Some useful formulas

1.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$$

4.
$$\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$$

5.
$$\sum_{i=0}^{k} \frac{1}{2^i} = 2$$
 when k tends to infinity.

6.
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1} \quad x \neq 1$$

7. If
$$|x| < 1$$
 then $\lim_{n \to \infty} \sum_{k=0}^n x^k = \frac{1}{1-x}$

8.
$$\sum_{i=0}^{n} ix^{i} = \frac{1}{(1-x)^{2}}$$
 If $|x| < 1$

Harmonic series

9.
$$Hn = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} = \ln n + O(1)$$

10. If T(n) = a T
$$(\frac{n}{b})$$
 + O(n^d) with a> 0 , $b>1$, $d\geq 0$, then

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log_b n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

11.
$$\log(ab) = \log(a) + \log(b)$$

12.
$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

13.
$$\log(a^b) = b \log a$$

14.
$$\log_b(a) = \frac{\ln(a)}{\ln(b)}$$

15.
$$a^{\log_b(n)} = n^{\log_b(a)}$$