc: 0.0000e+00
Epoch 4/10
cc: 0.0000e+00 - val loss: 0.2482 - val acc: 0.0000e+00
Epoch 5/10
cc: 0.4000 - val loss: 0.2479 - val acc: 0.0000e+00
Epoch 6/10
cc: 0.2000 - val loss: 0.2477 - val acc: 0.0000e+00
Epoch 7/10
cc: 0.2000 - val loss: 0.2474 - val acc: 0.0000e+00
Epoch 8/10
cc: 0.2667 - val loss: 0.2472 - val acc: 0.0000e+00
Epoch 9/10
cc: 0.2667 - val loss: 0.2469 - val acc: 0.0000e+00
Epoch 10/10
cc: 0.3333 - val loss: 0.2467 - val acc: 0.0000e+00
7/7 [=======] - 0s 2ms/step
Test set
Loss: 0.247
 Accuracy: 0.000
       Training and validation accuracy
0.40
                   Training acc
                   Validation acc
0.35
0.30
                    •
0.25
0.20
0.15
0.10
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label. py:235: DataConversionWarning: A column-vector y was passed when a 1d a rray was expected. Please change the shape of y to (n_samples,), for e xample using ravel().

y = column or 1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e

xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 6.000000%.

0.8

Model: "sequential_13"

Layer (type)	Output Shape	Param #
embedding_13 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_7 (Spatial	(None, 2000, 128)	0
lstm_13 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 3)	195 =======

Total params: 1,073,603 Trainable params: 1,073,603 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

Train on 6 samples, validate on 4 samples Epoch 1/10 c: 0.3333 - val loss: 1.0904 - val acc: 1.0000 Epoch 2/10 0.0000e+00 - val loss: 1.0717 - val acc: 1.0000 Epoch 3/10 0.5000 - val loss: 1.0583 - val acc: 1.0000 Epoch 4/10 6/6 [================] - 8s ls/step - loss: 1.1226 - acc: 0.5000 - val loss: 1.0440 - val acc: 1.0000 Epoch 5/10 6/6 [==============] - 8s 1s/step - loss: 1.0187 - acc: 0.5000 - val loss: 1.0250 - val acc: 1.0000 Epoch 6/10 c: 0.6667 - val loss: 1.0079 - val acc: 1.0000 Epoch 7/10 0.6667 - val loss: 0.9977 - val acc: 1.0000 Epoch 8/10 6/6 [========] - 10s 2s/step - loss: 1.1968 - ac c: 0.0000e+00 - val loss: 0.9894 - val_acc: 1.0000 Epoch 9/10 0.6667 - val loss: 0.9763 - val acc: 1.0000 Epoch 10/10 0.3333 - val loss: 0.9792 - val acc: 1.0000 feauture engg data shape: (10, 3) 2 New Features 0 0 0.31197 0.375613 0.312417 1 0.31197 0.375613 0.312417 2 0.31197 0.375613 0.312417 3 0.31197 0.375613 0.312417

```
4 0.31197 0.375613 0.312417
5 0.31197 0.375613 0.312417
6 0.31197 0.375613 0.312417
7 0.31197 0.375613 0.312417
8 0.31197 0.375613 0.312417
9 0.31197 0.375613 0.312417
New Features
                                 2
0 0.31197 0.375613 0.312417
1 0.31197 0.375613 0.312417
2 0.31197 0.375613 0.312417
3 0.31197 0.375613 0.312417
4 0.31197 0.375613 0.312417
5 0.31197 0.375613 0.312417
6 0.31197 0.375613 0.312417
7 0.31197 0.375613 0.312417
8 0.31197 0.375613 0.312417
9 0.31197 0.375613 0.312417
C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
core\python\framework\indexed slices.py:424: UserWarning: Converting s
parse IndexedSlices to a dense Tensor of unknown shape. This may consum
e a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape.
Train on 7 samples, validate on 3 samples
Epoch 1/10
cc: 0.0000e+00 - val loss: 0.2511 - val acc: 0.3333
Epoch 2/10
7/7 [========== ] - 0s 10ms/step - loss: 0.2556 - ac
c: 0.0000e+00 - val loss: 0.2511 - val acc: 0.3333
Epoch 3/10
c: 0.0000e+00 - val loss: 0.2510 - val acc: 0.3333
Epoch 4/10
7/7 [=========== ] - 0s 10ms/step - loss: 0.2541 - ac
c: 0.0000e+00 - val loss: 0.2510 - val acc: 0.3333
Epoch 5/10
```

```
c: 0.2857 - val loss: 0.2509 - val acc: 0.3333
Epoch 6/10
7/7 [========== ] - 0s 9ms/step - loss: 0.2528 - ac
c: 0.1429 - val loss: 0.2508 - val acc: 0.3333
Epoch 7/10
c: 0.2857 - val loss: 0.2508 - val acc: 0.3333
Epoch 8/10
c: 0.0000e+00 - val loss: 0.2507 - val acc: 0.3333
Epoch 9/10
7/7 [========== ] - 0s 8ms/step - loss: 0.2505 - ac
c: 0.4286 - val loss: 0.2507 - val acc: 0.3333
Epoch 10/10
7/7 [=========] - Os 10ms/step - loss: 0.2499 - ac
c: 0.5714 - val loss: 0.2506 - val_acc: 0.3333
3/3 [======= ] - Os 1ms/step
Test set
 Loss: 0.251
 Accuracy: 0.333
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_ld(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e

xplicitly to 'auto' or 'scale' to avoid this warning.
 "avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfqs' in

0.22. Specify a solver to silence this warning. FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning." FutureWarning)

Accuracy for the cluster: 7.000000%.

0.6153846153846154 Model: "sequential 15"

Layer (type)	Output Shape	Param #
embedding_15 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_8 (Spatial	(None, 2000, 128)	0
lstm_15 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 11)	715

Total params: 1,074,123 Trainable params: 1,074,123 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow

parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. Train on 31 samples, validate on 21 samples Epoch 1/10 - acc: 0.0645 - val loss: 2.4001 - val acc: 0.0000e+00 Epoch 2/10 - acc: 0.0323 - val loss: 2.3860 - val acc: 0.0000e+00 Epoch 3/10 - acc: 0.1613 - val loss: 2.3684 - val acc: 0.0000e+00 Epoch 4/10 - acc: 0.2581 - val loss: 2.3528 - val acc: 0.0000e+00 Epoch 5/10 - acc: 0.0968 - val loss: 2.3412 - val acc: 0.7619 Epoch 6/10 - acc: 0.0968 - val loss: 2.3264 - val acc: 0.7619 Epoch 7/10 - acc: 0.1290 - val loss: 2.3139 - val acc: 0.7619 Epoch 8/10 - acc: 0.1935 - val loss: 2.3023 - val acc: 0.7619 Epoch 9/10 - acc: 0.2903 - val loss: 2.2895 - val acc: 0.7619 Epoch 10/10 - acc: 0.1613 - val loss: 2.2766 - val acc: 0.7619 feauture engg data shape: (52, 11) New Features 2 4 1 5 6 \

core\python\framework\indexed slices.py:424: UserWarning: Converting s

0	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
1	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
2	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
3	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
4	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
5	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
6	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
7	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
8	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
9	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
10	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
11	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
12	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
13	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
14	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
15	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
16	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
17	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
18	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
19	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568

20	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
21	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
22	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
23	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
24	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
25	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
26	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
27	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
28	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
29	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
30	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
31	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
32	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
33	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
34	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
35	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
36	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
37	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
38	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568

```
0.088988 0.08461 0.088539 0.085823 0.093244 0.085679 0.098568
0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                       0.098568
         0.08461 0.088539 0.085823 0.093244 0.085679
0.088988
                                                       0.098568
                           0.085823 0.093244 0.085679
0.088988
         0.08461 0.088539
                                                       0.098568
         0.08461 0.088539
                           0.085823
0.088988
                                    0.093244 0.085679
                                                       0.098568
         0.08461 0.088539
0.088988
                           0.085823 0.093244 0.085679
                                                       0.098568
0.088988 0.08461 0.088539
                           0.085823 0.093244 0.085679
                                                       0.098568
0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                       0.098568
0.088988 0.08461 0.088539
                           0.085823 0.093244 0.085679
                                                       0.098568
         0.08461 0.088539
                           0.085823 0.093244 0.085679
0.088988
                                                       0.098568
0.088988 0.08461 0.088539
                           0.085823 0.093244 0.085679
                                                       0.098568
0.088988 0.08461 0.088539
                           0.085823 0.093244 0.085679
                                                       0.098568
0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                       0.098568
               8
                                  10
0.108288
         0.090753 0.088866
                            0.086642
0.108288
         0.090753
                  0.088866
                            0.086642
0.108288 0.090753 0.088866
                            0.086642
0.108288
         0.090753
                  0.088866
                            0.086642
0.108288 0.090753 0.088866
                            0.086642
0.108288 0.090753 0.088866
                            0.086642
         0.090753 0.088866
0.108288
                            0.086642
0.108288
         0.090753 0.088866
                            0.086642
0.108288
         0.090753 0.088866
                            0.086642
0.108288
                            0.086642
         0.090753
                   0.088866
0.108288 0.090753 0.088866 0.086642
```

```
0.088866
11
    0.108288
              0.090753
                                   0.086642
12
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
15
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
16
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
17
    0.108288
              0.090753
                         0.088866
18
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
19
    0.108288
              0.090753
                         0.088866
                                   0.086642
20
21
    0.108288
              0.090753
                         0.088866
                                   0.086642
                         0.088866
    0.108288
              0.090753
22
                                   0.086642
    0.108288
              0.090753
23
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
24
    0.108288
              0.090753
                         0.088866
25
                                   0.086642
    0.108288
              0.090753
                         0.088866
26
                                   0.086642
                         0.088866
    0.108288
              0.090753
27
                                   0.086642
    0.108288
28
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
29
    0.108288
              0.090753
                         0.088866
30
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
31
32
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
33
    0.108288
              0.090753
                         0.088866
                                   0.086642
34
    0.108288
              0.090753
                         0.088866
                                   0.086642
35
    0.108288
              0.090753
                         0.088866
36
                                   0.086642
    0.108288
              0.090753
                         0.088866
37
                                   0.086642
    0.108288
              0.090753
                         0.088866
38
                                   0.086642
    0.108288
              0.090753
                         0.088866
39
                                   0.086642
              0.090753
    0.108288
                         0.088866
40
                                   0.086642
    0.108288
              0.090753
                         0.088866
41
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
42
    0.108288
              0.090753
                         0.088866
                                   0.086642
43
    0.108288
              0.090753
                         0.088866
                                   0.086642
44
45
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
46
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
47
    0.108288
              0.090753
48
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
49
```

50 51 New	0.108288 0.108288 Features	0.090753 0.090753	0.088866 0.088866 0			3	4
5 0	6 0.088988	\ 0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
1	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
2	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
3	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
4	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
5	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
6	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
7	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
8	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
9	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
10	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
11	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
12	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
13	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
14	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
15	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
16	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
17	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568

18	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
19	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
20	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
21	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
22	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
23	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
24	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
25	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
26	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
27	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
28	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
29	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
30	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
31	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
32	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
33	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
34	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
35	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568
36	0.088988	0.08461	0.088539	0.085823	0.093244	0.085679	0.098568

```
0.088988 0.08461 0.088539 0.085823 0.093244 0.085679 0.098568
   0.088988 0.08461 0.088539
                              0.085823 0.093244 0.085679
                                                          0.098568
   0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
                              0.085823 0.093244 0.085679
   0.088988
            0.08461 0.088539
                                                           0.098568
            0.08461 0.088539
                              0.085823 0.093244 0.085679
   0.088988
                                                           0.098568
42 0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
   0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
   0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
   0.088988 0.08461 0.088539
                              0.085823 0.093244 0.085679
                                                           0.098568
            0.08461 0.088539
                              0.085823
   0.088988
                                        0.093244 0.085679
                                                           0.098568
   0.088988
            0.08461 0.088539
                              0.085823 0.093244 0.085679
                                                           0.098568
   0.088988 0.08461 0.088539
                              0.085823 0.093244 0.085679
                                                           0.098568
            0.08461 0.088539 0.085823 0.093244 0.085679
   0.088988
                                                           0.098568
   0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
51 0.088988 0.08461 0.088539 0.085823 0.093244 0.085679
                                                          0.098568
                  8
                                     10
   0.108288
            0.090753 0.088866
                               0.086642
            0.090753
                      0.088866
   0.108288
                               0.086642
   0.108288
            0.090753
                      0.088866
                               0.086642
            0.090753
                      0.088866
   0.108288
                               0.086642
   0.108288
            0.090753
                      0.088866
                               0.086642
   0.108288
            0.090753
                      0.088866
                               0.086642
   0.108288 0.090753 0.088866 0.086642
```

