

Inter**Lab**

FCC Measurement/Technical Report on

WLAN transceiver Bittium Tough Mobile

FCC ID: ID V27SD-41

IC: 3282B-SD41

Report Reference: MDE_ELEKT_1502_FCCa

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Director: Dr. Harald Ansorge Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

U	Applied Standards and Test Summary	3
0.1	Technical Report Summary	3
0.2	FCC and IC Correlation Table	4
0.3	Measurement Summary	5
1	Administrative Data	9
1.1	Testing Laboratory	9
1.2	Project Data	9
1.3		9
1.4	Manufacturer Data	9
2	Test object Data	10
2.1	General EUT Description	10
2.2	EUT Main components	11
2.3	Ancillary Equipment	11
2.4	Auxiliary Equipment	12
2.5	EUT Setups	12
2.6	Operating Modes	13
2.7	Special software used for testing	13
2.8	Product labelling	13
3	Test Results	14
3.1	Conducted emissions (AC power line)	14
3.2	Occupied bandwidth	16
3.3	Peak power output	21
3.4	Spurious RF conducted emissions	24
3.5	Spurious radiated emissions	27
3.6	Band edge compliance	32
3.7	Power density	41
4	Measurement Uncertainties	44
5	Test Equipment	45
6	Photo Report	54
7	Setup Drawings	54

0 Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

All tests were performed according: ANSI C63.10–2013

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

Test report Reference: MDE_ELEKT_1502_FCCa

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS devices (e.g. WLAN 2.4/5 GHz) equipment

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	_

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.10 2013

OP-Mode Setup Port Final Result

op-mode 2b Setup_03 AC port passed

FCC Part 15, Subpart C

Occupied bandwidth

§ 15.247 (a) (1)

The measurement	The measurement was performed according to ANSI C63.10 2013					
OP-Mode	Setup	Port	Final Result			
op-mode 1b	Setup_01	Temp.ant.connector	passed			
op-mode 1g	Setup_01	Temp.ant.connector	passed			
op-mode 1n	Setup_01	Temp.ant.connector	passed			
op-mode 2b	Setup_01	Temp.ant.connector	passed			
op-mode 2g	Setup_01	Temp.ant.connector	passed			
op-mode 2n	Setup_01	Temp.ant.connector	passed			
op-mode 3b	Setup_01	Temp.ant.connector	passed			
op-mode 3g	Setup_01	Temp.ant.connector	passed			
op-mode 3n	Setup_01	Temp.ant.connector	passed			
op-mode 1n+	Setup_01	Temp.ant.connector	passed			
op-mode 2n+	Setup_01	Temp.ant.connector	passed			
op-mode 3n+	Setup_01	Temp.ant.connector	passed			

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement w	vas performed accord	ing to ANSI C63.10	2013
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Temp.ant.connector	passed
op-mode 1g	Setup_01	Temp.ant.connector	passed
op-mode 1n	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_01	Temp.ant.connector	passed
op-mode 2g	Setup_01	Temp.ant.connector	passed
op-mode 2n	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_01	Temp.ant.connector	passed
op-mode 3g	Setup_01	Temp.ant.connector	passed
op-mode 3n	Setup_01	Temp.ant.connector	passed
op-mode 1n+	Setup_01	Temp.ant.connector	passed
op-mode 2n+	Setup_01	Temp.ant.connector	passed
op-mode 3n+	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.207

Spurious conducted emissions

The measurement v	The measurement was performed according to ANSI C63.10					
OP-Mode	Setup	Port	Final Result			
op-mode 1b	Setup_01	Temp.ant.connector	passed			
op-mode 1g	Setup_01	Temp.ant.connector	passed			
op-mode 1n	Setup_01	Temp.ant.connector	passed			
op-mode 2b	Setup_01	Temp.ant.connector	passed			
op-mode 2g	Setup_01	Temp.ant.connector	passed			
op-mode 2n	Setup_01	Temp.ant.connector	passed			
op-mode 3b	Setup_01	Temp.ant.connector	passed			
op-mode 3g	Setup_01	Temp.ant.connector	passed			
op-mode 3n	Setup_01	Temp.ant.connector	passed			
op-mode 1n+	Setup_01	Temp.ant.connector	passed			
op-mode 2n+	Setup_01	Temp.ant.connector	passed			
op-mode 3n+	Setup_01	Temp.ant.connector	passed			

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

was performed a	ccording to ANSI C63.10	2013
Setup	Port	Final Result
Setup_02	Enclosure	passed
	Setup Setup_02 Setup_02 Setup_02 Setup_02 Setup_02 Setup_02	Setup_02 Enclosure Setup_02 Enclosure Setup_02 Enclosure Setup_02 Enclosure Setup_02 Enclosure Setup_02 Enclosure

FCC Part 15, Subpart C

§ 15.247 (d)

Band edge compliance

The measurement	2013		
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Temp.ant.connector	passed
op-mode 1g	Setup_01	Temp.ant.connector	passed
op-mode 1n	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_01	Temp.ant.connector	passed
op-mode 3g	Setup_01	Temp.ant.connector	passed
op-mode 3n	Setup_01	Temp.ant.connector	passed
op-mode 1n+	Setup_01	Temp.ant.connector	passed
op-mode 3n+	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_02	Enclosure	passed
op-mode 3g	Setup_02	Enclosure	passed
op-mode 3n	Setup_02	Enclosure	passed

FCC Part 15, Subpart C

Power density

The measurement w	2013		
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Temp.ant.connector	passed
op-mode 1g	Setup_01	Temp.ant.connector	passed
op-mode 1n	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_01	Temp.ant.connector	passed
op-mode 2g	Setup_01	Temp.ant.connector	passed
op-mode 2n	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_01	Temp.ant.connector	passed
op-mode 3g	Setup_01	Temp.ant.connector	passed
op-mode 3n	Setup_01	Temp.ant.connector	passed
op-mode 1n+	Setup_01	Temp.ant.connector	passed
op-mode 2n+	Setup_01	Temp.ant.connector	passed
op-mode 3n+	Setup_01	Temp.ant.connector	passed

§ 15.247 (e)

Responsible for	Responsible
Accreditation Scope:	for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers GmbH

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number: 96716 .

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2015-02-23

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Date of Test(s): 2015-06-04 to 2015-09-01

Date of Report: 2015-10-08

1.3 Applicant Data

Company Name: Bittium Wireless Ltd.

Address: Tutkijantie 8 90590, Oulu

Finland

Finland

Contact Person: Mr. Jyrki Juvani

1.4 Manufacturer Data

Company Name: Please see applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11a/b/g/n/ac WLAN transceiver

Type Designation: Bittium Tough Mobile

Kind of Device: Module supporting these technologies:

(optional)

Voltage Type: DC (internal Battery); AC Adapter for charging

Voltage Level: DC 3.8 V; AC 120V / 60Hz

Tested Modulation Type: DBPSK; OFDM:BPSK; OFDM:64-QAM

General product description:

The EUT is a tough Mobile Phone supporting GSM 850/900/1800/1900, UMTS/WCDMA FDD I, II, IV, VIII LTE FDD 2, 3, 4, 5, 7, 13, 14, 17, 20 WLAN 802.11 a, b, g, n, ac Bluetooth (BDR, EDR, LE (4.0)) GPS & GLONASS NFC 13.56 MHz

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 2.4 GHz b/g/n and 5 GHz a/n/ac) and Bluetooth module with one joint antenna connector for WLAN and Bluetooth. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 b/g/n modes, working in the 2.4 band. In IEEE 802.11n mode, it was tested with 20 MHz and 40 MHz channel bandwidth.

The EUT provides the following ports:

Ports

Enclosure
AC port
USB (DC and Data) Port
Audio Port

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status			
EUT A	WLAN	Tough Mobile	K0251300433	0302	Android Version			
(Code:	transceiver				5.1.1			
DE1132001ae01)								
Remark: EUT A is equipped with a temporary antenna connector.								
EUT B	WLAN	Tough Mobile	K02513004	0302	Andorid Version			
(Code:	transceiver	-			5.1.1			
DE1132001ah01)								
Remark: EUT B is equipped with a dual-band integral antenna with antenna gain = -3.5 dBi at 2.4 - 2.5 GHz								
frequency	frequency range and 1.0 dBi for UNII SB1, 2.0 dBi for UNII SB2A / SB2 and 2.5 dBi for UNII SB2C							
/SB3 in 4	.9 - 5.9 GHz frequ	ency range.						

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
ANC1	Battery from Celltech	Model: 3700034	3520001	_	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
AUX1	AC Adapter from Seanen Electronics Co. LTD	KSA29B0500200D5	P0315	-	-
AUX2	Headset/Earphone from Foster	HS2-1.1	3520001	-	-
AUX3	USB cable from ASSMANN	AK-300116-010-S	-	-	-
AUX4	LG Monitor	L17MB-P	412WAPLOU560	-	-
AUX5	Fujitsu Laptop	Lifebook E-Series E781	DSCK013817	-	-
AUX6	Fujitsu AC Adapter for Laptop	PJW1942NA	13300281B	-	-
AUX7	Logitec Mouse	M-BT58	HC60915A2XC	-	=
AUX8	Cherry Keyboard	RS 6000 USB ON	G 0000273 2P28	-	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup C		Combination of EUTs	Description and Rationale
Setup_01 EU		EUT A + AUX1	setup for conducted radio measurements
	Setup_02	EUT B + AUX1 to AUX3	setup for radiated measurements
	Setup 03	FUT B + AUX1 to AUX8	setup for conducted emissions (AC power line) measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

20 MHz Test Channels:

Channel:

Bott

Frequency [MHz]

40 MHz Test Channels:

Channel:

Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz					
Bottom Middle Top					
1	6	11			
2412 2437 2462					

Bott	Bottom Mic		Тор
3		6	11
242	2	2437	2462

2.6.2 Datarates

WLAN b-Mode; 20 MHz; 1 Mbit/s
WLAN g-Mode; 20 MHz; 6 Mbit/s
WLAN n-Mode; 20 MHz; 72.2 Mbit/s - MCS7, 400ns GI
WLAN n-Mode; 40 MHz; 150 Mbit/s - MCS7, 400ns GI

Data rate / frequency	2412	2437	2462
b-mode, 1 Mbit/s	1b	2b	3b
g-mode, 6 Mbit/s	1g	2g	3g
n-Mode, 72.2 Mbit/s (MCS7)	1n	2n	3n
n-Mode, 150 Mbit/s (MCS7)	1n+	2n+	3n+

2.7 Special software used for testing

An Android-Application was used with the option to switch on a local WLAN transmitter with different settings for modulation type, data rate, channel bandwidth and output power level.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C 63.10

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF-Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:
- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dBμV)	AV Limit (dBμV)
0.15 - 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature: 25 °C Air Pressure: 1003 hPa Humidity: 44 %

Power line	Frequency MHz	Measured value QP dBµV	Measured value AV dBµV	QP Limit dBμV	AV Limit dBμV	Margin QP dB	Margin AV dB
N	_	_	_	_	-	-	_
L	_	_	_	_	_	_	_

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan.

The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. high power consumption.

3.1.4 Measurement Plot (showing the highest value, "worst case")

WLAN TX on 2437 MHz, b-mode, 1Mbps, 19 dBm, 120V/60Hz

3.2 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 / 50 MHz (for 20 / 40 MHz nominal bandwidth)
- Detector: Peak / Sample (6 dB bandwidth / 99% bandwidth)

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

Test report Reference: MDE_ELEKT_1502_FCCa

3.2.3 Test Protocol

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

3.2.3.1 6 dB bandwidth

WLAN b-Mode					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	9.084	0.5	8.6
	6	2437	11.147	0.5	10.6
	11	2462	8.664	0.5	8.2

WLAN g-Mode					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17.676	0.5	17.2
	6	2437	17.676	0.5	17.2
	11	2462	17.616	0.5	17.1

WLAN n-Mode					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17.796	0.5	17.3
	6	2437	17.796	0.5	17.3
	11	2462	17.731	0.5	17.2

WLAN n-Mode					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	3	2422	36.533	0.5	36.0
	6	2437	36.490	0.5	36.0
	11	2462	36.150	0.5	35.7

3.2.3.2 99% bandwidth

WLAN b-Mode; 20 MHz; 1 Mbit/s							
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]				
2.4 GHz ISM	1	2412	13.603				
	6	2437	13.459				
	11	2462	13.603				

WLAN g-Mode; 20 MHz; 6 Mbit/s								
Band	Channel Frequency Bandwid No. [MHz] [MHz]							
2.4 GHz ISM	1	2412	19.030					
	6	2437	18.886					
	11	2462	19.103					

WLAN n-Mode; 20 MHz; 72.2 Mbit/s - MCS7, 400ns GI								
Channel Frequency Bandwidth No. [MHz] [MHz]								
2.4 GHz ISM	1	2412	18.524					
	6	2437	18.452					
	11	2462	18.596					

WLAN n-Mode; 40 MHz; 150 Mbit/s - MCS7, 400ns GI								
Channel Frequency Bandwidth Band No. [MHz] [MHz]								
2.4 GHz ISM	3	2422	36.252					
	6	2437	36.252					
	11	2462	36.179					

3.2.4 Measurement Plot (showing the highest value, "worst case")

Title: 6dB Bandwidth

Comment A: CH T: 2462 MHz; 6dB bandwidth (kHz):8664

Date: 16.JUN.2015 07:31:34

6 dB bandwidth: mode b, 1Mbit/s, channel 11

Date: 16.JUN.2015 15:19:37

99% bandwidth: mode b, 1Mbit/s, channel 6

3.3 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings: - Detector: Peak

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, $\S15.247$ (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

Test report Reference: MDE_ELEKT_1502_FCCa

3.3.3 Test Protocol

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

The antenna gain is excluded in the table.

WLAN b-Mode					
Band	Limit [dBm]	Margin to Limit [dB]			
2.4 GHz ISM	1	2412	22.5	30.0	7.5
	6	2437	22.4	30.0	7.7
	11	2462	22.3	30.0	7.7

WLAN g-Mode					
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	26.5	30.0	3.5
	6	2437	26.4	30.0	3.6
	11	2462	26.6	30.0	3.4

WLAN n-Mode							
Band	Channel Frequency Peak Power Band No. [MHz] [dBm]						
2.4 GHz ISM	1	2412	26.9	30.0	3.1		
	30.0	3.2					
	11	2462	27.0	30.0	3.0		

WLAN n-Mode					
Band	Limit [dBm]	Margin to Limit [dB]			
2.4 GHz ISM	3	2422	26.3	30.0	3.8
	30.0	3.8			
	11	2462	26.1	30.0	3.9

3.3.4 Measurement Plot (showing the highest value, "worst case")

Date: 16.JUN.2015 14:02:58

mode n, 20MHz, 72.2Mbit/s, channel 11

3.4 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Detector: Peak-MaxholdFrequency range: 30 - 25000 MHz

Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test report Reference: MDE_ELEKT_1502_FCCa

3.4.3 Test Protocol

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

WLAN b-I	Mode; 20 I	MHz; 1						
Channel No	Channel Center Freq. [MHz]	Spurio us Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	10.7	-9.3	
6	2437			PEAK	100	10.4	-9.6	
11	2462			PEAK	100	10.3	-9.7	

WLAN g- Mbit/s	Mode; 20 I	MHz; 6						
Channel No	Channel Center Freq. [MHz]	Spurio us Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	5.7	-14.3	
6	2437			PEAK	100	5.3	-14.7	
11	2462			PEAK	100	5.7	-14.3	

	Mode; 20 I t/s - MCS7	•						
Channel No	Channel Center Freq. [MHz]	Spurio us Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	5.4	-14.6	
6	2437			PEAK	100	5.6	-14.4	
11	2462			PFAK	100	5 9	-14 1	

	Mode; 40 l /s - MCS7,	•						
Channel No	Channel Center Freq. [MHz]	Spurio us Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422			PEAK	100	2.4	-17.6	
6	2437			PEAK	100	2.5	-17.5	
11	2462			DΕΛΚ	100	2.0	-17.6	

Note: No (further) spurious emissions in the range 20 dB below the limit found.

Test report Reference: MDE_ELEKT_1502_FCCa Page 25 of 54

3.4.4 Measurement Plot (showing the highest value, "worst case")

mode n, 20MHz, 72.2Mbit/s, channel 1

3.5 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

Test report Reference: MDE_ELEKT_1502_FCCa

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300 → 10	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F(kHz)	30 → 10	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30 → 10	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

Test report Reference: MDE_ELEKT_1502_FCCa

Page 30 of 54

3.5.3 **Test Protocol**

Temperature: 23-27 °C

1004-1018 hPa Air Pressure:

Humidity: 40-43 %

WLAN	b-Mode;	20 MHz;	1 Mbit/s	Applied d	uty cycle	correction (A	V) [dB]:	0.0
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
6	2437	37.92	31.70	QP	120	40.0	8.3	RB
6	2437	408.0	38.10	QP	120	46.0	7.9	RB

No (further) spurious emissions in the range 20 dB below the limit found.

The results of the pre-test with peak detector have been similar for all three transmit frequencies in the frequency range 30-1000 MHz and independent from the transmit frequency. Therefore the final test applying the QP-(quasi-peak-)detector was perfored only for one transmit frequency.

WLAN	b-Mode;	20 MHz;	1 Mbit/s	Applied d	uty cycle	correction (A	V) [dB]:	0.0
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2388.0	55.4	PEAK	1000	74.0	18.6	RB
1	2412	2388.0	49.1	AV	1000	54.0	4.9	RB
6	2437	4874.0	41.6	PEAK	1000	74.0	32.4	RB
6	2437	4874.0	35.4	AV	1000	54.0	18.6	RB
11	2462	2486.0	53.4	PEAK	1000	74.0	20.6	RB
11	2462	2486.0	45.4	AV	1000	54.0	8.6	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

WLAN	N g-Mode;	; 20 MHz;	6 Mbit/s	Applied d	luty cycle	correction (A	V) [dB]:	0.3
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2390.0	71.3	PEAK	1000	74.0	2.7	RB
1	2412	2390.0	52.7	AV	1000	54.0	1.3	RB

No (further) spurious emissions in the range 20 dB below the limit found. Note:

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant

spurious emissions have been found outside this frequency range.

3.6 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10-2013, FCC §15.31

3.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on lowest channel:

 $CH1 = 2412 \, MHz / CH3 = 2422 \, MHz$ for a channel bandwidth of 20 / 40 MHz.

The lower band edge is 2400 MHz for 2.4 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on highest channel:

 $CH11 = 2462 \ MHz \ or \ CH13 = 2472 \ MHz \ / \ CH11 = 2462 \ MHz \ for a channel bandwidth of 20 / 40 \ MHz.$

The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

Page 32 of 54

Test report Reference: MDE_ELEKT_1502_FCCa

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.6.3 Test Protocol

3.6.3.1 Conducted measurement, lower and higher band edge

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

WLAN b-	Mode; 20 MH	z; 1 Mbit/	s					
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
1	2412	2400.0	-41.6	PEAK	100	10.7	-9.3	32.3
11	2462	2483.5	-44.2	PEAK	100	10.3	-9.7	34.5

WLAN g-	Mode; 20 MH	z; 6 Mbit/	s					
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-22.5	PEAK	100	5.7	-14.3	8.2
11	2462	2483.5	-33.4	PEAK	100	5.7	-14.3	19.1

WLAN n-	Mode; 20 MH	z; 72.2 Mb	it/s					
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-25.0	PEAK	100	5.4	-14.6	10.4
11	2462	2483.5	-36.6	PEAK	100	5.9	-14.1	22.5

