Package 'plde'

October 14, 2022

Type Package

Title Penalized Log-Density Estimation Using Legendre Polynomials
Version 0.1.2
Date 2018-05-31
Author JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo
Maintainer JungJun Lee <ljjoj@korea.ac.kr></ljjoj@korea.ac.kr>
Description We present a penalized log-density estimation method using Legendre polynomials with lasso penalty to adjust estimate's smoothness. Re-expressing the logarithm of the density estimator via a linear combination of Legendre polynomials, we can estimate parameters by maximizing the penalized log-likelihood function. Besides, we proposed an implementation strategy that builds on the coordinate decent algorithm, together with the Bayesian information criterion (BIC).
License GPL (>= 2)
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-01 13:30:23 UTC
R topics documented:
basic_values
compute_fitted
compute_lambdas
fit_plde
fit_plde_sub
legendre_polynomial
min_q_lambda
model_selection
plde 8 q_lambda 10
soft_thresholding
update

2 basic_values

Index 13

basic_values

Compute basic values

Description

Compute basic values

Usage

basic_values(sm)

Arguments

sm

List of plde fit

Details

basic_values function computes transformed variable (sm\$X_transform), rectangular node points (sm\$nodes) and weights (sm\$weights) for numerical integrations, coefficient vector (sm\$coefficients), basis matrix at node and data points (sm\$B_mat, sm\$X_mat), and basis mean (sm\$B_mean).

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

See Also

legendre_polynomial

compute_fitted 3

Description

compute_fitted function gives the fitted values over the input grid points for the fixed tuning parameter λ .

Usage

```
compute_fitted(x, sm)
```

Arguments

x grid pointssm List of plde fit

Details

compute_fitted function computes fitted values of estimates having support for the given data by scaling back and change of variable technique. For more details, see Section 3.2 of the reference.

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

See Also

legendre_polynomial

fit_plde

compute_lambdas

Compute lambda sequence

Description

compute_lambdas function gives the entire decreasing tuning parameter sequence (sm\$lambda) on the log-scale.

Usage

```
compute_lambdas(sm)
```

Arguments

sm

List of plde fit

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

fit_plde

Fit plde for a fixed tuning parameter

Description

fit_plde gives the plde fit for a fixed tuning parameter

Usage

```
fit_plde(sm)
```

Arguments

 sm

List of plde fit

Details

This is the coordinate descent algorithm for computing $\hat{\theta}^{\lambda}$ when the penalty parameter λ is fixed. See Algorithm 1 in the reference for more details.

fit_plde_sub

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

See Also

```
fit_plde_sub, min_q_lambda
```

fit_plde_sub

Fit plde for a fixed tuning parameter

Description

fit_plde_sub function computes the updated normalizing constant (sm\$c_coefficients), Legendre density function estimator (sm\$f) and the negative of penalized log-likelihood function (sm\$pen_loglik) for each iteration.

Usage

```
fit_plde_sub(sm)
```

Arguments

sm

List of plde fit

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

6 min_q_lambda

legendre_polynomial legendre_polynomial

Description

legendre_polynomial gives the Legendre polynomial design matrix over the input node points.

Usage

```
legendre_polynomial(x, sm)
```

Arguments

```
x input node points
sm List of plde fit
```

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

Examples

```
# clean up
rm(list = ls())
library(plde)
x = seq(-1, 1, length = 200)
L = legendre_polynomial(x, list(dimension = 10))
# Legendre polynomial basis for dimension 1 to 10
matplot(x, L, type = "1")
```

min_q_lambda

Minimization of the quadratic approximation to objective function

Description

min_q_lambda function gives the coefficient vector (sm\$coefficients) updated by the coordinate descent algorithm iteratively until the quadratic approximation to the objective function convergences.

model_selection 7

Usage

```
min_q_lambda(sm)
```

Arguments

sm

List of plde fit

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

See Also

```
q_lambda, update
```

model_selection

Optimal model selection

Description

model_selection function gives the optimal model over the whole plde fits based on information criterian (AIC, BIC). The optimal model is saved at fit\$optimal.

Usage

```
model_selection(fit, method = "AIC")
```

Arguments

fit Entire list of plde fit by all tuning parameters

method model selection criteria. 'AIC' or 'BIC' is used. Default is 'AIC'.

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

8 plde

plde

Penalized Log-density Estimation Using Legendre Polynomials

Description

This function gives the penalized log-density estimation using Legendre polynomials.

Usage

```
plde(X, initial_dimension = 100, number_lambdas = 200,
     L = -0.9, U = 0.9, ic = 'AIC', epsilon = 1e-5, max_iterations = 1000,
     number_rectangular = 1000, verbose = FALSE)
```

Arguments

X Input vector, of dimension n.

initial_dimension

Positive interger that decides initial dimension of Legendre polynomials. De-

fault is 100.

number_lambdas The number of tuning parameter λ values. Default is 200.

L Lower bound of transformed data. Default is -0.9.

U Upper bound of transformed data. Default is +0.9.

ic Model selection criteria. 'AIC' or 'BIC' is used. Default is 'AIC'.

epsilon Positive real value that controls the iteration stopping criteria. In general, the

smaller the value, convergence needs more iterations. Default is 1e-5.

max_iterations Positive integer value that decides the maximum number of iterations. Default

is 1000.

number_rectangular

Number of node points for numerical integration

verbose verbose

Details

The basic idea of implementation is to approximate the negative log-likelihood function by a quadratic function and then to solve penalized quadratic optimization problem using a coordinate descent algorithm. For a clear exposition of coordinate-wise updating scheme, we briefly explain a penalized univariate quadratic problem and its solution expressed as soft-thresholding operator soft_thresholding. We use this univariate case algorithm to update parameter vector coordinate-wisely to find a minimizer.

