Univerzitet u Beogradu Matematički fakultet

MASTER RAD

Predviđanje funkcija proteina metodama binarne klasifikacije

Autor: Anja Bukurov Mentor: dr Jovana Kovačević

ČLANOVI KOMSIJE:

dr Jovana Kovačević prof. dr Gordana Pavlović-Lažetić dr Mladen Nikolić

Beograd, 2019

UNIVERZITET U BEOGRADU

Sažetak

Matematički fakultet Katedra za Računarstvo i informatiku

Informatičar

Predviđanje funkcija proteina metodama binarne klasifikacije ${\rm by}~{\rm Anja}~{\rm Bukurov}$

. . .

Zahvalnice

Sadržaj

Sa	ažeta	k			ii
$\mathbf{Z}_{\mathbf{z}}$	ahval	nice			1
1	Uvo	od			1
2	Bio	loški p	pojmovi		;
	2.1	Protei	e <mark>ini</mark>		,
		2.1.1	Aminokiseline		•
		2.1.2	Struktura proteina		
			Funkcija proteina		•

Spisak slika

Spisak tabela

2.1	Prikaz	aminokiselina	sa oz	znakama i	i sim b	$_{ m oolima}$															4
-----	--------	---------------	-------	-----------	---------	----------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Glava 1

Uvod

Glava 2

Biološki pojmovi

U ovom poglavlju buće opisani biološki pojmovi neophodni za razumevanje ovog rada.

2.1 Proteini

Proteini su veliki, kompleksni molekuli koji igraju mnoge kritične uloge u organizmu. Rade najveći deo posla u ćelijama i neophodni su za strukturu, funkcionisanje i regulisanje tkiva i organa.

Proteini su izgrađeni od stotina i hiljada manjih jedinica koje nazivamo aminokiseline, vezane u jednom dugačkom lansu. Postoji 20 različitih aminokiselina koje se mogu kombinovati da bi se napravio protein. Sekvenca aminokiselina svakog proteina je jedinstvena trodimenziona struktura i određuje njegovu funkciju.

Proteini su makromolekuli sa komplikovanim trodimenzionalnim strukturama, ali u osnovi su linearni lanci aminokiselina koji čine njihovu primarni strukuturu.

2.1.1 Aminokiseline

Postoji 20 osnovnih aminokiselina koje se pojavljuju u proteinima (tabela ??).

2.1.2 Struktura proteina

Kao što je već pomenuto, struktura proteina je veoma važna za nejgovu funkciju. Struktura proteina posmatra se na 4 nivoa: primarna, sekundarna, tercijerna i kvaterna struktura.

Priamrna struktura Sekevenca aminokiselina povezane u polipeptidni lanac čine primarnu strukturu proteina. Sekvenca proteina zapisana je u genetskom kodu gena koji dešifruje protein (ili deo proteina). Promena u genetskoj sekvenci može dovesti do promene sekvence aminokiselina u proteinu. Promena samo jedne aminokiseline u sekvenci može uticati na ukupnu strukturu i funkciju proteina.

Sekundarna struktura Sledeći nivo strukture proteina odnosi se na oblik proteina.

2.1.3 Funkcija proteina

Tabela 2.1: Prikaz aminokiselina sa oznakama i simbolima

Aminokiselina	Oznaka	Simbol
Alanine	ALA	A
Arginine	\overline{ARG}	R
Asparagine	ASN	N
Aspartic acid	ASP	D
Cysteine	CYS	С
Glutamine	GLN	Q
Glutami acidc	GLU	\mathbf{E}
Glycine	GLYc	G
Histidine	$_{ m HISc}$	Н
Isoleucine	$_{ m ILEc}$	I
Leucine	LEUc	${ m L}$
Lysine	LYSc	K
Methionine	MET	Μ
Phenylalanine	$_{\mathrm{PHE}}$	F
Proline	PRO	Р
Serine	SER	\mathbf{S}
Threonine	THR	Τ
Tryptophan	TRP	W
Tyrosine	TYR	Y
Valine	VAL	V