

GEOMETRÍA

Capítulo 19

3st

SECONDARY

ÁREA DE REGIONES TRIANGULARES

ÁREAS DE REGIONES TRIANGULARES

REGIÓN PLANA.- Es la unión de una línea plana cerrada y su interior.

ÁREA.- Es un número real positivo que indica la medida de una región.

REGIONES EQUIVALENTES.- Son aquellas regiones que tienen igual área

ÁREA DE REGIONES TRIANGULARES

 Teorema básico:

$$S_{ABC} = \frac{b.h}{2}$$

Teorema trigonométrico:

$$S_{ABC} = \frac{bc}{2} \cdot sen\alpha$$

 Área de una región triangular equilátera:

$$S_{ABC} = \frac{a^2 \sqrt{3}}{4}$$

RELACIONES ENTRE ÁREAS

$$\frac{S_1}{S_2} = \frac{m}{n}$$

Ejemplo: Calcule el valor de S_x

$$\frac{S_x}{7} = \frac{1/2}{3}$$

$$S_x = 7(4)$$

$$S_{x} = 28 u^{2}$$

1. En la figura se muestra una repisa formada por tablas de forma triangular. ¿Cuántos cm² de madera se utiliza en las tres tablas?

Resolución

Piden: área total de las tablas usadas = S_T

$$S_T = 3S ... (1)$$

Por teorema:

$$S = \frac{40(30)}{2}$$

$$S = 600 \dots (2)$$

Reemplazando 2 en 1.

$$S_T = 3(600)$$

 $S_T = 1800 \text{ cm}^2$

2. Calcule el área de la región triangular ABC.

Resolución

- Piden: S_{ABC}
- Se traza la altura BH.
- ⊿BHC: Notable de 37° y 53°
- △AHB: Notable de 45° y 45°
- Calculando S_{ABC}

$$S_{ABC} = \frac{28(16)}{2}$$

$$S_{ABC} = 228 u^2$$

3. Si la longitud del lado del cuadrado ABCD es de 6cm y PD = 2(AP). Calcule el área de la región sombreada APC.

Resolución

• Piden: S_{ACP}

$$PD = 2a$$

• En \overline{AD} :

$$a + \underline{2a = 6}$$

Calculando S_{ACP}

$$S_{ACP} = \frac{2(6)}{2}$$

$$S_{ABC} = \frac{b.h}{2}$$

$$S_{ACP} = 6 \text{ cm}^2$$

4. En la figura, AB = 9 m y CD = 10 m. Calcule el área de la región sombreada ABC.

Resolución

- Piden: S_{ABC}
- Se traza $\overline{CH} \perp \overline{AB}$
- Se traza $\overline{CE} \perp \overline{AD}$
- ∠CED: Notable de 37° y 53°
- Calculando S_{ABC}

$$S_{ABC} = \frac{9(6)}{2}$$

$$S_{ABC} = 27 \text{ m}^2$$

5. En la figura, calcule el área de la región sombreada ACD.

Resolución

- Piden: S_{ACD}
- Se traza la altura \overline{CH} .

$$15^{2} + HD^{2} = 17^{2}$$

 $HD^{2} = 64$
 $HD = 8$

Calculando S_{ACD}

$$S_{ACD} = \frac{\frac{7}{14(15)}}{\frac{2}{1}}$$

$$S_{ACD} = 105 \text{ cm}^2$$

6. El padre de Mónica es carpintero y le ha cortado un pedazo de madera de forma triangular como está en la figura. Si Mónica decide pintar la madera, ¿Cuántos cm² de área pintará?

Resolución

- Piden: S_{ABC}
- △ABC: isósceles
- Se traza la altura BH.

$$AH = HC = 16$$

- ⊿BHC: Notable de 37° y 53°
- Calculando S_{ABC}

$$S_{ABC} = \frac{\frac{16}{32(12)}}{\frac{2}{1}}$$

$$S_{ABC} = 192 \text{ cm}^2$$

$$S_{ABC} = \frac{b.h}{2}$$

7. En la figura, determine el área de la región sombreada ABDE.

Resolución

• Piden: S_{ABDE}

$$\frac{S_{ADE}}{18} = \frac{3\pi}{2\pi}$$

$$S_{ADE} = 27$$

• En △ACD:

$$\frac{12}{S_{ABD}} = \frac{\cancel{b}}{3\cancel{b}}$$
$$36 = S_{ABD}$$

 $S_{ABDE} = 63 \text{ m}^2$