Нейронные сети

Знакомимся. Базовый матан.

Алексей Воропаев

Преподаватели

Алексей Воропаев

Дмитрий Соловьев

Андрей Мурашев

Денис Клюкин

Олег Шляжко

Контакты

Блог на портале

https://atom.mail.ru/blog/view/182/https://track.mail.ru/blog/view/202/

Группа в Telegram

https://goo.gl/5eXJ6x

Алексей Воропаев voropaev@corp.mail.ru

О курсе

- 1. Объяснить базовые концепции нейронных сетей
- 2. Показать применимость к различным задачам
- 3. Научить приемам реализации
- 4. Подготовить к прохождению продвинутых курсов

Меню

- 11 лекций
- 11 домашних заданий
 - 2 недели дедлайн (кроме первых двух)
 - Потеря половины баллов после дедлайна.
- Курсовой проект с публичной защитой
- Контрольная в начале каждой лекции

Баллы

- 11 баллов за ДЗ
- 5 баллов за курсовой проект

- 5: >= 14 баллов
- 4: >= 10 баллов
- 3: >= 7 баллов

Линейные модели

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

$$x = f(x)$$

Original photo

Reference photo

Result

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

VAE. DCGAN.

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

VAE. DCGAN.

Рекуррентные нейронные сети

VS

Concatenative

WaveNet

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

VAE. DCGAN.

Рекуррентные нейронные сети

Обучение с подкреплением

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

VAE. DCGAN.

Рекуррентные нейронные сети

Обучение с подкреплением

Нейронные сети для обработки естественного языка

Линейные модели

Персептрон и алгоритм обратного распространения ошибки

Сверточные нейронные сети

Нейронные сети для анализа изображений

Продвинутые методы оптимизации

Автоэнкодеры. Генерация текстур & перенос стилей.

VAE. DCGAN.

Рекуррентные нейронные сети

Обучение с подкреплением

Нейронные сети для обработки естественного языка

End-to-end speech recognition

1943 Мак-Каллок & Питтс

«Логическое исчисление идей, относящихся к нервной активности»

Уоррен Мак-Каллок (нейропсихолог, нейрофизиолог)

Уолтер Питтс

(нейролингвистик, логик и математик)

1949 Обучение Хебба

«Организация поведения»

Дональд Олдинг Хебб (физиолог и нейропсихолог)

1957-1960 Персептрон Розенблатта

Фрэнк Розенблатт

«Марк-1» (MARK 1)

1958 Хьюбел & Визель

1981 Nobel Prize

Торстен Визель Дэвид Хьюбел

1980 Neocognitron

Kunihiko Fukushima

1980 Neocognitron

1982 Backpropagation

Paul Werbos

1998 LeNet5

Yann LeCun's

CUDA & GPU

Спасибо геймерам!

Продолжая играть в игры, вы двигаете ИИ! Спасибо Вам!

2010 ImageNet

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

IM ... GENET

2012 AlexNet

Krizhevsky et al. 2012

2014 VGG

Проблема глубины

Google Inception

ResNet

U-Net image colorization

U-Net image colorization

Deep Dreams

Синтез текстур

Перенос стилей

Перенос стилей

Image Super Resolution

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, 2016

Super Resolution

Face generation

Progressive Growing of GANs for Improved Quality, Stability, and Variation, Oct 2017

Word2Vec

Softmax classifier w_1 w_2 w_3 ... w_k Hidden layer $\sum g(\text{embeddings})$ Projection layer the cat sits on the mat context/history h target w_t

Обучаем сеть предсказывать какое слово нужно использовать в контексте окружения

В результате получаем векторное представление слова

В результате обучения слова, используемые в одном контексте, имеет похожие представления

Переводчик

Image2Text

"man in black shirt is playing guitar."

"girl in pink dress is jumping in air."

Обучение с подкреплением

Alpha Go – 2016 (DeepMind)

- 2016 год обыгрывает легендарного Lee Sedol в Сеуле со счетом 4:1
- Обучались на играх людей
- Затем сеть играла сама с собой

Итоги

NVIDIA Corporation

NASDAQ: NVDA - Nov 2, 11:19 AM EDT

205.81 USD **1.39** (0.67%)

Линейные модели

ОСТАВЬ ОТЗЫВ

