```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: vehicle=pd.read_excel("data.csv.xlsx")
 vehicle

Out[2]:

	origin	cylinders	displacement	horsepower	weight	acceleration	year	name	Kilometer_per_liter
0	1	8	307.0	130	3504	12.0	1970	chevrolet chevelle malibu	7.652587
1	1	8	350.0	165	3693	11.5	1970	buick skylark 320	6.377156
2	1	8	318.0	150	3436	11.0	1970	plymouth satellite	7.652587
3	1	8	304.0	150	3433	12.0	1970	amc rebel sst	6.802299
4	1	8	302.0	140	3449	10.5	1970	ford torino	7.227443
393	1	4	140.0	86	2790	15.6	1982	ford mustang gl	11.478880
394	2	4	97.0	52	2130	24.6	1982	vw pickup	18.706323
395	1	4	135.0	84	2295	11.6	1982	dodge rampage	13.604599
396	1	4	120.0	79	2625	18.6	1982	ford ranger	11.904024
397	1	4	119.0	82	2720	19.4	1982	chevy s-10	13.179455

398 rows × 9 columns

from dataset Kilometer_per_liter seems to be dependent variable

In [3]: vehicle_data=pd.DataFrame(vehicle)
 vehicle_data

Out[3]:

	origin	cylinders	displacement	horsepower	weight	acceleration	year	name	Kilometer_per_liter
0	1	8	307.0	130	3504	12.0	1970	chevrolet chevelle malibu	7.652587
1	1	8	350.0	165	3693	11.5	1970	buick skylark 320	6.377156
2	1	8	318.0	150	3436	11.0	1970	plymouth satellite	7.652587
3	1	8	304.0	150	3433	12.0	1970	amc rebel sst	6.802299
4	1	8	302.0	140	3449	10.5	1970	ford torino	7.227443
393	1	4	140.0	86	2790	15.6	1982	ford mustang gl	11.478880
394	2	4	97.0	52	2130	24.6	1982	vw pickup	18.706323
395	1	4	135.0	84	2295	11.6	1982	dodge rampage	13.604599
396	1	4	120.0	79	2625	18.6	1982	ford ranger	11.904024
397	1	4	119.0	82	2720	19.4	1982	chevy s-10	13.179455

398 rows × 9 columns

```
In [4]: |vehicle.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 398 entries, 0 to 397
        Data columns (total 9 columns):
             Column
                                  Non-Null Count Dtype
             origin
                                  398 non-null
                                                  int64
             cylinders
                                  398 non-null
                                                  int64
             displacement
                                  398 non-null
                                                  float64
             horsepower
                                  398 non-null
                                                  obiect
                                  398 non-null
             weight
                                                  int64
             acceleration
                                  398 non-null
                                                  float64
                                  398 non-null
                                                  int64
             vear
                                  398 non-null
                                                  object
             name
             Kilometer per liter 398 non-null
                                                  float64
        dtypes: float64(3), int64(4), object(2)
        memory usage: 28.1+ KB
```

no null values

```
In [5]: #changing ? into null values and dropping them
    vehicle=vehicle_data.replace({"?":np.nan}).dropna()

In [6]: #changing datatype of horsepower into float
    vehicle["horsepower"]=pd.to_numeric(vehicle["horsepower"],downcast="float")

