一、单项选择题(每小题 4 分, 共 20 分)

- 1.设函数 f(x) 在点 $x = x_0$ 的某邻域内具有二阶连续导数,且 $f'(x_0) = 0$, $f''(x_0) > 0$, 则点 $x = x_0$ 一定是函数f(x)的[____].
 - A. 最小值点; B. 最大值点; C. 极小值点; D. 极大值点.
- 2.设 $a_n \le x_n \le b_n (n=1,2,\cdots)$,且 $\lim_{n\to\infty} (b_n-a_n)=0$,则极限 $\lim_{n\to\infty} x_n$ 为[____].
 - A. 不存在; B. 等于 0; C. 存在但不等于 0; D. 不一定存在.
- 3.设 f(x) 为 $[0,+\infty)$ 上严格单调减少的连续函数,对任意的正常数 $a \in (0,1)$,记

$$I_1 = \int_1^{1+a} f(x) dx$$
, $I_2 = \int_0^a f(x) dx$, $\mathbb{M}[\underline{\hspace{1cm}}]$.

- A. $I_1 < I_2$; B. $I_1 > I_2$; C. $I_1 = I_2$; D. 无法确定.
- 4. 已知 $\lim_{x\to 0} \frac{f(x)}{x} = 0$ 及 $\lim_{x\to 0} (1+x+\frac{f(x)}{x})^{\frac{1}{x}} = e^{2016}$,则 $\lim_{x\to 0} (1+\frac{f(x)}{x^2}) = [$ ______].
 A. 2016; B. e; C. e^{2016} ; D. 无法确定.

- 5. 若 f(x) 的导函数是 $y = \sin x$,则 f(x) 的一个原函数为[_____].
 - A. $y = 1 + \sin x$; B. $y = 1 + \cos x$; C. $y = 1 \sin x$; D. $y = 1 \cos x$.

二、填空题(每小题 4 分, 共 20 分)

- 6.函数 $y = 4x^4 \ln x$ 在定义域内的单调递减开区间为 .
- 7.摆线 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$ 在 $t = \frac{\pi}{3}$ 对应点处的切线斜率为______.
- 8.设 $f(x) = x x^2 \ln(1 + \frac{1}{x})$,则 $\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$.
- 9.设点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点,则 a b =______.
- **10**. 半径为r=0.5的圆上任意点处的曲率为

三、计算题(每小题7分,共21分)

- 11. 求不定积分 $\int_{-\frac{2}{x^2+8x+15}} dx$.
- 12. 求定积分 $\int_{-x}^{\frac{\pi}{2}} \left(\sqrt{\cos x \cos^3 x} + x e^{|x|} \right) \mathrm{d}x.$
- 13. 设函数 y = y(x) 由方程 $\cos(xy) + \ln y x = 1$ 所确定, 求 $dy|_{y=0}$.
- 四、(10分) 求过点(1,2,1) 且与平面x+3y=0和2y-z=1都垂直的平面方程.
- 五、(12 分) 设曲线 $y = \sqrt{x} \cdot a^{-\frac{x}{2a}} (x \ge 0)$ 与 x 轴之间的无界图形为 D ,其中 a > 1 . (1) 求 D 绕 x 轴 旋转一周所得旋转体的体积V(a); (2)求a为何值时V(a)最小?并求此最小值.
- 六、(8分) 设向量 $\vec{a} = (2,-1,1)$, $\vec{b} = (3,-4,2)$ 以及 $\vec{c} = \vec{a} + \lambda \vec{b}$,其中 λ 为实数,证明当 \vec{c} 的模最 小时, $\vec{c} \perp \vec{b}$.
- 七、(5 分)设 f(x) 是实数域上的连续函数,且当 $x \to 0$ 时, $F(x) = \int_0^{x^2+3x} t f(t) dt$ 是 x^2 的等价无 穷小, 求f(0)的值.
- 八、(4 分)设 λ 为非零实数, α 与 β 均是可导函数 f(x) 的零点且 $\alpha < \beta$. 证明 $\exists \xi \in (\alpha, \beta)$, 使得 $f(\xi) = \lambda f'(\xi)$.