The problems on this worksheet are for in-class practice during tutorial. You are free to collaborate and to ask for help. They don't count for course credit, but it's a good idea to make sure you know how to do everything before you leave tutorial – similar problems may show up on a test or assignment.

- 1. Eliminate the parameter to obtain an equation for the curve involving only x and y:
 - (a) $x = \sec t, y = \tan t$
 - (b) $x = 4\sin t + 1$, $y = 3\cos t 2$ (Hint: first solve for $\cos t$ and $\sin t$.)
 - (c) $x = \frac{1}{t+1}$, $y = \frac{3t+5}{t+1}$. (Hint: try doing long division on the expression for y.)
 - (d) $x = \cosh t, y = \sinh t$
- 2. Find the length of the parametric curve:
 - (a) $x = -3\sin(2t), y = 3\cos(2t), t \in [0, \pi].$
 - (b) $x = e^{t/10} \cos t, y = e^{t/10} \sin t, t \in [0, 2\pi].$
- 3. Find the area enclosed by the astroid $x=\cos^3 t, y=\sin^3 t, t\in [0,2\pi]$. (There is some work involved here to evaluate the integral.)
- 4. Find the area enclosed by the loop of the "teardrop" curve $x = t(t^2 1), y = t^2 1$. (See Figure 5.34 in the text.)
- 5. Verify that $x = Ce^{-t} + De^{2t}$ is a solution to x'' x' 2x = 0.
- 6. Find the solution from Problem 5 that satisfies x(0) = 3 and x'(0) = -2.
- 7. Solve $y' = y^3$ when y(0) = 1. (Hint: $\frac{1}{y'} = \frac{dx}{dy}$.)
- 8. Solve $\frac{dx}{dt} = x \sin(t)$ for x(0) = 1.