MODELAGEM EM SYSML DO PROCESSADOR BASEADO EM MIPS E PROGRAMADO EM UMA PLACA CYCLONE IV E FPGA

Este processador é baseado na arquitetura MIPS monociclo, com o processador RISC (Conjunto reduzido de instruções), contendo 32 registradores de 32 bits, sendo assim possui um conjunto de instruções mais simples, rápido, contendo:

- 3 formatos de instruções:
 - o tipo R
 - o tipo I
 - tipo J
- 5 modos de endereçamento:
 - o Endereçamento Imediato
 - Endereçamento por Registrador
 - o Endereçamento por Deslocamento
 - Endereçamento Direto
 - o Endereçamento Relativo ao PC

38 instruções:

Opcode	Instrução	Tipo	Operação	Descrição
	3		Aritméticas	3
000000	add	R	RD = RS + RT	soma
000001	addi	ı	RT = RS + IMEDIATO	soma com imediato
000010	sub	R	RD = RS - RT	subtração
000011	subi	1	RT = RS - IMEDIATO	subtração com imediato
000100	mul	R	RD = RS * RT	multiplicação
000101	muli	1	RT = RS * IMEDIATO	multiplicação com imediato
000110	div	R	RD = RS / RT	divisão
000111	divi	1	RT = RS / IMEDIATO	divisão com imediato
Lógicas				
001000	and	R	RD = RS & RT	E
001001	andi	-	RT = RS & IMEDIATO	E com imediato
001010	or	R	RD = RS RT	OU
001011	ori	_	RT = RS IMEDIATO	OU com imediato
001100	xor	R	RD = RS ^ RT	ou exclusivo
001101	xori	_	RT = RS ^ IMEDIATO	ou exclusivo com imediato
001110	not		RT = ~ RS	valor negado
Deslocamento				
001111	sll	R	RD = RS « shamt	Deslocamento a esquerda
010000	srl	R	RD = RS » shamt	Deslocamento a direita
Desvio Incondicional				
010001	jump	J	CP = novo CP	Pula para o endereço
010010	jal	J	\$ra = CP; CP = novo CP	Pula e armazena endereço de retorno
010011	jr	J	CP = endereço de \$ra	pula para registrador
Desvio Condicional				
010100	beq	- 1	se RS == RT, CP = desvio	Desvia se igual
010101	bnq	- 1	se RS != RT, CP = desvio	Desvia se diferente
010110	blt	- 1	se RS < RT, CP = desvio	Desvia se menor
010111	bgt	- 1	se RS > RT, CP = desvio	Desvia de maior
011000	bltz	- 1	se RS < 0, CP = desvio	Desvia se menor que zero
011001	bgtz	_	se RS > 0, CP = desvio	Desvia se maior que zero
011010	slt	R	RD = RS < RT?	RD igual a 1 se menor, 0 se maior ou igual
011011	slet	R	RD = RS <= RT?	RD igual a 1 se menor ou igual, 0 se maior
011100	sgt	R	RD = RS > RT?	RD igual a 1 se maior, 0 se menor ou igual
011101	søet	R	RD = RS >= RT?	RD igual a 1 se maior ou igual. O se maior
044440	11		Acesso a Memó	
011110	li	1	RT = Imediato	igual a imediato
011111	lw	1	RT = Mem [RS + offset]	Carrega uma palavra
100000	SW		Mem[RS + offset] = RT RT = RS	Armazena uma palavra
10001	move		Controle	igual ao valor do registrador
100010	non	J	Controle	Som oporacão para ovocutor
100010	nop hlt	J		Sem operação para executar
100011	HIL	J	Entrada e Saíd	Parar processamento
100100	in		Entrada e Salu	Sinal de entrada
100100	in out			Sinal de entrada Sinal de saída
100101	out			Sitial de Salua

O caminho de Dados mostrado abaixo foi construído baseado no caminho de dados da arquitetura MIPS, feito pequenas modificações na implementação.

O projeto do processador foi implementado e testado em uma placa Cycloce IV E FPGA, contendo 18 switches de entrada e 8 displays de 7 segmentos. Nesta disciplina, o projeto 1 tem o objetivo principal de colocar em prática, de forma integrada, os modelos diagramáticos da SysML. Para isso deverá ser feita a modelagem do processador comentado acima. Como este projeto trata-se da modelagem de um processador, no qual é um sistema complexo e difícil, não foi possível mostrar todas suas atividades e utilidades, mas sim um resumo delas.

O modelo diagramático da SysML foi montado no software Visual Paradigm contendo 1 diagrama de pacotes, 5 diagramas de casos de uso, 4 diagramas de atividade e 5 diagramas de requisitos. Para modelar o diagrama de pacotes, foi dividido em 5 pacotes, sendo eles: Entrada/Saída, Geral, Memórias, Operações e PC.