

Lectures 1 & 2: Basic Image Analysis

Dr Carole Twining
Tuesday 10th March 2020
11:15am – 13:15pm

MANCHESTER 1824 COMP61342

Basic Image Analysis

- Limited to simple 2D scenes
 - Adequately described as background and objects
- Good contrast between objects and background

staining or backlighting

Constrained applications

■ microscopic materials analysis

■ biomedical microscopy

industrial inspection

Sample Problem:

- Stained preparation, light microscope
- Chromosomes, with bands
- Measure banding pattern

Slide 4 of 64

Overview:

- Image Representation
 - What is an image?
- Grey-Level Processing
 - Improving the starting image
- Segmentation
 - Background pixels and object pixels
- Binary Image Processing
 - Improved background/object binary image
- Measurement
 - Object as connected region

Slide 6 of 64

The University of Manchester

Image Representation

Image Representation

- Isn't it totally obvious? We all know what an image is!
- Various ways of representing an image, depending on the task in hand
 - Image function
 - Landscape
 - Array of pixels
 - Image histogram
 - In another space entirely!

Slide 8

Image Representation

Array of Pixels:
Values and spatial relationship

Slide 10

MANCHESTER

COMP61342

Mancheste

Image Representation

 Sort pixels by grayscale value/colour and stack them up

Image histogram:
Kept values but lost spatial information

Slide 11

Image Representation

- 傅立叶分析 Fourier Analysis:
 - any signal can be decomposed into a sum of sinusoids (FFT)
 - low frequencies, general shape, high frequencies details

NOTE:

zero frequency removed by subtracting mean value across image from image before doing FFT

Slide 12

COMP61342, March 10th, Lectures 18

MANCHESTER 1824

Image Representation

- Frequency Space:
- Integrate over the image, weighted by complex exponentials

$$\mathcal{F}_I(u,v) \propto \iint I(x,y) \exp(iux + ivy) dxdy$$

■ Compact vector form:

$$\mathcal{F}_I(\underline{k}) \propto \iint I(\underline{r}) \exp(i\underline{k} \cdot \underline{r}) d\underline{r}$$

Inverse:

$$I(\underline{r}) \propto \iint \mathcal{F}_I(\underline{k}) \exp(-i\underline{k} \cdot \underline{r}) d\underline{k}$$

NOTE: $e^{i\theta} \equiv \cos\theta + i\sin\theta$ \Rightarrow $\mathcal{F}_{\mathbf{I}}$ complex, $\mathbf{I}(\underline{r})$ real

so $\mathcal{F}_{\mathbf{I}}(-\underline{k}) \equiv \overline{\mathcal{F}}_{\mathbf{I}}(\underline{k})$

Grey-Level Processing

MANCHESTER 1824 COMP61342

Grey-Level Processing

Restoration:

- What is noise, what is signal?
- Remove blurring

Enhancement

- Emphasize required features (e.g., linear features)
- Emphasize change (e.g., surveillance)

Grey-Level Processing: Overview

- Point processing
 - Transform global gray-level scale
- Neighbourhood Processing
 - Values and their context (local context & processing)
- Image Arithmetic
 - Using a sequence/pair of images
- Image Transforms
 - Images in a different space (frequency space)

Slide 16

The University of Manchester

Grey-Level Processing: Point Processing

Grey-Level Processing: Point Processing

- Point = Pixel
- Transforms image based on single pixel value alone: position

- Various choices for monotonic function f(i)
 - Increase/decrease/stretch brightness and contrast
 - lacksquare Gamma correction, power law : $f(i)=i^{\gamma}$
 - Histogram matching between images
 - Histogram equalization

Slide 18

MANCHESTER 1824

COMP61342

Point Processing: Histogram Equalisation

- Re-assign colours, keep ordering (light to dark)
- Increase contrast
- n(i): no of pixels with colour i,

N: Total number

New Colour:
$$f(i) = \frac{1}{N} \sum_{j \le i} n(j)$$

f(i) = 0.75,75% darker than this

Point Processing: Histogram Equalisation

Slide 20

MANCHESTER 1824

COMP61342

Grey-Level Processing: Neighbourhood Processing

MANCHESTER 1824 COMP61342

Neighbourhood Processing

single black pixel

Noisy dark area

Just noise

- Consider a single pixel value in context of neighbours
- Neighbourhood (e.g. 3 x 3), structuring element (SE)
- Two methods:
 - Convolution
 - Rank Filtering

Aside: Context in Human Vision

Slide 24

Convolution: 2D

g(a,b)		
(-1,-1)	g(0,-1)	g(1,-1)
g(-1,0)	g(0,0)	g(1,0)
g(-1,1)	g(0,1)	g(1,1)
g(-1,1)	g(0,1)	g(1,1)

$$\tilde{I}(x,y) = \frac{\sum\limits_{a}\sum\limits_{b}g(a,b)I(x+a,y+b)}{\sum\limits_{c}\sum\limits_{e}g(c,e)}$$

Slide 26

Convolution: 2D

- Asterisk notation:
 - (but NOT in MATLAB!) $ilde{
 m I}={
 m g}*{
 m I}$
- Discrete form: $\tilde{I}(x,y) = \frac{\sum\limits_{a}\sum\limits_{b}g(a,b)I(x+a,y+b)}{\sum\limits_{c}\sum\limits_{e}g(c,e)}$
- Integral form: $\tilde{I}(x,y) = \frac{\iint g(a,b) I(x+a,y+b) dadb}{\iint g(c,e) dcde}$
- Integral form (vector notation)

$$\underline{r} = (\mathbf{x}, \mathbf{y}), \ \tilde{\mathbf{I}}(\underline{r}) = \frac{\iint \mathbf{g}(\underline{z})\mathbf{I}(\underline{r} + \underline{z})\mathbf{d}\underline{z}}{\iint \mathbf{g}(\underline{y})\mathbf{d}\underline{y}}$$

Slide 28

OMP61342, March 10th, Lectures 1& 2

MANCHESTER 1824 COMP61342

Convolution: Common Kernels

- Gaussian: $g(x,y) = A \exp(-(x^2 + y^2)/2\sigma^2) \sigma$ width
 - Smoothing kernel
 - Any unimodal kernel smoothes the image
- Difference of Gaussian (DoG)

$$g(x, y) = A \exp(-(x^2 + y^2)/2\sigma^2) - B \exp(-(x^2 + y^2)/2\sigma^2)$$

- Laplacian (or Laplacian of Gaussian)
 - similar shape to DoG, second-derivative filter

Give ridges/troughs at edge positions

Convolution Theorem

 $\begin{array}{c} \text{NOTE:} \\ e^{i\theta} \equiv \cos\theta + i\sin\theta \\ \Rightarrow \ \mathcal{F}_{\mathbf{I}} \ \text{complex,} \ \mathbf{I}(\underline{r}) \ \text{real} \\ \text{so} \ \mathcal{F}_{\mathbf{I}}(-\underline{k}) \equiv \overline{\mathcal{F}}_{\mathbf{I}}(\underline{k}) \end{array}$

Frequency space (see Image Representation):

$$\mathcal{F}_I(\underline{k}) \propto \iint I(\underline{r}) \exp(i\underline{k} \cdot \underline{r}) d\underline{r}$$

- Look at it in frequency space or real space:
 - convolution in real space ⇔ multiplication in frequency space

$$\mathbf{g} * \mathbf{I} \iff \mathcal{F}_{\mathbf{g}} \times \mathcal{F}_{\mathbf{I}}, \quad \mathbf{g} * \mathbf{I} \equiv \mathcal{F}^{-1} \left(\mathcal{F}_{\mathbf{g}} \times \mathcal{F}_{\mathbf{I}} \right)$$

■ convolution in frequency space ⇔ multiplication in real space

$$\mathcal{F}_{g} * \mathcal{F}_{I} \quad \Longleftrightarrow \quad g \times I, \quad \mathcal{F}_{g} * \mathcal{F}_{I} \equiv \mathcal{F} \left(g \times I \right)$$

Slide 30

COMP61342, March 10th, Lectures 18

MANCHESTER 1824 COMP61342

Convolution Theorem: Gaussian

Convolution Theorem: Difference of Gaussians

 $g(x, y) = A \exp(-(x^2 + y^2)/2\sigma^2) - B \exp(-(x^2 + y^2)/2\sigma^2)$

- band-pass filter, enhances edges
- Laplacian and LoG similar

signal at edges

Slide 32

MANCHESTER 1824

COMP61342

Convolution Theorem: Laplacian of Gaussian & Difference of Gaussians

Gaussian and FT of Gaussian

Convolution Theorem

$$\mathbf{g}(\mathbf{x}) \propto \mathrm{e}^{-eta \mathbf{x^2}}, \mathcal{F}_{\mathbf{g}}(\mathbf{k}) \propto \mathrm{e}^{-lpha \mathbf{k^2}} \mathbf{g} * \mathbf{I} \equiv \mathcal{F}^{-1} \left(\mathcal{F}_{\mathbf{g}} imes \mathcal{F}_{\mathbf{I}}
ight)$$

Laplacian of gaussian:

$$\begin{array}{c} \frac{\partial^2}{\partial x^2} \left(\int e^{-ikx} e^{-\alpha k^2} \mathcal{F}_I(k) dk \right) \\ \text{Laplacian} & \text{Inverse FT} \quad \text{Gaussian} & \text{FT of Image} \end{array}$$

Do the derivative:

- LoG: difference of infinitesimally-separated gaussians
- DoG: difference of finitely-separated gaussians

Neighbourhood Processing: Rank Filtering

MANCHESTER 1824 COMP61342

Neighbourhood Processing: Rank Filtering

- Output is rank function of neighbourhood:
 - median (smoothes and preserves edges)
 - max and/or min (mathematical morphology)
 - rank number (seven of nine)
- Harder to analyse than convolution

Noisy Image

3x3 mean

3x3 median

Rank Filtering & Edges: Example

Smooth Mean:

sharp **Median:**

2/3 + 1/3

6 8 3

1/3 + 2/3

& 3

3x3 SE

Slide 36

MANCHESTER

COMP61342

Neighbourhood Processing: Rank Filtering

- **Rank Number**
 - 3 x 3 structure element

Original

maximum

7th of nine

blocky, impressionistic effect

Grey-Level Processing: Image Arithmetic

MANCHESTER 1824 COMP61342

Image Arithmetic: Addition

- Take average over images in sequence
- Reduces noise

Noisy 1

Noisy 2

Image Arithmetic: Subtraction

- Take difference:
 - Negative values?Shift and scale to get back to [0:255]
 - Or take absolute difference
- Static background, detects change
- Object, shadows & reflections in realworld scenes

Slide 40

MANCHESTER 1824 COMP61342

Image Arithmetic: Subtraction

- Digital subtraction angiography (DSA)
- Pre-study radiograph
- Contrast agent injection
- Post-contrast radiograph
- Difference

Introduction to Segmentation

MANCHESTER 1824

COMP61342

Segmentation:

Task: label each pixel as either object or background

- Grayscale image → binary label image
- Thresholding
 - simple, high-contrast images
- Adaptive thresholding
 - simple images with shaded background
- Advanced Segmentation
 - open research problem

Segmentation: Thresholding

Slide 44

MANCHESTER 1824

COMP61342

Segmentation: Thresholding, Histogram

Segmentation: Thresholding

Varying the Threshold

Threshold 110

Threshold 140

- Need to choose threshold with care,
- How to improve the binary image

Slide 46

MANCHESTER

COMP61342

Segmentation: Adaptive Thresholding

Original Image

Smoothing

Threshold

Estimate of varying background

Adaptive thresholding works provided you can obtain reasonable estimate of background shading

Binary Processing

MANCHESTER 1824

COMP61342

Binary Processing

Aim: Improved binary image

- Restoration or enhancement
- Neighbourhood Processing:
 - binary morphology (erosion & dilation)
 - skeletonization
- Image Logic:
 - combining binary images for more complicated processing

Binary Morphology: Erosion

- Binary object:
- Sweep SE along boundary, and delete region covered

Slide 50

MANCHESTER

COMP61342

The University of Mancheste

Binary Morphology: Dilation

- Structure element (centre marked):
- Binary object:
- Reverse of erosion
- Sweep SE along boundary, and add region covered

Binary Morphology: Dilation, Implementation via Neighbourhood Processing

- Pixellated structuring element
- Pixellated image object
- Scan SE over image, and add pixel at defined centre if any object pixel lies within SE
- Object erosion is dilation of background, so similar

Slide 52

MANCHESTER

COMP61342

Binary Morphology: Closing & Opening

Closing: reconnection

Opening: disconnection

Erode

Dilate

The University

Image Logic:

Want dark object within lighter grey object

Slide 54

MANCHESTER

COMP61342

Binary Morphology: Skeletonisation

- Erosion that preserves connections
- Rutovitz Crossing Number: (3x3 SE)
 - loop and half the number of times value changes

- Remove centre pixel if 1: nibble at edge, but leave crossings
- Repeat until no further change

Binary Morphology: Skeletonisation

Feng Zhao and Xiaoou Tang

PREPROCESSING FOR SKELETON-BASED FINGERPRINT MINUTIAE EXTRACTION

CISST'02 International Conference

Slide 56

COMP61342

The University of Manchester

Chromosome Results:

Slide 57

The University

Measurement

MANCHESTER 1824

COMP61342

Simple Measurements on Objects

- Extracted objects as above
- Representing Objects:
 - Boundary representation
 - Area representation
- Simple geometric measurements
 - Area
 - Perimeter
 - Circularity

Representing Objects: Boundary

Boundary Representation: chain code

Pick a set of directions

chain code: 4 3 0 1 2 3 3 6 4 5 7 5

Slide 60

MANCHESTER 1824 COMP61342

Representing Objects: Boundary

Positions of boundary pixels: 2N times (one from L)

L: side length of image

- Chain code: N times (one of eight)
- OR: ~1.5 N times (one of four)

Representing Objects: Area

Area Representation: Chord List

chord (x_i,y_i,l_i): start position and length

Chord list represents the shape of the pixelated object

Much more efficient representation of data compared to storing position of every pixel within the region!

Slide 62

MANCHESTER

COMP61342

Measurement: Area

List of all boundary points (derived from chord list)

- Trapezoidal rule Area = $\frac{(y+\tilde{y})(x-\tilde{x})}{2}$
- Take difference to find area of strip of shape

Measurement: Perimeter

- 8-piece Chain Code:
- Diagonals are longer!

$$P = N_{even} + \sqrt{2}N_{odd}$$

- 4-piece chain code: P = N, all equal length
- Circularity: $C = \frac{4\pi \text{Area}}{P^2}$,
- C=1 for circle, C<1 for anything else</p>

Slide 64

MANCHESTER 1824 COMP61342

The University of Manchester

Summary

Basic Image Analysis:

- Mostly straightforward and fairly intuitive
- Can give good results on suitable images
- Have to grasp basics before can move on to more sophisticated methods