Self-Assessment for BerkeleyX CS190.1x

Ameet Talwalkar

Computer Science Department, UCLA Department of Engineering and Computer Science, UC Berkeley **Databricks**

1 Linear Algebra

1. *Matrix-Matrix Multiply*. Solve the equation below.

$$\begin{bmatrix} 5 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = ?$$

2. Vector-Vector Multiply. Which of the following statements about the two mathemetical expressions below are true (more than one may be correct)?

$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}^{\top} \begin{bmatrix} 5 \\ -2 \end{bmatrix} \qquad \begin{bmatrix} 5 \\ -2 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \end{bmatrix}^{\top}$$
(a) (b)

- (a) is an inner product, and (b) is an outer product.
- (a) is an outer product, and (b) is an inner product.
- The output of (a) is a 2×2 matrix.
- The output of (b) is scalar.

3. Matrix Properties. Consider the $n \times m$ matrix A. Which of the following statements are true (more than one may be correct)?

- **A** is symmetric iff $\mathbf{A}^{\top} = \mathbf{A}$.
- A + A = 2A.
- If $n \neq m$ then A^{-1} does not exist.
- Assuming A^{-1} exists, $AA^{-1} = I$ where I is the identity matrix.

4. Norms. Consider the n-dimensional vector x. Which of the following statements are true (more than one may be correct)?

$$\bullet \|\mathbf{x}\|_2^2 = \sum_{i=1}^n x_i^2 .$$

$$\bullet \|\mathbf{x}\|_2^2 = \mathbf{x}^{\top} \mathbf{x} .$$

$$\bullet \ \|\mathbf{x}\|_2^2 = \mathbf{x}^\top \mathbf{x}$$

$$\bullet \|\mathbf{x}\|_2^2 = \|\mathbf{x}\mathbf{x}^\top\|_F .$$

$$\bullet \ \left\| \mathbf{x} \right\|_2 \geq \left\| \mathbf{x} \right\|_1 \ .$$

2 Algorithms

1. Big-O notation. Consider the $n \times m$ matrix A and the n-dimensional vector x. What is the time complexity in Big-O notation of computing $A^{T}x$? What is the space complexity in Big-O notation?

1

2. Higher-order Functions. Evaluate the Python expression below.

$$myList = [-2, 4, 3, -1]$$

 $map(lambda x: x*3 + 2, myList)$

3 Machine Learning

- 1. Overfitting. Which of the following statements are true (more than one may be correct)?
 - Assessing a coin's bias from a single observed coin flip is an example of overfitting.
 - Overfitting is primarily a concern when training statistical models with large datasets.
 - Regularization is used to protect against overfitting.
 - Overfitting to the training data leads to poor generalization on new data points.
- 2. Learning Settings. Match each problem description with the type of learning setting.

Problem	Learning Setting
Differentiating between spam and non-spam emails	Regression
Predicting SAT scores from high-school GPA	Binary classification
Categorizing images as one of 100 image classes	Multiclass Classification

4 Calculus and Probability

1. Derivatives. Compute the derivative of

$$f(w) = l(w) + \lambda w^2$$

with respect to w, given some differentiable function $l(\cdot)$ and some constant λ .

- 2. Expected Value. Let S_n be the number of successes in n independent and identically distributed Bernoulli trials with probability p for success. Compute the expected number of successes.
- 3. *Conditional Probability*. Which of the following statements are true (more than one may be correct)?
 - $\mathbf{P}[X|Y]\mathbf{P}[Y] = \mathbf{P}[Y|X]\mathbf{P}[X]$.
 - $\mathbf{P}[X] = \mathbf{P}[X|Y]\mathbf{P}[Y]$.
 - P[X, Y] = P[X|Y]P[Y].
 - P[X|Y] = P[X] if X and Y are independent.
- 4. Probability Distributions. Match each distribution to its probability density function.

Distribution	Probability Density Function
Normal	$\binom{n}{k} p^k (1-p)^{n-k}$
Binomial	$\frac{1}{b-a}$ when $a \le x \le b$; 0 otherwise
Uniform	$\frac{1}{\sqrt{2\pi\sigma}}\exp\left(\frac{(x-\mu)^2}{-2\sigma^2}\right)$
Bernoulli	$p^x(1-p)^{1-x}$

5 Python

1. Online Quiz. Take the following online quiz: http://www.mypythonquiz.com.

6 Additional Resources

Listed below are a few resources that cover the topics discussed above. All of these resources are freely available on the web.

- Machine Learning: Pedros Domingos' review paper [3] and the introduction to Mohri, Rostamizadeh and Talwalkar's texbook [6].
- Linear Algebra: Zico Kolter and Chuong Do's tutorial [5].
- Calculus: Wikipedia's calculus book [2].
- Probability: Paola Sebastiani's tutorial [7].
- Algorithms: Wikipedia's algorithms book [1], in particular Chapter 2: Mathematical Background.
- Python: The Python tutorial as part of the UC Berkeley CS188 course [4].

References

- [1] Algorithms {fundamental techniques}. http://en.wikibooks.org/wiki/Algorithms.
- [2] Calculus. http://en.wikibooks.org/wiki/Calculus.
- [3] Pedro Domingos. A Few Useful Things to Know About Machine Learning. *Communications of the ACM*, 55(10):78–87, 2012. http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf.
- [4] Dan Klein and Pieter Abbeel. Python Basics. http://ai.berkeley.edu/tutorial.html#PythonBasics.
- [5] Zico Kolter and Chuong Do. Linear Algebra Review and Reference. http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf.
- [6] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. The MIT Press, 2012. https://mitpress.mit.edu/books/foundations-machine-learning.
- [7] Paola Sebastiani. A Tutorial on Probability Theory. http://www.sci.utah.edu/~gerig/ CS6640-F2010/prob-tut.pdf.

¹The introduction to this book is available as a 'Sample Chapter' on the MIT Press website.