Supplementary material of the paper "Deep Learning-Based Prediction Models for the Detection of Vitamin D Deficiency and 25-Hydroxyvitamin D Levels Using Complete Blood Count Tests"

Uğur Engin EŞSİZ¹, Çiğdem İnan ACI^{2,*}, Esra SARAÇ³, and Mehmet ACI²

¹Department of Industrial Engineering, Çukurova University, Adana, Turkey

²Department of Computer Engineering, Mersin University, Mersin, Turkey

³Department of Computer Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey

 $\begin{tabular}{ll} E-mails: enginessiz@gmail.com, caci@mersin.edu.tr*, esarac@atu.edu.tr, maci@mersin.edu.tr*\\ & * Corresponding author \\ \end{tabular}$

This PDF file contains the tables and the figures created for the Deep Learning-Based Prediction Models for the Detection of Vitamin D Deficiency and 25-Hydroxyvitamin D Levels Using Complete Blood Count Tests titled article published in the Romanian Journal of Information Science and Technology. You can access the article via this link: (the link will be added after publication)

Distribution of CBC tests in terms of VitD status.

25(OH)D	Diagnosis	Frequency			Percentage (%)
Level		# of patients	Male	Female	1 creentage (70)
>=30 ng/mL	VitD Sufficiency	255	59	196	28.11
21-29 ng/mL	VitD Insufficiency	185	104	81	20.40
<=20 ng/mL	VitD Deficiency	467	235	232	51.49
	Total	907	398	509	100

Distribution CBC tests in terms of patient's VDD.

25(OH)D	Diagnosis	Frequency			Percentage
Level	Diagnosis	# of patients	Male	Female	(%)
11-20 ng/mL	Mild VDD	260	159	101	55.68
5-10 ng/mL	Moderate VDD	182	72	110	38.97
<5 ng/mL	Severe VDD	25	4	21	5.35
	Total	467	235	232	100

Age and gender distribution of patients.

Age	Frequency	Percentage (%)
Child (<=10)	40	4.40
Adolescent (11-17)	76	8.50
Adult (18-64)	781	86.00
Elderly (65+)	10	1.10
Total	907	100

Block diagram of the DL-based prediction models.

Schematic diagram of a CNN.

.The basic structure of an RNN model.

Design of an LSTM unit.

Structure of an AE.

Pseudo-code for Model 1 and Model 2 Pseudo-code for Model 3 Input: An instance of a DL-based Input: An instance of a DL-based classifier method, DL Clf regression method, DL Reg Input: Training dataset, Xtrain Input: Training dataset, Xtrain Input: Test dataset, X_{test} Input: Test dataset, Xtest Input: Necessary parameters for Input: Necessary parameters for data splitting, param data splitting, param Input: A value for cross Input: A value for cross validation, kfold validation, kfold **Input:** A parameter-set for the MICE Input: A parameter-set for the MICE algorithm, imputValue algorithm, imputValue Input: A parameter-set for data Input: A parameter-set for data balancing technique, balanceValue balancing technique, balanceValue Input: A parameter-set for feature Input: A parameter-set for feature selection technique, featureValue selection technique, featureValue Input: A parameter-set for grid Input: A parameter-set for grid search technique, gridValue search technique, gridValue Input: Number of times model Input: Number of times model execution, E execution, E The score: The Output: score: assessment Output: assessment metrics are computed on the test metrics are computed on the test dataset dataset Begin Begin Pre-processing Pre-processing $(X_{train}, X_{test}) \leftarrow MICE(X_{train}, X_{test}, imputValu)$ $(\textbf{X}_{\texttt{train}}, \textbf{X}_{\texttt{test}}) \leftarrow \texttt{MICE}\; (\textbf{X}_{\texttt{train}}, \textbf{X}_{\texttt{test}}, \texttt{imputValu}$ (X_{train}, X_{test}) ← SMOTE (X_{train}, X_{test}, balanceV $(X_{train}, X_{test}) \leftarrow SMOTE(X_{train}, X_{test}, balanceV)$ $(X_{train}, X_{test}) \leftarrow ETC(X_{train}, X_{test}, featureVal)$ $(X_{train}, X_{test}) \leftarrow Multi task LASSO(X_{train}, X$ ue) test, featureValue) Train Train (Xtrain input, Xtrain output) ←split (Xtrain inpu (Xtrain input, Xtrain output) ←split (Xtrain inpu t, Xtrain output, t, Xtrain output, param) model←calculate(DL Reg,gridValue,kf param) model←calculate(DL Clf,gridValue,kf old, Xtrain input, Xtrain output) old, error←calculate error(model) Xtrain input, Xtrain output) while model has not converged do error←calculate error(model) while epoch←1 to E do while model has not converged do Update model parameters, $w_i \leftarrow w_i \eta \frac{\partial error}{\partial w}$ while epoch←1 to E do Update model parameters, $w_i \leftarrow w_i$ end $\eta \, \frac{\partial error}{\partial w}$ end end end Test Evaluate trained model with test Test dataset Evaluate trained model with test $score \leftarrow compute Metrics (model, X_{model outp})$ dataset ut, Xtest output, 'mae', 'rmse', 'rscore←computeMetrics (model, Xmodel outp squared') ut, Xtest output, 'accuracy', 'f1 score') return score return score End

End

Pseudo-code for Multivariate Imputation by Chained Equations (MICE) algorithm (Iterative Data Imputation)

```
Define Y as a nxp data matrix where rows represent samples and columns represent variables.

Data: Incomplete dataset Y = (Y^{obs}, Y^{mis})

Result: Incomplete dataset Y^T = (Y^{obs}, Y^{mis,T}) at iteration T

Define Y_j as the j^{th} feature column of Y where Y_j = (Y_j^{obs}, Y_j^{mis})

for j \leftarrow 1 to p do

imputation model for incomplete variable Y_j \leftarrow P(Y_j|Y_{-j}, \theta_j)

starting imputations Y_j^{mis,0} \leftarrow \text{draws from } Y_j^{obs}

Define Y_{-j}^t = (Y_1^t, Y_2^t, ..., Y_{j-1}^t, Y_{j+1}^{t-1}, ..., Y_{p-1}^{t-1}, Y_p^{t-1}) where Y_j^t is the j^{th} feature at iteration t

for t \leftarrow 1 to T do

for j \leftarrow 1 to p do

\theta_j^t draw from posterior P(\theta_j|Y_j^{obs}, Y_{-j}^t)

Y_j^{mis,t} draws from posterior predictive P(Y_j^{mis}|Y_{-j}^t, \theta_j^t)

return Y^T
```

Pseudo-code for the Synthetic Minority Oversampling Technique (SMOTE)

```
Input: Minority data D^{(t)} = \{x_i \in X\} where i = 1, 2, ..., T

Number of minority instances (T), SMOTE percentage(N), number of nearest neighbors (k)

for i = 1, 2, ..., T do

Find the k nearest (minority class) neighbors of x_i

\widehat{N} = [N/100]

while \widehat{N} \neq 0 do

Select one of the k nearest neighbors, call this \overline{x}

Select a random number \alpha \in [0, 1]

\widehat{x} = x_i + \alpha(\overline{x} - x_i)

Append \widehat{x} to S

\widehat{N} = \widehat{N} - 1

end while

end for

Output: Return synthetic data S
```

```
Pseudo-code for Randomized Decision Trees (Extra Trees Classifier)
(ETC)
Given (x1,y1),(x2,y2),...,(xn,yn) with feature space F where xi \in X and yi \in
Given the number of decision trees M and max depth of each tree
max_depth
procedure Train ((x1, y1), (x2, y2), \dots, (xn, yn))
   ETC \leftarrow \{\}
   for i from 1 to M do
        Ti \in X \rightarrow \Omega
        while ( do depth(T) < max\_depth)
        Randomly select Xi \subset X without replacement
        Randomly select feature f \in F
          Use f as the node to construct tree
        end while
        ETC = ETC \cup \{Ti\}
    end for
    return ETC
end procedure
procedure Test(x)
     for i from 1 to M do
    Select decision tree Ti from ETC
    yi \leftarrow Ti(x)
    end for
    y = \frac{\sum_{i=1}^{M} y_i}{}
return y
end procedure
```

