Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

•			
	Congra	atulations! You passed!	Next Item
	~	1 / 1 points	
	1.		
		notation would you use to denote the 3rd layer's activations the 7th example from the 8th minibatch?	ons when the
		$a^{[8]\{7\}(3)}$	
		$a^{[8]\{3\}(7)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	ect	
		$a^{[3]\{7\}(8)}$	
	~	1/1 points	
	2. Which with?	of these statements about mini-batch gradient descent d	o you agree
		You should implement mini-batch gradient descent an explicit for-loop over different mini-batches, so t algorithm processes all mini-batches at the same time (vectorization).	hat the

Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using

batch gradient descent.

Optimizations Quiz, 10 questions	One iteration of mini-batch gradient descent (computing on a on algorigidal mass batch) is faster than one iteration of batch gradient descent.
	Correct
	1/1 points
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
	Correct
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	Un-selected is correct
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
	Correct
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct
	On-Selection is correct

1/1

Optimizatio algorithms

10/10 points (100%)

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 7.5$

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 10$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$lpha = 0.95^t lpha_0$$

$$igcap lpha = e^t lpha_0$$

Correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Decreasing $\boldsymbol{\beta}$ will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum
(large eta) . (3) is gradient descent with momentum (small eta)

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β) Optimization algorithms

10/10 points (100%)

Quiz, 10 questions	Correct
	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
	 1 / 1 points 9. Suppose batch gradient descent in a deep network is taking excessively long
	to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try initializing all the weights to zero Un-selected is correct
	Try mini-batch gradient descent Correct
	Try tuning the learning rate $lpha$
	Try using Adam Correct
	Try better random initialization for the weights

Correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

