9주차 4월27일~5월01일 수업

전자회로실험

공통 컬렉터 증폭기, 교재: 실험 8

김영탁교수 IT대학 전자정보공학부

실험 목적과 실험 내용

- 실험 목적
 - •공통컬렉터 증폭기의 전압이득을 확인한다.

- •시뮬레이션을 통해 공통컬렉터 증폭기의 동작 특성을 예 측한다.
- 실험 내용
 - •실험 8-1 | NPN형 BJT 공통컬렉터 증폭기의 동작 특성 측정하기

STEP 01

이론적 배경 알아보기

공통 컬렉터 증폭기 이해하기

🔘 회로 구성

- NPN형 BJT 공통컬렉터 증폭기
 - $^{\odot}$ 컬렉터가 전원 V_{CC} 로 연결됨
- PNP형 BJT 공통컬렉터 증폭기
 - ত 컬렉터가 음(-)의 전원 V_{EE} 로 연결됨
 - 이미터는 저항 R_E 를 통해 접지로 연결됨
- ullet 입력전압 v_S : 결합 커패시터 C_{C1} 을 통해 BJT 의 베이스로 입력됨
- \bullet 출력전압 v_0 : 이미터에서 얻어짐

(a) NPN형 BJT 공통컬렉터 증폭기

그림 8-1 공통컬렉터 증폭기

공통 컬렉터 증폭기 이해하기

O 바

바이어스

- ullet 저항 R_1 , R_2 와 이미터 저항 R_E 에 의해 BJT의 베이스 바이어스 전류 I_{BO} 가 결정됨
- 컬렉터와 이미터 바이어스 전류는 각각 $I_{CQ} = \beta_{DC} I_{BQ}, I_{EQ} = (\beta_{DC}+1) I_{BQ}$ 로 결정됨
- BJT가 순방향 활성영역에서 동 작하도록 바이어스되어야 함

Model Parameters in Terms of DC Bias Currents

$$g_m = \frac{I_C}{V_T}$$

$$r_e = \frac{V_T}{I_E} = \alpha \left(\frac{V_T}{I_C}\right)$$

$$g_m = \frac{I_C}{V_T}$$
 $r_e = \frac{V_T}{I_E} = \alpha \left(\frac{V_T}{I_C}\right)$ $r_\pi = \frac{V_T}{I_B} = \beta \left(\frac{V_T}{I_C}\right)$ $r_o = \frac{|V_A|}{I_C}$

$$r_o = \frac{|V_A|}{I_C}$$

In Terms of g_m

$$r_e = \frac{\alpha}{g_m}$$

$$r_e = \frac{\alpha}{g_m} \qquad r_\pi = \frac{\beta}{g_m}$$

$$V_T$$
 = thermal voltage = $\frac{kT}{q} \cong 25 \text{ mV}$ at room temperature

In Terms of r_e

$$g_m = \frac{\alpha}{r_e}$$

$$r_{\pi} = (\beta + 1)r_{\pi}$$

$$g_m = \frac{\alpha}{r_e}$$
 $r_\pi = (\beta + 1)r_e$ $g_m + \frac{1}{r_\pi} = \frac{1}{r_e}$

Relationships Between α and β

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1-\alpha}$$
 $\alpha = \frac{\beta}{\beta+1}$ $\beta+1 = \frac{1}{1-\alpha}$

BJT 소신호 해석(r모델)

$$r_{\pi} = (\beta + 1)r_{e}$$

□ 공통 컬렉터 증폭기 회로

- 입력은 커패시터를 통해 베이스에 연결
- 출력은 이미터에서 커패시터를 통해 부하로 연결
- 컬렉터에 전원 V_{cc} 과 연결, 소신호적으로 접지

□ 전체 회로도와 소신호 등가회로

□ r-파라미터 모델을 이용한 공통 컬렉터 증폭기 회로

• 소신호 등가회로에서 베이스 단자로 본 입력저항

$$R_{ib} = \frac{v_b}{i_b} = \frac{i_e[r_e + (r_o || R_E || R_L)]}{i_b} = (\beta_{ae} + 1)(r_e + R_E')$$

 $i_e=(eta_{ae}+1)i_b$ 의 관계를 적용가능, $R_E'=r_o\|R_E\|R_L$ 로 사용 $r_\pi=(eta_{ae}+1)r_e$ 이므로 하이브리드- π 모델로 적용 $R_{ib}=r_\pi+(eta_{ae}+1)R_E'$ \longrightarrow (식2)

• 입력 임피던스 값은 클수록 이상적임

□ r-파라미터 모델을 이용한 공통 컬렉터 증폭기 회로

- $r_e \ll R_E'$ 이고 $\beta_{ae} \gg 1$ 이면 : $R_{ib} \cong \beta_{ae} R_E'$ (설명)
- 신호원 v_s 에서 본 입력저항 : $R \cong R_B \| R_{ib}$ ($R_B = R_1 \| R_2$) \longrightarrow (식4)
- 소신호 등가회로로부터 베이스 전압 : $v_b = \frac{R_i}{R_S + R_i} v_s$ (식5) 출력 전압 : $v_o = \frac{R_E'}{r_e + R_E'} v_b$ (식6)

□ r-파라미터 모델을 이용한 공통 컬렉터 증폭기 회로

• 전압이득

가능

$$A_{v} \equiv \frac{v_{o}}{v_{s}} = \left(\frac{R_{E}'}{r_{e} + R_{E}'}\right) \left(\frac{R_{i}}{R_{S} + R_{i}}\right) \longrightarrow (47)$$

 $R_i=R_B||[(eta_{ae}+1)(r_e+R_E')]$ 이고 바이어스 저항을 큰 값으로 선택하면, $R_i\simeq(eta_{ae}+1)(r_e+R_E')$ 가 되어 A_i 가 다음 식으로 정리됨

$$A_{v} = \frac{(\beta_{ae} + 1)R'_{E}}{R_{S} + (\beta_{ae} + 1)(r_{e} + R'_{E})} = \frac{R'_{E}}{\frac{R_{S}}{(\beta_{ae} + 1)} + (r_{e} + R'_{E})} \longrightarrow (48)$$

• 위 식에서 $\frac{R_S}{(\beta_{ac}+1)}$ 는 (r_e+R_E') 보다 적은 값이며 $r_e\ll R_E'$ 이므로 전압이득의 근사화가

$$A_v \simeq \frac{R_E'}{r_e + R_E'} \simeq 1 \longrightarrow (식9)$$

□ r-파라미터 모델을 이용한 공통 컬렉터 증폭기 회로

- 출력저항 : $R_o \equiv \frac{v_x}{i_o}$ \longrightarrow (식10)
- 등가회로로부터 구한 v_x , i_x

$$v_x = -[r_e + (1 - \alpha_{ae})(R_S || R_B)]i_e$$
 $i_x = \frac{v_x}{r_o || R_E} - i_e$

$$i_x = \frac{v_x}{r_e || R_E} - i_e$$

 i_e 를 구하기 위해 위 식을 대입하여 정리

$$i_x = \frac{v_x}{r_a || R_E} + \frac{v_x}{r_a + (1 - \alpha_{ac})(R_S || R_B)} \longrightarrow (\triangle 12)$$

□ r-파라미터 모델을 이용한 공통 컬렉터 증폭기 회로

• v_x 와 i_x 로부터 다음관계식이 얻어짐

$$\frac{1}{R_o} \equiv \frac{i_x}{v_x} = \frac{1}{r_o || R_E} + \frac{1}{r_e + (1 - \alpha_{ac})(R_S || R_B)} \longrightarrow (413)$$

• 공통 컬렉터 증폭기의 소신호 출력저항은 다음과 같음

$$R_o \equiv \frac{v_x}{i_x} = (r_o || R_E) || [r_e + (1 - \alpha_{ac})(R_S || R_E)]$$

$$= (r_o||R_E|)||\left(r_e + \frac{|R_S||R_E|}{\beta_{ac} + 1}\right) \qquad (414)$$

r_e≪(r_e||R_E)이므로 간소화가 가능하고, 출력저항은 아래와 같이 표현됨

$$R_{out} \simeq (r_o || R_E) || r_e \simeq r_e \longrightarrow (415)$$

- 이상의 결과로부터 공통 컬렉터 증폭기의 출력저항은 매우 작으며, 따라서 작은 저항의 부하를 구동하는데 적합하다는 것을 알 수 있음
- 공통 컬렉터 증폭기는 큰 입력저항과 작은 출력저항을 가지며, 전압이득이 1에 가까우므로 임피던스 매칭용 버퍼(buffer)로 사용

□ 공통 컬렉터 증폭기의 소신호 전류이득:

$$A_i \simeq \frac{i_e}{i_i} = \beta_{ac} + 1$$
 (식16)

• 만약 $R_{ib} \ll R_B$ 이면 $i_i \simeq i_b$ 가 되어 소신호 전류이득은 아래와 같이 표현됨

$$A \equiv \frac{i_e}{i_i} \longrightarrow (식17)$$

공통이미터 증폭기 이해하기

○ 전압이득

- 가정 : 바이어스 저항의 영향 무시 (R_1 ॥ $R_2 \gg r_{\pi}$), 컬렉터 출력저항 r_0 무시
- 공통컬렉터 증폭기의 소신호 전압이득
- 전류증폭률 $\beta_{\rm o}$ 가 수백 정도인 경우 \rightarrow 통상 $(\beta_{\rm o}+1)R_E\gg r_{\pi}$ 공통컬렉터 증폭기의 전압이득은 근사적으로 $A_{\nu}\simeq 1[V/V]$ 이 됨
- 공통컬렉터 증폭기는 전압이득이 근사 적으로 1이고, 큰 입력저항과 작은 출력저항을 가지 므로 임피던스 매칭용 전압버퍼로 사 용됨

$$A_v \equiv \frac{v_o}{v_s} = \frac{(\beta_o + 1)R_E}{R_S + r_\pi + (\beta_o + 1)R_E} \simeq 1 \left[\text{V/V} \right]$$