LASSO Regularization (L1)

$$loss = \sum_{i=0}^{n} (y_i - y')^2$$

$$loss = \sum_{i=0}^{n} (y_i - X_i \beta)^2$$

$$L1 = \frac{1}{n} \sum_{i=0}^{n} (y_i - X_i \beta)^2 + \frac{\lambda}{n} \sum_{j=0}^{m} |\beta|$$

where y_i actual, y' predicted, X input, β co-efficient, λ regularization parameter.

Parameter settings for the methods.

Method	Parameter: Value				
Methou	Model 1- Model 2	Model 3			
CNDA	Activation Function: ReLU and Sigmoid, Loss: Binary Crossentr, Epochs: 100, Batch Size: 32				
CNN	Dense: 256 / 128 / 25 / 3 neurons	Dense: 256 / 128 / 25 / 1 neurons			
	Optimizer: Rmsprop	Optimizer: Adam			
DIDI	Activation Function: Sigmoid, Recurrent Initializer=orthogonal, Embedding: 20000, Loss: Binary Crossentr, Epochs: 100, Batch Size: 32				
RNN	Output: 64 / 25 / 3 neurons	Output: 64 / 25 / 1 neurons			
	Optimizer: Rmsprop	Optimizer: Adam			
I CTN 4	Activation Function: Tanh, Recurrent Activation=sigmoid, Embedding: 20000, Loss: Binary Crossentr, Epochs: 100, Batch Size: 32				
LSTM	Output: 64 / 25/ 3 neurons	Output: 64 / 25 / 1 neurons			
	Optimizer: Rmsprop	Optimizer: Adam			
	Activation Function: Tanh, Recurrent Activation=sigmoid, Embedding: 20000, Loss: Binary Crossentr, Epochs: 100, Batch Size: 32				
GRU	Output: 64 / 25 / 3 neurons	Output: 64 / 25 / 1 neurons			
	Optimizer: Rmsprop Optimizer: Adam				
	Activation Function: ReLU, Loss: MSE, Epochs: 100, Batch Size: 32				
	Encoder: 50/25/3	Encoder: 50/25/3			
AE	Decoder: 3/25/50	Decoder: 3/25/50			
	Output: 3 Output: 1				
	Optimizer: Rmsprop	Optimizer: Adam			
SMOTE	Model: DecisionTreeClassifier(), k_neighbors: sampling_strategy: 0.1				
ETC	n_estimators: 10, criterion:'entropy', max_features: 3				
Multi-task LASSO	-	regularization parameter (λ): 0.5			
Grid Search	estimator: RandomForestClassifier, max_features: ['auto', 'sqrt', 'log2'], criterion :['gini', 'entropy']				

The best attribute indexes for the models.

Model	Feature Selection	Top-25 feature indexes
Model 1	ETC	[0 1 3 5 6 7 11 13 16 17 23 25 26 29 31 33 34 39 40 42 43 44 47 48 50]
Model 2	ETC	[0 1 3 4 5 7 9 10 11 12 14 15 16 18 21 24 27 31 38 40 41 44 45 46 48]
Model 3	Multi-Task LASSO	[0 1 2 3 4 8 11 12 14 15 16 17 18 19 22 23 24 27 28 29 35 45 46 48 49]

Feature Importance Distribution of the Models

Feature importance distribution of the Model 1.

Feature importance distribution of the Model 2.

Feature importance distribution of the Model 3.

Convergence Plots of the Models

