Simulation Concepts

Shen Cheng
ECP8506 Clinical Trial Simulation
10/18/2024

Outline

- Simulation Nomenclature
- Types of Simulations
- General Modeling Process
- General Simulation Process

Simulation Nomenclature

- Population parameters
 - Fixed effects (θ): parameters describing structural/covariate model
 - Random effects: parameters describing variability
 - Inter-individual/occasion variability (IIV/IOV, ω²)
 - Residual variability (RV, σ^2)
- Parameter uncertainty/precision
 - How <u>confident/precise</u> in estimating the population parameters
 - Both fixed effects & random effects
- Covariates
 - Patient characteristics (e.g., body weight, height, age, etc)
- Replicate
 - A single set of simulation incorporate all trial components

Types of Simulations

- Deterministic vs. Stochastic
- Patient-level vs Population-level
- Drug Property vs Clinical Trial

Deterministic vs. Stochastic Simulation

- Deterministic
 - Produce <u>a typical response</u> for a patient/population.
 - Do not need random number generator for Monte Carlo sampling.
- Stochastic (Monte Carlo)
 - Produce <u>a distribution of response</u> for a patient/population.
 - Require random number generator for Monte Carlo sampling in single or multiple levels:
 - Inter-individual / occasion variability
 - Parameter uncertainty

Patient-level vs Population-level

- Patient-level
 - Each <u>simulation replicate</u> correspond to <u>a (typical) patient</u>
- Population-level
 - Each <u>simulation replicate</u> correspond to <u>a population</u> (e.g., a trial patient population, a study arm, etc)

Drug Property vs Clinical Trial

- Drug Property
 - To understand the property of a drug
 - <u>Independent</u> of study design
 - Example: what is the probability to achieve X response in a typical patient given Y dosing regimen of drug Z.
- Clinical Trial
 - To understand the performance of a trial design
 - <u>Dependent</u> on trial design (e.g., number or characteristics of subjects, duration of study, study arms/doses)
 - Example: what is the power of the X trial given Y design

Outline

- Simulation Nomenclature
- Types of Simulations
- General Modeling Process
- General Simulation Process

WT	AGE	SEX	
65	31	F	
77	25	М	•••
102	36	М	
•••		•••	•••

WT	AGE	SEX	•••
65	31	F	
77	25	М	•••
102	36	М	
		•••	

WT	AGE	SEX	•••
65	31	F	
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$CL_i = \frac{\theta_1}{70kg} \times \frac{WT_i}{70kg} \times e^{\eta_1,i}$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1})$$
...
$$IPRED_{ij} = \frac{F_i \times Dose \times K_{a,i}}{V_i \times (K_{a,i} - \frac{CL_i}{V_i})} \times \left(e^{\frac{-CL_i}{V_i} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0, \sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

$$\theta_1, \theta_2 \dots$$

2. Random-effect

2.1 Ω matrix

$$egin{pmatrix} m{\omega_{1,1}^2} & \cdots & m{\omega_{n,1}^2} \ dots & \ddots & dots \ m{\omega_{1,n}^2} & \cdots & m{\omega_{n,n}^2} \end{pmatrix}$$

2.2 Σ matrix

$$egin{pmatrix} \sigma_{1,1}^2 & \cdots & \sigma_{n,1}^2 \ dots & \ddots & dots \ \sigma_{1,n}^2 & \cdots & \sigma_{n,n}^2 \end{pmatrix}$$

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
	•••	•••	•••

WT	AGE	SEX	•••
65	31	F	
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$CL_i = \theta_1 \times \frac{WT_i}{70kg}^{\theta_2} \times e^{\eta_1,i}$$

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

 $IPRED_{ij} = \frac{F_i \times Dose \times K_{a,i}}{V_i \times (K_{a,i} - \frac{CL_i}{V_i})} \times \left(e^{-\frac{CL_i}{V_i} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

 $2.2 \Sigma matrix$

Individual random effects (.phi) (Empirical-bayes estimates, EBE) For each individual i:

$$\eta_{1,i}, \eta_{2,i}....$$

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$CL_i = \theta_1 \times \frac{WT_i}{70kg}^{\theta_2} \times e^{\eta_1,i}$$

