

AND ITS
APPLICATIONS

Linear Algebra and its Applications 326 (2001) 193–203

www.elsevier.com/locate/laa

Factorization of operator-valued polynomials in several non-commuting variables[☆]

Scott McCullough

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA Received 11 January 2000; accepted 16 October 2000

Submitted by L. Rodman

Abstract

A version of Fejer–Riesz factorization and factorization of positive operator-valued polynomials in several non-commuting variables holds. The proofs use Arveson's extension theorem and matrix completions. © 2001 Elsevier Science Inc. All rights reserved.

AMS classification: Primary 47A68; Secondary 47A56; 47A20

Keywords: Fejer-Riesz; Completely positive; Toeplitz; Hankel

0. Introduction

Let \mathscr{G}_m denote the free semi-group on m generators g_1, \ldots, g_m with identity e. Let \mathscr{U}_m denote the set of m-tuples $U = (U_1, \ldots, U_m)$ of of unitary operators on separable Hilbert space. Given a word $w = g_{j_1}g_{j_2}\cdots g_{j_k} \in \mathscr{G}_m$ and $U \in \mathscr{U}_m$, let

$$U^w = U_{j_1}U_{j_2}\cdots U_{j_k}.$$

Let \mathscr{G}_m^n denote the words of length at most n, $\mathscr{F}_m \supset \mathscr{G}_m$ the free group on the m generators g_1,\ldots,g_m , and \mathscr{H}_m^n the set of words of the form $v^{-1}w$, where $v,w\in \mathscr{G}_m^n$. (\mathscr{H}_m^n are the hereditary words of order n.) For $h=v^{-1}w\in \mathscr{H}_m^n$ and $U\in \mathscr{U}_m$, define

$$U^h = (U^v)^* U^w,$$

and observe U^h depends only upon h, not v and w.

0024-3795/01/\$ - see front matter $_{\odot}$ 2001 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 2 8 5 - 8

^{*} Research supported by NSF grant DMS-9970347.

E-mail address: sam@math.ufl.edu (S.A. McCullough).

Given (complex) Hilbert spaces $\mathscr C$ and $\mathscr E$, let $\mathscr L(\mathscr C)$ and $\mathscr L(\mathscr C,\mathscr E)$ denote the bounded operators on $\mathscr C$ and from $\mathscr C$ to $\mathscr E$, respectively.

Theorem 0.1. Let positive integers m and n and operators $A_h \in \mathcal{L}(\mathcal{C}), h \in \mathcal{H}_m^n$, be given. If

$$A(U) = \sum U^h \otimes A_h$$

is positive semidefinite for each $U \in \mathcal{U}_m$, then there exists an auxiliary Hilbert space \mathscr{E} (of dimension at most $\dim(\mathscr{C}) \sum_{0}^{n} m^{j}$) and operators $B_w \in \mathscr{L}(\mathscr{C}, \mathscr{E}), \ w \in \mathscr{G}_m^n$, such that

$$A(U) = B(U)^* B(U),$$

where

$$B(U) = \sum U^w \otimes B_w.$$

When m = 1, the spectral theorem implies that

$$A(U) = \sum_{j=1}^{n} U^{j} \otimes A_{j}$$

is positive semidefinite for all unitary operators U if and only if

$$A(u) = \sum_{-n}^{n} u^{j} A_{j}$$

is positive semidefinite for all complex numbers u of modulus 1. Thus, as a corollary of Theorem 0.1, if A(u) is positive semidefinite, then it factors as $B(u)^*B(u)$. This is somewhat weaker than the versions of Fejer–Riesz factorization of Rosenblatt, Gohberg, and the very general results of Rosenblum and Rovnyak [7,8], where $\mathscr{E} = \mathscr{C}$ and B(u) is an outer function (no zeros in the unit disc in the scalar $\mathscr{C} = \mathbb{C}$ case). However, using Beurling's theorem, this stronger conclusion follows from the existence of a factorization. In the several variable case (m > 1) there is a version of Beurling's theorem, but it requires an auxiliary Hilbert space (usually countably many copies of \mathscr{C}) and so it seems unlikely that, in general, \mathscr{E} can be chosen equal to \mathscr{C} when \mathscr{C} is finite dimensional.

To state a factorization for non-negative operator valued polynomials in several non-commuting variables, let \mathscr{S}_m denote the set of *m*-tuples $S=(S_1,\ldots,S_m)$ of self-adjoint operators on separable Hilbert space. Given $S\in\mathscr{S}_m$ and a word $w=g_{j_1}g_{j_2}\cdots g_{j_k}$, let

$$S^w = S_{j_1} S_{j_2} \cdots S_{j_k}.$$

Theorem 0.2. Let m and n positive integers, and operators $A_w \in \mathcal{L}(\mathcal{C})$, $w \in \mathcal{G}_m^{2n}$, be given. If

$$A(S) = \sum S^w \otimes A_w$$

is positive semidefinite for each $S \in \mathcal{S}_m$, then there exists an auxiliary Hilbert space (of dimension at most $\dim(\mathcal{C}) \sum_{0}^{n} m^{j}$) and operators $B_w \in \mathcal{L}(\mathcal{C}, \mathcal{E})$, $w \in \mathcal{G}_m^n$, such that

$$A(S) = B(S)^*B(S),$$

where

$$B(S) = \sum S^w \otimes B_w.$$

The remainder of the paper has four sections. Section 1 collects some preliminaries about completely positive maps and matrix completions. Hankel and Toeplitz matrices in several non-commuting variables are the topics of Sections 2 and 3, respectively. The results in these sections are closely related to recent results of Arias and Popescu [1], and Davidson and Pitts [4]. Section 4 contains the proofs of Theorems 0.1 and 0.2.

1. Preliminaries

1.1. Completely positive maps

A subset $\mathscr S$ of the C^* -algebra M_ℓ of $\ell \times \ell$ matrices is self-adjoint if $S^* \in \mathscr S$ whenever $S \in \mathscr S$. A linear map $\phi : \mathscr S \mapsto \mathscr L(\mathscr C)$ is completely positive if the mapping $1_k \otimes \phi : M_k \otimes \mathscr S \mapsto M_k \otimes \mathscr L(\mathscr C)$ is positive for each k.

Theorem 1.1 (Special case of Arveson's extension theorem). If $\mathscr{G} \subset M_{\ell}$ is self-adjoint, if \mathscr{G} contains a positive definite invertible matrix, and if $\phi : \mathscr{G} \mapsto \mathscr{L}(\mathscr{C})$ is completely positive, then there exists a completely positive map $\bar{\phi} : M_{\ell} \mapsto \mathscr{L}(\mathscr{C})$ which extends ϕ .

Proof (*Sketch*). The usual hypothesis is that \mathcal{S} contains the identity, rather than an invertible positive element [6].

If $\mathscr S$ does not contain the identity, but does contain a positive invertible matrix P, choose X so that $X^*X = P$, let $\mathscr T = (X^{-1})^*\mathscr S X^{-1}$ and define $\psi : \mathscr T \mapsto \mathscr L(\mathscr C)$ by

$$\psi(T) = \phi(X^*TX).$$

 ψ is completely positive and thus extends to a completely positive map $\bar{\psi}: M_{\ell} \mapsto \mathscr{L}(\mathscr{C})$. Define $\bar{\phi}: M_{\ell} \mapsto \mathscr{L}(\mathscr{C})$ by $\bar{\phi}(M) = \bar{\psi}((X^{-1})^*MX^{-1})$. Then $\bar{\phi}$ is a completely positive extension of ϕ . \square

There is a simple characterization due to Choi [6] of completely positive maps $\phi: M_{\ell} \mapsto \mathcal{L}(\mathscr{C})$. Let $E_{\alpha,\beta} \in M_{\ell}$ denote the matrix with a one in the (α,β) position and zero elsewhere.

Theorem 1.2. $\phi: M_{\ell} \mapsto \mathcal{L}(\mathscr{C})$ is completely positive if and only if

$$(\phi(E_{\alpha,\beta})) \in \mathscr{L}(\bigoplus^{\ell} \mathscr{C})$$

is positive semidefinite.

1.2. Chordal graphs and matrix completions

A graph (undirected graph) G consists of a finite set V, the vertices, and a subset E of $V \times V$, the edges, such that $(v, v) \in E$ for each $v \in V$ and $(v, w) \in E$ if and only if $(w, v) \in E$. A subset C of V is a clique (of G) if $(v, w) \in E$ for each $v, w \in C$. A subset L_k of V is a loop of length k provided there is an enumeration $L_k = \{v_1, v_2, \ldots, v_k\}$ such that $(v_j, v_\ell) \in E$ if and only if $|j - \ell| \le 1$ or $|j - \ell| = k - 1$. The graph G is chordal if it contains no loops of length 4 or more.

A partially positive matrix subordinate to the graph G is a set of $k \times k$ matrices $\{P_x : x \in E\}$ such that for each clique $C \subset V$ the matrix (with matrix entries)

$$(P_{(v,w)})_{v,w\in C}$$

is positive semidefinite.

Grone et al. [5] show that if G is chordal, then a partially positive matrix subordinate to G can be extended to a positive semi-definite matrix.

Theorem 1.3. If G is a chordal graph and if $\{P_x : x \in E\}$ is a partial positive matrix subordinate to G, then there exists $k \times k$ matrices P_x for $x \notin E$ such that

$$(P_{(v,w)})_{v,w\in V}$$

is positive semidefinite.

2. Hankel matrices in several non-commuting variables

Denote by \mathfrak{G}_m^n the Hilbert space with orthonormal basis \mathscr{G}_m^n . Given a word $w = g_{j_1}g_{j_2}\cdots g_{j_k} \in \mathscr{G}_m$, let w^t denote the transpose of w,

$$w^{\mathsf{t}} = g_{j_k} \cdots g_{j_2} g_{j_1}.$$

A matrix $H \in \mathcal{L}(\mathfrak{G}_m^n)$ is a Hankel matrix if $H_{v,w}$ depends only upon v^tw . Let \mathbb{H}_m^n denote the collection of all such Hankel matrices. Thus $M_k \otimes \mathbb{H}_m^n$ is the set of Hankel matrices with $k \times k$ matrix entries. In this case $H_{v,w} \in M_k$. Observe that \mathbb{H}_m^n is self-adjoint.

In systems theory, the transfer function corresponds to a Hankel matrix which then has a number of state space realizations. A similar representation holds for Hankel matrices in several non-commuting variables. The representation below for positive Hankel operators generalizes a result of Curto and Fialkow [2].

Theorem 2.1. If $H \in M_k \otimes \mathbb{H}_m^n$ and if H is positive definite, then there exists an m-tuple $S = (S_1, \ldots, S_m)$ of self-adjoint operators on a Hilbert space \mathcal{K} of dimension at most $k \sum_{0}^{n} m^j$ and an operator $V : \mathbb{C}^k \mapsto \mathcal{K}$ such that

$$H_{v,w} = V^* S^{v^{\mathsf{t}} w} V$$

for all $v, w \in \mathcal{G}_m^n$.

The first step in the proof of Theorem 2.1 is to extend the positive definite Hankel matrix H. The same proof that positive definite Hankel matrices have positive completions [2] works for Hankel matrices in several non-commuting variables. Let |w| denote the length of the word $w \in \mathcal{G}_m$.

