Maths - MP2I

Axel Montlahuc

2024/2025

	Calculs Algébriques	8
	20 Somme des carrés et des cubes	
	39 Formule de Pascal	
	41 Formule du capitaine	
	42 Formule du binôme de Newton	10
2	Logique	12
	2.17 Equivalence logiques	
•	2.17.1 Double negation	
	2.17.1 Bouble negation	
	2.17.3 Associativité	
	2.17.4 Loi de Morgan	
	2.17.5 Double implication	
	2.17.6 Distributivité	1
3	Ensembles et applications	1
	3.12 Propriétés du produit cartésien	10
	3.18 Associativité des relations	
	3.20 Propriétés des relations réciproques	
	3.23 Composition de fonctions	
	3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité	
	3.35 Composée d'injections/surjections	
	3.36 Condition nécessaire pour une composition injective/surjective	
	3.37 Réciproque et bijection	
	3.38 Inverse d'une composée de bijections	
	3.39 Condition nécessaire et suffisante de bijectivité	
•	5.39 Condition necessaire et sumsainte de bijectivite	10
4	Généralités sur les fonctions	19
	l.21 Exemple	20
	4.23 Remarque	
	1.27 Axe de symétrie	
	1.28 Centre de symétrie	
	L51 Exemple	
	1.52 Théorème de la bijection dérivable	
	1.61 Primitives d'une fonction sur un intervalle	
		2
	l.62 Exemple	
	1.65 Remarque	
	l.66 Exemple	
	1.69 Intégration par partie	
	1.70 Changement de variable	
	1.72 Exemple	
	I.74 Méthode	
	l.75 Exemple	23
5	Fonctions usuelles	2
	6.2 Propriétés du logarithme	
	6.3 Propriété fondamentale du logarithme	
	6.4 Limites usuelles de la fonction logarithme	
	5.8 Propriétés de la fonction exponentielle	
	6.9 Propriété fondamentale de l'exponentielle	
	5.15 Dérivée d'une fonction puissance	
	6.21 Croissances comparées en $+\infty$	
,	5.22 Croissances comparées en 0	
	5.43.2 Formule de trigonométrie hyperbolique	2
10	Structures algébriques	29
	.0.3 Exemple	
	0.6 Exemple	3(

11	Matrices	31
	11.11Produit matriciel	
	11.12Produit matriciel, lignes par colonnes	
	11.16Produit de deux matrices élémentaires	32
	11.17Propriétés du produit matriciel, matrice identité	33
	11.24Exemple	
	11.25Produit par bloc	
	11.27Propriétés de la transposition	
	11.31 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$	
	11.37Stabilité des matrices diagonales ou triangulaires	35
		35
	11.44Opérations	
	11.48Caractérisation de $GL_2(\mathbb{K})$	
	11.49Matrices diagonales inversibles	
	11.50Exemple	
	11.51 Matrices triangulaires inversibles	36
	11.54Exemple	38
	11.61Exemple	
	11.65 Caractérisation des matrices inversibles par les sytèmes linaires	
	11.74Système équivalents et opérations élémentaires	39
	Arithmétique	40
	12.1 Propriété fondamentale de $\mathbb Z$	
	12.4 Division euclidienne	41
	12.9 Divisibilité et multiple	
		42
		42
		43
		43
	1 0	43
	12.23Algorithme d'Euclide étendu ou théorème de Bézout	43
	12.24Application basique	44
	12.26Théorème de Bézout	44
	12.28Proposition	
	12.29Proposition	
	12.30Théorème de Gauss	
	12.31 Equation de Bézout	46
	12.32Proposition	46
	12.37Lien avec les idéaux	47
	12.38Préparation au calcul pratique d'un $pgcd$	47
	12.39 Caractérisation du $pgcd$	47
	12.40Propriétés du <i>pgcd</i>	48
	12.44Définition du PPCM	49
	12.45 Caractérisation du $ppcm$	49
	12.46Propriétés du <i>ppcm</i>	50
	12.50Propriétés	51
	12.51Petit théorème de Fermat	51
	12.52Décomposition en produit de facteurs premiers	52
	12.54Caractérisation de la valuation	53
	12.55 Valuation et décomposition en produit de facteurs premiers	53
	12.56Propriétés de la valuation	53
13	Polynômes	55
	13.6 Produit de deux polynômes	56
	13.7 Structure d'anneau de $\mathbb{A}[X]$	56
	13.11 Monômes $\dots \dots \dots$	57
	13.12Expression d'un polynôme à l'aide de l'indéterminée formelle	57
	13.26Dérivée de produits	58
	1	58
	13.34Degré d'une somme, d'un produit, d'une dérivée	59

Démonstrations - MP2I

	13.36Théorème de permanence de l'intégrité	
	$13.39 Propriété \ de \ stabilité \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	60
	13.42 Corollaire du degré d'une dérivée dans $\mathbb{K}[X],$ avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}	61
14	Suites numériques	62
	$14.18 Premier \ th\'eor\`eme \ de \ comparaison \qquad . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	
	$14.22 Unicit\'e de la limite \dots \dots$	63
	14.23Limite et inégalité	63
	14.24Convergence et bornitude	64
	14.29Minoration d'une extraction	64
	14.30Extraction d'une suite convergente	64
	14.32 Pair, impair et convergence	64
	14.34Opérations usuelles sur les limites	
	14.35 Conservation des inégalités larges par passage à la limite	
	14.37Théorème d'encadrement	
	14.38Produit d'une suite bornée par une limite nulle	
	14.39Exemple	
	14.40Comparaison puissance factorielle	
	14.41 Caractérisation séquentielle de la borne supérieure	
	14.42 Caractérisation séquentielle de la borne supérieure	
	14.48Théorème de comparaison	
	14.49Limites infinies et opérations	
	$14.50 Th\'{e}or\`{e}me \ de \ la \ limite \ monotone \qquad . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	
	14.54Exemple	
	14.55 Convergence des suites adjacentes	
	14.56Théorème de Bolzano-Weierstrass	71
	14.63Exemple	72
	14.64Exemple	72
	14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$	73
	14.68Exemple	73
	14.69Exemple	74
	14.72 Convergence et parties réelles et imaginaires	74
	14.73Théorème de Bolzano-Weierstrass pour les suites complexes	
15	Limites et continuité	7 6
	15.6 Limite en un point du domaine	77
	15.15 Comparaison des limites de deux fonctions coincidant au voisinage de a	77
	15.17Unicité de la limite, cas réel	77
	15.23Propostion	77
	15.30 Composition de limites	78
	15.32Limites et inégalités strictes	78
	15.33Limite et inégalités larges	79
	15.34 Caractérisations séquentielle de la limite d'une fonction	79
	15.39Théorème de la limite monotone	80
	15.59Théorème des valeurs intermédiaires : version 1	
		80
	15.60Théorème des valeurs intermédiaires : version 2	81
	15.61 Théorème des valeurs intermédiaires : version 3	81
	15.65Théorème de Heine	
	15.67Caractérisation des intervalles compacts	
	15.68Image d'un compact par une fonction continue	
	15.69Image d'un segment par une fonction continue	
	15.72 Théorème 15.72	82
	15.73Théorème 15.73	83
	15.76Théorème de la bijection	83

	Arithmétique des polynômes	84
	16.1 Division euclidienne	85
	16.7 Proposition 16.7	85
	$16.15 ext{Principalit\'e} ext{ de } \mathbb{K}[X]$	86
	16.17 Existence de $pgcd$	
	$16.18 ext{Principalit\'e} ext{ de } \mathbb{K}[X]$	87
	16.24Lemme de préparation au calcul pratique du PGCD unitaire	87
	16.26Exemple	88
	16.27Propriétés du PGCD	88
	16.29Existence de PPCM	88
	16.30Caractérisation des PPCM par les idéaux	89
	16.42Cas d'unicité d'une relation de Bézout	89
	16.43Corollaire	90
	16.44Caractérisation des PGCD et PPCM	90
	16.53Caractérisation des racines par la divisibilité	91
	16.56Formule de Taylor pour les polynômes	92
	16.57Caractérisation de la multiplicité par les dérivées	92
	16.59Caractérisation de la multiplicité des racines par la divisibilité	93
	16.63Polynômes formels et fonctions polynomiales	93
	16.66Caractérisation des polynômes interpolateurs	93
	16.69Corollaire	
	16.74Proposition	
	16.76Relation de Viète	
	16.88Lemme	
	$16.98 ext{Caract\'erisation}$ de la divisibilité dans $\mathbb{C}[X]$ par les racines	
	16.99Caractérisation des polynômes à coefficients réels	
	16.10Racine complexe d'un polynôme réel	
	$16.10 ext{Polynômes}$ irréductibles de $\mathbb{R}[X]$	
17	Fractions rationnelles	98
	17.2 Addition, multiplication et produit par un scalaire	99
	$17.10 \mathrm{Degr\'e}$ d'une fraction	99
	17.13Propriété du degré	99
	17.19Théorème	100
	17.20Fraction dérivée	100
	17.24Dérivée logarithmique d'un produit	100
	17.25Partie entière	101
	17.31Existence d'une décomposition	101
	17.32Théorème	102
	17.38Cas d'un pôle simple	102
	17.39Exemple	103
	$17.40\mathrm{Cas}$ d'un pôle double	103
	17.42Exemple	103
	17.44Parties polaires conjuguées d'une fraction réelle	104
	17.45Exemple	105
	17.46Exemple	105
	17.51Exemple - Calcul de la dérivée <i>n-</i> ième d'une fraction	106
	Dérivabilité	107
	18.13Condition nécessaire du premier ordre pour l'existence d'un extremum	
	18.17Théorème de Rolle	108
	18.21 Théorème des accroissements finis	108
	18.37Caractérisation par la dérivée de la variation des fonctions	109
		109

19 Convexité				1	11
19.7 Position du graphe d'une fonction convexe par rapport à ses sécante	S				
19.8 Inégalités des pentes					
19.9 Continuité et dérivabilité des fonctions convexes					
19.11 Caractérisation des fonctions convexes par les variations de la dérivé					
19.13 Caractérisation des fonctions convexes par les tangentes					
19.17Somme de fonctions convexes					
19.18Composition de fonctions convexes					
19.19Réciproque de fonctions convexes					
19.19 Reciproque de fonctions convexes					
19.24Inégalité de Jensen					
19.25 Exemple - Inégalité arithmético-géométrique					
19.26Inégalités de Holder et Minkowski		 	 	 1	1 (
20 Espace Vectoriels				1	19
20.2 Propriétés du 0, régularité				_	
20.10Espace vectoriel de référence					
20.11Transfert de structure					
20.16Caractérisation des sous-espaces vectoriels					
20.22Propostion 20.22					
20.27Intersection de sous-espaces vectoriels					
20.34Description de $Vect(X)$					
20.36Opérations sur les sous-espaces vectoriels engendrés					
20.41Somme de sous-espaces vectoriels engendrés					
20.43Description d'une somme d'un nombre fini de sous-espaces vectoriels					
20.47Unicité de l'écriture de la somme directe					
20.51Famille libre					
20.52Exemple					
20.58 Caractérisation de la liberté pour des familles infinies					
$20.60 \mathrm{Caract\acute{e}risation}$ de la liberté pour les familles infinies indexées par $\mathbb N$					
$20.61 \mathrm{Ajout}$ d'un élément à une famille libre					
20.63Généricité d'une famille libre maximale					
20.64 Caractérisation des sommes directes par la liberté					
20.65 Somme directes et caractérisation de familles libres		 	 	 1	28
20.66Familles génératrices		 	 	 1	29
20.68Stabilité des familles génératrices par ajout		 	 	 1	29
20.69Restriction d'une famille génératrice		 	 	 1	30
20.71Liberté d'une famille génératrice minimale		 	 	 1	30
20.78Famille échelonnée en degrés		 	 	 1	30
21 Applications linéaires				_	31
21.4 Exemple					
21.8 Structure de $\mathcal{L}(E,F)$					
21.10Composition de deux AL					
21.13Bilinéarité de la composition					
21.16Structure des images directes et réciproques		 	 	 1	33
21.21Famille génératrice de $Im(f)$		 	 	 1	33
21.23Réciproque d'un isomophisme		 	 	 1	34
21.41Structure de l'ensemble des polynômes annulateurs - Hors Programme	ne .	 	 	 1	34
21.52Caractérisation de l'image d'un projecteur		 	 	 1	34
21.53Diagonalisation d'un projecteur					
21.57Caractérisation géométrique des projecteurs		 	 	 1	35
21.59Diagonalisation d'une symétrie		 	 	 1	35
21.63Détermination d'une AL par l'image d'une base, ou rigidité					
21.64Exemple					
21.68 Caractérisation de l'injectivité par l'image d'une base					
21.69 Caractérisation de la surjectivité par l'image d'une base					

22	Espaces de dimension finie	139
	22.3 Nombre maximal de vecteurs linéairement indépendants	
	22.5 Algroithme de la base incomplète	140
	22.8 Théorème de la base incomplète	140
	22.11 Caractérisation de la dimension finie par le cardinal des familles libres	141
	22.12Théorème de la dimension	
	22.18 Caractérisation des bases en dimension finie	141
	22.20 Majoration du rang et cas d'égalité	142
	22.22Dimension d'un sous-espace vectoriel	
	22.23Formule de Grassmann	
	22.27 Caractérisation des couples de sous-espaces vectoriels supplémentaires	143
	22.28Existence et dimension d'un supplémentaire en dimension finie	
	22.30 Base de $\mathcal{L}(E,F)$	144
	22.32Dimension d'espaces isomorphes	
	22.35Rang d'une famille génératrice	
	22.36Existence et majoration du rang en dimension finie	
	22.39Effet d'une composition sur le rang	
	22.40Noyau et image d'une restriction	
	22.41Restriction de u à un supplémentaire de ker u	
	22.43Théorème du rang	
	22.53 Caractérisation par les supplémentaires	
	22.54Comparaison de deux équations de H	
	22.55Intersection d'hyperplans	
	VI I	
23	Sous-espaces affines	149
	23.1 Sous-espace affine	150
	23.8 Caractérisation des sous-espaces affines par leur direction et leur point	150
	23.11Fibre d'une application linéaire	
	23.13Exemple	151
24	Comparaison locale des suites	152
	$24.18 Caractérisation \ de \ l'équivalence \ par \ la \ n\'egligabilit\'e \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	24.20Equivalent d'un polynôme	
	24.31Exemple	
	24.36Exemple	
	24.43Exemple	
	24.46Exemple	156
٥-	Commencian locals des forestions	158
∠ 5	Comparaison locale des fonctions	
	25.6 Caractérisation séquentielle	
	25.20Formule de Taylor avec reste intégral de l'ordre n au point a	
	25.22Formule de Taylor-Lagrange à l'ordre n au point a évaluée en b - Hors Programme	
	25.27Formule de Taylor-Young à l'ordre n au point x_0	
	25.28Développement limité de l'exponentielle	
	25.29Développement limité du logarithme	
	25.30Développement limité de cosinus et sinus	
	25.40Unicité du DL	
	25.41DL de fonctions paires ou impaires	
	25.42Remarque	
	25.43Exemple	
	25.50Forme normalisée d'un DL au voisinage de 0	
	25.56Produit de DL	
	25.57Exemple	
	25.58Exemple	
	25.59Composition de DL	
	25.60Exemple	
	25.61 Exemple	
	25.63Exemple	
	25.65DL d'un inverse	
	25.67Exemple	169

Démonstrations - MP2I

	25.70Primitiver un DL		
	25.72Exemple		
	25.74Dérivation d'un DL		
	25.75 Exemple		
	25.78Exemple		
	25.85Exemple		172
9 e	Intérnation our un compont		174
40	Intégration sur un segment 26.12Image d'une fonction en escalier		
	26.14Subdivision commune		
	26.15Structure de l'ensemble des fonctions en escalier	•	175
	26.17Théorème		
	26.23Intégrale de deux fonctions en escalier égales presque partout		
	26.24Positivité ou croissance de l'intégrale		
	26.26Inéglité triangulaire intégrale		
	26.36Théorème		
	26.42Intégrabilité des fonctions monotones		
	26.43Intégrabilité des fonctions continues		
	26.46Relation de Chasles		
	26.49Croissance et positivité de l'intégrale		179
	$26.51 ext{Inégalité triangulaire intégrale} \dots \dots$		
	26.56Bornitude des fonctions continues par morceaux		
	26.58Intégrabilité des fonctions continues par morceaux		
	26.61Norme		
	26.63Densité		
	26.64Théorème fondamental du calcul intégral		
	26.66Limite		
	26.68Exemple		
	26.69Intégrale nulle d'une fonction positive et continue		
	26.70Somme de Riemann		
	26.72Exemple		
	$26.75 ext{Inégalité}$ triangulaire intégrale dans $\mathbb C$		184
	26.76Lemme de Riemann-Lesbegue		185
27	Séries numériques		186
	27.6 Série géométrique		
	27.11Deux séries de termes généraux égaux presque partout		
	27.12CN de convergence portant sur le terme général		
	27.16Théorème de comparaison des séries à termes positifs		
	27.20Convergence absolue entraîne convergence		188
28	Matrice d'une application linéaire		189
29	Groupe symétrique		190
30	Déterminant		191
31	Dénombrement		192
32	Espaces probabilisés finis		193
33	Variables aléatoires réelles finies		194
	Espaces préhilbertiens réels		195
	Familles sommables		196
36	Fonctions de deux variables		197

Calculs Algébriques

1.20 Somme des carrés et des cubes

— Somme des carrés :

Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n): \ll \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 »

Démontrons-la par récurrence.

Initialisation: Pour n = 0, on a:

$$\sum_{k=1}^{0} k^2 = 0$$

et:

$$\frac{0\times(0+1)\times(2\times0+1)}{6}=0$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n+1}{6}(n(2n+1) + 6(n+1))$$

$$= \frac{n+1}{6}(2n^2 + 7n + 6)$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

— Somme des cubes :

Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n): \ll \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$
 »

Démontrons-la par récurrence.

Initialisation: Pour n = 0, on a:

$$\sum_{k=1}^{0} k^3 = 0$$

et:

$$\frac{0 \times (0+1)^2}{4} = 0$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{(n+1)^2}{4} (n^2 + 4(n+1))$$

$$= \frac{(n+1)^2}{4} (n^2 + 4n + 4)$$

$$= \frac{(n+1)^2(n+2)^2}{4}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} k^2 = \frac{n^2(n+1)^2}{4}$$

1.39 Formule de Pascal

Démontrons pour tout $(n,p) \in (\mathbb{N}^*)^2$ la relation :

La relation est vraie si p > n (on a 0 = 0 + 0) et si p = n (qui donne 1 = 0 + 1).

Soit $1 \le p \le n$:

$$\binom{n-1}{p} + \binom{n-1}{p-1} = \frac{(n-1)!}{p!(n-1-p)!} + \frac{(n-1)!}{(p-1)!(n-p)!}$$

$$= \frac{(n-1)!}{(p-1)!(n-1-p)!} \left(\frac{1}{p} + \frac{1}{n-p}\right)$$

$$= \frac{(n-1)! \times n}{(p-1)!(n-1-p)! \times p(n-p)}$$

$$= \frac{n!}{p!(n-p)!}$$

$$= \binom{n}{p}$$

1.41 Formule du capitaine

Démontrons pour n et p deux entiers tels que $1 \le p \le n$ la relation :

On a:

$$n \binom{n-1}{p-1} = n \times \frac{(n-1)!}{(p-1)!(n-p)!} = p \times \frac{n!}{p!(n-p)!} = p \binom{n}{p}$$

1.42 Formule du binôme de Newton

Soit $(x,y) \in \mathbb{C}^2$. Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n) : (x + y)^n = \sum_{k=0}^n x^k y^{n-k}$$

Démontrons-la par récurrence.

Initialisation: Pour n = 0, on a:

$$(x+y)^0 = 1$$

 et

$$\sum_{k=0}^{0} \binom{0}{k} x^k y^{0-k} = \binom{0}{0} x^0 y^0 = 1$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$(x+y)^{n+1} = (x+y)(x+y)^n$$

$$= (x+y)\sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \qquad (hypothèse \ de \ r\'ecurrence)$$

$$= \sum_{k=0}^n \binom{n}{k} (x^{k+1}y^{n-k} + x^k y^{n+1-k}) \qquad (lin\'earit\'e)$$

$$= \sum_{k=0}^n \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} x^k y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k} \qquad (translation)$$

$$= x^{n+1} + \sum_{k=1}^n x^k y^{n+1-k} \binom{n}{k-1} + \binom{n}{k} + y^{n+1}$$

$$= x^{n+1} + \sum_{k=1}^n \binom{n+1}{k} x^k y^{n+1-k} + y^{n+1} \qquad (formule \ de \ Pascal)$$

$$= \sum_{k=0}^{n+1} x^k y^{n+1-k}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Logique

2.17 Equivalence logiques

2.17.1 Double négation

p	$\neg p$	$\neg(\neg p)$
V	F	V
F	V	F

On remarque que la première et la deuxième colonne sont identiques, on a donc :

$$p \iff \neg(\neg p)$$

2.17.2 Commutativité

p	q	$p \wedge q$	$q \wedge p$
V	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

On remarque que la troisième et la quatrième colonne sont identiques, on a donc :

$$p \wedge q \iff q \wedge p$$

Raisonnement analogue pour la disjonction \vee .

2.17.3 Associativité

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

On remarque que la cinquième et la septième colonne sont identiques, on a donc :

$$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$$

Raisonnement analogue pour la disjonction \vee .

2.17.4 Loi de Morgan

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

On remarque que la quatrième et la septième colonne sont identiques, on a donc :

$$\neg (p \land q) \iff (\neg p) \lor (\neg q)$$

Raisonnement analogue pour $\neg(p \lor q) \iff (\neg p) \land (\neg q)$

2.17.5 Double implication

p	q	$p \Leftrightarrow q$	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

On remarque que la troisième et la sixième colonne sont identiques, on a donc :

$$(p \Leftrightarrow q) \iff ((p \Rightarrow q) \land (q \Rightarrow p))$$

2.17.6 Distributivité

p	q	r	$p \wedge q$	$r \lor (p \land q)$	$r \lor p$	$r \lor q$	$(r \lor p) \land (r \lor q)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	V	F	F
F	V	V	F	V	V	V	V
F	V	F	F	F	F	V	F
F	F	V	F	V	V	V	V
F	F	F	F	F	F	F	F

On remarque que la cinquième et la huitième colonne sont identiques, on a donc :

$$r \vee (p \wedge q) \iff (r \vee p) \wedge (r \vee q)$$

Ensembles et applications

3.12 Propriétés du produit cartésien

Soit x et y. On a :

1.

$$(x,y) \in E \times F \Leftrightarrow x \in E \text{ et } y \in F$$

Donc $(x,y) \notin E \times F \Leftrightarrow x \notin E \text{ ou } y \notin F$

2.

$$E \times F \neq \emptyset \Leftrightarrow \exists (x,y) \in E \times F$$

$$\Leftrightarrow \exists x \in E \text{ et } \exists y \in F$$

$$\Leftrightarrow E \neq \emptyset \text{ et } F \neq \emptyset$$

$$\Leftrightarrow \text{non } (E = \emptyset \text{ ou } F = \emptyset)$$

3.

$$E \times F = F \times E \Leftrightarrow \begin{cases} E \times F = F \times E \text{ et } E = \emptyset \\ E \times F = F \times E \text{ et } F = \emptyset \\ E \times F = F \times E \text{ et } E \neq \emptyset \text{ et } F \neq \emptyset \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall (x,y) \in E \times F, (x,y) \in F \times E \text{ et } \forall (a,b) \in F \times E, (a,b) \in E \times F \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

4.

$$\begin{split} (x,y) \in (E \times F) \cup (F \times G) &\Leftrightarrow (x,y) \in E \times F \text{ ou } (x,y) \in F \times G \\ &\Leftrightarrow (x \in E \text{ et } y \in F) \text{ ou } (x \in F \text{ et } y \in G) \\ &\Leftrightarrow x \in E \text{ et } y \in F \cup G \end{split}$$

5.

$$\begin{split} (x,y) \in (E \times F) \cap (G \times H) &\Leftrightarrow (x,y) \in E \times F \text{ et } (x,y) \in G \times H \\ &\Leftrightarrow x \in E \text{ et } y \in F \text{ et } x \in G \text{ et } y \in H \\ &\Leftrightarrow x \in E \cap G \text{ et } y \in F \cap H \\ &\Leftrightarrow (x,y) \in (E \cap G) \times (F \cap H) \end{split}$$

3.18 Associativité des relations

Les ensembles de départ et d'arrivée sont bien égaux (à E et H respectivement). Soit $(x,y) \in E \times H$

$$x(\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R}y \Leftrightarrow \exists z \in F, x(\mathcal{T} \circ \mathcal{S})z \text{ et } z\mathcal{R}y$$

$$\Leftrightarrow \exists z \in F, \exists v \in G, (x\mathcal{T}v \text{ et } v\mathcal{S}z) \text{ et } z\mathcal{R}y$$

$$\Leftrightarrow \exists z \in F, \exists v \in G, x\mathcal{T}v \text{ et } (v\mathcal{S}z \text{ et } z\mathcal{R}y)$$

$$\Leftrightarrow \exists v \in G, x\mathcal{T}v \text{ et } v(\mathcal{S} \circ \mathcal{R})y$$

$$\Leftrightarrow x\mathcal{T} \circ (\mathcal{S} \circ \mathcal{R})y$$

3.20 Propriétés des relations réciproques

— RAF

— Les ensembles de départ sont égaux respectivement à E et à G. Soit $(x,y) \in G \times E$. On a :

$$x\mathcal{R}^{-1} \circ \mathcal{S}^{-1}y \Leftrightarrow \exists \alpha \in F, x\mathcal{S}^{-1}\alpha \text{ et } \alpha\mathcal{R}^{-1}y$$

 $\Leftrightarrow \exists \alpha \in F, \alpha\mathcal{S}x \text{ et } y\mathcal{R}\alpha$
 $\Leftrightarrow y\mathcal{S} \circ \mathcal{R}x$
 $\Leftrightarrow x(\mathcal{R} \circ \mathcal{S})^{-1}y$

3.23 Composition de fonctions

Soit f une fonction de E vers F. Soit g une fonction de E vers G.

 $g \circ f$ est une relation de E vers G

Soit $(x, y, y') \in E \times G \times G$. On suppose

$$\begin{cases} x(g \circ f)y \\ x(g \circ f)y' \end{cases}$$

Donc on choisit α dans F tel que :

$$xf\alpha$$
 et αgy

et β dans F tel que :

$$xf\beta$$
 et $\beta gy'$

Or f est une fonction, donc $\alpha = \beta$.

Donc αgy et $\alpha gy'$, or g est une fonction, donc y=y'. Par définition, $g\circ f$ est une fonction.

3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité

```
\frac{\text{Injectivit\'e}:}{\text{Soit }(x,x')\in E^2.} On suppose que f(x)=f(x'). 
 \vdots Donc x=x'. \frac{\text{Surjectivit\'e}:}{\text{Soit }y\in F.} \vdots On choisit ... tel que : \vdots Donc f(x)=y
```

Bijectivité:

Pour la bijectivité, on montre l'injectivité et la surjectivité séparément.

3.35 Composée d'injections/surjections

Soit
$$f: E \to F$$
 et $g: F \to G$.

— On suppose que f et g sont injectives. Soit $(x, x') \in E^2$.

On suppose que
$$g \circ f(x) = g \circ f(x')$$

Donc $g(f(x)) = g(f(x'))$
Donc $f(x) = f(x')$ (g est injective)
Donc $x = x'$ (f est injective)

— On suppose que f et g sont surjectives.

Soit $y \in G$.

Par surjectivité de g, on choisit $\alpha \in F$ tel que $g(\alpha) = y$.

Par surjectivité de f, on choisit $x \in E$ tel que $f(x) = \alpha$.

Donc $g \circ f(x) = y$.

Donc $q \circ f$ est surjective.

3.36 Condition nécessaire pour une composition injective/surjective

— Soit $(x, x') \in E^2$ tels que :

$$f(x) = f(x')$$

Donc $g(f(x)) = g(f(x'))$
Donc $x = x'$

Donc f est injective.

— On suppose $g \circ f$ surjective. Soit $y \in G$. Soit $\alpha \in E$ tel que $g \circ f(\alpha) = y$. On pose $x = f(\alpha) \in F$. Donc g(x) = y Donc g est surjective.

3.37 Réciproque et bijection

Soit $f: E \to F$ et f^{-1} la relation réciproque de f — f^{-1} est une fonction si et seulement si f est injective. — Si f^{-1} est une fonction, c'est une application. ssi. $Def(f^{-1}) = F$ ssi. f est surjective.

3.38 Inverse d'une composée de bijections

Propositions (3.35), (3.27) et (3.20)

3.39 Condition nécessaire et suffisante de bijectivité

 \Longrightarrow On suppose que f est bijective. On pose $g=f^{-1}$ sa bijection réciproque. On a bien $g\circ f=id_E$ et $f\circ g=id_F$.

Soit $g: F \to E$ vérifiant $g \circ f = id_E$ et $f \circ g = id_F$. En particulier, $g \circ f$ est injective, donc f est injective. En particulier, $f \circ g$ est surjective, donc f est surjective. Donc f est bijective. Or $f \circ g = id_F$. Donc $f^{-1} \circ f \circ g = f^{-1} \circ id_F$. Soit $g = f^{-1}$.

Généralités sur les fonctions

4.21 Exemple

On suppose que $f \geq g$. Ainsi :

$$|f - g| = f - g \Leftrightarrow \frac{f + g + |f - g|}{2} = f$$

4.23 Remarque

Soit $a \in \mathbb{Q}^*$. Soit $x \in \mathbb{R}$.

- Si $x \in \mathbb{Q}$, alors $x + a \in \mathbb{Q}$, donc $\mathbb{1}_{\mathbb{Q}}(x + a) = 1 = \mathbb{1}_{\mathbb{Q}}(x)$.
- Si $x \notin \mathbb{Q}$, alors $x + a \notin \mathbb{Q}$, donc $\mathbb{1}_{\mathbb{Q}}(x + a) = 0 = \mathbb{1}_{\mathbb{Q}}(x)$.

4.27 Axe de symétrie

Soit $f: I \to \mathbb{R}$ une fonction et \mathcal{C}_f sa courbe représentative.

Soit $(x, x') \in I^2$.

M et M' sont symétriques par rapport x = a

ssi.
$$\begin{cases} a = \frac{x+x'}{2} \\ f(x) = f(x') \end{cases}$$

ssi.
$$\begin{cases} x' = 2a - x \\ f(x) = f(x') \end{cases}$$

4.28 Centre de symétrie

On reprend les mêmes notations qu'à la (4.27).

M et M' sont symétriques par rapport à A(a,b)

ssi.
$$\begin{cases} a = \frac{x+x'}{2} \\ b = \frac{f(x)+f(x')}{2} \end{cases}$$

ssi.
$$\begin{cases} x' = 2a - x \\ f(x') = 2b - f(x) \end{cases}$$

4.51 Exemple

- 1. $f'(x) = -\frac{2x+1}{(x+x^2)^2}$
- 2. $f'(x) = -\frac{1}{2x\sqrt{x}}e^{\frac{1}{\sqrt{x}}}$
- 3. $f'(x) = -3\frac{e^x(x-1)}{x^2}\sin\left(\frac{e^x}{x}\right)\cos^2\left(\frac{e^x}{x}\right)$

4.52 Théorème de la bijection dérivable

On suppose la dérivabilité de f^{-1} . Par définition :

$$f \circ f^{-1} = \mathrm{Id}_I$$

D'après la proposition (4.48.4), on a :

$$(f^{-1})' \circ f' \times f^{-1} = (f \circ f^{-1})'$$
$$= \operatorname{Id}'_I$$
$$= 1$$

Comme f ne s'annule pas sur I, on a :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

4.61 Primitives d'une fonction sur un intervalle

— Si F et G sont deux primitives de f sur l'intervalle I, alors :

$$\forall n \in I, (F - G)'(x) = F'(x) - G'(x)$$
$$= f(x) - f(x)$$
$$= 0$$

Comme I est un intervalle, F - G est constante (4.53).

Réciproquement, pour tout $a \in \mathbb{R}$, F + a est aussi une primitive de f sur I.

— Soit G une primitive de f sur I. Soit $a \in \mathbb{R}$ et $x_0 \in I$. Or pour $F = G + a - G(x_0)$, F est une primitive de f sur I et F(x) = a.

L'unicité est donnée par le point précédent.

4.62 Exemple

1. Sur $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. Pour tout $x \in I$,

$$\tan x = \frac{\sin x}{\cos x}$$
$$= -\frac{\sin x}{\cos x}$$

La primitive de tan sur I est : $x \mapsto -\ln|\cos x| = \ln\cos x$.

2. Sur $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

$$\forall x \in I$$
, $\tan^2 x = \tan^2 x + 1 - 1$

Une primitive de $\tan^2 \operatorname{sur} I \operatorname{est} : x \mapsto \tan x - x$.

3. Sur $I = \mathbb{R}$.

$$\forall x \in \mathbb{R}, x\sqrt{1+x^2} = x(1+x^2)^{\frac{1}{2}}$$
$$= \frac{1}{2} \times 2x \times (1+x^2)^{\frac{1}{2}}$$

Une primitive de $x \mapsto x(1+x^2)^{\frac{1}{2}}$ sur \mathbb{R} est : $x \mapsto \frac{1}{2} \times \frac{2}{3}(1+x^2)^{\frac{3}{2}} = \frac{1}{3}(1+x^2)^{\frac{3}{2}}$.

4. Sur $I = \mathbb{R}_+^*$.

$$\forall x > 0, \frac{\ln x}{x} = \frac{1}{x} \ln x$$

Une primitive de $x \mapsto \frac{\ln x}{x}$ sur \mathbb{R}_+^* est : $x \mapsto \frac{1}{2} \ln^2 x$.

4.65 Remarque

 $G: y \mapsto yg(y) - F(g(y)) + \lambda, \lambda \in \mathbb{R}.$

$$G'(y) = g(y) + yg'(y) - g'(y)f(g(y))$$

$$= g(y) + yg'(y) - g'(y)y$$

$$= g(y)$$

4.66 Exemple

$$\left| \int_{-1}^{1} \frac{t^{n}}{1+t^{2}} dt \right| \leq \int_{-1}^{1} \frac{|t^{n}|}{1+t^{2}} dt \qquad (Inégalité triangulaire)$$

$$\leq \int_{-1}^{1} |t|^{n} dt \qquad (\forall t, \frac{|t|^{n}}{1+t^{2}} \leq |t|^{n})$$

$$= (-1)^{n} \int_{-1}^{0} t^{n} dt + \int_{0}^{1} t^{n} dt \qquad (Relation de Chasles)$$

$$= (-1)^{n} \left[\frac{t^{n+1}}{n+1} \right]_{-1}^{0} + \left[\frac{t^{n+1}}{n+1} \right]_{0}^{1}$$

$$= -\frac{(-1)^{n} (-1)^{n+1}}{n+1} + \frac{1}{n+1}$$

$$= \frac{2}{n+1}$$

4.69 Intégration par partie

$$\int_{a}^{b} f'(t)g(t) dt + \int_{a}^{b} f(t)g'(t) dt = \int_{a}^{b} (f'(t)g(t) + f(t)g'(t)) dt$$
$$= \int_{a}^{b} (fg)'(t) dt$$
$$= [f(t)g(t)]_{a}^{b}$$

4.70 Changement de variable

Comme f est une fonction continue sur [a,b], on choisit une primitive F de f sur [a,b]. (Théorème fondamental du calcul in Ainsi :

$$\int_{u(a)}^{u(b)} f(t) dt = [F(t)]_{u(a)}^{u(b)}$$
$$= F \circ u(b) - F \circ u(a)$$

Or:

$$\int_a^b f(u(t))u'(t) dt = \int_a^b F'(u(t)) \times u'(t) du(t)$$
$$= [F \circ u(t)]_a^b$$

4.72 Exemple

Si $x = \sin t$, alors $dx = \cos t dt$. Pour t = 0, $x = \sin 0 = 0$. Pour $t = \frac{\pi}{2}$, $x = \sin \frac{\pi}{2} = 1$. Or $t \mapsto \sin t \in \mathcal{C}^1(\left[0; \frac{\pi}{2}\right], \mathbb{R})$. D'après le théorème de changement de variable :

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} t} \cos t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2} t} \cos t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \, dt$$

$$= \left[\frac{1}{4} \sin 2t \right]_{0}^{\frac{\pi}{2}} + \frac{\pi}{4}$$

$$= \frac{\pi}{4}$$

4.74 Méthode

Pour tout $x \in \mathbb{R} \setminus \{a; b\}$, trouver c et d tel que $\frac{\alpha x + \beta}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}$:

$$\frac{\alpha x + \beta}{(x - b)} = c + \frac{d(x - a)}{(x - b)}$$
(On multiplie par $(x - a)$)
$$c = \frac{\alpha a + \beta}{a - b}$$

$$d = \frac{\alpha b + \beta}{b - a}$$
($x = a$)
$$(x = b)$$

4.75 Exemple

$$f: x \mapsto \frac{2x-1}{(x+1)(x-3)} = \frac{4}{3(x+1)} + \frac{4}{5(x-3)}$$

Une primitive de f sur] -1;3[est : $x\mapsto \frac{3}{4}\ln|x+1|+\frac{5}{4}\ln|x-3|=\frac{3}{4}\ln(x+1)+\frac{5}{4}\ln(x-3)$

Fonctions usuelles

5.2 Propriétés du logarithme

Par définition, ln est définie et dérvable sur \mathbb{R}_+^* et :

$$\forall x > 0, \ln'(x) = \frac{1}{x}$$

On montre par récurrence sur $n \geq 1$ que

"In est dérivable
$$n$$
 fois et $\forall n > 0, \ln^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ "

<u>Initialisation:</u>

La propriété est vraie pour n = 1.

<u>Hérédité</u>:

 $\overline{\text{Si elle est}}$ vraie pour $n \geq 1$, par théorème d'opérations, $\ln^{(n)}$ est encore dérivable et :

$$\forall x > 0, ln^{(n+1)}(x) = \left[\ln^{(x)}\right](x)$$

= $(-1)^n n! x^{-n-1}$

Comme $\ln' > 0$ sur \mathbb{R}_+^* , alors \ln est strictement croissante sur \mathbb{R}_+^* .

5.3 Propriété fondamentale du logarithme

On montre seulement la propriété pour a>0 et b>0. On fixe b>0 et on considère :

$$f: \mathbb{R}_+^* \to \mathbb{R}; x \mapsto \ln(xb)$$

Par composition, $f \in \mathcal{D}^1(\mathbb{R}_+^*, \mathbb{R})$ et :

$$\forall x > 0, f'(x) = b \times \frac{1}{xb} = \frac{1}{x}$$

Donc f est une primitive de $\frac{1}{x}$ sur \mathbb{R}_+^* . On choisit $c \in \mathbb{R}$ tel que :

$$f = \ln + c$$

En particulier:

$$f(1) = \ln 1 + c$$

Soit:

$$\ln b = c$$

Ainsi:

$$\forall x > 0, \ln(xb) = \ln x + \ln b$$

On a par conséquent :

$$\forall x \in \mathbb{R}_+^*, 0 = \ln 1$$
$$= \ln(x \times \frac{1}{x})$$
$$= \ln x + \ln \frac{1}{x}$$

Donc pour a > 0 et b > 0, on a :

$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right)$$
$$= \ln a + \ln\frac{1}{b}$$
$$= \ln a - \ln b$$

5.4 Limites usuelles de la fonction logarithme

On commence par montrer que :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

On sait que ln est croissante sur \mathbb{R}_+^* , donc d'après le théorème de la limite monotone :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$
 ou $\ln x \xrightarrow[x \to +\infty]{} \lambda$

Soit $n \ge 1$. On a :

$$\ln n = \int_{1}^{n} \frac{dt}{t}$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{t}$$

$$\geq \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{k+1}$$

$$= \sum_{k=1}^{n-1} \frac{1}{k+1}$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1$$

Or:

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1 \underset{n \to +\infty}{\longrightarrow} +\infty$$

Par théorème de comparaison :

$$\ln n \underset{n \to +\infty}{\longrightarrow} +\infty$$

Donc:

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

Enfin:

$$\forall x > 0, \ln x = -\ln\left(\frac{1}{x}\right)$$

Donc par composition:

$$\ln x \underset{x \to 0^+}{\longrightarrow} -\infty$$

Par taux d'accroissement, en introduisant :

$$f: \mathbb{R}_+ \to \mathbb{R}; x \mapsto \ln(1+x)$$
$$f \in \mathcal{D}^1(\mathbb{R}_+, \mathbb{R})$$
$$\frac{\ln(x+1)}{x} = \frac{f(x) - f(0)}{x - 0} f'(0) = 1$$

5.8 Propriétés de la fonction exponentielle

D'après les résultas précédents (5.2), (5.4), on applique le théorème de la bijection dérivable. La fonction exponentielle est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \exp' x = \frac{1}{\ln' \circ \exp x}$$
$$= \exp x$$

On obtient directement que $\exp \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}_{+}^{*})$ et que $\exp^{(n)} = \exp n$ pour tout $n \in \mathbb{N}$.

5.9 Propriété fondamentale de l'exponentielle

Soit $(x,y) \in \mathbb{R}^2$. On choisit $(a,b) \in (\mathbb{R}_+^*)^2$ tel que :

$$x = \ln a$$
 et $y = \ln b$

Ainsi:

$$\exp(x + y) = \exp(\ln a + \ln b)$$

$$= \exp(\ln(ab))$$

$$= ab$$

$$= \exp x \times \exp y$$

Ainsi, $\exp 0 = \exp(0+0) = \exp^2 0$.

Donc $\exp 0 \in \{0, 1\}$

Or exp est à valeur dans \mathbb{R}^*_{\perp} , donc exp 0 = 1, donc :

$$\forall x \in \mathbb{R}_+^*, \exp 0 = \exp(x - x) = \exp x \times \exp(-x) = 1$$

5.15 Dérivée d'une fonction puissance

Soit y > 0. On pose $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto y^x = \exp(x \ln y)$. $f \in \mathcal{D}^1(\mathbb{R}, \mathbb{R})$, donc par composition :

$$\forall x \in \mathbb{R}, f'(x) = \ln y \times \exp(x \ln y)$$
$$= \ln y \times y^{x}$$

5.21 Croissances comparées en $+\infty$

1. On commence par montrer que $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$. Soit x > 1. On a :

$$0 \le \frac{\ln x}{x} = \frac{1}{x} \int_{1}^{x} \frac{dt}{t}$$

$$\le \frac{1}{x} \int_{1}^{x} \frac{dt}{\sqrt{t}}$$

$$= \frac{1}{x} \left[2\sqrt{t} \right]_{1}^{x}$$

$$= \frac{2(\sqrt{x} - 1)}{x}$$

$$= 2\left(\frac{1}{\sqrt{x}} - \frac{1}{x} \right)$$

$$\xrightarrow{x \to +\infty} 0$$

D'après le théorème d'encadrement, $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$.

Soit a > 0 et x > 0:

$$\frac{\ln x}{x^a} = \frac{1}{a} \times \frac{\ln x^a}{x^a} \underset{x \to +\infty}{\longrightarrow} 0$$

(composition et théorème d'opérations)

2. On utilise le changement de variable :

$$x = (\ln y)^{\frac{1}{a}}$$
, soit $y = e^{ax}$

Ainsi:

$$\frac{x^a}{e^x} = \frac{\ln y}{y^{\frac{1}{a}}} \underset{x \to +\infty}{\longrightarrow} \begin{cases} 0 \text{ par composition si } a > 0 \\ 0 \text{ par th\'eor\'eme d'op\'erations si } a \leq 0 \end{cases}$$

5.22 Croissances comparées en 0

On utilise la proposition (5.21.1) avec $y = \frac{1}{x}$.

5.43.2 Formule de trigonométrie hyperbolique

Soit $(a, b) \in \mathbb{R}^2$.

$$ch(a)ch(b) + sh(a)sh(b) = \frac{(e^a + e^{-a})(e^b + e^{-b})}{4} + \frac{(e^a - e^{-a})(e^b - e^{-b})}{4}$$
$$= \frac{2e^{a+b} + 2e^{-(a+b)}}{4}$$
$$= ch(a+b)$$

Structures algébriques

10.3 Exemple

Exemple

Soit E =]-1;1[. Pour $(x,y) \in E^2$, on pose : $x \star y = \frac{x+y}{1+xy}$. Montrer que l'on définit ainsi une lci dans E.

On fixe $y \in E$. On note $\varphi : [-1;1] \to \mathbb{R}; x \mapsto x \star y = \frac{x+y}{1+xy}$. $\varphi \in \mathcal{D}^1([-1;1],\mathbb{R})$ et :

$$\forall x \in E, \varphi'(x) = \frac{1 + xy - y(x + y)}{(1 + xy)^2}$$
$$= \frac{1 - y^2}{(1 + xy)^2}$$
$$> 0$$

Comme E est un intervalle : φ est strictement croissante sur E et :

$$\forall x \in E, -1 = \varphi(-1) < \varphi(x) < \varphi(1) = 1$$

Donc:

$$\forall (x,y) \in E^2, x \star y \in E$$

10.6 Exemple

Exemple

Soit E =]-1;1[. Pour $(x,y) \in E^2$, on pose $x\star y = \frac{x+y}{1+xy}$. Montrer que \star est associative et commutative.

- -- <u>Commutativité</u> : RAF
- -- Associativité :

Soit $(x, y, z) \in E^3$. On a:

$$x \star (y \star z) = x \star \left(\frac{y+z}{1+yz}\right)$$

$$= \frac{x + \frac{y+z}{1+yz}}{1 + x\frac{y+z}{1+yz}}$$

$$= \frac{x(1+yz) + y + z}{1 + yz + xy + xz}$$

$$= \frac{x + y + z + xyz}{1 + yz + xy + xz}$$

C'est une expression symétrique en x, y et z donc :

$$x \star (y \star z) = (x \star y) \star z$$

Matrices

11.11 Produit matriciel

$$\begin{pmatrix} 2 & 8 & 4 \\ -1 & -1 & -1 \\ 2 & 0 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} -2 & 6 & 2 \\ 6 & -10 & -6 \end{pmatrix}$$

11.12 Produit matriciel, lignes par colonnes

$$-A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \text{ et } C_i = \begin{pmatrix} 0 \\ \vdots \\ i \\ \vdots \\ 0 \end{pmatrix} = (\delta_{ij})_{1 \le j \le p} \in \mathcal{M}_{p,1}(\mathbb{K})$$

$$(AC_i)_{k,1} = \sum_{l=1}^p a_{kl}(C_i)_{l,1}$$

$$= \sum_{l=1}^p a_{kl}\delta_{il}$$

$$= a_{ki}$$

$$-L_j = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix} = (\delta_{ji})_{1 \le i \le n}$$

$$(L_jA)_{1k} = \sum_{l=1}^n (L_j)_{1,e} \times a_{ek}$$

$$= \sum_{l=1}^n \delta_{je}a_{lk}$$

— On note
$$A = \begin{pmatrix} C_1 & | \dots | & C_p \end{pmatrix}$$
 et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \sum_{k=1}^p x_k \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$

$$AX = \sum_{k=1}^{p} x_k A \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \sum_{k=1}^{p} x_{kC_k}$$

11.16 Produit de deux matrices élémentaires

Soit $1 \le k \le n; 1 \le l \le m$

$$(E_{ij} \times E_{rs})_{k,l} = \sum_{p=1}^{t} (E_{ij})_{kp} \times (E_{rs})_{pl}$$

$$= \sum_{p=1}^{t} \delta_{ik} \delta_{pj} \delta_{rp} \delta_{sl}$$

$$= \delta_{rj} \delta_{ik} \delta_{sl}$$

$$= \delta_{rj} (E_{is})_{kl}$$
Donc $E_{ij} \times E_{rs} = \delta_{jr} E_{is}$

11.17 Propriétés du produit matriciel, matrice identité

— Soit
$$(A, B, C) \in \mathcal{M}_{i,p}(\mathbb{K}) \times \mathcal{M}_{q,r}(\mathbb{K})$$

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$

$$[(AB)C]_{il} = \sum_{t=1}^{q} (AB)_{it} C_{tl}$$

$$= \sum_{t=1}^{q} \sum_{k=1}^{p} A_{ik} B_{kt} C_{tl}$$

$$= \sum_{k=1}^{p} A_{ik} \sum_{t=1}^{q} B_{kt} C_{tl}$$

$$= \sum_{k=1}^{p} A_{ik} (BC)_{kl}$$

$$= (A(BC))_{il}$$

- RAF
- RAF

11.24 Exemple

On écrit
$$A = I_3 + N$$
 avec $N = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

$$N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Soit $k \in \mathbb{N}$. Comme I_3 et N commutent,

$$A^{k} = (I_{3} + N)^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} N^{i}$$

$$= I_{3} + {k \choose 1} N$$

$$= I_{3} + kN$$

$$= \begin{pmatrix} 1 & k & 2k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(Binôme de Newton)
$$(N^{2} = 0)$$

11.25 Produit par bloc

On le fait pour un bloc. Soit $1 \le i \le n$ et $1 \le j \le s$.

$$\begin{bmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix} \Big]_{i,j} = \sum_{k=1}^{p+q} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj}
= \sum_{k=1}^{p} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj} + \sum_{k=p+1}^{p+q} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj}
= \sum_{k=1}^{p} A_{ik} A'_{kj} + \sum_{k=1}^{q} C_{ik} B_{kj}
= (AA' + CB')_{ij}$$

11.27 Propriétés de la transposition

- RAF
- RAF
- Soit $(i, j) \in [1, q] \times [1, n]$

$$[^{t}(AB)]_{ij} = (AB)_{ji}$$

$$= \sum_{k=1}^{p} A_{jk} B_{ki}$$

$$= \sum_{k=i}^{p} [^{t}B]_{ik} [^{t}A]_{kj}$$

$$= [^{t}B^{t}A]_{ij}$$

11.31 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\lambda \in \mathbb{K}$.

— Trace d'une somme de matrices :

$$tr(A+B) = \sum_{i=1}^{n} (A+B)_{ii}$$
$$= \sum_{i=1}^{n} A_{ii} + B_{ii}$$
$$= \sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} B_{ii}$$
$$= tr(A) + tr(B)$$

— Trace d'un produit par un scalaire :

$$tr(\lambda A) = \sum_{i=1}^{n} (\lambda A)_{ii}$$
$$= \lambda \sum_{i=1}^{n} A_{ii}$$
$$= \lambda tr(A)$$

— Trace d'un produit de matrices :

$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} B_{ki} A_{kj}$$

$$= \sum_{k=1}^{n} (BA)_{kk}$$

$$= tr(BA)$$

11.33 Exemple

On suppose A et B solutions. Donc $AB - BA = I_n$ Donc $tr(AB - BA) = tr(I_n) = n$ Or tr(AB - BA) = 0Absurde.

11.37 Stabilité des matrices diagonales ou triangulaires

On montre le résultat pour les matrices triangulaires supérieures (ensemble noté $\mathcal{T}_n^+(\mathbb{K})$). Soit $(A,B) \in \mathcal{T}_n^+(\mathbb{K})^2$. On a bien $A+B \in \mathcal{T}_n^+(\mathbb{K})$ et aussi $\lambda A \in \mathcal{T}_n^+(\mathbb{K})$ pour tout $\lambda \in \mathbb{K}$ Soit i>j, on a :

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

-- Si
$$i > j$$
, $A_{ik} = 0$.
-- Si $i = j$, $B_{kj} = 0$.

Donc $(AB)_{ij} = 0$.

Donc $AB \in \mathcal{T}_n^+(\mathbb{K})$.

Si
$$(AB) \in \mathcal{T}_n^+(\mathbb{K})^2$$
, alors $^t(AB) = \underbrace{^tB}_{\in \mathcal{T}_n^+(\mathbb{K})} \times \underbrace{^tA}_{\in \mathcal{T}_n^+(\mathbb{K})} \in \mathcal{T}_n^+(\mathbb{K})$

Donc $AB \in \mathcal{T}_n^+(\mathbb{K})$

Le résultat est vrai pour les matrices diagonales, à la fois triangulaires supérieures et inférieures.

11.41 Nilpotence des matrices triangulaires

Soit $T \in \mathcal{T}_n^{++}(\mathbb{K})$.

On va montrer par récurrence sur $k \in [1, n]$ que :

$$\text{" } T^k = \begin{pmatrix} O & - & O & - & \triangle \\ & & & & | \\ & & & O \\ & & & & | \\ & & & O \end{pmatrix} \text{"}$$

C'est-à-dire que pour tout $(i,j) \in [\![1,n]\!]^2, i+k-1 \geq j \Rightarrow T^k_{ij} = 0$. On suppose le résultat vrai pour $k \in [\![1,n-1]\!]$. Soit $i+k \geq j$.

$$(T^{k+1})_{ij} = (T^k T)_{ij}$$

= $\sum_{p=1}^{n} T_{ip}^k T_{pj}$

- Si
$$p \le i + k - 1$$
, $T_{ip}^k = 0$
- Si $p \ge i + k$, $T_{pj} = 0$

Donc $(T^{k+1})_{ij} = 0$.

Par réccurence, P(k) est vrai pour tout $k \in [1, n]$. En particulier, pour k = n, on obtient $T^n = 0$.

11.44 Opérations

$$\begin{array}{ll} - \ ^tA \times ^t (A^{-1}) = ^t (A^{-1}A) = ^t I_n = I_n \\ - \ ^t(A^{-1}) \times ^tA = ^t (AA^{-1}) = ^t I_n = I_n \\ \operatorname{Donc}(^tA)^{-1} = ^t (A^{-1}) \end{array}$$

11.48 Caractérisation de $GL_2(\mathbb{K})$

On note
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 et $N = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

$$M.N = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$
$$= \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$
$$= det(M)I_2$$

- Si $det(M) \neq 0$, alors $M \times \left(\frac{1}{det(M)}N\right) = I_2$. Donc M est inversible et $M^{-1} = \frac{1}{det(M)}N$. Si det(M) = 0, alors M.N = 0 donc M n'est pas inversible.

11.49 Matrices diagonales inversibles

Soit
$$D = Diag(\lambda_1, \ldots, \lambda_n)$$
.

On suppose que:

$$\forall i \in [1, n], \lambda_i \neq 0$$

$$D \times Diag(\lambda_1^{-1}, \dots, \lambda_n^{-1}) = Diag(\lambda_1 \times \lambda_1^{-1}, \dots, \lambda_n \times \lambda_n^{-1})$$
$$= Diag(1, \dots, 1)$$
$$= I_n$$

Donc D est inversible et

$$D^{-1} = Diag(\lambda_1^{-1}, \dots, \lambda_n^{-1})$$

Par contraposée, soit $i \in [1, n]$ tel que $\lambda_i = 0$.

$$D \times Diag(0, \dots, \underbrace{1}_{i^{\text{ème}} \text{ place}}, \dots, 0) = 0$$

Donc D est un diviseur de 0, donc D n'est pas inversible.

11.50Exemple

On a:

$$\begin{pmatrix} 1 & & & a_{1n} \\ & \ddots & & \vdots \\ & & a_{n-1,n} \\ & & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & & -a_{1n} \\ & \ddots & & \vdots \\ & & & -a_{n-1,n} \\ & & & 1 \end{pmatrix} = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & \vdots \\ & & & 0 \\ & & & 1 \end{pmatrix}$$

Matrices triangulaires inversibles 11.51

On raisonne par récurrence forte sur $n \in \mathbb{N}^*$. Pour n = 1 RAF.

Pour n = 2, RAS (11.48).

On suppose le résultat vrai pour $n \in \mathbb{N}^*$.

Soi $T \in \mathcal{T}_{n+1}^+(\mathbb{K})$. Donc T est de la forme :

$$T = \begin{pmatrix} \mathcal{U} & X \\ 0 & a \end{pmatrix} \quad \text{avec } \mathcal{U} \in \mathcal{T}_n^+(\mathbb{K}), \, X \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ et } a \in \mathbb{K}$$

 \Rightarrow

On $\overline{\operatorname{suppose}}$ que la diagonale de T ne contient aucun 0.

Donc \mathcal{U} est inversible d'après l'hypothèse de réccurence.

On choisit $V \in \mathcal{T}_n^+(\mathbb{K})$ tel que (Hypothèse de récurrence).

$$UV = I_n$$

On a:

$$T \times \begin{pmatrix} V & 0 \\ 0 & \underline{a^{-1}} \\ a \neq 0 \end{pmatrix} = \begin{pmatrix} \mathcal{U} & X \\ 0 & a \end{pmatrix} \begin{pmatrix} V & 0 \\ 0 & a^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} U_n & a^{-1}X \\ 0 & 1 \end{pmatrix}$$

Donc (11.50):

$$T \times \begin{pmatrix} V & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} I_n & -a^{-1}X \\ & 1 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$$

Donc T est inversible d'inverse dans $\mathcal{T}_{n+1}^+(\mathbb{K})$.

 \Leftarrow

On suppose que la diagonale de T contient un 0.

— Si
$$T_{11} = 0$$
, alors $T = \begin{pmatrix} 0 & L \\ & W \end{pmatrix}$
Et $T \times \underbrace{E_{11}}_{\neq 0} = 0$
Donc $T \notin GL_{n+1}(\mathbb{K})$

— On suppose que le premier 0 apparait à T_{kk} avec $k \geq 2$.

$$T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$
 avec $A = \begin{pmatrix} F & G \\ 0 & 0 \end{pmatrix}, F \in \mathcal{T}_{k-1}^+(\mathbb{K})$

La diagonale de F ne contient aucun 0 donc $F \in GL_{k-1}(\mathbb{K})$ et :

$$A \times \begin{pmatrix} 0 & -F^{-1}G \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} F & G \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -F^{-1}G \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Alors:

$$T \times \underbrace{\begin{pmatrix} H & 0 \\ 0 & 0 \end{pmatrix}}_{\neq 0} = 0$$

Donc $T \notin GL_{n+1}(\mathbb{K})$.

11.54 Exemple

Soit $X \in \mathbb{K}^2$.

$$X \in \ker A \Leftrightarrow AX = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x + 2y = 0 \\ y = 0 \end{cases}$$

$$\Leftrightarrow X = 0$$

Donc $\ker A = \{0\}.$

$$X \in \ker B \Leftrightarrow BX = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x + y = 0 \\ x + y = 0 \end{cases}$$

$$\Leftrightarrow x + y = 0$$

$$\Leftrightarrow X \in \left\{ \begin{pmatrix} x \\ -x \end{pmatrix}, x \in \mathbb{K} \right\}$$

$$\Leftrightarrow X \in \mathbb{K}. \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Donc $\ker B = \mathbb{K} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

11.61 Exemple

$$\begin{cases} x + 2y - z = 1 \\ 2x + 5y + z = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - z = 1 \\ 3x + 7y = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - a = 1 - 2y \\ 3x = 3 - 7y \end{cases}$$

$$\Leftrightarrow \begin{cases} -3z = y \\ x = 1 - \frac{7}{3}y \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 1 - \frac{7}{3}y \\ z = -\frac{1}{3}y \end{cases}$$

$$\Leftrightarrow X = \begin{pmatrix} 1 - \frac{7}{3}y \\ y \\ -\frac{1}{3}y \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} -\frac{7}{3} \\ 1 \\ -\frac{1}{3} \end{pmatrix}$$

Donc
$$S = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathbb{K} \begin{pmatrix} -\frac{7}{3} \\ 1 \\ -\frac{1}{3} \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathbb{K} \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}$$

11.65 Caractérisation des matrices inversibles par les sytèmes linaires

⇒ RAF : (11.63)

Pour tout $i \in [1, n]$, on note $Y_i \in \mathcal{M}_{n,1}(\mathbb{K})$ définie par :

$$Y_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

Par hypothèse, on choisit $X_i \in \mathbb{K}^n$ tel que :

$$AX_i = Y_i$$

On pose $B = \begin{pmatrix} X_1 & \dots & X_n \end{pmatrix}$ et on remarque que :

$$(Y_1 \quad \dots \quad Y_n) = I_n$$

Par construction:

$$AB = I_n$$

11.74 Système équivalents et opérations élémentaires

Soit Σ un système et Σ' un système obtenu après avoir effectué une opération élémentaire. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ la matrice du système Σ et $B \in \mathbb{K}^n$ son second membre. Soit $X \in \mathbb{K}^p$. Effectuer une opération élémentaire revient à choisir une matrice P de la forme P_{ij} , $Q_i(\lambda)$, $R_{ij}(\lambda)$. Ainsi:

$$X \in \mathcal{S}(\Sigma) \Leftrightarrow AX = B$$

$$\Leftrightarrow PAX = PB$$

$$\Leftrightarrow X \in \mathcal{S}(\Sigma')$$

Donc $S(\Sigma) = S(\Sigma')$

Chapitre 12

Arithmétique

12.1 Propriété fondamentale de \mathbb{Z}

Théorème 12.1

Toute partie non vide et minorée de \mathbb{Z} admet un plus petit élément.

Soit A une partie non vide et minorée de \mathbb{Z} .

On note \mathcal{M} l'ensemble des minorants de A.

Par hypothèse, $\mathcal{M} \neq \emptyset$.

Supposons par l'absurde que :

$$\forall a \in \mathbb{Z}, a \in \mathcal{M} \Rightarrow a+1 \in \mathcal{M}$$

D'après le principe de récurrence, si $a_0 \in \mathcal{M}$ est fixé :

$$\forall n \geq a_0, n \in \mathcal{M}$$

En particulier, pour $n \in A \ (A \neq \emptyset)$ on a :

 $n \ge a_0$ (a_0 est un minorant)

Donc $n \in \mathcal{M}$.

Donc $n+1 \in \mathcal{M}$.

Donc n+1 est un minorant de A.

Donc $n+1 \le n$.

Absurde.

Ainsi, on choisit $a \in \mathbb{Z}$ avec $a \in \mathcal{M}$ et $a + 1 \notin \mathcal{M}$.

On choisit donc $n \in A$ tel que :

$$a \le n < a + 1$$

Donc $n = a \in A$.

Donc $a = \min(A)$.

12.4 Division euclidienne

Théorème 12.4

Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$. Il existe un unique coupe $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que :

$$a = bq + r$$

avec $0 \le r < |b|$. Cette égalité est appelée **division euclidienne de** a **par** b, l'entier q est alors appelé **quotient** et l'entier r le **reste**, tandis que a porte le nom de dividende et b celui de diviseur.

Existence:

On suppose dans un premier temps que b > 0.

Soit $a \in \mathbb{Z}$.

On note $A = \{n \in \mathbb{Z}, bn \leq a\}$.

A est un sous-ensemble non vide de $\mathbb Z$ et majoré.

Il admet donc un plus grand élément, noté q. On a donc $q \in A$ et $q+1 \not\in A$.

$$bq \le a < b(q+1)$$
 donc $0 \le a - bq < b$

On pose alors r = a - bq. L'exsitence est alors prouvée pour b > 0.

Si b < 0, alors -b > 0 et on choisit $(q, r) \in \mathbb{Z}^2$ tel que :

$$a = -b \times q + r$$
 avec $0 \le r < -b$

Le couple (-q, r) convient.

<u>Unicité</u>:

On suppose a = bq + r = bq' + r' avec $0 \le r,' < |b|$.

$$\begin{array}{l} \text{Donc } b(q-q')=r'-r.\\ \text{Donc } \underbrace{|b|}_{>0}\times|q-q'|=|r'-r|<\underbrace{|b|}_{>0}.\\ \text{Donc } |q-q'|<1.\\ \text{Donc } q=q'.\\ \text{Puis } r=r'. \end{array}$$

12.9 Divisibilité et multiple

Propostion 12.9

Soit a et b deux entiers. Alors a est divisble par b si et seulement si a est un multiple de b.

$$\Rightarrow$$
 Si $b|a$, alors :

$$a = bq + 0$$
$$= bq$$
$$\in b\mathbb{Z}$$

12.10 Divisibilité et normes

Propostion 12.10

Soit a et b deux entiers avec $a \neq 0$ et b|a. Alors $|b| \leq |a|$.

Si b|a, alors $a = b \times n$ avec $n \neq 0$ var $a \neq 0$. Donc:

$$|a| = |b| \times |n|$$
$$\geq |b| \times 1$$

12.11 Entiers associés

Propostion 12.11

Soit a et b deux entiers. Alors

$$a\mathbb{Z} = b\mathbb{Z} \Leftrightarrow a = \pm b$$

On dit alors que a et b sont associés.

$$\subseteq$$
 Si $a = \pm b$, alors $a\mathbb{Z} = b\mathbb{Z}$.

$$|a| \le |b|$$
 et $|b| \le |a|$

Donc
$$|a| = |b|$$

12.14 Intégrité de la divisibilité

Propostion 12.14

Soit a, b et c trois entiers, avec $c \neq 0$. Si nb|na, alors n|a.

Si cb|ca, alors ca = ncb.

Or c est régulier dans $\mathbb Z$ donc :

a = nb

Donc b|a.

12.20 Cas d'une divisibilité

Lemme 12 20

Si a|b, alors

$$\mathcal{D}_{a,b} = \mathcal{D}_a$$

Si a|b, si c|a, alors c|b.

Donc $\mathcal{D}_b \supset \mathcal{D}_a$.

Ainsi, $\mathcal{D}_a \cap \mathcal{D}_b = \mathcal{D}_a$

12.21 Préparation à l'algorithme d'Euclide

Lemme 12.21

Soit a, b et q trois entiers, alors

$$\mathcal{D}_{a,b} = \mathcal{D}_{a-bq,b}$$

 \subset

Soit $n \in \mathcal{D}_{a,b}$, alors:

$$n|a ext{ et } n|b$$
 $ext{donc } n|a-bq$
 $ext{donc } n \in \mathcal{D}_{a-bq,b}$

Soit
$$n \in \mathcal{D}_{a-bq,b}$$

$$n|a - bq \text{ et } n|b$$

 $donc \ n|a - bq + bq$
 $soit \ n|a$
 $donc \ n \in \mathcal{D}_{a,b}$

12.23 Algorithme d'Euclide étendu ou théorème de Bézout

Lemme 12.23

Soit a et b deux entiers. Soit r le dernier reste non nul dans l'algorithme d'Euclide appliqué à a et b. Il existe deux entiers u et v tels que

$$au + bv = r$$

On utilise les notations du lemme (12.22).

On démontre par récurrence double que :

$$\forall n, "\exists (u_n, v_n) \in \mathbb{Z}^2, au_n + bv_n = r_n"$$

<u>Initialisation</u>:

Pour n=0 il s'agit de la division euxlidienne de a par b ($u_0=$ et $v_0=-q$). Pour n=1:

$$a = bq + r$$

$$b = r \times q_1 + r_1$$

$$donc r = b - rq_1$$

$$= b - q_1(a - bq)$$

$$= -q_1a + b(1 + q_1q)$$

Hérédité:

On suppose le résultat vrai aux rangs n et n + 1.

$$a_n = b_n q_n + r_n$$

$$b_n = r_n q_{n+1} + r_{n+1}$$

$$r_n = r_{n+1} q_{n+2} + r_{n+2}$$

Donc:

$$\begin{aligned} r_{n+2} &= r_n - r_{n+1} q_{n+2} \\ &= a u_n + b v_n - (a u_{n+1} + b v_{n+1}) q_{n+2} \\ &= a \underbrace{(u_n - u_{n+1} q_{n+2})}_{\in \mathbb{Z}} + b \underbrace{(v_n - v_{n+1} q_{n+2})}_{\in \mathbb{Z}} \end{aligned}$$

On utilise le principe de récurrence avec la dernière étape de l'algorithme.

12.24 Application basique

Exemple 12.24

Appliquer l'algorithme d'Euclide aux entiers 121 et 26.

$$121 = 26 \times 4 + 17$$

$$26 = 17 \times 1 + 9$$

$$17 = 9 \times 1 + 8$$

$$9 = 8 \times 1 + 1$$

$$8 = 1 \times 8 + 0$$

On remonte l'algorithme :

$$1 = 9 - 8$$

$$= 9 - (17 - 9)$$

$$= 2 \times 9 - 17$$

$$= 2 \times (26 - 17) - 17$$

$$= 2 \times 26 - 3 \times 17$$

$$= 2 \times 26 - 3 \times (121 - 4 \times 26)$$

$$= 14 \times 26 - 3 \times 121$$

12.26 Théorème de Bézout

Théorème 12.26

Soit a et b deux entiers. Alors a et b sont premiers entre eux si et seulement si il existe $(u,v)\in\mathbb{Z}^2$ tel que

$$au + bv = 1$$

 \Rightarrow

On suppose a et b premiers entre eux.

Donc $\mathcal{D}_{a,b} = \{\pm 1\}.$

Soit r le dernier reste non nul dans l'algorithme d'Euclide,

$$\mathcal{D}_r = \mathcal{D}_{a,b} = \{\pm 1\}$$

Donc $r = \pm 1$.

D'après le théorème de Bézout, il existe deux entiers u et v tels que :

$$au + bv = 1$$

 \Leftarrow

Réciproquement, si au + bv = 1, alors pour tout $d \in \mathcal{D}_{a,b}$ d|au + bv donc d|1 donc $d = \pm 1$. Donc $\mathcal{D}_{a,b} = \{\pm 1\}$.

12.28 Proposition

Propostion 12.28

Si a est premier avec b et c, alors a est premier avec bc.

D'après le théorème de Bézout, on écrit :

$$au_1 + bv_1 = 1$$

$$au_2 + cv_2 = 1$$

avec $(u_1, u_2, v_1, v_2) \in \mathbb{Z}^4$.

Donc:

$$1 = (au_1 + bv_1)(au_2 + cv_2)$$
$$= a\underbrace{(au_1u_2 + bv_1u_2 + cu_1v_2)}_{\in \mathbb{Z}} + \underbrace{v_1v_2}_{\in \mathbb{Z}}bc$$

Donc a et bc sont premiers entre eux d'après le théorème de Bézout.

12.29 Proposition

Propostion 12.29

Si a est premier avec b, que a|c et b|c, alors ab|c.

D'après le théorème de Bézout :

$$au + bv = 1, (u, v) \in \mathbb{Z}^2$$

Donc:

$$auc + bvc = c$$

Or a|c et b|c, donc :

$$c = ka$$
 et $c = pb$

Donc:

$$ab\underbrace{[pu+vk]}_{\in\mathbb{Z}} = c$$

Donc ab|c.

12.30 Théorème de Gauss

Théorème 12 30

Si a|bc et que a est premier avec b, alors a|c.

D'après le théorème de Bézout :

$$au + bv = 1$$
 avec $(u, v) \in \mathbb{Z}^2$

Donc auc + bvc = c. Or a|bc donc a|auc + bvc. Soit a|c.

12.31 Equation de Bézout

Exemple 12.31

Résoudre l'équation d'inconnue $(x, y) \in \mathbb{Z}^2, 3x - 2y = 7.$

On remarque que 3 et 2 sont premiers entre eux.

$$3-2=1$$
 donc $3 \times 7 - 2 \times 7 = 7$ donc $(7,7) \in \mathcal{S}$

On note (x_0, y_0) cette solution.

Soit $(x, y) \in \mathcal{S}$.

Donc:

$$7 = 3x - 2y$$
$$7 = 3x_0 - 2y_0$$
$$donc 3(x - x_0) = 2(y - y_0)$$

Or $3|3(x-x_0)$ et 3 premier avec 2.

Donc $3|y-y_0$.

Donc $y - y_0 = 3k$, avec $k \in \mathbb{Z}$. (Théorème de Gauss)

De la même manière, $x-x_0=2l$, avec $l\in\mathbb{Z}$. (Théorème de Gauss)

Réciproquement, soit $x = x_0 + 2l$ et $y = y_0 + 3k$.

$$(x,y) \in \mathcal{S} \Leftrightarrow 7 = 3x - 2y = 3x_0 - 2y_0 + 6l - 6k$$

 $\Leftrightarrow 6l - 6k = 0$
 $\Leftrightarrow k = l$

Donc $S = \{(x_0 + 2k, y_0 + 3k), k \in \mathbb{Z}\}\$

12.32 Proposition

Propostion 12.32

Si $ar \equiv br \mod n$ et si r et n sont premiers entre eux, alors $a \equiv b \mod n$.

Si $ar \equiv br \mod n$, alors n|r(a-b).

Donc n|a-b (n premier avec r et théorème de Gauss).

Donc $a \equiv b \mod n$.

12.37 Lien avec les idéaux

Propostion 12.37

Soit a et b deux entiers, alors d est le pgcd de a et b si et seulement si $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Soit $(a, b) \in \mathbb{Z}^2$. $a\mathbb{Z}$ et $b\mathbb{Z}$ dont des idéaux de \mathbb{Z} .

Donc $a\mathbb{Z} + b\mathbb{Z}$ est un idéal de \mathbb{Z} , donc en particulier un sous-groupe de \mathbb{Z} .

On choisit donc $d \ge 0$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Montrons que $d = pgcd(a, b) = a \wedge b$.

D'une part :

$$d \in d\mathbb{Z}$$

$$donc d = au + bv \text{ (avec } (u, v) \in \mathbb{Z}^2$$

$$e a\mathbb{Z} + b\mathbb{Z}$$
 or $a \wedge b|a \text{ et } a \wedge b|b$
$$donc a \wedge b|au + bv$$
 soit $a \wedge b|d$

D'autre part, $a \wedge b$ est le dernier reste non nul de l'algorithme d'Euclide, donc (12.23) :

$$a \wedge b = au + bv \text{ (avec } (u, v) \in \mathbb{Z}^2)$$

 $\in a\mathbb{Z} + b\mathbb{Z}$
 $\in d\mathbb{Z}$

Donc $d|a \wedge b$.

Ainsi, d et $a \wedge b$ sont positifs et associés, donc égaux.

12.38 Préparation au calcul pratique d'un pgcd

Lemme 12.38

Si a et b sont tous les deux non nuls, alors pour tout $q \in \mathbb{Z}$, pgcd(a,b) = pgcd(a-bq,b).

$$\mathcal{D}_{pgcd(a,b)} = \mathcal{D}_{a,b}$$

$$= \mathcal{D}_{a-bq,b}$$

$$= \mathcal{D}_{pgcd(a-bq,b)}$$

Les deux pgcd sont associés, donc égaux car positifs.

12.39 Caractérisation du pgcd

Propostion 12.39

Soit a et b deux entiers et $d \in \mathbb{N}$. Alors d = pgcd(a, b) si et seulement si il existe $(u, v) \in \mathbb{Z}^2$ avec u et v premiers entre eux, tels que a = du et b = dv.

 \Rightarrow

On suppose que $d = a \wedge b$.

Donc d|a et d|b.

On écrit donc a = du et b = dv avec $(u, v) \in \mathbb{Z}^2$.

Notons $n = u \wedge v$. On écrit $u = n \times u'$ et $v = n \times v'$ avec $(u', v') \in \mathbb{Z}^2$.

Donc $a = d \times n \times u'$ et $b = d \times n \times v'$.

Donc $dn \in \mathcal{D}_{a,b} = \mathcal{D}_d$.

Donc dn|d.

Donc n=1.

 \Leftarrow

On suppose que a = du et b = dv avec $u \wedge v = 1$.

D'après le théorème de Bézout :

$$uu' + vv' = 1 \text{ (avec } (u', v') \in \mathbb{Z}^2)$$

Donc duu' + dvv' = d.

Soit au' + bv' = d.

Donc $d \in a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$.

Donc $a \wedge b|d$.

Par ailleurs, $d \in \mathcal{D}_{a,b} = \mathcal{D}_{a \wedge b}$.

Donc $d|a \wedge b$.

Ainsi, $a \wedge b$ et d sont associés (et positifs) donc égaux.

12.40 Propriétés du pgcd

Propostion 12.40

Soit a et b deux entiers tous deux non nuls.

- 1. pour tout $n \in \mathbb{Z}$, si n|a et n|b, alors n|pgcd(a,b);
- 2. pour tout $k \in \mathbb{N}^*$, pgcd(ka, kb) = kpgcd(a, b);
- 3. pour tout $n \in \mathbb{N}$, $pgcd(a^n, b^n) = pgcd(a, b)^n$;
- 4. si a et c sont premiers entre eux, alors pgcd(a,bc) = pgcd(a,b).
- 1. RAF (définition)
- 2. Soit $k \in \mathbb{N}^*$. On écrit (12.39) :

$$a = (a \wedge b)u$$

 $b = (a \wedge b)v \text{ (avec } u \wedge v = 1)$

Donc:

$$ka = [k(a \wedge b)] u$$

 $kb = [k(a \wedge b)] v$

Donc (12.39):

$$pgcd(ka, kb) = k(a \wedge b)$$

3. Avec une partie des notations de 2. :

$$a^{n} = (a \wedge b)^{n} u^{n}$$
$$b^{n} = (a \wedge b)^{n} v^{n}$$

Avec $(u^n) \wedge (v^n) = 1$. Donc (12.39):

$$pgcd(a^n, b^n) = (a \wedge b)^n$$

4.

$$a = (a \wedge b)u$$

 $b = (a \wedge b)v \text{ (avec } u \wedge v = 1)$

Donc

$$bc = (a \wedge b) \times vc$$

Or, puisque $a \wedge c = 1$ et que u|a, alors :

$$u \wedge c = 1$$

Donc (12.28):

$$u \wedge (vc) = 1$$

Donc (12.39):

$$pgcd(a,bc) = a \wedge b$$

12.44 Définition du PPCM

Propostion 12.44

Soit a et b deux entiers non nuls. On appelle **PPCM** (plus petit commun multiple) l'unique entier $m \in \mathbb{N}$ tel que

$$(a\mathbb{Z}) \cap (b\mathbb{Z}) = m\mathbb{Z}.$$

Cet entier est noté ppcm(a, b) ou encore $a \vee b$.

 $a\mathbb{Z}$ et $b\mathbb{Z}$ ont des idéaux de \mathbb{Z} .

Donc $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal de \mathbb{Z} , donc un sous-groupe de \mathbb{Z} .

Donc il existe un unique entier $m \in \mathbb{N}$ tel que :

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$

Comme $a \neq 0$ et $b \neq 0$, alors $m \neq 0$.

12.45 Caractérisation du ppcm

Propostion 12.45

Soit a et b deux entiers, et $m \in \mathbb{N}$. Alors m = ppcm(a, b) si et seulement si il existe $(u, v) \in \mathbb{Z}^2$, premiers entre eux tels que m = au = bv.

 \Rightarrow

On suppose que $m = a \vee b$.

Donc $m \in a\mathbb{Z} \cap b\mathbb{Z}$.

Donc m = au = bv.

On note d = pgcd(u, v).

On écrit donc :

$$u = da'$$

$$v = db'$$

Donc:

$$ada' = bdb'$$

Donc:

$$aa' = bb' = m'$$

Donc:

$$m' \in a\mathbb{Z} \cap b\mathbb{Z}$$

$$\in m\mathbb{Z}$$

Donc:

$$dm' = m|m'$$

Donc:

$$d = 1$$

 \leftarrow

On suppose que m = au = bv avec pgcd(u, v) = 1.

D'une part :

$$m \in a\mathbb{Z} \cap b\mathbb{Z} = ppcm(a, b)\mathbb{Z}$$

Donc:

D'autre part, d'après le théorème de Bézout :

$$uu' + vv' = 1 \text{ avec } (u', v') \in \mathbb{Z}^2$$

Donc:

$$uu'\underbrace{ppcm(a,b)}_{ka} + vv'\underbrace{ppcm(a,b)}_{qb} = ppcm(a,b)$$

Donc:

$$m(u'k + vq') = ppcm(a, b)$$

Donc m|ppcm(a,b).

12.46 Propriétés du ppcm

Propostion 12.46

Soit a et b deux entier non nuls, alors :

- 1. pour tout $n \in \mathbb{Z}$, si a|n et b|n, alors ppcm(a,b)|n;
 - 2. si a et b sont premiers entre eux, alors ppcm(a, b) = |ab|;
 - 3. pour tout $k \in \mathbb{N}^*$, ppcm(ka, kb) = kppcm(a, b);
 - 4. $ppcm(a, b) \times pgcd(a, b) = |ab|$;
 - 5. pour tout $n \in \mathbb{N}$, $ppcm(a^n, b^n) = ppcm(a, b)^n$.
- 1. RAF (12.44)
- 2. On suppose que a > 0 et b > 0.

$$ab = ba$$

avec $a \wedge b = 1$.

D'après (12.45):

$$ppcm(a, b) = ab$$

3. On écrit (12.45):

$$ppcm(a,b) = au = bv \text{ (avec } u \land v = 1)$$

Alors:

$$b \wedge ppcm(a, b) = (ak)u$$
$$= (bk)v$$

Donc (12.45):

$$ppcm(ak, bk) = kppcm(a, b)$$

5. Avec les mêmes notations :

$$ppcm(a,b)^n = a^n u^n$$

= $b^n v^n$ (avec $u^n \wedge v^n = 1$)

Donc (12.45):

$$ppcm(a^n, b^n) = ppcm(a, b)^n$$

4. D'après (12.39) (avec a > 0 et b > 0):

$$\begin{aligned} a &= pgcd(a,b)u \\ b &= pgcd(a,b)v \text{ (avec } u \land v = 1) \\ pgcd(a,b) \times ppcm(a,b) &= pgcd(a,b)ppcm(pgcd(a,b)u, pgcd(a,b)v) \\ &= pgcd(a,b)^2ppcm(u,v) \\ &= pgcd(a,b)^2uv \\ &= ab \end{aligned}$$

12.50 Propriétés

Propostion 12.50

- 1. Si $p \in \mathbb{P}$, alors pour tout $n \in \mathbb{Z}$, soit p|n soit pgcd(n,p) = 1.
- 2. Si $n \ge 2$, alors n possède au moins un diviseur premier.
- 3. L'ensemble \mathbb{P} est infini.
- 4. Si n > 1 n'as pas de diviseur dans $[2; \sqrt{n}]$, alors n est premier.
- 5. Si $p \in \mathbb{P}$, alors pour tout a et b entiers, on a $(a+b)^p \equiv a^p + b^p \pmod{p}$.
- 1. On suppose que $p \nmid n$.

Soit $d \in \mathcal{D}_p \cap \mathcal{D}_n$.

d > 0 et $d \neq p$.

Donc d = 1.

Donc $p \wedge n = 1$.

- 2. On raisonne par récurrence forte \rightarrow cf. (2.41).
- 3. On suppose par l'absurde que :

$$\mathbb{P} = \{p_1, p_2, \dots, p_n\}$$

On pose:

$$m = \prod_{i=1}^{n} (p_i) + 1$$

Soit $p_i \in \mathbb{P}$ tel que $p_i|m$ (12.50.2).

Donc $p_i|1$.

Absurde.

4. On suppose $n \notin \mathbb{P}$.

Soit n = ab avec $a \ge 2$ et $b \ge 2$.

Si $a > \sqrt{n}$ et $b > \sqrt{n}$, alors $ab = n > \sqrt{n^2} = n$.

Absurde.

5. D'après le binôme de Newton:

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k}$$
$$= a^{p} + b^{p} + \sum_{k=1}^{p-1} {p \choose k} a^{k} b^{p-k}$$

Or, pour $k \in [1; p-1], p\binom{p-1}{k-1} = k\binom{p}{k}$ (formule du capitaine).

Or $k \wedge p = 1$ et $p \mid p \binom{p-1}{k-1}$ soit $p \mid \binom{p}{k}$.

Donc:

$$p \left| {p \choose k} \right|$$

Donc:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

12.51 Petit théorème de Fermat

Théorème 12.51

Pour tout $n \in \mathbb{Z}$ et $p \in \mathbb{P}$, on a $n^p \equiv n \pmod{p}$. En outre, si pgcd(n,p) = 1, alors $n^{p-1} \equiv 1 \pmod{p}$.

Soit $p \in \mathbb{P}$. On montre le résultat pour $n \geq 0$ par récurrence.

On a bien $0^p = 0 \equiv 0 \pmod{p}$. Si $n^p \equiv n \pmod{p}$, alors :

$$(n+1)^p \equiv n^p + 1^p \pmod{p}$$
 (12.50.5).
 $\equiv n+1 \pmod{p}$ (Hypothèse de récurrnce)

Soit $n \in \mathbb{N}$.

— Si $p \ge 3$ (donc p est impair), alors :

$$n^{p} \equiv n \pmod{p}$$
$$(-n)^{p} \underset{p \text{ impair}}{\equiv} -n^{p} \pmod{p}$$
$$\equiv -n \pmod{p}$$

— Si p = 2, $-1 \equiv 1 \pmod{2}$. Donc:

$$(-n)^2 \equiv n^2 \pmod{2}$$

 $\equiv n \pmod{2}$
 $\equiv -n \pmod{2}$

12.52 Décomposition en produit de facteurs premiers

Théorème 12.52

Soit $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$, alors il existe des nombres premiers p_1, \dots, p_r tous distincts, et $(\alpha_1, \dots, \alpha_r) \in (\mathbb{N}^*)^r$ et $\epsilon \in \{\pm 1\}$ tels que

$$n = \epsilon p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}$$

Cette décomposition est unique à l'ordre près.

Existence:

On montre l'existence par récurrence forte sur $\mathbb{N}\setminus\{0,1\}$.

- RAF si n=2.
- On suppose le résultat vrai pour tout $k \in [2; n]$.
 - Si $n+1 \in \mathbb{P}$: RAF
 - Si $n+1 \notin \mathbb{P}$, on écrit :

$$n + 1 = k \times q \text{ avec } (k, q) \in [2, n]^2$$

Donc k et q sont des produits de facteurs premiers.

Donc n + 1 = kq est aussi un produit de facteurs premiers.

Le résultat est donc vrai pour tout $n \in \mathbb{N}$ et par extension pour -n ($\epsilon = -1$).

$\underline{Unicit \acute{e}:}$

On suppose que:

$$n = \epsilon p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r} = \epsilon' q_1^{\beta_1} \times \dots \times q_s^{\beta_s}$$

Nécessairement, $\epsilon = \epsilon'$.

Soit
$$p_i \in \{p_1, \ldots, m_r\}$$
.

On a
$$p_i | n$$
 donc $p_i | q_1^{\beta_1} \times \cdots \times q_s^{\beta_s}$.

Il existe $p_i \in \mathbb{P}$ donc $j \in [1; s]$ tel que $p_i | q_i$.

Donc
$$p_i = \underbrace{q_j}_{\in \mathbb{P}}$$

Ainsi:

$$\{p_1,\ldots,p_r\}\subset\{q_1,\ldots,q_s\}$$

Par symétrie:

$$\{p_1,\ldots,p_r\}=\{q_1,\ldots,q_s\}$$

Donc r = s et quitte à renommer q_j , on peut supposer que :

$$\forall i \in [1; r], p_i = q_i$$

$$p_i^{\alpha_i} | n \text{ donc } p_i^{\alpha_i} \left| \prod_{j=1}^r p_j^{\beta_j} \right|$$
 $donc \ \alpha_i \leq \beta_i$

Par symétrie, $\alpha_i = \beta_i$.

L'unicité est prouvée.

12.54 Caractérisation de la valuation

Théorème 12.54

Soit $n \in \mathbb{Z}^*$ et $p \in \mathbb{P}$ et $d \in \mathbb{N}$. Alors $d = v_p(n)$ si et seulement si $n = p^d u$, avec $u \wedge p = 1$.

On a:

$$d = v_p(n) \Leftrightarrow (p^d | n \text{ et } p^{d+1} \not | n)$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } p^{d+1} \not | u$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } p \not | u$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } u \land p = 1$$

12.55 Valuation et décomposition en produit de facteurs premiers

Théorème 12.55

Si p|n, alors $v_p(n)$ est la puissance de p intervenant dans la décomposition en produit de facteurs premiers de p.

On écrit la décomposition :

$$n = \epsilon \prod_{i=1}^{r} p_i^{\alpha_i}$$

Soit $k \in [1, r]$.

$$n = \epsilon \times p_k^{\alpha_k} \times \underbrace{\prod_{i \neq k} p_i^{\alpha_i}}_{:=u \ (\text{avec} \ u \land p_k = 1)}$$

Donc (12.54):

$$v_{p_k}(n) = \alpha_k$$

12.56 Propriétés de la valuation

Propostion 12.56

Pout tout $(n,m) \in \mathbb{Z}^2$ et $p \in \mathbb{P}$, on a

- 1. p|n si et seulement si $v_p(n) > 0$;
- 2. $v_p(mn) = v_p(m) + v_p(n)$;
- 3. $v_p(n+m) \ge \min(v_p(n), v_p(m))$ avec égalité si les valuations sont distinctes;
- 4. $n|m \Leftrightarrow (\forall q \in \mathbb{P}, v_q(n) \leq v_q(m));$
- 5. si de plus n et m sont non nuls alors

$$v_p(n \wedge m) = \min(v_p(n), v_p(m))$$
 et $v_p(n \vee m) = \max(v_p(n), v_p(m))$.

- 1 RAF
- 2. On écrit $m=p^{v_p(m)}\times u$ et $n=p^{v_p(n)}\times v$ avec $u\wedge p=1=v\wedge p$ (12.54). Donc $mn=p^{v_p(m)+v_p(n)}\times uv$. Or $p\wedge (uv)=1$. Donc (12.54):

$$v_p(mn) = v_p(m) + v_p(n)$$

3. On suppose que $v_p(m) \le v_p(n)$. Ainsi :

$$n + m = p^{v_p(n)} \times v + p^{v_p(m)} \times u$$
$$= p^{v_p(m)} \left[u + v_p^{v_p(n) - v_p(m)} \right]$$

Ainsi, $p^{v_p(m)}|n+m$.

Par définition :

$$v_p(m+n) \ge v_p(m) = \min(v_p(m), v_p(n))$$

Si on suppose de plus que $v_p(m) \neq v_p(n)$, alors

$$p \wedge (u + v \times p^{v_p(n) - v_p(m)}) = p \wedge u = 1$$

Donc (12.54):

$$v_p(n+m) = v_p(m) = \min(v_p(m), v_p(n))$$

4. On a:

n|m ssi la décomposition en produit de facteurs premiers de n se retrouve dans celle de m.

ssi pour tout $p \in \mathbb{P}$ tel que p|n, alors $v_p(n) \leq v_p(m)$.

5. On a $(n \wedge m)|n$ et $(n \wedge m)|m$.

Donc (12.56.4) $v_p(n \land m) \le \min(v_p(n), v_p(m))$

On suppose par exemple que $v_p(n) \leq v_p(m)$.

Donc $p^{v_p(n)}|n$ et $p^{v_p(n)}|m$.

Donc $p^{v_p(n)} | n \wedge m$.

Par définition $v_p(n \wedge m) \geq v_p(n)$

Donc:

$$v_p(n \wedge m) = \min(v_p(n), v_p(m))$$

On rappelle que $(n \wedge m) \times (n \vee m) = |nm|$.

Donc $v_p((n \wedge m) \times (n \vee m)) = v_p(nm)$.

Donc (12.56.2):

$$\begin{aligned} v_p(n \lor m) &= v_p(n) + v_p(m) - v_p(n \land m) \\ &= v_p(n) + v_p(m) - \min(v_p(n), v_p(m)) \\ &= \boxed{\max(v_p(n), v_p(m))} \end{aligned}$$

Les preuves ont été rédigées avec les hypothèses $n \neq 0$ et $m \neq 0$. Si l'un des entiers est nul, on vérifie les assertions avec la convention $v_p(0) = +\infty$.

Chapitre 13

Polynômes

13.6 Produit de deux polynômes

Définition 13.6

Soit $P = (a_n)$ et $Q = (b_n)$ deux polynômes de $\mathbb{A}[X]$. Soit pour tout $n \in \mathbb{N}$, $c_n = \sum_{k=0}^n a_k b_{n-k}$. Alors la suite $(c_n)_{n \in \mathbb{N}}$ est un polynôme. On définit alors $PQ = (c_n)$. La suite $c = (c_n)$ est appelée **produit de convolution** (ou **produit de Cauchy**) des suites $a = (a_n)$ et $b = (b_n)$ et est parfois noté $c = a \star b$.

Montrons que (c_n) est un polynôme. Soit N te M dans \mathbb{N} tels que :

$$\begin{cases} \forall n \in \mathbb{N}, n \ge N, a_n = 0 \\ \forall n \in \mathbb{N}, n \ge M, b_n = 0 \end{cases}$$

Soit $n \ge M + N$, on a:

$$c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

— Si
$$k \ge N$$
, $a_k = 0$.
— Si $k \le N$, $n - k \ge M$, donc $b_{n-k} = 0$.
Donc $c_n = 0$.

13.7 Structure d'anneau de $\mathbb{A}[X]$

Théorème 13.7

La somme et le produit définis ci-dessus munissent $\mathbb{A}[X]$ d'une structure d'anneau commutatif.

suites d'éléments de $\mathbb A$

- $(\mathbb{A}[X], +)$ est un sous-groupe de ($\mathbb{A}^{\mathbb{N}}$, +) abélien donc est bien un sous-groupe abélien.
- Montrons que \times est associative. Soit $(P, R, Q) \in \mathbb{A}[X]$. On note $P = (p_k)_{k \in \mathbb{N}}, \ R = (r_k)_{k \in \mathbb{N}}, \ Q = (q_k)_{k \in \mathbb{N}}$. Soit $n \in \mathbb{N}$.

$$(P \times (RQ))_n = \sum_{k=0}^n p_k (RQ)_{n-k}$$

$$= \sum_{i+j=n} p_i (RQ)_j$$

$$= \sum_{i+j=n} \left(p_i \sum_{k+l=j} r_k q_l \right)$$

$$= \sum_{i+k+l=n} p_i r_k q_l$$

$$= ((PR) \times Q)_n$$

— Notons $E = (1, 0, ...) = (\delta_{0n})_{n \in \mathbb{N}}$. On a pour tout $n \in \mathbb{N}$:

$$(E \times P)_n = \sum_{i+j=n} E_i \times P_j$$
$$= \sum_{i+j=n} \delta_{0i} \times P_j$$
$$= P_n \ (i = 0, j = n)$$
$$= (P \times E)_n$$

Donc E est l'élément neutre de $\mathbb{A}[X]$.

$$\begin{split} [P \times (R+Q)]_n &= \sum_{i+j=n} p_i (R+q)_j \\ &= \sum_{i+j=n} p_i (r_j + a_j) \\ &= \sum_{i+j=n} p_i r_j + \sum_{i+j=n} p_i q_j \\ &= (PR)_n + (PQ)_n \\ &= [PR + PQ]_n \end{split}$$

- Donc \times est distributive sur +.
- Comme A est commutatif:

$$\sum_{i+j=n} p_i q_j = \sum_{i+j=n} q_j p_i$$

Donc \times est commutatif.

13.11 Monômes

Propostion 13.11

Pour tout $n \in \mathbb{N}$, on a $X^n = (\underbrace{0, \dots, 0}_{n \text{ zéros}}, 1, 0, \dots)$, le 1 est donc à l'indice n (soit $X^n = (\delta_{n,k})_{k \in \mathbb{N}}$)

Pour n=0, on a bien $X^0=(1,0,\ldots)$ Pour n=1, RAF On suppose le résultat vrai pour $n\in\mathbb{N}$. Soit $k\in\mathbb{N}$:

$$\begin{split} \left[X^{n+1}\right]_k &= \left[X^n \times X\right] \\ &= \sum_{i+j=k} \left[X^n\right]_i X_j \\ &= \sum_{i+j=k} \delta_{n,i} \times \delta_{j,1} \\ &= \delta_{k,n+1} \end{split}$$

13.12 Expression d'un polynôme à l'aide de l'indéterminée formelle

Corollaire 13.12

Soit $P = (a_n)$ un polynôme de $\mathbb{A}[X]$. Alors $P = \sum_{k=0}^{+\infty} a_k X^k$, cette somme ayant un sens puisqu'elle est en fait finie, les a_k étant nuls à partir d'un certain rang.

$$P = (a_n)_{n \ge 0}$$

$$= (a_0, a_1, a_2, \dots)$$

$$= a_0(1, 0, 0, \dots) + a_1(0, 1, 0, \dots) + a_2(0, 0, 1, \dots) + \dots$$

$$= a_0 X^0 + a_1 X^1 + a_2 X^2 + \dots$$

13.26 Dérivée de produits

Propostion 13.26

— Soit P et Q deux polynômes à coefficients dans \mathbb{A} . Alors

$$(PQ)' = P'Q + Q'P.$$

— Soit P_1, \ldots, P_n des polynômes à coefficients dans \mathbb{A} , alors

$$(P_1 \dots P_n)' = \sum_{i=1}^n P_1 \dots P_{i-1} P_i' P_{i+1} \dots P_n.$$

— Formule de Leibniz : Soit P et Q deux polynômes à coefficients dans \mathbb{A} et $n \in \mathbb{N}$. Alors

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

Soit
$$P = \sum_{k \ge 0} a_k X^k$$
, $P' = \sum_{k \ge 1} k a_k X^{k-1}$ et $Q = \sum_{k \ge 0} b_k X^k$, $Q' = \sum_{k \ge 1} k b_k X^{k-1}$.

On a:

$$PQ = \sum_{k \ge 0} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n$$

Donc:

$$(PQ)' = \sum_{n \{geq1} \left[n \sum_{k=0}^{n} a_k b_{n-k} \right] X^{n-1}$$
et $P'Q = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n$
et $PQ' = \sum_{n \geq 0} \left[\sum_{k=0}^{n} a_k (n-k+1) b_{n-k+1} \right] X^n$
donc $P'Q + Q'P = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$

$$= \sum_{n \geq 0} \left[\sum_{k=1}^{n+1} k a_k b_{n-k+1} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) a_{n+1} b_0 + \sum_{k=1}^{n} (n+1) a_k b_{n-k+1} + (n+1) a_0 b_{n+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) \sum_{k=0}^{n+1} a_k b_{n-k+1} \right] X^n$$

13.28 Dérivée d'une composition

Propostion 13.28

Soit P et Q dans $\mathbb{A}[X]$, alors

$$(Q \circ P)' = P' \times (Q' \circ P)$$

Soit
$$Q = \sum_{k \ge 0} a_k X^k$$
.
Ainsi $Q \circ P = \sum_{k \ge 0} a_k p^k$.

Donc:

$$(Q \circ P)' = \sum_{k \ge 0} a_k (p_k)' \quad (13.24)$$

$$= \sum_{k \ge 1} k a_k p' p^{k-1} \quad (13.27)$$

$$= P' \times \sum_{k \ge 1} k a_k p^{k-1}$$

$$= P' \times Q' \circ P$$

13.34 Degré d'une somme, d'un produit, d'une dérivée

Propostion 13.34

Soit P et Q deux polynômes de $\mathbb{A}[X]$ et $\lambda \in \mathbb{A}$.

- 1. On a $\deg(P+Q) \leq \max(\deg(P), \deg(Q))$ avec égalité si $\deg(P) \neq \deg(Q)$.
- 2. Si A est intègre et si $\lambda \neq 0$, alors $\deg(\lambda P) = \deg(P)$.
- 3. Si A est intègre alors deg(PQ) = deg(P) + deg(Q).
- 4. On a $deg(P') \leq deg(P) 1$.
- 5. Si \mathbb{A} est intègre alors $\deg(Q \circ P) = \deg(Q) + \deg(P)$, sauf si P = 0 ou si Q = 0 et $P \in \mathbb{A}_0[X]$.
- 1. On note $p = \deg(P), q = \deg(Q)$.

$$P = \sum_{k=0}^{p} a_k X^k, Q = \sum_{k=0}^{q} b_k X^k$$

Supposons $p \geq q$.

On écrit alors :

$$Q = \sum_{k=0}^p b_k X^k$$
 et ainsi $P+Q = \sum_{k=0}^p (a_k+b_k) X^k$ et donc $\deg(P+Q) \leq p$

Si de plus p > q, alors :

$$P + Q = a_p X^p + \sum_{k=0}^{p-1} (a_k + b_k) X^k \ (b_p = 0)$$

donc $(a_p \neq 0)$, $\deg(P+Q) = p$

2.

$$\lambda P = \sum_{k=0}^{p} \lambda a_k X^k$$

Or $\lambda a_p \neq 0$ car $a_p \neq 0$ et \mathbb{A} intègre.

3.

$$P.Q = \sum_{n \ge 0} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n$$

Si n > p + q, alors:

$$\sum_{k=0}^{n} a_k b n - k = 0 \text{ (preuve (13.6))}$$

Or:

$$(PQ)_{p+q} = \sum_{k=0}^{p+q} a_k b_{p+q-k}$$

$$= \underbrace{a_p}_{\neq 0} \underbrace{b_q}_{\neq 0}$$

$$\neq 0 \text{ car } \mathbb{A} \text{ intègr.}$$

4. Si $P \in \mathbb{A}_0[X]$, l'inégalité est vérifiée. Sinon :

$$p' = \sum_{k=0}^{p-1} (k+1)a_{k+1}X^k$$
 et $\deg(P') \le d-1 = \deg(P) - 1$

5. On a:

$$Q \circ P = \sum_{k=0}^{q} b_k p_k$$

Or, pour $k \in [0, q-1]$, $\deg(b_k p^k) < \deg(\underbrace{b_q}_{\neq 0} p^q)$ ((13.34.2) et (13.34.3) avec \mathbb{A} intègre)

Donc:

$$deg(Q \circ P) = deg(b_q p^q)$$
$$= q \times deg(P)$$
$$= deg(Q) \times deg(P)$$

13.36 Théorème de permanence de l'intégrité

Corollaire 13.36

Si \mathbb{A} est intègre, alors $\mathbb{A}[X]$ est intègre.

Si $P \neq 0$ et $Q \neq 0$

$$\deg(P \times Q) = \deg(P) + \deg(Q) \text{ (\mathbb{A} est intègre)}$$

$$> 0$$

13.39 Propriété de stabilité

Corollaire 13.39

- $\mathbb{A}_n[X]$ est un sous-groupe additif de $\mathbb{A}[X]$.
- La dérivation $D: \mathbb{A}[X] \to \mathbb{A}[X]$ induit un homomorphisme de groupe $D_n: \mathbb{A}_n[X] \to \mathbb{A}_{n-1}[X]$.
- Si \mathbb{K} est un corps de caractéristique nulle, D_n est une surjection. Autrement dit, tout polynôme de $\mathbb{K}_{n-1}[X]$ est primitivable formellement dans $\mathbb{K}_n[X]$.
- RAF
- RAF
- carac(\mathbb{K}) = 0. Soit $P = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{K}_{n-1}[X]$.

Pour $k \in [1, n], k = k \times 1 \neq 0$ dans \mathbb{K} car \mathbb{K} est de caractéristique nulle.

Donc k^{-1} est bien défini dans \mathbb{K} . On pose :

$$Q = \sum_{k=1}^{n} k^{-1} q_{k-1} X^k$$

Alors:

$$Q' = \sum_{k=0}^{n-1} (k+1)(k+1)^{-1} a_k X^k = P.$$

13.42 Corollaire du degré d'une dérivée dans $\mathbb{K}[X]$, avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}

Corollaire 13 42

Soit \mathbb{K} un corps de caractéristique nulle et soit P et Q deux polynômes de $\mathbb{K}[X]$. Alors P'=Q' si et seulement si P et Q diffèrent d'une constante.

Soit $P \in \ker(D)$, où $D : \mathbb{K}[X] \to \mathbb{K}[X], P \mapsto P'$. Donc P' = 0. Si $\deg(P) > 0$, alors $\deg(P') \ge 0$ (13.41). Donc nécessairement, $\mathbb{K}_0[X] \subset \ker(D)$. Donc $\ker(D) = \mathbb{K}_0[X]$.

Chapitre 14

Suites numériques

14.18 Premier théorème de comparaison

Théorème 14.18

Si à partir d'un certain rang on a

$$|u_n - l| \le v_n$$

avec
$$v_n \xrightarrow[n \to +\infty]{} 0$$
, alors $u_n \xrightarrow[n \to +\infty]{} l$.

Soit $u_n \in \mathbb{N}$ tel que :

$$\forall n \geq N_1, |u_n - l| \leq v_n$$

Comme $v_n \xrightarrow[n \to +\infty]{} 0$, pour tout $\epsilon > 0$, on choisit $N_2 \in \mathbb{N}$ tel que :

$$\forall n \ge N_2, |v_n - 0| = |v_n| < \epsilon$$

On pose $N = \max(N_1, N_2)$. Ainsi:

$$\forall n \geq \mathbb{N}, |u_n - l| \leq v_n = |v_n| < \epsilon$$

$$\operatorname{Donc}\left[u_n \underset{n \to +\infty}{\longrightarrow} l\right]$$

14.22 Unicité de la limite

Propostion 14.22

Si u admet une limite $l \in \mathbb{R}$, alors celle-ci est unique.

On suppose que u admet comme limite l et l' dans \mathbb{R} . Soit $\epsilon > 0$. On choisit N et N' dans \mathbb{N} tels que :

$$\forall n \ge N, |u_n - l| < \epsilon$$
$$\forall n \ge N', |u_n - l'| < \epsilon$$

Pour tout $n \ge \max(N, N')$:

$$|l - l'| = |l - u_n + u_n - l'|$$

 $\leq |l - u_n| + |u_n - l'|$ (Inégalité triangulaire)
 $< l\epsilon$

Nécessairement :

$$|l - l'| = 0$$

14.23 Limite et inégalité

Propostion 14.23

Si u converge vers l et si $\alpha < l$, alors à partir d'un certain rang, $\alpha < u_n$. De la même manière, si $\beta > l$, alors à partir d'un certain rang, $u_n < \beta$.

On suppose que $u_n \xrightarrow[n \to +\infty]{} l$. Soit $\alpha < l$. On pose $\epsilon = \frac{|l-\alpha|}{2}$. D'après la définition, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, |u_n - l| < \epsilon$$

Soit:

$$\forall n \geq N, \underbrace{u_n}_{>\alpha} \in]\underbrace{l-\epsilon}_{>\alpha}, l+\epsilon[$$

14.24 Convergence et bornitude

Propostion 14.24

Une suite convergente est bornée.

Soit u une suite convergente. Notons $l = \lim_{n \to +\infty} u_n$.

On pose $\epsilon =$.

Par définition, soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l-1, l+1[$$

 $\text{Donc }\{u_n,n\geq N\} \text{ est born\'e. Donc }\{u_n,n\in\mathbb{N}\} = \underbrace{\{u_n,n\in[\![0,N-1]\!]\}}_{\text{ensemble fini}} \cup \underbrace{\{u_n,n\geq N\}}_{\text{born\'e.}} \text{ est born\'e.}$

14.29 Minoration d'une extraction

Lemme 14.29

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strict ement croissante, alors

$$\forall n \in \mathbb{N}, n < \sigma(n).$$

Par récurrence.

Comme $\sigma(0) \in \mathbb{N}$, on a bien $\sigma(0) \geq 0$.

Si $\sigma(n) \ge n$, alors $\sigma(n+1) > \sigma(n) \ge n$.

Donc $\sigma(n+1) \ge n+1$.

14.30 Extraction d'une suite convergente

Propostion 14.30

Toute suite extraite d'une suite qui tend vers $l \in \mathbb{R}$ est une suite convergente vers l.

On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}$ (à adapter pour $l = \pm \infty$)

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante.

On note $v = u \circ \sigma$.

Soit $\epsilon > 0$. Soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq \mathbb{N}, |u_n - l| < \epsilon$$

Pour $n \geq N$, on a :

$$\sigma(n) \underset{(14.29)}{\geq} n \geq N$$

donc
$$|u_{\sigma(n)} - l| < \epsilon$$

soit
$$|v_n - l| < \epsilon$$

$$\operatorname{donc} \overline{\left[v_n \underset{n \to +\infty}{\longrightarrow} l \right]}$$

14.32 Pair, impair et convergence

Propostion 14.32

Si $\lim u_{2n} = \lim u_{2n+1} = l \in \mathbb{R}$, alors $\lim u_n = l$

Soit $\epsilon > 0$. Soit N_1 et N_2 dans $\mathbb N$ telq que :

$$\forall n \ge N_1, |u_{2n} - l| \le \epsilon$$

$$\forall n \ge N_2, |u_{2n+1} - l| \le \epsilon$$

Or pour $N = \max(2N_1, 2N_2 + 1)$. Soit n > N.

— Si n=2p, alors $p \geq N_1$

$$|u_n - l| = |u_{2p} - l| \le \epsilon$$

— Si n = 2p + 1, alors $p \ge N_2$

$$|u_n - l| = |u_{2p+1} - l| \le \epsilon$$

Dans tous les cas, $|u_n - l| \le \epsilon$

14.34 Opérations usuelles sur les limites

Théorème 14 34

Soit u et v deux suites qui convergent respectivement vers l et l' et soit $\lambda \in \mathbb{R}$, alors

- u + v converge ver l + l'
- λu converge vers λl
- uv converge vers ll'
- Si $l \neq 0$, alors à partir d'un certain rang, la suite des termes u_n sont tous nuls et la suite $\frac{1}{u}$ converge vers $\frac{1}{l}$
- Soit $n \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, |u_n - l| \le \epsilon \text{ et } |v_n - l'| \le \epsilon$$

Donc:

$$\forall n \in \mathbb{N}, |u_n + v_n - (l + l')| \le |u_n - l| + |v_n - l'|$$
 (Inégalité triangulaire) $< \epsilon$

- RAS $(\lambda = 0 \text{ et } \lambda \neq 0)$
- Comme u converge, u est bornée. Soit $M \in \mathbb{R}_+$ tel que :

$$\forall n \in N, |u_n| \leq M$$

Pour $n \in \mathbb{N}$:

$$\begin{aligned} |u_n v_n - ll'| &= |u_n v_n - u_n l' + u_n l' - ll'| \\ &\leq |M||v_n - l'| + |l'| \times |u_n - l| \\ &\leq M \times \epsilon + |l'| \times \epsilon \\ &= (M + |l'|) \times \epsilon \end{aligned}$$

Donc
$$u_n v_n \xrightarrow[n \to +\infty]{} ll'$$
.

— On suppose $l \neq 0$. D'après (14.23), à partir d'un certain rang $u_n > 0$ (ou $u_n < 0$). Il existe en outre $N \in \mathbb{N}$ tel que :

$$0 < \frac{l}{2} < u_n \text{ et } |u_n - l| < \epsilon$$

Pour $n \geq N$:

$$\left| \frac{1}{u_n} - \frac{1}{l} \right| = \frac{|l - u_n|}{|u_n l|}$$

$$\leq 2 \frac{|l - u_n|}{l^2}$$

$$< \frac{2\epsilon}{l^2}$$

14.35 Conservation des inégalités larges par passage à la limite

Théorème 14.35

Soit u et v deux suites réelles. Si u converge vers l et v converge vers l' et si à partir d'un certain rang $u_n \le v_n$ alors $l \le l'$.

On raisonne par l'absurde : $l>l^{\prime}.$

On pose $\epsilon = \frac{|l'-l|}{2}$.

On choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$
 et $v_n \in]l' - \epsilon, l' + \epsilon[$

En particulier:

$$\forall n \geq N, u_n > v_n$$

Absurde.

14.37 Théorème d'encadrement

Théorème 14.37

Soit u, v et w trois suites réelles. Si u et v convergent vers l et si à partir d'un certain rang, $u_n \le w_n \le v_n$, alors w converge vers l.

Soit $\epsilon > 0$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon[$$
 et $v_n \in]l - \epsilon, l + \epsilon[$

A partir d'un certain rang M, par connexité de l'intervalle $]l - \epsilon, l + \epsilon[$:

$$\forall n \geq M, w_n \in]l - \epsilon, l + \epsilon[$$

14.38 Produit d'une suite bornée par une limite nulle

Théorème 14 38

Soit u et v deux suites réelles. Si u converge vers 0 et si v est bornée, alors w converge vers 0.

Soit $M \in \mathbb{R}_+$ telq ue :

$$\forall n \in \mathbb{N}, |v_n| \leq M$$

Alors:

$$\forall n \in \mathbb{N}, |u_n v_n| \le M \times |u_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Donc:

$$|u_n v_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Soit:

$$u_n v_n \underset{n \to +\infty}{\longrightarrow} 0$$

14.39 Exemple

Exemple 14.39

Soit (u_n) une suite strictement positive et $\eta \in]0;1[$. On suppose qu'à partir d'un certain rang, on a $\frac{u_{n+1}}{u_n} \leq \eta$. Alors $\lim u_n = 0$.

On suppose que :

$$\forall n \ge n_0, \frac{u_{n+1}}{u_n} \le 2$$

Donc $(u_n > 0)$:

$$\forall n \ge n_0, 0 < u_n < \underbrace{\eta^{n-n_0}}_{\substack{n \to +\infty}} \times u_{n_0}$$

Par encadrement:

$$\boxed{u_n \underset{n \to +\infty}{\longrightarrow} 0}$$

14.40 Comparaison puissance factorielle

Théorème 14.40

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \frac{x^n}{n!} = 0.$$

Pour $x \in \mathbb{R}$ fixé, non nul.

On note pour tout $n \in \mathbb{N}$:

$$u_n = \frac{|x|^n}{n!} > 0$$

Or:

$$\frac{u_{n+1}}{u_n} = \frac{|x|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

A partir d'un certain rang:

$$\frac{u_{n+1}}{u_n} \le \frac{1}{2}$$

Donc (14.39):

$$u_n \xrightarrow[n \to +\infty]{} 0$$

14.41 Caractérisation séquentielle de la borne supérieure

Théorème 14.41

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$. Alors M est la borne supérieure (resp. inférieure) de A si et seulement si M majore (resp. minore) A et s'il existe une suite d'éléments de A qui converge vers M.

 \Rightarrow

On suppose que $M = \sup A$. Donc M majore A.

On rappelle que:

$$\forall \epsilon > 0, \exists a \in A, M - \epsilon < a$$

Donc:

$$\forall n \in \mathbb{N}, \exists a \in A, M - \frac{1}{n+1} < a_n \leq M \ (M \text{ est un majorant})$$

D'après la suite $(a_n) \in A^{\mathbb{N}}$ étant ainsi définie, d'après le théorème d'encadrement :

$$a_n \xrightarrow[n \to +\infty]{} M$$

On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} M$$
 (majorant de A)

Soit $\epsilon > 0$. On choisit $a_n \in A$ tel que:

$$a_n \in]M - \epsilon, M + \epsilon[$$

Donc $M - \epsilon$ ne majore pas A.

Donc:

$$M = \sup A$$

Caractérisation séquentielle de la borne supérieure 14.42

Soit A une partie non vide de \mathbb{R} , alors A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite d'éléments de A qui converge vers x.

 \Rightarrow

On suppose que A est dense dans \mathbb{R} . Soit $x \in \mathbb{R}$.

$$\forall \epsilon > 0, \exists a \in A, a \in]x - \epsilon, x + \epsilon[$$

En particulier:

$$\forall n \in \mathbb{N}, \exists a_n \in A, x - \frac{1}{n+1} < a_n < x + \frac{1}{n+1}$$

La suite $(a_n) \in A^{\mathbb{N}}$ étant fixée ainsi :

$$a_n \xrightarrow[n \to +\infty]{} x$$
 (théorème d'encadrement)

Soit]x,y[un intervalle non vide de \mathbb{R} . On pose $z = \frac{x+y}{2}$. On pose $\epsilon = \frac{|y-x|}{2}$. On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} z$$

On choisit $N \in \mathbb{N}$ tel que :

$$a_n \in]z - \epsilon, z + \epsilon[=]x, y[$$

Donc:

$$A\cap]x,y[\neq\emptyset$$

Théorème de comparaison 14.48

Soit u et v deux suites réelles.

- 1. Si $\lim u = +\infty$ et si à partir d'un certain rang on a $u_n \leq v_n$, alors $\lim v = +\infty$;
- 2. Si $\lim v = -\infty$ et si à partir d'un certain rang on a $u_n \le v_n$, alors $\lim u = -\infty$;
- 3. Si $\lim u = +\infty$ (resp. $-\infty$) et si v est minorée (resp. majorée), alors $\lim u + v = +\infty$ (resp. $-\infty$).

1. Soit $A \geq 0$. On choisit $n \in \mathbb{N}$ tel que :

$$\forall n \geq N, A \leq u_n \text{ et } u_n \leq v_n$$

Donc:

$$\begin{array}{c|c}
v_n & \longrightarrow +\infty \\
\hline
v_{n \to +\infty} & +\infty
\end{array}$$

- 2. RAS
- 3. Si (v_n) est minorée, alors à partir d'un certain rang :

$$m + u_n \le u_n + v_n$$

En adaptant le premier point (A' = A - m), on a :

$$u_n + v_n \xrightarrow[n \to +\infty]{} + \infty$$

14.49 Limites infinies et opérations

Théorème 14.49

Soit u et v deux suites réelles de limites respectives l et l' dans $\overline{\mathbb{R}}$ et soit $\lambda \in \mathbb{R}$. On a

- $\lim u + v = l + l'$ (sauf si $l = +\infty$ et $l' = -\infty$ ou inversement)
- $\lim \lambda u = \lambda l$ sauf si $\lambda = 0$ auquel cas la suite λu est la suite nulle.
- $\lim u \times v = l \times l'$ sauf si $\lambda = 0$ et $l' = \pm \infty$ ou inversement
- Si à partir d'un certain rang, la suite u ne s'annule pas, alors la suite $\frac{1}{u}$:
 - si $l \in \mathbb{R}^*$, tend vers \bar{l} ;
 - si $l = \pm \infty$, tend vers 0;
 - si l = 0 et $u_n > 0$, tend vers $+\infty$;
 - si l = 0 et $u_n < 0$, tend vers $-\infty$;
 - n'a pas de limite dans les autre cas
- On suppose $l' \in \mathbb{R}$ et $l = +\infty$. Donc v est bornée. Donc (14.48):

$$u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$$

- $\lambda \neq 0, \lambda > 0$ et $l = +\infty$. Pour $A \in \mathbb{R}$, on choisit un rang à partir duquel $u_n > \frac{A}{\lambda}$.
- On suppose l > 0 et $l' = +\infty$.

Comme $u_n \underset{n \to +\infty}{\longrightarrow} l$, alors à partir d'un certain rang, $u_n > m$ avec $m = \begin{cases} 1 \text{ si } l = +\infty \\ \frac{l}{2} \text{ sinon} \end{cases}$

$$u_n v_n > m v_n \xrightarrow[n \to +\infty]{} +\infty$$

Donc:

$$u_n v_n \underset{n \to +\infty}{\longrightarrow} +\infty$$
 (14.48)

 $-l = +\infty.$

Soit $\epsilon > 0$, à partir d'un certain rang :

$$u_n > \frac{1}{\epsilon} > 0$$

Donc:

$$0 < \frac{1}{u_n} < \epsilon$$

$$\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} 0$$

Si l = 0 et $u_n > 0$ à partir d'un certain rang. Pour $A \in \mathbb{R}_+^*$, à partir d'un certain rang :

$$u_n > 0$$
 et $u_n < \frac{1}{A}$
donc $\frac{1}{u_n} > A$
 $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} +\infty$

14.50 Théorème de la limite monotone

Théorème 14.50

Si u est une suite croissante et majorée (resp. décroissante et minorée), alors u converge vers $\sup_{n\in\mathbb{N}}(u_n)$ (resp. vers $\inf_{n\in\mathbb{N}}(u_n)$).

Si u est une suite croissante et non majorée (resp. décroissante et non minorée) alors u tend vers $+\infty$ (resp. vers $-\infty$).

— On suppose u croissante et majorée.

L'ensemble $A = \{u_n | n \in \mathbb{N}\}$ est non vide et majoré. Cet ensemble possède une borne supérieure notée l (propriété fondamentale de \mathbb{R}).

Soit $\epsilon >$. Comme $l - \epsilon < u_n$ ne majore pas A, on choisit $N \in \mathbb{N}$ tel que $l - \epsilon < u_n$.

Or (u_n) est croissante donc :

$$\forall n \ge N, l - \epsilon < u_N \le u_n \le l$$

Donc:

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$

Soit:

$$u_n \underset{n \to +\infty}{\longrightarrow} l$$

— On suppose u croissante et non majorée.

Soit $A \in \mathbb{R}_+$. Soit $N \in \mathbb{N}$ tel que :

$$u_N \geq A \ (u \text{ non major\'ee})$$

Donc:

$$\forall n \geq N, A \leq u_N \leq u_n \ (u \text{ croissante})$$

Soit:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.54 Exemple

Exemple 14.54

Soit u et v les suites définies par

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!} \text{ et } v_n = u_n + \frac{1}{n \times n!}$$

Ces deux suites sont adjacentes.

$$\forall n \in \mathbb{N}^*, u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$$

Donc (u_n) est croissante.

$$\forall n \in \mathbb{N}^* v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{n!} \left[\frac{1}{n+1} + \frac{1}{(n+1)^2} - \frac{1}{n} \right]$$

$$= \frac{1}{n!(n+1)^2 n} [(n+1)n + n - (n+1)^2]$$

$$= -\frac{1}{n!(n+1)^2 n}$$

$$\leq 0$$

$$\forall n \in \mathbb{N}^*, v_n - u_n = \frac{1}{n \times n!}$$

Donc:

$$v_n - u_n \xrightarrow[n \to +\infty]{} 0$$

Donc u et v sont adjacentes et convergent alors vers une limite commune. (TCSA)

14.55 Convergence des suites adjacentes

Théorème 14 55

Deux suites adjacentes convergent vers une limite commune.

Soit u et v deux suites adjacentes avec u croissante et v décroissante.

Soit w = v - u. Par opération, w est décroissante.

Par hypothèse:

$$w_n \underset{n \to +\infty}{\longrightarrow} 0$$

Donc $w \le 0$, soit $u \le v$.

La suite u est donc majorée par v_0 , et croissante donc convergente d'après le théorème de la limite monotone. Pour les mêmes raisons, v converge.

Or, par théorème d'opérations :

$$\lim_{n \to +\infty} v_n - \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (v_n - u_n) = 0$$

14.56 Théorème de Bolzano-Weierstrass

Théorème 14.56

On peut extraire de toute suite réelle bornée une suite convergente.

Soit u une suite bornée. On note a et b un minorant et majorant de u. On construit deux suites (a_n) et (b_n) par récurrence de la manière suivante :

- On initialise $a_0 = a$ et $b_0 = b$.
- Si l'intervalle $\begin{bmatrix} a_0, \frac{a_0+b_0}{2} \end{bmatrix}$ contient une infinité de valeurs de la suite (u_n) , alors $a_1 = a_0$ et $b_1 = \frac{a_0+b_0}{2}$. Sinon, l'intervalle $\begin{bmatrix} \frac{a_0+b_0}{2}, b_0 \end{bmatrix}$ contient une infinité de valeurs, alors $a_1 = \frac{a_0+b_0}{2}$ et $b_1 = b_0$. On note $\sigma(0) = 0$ et comme $[a_1, b_1]$ contient une infinité de valeurs, on dixe $u_{n_1} \in [a_1, b_1]$ avec $n_1 > 0$. On pose alors $\sigma(1) = n_1$.
- Supposons construits (a_n) , (b_n) et σ avec le principe précédent :

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = a_n \text{ et } b_{n+1} = \frac{a_n + b_n}{2} \\ \text{ou} \\ a_{n+1} = \frac{a_n + b_n}{2} \text{ et } b_{n+1} = b_n \end{cases}$$

Selon que $\left[a_n, \frac{a_n+b_n}{2}\right]$ contient une infinité de valeurs ou $\left[\frac{a_n+b_n}{2}, b_n\right]$ et v(n+1) > v(n) et $u_{\sigma(n+1)} \in [a_{n+1}, b_{n+1}]$.

$$\forall n \in \mathbb{N}, a_n \leq u_{\sigma(n)} \leq b_n$$

$$\forall n \in \mathbb{N}, |b_{n+1} - a_{n+1}| = \frac{|b_n - a_n|}{2}$$

$$\forall n \in \mathbb{N}, |b_n - a_n| = \frac{|b_0 - a_0|}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$$

Donc (a_n) et (b_n) sont adjacentes donc convergent vers la même limite (TCSA) donc $(u_{\sigma(n)})$ converge (TE).

14.63 Exemple

Exemple 14.63

La suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + e^{u_n}$ diverge vers $+\infty$.

 R_+ est stable par $f: x \mapsto x + e^x$. Comme $0 \in \mathbb{R}_+$, la suite (u_n) est bien définie.

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n) = u_n + e^{u_n} \ge u_n$$

Donc (u_n) est croissant.

Supposeons que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+$.

Par théorème d'opération, $l = l + e^l$.

Absurde.

Donc d'après le TLM :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.64 Exemple

Exemple 14.64

La suite (u_n) défine par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n}{1+u_n^2}$ converge vers 0.

[0,1] est stable par $f: x \mapsto \frac{x}{x^2+1}$ et $1 \in [0,1]$.

Donc (u_n) est bien définie et est minorée.

Or:

$$\forall n \in \mathbb{N}, u_{n+1}) f(u_n) = \frac{u_n}{u_n^2 + 1} \le u_n$$

Donc (u_n) est décroissante donc converge vers $l \in [0,1]$ d'après le TLM. Par théorème d'opération :

$$l = \frac{l}{l^2 + 1}$$

donc
$$l^2 = 0$$

donc
$$l=0$$

14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$

Théorème 14.66

Soit D une partie de \mathbb{R} , $u_0 \in D$ et $f: D \to D$ une fonction (autrement dit, D est stable par f). On note (u_n) l'unique suite définie sur \mathbb{N} par $u_{n+1} = f(u_n)$.

- 1. Si pour tout $x \in D$, $f(x) \ge x$, alors (u_n) est croissante. Si pour tout $x \in D$, $f(x) \le x$, alors (u_n) est décroissante. Le signe de la fonction $x \mapsto f(x) x$ renseigne donc sur la monotonie de la suite (u_n) .
- 2. Si f est croissante, alors (u_n) est monotone. Son sens de variation dépend alors du signe de $u_1 u_0$.
- 3. Si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraires. Leur sens de variation est entièrement déterminé par le signe de $u_2 u_0$.
- 1. Si:

$$\forall n \in D, f(x) \ge x$$

Alors:

$$\forall n \in \mathbb{N}, f(u_n) = u_{n+1} > u_n$$

Donc (u_n) est croissante.

2. On suppose f croissate et $u_0 \leq u_1$. Alors :

$$u_1 = f(u_0) \le f(u_1) = u_2$$

On termine par récurrence.

3. Si f est décroissante, alors $f^2 = f \circ f$ est croissante. Or :

$$\forall n \in \mathbb{N}, u_{2n+2} = f^2(u_{2n})$$
$$u_{2n+1} = f^2(u_{2n-1})$$

Donc (14.66.2) (u_{2n}) et (u_{2n+1}) sont monotones. Or, si $u_2 \le u_0$, alors $u_3 = f(u_2) \le f(u_0) = u_1$

14.68 Exemple

Exemple 14.68

On note (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + u_n$ et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

 \mathbb{R}_+ est stable par $f: x \mapsto x^2 + x$ et $1 \in \mathbb{R}_+$.

Donc (u_n) est bien définie.

Comme:

$$\forall x \in \mathbb{R}_+, f(x) - x > 0$$

 (u_n) est croissante.

On suppose que:

$$u_n \xrightarrow[n \to +\infty]{} l \ge 1 = u_0$$

Comme $f \in \mathcal{C}^{\infty}(\mathbb{R}_+, \mathbb{R}_+)$.

On a f(l) = l donc $l^2 = 0$.

Absurde.

Donc, d'après le TLM :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.69 Exemple

Exemple 14.69

On note (u_n) la suite définie apr $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{u_n}$, et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

[1,2] est stable par $f: x \mapsto 1 + frac1x$ et $1 \in [1,2]$.

Donc (u_n) est bien définie et est bornée.

Comme f est décroissante sur [1,2], (u_{2n}) et (u_{2n+1}) sont monotones de monoties contraires.

Comme $u_0 = 1 = \min([1, 2]), (u_{2n})$ est croissante et (u_{2n+1}) décroissante, puis convergentes (TLM) vers des points fixes de f^2 (car f^2 est continue sur [1, 2])

Soit $x \in [1, 2]$.

$$f^{2}(x) = x \Leftrightarrow 1 + \frac{1}{1 + \frac{1}{x}} = x$$

$$\Leftrightarrow x + 1 + x = x(x + 1)$$

$$\Leftrightarrow x^{2} - x - 1 = 0$$

$$\Leftrightarrow \left(x - \underbrace{\frac{1 + \sqrt{5}}{2}}_{\in [1, 2]}\right) \left(x - \underbrace{\frac{1 - \sqrt{5}}{2}}_{\not \in [1, 2]}\right) = 0$$

$$\Leftrightarrow x = \underbrace{\frac{1 + \sqrt{5}}{2}}_{2}$$

Donc (u_{2n}) et (u_{2n+1}) convergent nécessairement vers $\frac{1+\sqrt{5}}{2}$. Donc :

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1 + \sqrt{5}}{2}$$

14.72 Convergence et parties réelles et imaginaires

Théorème 14.72

Soit u une suite complexe et $l \in \mathcal{C}$. Alors la suite u converge vers l si et seulement si la suite $(Re(u_n))$ converge vers Re(l) et $(Im(u_n))$ converge vers Im(l).

 \Rightarrow

Pour tout $n \in \mathbb{N}$:

$$|Re(u_n) - Re(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$$

 $|Im(u_n) - Im(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi, $Im(u_n) \underset{n \to +\infty}{\longrightarrow} Im(l)$ et $Re(u_n) \underset{n \to +\infty}{\longrightarrow} Re(l)$.

← On a :

$$|u_n - l| = \sqrt{(Im(u_n) - Im(l))^2 + (Re(u_n) - Re(l))^2}$$

$$\underset{n \to +\infty}{\longrightarrow} 0 \text{ (théorème d'opérations)}$$

14.73 Théorème de Bolzano-Weierstrass pour les suites complexes

Remarque 14.73

Si u est bornée, on peut en extraire une suite convergente (Bolzano-Weierstrass).

```
\begin{array}{l} u_n=a_n+b_n \ {\rm born\acute{e}e}.\\ (a_n)\ {\rm et}\ (b_n)\ {\rm sont}\ {\rm born\acute{e}s}.\\ (a_n)\ {\rm born\acute{e}\'e}\ {\rm donc}\ (a_{\sigma(n)})\ {\rm converge}.\\ (b_{\sigma(n)})\ {\rm born\acute{e}\'e}\ {\rm donc}\ (b_{\sigma\circ\varphi(n)})\ {\rm converge}.\\ (a_{\sigma\circ\varphi(n)})\ {\rm extraite}\ {\rm de}\ (a_{\sigma(n)})\ {\rm donc}\ {\rm converge}.\\ (u_{\sigma\circ\varphi(n)})\ {\rm converge}. \end{array}
```

Chapitre 15

Limites et continuité

15.6 Limite en un point du domaine

Si $a \in X$ et si f(x) admet une limite finie en a, alors cette limite est nécessairement égale à f(a).

Comme f(x) admet une limite finie b quand $x \to a$:

$$\forall \epsilon, \exists \nu > 0, \forall x \in X, |x - a| \le \nu \Rightarrow |f(x) - b| \le \epsilon$$

Or pour tout $\epsilon > 0$:

$$|a - a| \le \nu$$
 (quelque soit ν)

Donc:

$$\forall \epsilon, |f(a) - b| \le \epsilon$$

Donc |f(a) = b|

Comparaison des limites de deux fonctions coincidant au voi-15.15sinage de a

Soit f et g deux fonctions coincidant au voisinage d'un point a. Alors, si f admet une limite (finie ou infinie) en a, alors g aussi et

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

On choisit $W \in \mathcal{V}(a)$ tel que $W \cap X = W \cap Y$ et $f|_{W \cap X} = g|_{W \cap Y}$.

Soit $b \in \mathbb{R}$ tel que f(x) tend vers b quand $x \to a$.

Soit $V \in \mathcal{V}(b)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V$$

Or

$$W \cap U \in \mathcal{V}(a)$$
 et $\subset f(W \cap U \cap X)_{g(W \cap U \cap Y)} \subset V$

Donc g admet une limite en a égale à b

15.17Unicité de la limite, cas réel

Soit $a \in \overline{X}$ et f une fonction réelle. Sous réserve d'existence, la limite de f(x), lorsque x tend vers a est

Par l'absurde. On suppose que f possède deux limites $l \neq l'$ en a.

On choisit $u \in \mathcal{V}(l)$ et $u' \in \mathcal{V}(l')$ tels que $u \cap u' = \emptyset$.

Par définition, on choisit $(W, W') \in \mathcal{V}(a)^2$ tels que $f(W \cap X) \subset U$ et $f(W' \cap X) \subset U'$. Or $W \cap W' \notin \mathcal{V}(a)$ et $f(W \cap W' \cap X) \subset U \cap U' = \emptyset$.

Or
$$\underbrace{W \cap W'}_{\neq \emptyset} \notin \mathcal{V}(a)$$
 et $f(\underbrace{W \cap W' \cap X}_{\neq \emptyset}) \subset U \cap U' = \emptyset$

Absurde.

15.23Propostion

Soit $a \in \overline{X}$. Soit $(Z_i)_{i \in I}$ une famille **finie** de sous-ensembles de \mathbb{R} tels que $X \in \bigcup Z_i$ (on dit que (Z_i) est un **recouvrement** de X). La fonction f admet au point a une limite ℓ (finie ou infinie) si et seulement si pour tout i tel que la limite de f en a sur Z_i est envisageable, cette limite existe et vaut ℓ .

On suppose que $\lim_{a} f = \ell$.

Soit $i \in I$ tel que $a \in \overline{X \cap Z}$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que $f(U \cap X) \subset V$.

EN particulier $f(\underbrace{U \cap X \cap Z_i}) \subset V = f|_{X \cap Z_i} (U \cap X \cap Z_i).$

$$\Leftarrow$$

Notons $J \subset I$ l'ensemble des indices pour lesquels la limite est envisageable en Z_i .

Soit $V \in \mathcal{V}(\ell)$. Pour tout $i \in J$, comme $\lim_{x \to ax \in Z_i} = \ell$ on choisit $U_i \in \mathcal{V}(a)$ tel que $f|_{Z_i \cap X} (U_i \cap Z_i \cap X) \subset V$.

On pose $U = \bigcap_{i \in J} U_i \in \mathcal{V}(a)$ car J est fini.

On choisit $U' \in \mathcal{V}(a)$ tel que $U' \cap \left(\bigcup_{i \in I \setminus J} Z_i\right) = \emptyset$.

$$f(U \cap U' \cap X) \subset V$$
Donc
$$\lim_{a} f = \ell$$

15.30 Composition de limites

Propostion 15.30

Soit $f: X \to \mathbb{R}, \ g: Y \to \mathbb{R}$ deux fonctions avec $f(X) \subset Y$. Soit $a \in \overline{X}, \ b \in \overline{Y}$ et $c \in \overline{\mathbb{R}}$. Si $\lim_a f = b$ et si $\lim_b g = c$, alors $\lim_a g \circ f = c$.

Soit $W \in \mathcal{V}(c)$. On choisit $V \in \mathcal{V}(b)$ tel que :

$$g(V \cap Y) \subset W$$

On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V \cap Y \ (\lim_{a} f = b)$$

On a alors:

$$g \circ f(U \cap X) \subset W$$

15.32 Limites et inégalités strictes

Propostion 15.32

Soit $f: X \to \mathbb{R}$, $a \in \overline{X}$, $m \in \mathbb{R}$ et $M \in \mathbb{R}$.

- 1. Si $\lim_{a} f < M$ alors f(x) < M au voisinage de a
- 2. Si $\lim_{x \to a} f > m$ alors f(x) > m au voisinage de a.
- 1. Notons $b = \lim_{a} f \in \overline{\mathbb{R}}$. Si b < M, on choisit $U \in \mathcal{V}(b)$ et $U' \in \mathcal{V}(M)$ avec U < U'. Comme $\lim_{a} f = b$, on choisit $W \in \mathcal{V}(a)$ tel que:

$$f(W \cap X) \subset U$$

Limite et inégalités larges 15.33

Soit $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ deux fonctions et $a \in \overline{X}$. On suppose que f et g possède des limites finies

Si $f(x) \le g(x)$ au voisinage de a, alors $\lim_{x \to a} f \le \lim_{x \to a} g$.

Ce résultat est le plus souvent utilisé lorsqu'une des deux fonctions est constante.

RAF : absurde + (15.32)

15.34 Caractérisations séquentielle de la limite d'une fonction

Soit $f:X\to\mathbb{R}$ une fonction et $a\in\overline{X}$ et $\ell\in\overline{\mathbb{R}}$. Sont équivalentes :

- 1. $\lim_{a} f = \ell \Leftrightarrow \forall u_n \to a, \lim_{n \to a} f(u_n) = \ell (= f(\lim_{n \to a} u_n))$
- 2. Pour toute suite (u_n) de limite a à valeurs dans X, la suite $(f(u_n))$ a pour limite ℓ .

$$1 \Rightarrow 2$$

On suppose que $\lim_{a} f = \ell$. Soit $(u_n) \in X^{\mathbb{N}}$ avec $u_n \xrightarrow[n \to +\infty]{} a$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V \ (\lim_{a} f = \ell)$$

Comme $u_n \xrightarrow[n \to +\infty]{} a$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n > N, u_n \in U \cap X$$

Donc:

$$\forall n \geq N, f(u_n) \in V$$

Donc:

$$f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$$

$$1 \Leftarrow 2$$

Par contraposée. On suppose que f n'admet pas ℓ comme limite en a. Pour tout $n \in \mathbb{N}$, on note :

$$V_n = \begin{cases} \left[a - \frac{1}{n+1}, a + \frac{1}{n+1} \right] & \text{si } a \in \mathbb{R} \\ \left[n, +\infty \right] & \text{si } a = +\infty \\ \left[-\infty, -n \right] & \text{si } a = -\infty \end{cases}$$

Par définition, il existe $W \in \mathcal{V}(\ell)$ tel que pour tout $V \in \mathcal{V}(a)$, il existe $x \in V \cap X$ et $f(x) \neq W$. Pour tout $n \in \mathbb{N}$, on choisit $x_n \in V_n \cap X$ tel que $f(x_n) \neq W$. Par construction:

$$(x_n) \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \text{ et } f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

15.39 Théorème de la limite monotone

Théorème 15.39

Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b et $f : [a, b] \to \mathbb{R}$ une fonction croissante.

- 1. La limite $\lim_{a^+} f$ existe et est finie. Plus précisément, on a $f(a) \leq \lim_{a^+} f$.
- 2. Pour tout $c \in]a,b[$, $\lim_{c^-} f$ et $\lim_{c^+} f$ existent et sont finies. Plus précisément : $\lim_{c^-} f \leq f(c) \leq \lim_{c^+} f$.
- 3. La limite $\lim_{h} f$ existe et est soit finie, soit égale à $+\infty$.
- 1. On note F = f(]a, b[). Comme f est définie au voisinage de $a,]a, b[\neq \emptyset \text{ et } F \neq \emptyset.$

Par ailleurs, comme f est croissante sur a, b, F est minorée par f(a).

D'après la propriété fondamentale de \mathbb{R} , F possède une borne inférieure notée α , avec $f(a) \leq \alpha$. Montrons par définition que $\lim f = \alpha$.

Soit $\epsilon > 0$, $\alpha + \epsilon$ n'est pas un minorant de F par définition de α . On choisit :

$$\alpha \le f(x_0) < \alpha + \epsilon$$

Par croissance de f sur a, b:

$$\forall x \in]a, x_0[, \alpha \le f(x) \le f(x_0) < \alpha + \epsilon]$$

On pose $\eta = x_0 - a > 0$, on a montré que :

$$\forall x \in]a - \eta[\cap]a, b[, |f(x) - \alpha| < \epsilon]$$

2. Pour $c \in]a,b[$, en appliquant (15.39.1) à $f|_{[a,b[},$ on montre que $\lim_{c^+} f$ existe et $f(x) \leq \lim_{x^+} f$.

On adapte ensuite la preuve de (15.39.1):

$$F = f(|a, c|), \alpha = \sup(F)$$

pour montrer que $\lim_{x \to a} f$ existe et

- 3. Par disjonction de cas.
 - Si f est majorée : on adapte la 2ème partie de (15.39.2).
 - Si f n'est pas majorée. Soit $A \in \mathbb{R}$. Comme f n'est pas majorée, on choisit $x_0 \in]a, b[$ tel que $f(x_0) > A$. Comme f est croissante :

$$\forall x > x_0, f(x) > A$$

Donc $\lim_{h} f = +\infty$.

15.59 Théorème des valeurs intermédiaires : version 1

Théorème 15.59

Soit f une fonction continue sur un intervalle I d'extrémité a et b dans $\overline{\mathbb{R}}$ (avec existence des limites dans le cas des bornes infinies). Alors si f(a) > 0 et f(b) < 0 (ou l'inverse), il exsite $c \in]a,b[$, tel que f(c) = 0.

On note $A = \{x \in I, f(x) > 0\}.$

- $A \neq \emptyset$ car f est définie et strictement positive au voisinage de a (15.32).
- A est majoré car f est strictement négative au voisinage de b (et tout élément dans ce voisinage est un majorant).

D'après la propriété fondamentale de \mathbb{R} , A possède une borne supérieure notée $c \in]a,b[$.

- On a $c \notin A$. En effet, si f(x) > 0, alors f est strictement postivie sur un voisinage de c, et comme f est définie à droite de c, cela contredirait que c'est un majorant de A. Donc $f(c) \leq 0$.
- Si f(c) < 0, alors f est strictement négative au voisinage à gauche de c.

Absurde car c est le plus petit des majorants.

Conclusion, f(c) = 0.

15.60 Théorème des valeurs intermédiaires : version 2

Théorème 15.60

Soit f une fonction continue sur un intervalle I et soit $M = \sup_I f(x)$ et $m = \inf_I f(x)$ (éventuellement infinies).

Alors f prend toutes les valeurs de l'intervalle [m; M[:

$$\forall x_0 \in]m; M[, \exists c \in I, f(c) = x_0.$$

RAF: (15.59) à $f - x_0$.

15.61 Théorème des valeurs intermédiaires : version 3

Théorème 15-61

L'image d'un intervalle quelconque par une fonction continue est un intervalle.

Définition d'un intervalle par connexité.

15.65 Théorème de Heine

Théorème 15.65

Une fonction continue sur un segment est uniformément continue sur ce segment.

Rappel:

$$C^{0}(I): \forall x \in I, \forall \epsilon > 0, \exists \eta > 0, \forall y \in I, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$
$$Cu(I): \forall \epsilon > 0, \exists \eta > 0, \forall (x, y) \in I^{2}, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

On raisonne par l'absurde. Soit f continue sur [a,b] mais non uniformément continue sur [a,b]. On choisit ϵ tel que :

$$\forall \eta > 0, \exists (x, y) \in [a, b]^2, |x - y| < \eta \text{ et } |f(x) - f(y)| \ge \epsilon$$

Ainsi, pour tout $b \in \mathbb{N}^*$, on choisit un couple $(x_n, y_n) \in [a, b]^2$ tel que :

$$|x_n - y_n| < \frac{1}{n} \text{ et } \underbrace{|f(x_n) - f(y_n)|}_{(*)} \ge \epsilon$$

En particulier (x_n) est bornée donc d'après le théorème de Bolzano-Weierstrass, on en extrait $(x_{\varphi(n)})$ suite convergente vers ℓ .

D'après le TCILPPL, $\ell \in [a, b]$.

Comme:

$$\forall n \in \mathbb{N}, |x_{\varphi(n)} - y_{\varphi(n)}| < \frac{1}{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} 0$$

Alors:

$$y_{\varphi(n)}\underset{n\to+\infty}{\longrightarrow}\ell$$

Par continuité:

$$f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell) \text{ et } f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell)$$

Donc par opération:

$$|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \underset{n \to +\infty}{\longrightarrow} 0$$

Absurde d'après (*).

15.67 Caractérisation des intervalles compacts

Lemme 15.67

Les intervalles compacts de $\mathbb R$ sont exactement les segments, c'est-à-dire les intervalles fermés bornés [a,b].

Les segments sont bien compacts (BW et TCILPPL).

— Si
$$I =]-\infty, a[$$
,

$$u_n = a - n - 1 \underset{n \to +\infty}{\longrightarrow} -\infty \notin I$$

$$u_n = a - \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} a \notin I$$

15.68 Image d'un compact par une fonction continue

Lemme 15.68

L'image continue d'un compact est compact.

Soit I un segment, donc un intervalle.

Comme f est continue sur I, f(I) est un intervalle (TVI v3).

Montrons que f(I) est compact.

Soit $(y_n) \in f(I)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, soit $x_n \in I$ tel que :

$$y_n = f(x_n)$$

Or I est compact (15.67), on choisit:

$$x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell \in I$$

 $y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} f(\ell)$ car f est continue sur I.

15.69 Image d'un segment par une fonction continue

Corollaire 15.69

Soit f continue sur un segment I, alors f(I) est un segment.

$$(15.68) + TVI v3 + (15.67)$$

15.72 Théorème 15.72

Théorème 15.72

Soit I un intervalle et f une fonction continue sur I. Alors f est injective si et seulement si f est strictement monotone.

 \Rightarrow

Supposons f non strictement monotone.

On peut supposer qu'il existe alors :

tels que f(x) < f(y) et f(z) < f(y). Soit :

$$\lambda = \frac{f(y) + \max(f(y), f(z))}{2} \in]f(x), f(y)[$$
$$\in]f(z), f(y)[$$

Par continuité de f sur les intervalles [x, y] et [y, z], il existe $\alpha \in]x, y[$ et $\beta \in]y, z[$ tels que :

$$f(\alpha) = \lambda = f(\beta)$$

Donc f n'est pas injective.

15.73 Théorème 15.73

Théorème 15.73

Soit I un intervalle et f monotone sur I. Si f(I) est un intervalle, alors f est continue sur I.

On suppose f croissante sur I.

On suppose que f n'est pas continue sur I.

On applique le TLM:

$$\forall a \in I, \lim_{a^{-}} f \leq f(a) \leq \lim_{a^{+}} f \text{ (quand tout existe)}$$

Comme f n'est pas continue sur I, on choisit $a \in I$ tel que :

$$\lim_{a^{-}} f < f(a) \text{ ou } f(a) < \lim_{a^{+}} f$$

On pose:

$$\lambda = \frac{f(a) + \lim_{a^-} f}{2} \text{ ou } \lambda = \frac{f(a) + \lim_{a^+} f}{2}$$

 $f(a) \neq \lambda$ et par croissance :

$$\forall x < a, f(x) < \lambda$$

 $\forall x > a, f(x) > \lambda$

Donc $\lambda \notin f(I)$.

Donc f(I) n'est pas connexe, donc f(I) n'est pas un intervalle.

15.76 Théorème de la bijection

Théorème 15.76

Soit I un intervalle d'extrémités a et b. Soit $f:I\to\mathbb{R}$ strictement monotone et continue. Soit

$$\alpha = \lim_{x \to a} f(x)$$
 et $\beta = \lim_{x \to b} f(x)$.

(ces limites existent car f et monotone). Alors f(I) est un intervalle d'extrémité α et β , et f est un homémorphisme de I sur f(I).

Plus précisément, la borne α de f(I) est ouverte si et seulement si la borne a de I est ouverte (et de même pour β).

- f(I) est un intervalle : (15.61).
- f induit une bijection de I sur f(I) (15.72 \subseteq).
- f^{-1} est strictement monotone et définie sur $\overline{f}(I)$ intervalle, d'image I intervalle donc f^{-1} est continue sur f(I) (15.73 \Rightarrow).

Ainsi, f induit un homéomorphisme de I sur f(I).

La nature des bornes (fermées ou ouvertes) provient de la monotonie de f.

Chapitre 16

Arithmétique des polynômes

Division euclidienne 16.1

Soit $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]$ non nul, il existe un unique couple de polynômes (Q, R) tel que A = BQ + Ravec $\deg R < \deg B$. Le polynôme Q est appelé **quotient** et R le **reste**.

Existence:

On raisonne par récurrence sur le degré de A.

- Pour $n = \deg A = 0$. Soit $A \in \mathbb{K}[X]$.
 - Si $\deg B > 0$, alors (0, A) convient.
 - Si deg B=0, le couple $(B^{-1}\times A,0)$ convient (comme B est constant et non nul), alors $B\in\mathbb{K}^*$ donc inversible).
- On suppose le résultat vrai pour tout $A \in \mathbb{K}_n[X]$.

Soit
$$A \in \mathbb{K}_{n+1}[X]$$
 avec $\deg A = n+1$.
On écrit $A = \underbrace{a}_{\neq 0} X^{n+1} + A_1$ avec $A_1 \in \mathbb{K}_n[X]$.

- Si $\deg A < \deg B$, le couple (0, A) convient.
- Si $\deg A \ge \deg B$ et on note b le coefficient dominant de B :

$$A - ab^{-1}B \times X^{n+1-\deg B} \in \mathbb{K}_n[X]$$

D'après l'hypothèse de récurrence, on choisit $(Q,R) \in \mathbb{K}[X]^2$ tel que $\deg R < \deg B$ et $A-ab^{-1}B \times B$ $X^{n+1-\deg B} = QB + R.$

Donc:

$$A = \left[Q + ab^{-1}X^{n+1-\deg A}\right] \times B + R$$

<u>Unicité</u>:

On suppose que $A = BQ + R = BQ_1 + R_1$.

$$B(Q-Q_1) = R_1 - R$$

$$\operatorname{donc} \underbrace{\deg (B(Q-Q_1))}_{\deg B + \deg Q - Q_1} = \operatorname{deg} (R_1 - R)$$

$$\leq \max(\operatorname{deg} R_1, \operatorname{deg} R)$$

$$< \operatorname{deg} B$$

$$\operatorname{donc} \operatorname{deg} (Q - Q_1) < 0$$

$$\operatorname{donc} Q - Q_1 = 0$$

$$\operatorname{puis} R_1 - R = 0$$

16.7Proposition 16.7

On a:

- 1. Soit A et P deux polynômes non nuls. Si A|P et si P|A, alors il existe $\alpha \in \mathbb{K}^*$ tel que $P = \alpha A$. (La relation de divisibilité n'est pas antisymétrique)
- 2. Si A|B et si B|C, alors A|C. La relation de divisibilité est transitive.
- 3. Pour tout $A \in \mathbb{K}[X]$ non nul, A|A. La relation de divisibilité est réflexive.
- 1. $P \neq 0$, $A \neq 0$. Si A|P et P|A, alors (16.6.2):

$$\deg A \le \deg P$$
 et $\deg P \le \deg A$

Donc:

$$\deg P = \deg A$$

Or A|P, alors:

$$P = A \times Q$$

Puis:

 $\deg P = \deg(AQ) = \deg A + \deg Q \ (\mathbb{K} \text{ est intègre})$

Donc:

 $\deg Q = 0$

Donc:

$$Q = \alpha \in \mathbb{K}^*$$

- 2. RAS
- 3. RAS

16.15 Principalité de $\mathbb{K}[X]$

Théorème 16.15

Soit I un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$. Il existe un unique polynôme unitaire D tel que

$$I = D\mathbb{K}[X]$$

Existence:

Soit $I \neq \{0\}$ un idéal.

On note $A = \{ \deg P, P \in I \setminus \{0\} \} \subset \mathbb{N}$.

 $A \neq \emptyset$ $(I \neq \{0\})$, d'après la propriété fondamentale de \mathbb{N} , A possède un plus petit élément noté $n \geq 0$.

Comme $n \in A$, on choisit $D \in I$ tel que deg D = n.

Comme I est un idéal de $\mathbb{K}[X]$ et que $\mathbb{K} = \mathbb{K}_0[X] \subset \mathbb{K}[X]$, on a :

$$\forall \alpha \in \mathbb{K}, \alpha D \in I$$

On peut donc supposer D unitaire. Comme I est un idéal de $\mathbb{K}[X]$, on a :

$$D \times \mathbb{K}[X] \subset I$$

Soit $P \in I$. On effectue la division euclidienne de P par $D \ (\neq 0)$:

$$P = BD + R$$

avec $\deg R \subset \deg D$.

Or:

$$R = \underbrace{P}_{\in I} - \underbrace{BD}_{\in I}$$

$$\in I$$

Par définition de $\deg D = n$, R = 0.

Unicité:

$$I = D\mathbb{K}[X] = J\mathbb{K}[X]$$

avec D et J unitaires.

Or ils sont associés, donc égaux.

16.17 Existence de pgcd

Propostion 16.17

Si A et B sont deux polynômes non nuls, de tels PGCD existent.

Soit A, B dans $\mathbb{K}[X]$, $(A, B) \neq (0, 0)$.

On note $C = \{ \deg P, P | A \text{ et } P | B \text{ et } P \neq 0 \} \subset \mathbb{N}.$

 $\mathcal{C} \neq \emptyset$ car $0 \in \mathcal{C}$ et \mathcal{C} est majoré par $\deg B$ (max($\deg A, \deg B$)).

L'existence est assurée par la propriété fondamentale de N.

16.18 Principalité de $\mathbb{K}[X]$

Propostion 16.18

Soit A et B deux polynômes non tous deux nuls. Soit $D \in \mathbb{K}[X]$. Alors Δ est un PGCD de A et B si et seulement si

$$A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D'après (16.15), on choisit $F \in \mathbb{K}[X]$ tel que :

$$A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Soit $D \in \mathbb{K}[X]$.

 \Rightarrow

On suppose que D est un PGCD.

Donc D|A et D|B.

Donc D|F (combinaison $F \in A\mathbb{K}[X] + B\mathbb{K}[X]$).

Or F|A et F|B $(A \in F\mathbb{K}[X], B \in F\mathbb{K}[X])$.

Par maximalité de $\deg D$, on a F et D associés.

 \Leftarrow

$$D\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Donc D|A et D|B.

Pour tout diviseur commun P de A et B, P|A et P|B.

Donc $P|D \ (D \in A\mathbb{K}[X] + B\mathbb{K}[X]).$

Donc $\deg D$ est maximal pour la divisibilité.

16.24 Lemme de préparation au calcul pratique du PGCD unitaire

Lemme 16.24

Soit A et B deux polynômes tels que $B \neq 0$. Pour tout $Q \in \mathbb{K}[X]$, on a $A \wedge B = (A - BQ) \wedge B$. En particulier, si Q et R sont le quotient et le reste de la division euclidienne de A par B Alors $A \wedge B = B \wedge R$.

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= (A - BQ)\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= ((A - BQ) \wedge B)\mathbb{K}[X]$$

Donc $A \wedge B$ et $(A - BQ) \wedge B$ sont associés, unitaires par définition, donc égaux.

16.26 Exemple

Exemple alternatif 16.26

Trouver les PGCD de $A = X^5 + 2X$ et de $B = X^4 + 2X^3 + 4$ et une relation de Bézout.

$$X^{5} + 2X = (X^{4} + 2X^{3} + 4)(X - 2) + 4X^{3} - 2X + 8$$

$$X^{4} + 2X^{3} + 4 = (4X^{3} - 2X + 8)(\frac{1}{4}X + \frac{1}{2}) + \frac{1}{2}X^{2} - X$$

$$4X^{3} - 2X + 8 = (\frac{1}{2}X^{2} - X)(8X + 16) + 14X + 8$$

$$\frac{1}{2}X^{2} - X = (14X + 8)(\frac{1}{28}X - \frac{9}{14 \times 7}) + \frac{9 \times 4}{7^{2}}$$

$$A \wedge B = 1$$

$$\frac{9 \times 4}{7^2} = \frac{1}{2}X^2 - X - (14X + 8)(\frac{1}{28}X - \frac{9}{2 \times 7^2})$$
$$= \frac{1}{2}X^2 - X - (4X^3 - 2X + 8 - (\frac{1}{2}X^2 - X)(8X + 16))(\frac{1}{28}X - \frac{9}{2 \times 7^2})$$

16.27 Propriétés du PGCD

Propostion 16.27

L'opération \wedge est commutative et associative. Par ailleurs, si C est unitaire, alors $(A \wedge B)C = (AC) \wedge (BC)$.

Soit $(A, B, C) \in \mathbb{K}[X]^3$ non tous nuls.

$$\begin{split} (A \wedge B)\mathbb{K}[X] &= A\mathbb{K}[X] + B\mathbb{K}[X] \\ &= B\mathbb{K}[X] + A\mathbb{K}[X] \\ &= (B \wedge A)\mathbb{K}[X] \end{split}$$

Donc $A \wedge B$ et $B \wedge A$ sont associés et unitaires donc égaux.

$$\begin{split} ((A \wedge B) \wedge C) \mathbb{K}[X] &= (A \wedge B) \mathbb{K}[X] + C \mathbb{K}[X] \\ &= A \mathbb{K}[X] + B \mathbb{K}[X] + C \mathbb{K}[X] \\ &= (A \wedge (B \wedge C)) \mathbb{K}[X] \end{split}$$

Donc $A \wedge (B \wedge C)$ et $(A \wedge B) \wedge C$ sont associés et unitaires donc égaux. On suppose C unitaire. On a :

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$

donc $(A \wedge B)C\mathbb{K}[X] = AC\mathbb{K}[X] + BC\mathbb{K}[X]$
 $= ((AC) \wedge (BC))\mathbb{K}[X]$

Ainsi $C(A \wedge B)$ et $(AC) \wedge (BC)$ sont associés et unitaires donc égaux.

16.29 Existence de PPCM

Propostion 16.29

Soit \mathbb{K} un corps. Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$. Alors A et B admettent des PPCM.

On note $\mathcal{D} = \{ \deg P, A | P, B | P, P \neq 0 \} \subset \mathbb{N}$.

$$\deg AB \in \mathcal{D} \neq \emptyset$$

On conclut avec la propriété fondamentale de \mathbb{N} .

16.30 Caractérisation des PPCM par les idéaux

Propostion 16.30

Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$ et soit $P \in \mathbb{K}[X]$. Alors P est un PPCM de A et B si et seulement si

$$A\mathbb{K}[X] \cap B\mathbb{K}[X] = P\mathbb{K}[X].$$

 $A\mathbb{K}[X] \cap B\mathbb{K}[X]$ est un idéal de $\mathbb{K}[X]$, donc de la forme $M\mathbb{K}[X]$ (16.15).

Montrons que P est un PPCM de A et B si et seulement si P et M sont associés.

 \Rightarrow

On a donc:

$$P \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$$
$$\in M\mathbb{K}[X]$$

Donc M|P.

Or M est un multiple commun à A et B, donc par définition de P, on a :

$$\deg P \leq \deg M$$

Donc P et M sont associés.

On suppose P et M associés, donc :

$$P\mathbb{K}[X] = M\mathbb{K}[X]$$
$$= A\mathbb{K}[X] \cap B\mathbb{K}[X]$$

En particulier, P est un multiple commun à A et B et pour tout $Q \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$, donc P|Q. Donc :

$$degP \le \deg Q$$

16.42 Cas d'unicité d'une relation de Bézout

Propostion 16.42

Soit A et B non constants et premiers entre eux. Il existe un unique couple $(U,V) \in \mathbb{K}[X]^2$ tel que

$$AU + BV = 1$$
 et $\deg U < \deg B$ et $\deg V < \deg A$.

Existence:

 $\overline{\text{Soit }(C,D)} \in \mathbb{K}[X]^2 \text{ tel que } (16.37 - \text{B\'ezout}) :$

$$AC + BD = 1$$

On effectue la dviision euclidienne de C par B :

$$C = BE + U \text{ avec } \deg U < \deg B$$

$$\operatorname{donc} AU + B(\underbrace{D + AE}_{V}) = 1$$

$$\operatorname{donc} \operatorname{deg}(AU + BV) = 0$$

Si $\deg V \ge \deg A$, alors :

$$\deg B + \deg V \ge \deg B + \deg A$$
$$> \deg U + \deg B$$
$$= \deg AU$$

Donc deg(AU + BV) = deg BV > 0.

Absurde.

L'exsitence est prouvée.

Unicité:

Avec es hypothèses correspondantes :

$$AU_1 + BV_1 = 1 = AU_2 + BV_2$$

donc $A(U_1 - U_2) = B(V_2 - V_1)$
donc $A|B(V_2 - V_1)$

Or $A \wedge B = 1$, donc $A|(V_2 - V_1)$.

Or $\deg(V_2 - V_1) < \deg A$.

Donc $V_2 - V_1 = 0$.

Puis $A(U_1 - U_2) = 0$, donc $U_1 - U_2 = 0$ car $\mathbb{K}[X]$ est intègre avec $A \neq 0$.

16.43 Corollaire

Corollaire 16.43

Soit A, B et C trois polynômes avec A et B premiers entre eux. Alors $A \wedge (BC) = A \wedge C$.

- $A \wedge C | A \text{ donc } A \wedge C | A \wedge (BC)$. Donc $A \wedge C | BC$.
- $A \wedge (BC)|A$. Or $A \wedge B = 1$ donc on peut écrire AU + BV = 1. Donc ACU + BCV = C. Or $A \wedge (BC)|ACU + BCV$ soit $A \wedge (BC)|C$. Donc $A \wedge (BC)|A \wedge C$.

Ainsi, $A \wedge C$ et $A \wedge (BC)$ sont associés et unitaires donc égaux.

16.44 Caractérisation des PGCD et PPCM

Propostion 16.44

Soit A et B deux polynômes non nuls, M et D deux polynômes. Alors

$$M = A \lor B \Leftrightarrow (M \text{ unitaire et } \exists (U, V) \in \mathbb{K}[X]^2, M = AU = BV \text{ et } U \land V = 1).$$
 $D = A \land B \Leftrightarrow (D \text{ unitaire et } \exists (U, V) \in \mathbb{K}[X]^2, A = DU \text{ et } B = DV \text{ et } U \land V = 1).$

—
$$\Longrightarrow$$
 $M=A\vee B$. On écrit $M=AU+BV$ avec $(U,V)\in \mathbb{K}[X]^2$. On note $R=U\wedge V$. On écrit $U=RU_1$ et $V=RV_1$. Ainsi:

$$M = RAU_1 = RBV_1$$
donc $R(AU_1 - BV_1) = 0$ donc $AU_1 = BV_1$ ($\mathbb{K}[X]$ est intègre)

Donc $M_1 = AU_1 = BV_1$ est un multiple commun et par minimalité des degrés :

$$RM_1 = M|M_1 \text{ donc } R = 1$$

 \Leftarrow

Par hypothèse, M est un multiple commun, donc :

$$M \in A\mathbb{K}[X] \cap B\mathbb{K}[X] = (A \vee B)\mathbb{K}[X]$$

Donc $A \vee B|M$.

Donc $M = D \times A \vee B$.

Or $A \vee B = AU_1 = BV_1$.

Donc $M = DAU_1 = DBV_1 = AU = BV$.

Donc:

$$A(DU_1 - U) = 0$$

$$B(DV_1 - V) = 0$$

Or $\mathbb{K}[X]$ est intègre donc $DU_1 = U$ et $DV_1 = V$.

Donc $D|U \wedge V = 1$.

- \Rightarrow

 $D = A \wedge B$. On écrit A = DU et B = DV.

Or pour $R = U \wedge V$, on écrit $U = RU_1$ et $V = RV_1$.

Donc $A = DRU_1$ et $B = DRV_1$.

Donc DR|A et DR|B.

Donc DR|D.

Nécessairement, R = 1.

 \leftarrow

Par hypothèse, D|A et D|B, donc $D|A \wedge B$.

Comme $U \wedge V = 1$, d'après le théorème de Bézout :

$$UU_1 + VV_1 = 1$$

donc
$$DUU_1 + DVV_1 = D$$

soit
$$AU_1 + BV_1 = D$$

donc
$$A \wedge B|D$$

Ainsi, $A \wedge B$ et D sont associés. Or ils sont unitaires, donc égaux.

16.53 Caractérisation des racines par la divisibilité

Théorème 16.53

Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ et $r \in \mathbb{K}$. Alors r est racine de P si et seulement si X - r divise P. Donc s'il existe $Q \in \mathbb{K}[X]$ tel que P = (X - r)Q.

Si P = (X - r)Q, alors :

$$\tilde{P}(r) = (X - r)\tilde{Q}(r)$$
$$= 0 \times \tilde{Q}(r)$$
$$= 0$$

 \Rightarrow

On suppose r racine de P.

On effectue la division euclidienne de P par X-r:

$$P = (X - r)Q + R, R \in \mathbb{K}_0[X]$$

Donc $0 = \tilde{P}(r) = \tilde{R}(r)$.

Donc R = 0.

Donc X - r|P.

16.56 Formule de Taylor pour les polynômes

Théorème 16.56

Soit \mathbb{K} un corps de caractéristique nulle, P un polynôme de $\mathbb{K}[X]$ de degré d et $a \in \mathbb{K}$, alors

$$P = \sum_{k=0}^{d} \frac{P^{(k)}(a)}{k!} (X - a)^{k}.$$

On note $E_k = X^k$, pour $k \in \mathbb{N}$. On a, pour $i \in \mathbb{N}$:

$$E_k^{(i)} = \begin{cases} \frac{k!}{(k-i)!} X^{k-i} & \text{si } i \leq k \\ 0 & \text{si } i > k \end{cases}$$

Ainsi:

$$E_{k}(X + a) = (X + a)^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{E_{k}^{(i)}(a)}{i!} X^{i}$$

Soit
$$P = \sum_{k=0}^{d} a_k X^k = \sum_{k=0}^{d} a_k E_k$$
.
Ainsi :

$$P(x+a) = \sum_{k=0}^{d} a_k E_k(X+a)$$

$$= \sum_{k=0}^{d} a_k \sum_{i=0}^{k} \frac{E_k^{(i)}(a)}{i!} X^i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=i}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=0}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} P^{(i)}(a) X^i$$

16.57 Caractérisation de la multiplicité par les dérivées

Théorème 16.57

Soit \mathbb{K} un corps de caractéristique nulle, $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Le réel a est racine d'ordre multiplicité k de P si et seulement si

$$P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0 \text{ et } P^{(k)}(a) \neq 0.$$

 \Leftarrow

D'après la formule de Taylor :

$$P = \sum_{i=0}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= \sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= (X - a)^{k} \underbrace{\sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i-k}}_{=Q}$$

$$Q(a) = \frac{P^{(k)}(a)}{k!} \neq 0$$

$$P = (\underbrace{X - a}_{B})^{k} Q \text{ avec } Q(a) \neq 0.$$

Pour tout $i \in [0, k-1]$:

$$P^{(i)} = (BQ)^{(i)}$$

$$= \sum_{l=0}^{i} {i \choose l} B^{(l)} Q^{(i-l)}$$

$$P^{(i)}(a) = 0$$

$$P^{(k)} = {k \choose k} B^{(k)}(a) \times Q^{(k-k)}(a)$$

$$= k! \times Q(a) \neq 0$$

16.59 Caractérisation de la multiplicité des racines par la divisibilité

Théorème 16 59

Soit \mathbb{K} un corps. Soit $P \in \mathbb{K}[X]$ et r_1, \ldots, r_k des racines deux à deux distinctes de P, de multiplicités respectives a_1, \ldots, a_k . Alors $(X-r_1)^{a_1} \ldots (X-r_k)^{a_k}$ divise P et r_1, \ldots, r_k ne sont pas racines du quotient.

RAF:

$$(X - r_i)^{\alpha_1} \wedge (X - r_k)^{\alpha_k} = 1 \text{ si } i \neq k$$

16.63 Polynômes formels et fonctions polynomiales

Théorème 16.63

Soit \mathbb{K} un corps infini. Alors l'application de $\mathbb{K}[X]$ dans $\mathbb{K}[x]$ qui à un polynôme formel associe sa fonction polynomiale est un isomorphisme d'anneaux.

RAF : $\varphi(P) = \varphi(Q)$ donc $\varphi(P - Q) = 0$ $\tilde{P} - \tilde{Q}$ s'annule sur \mathbb{K} infini et on applique (16.62).

16.66 Caractérisation des polynômes interpolateurs

Lemme 16.66

Le polynôme L_i est l'unique polynôme de degré au plus n tel que pour tout $j \in [0, n], L_i(x_j) = \delta_{ij}$.

Existence: RAF Unicité: (16.61.3)

Corollaire 16.69

Soit P le polynôme d'interpolation de Lagrange associé à la famille $(x_i)_{0 \le i \le n}$ et aux valeurs $(y_i)_{0 \le i \le n}$ Soit $P_0 = (X - x_0) \dots (X - x_n)$. L'ensemble E des polynômes Q (sans restriction de degré) tel que pour tout $i \in [0, n], Q(x_i) = y_i$ est décrit par

$$E = P + (P_0) = \{P + (X - x_0) \dots (X - x_n)R, R \in \mathbb{K}[X]\}\$$

Si
$$Q = P + (X - x_0) \dots (X - x_n)R$$
, alors :

$$\forall i \in [0, n], Q(x_i) = P(x_i) = y_i$$

Donc $Q \in E$.

Soit $Q \in E$, alors x_0, \ldots, x_n sont racines de Q - P. Donc $(X - x_0) \ldots (X - x_n)|Q - P$.

16.74 **Proposition**

Soit P un polynôme scindé non constant de $\mathbb{R}[X]$ à racines simples. Alors P' est scindé, et ses racines séparent celles de P.

Soit
$$P = \prod_{k=1}^{n} (x - x_k)$$
 avec $x_1 < \ldots < x_n$

Soit $P = \prod_{k=1}^{n} (x - x_k)$ avec $x_1 < \ldots < x_n$. D'après le théroème de Rolle, comme $P(x_1) = P(x_2) = \ldots = P(x_n)$ pour tout $k \in [1, n-1]$, on choisit $y_k \in]x_k, x_{k+1}[$ tel que $P'(y_k) = 0.$

On a donc:

$$x_1 < y_1 < x_2 < y_2 < \ldots < y_{n-1} < x_n$$

et y_1, \ldots, y_{n-1} sont n-1 racines distinctes de P' de degré n-1 (\mathbb{R} de caractéristique nulle). Donc P' est scindé (à racines simples).

Relation de Viète 16.76

Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme de degré n, scindé, de racines (éventuellement non distinctes, apparaissant dans la liste autant de fois que sa multiplicité) r_1, \ldots, r_n alors pour tout $k \in [0, n]$:

$$\sum_{1 \le i_1 < \dots < i_k \le n} r_{i_1} \dots r_{i_k} = (-1)^k \frac{a_{n-k}}{a_n}$$

$$P = \sum_{k=0}^{n} a_k X^k$$
$$= a_n \prod_{k=1}^{n} (X - r_k)$$

Les relations de Viète consistent simplement à développer l'expression de droite et à identifier les mnômes de degré n-k.

$$a_{n-k} = (-1)^k a_n \sum_{1 \le i_1 < \dots < i_k \le n} r_{i_1} \dots r_{i_k}$$

16.88 Lemme

Lemme 16.88

Soit P un polynôme irréductible de $\mathbb{K}[X]$ et A un polynôme non multiple de P. Alors A et P ont premiers entre eux.

Soit D unitaire $\in \mathcal{D}_{A,P}$. Si $P \not\mid A$, alors $D \neq U(P)$. Donc D = 1. Donc $P \wedge A = 1$.

16.98 Caractérisation de la divisibilité dans $\mathbb{C}[X]$ par les racines

Théorème 16.98

Soit P et Q deux polynômes de $\mathbb{C}[X]$. Alors P divise Q si et seulement si toute racine de P est aussi une racine de Q, et que sa multiplicité dans Q est supérieure ou égale à sa multiplicité dans P.

 \Rightarrow

Supposons P|Q.

Soit r une racine de P de multiplicité α . Donc :

$$(X-r)^{\alpha}|P$$
donc $(X-r)^{\alpha}|Q$

Donc r est racine de Q de multiplicité supérieure à α .

 \Leftarrow

On décompose $P = \lambda \prod_{i=1}^{n} (X - r_i)^{\alpha_i}$ (P est scindé sur \mathbb{C}).

Par hypothèse, $\prod_{i=1}^{n} (X - r_i)^{\alpha_i} | Q$.

Donc P|Q

16.99 Caractérisation des polynômes à coefficients réels

Théorème 16.99

Soit $P \in \mathbb{C}[X]$. Les propositions sont équivalents :

- 1. P est à coefficients réels;
- 2. $P(\mathbb{R}) \subset \mathbb{R}$;
- 3. pour tout $z \in \mathbb{C}, \overline{P(z)} = P(\overline{z}).$

 $\begin{array}{c} \boxed{1 \Rightarrow 2} \\ \text{RAF} \end{array}$

 $2 \Rightarrow 1$ On suppose que $P(\mathbb{R}) \subset \mathbb{R}$.

Soit $z \in \mathbb{C}$.

$$P = \sum_{k=0}^{n} a_k X^k$$

$$\overline{P(z)} = \sum_{k=0}^{n} a_k z^k$$

$$= \sum_{k=0}^{n} \overline{a_k} (\overline{z})^k$$

Par hypothèse, pour $z \in \mathbb{R}$, $P(z) \in \mathbb{R}$, soit $\overline{P(z)} = P(z)$. Ainsi, pour $z \in \mathbb{R}$:

$$\sum_{k=0}^{n} \overline{a_k} z^k = \sum_{k=0}^{n} a_k z^k$$

Les deux polynômes $\sum_{k=0}^{n} \overline{a_k} X^k$ et $\sum_{k=0}^{n} a_k X^k$ coincident sur une infinité de valeurs, donc (théorème de rigidité) ils sont égaux.

Donc:

$$\forall k \in [0, n], a_k = \overline{a_k}$$

Donc $P \in \mathbb{R}[X]$.

$$\begin{array}{c} \boxed{1 \Rightarrow 3} \\ \text{RAF} \end{array}$$

$$3 \Rightarrow 2$$

Si $\overline{P(z)} = P(\overline{z})$ pour tout $z \in \mathbb{C}$, alors en particulier pour $z \in \mathbb{R}$, $\overline{P(z)} = P(z)$ soit $P(z) \in \mathbb{R}$.

16.100 Racine complexe d'un polynôme réel

Corollaire 16.100

Soit P un polynôme à coefficients réels et r une racine de P dans \mathbb{C} . Si $r \notin \mathbb{R}$, alors \overline{r} est aussi une racine de P et elles ont la même multiplicité.

Soit r une racine complexe de P.

Donc P(r) = 0.

Donc $\overline{P(r)} = 0$.

Donc (16.99.3) $P(\bar{r}) = 0$.

Donc \overline{r} est aussi une racine de P.

Donc $(X - \overline{r})(X - r)|P$.

Donc $P = (X - \overline{r})(X - r)Q$ et si r est une racine de Q, \overline{r} également, ce qui justifie que \overline{r} ala même multiplicité que r.

16.101 Polynômes irréductibles de $\mathbb{R}[X]$

Théorème 16.101

- 1. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant strictement négatif.
- 2. Ainsi, tout polynôme $P \in \mathbb{R}[X]$ peut être factorisé en produit de polynômes de $\mathbb{R}[X]$ de degré 1 ou de degré 2, de discriminant strictement négatif.

1. Les polynômes annoncés sont bien les seuls irréductibles dans $\mathbb{R}_2[X]$.

Soit $P \in \mathbb{R}[X]$, avec deg $P \geq 3$. Dans $\mathbb{C}[X]$, P est scindé.

Si P admet une racine dans \mathbb{R} , P est réductible.

Supposons maintenant que toutes les racines de P sont complexes. Soit r l'une d'entre elles.

Alors $\overline{r} \neq r$ est aussi une racine de P.

Donc
$$(X-r)(X-\overline{r})|P$$
.

Donc:

$$P = (X - r)(X - \overline{r})Q \text{ avec } Q \in \mathbb{C}[X]$$
$$= (\underbrace{x^2 - 2Re(r)X + |r|^2}_{:=R \in \mathbb{R}[X]})Q$$

Donc P = RQ est la division euclidienne de P par R dans $\mathbb{C}[X]$ et aussi dans $\mathbb{R}[X]$. Par unicité, on a donc $Q \in \mathbb{R}[X]$ et P est réductible dans $\mathbb{R}[X]$.

2. RAF

Chapitre 17

Fractions rationnelles

17.2 Addition, multiplication et produit par un scalaire

Soit $\frac{P}{Q}$ et $\frac{R}{S}$ deux fractions rationnelles et soit $\lambda \in \mathbb{K}$. On pose

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + QR}{QS}, \ \frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS} \text{ et } \lambda \times \frac{P}{Q} = \frac{\lambda P}{Q}.$$

Montrons que l'addition est bien définie.

Soit $\frac{P_1}{Q_1} = \frac{P}{Q}$ et $\frac{R}{S}$ dans $\mathbb{K}(X)$. Montrons que :

$$\frac{PS + QR}{QS} = \frac{P_1S + Q_1R}{Q_1S}$$

On a:

$$(PS + QR)Q_1S - (P_1S + Q_1R)QS = S^2(\underbrace{PQ_1 - P_1Q}_{=0}) + RS(\underbrace{QQ_1 - Q_1Q}_{=0})$$

$$= 0$$

On raisonne de la même manière pour $\frac{R}{S} = \frac{R_1}{S_1}$ et ainsi, l'opération est bien définie.

Degré d'une fraction 17.10

Soit $F = \frac{P}{Q}$ une fraction. On pose $\deg(F) = -\infty$ si F = 0 et $\deg(F) = \deg(P) - \deg(Q)$ sinon. Le degré d'une fraction est donc un élément de $\mathbb{Z} \cup \{-\infty\}$.

Si
$$\frac{P_1}{Q_1} = \frac{P}{Q}$$
, alors:

$$\begin{aligned} P_1Q &= PQ_1\\ \operatorname{donc} \ \operatorname{deg}(P_1Q) &= \operatorname{deg}(PQ_1)\\ \operatorname{donc} \ \operatorname{deg}(P_1) + \operatorname{deg}(Q) &= \operatorname{deg}(P) + \operatorname{deg}(Q_1) \ (\mathbb{K} \ \operatorname{int\`egre})\\ \operatorname{donc} \ \operatorname{deg}(P_1) - \operatorname{deg} Q_1 &= \operatorname{deg}(P) - \operatorname{deg}(Q) \end{aligned}$$

17.13 Propriété du degré

Soit F et G deux fractions rationnelles. On a

$$\deg(F+G) \le \max(\deg(F), \deg(G))$$
 et $\deg(F \times G) = \deg(F) + \deg(G)$.

On retrouve les mêmes propriétés que pour les polynômes.

Soit
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$.

$$\deg(F+G) = \deg(\frac{PS + QR}{QS})$$

$$= \deg(PS + QR) - \deg(QS)$$

$$\leq \max(\deg(PS), \deg(QR)) - \deg(QS)$$

$$= \max(\deg(PS) - \deg(QS), \deg(QR) - \deg(QS))$$

$$= \max\left(\deg\left(\frac{P}{Q}\right), \deg\left(\frac{R}{Q}\right)\right)$$

$$= \max(\deg(F), \deg(G))$$

17.19 Théorème

Soit F et G deux fractions rationnelles. Si les fonctions rationnelles \tilde{F} et \tilde{G} sont égales sur une partie infinie $\mathcal{D}_F \cap \mathcal{D}_G$ alors les fractions rationnelles sont égales, i.e. F = G.

On note $F = \frac{P}{Q}$ et $G = \frac{R}{S}$ avec $P \wedge Q = 1$ et $R \wedge S = 1$.

$$\forall x \in \mathcal{D} \subset \mathcal{D}_F \cap \mathcal{D}_G, \tilde{F}(x) = \tilde{G}(x)$$

Soit:

$$\forall x \in \mathcal{D}, \tilde{P(x)} \times \tilde{S(x)} = \tilde{R(x)} \times \tilde{Q(x)}$$

Comme \mathcal{D} est infini, d'après le théorème de rigidité, PS = RQ, donc F = G.

17.20Fraction dérivée

Soit $F = \frac{P}{Q} \in \mathbb{K}(X)$. On appelle **fraction dérivée** de F la fraction notée F' (ou $\frac{dF}{dX}$) définie par

$$F' = \frac{P'Q - PQ'}{Q^2}.$$

Le résultat ne dépend pas du représentant de F choisi. On définit également les dérivées successives de F en posant $F^{(0)} = F$ et pour tout $n \in \mathbb{N}, F^{(n+1)} = (F^{(n)})'$.

On écrit $F = \frac{P}{Q} = \frac{R}{S}$

Montrons que $\frac{P'Q-Q'P}{Q^2} = \frac{R'S-RS'}{S^2}$.

Comme $\frac{P}{Q} = \frac{R}{S}$, on a PS = RQ. Donc P'S + S'P = R'Q + Q'R.

Ainsi:

$$\begin{split} [P'Q - PQ']S^2 - [R'S - RS']Q^2 &= P'SQ^2 + S'PQ^2 - R'QS^2 - Q'RS^2 \\ &= QS(P'S - R'Q) + Q^2RS' - S^2Q'P \\ &= QS(Q'R - S'P) + PSQS' - SQRQ' \\ &= 0 \end{split}$$

17.24Dérivée logarithmique d'un produit

Si F est une fraction non nulle qui se facotorise en $F = F_1 \times \ldots \times F_n$ dans $\mathbb{K}(X)$ avec $n \in \mathbb{N}$ alors

$$\frac{F'}{F} = \frac{F_1'}{F_1} + \ldots + \frac{F_n'}{F_n}.$$

Pour n=2 seulement.

$$F = F_1 \times F_2 \neq 0$$

Donc:

$$F' = F_1' F_2 + F_1 F_2'$$

Donc:

$$\frac{F'}{F} = \frac{F_1' F_2}{F_1 F_2} + \frac{F_1 F_2'}{F_1 F_2} = \frac{F_1'}{F_1} + \frac{F_2'}{F_2}$$

17.25 Partie entière

Théorème 17.25

Soit $F \in \mathbb{K}(X)$. Il existe un unique polynôme Q tel que $\deg(F-Q) < 0$. Celui-ci est appelé **partie entière** de F, c'est le quotient dans la division euclidienne du numérateur de F par le dénominateur.

Existence:

Soit $F = \frac{A}{B}$ avec $A \wedge B = 1$.

Soit la division euclidiene de A par B:

$$A = BQ + R$$
 avec $\deg(R) < \deg(B)$

Donc:

$$F = \frac{A}{B} = \frac{BQ + R}{B} = Q + \frac{R}{B}$$

Donc:

$$\deg(F-Q) = \deg\left(\frac{R}{B}\right) = \deg(R) - \deg(B) < 0$$

Unicité:

On suppose que :

$$F = Q + G = Q_1 + G_1 \text{ avec } (Q_1, G_1) \in \mathbb{K}[X]^2 \text{ et } \deg(G), \deg(G_1) < 0$$

Donc:

$$Q - Q_1 = G_1 - G$$

$$\operatorname{deg}(Q - Q_1) = \operatorname{deg}(G_1 - G)$$

$$\leq \max(\operatorname{deg}(G_1), \operatorname{deg}(G))$$

$$< 0$$

Or $Q - Q_1 \in \mathbb{K}[X]$, donc $Q = Q_1$.

17.31 Existence d'une décomposition

Théorème 17.31

Si T et S sont deux polynômes premiers entre eux et si deg $\left(\frac{A}{TS}\right) < 0$, alors il existe deux polynômes U et V tels que

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S}, \text{ avec } \deg(U) < \deg(T) \text{ et } \deg(V) < \deg(S).$$

Comme $T \wedge S = 1$, d'après le théormème de Bézout, on écrit :

$$CT + DS = 1$$

Donc:

$$ACT + DSA = A$$

Donc:

$$\frac{A}{TS} = \frac{ACT + DSA}{TS}$$
$$= \frac{DA}{T} + \frac{AC}{S}$$

On écrit la division euclidienne de DA par T et de AC par S:

$$DA = TQ + U$$
 avec $\deg(U) < \deg(T)$
 $AC = SH + V$ avec $\deg(V) < \deg(S)$

Donc:

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S} + Q + H$$

Ainsi:

$$\begin{split} \deg(Q+H) &= \deg\left(\frac{A}{TS} - \frac{U}{T} - \frac{V}{S}\right) \\ &\leq \max(\ldots,\ldots,\ldots) \\ &< 0 \end{split}$$

Donc Q + H = 0.

17.32 Théorème

Théorème 17.33

Si T est un polynôme irréductible unitaire et si deg $\left(\frac{A}{T^n}\right) < 0$ (avec $n \ge 1$), alors il existe des polynômes V_1, \ldots, V_n tels que

$$\frac{A}{T^n} = \sum_{k=1}^n \frac{V_k}{T^k}, \text{ avec } \deg(V_k) < \deg(T).$$

C'est une décomposition en éléments simples.

Par récurrence sur n.

- Pour n = 1, RAF.
- On suppose le résultat vrai pour $n \ge 1$ fixé. On écrit la division euclidienne de A par T:

$$A = BT + V_{n+1}$$
 avec $\deg(V_{n+1}) < \deg(T)$

Ainsi:

$$\begin{split} \frac{A}{T^{n+1}} &= \frac{BT + V_{n+1}}{T^{n+1}} \\ &= \frac{B}{T^n} + \frac{V_{n+1}}{T^{n+1}} \\ &= \sum_{k=1} \frac{V_k}{T^k} + \frac{V_{n+1}}{T^{n+1}} \text{ (Hypothèse de récurrence)} \end{split}$$

17.38 Cas d'un pôle simple

Propostion 17.38

Si a est un pôle simple de $F = \frac{A}{B}$, alors la partie polaire de F relative à a est

$$P_F(a) = \frac{c}{X-a}$$
 avec $c = \frac{A(a)}{B'(a)} = \frac{A(a)}{Q(a)}$ où $B = (X-a)Q$.

D'après le théorème d'existence de la DES

$$\frac{A}{B} = F = E + \frac{c}{X - a} + G$$

Donc:

$$c = \frac{(X-a)A}{B} - (X-a)E - (X-a)G$$
$$= \frac{A}{O} - (X-a)E - (X-a)G$$

Donc
$$c = \frac{A(a)}{Q(a)}$$
.
Si $B = (X - a)Q$, alors $B'(a) = Q(a)$.

17.39 Exemple

Exemple 17.39

Décomposer en éléments simples dan $\mathbb{C}(X)$ la fraction raitonnelle $F = \frac{1}{X^n - 1}$ avec $n \ge 1$.

- $-- \deg F = -n < 0.$
- F possède n pôles simples. $e^{\frac{2ik\pi}{n}} = \omega_k$.
- D'après le théorème de DES :

$$F = \sum_{k=0}^{n-1} \frac{c_k}{X - \omega_k}$$

Or, pour tout $k \in \llbracket 0, n-1
rbracket, c_k = \frac{1}{nw_k^{n-1}} = \frac{\omega_k}{n}$.

$$F = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\omega_k}{X - \omega_k}$$

17.40 Cas d'un pôle double

Propostion 17.40

Si a est un pôle double de $F = \frac{A}{B}$, alors la partie polaire de F relative à a est

$$P_F(a) = \frac{\alpha}{X - a} + \frac{\beta}{(X - a)^2}$$
 avec $\beta = H(a)$ et $\alpha = H'(a)$ en posant $H = (X - a)^2 F$.

On a (notations 17.38):

$$F = E + \frac{\alpha}{X - a} + \frac{\beta}{(X - a)^2} + G$$
$$\beta + (X - a)\alpha = \underbrace{(X - a)^2 F}_{:=H} - (X - a)^2 E - (X - a)^2 G$$

En évaluant en $a:\beta=H(a)$.

On dérive et on évalue en $a: \alpha = H'(a)$.

17.42 Exemple

Exemple 17.42

Décomposer $F = \frac{X^6}{(X-1)^2(X^3+1)}$ en éléments simples dans $\mathbb{C}(X)$.

$$-\!\!- \deg F = 1 \ge 0$$

$$X^6 = (X-1)^2(X^3+1)(X+2) + R$$
 avec deg $R < 5$

— D'après le théorème DES :

$$F = \frac{X^6}{(X-1)^2(X+1)(X+j)(X+j^2)}$$

$$= X + 2 + \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{c}{X+1} + \frac{d}{X+j} + \frac{e}{x+j^2}$$

$$c = (x+1)\tilde{F}(-1) = \frac{1}{4}$$

$$d = (x+j)\tilde{F}(-j)$$

$$= \frac{1}{(j+1)^2(1-j)(-j+j^2)}$$

$$= \frac{1}{(1+j)(1-j^2)(j-1)j}$$

$$= \frac{-1}{(1-j^2)^2j}$$

$$= \frac{-1}{j(-3j^2)}$$

$$= \frac{1}{3}$$

$$e = (x+j^2)\tilde{F}(-j^2) = \frac{1}{3}$$

$$H = (X-1)^2F = \frac{X^6}{X^3+1}$$

$$b = H(1) = \frac{1}{2}$$

$$a = H'(1) = \frac{9}{4}$$

17.44 Parties polaires conjuguées d'une fraction réelle

Propostion 17.44

Si F est à coefficients réels, alors les parties polaires relatives aux pôles conjugués sont conjuguées.

Soit $F \in \mathbb{R}(X) \subset \mathbb{C}(X)$.

On écrit $F = \frac{A}{B}$ avec $A, B \in \mathbb{R}(X)^2$.

Soit r un pôle de multiplicité m.

Comme $F \in \mathbb{R}(X)$, \overline{r} est un pôle de multiplicité m. On suppose que $r \neq \overline{r}$

D'après le théorème de DES, on écrit :

$$F = E + P_F(r) + G$$
 avec $(E, r) \in \mathbb{R}(X)^2, G \in \mathbb{C}(X)$

r n'est pas un pôle de G (\overline{r} oui).

Ainsi:

$$F = \overline{F}$$

$$= \overline{E + P_F(r) + G}$$

$$= \overline{E} + P_F(\overline{r}) + \overline{G}$$

$$= E + \overline{P_F(r)} + \overline{G}$$

Or r n'est pas un pôle de $\overline{P_F(r)}$ mais \overline{r} est un pôle de $\overline{P_F(r)}$.

De la même manière, comme r n'est pas un pôle de G, \overline{r} n'est pas un pôle de \overline{G} .

Donc $P_F(\overline{r}) = \overline{P_F(r)}$.

17.45 Exemple

Exemple 17.45

Décomposer en éléments simples $F = \frac{1}{(X^2 + X + 1)^2}$ dans $\mathbb{C}(X)$.

$$F = \overline{(x^2 + x + 1)^2}, \deg(F) = -4 < 0.$$

Les pôles de F sont j et j^2 (de multiplicité 2).

D'après le théorème de DES :

$$F = \frac{a}{X - j} + \frac{b}{(X - j)^2} + \frac{c}{X - j^2} + \frac{d}{(X - j^2)^2} \operatorname{car} F \in \mathbb{R}(X)$$

On pose $H = (X - j)^2 F = \frac{1}{(x - j^2)^2}$.

On trouve $b = H(j) = \frac{j}{(1-j)}$ et $a = H'(j) = \frac{-2}{(1-j)^3} = \frac{-2j^2}{3(1-j)j}$.

17.46 Exemple

Exemple 17.47

Décomposer en éléments simples $F = \frac{X^4 + 1}{X(X^2 - 1)^2}$ dans $\mathbb{R}(X)$.

$$F = \frac{X^4 + 1}{X(X^2 - 1)^2}, \deg F = -1 < 0.$$
 Donc :

$$F = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{(X-1)^2} + \frac{d}{X+1} + \frac{e}{(X+1)^2}$$

F est impaire donc:

$$F(-X) = -\frac{a}{X} + \frac{b}{-X-1} + \frac{c}{(-X-1)^2} + \frac{d}{-X+1} + \frac{e}{(-X+1)^2}$$

$$= -\frac{a}{X} - \frac{b}{X+1} + \frac{c}{(X+1)^2} - \frac{d}{X-1} + \frac{e}{(X-1)^2}$$

$$= -F$$

$$= -\frac{a}{X} - \frac{b}{X-1} - \frac{c}{(X-1)^2} - \frac{d}{X+1} - \frac{e}{(X+1)^2}$$

Par unicité:

$$\begin{cases} a = a \\ -b = -d \\ -c = e \end{cases} \quad \text{soit } \begin{cases} b = d \\ e = -c \end{cases}$$

On a : $a = \tilde{XF}(0) = 1$. On pose :

$$H = (X - 1)^{2}F = \frac{X^{4} + 1}{X(X + 1)^{2}}$$

$$c = H(1) = \frac{1}{2}$$

$$b = H'(1)$$

$$= \frac{4 \times 4 - 2 \times (3 + 4 + 1)}{4}$$

$$= 0$$

17.51 Exemple - Calcul de la dérivée n-ième d'une fraction

Exemple 17.51

Soit $f(x) = \frac{1}{x^2+1}$. Calculer $f^{(n)}(x)$.

Soit $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{x^2+1} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On définit :

$$F = \frac{1}{X^2 + 1} \in \mathbb{R}(X)$$
$$\in \mathbb{C}(X)$$

D'après le théorème de DES, car les pôles de F sont simples, égaux à i et -i:

$$F = \frac{\frac{1}{-2i}}{X+i} + \frac{\frac{1}{2i}}{X-i}$$

$$F^{(n)} = \frac{\frac{i}{2}(-1)^n n!}{(X+i)^{n+1}} + \frac{\frac{-i}{2}(-1)^n n!}{(X-i)^{n+1}}$$

$$= \frac{(-1)^n n!}{(X^2+i)^{n+1}} \frac{i}{2} \left[(X-i)^{n+i} - (X+i)^{n+i} \right]$$

$$= \frac{(-1)^n n!}{(X^2+1)^{n+1}} \frac{i}{2} \sum_{k=0}^{n+1} \binom{n+1}{k} \left[(-i)^k - i^k \right] X^{n+1-k}$$

$$= \frac{(-1)^n n!}{(X^2+1)^{n+1}} \sum_{0 \le 2k+1 \le n+1} \binom{n+1}{2k+1} (-i)^{k+1} X^{n-2k}$$

Donc:

$$f^{(n)}(x) = \frac{(-1)^n n!}{(x^2+1)^{n+1}} \sum_{0 \le 2k+1 \le n+1} \binom{n+1}{2k+1} (-i)^{k+1} x^{n-2k}$$

Chapitre 18

Dérivabilité

18.13 Condition nécessaire du premier ordre pour l'existence d'un extremum

Théorème 18.13

Soit f une fonction définie sur I un intervalle ouvert et $x_0 \in I$. Si f est dérivable en x_0 et admet un extremum local en x_0 , alors $f'(x_0) = 0$.

On suppose que f atteint un maximum local en x_0 . On choisit $U \in \mathcal{V}(x_0)$ tel que :

$$\forall x \in U \cap I, f(x) \le f(x_0)$$

En particulier:

$$\forall x \in U, x > x_0, \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
$$\forall x \in U, x < x_0, \frac{f(x_0) - f(x)}{x_0 - x} \ge 0$$

D'après le TCILPPL :

$$f'_{\text{droite}}(x_0) \le 0 \text{ et } f'_{\text{gauche}}(x_0) \ge 0$$

Donc f est dérivable en x_0 . Donc $f'_q(x_0) = f'_d(x_0) = 0$.

18.17 Théorème de Rolle

Théorème 18.17

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] dérivable sur]a,b[. Alors si f(a)=f(b), il existe $c\in]a,b[$ tel que f'(c)=0.

Soit f continue sur [a, b].

D'après le théorème de compacité, elle possède un maximum et un minimum.

Si ils sont tous les deux égaux à f(a), alors f est constante et f'(c) = 0 pour tout $c \in]a, b[$.

Sinon, l'un des deux est différent de f(a) = f(b) et est atteint dans a, b.

D'après (18.13), f'(c) = 0.

18.21 Théorème des accroissements finis

Théorème 18.21

Soit $f:[a,b]\to\mathbb{R}$, continue sur [a,b] et dérivable sur [a,b]. Alors il existe $c\in [a,b]$ tel que :

$$f(b) - f(a) = f'(c)(b - a)$$

Soit $g:[a,b]\to\mathbb{R}; x\mapsto f(x)-\frac{f(a)-f(b)}{a-b}(x-a)$. $g\in\mathcal{C}^0([a,b],\mathbb{R})\cap\mathcal{D}^1(]a,b[,\mathbb{R})$. g(a)=f(a)=g(b), donc d'après le théorème de Rolle, on choisit $c\in]a,b[$ tel que g'(c)=0.

18.37 Caractérisation par la dérivée de la variation des fonctions

Théorème 18.37

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction continue sur I et dérivable sur $I \setminus X$, où X est un ensemble fini. Alors :

- 1. f est croissante sur I si et seulement si pour tout $x \in I \setminus X$, $f'(x) \ge 0$. Si cette inégalité est stricte sauf en un nombre fini de points, alors f est strictement croissante.
- 2. f est décroissante sur I si et seulement si pour tout $x \in I \setminus X$, $f'(x) \leq 0$. Si cette inégalité est stricte sauf en un nombre fini de points, alors f est strictement décroissante.
- $1. \Rightarrow$

On suppose f croissante. Soit $a \in I \setminus X$. Soit $x \in I \setminus \{a\}$. On a:

$$\frac{f(x) - f(a)}{x - a} \ge 0$$

D'après le TCILPPL, on a $f'(x) \ge 0$.

 \Leftarrow

On suppose $X \neq 0$. Soit x < y et $f \in \mathcal{C}^0([x, y], \mathbb{R}) \cap \mathcal{D}^1(]x, y[, \mathbb{R})$.

D'après le TAF, on choisit $c \in]x, y[$ tel que :

$$f(y) - f(x) = f'(c)(y - x) \ge 0$$

Supposons $X = \{\alpha\}$ avec $x < \alpha < y$.

On applique les TAF deux fois sur $[x, \alpha]$ et $[\alpha, y]$.

et on choisit $c_1 \in]x, \alpha[$ et $c_2 \in]\alpha, y[$ tel que :

$$f(\alpha) - f(x) = f'(c_1)(\alpha - x) \le 0$$

$$f(y) - f(\alpha) = f'(c_2)(y - \alpha) \le 0$$

On généralise sans difficulté quand X est fini.

Si $\varphi = \{x \in I | f'(x) = 0\}$ est fini, on utilise la même méthode, $X \equiv X \cup \varphi$.

2. RAS

18.43 Théorème de prolongement de classe \mathcal{C}^n - HP

Théorème 18.43 - HP

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie de classe C^n sur $I \setminus \{x_0\}$. Si $f^{(n)}$ admet une limite finie en x_0 , alors f est prolongeable en une fonction de classe C^n sur I.

— On prouve le théorème pour n=1. On suppose $f\in \mathcal{C}^1(I\setminus\{x_0\},\mathbb{R})$ et que f' admet une limite finie en x_0 .

On prolonge f' en une fonction g par continuité en x_0 . Ainsi, $g \in \mathcal{C}^0(I, \mathbb{R})$.

On remarque que pour tout $x \neq x_0$:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

où $a \in I \setminus \{x_0\}$ quelconque.

$$f(x) = \underbrace{f(a) + \int_a^x g(t) \, dt}_{\text{Admet une limite finie quand } x \to x_0}$$

Donc f(x) admet également une limite finie quand $x \to x_0$. On prolonge alors f par continuité en \tilde{f} , de classe \mathcal{C}^1 sur I. — On raisonne par récurrence. Pour $n \in \mathbb{N}$, on pose :

P(n): "Pour tout $f \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$, si $f^{(n)}$ admet une limite finie en x_0 , alors f se prolonge en $\tilde{f} \in \mathcal{C}^n(I, \mathbb{R})$ ".

Pour n=0, c'est le prolongement par continuité.

Pour n = 1, c'est fait.

On suppose P(n) vraie pour $n \geq 1$.

Soit $f \in C^{n+1}(I \setminus \{x_0\}, \mathbb{R})$, etc...

Donc $f' \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$ et $f^{(n)}$ admet une limite finie en x_0 .

D'après P(n), on prolonge f' en $g \in \mathcal{C}^n(I, \mathbb{R})$.

En particulier, g est continue sur I.

Donc f' admet une limite finie en x_0 .

On applique P(1). On prolonge f en $\tilde{f} \in \mathcal{C}^{n+1}(I,\mathbb{R})$.

Or $\tilde{f}' = g \in \mathcal{C}^n(I, \mathbb{R})$.

Donc $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$.

18.45 IAF pour les fonctions à valeurs dans $\mathbb C$

Théorème 18.45

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$ et M un réel tel que $|f'| \leq M$ sur [a,b[. Alors

$$|f(b) - f(a)| \le M|b - a|$$

Si $f \in C^1([a,b],\mathbb{R})$, alors :

$$f(b) - f(a) = \int_a^b f'(t) dt$$

D'après l'inégalité triangulaire intégrale :

$$|f(b) - f(a)| = \left| \int_a^b f'(t) dt \right|$$

$$\leq \int_a^b |f'(t)| dt$$

$$\leq \int_a^b M dt$$

$$= M|b - a|$$

Chapitre 19

Convexité

19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes

Propostion 19.7

Soit $f: I \to \mathbb{R}$ une fonction convexe et $(x, y) \in I^2$ avec x < y.

Le graphe de f est situé en-dessous de sa sécante sur l'intervalle [x,y] et au-dessus à l'extérieur, soit sur $I\cap]-\infty,x]\cup [y,+\infty[$.

On pose $g: \mathbb{R} \to \mathbb{R}; t \mapsto \frac{f(y) - f(x)}{y - x}(t - x) + f(x)$. g paramètre la sécante passant par les points (x, f(x)) et (y, f(y)).

- Sur [x, y], RAF car f est convexe.
- Soit t > y. On pose $\lambda = \frac{y-x}{t-x} \neq 0 \in [0,1]$. On a :

$$\lambda t + (1 - \lambda)x = \frac{y - x}{t - x}t + \left(1 - \frac{y - x}{t - x}\right)x$$
$$= \frac{t(y - x) + x(t - y)}{t - x}$$
$$= y$$

Par convexité de f:

$$f(y) = f(\lambda t + (1 - \lambda)x)$$

$$\leq \lambda f(t) + (1 - \lambda)f(x)$$

$$\operatorname{donc} f(t) \geq \frac{1}{y}f(y) - \left(\frac{1}{y} - 1\right)f(x)$$

$$= \frac{t - x}{y - x}f(y) - \left(\frac{t - x}{y - x} - 1\right)f(x)$$

$$= \frac{t - x}{y - x} \times (f(y) - f(x)) + f(x)$$

$$= g(t)$$

— On raisonne de la même manière si $t \le x < y$.

19.8 Inégalités des pentes

Propostion 19.8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- 1. f est convexe si et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.
- 2. Si f est convexe, alors pour tout $(a, b, c) \in I^3$ avec a < b < c,

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

 $1. \Rightarrow$

On suppose f convexe. Soit $a \in I$ et x < y dans $I \setminus \{a\}$.

— On suppose x < a < y. D'après (19.7) :

$$f(y) \le \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Si x < a < y, d'après (19.7) :

$$f(y) \ge \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Les autres cas s'y ramènent.

On suppose que pour tout $a \in I$, $g_a : I \setminus \{a\} \to \mathbb{R}$; $x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante. Soit x < y et $\lambda \in]0, 1[$. On pose $a = \lambda y + (1 - \lambda)x$. g_a est croissante sur $I \setminus \{a\}$, donc :

$$g_a(x) \le g_a(y)$$

Donc:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(y) - f(a)}{y - a}$$

Donc:

$$x - a < 0 \text{ et } y - a > 0$$

$$(f(x) - f(a))(y - a) \le (f(y) - f(a))(x - a)$$

$$\text{donc } f(a)(y - x) \le f(x)(y - a) - f(y)(x - a)$$

$$\text{soit } f(a) \le f(x)\frac{y - a}{y - x} + f(y)\frac{a - x}{y - x}$$

$$= (1 - \lambda)f(x) + \lambda f(y)$$

2. Soit a < b < c.

$$g_a(b) \le g_a(c) = g_c(a) \le g_c(b)$$

Continuité et dérivabilité des fonctions convexes 19.9

Soit f une fonction convexe sur un intervalle I ouvert. La fonction f est alors continue et possède des dérivées à gauche et à droite en tout point (où les limites osnt envisageables). Pour tout $a \in I$, on a

$$f'_g(a) \le f'_d(a)$$

Pour $a \in I$, on note encore $g_a: I \setminus \{a\} \to \mathbb{R}; x \mapsto \frac{f(x) - f(a)}{x - a}$. Comme g est définie à gauche et à droite de a (I est ouvert) et que g est croissante sur $I \setminus \{a\}$, d'après le TLM g admet des limites finies à gauche et à droite de a et :

$$\lim_{a^{+}} g = f'_{d}(a) \ge f'_{g}(a) = \lim_{a^{-}} g$$

$$\forall x \ne a, f(x) = \frac{f(x) - f(a)}{x - a}(x - a) + f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

19.11 Caractérisation des fonctions convexes par les variations de la dérivée

Théorème 19.11

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I. Alors f est convexe si et seulement si f' est croissante.

 \Rightarrow

On suppose f convexe. Soit x < y. Soit a tel que x < a < y.

D'après l'inégalité des pentes (f est convexe), on a :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(a)}{y - a}$$

En considérant les limiets $a \to x^+$ et $a \to y^-$ et par TCILPPL :

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

Donc f' est croissante.

 \Leftarrow

On suppose f' croissante sur I. Soit x < y. Soit $a \in]x, y[$.

On applique deux fois le TAF : on choisit $\alpha \in]x, a[$ et $\beta \in]a, y[$ tels que :

$$\frac{f(a) - f(x)}{-x + a} = f'(\alpha) \text{ et } \frac{f(y) - f(a)}{y - a} = f'(\beta)$$

Comme f' est croissante, on a $f'(\alpha) \leq f'(\beta)$, soit :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(a)}{y - a}$$
$$\operatorname{donc} f(a) \le \frac{a - x}{y - x} f(y) + \frac{y - a}{y - x} f(x)$$

Comme $a \in]x, y[$, $a = \lambda y + (1 - \lambda)x$ et aussi :

$$f(a) = f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

Donc f est convexe (sur I).

19.13 Caractérisation des fonctions convexes par les tangentes

Propostion 19.13

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors f est convexe sur I si et seulement si le graphe de f est situé au-dessus de toutes ses tangentes.

 \Rightarrow

On suppose f convexe. Soit $a \in I$ et soit $\varphi : \mathbb{R} \to \mathbb{R}; t \mapsto f'(a)(t-a) + f(a)$.

On pose $h = f - \varphi \in \mathcal{D}^1(I, \mathbb{R})$ et h' = f' - f'(a).

Or f est convexe donc f' est croissante sur I. Donc :

a			
h'	_	0	+
h	×	0	7
h		+	

 \Leftarrow

Soit x < y et $a = \lambda y + (1 - \lambda)x \in]x, y[$.

Par hypothèse, le graphe de f est situé au-dessus de sa tangente en a.

$$\forall t \in I, f(t) \ge f'(a)(t-a) + f(a)$$

En particulier:

$$f(x) \ge f'(a)(x-a) + f(a)$$

$$f(y) \ge f'(a)(y-a) + f(a)$$

Donc:

$$(y-a)f(x) + (a-x)f(y) \ge (y-a)f(a)$$
$$\operatorname{donc} f(a) \le \frac{y-a}{y-x}f(x) + \frac{a-x}{y-x}f(y)$$
$$= (1-\lambda)f(x) + \lambda f(y)$$

19.17 Somme de fonctions convexes

Propostion 19.17

La somme de deux fonctions convexes et convexe.

Soit f et g convexes. Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$g(a) \le \lambda g(x) + (1 - \lambda)g(y)$$

Donc:

$$(f+g)(a) \le \lambda(f+g)(x) + (1-\lambda)(f+g)(y)$$

Donc f + g est convexe.

19.18 Composition de fonctions convexes

Propostion 1918

Soit $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions convexes avec g croissante. Alors $g \circ f$ est convexe sur I.

Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda) f(y)$$

donc $g \circ f(a) \le g(\lambda f(x) + (1 - \lambda) f(y))$
 $\le \lambda (g \circ f(x)) + (1 - \lambda) (g \circ f(y))$

Donc $g \circ f$ est convexe.

19.19 Réciproque de fonctions convexes

Propostion 19.19

Soit $f: I \to J$ une fonction convexe bijective avec I ouvert. Alors $g = f^{-1}$ est soit concave, soit convexe sur J.

Comme f est convexe sur I ouvert, f est continue sur I (19.9). Or f est bijective, donc f est strictement monotone sur I (15.72).

— Supposons f strictement croissante sur I. Soit x < y dans J = f(I). Soit $\lambda \in]0,1[$. Alors g est strictement croissante.

On pose x = f(a) et y = f(b). On a :

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

$$\le \lambda x + (1 - \lambda)y$$

Or g est strictement croissante, donc :

$$\lambda g(x) + (1 - y)g(y) = \lambda a + (1 - \lambda)b$$

$$\leq g(\lambda x + (1 - \lambda)y)$$

Donc g est concave sur J.

Si f est strictement décroissante (et donc g strictement décroissante), alors g est concave sur J.

19.20Extrema des fonctions convexes

Soit f une fonction convexe définie par un intervalle I ouvert. Alors f admet un minimum global en un point a si et seulement si a est un point critique.

On suppose que a est un point critique. Donc f'(a) = 0.

Or le graphe de f est situé au-dessus de sa tangente en a, soit :

$$\forall x \in I, f(x) \ge \underbrace{f'(a)}_{0}(x-a) + f(a) = f(a)$$

Donc f(a) est un minimum global de f.

19.24Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ une fonction convexe. Soit $n \geq 2$. Pour tout $(x_1, \ldots, x_n) \in I^n$ et $(\lambda_1, \ldots, \lambda_n) \in [0, 1]^n$ avec $\sum_{k=1}^{n} \lambda_k = 1$, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$$

Par récurrence.

Soit
$$(x_1, \ldots, x_{n+1}) \in I^{n+1}, (\lambda_1, \ldots, \lambda_{n+1}) \in [0, 1]^{n+1}$$
 avec $\sum_{i=1}^{n+1} \lambda_i = 1$.

Si $\lambda_{n+1} = 0$, on applique directement l'hypothèse au rang n (RAF).

On suppose $\lambda_{n+1} \neq 0$. On a :

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^{n-1} \lambda_i x_i + \lambda_n x_n + \lambda_{n+1} x_{n+1}\right)$$

$$= f\left(\sum_{i=1}^{n-1} \lambda_i x_i + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times f\left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} f(x_n) + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} f(x_{n+1})\right)$$

$$= \sum_{i=1}^{n} \lambda_i f(x_i)$$

19.25 Exemple - Inégalité arithmético-géométrique

Exemple 19.25

Soit $n \ge 1$. Pour tout $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$$

La fonction logarithme est concave sur \mathbb{R}_+^* . Soit $(x_1,\ldots,x_n)\in(\mathbb{R}_+^*)^n$.

On remarque que $\sum_{k=1}^{n} \frac{1}{n} = 1$. D'après l'inégalité de Jensen :

$$\ln\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right) \ge \frac{1}{n}\sum_{k=1}^{n}\ln(x_{k})$$

$$= \frac{1}{n}\ln\left(\prod_{k=1}^{n}x_{k}\right)$$

$$= \ln\left(\sqrt[n]{\prod_{k=1}^{n}x_{k}}\right)$$

On compose alors par exp (strictement croissante).

D'après le résultat précédent appliqué à $\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$:

$$0 < \frac{1}{\sqrt[n]{\prod_{k=1}^{n} x_k}} = \sqrt[n]{\prod_{k=1}^{n} \frac{1}{x_k}} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_k}$$

Donc $(x \mapsto \frac{1}{x} \text{ est strictement décroissante sur } \mathbb{R}_+^*)$:

$$\frac{n}{\sum\limits_{k=1}^{n}\frac{1}{x_k}} \leq \sqrt[n]{\prod\limits_{k=1}^{n}x_k}$$

19.26 Inégalités de Holder et Minkowski

Théorème 19.26

Soit $n \in \mathbb{N}^*$, p et q deux nombres réels strictement positifs vérifiant

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Soit $(a_1,\ldots,a_n)\in(\mathbb{R}_+^*)^n$ et $(b_1,\ldots,b_n)\in(\mathbb{R}_+^*)^n$. On a

$$\sum_{k=1}^n a_k b_k \leq \sqrt[p]{\sum_{k=1}^n a_k^p} \sqrt[q]{\sum_{k=1}^n b_k^q}$$
 Inégalité de Holder

$$\sqrt[p]{\sum_{k=1}^n (a_k+b_k)^p} \leq \sqrt[p]{\sum_{k=1}^n a_k^p} + \sqrt[p]{\sum_{k=1}^n b_k^p} \text{ Inégalité de Minkowski}$$

— On rappelle que le logarithme est concave sur \mathbb{R}_+^* , donc pour tout u>0 et v>0, on a :

$$\ln\left(\frac{u^p}{p} + \frac{v^q}{q}\right) \ge \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(v^q) = \ln(uv)$$

Donc:

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Et en particulier:

$$u^{\frac{1}{p}}v^{\frac{1}{q}} \le \frac{u}{p} + \frac{v}{q}$$

En particulier, pour tout $k \in [1, n]$:

$$\underbrace{\left[\frac{a_k^p}{\sum\limits_{i=1}^n a_i^p}\right]^{\frac{1}{p}} \times \left[\frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}\right]^{\frac{1}{q}}}_{\times \underbrace{\left[\sum\limits_{i=1}^n b_i^q\right]}^{\frac{1}{q}} \leq \frac{1}{p} \frac{a_k^p}{\sum\limits_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}$$

Donc:

$$\sum_{k=1}^{n} \frac{a_k b_k}{\sqrt[p]{\sum_{i=1}^{n} a_i^p} \sqrt[q]{\sum_{i=1}^{n} b_i^q}} \le \frac{1}{p} \sum_{k=1}^{n} \frac{a_k^p}{\sum_{i=1}^{n} a_i^p} + \frac{1}{q} \sum_{k=1}^{n} \frac{b_k^q}{\sum_{i=1}^{n} b_i^q}$$
$$= \frac{1}{p} + \frac{1}{q}$$
$$= 1$$

Donc:

$$\frac{\sum\limits_{k=1}^{n}a_kb_k}{\sqrt[p]{\sum\limits_{k=1}^{n}a_k^p}\sqrt[q]{\sum\limits_{k=1}^{n}b_k^q}}\leq 1$$

$$\sum_{k=1}^{n} (a_k + b_k)^p = \sum_{k=1}^{n} (a_k + b_k)(a_k + b_k)^{p-1} \quad (p \neq 1)$$
$$= \sum_{k=1}^{n} a_k (a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k (a_k + b_k)^{p-1}$$

D'après l'inégalité de Holder $\left(q = \frac{p}{p-1}\right)$:

$$\sum_{k=1}^{n} (a_k + b_k)^p \le \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}}$$

$$= \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p}$$

donc
$$\left[\sum_{k=1}^{n} (a_k + b_k)\right]^{\left(1 - \frac{1}{q}\right)} = \sqrt[p]{\sum_{k=1}^{n} a_k^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p}$$

Pour p = 1, RAF.

Chapitre 20

Espace Vectoriels

20.2 Propriétés du 0, régularité

Propostion 20.2

Soit E un $\mathbb{K} - ev$. Pour tout $x \in E$:

- 1. $0_{\mathbb{K}}.x = 0_E$
- 2. pour tout $\lambda \in \mathbb{K}$, $\lambda . 0_E = 0_E$
- 3. (-1).x = -x
- 4. si $x \neq 0_E$,

$$\lambda.x = 0_E \Rightarrow \lambda = 0_K$$

5. si $x \neq 0_{\mathbb{K}}$,

$$\lambda.x = 0_E \Rightarrow x = 0_E$$

- 1. $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$. Donc $0_E = 0_{\mathbb{K}}.x$.
- 2. RAS.
- 3. $x + (-1).x = (1-1).x = 0_{\mathbb{K}}.x = 0_E$.
- 4. Par l'absurde, si $\lambda \neq 0_K$, de $\lambda x = 0_E$ on tire $\lambda^{-1}\lambda x = \lambda^{-1}x0_E$, soit $x = 0_E$. Absurde.
- 5. Idem.

20.10 Espace vectoriel de référence

Propostion 20.10

- 1. K est un espace vectoriel sur lui-même.
- 2. Plus généralement, soit E un espace vectoriel sur \mathbb{K} et F un ensemble quelconque. Alors l'ensemble des fonctions E^F est un espace vectoriel sur \mathbb{K} .
- 1. RAF.
- 2. Soit E un $\mathbb{K} ev$ et F un ensemble quelconque. E^F est un groupe abélien (cf. chap 10). Le produit externe est défini par :

$$\mathbb{K} \times E^F \longrightarrow E^F$$
$$(\lambda, f) \longmapsto (\lambda. f, x \mapsto \lambda. f(x))$$

Vérification facile.

20.11 Transfert de structure

Lemme 20.11

Soit E un espace vectoriel sur \mathbb{K} , G un ensemble quelconque et $\varphi: E \to G$ une bijection. Alors en définissant sur G une loi interne et un loi externe par

$$\forall (x,y,\lambda) \in G \times G \times \mathbb{K}, x+y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y)) \text{et} \lambda.x = \varphi(\lambda \varphi^{-1}(x)),$$

on munit G d'une structure d'espace vectoriel.

Vérifions les axiomes.

— LCI :

$$(x+y)+=\varphi(\varphi^{-1}(x+y)+\varphi(z))$$

$$=\varphi(\underbrace{\varphi^{-1}(x)+\varphi^{-1}(y)+\varphi^{-1}(z)}_{\text{associativit\'e dans }E})$$

$$=x+(y+z)$$

$$x+\varphi(0)=\varphi(\varphi^{-1}(x)+0)=x\;(\varphi\;\text{neutre})$$

$$x+\varphi(-\varphi^{-1}(x))=\varphi(\varphi^{-1}(x)-\varphi^{-1}(x))=\varphi(0)$$

$$x+y=y+x$$

 $\lambda.(\mu.x) = \varphi(\lambda\varphi^{-1}(\mu x))$ $= \varphi(\lambda\mu\varphi^{-1}(x))$ $= (\lambda\mu).x$ $1.x = \varphi(1.\varphi^{-1}(x))$ $= \varphi \circ \varphi^{-1}(x)$ = x $(\mu + \lambda).x = \varphi((\mu + \lambda).\varphi^{-1}(x))$ $= \varphi(\mu\varphi^{-1}(x) + \lambda\varphi^{-1}(x))$ $= \varphi(\mu\varphi^{-1}(x)) + \varphi(\lambda\varphi^{-1}(x))$ $= \mu.x + \lambda.x$

De même pour la dernière.

20.16 Caractérisation des sous-espaces vectoriels

Théorème 20.16

Soit E un \mathbb{K} -espace vectoriel. Un ensemble F est un sous-espace vectoriel de E si et seulement si

- 1. $F \subset E$;
- 2. $0 \in F$;
- 3. F est stable par combinaisons linéaire, ce qui équivaut à

$$\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F.$$

 \Rightarrow

- 1. Oui.
- 2. F est un sous-groupe de E donc $0_E \in F$.
- 3. Pour tout $(x,y) \in F^2$, $\lambda \in \mathbb{K}$, $\lambda . x \in F$ et $y \in F$. Donc $\lambda x + y \in F$.

 \Leftarrow

D'après (3) avec :

- $y = 0 : \times \text{ est LCE}$.
- $-\lambda = 1 : + \text{ est LCI}.$

 $0 \in F$ et $\lambda = -1$, F est un sous-groupe, donc un groupe abélien. RAF pour les 4 dernières propriétés.

20.22 Propostion 20.22

Propostion 20.22

Soit E un K-espace vectoriel, D_1 et D_2 deux droites vectorielles. Alors soit $D_1 \cap D_2 = \{0_E\}$, soit $D_1 = D_2$.

Par définition, $0_E \in D_1 \cap D_2$.

Supposons $D_1 \cap D_2 \neq \{0_E\}$ et fixons $x \in D_1 \cap D_2$ avec $x \neq 0_E$.

Soit $v \in D_1$. Par définition, on écrit $D_1 = \mathbb{K}x_1$ et $D_2 = \mathbb{K}x_2$. On a donc $v = \alpha x_1$, $x = \lambda_1 x_1 = \lambda_2 x_2$ avec $\lambda_1 \neq 0, \lambda_2 \neq 0$. Ainsi:

$$v = \alpha \lambda_1^{-1} \lambda_1 x_1 = \alpha \lambda_1^{-1} x = \alpha \lambda_1^{-1} \lambda_2 x_2 \in D_2$$

Donc $D_1 \subset D_2$ et par symétrie, $D_1 = D_2$

20.27Intersection de sous-espaces vectoriels

Soit E une espace vectoriel et $(E_i)_{i\in I}$ une famille de sous-espaces vectoriels de E. Alors $\bigcap_{i\in I} E_i$ est un sous-espace vectoriel de E.

- $$\begin{split} & \bigcap_{i \in I} E_i \subset E. \\ & \forall i \in I, 0 \in E_i \text{ donc } 0 \in \bigcap_{i \in I} E_i. \end{split}$$
- Soit $(x,y) \in \left[\bigcap_{i \in I} E_i\right]^2, \lambda \in \mathbb{K}$:

$$\forall x \in I, \lambda x + y \in E_i$$

Donc $\lambda x + y \in \bigcap_{i \in I} E_i$.

Description de Vect(X)20.34

Soit E un \mathbb{K} -ev et X un sous-ensemble de E. Alors Vect(X) est l'ensemble des combinaisons linéaires d'éléments de X.

On note F l'ensemble des combinaisons linéaires de vecteurs de X.

F est un sous-espace vectoriel de E qui contient X.

Par définition, $Vect(X) \subset F$.

Or Vect(X) est un sous-espace vectoriel qui contient X. Il doit donc contenir les combinaisons linéaiers de X soit F

Donc F = Vect(X)

20.36Opérations sur les sous-espaces vectoriels engendrés

Soit A et B deux ensembles. On a

- 1. $A \subset Vect(A)$
- 2. Si $A \subset B$ alors $Vect(A) \subset Vect(B)$.
- 3. A = Vect(A) si et seulement si A est un espace vectoriel.
- 4. Vect(Vect(A)) = Vect(A).
- 5. $Vect(A \cup \{x\}) = Vect(A)$ si et seulement si $x \in Vect(A)$.
- 1. RAF
- 2. RAF (20.24)
- 3. Si A =, alors A est un sous-espace vectoriel.

Si A est un espace vectoriel, par minimalité, A = Vect(A).

- 4. RAF (20.36.3)
- 5. On a toujours $Vect(A \cup \{x\}) \supset Vect(A)(2\ 0.36.2)$ si $Vect(A \cup \{x\}) \subset Vect(A)$. Or $x \in Vect(A \cup \{x\})$.

Donc $x \in Vect(A)$.

Réciproquement, si $x \in Vect(A)$, d'après (20.34) :

$$Vect(A \cup \{x\}) \subset Vect(A)$$

Si $u \in Vect(A \cup \{x\})$, alors:

$$u = \lambda_1 a_1 + \dots + \lambda_n a_n + \lambda_{n+1} x$$

= $\lambda_1 a_1 + \dots + \lambda_n a_n + \lambda_{n+1} (\mu_1 a'_1 + \dots + \mu_p a'_p)$
 $\in Vect(A)$

20.41 Somme de sous-espaces vectoriels engendrés

Propostion 20.41

Soit X et Y deux sous-ensembles de E. Alors

$$Vect(X \cup Y) = Vect(X) + Vect(Y)$$

On a:

$$Vect(X) \subset Vect(X \cup Y)$$

$$Vect(Y) \subset Vect(X \cup Y)$$

$$donc \ Vect(X) + Vect(Y) \subset Vect(X \cup Y)$$

Par minimalité:

$$Vect(X \cup Y) = Vect(X) + Vect(Y)$$

20.43 Description d'une somme d'un nombre fini de sous-espaces vectoriels

Propostion 20.43

Soit E_1, \ldots, E_n et F des sous-espaces vectoriels de E. Sont équivalentes :

- 1. $F = E_1 + \ldots + E_n$;
- 2. $F = (\dots((E_1 + E_2) + E_3) + \dots + E_{n-1}) + E_n;$
- 3. $F = \{x_1 + x_2 + \ldots + x_n | (x_1, \ldots, x_n) \in E_1 \times \ldots \times E_n \}.$
- 2. Associativité fournie par la définition.
- 3. (20.39) + (20.43.2)

Exemple

Dans
$$\mathbb{R}^3$$
, $E = Vect((1,0,0))$ et $F = Vect((0,1,0),(0,0,1))$.
Soit $u \in E \cap F$.
 $u = \alpha(1,0,0) = \beta(0,1,0) + \gamma(0,0,1)$.
Donc $(-\alpha,\beta,\gamma) = (0,0,0)$.
Donc $\alpha = \beta = \gamma = 0$.

Dans
$$\mathbb{R}^4$$
 avec $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$ et $e_4 = (0, 0, 0, 1)$.
 $E = Vect(e_1 + e_2 + e_3, e_1 + e_2 + e_3 + e_4)$

 $F = Vect(e_1 + e_3, 2e_2 + e_1 - e_4)$ Soit $u \in E \cap F$.

$$u = \alpha(e_1 + e_2 + e_3) + \beta(e_1 + e_2 + e_3 + e_4) = (\alpha + \beta, \alpha + \beta, \beta)$$

= $\gamma(e_1 + e_3) + \delta(2e_2 + e_1 - e_4) = (\gamma + \delta, 2\delta, \gamma, -\delta)$

Donc:

$$\begin{cases} \alpha + \beta - \gamma - \delta = 0 \\ \alpha + \beta - 2\delta = 0 \\ \alpha + \beta - \gamma = 0 \\ \beta + \delta = 0 \end{cases}$$

$$donc \begin{cases} \delta = 0 \ (L_1 - L_3) \\ \beta = 0 \ (L_4) \\ \alpha = 0 \ (L_2) \\ \gamma = 0 \ (L_2) \end{cases}$$

Donc:

$$\boxed{E \cap F = \{0\}}$$

20.47 Unicité de l'écriture de la somme directe

Remarque 20.47

En d'autres termes, la somme est directe si et seulement si tout élément x de $E_1 \oplus \ldots \oplus E_n$ s'écrit de façon unique sous la forme $x = x_1 + \ldots + x_n$.

 \Rightarrow

On suppose que la somme est directe.

Soit $x \in E_1 \oplus \ldots \oplus E_n$.

On écrit :

$$x = x_1 + \ldots + x_n$$

$$= x'_1 + \ldots + x'_n$$

$$\text{donc } \underbrace{x'_n - x_n}_{\in E_n} = \underbrace{(x_1 - x'_1)}_{\in E_1} + \ldots + \underbrace{(x_{n-1} - x'_{n-1})}_{\in E_{n-1}} \in E_n \cap (E_1 + \ldots + E_{n-1}) = \{0\}$$

$$\text{donc } x'_n = x_n$$

On poursuit par récurrence.

 \Leftarrow On remarque que $0 = 0 + \dots 0$. Soit $u \in E_n \cap (E_1 + \dots + E_{n-1})$. Donc :

$$u=e_n=e_1+\ldots+e_{n-1}$$
 donc $e_1+\ldots+e_{n-1}=0$

Par unicité:

$$\forall i \in [1, n-1], e_i = 0$$
$$donc \ u = 0$$

On termine le travail par récurrence.

20.51 Famille libre

Propostion 20.51

Une famille $(x_i)_{i\in I}$ de vecteurs de E est **libre** si une des propriétés équivalentes suivantes est vérifiée :

- 1. Pour toute famille $(\lambda_i)_{i\in I}$ de scalaires de \mathbb{K} , à support fini, $\sum_{i\in I} \lambda_i x_i = 0 \Rightarrow \forall i\in I, \lambda_i = 0$.
- 2. Pour tout $x \in Vect((x_i)_{i \in I})$ il existe une **unique** famille $(\lambda_i)_{i \in I}$ de scalaires de \mathbb{K} , à support fini, telle que $x = \sum_{i \in I} \lambda_i x_i$.

Si de plus, I = [1, n], les points précédents sont équivalents aux points suivants :

- 3. Les x_i sont non nuls et la somme $\mathbb{K}x_1 \oplus \ldots \oplus \mathbb{K}x_n$ est directe.
- 4. La fonction $\varphi: \mathbb{K}^n \to E; (\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 x_1 + \dots + \lambda_n x_n$ est injective.

$$1 \Rightarrow 2$$

On écrit, pour tout $x \in Vect((x_i)_{i \in I})$:

$$x = \sum_{i \in I} \lambda_i x_i = \sum_{i \in I} \mu_i x_i$$
$$\operatorname{donc} \sum_{i \in I} (\lambda_i - \mu_i) x_i = 0$$

Comme (λ_i) et (μ_i) sont des familles de sclaires à support fini, $(\lambda_i - \mu_i)$ aussi et d'après (20.51.1):

$$\forall i \in I, \lambda_i - \mu_i = 0$$

Soit $\sum_{i \in I} = 0$ avec (λ_i) une famille de scalaires à support fini.

Comme:

$$0 = \sum_{i \in I} 0x_i$$

Par unicité :

$$\forall i \in I, \lambda_i = 0$$

$$1,2 \Rightarrow 3$$

Nécessairement, les x_i sont tous non nuls (sinon, on écrit $1 \times x_1 = 0$).

Soit $x \in (\mathbb{K} + \ldots + \mathbb{K}x_{n-1}) \cap \mathbb{K}x_n$.

On écrit :

$$x = \alpha_1 x_1 + \ldots + \alpha_{n-1} x_{n-1} = \alpha_n x_n$$
 donc $\alpha_1 x_1 + \ldots + \alpha_{n-1} x_{n-1} - \alpha_n x_n = 0$

Par hypothèse:

$$\forall i \in [1, n], \alpha_i = 0$$

On poursuit le travail par récurrence pour montrer que la somme est directe.

$$3 \Rightarrow 4$$

RAF: (20.47) $\boxed{4 \Rightarrow 1, 2}$

RAF: définition de l'injectivité pour 2.

20.52 Exemple

Exemple 20.54

- 1. Montrer que la famille ((1,1),(0,1)) est libre.
- 2. Montrer que la famille ((1,2,1),(1,0,1),(0,1,-1)) est libre.
- 3. Montrer que la famille ((1,2,1),(1,0,1),(1,6,1)) est liée.
- 1. On suppose $\alpha(1,1) + \beta(0,1) = 0$. Donc:

$$\begin{cases} \alpha = 0 \\ \alpha + \beta = 0 \end{cases}$$

$$donc \ \alpha = \beta = 0$$

La famille est libre.

2. Par équivalence. Soit $(a, b, c) \in \mathbb{R}^3$. On a :

$$a(1,2,1) + b(1,0,1) + c(0,1,-1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} a+b &= 0\\ 2a+c &= 0\\ a+b-c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} b+a &= 0\\ 2a+c &= 0\\ c &= 0 \end{cases}$$

$$\Leftrightarrow a=b=c=0$$

La famille est libre.

3. Avec les mêmes notations :

$$a(1,2,1) + b(1,0,1) + c(1,6,1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} a+b+c &= 0\\ 2a+6c &= 0\\ a+b+c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a+b+c &= 0\\ a+3c &= 0 \end{cases}$$

Le système admet des solutions non nulles (par exemple (-3,2,1)), donc la famille est liée.

20.58 Caractérisation de la liberté pour des familles infinies

Propostion 20.58

Une famille $(x_i)_{i\in I}$ est libre si et seulement si toutes ses sous-familles finies sont libres.

$$\begin{array}{c} \boxed{\Rightarrow} \\ \text{RAF} : (20.57) \\ \end{array}$$

 \Leftarrow Soit $(\lambda_i)_{i\in I}$ une famille à support fini telle que :

$$\sum_{i \in I} \lambda_i x_i = 0 \tag{20.1}$$

On choisit $J \subset I$, fini, tel que :

$$\forall i \in I \backslash J, \lambda_i = 0$$
 donc
$$\sum_{i \in J} \lambda_i x_i = 0$$

Or $(x_i)_{i \in J}$ est libre (finie), donc :

$$\forall i \in J, \lambda_i = 0$$
 donc $\forall i \in I, \lambda_i = 0$

Caractérisation de la liberté pour les familles infinies indexées 20.60par N

Une famille $(x_i)_{i\in\mathbb{N}}$ est libre si et seulement si pour tout $n\in\mathbb{N}$, la famille (x_0,\ldots,x_n) est libre.

Si $(x_i)_{i\in\mathbb{N}}$ est libre, alors (20.58) ses sous-familles finies sont libres, en particulier celles sous la forme (x_0,\ldots,x_n) .

Soit $(x_i)_{i\in J}$ avec J un sous-ensemble fini de \mathbb{N} .

Or pose $n = \max J$, donc $J \subset [0, n]$.

Par hypothèse, (x_0, \ldots, x_n) est libre.

Donc (20.57), $(x_i)_{i\in J}$ est libre.

D'après (20.58), $(x_i)_{i\in\mathbb{N}}$ est libre.

20.61Ajout d'un élément à une famille libre

Soit $(x_i)_{i\in I}$ une famille libre de E et $x_j\in E$ avec $j\not\in I$. La famille $(x_i)_{i\in I\cup\{j\}}$ est libre si et seulement si $x_j \notin Vect((x_i)_{i \in I})$.

Si $x_j \in Vect(x_i)_{i \in I}$, alors $(x_i)_{i \in I \cup \{j\}}$ est liée. En effet, $x_j = \sum_{i \in J} \lambda_i x_i$ avec J fini. Donc $\sum_{i \in J \cup \{j\}} \lambda_i x_i = 0$ avec $\lambda_j = -1$.

La famille $(x_i)_{i \in J \cup \{j\}}$.

On suppose que $(x_i)_{i \in J \cup \{j\}}$ est liée.

On choisit une famille de scalaires à support fini $(\lambda_i)_{i\in I\cup\{j\}}$ telle que :

$$\sum_{i \in I \cup \{j\}} \lambda_i x_i = 0 \text{ et } (\lambda_i) \neq (0)$$

Donc:

$$\lambda_j + x_j + \sum_{i \in I} = 0$$

Comme $(x_i)_{i \in I}$ est libre, $\lambda_j \neq 0$ et $x_j = -\sum_{i \in I} \lambda_i \lambda_j^{-1} x_i \in Vect((x_i)_{i \in I})$.

20.63 Généricité d'une famille libre maximale

Propostion 20.63

Une famille libre maximale est génératrice dans le sens de la définition ci après : tout élément de E est combinaison linéaire de vecteurs de la famille.

Soit \mathcal{F} une famille libre maximale. Soit $x \in E$. Alors $\mathcal{F} \cup \{x\}$ est liée. Donc (20.61):

$$x \in Vect(\mathcal{F})$$

20.64 Caractérisation des sommes directes par la liberté

Propostion 20.64

Soit E_1, \ldots, E_n des espaces sous-espaces vectoriels non triviaux de E. Alors la somme $E_1 \oplus \ldots \oplus E_n$ est directe si et seulement si tout n-uplet (x_1, \ldots, x_n) d'éléments tous non nuls de $E_1 \times \ldots \times E_n$ est une famille libre dans E.

 \Rightarrow

On suppose $\bigoplus_{i=1}^n E_i$. Soit $(x_1, \ldots, x_n) \in E_1 \times \ldots \times E_n, x_i \neq 0$. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ telle que:

$$\sum_{i=1}^{n} \lambda_i x_i = 0$$

En particulier, $\lambda_i x_n = -\sum_{i=1}^{n-1} \lambda_i x_i \in E_n \cap \sum_{i=1}^{n-1} E_i = \{0\}$. Donc $\lambda_n = 0$. On réitère le procédé pour trouver $\lambda_n = \ldots = \lambda_1 = 0$. Donc (x_1, \ldots, x_n) est libre.

 \leftarrow

Soit $x \in E_n \cap \sum E_i$. On écrit $x = x_n = \sum_{i=1}^{n-1} x_i$. Donc :

$$x_1 + \ldots + x_{n-1} - x_n = 0$$

Par hypotèse, on doit avoir :

$$x_n = x_{n-1} = \ldots = x_1 = 0$$

Donc
$$x = 0$$
 et $E_n \cap \left(\sum_{i=1}^{n-1} E_i\right) = \{0\}.$

On réitère le procédé pour montrer que $\bigoplus_{i=1}^{n} E_i$.

20.65 Somme directes et caractérisation de familles libres

Propostion 20.65

- 1. Soit F et G deux sous-espaces vectoriels de E tel que F+G soit directe. Alors la concaténation d'une famille libre de F et d'une famille libre de E.
- 2. Réciproquement, si (b_1, \ldots, b_n) est une famille libre de E, alors $Vect(b_1, \ldots, b_k) \oplus Vect(b_{k+1}, \ldots, b_n)$ est directe.

1. (x_1, \ldots, x_k) famille libre de F. (x_{k+1}, \ldots, x_n) famille libre de G. Soit $(\lambda_i)_{i \in \llbracket 1, n \rrbracket} \in \mathbb{K}^n$ telle que :

$$\sum_{i=1}^{n} \lambda_i x_i = 0$$

$$\operatorname{donc} \sum_{i=1}^{k} \lambda_i x_i = -\sum_{i=k+1}^{n} \lambda_i x_i \in F \cap G = \{0\}$$

$$\operatorname{donc} \sum_{i=1}^{k} \lambda_i x_i = 0 = \sum_{i=k+1}^{n} \lambda_i x_i$$

$$\operatorname{donc} \lambda_i = 0 \text{ pour } i \in [\![1,k]\!] \cup [\![k+1,n]\!]$$

2. RAS

20.66 Familles génératrices

Propostion 20.66

Une famille $(x_i)_{i\in I}$ de vecteurs de E est une famille **génératrice de** E si l'une des propriétés équivalentes est satisfaite :

- 1. Tout $x \in E$ est une combinaison linéaire des $x_i, i \in I$.
- 2. $Vect((x_i)_{i\in I}) = E$. Si de plus I = [1, n], les points précédents sont équivalents à :
- 3. $E = \sum_{i=1}^{n} \mathbb{K} x_i$.
- 4. La fonction $\varphi : \mathbb{K}^n \to E; (\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 x_1 + \dots + \lambda_n x_n$ est surjective.

$$1 \Leftrightarrow 2$$

RAF, il s'agit des définitions.

$$Vect((x_i)_{i \in I}) = Vect(x_1, \dots, x_n)$$

= $\mathbb{K}x_1 + \dots + \mathbb{K}x_n$ (20.44)

Donc $2 \Leftrightarrow 3$.

$$3 \Leftrightarrow 4$$

RAF, il s'agit des définitions.

20.68 Stabilité des familles génératrices par ajout

Propostion 20.68

Toute famille contenant une famille génératrice de E est une famille génératrice de E.

Soit $(x_i)_{i\in I}$ une famille quelconque et on suppose qu'il existe $J\subset I$ tel que $(x_i)_{i\in J}$ est génératrice.

$$E \supset Vect((x_i)_{i \in I}) \supset Vect((x_i)_{i \in J}) = E$$

20.69 Restriction d'une famille génératrice

Propostion 20.69

La famille obtenue en retirant un élément x d'une famille génératrice de E est encore génératrice si et seulement si x est une combinaison linéaire des autres vecteurs de la famille.

RAF: (20.36.5)

20.71 Liberté d'une famille génératrice minimale

Propostion 20.71

Une famille génératrice minimale est libre.

Soit $(x_i)_{i \in I}$ une famille génératrice minimale.

On suppose $\sum\limits_{i\in I}\lambda_ix_i=0$ avec $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini.

Soit $k \in I$, on a:

$$\lambda_k x_k = -\sum_{i \in i \neq k} \lambda_i x_i \in Vect((x_i)_{i \in I \setminus \{k\}})$$

Or $x_k \notin Vect((x_i)_{i\neq k})$ car la famille est minimale (20.69). Donc $\lambda_k = 0$.

20.78 Famille échelonnée en degrés

Propostion 20.78

Si (P_0, \ldots, P_n) est une famille d'éléments de $\mathbb{K}_n[X]$ telle que pour tout $k \in [0, n]$, $\deg(P_k) = k$, alors (P_0, \ldots, P_n) est une base de $\mathbb{K}_n[X]$.

Soit $P \in \mathbb{K}_n[X]$. Soit $(\lambda_0, \ldots, \lambda_n) \in \mathbb{K}^{n+1}$. On a :

$$\sum_{i=0}^{n} \lambda_i P_i = P$$

$$\Leftrightarrow \begin{cases} \lambda_n c_n + \dots = a_n \\ \vdots \\ \lambda_0 c_0 = a_0 \end{cases}$$

où c_0, \ldots, c_n sont les coefficients dominants de P_0, \ldots, P_n et $P = \sum_{k=0}^n a_k X^k$.

Le système est triangulaire supérieur avec une diagonale ne contenant aucun 0 il est inversible.

Il existe bien une unique famille $(\lambda_0, \dots, \lambda_n)$ telle que $P = \sum_{i=0}^n \lambda_k P_i$.

Chapitre 21

Applications linéaires

21.4 Exemple

Exemple 21.4.1

L'application de \mathbb{R}^2 dans \mathbb{R} définie par f(x,y) = 2x + 3y.

Soit $((x,y),(x',y'),\lambda) \in (\mathbb{R}^2)^2 \times \mathbb{R}$. On a

$$f((x,y) + \lambda(x',y')) = f(x + \lambda x', y + \lambda y')$$

= 2(x + \lambda x') + 3(y + \lambda y')
= 2x + 3y + \lambda(2x' + 3y')
= f(x,y) + \lambda f(x',y').

21.8 Structure de $\mathcal{L}(E, F)$

Propostion 21.8

 $\mathcal{L}(E,F)$ est un estpace vectoriel sur \mathbb{K} .

- $\overline{0}\hat{\mathcal{L}}(E,F)$
- Soit $(f,g) \in \mathcal{L}(E,F)^2$ et $\alpha \in \mathbb{K}$. Soit $(x,y) \in E^2, \lambda \in \mathbb{K}$. On a :

$$\begin{split} (f+\alpha g)(x+\lambda y) &= f(x+\lambda y) + \alpha g(x+\lambda y) \\ &= f(x) + \lambda f(y) + \alpha g(x) + \alpha \lambda g(y) \\ &= f(x) + \alpha g(x) + \lambda (f(y) + \alpha g(y)) \\ &= (f+\alpha g)(x) + \lambda (f+\alpha g)(y). \end{split}$$

Donc $f + \alpha g \in \mathcal{L}(E, F)$.

21.10 Composition de deux AL

Propostion 21.10

Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

Soit $(x, y) \in E^2$ et $\lambda \in \mathbb{K}$:

$$\begin{split} g \circ f(x + \lambda y) &= g(f(x + \lambda y)) \\ &= g(f(x) + \lambda f(y)) \\ &= g(f(x)) + \lambda g(f(y)) \\ &= g \circ f(x) + \lambda g \circ f(y). \end{split}$$

Donc $g \circ f \in \mathcal{L}(E, G)$.

21.13 Bilinéarité de la composition

Propostion 21 13

La composition d'application linéaire est bilinéaire. En termes plus précis, $E,\,F$ et G étant des \mathbb{K} -ev, l'application

$$\Psi: \mathcal{L}(E,F) \times \mathcal{L}(F,G) \longrightarrow \mathcal{L}(E,G); (u,v) \mapsto v \circ u$$

est une application bilinéaire.

D'après la remarque (21.11), Ψ est linéaire à droite.

$$\forall u \in \mathcal{L}(E,F), \forall (v,v') \in \mathcal{L}(F,G)^2, \forall \lambda \in \mathbb{K}, \Psi(u,v+\lambda v') = \Psi(u,v) + \lambda \Psi(u,v')$$
 Soit $(u,u') \in \mathcal{L}(E,F)^2, v \in \mathcal{L}(F,G), \lambda \in \mathbb{K}$. On a :
$$\forall x \in \mathbb{E}, \Psi(u+\lambda u',v)(x) = v \circ (u+\lambda u')(x)$$

$$= v(u(x)+\lambda u'(x))$$

$$= v(u(x)) + \lambda v(u'(x))$$

$$= \Psi(u,v)(x) + \lambda \Psi(u',v)(x)$$

Donc $\Psi(u + \lambda u', v) = \Psi(u, v) + \lambda \Psi(u', v)$.

21.16 Structure des images directes et réciproques

Propostion 21.16

- 1. Soit E' un sev de E. Alors f(E') est un sev de F.
- 2. Soit F' un sev de F. Alors $f^{-1}(F')$ est un sev de E.

1.
$$-f(E') \subset F$$

 $-0 = f(0) \in f(E')$
 $-\text{Soit } (x,y) \in f(E')^2, \lambda \in \mathbb{K}$. On écrit $x = f(\alpha), y = f(\beta)$ avec $(\alpha,\beta) \in E'^2$.

$$x + \lambda y = f(\alpha) + \lambda f(\beta)$$
$$= f(\alpha + \lambda \beta)$$
$$\in f(E')$$

$$\begin{split} 2. & \ -- \ f^{-1}(F') \subset E \\ & \ -- \ 0 = f(0) \in f^{-1}(F') \\ & \ -- \ \mathrm{Soit} \ (x,y) \in f^{-1}(F')^2, \lambda \in \mathbb{K}. \end{split}$$

$$f(x + \lambda y) = f(x) + \lambda f(y) \in F'$$
donc $x + \lambda y \in f^{-1}(F')$

21.21 Famille génératrice de Im(f)

Propostion 21.21

Soit $f \in \mathcal{L}(E, F)$ et $(e_i)_{i \in I}$ une famille génératrice de E. Alors $(f(e_i)_{i \in I})$ est une famille génératrice de Im(f). Soit

$$Im(f) = Vect(f(e_i)_{i \in I})$$

— Pour tout $i \in I, f(e_i) \in Im(f)$. Comme Im(f) est un sev :

$$Vect(f(e_i)_{i\in I})\subset Im(f)$$

— Soit $a \in Im(f)$. On choisit $x \in E$ tel que a = f(x). Comme $(e_i)_{i \in I}$ est une famille génératrice de E, on peut écrit $x = \sum_{i \in I} \lambda_i e_i$ où $(\lambda_i)_{i \in I}$ est à spport fini.

$$a = f\left(\sum_{i \in I} \lambda_i e_i\right)$$
$$= \sum_{i \in I} \lambda_i f(e_i)$$
$$\in Vect(f(e_i)_{i \in I})$$

21.23 Réciproque d'un isomophisme

Théorème 12.23

Soit f un isomorphisme de E vers F. Alors f^{-1} est une application linéaire, donc un isomophisme de F vers E.

On pose $g = f^{-1}$. Soit $(x, y) \in F^2, \lambda \in \mathbb{K}$.

$$g(x + \lambda y) = g(f(g(x)) + \lambda f(g(y)))$$
$$= g(f(g(x)) + \lambda f(g(y)))$$
$$= g(x) + \lambda g(y)$$

Donc $g \in \mathcal{L}(F, E)$.

21.41 Structure de l'ensemble des polynômes annulateurs - Hors Programme

Propostion 21.41 - HP

L'ensemble des polynômes annulateurs de f est un idéal de $\mathbb{K}[X]$.

Si P et Q annulent u, alors :

$$(P-Q)(u) = P(u) - Q(u) = 0_{\mathcal{L}(E)}$$

Si $B \in \mathbb{K}[X]$:

$$(PB)(u) = P(u) \circ B(u) = B(u) \circ 0_{\mathcal{L}(E)} = 0_{\mathcal{L}(E)}$$

21.52 Caractérisation de l'image d'un projecteur

Propostion 21.52

Soit p un projecteur de E. Alors $x \in Im(p)$ si et seulement si p(x) = x. Soit :

$$Im(p) = \ker(p - id_E)$$

 $x \in Im(p) \Leftrightarrow p(x) = x$

 $\Leftrightarrow p(x) - x = 0$

Soit p un projecteur. Soit $x \in E$.

- Si $x \in Im(p)$, on choisit $y \in E$ tel que x = p(y).
- Donc $p(x) = p^2(y) = p(y) = x$.
- Si p(x) = x, alors $x \in Im(p)$.

 $\Leftrightarrow (p - id)(x) = 0$ $\Leftrightarrow x \in \ker(p - id)$

21.53 Diagonalisation d'un projecteur

Théorème 21.53

Soit p un projecteur de E. Alors :

$$E = \ker(p) \oplus \ker(p - id_E)$$

Soit $x \in \ker(p) \cap \ker(p - id_E)$.

Donc p(x) = 0 et p(x) - x = 0.

Donc x = 0.

Soit
$$x \in E$$
, on écrit $x = \underbrace{x - p(x)}_{\in \ker(p)} + \underbrace{p(x)}_{\in Im(p) = \ker(p - id)}$.
Donc $E = \ker(p) \oplus \ker(p - id)$.

21.57 Caractérisation géométrique des projecteurs

Théorème 21.57

Soit $p \in \mathcal{L}(E)$.

— p est un projecteur si, et seulement si, il existe deux sous-espaces vectoriels F et G de E tels que $E=F\oplus G$ et

$$\forall f \in F, \forall g \in G, p(f+g) = f.$$

- Dans ce cas, F = Im(p) et $G = \ker(p)$.
- Ainsi, un projecteur est une projection géométrique sur Im(p) parallèlement à ker(p).

 \Rightarrow

Existence justifiée avec F = Im(p) et $G = \ker(p)$.

$$p^{2}(x) = p \circ p(f+g)$$

$$= p(f)$$

$$= f$$

$$= p(f+g)$$

$$= p(x)$$

Donc $p^2 = p$, donc p est un projecteur.

21.59 Diagonalisation d'une symétrie

Théorème 21.59

On suppose que \mathbb{K} n'est pas de caractéristique 2. Soit s une symétrie de E. Alors :

$$E = \ker(s + id_E) \oplus \ker(s - id_E)$$

— Soit $x \in \ker(s - id) \cap \ker(s + id)$. Donc:

$$s(x) - x = 0$$

$$s(x) + x = 0$$

$$donc 2x = 0$$

$$donc x = 0$$

— Pour
$$x \in E$$
, $x = \frac{1}{2} (\underbrace{x - s(x)}_{\in \ker(s+id)}) + \frac{1}{2} (\underbrace{x + s(x)}_{\in \ker(s-id)})$.

21.63 Détermination d'une AL par l'image d'une base, ou rigidité

Etant donné une base $(b_i)_{i\in I}$ de E et $(f_i)_{i\in I}$ une famille quelconque de F, il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que pour tout $i \in I, u(b_i) = f_i$.

Soit $(b_i)_{i\in I}$ une base de E et $(f_i)_{i\in I}$ une famille de F.

Soit $x \in E$. On écrit $x = \sum_{i \in I} \lambda_i b_i$ avec $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini.

On pose $u(x) = \sum_{i \in I} \lambda_i f_i$. On définit bien une application ca les λ_i sont uniques.

Montrons que $u \in \mathcal{L}(E, F)$. Soit $(x, y) \in E^2$ et $\alpha \in \mathbb{K}$. On écrit $x = \sum_{i \in I} \lambda_i b_i$ et $y = \sum_{i \in I} \mu_i b_i$. Ainsi :

$$x + \alpha y = \sum_{i \in I} (\lambda_i + \alpha \mu_i) b_i$$

Par définition:

$$u(x + \alpha y) = \sum_{i \in I} (\lambda_i + \alpha \mu_i) f_i$$
$$= \sum_{i \in I} \lambda_i f_i + \alpha \sum_{i \in I} \mu_i f_i$$
$$= u(x) + \alpha u(y)$$

L'existence est prouvée, et si $v \in \mathcal{L}(E, F)$ tel que :

$$\forall i \in I, v(b_i) = f_i$$

Le raisonnement précédent impose que :

$$\forall x \in E, u(x) = v(x)$$

Soit:

$$u = v$$

21.64Exemple

1. Déterminer l'expression générale de l'application lin de \mathbb{R}^2 dans \mathbb{R}^2 telle que :

$$f(1,0) = (3,2)$$
 et $f(0,1) = (2,1)$

- 2. Montrer que toute application linéaire de \mathbb{R}^p dans \mathbb{R}^n est de la forme $X\mapsto MX$ et décrire M à partir d'une base de \mathbb{R}^p .
- 3. Soit $(b_i)_{i\in I}$ de E et $(f_i)_{i\in I}$ une famille quelconque de F, il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que pour tout $i \in I, u(b_i) = f_i$.
- 1. Pour tout (x, y).

$$f(x,y) = f(x(1,0) + y(0,1))$$

$$= xf(1,0) + yf(0,1)$$

$$= x(3,2) + y(2,1)$$

$$= (3x + 2y, 2x + y)$$

2. Soit $f \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$. Soit (b_1,\ldots,b_p) la base canonique de \mathbb{R}^p et (e_1,\ldots,e_n) la base canonique de \mathbb{R}^n .

$$\forall j \in [1, n], f(b_j) = \sum_{i=1}^{n} m_{ij} e_i$$

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^p$$
.

$$f(X) = f\left(\sum_{j=1}^{p} x_j b_j\right)$$

$$= \sum_{j=1}^{p} x_j f(b_j)$$

$$= \sum_{j=1}^{p} x_j \sum_{i=1}^{n} m_{ij} e_i$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{p} m_{ij} x_j\right) e_i$$

$$= \left(\sum_{j=1}^{p} m_{1j} x_j\right)$$

$$\vdots$$

$$\vdots$$

$$\sum_{j=1}^{p} m_{nj} x_j$$

$$= \begin{pmatrix} m_{11} & \cdots & m_{1p} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

21.68 Caractérisation de l'injectivité par l'image d'une base

Propostion 21.68

Soit $f \in \mathcal{L}(E, F)$. Les propriétés suivantes sont équivalentes :

- 1. f est injective
- 2. l'image de la famille libre de E par f est une famille libre de F Si de plus E admet au moins une base, elles sont aussi équivalentes à :
- 3. l'image de toute base de E par f est une famille libre de F
- 4. il existe une base de E dont l'image par f est une famille libre de F

$$1 \Rightarrow 2$$

Soit $(x_i)_{i\in I}$ une famille libre de E.

On suppose $\sum_{i \in I} \lambda_i f(x_i) = 0$ avec $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini.

Donc:

$$f\left(\sum_{i \in I} \lambda_i x_i\right) = 0$$
$$\operatorname{donc} \sum_{i \in I} \lambda_i x_i = 0$$
$$\operatorname{donc} \forall i \in I, \lambda_i = 0$$

$$2 \Rightarrow 1$$

On suppose f non injective. Donc $ker(f) \neq \{0\}$.

Soit $x \neq 0$ tel que f(x) = 0.

Or (x) est libre $(x \neq 0)$ et (f(x)) est liée.

On suppose que E admet une base.

$$2 \Rightarrow 3$$
 RAF

$$3 \Rightarrow 4$$
 RAF

$$4 \Rightarrow 1$$

Soit $(b_i)_{i\in I}$ une base de E telle que $(f(b_i))_{i\in I}$ est libre. Soit $x\in\ker f$. Donc f(x)=0 et $x=\sum_{i\in I}\lambda_ib_i$ avec $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini.

$$0 = f(x)$$
$$= \sum_{i \in I} \lambda_i f(b_i)$$

Donc, car $(f(b_i))_{i\in I}$ est libre, on a :

$$\forall i \in I, \lambda_i = 0$$

Donc x = 0.

Donc f est injective.

Caractérisation de la surjectivité par l'image d'une base 21.69

Soit $f \in \mathcal{L}(E, F)$. Sont équivalentes :

- 1. f est surjective
- 2. l'image de toute famille génératrice de E par f est une famille génératrice de FSi de plus F admet au moins une base, les propriétés précédentes sont équivalentes à :
- 3. l'image de toute base de E par f est une famille génératrice de F
- 4. il existe une base de E dont l'image par f est une famille génératrice de F

$$1 \Rightarrow 2$$

On suppose f surjective. Soit \mathcal{F} une famille génératrice de E.

$$\mathcal{F} = Im(f) = Vect(f(\mathcal{F}))$$

Donc $f(\mathcal{F})$ est génératrice.

$$\boxed{2 \Rightarrow 1} \ \mathcal{F} = (x)_{x \in E}$$

$$2 \Rightarrow 3$$
 RAF

$$3 \Rightarrow 4$$
 RAF

$$4 \Rightarrow 1$$

Soit \overline{B} la base considérée.

$$Im(f) = Vect(f(B)) = F$$

Chapitre 22

Espaces de dimension finie

22.3 Nombre maximal de vecteurs linéairement indépendants

Propostion 22.3

Soit E un \mathbb{K} -ev de dimension finie engendré par n éléments. Alors toute partie libre de E possède au plus n éléments.

Soit G une famille génératrice de E avec $G = (g_1, \ldots, g_n)$. Soit \mathcal{L} une famille libre de E. Supposons par l'absurde que $|\mathcal{L}| > n$. Pour $k \in [1, n]$, on note :

P(k): "E est engendré par n-k vecteurs de G et k vecteurs de \mathcal{L} "

Pour k = 0, la famille convient.

On suppose que pour $k \in [0, n-1]$, $E = Vect(\underbrace{g_1, \dots, g_{n-k}}_{\in G}, \underbrace{l_1, \dots, l_k}_{\in L})$

Comme $l_{k+1} \in E$, on écrit $l_{k+1} = \sum_{i=1}^{n-k} \alpha_i g_i + \sum_{i=1}^k \beta_i l_j$.

Comme \mathcal{L} est libre, $l_{k+1} \notin Vect(l_1, \ldots, l_k)$.

Donc il existe $i \in [1, n-k], \alpha_i \neq 0$ et quitte à renommer les g_i , on peut supposer $\alpha_{n-k} \neq 0$ et ainsi :

$$g_{n-k} \in Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_n + 1)$$

Ainsi:

$$E = Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_{k+1})$$

Par récurrence, P(k) est vraie pour $k \in [0, n]$, en particulier, P(n) est vraie. $(l1, \ldots, l_n)$ est une base de E. Or $l_{n+1} \in E$ et (l_1, \ldots, l_{n+1}) libre. Absurde.

22.5 Algroithme de la base incomplète

Théorème 22.5

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie et $\{x_i\}_{1 \leq i \leq n}$ une partie génératrice de E dont les p premiers vecteurs sont linéairement indépendants. Dans ces conditions, E possède une base constituée des vecteurs x_1, \ldots, x_p et de certains vecteurs x_{p+1}, \ldots, x_n .

On utilise l'algorithme suivant :

On initialise $\mathcal{F} = (x_1, \dots, x_p)$. Pour tout $k \in [p+1, n]$:

- Si $x_k \in Vect(\mathcal{F})$, on laisse \mathcal{F} invariant.
- Si $x_k \notin Vect(\mathcal{F})$, on remplace \mathcal{F} par $\mathcal{F} \cup \{x_k\}$.

L'algorithme s'arrête en temps fini.

La famille \mathcal{F} obtenue est libre, elle est également génératrice car :

$$\forall i \in [1, n], x_i \in \mathcal{F} \text{ ou } x_i \in Vect(\mathcal{F})$$

Donc $E = Vect(x_i)_{i \in [\![1,n]\!]} \subset Vect(\mathcal{F}) \subset E$. Donc \mathcal{F} est une base.

22.8 Théorème de la base incomplète

Théorème 22.8

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie.

- 1. Toute famille libre de E peut être complétée en une base finie de E.
- 2. De toute famille génératrice de E on peut extraire une base finie de E.

En particulier, E possède une base finie.

Soit \mathcal{G} une famille génératrice finie.

1. Soit \mathcal{L} une famille libre. On applique l'algorithme de la base incomplète à $\mathcal{L} \cup \mathcal{G}$ qui fournit une base B de E contenant \mathcal{L} .

2. Comme \mathcal{G} est génératrice, on fixe $x \neq 0 \in \mathcal{G}$ comme premier vecteur de \mathcal{G} et on lui applique l'algorithme de la base incomplète.

La base obtenue est bien constituée de vecteurs de \mathcal{G} .

Remarque

Remarque

Si \mathcal{G} est une famille génératrice, elle contient nécessairement une famille génératrice finie.

22.11 Caractérisation de la dimension finie par le cardinal des familles libres

Corollaire 22.11

Soit E un espace vectoriel. Alors E est de dimension finie si et seulement si toute famille libre de E est de cardinal fini.

On suppose E de dimension finie. Donc E possède une famille génératrice à n vecteurs.

Donc les familles libres de E ont un cardinal inférieur à n.

Elles sont finies.

Par contraposée, on suppose E de dimension infinie.

Soit $x \in E$ avec $x \neq 0$.

On pose $x_1 = x$. Comme E est de dimension infinie, on choisit $x_2 \in E \setminus Vect(x_1)$.

On poursuit les raisonnement par récurrence pour obtenir une famille libre $(x_n)_{n\in\mathbb{N}^*}$.

22.12 Théorème de la dimension

Théorème 22.12

Soit $E \neq \{0\}$ un espace vectoriel de dimension finie. Toutes les bases de E sont finies et sont de même cardinal.

Soit B et B' deux bases. On a :

$$|B| \le |B'| \text{ et } |B'| \le |B|$$

Donc:

$$|B| = |B'|$$

22.18 Caractérisation des bases en dimension finie

Théorème 22.18

Soit E un \mathbb{K} -ev de dimension finie $n \neq 0$. Une famille de n vecteurs est une base si, et seulement si, elle est libre, si, et seulement si, elle est génératrice.

Soit \mathcal{F} une famille avec $|\mathcal{F}| = \dim E = n$.

— On suppose que \mathcal{F} est libre.

On applique sur \mathcal{F} le théorème de la base incomplète.

On obtient alors une base B de E avec :

$$\mathcal{F} \subset E$$

Or $|B| = \dim E = |\mathcal{F}|$.

Donc $\mathcal{F} = B$.

— On suppose $\mathcal F$ génératrice. On procède de la même manière en utilisant le théorème de la base extraite.

22.20 Majoration du rang et cas d'égalité

Propostion 22.20

On a

$$rg(x_1,\ldots,x_k) \leq k$$

avec égalité si et seulement si la famille est libre.

Soit $Vect((x_i)_{i \le k})$ possède un système fini de k vecteurs générateurs.

$$\dim(Vect(x_1,\ldots,x_k)) \leq k$$

- Si dim $(Vect(x_1,\ldots,x_k))=k$, alors (22.18), (x_1,\ldots,x_k) est une base, donc est libre.
- Si la famille est libre, c'est une base de $Vect(x_1,\ldots,x_k)$, donc $\dim(Vect(x_1,\ldots,x_k))=k$.

22.22 Dimension d'un sous-espace vectoriel

Propostion 22.22

Soit E un \mathbb{K} -ev de dimension finie et F un sous-espace vectoriel de E. Alors F est de dimension finie et $\dim F \leq \dim E$, avec égalité si et seulement si F = E.

Soit F un sous-espace vectoriel de E, avec E de dimension finie.

Ainsi, F est lui-même de dimension finie (22.11).

Si \mathcal{L} est une famille libre de F:

$$|\mathcal{L}| \leq \dim E$$

Donc (il suffit de prendre pour \mathcal{L} une base de F):

$$\dim F \leq \dim E$$

Si $\dim F = \dim E$, alors une base de F est aussi une base de E (22.18). Ainsi :

$$F = Vect(B) = E$$

22.23 Formule de Grassmann

Théorème 22.23

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels de dimensions finies. Alors F+G est de dimension finie et :

$$\dim(F+G) = \dim F + \dim G - \dim F \cap G$$

 $F \cap G \subset F$, donc $F \cap G$ est de dimension finie.

On note $n = \dim F \cap G$.

On choisit une base (e_1, \ldots, e_n) de $F \cap G$.

On complète cette famille libre en :

- une base $(e_1,\ldots,e_n,f_1,\ldots,f_p)$ de F
- une base $(e_1,\ldots,e_n,g_1,\ldots,g_q)$ de G

Montrons que $(E_1, \ldots, e_n, f_1, \ldots, f_p, g_1, \ldots, g_q)$ est une base de F + G.

$$F + G = Vect(e_1, \dots, e_n, f_1, \dots, f_p) + Vect(e_1, \dots, e_n, g_1, \dots, g_q)$$

= $Vect(e_1, \dots, e_n, f_1, \dots, f_p, g_1, \dots, g_q)$

La famille génératrice. On suppose :

$$\sum_{i=1}^{n} \alpha_{i} e_{i} + \sum_{i=1}^{p} \beta_{i} f_{i} + \sum_{i=1}^{q} \gamma_{i} g_{i} = 0$$

Donc:

$$\sum_{i=1}^{q} \gamma_i g_i = -\sum_{i=1}^{n} \alpha_i e_i - \sum_{i=1}^{p} \beta_i f_i \in F \cap G$$

Donc (liberté de $(e_1, \ldots, e_n, g_1, \ldots, g_q)$):

$$(\gamma_1,\ldots,\gamma_q)=(0,\ldots,0)$$

Puis:

$$\sum_{i=1}^{n} \alpha_i e_i + \sum_{i=1}^{p} \beta_i f_i = 0$$

Donc (liberté de $(e_1, \ldots, e_n, f_1, \ldots, f_p)$):

$$(\alpha_1, \dots, \alpha_n) = (0, \dots, 0)$$
$$(\beta_1, \dots, \beta_p) = (0, \dots, 0)$$

Donc:

$$\dim(F+G) = n+p+q$$

$$= n+p+n+q-n$$

$$= \dim F + \dim G - \dim F \cap G$$

22.27 Caractérisation des couples de sous-espaces vectoriels supplémentaires

Propostion 22.27

Soit E un espace de dimension finie, F et G deux sous-espaces vectoriels de F. Alors F et G sont supplémentaires si et seulement si :

$$F \cap G = \{0\}$$
 et $\dim F + \dim G = \dim E$

si et seulement si :

$$F + G = E$$
 et $\dim F + \dim G = \dim E$

$$F$$
 et G sont supplémentaires ssi $F \oplus G = E$ ssi $F \cap G = \{0\}$ et $F + G = E$ (\Rightarrow 22.26 \Leftarrow 22.26, 22.22) ssi $F \cap G = \{0\}$ et $\dim F + \dim G = \dim E$ (\Rightarrow 22.26 \Leftarrow 22.23) ssi $F + G = E$ et $\dim F + \dim G = \dim E$

22.28 Existence et dimension d'un supplémentaire en dimension finie

Théorème 22.28

Soit E un espace vectoriel de dimension finie et F un sous espace vectoriel de E. Alors il existe un supplémentaire S de F et :

$$\dim S = \dim E - \dim F$$

- Si $F = \{0\}$, E convient.
- Si $F \neq \{0\}$, on choisit une base de $F(f_1, \ldots, f_p)$ que l'on complète en une base $(f_1, \ldots, f_p, s_1, \ldots, s_q)$ de $E(\dim E = p + q)$. $S = Vect(s_1, \ldots, s_q)$ convient.

22.30 Base de $\mathcal{L}(E,F)$

Propostion 22.30

Si E et F sont de dimension finie, la famille $(u_{i,j})_{(i,j)\in I\times J}$ décrite dans l'exemple précédent est une base de $\mathcal{L}(E,F)$.

— Montrons que $(u_{i,j})$ est libre. On suppose $\sum_{(i,j)\in I\times J}\lambda_{i,j}u_{i,j}=0$.

$$\forall k \in I, \sum_{(i,j) \in I \times J} \lambda_{i,j} u_{i,j}(b_k) = 0$$
$$\operatorname{donc} \sum_{(i,j) \in I \times J} \lambda_{i,j} \delta_{i,k} c_j = 0$$
$$\operatorname{donc} \sum_{j \in J} \lambda_{k,j} c_j = 0$$

Par liberté des (c_i) , on a :

$$\forall k \in I, \forall j \in J, \lambda_{k,j} = 0$$

— Montrons que $(u_{i,j})$ est génératrice. Soit $f \in \mathcal{L}(E,F)$. Pour tout $k \in I$, $f(b_k) = \sum_{j \in J} \lambda_{k,j} c_j$ ((c_j) est une base de F). Alors:

$$f = \sum_{(i,j) \in I \times J} \lambda_{i,j} u_{i,j}$$
 (théorème de rigidité)

22.32 Dimension d'espaces isomorphes

Propostion 22.32

Soit E et F deux espaces isomorphes. Si l'un des deux est de dimension finie, alors les deux le sont et :

$$\dim E = \dim F$$

Réciproquement, si E et F sont de dimension finie avec dim E = dim F, alors E et F sont isomorphes.

— Si dim E = n, on choisit B une base de E. Si $f: E \to F$ est un isomorphisme, alors f(B) est une base de F. Donc F est de dimension finie et dim $F = |f(B)| = |B| = n = \dim E$. — On suppose que $\dim E = n = \dim F$.

Soit (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_n) une base de F.

On définit (théorème de rigidité) $u \in \mathcal{L}(E, F)$ par :

$$\forall i \in [1, n], u(e_i) = f_i$$

D'après (21.70), u est un isomorphisme.

22.35 Rang d'une famille génératrice

Propostion 22.35

Soit $(x_i)_{i\in I}$ une famille génératrice de E. Le rang de u, s'il existe est égal au rang de la famille $(u(x_i))_{i\in I}$.

$$rg(u) = \dim(Im(u))$$

$$= \dim(Vect(u(x_i))_{i \in I}) (21.21)$$

$$= rg(u(x_i))_{i \in I}$$

22.36 Existence et majoration du rang en dimension finie

Propostion 22.36

— Soit $u \in \mathcal{L}(E, F)$. Si E ou F sont de dimension finie, alors Im(u) est également de dimension finie et (avec les conditions adéquates) :

$$rg(u) \le \dim E$$
 ou $rg(u) \le \dim F$

- Avec les conditions appropriées :
 - $-rg(u) = \dim E$ si et seulement si u est injective
 - $rg(u) = \dim F$ si et seulement si u est surjective

On suppose E et F de dimension finie.

- $Im(u) \subset F$ et $\dim(Im(u)) \leq \dim F$ et $rg(u) = \dim F$ si et seulement si (22.22) Im(u) = F si et seulement si u est surjective.
- Soit (e_1, \ldots, e_n) une base de E. Comme (e_1, \ldots, e_n) engendre E:

$$rg(u) = rg(u(e_1), \dots, u(e_n))$$
 (22.35)
 $\leq n = \dim E$ (22.20)

$$rg(u(e_1), \dots, u(e_n)) = n$$
 ssi $(u(e_1), \dots, u(e_n))$ est libre (21.68) ssi u est injective

22.39 Effet d'une composition sur le rang

Théorème 22.39

Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors:

- 1. $rg(v \circ u) \le \min(rg(u), rg(v))$
- 2. si v est injective, alors $rg(v \circ u) = rg(u)$
- 3. si u est surjective, alors $rg(v \circ u) = rg(v)$
- 1. $Im(v \circ u) \subset Im(v)$ donc $rg(v \circ u) \leq rg(v)$ et $Im(v \circ u) = Im(v|_{Im(v)})$ donc :

$$rg(v \circ u) = rg(v|_{Im(u)}) \le \dim(Im(u)) = rg(u)$$

- 2. Si v est injective, alors (22.36), $rg(\left.v\right|_{Im(u)})=\dim(Im(u))=rg(u)$
- 3. Si u est surjective, alors Im(u) = F, et d'aprè (22.39.1) :

$$rg(v \circ u) = rg(v|_F) = rg(v)$$

22.40 Noyau et image d'une restriction

Lemme 22.40

Soit $u \in \mathcal{L}(E, F)$ et E' un sous-espace vectoriel de E. Soit $v \in \mathcal{L}(E', F)$ la restriction de u à E'. Alors :

- $--\ker v = \ker u \cap E'$
- Si ker u + E' = E, alors Im(v) = Im(u)

Soit $x \in E$.

 $x \in \ker v \Leftrightarrow \begin{cases} x \in E' \\ v(x) = 0 \end{cases}$ $\Leftrightarrow \begin{cases} x \in E' \\ u(x) = 0 \end{cases}$ $\Leftrightarrow x \in \ker u \cap E$

— Supposons que $\ker u + E' = E$. On a toujours $Im(v) \subset Im(u)$.

Soit $y \in Im(u)$. On choisit $x \in E$ tel que y = u(x).

On écrit $x = \alpha + \beta$ avec $\alpha \in \ker u$ et $\beta \in E'$.

Ainsi:

$$y = u(x) = u(\alpha + \beta) = u(\alpha) + u(\beta) = 0 + v(\beta) \in Im(v)$$

22.41 Restriction de u à un supplémentaire de $\ker u$

Corollaire 22.41

Soit S un supplémentaire de ker u dans E. Alors u induit un isomorphisme de S sur Im(u).

Soit $v: S \to Im(u); x \mapsto u(x)$.

D'après (22.40), v est injective et surjective, donc fournit bien un isomorphisme de S sur Im(u).

22.43 Théorème du rang

Théorème 22.43

Soit E un espace vectoriel de dimension finie et F un espace vectoriel quelconque. Soit $f \in \mathcal{L}(E, F)$. Alors :

$$\dim \ker f + rg(f) = \dim E$$

Comme E est de dimension finie, ker f et Im(f) sont de dimension finie.

D'après (22.28), on choisit S un supplémentaire de ker f dans E.

D'après (22.41), S et Im(f) sont isomorphes.

Donc $rg(f) = \dim S = \dim E - \dim \ker f$ (22.28).

22.53 Caractérisation par les supplémentaires

Théorème 22.53

Soit H un sous-espace vectoriel de E. Alors H est un hyperplan de E si et seulement si H admet une droite de E comme supplémentaire.

 \Rightarrow

On suppose que H est un hyperplan de E. Soit $\varphi \in E^*, \varphi \neq 0$ tel que :

$$H = \ker \varphi$$

Comme $\varphi \neq 0$, on choisit $x \in E \setminus \ker \varphi$. On a clairement $H \cap Vect(x) = \{0\}$.

On rappelle que $\varphi(x) \in \mathbb{K}^*$. Soit $v \in E$.

On a:

$$\varphi(v) = \frac{1}{\varphi(x)} \varphi(\varphi(x)v)$$

On écrit
$$v = \underbrace{v - \frac{\varphi(v)}{\varphi(x)} x}_{\in \ker \varphi} + \underbrace{\frac{\varphi(v)}{\varphi(x)} x}_{\in Vect(x)}.$$

 \Leftarrow

On suppose que $E = H \oplus Vect(x)$.

Soit $v \in E$. On écrit $v = h + \lambda x$.

On lui associe $\varphi(v) = \lambda$. L'application φ est bien définie car la décomposition est unique.

Cette application est bien linéaire, dont le noyau est H.

Par définition, H est un hyperplan.

22.54 Comparaison de deux équations de H

Propostion 22.54

Soit H un hyperplan de E d'équation $\varphi \in E^*$. Alors pour tout $\psi \in E^*, \psi(x) \neq 0$ est une équation de H si et seulement si $\psi \neq 0$ et $\psi \in Vect(\varphi)$.

On note $H = \ker \varphi$ avec $\varphi \in E^*$ non nulle.

Soit $\psi \in E^*$ non nulle. On suppose $H = \ker \psi$.

Comme ψ est non nulle, on choisit $\alpha \in E$ tel que :

$$\psi(\alpha) = 0 \text{ dans } \mathbb{K}$$

Comme $\alpha \notin \ker \psi$, $\varphi(\alpha) \neq 0$.

On écrit :

$$\psi(\alpha) = \lambda \psi(x) \text{ avec } \lambda = \frac{\psi(\alpha)}{\varphi(x)} \neq 0$$

D'après (22.53):

$$E = H \oplus Vect(\alpha)$$

Soit $x \in E, x = h + \mu \alpha \ (h \in H, \mu \in \mathbb{K}).$

$$\psi(x) = \psi(h) + \mu \psi(\alpha)$$
$$= \mu \lambda \varphi(x)$$
$$= \lambda \varphi(h + \mu \alpha)$$
$$= \lambda \varphi(x)$$

Donc:

$$\psi = \lambda \varphi \in Vect(\varphi)$$

si $\psi \in Vect(\varphi)$, on écrit $\psi = \lambda \varphi, \lambda \neq 0$. Pour $x \in E$:

$$x \in H \Leftrightarrow x \in \ker \varphi$$

 $\Leftrightarrow \varphi(x) = 0$
 $\Leftrightarrow \lambda \varphi(x) = 0$
 $\Leftrightarrow x \in \ker \psi$

22.55 Intersection d'hyperplans

Théorème 22.55

Soit E un espace de dimension finie n.

- 1. L'intersection de m hyperplans de E est un sous-espace vectoriel de dimension au moins n-m.
- 2. Réciproquement, tout sous-espace vectoriel F de E de dimension n-m peut s'écrire comme l'intersection de m hyperplans.
- 1. Le résulat est vrai pour m=1 (avec égalité). Soit H_1 et H_2 deux hyperplans. On a :

$$\dim H_1 = \dim H_2 = n - 1$$

D'après la formule de Grassmann :

$$\dim(H_1 \cap H_2) = \underbrace{-\dim(H_1 + H_2)}_{\in \{n-1, n\}} + \dim H_1 + \dim H_2$$
$$\ge 2n - 2 - n$$
$$= n - 2$$

On poursuit le résultat par récurrence.

2. Soit $F \neq \{0\}$ un sous-espace vectoriel de E de dimension n-m. On fixe une base (f_1, \ldots, f_{n-m}) de F. On la complète en $(f_1, \ldots, f_{n-m}, f_{n-m+1}, \ldots, f_n)$ une base de E. Pour tout $k \in [\![1, n]\!]$, on note p_k la projection canonique sur la k-ième coordonnée.

$$p_k\left(\sum_{i=1}^n \alpha_i f_i\right) = \alpha_k$$

Par construction, p_k est une forme linéaire, non nulle.

$$F = \bigcap_{i=n-m+1}^{n} \ker p_i$$

Chapitre 23

Sous-espaces affines

23.1 Sous-espace affine

Définition

Soit E un \mathbb{K} -espace vectoriel.

— On appelle sous-espace affine de E toute partie \mathcal{F} de E de la forme :

$$\mathcal{F} = x + F = \{ f + x \mid f \in F \}$$

où F est un sous-espace vectoriel de E et x un vecteur de E.

— Le sous-espace vectoriel F associé au sous-espace affine \mathcal{F} est unique. On l'appelle direction de \mathcal{F} et ses éléments sont appelés les vecteurs directeurs de \mathcal{F} .

On suppose que $\mathcal{F} = x_1 + F_1 = x_2 + F_2$.

Soit $y \in F_1$.

On a $y + x_1 \in \mathcal{F}$ donc $y + x_1 = x_2 + y_2$ avec $y_2 \in F_2$.

Or $x_1 \in \mathcal{F}$ donc $x_1 = x_2 + g_2$ avec $g_2 \in F_2$.

Donc:

$$y = x_2 - x_1 + y_2$$
$$= y_2 - g_2$$
$$\in F_2$$

avec $F_1 \subset F_2$.

Par symétrie :

$$F_1 = F_2$$

23.8 Caractérisation des sous-espaces affines par leur direction et leur point

Théorème 23.8

Soit E un espace vectoriel sur \mathbb{K} , \mathcal{F} un sous-espace affine de E de direction F et $A \in \mathcal{F}$, alors :

$$\mathcal{F} = A + F$$

 $\mathcal{F} = x + F$. Soit $A \in \mathcal{F}$.

Donc $A = x + f, f \in F$.

Donc $A - x \in F$.

Ainsi:

$$\mathcal{F} = x + F$$

$$= (x - A) + A + F$$

$$= A + F$$

23.11 Fibre d'une application linéaire

Théorème 23.11

Soit $u \in \mathcal{L}(E, F)$ et $y \in F$. Alors $u^{-1}(\{y\})$ est soit vide, soit un sous-espace affine de E et de direction $\ker u$.

On suppose que $u^{-1}(\{y\}) \neq \emptyset$. Fixons $x_0 \in u^{-1}(\{y\})$.

Soit $x \in E$. On a :

$$x \in u^{-1}(\{y\}) \Leftrightarrow u(x) = y$$

 $\Leftrightarrow u(x) = u(x_0)$
 $\Leftrightarrow x - x_0 \in \ker u$
 $\Leftrightarrow x \in x_0 + \ker u$

Donc:

$$u^{-1}(\{y\}) = x_0 + \ker u$$

23.13 Exemple

Exemple 23.13

- L'ensemble des solutions d'une équation différentielle linéaire non homogène de degré 1 ou 2.
- L'ensemble des polynômes interpolateurs en un certain nombre de points.
- Equations arithmético-géométrique.

```
— \{y \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), ay' + b = f\} = u^{-1}(\{f\}) où u : \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}); y \mapsto ay' + by.
— Soit (a_1, \dots, a_n) \in \mathbb{R}^n deux à deux distincts et (b_1, \dots, b_n) \in \mathbb{R}^n quelconques deux à deux distincts.
```

 $\{P \in \mathbb{R}[X], \forall i \in [1, n], P(a_i) = b_i\} = u^{-1}(\{(b_1, \dots, b_n)\}) \text{ où } u : \mathbb{R}[X] \to \mathbb{R}^n; P \mapsto (P(a_1), \dots, P(a_n)).$ $-\{(u_n) \in \mathbb{R}^{\mathbb{N}}, \forall n \geq 0, u_{n+1} = au_n + b\} = u^{-1}(\{(b_{n \geq 0}\}) \text{ où } u : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}; (u_n) \mapsto (u_{n+1} - au_n)_{n \geq 0}.$

Chapitre 24

Comparaison locale des suites

Caractérisation de l'équivalence par la négligabilité 24.18

On a:

$$u_n \sim v_n \Leftrightarrow u_n = v_n + o(v_n)$$

 \Longrightarrow Si $u_n \sim v_n$ à partir d'un certain rang :

$$u_n = a_n v_n \text{ avec } a_n \xrightarrow[n \to +\infty]{} 1$$

Ainsi:

$$u_n = \underbrace{(a_n - 1)}_{=o(1)} v_n + v_n$$
$$= \underbrace{v_n + o(v_n)}_{n \to +\infty}$$

$$u_n = v_n + \epsilon_n v_n \text{ avec } \epsilon_n = o(1)$$

= $\underbrace{(1 + \epsilon_n)}_{\substack{n \to +\infty}} v_n$

Donc:

$$u_n \sim v_n$$

Equivalent d'un polynôme 24.20

Soit P un polynôme de monôme dominant $a_d X^d$. Alors $P(n) \sim a_d n^d$.

On note $P = \sum_{k=0}^{d} a_k X^k$. Pour $k \in [0, d-1]$:

$$n^k \underset{n \to +\infty}{=} o(n^d)$$
 et $a_k n^k \underset{n \to +\infty}{=} o(a_d n^d)$

Donc:

$$\sum_{k=0}^{d-1} a_k n^k = o(a_d n^d)$$

Donc:

$$P(n) = a_d n^d + o(a_d n^d)$$
$$\sim a_d n^d$$

24.31 Exemple

Exemple 24.31

Déterminons:

$$\lim_{n \to +\infty} \frac{\left(e^{\frac{1}{n}} - 1\right)^3 \left(\sqrt{1 + \frac{1}{n}} - 1\right)}{\sin\left(\frac{1}{\sqrt{n}}\right) \ln^2\left(\frac{n^2 + 3}{n^2}\right) \sqrt{3n + 1}}$$

On note u_n l'expression de l'exemple.

But : trouver un équivalent (simple) de u_n .

 $e^{\frac{1}{n}} - 1 \sim \frac{1}{n}$

Donc:

 $(e^{\frac{1}{n}} - 1)^3 \sim \frac{1}{n^3}$

 $\sqrt{1 + \frac{1}{n}} - 1 = (1 + \frac{1}{n})^{\frac{1}{2}} - 1$ $\sim \frac{1}{2n}$

 $\sin\left(\frac{1}{\sqrt{n}}\right) \sim \frac{1}{\sqrt{n}}$

 $\ln\left(\frac{n^2+3}{n^2}\right) = \ln\left(1+\frac{3}{n^2}\right)$ $\sim \frac{3}{n^2}$

Donc:

 $\ln^2\left(\frac{n^2+3}{n^2}\right) \sim \frac{9}{n^4}$

 $\sqrt{3n+1} \sim \sqrt{3n}$

 ${\bf Donc}:$

$$u_n \sim \frac{\frac{1}{n^3} \times \frac{1}{2n}}{\frac{1}{\sqrt{n}} \times \frac{9}{n^4} \times \sqrt{3n}}$$
$$= \frac{1}{18\sqrt{3}}$$

 ${\bf Donc}:$

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1}{18\sqrt{3}}$$

24.36 Exemple

Exemple 24.36

Déterminer un équivalent de $\sin\left(\frac{2}{n}\right) - \sin\left(\frac{1}{n}\right)$.

$$\sin\left(\frac{2}{n}\right) = \frac{2}{n} + o\left(\frac{2}{n}\right)$$
$$= \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Donc:

$$\sin\left(\frac{2}{n}\right) - \sin\left(\frac{1}{n}\right) = \frac{2}{n} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$= \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$\sim \frac{1}{n}$$

24.43 Exemple

Exemple 24.43

Trouver un équivalent de $\ln \sin \frac{1}{n}$.

$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Donc:

$$\ln\left(\sin\left(\frac{1}{n}\right)\right) = \ln\left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right)$$

$$= \ln\left(\frac{1}{n}\right) + \ln\left(1 + o\left(1\right)\right)$$

$$= \ln\left(\frac{1}{n}\right) + o(1) + o(o(1))$$

$$= \ln\left(\frac{1}{n}\right) + o(1)$$

$$= \ln\left(\frac{1}{n}\right) + o\left(\ln\left(\frac{1}{n}\right)\right)$$

$$\sim \ln\left(\frac{1}{n}\right)$$

24.46 Exemple

Exemple 24.46

Soit (u_n) une suite non nulle de limite nulle. On admet que $\ln(1+u_n)=u_n-\frac{u_n^2}{2}+o(u_n^2)$, montrer que :

$$\exp\left(5n + n^2 \ln\left(1 + \frac{1}{n}\right)\right) \sim \frac{e^{6n}}{\sqrt{e}}$$

(au voisinage de 0).

$$\exp\left(5n + n^2 \ln\left(1 + \frac{1}{n}\right)\right) \underset{n \to +\infty}{=} \exp\left(5n + n^2 \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right)$$

$$\underset{n \to +\infty}{=} \exp\left(6n - \frac{1}{2} + o(1)\right)$$

$$\underset{n \to +\infty}{=} \frac{e^{6n}}{\sqrt{e}} \times e^{o(1)}$$

$$\sim_{n \to +\infty} \frac{e^{6n}}{\sqrt{e}}$$

Exercice 24.9

Exercice 24.9

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = e^{\frac{1}{n}} - e^{\frac{1}{n+1}}$. Donner un équivalent simple de u_n .

$$u_{n} = e^{\frac{1}{n}} - e^{\frac{1}{n+1}}$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n+1} - \frac{1}{n}})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \frac{1}{1 + \frac{1}{n}} - \frac{1}{n}})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left[(1 + \frac{1}{n})^{-1} - 1 \right]})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left[(1 + \frac{1}{n})^{-1} - 1 \right]})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left(-\frac{1}{n} + o\left(\frac{1}{n}\right) \right)})$$

$$= e^{\frac{1}{n}} (1 - e^{-\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

$$= e^{\frac{1}{n}} (1 - e^{-\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

Exercice 24.10

Exercice 24.10

Soit u la suite définie par $u_0 = \frac{\pi}{2}$ et :

$$\forall n \in \mathbb{N}, u_{n+1} = \sin u_n$$

- 1. Montrer que la suite u est strictement positive, décroissante et de limite nulle.
- 2. On admet que si u est une suite de limite nulle, alors quand n tend vers $+\infty$, $\sin u_n = u_n \frac{u_n^3}{6} + o(u_n^3)$. Déterminer le réel α tel que la suite $v_n = u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite réelle non nulle. En appliquant le lemme de Césaro à la suite (v_n) , en déduire un équivalent simple de (u_n) , quand $n \to +\infty$.
- 1. L'intervalle $\left[0,\frac{\pi}{2}\right]$ est stable par la fonction sinus.

Comme sin est croissante, la suite (u_n) est monotone. On a $u_1 < u_0$ donc (u_n) est décroissante. Par stabilité, (u_n) est positive.

D'après le théorème de la limite monotone, (u_n) converge vers $\ell \in [0, \frac{\pi}{2}]$.

D'après le théorème du point fixe, car sin est continue sur $\left[0, \frac{\pi}{2}\right]$, on a $\sin \ell = \ell$.

En étudiant les variations de $x \mapsto \sin x - x$, on trouve un unique point fixe : 0.

2. Soit $\alpha \in \mathbb{R}^*$.

$$\begin{split} v_n &= u_{n+1}^\alpha - u_n^\alpha \\ &= \sin^\alpha u_n - u_n^\alpha \\ &= u_n - \frac{u_n^3}{6} + o(u_n^3) - u_n^\alpha \\ &= u_n^\alpha \left(1 - \frac{u_n^2}{6} + o(u_n^2)\right)^\alpha - u_n^\alpha \\ &= u_n^\alpha \left[1 + \alpha \left(-\frac{u_n^2}{6}\right) + o(u_n^2)\right] - u_n^\alpha \\ &= u_n^\alpha \left[1 + \alpha \left(-\frac{u_n^2}{6}\right) + o(u_n^2)\right] - u_n^\alpha \end{split}$$

Pour $\alpha = -2$, on a :

$$v_n = \frac{1}{n \to +\infty} \frac{1}{3} + o(1)$$

D'après le lemme de Césaro :

$$\frac{u_n^{-2} - u_0^{-2}}{n} = \frac{1}{n} \sum_{k=1}^n v_k \underset{n \to +\infty}{\longrightarrow} \frac{1}{3}$$

Donc:

$$\frac{u_n^{-2}}{n} = \frac{u_0^{-2}}{n} + \frac{1}{3} + o(1)$$
$$\sim \frac{1}{3}$$

Donc:

$$u_n^2 \sim \frac{3}{n}$$

Donc:

$$u_n \sim \sqrt{\frac{3}{n}}$$

Chapitre 25

Comparaison locale des fonctions

25.6 Caractérisation séquentielle

Théorème 25.6

Soit f et g deux fonctions sur X et $a \in \overline{X}$. Alors :

- 1. f = O(g) si et seulement si pour toute suite $(u_n) \underset{n \to +\infty}{\longrightarrow} a$ à valeurs dans X, alors $f(u_n) = O(g(u_n))$.
- 2. f = o(g) si et seulement si pour toute suite $(u_n) \underset{n \to +\infty}{\longrightarrow} a$ à valeurs dans X, alors $f(u_n) = o(g(u_n))$.

1.

f = O(g) ssi il existe h bornée au voisinage de a tel que $f = g \cdot h$ ssi Pour toute suite $(u_n) \in X^{\mathbb{N}}$ avec $u_n \to a$, $f(u_n) = g(u_n) \times w_n$ où (w_n) est une suite bornée. $\Rightarrow w_n = h(u_n)$ ssi bornée \Leftarrow Par l'absurde avec (25.5). ssi Pour toute suite $(u_n) \in X^{\mathbb{N}}$ avec $u_n \to a$, $f(u_n) = O(g(u_n))$.

2. On utilise la caractérisation séquentielle de la limite (nulle).

25.14 Existence, unicité et expression du développement de Taylor de f

Théorème 25.14

Soit f une fonction n fois dérivable en x_0 . Alors le développement de Taylor de f en x_0 à l'ordre n existe et est unique. Il est donné explicitement par :

$$\forall x \in \mathbb{R}, P(x) = \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)$$

RAS, cf. (16.56)

25.20 Formule de Taylor avec reste intégral de l'ordre n au point a

Théorème 25.20

Soit a < b et $f : [a, b] \to \mathbb{R}$ une fonction de classe $\mathcal{C}^{n+1}([a, b])$ Alors :

$$\forall x \in [a, b], f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

On raisonne par récurrence sur $n \in \mathbb{N}$.

— On suppose $f \in \mathcal{C}^1([a,b],\mathbb{R})$. On a :

$$\forall x \in [a, b], \sum_{k=0}^{0} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^0}{0!} f'(t) dt = f(a) + \int_a^x f'(t) dt$$
$$= f(x)$$

— On suppose le résultat vrai pour $n \in \mathbb{N}$.

Soit $f \in \mathcal{C}^{n+2}([a,b],\mathbb{R})$. En particulier, $f \in \mathcal{C}^{n+1}([a,b],\mathbb{R})$. On a:

$$\forall x \in [a, b], f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

$$= \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$(IPP) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

25.22 Formule de Taylor-Lagrange à l'ordre n au point a évaluée en b - Hors Programme

Théorème 25.22

Soit a < b deux réels et $f : [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^n sur [a, b] et n + 1 dérivable sur]a, b[. Alors :

$$\exists c \in]a, b[, f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

On introduit:

$$g:[a,b]\to\mathbb{R}; x\mapsto \sum_{k=0}^n \frac{f^{(k)}(x)}{k!}(b-x)^k + \frac{(b-x)^{n+1}}{(n+1)!}f^{(n+1)}(x) \text{ avec } A\in\mathbb{R}$$

On remarque que g(b) = f(b).

On choisit A de telle sorte que g(a) = f(b).

On pose:

$$A = \frac{-(n+1!)}{(b-a)^{n+1}} \left[-\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + f(b) \right]$$

Par hypothèse, $g \in \mathcal{C}^0([a,b],\mathbb{R}) \cap \mathcal{D}^1([a,b[,\mathbb{R}).$

D'après le théorème de Rolle, on choisit $c \in]a,b[$ tel que g'(c)=0.

Or:

$$\forall x \in]a, b[, g'(x)] = \sum_{k=0}^{n} \frac{f^{(k+1)}(x)}{k!} (b-x)^k - \sum_{k=1}^{n} \frac{f^{(k)}(x)}{(k-1)!} (b-x)^{k-1} - A \frac{(b-x)^n}{n!}$$
$$= \frac{f^{(n+1)}(x)}{n!} (b-x)^n - A \frac{(b-x)^n}{n!}$$

En particulier:

$$\frac{A(b-c)^n}{n!} = \frac{f^{(n+1)}(c)}{n!}(b-c)^n$$

Or $c \neq b$ donc $A = f^{(n+1)}(c)$.

On conclut avec f(b) = g(a).

25.27 Formule de Taylor-Young à l'ordre n au point x_0

Théorème 25.27

Soit I un intervalle ouvert de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une fonction de classe C^n au voisinage de x_0 . Alors au voisinage de x_0 , on a :

$$f(x) = \sum_{x \to x_0} \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

On a $f \in \mathcal{C}^n(I, \mathbb{R}) = \mathcal{C}^{(n-n+1)}(I, \mathbb{R})$.

D'après la formule de Taylor :

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^x \frac{(x - t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$

 $Montrons\ que:$

$$\int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt = \int_{x \to x_0}^x \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + o((x-x_0)^n)$$

On a:

$$\int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{f^{(n)}(x_0)(x-x_0)^n}{n!} = \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(x_0) dt$$
$$= \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} [f^{(n)}(t) - f^{(n)}(x_0)] dt$$

Soit $\varepsilon > 0$, on choisit $v \in \mathcal{V}(x_0)$ tel que :

$$\forall x \in v, |f^{(n)}(x) - f^{(n)}(x_0)| \le \varepsilon$$

car $f^{(n)} \in \mathcal{C}^0(I, \mathbb{R})$.

Soit $x \in \mathcal{V}, x > x_0$. On a :

$$\left| \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} [f^{(n)}(t) - f^{(n)}(x_0)] dt \right| \le \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} |f^{(n)}(t) - f^{(n)}(x_0)| dt$$

$$\le \varepsilon \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} dt$$

$$\le \frac{\varepsilon}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} dt$$

$$= \frac{\varepsilon (x-x_0)^n}{n!}$$

Le résultat reste vrai (au signe près) pour $x \leq x_0$. Par définition (avec les ε), on a le résultat souhaité.

25.28 Développement limité de l'exponentielle

Propostion 25.28

La formule de Taylor-Young à l'ordre n en 0 de l'exponentielle donne l'égalité suivante au voisinage de 0 :

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$$

$$f = \exp \in \mathcal{C}^n(\mathbb{R}, \mathbb{R})$$
 et $\forall x \in \mathbb{N}, f^{(k)}(0) = e^0 = 1$

25.29 Développement limité du logarithme

Propostion 25.29

La formule de Taylor-Young à l'ordre n en 0 de $x\mapsto \ln(1+x)$ donne l'égalité suivante au voisinage de 1 :

$$\ln(1+x) = \sum_{x\to 0}^{n} \frac{(-1)^{k-1}x^k}{k} + o(x^n)$$

 $f: x \mapsto \ln(1+x) \in \mathcal{C}^n(]-1, \infty[, \mathbb{R}).$

$$\forall x > -1, f'(x) = \frac{1}{1+x}$$

$$\forall k \in \mathbb{N}, \forall x > -1, f^{(k+1)}(x) = \frac{(-1)^k k!}{(1+x)^{k+1}}$$

$$f^{(k+1)}(0) = (-1)^k k!$$

Donc, d'après Taylor-Young :

$$f(x) \underset{x \to 0}{=} \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$

$$\underset{x \to 0}{=} \sum_{k=1}^{n} \frac{(-1)^{k-1} (k-1)!}{k!} x^{k} + o(x^{n})$$

$$\underset{x \to 0}{=} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k} + o(x^{n})$$

25.30 Développement limité de cosinus et sinus

Propostion 25.30

La formule de Taylor-Young à l'ordre 2n + 2 pour le sinus et à l'ordre 2n + 1 pour le cosinus en 0 donne les égalités suivantes au voisinage de 0:

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \quad \text{ et } \quad \cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n+1})$$

 $\sin \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$\begin{cases} \sin^{(2k)}(0) = 0\\ \sin^{(2k+1)}(0) = 1\\ \sin^{(4k+3)}(0) = -1 \end{cases}$$

Donc:

$$\sin x = \sum_{k=0}^{2n+2} \frac{\sin^{(k)}(0)}{k!} x^k + o(x^{2n+2})$$
$$= \sum_{i=0}^{n} \frac{(-1)^i}{(2i+1)!} x^{2i+1} + o(x^{2n+2})$$

Idem pour cos.

25.40 Unicité du DL

Théorème 25.40

Si f admet un développement limité à l'ordre n au voisinage de x_0 , alors ce développement est unique.

On suppose que:

$$f(x) = \sum_{x \to x_0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$$
$$= \sum_{x \to x_0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

On suppose par l'absurde que les développements sont différents.

On note $p = \min(k \mid a_k \neq b_k)$.

Or:

$$\sum_{k=0}^{n} a_k (x - x_0)^k = \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

Donc:

$$\sum_{k=p}^{n} a_k (x - x_0)^k \underset{x \to x_0}{=} + o((x - x_0)^n)$$

$$\text{donc } a_p (x - x_0)^p + \sum_{k=p+1}^{n} a_k (x - x_0)^k \underset{x \to x_0}{=} b_p (x - x_0)^p + \sum_{k=p+1}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

$$\text{donc } a_p (x - x_0)^p \underset{x \to x_0}{=} b_p (x - x_0)^p + o((x - x_0)^n)$$

$$\text{donc } a_p = b_p + o(1)$$

Absurde car $a_p \neq b_p$.

25.41 DL de fonctions paires ou impaires

Propostion 25.41

Soit f une fonction admettant un DL à l'ordre n au voisinage de 0. Alors :

- si f est paire, son DL n'est constitué que de monômes de degré pair.
- si f est impaire, son DL n'est constitué que de monômes de degré impair.
- On suppose f paire et:

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$

Donc:

$$f(-x) \underset{x \to 0}{=} \sum_{k=0}^{n} a_k (-1)^k x^k + o(x^n)$$

Par unicité du DL :

$$\forall k \in [0, n], a_k = (-1)^k a_k$$

Donc pour k impair :

$$a_k = 0$$

— Même raisonnement pour f impaire.

25.42 Remarque

Remarque 25.42

- 3. L'existence d'un DL à l'ordre n en x_0 n'implique pas l'existence de la dérivée n-ième de f en x_0 . Ainsi, tous les DL ne sont pas obtenus par la formule de Taylor-Young.
- 3. Si f admet un DL_0 en x_0 , on a :

$$f(x) \underset{x \to x_0}{=} a + o(1)$$

Donc:

$$f(x) - a \underset{x \to x_0}{\longrightarrow} 0$$

Donc:

$$f(x) \underset{x \to x_0}{\longrightarrow} a$$

Néecssairement, $a = f(x_0)$ et f est continue en x_0 .

Si f admet un DL_1 en x_0 , on a :

$$f(x) = \int_{x \to x_0} f(x_0) + a(x - x_0) + o(x - x_0)$$

Donc:

$$\frac{f(x) - f(x_0)}{x - x_0} \underset{x \to x_0}{=} a + o(1) \underset{x \to x_0}{\longrightarrow} a$$

25.43 Exemple

Exemple 25.43.2

2. La fonction $f: t \mapsto \cos t + t^3 \sin \frac{1}{t}$ prolongée en 0 par f(0) = 1 admet un DL d'ordre 2 en 0, mais n'est pas deux fois dérivable en 0.

2.

$$f(t) - \left(1 - \frac{t^2}{2}\right) = \cos t - 1 + \frac{t^2}{2} + t^3 \sin \frac{1}{t}$$

$$= o(t^2) + t^2 \times t \sin \frac{1}{t}$$

$$= o(t^2)$$

Donc f admet bien un DL_2 en 0, donc un DL_1 en 0, donc est dérivable en 0 (et donc sur $\mathbb R$ par théorème d'opérations).

$$\forall x \in \mathbb{R}, f'(x) = -\sin x + 3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}$$
$$\frac{f'(x)}{x} = -\frac{\sin x}{x} + 3x \sin \frac{1}{x} - \cos \frac{1}{x}$$

25.50 Forme normalisée d'un DL au voisinage de 0

Propostion 25.50

Soit f une fonction définie au voisinage de x_0 , admettant à l'ordre n un DL non nul. Alors il existe un unique entier $m \le n$ tel que pour h au voisinage de 0 on ait :

$$f(x_0 + h) = \underset{x \to x_0}{=} h^m(a_0 + a_1h + \dots + a_{n-m}h^{n-m}) + o(h^{n-m})$$

avec $a_0 \neq 0$. Il s'agit de la **forme normalisée** du DL à l'ordre n de f au voisinage de x_0 .

$$f(x) = \sum_{x \to x_0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$$

$$= \sum_{x \to x_0}^{n} a_k (x - x_0)^k + o((x - x_0)^k)$$

$$= \sum_{x \to x_0}^{n} (x - x_0)^m \left(\sum_{k=0}^{n-m} a_{k+m} (x - x_0)^k + o((x - x_0)^{n-m}) \right)$$

Puis on effectue un changment de variable : $x = x_0 + h$.

25.56 Produit de DL

Propostion 25.56

Soit f et g deux fonctions définies sur un voisinage de 0 et P et Q deux polynômes de degré au plus n. Si au voisinage de 0:

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$

Alors:

$$(fg)(x) \underset{x \to 0}{=} T_n(PQ)(x) + o(x^n)$$

$$f(x)g(x) \underset{x \to 0}{=} (P(x) + o(x^n))(Q(x) + o(x^n))$$

$$\underset{x \to 0}{=} P(x)Q(x) + P(x)o(x^n) + Q(x)o(x^n) + o(x^n)o(x^n)$$

$$\underset{x \to 0}{=} P(x)Q(x) + o(x^n)$$

$$\underset{x \to 0}{=} T_n(PQ)(x) + o(x^n)$$

25.57 Exemple

Exemple 25.57

1.
$$\frac{\cos x}{1+x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + o(x^3)$$

2.
$$(e^x)^2 = 1 + 2x + 2x^2 + \frac{4x^3}{3} + o(x^3)$$

1.

$$\frac{\cos x}{1+x} = \cos x \times (1+x)^{-1}$$

$$= \sum_{x \to 0} (1 - \frac{x^2}{2} + o(x^2))(1 - x + x^2 - x^3 + o(x^3))$$

$$= \sum_{x \to 0} 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + o(x^3)$$

2.

$$(e^x)^2 \underset{x\to 0}{=} (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3))^2$$
$$\underset{x\to 0}{=} 1 + 2x + 2x^2 + \frac{4x^3}{3} + o(x^3)$$

25.58 Exemple

Exemple 25.58

1.
$$(\sin x - x)(\cos x - 1) = \frac{x^5}{12} - \frac{x^7}{90} + o(x^8)$$

1.

$$(\sin x - x)(\cos x - 1) \underset{x \to 0}{=} \left(-\frac{x^3}{6} + \frac{x^5}{120} + o(x^6) \right) \left(-\frac{x^2}{2} + \frac{x^4}{24} + o(x^5) \right)$$

$$\stackrel{=}{\underset{x \to 0}{=}} \frac{x^5}{12} + \left(\frac{-1}{2 \times 5!} - \frac{1}{3!4!} \right) x^7 + o(x^8)$$

$$\stackrel{=}{\underset{x \to 0}{=}} \frac{x^5}{12} - \frac{1}{5 \times 3 \times 3!} x^7 + o(x^8)$$

$$\stackrel{=}{\underset{x \to 0}{=}} \frac{x^5}{12} - \frac{x^7}{90} + o(x^8)$$

25.59 Composition de DL

Propostion 25.59

Soit f et g deux fonctions définies au voisinage de 0 avec f(0) = 0. Si P et Q sont des développements limités de f et g en 0 à l'ordre n, alors $T_n(Q \circ P)$ est un DL en 0 de $g \circ f$ à l'ordre n:

$$g \circ f(x) \underset{x \to 0}{=} T_n(Q \circ P)(x) + o(x^n)$$

On suppose que:

$$f(x) \underset{x \to 0}{=} P(x) + o(x^n)$$

$$g(x) \underset{x \to 0}{=} Q(x) + o(x^n)$$

Comme f(0) = 0, on a P(0) = 0.

$$g \circ f(x) \underset{x \to 0}{=} Q(f(x)) + o(x^n)$$

Avec la notation $Q = \sum_{k=0}^{n} b_k X^k$, on a :

$$g \circ f(x) \underset{x \to 0}{=} \sum_{k=0}^{n} b_k f(x)^k + o(f(x)^n)$$

$$= \sum_{x \to 0}^{n} b_k (P(x) + o(x^n))^k + o((P(x) + o(x^n))^n)$$

$$= \sum_{x \to 0}^{n} \left[b_k (P(x))^k + \underbrace{o(x^n)}_{P(x) = 0} \right] + o(\underbrace{P(x)^k}_{P(x) = 0})$$

$$= \sum_{x \to 0}^{n} b_k P(x)^k + o(x^n)$$

$$= \sum_{x \to 0}^{n} b_k P(x)^k + o(x^n)$$

$$= \sum_{x \to 0}^{n} b_k P(x)^k + o(x^n)$$

$$= \sum_{x \to 0}^{n} a_k P(x)^k + o(x^n)$$

$$= \sum_{x \to 0}^{n} a_k P(x)^k + o(x^n)$$

25.60 Exemple

Exemple 25.59

1.
$$e^{\sin x} = 1 + x + \frac{x^2}{2} + o(x^3)$$

2.
$$e^{\cos x - 1} = 1 - \frac{x^2}{2} + \frac{x^4}{6} + o(x^4)$$

1.

$$\begin{split} e^{\sin x} &\underset{x \to 0}{=} e^{x - \frac{x^3}{6} + o(x^3)} \\ &\underset{x \to 0}{=} 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \frac{1}{2}\left(x - \frac{x^3}{6} + o(x^3)\right)^2 + \frac{1}{6}\left(x - \frac{x^3}{6} + o(x^3)^3\right)^3 + o(x^3) \\ &\underset{x \to 0}{=} 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \frac{1}{2}(x + O(x^3))^2 + \frac{1}{6}(x + O(x^3))^3 + o(x^3) \\ &\underset{x \to 0}{=} 1 + x + \frac{1}{2}x^2 + o(x^3) \end{split}$$

2.

$$e^{\cos x - 1} \underset{x \to 0}{=} 1 + \left(-\frac{X^2}{2} + \frac{x^4}{4!} + o(x^4) \right) + \frac{1}{2} \left(-\frac{x^2}{2} + O(x^4) \right)^2 + o(x^4)$$

$$\underset{x \to 0}{=} 1 - \frac{1}{2} x^2 + \frac{1}{6} x^4 + o(x^4)$$

25.61 Exemple

Exemple 25.61

1.
$$\ln \cos x = \frac{x^2}{12} - \frac{x^4}{12} + o(x^4)$$

3.
$$\sin\left(\frac{x^2}{1+x^2}\right) - \frac{x^2}{1+x^2} \underset{x\to 0}{=} -\frac{x^6}{6} + \frac{x^8}{2} + o(x^9)$$

1.

$$\ln \cos x = \lim_{x \to 0} \ln \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4) \right)$$

$$= \lim_{x \to 0} \left(-\frac{x^2}{2} + \frac{x^4}{4!} \right) - \frac{1}{2} \left(-\frac{x^2}{2} + O(x^4) \right)^2 + o(x^4)$$

$$= \lim_{x \to 0} -\frac{x^2}{0} - \left(\frac{1}{4!} - \frac{1}{8} \right) x^4 + o(x^4)$$

$$= \lim_{x \to 0} -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

3.

$$\sin\left(\frac{x^2}{1+x^2}\right) - \frac{x^2}{1+x^2} \underset{x \to 0}{=} -\frac{1}{3!} \left(\frac{x^2}{1+x^2}\right)^3 + o(x^{10})$$

$$= -\frac{1}{6} x^6 \left(\frac{1}{1+x^2}\right)^3 + O(x^{10})$$

$$= -\frac{1}{6} x^6 (1-x^2 + O(x^4))^3 + O(x^{10})$$

$$= -\frac{1}{6} x^6 (1-3x^2 + O(x^4)) + O(x^{10})$$

$$= -\frac{1}{6} x^6 + \frac{1}{2} x^8 + o(x^9)$$

25.63 Exemple

Exemple 25.63

Montrer que $f: x \mapsto x \cos x$ est injective sur un voisinage de 0 et trouver un DL à l'ordre 3 d'une réciproque locale (on doit trouver $f^{-1}(x) = x + \frac{x^3}{2} + o(x^3)$).

