ЗАДАНИЯ по теме "ГРАФИКИ ФУНКЦИЙ" с РЕШЕНИЯМИ!!!

1) На рисунках изображены графики функций вида $y = ax^2 + bx + c$. Установите соответствие между знаками коэффициентов а и с и графиками функций.

Коэффициенты:

A)
$$a > 0$$
, $c > 0$

Б)
$$a < 0, c > 0$$

B)
$$a > 0$$
, $c < 0$

Графики:

Решение:

Мы вспоминаем, за что отвечают коэффициенты a и c при построении графиков функции вида $y = ax^2 + bx + c$. Коэффициент а определяет направление ветвей параболы: если a > 0, то ветви направлены вверх, а если а < 0, то ветви направлены вниз.

Таким образом, мы видим, что только у второй параболы ветви направлены вниз, а значит а < 0.

У первой и третьей ветви направлены вверх, то есть а > 0. Далее мы смотрим, на что влияет коэффициент с. Коэффициент с отвечает за ординату точки пересечения параболы с осью Оу, а именно:

если точка пересечения параболы с Оу расположена выше оси Ох, то c > 0, если точка пересечения параболы с O_y расположена *ниже* оси O_x , то c < 0Так, у первой параболы c < 0, у второй и третьей c > 0.

Из всего вышеперечисленного можно найти ответ: 321.

1) Установите соответствие между функциями и их графиками.

Функции:

$$\Phi$$
ункции: A) $y = -3/x$

Б)
$$y = 3/x$$

B)
$$y = 1/(3x)$$

Графики:

Решение: В данной ситуации можно воспользоваться двумя подходами — можно руководствоваться общими соображениями, а можно просто решить задачу подстановкой. Я рекомендую решать задачу общими соображениями, а проверять подстановкой. Общие правила:

- если уравнение гиперболы положительное (то есть не стоит знак -, как во втором и третьем случае), то график функции лежит в первой и третьей координатной четверти
- если перед уравнением гиперболы стоит знак (как в первом случае), то график лежит во второй и четвертой четвертях

Таким образом можно сразу определить, что первое уравнение соответствует графику под номером 2. Второе правило, которым я пользуюсь, звучит так:

- чем больше число в знаменателе гиперболы (рядом с х), тем сильнее гипербола жмется к осям координатной плоскости
- и наоборот:
- чем больше число в числителе уравнения гиперболы, тем слабее и медленнее график функции прижимается к осям

Ответ: 231.

2) Установите соответствие между функциями и их графиками. Функции:

A)
$$y = 3x$$

Б)
$$y = -3x$$

B)
$$y = (1/3)x$$

Графики:

Решение: Функция представляет собой линейную зависимость, а именно уравнение первого порядка вида y = kx + b

График данной функции зависит от k и b.

- если k < 0, то функция убывает, то есть линия идет сверху вниз, как на третьем рисунке
- если k > 0, то функция возрастает, то есть линия идет снизу вверх, как на первых двух рисунках
- коэффициент b определяет сдвиг по оси y, если b < 0, то прямая пересекает ось y ниже 0 в точке y = b, если b > 0, то выше ноля в точке y = b
- если k > 1, то прямая идет круче, чем обычная y = x (как на первом и втором графике), если k < 1, то на рисунка №3

Следовательно, графику y = 3x соответствует рисунок 2, так как прямая идет снизу вверх и она более крутая, чем кривая на рисунке 1, которому соответствует функция y = (1/3)x.

Графику 3 соответствует функция y = -3x так как k = -3 < 0, и график идет сверху вниз.

Ответ: 231.

1) Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов a,b и c.

- 1) $y = x^2 2x$;
- 2) $y = -2x^2 + x + 3$;
- 3) $y = -3x^2 x 1$;
- 4) $y = -2.7x^2 2x$.

Решение.