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

 $IPRED_{ij} = \frac{F_i \times Dose \times K_{a,i}}{V_i \times (K_{a,i} - \frac{CL_i}{V_i})} \times \left(e^{-\frac{CL_i}{V_i} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij}{\sim}N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

 $2.2 \Sigma matrix$

			,
WT	AGE	SEX	
65	31	F	
77	25	М	•••
102	36	М	
		•••	

Parameter precision (.cov) (Variance-Covariance Matrix)

$$\begin{pmatrix} VAR(\theta_1) & \cdots & COV(\sigma_{n,n}^2, \theta_1) \\ \vdots & \ddots & \vdots \\ COV(\theta_1, \sigma_{n,n}^2) & \cdots & VAR(\sigma_{n,n}^2) \end{pmatrix}$$

$$CL_i = \theta_1 \times \frac{WT_i}{70kg}^{\theta_2} \times e^{\eta_1,i}$$

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^{2})$$
...
$$IPRED_{ij} = \frac{F_{i} \times Dose \times K_{a,i}}{V_{i} \times (K_{a,i} - \frac{CL_{i}}{V_{i}})} \times \left(e^{-\frac{CL_{i}}{V_{i}} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

2.2 Σ matrix

$$\eta_{1,i} \sim N(0, \omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^2)$$
...
$$IPRED_{ij} = \frac{F_i \times Dose \times K_{a,i}}{V_i \times (K_{a,i} - \frac{CL_i}{V_i})} \times \left(e^{\frac{-CL_i}{V_i} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\rightarrow \theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

 $2.2 \Sigma \text{ matrix}$

Outline

- Simulation Nomenclature
- Types of Simulations
- General Modeling Process
- General Simulation Process

Simulation

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

Parameter precision (.cov) (Variance-Covariance Matrix)

$$CL_i = \theta_1 \times \frac{WT_i}{70kg}^{\theta_2} \times e^{\eta_{1},i}$$

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^{2})$$
...
$$IPRED_{ij} = \frac{F_{i} \times Dose \times K_{a,i}}{V_{i} \times (K_{a,i} - \frac{CL_{i}}{V_{i}})} \times \left(e^{\frac{-CL_{i}}{V_{i}} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

 $2.2 \Sigma \text{ matrix}$

Simulation

l WT

65

77

102

• • •

AGE

31

25

36

SEX

...

• • •

•••

F

Μ

М

Parameter precision (.cov) (Variance-Covariance Matrix)

$$CL_i = \theta_1 \times \frac{WT_i}{70kg}^{\theta_2} \times e^{\eta_{1,i}}$$

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^{2})$$
...
$$IPRED_{ij} = \frac{F_{i} \times Dose \times K_{a,i}}{V_{i} \times (K_{a,i} - \frac{CL_{i}}{V_{i}})} \times \left(e^{\frac{-CL_{i}}{V_{i}} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (.ext)

1. Fixed-effect

 $\theta_1, \theta_2 \dots$

2. Random-effect

 2.1Ω matrix

2.2 Σ matrix

Simulation

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	•••
65	31	F	
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

Parameter precision (.cov) (Variance-Covariance Matrix)

The incorporation of simulation components depend on the type of simulation and the question to be answered

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

 $\theta_1, \theta_2 \dots$ 2. Random-effect

1. Fixed-effect

Population parameters (.ext)

 2.1Ω matrix

2.2 Σ matrix

Deterministic Simulation-Typical Value Simulation

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$\eta_{1,i}=0$$

$$\eta_{1,i} = 0$$
...
$$IPRED_{ij} = \frac{F_i \times Dose \times K_{a,i}}{V_i \times (K_{a,i} - \frac{CL_i}{V_i})} \times \left(e^{\frac{CL_i}{V_i} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} = 0$$

 $2.2 \Sigma matrix$

Typical Workflow When Perform Typical Value Simulations

nsub: number of subjects cov_{i:} covariates (e.g., body weight, age, etc) in subject i

Deterministic Simulation-EBE simulation

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	•••
65	31	F	
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

Population parameters (_ext)

1. Fixed-effect

 θ_1 , θ_2 ...

2. Random-effect

2.1 Ω matrix

2.2 Σ matrix

Typical Workflow When Perform EBE Simulations

```
For i=1, ..., nsub

Fix \eta_i=\eta_i in model output for subject i

Fix \epsilon_{ij}=0 for subject i at time j

Derive EBE_i=f(\theta, cov_i, \eta_i) for subject i

Calculate response Y_{ij}=f(EBE_i, \epsilon_{ij}=0)

End
```

nsub: number of subjects cov_{i:} covariates (e.g., body weight, age, etc) in subject i

EBE_i: empirical Bayes estimates in subject i

Stochastic Simulation

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

Population parameters (_ext) 1. Fixed-effect $\theta_1, \theta_2 \dots$ 2. Random-effect 2.1 Ω matrix $\omega_{1,1}^2$ 2.2 Σ matrix

Typical Workflow When Perform Stochastic Simulations

```
For i=1, ..., nsub  \text{Draw sample } \boldsymbol{\eta_i} \text{ for subject i using } \boldsymbol{\Omega} \text{ matrix}   \text{*Draw sample } \boldsymbol{\epsilon_{ij}} \text{ for subject i at time j using } \boldsymbol{\Sigma} \text{ matrix/Fix } \boldsymbol{\epsilon_{ij}} = 0   \text{Derive } \boldsymbol{\theta_i} = f(\boldsymbol{\theta_i}, \mathbf{cov_i})   \text{Calculate response } \boldsymbol{Y_{ij}} = f(\boldsymbol{\theta_i}, \boldsymbol{\eta_i}, \boldsymbol{\epsilon_{ij}})   \text{End}
```

nsub: number of subjects cov_{i:} covariates (e.g., body weight, age, etc) in subject i *: this step may or may not be needed

Covariate (Virtual Patient) Simulations

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	
45	12	М	
57	15	F	•••
33	6	F	
		•••	•••

$$\eta_{1,i} \sim N(0,\omega_{1,1}^2)$$

$$\eta_{1,i} \sim N(0, \omega_{1,1}^{2})$$

$$\dots$$

$$IPRED_{ij} = \frac{F_{i} \times Dose \times K_{a,i}}{V_{i} \times (K_{a,i} - \frac{CL_{i}}{V_{i}})} \times \left(e^{\frac{CL_{i}}{V_{i}} \times t_{ij}} - e^{-K_{a,i} \times t_{ij}}\right)$$

$$OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$$

$$\epsilon_{1,ij} \sim N(0, \sigma_{1,1}^{2})$$

Population parameters (_ext) 1. Fixed-effect $\theta_1, \theta_2 \dots$ 2. Random-effect 2.1 Ω matrix $\omega_{1,1}^2$ 2.2 Σ matrix

Typical Workflow When Perform Stochastic Simulations

```
For i=1, ..., nsub  \text{Draw sample } \boldsymbol{\eta}_i \text{ for subject i using } \boldsymbol{\Omega} \text{ matrix}   \text{*Draw sample } \boldsymbol{\epsilon}_{ij} \text{ for subject i at time j using } \boldsymbol{\Sigma} \text{ matrix/Fix } \boldsymbol{\epsilon}_{ij} = 0   \text{Derive } \boldsymbol{\theta}_i = f(\boldsymbol{\theta}_i, \mathbf{cov}_i)   \text{Calculate response } \boldsymbol{Y}_{ij} = f(\boldsymbol{\theta}_i, \boldsymbol{\eta}_i, \boldsymbol{\epsilon}_{ij})   \text{End}
```

nsub: number of subjects cov_{i:} covariates (e.g., body weight, age, etc) in subject i *: this step may or may not be needed

The Importance of Realistic Covariates/Virtual Patients

```
mean WT <- mean(test1$WT)</pre>
sd_WT <- sd(test1$WT)</pre>
mean HT <- mean(test1$HT)</pre>
sd HT <- sd(test1$HT)
withr::with seed(1234,
                  test2 <- data.frame(ID=1:1000,
                                        WT=rnorm(1000, mean=mean WT, sd=sd WT),
                                        HT=rnorm(1000, mean=mean HT, sd=sd HT)
```

The Importance of Realistic Covariates/Virtual Patients

Stochastic Simulation-Multiple Replicates

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

$$\epsilon_{1,ij} \sim N(0,\sigma_{1,1}^2)$$

•••

100 simulation replicates...

e.g., Visual Predictive Check (VPC)

Typical Workflow When Perform Stochastic Simulations with Replicates

```
For i=1, ..., nrep
     Fixed population parameters (\theta_i, \Omega_i, \Sigma_i)
     For j=1, ..., nsub
          Draw sample \eta_{ij} for subject j using \Omega_i matrix
          *Draw sample \epsilon_{ijk} for subject j at time k using \Sigma_i matrix/Fix \epsilon_{ijk}=0
          Derive \theta_{ij} = f(\theta_i, cov_j)
          Calculate response Y_{ijk} = f(\theta_{ij}, \eta_{ij}, \varepsilon_{ijk})
     End
End
```

nrep: number of replicates nsub: number of subjects cov_{j:} covariates (e.g., body weight, age, etc) in subject j *: this step may or may not be needed

Simulations with Parameter Uncertainty

Simulation design:

Treatment regimen Study duration Sampling schedule

WT	AGE	SEX	•••
65	31	F	•••
77	25	М	•••
102	36	М	•••
•••	•••	•••	•••

 $OBS_{ij} = IPRED_{ij} + \epsilon_{1,ij}$

$$\epsilon_{1,ij} \sim N(0, \sigma_{1,1}^2)$$

1. Fixed-effect

 $\rightarrow \theta_1, \theta_2 \dots$ 2. Random-effect

 2.1Ω matrix

 $2.2 \Sigma \text{ matrix}$

N simulation replicates

N = number of (parameter vector) samples from uncertainty/precision distributions

Parameter uncertainty

- Parametric
 - Variance-Covariance matrix
 - Multivariate normal distribution (MVN) for fixed effects (θ)
 - Inverse wishart distribution for random effects (ω^2 , σ^2)
- Non-parametric
 - Non-parametric bootstrap (BS)
 - Sampling-importance resampling (SIR)
 - Bayesian posterior distribution

Example-parameter uncertainty distribution

ETA26	THETA27 [‡]	THETA28	THETA29 ÷	THETA30 ÷	THETA31 ÷	SIGMA11 [‡]	SIGMA21 [‡]	SIGMA22 ÷	SIGMA31 [‡]	SIGMA32 ÷	SIGMA33	SIGMA41
78.2643	173.280	4.23748	11.29380	38.4408	0.421612	0.1284490	0	0.231501	0	0	1.42394e-02	
75.4385	187.590	6.70469	10.08790	38.2204	0.770196	0.1230070	0	0.169305	0	0	5.43827e-02	
79.6005	199.938	8.32571	8.66037	34.6556	0.459137	0.1171680	0	0.225894	0	0	2.33182e-02	
87.9661	175.794	8.29748	11.13200	39.0711	0.759876	0.1244250	0	0.220386	0	0	2.17099e-02	
75.8812	191.139	6.86712	9.22780	38.4680	0.732315	0.1244530	0	0.175997	0	0	9.39109e-02	
70.3069	173.470	4.82680	14.95260	47.1471	0.579151	0.1076460	0	0.210610	0	0	7.75502e-02	
81.8855	188.210	7.74528	11.30250	44.6379	0.600335	0.1237930	0	0.179454	0	0	3.97410e-02	
66.3120	168.565	4.72414	10.55790	43.1807	0.689960	0.1142910	0	0.202239	0	0	1.01691e-01	
81.8855	188.210	7.74528	11.30250	44.6379	0.600335	0.1237930	0	0.179454	0	0	3.97410e-02	
79.9607	175.246	6.69603	13.90940	46.7332	0.495290	0.1135310	0	0.148579	0	0	9.13649e-02	
74.4892	193.416	7.24374	10.24710	37.2643	0.544433	0.1077070	0	0.238335	0	0	3.82922e-02	
74.3885	152.993	3.46359	16.16600	51.5856	0.767976	0.1066810	0	0.173881	0	0	1.10103e-01	
73.3570	172.858	7.41016	15.44230	48.3020	0.593316	0.1251960	0	0.227475	0	0	4.25733e-02	
78.1788	207.868	7.13567	7.37614	29.0706	0.386793	0.1120590	0	0.229197	0	0	1.10849e-02	
70.425	1	1			4 -:	.1 - 4:					'e-02	
72.45	1 row =	i para	meter	vector	= i simi	uation	repuca	ite			e-02	
70.1317	181.916	6.35709	10.07400	36.9336	0.614484	0.1305550	0	0.142311	0	0	3.75782e-02	
75.3637	165.523	5.40291	13.32590	47.3354	0.711567	0.1088070	0	0.197540	0	0	8.80181e-02	
81.8706	180.612	F 04744	14.58160									
01.0700	100.012	5.84744	14.36100	47.8523	0.500094	0.1133710	0	0.206229	0	0	1.66550e-02	
80.1339	193.143	10.17130	8.30131	47.8523 35.9364	0.500094 0.524376	0.1133710 0.1077170	0	0.206229 0.167458	0		1.66550e-02 4.54383e-02	
										0		
80.1339	193.143	10.17130	8.30131	35.9364	0.524376	0.1077170	0	0.167458	0	0	4.54383e-02	
80.1339 72.2611	193.143 189.345	10.17130 7.02739	8.30131 10.94060	35.9364 39.7045	0.524376 0.590808	0.1077170 0.1170220	0	0.167458 0.229699	0	0 0 0	4.54383e-02 3.47564e-02	
80.1339 72.2611 87.4499	193.143 189.345 188.969	10.17130 7.02739 5.77477	8.30131 10.94060 9.64096	35.9364 39.7045 38.2691	0.524376 0.590808 0.400700	0.1077170 0.1170220 0.1050200	0 0	0.167458 0.229699 0.186759	0 0	0 0 0	4.54383e-02 3.47564e-02 7.05388e-02	
80.1339 72.2611 87.4499 76.3858	193.143 189.345 188.969 180.004	10.17130 7.02739 5.77477 4.87934	8.30131 10.94060 9.64096 9.24225	35.9364 39.7045 38.2691 35.5641	0.524376 0.590808 0.400700 0.553712	0.1077170 0.1170220 0.1050200 0.1105240	0 0 0	0.167458 0.229699 0.186759 0.164901	0 0 0	0 0 0 0	4.54383e-02 3.47564e-02 7.05388e-02 7.51390e-02	
80.1339 72.2611 87.4499 76.3858 76.9455	193.143 189.345 188.969 180.004 167.172	10.17130 7.02739 5.77477 4.87934 6.74738	8.30131 10.94060 9.64096 9.24225 8.96678	35.9364 39.7045 38.2691 35.5641 35.6594	0.524376 0.590808 0.400700 0.553712 0.703699	0.1077170 0.1170220 0.1050200 0.1105240 0.1093990	0 0 0 0	0.167458 0.229699 0.186759 0.164901 0.166276	0 0 0 0 0	0 0 0 0 0	4.54383e-02 3.47564e-02 7.05388e-02 7.51390e-02 6.86325e-02	
80.1339 72.2611 87.4499 76.3858 76.9455 66.5364	193.143 189.345 188.969 180.004 167.172 163.174	10.17130 7.02739 5.77477 4.87934 6.74738 4.30772	8.30131 10.94060 9.64096 9.24225 8.96678 12.83680	35.9364 39.7045 38.2691 35.5641 35.6594 42.4348	0.524376 0.590808 0.400700 0.553712 0.703699 1.139320	0.1077170 0.1170220 0.1050200 0.1105240 0.1093990 0.1069100	0 0 0 0	0.167458 0.229699 0.186759 0.164901 0.166276 0.227534	0 0 0 0 0 0 0	0 0 0 0 0 0	4.54383e-02 3.47564e-02 7.05388e-02 7.51390e-02 6.86325e-02 1.81235e-02	

Typical Workflow When Perform Simulations with Parameter Uncertainty

```
For i=1, ..., nrep
    Draw a set of parameters (\theta_i, \Omega_i, \Sigma_i) from the uncertainty distribution
     For j=1, ..., nsub
         Draw sample \eta_{ij} for subject j using \Omega_{ij} matrix
          *Draw sample \epsilon_{ijk} for subject j at time k using \Sigma_i matrix/Fix \epsilon_{ijk}=0
         Derive \theta_{ij} = f(\theta_i, cov_j)
         Calculate response Y_{ijk} = f(\theta_{ij}, \eta_{ij}, \epsilon_{ijk})
    End
End
```

nrep: number of replicates nsub: number of subjects $cov_{j:}$ covariates (e.g., body weight, age, etc) in subject j *: this step may or may not be needed

The end