DRIMSeq: Dirichlet-multinomial framework for differential splicing and sQTL analyses in RNA-seq

Malgorzata Nowicka, Mark Robinson

May 26, 2016

This vignette describes version 1.1.3 of the *DRIMSeq* package.

Contents

1	Overview of Dirichlet-multinomial model	2
2	Hints for DRIMSeq pipelines	2
3	Differential splicing analysis work-flow 3.1 Example data	3
	3.2 Differential splicing analysis with DRIMSeq package	3 3 6
	3.2.3 Dispersion estimation	7 8
4	3.2.5 Testing for differential splicing	8 11
	4.2 sQTL analysis with DRIMSeq package	12 12
	4.2.2 Filtering	12 13
	4.2.3 Dispersion estimation	14 15 15
ΑF	PPENDIX	18
A	Session information	18
В	References	18

^{*}gosia.nowicka@uzh.ch

1 Overview of Dirichlet-multinomial model

In the *DRIMSeq* package we implemented a Dirichlet-multinomial framework that can be used for modeling various multivariate count data with the interest in finding the instances where the ratios of observed features are different between the experimental conditions. Such a model can be applied, for example, in differential splicing or sQTL analysis where the multivariate features are transcripts or exons of a gene. Depending on the type of counts that are used in the analysis, you can test for differential splicing at the level of transcript or exon ratio changes. The implementation of Dirichlet-multinomial model in *DRIMSeq* package is customized for differential splicing and sQTL analyses, but the data objects used in *DRIMSeq* can contain different types of counts. Therefore, other types of multivariate differential analyses between groups can be performed such as differential methylation analysis or differential polyA usage from polyA-seq data.

In short, the method consists of three statistical steps. First, we use the profile likelihood to estimate the dispersion, i.e., the variability of feature ratios between samples (replicates) within conditions. Dispersion is needed in order to find the significant changes in feature ratios between conditions which should be sufficiently stronger than the changes/variability within conditions. Second, we use maximum likelihood to estimate the full model (estimated in every group/condition separately) and null model (estimated from all data) proportions and its corresponding likelihoods. Finally, we use the likelihood ratio statistics to test for the differences between feature proportions in different groups to identify the differentially spliced genes (differential splicing analysis) or the sQTLs (sQTL analysis).

2 Hints for DRIMSeq pipelines

In this vignette, we present how one could perform differential splicing analysis and sQTL analysis with the *DRIMSeq* package. We use small data sets so that the whole pipelines can be run within few minutes in *R* on a single core computer. In practice, the package is designed to take advantage of multicore computing for larger data sets.

Both pipelines consist of the initial steps where objects containing the data for the analysis are initiated and then filtered. Functions used for this purpose, such as dmDSdata or dmSQTLdata and dmFilter, have some parameters (like counts, gene_id, min_samps_gene_expr, etc.) for which no default values are predefined. These parameters must be specified by user in order to proceed with the pipeline.

Functions dmDispersion, dmFit and dmTest, which perform the actual statistical analyses described above, require that only one parameter x containing the data is specified by user. These functions have many other parameters available for tweaking, but they do have default values, which were chosen based on many real data analyses.

Some of the steps are quite time consuming, especially the dispersion estimation, where proportions of each gene are refitted for different dispersion parameters. To speed up the calculations, we have parallelized many functions using *BiocParallel*. Thus, if possible, we recommend to increase the number of workers in BPPARAM.

In general, sQTL analyses are more computationally intensive than differential splicing analysis because one needs to do the analysis for every SNP in the surrounding region of a gene. It is indeed feasible to perform sQTL analysis for small chunks of genome, for example, per chromosome.

3 Differential splicing analysis work-flow

3.1 Example data

To demonstrate the usage of *DRIMSeq* in differential splicing analysis, we will use the *pasilla* data set produced by Brooks et al. [1]. The aim of their study was to identify exons that are regulated by pasilla protein, the Drosophila melanogaster ortholog of mammalian NOVA1 and NOVA2 (well studied splicing factors). In their RNA-seq experiment, the libraries were prepared from 7 biologically independent samples: 4 control samples and 3 samples in which pasilla was knocked-down. The libraries were sequenced on Illumina Genome Analyzer II using single-end and paired-end sequencing and different read lengths. The RNA-seq data can be downloaded from the NCBI's Gene Expression Omnibus (GEO) under the accession number GSE18508. In the examples below, we use a subset of *kallisto* [2] counts available in *PasillaTranscriptExpr* package, where you can find all the steps needed, for preprocessing the GEO data, to get a table with transcript counts.