По изображенному графику делаем следующие выводы о коэффициентах а, b и с:

- a < 0, так как ветви параболы направлены вниз;
- $b \neq 0$, так как вершина параболы не лежит на оси OY;
- c = 0, так как парабола пересекает ось OY в точке (0; 0).

Всем этим условиям удовлетворяет только функция $y = -2.7x^2 - 2x$. Ответ: 4.

1) По графику функции $y = ax^2 + bx + c$ определите знаки коэффициентов a, b и c:

Решение.

- а) Ветви параболы направлены вверх, поэтому a>0. Парабола пересекает ось ординат в нижней полуплоскости, поэтому c<0. Чтобы узнать знак коэффициента b воспользуемся формулой для нахождения абсциссы вершины параболы: $m=-\frac{b}{2a}$. По графику видно, что m<0, и мы определим, что a>0. Поэтому b>0. б) Аналогично определяем знаки коэффициентов a,b и c: a<0, c>0, b<0.
- 1. Для каждого графика укажите соответствующую ему формулу.

2. Установите соответствие между графиками функций и формулами, которые их задают. ГРАФИКИ

3. Установите соответствие между графиками функций и формулами, которые их задают.

y=ax²+bx+с. Найдите значение b. 4. На рисунке изображен график функции

Найдите значение k по графику $y = \overline{x}$, изображенному на рисунке. 5.

6.

График какой из приведенных ниже функций изображен на рисунке?

$$1) y = \frac{1}{2x}$$

1)
$$y = \frac{1}{2x}$$
 2) $y = -\frac{2}{x}$

3)
$$y = \frac{2}{x}$$

3)
$$y = \frac{2}{x}$$
 4) $y = -\frac{1}{2x}$

Так как график функции расположен в 1 и 3 четвертях, то k > 0. Найдем координаты точки, принадлежащей графику функции. Очевидно, что точка А(1;2) принадлежит функции №3.

Найдите значение c по графику функции $y=ax^2+bx+c$. 7.

Если у нас график квадратичной функции на рисунке пересекает ось ординат, то достаточно вместо х подставить 0. Получим y = c - это и будет искомое значение. Если график на рисунке не пересекает ось ординат то:

1. Найти значение а по графику функции $y=ax^2+bx+c$. Уравнение параболы $y=a^{x^2}+bx+c$ запишем в другом виде: $y=a(x-m)^2+n$, где (m;n)- координаты вершины параболы

Поиск:

б)
$$(x; y) = (-3; 0)$$
 - точка параболы

a)
$$a(-3+4)^2+1=0$$

a = -1

2.Найти значение b по графику функции $y=a^{x^2}+bx+c$. Уравнение параболы $y=ax^2+bx+c$ запишем в другом виде: $y=a(x-m)^2+n$, где (m-n) - вершина параболы/ Формула абсциссы параболы: $m=\frac{-b}{2a}$, b=-2am, b=-2*(-1)*(-4) = -8, **b** = -8.

3. Чтобы найти значение c, подставим в формулу функции $y=ax^2+bx+c$ значение коэффициента a=-1, значение коэффициента b=-8, значение (x; y) = (-3;0) - координат точки параболы.

$$0 = -1*(-3)^2 + (-8)*(-3) + c$$

$$0 = -9 + 24 + c$$
, $c = -15$.

Ответ: -15.

8. Найти значение а по графику функции y=ax²+bx+c

Уравнение параболы $y=a^{x^2}+bx+c$ запишем в другом виде: $y=a(x-m)^2+n$, где (m;n) - координаты вершины параболы.

Поиск:

a)
$$(m;n) = (-4; 1)$$
-вершина

б)
$$(x; y) = (-3; 0)$$
-точка параболы

$$a*(-3+4)^2+1=0$$

a = -1

Ответ: -1.

9. График какой из приведенных ниже функций изображен на рисунке?

