Model of pulsar pair cascades in non uniform electric fields: growth rate, density profile and screening time

F. Cruz, T.Grismayer, S. Iteanu, P. Tortone and L. O. Silva

Physics of Plasmas, May 2022 Arxiv version April 11 Reporter: 曹顺顺

2022.6

I. Introduction

II. Cascade in a uniform electric field

III. Cascade in a linear electric field

IV. Conclusion

Contents

I. Introduction:

Pulsars have strong magnetic field, but magnetized plasma's flow makes magnetospheres **force-free** (E·B~0) almost everywhere.

Theories (like RS75) predict that there exists places where E⋅B≠0 (such as vacuum gaps), at which a series of particle processes happen.

Bunches of electrons/positrons flow out of vacuum gap, produce coherent radio radiation.....

Difficulties in computer simulating pulsar pair cascades:

- —large multiplicity
- —vacuum gaps (~100m) much larger than shortest plasma kinetic scales (~1cm)

One solution is using heuristic models, with PIC simulation.

The authors suppose a **threshold energy** for the particle processes, and begin their analytical and numerical study.

II. Cascade in a uniform electric field:

After ft_{a} , all n1 particles produce two n2 particles.

After $t_a(1-3f/2)$, all n2 particles change into n1.

$$\frac{\mathrm{d}n_2(t)}{\mathrm{d}t} \simeq \frac{2n_1(t)}{ft_a} - \frac{n_2(t)}{(1-3f/2)t_a}$$

$$\begin{cases} n_1(t + t_a(1 - 3f/2)) \simeq n_1(t) + n_2(t) \\ \frac{dn_2(t)}{dt} \simeq \frac{2n_1(t)}{ft_a} - \frac{n_2(t)}{(1 - 3f/2)t_a} \end{cases}$$

Try: $n_{1,2}(t) \propto \exp(\Gamma t)$

We have: $\Gamma t_a \simeq W(2/f) \simeq \ln(2/f)$ An exponentially

W: Lambert function.

 $z=W(z)e^{(W(z))}$

An exponentially growing solution.

Simulation: 1D particle-in-cell, with OSIRIS (Fonseca et al. 2002)

Particle-in-cell (PIC) method:

Ebersohn et al. 2014

$$ec{F}=rac{1}{4\pi\epsilon_0}rac{q_1q_2}{r^2}ec{r}_{12}$$
 $ec{F}=q\left(ec{E}+ec{v} imesec{B}
ight)$ O(N^2)

Uniform E field Eo:

$$eE_0(c/\omega_p)/m_ec^2 \simeq 3000 \gg 1$$

 $\omega_p = (4\pi e^2 n_0/m_e)$

Simulation domain length:

$$L/(c/\omega_p) \simeq 30$$

Grid resolution:

$$\Delta x/(c/\omega_p) = 0.015$$

$$\gamma_{\rm thr} = 500 \text{ and } f = 0.1$$

Simulation result:

$$W_E = \int_0^L (E^2/8\pi) \, \mathrm{d}x$$

$$W_K = \sum_i (\gamma_i - 1) m_e c^2$$

After 0.02L/c?

The et number growing \rightarrow \rightarrow current growing \rightarrow \rightarrow screen E field

$$\frac{\partial E}{\partial t} = -4\pi j \simeq 8\pi e c n_{\pm}$$

- → → → The reversed E field decelerates e±, prevent growing...

 E field begins **oscillating**, no new e± produced.
- → → → The instable perturbations accelerate some e± again, making pair production, dumping E field.

Phase space at a certain time:

Perturbations - reacceleration - pair production

$$\gamma_{\rm thr} = 500 - 5000$$

$$f = 10^{-3} - 0.1$$
 Similar results.

Next step: more complex and realistic E field.

III. Cascade in a linear electric field:

Consider a 1D vacuum gap near pulsar surface.

Assume $\hat{\Omega} = \mu$

In the corotating frame:

$$\frac{\partial E}{\partial x} = 4\pi(\rho - \rho_{\rm GJ})$$

$$\frac{\partial E}{\partial t} = -4\pi (j-j_{\rm m})$$
 magnetosphere

Positrons $\rho_+ = r |\rho_{GJ}|$ inflow, making the gap grow at a velocity V_f:

$$\frac{\partial E}{\partial x} = 4\pi(\rho - \rho_{\rm GJ})$$
 $\rho = \rho_{+} = -r\rho_{GJ}$

$$rac{\partial E}{\partial t} = -4\pi (j - j_{
m m})$$
 $j =
ho v_f$ $j_m =
ho_{GJ} v_f$

$$E(x,t) = \begin{cases} 4\pi |\rho_{GJ}| (1+r)(x-v_f t), & x < v_f t \\ 0, & x \ge v_f t, \end{cases}$$

Pair cascade requires: $1/3 < v_f/c < 1$ (Beloborodov 2008) (Timokhin and Arons 2012)

$$\mathsf{E}=\mathsf{E}(\mathsf{x,t}) \to \to \to t_{a\pm} = t_{a\pm}(x_i,t_i) \text{ and } t_{p\pm} = t_{p\pm}(x_i,t_i)$$

$$t_{a\pm}(x_i,t_i)\simeq rac{t_ieta_f-x_i/c}{1\pmeta_f}- \ -\sqrt{\left(rac{t_ieta_f-x_i/c}{1\pmeta_f}
ight)^2\pmrac{\gamma_{
m thr}/(1+r)\omega_{p,
m GJ}^2}{1\pmeta_f}}} \ \ 0.5 {
m f}\cdot {
m Ethr}$$
 $eta_f\equiv v_f/c$

Very complex...

