决策树

Error = noise + bias + variance

SVM (max margin classifier)

Support Vector Machine

Is there an "optimal" way to separate the data? 这么多分类界面,哪个是最优的呢?

Basic problem:

Given N data point, $X_1, \dots, X_N \in \mathbb{R}^m$ each with a label $di = \pm 1$ find a hyperplane

 $w^Tx + b = 0$ (werm, bek)

that separates data into two groups

$$\begin{cases} g(\mathbf{x}_i) = \mathbf{w}_o^T \mathbf{x}_i + b_o \ge +1 & \text{for } d_i = +1 \\ g(\mathbf{x}_i) = \mathbf{w}_o^T \mathbf{x}_i + b_o \le -1 & \text{for } d_i = -1 \end{cases}$$

⇒ di (wo Txi + bo) ≥ /

同时要最大化间隔 r, fr cx ITWII (证明 RPPt)

1 Wo L hyperplane

优化模型 Find w 和 b

min: 更(w)= ±w™ Subject to: di(w™x;+b)≥1 接下来用 KKT条件 化放对偶问题

KKT条件(拉格朗日乘子推广) ①等式约束化化

https://zhuanlan.zhihu.com/p/38163970

$$min f(x)$$

s.t. $g(x) = 0$
⇒ $L(x, \pi) = f(x) + \pi g(x)$
⇒ $min L(x, \pi)$
 $\nabla_x L = \nabla f + \pi \Delta g = 0$
 $\nabla_x L = g(x) = 0$
⇒ 本解即得 x^*

②不等式约束优化

min
$$f(x)$$

s.t. $g(x) \leq 0$

$$\Rightarrow 2(x, \lambda) = f(x) + \lambda g(x)$$

$$\Rightarrow \nabla x L = \nabla f + \lambda \nabla g = 0$$

$$g(x) \leq 0$$

$$\lambda g(x) = 0$$

min
$$f(x)$$

s.t. $g(x) \ge 0$

$$\Rightarrow L(x, \pi) = f(x) - \pi g(x)$$

$$\Rightarrow (\nabla x f = \nabla f - \pi \nabla g(x)) = 0$$

$$g(x) \ge 0$$

$\sum_{x} g(x) = 0$

接下来我们将约束等式 $g(\mathbf{x}) = 0$ 推广为不等式 $g(\mathbf{x}) \leq 0$ 。考虑这个问题

 $\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text{s.t.} & g(\mathbf{x}) \leq 0.
\end{array}$

约束不等式 $g(\mathbf{x}) \le 0$ 称为原始可行性(primal feasibility),据此我们定义可行域(feasible region) $K = \mathbf{x} \in \mathbb{R}^n | g(\mathbf{x}) \le 0$ 。假设 \mathbf{x}^* 为满足约束条件的最佳解,分开两种情况讨论:

*

- (1) $q(\mathbf{x}^*) < 0$, 最佳解位于 K 的内部、称为内部解(interior solution),这时约束条件是无效的(inactive);
- (2) $g(\mathbf{x}^*) = 0$, 最佳解落在 K 的边界、称为边界解(boundary solution),此时约束条件是有效的(active)。

这两种情况的最佳解具有不同的必要条件。

(1)内部解:在约束条件无效的情形下, $g(\mathbf{x})$ 不起作用,约束优化问题退化为无约束优化问题,因此驻点 \mathbf{x}^{\star} 满足 $\nabla f = \mathbf{0}$ 且 $\lambda = 0$ 。

(2)边界解:在约束条件有效的情形下,约束不等式变成等式 $g(\mathbf{x})=0$,这与前述Lagrange乘数法的情况相同。我们可以证明驻点 \mathbf{x}^* 发生于 $\nabla f \in \operatorname{span} \nabla g$,换句话说,存在 λ 使得 $\nabla f = -\lambda \nabla g$,但这里 λ 的正负号^Q是有其意义的。因为我们希望最小化 f ,梯度 ∇f (函数 f 在点 \mathbf{x} 的最陡上升方向)应该指向可行域 K 的内部(因为你的最优解最小值是在边界取得的),但 ∇g 指向 K 的外部(即 $g(\mathbf{x})>0$ 的区域,因为你的约束是小于等于0),因此 $\lambda>0$,称为对偶可行性(dual feasibility)。

因此,不论是内部解或边界解, $\lambda g(\mathbf{x}) = 0$ 恒成立,称为互补松弛性(complementary slackness)。整合上述两种情况,最佳解的必要条件包括Lagrangian函数 $L(\mathbf{x},\lambda)$ 的定常方程式 $^{\circ}$ 、原始可行性、对偶可行性,以及互补松弛性:

优化模型 Find $w \neq 0 b$ $min: \overline{\Psi}(w) = \pm w^{T}w$ Subject to: $di(w^{T}x_{i} + b) \geq 1$ 对偶问题推导 $min \ L(w, b, \lambda) = \pm w^{T}w - \sum_{i} \left[di(w^{T}x_{i} + b) - 1\right]$ S.t. $\frac{\partial L(w, b, \lambda)}{\partial w} = 0 \Rightarrow w = \sum_{i} \lambda i di \lambda_{i}$

 $\frac{\partial L(w,b,n)}{\partial L} = 0 \implies \xi \text{ sid} = 0$

$$T_{i} \ge 0$$
 $d_{i}(w^{T}x_{i}+b) \ge 1$
 $T_{i}[d_{i}(w^{T}x_{i}+b)] = 0$

SVM推导

超平面
$$w^r \hat{s} + b = 0$$

$$g(x) = w^r x + b$$

$$g(x) = w^r (x - \hat{s})$$

$$= w^r r$$

$$g(x) = ||w|| r$$

$$r \propto \frac{1}{||w||}$$

$$\left(\begin{array}{c}
\frac{\partial L(w.b)}{\partial w} = 0 \implies w = \sum_{i=1}^{N} \lambda_i di X_i \\
\frac{\partial L(w.b)}{\partial b} = 0 \implies \sum_{i=1}^{N} \lambda_i di = 0 \\
\lambda_i \ge 0 \qquad di (w^T x_i + b) - 1 \ge 0$$

 $\Rightarrow = \pm (\xi \, \lambda_i \, d_i \, \lambda_i^T) \, (\xi \, \lambda_i \, d_i \, \lambda_i) + \xi \, \lambda_i - \xi \, \lambda_i \, d_i \, \delta - \xi \, \lambda_i \, d_i \, (\xi \, \lambda_i \, d_i \, \lambda_i^T) \, \lambda_i$ $\min \, \sum_{i} \sum_{j} \lambda_i - \sum_{i} \xi \, \sum_{j} \lambda_i \, d_i \, \lambda_j \, d_j \, \lambda_i^T \, \lambda_j$

$$\begin{cases} \lambda_i \ge 0 \\ \{ \xi \lambda_i d_i = 0 \end{cases}$$

在解出入 i 立后
 $w = \xi \lambda_i d_i \lambda_i$
 $b = t_i - w^T \lambda_i$ (λ_i) 対象向量)