Introduction

Le modèle relationnel

- ☐ Introduit par Codd dans les années 70
- ☐ C'est un modèle ensembliste simple et rigoureux
- ☐ Une BDR est une BD dont le schéma est un ensemble de schémas de relations et dont les occurrences sont des tuples (ou n-uplets) de ces relations.
- ☐ Les entités et les associations du modèle E/A sont représentées exclusivement par des relations (tables).
- ☐ Une entité est représentée par sa liste d'attributs.
- ☐ Une association est représentée par la liste des clés des entités qu'elle associe et ses propres attributs

Introduction

Le modèle relationnel

- ☐ Un SGBD est dit minimalement relationnel si :
 - Les informations de la base sont représentées par des tables ;
 - Il n'y a pas de pointeurs visibles (pour l'utilisateur) sur les tables;
 - Le système supporte les opérateurs relationnels :
 - o La restriction;
 - o La projection;
 - o La jointure.

Introduction

Le modèle relationnel

- ☐ Un SGBD est complètement relationnel :
 - La réalisation de toutes les opérations de l'algèbre relationnel;
 - Unicité des clés (pas de doublons);
 - La contrainte référentielle (ex : pouvoir s'assurer que le produit dont on a passé commande se trouve bien dans la relation PRODUIT).

Le Domaine

- ☐ Un domaine est un ensemble dénombrable de valeurs caractérisé par un nom
- **Exemple**:

```
NOM_VILLE = { Rabat, Casablanca, Ouarzazate }
COULEUR ={Blanc, Noir, Rose, Gris}
```

- Les domaines sont les ensembles de valeurs possibles dans lesquels sont puisées les données
- Deux ensembles peuvent avoir les mêmes valeurs bien que sémantiquement distincts
- **Exemple.**:

NUM_ELV =
$$\{1, 2, ..., 2000\}$$

NUM_ANNEE = $\{1, 2, ..., 2000\}$

La Relation

- ☐ Une relation est un sous-ensemble du produit cartésien d'une liste de domaines caractérisé par un nom
- \square R \subset D1 \times D2 \times ... \times Dn D1, D2, ..., Dn sont les domaines de R n est le degré de R

La Relation

- Les domaines :
 - NOM ELV = { Rachid, Taoufiq}
 - PREN ELV = { Amine, Sami}
 - DATE NAISS = {1/1/1990,2/2/1994}
 - NOM SPORT = { judo, tennis, foot }
- ☐ La relation ELEVE
 - ELEVE

 NOM ELV

 PREN ELV

 DATE NAISS
 - ELEVE = { (Rachid, Amine, 1/1/1992), (Taoufiq, Sami, 2/2/1994) }
- ☐ La relation INSCRIPT
 - $INSCRIPT \subset NOM ELV \times NOM SPORT$
 - INSCRIPT = { (Rachid, judo), (Rachid, foot), (Taoufiq, judo) }

Les N-Uplets

- ☐ Un élément d'une relation est un n-uplet de valeurs (tuple en anglais)
- ☐ Un n-uplet représente un fait
- ☐ Exemple:
 - « Rachid Kamal est un élève né le 1 janvier1994 »
 - « Rachid est inscrit au judo »

Attribut

- ☐ Un attribut est une variable prenant ses valeurs dans un domaine.
- Un attribut est un colonne d'une relation caractérisée par un nom. Rôle joué par un domaine dans la relation
- ☐ Analogie avec le modèle entité-association
 - les colonnes (attributs du modèle relationnel) ne sont rien d'autres que les attributs du modèle E-A
 - les lignes correspondent aux occurrences d'une entité ou d'une association du modèle E-A
- Exemple
 - La relation TRAJET : TRAJET ⊂ NOM VILLE × NOM VILLE
 - Dans laquelle la première composante représente la ville de départ VD, la deuxième composante la ville d'arrivée VA d'un trajet.

