Real Analysis

Blabby

 $January\ 4,\ 2025$

Contents

0.1 Construction of \mathbb{R}

Definition 1. The *supremum* $\sup(S) = \alpha \in A$ of a set $S \subset A$ is an upper bound of S, and for $\beta < \alpha$, β is not an upper bound for S.

Example. Consider \mathbb{Q}^- ; let $\sup \mathbb{Q}^- = \gamma < 0$ But there exists $\frac{\gamma}{2} < 0$, so $\gamma \neq \sup \mathbb{Q}^-$. It follows that $\sup \mathbb{Q}^- = 0$.

Definition 2. A set S has the *least upper bound property*, or *satisfies the Completeness Axiom*, if every non-empty subset of S with an upper-bound also has a supremum.

Definition 3. A *Dedekind Cut* α is a subset of \mathbb{Q} satisfying:

- $1 \quad \alpha \neq \emptyset \ \mathbb{O}$
- 2. If $p \in \alpha$, and $p > q \in \mathbb{Q}$, then $q \in \alpha$ (closed downwards).
- 3. If $p \in \alpha$ then p < r for some $r \in \alpha$.

These cuts are essentially rays on the rationals pointing towards the negative direction, $(-\infty, p)$ for $p \in \mathbb{Q}$.

Example. The set \mathbb{Q}^- is trivially closed downwards, and has no largest member, so it is therefore a Dedekind cut.

Definition 4. The set of all real numbers, \mathbb{R} , is defined as the set $\mathbb{R} := \{\alpha \subset \mathbb{Q} : \alpha \text{ is a Dedekind cut}\}$, where:

- 1. $\alpha < \beta$ if $\alpha \subset \beta$.
- 2. $\alpha + \beta := \{r + s : r \in \alpha \text{ and } s \in \beta\}$
- 3. If $\alpha, \beta \in \mathbb{R}^+$, then $\alpha\beta := \{p : p < rs \text{ for } r, s > 0, r \in \alpha, s \in \beta\}.$

Example. The real number $\sqrt{2}$ is defined as $\alpha = \{x \in \mathbb{Q} : x^2 < 2\}$.

Figure 1: The Dedekind Cut corresponding to $\sqrt{2}$

Theorem 1. \mathbb{R} is an ordered field.

Proof. 1. $\alpha + \beta := \{r + s : r \in \alpha \text{ and } s \in \beta\} = \beta + \alpha := \{s + r : r \in \alpha \text{ and } s \in \beta\}$, because \mathbb{Q} is a field (and therefore commutative). So, addition in \mathbb{R} commutes.

- 2. For γ a Dedekind cut, $(\alpha+\beta)+\gamma=\{(s+r)+t:r\in\alpha,s\in\beta\text{ and }t\in\gamma\}=\{s+(r+t):r\in\alpha,s\in\beta\text{ and }t\in\gamma\}=\alpha+(\beta+\gamma)\text{ because }\mathbb{Q}$ is a field (and therefore associative). So, addition in \mathbb{R} is associative.
- 3. Let $\mathbb{Q}^- =: 0_{\mathbb{R}} \in \mathbb{R}$. $0_{\mathbb{R}} + \alpha = \{s + 0 : s \in \alpha\} = \{s : s \in \alpha\} = \alpha$, so $0_{\mathbb{R}}$ is an additive identity.

The remainder of the proof can be found in Baby Rudin.

Theorem 2. \mathbb{R} satisfies the Axiom of Completeness.