WLAN n-	Mode; 40 MH	z; 150 Mb	it/s					
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400.0	-28.9	PEAK	100	2.4	-17.6	11.3
11	2462	2483.5	-27.9	PEAK	100	2.9	-17.2	10.7

Test report Reference: MDE_ELEKT_1502_FCCa Page 34 of 54

3.6.3.2 Measurement Plot (showing the highest value, "worst case")

mode g, 6Mbit/s, channel 1

3.6.3.3 Radiated measurement, higher band edge

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

WLAN	b-mode;	20 MHz;	1 Mbit/s	Applied d	uty cycle o	correction (A	V) [dB]:	0.0
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	52.1	PEAK	1000	74.0	21.9	BE
11	2462	2483.5	40.7	AV	1000	54.0	13.3	BE

WLAN	g-Mode;	20 MHz; (6 Mbit/s	Applied d	uty cycle o	correction (A	V) [dB]:	0.3
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	61.3	PEAK	1000	74.0	12.7	BE
11	2462	2483.5	47.5	AV	1000	54.0	6.5	BE

Note: Marker-delta procedure was performed for this operating mode. Please see chapter 3.6.3.5

WLAN	n-Mode;	20 MHz;	150 Mbit/s	Applied d	uty cycle o	correction (A	V) [dB]:	2.9
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	70.3	PEAK	1000	74.0	3.7	BE
11	2462	2483.5	53.0	AV	1000	54.0	1.0	BE

WLAN	n-Mode;	40 MHz;	150 Mbit/s	Applied d	uty cycle o	orrection (A	V) [dB]:	2.9
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	62.2	PEAK	1000	74.0	11.8	BE
11	2462	2483.5	40.6	AV	1000	54.0	13.4	BE

Note: Marker-delta procedure was performed for this operating mode. Please see chapter 3.6.3.5

3.6.3.4 Measurement Plot (showing the highest value, "worst case")

WLAN TX on 2462 MHz, n-mode, MSC7, 150 MBPS, BW 40 MHz

3.6.3.5 Marker-delta procedure

The following procedure is used for for the marker-delta method:

- a) An in-band field strength measurement of the fundamental emission using the RBW and detector function required for the frequency being measured
- b) The span of an EMI receiver or spectrum analyser is choosen in a way, that it encompasses both the peak of the fundamental emission and the band-edge emission under investigation. The instrument RBW is set to 1% of the total span, with a VBW equal to or greater than three times the RBW. The peak levels of the fundamental emission and the relevant band-edge emission are recorded. The delta between peak of the fundamental and the peak of the band-edge emission are measured. This is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.
- c) The delta measured in step b) is subtracted from the field strengths measured in step a). The resulting field strengths are then used to determine band-edge emissions compliance, where required.

Step a)

mode g, 6Mbit/s, channel 11

mode n, BW 40MHz, 150Mbit/s, channel 11

Step b)

mode g, 6Mbit/s, channel 11

mode n, BW 40MHz, 150Mbit/s, channel 11

Step c)

				correction		
					factor	0.3
					subtracted	subtracted
	fundamental	fundamental	band-		DELTA	DELTA
	emission	emission	edge		(uncorrected	(corrected
g-mode	(radiated)	(conducted)	emission	DELTA	value)	value)
DEAK	104.16	0.56	-42.64	43.2	60.96	61.26
PEAK	104.16	0.56	-42.04	43.2	00.50	01.20

					correction factor	2.9
n-mode 40MHz	fundamental emission (radiated)	fundamental emission (conducted)	band- edge emission	DELTA	subtracted DELTA (uncorrected value)	subtracted DELTA (corrected value)
PEAK	102.08	0.72	-42.04	42.76	59.32	62.22
AVERAGE	85.7	-5.56	-53.52	47.96	37.74	40.64

3.7 Power density

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10

3.7.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.7.3 Test Protocol

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

WLAN b-Mode; 20 MHz; 1 Mbit/s					
Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-2.4	8.0	10.4
	6	2437	-2.7	8.0	10.7
	11	2462	-1.8	8.0	9.8

WLAN g-Mode; 20 MHz; 6 Mbit/s					
Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-6.4	8.0	14.4
	6	2437	-8.3	8.0	16.3
	11	2462	-7.6	8.0	15.6

WLAN n-Mode; 20 MHz; 72.2 Mbit/s - MCS7, 400ns GI					
Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-8.7	8.0	16.7
	6	2437	-8.6	8.0	16.6
	11	2462	-9.2	8.0	17.2

WLAN n-Mode; 40 MHz; 150 Mbit/s - MCS7, 400ns GI					
Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-12.3	8.0	20.3
	6	2437	-11.9	8.0	19.9
	11	2462	-12.5	8.0	20.5

3.7.4 Measurement Plot (showing the highest value, "worst case")

mode b, 1Mbit/s, channel 11

4 Measurement Uncertainties

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99%	Power	± 2.9 dB
Bandwidth	Frequency	± 11.2 kHz
Conducted Output Power		± 2.2 dB
Spurious Emissions at antenna terminal	Power	± 2.2 dB
Band Edge Compliance	Power	± 2.2 dB
	Frequency	± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

5 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 3Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

NSA (FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	$10.58 \times 6.38 \times 6.00 \text{ m}^3$ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Innco 2000	CO 2000	CO2000/328/1247 406/L	O Innco innovative constructions GmbH
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer:Rohde & Schwarz GmbH & Co.KGDescription:EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Execution
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Execution
	Standard calibration		2014/01/10 2016/01/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH

Test report Reference: MDE_ELEKT_1502_FCCa Page 45 of 54

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	Calibration Details		Last Execution Next Execution
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	standard calibration		2014/06/18 2017/11/30
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Execution
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	DAkkS Calibration		2015/03/30 2017/03/31
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	DAkks Calibration		2015/03/30 2017/03/31

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

og.c = 01.1000 .0. 1.1			
Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck Mess-Elektronik OHG
Biconical dipole	VUBA 9117	9117-108	Schwarzbeck Mess-Elektronik OHG
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01- 2	Kabel Kusch
Cable "ESI to Horn Antenna"	SucoFlex	W18.02-2+W38.02- 2	HUBER+SUHNER
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02- 2	Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2012/06/26 2015/06/25
	Standard Calibration		2015/06/23 2018/06/22
Double-ridged horn	HF 907	102444	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Execution
	Standard Calibration		2015/05/11 2018/05/10
Double-ridged horn- duplicated 2015-07-15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
Dreheinheit	DE 325		HD GmbH
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/18000-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	BBHA 9170	BBHA9170262	Schwarzbeck Mess-Elektronik OHG
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co.
	Calibration Details		KG Last Execution Next Execution
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna (upgraded)	HL 562 Ultralog new biconicals	830547/003	Rohde & Schwarz GmbH & Co. KG
(apgradea)	Standard Calibration		2015/06/30 2018/06/29

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	DKD Calibration		2014/11/27 2017/11/27
Standard Gain / Pyramidal Horn Antenna 26.5 GHz	3160-09 a	00083069	EMCO Elektronik GmbH
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10 a	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 3, Lab 4

Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.	
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates	
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.	
(Fraidiffector)	Calibration Details		Last Execution Next Execution	
	Customized calibration		2013/12/04 2015/12/03	
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis	
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH	
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright	
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Execution	
	Standard		2014/02/10 2016/02/09	
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG	
	Standard		2012/06/13 2015/06/12	
	DKD calibration		2015/06/23 2018/06/22	
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2014/07/29 2015/07/28	
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG	

Test Equipment Digital Signalling Devices

Lab 1, Lab 3, Lab 4

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer	
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG	
	Standart calibration		2015/01/21 2018/01/19	
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2014/01/27 2016/01/26	
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG	
	DKD calibration		2014/12/02 2017/12/01	
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG	
	HW/SW Status		Date of Start Date of End	
	K43 4v21, K53 4v21, K56 4v22, K K59 4v22, K61 4v22, K62 4v22, K K65 4v22, K66 4v22, K67 4v22, K Firmware: μP1 8v50 02.05.06	63 4v22, K64 4v22,		
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co.	
Communication rester	DKD calibration		KG 2014/12/03 2017/12/02	
	HW/SW Status		Date of Start Date of End	
	HW options: B11, B21V14, B21-2, B41, B52V14 B54V14, B56V14, B68 3v04, B95, SW options: K21 4v11, K22 4v11, K23 4v11, K K28 4v10, K42 4v11, K43 4v11, K K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 SW: K62, K69	PCMCIA, U65V02 24 4v11, K27 4v10,	2007/01/02	
Vector Signal Generator		100912	Rohde & Schwarz GmbH & Co.	
vector Signal Generator	SIMOZOUA	100317	KG	

Test Equipment Emission measurement devices

Lab ID: Lab 1, Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer	
EMI Receiver / Spectru Analyser	m ESR 7	101424	Rohde & Schwarz	
,,,,,,	Calibration Details		Last Execution Next Execution	
	Initial Factory Calibration		2014/11/13 2016/11/12	
Personal Computer	Dell	30304832059	Dell	
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2015/05/11 2016/05/10	
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG	
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG	
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2015/05/11 2016/05/10	
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG	
	Standard Calibration		2014/06/24 2017/06/23	
Spectrum Analyser	FSW 43 Calibration Details	103779	Rohde & Schwarz Last Execution Next Execution	
	Initial Factory Calibration		2014/11/17 2016/11/16	
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG	
	Standard Calibration		2014/01/07 2016/01/31	
	HW/SW Status		Date of Start Date of End	
	Firmware-Update 4.34.4 from 3.45	during calibration	2009/12/03	

Test Equipment Multimeter 03

Lab ID:Lab 3, Lab 4Description:Fluke 177Serial Number:86670383

Single Devices for Multimeter 03

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Execution
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 4

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
Broadband Power Divide	erWA1515	A856	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates	
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner	
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax	
Power Meter	NRVD Standard calibration	828110/016	Rohde & Schwarz GmbH & Co.KG 2015/05/11 2016/05/10	
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG	
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG	
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG	
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly	
Standard	Standard calibration Standard Calibration		2014/07/03 2015/07/02 2015/06/25 2016/06/24	
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2015/05/11 2016/05/10	
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2014/12/02 2017/12/01	
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Execution	
	Standard calibration		2013/05/06 2016/05/05	
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG	
	Calibration after reparation		2015/04/02 2017/04/01	
Vector Signal Generator	SMIQ 03B	837747/020	Rohde & Schwarz GmbH & Co. KG	

Test Equipment Shielded Room 02

Lab ID:Lab 1Manufacturer:Frankonia

Description: Shielded Room for conducted testing

Type: 12 qm Serial Number: none

Test Equipment T/A Logger 13

Lab ID:Lab 1, Lab 3, Lab 4Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer	
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH	
	Customized calibration		2015/02/27 2017/02/26	

Test Equipment T/H Logger 02

Lab ID:Lab 1Description:Lufft Opus10Serial Number:7489

Single Devices for T/H Logger 02

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 02 (Environ)	152.00) 7489 Lufft Mess- und Regelte GmbH	
Customized calibration		2015/02/27 2017/02/26

Test Equipment T/H Logger 03

Lab ID:Lab 4Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name	Туре	Serial Number	Manufacturer	
ThermoHygro Datalogge 03 (Environ)	ermoHygro DataloggerOpus10 THI (8152.00) 3 (Environ)		Lufft Mess- und Regeltechnik GmbH	
	Customized calibration		2015/02/27	2017/02/26

Test report Reference: MDE_ELEKT_1502_FCCa Page 52 of 54

Test Equipment T/H Logger 12

Lab ID:Lab 3Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 12 (Environ)	12482	Lufft Mess- und Regeltechnik GmbH
Customized calibration		2015/03/10 2017/03/09

Test Equipment Temperature Chamber 05

Lab ID: Lab 4

Manufacturer: see single devices

Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer	
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch	
VOUSCII OS	Customized calibration		2014/03/11	2016/03/10

6 Photo Report

Please refer to external report.

7 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.