# **Machine Learning - Assignment 2**

Name: Idavalapati Vijay Taraka Ramarao

ID: 700742485 CRN: 13428

#### Question1:

Using NumPy, Generated a random vector of size 15 having only Integers in the range 1-20. Reshape the array to 3 by 5and Printed the array shape.

Replaced the max in each row by 0

```
Assignment2_Question2.py
🐍 Assignment2 Question1.py
       import numpy as np
       # Question1
       a=np.random.randint(1,20,15)
       print("\n")
       # 1.a Reshape the array to 3 by 5
       a=a.reshape(3.5)
       print(a)
       print("\n")
       # 1.b Print array shape.
       print(a.shape)
14
       print("\n")
       a[np.where(a==np.max(a))]=0
       print(a)
```

## **Question1 Output:**

#### Question2

## 2.1 Read the file from the path

```
import pandas as pd
import numpy as np

df=pd.read_csv("C:/Users/Administrator/Desktop/ML_Assignment_2/data.csv")

mean_value=df['Calories'].mean()

df['Calories'].fillna(value=mean_value_inplace=True)

print(df.head(25))
```

#### 2.1 Output

#### 2.2

describe() gives basic statistical description about the data.

```
# 2. 2 Show the basic statistical description about the data.
print(df.describe())
```

#### 2.2 Output

|       | Duration   | Pulse      | Maxpulse   | Calories    |  |
|-------|------------|------------|------------|-------------|--|
| count | 169.000000 | 169.000000 | 169.000000 | 169.000000  |  |
| mean  | 63.846154  | 107.461538 | 134.047337 | 375.790244  |  |
| std   | 42.299949  | 14.510259  | 16.450434  | 262.385991  |  |
| min   | 15.000000  | 80.000000  | 100.000000 | 50.300000   |  |
| 25%   | 45.000000  | 100.000000 | 124.000000 | 253.300000  |  |
| 50%   | 60.000000  | 105.000000 | 131.000000 | 321.000000  |  |
| 75%   | 60.000000  | 111.000000 | 141.000000 | 384.000000  |  |
| max   | 300.000000 | 159.000000 | 184.000000 | 1860.400000 |  |
|       |            |            |            |             |  |

#### 2.3

Check if the data has null values. a. Replace the null values with the mean

```
# 2. 3 Check if the data has null values. a. Replace the null values with the mean

df.fillna(df.mean(), inplace=True)

print(df.isnull().any())
```

#### 2.3 Output

```
Duration False
Pulse False
Maxpulse False
Calories False
dtype: bool
```

#### 2.4

Select at least two columns and aggregate the data using: min, max, count, mean.

```
print("\n")

# 2. 4 Select at least two columns and aggregate the data using: min, max, count, mean.

print(df.agg({'Duration':['min','max','count','mean'],'Pulse':['min','max','count','mean']}))
```

#### 2.4 Output

```
Duration Pulse
min 15.000000 80.000000
max 300.000000 159.000000
count 169.000000 169.000000
mean 63.846154 107.461538
```

**2.5** Filter the dataframe to select the rows with calories values between 500 and 1000.

```
print("\n")

# 2. 5 Filter the dataframe to select the rows with calories values between 500 and 1000.

print(df.loc[(df['Calories']>500)&(df['Calories']<1000)])
```

# 2.5 Output

|     | Duration | Pulse | Maxpulse | Calories |  |
|-----|----------|-------|----------|----------|--|
| 51  | 80       | 123   | 146      | 643.1    |  |
| 62  | 160      | 109   | 135      | 853.0    |  |
| 65  | 180      | 90    | 130      | 800.4    |  |
| 66  | 150      | 105   | 135      | 873.4    |  |
| 67  | 150      | 107   | 130      | 816.0    |  |
| 72  | 90       | 100   | 127      | 700.0    |  |
| 73  | 150      | 97    | 127      | 953.2    |  |
| 75  | 90       | 98    | 125      | 563.2    |  |
| 78  | 120      | 100   | 130      | 500.4    |  |
| 90  | 180      | 101   | 127      | 600.1    |  |
| 99  | 90       | 93    | 124      | 604.1    |  |
| 103 | 90       | 90    | 100      | 500.4    |  |
| 106 | 180      | 90    | 120      | 800.3    |  |
| 108 | 90       | 90    | 120      | 500.3    |  |

## <u>2.6</u>

Filter the dataframe to select the rows with calories values > 500 and pulse < 100.

```
print("\n")

# 2. 6 Filter the dataframe to select the rows with calories values > 500 and pulse < 100.

print(df.loc[(df['Calories']>500)&(df['Pulse']<100)])
```

## 2.6 Output

|   |    | Duration | Pulse | Maxpulse | Calories |
|---|----|----------|-------|----------|----------|
| 6 | 5  | 180      | 90    | 130      | 800.4    |
| 7 | 0  | 150      | 97    | 129      | 1115.0   |
| 7 | 3  | 150      | 97    | 127      | 953.2    |
| 7 | 5  | 90       | 98    | 125      | 563.2    |
| 9 | 9  | 90       | 93    | 124      | 604.1    |
| 1 | 03 | 90       | 90    | 100      | 500.4    |
| 1 | 06 | 180      | 90    | 120      | 800.3    |
| 1 | 08 | 90       | 90    | 120      | 500.3    |
|   |    |          |       |          |          |

#### 2.7

Create a new "df\_modified" dataframe that contains all the columns from df except for "Maxpulse".

```
print("\n")

# 2. 7 Create a new "df_modified" dataframe that contains all the columns from df except for "Maxpulse".

# df_modified = df[['Duration'_\( \( \) 'Pulse'_\( \) 'Calories']]

# print(df_modified.head())
```

## 2.7 Output

|   |   | Duration | Pulse | Calories |  |
|---|---|----------|-------|----------|--|
| 5 | 0 | 60       | 110   | 409.1    |  |
| F | 1 | 60       | 117   | 479.0    |  |
|   | 2 | 60       | 103   | 340.0    |  |
|   | 3 | 45       | 109   | 282.4    |  |
| ' | 4 | 45       | 117   | 406.0    |  |
|   |   |          |       |          |  |

#### 2.8

Delete the "Maxpulse" column from the main df dataframe

```
# 2. 8 Delete the "Maxpulse" column from the main df dataframe

del df['Maxpulse']

print(df.head())
```

#### 2.8 Output

|   |   | Duration | Pulse | Calories |  |
|---|---|----------|-------|----------|--|
| • | 0 | 60       | 110   | 409.1    |  |
| 2 | 1 | 60       | 117   | 479.0    |  |
|   | 2 | 60       | 103   | 340.0    |  |
|   | 3 | 45       | 109   | 282.4    |  |
|   | 4 | 45       | 117   | 406.0    |  |
|   |   |          |       |          |  |

#### <u>2.9</u>

Convert the datatype of Calories column to int datatype.

```
# 2. 9 Convert the datatype of Calories column to int datatype.
print(df.dtypes)
print("\n")
df['Calories'] = df['Calories'].astype(np.int64)
print(df.dtypes)
```

## 2.9 Output

```
Duration int64
Pulse int64
Calories float64
dtype: object

Duration int64
Pulse int64
Calories int64
dtype: object
```

#### 2.10

Using pandas create a scatter plot for the two columns (Duration and Calories

```
print("\n")

# 2. 10 Using pandas create a scatter plot for the two columns (Duration and Calories).

print(df.plot.scatter(x='Duration'_xy='Calories'_xc='DarkBlue'))
```

#### 2.10 Output

```
AxesSubplot(0.125,0.11;0.775x0.77)
```

## **Question3:**

Python program to display the pue chart with different programming languages

## **Question3 Output**



# **Related Links:**

## **Source Code:**

https://github.com/VijayTarakaRamarao/ML/tree/main/Assignment2

## **Video Recording:**

https://github.com/VijayTarakaRamarao/ML/blob/main/Assignment2/ML\_Assignment2\_Recordin g.mp4