Семинар 20

1 Повторение

Простые группы. Пример.

Автоморфизмы и внутренние автоморфизмы. Примеры автоморфизмов: \mathbb{Z} , \mathbb{Z}_n .

Центр группы. Пример для Q_8 . Утверждение о том, что центр группы является нормальной подгруппой. Утверждение о том, что факторгруппа группы по её центру изоморфна группе её внутренних автоморфизмов.

Применение теории групп в криптографии. Задача дискретного логарифмирования. Шифрование: схема Диффи-Хеллмана, схема Эль-Гамаля.

Определение кольца. Аддитивная группа кольца. Мультипликативная полугруппа кольца. Кольцо с единицей. Коммутативное кольцо. Примеры колец: числовые кольца (остальные примеры на следующей лекции).

2 Задачи

Задача 1. Описать все гомоморфизмы $\mathbb{Z}_n \to \mathbb{Z}_m$.

Пусть X – группоид. Для любого $x \in X$ определены отображения левого и правого умножения $l_x, r_x : X \to X$:

$$l_x: y \mapsto x \cdot y, \quad r_x: y \mapsto y \cdot x.$$

Задача 2. Доказать, что условие ассоциативности в X эквивалентно тому, что $l_x \circ r_z = r_z \circ l_x$ для всех $x, z \in X$.

Пусть G – группа. Тогда l_g, r_g – биекции (но не гомоморфизмы), $l_g r_h = r_h l_g$ для всех $g, h \in G$ и

$$l_q^{-1} = l_{g^{-1}}, \ r_q^{-1} = r_{g^{-1}}, \quad l_{gh} = l_g l_h, \ r_{gh} = r_h r_g.$$

Для автоморфизма сопряжения c_g выполнено равенство $c_g = l_g r_{g^{-1}}$.

Подгруппа $H \subseteq G$ называется нормальной, если gH = Hg (то есть $l_g(H) = r_g(H)$) для всех $g \in G$. Эквивалентные условия (здесь $c_g : G \to G$ – автоморфизм сопряжения элементом $g \in G$):

- 1. $c_q(H) = H \ \forall g \in G;$
- 2. $c_q(H) \subseteq H \ \forall g \in G$;
- 3. множество левых смежных классов G по H совпадает с множество правых смежных классов G по H;
- 4. структура группы $(g_1H) \cdot (g_2H) = (g_1g_2)H$ на множестве G/H левых смежных классов корректно определена (в этом случае группа G/H с заданным умножением называется факторгруппой G по H).

Задача 3. Доказать, что любая подгруппа индекса 2 является нормальной.

Пусть G – группа и $g \in G$. Класс сопряжённости элемента g – это множество

$$C_G(g) = \{xgx^{-1} \mid x \in G\} = \{c_x(g) \mid x \in G\}.$$

Группа G разбивается на дизъюнктные классы сопряжённости. Условие нормальности подгруппы $H\subseteq G$ можно переформулировать в виде

$$h \in H \implies C_G(h) \subseteq H$$
.

Напомним, что для σ и $(k_1 \dots k_d)$ из S_n выполнено

$$c_{\sigma}((k_1 \dots k_d)) = (\sigma(k_1) \dots \sigma(k_d)).$$

Отсюда можно сделать вывод, что для $\tau \in S_n$ класс сопряжённости $C_{S_n}(\tau)$ состоит из всех перестановок, у которых *циклическая структура* совпадает с циклической структурой τ (под циклической структурой здесь имеется в виду неупорядоченное разбиение $n = k_1 + \ldots + k_s$, где k_1, \ldots, k_s – длины независимых циклов в τ).

Задача 4. Найти все собственные нормальные подгруппы в группе S_3 .

Напомним теорему о гомоморфизме: если $\phi: G \to H$ – гомоморфизм групп, то

$$G/\operatorname{Ker} \phi \cong \operatorname{Im} \phi, \ g \operatorname{Ker} \phi \mapsto \phi(g).$$

Для любой нормальной подгруппы $H \triangleleft G$ имеется естественная проекция

$$\pi: G \to G/H, \ q \mapsto qH.$$

Задача 5. Чему изоморфна факторгруппа $\mathbb{R}^{\times}/\mathbb{R}_{>0}^{\times}$?

Задача 6. Доказать, что в группе \mathbb{Q}/\mathbb{Z} для каждого натурального n имеется в точности одна подгруппа порядка n.