PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05307440 A

(43) Date of publication of application: 19.11.93

(51) Int. CI

G06F 3/06 G11B 20/12

(21) Application number: 05009002

(22) Date of filing: 22.01.93

(30) Priority:

06.03.92 JP 04 49833

(71) Applicant:

MITSUBISHI ELECTRIC CORP

(72) Inventor:

NAKAMURA YOICHI

(54) DATA STORAGE FORMAT CONVERSION SYSTEM AND ITS CONVERSION METHOD, **ACCESS CONTROLLER AND DATA ACCESS METHOD**

(57) Abstract:

PURPOSE: To provide a record storage format conversion system by which the number of memory access times for detecting a target CKD record is less, a memory load is reduced and memory capacity for holding track data is little at the time format-converting the CKD record into an FBA record.

CONSTITUTION: All the gaps such as an inter-record gap and an inter-field gap are eliminated from one track in the CKD record. The track data is divided into frames being management units, which are equivalent to integer times as large as the fixed block length size of the FBA record. Control information showing the positions of all the CKD records included in the management unit are written into the last end of the management unit in order from the rear as control frames, and they are divided into the fixed block length size of the FBA record. Then, information showing a relative position from the head of the track at the CKD record format are held in the respective CKD records.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the data storage format conversion method which changes and memorizes the record memorized by the variable length format to a fixed-length format A gap deletion means to delete an interrecord gap and the gap between the fields from the variable-length record for one truck recorded by the variable length format, and to generate truck data, The 1st positional information which shows the location of the variable-length record which arranges the truck data which deleted the gap with the above-mentioned gap deletion means per management of predetermined size, and is contained in the management unit, A record layout means to memorize the 2nd positional information which shows the relative position from the head of the truck in the variable-length record format of the variable-length record contained in the management unit per [above-mentioned] management, The data storage format conversion method characterized by having a fixed block storage means to divide and memorize the above-mentioned management unit in the fixed length block length size of fixed-length record.

[Claim 2] The above-mentioned record layout means is a data storage format conversion method according to claim 1 characterized by arranging the 1st and the 2nd positional information corresponding to the arranged variable-length record sequentially from another side of the above-mentioned management unit while arranging a variable-length record sequentially from one side of the above-mentioned management unit.

[Claim 3] The above-mentioned record layout means is a data storage format conversion method according to claim 1 characterized by appointing beforehand the field which memorizes the 1st and the 2nd positional information, and the field which memorizes a variable-length record in a management unit.

[Claim 4] It is the data storage format conversion method according to claim 1 which the 1st positional information of the above is a memory address within management single [of the variable-length record contained per management], and is characterized by the 2nd positional information of the above being the sector value or segment value from a head of a truck.

[Claim 5] The above-mentioned variable-length record is a data storage format conversion method according to claim 1 characterized by having the information by segment which shows the relative position from the head of the truck in a variable-length record format in a variable-length record.

[Claim 6] The address information which shows the location of the variable-length record which deletes a gap from a variable length format, arranges the data per management of predetermined size, and is contained in the management unit, The relative-position information which shows the relative position from the head in the variable length format of the variable-length record contained in the management unit is made to hold. An R/W means to write data per [above-mentioned] management to the access-control (equipment a) above-mentioned storage section accessed using the following elements to the storage section which divided into the fixed-length block size of fixed-length record, and was made to memorize as http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cgi_ejje?u=http%3A%2F%2Fwww4.ipdl.jpo.go... 06/15/2004

a fixed-length format, (b) Memory which stores the data written by the above-mentioned R/W means for every management unit, (c) An input means by which a record inputs the access instruction to the variable-length record outputted as what is memorized by the variable length format, (d) A location count means to estimate the location of the management unit considered that the variable-length record to access is memorized based on the access instruction inputted with the above-mentioned input means, (e) A record retrieval means to search the record which the access instruction which read into the above-mentioned memory the management unit in the location estimated by the above-mentioned location count means from the above-mentioned storage section with the above-mentioned R/W means, and was inputted by the above-mentioned input means tends to access.

[Claim 7] The above-mentioned access-control equipment is access-control equipment according to claim 6 characterized by judging an operating capacity of a truck in case the record is memorized by the variable-length record method further using relative-position information.

[Claim 8] While the above-mentioned input means inputs the relative-position information on the record which it is going to access, the above-mentioned record retrieval means Compare the relative-position information currently held at the searched management unit in the relative-position information on the record which is going to carry out [above-mentioned] access, and until a management unit with the relative-position information on the record which it is going to access is found A management unit retrieval means to search a management unit by reading the following management unit into memory from the storage section with an R/W means, When a management unit with the relative-position information on the record which it is going to access with the above-mentioned management unit retrieval means is found Access-control equipment according to claim 6 characterized by having a record specification means to specify the variable-length record which it is going to access using the address information contained in the management unit.

[Claim 9] An inter-record gap and the gap between the fields are deleted from the variable length format which has the field and the inter-record gap which have the data storage format conversion approach (a) data which have the following processes, and a gap between the fields. While arranging in order on a frame with the size which was able to define beforehand each variable-length record connected by the gap deletion process and the (b) above-mentioned gap deletion process which connect the field of each variable-length record The record layout process which each variable-length record is made to correspond and memorizes the access information for accessing each variable-length record, the fixed length block storage process which divides the (c) above-mentioned frame into two or more fixed-length block sizes, and is memorized as a fixed-length format.

[Claim 10] The above-mentioned record layout process is the data storage format conversion approach according to claim 9 characterized by memorizing the positional information of the frame by which each variable-length record has been arranged, and positional information in case each variable-length record is memorized based on the variable length format as access information.

[Claim 11] It has the following processes. By the data storage format conversion approach of the claim 9 above-mentioned publication The access command input process of inputting the retrieval information on the command for accessing the record of the data-access approach (a) variable length format which accesses the data of the memorized fixed-length format, and the data to access, (b) The positional information presumption process of presuming the positional information of the frame the record accessed from the retrieval information inputted according to the above-mentioned access command input process is remembered to be, (c) Record search procedure which reproduces the frame after a frame with the positional information presumed according to the above-mentioned positional information presumption

process from two or more fixed length blocks memorized in the fixed-length format in order, and searches the record to access.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to a data storage format conversion method for the fixed-length method used by the commercial small disk unit to realize the variable-length record method used with the magnetic disk drive of a general-purpose computer etc.

[0002]

[Description of the Prior Art] Conventionally, as external storage of a general purpose computer system, the hard disk unit of a variable-length record (CKD; Count Key Data) method is used widely. A variable-length record method is a record format the die length of the physical record recorded on one truck on a magnetic disk and whose number are adjustable. Generally, one truck of the magnetic disk of a variable-length record method begins from an index mark (not shown), as shown in drawing 33, and the home address (HA) and the continuing record zero (R0) exist first. In addition to address information, such as a cylinder address of that truck, and the head address, if this HA and RO are the location of the magnetic blemish on that truck, the information on whether it is a defective track, and a defective track, since it includes the control information of the address a phase hand's truck by which shift allotment is carried out etc., it must exist. By the record by which the record after the record 1 (R1) which follows this HA and R0 records the usual data, as long as one-piece record [one piece] die length and the number are the capacity which that total capacity can record on a truck, it can be used, formatting for the software (S/W) on a host computer freely. Each record consists of the three fields, the count field (COUNT), key field (KEY), and a data field (DATA), and is called a CKD method from the initial of these fields. The die length of the count field is immobilization, and since the die length (KL) of the key field of the record, the die length (DL) of a data field, etc. are included other than address information, such as a cylinder address (CC), the head address (HH), and a record number (R), the die length of the continuing key field and a data field is freely changeable. Although key field and a data field are the parts which record the actual data of the record, when the key field which should record the key of the record are unnecessary, the record with which key field do not exist can also be made by specifying KL=0 in the count field. HA, R0, R1, and R2 -- between ... etc. the inter-record gap (G1, G2, G3) of suitable size prepares -- having -- **** -- especially -- R1 and R2 -- about the gap in front of records, such as ..., (G3) Since [which is called the address mark (AM)] the special mark is recorded magnetically, even if it begins to read from which part in a truck, the reading start of a record can be found by detecting this address mark.

[0003] Moreover, in order to distinguish each field also inside each record, the gap between the fields (G2) is prepared, respectively. On the other hand, as external storage of comparatively small-scale computing systems, such as a minicomputer, an office computer, a personal computer, and a workstation, the hard

disk unit of a fixed-length-record (FBA; Fixed Block Architecture) method is used. By the disk of a fixed-length-record method, one record (by the disk of a fixed-length-record method, called a sector in many cases) usually consists of the ID field which is recording address information, and the data field which records data, and any die length of the field is immobilization. Therefore, the record count around one truck (the number of sectors) is also immobilization.

[0004] Conventionally, the above proper use has been performed by the target computing system [magnetic disk / the magnetic disk of a variable-length record method, and / of a fixed-length-record method]. Therefore, since the target system was small, compared with the disk of a variable-length record method, generally the disk of a fixed-length-record method was small, its memory capacity was also small, and its engine performance, such as a data transfer rate and a seeking rate, was also low. However, conversely, that a demand of as opposed to a miniaturization also in the disk of a variable-length record method is becoming remarkably high, and since the direction of the disk of a fixed-length-record method has large-capacity-izing and remarkable improvement in the speed, the difference among both in a specification side is becoming small in recent years. On the other hand, as for the disk of a variable-length record method, since the direction of a price is exclusively for a general-purpose computer, even an office computer is inferior to volume efficiency in it compared with the disk of the fixed-length-record method used widely from a personal computer. Therefore, it becomes surely comparatively high-priced and the gap of both cost performance is spreading. For this reason, the demand referred to as wanting to use the disk of a cheap and highly efficient fixed-length-record method also with a general-purpose computer has become strong.

[0005] Moreover, in the hard disk unit of a CKD method, the servo surface servo system which prepares separately the data surface which records data, and the servo surface which records the servo information for positioning a head has been used. The positioning accuracy of a head will also be prescribed by the precision of the mechanical location of a data surface and a servo surface by this method. Then, in order to attain densification of a truck further, the data surface servo system which also writes servo information in the ID field in a data surface etc. has come to be used. If this data surface servo system is used, extremely, by the variable-length record method allowed 1 truck 1 record, there will be no security that servo information is always acquired at fixed spacing, and it will become disadvantageous about the positioning accuracy of a head compared with the fixed-length-record method with which servo information is surely acquired at fixed spacing. Furthermore, since there is a limitation in the one-set disk [one set] improvement in the engine performance, or improvement in dependability, Although the technique of the disk array which distributes and records data on two or more disks, or prepares the redundancy disk which records the parity between the dispersed data etc., and aims at improvement in the engine performance and dependability attracts attention It is also difficult to deal with such a technique, while the die length and the number of a record have been the variable-length record method which is adjustable. however, software property huge in the world of a general-purpose computer -- **** -- him -- for a ***** reason, it is remarkably difficult to change a record format of a disk into a fixed length from variable length. [0006] Here, the access method to the variable-length record recorded by the conventional variable-length record method using drawing 34 and drawing 35 is described. Drawing 34 is drawing showing typically the magnetic disk with which the servo surface servo system is used, and servo surface S and data surface D are prepared in this magnetic disk drive. The sector (sector of a different concept from the sector of a FBA method) is logically prepared in servo surface S. Drawing 35 is drawing for explaining this sector. In the storage capacity of one truck, supposing it is 48KB, this one truck will be divided into two or more sectors here. Here, size of 1 sector is set to 244B. This 1 sector consists of seven segments called segments S1-S7

further. Since the size of 1 sector is 244B, one segment is set to 32B. The value of the sector on which data were recorded when data were recorded on data surface D using such a magnetic disk drive is memorized. and in searching the data, it searches using the sector value when being written to a data surface. It becomes possible to search the data with carrying out like this at a high speed. Drawing 36 is drawing showing an example of the access sequence from software which operates with the host computer in the case of searching data using a sector value. The software which operates with a host computer as shown in drawing 36 specifies the sector on which the data which it is going to access are recorded with a set sector command. A magnetic disk drive is separated from a host computer and disk storage control by this set sector command, and the specified sector is searched autonomously. If the specified sector is discovered, a magnetic disk drive will advance a re-connection request to a host computer through disk storage control, and re-connection will be made. Next, ID of the data which should be searched with a search ID command is sent. this ID -- for example, a cylinder number and a track number -- or it is the record number which should be searched. If this search ID command is received, a magnetic disk drive will compare ID of the record which exists in the beginning from the sector specified by that ID and the set sector command, and will report that result to a host computer. If both ID is not in agreement, activation of a command is jumped and returned to a set sector command by the following transfer in channel command, and a search ID command is again published to the following record. If both ID is in agreement, a host computer will execute an instruction called a lead or a light to the searched data by flying the following transfer in channel command and publishing the last lead data command or light data command.

[0007] Thus, it is remarkably difficult to already have created the software used with a general-purpose computer based on the variable-length record method, and to change the already built software. Then, the actual disk is considered from the software on a host computer by emulating a variable-length record method with disk storage control in the technique which can use the disk of a variable-length record method as usual, using the disk of a fixed-length-record method.

[0008] CKD-FBA conversion is stated to the detail in "the storage control approach and equipment" (JP,1-30691,A). Moreover, still more generally CKD-FBA conversion is indicated to the publication "IBM4321 / 4331 processor compatibility facility" (GA33-1528, the 3rd edition, September, 1982) of IBM. It is as follows when the contents of these reference are summarized. With the above-mentioned publication, in case it changes into FBA from CKD, all gaps are taken and compressed. Moreover, it is described by the above-mentioned publication that the set sector command shown in drawing 36 is not supported. When a set sector command is taken out with the above-mentioned publication, it is indicated that it becomes no operation. When the set sector command is not supported, record retrieval will be performed from a search ID command. Although a record can be searched only with a search ID command, in order to search the record of the same ID as ID specified by the search ID command, looking at all records in order from the head of the truck, retrieval time will start. The set sector command is very disadvantageous in respect of the access time compared with the case where the sector or later which specifies the familiar sector in which the record exists and was specified by the set sector command is searched with a search ID command.

[0009] on the other hand -- the above-mentioned official report -- (-- the number in a parenthesis takes correspondence), the gap between (1) FIRUDO (G2) and ECC, padding, a physical parameter, etc. to drawing 37 .

(2) An inter-record gap (131,133,137,163) leaves.

Only the part with the same parts, such as a gap between the fields taken by (3) and (1), lengthens the inter-record gap of (2). Thereby, the relative position from the head of a truck to the count field of each

record is maintained with origin. (Although the relative position of key field or a data field will shift, if even the relative position of the count field is known, positioning of a record will not be hindered by it).

- (4) Divide this truck data into the fixed block (sector) of FBA, and add the positional information (156) of the count field of the first record contained in each fixed block to the head of each fixed block in that case. Thereby, direct and random addressing to the CKD record memorized by the disk of a FBA method becomes possible.
- (5) When the count field is not included in the block, record the flag bit which shows it.
- If it furthermore arranges, in order to maintain the relative position of count FIRUDO of (1) each record, it will leave only an inter-record gap, and other excessive gaps etc. will be removed.
- (2) Attach to the head of each fixed block of FBA the header which shows the location of the first count field currently recorded there.

Two ** serve as requirements and direct and random addressing to the CKD record recorded on the disk of a FBA method is made possible by carrying out like this.

[0010]

[Problem(s) to be Solved by the Invention] However, there is the following trouble in the advanced technology mentioned above. In case it changes into FBA from CKD according to the technique by the publication mentioned above, although all gaps are taken and compressed, since the set sector command is not supported, access of a record takes long duration. Moreover, especially, although an inter-record gap deletes in the technique shown in the official report mentioned above, after leaving, in order that only the part of the eliminated inter-record gap may lengthen the gap between the fields, when [that a record size is small 1 there is much record count, futility of the gap between the fields increases on memory. [0011] Moreover, since it has only the information about the location of a top CKD record among the CKD records contained in each fixed block (record of a fixed-length-record method) of FBA In order to find CKD records other than a head Read the count field of a top CKD record first, and the top record length is got to know from KL in it, and DL. After calculating the location of the count field of the following record, KL of the count field of the following record and DL must be read, and the procedure of looking for the count field of the following record must be repeated. Therefore, when the centralized control of the truck image is carried out on the disk cache etc., the count of access to the memory increases remarkably, and the processing time not only starts, but it reduces the system-wide engine performance. Furthermore, since it has the positional information of a CKD record in the small unit of every FBAblock, at the time of data transfer with a channel, interruption occurs frequently and causes aggravation of data transmission efficiency temporarily [data transfer] for flying and exceeding this positional information.

[0012] This invention aims at obtaining the record storage format conversion method with which there is little memory space for holding truck data, and it ends while there are few counts of memory access for discovering the CKD record made into the purpose, and they end and memory unloading is made, in case it was made in order to cancel the trouble in the conventional example mentioned above, and format conversion of the CKD record is carried out to a FBA record.

[Means for Solving the Problem] The data storage format conversion method concerning this invention All gaps, such as an inter-record gap and a gap between the fields, are deleted from one truck of the variable-length record which is the storage format used for the external storage of a general purpose computer system. The truck data is divided into the management unit equivalent to the integral multiple of the fixed-length block size of fixed-length record. After writing in the relative-position information which shows the relative position from the head of the truck in the variable-length record format of address information and

each variable-length record which shows the location of all the variable-length records contained in the management unit per [above-mentioned] management, It is characterized by what is divided and memorized to the fixed-length block size of fixed-length record.

- [0014] Moreover, the access-control equipment concerning this invention is access-control equipment which accesses to the storage section which memorizes the data created using the data-storage format-conversion method mentioned above, it interprets the access instruction of the variable-length record taken out from the software created based on the conventional variable-length record method, accesses the record memorized by said fixed-length-record method, and has the following elements.
- (a) An R/W means to write data per [above-mentioned] management to the above-mentioned storage section, (b) Memory which stores the data written by the above-mentioned R/W means for every management unit, (c) An input means by which a record inputs the access instruction to the variable-length record outputted as what is memorized by the variable length format, (d) A location count means to estimate the location of the management unit considered that the variable-length record to access is memorized from the access instruction inputted with the above-mentioned input means, (e) A record retrieval means to search the record which the access instruction which read into the above-mentioned memory the management unit in the location estimated by the above-mentioned location count means from the above-mentioned storage section with the above-mentioned R/W means, and was inputted by the above-mentioned input means tends to access.
- [0015] Moreover, the data storage format conversion approach concerning this invention deletes a gap from the variable-length record created by the variable-length record method, makes the access information of the location of the data arranged while having arranged on the frame which is the management unit which was able to define this beforehand etc. memorize, divides this frame into a fixed-length block size, memorizes it as a fixed-length format, and has the following processes.
- (a) The gap deletion process which deletes an inter-record gap and the gap between the fields from the variable length format which has the field and the inter-record gap which have data, and a gap between the fields, and connects the field of each variable-length record, (b) While arranging in order on a frame with the size which was able to define beforehand each variable-length record connected by the above-mentioned gap deletion process The record layout process which each variable-length record is made to correspond and memorizes the access information for accessing each variable-length record, the fixed length block storage process which divides the (c) above-mentioned frame into two or more fixed-length block sizes, and is memorized as a fixed-length format.
- [0016] Moreover, the data-access approach concerning this invention is an approach for accessing with the access instruction of the variable-length record method which exists from the former to the data divided into the fixed-length block size created by the data storage format conversion approach mentioned above, and has the following processes.
- (a) The access command input process of inputting the retrieval information on the command for accessing the record of a variable length format, and the data to access, (b) The positional information presumption process of presuming the positional information of the frame the record accessed from the retrieval information inputted according to the above-mentioned access command input process is remembered to be, (c) Record search procedure which reproduces the frame after a frame with the positional information presumed according to the above-mentioned positional information presumption process from two or more fixed length blocks memorized in the fixed-length format in order, and searches the record to access. [0017]

[Function] In the data storage format conversion method in this invention, in order to delete a gap with a

gap deletion means, when holding data to a magnetic disk etc., there is little storage capacity and it ends. Moreover, since the 1st positional information a record layout means indicates the location of a variable-length record to be in a management unit, and the 2nd positional information which shows the relative position at the time of being recorded as a variable-length record are memorized, When the access instruction of variable-length record ****** comes from the conventional software, It becomes possible to search the target record using the 1st positional information which shows the location of the variable-length record in the management unit which searched the management unit using the 2nd positional information which shows the relative position of a variable-length record method, and then was searched. For this reason, the count of access can be managed with the minimum.

[0018] Moreover, in the access-control equipment in this invention, since a location count means calculates roughly the location of the management unit by the fixed-length-record method from the record which accompanies the access instruction of the variable-length record method from the conventional software, a record retrieval means can access the data recorded by the fixed-length-record method based on this calculated positional information. Thus, when the access-control equipment concerning this invention is equipped with a location count means and a record retrieval means, it becomes possible to support a set sector command which was explained in the conventional example.

[0019] Moreover, after the data storage format conversion approach in this invention deletes a gap

[0019] Moreover, after the data storage format conversion approach in this invention deletes a gap according to a gap deletion process, while it arranges each variable-length record in order in a frame according to a record layout process, the description is in the point of making a frame memorizing that access information both. Furthermore, since this frame is divided into a fixed-length block size and memorized, it can memorize a frame by the fixed-length-record method.

[0020] Moreover, in the data-access approach in this invention, the positional information in the case of memorizing based on a fixed-length-record method is presumed from the retrieval information as which the positional information process was inputted by the access command, since a frame is searched based on this presumed positional information according to a record search procedure, it becomes possible to press down the count of access, i.e., the count of memory, which searches a frame to the minimum, and high-speed access is attained.

[0021]

[Example]

Example 1. <u>drawing 1</u> is an outline block diagram for explaining this invention. The host computer 1 has the channel 2. The channel 2 has two or more channels 2a-2e, as shown in drawing. For example, disk storage control 5 is connected to one of channel 2bs of this. Disk storage control 5 has cache memory 6 inside. Disk storage control 5 performs a lead or light of data between the FBA disks 9 through cache memory 6. It block 9a-9e Has and all the data for which the FBA disk 9 has a fixed-length block size and that are memorized by the FBA disk 9 are written by reading and this block unit.

[0022] Next, the outline of CKD-FBA conversion is explained. In a host computer 1, the software for accessing the data recorded by the conventional CKD method operates. From this software, the CKD command 4 is outputted to disk storage control 5 through channel 2b. For example, when the CKD command 4 is a light command, the record 3 of a CKD format is outputted as variable-length records 3a, 3b, and 3c. Disk storage control 5 memorizes these variable-length records 3a, 3b, and 3c to cache memory 6. The truck image 7 of CKD is constituted by cache memory in that case. That is, the truck image 7 of CKD turns into an image which has arranged variable-length records 3a, 3b, and 3c sequentially from the head of a truck. Although the gap between the fields and an inter-record gap will be generated and added here if it is the former, all gaps are removed in this case. Disk storage control 5 changes into the record 8 of a FBA

format the truck image 7 of CKD made by cache memory 6. The record 8 of a FBA format is constituted by the fixed-length blocks 8a-8e. Disk storage control 5 outputs the FBA command 10, when writing the record 8 of this FBA format in the FBA disk 9. Blocks 8a-8e are memorized corresponding to the blocks 9a-9e in the FBA disk 9, respectively.

[0023] <u>Drawing 2</u> is a block diagram for explaining in more detail the outline of the CKD-FBA conversion mentioned above. A host computer 1, disk storage control 5, cache memory 6, and the FBA disk 9 are the same as that of <u>drawing 1</u> mentioned above, and omit the explanation here. Detailed actuation of this disk storage control 5 is further explained using <u>drawing 3</u>, drawing 4, and drawing 5.

[0024] <u>Drawing 3</u>, <u>drawing 4</u>, and <u>drawing 5</u> explain a record storage format conversion method. First, to the original CKD track format shown in <u>drawing 3</u> (a), as shown in <u>drawing 3</u> (b), all the gaps G1 and G2, such as an inter-record gap and a gap between the fields, and G3 are deleted.

[0025] Next, including the control information mentioned later, as 1 truck data after the gap deletion shown in <u>drawing 3</u> (b) (for example, the CKD record which has 48KB) are shown in <u>drawing 3</u> (c), it divides including the management unit equivalent to the integral multiple (record count twice) of the fixed block length of a FBA record, for example, the control information added by the following (d), so that it may be settled per 12KB.

[0026] Next, as the control information which shows the location of all the CKD records contained in it is shown in <u>drawing 3</u> (d) and <u>drawing 4</u> (d) to the management unit shown in <u>drawing 3</u> (c), it writes to the tail end of a management unit in an order from back.

[0027] It is not necessary to secure beforehand the location which memorizes positional information, and the total capacity of positional information is to be reduced by making adjustable size of the positional information within the management unit of a record in <u>drawing 4</u> (d) here. That is, a variable-length record is indicated from the head of a management unit, and it can memorize until the number of positional information and the number of variable-length records are in agreement and both storage region collides within a management unit, in order that positional information may be memorized in an order from the back of a management unit and may go. Thus, control only whose part of the record actually recorded uses a positional information field is enabled. However, although the control at the time of data transfer and a format light will be able to become complicated if size of a positional information field is made adjustable, the following methods are adopted here and the improvement is aimed at.

[0028] Now, in <u>drawing 4</u> (d), the positional information of a control frame and a record is called a record pointer for the field which records a frame for the management unit of the positional information of a record, and records a record frame and control information for the field which actually records a CKD record. - Only the part of the record actually recorded uses a record pointer. Thereby, if the size of a record pointer field sets size of a management unit to 12KB, and a maximum of 94 CKD records are recorded and it sets it to 4B as positional information per record, it can be managed per 1CKD truck and with 4Bx94=276B at the maximum. The positional information of this 4B is shown as a record pointer in <u>drawing 4</u> (d), and the record pointer consists of a record number of 1B, a sector value of 1B, and a memory address of 2B. The record number records the number of the variable-length record recorded. A sector value memorizes a sector value in case the record recorded is recorded by the CKD record method. A memory address memorizes the address in the frame of the record memorized by the frame. A sector value is used by being compared with the sector value specified by the set sector command. Similarly, since it is compared with the record number specified by the search ID command, a record number is used. A memory address shows the address of the actual record memorized by the record frame. When the sector value and record number of a record pointer are compared by a set sector command and the search ID command and it is in agreement,

this memory address is used and a record is read.

[0029] The size of the control frame containing a record pointer is separately held as control information, i.e., a control frame pointer. Using this information, even if the size of a control frame serves as adjustable, it is not necessary to complicate control.

[0030] The control frame which are such control information is recorded on the tail end instead of a head of each frame. Moreover, the record pointer in a control frame is also arranged in an order from back. The record pointer corresponding to it in what has an actual record in front within a record frame comes back within a control frame. Thereby, unreasonableness also of the control at the time of a format light is lost. [0031] Next, as shown in drawing 4 (d), after [, such as positional information of a CKD record,] addition, as 12KB of record frame is shown in drawing 5 (e), it divides fairly to the block size (1KB) of a FBA record, 1024B [for example,], and as are shown in drawing 5 (f), and an ID field is prepared in the data field of each record, respectively and it is shown in drawing 5 (g), the disk of a FBA record method is obtained further.

[0032] Moreover, it leaves the information which shows the relative position from the head of the truck in a CKD format for every one CKD record currently recorded in the fixed block, for example, a segment number. If by doing in this way shows the location of each record, the track capacity on the CKD format already immediately consumed from the information which shows the relative position currently recorded on the record is known.

[0033] Next, actuation of the return disk storage control 5 is explained to drawing 2. Disk storage control 5 has the channel pass server 51 (henceforth CPS) which performs conversion and a transfer of data between a host computer 1 and the FBA disk 9. It has the input section 52 for inputting a command and data into the channel pass server 51 from a host computer 1. Moreover, it has the output section 52 for outputting the data from the FBA disk 9 to a host computer 1. When the access instruction of the variable-length record method by the software which is operating with the host computer 1 from the input section 52 is inputted, the location count section 53 calculates the location of the management unit considered that the variable-length record accessed based on the sector value specified for example, by the set sector command is memorized. Since all gaps are removed when data are recorded on the FBA disk 9 as having mentioned above the count by this location count section, data are memorized in the form where it was got blocked forward, rather than the case where it exists in the CKD disk 10, and the location count section 53 calculates the location of the management unit considered that the variable-length record which it is going to access by guess is memorized. The record retrieval section 54 searches the record which is going to read a management unit into cache memory 6, and is going to access it based on the location of the management unit calculated by the location count section 53. The management unit retrieval section 56 compares the relative-position information on the record which it is going to access (sector value) with the relative-position information (sector value) currently held at the searched management unit, and it reads into cache memory in order the management unit which exists in the FBA disk 9 until a management unit with the relative-position information which it is going to access is found. The record specification section 57 specifies the variable-length record which it is going to access when the management unit made into the purpose by the management unit retrieval section 56 is searched using the address information contained in the management unit. The manager the data pass server (DPS) 55 performs [manager] R/W of the data between the FBA disk 9 and cache memory 6 using the FBA command performs the whole control and management of cache memory 6.

[0034] The three points become important in case CKD-FBA conversion is performed. That is, where [of the track format of I.CKD] do you leave and where delete?

II. -- after processing track format such, how is the location of the original record found? How do you check the track capacity of III.CKD, or how detect track overrun?

It must inquire as the point of three **. Considering the three above-mentioned points, it turns out that other variations can be considered. Hereafter, a variation is considered about each point in sequence. [0035] First, about I., after ECC, padding, etc. generate the information added by the disk unit side from the first by DKC, changing into FBA is useless. Therefore, "where where does it leave and is deleted" will say as a matter of fact, "Which gap do leave and which gap is deleted?" (what is necessary is to include in a gap the control information and the physical parameter which had been managed by DKC(s) like defect information other than ECC or padding, and just to consider them). This gap leaves and the following variations also including the conventional method can be considered about the direction (refer to drawing 6).

- < case I-1> ... All gaps also including the approach and inter-record gap of "IBM4321 / 4331 processor compatibility facility" will be deleted.
- < case I-2> ... It leaves only the conventional approach and inter-record gap, and the gap between the fields is removed.
- < case It leaves I-3> and not only an inter-record gap but the gap between all the fields (ECC, padding, etc. remove).

[0036] Still more nearly various variations can be considered by what these all directions methods carry out treatment of fine information other than a gap, respectively. Moreover, although these all directions methods must be combined with a certain means (the positioning approach of a record) of II, they can consider some following approaches also including the conventional approach to this (referring to <u>drawing</u> 7, and each case and one to one of I are not necessarily supported).

- < case It has no special information which shows the location of II-1> and a record.
- When looking for a record, always read in an order from the record of the head of a truck, and calculate the location of the count field of the following record from the value of KL and DL which are contained in the count field of each record.
- < case II-2> ... The conventional approach and the information which shows the location of a record are partially held apart from the record itself. (By the conventional approach, the location of the count field of the record located in the head of each FBA block is held)
- From the record in which a location is shown, read a back record like <case II-1> in an order from the record which the location understands, and it calculates the location of the following record from KL of each record, and DL.
- < case The information which shows the location of the record of II-3> and all is held apart from the record itself.
- All the record looks for a location from this information.
- the positional information of a record can consider how (for example, head of a truck) to bundle up a part for all records and hold to one place, and the approach (for example, every -- the information which shows the location of the record contained in the FBA block at the head of a FBA block is held) of holding dispersedly.
- < case Also on the logical truck image after II-4> and FBA conversion, a certain address mark (AM) is generated and a record is looked for for this to a mark (AM search is performed also on memory). However, by raising a memory load superfluously, in order that this approach may perform AM search on having not invented the method of generating the nice address mark concretely, and memory, since it is inefficient-like, it excepts reading all data in order from the range of examination.

- [0037] Subsequently, the following approaches can be considered about the check approach of the track capacity of III (refer to <u>drawing 8</u>). These approaches have what the gap of I leaves and can be applied depending on the direction, and the thing which is not made.
- < case KL of all the records from the head of III-1> and a truck and DL are got to know, and the track capacity on the CKD format already consumed is calculated by all carrying out the guide peg also of the gap of a between, or the part (as for these all, the size having been decided uniquely) of padding.
- < case III-2> ... The die length of the gap (the conventional approach inter-record gap) which remains the part of a conventional approach and conventional eliminated ECC, or padding is lengthened, and it is made consistent. This maintains the relative position from the head of the truck of each record with the original CKD truck.
- Therefore, if the location of each record is known, the track capacity on the CKD format already immediately consumed from the address on the memory of the record is known.
- < case It leaves the information (for example, segment number) which shows the relative position from the head of the truck in a CKD format to III-3> and each record.
- Therefore, if the location of each record is known, the track capacity on the CKD format already immediately consumed from the information which shows the relative position currently recorded on the record is known.
- [0038] At drawing 8 , it is < case. III-1> and < case III-3> is a case < case which has removed all gaps. Although expressed by I-1>, as for each of these approaches, the gap may remain how. Moreover, < case III-2> is the case < case where it has left only the inter-record gap. Although expressed by I-2>, the case <a case I-3> where it leaves all gaps is sufficient. However, < case III-2> is a < case which removes all gaps. In I-1>, since a memory address is unmaintainable with accommodation of gap length with the relative position of the original record, implementation is impossible on a principle. Some (there being also a combination impossible as mentioned above and a meaningless combination) CKD-FBA conversion methods can be done with the combination of each of these cases of I, II, and III. The conventional method is < case. I-2>, < case II-2>, < case It can be called the CKD-FBA conversion method by the combination of III-2>.
- [0039] The list of effective things is shown in <u>drawing 9</u> among the combination of each above-mentioned case. The unrealizable thing among the combination of each case and the meaningless thing are removed beforehand. Explanation of the column of a compare item is shown after the following knot. The following combination mentioned above is unrealizable.
- < case I-1> and < case Combination < case of III-2> I-1> is < case where a memory address is maintained by accommodation of gap length with the relative position of the original record since it is the method which removes all gaps. The check approach of the track capacity of III-2> is impossible. Moreover, although the following combination is not impossible, it is meaningless on a method by the following reasons.
- < case II-2> and < case Combination -< case of III-1> II-3> and < case Combination < case of III-1> III-2> and < case The record of each of II-3> is a method which discovers a record from the positional information of the record currently held independently. Therefore, there is an advantage that it is not necessary to read to looking for a certain record in an order from the record of the beginning on a truck. However, < case In order to check track capacity, the data of all the count fields on a truck are required for III-1>. Therefore, in such combination, it will read in an order from the record of the beginning on a truck at once after all, and is < case. II-2> or < case The semantics which adopted the method of II-3> is lost. Namely, < case III-1> is a < case which reads all the records on a truck as a positioning method of a</p>

record. Only when II-1> is adopted, it can be called a track capacity check method with semantics. All of combination other than these are put on <u>drawing 9</u>. The party shows the CKD-FBA conversion method realized in one combination, and the view of <u>drawing 9</u> is a method with which the method which attaches O is adopted in the combination. As a method of how [therefore,] of for example, a party eye to leave "gap, as for a method", it is < case. I-1> is adopted and it is < case about the "record positioning approach". Considering II-1> as "the check approach of track capacity", it is < case. It will be called the CKD-FBA conversion method which adopted III-1>. From now on, <1, 1, 1> will be written for convenience. [such a method] In this notation, the conventional method can be expressed as <2, 2, 2>. [0040] Henceforth, although each CKD-FBA conversion method is compared, the comparison point of each

a. Size of memory space at the time of developing the truck image of a CKD format on the cache memory (only henceforth memory) of disk storage control (DKC). ... This memory space cannot but take not only a conversion method but more capacity for one truck in accordance with the worst value after all, in order to be greatly dependent on the track format at that time (size of record count etc.). And since this memory image will be written to the physical disk of FBA, it becomes the integral multiple of the block (sector) capacity of a FBA disk. Therefore, a little size is not a not much serious problem. It is based mainly on the size of additional information required for positioning of how to leave a gap and a record etc.

conversion method is first considered as follows to eye others.

