7 Irreduzible affine algebraische Mengen

Lemma 17. Eine abgeschlossene Teilmenge $Z \subseteq \mathbb{A}^n(k)$ ist genau dann irreduzibel, wenn $I(Z) \subseteq k[\underline{T}]$ ein Primideal ist. Insbesondere ist $\mathbb{A}^n(k)$ irreduzibel.

Beweis. Z irreduzibel ist äquivalent zu

$$(Z = \underbrace{V(\mathfrak{a})}_{\bigcap_{i}V(f_{i})} \cup \underbrace{V(\mathfrak{b})}_{\bigcap_{j}V(g_{j})} \Rightarrow V(\mathfrak{a}) = Z \text{ oder } V(\mathfrak{b}) = Z).$$

$$\Leftrightarrow \forall f, g \in k[\underline{T}]: \ V(fg) = V(f) \cup V(g) \supseteq Z: \ V(f) \supseteq Z \text{ oder } V(g) \supseteq Z.$$

$$(*) \Leftrightarrow \forall f, g \in k[\underline{T}]: \ fg \in I(V(fg)) \subseteq I(Z): \ f \in I(Z) \text{ oder } g \in I(Z).$$

$$\Leftrightarrow I(Z) \text{ ist Primideal.}$$

(*):
$$V(I(Z)) = Z$$
, $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.

Bemerkung 18. Die Korrespondenz aus Korollar 11 schränkt sich ein zu

{irred. abg. Teilmengen $\subseteq \mathbb{A}^n$ } $\stackrel{1:1}{\leftrightarrow}$ {Primideale in $k[\underline{T}]$ }