VACUUMSCHMELZE	SPECIFICATIO	N	Item-N	o.:	T60404-M464	45-X100
K-No.: 2510	For the electronic measures	surement of currents:, with a galvanic Isolation rcuit (high power) and			Date:	14.11.2007
Customer: Stanc	lard Type	Cutomers Part No.	•		Page 1	of 3
Closed loop (comp Current Sensor with field probe Printed circuit boars Casing and material	n magnetic d mounting alls UL-listed Very low current dr Very low Short res Wide frec Compact	accuracy offset current temperature dependency an ift hysteresis of offset current ponse time juency bandwidth	Ma ap	plications: AC variatives Static or Battery Switcher Power S	or stationary operate abel speed drives an onverters for for DC supplied application d Mode Power Supplies for welding uptable Power Supplies Forwer Supplies for welding uptable Power Supplies forwer Supplies for well and the supplies for wel	motor drives as plies (SMPS) applications
Electrical Data – R	Primary rated current, r.	m e			100	Α
R _M	Load resistance				0 200	Ω
I _{SN}	Output rated current, r.r	n e			100	mA
K _N	Turns ratio	11.5			1:1000	1117 (
Accuracy - Dynan	nic performance data (with	DRV401 @ V _C = 5V ±5%)	min.	typ	max.	Unit
I _{P,max}	Max. measuring range	$@ R_M = 12,5 Ω$	±230			Α
X(T)	Measuring accuracy @	I _{PN} , T _A = -40 +85°C			0.5	%
ϵ_{L}	Linearity				0.1	%
I ₀ (T)	Offset current @ I _P =0, 1	Γ _A = -40 +85°C		0.02	0.1	mA
l _{он}	Hysteresis			0.06	0.1	mA
t _r	Response time			1		μs
$\Delta t(I_{p,max})$	Delay time at di/dt = 100	0 A/μs		1		μs
f	Frequency range		DC 100			kH7

ISN	Output lated culterit, i.ili.s			100	шл
K _N	·				
Accuracy – Dyna	mic performance data (with DRV401 @ V _C = 5V ±5%)	min.	typ	max.	Unit
I _{P,max}	Max. measuring range @ $R_M = 12,5 \Omega$	±230			А
X(T)	Measuring accuracy @ I _{PN} , T _A = -40 +85°C			0.5	%
ϵ_{L}	Linearity			0.1	%
$I_0(T)$	Offset current @ I _P =0, T _A = -40 +85°C		0.02	0.1	mA
I _{0H}	Hysteresis		0.06	0.1	mA
t _r	Response time		1		μs
$\Delta t(I_{p,max})$	Delay time at di/dt = 100 A/μs		1		μs
f	Frequency range	DC100)		kHz
eneral Data		min.	typ.	max.	Unit
T_A	Ambient temperature	-40		+85	°C
Ts	Storage temperature	-40		+90	°C
m	Mass		18		g
Rs	Secondary coil resistance @ T _A =85°C			14	Ω
C_k	Coupling capacity		6		pF
	Mechanical Stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Decade, 2 hours				
Constructed ar	nd manufactored and tested in accordance with EN 618	00-5-1 (pri	mary to secor	idary)	
Reinforced insi	ulation, Insulation material group 1, Pollution degree 2				
S _{clear}	clearance (component without solder pad)	12			mm
Screep	creepage (component without solder pad)	12			mm
V _{sys}	System voltage overvoltage category 3	RMS		600	V
V_{work} U_{PD}	Working voltage (table 7 acc. to EN61800-5-1) Rated discharge voltage	RMS peak val	110	1000 1225	V
· -	0 0	peak vai	ue	1225	V
	according EN 61800-5-1 (primary to secondary)				
V_W	HV transient test according to M3064 (1,2 µs / 50	us-wave fo	orm)	8	kV
V _d	Testing voltage to M3014		(5 s)	3.6	kV
V_{e}	Partial discharge voltage acc.M3024 (RMS)			1300	V
	with V _{vor} (RMS)			1625	V

Datum	Name	Index	Änderung			
		81				
Hrsg.: KB	i-E	Bea	arb: SA	KB-E: Le	KB-PM IA: KRe.	freig.: Heu.

SPECIFICATION

Item-No.: T60404-M4645-X100

K-No.: 25102

100 A Current-Sensor-Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 14.11.2007

Customer: Standard Type

Cutomers Part No.:

Page 2 of 3

Mechanical outline (mm):

General tolerances DIN ISO 2768-c

Connections: 1...6: Ø 1 mm 7..10: 0,46*0,46 mm

Schematic diagram

Inspection (Measurements after temperature balance of the samples at room temperature.)

K _N (N1/N2)	(V)	M3011/6c:	Turns ratio (I _P =100A, 4080 Hz)	1: 1000 ± 0.5	%
I_0		M3226:	Offset current	< 0.1	mA
∆Ф (K1-K2)) (V)	M3090:	Magnetic Flux compensation core	68	nVs
∆Ф (S1-S2)) (V)	M3090:	Magnetic Flux sensor	2035	nVs
R _s (K1-K2)	(V)	M3011/5:	Winding resistance compensation coil	8.510,5	Ω
R (S1-S2)	(V)	M3011/5:	Winding resistance magnetic probe coil	2.53.5	Ω
V_d	(V)	M3014:	Testing voltage, rms, 1s primary to secondary	1,8	kV
V _e	(AQL1/S4)	M3024:	Partial discharge voltage (RMS)	>1300	V
			with V _{vor} (RMS)	1625	V

Applicable documents

Current direction: A positive output current appears at point I_S, by primary current in direction of the arrow.

Temperature of the primary conductor should not exceed 110°C

Housing and bobbin material: UL-listed. Flammability class UL 94V-0.

Enclosures according to IEC 60529: IP50.

Additional data available on request.

This specification is no declaration of warranty acc. BGB §443.

Hrsg.: KB-E	Bearb: SA	KB-E: Le	KB-PM IA: KRe.	freig.: Heu.
editor	designer	check	check	released

Customer:

SPECIFICATION

Item-No.: T60404-M4645-X100

K-No.: 25102

100 A Current-Sensor-Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 14.11.2007

3 Page 3 of

Standard Type Explanation of several of the terms used in the tablets (in alphabetical order)

Zero variation of I_o after overloading with a DC of tenfold the rated value (R_M = R_{MN}) I_{0H} :

Long term drift of I_o after 100 temperature cycles in the range -40 bis 85 °C. I_{0t}:

Response time (describe the dynamic performance for the specified measurement range), measured as delay time t_r: at $I_P = 0.9$. I_{Pmax} between a rectangular current and the output current.

Cutomers Part No.:

Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) Δt (I_{Pmax}): measured between I_{Pmax} and the output current i_a with a primary current rise of $di_1/dt = 100 \text{ A/µs}$.

Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD}

 $= \sqrt{2} * V_e / 1,5$ U_{PD}

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $= 1,875 *U_{PD} / \sqrt{2}$ V_{vor}

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 $X_{\text{ges}}(I_{PN})$: The sum of all possible errors over the temperature range by measuring a current I_{PN}:

$$X_{ges} = 100 \cdot \left| \frac{I_{s} (I_{PN})}{K_{N} \cdot I_{SN}} - 1 \right| \%$$

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{I_{SB}}{I_{SN}} - 1 \right| \%$$

where I_{SR} is the output DC value of an input DC current of the same magnitude as the (positive) rated current ($I_0 = 0$)

X_{Ti}: Temperature drift of the rated value orientated output term. I_{SN} (cf. Notes on F_i) in a specified temperature range, obtained by:

$$X_{\text{Ti}} = 100 \cdot \left| \begin{array}{c} I_{\text{SB}}(T_{\text{A2}}) - I_{\text{SB}}(T_{\text{A1}}) \\ I_{\text{SN}} \end{array} \right| \%$$

 $e_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{I_{\rm Sx}}{I_{\rm SN}} \right| \%$ Linearity fault defined by ϵ_{L} :

Where I_P is any input DC and I_{Sx} the corresponding output term. I_{SN} : see notes of F_i ($I_0 = 0$).

This "Additional information" is no declaration of warranty according BGB \$443

Hrsg.: KB-E	Bearb: SA	KB-E: Le	KB-PM IA: KRe.	freig.: Heu.
editor	designer	check	check	released

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vacuumschmelze: