Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller University of British Columbia Statistics Seminar October 2025

The basic problem

We have a survey population, for whom we observe:

- Covariates \mathbf{x} (e.g. race, gender, zip code, age, education level)
- Responses y (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

Observe
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, N_S$

Observe \mathbf{x}_j for $j = 1, \dots, N_T$

¹Photo copyright: Mark Taylor / naturepl.com

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different, maybe leading to bias. 1

¹Photo copyright: Mark Taylor / naturepl.com

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different, maybe leading to bias. 1

How can we use the covariates to say something about the target responses?

¹Photo copyright: Mark Taylor / naturepl.com

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target y_j . Let $Y_{\mathcal{S}}=\{y_1,\ldots,y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of \boldsymbol{x} may be different in the survey and target.

,

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting

► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)

Bayesian hierarchical modeling (MrP)

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}^{\mathrm{WGT}}(Y_{\mathcal{S}}) = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} [y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$

,

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}^{ ext{WGT}}(Y_{\mathcal{S}}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \triangleright Dependence on y_i is clear

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})}[y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}^{\mathrm{WGT}}(Y_{\mathcal{S}}) = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \blacktriangleright Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Frequentist variability
 - · Regressor balance
 - · Partial pooling

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$
 - Black box

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}^{\mathrm{WGT}}(Y_{\mathcal{S}}) = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \blacktriangleright Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Frequentist variability
 - · Regressor balance
 - · Partial pooling

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

Black box

← Today, we'll open the box and provide MrP analogues of all these diagnostics

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a weighting estimator when \hat{y} is computed with OLS:

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\intercal} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing weighting and MrP focus on such linear models. ²

 $^{^2}$ For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a weighting estimator when \hat{y} is computed with OLS:

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\mathsf{T}} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing weighting and MrP focus on such linear models. ² But what if you use a non–linear link function? Or a hierarchical model?

"It would also be desirable to use nonlinear methods ... but then it would seem difficult to construct even approximately equivalent weights. Weighting and fully nonlinear models would seem to be completely incompatible methods." — (Gelman 2007a)

²For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta})$.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_S \mapsto m(\mathbf{x}_i^\mathsf{T} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^\intercal \hat{\theta})$ can be approximately linear.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta})$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \end{split} \tag{Law of large numbers)}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \qquad \text{(Law of large numbers)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \text{(Law of large numbers)} \\ &= \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i y_i \qquad \text{(Property of exponential family MLEs)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\text{MrP}}}_{\alpha \, \mathsf{Y} \, \mathbf{x}_i} y_i + \text{Small error}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small} \ \mathsf{error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small error}$$

Key idea (informal)

If $\hat{\mu}^{\text{MrP}}(Y_S)$ is approximately linear, then $w_i^{\text{MrP}} \approx N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_S)}{\partial y_i}$.

³For MLEs, $\frac{\partial \hat{\mu}^{MrV}(Y_S)}{\partial y_i}$ is given by the implicit function theorem. (Krantz and Parks 2012; **G.**, Stephenson, et al. 2019)

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small error}$$

Key idea (informal)

If
$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})$$
 is approximately linear, then $w_i^{\text{MrP}} \approx N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$.

Note: The derivatives w_i^{MrP} now have two potentially distinct interpretations:

- Equivalent weights: A characterization of $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ for diagnostics
- Implicit weights: An estimate of $\mathcal{P}_T(\mathbf{x})/\mathcal{P}_S(\mathbf{x})$

³For MLEs, $\frac{\partial \hat{\mu}^{MrP}(Y_S)}{\partial y_i}$ is given by the implicit function theorem. (Krantz and Parks 2012; **G.**, Stephenson, et al. 2019)

- Suppose the model is $m(\mathbf{x}^\mathsf{T}\theta) = \mathrm{Logistic}(\mathbf{x}^\mathsf{T}\theta).$
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey \, data})} \left[m(\mathbf{x}_j^\intercal \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

⁴Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^\mathsf{T}\theta) = \mathrm{Logistic}(\mathbf{x}^\mathsf{T}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_{\mathcal{S}}\mapsto \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is even approximately **globally** linear.

