DATA MINING CLUSTERING

The k-means algorithm Hierarchical Clustering

What is a Clustering?

A grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups (clusters)

Why Cluster Analysis

Understanding

 Group related documents for browsing, genes and proteins that have similar functionality, stocks with similar price fluctuations, users with same behavior

Summarization

Reduce the size of large data sets

Applications

- Recommendation systems
- Search Personalization

Early applications of cluster analysis

John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London

Notion of a Cluster can be Ambiguous

How many clusters?

Two Clusters

Six Clusters

Four Clusters

Types of Clusterings

- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Hierarchical Clustering

Hierarchical Clustering dendrogram

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

《导论》P309

- Center-based Clusters:
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the minimizer of distances from all the points in the cluster

- Contiguous Clusters (Nearest neighbor or Transitive)
 - A cluster is a set of points such that for any point in the cluster, its nearest neighbor is in the same cluster.

- Density-based clusters
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

A cluster is defined as a set of points that lie on a circle

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering

DBSCAN

K-MEANS

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is to:
 - find K centroids and
 - the assignment of points to clusters/centroids
 - so as to minimize the sum of distances of the points to their respective centroid

K-means Clustering

- Most common definition is with Euclidean distance, minimizing the Sum of Squared Error (SSE) – distance function
 - Sometimes K-means is defined like that
- Problem: Given a set X of n points in a d-dimensional space and an integer K group the points into K clusters C = {C₁, C₂, ..., Ck} such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} (x - c_i)^2$$
 Sum of Squared Error (SSE)

is minimized, where c_i is the mean of the points in cluster C_i

Complexity of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (d≥2)
 - Finding the best solution in polynomial time is infeasible

K-means Algorithm

- Also known as Lloyd's algorithm.
- K-means is sometimes synonymous with this algorithm
- 1. Select *K* points as the initial centroids
- 2. repeat
- 3. Form *K* clusters by assigning each point to the closest centroid
- 4. Compute the new centroid* of each cluster
- 5. until The centroids do not change (a lot)

e.g. take mean of all points in a cluster to compute its centroid

*The centroid of a set of points is the point that minimizes the sum of distances from the points in the set

Example

Example

K-means Algorithm – Initialization

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.

Two different K-means Clusterings

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Dealing with Initialization

- Do multiple runs and select the clustering with the smallest error
- Select original set of points by methods other than random.
 E.g., 1. pick one center; 2. when picking the next center, pick the most distant (from previously picked centers) point as cluster center (K-means++ algorithm); 3. repeat 2.

K-means Algorithm – Convergence

- K-means will converge for common similarity measures mentioned above.
 - Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points,
 - K = number of clusters,
 - I = number of iterations,
 - d = dimensionality
- In general a fast and efficient algorithm

Limitations of K-means

- K-means has problems when clusters are of different:
 - sizes
 - densities
 - non-globular shapes

K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

HIERARCHICAL CLUSTERING

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative (凝聚式):
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive (分裂式):
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram (树北图) or nested cluster diagram (嵌套簇图)
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- Dendrograms may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom ...)

Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with single-point clusters and a proximity matrix between points

Intermediate Situation

After some merging steps, we have some clusters and a proximity matrix between clusters

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

	p1	p2	рЗ	p4	р5	<u>.</u> .
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

```
 \frac{\sum_{p_i \in Cluster_i} proximity(p_i, p_j)}{proximity(Cluster_i, Cluster_j)} = \frac{\sum_{p_i \in Cluster_i} p_j \in Cluster_j}{|Cluster_i| * |Cluster_j|}
```


- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Single Link – Complete Link

- Another way to view the processing of the hierarchical algorithm is that we create links between the elements in order of increasing distance
 - The MIN Single Link, will merge two clusters when a single pair of elements is linked
 - The MAX Complete Linkage will merge two clusters when all pairs of elements have been linked.

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Strength of MIN

• Can handle non-elliptical shapes single link method is also called *nearest neighbor* method.

Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Strength of MAX

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size N² proximity matrix must be updated and searched

Hierarchical Clustering: Problems and Limitations

- Computational complexity in time and space
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters