m,n を自然数とする。

 $m^2 = 2^n + 1$ を満たす m, n を求めよ。

 $m^2 = 2^n + 1$ を変形する。

$$m^2 = 2^n + 1 \tag{1}$$

$$(m+1)(m-1) = 2^n (2)$$

2 は素数なので、自然数 α,β $(\alpha>\beta)$ を用いて $m+1=2^{\alpha},m-1=2^{\beta}$ と分ける。この時、 $\alpha+\beta=n$ である。

$$(m+1)-(m-1)=2$$
 であり、 $(m+1)-(m-1)=2^{\alpha}-2^{\beta}$ である。

これより、 $2^{\alpha}-2^{\beta}=2$ である。 $2^{\beta}(2^{\alpha-\beta}-1)=2$ となるが、2 は素数なので、 $(2^{\beta},\ 2^{\alpha-\beta}-1)=(1,2)$ である場合と $(2^{\beta},\ 2^{\alpha-\beta}-1)=(2,1)$ の場合がありえる。 $2^{\alpha-\beta}-1=2$ となる自然数 α,β は存在しない為、前者はありえない。

$$2^{\beta} = 2, \quad 2^{\alpha - \beta} - 1 = 1 \tag{3}$$

これを満たすのは $\alpha=2,\beta=1$ であるので、(m,n)=(3,3) となる。