Topics in Social Data Science

Week 4

Artificial Neural Networks 3

Convolutional- and Recurrent Neural Networks

Overview of today + tomorrow

- CS231N lectures
- Nielsen Chapter 6, CS231N course notes,
 Goodfellow Chapter 10, Karpathy blog post
- My lecture (CNNs and RNNs)
- Exercises in Python

(1) The model

(2) Its performance

$$C(\mathbf{W}) = \frac{1}{N} \sum_{i} (\tilde{y}_i - y_i)^2$$

$$= (0.96 - 1)^2 + (0.10 - 0)^2 + (0.04 - 0)^2 + \dots + (0.70 - 1)^2 + (0.02 - 0)^2 + (0.99 - 1)^2$$

Find the gradients with Miles in W. This we

(3) The cost function gradient in W

r is usually called the *learning rate*

Neural network →

Computational graph

Neural network →

Computational graph

Computational graph

Forward pass

Neural network →

Computational graph

Forward pass

Neural network

Computational graph

Backward pass

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$*$$

Chain rule says:

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

Neural network

Computational graph

Backward pass

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$*$$

Chain rule says:

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

Neural network ———

Computational graph

Backward pass

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$*$$

Chain rule says:

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

						9	l	age over ning data
w_0	-0.08	+0.02	-0.02	+0.11	-0.05	-0.14	· · · ·	-0.08
w_1	-0.11	+0.11	+0.07	+0.02	+0.09	+0.05		
w_2	-0.07	-0.04	-0.01	+0.02	+0.13	-0.15		
•	•	•	:	•	:	•	••	
$w_{13,001}$	+0.13	+0.08	-0.06	-0.09	-0.02	+0.04		

Dropout:

"In each SGD step, randomly ignore a fraction *p* of neurons"

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

- Can select p in wide range. Typical is 0.2 0.8, dependent on size of ANN
- Can apply only in specific layers. It is typical to only do dropout in a designated "dropout layer" somewhere close to output.

THE neural network architecture to use for image data

- Single operation on whole input
- Each neuron reacts to specific inputs

- Single operation on whole input
- Each neuron reacts to specific inputs
- Bad for images: objects move around
- No attention to spatial adjacency

> Convolve the filter across the input image to computing dot products

> Convolution by 1 filter produces new activation map of depth 1

> Convolution by 2 filters produces new activation map of depth 2

Convolve over all spatial locations

> Convolution by *n* filters produces new *activation map* of depth *n*

Convolution layer

———

> Stack these operations

> Dimensions

Convolve over all spatial locations

> Dimensions

Example: 7 x 7 input

3 x 3 filter

7

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: What if we use

stride 2?

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: What if we use

stride 2?

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: What if we use

stride 2?

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: Stride 3?

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: Stride 3?

> Dimensions

Example: 7 x 7 input

3 x 3 filter

Question: Stride 3?

> Dimensions

Problem: The image *shrinks*

$$7 \times 7 = 5 \times 5$$

> Dimensions

Problem: The image *shrinks*

Solution: Padding!

3

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

 $7 \times 7 = 5 \times 5$

Convolution

7

9

> Dimensions

Stride: **S**

General formula

Convolution

$$W = \frac{N + 2P - F}{S} + 1$$

> Quiz

Given: 128 x 128 x 3 input

Ten 5 x 5 x 3 filters

Padding: 2

Stride: 1

Question 1: What are the output dimensions?

Question 2: What is the number of

parameters?

Question 3: What if F = N + 2P?

> Quiz

Given: 128 x 128 x 3 input

Ten 5 x 5 x 3 filters

Padding: 2

Stride: 1

Question 1: What are the output dimensions?

Question 2: What is the number of

parameters?

Question 3: What if F = N + 2P?

Answer 1:

$$W = \frac{128 + 2 \cdot 2 - 5}{1} + 1 = 128$$

Answer 2:

$$5 \cdot 5 \cdot 3 \cdot 10 + 10 = 760$$

Answer 3:

Then it's just a VNN!

> Example of a bigger network

- > Pooling
 - Method used for downsampling
 - Reduces number of parameters and computations
 - Lowers width and height of volume by an integer factor
 - Preserved depth

- > Pooling
 - Method used for downsampling
 - Reduces number of parameters and computations
 - Lowers width and height of volume by an integer factor
 - Preserved depth

Recurrent	Neura	Networ	ks
IICGUIICII	INGUIA	IIACTAAOII	

THE neural network architecture to use for sequential data

The problem with all feed forward neural networks

- Input and output must be of hardassigned dimensions
- The network makes a fixed number of computations
- If input is sequence-like (video, sound, etc.) the network is ignorant to the order of samples

The problem with all feed forward neural networks

> Solution: Recurrence!

- Input and output must be of hardassigned dimensions
- The network makes a fixed number of computations
- If input is sequence-like (video, sound, etc.) the network is ignorant to the order of samples

> Fundamental idea

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: W is the same in each iteration

> Fundamental idea

$$h_t = f_W(h_{t-1}, x_t)$$

$$y_t = W_{hy}h_t$$

> Unrolled in time

time

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

> Backpropagation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

> Ways to process sequential data

> Example: predicting next character

training sequence: "hello"

> Vanilla RNN, architecture

> Vanilla RNN, architecture

- 4: because dotting (h, t) onto it should result in a new vector with 4 elements
- 7: because the (h, t) vector we are dotting onto it has 7 elements in it

> Vanilla RNN, backpropagation

> Vanilla RNN, backpropagation

Problem: Repeated multiplications by **W** during backpropagation

Leads to: Exploding/vanishing gradients

Solution: Gradient clipping (solves exploding gradients), or change architecture

> Vanilla RNN vs. LSTM

Vanilla RNN

$$h_t = \tanh\left(W\begin{bmatrix} h_{t-1} \\ \chi_t \end{bmatrix}\right)$$

Long Short Term Memory (LSTM)

$$\begin{bmatrix} i \\ f \\ o \\ g \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ tanh \end{bmatrix} W \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix}$$

$$c_x = f \odot c_{t-1} + i \odot g$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

> Vanilla RNN vs. LSTM

C_{t-1} stack h_{t-1}

Long Short Term Memory (LSTM)

$$\begin{bmatrix} i \\ f \\ o \\ g \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \tau \\ \tanh \end{bmatrix} W \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

> Vanilla RNN vs. LSTM

"Gradient highway": solves vanishing/exploding gradient problems

Long Short Term Memory (LSTM)

$$\begin{bmatrix} i \\ f \\ o \\ g \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{bmatrix} W \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

> Vanilla RNN vs. LSTM

Long Short Term Memory (LSTM)

$$\begin{bmatrix} i \\ f \\ o \\ g \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{bmatrix} W \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$