南京邮电大学 2015 /2016 学年第 一 学期

《数学物理方法》期末试卷(A)

院(系)	是(系) 班级		学号			姓名		
题号 一 二	三四	五	六	七	八	九	+	总分
得分了								
1. 定解问题 变量法的 2. 以勒让德多项式立 叶 级 数 为	(k,l) 自然数) $\frac{\partial u(x,t)}{\partial x} = u$	E区间(- 	i ,1) 」	二把 f(z (填 "; 阶的。	(x) = x ² : : : : : : : : : : : : : : : : : : :	+x+2 计 算 "不是"	一。 展 积 一。 线性 x,t)+*	分: 的,它 w(x,t),
取 $w(x,t) = $ 5. $r^2R'' + rR' + (5x)$ 满足 $R(0) = 0, R(1) = $	r ² -4)R=0 的i	通解为ソ	=				-,	
· · · · · · · · · · · · · · · · · · ·		· .		•	· ,	· ,:	—— . 半奇数l	阶 Bessel
函数J _{1/2} (x)=	4. A			(要才	対用初等	函数表	示)	
7. 第一类柱函数	$J_n(x)$ 的幂级数	表示式为	b:	·	. ′	•	_ 第二	类柱函数
$Y_n(x) =$								

 $u_i(x,0) = \psi(x)$ 的解 u(x,t) =_______

得 分

二、求解均匀弦的自由横振动,弦长为1,两端固定,初始时刻位 移为零,初始速度为x,写出数学定解问题并求解。 (10 分)

三、求一半径为R的扇形薄板稳恒状态下的温度分布问题,设板上下两面绝热,圆周边界上的温度为 $u(R,\theta)=f(\theta)$,而两个直径边界

的温度保持为零度,求稳恒状态下的温度分布规律 $u(r,\theta)$ 。(12分)

(数学物理方法) 试卷 第 2 页 共 4 页

四、判断 $x_c = 0$ 是 Euler 型常微分方程 $x^2y'' + xy' - m^2y = 0$ (m^2 为常数)的常点还是奇点,并用级数解法求解此方程在 $x_0 = 0$ 的邻域上的解。 (12 分)

五、二个同心球壳,半径分别为a,b (b>a),内球壳电势为 $\cos\theta$,外壳为导体并接地,求球壳之间的电势分布。 (12 分)

得分

六、半径为 R 的均匀弹性圆膜边缘固定,初始位移为 ρ ,初始速度为零,试解膜的振动,其中 ρ 为圆膜上一点到圆心的距离. (12 分)

得分

七、用格林函数法求解三维半无限大空间 Laplace 方程的 Dirichlet 边界问题: $\begin{cases} \Delta u = 0 & (z > 0) \\ u|_{-\infty} = f(x, y) \end{cases}$ (10 分)

(数学物理方法) 试卷 第 4 页 共 4 页