

School of Business and Economics Vrije Universiteit Amsterdam

Financial Econometrics Case Study for Cisco Systems, Inc.

 Abe Tempelman
 2747518

 Jiaxuan Zhu
 2838063

 Yunji Eo
 2735445

 Robin Klaasen
 2744646

 Vân Lê
 2676244

Introduction

- ► Using GARCH and GAS for volatility forecasting using high-frequency stock data from Cisco Systems, Inc.
- ► Applying realized kernel methods to improve the models
- ► Model Performance for Estimation
 - ▶ Log Likelihood
 - ► AIC
 - ► BIC
 - ► Our innovation: Markov Chain Monte Carlo
- Model Forecasting accuracy
 - ► Loss Functions
 - Diebold-Mariano Tests
 - Our innovation: Dynamic Time Warping Distance

Data Set: Cisco Systems, Inc. (CSCO)

	In-sample	Out-of-sample		
Period	Jan 5, 2018 - Jan 3, 2023 Jan 4, 2023 - Jan 3			
Number of Records	30,514,903	12,238,721		
Skewness	0.52	0.21		
Kurtosis	51.93	18.61		

Table: Summary of In-sample and Out-of-sample Datasets

- ▶ Positive skewness ⇒ asymmetry with a fatter right tail
- ▶ Positive kurtosis ⇒ extreme outliers and heavy tails
- ► Calls for advanced modelling approaches

Data Set: Cleaning

- ► Data Cleaning Approach (Barndorff-Nielsen et al. (2009))
 - ► Restricted to official trading hours (09:30–16:00 EST).
 - Removed anomalous entries such as zero prices and duplicates.
 - Excluded corrected trades
 - Median price of identical time trades, not averages to reduce outliers.

Data Set: Preliminary Analysis

Price Trends (In-Sample and Out-of-Sample)

Out-of-Sample Returns

Realized Kernels Estimation

Methodology

- ► Realized Kernel versus Daily Realized Volatility
- ▶ Distributions
 - Normal Distributions
 - ► Student-t Distributions
 - Skewed Student-t Distributions
 - Markov Chain Monte Carlo
- ▶ Model Types
 - GAS model
 - Realized GAS model
 - ► GARCH
 - ▶ GJR-GARCH
 - ► EGARCH
 - ► Realized GARCH
 - RiskMetrics Model

Methodology: Model Types Explained

GAS Model

The updating equation:

$$f_{t+1} = \omega + \alpha s_t + \beta f_t$$
, with $s_t = S_t \times \nabla_t$ and $\nabla_t = \frac{\partial \ln p(r_t | f_t, \mathcal{F}_t; \theta)}{\partial f_t}$

In this study, $S_t = 1$ such that $s_t = \nabla_t$ and $f_t = \log(h_t)$ such that

$$\nabla_t = \frac{\partial \ln p(r_t|f_t, \mathcal{F}_t; \theta)}{\partial h_t} \times h_t.$$

Realized GAS is defined as

$$f_{t+1} = \omega + \beta f_t + \alpha \left(\frac{\nu_1}{2} \left(\frac{X_t}{exp(f_t)} - 1 \right) + \nabla_t \right),$$

Methodology: Model Types Explained

GJR-GARCH

$$\begin{split} \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \gamma I_{t-1} \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2, \\ I_{t-1} &= \begin{cases} 1, & \text{if } \epsilon_{t-1} < 0 \text{ (negative shock)} \\ 0, & \text{if } \epsilon_{t-1} \geq 0 \text{ (positive shock)} \end{cases} \end{split}$$

EGARCH

$$\log(\sigma_t^2) = \omega + \alpha(|z_{t-1}| - \mathbb{E}(|z_{t-1}|)) + \gamma z_{t-1} + \beta \log(\sigma_{t-1}^2),$$

Realized GARCH

$$\log(\sigma_t^2) = \omega + \beta \log(\sigma_{t-1}^2) + \gamma Z_{t-1} + \alpha(|Z_{t-1}| - \mathbb{E}(|Z_{t-1}|)),$$

$$X_t = \xi + \varphi \log(\sigma_t^2) + \tau(Z_t) + U_t,$$

Methodology: Model Types Explained

Bayesian estimation

Metropolis-Hastings

$$\alpha = \min\left(1, \frac{p(\Theta^* \mid data)}{p(\Theta \mid data)}\right)$$

RiskMetrics Model

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda)r_{t-1}^2$$
, where $\lambda = 0.94$

Results: Model Assessment Criteria

Model	Log-likelihood	AIC	BIC
GARCH-Norm	-2423.9562	4853.9125	4869.3219
GARCH-STD	-2317.7402	4643.4803	4664.0263
GARCH-SSTD	-2317.1373	4644.2746	4669.9570
EGARCH-Norm	-2394.3986	4796.7972	4817.3431
EGARCH-STD	-2302.1877	4614.3754	4640.0578
EGARCH-SSTD	-2301.6993	4615.3986	4646.2175
GJR-GARCH-Norm	-2401.7283	4811.4567	4832.0026
GJR-GARCH-STD	-2312.5113	4635.0226	4660.7050
GJR-GARCH-SSTD	-2311.9425	4635.8850	4666.7039
R-GARCH-RK-Norm	-2387.0278	4790.0556	4831.1475
R-GARCH-RK-STD	-2294.4192	4606.8385*	4653.0668*
R-GARCH-RK-SSTD	-2309.3148	4638.6297	4689.9945
GAS-Norm	-22220.6382	44447.2764	44462.6859
GAS-STD	-8584.7785	17177.5571	17198.1030
GAS-SSTD	-8582.9529	17175.9058	17201.5883
R-GAS-Norm	-6268.3751	12544.7502	12565.2961
R-GAS-STD	-3323.0813	6656.1627	6681.8451
R-GAS-SSTD	-3323.0242	6658.0484	6688.8673

Results: Model Forecasting (Out-Of-Sample Performance)

- ► Loss Functions (MSE, RMSE, MAE, MAPE)
 - Best-performing model is the realized kernel GAS model with the normal distribution
 - Among the GARCH models, models with realized kernel are significantly better than traditional GARCH models
- ▶ Diebold-Mariano Test
 - R-GAS-Norm significantly outperforms others for MSE and RMSE.
 - GAS-STD and GAS-SSTD lead MAPE but without statistical superiority over R-GAS-Norm.

All the Forecasting Results

Figure: Forecasting results for all Models

 Some are smoother, others are better at capturing high fluctuations

Two Forecasting Results and a more dynamic measure Dynamic Time Warping Distance

Figure: Forecasting comparison for RK-GARCH-STD and R-GAS-Norm

- ► DTW distance: complementing traditional metrics
- ▶ RK-GARCH-STD is the top model under DTW, aligning well with observed fluctuations in the realized kernel

Model performance

Table: Overall Model Performance

Model	MSE	RMSE	MAE	MAPE	DTW Distance	Score
RK-GARCH-STD	2.135623	1.461377	0.916653	1.148057	18.141753	23.803463
RK-GARCH-SSTD	1.819745	1.348979	0.784579	1.018624	23.235776	28.207703
GARCH-MCMC	2.829283	1.682047	0.836653	0.742975	22.535220	28.626179
RK-GARCH-Norm	1.813989	1.346844	0.792369	1.056644	24.033994	29.043840
R-GAS-Norm	1.677341	1.295122	0.609589	0.704173	27.829693	32.115918
RiskMetrics	2.624715	1.620097	0.919522	1.333152	25.651595	32.149081

Conclusion and Future Research

- Models with realized kernels outperform. Realized kernel GAS (normal) excels in loss functions, while realized kernel GARCH (Student-t) captures dynamic trends better, with choice depending on prioritizing volatility differences or trend alignment.
- ► Future research should apply Markov Chain Monte Carlo estimation to GAS and GARCH models with realized kernels and explore more efficient realized kernel computations.

Thank you! Questions?