But can still compute and analyze $w_i^{\text{MrP}}:=N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\mathrm{MrP}} := N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\operatorname{Cov}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data)}} \left(m(\mathbf{x}_j^\intercal \theta), \theta^\intercal \mathbf{x}_i \right)}_{\mathrm{Can \ estimate \ without \ rerunning \ MCMC!}}$$

⁴Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^\intercal \theta) \right].$

No reason to think $Y_S \mapsto \hat{\mu}^{\mathrm{MrP}}(Y_S)$ is even approximately **globally** linear.

But can still compute and analyze $w_i^{\text{MrP}}:=N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\mathrm{MrP}} := N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\operatorname{Cov}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data)}} \left(m(\mathbf{x}_j^\intercal \theta), \theta^\intercal \mathbf{x}_i \right)}_{\mathrm{Can \ estimate \ without \ rerunning \ MCMC!}}$$

The derivatives w_i^{MrP} again have two potentially distinct interpretations:

- Locally equivalent weights: A characterization of $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ for diagnostics
- Locally implicit weights: An estimate of $\mathcal{P}_T(\mathbf{x})/\mathcal{P}_S(\mathbf{x})$

⁴Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^\intercal \theta) \right].$

No reason to think $Y_{\mathcal{S}}\mapsto \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is even approximately **globally** linear.

But can still compute and analyze $w_i^{\text{MrP}}:=N_S rac{\partial \hat{\mu}^{\text{MrP}}(Y_S)}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\text{MrP}} := N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\text{Cov}_{\mathcal{P}(\theta | \text{Survey data})} \left(m(\mathbf{x}_j^{\mathsf{T}}\theta), \theta^{\mathsf{T}} \mathbf{x}_i \right)}_{\text{Can estimate without rerunning MCMC!}}$$

The derivatives w_i^{MrP} again have two potentially distinct interpretations:

- Locally equivalent weights: A characterization of $Y_{\mathcal{S}} \mapsto \hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}})$ for diagnostics
- Locally implicit weights: An estimate of $\mathcal{P}_T(\mathbf{x})/\mathcal{P}_S(\mathbf{x})$

This talk will focus only on locally equivalent weights. (Implicit weights is ongoing work!)

⁴Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.

Locally equivalent weights for hierarchical logistic regression MrP

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

MrP locally equivalent weights (MrPlew)

For new data $\tilde{Y}_{\mathcal{S}}$, form a **MrP locally equivalent weighting**:

$$\hat{\mu}^{\mathrm{MrP}}(\tilde{Y}_{\mathcal{S}}) pprox \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) + \sum_{i=1}^{N_S} w_i^{\mathrm{MrP}}(\tilde{y}_i - y_i)$$

Our task is to rigorously show that even such local weights can be meaningfully used diagnostically in the same ways we use global weights.

References i

B., Eli, Avi F., and Erin H. (2021). Multilevel calibration weighting for survey data. arXiv: 2102.09052 [stat.ME].

Chattopadhyay, A. and J. Zubizarreta (2023). "On the implied weights of linear regression for causal inference". In: Biometrika 110.3, pp. 615–629.

Diaconis, P. and D. Freedman (1986). "On the consistency of Bayes estimates". In: The Annals of Statistics, pp. 1-26.

Efron, B. (2015). "Frequentist accuracy of Bayesian estimates". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 77.3, pp. 617–646.

G., T. Broderick, and M. I. Jordan (2018). "Covariances, robustness and variational bayes". In: Journal of machine learning research 19.51.

G., W. Stephenson, et al. (2019). "A swiss army infinitesimal jackknife". In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1139–1147.

Gelman, A. (2007a). "Rejoinder: Struggles with survey weighting and regression modelling". In: Statistical Science 22.2, pp. 184-188.

(2007b). "Struggles with survey weighting and regression modeling". In.

Gustafson, P. (1996). "Local sensitivity of posterior expectations". In: The Annals of Statistics 24.1, pp. 174–195.

Krantz, S. and H. Parks (2012). The Implicit Function Theorem: History, Theory, and Applications. Springer Science & Business Media.