(a) NPN형 BJT 공통컬렉터 증폭기

그림 8-1 공통컬렉터 증폭기

STEP 03

실험 진행하기

계측기 연결

바나나 cable 3EA, BNC cable 3EA

저항:0.51k,1k,1.5k,2k,2,4k,3.0k,3.6k,75k,100k,110k,22k,0.75k / 100uF

실험 진행하기

[실험 장비]

장비명	수량	장비명	수량
DC 전원공급 장치	1대	오실로스코프(2채널)	1대
함수발생기	1대	멀티미터	1대

[실험 부품]

트랜지스터	NPN형 BJT 2N3904, PNP형 BJT 2N3905
커패시터	100μF
저항	1.0kΩ, 33kΩ, 82kΩ, 100kΩ

NPN형 BJT 공통 콜렉터 증폭기의 동작 특성측정하기

실험 8-1 NPN형 BJT 공통 콜렉터 증폭기의 동작 특성측정하기

Soongsil University

AFG-2025 Function Generator

오실로스코프 설정(실험8-1)

Trigger: ch 2

BJT CC 증폭기 회로

동작점 전류,전	IBQ[uA]	
	VBEQ[V]	
압(측정 결과)	Icq[mA]	
르ᆈ/	VCEQ[V]	
소신호 파라미터 계산값	$r_{\pi} = \frac{V_T}{I_{BQ}}[k\Omega]$	
	$g_m = \frac{I_{CQ}}{V_T} [mA/V]$	
	$\beta_0 = g_m r_\pi$	

Vs와 vo의 위 상 관계 Vs의 첨두-첨 두값[V] (측정값) Vo의 첨두-첨 두값[V] (측정결과)

 V_T = thermal voltage = $\frac{kT}{q} \approx 25$ mV at room temperature

전류측정

(a) 실험회로

그림 8-4 NPN형 BJT 공통컬렉터 증폭기의 실험회로

전류측정

(a) 실험회로

그림 8-4 NPN형 BJT 공통컬렉터 증폭기의 실험회로

	IBQ[uA]	30.2
동작점 전 류,전압(측	VBEQ[V]	0.7
정결과)	IcQ[mA]	4.7
	VCEQ[V]	10.3

BJT CE 증폭기 회로

동작점 전류,	IBQ[uA]	30.2	
	VBEQ[V]	0.7	
전압 (측정	Icq[mA]	4.7	
결과)	VCEQ[V]	10	.3
소신호	$r_{\pi} = \frac{V_T}{I_{BQ}}[k\Omega]$		827.8Ω
파라미 터 계 산값	$g_m = \frac{I_{CQ}}{V_T} [mA/V]$		188[mA/V]
	$\beta_0 = g_m r_\pi$		155.6

$$V_T$$
 = thermal voltage = $\frac{kT}{q} \cong 25 \text{ mV}$

Vs와 vo의 위상 관계	같다
Vs의 첨두-첨두값[V] (측정값)	1.0
Vo의 첨두-첨두값[V] (측정결과)	1.0

9 주차 결과보고서

9 주차 결과보고서 _월_일

__분반 __조 학번:____ 성명:____

실험8-1 NPN형 BJT 컬렉터 증폭기 동작 특성측정 p 162 표 작성

동작점 전류,전	IBQ[uA]	
	VBEQ[V]	
압(측정 결과)	Icq[mA]	
24)	VCEQ[V]	
소신호 파라미터 계산값	$r_{\pi}=rac{V_{T}}{I_{BQ}}[k\Omega]$	
	$g_m = \frac{I_{CQ}}{V_T}[mA/V]$	
	$\beta_0 = g_m r_\pi$	

Vs와 vo의 위상 관계	같다
Vs의 첨두-첨두값[V] (측정값)	1.0
Vo의 첨두-첨두값[V] (측정결과)	1.0

[실험관찰]

실험에서 배운 점... 등 실험 결과의 의미를 이론에 비추어 확인해 본다 실험 결과에 나타난 오차의 원인이나 이유를 찾아서 설명해 본다

과제_9주차 시뮬레이션 - PSpice

시뮬레이션8-1 NPN CC 증폭기 해석 p153

시뮬레이션 회로도

교재: p152 ~ p153

시뮬레이션 결과파형

과제1 제출

시뮬레이션 8-1 p160

9 주차 결과보고서 __월__일

__분반 __조 학번:____ 성명:____

동작점 전류,전	IBQ[uA]	
	VBEQ[V]	
압(측정 결과)	Ica[mA]	
24 <i>)</i>	VCEQ[V]	
소신호 파라미터 계산값	$r_{\pi}=rac{V_{T}}{I_{BQ}}[k\Omega]$	
	$g_m = \frac{I_{CQ}}{V_T}[mA/V]$	
	$\beta_0 = g_m r_\pi$	

Vs와 vo의 위상 관계
Vs의 첨두-첨두값[V]
(측정값)

Vs의 첨두-첨두값[V] (측정결과)

시뮬레이션 결과 보고서

과제2 제출

Q&A

감사합니다.

