专业: 电气工程及其自动化

姓名: _____潘谷雨

学号: 3220102382

日期: ____2024.10.18

地点: 数二 116

浙江大学实验报告

一、 实验目的和要求

- 1、进行电机实验的安全教育和明确实验的基本要求
- 2、认识直流电机实验中所用的电机、仪表、变阻器等组件
- 3、学习直流电动机的接线、起动、改变电机转向和调速的办法
- 4、用实验方法测取直流并励电动机的工作特性和机械特性
- 5、掌握直流并励电动机的调速方法
- 6、掌握并励电动机的能耗制动特性

二、实验内容和原理

了解电机实验台中各个仪器的使用方法,检查和调整电机电刷的位置,进行直流电机的试运转,包括电动机的起动、调速和改变转向实验。

- 1、并励直流电动机起动实验
- 2、改变并励直流电动机转向实验
- 3、测取并励直流电动机的工作特性和机械特性 保持 $U=U_N$, $I_f=I_{fN}$ 不变,测取 n、 T_2 、 $n=f(I_a)$ 和 $n=f(T_2)$ 。
- 4、并励直流电动机的调速方法
- (1) 改变电枢电压调速

保持电压和励磁电流为额定值, T2 为常值, 测取电机的转速与电枢两端电压的关系。

(2) 改变励磁电流调速

保持电压为额定值, T_2 为常值, $R_1=0$, 测取 $n=f(I_f)$ 。

5、并励直流电动机的能耗制动,观察能耗制动过程及快慢

三、主要仪器设备(系统、软件或平台)

DSX-1 实验装置:

- 1、直流电源(DT02, 0-240V, 2A, 可调)
- 2、并励直流电动机(D17):

P_N=185W, U_N=220V, I_N=1.1A, 额定转速 1600r/min, 额定励磁电流小于 0.16A

3、负载—测功机:

与被测电动机同轴相连, 可以用转速表读数显示观察转向、转速

4、调节电阻 (DT04)

电枢调节电阻 R_1 : 0-100 Ω , 1.22A; 磁场调节电阻 R_f : 0-3000 Ω , 200mA

5、直流电压电流表 (DT10)

电压表量程: 200V、750V 电流表量程: 3A、200mA

四、操作方法与实验步骤

1.实物实验

1.1 并励直流电动机空载起动实验

(1) 实验接线图如图 1.1 所示。电动机起动前,电枢调节电阻 R_1 调至最大,磁场调节电阻 R_f 调至最小。

图 1.1 实验 1-4 接线图

- (2) 调节电源电压,缓缓起动电机,观察电动机转向是否符合测功机加载方向。
- (3) 若转向符合,逐渐增大电压至额定值,并逐渐减小电阻 R1,直至完全切除。

1.2 改变并励直流电动机转向实验

保持接线不变,对调电枢绕组和励磁绕组极性,重复1,重新起动,观察转向变化。(注意事项:起动前将测功机加载按钮置零,完成后将电压和测功机加载旋钮置零。)

1.3 测取并励直流电动机的工作特性和机械特性

- (1) 保持接线不变, 起动电机后, 电压调至额定值并切除 R₁ (R₁=0)。
- (2) 测功机调零:调节测功机调零旋钮,至测功机转矩读数接近零。
- (3)将电动机调至额定状态:分别调节电源电压、测功机加载旋钮及磁场调节电阻,使得 $U=U_N$, $I=I_N$, $n=n_N$, 记录此时的 I_f , 即为额定励磁电流。
- (4) 保持 $U=U_N$, $I_{\Gamma}=I_{\Gamma N}$ 不变,调测功机加载旋钮,逐渐减小电动机负载至最小,测 I、n、 T_2 。

1.4 并励直流电动机的调速特性

- (1) 改变电枢电压调速(恒转矩负载 T₂=0.5Nm)
- ①保持接线不变,起动后,切除电枢调节电阻 R₁(R₁=0)。
- ②调节电源电压、测功机加载旋钮及磁场调节电阻 R_f , 使 $U=U_N$, $T_2=0.5Nm$, $I_{f}=I_{fN}$ 。
- ③保持 T_2 =0.5Nm, I_f = I_f N 不变,从零开始逐渐增加 R_1 至最大值,从而逐渐降低电枢端电压 U_a ,每次测 U_a 、n、I。
- (2) 改变励磁电流调速(恒转矩负载 T₂=0.5Nm)
- ①保持接线不变,起动后,切除电枢调节电阻 R_1 (R_1 =0),并将磁场调节电阻 R_f =0。
- ②调节电源电压、测功机加载旋钮及磁场调节电阻 R_f , 使 $U=U_N$, $T_2=0.5Nm$ 。
- ③保持 T_2 =0.5Nm, U= U_N 不变,逐渐增加 R_f ,从而逐渐减小励磁电流,直至 n=1.2 n_N ,每次测 I_f 、n、 I_o

1.5 并励直流电动机的能耗制动

图 1.2 实验 5 接线图

- (1) 按照图 1.2 要求进行接线,选择制动电阻 R_L (90、540、∞)。
- (2) 双掷开关合向运行侧,电枢调节电阻 $R_{\rm I}$ 调至最大,磁场调节电阻 $R_{\rm f}$ 调至最小,调节电源电压起动电机后切除 $R_{\rm I}$ 。
- (3) 转速稳定后,将双掷开关合向制动侧,观察停机时间。
- (4) 选择不同阻值的制动电阻 RL, 重复实验, 观察制动电阻大小对停机时间的影响。
- (5) 制动侧开路, 重复实验, 记录自由停机时间。

2.仿真实验

2.1 建模与起动

实验仿真电路如图 2.1 所示。根据实物实验电路及参数, 搭建 sysplorer 仿真模型并调试通过。

图 2.1 直流电机仿真接线图

(1) 起动过程:

①直接起动:

 R_{i} =0,负载转矩为0,电源电压在0.1s时刻从0斜坡上升至220V,上升时间可以自行设定,例如20ms,记录电流曲线与速度曲线。

②串电阻起动:

初始时刻 R_1 =100, 从 0.1s 时刻开始减小,至 1.1s 减为 0,记录电流曲线与速度曲线。

③降压起动:

Udc 斜坡上升,时间可以自行设定,例如3s,记录电流曲线与速度曲线。

(2) 额定工作点:

找到电机的额定工作点(电压为 220V, 总电流为 1.1A, 转速为 1600rpm), 记录额定励磁电流与额定励磁电阻。

2.2 测取工作特性和机械特性

保持 $U=U_N$, $I_f=I_fN$ 不变,逐渐减小电动机负载至最小,测 I_N N_0 N_0

2.3 测取调速特性

(1) 调压调速

仿真步骤与实物实验步骤一致,设置好电压变化曲线后仿真,记录调速特性曲线 n=f(Ua)。

(2) 调节励磁调速

仿真步骤与实物实验步骤一致,设置好励磁电阻变化曲线后仿真,记录调速特性曲线 $n=f(I_f)$ 。

2.4 能耗制动

仿真工况与实物实验一致,仿真不同电阻时的速度曲线与电流曲线。

五、实验数据记录和处理

1.实物实验

1.1 并励直流电动机空载起动实验

接线并起动后成功观察到了直流电动机旋转,从右侧观察为顺时针方向,符合测功机加载方向,调节电压至 220V,切除 R_I ,起动成功。

1.2 改变并励直流电动机转向实验

仅对调电枢绕组极性时,电动机转动方向从右侧观察为逆时针方向;仅对调励磁绕组极性时,电动机转动方从右侧观察为逆时针方向,均与实验1中转动方向相反,符合预期。

1.3 测取并励直流电动机的工作特性和机械特性

实验测得额定励磁电流 $I_{\rm fN}=116.29{\rm mA}$ 。逐渐减小电动机负载至最小,得到 I、n、 T_2 并通过 $P_1=UI$, $P_2=0.105$ nT_2 , $\eta=\frac{P_2}{P_1}\times 100$ % 计算得到表 1.1。

I(A)	n(r/min)	Ia(A)	T2(Nm)	$P_1(W)$	$P_2(W)$	η
1.0947	1603	0.97841	1.11	240.83	186.83	77.58%
0.9008	1627	0.78451	0.89	198.18	152.04	76.72%
0.7998	1640	0.68351	0.77	175.96	132.59	75.36%
0.7002	1655	0.58391	0.66	154.04	114.69	74.45%
0.4996	1687	0.38331	0.42	109.91	74.40	67.69%
0.4022	1704	0.28591	0.30	88.48	53.68	60.66%
0.3007	1721	0.18441	0.18	66.15	32.53	49.17%
0.2021	1741	0.08581	0.06	44.46	10.97	24.67%

表 1.1 工作特性和机械特性数据记录(U=U_N, I_f=I_{fN})

随着电动机负载减小,输入功率 P_1 、输出功率 P_2 以及效率n均减小。

根据实验数据绘制电动机的工作特性和机械特性曲线如图 1.3、图 1.4,并进行曲线拟合。

图 1.3 机械特性拟合曲线

图 1.4 工作特性拟合曲线

机械特性曲线拟合得到趋势线公式为 $n=-131.85T_2+1744.6$,属于一次函数曲线,实验结果符合理论。

工作特性曲线拟合得到趋势线公式为 $n=-155.28I_a+1749.3$,属于一次函数曲线,由公

式
$$n = \frac{E_a}{C_e \Phi} = \frac{U_N - I_a R_a}{C_e \Phi} = n_0 - \frac{R_a}{C_e \Phi} I_a$$
 可知, $n_0 \approx 1749.3 r / \min$, $\frac{R_a}{C_e \Phi} \approx 155.28 r / (\min \bullet A)$, 转速

变化率 $\Delta n = \frac{n_0 - n_N}{n_N} \times 100\% = 9.33\%$ 。 如果考虑电枢反应去磁作用,曲线会向上翘,实验结果符合理论。

1.4 并励直流电动机的调速特性

(1) 改变电枢电压调速(恒转矩负载 T₂=0.5Nm)

保持 T_2 =0.5Nm, I_f = I_{IN} 不变,从零开始逐渐增加 R_1 至最大值,从而逐渐降低电枢端电压 U_a ,得到 U_a 、n、I 数据如 1.2 所示。

I(A)	$U_a(V)$	n(r/min)
0.5694	220.7	1676
0.5792	210.5	1594
0.5753	200.5	1515
0.5710	191.5	1446
0.5763	180.56	1363
0.5744	174.09	1309

表 1.2 改变电枢电压的调速特性 ($T_2=0.5$ Nm, $I_f=I_{fN}$)

根据实验数据绘制电动机的调速特性曲线如图 1.5 所示,并进行曲线拟合。

图 1.5 改变电枢电压的调速特性拟合曲线

改变电枢电压的调速特性曲线拟合得到趋势线公式为 $n=7.8233U_a-51.941$,属于一次函

数曲线。由公式 $n = \frac{E_a}{C_e \Phi} = \frac{U - I_a R_a}{C_e \Phi}$ 可知,当 $T_2 = 0.5 \text{Nm}$, $I_f = I_{fN}$ 不变时, Φ 不变, I_a 不变,

曲线应为一次函数直线,实验结果符合理论。

从实验可以得出,调压调速是在基速以下调节转速的方法,电压越小,转速越小,电枢 电流保持不变。可以实现无级调速;相对稳定性较好;调速范围较宽;调速的经济性较好。 但是需要一套可控的直流电源。

(2) 改变励磁电流调速(恒转矩负载 T₂=0.5Nm)

保持 T_2 =0.5Nm, U= U_N 不变,逐渐增加 R_f ,从而逐渐减小励磁电流,直至 n=1.2 n_N ,得到 I_f 、n、I 数据如表 1.3 所示。

I(A)	$I_f(mA)$	n(r/min)
0.5717	122.28	1634
0.5734	111.43	1673
0.5782	100.48	1730
0.5837	90.98	1788
0.5792	80.34	1884
0.6057	76.67	1920

表 1.3 改变励磁电流的调速特性 $(T_2=0.5Nm, U=U_N)$

根据实验数据绘制电动机的调速特性曲线如图 1.6 所示,将励磁电流取倒数后绘制图 1.7 所示曲线方便拟合。

图 1.6 改变励磁电流的调速特性曲线 $n=f(I_f)$

图 1.7 改变励磁电流的拟合曲线 n=f(1/I_f)

改变励磁电流的调速特性曲线拟合得到趋势线公式为 $_{n}=59424\frac{1}{I_{f}}+1141.7$,关于 $\frac{1}{I_{f}}$ 呈

一次函数关系,由公式 $n=\frac{E_a}{C_e\Phi}=\frac{U_N-I_aR_a}{C_e\Phi}$ 可知,当 $T_2=0.5$ Nm, $U=U_N$ 不变时, $n\propto\frac{1}{\Phi}\propto\frac{1}{I_f}$

曲线应关于 $\frac{1}{I_f}$ 成正比,实际上即使在没有励磁电流的情况下,发电机仍然可能由于剩磁或 I_f

维持一定的转速,导致截距不为0,实验结果符合理论。

从实验可以得出,弱磁调速是在基速以上调节转速的方法,励磁电流减小,磁通变小,转速升高,电枢电流增加。控制方便,能量损耗较小;可实现无级调速。但受电动机机械强度和换向火花限制,转速不能太高,调速范围较窄,一般与调压调速配合使用。

1.5 并励直流电动机的能耗制动

保持外加电压恒定(此次实验中 U=200V),在 n=1600r/min 且空载的情况下,选择不同阻值的制动电阻 R_L ,重复实验,观察制动电阻大小对停机时间的影响,得到数据如表 1.4 所示。

$R_L/_{\mathbf{\Omega}}$	t/s
90	0.4
540	1.47
正无穷	5.68

表 1.4 能耗制动时间记录

由表可知,制动时间随着制动电阻阻值变大而变长。这是因为从能耗制动机械特性公式 $n = -\frac{R_a + R_L}{C_e \Phi} \frac{T_{em}}{C_M \Phi}$ 可知, R_L 增大,机械特性变陡,在相同转速 n 的条件下平均制动转矩小,

因此停机变慢。

该制动方法的缺点是,在制动过程中,随着转速的下降,制动转矩减小,制动效果会变差。

2.仿真实验

- 2.1 建模与起动
- (1) 起动过程:
- ①直接起动

 R_{I} =0, R_{F} =0, 负载转矩为 0, 电源电压在 0.1s 时刻从 0 斜坡上升至 220V, 持续时间为 20ms, 仿真持续时间设置为 1s, 点击仿真按钮,得到电流表 A1 读数变化曲线 (I)、电流表 A2 读数变化曲线 (I_{f})以及速度曲线 (I_{f})以及速度 (I_{f})。

图 2.3 电流表 A2 读数变化曲线(I_f)

② 串电阻起动

在直接起动基础上,设置初始时刻 $R_I=100$,从 0.1s 时刻开始减小,至 1.1s 减为 0,其 余参数不变,点击仿真按钮,得到电流表 A1 读数变化曲线 (I)、电流表 A2 读数变化曲线 (I_f) 以及速度曲线 (n) 结果,分别显示在图 2.5、图 2.6、图 2.7 中。

③降压起动

在直接起动基础上,设置 U_{dc} 斜坡上升,在 0.1s 时刻从 0 斜坡上升至 220V,持续时间为 3s,其余参数不变,点击仿真按钮,得到电流表 A1 读数变化曲线 (I)、电流表 A2 读数变化曲线 (I_f) 以及速度曲线 (n) 结果,分别显示在图 2.8、图 2.9、图 2.10 中。

图 2.9 电流表 A2 读数变化曲线(I_f)

三种起动方式稳定后都有 I=146.67mA, $I_f=146.67mA$, n=964.24r/min, 励磁电流 I_f 均平滑上升,无超调量,其中由于降压起动的线性升压速度慢,因此励磁电流变化曲线更接近线性。

直接起动的电流 I 和转速 n 都产生震荡, 串电阻起动与降压起动无震荡但存在超调量, 从实验结果看 3s 持续时间的降压起动比 0.1s 持续时间的串电阻起动效果更好。

(2) 额定工作点

控制参数 R_1 =0, U_{dc} =220V, 根据转速与电流 I 的稳态数值调节 T_2 与 R_f , 使得电机运行于额定工作点(电压为 220V, 总电流为 1.1A, 转速为 1600 rpm),最终稳态参数设置如表 2.1 所示。

$$\begin{array}{cccc} T_2/Nm & R_1/\Omega & R_f/\Omega & Udc/V \\ -1.21 & 0 & 1270 & 220 \end{array}$$

表 2.1 额定工作点稳态参数设置

此时运行状态如图 2.11-2.14 所示,读得 U=220V, I=1.097A, n=1603.00r/min, I_C=79.422mA。

图 2.12 电流表 A1 读数变化曲线 (I)

图 2.14 电流表 A2 读数变化曲线 (I_f)

故记录额定励磁电流 I_{IN} =79.422mA, 额定励磁电阻 R_{IN} =1270 Ω 。

实物实验中, $I_{IN}=116.29$ mA,比仿真实验数值大,这是因为实际上漏磁不可避免,因此为了产生同等磁通,需要更大的励磁电流。

2.2 测取工作特性和机械特性

测得额定励磁电流 $I_{\rm IN}$ =79.422mA。在额定工作点基础上,逐渐减小电动机负载至近似于 0,得到 $I_{\rm N}$ 1、 $I_{\rm N}$ 1, $I_{\rm M}$ 2 并通过 $I_{\rm M}$ 2 = 0.105 $I_{\rm M}$ 2, $I_{\rm M}$ 3 = $I_{\rm M}$ 4 = $I_{\rm M}$ 5 = 0.105 $I_{\rm M}$ 7 = $I_{\rm M}$ 7 = $I_{\rm M}$ 8 = 0.105 $I_{\rm M}$ 9 = 0.105 I_{\rm

I(A)	n(r/min)	Ia(A)	T2(Nm)	P1(W)	P2(W)	η
1.0968	1603.00	1.017378	1.21	241.296	203.66115	0.8440304
1.0043	1617.85	0.924878	1.10	220.946	186.86168	0.8457346
0.9202	1631.35	0.840778	1.00	202.444	171.29175	0.8461192
0.8361	1644.85	0.756678	0.90	183.942	155.43833	0.8450399
0.7521	1658.35	0.672678	0.80	165.462	139.3014	0.8418936
0.668	1671.85	0.588578	0.70	146.96	122.88098	0.8361525
0.5839	1685.35	0.504478	0.60	128.458	106.17705	0.8265507
0.4998	1698.85	0.420378	0.50	109.956	89.189625	0.8111392
0.4157	1712.36	0.336278	0.40	91.454	71.91912	0.7863967
0.3317	1725.86	0.252278	0.30	72.974	54.36459	0.7449857
0.2476	1739.36	0.168178	0.20	54.472	36.52656	0.6705566
0.1635	1752.86	0.084078	0.10	35.97	18.40503	0.5116772
0.0878	1765.01	0.008378	0.01	19.316	1.8532605	0.0959443

表 2.1 仿真实验工作特性和机械特性数据记录(U=U_N, I_f=I_{fN})

随着电动机负载减小,输入功率 P_1 、输出功率 P_2 均减小,效率 η 在 T2>0.80 时基本保持不变, T2<0.80 时逐渐减小。

根据实验数据绘制电动机的工作特性和机械特性曲线如图 2.15、图 2.16,并进行曲线拟合。

图 2.15 机械特性拟合曲线

图 2.16 工作特性拟合曲线

机械特性曲线和工作特性曲线均属于一次函数曲线,但仿真实验在横坐标相同时转速大于实物实验。因为仿真实验较理想,计入的损耗因素比实际小,故效率较高,转化为输出的机械能更多,转速更大。

2.3 调速

(1) 调压调速

设置 T_2 =0.5Nm, 保持 I_f = I_f N=79.4mA 不变, 电枢电压从 220V 开始隔 10V 左右取点。得到转速 n 和电压 U_a 数据如表 2.2 所示。

$Rf(\Omega)$	If(mA)	Ua(V)	n(r/min)
1270	79.422	220	1698.85
1140	79.545	210	1616.17
1020	79.365	200	1539.34
890	79.498	190	1456.67
770	79.295	180	1379.80
640	79.439	170	1297.15

表 2.2 改变电枢电压的调速特性 (T₂=0.5Nm, I_f=I_{fN})

得到调速特性曲线 n=f(Ua)如图 2.17 所示。

图 2.17 改变电枢电压的调速特性拟合曲线

两条曲线都显示了转速与电枢电压之间的线性关系,但仿真实验的曲线斜率更大,截距更小。控制 $I_{\rm f}\!=\!I_{\rm fN}$,由公式 $n=\frac{E_a}{C_e\Phi}=\frac{U-I_aR_a}{C_e\Phi}$ 可知,仿真环境中磁通比实际实验稍小,这

是因为实物实验的额定励磁电流实际包含了漏磁,在负载转矩减小的情况下,所需磁通也减小,相应漏磁变小,因此仍用测得额定励磁电流会导致实际磁通偏大。

(2) 调节励磁调速

 T_2 =0.5Nm, U=U_N=220V, 励磁电流隔 5mA 左右取点至 n=1.2n_N, 得到转速 n 和电压 I_f 数据如表 2.3 所示。

$Rf(\Omega)$	If(mA)	n(r/min)
770	90.91	1491.65
1070	85.60	1580.72
1270	79.422	1698.85
1500	73.333	1833.84
1670	69.400	1933.02

表 2.3 改变励磁电调速特性(T₂=0.5Nm, U=U_N)

得到调速特性曲线如图 2.18、图 2.19 所示。

图 2.18 调速特性曲线 n=f(I_f)

图 2.19 拟合曲线 n=f(1/I_f)

两曲线中转速 \mathbf{n} 均关于 $\frac{1}{I_f}$ 呈一次函数关系,但仿真实验在相等励磁电流情况下转速小

于实物实验且相差较大。由公式 $n=\frac{E_a}{C_e\Phi}=\frac{U_N-I_aR_a}{C_e\Phi}$ 可知,是因为仿真实验不考虑漏磁,

使得磁通较大, 转速较小。

2.4 能耗制动

保持 U=200V, 在 n=1600r/min 且 T2=0.01 的情况下,选择不同阻值的制动电阻 R_L ,重复实验,仿真不同电阻时的速度曲线与电流曲线。(实验应为制动性负载,故不截取转速小于 0 的部分。)

(1)R_L=90 Ω

第5s 切换开关, 电流曲线和转速曲线如图 2.20-图 2.22 所示。

图 2.20 电流表 A1 读数变化曲线(Ia)

图 2.22 转速曲线(n)

第5s 切换开关, 电流曲线和转速曲线如图 2.23-图 2.25 所示。

图 2.23 电流表 A1 读数变化曲线 (Ia)

图 2.24 电流表 A2 读数变化曲线 (If)

③RL=正无穷

第5s切换开关,电流曲线和转速曲线如图2.26-图2.28所示。

图 2.26 电流表 A1 读数变化曲线(Ia)

从图中可以看出,在负载转矩为 0 的情况下,仿真实验的电流趋于稳定的时间均在 0.2s 左右,电枢电流将瞬间激发反向电流,该反向电流大小随着 R_L 增大而减小,而后逐渐减小,趋近于 0; 励磁电流将逐渐减小至 0; 转速将在 13-14s 内降至 0,时间几乎不变,这是因为根据公式 $n=-\frac{R_a+R_L}{C_e\Phi}$,负载转矩与电阻损耗相乘,负载转矩接近 0,因此电阻的改变

对实验影响不大,而实物实验中即使负载转矩置 0,仍要考虑电机自身摩擦及机械损耗,因此制动时间均比仿真实验短。

在仿真实验过程中遇到的问题有:

- 1.为了截取一段实验所需数据区间,设置仿真区间时间不从 0 开始,但是发现在进入仿真区间时出现震荡,严重影响图像绘制,而从 0s 开始时,该区间曲线光滑平缓,因此仍采用从 0s 开始仿真,最后取稳态工作点的方法。
- 2.在能耗制动实验中,若设置 T2=0,则每次转速下降至稳态时三组实验均保持在额定转速 (1600r/min) 左右(上下 5%,同组条件下转速相同),因此设置 T2=0.01。

总的来说,仿真实验可以显示各变量每个时刻的变化曲线;不需要实际的硬件,成本低且没有电气安全风险;每次实验的条件可以完全一致,便于比较和验证结果,也可以快速更改实验参数,即时显示结果。但是,仿真实验中每次实验都需要重新起动电机,再读取稳态数值;仿真环境无法完全复制所有系统特性和外部影响,无法完全模拟硬件的实际行为。

实物实验可以观察到电机在实际工作条件下的表现,可以验证仿真模型和理论分析的正确性,但是需要购买和维护实际的硬件设备,难以复制完全相同的条件,耗时且复杂,。

六、分析与思考

1、并励电动机速率特性 $n=f(I_a)$ 为什么是略微下降?是否出现上翘现象?为什么?上翘的速率特性对电动机的运行有何影响?

根据并励电动机的转速特性公式 $n = \frac{E_a}{C_e \Phi} = \frac{U - I_a R_a}{C_e \Phi}$ 可知,忽略电枢反应时,磁通量 Φ

恒定, 当电枢回路电流 Ia增加, 转速 n 下降。

若考虑电枢反应的去磁效应,去磁等效的励磁电流与电枢回路电流 Ia 正相关,当电枢回路电流 Ia增加,去磁导致的磁通降落更明显,可能引起转速 n 的上升,即出现上翘的现象。

上翘现象的影响与电枢电流增大引起转速降低的影响相互抵消,最终使电动机的转速变化很小。

2、当电动机的负载转矩和励磁电流不变时,减小电枢端压,为什么会引起电动机转速 降低? 根据电动机的机械特性 $n=\frac{U}{C_e\Phi}-\frac{R_a}{C_e\Phi}\frac{T_{em}}{C_M\Phi}$ 可知,在转矩 T、励磁电流 I_f 不变时,电枢端压 U 减小,转速 n 降低。

3、当电动机的负载转矩和电枢端电压不变时,减小励磁电流会引起转速的升高,为什么?

磁通不饱和时,励磁电流 I_f 减小,则磁通 Φ 减小。由转速特性公式 $n=\frac{E_a}{C_e\Phi}=\frac{U-I_aR_a}{C_e\Phi}$ 可知,转速 n 与磁通 Φ 成反比,磁通 Φ 减小时,转速 n 升高。

4、并励电动机在负载运行中,当磁场回路断线时是否一定会出现"飞速",为什么?不一定。

磁场回路断线,磁通 Φ 迅速减小,由 $_{n}=\frac{U}{C_{e}\Phi}-\frac{R_{a}}{C_{e}\Phi}\frac{T_{em}}{C_{M}\Phi}$ 可知,当负载较轻时,式中 $\frac{U}{C_{e}\Phi}$ 占主导,电动机转速迅速上升,造成"飞车"。但是负载为重载时, $_{-}\frac{R_{a}+R_{L}}{C_{e}\Phi}\frac{T_{em}}{C_{M}\Phi}$ 占主导,电动机的电磁转矩小于负载转矩,电动机的转速降低,但是转速不会突变,由 $_{n}=\frac{E_{a}}{C_{e}\Phi}=\frac{U-I_{a}R_{a}}{C_{e}\Phi}$ 可知,此时的电枢电流将迅速增大,超过电动机允许的最大电流时会烧坏电枢绕组。