Nama: Jihan Febriharvianti wirawan

NIM : G64011211037

Kelas : Pararel 1

4.38 If E[x] = 1 and var(x) = 5, find

(a) $E[(2+x)^2]$;

(b) Var (4+3X).

Jawab:

(b)
$$Var(4+3x) = 9 Var(x)$$

5.7) The density function of x is given by
$$f(x) = \begin{cases} 1 + b \times 2 & 0 \le x \le 1 \\ f(x) = 0 & \text{otherwise} \end{cases}$$
If $F[x] = \frac{3}{5}$, find a and b?

$$\int_{0}^{3} \int_{0}^{4} f(x) dx = \int_{0}^{4} f(x) dx + \int_{0}^{4} f(x) dx + \int_{0}^{4} f(x) dx = 1$$

$$= 0 + \int_{0}^{4} a + bx^{2} dx + 0 = 1$$

$$= \int_{0}^{4} a + bx^{2} dx = 1$$

$$= ax + \frac{b}{3} \int_{0}^{4} = 1$$

$$= a + \frac{b}{3} = 1$$

5.4 The probability density function of x, the lifetime of a certain type of electronic device (measured in hours), is given by

$$f(x) = \begin{cases} \frac{10}{x^2} & x > 10 \\ 0 & x \le 10 \end{cases}$$

(9) Find P (X > 203

(b) What is the cumulative distribution function of X?

(c) What is the probability that, of 6 such types of devices, at least 3 will function for at least 15 hours? What assumptions are you making?

Jawab:

4 (a) Find P (x > 20 3

$$P(x>20) = 1 - \int_{10}^{20} \frac{10}{x^2} dx$$

$$= 1 - 10 \int_{10}^{20} \frac{1}{x^2} dx$$

$$= 1 + 10 \left(\frac{1}{20} - \frac{1}{10} \right)$$

(b) Cumulative distribution function of x

$$f_X(x) = P(x \leq x)$$

$$= \int_{10}^{x} \frac{10}{a^2} da$$

$$= -10 \cdot \left(\frac{1}{x} \cdot \frac{1}{10}\right)$$

(c) Probability 6 tyres of device

$$P(A \ge 3) = 1 - A \le 2$$
 $= 1 - P(A = 0) - A$
 $= 1 - P(A = 2)$
 $P(A = 0) = \binom{6}{0} \cdot P(\times \angle 15)^{6}$
 $= \frac{1}{3^{6}}$
 $P(A = 1) = \binom{6}{1} \cdot \frac{2}{3} \cdot \frac{1}{3^{7}}$

No	
Date	

- 6.4] Basketball shots to win a basketball game, two competitors play three rounds of one three -point shot each. The series ends if one them scores in a round but the other misses his shot or if both get the same result in each of the three rounds. Assume competitors A and B have 30 % and 20 % of successful attempts, respectively, in three -point shots and that the outcomes of the shots are independent events
 - a. Verify the probability that the series ends in the second round is 23,55%.
 - b. Find the probability distribution of X = number of rounds played to end the series.
 - c. find the expected number of rounds to be played in the series Jawab:

P(A, B) masur = 0,3 x 0,2 = 0,06 P(A, B) gagal = 0,7 x 0,8 = 0,56

P(A masuk, B gagal) = 0,3 × 0,8
= 0,24
P(A gagal, B masuk) = 0,7 × 0,2

Peluang selesai ronde dua

P = (0,06 + 0,56) 0,24 + (0,06 + 0,56) 0,14

= (0,62) 0,24 + (0,62) (0,14)

= 0,1488 + 0,0868

= 0,2356

= 23,56 %

(c)
$$E[x] \cdot \sum_{i=1}^{3} x f(x) = 1 \times 36\% + 2 \times 23,56\% + 3 \times 38,44\%$$

$$= 2,0049$$

6.10 Ideal number of children Let X denote the response of a randomly selected person to the question, "what is the ideal number of children for a family to have?"

The probability distribution of X in the United States is approximately as shown in the table, according to the gender of the person asked the question.

robability	vistribution of X = 1aec	il Number of Children
Х	P(x) females	P(x) Males
0	0,01	0,02
a 1 saults.	0,03	0,03
2	0,55	0,60
3	0,31	0,28
4	0,11	0,08

Note that the probabilities do not sum to exactly I due to rounding error.

- a. shows that the means are similar, 2,50 for females and 2,39 for males.
- b The standard deviation for the females is 0,770 and 0,758 for the males. Explain why a practical implication of the values for the standard deviations is that males hold slightly more consistent views than females about the ideal family site.

Jawab:

a. nilai tengah :
$$E[x] = \sum x f(x)$$

b. Keragaman laki 2 lebih sedikit dan perempuan. Oleh karena itu, standar deviasi laki z lebih konsisten dibanding perempuan.

3.153) Find the distributions of the random variables that have each of the following moment -

a.
$$m(t) = [(1/3)e^{t} + (2/3)]^{s}$$

b. $m(t) = e^{t}$
 $2 - e^{t}$
c. $m(t) = e^{2(e^{t} \cdot 1)}$

Jawab :

a.
$$m(t) = [(.1/3)e^{t} + (2/3)]^{5}$$

$$= [Pe^{t} + (1-P)]^{n}$$

$$= [(.1/3)e^{t} + (2/3)]^{5}$$

$$= [Pe^{t} + (1-P)]^{n}$$

$$= (x)^{n} P^{\times} (1-P)^{n-X}$$

$$= (x)^{5} (1/3)^{\times} (2/3)^{5-X}$$

$$np = 2$$
 $2(1-p)+2=6$ $n(-1)=2$ $n(n-1)p+np=6$ $p=-1$ $n=2$

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$
$$= \binom{-2}{x} (-1)^{x} (2)^{-2-x}$$

c.
$$m(t) = e^{2(e^{t}-1)}$$

 $E[x] = n \cdot P = m'(0) = 2 \cdot e^{0+2 \cdot e^{0}} = 2$ \Rightarrow sebaran poisson
 $E[x^{0}] = nP(1-P) + nP = m''(0) = e^{0+2 \cdot e^{0}-2} (4 \cdot e^{0} + 2) = 6$

$$\frac{hp = 2}{np(1-p)+np = 6}$$

$$f(x) = {n \choose x} p^x (1-p)^{n-x}$$

= ${-2 \choose x} (-1)^x (2)^{-2-x}$

3.156 Suppose that X is a random variable with moment-generating function m(+)

- a. What is m (0)?
- b. If W = 34, show that the moment -generating function of Wis m (3t).
- c. | X = Y-2, show that the moment-generating function of X is e-2t m(t).

Jawab:

$$W(M) = E(6_{f-3x})$$

$$W(M) = E(6_{f-3x})$$

$$m(X) = E\left(e^{t(y-2)}\right)$$

$$M(x) = E(e^{ty}, e^{-2t})$$

$$m(x) = e^{-2t} \cdot E(e^{ty})$$

$$m(x) = e^{-2t} m(t)$$