- b. The ease of doing of data transfer ... Having continued also on memory tends to do the part which carries out data transfer continuously between channels. For example, having continued also on memory tends to transmit key field and a data field. However, about the part in which the gap existed from the first, since the direction of a channel may cause overrun if time amount is not taken, it is seldom necessary to hurry by the time thing.
- c. Procedure when finding the purpose record ... It is a procedure for finding the purpose record within the truck image of the CKD format on memory. Moreover, it is necessary to only take into consideration the numerousness of the counts of memory access not only the count of a procedure therefore but required etc. at this time. Since a truck image is developed on the cache memory which is a common area, even if there are a little many procedures (for example, computational complexity) itself, the direction with few counts of memory access is advantageous in the whole system. This count of memory access is mainly decided by the positioning approach of a record.
- d. Procedure at the time of a format light ... It is necessary to investigate the adjustment of KL of the already formatted record, KL of the record with which it has been sent by ** track capacity and the host on memory at the time of a format light although what is necessary is just to carry out DL **** light, and DL at the time of an update light. That is, the check of track overrun is required. Furthermore, since it is necessary to maintain control information other than a record depending on a method, it is necessary to take into consideration the procedure for it, the numerousness of memory accesses, etc.
- Hereafter, each description of each CKD-FBA conversion method and fine analysis are performed based on this comparison point.
- [0041] <1, 1, 1> and gap: -- all -- from the record of the beginning of deletion and a record positioning:truck -- all -- since the record of the beginning of a record lead track capacity check:truck to not all record lead a. memory space this gentleman types also have all gaps and there is also no addition of control information, the use effectiveness of memory is the best.
- b. What is necessary is just to count up the memory address, when the field which continued between channels carries out data transfer, since each field is continuing on memory in the ease of doing of data transfer.

- c. In order to find the procedure purpose record when finding the purpose record, only the record count from the head of a truck to an applicable record needs to access memory. That is, the lead of the count field of each record is needed. After acquiring the count field of each record, from those KL(s) and DL, calculating the location of the purpose record adds **** without an excessive gap etc., and KL and DL, and it is [what is necessary] to just be crowded and is simple.
- d. Also in order to check the procedure track capacity at the time of a format light, only the record count from the head of a truck to an applicable record needs to access memory. It is necessary to also convert parts, such as a deleted gap, conversely for the check of track capacity. There is no control information which must be updated at the time of a format light.
- [0042] <1, 2, 3> and a gap: although all maintenance a. memory space gaps delete relative-position information, such as a segment number, on maintenance and track capacity check:each record, the location of the first record altogether contained in deletion and a record positioning:FBA block Only the part of the control information for holding the location of the first record contained in the block of FBA, the segment number of each record, etc. uses memory for an excess from <1, 1, 1>.
- b. What is necessary is just to count up the memory address, when the field which continued between channels carries out data transfer, since each field is continuing on memory too in the ease of doing of data transfer. However, since it is divided by the positional information of the first record contained in a FBA block also on memory etc. when the block of FBA is straddled even if it is in the single field, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.
- c. In order to look for the procedure purpose record when finding the purpose record, only the count of the record which exists in from the record of the beginning of a block of FBA before the purpose record needs to access memory. Therefore, there are few counts of memory access than <1, 1, 1>. Most approaches of calculating the location of the purpose record from the location of the record of the beginning of a block of FBA are the same as <1, 1, 1>, and simple (what is necessary is just to add the size of the count field, KL, and DL).
- d. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of the procedure track capacity at the time of a format light] one, KL, and DL -- back -- calculate whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be written to the record itself which carried out the light. When the new count field is generated on a new FBA block, the information which shows the location of the count field of a top record to the FBA block must be written to coincidence.
- [0043] <1, 3, 3>, and gap: -- all -- deletion and record positioning: -- there is still more memory space than the case where only the location of the first record contained in the block of FBA as shown in <1, 2, 3> is held in order to hold the positional information of all records independently although all maintenance a. memory-space gaps delete relative-position information, such as a segment number, for the relative-position information on all records on maintenance and track capacity check:each record, and it is the need. It is the same as <1, 2, 3> to hold a segment number etc. on each record.
- b. It is the same as <1, 2, 3> almost in the ease of doing of data transfer. What is necessary is just to count up the memory address, when the field which continued between channels carries out data transfer, since each field is continuing on memory. Since it is divided by the positional information of the record contained in a FBA block also on memory etc. when straddling the block of FBA even if it is in the single field, when it distributes and has the positional information of a record for every block of FBA, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.

- c. Since what is necessary is to read the positional information of a record only once in order to look for the procedure purpose record when finding the purpose record, the count of memory access is min in all methods. The information shows the location of the purpose record direct.
- d. Since the check approach of the procedure at the time of a format light <1, 2, 3> and track capacity is the same, the procedure at the time of a format light is almost the same as <1, 2, 3>. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of track capacity] one, KL, and DL -- back -- it calculates whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be calculated and written to the record itself which carried out the light. The information which shows the location of the count field of the record must be added to the control information which surely holds the positional information of a record to coincidence.

[0044] from the record of the beginning of the - record positioning:truck with which deletion and an interrecord gap leave only <2, 1, 1> and the gap between the gap:fields -- all -- all the record lead a. memory space from the record of the beginning of a record lead track capacity check:truck -- although there is no addition of excessive control information, since it leaves an inter-record gap, memory space is the need more mostly than the <1, *, *> method. However, since it is not maintaining the relative position of a record by the inter-record gap which it left, it is not necessary to lengthen an inter-record gap by force. Therefore, although memory space is made few compared with <*, *, 2> method which lengthens inter-record gap length and maintains the relative position of a record as the check approach of track capacity, when it says conversely, there is also no semantics which left the inter-record gap.

- b. What is necessary is just to count up a memory address, when transmitting the data of the field which continued between channels (C->K->D), since there is no gap between the fields although an inter-record gap exists in the ease of doing of data transfer. Since there is also no excessive control information, even if the single field straddles the block of FBA, the field is not divided on memory.
- c. It is almost the same as the procedure <1, 1, 1> when finding the purpose record. In order to find the purpose record, only the record count from the head of a truck to an applicable record needs to access memory. That is, the lead of the count field of each record is needed. After acquiring the count field of each record, in order to calculate the location of the purpose record from those KL(s) and DL, in addition to KL and DL, an inter-record gap is added, and it is [what is necessary] to just be crowded and is simple. d. the procedure at the time of a format light -- this is almost the same as <1, 1, 1>. Also in order to check
- memory. It is necessary to also convert parts, such as a deleted gap between the fields, for the check of track capacity. There is no control information which must be updated at the time of a format light.

 [0045] <2, 2, 2> Deletion of only the gap between the fields ... a method and conventional gap: -- record positioning which an inter-record gap leaves: by accommodation of maintenance and track capacity check:gap length, although the gap between the maintenance a. memory space fields etc. deletes the relative position of each record, the first record location included in the block of FBA Since the part inter-record gap is lengthened and the relative position of each record is maintained with the original CKD format

track capacity, only the record count from the head of a truck to an applicable record needs to access

- record gap is lengthened and the relative position of each record is maintained with the original CKD format, memory space required after all It is the same as the track capacity of the original CKD format, and memory is too much required only for the part of the positional information of the first record further contained in the block of FBA.
- b. What is necessary is just to count up a memory address, when transmitting the data of the field which continued between channels (C->K->D), since there is no gap between the fields although an inter-record

gap exists in the ease of doing of data transfer. However, since it is divided by the positional information of the first record contained in a FBA block also on memory etc. when the block of FBA is straddled unlike <2, 1, 1>, even if it is in the single field, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.

- c. In order to look for the procedure purpose record when finding the purpose record, only the count of the record which exists in from the record of the beginning of a block of FBA before the purpose record needs to access memory. Therefore, there are few counts of memory access than <2, 1, 1>. Most approaches of calculating the location of the purpose record from the location of the record of the beginning of a block of FBA are the same as <2, 1, 1>, and simple (what is necessary is just to add an inter-record gap to the size of the count field, KL, and DL pan rapidly). Moreover, since the relative position in a CKD format of each record is maintained also on memory, it is Set. The block of FBA with which the purpose record is contained from the value of Sector can be searched for correctly.
- d. if the address on the memory of the record which is going to carry out the format light to it since the relative position in a CKD format of each record is maintained on the check of the procedure track capacity at the time of a format light also on memory is known (it understands in the procedure of c.) -- immediately -- back -- it is calculable whether the light of the record of the size of which can be carried out. When a format light is carried out and the new count field is generated on a new FBA block, the information which shows the location of the count field of a top record must be written to the FBA block.
- [0046] Only the gap between the fields <2, 2, 3> and a gap: Deletion, record positioning which an interrecord gap leaves: The gap between the maintenance a. memory space fields etc. deletes relative-position information, such as a segment number, for the first record location included in the block of FBA on maintenance and track capacity check:each record. Although it is the same as <2, 2, 2> to leave an interrecord gap, since it is not maintaining the relative position of a record by the inter-record gap which it left, it is not necessary to lengthen an inter-record gap by force (therefore, the semantics which leaves a gap too becomes thin). However, the part of the positional information of the first record contained in the block of FBA is required for an excess. Moreover, since the part of the segment number contained in each record is also required, as memory space, and it becomes less than <2, 2, 2> after all than <2, 1, 1>.
- b. This is completely the same as <2, 2, 2> in the ease of doing of data transfer. What is necessary is just to count up a memory address, when transmitting the data of the field which continued between channels (C->K->D), since there is no gap between the fields although an inter-record gap exists (since the segment number currently held at each record is contained in the count field, it does not become the obstacle of C->K at the time of data transfer). However, since it is divided by control information, such as positional information of the first record contained in a FBA block also on memory, when the block of FBA is straddled even if it is in the single field, it is necessary to fly the part of the control information like a skip defect, and to perform data transfer.
- c. the procedure when finding the purpose record -- this is completely the same as <2, 2, 2>. In order to look for the purpose record, only the count of the record which exists in from the record of the beginning of a block of FBA before the purpose record needs to access memory. Therefore, there are few counts of memory access than <1, 1, 1>. Most approaches of calculating the location of the purpose record from the location of the record of the beginning of a block of FBA are the same as <1, 1, 1>, and simple (what is necessary is just to add an inter-record gap to the size of the count field, KL, and DL pan rapidly).
- d. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of the procedure track capacity at the time of a format light] one, KL, and DL -- back -- calculate

whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be calculated and written to the record itself which carried out the light. When the new count field is generated on a new FBA block, the information which shows the location of the count field of a top record to the FBA block must be written to coincidence.

[0047] Only the gap between the fields <2, 3, 2> and a gap: Deletion, - record positioning: which an interrecord gap leaves -- the relative-position information on all records -- maintenance and track capacity check: -- by accommodation of gap length Since the relative position of each record is maintained with the original CKD format of the relative position of each record by accommodation of maintenance a. memory space ****** inter-record gap length Required memory space is fundamentally the same as the track capacity of the original CKD format like <2, 2, 2>. However, since the positional information of the record added as control information holds the part of not only the part of the record of the beginning of a block of FBA but all records as shown in <2, 2, 2>, its memory space also increases more than <2, 2, 2>, and it is all the maxes in a method.

- b. It is completely the same as <2, 2, 2>, and <2, 2, 3> in the ease of doing of data transfer. What is necessary is just to count up a memory address, when transmitting the data of the field which continued between channels (C->K->D), since there is no gap between the fields although an inter-record gap exists. However, since it is divided by the positional information of the record contained in a FBA block also on memory etc. when the block of FBA is straddled even if it is in the single field, when it distributes and has the positional information of a record for every block of FBA, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.
- c. It is completely the same as the procedure <1, 3, 3> when finding the purpose record. Since what is necessary is to read the positional information of a record only once in order to look for the purpose record, the count of memory access is min in all methods. The information shows the location of the purpose record direct. Moreover, since the relative position in a CKD format of each record is maintained also on memory, it is Set. The block of FBA with which the purpose record is contained from the value of Sector can be searched for correctly.
- d. It becomes a procedure at the time of a format light <2, 2, 2>, and the in-between procedure of <1, 3, 3>. Since the relative position in a CKD format of each record is maintained also on memory on the check of track capacity, if the address on the memory of the record which is going to carry out the format light is known (it understands in the procedure of c.), on it, it is calculable whether the light of the record of the size of which can be carried out the back immediately. When a format light is carried out, the information which shows the location of the count field of the record must be added to the control information which surely holds the positional information of a record.

[0048] Only the gap between the fields <2, 3, 3> and a gap: Deletion, The gap between the maintenance a. memory space fields etc. deletes relative-position information, such as a segment number, on each record. - record positioning: which an inter-record gap leaves -- the relative-position information on all records -- maintenance and track capacity check: -- Although it is the same as <2, 3, 2> to leave an inter-record gap, since it is not maintaining the relative position of a record by the inter-record gap which it left, it is not necessary to lengthen an inter-record gap by force (therefore, the semantics which leaves a gap too becomes thin). However, memory space is too much required for the part of the positional information of all records. Moreover, since the part of the segment number contained in each record is also required, and it becomes less than <2, 3, 2> than <2, 2, 3> which are the method which was well alike as memory space after all.

b. This is completely the same as <2, 3, 2> in the ease of doing of data transfer. What is necessary is just

to count up a memory address, when transmitting the data of the field which continued between channels (C->K->D), since there is no gap between the fields although an inter-record gap exists (since the segment number currently held at each record is contained in the count field, it does not become the obstacle of C->K at the time of data transfer). Moreover, since it is divided by the positional information of the record contained in a FBA block also on memory etc. when straddling the block of FBA even if it is in the single field, when it distributes and has the positional information of a record for every block of FBA, it is necessary to carry out the part of the positional information like a skip defect, to fly it, and to perform data transfer. c. the procedure when finding the purpose record -- this is completely the same as <2, 3, 2>. Since what is necessary is to read the positional information of a record only once in order to look for the purpose record, the count of memory access is min in all methods. The information shows the location of the purpose record direct.

d. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of the procedure track capacity at the time of a format light] one, KL, and DL -- back -- calculate whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be calculated and written to the record itself which carried out the light. The information which shows the location of the count field of the record must be added to the control information which surely holds the positional information of a record to coincidence.

[0049] from the record of the beginning of the - record positioning:truck which leaves <3, 1, 1> and a gap:inter-record gap, and the gap between the fields -- all -- all the record lead a. memory space from the record of the beginning of a record lead track capacity check:truck -- although there is no addition of excessive control information, since it leaves an inter-record gap and the gap between the fields, and the truck image of a CKD format is left behind mostly as it is, memory space becomes close to max. However, since it does not say that the relative position of the record in a CKD format will be maintained positively, the part of ECC or padding does not need to add to memory space. Instead, the semantics which left the gap is lost not much.

- b. Since a gap exists also on memory in the ease of doing of data transfer between records and as for between the fields, when performing data transfer of the continuous field between channels, it not only counts up a memory address simply, but it needs to fly and reset the part of a gap. However, since there is no excessive control information, even if the single field straddles the block of FBA, the field is not divided on memory.
- c. It is almost the same as the procedure <1, 1, 1> when finding the purpose record. In order to find the purpose record, only the record count from the head of a truck to an applicable record needs to access memory. That is, the lead of the count field of each record is needed. After acquiring the count field of each record, in order to calculate the location of the purpose record from those KL(s) and DL, in addition to KL and DL, an inter-record gap and the gap between the fields are added, and it is [what is necessary] to just be crowded and is simple.
- d. the procedure at the time of a format light -- this is almost the same as <1, 1, 1>. Also in order to check track capacity, only the record count from the head of a truck to an applicable record needs to access memory. Although the gap remains as it is for the check of track capacity, parts, such as ECC and padding data, need to convert. Although ** track capacity is immediately known from a memory address if the same capacity is exactly amended by gap length including the part of ECC etc., this serves as <3, 2, 2> method. There is no control information which must be updated at the time of a format light.

[0050] <3, 2, 2> and a gap: An inter-record gap, The relative position of each record by accommodation of

maintenance and track capacity check:gap length for the location of the first record contained in the block of FBA - record positioning which leaves the gap between the fields: A maintenance a. memory space interrecord gap, Although the gap between the fields remains Since gap length is adjusted and the relative position of each record is maintained with the original CKD format Memory space required after all is the same as <2, 2, 2>, and only the part which added the positional information of the first record contained in the track capacity of the original CKD format and the block of FBA is required for it.

b. Since a gap exists also on memory in the ease of doing of data transfer between records and as for between the fields, when performing data transfer of the continuous field between channels, it not only counts up a memory address simply, but it needs to fly and reset the part of a gap like <3, 1, 1>. Furthermore, since it is divided by the positional information of the first record contained in a FBA block also on memory etc. when the block of FBA is straddled unlike <3, 1, 1>, even if it is in the single field, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer. c. It is completely the same as the procedure <2, 2, 2> when finding the purpose record. In order to look for the purpose record, only the count of the record which exists in from the record of the beginning of a block of FBA before the purpose record needs to access memory. Therefore, there are few counts of memory access than <3, 1, 1>. Most approaches of calculating the location of the purpose record from the location of the record of the beginning of a block of FBA are the same as <3, 1, 1>, and simple (what is necessary is just to add an inter-record gap and the gap between the fields to the size of the count field, KL, and DL pan rapidly). Moreover, since the relative position in a CKD format of each record is maintained also on memory, it is Set. The block of FBA with which the purpose record is contained from the value of Sector can be searched for correctly.

d. the procedure at the time of a format light -- this is completely the same as <2, 2, 2>. Since the relative position in a CKD format of each record is maintained also on memory on the check of track capacity, if the address on the memory of the record which is going to carry out the format light is known (it understands in the procedure of c.), on it, it is calculable whether the light of the record of the size of which can be carried out the back immediately. When a format light is carried out and the new count field is generated on a new FBA block, the information which shows the location of the count field of a top record must be written to the FBA block.

[0051] <3, 2, 3> and a gap : An inter-record gap, Relative-position information, such as a segment number, on maintenance and track capacity check:each record for the location of the first record contained in the block of FBA - record positioning which leaves the gap between the fields : A maintenance a. memory space inter-record gap, Since it leaves the gap between the fields, mostly, the truck image of a CKD format is left behind as it is, and since the part of the positional information of the first record contained in the block of FBA is also required for an excess, memory space becomes close to max further. However, since it does not say that the relative position of the record in a CKD format will be maintained positively, the part of ECC or padding does not need to add to memory space. Instead, the semantics which left the gap not much is lost.

b. This is completely the same as <3, 2, 2> in the ease of doing of data transfer. It is necessary to fly the part of a gap and to reset on memory as well as not only counting up a memory address simply, when performing between channels data transfer of the field which continued since the gap existed between records and as for between the fields but <3, 1, 1>. Furthermore, since it is divided by the positional information of the first record contained in a FBA block also on memory etc. when the block of FBA is straddled unlike <3, 1, 1>, even if it is in the single field, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.

- c. the procedure when finding the purpose record -- this is completely the same as <3, 2, 2>. In order to look for the purpose record, only the count of the record which exists in from the record of the beginning of a block of FBA before the purpose record needs to access memory. Therefore, there are few counts of memory access than <3, 1, 1>. Most approaches of calculating the location of the purpose record from the location of the record of the beginning of a block of FBA are the same as <3, 1, 1>, and simple (what is necessary is just to add an inter-record gap and the gap between the fields to the size of the count field, KL, and DL pan rapidly).
- d. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of the procedure track capacity at the time of a format light] one, KL, and DL -- back -- calculate whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be written to the record itself which carried out the light. When the new count field is generated on a FBA block new to coincidence, the information which shows the location of the count field of a top record must be written to the FBA block.
- [0052] <3, 3, 2> and a gap : An inter-record gap, record positioning: which leaves the gap between the fields -- the relative-position information on all records -- maintenance and track capacity check: -- by accommodation of gap length Since the relative position of each record is maintained with the original CKD format of the relative position of each record by accommodation of maintenance a. memory space ****** inter-record gap length Required memory space is fundamentally the same as the track capacity of the original CKD format like <3, 2, 2>. However, since the positional information of the record added as control information holds the part of not only the part of the record of the beginning of a block of FBA but all records as shown in <3, 2, 2>, its memory space also increases more than <3, 2, 2>, and it is all the maxes in a method like <2, 3, 2>.
- b. This is completely the same as <3, 2, 2>, and <3, 2, 3> in the ease of doing of data transfer. It is necessary to fly the part of a gap and to reset on memory as well as not only counting up a memory address simply, when performing between channels data transfer of the field which continued since the gap existed between records and as for between the fields but <3, 1, 1>. Furthermore, since it is divided by the positional information of the record contained in a FBA block also on memory etc. when the block of FBA is straddled even if it is in the single field, when it distributes and has the positional information of a record for every block of FBA unlike <3, 1, 1>, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.
- c. It is completely the same as the procedure <1, 3, 3> when finding the purpose record, <2, 3, 3>, etc. Since what is necessary is to read the positional information of a record only once in order to look for the purpose record, the count of memory access is min in all methods. The information shows the location of the purpose record direct. Moreover, since the relative position in a CKD format of each record is maintained also on memory, it is Set. The block of FBA with which the purpose record is contained from the value of Sector can be searched for correctly.
- d. It is completely the same as the procedure at the time of a format light <2, 3, 2>. Since the relative position in a CKD format of each record is maintained also on memory on the check of track capacity, if the address on the memory of the record which is going to carry out the format light is known (it understands in the procedure of c.), on it, it is calculable whether the light of the record of the size of which can be carried out the back immediately. When a format light is carried out, the information which shows the location of the count field of the record must be added to the control information which surely holds the positional information of a record.

[0053] Relative-position information, such as a segment number, on maintenance and track capacity check:each record for the relative-position information on all records - record positioning which leaves <3, 3, 3> and a gap:inter-record gap, and the gap between the fields: A maintenance a. memory space interrecord gap, Since it leaves the gap between the fields, the truck image of a CKD format is left behind mostly as it is, and since the part of the positional information of all records is also still more nearly required for an excess, from <3, 2, 3>, there is still more memory space and it becomes close to max. However, since it does not say that the relative position of the record in a CKD format will be maintained positively, the part of ECC or padding does not need to add to memory space. Instead, the semantics which left the gap is lost not much.

b. This is completely the same as <3, 2, 2>, <3, 2, 3>, and <3, 3, 2> in the ease of doing of data transfer. It is necessary to fly the part of a gap and to reset on memory as well as not only counting up a memory address simply, when performing between channels data transfer of the field which continued since the gap existed between records and as for between the fields but <3, 1, 1>. Furthermore, since it is divided by the positional information of the record contained in a FBA block also on memory etc. when the block of FBA is straddled even if it is in the single field, when it distributes and has the positional information of a record for every block of FBA unlike <3, 1, 1>, it is necessary to fly the part of the positional information like a skip defect, and to perform data transfer.

c. the procedure when finding the purpose record -- this is completely the same as <3, 3, 2>. Since what is necessary is to read the positional information of a record only once in order to look for the purpose record, the count of memory access is min in all methods. The information shows the location of the purpose record direct.

d. It is completely the same as the procedure at the time of a format light <2, 3, 3>. from the segment number (information which shows the relative position on the truck of the record in an original CKD format) of the record in front of [of the record which is going to carry out the format light for the check of track capacity] one, KL, and DL -- back -- it calculates whether the light of the record of the size of which can be carried out. When a format light is carried out, the segment number of the record must be written to the record itself which surely carried out the light. The information which shows the location of the count field of the record must be added to the control information which holds the positional information of a record to coincidence.

[0054] The comparison result of an all directions type mentioned above in the right half of <u>drawing 9</u> was summarized. Four compare items mentioned above are indicated in the column of a "compare item." According to the significance, five steps of grade attachments are carried out to each compare item. 5 is the most important item and 1 is an item which is not not much important. Moreover, in each of this compare item, five-step evaluation was performed and the mark of one to five points are given to each conversion method. Five points were attached to the best conversion method about a certain compare item, and one point is given to the most inferior conversion method. Thus, the mark gave are totaled for every conversion method, and it is considering as the sum total score of the conversion method. The approach of a total has totaled what applied the value of the grade of the compare item to the prime spot of each compare item about all compare items. Therefore, it will be called the conversion method which was as excellent as the high conversion method of a sum total score. In <u>drawing 9</u>, this sum total score gives * to the sum total score column of a conversion method higher than the conventional method.

[0055] The sum total score of <u>drawing 9</u> also has a much subjective field, and is a standard to the last. However, even if it shook some values of the grade of how to give mark to a trial or each compare item, the conversion method which becomes the conventional method and the score more than equivalent was the

same as <u>drawing 9</u> too. Therefore, as long as it thinks according to this compare item, it is thought that it becomes a good standard. The reason to which the conventional method was not topping is the count of the memory access in the procedure when mainly finding the purpose record. In the conventional method, although the record of the beginning under block of FBA can be found by one shot, the record behind that must find and read the count field of a consecutive record in sequence from there. The reason the conventional method did not think this point as important can consider the two following points.

- (1) The method of the problem former of a unit with the positional information of a record supposes that it has the positional information of the first record contained in every [of a FBA disk] block (** sector) there. The size of the record of CKD recorded there by the actual SCSI disk to the magnitude of this block being about at most 1-2KB has most about 4KB. Therefore, it is thought that the CKD record with which one CKD record is actually contained in one FBA block after all ranging over two or more FBA blocks like <u>drawing 10</u> rather than the case where many CKD records to one FBA block are contained has more cases of one or less piece. Therefore, Set If Sector shows exactly even the FBA block with which the target record is contained, since the purpose record can be found by one memory access, the count of memory access will hardly increase also by this method, either.
- (2) In the method of the problem former of the place for a track buffer, although the emulator which performs such CKD-FBA conversion may be anywhere between a channel processor and a FBA disk (DKC will be sufficient, of course), the channel processor itself is performing the emulator. That is, he is seldom conscious of the large-scale system which used the disk cache as the base. Therefore, the memory for track buffers which develops a truck image also considers local memory of a channel processor the primary storage of the host CPU, and own. Thus, especially a track buffer is in own local memory of a channel processor, and when the channel processor performs a CKD-FBA emulation, even if there are a little many counts of memory access there, it seldom becomes a problem.
- [0056] Although it is thought that the point of the count of memory access was seldom conventionally thought as important from these points, the two above-mentioned points have conceived the following problems, respectively.
- (1) It is inefficient-like although the method of the problem former of a unit with the positional information of a record has the positional information of the first record contained in every [of a FBA disk] block (** sector) there. As shown in drawing 11, when considering an array mold disk condition (RAID) with one set of four sets of data disks, and a redundancy disk which used the disk cache as the base, the unit of the read/write to a physical disk is a part for not a fine unit like the block of FBA but 1/4 which divided a part for one truck of CKD (for example, 48KB) into each data disk truck. Therefore, it is better to also have the positional information of a record every 1/4 truck of this from every FBA (refer to drawing 11). If it has positional information every 1/4 truck, since the positional information for one truck will be collected by four places, it also ends by these four places that a CKD record is divided by this positional information on memory. However, supposing it has the positional information of a record for every block of FBA like the conventional method, the fragmentation part of one truck will also become the number of the FBA block included on one truck. (1 block 2KB -- ** -- if it carries out -- one truck -- about 24 places) that is, if it is 4KB of CKD record, 1-2 places will surely be divided among 1 record. This fragmentation part will be processed with the firmware (F/W) of disk storage control, unless special hardware (H/W) is prepared. Therefore, it supposes that it starts dozens ofmicrosec, and since the time amount which transmitting 4.5 MB/sec, then 4KB of record takes in the transfer rate of a channel is 889microsec, it leads to engineperformance [several % - about 10% per one record of] down. If positional information will be given every 1/4 truck like drawing 11 in order to avoid this, since the CKD record count contained in it will increase

shortly, the count of memory access will increase by the conventional method.

[0057] (2) Like the method of the problem former of the place for a track buffer, a track buffer is in own local memory of a channel processor, and when the channel processor performs a CKD-FBA emulation, even if there are a little many counts of memory access there, it seldom becomes a problem. However, naturally in the large-scale system considered on the assumption that a disk cache, a track buffer also comes on cache memory. Carrying out [and] data transfer of the truck image on cache memory between channels, transmitting to another track buffer becomes a big overhead in itself. On the other hand, since the emulation of CKD-FBA must be carried out to the real-time one in data transfer with a channel, the channel pass server (CPS) in DKC which manages data transfer with each channel will perform an emulation. Therefore, by the conventional method, in order to find the purpose record, each channel pass server will access frequently the track buffer on the cache memory which is a common area. Access to this cache memory is performed not only from a channel pass server but from a device side. That is, this cache memory is the bottle neck part of the system by which read/write is performed at high speed. Accessing such a part frequently in a fine unit becomes the cause which comes out so much and makes data transfer capacity of an internal bus low remarkably. Therefore, even if the amount of data of access to this cache memory increases a little, its method accessed at once is better. It is advantageous < case for the method conventional in that part not to become the lower top about mark a little, since it is above and the point of the count of memory access is also noted, but to get the high score from the conventional method in respect of this count of memory access. It is a thing in the conversion method which has adopted II-3>. [0058] Next, "the deletion approach of a gap and evaluation of memory space" are explained. Here, in case the truck image of a CKD format is developed on cache memory (track buffer) and it records on a FBA disk, it evaluates how many memory space differ concretely, respectively about three methods mentioned above about whether it develops on memory also including a gap.

[0059] About whether in case the truck image of a CKD format is developed on cache memory (track buffer) and it records on a FBA disk, it develops on memory also including a gap, it is < case. All gaps also including I-1> and an inter-record gap will be deleted.

- < case It leaves only I-2> and an inter-record gap, and the gap between the fields is removed.
- < case It leaves I-3> and not only an inter-record gap but the gap between all the fields (ECC, padding, etc. remove).

Three kinds of methods to say can be considered. Here, memory space (= the block count of a FBA disk) required to develop the truck image for CKD format 1 truck for every all directions types of these is estimated and examined [measure and]. However, < case I-2>, < case About I-3> < case III-2> mentioned above as a check method of track capacity (only the part of the eliminated gap between the fields, ECC, and padding lengthens an inter-record gap) When it combines with the method which maintains the relative position from the head of the truck of each record with the original CKD truck, the memory space of a truck image always becomes equal to the original CKD format. Therefore, it estimates about the case where adjustment of gap length is not performed here.

[0060] In a CKD format, the number of gaps needs to specify track format, such as record count in the truck which estimates, in order to be dependent on the record count in 1 truck, the existence of key field, etc. and to estimate the size of the memory space by the existence of a gap. Here, as an extreme case, when the fewest [there is most record count, and], it estimates about four cases of <u>drawing 12</u>, such as a standard case. All assume <u>drawing 33</u> as a CKD format. Count of the record count per truck in each case is shown in <u>drawing 13</u>, <u>drawing 14</u>, <u>drawing 15</u>, and <u>drawing 16</u>. The formats 2 and 3 of <u>drawing 12</u> were defined based on the investigation "work load type investigation of disk access", although not stated here.

Moreover, although the record size of a journal file is 200B-32KB, since the size used best is about 200B-300B, 200B is used by drawing 12.

[0061] In estimating memory space, it estimates on the following conditions here.

- (1) Use drawing 33 as a track format.
- (2) 0 padding for uniting with ECC of each field, a tooth space (X'FF'), and 32B boundaries deletes.
- (3) Leave all the parameters of others of HA and the count field.
- (4) Don't estimate the capacity of control information for CKD-FBA conversion, such as positional information of a record, here. Since it is conditions different from the deletion approach of a gap again, this is estimated separately.

After all, on memory, the contents of each field other than a gap estimate noting that they become like the part shown by X of <u>drawing 33</u>. If the record count per truck for every estimated case is calculated, it will become like drawing 13 - drawing 16.

[0062] Moreover, the memory space estimate for every gap deletion approach is as follows.

- < case All gaps also including I-1> and an inter-record gap will be deleted.
- Format 1 (case of the most record counts)

size of HA Size of =40-12=28R0 Size of =R0C+R0D=(40-12)+1=29Rn =RnC+RnD=(40-12)+1=29 -- therefore -- the capacity for one truck -- +RnR0+Rnx93=28+29+29x93=2754 format 2 (type of a journal file)

size of HA Size of =40-12=28R0 Size of =R0C+R0D=(40-12)+8=36Rn =RnC+RnD=(40-12)+200=228 -- therefore -- the capacity for one truck -- HA+R0+Rnx68=28+36+228x68=15568- format 3 (paging, swapping, VSAM)

size of HA Size of =40-12=28R0 Size of =R0C+R0D=(40-12)+8=36Rn =RnC+RnD=(40-12)+4096=4124 -- therefore -- the capacity for one truck -- HA+R0+Rnx10=28+36+4124x10=41304- format 4 (case of the minimum record count)

Size of HA Size of =40-12=28R0 Depending =R0 C+R0D=(40-12)+47988=48016, the capacity for one truck is HA+R0=28+48016=48044[0063]. < case It leaves only I-2> and an inter-record gap, and the gap between the fields is removed (ECC, padding, etc. remove). However, if gap length will be lengthened for the part and it will be made consistent even if it deletes the gap between the fields, ECC, a tooth space (X'FF'), padding, etc., memory space will become completely the same as the original CKD format.

Therefore, deleted consistency doubling estimates in the case which is not performed here.

- Format 1 (case of the most record counts)

size of HA Size of =G1+HA=504+(40-12)=532R0 Size of =G2C+R0C+R0D=248+(40-12)+1=277Rn=G3+RnC+RnD=216+(40-12)+1=245 -- the capacity for one truck therefore

HA+R0+Rnx93=532+277+245x93=23594- format 2 (type of a journal file)

Size of HA Size of =G1+HA=504+(40-12)=532R0 Size of =G2 C+R0 C+R0D=248+(40-12)+8=284Rn It depends =G3+RnC+RnD=216+(40-12)+200=444. The capacity for one truck is the

HA+R0+Rnx68=532+284+444x68=31008- format 3 (paging, swapping, VSAM).

Size of HA Size of =G1+HA=504+(40-12)=532R0 Size of =G2 C+R0 C+R0D=248+(40-12)+8=284Rn It depends =G3+RnC+RnD=216+(40-12)+4096=4340. The capacity for one truck is the

HA+R0+Rnx10=532+284+4340x10=44216- format 4 (case of the minimum record count).

Size of HA Size of =G1+HA=504+(40-12)=532R0 Depending =G2 C+R0 C+R0D=248+(40-12)

+47988=48264, the capacity for one truck is HA+R0=532+48264=48796[0064]. < case It leaves I-3> and not only an inter-record gap but the gap between all the fields (ECC, padding, etc. remove). If gap length will be lengthened for that part and it will be made consistent even if it deletes ECC, a tooth space (X'FF'),

padding, etc. also in this case, memory space will become completely the same as the original CKD format. Therefore, deleted consistency doubling estimates in the case which is not performed here.

- Format 1 (case of the most record counts)
- size of HA = Size of G1+HA=504+(40-12) = 532R0 Size of =G2 C+R0 C+G2+R0D=248+(40-12)
- +224+1=501Rn = It depends G3+RnC+G2+RnD=216+(40-12)+224+1=469. The capacity for one truck is the HA+R0+Rnx93=532+501+469x93=44650- format 2 (type of a journal file).
- size of HA = Size of G1+HA=504+(40-12) = 532R0 Size of =G2 C+R0 C+G2+R0D=248+(40-12)
- +224+8=508Rn = It depends G3+RnC+G2+RnD=216+(40-12)+224+200=668. The capacity for one truck is the HA+R0+Rnx68=532+508+668x68=46464- format 3 (paging, swapping, VSAM).
- size of HA = Size of G1+HA=504+(40-12) = 532R0 Size of =G2 C+R0 C+G2+R0D=248+(40-12)
- +224+8=508Rn = It depends G3+RnC+G2+RnD=216+(40-12)+224+4096=4564. The capacity for one truck is the HA+R0+Rnx10=532+508+4564x10=46680- format 4 (case of the minimum record count).
- size of HA Size of =G1+HA=504+(40-12)=532R0=G2 C+R0 C+G2+R0D=248+(40-12)
- +224+47988=48488 -- therefore -- the capacity for one truck -- HA+R0=532+ -- 48488= 49020 [0065] It is < case to <u>drawing 17</u> . I-1> < case About three kinds of gap deletion approaches to I-3>, the memory space when developing four track format to formats 1-4 on memory, respectively is shown. <u>Drawing 18</u> expresses this with a graph.
- [0066] Every track format is <a case I-1> < case so that <u>drawing 17</u> and <u>drawing 18</u> may show. Memory space is also mostly needed, so that there are many I-3> and gaps to leave. < case In I-3>, in order to leave all gaps, in every format, memory space almost equal to the capacity in the original CKD format is needed. < case where the gap between the fields is deleted When I-2> also takes the method with which only the part of the gap between the fields from which it deleted as a check method of track capacity, ECC, and padding lengthens an inter-record gap, and maintains the relative position from the head of the truck of each record with the original CKD truck, required memory space is < case. It becomes almost the same as I-3>. On the other hand, < case where all gaps are deleted at I-1>, memory space is small notably in the formats 1 and 2 especially with small record size. In the format 1 of 93 records, 16 1/17 of other methods and format 2 are also about 1/3. Thus, the following merits can be considered that there is little memory space for developing a truck image, and it ends (refer to drawing 19).
- (1) If the unit of management of cache memory is made into the finer unit (for example, the unit which writes to one data disk = a part for 1/4 truck ... 12KB) instead of a part (about 48KB) for one truck of CKD, the data of other trucks can be written to the surplus field of cache memory. therefore, the data of the truck of many in the same cache memory space -- it can hold -- the improvement in a utilization factor of cache memory -- lengthening -- **** -- improvement in a hit ratio is expectable.
- (2) Also when writing the data to a physical disk, I hear that that there is little amount of data of the image for one truck, and it ends ends by the small amount of data, and there is. For example, if the data of the image for one truck end by one half of CKD formats, the data transfer to a physical disk will require data disks 1 and 2 and only a parity disk, and if it is not a format light, it is not necessary to transmit data to data disks 3 and 4. This is connected with unloading, such as each bus in a subsystem. However, although memory space ends few, control will become very complicated, if the field on a physical disk doubles and is not secured to maximum. After writing the data of other trucks to the field which was vacant also when writing the data to a disk just because the truck image on memory is the one half of a CKD format, when the truck is reformatted next and the amount of a truck image has increased, it becomes what carries out a light in search of the field which it stops could carry out the light of the truck image to the field to which it continued on the disk, and is vacant on the disk somewhere. Although it is more good if the free area of the

part physical disk is also effectively utilizable when the amount of data of a truck image becomes less, at least the merit of (1) and (2) is [but] attractive enough.

