

# **OpenCore**

Reference Manual (0.5.0.1)

[2019.10.06]

# 4.4 Block Properties

#### 1. All

Type: plist boolean Failsafe: false

**Description**: If set to true, all ACPI tables matching the condition will be dropped. Otherwise only first matched table.

#### 2. Comment

Type: plist string Failsafe: Empty string

**Description**: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

#### 3. Enabled

Type: plist boolean Failsafe: false

**Description**: This ACPI table will not be removed unless set to true.

#### 4. OemTableId

Type: plist data, 8 bytes

Failsafe: All zero

**Description**: Match table OEM ID to be equal to this value unless all zero.

# 5. TableLength

Type: plist integer

Failsafe: 0

**Description**: Match table size to be equal to this value unless 0.

# 6. TableSignature

Type: plist data, 4 bytes

Failsafe: All zero

**Description**: Match table signature to be equal to this value unless all zero.

*Note*: Make sure not to specify table signature when the sequence needs to be replaced in multiple places. Especially when performing different kinds of renames.

# 4.5 Patch Properties

#### 1. Comment

Type: plist string Failsafe: Empty string

**Description**: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

## 2. Count

Type: plist integer

Failsafe: 0

**Description**: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

## 3. Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI patch will not be used unless set to true.

## 4. Find

Type: plist data Failsafe: Empty data

**Description**: Data to find. Must equal to Replace in size.

# 5. Limit

Type: plist integer

Failsafe: 0

**Description**: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

6. Mask

Type: plist data Failsafe: Empty data

**Description:** Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set

to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId

Type: plist data, 8 bytes

Failsafe: All zero

**Description**: Match table OEM ID to be equal to this value unless all zero.

8. Replace

Type: plist data Failsafe: Empty data

**Description**: Replacement data of one or more bytes.

9. ReplaceMask

Type: plist data Failsafe: Empty data

**Description**: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip

Type: plist integer

Failsafe: 0

**Description**: Number of found occurrences to be skipped before replacement is done.

11. TableLength

Type: plist integer

Failsafe: 0

**Description**: Match table size to be equal to this value unless 0.

12. TableSignature

Type: texttplist data data, 4 bytes

Failsafe: All zero

**Description**: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

- Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices (e.g. EC and ECO), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much safer to rename devices at I/O Registry level, as done by WhateverGreen.
- Avoid patching \_OSI to support a higher level of feature sets unless absolutely required. Commonly this enables a number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally do not need it at all, and those that do are fine with much smaller patches.
- Try to avoid hacky changes like renaming <code>\_PRW</code> or <code>\_DSM</code> whenever possible.

Several cases, where patching actually does make sense, include:

- Refreshing HPET (or another device) method header to avoid compatibility checks by \_OSI on legacy hardware. \_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to always return 0xF by replacing AO 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.
- To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a laptop, the original method can be replaced with a dummy name by patching \_Q11 with XQ11.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

# 5 Booter

# 5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications currently provide various patches and environment alterations for different firmwares. Some of these features were originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting please ensure that you have:

- Most up-to-date UEFI firmware (check your motherboard vendor website).
- Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
- Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards with the same issue are known, consider this option to be first to check if you have erratic boot failures.
- DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table dropped.
- No 'slide' boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all or see No slide values are usable! Use custom slide! message in the log.
- CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Cconsider patching it if you have enough skills and no option is available. See VerifyMsrE2 nots for more details.
- CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM on NVIDIA 6xx/AMD 2xx or older. Use GopUpdate or AMD UEFI GOP MAKER in case you are not sure how.
- EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
- VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
- While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn Power Nap and the others off run the following commands in Terminal:

```
sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0
```

Note: these These settings may reset at hardware change and in certain other circumstances. To view their current state use pmset -g command in Terminal.

# 5.2 Properties

1. Quirks

Type: plist dict

**Description**: Apply individual booter quirks described in Quirks Properties section below.

# 5.3 Quirks Properties

 $1. \ {\tt AvoidRuntimeDefrag}$ 

Type: plist boolean

Failsafe: false

**Description**: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

Failsafe: Empty string

Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

# 5. MatchKernelMaxKernel

Type: plist string Failsafe: Empty string

Description: Adds kernel driver on selected macOS version only. The selection happens based on prefix match with the kernel version, i. e. specified macOS version or older.

