元素及其化合物·六·「氯 $\left(\mathrm{Cl}\right)$ 与卤族元素」

1. 氯 Cl

1.1 氯气

1.1.1 物理性质

黄绿色 气体,有刺激性气味,可溶于水,密度大于空气,沸点比气体高,易液化,有毒

闻氯气气味的方法: 抽去盛氯气的集气瓶口处的毛玻璃片, 用手掌在瓶口上方轻轻扇动, 使少量氯 气飘进鼻孔

1.1.2 化学性质

1. 氯气与氢气反应: $H_2 + Cl_2 \stackrel{\text{点燃}}{=\!=\!=\!=} 2 \, HCl$

氢气在氯气中安静地燃烧,发出苍白色的火焰,瓶口出现白雾 \mathbf{HCl} 时采用点燃法,工业浓 \mathbf{HCl} 常显黄色,是因为含 $\mathbf{Fe^{3+}}$

- 2. 氯气与金属单质反应
 - 1. $2 \operatorname{Fe} + 3 \operatorname{Cl}_2 \stackrel{$ 点燃 $}{=\!\!\!=\!\!\!=} 2 \operatorname{FeCl}_3$

产生黄色火焰, 棕褐色烟雾

与反应物的量无关 ($Fe^{3+} \xrightarrow{Fe} Fe^{2+}$ 只发生在氯化铁溶液中)

氧化性从高到低排列为: $Cl_2 > O_2 > S$

- 1. Cl₂ 与 Fe 反应生成 FeCl₃
- 2. O_2 与 Fe 反应可以生成 Fe_3O_4
- 3. S 与 Fe 反应生成 FeS
- 2. $Cu + Cl_2 \stackrel{\text{f.m.}}{=\!\!=\!\!=} CuCl_2$

产生棕黄色固体

3. $2 \operatorname{Na} + \operatorname{Cl}_2 \stackrel{\text{点燃}}{=\!\!\!=\!\!\!=} 2 \operatorname{NaCl}$

3. 氯气与水反应: $Cl_2 + H_2O \Longrightarrow HCl + HClO$

注意:该反应为可逆反应,且由于HClO为弱酸,离子反应中不可拆

4. 氯气与碱反应

1. Cl_2 与常温下的 NaOH 溶液

$$2\,NaOH+Cl_2\ =\ NaCl+NaClO+H_2O$$

应用:

- 1. 实验室吸收多余的 Cl_2
- 2. 工业制漂白液、84 消毒液,有效成分为 NaClO
- 2. Cl_2 与冷的石灰乳 $Ca(OH)_2$

$$2 \, \text{Ca}(\text{OH})_2 + 2 \, \text{Cl}_2 \ = \ \text{CaCl}_2 + \text{Ca}(\text{ClO})_2 + 2 \, \text{H}_2 \text{O}$$

如果书写离子方程式, $Ca(OH)_2$ 不要拆开,其是以悬浊液存在的

 $\mathrm{Ca}(\mathrm{ClO})_2$ 是漂白粉、漂白精的有效成分

起效: $Ca(ClO)_2 + CO_2 + H_2O = CaCO_3 + 2HClO$

失效: 2 HClO ^{光照} 2 HCl + O₂↑

5. 氯气与还原性无机化合物反应

1. $Cl_2 + 2 FeCl_2 = 2 FeCl_3$ (除去 $FeCl_3$ 中的 $FeCl_2$)

2. $Cl_2 + H_2S = 2HCl + S$ (氧化性: $Cl_2 > S$)

3. $\mathrm{Cl}_2 + 2\,\mathrm{NaBr} = 2\,\mathrm{NaCl} + \mathrm{Br}_2$ (用于海水提取溴)

4. $\mathrm{Cl}_2 + 2\,\mathrm{KI} \,=\, 2\,\mathrm{KCl} + \mathrm{I}_2$ (用于用 $\mathrm{KI} -\,$ 淀粉试纸检验 Cl_2)

5. $Cl_2 + SO_2 + 2H_2O = 2HCl + H_2SO_4$ (失去漂白作用)

6. $3 \, \mathrm{Cl}_2 + 8 \, \mathrm{NH}_3 \, = \, 6 \, \mathrm{NH}_4 \mathrm{Cl} + \mathrm{N}_2 \, \uparrow \,$ (用浓氨水检查氯气管道是否漏气)

1.1.3 实验室制备

1. 原理: $MnO_2 + 4HCl(液) \stackrel{\Delta}{=\!=\!=} MnCl_2 + Cl_2 \uparrow + H_2O$ (不浓不热不反应)

2. 装置:

1. 分液漏斗: 固液加热生成气体所需, 用于调节浓盐酸滴入速率

2. 饱和食盐水:降低 Cl_2 对水的溶解性,减少损耗($Cl_2+H_2O \iff H^++Cl^-+HClO$, 氯化钠促进平衡逆移);用于除 HCl 气体(氯化氢极易溶于水)

3. 浓硫酸: 用于除 H_2O 蒸汽

4. 向上排空气法: 氯气密度比空气大(或排饱和食盐水法)

5. NaOH 水溶液: $2NaOH + Cl_2 = NaCl + NaClO + H_2O$

3. 验满:将湿润的 KI — 淀粉试纸靠近瓶口,若试纸立即变蓝,则证明氯气已经收集满

其他制备方法:

1. 直接将酸性高锰酸钾溶液加入盐酸中制备,无需加热,无需浓盐酸 反应原理: $2\,\mathrm{KMnO_4}+16\,\mathrm{HCl}\,=\,2\,\mathrm{KCl}+2\,\mathrm{MnCl_2}+5\,\mathrm{Cl_2}\uparrow\,+8\,\mathrm{H_2O}$

2. $\mathrm{KClO}_3 + 6\,\mathrm{HCl} = \mathrm{KCl} + 3\,\mathrm{Cl}_2 \uparrow + 3\,\mathrm{H}_2\mathrm{O}$

3.84 消毒液与洁厕灵混用: $m ClO^- + Cl^- + 2\,H^+ \ = \ Cl_2 \uparrow \ + H_2O$

1.2 氯水

1.2.1 新制氯水

1. 新制氯水的成分(由大到小)

• 分子: H₂O、Cl₂、HClO

• 离子: H⁺、Cl⁻、ClO⁻、OH⁻

2. 性质

成分	表现性质	实例
Cl_2	黄绿色 强氧化性	$ \begin{array}{c} \overset{-2}{(S)} H_2 S, \ HS^-, \ S^{2-} \overset{Cl_2}{\longrightarrow} S \downarrow \\ (S) SO_2, \ H_2 SO_3, \ HSO_3^-, \ SO_3^{2-} \overset{Cl_2}{\longrightarrow} SO_4^{2-} \downarrow \\ SO_2 + Cl_2 + 2 H_2 O = H_2 SO_4 + 2 HCl \\ 2 I^- + Cl_2 = I_2 + 2 Cl^- 2 Br^- + Cl_2 = Br_2 + 2 Cl^- \\ 2 Fe^{2+} + Cl_2 = 2 Fe^{3+} + 2 Cl^- \end{array} $
H^{+}	弱酸性	与镁反应放出 $ m H_2$ 与 $ m CaCO_3$ 反应放出 $ m CO_2$
HClO	弱酸性 强氧化性	1. 漂白、杀菌、消毒 2. Cl_2 使湿润的有色布条褪色,不能使干燥的有色布条褪色,说明 Cl_2 没有漂白性,而是 HClO 起漂白作用 3. 使紫色石蕊试剂先变红(H^+ 酸性作用),后褪色(HClO 氧化性作用)
Cl ⁻	沉淀反应	$\mathrm{Ag^{+}} + \mathrm{Cl^{-}} = \mathrm{AgCl} \downarrow$

Table 1-1

1.2.2 旧置氯水

1. 反应方程式: 2 HClO ^{光照} 2 HCl + O₂ ↑

2. 成分: HCl 水溶液

3. 性质:有酸性(比新制氯水强),无氧化性、无漂白性

4. 实验室中氯水需 现用现配,且避光、密封保存在 棕色试剂瓶 中

液氯、新制氯水、旧置氯水的比较

	液氯	新制氯水	久置氯水
分类	纯净物	混合物	混合物
颜色	黄绿色	浅黄绿色	无色
性质	氧化性	酸性、氧化性、漂白性	酸性
粒子种类	Cl_2	Cl_2 , HClO , $\mathrm{H}_2\mathrm{O}$, H^+ , Cl^- , ClO^- , OH^-	$\mathrm{H}_2\mathrm{O}$, H^+ , Cl^- , OH^-

Table 1-2

1.3 氯离子的检验

借助 AgCl 沉淀来检验氯离子的存在,但需要排除碳酸根离子的干扰

- 1. 实验过程:在三支试管中分别加入 2~3mL 稀盐酸、NaCl 溶液、 Na_2CO_3 溶液,然后各滴入几滴 $AgNO_3$ 溶液,观察现象。再分别加入少量稀硝酸,观察现象
- 2. 实验现象:

物质	加入 $AgNO_3$ 溶 液后	加入稀硝酸后	解释或离子方程式
稀盐酸	白色沉淀(AgCl)	不溶解	$\mathrm{Ag^{+} + Cl^{-}} = \mathrm{AgCl} \downarrow$
NaCl 溶液	白色沉淀(AgCl)	不溶解	$\mathrm{Ag^{+} + Cl^{-}} = \mathrm{AgCl} \downarrow$
Na ₂ CO ₃ 溶液	白色沉淀($ m Ag_2CO_3$)	溶解并产生气泡	$egin{aligned} 2\mathrm{Ag^+} + \mathrm{CO_3^{2-}} &= \mathrm{Ag_2CO_3} \downarrow \ \mathrm{Ag_2CO_3} + 2\mathrm{H^+} &= 2\mathrm{Ag^+} + \mathrm{H_2O} + \mathrm{CO_2} \uparrow \end{aligned}$

Table 1-3

3. 结论:

待测液
$$\xrightarrow{\mathrm{HNO_3}}$$
 (排除 $\mathrm{CO_3^{2-}}$ 的干扰) $\xrightarrow{\mathrm{AgNO_3}}$ 白色沉淀 AgCl

2. 卤族元素

2.1 相似性

- 1. 都能与大多数金属反应: $Fe \xrightarrow{F_2/Cl_2/Br_2} Fe^{3+}; Fe \xrightarrow{I_2} Fe^{2+}$
- 2. 都能与 H_2 反应: $H_2 + X_2 = 2 HX$
- 3. 都能与水反应: $H_2O+Cl_2/Br_2/I_2 \Longrightarrow HX+HXO; 2\,H_2O+2\,F_2 \Longrightarrow 4\,HF+O_2$
- 4. 都 能 与 碱 液 反 应 : $2 \, \mathrm{NaOH} + \mathrm{Cl_2/Br_2/I_2} = \mathrm{NaX} + \mathrm{NaXO} + \mathrm{H_2O}; 2 \, \mathrm{F_2} + 4 \, \mathrm{NaOH} = 4 \, \mathrm{NaF} + 2 \, \mathrm{H_2O} + \mathrm{O_2}$

2.2 递变性

颜色: $F_2($ 浅黄绿色) $\longrightarrow Cl_2($ 黄绿色) $\longrightarrow Br_2($ 深红棕色) $\longrightarrow I_2($ 紫黑色) 颜色加深

熔沸点: F_2 (气体) $\longrightarrow Cl_2$ (气体) $\longrightarrow Br_2$ (液体) $\longrightarrow I_2$ (固体) 逐渐升高

密度: $F_2 \longrightarrow Cl_2 \longrightarrow Br_2 \longrightarrow I_2$ 逐渐升高

水溶性: $F_2(反应) \longrightarrow Cl_2(溶解) \longrightarrow Br_2(溶解) \longrightarrow I_2(微溶)$ 逐渐降低

氧化性: $\frac{F_2 \times Cl_2 \times Br_2 \times I_2}{5$ 氢化合由易到难 逐渐减小

比较氧化性的方法:

①与氢气化合难易程度;②氢化物的稳定性;③最高价氧化物对应水化物的酸性;④置换反应

2.3 特殊性

1. 氟 F₂

- 1. 氟没有正价,是非金属性最强, F^- 的还原性最弱
- $2. F_2$ 与 H_2O 反应生成 HF 和 O_2 , F_2 与 H_2 在暗处即可爆炸反应
- 3. HF 是弱酸,能腐蚀玻璃,应保存在铅制器皿或塑料瓶中;有毒;在卤素氢化物中,HF 的沸点最高(分子间存在氢键)

2. 溴 Br₂

- 1. Br_2 是深红棕色液体,易挥发
- $2. Br_2$ 易溶于有机溶剂
- 3. 盛放液态溴时,试剂瓶需加水封,保存时不能用橡胶塞封口

3. 碘 I₂

- $1. I_2$ 遇淀粉变蓝色
- 2. I_2 加热时易升华(用于分离提纯 I_2)
- \mathbf{I}_2 易溶于有机溶剂
- 4. 食盐中添加 KIO_3 可预防和治疗甲状腺肿大

2.4 卤素离子的检验

1. AgNO₃ 溶液——沉淀法

未知液
$$\xrightarrow{\text{$\stackrel{\text{$$}}{\rightarrow}$}}$$
 $\xrightarrow{\text{$AgNO_3$}\tilde{\alpha}\tilde{\alpha}}$ \begin{cases} 白色沉淀 $& \text{$Cl^-$}$}$ 淡黄色沉淀 $& \text{$Br^-$}$}$ 黄色沉淀 $& \text{$I^-$} \end{cases}$

2. 置换——萃取法

未知液
$$\xrightarrow[{\it k\bar{s}}]{\it ideal}$$
 $\xrightarrow[{\it k\bar{s}}]{\it ideal}$ $\xrightarrow[{\it k\bar{s}}]{\it ideal}$ $\xrightarrow[{\it k\bar{s}}]{\it ideal}$ 有机层 $\left\{ \begin{array}{ll} {\it ideal} {\it ideal}$

3. 氧化——淀粉法检验 I^-

未知液(无色)
$$\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$$
 $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$ $\xrightarrow[\mathrm{K\ddot{s}}]{\mathrm{Lag}}$

2.5 海水资源的开发和利用

- 1. 海水淡化:蒸馏法、电渗析法、离子交换法
- 2. 海水制盐: 氯碱工业

$$2 \, \mathrm{NaCl} + 2 \, \mathrm{H}_2\mathrm{O} \stackrel{\mathrm{eff}}{=\!\!\!=\!\!\!=} 2 \, \mathrm{NaOH} + \mathrm{H}_2 \uparrow + \mathrm{Cl}_2 \uparrow$$
 海水 \longrightarrow 粗盐 $\stackrel{\mathrm{h}_{\mathrm{I\!\!P}}}{\longrightarrow}$ 饱和食盐水 $\stackrel{\mathrm{eff}}{\longrightarrow}$ { 阴极产物 $$ Cl2 阳极产物 $$ H2、NaOH

3. 海水提溴

Figure 2-1

4. 海水提碘

Figure 2-2