Lemma 2.2. If $H \in M_k \otimes \mathbb{H}_m^n$ is positive definite, then there exist $G, G' \in M_k \otimes \mathbb{H}_m^{n+1}$ such that $G_{v,w} = G'_{v,w} = H_{v,w}$ for $v, w \in \mathscr{G}_m^n$ and

- 1. G' is positive definite, and
- 2. G is positive semidefinite and for each $x = \sum_{|w|=n+1} x_w \otimes w \in \mathbb{C}^k \otimes \mathfrak{G}_m^{n+1}$, there exists $y = \sum_{|w| \leqslant n} y_w \otimes w$ such that G(x y) = 0.

It is possible to parameterize all the choices for G, but to keep the exposition concise this is not done.

Proof of Lemma 2.2. Define $G_{v,w}=0=G'_{v,w}$ for $|v^{\mathrm{t}}w|=2n+1$. View \mathfrak{G}^n_m as a subspace of \mathfrak{G}^{n+1}_m . Thus \mathfrak{G}^n_m is the span of the words of length at most n and the orthogonal complement $(\mathfrak{G}^n_m)^{\perp}$ is the span of the words of length exactly n+1. Define $X:\mathbb{C}^k\otimes (\mathfrak{G}^n_m)^{\perp}\mapsto \mathbb{C}^k\otimes \mathfrak{G}^n_m$ by

$$\langle X(x \otimes w), y \otimes v \rangle = \langle G_{v,w}x, y \rangle.$$

Observe that

$$\langle X^*(y \otimes v), x \otimes w \rangle = \langle G_{w,v}y, x \rangle,$$

since for |v| < n, $G_{v,w} = H_{v,w} = H_{w,v}^* = G_{w,v}^*$, and if |v| = n, $G_{v,w} = 0 = G_{w,v}$. Let $Y = X^*H^{-1}X$. Define, for |v|, |w| = n + 1,

$$\langle G_{v,w}x, y \rangle = \langle Y(x \otimes w), y \otimes v \rangle.$$

Then the Hankel operator

$$G = \begin{pmatrix} H & X \\ X^* & Y \end{pmatrix} = \begin{pmatrix} H^{1/2} \\ X^*H^{-1/2} \end{pmatrix} (H^{1/2} & H^{-1/2}X)$$

is positive semidefinite. Moreover, given $x = \sum_{|w|=n+1} x_w \otimes w$, choose $y = H^{-1}Xx$, then G(x-y) = 0. This proves item (2). To prove item (1), define G' the same as G, except when |v|, |w| = n + 1 let

$$G'_{v^{\mathsf{t}}w} = G_{v^{\mathsf{t}}w} + \delta_{v,w}I.$$

Lemma 2.3. $\mathbb{M}_k \otimes H_m^n$ contains a positive definite matrix.

Proof. The proof proceeds by induction on n. For n = 0 there is little to prove. If the result holds for n, then it holds for n + 1 by an application of item (1) of Lemma 2.2. \square

Proof of Theorem 2.1. By Lemma 2.2(2), there exists a positive semidefinite $G \in \mathbb{C}^k \otimes \mathbb{H}_m^{n+1}$ such that $G_{v,w} = H_{v,w}$ for $v, w \in \mathcal{G}_m^n$ and such that for each $x = \sum_{|w|=n+1} x_w \otimes w \in \mathcal{C} \otimes \mathfrak{G}_{n+1}$, there exists $y = \sum_{|w| \leqslant n} y_w \otimes w$ with

$$G(x - y) = 0. (2.1)$$

Let $\mathscr L$ denote the vector space with basis $\mathscr C_m^{n+1}$ and let H(G) denote the Hilbert space obtained from $\mathbb C^k\otimes\mathscr L$ by moding out null vectors using the positive semi-definite form

$$\left[\sum x_w \otimes w, \sum y_v \otimes v\right] = \left\langle \left(\sum x_w \otimes w\right), \sum y_v \otimes v\right\rangle$$
$$= \sum \langle G_{v,w} x_w, y_v \rangle.$$

