(a) Independent (Unpaired) Samples Test with Unequal Variance Assumptions:

- a. Population and Samples are Normal Distributed, and
- b. Variances are assumed to be Unequal
- c. Sample A and Sample B are independent (e.g. Male versus Female)

Step 1

Define Null Hypothesis H₀:

H₀ There is no difference between the 2 samples

Step 2

Calculate the T-Value (Welch's Test):

$$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where \bar{x}_1 is the mean for column x_1

 $ar{x}_2$ is the mean for column x_2

 S_1 is the standard deviation for x_1

 S_2 is the standard deviation for x_2

 S_1^2 is the variance for x_1

 S_2^2 is the variance for x_2

 n_1 is the number for x_1

 n_2 is the number for x_2

To find the Critical Value in t-distribution table (t-table), we first need to find df (degree of freedom) from t-Table for 95% confidence level:

$$df = n_1 + n_2 - 2$$

Step 4

Hypothesis Testing:

H₀ There is no difference between the two samples

- If it is lower than the Critical Value, then do not Reject
- If it is higher than the Critical Value, then Reject

Step 5

Write your conclusion

Example:

Using the dataset from Class Exercise/Tutorial:

Sample A	Sample B
17.00	17.80
17.10	17.80
17.90	17.00
17.70	18.60
17.50	17.00
16.70	17.70
16.80	17.70
17.20	18.10
17.50	17.50
17.60	17.50
17.40	17.70
17.00	17.40
17.40	17.40
16.90	17.40
17.10	16.70
16.80	17.80

Define Null Hypothesis H₀:

H₀: There is no statically significant difference between Sample A and Sample B

<u>Step 2</u>We calculate the mean and standard deviations (and variances):

	iPhone/Class A	iPad/Class B
	17.00	17.80
	17.10	17.80
	17.90	17.00
	17.70	18.60
	17.50	17.00
	16.70	17.70
	16.80	17.70
	17.20	18.10
	17.50	17.50
	17.60	17.50
	17.40	17.70
	17.00	17.40
	17.40	17.40
	16.90	17.40
	17.10	16.70
	16.80	17.80
Mean	17.2250	17.5688
StDev	0.3568	0.4512
n	16.00	16.00

Use the formula to calculate T-Value:

$$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

=

$$\frac{17.5688 - 17.2250}{\sqrt{\frac{(0.4512)^2}{16} + \frac{(0.3568)^2}{16}}}$$

=

$$\frac{17.5688 - 17.2250}{\sqrt{\frac{0.2036}{16} + \frac{0.1273}{16}}}$$

=

$$\frac{17.5688 - 17.2250}{\sqrt{0.0127 + 0.0080}}$$

=

$$\frac{0.3438}{0.1438}$$

= <u>2.3908 or 2.34</u>

Step 3

Find the Critical Value for T-test for 95% confidence level:

$$df = n_1 + n_2 - 2$$

$$df = 16 + 16 - 2 = 30$$

Thus, Critical Value is 2.042 (see next page)

-				0-12-0	7	Tai	l probabi	lity p	
_	ďf	.25	.20	.15	.10	.05	.025	.02	V.
_	1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	
	2	.816	1.061	1.386	1.886	2.920	4.303	4.849	(
	3	.765	.978	1.250	1.638	2.353	3,182	3.482	4
	4	.741	.941	1.190	1.533	2.132	2.776	2.999	3
	5	.727	.920	1.156	1.476	2.015	2.571	2.757	3
	6	.718	.906	1.134	1.440	1.943	2.447	2.612	3
	7	.711	.896	1.119	1.415	1.895	2.365	2.517	1
	8	.706	.889	1.108	1.397	1.860	2.306	2.449	1
	9	.703	.883	1.100	1.383	1.833	2.262	2.398	1
	10	.700	.879	1.093	1.372	1.812	2.228	2.359	1
	11	.697	.876	1.088	1.363	1.796	2,201	2.328	1
	12	.695	.873	1.083	1.356	1.782	2.179	2.303	1
	13	.694	.870	1.079	1.350	1.771	2.160	2.282	1 2
	14	.692	.868	1.076	1.345	1.761	2.145	2.264	2
	15	.691	.866	1.074	1.341	1.753	2.131	2.249	2
	16	.690	.865	1.071	1.337	1.746	2.120	2.235	- 2
	17	.689	.863	1.069	1.333	1.740	2.110	2.224	2
	18	.688	.862	1.067	1.330	1.734	2.101	2.214	2
	19	.688	.861	1.066	1.328	1.729	2.093	2.205	2
4	20	.687	.860	1.064	1.325	1.725	2.086	2.197	2
	21	.686	.859	1.063	1.323	1.721	2.080	2.189	2
	22	.686	.858	1.061	1.321	1.717	2.074	2.183	2
	23	.685	.858	1.060	1.319	1.714	2.069	2.177	2
	24	685	.857	1.059	1.318	1.711	2.064	2.172	2
	25	.684	.856	1.058	1.316	1.708	2.060	2.167	2
	26	.684	.856	1.058	1.315	1.706	2.056	2,162	2
	27	.684	.855	1.057	1.314	1.703	2.052	2.158	2
	28	.683	.855	1.056	1.313	1.701	2.048	2.154	2
	29	.683	.854	1.055	1.311	1.699	2.045	2.150	2
	30	.683	.854	1.055	1.310	1.697	2.042	2.147	2
	40	.681	.851	1.050	1.303	1.684	2.021	2,123	2
	50	(70	040	1.040	1.000	1 101	0.000	0.100	-

H₀: There is no difference between Sample A and Sample B

- If t-value is lower than the Critical Value, then do not Reject
- If t-value is higher than the Critical Value, then Reject

As the T-Value (2.34) is higher than Critical Value (2.04), then Reject the Null Hypothesis.

Step 5

Write your conclusion based on the context: for instance, there is a difference between using iPad and iPhone to revise before an exam.

Using Excel, you will get:

t-Test: Two-Sample Assuming Unequal Variances					
	Sample A	Sample B			
Mean	17.225	17.56875			
Variance	0.127333333	0.203625			
Observations	16	16			
Hypothesized Mean Difference	0				
df	28				
t Stat	-2.390099812				
P(T<=t) one-tail	0.011907154				
t Critical one-tail	1.701130934				
P(T<=t) two-tail	0.023814309				
t Critical two-tail	2.048407142				

(b) Independent (Unpaired) Samples Test with Equal Variance Assumptions:

- a. Population and Samples are Normal Distributed, and
- b. Variances are assumed to be Equal

Formula looks something like:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Results:

Using Excel, you will get:

t-Test: Two-Sample Assuming Equal Variances				
	Sample A	Sample B		
Mean	17.225	17.56875		
Variance	0.127333333	0.203625		
Observations	16	16		
Pooled Variance	0.165479167			
Hypothesized Mean Difference	0			
df	30			
t Stat	-2.390099812			
P(T<=t) one-tail	0.011663312			
t Critical one-tail	1.697260887			
P(T<=t) two-tail	0.023326624			
t Critical two-tail	2.042272456	_		

(c) Paired T-Test

A paired t-test is used to compare two population means where you have two samples in which observations in one sample can be paired with observations in the other sample.

Examples of where Paired T-Test are used:

- 1. Pre- and post- implementation measures on the same individual (e.g. one person fills in a survey (say using iPhone) in day one, and the same person fills in a second survey (says using iPad) in day two).
- 2. Cross-over trial
- 3. Matched pairs

Formula:

$$SE(\overline{d}) = \frac{S_d}{\sqrt{n}}$$

$$t = \frac{\overline{d} - 0}{SE(\overline{d})} = \frac{\overline{d}}{SE(\overline{d})} \text{ with } n-1 \text{ } df$$

Calculate:

The mean of the differences (\bar{d}) And the standard deviation of the differences (s_d)

$$t=rac{ar{d}}{rac{S_d}{\sqrt{n}}}$$
 with n-1 df

Where \bar{d} = Mean Difference between the two samples

S = Standard Deviation of the differences

n = Number of Observations

Calculate the difference between the two observations on each pair.

