UPAAA 2025

Polynomials

Mathematics

Lecture - 03

By - Ritik Sir

Topics

to be covered

- 1 Homework Discussion
- 2 Middle term splitting method
 - Relationship between zeroes and coefficients

Topic : Zeroes

By

A 10

- -10
- **C** -7
- **D** -2

$$b(s) = 0$$

Topic: Zero of a Polynomial

#Q. The graph of a polynomial P(x) cuts the X-axis at 3 points and touches it at 2 other points. The number of zeroes of P(x) is [CBSE, Board Term-1, 2021]

Topic: Zero of a Polynomial

#Q. which of the following is not the graph of a quadratic polynomial?

[NCERT Exemplar]

Topic : Zeroes

- #Q. Are the following statements 'True' or 'False'? Justify your answer.
 - (i) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial.
 - (ii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not be a quadratic polynomial.

$$\Rightarrow$$
 $\dot{x}^2 + 6x + 8$

(4,2)

$$\Rightarrow$$
 $\dot{x}^2 + 6x + 8$

$$\alpha = 1, b = 6, c = 8$$
 $(4)+(2)=-6$

0+B=-D

$$(-4)(-5) = 8$$
 $= 8$

$$\Rightarrow$$
 x² + 4x - 21

$$\frac{3}{3}$$
 $\frac{21}{7}$ $\frac{2}{3}$ $\frac{21}{3}$ $\frac{2}{3}$ $\frac{$

$$\Rightarrow x^{2} - 7x + 12$$

$$P = 129 S = -7$$

$$-4 - 3$$

$$2(x - 4) - 3(x - 4) = 0$$

$$(x - 4) (x - 3) = 0$$

Middle term splitting for finding zeroes of quadratic polynomial

$$3x^2 + 10x + 3$$

$$P=9, S=10$$

$$\frac{9}{3}$$

$$\frac{3}{3}$$

$$\frac{$$

$$(3)+(13)=-10$$

 $(3)+(13)=-10$
 $(3)+(13)=-10$
 $(3)(-13)=3$
 $-3-1=-10$
 $-9-1=-10$

$$-3x(x-2)+3(x-2)=0$$

Middle term splitting for finding zeroes of quadratic polynomial

$$7x^2 - 19x - 6$$

$$7x(x-3)+2(x-3)=0$$

$$(x-3)(4x+2)=0$$

$$28 - 31x - 5x^2$$

$$998-31x-5x^2=0$$

-Sx2-3/x+28=0

$$x^2 - 21x + 108$$

$$6x^2 + 13x + 6$$

Relationship between the zeros and

coefficients of a Quadratic Polynomial

a ≠ 0, a, b, c ∈ R

Topic: Relationship b/w zeroes and coefficients of quadratic polynomial

relationship between the zeroes and the coefficients.

(i)
$$4u^2 + 8u$$

(ii)
$$t^2 - 15$$

(iii)
$$3x^2 - x - 4$$

(iii)
$$3x^2 - x - 4 = 0$$

$$x(3x-4)+1(3x-4)=0$$

$$(3)(-2) = 0$$

$$(3)(-2) = 0$$

$$(3)(-2) = 0$$

$$(3)(-2) = 0$$

$$(3)(-2) = 0$$

$$(3)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$(4)(-2) = 0$$

$$x^{2}-1S=0$$

$$x^{2}=1S$$

$$x=\pm\sqrt{1}S$$

(ax2+bx+c)

 $a \neq 0$, $a_1 b_1 c \in R$

$$\alpha + \beta = -\beta = -(coefficient \theta) = (coefficient \theta) = 2$$

Topic: Relationship b/w zeroes and coefficients of quadratic polynomial

#Q. If α and β are the zeroes of a polynomial $x^2 - 4\sqrt{3}x + 3$, then find the value

[Board Term - I, 2015]

of $\alpha + \beta - \alpha\beta$.

$$\frac{\alpha + \beta = -b}{\alpha + \beta = -us}$$

$$\frac{\alpha + \beta = us}{\alpha + \beta = us}$$

$$\alpha\beta = 0$$

P22+97+C Value α+β-2αβ=8