3.2 Differential splicing analysis with DRIMSeq package

In order to do the analysis, we create a dmDSdata object, which contains feature counts and information about grouping samples into conditions. With each step of the pipeline, additional elements are added to this object. At the end of the analysis, the object contains results from all the steps, such as dispersion estimates, proportions estimates, likelihood ratio statistics, p-values, adjusted p-values. As new elements are added, the object also changes its name $dmDSdata \rightarrow dmDSdispersion \rightarrow dmDSfit \rightarrow dmDStest$, but each container inherits slots and methods available for the previous one.

3.2.1 Loading pasilla data into R

The counts obtained from *kallisto* and metadata are saved as text files in the extdata directory of the *PasillaTranscriptExpr* package.

```
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")</pre>
metadata <- read.table(file.path(data_dir, "metadata.txt"), header = TRUE,</pre>
  as.is = TRUE)
metadata
##
       LibraryName LibraryLayout SampleName condition
## 1
       Untreated-1
                           SINGLE GSM461176
                                                    CTL
## 2
       Untreated-3
                           PAIRED GSM461177
                                                    CTL
## 3
       Untreated-4
                           PAIRED GSM461178
                                                    CTL
## 4 CG8144_RNAi-1
                           SINGLE GSM461179
                                                     KD
                                                     KD
## 5 CG8144_RNAi-3
                           PAIRED GSM461180
## 6 CG8144_RNAi-4
                           PAIRED GSM461181
                                                     KD
       Untreated-6
                           SINGLE GSM461182
                                                    CTL
counts <- read.table(file.path(data_dir, "counts.txt"), header = TRUE,</pre>
  as.is = TRUE)
head(counts)
```

```
feature_id gene_id
                              GSM461176
                                          GSM461177 GSM461178 GSM461179
## 1 FBtr0300689 FBgn0031208 0.00000e+00 0.00000e+00 0.00000e+00 27.04866 0.00000e+00
## 2 FBtr0300690 FBgn0031208 5.01688e+00 4.00000e+00 1.00518e+00 0.00000 2.00000e+00
## 3 FBtr0330654 FBgn0031208 0.00000e+00 0.00000e+00 0.00000e+00 0.00000 0.00000e+00
## 4 FBtr0078166 FBgn0002121 1.19845e+02 1.65861e-06 9.54854e-02 685.96100 1.37563e-03
## 5 FBtr0078167 FBgn0002121 6.13896e-04 3.66545e-04 6.66691e-01 420.15300 1.44138e+00
## 6 FBtr0078168 FBgn0002121 9.76956e+01 2.73017e-06 5.50984e-06 279.84050 1.32354e-05
##
      GSM461181
                  GSM461182
## 1 0.00000e+00 0.00000e+00
## 2 2.00464e+00 0.00000e+00
## 3 0.00000e+00 0.00000e+00
## 4 6.25907e+01 1.86834e+02
## 5 9.81068e-07 5.66896e-05
## 6 0.00000e+00 1.51869e+02
```

Load the DRIMSeq package.

```
library(DRIMSeq)
```

Create a dmDSdata object (saved as variable d), which contains counts and information about samples such as sample IDs and a variable group defining the experimental groups/conditions. Make sure that samples in counts have the same order as in metadata. When printing variable d, you can see its class, size and which accessor methods can be applied. For dmDSdata object, there are two methods that return data frames with counts and samples.

```
d <- dmDSdata(counts = counts[, metadata$SampleName], gene_id = counts$gene_id,
  feature_id = counts$feature_id, sample_id = metadata$SampleName,
  group = metadata$condition)
d
## An object of class dmDSdata
## with 14112 genes and 7 samples
## * data accessors: counts(), samples()
head(counts(d), 3)
         gene_id feature_id GSM461176 GSM461177 GSM461178 GSM461182 GSM461179 GSM461180
##
## 1 FBgn0031208 FBtr0300689
                               0.00000
                                               0
                                                   0.00000
                                                                   0 27.04866
                                                                                        0
                                                                                        2
## 2 FBgn0031208 FBtr0300690
                               5.01688
                                               4
                                                   1.00518
                                                                   0
                                                                       0.00000
## 3 FBgn0031208 FBtr0330654
                               0.00000
                                               0
                                                   0.00000
                                                                   0
                                                                       0.00000
                                                                                        0
##
    GSM461181
## 1
       0.00000
       2.00464
## 2
       0.00000
## 3
head(samples(d), 3)
     sample_id group
##
## 1 GSM461176
                 CTL
## 2 GSM461177
                 CTL
## 3 GSM461178
                 CTL
```

You can also make a data summary plot, which is a histogram of the number of features per gene. For example, there are genes that have 74 isoforms.

plotData(d)

To make the analysis runnable within this vignette, we want to keep only a small subset of genes, which is defined in the following file.

```
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
d
## An object of class dmDSdata
## with 42 genes and 7 samples
## * data accessors: counts(), samples()
plotData(d)</pre>
```


After subsetting, d contains counts for 42 genes.

3.2.2 Filtering

Genes may have many transcripts or exons that are lowly expressed or not expressed at all. You can remove them using the dmFilter function. Filtering of lowly expressed features can be done at two levels: minimal expression using min_samps_feature_expr and min_feature_expr parameters or minimal proportion with min_samps_feature_prop and min_feature_prop.

In the pasilla experiment we use a filtering based only on the feature absolute expression and parameters are adjusted according to the number of replicates per condition. Since we have 3 knock-down and 4 control samples, we set min_samps_feature_expr equal to 3. In this way, we allow a situation where a feature (here, a transcript) is expressed in one condition but not in another, which is a case of differential splicing. The level of feature expression is controlled by min_feature_expr. Our default value is set up to 10, which means that only the features that have at least 10 estimated counts in at least 3 samples are kept for the downstream analysis.

Filtering at the gene level ensures that the observed feature ratios have some minimal reliability. Although, Dirichlet-multinomial model works on feature counts, and not on feature ratios, which means that it gives more confidence to the ratios based on 100 versus 500 reads than 1 versus 5, minimal filtering based on gene expression removes the genes with mostly zero counts and reduces the number of tests in multiple test correction. For the *pasilla* data, we want that genes have at least 10 counts in all the samples: min_samps_gene_expr = 7 and min_gene_expr = 10.

```
# Check what is the minimal number of replicates per condition
table(samples(d)$group)
##
## CTL KD
## 4 3
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
    min_samps_feature_prop = 0)
plotData(d)</pre>
```


3.2.3 Dispersion estimation

Ideally, we would like to get accurate dispersion estimates for every gene, which is problematic when analyzing small data sets because dispersion estimates become inaccurate when the sample size decreases, especially for lowly expressed genes. As an alternative, we could assume that all the genes have the same dispersion and based on all the data, we could calculate a common dispersion, but we expect this to be too strong of an assumption. Moderated dispersion is a trade-off between gene-wise and common dispersion. The moderated estimates originate from a weighted likelihood which is a combination of common and individual likelihoods. We recommend this approach when analyzing small sample size data sets.

At this step, three values may be calculated: mean expression of genes, common dispersion and gene-wise dispersions. In the default setting, all of them are computed and common dispersion is used as an initial value in the grid approach to estimate moderated gene-wise dispersions, which are shrunk toward the common dispersion.

This step of our pipeline is the most time consuming. Thus consider using BPPARAM = BiocParallel::MulticoreParam() with more than one worker.

```
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())</pre>
      Using common_dispersion = 10.7 as disp_init !
      Using 0 as a shrinkage factor !
d
## An object of class dmDSdispersion
## with 26 genes and 7 samples
## * data accessors: counts(), samples()
     mean_expression(), common_dispersion(), genewise_dispersion()
head(mean_expression(d), 3)
         gene_id mean_expression
##
## 1 FBgn0000256
                        2622.286
## 2 FBgn0020309
                       13217.714
## 3 FBgn0259735
                       11992.903
common_dispersion(d)
## [1] 10.69633
head(genewise_dispersion(d), 3)
         gene_id genewise_dispersion
## 1 FBgn0000256
                           93.425886
## 2 FBgn0020309
                             6.196396
## 3 FBgn0259735
                           72.024985
```

To inspect the behavior of dispersion estimates, you can plot them against the mean gene expression. Here, the effect of shrinking is not easily visible because our data set is very small.

