Discrete Math — Homework 2 Solutions

Yuquan Sun, SID 10234900421

March 5, 2025

$\mathbf{Q}\mathbf{1}$

- (a) $\exists p(F(p) \land B(p)) \rightarrow \exists j L(j)$: If there exists a printer being out of service and busy, then then there exists a print job being lost.
- (b) $\forall pB(p) \rightarrow \exists jQ(j)$: If all printers are busy, then there must be a print job being queued.
- (c) $\exists j(Q(j) \land L(j)) \rightarrow \exists pF(p)$: If there exists a print job being lost and queued, then there exists a printer being out of service.
- (d) $(\forall pB(p) \land \forall jQ(j)) \rightarrow \exists jL(j)$: If all printers are busy and all print jobs are queued, then there exists a print job being lost.

$\mathbf{Q2}$

- (a) $\neg \forall x \exists y \forall z T(x, y, z) \iff \exists x \forall y \exists z (\neg T(x, y, z))$
- (b) $\neg(\forall x \forall y P(x,y) \lor \forall x \forall y Q(x,y)) \iff (\exists x \exists y \neg P(x,y)) \land (\exists x \exists y \neg Q(x,y))$
- (c) $\neg(\forall x \exists y (P(x,y) \land \exists z R(x,y,z))) \iff \exists x \forall y \neg(P(x,y) \land \exists z R(x,y,z))$ $\iff \exists x \forall y (\neg P(x,y) \lor \forall z \neg R(x,y,z))$

Q3

P(x,y): 2x + y = 0 where $x, y \in \mathbb{R}$

- (a) $\forall x \exists y P(x, y)$ means for every x, there's a solution for y, which is a tautology. $\forall y \exists x P(x, y)$ means for every y, there's a solution for x, which is a tautology as well. Two tautologys has the same truth value all the time. Thus, they're logically equivalent.
- (b) $2x + y = 0 \implies y = -2x$, let x := 0.1, then $y = -0.2 \notin \mathbb{Z}$, so the LHS(left hand side) is not a tautology. $2x + y = 0 \implies x = -\frac{y}{2} \in \mathbb{R}$, so the RHS is always true. So, the statement is not true.
- (c) No. Let P(x,y) be $x^2 = y$, where $x, y \in \mathbb{R}$.

$\mathbf{Q4}$

Let L(x,y) be "x loves y", where the domain for both x and y consists of all people in the world.

- (a) Everybody loves Jerry: $\forall x L(x, \text{Jerry})$.
- (b) Everybody loves somebody: $\forall x \exists y L(x, y)$.
- (c) There is somebody whom everybody loves: $\exists y \forall x L(x, y)$.
- (d) There is somebody whom Lydia does not love: $\exists y \neg L(\text{Lydia}, y)$.
- (e) There is somebody whom no one loves: $\exists y \forall x \neg L(x, y)$.
- (f) There is someone who loves no one besides himself or herself: $\exists x(L(x,x) \land (\forall p(x \neq p \rightarrow \neg L(x,p))).$

Q5

(a) $(p \to r) \land (q \to r) \to ((p \lor q) \to r)$

Proof:

Hypotheses:

- $p \to r \iff (\neg p \lor r)$ is true.
- $q \to r \iff (\neg q \lor r)$ is true.

Thus,

$$(p \lor q) \to r \iff \neg (p \lor q) \lor r \iff (\neg p \land \neg q) \lor r$$
$$\iff (\neg p \lor r) \land (\neg q \lor r)$$

the conclusion is drawn. \square

(b) $(p \to q) \land (r \to s) \land (\neg q \lor \neg s) \to (p \to \neg r)$

Proof:

Hypotheses:

- $p \to q$ is true.
- $r \to s \iff \neg s \to \neg r$ is true.
- $\neg q \lor \neg s \iff q \to \neg s$ is true.

According to hypothetical syllogism, the conclusion is drawn. \Box

(c) $(p \to q) \land (r \to s) \land (p \lor r) \to (q \lor s)$

Proof:

Hypotheses:

- $p \to q \iff \neg q \to \neg p$ is true.
- $r \to s$ is true.

• $p \lor r \iff \neg p \to r$ is true.

According to hypothetical syllogism, $\neg q \rightarrow s \iff q \lor s$ is true. \square

(d)
$$((w \lor r) \to v) \land (v \to (c \lor s)) \land (s \to u) \land \neg c \land \neg u \to \neg w$$

Proof:

Hypotheses:

- $(w \lor r) \to v$ is true.
- $v \to (c \lor s)$ is true.
- $s \to u$ is true.
- $\neg c$ is true, which means c is false.
- $\neg u$ is true, which means u is false.

Since u is false and $s \to u$ is true, s should be false.

Then, $c \vee s$ should be false, and given $v \to (c \vee s)$ is true, we can deduce that v is false.

Since $(w \lor r) \to v$ is true, $w \lor r$ is false. Hence, w is false, which means $\neg w$ is true. \square

Q6

If $\forall x (P(x) \lor Q(x)), \forall x (\neg Q(x) \lor S(x)), \forall x (R(x) \to \neg S(x)), \text{ and } \exists x \neg P(x) \text{ are true, then } \exists x \neg R(x) \text{ is true.}$

Proof:

Hypotheses:

- $\forall x (P(x) \lor Q(x)) \iff \forall x (\neg P(x) \to Q(x))$ is true.
- $\forall x (\neg Q(x) \lor S(x)) \iff \forall x (Q(x) \to S(x))$ is true.
- $\forall x (R(x) \to \neg S(x)) \iff \forall x (S(x) \to \neg R(x))$ is true.
- $\exists x \neg P(x)$ is true.

Use the first 3 hypotheses and the hypothetical syllogism, we can get:

$$\forall x (\neg P(x) \rightarrow \neg R(x))$$

Since $\exists x \neg P(x)$, use the existential instantiation rule, let x be a, then $\neg P(a)$ is true. Then, use universal instantiation, $\neg R(a)$ is true. The conclusion is drawn. \square

Q7

- (a) first existential generalization, then universal instantiation.
- (b) first universal instantiation, then modus ponens.

$\mathbf{Q8}$

Proof:

Let

- R be "It is raining."
- U be "Yvette has her umbrella."
- \bullet W be "Yvette gets wet."

Then, the **hypotheses** can be written as:

- $\neg R \lor U \iff R \to U$ is true.
- $\neg U \lor \neg W \iff U \to \neg W$ is true.
- $R \vee \neg W$ is true.

Conclusion: $\neg W$.

If R is true, then we can deduce that U is true, and then $\neg W$ is true, the conclusion was drawn.

If R is false, then since $R \vee \neg W$ is true, $\neg W$ must be true.

Summarizing, we can infer that "Yvette does not get wet.". \square