Nakajima quiver varieties & affine Grassmannians

Motivating example

Let $\mathbf{v} = (v_1, v_2, \dots, v_s) \in \mathbb{Z}^s_{\geq 0}$ with $v_1 \leq v_2 \leq \dots \leq v_s$ be an s-tuple of nondecreasing positive integers and

$$\mathcal{F}\ell(\mathbf{v}) = \{V_1 \subseteq V_2 \subseteq \ldots \subseteq V_s \mid \dim(V_j) = v_j\}$$

the corresponding s-step variety of partial flags. We will denote the standard basic vectors by $\varepsilon_i = (0, \dots, 0, 1, 0, \dots, 0)$ and fix the dimension of the ambient space to be n.

Definition. Let $\mathbf{v}' = (v_1, \dots, v_i, v_i + 1, v_{i+1}, \dots v_s) \in \mathbb{Z}_{\geq 0}^{s+1}$. We will call the (s+1)-step varieties

$$\mathcal{Z}_{\mathbf{v},\mathbf{v}+arepsilon_i} = \mathcal{F}\ell(\mathbf{v}')$$

the incidence varieties.

Remark. There is a natural embedding $\mathcal{Z}_{\mathbf{v},\mathbf{v}+\varepsilon_i} \subset \mathcal{F}\ell(\mathbf{v}) \times \mathcal{F}\ell(\mathbf{v}+\varepsilon_i)$

Next we consider the projections $p: \mathcal{Z}_{\mathbf{v},\mathbf{v}+\varepsilon_i} \to \mathcal{F}\ell(\mathbf{v})$ and $q: \mathcal{Z}_{i|i+1} \to \mathcal{F}\ell(\mathbf{v}+\varepsilon_i)$. The first map (p) simply 'forgets' the i+1st subspace and the second map (q) forgets the ith subspace.

Remark. We have that both \hat{p} and q are projective bundles with respective fibers being $\mathbb{P}(V_{i+1}/V_i)$ and $\mathbb{P}((\tilde{V}_i/\tilde{V}_{i-1})^*)$.

Let $L_{\mathbf{v}}$ be the space of constant functions on $\mathcal{F}\ell(\mathbf{v})$, i.e.

$$L_{\mathbf{v}} = \begin{cases} \mathbb{C}, & \mathcal{F}\ell(\mathbf{v}) \neq \emptyset \\ \{0\}, \mathcal{F}\ell(\mathbf{v}) = \emptyset. \end{cases}$$

Similarly, $L_{\mathcal{Z}_{\mathbf{v},\mathbf{v}+\varepsilon_i}} = L_{\mathbf{v}'}$.

Our next goal is to define the action of Lie algebra \mathfrak{sl}_{s+1} (or \mathfrak{gl}_{s+1}) on the collection of spaces $\{L_{\mathbf{v}}\}_{\mathbf{v}\in\mathbb{Z}_{>0}^s}$.

Remark. Notice that $\dim\left(\bigoplus_{\mathbf{v}} L_{\mathbf{v}}\right) = \dim(\mathbb{C}[x_0, x_1, \dots, x_s]_n) = \binom{n+s}{n}$ (the differences of dimensions of subsequent subspaces sum up to the dimension of the ambient space equal to n). The latter (space of homogeneous polynomials of degree n in s+1 variables) is the representation we hope to (and will) get.

Define the pullback and pushforward via

$$p^*: L_{\mathbf{v}} \to L_{\mathbf{v}'}, 1 \mapsto 1$$

$$q^*: L_{\mathbf{v}} \to L_{\mathbf{v}'}, 1 \mapsto 1$$

$$p_!: L_{\mathbf{v}'} \to L_{\mathbf{v}}, 1 \mapsto \chi(F_p) = v_{i+1} - v_i - 1$$

$$q_!: L_{\mathbf{v}'} \to L_{\mathbf{v}}, 1 \mapsto \chi(F_q) = v_i - v_{i-1}.$$

Here F_p and F_q stand for respective fibers over a (any) point and $\chi(F_p), \chi(F_q)$ are the Euler characteristics.

Define

$$e_{i,\mathbf{v}+\varepsilon_i} := q_! p^*,$$

$$f_{i,\mathbf{v}} := p_! q^*,$$

$$e_i := \bigoplus_{\mathbf{v}} e_{i,\mathbf{v}},$$

$$f_{i,\mathbf{v}} := \bigoplus_{\mathbf{v}} f_{i,\mathbf{v}}.$$

It remains to define the action of h_i via $[e_i, f_i]$ and is direct to check that all required relations between those are satisfied.

Nakajima quiver varieties

Let $Q = (Q_0, Q_1)$ be a finite quiver, i.e. a directed graph with finitely many vertices enumerated by the set Q_0 and finitely many edges enumerated by Q_1 . Each edge is uniquely determined by the pair of vertices it connects, which we will denote by t(a) and h(a) standing for 'tail' and 'head'. Consider two dimension vectors $\mathbf{v} = (v_1, \ldots, v_n)$ and $\mathbf{w} = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 0}^n$, where n is the cardinality of Q_0 and form a vector space

$$R = \bigoplus_{a \in Q_1} \operatorname{Hom}_{\mathbb{C}}(V_{ta}, V_{ha}) \oplus \bigoplus_{s \in Q_0} \operatorname{Hom}_{\mathbb{C}}(V_s, W_s).$$

Remark. The dimension vector **w** is often referred to as framing.

Notice that the space T^*R is symplectic and naturally identified with

$$\bigoplus_{a\in Q_1} (\operatorname{Hom}_{\mathbb{C}}(V_{ta}, V_{ha}) \oplus \operatorname{Hom}_{\mathbb{C}}(V_{ha}, V_{ta})) \oplus \bigoplus_{s\in Q_0} (\operatorname{Hom}_{\mathbb{C}}(V_s, W_s) \oplus \operatorname{Hom}_{\mathbb{C}}(W_s, V_s)).$$

We will use the notation $(\mathbf{x}, \bar{\mathbf{x}}, \mathbf{i}, \mathbf{j})$ to represent a point $p \in T^*R$, where

$$\mathbf{x} = (x_a \in \operatorname{Hom}_{\mathbb{C}}(V_{ta}, V_{ha}))_{a \in Q_1},$$

$$\bar{\mathbf{x}} = (x_a * \in \operatorname{Hom}_{\mathbb{C}}(V_{ha}, V_{ta}))_{a \in Q_1},$$

$$\mathbf{i} = (i_s \in \operatorname{Hom}_{\mathbb{C}}(V_s, W_s))_{s \in Q_0} \text{ and}$$

$$\mathbf{j} = (j_s \in \operatorname{Hom}_{\mathbb{C}}(W_s, V_s))_{s \in Q_0}.$$

The reductive group $G := \prod_{i=1}^n GL(V_i)$ naturally acts on R. We are interested in the induced Hamiltonian action of G on T^*R . The corresponding moment map $\mu: T^*R \to \mathfrak{g}^*$ is given by

$$\mu(\mathbf{x}, \bar{\mathbf{x}}, \mathbf{i}, \mathbf{j}) = \sum_{a \in Q_1} (x_a x_{a^*} - x_{a^*} x_a) - \sum_{s \in Q_0} j_s i_s. \tag{1}$$

To define the Nakajima quiver variety $\mathcal{M}^{\theta}(Q, \mathbf{v}, \mathbf{w})$, we need to choose some character θ of G. Such θ is uniquely determined by an n-tuple of integers, i.e. by $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{Z}^n$ we understand the character θ as a map $(g_1, \dots, g_n) \mapsto \prod_{s=1}^n \det(g_s)^{\theta_s}$, where $g_s \in GL(V_s)$.

Definition. The GIT quotient $\mathcal{M}_0^{\theta}(Q, \mathbf{v}, \mathbf{w}) := \mu^{-1}(0)^{\theta-ss}//^{\theta}G$ is called the Nakajima quiver variety with parameter θ .

Agreement. Henceforth, we assume that Q has no loops.

The following results are due to Nakajima.

- **Theorem.** 1. The variety $\mathcal{M}_0^0(Q, \mathbf{v}, \mathbf{w})$ is affine and there is a projective morphism $\rho : \mathcal{M}_0^{\theta}(Q, \mathbf{v}, \mathbf{w}) \to \mathcal{M}_0^0(Q, \mathbf{v}, \mathbf{w})$, which is a symplectic resolution of singularities for generic θ .
 - 2. Every irreducible component of the central fiber $\Lambda(\mathbf{v}, \mathbf{w}) := \rho^{-1}(0) \subset \mathcal{M}_0^{\theta}(Q, \mathbf{v}, \mathbf{w})$ is a (locally closed) Lagrangian subvariety.

Remark. An application of the Hilbert-Mumford criterion shows that:

1. if $\theta_t > 0 \ \forall t$, then a quadruple $(\mathbf{x}, \bar{\mathbf{x}}, \mathbf{i}, \mathbf{j}) \in \mu^{-1}(0)$ is θ -semistable if and only if for any collection of vector subspaces $S = (S_t)_{t \in Q_0} \subset V = (V_t)_{t \in Q_0}$, which is stable under the maps $\mathbf{x}, \bar{\mathbf{x}}$, we have

$$S_t \subset \ker(i_t) \ \forall t \in Q_0 \Rightarrow S = 0,$$

2. if $\theta_t < 0 \ \forall t$, then a quadruple $(\mathbf{x}, \bar{\mathbf{x}}, \mathbf{i}, \mathbf{j}) \in \mu^{-1}(0)$ is θ -semistable if and only if for any collection of vector subspaces $S = (S_t)_{t \in Q_0} \subseteq V = (V_t)_{t \in Q_0}$, which is stable under the maps $\mathbf{x}, \bar{\mathbf{x}}$, we have

$$S_t \supset im(j_t) \ \forall t \in Q_0 \Rightarrow S = V.$$

Next we describe quiver varieties associated to some quivers.

Example. $Q = \bullet$.

First consider the quiver with one vertex and no arrows. In this case $R = Hom_{\mathbb{C}}(V, W), G = GL(V)$ and $T^*R = Hom_{\mathbb{C}}(V, W) \oplus Hom_{\mathbb{C}}(W, V)$. The moment map is $\mu(i, j) = -ji$.

Quiver variety for $Q = \bullet$.

Let $\theta > 0$, then due to the Remark we made before, $\mu^{-1}(0)^{\theta-ss}$ is formed by $\{i, j \mid ji = 0\}$ with j injective. The choice of such a pair (i, j) is equivalent to a choice of a subspace $V \subset W$ and a map in $\operatorname{Hom}(W/V, V)$, which is naturally an element of the cotangent bundle $T^*Gr(v, w)$. We conclude that $\mathcal{M}_0^{\theta}(Q, v, w) \simeq T^*Gr(v, w)$.

In case $\theta < 0$ our Remark before asserts the surjectivity of j. Since ji = 0, the image of i must be contained in the kernel of j, and the latter is isomorphic to W/V as j is surjective. So j is uniquely determined by its kernel, a (w - v)-dimensional subspace of W, while $i \in \text{Hom}(V, W/V)$. This allows to identify $\mathcal{M}_0^{\theta}(Q, v, w)$ with $T^*Gr(w - v, w) \simeq T^*Gr(v, w)$.

It remains to see what happens when $\theta = 0$. Notice that the product ij is G-invariant and $(ij)^2 = 0$, since ji vanishes. Construct the map $\phi : M_0^0(Q, v, w) \to \mathfrak{gl}(W)$ by setting $\phi(i,j) = ij$. Furthermore, the ring of invariants $\mathbb{C}[i,j]^G$ is generated by the matrix elements of the product ij. Writing $W = ker \ j \oplus W'$ and observing that ji = 0 implies $im \ ij \subset ker \ j$, we conclude that $rk(ij) \leq min(v, \lfloor \frac{w}{2} \rfloor)$. Denote the number $min(v, \lfloor \frac{w}{2} \rfloor)$ by k, then the image of ϕ consists of $A \in \mathfrak{gl}(W)$, s.t.

- 1. $A^2 = 0$ and
- $2. rk(A) \le k.$

Consider a nilpotent matrix x in $\mathfrak{gl}(W)$, whose Jordan canonical form consists of k blocks of size 2×2 and w - 2k blocks of size 1×1 . Matrices A in the image of ϕ are in $\overline{\mathcal{O}}_x$, the closure of the orbit of x. We find that $M_0^0(Q, v, w)$ is isomorphic to $\overline{\mathcal{O}}_x$.

Example. We generalize the previous example and choose a Dynkin quiver of type A_s . Take an arbitrary dimension vector v and w with $w_1 = \ldots = w_{s-1} = 0$ and a stability condition $\theta = (\theta_1, \ldots, \theta_s)$ with all $\theta_t > 0$.

$$V_{s} \xrightarrow[y_{s-1s}]{\chi_{ss-1}} V_{s-1} \xrightarrow[y_{s-1s-2}]{\chi_{s-1s-2}} V_{s-2} \qquad \dots \qquad V_{2} \xrightarrow[y_{12}]{\chi_{21}} V_{1}$$

Quiver variety for $Q = A_s$.

Then $M_0^{\theta}(Q, v, w)$ is the cotangent bundle of the partial flag variety $\mathcal{F}\ell(v_1, \ldots, v_s; w)$ (or empty if $v_i > v_{i+1}$ for some i or $v_s > w_s$). On the other hand $M_0^0(Q, v, w) \simeq \overline{\mathcal{O}}_x$, where $x \in \mathfrak{gl}(W)$ is a nilpotent element, having blocks of sizes $v_1, v_2 - v_1, \ldots, v_s - v_{s-1}, w - v_s$ in its Jordan canonical form. The map

$$\rho: M_0^{\theta}(Q, v, w) = T^*(G/P) \to \overline{\mathcal{O}}_x = M_0^0(Q, \mathbf{v}, \mathbf{w})$$

is the Springer resolution.

Boris Tsvelikhovskiy

Constructible functions

Let X be an algebraic variety and $\operatorname{Fun}(X,\mathbb{C})$ the algebra of all possible functions from X to \mathbb{C} .

Example. If $Y \subset X$ is a locally closed subvariety (in Zariski topology) define

$$\delta_Y(x) := \begin{cases} 1, x \in Y \\ 0, x \notin Y. \end{cases}$$

Definition. The subalgebra $Fun_c(X,\mathbb{C}) = Span_{\mathbb{C}}\{\delta_Y \mid Y \subset X, loc. closed\}$ is called the **subalgebra of constructible functions**.

Remark. If $f \in Fun_c(X, \mathbb{C})$, then $f^{-1}(a)$ is a constructible subset (finite union of loc. closed sets) for any $a \in \mathbb{C}$.

Definitions/Properties. Let $\varphi: X \to Y$ be a morphism.

- 1. If $f \in Fun_c(Y,\mathbb{C})$, then $\varphi^*(f)$ given by $\varphi^*(f)(x) := f(\varphi(x))$ is in $f \in Fun_c(X,\mathbb{C})$.
- 2. If $g \in Fun_c(X,\mathbb{C})$, then $\varphi_!(g)$ given by $\varphi_!(g)(y) := \sum_{a \in \mathbb{C}} \chi_c(\varphi^{-1}(y) \cap f^{-1}(a))a$ is in $f \in Fun_c(Y,\mathbb{C})$.

Remark. Each $\varphi^{-1}(y) \cap f^{-1}(a)$ is a constructible set, χ_c stands for Euler characteristic with compact support and $f^{-1}(a) \neq \emptyset$ only for finitely many $a \in \mathbb{C}$.

Constructing representations

Starting with a quiver $Q = (Q_0, Q_1)$, one constructs a matrix $C = (c_{ij})_{i,j \in Q_0}$ with $c_{ii} := 2$ and $c_{ij} := -\#\{\text{arrows between } i \text{ and } j\}$, which (considered as a Cartan matrix) gives rise to a Lie algebra \mathfrak{g}_Q .

Analogously to the construction we started with, let

$$L_{\mathbf{v}}^{\mathbf{w}} := \operatorname{Fun}_{c}(\Lambda(\mathbf{v}, \mathbf{w}), \mathbb{C})$$

$$L_{\mathbf{v}+\varepsilon_{i}}^{\mathbf{w}} := \operatorname{Fun}_{c}(\Lambda(\mathbf{v}+\varepsilon_{i}, \mathbf{w}), \mathbb{C})$$

$$L_{\mathbf{v},\mathbf{v}+\varepsilon_{i}}^{\mathbf{w}} := \operatorname{Fun}_{c}(\Lambda(\mathbf{v}, \mathbf{v}+\varepsilon_{i}, \mathbf{w}), \mathbb{C}).$$

Using the diagram below, define e_i and f_i via

$$e_{i,\mathbf{v}+arepsilon_{i}} := q_{!}p^{*}, \qquad \qquad \Lambda(\mathbf{v},\mathbf{v}+arepsilon_{i},\mathbf{w})$$
 $f_{i,\mathbf{v}} := p_{!}q^{*}, \qquad \qquad p$
 $e_{i} := \bigoplus_{\mathbf{v}} e_{i,\mathbf{v}}, \qquad \qquad p$
 $f_{i,\mathbf{v}} := \bigoplus_{\mathbf{v}} f_{i,\mathbf{v}}. \qquad \qquad \Lambda(\mathbf{v},\mathbf{w})$
 $f_{i,\mathbf{v}} := \mathbf{v} = \mathbf{v}$

Let $\{\pi_i\}_{i\in Q_0}$ be the fundamental weights, i.e. $\langle \pi_i, h_j \rangle = \delta_{ij}$ and $\{\alpha_i\}_{i\in Q_0}$ simple roots.

Theorem. The operators e_i , f_i and $h_i := [e_i, f_i]$ with $i \in Q_0$ make the space $L^{\mathbf{w}} := \bigoplus_{\mathbf{v}} L^{\mathbf{w}}_{\mathbf{v}}$ into an integrable \mathfrak{g}_Q representation. Moreover, this representation is the one with highest weight $w = \sum_{i \in Q_0} w_i \pi_i$, the corresponding one-dimensional subspace of weight w is $L^{\mathbf{w}}_0$ (notice that $\mathcal{M}^{\theta}_0(Q, 0, \mathbf{w})$ is a point, hence, $L^{\mathbf{w}}_0 = \mathbb{C}$), more generally, $L^{\mathbf{w}}_{\mathbf{v}}$ is the weight subspace of weight $w - \sum_{i \in Q_0} v_i \alpha_i$.

Variation: Borel-Moore homology

Definition. Let M be a smooth oriented manifold. The **Borel-Moore homology** of a closed subset $X \subset M$ is the relative homology

$$H_{BM} := H_{\bullet}(M, M \setminus X, \mathbb{C}).$$

Remark. If X is an irreducible complex algebraic variety, the space $H_{top}(X)$ is 1-dimensional. In the ordinary homology theory, fundamental classes only exist for compact manifolds, while the fundamental class exists in Borel-Moore homology for noncompact X as well.

Four years after establishing the Theorem that we saw on the previous slide, Nakajima found the following 'reformulation'.

Theorem.
$$L^{\mathbf{w}} \simeq \bigoplus_{\mathbf{v}} H_{BM}^{top}(\Lambda(\mathbf{v}, \mathbf{w})).$$

Connection to affine Grassmannians

Definition. Let $G_1 \subset G[t^{-1}]$ be the kernel of the evaluation map $G[t^{-1}] \to G$ and $\mu \prec \lambda$ two dominant coroots. The intersection $Gr^{\mu}_{\lambda} := G_1 \cdot t^{\mu} \cap \overline{Gr}_{\lambda}$ is called the **Luzstig slice**.

Theorem. Let \mathcal{O}_{μ} , $\mathcal{O}_{\lambda} \subset \mathcal{N} \subset \mathfrak{gl}_{N}$, T_{μ} be the Mirkovic-Vybornov transverse slice to the nilpotent orbit \mathcal{O}_{μ} in the nilpotent cone \mathcal{N} (the slice T_{μ} different from the Slodowy slice), $\eta: \widetilde{\mathcal{O}}_{\mu} \to \overline{\mathcal{O}}_{\mu}$ the Springer resolution and $\pi: \widetilde{Gr}_{\lambda} \to \overline{Gr}_{\lambda}$ the 'convolution' resolution constructed by Mirkovic and Vilonen. The following diagram commutes and the horizontal arrows are isomorphisms.

Remark. We sketch the construction of isomorphisms in the right square of the commutative diagram on the previous slide. Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ and $\widehat{\lambda} = (a_1, \ldots, a_s)$ be the dual partition. The preimage of a lattice $\Lambda \in \overline{Gr_{\lambda}}$ in $\widetilde{Gr_{\lambda}}$ consists of partial flags of lattices

$$\pi^{-1}(\Lambda) = \{ \Lambda_0 \subseteq \Lambda_1 \subseteq \ldots \subseteq \Lambda_s = \Lambda \mid \dim_{\mathbb{C}} (\Lambda_i / \Lambda_{i-1}) = a_i, t(\Lambda_i) \subset \Lambda_{i-1} \}.$$

Recall that the Springer resolution of the closure of nilpotent orbit \mathcal{O}_x , where x has a Jordan normal form of type λ consists of the pairs (y, \mathcal{F}) with $y \in \overline{\mathcal{O}}_x$ and \mathcal{F} an s-step partial flag stabilized by y with relative dimensions equal to corresponding elements of $\widehat{\lambda}$. This gives

$$\nu^{-1}(y) = \{ F \in \mathcal{F}\ell(\widehat{\lambda}) \mid yF_i \subset F_{i-1} \}.$$

It is straightforward to identify $y \in \overline{\mathcal{O}}_x$ with $\Lambda \in \overline{Gr}_{\lambda}$ via y being the matrix for the t-action on Λ/Λ_0 . Moreover, an element in $\pi^{-1}(\Lambda)$ (as a partial flag in Λ/Λ_0 of the required 'shape') corresponds to an element in $\nu^{-1}(y)$.

