

Development of miniature position sensing pneumatic artificial muscles for use in flexible surgical instruments for Fetoscopic Endoluminal Tracheal Occlusion

Author: Andrea Hailu

Advisor: Elena De Momi

Co-advisors: Emmanuel Vander Poorten, Robert Lathrop

INTRODUCTION: Clinical need

Congenital diaphragmatic hernia (CDH)

Fetoscopic endoluminal tracheal occlusion procedure

Lower complications

Better postoperative outcomes

STATE OF THE ART: Continuum robots

Extrinsic actuation

Intrinsic actuation

- Higher number of joints
- Increased level of maneuverability
- Higher potential for miniaturization

STATE OF THE ART: McKibben muscles

McKibben Pneumatic Artificial Muscles

Tolerance to large deformations

Small size

Large forces to weight ratio

X Hysteresis

integrated sensor

STATE OF THE ART: Integrated sensors

Resistive sensors

Little to no hysteresis

- X Quadratic relationship
- X Complex manufacturing

(King et al., 2017)

Optical sensors

No hysteresis

- X Non-linear relationship
- X Complex manufacturing

(Akagi et al., 2012)

STATE OF THE ART: Capacitive sensor

STATE OF THE ART: capacitive sensor

Theoretical model

$$C = \frac{\pi \epsilon l_c}{\ln(\frac{d}{r} + \sqrt{\frac{d^2}{4r^2} - 1})}$$

C= capacitance ϵ = permittivity of the medium between the wires

 l_c = conductive wires length

d= distance between the conductive wire

r = conductive wires radius

(Legrand et al., 2019)

AIM OF THE WORK

Easy-to-make self-sensing pneumatic artificial muscle

- limited **hysteresis** (≈1 bar) **Linear** relationship

suitable **size** (5-10 cm)

Theoretical model Muscle contraction → sensor output

Prototypes' manufacturing and testing

New prototypes vs previous capacitive muscle comparison

METHODS: inductive muscle

The prototype was obtained as the **miniaturized version** of the muscle developed by *Felt et al (2016). Ecoflex* (silicone) was used to fabricate a second (novel) **coated version** of the muscle.

Theoretical model

$$L = \frac{\mu n_c^2}{4\pi \cos^2(\theta_0)} \cdot l_0 \cdot (\frac{l_0}{l} - \frac{l}{l_0} \cos^2\theta_0)$$

- L= inductance
- μ = magnetic permeability of free space
- n_c = number of coils
- ϑ_0 = initial braid angle
- l_0 = initial muscle length
- l= current muscle length

METHODS: inductive muscle

Tube (bladder)

Parameter	Value
Length ($oldsymbol{l_0}$)	5 cm
Diameter (D)	4 mm
Braid angle $(oldsymbol{artheta})$	30°
Helical pitch (b)	21.76 mm

Parameter	Value
Wire material	Insulated copper
Wire diameter	0.2 mm
Tube material	Silicone
Tube internal diameter	3 mm
Tube external diameter	4 mm
Tube length	5 cm

METHODS: final prototypes

TESTS: Set-up and protocol

Output: muscle contraction (mm)

Proportional valve

Fixed clamping to the frame

Pneumatic artificial muscle

Load cell

Linear slide

Laser sensor

Output: Force generated (N)

TESTS: Set-up and protocol

Displacement & Force tests

TESTS: Displacement test

RESULTS: Mechanical results

Baseline muscle: 12.8N

Uncoated inductive muscle: 12.4%

Baseline muscle: 18.22%

RESULTS: Electrical results

RESULTS: Electrical results

RESULTS: Theoretical model

- Time synchronization
 - Linear relationship
 - Scaling factor ≈ 3

DISCUSSION: Inductive vs capacitive

State of the Art

Introduction

Methods

Tests

Results

Conclusion

Discussion

Advantages

Easier manufacturing process

Adjustment of the braid to the **desired** angle

Displacement [mm]

Limitations

Higher hysteresis

Aim

Reduced contraction

1.44

State of the Art Me

Aim

Methods

Tests

Results

Conclusion

Discussion

Scientific results

- Limited hysteresis in mechanical (≈1 bar) and electrical tests (uncoated inductive muscle)
- Successful miniaturization (30cm → 5cm) of the procedure
- Novel information for the coated inductive muscle
- Linear relation between muscle contraction and inductive sensor output

Future work

- Theoretical model
- Braid wire
- Loaded conditions
- Ferromagnetic materials

Thank you for the attention!