Efficient flicker-free FEC codes using Knuth's balancing algorithm for VLC

Elie N. Mambou¹, Thibaud Tonnellier¹, Seyyed Ali Hashemi² and Warren Gross¹

¹Department of Electrical and Computer Engineering McGill University, Montréal, Québec, Canada.

²Department of Electrical Engineering Stanford University, Stanford, California, USA.

IEEE Global Communications Conference 2019 Waikoloa, HI, USA

December 9-13, 2019

VLC (Visible light communication)

VLC is a short range optical wireless communication technology which uses modulated light beam

▶ Why do we use VLC?

VLC applications [1]

- Indoor/outdoor optical wireless communication (OWC)
- Robotics
- ▶ Li-Fi network

© 2008 Boston University

Challenges in VLC

- How to perform efficient dimming while avoiding flickering in the channel?
 - Avoiding flickering: limit run-lengths of 1's or 0's.
 - Efficient dimming: varying the weight (amount of 1) of the transmitted codeword.

Contribution

- Proposed to use Knuth's balancing algorithm (KA) to incur 50% dimming in VLC.
 - Less redundancy compared to RLL codes based approaches.
 - Flexible transmission rates.

IEEE standard for local and metropolitan area networks part 15.7: Short-range wireless optical communication using visible light, IEEE Std 802.15.7-2011, pp. 1–286, Sept 2011

Concatenated codes scheme: Reed Solomon (RS) codes are deployed as inner codes and convolutional codes (CC) as outer codes.

IEEE standard for local and metropolitan area networks part 15.7: Short-range wireless optical communication using visible light, IEEE Std 802.15.7-2011, pp. 1–286, Sept 2011

- Run length limited (RLL): 1B2B, 4B6B and 8B10B
 - 1B2B: $0 \to 01$ and $1 \to 10$
 - ▶ A $\alpha B\beta B$ RLL code maps all length α words to 2^{α} DC-free codewords of length β .
 - The lengthier the code, the higher the decoding complexity!

IEEE standard for local and metropolitan area networks part 15.7; Short-range wireless optical communication using visible light, IEEE Std 802.15.7-2011, pp. 1-286, Sept 2011

- On-off keying (OOK) / Variable pulse position modulation (VPPM) / Colour shift keying (CSK)
- OOK

IEEE standard for local and metropolitan area networks part 15.7: Short-range wireless optical communication using visible light, IEEE Std 802.15.7-2011, pp. 1–286, Sept 2011

- Complex decoding (MAP) based on look-up tables
- Limited error correction capabilities!

IEEE standard for local and metropolitan area networks part 15.7: Short-range wireless optical communication using visible light, IEEE Std 802.15.7-2011, pp. 1–286, Sept 2011

- ▶ $1011111 \rightarrow 001111|001 \rightarrow 011111|010 \rightarrow 010111|011 \rightarrow 010011|100$
- Prefix length up to $p = \log_2(x)$

Flickering mitigation for various FEC codes

- ► At 50% dimming; the number of frames is validated by 100 "frame errors" for each run-length.
- We chose polar codes!

Flickering mitigation threshold

- Using the lowest optical clock rate of 200 kHz;
- With the MFTP of 5 ms (= eye-safe frequency of 200 Hz);
- ► $L \times \frac{1}{200 \text{ kHz}} < \frac{1}{200 \text{ Hz}} \rightarrow L = 1000;$
- For a threshold of $20 \times$ less than L, t = 1000/20 = 50;

Flickering mitigation threshold

- Using the lowest optical clock rate of 200 kHz:
- With the MFTP of 5 ms (= eye-safe frequency of 200 Hz);
- $L \times \frac{1}{200 \text{ kHz}} < \frac{1}{200 \text{ Hz}} \rightarrow L = 1000;$
- For a threshold of $20 \times$ less than L, t = 1000/20 = 50;

- ► Encode the prefix $PC(\mathbf{p}', \mathbf{p})$;
- ▶ The design of $PC(\mathbf{p}', \mathbf{p})$ is critical;

Balancing the encoded prefix by appending p' complement;

► Assembling **x**′, **p**′ and **p**″;

Redundancy comparison

Redundancy comparison

▶ De-concatenation $r = \tilde{x}' | \tilde{p}'' | \tilde{p}'';$

- Successive cancellation (SC) to decode KA prefix;
- Then apply Knuth's decoder to recover y;

FER analysis

- $P_e = P_{prefix} + (1 P_{prefix})(P_{payload})$
- ▶ Given that $FER_{SC} = 1 \prod_{i \in \mathcal{I}} (1 p_i)$

$$\blacktriangleright \ \textit{FER} = \left(1 - \prod_{i \in \mathcal{I}_2} (1 - \boldsymbol{Q}_i)\right) + \prod_{i \in \mathcal{I}_2} (1 - \boldsymbol{Q}_i) \cdot \left(1 - \prod_{i \in \mathcal{I}_1} (1 - \boldsymbol{Q}_i)\right)$$

$$P_e = P_{prefix} + (1 - P_{prefix})(P_{payload})$$

- ▶ Given that $FER_{SC} = 1 \prod_{i \in T} (1 p_i)$
- $\qquad \qquad \textbf{FER} = \left(1 \prod_{i \in \mathcal{I}_2} (1 \boldsymbol{Q}_i)\right) + \prod_{i \in \mathcal{I}_2} (1 \boldsymbol{Q}_i) \cdot \left(1 \prod_{i \in \mathcal{I}_1} (1 \boldsymbol{Q}_i)\right)$

- $P_e = P_{prefix} + (1 P_{prefix})(P_{payload})$
- ▶ Given that $FER_{SC} = 1 \prod_{i \in \mathcal{I}} (1 p_i)$
- $\blacktriangleright \ \ \textit{FER} = \left(1 \textstyle\prod_{i \in \mathcal{I}_2} (1 \boldsymbol{Q}_i)\right) + \textstyle\prod_{i \in \mathcal{I}_2} (1 \boldsymbol{Q}_i) \cdot \left(1 \textstyle\prod_{i \in \mathcal{I}_1} (1 \boldsymbol{Q}_i)\right)$

Comparison of various schemes at 50% dimming ratio with rate of 44%

Comparison of various schemes at 50% dimming ratio with rate of 44%

Comparison of various schemes at 50% dimming ratio with rate of 44%

Transmission rates analysis

- K is the payload length
- $ightharpoonup R_1$ and R_2 , rates of the 1st and 2nd FEC
 - ► R₂ = 50% (Proposed scheme)

	Rates	$R_1 = 50\%,$	$R_1 = 75\%$
1b2b 4b6b Proposed	$ \begin{array}{c c} \frac{1}{2}R_{1} \\ \frac{2}{3}R_{1} \\ \frac{1}{R_{1}}K + \frac{1}{R_{2}}\log_{2}K \end{array} $	25% 33.3% 48.5%(K=256)	37.5% 50% 71.6%(K=256)
		49.5%(K=1024)	73.9%(K=1024)

Computational complexity analysis

- Number of operations required for decoding RLL codes and the proposed scheme for different rates with K = 256.
- Operation being any elementary calculation (add, sub, mult, exp, div)

	R = 1/2	R = 1/4
1b2b	288	556
4b6b	15744	30504
Proposed	704	1455

Conclusion

- Efficient scheme to generate flicker-free codes to mitigate light flickering at dimming of 50% was proposed based on KA
- 1.8dB better than compared schemes at a BER of 10⁻⁶ and rate of 44%
- Flexible transmission rates up to close R₁

Conclusion

- Efficient scheme to generate flicker-free codes to mitigate light flickering at dimming of 50% was proposed based on KA
- 1.8dB better than compared schemes at a BER of 10⁻⁶ and rate of 44%
- ► Flexible transmission rates up to close R₁
- Future works includes:
 - extending this scheme for efficient dimming
 - further compression of the prefix length

End

THANK YOU!