APLICACIONES DE LA PROGRAMACION LINEAL

DOCENTE: ING. WILBER MARLON ALVARADO MARTINEZ

APLICACIONES DE LA PROGRAMACION LINEAL

Para las aplicaciones de la programación lineal es necesario tomar en cuenta las siguientes consideraciones:

- 1. Son aplicaciones realistas
- 2. Cada modelo se detalla , y se interpreta su solución optima
- 3. Lo que diferencia con el modelo de dos variables es que la definición de las variables, construcción de la función objetivo, y las restricciones no son tan directas
- 4. Permite resolver problemas de:
- a) Inversión
- b) Planificación de la producción y control de inventarios (Almacenaje)
- c) Planificación de la mano de obra
- d) Planificación de desarrollo urbano
- e) Refinación y mezcla de petróleo
- f) Planificación de optimización de semáforos
- g) Comunicaciones Internas
- h) Nutrición

Este problema administrativo consiste en colocar m recursos (personal u objetos) a n tareas.

Por ejemplo: Una empresa puede asignar óptimamente sus m empleados a n áreas de la empresa teniendo en cuenta el rendimiento del empleado.

Nota: En este problema se pueden analizar dos necesidades para la rentabilidad de la empresa se puede maximizar el rendimiento del empleado y por otro lado se puede minimizar los costos por asignar un empleado a cada departamento.

Su representación para el análisis es un cuadro de asignaciones que esta compuesto por filas y columnas, En la parte vertical se detalla el recurso y en la parte horizontal las tareas o actividades:

RECURSO		TA	REAS	
RECURSO	T1	T2	T3	 Tn
R1	C ₁₁	C ₁₂	C13	 C _{1n}
R2	C ₂₁	C22	C23	 C _{2n}
R3	C31	C32	Сзз	 Сзп
Rm	C _{m1}	C _{m2}	Стз	 Cmn

Procedimiento para resolver problemas de asignación:

- A. Caso de Minimización
- 1. Determinar el menor costo de cada una de las filas
- 2. Restar con ese valor a los demás costos de la fila
- 3. Hacer lo mismo al nivel de columnas, si es que alguna no se haya cubierto con ceros y restar con ese valor a los demás elementos de las columnas comprometidas
- 4. Trazar el menor numero de rectas que incluya la mayor cantidad de ceros. Si el numero de rectas es igual al numero de filas entonces se habrá llegado a la solución optima. Ir al paso 7
- 5. Si no es la solución optima, en las celdas no cubiertas, seleccionar el menor valor de las celdas y restar a los demás y adicionar este valor aquellas celdas que forman parte de la intersección de dos rectas (no aquellos que sean ceros)
- 6. Regresar al paso 4
- 7. Para obtener el costo empiece asignando a las celdas cubiertas con ceros los valores originales dados en la matriz inicial. Empiece este procedimiento con aquellas filas con el mínimo números de ceros
- B. Caso de Maximización

Seleccionar los valores mas altos de las filas y columnas y seguir los pasos dados anteriormente

Procedimiento para resolver problemas de asignación:

- A. Caso de Minimización
- 1. Determinar el menor costo de cada una de las filas
- 2. Restar con ese valor a los demás costos de la fila
- 3. Hacer lo mismo al nivel de columnas, si es que alguna no se haya cubierto con ceros y restar con ese valor a los demás elementos de las columnas comprometidas
- 4. Trazar el menor numero de rectas que incluya la mayor cantidad de ceros. Si el numero de rectas es igual al numero de filas entonces se habrá llegado a la solución optima. Ir al paso 7
- 5. Si no es la solución optima, en las celdas no cubiertas, seleccionar el menor valor de las celdas y restar a los demás y adicionar este valor aquellas celdas que forman parte de la intersección de dos rectas (no aquellos que sean ceros)
- 6. Regresar al paso 4
- 7. Para obtener el costo empiece asignando a las celdas cubiertas con ceros los valores originales dados en la matriz inicial. Empiece este procedimiento con aquellas filas con el mínimo números de ceros
- B. Caso de Maximización

Seleccionar los valores mas altos de las filas y columnas y seguir los pasos dados anteriormente

Caso Practico: Caso Compañía JAV

La gerencia general que se encuentra en Bogotá ha decidido que cada uno de los 4 vicepresidentes visite una de las 4 plantas de la compañía ubicada en diferentes ciudades.

