Indian Institute of Technology Kharagpur

SPRING Semester, 2023 COMPUTER SCIENCE AND ENGINEERING

CS60004: Hardware Security

Tutorial - 1

Full Marks: 50

1. Consider a toy cipher as shown in Figure 1 implemented on a smart card. The cipher has a 4 bit plaintext which is not visible to the adversary. However, the adversary has access to the ciphertexts and also the corresponding power consumptions which are represented as integer values. The S-Box of the cipher is given in the following table.

Figure 1: Power Attack

Table 1: The S-Box	X S(X)	0	1 A	2 4	3 C	4	5 F	6	7	8 2	9 D	A B	B 7	C 5	D 0	E 8	F E
	K	0101															

The adversary runs the energytions several times until it obtains all the unique 16 ciphertext values recent as C in Figure 1) at least once. It also notes the corresponding power values denoted as P as given in the following table.

-	_	1	0	-0	1		G	7	Q	Ο.	Λ	B	\mathbf{C}	D	\mathbf{E}	F
C	U	1	2	3	4	o	U	- 1	O	J	11	D	0	D		-
				_		_	-	1 -	1 =	_	10	10	Λ	15	10	10
Р	10	15	20	5	10	5	5	15	10	0	10	10	0	10	10	10

Table 2: The Power Profile

(a) You are told that the key is either <u>0101</u> or 1010. Apply the Difference-of-Mean (DOM) technique to determine which is the correct key byte. Target the MSB of the input of the S-Box.

(10 marks)

CS60004

2. Consider the following algorithm for computing modular exponentiation used in the RSA cipher. Our objective is to ascertain the scalar k using side-channel analysis.

```
Algorithm 1: RSA Modular Exponentiation

Data: Base: X, Secret Exponent k = k_{n-1}, k_{n-2}, \dots, k_0 and modulus N

Result: Q = X^k

1 R_0 \to 1; R_1 \to X;

2 for i = n - 1 to 0 do

3 \begin{bmatrix} R_{[1-k_i]} \to (R_0 \times R_1) \mod N; \\ R_{k_i} = (R_{k_i}^2) \mod N; \end{bmatrix}

5 return Q = R_0;
```

You are also given the power trace values of the 10 exponentiations with different values of the base X, for 8 leakage points, as shown in Table 3. The value of N is 4763.

You are given that the value of $(n-1)^{th}$ bit of k is 1. Find out the value of $(n-2)^{th}$ bit of the k using Correlation Power Analysis (CPA). Assume that the leakage model is Hamming weight.

Execution No	X	Leakage of $(n-1)^{th}$	Leakage of $(n-2)^{th}$	Leakage of $(n-3)^{th}$	Leakage of $(n-4)^{th}$	Leakage	Leakage of $(n-6)^{th}$	Leakage	Leakage
		bit	bit $(n-2)^{-n}$	$ \begin{array}{c c} \text{of } (n-3)^{n} \\ \text{bit} \end{array} $		of $(n-5)^{th}$		Leakage of $(n-7)^{th}$	Leakage of $(n-8)^{t}$
1	810	13	12	0	bit	bit	bit	bit	bit
2	891	15	13	7	12	11	12	10	7
3	789	10	11	10	14	9	17	11	11
4	431	8		13	9	12	14	16	8
5	918	11	8	6	6	12	13	10	13
	862		10	_9	9	13	1.1	13	13
6		8	6	6	12	10	10	13	9
7	706	8	9	13	16	15	7	12	
8	742	11	11	13	14	19	7		13
9	53	12	12	15	8	14	12	14	12
10	408	10	14	10	12	10		12	12
						10	19	11	10

Table 3: Power Trace Value of RSA execution

(20 marks)

3. Consider the following program which sorts an array of N numbers that are arranged according to a secret file. The output of the program is the sorted array. For instance, if

Describe a way that you can determine B using timing channels. You have black-box access to the function and are allowed to invoke it as many times as needed.

```
#define N 5
swapper(int *A){
  int i, j, tmp;
  int B[N];

/* 1. Read a random permutation of {1,2,3,..., N} from file "Secret" into array B */
  /* 2. Fill N random integers into array A such that
```

```
A[i] is the B[i]-th smallest element in the array */
/* (Assume that operations 1 and 2 execute in constant time) */

/* 3. Sort A */
for(i=0; i<N-1; ++i){
    for(j=i+1; j<N; ++j){
        if (A[i] > A[j]){
            tmp = A[i];
            A[i] = A[j];
            A[j] = tmp;
        }
    }
}
```

HINT: Connect this to Kocher's timing attack on RSA by noting that every swap results in a different timing from no swapping. Note that the attacker needs to obtain the array arrangement A which is input to Step 3 of the above code. In the example, if the attacker is able to obtain the value of $A=\{33,10,22,64,54\}$, B is revealed. (20 marks)