```
0.086642
                         0.088866
    0.108288
              0.090753
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
11
    0.108288
12
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
13
    0.108288
              0.090753
                         0.088866
14
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
15
    0.108288
              0.090753
                         0.088866
                                   0.086642
16
17
    0.108288
              0.090753
                         0.088866
                                   0.086642
                         0.088866
    0.108288
              0.090753
18
                                   0.086642
                         0.088866
    0.108288
              0.090753
19
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
20
    0.108288
              0.090753
                         0.088866
21
                                   0.086642
22
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
23
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
24
    0.108288
              0.090753
                         0.088866
                                   0.086642
25
    0.108288
              0.090753
                         0.088866
26
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
27
    0.108288
              0.090753
                         0.088866
28
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
29
    0.108288
              0.090753
                         0.088866
                                   0.086642
30
    0.108288
              0.090753
                         0.088866
                                   0.086642
31
32
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
33
                                   0.086642
    0.108288
                         0.088866
34
              0.090753
                                   0.086642
    0.108288
              0.090753
                         0.088866
35
                                   0.086642
              0.090753
    0.108288
                         0.088866
36
                                   0.086642
    0.108288
              0.090753
                         0.088866
37
                                   0.086642
38
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
39
    0.108288
              0.090753
                         0.088866
                                   0.086642
40
41
    0.108288
              0.090753
                         0.088866
                                   0.086642
    0.108288
              0.090753
42
                         0.088866
                                   0.086642
    0.108288
              0.090753
                         0.088866
                                   0.086642
43
    0.108288
              0.090753
                         0.088866
                                   0.086642
44
    0.108288
              0.090753
                         0.088866
                                   0.086642
45
```

```
46 0.108288 0.090753 0.088866 0.086642

47 0.108288 0.090753 0.088866 0.086642

48 0.108288 0.090753 0.088866 0.086642

49 0.108288 0.090753 0.088866 0.086642

50 0.108288 0.090753 0.088866 0.086642

51 0.108288 0.090753 0.088866 0.086642

Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 36 samples, validate on 16 samples
Epoch 1/10
acc: 0.0833 - val loss: 0.2460 - val acc: 0.0625
Epoch 2/10
acc: 0.1111 - val loss: 0.2456 - val acc: 0.0625
Epoch 3/10
acc: 0.1389 - val loss: 0.2452 - val acc: 0.0625
Epoch 4/10
acc: 0.0833 - val loss: 0.2447 - val acc: 0.0625
Epoch 5/10
acc: 0.1389 - val loss: 0.2443 - val acc: 0.0625
Epoch 6/10
36/36 [============== ] - 0s 10ms/step - loss: 0.2446 -
acc: 0.0278 - val loss: 0.2439 - val acc: 0.0625
Epoch 7/10
acc: 0.1389 - val loss: 0.2434 - val acc: 0.0625
Epoch 8/10
acc: 0 1389 - val loss: 0 2430 - val acc: 0 0625
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
 "avoid this warning.", FutureWarning)

Accuracy for the cluster: 8.000000%.

0.5609756097560976 Model: "sequential_17"

Layer (type)	Output	Shape	Param #
embedding_17 (Embedding)	(None,	2000, 128)	1024000
spatial_dropout1d_9 (Spatial	(None,	2000, 128)	0
lstm_17 (LSTM)	(None,	64)	49408
feature_dense (Dense)	(None,	13)	845

Total params: 1,074,253 Trainable params: 1,074,253 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
ENOCII 3/ IA
- acc: 0.0612 - val loss: 2.5548 - val acc: 0.1818
Epoch 4/10
- acc: 0.1020 - val loss: 2.5529 - val acc: 0.1818
Epoch 5/10
- acc: 0.0204 - val loss: 2.5505 - val acc: 0.1818
Epoch 6/10
- acc: 0.0816 - val loss: 2.5481 - val acc: 0.1818
Epoch 7/10
- acc: 0.1020 - val loss: 2.5456 - val acc: 0.1818
Epoch 8/10
- acc: 0.0408 - val loss: 2.5426 - val acc: 0.1818
Epoch 9/10
- acc: 0.0408 - val loss: 2.5402 - val acc: 0.1818
Epoch 10/10
- acc: 0.0816 - val loss: 2.5375 - val acc: 0.1818
feauture engg data shape: (82, 13)
New Features
                              2
                0
                       1
                                     3
5
       6
0.079317 \quad 0.076907 \quad 0.07422 \quad 0.07905 \quad 0.074439 \quad 0.077316 \quad 0.073835
1 \quad 0.079317 \quad 0.076907 \quad 0.07422 \quad 0.07905 \quad 0.074439 \quad 0.077316 \quad 0.073835
2 0.079317 0.076907 0.07422 0.07905 0.074439 0.077316 0.073835
  0.079317 0.076907 0.07422 0.07905 0.074439 0.077316 0.073835
  0.079317 \quad 0.076907 \quad 0.07422 \quad 0.07905 \quad 0.074439 \quad 0.077316 \quad 0.073835
  0.079317 \quad 0.076907 \quad 0.07422 \quad 0.07905 \quad 0.074439 \quad 0.077316 \quad 0.073835
  0.079317 \quad 0.076907 \quad 0.07422 \quad 0.07905 \quad 0.074439 \quad 0.077316 \quad 0.073835
```

7	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
8	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
9	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
10	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
11	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
12	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
13	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
14	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
15	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
16	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
17	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
18	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
19	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
20	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
21	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
22	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
23	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
24	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
25	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
~~	0 070017		^ ^7400	^ ^7^^	0 074400	0 077010	0 070005

26	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
27	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
28	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
29	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
52	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
53	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
54	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
55	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
56	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
57	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
58	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
59	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
60	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
61	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
62	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
63	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
64	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
65	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
66	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835

67	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
68	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
69	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
70	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
71	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
72	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
73	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
74	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
75	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
76	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
77	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
78	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
79	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
80	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
81	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
	7	0	0	1	0 1	1 1	2
0 1 2 3 4 5	7 0.073985 0.073985 0.073985 0.073985 0.073985	8 0.074628 0.074628 0.074628 0.074628 0.074628	9 0.085393 0.085393 0.085393 0.085393 0.085393	0.07967 0.07967 0.07967	7 0.07306 7 0.07306 7 0.07306 7 0.07306 7 0.07306	5 0.07816 5 0.07816 5 0.07816 5 0.07816 5 0.07816	9 9 9 9

6 7	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
8	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
9	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
10	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
11	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
12	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
13 14	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
15	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
16	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
17	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
18	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
19	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
20	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
21	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
22	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
23	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
24	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
25	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
26	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
27	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
28	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
29	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
	0 073005	0.074620	0 005303	0 070677	0.072005	0.070160
52 53	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
53 54	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
55	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
56	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
57	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
58	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
59	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
60	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
61	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
62	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
63	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
64	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
65	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
~ ~	~ ~~~~~	~ ~ ~	~ ~~=~~	~ ~~~~~	~ ~~~~~	~ ~~~~

66 67	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.07967 0.07967			
68 69 70 71 72 73 74 75 76 77 78 79 80 81	0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985 0.073985	0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628 0.074628	0.085393 0.085393 0.085393 0.085393 0.085393 0.085393 0.085393 0.085393 0.085393 0.085393 0.085393	0.07967 0.07967 0.07967 0.07967 0.07967 0.07967 0.07967 0.07967 0.07967 0.07967 0.07967	7 0.07306 7 0.07306	5 0.07816 5 0.07816	9 9 9 9 9 9 9 9
[82	rows x 13 Features 6		0	1			4
0	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
1	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
2	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
3	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
4	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
5	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
6	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
7	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
8	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
9	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835

10	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
11	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
12	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
13	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
14	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
15	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
16	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
17	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
18	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
19	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
20	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
21	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
22	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
23	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
24	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
25	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
26	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
27	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
28	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
~~	^ ^=^==	^ ^=	^ ^	^ ^=^-		^ ^===	0 070005

29	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
• •							
52	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
53	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
54	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
55	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
56	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
57	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
58	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
59	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
60	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
61	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
62	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
63	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
64	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
65	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
66	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
67	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
68	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
69	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835

70	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
71	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
72	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
73	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
74	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
75	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
76	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
77	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
78	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
79	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
80	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
81	0.079317	0.076907	0.07422	0.07905	0.074439	0.077316	0.073835
	7	8	9			1 1	
0	0.073985	0.074628	0.085393	0.07967			
1 2	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.07967 0.07967			
3	0.073985	0.074628	0.085393	0.07967			
4	0.073985	0.074628	0.085393	0.07967			
5	0.073985	0.074628	0.085393	0.07967			
6	0.073985	0.074628	0.085393	0.07967			
7	0.073985	0.074628	0.085393	0.07967			
8	0.073985	0.074628	0.085393	0.07967			
9	0.073985	0.074628	0.085393	0.07967			
10 11	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.07967 0.07967			
11	0.0/3963	0.0/4028	0.005595	0.0/90/	7 0.07300	- 0.07010	Э ^

12 13	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
14 15	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
16	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
17	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
18	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
19	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
20	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
21	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
22	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
23	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
24 25	0.073985 0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065 0.073065	0.078169 0.078169
26	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
27	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
28	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
29	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
52	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
53	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
54	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
55	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
56	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
57 58	0.073985 0.073985	0.074628	0.085393	0.079677	0.073065 0.073065	0.078169 0.078169
50 59	0.073985	0.074628 0.074628	0.085393 0.085393	0.079677 0.079677	0.073065	0.078169
60	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
61	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
62	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
63	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
64	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
65	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
66	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
67	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
68	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
69	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
70	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169
71	0.073985	0.074628	0.085393	0.079677	0.073065	0.078169

```
72 0.073985 0.074628 0.085393 0.079677 0.073065 0.078169
73 0.073985 0.074628 0.085393 0.079677 0.073065 0.078169
74 0.073985 0.074628 0.085393 0.079677
                                        0.073065 0.078169
                                        0.073065 0.078169
75 0.073985 0.074628 0.085393 0.079677
76 0.073985 0.074628 0.085393 0.079677
                                         0.073065 0.078169
77 0.073985 0.074628 0.085393 0.079677
                                         0.073065 0.078169
78 0.073985 0.074628 0.085393 0.079677
                                         0.073065 0.078169
79 0.073985 0.074628 0.085393 0.079677
                                        0.073065 0.078169
80 0.073985 0.074628 0.085393 0.079677
                                        0.073065 0.078169
81 0.073985 0.074628 0.085393 0.079677 0.073065 0.078169
[82 rows x 13 columns]
Train...
C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 57 samples, validate on 25 samples
Epoch 1/10
acc: 0.0351 - val loss: 0.2512 - val acc: 0.0400
Epoch 2/10
acc: 0.0175 - val loss: 0.2509 - val acc: 0.0400
Epoch 3/10
acc: 0.0526 - val loss: 0.2506 - val acc: 0.0400
Epoch 4/10
acc: 0.0175 - val loss: 0.2503 - val acc: 0.0400
Epoch 5/10
acc: 0.0877 - val loss: 0.2500 - val acc: 0.0400
Epoch 6/10
acc: 0.1053 - val loss: 0.2497 - val acc: 0.0400
```

```
Epoch 7/10
acc: 0.0526 - val loss: 0.2495 - val acc: 0.0400
Epoch 8/10
acc: 0.0000e+00 - val loss: 0.2492 - val acc: 0.0400
Epoch 9/10
acc: 0.0526 - val loss: 0.2489 - val acc: 0.0400
Epoch 10/10
acc: 0.0351 - val loss: 0.2486 - val acc: 0.0400
25/25 [======== ] - 0s 6ms/step
Test set
Loss: 0.249
Accuracy: 0.040
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column or 1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
 FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.pv:193: Fut

ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

Accuracy for the cluster: 9.000000%.