In [7]: #dropping unnessasary columns
    vehicle.drop(columns=["year","name"],inplace=True)
```

In [8]: vehicle

Out[8]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kilometer_per_liter
0	1	8	307.0	130.0	3504	12.0	7.652587
1	1	8	350.0	165.0	3693	11.5	6.377156
2	1	8	318.0	150.0	3436	11.0	7.652587
3	1	8	304.0	150.0	3433	12.0	6.802299
4	1	8	302.0	140.0	3449	10.5	7.227443
393	1	4	140.0	86.0	2790	15.6	11.478880
394	2	4	97.0	52.0	2130	24.6	18.706323
395	1	4	135.0	84.0	2295	11.6	13.604599
396	1	4	120.0	79.0	2625	18.6	11.904024
397	1	4	119.0	82.0	2720	19.4	13.179455

392 rows × 7 columns

In [9]: vehicle.describe()

Out[9]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kilometer_per_liter
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
mean	1.576531	5.471939	194.411990	104.469391	2977.584184	15.541327	9.967885
std	0.805518	1.705783	104.644004	38.491138	849.402560	2.758864	3.318250
min	1.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	3.826293
25%	1.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	7.227443
50%	1.000000	4.000000	151.000000	93.500000	2803.500000	15.500000	9.672019
75%	2.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	12.329168
max	3.000000	8.000000	455.000000	230.000000	5140.000000	24.800000	19.811697

Checking correlation

In [10]: vehicle_corr=vehicle.corr()
vehicle_corr.round(2)

Out[10]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kilometer_per_liter
origin	1.00	-0.57	-0.61	-0.46	-0.59	0.21	0.57
cylinders	-0.57	1.00	0.95	0.84	0.90	-0.50	-0.78
displacement	-0.61	0.95	1.00	0.90	0.93	-0.54	-0.81
horsepower	-0.46	0.84	0.90	1.00	0.86	-0.69	-0.78
weight	-0.59	0.90	0.93	0.86	1.00	-0.42	-0.83
acceleration	0.21	-0.50	-0.54	-0.69	-0.42	1.00	0.42
Kilometer_per_liter	0.57	-0.78	-0.81	-0.78	-0.83	0.42	1.00

correlation seems to be high with origin by taking Kilometer_per_liter as dep variable

In [11]: sns.pairplot(vehicle);

In [12]: sns.pairplot(vehicle_corr);

In [14]: sns.boxplot(x="origin",y="Kilometer_per_liter",data=vehicle);

outlier seems to be high in origin=2

```
In [38]: sns.barplot(x="origin",y="Kilometer_per_liter",data=vehicle);
```


In [41]: sns.barplot(x="acceleration",y="Kilometer_per_liter",data=vehicle);

Seperation of dep and indep variables

```
In [42]: y_dep=vehicle.Kilometer_per_liter
x_indep=vehicle.drop("Kilometer_per_liter",axis=1)
```

Model creation by finding OLS and fitting, then checking p,r-sq values

```
In [44]: import statsmodels.api as sm
model=sm.OLS(y_dep,x_indep)
my_fit=model.fit()
```

In [45]: my_fit.summary()

Out[45]:

OLS Regression Results

Model: OLS Adj. R-squared (uncentered): 0.953

Method: Least Squares F-statistic: 1326.

Date: Wed, 25 Aug 2021 **Prob (F-statistic):** 4.64e-254

Time: 19:23:43 **Log-Likelihood**: -875.83

No. Observations: 392 AIC: 1764.

Df Residuals: 386 **BIC:** 1787.

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
origin	1.2389	0.184	6.741	0.000	0.878	1.600
cylinders	0.7222	0.207	3.486	0.001	0.315	1.130
displacement	-0.0125	0.005	-2.533	0.012	-0.022	-0.003
horsepower	0.0352	0.008	4.548	0.000	0.020	0.050
weight	-0.0025	0.000	-5.643	0.000	-0.003	-0.002
acceleration	0.6479	0.041	15.702	0.000	0.567	0.729

Omnibus: 17.389 Durbin-Watson: 1.132

Prob(Omnibus): 0.000 Jarque-Bera (JB): 21.608

Skew: 0.405 **Prob(JB):** 2.03e-05

Kurtosis: 3.816 **Cond. No.** 5.89e+03

Notes:

^[1] R² is computed without centering (uncentered) since the model does not contain a constant.

- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 5.89e+03. This might indicate that there are strong multicollinearity or other numerical problems.

here r-sq value is 0.954 so this dataset have strong correlation and no p value is greater than 0.5 so dont need to remove any variable

PREDICTION

```
In [48]: y pred=my fit.predict(x indep)
         y pred
Out[48]: 0
                  6.865118
                  6.769440
                  6.952690
                  7.782759
                  6.444008
          393
                  8,610721
          394
                 16.653761
          395
                 7.236321
                 10.965974
          396
          397
                 11.367294
         Length: 392, dtype: float64
```

so now we know the machine calculated values but we need to check if it is correct or not so we are using machine learning concepts

MACHINE LEARNING

