Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Резонанс напряжений в последовательном контуре [3.2.2]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 2021

Содержание

1	Аннотация	1
	1.1 Теоретическое вступление и модель	1
	1.2 Экспериментальная установка	
2	Ход работы	2
	2.1 Подготовка	2
3	Обработка результатов	2
4	Графики и таблицы	2
5	Вывод	3
6	Литература	3

1 Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно частотных и фазово-частотных характеристик, определение основных па раметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

1.1 Теоретическое вступление и модель

XXX

1.2 Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжсением источника напрялсения (см., например, [3]), собранного на операционном усилителе, питание которого осуществляется встроенным блоком-выпрямителем от сети $\sim 220~\mathrm{B}$ (цепь питания на схеме не показана). Источник напряжсения (источник с нулевым внутренним сопротивлением) обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathcal{E} = \mathcal{E}_0 \cos{(\omega t + \varphi_0)}$ на меняющейся по величине нагрузке - последовательном колебательном контуре, изображённом на рис. 1 в виде эквивалентной схемы.

Источник напряжения, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n указаны на установке. Напряжение $\mathcal E$ на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа и вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра.

Рис. 1. Схема экспериментального стенда

2 Ход работы

2.1 Подготовка

XXX SOME MORE SUBSECTIONS

3 Обработка результатов

- XXX
- XXX
- XXX
- XXX
- XXX

XXX

4 Графики и таблицы

XXX

5 Вывод

XXX

6 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.