1) $y=-\frac{2}{x}$ 2) $y=\frac{2}{x}$; 3) $y=-\frac{1}{2x}$; 4) $y=\frac{1}{2x}$

Поиск:

- 1. К<0 (ветви гиперболы в 2 и 4 четвертях). Тогда рассматриваем 1) и 3) функции;
- Выберем на графике произвольную точку, например: А(1; -2)
- Подставим координаты точки А в 1) и 3) уравнение:

1)-2=-
$$\frac{2}{1}$$
 (верно) 3) -2= - $\frac{1}{2*1}$ (неверно)

Ответ: 1

10. Укажите номер рисунка, на котором изображён график функции $y=x^2-2x+3$.

Поиск:

- 1.а>0 (ветви параболы вверх), тогда рассматриваем 1) и 2) рисунки;
- 2.Выберем на графиках произвольную точку: 1) A(1; 2) 2) B(-1; 2)
- 3.Подставим координаты точек А и В в уравнение:
- 1) $2=1^2-2*1+3$ (верно)
- 2) $2=(-1)^2-2(-1)+3$ (неверно)

Ответ:1.

11. Укажите номер рисунка на котором изображен график функции $y=-\overline{x}$

Поиск:

- 1.k=-2 (ветви гиперболы во 2 и 4 четвертях)
- 2. Рассматриваем 3) и 4) рисунки.
- 3.Выберем на графиках произвольные точки: 3) A(1; -0,5) и 4)B(1; -2)
- 4.Подставим координаты точек А и В в уравнение:
- 3) 1*(-0.5)=-2(неверно)
- 4)1*(-2)=-2(верно)

Ответ: 4.

12. Укажите номер рисунка, на котором изображена гипербола.

Чтобы выполнить задание этой группы необходимо хорошо знать, как выглядят графики каждой функции.

- №1. График гипербола, k>0ветви гиперболы находятся в I и III четвертях.
- №2. Функция квадратичная, график парабола, а<0 ветви направлены вниз.
- №3. Функция линейная, график прямая, k<0 функция убывающая.

№4. График функции $y = \sqrt{x}$

Ответ:1.

22. Укажите номер рисунка - график функции $y = x^2 + 2x - 3$.

Функция $y=x^2+2x-3$ квадратичная, графиком является парабола, a>0 ветви направлены вверх.

Ответ: 4.

23. На рисунке изображены графики функций вида y = kx + b. Установите соответствие между знаками коэффициентов k и b и графиками.

Коэффициенты

- A) k > 0, b < 0:
- Б) k > 0; b > 0;
- B) k < 0; b < 0.

Решение.

Графиком функции вида y = kx + b является прямая, направление которой определяется знаками коэффициентов k и b.

Используя данную таблицу, определяем по графику знаки коэффициентов ${m k}$ и ${m b}$.

Вывод:

A	Б	В
2	3	1

Ответ: 231.

24. Для каждой функции, заданной формулой, укажите ее график.

Формулы

A)
$$y = -3x$$

b)
$$y = -\frac{1}{3}x$$

B)
$$y = \frac{1}{3}x$$

Решение.

Графиком функции вида y = kx является прямая, которая проходит через точку (0;0) направлена в соответствии со знаком коэффициента k.

Используя таблицу, определяем по графику знаки коэффициента ${m k}$.

k < 0 имееют две формулы

A)
$$y = -3x \mu$$

A)
$$y = -3x \text{ H}$$
 B) $y = -\frac{1}{3}x$.

Для определения значения коэффициента выберем произвольную точку графика, например (1;-3) и подставим в формулу общего вида y = kxполучаем -3 = =k*1, k = -3. Значит данному графику соответствует формула **A)** y = -3x

$$k > 0$$
 $k > 0$ имеет формула **B)** у

$$=\frac{1}{3}x$$

k < 0 имееют две формулы **A**)

$$= -\frac{1}{3}x$$
. Для определения

значения коэффициента выберем произвольную точку графика, например (3;-1) и подставим в формулу общего вида y = kx. Получаем -1 = *k**3.

$$k = -\frac{1}{3}$$

. Значит

данному графику соответствует формула \mathbf{F}) $\mathbf{y} =$

$$-\frac{1}{3}x$$

Вывод:

Α	Б	В
1	3	2

Ответ: 132.

25. Установите соответствие между графиками функций и формулами, которые их задают. Формулы

A)
$$y = \frac{1}{q_x}$$

$$(5) y = \frac{9}{x}$$

A)
$$y = \frac{1}{9x}$$
 B) $y = -\frac{9}{x}$

Графики

Решение.

Графиком функции $y = \frac{k}{k}$ — является гипербола, расположение которой определяется знаком коэффициента k.

Используя таблицу, определяем по графику знаки коэффициента $m{k}$

По графикам 3 и 4 определяем, что к >

определяем,	что $\mathbf{k} < 0$, что		
соответствует	формуле В) у		
9			
= - Для оп	ределения		
X			
соответствующего графика			
подставим координаты			
произвольной точки			
каждого графика в формулу.			
Выберем	Выберем		
_	_		

0 , что соответствует формулам \mathbf{A}) $\mathbf{y} =$				
$\frac{1}{9x}$ и Б) $y = \frac{9}{x}$. Для определения				
соответствующего графика подставим				
координаты произвольной точки каждого графика в формулу.				

каждого граф	каждого графика в формулу.				
Выберем	Выберем				
произвольн	произвольну				
ую точку	ю точку				
графика,	графика,				
например х	например				
= 1 и	(3;-3) и				
подставим в	подставим в				
формулу В)	формулу В) у				
9	9				
$y = -\frac{y}{x}$.	$=-\frac{1}{x}$.				
л Получаем -	Получаем – 3				
-	_				
$\frac{9}{1} = -9$. 4TO	$-\frac{-9}{-}$				
1	3 ,				
не	т. е. $-3 = -3$.				
соответств	Вывод: В				
ует	$\rightarrow 2$				
графику.					

Выберем произвольную точку графика, например (3;3) и подставим: в формулу в формулу **Б)** y = Получаем Получаем $3 \neq \frac{1}{27}$. 3=3. Вывод: $\mathbf{F} \rightarrow 3$.

Выберем произвольную точку графика, например х = подставим оставшуюся формулу А) Получаем соответствует графику(при x = 1значение y < 1). Вывод: А $\rightarrow 4$

Анализируя все рассуждения получаем

Α	Б	В
4	3	2

Ответ: 432.

26. Установите соответствие между графиками функций и формулами, которые их задают. Формулы

1)
$$y = x^2 - 2$$
 2) $y = x^2$

2)
$$y = x^2$$

$$3) \quad y = 2x$$

4)
$$y = -\frac{2}{x}$$

Решение.

Графиком является парабола, соответствующая формуле 1) $y = x^2 - 2$ (функция вида $y = x^2$, сдвинута на 2 единицы вниз).

гипербола, соответствующая формуле **4**) $y = -\frac{2}{x}$

Графиком является

Графиком является прямая, соответствующая формуле 3)

Вывод:

Α	Б	В
1	4	3

Ответ: 143.

27. На рисунке изображены функции вида $y = ax^2 + bx + c$. Установите соответствие между графиками и знаками коэффициентов а и с.

Коэффициенты

- 1) a < 0, c > 0,
- 2) a < 0, c < 0,
- 3) a > 0, c < 0,
- 4) a > 0, c > 0.

Решение.

Для определения знака коэффициента а замечаем, что

- а < 0 ветви параболы направлены вниз;
- a > 0 ветви параболы направлены вверх.

Для определения знака коэффициента c находим координату точки пересечения параболы с осью $\mathbf{O}\mathbf{y}$, это значение равно коэффициенту c.

Α	Б	В
4	3	1

Ответ: 431.

28. На рисунке изображены функции вида $y = ax^2 + bx + c$. Для каждого графика укажите соответствующее ему значения коэффициента а и дискриминанта D.

4)
$$a < 0, D < 0$$
.

Решение.

Графиком функции вида $y = ax^2 + bx + c$ является парабола.

При этом возможны следующие случаи:

a > 0

a < 0

2. Парабола не пересекает ось x (т.е. уравнение $ax^2 + bx + c = 0$ не имеет корней, D < 0).

3. Парабола пересекает ось x в одной точке (т.е. уравнение $ax^2 + bx + c$ = имеет один корень, D=0).

Используя таблицу, определяем по графику знаки значения коэффициента а и дискриминанта D.

a > 0, D > 0, Вывод:

Α	Б	В	Γ
1	4	2	3

Ответ: 1423.

29. Установите соответствие между графиками функций и формулами, которые их задают. Графики

Формулы

1)
$$y = 2x^2 + 6x + 3$$

2
$$y = 2x^2 - 6x + 3$$

3)
$$y = -2x^2 - 6x - 3$$

2
$$y = 2x^2 - 6x + 3$$

3) $y = -2x^2 - 6x - 3$
4) $y = -2x^2 + 6x - 3$

Решение.

По графику можно определить, что a < 0, c = -3, HO этому условию соответствует две функции: 3) $y = -2x^2 - 6x - 3$

определить, что a > 0, c = 3, но этому условию соответствует соответствует две две функции: 1) $y = 2x^2 + 6x + 3$ 2) $y = 2x^2 - 6x + 3$ Для дальнейшего определения найдём абсциссу вершины параболы

По графику можно

По графику можно определить, что , a < 0, c = -3, но этому условию функции : 3) $y = -2x^2 - 6x - 3$ 4) $y = -2x^2 + 6x - 3$ Для дальнейшего определения найдём абсциссу вершины параболы.

параболы

4) $y = -2x^2 + 6x - 3$

определения найдём

Для дальнейшего

абсциссу вершины

 $x_{0} = \frac{-b}{2a}$ **2)** y=2x²- **3)**y = -2x²-6x -3

3)y =
$$-2x^2$$
 4)y = $-2x^2$ 1) y = $2x^2$ + $6x - 3$ $6x + 3$ $-(-6)$ x_0 = -6

$$\begin{array}{c} -(-6) \\ \hline *(-2) \end{array} \begin{array}{c} +6x - 3 \\ x_0 = \\ \hline -6 \\ \hline 2 *(-2) \end{array}$$

$$6x + 3 x_0 = \frac{-6}{2 \cdot 2} = -$$

$$x_0 = -(-6)$$

$$4)y = -2x^2 + 6x - 3$$

$$=$$
 - $2*(-2)$ $=$ $2*(-2)$ $=$ 1,5 **Вывод:** $=$ 1,5

3

$$\mathbf{x_0} = \mathbf{1,5}$$
 $\mathbf{x_0} = \mathbf{1,5}$
- не
соответ

ствует графику.

$$x_0 = \frac{-6}{2*2} = -1,5$$

Вывод:

$$x_0 = \frac{-(-6)}{2*2} =$$

- не

соответ

ствует графику.

соответствуе

т графику.

Вывод: $\mathbf{B} \to 4$

Анализируя все рассуждения, получаем:

Α	Б	В
3	1	4

Ответ: 314.

30. На рисунке изображены графики функций вида $y = ax^2 + bx + c$. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.

Утверждения

- А) Функция возрастает на промежутке
- Б) Функция убывает на промежутке

Промежутки

- 1) [0;3]
- [-1;-1]
- 4) [1;4]

Решение.

1)	[0;3]	2)	[-1;1]	3)	[2;4]	4)	[1;4]	

Анализируя все рассуждения получаем

А Б 2 3

Ответ: 23.

31. На рисунке изображён график квадратичной функции y = f(x)

Какие из следующих утверждений о данной функции являются верными? Запишите их номера.

- 1) f(x) > 0 npu x > 2.
- 2) Функция убывает на промежутке $[2;+\infty)$
- 3) f(0) < f(5)

Решение.

Ответ: 2.