```
In [50]: import sklearn
from sklearn import model_selection
from sklearn.model_selection import train_test_split
```

splitting values for training and testing

In [92]: x_train,x_test,y_train,y_test=train_test_split(x_indep,y_dep,test_size=0.3,random_state=1)

In [93]: x_test

Out[93]:

	origin	cylinders	displacement	horsepower	weight	acceleration
8	2 3	4	120.0	97.0	2506	14.5
16	7 3	4	97.0	75.0	2171	16.0
35	6 3	4	108.0	75.0	2350	16.8
12	0 2	4	121.0	112.0	2868	15.5
38	5 3	4	91.0	67.0	1995	16.2
6	0 1	4	140.0	90.0	2408	19.5
1	2 1	8	400.0	150.0	3761	9.5
30	5 1	4	151.0	90.0	2670	16.0
16	5 1	8	262.0	110.0	3221	13.5
9	2 1	8	351.0	158.0	4363	13.0

118 rows × 6 columns

Importing linear regression for creating model and prediction

```
In [94]: from sklearn import linear model
         from sklearn.linear model import LinearRegression
In [95]: model=LinearRegression()
In [96]: fit=model.fit(x train,y train)
         fit
Out[96]: LinearRegression()
In [97]: v pred1=fit.predict(x test)
         y pred1
Out[97]: array([11.79066114, 12.9581304, 12.67076418, 10.15920544, 13.48334961,
                11.72763078, 12.53668204, 5.94872652, 12.46667823, 12.86910163,
                 8.77450386, 12.25678153, 7.20647314, 13.56127707, 10.87363359,
                 7.48469118, 10.97916848, 13.02522612, 4.49374821, 9.82579183,
                12.06625665, 8.32544117, 7.50985307, 5.61848152, 4.91004341,
                 6.64222772, 13.56136732, 8.31875386, 9.28626959, 10.93855791,
                 7.66678646, 10.39056823, 5.32105886, 9.67625544, 8.68174884,
                 6.01469511, 8.21892906, 8.62016773, 13.45554163, 12.69143722,
                 5.15305595, 5.28264137, 10.45862927, 9.85423824, 10.02143706,
                 8.18887695, 4.55998135, 13.62865323, 9.05429607, 3.8544805,
                 6.89794175, 9.43969121, 10.52831441, 11.03425326, 13.18142051,
                 9.37809116, 9.65598267, 10.69555046, 10.5382758, 14.05463235,
                10.07370594, 11.46894036, 13.79026489, 8.45036573, 9.76051827,
                 9.43808014, 10.21647751, 6.71643208, 12.73925306, 3.83935124,
                12.07548048, 7.63654796, 6.96449292, 12.20548714, 11.294451 ,
                12.01621395, 7.25791425, 5.57052828, 5.51884679, 10.9268567,
                 8.28016413, 12.10383694, 13.46417057, 12.18078416, 6.28611232,
                 8.52581424, 13.61372941, 10.49871365, 13.75403991, 9.96389695,
                11.51808255, 8.91654273, 6.16045073, 4.44775315, 3.68987905,
                 9.55082792, 6.06400324, 10.27922814, 9.69317147, 5.74081032,
                12.71584837, 10.83945926, 9.75795808, 12.92377246, 12.37563389,
                13.21646253, 9.69091408, 13.98123704, 6.12322736, 7.84610419,
                13.67622096, 10.32244716, 13.47122573, 11.31074172, 6.91412775,
                10.50688092, 8.61734791, 5.53480692])
```

```
In [98]: model.score(x_test,y_test)

Out[98]: 0.7295775706920559

In [99]: model.score(x_train,y_train)

Out[99]: 0.7104995419744988
```

BY checking accuracy i conclude test dataset have good accuracy

```
In [100]: comp=pd.DataFrame({"actual":y_test,"predicted":y_pred1})
comp
```

Out[100]:

	actual	predicted
82	9.778305	11.790661
167	12.329168	12.958130
356	13.774656	12.670764
120	8.077730	10.159205
385	16.155461	13.483350
60	8.502874	11.310742
12	6.377156	6.914128
305	12.074081	10.506881
165	8.502874	8.617348
92	5.526868	5.534807

118 rows × 2 columns

calculating error

```
In [101]: res=y_pred1-y_test
          res
Out[101]: 82
                 2.012356
          167
                 0.628963
          356
                -1.103892
                 2.081475
          120
          385
                -2.672111
          60
                 2.807868
          12
                 0.536972
          305
                -1.567200
          165
                 0.114474
          92
                 0.007939
          Name: Kilometer_per_liter, Length: 118, dtype: float64
```

```
In [102]: sns.distplot(res)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [107]: from sklearn.metrics import mean_squared_error as ms
    mean_sqr=ms(y_test,y_pred1)
    mean_sqr
```

Out[107]: 3.249585701022922

```
In [104]: # RMSE
    root_mean_sqr=np.sqrt(mean_sqr)
    root_mean_sqr
```

Out[104]: 1.8026607282078684

```
In [105]: sns.distplot(comp["actual"]);
    sns.distplot(comp["predicted"]);
    plt.legend(["actual","predicted"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[105]: <matplotlib.legend.Legend at 0x1ea7d652ca0>


```
In [108]: com_g=comp.head(20)
com_g.plot(kind="bar",figsize=[15,5])
```

Out[108]: <AxesSubplot:>

from barplot, predicted values are mostly nearer to actual values

ASSUMPTIONS.....

NORMALITY CHECK

```
In [110]: import scipy.stats as st
          st.probplot(res.dist="norm".plot=plt)
Out[110]: ((array([-2.52065032, -2.19131491, -2.00161738, -1.86470486, -1.75581693,
                   -1.66447993, -1.58523282, -1.51485025, -1.45126092, -1.39305187,
                   -1.33921407, -1.2890006, -1.24184226, -1.19729485, -1.15500461,
                   -1.11468501, -1.0761005, -1.03905491, -1.00338303, -0.96894431,
                   -0.93561808, -0.90329991, -0.87189872, -0.84133459, -0.81153691,
                   -0.78244296, -0.75399674, -0.72614796, -0.69885132, -0.67206575,
                   -0.64575393, -0.61988179, -0.59441811, -0.56933416, -0.54460346,
                   -0.52020147, -0.4961054, -0.47229402, -0.44874749, -0.42544719,
                   -0.40237564, -0.37951633, -0.35685365, -0.33437281, -0.31205971,
                   -0.28990093, -0.2678836, -0.24599539, -0.22422441, -0.20255921,
                   -0.18098868, -0.15950204, -0.1380888, -0.1167387, -0.09544168,
                   -0.07418787, -0.05296752, -0.031771 , -0.01058875, 0.01058875,
                    0.031771 , 0.05296752, 0.07418787, 0.09544168, 0.1167387 ,
                                                                       0.22422441,
                    0.1380888 , 0.15950204, 0.18098868, 0.20255921,
                    0.24599539, 0.2678836, 0.28990093, 0.31205971,
                                                                       0.33437281,
                    0.35685365, 0.37951633, 0.40237564, 0.42544719,
                                                                       0.44874749,
                    0.47229402, 0.4961054,
                                             0.52020147, 0.54460346,
                                                                        0.56933416,
                    0.59441811, 0.61988179, 0.64575393, 0.67206575,
                                                                       0.69885132,
                    0.72614796, 0.75399674, 0.78244296, 0.81153691,
                                                                        0.84133459,
                    0.87189872, 0.90329991, 0.93561808, 0.96894431,
                                                                       1.00338303,
                    1.03905491, 1.0761005, 1.11468501, 1.15500461,
                                                                       1.19729485,
                    1.24184226, 1.2890006, 1.33921407, 1.39305187,
                                                                       1.45126092,
                    1.51485025, 1.58523282, 1.66447993, 1.75581693, 1.86470486,
                    2.00161738, 2.19131491, 2.52065032]),
            array([-6.08175494e+00, -5.42601078e+00, -5.38668233e+00, -5.34767994e+00,
                   -4.32600498e+00, -3.70403840e+00, -3.65483669e+00, -3.16141640e+00,
                   -2.72946465e+00, -2.69991925e+00, -2.67211127e+00, -2.58815610e+00,
                   -2.57034538e+00, -2.51468341e+00, -2.37694202e+00, -2.35117534e+00,
                   -1.94005229e+00, -1.84895819e+00, -1.84302344e+00, -1.81575332e+00,
                   -1.67238770e+00, -1.56720037e+00, -1.46711220e+00, -1.45826369e+00,
                   -1.45553392e+00, -1.44411834e+00, -1.43667152e+00, -1.42531977e+00,
                   -1.41184544e+00, -1.37570939e+00, -1.29305549e+00, -1.26237325e+00,
                   -1.22293087e+00, -1.15022394e+00, -1.10389194e+00, -1.02617469e+00,
                   -9.97404810e-01, -9.71245948e-01, -9.05554494e-01, -8.22831208e-01,
                   -6.81037128e-01, -6.69370535e-01, -6.37052143e-01, -5.26211222e-01,
                   -4.95972720e-01, -4.35083445e-01, -4.26848982e-01, -3.85941253e-01,
                   -3.66085845e-01, -3.29501278e-01, -2.98865489e-01, -2.39552027e-01,
                   -2.28827631e-01, -2.25330575e-01, -2.16704882e-01, -2.05809334e-01,
```

```
-1.84120292e-01, -1.16599427e-01, -3.36971639e-02, -2.54526032e-02,
       -2.09698853e-02, -9.99405122e-03, -8.02140816e-03, -3.28538028e-03,
        7.93872789e-03, 3.65234398e-02, 4.36600828e-02, 1.14473761e-01,
        1.56651060e-01, 1.69340537e-01, 1.71215458e-01, 1.94784852e-01,
        2.40714606e-01, 2.57248159e-01, 3.23093873e-01, 3.58251735e-01,
        3.72491173e-01, 4.49198300e-01, 4.57408545e-01, 5.12138026e-01,
        5.36972137e-01, 5.37135040e-01, 5.62654426e-01, 5.66342324e-01,
        5.74584980e-01, 6.28962881e-01, 6.74723160e-01, 7.24245213e-01,
        7.59244127e-01, 7.64420178e-01, 8.50182359e-01, 1.01252026e+00,
        1.04380487e+00, 1.09612406e+00, 1.10301119e+00, 1.13269746e+00,
        1.21255712e+00, 1.30590234e+00, 1.32291768e+00, 1.36034970e+00,
        1.43401348e+00, 1.43762472e+00, 1.48294564e+00, 1.52314185e+00,
        1.72550443e+00, 1.76753261e+00, 1.77650780e+00,
                                                          1.81172133e+00,
        1.87003606e+00,
                         1.95575512e+00,
                                          2.01235587e+00,
                                                          2.08147500e+00,
        2.10537135e+00,
                         2.13874707e+00,
                                         2.17218491e+00,
                                                          2.36885032e+00,
        2.80786757e+00, 4.21297422e+00])),
(1.7614951915979662, -0.33017033577661237, 0.9766485225426503))
```


