DATA COLLECTION

In [1]: # import libraries
import numpy as np
import pandas as pd
import mathletlih ny

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\11_winequality-red.csv")
sd

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

In [3]: # to display top 10 rows
sd.head(10)

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5
4.0	_	_	_	_		_	_	_	_		•

DATA CLEANING AND PRE_PROCESSING

In [4]: sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

_		((((((((((((((((((((······································	
ŧ	#	Column	Non-Null Count	Dtype
-				
(9	fixed acidity	1599 non-null	float64
:	1	volatile acidity	1599 non-null	float64
:	2	citric acid	1599 non-null	float64
:	3	residual sugar	1599 non-null	float64
4	4	chlorides	1599 non-null	float64
	5	free sulfur dioxide	1599 non-null	float64
(6	total sulfur dioxide	1599 non-null	float64
-	7	density	1599 non-null	float64
8	8	рН	1599 non-null	float64
9	9	sulphates	1599 non-null	float64
:	10	alcohol	1599 non-null	float64
:	11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

```
In [5]: # to display summary of statistics
sd.describe()
```

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000

```
In [6]: #to display colums heading
sd.columns
```

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1a288ef2790>

In [8]: sns.distplot(sd['pH'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='pH', ylabel='Density'>

In [10]: | sns.heatmap(sd1.corr())

Out[10]: <AxesSubplot:>

TO TRAIN THE MODEL MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [11]: x= sd1[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                  chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density']]
          y=sd1['pH']
In [12]: # To split my dataset into training data and test data
          from sklearn .model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [13]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x train,y train)
Out[13]: LinearRegression()
In [14]: | from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]: |print(lr.intercept_)
          -24.504882619217348
          coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [16]:
          coeff
Out[16]:
                           Co-efficient
                fixed acidity
                             -0.083262
              volatile acidity
                             0.072834
                  citric acid
                             0.060884
              residual sugar
                             -0.008224
                             -0.901501
                  chlorides
           free sulfur dioxide
                             0.001931
           total sulfur dioxide
                             -0.001189
                    density
                             28.672951
```

```
In [17]: | prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x1a2927e3220>
          3.6
          3.4
          3.2
          3.0
          2.8
                    3.0
                            3.2
                                    3.4
                                            3.6
                                                    3.8
In [18]: |print(lr.score(x_test,y_test))
         0.576512555583697
In [19]: |lr.score(x_test,y_test)
Out[19]: 0.576512555583697
In [20]: |lr.score(x_train,y_train)
Out[20]: 0.5905763678429211
In [21]: from sklearn.linear_model import Ridge,Lasso
In [22]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[22]: Ridge(alpha=10)
In [23]: |dr.score(x_test,y_test)
Out[23]: 0.5107869295836952
In [24]: | dr.score(x_train,y_train)
Out[24]: 0.5158723607556093
In [25]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
```

```
In [26]: la.score(x_test,y_test)
Out[26]: -0.0006313856506627857
In [27]: la.score(x_train,y_train)
Out[27]: 0.0
```

ElasticNet

Evaluation metrics

```
In [33]: from sklearn import metrics
In [34]: print("mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
    mean Absolytre Error: 0.11620878016085791
In [35]: print("mean squared Error:",metrics.mean_squared_error(y_test,prediction))
    mean squared Error: 0.022098360450453255
In [36]: print("Root mean Absolytre Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction))
    Root mean Absolytre Error: 0.14865517296903347
```

In []:		