01RAD - přednáška 4, 7.10.2025

Regresní model procházející počátkem

Existují případy, kdy přípustný model vyžaduje $\beta_0=0$, tj.

$$Y_i = \beta_1 x_i + e_i, \qquad i = 1, \ldots, n,$$

např.

- je to předem známo na základě fyzikálních úvah (E $Y_0 = \beta_0 = 0$), potom nemá smysl odhadovat β_0 , obecně to snižuje přesnost odhadu σ^2 a tím i β_1
- na začátku předpokládáme $\beta_0 \neq 0$ a t-test nezamítne $H_0: \beta_0 = 0$, potom β_0 může být z modelu odstraněno

Poznámka 2.15

- v praxi často není jisté, že model platí i blízko počátku
- část statistiků trvá na přítomnosti interceptu v modelu, i když je nevýznamný
- položit $\beta_0=0$ apriorně může být chybné, i když E $Y_0=0$, pokud totiž nevíme jistě, že model je lineární na okolí 0, volba $\beta_0=0$ může vést k vychýleným odhadům β_1 , pokud jsou nezávislé proměnné daleko od 0

Příklad: porodní váha a gestační stáří

Odhady a testy v případě $\beta_0 = 0$

• LSE parametru β_1 dostaneme minimalizací $S = \sum_{i=1}^n (y_i - \beta_1 x_i)^2$ ve tvaru $\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^n x_i y_i}{\sum\limits_{i=1}^n x_i^2}$

• pokud e_1, \ldots, e_n i.i.d. $N(0, \sigma^2)$, potom

$$\mathsf{E}\widehat{eta}_1 = eta_1, \quad \mathsf{Var}\widehat{eta}_1 = rac{\sigma^2}{\sum\limits_{i=1}^n x_i^2}, \quad \widehat{eta}_1 \sim \mathit{N}(eta_1, rac{\sigma^2}{\sum\limits_{i=1}^n x_i^2}),$$

$$s_n^2 = rac{\sum\limits_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-1} = rac{SSE}{n-1}$$
 je nestranný odhad σ^2 , $rac{SSE}{\sigma^2} \sim \chi^2(n-1)$ a nezávisí na \widehat{eta}_1

•
$$H_0: eta_1 = 0$$
 lze otestovat pomocí $T = \dfrac{\widehat{eta}_1}{\sqrt{\sum\limits_{i=1}^n \mathsf{x}_i^2}} \sim t(n-1)$

• 100(1 $- \alpha$)% IS pro β_1 je $(\widehat{\beta}_1 \pm t_{1-\alpha/2}(n-1) s_n / \sqrt{\sum_{i=1}^n x_i^2})$

Poznámka 2.16

- ullet zatím vše podobné jako pro případ $eta_1
 eq 0$
- ullet rozdíl ale bude v tabulce ANOVA a R^2 statistice, neplatí totiž rozklad SST=SSR+SSE
- ullet odvodíme nový rozklad (platí v obou modelech, dokážeme jen pro $eta_0=0)$

$m V \check{E} TA \ 2.6$

V modelu s
$$\beta_0=0$$
 platí $\sum\limits_{i=1}^n y_i^2=\sum\limits_{i=1}^n \widehat{y}_i^2+\sum\limits_{i=1}^n (y_i-\widehat{y}_i)^2$.

Důkaz.

Pokud vezmeme $\sum_{i=1}^{n} y_i^2$ jako míru variability v datech, analogie R^2 bude: $R^2 = \frac{\sum_{i=1}^{n} \widehat{y}_i^2}{\sum_{i=1}^{n} y_i^2}$ potom

$$1 - R^2 = \frac{\sum\limits_{i=1}^n y_i^2 - \sum\limits_{i=1}^n \widehat{y}_i^2}{\sum\limits_{i=1}^n y_i^2} = \frac{\sum\limits_{i=1}^n \widehat{e}_i^2}{\sum\limits_{i=1}^n y_i^2}, \quad \text{a definici} \quad F = \frac{(n-1)R^2}{1 - R^2}$$

dostaneme

$$F = \frac{\sum_{i=1}^{n} \widehat{y}_{i}^{2}}{\frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}} = \frac{\widehat{\beta}_{1}^{2} \sum_{i=1}^{n} x_{i}^{2}}{s_{n}^{2}} = T^{2}$$

vztah mezi R^2 , F, T je tedy stejný jako pro $\beta_0 \neq 0$

Poznámka 2.17

Tato definice \mathbb{R}^2 se ale moc nepoužívá, protože neumožňuje přímé srovnání modelů bez a s interceptem

$$\beta_0 = 0$$
: $R^2 = 1 - \frac{SSE}{\sum_{i=1}^n y_i^2}$ $\beta_0 \neq 0$: $R^2 = 1 - \frac{SSE}{\sum_{i=1}^n (y_i - \overline{y})^2}$

obecně ale $\sum_{i=1}^{n} (y_i - \overline{y})^2 < \sum_{i=1}^{n} y_i^2$, R^2 modelu s $\beta_0 = 0$ tak bude větší než R^2 modelu s $\beta_0 \neq 0$ (i když jsou jejich SSE srovnatelné)

- ullet definice vhodné R^2 pro $eta_0=0$ vyvolává jistou kontroverzi a ex. několik verzí
- možná volba je

$$R^2 = \varrho^2(\boldsymbol{y}, \widehat{\boldsymbol{y}}),$$

kde
$$\widehat{\pmb{y}}=(\widehat{y}_1,\ldots,\widehat{y}_n)$$
 (platí i pro $\beta_0 \neq 0$)

• další možnost: srovnat modely pomocí s_n^2

Tabulka ANOVA pro $\beta_0 = 0$.

Source	df	SS	MS	F
Regression	1	$SSR = \sum_{i=1}^{n} \widehat{y}_{i}^{2}$	$MSR = \frac{SSR}{1}$	$\frac{SSR}{s_n^2}$
Residual	n-1	$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	$MSE = \frac{SSE}{n-1} = s_n^2$	
Total	n	$SST = \sum_{i=1}^{n} y_i^2$		
		$R^2 = \varrho^2(\mathbf{y}, \widehat{\mathbf{y}})$		

PŘÍKLAD 2.4 (Porodní váha a gestační stáří)

```
mod <- lm(Weight ~ Age) y.mod <- predict(mod) cor(y.mod,Weight)^2

## Coefficients:

## Estimate Std. Error t value Pr(>|t|) ## 0.5540268

## (Intercept) -1485.0 852.6 -1.742 0.0955 .

## Age 115.5 22.1 5.228 3.04e-05 ***

## Residual standard error: 192.6 on 22 degrees of freedom
```

Multiple R-squared: 0.554, Adjusted R-squared: 0.5338
F-statistic: 27.33 on 1 and 22 DF, p-value: 3.04e-05

Model bez interceptu: mod.bez <- lm(Weight ~ Age - 1) summary(mod.bez) ## Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
## Age 77.081 1.063 72.51 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 200.9 on 23 degrees of freedom
## Multiple R-squared: 0.9956. Adjusted R-squared: 0.9955
## F-statistic: 5258 on 1 and 23 DF, p-value: < 2.2e-16
anova(mod.bez)
## Analysis of Variance Table
##
## Response: Weight
   Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 212270368 212270368 5257.6 < 2.2e-16 ***
## Residuals 23 928596
                           40374
v.mod.bez <- predict(mod.bez)</pre>
cor(v.mod.bez.Weight)^2
## 0.5540268
```

Predikce

Jakmile máme model, často bývá cílem odhadnout hodnoty veličiny Y_0 pro nové x_0 , které není v původních datech.

Budeme uvažovat dva typy predikce:

- 1) predikce střední hodnoty $\mu_0 = \mathsf{E}\left[Y_0\right]$ v bodě x_0 ,
- 2) predikce hodnoty nového pozorování Y_0 v bodě x_0 .

Pro oba typy použijeme bodový odhad

$$\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0,$$

intervalové odhady se ale budou lišit.

Ad 1) $\mu_0 = \beta_0 + \beta_1 x_0$ je vlastně parametr, lze pro něj odvodit IS (za předpokladu normality chyb).

Spočteme $Var(\widehat{Y}_0)$:

Shrnutí: $100(1-\alpha)\%$ IS pro μ_0

$$\widehat{Y}_0 \pm t_{1-\frac{\alpha}{2}}(n-2) \cdot \widehat{\sigma}(\widehat{Y}_0), \quad \text{kde} \quad \widehat{\sigma}^2(\widehat{Y}_0) = s_n^2 \Big[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \Big]$$

 $\widehat{\sigma}(\widehat{Y}_0)$ se obvykle nazývá standardní chyba predikce v bodě x_0

Poznámka 2.18

Z tvaru IS je vidět, že bude nejkratší pro $x_0 = \overline{x}$ a s rostoucí vzdáleností $|x_0 - \overline{x}|$ se prodlužuje.

- Speciálně potom čím dále jsme od oblasti, kde jsou naše data x, tím méně spolehlivé jsou naše predikce.
- Je třeba opatrnosti při predikci hodnot Y mimo interval $(\min x_i, \max x_i)$.

Ad 2)

Intervalové odhady pro Y_0 nejsou IS, protože Y_0 není parametr \longleftrightarrow intervaly predikce.

Potřebujeme rozptyl $Y_0 - \widehat{Y}_0$:

Shrnutí: $100(1-\alpha)\%$ interval predikce pro Y_0

$$\widehat{Y}_0 \pm t_{1-rac{lpha}{2}}(n-2) \cdot s_p, \quad ext{kde} \quad s_p = s_n \sqrt{1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}}$$

Poznámka 2.19

Přesnost predikce

- a) roste s rostoucím n a rostoucím rozsahem x naměřeným pomocí S_{xx} ,
- b) klesá s rostoucím $|x_0 \overline{x}|$.

Pokud je možno předem zvolit $x_1, ... x_n$, lze přesnost predikce zvýšit volbou dostatečně rozptýlených hodnot x.

To ale může zvyšovat R^2 a někdy vést k horšímu modelu.

- ⇒ základní rozpor v regresní analýze:
 - dobrý model nemusí poskytovat dobré predikce,
 - dobré predikce mohou vycházet z méně přesných modelů.

Poznámka 2.20

- odvozené výsledky platí za předpokladu normality chyb
- za podmínek regularity jsou ale odhady $\widehat{\beta}_0$, $\widehat{\beta}_1$ asymptoticky normální, tzn. IS pro E Y_0 budou použitelné pro velká n i pro nenormální chyby
- IP pro Y_0 ale závisí na normalitě chyb i pro velká n,

tzn. mohou tedy být nepřesné pro nenormální chyby

PŘÍKLAD 2.5 (Clark County population data)

Year	Population
1920	4859
1930	8539
1940	16414
1950	48589
1960	127016
1970	273288
1980	463087
	1920 1930 1940 1950 1960 1970

1. lineární model pro původní data: $Y_i = \beta_0 + \beta_1 x_i + e_i$

$$\hat{\beta}_0 = -81328$$
, $p_{val} = 0.22$, $\hat{\beta}_1 = 71957$, $p_{val} = 0.007$, $R^2 = 0.80$, $F = 19.96$

Х	Year	Population	Fitted.value
0	1920	4859	-81328
1	1930	8539	-9371
2	1940	16414	62585
3	1950	48589	134542
4	1960	127016	206498
5	1970	273288	278455
6	1980	463087	350411

Predikce pro rok 1990:

$$\widehat{y}_{1990} = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot 7 = 422368$$

a) 95% IS: (237233,607502)
b) 95% IP: (135559,709177)

Skutečná hodnota v roce 1990: 768 203

2. lineární model pro log-transformovaná data: $log(Y_i) = \beta_0 + \beta_1 x_i + e_i$

$$\widehat{\beta}_0 = 8.33, \ p_{val} < 10^{-4}, \quad \widehat{\beta}_1 = 0.809, \ p_{val} < 10^{-4}, \quad R^2 = 0.991, \quad F = 550.9$$

Predikce pro rok 1990 na log. škále:

$$\widehat{\log y_{1990}} = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot 7 = 14.0004$$

- a) 95% IS: (13.604, 14.397)
- b) 95% IP: (13.387, 14.614)

Predikce pro rok 1990 na původní škále:

$$\widehat{y}_{1990} = 1203161$$

- a) 95% IS: (809 576, 1788 092)
- b) 95% IP: (651 269, 2 222 733)

Skutečná hodnota v roce 1990: 768 203

Intervaly predikce v 😱

```
mod.lin <- lm(pop ~ year)</pre>
                                                          6e+05
new <- data.frame(vear=seq(0.6.0.1))
                                                          4e+05
# predikce v
v.hat <- predict(lm(pop ~ year), new)</pre>
                                                          2e+05
# 95% intervaly spolehlivosti
CI<-predict(mod.lin, new, interval = "confidence")</pre>
                                                          0e+00 -
# 95% intervaly predikce
PI<-predict(mod.lin, new, interval = "prediction")
                                                         -2e+05
# obrazek
                                                         -4e+05
matplot(new$vear, cbind(CI, PI[,-1]),
        lty = c(1,2,2,3,3), col = c(1,2,2,3,3),
                                                                 1920
                                                                       1930
                                                                              1940
                                                                                     1950
                                                                                           1960
                                                                                                  1970
                                                                                                         1980
        type = "1", 1wd=2, vlab="",xlab = "Year",
        axes = FALSE, vlim=c(-400000,600000))
                                                                                     Year
axis(side=1, at=0:6, labels=Year)
axis(side=2, las=2)
points(pop ~ year, col="blue", lwd=2)
```

Ověření adekvátnosti modelu

- důležitá součást analýzy
- mělo by předcházet interpretaci modelu případně přijímání závěrů založených na modelu
- výsledky odvozeny za předpokladu linearity modelu,případně normality chyb

Základní procedury:

1) Prozkoumání scatter plotu dvojic (x_i, y_i)

Např.

může indikovat, že lepší model bude

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + e_i.$$

(může být zavádějící)

2) Analýza hodnot testovacích statistik

- např. malá hodnota R^2 společně s významnou hodnotou t-statistiky pro parametr β_1 naznačuje, že skutečný model obsahuje i jiné proměnné x
- \bullet velká hodnota R^2 a významná t-satistika ale samo o sobě neznamená, že je model lineární.

3) Obrázky reziduí

- efektivní diagnostický nástroj
- rezidua odhadují, kolik variability v datech zůstane po odstranění lineární části v x
- dá se očekávat, že budou užitečné pro detekci odchylek od normality

Ad 3) - Analýza reziduí

- ullet intuitivně, pokud je náš model správný, měla by se rezidua chovat jako náhodný výběr z $N(0,\sigma^2)$
- pokud se tak nechovají, může to znamenat neadekvátnost modelu
- ukážeme grafické nástroje, začneme ale vlastnostmi reziduí

VĚTA 2.7

Nechť \hat{e}_i jsou rezidua modelu (*) odhadnutého metodou nejmenších čtverců. Potom platí:

- 1) $E(\hat{e}_i) = 0, \quad i = 1, ..., n$
- 2) $\operatorname{Var}(\widehat{e}_i) = \sigma_{\widehat{e}_i}^2 = \sigma^2 \left[1 \left(\frac{1}{n} + \frac{(x_i \overline{x})^2}{S_{ord}} \right) \right] \qquad (\approx \sigma^2 \text{ pro velká } n)$
- 3) $\operatorname{Cov}(\widehat{e}_i, \widehat{e}_j) = -\sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} x_i)(\overline{x} x_j)}{S_{ov}} \right]$
- 4) $Cov(\widehat{e}_i, \widehat{Y}_i) = 0, \quad i = 1, \dots, n$
- 5) Pokud jsou e_1, \ldots, e_n i.i.d. $N(0, \sigma^2)$, potom platí: $\widehat{Z}_i = \frac{\widehat{e}_i}{\sigma_{\widehat{\sim}}} \sim N(0, 1)$.

Důkaz.

Poznámka 2.21

- bod 3) věty $\Rightarrow \text{Cov}(\widehat{e}_i, \widehat{e}_i) \approx 0$ pro velké n
- pokud jsou tedy e_i i.i.d. $N(0, \sigma^2)$, měla by se standardizovaná rezidua $\widehat{Z}_i = \frac{\widehat{e_i}}{\sigma_{\widehat{e_i}}}$ chovat pro velké n jako náhodný výběr z N(0,1) rozdělení
- budeme potřebovat odhad σ^2 pro výpočet \widehat{Z}_i
- nejznámější procedura: odhadnout σ^2 pomocí s_n^2 , potom

$$\widehat{r}_i = \frac{e_i}{s_n \sqrt{1 - \left(\frac{1}{n} + \frac{(x_i - \overline{x})^2}{S_{xx}}\right)}}$$

studentizovaná rezidua

ullet pro velká n by se opět měla $\widehat{r_i}$ chovat jako náh. výběr z N(0,1).

Poznámka 2.22

- ullet $\widehat{e}_i, \widehat{r}_i$ se užívají pro grafickou analýzu
- jiná třída reziduí PRESS rezidua (negrafické metody zkoumání reziduí):

ozn. $\widehat{\beta}_{0(-i)}, \widehat{\beta}_{1(-i)}$ odhady parametrů β_0, β_1 , pokud je vynecháno i-té pozorování pak i-té PRESS reziduum je definováno jako

$$\widehat{e}_{(-i)} = y_i - \widehat{y}_{(-i)}, \quad \text{kde } \widehat{y}_{(-i)} = \widehat{\beta}_{0(-i)} + x_i \widehat{\beta}_{1(-i)}.$$

(podrobněji se jim budeme věnovat později)

Grafy reziduí

1) histogram reziduí

- 2) kvantilový graf (Q-Q plot) studentizovaných reziduí
 - seřadíme dle velikosti:

$$\widehat{r}_{(1)} \leq \widehat{r}_{(2)} \leq \cdots \leq \widehat{r}_{(n)}$$
 a vyneseme oproti $\Phi^{-1}\Big((i-\frac{1}{2})\frac{1}{n}\Big), i=1,\ldots,n$

- body by měly ležet přibližně na přímce $(E(r_{(i)}) \approx \Phi^{-1}((i-\frac{1}{2})\frac{1}{n})$ pro normální chyby)
- použití: ověření normality, detekce odlehlých pozorování

3) studentizovaná rezidua vs. jednotlivé vysvětlující proměnné x

 \hat{r}_i nezávisí na σ , graf $\hat{r}_i \times x_i$ lze použít pro detekci nelinearity nebo nekonstantního rozptylu

- 4) studentizovaná rezidua \hat{r}_i vs. predikované hodnoty \hat{y}_i
 - $Cov(\widehat{e}_i, \widehat{Y}_i) = 0$, tedy \widehat{r}_i a \widehat{Y}_i by měly být nekorelované, pokud platí model (*)
 - ullet tzn. graf $\widehat{r_i} imes \widehat{y_i}$ by měl být náhodně rozptýlený kolem osy x
 - navíc \widehat{r}_i by měla ležet v (-3,3) $(\widehat{r}_i \approx N(0,1))$

5) studentizovaná rezidua vs. pořadí pozorování

možná detekce řadové korelace mezi pozorováními

Obrázek: Studentizovaná rezidua \hat{r}_i proti pořadí pozorování i.