Exploring the Impact of Pseudo and Quasi Random Number Generators on Monte Carlo Integration for Multivariate Normal and t Distributions*

Marcus Stolz[†] & Jonathan Ramani Christopher[‡]

04 december 2023

Abstract

This is the abstract of your paper.

 $^{{}^*}$ Preliminary draft. Please do not cite or circulate without permission from the author.

[†]Department of Statistics, Lund University. Email: marcus.stolz@stat.lu.se.

 $^{^{\}ddagger}$ Department of Statistics, Lund University. Email: jonathan.ramani@outlook.com.

Introduction

Your introduction goes here.

Literature Review

MAIN 1 G. Leobacher and F. Pillichshammer, Introduction to quasi-Monte Carlo in- tegration and applications, Birkh "auser/Springer, Cham, 2014. Lättare kolla github

Main 2 Art B owen Monte Carlo and Quasi-Monte Methods Svårare kolla github Multivariate Gaussian Probabilities

William J. Morokoff and Russel E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122 (1995), no. 2, 218–230. (At CiteSeer: [1]) Kolla gitub

On curse of dimensionality... Kolla github

RNG

Bild jämförelse

Pseudo

 $\label{lem:mersenne} Mersenne\ Twister\ https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Random\ https://en.wikipedia.org/wiki/Mersenne_Twister$

Sobol

s.138 Leobacher

Halton

s.40 Leobacher

${\bf Complexity}$

MC-Integration

Curse of dimensionality

Multivariate normal, t distribution

Complexity of multivariate normal, ${\bf t}$ distribution.

Kolmogorov complexity?

Methodology

MC-integration function in R

The three cases explored

 $1. Constant\ probability\ space,\ changing\ integration\ limits.\ 2. Constant\ integration\ limits,\ changings\ probability\ space.$

The effect of increasing dimension

The effect of sample size

The effect of covariance in low dimensional cases

Results

Multivariate Normal

Increasing Dimension

Sample size

Covariance

Multivariate t-distribution

Increasing Dimension

Sample size

Covariance

Conclusion

Summarize your findings and conclude the paper.

References