Together, the hypothesis that H is a positive definite matrix and (2.1) imply that the cosets represented by $\{e_q \otimes w : |w| \leq n, 1 \leq q \leq k\}$ is a basis of H(G), where $\{e_q\}$ is the standard basis of \mathbb{C}^k . On this basis, define the shift operators S_i by

$$S_i(e_q \otimes w) = e_q \otimes g_i w.$$

Compute

$$\begin{bmatrix} S_{j} \sum_{|w| \leqslant n} x_{w} \otimes w, \sum_{|v| \leqslant n} y_{v} \otimes v \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{|w| \leqslant n} x_{w} \otimes g_{j}w, \sum_{|v| \leqslant n} y_{v} \otimes v \end{bmatrix}$$

$$= \sum_{|w| \leqslant n} \langle G_{v,g_{j}w}x_{w}, y_{v} \rangle$$

$$= \sum_{|w| \leqslant n} \langle G_{g_{j}v,w}x_{w}, y_{v} \rangle$$

$$= \begin{bmatrix} \sum_{|w| \leqslant n} x_{w} \otimes w, \sum_{|v| \leqslant n} y_{v} \otimes g_{j}v \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{|w| \leqslant n} x_{w} \otimes w, S_{j} \sum_{|v| \leqslant n} y_{v} \otimes v \end{bmatrix}.$$

Thus S_i is self-adjoint.

Define $V: \mathbb{C}^k \mapsto H(G)$ by $Vx = x \otimes e$ and compute, for $|v|, |w| \leqslant n$,

$$[V^*S^{v^{t}w}Vx, y] = [S^wVx, S^vVy]$$
$$= [x \otimes w, y \otimes v]$$
$$= \langle G_{v,w}x, y \rangle.$$

Thus, for any $v, w \in \mathscr{G}_m^n$,

$$V^*S^{v^tw}V = G_{v,w} = H_{v,w}. \qquad \Box$$

3. Toeplitz matrices in several non-commuting variables

Using the notations of the previous section, $T \in \mathcal{L}(\mathfrak{G}_m^n)$ is a Toeplitz matrix if $T_{v,w}$ depends only upon $v^{-1}w$. Let \mathbb{T}_m^n denote the set of all such Toeplitz matrices. Thus, $M_k \otimes \mathbb{T}_m^n$ is the set of Toeplitz operators—the Toeplitz matrices with $k \times k$ matrix entries. In particular, $t(h) \in M_k$ for $h \in \mathcal{H}_m^n$ determines a Toeplitz operator by requiring

$$\langle T(x \otimes w), y \otimes v \rangle = \langle t(v^{-1}w)x, y \rangle$$

for $v, w \in \mathcal{G}_m^n$ and $x, y \in \mathbb{C}^k$. Observe that \mathbb{T}_m^n is self-adjoint. Choosing, t(e) = 1 and t(h) = 0 if $h \neq e$ shows \mathbb{T}_m^n contains the identity matrix.

Compare the following representation for positive semi-definite Toeplitz matrices with the Naimark Dilation Theorem [6].

Theorem 3.1. If $T \in M_k \otimes \mathbb{T}_m^n$ is positive semidefinite, then there exists an m-tuple $U = (U_1, \ldots, U_m)$ of unitary operators on a Hilbert space \mathcal{K} and an operator $V : \mathbb{C}^k \mapsto \mathcal{K}$ such that

$$T_{v,w} = V^* U^{v^{-1}w} V,$$

for all $|v|, |w| \leq n$.

The proof of Theorem 3.1 depends on a positive, rather than contractive, version of Caratheodory interpolation in several non-commuting variables. Recent work of Arias and Popescu [1] and Davidson and Pitts [4] addresses Nevanlinna–Pick and Caratheodory interpolation in several non-commuting variables.

Lemma 3.2. If $T \in M_k \otimes \mathbb{T}_m^n$ is positive semidefinite, then there exists $R \in M_k \otimes \mathbb{T}_m^{n+1}$ such that R is positive semidefinite and $R_{v,w} = T_{v,w}$ for $v, w \in \mathcal{G}_m^n$.

