Linear Regression Homework Delta Rule Update

Initial Weights:

- (w_1 = 0)
- $(w_2 = 0)$
- (b=0)

Learning Rate: (\eta = 0.2)

Training Set:

(x_1)	(x_2)	Target
0.3	0.8	0.7
-0.3	1.6	-0.1
0.9	0	1.3

Delta Rule Update

1. First Sample (($x_1 = 0.3$), ($x_2 = 0.8$), Target = 0.7)

Output Calculation:

$$y = w_1 \times 0.3 + w_2 \times 0.8 + b = 0 \times 0.3 + 0 \times 0.8 + 0 = 0$$

Error:

$$\delta = \mathrm{Target} - y = 0.7 - 0 = 0.7$$

Weight Updates:

$$w_1 = 0 + 0.2 \times 0.7 \times 0.3 = 0.042$$
 $w_2 = 0 + 0.2 \times 0.7 \times 0.8 = 0.112$ $b = 0 + 0.2 \times 0.7 \times 1 = 0.14$

2. Second Sample (($x_1 = -0.3$), ($x_2 = 1.6$), Target = -0.1)

Output Calculation:

$$y = 0.042 \times (-0.3) + 0.112 \times 1.6 + 0.14 = -0.0126 + 0.1792 + 0.14 = 0.3066$$

• Error:

$$\delta = \text{Target} - y = -0.1 - 0.3066 = -0.4066$$

• Weight Updates:

$$w_1 = 0.042 + 0.2 \times (-0.4066) \times (-0.3) = 0.042 + 0.024396 = 0.066396$$
 $w_2 = 0.112 + 0.2 \times (-0.4066) \times 1.6 = 0.112 - 0.130112 = -0.018112$ $b = 0.14 + 0.2 \times (-0.4066) \times 1 = 0.14 - 0.08132 = 0.05868$

3. Third Sample (($x_1 = 0.9$), ($x_2 = 0$), Target = 1.3)

Output Calculation:

$$y = 0.066396 \times 0.9 + (-0.018112) \times 0 + 0.05868 = 0.0597564 + 0 + 0.05868 = 0.1184364$$

Error:

$$\delta = \mathrm{Target} - y = 1.3 - 0.1184364 = 1.1815636$$

• Weight Updates:

$$w_1 = 0.066396 + 0.2 imes 1.1815636 imes 0.9 = 0.066396 + 0.212681248 = 0.279077$$
 $w_2 = -0.018112 + 0.2 imes 1.1815636 imes 0 = -0.018112$ $b = 0.05868 + 0.2 imes 1.1815636 imes 1 = 0.05868 + 0.23631272 = 0.295$

Updated Weights After One Iteration

- (w_1 \approx 0.2791)
- (w_2 \approx -0.0181)
- (b\approx 0.295)

Generalization for Novel Input (($x_1 = 1$), ($x_2 = 0.5$))

• Output Calculation:

$$y = 0.2791 \times 1 + (-0.0181) \times 0.5 + 0.295 = 0.2791 - 0.00905 + 0.295 = 0.56505$$

• Predicted Output: (y \approx 0.565)