PARTE A

 $\label{eq:mediano} \mbox{Medimos la amplitud generada de la señal y la compramos con la amplitud medida en el analizador de espectros$

Al conectar el PC con el radio y el analizador de espectros observábamos la señal en el cañal y con el cursor mediamos su amplitud.

Después se realizo una tabla de comparación entre ambas amplitudes y la solución:

AMPLITUD GENERADA	AMPLITUD MEDIDA(mV)		
0,5	80,081		
0,25	39,552		
0,125	23,927		
0,0625	9,7972		
AMPLITUD GENERADA	AMPLITUD MEDIDA(mV)		
0,5	55,666		
0,25	30,763		
0,125	18,048		
0,0625	6,75		
AMPLITUD GENERADA	AMPLITUD MEDIDA(mV)		
0,5	21,584		
0,25	11,53		
0,125	6,58		
0,0625	2,98		

Esta es la tabla correspondiente en la cual a la amplitud generada y la amplitud medida

 Para la parte B se debía escoger un valor de GTX para varios casos y calculábamos la atenuación para varias frecuencias planteadas

atenuacion Cable			
Frecuencia MHz	GTX = 6 dB	GTX = 12 dB	GTX = 18 dB
50	33,00	37,00	41,00
60	33,00	37,00	41,00
70	33,00	37,00	41,00
80	33,00	37,00	41,00
90	33,00	37,00	41,00
100	33,00	37,00	41,00
200	33,00	37,00	41,00
300	33,00	37,00	41,00
400	33,00	37,00	41,00
500	33,00	37,00	41,00
600	33,00	37,00	41,00
700	33,00	37,00	41,00
800	33,00	37,00	41,00
900	33,00	37,00	41,00
990	33,00	37,00	41,00

Observamos el comportamiento de la atenuación respecto a la ganancia del GTX