			Pate
Min-	max Algorith	m	
Name :- Namra	Javid Palte		
class :- BE-IT		- Alaka	
Roll no 8-41			
Sem :- VII			
Subject: - Is	lab		
DOP	Docum	marks	Sign
Blots with	At 11 A -	unh int ?	72/2
mart to rit 20	Lot seconson	8x1000x8	5 374
11 00- = 31101	in the see solution	High wash	matter 1. es

step 2:-Now, first we find the utilities value for maximizers, its initial value is -& so we will compore each value in terminal state with initial value of maximizer of determines higher node values, It will find maximum among the all.

- for node D max $(2, -\infty) = \lambda \max(2, 3) = 3$ - for node E max $(5, -\infty) = \lambda \max(5, 9) = 9$

- for node f max (0, -0) = max (0,1) =1

- for node 4 max (7, 0) => max (7,5)=7

Step 3 = In next step, its a turn for minimizer,
So it will compare all nodes values with
to f will find the 3rd layer node values.

-for node B = min (3,9) = 3 -for node (= min (1,7) = 1

