PowerPoint Slides

to accompany

Digital Principles and Design

Donald D. Givone

Chapter 8
Algorithmic State Machines

Partitioning of a digital system.

Figure 8.1

Model of an algorithmic state machine.

Figure 8.2

Blocks define states

Transition & output logic

contained within

Compare with Mealy/Moore

Timing of an algorithmic state machine.

Figure 8.3

Example ASM Block

The state box.

Figure 8.4

The decision box. (a) Symbol. (b) Alternate symbol.

Figure 8.5

The conditional output box.

Figure 8.6

Entry path (from a decision box) Conditional output list Exit path (to a decision box or state box)

Example of an ASM block and its link paths.

Two equivalent ASM blocks.

Two blocks are equivalent if

- same state output variables named in state box
- for every setting of input values
 - the same next state is chosen
 - the same set of output variables are named in the set of conditional output boxes traversed

Two equivalent ASM blocks. (a) Using a single decision box. (b) Using several decision boxes.

Two equivalent ASM books blocks. (a) Parallel decision boxes. (b) Serial decision boxes.

Invalid ASM block having nonunique next states.

Figure 8.11

Both exits selected when both inputs are 1

Looping. (a) Incorrect. (b) Correct.

Any closed loop must contain at least one state box

ASM chart for a mod-8 binary counter.

Figure 8.13

State output is state code

ASM chart for a mod-8 binary up-down counter.

Input I controls direction

Moore sequential network. (a) State diagram. (b) ASM chart.

Mealy sequential network. (a) State diagram. (b) ASM chart.

ASM chart to recognize the sequence $x_1x_2 = 01,01,11,00$.

Binary multiplication. (a) Pencil-and-paper approach. (b) Add-shift approach.

Architecture for a binary multiplier.

ASM chart for a binary multiplier.

Assigned ASM Table

Link	Pre	sent st	tate		Inputs			xt stat	te	Outputs							
path	Sym	Q_1	Q_2	S	M_1	Z	Sym	Q_1^+	Q_2^+	INIT	DECREM	ADD	SR	COMPLETE			
L_1	1	0	0	0	_	_	1	0	0	0	0	0	0	0			
L_2	1	0	0	1	_	_	2	0	1	1	0	0	0	0			
L_3	2	0	1	_	0	_	3	1	1	0	1	0	0	0			
L_4	2	0	1	_	1	-	3	1	1	0	1	1	0	0			
L_5	3	1	1	_	_	0	2	0	1	0	0	0	1	0			
L_6	3	1	1	_	_	1	1	0	0	0	0	0	1	1			
				(b)													

Note grouping of link paths

An ASM chart to illustrate state assignment.

A minimum state locus assignment for the ASM chart of Fig. 8.21. (a) State-assignment map. (b) State locus.

Figure 8.22

			Q_2	Q_3	
		00	01	11	10
0.	0	A	В	С	-
Q_1	1	Ε	D	-	-
			(0	ı)	

State transition $A \longrightarrow B = 000 \longrightarrow 001$	1 bit change
State transition $A \longrightarrow A = 001 \longrightarrow 000$	1 bit change
State transition $B \longrightarrow C = 001 \longrightarrow 011$	1 bit change
State transition $B \longrightarrow D = 001 \longrightarrow 101$	1 bit change
State transition $C \longrightarrow D = 011 \longrightarrow 101$	2 bit changes
State transition $D \longrightarrow E = 101 \longrightarrow 100$	1 bit change
State transition $E \longrightarrow A = 100 \longrightarrow 000$	1 bit change

Total = 8 = state locus

(b)

 Table 8.1
 ASM tables for Fig. 8.21. (a) ASM transition table. (b) Assigned ASM transition table

Link	Present		Inputs		Next		Out	puts	
path	state	x_1	x_2	x_3	state	z_1	z_2	z_3	Z4
L_1	A	0	_	_	A	1	0	0	0
L_2	A	1	_	1-	В	1	1	0	0
L_3	В	0	0	_	A	0	0	0	0
L_4	В	0	1	-	C	0	1	0	0
L_5	B	1	-	1-1	D	0	0	1	0
L_6	C	_	_	0	C	0	0	1	1
L_7	C	- ,	_	1	D	0	0	1	1
L_8	D	_	-	_	E	1	0	0	0
L_9	E	_	- ,	-	A	0	0	1	0
					(a)				

Link	I	Present	state		I	Inputs			Next state					Outputs			
path	Sym	Q_1	Q_2	Q_3	x_1	x_2	x_3	Sym	Q_1^+	Q_2^+	Q_3^+	z_1	z_2	z_3	Z ₄		
L_1	A	0	0	0	0	_	_	A	0	0	0	1	0	0	0		
L_2	A	0	0	0	1		_	В	0	0	1	1	1	0	0		
L_3	В	0	0	1	0	0	_	A	0	0	0	0	0	0	0		
L_4	В	0	0	1	0	1	_	C	0	1	1	0	1	0	0		
L_5	В	0	0	1	1	_	-	D	1	0	1	0	0	1	0		
L_6	C	0	1	1	_	_	0	С	0	1	1	0	0	1	1		
L_7	C	0	1	1	-	_	1	D	1	0	1	0	0	1	1		
L_8	D	1	0	1	_	_	_	E	1	0	0	1	0	0	0		
L_{o}	Ε	1	0	0	T	_		A	0	0	0	1 0	0	-1	0		

Karnaugh map for simplifying the Q_1^+ function of Table 8.1*b*.

Figure 8.23

 $x_1 x_2 x_3$ $Q_1Q_2Q_3$

$$Q_1^+ = \overline{Q}_2 Q_3 x_1 + Q_2 x_3 + Q_1 Q_3$$

ASM Excitation Table defines FF input equations

Table 8.5 ASM excitation table for Table 8.1*b*

Link path	P	resent	t state		Inputs			Next state			Excitations						Outputs				
patn	Sym	Q_1	Q_2	Q_3	x_1	x_2	x_3	Sym	Q_1^+	Q_2^+	Q_3^+	J_1	K_1	J_2	K_2	J_3	<i>K</i> ₃	z_1	z_2	z_3	Z 4
L_1	A	0	0	0	0	_	_	A	0	0	0	0	_	0	-	0	_	1	0	0	0
L_2	\boldsymbol{A}	0	0	0	1	_		В	0	0	1	0	_	0	_	1	_	1	1	0	0
L_3	В	0	0	1	0	0	_	A	0	0	0	0	_	0	_	_	1	0	0	0	0
L_4	B	0	0	1	0	1	1-1	C	0	1	1	0	_	1	1_7	-	0	0	1	0	0
L_5	B	0	0	1	1	_	-	D	1	0	1	1	_	0	-	-	0	0	0	1	0
L_6	C	0	1	1	_	_	0	C	0	1	1	0	-	_	0	_	0	0	0	1	1
L_7	C	0	1	1	1-	_	1	D	1	0	1	1	_	_	1	_	0	0	0	1	1
L_8	D	1	0	1		_	_	E	1	0	0	_	0	0		· —	1	1	0	0	0
L_9	Ε	1	0	0	_	_	_	A	0	0	0	_	1	0		0		0	0	1	0

Using variable-entered Karnaugh maps to obtain a discretegate realization with clocked *D* flip-flops

Link	I	resent	state		I	Inputs			Next state					Outputs			
path	Sym	Q_1	Q_2	Q_3	x_1	x_2	x_3	Sym	Q_1^+	Q_2^+	Q_3^+	z_1	z_2	z_3	Z ₄		
L_1	A	0	0	0	0	_	_	A	0	0	0	1	0	0	0		
L_2	A A	0	0	0	1		_	В	0	0	1	1	1	0	0		
L_3	В	0	0	1	0	0	_	A	0	0	0	0	0	0	0		
L_4	В	0	0	1	0	1	_	C	0	1	1	0	1	0	0		
L_5	В	0	0	1	1	-	-	D	1	0	1	0	0	1	0		
L_6	C	0	1	1	_	_	0	C	0	1	1	0	0	1	1		
L_7	C	0	1	1	_	_	1	D	1	0	1	0	0	1	1		
L_8	D	1	0	1	_	_	_	E	1	0	0	1	0	0	0		
L_9	E	1	0	0	_	_	_	A	0	0	0	0	0	-1	0		
							(b)										

Using variable-entered Karnaugh maps to obtain a discrete-gate realization with clocked *D* flip-flops for the ASM chart of Fig. 8.21.

Using variable-entered Karnaugh maps to obtain a discretegate realization with clocked JK flip-flops for the ASM chart of Fig. 8.21.

State-assignment map

$$K_3 = \overline{x}_1 \overline{x}_2 \overline{Q}_2 + Q_1$$

Assignment of inputs to a multiplexer for each excitation and output function.

Link]]	Present	state		I	nputs			Next s	state	Outputs						
path	Sym	Q_1	Q_2	Q_3	x_1	x_2	x_3	Sym	Q_1^+	Q_2^+	Q_3^+	z_1	z_2	z_3	Z ₄		
L_1	A	0	0	0	0	_	_	A	0	0	0	1	0	0	0		
L_2	A	0	0	0	1		_	В	0	0	1	1	1	0	0		
L_3	В	0	0	1	0	0	_	A	0	0	0	0	0	0	0		
L_4	В	0	0	1	0	1	_	C	0	1	(1	0	1	0	0		
L_5	В	0	0	1	1	_	-	D	1	0	1	0	0	1	0		
L_6	C	0	1	1	_	_	0	С	0	1	1	0	0	1	1		
L_7	C	0	1	1	-	_	1	D	1	0	1	0	0	1	1		
L_8	D	1	0	1	_	_	_	E	1	0	0	1	0	0	0		
L_9	E	1	0	0	_	_	_	A	0	0	0	0	Ø	-1	0		
	(<i>b</i>)																

One mux per function

Each input function corresponds to cell function in variableentered K-map

Multiplexer realization with clocked D flip-flops for the ASM

chart of Fig. 8.21.

Fragments of ASM charts illustrating problems associated with asynchronous inputs. (a) Transition race. (b) Output

race.

Using a clocked *D* flip-flop to synchronize an asynchronous input.