Analytical attempt: consider a thin layer, ta and tp slowly evolve.

$$v_f/c \gtrsim 0.7$$
 and $f \lesssim 0.05$

We have:

$$t_p(t) \simeq ft_a(t)$$

$$t_a(t) - 3t_p(t)/2 \simeq t_a(t)$$

Then:

$$-n_1(t+t_a(1-3f/2)) \simeq n_1(t)+n_2(t)$$

$$\begin{cases} n_1(t + t_a(1 - 3f/2)) \simeq n_1(t) + n_2(t) \\ \frac{dn_2(t)}{dt} \simeq \frac{2n_1(t)}{ft_a} - \frac{n_2(t)}{(1 - 3f/2)t_a} \end{cases}$$

$$n_1(t + t_a(t)) \simeq n_1(t) + n_2(t)$$
,
$$\frac{dn_2(t)}{dt} \simeq \frac{n_1(t)}{f_t(t)} - \frac{n_2(t)}{f_t(t)}$$
.

Plug in (WKB approximation):

$$n_{1,2}(t) \propto \exp\left(\int_{t_a^*}^t \Gamma(t') \; \mathrm{d}t' \right)$$
 t_a^* : the time n(t) start exponentially grow

exponentially growing.

Then we have:

$$\frac{n_2(t)}{n_1(t)} = \frac{1}{f(\Gamma(t)t_a(t) + 1)}$$

Assume Γ varies slowly during t_a : $\Gamma(t') = \Gamma(t) + (t'-t)\dot{\Gamma}(t)$

$$\Gamma(t') = \Gamma(t) + (t' - t)\dot{\Gamma}(t)$$

$$\int_{t}^{t+t_{a}(t)} \Gamma(t') dt' \simeq \Gamma(t) t_{a}(t) \left(1 + \frac{\dot{\Gamma}(t) t_{a}(t)}{2\Gamma(t)} \right)$$

$$\equiv \Gamma(t) t_{a}(t) (1 + \psi(t)) = \Gamma t_{a}(t)$$

$$n_1(t + t_a(t)) \simeq n_1(t) + n_2(t)$$

$$\frac{n_1(t + t_a(t))}{n_1(t)} \simeq 1 + \frac{n_2(t)}{n_1(t)}$$

Plug in:
$$\frac{n_2(t)}{n_1(t)} = \frac{1}{f(\Gamma(t)t_a(t)+1)}$$

$$\frac{n_1(t+t_a(t))}{n_1(t)} \simeq 1 + \frac{1}{f \cdot (\Gamma(t)t_a(t)+1)} \approx \frac{1}{f \cdot \Gamma(t)t_a(t)} = \frac{1+\psi(t)}{f \cdot \tilde{\Gamma}(t)t_a(t)}$$

Then with:
$$n_{1,2}(t) \propto \exp\left(\int_{t_a^*}^t \Gamma(t') dt'\right)$$
 and $\int_t^{t+t_a(t)} \Gamma(t') dt' \simeq \Gamma(t) t_a(t)$

$$\exp\left[\tilde{\Gamma}(t)t_a(t)\right] \simeq \frac{1+\psi(t)}{f\tilde{\Gamma}(t)t_a(t)}$$

Solution:
$$\Gamma(t)t_a(t) = \frac{1}{1+\psi(t)}W\left(\frac{1+\psi(t)}{f}\right)$$

However,
$$\psi(t) = \frac{\dot{\Gamma}(t)t_a(t)}{2\Gamma(t)}$$

Notice that ta and ta* have similar meaning:

$$\rightarrow$$
 Assume t_a \approx t_a*(1+Ct), C<<1

$$\Gamma(t)t_a(t) \simeq W(1/f)$$
 $\psi \simeq \frac{Ct_a^*}{W(1/f)} \ll 1$?

Simulation (1) —— a single electron: $\gamma_{thr}=1000$, grid solution $\Delta x/L=0.001$

f & Growing 1

Consistent with:

$$\Gamma(t)t_a(t) \simeq W(1/f)$$

The electron layer reaches E=0 (gap front)

t 1 Growing V

Simulation (2) —— an initially uniform positron distribution in linear E field.

Positrons flow towards x^0 \Rightarrow Electrons produced \Rightarrow Electrons produce layers of cascade.

f=0.01
$$v_f/c=0.9$$

 $\Delta x_L=0.0025L$

Varying growth rate → non-uniform electron density distribution. Electron density spatial profile:

Electrons farther from the front are created with larger time lags.

Consider time lag $\approx \Delta x_L/c$ between layers, and we have:

$$n_{-,k}(t) \simeq n_{-,k+1}(t) \exp\left(\Gamma(t)\Delta x_{\rm L}/c\right)$$

$\Delta x \rightarrow 0$:

At any position, when $n_{-}(-e)c = j_{m}$, the E field there get screened.

We have:
$$j_m \sim \rho_{GJ} c$$

$$\frac{\partial E}{\partial t} = -4\pi (j - j_{\rm m})$$

Former simulation (Timokhin 2010; Timokhin and Aron 2012; Cruz, Grismayer and Silva 2021) shows:

$$n_{-0} \simeq 0.01 \sim 0.1 \frac{|\rho_{GJ}|}{e}$$

The screen time is about:

$$t_s \simeq \frac{1}{\Gamma} \sim \frac{t_a^*}{W(1/f)} \sim t_a^* \simeq 10^{-9} \sim 10^{-6} s$$

Consistent with (Timokhin and Harding 2015).

IV. Conclusion:

Such heuristic model provides an important way to associate QED processes with plasma kinetic effects.

Some more complex settings may be applied in the future.