Application of the Millepede algorithm to the Time and Position Calibration of NeuLAND

Yanzhao Wang, Håkan Johansson, Igor Gasparic, and Andreas Zilges

Institute for Nuclear Physics, University of Cologne

HK 51.3 DPG-Frühjahrstagung Gießen 2024

Supported by BMBF (05P21PKFN1)

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

Symbols:

x: position of the interaction

t: time of the interaction

 $L: \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{scintillator}$

 t_l : time of the left PMT signal

 $t_{r}: \mathsf{time}\ \mathsf{of}\ \mathsf{the}\ \mathsf{right}\ \mathsf{PMT}\ \mathsf{signal}$

 C_e : effective speed of light

Time relation:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot \underline{C_e}}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l \right)$$

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}: \mbox{length of the scintillator}$

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}:$ length of the scintillator

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle C_e} + extstyle t_{ extstyle sync}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l \right)$$

Additional calibration parameters:

t_{sync}: time synchronization among scintillators

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}: {\sf length} \ {\sf of} \ {\sf the} \ {\sf scintillator}$

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle C_e} + extstyle t_{ extstyle sync}$$

Position relation:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{\mathsf{offset}}
ight)$$

Additional calibration parameters:

- t_{sync}: time synchronization among scintillators
- ullet $t_{
 m offset}$: time offset between adjacent PMTs

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}:$ length of the scintillator

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot C_e} + t_{ extstyle extsty$$

Position relation:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{\mathsf{offset}}
ight)$$

Additional calibration parameters:

- t_{sync}: time synchronization among scintillators
- t_{offset} : time offset between adjacent PMTs

Total number of calibration parameters: 3900

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration with muon tracks

$$t = (t_r + t_l)/2 - L/(2 \cdot C_e) + t_{\text{sync}}$$
 (1)

$$x = \frac{C_e}{c} \cdot \left(t_r - t_l + \frac{t_{\text{offset}}}{c}\right) / 2 \tag{2}$$

$$x_{\mu} = a_x^i \cdot z_{\mu} + b_x^i \tag{3}$$

$$y_{\mu} = a_y^i \cdot z_{\mu} + b_y^i \tag{4}$$

$$t_{\mu} = a_t^i \cdot z_{\mu} + b_t^i \tag{5}$$

Calibration parameters for the ith track:

global parameters:

 $C_e, t_{\sf sync}, t_{\sf offset}$

local parameters:

 $a_{x}^{i}, a_{y}^{i}, a_{t}^{i}, b_{x}^{i}, b_{y}^{i}, b_{t}^{i}$

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration with muon tracks

$$t = (t_r + t_l)/2 - L/(2 \cdot C_e) + t_{\text{sync}}$$
 (1)

$$x = \frac{C_e}{t_l} \cdot \left(t_r - t_l + \frac{t_{\text{offset}}}{t_l}\right) / 2 \tag{2}$$

$$x_{\mu} = a_x^i \cdot z_{\mu} + b_x^i \tag{3}$$

$$y_{\mu} = a_y^i \cdot z_{\mu} + b_y^i \tag{4}$$

$$t_{\mu} = a_t^i \cdot z_{\mu} + b_t^i \tag{5}$$

Calibration parameters for the *i*th track:

global parameters:

 $C_e, t_{\sf sync}, t_{\sf offset}$

local parameters:

$$a_x^i, a_y^i, a_t^i, b_x^i, b_y^i, b_t^i$$

With 10'000 tracks, the total number of calibration parameters is 63'900!

Side view of NeuLAND

Procedures

Obtain the positions of bars with signals

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}:m$ global parameters

 $p_{1\ldots l}^{j}:l$ local parameters for the $j{\rm th}~\mu$ track

n : the total number of μ tracks

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, \dots, g_{m}, p_{1}^{j}, \dots, p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}:m$ global parameters

 $p_{1...l}^{j}:l$ local parameters for the jth μ track

n : the total number of μ tracks

Newton's method:

$$\longleftarrow m \longrightarrow \longleftarrow \sim n \cdot l \longrightarrow$$

$$\begin{bmatrix} \sum_{j} \mathcal{C}_{j} & \dots & \mathcal{G}_{j} & \dots \\ \hline \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & 0 & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots &$$

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 $p_{1...l}^{j}: l$ local parameters for the jth μ track

n : the total number of μ tracks

Newton's method.

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_{j} \mathcal{C}_{j} + \sum_{j} \left(-\mathcal{G}_{j} \Gamma_{j}^{-1} \mathcal{G}_{j}^{T}
ight)$$

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 $p_{1\ldots l}^{j}:l$ local parameters for the $j{\rm th}~\mu$ track

n : the total number of μ tracks

Newton's method.

$$\longleftarrow m \longrightarrow \longleftarrow \sim n \cdot l \longrightarrow$$

$$\begin{bmatrix} \sum_{j} \mathcal{C}_{j} & \dots & \mathcal{G}_{j} & \dots \\ \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \Delta \mathbf{g} \\ \vdots \\ \vdots \\ \Delta \mathbf{p}^{j} \\ \vdots \end{bmatrix} = - \begin{bmatrix} \partial_{\mathbf{g}} \mathcal{Z} \\ \vdots \\ \vdots \\ \partial_{\mathbf{p}^{j}} \mathcal{Z} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_j \mathcal{C}_j + \sum_j \left(-\mathcal{G}_j \Gamma_j^{-1} \mathcal{G}_j^T
ight)$$

Advantages

- Simultaneous fitting of all parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 p_1^j , : l local parameters for the jth μ track

n: the total number of μ tracks

Newton's method:

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_j \mathcal{C}_j + \sum_j \left(-\mathcal{G}_j \Gamma_j^{-1} \mathcal{G}_j^T
ight)$$

Advantages

- Simultaneous fitting of all parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction

Algorithm implementation: Millepede-II¹

Millepede-ii. https://www.desv.de/~kleinwrt/MP2/doc/html/index.html. [Online: accessed 2024-03-041

Comparisons of the PMT time offsets

Comparisons on time synchronization

Comparisons of the effective speed of light

Summary and outlook

Summary

- Large number of fitting parameters in time and position calibration
- Simultaneous fitting of local and global parameters using the Millepede algorithm
- Consistent results compared to the current method

Outlook

- Apply Millepede algorithm to energy calibration
- Improve precision of calibration parameters
- Possible applications on other detectors in the R³B experiment

Result comparison for time offset parameters

