Printed Pages: 02

Paper Id: 110218

Sub Code: ECS403

Roll No.

B. TECH. (SEM IV) THEORY EXAMINATION 2018-19 THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Write a regular expression to denote a language L which accepts all the strings that begin or end with either 00 or 11.
- b. Differentiate between FA and PDA.
- c. Write the applications of finite automata.
- d. How do we determine equivalence of two DFA? Explain with an example.
- e. Remove the Unit productions from the following grammar: $S \rightarrow aSb|A, A \rightarrow cAd|cd$
- f. Identify the language generated by context free grammar $S \rightarrow (S)|SS|()$
- g. Explain briefly about two stack PDA.
- h. Distinguish between DPDA & NPDA.
- i. Differentiate between Recursive & Recursive enumerable languages.
- j. Define halting problem of Turing machine.

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

- a. Design FA for the following languages containing binary strings:
 - (i) Having both 00 and 11 as substring.
 - (ii) Number of 0's is odd and number of 1's is multiple of 3.
- b. State closure properties of regular languages. Also Prove that regular languages are closed under intersection and difference.
- c. Convert the following PDA into its equivalent CFG.

Transition function is defined as:

$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$$

$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

$$\delta(q_0, 1, 0) = \{(q_1, \in)\}$$

$$\delta(q_1, 1, 0) = \{(q_1, \in)\}$$

$$\delta(q_1, \in, Z_0) = \{(q_2 \in)\}$$

- d. Write the procedure to convert a given CFG into equivalent grammar in CNF. Apply the procedure and convert the grammar with following production into CNF: $S \rightarrow bA|aB$, $A \rightarrow bAA|aS|a$, $B \rightarrow aBB|bS|b$
- e. Design a Turing machine that accepts Palindromes of binary numbers.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Describe Chomsky hierarchy of languages with proper example.
- (b) Design an NFA for the language containing strings ending with ab or ba. Also convert the obtained NFA into equivalent DFA.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) State Arden's theorem and construct regular expression for the following FA using Arden's theorem:

State	Input	
	0	1
A	{A, B}	φ
В	С	{A, B}
С	В	φ
A is the initial state and C is Final State		

(b) Using pumping lemma, prove that the language $L = \{a^{i^2} \mid i \ge 1\}$ is not regular.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Define Greibach normal form for a CFG. Reduce the following CFG into GNF: $S \to AB, A \to BS \mid a, B \to SA \mid b$
- (b) Let G be the grammar $S \rightarrow 0B|1A$, $A \rightarrow 0|0S|1AA$, $B \rightarrow 1|1S|0BB$ For the string 00110101, find:
 - (i) The leftmost derivation. (ii) The rightmost derivation. (iii) The derivation tree.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Construct a PDA to accept the language $L = \{WcW^R \mid W \in (a,b)^+\}$ by empty stack.
- (b) Prove that "L is accepted by a PDA M₁ by empty store if and only if L is accepted by a PDA M₂ by final state.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Find a PCP solution for the following sets A = {ab, ba, b, abb, a}, B= {aba, abb, ab, b, bab}
- (b) Explain various types of Turing Machines with example.