Minesweeper Solver Project proposal

Chunxu Guo Jiahao Huang Qianyu Liu Chenyang Zhang Tianyi Zhang

ShanghaiTech University

CS181: Artificial Intelligence I, Fall 2020

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- **6** CNN Solver

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- 6 CNN Solver
- PATEX example section

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- 6 CNN Solver
- PETEX example section

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- 6 CNN Solver
- PATEX example section

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- CSP Probability Model
- **5** POMDP View
- 6 CNN Solver
- PATEX example section

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- 6 CNN Solver
- PETEX example section

POMDP Model

POMDP: Partially Observable Markov Decision Process

- Generalization of a Markov decision process (MDP)
- Agent cannot directly observe the underlying state
- Maintain a probability distribution over the set of possible states

8/16

Minesweeper POMDP Model

Minesweeper game can be modeled as a POMDP $< S, S_e, A, T, R, O, \Omega, b_0 >$ where:

- set of states S: init state, normal states, failure state
- terminal state S_a : success state, failure state
- actions in A: try hidden cell c
- transition function T
- reward R(s, a, s')
- observations in O
- observation function Ω : updates the knowledge matrix according to the last action
- b_0 : initial probability distribution over states

POMDP Challenges

Belief space is huge:

- $2^{W \times H}$ states!
- Solving POMDPs exactly is computationally intractable
- MOMDP: Mixed Observability Markov Decision Process
 - we can derive a compact lower-dimensional representation of the belief space
- Monte-Carlo Tree Search

- Topic and Motivation
- 2 Logic Inference
- SAT Solver
- 4 CSP Probability Model
- **5** POMDP View
- **6** CNN Solver
- PEX example section

- SAT Solver
- CSP Probability Model
- 6 CNN Solver

Sample frame title

This is a text in second frame. For the sake of showing an example.

- Text 1
- Text 2
- Text 3
- Text 4

In this slide

In this slide the text will be partially visible

In this slide the text will be partially visible And finally everything will be there

Sample frame title

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Two-column slide

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

This text will be in the second column and on a second tought this is a nice looking layout in some cases.