Proof. Let G denote the graph with vertices $V = \mathcal{G}_m^{n+1}$ and edges $E = \{(v, w) : v^{-1}w \in \mathcal{H}_m^n\}$. Thus $(v, w) \in E$ if and only if either $|v|, |w| \leq n$, or there exists j such that $v = g_j v'$ and $w = g_j w'$. In particular, the maximal cliques of G are \mathcal{G}_m^n

and $g_j\mathscr{G}_m^n$, $j=1,2,\ldots,m$ and there are no edges from $\{g_jw:|w|=n\}$ to $\{g_\ell w:|w|\leqslant n\}$ when $j\neq \ell$.

To see that G is chordal, suppose $L = \{v_1, \ldots, v_k\}$ is a subset of V and (v_i, v_j) is an edge if either |i - j| = 1 or |i - j| = k with $k \ge 4$. If all of the v_j are in \mathcal{G}_m^n , then, as \mathcal{G}_m^n is a clique, L is not a loop. Now suppose not all of the v_j are in \mathcal{G}_m^n . Without loss of generality, we may assume $v_1 = g_1w_1$ for some $|w_1| = n$. Consequently, $v_2 = g_1w_2$ and $g_k = g_1w_k$ for some $|w_2|$, $|w_k| \le n$. But then $(v_2, v_k) \in E$, and thus L is not a loop. It follows that G contains no loops of length 4 or more. Thus G is chordal.

Let $t(h) = T_{v,w}$ for $h = v^{-1}w \in \mathcal{H}_m^n$. Since T is toeplitz, t(h) is well defined. The data t(h), $h \in \mathcal{H}_m^n$, determines a partially defined matrix R subordinate to the graph G by

$$R_{v,w} = t(v^{-1}w), \quad (v, w) \in E.$$

On the maximal cliques $g_i \mathcal{G}_m^n$,

$$(R_{v,w})_{v,w \in g_j \mathscr{G}_m^n} = (R_{g_j v',g_j w'})_{v',w' \in \mathscr{G}_m^n}$$

= $(T_{v',w'})_{v',w' \in \mathscr{G}_m^n}$.

Thus, R defines a partially positive matrix subordinate to the graph G. It follows from Theorem 1.2 that there exists $R_{g_j v, g_\ell w}$ for |w|, |v| = n and $j \neq \ell$ such that

$$(R_{v,w})_{v,w\in\mathscr{G}_m^{n+1}}$$

is positive semidefinite.

Proof of Theorem 3.1. From Lemma 3.2 and induction, there exists $Q_{v,w} \in M_k$, $v, w \in \mathcal{G}_m$, such that $Q_{v,w}$ depends only upon $v^{-1}w$, for each N the matrix

$$(Q_{v,w})_{|v|,|w|\leqslant N}$$

is positive semidefinite, and if $|v|, |w| \le n$, then $Q_{v,w} = T_{v,w}$. Let \mathscr{V} denote the vector space with basis \mathscr{G}_m . Let H(Q) denote the Hilbert space obtained by moding out null vectors and completing $\mathbb{C}^k \otimes \mathscr{V}$ in the form

$$\left[\sum x_w \otimes w, \sum y_v \otimes v\right] = \sum \langle Q_{v,w} x_w, y_v \rangle.$$

Define the shift operators S_i densely on H(Q) by

$$S_j \sum x_w \otimes w = \sum x_w \otimes g_j w.$$

The equality,

$$\begin{split} & \left[S_j \sum x_w \otimes w, S_j \sum y_v \otimes v \right] \\ & = \left[\sum x_w \otimes g_j w, \sum y_v \otimes g_j v \right] \\ & = \left\langle \sum Q_{g_j v, g_j w} x_w, y_v \right\rangle \end{split}$$

$$= \left\langle \sum Q_{v,w} x_w, y_v \right\rangle$$
$$= \left[\sum x_w \otimes w, \sum y_v \otimes v \right]$$

shows that S_j is (well defined and) an isometry and so extends to an isometry on H(G).

There exists a Hilbert space K(G) containing H(G) and unitary operators U_j on K(G) such that H(G) is invariant for U_j and U_j restricted to H(G) is S_j . Define $V: \mathbb{C}^k \mapsto K(G)$ by $Vx = x \otimes e$ and compute, for $|v|, |w| \leq n$,

$$\langle V^*U^{v^{-1}w}Vx, y \rangle = \langle U^w x \otimes e, U^v y \otimes e \rangle$$

$$= \langle S^w x \otimes e, S^v y \otimes e \rangle$$

$$= \langle x \otimes w, y \otimes v \rangle$$

$$= \langle Q_{v,w}x, y \rangle$$

$$= \langle T_{v,w}x, y \rangle$$

Thus, $V^*U^{v^{-1}w}V = T_{v,w}$. \square

4. Main results

This section contains the proofs of Theorems 0.1 and 0.2.

Proof of Theorem 0.2. Let $\ell = \sum_{0}^{n} m^{j}$ (the cardinality of \mathcal{G}_{m}^{n}). As before, let \mathfrak{G}_{m}^{n} denote the Hilbert space with orthonormal basis \mathcal{G}_{m}^{n} and identify M_{ℓ} , the $\ell \times \ell$ matrices, with $\mathcal{L}(\mathfrak{G}_{m}^{n})$ in the natural way.

Let $E_{v,w} \in M_\ell$ denote the matrix with a one in the (v,w) position and zeros elsewhere. Given $u \in \mathcal{G}_m^{2n}$, let $e(u) = \sum \{E_{v,w} : u = v^t w\}$. The set $\{e(u) : u \in \mathcal{G}_m^{2n}\}$ is a basis of \mathbb{H}_m^n . Define $\phi : \mathbb{H}_m^n \mapsto \mathcal{L}(\mathcal{C})$ by

$$\phi(e(u)) = A_u$$

To show that ϕ is completely positive, suppose $H \in M_k \otimes \mathbb{H}_m^n$ is positive definite and let $h(u) = H_{v^t w}$, where $v, w \in \mathscr{G}_m^n$ and $u = v^t w$. Since H is a Hankel operator, h(u) is well defined. Note also that $H = \sum h(u) \otimes e(u)$. By Theorem 2.1, there exists an m-tuple $S = (S_1, \ldots, S_m)$ of self-adjoint operators on a Hilbert space \mathscr{K} and an operator $V : \mathbb{C}^k \mapsto \mathscr{K}$ such that $h(u) = V^*S^uV$ for $|u| \leq 2n$. Thus,

$$(1_k \otimes \phi)(H) = (1_k \otimes \phi) \left(\sum h(u) \otimes e(u) \right)$$

$$= \sum h(u) \otimes A_u$$

$$= (V \otimes 1_{\mathscr{C}})^* \left(\sum S^u \otimes A_u \right) (V \otimes 1_{\mathscr{C}}).$$

Thus $(1_k \otimes \phi)(H)$ is positive semidefinite. If H is merely positive semidefinite, rather than positive definite, choose, by Lemma 2.3, a positive definite $G \in M_k \otimes \mathbb{H}_m^n$. Since, for $\delta > 0$, $H + \delta G$ is positive definite, $(1_k \otimes \phi)(H + \delta G)$ is positive semidefinite. Letting δ tend to zero shows $(1_k \otimes \phi)(H)$ is positive semidefinite. Thus ϕ is completely positive. \square

