LABORATÓRIO 01

1. Working Directory

Configurando o diretório de trabalho

 $setwd("C:/Users/Utilizador/repos/Formacao_cientista_de_dados/big_data_analytics_R_microsoft_azure_machine_leargetwd()$

- 2. Imports install.packages("readr") install.packages("data.table") install.packages("dplyr") install.packages("ggplot2") library(readr) library(dplyr) library(ggplot2) library(scales) library(data.table)
- 3. Data Loading

Usando read.csv2()

system.time(df teste1 <- read.csv2("TemperaturasGlobais/TemperaturasGlobais.csv"))

Usando read.table()

system.time(df_teste2 <- read.table("TemperaturasGlobais/TemperaturasGlobais.csv"))

Usando fread()

Mais rápido

?fread system.time(df <- fread("TemperaturasGlobais/TemperaturasGlobais.csv"))

4. Feature engineering

Criando subsets dos dados carregados

 $cidades Brasil <- subset(df, Country == `Brazil') \ cidades Brasil <- na.omit(cidades Brasil) \ head(cidades Brasil) \ View(cidades Brasil) \ nrow(df) \ nrow(cidades Brasil) \ dim(cidades Brasil)$

5. Data Cleaning

Preparação e Organização

Convertendo as Datas

cidades Brasildt < -as.POSIXct(cidadesBrasildt, format='%Y-%m-%d') cidades BrasilMonth < -month(cidadesBrasildt) cidades BrasilYear < -year(cidadesBrasildt) View(cidadesBrasil)

6. Loading Subsets

Palmas

plm < -subset(cidadesBrasil, City == 'Palmas') plm < -subset(plm, Year %in% c(1796,1846,1896,1946,1996,2012))

Curitiba

crt < -subset(cidadesBrasil, City == 'Curitiba') crt < -subset(crt, Year %in% c(1796,1846,1896,1946,1996,2012))

Recife

 $recf \leftarrow subset(cidadesBrasil, City == \text{`Recife'}) recf \leftarrow subset(recf, Year \%in\% c(1796, 1846, 1896, 1946, 1996, 2012))$

- 7. Constrution Plots p_plm <- ggplot(plm, aes(x = (Month), y = AverageTemperature, color = as.factor(Year))) + geom_smooth(se = FALSE,fill = NA, size = 2) + theme_light(base_size = 20) + xlab("Distribuição ao longo dos meses")+ ylab("Temperatura Média") + scale_color_discrete("") + ggtitle("Temperatura Média ao longo dos anos em Palmas") + theme(plot.title = element_text(size = 18))
- p_crt <- ggplot(crt, aes(x = (Month), y = AverageTemperature, color = as.factor(Year))) + geom_smooth(se = FALSE,fill = NA, size = 2) + theme_light(base_size = 20) + xlab("Dstribuição ao longo dos meses")+ ylab("Temperatura") + scale_color_discrete("") + ggtitle("Temperatura Média ao longo dos anos em Curitiba") + theme(plot.title = element_text(size = 18))
- p_recf <- ggplot(recf, aes(x = (Month), y = AverageTemperature, color = as.factor(Year))) + geom_smooth(se = FALSE,fill = NA, size = 2) + theme_light(base_size = 20) + xlab("Distribuição ao longo dos meses")+ ylab("Temperatura Média") + scale_color_discrete("") + ggtitle("Temperatura Média ao longo dos anos em Recife") + theme(plot.title = element text(size = 18))
- 8. Plot p plm p crt p recf