As mentioned above, as a result of actually estimating the size of memory space, in the case where all gaps are left, and the case where all gaps are deleted, it turns out that the aperture of several times or more comes out [required memory space] depending on record count.

[0067] Next, "the memory space estimate of the positional information of a record" is explained. As a method which positions the purpose record, it is < case. II-1>, and <case II-2> and < case Three methods of II-3> were held. It is < case among these. Each of other two methods except II-1> is methods holding the control information which indicates the location of the record on memory to be the record itself separately. Here, it estimates at the control information for this positioning how much memory space (capacity on =FBA disk) is the need by the all directions formula. Here, it is < case. < case except II-1> II-2> and < case It estimates about II-3>. moreover, < case In II-3>, although there are an approach (for example, head of a truck) of the positional information of a record bundling up a part for all records, and holding to one place and the approach (for example, every -- the information which shows the location of the record contained in the FBA block at the head of a FBA block is held) of holding dispersedly, it estimates about the approach of holding dispersedly here. The reason which is not estimated about the approach of bundling up a part for all records and holding to one place is as follows. Unless it finishes reading the data from the disk with which positional information is recorded even if it finishes reading the data from the disk with which the purpose record is recorded when an array mold disk unit like drawing 19 is considered and the data for 1CKD truck will be read from four sets of data disks, if positional information is collectively held by one place, the record location of the purpose record cannot be found and data transfer with a host cannot be started. Therefore, when a rotation synchronization is not able to be supported, or when [even if it is supporting,] a standby disk is added and the synchronization has collapsed, it leads to the increment in average rotational delay.

[0068] Here, let estimated conditions be the following. First, 4 bytes of information per record as shown in the following figure shall be held as maintenance information per record.

Record No.: It is record No. of the CKD record currently recorded. < case Although it is not necessarily indispensable on control in II-2>, it is especially < case. At II-3>, if it has this record No. in control information, even if it does not read the count field of an actual record one by one, the purpose record can be discovered by one shot.

Sector value: The sector value in the case of memorizing as a CKD record is memorized. The comparison with the sector value specified by this sector value by the set sector command is attained. Moreover, it can ask for the relative position from the truck head of that record with this sector value, and the already consumed capacity can be judged. Since the sector consists of seven segments, it can calculate a segment number using this sector value. That is, it is segment number = sector value x7.

Memory address: It is a byte address on the memory of the CKD record currently recorded. Since addressing can be carried out to 64KB if it 2B Is, a format of <u>drawing 33</u> is enough. It does not ask whether the origin of the address is made into the head of a CKD truck, or it is made heads which are the management units of positional information, such as the every FBAblock, for the time being. [0069] Moreover, as a unit (unit holding the positional information of a record) which manages the positional information of a CKD record, it estimates about two cases of <u>drawing 21</u>. It sets in the two above-mentioned cases, and is < case. II-2> and < case The memory space for having the positional

information of the CKD record currently recorded about each of II-3> is estimated. The estimated result is

as follows.

< case II-2> : Only the positional information of a top record is held. In this method, since only the positional information for every one management unit record is always held irrespective of the size of the management unit of positional information, the memory space for positional information is 4B for every management unit.

< case II-3> : The positional information of all records is held. By this method, the record count of CKD which may be recorded there changes with magnitude of a management unit. Furthermore, what CKD record is recordable per management of a certain size is < case where record count increases most here although it is dependent also on the deletion approach of a gap. It estimates by adopting I-1> (all gaps being deleted). The size of Rn of the "format 1 (case of the most records) of < case I-1>" of "the deletion approach of a gap and evaluation of memory space" which the minimum memory space per one record at this time mentioned above shows that it is 29B. Therefore, the most record counts NR recordable for every size of each management unit are if memory space for positional information is set to alpha. NR= {(size of a management unit) -alpha} /29B ... (1)

Moreover, since what is necessary is just to hang 4B on the record count NR, memory space alpha of the positional information per management unit is alpha=NRx4B. ... (2)

It comes out and asks. When these two formulas are solved, it is NR= (size of management unit)/33 (below decimal point omission)... (3)

It becomes. Therefore, alpha is also immediately called for by substituting for (2) types NR calculated by (3) formulas. However, since the record count in 1 truck does not exceed 94 pieces in the track format of drawing 33 (R0 is included), the maximum of NR is also 94. If the above result is summarized, it will become like drawing 22.

[0070] in order to record a CKD record according to "the deletion approach of a gap and evaluation of memory space" which were mentioned above -- net -- the data field of the maximum of required memory space is the case where it is the longest, by 1 truck 1 record (only R0). this time -- required memory space -- HA from drawing 17 -- it doubles R0 and becomes like drawing 23. If capacity of the FBA disk prepared for one CKD truck is set to 48KB (12KBx4), the memory space which can be used for control information will become like a bottom type.

in < case II-2>, it is said that memory space runs short irrespective of the size of a management unit -- it is satisfactory. I-1> 1024x48-48044=1108 < case I-2> 1024x48-48796=356 < case I-3> 1024x48-49020=132 -- if this value is compared with the value (column of most right-hand side) of <u>drawing 22</u> -- < case On the other hand, < case < case where a management unit is large (management unit 2 size 12KB), and there is least memory space the case (1504B) where there is little memory space for positional information, and for a record, and it can be managed with II-3> Even if compared by I-1>, memory space about 400 B which can be used for positional information will run short.

[0071] < case Since there is little II-3> and its count of memory access for looking for the purpose record is more promising than the conventional method (< case II-2>), it is necessary to consider a cure to this insufficiency. The following can be considered as this cure.

Cure 1 The capacity reserved in per physical disk is increased.

ex. If 12KB -> 13KB, 52KB, a next door, and lack will be solved for the capacity which can be used for one CKD truck at once. Although a physical disk is [52 KB/CKD truck] necessary and disk area becomes useless compared with 48 KB/CKD truck, since the cost of a physical disk has been decreasing, it is one of the effective approaches.

Cure 2 The amount of control information required for per record is reduced.

ex. 4B / record -> when it is 2B/record, the total memory space required for control information is set to

752B, and stops running short.

Cure 3 The number of control information is reduced.

ex. In the case of the management unit 2 (size 12KB), by this estimate, I think that the positional information of a maximum of 94 records is held every four management units. However, since the Max.94 piece is required of the sum total of four management units in practice, it considers devising well and reducing the total capacity of control information.

[0072] The result of "the memory space estimate of the positional information of a record" is as follows as mentioned above. < case In II-2>, memory space runs short and is satisfactory. < case Although it changes also with conditions in II-3>, the memory space which can be used for positional information will run short a little. < case Since there is little II-3> and its count of memory access for looking for the purpose record is promising, it is necessary to consider a cure to this insufficiency from now on.

[0073] Next, "an improvement of the control system of the positional information of a record" is explained. The trouble of the control system of a previous estimate is as follows. In the "memory space estimate of the positional information of a record" mentioned above, the field of positional information was secured to every [which manages the positional information of a CKD record] unit (unit holding the positional information of a record) according to the maximum record number which may be recorded there. As shown in drawing 24, when setting size of a management unit to 12KB, speaking concretely, a maximum of 94 CKD records may be recorded there. Since 4 bytes was estimated as positional information per record, the positional information field of only 4Bx94=376B had been estimated for 12KB of every management unit. The truck image of CKD truck 1 duty consists of 12KB of these four management units, and since data are distributed and recorded on four sets of these 12KB every data disks, the memory space of the positional information per CKD truck will be set to 376Bx4=1504B. However, in this, the field of the positional information for 4= 94x376 record will be secured per CKD truck. In a format of drawing 33, since the maximum record numbers of 1CKD truck are 94 records (it contains R0), even if the maximum record number which may be recorded on 12KB of each management unit is 94 pieces, respectively, every 94 records must have been recorded on coincidence by not no management units. Therefore, the field of the positional information for 3= 94x282 record will be useless.

[0074] Such a trouble is generated from it having made immobilization size of the positional information field within the management unit of a record. Since the field of memory where a CKD record can be written in also at the time of that control is easy and (2) format light since the size of the positional information field over which it must jump is fixed also when performing data transfer of the record currently recorded ranging over (1) management unit whenever it makes size of a positional information field immobilization is immobilization, advantages, like control is easy occur. As long as size of a positional information field is made immobilization, the size does not obtain a doubling colander to maximum, but has no choice but to secure [every management unit] for 94 records. On the other hand, although control only whose part of the record actually recorded as making size of a positional information field adjustable uses a positional information field is also possible, the above advantages will be lost fundamentally. Although it is indispensable to make adjustable size of the positional information field of each management unit in order to reduce the total capacity of positional information, it is important to avoid such a fault well. [0075] The improvement proposal which made size of a positional information field adjustable at drawing 25 is shown. Hereafter, an improvement proposal is explained based on this drawing. In addition, the size of the management unit of the positional information of a record is dealt with henceforth about the case of the same 12KB as the size of the division unit to a data disk. In the same 1-2KB as the block (sector) size of the

same FBA disk as the conventional method, it is because effectiveness is bad (for details, refer to "the

problem of a unit with the positional information of a record" mentioned above). Moreover, henceforth, as shown in <u>drawing 25</u>, the thing of the positional information of a control frame and a record calls a record pointer the field where, as for the thing of the management unit of the positional information of a record, the thing of a frame and the field which actually records a CKD record records a record frame and control information. The points of this method are the following points.

- (1) Only the part of the record actually recorded uses a record pointer. Thereby, the size of a record pointer field can be managed per 1CKD truck and with 4bytex94=376byte at the maximum.
- (2) Hold the size of the control frame containing a record pointer as control information (control frame pointer of <u>drawing 25</u>) separately. Using this information, even if the size of a control frame serves as adjustable, it is not necessary to complicate control.
- (3) Record such control information (control frame) on the tail end instead of a head of each frame. Moreover, the record pointer in a control frame is also arranged in an order from back. (The record pointer corresponding to it in what has an actual record in front within a record frame comes back within a control frame). Thereby, control at the time of a format light can also be performed easily.
- [0076] Hereafter, according to a motion of actual read/write, the approach of the point-to-point control of the record in a frame is explained to a detail to a slight degree.
- (1) If a frame is read from the (a) physical disk on cache memory at the time of lead/update light, CPS reads the control frame at the tail end. Although it does not understand at this time until it reads the size of a control frame, the suitable byte count at the tail end of a frame is read collectively for the time being. (The byte count read at this time needs to choose an optimum value by architecture, such as CPS, and cache memory, a bus.) For example, when tail end 32B of a frame will be read and the record count currently recorded in this frame is seven or less pieces, CPS can acquire the record pointer of all records by this one access. For example, when making 4KB size into most record sizes, since the record count in one frame is three or less pieces, in most cases, all record pointers can be acquired by this one cache memory access.
- (b) From the memory address in the control frame pointer at the tail end of the read control frame, the control frame was still read, and it has left it, or can judge in no. If it has read and left the control frame, CPS will read it. By this, even when CPS is the worst, all record pointers can be acquired by two memory accesses.
- (c) Next, find the memory address on the frame of the purpose record from the argument of the search sent by the host, and the acquired record pointer (it means that orientation was established now).
- (d) Compare with the memory address of the purpose record the size of the count field, the value (memory address at the tail end of the purpose record) which added KL and DL, and the memory address which shows the head of the control frame in a control frame pointer before starting data transfer among hosts. When the memory address at the tail end of the purpose record is eating into the control frame, after CPS carries out an end halt of the data transfer with a host before a control frame and advances a memory address to the head of the following frame, it performs control which resumes data transfer with a host. If the tail end of the purpose record is settled in the record frame, the above control is unnecessary, and CPS can be completed, without interrupting the data transfer of the purpose record on the way.
- (e) Since the following record is continuing on memory as it is succeedingly when the command of lead/update light system is taken out from a host, even if it does not use a record pointer, data transfer can be continued as it is. However, the comparison of the memory address at the tail end of a record and the start address of a control frame must be performed for every record.
- [0077] (2) If a frame is read from the (a) physical disk on cache memory when adding a record within the

same frame at the time (2.1) of a format light, CPS reads the control frame at the tail end.

- (b) Investigate a control frame pointer and acquire all record pointers.
- (c) Next, find the memory address on the frame of the purpose record from the argument of the search sent by the host, and the acquired record pointer (it means that orientation was established now). The above (a) (c) procedure is the same as the time of lead/update light.
- (d) Write sent by the host It investigates whether track overrun is generated from the value of the count field of CKD. (This detailed procedure is separately explained as "a check method of track capacity".) When generating track overrun, even the track overrun point performs data transfer by subsequent control, and control which reports track overrun to a host is performed. If the check of track overrun finishes, the memory address which shows the head of the control frame in the control frame pointer which CPS holds by itself will be 4B Reduced (4B escape of a control frame is done), and the record pointer of the record added still more newly will be added to the head of the control frame which CPS holds.
- (e) Write The memory address at the tail end of the record newly added from the value of the count field of CKD is calculated, and it compares with the memory address in the control frame pointer updated by (d). When the memory address at the tail end of a new record is eating into the control frame, after CPS carries out an end halt of the data transfer with a host before a control frame and advances a memory address to the head of the following frame, it performs control which resumes data transfer with a host. If the tail end of a new record is settled in the record frame, the above control is unnecessary, and CPS can be completed, without interrupting the data transfer of a new record on the way.
- (f) Since the following record is continuing on memory as it is succeedingly when the WriteCKD command is taken out from a host, even if it does not use a record pointer, data transfer can be continued as it is. However, the comparison of the memory address at the check of track overrun, renewal of a control frame pointer, addition of a record pointer, and the tail end of a record and the start address of a control frame must be performed for every record.
- (g) When a command is completed, write out the control frame after updating which CPS held on cache memory.

[0078] In addition, in a case as shown in <u>drawing 26</u>, when it is going to add a record and a record pointer is added into the succeedingly same frame just because 3 bytes of record frame is vacant, a record pointer will eat into the posterior part of a front record. That is, when the availability of a frame is 4 bytes or less, into the same frame, a new record cannot be added but must use the following frame. Thus, it is vacant and having included into the control frame and having managed tends to give [which has been produced / a jump of the control frame at the time of the data transfer of (e) etc.] a cutting tool (4 bytes or less). Therefore, the memory address in a control frame pointer will show this empty cutting tool's start address. The offset (0-4 bytes) from this empty cutting tool's head to the start address of a record pointer is held as control information in a control frame, in the case of acquisition of the record pointer of (b), lengthens this offset value from the memory address in a control frame pointer, and should just ask for the start address of a record pointer.

[0079] (2.2) When writing a record newly [when writing a record first within the same frame] in a format light on the case where it reformats completely newly from the head of a truck, and the frame, on which one was not recorded for the record, CPS will generate a control frame newly. Therefore, the establishment activity of the orientation by acquisition of the control frame of (a) - (c) of (2.1) is unnecessary in this case. The check of the track overrun of (d) is performed like (2.1).

(e) If the check of track overrun finishes, CPS will generate a control frame pointer (the start address of a control frame shows the place for one record pointer.) on its memory, and the record pointer of the record

written still more newly will be written to the head of the control frame which CPS holds.

- (f) Write The memory address at the tail end of the record newly written from the value of the count field of CKD is calculated, and it compares with the memory address in the control frame pointer generated by (e). When the memory address at the tail end of a new record is eating into the control frame, after CPS carries out an end halt of the data transfer with a host before a control frame and advances a memory address to the head of the following frame, it performs control which resumes data transfer with a host. If the tail end of a new record is settled in the record frame, the above control is unnecessary, and CPS can be completed, without interrupting the data transfer of a new record on the way.
- (g) It is Write from a host succeedingly. When the CKD command is taken out, it becomes being the same as that of (2.1).
- (h) When a command is completed, write out the new control frame which CPS held on cache memory. In processing of a format light system, unless it is after the record count recorded on the frame is known, the size of a control frame is not decided. Therefore, it will be understood that it should be begun [in / for a control frame / the head of a frame] from where [of a frame] to write the first record.

By this method, the control frame has avoided such a problem by beginning to write from the tail end of a frame by beginning to write a record from the head of a frame as mentioned above.

[0080] Next, memory space of positional information with this improvement proposal is estimated. It estimates about the case of the management unit 2 of drawing 22 among the cases estimated by the "memory space estimate of the positional information of a record" mentioned above about the memory space of positional information with this improvement proposal, and an improvement effect is seen. The management unit (frame) size of this case is 12KB, and record count has estimated memory space about the case where they are 94 records / CKD truck with which positional information (record pointer) increases most. In this case, although based also on the deletion approach of a gap, in the case where all gaps are deleted, all records are settled in a one-eyed frame (refer to "the deletion approach of a gap, and evaluation of memory space"). at this time, with this improvement proposal, 94 pieces and one control frame pointer have a record pointer in the control frame of a one-eyed frame, and there is especially no control information in other frames (rather than -- other frame itself is not needed). Therefore, memory space required for control of positional information is 4Bx95=380B. The comparison with this result and other cases estimated by "the memory space estimate of the positional information of a record" is shown in drawing 27 . < case II-2> is the conventional method and is a method only holding the location of the record located in the head of each FBA block (here frame). < case an improvement II-3> is a method holding the positional information of all records, and according to a book -- the front -- it is a formula. < case II-3> ** is this method.

[0081] as "the memory space estimate of the positional information of a record" was shown, in order to record a CKD record -- net -- the data field of the maximum of required memory space is the case where it is the longest, by 1 truck 1 record (only R0). At this time, if required memory space is quoted from $\underline{drawing}$ $\underline{23}$, it will become like $\underline{drawing}$ 28 . If capacity of the FBA disk prepared for one CKD truck is set to 48KB (12KBx4 set), the memory space which can be used for control information will become like a bottom type. < case [] -- I-3> 1024x48-49020= 132 -- except < case I-1> which all deletes a gap as compared with this value and memory space 380B of the positional information of < case II-3> ** of $\underline{drawing}$ 27, it seems that memory space becomes less insufficient. I-1> 1024x48-48044=1108 < case I-2> 1024x48-48796= 356 < case However, the upper value is 1 truck 1 record to the value of $\underline{drawing}$ 27 being a value in case record count of memory space of positional information (control frame) increases most by 94 records, and it is a value in case the memory space for a CKD record is max. With this improvement proposal, if record count

decreases, the memory space of a control frame will also decrease proportionally and it will end with the case of 1 truck 1 record by 20B (one record pointer, four control frame pointers). After all, this improvement method will be sufficient for memory space about all cases. ((however, less insufficient) If the method which lengthens a gap and adjusts a part to have deleted [padding / ECC,] is taken as a check method of track capacity in order to hold the relative position of < case III-3>, i.e., a CKD format of each record, memory space, such as a case of 94 records, may become) The memory access for positioning of the purpose record can also be managed with one - 2 times per frame again. Once CPS acquires a control frame from cache memory at this time, since CPS should just use this acquired control frame in next control, the memory access for control is unnecessary. What is necessary is to update the control frame which CPS acquires and just to write out to cache memory finally, also when the configuration of the record in a frame changes in a format light etc. That what is necessary is just to check the memory address in the control frame pointer with which CPS holds jump control of the control frame under data transfer with a host, the control at the time of a format light, etc., since such actuation is performed in the time amount of an interrecord gap, it does not become an excess head. As mentioned above, this improvement method can say that the early purpose attained enough.

[0082] Next, "the check method of track capacity using a segment number is examined." As the three points by which a CKD-FBA conversion method is characterized, although the check approach of the positioning approach <III> track capacity of the deletion approach <II> record of the <I> gap was raised, especially here, it is < case about the check approach of the track capacity of <III>. The actual control approach is explained about the method which checks track capacity using the segment number of III-3>. In addition, about the check approach of the track capacity of <III>, it is < case. III-1> and < case III-2> and < case Three methods of III-3> were going up. First, a prerequisite is considered as follows. A segment number uses 32B as one segment like drawing 35. A segment number shall use the absolute segment number (ASN) which it **ed in an order from 1 (refer to drawing 29). Moreover, all the figures to be used use a decimal number.

[0083] Next, the control approach is explained. The following two points are first considered as a statement of principles.

- (1) Since the segment number of the home address HA can be written from S/W, two kinds, the case (ASN=17) where HA is in the usual location, and when HA is Mov(ing) (ASN=23), shall be supported.
- (2) Since neither a segment number nor SC (skip control) can be written from S/W about other records containing the other R0, there shall be neither Move nor Split.
- (1) Based on how to give a segment number, next the above-mentioned statement of principles, the segment number of each record shall be given as follows.
- (a) what converted absolutely into the segment number the value in which the segment number of HA is written from S/W -- following -- ASN= -- it is referred to as 17 or 23 (of course, it is made into ASN=17 at the time of initialization.).
- (b) The segment number of R0 is always set to ASN=26 irrespective of the segment number of HA.
- (c) Define the segment number of the record after R1 (Rn) by the bottom type.
- When key field are in a front record (Rn-1) and there are no key field in the record (Rn-1) of ASN+ [(KL+12) /32]+[(DL+12) /32]+22, and [of ASN=Rn -1 of Rn] a front, It corrects ASN+[(DL+12) /32]+of ASN=Rn -1 of Rn 15. The byte count of ECC and a tooth space and 32 12 The byte count of a segment, the number of segments of 22G2 (224B), G2 (224B), G3 (216B), and the count field (40B), and the number of segments of 15G2 (224B), G3 (216B), and the count field (40B) -- it is -- [] -- inside is considered as the below decimal point up valuation.

- [0084] (2) Check track overrun by the bottom type using the segment number for which it asked by the check approach (1) of track capacity (track overrun), and KL and DL which are sent by the host. If the bottom type is filled, it OKs, and it will become track overrun if it is not filling.
- When key field are in the record (Rn) to add and there are no key field in ASN+[(KL+12) /32]+ [(DL+12) /32]+14 <=1533 and the record (Rn) to add of Rn, ASN+ [(DL+12) /32] of Rn -- +7<=1533 however the number of segments of 14G2 (224B), the number of segments of 7G2 (224B), and 1533 -- the number of the maximum segments -- it is -- [] -- inside is considered as the below decimal point up valuation.
- [0085] When the above is summarized, the procedure of the check of the track overrun at the time of a format light is as follows. It asks for the segment number of the record to add according to the procedure of (1).
- Confirm whether, according to the procedure of (2), the record to add starts track overrun from KL.DL sent by the value and host of the segment number for which it asked. The same formula is used for it, although HA will Move each type of the above (1) and (2) and it will not be. That is, although HA will Move on an imagination CKD truck and it will not be by this method as shown in <u>drawing 30</u>, all defects will be in the tail end of a truck irrespective of the value of SC in HA (skip control). Since the need of caring about the value of SC (skip control) in being able to use the always same formula with the check of track overrun by making it such control is lost, control becomes very simple. Whenever it has shifted R0 in accordance with Move of HA, at the time of the check of track overrun, the segment number of HA of the head of a truck is read and checked, or the need of holding and managing SC (skip control) also in each record comes out like an actual disk. Fundamentally, since the activity in the gap at the time of a format light is the direction which increase in number compared with the conventional disk control, such as a check of the track overrun of (2), the part made simply should be made simple.
- [0086] As mentioned above, the approach of the check <case III-3> of the track capacity which used the segment number is realizable by comparatively simple control. Therefore, conventional method < case Even after changing the truck image of a CKD format into FBA like the approach of III-2>, it is controllable, even if it adjusts gap length and does not maintain the byte position from the head of the truck of each record by force with the original CKD truck. The segment number itself is < case where it is positively used since the support on a S/W interface is required (if attached to HA at least). The approach of III-3> < case where only an amount equivalent to the original CKD format must hold gap length compared with III-2>, it is remarkably advantageous in the use effectiveness of cache memory when especially record size is small ("the deletion approach of a gap, and evaluation of memory space"). Moreover, < case which calculates the remaining capacity of a truck by reading KL.DL of all records To III-1>, it is advantageous in respect of the count of access of memory, and is the most promising method.
- [0087] As the three points by which a CKD-FBA conversion method is characterized, the check approach of the positioning approach <II> track capacity of the deletion approach <II> record of the <I> gap was raised, and the following examination has so far been performed about each.
- In "the deletion approach of a gap, and evaluation of memory space", memory space was evaluated about the deletion approach of the gap of <I>. Consequently, < case where all gaps are deleted It turned out that the method of I-1> is advantageous.
- Memory space for positional information was estimated about two methods which hold the positional information of a record by "the memory space estimate of the positional information of a record" about the positioning approach of the record of <II>. Consequently, it is < case at the point of the count of memory access. < case made more advantageous than II-2> (only the positional information of the record of the

beginning within a FBA block is held) If II-3> (the positional information of all records is held) remained as it was, it turned out that the memory space for holding the positional information of a record increases too much.

- It is < case by "improvement of the control system of the positional information of a record" there. It examined whether the improvement of the memory space of II-3> would be possible. Consequently, it is < case by devising the control approach. It turned out that memory space for II-3> to also hold the positional information of all records can be made sufficiently small.
- It is -< case about the check approach of the track capacity of <III>. III-3> (the relative-position information on a CKD format of each record is held using a segment number etc.) a part with an unnecessary gap -- "examination of the check method of track capacity using a segment number" examined feasibility [being advantageous]. Consequently, it was easy to check track capacity using a segment number, and it also showed the concrete procedure.

[0088] As shown in above <u>drawing 19</u> which carried out the examination result above-mentioned, it turned out that the method <1, 3, 3> which is getting the high score most is employable. Especially, since this method deletes a total gap as the deletion approach of a gap, when record sizes, such as a journal file, are small, there is little memory space for storing a truck image, and it ends. Since the method holding the positional information of all records is adopted as a positioning method of a record, there are few counts of memory access for looking for the purpose record, and they end. However, < case examined by "improvement of the control system of the positional information of a record" in order to lessen memory space for holding positional information It is necessary to adopt II-3> **. Since it is the method which uses a segment number as a check method of track capacity, there is no need, therefore concomitant use with the approach of deleting a total gap of the gap for maintaining with a CKD format of the relative position of each record is attained as the deletion approach of a gap. It does not judge only by the size of a score but the comparison with a method <1, 3, 3> is performed about other methods which are getting the high score.

[0089] <2, 3, 2> ... In 54-point drawing 9, as compared with <1, 3, 3>, a segment number was not used for the method <2, 3, 2> which is the runner-up by the check approach of track capacity, but it has taken the method which adjusts the gap length who is the conventional method and maintains the relative position in a CKD format of each record also on memory. Therefore, a total gap cannot be deleted but the deletion approach of a gap serves as a method which leaves some gaps inevitably. Since the good point of this method is maintained while the relative position of each record has been a CKD format, it is not checking track capacity according to it in calculating a segment number **** at the time of a format light. Therefore, the segment number itself is omissible. in order for a bad point to lengthen gap length and to maintain the relative position in a CKD format of each record -- the track capacity on memory -- always -almost -- a CKD truck -- it is becoming required 1 duty. Especially, this leads to use effectiveness aggravation of cache memory, and load increase of the internal bus at the time of a staging/destaging, when record sizes, such as a journal file, are small. Moreover, although the method holding the positional information of all records is used together as a positioning method of a record, a record size may serve as an insufficient memory space very much by the minimum in the improvement approach examined by "examination of the check method of track capacity using a segment number" in the case of 94 records / truck of the most numerous [record count]. moreover -- although the positioning method of a record differs from the conventional method in this method -- the check method of track capacity -- the conventional method -- it remains as it is.

[0090] <2, 3, 3> ... the 53-point this gentleman type is the same as <1, 3, 3> except leaving a part of gap.

Therefore, since it is not used especially even if it leaves a gap, it is the method which does not have the semantics which leaves a gap and does not have the necessity adopted specially compared with <1, 3, 3>. By the above-mentioned explanation, although premised on the array mold disk unit (RAID), also when using the usual disk unit, it states that the method of <1, 3, 3> is employable here.

- That the size of the memory space by the deletion approach of a gap is greatly concerned with the use effectiveness of a cache about the deletion approach of the gap of <I> is < case where it is the same even if it is RAID and there is nothing, and all gaps are deleted from this point. There is no change in the method of I-1> being advantageous.
- It is better to perform data transfer of the amount which is one bus acquisition and which was collected the grade, in order to make a high transfer rate easy to lower the load of a bus about the positioning approach of the record of <II>, and to take out. That is, the positional information of a record also has the direction more advantageous than the method which accesses the count field of each record each time which can be accessed collectively. Therefore, < case with few [approach / of a record / positioning] counts of memory access The direction of II-3> (the positional information of all records is held) is < case of the conventional method. It is more advantageous than II-2> (only the positional information of the record of the beginning within a FBA block is held).
- About the check approach of the track capacity of <III>, even if this is also no longer RAID, there is no change in the method with an unnecessary gap being more advantageous on the use effectiveness of a cache. Therefore, < case III-3> of the conventional method From III-2> (gap length is adjusted and the relative position in a CKD format of each record is maintained also on memory), it is < case. (the relative-position information on a CKD format of each record is held using a segment number etc.) a part with an unnecessary gap -- advantageous -- it is -- it is good as.

[0091] Next, the command emulation method in CKD-FBA conversion is examined. Here, based on the concrete conversion method mentioned above, the implementation approach in this CKD-FBA conversion method is examined for every command typical [on an actual S/W interface].

[0092] 1. SET 1 byte of sector information is retrieved for reception and a sector from a SECTOR <function> channel.

(Sector information: X'00' - X'DD, X'FF')

<Implementation method> In this disk subsystem, a sector value is used in order to know in which frame the purpose record exists first among the frames which divided the CKD truck into four. After a frame is found, high positioning of precision can be performed more by comparing the segment number and this sector value of each record currently written to the record pointer in a control frame (although the outline of a frame and a control frame, or a record pointer was shown in drawing25, improve " refer for the control system of the positional information of "record to for details).

O count of the frame in which the purpose record exists -- by the actual CKD disk, since the amount of one sector consists of 224 bytes, the absolute byte address which is equivalent to it on the truck of a CKD format from a sector value is calculable immediately. However, since a gap, ECC, padding, etc. are deleting and recording on a frame, unless it converts the part to have deleted, it is not known in which frame the absolute byte address is included. It depends for this eliminated daily dose also on record count. [0093] Hereafter, count of the frame in which the purpose record exists is explained. On a frame, it does not become settled what byte is deleted from the truck of a CKD format, if it is not decided that the track

not become settled what byte is deleted from the truck of a CKD format, if it is not decided that the track format on a frame will be a detail, but supposing it is a format like $\underline{drawing\ 33}$, the byte count deleted on the frame for every field will become like $\underline{drawing\ 31}$. Since the record of an individual (record number 1 of the purpose record) exists except for R0 in front of the purpose record, the location on the truck of the CKD

format shown with a sector value is equivalent to the location expressed with byte-count BC1 of a bottom type from the head of a truck on a frame.

BC1=224x sector value-1038-752x (record number 1)

Moreover, in order to record the record of only this, on a frame, the record pointer for record count (R0 is put in and it is a record number individual) is required. Since one record pointer is made into 4 bytes, byte-count BC2 included also at this rate becomes like a bottom type.

If 4 bytes of control frame pointer is removed on one BC2=BC1+4x record number frame, since it can do 12KB-4B record also including a record pointer, it is expectable that the location equivalent to a set sector value exists in the Nth frame called for by the bottom formula.

N = [BC2/12284]

however, [] -- inside is considered as the below decimal point up valuation. If these formulas are summarized to one, it will become like a bottom type.

N = [(224x sector value - 286 - 748x record number) / 12284]

however, [] -- inside is considered as the below decimal point up valuation. Moreover, it is referred to as N= 1 when it becomes a negative value. Since the byte counts deleted on the frame therefore differ correctly in the byte count which is carrying out zero padding at KL and DL in order to make [whether key field exist in each record, and] it the integral multiple of 32 again, an upper type turns into a rough type to the last. By the upper formula, since it has assumed and calculated about the part of such an indeterminate so that the byte count deleted may become max, the number of the frame for which this asked actually becomes the inclination which shows the front also for a twist. Therefore, what is necessary is just to look for the following frame, when the purpose record does not exist in the frame for which it asked by the upper formula. However, the precision of this formula is good from the first at size 12KB of a frame, and since an amount with error is 286 bytes (224+31+31) at the maximum per record to it, it does not usually have a problem.

[0094] Moreover, it is SEARCH, even if the SEARCH command does not come or it is the SEARCH command. Since it was KEY, when a record number is not obtained, it will give up specifying a frame and the segment number of the record in the frame (for example, frame which the staging completed first) of arbitration will be investigated (refer to the procedure of the following term).

O With the procedure on retrieval of the purpose record, when the frame in which the purpose record exists is specified, the rest investigates the record pointer in the frame, and should just look for the purpose record (a detailed procedure is "improvement of control system of positional information of record" reference). First, the sector value currently recorded into the record pointer in an order from the record pointer (it is in the tail end in a control frame) of the record of the head of the frame is investigated. And the record pointer of the first record with a larger sector value than the sector value sent from the channel is found. If all the records in this frame have only the sector value smaller than the sector value sent from the channel, the same actuation is performed to the following frame. If the record pointer of the first record which fulfills conditions is found, the count field of the argument and record of the continuing SEARCHID command is compared, and if in agreement, orientation will be established on the record. If not in agreement, the comparison with the count field of the following record is repeated, orientation is established on the record which was in agreement with the argument first, and it moves to the following command (refer to a "SEARCH IDEQ [4.]" command about the case where the record which searches and is in agreement to the last of the logic truck of CKD is not found). In addition, although you may progress to the following command immediately when hit checking by the SEEK command to precede shows that the purpose truck already exists on a cache (at the time of a hit) Even if it has hit, when some trucks exist on a

cache and the time of a mistake hit or the frame in which the purpose record is contained does not exist on a cache After returning only a channel end CE, once disconnecting from a channel and carrying out the staging of the target frame from a physical disk, the device end DE will be returned and it will progress to the following command.

[0095] 2. SEARCH IDENTIFIRE 5 bytes of SEARCH information is compared with CCHHR of the count field (the R0 field is also included) read from reception and a device from an EQUAL <function> channel. <Implementation method> OSET By actuation shown by "1. SET SECTOR" when it chained from the SECTOR command, orientation is established on the record which corresponded. With an actual CKD disk, it is SET. After SECTOR, if CCHHR of the record found to the beginning is not in agreement, an inequality report is carried out (CE, DE), a host uses the transfer in channel TIC together, and it is SEARCH again. ID It waits to publish the EQ command. However, as "1. SET SECTOR" showed in this subsystem, it is 1 time of SEARCH. ID The whole truck will be able to be searched by the EQ command. If it says from the strict nature of an emulation, it will be one SEARCH to the last. ID Although the EO command should perform only the search of one record, since especially the merit by doing so cannot be considered, I think that the method of a package search shown by "1. SET SECTOR" from the point of processing effectiveness may be used. SET If the multi-truck bit is set when there is no record which is in agreement with back from the sector specified by SECTOR, an inequality report (CE, DE) will be performed. However, when the record itself does not exist, a head switch is carried out on the next truck as it is. SET It is No, if the record which returns to the record (R0 is included) of the beginning of the frame of the beginning of the same truck, repeats a comparison, and is still in agreement is not found when the purpose record is not found in back from the sector specified by the SECTOR command (it contains also when a record does not exist) and a multi-truck bit is not set, either. Record Found is reported.

O READ, WRITE, a SEARCH system command, or SPACE The command preceded when it chains from the COUNT command compares CCHHR to the following record which was carrying out orientation. In this case, since orientation is already established, it is SET. The one record as follows of the record which is searched like the CKD disk of thing unlike the case where it chains from the SECTOR command is better. When the record does not exist more back than the place which was carrying out orientation, if the multi-truck bit is set, and it moves to the next truck and is not set, it returns to the head of the same truck and compares with it. However, it is No when saying to the last of a truck once again within the same CCW chain. RecordFound is reported.

O others -- although search actuation is performed to the record discovered first by the actual CKD disk in this case on a current truck when it is the head of the chain from a command, or a chain, and also it always searchs in an order from R0 in this subsystem -- "the case where it chains from a SET SECTOR command" -- being the same . When the mistake hit is carried out and the staging was not completed, or when the multi-truck bit has left and the next truck is carrying out the mistake hit, a staging is made to complete by this command. Moreover, the access truck of the last to the volume must always be kept in mind for recognition of the present truck when the SEEK command does not precede.

[0096] 3. READ The information on the data field read from the DATA <function> disk is transmitted to a channel.

<Implementation method> OREAD, WRITE, a SEARCH system command, or SPACE When it chains from the COUNT command, the information on the first data field which exists after the field which orientation had established on the frame is transmitted to a channel, and orientation is maintained. More back than the field which orientation had established, if the multi-truck bit is set when a data field does not exist, the data field of R1 (the next command of R0) of the next truck will already be transmitted. If the multi-truck bit is not

set, a head switch is not carried out but the data field of R1 of the same truck is transmitted (when transmitting the data field of R0, it is only the case where it chains from the Search system command with which were satisfied of the comparison of the R0 field, or the SPACE COUNT command which bypassed R0C).

O others -- since it is in the condition which orientation has not established when it is the head of the chain from a command, or a chain, it is not fixed which record an actual CKD disk also detects. Therefore, the information on the data field of R1 (the next command of R0) is especially transmitted, and it is satisfactory each time (if R1 exists). After a transfer establishes orientation as it is. If R1 does not exist and the multi-truck bit is set, the data field of R1 of the next truck will be transmitted (while the address mark has not been found, it corresponds, when the index has been detected). It is No if the multi-truck bit is not set. Record Found is reported. Of course, first, when the next truck does not exist on a cache, after carrying out a staging, data transfer is carried out to a channel. It is RD to the truck which accessed the last in the same volume when the SEEK command did not precede within the same CCW chain. The DATA command is executed.

[0097] 4. WRITE COUNT KEY AND The information received from the DATA <function> channel is written in on a disk as the Rn field (except for the R0 field).

<Implementation method> This command is SEARCH which corresponded. ID EQ command (RD D, RD KD, WR D, or WR KD may continue), SEARCH all whose keys corresponded KEY EQ command (RD D or WRD may continue), WR R0 command or WR Since it becomes command rejection except when it chains from the CKD command, when this command is executed, orientation has surely been established already as a matter of fact. Therefore, if information is received from a channel, the following operation will be performed immediately (refer to drawing 25).

- (1) ** which gave other information on the count field of Rn-1 0 for CCHHRKLDL of Rn to reception and it from the receipt channel of the count field. Yet, it does not write out on a cache. As other information on the count field of Rn, they are SC (skip control), SN (segment number), PA (physical address), F (flag), etc. Since SC does not support skip control in this subsystem, it only writes constant value as a matter of fact (however, the secured direction feels that there is likely to be a use of the future something only for area). It calculates and writes in from the value of SC of the record which also precedes SN (refer to the examination of the check method of track capacity which used "segment number" for the count approach). Moreover, a sector value is also calculated from this value to coincidence, and it writes in the record pointer in a control frame by (3). PA and F are good with the same value as HA.
- (2) from KL and DL which were received from the check channel of track overrun, and a segment number -since -- investigate whether track overrun is generated (refer to the examination of the check method of
 track capacity which used "segment number" for the detailed count approach). When generating track
 overrun, even the track overrun point performs data transfer by subsequent control, and control which
 reports track overrun to a host is performed.
- (3) If the check of the additional track overrun of a record pointer finishes, the memory address which shows the head of the control frame in the control (CPS holds by itself) frame pointer of the frame which has established current orientation will be 4B Reduced (4B escape of a control frame is done), and the record pointer of Rn will be further added to the head of a control (CPS holds) frame. When a control frame eats into a record frame by 4B Reducing, adding a record to the frame gives up, and it adds a record pointer to the control frame of the following frame. If required, I will have the area of the following frame secured to a manager.
- (4) Calculate the memory address at the tail end of each field of KL and DL to Rn which were received from

the check channel of eye a ** paddle of a frame, and compare with the memory address in the control frame pointer updated by (3). When the memory address at the tail end of the field of one of Rn is eating into the control frame, after carrying out an end halt of the data transfer with a host before a control frame and advancing a memory address to the head of the following frame, control which resumes data transfer with a host is performed (CPS). If the tail end of Rn is settled in the record frame, the above control is unnecessary, and it can be performed, without interrupting the data transfer of Rn on the way.

- (5) the beginning to the cache of the count field -- after a series of checks of these are completed, write out the data of the count field in CPS to the applicable address on cache memory. When eye a ** paddle of a frame comes in the count field, the beginning is resumed, after once stopping the beginning to a cache there and advancing a memory address to the head of the following frame.
- (6) After suitable gap equivalent time progress, also receive the data of a data field from a channel and write them in a cache, after receiving the data of key field from a channel and writing in on a cache first, if the tail end of Rn is settled in the record frame as a result of the check of the receipt (4) of key field and a data field. If the check of (4) shows encountering the break of a frame on the way, data transfer will once be interrupted there. Since CPS also knows the address on the cache of the following frame when the frame which current orientation has established is not the last frame, after advancing the memory address for data transfer to the head of the following frame, the writing to data transfer/cache with a channel is resumed. When the frame which has established current orientation is the last frame Since the field of the frame after the degree is not secured on the cache from the first After CPS's having required the field for the following frame of the manager and having the address taught from a manager, Data transfer is resumed to there (what is necessary is for the treatment of partitioning of such a new frame etc. to be the timing of a gap, and just to perform it, while having interrupted data transfer). To the frame which carried out data transfer, the update flag of the FBA block with which it corresponds in the control frame of each frame is set. (7) the report of CE -- if it ends to here, CPS will report the channel end CE which shows that the data transfer between channels was once completed to the channel in order to check the existence of a command chain.
- --- When there are no command chain directions, he is a (8) CPS-> manager. If there are no destaging demand command chain directions, it will also set the update flag of the FBA block corresponding to the part which carried out zero padding to the remaining part of the frame to which the tail end of Rn was written while carrying out zero padding of the CPS. Subsequently, after writing out the control frame of the updated frame on a cache, destaging is required of DPS through a manager. Under the present circumstances, in the last frame ****** case back more from the first than the frame to which the tail end of Rn was written, CPS also reports that the frame after the frame at the tail end of Rn became an invalid to a manager. It does not report that subsequent frames became an invalid from the frame to which the tail end of Rn was written from the first anew since the frame peach after it was an invalid frame when the last frame was a front (it contains also when the same).
- (9) Manager -> DPS When it is also united and reported that the frame which became an invalid exists, a destaging demand manager directs the destaging of an applicable truck to DPS, after deleting the invalid frame on the cache of an applicable truck (its management information is maintained). Under the present circumstances, while a manager tells the address of a frame with which the effective data on a cache exists to DPS as the address of the data which should be written out to a physical disk Only when an invalid frame newly occurs, as data written in an invalid frame The data for invalid frames are beforehand prepared for one somewhere, and the address there is directed (that is, all invalid frames will write the same data on the memory for which the data for invalid frames are prepared in a physical disk.). A manager may prepare this

data for invalid frames on cache memory, and each DPS may have it in its own board. When an invalid frame does not newly occur, rewriting anew the frame which was an invalid frame from the first to DPS does not direct.

- (10) Destaging DPS receives the directions from a manager and writes out the data on cache memory to a physical disk. DPS performs a light about the FBA block the update flag of the frame directed by the manager has left.
- (11) After the beginning to a destaging termination report physical disk is completed, DPS performs a termination report to CPS through a manager.
- (12) The DE report CPS reports the device end DE which shows that all processings were completed to the channel.
- --- If (8)' command chain is directed when there are command chain directions, CPS will report DE and will receive the following command.
- (9) -- ' -- the following command -- WR If it is CKD or ERASE, it will move to the processing. If it is other commands, CPS will report CE, UCK, and SM and will require a command retry.
- (10) 'above(8) (11) is performed after this.
- (11) If the light termination to a physical disk from 'DPS is reported, CPS will report DE and will move from the command which carried out the command retry demand previously to reception repair and activation of the command.
- [0098] 5. WRITE The data field of a record is updated using the information received from the DATA <function> channel.
- <Implementation method> This command is SEARCH which corresponded. ID SEARCH the EQ command or all whose keys corresponded KEY Since it becomes command rejection except when it chains from the EQ command, when this command is executed, orientation has surely been established already as a matter of fact. Therefore, if information is received from a channel, the following operation will be performed immediately.
- (1) Calculate the memory address at the tail end of KL of the count field of the record which is going to write in the check data of eye a ** paddle of a frame, and DL to Rn, and compare with the memory address in the control frame pointer of the frame which has established current orientation. When the memory address at the tail end of Rn is eating into the control frame, after carrying out an end halt of the data transfer with a host before a control frame and advancing a memory address to the head of the following frame, control which resumes data transfer with a host is performed (CPS). If the tail end of Rn is settled in the record frame, the above control is unnecessary, and it can be performed, without interrupting the data transfer of Rn on the way.
- (2) If the tail end of Rn is settled in the record frame as a result of the check of the receipt (1) of a data field, the data of a data field will be received from a channel and it will write in a cache. If the check of (1) shows encountering the break of a frame on the way, data transfer will once be interrupted there. Since the following frame surely exists in such a case in the case of an update light, CPS resumes the writing to data transfer/cache with a channel, after advancing the memory address for data transfer to the head of the following frame. To the frame which carried out data transfer, the update flag of the FBA block with which it corresponds in the control frame of each frame is set.
- (3) the report of CE -- if it ends to here, CPS will report the channel end CE which shows that the data transfer between channels was once completed to the channel in order to check the existence of a command chain.
- --- When there are no command chain directions, he is a (4) CPS-> manager. If there are no destaging

demand command chain directions, destaging will be required of DPS through a manager. An invalid frame seems not to newly generate in the case of an update light.

- (5) Manager -> DPS A destaging demand manager tells the address of a frame with which the effective data on a cache exists to DPS as the address of the data which should be written out to a physical disk, and directs destaging.
- (6) Destaging DPS receives the directions from a manager and writes out the data on cache memory to a physical disk. DPS rewrites only the FBA block which has an update flag among the frames directed by the manager.
- (7) After the beginning to a destaging termination report physical disk is completed, DPS performs a termination report to CPS through a manager.
- (8) The DE report CPS reports the device end DE which shows that all processings were completed to the channel.
- --- If (4)' command chain is directed when there are command chain directions, CPS will report DE and will receive the following command.
- (5) -- ' -- if the following command is the command of a SEARCH system, or a format light system command, it will move to the processing. Within the same command chain, when commands other than a SEARCH system or a WRITE system are directed, CPS reports CE, UCK, and SM and requires a command retry.
- (6) 'above(4) (7) is performed after this.
- (7) If the light termination to a physical disk from 'DPS is reported, CPS will report DE and will move from the command which carried out the command retry demand previously to reception repair and activation of the command.

[0099] As mentioned above, according to this example, all gaps, such as an inter-record gap and a gap between the fields, are deleted from one truck of a variable-length record. The truck data is divided into the management unit equivalent to the integral multiple of the fixed-block-length size of fixed-length record. After writing the control information which shows the location of all the variable-length records contained in the management unit in an order from back in the tail end of the above-mentioned management unit, while dividing into the fixed-block-length size of fixed-length record Since the information which shows the relative position from the head of the truck in a variable-length record format to each fixed-length record is made to hold While there are few counts of memory access for the localization of the target variable-length record, they end within a fixed block and becoming memory unloading It is suitable for the disk subsystem which there was little memory space for holding truck data, and ended since all the gaps were deleted, therefore used the disk cache as the base, and the hit ratio of a cache improves. Furthermore, size of a control information field is made to adjustable, and that what is necessary is to prepare only the number of a variable-length record, there is little memory and it ends.

[0100] Although the case where gave behind a control frame and the die length of a control frame was made adjustable was shown as shown in <u>drawing 25</u>, you may make it establish a positional information field, i.e., a control frame, in the head of each management unit in the example 2. above-mentioned example 1, as shown in <u>drawing 24</u>. However, since it is necessary to set up the positional information field for 94 records beforehand as mentioned above in this case, when one management unit is set to 12KB, the lack of capacity will arise. Therefore, it is necessary to set one management unit to 13KB. Thus, since the area of a record frame is also fixed while the size of a control frame is fixed by having a control frame beforehand by Bx4 94 records, the access approach of a management unit becomes simple.

[0101] In the example 3. above-mentioned example 1, although the case where a sector value was used

was shown as a relative position from the head of the truck in a variable-length record format, since the relative position used by the set sector command is a sector value, this is because it is desirable to use a sector value. When the set sector command uses the segment value from the head of a truck, other relative positions, for example, variable-length record format, this relative position may use not a sector value but a segment value. That is, the value of the sector value of the record pointer shown in <u>drawing 25</u> may be a segment value.

[0102] In the example 4. above-mentioned example 1, when track capacity was calculated, the case where the segment value was given to the CKD records of each was shown, but when managing it per sector rather than managing track capacity per segment, not a segment value but a sector value may be given. [0103] In the example 5. above-mentioned example 1, although the case where gave a sector value to the record pointer in a control frame, and a segment value was given in each CKD record in a record frame was shown, the case where have a fixed relation (sector value x7= segment value), and either is used is sufficient as a sector value and a segment value. That is, if it has the sector value to the record pointer, it is not necessary to keep a segment value in mind on each CKD record. It becomes impossible however, for an operating capacity of a truck to calculate only a sector unit in this case. On the other hand, when it does not have a sector value to a record pointer but the segment value is given to the CKD record in a record frame, it enables an operating capacity of a truck to calculate per segment. Since a sector value does not exist in a record pointer, a CKD record is discovered from the memory address of a record pointer, and if a sector value is not computed from the segment value in that CKD record, it becomes impossible however, for whether it is the sector currently searched to judge in this case, when a sector value is specified by the set sector command.

[0104] Although not clearly written especially in the example 6. above-mentioned example 1, when the FBA disk 9 consists of one disk, which [in the case of consisting of array form disks] case is sufficient. Moreover, although not clearly written in the above-mentioned example 1, as long as the FBA disk 9 is equipment which can record data, such as a magnetic disk drive or an optical disk unit, it may use what kind of medium.

[0105] Although the case where a CKD-FBA conversion method existed in disk storage control 5 in the example 7. above-mentioned example 1 was shown, the channel of not only when it is disk storage control, but the host computer 1 may perform performing CKD-FBA conversion. Or the storage itself, such as a magnetic disk drive, may carry out. Drawing 32 is drawing showing one example in case the storage itself, such as a magnetic disk drive, performs CKD-FBA conversion. As shown in drawing 32, the variable-length record memorized by the cache memory of the disk storage control 500 of CKD is changed, and in rememorizing on the FBA disk 900 with a fixed length block, the CKD-FBA transducer 100 in the FBA disk 900 operates. The gap cutout 101 reads into cache memory 600 the variable-length record memorized by the cache memory of disk storage control 500. In this case, all the records of one truck of the cache memory of disk storage control 500 are read into cache memory 600. And an inter-record gap and the gap between the fields are deleted from the variable-length record for this one truck. The truck image 700 of CKD read into cache memory 600 is changed into truck data 7a from which the gap was deleted at this time.

[0106] Next, the record layout section 102 arranges truck data 7a in order in the management units 7b, 7c, 7d, and 7e called a frame. The size of the management units 7b-7e called this frame has the size of 12KB equally divided into four, respectively, when the truck image 7 of CKD has the size which is 48KB. The record layout section 102 arranges the variable-length record of truck data 7a from frame 7b in order. In this case, the address information which shows the location of the variable-length record contained in each

frame is memorized on each frame. Moreover, the sector information which shows the relative position (sector value) from the truck head where the record was memorized by the CKD disk 10 is memorized similarly.

[0107] Next, the fixed block storage section 103 memorizes a frame in the storage section 200 of the FBA disk 900. If size of the fixed length block of the FBA disk 9 is set to 1KB here, respectively, since Frames 7b, 7c, 7d, and 7e have the size of 12KB, respectively, one frame will be recorded using 12 fixed length blocks. [0108] Thus, the data for one truck outputted from the disk storage control of CKD are memorized by the storage section of FBA. On the contrary, reading from the storage section 200 of the FBA disk 100 is attained by performing the reverse of the above-mentioned actuation. [0109]

[Effect of the Invention] In this invention, the memory space which holds truck data by deletion of the above-mentioned gap can be reduced. Moreover, since the localization of the CKD record made into the purpose by the above-mentioned positional information is made, it is useful to reduction of the count of memory access, and memory space.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FI

(11)特許出類公開番号

特開平5-307440

(43)公開日 平成5年(1993)11月19日

(51)Int.CL5

淺別記号

庁内整理番号

技術表示箇所

G06F 3/06 3 0 1 V 7165-5B

Y 7165-5B

G 1 I B 20/12

7033-5D

審査請求 未請求 請求項の数11(全 57 頁)

(21)出類 2号

特類平5-9002

(22)出題日

平成 5 年(1993) 1 月22日

(31)優先権主張番号 特願平4-49833

(32)優先日

平4(1992)3月6日

(33)優先権主張国

日本 (JP)

(71)出題人 000006013

三菱電機株式会社

泉京都千代田区丸の内二丁目2番3号

(72)発明者 中村 洋一

鎌倉市上町屋325番地 三菱電機株式会社

コンピュータ製作所内

(74)代理人 弁理士 高田 守

(54) 【発明の名称 】 データ記憶フォーマット変換方式及びその変換方法及びアクセス制御装置及びデータアクセス方 法

(57)【要約】

【目的】 CKDレコードをFBAレコードにフォーマ ット変換する際、目的とするCKDレコードを発見する ためのメモリアクセス回數が少なくてすみメモリ負荷軽 減がなされると共に、トラックデータを保持するための メモリ容置が少なくてすむレコード記憶フォーマット変 換方式を得る。

【構成】 CKDレコードの1トラックからレコード間 ギャップ及びフィールド間ギャップ等全てのギャップを 削除し、そのトラックデータをFBAレコードの固定ブ ロック長サイズの整数倍に相当する管理単位であるフレ ームに分割し、その管理単位に含まれる全てのCKDレ コードの位置を示す制御情報をコントロールフレームと

06/15/2004

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615231121281800.gif

2

【特許請求の範囲】

【請求項1】 可変長フォーマットで記憶されたレコードを固定長フォーマットに変換して記憶するデータ記憶フォーマット変換方式において、

1

可変長フォーマットで記録される1トラック分の可変長 レコードからレコード間ギャップ及びフィールド間ギャップを削除してトラックデータを生成するギャップ削除 手段。

上記ギャップ削除手段によりギャップを削除したトラックデータを所定のサイズの管理単位に配置し、その管理 10 単位に含まれる可変長レコードの位置を示す第1の位置 情報と、その管理単位に含まれる可変長レコードの可変 長レコードフォーマットでのトラックの先頭からの相対 位置を示す第2の位置情報とを上記管理単位に記憶する レコード配置手段、

上記管理単位を固定長レコードの固定長ブロック長サイズに分割して記憶する固定ブロック記憶手段を備えたことを特徴とするデータ記憶フォーマット変換方式。

【請求項2】 上記レコード配置手段は、可変長レコードを上記管理単位の一方から順に配置するとともに、配 20 置した可変長レコードに対応する第1と第2の位置情報を上記管理単位の他方から順に配置することを特徴とする請求項1記載のデータ記憶フォーマット変換方式。

【請求項3】 上記レコード配置手段は、あらかじめ管理単位内に、第1と第2の位置情報を記憶する領域と可変長レコードを記憶する領域とを定めておくことを特徴とする請求項1記載のデータ記憶フォーマット変換方式。

【請求項4】 上記第1の位置情報は管理単位に含まれる可変長レコードの管理単以内のメモリアドレスであり、上記第2の位置情報はトラックの先頭からのセクタ値。あるいはセグメント値であることを特徴とする請求項1記載のデータ記憶フォーマット変換方式。

【請求項5】 上記可変長レコードは、可変長レコード 内に、可変長レコードフォーマットでのトラックの先頭 からの相対位置を示すセグメント情報を有していること を特徴とする請求項1記載のデータ記憶フォーマット変 換方式。

【請求項6】 可変長フォーマットからギャップを削除し、そのデータを所定サイズの管理単位に配置し、その 40 管理単位に含まれる可変長レコードの位置を示すアドレス情報と、その管理単位に含まれる可変長レコードの可変長フォーマットでの先頭からの相対位置を示す相対位

管理単位ごとに絡納するメモリ、

- (c) レコードが可変長フォーマットで記憶されている ものとして出力された可変長レコードへのアクセス命令 を入力する入力手段、
- (d)上記入方手段により入力したアクセス命令に基づいて、アクセスする可変長レコードが記憶されていると考えられる管理単位の位置を概算する位置計算手段、
- (e)上記位置計算手段により概算された位置にある管理単位を上記読み書き手段により上記記憶部から上記メモリに読み込み、上記入力手段により入力されたアクセス命令がアクセスしようとするレコードを検索するレコード検索手段。

【請求項7】 上記アクセス制御装置は、さらに、相対 位置情報を用いて、可変長レコード方式でレコードが記 憶されている場合のトラックの使用容量を判定すること を特徴とする請求項6記載のアクセス制御装置。

【請求項8】 上記入力手段はアクセスしようとするレコードの相対位置情報を入力するとともに、

上記レコード検索手段は、

20 上記アクセスしようとするレコードの組対位置情報を、 検索された管理単位に保持されている組対位置情報とを 比較し、アクセスしようとするレコードの相対位置情報 を持つ管理単位が見つかるまで、読み書き手段により次 の管理単位を記憶部からメモリに読み込むことにより管 理単位を検索する管理単位検索手段と、上記管理単位検 索手段によりアクセスしようとするレコードの組対位置 情報を持つ管理単位が見つかった場合に、その管理単位 に含まれるアドレス情報を用いてアクセスしようとする 可変長レコードを特定するレコード特定手段を有するこ 20 とを特徴とする請求項6記載のアクセス制御装置。

【請求項9】 以下の工程を有するデータ記憶フォーマット変換方法

- (a) データを有するフィールド及びレコード間ギャップ及びフィールド間ギャップを有する可変長フォーマットからレコード間ギャップ及びフィールド間ギャップを削除して各可変長レコードのフィールドを連絡するギャップ削除工程.
- (b)上記ギャップ削除工程により連結された各可変長 レコードをあらかじめ定められたサイズを持つプレーム に順に配置するとともに、各可変長レコードをアクセス するためのアクセス情報を各可変長レコードに対応させ て記憶するレコード配置工程、
- (c) 上記プレームを複数の固定基のブロックサイズに

特開平5-307440

`

方法。

【請求項11】 以下の工程を有し、上記請求項9記載のデータ記憶フォーマット変換方法により記憶された固定長フォーマットのデータをアクセスするデータアクセス方法

3

(a) 可変長フォーマットのレコードをアクセスするためのコマンドとアクセスするデータの検索情報を入力するアクセスコマンド入力工程、

(b)上記アクセスコマンド入力工程により入力した検 素情報からアクセスするレコードが記憶されているフレ 10 ームの位置情報を推定する位置情報維定工程、

(c)上記位置情報推定工程により推定された位置情報をもつフレーム以降のフレームを順に固定長フォーマットで記憶された複数の固定長ブロックから再生し、アクセスするレコードを検索するレコード検索工程。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、たとえば、汎用計算 機の磁気ディスク装置で用いられている可変長レコード 方式を市販の小型ディスク装置で用いられている固定長 20 方式で実現するためのデータ記憶フォーマット変換方式 等に関する。

[0002]

【従来の技術】従来、汎用計算機システムの外部記憶装 置としては、可変長レコード(CKD:Count K ey Data) 方式の固定ディスク装置が広く用いら れている。可変長レコード方式とは、磁気ディスク上の 1トラックに記録する物理的なレコードの長さも数も可 変である記録フォーマットである。一般的に可変長レコ ード方式の遊気ディスクの1トラックは図33に示すよ うにインデックス・マーク(図示せず)から始まり、ま ず最初にホーム・アドレス(HA)と引き続くレコード ゼロ(R())が存在する。この日AとR()はそのトラ ックのシリンダ・アドレスやヘッド・アドレスなどのア ドレス情報以外に、そのトラック上の磁気的な傷の位置 や。不良トラックであるか否かの情報。また、不良トラ ックであれば、交代割り付けされている相手先のトラッ クのアドレス等の制御情報を含んでいるため、必ず存在 しなくてはならない。このHA、ROに引き続くレコー ド1(R1)以降のレコードが通常のデータを記録する レコードで、レコード1個1個の長さも個数もその絵容 置がトラックに記録できる容置である限り、ホスト計算 織上のソフトウェア(S/W)から自由にフォーマット

ス情報のほかに、そのレコードのキー・フィールドの長さ(KL)、データ・フィールドの長さ(DL)などを含んでいるので、引き続くキー・フィールド、データ・フィールドの長さを自由に変えることができる。キー・フィールド、データ・フィールドがそのレコードのものデータを記録する部分であるが、そのレコードのキーを記録すべきキー・フィールドが不要な場合は、カウー・フィールドでKL=0を指定することにより、キー・フィールドの存在しないレコードを作ることもできる。HA、RO、R1、R2・・・などの間には、適当なサイズのレコード間ギャップ(G1、G2、G3)が設けられており、特にR1、R2・・・などのレコードの前のギャップ(G3)には、アドレス・マーク(AM)と呼ばれる磁気的に特別なマークが記録されている

ため、トラック内のどの部分から読み始めても、このア

ドレス・マークを検出することにより、レコードの読み

始めを見つけることができる。

る。

【りりり3】また、各レコードの内部でも各フィールドを区別するためにそれぞれフィールド間ギャップ(G 2)が設けられている。これに対し、ミニコンピュータ、オフィスコンピュータ、パーソナルコンピュータ、ワークステーションなどの比較的小規模な計算機システムの外部記憶装置としては、固定長レコード(FBA)方式の固定ディスク装置が用いられている。固定長レコード方式のディスクでは、通常一つのレコード(固定長レコード方式のディスクでは、通常一つのレコード(固定チレコード方式のディスクではなりタと呼ばれることがデータを記録するデータ・フィールドからなりたっており、いずれのフィールドの長さも固定である。従ってあり、いずれのフィールドの長さも固定である。従ってあり、いずれのフィールドの長さも固定である。従ってあり、シックあたりのレコード数(セクタ数)も固定であ

【①①①4】従来は、可変長レコード方式の磁気ディスクと固定長レコード方式の磁気ディスクは、対象とする計算機システムによって上述のような使い分けが行われてきた。従って、固定長レコード方式のディスクは、対象とするシステムが小さいことから、可変長レコード方式のディスクに比べ、一般的に小型で記憶容置も小さく、データ転送速度、シーク速度などの性能も低かった。しかし、近年、可変長レコード方式のディスクも小型化に対する要求が善しく高くなってきたこと、逆に、固定長レコード方式のディスクの方は、大容置化、高速化が著しいことなどから、仕機面での両者の差異は小さ

5

方式のディスクを利用したいと言う要求が強まっている。

5

【0005】また、CKD方式の固定ディスク装置で は、データを記録するデータ面と、ヘッドを位置決めす るためのサーボ情報を記録するサーボ面を則々に設ける サーボ面サーボ方式が用いられてきた。この方式では、 データ面とサーボ面の機械的な位置の精度によってヘッ ドの位置決め請废も規定されてしまう。そこで、さらに トラックの高密度化を図るため、データ面中のIDフィ ールドなどにサーボ情報も書き込んでしまうデータ面サ ーボ方式が用いられるようになってきた。このデータ面 サーボ方式を用いると、極端には、1トラック1レコー ドも許される可変長レコード方式では常に一定間隔でサ ーボ情報が得られるという保障はなく、必ず一定間隔で サーボ情報が得られる固定長レコード方式に比べ、ヘッ ドの位置決め請度に関して不利になる。さらに、ディス ク1台1台の性能向上や信頼性向上には限界が有るため、 複数のディスクにデータを分散して記録したり、その分 散したデータ間のパリティなどを記録する冗長ディスク を設けるなどして、性能・信頼性の向上をはかるディス ク・アレイの技術が注目されているが、レコードの長さ や個数が可変である可変長レコード方式のままでは、こ のような技術に対応することも困難である。しかし、汎 用計算機の世界では膨大なソフトウェア資産がきづかれ ているため、ディスクの記録フォーマットを可変長から 固定長に変更することは著しく困難である。

【0006】とこで、図34及び図35を用いて従来の 可変長レコード方式で記録された可変長レコードへのア クセス方式について述べる。図34はサーボ面サーボ方 式が用いられている磁気ディスクを模式的に示す図であ り、この磁気ディスク装置にはサーボ面Sとデータ面D が設けられている。サーボ面Sにはセクタ(FBA方式 のセクタとは異なる概念のセクタ〉が論理的に設けられ ている。図35はこのセクタを説明するための図であ る。ここで1トラックの記憶容置を48KBであるとす るとこの1トラックは複数のセクタに分割される。ここ では1セクタのサイズを244Bとする。この1セクタ はさらにセグメントS1~S7という?つのセグメント から構成されている。1セクタのサイズが244Bであ るので1セグメントは32Bになる。このような磁気デ 40 ィスク装置を用いてデータ面Dにデータを記録する場合 には、データが記録されたセクタの値を記憶しておき、 そのデータを検索する場合には、データ面に書かれたと

により指定する。このセットセクタコマンドにより磁気 ディスク装置は、ホスト計算機及び磁気ディスク制御装 置から切り離され、指定されたセクタを自律的に検索す る。指定されたセクタを発見すると磁気ディスク装置 は、磁気ディスク制御装置を介し、ホスト計算機に再接 続要求を出し、再接続が行なわれる。次にサーチ [D コ マンドによりサーチすべきデータの I Dが送られてく る。この!Dは、例えばシリンダ番号やトラック番号 や、あるいはサーチすべきレコード番号である。このサ ーチIDコマンドを受け取ると磁気ディスク装置は、そ のIDとセットセクタコマンドにより指定されたセクタ から最初に存在するレコードの!Dを比較し、その結果 をポスト計算機に報告する。両者のIDが一致していな ければ、コマンドの実行は次のトランスファーインチャ ネルコマンドにより、セットセクタコマンドにジャンプ して戻され、次のレコードに対し、再度サーチIDコマ ンドが発行される。両者のIDが一致していれば、ホス ト計算機は次のトランスファーインチャネルコマンドを とばし、最後のリードデータコマンドあるいはライトデ ータコマンドを発行することにより、検索したデータに 対し、リードまたはライトという命令を実行する。

【0007】とのように汎用計算機で用いられるソフトウェアは既に可変長レコード方式に基づいて作成されており、既に築かれたソフトウェアを変更するということは著しく困難である。そこで、実際のディスクは固定長レコード方式のディスクを使用しながら、磁気ディスク制御装置で可変長レコード方式をエミュレーションすることにより、ホスト計算機上のソフトウェアからは従来どおりの可変長レコード方式のディスクを使用できる技術が考えられている。

【0008】CKD-FBA変換については「記憶制御方法及び装置」(特関平1-30691号公報)において詳細に述べられている。また、CKD-FBA変換については、さらに「BM社の出版物「IBM4321/4331プロセッサ互換性機能」(GA33-1528.第3版、1982年9月)に一般的に記載されている。よれらの文献の内容をまとめると、下記のようになる。上記の出版物ではCKDからFBAに変換する際すべてのギャップを取って圧縮している。また、上記の出版物では図36に示したセットセクタコマンドがサボートされていないことが記述されている。上記の出版物ではセットセクタコマンドが出された場合には、ノーオペレーションになると記載されている。セットセクタコマ

近のセクタを指定するものであり、セットセクタコマンドで指定されたセクタ以後をサーチIDコマンドによりサーチする場合に比べてアクセス時間の点で非常に不利である。

7

【0009】一方、上記公報では(カッコ内の番号は図37に対応)。

- (1) フィルード間ギャップ (G2) やECC、パディング、物理的パラメータなどは取る。
- (2) レコード間ギャップ (131、133, 137, 163) は残す。
- (3)(1)で取ったフィールド間ギャップなどの分は、同じ分だけ(2)のレコード間ギャップを伸ばす。これにより、トラックの先頭から各レコードのカウント・フィールドまでの相対位置は元のまま維持される。(キー・フィールドやデータ・フィールドの相対位置はずれることになるが、カウント・フィールドの相対位置さえ分かれば、レコードの位置決めには差し支えない)。
- (4) このトラック・データをFBAの固定プロック (セクタ) に分割し、その際、各固定プロックに含まれ 20 る最初のレコードのカウント・フィールドの位置情報 (156) を各固定プロックの先頭に付加しておく。これにより、FBA方式のディスクに記憶されたCKDレコードへの直接かつランダムなアドレッシングが可能になる。
- (5) そのブロックにカウント・フィールドが含まれない場合は、それを示す標識ピットを記録しておく。 さらに整理すると、
- (1)各レコードのカウント・フィルードの相対位置を 維持するためレコード間ギャップだけを残し、他の余分 なギャップなどは取り除く。
- (2) FBAの各固定プロックの先頭に、そこに記録されている最初のカウント・フィールドの位置を示すヘッダを付ける。

の2点が要件となって、こうすることによりFBA方式 のディスクに記録したCKDレコードへの直接がつラン ダムなアドレッシングを可能にする。

[0010]

【発明が解決しようとする課題】しかしながら、上述した先行技術においては次の問題点がある。前述した出版 40 物による技術によればCK DからF B A に変換する際、全てのギャップをとって圧縮しているがセットセクタコマンドがサポートされていないためにレコードのアクセ

コード方式のレコード)に含まれるCKDレコードのう ち先頭のCKDレコードの位置に関する情報しか持たな いので、先頭以外のCKDレコードを見つけるために は、まず先願のCKDレコードのカウント・フィールド を読んで、その中のKL、DLから先頭のレコード長を 知り、次のレコードのカウント・フィールドの位置を計 算してから、また、次のレコードのカウント・フィール ドのKL、DLを読んで、また、その次のレコードのカ ウント・フィールドを探すという手順を繰り返さなくて 10 はならない。従って、処理時間がかかるばかりでなく、 トラック・イメージがディスク・キャッシュ上などに集 中管理されている場合は、そのメモリへのアクセス回数 が著しく増え、システム全体の性能を低下させる。さら に、CKDレコードの位置情報を各FBAプロック無と いう小さい単位に待つためチャネルとのデータ転送時、 この位置情報をとび越すためのデータ転送一時中断が頻 繁に発生し、データ転送効率の悪化を招く。

【0012】この発明は、上述した従来例における問題点を解消するためになされたもので、CKDレコードをFBAレコードにフォーマット変換する際、目的とするCKDレコードを発見するためのメモリアクセス回数が少なくてすみメモリ負荷軽減がなされると共に、トラックデータを保持するためのメモリ容量が少なくてすむレコード記憶フォーマット変換方式を得ることを目的とする。

[0013]

【課題を解決するための手段】この発明に係るデータ記憶フォーマット変換方式は、汎用計算機システムの外部記憶装置に用いられる記憶フォーマットである可変長レコードの1トラックからレコード間ギャップ及びフィールド間ギャップ等全てのギャップを削除し、そのトラックデータを固定長レコードの固定長ブロックサイズの整数倍に相当する管理単位に分割し、その管理単位に含まれる全ての可変長レコードの位置を示すアドレス情報と各可変長レコードの可変長レコードフォーマットでのトラックの先頭からの相対位置を示す相対位置情報とを上記管理単位に書き入れた後、固定長レコードの固定長ブロックサイズに分割して記憶することを特徴とするものである。

【①①14】また、この発明に係るアクセス制御装置は 前述したデータ記憶フォーマット変換方式を用いて作成 されたデータを記憶する記憶部に対してアクセスするア クセス制御装置であり、従来の可容長レコード方式に基

(6)

リ. (c) レコードが可変長フォーマットで記憶されているものとして出力された可変長レコードへのアクセス命令を入力する入力手段. (d) 上記入力手段により入力したアクセス命令から. アクセスする可変長レコードが記憶されていると考えられる管理単位の位置を概算する位置計算手段と、(e) 上記位置計算手段により概算された位置にある管理単位を上記読み書き手段により上記記憶部から上記メモリに読み込み. 上記入力手段によ

り入力されたアクセス命令がアクセスしようとするレコ

ードを検索するレコード検索手段。

9

【①①15】また、この発明に係るデータ記憶フォーマット変換方法は可変長レコード方式により作成された可変長レコードからギャップを削除し、これをあらかじめ定められた管理単位であるプレームに配置すると共に配置したデータの位置等のアクセス情報を記憶させ、このプレームを固定長のプロックサイズに分割して固定長フォーマットとして記憶するものであり、以下の工程を有するものである。

(a) データを有するフィールド及びレコード間ギャップ及びフィールド間ギャップを有する可変長フォーマットからレコード間ギャップ及びフィールド間ギャップを削除して各可変長レコードのフィールドを連結するギャップ削除工程。(b) 上記ギャップ削除工程により連結された各可変長レコードをあらかじめ定められたサイズを持つフレームに順に配置するとともに、各可変長レコードをアクセスするためのアクセス情報を各可変長レコードに対応させて記憶するレコード配置工程。(c) 上記フレームを複数の固定長のブロックサイズに分割して固定長フォーマットとして記憶する固定長ブロック記憶工程。

【りり16】また、この発明に係るデータアクセス方法は前述したデータ記憶フォーマット変換方法により作成された固定長のブロックサイズに分割されたデータに対して従来から存在する可変長レコード方式のアクセス命令によりアクセスするための方法であり、以下の工程を有するものである。

(a) 可変長フォーマットのレコードをアクセスするためのコマンドとアクセスするデータの検索情報を入力するアクセスコマンド入力工程、(b) 上記アクセスコマンド入力工程により入力した検索情報からアクセスするレコードが記憶されているフレームの位置情報を差定する位置情報推定工程、(c) 上記位置情報推定工程により維定された位置情報をもつフレーム以降のフレームを

場合に記憶容量が少なくて済む。またレコード配置手段が管理単位の中に可変長レコードの位置を示す第1の位置情報と、可変長レコードとして記録された場合の相対位置を示す第2の位置情報を記憶しているため、従来のソフトウェアから可変長レコード方式の相対位置を示す第2が来た場合、可変長レコード方式の相対位置を示す第2の位置情報を用いて管理単位を検索し、次に検索された管理単位の中の可変長レコードの位置を示す第1の位置情報を用いて目的とするレコードを検索することが可能

10

【①①18】また、この発明におけるアクセス副御装置においては、位置計算手段が、従来のソフトウェアからの可変長レコード方式のアクセス命令に付随するレコードの組対位置情報から固定長レコード方式による管理単位の位置を大まかに計算するため、レコード検索手段が、この計算された位置情報をもとに固定長レコード方式で記録されたデータをアクセスすることができる。このようにこの発明に係るアクセス制御装置は位置計算手段とレコード検索手段を備えることにより、従来例で説明したようなセットセクタコマンドをサポートすることが可能になる。

19 になる。このためアクセス回数が最小限で済む。

【0019】また、この発明におけるデータ記憶フォーマット変換方法はギャップ削除工程によりギャップを削除したのち、レコード配置工程により各可変長レコードをプレーム内に順に配置すると共にそのアクセス情報を共にプレームに記憶させる点に特徴がある。さらに、このプレームは固定長のプロックサイズに分割されて記憶されるためプレームを固定長レコード方式で記憶することができる。

30 【0020】また、この発明におけるデータアクセス方法においては位置情報推定工程がアクセスコマンドにより入力された検索情報から固定長レコード方式に基づいて記憶される場合の位置情報を推定し、レコード検案工程によりこの維定された位置情報に基づいてフレームを検索するのでフレームを検索する回数すなわちメモリのアクセス回数を最小限に押さえることが可能になり、高速なアクセスが可能になる。

[0021]

【実施例】

6 実施例1.図1はこの発明を説明するための概略ブロック図である。ホスト計算機1はチャネル2を有している。チャネル2は図に示すように複数のチャネル2ま~2eを有している。例えばこのうちのひとつのチャネル

特関平5-307440

単位に読み書きされる。

【①022】次に、CKD-FBA変換の鐵路について 説明する。ホスト計算機1では従来のCKD方式で記録 されたデータをアクセスするためのソフトウェアが動作 する。このソフトウェアからはCKDコマンド4がチャ ネル2 b を介して磁気ディスク制御装置5 に出力され る。例えばCKDコマンド4がライトコマンドである場 台には、CKDフォーマットのレコード3は可変長レコ ード3a,3b、3cとして出力される。磁気ディスク 制御装置5はこの可変長レコード3a、3b、3cをキ ャッシュメモリ6に記憶する。その際、キャッシュメモ リにはCKDのトラックイメージ7が構成される。すな わちCKDのトラックイメージ?は可変長レコード3 a、3b、3cをトラックの先頭から順に配置したイメ ージとなる。従来ならばここでフィールド間ギャップ及 びレコード間ギャップが生成されて付加されることにな るが、この場合にはギャップは全て取り除かれる。磁気 ディスク制御装置5はキャッシュメモリ6に作られた0 KDのトラックイメージ?をFBAフォーマットのレコ ード8に変換する。FBAフォーマットのレコード8は 20 の分だけしかレコードボインタを使用しない。これによ 固定長のブロック8 a ~ 8 eによって構成されている。 磁気ディスク副御装置5はこのFBAフォーマットのレ コード8をFBAディスク9に書き込む場合にはFBA コマンド10を出力する。ブロック8a~8eはFBA ディスク9にあるブロック9a~9eに対応してそれぞ れ記憶される。

11

【0023】図2は、前述したCKD-FBA変換の概 略をさらに詳しく説明するためのブロック図である。ホ スト計算機!」磁気ディスク制御装置5、キャッシュメ モリ6、FBAディスク9は前述した図1と同様のもの でありここではその説明を省略する。この磁気ディスク 制御装置5の詳細な動作について図3.図4、図5を用 いてさらに説明する。

【0024】図3、図4.図5はレコード記憶フォーマ ット変換方式を説明するものである。先ず、図3 (a) に示す元のCKDトラックフォーマットに対し、図3 (b) に示すように、レコード間ギャップ、フィールド

間ギャップ等全てのギャップG1、G2、G3を削除す る。

【① 0 2 5 】次に、図3(b)に示すギャップ削除後の 40 -例えば48KBあるCKDレコードの1トラックデータ を図3 (c) に示す如く、後述する制御情報を含んで、 FBAレコードの固定プロック長の整教倍(レコード数

【りり27】ととで、図4(a)においては、レコード の管理単位内の位置情報のサイズを可変にすることによ り、位置情報を記憶する場所をあらかじめ確保する必要 がなく位置情報の総容置を減らすことになっている。す なわち、可変長レコードは管理単位の先頭から記載さ れ、位置情報は管理単位の後ろから順番に記憶されて行 くため位置情報の数と可変長レコードの数は一致してお り、両者の記憶領域が管理単位内でぶつかるまで記憶で きることになる。このようにして実際に記録されている レコードの分だけしか位置情報領域を使用しないような 制御を可能にする。しかし、位置情報領域のサイズを可 変にすると、データ転送時やフォーマットライト時の制 御が複雑なものとなり得るが、ここでは次のような方式

【10028】今、図4(d)において、レコードの位置 情報の管理単位をフレーム、実際にCKDレコードを記 録する領域をレコードフレーム、制御情報を記録する領 域をコントロールフレーム。レコードの位置情報をレコ ードポインタと呼ぶ。 - 実際に記録されているレコード りレコードポインタ領域のサイズは、管理単位のサイズ を12KBとし最大94個のCKDレコードが記録され レコード1個当りの位置情報として4 Bとすると、最大 でも、1CKDトラック当り、

 $4B \times 94 = 276B$

を採用して改善を図っている。

で済む。この4 Bの位置情報は図4(d)においてはレ コードポインタとして示されており、レコードポインタ は1Bのレコードナンバと1Bのセクタ値と2Bのメモ リアドレスから構成されている。レコードナンバは記録 される可変長レコードの番号を記録しておくものであ る。セクタ値は記録されるレコードがCKDレコード方 式で記録される場合のセクタ値を記憶するものである。 メモリアドレスはフレームに記憶されるレコードのフレ ーム内のアドレスを記憶するものである。セクタ値はセ ットセクタコマンドにより指定されたセクタ値と比較さ れることにより利用される。同様にレコードナンバはサ ーチIDコマンドにより指定されたレコードナンバと比 較されるために利用される。メモリアドレスはレコード フレームに記憶されている実際のレコードのアドレスを 示すものである。セットセクタコマンド及びサーチ!D コマンドによりレコードポインタのセクタ値とレコード ナンバが比較され一致した場合にこのメモリアドレスを 用いてレコードが該み出される。

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615231247577220.gif

る。また、コントロールフレーム内のレコードポインタも後ろから順番に並べていく。実際のレコードがレコードフレーム内で前にあるものほど、それに対応するレコードポインタはコントロールフレーム内で後ろにくる。これにより、フォーマットライト時の副御も無理がなくなる。

13

【0.031】次に、図4.(d)に示すように、CKDレコードの位置情報等付加後、1.2KBのレコードフレームを、図5.(e)に示す如く、FBAレコードのブロックサイズ例えば1.024B(1KB) 組当に分割し、さらに、図5.(f)に示す如く、各レコードのデータフィールドに「Dフィールドをそれぞれ設けて、図5.(g)に示す如く、FBAレコード方式のディスクを得る。

【①032】また、固定ブロック内に記録されているC KDレコード1個ごとにCKDフォーマットでのトラックの先頭からの相対位置を示す情報。例えばセグメントナンバを残しておく。このようにすることにより、各レコードの位置が分かれば、そのレコードに記録されている相対位置を示す情報から直ちに既に消費しているCKDフォーマット上でのトラック容置が分かる。

【0033】次に、図2に戻り磁気ディスク制御装置5 の動作について説明する。磁気ディスク制御装置5はホ スト計算機1とFBAディスク9との間でデータの変換 及び転送を行うチャネルバスサーバ51(以下、CPS ともいう)を有している。チャネルバスサーバ51には ホスト計算機1からコマンド及びデータを入力するため の入力部52を有している。また、FBAディスク9か ちのデータをホスト計算機1に出力するための出力部5 2を有している。入力部52からホスト計算機1で動作 しているソフトウェアによる可変長レコード方式のアク セス命令が入力された場合に位置計算部53は例えばセ ットセクタコマンドで指定されたセクタ値に基づいてア クセスする可変長レコードが記憶されていると考えられ る管理単位の位置を計算する。この位置計算部による計 算は前述したようにFBAディスク9にデータが記録さ れる場合には全てのギャップが取り除かれているために CKDディスク10に存在している場合よりも前方向に 諡まった形でデータが記憶されており、位置計算部53 は絶測により、アクセスしようとしてる可変長レコード が記憶されていると考えられる管理単位の位置を計算す る。レコード検索部54は位置計算部53により計算さ れた管理単位の位置をもとに管理単位をキャッシュメモ りらに読み込みアクセスしようとするレコードを検索す

14

た場合にアクセスしようとする可変長レコードをその管理単位に含まれるアドレス情報を用いて特定する。FBAディスク9とキャッシュ・メモリ6の間のデータの読み書きをFBAコマンドを使用して実行するのは、データ・パス・サーバ(DPS)55であるマネージャは、全体の制御とキャッシュ・メモリ6の管理を行なう。

【0034】CKD-FBA変換を行う際には三つのポイントが重要となる。すなわち、

1. CKDのトラック・フォーマットのどこを残し、ど10 こを削除するか?

11. そのようにトラック・フォーマットを加工した後. どのようにして、元のレコードの位置を見つけるかっ

III. CKDのトラック容置をどのようにチェックするか、すなわち、トラック・オーバランの検知をどのように行うか?

が三つのボイントとして検討されなければならない。上記の三つのボイントについて考えてみると、他のバリエーションが考えられることが分かる。以下、順番に各ボ20 イントについてバリエーションを考える。

【りり35】まず、1. については、ECCやバディング等、元々ディスク装置側で付加していた情報をDKCで生成してからFBAに変換するのは無駄である。従って、「どこを残し、どこを削除するか?」ということは、事実上「どのギャップを残し、どのギャップを削除するのか?」ということになる(ECCやバディング以外の、ディフェクト情報のようなDKCで管理していた制御情報や物理バラメータはギャップに含めて考えれば良い)。このギャップの残し方については、従来の方式も含め以下のようなバリエーションが考えられる(図6を照)。

<ケース !-1> ・・・「!BM4321/433 1プロセッサ互換性機能!の方法

・レコード間ギャップも含めすべてのギャップを削除してしまう。

<ケース !-2> ··・従来の方法

・レコード間ギャップだけ残し、フィールド間ギャップ は取り除く。

<ケース !-3>

40 ・レコード間ギャップだけでなく、すべてのフィールド間ギャップも残す(ECCやパディングなどは取り除く)。

【0036】とれちの各方法は、それぞれ、ギャップ以

16

<ケース ! I - 1 >

・レコードの位置を示す特別の情報はいっさい持たな Ĺ,

15

・レコードを探すときは、常にトラックの先頭のレコー ドから順番に読んでいき、各レコードのカウント・フィ ールドに含まれるKL、DLの値から次のレコードのカ ウント・フィールドの位置を計算する。

<ケース ! I - 2 > ・・・従来の方法

・部分的に、レコードの位置を示す情報をレコードその ロックの先頭に位置するレコードのカウント・フィール ドの位置を保持する〉

- 位置を示されているレコードより後ろのレコードはく ケース!! - 1 > と同じ様に、位置の分かっているレコ ードから順番に読みだし、各レコードのKL、DLから 次のレコードの位置を計算する。

<ケース | I - 3 >

すべてのレコードの位置を示す情報をレコードそのも のとは別に保持する。

すべてのレコードはこの情報から位置を探す。

・レコードの位置情報は全レコード分を一括して一箇所 に保持する方法(例えば、トラックの先頭)と、分散し で保持する方法(例えば、AFBAブロックの先頭にそ のFBAプロックに含まれるレコードの位置を示す情報 を保持する)が考えられる。

<ケース | I - 4 >

·FBA変換後の論理的なトラック・イメージ上でもな んらかのアドレス・マーク(AM)を生成し、これを目 印にレコードを探す(メモリ上でもAMサーチを行 う)。しかし、この方法はうまいアドレス・マークの生 30 成法を具体的に考えついていないこと、メモリ上でAM サーチを行うために全データを順番に読み出すことはメ モリ負荷を不必要に高め非効率的であることなどから、 検討の範囲から除外する。

【0037】次いで、!IIのトラック容置のチェック 方法については、以下のような方法が考えられる(図8) 参照)。これらの方法は、【のギャップの残し方によっ ては、適用できるものとできないものがある。

<ケース | I I - 1 >

・トラックの先頭からのすべてのレコードのKL、DL 46 スを元のレコードの相対位置のまま維持する<ケース を知り、あいだのギャップやパディングの分(これらは すべて一意的にそのサイズが決っている)も全部足し込 んで 既に消費されているCKDフォーマット上でのト

従って、各レコードの位置が分かれば、そのレコード のメモリ上のアドレスから直ちに既に消費しているCK Dフォーマット上でのトラック容置が分かる。

<ケース ! I I - 3 >

・ 各レコードにCKDフォーマットでのトラックの先頭 からの相対位置を示す情報(例えばセグメント・ナン バ)を残しておく。

・従って、各レコードの位置が分かれば、そのレコード に記録されている相対位置を示す情報から直ちに既に消 ものとは別に保持する。(従来の方法では、各FBAブ 10 費しているCKDフォーマット上でのトラック容量が分 かる。

> 【0038】図8では<ケース ! [[- 1 > と < ケー スー【!!-3>は、すべてのギャップを取り除いてい るケースくケース !-1>で表現しているが、これら の方法はいずれもギャップがどのように残っていても構 わない。また、 <ケース 【!!-2>は、レコード間 ギャップだけ残しているケースくケース !-2>で表 現しているが、すべてのギャップを残すケースくケース !-3>でも構わない。ただし、<ケース ! | | | -2 20 >は、すべてのギャップを取り去るくケース 【-!> では、ギャップ長の調節により、メモリ・アドレスを元 のレコードの相対位置のまま維持することができないの で、原理上、実現不可能である。これらの!、【【、! !【の各ケースの組み合せにより、(上述のように不可 能な組み合わせ、また、無意味な組み合わせも有りしい。 くつかのCKD-FBA変換方式ができることになる。 従来の方式は<ケース 【-2>, <ケース 【【-2 >、<ケース [!!-2>の組み合せによるCKD-FBA変換方式ということができる。

【①①39】図9に前述の各ケースの組み合せのうち有 効なものの一覧を示す。各ケースの組み合せのうち、実 現不可能なもの、無意味なものはあらかじめ除いてあ る。比較項目の欄の説明については、次節以降に示す。 実現不可能なものとしては、前述した下記の組み合せが ある。

●<ケース 【-1>と<ケース 【【!-2>の組み 台わせ

<ケース !-1>はすべてのギャップを取り除く方式 であるので、ギャップ長の調節により、メモリ・アドレ ! Ⅰ Ⅰ - 2 > のトラック容量のチェック方法は不可能で ある。また、下記の組み合わせは不可能ではないが、以 下の理由により方式上母意味である。

ードを探すのにトラック上の最初のレコードから順番に 読み出す必要がないという利点がある。しかし、<ケー ス 【!!-1>はトラック容置をチェックするため に、トラック上の全カウント・フィールドのデータが必 要である。従って、これらの組み合せでは、結局、一度 はトラック上の最初のレコードから順番に読み出すこと になり、くケース !!-2>またはくケース !!-3>の方式を採用した意味がなくなる。すなわち、くか ース !!!-1>はレコードの位置決め方式としてト ラック上の全レコードを読み出すくケース !【-1> を採用したときだけ意味を持つトラック容置チェック方 式ということができる。これら以外の組み合わせは、す べて図9にのせてある。図9の見方は、一行が一つの組 み合せで実現されるCKD-FBA変換方式を示してお り、〇のついている方式がその組み合せで採用されてい る方式である。従って、例えば一行目の方式は、「ギャ ップの残し方」の方式としてはくケース !-1>を踩 用し、「レコード位置決め方法」については<ケース !【−1>を、「トラック容置のチェック方法」として

17

【0040】以後、各CKD-FBA変換方式の比較を行うが、まず、そのために、各変換方式の比較ポイントを下記のように考える。

換方式ということになる。今後、このような方式を便宜

上く1、1、1>と表記することにする。この表記法で

は、従来の方式はく2、2、2>と表現できる。

a. CKDフォーマットのトラック・イメージを磁気ディスク制御装置(DKC)のキャッシュ・メモリ(以下、単にメモリともいう)上に展開する際の、メモリ容置の大小。・・・このメモリ容置は変換方式だけでなく、1トラック分の容置はそのときのトラック・フォーマット(レコード数の大小など)に大きく依存するため、しません最悪値にあわせて多めに取らざるを得ない。しかも、このメモリ・イメージをFBAの物理ディスクに書くことになるのであるから、FBAディスクのブロック(セクタ)容置の整数倍となる。従って、少々の大小はあまり重大な問題ではない。主として、ギャップの残し方、レコードの位置決めのためなどに必要な付加情報の大小などによる。

b. データ転送のやりやすさ・・・チャネルとの間で連 40 続してデータ転送する部分などは、メモリ上でも連続し ていた方がやりやすい。例えば、キー・フィールドとデ ータ・フィールドは、メモリトでも連続していた方が転 学に手順の回数だけでなく、そのために必要なメモリーアクセスの回数の多さなども考慮する必要がある。トラック・イメージは共通領域であるキャッシュ・メモリ上に展開するので、手順そのもの(例えば計算量)が少々多くても、メモリーアクセス回数が少ない方がシステム全体では有利である。主として、このメモリーアクセス回数はレコードの位置決め方法で決る。

18

d. フォーマット・ライト時の手順・・・アップ・デート・ライト時は既にフォーマットされているレコードの Kし、DL見てライトすれば良いが、フォーマット・ライト時は、メモリ上で残トラック容量とホストから送られてきたレコードのKL、DLの整合性を調べる必要がある。すなわち、トラック・オーバランのチェックが必要である。さらに、方式によっては、レコード以外の制御情報をメンテナンスする必要があるので、そのための手順及び、メモリ・アクセスの多さなども考慮する必要がある。

以下、この比較ポイントをもとに各CKD-FBA変換 方式の個々の特徴や、細かい分析を行う。

は<ケース II!-1>を採用したCKD-FBA変 20 【0041】<1,1,1>

・ギャップ:すべて削除

・レコード位置決め:トラックの最初のレコードから全 レコード・リード

・トラック容量チェック:トラックの最初のレコードから全レコード・リード

a.メモリ容量

この方式は、ギャップもすべてなく、制御情報の付加も いっさいないので、メモリの利用効率は、もっとも良い。

30 り、データ転送のやりやすさ

各フィールドがメモリ上で連続しているので、チャネル との間で連続したフィールドのデータ転送する時、メモ リ・アドレスはカウント・アップしていくだけでよい。

c. 目的レコードを見つけるときの手順

目的レコードを見つけるためには、トラックの先頭から 該当レコードまでのレコード数だけメモリをアクセスす る必要がある。すなわち、各レコードのカウント・フィ ールドのリードが必要になる。各レコードのカウント・ フィールドを取得した後、それらのK し、D しから目的 レコードの位置を計算していくのは、余分なギャップな どがないぶん、K し、D しを足しこんでいけばよく単純 である。

d. フォーマット・ライト時の手順

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615231320498020.gif

(11)

特闘平5-307440

20

・ギャップ:すべて削除

・レコード位置決め:FBAブロックに含まれる最初の レコードの位置を保持

19

・トラック容量チェック: 各レコードにセグメント・ナンバ等の相対位置情報を保持

a. メモリ容量

ギャップはすべて削除するが、FBAのプロックに含まれる最初のレコードの位置や、各レコードのセグメント・ナンバ等を保持するための制御情報の分だけは、<1、1、1>より余分にメモリを使用する。

b. データ転送のやりやすさ

やはり、各フィールドがメモリ上で連続しているので、 チャネルとの間で連続したフィールドのデータ転送する 時、メモリ・アドレスはカウント・アップしていくだけ でよい。しかし、単一フィールド内であっても、FBA のブロックにまたがったような場合は、メモリ上でもF BAブロックに含まれる最初のレコードの位置情報など により分断されるので、その位置情報の部分をスキップ ・ディフェクトなどのように飛ばしてデータ転送を行う 必要がある。

c. 目的レコードを見つけるときの手順

目的レコードを探すためには、FBAのブロックの最初のレコードから目的レコードまでの間に存在するレコードの回数だけメモリをアクセスする必要がある。従って、<1、1、1>よりはメモリ・アクセス回数は少ない。FBAのブロックの最初のレコードの位置から目的レコードの位置を計算する方法はほとんど<1、1、1>と同じで単純である(カウント・フィールドのサイズとKL、DLを足し込んでいけば良い)。

d. フォーマット・ライト時の手順

トラック容置のチェックのためには、フォーマット・ライトしようとしているレコードの一つ前のレコードのセグメント・ナンバ(本来のCKDフォーマットで、そのレコードのトラック上での相対位置を示す情報)とKL、DLから、後どれだけのサイズのレコードがライトできるか計算する。フォーマット・ライトしたときは、ライトしたレコード自身にそのレコードのセグメント・ナンバを書いておかなければならない。同時に、新たなドBAプロック上に新たなカウント・フィールドが生じたときは、そのFBAプロックに先頭のレコードのカウント・フィールドの位置を示す情報を書かなければならない。

[0.043] < 1.3.3 >

別に保持するため、<1、2、3>のようにFBAのプロックに含まれる最初のレコードの位置だけ保持する場合より、さらにメモリ容量は多く必要である。各レコードにセグメント・ナンバなどを保持するのは<1、2、3>と同じである。

b. データ転送のやりやすさ

ほぼ、<1,2、3>と同じである。各フィールドがメモリ上で連続しているので、チャネルとの間で連続したフィールドのデータ転送する時、メモリ・アドレスはカウント・アップしていくだけでよい。レコードの位置情報をFBAのブロックごとに分散して持つ場合は、単一フィールド内であっても、FBAのブロックにまたがる場合、メモリ上でもFBAブロックに含まれるレコードの位置情報などにより分断されるので、その位置情報の部分をスキップ・ディフェクトなどのように飛ばしてデータ転送を行う必要がある。

c. 目的レコードを見つけるときの手順

目的レコードを探すためには、レコードの位置情報を一 回だけ読み取れば良いので、メモリ・アクセス回数は全 20 方式の中で最小である。目的レコードの位置は、その情 報からダイレクトに分かる。

d. フォーマット・ライト時の手順

<1、2、3>とトラック容置のチェック方法が同じであるので、フォーマット・ライト時の手順も<1、2、3>とほぼ同じである。トラック容量のチェックのためには、フォーマット・ライトしようとしているレコードの一つ前のレコードのセグメント・ナンバ(本来のCKDフォーマットで、そのレコードのトラック上での相対位置を示す情報)とKL、DLから、後どれだけのサイスのレコードがライトできるか計算する。フォーマット・ライトしたときは、ライトしたレコード自身にそのレコードのセグメント・ナンバを計算して書いておかなければならない。同時に、必ずレコードの位置情報を保持している制御情報に、そのレコードの力ウント・フィールドの位置を示す情報を書き足さなければならない。

[0.044] < 2, 1, 1 >

・ギャップ:フィールド間ギャップのみ削除、レコード 間ギャップは残す

- ・レコード位置決め:トラックの最初のレコードから全 40 レコード・リード
 - トラック容量チェック:トラックの最初のレコードか ち全レコード・リード
 - a. メモリ容量

22

21

、,2>方式に比べメモリ容置は少なくできるが、 逆に言うと、レコード間ギャップを残した意味もない。 b. データ転送のやりやすさ

レコード間ギャップは存在するが、フィールド間ギャップは無いので、チャネルとの間で連続したフィールドのデータを転送するとき(C→K→D)、メモリ・アドレスはカウント・アップするだけでよい。余分な制御情報もないので、単一フィールドがFBAのプロックにまたがっても、メモリ上でそのフィールドが分断されることもない。

c. 目的レコードを見つけるときの手順

<1、1、1>とほぼ同じである。目的レコードを見つけるためには、トラックの先頭から該当レコードまでのレコード数だけメモリをアクセスする必要がある。すなわち、各レコードのカウント・フィールドのリードが必要となる。各レコードのカウント・フィールドを取得した後、それらのKL、DLから目的レコードの位置を計算していくには、KL、DLに加えレコード間ギャップを足しこんでいけばよく単純である。</p>

d. フォーマット・ライト時の手順

これもく1, 1、1>とほぼ同じである。トラック容置をチェックするためにも、トラックの先頭から該当レコードまでのレコード数だけメモリをアクセスする必要がある。トラック容置のチェックのためには、削除してしまったフィールド間ギャップなどの分も換算してやる必要がある。フォーマット・ライト時、更新しなければならない制御情報はない。

【0045】<2,2,2>・・・従来の方式

・ギャップ:フィールド間ギャップのみ削除、レコード 間ギャップは残す

・レコード位置決め:FBAのブロックに含まれる最初のレコード位置を保持

・トラック容量チェック: ギャップ長の調節により各レコードの相対位置を維持

a. メモリ容量

フィールド間ギャップなどは削除するものの、その分レコード間ギャップを伸ばして各レコードの相対位置を元のCKDフォーマットのまま維持するので、結局必要なメモリ容置は、元のCKDフォーマットのトラック容置と同じで、さらにFBAのブロックに含まれる最初のレコードの位置情報の分だけ余分にメモリが必要である。

- b. データ転送のやりやすさ

レコード間ギャップは存在するが、フィールド間ギャッ

ブ・ディフェクトなどのように飛ばしてデータ転送を行 う必要がある。

c. 目的レコードを見つけるときの手順

目的レコードを探すためには、FBAのブロックの最初のレコードから目的レコードまでの間に存在するレコードの回数だけメモリをアクセスする必要がある。従って、く2、1、1>よりはメモリ・アクセス回数は少ない。FBAのブロックの最初のレコードの位置から目的レコードの位置を計算する方法はほとんどく2、1、1つと同じで単純である(カウント・フィールドのサイズとKし、DLさらにレコード間ギャップをどんどん足し込んでいけば良い)。また、各レコードのCKDフォーマットでの相対位置をメモリ上でも維持しているので、Set Sectorの値から目的レコードの含まれるFBAのブロックを正確に求めることができる。

d. フォーマット・ライト時の手順

トラック容置のチェックには、各レコードのCKDフォーマットでの組対位置をメモリ上でも維持しているので、フォーマット・ライトしようとしているレコードの

20 メモリ上のアドレスが分かれば(c. の手順で分かる)。直ちに後されだけのサイズのレコードがライトできるか計算できる。フォーマット・ライトして、新たなドBAブロック上に新たなカウント・フィールドが生じたときは、そのFBAブロックに先頭のレコードのカウント・フィールドの位置を示す情報を書かなければならない。

[0.046] < 2, 2, 3 >

・ギャップ:フィールド間ギャップのみ削除、レコード 間ギャップは残す

30 ・レコード位置決め: FBAのブロックに含まれる最初 のレコード位置を保持

・トラック容量チェック: 各レコードにセグメント・ナンバ等の相対位置情報を保持

a. メモリ容量

フィールド間ギャップなどは削除し、レコード間ギャップを残すのはく2,2,2>と同じであるが、残したレコード間ギャップによりレコードの相対位置を維持しようということではないので、レコード間ギャップを無理に伸ばす必要はない(従って、やはりギャップを残す意味は薄くなる)。しかし、FBAのブロックに含まれる最初のレコードの位置情報の分は余分に必要である。また、各レコードに含まれるセグメント・ナンバの分も必要であるので、結局メモリ容費としてはく2.1.1>

23

るセグメント・ナンバなどはカウント・フィールドに含 まれるので、データ転送時C一Kの邪魔になることはな い)。しかし、単一フィールド内であっても、FBAの ブロックにまたがったような場合は、メモリ上でもFB Aプロックに含まれる最初のレコードの位置情報などの 制御情報により分断されるので、その制御情報の部分を スキップ・ディフェクトなどのように飛ばしてデータ転 送を行う必要がある。

c. 目的レコードを見つけるときの手順

を探すためには、FBAのブロックの最初のレコードか **ら目的レコードまでの間に存在するレコードの回数だけ** メモリをアクセスする必要がある。従って、<1、1、 1>よりはメモリ・アクセス回数は少ない。FBAのブ ロックの最初のレコードの位置から目的レコードの位置 を計算する方法はほとんどく1, 1、1>と同じで単純 である(カウント・フィールドのサイズとKL、DLさ ちにレコード間ギャップをどんどん足し込んでいけば良 (cj

d. フォーマット・ライト時の手順

トラック容量のチェックのためには、フォーマット・ラ イトしようとしているレコードの一つ前のレコードのセ グメント・ナンバ(本来のCKDフォーマットで、その) レコードのトラック上での組対位置を示す情報)とK L、DLから、後どれだけのサイズのレコードがライト できるか計算する。フォーマット・ライトしたときは、 ライトしたレコード自身にそのレコードのセグメント・ ナンバを計算して書いておかなければならない。同時 に、新たなFBAブロック上に新たなカウント・フィー ルドが生じたときは、そのFBAブロックに先頭のレコー30 のレコードのカウント・フィールドの位置を示す情報を ードのカウント・フィールドの位置を示す情報を書かな ければならない。

[0047] < 2, 3, 2 >

- ・ギャップ:フィールド間ギャップのみ削除、レコード 間ギャップは残す
- ・レコート位置疾め:すべてのレコードの相対位置情報 を保持
- ・トラック容量チェック:ギャップ長の調節により各レ コードの相対位置を維持

a.メモリ容量

残したレコード間ギャップ長の調節により各レコードの。 相対位置を元のCKDフォーマットのまま維持するので あるから、<2.2.2>と同じ様に、必要なメモリ容 <2、2,2>、<2,2、3>と全く同じである。レ コード間ギャップは存在するが、フィールド間ギャップ は無いので、チャネルとの間で連続したフィールドのデ ータを転送するとき (C→K→D) メモリ・アドレス はカウント・アップするだけでよい。しかし、レコード の位置情報をFBAのブロックごとに分散して持つ場合 は、単一フィールド内であっても、FBAのブロックに

24

またがったような場合は、メモリ上でもFBAブロック に含まれるレコードの位置情報などにより分断されるの これも<2,2、2>と全く同じである。目的レコード 10 で、その位置情報の部分をスキップ・ディフェクトなど のように飛ばしてデータ転送を行う必要がある。

c. 目的レコードを見つけるときの手順

<1、3,3>と全く同じである。目的レコードを探す ためには、レコードの位置情報を一回だけ読み取れば良 いので、メモリ・アクセス回数は全方式の中で最小であ る。目的レコードの位置は、その情報からダイレクトに 分かる。また、各レコードのCKDフォーマットでの相 対位置をメモリ上でも維持しているので、Set Se ctorの値から目的レコードの含まれるFBAのプロ 20 ックを正確に求めることができる。

d. フォーマット・ライト時の手順

<2、2、2>と<1、3、3>の中間的な手順とな る。トラック容量のチェックには、各レコードのCKD フォーマットでの相対位置をメモリ上でも維持している ので、フォーマット・ライトしようとしているレコード のメモリ上のアドレスが分かれば(c.の手順で分か る)。直ちに後どれだけのサイズのレコードがライトで きるか計算できる。フォーマット・ライトしたときは、 必ずレコードの位置情報を保持している制御情報に、そ 書き足さなければならない。

[0.048] < 2.3.3 >

- ・ギャップ:フィールド間ギャップのみ削除、レコード 間ギャップは残す
- ・レコード位置決め:すべてのレコードの相対位置情報 を保持
- トラック容量チェック: 各レコードにセグメント・ナ ンバ等の相対位置情報を保持

a. メモリ容量

40 フィールド間ギャップなどは削除し、レコード間ギャッ プを残すのはく2、3、2>と同じであるが、残したレ コード間ギャップによりレコードの相対位置を維持しよ うということではないので レコード間ギャップを無理

特関平5-307440

26

b. データ転送のやりやすさ

これはく2、3、2>と全く同じである。レコード間ギャップは存在するが、フィールド間ギャップは無いので、チャネルとの間で連続したフィールドのデータを転送するとき(C→K→D)、メモリ・アドレスはカウント・アップするだけでよい(各レコードに保持されているセグメント・ナンバなどはカウント・フィールドに含まれるので、データ転送時C→Kの邪魔になることはない)。また、レコードの位置情報をFBAのブロックにまたがる場合、メモリ上でもいり、FBAのブロックにまたがる場合、メモリ上でも下BAブロックに含まれるレコードの位置情報などにより分断されるので、その位置情報の部分をスキップ・ディフェクトなどのようにして飛ばしてデータ転送を行う必要がある。

25

c. 目的レコードを見つけるときの手順

これも<2,3、2>と全く同じである。目的レコードを探すためには、レコードの位置情報を一回だけ読み取れば良いので、メモリ・アクセス回数は全方式の中で最小である。目的レコードの位置は、その情報からダイレー20クトに分かる。

d. フォーマット・ライト時の手順

トラック容置のチェックのためには、フォーマット・ライトしようとしているレコードの一つ前のレコードのセグメント・ナンバ(本来のCKDフォーマットで、そのレコードのトラック上での組対位置を示す情報)とKL、DLから、後どれだけのサイズのレコードがライトできるか計算する。フォーマット・ライトしたときは、ライトしたレコード自身にそのレコードのセグメント・ナンバを計算して書いておかなければならない。同時に、必ずレコードの位置情報を保持している制御情報に、そのレコードのカウント・フィールドの位置を示す情報を書き足さなければならない。

[0.049] < 3, 1, 1 >

- ・ギャップ:レコード間ギャップ、フィールド間ギャップとも残す
- ・レコード位置決め:トラックの最初のレコードから全 レコード・リード
- ・トラック容量チェック: トラックの最初のレコードか ち全レコード・リード
- a. メモリ容量

余分な制御情報の付加はないが、レコード間ギャップ、 フィールド間ギャップとも残すので ほぼCKDフォー メモリ上でもレコード間、フィールド間ともにギャップが存在するので、連続したフィールドのデータ転送をチャネルとの間で行うとき、メモリ・アドレスは単純にカウント・アップするだけではなく、ギャップの分を飛ばして、再設定する必要がある。しかし、余分な副御情報はないので、単一フィールドがFBAのブロックにまたがっても、メモリ上でそのフィールドが分断されることはない。

- c. 目的レコードを見つけるときの手順
- 10 <1.1,1>とほぼ同じである。目的レコードを見つけるためには、トラックの先頭から該当レコードまでのレコード数だけメモリをアクセスする必要がある。すなわち、各レコードのカウント・フィールドのリードが必要になる。各レコードのカウント・フィールドを取得した後、それらのKL、Dしから目的レコードの位置を計算していくには、KL、Dしに加えレコード間ギャップ、フィールド間ギャップを足しこんでいけばよく単純である。
 - d. フォーマット・ライト時の手順
 - これも<1,1、1>とほぼ同じである。トラック容置をチェックするためにも、トラックの先頭から該当レコードまでのレコード数だけメモリをアクセスする必要がある。トラック容置のチェックのためには、ギャップはそのまま残っているが、ECCやパディング・データなどの分は換算してやる必要がある。ECCの分なども含めびったり同じ容置をギャップ長で補正していれば、メモリ・アドレスから直ちに無トラック容置が分かるが、これは<3,2、2>方式となる。フォーマット・ライト時、更新しなければならない制御情報はない。

30 [0050]<3, 2, 2>

- ・ギャップ:レコード間ギャップ、フィールド間ギャップとも残す
- ・レコード位置決め:FBAのブロックに含まれる最初 のレコードの位置を保持
- ・トラック容量チェック:ギャップ長の調節により各レ コードの相対位置を維持
- a. メモリ容量

レコード間ギャップ、フィールド間ギャップとも残っているが、ギャップ長を調節して各レコードの相対位置を 40 元のCKDフォーマットのまま維持するので、結局必要なメモリ容置は<2,2、2>と同じで、元のCKDフォーマットのトラック容量と、FBAのプロックに含まれる最初のレコードの位置情報を加えた分だけ必要であ

特関平5-307440

さらに、く3、1、1>と異なり、単一フィールド内で あっても、FBAのブロックにまたがったような場合 は、メモリ上でもFBAプロックに含まれる最初のレコ ードの位置情報などにより分断されるので、その位置情 鍛の部分をスキップ・ディフェクトなどのように飛ばし てデータ転送を行う必要がある。

27

c. 目的レコードを見つけるときの手順

<2、2、2>と全く同じである。目的レコードを探す ためには、FBAのブロックの最初のレコードから目的 レコードまでの間に存在するレコードの回数だけメモリ をアクセスする必要がある。従って、<3、1、1>よ りはメモリ・アクセス回數は少ない。FBAのブロック の最初のレコードの位置から目的レコードの位置を計算 する方法はほとんどく3、1、1>と同じで単純である **《カウント・フィールドのサイズとKL、DLさらにレ** コード間ギャップ、フィールド間ギャップをどんどん足 し込んでいけば良い)。また、各レコードのCKDフォ ーマットでの相対位置をメモリ上でも維持しているの。 で、Set Sectorの値から目的レコードの含ま れるFBAのブロックを正確に求めることができる。 d. フォーマット・ライト時の手順

これも<2、2、2>と全く同じである。トラック容量 のチェックには、各レコードのCKDフォーマットでの 相対位置をメモリ上でも維持しているので、フォーマッ ト・ライトしようとしているレコードのメモリ上のアド レスが分かれば (c. の手順で分かる)、直ちに後どれ だけのサイズのレコードがライトできるか計算できる。 フォーマット・ライトして、新たなFBAブロック上に 新たなカウント・フィールドが生じたときは、そのFB 位置を示す情報を書かなければならない。

[0.051] < 3, 2, 3 >

- ・ギャップ:レコード間ギャップ、フィールド間ギャッ プとも残す
- · レコード位置決め: FBAのプロックに含まれる最初 のレコードの位置を保持
- ・トラック容量チェック:各レコードにセグメント・ナ ンバ等の相対位置情報を保持

a. メモリ容量

レコード間ギャップ、フィールド間ギャップとも残すの 40 を保持 で、ほぼCKDフォーマットのトラック・イメージがそ のまま残され、さらに、FBAのブロックに含まれる最 初のレコードの位置情報の分も会分に必要であるためメ

もレコード間、フィールド間ともにギャップが存在する ので、連続したフィールドのデータ転送をチャネルとの 間で行うとき、メモリ・アドレスは単純にカウント・ア ップするだけではなく、<3、1、1>と同様。ギャッ プの分を飛ばして、再設定する必要がある。さらに、< 3、1、1>と異なり、単一フィールド内であっても、 FBAのブロックにまたがったような場合は、メモリ上 でもFBAプロックに含まれる最初のレコードの位置情 級などにより分断されるので、その位置情報の部分をス 10 キップ・ディフェクトなどのように飛ばしてデータ転送 を行う必要がある。

28

c. 目的レコードを見つけるときの手順

これも<3,2、2>と全く同じである。目的レコード を探すためには、FBAのブロックの最初のレコードか ら目的レコードまでの間に存在するレコードの回数だけ メモリをアクセスする必要がある。従って、<3、1, 1>よりはメモリ・アクセス回数は少ない。FBAのブ ロックの最初のレコードの位置から目的レコードの位置 を計算する方法はほとんどく3,1、1>と同じで単純 20 である(カウント・フィールドのサイズとKL、DLさ ちにレコード間ギャップ、フィールド間ギャップをどん とん足し込んでいけば良い)。

d. フォーマット・ライト時の手順

トラック容量のチェックのためには、フォーマット・ラ イトしようとしているレコードの一つ前のレコードのセ グメント・ナンバ(本来のCKDフォーマットで、その レコードのトラック上での組対位置を示す情報)とK L. DLから、後どれだけのサイズのレコードがライト できるか計算する。フォーマット・ライトしたときは、 A ブロックに先頭のレコードのカウント・フィールドの 30 ライトしたレコード自身にそのレコードのセグメント・ ナンバを書いておかなければならない。同時に新たな下 BAプロック上に新たなカウント・フィールドが生じた ときは、そのFBAプロックに先頭のレコードのカウン ト・フィールドの位置を示す情報を書かなければならな į,

[0.052] < 3, 3, 2 >

- ・ギャップ:レコード間ギャップ、フィールド間ギャッ プとも残す
- ・レコード位置決め:すべてのレコードの相対位置情報
- ・トラック容量チェック:ギャップ長の調節により各レ コードの相対位置を維持
- a. メモリ容量

30

ドの分を保持するので、メモリ容置も<3,2、2>より多くなり、<2,3,2>と同様全方式中最大である。

29

b. データ転送のやりやすさ

これは、く3、2、2>、く3、2、3>と全く同じである。メモリ上でもレコード間、フィールド間ともにギャップが存在するので、連続したフィールドのデータ転送をチャネルとの間で行うとき、メモリ・アドレスは単純にカウント・アップするだけではなく、く3、1、1>と同様、ギャップの分を飛ばして、再設定する必要がある。さらに、く3、1、1>と異なり、レコードの位置情報をFBAのプロックごとに分散して持つ場合は、単一フィールド内であっても、FBAのプロックにまたがったような場合は、メモリ上でもFBAプロックにまたがったような場合は、メモリ上でもFBAプロックにまたがったような場合は、メモリ上でもFBAプロックに含まれるレコードの位置情報などにより分断されるので、その位置情報の部分をスキップ・ディフェクトなどのように飛ばしてデータ転送を行う必要がある。

c. 目的レコードを見つけるときの手順

d.フォーマット・ライト時の手順

<2、3,2>と全く同じである。トラック容量のチェックには、各レコードのCKDフォーマットでの相対位 30 置をメモリ上でも維持しているので、フォーマット・ライトしようとしているレコードのメモリ上のアドレスが分かれば(c.の手順で分かる)、直ちに後どれだけのサイズのレコードがライトできるか計算できる。フォーマット・ライトしたときは、必ずレコードの位置情報を保持している制御情報に、そのレコードのカウント・フィールドの位置を示す情報を書き足さなければならない。

[0.053] < 3, 3, 3 >

・ギャップ:レコード間ギャップ、フィールド間ギャッ 40 プとも残す

・レコード位置決め: すべてのレコードの相対位置情報 を保持 よりもさらに多く、最大に近くなる。しかし、CKDフォーマットにおけるレコードの相対位置を積極的に維持しようと言うのではないので、ECCやパディングの分まではメモリ容量に加える必要はない。そのかわり、ギャップを残した意味はあまりなくなる。

b. データ転送のやりやすさ

これは、く3、2、2>、く3、2、3>、く3、3、2>と全く同じである。メモリ上でもレコード間、フィールド間ともにギャップが存在するので、連続したフィールドのデータ転送をチャネルとの間で行うとき、メモリ・アドレスは単純にカウント・アップするだけではなく、く3、1、1>と同様、ギャップの分を飛ばして、再設定する必要がある。さらに、く3、1、1>と異なり、レコードの位置情報をFBAのブロックごとに分散して持つ場合は、単一フィールド内であっても、FBAのブロックにまたがったような場合は、メモリ上でもFBAブロックに含まれるレコードの位置情報などにより分断されるので、その位置情報の部分をスキップ・ディフェクトなどのように飛ばしてデータ転送を行う必要がある。

c. 目的レコードを見つけるときの手順

これはく3,3、2>と全く同じである。目的レコードを探すためには、レコードの位置情報を一回だけ読み取れば良いので、メモリ・アクセス回数は全方式の中で最小である。目的レコードの位置は、その情報からダイレクトに分かる。

d. フォーマット・ライト時の手順

く2、3、3>と全く同じである。トラック容量のチェックのためには、フォーマット・ライトしようとしているレコードの一つ前のレコードのセグメント・ナンバ(本来のCKDフォーマットで、そのレコードのトラック上での相対位置を示す情報)とKし、DLから、後どれだけのサイズのレコードがライトできるか計算する。フォーマット・ライトしたときは、必ずライトしたレコード自身にそのレコードのセグメント・ナンバを書いておかなければならない。同時に、レコードの位置情報を保持している制御情報に、そのレコードのカウント・フィールドの位置を示す情報を書き足さなければならない。

【0054】図9の古半分に前述した各方式の比較結果 をまとめた。「比較項目」の額には前述した4つの比較 項目を記載している。各比較項目にはその重要度に応じ 5段階のグレード付けをしている。5がもっとも重要な

特関平5-307440

32

の比較項目のグレードの値を掛けたものを全部の比較項目について合計している。従って、合計得点の高い変換方式ほど優れた変換方式ということになる。図9では、この合計得点が従来の方式より高い変換方式の合計得点 髄に*を付している。

31

【りり55】図9の合計得点は多分に主観的な面もあり、あくまで目安である。しかし、試しに点数の与え方や各比較項目のグレードの値を多少振っても、従来の方式と同等以上の得点になる変換方式は、やはり図9と同じものであった。従って、今回の比較項目で考える限り、良い目安になると考えられる。従来の方式がトップにならなかった理由は、おもに目的レコードを見つけるメモリ・アクセスの回数である。従来の方式においては、FBAのブロック中の最初のレコードは一発で見つけることができるが、その後ろのレコードはそこから順番に後続のレコードのカウント・フィールドを見つけて設んでいかなくてはならない。従来の方式がこの点を重視しなかった理由は下記の2点が考えられる。

(1) レコードの位置情報を持つ単位の問題 従来の方式はFBAディスクのブロック(≒セクタ)ご とにそこに含まれる最初のレコードの位置情報を持つと している。現実のSCSIディスクなどでは、このブロ ックの大きさはせいせい 1 ~2 KB程度であるのに対 し、そこに記録するCKDのレコードのサイズは4KB 程度がもっとも多い。従って、現実には一つのFBAブ ロックにたくさんのCKDレコードが含まれるケースよ りも、図10のように一つのCKDレコードが複数のF BAプロックにまたがり、結局、一つのFBAプロック に含まれるCKDレコードは1個以下というケースの方 が多いと考えられる。従って、Set Sectorに より、目的のレコードが含まれるFBAプロックさえき ちんと分かればほとんど 1回のメモリ・アクセスで目的 レコードを見つけることができるので、この方式でもメ モリ・アクセス回数が多くならない。

(2)トラック・バッファの置き場所の問題 従来の方式においては、このようなCKD-FBA変換 を行うエミュレータは、チャネル・プロセッサとFBA ディスクの間のどこにあってもよいとされているが(も ちろんDKCでもよいことになる)、エミュレータはチャネル・プロセッサ自体が実行している。すなわち、ディスク・キャッシュをベースとした大規模なシステムは あまり意識していない。従って、トラック・イメージを 【0056】とれらの点から従来はあまりメモリ・アクセスの回数という点を重視しなかったと考えられるが、 上記の2点はそれぞれ以下のような問題をはらんでいる。

(1) レコードの位置情報を持つ単位の問題 従来の方式はF BAディスクのブロック(≒セクタ)ご とにそこに含まれる最初のレコードの位置情報を持つと しているが、非効率的である。図11に示すように、デ ィスク・キャッシュをベースにした4台のデータ・ディ 10 スクと1台の冗長ディスクをもつアレイ型ディスク状態 (RAID)を考える場合、物理ディスクへのリード/ ライトの単位はFBAのブロックの様な細かい単位では なく、例えば、CKDの1トラック分(例えば48K B) を各データ・ディスクに分割した1/4トラック分 である。従って、レコードの位置情報もFBAごとよ り、この1/4トラックごとに待った方がよい(図11 参照)。1/4トラックごとに位置情報を持つのであれ は、1トラック分の位置情報は4箇所に集約されるの で、CKDレコードがメモリ上でこの位置情報により分 20 断されるのも、この4箇所ですむ。しかし、従来方式の ようにFBAのブロックごとにレコードの位置情報を持 つとすると、1トラックの分断箇所も1トラックに含ま れるFBAブロックの個數になる。(1ブロック2KB ととすると、1トラックで約24箇所)すなわち、4K BのCKDレコードであれば必ず1レコード中1~2箇 所分断されることになる。この分断箇所は特別なハード ウェア (月/W) を用意しない限り磁気ディスク制御装 置のファームウェア(F/W)で処理することになる。 そのために数十μsecかかるとし、チャネルの転送レ ートを4.5MB/secとすれば、4KBのレコード を転送するのにかかる時間が889μsecであるか ら、1レコード当り数%~10%近い性能ダウンにつな がる。これを避けるために図11のように、1/4トラ ックごとに位置情報を鈴たせることにすると、今度はそ の中に含まれるCKDレコード数が多くなるので、従来 方式ではメモリ・アクセス回数が多くなってしまう。 【①①57】(2)トラック・バッファの置き場所の間

従来の方式のように、トラック・バッファがチャネル・ 40 プロセッサ自身のローカル・メモリにあり、そのチャネ ル・プロセッサがCKD-FBAエミュレーションを行 うような場合は、そこへのメモリ・アクセス回数が少々 多くても、あまり問題にはならない。ところが、ディス

題

34

33

ばならないので、各チャネルとのデータ転送をつかさど るDKC内のチャネル・パス・サーバ (CPS) がエミ ュレーションを行うことになる。従って、従来の方式で は目的レコードを見つけるために、各チャネル・パス・ サーバは共有部分であるキャッシュ・メモリ上のトラッ ク・バッファを頻繁にアクセスすることになる。このキ ャッシュ・メモリへのアクセスはチャネル・バス・サー バだけでなく、デバイス側からも行われる。つまりこの キャッシュ・メモリはリード/ライトが高速で行われる に細かい単位で頻繁にアクセスすることは、それだけで 著しく内部バスのデータ転送能力を低くする原因とな る。従って、このキャッシュ・メモリへのアクセスは少 ャデータ量が多くなっても、1回でアクセスする方式の 方がよい。以上のような理由から、メモリ・アクセスの 回数という点にも注目しているため、その部分で従来の 方式は若干点数を下げ、トップになっておらず、従来の 方式より高得点をあげているのは、このメモリ・アクセ ス回数の点で有利なくケース !!-3>を採用してい る変換方式の中のものである。

【0058】次に「ギャップの削除方法とメモリ容置の 評価」について説明する。ここでは、CKDフォーマッ トのトラック・イメージをキャッシュ・メモリ(トラッ ク・バッファ)上に展開してFBAディスクに記録する 際、ギャップも含めてメモリ上に展開するか否かについ て、前述した3方式についてそれぞれ具体的にメモリ容 置がどの程度異なるか評価する。

【0059】CKDフォーマットのトラック・イメージ をキャッシュ・メモリ(トラック・バッファ)上に展開 してFBAディスクに記録する際、ギャップも含めてメー30 モリ上に展開するか否かについては、

<ケース !- 1>

・レコード間ギャップも含めすべてのギャップを削除し てしまう。

<ケース !-2>

・レコード間ギャップだけ残し、フィールド間ギャップ は取り除く。

くケース !-3>

・レコード間ギャップだけでなく、すべてのフィールド 間ギャップも残す(ECCやパディングなどは取り除 < > 。

という3種類の方式が考えられる。ここでは、これらの 各方式ごとにCKDフォーマット1トラック分のトラッ

のCKDトラックのまま維持する方式)と組み合わせた 場合は、トラック・イメージのメモリ容置は鴬に元のC KDフォーマットと等しくなる。従って、ここではギャ ップ長の調整は行なわない場合について見請りを行う。 【0060】CKDフォーマットでは、ギャップの数は 1トラック中のレコード籔及びキー・フィールドの有無 などに依存するため、ギャップの有無によるメモリ容量 の大小を見積もるには、見積もりを行うトラック中のレ コード数などのトラック・フォーマットを規定する必要 システムのボトル・ネック部分である。このような部分「10」がある。ここでは極端なケースとして、レコード数がも っとも多い場合。もっとも少ない場合。また、標準的な ケース等、図12の4ケースについて見積もりを行う。 いずれも、CKDフォーマットとしては図33を想定し ている。それぞれのケースにおけるトラック当りのレコ ード数の計算は図13、図14、図15、図16に示し てある。図12のフォーマット2、3は、ここでは述べ ないが「ディスク・アクセスのワークロード・タイプ調 査」という調査に基づいて定めた。また、ジャーナル・ ファイルのレコード・サイズは200B~32KBであ 20 るが、もっともよく用いられているサイズは200B~ 300Bくちいであるので、図12では200Bを用い ている。

> 【0061】メモリ容量を見續もるに当り、ここでは、 下記のような条件で見締りを行う。

- (1)トラック・フォーマットとしては図33を使用す
- (2)各フィールドのECC、スペース(X) F F))、32B境界にあわせるためのリバディングは削 除する。
- (3)員A、カウント・フィールドのその他のパラメー タはすべて残す。
 - (4)レコードの位置情報などのCKD-FBA変換の ための制御情報の容量はことでは見積もらない。これ は、ギャップの削除方法とはまた別の条件であるので、 別途見締もる。

結局、メモリ上ではギャップ以外の各フィールドの中身 は図33のXで示した部分のようになるとして見積りを 行う。見續りケースごとのトラック当りのレコード数を 計算すると図13~図16のようになる。

40 【0062】また、各ギャップ削除方法ごとのメモリ容 置見積りは以下のようになる。

くケース !-!>

・レコード間ギャップも含めすべてのギャップを削除し 06/15/2004

(19)

特闘平5-307440

よって、1トラック分の容量は、

 $HA+RO+Rn\times 93=28+29+29\times 93=2$ 754

35

●フォーマット2(ジャーナル・ファイルの典型)

HAのサイズ = 40-12=28

 $R00 \forall 7 = R0C + R0D = (40 - 12) + 8$ = 36

 $RnO \phi dx = RnC + RnD = (40 - 12) + 2$ 0.0 = 2.2.8

よって、1トラック分の容量は、

 $HA+RO+Rn\times68=28+36+228\times68=$ 15568

●フォーマット3(ページング、スワッピング、VSA M)

HAのサイズ = 40-12=28

R0097x = R0C + R0D = (40 - 12) + 8= 36

 $RnO \forall 4\% = RnC + RnD = (40 - 12) + 4$ 096 = 4124

よって、1トラック分の容量は、

 $HA+RO+Rn\times10=28+36+4124\times10$ =41304

●フォーマット4(最少レコード数のケース))

HAのサイズ = 40-12=28

R00077x = R0C+R0D = (40-12)+47988 = 48016

よって、1トラック分の容量は、

HA+R0=28+48016=48044

【0063】 <ケース 【-2>

は取り除く(ECCやパディングなどは取り除く)。た だし、フィールド間ギャップやECC、スペース(X) FF`)、パディングなどを削除してもその分をギャッ ブ長を伸ばしてつじつまを合わせることにすると、メモ リ容量は元のCKDフォーマットと全く同じになる。従 って、ここでは削除分のつじつま合わせは行わないケー スで見締りを行う。

●フォーマット 1 (最多レコード数のケース)

HAのサイズ = G1+HA=504+(40-12)= 532

R00077X = G2C+R0C+R0D=248+(40-12)+1=277

Rnのサイズ =G3+RnC+RnD=216+{4

R O のサイズ = G2C+ROC+ROD=248+ (40-12)+8=284

Rnのサイズ =G3+RnC+RnD=216+(4 (0-12)+200=444

よって、1トラック分の容量は、

 $HA+R0+Rn\times68=532+284+444\times6$ 8 = 31008

●フォーマット3(ページング、スワッピング、VSA M)

10 HAのサイズ = G1+HA=504+(40-12) = 532

R0のサイズ =G2C+R0C+R0D=248+

(40-12)+8=284

Rnのサイズ =G3+RnC+RnD=216+(4

0-12) +4096=4340

よって、1トラック分の容量は、

 $HA+RO+Rn\times10=532+284+4340\times$ 10 = 44216

●フォーマット4 (最少レコード数のケース)

20 HAのサイズ =G1+HA=504+(40-12) = 532

R () のサイズ = G2C+R()C+R()D=248+

(40-12)+47988=48264

よって、1トラック分の容量は、

HA+R0=532+48264=48796

[0064] <ケース [-3>

・レコード間ギャップだけでなく、すべてのフィールド 間ギャップも残す(ECCやパディングなどは取り除 く)。この場合も、ECCやスペース(X FF)、 ・レコード間ギャップだけ残し、フィールド間ギャップ 30 パディングなどを削除してもその分をギャップ長を伸ば してつじつまを合わせるととにすると、メモリ容量は元 のCKDフォーマットと全く同じになる。従って、ここ では削除分のつじつま合わせは行わないケースで見請り を行う。

●フォーマット1(最多レコード数のケース)

 $HAO \forall 1\% = G1 + HA = 504 + (40 - 12)$ = 532

R O のサイズ = G 2 C + R O C + G 2 + R O D = 2 4 8+(40-12)+224+1=501

40 Rnのサイズ =G3+RnC+G2+RnD=216 +(40-12)+224+1=469よって、1トラック分の容量は、

 $HA+RO+Rn\times93=532+501+469\times9$

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615231628550938.gif

特関平5-307440

40

39

箇所に保持する方法について見積もらない理由は以下の とおりである。位置情報を一箇所で一括して保持してい ると、図19のようなアレイ型ディスク装置を考えた場 台、4台のデータ・ディスクから1CKDトラック分の データを読んでくるとき、目的レコードが記録されてい るディスクからのデータを読み終えても、位置情報が記 録されているディスクからのデータを読み終らないと、 目的レコードの記録位置を見つけることができず、ホス トとのデータ転送を開始できない。従って、回転同期を サポートできなかった場合や、サポートしていてもスター19 -ンバイ・ディスクが加わって同期が崩れているときなど に平均回転待ち時間の増加につながる。

【0068】とこでは、見積り条件を以下のようなもの とする。まず、レコード1個当りの保持情報として、レ コード1個につき、下図のような4バイトの情報を保持 するものとする。

レコードNo.:記録されているCKDレコードのレコ ードNo. である。<ケース !!-2>では制御上必 ずしも必須ではないが、特に<ケース !!-3>では 制御情報中にこのレコードNo. を持っていると、いち 20 いち実際のレコードのカウント・フィールドを読まなく ても一発で目的レコードを発見することができる。

- :CKDレコードとして記憶されている 場合のセクタ値を記憶する。このセクタ値によりセット セクタコマンドで指定されたセクタ値との比較が可能に なる。また、このセクタ値によりそのレコードのトラッ ク先頭からの組対位置を求めることができ、既に消費し た容量が判定できる。セクタは7つのセグメントから標 成されているため、このセクタ値を用いてセグメントナ トナンバ=セクタ値×7である。

メモリ・アドレス:記録されているCKDレコードのメ*

NR = { (管理単位のサイズ) - α } ÷ 2 9 B $\cdot \cdot \cdot \{1\}$

また。管理単位当りの位置情報のメモリ容置ではそのレ コード数NRに4Bを掛ければよいので、

· · · (2) $\alpha = NR \times 4B$

で求められる。この2式を解くと、

NR = (管理単位のサイズ) /33

《小籔点以下切捨て》・・・(3)

となる。従って、(3)式で求めたNRを(2)式に代 入することにより、ただちにαも求められる。ただし、 図33のトラック・フォーマットでは1トラック内のレ

*モリ上でのバイト・アドレスである。2 Bあれば64K Bまでアドレッシングできるので、図33のフォーマッ トでは十分である。アドレスの起点は、CKDトラック の先頭にするか、位置情報の管理単位である各FBAブ ロック等の先頭にするかは、とりあえず問わない。

【①069】また、CKDレコードの位置情報を管理す る単位(レコードの位置情報を保持する単位)としては 図21の2ケースについて見請りを行う。上記の2つの ケースにおいて、<ケース | | -2>と<ケース | !-3>のそれぞれについて記録されているCKDレコ ードの位置情報を持つためのメモリ容量を見請もる。見 補り結果は以下のとおりである。

<ケース | | | -2 > : 先頭のレコードの位置情報だ け保持する。この方式では、位置情報の管理単位のサイ ズにかかわらず、鴬に管理単位ごとレコード1個分の位 置情報しか保持しないので、位置情報のためのメモリ容 置は管理単位ごとに4Bである。

<ケース !【-3> :すべてのレコードの位置情報 を保持する。この方式では、管理単位の大きさによっ て、そこに記録され得るCKDのレコード数が異なって くる。さらに、あるサイズの管理単位にどのくらいのC KDレコードが記録できるかは、ギャップの削除方法に も依存するが、ここでは、もっともレコード数が多くな るくケース 【-1>(すべてのギャップを削除する) を採用して見積りを行う。このときの1レコード当りの 最少メモリ容量は、前述した「ギャップの削除方法とメ モリ容置の評価」の「<ケース !-1>のフォーマッ ト1(最多レコードのケース)」のRinのサイズより、 29Bであることが分かっている。従って、各管理単位 ンバを計算することが可能である。すなわち、セグメン 30 のサイズごとに記録できる最多レコード数NRは、位置 情報のためのメモリ容置をαとすると

※ると図22のようになる。

【0070】前途した「ギャップの削除方法とメモリ容 置の評価」によれば、CKDレコードを記録するために 正味必要なメモリ容量の最大値は、1トラック1レコー ド(R()のみ)でそのデータ・フィールドが最長の場合 40 である。このとき必要なメモリ容量は、図17から日 A. RO合わせて図23のようになる。CKDトラック 1本のために用意するFBAディスクの容置を48KB (12KB×4)とすると 制御情報のために使用でき

待することができる。

+(40-12)+224+200=668よって、1トラック分の容量は、

 $HA+RO+Rn\times68=532+508+668\times6$ 8 = 46464

37

●フォーマット3(ページング、スワッピング、VSA

 $HAO \forall 4\% = G1 + HA = 504 + (40 - 12)$ = 532

R00074x = G2C+R0C+G2+R0D=248+(4(1-12)+224+8=50)8RnOサイズ = G3 + RnC + G2 + RnD = 216+(40-12)+224+4096=4564よって、1トラック分の容量は、

 $HA+RO+Rn\times10=532+508+4564\times$ 10 = 46680

●フォーマット4(最少レコード数のケース)) $HAO \forall 4\% = G1 + HA = 504 + (40 - 12)$ = 532

R0のサイズ = G2C+R0C+G2+R0D=248+(40-12)+224+47988=48488 20 ときも空いた領域に他のトラックのデータを書いてしま よって、1トラック分の容量は、

HA+R0=532+48488=49020 【0065】図17に<ケース !-1>~<ケース !-3>までの3種類のギャップ削除方法について、そ れぞれフォーマット1~4までの4つのトラック・フォ ーマットをメモリ上に展開したときのメモリ容量を示 す。図18はこれをグラフで表したものである。

【0066】図17、図18から分かるようにどのトラ ック・フォーマットでも、 <ケース 【 - 1 >~<ケース

【-3>と残すギャップが多いほどメモリ容量も多く 必要となっている。<ケース !-3>ではすべてのギ ャップを残すため、どのフォーマットにおいてもほぼ元 のCKDフォーマットでの容置と等しいメモリ容量が必 要となる。フィールド間ギャップを削除している<ケー ス 【 - 2 > でも、トラック容置のチェック方式とし て、削除したフィールド間ギャップやECC、バディン グの分だけレコード間ギャップを伸ばし、各レコードの トラックの先頭からの相対位置を元のCKDトラックの まま維持する方式をとると、必要なメモリ容置は<ケー ス 【-3>とほぼ同じになる。これに対し、すべての 40 ギャップを削除する<ケース !-1>では、特にレコ ード・サイズが小さいフォーマット1、2でメモリ容置 が題著に小さくなっている。93レコードのフォーマッ

ク分・・・12KB》にすれば、余ったキャッシュ・メ モリの領域には他のトラックのデータを書くことができ る。従って、同一のキャッシュ・メモリ容費でより多く のトラックのデータを保持することができ、キャッシュ ・メモリの利用率向上、引いていはヒット率の向上を期

38

(2)1トラック分のイメージのデータ置が少なくです。 むということは、物理ディスクへそのデータを書くとき も少ないデータ量ですむということである。例えば、1 10 トラック分のイメージのデータがCKDフォーマットの 1/2ですめば、物理ディスクへのデータ転送はデータ ディスク1と2、及びパリティ・ディスクだけです。 み、フォーマット・ライトでなければデータ・ディスク 3と4にはデータを転送しなくてよい。これは、サブシ ステム内の各バス等の負荷軽減につながる。ただし、メ モリ容量が少なくすんでも、物理ディスク上の領域は最 大値に合わせ確保しておかないと制御が非常に複雑にな る。メモリ上のトラック・イメージがCKDフォーマッ トの半分だからといって、そのデータをディスクに書く うと、次にそのトラックが再フォーマットされて、トラ ック・イメージの畳が増えてしまったとき、ディスク上 の連続した領域にはトラック・イメージをライトできな くなり、ディスク上でどこか空いている鎖域を探してラ イトするようなことになる。トラック・イメージのデー タ量が減った場合、その分物理ディスクの空き領域も有 効に活用できればよりよいが、(1)、(2)のメリッ トだけでも十分魅力的である。

以上のように、メモリ容量の大小を実際に見積もった結 果、ギャップをすべて残した場合と、ギャップをすべて 削除した場合では、レコード数によっては必要なメモリ 容量が数倍以上の関きがでることがわかる。

【10067】次に、「レコードの位置情報のメモリ容置 見積り」について説明する。目的レコードの位置決めを 行う方式として、<ケース | | | - 1 > と<ケース | | -2>と<ケース !!-3>の3方式をあげた。これ ちのうち、<ケース ! [-1>を除く他の2方式は、 いずれもレコードそのものとは別個に、メモリ上でのレ コードの位置を示す制御情報を保持する方式である。こ こでは、この位置決めのための制御情報に各方式でどの 程度メモリ容量(=FBAディスク上での容置)が必要 なのか見續りを行う。ことでは<ケース !!-!>を 除く くケース II-2>と<ケース II-3>に

特関平5-307440

41

2サイズ12KB)、位置情報のためのメモリ容量が少ない場合(1504B)と、レコードのためのメモリ容置がもっとも少なくて済む<ケース I-1>で比べてみても位置情報のために使用できるメモリ容置約400Bが不足してしまう。

【0071】 <ケース 【I-3>は目的レコードを探すためのメモリ・アクセス回数が少なく、従来の方式 (<ケース II-2>) より有望であるので、この不足分に対する対策を考える必要がある。この対策としては、下記のようなものが考えられる。

対策 1 物理ディスク 1 台当りにリザーブする容量を増 やす。

ex.) 12 K B→13 K Bとすると、C K Dトラック1本のために使用できる容置は、52 K Bととなり、不足は一挙に解決される。・・・物理ディスクは52 K B / C K Dトラック必要となり、48 K B / C K Dトラックに比べてディスクエリアが無駄になるが、物理ディスクのコストが減少してきているので有効な方法のひとつである。

対策2 レコード1個当りに必要な制御情報の量を減る 20 と、(1)管理単位にまたがって記録されているレコー 、す。 ドのデータ転送を行うときも、飛び越さなければならな

ex.) 4B/レコード→2B/レコードとすると、 制御情報に必要な総メモリ容置は、752Bとなり不足 しなくなる。

対策3 制御情報の個数を減らす。

ex.) この見請りでは、管理単位2の場合(サイズ 12 KB)、4つの各管理単位ごとに最大94個のレコードの位置情報を保持するように考えている。しかし、実際は4つの管理単位の合計でMax. 94個が必要であるので、うまく工夫して、制御情報の総容置を減らすことを考える。

【0072】以上のように「レコードの位置情報のメモリ容量見論り」の結果は以下のとおりである。<ケース II-2>では、メモリ容置は不足せず問題ない。<ケース II-3>では条件によっても異なるが、位置情報のために使用できるメモリ容置が若干不足してしまう。<ケース II-3>は目的レコードを探すためのメモリ・アクセス回数が少なく、有望であるので、今後、この不足分に対する対策を考える必要がある。

【0073】次に、「レコードの位置情報の制御方式の 40 改善」について説明する。先の見論りの制御方式の問題 点は以下のとおりである。前述した「レコードの位置情 級のメモリ容量見論り」では、CKDレコードの位置情

 $4B \times 94 = 376B$

だけの位置情報領域を見積もっていた。CKDトラック 1本分のトラック・イメージはこの12KBの管理単位 4個からなっており、データはこの12KBずつ4台の データ・ディスクに分散して記録されるので、CKDト ラック1本当りの位置情報のメモリ容量は、

42

 $376B \times 4 = 1504B$

となってしまう。しかし、これでは、CKDトラック1本当り94×4=376レコード分の位置情報の領域を 10確保していることになる。図33のフォーマットでは、 1CKDトラックの最大レコード数は94レコード(R 0含む)であるので、12KBの各管理単位に記録され 得る最大レコード数がそれぞれ94個であっても、同時 に全部の管理単位に94個ずつのレコードが記録される ことはあり得ない。従って、94×3=282レコード 分の位置情報の領域は無駄になっていることになる。

【0074】とのような問題点は、レコードの管理単位

内の位置情報領域のサイズを固定にしようとしたことか

と、(1)管理単位にまたがって記録されているレコードのデータ転送を行うときも、飛び越さなければならない位置情報領域のサイズが常に一定なので、制御が簡単であること、(2)フォーマット・ライト時も、CKDレコードを書き込めるメモリの領域が固定なので、制御が簡単であること、などの利点が発生する。しかし、位置情報領域のサイズを固定にする限り、そのサイズは最大値に合わせざるを得ず、管理単位ごとに94レコード分の領域を確保しておくほかない。これに対し、位置情報領域のサイズを可変にすると、実際に記録されているレコードの分だけしか位置情報領域を使用しないような制御も可能であるが、上記のような利点は基本的に失われてしまう。位置情報の総容置を減らすためには、各管

【りり75】図25に位置情報領域のサイズを可変にした改善案を示す。以下、この図を基に改善案の説明を行う。なお、以際はレコードの位置情報の管理単位のサイズはデータ・ディスクへの分割単位のサイズと同じ12 KBの場合について取り扱う。従来の方式と同じFBAディスクのブロック(セクタ)・サイズと同じ1~2 KBでは効率が無いからである(詳細は、前述した「レコードの位置情報を持つ単位の問題」を参昭のこと)。ま

理単位の位置情報領域のサイズを可変にすることが必須

であるが、このような欠点をうまく回避することが重要

である。

特關平5-307440

44

ード・ポインタを使用しない。これにより、レコード・ポインタ領域のサイズは最大でも、1CKDトラック当り。

43

4 byte×94=376 byte で済む。

(2) レコード・ボインタを含むコントロール・フレームのサイズは、別途、制御情報(図25のコントロール・フレーム・ボインタ)として保持している。この情報により、コントロール・フレームのサイズが可変となっても、制御を複雑にせずに済ませる。

(3) これらの副御情報(コントロール・フレーム)は、各フレームの先頭ではなく、最後尾に記録する。また、コントロール・フレーム内のレコード・ポインタも後ろから順番に並べていく。(実際のレコードがレコード・プレーム内で前にあるものほど、それに対応するレコード・ポインタはコントロール・プレーム内で後ろにくる)。これにより、フォーマット・ライト時の副御も簡単に行える。

【0076】以下、実際のリード/ライトの動きに従って、フレーム内のレコードの位置決め制御の方法をもう少し詳細に説明する。

(1) リード/アップデート・ライト時

(a)物理ディスクからプレームをキャッシュ・メモリ 上に読み込んできたら、その最後屋のコントロール・フ レームをCPSが読み取る。このとき、コントロール・ フレームのサイズは読んでみるまで分からないわけであ るが、とりあえず、フレームの最後尾の適当なバイト数 をまとめて読んでみる。(このとき読み取るバイト数 は、CPSやキャッシュ・メモリ、バスなどのアーキテ クチャにより最適値を選択する必要がある。)例えば、 フレームの最後屋32Bを読み取ることにすると、この フレーム内に記録されているレコード数が7個以下の場 合は、CPSはこの1回のアクセスですべてのレコード のレコード・ポインタを取得することができる。例えば 4KBサイズをもっとも多いレコードサイズとする場 台、1フレーム中のレコード数は3個以下であるから、 大部分の場合は、この1回のキャッシュメモリ・アクセ スですべてのレコード・ポインタを取得できることにな る。

(b) 読み取ったコントロール・フレームの最後尾のコ 40 ントロール・フレーム・ポインタ中のメモリ・アドレス から、コントロール・フレームをまだ読み残している か 否か、判断できる。もし、コントロール・フレーム

(d) ホストとの間でデータ転送を開始する前に、目的レコードのメモリ・アドレスにカウント・フィールドのサイズ、KL、DLを加えた値(目的レコードの最後屋のメモリ・アドレス)と、コントロール・フレーム・ポインタ中のコントロール・フレームの先頭を示すると、キリ・アドレスを比較する。もし、目的レコードの最後屋のメモリ・アドレスがコントロール・フレームに食い込をコントロール・フレームの手前で一端停止し、メモリ・アドレスを次のフレームの先頭まで進めてから、ホストとのデータ転送を再開するような制御を行う。目的レコードの最後屋がレコード・フレーム内に収まっていれば、上記のような制御は不要で、CPSは、目的レコードのデータ転送を途中で中断することなく完了することができる。

(e) 引き続き、ホストからリード/アップデート・ライト系のコマンドが出された場合は、次のレコードはそのままメモリ上で連続しているので、レコード・ポインタを使用しなくてもそのままデータ転送を続けることができる。ただし、レコードの最後屋のメモリ・アドレスと、コントロール・フレームの先頭アドレスの比較は、各レコードごとに行わなくてはならない。

【0077】(2)フォーマット・ライト時

(2.1) 同一プレーム内でレコードを書き足す場合 (a) 物理ディスクからプレームをキャッシュ・メモリ 上に読み込んできたら、その最後屋のコントロール・フ レームをCPSが読み取る。

(b) コントロール・フレーム・ポインタを調べ、すべ てのレコード・ポインタを取得する。

(c)次に、ホストから送られてくるサーチのアーギュメントと取得したレコード・ポインタから、目的レコードのフレーム上のメモリ・アドレスを見つける(これでオリエンテーションが確立したことになる)。

以上の(a)~(c)手順は、リード/アップデート・ ライト時と同じである。

(d) ホストから送られてくるWrite CKDのカウント・フィールドの値からトラック・オーバランを発生しないか否かを調べる。(この詳細な手順は、別途、「トラック容量のチェック方式」として説明する。)トラック・オーバランを発生する場合は、以降の制御でトラック・オーバラン・ポイントまでデータ転送を行い、ホストにトラック・オーバランを報告するような制御を行う。トラック・オーバランのチェックが終ったら、C

46

から新しく書き足すレコードの最後屋のメモリ・アドレスを計算し、(d)で見新したコントロール・プレーム・ポインタ中のメモリ・アドレスと比較する。もし、新しいレコードの最後屋のメモリ・アドレスがコントロール・プレームに食い込んでいるような場合は、CPSはホストとのデータ転送をコントロール・プレームの手前で一端停止し、メモリ・アドレスを次のプレームの先頭まで進めてから、ホストとのデータ転送を再開するような制御を行う。新しいレコードの最後屋がレコード・フレーム内に収まっていれば、上記のような制御は不要

で、CPSは新しいレコードのデータ転送を途中で中断

することなく完了することができる。

45

(f) 引き続き、ホストからWriteCKDコマンドが出された場合は、次のレコードはそのままメモリ上で連続しているので、レコード・ポインタを使用しなくてもそのままデータ転送を続けることができる。ただし、トラック・オーバランのチェック、コントロール・フレーム・ポインタの更新、レコード・ポインタの追加、レコードの最後尾のメモリ・アドレスと、コントロール・フレームの先頭アドレスの比較は、各レコードごとに行 20 わなくてはならない。

(g) コマンドが終了した場合は、CPSが保持していた更新後のコントロール・プレームをキャッシュ・メモリ上に書き出す。

【0078】なお、図26に示すようなケースではレコ ード・フレームが3パイト空いているからといって、引 き続き同じフレーム中にレコードを追加しようとしてレ コード・ポインタを追加すると、レコード・ポインタが 前のレコードの後部に食い込んでしまうことになる。す なわち、フレームの空き容量が4パイト以下の場合は、 同じフレーム中に新たなレコードは追加できず、次のフ レームを使用しなくてはならない。このようにして生じ でしまった空きバイト(4パイト以下)は、コントロー ル・プレーム中に含めて管理してしまった方が、(e) のデータ転送時のコントロール・フレームの飛び越しな どがやりやすい。従って、コントロール・フレーム・ボ インタ中のメモリ・アドレスはこの空きバイトの先頭ア ドレスを示すことになる。この空きバイトの先頭から、 レコード・ポインタの先頭アドレスまでのオフセット (1)~4.バイト)は、コントロール・プレーム中の制御 40 **情報として保持しておいて、(h)のレコード・ポイン** タの取得の際。 コントロール・フレーム・ポインタ中の メモリ・アドレスからこのオフセット値を引いてレコー

ことになる。従って、この場合は、(2.1)の(a) ~ (c) のコントロール・プレームの取得によるオリエ ンテーションの確立作業は不要である。(d)のトラッ ク・オーバランのチェックは(2.1)と同様に行う。 (e)トラック・オーバランのチェックが終ったら、C PSが自分のメモリ上にコントロール・フレーム・ポイ ンタ(コントロール・フレームの先頭アドレスはレコー ド・ポインタ1個分のところを示す。)を生成し、さら に、新しく書くレコードのレコード・ポインタをCPS 10 が保持しているコントロール・フレームの先頭に書く。 (f) Write CKDのカウント・フィールドの値 から新しく書くレコードの最後屋のメモリ・アドレスを 計算し、(e)で生成したコントロール・プレーム・ポ インタ中のメモリ・アドレスと比較する。もし、新しい レコードの最後尾のメモリ・アドレスがコントロール・ フレームに食い込んでいるような場合は、CPSはホス トとのデータ転送をコントロール・プレームの手前で一 鑑停止し、メモリ・アドレスを次のプレームの先頭まで 進めてから、ホストとのデータ転送を再開するような制

となく完了することができる。 (g)引き続き、ホストからW r $_1$ t $_2$ C K D コマンドが出された場合は、(2.1)と同様となる。

御を行う。新しいレコードの最後屋がレコード・フレー

ム内に収まっていれば、上記のような制御は不要で、C

PSは新しいレコードのデータ転送を途中で中断するこ

(n) コマンドが終了した場合は、CPSが保持していた新しいコントロール・プレームをキャッシュ・メモリ上に書き出す。フォーマット・ライト系の処理では、そのプレームに記録するレコード数が分かってからでない。 と、コントロール・プレームのサイズが確定しない。 従って、コントロール・プレームをプレームの先頭においてしまうと、最初のレコードをプレームのどこから書き始めたらよいのか分からないことになってしまう。

本方式では、上述のようにレコードはフレームの先頭から書き始め、コントロール・フレームはフレームの最後 屋から書き始めることにより、このような問題を回避している。

【0080】次に、この改善案による位置情報のメモリ 容量の見積りを行う。この改善案による位置情報のメモリ容量について、前述した「レコードの位置情報のメモリ容量見積り」で見積もったケースのうち図22の管理単位2のケースについて見積りを行い、改善効果を見る。このケースは、管理単位(フレーム)サイズは12

47

は、一つ目のプレームのコントロール・プレームにレコ ード・ポインタが94個。コントロール・フレーム・ポ インタが1個あって、他のフレームに副御情報は特にな い(というより、他のフレームそのものが要らない)。 従って、位置情報の制御に必要なメモリ容置は、

 $4B \times 95 = 380B$

である。この結果と、「レコードの位置情報のメモリ容 **登見積り」で見積もった他のケースとの比較を図27**に 示す。<ケース !!-2>は従来の方式で、各FBA プロック(ここでは、フレーム)の先頭に位置するレコー10~2KB×4台)とすると、制御情報のために使用できる。 ードの位置だけを保持する方式である。<ケース !! -3>はすべてのレコードの位置情報を保持する方式 *

*で、本による改善前の方式である。 <ケース 【 【 - 3 >改が本方式である。

【①①81】「レコードの位置情報のメモリ容量見請 り」において示したように、CKDレコードを記録する ために正味必要なメモリ容量の最大値は、1トラック1 レコード (RI)のみ) でそのデータ・フィールドが最長 の場合である。このとき必要なメモリ容量は、図23か ち引用すると図28のようになる。CKDトラック1本 のために用意するFBAディスクの容量を48KB(1 メモリ容量は下式のようになる。

<ケース I-1> 1024×48-48044=1108

 <ケース I-3> 1024×48-49020= 132

この値と図27のベケース !!-3>改の位置情報の メモリ容置380Bと比較すると、ギャップを全部削除

してしまう<ケース !-1>以外ではメモリ容量が足 りなくなるように見える。しかし、図27の値は、レコ ード教が94レコードで位置情報(コントロール・フレー20 <I>ギャップの削除方法 ーム)のメモリ容置がもっとも多くなるときの値である

のに対し、上の値は1トラック1レコードで、CKDレ

コードのためのメモリ容量が最大の場合の値である。本 改善案では、レコード数が少なくなると、比例してコン トロール・プレームのメモリ容置も少なくなり、1トラ ック1レコードの場合では、20Bで済んでしまう(レ コード・ポインタ1個、コントロール・フレーム・ポイ ンタ4個)。結局、本改善方式ではすべての場合につい で、メモリ容量は足りるととになる。(ただし、トラッ

ク容量のチェック方式として、<ケース | | | 1 - 3 > すなわち、 各レコードのCKDフォーマットでの相 対位置を保持するために、ECCやバディング等削除し た分をギャップを伸ばして調整する方式をとると、94 レコードの場合などメモリ容置が足りなくなる可能性も ある。)また、目的レコードの位置決めのためのメモリ

・アクセスもフレーム当り1回〜2回で済む。このとき に一度CPSがコントロール・フレームをキャッシュ・ メモリから取得してしまえば、後の副御ではCPSはこ の取得したコントロール・プレームを使用すればよいの

マット・ライトなどでフレーム内のレコードの構成が変 わった場合も、CPSが取得しているコントロール・フ レームを更新しておいて、最終にキャッシュ・メモリに 成したといえる。

【0082】次に、「セグメント・ナンバを用いたトラ ック容置のチェック方式の検討」を行なう。CKD-F BA変換方式を特徴付ける三つのポイントとして、

<II>レコードの位置決め方法

<III>トラック容置のチェック方法

をあげたが、とこでは、<【!!>のトラック容量のチ ェック方法について、特にくケース 【!!-3>のセ グメント・ナンバを使用してトラック容置をチェックす る方式について、実際の制御方法を説明する。なお、く !ⅠⅠ>のトラック容置のチェック方法については<ケ ース | | | | - 1 > と<ケース | | | | - 2 > と<ケー</p> ス 【!!-3>の3つの方式が上がっていた。まず、

30 前提条件を以下のように考える。セグメント・ナンバ は、図35のように、32Bを1セグメントとする。セ グメント・ナンバは、1から順番にふられた絶対セグメ ント番号(ASN)を使用するものとする(図29参 照)。また、使用する数字はすべて十進数を用いる。

【0083】次に、制御方法について説明する。まず基 本方針として以下の2点を考える。

(1)ホーム・アドレスHAのセグメント・ナンバはS /Wから読み書きできるので、日Aが通常の位置にある 場合(ASN=17)と、HAがMoveしている場合 で制御のためのメモリ・アクセスは不要である。フォー 40 (ASN=23)の2種類をサポートするものとする。 (2) それ以外のR()を含む他のレコードについてはS **/Wからセグメント・ナンバもSC(スキップ・コント**

ロール)も該み書きできないので、MoveやSoli

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615231735697740.gif

特関平5-307440

49 ライス時はASN=17とする。)。

(b) ROのセグメント・ナンバはHAのセグメント・

ナンバにかかわらず鴬にASN=26とする。

(c) R1以降のレコード(Rn)のセグメント・ナン バは下式により定める。

前のレコード(Rn-1)にキー・フィールドがある 場合.

RnOASN=Rn-IOASN+[(KL+12)/32] + [(DL+12)/32] + 22

場合。

RnOASN=Rn-1OASN+[(DL+12)/32]+15

ただし、12はECCとスペースのバイト数、32はセ グメントのバイト数、22はG2 (224B) とG2 (224B) とG3 (216B) とカウント・フィール ド (40B) のセグメント数、15はG2 (224B) とG3(216B)とカウント・フィールド(40B) のセグメント数であり、[]内は、小数点以下切上げと する。

【0084】(2)トラック容置(トラック・オーバラ ン) のチェック方法

(1)により求めたセグメント・ナンバと、ホストから 送られてくるKL、DLを用いて下式によりトラック・ オーバランのチェックを行う。下式を満たしていれば〇 民、満たしていなければトラック・オーバランになる。 - 追加するレコード(Rn)にキー・フィールドがある 場合.

RnOASN+[(KL+12)/32]+[(DL+ $12)/32]+14 \le 1533$

追加するレコード(Rn)にキー・フィールドがない。 場合.

 $RnOASN+[(DL+12)/32]+7 \le 153$ 3

ただし、14はG2 (224B) のセグメント数. 7は G2 (224B) のセグメント数、1533は最大セグ メント数であり、[]内は、小数点以下切上げとする。 【0085】以上をまとめると、フォーマット・ライト 時のトラック・オーバランのチェックの手順は下記のよ うになる。(1)の手順に従い、書き足すレコードのセ 40 た。 グメント・ナンバを求める。

・求めたセグメント・ナンバの値とホストから送られて きたK1. 竹山から、(2)の手順に従い、書き足すレ

とになる。このような制御にすることにより、トラック ・オーバランのチェックでは鴬に同じ式を用いることが できるうえ、また、SC (スキップ・コントロール) の 値を気にする必要が無くなるので、制御が非常にシンプ ルになる。もし、HAのMoveにあわせてROもずら していると、トラック・オーバランのチェック時、鴬 に、トラックの先頭のHAのセグメント・ナンバを読み とってチェックするか、さもなければ、実際のディスク と同じように、各レコードにおいてもSC(スキップ・ ・前のレコード(Rn-1)にキー・フィールドがない。10、コントロール)を保持して管理する必要がでてくる。基 本的には、フォーマット・ライト時のギャップ中の作業 は、(2)のトラック・オーバランのチェックなど、従 来のディスク副御に比べ増える方向なので、シンプルに できる部分はシンブルにすべきである。

> 【0086】以上より、セグメント・ナンバを使用した トラック容置のチェック<ケース!【【-3>の方法) は比較的シンプルな制御で実現可能である。従って、従 来方式<ケース !!! - 2 > の方法のようにCKDフ ォーマットのトラック・イメージをFBAに変換した後 20 も、ギャップ長を調整して各レコードのトラックの先頭 からのバイト位置を、無理に元のCKDトラックのまま 維持しなくても制御可能である。セグメント・ナンバ自 体はS/Wインター・フェイス上サポートが必要である ので(少なくとも目Aについては)、それを積極的に利 用する<ケース !!!-3>の方法は、ギャップ長を 元のCKDフォーマットと同等の置だけ保持しなければ ならない<ケース !!【-2>に比べ、特にレコード ・サイズが小さいときのキャッシュ・メモリの利用効率 において著しく有利である(「ギャップの削除方法とメ 30 モリ容置の評価」)。また、すべてのレコードのKL. DLを読んで、トラックの残容置を計算する<ケース !↓↓↓-1>に対しては、メモリのアクセス回數の点で 有利であり、もっとも有望な方式である。

【0087】これまでCKD-FBA変換方式を特徴付 ける三つのポイントとして、

<I>ギャップの削除方法

<II>レコードの位置決め方法

<III>トラック容置のチェック方法

をあげ、それぞれについて下記のような検討を行ってき

●<I>のギャップの削除方法について

・「ギャップの削除方法とメモリ容量の評価」において メモリ容骨の評価を行った。この結果 すべてのギャッ

10

特関平5-307440

52

ロック内の最初のレコードの位置情報だけ保持する)より有利であるとしていた<ケース II-3>(全レコードの位置情報を保持する)は、そのままでは、レコードの位置情報を保持するためのメモリ容置が多くなりすぎることが分かった。

51

・そこで、「レコードの位置情報の制御方式の改善」で <ケース | I - 3 > のメモリ容置の改善が可能が否か 検討した。その結果、制御方法を工夫することにより、 <ケース | I - 3 > でも全レコードの位置情報を保持 するためのメモリ容置を十分小さくできることがわかった。

●<【!!>のトラック容量のチェック方法について・<ケース 【!!-3>(セグメント・ナンバなどを用いて各レコードのCKDフォーマットでの相対位置情報を保持する。ギャップが不要な分有利)の実現可能性を「セグメント・ナンバを用いたトラック容量のチェック方式の検討」で検討した。その結果、セグメント・ナンバを用いてトラック容量のチェックを行うことは容易で、その具体的な手順も示した。

【10088】以上のような検討結果前述した図19に示 20 すように、もっとも高得点をあげている方式<1、3, 3>が採用できることがわかった。この方式は、ギャッ プの削除方法としては全ギャップを削除するので、特に ジャーナル・ファイルなどのレコード・サイズが小さい 場合。トラック・イメージを格納するためのメモリ容費 が少なくて済む。レコードの位置決め方式としては、全 レコードの位置情報を保持する方式を採用しているの で、目的レコードを探すためのメモリ・アクセス回数が、 少なくて済む。ただし、位置情報を保持するためのメモ リ容量を少なくするために、「レコードの位置情報の制 御方式の改善」で検討したくケース 【!-3>改を採 用する必要がある。トラック容量のチェック方式として は、セグメント・ナンバを使用する方式なので、各レコ ードの相対位置をCKDフォーマットのまま維持するた めのギャップは必要無く、従って、ギャップの削除方法 として、全ギャップを削除する方法との併用が可能とな る。単に得点の大小だけで判定するのでなく、高得点を あげている他の方式についても、方式<1,3、3>と の比較を行っておく。

【0089】<2,3,2>・・・54点 図9において次点である方式<2,3、2>は、<1, 3、3>と比較するとトラック容置のチェック方法でセ グメント・ナンバを使用せず、従来方式であるギャップ

トラック容置のチェックをしなくてもよいことである。 従って、セグメント・ナンバそのものも省略できる。悪 い点は、ギャップ長を伸ばして各レコードのCKDフォ ーマットでの組対位置を維持するため、メモリ上でのト ラック容置は常にほぼCKDトラック1本分必要となる ことである。これは、特に、ジャーナル・ファイルなど のレコード・サイズの小さい場合にキャッシュ・メモリ の利用効率悪化、ステージング/デステージング時の内 部バスの負荷増大につながる。また、レコードの位置決 め方式として、全レコードの位置情報を保持する方式を 併用しているが、レコードサイズが最少で、レコード数 が最多の94レコード/トラックのケースでは、「セグ メント・ナンバを用いたトラック容量のチェック方式の 検討」で検討した改善方法をとっても、メモリ容量不足 となる可能性もある。また、この方式は、レコードの位 置決め方式は従来方式と異なるが、トラック容量のチェ ック方式は従来方式そのままである。

【0090】<2,3,3>・・・53点 この方式は、ギャップを一部残すこと以外は<1.3, 3>と同じである。従って、ギャップを残しても特にそれを使用しないので、ギャップを残す意味がなく、< 1、3,3>に比べ、わざわざ採用する必然性がない方式である。上記説明では、アレイ型ディスク装置(RAID)を前提としていたが、ここでは、通常のディスク装置を用いる場合にも<1、3,3>の方式を採用できることについて述べる。

●< ↓>のギャップの削除方法について

ギャップの削除方法によるメモリ容量の大小がキャッシュの利用効率に大きく関わることは、RA!Dであってもなくても同じであり、この点からは、すべてのギャップを削除する<ケース I-1>の方式が有利なことに変わりはない。

●<1!>のレコードの位置決め方法について バスの負荷を下げ高転送レートを出しやすくするために は、1回のバス獲得である程度まとまった置のデータ転 送を行ってしまう方がよい。すなわち、レコードの位置 情報も一括してアクセスできる方が、毎回各レコードの カウント・フィールドをアクセスする方式よりも有利で ある。従って、レコードの位置決め方法についても、メ 40 モリ・アクセス回数が少ないくケース !!-3>(全 レコードの位置情報を保持する)の方が、従来方式のく ケース !!-2>(FBAブロック内の最初のレコードの位置情報だけ保持する)より有利である。

54

53

て各レコードのCKDフォーマットでの相対位置情報を保持する。ギャップが不要な分有利)のままでよい。 【0091】次に、CKD-FBA変換におけるコマンド・エミュレーション方式について検討する。ここでは、前述した具体的な変換方式に基づいて、実際のS/Wインタフェース上の代表的な、コマンドごとにこのCKD-FBA変換方式における実現方法を検討する。 【0092】1、SET SECTOR

<機能>チャネルから1バイトのセクタ情報を受け取り、セクタを検索する。

(セクタ情報:X'00'~X'DD、X'FF')
<実現方式>このディスク・サブシステムでは、セクタ値は、まず、CKDトラックを四つに分割したプレームのうち、どのプレームに目的レコードが存在するかを知るために使用する。フレームが見つかった後は、コントロール・フレーム中のレコード・ボインタに書かれている各レコードのセグメント・ナンバと、このセクタ値を比較することにより、より精度の高い位置決めができる(プレーム、及びコントロール・フレームやレコード・ボインタの機略については図25に示したが、詳細は「レコードの位置情報の副御方式の改善」参照のこと)。

〇目的レコードが存在するフレームの計算

実際のCKDディスクでは、セクタ1個分は224バイトからなりたっているので、セクタ値からCKDフォーマットのトラック上でのそれに相当する絶対バイト・アドレスはただちに計算できる。しかし、フレーム上ではギャップやECC、バディングなどは削除して記録しているので、その絶対バイト・アドレスがどのフレームに含まれているかは、その削除してしまった分を換算しないと分からない。この削除した分置はレコード数にも依存する。

【りり93】以下、目的レコードが存在するフレームの計算について説明する。フレーム上ではCKDフォーマットのトラックから何バイト削除しているかは、フレーム上でのトラック・フォーマットが詳細に決らなくては定まらないが、図33のようなフォーマットであるとすると、各フィールドごとにフレーム上で削除されているバイト数は図31のようになる。目的レコードの前にはRりを除いて(目的レコードのレコード・ナンバー1)個のレコードが存在するので、セクタ値で示されるCKDフォーマットのトラック上での位置は、フレーム上ではトラックの先頭から下式のバイト教BC1で表される

バイト数BC2は下式のようになる。 BC2=BC1+4×レコード・ナンバ フレーム1個にはコントロール・フレーム・ボインタ4 バイトを除くと、レコード・ボインタも含め12KB-4B記録できるので、セット・セクタ値に相当する位置 は、下式で求められるN番目のフレームに存在すること が期待できる。

N = [BC2/12284]

ただし、[]内は、小数点以下切上げとする。とれらの 10 式を一つにまとめると、下式のようになる。

N=[(224×セクタ値-286-748×レコード ナンバ)/12284]

ただし、[]内は、小数点以下切上げとする。また、負の値になったときはN=1とする。正確には、フレーム上で削除されているバイト数は各レコードにキー・フィールドが存在しているか否か、また。32の整数倍にするためにKL、DLにゼロ・バディングしているバイト数などにもよって異なってくるため、上式は、あくまで観算式となる。上式では、このような不定の部分については、削除されるバイト数が最大になるように仮定して計算しているので、これにより求めたフレームの番目的レコードが存在しなかった場合は、次のフレームを探せばよい。しかし、この式の領度はも差の型はレコード1個当り最大でも286バイト(224+31+31)であるので、通常は問題無い。

【①①94】また、SEARCHコマンドが来なかったり、SEARCHコマンドであってもSEARCH KEYであったためレコードナンバが得られなかった場合は、プレームを特定することを諦めて、任意のプレーム(例えば最初にステージングが完了したフレーム)中のレコードのセグメント・ナンバを調べていくことになる(次の項の手順参照)。

○目的レコードの探索

上の手順により、目的レコードが存在するフレームを特定したら、後は、そのフレーム中のレコード・ポインタを調べて、目的レコードを探せばよい (詳細な手順は、「レコードの位置情報の副御方式の改善」参照)。ま

46 ず、そのフレームの先頭のレコードのレコード・ポインタ (コントロール・フレーム中では最後遅にある)から順番にレコード・ボインタ中に記録されているセクタ値を調べていく、そして、チャネルから送られてきたセク

55

ードのカウント・フィールドを比較し、一致していれば そのレコードにオリエンテーションを確立する。もし、 一致しなければ次のレコードのカウント・フィールドと の比較を繰り返していき、最初にアーギュメントと一致。 したレコードにオリエンテーションを確立し、次のコマ ンドに移っていく(CKDの論理トラックの最後まで簗 して一致するレコードが見つからなかった場合などにつ いては、「4. SEARCH !DEQ」コマンドを参 厩のこと)。なお、先行するSEEKコマンドによるヒ ット・チェックの結果、既に目的トラックがキャッシュ 10 ET SECTORコマンドかちチェインした場合と異 上に存在することが分かっている場合(ヒット時)はた だちに次のコマンドへ進んでよいが、ミス・ヒット時、 または、ヒットしていてもトラックの一部分しかキャッ シェ上に存在しておらず、目的レコードが含まれるフレ ームがキャッシュ上に存在しない場合は、チャネル・エ ンドCEのみ返し一旦チャネルからディスコネクトし て、目的のフレームを物理ディスクからステージングし た後、デバイス・エンドDEを返して次のコマンドへ進 むことになる。

[()()95]2. SEARCH | DENT!FIRE 20 頭であった場合 EQUAL

<機能>チャネルから5バイトのSEARC目情報を受 け取り、デバイスから読み出されたカウント・フィール ド(R(フィールドも含む)のCCHHRと比較する。 <実現方式>

○SET SECTORコマンドからチェインした場合 「1. SET SECTOR」で示した動作により、C CHHRの一致したレコードにオリエンテーションを確 立する。実際のCKDディスクでは、SET SECT OR後、最初に見つけたレコードのCCHHRが一致し なければ不一致報告をし(CE, DE)、ホストがトラ ンスファーインチャネルTICを併用して再度SEAR CH ID EQコマンドを発行するのを待つ。しか し、このサブシステムでは、「1. SET SECTO R」で示したように一回のSEARCH ID EQコ マンドでトラック全体をサーチできてしまう。エミュレ ーションの厳密性からいえば、あくまで、1個のSEA RCH ID EQコマンドで1個のレコードのサーチ しか行うべきでないが、そうすることによるメリットは 特に考えられないので、処理効率の点から「1. SET SECTOR」で示した一話サーチの方式でよいと考 える。SET SECTORで指定されたセクタから後 ろに一致するレコードが無かった場合は、マルチ・トラ

初のプレームの最初のレコード(ROも含む)に戻って 比較を繰り返し、それでも一致するレコードが見つから なければNo Record Foundを報告する。 OREAD, WR!TE、SEARCH系コマンド、ま たは、SPACE COUNT コマンドからチェインし た場合

56

先行するコマンドでオリエンテーションしていた次のレ コードに対しCCHHRの比較を行う。この場合は、既 にオリエンテーションが確立しているのであるから、S なり、実物のCKDディスク同様、サーチするレコード は次のレコード1個だけの方がよい。オリエンテーショ ンしていた所より後ろにレコードが存在していなかった 場合は、マルチ・トラック・ピットがセットされていれ ば欠のトラックに移り、セットされていなければ同じト ラックの先頭に戻って、比較する。ただし、同一○○▼ チェイン内でもろ一度、トラックの最後までいってしま ったらNo RecordFoundを報告する。

○他のコマンドからのチェイン、または、チェインの先

この場合、実際のCKDディスクでは、現在のトラック 上で最初に発見したレコードに対しサーチ動作を行う が、このサブシステムでは常にROから順番にサーチす るほかは、「SET SECTORコマンドからチェイ ンした場合」と同じでよい。ミスヒットしていてステー ジングが完了していなかった場合や、マルチ・トラック ・ピットがたっていて、次のトラックがミスヒットして いた場合などは、このコマンドでステージングを完了さ せる。また、SEEKコマンドが先行しなかった場合の 30 現在トラックの認識のためにそのボリュームに対する最 後のアクセス・トラックは常に覚えておかなければなら ない。

[0096] 3. READ DATA <機能>ディスクから読み出したデータ・フィールドの 情報をチャネルに転送する。

<実現方式>

OREAD, WRITE, SEARCH系コマンド、ま たは、SPACE COUNTコマンドからチェインし た場合

49 フレーム上でオリエンテーションが確立していたフィー ルド以降にある最初のデータ・フィールドの情報をチャ ネルに転送し、オリエンテーションを維持する。もし、 オリエンテーションが確立していたフィールドより移る

特関平5-307440

58

比較を満足したSearch系コマンド、または、RO CをバイパスしたSPACE COUNTコマンドから チェインした場合のみである)。

57

○他のコマンドからのチェイン、または、チェインの先 頭であった場合

オリエンテーションが確立していない状態であるので、 実際のCKDディスクでもどのレコードを検出するかは 一定でない。従って、毎回、R1(R)の次のコマン ド)のデータ・フィールドの情報を転送して特に問題な い(R1が存在すれば)。転送後は、そのままオリエン「10」たトラック容量のチェック方式の検討」参照)。もし、 テーションを確立する。もし、R 1が存在せず、かつ、 マルチ・トラック・ビットがセットされていれば、次の トラックのR1のデータ・フィールドを転送する(アド レス・マークが見つからないまま、インデックスを検知 してしまった場合に相当する)。マルチ・トラック・ビ ットがセットされていなければ、No Record Foundを報告する。もちろん、次のトラックがキャ ッシュ上に存在しなかった場合は、まず、ステージング してからチャネルヘデータ転送する。同一CCWチェイ ン内でSEEKコマンドが先行していない場合は、同一 20 ボリュームにおける最後にアクセスしたトラックに対し て、RD DATAコマンドを実行する。

[0097] 4. WRITE COUNT KEY A ND DATA

<機能>チャネルから受け取った情報を、Rnフィール ド(R①フィールドを除く)としてディスク上に書き込 ŧ٠.