If out_dir = NULL in any of the plotting functions from *DRIMSeq* package, a *ggplot* object is returned, and it can be further modified using *ggplot2* package. Here, we increase the size of points.

```
library(ggplot2)
ggp <- plotDispersion(d)
ggp + geom_point(size = 4)</pre>
```


3.2.4 Proportion estimation

In this step, we estimate the full model proportions, meaning, that transcript or exon proportions are estimated for each condition separately. You can access this estimates and the corresponding statistics, such as log-likelihoods, with proportions and statistics functions, respectively.

```
d <- dmFit(d, BPPARAM = BiocParallel::SerialParam())</pre>
d
## An object of class dmDSfit
## with 26 genes and 7 samples
## * data accessors: counts(), samples()
     mean_expression(), common_dispersion(), genewise_dispersion()
##
##
     proportions(), statistics()
head(proportions(d), 3)
         gene_id feature_id
                                      CTL
## 1 FBgn0000256 FBtr0290077 0.357377887 0.07655191
## 2 FBgn0000256 FBtr0290078 0.043420674 0.27003190
## 3 FBgn0000256 FBtr0290082 0.006048647 0.00188546
head(statistics(d), 3)
##
         gene_id
                   lik_CTL
                               lik_KD
## 1 FBgn0000256 -11835.55 -12927.32
## 2 FBgn0020309 -37233.07 -59448.02
## 3 FBgn0259735 -10729.50 -19653.99
```

3.2.5 Testing for differential splicing

Calling the dmTest function results in two calculations. First, null model proportions, i.e., feature ratios based on pooled (no grouping into conditions) counts, are estimated. Second, likelihood ratio statistics are used to test for the difference between feature proportions in different groups to identify the differentially spliced genes.

By default, compared_groups parameter in dmTest indicates all the levels of grouping variable, which means

that we test for differences in splicing between any of the groups. In the *pasilla* example, there are only two conditions, and there is only one comparison that can be done. In the case where grouping variable has more that two levels, you could be interested in the pair-wise comparisons, which you can specify with compared_groups parameter.

Now, if you call proportions or statistics function, results of null estimation are added to the previous data frames.

```
d <- dmTest(d, BPPARAM = BiocParallel::SerialParam())</pre>
## Running comparison between groups: CTL, KD
d
## An object of class dmDStest
## with 26 genes and 7 samples
## * data accessors: counts(), samples()
    mean_expression(), common_dispersion(), genewise_dispersion()
     proportions(), statistics()
##
    results()
head(proportions(d), 3)
         gene_id feature_id
                                     CTL
##
                                                  KD
                                                            null
## 1 FBgn0000256 FBtr0290077 0.357377887 0.07655191 0.208075846
## 2 FBgn0000256 FBtr0290078 0.043420674 0.27003190 0.105675217
## 3 FBgn0000256 FBtr0290082 0.006048647 0.00188546 0.004262838
head(statistics(d), 3)
         gene_id
##
                       CTL
                                  KD lik_null df
## 1 FBgn0000256 -11835.55 -12927.32 -24835.99 6
## 2 FBgn0020309 -37233.07 -59448.02 -96690.05 4
## 3 FBgn0259735 -10729.50 -19653.99 -30383.96 2
```

To obtain the results of likelihood ratio tests, you have to call the function results, which returns a data frame with likelihood ratio statistics, degrees of freedom, p-values and Benjamini and Hochberg adjusted p-values for each gene.

```
head(results(d), 3)

## gene_id lr df pvalue adj_pvalue

## 1 FBgn0000256 146.2460238 6 4.808777e-29 1.250282e-27

## 2 FBgn0020309 17.9262159 4 1.275753e-03 4.484308e-03

## 3 FBgn0259735 0.9374354 2 6.258042e-01 7.748052e-01
```