0.3709677419354839 Model: "sequential_19"

Layer (type)	Output Shape	Param #
embedding_19 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_10 (Spatia	(None, 2000, 128)	0
lstm_19 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 16)	1040

Total params: 1,074,448 Trainable params: 1,074,448 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
ENOCII 3/ IA
- acc: 0.0270 - val loss: 2.7657 - val acc: 0.0800
Epoch 4/10
- acc: 0.0270 - val loss: 2.7637 - val acc: 0.0800
Epoch 5/10
- acc: 0.1081 - val loss: 2.7620 - val acc: 0.0800
Epoch 6/10
- acc: 0.1622 - val loss: 2.7598 - val acc: 0.0800
Epoch 7/10
- acc: 0.1081 - val loss: 2.7579 - val acc: 0.0800
Epoch 8/10
- acc: 0.0811 - val loss: 2.7568 - val acc: 0.0800
Epoch 9/10
- acc: 0.1622 - val loss: 2.7554 - val acc: 0.0800
Epoch 10/10
- acc: 0.0541 - val loss: 2.7537 - val acc: 0.0800
feauture engg data shape: (62, 16)
New Features
                          2
                                3
             0
                   1
                                      4
     6 \
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
  0.05912 0.058709 0.060466 0.067398 0.060239 0.060552 0.05776
```

7	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
8	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
9	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
10	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
11	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
12	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
13	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
14	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
15	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
16	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
17	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
18	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
19	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
20	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
21	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
22	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
23	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
24	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
25	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
26	0 05010	0 050700	0 060466	0 067200	0 060220	0 060553	0 05776

۷۵	0.05912	U.U58/U9	U.U0U400	U.UO/398	ს.სის∠პ9	⊍.⊍0⊍55∠	ს. ს5//0
27	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
20	0.05012	0 050700	0 060466	0 067200	0 060220	0.060553	0 05776
28	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
29	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
32	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
33	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
34	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
35	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
36	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
37	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
38	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
39	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
40	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
41	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
42	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
43	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
44	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
45	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
46	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776

47	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
48	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
49	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
50	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
51	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
52	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
53	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
54	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
55	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
56	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
57	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
58	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
59	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
60	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
61	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
	7	8	9	10	11	12	13
0	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
1	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
2	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223

3	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
4	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
5	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
6	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
7	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
8	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
9	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
10	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
11	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
12	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
13	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
14	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
15	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
16	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
17	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
18	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
19	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
20	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
21	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
22	0 065307	0 06150	0 057704	0 061066	0 062264	0 066700	0 064222

22	U.U0539/	0.00159	ს. ს5//94	0.001800	⊍.⊍03∠04	U.U00/UX	U.U04223
23	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
24	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
25	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
26	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
27	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
28	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
29	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
32	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
33	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
34	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
35	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
36	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
37	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
38	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
39	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
40	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
41	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
42	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223

43	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
44	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
45	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
46	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
47	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
48	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
49	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
50	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
51	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
52	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
53	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
54	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
55	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
56	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
57	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
58	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
59	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
60	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
61	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223

```
14
                    15
    0.064066 0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
              0.070847
    0.064066
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
8
    0.064066
              0.070847
    0.064066
              0.070847
10
    0.064066
              0.070847
    0.064066
              0.070847
11
12
    0.064066
              0.070847
    0.064066
              0.070847
13
    0.064066
              0.070847
14
15
    0.064066
              0.070847
    0.064066
              0.070847
16
17
    0.064066
              0.070847
18
    0.064066
              0.070847
    0.064066
              0.070847
19
20
    0.064066
              0.070847
    0.064066
21
              0.070847
22
    0.064066
              0.070847
23
    0.064066
              0.070847
    0.064066
              0.070847
24
    0.064066
              0.070847
25
    0.064066
              0.070847
26
27
    0.064066
              0.070847
    0.064066
              0.070847
28
    0.064066
              0.070847
         . . .
                   . . .
    0.064066
              0.070847
32
33
    0.064066
              0.070847
    0.064066
              0.070847
34
35
    0.064066
              0.070847
36
    0.064066
              0.070847
              0.070847
37
    0.064066
```

```
0.004000 0.0/084/
38
             0.070847
39
    0.064066
   0.064066
             0.070847
   0.064066
             0.070847
41
   0.064066
42
             0.070847
   0.064066
             0.070847
   0.064066
             0.070847
45
   0.064066
             0.070847
46
    0.064066
             0.070847
   0.064066
             0.070847
47
   0.064066
             0.070847
48
49
    0.064066
             0.070847
50
   0.064066
             0.070847
   0.064066
             0.070847
51
52
             0.070847
    0.064066
   0.064066
             0.070847
53
   0.064066
             0.070847
54
55
   0.064066
             0.070847
   0.064066
             0.070847
56
   0.064066
             0.070847
57
58
    0.064066
             0.070847
   0.064066
             0.070847
59
   0.064066
             0.070847
60
   0.064066
             0.070847
[62 rows x 16 columns]
                                         2
New Features
                               1
                                                   3
                                                             4
                     0
5
         6
    0.05912 0.058709
                      0.060466 0.067398 0.060239 0.060552
                                                              0.05776
    0.05912 0.058709
                                0.067398
                                          0.060239 0.060552
                      0.060466
                                                              0.05776
    0.05912 0.058709
                      0.060466
                                0.067398
                                          0.060239
                                                    0.060552
                                                              0.05776
    0.05912 0.058709
                      0.060466
                                0.067398
                                          0.060239
                                                    0.060552
                                                              0.05776
    0.05912 0.058709
                      0.060466
                                0.067398
                                          0.060239
                                                    0.060552
                                                              0.05776
    0.05912 0.058709 0.060466
                                0.067398 0.060239 0.060552
                                                              0.05776
```

6	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
7	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
8	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
9	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
10	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
11	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
12	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
13	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
14	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
15	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
16	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
17	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
18	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
19	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
20	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
21	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
22	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
23	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
24	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
25	A AEA12	0 050700	0 060466	0 067200	0 060220	0 060553	0 05776

25	0.05912	U.U58/U9	U.U0U400	U.UO/398	⊎.⊎0⊎∠≾9	⊍.⊍0⊍55∠	0. 05//0
26	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
27	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
28	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
29	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
32	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
33	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
34	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
35	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
36	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
37	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
38	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
39	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
40	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
41	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
42	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
43	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
44	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
45	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776

46	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
47	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
48	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
49	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
50	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
51	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
52	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
53	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
54	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
55	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
56	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
57	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
58	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
59	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
60	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
61	0.05912	0.058709	0.060466	0.067398	0.060239	0.060552	0.05776
	7	0	0	10	11	10	12
\	,	8	9	10	11	12	13
0 `	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
1	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223

2	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
3	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
4	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
5	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
6	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
7	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
8	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
9	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
10	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
11	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
12	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
13	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
14	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
15	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
16	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
17	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
18	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
19	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
20	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
21	0 065207	0 06150	0 0E7704	0 061066	0 063364	0 066700	0 064222

Z I	U.UD539/	0.00159	ს. ს5//94	0.001800	U.UO3204	ს.ს იი/სგ	0.004223
22	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
23	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
24	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
25	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
26	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
27	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
28	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
29	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
32	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
32 33	0.065397 0.065397	0.06159 0.06159	0.057794 0.057794	0.061866 0.061866	0.063264 0.063264	0.066708 0.066708	0.064223 0.064223
33	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
33 34	0.065397 0.065397	0.06159 0.06159	0.057794 0.057794	0.061866 0.061866	0.063264 0.063264	0.066708 0.066708	0.064223
33 34 35	0.065397 0.065397 0.065397	0.06159 0.06159 0.06159	0.057794 0.057794 0.057794	0.061866 0.061866 0.061866	0.063264 0.063264 0.063264	0.066708 0.066708 0.066708	0.064223 0.064223 0.064223
33 34 35 36	0.065397 0.065397 0.065397 0.065397	0.06159 0.06159 0.06159 0.06159	0.057794 0.057794 0.057794 0.057794	0.061866 0.061866 0.061866 0.061866	0.063264 0.063264 0.063264 0.063264	0.066708 0.066708 0.066708	0.064223 0.064223 0.064223 0.064223
33 34 35 36 37	0.065397 0.065397 0.065397 0.065397	0.06159 0.06159 0.06159 0.06159 0.06159	0.057794 0.057794 0.057794 0.057794 0.057794	0.061866 0.061866 0.061866 0.061866	0.063264 0.063264 0.063264 0.063264	0.066708 0.066708 0.066708 0.066708	0.064223 0.064223 0.064223 0.064223
33 34 35 36 37 38	0.065397 0.065397 0.065397 0.065397 0.065397	0.06159 0.06159 0.06159 0.06159 0.06159	0.057794 0.057794 0.057794 0.057794 0.057794 0.057794	0.061866 0.061866 0.061866 0.061866 0.061866	0.063264 0.063264 0.063264 0.063264 0.063264	0.066708 0.066708 0.066708 0.066708 0.066708	0.064223 0.064223 0.064223 0.064223 0.064223

42	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
43	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
44	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
45	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
46	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
47	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
48	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
49	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
50	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
51	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
52	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
53	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
54	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
55	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
56	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
57	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
58	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
59	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
60	0.065397	0.06159	0.057794	0.061866	0.063264	0.066708	0.064223
<i>C</i> 1	0 065207	0 06160	0 0E7704	0 061066	0 063364	0 066700	0 064222

```
14
                    15
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
    0.064066
              0.070847
10
    0.064066
11
              0.070847
12
    0.064066
              0.070847
13
    0.064066
              0.070847
    0.064066
              0.070847
14
15
    0.064066
              0.070847
    0.064066
              0.070847
16
    0.064066
              0.070847
17
18
    0.064066
              0.070847
19
    0.064066
              0.070847
20
    0.064066
              0.070847
    0.064066
              0.070847
21
    0.064066
              0.070847
22
23
    0.064066
              0.070847
    0.064066
              0.070847
25
    0.064066
              0.070847
    0.064066
              0.070847
26
    0.064066
27
              0.070847
    0.064066
              0.070847
28
    0.064066
              0.070847
    0.064066
              0.070847
32
33
    0.064066
              0.070847
    0.064066
              0.070847
34
35
    0.064066
              0.070847
    0 064066
```

```
0.004000 0.070847
37 0.064066 0.070847
38 0.064066 0.070847
   0.064066 0.070847
   0.064066 0.070847
40
41 0.064066 0.070847
42 0.064066 0.070847
   0.064066 0.070847
44 0.064066 0.070847
45 0.064066 0.070847
46 0.064066 0.070847
47 0.064066 0.070847
  0.064066 0.070847
49 0.064066 0.070847
50 0.064066 0.070847
51 0.064066 0.070847
52 0.064066 0.070847
53 0.064066 0.070847
54 0.064066 0.070847
55 0.064066 0.070847
   0.064066 0.070847
57 0.064066 0.070847
58 0.064066 0.070847
59 0.064066 0.070847
60 0.064066 0.070847
61 0.064066 0.070847
[62 rows x 16 columns]
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