<実現方式>とのコマンドは、CCHHRの一致したS EARCH ID EQコマンド(RD D. RD K D. WR D. またはWR KDが続いていてもよ い)、すべてのキーの一致したSEARCH KEY EQコマンド(RD D、またはWRDが続いていても よい)、WR R()コマンド、またはWR CKDコマ ンドからチェインした場合以外はコマンド・リジェクト となるので、このコマンドが実行される場合は事実上、 必ず既にオリエンテーションが確立している。従って、 チャネルから情報を受け取ったら、ただちに下記のよう なオペレーションを実行する(図25参照)。

(1)カウント・フィールドの受取

チャネルからRnのCCHHRKLDLを受け取り、そ れに、R。、りのカウント・フィールドの他の情報をつ けたす。まだ、キャッシュ上には書き出さない。Rnの カウント・フィールドの俺の婚報としては、SC(スキ

(計算方法は「セグメント・ナンバを用いたトラック容 置のチェック方式の検討」参照)。また、同時にこの値 からセクタ値も計算して、コントロール・フレーム中の レコード・ボインタに(3)で書き込む。PA、Fは目 Aと同じ値のままでよい。

(2)トラック・オーバランのチェック

チャネルから受け取ったKL、DLとセグメント・ナン バからからトラック・オーバランを発生しないか否かを 調べる(詳細な計算方法は「セグメント・ナンバを用い トラック・オーバランを発生する場合は、以降の副御で トラック・オーバラン・ポイントまでデータ転送を行 い、ホストにトラック・オーバランを報告するような制 御を行う。

(3) レコード・ポインタの追加

トラック・オーバランのチェックが終ったら、現在オリ エンテーションを確立しているフレームの(CPSが自 分で保持している)コントロール・プレーム・ポインタ 中のコントロール・フレームの先頭を示すメモリ・アド レスを4 B減じ (コントロール・フレームを4 B拡張す る)、さらに、Rnのレコード・ポインタを(CPSが 保持している)コントロール・フレームの先頭に書き足 す。もし、4日減じることによって、コントロール・フ レームがレコード・フレームに食い込んでしまうような 場合は、そのプレームにレコードを追加することは諸。 め、次のプレームのコントロール・プレームにレコード ・ポインタを追加する。必要ならば、マネージャに次の フレームのエリアを確保してもらう。

(4) フレームのさかいめのチェック

30 チャネルから受け取ったKL、DLからRnの各フィー ルドの最後尾のメモリ・アドレスを計算し、(3)で更 新したコントロール・フレーム・ポインタ中のメモリ・ アドレスと比較する。もし、RAのどれかのフィールド の最後屋のメモリ・アドレスがコントロール・フレーム に食い込んでいるような場合は、ホストとのデータ転送 をコントロール・フレームの手前で一端停止し、メモリ ・アドレスを次のフレームの先頭まで進めてから、ホス トとのデータ転送を再関するような制御を(CPSが) 行う。Rnの最後尾がレコード・フレーム内に収まって 40 いれば、上記のような制御は不要で、Rnのデータ転送 を途中で中断することなく実行することができる。

> (5)カウント・フィールドのキャッシュへの書きだし これらの一連のチェックが完了してからCPS内のカウ

(4)のチェックの結果、Rnの最後尾がレコード・フ レーム内に収まっていれば、まず、キー・フィールドの データをチャネルから受けとって、キャッシュ上に書き 込んだのち、適当なギャップ相当時間経過後、データ・ フィールドのデータもチャネルから受けとってキャッシ ュに書き込む。もし、(4)のチェックの結果、途中で フレームの切れ目に適適することが分かっていれば、そ こで一旦データ転送を中断する。現在オリエンテーショ ンが確立しているフレームが最終フレームでなかった場 合は、CPSはその次のプレームのキャッシュ上でのア 10 -ドレスも知っているので、データ転送のためのメモリ・ アドレスを次のプレームの先頭に進めた後、チャネルと のデータ転送/キャッシュへの書き込みを再期する。現 在オリエンテーションを確立しているフレームが最終フ レームであった場合は、もともとキャッシュ上にはその 次以降のフレームの領域は確保されていないので、CP Sはマネージャに次のフレームのための領域を要求し て、そのアドレスをマネージャから教えてもらった後、 そこに対してデータ転送を再開する(このような新しい フレームの領域確保などの処置はギャップ相当のタイミ ングで、データ転送を中断している間に実行してしまえ ばよい)。データ転送したプレームに対しては、各フレ ームのコントロール・フレーム中の組当するFBAプロ ックの更新フラグをセットしておく。

59

(?) CEの報告

ここまですんだら、CPSはコマンド・チェインの有無を確認するため。一旦チャネルにチャネルとの間のデータ転送が終了したことを示すチャネル・エンドCEを報告する。

テナンスする) DPSに該当トラックのデステージン グを指示する。この際マネージャは、DPSに対し、物 **選ディスクに書き出すべきデータのアドレスとして、キ** ャッシュ上での有効データの存在するプレームのアドレ スを知らせるとともに、新たに無効プレームが発生した 場合のみ、無効プレームに書き込むデータとして、無効 フレーム用のデータをあらかじめどこか一箇所に用意し ておき、そこのアドレスを指示する(すなわち) 無効フ レームはすべて無効フレーム用のデータが用意されてい るメモリ上の同一のデータを物理ディスクに書き込むこ とになる。この無効フレーム用データはキャッシュ・メ モリ上にマネージャが用意しておいてもよいし、各DP Sが自分のボードの中に持っていてもよい)。新たに無 効フレームが発生しなかった場合は、DPSに対しもと もと無効フレームであったフレームをあらためて書き直 すととは指示しない。

60

(10) デステージング

DPSはマネージャからの指示を受け、キャッシュ・メ モリ上のデータを物理ディスクに書き出す。DPSはマ 20 ネージャから指示されたフレームの更新フラグがたって いるFBAブロックについてライトを行う。

(11) デステージング終了報告

物理ディスクへの書き出しが終了すると、DPSはマネージャを介して、CPSに終了報告を行う。

(12) DE報告

CPSはチャネルに、全ての処理が終了したことを示す デバイス・エンドDEを報告する。

- ---コマンド・チェイン指示があった場合
- (8) コマンド・チェインが指示されれば、CPSは 30 DEを報告し、次のコマンドを受け取る。
 - (9) 次のコマンドがWR CKDまたはERASE であればその処理に移る。他のコマンドであれば、CPSはCE, UCK, SMを報告しコマンド・リトライを要求する。
 - (10) この後、上記の(8)~(11)を実行する。
 - (11) DPSから物理ディスクへのライト終了が報告されたら、CPSはDEを報告し、先にコマンド・リトライ要求したコマンドを受け取り直し、そのコマンドの実行に移る。

【 0 0 9 8 】 5. WRITE DATA <機能>チャネルかち受け取った情報により、レコード のデータ・フィールドを更新する。

62

レーションを実行する。

(1) フレームのさかいめのチェック

データを書き込もうとしているレコードのカウント・フィールドのKL、DLからRnの最後屋のメモリ・アドレスを計算し、現在オリエンテーションを確立しているフレームのコントロール・プレーム・ポインタ中のメモリ・アドレスと比較する。もし、Rnの最後屋のメモリ・アドレスがコントロール・フレームに食い込んでいるような場合は、ホストとのデータ転送をコントロール・フレームの手前で一端停止し、メモリ・アドレスを次のコントロール・フレームの先頭まで進めてから、ホストとのデータ転送を再開するような制御を(CPSが)行う。Rnの最後屋がレコード・プレーム内に収まっていれば、上記のような制御は不要で、Rnのデータ転送を途中で中断することなく実行することができる。

61

(2) データ・フィールドの受取

(1)のチェックの結果、Rnの最後尾がレコード・フ (7) DF とれたら、C タをチャネルから受けとってキャッシュに書き込む。も ライ要求したし、(1)のチェックの結果、途中でフレームの切れ目 20 実行に移る。に遭遇することが分かっていれば、そとで一旦データ転 [0)99] 送を中断する。アップデート・ライトの場合は、とのようなケースでは必ず次のフレームは存在しているので、 スールド間もうなケースでは必ず次のフレームは存在しているので、 スールド間ものなケースでは必ず次のフレームは存在しているので、 スールド間ものなケースでは必ず次のフレームを変更がある。データ転送ノキャッシュへの書き込みを再開する。データ転送したフレ つを数倍に付す、ションへの書き込みを再開する。データ転送したフレ 上記管理単位中の相当するFBAプロックの更新フラグをセットして 固定長レコーおく。 に、各間定義

(3) CEの報告

ここまですんだら、CPSはコマンド・チェインの有無を確認するため。一旦チャネルにチャネルとの間のデータ転送が終了したことを示すチャネル・エンドCEを報告する。

ーーーコマンド・チェイン指示がなかった場合
 (4) CPS→マネージャーデステージング要求
 コマンド・チェイン指示がなければ、マネージャを介し
 DPSにデステージングを要求する。アップデート・ライトの場合は、新たに無効フレームが発生するようなことはない。

(5) マネージャ→DPS デステージング要求 マネージャは、DPSに対し、物理ディスクに書き出す べきデータのアドレスとして、キャッシュトでの有効デ (?) デステージング終了報告

物理ディスクへの書き出しが終了すると、DPSはマネージャを介して、CPSに終了報告を行う。

(8) DE報告

CPSはチャネルに、全ての処理が終了したことを示す デバイス・エンドDEを報告する。

- ---コマンド・チェイン指示があった場合
- (4) コマンド・チェインが指示されれば、CPSは DEを報告し、次のコマンドを受け取る。
- (5) 次のコマンドがSEARCH系のコマンド、または、フォーマット・ライト系コマンドであればその処理に移る。同一のコマンドチェイン内で、SEARCH系またはWRITE系以外のコマンドが指示された場合は、CPSはCE、UCK、SMを報告しコマンド・リートライを要求する。
 - (6) この後、上記の(4)~(7)を実行する。
 - (7) DPSから物理ディスクへのライト終了が報告されたら、CPSはDEを報告し、先にコマンド・リトライ要求したコマンドを受け取り直し、そのコマンドの実行に移る。

【①099】以上のように、この実施例によれば、可変 長レコードの1トラックからレコード間ギャップ及びフ ィールド間ギャップ等全てのギャップを削除し、そのト ラックデータを固定長レコードの固定ブロック長サイズ の整數倍に相当する管理単位に分割し その管理単位に 含まれる全ての可変長レコードの位置を示す制御情報を 上記管理単位の最後尾に後ろから順番に書き入れた後、 閻定長レコードの閻定ブロック長サイズに分割すると共 に、各固定長レコードには、可変長レコードフォーマッ 30 トでのトラックの先頭からの相対位置を示す情報を保持 させるので、固定ブロック内で目的の可変長レコードの 位置確認のためのメモリアクセス回数が少なくて済みメ モリ負荷軽減となると共に、全てのギャップを削除でき るのでトラックデータを保持するためのメモリ容量が少 なくて済み、従って、ディスクキャッシュをベースとし たディスクサブシステムに好適で、キャッシュのヒット 率が向上する。さらに、制御情報領域のサイズを可変に でき可変長レコードの個数だけ用意すればよくメモリが 少なくて済む。

0 【0100】実施例2.上記実施例1においては、図2 5に示したようにコントロールフレームの後ろにもたせ コントロールフレームの長さを可変とする場合を示した が 図24に示すように位置情報領域すなわちコントロ

06/15/2004

64

りコントロールフレームのサイズが固定されると共にレ コードフレームのエリアも固定されるため、管理単位の アクセス方法が単純になる。

63

【①101】実施例3.上記実施例1においては、可変長レコードフォーマットでのトラックの先頭からの相対位置として、セクタ値を用いる場合を示したが、これはセットセクタコマンドで用いられる相対位置がセクタ値であることからセクタ値を使用することが望ましいためである。もし、セットセクタコマンドがその他の相対位置例えば、可変長レコードフォーマットでのトラックの先頭からのセグメント値を用いている場合には、この相対位置はセクタ値ではなくセグメント値を用いても構わない。すなわち、図25に示したレコード・ポインタのセクタ値という値は、セグメント値であっても構わない。

【0102】実施例4.上記実施例1においては、トラック容置を計算する場合にはCKDレコード各々にセグメント値を待たせている場合を示したが、トラック容置をセグメント単位に管理するのではなく、セクタ単位に管理する場合にはセグメント値ではなくセクタ値を持たせておいても構わない。

【0103】実施例5.上記実施例1においては、コン トロール・フレーム内のレコード・ポインタにセクタ値 を持たせ、レコード・フレーム内の各CKDレコード内 にはセグメント値を鈴たせる場合を示したが、セクタ値 とセグメント値は一定の関係にあり(セクタ値×7=セ グメント値〉、どちらか一方を用いる場合でも構わな い。すなわち、レコード・ポインタにセクタ値を有して おれば各CKDレコードにセグメント値は覚えておかな くてもよい。ただし、この場合はトラックの使用容量が セクタ単位しか計算できなくなる。一方、レコード・ボ インタにセクタ値を有さず、レコード・フレーム内のC KDレコードにセグメント値を持たせている場合には、 トラックの使用容置がセグメント単位で計算することが 可能になる。しかしこの場合には、セットセクタコマン ドでセクタ値が指定された場合にレコード・ポインタに は、セクタ値が存在しないためレコード・ボインタのメ モリアドレスからCKDレコードを探し出し、そのCK Dレコードにあるセグメント値からセクタ値を算出しな る。

【①104】実施例6.上記実施例1では特に明記しなかったが、FBAディスク9が1つのディスクで構成さ

- F B A 変換方式が磁気ディスク制御装置 5 に存在する 場合を示したが、CKD-FBA変換を行うのは磁気デ ィスク制御装置である場合に限らず、ホスト計算機1の チャネルが行っても構わない。あるいは磁気ディスク装 置等の記憶装置自身が行っても構わない。図32は、磁 気ディスク装置等の記憶装置自身がCKD-FBA変換 を行う場合の一実施例を示す図である。図32に示すよ **うに、CKDの磁気ディスク制御装置500のキャッシ** ュ・メモリに記憶された可変長レコードを変換して、固 定長ブロックをもつFBAディスク900に記憶し直す 場合には、FBAディスク900内にあるCKD-FB A変換部100が動作する。ギャップ削除部101は、 磁気ディスク制御装置500のキャッシュ・メモリに記 慥された可変長レコードをキャッシュ・メモリ600に 読み込む。この場合は、磁気ディスク制御装置500の キャッシュ・メモリの1トラックのレコードを全てキャ ッシュ・メモリ600に読み込む。そしてこの1トラッ ク分の可変長レコードからレコード間ギャップ及びフィ ールド間ギャップを削除する。キャッシュ・メモリ60 ①に読み込まれたCKDのトラックイメージ700は、 この時点でギャップが削除されたトラックデータ?aに 変換される。

【り106】次に、レコード配置部102はトラックデータ?aをフレームと呼ばれる管理単位?り、?c、?d、?eに順に配置する。このフレームと呼ばれる管理単位?り~?eのサイズは例えばCKDのトラックイメージ?が48KBのサイズをもっている場合には4等分した12KBのサイズをそれぞれ有している。レコード配置部102はトラックデータ?aの可変長レコードを配置の102はトラックデータ?aの可変長レコードを配置のフレームに含まれる可変長レコードの位置を示すアドレス情報を各フレームに記憶する。また、そのレコードがCKDディスク10で記憶されていたトラック先頭からの相対位置(セクタ値)を示すセクタ情報を同様に記憶する。

【0 1 0 8】とのようにして、CKDの勝気ディスク制

65

きる。また、上記位置情報により目的とするCKDレコ ードの位置確認ができるのでメモリアクセス回数及びメ モリ容置の低減に役立つ。

【図面の簡単な説明】

- 【図1】この発明のフォーマット変換方式の機略ブロッ ク図である。
- 【図2】この発明のフォーマット変換方式を説明するた めのブロック図である。
- 【図3】この発明のフォーマット変換の動作を説明する 図である。
- 【図4】この発明のフォーマット変換の動作を説明する 図である。
- 【図5】この発明のフォーマット変換の動作を説明する 図である。
- 【図6】ギャップの残し方を説明を説明するための図で
- 【図?】レコードの位置決め方法を説明するための図で ある。
- 【図8】トラック容置のチェック方法を示す図である。
- 【図9】CKD-FBA変換方式の比較表を示す図であ 20 る。
- 【図10】CKDレコードのFBAブロックへの分割例 を示す図である。
- 【図11】RAIDにおけるCKDトラックの分割例を 示す図である。
- 【図12】メモリ容量の見積りを示す図である。
- 【図13】トラック当りのレコード皴を示す図である。
- 【図14】トラック当りのレコード數を示す図である。
- 【図15】トラック当りのレコード数を示す図である。
- 【図16】トラック当りのレコード数を示す図である。
- 【図17】メモリ容置の見積りを示す図である。
- 【図18】メモリ容量の見積りのグラフ図である。
- 【図19】1トラック分のイメージデータが少ない場合 のメリットを示す図である。
- 【図20】レコードボインタの保持情報を示す図であ る。
- 【図21】位置情報の管理単位を示す図である。
- 【図22】位置情報のメモリ容置の見積りを示す図であ
- 【図23】レコードのために必要な最大メモリ容量を示(40~56)管理単位検索部 ず図である。
- 【図24】位置情報の保持方法の一例を示す図である。
- 【网25】レコード位置疾め方式の改義裏を示す网であ

す図である。

【図29】E1880系のセグメントナンバを説明する 図である。

66

【図30】仮想CKDトラック上のフォーマットイメー ジを示す図である。

【図31】フィールド毎の最大削除バイト数を示す図で ある。

- 【図32】この発明の他の実施例を示す図である。
- 【図33】CKDレコードのフィールドの内容を示す図 10 である。

【図34】サーボ面サーボ方式を用いる磁気ディスクの 機略図である。

【図35】トラックとセクタとセグメントの関係を示す 図である。

【図36】従来のソフトウェアがCKDレコード方式に 基づいて出力するコマンドシーケンスの一例を示す図で ある。

【図37】従来のCKD-FBA変換方式を示す図であ る。

【符号の説明】

- 1 ホスト計算機
- 2a チャネル
- 2b チャネル
- 2c チャネル
- 2 d チャネル
- 2e チャネル
- 3 CKDフォーマットのレコード
- 4 CKDコマンド
- 5 磁気ディスク制御装置
- 30 6 キャッシュ・メモリ
 - 7 CKDのトラックイメージ
 - 8 FBAフォーマットのレコード
 - 9 FBAディスク
 - 10 FBAコマンド
 - 51 チャネルバスサーバ (CPS)
 - 52 入力部/出力部
 - 53 位置計算部
 - 54 レコード検索部
 - 55 読み書き部

 - 57 レコード特定部
 - 100 CKD-FBA変換装置
 - 1 () 1 ギャップ削除部

(35) 特闘平5-307440

(36)

特関平5-307440

[図2]

ホスト計算機

(39)

(40)

特關平5-307440

[図6]

<元のCKDトラック・フォーマット>

くケース 1-1>

<ケース I-2>

くケース 【-3>

ギャップの残し方

[図16]

●フォーマット4(最少レコード数のケース)

R 0 : KL = 0 , DL = 47988

Rn: 無し

この時のROのDLの値は、以下のようにして求められる。

図13に示すように、R0のデータ・フィールドとして使用できるバイト数は、

48512 - G2C - R0C - G2 =

48512 - 248 - 40 - 224 - 48000

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615232011050133.gif

(41)

特開平5-307440

[図?]

くケース Ⅱ-3>

<u>レコードの位置決め方法</u>

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615232021397237.gif

06/15/2004

(42)

特関平5-307440

[図8]

トラック容量のチェック方法

[図21]

位置情報の管理師館 のケース

	公民情報中発理時代	44%
代籍单位 1	・FBAのブロック(セクタ)	2 K B
节码导换 2	ゲータ・ディスクへの分割単位(1 /4 f ラッタ)	12×8

[図29]

【図35】

特関平5-307440

(43)

[図9]

表	類の 四・	<u> </u>	40	章 点	3	4.0	* 56	82	* 53	£	* %	* *	5-	- - -	2 .	* 5e	*
	٦	-	* \ * \ * \ * \	4~8年の金融の	_	-	-	-	N:	-	\$	•		S	-	<u>.</u>	-
通回	, , ,	· 100	国的シュードを原	しなるできる子の子をの手腕		50		_		~	2	2	_			s	~
	b.	**	ゲーン教派のからから	₹ 0	3	3	e	•••	63	82	60	847	~	_	-	-	_
数を		>	メートである。		w		100	677	**	64	-	23	8	2	6		÷
5.17方法	4-x III-3	公	2.5.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	小型		0	0			0		0			0		0
してリード 日本数	2-III x-4	7.41上记	1 0 CADY	の超対の関係を発行			!		0		٥			0		O	
	1- E X-4	んを贈み			0			0					0				
5法	4-1 D-3	(♠12-1/ ○(+)	数で数ではない。				0				0	0				0	0
13-1, 位置決め方法	> ■>	FBAY 0.3	で で で で で で で で で の で の で の で の で の で の の で の の の の の の の の の の の の の	**		0			0	0				0	O		
1-64	f-7 II-1	くを読み			0			0					0	ļ			~~
6	-			方式的.	<1,1,1>	<1, 2, 3>	<1, 3, 3>	<‡, 1, 1>	<\$, 2, 2,	<2, 2, 3>	<\$, 3, 2>	<2, 3, 3>	⟨१, ∤, Ӏ⟩	(3, 2, 2)	(3, 2, 3>	<3, 3, 2>	<3, 3, 3>
10	*		'	_	-	ټ.		E **	₩ <u></u> 6		<u> </u>	1	ا دب	₽	一覧へ	<u></u>	

特関平5-307440

(45)

特関平5-307440

[図]]

RAIDにおけるCKDトラックの分割

[図24]

特関平5-307440

(45)

リ容量見積り

*< 中

位置情報の

[212]

へ・ージ ング、スタッヒ、ンチ、、等5九日 の問題 最多13-17数の1-1 最少い-1′数のケース シャャーナお・ファイル **₩** 9 17-1-数 $\stackrel{\bullet}{\sim}$ 2008 40963 10-1 · 441 (Ra) 3 글 55-1, 44(X, (RB) 3 8 1 ĸ 71-7-17 \$ 阿翰 r

[27]

	管理時位の	レゥードの位置 決め方式	管理単位内 のレフード数	管理単位当り の位置情報	トラック当りの位置情報
77 98 18	# A R	<2- II -4>	K2X, 943	a	
7 71 + 57 a	Q 2 3 3 4 4	<+-1 II-3>	Жвх. 943	3768	15048
		<+-1 II -3>25	Mex. 943	3868	3808

メモリ容盤見徴りケース

(47)

特関平5-307440

[M13]

●フォーマットⅠ(最多レコード数のケース)

R0 : KL = 0 , DL = 1Ra : KL = 0 , DL = 1

R00 + 17 = G2C + R0C + G2 + R0D= 248 + 40 + 224 + 32 = 544 (byte)

R n O + 1 x = G 3 + R n C + G 2 + R n D = 2 1 6 + 4 0 + 2 2 4 + 3 2 = 5 1 2 (b y t e)

図に示すように、HA以降のトラック容量は 48512byte であるから、Rnのレコード数は下式のようになる。(割算は切捨て)

 $Rnのレコード数 = \frac{48512 - R0のサイズ}{Rnのサイズ}$

単位:パイト

トラック・フォーマット

(48)

特闘平5-307440

[図]4]

)フォーマット2(ジャーナル・ファイルの典型)

R0 : KL = 0 : DL = 8

Rn : KL = 0 , DL = 200

$$R00 + 4x = G2C + R0C + G2 + R0D$$

$$= 248 + 40 + 224 + 32$$

$$= 544 (byte)$$

$$R n O + 1 = G + R n C + G + R n D$$

= 2 1 6 + 4 0 + 2 2 4 + 2 2 4
= 7 0 4 (by t e)

図13に示すように、HA以降のトラック容量は 48512byte であるから、Rnのレコード数は下式のようになる。 (割算は切捨て)

R n の レコード数 =
$$\frac{48512 - R0のサイズ}{Rnのサイズ}$$

$$= \frac{48512 - 544}{68}$$

[23]

7 0 4

[図36]

レコードのために必要な最大メモリ容量

ギャップの削除方法	73-7+14
3 マックの前原力法	最少レュード
〈タース I-1〉 全ギャップ削除	4 8 0 4 4 B
〈タース I-3〉 フィールド問ギャップのみ削除	48795B

(a) SET SECTOR SBARCH 10 TRANSPER IN CHANNES (TIC) READ DATA / WRITE DATA

06/15/2004

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615232125226622.gif

(49)

特開平5-307440

[**20**15]

$$lackbox{0.7cm} \begin{picture}(20,0) \put(0,0){\line(0,0){15}} \put(0,0){\line($$

Rn : KL = 0 , DL = 4096

図13に示すように、HA以降のトラック容量は 48512byte であるから、Rnのレコード数は下式のようになる。 (創算は切捨で)

Rnのレコード数 =
$$\frac{48512 - R0のサイズ}{Rnのサイズ}$$
$$= \frac{48512 - 544}{4608} = 10$$

[図28]

レコードのために必要な最大メモリ容量

ギャップの削除方法	71~7714
マックの削除力益	最少レコード
くタース I-l> 全ザォャプ削除	480446

(50)

特闘平5-307440

[217]

最少パード 7 8 0 4 4 48796 49020 Ra D=40965 44216 46686 41304 3002 = 008 15568 7x-7+18 46464 最多17-1, 44650 78-21 Hi 2754 13591 フィールド 闘ギ・ャップの 全+**+7° 强步 を凱繆 <1-1 x-4> <5-1 1-3> <7-4>

メモリ容量見積り

(51)

特関平5-307440

[219]

(『67:1-マッ1での!トラック分のメモリ領域

(52)

特関平5-307440

[22]

	ţ	位置滑機のメモリ容量見積	り容量見積り		
	管理単位の対抗	νэ{′ の位置 決め方式	管選単位内の12-1,数	管理単位当りの位置情報	15が当りの位置情報
管理部份 1	8 Ale	<\$-1 II -2>	Max, Fös		663
- 1		<\$-1 II -3>	Max. 623	2188	82868
管団監仏の		<4-x II -2>	Max. 945	89	168
		⟨½-x II-3⟩	Max, 343	3168	15048

(53)

フレーム中の空舎バイト

AがMoveしていないとき

(56) 特勝平5-307440

(57)

特闘平5-307440

[233]

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第3区分 【発行日】平成10年(1998)11月4日

【公開番号】特開平5-307440

【公開日】平成5年(1993)11月19日

【年通号数】公開特許公報5-3075

【出願香号】特願平5-9002

【国際特許分類第6版】

G06F 3/06 301

G118 20/12

[FI]

G06F 3/06 301 V

301 Y

G118 20/12

【手続浦正書】

【提出日】平成9年4月18日

【手続絹正1】

【補正対象書類名】明細書

【補正対象項目名】0002

【補正方法】変更

【補正内容】

[0002]

【従来の技術】従来、汎用計算機システムの外部記憶装 置としては、可変長レコード(CKD:Count K ey Data)方式の固定ディスク装置が広く用いち れている。可変長レコード方式とは、磁気ディスク上の 1トラックに記録する物理的なレコードの長さも数も可 変である記録フォーマットである。一般的に可変長レコ ード方式の磁気ディスクの1トラックは図33に示すよ うにインデックス・マー<u>クか</u>ら始まり、まず最初にホー ム・アドレス(HA)と引き続くレコード・ゼロ(R が存在する。このHAとR()はそのトラックのシリ ンダ・アドレスやヘッド・アドレスなどのアドレス情報 以外に、そのトラック上の磁気的な傷の位置や。不良ト ラックであるか否かの情報。また、不良トラックであれ は、交代割り付けされている相手先のトラックのアドレ ス等の制御情報を含んでいるため、必ず存在しなくては ならない。このHA、ROに引き続くレコード1(R 1) 以降のレコードが通常のデータを記録するレコード で レコード 1個 1個の長さも個数もその総容量がトラ

で、シリンダ・アドレス (CC)、ヘッド・アドレス 《HH》、レコード・ナンバ(R)などのアドレス情報 のほかに、そのレコードのキー・フィールドの長さ(K L) データ・フィールドの長さ(DL)などを含んで いるので、引き続くキー・フィールド、データ・フィー ルドの長さを自由に変えることができる。キー・フィー ルド、データ・フィールドがそのレコードの実際のデー タを記録する部分であるが、そのレコードのキーを記録 すべきキー・フィールドが不要な場合は、カウント・フ ィールドで民亡=0を指定することにより、キー・フィ ールドの存在しないレコードを作ることもできる。目 A. RO、RI. R2・・・などの間には、適当なサイ ズのレコード間ギャップ(G1、G2、G3)が設けら れており、特にR1、R2・・・などのレコードの前の ギャップ (G3) には、アドレス・マーク (AM) と呼 ばれる磁気的に特別なマーケが記録されているため、ト ラック内のどの部分から読み始めても、このアドレス・ マークを検出することにより、レコードの該み始めを見 つけることができる。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0033

【補正方法】変更

【補正内容】

【0033】次に、図2に戻り勝気ディスク制御鋳置5

2を有している。入力部52からホスト計算機1で動作 しているソフトウェアによる可変長レコード方式のアク セス命令が入力された場合に位置計算部53は例えばセ ットセクタコマンドで指定されたセクタ値に基づいてア クセスする可変長レコードが記憶されていると考えられ る管理単位の位置を計算する。この位置計算部による計 算は前述したようにFBAディスクタにデータが記録さ れる場合には全てのギャップが取り除かれているために CKDディスク10に存在している場合よりも前方向に **詰まった形でデータが記憶されており、位置計算部5.3** は鑑測により、アクセスしようとしてる可変長レコード が記憶されていると考えられる管理単位の位置を計算す る。レコード検索部54は位置計算部53により計算さ れた管理単位の位置をもとに管理単位をキャッシュメモ り6に読み込みアクセスしようとするレコードを検索す る。管理単位検索部56はアクセスしようとするレコー ドの組対位置情報(セクタ値)と検索された管理単位に 保持されている組対位置情報(セクタ値)とを比較し、 アクセスしようとする相対位置情報をもつ管理単位が見 つかるまでFBAディスク9に存在する管理単位を順に キャッシュメモリに読み込む。レコード特定部5つは管 理単位検索部56により目的とする管理単位が検索され た場合にアクセスしようとする可変長レコードをその管 理単位に含まれるアドレス情報を用いて特定する。FB Aディスク9とキャッシュ・メモリ6の間のデータの該 み書きをFBAコマンドを使用して実行するのは、デー タ・バス・サーバ (DPS) 55である。マネージャ は、全体の制御とキャッシュ・メモリ6の管理を行な う。

【手続請正3】

【補正対象書類名】明細書

【補正対象項目名】0061

【補正方法】変更

【補正内容】

【0061】メモリ容量を見積もるに当り、ことでは、 下記のような条件で見積りを行う。

- (1)トラック・フォーマットとしては図33を使用する。
- (2) 各フィールドのECC、32 B 境界にあわせるための0パディングは削除する。
- (3) HA、カウント・フィールドのその他のバラメー タはすべて残す。
- (4)レコードの付置情報などのCKD-FBA変換の

【手続箱正4】

【補正対象書類名】明細書

【補正対象項目名】0063

【補正方法】変更

【補正内容】

[0063] <ケース [-2>

・レコード間ギャップだけ残し、フィールド間ギャップは取り除く(ECCやパディングなどは取り除く)。ただし、フィールド間ギャップやECC、パディングなどを削除してもその分をギャップ長を伸ばしてつじつまを合わせることにすると、メモリ容置は元のCKDフィーマットと全く同じになる。従って、ここでは削除分のつじつま合わせは行わないケースで見積りを行う。

●フォーマット】(最多レコード数のケース)

HAのサイズ =G1+HA=504+(40-12) =532

R00077X = G2C+R0C+R0D=248+(40-12)+1=277

 $R_{\rm B}O \theta 4 \pi = G3 + R_{\rm B}C + R_{\rm B}D = 2.16 + (4.0 - 1.2) + 1 = 2.45$

よって、1トラック分の容量は、

HA+R0+Rn×93=532+277+245×9 3=23594

●フォーマット2(ジャーナル・ファイルの典型)

HAのサイズ =G1+HA=504+(40-12) =532

R00074X = G2C+R0C+R0D=248+(40-12)+8=284

 $R_{\rm B}$ O θ dx = G3+ $R_{\rm B}$ C+ $R_{\rm B}$ D=216+(40-12)+200=444

よって、1トラック分の容量は、

 $HA+RO+Rn\times68=532+284+444\times6$ 8=31008

●フォーマット3(ページング、スワッピング、VSAM)

HAのサイズ =G1+HA=504+(40-12) =532

 $R00 \forall 4 \% = G2C + R0C + R0D = 248 + (40 - 12) + 8 = 284$

Rnのサイズ =G3+RnC+RnD=216+(4

0 - 12 + 4096 = 4340

よって、1トラック分の容量は、

 $HA + R0 + Rn \times 10 = 532 + 284 + 4340 \times$

http://www4.ipdl.jpo.go.jp/NSAPITMP/web424/20040615232303014653.gif

06/15/2004

HA+R0=532+48264=48796

【手続絹正5】

【補正対象書類名】明細書

【補正対象項目名】0064

【補正方法】変更

【補正内容】

[0064] <ケース [-3>

・レコード間ギャップだけでなく、すべてのフィールド 間ギャップも残す(ECCやパディングなどは取り除 く)。この場合も、ECC、パディングなどを削除して もその分をギャップ長を伸ばしてつじつまを合わせるこ とにすると、メモリ容量は元のCKDフォーマットと全 く同じになる。従って、とこでは削除分のつじつま合わ せは行わないケースで見積りを行う。

●フォーマット 1 (最多レコード数のケース)

 $HAO \forall 1\% = G1 + HA = 504 + (40 - 12)$ = 532

R00074x = G2C+R0C+G2+R0D=248 + (4() - 12) + 224 + 1 = 5()1

 $RnO \phi / \chi = G3 + RnC + G2 + RnD = 216$ +(40-12)+224+1=469

よって、1トラック分の容量は、

 $HA+RO+Rn\times93=532+501+469\times9$ 3 = 44650

●フォーマット2(ジャーナル・ファイルの典型)

 $HAO \psi IX = G1 + HA = 504 + (40 - 12)$ = 532

R00074x = G2C+R0C+G2+R0D=24

8 + (40 - 12) + 224 + 8 = 508

 $RnO \phi dx = G3 + RnC + G2 + RnD = 216$

+(40-12)+224+200=668

よって、1トラック分の容量は、

 $HA+RO+Rn\times68=532+508+668\times6$ 8 = 46464

●フォーマット3(ページング、スワッピング、VSA M)

= 532

R00074x = G2C+R0C+G2+R0D=24

8 + (40 - 12) + 224 + 8 = 508

 $RnO \forall IX = G3 + RnC + G2 + RnD = 216$

+(40-12)+224+4096=4564

よって、1トラック分の容量は、

よって、1トラック分の容量は、

HA+R0=532+48488=49020

【手続絹正6】

【補正対象書類名】明細書

【補正対象項目名】0073

【補正方法】変更

【補正内容】

【0073】次に、「レコードの位置情報の制御方式の 改善」について説明する。先の見締りの制御方式の問題 点は以下のとおりである。前述した「レコードの位置情 級のメモリ容量見積り」では、CKDレコードの位置情 級を管理する単位(レコードの位置情報を保持する単位) どとに、そこに記録され得る最大レコード数に合わせて 位置情報の領域を確保していた。具体的にいうと、図2 4に示すように、管理単位のサイズを12KBとしたと きは、そこに最大94個のCKDレコードが記録され得 る。レコード1個当りの位置情報としては4hyteを 見積もっていたので、12KBの管理単位ごとに

 $4B \times 94 = 376B$

だけの位置情報領域を見積もっていた。CKDトラック 1本分のトラック・イメージはこの12KBの管理単位 4個からなっており、CKDトラック1本当りの位置情 級のメモリ容量は、

 $376B \times 4 = 1504B$

となってしまう。しかし、これでは、CKDトラック1 本当り94×4=376レコード分の位置情報の領域を 確保していることになる。図33のフォーマットでは、 1CKDトラックの最大レコード数は94レコード(R ()含む) であるので、12 KBの各管理単位に記録され 得る最大レコード数がそれぞれ94個であっても、同時 に全部の管理単位に94個ずつのレコードが記録される ことはあり得ない。従って、94×3=282レコード 分の位置情報の領域は無駄になっていることになる。

【手続絹正7】

【補正対象書類名】明細書

【補正対象項目名】()(8)

【補正方法】変更

【補正内容】

【0080】次に、この改善案による位置情報のメモリ 容量の見締りを行う。この改善案による位置情報のメモ リ容量について、前述した「レコードの位置情報のメモ リ容量見續り」で見續もったケースのうち図22の管理 単位2のケースについて見積りを行い 改善効果を見

特関平5-307440

*値は、まず、CKDトラックを四つに分割したフレーム

のうち、どのプレームに目的レコードが存在するかを知

るために使用する。フレームが見つかった後は、コント

ロール・フレーム中のレコード・ポインタに書かれてい

る各レコードのセグメント・ナンバと、このセクタ値を 比較することにより、より精度の高い位置決めができる

《ブレーム、及びコントロール・フレームやレコード・

実際のCKDディスクでは、セクタ1個分は224バイ トからなりたっているので、セクタ値からCKDフォー

マットのトラック上でのそれに相当する絶対バイト・ア ドレスはただちに計算できる。しかし、フレーム上では

ギャップやECC、パディングなどは削除して記録して

いるので、その絶対バイト・アドレスがどのフレームに

含まれているかは、その削除してしまった分を換算しな いと分からない。この創除した分量はレコード数にも依

ボインタの概略については図25に示したが、詳細は

「レコードの位置情報の制御方式の改善」参照のと

○目的レコードが存在するプレームの計算

٤),

存する。

【手続緒正9】

【補正対象書類名】図面

【補正対象項目名】図16

とメモリ容量の評価」参照)。このとき、本改善案で は、一つ目のプレームのコントロール・プレームにレコ ード・ポインタが94個。コントロール・プレーム・ポ インタが1個あって、他のプレームに制御情報は特にな い(というより、他のフレームそのものが要らない)。 従って、位置情報の制御に必要なメモリ容置は、

 $4B \times 95 = 380B$

である。この結果と、「レコードの位置情報のメモリ容 **置見積り」で見積もった他のケースとの比較を図27**に 示す。<ケース !!-2>は従来の方式で、各FBA ブロック(ここでは、フレーム)の先頭に位置するレコ ードの位置だけを保持する方式である。<ケース !! - 3 >はすべてのレコードの位置情報を保持する方式 で、本改善前の方式である。<ケース !!-3>改が 本方式である。

【手続績正8】

【補正対象書類名】明細書

【補正対象項目名】0092

【補正方法】変更

【補正内容】

[0092] 1. SET SECTOR

<機能>チャネルから1バイトのセクタ情報を受け取 り、セクタを検索する。 (セクタ情報:X ()) ~ X'DD', X'FF'ただしX' 'は16進數を表 す。)

【補正方法】変更 【補正内容】

<実現方式>このディスク・サブシステムでは、セクタ* [2016] ●フォーマット4(最少レコード数のケース)

RO: KL = 0.DL = 47988

Rn: 無し

この時のR0のDLの値は、以下のようにして求められる。

図13に示すように、R0のデータ・フィールドとして使用できるバイト 数は、

48512 - G2C - ROC - G2 =

48512 - 248 - 40 - 224 = 48000

この48000byteのうち、12bytcはECCでとられるので、結局、 RODのデータとして使用できる最大値は、

48000 12=47988

である。

06/15/2004

特関平5-307440

<u>「レコードの位置情報のメモリ容量見積り」での位置情報の保持方法</u>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
7	FADED TEXT OR DRAWING
•	BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLAČK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ OTHER•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.