La gerencia empieza por estimar los costos que representara a la compañía el envió de cada presidente a cada planta. Con estos costos el gerente puede evaluar cualquier designación particular con base a la siguiente matriz de costos:

VICEPRESIDENTE/PLANTA	1	2	3	4
Finanzas (F)	24	10	21	11
Mercadeo (M)	14	22	10	15
Operaciones (O)	15	17	20	19
Personal (P)	11	19	14	13

Establecer el plan de asignación a mínimo costo:

Solución del Caso Practico, Aplicar procedimiento:

Determinar el menor costo de cada una de las filas

VICEPRESIDENTE	1	2	3	4	Mínimo
Finanzas (F)	24	10	21	11	10
Mercadeo (M)	14	22	10	15	10
Operaciones (O)	15	17	20	19	15
Personal (P)	11	19	14	13	11

2. Restar con ese valor a los demás costos de la fila

VICEPRESIDENTE	1	2	3	4	Mínimo
Finanzas (F)	14	0	11	1	10
Mercadeo (M)	4	12	0	5	10
Operaciones (O)	0	2	5	4	15
Personal (P)	0	8	3	2	11

Solución del Caso Practico, Aplicar procedimiento:

3. Hacer lo mismo al nivel de columnas, si es que alguna no se haya cubierto con ceros y restar con ese valor a los demás elementos de las columnas comprometidas

VICEPRESIDENTE	1	2	3	4
Finanzas (F)	14	0	11	0
Mercadeo (M)	4	12	0	4
Operaciones (O)	0	2	5	3
Personal (P)	0	8	3	1
Mínimo	-	-	-	1

4. Trazar el menor numero de rectas que incluya la mayor cantidad de ceros. Si el numero de rectas es igual al numero de filas entonces se habrá llegado a la solución optima. Ir al paso 7

VICEPRESIDENTE	1	2	3	4
Finanzas (F)	14	0	11	0
Mercadeo (M)	4	12	0	4
Operaciones (O)	0	2	5	3
Personal (P)	0	8	3	1

Nota: Las rectas que incluyen la mayor cantidad de ceros (02) son la columna 1 y la fila de Finanzas. Como piden el mínimo numero de rectas se puede escoger arbitrariamente cualquiera de ellas. Escogemos la columna 1.

Solución del Caso Practico, Aplicar procedimiento:

5. Si no es la solución optima, en las celdas no cubiertas, seleccionar el menor valor de las celdas y restar a los demás y adicionar este valor aquellas celdas que forman parte de la intersección de dos rectas (no aquellos que sean ceros)

VICEPRESIDENTE	1	2	3	4
Finanzas (F)	14+1	0	11+1	0
Mercadeo (M)	4	12-1	0	4-1
Operaciones (O)	0	2-1	5-1	3-1
Personal (P)	0	8-1	3-1	1-1

Nota: El menor valor de las celdas es el numero 1 que se encuentra en la celda (4,P). Luego se adiciona y resta según corresponda teniendo como resultado la siguiente tabla:

VICEPRESIDENTE	1	2	3	4
Finanzas (F)	15	0	12	0
Mercadeo (M)	4	11	0	3
Operaciones (O)	0	1	4	2
Personal (P)	0	7	2	0

Solución del Caso Practico, Aplicar procedimiento:

Regresar al paso 4

4. Trazar el menor numero de rectas que incluya la mayor cantidad de ceros. Si el numero de rectas es igual al numero de filas entonces se habrá llegado a la solución optima. Ir al paso 7

VICEPRESIDENTE	1_	2	3	4	
Finanzas (F)	15	0	12	0	
Mercadeo (M)	4	11	0	3	
Operaciones (O)	0	1	4	2	
Personal (P)	↓ 0 _	7	2	Q	

7. Para obtener el costo empiece asignando a las celdas cubiertas con ceros los valores originales dados en la matriz inicial. Empiece este procedimiento con aquellas filas con el mínimo números de ceros

VICEPRESIDENTE	Planta	Costo (\$)
Finanzas (F)	2	10
Mercadeo (M)	3	10
Operaciones (O)	1	15
Personal (P)	4	13
Total	48	

Las oportunidades de inversión están disponibles para los empresarios, emprendedores e inversionistas a la orden del día.

Ejemplos:

- 1. Asignación de presupuestos de capital para proyectos
- 2. Estrategias de inversión en bonos
- 3. Selección de cartera de acciones
- 4. Políticas de prestamos bancarios

La programación lineal puede usarse para seleccionar la combinación optima de oportunidades que maximizaran el rendimiento satisfaciendo los requerimientos establecidos por el inversionista y el mercado.

Modelo de Préstamo Bancario

Bank One esta desarrollando una política de prestamos que implica un máximo de \$12 millones. La tabla siguiente muestra los datos pertinentes en relación con los prestamos disponibles.

Tasa de interés	% de deudas impagables
.140	.10
.130	.07
.120	.03
.125	.05
.100	.02
	.140 .130 .120 .125

Las deudas impagables son irrecuperables y no producen ingresos por intereses.

La competencia con otras instituciones financieras dicta la asignación de 40% mínimo de los fondos para prestamos agrícolas y comerciales. Para ayudar a la industria de la construcción de viviendas en la región, los prestamos para casa deben ser por lo menos 50% de los prestamos personales, para automóvil, y para casa. El banco limita la proporción total de las deudas impagables en todos los prestamos a un máximo de 4%.

Planteamiento:

Modelo Matemático: La situación se refiere a determinar el monto del préstamo de cada categoría lo que conduce a las siguientes definiciones de variables:

X1: Prestamos personales (En millones de dólares)

X2: Prestamos para automóvil

X₃: Prestamos para casa

X4: Prestamos agrícolas

X₅: Prestamos comerciales

El objetivo del Bank One es maximizar el rendimiento neto (Ingreso por Intereses menos Deuda Impagable)

I: PIN

El Interés se determina por : Monto de Préstamo x Tasa Interés x Tiempo

Pero en este caso en particular el interés (Ingreso) se ve afectado por el % deudas impagables es decir que si los prestamos personales tengo un % de deuda impagable del 10% esto quiere decir que voy a recibir el 90% del Ingreso por interés; por lo que la formula de interés simple se ve afectado

Interés Total: $X_1(0,140)(1) \times (0,9) + X_2(0,130)(1) \times (0,93) + X_3(0,12)(1) \times (0,97) + X_4(0,125)(1) \times (0,95) + X_5(0,1)(1) \times (0,98)$

Interés Total: 0,126 x1 + 0,1209 x2+ 0,1164 x3+ 0,11875 x4+ 0,098 x5

Planteamiento:

Modelo Matemático:

La deuda impagable esta determinada (Ver cuadro) y se establece de la siguiente manera:

Deuda Impagable: 0,1 X1 + 0,07X2 + 0,03 X3+ 0,05 X4 + 0,02 X5

Para maximizar el rendimiento neto , la función objetivo combina el ingreso por interés y la deuda impagable, lo cual se demuestra a continuación:

Maximizar Z: Interés Total – Deuda Impagable:

$$(0.126 \times 1 + 0.1209 \times 2 + 0.1164 \times 3 + 0.11875 \times 4 + 0.098 \times 5) - (0.1 \times 1 + 0.07 \times 2 + 0.03 \times 3 + 0.05 \times 4 + 0.02 \times 5)$$
:

Maximizar Z: 0,026 x1 + 0,0509 x2+ 0,0864 x3+ 0,06875 x4+ 0,078 X5

Determinando restricciones:

1. Los fondos totales no deben exceder de \$ 12 millones

$$X1 + X2 + X3 + X4 + X5 \le 12$$

2. Los prestamos agrícolas y comerciales deben de ser iguales a por lo menos el 40% de todos los prestamos:

$$X_4 + X_5 \ge 0,4 (X_1 + X_2 + X_3 + X_4 + X_5)$$

 $0,4X_1 + 0,4X_2 + 0,4X_3 - 0,6X_4 - 0,6X_5 \le 0$

Planteamiento:

Modelo Matemático:

3. Los prestamos para casa deben de ser iguales a por lo menos 50% de los prestamos personales para automóvil y para casa:

$$X_3 \ge 0.5 (X_1 + X_2 + X_3)$$

$$0.5 X1 + 0.5 X2 - 0.5 X3 \le 0$$

4. Las deudas impagables no deben exceder 4% de todos los prestamos:

$$0,1 \times 1 + 0,07 \times 2 + 0,03 \times 3 + 0,05 \times 4 + 0,02 \times 5 \le 0,4 \times 1 + 2 + 2 \times 3 + 2 \times 4 + 2 \times 5 = 0,00 \times 10^{-2} \times 10^{-$$

$$0.06X1 + 0.03X2 - 0.01X3 + 0.01X4 - 0.02X5 \le 0$$

5. No negatividad

$$X_1 \ge 0; X_2 \ge 0; X_3 \ge 0; X_4 \ge 0; X_5 \ge 0$$

Nota: El caso se plantea sobre el supuesto que todos los prestamos se emiten en el mismo tiempo y Permite pasar por alto las diferencias en el valor del tiempo de los fondos asignados a los diferentes prestamos así como su periodo de generación de interés es el mismo

Solución:

La solución optima se calcula utilizando AMPL (archivo amplEx2.4-1.txt) descargar e instalar en la plataforma:

Z: 0,99648, X1: 0; X2: 0; X3: 7.2; X4: 0; X5:4.8

La solución optima se puede calcular utilizando Tora (Descargar e Instalar Se adjunto Driver en la plataforma) :

Primer Paso: Click Here

Solución:

Segundo Paso: Click Linear Programming

Solución:

Tercer Paso: Click Go to Input Screem

Solución:

Cuarto Paso: Ingresar Problem Title (Préstamo Bancario), Ingresar numero de Variables que son 5 y numero de restricciones que son 4

Solución:

Quinto Paso: Ingresar todos los datos y hacer click en SOLVE Menu, Solve Problem, Algebraic,

Final Solution

Solución:

Sexto Paso: Se obtiene el resultado del ejercicio

Resultado: Z: 0,99648, X1: 0; X2: 0; X3: 7.2; X4: 0; X5:4.8