AMENDMENTS TO THE CLAIMS

Claim 1 (previously presented). Isolated human soluble guanylyl cyclase $\alpha 1/\beta 1$, which is an enzymatically active heterodimer comprising hsGC $\alpha 1$ (SEQ ID NO: 2) and hsGC $\beta 1$ (SEQ ID NO: 4).

Claim 2 (original). A method for the production of $\alpha 1$ (hsGC $\alpha 1$; SEQ ID NO:2) and $\beta 1$ (hsGC $\beta 1$; SEQ ID NO:4) subunits of human soluble guanylyl cyclase comprising the expression in prokaryotic or eukaryotic host cells of expression vectors containing the DNA sequence of hsGC $\alpha 1$ and hsGC $\beta 1$ and obtaining the subunits.

Claim 3 (original). The method for producing the $\alpha 1$ and $\beta 1$ subunits of human soluble guanylyl cyclase according to claim 2, wherein the step of obtaining the subunits comprises a lysis of the cells, the affinity chromatography of the cell lysate, and the subsequent elution of the subunits.

Claim 4 (original). The method for producing the $\alpha 1$ and $\beta 1$ subunits of human soluble guanylyl cyclase according to claim 2 or 3, wherein the expression vector contains at least one additional DNA sequence coding for a domain for the specific affinity chromatography (affinity tag) with appended protease cleavage site.

Claim 5 (original). The method for producing $\alpha 1$ and $\beta 1$ subunits of human soluble guanylyl cyclase according to claim 4, wherein the expression vector contains the DNA sequence for hsGC $\alpha 1$ with affinity tag, the DNA sequence for hsGC $\alpha 1$ with affinity tag, and the DNA sequence for hsGC $\beta 1$, the DNA sequence for hsGC $\beta 1$ with affinity tag and the DNA sequence for hsGC $\alpha 1$, or the DNA sequence hsGC $\alpha 1$ with affinity tag and the DNA sequence for hsGC $\alpha 1$ with affinity tag.

Claim 6 (previously presented). The method for producing human soluble guanylyl cyclase $\alpha 1/\beta 1$, which is an enzymatically active heterodimer comprising hsGC $\alpha 1$ (SEQ ID NO: 2) and hsGC $\beta 1$ (SEQ ID NO: 4), the method comprising the separate expression in prokaryotic or eukaryotic host cells of an expression vector containing the DNA sequence for

hsGC α 1 or hsGC β 1, extraction of the subunits, and reconstitution of subunits hsGC α 1 and hsGC β 1 to form the dimeric guanylyl cyclase α 1/ β 1 (hsGC α 1/ β 1).

Claim 7 (original). The method for producing human soluble guanylyl cyclase $\alpha 1/\beta 1$ according to claim 6, wherein the step for the purification of the subunits consists of a separate lysis of cells containing hsGC $\alpha 1$ or hsGC $\beta 1$, the separate affinity chromatography of the cell lysates, and the subsequent elution of the subunits.

Claim 8 (previously presented). The method for producing human soluble guanylyl cyclase $\alpha 1/\beta 1$, which is an enzymatically active heterodimer comprising hsGC $\alpha 1$ (SEQ ID NO: 2) and hsGC $\beta 1$ (SEQ ID NO: 4), the method consisting of the coexpression of the DNA sequences of hsGC $\alpha 1$ and hsGC $\beta 1$ in prokaryotic or eukaryotic host cells, a lysis of the cells containing hsGC $\alpha 1$ and hsGC $\beta 1$, and affinity chromatography and subsequent elution of hsGC $\alpha 1/\beta 1$.

Claims 9-13 (cancelled).