Ecuaciones en Diferencias de primer orden

Prof. J. Rivera Noriega

ITAM

Otoño de 2020

Definiciones básicas

Iniciamos ahora el estudio de algunos ejemplos de dinámica discreta.

En este caso, se adaptan las variables y las descripciones para considerar estados medidos en *periodos de tiempo dados por intervalos iguales*

Por lo mismo, la dinámica de las *variables de estado* se modelan con *ecuaciones en diferencias*.

El primer ejemplo, como en el caso de dinámica continua, es estudiar ecuaciones de primer orden.

La forma general de estas ecuaciones es $y_{t+1} = f(t, y_t)$, donde f es usualmente una función suave.

Si la función f sólo depende de y_t se dice que es un sistema dinámico discreto autónomo, y tiene la forma $y_{t+1} = f(y_t)$.

Un caso importante es el de la ecuación lineal, de la forma

 $y_{t+1} = ay_t + b$, donde b puede ser constante o variable

Solución de la ecuación lineal de orden 1

La solución de una ecuación en diferencias es una sucesión, por lo que buscamos escribirla de la forma $y_t = \cdots$

Cuando además de la ecuación nos es dado un estado inicial y_0 tenemos un problema de valor inicial.

Si suponemos que a=1 la ecuación adquiere la forma $y_{t+1}=y_t+b$. Coloquialmente hablando correspondería al "modelo del alcancía".

Entonces la solución del problema $y_{t+1} = y_t + b$ con y_0 dado, la planteamos como

$$y_t = y_{t-1} + b = y_{t-2} + b + b = y_{t-3} + 3b = \dots = y_0 + tb$$

Así, si se le echa al alcancía inicialmente \$100 y se le echan \$50 semanales, se escribe el problema

$$y_{t+1} = y_t + 50, \qquad y_0 = 100$$

y su solución es $y_t=100+50t$; luego de 36 semanas se tendrá un ahorro de $y_{36}=100+50\times 36=1900$

Consideremos la ecuación $x_{t+1}=x_t+t+1$. Más adelante describiremos un método para determinar su solución, por ahora nos planteamos el verificar si la sucesión $x_t=\frac{t(t+1)}{2}$ es solución de esta ecuación.

Para ésto, sustituimos en la ecuación y verificamos que se cumpla la identidad:

$$\frac{(t+1)(t+2)}{2} = \frac{t(t+1)}{2} + t + 1 = \frac{t(t+1) + 2t + 2}{2} = \frac{(t+1)(t+2)}{2}$$

Nótese que además esta solución cumple la condición inicial $x_0 = 0$.

Finalmente, en este caso $b=b_t=t+1$ y tenemos una ecuación no homogénea con término no constante.

Solución de la ecuación lineal de orden 1

Para ponerlo en términos usados en la dinámica continua, diríamos que $y_t = y_0 + bt$ es la solución explícita de la ecuación, dado el dato inicial y_0 .

Veamos ahora el caso $a \neq 1$, b = 0, es decir la ecuación queda $y_{t+1} = ay_t$. (Queremos ver este caso para compararlo con la ecuación diferencial y' = ky)

En este caso escribimos la solución como

$$y_t = ay_{t-1} = a^2y_{t-2} = \cdots = a^ty_0 = y_0a^t$$

(Nos será de utilidad intuitiva comparar esta solución con $y = y(0)e^{kt}$)

Solución de la ecuación lineal de orden 1

Veamos ahora la ecuación completa: $y_{t+1} = ay_t + b$, $a \neq 1$, $b \neq 0$.

En este caso la solución viene dada por

$$y_t = ay_{t-1} + b = a(ay_{t-2} + b) + b = a^2y_{t-2} + b(1+a)$$

Repitiendo la rutina:

$$y_t = a^2(ay_{t-3} + b) + b(1+a) = a^3y_{t-3} + b(1+a+a^2)$$

Así que recursivamente obtenemos

$$y_t = a^t y_0 + b(1 + a + a^2 + \cdots + a^{t-1})$$

que por fórmulas de sumas geométricas nos lleva a

$$y_t = a^t y_0 + b \left(\frac{1 - a^t}{1 - a} \right) = \left(y_0 - \frac{b}{1 - a} \right) a^t + \frac{b}{1 - a}$$

En resumen...

Teorema

Consideremos la ecuación $y_{t+1} = ay_t + b$, donde $a, b \in \mathbb{R}$, y con un dato inicial y_0 . Entonces

- Si a=1 la solución al problema anterior es $y_t=y_0+bt$, $t=1,2,\ldots$
- Si $a \neq 1$ la solución al problema anterior es

$$y_t = \left(y_0 - \frac{b}{1-a}\right)a^t + \frac{b}{1-a}, \qquad t = 1, 2, \dots$$

Cuando no hay un dato inicial, se podrían proponer soluciones generales a la ecuación $y_{t+1} = ay_t + b$:

- Si a=1 la solución general es $y_t=K+bt, t=1,2,...$
- Si $a \neq 1$ la solución general es $y_t = Ka^t + \frac{b}{1-a}$, $t = 1, 2, \dots$

Ejemplos resueltos

Ejemplo

Supongamos que el ingreso Y_t al tiempo t evoluciona de acuerdo a la ecuación

$$Y_{t+1} = C_t + I_t$$
, $C_t = consumo$, $I_t = inversión$.

Si el consumo obedece la ecuación $C_t = mY_t + b$, con 0 < m < 1 y c > 0, y además la inversión permanece constante, determinar el comportamiento al largo plazo de el ingreso.

Ecuación:
$$Y_{t+1} = mY_t + (b+I)$$

Solución General:
$$Y_t = K \cdot (m)^t + \frac{b+l}{1-m}, \quad K \in \mathbb{R}$$

En este caso, si fuera dado un dato inicial Y_0 se sustituiría y obtendríamos:

$$Y_0 = K + \frac{b+l}{1-m}, \qquad \therefore K = Y_0 - \frac{b+l}{1-m}.$$

Ejemplos resueltos

Ejemplo

Se proyecta que una empresa generará utilidades por 10 millones anuales durante los próximos 15 años. Se planea pedir un préstamo a través de un crédito que cobra 9 % anuales, y se desea pagar un máximo del 60 % del total de utilidades anuales. ¿Cuál es el monto máximo que se puede pedir?

Si M_t es el monto de la deuda (en millones de pesos) al tiempo t (medido en años), entonces se cumple

$$M_{t+1}=(1.09)M_t-6$$
, cuya solución general es $M_t=K(1.09)^t+rac{600}{9}$

Para determinar a K se usa que $M_{15}=0$, obteniendo $K=\frac{-600}{9(1,09)^{15}}\approx -18{,}315$, y luego se determina a $M_0\approx -18{,}315+66{,}667=48{,}352$.

Comportamiento cualitativo

Como primera observación cualitativa sobre la solución general $y_t = Ka^t + \frac{b}{1-a}$ de la ecuación $y_{t+1} = ay_t + b$ con $a \ne 1$, observemos que si K = 0 entonces la sucesión constante $y_t = \frac{b}{1-a}$ es solución de la ecuación:

$$\frac{b}{1-a} = y_{t+1} = a\frac{b}{1-a} + b = \frac{ab+b-ba}{1-a} = \frac{b}{1-a}$$

Esta solución es llamada solución estacionaria.

Nótese que si |a|<1 entonces de hecho $y_t o \dfrac{b}{1-a}$ si $t o \infty.$

Comportamiento cualitativo

Una segunda observación cualitativa sobre la solución general $y_t = Ka^t + \frac{b}{1-a}$ es sobre su comportamiento si a < 0.

Por ejemplo si la ecuación es $y_{t+1} = -2y_t + 5$, su solución general es

$$y_t = K(-2)^t + \frac{5}{1 - (-2)} = \begin{cases} -2 + 5/3, -8 + 5/3, -32 + 5/3, \dots & t \text{ impares} \\ 4 + 5/3, 16 + 5/3, 64 + 5/3 \dots & t \text{ pares} \end{cases}$$

A un comportamiento así lo llamamos oscilante divergente, puesto que oscila alrededor de la solución estacionaria $y_t^*=5/3$ y no es convergente (pues |-2|=2>1.

Un comportamiento será oscilante convergente ocurre si -1 < a < 0.

Si la solución no es oscilante, es decir a > 0 se tiene una solución monótona.

Así, en la solución del modelo de ingreso la solución es $Y_t = K \cdot (m)^t + \frac{b+l}{1-m}$, y como 0 < m < 1 entonces tenemos una solución monótona que en el largo plazo converge a $\frac{b+l}{1-m}$

Para el ejemplo del préstamo de la empresa, la solución general es $M_t = K(1,09)^t + \frac{600}{9}$, es decir a=1,09, por lo que se tiene una solución monótona divergente.

