Trabalho Final - Análise de Dados com Python

Integrantes:

- 1) Jurandir Ventura RM336634
- 2)
- 3)
- 4)

Qual será seu trabalho aqui?

Basicamente, vocês devem usar todo conhecimento que adquiriram durante o curo e criar um modelo de Regressão Linear cujo RMSE seja em torno de 69000, o que significa que o erro de predição é, em média, de 69000. Entretanto, para chegar a essa predição, uma série de análise e preparações nos dados devem ser feitas. Vocês devem fazer os todo's que aqui foram deixados a fim de chegar a esse valor numa regressão

In [1]:

```
# todos os pacotes que serão utilizados foram importados
# há alguns que não vimos em classe, mas parte do processo de avaliação entender como e
sses pacotes funcionam
# na prática, são muito similares aos que vimos em sala
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OrdinalEncoder
from sklearn.linear_model import LinearRegression
from pandas.plotting import scatter_matrix
import sys
```

In [2]:

```
# Leitura dos dados
housing = pd.read_csv('bases/housing.csv')
housing.head()
```

Out[2]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
0	-122.23	37.88	41.0	880.0	129.0	322.0	1
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	11
2	-122.24	37.85	52.0	1467.0	190.0	496.0	1
3	-122.25	37.85	52.0	1274.0	235.0	558.0	2
4	-122.25	37.85	52.0	1627.0	280.0	565.0	2
4							>

localhost:8892/lab 1/13

TODO 1: Análise e visualização de dados

- 1) Use o método info e o método describe para entender como os dados se comporta m
- 2) percebemos que existe uma coluna cujos valores são object. Quantos valores ex istem para cada atributo presente nessa coluna?
- 3) plote um histograma de cada coluna numérica para entender a distribuição dos dados. Use 50 bins e ajuste o tamanho das imagens para (20,15)

O que você pode observar a partir dos histogramas? Os dados podem ser inseridos num algoritmo de machine learning da maneira que estão? Dica: não!!

Tente descrever o motivo.

localhost:8892/lab 2/13

In [3]:

resposta 1

O método info traz informações do tipo de classe, índice, quantidade de dados e de co lunas, além do tipo de dado para cada coluna.

Podemos ver no resultado, que das 10 colunas, 9 são do tipo float64 (numérico) e uma é do tipo object (que neste caso é String / Texto). housing.info()

#O Método describe traz as principais informações estatísticas do dataset. Por tratar n úmeros, a coluna 'ocean_proximity' não é exibida, pois contém strings housing.describe()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	<pre>median_house_value</pre>	20640 non-null	float64
9	ocean_proximity	20640 non-null	object

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

Out[3]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	р
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	2064
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	142
std	2.003532	2.135952	12.585558	2181.615252	421.385070	113
min	-124.350000	32.540000	1.000000	2.000000	1.000000	
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	78
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	116
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	172
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	3568

localhost:8892/lab 3/13

In [4]:

```
# resposta 2
#Função para contar a quantidade para cada atributo. Neste caso apenas da coluna 'ocean
_proximity'
categoric_attr = 'ocean_proximity'
housing[categoric_attr].value_counts()
```

Out[4]:

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean_proximity, dtype: int64

In [5]:

```
# resposta 3

fig_settings = plt.figure(figsize = (20,15))
#housing_aux = housing.drop(columns ='ocean_proximity') #*trying to remove UserWarning
#housing_aux.info()
#housing_aux.hist(bins = 50, ax = fig_settings.gca()) #*trying to remove UserWarning
housing.hist(bins = 50, ax = fig_settings.gca())
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:7: UserWa
rning: To output multiple subplots, the figure containing the passed axes
is being cleared
...

import sys

localhost:8892/lab 4/13

TODO 2: Criando conjunto de treino e teste

4) utilizando train_test_split, da Scikit-Learn, separe o conjunto em treino e t este. utilize train_set e test_set como nome de variáveis, separe 20% para conju nto de teste e utilize 42 como random_state

In [6]:

```
# resposta 4

X_train, X_test = train_test_split(housing, test_size=0.20, random_state=42)
```

TODO 3: Correlação e visualização

- 5) Quais as variáveis que mais possuem correlação com o atributo median_house_value?
- 6) Utilize scatter_matrix, do pandas para visualizar a correlação do atributo me dian_house_value com os atributos que possuem maior correlação com ele. Ajuste o tamanho das imagens para (12, 8)

In [7]:

```
# resposta 5

target_attribute = 'median_house_value'
print("As variáveis abaixo estão classificadas por ordem de correlação com o atributo
    '" + target_attribute + "'")
Correlation = housing.corr()
Correlation[target_attribute].sort_values(ascending=False).drop(target_attribute)
```

As variáveis abaixo estão classificadas por ordem de correlação com o atributo 'median_house_value'

Out[7]:

```
median_income
                       0.688075
total rooms
                       0.134153
housing_median_age
                       0.105623
households
                       0.065843
total bedrooms
                      0.049686
population
                      -0.024650
longitude
                      -0.045967
latitude
                      -0.144160
```

Name: median_house_value, dtype: float64

localhost:8892/lab 5/13

In [8]:

```
# resposta 6

# Selecionado apenas os 3 primeiros, apesar de apenas o 'median_income' ter uma correla
ção acima de 50%

housing_corr = housing[['median_house_value','median_income','total_rooms','housing_med
ian_age']]

scatter_matrix(housing_corr, figsize = (12,8))
plt.show()
```


TODO 4: Limpeza de dados

Ao usar o método info(), descobrimos que existem alguns dados faltantes no nosso algoritmo. A partir daqui, a variável housing será o conteúdo de train_set, excluindo-se a coluna meta (median_house_value). Atribua para a variável housing_labels uma cópia de train_set só com informações da coluna meta

7) use simpleImputer para tratar os valores faltantes. Escolha a estratégia que achar mais conveniente

localhost:8892/lab 6/13

In [9]:

```
# resposta 7
# Retirada a variável meta, mas também a coluna que não possui valores numéricos (ocean
_proximity)
housing = X_train.drop([target_attribute], axis=1)
housing_labels = X_train[[target_attribute]]
# Removendo coluna não numérica pra ser tratada por manipulação categórica no próximo t
ópico:
housing_numeric = housing.drop([categoric_attr], axis=1)
imputer = SimpleImputer(strategy = "mean")
imputer.fit(housing_numeric)
housing_transform = imputer.transform(housing_numeric) #neste ponto o Dataframe vira Ar
ray
#Esta função retorna para Dataframe do pandas
housing_transform = pd.DataFrame(housing_transform, columns=housing_numeric.columns,
index=housing_numeric.index)
#Visualização do Dataframe pandas
housing_transform
```

Out[9]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	ho
14196	-117.03	32.71	33.0	3126.0	627.0	2300.0	
8267	-118.16	33.77	49.0	3382.0	787.0	1314.0	
17445	-120.48	34.66	4.0	1897.0	331.0	915.0	
14265	-117.11	32.69	36.0	1421.0	367.0	1418.0	
2271	-119.80	36.78	43.0	2382.0	431.0	874.0	
11284	-117.96	33.78	35.0	1330.0	201.0	658.0	
11964	-117.43	34.02	33.0	3084.0	570.0	1753.0	
5390	-118.38	34.03	36.0	2101.0	569.0	1756.0	
860	-121.96	37.58	15.0	3575.0	597.0	1777.0	
15795	-122.42	37.77	52.0	4226.0	1315.0	2619.0	

16512 rows × 8 columns

localhost:8892/lab 7/13

In [10]:

```
# Verificando que o imputer funcionou com a opção 'mean'
print('Visualização da Array do imputer.statistics_ ===> \n', imputer.statistics_,
      '\n \n Visualização da Array do housing transform ===> \n',housing_transform.mean
().values)
Visualização da Array do imputer.statistics_ ===>
[-119.58229046
                 35.64314922
                               28.60828488 2642.0047844
                                                          538.49685078
1426.45300388 499.9869186
                                3.88075426]
Visualização da Array do housing transform ===>
                               28.60828488 2642.0047844
                                                          538.49685078
[-119.58229046
                 35.64314922
1426.45300388 499.9869186
                               3.88075426]
```

TODO 4: Manipulação de Atributos categóricos

7) Utilizando OrdinalEncoder, manipule os valores categóricos para preparar os d ados corretamente para algoritmos de machine learning

In [11]:

```
# resposta 7
housing_categoric = housing[[categoric_attr]]

#Manipulando variável categórica (string) e convertendo para número.
ordinal_encoder = OrdinalEncoder()
housing_categoric_adjusted = ordinal_encoder.fit_transform(housing_categoric)
housing_categoric_adjusted #resultado do OrdinalEncoder
```

Out[11]:

localhost:8892/lab 8/13

TODO 5: Feature Normalization

Com algumas poucas exceções, algoritmos de machine learning não performam bem quando os atributos numéricos possuem escalas diferentes. Este é o caso de nosso dataset, em que o atributo total_rooms possui um range de 6 a 39320 enquanto median_income varia de 0.5 a 15.

Existem duas abordagens conhecidas para trazer os atributos para uma mesma escala: min-max scaling e standardization.

min-max scaling (normalization) consiste em subtratir o valor minimo e dividir pela subtração de max por min:

 $\left(x - \frac{x - \min}{\max - \min} \right)$

A Scikit-Learn provê o método MinMaxScaler que realiza essa operação.

Já standardization consiste em subtrair a média(valores sempre terao média zero) e então dividir pela variância de modo que a distribuição resultante possua variância unitária.

 $\left(x - \right) \$

Diferentemente de normalization, standardization não leva os números a um intervalo específico, o que pode ser um problema para algoritmos específicos (por exemplo, redes neurais geralmente esperam um valor de entrada entre o intervalo 0-1). Entretanto, standardization é muito menos sensível à outiliers. Scikit-learn provêo método StandardScaler para standardization.

8) Adeque os valores de cada coluna numérica para que eles fiquem normalizados. Use o método que achar mais conveniente

localhost:8892/lab 9/13

In [12]:

```
# resposta 8
#Normalização:
#Usando MinMaxScaler
scaler minmax = MinMaxScaler()
housing_num_aux1 = scaler_minmax.fit(housing_transform)
housing_num_aux1 = scaler_minmax.transform(housing_transform)
#Usando StandardScaler
standard scaler = StandardScaler()
housing_num_aux2 = standard_scaler.fit(housing_transform)
housing_num_aux2 = standard_scaler.transform(housing_transform)
#verificando os 2 casos de escala
print('MinMaxScaler ===> \n',housing_num_aux1,
      '\n \n StandardScaler ===> \n', housing_num_aux2)
MinMaxScaler ===>
 [[0.72908367 0.01702128 0.62745098 ... 0.06437961 0.10228581 0.19032151]
 [0.61653386 0.12978723 0.94117647 ... 0.0367443 0.12415721 0.22845202]
 [0.38545817 0.22446809 0.05882353 ... 0.02556125 0.05508962 0.25216204]
 [0.59462151 0.15744681 0.68627451 ... 0.04913254 0.08649893 0.16789424]
 [0.23804781 0.53510638 0.2745098 ... 0.04972112 0.09176122 0.35994676]
 [0.19223108 0.55531915 1. ... 0.07332044 0.20407828 0.14314285]]
 StandardScaler ===>
 -0.326196 ]
 [ \ 0.70916212 \ -0.87669601 \ \ 1.61811813 \ \dots \ -0.09890135 \ \ 0.6720272
  -0.03584338]
 [-0.44760309 -0.46014647 -1.95271028 ... -0.44981806 -0.43046109
   0.14470145]
 [ 0.59946887 -0.75500738  0.58654547  ...  0.28983345  0.07090859
  -0.49697313]
 [-1.18553953 0.90651045 -1.07984112 ... 0.30830275 0.15490769
   0.96545045]
 [-1.41489815 0.99543676 1.85617335 ... 1.04883375 1.94776365
  -0.68544764]]
```

TODO 6: Pipeline de Transformação

9) crie um pipeline de transformação para tratar os atributos numéricos, outro p ara tratar os atributos categóricos e um para juntar os dois e preparar todos os dados para entrada num algoritmo de machine learning. Caso queira, pode usar a c lasse DataFrameSelector vista na aula 4 (recomendável). A variável de saída dess e algoritmo deverá se chamar housing prepared

localhost:8892/lab 10/13

In [13]:

```
# resposta 9
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute names].values
numeric_attributes = list(housing_numeric)
categoric_attributes = [categoric_attr]
numeric_pipeline = Pipeline([('selector', DataFrameSelector(numeric_attributes)),
                         ('imputer', SimpleImputer(missing_values=np.nan, strategy='mea
n')),
                        ])
categoric_pipeline = Pipeline([('selector', DataFrameSelector(categoric_attributes)),
                               ('categorial_encoder', OrdinalEncoder())
merged pipeline = FeatureUnion(transformer list=[
    ("numeric", numeric_pipeline),
    ("categoric", categoric_pipeline),
])
housing_prepared = merged_pipeline.fit_transform(housing)
housing_prepared
```

Out[13]:

```
array([[-117.03
                      32.71 ,
                                  33.
                                                   623.
                                                                 3.2596,
                                          , . . . ,
                  ],
           4.
                      33.77 ,
       [-118.16
                                  49.
                                          , . . . ,
                                                   756.
                                                                 3.8125,
           4.
                  ],
                      34.66 ,
       [-120.48]
                                                   336.
                                                                 4.1563,
                                          , ...,
           4.
                  ],
                      34.03 ,
       [-118.38
                                  36.
                                                   527.
                                                                 2.9344,
           0.
                  ],
                      37.58 ,
       [-121.96
                                  15.
                                                  559.
                                                                 5.7192,
                                       , ...,
           0.
                  ],
       [-122.42]
                                  52.
                                          , ..., 1242.
                      37.77 ,
                                                                 2.5755,
            3.
                  ]])
```

TODO 7: Regressão Linear

10) Ajuste uma regressão linear aos dados. Utilize a versão da Scikit-Learn

localhost:8892/lab 11/13

In [14]:

```
# resposta 10
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
```

Out[14]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
alse)

In [15]:

```
# Apenas para testar seu resultado
some_data = housing.iloc[:5] # dados para predizer
some_labels = housing_labels.iloc[:5] # rótulos dos dados acima
some_data_prepared = merged_pipeline.transform(some_data) # transformação dos dados (co
nsiderando que seu pipeline tenha esse nome)
print("Predictions:\t", lin_reg.predict(some_data_prepared)) # predizendo
print("Labels:\t\t", list(some_labels)) # valores corretos
```

```
Predictions: [[180251.26434736]

[285591.79669634]

[262660.32133105]

[139991.51256679]

[177370.82963546]]

Labels: ['median_house_value']
```

TODO 8: RMSE

11) Utilizando Scikit-Learn, extraia o RMSE das predições a partir da variável h ousing_prepared.

In [16]:

```
# resposta 11

from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
```

Out[16]:

69361.07142906451

CONCLUSÃO:

A predição de erro em torno de 69k em relação aos valores máximo e mínimo da variável target (median_house_values) é bem alta, provavelmente a Regressão Linear para este Dataset não é a melhor solução. Outros algoritmos poderiam ser usados para avaliar novos resultados.

localhost:8892/lab 12/13

In []:		

localhost:8892/lab 13/13