Le Schéma d'une relation

- ☐ Le schéma d'une relation est défini par :
 - Le nom de la relation
 - La liste de ses attributs
 - On note : R (A1, A2, ..., An)
- Exemple
 - ELEVE (NOM, PRENOM, NAISS)
 - INSCRIPT (NOM_ELV, SPORT)
 - TRAJET (VD, VA)

Le Schéma d'une relation

Extension et Intension

- ☐ L'extension d'une relation correspond à l'ensemble de ses éléments (n-uplets)
 - le terme RELATION désigne une extension
- ☐ L'intention d'une relation correspond à sa signification
 - le terme SCHÉMA DE RELATION désigne l'intention d'une relation

Le Schéma d'une BDR

- ☐ Le schéma d'une base de données est défini par :
 - l'ensemble des schémas des relations qui la composent
- □ Notez la différence entre :
 - le schéma de la BDR qui dit comment les données sont organisées dans la base
 - l'ensemble des n-uplets de chaque relation, qui représentent les données stockées dans la base

La représentation

Exemples:

☐ La relation ELEVE

ELEVE

NOM	PRENOM	NAISSA
Rachid	Adil	11/05/2000
Taoufiq	Amine	12/09/1999
LAFAT	Rajaa	01/02/1996

Les concepts : La représentation

Exemples:

☐ La relation INSCRIPT

INSCRIPT

NOM_ELV	SPORT
Rachid	JUDO
Taoufiq	FOOT
LAFAT	JUDO

Les concepts : La représentation

Exemples:

☐ La relation TRAJET

TRAJET

VD	VA
Casablanca	Marrakech
Marrakech	Ouarzazate
Ouarzazate	Casablanca

Une entité se transforme en une relation (table)

- ☐ Toute entité du MCD devient une relation du MLDR, et donc une table de la Base de Données.
- ☐ Chaque propriété de l'entité devient un attribut de cette relation, et dont une colonne de la table correspondante.
- ☐ L'identifiant de l'entité devient la **Clé Primaire** de la relation (elle est donc soulignée), et donc la Clé Primaire de la table correspondante.

Une entité se transforme en une relation (table)

- ☐ Toute entité du MCD devient une relation du MLDR, et donc une table de la Base de Données.
- ☐ Chaque propriété de l'entité devient un attribut de cette relation, et dont une colonne de la table correspondante.
- L'identifiant de l'entité devient la **Clé Primaire** de la relation (elle est donc soulignée), et donc la Clé Primaire de la table correspondante.

Relation binaire aux cardinalités (X,1) - (X,n), $X = \{0 \text{ ou } 1\}$

☐ La Clé Primaire de la table à la cardinalité (X,n) devient une Clé Etrangère dans la table à la cardinalité (X,1):

MLD: Client (NumClient, Société, Contact, Fonction, Ville) Commande (NCommande, DateCommande, #NumClient)

Relation binaire aux cardinalités (X,n) - (X,n), $X = \{0 \text{ ou } 1\}$

- ☐ La création d'une table supplémentaire ayant comme Clé Primaire une clé composée des identifiants des 2 entités.
- ☐ La Clé Primaire de la nouvelle table est la concaténation des Clés Primaires des deux autres tables.

Produit	0,n	DétailCom	1,n	Commande
NumProduit		Prix		NCommande
NomProduit		Quantité	,	DateCommande

MLD: Commande (NCommande, DateCommande) Produit (NumProduit, NomProduit) DétailCom (#NCommande, #NumProduit, Quantité, Prix)

Relation n-aire (quelles que soient les cardinalités)

☐ La création d'une table supplémentaire ayant comme Clé Primaire la concaténation des identifiants des entités participant à la relation.

MLD: Etudiant (NumEtudiant, NomEtudiant)

Niveau (NumNiv, NomNiv)

Langue (NLangue, NomLangue)

Parle (#NEtudiant, #NumNiv, #NLangue)

Relation binaire aux cardinalités (0,1) - (1,1)

☐ Clé Primaire de la table à la cardinalité (0,1) devient une Clé Etrangère dans la table à la cardinalité (1,1)

■ MLD: Animateur (<u>idAnimateur</u>, NomAnimateur) Groupe (<u>idGroupe</u>, #NomGroupe, #idAnimateur)

Dépendance fonctionnelle

- ☐ Introduite par Codd en 1970,
- ☐ La notion de dépendance fonctionnelle (DF) permet de caractériser des relations qui peuvent être décomposée sans perte d'information.
- On dit qu'un attribut ou un ensemble d'attributs Y est fonctionnellement dépendant d'un autre (ensemble d') attribut(s) X si, à chaque valeur prise par X correspond une valeur unique de Y.
- Soit R(A1, A2,, An) un schéma de relation
- Soit X et Y des sous ensembles de {A1,A2,...An}
- On dit que Y dépend fonctionnellement de X (X->Y) si à chaque valeur de X correspond une valeur unique de Y