Kernel version interpretation is implemented as follows:

$$\begin{aligned} ParseDarwinVersion(\kappa,\lambda,\mu) = & (\lfloor \frac{\kappa}{10} \rfloor \cdot 10 + \kappa - \lfloor \frac{\kappa}{10} \rfloor \cdot 10) \cdot 10000 & \text{Where } \kappa \in (0,99) \text{ is kernel version major} \\ & + & (\lfloor \frac{\lambda}{10} \rfloor \cdot 10 + \lambda - \lfloor \frac{\lambda}{10} \rfloor \cdot 10) \cdot 100 & \text{Where } \lambda \in (0,99) \text{ is kernel version minor} \\ & + & (\lfloor \frac{\mu}{10} \rfloor \cdot 10 + \mu - \lfloor \frac{\mu}{10} \rfloor \cdot 10) & \text{Where } \mu \in (0,99) \text{ is kernel version patch} \end{aligned}$$

Kernel version comparison is implemented as follows:

$$\alpha = \begin{cases} ParseDarwinVersion(\texttt{MinKernel}), & \text{If MinKernel is valid} \\ 0 & Otherwise \end{cases}$$
 
$$\beta = \begin{cases} ParseDarwinVersion(\texttt{MaxKernel}), & \text{If MaxKernel is valid} \\ \infty & Otherwise \end{cases}$$
 
$$\gamma = \begin{cases} ParseDarwinVersion(FindDarwinVersion()), & \text{If valid "Darwin Kernel Version" is found} \\ 0 & Otherwise \end{cases}$$

$$f(\alpha, \beta, \gamma) = \alpha \le \gamma \le \beta$$

Here ParseDarwinVersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version by locating "Darwin Kernel Version  $\kappa.\lambda.\mu$ " string in the kernel image.

# 6. 16.7.0MinKernelwill match macOS 10.12.6 and 16. will match any macOS 10.12.x version

Type: plist string Failsafe: Empty string

**Description**: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7. PlistPath

Type: plist string Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

#### 7.4**Block Properties**

1. Comment

Type: plist string Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

2. Enabled

Type: plist boolean

Failsafe: false

**Description**: This kernel driver will not be blocked unless set to true.

#### 3. Identifier

Type: plist string Failsafe: Empty string

**Description**: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

## 4. MatchKernelMaxKernel

Type: plist string Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match

with the kernel version, i. e. specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

5. 16.7.0MinKernelwill match macOS 10.12.6 and 16. will match any macOS 10.12.x version

Type: plist string Failsafe: Empty string

**Description**: Blocks kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

# 7.5 Emulate Properties

## 1. Cpuid1Data

Type: plist data, 16 bytes

Failsafe: All zero

Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU kernel. Normally it is only the value of EAX that needs to be taken care of, which represents the exact CPUID. And the remainders are to be left as zeroes. For instance, A9 06 03 00 stands for CPUID 0x0306A9 (Ivy Bridge). A good example can be found at acidanthera/bugtracker#365. (See Special NOTES for Haswell+ low-end)

# 2. Cpuid1Mask

Type: plist data, 16 bytes

Failsafe: All zero

**Description**: Bit mask of active bits in Cpuid1Data. When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

# 7.6 Patch Properties

# 1. Base

Type: plist string Failsafe: Empty string

**Description**: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address of provided symbol name. Can be set to empty string to be ignored.

# 2. Comment

Type: plist string Failsafe: Empty string

**Description**: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

## 3. Count

Type: plist integer

Failsafe: 0

**Description**: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

## 4. Enabled

Type: plist boolean Failsafe: false

**Description**: This kernel patch will not be used unless set to true.

#### 5. Find

Type: plist data

Failsafe: Empty data

**Description**: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in size otherwise.

6. Identifier

Type: plist string Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

7. Limit

Type: plist integer

Failsafe: 0

**Description**: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

8. Mask

Type: plist data Failsafe: Empty data

**Description**: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

9. MatchKernelMaxKernel

Type: plist string Failsafe: Empty string

**Description**: Adds kernel driver to selected macOS version only. The selection happens based on prefix match with the kernel version, i. e. Patches data on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

10. 16.7.0MinKernelwill match macOS 10.12.6 and 16. will match any macOS 10.12.x version-

Type: plist string Failsafe: Empty string

**Description**: Patches data on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

11. Replace

Type: plist data Failsafe: Empty data

**Description**: Replacement data of one or more bytes.

12. ReplaceMask

Type: plist data Failsafe: Empty data

**Description**: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

13. Skip

Type: plist integer

Failsafe: 0

**Description**: Number of found occurrences to be skipped before replacement is done.

# 7.7 Quirks Properties

1. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

**Description**: Disables PKG\_CST\_CONFIG\_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManagement.kext, commonly causing early kernel panic, when it is locked from writing.

*Note*: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling which is much cleaner. More details about the issue can be found in VerifyMsrE2 notes.

 $2. \ {\tt AppleXcpmCfgLock}$ 

Type: plist boolean

# 8 Misc

## 8.1 Introduction

This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

# 8.2 Properties

1. Boot

Type: plist dict

**Description**: Apply boot configuration described in Boot Properties section below.

2. BlessOverride

Type: plist array

**Description**: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders, for example, \EFI\Microsoft\bootmgfw.efi for Microsoft bootloader. This allows unusual boot paths to be automatically discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such as \System\Library\CoreServices\boot.efi, but unlike predefined bless paths they have highest priority.

