NASA Technical Paper 2015

May 1982

Experimental Data on Single-Bolt Joints in Quasi-Isotropic Graphite/Polyimide Laminates

Gregory R. Wichorek

19951226 066

DITIC QUALITY INSPECTED 1

DEFAMILENT OF DEFENCE PLANTING CONTROL STANDING CONTROL POPER, N. J. 1790.

DISTRIBUTION STATEMENT A

Approved for public release;


```
THIS TERMINAL HAS BEEN TERMINATED
 CONNECT TIME= ON--111920 OFF--114749 DATE=122095
MSG DO7 - FLEASE SIGN OFF TERMINAL
*INACTIVE TERMINAL*
NO CARRIER
Session disconnected.
MUI)
                       ***DTIC DOES NOT HAVE THIS ITEM***
        AD NUMBER: D435564
       CORPORATE AUTHOR: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
        HAMPTON VA LANGLEY RESEARCH CENTER
                            EXPERIMENTAL DATA ON SINGLE-BOLT
        UNCLASSIFIED TITLE:
        QUASI-ISOTROPIC GRAPHITE/POLYIMIDE LAMINATES,
        PERSONAL AUTHORS: WICHOREK, G. R.;
                               , 1982
        REPORT DATE:
                        MAY
     - PAGINATION:
        REPORT NUMBER: L-15103, NASA-TP-2015
        REPORT CLASSIFICATION: UNCLASSIFIED
                               APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
        LIMITATIONS (ALPHA):
        UNLIMITED. AVAILABILITY: NATIONAL TECHNICAL INFORMATION SERVICE,
        SPRINGFIELD, VA. 22161. NASA-TP-2015.
        LIMITATION CODES: 1 24
```

FOR NEXT ACCESSION

NASA Technical Paper 2015

1982

Experimental Data on Single-Bolt Joints in Quasi-Isotropic Graphite/Polyimide Laminates

Gregory R. Wichorek Langley Research Center Hampton, Virginia

Accesio	on For						
DTIC	ounced	Ż I					
By Distrib	ution /						
Availability Codes							
Dist		and / or ecial					
A-1							

Scientific and Technical Information Branch

Use of trade names or names of manufacturers in this report does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

SUMMARY

The results of an experimental program to determine the bolted-joint strength and failure modes of graphite/polyimide laminates are presented. Sixteen-ply, quasiisotropic laminates of Celion 6000/PMR-15 and Celion 6000/LARC-160 with a fiber orientation of $\left[0/45/90/-45\right]_{2S}$ were evaluated. Tensile and open-hole specimens were tested at room temperature to establish laminate tensile strength and net tensile strength at an unloaded bolt hole. Double-lap joint specimens with a single 4.83-mm (0.19-in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.) were tested in tension at temperatures of 116 K (-250°F), 297 K (75°F), and 589 K (600°F). The joint ratios of w/d (specimen width to hole diameter) and e/d (edge distance to hole diameter) were varied from 4 to 6 and from 2 to 4, respectively. The effect of joint geometry and temperature on failure mode and joint stresses are shown. Joint stresses calculated at maximum load for each joint geometry and test temperature are reported. Five failure modes were observed for the double-lap joint specimens. For all joint ratios tested, net-tension, bearing, and shear-out stresses decreased with increasing temperature from 116 K (-250°F) to 589 K (600°F). Joint strength in net tension, bearing, and shear-out at 116 K (-250°F), 297 K (75°F), and 589 K (600°F) are given for the Celion 6000/PMR-15 and Celion 6000/LARC-160 laminates.

INTRODUCTION

The development of graphite/polyimide composites offers the potential of significant weight savings compared with metallic or other composite materials in a variety of structures that operate at elevated temperature (ref. 1). Studies have been conducted at Langley Research Center on the application of graphite/polyimide composites to the Space Shuttle orbiter and supersonic cruise aircraft. In particular, the Composites for Advanced Space Transportation Systems (CASTS) project was initiated to develop graphite-reinforced polyimide composite structures for aerospace vehicles (ref. 2). Included in the research project was the design and development of attachment methods for composite components. As a part of this technology-development effort, the load-carrying capabilities of joint geometries and the associated failure modes were needed for bolted-joint design. Therefore, an experimental study was conducted to obtain bolted-joint strength and failure modes for graphite/polyimide laminates.

The selection of test laminates, fastener, and temperatures were the results of near- and far-term objectives of the CASTS project (refs. 1 and 2). The test matrix of joint variables selected for this study was based on experimental data reported for graphite- and glass-reinforced epoxy laminates (refs. 3 through 6). This paper presents experimental data obtained for graphite/polyimide laminates of Celanese Celion 6000/PMR-15 and Celion 6000/LARC-160. Laminate tensile strength and net tensile strength at an unloaded bolt hole were determined at room temperature. Double-lap joint specimens with a single torqued bolt were tested in tension to failure at low, room, and elevated temperatures. Joint ratios of w/d (specimen width to hole diameter) and e/d (edge distance to hole diameter) were varied to obtain failure modes and joint failure stresses in net tension, bearing, and shear-out.

Experimental results are presented to show the effect of joint geometry and temperature on joint failure stresses and modes. Joint strengths in net tension, bearing, and shear-out at all test temperatures are reported.

SYMBOLS

Measurements and calculations were made in the U.S. Customary Units. They are presented herein in the International System of Units (SI) with the equivalent values given parenthetically in the U.S. Customary Units.

hole diameter, mm (in.) $d_{\mathbf{h}}$ bolt diameter, mm (in.) center of hole to edge distance, mm (in.) $\mathbf{F}_{\mathbf{v}}$ fiber volume fraction, percent Ρ load, N (lbf) glass transition temperature, K (°F) t specimen thickness, mm (in.) specimen width, cm (in.) nominal bearing stress, MPa (ksi) nominal net-section tensile stress, MPa (ksi) ont. nominal shear-out stress, MPa (ksi) ഗ്ടറ

MATERIALS

Two graphite/polyimide composite materials, Celion 6000/PMR-15 and Celion 6000/LARC-160, were selected for evaluation. A 16-ply quasi-isotropic laminate with a fiber orientation of $\left[0/45/90/-45\right]_{2S}$ was chosen for characterization. Laminate and specimen fabrication was performed both in-house and on contract for the Celion 6000/PMR-15 material system. The in-house Celion 6000/PMR-15 specimens were obtained from a single 127-cm by 66-cm (50-in. by 26-in.) laminate. Processing details for the in-house specimens are reported in reference 7. The laminate had a fiber volume fraction F_v of 55 percent and a glass transition temperature T_{σ} 589 K (600°F). The contract Celion 6000/PMR-15 specimens were obtained from two 76-cm by 46-cm (30-in. by 18-in.) laminates. Processing details for the contract specimens are reported in reference 8. The laminates had an $F_{\mathbf{v}}$ value of 64 percent and a T_g value of 595 K (612°F). Laminate and specimen fabrication was performed in-house for the Celion 6000/LARC-160 material system. Specimens were obtained from a single 127-cm by 66-cm (50-in. by 26-in.) laminate. Processing details are reported in reference 7. The Celion 6000/LARC-160 laminate had an $F_{_{\mathbf{V}}}$ value of 56 percent and a T_{α} value of 609 K (636°F). All specimens were tested in the asreceived condition.

TEST PARAMETERS AND SPECIMENS

Tensile strength and modulus for each of the graphite/polyimide laminates were determined at room temperature from tensile specimens. Reduction in laminate tensile strength resulting from the stress concentration around a circular hole was determined from open-hole specimens from the in-house Celion 6000/PMR-15 laminate. Joint strengths for a single fastener in double-lap shear specimens were determined at $116 \text{ K } (-250^{\circ}\text{F})$, $297 \text{ K } (75^{\circ}\text{F})$, and $589 \text{ K } (600^{\circ}\text{F})$.

Tensile Specimens

The Celion 6000/PMR-15 tensile specimens were 2.54 cm (1.00 in.) wide by 27.9 cm (11.0 in.) long with 6.4-cm (2.5-in.) doublers at each end. (See fig. 1(a).) The nominal thicknesses were 2.79 mm (0.11 in.) for specimens machined from the in-house laminate and 2.29 mm (0.09 in.) for specimens machined from the contract laminate. The Celion 6000/LARC-160 specimens were 2.54 cm (1.00 in.) wide by 30.5 cm (12.0 in.) long, and the nominal thickness was 3.05 mm (0.12 in.). Doublers were not used on the Celion 6000/LARC-160 specimens because of specimen failures at the doublers during preliminary tests. For the Celion 6000/LARC-160 specimens, grip length was increased to 7.6 cm (3.0 in.), and specimen length was increased by 2.5 cm (1.0 in.) to maintain a 15.2-cm (6.0-in.) long test section.

Open-Hole Specimens

Open-hole specimens were fabricated from the in-house Celion 6000/PMR-15 laminate. Specimens were 24.1 cm (9.5 in.) long with widths of 1.93 cm (0.76 in.), 2.41 cm (0.95 in.), and 2.90 cm (1.14 in.). Each specimen had two test holes of 4.83-mm (0.19-in.) nominal diameter located six hole diameters from the doublers, which were 3.8 cm (1.5 in.) long. (See fig. 1(b).) One hole was tested at a time with load transfer through the center doublers and one of the end doublers. The doublers had 6.35-mm (0.25-in.) diameter holes for load transfer.

Bolted-Joint Specimens

Room temperature.— A typical bolted-joint-specimen configuration for room-temperature tests is shown in figure 2(a). Specimens had four test holes with a 4.83-mm (0.19-in.) nominal diameter. After the two outer holes were individually tested, the specimens were cut to another edge distance e for the two inner holes. Load transfer was through the doublers and the test holes. Edge distances were 0.97 cm (0.38 in.), 1.45 cm (0.57 in.), and 1.93 cm (0.76 in.). Specimen widths were 1.93 cm (0.76 in.), 2.41 cm (0.95 in.), and 2.90 cm (1.14 in.). The Celion 6000/PMR-15 specimens were 17.8 cm (7.0 in.) in length with 3.8-cm (1.5-in.) long doublers, whereas the Celion 6000/LARC-160 specimens were 19.1 cm (7.5 in.) long with 5.1-cm (2.0-in.) long doublers. The inner test holes were approximately five hole diameters from the reinforcing doublers, which had a 6.35-mm (0.25-in.) diameter hole for load transfer.

Low and elevated temperatures.— A typical bolted-joint-specimen configuration for tests at low and elevated temperatures is shown in figure 2(b). Each specimen had a single test hole, nominally 4.83 mm (0.19 in.) in diameter. Edge distances were 0.97 cm (0.38 in.), 1.45 cm (0.57 in.), and 1.93 cm (0.76 in.). Specimen widths

were 1.93 cm (0.76 in.), 2.41 cm (0.95 in.), and 2.90 cm (1.14 in.). The Celion 6000/PMR-15 specimens were 20.3 cm (8.0 in.) long with 3.8-cm (1.5-in.) long doublers, and the Celion 6000/LARC-160 specimens were 22.9 cm (9.0 in.) long with 5.1-cm (2.0-in.) long doublers.

TEST APPARATUS AND INSTRUMENTATION

All specimens were tested in a 534-kN (120 000-lbf) capacity hydraulic testing machine except the Celion 6000/LARC-160 tensile specimens, which were tested in a 245-kN (55 000-lbf) capacity hydraulic testing machine. Load was applied to the Celion 6000/PMR-15 tensile specimens through wedge grips. Load was applied to the Celion 6000/LARC-160 tensile specimens through hydraulic grips, using a grip pressure of 6.89 MPa (1000 psi), and through cellulose acetate shims between the specimen ends and the grip faces. For open-hole and bolted-joint specimens, load was applied through load links (steel plates 3.05 mm (0.12 in.) thick and 2.5 cm (1.0 in.) wide). The load links were pin-connected at the loading heads using 1.270-cm (0.500-in.) diameter pins and slotted grips. For open-hole specimens, the load links were clamped to the specimen doublers with 6.35-mm (0.25-in.) diameter bolts torqued to 3.4 N-m (30 lbf-in.). When bolted-joint specimens were tested, the upper load links had 4.83-mm (0.19-in.) diameter holes. These load links were clamped to the specimen with a nominal 4.83-mm (0.19-in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.), which provided the double-lap test joint. (See fig. 3.)

Tensile specimens were instrumented with back-to-back strain gages at the center of the specimen test section. Load and strain were recorded on an X-Y recorder. For open-hole and bolted-joint specimen tests, load and loading-head displacement were recorded on an X-Y plotter. Loading-head displacement was measured with a direct-current displacement transducer (DCDT).

The tests at low and elevated temperatures were performed in a test chamber using liquid nitrogen and cartridge heaters. The interior of the test chamber, shown in figure 3, is 15.2 cm (6.0 in.) wide, 8.9 cm (3.5 in.) deep, and 20.3 cm (8.0 in.) high. In order to monitor test temperature, a copper-constantan thermocouple was clamped to the graphite/polyimide specimens 6.35 mm (0.25 in.) below the test joint.

Preliminary test runs were conducted on a representative test joint to determine uniformity of temperature across the test joint, temperature control settings for the oven, and test procedures. Preliminary tests were conducted at 116 K ($-250^{\circ}F$) and 589 K ($600^{\circ}F$), with five thermocouples in the double-lap test-joint area. No temperature difference was measured at 116 K ($-250^{\circ}F$) across the joint area, and a difference of only 1 K ($2^{\circ}F$) was measured at 589 K ($600^{\circ}F$).

TEST PROCEDURES

Tensile and Open-Hole Specimens

Tensile specimens were aligned and clamped in the specimen grips. Load was applied at a rate of $5.34~\rm kN/min$ (1200 lbf/min) to failure. Load-strain response and maximum load from the test-machine indicator were recorded.

Open-hole specimens were mounted in the test machine by aligning the doubler holes with the load-link holes. The bolts were inserted in the holes, and the nuts were turned until the load-link plates contacted the doublers without applying a

clamping force. A tensile preload of approximately 445 N (100 lbf) was applied to the specimens before torquing the 6.35-mm (0.25-in.) bolts to 3.4 N-m (30 lbf-in.). Load was applied at a rate of 2.67 kN/min (600 lbf/min) to failure. Load-deflection response and maximum load from the test-machine indicator were recorded.

Bolted-Joint Specimens

Test procedures for all bolted-joint specimens were the same except for the establishment of temperature for the specimens at low (116 K (-250°F)) and elevated (589 K (600°F)) temperatures prior to loading. Each specimen was mounted in the load train by aligning the specimen holes with the corresponding load-link holes and inserting the appropriate bolt. The nuts were turned until the load-link plates contacted the specimen surfaces without applying a clamping force. A tensile preload of approximately 445 N (100 lbf) was applied to the specimens before torquing the 4.83-mm (0.19-in.) test bolt to 1.7 N-m (15 lbf-in.) and the 6.35-mm (0.25-in.) doubler bolt to 3.4 N-m (30 lbf-in.). The clamping force was applied to the load-link plates rather than directly to the specimen. A load rate of 2.67 kN/min (600 lbf/min) was set within the linear load-deflection response of the specimen, and the corresponding head speed was maintained to specimen failure. Load-deflection response and maximum load from the test-machine indicator were recorded.

Prior to loading, specimens at low and elevated temperatures were enclosed in a split test chamber which was precooled or preheated to the appropriate test temperature. This was accomplished by opening the chamber door, rotating the chamber until the specimen was properly aligned in slots through the upper and lower chamber walls, and closing the chamber door. (See fig. 3.) For specimens tested at 116 K (-250°F), 20 minutes was required for the specimen to reach a stable test temperature. For specimens tested at 589 K (600°F), $37 \text{ minutes was required for the specimen to reach a stable test temperature. Both types of specimens were held at test temperature an additional 10 minutes before loading to failure.$

TEST RESULTS

Tensile Tests

Tensile-test results obtained at room temperature are presented in table I. Average tensile properties of the in-house Celion 6000/PMR-15 and the Celion 6000/LARC-160 laminates were essentially the same. The in-house Celion 6000/PMR-15 specimens had a tensile strength of 469 MPa (68.0 ksi) and a Young's modulus of 45.6 GPa $(6.61 \times 10^6 \text{ psi})$. The Celion 6000/LARC--160 specimens had a tensile strength of 479 MPa (69.5 ksi) and a Young's modulus of 43.4 GPa $(6.30 \times 10^6 \text{ psi})$. The average tensile strength of 396 MPa (57.4 ksi) for the contract Celion 6000/PMR-15 laminate was low compared with the in-house laminate. The tensile strength of the contract specimens was expected to be higher than the inhouse specimens because the contract laminate had a higher fiber volume fraction F_{vv} (64 percent) than the in-house laminate (55 percent). This difference in fiber volume fraction was reflected in the elastic modulus of the laminates. Young's modulus was 52.7 GPa (7.65 \times 10⁶ psi) for the contract specimens and 45.6 GPa (6.61 \times 10⁶ psi) for the in-house specimens of Celion 6000/PMR-15. Failure of the contract Celion 6000/PMR-15 specimens at the tapered doublers and an ultimate tensile strain of only 0.79 percent cast doubt on the validity of the tensile strength obtained for the contract laminate.

Open-Hole Tests

Open-hole test results obtained at room temperature from specimens fabricated from the in-house Celion 6000/PMR-15 laminate are reported in table II. The effect of the 4.83-mm (0.19-in.) diameter hole on tensile strength was determined from specimens with w/d=4, 5, and 6. Average net tensile strength was calculated for each value of w/d, based on failure load and net-section area at the hole. No significant difference in net tensile strength was obtained over the range of w/d values tested. The average net tensile strength for all the open-hole specimens was 363~MPa~(52.6~ksi). Based on laminate strength obtained from tensile tests, this stress value translates into a 23-percent reduction in laminate strength due to the stress concentration around the unloaded hole.

Bolted-Joint Tests

Specimen and test data are presented for in-house Celion 6000/PMR-15 in tables III, IV, and V, for contract Celion 6000/PMR-15 in tables VI, VII, and VIII, and for Celion 6000/LARC-160 in tables IX, X, and XI. Net-tension, bearing, and shear-out stresses were calculated at maximum load using the following equations:

$$\sigma_{\rm nt} = \frac{P}{(w - d)t}$$

$$\sigma_{b} = \frac{P}{d_{b}t}$$

$$\sigma_{\text{SO}} = \frac{P}{2\left(e - \frac{d}{2}\right)t}$$

Failure mode data for all specimen tests are summarized in table XII. Average values of net-tension, bearing, and shear-out stresses at failure were calculated for each joint geometry and test temperature, and the results are presented in table XIII.

Failure modes. Five failure modes were observed. The failure modes are defined as bearing, net tension, shear-out, multiple, and combination. Typical examples of failures are shown in figure 4. The multiple and combination failures appear to be a combination of cleavage or shear-out and net-tension failure. The major difference between these two failure modes is the occurrence of net-tension failure on both sides of the bolt hole in the multiple mode.

Determination of failure mode was based upon visual examination of the failed specimen and the record of load-displacement. Typical recordings of bearing and nettension failures at the three test temperatures are shown in figure 5 for in-house Celion 6000/PMR-15 specimens. The magnitude of displacement and shape of the curve were distinctive for each of these failure modes.

One objective of the test program was to obtain laminate joint strengths from single-mode failures in net tension, bearing, and shear-out. For the Celion 6000/PMR-15 laminates, only the shear-out mode at 116 K (-250°F) was not obtained. Table XII shows that in most cases the in-house and contract specimens of Celion 6000/PMR-15 had the same failure modes at corresponding joint ratios and test temperatures. Bearing failure at lower joint ratios at 116 K (-250°F) and 297 K

(75°F) for the contract specimens was attributed to a thinner laminate. The contract laminate had a nominal thickness of 2.29 mm (0.09 in.) compared with a nominal thickness of 2.79 mm (0.11 in.) for the in-house laminate. For the Celion 6000/LARC-160 laminate, the bearing failure mode was not obtained at 116 K (-250°F) and 589 K (600°F). At these temperatures, e/d > 4 at w/d > 6 would be required to obtain a bearing failure mode. A bearing stress value obtained from a specimen that had a two-mode failure rather than just a bearing failure could be low and not indicative of joint bearing strength.

Joint stresses.— Stress values reported herein were calculated at maximum load. Maximum load was achieved sometime after laminate damage had been initiated, as indicated by the load-displacement curves in figure 5. The average value of net-tension, bearing, and shear-out stress for each joint geometry and test temperature are reported in table XIII. The test results showed no significant differences in maximum joint stresses between the graphite/polyimide laminates at corresponding test conditions. In general, the contract Celion 6000/PMR-15 specimens had joint stresses slightly higher than in-house specimens at corresponding joint ratios and temperatures. In general, Celion 6000/LARC-160 specimens had joint stresses slightly lower at 116 K (-250°F) and 297 K (75°F), but slightly higher at 589 K (600°F), than in-house Celion 6000/PMR-15 specimens at the same joint ratios.

The effect of joint geometry and temperature on the net-tension and bearing stresses at failure are shown in figures 6 through 8. Net-tension and bearing stresses decrease with increasing temperature from 116 K (-250°F) to 589 K (600°F) for all values of w/d and e/d tested. For any given temperature and value of e/d, the net-tension stress decreases with increasing w/d, and bearing stress decreases with decreasing w/d, as expected. The effect of temperature and e/d on the shear-out stresses of specimens for w/d = 6 are shown in figure 9. Shear-out stress also decreases with increasing temperature from 116 K (-250°F) to 589 K (600°F) for all joint ratios. At any test temperature, shear-out stress decreases with increasing e/d. Table XIV lists joint strengths in net tension, bearing, and shear-out for all test temperatures. The average bearing strength for the Celion 6000/PMR-15 specimens was 1310 MPa (190 ksi) at 116 K (-250°F), 1076 MPa (156 ksi) at 297 K (75°F), and 738 MPa (107 ksi) at 589 K (600°F). The average bearing strength for the Celion 6000/LARC-160 specimens was $\geqslant 1248$ MPa (181 ksi) at 116 K (-250°F), 1069 MPa (155 ksi) at 297 K (75°F), and $\geqslant 745$ MPa (108 ksi) at 589 K (600°F).

CONCLUSIONS

An experimental study was conducted to determine failure modes and bolted-joint strengths for graphite/polyimide laminates of Celanese Celion 6000/PMR-15 and Celion 6000/LARC-160. The 16-ply, quasi-isotropic laminates had a fiber orientation of $[0/45/90/-45]_{2S}$. Double-lap joint specimens with a single 4.83-mm (0.19-in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.) were tested in tension at 116 K (-250°F), 297 K (75°F), and 589 K (600°F). The following conclusions are based on the experimental results presented herein:

- 1. The effect of a 4.83-mm (0.19-in.) diameter hole on the Celion 6000/PMR-15 laminate was a 23-percent reduction in net tensile strength at 297 K (75°F) due to the stress concentration around the unloaded hole.
- 2. Five failure modes were obtained and were defined as bearing, net tension, shear-out, multiple, and combination.

- 3. There were no significant differences in maximum joint stresses between the laminates at corresponding test conditions.
- 4. Laminate joint strengths were obtained from single-mode failures in net tension, bearing, and shear-out, except for shear-out at 116 K (-250°F) in the Celion 6000/PMR-15 specimens and bearing at 116 K (-250°F) and 589 K (600°F) in the Celion 6000/LARC-160 specimens.
- 5. The average bearing strength for the Celion 6000/PMR-15 specimens was 1310 MPa (190 ksi) at 116 K (-250°F), 1076 MPa (156 ksi) at 297 K (75°F), and 738 MPa (107 ksi) at 589 K (600°F). The average bearing strength for the Celion 6000/LARC-160 specimens was $\geqslant 1248$ MPa (181 ksi) at 116 K (-250°F), 1069 MPa (155 ksi) at 297 K (75°F), and $\geqslant 745$ MPa (108 ksi) at 589 K (600°F).

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 April 2, 1982

REFERENCES

- 1. Davis, John G., Jr.: High Temperature Resin Matrix Composites for Aerospace Structures. Selected NASA Research in Composite Materials and Structures, NASA CP-2142, 1980, pp. 143-182.
- 2. Davis, John G., Jr.: Composites for Advanced Space Transportation Systems (CASTS). Graphite/Polyimide Composites, NASA CP-2079, 1979, pp. 5-18.
- 3. Hart-Smith, L. J.: Bolted Joints in Graphite-Epoxy Composites. NASA CR-144899, 1976.
- 4. Collings, T. A.: The Strength of Bolted Joints in Multi-Directional CFRP Laminates. Composites, vol. 8, no. 1, Jan. 1977, pp. 43-55.
- 5. Johnson, M.; and Matthews, F. L.: Determination of Safety Factors for Use When Designing Bolted Joints in GRP. Composites, vol. 10, no. 2, Apr. 1979, pp. 73-76.
- 6. Stockdale, J. H.; and Matthews, F. L.: The Effect of Clamping Pressure on Bolt Bearing Loads in Glass Fibre-Reinforced Plastics. Composites, vol. 7, no. 1, Jan. 1976, pp. 34-38.
- 7. Baucom, Robert M.: LaRC Fabrication Development. Graphite/Polyimide Composites, NASA CP-2079, 1979, pp. 19-37.
- 8. Darms, Fred J., Jr.: Fabrication of Structural Elements. Graphite/Polyimide Composites, NASA CP-2079, 1979, pp. 111-122.

TABLE I.- TENSILE PROPERTIES OF QUASI-ISOTROPIC GRAPHITE/POLYIMIDE LAMINATES

AT ROOM TEMPERATURE

TABLE II.- RESULTS OF OPEN-HOLE CELION 6000/PMR-15 SPECIMENS TESTED

AT ROOM TEMPERATURE

sile th,	(53.2) (52.5) (50.4) (51.0)	.8)	.3) .9) .5)	(9.	51.2) 53.3) 53.2) 55.1)	.2)
Net-tensile strength, MPa (ksi)		357 (51.8)	361 (52.3) 351 (50.9) 369 (53.5) 374 (54.2)	(52.6)		367 (53.2)
	367 362 347 352	357	361 351 369 374	363	353 367 367 380	367
Failure load, kN (1b£)	(3330) (3270) (3155) (3160)	:	(4355) (4240) (4355) (4440)	:	(5290) (5450) (5540) (5680)	:
ilure lo kN (lbf)		age	4) 7 (4	age		age
Fail kn	0.1103) 4.0 14.81 (.1101) 4.0 14.55 (.1108) 4.0 14.03 (.1101) 4.0 14.06	Average	5.0 19.37 (4355) 5.0 18.86 (4240) 4.9 19.37 (4355) 4.9 19.75 (4440)	Average	23.53 24.24 24.64 25.27	Average
w/d	4.0 4.0 4.0		5.0 5.0 4.9		0.0 0.0 0.0	
, o	(0.1103) (.1101) (.1108) (.1101)		(0.1101) (.1099) (.1081) (.1087)		0.1100) (.1086) (.1104) (.1093)	
Average thickness, mm (in.)	00.1		(0.1 (.1 (.1		(0.1100) (.1086) (.1104) (.1093)	
Ave thic	2.802 2.797 2.814 2.797		2.797 2.791 2.746 2.761		2.794 2.758 2.804 2.776	
h, n.)	(0.7583) (.7566) (.7565) (.7547)		(0.9478) (.9492) (.9451) (.9445)		(1.131) (1.133) (1.135) (1.134)	ļ
Width, mm (in.)					27 (78 (29 (
E	19.261 19.218 19.215 19.169		24.074 24.110 24.006 23.990		(0.1909) 28.727 (1.131) (.1910) 28.778 (1.133) (.1909) 28.829 (1.135) (.1910) 28.804 (1.134)	
ter,	0.1909) (.1909) (.1910)		0.1910) (.1913) (.1914) (.1913)		0.1909) (.1910) (.1909)	
e diamet mm (in.)	(0.1909) (.1909) (.1910) (.1911)		(0.1910) (.1913) (.1914) (.1913)		()	
Hole diameter, mm (in.)	4.849 4.849 4.851 4.854		4.851 4.859 4.862 4.859	į	4.849 4.851 4.849 4.851	
	_ 01 _ 01		- 01 - 01			
Specimen	10H-76W-1 -2 20H-76W-1 -2		10H-95W-1 -2 20H-95W-1		10H-114W-1 -2 20H-114W-1 -2	
ຜິ	201		101		101	

TABLE III.- BOLTED-JOINT DATA FOR IN-HOUSE CELION 6000/PMR-15 SPECIMENS TESTED AT 116 K (-250°F)

Failure mode key: T Net tension

B Bearing

C Combination M Multiple

							
Failure mode	E E	E E	H H H	E+ E+	೮೫೮	OMM	888
Shear-out stress, MPa	191	161 152	226 232 223	180 177	298 301 309	228 228 240	191 182 186
Bearing stress, MPa	942 982	1101 1043	1111 1136 1091	1233 1213	876 881 904	1123 1113 1177	1304 1245 1278
Net-tension stress, MPa	323 336	376 359	285 291 281	316 312	180 181 185	230 228 241	267 256 262
Maximum load, kN	12.19	14.23 14.10	14.90 15.30 14.86	16.88 16.57	11.79 11.99 11.99	15.10 15.01 15.84	17.75 16.59 17.30
Average thickness,	2.626 2.697	2.624 2.743	2.720 2.733 2.761	2.779	2.731 2.761 2.692	2.728 2.738 2.731	2.761 2.705 2.746
Edge distance, mm	14.630 14.585	19.393 19.307	14.587 14.519 14.549	19.357 19.444	9.713 9.685 9.682	14.587 14.516 14.559	19.809 19.324 19.378
Width, mm	19.337 19.355	19.355 19.289	24.171 24.181 24.130	24.160 24.160	28.956 29.007 28.981	28.981 28.956 28.981	29.032 28.956 28.981
Hole diameter, mm	4.953 4.948	4.953 4.950	4.953 4.953 4.948	4.953 4.953	4.938 4.935 4.948	4.961 4.958 4.950	4.945 4.938 4.950
Bolt diameter,	4.928	4.928	4.928	4.928	4.928	4.928	4.928
Specimen	1L-76W-57 3L	2L-76W-76 3L	1L-95W-57 2L 3L	1L-95W-76 3L	1L-114W-38 2L 3L	1L-114W-57 2L 3L	1L-114W-76 2L 3L

TABLE III. - Concluded

(b) U.S. Customary Units

Bolt diameter, in.	Hole, diameter, in.	Width, in.	Edge distance, in.	Average thickness, in.	Maximum load, lbf	Net-tension stress, ksi	Bearing stress, ksi	Shear-out stress, ksi	Failure mode
0.1950		0.7613	0.5760	0.1034	2740 2935	46.8	136.6	27.7	Et Et
0.1950	1	0.7620	0.7635	0.1033	3200 3170	54.6 52.0	159.7	23.3	ĦĦ
0.1950 .1950		0.9516 .9520 .9500	0.5743 .5716	0.1071 .1076	3350 3440 3340	41.3 42.2 40.7	161.2 164.8 158.3	32.8 33.7 32.3	E E E
0.1950 .1950		0.9512	0.7621	0.1094	3795 3725	45.9	178.8	26.1	E E
0.1944 .1943		1.140 1.142 1.141	0.3824 .3813	0.1075	2650 2695 2695	26.1 26.2 26.9	127.1 127.8 131.1	43.2 43.6 44.8	OZO
0.1953 .1952 .1949		1.141 1.140 1.141	0.5743	0.1074	3395 3375 3560	33.4 33.1 35.0	162.9 161.4 170.7	33.1 33.0 34.8	ONE
0.1947 .1944 .1949		1.143 1.140 1.141	0.7799 .7608 .7629	0.1087 .1065	3990 3730 3890	38.7 37.1 38.0	189.2 180.6 185.4	27.7 26.4 27.0	шшш

TABLE IV.- BOLTED-JOINT DATA FOR IN-HOUSE CELLON 6000/PMR-15 SPECIMENS TESTED AT 297 K (75°F)

Failure mode key: T Net tension
B Bearing
S Shear-out
M Multiple

Failure mode	8 B B B B	8	EEEE	В-13 В В	w w w w	ENEE	в В В -13 В -13
Shear-out stress, MPa	179 191 185	130 139 129 139	174 198 195 207	148 150 152 157	237 232 259 251	208 181 193 203	145 158 163 145
Bearing stress, MPa	871 929 906 885	890 943 875 940	847 968 951 1013	1010 1021 1041 1065	685 680 749 727	1007 885 945 990	987 1076 1108 989
Maximum Net-tension load, stress, kN MPa	298 319 309 303	303 324 300 323	221 249 243 260	260 263 266 273	141 139 154 150	206 182 194 203	202 221 228 203
Maximum load, kN	11.92 12.41 12.37 11.85	12.12 12.72 11.97	11.61 13.12 12.94 13.72	13.81 13.90 14.10	9.43 9.27 10.12 9.83	14.03 12.14 13.08 13.46	13.75 14.86 15.30 13.46
Average thickness,	2.776 2.713 2.771 2.720	2.769 2.731 2.776 2.743	2.781 2.751 2.761 2.751	2.776 2.758 2.756 2.766	2.797 2.769 2.743 2.743	2.830 2.784 2.809 2.758	2.827 2.802 2.804 2.758
Edge distance, mm	14.526 14.460 14.542 14.493	19.243 19.266 19.248 19.266	14.488 14.542 14.488	19.266 19.258 19.246 19.251	9.591 9.690 9.606	14.359 14.506 14.542 14.478	19.281 19.243 19.261 19.220
Width, mm	19.365 19.309 19.385 19.332	19.362 19.317 19.355 19.317	23.906 24.122 24.209 24.145	24.072 24.074 24.194 24.155	28.956 28.956 28.931 28.956	29.007 28.956 28.981 28.956	29.007 28.981 28.981 28.956
Hole diameter, mm	4.953 4.961 4.943 4.953	4.943 4.950 4.976 4.940	4.953 4.950 4.943 4.935	4.945 4.943 4.953 4.953	4.950 4.950 4.956 4.953	4.935 4.945 4.940 4.945	4.950 4.968 4.958 4.956
Bolt diameter, mm	4.928	4.928	4.928	4.928	4.928	4.928	4.928
Specimen	1R-76W-57-1 -2 2R-76W-57-1	1R-76W-76-3 -4 2R-76W-76-3	1R-95W-57-1 -2 2R-95W-57-1	1R-95W-76-3 -4 2R-95W-76-3 -4	1R-114W-38-1 -2 2R-114W-38-1 -2	1R-114W-57-1 -2 2R-114W-57-1	1R-114W-76-3 -4 2R-114W-76-3 -4

TABLE IV. - Concluded

(b) U.S. Customary Units

Specimen	Bolt diameter, in.	Hole diameter, in.	Width, in.	Edge distance, in.	Average thickness, in.	Maximum load, lbf	Net-tension stress, ksi	Bearing stress, ksi	Shear-out stress, ksi	Failure
1L-76W-57-1 -2 2R-76W-57-1	0.1940	0.1950 .1953 .1946	0.7624 .7602 .7632	0.5719 .5693 .5725	0.1093 .1068 .1091	2680 2790 2780 2665	43.2 46.2 44.8	126.4 134.7 131.4 128.3	25.9 27.7 26.8 26.3	E E E E
1R-76W-76-3 -4 2R-76W-76-3	0.1940	0.1946 .1949 .1959	0.7623 .7605 .7620	0.7576 .7585 .7578 .7585	0.1090 .1075 .1093	2725 2860 2690 2865	44.0 47.0 43.5	129.1 136.8 126.9 136.4	18.9 20.1 18.7 20.1	4444
1R-95W-57-1 -2 2R-95W-57-1	0.1940	0.1950 .1949 .1946	0.9412 .9497 .9531	0.5704 .5725 .5704	0.1095 .1083 .1087	2610 2950 2910 3085	32.0 36.1 35.3 37.7	122.9 140.4 138.0 146.9	25.2 28.7 28.3 30.0	EEEE
1R-95W-76-3 -4 2R-95W-76-3 -4	0.1940	0.1947 .1946 .1950	0.9477 .9478 .9525	0.7585 .7582 .7577	0.1093 .1086 .1085	3105 3125 3170 3260	37.7 38.2 38.6 39.6	146.5 148.1 151.0 154.5	21.5 21.8 22.1 22.7	B-T B
1R-114W-38-1 -2 2R-114W-38-1 -2	0.1940	0.1949 .1949 .1951	1.140 1.140 1.139 1.140	0.3776 .3815 .3782	0.1101 .1090 .1080	2120 2085 2275 2210	20.4 20.2 22.3 21.7	99.3 98.6 108.6	34.4 33.7 37.5 36.4	w w w w
1R-114W-57-1 -2 2R-114W-57-1 -2	0.1940	0.1943 .1947 .1945	1.142 1.140 1.141 1.140	0.5653 .5711 .5725	0.1114 .1096 .1106	3155 2730 2940 3025	29.9 26.4 28.1 29.5	146.0 128.4 137.1	30.2 26.3 28.0 29.5	ENEE
1R-114W-76-3 2R-114W-76-3	0.1940	0.1949 .1956 .1952	1.142 1.141 1.141	0.7591 .7576 .7583	0.1113 .1103 .1104	3090 3340 3440 3025	29.3 32.0 33.0 29.5	143.1 156.1 160.7 143.4	21.0 22.9 23.6 21.1	B B-T B

TABLE V.- BOLTED-JOINT DATA FOR IN-HOUSE CELION 6000/PMR-15 SPECIMENS TESTED AT 589 K (600°F)

Failure mode key: T Net tension
B Bearing
S Shear-out

Failure	HHH	B-T B-T	B-S B-S B-S	B-T B-T	w w w	B - 8	ава
Shear-out	117	92	128	101	180	129	101
stress,	126	92	129	101	174	128	103
MPa	117	91	127	99	162	128	103
Bearing	574	636	627	697	528	633	697
stress,	625	626	609	681	505	627	710
MPa	547	626	617	683	473	623	705
Net-tension	197	217	161	179	108	130	143
stress,	214	214	157	174	103	129	145
MPa	197	215	158	175	97	128	145
Maximum	7.61	8.54	8.52	9.72	7.27	8.63	9.50
load,	8.23	8.47	8.27	9.43	6.94	8.54	9.56
kN	7.83	8.52	8.47	9.39	6.27	8.47	9.59
Average	2.687	2.728	2.756	2.830	2.794	2.766	2.764
thickness,	2.675	2.746	2.753	2.812	2.786	2.766	2.733
mm	2.769	2.761	2.786	2.789	2.690	2.761	2.758
Edge	14.602	19.398	14.524	19.421	9.688	14.547	19.454
distance,	14.658	19.340	14.105	19.154	9.614	14.488	19.340
mm	14.597	19.474	14.481	19.375	9.662	14.488	19.388
Width, mm	19.337 19.355 19.286	19.352 19.347 19.309	24.155 24.160 24.186	24.181 24.178 24.163	28.981 28.956 28.981	28.981 28.956 28.956	28.981 28.981 28.981
Hole	4.945	4.950	4.953	4.956	4.938	4.956	4.978
diameter,	4.948	4.956	4.953	4.953	4.945	4.953	4.940
mm	4.953	4.953	4.956	4.943	4.948	4.953	4.950
Bolt diameter, mm	4.928	4.928	4.928	4.928	4.928	4.928	4.928
Specimen	1E-76W-57	1E-76W-76	1E-95W-57	1E-95W-76	1E-114W-38	1E-114W-57	1E-114W-76
	2E						
	3E						

TABLE V.- Concluded

(b) U.S. Customary Units

Failure	F F F	B-T B-T B-T	B - 8 B - 8 B - 8	H H H H H H H H H H H H H H H H H H H	տ տ տ	B-8 B-8	шшш
Shear-out stress, ksi	16.9 18.3 16.9	13.4 13.2	18.6 18.7 18.4	14.7 14.6 14.4	26.1 25.3 23.5	18.7 18.6 18.5	14.7 15.0 14.9
Bearing stress, ksi	83.3 90.6 83.2	92.2 90.8 90.8	91.0 88.4 89.5	101.1 98.7 99.1	76.6 73.3 68.6	91.8 90.9 90.3	101.1 103.0 102.3
Maximum Net-tension load, stress, lbf ksi	28.5 31.0 28.6	31.5 31.1 31.2	23.4 22.7 22.9	25.9 25.3 25.4	15.7 15.0 14.1	18.8 18.7 18.5	20.8 21.1 21.0
Maximum load, lbf	1710 1850 1760	1920 1905 1915	1915 1860 1905	2185 2120 2110	1635 1560 1410	1940 1920 1905	2135 2150 2155
Average thickness, in.	0.1058 .1053	0.1074	0.1085	0.1114	0.1100	0.1089	0.1088 .1076 .1086
Edge distance, in.	0.5749 .5771	0.7637 .7614 .7667	0.5718 .5553	0.7646 .7541	0.3814	0.5727 .5704	0.7659 .7614 .7633
Width, in.	0.7613 .7620 .7593	0.7619 .7617	0.9510 .9512 .9522	0.9520 .9519 .9513	1.141 1.140 1.141	1.141 1.140 1.140	1.141 1.141 1.141
Hole diameter, in.	0.1947 .1948 .1950	0.1949 .1951 .1950	0.1950 .1950	0.1951 .1950 .1946	0.1944 .1947 .1948	0.1951 .1950 .1950	0.1960 .1945 .1949
Bolt diameter, in.	0.1940	0.1940	0.1940	0.1940	0.1940	0.1940	0.1940
Specimen	1E-76W-57 2E 3E	1E-76W-76 2E 3E	1E-95W-57 2E 3E	1E-95w-76 2E 3E	1E-114W-38 2E 3E	1E-114W-57 2E 3E	1E-114W-76 2E 3E

TABLE VI.- BOLTED-JOINT DATA FOR CONTRACT CELION 6000/PMR-15 SPECIMENS TESTED AT 116 K (-250°F)

Failure mode key: T Net tension C Comb B Bearing M Mult S Shear-out

C Combination M Multiple

-							r 1
Failure mode	HHH	888	B-S B-C	B-S B-T	υυυ	B-C	ддд
Shear-out	211	152	223	185	347	254	198
stress,	223	142	245	173	328	256	181
MPa	222	147	276	174	349	246	191
Bearing	1045	1080	1114	1314	1051	1278	1395
stress,	1125	1005	1218	1236	982	1284	1283
MPa	1082	1038	1385	1237	1013	1240	1351
Net-tension	347	356	274	325	209	254	278
stress,	373	330	300	305	195	254	256
MPa	357	342	343	305	201	246	268
Maximum	11.25	10.96	12.08	13.19	11.39	13.77	14.61
load,	12.19	10.74	13.08	12.25		13.75	12.94
kN	11.85	10.79	14.83	12.43		13.39	13.52
Average thickness,	2.248 2.261 2.286	2.230 2.230 2.169	2.263 2.240 2.235	2.096 2.070 2.098	2.261 2.212 2.182	2.248 2.235 2.253	2.187 2.106 2.090
Edge	14.300	19.408	14.399	19.342	9.657	14.453	19.256
distance,	14.521	19.329	14.313	19.492	9.581	14.430	19.439
mm	14.094	19.329	14.422	19.482	9.368	14.496	19.332
Width, mm	19.289 19.274 19.347	19.309 19.390 19.340	24.272 24.239 24.168	24.153 24.183 24.227	28.943 28.959 28.936	28.913 28.948 28.961	28.834 28.839 28.931
Hole	4.841	4.793	4.823	4.811	4.811	4.803	4.796
diameter,	4.821	4.793	4.796	4.801	4.808	4.790	4.813
mm	4.836	4.793	4.796	4.808	4.829	4.821	4.803
Bolt diameter, mm	4.790	4.790	4.790	4.790	4.790	4.790	4.790
Specimen	2L-76W-57	1L-76W-76	2L-95W-57	4L-95w-76	1L-114W-38	1L-114W-57	1L-114W-76
	4L	2L	3L	5L	2L	2L	3L
	5L	3L	4L	6L	3L	3L	4L

TABLE VI.- Concluded

(b) U.S. Customary Units

earing Shear-out Failure tress, stress, mode	151.6 30.6 T 163.2 32.3 T 157.0 32.2 T	156.7 22.1 T 145.8 20.6 T 150.6 21.3 T	161.6 32.3 B-S 176.7 35.5 T 200.9 40.0 B-C		190.6 26.9 B-S 179.2 25.1 B-T 179.4 25.2 B	.6 26.9 .2 25.1 .4 25.2 .5 50.4 .6 47.6	.5 26.9 .2 25.1 .5 25.2 .4 47.6 .9 50.4 .9 50.6 .9 35.7
Maximum Net-tension Bearing load, stress, stress, lbf ksi ksi	50.3 151.6 54.1 163.2 51.8 157.0	51.7 156.7 47.9 145.8 49.6 150.6	39.8 161.6 43.5 176.7 49.7 200.9		47.2 190.6 44.3 179.2 44.3 179.4	190 179 179 152 142 146	190 179 179 179 146 146 185 185
Maximum Ne load, lbf	2530 2740 2665	2465 2415 2425	2715 2940 3335		2965 2755 2795	2965 2755 2795 2795 2560 2340 2380	2965 2755 2795 2795 2340 2340 2380 3095 3090
Average thickness, in.	0.0885	0.0834 .0878 .0854	0.0891 .0882 .0880		0.0825 .0815	0.0825 .0815 .0826 0.0890 .0871	0.0825 .0815 .0826 0.0890 .0871 .0859 .0885
Edge distance, in.	0.5630 .5717 .5549	0.7641 .7610 .7610	0.5669 .5635		0.7615 .7674 .7670	0.7615 .7674 .7670 0.3802 .3772	0.7615 .7674 .7670 0.3802 .3772 .3688 0.5690
Width, in.	0.7594 .7588 .7617	0.7602 .7634	0.9556 .9543 .9515		0.9509 .9521	0.9509 .9521 .9538 1.1395 1.1401	0.9509 .9521 .9538 1.1395 1.1401 1.1392 1.1383
Hole diameter, in.	0.1906 .1898 .1904	0.1887 .1887 .1887	0.1899 .1888		0.1894 .1890	0.1894 .1890 .1893 0.1894 .1893	0.1894 .1890 .1893 0.1894 .1893 .1901 0.1891
Bolt diameter, in.	0.1886	0.1886	0.1886	•	0.1886	0.1886	0.1886
Specimen	2L-76W-57 4L 5L	1L-76W-76 2L 3L	21-95W-57 31. 41.	-	41-95w-76 51 61	4L-95W-76 5L 6L 1L-114W-38 2L 3L	4L-95W-76 5L 6L 1L-114W-38 2L 3L 1L-114W-57 2L 3L

TABLE VII.- BOLTED-JOINT DATA FOR CONTRACT CELION 6000/PMR-15 SPECIMENS TESTED AT 297 K (75°F)

Failure mode key:

T Net tension B Bearing

S Shear-out C Combination

1	1		1			,
Failure	E E E	T B B B-T	B-C B-C	<u> </u>		вввв
Shear-out stress,	188 207 182	148 136 140 148	200 205 203 213	155 153 168 146	259 255 248 253 210 221 204	159 162 162 138
Bearing stress, MPa	943 1036 911	1054 949 985 1038	1011 1018 1009 1057	1096 1077 1187 1038	771 758 743 756 1040 1110 1025	1131 1151 1153 1027
Net-tension stress, MPa	312 339 300	348 312 323 341	250 251 248 262	271 267 293 256	154 152 148 150 207 219 204	223 228 228 203
Maximum load, kN	9.45 10.70 9.34	10.61 9.74 10.23 10.85	10.90 10.96 10.74 11.52	11.74 11.74 12.63 11.32	8.21 7.38 7.96 7.56 10.68 11.39 10.19	12.25 12.32 11.83
Average thickness,	2.088 2.162 2.139	2.098 2.144 2.169 2.182	2.261 2.250 2.228 2.273	2.240 2.273 2.223 2.281	2.217 2.027 2.235 2.090 2.139 2.141 2.075	2.268 2.240 2.146 2.111
Edge distance, mm	14.415 14.348 14.379	19.421 19.164 19.271 19.296	14.453 14.295 14.280 14.288	19.319 19.271 19.299 19.395	9.545 9.530 9.581 9.558 14.267 14.422 14.432	19.347 19.345 19.456 19.472
Width,	19.324 19.431 19.373	19.314 19.334 19.431 19.401	24.112 24.234 24.194 24.140	24.140 24.194 24.237 24.171	28.923 28.984 28.956 28.964 28.986 29.058 28.865	29.007 29.007 28.956 29.007
Hole diameter,	4.803 4.796 4.796	4.806 4.798 4.808	4.790 4.790 4.803 4.806	4.806 4.811 4.813 4.806	4.803 4.796 4.811 4.806 4.818 4.801 4.806	4.811 4.806 4.823 4.806
Bolt diameter, mm	4.790	4.790	4.790	4.790	4.790	4.790
Specimen	1R-76W-57-2 2R-76W-57-1 -2	1R-76W-76-3 -4 2R-76W-76-3	1R-95W-57-1 -2 2R-95W-57-1	1R-95W-76-3 -4 2R-95W-76-3 -4	1R-114W-38-1 2R-114W-38-1 -2 1R-114W-57-1 2R-114W-57-1	1R-114W-76-3 -4 2R-114W-76-3 -4

TABLE VII. - Concluded

(b) U.S. Customary Units

Failure mode	H H H	T B-T B B-T	B-C B-C	дддд	w w w w	B B B-C	дддд
Shear-out stress, ksi	27.3 30.0 26.4	21.5 19.7 20.3 21.4	29.0 29.7 29.4 30.9	22.5 22.2 24.4 21.2	37.6 37.0 36.0	30.5 32.1 29.6 28.1	23.1 23.5 23.5 20.0
Bearing stress, ksi	136.7 150.3 132.1	152.9 137.7 142.9 150.6	146.7 147.6 146.4 153.3	159.0 156.2 172.1 150.6	111.8 109.9 107.8 109.7	150.9 161.0 148.7 141.6	164.0 166.9 167.3 149.0
Maximum Net-tension load, stress, lbf ksi	45.2 49.1 43.5	50.5 45.3 46.8 49.5	36.2 36.4 36.0 38.0	39.3 38.7 42.5 37.2	22.3 22.0 21.4 21.7	30.0 31.8 29.6 27.9	32.4 33.0 33.1 29.5
Maximum load, lbf	2125 2405 2100	2385 2190 2300 2440	2450 2465 2415 2590	2640 2640 2840 2545	1845 1660 1790 1700	2400 2560 2290 2195	2755 2770 2660 2340
Average thickness, in.	0.0822	0.0826 .0844 .0854	0.0890 .0886 .0877	0.0882 .0895 .0875	0.0873 .0798 .0880	0.0842 .0843 .0817	0.0893 .0882 .0845
Edge distance, in.	0.5675 .5649	0.7646 .7545 .7587	0.5690 .5628 .5622	0.7606 .7587 .7598 .7636	0.3758 .3752 .3772	0.5617 .5678 .5682	0.7617 .7616 .7660 .7666
width,	0.7608 .7650	0.7604 .7612 .7650	0.9493 .9541 .9525	0.9504 .9525 .9542 .9546	1.1387 1.1355 1.1400	1.1412 1.1440 1.1364 1.1428	1.1420 1.1420 1.1400 1.1420
Hole diameter, in.	0.1891 .1888 .1888	0.1892 .1889 .1893	0.1886 .1886 .1891	0.1892 .1894 .1895	0.1891 .1888 .1894	0.1897 .1890 .1892	0.1894 .1892 .1899
Bolt diameter, in.	0.1886	0.1886	0.1886	0.1886	0.1886	0.1886	0.1886
Specimen	1R-76W-57-2 2R-76W-57-1	1R-76W-76-3 -4 2R-76W-76-3	1R-95W-57-1 -2 2R-95W-57-1	1R-95W-76-3 -4 2R-95W-76-3	1R-114W-38-1 -2 2R-114W-38-1	1R-114W-57-1 -2 2R-114W-57-1	1R-114W-76-3 -4 2R-114W-76-3

TABLE VIII.- BOLTED-JOINT DATA FOR CONTRACT CELION 6000/PMR-15 SPECIMENS TESTED AT 572 K (570°F)

Failure mode key: T Net tension
B Bearing
S Shear-out

Failure	E E E	B-T B-T B-T	B-S B-S B-S	B - H - H - H - H - H - H - H - H - H -	លលល	8 H H H H H H H H H H H H H H H H H H H	ддд
Shear-out	130	86	134	105	197	147	115
stress,	121	103	130	105	190	150	109
MPa	110	103	130	110	194	143	106
Bearing	647	611	670	742	583	734	811
stress,	603	729	658	749	569	757	763
MPa	542	725	650	776	581	715	754
Net-tension	216	201	166	183	110	146	161
stress,	200	239	163	185	113	150	152
MPa	180	239	161	192	114	142	150
Maximum	7.01	6.23	7.05	7.52	6.25	7.76	8.01
load,	6.58	7.47	7.09	7.58	6.21	7.96	7.43
kN	5.83	7.72	6.96	7.81	6.18	7.52	7.34
Average thickness,	2.261 2.278 2.245	2.129 2.146 2.223	2.202 2.256 2.233	2.118 2.113 2.098	2.238 2.271 2.223	2.202 2.195 2.189	2.065 2.029 2.040
Edge	14.321	19.390	14.409	19.342	9.495	14.409	19.243
distance,	14.384	19.329	14.435	19.413	9.563	14.458	19.261
mm	14.277	19.279	14.432	19.416	9.545	14.387	19.362
Width, mm	19.177 19.309 19.286	19.362 19.352 19.368	24.094 24.150 24.191	24.214 24.186 24.158	28.953 28.948 28.938	28.928 28.913 28.933	28.999 28.893 28.854
Hole diameter,	4.839 4.877 4.864	4.798 4.803 4.790	4.829 4.811 4.806	4.790 4.811 4.813	4.821 4.790 4.790	4.806 4.811 4.811	4.811 4.813 4.793
Bolt diameter, mm	4.790	4.790	4.790	4.790	4.790	4.790	4.790
Specimen	1E-76W-57	4E-76W-76	1E-95W-57	1E-95W-76	4E-114W-38	4E-114W-57	2E-114W-76
	3E	5E	5E	2E	5E	5E	5E
	6E	6E	6E	3E	6E	6E	6E

TABLE VIII. - Concluded

(b) U.S. Customary Units

Failure	타타타	B-T B-T	B B B	B I T B I T B I T I T I T I T I T I T I	w w w	B - S - B - B	ппп
Shear-out stress, ksi	18.9 17.5 15.9	12.5 14.9 14.9	19.4 18.9 18.8	15.2 15.3 15.9	28.6 27.6 28.2	21.3 21.8 20.8	16.7 15.8 15.4
Bearing stress, ksi	93.8 87.5 78.6	88.6 105.7 105.2	97.2	107.6 108.6 112.5	84.6 82.5 84.2	106.4 109.8 103.7	117.6 110.6 109.3
Net-tension stress, ksi	31.3 29.0 26.1	29.1 34.7 34.6	24.1 23.6 23.3	26.5 26.9 27.9	16.8 16.4	21.2 21.8 20.6	23.3 22.1 21.7
Maximum load, lbf	1575 1480 1310	1400 1680 1735	1585 1595 1565	1690 1705 1755	1405 1395 1390	1745 1790 1690	1800 1670 1650
Average thickness, in.	0.0890 .0897 .0884	0.0838 .0845	0.0867 .0888 .0879	0.0834 .0832 .0826	0.0881 .0894 .0875	0.0867 .0864 .0862	0.0813 .0799 .0803
Edge distance, in.	0.5638 .5663	0.7634 .7610 .7590	0.5673 .5683 .5682	0.7615 .7643	0.3738 .3765	0.5673 .5692 .5664	0.7576 .7583 .7623
Width, in.	0.7550 .7602 .7593	0.7623 .7619 .7625	0.9486 .9508	0.9533 .9522 .9511	1.1399 1.1397 1.1393	1.1389 1.1383 1.1391	1.1417 1.1375 1.1360
Hole diameter, in.	0.1905 .1920 .1915	0.1889 .1891 .1886	0.1901 .1894 .1892	0.1886 .1894 .1895	0.1898 .1886	0.1892 .1894 .1894	0.1894 .1895 .1887
Bolt diameter, in.	0.1886	0.1886	0.1886	0.1886	0.1886	0.1886	0.1886
Specimen	1E-76W-57 3E 6E	4E-76W-76 5E 6E	1E-95w-57 5E 6E	1E-95w-76 2E 3E	4E-114W-38 5E 6E	4E-114W-57 5E 6E	2E-114W-76 5E 6E

TABLE IX.- BOLTED-JOINT DATA FOR CELION 6000/LARC-150 SPECIMENS TESTED AT 116 K (-250°F)

Failure mode key: T Net tension C Combination
B Bearing M Multiple
S Shear-out

							
Failure mode	EH EH	E1 E1	단단단	ннн	ω ω ω	OZZ	B B - H
Shear-out stress, MPa	183 210	151	219 208 222	175 170 169	246 268 281	208 216 220	182 172 178
Bearing stress, MPa	925 1053	1067 1108	1100 1043 1116	1233 1194 1143	737 803 839	1049 1088 1109	1277 1213 1250
Net-tension stress, MPa	305 348	352 365	272 259 277	306 296 295	145 159 166	208 216 220	252 240 248
Maximum load, kN	13.08 14.95	15.28 16.01	15.97 15.35 16.41	18.15 17.57 17.39	10.74 11.70 12.23	15.24 15.79 16.10	18.62 17.68 18.06
Average thickness,	2.962 2.964	2.992 3.028	3.043 3.076 3.073	3.071 3.071 3.056	3.053 3.048 3.051	3.040 3.035 3.038	3.053 3.056 3.023
Edge distance, mm	14.458 14.473	19.291 19.301	14.437 14.420 14.460	19.268 19.291 19.276	9.561 9.594 9.576	14.463 14.463 14.463	19.177 19.172 19.187
Width, mm	19.317	19.319	24.130 24.125 24.133	24.130 24.130 24.122	28.976 28.969 28.953	28.941 28.964 28.976	28.986 28.961 28.971
Hole diameter, mm	4.841	4.839	4.841 4.844 4.836	4.839 4.846 4.844	4.846 4.844 4.846	4.851 4.846 4.846	4.839 4.839
Bolt diameter, mm	4.780	4.780	4.780	4.780	4.780	4.780	4.780
Specimen	1L-76W-57 3L	2L-76W-76 3L	1L-95W-57 2L 3L	1L-95W-76 2L 3L	1L-114W-38 2L 3L	1L-114W-57 2L 3L	1L-114W-76 2L 3L

TABLE IX. - Concluded

(b) U.S. Customary Units

Specimen	Bolt diameter, in.	Hole diameter, in.	Width, in.	Edge distance, in.	Average thickness, in.	Maximum load, lbf	Net-tension stress, ksi	Bearing stress, ksi	Shear-out stress, ksi	Failure mode
1L-76W-57 3L	0.1882	0.1906	0.7605	0.5692	0.1166	2940 3360	44.3	134.2	26.6	EH EH
2L-76W-76 3L	0.1882	0.1905	0.7606	0.7595	0.1178	3435 3600	51.1	154.7	21.9	E E
1L-95W-57 2L 3L	0.1882	0.1906 .1907 .1904	0.9500 .9498	0.5684 .5677 .5693	0.1198	3590 3450 3690	39.5 37.5 40.2	159.6 151.3 161.8	31.7	E E E
1L-95W-76 2L 3L	0.1882	0.1905 .1908	0.9500 .9500	0.7586 .7595 .7589	0.1209	4080 3950 3910	44.4 43.0 42.8	178.9	25.4 24.6 24.5	타타타
1L-114W-38 2L 3L	0.1882	0.1908 .1907 .1908	1.1408 1.1405 1.1399	0.3764	0.1202	2415 2630 2750	21.1 23.1 24.1	106.9 116.4 121.7	35.7 38.8 40.7	w w w
1L-114W-57 2L 3L	0.1882	0.1910 .1908 .1908	1.1394 1.1403 1.1408	0.5694 .5694 .5694	0.1197	3425 3550 3620	30.2 31.3 31.9	152.2 157.8 160.9	30.2 31.3 31.9	OZZ
1L-114W-76 2L 3L	0.1882	0.1910 .1905	1.1412 1.1402 1.1406	0.7550 .7548 .7554	0.1202	4185 3975 4060	36.6 34.8 35.9	185.2 175.9 181.3	26.4 25.0 25.8	B-T B-T B-T

TABLE X.- BOLTED-JOINT DATA FOR CELION 6000/LARC-160 SPECIMENS TESTED AT 297 K (75°F)

T Net tension B Bearing Failure mode key:

S Shear-out C Combination

Failure mode	FFF	E E	B-T B-T B-T	B-T B-T B-T	տ տ տ տ	2 - B 2 - B 3 - B 3 - B 8 - B	B B B
Shear-out stress, MPa	187 190 185	134	192 197 190 192	146 148 152 151	239 232 239 232	192 206 194 197	152 157 149 149
Bearing stress, MPa	936 959 932	951 964	963 987 954 965	1028 1042 1081 1064	718 697 721 699	969 1038 974 991	1074 1100 1045 1051
Maximum Net-tension load, stress, kN MPa	310 316 308	315 319	238 245 236 240	255 258 268 264	143 138 143 139	192 206 194 197	213 218 208 208
Maximum load, kN	13.34 13.61 13.23	13.57	13.72 14.01 13.66 13.77	14.72 14.79 15.48 15.17	10.28 9.85 10.32 9.88	13.95 14.72 14.01	15.46 15.75 15.03 14.99
Average thickness,	2.977 2.974 2.969	2.979	2.985 2.967 2.995 2.977	2.990 2.974 3.000 2.977	2.997 2.807 2.997 2.959	3.007 2.964 3.005 2.959	3.012 2.997 3.005 2.987
Edge distance, mm	14.435 14.437 14.448	19.357 19.365	14.430 14.435 14.440 14.455	19.248 19.258 19.360 19.296	9.599 9.589 9.632	14.481 14.458 14.450	19.248 19.230 19.256 19.243
Width, mm	19.314 19.299 19.307	19.304 19.312	24.135 24.125 24.133 24.117	24.138 24.130 24.135 24.125	28.923 28.931 28.918 28.920	28.923 28.915 28.920 28.918	28.920 28.926 28.923 28.923
Hole diameter, mm	4.841 4.834 4.841	4.836	4.841 4.841 4.851 4.841	4.846 4.849 4.849	4.851 4.851 4.846 4.859	4.856 4.839 4.846	4.839 4.836 4.846 4.844
Bolt diameter, mm	4.780	4.780	4.780	4.780	4.780	4.780	4.780
Specimen	1R-76W-57-1 2R-76W-57-1	2R-76W-76-3	1R-95W-57-1 -2 2R-95W-57-1	1R-95W-76-3 -4 2R-95W-76-3	1R-114W-38-1 -2 2R-114W-38-1 -2	1R-114W-57-1 -2 2R-114W-57-1 -2	1R-114W-76-3 -4 2R-114W-76-3 -4

TABLE X.- Concluded

(b) U.S. Customary Units

ŪΨ				T	T	1	
Failure	EFE	E E	B-T B-T B-T	B - T - B - B	w w w w	8 8 8 8 8 8 8 8 8	B B B B B B B B B B B B B B B B B B B
Shear-out stress, ksi	27.1 27.6 26.9	19.5	27.8 28.5 27.5 27.9	21.2 21.4 22.1 21.9	34.7 33.7 34.6 33.7	27.9 29.9 28.1 28.6	22.1 22.7 21.6 21.6
Bearing stress, ksi	135.7 139.1 135.2	138.0	139.6 143.2 138.3	149.1 151.1 156.8 154.3	104.1 101.1 104.5	140.6 150.5 141.3	155.8 159.5 151.6
Net-tension stress, ksi	44.9 44.7	45.7	34.5 35.5 34.3 34.8	37.0 37.4 38.8 38.3	20.7 20.0 20.8 20.8	27.9 29.9 28.1 28.5	30.9 31.6 30.2
Maximum load, lbf	3000 3060 2975	3050	3085 3150 3070 3095	3310 3325 3480 3410	2310 2215 2320 2220	3135 3310 3150 3150	3475 3540 3380 3370
Average thickness, in.	0.1172	0.1173	0.1175	0.1177	0.1180 .1105 .1180	0.1184 .1167 .1183	0.1186 .1180 .1183
Edge distance, in.	0.5683 .5684 .5688	0.7621	0.5681 .5683 .5685	0.7578 .7582 .7622 .7597	0.3779 .3775 .3792	0.5701 .5692 .5689	0.7578 .7571 .7581 .7586
Width, in.	0.7604 .7598 .7601	0.7600	0.9502 .9498 .9501	0.9503 .9500 .9502	1.1387 1.1390 1.1385	1.1387 1.1384 1.1386 1.1385	1.1386 1.1388 1.1387 1.1389
Hole diameter, in.	0.1906 .1903 .1906	0.1904	0.1906 .1906 .1910	0.1908 .1909 .1908	0.1910 .1910 .1908	0.1912 .1905 .1908	0.1905 .1904 .1908
Bolt diameter, in.	0.1882	0.1882	0.1882	0.1882	0.1882	0.1882	0.1882
Specimen	1R-76W-57-1 2R-76W-57-1 -2	2R-76W-76-3	1R-95W-57-1 -2 2R-95W-57-1	1R-95W-76-3 -4 2R-95W-76-3 -4	1R-114W-38-1 -2 2R-114W-38-1	1R-114W-57-1 -2 2R-114W-57-1	1R-114W-76-3 2R-114W-76-3

TABLE XI.- BOLTED-JOINT DATA FOR CELION 6000/LARC-160 SPECIMENS TESTED AT 589 K (600°F)

Failure mode key: T Net tension
B Bearing
S Shear-out

Failure mode	T T	EEE	H H H H H H H H H H H H H H H H H H H	B-T B-T B-T	ល ល ល	ш ш н ш х х г	B - T - B - T - T - E - T - E - E - E - E - E - E
Shear-out	134	97	142	107	165	136	112
stress,	129	97	122	104	177	135	103
MPa	131	99	128	102	171	143	103
Bearing	676	683	714	752	497	683	791
stress,	649	683	612	734	536	681	724
MPa	658	701	645	721	511	723	723
Net-tension	224	225	177	186	99	136	157
stress,	214	226	152	182	106	135	143
MPa	219	232	160	179	102	143	143
Maximum	9.39	9.88	10.23	10.81	7.25	9.83	11.43
load,	9.25	9.83	8.81	10.56	7.67	9.83	10.36
kN	9.52	10.08	9.27	10.36	7.32	10.45	10.16
Average	2.901	3.023	3.002	3.007	3.056	3.005	3.025
thickness,	2.982	3.015	3.007	3.012	3.002	3.020	3.002
mm	3.018	3.007	3.010	3.015	2.990	3.028	2.946
Edge	14.481	19.274	14.437	19.266	9.609	14.468	19.182
distance,	14.468	19.279	14.450	19.268	9.627	14.465	19.177
mm	14.450	19.289	14.442	19.246	9.583	14.475	19.180
Width, mm	19.299 19.307 19.309	19.394 19.268 19.317	24.130 24.102 24.094	24.150 24.143 24.122	28.938 28.910 28.923	28.931 28.905 28.938	28.936 28.938 28.928
Hole	4.841	4.844	4.846	4.849	4.839	4.851	4.836
diameter,	4.846	4.849	4.844	4.844	4.856	4.849	4.844
mm	4.849	4.846	4.836	4.844	4.851	4.844	4.839
Bolt diameter, mm	4.780	4.780	4.780	4.780	4.780	4.780	4.780
Specimen	1E-76W-57	1E-76W-76	1E-95W-57	1E-95W-76	1E-114W-38	1E-114W-57	1E-114W-76
	2E	2E	2E	2E	2E	2E	2E
	3E	3E	3E	3E	3E	3E	3E

TABLE XI.- Concluded

(b) U.S. Customary Units

cout Failure	19.5 T 18.7 T 19.0	14.1 14.0 14.4	20.6 B-T 17.7 B-T 18.6 B-T	.5 B-T .8 B-T	0, co.	19.7 B-S 19.6 B-S 20.8 B-S	16.3 B-T 14.9 B-T
ing Shear-out ss, stress,		9	08.2	.5 15	.1 23.7 25		
ion Bearing stress,	98.1 94.1 95.5	99	103 88 93	109.0 106.5 104.5	72.1	99.1	114.7
Net-tension stress, ksi	32.5 31.1 31.7	32.7 32.8 33.6	25.6 22.0 23.2	27.0 26.4 25.9	14.3 15.4 14.8	19.7 19.6 20.8	22.7 20.8 20.8
Maximum load, lbf	2110 2080 2140	2220 2210 2265	2300 1980 2085	2430 2375 2330	1630 1725 1645	2210 2210 2350	2570 2330 2285
Average thickness, in.	0.1142.1174	0.1190	0.1182	0.1184 .1186	0.1203	0.1183	0.1191.1182
Edge distance, in.	0.5701 .5696 .5689	0.7588 .7590 .7594	0.5684 .5689 .5686	0.7585 .7586	0.3783 .3790 .3773	0.5696 .5695 .5699	0.7552 .7550
Width, in.	0.7598 .7601	0.7602 .7586 .7605	0.9500 .9489	0.9508 .9505	1.1393 1.1382 1.1387	1.1390 1.1380 1.1393	1.1392 1.1393 1.1389
Hole diameter, in.	0.1906 .1908	0.1907	0.1908 .1907 .1904	0.1909 .1907 .1907	0.1905 .1912 .1910	0.1910 .1909 .1907	0.1904 .1907 .1905
Bolt diameter, in.	0.1882	0.1882	0.1882	0.1882	0.1882	0.1882	0.1882
Specimen	1E-76W-57 2E 3E	1E-76w-76 2E 3E	1E-95W-57 2E 3E	1E-95W-76 2E 3E	1E-114W-38 2E 3E	1E-114W-57 2E 3E	1E-114W-76 2E 3E

TABLE XII.- SUMMARY OF FAILURE MODE DATA FROM BOLTED-JOINT TESTS

Failure Mode Key: T Net tension C Combination
B Bearing M Multiple
S Shear-out

(a) Joints tested at 116 K (-250°F)

					Specime	n failu	re mode			
w/d	e/đ		Celio	n 6000	/PMR-15		-	1	Lion 600	-
			In-house		(Contrac	t	1	LARC-160)
4	3 4	T T	T T		T	T T	T T	T	T T	
5	3 4	T T	T T	T	T B-S	B-S B-T	B-C B	T T	T T	T T
6	2 3 4	C C B	С М В	м м в	C B-C B	C B-C B	C B-M B	S C B-T	S M B-T	S M B-T

(b) Joints tested at 297 K (75°F)

						Specim	en fa	ilure	mode	•			i
w/d	e/đ			Celic	on 60	00/PM	R -1 5			C		6000,	,
			In-h	ouse			Cont	ract			LARC-	-160	
4	3 4	T T	T T	T T	T.	T T	T B-T	т в-т	В	T T	T T	Т	
5	3 4	M B-T	M B	M B	M B	B-C B	B-C B	B-C B	B B	B-C B-T	B-T B-T	B-T B-T	B-T B
6	2 3 4	S S B-T	S M B	S M B	S M B	S B-C B	S B B	S B B	S B B	S B-S B-T	S B-S B	S B-S B	S B-S B

(c) Joints tested at 589 K (600°F) a

					Specime	n failu	re mode			
w/đ	e/đ		Celi	on 6000/	/PMR-15				Lion 600	
			[n-house	e		Contract	t.	1	LARC-160	0
4	3	т	т	т	Т	T	т	T	T	T
	4	в-т	в-т	в-т	В-Т	B-T	в-т	T	T	T
5	3	B-S	B-S	B-S	B-S	B-S	B-S	B-T	B-T	B-T
	4	B-T	B-T	B-T	B-T	B-T	B-T	B-T	B-T	B-T
6	2	S	S	S	S	S	S	S	S	S
	3	B-S	B-S	B-S	B-S	B-S	B-S	B-S	B-S	B-S
	4	B	B	B	B	B	B	B-T	B-T	B-T

 $^{^{\}rm a}$ Contract Celion 6000/PMR-15 tested at 572 K (570°F).

TABLE XIII.- SUMMARY OF MAXIMUM JOINT STRESSES FROM BOLTED-JOINT TESTS

(a) Joint stresses at 116 K (-250°F)

Composite			e/d	Maximum stresses ^a			
		w/d		Net tension, MPa (ksi)	Bearing, MPa (ksi)	Shear-out, MPa (ksi)	
Celion 6000/PMR-15	In-house	3.9	2.9	330 (47.8)	962 (139.5)	196 (28.4)	
	Contract	4.0	3.0	359 (52.1)	1085 (157.3)	219 (31.7)	
Celion 6000/LARC-160		4.0	3.0	327 (47.4)	989 (143.5)	197 (28.5)	
Celion 6000/PMR-15	In-house	3.9	3.9	367 (53.3)	1072 (155.5)	157 (22.7)	
	Contract	4.0	4.0	343 (49.7)	1041 (151.0)	147 (21.3)	
Celion 6000/LARC-16	0	4.0	4.0	359 (52.1)	1087 (157.7)	154 (22.3)	
Celion 6000/PMR-15	In-house	4.9	2.9	288 (41.7)	1113 (161.4)	227 (32.9)	
	Contract	5.0	3.0	305 (44.3)	1239 (179.7)	248 (35.9)	
Celion 6000/LARC-16	0	5.0	3.0	270 (39.1)	1087 (157.6)	216 (31.4)	
Celion 6000/PMR-15	In-house	4.9	3.9	314 (45.6)	1223 (177.4)	179 (25.9)	
	Contract	5.0	4.0	312 (45.3)	1262 (183.1)	177 (25.7)	
Celion 6000/LARC 160		5.0	4.0	299 (43.4)	1207 (175.0)	171 (24.8)	
Celion 6000/PMR-15	In-house	5.8	2.0	182 (26.4)	887 (128.7)	303 (43.9)	
	Contract	6.0	2.0	202 (29.3)	1016 (147.3)	341 (49.5)	
Celion 6000/LARC-16	0	6.0	2.0	157 (22.8)	793 (115.0)	265 (38.4)	
Celion 6000/PMR-15	In-house	5.8	2.9	233 (33.8)	1138 (165.0)	232 (33.6)	
	Contract	6.0	3.0	252 (36.5)	1267 (183.8)	252 (36.6)	
Celion 6000/LARC-160		6.0	3.0	214 (31.1)	1082 (157.0)	214 (31.1)	
Celion 6000/PMR-15	In-house	5.8	3.9	261 (37.9)	1276 (185.1)	186 (27.0)	
	Contract	6.0	4.0	268 (38.8)	1343 (194.8)	190 (27.5)	
Celion 6000/LARC-160		6.0	4.0	247 (35.8)	1247 (180.8)	177 (25.7)	

^aAverage of test data.

TABLE XIII.- Continued

(b) Joint stresses at 297 K (75°F)

Composite		w/đ	e/đ	Maximum stresses ^a			
				Net tension, MPa (ksi)	Bearing, MPa (ksi)	Shear-out, MPa (ksi)	
Celion 6000/PMR-15	In-house	3.9	2.9	308 (44.6)	898 (130.2)	184 (26.7)	
	Contract	4.0	3.0	316 (45.9)	963 (139.7)	192 (27.9)	
Celion 6000/LARC-160		4.0	3.0	312 (45.2)	943 (136.7)	188 (27.2)	
Celion 6000/PMR-15	In-house	3.9	3.9	313 (45.4)	912 (132.3)	134 (19.5)	
	Contract	4.0	4.0	331 (48.0)	1007 (146.0)	143 (20.7)	
Celion 6000/LARC-16	Celion 6000/LARC-160		4.0	317 (46.0)	958 (138.9)	136 (19.7)	
Celion 6000/PMR-15	In-house	4.9	2.9	243 (35.3)	945 (137.1)	194 (28.1)	
	Contract	5.0	3.0	253 (36.7)	1024 (148.5)	205 (29.8)	
Celion 6000/LARC-16	0	5.0	3.0	240 (34.8)	967 (140.3)	192 (27.9)	
Celion 6000/PMR-15	In-house	4.9	3.9	265 (38.5)	1034 (150.0)	152 (22.0)	
	Contract	5.0	4.0	272 (39.4)	1100 (159.5)	156 (22.6)	
Celion 6000/LARC-160		5.0	4.0	261 (37.9)	1054 (152.8)	150 (21.7)	
Celion 6000/PMR-15	In-house	5.8	2.0	146 (21.2)	710 (103.0)	245 (35.5)	
	Contract	6.0	2.0	151 (21.9)	757 (109.8)	254 (36.8)	
Celion 6000/LARC-160		6.0	2.0	141 (20.4)	709 (102.8)	236 (34.2)	
Celion 6000/PMR-15	In-house	5.8	2.9	197 (28.5)	957 (138.8)	197 (28.5)	
	Contract	6.0	3.0	205 (29.8)	1038 (150.6)	208 (30.1)	
Celion 6000/LARC-160		6.0	3.0	197 (28.6)	994 (144.1)	197 (28.6)	
Celion 6000/PMR-15	In-house	5.8	3.9	214 (31.0)	1040 (150.8)	153 (22.2)	
	Contract	6.0	4.0	221 (32.0)	1116 (161.8)	155 (22.5)	
Celion 6000/LARC-160		6.0	4.0	212 (30.7)	1068 (154.9)	152 (22.0)	

^aAverage of test data.

TABLE XIII.- Concluded

(c) Joint stresses at 589 K $(600 \, ^{\circ} \, F)^{a}$

Composite		w/d	e/đ	Maximum stresses ^b			
				Net tension, MPa (ksi)	Bearing, MPa (ksi)	Shear-out, MPa (ksi)	
Celion 6000/PMR-15	In-house	3.9	2.9	203 (29.4)	591 (85.7)	120 (17.4)	
	Contract	4.0	3.0	199 (28.8)	597 (86.6)	120 (17.4)	
Celion 6000/LARC-160		4.0	3.0	219 (31.8)	661 (95.9)	132 (19.1)	
Celion 6000/PMR-15	In-house	3.9	3.9	216 (31.3)	629 (91.3)	92 (13.3)	
	Contract	4.0	4.0	226 (32.8)	688 (99.8)	97 (14.1)	
Celion 6000/LARC-16	0	4.0	4.0	228 (33.0)	689 (99.9)	98 (14.2)	
Celion 6000/PMR-15	In-house	4.9	2.9	159 (23.0)	618 (89.6)	128 (18.6)	
	Contract	5.0	3.0	163 (23.7)	660 (95.7)	131 (19.0)	
Celion 6000/LARC-16	0	5.0	3.0	163 (23.6)	657 (95.3)	131 (19.0)	
Celion 6000/PMR-15	In-house	4.9	3.9	176 (25.5)	687 (99.6)	101 (14.6)	
	Contract	5.0	4.0	187 (27.1)	756 (109.6)	107 (15.5)	
Celion 6000/LARC-16	0	5.0	4.0	182 (26.4)	736 (106.7)	104 (15.1)	
Celion 6000/PMR-15	In-house	5.8	2.0	103 (14.9)	502 (72.8)	172 (25.0)	
	Contract	6.0	2.0	114 (16.6)	578 (83.8)	194 (28.1)	
Celion 6000/LARC-160		6.0	2.0	102 (14.8)	514 (74.6)	171 (24.8)	
Celion 6000/PMR-15	In-house	5.8	2.9	129 (18.7)	627 (91.0)	128 (18.6)	
	Contract	6.0	3.0	146 (21.2)	736 (106.7)	147 (21.3)	
Celion 6000/LARC-160		6.0	3.0	138 (20.0)	696 (100.9)	138 (20.0)	
Celion 6000/PMR-15	In house	5.8	3.9	145 (21.0)	704 (102.1)	103 (14.9)	
	Contract	6.0	4.0	154 (22.4)	776 (112.5)	110 (16.0)	
Celion 6000/LARC-160		6.0	4.0	148 (21.4)	746 (108.2)	106 (15.4)	

 $^{^{\}rm a}{\rm Contract}$ Celion 6000/PMR-15 stresses at 572 K (570°F) $^{\rm b}{\rm Average}$ of test data.

TABLE XIV.- JOINT-STRENGTH DATA FOR GRAPHITE/POLYIMIDE

LAMINATES DETERMINED FROM BOLTED-JOINT TESTS

Composite		Joint strength				
		Net tension, MPa (ksi)	Bearing, MPa (ksi)	Shear-out, MPa (ksi)		
116 K (-250°F)						
Celion 6000/PMR-15	In-house	367 (53.3)	1276 (185.1)	≥303 (43.9)		
	Contract	359 (52.1)	1343 (194.8)	≥341 (49.5)		
Celion 6000/LARC-16	0	359 (52.1)	>1247 (180.8)	265 (38.4)		
297 K (75°F)						
Celion 6000/PMR-15	In-house	313 (45.4)	1040 (150.8)	245 (35.5)		
	Contract	313 (45.4)	1116 (161.8)	254 (36.8)		
Celion 6000/LARC-160		317 (46.0)	1068 (154.9)	236 (34.2)		
589 K (600°F)						
Celion 6000/PMR-15	In-house	203 (29.4)	704 (102.1)	172 (25.0)		
	Contract	199 (28.8)	776 (112.5)	194 (28.1)		
Celion 6000/LARC-160		228 (33.0)	>746 (108.2)	171 (24.8)		

(a) Tensile specimen.

(b) Open-hole specimen.

L-82-125

Figure 1.- Typical tensile-strength specimens.

(a) Specimen for room-temperature tests.

(b) Specimen for tests at low and elevated temperatures.
L-82-126
Figure 2.- Typical bolted-joint specimens.

L-78-7284.1

Figure 3.- Loading and heating apparatus for bolted-joint tests.

Bearing

Combination

Multiple

L-82-127

Figure 4.- Failed bolted-joint specimens representative of the five faure modes observed.

Figure 5.- Typical recordings of load-displacement for net-tension and bearing failures at the three test temperatures.

Figure 6.- Effect of joint geometry and temperature on net-tension and bearing stresses in-house for Celion 6000/PMR-15 specimens.

Figure 7.- Effect of joint geometry and temperature on net-tension and bearing stresses for contract Celion 6000/PMR-15 specimens.

Figure 8.- Effect of joint geometry and temperature on net-tension and bearing stresses for Celion 6000/LARC-160 specimens.

Figure 9.- Effect of temperature and e/d for w/d = 6 on shear-out stresses for graphite/polyimide specimens.

1. Report No.	2. Government Acces	sion No.	3. Rec	ipient's Catalog No.		
NASA TP-2015						
4. Title and Subtitle EXPERIMENTAL DATA ON SI	NGLE-BOLT JOINTS 1	N OHAST-	i '	ort Date		
ISOTROPIC GRAPHITE/POLY		IN COVOI-		y 1982 orming Organization Code		
			i	96-53-23-06		
7. Author(s)				orming Organization Report No.		
				·15103		
Gregory R. Wichorek			10. Wor	k Unit No.		
9. Performing Organization Name and Addr	ress					
NASA Langley Research Co Hampton, VA 23665	enter		11. Con	tract or Grant No.		
			13. Typ	e of Report and Period Covered		
12. Sponsoring Agency Name and Address			Technical Paper			
National Aeronautics and Washington, DC 20546	d Space Administra	ition	14. Spoi	nsoring Agency Code		
15. Supplementary Notes						
16. Abstract						
failure modes for graph: isotropic laminates of offiber orientation of [0, were tested at room tempsile strength at an unload.83-mm (0.19-in.) diamesion at temperatures of ratios of w/d (specimediameter) were varied frogeometry and temperatures stresses calculated at reported. Joint strengt 297 K (75°F), and 589 K Celion 6000/LARC-160 land.	Celanese Celion [®] 6/45/90/-45] ₂₅ were perature to establoaded bolt hole. eter bolt torqued 116 K (-250°F), 2 en width to hole drom 4 to 6 and from a to 6 and from aximum load for eth in net tension, (600°F) are given	000/PMR-evaluatish lamin Double-1a to 1.7 N-97 K (75 itameter) m 2 to 4 and join ach joing bearing	15 and Celion ed. Tensile a nate tensile s ap joint speci-m (15 lbf-in. °F), and 589 K and e/d (ed, respectively t stresses are t geometry and, and shear-ou	6000/LARC-160 with a nd open-hole specimens trength and net tenmens with a single) were tested in ten-(600°F). The joint ge distance to hole . The effect of joint shown. Joint test temperature are t at 116 K (-250°F),		
17. Key Words (Suggested by Author(s))						
	18. Distribution Statement					
Composite material Graphite/polyimide	Unclassified - Unlimited					
Quasi-isotropic						
Bolted joint						
			j	Subject Category 24		
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price		
Unclassified	Unclassified		44	A03		