You can plot a histogram of p-values.

```
plotTest(d)
```


For genes of interest, you can make plots (bar plots, line plots, box plots, ribbon plots) of observed and estimated with Dirichlet-multinomial model feature ratios. Estimated proportions are marked with diamond shapes. Here, we plot the results for the top significant gene.

```
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
gene_id <- res$gene_id[1]

plotFit(d, gene_id = gene_id)</pre>
```


plotFit(d, gene_id = gene_id, plot_type = "lineplot")

plotFit(d, gene_id = gene_id, plot_type = "ribbonplot")

4 sQTL analysis work-flow

In sQTL analysis, we want to identify genetic variants (here, bi-allelic SNPs) that are associated with changes in splicing. Such SNPs are then called splicing quantitative trait locies (sQTLs).

Ideally, we would like to test associations of every SNP with every gene. However, such an approach would be very costly computationally and in terms of multiple testing correction. Under the assumption that SNPs that directly affect splicing are likely to be placed in the close surrounding of genes, we test only the SNPs that are located within the gene body and within some range upstream and downstream of the gene.

4.1 Example data

To demonstrate the sQTL analysis with the *DRIMSeq* package, we use data from the GEUVADIS project [3], where 462 RNA-Seq samples from lymphoblastoid cell lines were obtained. The genome sequencing data of the same individuals is provided by the 1000 Genomes Project. The samples in this project come from five populations: CEPH (CEU), Finns (FIN), British (GBR), Toscani (TSI) and Yoruba (YRI). We use transcript quantification (expected counts from FluxCapacitor) and genotypes available on the GEUVADIS project website http://www.ebi.ac.uk/Tools/geuvadis-das/, and the Gencode v12 gene annotation is available at http://www.gencodegenes.org/releases/12.html.

In order to make this vignette runnable, we perform the analysis on subsets of bi-allelic SNPs and transcript expected counts for CEPH population (91 individuals) that correspond to 50 randomly selected genes from chromosome 19. The full dataset can be accessed from <code>GeuvadisTranscriptExpr</code> package along with the description of preprocessing steps.

4.2 sQTL analysis with DRIMSeq package

Assuming you have gene annotation, feature counts and bi-allelic genotypes that are expressed in terms of the number of alleles different from the reference, the *DRIMSeq* work-flow for sQTL analysis is the same as for differential splicing.

First, we have to create a dmSQTLdata object, which contains feature counts and genotypes. Similarly as in differential splicing pipeline, results from every step are added to this object and at the end of the analysis, it contains dispersion estimates, proportions estimates, likelihood ratio statistics, p-values, adjusted p-values. As new elements are added, the object also changes its name $dmSQTLdata \rightarrow dmSQTLdispersion \rightarrow dmSQTLfit \rightarrow dmSQTLtest$. For each object, slots and methods are inherited from the previous one.

4.2.1 Loading GEUVADIS data into R

We use the subsets of data defined in GeuvadisTranscriptExpr package.

```
library(GeuvadisTranscriptExpr)

counts <- GeuvadisTranscriptExpr::counts
genotypes <- GeuvadisTranscriptExpr::genotypes
gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
snp_ranges <- GeuvadisTranscriptExpr::snp_ranges</pre>
```

Load the DRIMSeq package.

```
library(DRIMSeq)
```

In the sQTL analysis, an initial data object d is of dmSQTLdata class and, additionally to feature counts, it contains genotypes of SNPs that are in some surrounding of genes. This surrounding is defined with the parameter window. In order to find out which SNPs should be tested with which genes we can use the dmSQTLdataFromRanges functions which requires as an input the location of genes and SNPs stored as *GRanges* objects. In the case you already know the match of SNPs and genes, you can use the dmSQTLdata function.

```
# Make sure that samples in counts and genotypes are in the same order
sample_id <- colnames(counts[, -(1:2)])

d <- dmSQTLdataFromRanges(counts = counts[, sample_id],
    gene_id = counts$Gene_Symbol, feature_id = counts$TargetID,
    gene_ranges = gene_ranges, genotypes = genotypes[, sample_id],
    snp_id = genotypes$snpId, snp_ranges = snp_ranges, sample_id = sample_id,
    window = 5e3, BPPARAM = BiocParallel::SerialParam())

d
## An object of class dmSQTLdata
## with 50 genes and 91 samples</pre>
```

In our sQTL analysis, we do not repeat tests for the SNPs that define the same grouping of samples (genotype). We identify SNPs with identical genotypes across the samples and assign them to blocks. Estimation and testing are done at the block level, but the returned results are extended to a SNP level by repeating the block statistics for each SNP that belongs to a given block.

Here, the data summary plot produces three histograms: the number of features per gene, the number of SNPs per gene and the number of blocks per gene. Total number of tests done in this analysis is equal to the total number of blocks. You can use the multiplot function from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/ to plot this three figures next to each other.

multiplot(plotlist = plotData(d), cols = 3)

4.2.2 Filtering

The filtering step eliminates genes and features with low expression, as in the differential splicing analysis (see section 3.2.2). Additionally, it filters out the SNPs/blocks that do not define at least two genotypes where each of them is present in at least minor_allele_freq individuals. Usually, minor_allele_freq is equal to more or less 5% of total sample size.

Ideally, we would like that genes were expressed at some minimal level in all samples because this would lead to better estimates of feature ratios. However, for some genes, missing values may be present in the counts data,

or genes may be lowly expressed in some samples. Setting up min_samps_gene_expr to 91 would exclude too many genes. We can be slightly less stringent by taking, for example, min_samps_gene_expr = 70.

```
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
    min_samps_feature_prop = 0, minor_allele_freq = 5,
    BPPARAM = BiocParallel::SerialParam())

multiplot(plotlist = plotData(d), cols = 3)</pre>
```


4.2.3 Dispersion estimation

As for differential splicing (see section 3.2.3), dmDispersion may calculate three values: mean expression of genes, common dispersion and gene-wise dispersions. It has an additional parameter speed. If speed = FALSE, gene-wise dispersions are calculated per each gene-block. This calculation may take a long time, since there can be hundreds of SNPs/blocks per gene. If speed is set to TRUE, there will be only one dispersion calculated per gene and it will be assigned to all blocks matched to this gene.

In the default setting, speed = TRUE and common dispersion is used as an initial value in the grid approach to estimate gene-wise dispersions with NO moderation, since the sample size is quite big.

Again, this step of our pipeline is the most time consuming. Thus consider using BPPARAM = BiocParallel::MulticorePawith more than one worker when performing real data analysis.

```
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())

## ! Using common_dispersion = 4 as disp_init !

d
## An object of class dmSQTLdispersion
## with 50 genes and 91 samples

library(ggplot2)
ggp <- plotDispersion(d)
ggp + geom_point(size = 4)</pre>
```


4.2.4 Proportion estimation

Full model proportions are estimated for each gene-block pair.

```
d <- dmFit(d, BPPARAM = BiocParallel::SerialParam())
d
## An object of class dmSQTLfit
## with 50 genes and 91 samples</pre>
```

4.2.5 Testing for sQTLs

As in section 3.2.5, dmTest function fits null model proportions and performs the likelihood ratio test. The function results returns a data frame with likelihood ratio statistics, degrees of freedom, p-values and Benjamini and Hochberg adjusted p-values for each gene-block/SNP pair.

```
d <- dmTest(d, BPPARAM = BiocParallel::SerialParam())</pre>
d
## An object of class dmSQTLtest
## with 50 genes and 91 samples
## * data accessors: results()
head(results(d), 3)
##
                 gene_id block_id
                                           snp_id
                                                        lr df
                                                                 pvalue adj_pvalue
## 1
       ENSG00000221983.2 block_3 snp_19_18678970 1.262112 2 0.5332236 0.9946513
## 1.1 ENSG00000221983.2 block_3 snp_19_18685964 1.262112 2 0.5332236 0.9946513
## 1.2 ENSG00000221983.2 block_3 snp_19_18687175 1.262112 2 0.5332236
                                                                         0.9946513
plotTest(d)
```


You can plot the observed and estimated Dirichlet-multinomial model feature ratios for the sQTLs of interest. When the sample size is large, we recommend using box plots as a plot_type. Here, we plot an sQTL with the lowest p-value.

```
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
gene_id <- res$gene_id[1]
snp_id <- res$snp_id[1]
plotFit(d, gene_id, snp_id)</pre>
```


plotFit(d, gene_id, snp_id, plot_type = "boxplot2", order = FALSE)

plotFit(d, gene_id, snp_id, plot_type = "ribbonplot")

APPENDIX

A Session information

```
sessionInfo()
## R version 3.3.0 (2016-05-03)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.4 LTS
##
## locale:
    [1] LC_CTYPE=en_US.UTF-8
##
                                   LC_NUMERIC=C
                                                               LC_TIME=en_US.UTF-8
    [4] LC_COLLATE=en_US.UTF-8
                                                               LC_MESSAGES=en_US.UTF-8
                                   LC_MONETARY=en_US.UTF-8
   [7] LC_PAPER=en_US.UTF-8
                                   LC_NAME=C
                                                               LC_ADDRESS=C
## [10] LC_TELEPHONE=C
                                   LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
                                                                               base
##
## other attached packages:
## [1] GeuvadisTranscriptExpr_1.1.2 ggplot2_2.1.0
                                                                  DRIMSeq_1.1.3
## [4] PasillaTranscriptExpr_1.1.2 knitr_1.13
                                                                  colorout_1.1-2
## loaded via a namespace (and not attached):
    [1] Rcpp_0.12.4.5
                             XVector_0.13.0
##
                                                   magrittr_1.5
                                                                        edgeR_3.15.0
    [5] GenomicRanges_1.25.0 BiocGenerics_0.19.0
                                                  zlibbioc_1.19.0
                                                                        IRanges_2.7.0
  [9] munsell_0.4.3
                             BiocParallel_1.7.0
                                                                        plyr_1.8.3
                                                   colorspace_1.2-6
## [13] stringr_1.0.0
                             highr_0.6
                                                   GenomeInfoDb_1.9.0
                                                                        tools_3.3.0
## [17] parallel_3.3.0
                             gtable_0.2.0
                                                   digest_0.6.9
                                                                        reshape2_1.4.1
## [21] formatR_1.4
                             S4Vectors_0.11.0
                                                                        labeling_0.3
                                                   evaluate_0.9
## [25] limma_3.29.3
                             stringi_1.0-1
                                                   scales_0.4.0
                                                                        stats4_3.3.0
## [29] BiocStyle_2.1.0
```

B References

References

- [1] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R. Graveley, "Conservation of an RNA regulatory map between Drosophila and mammals.," *Genome research*, vol. 21, no. 2, pp. 193–202, 2011.
- [2] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, "Near-optimal RNA-Seq quantification.".
- [3] T. Lappalainen, M. Sammeth, M. R. Friedländer, P. A. C. 't Hoen, J. Monlong, M. A. Rivas, M. Gonzàlez-Porta, N. Kurbatova, T. Griebel, P. G. Ferreira, M. Barann, T. Wieland, L. Greger, M. van Iterson, J. Almlöf, P. Ribeca, I. Pulyakhina, D. Esser, T. Giger, A. Tikhonov, M. Sultan, G. Bertier, D. G. MacArthur, M. Lek,

E. Lizano, H. P. J. Buermans, I. Padioleau, T. Schwarzmayr, O. Karlberg, H. Ongen, H. Kilpinen, S. Beltran, M. Gut, K. Kahlem, V. Amstislavskiy, O. Stegle, M. Pirinen, S. B. Montgomery, P. Donnelly, M. I. McCarthy, P. Flicek, T. M. Strom, H. Lehrach, S. Schreiber, R. Sudbrak, A. Carracedo, S. E. Antonarakis, R. Häsler, A.-C. Syvänen, G.-J. van Ommen, A. Brazma, T. Meitinger, P. Rosenstiel, R. Guigó, I. G. Gut, X. Estivill, and E. T. Dermitzakis, "Transcriptome and genome sequencing uncovers functional variation in humans.," *Nature*, vol. 501, no. 7468, pp. 506–11, 2013.