From Theorem 1.1, there exists a completely positive extension $\bar{\phi}: M_{\ell} \mapsto \mathcal{L}(\mathscr{C})$ of ϕ . From Theorem 1.2,

$$(\bar{\phi}(E_{v,w}))\in\mathcal{L}\left(\bigoplus^{\ell}\mathcal{C}\right)$$

is positive semidefinite. Thus, there exists operators $B_w:\mathscr{C}\mapsto \oplus^\ell\mathscr{C}$ such that

$$B_{v}^{*}B_{w} = \bar{\phi}(E_{v,w}).$$

In particular,

$$A_{u} = \phi(e(u))$$

$$= \phi\left(\sum \{E_{v,w} : u = v^{t}w\}\right)$$

$$= \sum \{\bar{\phi}(E_{v,w}) : u = v^{t}w\}$$

$$= \sum \{B_{v}^{*}B_{w} : u = v^{t}w\}.$$

Proof of Theorem 0.1. Let ℓ , M_{ℓ} and let $E_{v,w}$ be as in the proof above, but now let $e(h) = \sum \{E_{v,w} : h = v^{-1}w\}$, for $h \in \mathcal{H}_m^n$. The set $\{e(h)\}$ is a basis of \mathbb{T}_m^n . Define $\phi : \mathbb{T}_m^n \mapsto \mathcal{L}(\mathscr{C})$ by

$$\phi(e(h)) = A_h$$
.

Given a positive semidefinite $T \in \mathbb{M}_k \otimes \mathbb{T}_m^n$, let $t(h) = T_{v,w}$, where $h = v^{-1}w$. In particular $T = \sum t(h) \otimes e(h)$. By Theorem 3.1, there exists an m-tuple $U = (U_1, \ldots, U_m)$ of unitary operators on a Hilbert space \mathscr{K} and a bounded operator $V : \mathbb{C}^k \mapsto \mathscr{K}$ such that

$$t(v^{-1}w) = V^*U^{v^{-1}w}V.$$

Consequently,

$$(1_k \otimes \phi)(T) = 1_k \otimes \phi \left(\sum_h t(h) \otimes e(h) \right)$$
$$= \sum_h t(h) \otimes A_h$$
$$= (V \otimes 1_{\mathscr{C}})^* \left(\sum_h U^h \otimes A_h \right) (V \otimes 1_{\mathscr{C}}).$$

It follows that ϕ is completely positive.

Since ϕ is completely positive, there exists a completely positive $\bar{\phi}: M_{\ell} \mapsto \mathscr{L}(\mathscr{C})$ extending ϕ . The operator

$$(\bar{\phi}(E_{v,w})) \in \mathcal{L}\left(\bigoplus^{\ell} \mathscr{C}\right)$$

is positive semidefinite. Thus, there exists $B_w:\mathscr{C}\mapsto\bigoplus^{\ell}\mathscr{C}$ such that

$$B_v^*B_w = \bar{\phi}(E_{v,w}).$$

Consequently,

$$A_{h} = \phi(e(h))$$

$$= \phi\left(\sum \{E_{v,w} : h = v^{-1}w\}\right)$$

$$= \sum \{\bar{\phi}(E_{v,w}) : h = v^{-1}w\}$$

$$= \sum \{B_{v}^{*}B_{w} : h = v^{-1}w\}.$$

References

- A. Arias, G. Popescu, Noncommutative interpolation and Poisson transforms II, Houston J. Math. 25 (1999) 79–98.
- [2] R.E. Curto, L.A. Fialkow, Flat extensions of positive moment matrices: relations in analytic or conjugate terms, Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 59–82.
- [4] K.R. Davidson, D.R. Pitts, Nevanlinna–Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998) 321–327.
- [5] R. Grone, C.R. Johnson, E.M. de Sa, H. Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58 (1984) 109–124.
- [6] V.I. Paulsen, Completely Bounded Maps and Dilations, Longman, New York, 1986.
- [7] M. Rosenblum, J. Rovnyak, The factorization problem for nonnegative operator valued functions, Bull. Am. Math. Soc. (N.S.) 77 (1981) 408–436.
- [8] M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, New York, 1985.