Метод стохастической сетки для оценки стоимости опциона американского типа

Моторин Павел Константинович, гр.422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к. ф.-м. н. Каштанов Ю.Н.

Рецензент: к. ф.-м. н. Гормин А.А.

Санкт-Петербург 2017

Введение

Целью данной работы является применение метода стохастической сетки для нахождения оптимальной цены азиатского опциона американского типа.

Азиатский опцион — опцион, в котором платежная функция зависит от средней цены базового актива за некоторый период.

Опцион называется опционом американского типа, если его можно исполнить в любой момент до даты исполнения.

Данная задача может решаться как задача оптимальной остановки. Авторы метода стохастической сетки(Марк Броуди и Пол Глассерман) отмечали, что применение метода стохастической сетки представляет сложность, так как переходные плотности имеют сингулярность в виде δ -функции.

Процесс цен

Предположим, что процесс цен базового актива выражается следующим образом:

$$S_t = S_0 e^{x_t},$$

где x_t — диффузионный процесс вида

$$dx_s = a(x_s)dw_s + b(x_s)ds.$$

Данная модель в финансовой математике носит название модель локальной волатильности.

Функция a(x) называется локальной волатильностью,

$$b(x) = -\frac{1}{2}a^2(x) + r,$$

где r — текущая процентная ставка. Данный выбор b(x) обеспечивает безарбитражность выбранной модели.

Постановка задачи

Рассмотрим случай, когда цены зависят от среднего значения за некоторый период:

• Геометрическое среднее

$$\overline{S}_t = S_0 e^{\frac{1}{t} \int_0^t x_s ds}$$

с платежной функцией $f_t = \left(\overline{S}_t - K\right)^+,$

• Арифметическое среднее

$$\hat{S}_t = S_0 \frac{1}{t} \int_0^t e^{x_s} ds$$

с платежной функцией $f_t = \left(\hat{S}_t - K \right)^+$.

Задача состоит в оценке значения:

$$\mathsf{C} = \sup_{\tau \le T} \mathsf{E}(e^{-r\tau} f_\tau),$$

где au — произвольный марковский момент.

Дискретизация

Обозначим:

- $\Delta = T/N$ шаг дискретизации,
- $t_n = n\Delta$,
- ullet $x_n = (x_n^1, \dots, x_n^d)$ марковская цепь в \mathbb{R}^d , $n \leq N$, аппроксимирующая процесс x_t $(x_n = x_{t_n})$,
- ullet вероятности перехода $p(\cdot,\cdot).$

Рассматриваем случай, когда $f_n=f_n(x_n)$. Задача состоит в оценке значения $\mathsf{C}=\sup_{\tau\leq N}\mathbb{E} f_{\tau}$. Значение C можно представить как $\mathsf{C}=Y_0$, где Y_n выражается с помощью обратной рекурсии:

$$Y_N(x) = f_N(x), \qquad Y_n(x) = \max(f_n(x), \mathbb{E}_{n,x} Y_{n+1}(x_{n+1})).$$

Дискретизация

Рассмотрим дискретизацию задачи

$$\overline{S}_t = S_0 e^{\frac{1}{t} \int_0^t x_s ds}$$

в случае, когда a(x) = const.

Обозначим:

- ullet $x_n=\xi_1+\ldots+\xi_n+bt_n$, где $\xi_i\sim \mathrm{N}(0,a^2\Delta)$ и независимы,
- $y_n = \sum_{1}^n x_i \Delta$.

Чтобы платежные функции f_n и f_{t_n} имели одинаковые распределения, введем коэффициенты

$$c_n = \sqrt{(1 + 0.5/n)(1 + 1/n)}, \quad d_n = n\Delta^2 b/2$$

и положим

$$f_n = (y_n - d_n)/(t_n c_n).$$

Детерминированная сетка

Рассмотрим модельный пример(при d=1) решения задачи:

$$\overline{S}_t = S_0 e^{\frac{1}{t} \int_0^t x_s ds}.$$

Введем дискретизацию по пространству: $x_i=ih\sqrt{\Delta},\ i=-N,\ldots,N,$ $S_i=S_0e^{x_i}.$

Если переходы возможны только в близлежащие (к точке S) m узлов сетки и $p(i,j)=p(S_i,S_j)$ отличны от нуля только при j=i-1,i,i+1, т.е. m=3, то такая сетка называется **триномиальным** деревом

Дискретные аналоги моментных условий для исходного процесса:

$$\sum_{j} p(S, S_j) S_j = S e^{r\Delta},$$

$$\sum_{j} p(S, S_j) S_j^2 = S^2 e^{2r + a^2(S)\Delta}.$$

Детерминированная сетка

Для двумерного процесса (x_t,y_t) , можно построить двумерную сетку с узлами (x_i,y_j) .

Переходы:

$$(x_i,y_j) \longrightarrow \left\{ egin{array}{ll} (x_{i+1},y_j+x_{i+1}), & ext{c вероятностью } p_{i,i+1} \ (x_i,y_j+x_i), & ext{c вероятностью } p_{i,i} \ (x_{i-1},y_j+x_{i-1}), & ext{c вероятностью } p_{i,i-1} \end{array}
ight.$$

Затем вычисляем по формуле:

$$Y_N(x_i, y_j) = f_N(y_j), \ Y_n(x_i, y_j) = \max(f_n(y_j), \sum_k p_{i,k} Y_{n+1}(x_k, y_j + x_k)).$$

Метод стохастической сетки

Множество случайных точек $\overline{x}_n = x_{n,i}_{i=1}^M$ строится как марковская цепь с вероятностями перехода:

$$\overline{q}_n(\overline{x}, d\overline{y}) = q_{n,1}(\overline{x}, dy_1) \dots q_{n,M}(\overline{x}, dy_M).$$

Рекурсивно построим случайную последовательность $\hat{Y}_n(x)$: сначала положим $\hat{Y}_N(x) = f_N(x)$, затем определим

$$\hat{Y}_n(i) = \max\left(f_n(i), \frac{\sum_j \rho_{n+1}(i,j)\hat{Y}_{n+1}(j)}{\sum_j \rho_{n+1}(i,j)}\right),$$

где $ho_{n,j}(\overline{x},x,y)=p_n(x,dy)/q_{n,j}(\overline{x},dy).$

Случай геометрического среднего

Дискретизация диффузионного процесса:

- $\Delta = T/N$,
- $t_n = n\Delta$,
- $\xi_n \in N(0,1), n = 1, 2 \dots, N$.

Положим:

$$x_{2n+1} = x_{2n} + a(x_{2n})\xi_{2n+1}\sqrt{\Delta} + b(x_{2n})\Delta,$$

$$x_{2n+2} = x_{2n+1} + a(x_{2n})\xi_{2n+2}\sqrt{\Delta} + b(x_{2n})\Delta.$$

Строим двумерную сетку с узлами $z_n = (x_{2n}, y_{2n}).$

Случай геометрического среднего

Переходные плотности

$$p(z, z'') = \varphi(x + 2b(x)\Delta - x'', 2a^2(x)\Delta) \times \varphi(y'' - y - x\Delta/2 - 3x''\Delta/2, a^2(x)\Delta^3/2).$$

Маргинальные вероятности перехода с плотностью q за n шагов:

$$q^{(n)}(z) = q^{(n)}(z_0, z) = \varphi(x, A^2 t_{2n}) \varphi(y - a_{2n} x \Delta, A^2 s_{2n} \Delta^3),$$

где

- $a_{2n+1} = a_{2n} \frac{2n}{2n+1} + 1$,
- $\bullet \ s_{2n+1} = s_{2n} + a_{2n}^2 \frac{2n}{2n+1},$
- $\bullet \ \max_x |a(x)| \le A,$
- ullet φ плотность нормального распределения.

По аналогичным формулам можно посчитать коэффициенты $a_{2n+2}, s_{2n+2}.$

Результаты

Процесс цен

$$S_t = S_0 \exp(aw_t + (r - 0.5a^2)t),$$

с параметрами a = 0.2, $r = 0.5a^2$, $S_0 = 100$, T = 1.

Задача

$$\mathsf{C} = \sup_{\tau \le T} \mathsf{E}(e^{-r\tau} f_\tau),$$

где
$$f_t = (S_t - K)^+$$
, $K = 100$.

В результате работы программы, реализующей детерминированную сетку, при N=100 получено значение $\mathsf{C}=5.49587.$

В результате работы программы, реализующей метод стохастической сетки, при $M=2000,\ N=24$ справедливая цена опциона равна $\mathsf{C}=5.42621\pm0.0836014$. В качестве оценки для a берется A=0.3.

Итоги

В результате:

- Изучены теоретические подходы для вычисления справедливой цены азиатского опциона американского типа.
- Получены переходные плотности для метода стохастической сетки в случае платежной функции геометрического среднего.
- Реализованы на C++ алгоритмы вычисления справедливой цены через детерминированную и стохастическую сетку.

Дальнейшие цели:

- Сравнение трудоемкости метода весов максимальной энтропии с другими методами вычисления справедливой цены азиатского опциона американского типа.
- Рассмотреть случай платежной функции арифметического среднего.