 $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}).$

$$f(x) = x \left(1 - \frac{x^2}{2} + o(x^2)\right)$$
$$= x - \frac{x^3}{2} + o(x^3)$$

En particulier, f'(0) = 1, donc f' > 0 sur un voisinage de 0 car $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, donc f est strictement croissante sur un voisinage de 0, où elle est surjective.

f induit une bijection $\tilde{f}: u \to f(u)$. On note $f^{-1}: f(u) \to u$ la bijection réciproque induite par \tilde{f} . Comme \tilde{f} ne s'annule pas sur u, d'après le théorème de la bijection dérivable, $f^{-1} \in \mathcal{C}^{\infty}(f(u), u)$. Donc en particulier f^{-1} possède un $\mathrm{DL}_3(f(0))$.

$$f^{-1}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + o(x^3)$$

Comme $f^{-1}(f(0)) = 0$, $a_0 = 0$. Enfin:

$$x = f^{-1} \circ f(x)$$

$$= \int_{x \to 0}^{-1} f^{-1} \circ f(x) + o(x^{3})$$

$$= \int_{x \to 0}^{-1} a_{1} \left(x - \frac{x^{3}}{2} + o(x^{3}) \right) + a_{2}(x + O(x^{3}))^{2} + a_{3}(x + O(x^{3}))^{3} + o(x^{3})$$

$$= \int_{x \to 0}^{-1} a_{1}x + a_{2}x^{2} + \left(-\frac{a_{1}}{2} + a_{3} \right) x^{3} + o(x^{3})$$

Par unicité des DL:

$$\begin{cases} a_1 = 1 \\ a_2 = 0 \\ -\frac{a_1}{2} + a_3 = 0 \end{cases} \quad \text{donc} \quad \begin{cases} a_1 = 1 \\ a_2 = 0 \\ a_3 = \frac{1}{2} \end{cases}$$

Donc:

$$f^{-1}(x) \underset{x \to 0}{=} x + \frac{x^3}{2} + o(x^3)$$

25.65 DL d'un inverse

Propostion 25.65

Soit g une fonction définie sur un voisinage de 0 et ne s'annulant pas en 0. Si g admet un DL donné par le polynôme P en 0 à l'ordre n, alors $\frac{1}{g}$ et $\frac{1}{P}$ aussi et les DL à l'ordre n en 0 de $\frac{1}{g}$ et $\frac{1}{P}$ sont identiques. Autrement dit, si P et Q sont deux polynômes de $\mathbb{R}_n[X]$ avec $g(0) \neq 0$ et $g(x) \underset{x \to 0}{=} P(x) + o(x^n)$, alors :

$$\frac{1}{g(x)} \underset{x \to 0}{=} Q(x) + o(x^n) \Leftrightarrow \frac{A}{P(x)} \underset{x \to 0}{=} Q(x) + o(x^n)$$

$$\frac{1}{g(x)} - \frac{1}{P(x)} = \frac{P(x) - g(x)}{P(x)g(x)}$$

$$= o(x^n) \times O(1)$$

$$= o(x^n)$$

25.67Exemple

1. (archi classique): $\frac{1}{\cos x} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7)$

2. (archi classique) : $\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} \frac{17x^7}{315} + \frac{62x^9}{2835} + o(x^{10})$

1.

$$\frac{1}{\cos x} \stackrel{=}{\underset{x \to 0}{=}} \frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + O(x^8)}$$

$$\stackrel{=}{\underset{x \to 0}{=}} 1 - \left[-\frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8) \right] + \left[-\frac{x^2}{2} + \frac{x^4}{4!} + O(x^6) \right]^2 - \left[-\frac{x^2}{2} + O(x^4) \right]^3 + O(x^8)$$

$$\stackrel{=}{\underset{x \to 0}{=}} 1 + \frac{x^2}{2} + \left[-\frac{1}{4!} + \frac{1}{4} \right] x^4 + \left[\frac{1}{6!} - \frac{1}{4!} + \frac{1}{8} \right] x^6 + O(x^8)$$

$$\stackrel{=}{\underset{x \to 0}{=}} 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + O(x^8)$$

2. A l'ordre 5 :

$$\tan x = \frac{\sin x}{\cos x}$$

$$= \left(x - \frac{x^3}{6} + \frac{x^5}{5!} + o(x^5)\right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4)\right)$$

$$\stackrel{=}{\underset{x \to 0}{=}} x + \frac{x^3}{3} + \left(\frac{5}{4!} - \frac{1}{12} + \frac{1}{5!}\right) x^5 + o(x^5)$$

$$\stackrel{=}{\underset{x \to 0}{=}} x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$$

25.70Primitiver un DL

Soit f une fonction dérivable au voisinage de 0, dont la dérivée admet un DL à l'ordre n-1 au voisinage de 0, donné par :

$$f'(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + o(x^{n-1})$$

Alors f admet au voisinage de 0 un DL à l'ordre n donné par :

$$f(x) \underset{x\to 0}{=} f(0) + a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_{n-1}}{n} x^n + o(x^n)$$

On pose $g: x \mapsto f(x) - f(0) - \sum_{k=0}^{n-1} \frac{a_k x^{k+1}}{k+1} \in \mathcal{D}^1(\mathcal{U}, \mathbb{R})$ avec $\mathcal{U} \in \mathcal{V}(0)$.

on remarque que g(0)=0 et en appliquant le TAF sur $\mathcal U$:

on remarque que g(0) = 0 et en a_{PP} a_{QP} a_{QP} a_{QP} Pour $x \in \mathcal{U}$, il existe c_x tel que : $\begin{cases} 0 < c_x < x \\ \text{OU} \end{cases} \quad \text{v\'erifiant} :$

$$g(x) = g(x) - g(0) = x \times g'(c_x)$$

Par théorème d'encadrement :

$$c_x \xrightarrow[x \to 0]{} 0$$

Or par construction:

$$g'(x) \underset{x \to 0}{=} o(x^{n-1})$$

$$\operatorname{donc} g'(c_x) \underset{x \to 0}{=} o(c_x^{n-1})$$

$$= o(x^{n-1}) \operatorname{car} c_x \underset{x \to 0}{=} O(x)$$

Donc:

$$g(x) \underset{x \to 0}{=} x \times o(x^{n-1})$$
$$\underset{x \to 0}{=} o(x^n)$$

25.72 Exemple

Exemple 25.72

- 1. Donner le DL de $\arctan x$ et $\arccos x$ à tout ordre.
- 2. On peut faire la même chose avec Argth(x), Argsh(x) et Argch(x).
- 3. Montrer que $\arctan\left(\frac{x^2+1}{x-2}\right) \underset{x\to 0}{=} -\arctan\frac{1}{2} \frac{1}{5}x \frac{12}{25}x^2 \frac{56}{375}x^3 + o(x^3).$
- 4. Voir l'exercice E-2 pour arcsin
- 1. On pose $f = \arctan$.

$$\forall x \in \mathbb{R}, f'(x) = \frac{1}{1+x^2} \text{donc } f'(x) = \sum_{x\to 0}^n (-1)^k x^{2k} + o(x^{2n})$$

Donc:

$$f(x) \underset{x\to 0}{=} f(0) + \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+1})$$

On pose $f = \arccos \in \mathcal{D}^1(]-1,1[,\mathbb{R})$ et :

$$\forall x \in]-1, 1[, f'(x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{donc} f(x) \underset{x \to 0}{=} -1 - \sum_{k=0}^{n} \frac{\left(-\frac{1}{2}\right) \left(-\frac{1}{2} - 1\right) \cdots \left(-\frac{1}{2} - k + 1\right)}{k!} (-1)^k x^{2k} + o(x^{2n})$$

$$\underset{x \to 0}{=} -\sum_{k=0}^{n} \frac{(-1)^k (2k)!}{2^k k! 2^k k!} (-1)^k x^{2k} + o(x^{2n})$$

$$\underset{x \to 0}{=} -\sum_{k=0}^{n} \frac{(2k)!}{2^{2k} (k!)^2} x^{2k} + o(x^{2n})$$

$$\underset{x \to 0}{=} -\sum_{k=0}^{n} \frac{1}{2^{2k}} \binom{2k}{k} x^{2k} + o(x^{2n})$$

Donc:

$$f(x) \underset{x \to 0}{=} \underbrace{f(0)}_{\underline{x}} - \sum_{k=0}^{n} \frac{1}{(2k+1)2^{2k}} \binom{2k}{k} x^{2k+1} + o(x^{2n+1})$$

25.74 Dérivation d'un DL

Propostion 25.74

Soit f une fonction de classe C^n au voisinage de 0, admettant (donc) un DL à l'ordre n en 0 :

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

Alors f' admet un DL à l'ordre n-1 en 0, égal à :

$$f'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} + o(x^{n-1})$$

On applique la formule de Taylor-Young à f et f' :

$$f(x) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{k})$$
$$\underset{x \to 0}{=} \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n-1})$$

En posant $a_k = \frac{f^{(k)}(0)}{k!}$, on obtient le résultat souhaité.

25.75 Exemple

Exemple 25.75

On a:

$$\frac{x^2 - 1}{x^2 + x + 1} \underset{x \to +\infty}{=} 1 - \frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} + o\left(\frac{1}{x^3}\right)$$

$$\begin{split} \frac{x^2-1}{x^2+x+1} &= \frac{1-\frac{1}{x^2}}{1+\frac{1}{x}+\frac{1}{x^2}} \\ &= \sum_{x\to +\infty} \left(1-\frac{1}{x^2}\right) \left[1-\left[\frac{1}{x}+\frac{1}{x^2}\right]+\left[\frac{1}{x}+\frac{1}{x^2}\right]^2-\left[\frac{1}{x}+\frac{1}{x^2}\right]^3+o\left(\frac{1}{x^3}\right)\right] \\ &= \sum_{x\to +\infty} \left(1-\frac{1}{x^2}\right) \left(1-\frac{1}{x}+\frac{1}{x^3}+o\left(\frac{1}{x^3}\right)\right) \\ &= \sum_{x\to +\infty} 1-\frac{1}{x}-\frac{1}{x^2}+\frac{2}{x^3}+o\left(\frac{1}{x^3}\right) \end{split}$$

25.78 Exemple

Exemple
$$25.78$$

1.
$$\frac{e^x - 1}{\cos x - 1} = \frac{-2}{x \to 0} - 1 - \frac{1}{2}x + o(x)$$

1.

$$\frac{e^x - 1}{\cos x - 1} \stackrel{=}{\underset{x \to 0}{=}} \frac{x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)}{-\frac{x^2}{2} + \frac{x^4}{24} + o(x^4)}$$

$$\stackrel{=}{\underset{x \to 0}{=}} \frac{1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)}{-\frac{x}{2} + \frac{x^3}{24} + o(x^3)}$$

$$\stackrel{=}{\underset{x \to 0}{=}} -\frac{2}{x} \times \frac{1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)}{1 - \frac{x^2}{12} + o(x^2)}$$

$$\stackrel{=}{\underset{x \to 0}{=}} -\frac{2}{x} \times \left[1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)\right] \left[1 + \frac{x^2}{12} + o(x^2)\right]$$

$$\stackrel{=}{\underset{x \to 0}{=}} -\frac{2}{x} \left[1 + \frac{x}{2} + \frac{x^2}{4} + o(x^2)\right]$$

$$\stackrel{=}{\underset{x \to 0}{=}} -\frac{2}{x} - 1 - \frac{1}{2}x + o(x)$$

25.85 Exemple

Exemple 25.85

Montrer que la parabole d'équation $y = ex^2 + \frac{e}{2}x + \frac{e}{24}$ est asymptote à la courbe de $f: x \mapsto x^2 \left(1 + \frac{1}{x}\right)^{x+1}$ et que la courbe de f est située au-dessus de sa courbe asymptote (le terme d'ordre 1 est $\frac{e}{48}$).

$$\begin{split} f(x) &= x^2 \left(1 + \frac{1}{x} \right)^{x+1} \\ &= x^2 \exp \left((x+1) \ln \left(1 + \frac{1}{x} \right) \right) \\ &= \sum_{x \to +\infty} x^2 \exp \left((x+1) \left(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^2} - \frac{1}{4x^4} + o\left(\frac{1}{x^4} \right) \right) \right) \\ &= \sum_{x \to +\infty} x^2 \exp \left(1 + \frac{1}{2x} - \frac{1}{6x^2} + \frac{1}{12x^3} + o\left(\frac{1}{x^3} \right) \right) \\ &= \sum_{x \to +\infty} ex^2 \left[1 + \left[\frac{1}{2x} - \frac{1}{6x^2} + \frac{1}{12x^3} + o\left(\frac{1}{x^3} \right) \right] + \frac{1}{2} \left[\frac{1}{2x} - \frac{1}{6x^2} + O\left(\frac{1}{x^3} \right) \right]^2 + \frac{1}{6} \left[\frac{1}{2x} + O\left(\frac{1}{x^2} \right) \right]^3 + o\left(\frac{1}{x^3} \right) \right] \\ &= \sum_{x \to +\infty} ex^2 + \frac{e}{2}x - \frac{e}{24} + \frac{e}{48x} + o\left(\frac{1}{x} \right) \end{split}$$

Exercice 11

Exercice 25 11

On note f la fonction $x \mapsto x + \ln(1+x)$ sur $]-1,+\infty[$.

- 1. Montrer que f est bijective de $]-1,+\infty[$ sur son image (que l'on précisera).
- 1. f est strictement croissante et continue donc d'après le théorème de la bijection continue, f induit une bijection de $]-1,+\infty[$ sur $]\lim_{x\to-1}f(x),\lim_{x\to+\infty}f(x)[=\mathbb{R}.$
- 2. $f \in \mathcal{C}^{\infty}(]-1,+\infty[,\mathbb{R})$ et:

$$\forall x \in]-1, +\infty[, f'(x) = 1 + \frac{1}{1+x}]$$

D'après le TBD, $f^{-1} \in \mathcal{C}^{\infty}(\mathbb{R},]-1, +\infty[)$ donc possède un DL₃ en 0. Or :

$$f(0) = 0$$
 et $f(x) = 2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)$

On note $f^{-1}(x) = a_1 x + a_2 x^2 + a_3 x^3 + o(x^3)$. Or:

$$x = f^{-1} \circ f(x)$$

$$= a_1 \left(2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) \right) + a_2 \left(2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) \right)^2 + a_3 \left(2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) \right)^3 + o(x^3)$$

$$= a_1 \left(2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) \right)^3 + o(x^3)$$

$$= a_1 \left(2x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) \right)^3 + o(x^3)$$

Par unicité du DL₃(0) :

$$\begin{cases} 2a_1 & = 1\\ -\frac{a_1}{2} + 4a_2 & = 0 \text{ donc} \\ \frac{a_1}{3} - 2a_2 + 8a_3 & = 0 \end{cases} \begin{cases} a_1 & = \frac{1}{2}\\ a_2 & = \frac{1}{16}\\ a_3 & = -\frac{1}{192} \end{cases}$$

Donc:

$$f^{-1}(x) = \frac{x}{x \to 0} + \frac{x^2}{16} - \frac{x^3}{192} + o(x^3)$$

Chapitre 26

Intégration sur un segment

26.12 Image d'une fonction en escalier

Propostion 26.12

L'image d'une fonction en escalier est un ensemble fini. En particulier, une fonction en escalier est bornée.

Si $v = {\sigma_0, \dots, \sigma_n}$ est une subdivision associée à f, alors :

$$|Im(f)| \le \underbrace{n}_{\text{valeurs sur chaque intervalle ouvert}} + \underbrace{n+1}_{\text{valeurs de } f(v_i)} = 2n+1$$

26.14 Subdivision commune

Lemme 26.14

Soit f et g deux fonctions en escalier. Il existe une subdivision commune associée à f et g.

Si σ est une subdivision associée à f et τ est une subdivision associée à g :

$$\sigma \cup \tau \leq \sigma$$

$$\leq \tau$$

Donc $\sigma \cup \tau$ est une subdivision commune associée à f et g.

26.15 Structure de l'ensemble des fonctions en escalier

${ m Th\'eor\`eme}~26.15$

L'ensemble Esc([a,b]) des fonctions en escalier sur [a,b] est un sous-espace vectoriel de $\mathbb{R}^[a,b]$ (c'est même une sous-algèbre).

PRAS (26.14)

26.17 Théorème

Théorème 26.17

Pour toutes subdivisions σ et τ associées à f, on a :

$$I(f,\sigma) = I(f,\tau)$$

Autrement dit, la quantité $I(f,\sigma)$ est indépendante du choix de la subdivision associée.

Dans un premier temps, on suppose $\tau \subset \sigma$. Notons :

$$\tau = \{\tau_0, \dots, \tau_n\}$$
$$= \{v_{i_0}, \dots, v_{i_n}\}$$

On note f_k la valeur constante de f sur $]\tau_k,\tau_{k+1}[$ et ainsi :

$$I(f,\tau) = \sum_{k=0}^{n-1} (\sigma_{i_{k+1}} - \sigma_{i_k}) f_k$$

$$= \sum_{k=0}^{n-1} \left[\sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) \right] f_k$$

$$= \sum_{k=0}^{n-1} \sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= \sum_{p=0}^{i_n-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= I(f,\sigma)$$

Dans le cas général:

$$I(f,\tau) = I(f,\tau \cup \sigma) = I(f,\sigma)$$

Propostion 26.21

Soit f une fonction en escalier sur [a, b] et soit $c \in]a, b[$, alors f est en escalier sur [a, c] et [c, b] et :

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Soit σ associée à f, $\sigma \cup \{c\}$ est toujours associée à f, alors $\sigma \cup \{c\} \cap [a,c]$ est associée à $f_{[a,c]}$. RAS pour la suite.

26.23 Intégrale de deux fonctions en escalier égales presque partout

Propostion 26.23

Si deux fonctions en escalier ne différent qu'en un nombre fini de points, alors leurs intégrales sont égales.

Dans ce cas, f - g est nulle presque partout et on utilise la linéarité et (26.20).

26.24 Positivité ou croissance de l'intégrale

Propostion 26.24

Soit f et g deux fonctions en escalier sur [a,b] (avec $a \le b$) telles que pour tout $x \in [a,b], f(x) \le g(x)$, alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, si f est en escalier sur [a, b] et positive, alors :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

En reprenant la notation du (20.18), pour tout $i, f_i \ge 0$. Donc :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

On obtient la croissance par linéarité.

26.26 Inéglité triangulaire intégrale

Propostion 26.26

Soit f une fonction en escalier sur [a,b] (avec toujours $a \leq b$) à valeurs réelles. Alors |f| est aussi en escalier sur [a,b] et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

Si σ est associée à f, elle reste associée à |f| et ensuite on utilise l'inégalité triangulaire classique avec (26.20).

26.36 Théorème

Théorème 26.36

f est intégrable si et seulement si $I_{-}(f)$ et $I_{+}(f)$ existent et si $I_{-}(f) = I_{+}(f)$.

 \Rightarrow

On suppose f intégrable. Donc $Esc_+(f)$ et $Esc_-(f)$ ne sont pas vides.

En particulier $A_{+}(f) \neq \emptyset$ est minoré et $A_{-}(f) \neq \emptyset$ est majoré.

D'après la propriété fondamentale de \mathbb{R} , $I_{-}(f)$ et $I_{+}(f)$ sont bien définis.

Soit $\epsilon > 0$, on choisit $(h, g) \in Esc_{-}(f) \times Esc_{+}(f)$ tel que :

$$\int_{a}^{b} (g - h)(x) \, dx < \epsilon$$

Donc:

$$I_{+} \le \int_{a}^{b} g(x) dx < \int_{a}^{b} h(x) dx + \epsilon \le I_{-} + \epsilon$$

Donc:

$$I_{+} \leq I_{-} + \epsilon$$

Donc:

$$I_{+} \leq I_{-}$$

Donc:

$$I_{+} = I_{-}$$

 \leftarrow

On suppose $I_{+} = I_{-}$.

Soit $\epsilon > 0$.

 $I_+ + \frac{\epsilon}{2}$ ne minore pas A_+ .

 $I_{-}-\frac{\overline{\epsilon}}{2}$ ne majore pas A_{-} .

On choisit donc $h \in Esc_{-}$ et $g \in Esc_{+}$ telles que :

$$\int_{a}^{b} g(x) dx < I_{+} + \frac{\epsilon}{2}$$

$$\int_{a}^{b} h(x) dx > I_{-} - \frac{\epsilon}{2}$$

Donc:

$$\int_a^b (g(x) - h(x)) dx < I_+ - I_- + \epsilon = \epsilon$$

26.42 Intégrabilité des fonctions monotones

Théorème 26.42

Soit f une fonction monotone sur [a, b]. Alors f est intégrable sur [a, b].

On suppose f croissante. Alors f est bornée (minorée par f(a), majorée par f(b)). Pour tout $n \in \mathbb{N}^*$, on note σ_n la subdivision régulière de [a,b] à n pas.

$$\forall k \in [0, n], \sigma_k^{(n)} = a + \frac{(b-a)}{n}k$$

On définit $h_n \in Esc_-(f)$ et $g_n \in Esc_+(f)$ par :

$$\begin{cases} \forall x \in]\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], g_n(x) &= f(\sigma_{k+1}^{(n)}) \\ g_n(a) = f(a) & \\ \forall x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], h_n(x) &= f(\sigma_k^{(n)}) \\ h_n(b) = f(b) & \end{cases}$$

$$\int_{a}^{b} (g_n - h_n) = \sum_{k=0}^{n-1} \frac{b-a}{n} \times (f(\sigma_{k+1}^{(n)}) - f(\sigma_{k}^{(n)}))$$
$$= \frac{b-a}{n} (f(b) - f(a))$$
$$\xrightarrow[n \to +\infty]{} 0$$

D'après (26.41), f est intégrable.

26.43 Intégrabilité des fonctions continues

Théorème 26 43

Soit f une fonction continue sur [a, b]. Alors f est intégrable sur [a, b].

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$.

Comme [a, b] est un segment, f est uniformément continue sur [a, b] d'après le theorème de Heine. Soit $\epsilon > 0$. On choisit $\eta > 0$ tel que :

$$\forall (x,y) \in [a,b]^2, |x-y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

Soit $\sigma^{(n)}$ la subsdivision régulière de [a, b] à n pas $(n \ge 1)$.

On choisit n tel que $\frac{b-a}{n} < \eta$.

Pour $k \in [0, n-1]$, f est continue sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ donc y atteint ses bornes $([\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ est compact/théorème des bornes atteintes).

On note alors m_k et M_k respesctivement les minimum et maximum sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$. On pose alors h_n et g_n .

— Pour
$$x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], h_n(x) = m_k$$
 et $g_n(x) = M_k$.

$$--h_n(b) = g_n(b) = f(b)$$

Par construction, $h_n \in Esc_{-}(f)$ et $g_n \in Esc_{+}(f)$, et :

$$\int_{a}^{b} (g_{n} - h_{n}) = \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)})(M_{k} - m_{k}) < \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)}) \times \epsilon = \epsilon \times (b - a)$$

Par définition:

$$\int_{a}^{b} (g_n - h_n) \underset{n \to +\infty}{\longrightarrow} 0$$

26.46 Relation de Chasles

Propostion 26.46

Soit une fonction f définie sur [a,b] et $c \in]a,b[$. Alors f est intégrable sur [a,b] si et suelement si f est intégrable sur [a,c] et [c,b] et dans ce cas :

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

cf. annexe

26.49 Croissance et positivité de l'intégrale

Propostion 20.49

Soit f et g deux fonction intégrables sur [a,b] (avec $a \le b$) telles que pour tout $x \in [a,b], f(x) \le g(x)$. Alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, si f est intégrable sur [a,b] et positive, alors :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

Si $f \ge 0$, alors $0 \in Esc_{-}(f)$.

$$\int_a^b 0 = 0 \in A_-(f)$$

Donc:

$$I_{-}(f) = \int_{a}^{b} f \ge 0$$

26.51 Inégalité triangulaire intégrale

Propostion 26.51

Soit f une fonction intégrable sur [a, b], alors |f| est intégrable sur [a, b] et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

On suppose f intégrable sur [a, b].

On choisit (φ_n, θ_n) associé à f (26.39).

Comme:

$$\forall x \in [a, b], ||f(x)| - |\varphi_n(x)|| \le |f(x) - \varphi_n(x)| \le \theta_n(x)$$

Alors $(|\varphi_n|, \theta_n)$ est associée à |f|. Par conséquent, |f| est intégrable sur [a, b]. On a :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} |\varphi_{n}(x)| dx$$

Or, d'après (26.26):

$$\left| \int_{a}^{b} \varphi_{n}(x) \, dx \right| \leq \int_{a}^{b} |\varphi_{n}(x)| \, dx$$

Donc, d'arpès le TCILPPL :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

26.56 Bornitude des fonctions continues par morceaux

Propostion 26.56

Les fonctions continues par morceaux sur un segment [a, b] sont bornées.

Soit f continue par morceaux sur [a, b].

Soit σ une subdivision associée.

Comme f est continue sur $]\sigma_i, \sigma_{i+1}[$ et que f possède des limites finies en σ_i^+ et σ_{i+1}^- , f se prolonge par continuité en f_i sur $[\sigma_i, \sigma_{i+1}]$.

D'après le théorème des bornes atteintes, f_i est bornée.

Donc $f|_{]\sigma_i,\sigma_{i+1}[}$ est également bornée.

Donc $f|_{[a,b]\setminus\{\sigma_0,\ldots,\sigma_n\}}$ est bornée.

Donc f est bornée sur [a,b] car f est définie sur chaque σ_i .

26.58 Intégrabilité des fonctions continues par morceaux

Théorème 26.58

Toute fonction continue par morceaux sur le segment [a, b] est intégrable.

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$.

Soit σ une subdivision associée à f.

Sur chaque intervalle $]\sigma_i, \sigma_{i+1}[, f]$ se prolonge par continuité en f_i sur $[\sigma_i, \sigma_{i+1}]$.

Donc f_i est intégrable sur $[\sigma_i, \sigma_{i+1}]$ et f_i et $f|_{[\sigma_i, \sigma_{i+1}]}$ sont égales presque partout, donc $f|_{[\sigma_i, \sigma_{i+1}]}$ est intégrable sur $[\sigma_i, \sigma_{i+1}]$.

D'après la relation de Chasles, f est intégrable sur [a, b].

26.61 Norme

Propostion 26.61

Pour toute fonction f et g bornées sur un même segment [a, b], on a :

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

et si $\lambda \in \mathbb{R}$, alors :

$$||\lambda f||_{\infty} = |\lambda| \times ||f||_{\infty}$$

Enfin:

$$||f||_{\infty} = 0 \Leftrightarrow f = 0$$

— D'après l'inégalité triangulaire :

$$\forall x[a, b], |f(x) + g(x)| \le |f(x)| + |g(x)|$$

 $\le ||f||_{\infty} + ||g||_{\infty}$

Par définition:

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

- RAF

-- Si
$$f = 0$$
, $||f||_{\infty} = 0$.
Si $||f||_{\infty} = 0$, alors $\forall x \in [a, b], |f(x)| = 0$.
Donc $f = 0$.

26.63 Densité

Théorème 26.63

— Soit f une fonction continue sur [a, b]. Alors il existe une suite de fonctions en escalier $(\varphi_n)_{n \in \mathbb{N}}$ telle que :

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

— Soit f une fonction continue par morceaux sur [a,b] alors il existe une suite de fonctions en escalier $(\varphi_n)_{n\in\mathbb{N}}$ telle que :

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

— Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$, donc f est uniformément continue sur [a,b].

Soit $\epsilon > 0$, on choisit $\eta > 0$ module de continuité uniforme associé à ϵ .

Soit $n \in \mathbb{N}^*$, on introduit la subdivision régulière $\sigma^{(n)}$ de [a, b].

On choisit n tel que $\frac{b-a}{n} < \eta$.

Pour tout $k \in [0, n-1]$, f est continue sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ donc y atteint ses bornes (max) M_k . On définit $\varphi_n \in Esc([a,b],\mathbb{R})$ par :

$$-\varphi_n(b) = f(b)$$

Par construction, pour tout $x \in [a, b]$:

$$|f(x) - \varphi_n(x)| \le \epsilon$$

Donc:

$$||f - \varphi_n||_{\infty} \le \epsilon$$

Par définition:

$$||f - \varphi_n||_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$$

— Si $f \in \mathcal{CM}([a,b],\mathbb{R})$, et σ une subdivision associée à f, on applique le résultat précédent sur chaque intervalle $[\sigma_i, \sigma_{i+1}]$.

26.64 Théorème fondamental du calcul intégral

Théorème 26.64

Soit f une fonction continue sur un intervalle I. Soit $x_0 \in I$. Alors l'application :

$$x \mapsto \int_{x_0}^x f(t) dt$$

est l'unique primitive de f sur I qui s'annule en x_0 .

Notons $F: x \mapsto \int_{x_0}^x f(t) dt$, bien définie car f est continue sur I.

$$F(x_0) = 0.$$

Montrons que F est une primitive de f sur I.

Soit $a \in I$ et soit $x \neq a$.

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_a^x f(t) dt$$

Donc:

$$\frac{F(x) - F(a)}{x - a} - f(a) = \frac{1}{x - a} \int_{a}^{x} f(t) dt - \frac{1}{x - a} \int_{a}^{x} f(a) dt$$
$$= \frac{1}{x - a} \int_{a}^{x} (f(t) - f(a)) dt$$

Soit $\epsilon > 0$, par continuité de f en a, on choisit $\eta > 0$ tel que :

$$\forall x \in I, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \epsilon$$

On suppose x>a et $x-a<\eta,$ d'après l'inégalité triangulaire, on a :

$$\left| \frac{F(x) - F(a)}{x - a} - f(a) \right| \le \frac{1}{x - a} \int_{a}^{x} |f(t) - f(a)| dt$$
$$\le \frac{1}{x - a} \int_{a}^{x} \epsilon dt$$
$$= \epsilon$$

Cela reste valable si x < a et $|x - a| < \eta$.

Donc:

$$\frac{F(x) - F(a)}{x - a} \xrightarrow[x \to a]{} f(a)$$

26.66 Limite

Propostion 26.66

Pour toute function $f \in C^0([a, b], \mathbb{R})$:

$$\int_a^b f(t) dt = \lim_{x \to b^-} \int_a^x f(t) dt \quad \text{et} \quad \int_a^b f(t) dt = \lim_{x \to a^+} \int_a^b f(t) dt$$

On fixe a et on pose $F: x \mapsto \int_a^x f(t) dt$.

Donc $F \in \mathcal{C}^0([a,b],\mathbb{R})$.

Donc $F(b) = \lim_{x \to b} F(x)$.

26.68 Exemple

Exemple 26.68

La fonction $\varphi: x \mapsto \int_0^x \exp(xt^2) \, dt$ est définie et dérivable sur \mathbb{R}^* , de dérivée :

$$x \mapsto \frac{3ex^3}{2} - \frac{1}{2x} \int_0^x \exp(xt^2) dt$$

Pour x > 0:

$$\varphi(x) = \int_0^x \exp(xt^2) dt = \int_0^1 \exp(xt^2) dt + \int_1^x e^{xt^2} dt$$

On effectue le changement de variable $u^2 = xt^2$, soit $u = \sqrt{x}t$ donc $du = \sqrt{x} dt$.

Si t = 0, u = 0.

Si t = x, $u = x^{\frac{3}{2}}$.

$$\varphi(x) = \frac{1}{\sqrt{x}} \int_0^{x^{\frac{3}{2}}} e^{u^2} du$$
$$= \frac{1}{\sqrt{x}} F(x^{\frac{3}{2}})$$

avec d'après le TFCI $F: x \mapsto \int_0^x e^{u^2} du \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}).$ Par opération, φ est dérivable sur \mathbb{R}_+^* et :

$$\varphi'(x) = -\frac{1}{2x\sqrt{x}}F(x^{\frac{3}{2}}) + \frac{3}{2}F'(x^{\frac{3}{2}})$$
$$= -\frac{1}{2x}\int_0^x e^{xt^2} dt + \frac{3}{2}e^{x^3}$$

Pour x < 0, on effectue le changement de variable $u^2 = -xt^2$, soit $u = \sqrt{-x}t$ et on suit la méthode principale.

Intégrale nulle d'une fonction positive et continue 26.69

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue et positive, avec a < b. Alors:

$$\int_{a}^{b} f(t) dt = 0 \Leftrightarrow f = 0$$

f est continue et positive, donc d'après le TFCI :

 $F: x \mapsto \int_a^x f(t) dt$ est dérivable sur [a, b] avec $F' = f \ge 0$ donc F est croissante sur [a, b].

Or F(a) = 0 = F(b).

Donc F = 0, puis f = F' = 0.

Somme de Riemann 26.70

Soit f une fonction continue sur [a, b]. Alors:

$$\int_a^b f(x) \, dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{(b-a)}{n}\right) = \lim_{n \to +\infty} \sum_{k=1}^n \frac{b-a}{n} f\left(a + k \frac{(b-a)}{n}\right)$$

Plus généralement, soit pour tout $n \in \mathbb{N}$, $\sigma^{(n)} = (\sigma_k^{(n)})_{k \in [0,n]}$ une subdivision et supposons que la suite des pas vérifie:

$$p(\sigma^{(n)}) \xrightarrow[n \to +\infty]{} 0$$

et soit pour tout $n \in \mathbb{N}$ et tout $k \in [0, \ell_n - 1]$, $x_{n,k}$ un élément de $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$. Alors :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)}) f(x_{n,k})$$

Soit $\epsilon > 0$, on choisit η un module de continuité uniforme pour f d'après le théorème de Heine. On définit, pour tout $n \in \mathbb{N}^*, \varphi_n \in Esc([a, b], \mathbb{R})$ par :

— pour
$$x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}[, \varphi_n(x) = f(x_{n,k})]$$

$$\forall n \geq N, p(\sigma^{(n)}) < \eta$$

Pour $n \geq N$:

$$|f(x) - \varphi_n(x)| \le \epsilon$$

Par définition:

$$||f - \varphi_n||_{\infty} \longrightarrow 0$$

Donc:

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} \varphi_{n}(x) dx$$

Puis (26.18).

26.72Exemple

On montre que:

$$\sum_{k=1}^{n} \frac{1}{n+k} \xrightarrow[n \to +\infty]{} \ln 2$$

$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})$$

avec $f: x \mapsto \frac{1}{1+x} \in \mathcal{C}^0([0,1], \mathbb{R})$. Donc TSR :

$$\sum_{k=1}^{n} \frac{1}{n+k} \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{1+x} dx = \ln(2) - \ln(1) = \ln(2)$$

26.75Inégalité triangulaire intégrale dans \mathbb{C}

Soit $f:[a,b] \to \mathbb{C}$ intégrable, avec a < b. Alors |f| est aussi intégrable et :

$$\left| \int_{a}^{b} f(t) \, dt \right| \le \int_{a}^{b} |f(t)| \, dt$$

On décompose $\int_a^b f(t) \, dt = r e^{i\theta}$ avec $r \geq 0$ et $\theta \in \mathbb{R}$. Par opération, |f| est intégrable. On pose $g = e^{-i\theta} \times f$.

Par linéarité:

$$\int_a^b g(t) dt = e^{-i\theta} \int_a^b f(t) dt = r$$

On décompose $g = g_r + ig_i$.

Par définition:

$$\int_{a}^{b} g(t) dt = \int_{a}^{b} g_{r}(t) dt + i \int_{a}^{b} g_{i}(t) dt$$

Donc:

$$\int_a^b g_r(t)\,dt = r \quad \text{et} \quad \int_a^b g_i(t)\,dt = 0$$

$$\left| \int_a^b f(t) \, dt \right| = r = \int_a^b g_r(t) \, dt = \left| \int_a^b g_r(t) \right| \underbrace{\leq}_{\text{LT Sur } \mathbb{R}} \int_a^b |g_r(t)| \, dt \underbrace{\leq}_{\text{croissance de l'I}} \int_a^b |g(t)| = \int_a^b |f(t)| \, dt$$

Exercice 17

Exercice 26.17

Soit f et g deux fonctions continues sur \mathbb{R} telles que pour tout $x \in \mathbb{R}$, on ait :

$$f(x) = \int_0^x g(t) dt \quad \text{et} \quad g(x) = \int_0^x f(t) dt$$

Montrer que f = g = 0.

D'après le TFCI, $(f,g) \in \mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$

$$f'' = f$$
 et $g'' = g$

D'après le chapitre 7, on choisit $(a, b, c, d) \in \mathbb{R}^4$ tel que :

$$\begin{cases} f: x \mapsto ae^x + be^{-x} \\ g: x \mapsto ce^x + de^{-x} \end{cases}$$

Or f' = g donc a = c et b = d par liberté de $(x \mapsto e^x, x \mapsto e^{-x})$.

$$f(0) = 0 = g(0)$$

donc $a = b = c = d = 0$

Donc:

$$f = g = 0$$

26.76 Lemme de Riemann-Lesbegue

Lemme 26.7

Soit $f:[a,b]\to\mathcal{C}$. On suppose que $f\in\mathcal{C}^1([a,b],\mathbb{R})$, alors :

$$\int_{a}^{b} f(x)e^{int} dt \underset{n \to +\infty}{\longrightarrow} 0$$

 $f \in \mathcal{C}^1([a,b],\mathbb{R}).$

Par IPP $(f \in \mathcal{C}^1([a,b], \mathbb{R}), t \mapsto \frac{e^{int}}{in} \in \mathcal{C}^1([a,b], \mathbb{C}))$:

$$\int_{a}^{b} f(x)e^{int} dt = \left[\frac{f(x)e^{int}}{in}\right]_{a}^{b} - \frac{1}{in} \int_{a}^{b} f'(x)e^{int} dt$$
$$= \frac{f(b)e^{inb} - f(a)e^{ina}}{in} - \frac{1}{in} \int_{a}^{b} f'(x)e^{int} dt$$

D'après l'inégalité triangulaire :

$$\left| \frac{1}{in} \left| \int_a^b f'(x)e^{int} dt \right| \le \frac{1}{in} \int_a^b |f'(x)| dt \right|$$

Séries numériques

27.6 Série géométrique

Théorème 27.6

Soit $a \in \mathbb{C}$. La série $\sum a^n$ converge si et seulement si |a| < 1. Dans ce cas :

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

Soit $n \in \mathbb{N}$.

$$S_n = \sum_{k=0}^n a^k = \frac{1 - a^{n+1}}{1 - a} \ (a \neq 1)$$

$$\underset{n \to +\infty}{\longrightarrow} \frac{1}{1 - a} \ (|a| < 1)$$

La série converge et $\sum_{n>0} a^n = \frac{1}{1-a}$.

27.11 Deux séries de termes généraux égaux presque partout

Propostion 27.11

Si (u_n) et (v_n) ne diffèrent que d'un nombre fini de termes, alors $\sum u_n$ et $\sum v_n$ sont de même nature.

On note $A = \{n \in \mathbb{N}, u_n \neq v_n\}$. Supposons $A \neq \emptyset$.

D'après les hypothèses, A est majoré donc possède un maximum N d'après la propriété fondamentale de \mathbb{N} . On note (S_n) et (S'_n) les sommes partielles associée à $\sum u_n$ et $\sum v_n$. Pour $n \geq N$:

$$S_n = S'_n + K$$
 où $K = \sum_{k \in A} (u_k - v_k)$ (constant)

Ainsi (S_n) converge si et seulement si (S'_n) converge.

27.12 CN de convergence portant sur le terme général

${ m Th\'eor\`eme}~27.12$

Si $\sum u_n$ converge, alors (u_n) converge vers 0. De manière équivalente, si (u_n) ne tend pas vers 0, la série $\sum u_n$ diverge.

On suppose que $S_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$ ou \mathbb{C} .

$$u_n = S_n - S_{n-1} = \ell - \ell = 0$$

27.16 Théorème de comparaison des séries à termes positifs

Théorème 27.16

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$:

$$0 \le u_n \le v_n$$

Alors:

— Si $\sum v_n$ converge, alors $\sum u_n$ converge aussi.

— Si $\sum u_n$ diverge (vers $+\infty$ donc), alors $\sum v_n$ diverge aussi (vers $+\infty$ donc).

De plus, si la divergence est grossière pour $\sum u_n$, elle l'est aussi pour $\sum v_n$.

En utilisant les notations du (27.11), on peut supposer que :

$$\forall n \ge 0, 0 \le u_n \le v_n$$

Puis:

$$\forall n \ge 0, 0 \le S_n \le S_n'$$

On utilise alors le théroème de comparaison sur les suites.

27.20 Convergence absolue entraı̂ne convergence

Théorème 27.20

Toute série réelle ou complexe absolument convergente est convergente.

Matrice d'une application linéaire

Groupe symétrique

Déterminant

Dénombrement

Espaces probabilisés finis

Variables aléatoires réelles finies

Espaces préhilbertiens réels

Familles sommables

Fonctions de deux variables