Zadanie nr 2 - Próbkowanie i kwantyzacja

Cyfrowe Przetwarzanie Sygnałów

Paweł Purgat, 203975

Bartłomiej Ciach, 203860

27.04.2018

1 Cel zadania

Celem zadania było zapoznanie się z konwersją analogowo-cyfrową oraz cyfrowo-analogową. W ćwiczeniu zaimplementowane zostały wybrane metody konwersji.

2 Wstęp teoretyczny

W zadaniu zostały wykonane następujące procesy:

- Konwersja analogowo cyfrowa
 - Próbkowanie równomierne
 - Kwantyzacja równomierna z zaokrąglaniem
- Konwersja cyfrowo analogowa
 - Ekstrapolacja zerowego rzędu
 - Rekonstrukcja w oparciu o funkcję sinc.

Dla przetwarzanych sygnałów zostały również policzone poniższe miary:

- Błąd średniokwadratowy
- Stosunek sygnał szum
- Szczytowy stosunek sygnał szum
- Maksymalna różnica

Do wykonania zadania została użyta instrukcja udostępniona na portalu WIKAMP [1].

3 Eksperymenty i wyniki

W ramach zadania na wygenerowanych sygnałach ciągłych i dyskretnych zostały przeprowadzone procesy konwersji analogowo - cyfrowej oraz cyfrowo - analogowej na przykładzie sygnału sinusoidalnego. Wyniki eksperymentów zostały przedstawione poniżej (na wykresach kolorem niebieskim zaznaczono wykres sygnały przed konwersją, na czerwono zaznaczony jest sygnał po konwersji).

3.1 Eksperyment nr 1

Konwersja cyfrowo - analogowa.

3.1.1 Założenia

Eksperyment nr 1 polegał na generacji sygnału w postaci cyfrowej (dyskretnej) oraz późniejszej jego konwersji do postaci analogowej (ciągłej) przy pomocy opisanych metod.

3.1.2 Przebieg

Po wygenerowaniu sygnału dyskretnego przy pomocy metod ekstrapolacji zerowego rzędu oraz rekonstrukcji w oparciu o funkcję sinc odtworzony został sygnał ciągły.

3.1.3 Rezultat

Rysunek 1: Wykres otrzymany po ekstrapolacji zerowego rzędu.

Tabela 1: Obliczone miary dla ekstrapolacji zerowego rzędu.

Błąd średniokwadratowy	$27,\!36$
Maksymalna różnica	$12,\!68$
Stosunek sygnał - szum	$173,\!62$
Szczytowy stosunek sygnał - szum	2,62

Rysunek 2: Wykres otrzymany po rekonstrukcji w oparciu o funkcję sinc przy uwzględnieniu 5 sąsiadujących próbek.

Tabela 2: Obliczone miary dla rekonstrukcji w oparciu o funkcję sinc przy uwzględnieniu 5 sąsiadujących próbek.

Błąd średniokwadratowy	$0,\!40$
Maksymalna różnica	1,70
Stosunek sygnał - szum	$150,\!22$
Szczytowy stosunek sygnał - szum	$21,\!02$

3.2 Eksperyment nr 2

3.2.1 Założenia

Eksperyment nr 2 polegał na generacji sygnału w postaci analogowej (ciągłej) oraz późniejszej jego konwersji do postaci cyfrowej (dyskretnej) przy pomocy opisanych metod.

Rysunek 3: Wykres otrzymany po rekonstrukcji w oparciu o funkcję sinc przy uwzględnieniu 50 sąsiadujących próbek.

Tabela 3: Obliczone miary dla rekonstrukcji w oparciu o funkcję sinc przy uwzględnieniu 50 sąsiadujących próbek.

Błąd średniokwadratowy	$0,\!55$
Maksymalna różnica	$1,\!34$
Stosunek sygnał - szum	$156,\!65$
Szczytowy stosunek sygnał - szum	$19,\!58$

3.2.2 Przebieg

Wygenerowany sygnał ciągły został poddany konwersji analogowo - cyfrowej przy pomocy próbkowania równomiernego oraz kwantyzacji równomiernej z zaokrągleniem.

3.2.3 Rezultat

Rysunek 4: Wykres otrzymany po próbkowaniu równomiernym.

Tabela 4: Obliczone miary dla próbkowania równomiernego.

Błąd średniokwadratowy	$0,\!00$
Maksymalna różnica	0,00
Stosunek sygnał - szum	$143,\!97$
Szczytowy stosunek sygnał - szum	315.23

Tabela 5: Obliczone miary dla kwantyzacji równomiernej z zaokrąglaniem na 4 bitach.

Błąd średniokwadratowy	3,40
Maksymalna różnica	$3,\!33$
Stosunek sygnał - szum	$164,\!56$
Szczytowy stosunek sygnał - szum	11,68

3.3 Eksperyment nr 3

3.3.1 Założenia

Eksperyment nr 3 polegał na zaprezentowaniu zjawiska aliasingu przy próbkowaniu.

Rysunek 5: Wykres otrzymany po kwantyzacji równomiernej z zaokrąglaniem na 4 bitach.

3.3.2 Przebieg

Został wygenerowany sygnał ciągły składający się z dwóch sygnałów sinuso-idalnych o częstotliwościach 440Hz oraz 22000Hz. Częstotliwość próbkowania wynosiła 22050Hz. Po operacji próbkowania, sygnał został zrekonstruowany przy pomocy funkcji sinc.

3.3.3 Rezultat

Tabela 6: Obliczone miary dla rekonstrukcji sygnału próbkowanego.

Błąd średniokwadratowy	2848,87
Maksymalna różnica	$99,\!24$
Stosunek sygnał - szum	$15,\!17$
Szczytowy stosunek sygnał - szum	$-17,\!54$

Rysunek 6: Wykres zrekonstruowany na podstawie próbkowania sygnału.

4 Wnioski

- Ekstrapolacja zerowego rzędu generuje widoczne zniekształcenie w stosunku do oryginalnego sygnału. Jej dokładność zależy od częstotliwości próbkowania sygnału oryginalnego.
- Rekonstrukcja w oparciu o funkcję sinc jest dokładniejsza niż ekstrapolacja zerowego rzędu, jednak jej dokładność zależy od liczby próbek,
 które bierzemy pod uwagę przy obliczaniu wartości sygnału w danym
 punkcie.
- Zjawisko aliasingu możemy zaobserwować, gdy sygnał posiada składowe o częstotliwości większej od połowy częstotliwości próbkowania.
- Zjawisko aliasingu powoduje, że rekonstrukcja próbkowanego sygnału nie oddaje sygnału pierwotnego.

5 Bibliografia

[1] Instrukcja do zadania 2, Próbkowanie i kwantyzacja