

Hearing Systems – Part 2 of 3

https://hearingsystems.github.io/

TU Ilmenau – Audio Signal Processing & Audio Systems

January 23, 2024

Dr.-Ing. Tamas Harczos

• • Introduction

• audifon:

- audifon GmbH & Co. KG develops, produces and sells hearing systems;
- headquarter located in Kölleda, Thüringen (also place of production);
- R&D offices in Köln (Electronics) and Ilmenau (Embedded Software);
- about 220 employees.

KIND:

- KIND GmbH & Co. KG is specialized in hearing acoustics and optics;
- headquarters located in Großburgwedel near Hanover;
- around 750 specialist stores and over 3,000 employees;
- KIND and audifon are both owned by the family Kind.

Introduction

- Reminder:
 - Three lectures and one seminar.
 - Useful links:
 - https://hearingsystems.github.io/ (presentation slides and recordings),
 - https://moodle.tu-ilmenau.de/course/view.php?id=125.
- Topics we will cover today:
 - Recap of the basics: units, human hearing, tonotopy.
 - A few more words on inner and outer hair cells and equal loudness contours.
 - Properties and characterization of hearing impairment: **pure tone audiogram** and **speech in noise test**s.
 - Hearing aids: early history, modern day form factors, features and requirements.

•• Recap of the basics: scales and units

- Decibel (dB) alone is not a unit, it's a scale. It describes a relationship between two levels.
- The unit dB FS (Decibel full scale) relates to the maximum output of the given system.
 - 0 dB FS means maximum signal amplitude for a given system.
 - -1/100, 1/10, 1/2 of maximum amplitude: -40 dB FS, -20 dB FS, ca. -6 dB FS, respectively.
 - Conversion: $dB = 20 \log_{10}(mag) \leftrightarrow mag = 10^{(dB/20)}$.
 - A dB FS value does not necessarily relate to the loudness of a signal.
- The root mean square (RMS) of a signal is related to the energy residing in it.
 - The RMS of a recorded audio signal correlates with its sound pressure level.
- The unit dB SPL relates to the reference sound pressure $p_0 = 20 \,\mu\text{Pa}$ in air.
 - $-20\,\mu$ Pa is often considered as the threshold of human hearing.
 - Distance (source to receiver) is important, 1 m is frequently used as standard distance for dB SPL measurements.
 - Doubling the distance reduces the SPL by about 6 dB (in free field).

•• Recap of the basics: human hearing

Source: youtube.com/@Signia-hearing, 2024.

•• Recap of the basics: tonotopy

Source: HHMI, 2000

Tonotopy is the spatial arrangement of where sounds of different frequencies are processed in the auditory nervous system.

•• A few more words on tonotopy

Frequency scale of the ear:

- The human basilar membrane (BM) is approx.
 32-35 mm long. Along the BM ca. 3500 IHCs and
 12000 OHCs are distributed.
- Regardless of whether we take Bark or Mel scale, it is important to remember that place pitch is not distributed linearly along the cochlea;
 - 210 \pm 10 Hz (Δ =0.2 Bark): good discrimination, but
 - 4410 \pm 10 Hz (Δ =0.03 Bark): bad discrimination.

 Pitch difference of 1 Bark roughly equals to 1.3 mm on the BM; you only have around 150 IHCs along that cochlear section.

•• How hearing works: Inner hair cells

Organ of Corti Scala media Tectorial Inner Outer membrane hair cell hair cells Basilar Scala tympani

Inner hair cells:

Adapted from: Baumgarte, 2000

- do mechanoelectrical transduction (converting motion to electricity);
- are the sensory cells in our auditory system.

membrane

•• How hearing works: Outer hair cells

Organ of Corti

Adapted from: Baumgarte, 2000

OHC motility

Source: J. Ashmore for BBC 'Ear we go', 1987

BM nonlinearity

Outer hair cells (OHCs):

- actively amplify/dampen the movement of the basilar membrane (BM), thus increase the loudness range (dynamic range) of the ear;
- increase frequency selectivity at the basilar membrane;
- protect inner hair cells by stiffening upon loud signals (until damaged).

Békésy György, 1899-1972 Biophysicist Nobel-prize 1961 awardee

•• Equal-loudness contours

- 1933: Fletcher & Munson (JASA)
- 1956: Robinson & Dadson (BJAP)
- 2003: Multisite study, averaged over many normal hearing (NH) listeners → ISO 226:2003
- At 1000 Hz: dB SPL ≈ loudness.
- At other frequencies, e.g. at 50 Hz (mainly at higher levels) not.

Loudness perception is frequency dependent and non-linear.

Equal loudness contours

•• Scales and units in audio signal processing: dB HL

•• Hearing and hearing impairments

•• Hearing and hearing impairments

Questions:

- How many are affected?
 - WHO 2021: worldwide ca. 466M people with disabling hearing loss.
- How bad is impaired hearing?
 - It is bad, especially in background noise. Try for yourself → see slide with hearing loss simulators.

- What are the causes of the impairments?
 - Genetic causes, complications at birth, infectious diseases, chronic ear infections, certain drugs, ageing, and exposure to excessive noise ("1.1B young people under 35 due to high SPLs in recreational settings").
- What can be done to help people?
 - Hearing protection and education, access to early and on-demand screening;
 - access to hearing systems: hearing aids, cochlear implants, and other assistive devices
 (WHO 2021: currently only 17% of those who could benefit from use of a hearing aid actually use one);
 - sign language and social support.

• • Causes of hearing impairment

- Eardrum scars / malformation / perforation
- Barotrauma (can be temporary)

Exposure to high sound pressure level → Hair cell damage

Source: Ryan, 2000

- Foreign body or fluid
- Inflammation or infection
- Malformation or tumor

inflammatory drugs, chemotherapy

Source: www.lobe.ca, 2021.

• • Consequences of hearing impairment

- Communication is difficult to follow, uncertainties become frequent in everyday life.
- Environmental sounds missing (bird song, water dripping, water boiling over when cooking, ...).
- Withdrawal, due to
 - missing what others are talking about → frustration;
 - unwilling to ask repeatedly → shame, embarrassment;
 - everyday situations become challenging;
 - listening to speech becomes very effortful.
- Most of the time no sudden decline but a creeping process → unconscious adaptation.
- Often leads to "pro-active strategy": responses to what was meant to be said.
- May lead to loneliness, isolation, depression (false sense of others often being angry with them).
- Unavoidable cognitive decline if untreated. [FJ23]
- Danger: dementia. [FJ23]

[FJ23] F. Jiang et al., "Association between hearing aid use and all-cause and cause-specific dementia: an analysis of the UK Biobank cohort," The Lancet, vol. 8, no. 5, doi: 10.1016/S2468-2667(23)00048-8, 2023.

•• First signs of a hearing impairment #1

 Speech at moderate level not always understood, but loud speech becomes disturbing and misinterpreted as offensive.

•• First signs of a hearing impairment #1

 Speech at moderate level not always understood, but loud speech becomes disturbing and misinterpreted as offensive.

- In most cases, the amount of energy arriving at the IHCs is comparable to that of the NH (normal hearing) case.
- Threshold of pain is unchanged (and also the range of uncomfortably loud signals).
- The dynamic range (between threshold of hearing and threshold of pain) is narrower.
- In hearing assistive technology:
 - we need to know the thresholds
 (→ pure tone audiometry),
 - we need to apply dynamic compression.

•• First signs of a hearing impairment #2

- Understanding **speech in noise** (other talkers, traveling, background music) becomes increasingly **difficult**.
- If pure tone audiogram looks OK → hidden hearing loss.
- Speech in noise test can clarify the issue.
 In German-speaking regions: <u>OLSA (Oldenburger Satztest)</u>.

- Problems with understanding speech in noise often arise before a pure tone audiogram indicates hearing impairment.
 Speech reception threshold, SRT, increases.
- Threshold and equal loudness curves may remain largely unchanged.
- Frequency and amplitude resolution declines, which makes it the auditory system harder to distinguish signal from noise.
- Hearing assistive technologies may help with noise reduction algorithms.

•• Hearing aids — Early history

Ear trumpets

17th century

Source: hearingaidmuseum.com, 2021

Vactuphone (1st vacuum-tube HA)

1902 1921

Behind-the-ear hearing aids

1952 1956

Widex Senso full digital BTE HA

1984 1996

Hutchison's Acousticon (1st electrical HA)

Sonotone Model 1010 (1st transistor HA)

Nicolet Phoenix (programmable digital HA)

•• Hearing aids – Modern form factors

+ least feedback

+ glasses-friendly - ear occlusion

+ glasses-friendly - ear occlusion - usability

•• Hearing aids – Requirements

- Attested hearing impairment is a disability.
- Health insurance (in Germany) pays for an adequate hearing aid system. **Technical requirements** (as of 2023):
 - digital technology;
 - a minimum of 6 frequency channels with compression;
 - a minimum of 4 selectable, individualized programs (=settings);
 - directional microphones (to help separate speech and noise);
 - availability of feedback suppression method.
- Plus, requirements of the Medical Device Regulation (MDR) of the European Union:
 - manufacturer must implement quality and risk management systems;
 - performance, user benefit, and user safety must be proven in clinical trials.