3. Debug

Type: plist dict

**Description**: Apply debug configuration described in Debug Properties section below.

4. Entries

Type: plist array

**Description**: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security

Type: plist dict

**Description**: Apply security configuration described in Security Properties section below.

6. Tools

Type: plist array

**Description**: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

*Note*: Select tools, for example, UEFI Shell or are very dangerous and **MUST NOT** appear in production configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass secure boot chain.

# 8.3 Boot Properties

1. ConsoleMode

Type: plist string Failsafe: Empty string

**Description**: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty string not to change console mode. Set to Max to try to use largest available console mode.

Note: This field is best to be left empty on most firmwares.

2. ConsoleBehaviourOs

Type: plist string Failsafe: Empty string

**Description**: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol is for.

- 0x00040000 (bit 18) OC\_SCAN\_ALLOW\_DEVICE\_SCSI, allow scanning SCSI devices.
- 0x00080000 (bit 19) OC\_SCAN\_ALLOW\_DEVICE\_NVME, allow scanning NVMe devices.
- 0x00100000 (bit 20) OC\_SCAN\_ALLOW\_DEVICE\_ATAPI, allow scanning CD/DVD devices.
- 0x00200000 (bit 21) 0C\_SCAN\_ALLOW\_DEVICE\_USB, allow scanning USB devices.
- 0x00400000 (bit 22) 0C\_SCAN\_ALLOW\_DEVICE\_FIREWIRE, allow scanning FireWire devices.
- 0x00800000 (bit 23) OC\_SCAN\_ALLOW\_DEVICE\_SDCARD, allow scanning card reader devices.

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition to not scanning APFS file systems on USB, CD, USB, and FireWire drives. The combination reads as:

- OC\_SCAN\_FILE\_SYSTEM\_LOCK
- OC SCAN DEVICE LOCK
- OC\_SCAN\_ALLOW\_FS\_APFS
- OC\_SCAN\_ALLOW\_DEVICE\_SATA
- OC\_SCAN\_ALLOW\_DEVICE\_SASEX
- OC\_SCAN\_ALLOW\_DEVICE\_SCSI
- OC\_SCAN\_ALLOW\_DEVICE\_NVME

# 8.6 Entry Properties

1. Arguments

Type: plist string Failsafe: Empty string

**Description**: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Comment

Type: plist string Failsafe: Empty string

**Description**: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

3. Enabled

Type: plist boolean Failsafe: false

**Description**: This entry will not be listed unless set to true.

4. Name

Type: plist string Failsafe: Empty string

**Description**: Human readable entry name displayed in boot picker.

5. Path

Type: plist string Failsafe: Empty string

**Description**: Entry location depending on entry type.

- Entries specify external boot options, and therefore take device paths in Path key. These values are not checked, thus be extremely careful. Example: PciRoot(0x0)/Pci(0x1,0x1)/.../\EFI\COOL.EFI
- Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative to OC/Tools directory. Example: CleanNvramShell.efi.

Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

| Number | Start (sector) | End (sector) | Size      | Code | Name                 |
|--------|----------------|--------------|-----------|------|----------------------|
| 1      | 2048           | 1023999      | 499.0 MiB | 2700 | Basic data partition |
| 2      | 1024000        | 1226751      | 99.0 MiB  | EF00 | EFI system partition |
| 3      | 1226752        | 1259519      | 16.0 MiB  | 0C01 | Microsoft reserved   |
| 4      | 1259520        | 419428351    | 199.4 GiB | 0700 | Basic data partition |

Command (? for help): c Partition number (1-4): 4 Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

```
Do you want to proceed? (Y/N): Y OK; writing new GUID partition table (GPT) to \.\Disk synchronization succeeded! The computer should now use the new partition table. The operation has completed successfully.
```

Listing 3: Relabeling Windows volume

#### How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and prefer the driver bundled with macOS with optional write support (command or GUI), there still exist vendor-specific workarounds for their products: Tuxera, Paragon, etc.

# 12.2 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with GDB or IDA Pro is also available. For GDB check OcSupport Debug page. For IDA Pro you will need IDA Pro 7.3 or newer, refer to Debugging the XNU Kernel with IDA Pro for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in Target, e.g. 0xB for onscreen with serial. OpenCore uses 115200 baud rate, 8 data bits, no parity, and 1 stop bit. For macOS your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART GNDRX, and motherboard GND to USB UART RXGND. Use screen utility to get the output, or download GUI software, such as CoolTerm.

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common to have GND swapped with RX, thus you have to connect motherboard "TX" to USB UART GND, and motherboard "GND" to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument.

# 12.3 Tips and Tricks

## 1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that: