Homework 8

Jaden Wang

Problem (14.5). It suffices to find the index of the subgroup. Let $G = \mathbb{Z}_2 \times \mathbb{Z}_4$, $N = \langle (1,1) \rangle$. Then the index is just |G|/|N|. That is,

$$|G/N| = \frac{8}{\operatorname{lcm}\left(\frac{2}{\gcd(1,2)}, \frac{4}{\gcd(1,4)}\right)} = \frac{8}{4} = 2.$$

Problem (14.6). Let $G = \mathbb{Z}_{12} \times \mathbb{Z}_{18}$, $N = \langle (4,3) \rangle$. Then

$$|G/N| = \frac{12 \times 18}{\operatorname{lcm}\left(\frac{12}{\gcd(4,12), \frac{18}{\gcd(3,18)}}\right)} = \frac{12 \times 18}{\operatorname{lcm}(3,6)} = 36.$$

Problem (14.11). Let $a=(2,1), G=\mathbb{Z}_3\times\mathbb{Z}_6, N=\langle (1,1)\rangle$. First the elements of N are

$$N = \{(0,0), (1,1), (2,2), (0,3), (1,4)\}.$$

By theorem, the order of the coset a + N is the smallest positive integer n such that $na \in N$ or infinity. Let's check:

$$2(2,1)=(1,2)\not\in N$$

$$3(2,1) = (0,3) \in N$$

Hence by theorem, |G/N| = 3.

Problem (14.12). Let a = (3, 1), $G = \mathbb{Z}_4 \times \mathbb{Z}_4$, $N = \langle (1, 1) \rangle$. The elements of N are

$$N = \{(0,0), (1,1), (2,2), (3,3)\}.$$

Again we check:

$$2(3,1) = (2,2) \in N$$

Hence by theorem, |G/N| = 2.

Problem (4.23). a) True. By theorem 14.4.

- b) True. By a theorem from class.
- c) True. $\iota_q(x) = gxg^{-1} = gg^{-1}x = ex = x$ by commutativity.
- d) True. Because if G is finite, its normal subgroups are also finite, so the index is finite.
- e) True.
- f) False. \mathbb{Z} is torsion-free, but $\mathbb{Z}/3\mathbb{Z} = \mathbb{Z}_3$, where each element of \mathbb{Z}_3 has finite order and is thus a torsion group.
- g) True. By theorem from class.
- h) False. Counterexamples are $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq R^*$ and $D_4/\{\rho_0, \rho_2\} \simeq V_4$. Both are abelian.
- i) Since $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ has order n.
- j) False. $\mathbb{R}/n\mathbb{R} \simeq \mathbb{R}$, which has infinite order. It is also not isomorphic to \mathbb{Z} and thus not cyclic.

Problem (15.1). Let $G = \mathbb{Z}_2 \times \mathbb{Z}_4$, $N = \langle (0,1) \rangle$. By Theorem 15.8, N is a normal subgroup of G. Then

$$|G/N| = |G|/|N| = \frac{2 \times 4}{\frac{4}{\gcd(1,4)}} = \frac{8}{4} = 2.$$

Since there is only one group of order 2, $G/N \simeq \mathbb{Z}_2$.

Problem (15.2). Let $G = \mathbb{Z}_2 \times \mathbb{Z}_4$, $N = \langle (0,2) \rangle$. Since G is abelian and $N \leq G$, N is a normal subgroup of G. Then

$$|G/N| = |G|/|N| = \frac{8}{\frac{4}{\gcd(2,4)}} = \frac{8}{2} = 4.$$

It remains to determine if this is \mathbb{Z}_4 or V_4 . Let's show that it is not cyclic. Notice for n = 0, 1 and m = 0, 1, 2, 3, we can represent an arbitrary coset in the quotient group as (n, m) + N. Then let's find the order of (n, m) + N (ignoring the trivial case when $(n, m) \in N$):

$$2(n,m) = (n +_2 n, m +_4 m)$$
= $(2n \mod 2, 2m \mod 4)$
= $\begin{cases} (0,0) \text{ if } m \text{ is even} \\ (0,2) \text{ if } m \text{ is odd} \end{cases} \in N$

Thus, |(n,m) + N| is at most 2. But to be a generator of G/N it requires order 4. Therefore, there is no generator in the quotient group, proving it is not cyclic. Then it must be V_4 .

Problem (15.3). Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_4, N = \langle (1,2) \rangle$$
. Then $N = \{(0,0), (1,2)\}.$

G is abelian and $N \leq G$, therefore $N \subseteq G$.

$$|G/N| = |G|/|N| = \frac{8}{\operatorname{lcm}\left(\frac{2}{\gcd(1,2)}, \frac{4}{\gcd(2,4)}\right)} = \frac{8}{2} = 4.$$

Let $g = (1,1) \notin N, \in G$. Notice

isomorphic to \mathbb{Z}_4 .

$$2(1,1) = (0,2) \notin N$$

 $3(1,1) = (1,3) \notin N$
 $4(1,1) = (0,0) \in N$

Hence |g + N| = 4 and g is a generator of G/N. Thus G/N is cyclic and

Problem (15.6). Let $G = H \times K = \mathbb{Z} \times \mathbb{Z}$ and $N = \langle (0,1) \rangle$. Notice $N = \{(0,k) : k \in K\}$. By theorem 15.8, $N \subseteq G$, and $G/N \simeq H = \mathbb{Z}$.

Problem (15.13). By table, we see that $Z(D_4) = \{e, (1\ 3)(2\ 4)\}$ or $\{\rho_0, \rho_2\}$.

For $C(D_4)$, we want to find the smallest normal subgroup with abelian quotient. D_4 has the following normal subgroups:

$$D_4$$
 of order $8:D_4/D_4 \simeq \{e\}$, abelian $\{e\}$ of order $1:D_4/\{e\} \simeq D_4$, nonabelian $Z(D_4)$ of order $2:D_4/Z(D_4) \simeq V_4$, abelian $\{\text{ rotations }\}$ of order $4:D_4/\{\text{ rotations }\} \simeq \mathbb{Z}_2$, abelian

Clearly, the smallest normal subgroup with abelian quotient is $Z(D_4)$. So $C(G) = Z(D_4)$.

Problem (15.19).

- a) True. By theorem 15.9, if a is a generator of G, then aN is a generator of G/N.
- b) False. $S_n/A_n \simeq \mathbb{Z}_2$, but S_n is non-cyclic.
- c) False. Let $x = \frac{1}{2}$, then $2x = 1 \in \mathbb{Z}$, so $|x + \mathbb{Z}| = 2$.
- d) True. Given $n \in \mathbb{Z}^+$, choose $x = \frac{1}{n}$ which is well-defined. Then $nx = n\frac{1}{n} = 1 \in \mathbb{Z}$, so $|x + \mathbb{Z}| = n$.
- e) False. To find all elements in \mathbb{R}/\mathbb{Z} of order 4, let x be a representative of any element, then $|x+\mathbb{Z}|=4 \Leftrightarrow 4x=a \in \mathbb{Z}$, where $\gcd(a,4)=1$. Thus x needs to satisfy $x=\frac{a}{4}$ where $\gcd(a,4)=1$ to be a representative of an element of order 4. To see how many such elements exist, let $y+\mathbb{Z}$ be a different element where $y=\frac{b}{4}, \gcd(b,4)=1$. Since $x+\mathbb{Z} \neq y+\mathbb{Z} \Leftrightarrow x-y \notin \mathbb{Z}$, we have

$$x - y \notin \mathbb{Z}$$

$$a - b \notin 4\mathbb{Z}$$

$$a - b \mod 4 \neq 0$$

$$a \mod 4 +_4 (-b \mod 4) \neq 0$$

$$a \mod 4 \neq b \mod 4$$

$$p \neq q \in \mathbb{Z}_4$$

Where $p = a \mod 4$, $q = b \mod 4$. Since $p, q \in \mathbb{Z}_4$, and $gcd(a, 4) = gcd(b, 4) = 1 \Rightarrow gcd(p, 4) = gcd(q, 4) = 1$, we see that there are only 2 distinct elements we can choose from \mathbb{Z}_4 , namely 1 and 3, to form distinct cosets of order 4. So it is not infinite.

- f) True. $C(G)=\{e\}\Rightarrow aba^{-1}b^{-1}=e\Rightarrow ab(ba)^{-1}=e\Rightarrow ab=ba\ \forall\ a,b\in G.$
- g) False. $\{e, (1\ 3)(2\ 4)\} \not\supseteq D_4$.
- h) False. Let G be an abelian simple group. Then it only has two subgroups, $\{e\}$ and itself. $G/\{e\} = G$ is abelian, and $G/G = \{e\}$ is

abelian. Clearly $\{e\}$ is the smallest normal subgroup that has abelian quotient, thus $C(G) = \{e\}$.

- i) True. Let G be an nonabelian simple group, then by argument above, $G/\{e\} = G$ is nonabelian, so the only candidate left is G. Thus, C(G) = G.
- j) False. $|A_5| = 5!$ is not prime order, yet A_5 is finite and simple.

Problem (15.22). Let $g: \mathbb{R} \to \mathbb{R}$ such that $g \notin K$. For |g+K| = 2 we need $2g \in K$. This implies that 2g is continuous, so it follows that g is continuous, contradicting our assumption that $g \notin K$. Hence, no such element exists.

Problem (15.23). Let $g: \mathbb{R} \to \mathbb{R}$ such that $g \notin K^*$. For |g + K| = 2 we need $g^2 \in K^*$. Consider

$$g(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases} \notin K^*$$

However,

$$g^{2}(x) = \begin{cases} 1, & x \ge 0 \\ 1, & x < 0 \end{cases} = 1 \ \forall \ x \in \mathbb{R} \Rightarrow g^{2} \in K^{*}$$

Problem (15.30).

- a) By definition of abelian group, every element commutes, hence Z(G) = G.
- b) Since $Z(G) \subseteq G$, and G is simple, the center is either $\{e\}$ or G. Since G is nonabelian, it must be that $Z(G) = \{e\}$.

Problem (15.31).

- a) If G is abelian, then we know $G/\{e\} = G$ is abelian, and clearly $\{e\}$ is the smallest normal subgroup with abelian quotient. $C(G) = \{e\}$.
- b) If G is nonabelian, since G is simple, the only candidate left is G, where $G/G = \{e\}$ is abelian. So C(G) = G.