Disability:

35+ dB hearing loss in better ear confirmed by a medical doctor

•• Co-payments for hearing systems in Germany

Co-payment for hearing aid provision has existed in Germany since the health reform of 1989 (effective from 1993).

In 2023, the statutory health insurance funds [GK22] generally cover a contract price of

- €685 per hearing aid, plus
- a standard fee for custom-made earpieces of €33.50 and
- a flat-rate service fee for repair work of approximately €125.

Contract price generally covers standard hearing aid models (\rightarrow Nulltarif), but patients can pay extra to purchase premium products.

Cochlear implants are usually covered 100% by the health insurance.

[GK22] GKV-Hilfsmittelverzeichnis, "Festbeträge für Hörhilfen," 2022

•• Hearing aids – Expected features

General:

- Small, lightweight, intuitive, discrete*.
- Remote control, smartphone app.
- Wireless streaming (TV, remote microphone).
- Quickly rechargeable, long-lasting battery.

Audiological features:

- Low noise, high gain, high bandwidth (10 kHz+).
- 10+ frequency channels for DRC.
- Adaptive microphone directionality.
- Noise reduction: ambient, wind, impulse.
- Environment classification.
- Advanced feedback cancelation.
- Frequency shifting.
- Low latency (<< 10 ms), binaural algorithms.

•• Hearing aids – Medical features

General:

- Small, lightweight, intuitive, discrete.
- Remote control, smartphone app.
- Wireless streaming (TV, remote microphone).
- Quickly rechargeable, long-lasting battery.

Audiological features:

- Low noise, high gain, high bandwidth (10 kHz+).
- 10+ frequency channels for DRC.
- Adaptive microphone directionality.
- Noise reduction: ambient, wind, impulse.
- Environment classification.
- Advanced feedback cancelation.
- Frequency shifting.
- Low latency (<< 10 ms), binaural algorithms.

Fitness and medical features:

- Fitness tracking (step counter, pulse rate etc.).
- Blood pressure monitoring.
- On-demand activity log.
- Fall detection.

•• Hearing aids – What is inside?

•• Hearing aids – What is inside? Battery RAM NVM PM **ASIC** ADC Mic DAC **→** AMP (DSP) HMI

•• Hearing aids — Basic signal flow

•• Hearing aids – Architecture of a hearing aid ASIC

•• Hearing aids — Basic specifications

Source: jabra.com, 2021

Source: amd.com, 2021

Re	Hearing aid ASIC	Hearable ASIC	PC CPU
Typical power consumption (algorithms on, wireless off)	~ 1-2 mW	~ 15-50 mW	~ 35-125 W
Typical power consumption (algorithms on, BLE in use)	+ 3-8 mW	+ 15-50 mW	
Clock speed	~ 10-60 MHz	~ 20-200 MHz	~ 3000-4000 MHz
MIPS @ max. clock speed	~ 400 MIPS	~ 1 000 MIPS	~ 200 000 MIPS
Typical dimensions	~ 4 x 6.5 x 1 mm = 26 mm ³	~ 5 x 8 x 1 mm = 40 mm ³	~ 40 x 40 x 6 mm = 9.6 cm ³
Number of cores	~ 2-8	~ 4-8	~ 2-32
Fabrication process	~ 45-22 nm	~ 45-22 nm	~ 14-7 nm

•• Hearing aids – Construction of a hearing aid

Source: kind.com, 2021

Source: taoglas.com,

• • Excursion: Telecoil

T-coil or induction loop receiver:

- Operating at audio frequencies, no RF.
- Induction loop parts:
 - constant current amplifier,
 - closed loop cable.
- Attention (privacy):
 - EM-field bleeding.
 - Always broadcast.

•• Next time

Thank you very much! Questions?

Dr.-Ing. Tamas Harczos tamas.harczos@audifon.com

audifon GmbH & Co. KG