$\text{- Consider if } \textit{M} \text{ accepts the string } s = s_1 s_2 s_3 \dots s_l \text{ of the length } \textit{l} \text{ then there must be some states in sequence } \begin{cases} \left(q_{j_0}, q_{j_1}, q_{j_2}, \dots, q_{j_l}\right) : q_{j_0} = q_0 \\ \text{and } q_{j_l} = \delta\left(q_{j_{l-1}}, s_i\right) \end{cases} \end{cases} \text{ and } \\ \left[q_{j_l}\right] \in \textit{F} \text{. That shows } \textit{M}' \text{ accept } \textit{s} \text{ depends on states sequence } \begin{cases} \left[q_{j_0}\right], \left[q_{j_1}\right], \left[q_{j_2}\right], \dots, \left[q_{j_l}\right] : \left[q_{j_0}\right] = q_0 \\ \text{and } q_{j_l} = \delta'\left(q_{j_{l-1}}, s_i\right) \end{cases} \right. \end{cases}$

and $q_{j_i} \in F'$.

Hence, L(M) is subset of L(M').

• Now if some other string $u = u_1 u_2 u_3 ... u_l$ of l length accepted with M, consider $\{ [q_{j_0}], [q_{j_1}], [q_{j_2}],, [q_{j_l}], [q_{j_0}] = q_0 \text{ and } q_{j_l} = \delta \cdot (q_{j_{l-1}}, s_i) \}$ and $[q_{j_1}] \in F$. By induction when u is input to M, now the corresponding sequence state which are visited by M, say

 $p_0, p_1, ..., p_l$ such that $p_0 = q_0$ and $r_i \in |q_{j_i}| \forall i$.

As $\left[q_{_{j_{l}}}\right]$ \in F and $\left[q_{_{j_{l}}}\right]$ \in F , hence $p_{_{l}}$ \in F therefore $L\left(M'\right)$ \subseteq $L\left(M\right)$

• Consider $\delta(q_0, s)$ is state of M after reading s after start from q_0 . Two different states p and q in graph which is undirected is connected by edge iff there exist s and u strings. Such that $\delta(q_0, s) = q$ and $\delta(q_0, u) = p$.

Based on given case |q| will store states q'so that s and u with $\delta(q_0,s)=q$ and $\delta(q_0,u)=q$ ' such that s and u indistinguishable. For $q'\in[q]$ hence q'=[q]

• As statement given by theorem Myhill Nerode Deterministic Finite Automata recognize L(M) must be $|\mathcal{Q}'|$ number of states.

Hence, M also have |Q'| number of states and L(M) will be equal to L(M') and M' will minimal.

- Consider $|Q| = n_1$. In given algorithm Step 1 will take $O(n_1^2 |\Sigma| + n_1^3)$, by Brute force algorithm. Also $3^{rd} 5^{th}$ and 6^{th} Step will take $O(n_1^2)$ time and each repetition will take $O(n_1^2 \Sigma)$ time.
- 10th Step will complete in $O(n_1^3)$. In 8th step it will check that either |q| = |r| or not that takes $O(n_1^2)$
- When construct final Deterministic Finite Automata M, will additional take additional $O(n_1^2 \sum)$ time.