Value

A list contains the whole fits of all tuning parameter λ sequence. For example, fitsm[[k]] indicates the fit of k th lambda.

plde 9

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

Source

This package is built on R version 3.4.2.

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. "Regularization paths for generalized linear models via coordinate descent." Journal of statistical software 33.1 (2010): 1.

See Also

basic_values, compute_lambdas, fit_plde, model_selection

Examples

```
# clean up
rm(list = ls())
library(plde)
Eruption = faithful$eruptions
Waiting = faithful$waiting
n = length(Eruption)
# fit PLDE
fit_Eruption = plde(Eruption, initial_dimension = 30, number_lambdas = 50)
fit_Waiting = plde(Waiting, initial_dimension = 30, number_lambdas = 50)
x_{Eruption} = seq(min(Eruption), max(Eruption), length = 100)
x_{\text{Waiting}} = \text{seq}(\text{min}(\text{Waiting}), \text{max}(\text{Waiting}), \text{length} = 100)
fhat_Eruption = compute_fitted(x_Eruption, fit_Eruption$sm[[fit_Eruption$number_lambdas]])
fhat_Waiting = compute_fitted(x_Waiting, fit_Waiting$sm[[fit_Waiting$number_lambdas]])
# display layout
par(mfrow = c(2, 2), oma=c(0,0,2,0), mar = c(4.5, 2.5, 2, 2))
# Eruption
col_index = rainbow(fit_Eruption$number_lambdas)
plot(x_Eruption, fhat_Eruption, type = "n", xlab = "Eruption", ylab = "", main = "")
# all fit plot
for(i in 1 : fit_Eruption$number_lambdas)
   fhat = compute_fitted(x_Eruption, fit_Eruption$sm[[i]])
  lines(x_Eruption, fhat, lwd = 0.5, col = col_index[i])
k_{Eruption} = density(Eruption, bw = 0.03)
lines(k_Eruption$x, k_Eruption$y / 2, lty = 2)
# optimal model
```

10 q_lambda

```
hist_col = rgb(0.8, 0.8, 0.8, alpha = 0.6)
hist(Eruption, nclass = 20, freq = FALSE, xlim = c(1.1, 5.9),
     col = hist_col, ylab = "", main = "", ylim = c(0, 1.2))
fhat_optimal_Eruption = compute_fitted(x_Eruption, fit_Eruption$optimal)
lines(x_Eruption, fhat_optimal_Eruption, col = "black", lwd = 2)
# Waiting
col_index = rainbow(fit_Waiting$number_lambdas)
plot(x_Waiting, fhat_Waiting, type = "n", xlab = "Waiting", ylab = "", main = "")
# all fit plot
for(i in 1 : fit_Waiting$number_lambdas)
   fhat = compute_fitted(x_Waiting, fit_Waiting$sm[[i]])
  lines(x_Waiting, fhat, lwd = 0.5, col = col_index[i])
k_Waiting = density(Waiting, bw = 1)
lines(k_Waitingx, k_Waitingy / 2, lty = 2)
# optimal model
hist_col = rgb(0.8, 0.8, 0.8, alpha = 0.6)
hist(Waiting, nclass = 20, freq = FALSE, xlim = c(40, 100),
     col = hist_col, ylab = "", main = "", ylim = c(0, 0.055))
fhat_optimal_Waiting = compute_fitted(x_Waiting, fit_Waiting$optimal)
lines(x_Waiting, fhat_optimal_Waiting, col = "black", lwd = 2)
```

q_lambda

Compute quadratic approximation objective function

Description

q_lambda function computes quadratic approximation of the objective function.

Usage

```
q_lambda(sm)
```

Arguments

sm

List of plde fit

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

soft_thresholding 11

soft_thresholding

Soft thresholding operator

Description

soft_thresholding gives the soft threshold value of y given the threshold. When threshold increasing, y shrinks to zero.

Usage

```
soft_thresholding(y, threshold)
```

Arguments

y input real value threshold threshold value

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim and Ja-Yong Koo. "Penalized Log-density Estimation Using Legendre Polynomials." Submitted to Communications in Statistics - Simulation and Computation (2017), in revision.

Examples

```
# clean up
rm(list = ls())
library(plde)
# soft thresholding operater
soft_thresholding(3, 1)
soft_thresholding(-3, 1)
# if the threshold value is large enough, it shrinks to zero
soft_thresholding(-3, 4)
soft_thresholding(3, 4)
# Plot of the soft thresholding operater
y = seq(-3, 3, length = 100)
st = NULL
for (i in 1 : length(y))
   st[i] = soft_thresholding(y[i], 1)
plot(y, y, col = "gray", type = "l", ylab = "ST")
lines(y, st, col = "blue")
```

12 update

update

Update the Legendre polynomial coefficient vector

Description

update function finds the minimizer of an univariate quadratic approximation objective function for each coefficient coordinate-wise.

Usage

update(sm)

Arguments

sm

List of plde fit

Author(s)

JungJun Lee, Jae-Hwan Jhong, Young-Rae Cho, SungHwan Kim, Ja-yong Koo

References

Index

```
basic_values, 2, 9

compute_fitted, 3
compute_lambdas, 4, 9

fit_plde, 4, 9
fit_plde_sub, 5, 5

legendre_polynomial, 2, 3, 6

min_q_lambda, 5, 6
model_selection, 7, 9

plde, 8

q_lambda, 7, 10

soft_thresholding, 11

update, 7, 12
```