STRUCTURAL EQUATION MODELING (SEM)

- Provides a framework for learning about casual processes
- The use of 2 or more structural equations to model multivariate relationships

Evaluation of networks of direct and indirect effects

STRUCTURAL EQUATION MODELING (SEM)

Observed variables = Path analysis

Latent variables

Composite variables

STRUCTURAL EQUATION MODELING (SEM)

Composite variables

IVI: density, frequency, dominance CEC: pH, MO, atomic weights of elements

SEM WITH OBSERVED VARIABLES: OR PATH ANALYSIS

Classical path analysis: Ordinary least squares

Moderm path analysis in SEM:
Maximum likelihood

is a method of <u>estimating</u> the <u>parameters</u> of a <u>statistical model</u> given observations, by finding the parameter values that maximize the <u>likelihood</u> of making the observations given the parameters.

Understanding máximum likelihood

We want the location that "maximizes the likelihood" of observing the weights we measured

In SEM data informs the model and no the other way around

Understanding mediation

Fig. 2. Hypothetical causal diagram showing a hypothesized graph showing relations between a Driver two Mediators and three Responses of interest

Hypothetical cusa

Understanding mediation

Exercise

- 1. Evaluate the following model
- 2. Fill the standardized coefficients
- 3. Test for mediation for the richness~distance relationship

Are we missing other paths?

Directed separation or *d*-separation

Two nodes are d-separated if they are conditionally independent

Which relationships to test: the *basis set*

The <u>basis set</u> is the smallest possible set of d-separation relationships from a graph.

1.
$$x \perp y_3 \mid (y_1, y_2)$$

2.
$$y_1 \perp y_2 \mid (x)$$