Train on 43 samples, validate on 19 samples Epoch 1/10

```
acc: 0.1163 - val loss: 0.2508 - val acc: 0.2632
Epoch 2/10
acc: 0.0698 - val loss: 0.2505 - val acc: 0.2632
Epoch 3/10
acc: 0.0930 - val loss: 0.2502 - val acc: 0.2632
Epoch 4/10
acc: 0.1860 - val loss: 0.2500 - val acc: 0.2632
Epoch 5/10
acc: 0.0930 - val loss: 0.2497 - val acc: 0.2632
Epoch 6/10
acc: 0.1395 - val loss: 0.2494 - val acc: 0.2632
Epoch 7/10
acc: 0.1395 - val loss: 0.2491 - val acc: 0.2632
Epoch 8/10
acc: 0.1860 - val loss: 0.2488 - val acc: 0.2632
Epoch 9/10
acc: 0.1395 - val loss: 0.2486 - val acc: 0.2632
Epoch 10/10
acc: 0.1163 - val loss: 0.2483 - val acc: 0.2632
19/19 [============= ] - 0s 10ms/step
Test set
Loss: 0.248
Accuracy: 0.263
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\sym\base.pv:193: Fut

ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:469: FutureWarning: Default multi class will be changed to 'auto' in 0.22. Specify the multi class option to silence this warning. "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 10.00000%.

0.30147058823529416 Model: "sequential 21"

Layer (type)	Output Shape	Param #
embedding_21 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_11 (Spatia	(None, 2000, 128)	0
lstm_21 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 20)	1300

Total params: 1,074,708 Trainable params: 1.074.708 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow core\python\framework\indexed slices.py:424: UserWarning: Converting s e a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. Train on 81 samples, validate on 55 samples Epoch 1/10 81/81 [==============] - 37s 458ms/step - loss: 3.0322 - acc: 0.0370 - val loss: 2.9881 - val acc: 0.1455 Epoch 2/10 - acc: 0.0247 - val loss: 2.9874 - val acc: 0.1455 Epoch 3/10 81/81 [==============] - 42s 520ms/step - loss: 2.9997 - acc: 0.0988 - val loss: 2.9864 - val acc: 0.1455 Epoch 4/10 - acc: 0.0370 - val loss: 2.9852 - val acc: 0.1455 Epoch 5/10 - acc: 0.0370 - val loss: 2.9846 - val acc: 0.1455 Epoch 6/10 - acc: 0.0617 - val loss: 2.9838 - val acc: 0.1455 Epoch 7/10 - acc: 0.0988 - val loss: 2.9830 - val acc: 0.1455 Epoch 8/10 - acc: 0.0370 - val loss: 2.9826 - val acc: 0.1091 Epoch 9/10 - acc: 0.0988 - val loss: 2.9818 - val acc: 0.1091 Epoch 10/10 - acc: 0.0617 - val loss: 2.9812 - val acc: 0.1091 feauture engg data shape: (136, 20) New Features 1 2 4 0.050775 0.049354 0.049067 0.051795 0.050327 0.050847 0.0491

parse IndexedSlices to a dense Tensor of unknown shape. This may consum

69 1 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
2 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
3 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
4	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 5	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 6	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 7	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 8	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 9	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 10	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 11	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 12	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 13	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 14	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 15	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 16	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 17	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 18	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 19	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69	0 050775	0 040354	0 040067	0 051705	0 050227	0 050047	0 0401

∠⊍ 69	0.050//5	0.049354	0.04906/	0.051/95	0.05032/	0.05084/	0.0491
21	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 22 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
23 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
24 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
25 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
26 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
27 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
28 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
29	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69							
 106	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
 106 69 107							0.0491 0.0491
106 69 107 69 108	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	
 106 69 107 69 108 69 109	0.050775 0.050775	0.049354 0.049354	0.049067 0.049067	0.051795 0.051795	0.050327 0.050327	0.050847 0.050847	0.0491
 106 69 107 69 108 69 109 69 110	0.050775 0.050775 0.050775	0.049354 0.049354 0.049354	0.049067 0.049067 0.049067	0.051795 0.051795 0.051795	0.050327 0.050327 0.050327	0.050847 0.050847 0.050847	0.0491 0.0491
106 69 107 69 108 69 109 69 110 69	0.050775 0.050775 0.050775 0.050775	0.049354 0.049354 0.049354 0.049354	0.049067 0.049067 0.049067 0.049067	0.051795 0.051795 0.051795 0.051795	0.050327 0.050327 0.050327 0.050327	0.050847 0.050847 0.050847 0.050847	0.0491 0.0491 0.0491
106 69 107 69 108 69 109 69 110 69 111	0.050775 0.050775 0.050775 0.050775 0.050775	0.049354 0.049354 0.049354 0.049354 0.049354	0.049067 0.049067 0.049067 0.049067	0.051795 0.051795 0.051795 0.051795 0.051795	0.050327 0.050327 0.050327 0.050327 0.050327	0.050847 0.050847 0.050847 0.050847 0.050847	0.0491 0.0491 0.0491 0.0491
106 69 107 69 108 69 109 69 110 69	0.050775 0.050775 0.050775 0.050775 0.050775	0.049354 0.049354 0.049354 0.049354 0.049354	0.049067 0.049067 0.049067 0.049067 0.049067	0.051795 0.051795 0.051795 0.051795 0.051795	0.050327 0.050327 0.050327 0.050327 0.050327	0.050847 0.050847 0.050847 0.050847 0.050847	0.0491 0.0491 0.0491 0.0491

69 115 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
116 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
117 69 118 69 119 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
120 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
121 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
122 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
123 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
124 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
125 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
126 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
127 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
128 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
129 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
130 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
131 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
132 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
133 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
174	A AEA77E	0 040354	0 040067	A 051705	0 050227	0 050047	0 0401

134 69	U.U5U//5	U.U49354	U.U49UO/	0.051/95	U.U5U32/	ს. სესგ4/	U.U49I	
135	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491	
69								
	. 7	8	9	10	11	12		
13 0 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
1 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
2 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
3 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
4	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 5	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 6	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 7	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 8	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 9	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 10	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 11	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 12	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 13	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 14	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 15	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480	
88 16	0 040520	0 040200	O 050445	0 040011	A AEA1E2	0 040431	0 0400	

88 10	U.U48538	U.U49288	0.050445	0.049211	0.050152	U.U48431	U.U48U
17	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
18 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
19 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
20 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
21 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
22 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
23 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
24 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
25 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
26 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
27 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
28 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
29 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
106 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
107 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
108 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
109 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
110	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480

გგ 111	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
112 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
113 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
114 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
115 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
116 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
117 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
118 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
119 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
120 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
121 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
122 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
123 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
124 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
125 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
126 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
127 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
128 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
129 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
120	0 040530	0 040200	O 0E044E	0 040211	0 050150	0 040421	0 0400

130 88	ს. ს48538	U.U49288	U.U5U445	0.049211	0.050152	0.048431	U.U48U
131	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
132	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
133 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
00 134	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88	0.0.0550	0.0.5200	0.0000	0.0.5211	0.000101	0.0.0.51	010100
135	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
	14	15	16	17	18	19	
0	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
1	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
2	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
3	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
4	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
5	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
6	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
7	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
8	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
9	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
10	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
11	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
12	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
13	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
14	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
15	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
16	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
17	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
18	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
19	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
20	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
21	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
22	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
23	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
24 25	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	

```
U.U5Z534
               U.U52UU3
                         U.U48/48
                                                        U.U528//
25
                                   0.040950 0.051395
26
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
    0.052534
               0.052003
                                                        0.052877
27
                         0.048748
                                   0.046956
                                             0.051395
                         0.048748
    0.052534
               0.052003
                                             0.051395
                                                        0.052877
                                   0.046956
28
    0.052534
29
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
. .
          . . .
                    . . .
                               . . .
                                         . . .
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
106
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
107
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
108
    0.052534
               0.052003
                                             0.051395
109
                         0.048748
                                   0.046956
                                                        0.052877
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
110
111 0.052534
              0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
112 0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
113 0.052534
               0.052003
                                             0.051395
                         0.048748
                                   0.046956
                                                        0.052877
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
114
    0.052534
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
115
               0.052003
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
116
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
117
    0.052534
               0.052003
                                             0.051395
                         0.048748
                                   0.046956
                                                        0.052877
118
    0.052534
               0.052003
                                             0.051395
119
                         0.048748
                                   0.046956
                                                        0.052877
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
120
    0.052534
               0.052003
                                   0.046956
                                             0.051395
                                                        0.052877
                         0.048748
121
    0.052534
               0.052003
                                   0.046956
                                             0.051395
                                                        0.052877
122
                         0.048748
    0.052534
123
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
124
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
125
    0.052534
               0.052003
                                   0.046956
                                             0.051395
                                                        0.052877
126
                         0.048748
    0.052534
               0.052003
                                   0.046956
                                             0.051395
                                                        0.052877
127
                         0.048748
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
128
129
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
    0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
130
131 0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
132 0.052534
               0.052003
                                             0.051395
                                                        0.052877
                         0.048748
                                   0.046956
    0.052534
               0.052003
                                             0.051395
                                                        0.052877
133
                         0.048748
                                   0.046956
134 0.052534
               0.052003
                         0.048748
                                   0.046956
                                             0.051395
                                                        0.052877
135 0.052534 0.052003
                         0.048748
                                   0.046956 0.051395
                                                        0.052877
[136 rows x 20 columns]
New Features
                                  1
                                             2
                                                       3
                                                                 4
```

5 0 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
1	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 2	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 3	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 4	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 5	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 6	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 7	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 8	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 9	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 10	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 11	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 12	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 13	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 14	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 15 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
16	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 17	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 18	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69	0 050775	0 040354	0 040067	0 051705	0 050227	0 0E0047	0 0401

19 19	0.050//5	0.049354	0.04906/	0.051/95	0.05032/	U.U5U84/	0.0491
20	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 21 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
22 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
23 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
24 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
25 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
26 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
27	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 28	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 29 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
• •							
106 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
107 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
108 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
109 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
110 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
111 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
112 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
113	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491

69 114 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
115 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
116 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
117 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
118 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
119 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
120 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
121 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
122 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
123 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
124 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
125 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
126 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
127 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
128 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
129 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
130 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
131 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
132 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
177	0 050775	0 040354	0 040067	0 051705	0 050227	0 050047	0 0401

133 69	U.U5U//5	U.U49354	0.04900/	0.021/95	0.05032/	U.U5U84/	0.0491
134	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
69 135 69	0.050775	0.049354	0.049067	0.051795	0.050327	0.050847	0.0491
10	7	8	9	10	11	12	
13 0 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
1 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
2 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
3 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
4 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
5 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
6 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
7 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
8 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
9 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
10 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
11 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
12 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
13 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
14 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
1 -	0 040530	0 040200	0 050445	0 040011	0 050150	0 040421	0 0400

15 88	⊍. ⊍4ช538	U.U49288	U.U5U445	U.U49ZII	⊍.⊍5⊍15∠	U.U48431	U.U48U
16	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88	0.040530	0.040200	0 050445	0 040211	0 050153	0 040421	0.0400
17 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
18 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
19 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
20 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
21 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
22 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
23	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 24	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 25	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 26	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 27	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 28	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 29	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
 106	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88	0.040330	0.049200	0.030443	0.049211	0.030132	0.040431	0.0460
107 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
108 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
109	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480

88 110	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
111 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
112 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
113 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
114 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
115 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
116 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
117 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
118 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
119 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
120	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 121	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 122	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 123	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 124	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 125	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 126	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 127	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88 128	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88	0 040520	0 040200	0 050445	0 040211	A AEA1E2	0 040421	0 0400

129 88	⊍.⊍4୪53୪	U.U49288	0.050445	0.049211	0.050152	0.048431	U.U48U
130	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
88							
131 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
132 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
133 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
134 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
135 88	0.048538	0.049288	0.050445	0.049211	0.050152	0.048431	0.0480
	14	15	16	17	18	19	
^							
0	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
1	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
2	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
4	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
5	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
6 7	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
8	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
9	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
10	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
11 12	0.052534	0.052003	0.048748	0.046956	0.051395 0.051395	0.052877	
13	0.052534 0.052534	0.052003 0.052003	0.048748 0.048748	0.046956 0.046956	0.051395	0.052877 0.052877	
14	0.052534	0.052003	0.048748	0.046956	0.051395		
15	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877 0.052877	
16	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
17	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
18	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
19	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
20	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	
20	0.052534	0.052003	0.048748	0.046956	0.051395		
21	0.052534	0.052003			0.051395	0.052877	
22	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877	

24 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 25 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 26 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003							
25 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 26 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003	23	U.U5Z534	U.U52UU3	U.U48/48	U.U40950	0.051395	U.U528//
25 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 26 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003	24	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
26 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003	25			0.048748	0.046956		
27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003	23	01032331	01032003	01010710	01010350	0.031333	01032077
27 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003	26	0.052534	0 052003	0 0/27/2	0 0/6056	0 051305	0 052877
28 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003							
29 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003							
1.06 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003							
106 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003	29	0.052534	0.052003	0.048/48	0.046956	0.051395	0.0528//
107 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003							
108 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003	106				0.046956		
109 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003	107	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121	108	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
110 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121	109	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
111 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122	110	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
112 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122							
113 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124							
114 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125							
115 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003							
116 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129							
117 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130							
118 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130							
119 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131							
120 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132							
121 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133							
122 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133							
123 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134	121	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
124 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134	122	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877	123	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
125 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877	124	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877
126 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877				0.048748			
127 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
128 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
129 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
130 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
131 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
132 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
133 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877 134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
134 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
135 0.052534 0.052003 0.048748 0.046956 0.051395 0.052877							
	135	0.052534	0.052003	0.048748	0.046956	0.051395	0.052877

```
[130 rows x 20 columns]
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 95 samples, validate on 41 samples
Epoch 1/10
acc: 0.0211 - val loss: 0.2512 - val acc: 0.0000e+00
Epoch 2/10
acc: 0.0526 - val loss: 0.2509 - val acc: 0.0000e+00
Epoch 3/10
acc: 0.0421 - val_loss: 0.2505 - val acc: 0.0000e+00
Epoch 4/10
acc: 0.0211 - val loss: 0.2502 - val acc: 0.0000e+00
Epoch 5/10
95/95 [============ ] - 3s 27ms/step - loss: 0.2501 -
acc: 0.0526 - val loss: 0.2499 - val acc: 0.0000e+00
Epoch 6/10
95/95 [============= ] - 2s 24ms/step - loss: 0.2496 -
acc: 0.0105 - val loss: 0.2495 - val acc: 0.0000e+00
Epoch 7/10
acc: 0.0421 - val loss: 0.2492 - val acc: 0.0000e+00
Epoch 8/10
acc: 0.0421 - val loss: 0.2489 - val acc: 0.0000e+00
Epoch 9/10
acc: 0.0211 - val loss: 0.2485 - val acc: 0.0000e+00
Epoch 10/10
```

33/33 [] 33 2/m3/3cop (033) 0/2/10

Test set

Loss: 0.248 Accuracy: 0.000


```
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector v was passed when a 1d a
rray was expected. Please change the shape of y to (n samples, ), for e
xample using ravel().
 y = column or 1d(y, warn=True)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
  FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti
c.py:469: FutureWarning: Default multi class will be changed to 'auto'
in 0.22. Specify the multi class option to silence this warning.
  "this warning.", FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
Accuracy for the cluster: 11.000000%.
0.6363636363636364
```

Output Shape

Param #

Create PDF in your applications with the Pdfcrowd HTML to PDF API

Model: "sequential 23"

Laver (type)

```
LUYUI (LYPU)
                             JULPUL JIIUPU
                                                       embedding 23 (Embedding)
                             (None, 2000, 128)
                                                       1024000
spatial dropout1d 12 (Spatia (None, 2000, 128)
                                                       0
lstm 23 (LSTM)
                             (None, 64)
                                                       49408
feature dense (Dense)
                                                       455
                             (None, 7)
Total params: 1,073,863
Trainable params: 1,073,863
Non-trainable params: 0
```

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 13 samples, validate on 9 samples
Epoch 1/10
cc: 0.0769 - val loss: 1.9236 - val acc: 0.1111
Epoch 2/10
cc: 0.2308 - val loss: 1.9184 - val acc: 0.5556
Epoch 3/10
cc: 0.0769 - val loss: 1.9138 - val acc: 0.5556
Epoch 4/10
cc: 0.0769 - val loss: 1.9090 - val acc: 0.5556
Epoch 5/10
13/13 [============= ] - 35s 3s/step - loss: 1.9306 - a
cc: 0.2308 - val loss: 1.9051 - val acc: 0.5556
Epoch 6/10
```

```
cc: 0.0769 - val loss: 1.9004 - val acc: 0.5556
Epoch 7/10
cc: 0.0769 - val loss: 1.8945 - val acc: 0.5556
Epoch 8/10
cc: 0.0769 - val loss: 1.8908 - val acc: 0.5556
Epoch 9/10
cc: 0.3077 - val loss: 1.8858 - val acc: 0.5556
Epoch 10/10
cc: 0.1538 - val loss: 1.8815 - val acc: 0.5556
feauture engg data shape: (22, 7)
                                  2
New Features
                          1
                                                  4
 5
         6
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
                 0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
   0.14595 0.142638
                  0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
   0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
   0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
   0.14595  0.142638  0.131331  0.136694  0.161521  0.147192  0.134674
10 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
11 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
12 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
13 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
14 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
15 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
16 0.14595 0.142638
                  0.131331 0.136694 0.161521 0.147192 0.134674
17 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
                  0.131331 0.136694 0.161521 0.147192 0.134674
18 0.14595 0.142638
19 0.14595 0.142638
                  0.131331 0.136694 0.161521 0.147192 0.134674
20 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192
                                                  0.134674
                 0.131331 0.136694 0.161521 0.147192 0.134674
21 0.14595 0.142638
```

```
new reatures
                                     Z
 5
   0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
                    0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
                    0.131331 0.136694 0.161521 0.147192
                                                       0.134674
   0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
                    0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192
                                                       0.134674
   0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
   0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
  0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
11 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
12 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192
                                                       0.134674
13 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
14 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
                    0.131331 0.136694 0.161521 0.147192 0.134674
15 0.14595 0.142638
16 0.14595 0.142638
                    0.131331 0.136694 0.161521 0.147192 0.134674
17 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
18 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
19 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
20 0.14595 0.142638
                   0.131331 0.136694 0.161521 0.147192 0.134674
21 0.14595 0.142638 0.131331 0.136694 0.161521 0.147192 0.134674
Train...
C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
core\python\framework\indexed slices.py:424: UserWarning: Converting s
parse IndexedSlices to a dense Tensor of unknown shape. This may consum
e a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape.
Train on 15 samples, validate on 7 samples
Epoch 1/10
acc: 0.0667 - val loss: 0.2516 - val acc: 0.1429
Epoch 2/10
acc: 0.0000e+00 - val loss: 0.2514 - val acc: 0.1429
```

```
Epoch 3/10
acc: 0.1333 - val loss: 0.2512 - val acc: 0.1429
Epoch 4/10
acc: 0.0667 - val loss: 0.2511 - val acc: 0.1429
Epoch 5/10
acc: 0.2000 - val loss: 0.2509 - val acc: 0.1429
Epoch 6/10
acc: 0.0667 - val loss: 0.2508 - val acc: 0.1429
Epoch 7/10
acc: 0.1333 - val loss: 0.2506 - val acc: 0.1429
Epoch 8/10
acc: 0.0667 - val_loss: 0.2505 - val acc: 0.1429
Epoch 9/10
acc: 0.0667 - val loss: 0.2503 - val acc: 0.1429
Epoch 10/10
acc: 0.2667 - val loss: 0.2502 - val acc: 0.1429
7/7 [======== ] - 0s 7ms/step
Test set
Loss: 0.250
Accuracy: 0.143
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_ld(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in

0.22. Specify a solver to silence this warning.
 FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 12.000000%.

0.6642857142857144 Model: "sequential_25"

Layer (type)	Output Shape	Param #
embedding_25 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_13 (Spatia	(None, 2000, 128)	0
lstm_25 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 8)	520

Total narams: 1 073 028

Trainable params: 1,073,928 Non-trainable params: 0

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 17 samples, validate on 12 samples
Epoch 1/10
cc: 0.1176 - val loss: 2.0764 - val acc: 0.1667
Epoch 2/10
- acc: 0.1765 - val loss: 2.0719 - val acc: 0.1667
Epoch 3/10
- acc: 0.2941 - val loss: 2.0677 - val acc: 0.1667
Epoch 4/10
cc: 0.0588 - val loss: 2.0644 - val acc: 0.3333
Epoch 5/10
cc: 0.2353 - val loss: 2.0611 - val acc: 0.3333
Epoch 6/10
- acc: 0.2941 - val loss: 2.0575 - val acc: 0.3333
Epoch 7/10
cc: 0.1176 - val loss: 2.0547 - val acc: 0.3333
Epoch 8/10
cc: 0.1176 - val loss: 2.0519 - val acc: 0.3333
Epoch 9/10
cc: 0.3529 - val loss: 2.0487 - val acc: 0.3333
```

```
Epoch 10/10
cc: 0.1765 - val loss: 2.0450 - val acc: 0.3333
feauture engg data shape: (29, 8)
                                                           4
                                        2
                                                  3
New Features
                               1
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 \quad 0.116214 \quad 0.119977 \quad 0.113442 \quad 0.125164 \quad 0.121139 \quad 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 \quad 0.116214 \quad 0.119977 \quad 0.113442 \quad 0.125164 \quad 0.121139 \quad 0.14126
8
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
11 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
12 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
13 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
14 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
15 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
16 0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
```

```
17
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
19
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139
                                                      0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438  0.116214  0.119977  0.113442
                                     0.125164
                                             0.121139
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 \quad 0.116214 \quad 0.119977 \quad 0.113442 \quad 0.125164 \quad 0.121139 \quad 0.14126
5
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
5
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
10
   0.12936
11
```

```
12 0.12936
13 0.12936
14 0.12936
   0.12936
15
  0.12936
16
17 0.12936
   0.12936
18
   0.12936
19
20 0.12936
21 0.12936
22 0.12936
   0.12936
23
24 0.12936
25 0.12936
26 0.12936
27 0.12936
28 0.12936
New Features
                                1
                                         2
                                                   3
                                                            4
   5
            6 \
                                         0.125164
   0.133438  0.116214  0.119977  0.113442
                                                  0.121139
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
   0.133438  0.116214  0.119977  0.113442  0.125164  0.121139
                                                            0.14126
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
7
   0.133438  0.116214  0.119977  0.113442
                                         0.125164 0.121139
                                                            0.14126
                                         0.125164 0.121139 0.14126
   0.133438  0.116214  0.119977  0.113442
9
   0.133438 0.116214 0.119977 0.113442 0.125164 0.121139 0.14126
```

10 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
11	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5							
12 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
13 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
14 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
15 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
16	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 17	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 18	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 19	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 20	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 21 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
22	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 23	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 24	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 25	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 26	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 27	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126
5 28 5	0.133438	0.116214	0.119977	0.113442	0.125164	0.121139	0.14126

```
0.12936
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
   0.12936
8
    0.12936
   0.12936
10 0.12936
11 0.12936
12 0.12936
13 0.12936
14 0.12936
15 0.12936
16 0.12936
17 0.12936
18 0.12936
19 0.12936
20 0.12936
21 0.12936
22 0.12936
23 0.12936
24 0.12936
25 0.12936
26 0.12936
27 0.12936
28 0.12936
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

Train on 20 camples validate on 0 camples

```
II alli Uli Zu Samples, valtuale Uli y Samples
Epoch 1/10
acc: 0.1000 - val loss: 0.2506 - val acc: 0.0000e+00
Epoch 2/10
acc: 0.1000 - val loss: 0.2504 - val acc: 0.0000e+00
Epoch 3/10
20/20 [============== ] - 0s 19ms/step - loss: 0.2499 -
acc: 0.1500 - val loss: 0.2503 - val acc: 0.0000e+00
Epoch 4/10
20/20 [============ ] - 0s 16ms/step - loss: 0.2505 -
acc: 0.0000e+00 - val loss: 0.2501 - val acc: 0.0000e+00
Epoch 5/10
20/20 [============== ] - 0s 16ms/step - loss: 0.2495 -
acc: 0.1500 - val loss: 0.2500 - val acc: 0.0000e+00
Epoch 6/10
acc: 0.2500 - val loss: 0.2498 - val acc: 0.0000e+00
Epoch 7/10
acc: 0.0500 - val loss: 0.2497 - val acc: 0.0000e+00
Epoch 8/10
acc: 0.1500 - val loss: 0.2495 - val acc: 0.0000e+00
Epoch 9/10
acc: 0.1000 - val loss: 0.2494 - val acc: 0.0000e+00
Epoch 10/10
20/20 [============= ] - 0s 17ms/step - loss: 0.2487 -
acc: 0.2000 - val loss: 0.2492 - val acc: 0.0000e+00
9/9 [=======] - 0s 7ms/step
Test set
 Loss: 0.249
 Accuracy: 0.000
```



```
2 4 6 8 10
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column or 1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Accuracy for the cluster: 13.000000%.

0.4836956521739131 Model: "sequential_27"

Layer (type)	Output Shape	Param #
embedding_27 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_14 (Spatia	(None, 2000, 128)	0
lstm_27 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 17)	1105
Total params: 1,074,513 Trainable params: 1,074,513 Non-trainable params: 0		

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 110 samples, validate on 74 samples
Epoch 1/10
1 - acc: 0.0364 - val loss: 2.8356 - val acc: 0.0811
Epoch 2/10
- acc: 0.0364 - val loss: 2.8343 - val acc: 0.0811
Epoch 3/10
- acc: 0.0182 - val loss: 2.8330 - val acc: 0.0811
Epoch 4/10
- acc: 0.1273 - val loss: 2.8319 - val acc: 0.0811
Epoch 5/10
- acc: 0.0455 - val loss: 2.8320 - val acc: 0.0811
Epoch 6/10
                      116c 1c/c+on
```

```
- acc: 0.0545 - val loss: 2.8310 - val acc: 0.0811
Epoch 7/10
110/110 [============ ] - 116s ls/step - loss: 2.8242
- acc: 0.0909 - val loss: 2.8296 - val acc: 0.0811
Epoch 8/10
110/110 [============ ] - 113s 1s/step - loss: 2.8514
- acc: 0.0636 - val loss: 2.8287 - val acc: 0.0811
Epoch 9/10
- acc: 0.0818 - val loss: 2.8274 - val acc: 0.0811
Epoch 10/10
- acc: 0.1091 - val loss: 2.8262 - val acc: 0.0811
feauture engg data shape: (184, 17)
New Features
                         2
                               3
              0
                   1
                                     4
  55
1
  55
  2
55
  3
55
  0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
4
55
  0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
5
55
6
  0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
55
7
  0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
55
  0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
8
55
  55
  0.062228 \quad 0.058955 \quad 0.059125 \quad 0.059272 \quad 0.055979 \quad 0.054473 \quad 0.0576
10
55
11
```

55 12 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
13 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
14 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
15 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
16 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
17 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
18 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
19 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
20 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
21 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
22 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
23 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
24 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
25 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
26 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
27 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
28 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
29 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576

154 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
155	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55							
156 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
157 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
158 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
159 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
160 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
161	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 162	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 163	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 164	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55							
165 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
166 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
167 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
168 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
169	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 170	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 171	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 172	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 173	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576

55 174 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
175 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
176 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
177 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
178 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
179 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
180 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
181 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
182 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
183 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.05447	3 0.0576
,	7	8	9	10	11	12	13
0	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
1	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
2	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
3	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
4	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
5	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
6	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
7	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

8	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
9	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
10	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
11	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
12	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
13	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
14	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
15	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
16	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
17	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
18	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
19	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
20	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
21	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
22	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
23	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
24	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
25	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
26	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

27	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
28	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
29	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
154	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
155	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
156	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
157	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
158	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
159	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
160	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
161	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
162	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
163	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
164	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
165	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
166	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
167	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
168	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
169	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

```
170 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
171 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318
                                                          0.057716
172 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
173 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318 0.057716
174 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
175 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
176 0.060171 0.058974 0.0578
                              0.057799 0.060884
                                                0.061318
                                                          0.057716
177 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
178 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318
                                                          0.057716
179 0.060171 0.058974 0.0578 0.057799
                                       0.060884
                                                0.061318
                                                          0.057716
180 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
181 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
182 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
183 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
          14
                   15
                            16
    0.057605
             0.055578
                       0.064468
    0.057605
             0.055578
                       0.064468
    0.057605 0.055578
                      0.064468
    0.057605 0.055578
                       0.064468
             0.055578
    0.057605
                       0.064468
    0.057605 0.055578
                       0.064468
             0.055578
    0.057605
                       0.064468
    0.057605 0.055578 0.064468
```

8	0.057605	0.055578	0.064468
9	0.057605	0.055578	0.064468
10	0.057605	0.055578	0.064468
11	0.057605	0.055578	0.064468
12	0.057605	0.055578	0.064468
13	0.057605	0.055578	0.064468
14	0.057605	0.055578	0.064468
15	0.057605	0.055578	0.064468
16	0.057605	0.055578	0.064468
17	0.057605	0.055578	0.064468
18	0.057605	0.055578	0.064468
19	0.057605	0.055578	0.064468
20	0.057605	0.055578	0.064468
21	0.057605	0.055578	0.064468
22	0.057605	0.055578	0.064468
23	0.057605	0.055578	0.064468
24	0.057605	0.055578	0.064468
25	0.057605	0.055578	0.064468
26	0.057605	0.055578	0.064468
27	0.057605	0.055578	0.064468
28	0.057605	0.055578	0.064468
29	0.057605	0.055578	0.064468
 154	0.057605	0.055578	0.064468
155	0.057605	0.055578	0.064468
156	0.057605	0.055578	0.064468
157	0.057605	0.055578	0.064468
158	0.057605	0.055578	0.064468
159	0.057605	0.055578	0.064468
160	0.057605	0.055578	0.064468
161	0.057605	0.055578	0.064468
162	0.057605	0.055578	0.064468
163	0.057605	0.055578	0.064468
164	0.057605	0.055578	0.064468
165	0.057605	0.055578	0.064468
166	0.057605	0.055578	0.064468
167	0.057605	0.055578	0.064468
168	0.057605	0.055578	0.064468
169	0.057605	0.055578	0.064468

```
170 0.057605 0.055578
                    0.064468
171 0.057605 0.055578 0.064468
172 0.057605 0.055578
                    0.064468
173 0.057605
            0.055578
                     0.064468
174 0.057605 0.055578
                    0.064468
175 0.057605 0.055578 0.064468
176 0.057605 0.055578 0.064468
177 0.057605 0.055578 0.064468
178 0.057605 0.055578 0.064468
179 0.057605 0.055578 0.064468
180 0.057605 0.055578 0.064468
181 0.057605 0.055578 0.064468
182 0.057605 0.055578 0.064468
183 0.057605 0.055578 0.064468
[184 rows x 17 columns]
New Features
                            1
                                    2
    0.062228 0.058955 0.059125 0.059272 0.055979 0.054473 0.0576
55
    1
55
    0.062228 0.058955 0.059125 0.059272 0.055979
2
                                             0.054473
                                                      0.0576
55
    0.062228 0.058955 0.059125 0.059272 0.055979
                                             0.054473 0.0576
3
55
    0.062228 0.058955 0.059125 0.059272 0.055979
4
                                             0.054473 0.0576
55
5
    0.062228 0.058955 0.059125 0.059272 0.055979 0.054473
                                                      0.0576
55
    0.062228 0.058955 0.059125 0.059272 0.055979
                                             0.054473 0.0576
6
55
    0.062228 0.058955 0.059125 0.059272 0.055979
7
                                             0.054473
                                                      0.0576
55
                    0.059125 0.059272 0.055979
8
    0.062228 0.058955
                                             0.054473
                                                      0.0576
55
    0.062228 0.058955
                    0.059125 0.059272 0.055979 0.054473
                                                      0.0576
55
10
```

55 11 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
12 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
13 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
14 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
15 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
16 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
17 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
18 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
19 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
20 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
21 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
22 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
23 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
24 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
25 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
26 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
27 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
28 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
29 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576

154	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 155 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
156 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
157 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
158 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
159 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
160 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
161 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
162 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
163 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
164 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
165 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
166 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
167 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
168 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
169 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
170 55	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
171	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576
55 172	0.062228	0.058955	0.059125	0.059272	0.055979	0.054473	0.0576

55 173 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
174 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
175 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
176 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
177 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	0.054473	3 0.0576
178 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
179 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
180 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
181 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
182 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	9 0.054473	3 0.0576
183 55	0.062228	0.058955	0.05912	5 0.05927	2 0.055979	0.054473	3 0.0576
`	7	8	9	10	11	12	13
0	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
1	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
2	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
3	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
4	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
5	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
6	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

7	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
8	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
9	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
10	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
11	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
12	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
13	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
14	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
15	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
16	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
17	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
18	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
19	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
20	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
21	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
22	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
23	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
24	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
25	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

26	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
27	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
28	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
29	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
154	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
155	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
156	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
157	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
158	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
159	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
160	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
161	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
162	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
163	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
164	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
165	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
166	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
167	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716
168	0.060171	0.058974	0.0578	0.057799	0.060884	0.061318	0.057716

```
169 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
170 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318
                                                          0.057716
171 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
172 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318 0.057716
                                                          0.057716
173 0.060171 0.058974 0.0578 0.057799
                                       0.060884
                                                0.061318
174 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
175 0.060171 0.058974 0.0578
                              0.057799 0.060884
                                                0.061318
                                                          0.057716
176 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
177 0.060171 0.058974 0.0578 0.057799 0.060884
                                                0.061318
                                                          0.057716
178 0.060171 0.058974 0.0578 0.057799
                                       0.060884
                                                0.061318
                                                          0.057716
179 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
180 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
181 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
182 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318
                                                          0.057716
183 0.060171 0.058974 0.0578 0.057799 0.060884 0.061318 0.057716
          14
                   15
                            16
    0.057605 0.055578
                       0.064468
    0.057605
             0.055578
                       0.064468
             0.055578
    0.057605
                       0.064468
            0.055578
    0.057605
                       0.064468
             0.055578
    0.057605
4
                       0.064468
    0.057605 0.055578 0.064468
```

6	0.057605	0.055578	0.064468
7	0.057605	0.055578	0.064468
8	0.057605	0.055578	0.064468
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605	0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578	0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468
27	0.057605	0.055578	0.064468
28	0.057605	0.055578	0.064468
29	0.057605	0.055578	0.064468
154 155 156 157 158 159 160 161 162 163 164 165 166	0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605 0.057605	0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578 0.055578	0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468 0.064468

```
168 0.057605 0.055578 0.064468
169 0.057605 0.055578 0.064468
170 0.057605 0.055578 0.064468
171 0.057605 0.055578 0.064468
172 0.057605 0.055578 0.064468
173 0.057605 0.055578 0.064468
174 0.057605 0.055578 0.064468
175 0.057605 0.055578 0.064468
176 0.057605 0.055578 0.064468
177 0.057605 0.055578 0.064468
178 0.057605 0.055578 0.064468
179 0.057605 0.055578 0.064468
180 0.057605 0.055578 0.064468
181 0.057605 0.055578 0.064468
182 0.057605 0.055578 0.064468
183 0.057605 0.055578 0.064468
[184 rows x 17 columns]
Train...
C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow
core\python\framework\indexed slices.py:424: UserWarning: Converting s
parse IndexedSlices to a dense Tensor of unknown shape. This may consum
e a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape.
Train on 128 samples, validate on 56 samples
Epoch 1/10
- acc: 0.0156 - val loss: 0.2494 - val acc: 0.0000e+00
Epoch 2/10
- acc: 0.0391 - val loss: 0.2489 - val acc: 0.0000e+00
Epoch 3/10
128/128 [============= ] - 4s 28ms/step - loss: 0.2488
- acc: 0.0312 - val loss: 0.2483 - val acc: 0.0000e+00
Epoch 4/10
```

```
- acc: ʊ.ʊɜyɪ - val loss: ʊ.24/४ - val acc: ʊ.ʊʊʊʊe+ʊʊ
Epoch 5/10
- acc: 0.0469 - val loss: 0.2473 - val acc: 0.0000e+00
Epoch 6/10
- acc: 0.0625 - val loss: 0.2467 - val acc: 0.0000e+00
Epoch 7/10
- acc: 0.0156 - val loss: 0.2462 - val acc: 0.0000e+00
Epoch 8/10
- acc: 0.0703 - val loss: 0.2456 - val acc: 0.0000e+00
Epoch 9/10
- acc: 0.0312 - val loss: 0.2451 - val acc: 0.0000e+00
Epoch 10/10
- acc: 0.0391 - val loss: 0.2445 - val acc: 0.0000e+00
56/56 [========= 1 - 0s 8ms/step
Test set
Loss: 0.245
Accuracy: 0.000
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

 $\verb|C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti|\\$

c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in

0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti

c.py:469: FutureWarning: Default multi_class will be changed to 'auto'

in 0.22. Specify the multi_class option to silence this warning.

"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in

0.22. Specify a solver to silence this warning. FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut
ureWarning: The default value of gamma will change from 'auto' to 'scal
e' in version 0.22 to account better for unscaled features. Set gamma e
xplicitly to 'auto' or 'scale' to avoid this warning.
 "avoid this warning.", FutureWarning)

Accuracy for the cluster: 14,000000%.

0.7900246305418719 Model: "sequential 29"

Layer (type)	Output Shape	Param #
embedding_29 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_15 (Spatia	(None, 2000, 128)	0
lstm_29 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 16)	1040

Total params: 1,074,448
Trainable params: 1,074,448
Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

Train on 34 samples, validate on 23 samples

```
Epoch 1/10
- acc: 0.0294 - val loss: 2.7719 - val acc: 0.0435
Epoch 2/10
- acc: 0.0588 - val loss: 2.7705 - val acc: 0.0435
Epoch 3/10
- acc: 0.0000e+00 - val loss: 2.7692 - val acc: 0.1739
Epoch 4/10
- acc: 0.0882 - val loss: 2.7678 - val acc: 0.1739
Epoch 5/10
- acc: 0.1471 - val loss: 2.7663 - val acc: 0.1739
Epoch 6/10
- acc: 0.0294 - val loss: 2.7646 - val acc: 0.1739
Epoch 7/10
- acc: 0.0882 - val loss: 2.7630 - val acc: 0.1739
Epoch 8/10
- acc: 0.0882 - val loss: 2.7617 - val acc: 0.1739
Epoch 9/10
- acc: 0.2059 - val loss: 2.7600 - val acc: 0.1739
Epoch 10/10
- acc: 0.0882 - val loss: 2.7584 - val acc: 0.1739
feauture engg data shape: (57, 16)
                       2
New Features
                             3
                                  4
     6
  0.05865 0.062413 0.064692 0.059407 0.062585 0.064188 0.061059
  0.05865 0.062413 0.064692 0.059407 0.062585 0.064188 0.061059
  0.05865 0.062413 0.064692 0.059407 0.062585 0.064188 0.061059
  A A5865 A A62413 A A64692 A A594A7 A A62585 A A64188 A A61A59
```

ب	0.0000	0.002713	U.UU T U92	0.055707	0.002303	0.007100	0.001033
4	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
5	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
6	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
7	0 05005	0.062412	0.004002	0 050407	0 002505	0.064100	0.061050
7	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
8	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
9	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
10	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
11	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
12	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
13	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
14	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
15	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
16	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
17	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
18	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
19	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
20	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
21	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
22	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059

23	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
24	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
25	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
26	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
27	0.05065	0.062412	0.064600	0.050407	0.063505	0.064100	0.001050
27	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
28	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
29	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
30	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
31	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
32	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
33	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
34	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
35	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
36	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
37	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
38	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
39	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
40	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
41	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
47	A A5865	A A62413	A A64697	A A594A7	A A62585	A A64188	A A61A59

74	0.0000	0.002713	0.007032	U.UJ97U/	0.002303	0.004100	0.001033
43	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
44	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
45	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
46	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
47	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
48	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
49	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
50	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
51	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
52	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
53	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
54	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
55	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
56	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
	_						_
3	7	8	9	10	11	12	1
0	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 1	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 2	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 3	n nassa1	A 062884	A 063224	A A62518	A A64A91	A A687A4	A 06031

3	0.000001	0.002007	0.003227	0.002310	0.007031	0.000/07	0.00031
4 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
5	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
6	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
7 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
8	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
9	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
10 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
11 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
12 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
13 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
14 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
15 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
16 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
17 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
18 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
19 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
20 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 21 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 22 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031

23 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
24 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
25 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
26	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3							
27 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
28 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
29 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
30	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 31	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 32	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 33	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 34	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 35 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
36 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
37 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
38 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
39 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 40 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 41 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
Δ 2	A A63531	A A62884	A A63224	A A62518	A A64A91	n n687n4	A A6A31

-,∠ 3	0.003331	U.UU2UU T	0.003227	0.002310	0.007031	0.000/07	0.00031
43 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
44 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
45 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
46 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
47 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
48 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
49 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
50 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
51 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
52 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
53 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
54 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
55 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
56 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
0 1 2 3 4 5 6 7	14 0.057061 0.057061 0.057061 0.057061 0.057061 0.057061 0.057061	15 0.06468 0.06468 0.06468 0.06468 0.06468 0.06468					

```
0.02/00T
             0.00700
    0.057061
             0.06468
    0.057061
             0.06468
   0.057061
             0.06468
10
   0.057061
             0.06468
11
   0.057061
12
             0.06468
   0.057061
             0.06468
   0.057061 0.06468
14
   0.057061
             0.06468
16
   0.057061
             0.06468
   0.057061 0.06468
17
   0.057061
             0.06468
18
   0.057061
19
             0.06468
20
   0.057061
             0.06468
21
   0.057061
             0.06468
22
   0.057061
             0.06468
   0.057061
23
             0.06468
   0.057061
             0.06468
24
25
   0.057061
             0.06468
   0.057061
             0.06468
26
   0.057061
27
             0.06468
28
   0.057061
             0.06468
29
   0.057061
             0.06468
30
   0.057061
             0.06468
   0.057061
             0.06468
31
32
   0.057061
             0.06468
33
   0.057061
             0.06468
   0.057061
             0.06468
34
35
    0.057061 0.06468
36
   0.057061
             0.06468
   0.057061
             0.06468
37
             0.06468
38
   0.057061
   0.057061
39
             0.06468
40
   0.057061
             0.06468
   0.057061
41
             0.06468
   0.057061
             0.06468
42
43
   0.057061
             0.06468
   0.057061
             0.06468
    0.057061
             0.06468
45
    0 057061
             A A6468
```

```
0.00700
   0.02/001
   0.057061
            0.06468
   0.057061
            0.06468
   0.057061
            0.06468
   0.057061 0.06468
51 0.057061 0.06468
52 0.057061 0.06468
   0.057061 0.06468
   0.057061 0.06468
55
   0.057061 0.06468
   0.057061 0.06468
New Features
                    0
                             1
                                       2
                                                3
5
         6
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188 0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
                                       0.062585 0.064188
   0.05865
           0.062413 0.064692 0.059407
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
           0.062413 0.064692 0.059407 0.062585 0.064188
   0.05865
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
   0.05865 0.062413 0.064692 0.059407 0.062585 0.064188
                                                          0.061059
12 0.05865 0.062413 0.064692 0.059407
                                       0.062585 0.064188
                                                          0.061059
   A A5865 A A62413 A A64692 A A594A7 A A62585 A A64188 A A61A59
```

ıJ	0.0000	0.002713	U.UU T U92	0.055707	0.002303	0.007100	0.001033
14	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
15	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
16	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
17	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
18	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
19	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
20	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
21	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
22	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
23	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
24	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
25	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
26	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
27	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
28	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
29	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
30	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
31	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
32	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059

33	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
34	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
35	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
36	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
37	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
38	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
39	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
40	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
41	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
42	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
43	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
44	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
45	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
46	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
47	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
48	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
49	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
50	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
51	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
52	0 05865	A A62413	A A64692	A A594A7	n n62585	n n64188	A A61A5A

ےر	0.05005	0.002713	U.UU T U92	0.055407	0.002303	0.007100	0.001033
53	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
54	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
55	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
56	0.05865	0.062413	0.064692	0.059407	0.062585	0.064188	0.061059
2	7	8	9	10	11	12	1
3 0	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 1	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 2 3 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
4	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 5	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 6 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
7	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 8 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
9	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
10 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
11 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
12 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 13	A A63531	A A62884	A A63774	ค ค62518	A A64A91	A A687A4	A A6A31

<u>.</u> 3	0.000001	0.002007	U.UUJZZT	0.002310	0.007091	0.000/07	0.00021
14 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
15 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
16 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
17 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
18 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
19 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
20 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
21 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
22 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
23 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
24 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
25 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
26 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
27 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
28 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
29	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 30	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 31	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 32 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031

33 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
34 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
35 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
36	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3							
37 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
38 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
39 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
40 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
41 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
42	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 43	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 44	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 45	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 46	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 47	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 48 3	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
49	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 50	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 51	0.063531	0.062884	0.063224	0.062518	0.064091	0.068704	0.06031
3 52	A A63531	A A62884	A A63224	A A62518	A A64A91	n n687n4	A A6A31

```
3
53
   0.063531 0.062884
                       0.063224
                                0.062518
                                          0.064091 0.068704
                                                             0.06031
3
                       0.063224
                                0.062518
   0.063531 0.062884
                                          0.064091
                                                    0.068704
                                                             0.06031
   0.063531 0.062884 0.063224 0.062518
                                          0.064091 0.068704 0.06031
   0.063531 0.062884 0.063224 0.062518 0.064091 0.068704 0.06031
         14
                  15
   0.057061
             0.06468
   0.057061
             0.06468
    0.057061
             0.06468
   0.057061 0.06468
   0.057061
             0.06468
   0.057061
             0.06468
   0.057061 0.06468
   0.057061
             0.06468
   0.057061
             0.06468
   0.057061
             0.06468
   0.057061
             0.06468
11
   0.057061
             0.06468
             0.06468
12
   0.057061
   0.057061
             0.06468
13
14
   0.057061 0.06468
   0.057061 0.06468
15
16
   0.057061 0.06468
   0.057061 0.06468
17
   0.057061 0.06468
18
19
   0.057061 0.06468
   0.057061
             0.06468
21
   0.057061
             0.06468
   0.057061
22
             0.06468
   0.057061
             0.06468
   0.057061
            0.06468
   0.057061
             0.06468
   0.057061
             0.06468
26
   0 057061
             A A6468
```

```
0.02/001 0.00<del>1</del>00
   0.057061 0.06468
29 0.057061 0.06468
30 0.057061 0.06468
31 0.057061 0.06468
32 0.057061 0.06468
33 0.057061 0.06468
34 0.057061 0.06468
  0.057061 0.06468
35
36
  0.057061 0.06468
37 0.057061 0.06468
38 0.057061 0.06468
39 0.057061 0.06468
40 0.057061 0.06468
41 0.057061 0.06468
42 0.057061 0.06468
43 0.057061 0.06468
44 0.057061 0.06468
45 0.057061 0.06468
   0.057061 0.06468
47 0.057061 0.06468
48 0.057061 0.06468
49 0.057061 0.06468
50 0.057061 0.06468
51 0.057061 0.06468
52 0.057061 0.06468
53 0.057061 0.06468
54 0.057061 0.06468
55 0.057061 0.06468
56 0.057061 0.06468
Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

Train on 39 samples, validate on 18 samples

```
Epoch 1/10
acc: 0.0513 - val loss: 0.2477 - val acc: 0.1111
Epoch 2/10
acc: 0.0256 - val loss: 0.2475 - val acc: 0.1111
Epoch 3/10
39/39 [============= ] - 1s 32ms/step - loss: 0.2476 -
acc: 0.1282 - val loss: 0.2473 - val acc: 0.1111
Epoch 4/10
acc: 0.0513 - val loss: 0.2471 - val acc: 0.1111
Epoch 5/10
acc: 0.0769 - val loss: 0.2469 - val acc: 0.1111
Epoch 6/10
39/39 [============ ] - 1s 38ms/step - loss: 0.2471 -
acc: 0.0256 - val loss: 0.2467 - val acc: 0.1111
Epoch 7/10
39/39 [============= ] - 2s 44ms/step - loss: 0.2464 -
acc: 0.1026 - val loss: 0.2465 - val acc: 0.1111
Epoch 8/10
acc: 0.0256 - val loss: 0.2463 - val acc: 0.1111
Epoch 9/10
acc: 0.0256 - val loss: 0.2461 - val acc: 0.1111
Epoch 10/10
acc: 0.0769 - val loss: 0.2459 - val acc: 0.1111
Test set
 Loss: 0.246
 Accuracy: 0.111
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.
 FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.

"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in

0.22. Specify a solver to silence this warning. FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
"this warning " FutureWarning)

"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.". FutureWarning)

Accuracy for the cluster: 15.000000%.

0.6794871794871795

Model: "sequential 31"

Layer (type)	Output Shape	Param #
embedding_31 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_16 (Spatia	(None, 2000, 128)	0
lstm_31 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 10)	650 ======

Total params: 1,074,058 Trainable params: 1,074,058 Non-trainable params: 0

None

_core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 31 samples, validate on 22 samples
Epoch 1/10
cc: 0.0645 - val loss: 2.2758 - val acc: 0.0000e+00
Epoch 2/10
cc: 0.0645 - val loss: 2.2604 - val acc: 0.8182
Epoch 3/10
cc: 0.1935 - val loss: 2.2452 - val acc: 0.8182
Epoch 4/10
cc: 0.0968 - val loss: 2.2291 - val acc: 0.8182
Epoch 5/10
cc: 0.1935 - val loss: 2.2143 - val acc: 0.8182
Epoch 6/10
cc: 0.0968 - val loss: 2.1983 - val acc: 0.8182
Epoch 7/10
cc: 0.2258 - val loss: 2.1815 - val acc: 0.8182
Epoch 8/10
cc: 0.2581 - val loss: 2.1674 - val acc: 0.8182
Epoch 9/10
cc: 0.3548 - val loss: 2.1520 - val acc: 0.8182
Epoch 10/10
cc: 0.3871 - val loss: 2.1367 - val acc: 0.8182
feauture engg data shape: (53, 10)
Now Fostures
                     7
                          2
                               1
```

new 5	reatures 6	\	ט	Т	۷	3	4
0	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
1	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
2	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
3	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
4	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
5	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
6	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
7	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
8	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
9	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
10	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
11	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
12	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
13	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
14	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
15	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
16	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
17	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
18	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638

19	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
20	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
21	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
22	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
23	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
24	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
25	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
26	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
27	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
28	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
29	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
30	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
31	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
32	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
33	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
34	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
35	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
36	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
37	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
Sδ	A AA5A51	በ 1 በበ160	۵ 1۵1 <i>4</i> 7	A AA56A6	a 1 a a727	U UUE313	በ 1 ንንፍን፬

```
0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 \quad 0.100168 \quad 0.10147 \quad 0.095606 \quad 0.100727 \quad 0.096343 \quad 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
42 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727
                                               0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                        0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
51 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
  0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
          7
                  8
   0.099089
            0.094403 0.093605
   0.099089
            0.094403 0.093605
   0.099089 0.094403
                     0.093605
   0.099089
            0.094403 0.093605
   0.099089
            0.094403 0.093605
   0.099089
            0.094403
                     0.093605
   0.099089
            0.094403
                     0.093605
   0 000000 0 004403 0 003605
```

```
בסטבבטים
              U.U944UJ
                         כטטכפט.ט
8
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
    0.099089
10
              0.094403
                         0.093605
                         0.093605
11
    0.099089
              0.094403
    0.099089
              0.094403
12
                         0.093605
13
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
14
15
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
16
                         0.093605
    0.099089
              0.094403
17
                         0.093605
    0.099089
              0.094403
18
                         0.093605
    0.099089
              0.094403
                         0.093605
19
20
    0.099089
              0.094403
                         0.093605
   0.099089
              0.094403
                         0.093605
21
    0.099089
              0.094403
                         0.093605
22
23
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
24
    0.099089
              0.094403
                         0.093605
25
    0.099089
              0.094403
26
                         0.093605
    0.099089
              0.094403
27
                         0.093605
    0.099089
              0.094403
28
                         0.093605
    0.099089
              0.094403
29
                         0.093605
    0.099089
              0.094403
                         0.093605
30
31
    0.099089
              0.094403
                         0.093605
32
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
33
                         0.093605
    0.099089
                         0.093605
34
              0.094403
    0.099089
35
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
36
37
    0.099089
              0.094403
                         0.093605
38
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
39
    0.099089
              0.094403
                         0.093605
40
    0.099089
              0.094403
41
                         0.093605
    0.099089
              0.094403
42
                         0.093605
    0.099089
              0.094403
                         0.093605
43
              0.094403
44
    0.099089
                         0.093605
    0.099089
              0.094403
45
                         0.093605
    വളമാവര
              0 001103
                         0 003605
```

```
כטטכצטיט כט44עיט פסטפצטיט
47
   0.099089
            0.094403
                     0.093605
   0.099089 0.094403 0.093605
   0.099089 0.094403 0.093605
50 0.099089 0.094403 0.093605
51 0.099089 0.094403 0.093605
52 0.099089 0.094403 0.093605
                                                3
New Features
                      0
                              1
                                       2
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
   0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
10 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
11 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
12 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
13 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343 0.122638
14 0.095951 0.100168 0.10147 0.095606 0.100727 0.096343
                                                         0.122638
   0 005051 0 100160 0 10147 0 005606 0 100777 0 006342 0 122630
```

τɔ	דכפכפטים	סטדממדימ	U.1U14/	0.090000	ט. בטטו∠ו	0.090 040	U.122U30
16	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
17	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
18	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
19	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
20	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
21	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
22	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
23	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
24	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
25	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
26	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
27	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
28	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
29	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
30	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
31	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
32	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
33	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
34	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638

35	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
36	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
37	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
38	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
39	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
40	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
41	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
42	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
43	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
44	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
45	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
46	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
47	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
48	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
49	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
50	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
51	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638
52	0.095951	0.100168	0.10147	0.095606	0.100727	0.096343	0.122638

7 8 9 a a access a access a access

```
עסטעעט.ט
              U.U944UJ
                         כטטכפט.ט
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
4
    0.099089
                         0.093605
              0.094403
    0.099089
              0.094403
                         0.093605
6
    0.099089
              0.094403
                         0.093605
              0.094403
7
    0.099089
                         0.093605
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
10
                         0.093605
    0.099089
              0.094403
11
                         0.093605
12
    0.099089
              0.094403
                         0.093605
13
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
14
    0.099089
              0.094403
                         0.093605
15
    0.099089
              0.094403
                         0.093605
16
    0.099089
              0.094403
                         0.093605
17
    0.099089
              0.094403
                         0.093605
18
    0.099089
              0.094403
19
                         0.093605
    0.099089
              0.094403
20
                         0.093605
    0.099089
              0.094403
21
                         0.093605
22
    0.099089
              0.094403
                         0.093605
23
    0.099089
              0.094403
                         0.093605
24
    0.099089
              0.094403
                         0.093605
              0.094403
25
    0.099089
                         0.093605
    0.099089
              0.094403
26
                         0.093605
   0.099089
                         0.093605
27
              0.094403
    0.099089
              0.094403
                         0.093605
28
    0.099089
              0.094403
                         0.093605
29
30
    0.099089
              0.094403
                         0.093605
    0.099089
31
              0.094403
                         0.093605
    0.099089
              0.094403
                         0.093605
32
33
    0.099089
              0.094403
                         0.093605
    0.099089
              0.094403
34
                         0.093605
    0.099089
              0.094403
35
                         0.093605
    0.099089
              0.094403
                         0.093605
36
    0.099089
              0.094403
37
                         0.093605
    0.099089
              0.094403
38
                         0.093605
    വളമാവര
              0 001103
                         0 003605
```

```
      39
      0.099089
      0.094403
      0.093605

      40
      0.099089
      0.094403
      0.093605

      41
      0.099089
      0.094403
      0.093605

      42
      0.099089
      0.094403
      0.093605

      43
      0.099089
      0.094403
      0.093605

      44
      0.099089
      0.094403
      0.093605

      45
      0.099089
      0.094403
      0.093605

      46
      0.099089
      0.094403
      0.093605

      48
      0.099089
      0.094403
      0.093605

      49
      0.099089
      0.094403
      0.093605

      50
      0.099089
      0.094403
      0.093605

      51
      0.099089
      0.094403
      0.093605

      52
      0.099089
      0.094403
      0.093605

      Train...
```

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape."

```
Train on 37 samples, validate on 16 samples
Epoch 1/10
acc: 0.0270 - val loss: 0.2455 - val acc: 0.0000e+00
Epoch 2/10
acc: 0.0811 - val loss: 0.2452 - val acc: 0.0000e+00
Epoch 3/10
acc: 0.0270 - val loss: 0.2449 - val acc: 0.0000e+00
Epoch 4/10
acc: 0.1081 - val loss: 0.2446 - val acc: 0.0000e+00
Epoch 5/10
acc: 0.0270 - val loss: 0.2443 - val acc: 0.0000e+00
Epoch 6/10
```

```
acc: 0.0270 - val loss: 0.2440 - val acc: 0.0000e+00
Epoch 7/10
acc: 0.0270 - val loss: 0.2437 - val acc: 0.0000e+00
Epoch 8/10
acc: 0.1351 - val loss: 0.2434 - val acc: 0.0000e+00
Epoch 9/10
acc: 0.1081 - val loss: 0.2431 - val acc: 0.0000e+00
Epoch 10/10
acc: 0.1081 - val loss: 0.2428 - val acc: 0.0000e+00
Test set
Loss: 0.243
Accuracy: 0.000
```


C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.
py:235: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for e
xample using ravel().

y = column_or_1d(y, warn=True)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in
0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto'
in 0.22. Specify the multi_class option to silence this warning.
"this varning " FutureWarning)

"this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti

c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logisti c.py:469: FutureWarning: Default multi class will be changed to 'auto' in 0.22. Specify the multi class option to silence this warning. "this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\sym\base.py:193: Fut ureWarning: The default value of gamma will change from 'auto' to 'scal e' in version 0.22 to account better for unscaled features. Set gamma e xplicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning)

Accuracy for the cluster: 16.000000%.

0.23333333333333333 Model: "sequential 33"

Layer (type)	Output Shape	Param #
embedding_33 (Embedding)	(None, 2000, 128)	1024000
spatial_dropout1d_17 (Spatia	(None, 2000, 128)	0
lstm_33 (LSTM)	(None, 64)	49408
feature_dense (Dense)	(None, 14)	910

Total params: 1,074,318 Trainable params: 1,074,318 Non-trainable params: 0

None

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow core\python\framework\indexed slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 18 samples, validate on 12 samples
Epoch 1/10
cc: 0.1667 - val loss: 2.6413 - val acc: 0.0833
Epoch 2/10
18/18 [============= ] - 37s 2s/step - loss: 2.6321 - a
cc: 0.1111 - val loss: 2.6417 - val acc: 0.0833
Epoch 3/10
cc: 0.2778 - val loss: 2.6418 - val acc: 0.0833
Epoch 4/10
18/18 [============= ] - 19s 1s/step - loss: 2.5833 - a
cc: 0.1667 - val loss: 2.6413 - val acc: 0.0833
feauture engg data shape: (30, 14)
New Features
                                   2
 5
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
2
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
5
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
6
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
7
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
9
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
   0.069534 0.072898 0.075813 0.073523 0.073262 0.068226 0.07212
```

3 11	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 12 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
13 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
14 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
15 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
16 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
17 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
18 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
19 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
20 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
21 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
22 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
23 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
24 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
25 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
26 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
27 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
28 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
29 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212

	7	8	9	10	11	12	13
0	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
1	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
2	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
3	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
4	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
5	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
6	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
7	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
8	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
9	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
10	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
11	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
12	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
13	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
14	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
15	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
16	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
17	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001

18	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
19	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
20	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
21	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
22	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
23	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
24	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
25	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
26	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
27	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
28	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
29	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
New 5	Features 6	,	0	1	2	3	4
0 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
1	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 2	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 4	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 5	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 6	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212

3							
7 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
8	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
9	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
10 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
11 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
12 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 13 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 14 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
15	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 16	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 17 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
18	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 19 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
20	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 21	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 22	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 23	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 24	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
3 25 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212

26 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
27 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
28 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
29 3	0.069534	0.072898	0.075813	0.073523	0.073262	0.068226	0.07212
	7	8	9	10	11	12	13
0	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
1	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
2	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
3	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
4	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
5	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
6	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
7	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
8	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
9	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
10	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
11	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
12	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
13	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001

14	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
15	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
16	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
17	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
18	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
19	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
20	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
21	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
22	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
23	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
24	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
25	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
26	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
27	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
28	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
29	0.070571	0.072309	0.069927	0.071749	0.06716	0.070903	0.072001
Tra	in						

Train...

C:\Users\Owner\AppData\Roaming\Python\Python37\site-packages\tensorflow _core\python\framework\indexed_slices.py:424: UserWarning: Converting s parse IndexedSlices to a dense Tensor of unknown shape. This may consum e a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape.

```
Train on 21 samples, validate on 9 samples
Epoch 1/10
acc: 0.0000e+00 - val_loss: 0.2502 - val acc: 0.1111
Epoch 2/10
acc: 0.0000e+00 - val loss: 0.2501 - val acc: 0.1111
Epoch 3/10
acc: 0.0000e+00 - val loss: 0.2500 - val acc: 0.1111
Epoch 4/10
acc: 0.0476 - val loss: 0.2498 - val acc: 0.1111
Epoch 5/10
acc: 0.0000e+00 - val loss: 0.2497 - val acc: 0.1111
Epoch 6/10
acc: 0.0000e+00 - val loss: 0.2496 - val acc: 0.1111
Epoch 7/10
acc: 0.0000e+00 - val loss: 0.2495 - val acc: 0.1111
Epoch 8/10
acc: 0.0476 - val loss: 0.2494 - val acc: 0.1111
Epoch 9/10
acc: 0.0476 - val loss: 0.2493 - val acc: 0.1111
Epoch 10/10
acc: 0.0476 - val loss: 0.2492 - val acc: 0.1111
9/9 [======] - 0s 14ms/step
Test set
Loss: 0.249
Accuracy: 0.111
```


In []:		