Step 2

Calculate the mean difference, i.e. $\overline{m{d}}$.

 $\underline{\text{Step 3}}$ Calculate the Standard deviation of the differences, i.e. $\textbf{\textit{S}}_{d}$.

	iPhone/Class A	iPad/Class B	Differences
	17.00	17.80	-0.80
	17.10	17.80	-0.70
	17.90	17.00	0.90
	17.70	18.60	-0.90
	17.50	17.00	0.50
	16.70	17.70	-1.00
	16.80	17.70	-0.90
	17.20	18.10	-0.90
	17.50	17.50	0.00
	17.60	17.50	0.10
	17.40	17.70	-0.30
	17.00	17.40	-0.40
	17.40	17.40	0.00
	16.90	17.40	-0.50
	17.10	16.70	0.40
	16.80	17.80	-1.00
Mean	17.2250	17.5688	-0.3438
StDev	0.3568	0.4512	0.6000
n	16.00	16.00	16.00

Step 4

Calculate the standard error of the mean difference:

$$SE(\overline{d}) = \frac{S_d}{\sqrt{n}}$$

$$= \underbrace{0.6000}_{\sqrt{16}}$$

$$= 0.15$$

Calculate the t-value:

$$t = \frac{\bar{d}}{\frac{S_d}{\sqrt{n}}}$$

$$t = -0.3438$$
0.15

$$t = -2.292$$

Step 6

Degree of freedom = n - 1

$$df = 16 - 1$$

$$df = 15$$

Step 7

In t-distribution table, find the critical value for the paired t-test

df					Tail probability p		
	.25	.20	.15	.10	.05	.025	.02
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89
2	.816	1.061	1.386	1.886	2.920	4.303	4.849
3	.765	.978	1.250	1.638	2.353	3,182	3.482
4	.741	.941	1.190	1.533	2.132	2.776	2.999
5	.727	.920	1.156	1.476	2.015	2.571	2.757
6	.718	.906	1.134	1.440	1.943	2.447	2.612
7	.711	.896	1.119	1.415	1.895	2.365	2.517
8	.706	.889	1.108	1.397	1.860	2.306	2.449
9	.703	.883	1.100	1.383	1.833	2.262	2.398
10	.700	.879	1.093	1.372	1.812	2.228	2,359
11	.697	.876	1.088	1.363	1.796	2,201	2.328
12	.695	.873	1.083	1.356	1.782	2.179	2.303
13	.694	.870	1.079	1.350	1.771	2.160	2.282
14	.692	.868	1.076	1.345	1.761	2.145	2.264
15	.691	.866	1.074	1.341	1.753	2.131	2.249
16	.690	.865	1.071	1.337	1.746	2.120	2.235
17	.689	.863	1.069	1.333	1.740	2.110	2.224

The critical value is 2.131

H₀: There is no difference between Sample A and Sample B

- If t-value is lower than the Critical Value, then do not Reject
- If t-value is higher than the Critical Value, then Reject

As the t-value (2.292) is higher than Critical Value (2.131), then (technically) Reject the Null Hypothesis.

t-Test: Paired Two Sample for I		
	Sample A	Sample B
Mean	17.225	17.56875
Variance	0.127333333	0.203625
Observations	16	16
Pearson Correlation	-0.090049519	
Hypothesized Mean Difference	0	
df	15	
t Stat	-2.291799298	
P(T<=t) one-tail	0.018401372	
t Critical one-tail	1.753050356	
P(T<=t) two-tail	0.036802745	
t Critical two-tail	2.131449546	