Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

Neural Network Representation

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z = w^T x + b$$
$$a = \sigma(z)$$

Andrew Ng

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$(4,1) = \sigma(z^{[1]})$$

$$(4,1) = (4,1)$$

$$z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$$

$$(1,1) = (1,4) + b^{[2]}$$

$$(1,1) = (1,4) + b^{[2]}$$

$$(1,1) = (1,4) + b^{[2]}$$

$$(1,1) = (1,1) + b^{[2]}$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples


```
for i = 1 to m
                                     + z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
                                    \Rightarrow a^{[1](i)} = \sigma(z^{[1](i)})
                                  \Rightarrow z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
                            \Rightarrow a^{[2](i)} = \sigma(z^{[2](i)})
                                                                                                                                                                                                                      \chi = \alpha^{(0)} \quad \chi = \alpha^{(0)} \quad \chi^{(0)} = \alpha^{(0)
 Z^{[1]} = W^{[1]}X + b^{[1]} \leftarrow W^{[1]}X^{(0)} + b^{[1]}
         A^{[1]} = \sigma(Z^{[1]})
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
     A^{[2]} = \sigma(Z^{[2]})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Andrew Ng
```


One hidden layer Neural Network

Activation functions

Activation functions

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$a = g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-z}}$$

$$\frac$$

Tanh activation function

ReLU and Leaky ReLU

Sigmoide Perfetta per probabilità, ma inefficiente nelle reti profonde.

Tanh Migliore della sigmoide perché centrata in zero, ma soffre ancora del vanishing gradient.

ReLU La più usata oggi, perché è veloce e permette di allenare reti profonde. Leaky ReLU Versione migliorata della ReLU che evita il problema dei neuroni morti.

ReLU

$$g(t) = mox(0, t)$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } t > 0 \\ 1 & \text{if } t > 0 \end{cases}$$

Leaky ReLU

$$g(z) = mox(0.01z, z)$$

 $g'(z) = \{0.01 \text{ if } z < 0 \text{ or } \}$

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Porometers:
$$(D_1)$$
 (D_2) (D_3) (D_4) (D_4)

Formulas for computing derivatives

Formal propagation!

$$Z^{(1)} = U_{(1)}X + U_{(1)}$$

$$Z^{(1)} = U_{(1)}X + U_{(1)}$$

$$Z^{(2)} = U_{(2)}Y + U_{(1)}$$

$$Z^{(2)} = U_{(2)}Y + U_{(1)}$$

$$Z^{(2)} = U_{(2)}Y + U_{(1)}Y + U_{(2)}Y + U_{($$

Back propagation:

$$Az^{[i]} = A^{[i]} = Y$$

$$Az^{[i]} = \frac{1}{m} Az^{[i]} A^{[i]} T$$

$$Ab^{[i]} = \frac{1}{m} np. Sum (Az^{[i]}, anais = 1, keepdans = 1 ne)$$

$$Az^{[i]} = \frac{1}{m} np. Sum (Az^{[i]}, anais = 1, keepdans = 1 ne)$$

$$Az^{[i]} = U^{[i]} Az^{[i]} + g^{[i]} (Z^{[i]}) (n^{[i]}, m)$$

$$Az^{[i]} = \frac{1}{m} Az^{[i]} \times T$$

$$Az^{[i]} \times T$$

$$Ab^{[i]} = \frac{1}{m} np. sum (Az^{[i]}, ani = 1, keepdins = True)$$

$$Andrew Andrew Andrew$$

Andrew Ng

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ du = de a Tos > db (2) = dz (2) K $\left(\begin{array}{ccc} n & \zeta & \zeta & \zeta & \zeta \end{array} \right)$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$z^{(1)} = g^{(1)}(z^{(1)})$$

$$z^{(1)} = \left[z^{(1)}(z^{(1)})\right]$$

$$z^{(1)} = \left[z^{(1)}(z^{(1)})\right]$$

$$z^{(1)} = \left[z^{(1)}(z^{(1)})\right]$$

$$z^{(1)} = \left[z^{(1)}(z^{(1)})\right]$$

$$z^{(1)} = g^{(1)}(z^{(1)})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = \frac{1}{m}dz^{[2]}A^{[1]^T}$$

$$dz^{[2]} = \frac{1}{m}np. sum(dz^{[2]}, axis = 1, keepdims = True)$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$dy^{[1]} = dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}np. sum(dz^{[1]}, axis = 1, keepdims = True)$$

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