Ejemplo

Se invierte un capital de 2mdp en un instrumento que paga un interés fijo de 6 % anual, capitalizable al mes, y se desea retirar mensualmente una cantidad (renta) por 15 años. Considerando las siguientes dos situaciones, determinar la renta mensual:

- La cantidad del retiro es fijo durante los 15 años.
- La cantidad del retiro se ajusta a una inflación del 0,4 % mensual

Sea P_t el capital (en mdp) que se tiene al mes t, con $t = 0, 1, 2, \dots, 180$

Sear r el valor para t = 0 del retiro mensual (renta)

Ejemplos resueltos

Por fórmulas básicas de interés compuesto, para un retiro fijo se tiene:

$$P_{t+1} = \left(1 + \frac{0.06}{12}\right) P_t - r$$

Mientras que para un retiro que se ajuste a la inflación, en cada periodo se multiplica r por 1+(0.4/100) y se tendrá:

$$P_{t+1} = \left(1 + \frac{0.06}{12}\right) P_t - (1.004)^t r$$

En ambos casos se tienen condiciones inicial y terminal, a saber:

$$P_0 = 2mdp, \qquad P_{180} = 0$$

Ejemplos resueltos

Resolveremos con esta información el primer caso. Tenemos

$$P_{t+1} = \left(1 + \frac{0.06}{12}\right)P_t - r$$
 $P_0 = 2mdp$, $P_{180} = 0$

La solución general se escribe como

$$P_t = K(1,005)^t + \frac{-r}{1 - 1,005} = K(1,005)^t + 200r$$

Al usar las condiciones inicial y final:

$$2 = K + 200r$$
, $0 = K(1,005)^{180} + 200r$ $K \approx -1,375$, $r \approx 0,016$ mdp

Esto dice que la renta que se recibirá mensualmente es aproximadamente igual a 16 mil pesos.

En el segundo ejemplo, cuando se ajusta la renta con la previsión de una inflación, se tiene otra ecuación con los mismos datos:

$$P_{t+1} = (1,005) P_t - (1,004)^t r$$
 $P_0 = 2mdp$, $P_{180} = 0$

Como puede verse este ejemplo nos muestra una ecuación que tiene una "parte no homogénea" que no es constante.

Iniciamos entonces el estudio de ecuaciones de la forma $y_{t+1} = ay_t + b_t$, donde b_t ya no es constante, sino que cambia con el tiempo.

Ecuación lineal de primer orden no homogénea

Para obtener la solución general de la ecuación en diferencias $y_{t+1} = ay_t + b_t$, quisiéramos aplicar la versión adecuada del principio general que usamos en la dinámica continua.

Teorema

La solución general de la ecuación $y_{t+1} = ay_t + b_t$ es la suma de $K(a)^t$ con una solución particular propuesta y_t^p de la misma ecuación.

Veremos que si $y_t = (y_1, y_2, \dots)$ es cualquier solución y $y_t^p = (y_1^p, y_2^p, \dots)$ es una solución particular propuesta, entonces $y_t - y_t^p$ es solución de la ecuación homogénea asociada $y_{t+1} = ay_t$, o sea que se puede escribir como $K(a)^t$.

Esto dice que $y_t = K(a)^t + y_t^p$.

Veamos entonces que $y_t - y_t^p$ cumple la ecuación homogénea asociada:

$$y_{t+1} - y_{t+1}^{p} = (ay_t + b_t) - (ay_t^{p} + b_t) = a(y_t - y_t^{p})$$

Método de coeficientes indeterminados

De nuevo tenemos ejemplos concretos de b_t para las que se pueden proponer soluciones particulares.

Si
$$b_t = C(a)^t$$
 entonces se propone $y_t^p = A(a)^t$

Si
$$b_t = C_0 + C_1 t + \dots + C_m t^m$$
 entonces se propone $y_t^p = A_0 + A_1 t + \dots + A_m t^m$

Para determinar los coeficientes A_j se debe sustituir la y_t^p en la ecuación y resolver las ecuaciones que sean planteadas.

Ejemplo resuelto

Volviendo al ejemplo de la inversión para recibir una renta que se ajuste a la inflación, se tiene el problema

$$P_{t+1} = (1,005) P_t - (1,004)^t r, P_0 = 2mdp, P_{180} = 0$$

En este caso la solución general de la ecuación homogénea asociada es $K(1,005)^t$ Ahora se propone $P_t^p = A(1,004)^t$ con la incógnita $A \in \mathbb{R}$.

Al sustituir en la ecuación:

$$A(1,004)^{t+1} = (1,005) \cdot A(1,004)^t - (1,004)^t r$$

$$\iff A(1,004) = (1,005) A - r \iff A = 1000r.$$

En conclusión, la Sol. Gral. queda $P_t = K(1,005)^t + 1000r(1,004)^t$

Ejemplo resuelto

Obérvese que hay dos constantes desconocidas en esta sol. gral., pero al sustituir los dos datos tendremos el sistema

$$K + 1000r = 2$$
, $K(1,005)^{180} + 1000r(1,004)^{180} = 0$

Al resolver est sistema se llega a $K \approx -10, 18$, $r \approx 0,01218$.

Esto implica que la renta que recibirá equivaldría a aproximadamente lo que hoy representa \$12180

Más ejemplos resueltos

Veamos que aunque una primera propuesta de solución particular falle, podemos aplicar el mismo principio de la dinámica continua y multiplicar por t.

• Consideremos el ejemplo dado al inicio de esta presentación, o sea $x_{t+1} = x_t + t + 1$, y determinemos su solución general.

La solución de la ecuación homogénea asociada es $K(1)^t = K$.

Proponemos la solución particular $x_t^p = At + B$, que al sustituirse en la ecuación nos lleva a

$$A(t+1)+B=At+B+t+1\iff A=t+1$$
 lo cual no es posible

Más ejemplos resueltos

Proponemos entonces $x_t^p = t(At + B)$; al sustituir en la ecuación tenemos:

$$(t+1)(A(t+1)+B) = t(At+B)+t+1$$

$$\iff A(t^2+2t+1)+Bt+B = At^2+Bt+t+1$$

$$\iff 2At+A+B = t+1$$

Lo cual nos lleva a A=1/2, B=1/2, o sea $x_t^p=t(\frac{t}{2}+\frac{1}{2})$

La solución general de la ecuación queda $x_t = K + \frac{t(t+1)}{2}$.

Y si usáramos un dato inicial $x_0=0$ obtendríamos K=0, por lo que la solución explícita es $x_t=\frac{t(t+1)}{2}$, tal y como se planteó al inicio de esta presentación.

Más ejemplos resueltos

Un principio similar se aplica en el siguiente ejemplo

• Determinar la solución general de $y_{t+1} = 2y_t - 3(2)^t$.

La sol. gral. de la correspondiente ecuación homogénea es $K(2)^t$, y por lo mismo la propuesta de $y_t^p = A(2)^t$ no funcionará, pues esta solución ya está contenida en la sol. gral. de la ecuación homogénea.

Se propone entonces $y_t^p = t(A(2)^t)$, que al ser sustituida en la ecuación lleva a:

$$A(t+1)(2)^{t+1} = 2(At(2)^t) - 3(2)^t \iff 2A(t+1) = 2At - 3$$

cuya solución es A=-3/2. La solución general de la ecuación original queda:

$$y_t = K(2)^t - \frac{3}{2}t(2)^t = K(2)^t - 3t(2)^{t-1} = (2K - 3t)(2)^{t-1}$$

Análisis Cualitativo – Diagrama de telaraña

Revisamos ahora el comportamiento cualitativo del sistema dinámico $y_{t+1} = f(y_t)$, donde f es una función derivable.

Llamamos a y^* un punto estacionario o fijo del anterior sistema, si $f(y^*) = y^*$.

Nótese que la sucesión constante $y_t = y^*$ es solución de la ecuación, pues $y_{t+1} = y^* = f(y^*) = f(y_t)$

Para hacer un diagrama como el plano fase, seguimos los siguientes pasos:

- Se dibujan en el lano Y-Z las gráficas de z=f(y) y de la identidad z=y;
- A partir del dato inicial y_0 se traza una recta vertical hasta la gráfica de f, y a partir de allí, se traza una recta horizontal a la gráfica de la identidad,
- Verticalmente hacia el eje Y se encontrará y_1 . Desde allí, se reinicia el procedimiento anterior.

Con este procedimiento se puede ir graficando la sucesión (y_t) , y ver el comportamiento al largo plazo del sistema.

Consideremos el sistema dinámico $y_{t+1} = \sqrt{4y_t + 2}$ con datos iniciales en $y_0 = 1$ y en $y_0 = 6$.

Para determinar su punto fijo en el primer cuadrante resolvemos

$$\sqrt{4r+2} = r \iff 4r+2 = r^2 \iff r^2 - 4r - 2 = 0 \iff r = -2 + \sqrt{6}$$

Este punto corresponde a la primera coordenada de la intersección de la gráfica de f con la identidad ($r=-2+\sqrt{6}\approx 4{,}45$)

Figura: Gráficas de $f(s) = \sqrt{4s+2}$ y de la identidad

Veamos ahora el plano fase cuando $y_0 = 1$.

Veamos ahora el plano fase cuando $y_0 = 6$.

Hagamos un análisis similar con el sistema dinámico $y_{t+1} = 4 - \frac{1}{6}y_t^2$ con datos iniciales en $y_0 = 1$.

Los puntos fijos en el primer cuadrante en este caso se obtienen al resolver

$$4 - \frac{r^2}{6} = r \iff 24 - r^2 = 6r \iff r^2 + 6r - 24 = 0 \iff r = -3 + \sqrt{33}$$

En este caso tenemos $y^* \approx 2,74$ y el diagrama de telaraña se muestra a continuación

Observemos que haciendo un aparentemente pequeño cambio al sistema dinámico $y_{t+1}=4-\frac{1}{2}y_t^2$ con datos iniciales en $y_0=1$, el comportamiento es muy diferente

El teorema de estabilidad

Para dar más certeza al análisis cualitativo definimos un punto fijo y^* como estable si la sucesión solución (y_t) con un dato inicial cerca de y^* es convergente a y^* .

Teorema

Sea y^* un punto fijo del sistema dinámico autónomo $y_{t+1} = f(y_t)$, donde f es una función derivable con derivada continua.

- (a) $Si |f'(y^*)| < 1$ entonces y^* es estable.
- (b) $Si |f'(y^*)| > 1$ entonces y^* no es estable.

O sea que el factor determinante para la estabilidad es el modo en que cruza la gráfica de f a la recta identidad

2-Ciclos

Nótese que nada se dice sobre la estabilidad cuando $|f'(y^*)| = 1$. En este caso se puede dar un fenómeno interesante.

Consideremos $y_{t+1} = -y_t + 1$. En este caso se tiene $y^* = 0.5$ y $f'(y^*) = -1$

2-Ciclos

Se observa que por ejemplo, al iniciar con $y_0 = 0.3$ el sistema se la pasa oscilando entre los valores 0,3 y 0,7.

En situaciones así, decimos que se tiene el 2-ciclo $\{0,3,0,7\}$.

En general $\{y_0, y_1\}$ es un 2-ciclo si $y_{2k} = y_0$ y $y_{2k-1} = y_1$

Nótese que los elementos de un 2-ciclo son puntos fijos de $f \circ f$, es decir f(f(x)) = x.

Pero también los puntos fijos del sistema son solución de f(f(r)) = r.

Así que un modo de determinar los elementos de un 2-ciclo es resolver f(f(r)) = r y descartar de allílos puntos fijos

Para determinar algún 2-ciclo de $y_{t+1} = 1 - y_t^2$ planteamos x = f(f(x)) con $f(x) = 1 - x^2$:

$$x = f(f(x)) = f(1 - x^2) = 1 - (1 - x^2)^2 = 2x^2 - x^4$$

Buscamos entonces soluciones de $0 = x^4 - 2x^2 + x = x(x^3 - 2x + 1)$

Entonces $x_0 = 0$ es solución; ¿es este un punto fijo?: f(0) = 1

Como se tiene además que f(1) = 0 entonces $\{0,1\}$ es un 2-ciclo.

Se sabe además que x y x-1 son factores del polinomio que proviene de f(f(x)) = x, por lo que tenemos $x^4 - 2x^2 + x = x(x-1)(x^2 + x - 1)$

Finalmente nótese que las raíces de $x^2 + x - 1$ corresponden a resolver la ecuación f(x) = x: $1 - x^2 = x \iff x^2 + x - 1 = 0$

Entonces las raíces de x^2+x-1 , que son $\frac{-1\pm\sqrt{5}}{2}$, son los puntos fijos del sistema dinámico.

2-ciclos atractores

Se dice que el 2-ciclo $\{y_0,y_1\}$ es atractor si una pequeña perturbación x_0 de la condición inicial y_0 lleva a una solución (x_0,x_1,x_2,\dots) cumpliendo que $x_{2k}\to y_0$ y además $x_{2k-1}\to y_1$. Si el 2-ciclo no es atractor se dice que es repulsor.

Teorema

 $Si \{y_0, y_1\}$ es un 2-ciclo del sistema dinámico $y_{t+1} = f(y_t)$ entonces

- (i) El ciclo es atractor si $|f'(y_0)f'(y_1)| < 1$
- (ii) El ciclo es repulsor si $|f'(y_0)f'(y_1)| > 1$

En nuestro ejemplo anterior f'(x) = -2x, o sea que |f'(0)f'(1)| = 0 < 1, por lo que tenemos un 2-ciclo atractor.