Dépendance fonctionnelle

- \square on écrit : $X \rightarrow Y$
- ☐ on dit que : X détermine Y
- ☐ Exemple:
 - PRODUIT (no prod, nom, prixUHT)
 - no prod \rightarrow (nom, prixUHT)
 - NOTE (no contrôle, no élève, note)
 - (no contrôle, no élève) → note
- une dépendance fonctionnelle est une propriété sémantique, elle correspond à une contrainte supposée toujours vrai du monde réel

La clé d'une relation

- ☐ C'est un attribut qui détermine tous les autres
- **Exemple:**
 - PRODUIT (no prod, nom, prixUHT)
 - no prod \rightarrow (nom, prixUHT)
 - no prod est une clé
- ☐ Une clé détermine un n-uplet de façon unique
- ☐ Pour trouver la clé d'une relation, il faut examiner attentivement les hypothèses sur le monde réel
- Une relation peut posséder plusieurs clés, on les appelle clés candidates
- Exemple
 - dans la relation PRODUIT, nom est une clé candidate (à condition qu'il n'y ait jamais 2 produits de même nom)

La clé d'une relation

- Clé primaire
 - > choix d'une clé parmi les clés candidates
- ☐ Clé étrangère ou clé secondaire
 - > attribut (ou groupe d'attributs) qui fait référence à la clé primaire d'une autre relation
 - Ex.: CATEG (no_cat, design, tva)
 - > PRODUIT(no_prod, nom, marque, no_cat, prixUHT)
 - > no cat dans PRODUIT est une clé étrangère
- □ CLÉ ÉTRANGÈRE = CLÉ PRIMAIRE dans une autre relation

Définition

- ☐ Une contrainte d'intégrité (CI) est une propriété ou une règle que doivent satisfaire les données de la base pour être considérées comme correctes (sans ambiguïtés ni incohérences).
- ☐ Une base de données est dite intègre ou cohérente si ses contraintes d'intégrité sont satisfaites
- ☐ Le modèle relationnel impose les contraintes structurelles suivantes :
 - Intégrité de domaine
 - Intégrité de clé
 - Intégrité référentielle

Intégrité de domaine

- ☐ Les valeurs d'une colonne de relation doivent appartenir au domaine correspondant
 - contrôle des valeurs des attributs
 - contrôle entre valeurs des attributs
- ☐ La valeur doit respecter le format des données du domaine de l'attribut (entier, réel, date, caractère)

Intégrité de clé

- ☐ Les valeurs de clés primaires doivent être :
 - > uniques
 - non NULL
 - Unicité de clé
 - Unicité des n-uplets

Intégrité référentielle

- ☐ Les valeurs de clés étrangères sont 'NULL' ou sont des valeurs de la clé primaire auxquelles elles font référence
 - Relations dépendantes
- ☐ LES DÉPENDANCES : Liaisons de un à plusieurs exprimées par des attributs particuliers: clés étrangères ou clés secondaires

La théorie de la normalisation

- ☐ La méthode de normalisation consiste à créer des schémas relationnels répondant à un certain standard appelé forme normale qui devront respecter les contraintes de dépendances.
- ☐ La normalisation permet...
 - de guider la structuration des schémas relationnels,
 - de vérifier qu'une décomposition est à jonction conservatrice,
 - d'imposer des contraintes aux relations d'une BD.
- □ But
 - rendre une BD la plus efficace possible et sans redondances inutiles.

La théorie de la normalisation

- ☐ Cette procédure fait subir à une relation une série de tests pour certifier qu'elle appartient à une certaine forme normale.
- □ Codd (mathématicien, chercheur de IBM,1972) a proposé trois formes normales:
 - 1NF : première forme normale,
 - 2NF : deuxième forme normale,
 - 3NF : troisième forme normale.
- ☐ Ces formes normales sont basées sur les dépendances fonctionnelles entre les attributs d'une relation.

1NF: Première forme normale

- ☐ La première forme normale contient 2 règles:
 - R est une relation 1NF ssi les domaines de la relation contiennent uniquement des valeurs atomiques (ne contiennent qu'une seule information).
 - R est une relation 1NF ssi les domaines de la relation ne contiennent pas de relation.

DEPARTEMENT				
DNAME	<u>DNUMBER</u>	DMGRSSN	DLOCATIONS	
Research	5	333445555	(Bellaire,Sugarland,Houston)	
Administration	4	987654321	(Stafford)	
	•	001001021	(Glanora)	

DEPARTEMENT

DNAME	<u>DNUMBER</u>	DMGRSSN	DLOCATION
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

1NF: Première forme normale

- ☐ La première forme normale contient 2 règles:
 - R est une relation 1NF ssi les domaines de la relation contiennent uniquement des valeurs atomiques (ne contiennent qu'une seule information).
 - R est une relation 1NF ssi les domaines de la relation ne contiennent pas de relation.

Exemple:

a)PROJS est inclus dans **EMP PROJ**

- b) Instanciation
- c) EMP PROJ décomposé

PNUMBER

SSN

HOURS

2NF: Deuxième forme normale

- ☐ Une relation est en 2FN si
 - elle est en 1FN
 - tous les attributs "non clés" sont complètement dépendants de la clé primaire.
- ☐ La 2NF est basée sur le concept de dépendance fonctionnelle complète.
- ☐ Une dépendance fonctionnelle X ->Y est complète si l'élimination d'un attribut xi dépendance quelconque de X détruit la fonctionnelle.

3NF: Troisième forme normale

- ☐ Une relation est en 3FN si
 - elle est en 2FN
 - tous les attributs "non-clés "sont dépendants non transitivement (dépendants directement) de la clé primaire.
- ☐ La **3NF** est basée sur le concept de dépendance fonctionnelle transitive.
 - Si les dépendances fonctionnelles X -> Z et Z -> Y existes. Alors, la dépendance fonctionnelle X -> Y est dites transitive.

Les formes normales

Algèbre relationnelle

Introduction

- ☐ Algèbre relationnelle est une collection d'opérations formelles agissant sur des relations et produisant des relations en résultat.
- ☐ Par analogie, l'algèbre relationnelle est aux relations ce que l'arithmétique est aux nombres entiers.
- ☐ But: spécifier des interrogations sur une base de données pour en tirer des informations.
- Moyen:
 - combinaison de relations entre elles;
 - sélection de tuples;
 - sélection d'attributs

Algèbre relationnelle

Types d'opérations

Deux types d'opérations:

- Opérations ensemblistes
 - Union
 - Intersection
 - Différence
- Opérations spécifiques
 - Projection
 - Restriction
 - Jointure
 - Division

Union

- ☐ L'union de deux relations R1 et R2 de même schéma est une relation R3 de schéma identique qui a pour n-uplets les n-uplets de R1 et/ou R2
- On notera

$$R3 = R1 \cup R2$$

Exemple

R1

A	В
0	1
2	3

R2

В
1
5

R3

A	В
0	1
2	3
4	5

Intersection

- ☐ L'intersection entre deux relations R1 et R2 de même schéma est une relation R3 de schéma identique ayant pour n-uplets les n-uplets communs à R1 et R2
- On notera

$$R3 = R1 \cap R2$$

Exemple

R1			
A	В		
0	1		
2	3		

K3		
A	В	
0	1	

Différence

- ☐ La différence entre deux relations R1 et R2 de même schéma est une relation R3 de schéma identique ayant pour n-uplets les n-uplets de R1 n'appartenant pas à R2
- On notera

$$R3 = R1 - R2$$

Exemple

R1 В A 0 3

R2 В A 0 5 4

A	В	
2	3	

R3

Produit cartésien

- \square Le produit cartésien de deux relations r et s, de schéma quelconque R et S, est une relation ayant pour attributs la concaténation de ceux de R et de S et dont les nuplets sont toutes les concaténations d'un n-uplet de r à un n-uplet de s
- On notera

$$R3 = R1 \times R2$$

Exemple

R1

No	NP	CP
100	X	В
200	Y	N

R2

R3

No	NP	СР	ND	AD
100	X	В	5	A1
100	X	В	7	W
200	Y	N	5	A1
200	Y	N	7	W

Projection

- ☐ La projection d'une relation R1 est la relation R2 obtenue en supprimant les attributs de R1 non mentionnés puis en éliminant éventuellement les nuplets identiques
- On notera

$$R2 = \pi R1 (Ai, Aj, ..., Am)$$

la projection d'une relation R1 sur les attributs Ai, Aj, ..., Am

☐ La projection permet d'éliminer des attributs d'une relation

Projection

■ Exemple1 :Requête 1 : « Quels sont les noms et les prix des produits ? »

PRODUIT (IdPro, Nom, Marque, Prix)

IdPro	Nom	Marque	Prix
A	PS1	IBM	1000
В	Mac	Apple	2000
С	PS2	IBM	3000
D	Word	Microsoft	4000

πPRODUIT (Nom, Prix)

Nom	Prix
PS1	1000
Mac	2000
PS2	3000
Word	4000

Projection

■ Exemple2 : Requête 2 : « Quels sont les marques des produits ? » PRODUIT (IdPro, Nom, Marque, Prix)

IdPro	Nom	Marque	Prix
A	PS1	IBM	1000
В	Mac	Apple	2000
С	PS2	IBM	3000
D	Word	Microsoft	4000

 π PRODUIT (Marque)

Marque **IBM** Apple Microsoft

Il faut éliminer les doublons..

Restriction

- ☐ La restriction ou la sélection d'une relation R1 est une relation R2 de même schéma n'ayant que les n-uplets de R1 répondant à la condition énoncée
- On notera: $R2 = \sigma R1$ (condition)

la restriction d'une relation R1 suivant le critère "condition"

- ☐ La restriction permet d'extraire les n-uplets qui satisfont une condition
- ☐ La restriction ou la sélection supprime des lignes dans la table initiale.

Restriction

■ Exemple :Requête : « Quels sont les produits de marques « IBM »? » PRODUIT (IdPro, Nom, Marque, Prix)

IdPro	Nom	Marque	Prix
A	PS1	IBM	1000
В	Mac	Apple	2000
С	PS2	IBM	3000
D	Word	Microsoft	4000

σPRODUIT (Marque = 'IBM')

IdPro	Nom	Marque	Prix
A	PS1	IBM	1000
С	PS2	IBM	3000

Jointure

- ☐ La jointure de deux relations R1 et R2 est une combinaison de tous les n-uplets de R avec ceux de S.
- On notera:

$R3 = R1 \times R2$ (condition)

- ☐ la jointure de R1 avec R2 suivant le critère condition:
- Le schéma de la relation résultat de la jointure est la concaténation des schémas des opérandes (s'il y a des attributs de même nom, il faut les renommer)
- Les n-uplets de R1 × R2 (condition) sont tous les couples (u1,u2) d'un n-uplet de R1 avec un n-uplet de R2 qui satisfont "condition "
- La jointure de deux relations R1 et R2 est le produit cartésien des deux relations suivi d'une restriction
- La condition de liaison doit être du type :

```
<attribut1> :: <attribut2>
```

où : attribut1 ∈ 1ère relation et attribut2 ∈ 2ème relation :: est un opérateur de comparaison (égalité ou inégalité)

Jointure

☐ La jointure permet de composer 2 relations à l'aide d'un critère de liaison **R1 (A,B,C) R2(U,V)**

A	В	C
X	P	10
Y	Q	20

U	V
10	V1
20	V2

 $R1 \times R2 (R1.C = R2.U)$

A	В	C	U	V
X	P	10	10	V1
Y	Q	20	20	V2

Produits(P)

Types d'opérations

Jointure

■ Exemple : Requête : «Donnez pour chaque vente la référence du produit, sa désignation, son prix, le numéro de client, la date et la quantité vendue »

Vente (V)

IdCli	IdPro	Date	Qte
X	P	1/1/16	1
Y	Q	2/1/16	1
Z	P	3/1/16	1

IdPro	Désignation	Prix
P	PS	100
Q	Mac	100

VENTE × **PRODUIT** (V.IdPro=P.IdPro)

IdCli	IdPro	Date	Qte	Désignation	Prix
X	P	1/1/16	1	PS	100
Y	Q	2/1/16	1	Mac	100
Z	P	3/1/16	1	PS	100

Auto-Jointure

- ☐ Jointure d'une relation par elle-même
- Exemple : Requête : «Quels sont les noms des clients qui habitent la même ville que Taoufiq? »

Client(C1)

IdCli	Nom	Ville
X	Rachid	Rabat
Y	Adnane	Casa
Z	Taoufiq	Rabat

Client(C2)

IdCli	Nom	Ville
X	Rachid	Rabat
Z	Taoufiq	Rabat

Auto-Jointure

□ R1=CLIENT × CLIENT (C1.Ville = C2.Ville)

C1.IdCli	C1.Nom	Ville	C2.IdCli	C2.Nom
X	Rachid	Rabat	X	Rachid
X	Rachid	Rabat	Z	Taoufiq
Y	Adnane	Casa	Y	Adnane
Z	Taoufiq	Rabat	X	Rachid
Z	Taoufiq	Rabat	Z	Taoufiq

Initiation aux bases de données

Auto-Jointure

 \square R2= σ R1 (C2.Nom = 'Taoufiq')

C1.IdCli	C1.Nom	Ville	C2.IdCli	C2.Nom
X	Rachid	Rabat	Z	Taoufiq
Z	Taoufiq	Rabat	Z	Taoufiq

 $\square R3 = \pi R2 (C1.Nom)$

C1.Nom

Rachid

Taoufiq

Division

Soit deux relations R1 (A1, A2, ..., An, B1, B2, ..., Bm)

- Si le schéma de R2 est un sous-schéma de R1.
- ☐ La division de R1 par R2 est une relation R3 dont : -
 - le schéma est le sous-schéma complémentaire de R2 par rapport à R1
 - un n-uplet (a1, a2, ..., an) appartient à R3 si (a1, a2, ..., an, b1, b2, ..., bm) appartient à R1 pour tous $(b1, b2, ..., bm) \in R2$.
- On notera:

$$R3 = R1 \div R2$$
 la division de R1 par R2

- ☐ La division permet de rechercher dans une relation les sous n-uplets qui sont complétés par tous ceux d'une autre relation
- ☐ Elle permet de répondre à des questions qui sont formulées avec le quantificateur universel: "pour tout ..."

Division

Exemple: Requête: « Quels sont les élèves qui sont inscrits à tous les sports? »

Inscri

Elève	Sport
Ahmed	Judo
Adnane	Foot
Ahmed	Foot
Ahmed	Danse

Sport

Res

Elève

Ahmed

Introduction

- ☐ Le langage algébrique permet de formuler une question par une suite des opérations de base de l'algèbre relationnelle
- Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

- Requête 1
- « Donner les no des produits de marque Apple et de prix <5000 dhs »

Initiation aux bases de données

Introduction

- ☐ Le langage algébrique permet de formuler une question par une suite des opérations de base de l'algèbre relationnelle
- Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 1

« Donner les no des produits de marque Apple et de prix <5000 dhs »

Initiation aux bases de données

 $R1 = \sigma PRODUIT$ (marque = 'Apple')

 $R2 = \sigma PRODUIT (prix < 5000)$

 $R3 = R1 \cap R2$

RESUL = π R3 (IdPro)

Introduction

- ☐ Le langage algébrique permet de formuler une question par une suite des opérations de base de l'algèbre relationnelle
- Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

- Requête 2
- « Donner les no des clients ayant acheté un produit de marque Apple »

Initiation aux bases de données

Introduction

- ☐ Le langage algébrique permet de formuler une question par une suite des opérations de base de l'algèbre relationnelle
- Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 2

« Donner les no des clients ayant acheté un produit de marque Apple »

Initiation aux bases de données

 $R1 = \sigma PRODUIT (marque = 'Apple')$

 $R2 = R1 \times VENTE (R1.IdPro = VENTE.IdPro)$

RESUL = π R2 (IdCli)

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 3

« Donner les no des clients n'ayant acheté que des produits de marque Apple »

Initiation aux bases de données

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 3

« Donner les no des clients n'ayant acheté que des produits de marque Apple »

R1 = VENTE×PRODUIT (VENTE.IdPro = PRODUIT.IdPro)

 $R2 = \sigma R1$ (marque = 'Apple')

 $R3 = \pi R2$ (IdCli)

 $R4 = \sigma R1$ (marque \neq 'Apple')

 $R5 = \pi R4 \text{ (IdCli)}$

RESUL = R3 - R5

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 4

« Donner les no des clients n'ayant acheté que des produits de marque Apple »

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 4

« Donner les no des clients n'ayant acheté que des produits de marque Apple »

Initiation aux bases de données

R1 = VENTE×PRODUIT (VENTE.IdPro = PRODUIT.IdPro)

 $R2 = \sigma R1$ (marque = 'Apple')

 $R3 = \pi R2$ (IdCli)

 $R4 = \sigma R1$ (marque \neq 'Apple')

 $R5 = \pi R4 \text{ (IdCli)}$

RESUL = R3 - R5

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE CLIENT (IdCli, nom, ville) PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 5

« Donner les no des clients ayant acheté tous les produits de marque Apple »

Initiation aux bases de données

Introduction

Exemple

Requêtes sur le schéma CLIENT, PRODUIT, VENTE

CLIENT (IdCli, nom, ville)

PRODUIT (IdPro, désignation, marque, prix)

VENTE (IdCli, IdPro, date, qte)

Requête 5

« Donner les no des clients ayant acheté tous les produits de marque Apple »

 $R1 = \sigma PRODUIT$ (marque = 'Apple')

 $R2 = \pi R1 \text{ (IdPro)}$

 $R3 = \pi VENTE$ (IdCli, IdPro)

 $R4 = R3 \div R2$