Lab Nr. 4, Probability and Statistics Continuous Random Variables; CDF and Inverse CDF

1. Let X have one of the following distributions: $X \in N(\mu, \sigma)$ (normal), $X \in T(n)$ (Student), $X \in \chi^2(n)$, or $X \in F(m, n)$ (Fischer). For given values of $x_0, x_1, x_2 \in \mathbb{R}$ and $\alpha, \beta \in (0, 1)$, compute the following:

- a) $P(X \le x_0)$;
- b) $P(X \ge x_0)$;
- c) $P(x_1 \le X \le x_2)$ (for $x_1 < x_2$);
- d) $P(X \le x_1 \text{ or } X \ge x_2)$ (for $x_1 < x_2$);
- e) the value x_{α} such that $P(X < x_{\alpha}) = \alpha$;
- f) the value x_{β} such that $P(X > x_{\beta}) = \beta$.
- **2.** Normal approximation to the binomial distribution: For moderate values of p (0.05 $\leq p \leq$ 0.95) and large values of n ($n \to \infty$),

Bino
$$(n, p) \approx \text{Norm}\left(\mu = np, \sigma = \sqrt{np(1-p)}\right)$$
.

Write a Matlab code to visualize how the binomial distribution gradually takes the shape of the normal distribution as $n \to \infty$.