good accuracy of prediction

NO AUTOCORRELATION

no values are greater than 0.5 so there is not equal values present in dependent

MULTI COLINEARITY

```
In [115]: from statsmodels.stats.outliers_influence import variance_inflation_factor as vifm

def calculate_vif(x):
    vif=pd.DataFrame()
    vif['features']=x.columns
    vif['VIF_Values']=[vifm(x.values,i) for i in range(x.shape[1])]
    return(vif)
In [116]: calculate vif(vehicle)
```

Out[116]:

	features	VIF_Values
0	origin	8.937792
1	cylinders	109.908759
2	displacement	90.883447
3	horsepower	59.173992
4	weight	150.930316
5	acceleration	52.537059
6	Kilometer_per_liter	21.605023

cylinder and weight have high multi colinearity or in otherwords high impact on correlation

Using optimizer to find even the best fit for the model

L2 Ridge

```
In [118]: from sklearn.linear model import Ridge
In [127]: ridge model=Ridge(alpha=75,max iter=100)
         ridge model.fit(x train, y train)
In [128]:
Out[128]: Ridge(alpha=75, max iter=100)
In [129]: ridge model.predict(x test)
Out[129]: array([11.52554309, 12.71179012, 12.37460767, 10.17943505, 13.24083927,
                 12.04717596, 12.53148005, 5.9956792 , 12.24242475, 12.56853927,
                  8.87269638, 12.30004305, 7.25071293, 13.33905774, 11.06134103,
                  7.62549571, 11.2054543, 12.92500081, 4.2916874, 9.88690255,
                 12.05311108, 8.28395072, 7.61231286, 5.63763689, 4.73442021,
                  6.56944636, 13.26874198, 8.37138731, 9.3819815, 11.16580749,
                  7.77588713, 10.52901189, 5.27780291, 9.77967724, 8.737844
                  6.10299612, 8.24319216, 8.64682724, 13.22795141, 12.4913248,
                  5.03269058, 5.13196833, 10.30641582, 9.91555665, 10.09657883,
                  8.1337868 , 4.32253634 ,13.37181172 ,9.14128582 ,3.65918941 ,
                  7.03753302, 9.5684858, 10.66596571, 11.27858493, 13.22314177,
                  9.65679125, 10.01072632, 10.83872375, 10.71758848, 13.79801113,
                  9.987606 , 11.48809076, 13.52569249, 8.61136027, 9.77847202,
                  9.46124131, 10.10585104, 6.798151 , 12.81439401, 3.75386482,
                 11.79830397, 7.80772616, 7.02516311, 12.24243597, 11.36302863,
                 12.35001517, 7.07126889, 5.36566661, 5.51845505, 11.1187335,
                  8.34242942, 12.13905842, 13.23160374, 12.20133867, 6.2922267,
                  8.60589189, 13.40241729, 10.73518032, 13.51927608, 10.07255769,
                 11.84068529, 8.95362927, 6.2136191, 4.63144694, 3.48644338,
                  9.88463963, 6.12512076, 10.30456838, 9.82020446, 5.68297534,
                 12.45920238, 11.01303674, 9.81857355, 12.64945556, 12.34584318,
                 12.94526399, 9.8196444, 13.7127381, 6.07790342, 7.81092631,
                 13.41333644, 10.30593377, 13.23339902, 11.45393377, 6.75058238,
                 10.65067704, 8.79792394, 5.50274628])
In [130]: ridge_model.score(x_test,y_test)
Out[130]: 0.7291924297934178
```

accuracy is same as checked using linear regression so i conclude this is best fit

L1 LASSO

```
In [131]: from sklearn.linear_model import Lasso
In [132]: lasso_model=Lasso(alpha=75,max_iter=100)
lasso_model.fit(x_train,y_train)
Out[132]: Lasso(alpha=75, max_iter=100)
```

```
In [133]: lasso model.predict(x test)
Out[133]: array([11.33363156, 12.35927508, 11.81124466, 10.22532423, 12.89812063,
                 12.65319084, 12.30416588, 6.0339631, 12.00106525, 11.99494201,
                  9.07109257, 12.44193889, 7.24942721, 13.05120175, 11.27546073,
                  8.44652159, 11.75001221, 11.857169 , 5.67575327, 10.0844896 ,
                 12.1296534 , 7.88624468 , 8.59960271 , 6.25439991 , 5.71555436 ,
                  6.94326497, 12.74503951, 7.82807385, 9.70178679, 11.70408788,
                  8.52000053, 10.61721191, 5.22263315, 10.32635777, 8.52000053,
                  6.10131879, 7.41781645, 8.18322206, 12.98996931, 12.4848016,
                  5.76454032, 5.58084297, 10.4120832, 10.12429069, 10.46719241,
                  7.58620568, 3.70713003, 12.97466119, 9.10783204, 4.50927512,
                  7.76377978, 9.34663859, 10.8070325, 11.9796339, 13.357364,
                  9.87017603, 11.06114716, 11.08564014, 11.18055044, 13.49513701,
                  9.77526573, 11.4622197, 12.95935308, 8.70369787, 9.56095216,
                  9.17518773, 8.99455201, 7.956662 , 13.1124342 , 3.83571818,
                 11.55406838, 7.96890849, 7.50966512, 12.3072275, 12.16639287,
                 13.14305043, 9.55789054, 5.3389748, 5.92068307, 11.38261752,
                 7.92298415, 12.2123172, 12.82464169, 12.30110425, 7.30759804,
                  8.55061675, 13.34205589, 10.83152548, 13.03589364, 9.7844506,
                 12.38070644, 8.39753563, 5.856389 , 5.59002784, 3.84490304,
                 10.7396768 , 5.85945062 ,10.44882267 ,9.6068765 , 5.65738354 ,
                 12.02861986, 11.15299584, 9.9895793, 12.07148257, 12.39907617,
                 12.46949349, 9.63749272, 12.92873686, 6.28807776, 7.07491473,
                 12.82158007, 9.33133048, 12.92873686, 11.63367056, 7.49129538,
                 10.83152548, 9.14457151, 5.64819867])
In [134]: lasso model.score(x test, y test)
Out[134]: 0.7124650229890934
```

this shows only one percent less than previous

Now we can check our best fit even by using another optimizer

STOCHARTIC GRADIENT DESCENT(SGD)

the data is made into normally distributed with mean=0 and std with 1


```
In [139]: from sklearn.linear_model import SGDRegressor
    model=SGDRegressor()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
```

```
In [140]: model.score(x_test,y_test)
```

Out[140]: 0.7356752087233532

By using SGD the accuracy is found to be good accuracy or in otherwords SGD found the best fit with 0.73 accuracy

In []: