(12)

# EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 17.07.2002 Bulletin 2002/29

(21) Application number: 00966408.7

(22) Date of filing: 11.10.2000

(51) Int CI.7: **C07D 403/04**, C07D 401/14, C07D 403/14, C07D 405/14, C07D 409/14, C07D 417/14, C07D 491/056, A61K 31/506, A61K 31/5377, A61P 43/00, A61P 9/10, A61K 31/55, A61P 9/04, A61P 9/12, A61P 37/08, A61P 11/06, A61P 13/12, A61P 25/28, A61P 37/04, A61P 27/02, A61P 15/00

(86) International application number: PCT/JP00/07048

(11)

(87) International publication number: WO 01/27105 (19.04.2001 Gazette 2001/16)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 12.10.1999 JP 28986899

(71) Applicant: Takeda Chemical Industries, Ltd. Osaka-shi, Osaka 541-0045 (JP)

(72) Inventors:MIWA, TetsuoKobe-shi Hyogo 658-0022 (JP)

 YAMAMOTO, Mitsuo Nishinomiya-shi Hyogo 669-1133 (JP)

DOI, Takayuki
 Izumi-shi Osaka 594-0013 (JP)

 TARUI, Naoki Nara-shi Nara 631-0061 (JP)

(74) Representative: Lewin, John Harvey
Takeda Patent Office,
11-12 Charles II Street
London SW1Y 4QU (GB)

# (54) PYRIMIDINE-5-CARBOXAMIDE COMPOUNDS, PROCESS FOR PRODUCING THE SAME AND USE THEREOF

(57) A compound of the formula

wherein  $R_1$  is a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), which heterocycle is attached by a secondary nitrogen atom constituting the heterocycle; X is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen, Y is a bond or a  $C_{1.5}$  alkylene group,  $R_2$  is (1) a hydrogen atom, (2) a hydroxy group, (3) a  $C_{1.5}$  alkoxy group, (4) a  $C_{1.5}$  alkylthio group, (5) a carbocycle having 3 to 15 carbon atoms or (6) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s), provided that when Y is a bond,  $R_2$  is a carbocycle having 3 skeleton consisting of 3 to 15 carbon atoms or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and; one

of R3 and R4 is a hydrogen atom or a group of the formula: -Z-R<sub>5</sub> (Z is a bond or C<sub>1-10</sub> alkylene group optionally having substituent(s) and R<sub>5</sub> is (1) a hydrogen atom, (2) a hydroxy group, (3) a C<sub>1-5</sub> alkoxy group, (4) a nitrile group, (5) a C<sub>1-5</sub> alkoxy-carbonyl group, (6) a carboxyl group, (7) a carbamoyl group, (8) a (mono or di-C1-5 alkyl)carbamoyl group, (9) an amino group, (10) a (di or mono-C<sub>1-5</sub> alkyl)amino group, (11) a (C<sub>1-5</sub> alkoxy-carbonyl)amino group, (12) a C<sub>1-5</sub> alkylthio group, (13) a carbocycle having 3 to 15 carbon atoms or (14) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s)); the other is a group of the formula: -Z-R<sub>5</sub> (Z and R<sub>5</sub> are as defined above); and R<sub>3</sub> and R4 may form, together with the adjacent nitrogen atom, a heterocycle having a skeleton consisting of 3 to 15 atoms, which heterocycle is attached by a secondary nitrogen atom constituting the heterocycle, wherein the above-mentioned heterocycle and a carbocycle having

3 to 15 carbon atoms are each optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl)amino, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl) (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkylthio, nitrile, nitro, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkylcarbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl, or a salt thereof or a prodrug thereof have a superior cGMP specific phosphodiesterase (PDE) inhibitory activity, and can be used as an agent for the prophylaxis or treatment of cardiovascular diseases such as angina pectoris, heart failure, cardiac infarction, hypertension, arteriosclerosis and the like, allergic diseases such as asthma, or disorders of male or female genital function and the like.

## Description

#### Technical field

[0001] The present invention relates to a novel pyrimidine-5-carboxamide compound or a salt thereof, a production method and a pharmaceutical product containing the same. The pyrimidine-5-carboxamide compound and a salt thereof of the present invention have a potent and selective cyclic guanosine-3',5'-monophosphoric acid (hereinafter cGMP) phosphodiesterase (hereinafter PDE) inhibitory activity, and are useful as an agent for the prophylaxis or therapy of a disease for which its action is effective.

#### **Background Art**

10

15

20

25

35

40

45

50

55

[0002] cGMP is biosynthesized from guanosine triphosphate (GTP) by the action of guanylate cyclase and metabolized to 5'-GMP by the action of cGMP-PDE, during which cGMP plays various roles as a secondary transmitter in cellular signal transduction in the body. Particularly the action of cGMP, which is of critical importance in the functional modulation of cardiovascular system, is well known. Therefore, inhibition of the action of cGMP-PDE leads to the prophylaxis or treatment of the diseases caused by the promotion of metabolism of cGMP. Examples of such diseases include angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases, disorders of male or female genital function and the like.

[0003] There are a number of reports on a compound having a PDE inhibitory activity (e.g., WO9853819 and references cited therein). However, only a small number of reports deal with a compound having a monocyclic pyrimidine skeleton and showing a PDE inhibitory activity, which are limited to JP-A-2-295978, JP-A-3-145466, JP-A-7-89958, Korean J. of Med. Chem., vol. 8, p. 6 (1998) and the like.

[0004] PDE is known to include at least 7 isoenzymes [e.g., Annual Reports in Medicinal Chemistry, vol. 31, p. 61 (1996), Academic Press, San Diego]. Of those isoenzymes, PDE I, II, III, IV and V are widely distributed in the body. It is well known that inhibition of plural isoenzymes results in unpreferable occurrence of side effects.

[0005] It is therefore an object of the present invention to provide a potent and selective PDE inhibitor.

#### 30 Disclosure Of Invention

[0006] For the purpose of achieving the above-mentioned object, the present inventors have synthesized various compounds and succeeded in creating a compound having a novel structure represented by the formula (I) and found that the compound has a potent and selective PDE inhibitory activity, which resulted in the completion of the present invention.

[0007] Accordingly, the present invention provides

#### [1] a compound of the formula

$$R_4$$
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 

#### wherein

R<sub>1</sub> is a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), which heterocycle is attached by a secondary nitrogen atom constituting the heterocycle;

X is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom

- (s) or a sulfur atom optionally oxidized with 1 or 2 oxygen,
- Y is a bond or a C<sub>1-5</sub> alkylene group,
- R<sub>2</sub> is (1) a hydrogen atom, (2) a hydroxy group, (3) a C<sub>1-5</sub> alkoxy group, (4) a C<sub>1-5</sub> alkylthio group, (5) a carbocycle having 3 to 15 carbon atoms or (6) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s),

provided that when Y is a bond,  $R_2$  is a carbocycle having 3 to 15 carbon atoms or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and;

one of R<sub>3</sub> and R<sub>4</sub>

5

10

15

20

25

30

35

40

45

50

55

is a hydrogen atom or a group of the formula: -Z-R $_5$  (Z is a bond or C $_{1.10}$  alkylene group optionally having substituent(s) and R $_5$  is (1) a hydrogen atom, (2) a hydroxy group, (3) a C $_{1.5}$  alkoxy group, (4) a nitrile group, (5) a C $_{1.5}$  alkoxy-carbonyl group, (6) a carboxyl group, (7) a carbamoyl group, (8) a (mono or di-C $_{1.5}$  alkyl)carbamoyl group, (9) an amino group, (10) a (di or mono-C $_{1.5}$  alkyl)amino group, (11) a (C $_{1.5}$  alkoxy-carbonyl)amino group, (12) a C $_{1.5}$  alkylthio group, (13) a carbocycle having 3 to 15 carbon atoms or (14) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s));

the other R<sub>3</sub> and R<sub>4</sub> is a group of the formula:  $-Z-R_5$  (Z and  $R_5$  are as defined above); and may form, together with the adjacent nitrogen atom, a heterocycle having a skeleton consisting of 3 to 15 atoms, which heterocycle is attached by a secondary nitrogen atom constituting the heterocycle, wherein the above-mentioned heterocycle and a carbocycle having 3 to 15 carbon atoms are each optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkyl-carbonyl) amino, ( $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

or a salt thereof,

[2] the compound of [1], wherein, when Z is a  $C_{2-10}$  alkylene group optionally having substituent(s),  $R_5$  is a hydrogen atom, a hydroxy group, a  $C_{1-5}$  alkoxy group, a nitrile group, a  $C_{1-5}$  alkoxy-carbonyl, a carboxyl group, a carbamoyl group, a (mono or di- $C_{1-5}$  alkyl)carbamoyl group, an amino group, a (di or mono- $C_{1-5}$  alkyl)amino group, a ( $C_{1-5}$  alkoxy-carbonyl)amino group, a  $C_{1-5}$  alkylthio group, a carbocycle having 3 to 15 carbon atoms, or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and, when Z is a methylene group optionally having substituents,  $R_5$  is a nitrile group, a  $C_{1-5}$  alkoxy-carbonyl group, a carboxyl group, a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and,

- [3] the compound of [1], wherein X is a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen,
- [4] the compound of [1], wherein Y is a C<sub>2-5</sub> alkylene group,
- [5] the compound of [1], wherein Y is a  $C_{1-5}$  alkylene group,  $R_2$  is a hydroxy group, a  $C_{1-5}$  alkoxy group or a  $C_{1-5}$  alkylthio group,
- [6] the compound of [1], wherein  $R_5$  is (1) a non-aromatic carbocycle having 3 to 15 carbon atoms or (2) a non-aromatic heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s),
- [7] the compound of [1], wherein Z is a  $C_{2-10}$  alkylene group optionally having substituent(s), and  $R_5$  is a hydroxy group, a nitrile group, a  $C_{1-5}$  alkoxy-carbonyl, a carboxyl group, a carbamoyl group, a (mono or di- $C_{1-5}$  alkyl) carbamoyl group, a ( $C_{1-5}$  alkoxy-carbonyl)amino group or a  $C_{1-5}$  alkylthio group,
- [8] the compound of [1], wherein Z is a methylene group optionally having substituent(s), and  $R_5$  is a nitrile group, a  $C_{1-5}$  alkoxy-carbonyl group, a carboxyl group, a carbamoyl group or a (mono or di- $C_{1-5}$  alkyl)carbamoyl group, [9] the compound of [1], wherein the substituent(s) of the heterocycle and the carbocycle having 3 to 15 carbon atoms is selected from the group consisting of  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-3}$  alkylenedioxy, hydroxy,  $(C_{1-5}$  alkoxy-carbonyl)amino,  $(C_{1-5}$  acyl)amino,  $(C_{1-5}$  acyl)amino,  $(C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,
- [10] the compound of [1], wherein  $R_1$  is a heterocycle having a skeleton consisting of 5 to 12 atoms including 1 or 2 nitrogen atom(s) and optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  alkyl-carbonyloxy, oxo, thi-

oxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl) sulfamoyl,

[11] the compound of [1], wherein  $R_1$  is a heterocycle having a skeleton consisting of 8 to 12 atoms including a nitrogen atom and optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

[12] the compound of [1], wherein  $R_1$  is 1-indolinyl optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl) amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  acyl)( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

[13] the compound of [1], wherein  $R_2$  is a carbocycle having 5 to 7 carbon atoms or a heterocycle having a skeleton consisting of 5 to 7 atoms including 1 or 2 heteroatom(s), which heterocycle is optionally substituted by substituent (s) selected from the group consisting of  $C_{1.8}$  alkyl,  $C_{2.8}$  alkenyl,  $C_{2.8}$  alkynyl,  $C_{7.16}$  aralkyl,  $C_{3.8}$  cycloalkyl,  $C_{3.8}$  cycloalkenyl,  $C_{6.14}$  aryl,  $C_{1.8}$  alkoxy,  $C_{1.3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1.5}$  alkyl) amino, ( $C_{1.5}$  alkoxy-carbonyl)amino, ( $C_{1.5}$  acyl)amino, ( $C_{1.5}$  alcyl)amino,  $C_{1.5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1.6}$  acyl group, sulfamoyl and (di or mono- $C_{1.5}$  alkyl) sulfamoyl,

[14] the compound of [1], wherein  $R_2$  is phenyl optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl) amino, ( $C_{1-5}$  alkoxy-carbonyl) amino, ( $C_{1-5}$  acyl) amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

[15] the compound of [1], wherein X is an oxygen atom or NH, and Y is a C<sub>1-3</sub> alkylene group,

[16] the compound of [1], wherein X is an oxygen atom, and Y is a methylene group,

[17] the compound of [1], wherein R<sub>3</sub> is a hydrogen atom and R<sub>4</sub> is a group of the formula: -Z-R<sub>5</sub>,

[18] the compound of [17], wherein Z is a bond or a  $C_{1-4}$  alkylene group,  $R_5$  is a carbocycle having 5 to 8 carbon atoms or a heterocycle having a skeleton consisting of 5 to 11 atoms having 1 to 5 heteroatom(s), which heterocycle is optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

[19] the compound of [1], wherein R<sub>1</sub> is a group selected from

5

10

15

20

25

30

35

40

45

50

Me 
$$\rightarrow$$
 OMe  $\rightarrow$  OM

7

MeS ~

[20] the compound of [1], wherein  $\mathbf{R}_1$  is a group selected from

, -X-Y- $R_2$  is a group selected from

, and -NR3R4 is a group selected from

[21] the compound of [1], wherein R<sub>1</sub> is a group selected from the group consisting of

, -X-Y-R<sub>2</sub> is a group selected from the group consisting of

, and -NR<sub>3</sub>R<sub>4</sub> is a group selected from the group consisting of

[22] (i) (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (ii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, (iii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (iv) (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (v) 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (vi) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (vii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, (ix) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-0-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-indol-1-yl)-0-1H-i

#### EP 1 223 170 A1

2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (xi) 4-[(3-chloro-4-methoxybenzyl) oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, 4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (xiii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xiv) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xv) 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-ox-(xvi) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy] oazepanyl]-5-pyrimidinecarboxamide. -N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xvii) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2.3-dihydro-1Hindol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xviii) 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl}-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xix) 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xx) 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxi) 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxii) 2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxiii) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1Hindol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxiv) 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide or (xxv) 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, [23] a prodrug of the compound of [1],

[24] a production method of the compound of [1], which comprises reacting a compound of the formula

$$\begin{array}{c}
L_1 \downarrow O \\
\downarrow N \downarrow N \\
R_1
\end{array}$$
(II)

wherein L<sub>1</sub> is a leaving group and other symbols are as defined in [1], or a salt thereof, with an amine compound

of the formula

5

10

15

20

25

30

35

40

45

55

wherein R<sub>3</sub> and R<sub>4</sub> are as defined in [1], [25] a production method of the compound of [1], which comprises reacting a compound of the formula

wherein L<sub>2</sub> is a leaving group and other symbols are as defined in [1], or a salt thereof, with a compound of the formula

# R<sub>1</sub>-H

wherein  $R_1$  is as defined in [1], [26] a production method of the compound of [1], which comprises reacting a compound of the formula

10

5

wherein  $L_3$  is a leaving group and other symbols are as defined in [1], or a salt thereof, with a compound of the formula

R<sub>2</sub>-Y-X<sub>1</sub>-H

15

wherein  $R_2$  and Y are as defined in [1] and  $X_1$  is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom, and if desired, subjecting the resulting compound to oxidation

20

[27] a production method of the compound of [1], which comprises reacting a compound of the formula

25

30

wherein symbols are as defined in [1],  $X_1$  is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom, or a salt thereof, with a compound of the formula

35

wherein  $R_2$  and Y are as defined in [1] and  $L_4$  is a leaving group, and if desired, subjecting the resulting compound to oxidation,

40

[28] a pharmaceutical composition comprising a compound of the formula

45

55

50

wherein symbols are as defined in [1], or a salt thereof or a prodrug thereof,

[29] the pharmaceutical composition of [28], which is a cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase (particularly, cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase V) inhibitor,

#### EP 1 223 170 A1

[30] the pharmaceutical composition of [28], which is a composition for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function,

[31] a method for inhibiting cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase, which comprises administering an effective amount of the compound of [1] or a prodrug thereof to a mammal,

[32] a method for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function in a mammal, which comprises administering an effective amount of the compound of [1] or a prodrug thereof to the mammal,

[33] use of the compound of [1] or a prodrug thereof for the production of a cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase inhibitor,

[34] use of the compound of [1] or a prodrug thereof for the production of an agent for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function,

[35] a compound of the formula

$$R_{12} \xrightarrow{R_{11}} 0$$

$$X_{2} \xrightarrow{Y_{1}} R_{10}$$

$$R_{8} \qquad (I')$$

wherein

the other

R<sub>11</sub> and R<sub>12</sub>

 $R_{q}$ 

5

10

15

20

25

30

35

40

45

50

55

is a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), and optionally having substituent(s), which heterocycle is attached by a secondary nitrogen atom forming the heterocycle,

X<sub>2</sub> is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen.

Y<sub>1</sub> is a bond or a C<sub>1-5</sub> alkylene group,

is (1) a hydrogen atom, (2) a hydroxy group, (3) a  $C_{1-5}$  alkoxy group, (4) a  $C_{1-5}$  alkylthio group, (5) a  $C_{3-15}$  carbocycle optionally having substituent(s) or (6) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and optionally having substituent(s), one of  $R_{11}$  and  $R_{12}$  is a hydrogen atom or a group of the formula:  $-Z_1-R_{13}$  ( $Z_1$  is a bond or a  $C_{1-10}$  alkylene group optionally having substituent(s)),  $R_{13}$  is (1) a hydrogen atom, (2) a hydroxy group, (3) a  $C_{1-5}$  alkoxy group, (4) a nitrile group, (5) a  $C_{1-5}$  alkoxy-carbonyl group, (6) a carboxyl group, (7) a carbamoyl group, (8) a (mono or di- $C_{1-5}$  alkyl)carbamoyl group, (9) an amino group, (10) a (di or mono- $C_{1-5}$  alkyl)amino group, (11) a ( $C_{1-5}$  alkoxy-carbonyl)amino group, (12) a  $C_{1-5}$  alkylthio group, (13) a  $C_{3-15}$  carbocycle optionally having substituent(s) or (14) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and optionally having substituent(s), is a group of the formula:  $-Z_1-R_{13}$  ( $Z_1$  and  $R_{13}$  are as defined above); and

may form, together with the adjacent nitrogen atom, a heterocycle having a skeleton consisting of 3 to 15 atoms and optionally having substituent(s) and attached by a secondary nitrogen atom forming its ring], or a salt thereof, and

[36] a prodrug of the compound of [35].

#### Best Mode for Embodying the Invention

20

30

35

40

45

[0008] In the above-mentioned formula, the heterocycle group, represented by R<sub>1</sub> or R<sub>9</sub>, has a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), and may be a monocyclic or fused ring and may be saturated or unsaturated. It is limited to a ring having a structure wherein a nitrogen atom constituting the heterocycle can have a bond, which is a ring having a secondary nitrogen atom.

[0009] As such heterocycle, (1) monocyclic heterocycles such as (a) aziridine, azetidine, pyrrole, 2- or 3-pyrroline, pyrrolidine, pyrazole, 2-, 3- or 4-pyrazoline, pyrazoline, pyrazoline, imidazole, 2-, 3- or 4-imidazoline, imidazolidine or (b) structurally possible hydrides of oxazole, isoxazole, thiazole, isothiazole, various oxadiazoles, various thiadiazoles, pyridine, pyridazine, pyrimidine or pyrazine; monocyclic heterocycle such as morpholine, thiomorpholine and the like, (2) fused heterocycles such as (a) indole, isoindole, indazole or purine and structurally possible hydrides thereof, (b) structurally possible hydrides of quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cincholine or pteridine, (c) carbazole or carboline and structurally possible hydrides thereof, (d) structurally possible hydrides of phenanthridine, acridine, phenanthroline or phenazine, (e) phenothiazine or phenoxazine and structurally possible hydrides thereof and the like, and the like are used. Of these, pyrrole, pyrrolidine, pyrazole, pyrazolidine, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, piperidine, piperazine, morpholine, thiomorpholine, indole, indoline, isoindole, isoindoline, indazole, 2,3-dihydroindazole, purine, 1,2,3,4-tetrahydroquinoline and the like are preferable, particularly indoline is preferable.

[0010] The heterocycle group represented by R<sub>1</sub> or R<sub>9</sub>, which has a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), may be substituted by 1 to 5 the same or different substituent(s), as long as it is structurally possible. As such substituent(s), for example, C<sub>1-8</sub> alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and the like, preferably C<sub>1-6</sub> alkyl), C<sub>2-8</sub> alkenyl (e.g., ethenyl, propenyl, butenyl, pentenyl and the like, preferably  $C_{2-6}$  alkenyl),  $C_{2-8}$  alkynyl (e.g., ethynyl, propinyl, butyryl, pentinyl and the like, preferably  $C_{2-6}$ alkynyl), C<sub>7-16</sub> aralkyl (e.g., benzyl, phenethyl and the like), C<sub>3-8</sub> cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like, preferably  $C_{3-6}$  cycloalkyl),  $C_{3-8}$  cycloalkenyl (e.g., cyclopentenyl, cyclonexyl, cyclonex clohexenyl, cycloheptenyl, cyclooctenyl and the like, preferably C<sub>3-6</sub> cycloalkenyl), C<sub>6-14</sub> aryl (e.g., phenyl, naphthyl and the like),  $C_{1-8}$  alkoxy (e.g., methoxy, ethoxy, propoxy, butoxy, t-butoxy, pentoxy and the like, preferably  $C_{1-6}$  alkoxy), C<sub>1-3</sub> alkylenedioxy (e.g., methylenedioxy, ethylenedioxy and the like, preferably methylenedioxy), hydroxy, halogen atom (fluorine, chlorine, bromine, iodine), amino, (di or mono- $C_{1.5}$  alkyl)amino (e.g., methylamino, dimethylamino, etholamino, diethylamino and the like), ( $C_{1-5}$  alkoxy-carbonyl)amino (e.g., methoxycarbonylamino, ethoxycarbonylamino) no, propoxycarbonylamino and the like), (C1.3 acyl)amino (e.g., formylamino, acetylamino, ethylcarbonylamino and the like), ( $C_{1-5}$  acyl) ( $C_{1-5}$  alkyl)amino (e.g., formylmethylamino, acetylmethylamino, formylethylamino, acetylethylamino no and the like), C<sub>1-5</sub> alkylthio (e.g., methylthio, ethylthio and the like), nitrile, nitro, C<sub>1-5</sub>alkoxy-carbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl and the like), carboxyl,  $C_{1.5}$  alkyl-carbonyloxy (e.g., methylcarbonyloxy, ethylcarbonyloxy and the like), oxo, thioxo,  $C_{1-6}$  acyl group (e.g.,  $C_{1-5}$  alkyl-carbonyl group such as acetyl, ethylcarbonyl, propylcarbonyl and the like, and the like), sulfamoyl, (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl (e.g., methylsulfamoyl, ethylsulfamoyl, dimethylsulfamoyl and the like) and the like are used.

[0011] The above-mentioned  $C_{1-8}$  alkyl and  $C_{1-8}$  alkoxy may be further substituted by 1 to 5 the same or different substituent(s) selected from the above-mentioned  $C_{1-8}$  alkoxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl) amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkylthio, nitrile, nitro,  $C_{1-5}$  alkoxy-carbonyl, carboxyl,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo and the like, as long as it is structurally possible.

[0012] Of the above-mentioned substituents, optionally halogenated C<sub>1-5</sub> alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, trifluoromethyl and the like), C<sub>1-3</sub> alkoxy (e.g., methoxy, ethoxy, propoxy and the like), C<sub>1-2</sub> alkylenedioxy, halogen atom and the like are preferable, particularly, optionally halogenated C<sub>1-3</sub> alkyl such as methyl, trifluoromethyl and the like, and halogen atom such as fluorine, chlorine, bromine and the like are more preferable.

[0013] In the above-mentioned formula, X and  $X_2$  are oxygen atom, nitrogen atom optionally substituted by  $C_{1-5}$  alkyl (e.g., methyl, ethyl, propyl, butyl and the like) or a sulfur atom optionally oxidized with 1 or 2 oxygen (S, SO, SO<sub>2</sub>).

[0014] As X and X<sub>2</sub>, oxygen atom and NH are preferable, particularly oxygen atom is preferable.

[0015] In the above-mentioned formula, Y and Y<sub>1</sub> represent a bond or  $C_{1-5}$  alkylene group (e.g., methylene, ethylene, propylene, butylene and the like).

[0016] As Y and Y<sub>1</sub>, C<sub>1-3</sub> alkylene group such as methylene, ethylene, propylene and the like are preferable, particularly methylene is preferable.

[0017] In the above-mentioned formula, R<sub>10</sub> represents (1) hydrogen atom, (2) hydroxy group, (3) C<sub>1-5</sub> alkoxy group, (4) C<sub>1-5</sub> alkylthio group, (5) carbocycle having 3 to 15 carbon atoms or (6) heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s).

[0018] In the above-mentioned formula,  $R_2$  is (1) hydrogen atom, (2) hydroxy group, (3)  $C_{1-5}$  alkoxy group, (4)  $C_{1-5}$  alkylthio group, (5) carbocycle having 3 to 15 carbon atoms or (6) heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) (provided that when Y is a bond,  $R_2$  is a carbocycle having 3 to 15 carbon atoms

#### EP 1 223 170 A1

or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s)).

20

25

35

50

[0019] As the  $C_{1-5}$  alkoxy group represented by  $R_2$  or  $R_{10}$ , for example, methoxy, ethoxy, propoxy, butoxy, t-butoxy, pentoxy and the like are used, with preference given to  $C_{1-3}$  alkoxy such as methoxy, ethoxy, propoxy and the like, and the like.

[0020] As the  $C_{1-5}$  alkylthio group represented by  $R_2$  or  $R_{10}$ , for example, methylthio, ethylthio, propylthio and the like are used, with preference given to  $C_{1-3}$  alkylthio group and the like.

[0021] As the carbocycle group having 3 to 15 carbon atoms, which is represented by  $R_2$  or  $R_{10}$ , for example, (1) saturated or unsaturated monocyclic aliphatic hydrocarbon group such as  $C_{3-8}$  cycloalkyl group (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexenyl, cyclohexenyl, cyclohexenyl, and the like, (2) saturated or unsaturated fused ring aliphatic hydrocarbon group having 9 to 15 carbon atoms or (3) monocyclic or polycyclic aryl group having 6 to 15 carbon atoms (e.g., phenyl, naphthyl, indenyl, phenanthrenyl, indenyl, indanyl, tetralinyl and the like) and the like are used. Of these, cyclopentyl, cyclohexyl, cyclohexen-1-yl, 2-cyclopenten-1-yl, 3-cyclohexen-1-yl, phenyl, naphthyl, indenyl, indenyl, phenanthrenyl, indenyl, tetralinyl and the like are preferable, particularly, phenyl is preferable.

[0022] As the heterocycle group having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s), which is represented by R<sub>2</sub> or R<sub>10</sub>, for example, an aromatic heterocycle group or saturated or unsaturated non-aromatic heterocycle group having a skeleton consisting of 3 to 15 atoms including 1 to 5, the same or different nitrogen atom (s), oxygen atom(s) and/or sulfur atom(s), and the like are used.

[0023] As the above-mentioned aromatic heterocycle group, for example, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isooxazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthidinyl, quinoxalinyl, quinazolinyl, cinnolinyl, puteridinyl, carbazolyl, carbolinyl, phenanthridinyl, acrydinyl, phenanthrolinyl, phenothiazinyl, phenoxadinyl and the like, and if structurally possible, a group wherein these are fused with a benzene ring, and the like are used. Particularly, an aromatic heterocycle group having a skeleton consisting of 5 or 6 atoms including 1 to 3 (preferably 1 or 2) heteroatom(s) such as nitrogen atom(s), oxygen atom(s) and sulfur atom(s), such as furyl, thienyl, pyridyl and the like, and the like are preferable.

[0024] As the above-mentioned saturated or unsaturated non-aromatic heterocycle group, for example, structurally possible partial or complete hydrides of the above-mentioned aromatic heterocycle group, aziridinyl, azetidinyl, oxetanyl, pyranyl, azepinyl, 1,3-diazepinyl, 1,4-diazepinyl, 1,3-oxazepinyl, 1,4-oxazepinyl, azocinyl, chromenyl and the like, and structurally possible hydrides thereof and the like are used.

[0025] The carbocycle having 3 to 15 carbon atoms and the heterocycle group having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s), which are represented by  $R_2$  or  $R_{10}$ , may be substituted by 1 to 5 the same or different substituent(s) as long as it is structurally possible. As these substituents, those similar to the substituents of the aforementioned heterocycle group represented by  $R_1$  are used.

[0026] Of these substituents, optionally halogenated  $C_{1-8}$  alkyl (particularly, optionally halogenated  $C_{1-6}$  alkyl such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, trifluoromethyl and the like, particularly, optionally halogenated  $C_{1-3}$  alkyl),  $C_{1-8}$  alkoxy (preferably  $C_{1-6}$  alkoxy such as methoxy, ethoxy and the like, particularly  $C_{1-3}$  alkoxy), halogen atom such as fluorine, chlorine, bromine and the like, and the like are preferable.

[0027] As R<sub>10</sub>, hydrogen atom, hydroxy group, C<sub>1-5</sub> alkoxy group, C<sub>1-5</sub> alkylthio group, the above-mentioned carbocycle having 3 to 15 carbon atoms or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and the like are preferable.

[0028] As  $R_2$ , the above-mentioned carbocycle having 3 to 15 carbon atoms or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and the like are preferable.

[0029] When Y is  $C_{1-5}$  alkylene group, hydrogen atom, hydroxy group,  $C_{1-5}$  alkoxy group,  $C_{1-5}$  alkylthio group and the like are also preferable as  $R_2$ , and particularly when Y is methylene group, hydrogen atom,  $C_{1-5}$  alkoxy group,  $C_{1-5}$  alkylthio group and the like are also preferable as  $R_2$ .

[0030] In the above-mentioned formula,  $R_3$  and  $R_4$  are the same or different and each is hydrogen atom or a group of the formula:  $-Z-R_5$ .

[0031] In the above-mentioned formula,  $R_{11}$  and  $R_{12}$  are the same or different and each is hydrogen atom or a group of the formula:  $-Z_1-R_{13}$ .

[0032] Z and  $Z_1$  show a bond or  $C_{1-10}$  alkylene group (e.g., methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene and the like, preferably  $C_{1-6}$  alkylene group).

[0033] The  $C_{1-10}$  alkylene group represented by Z or  $Z_1$  may be substituted by 1 to 5 substituent(s) as long as it is structurally possible. As such substituents, those similar to the substituents of the aforementioned heterocycle group represented by  $R_1$  are used.

[0034] As Z and  $Z_1$ , for example, a bond,  $C_{1-4}$  alkylene (e.g., methylene, ethylene, propylene, butylene) and the like are preferable.

[0035] As (1) a carbocycle having 3 to 15 carbon atoms and (2) a heterocycle having a skeleton consisting of 3 to

#### EP 1 223 170 A1

15 atoms including 1 to 5 heteroatom(s), which are represented by R<sub>5</sub> or R<sub>13</sub>, those similar to (1) a carbocycle having 3 to 15 carbon atoms and (2) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom (s), which are represented by R<sub>2</sub>, are used.

[0036] Particularly, as a carbocycle group having 3 to 15 carbon atoms represented by  $R_5$  or  $R_{13}$ , for example, a non-aromatic carbocyclic ring group having 3 to 7 carbon atoms such as cyclopropyl, cyclobutyl, cyclocyclopentyl, cyclohexyl, cyclohexyl, cyclohexen-1-yl, 3-cyclohexen-1-yl, 3-cyclohexen-1-yl and the like, and an aromatic carbocyclic ring group having 6 to 15 carbon atoms such as phenyl, naphthyl, indenyl, phenanthrenyl, indenyl, tetralinyl and the like are preferable, which is particularly preferably  $C_{6-14}$  aryl group such as phenyl and the like.

[0037] As the heterocycle group having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) represented by R<sub>5</sub> or R<sub>13</sub>, for example, non-aromatic heterocycle group such as azetidinyl, pyrrolizinyl, piperiazinyl, perhydroazepinyl, morphonyl, tetrahydrofuranyl, tetrahydrothienyl and the like, and an aromatic heterocycle group such as pyridin-2-yl, pyridin-3-yl, pyrazin-2-yl, perhydroazepin-3-yl and the like are preferable.

10

20

30

40

55

[0038] As long as structurally possible, (1) a carbocycle having 3 to 15 carbon atoms and (2) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s), which are represented by  $R_5$  or  $R_{13}$ , may have substituent(s) such as those similar to the substituent(s) of the aforementioned heterocycle group represented by  $R_1$ . [0039] Of these substituents, optionally halogenated  $C_{1-8}$  alkyl (particularly optionally halogenated  $C_{1-6}$  alkyl such as methyl, ethyl, propyl, isopropyl, trifluoromethyl and the like),  $C_{1-8}$  alkoxy (particularly  $C_{1-6}$  alkoxy such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, sec-butoxy, t-butoxy and the like), halogen atom (fluorine, chlorine, bromine, iodine), oxo, thioxo, hydroxy, nitrile,  $C_{1-5}$  alkylthio (particularly  $C_{1-3}$  alkylthio such as methylthio, ethylthio and the like), carbamoyl,  $C_{1-5}$  alkoxy-carbonyl group (particularly, methoxycarbonyl, ethoxycarbonyl and the like),  $C_{1-6}$  acyl group (particularly  $C_{1-5}$  alkyl-carbonyl group such as acetyl, ethylcarbonyl, propylcarbonyl and the like), and the like, sulfamoyl and the like are preferably, particularly  $C_{1-8}$  alkoxy, halogen atom such as fluorine, chlorine, bromine and the like, oxo, thioxo and the like are preferable.

[0040] Furthermore,  $R_5$  and  $R_{13}$  respectively show hydrogen atom; hydroxy group;  $C_{1-5}$  alkoxy group such as methoxy, ethoxy and the like; nitrile group;  $C_{1-5}$  alkoxy-carbonyl group such as methoxycarbonyl, ethoxycarbonyl, propyl-carbonyl, butylcarbonyl, t-butoxycarbonyl and the like; carboxyl group; carbamoyl group; (mono or di- $C_{1-5}$  alkyl)carbamoyl group such as methylaminocarbonyl, diethylaminocarbonyl and the like; amino group; (di or mono- $C_{1-5}$  alkyl) amino group such as methylamino, diethylamino and the like; methoxycarbonylamino; ethoxycarbonylamino; propoxycarbonylamino; butoxycarbonylamino;  $C_{1-5}$  alkylthio group such as methylthio and the like, and are respectively bonded to the adjacent Z and  $Z_1$  at a substitutable position.

[0041] Particularly when Z is optionally substituted  $C_{2-10}$  alkylene group, preferably the aforementioned carbocyclic ring or heterocycle, hydrogen atom, hydroxy group,  $C_{1-5}$  alkoxy group such as methoxy, ethoxy and the like, nitrile group,  $C_{1-5}$  alkoxy-carbonyl group such as methoxycarbonyl, ethoxycarbonyl, propylcarbonyl, butylcarbonyl, t-butoxycarbonyl and the like, carboxyl group, carbamoyl group, (mono or di- $C_{1-5}$  alkyl)carbamoyl group such as methylaminocarbonyl, diethylaminocarbonyl and the like, amino group, (di or mono- $C_{1-5}$  alkyl) amino group such as methylamino, diethylamino and the like, methoxycarbonylamino, ethoxycarbonylamino, propoxycarbonylamino, butoxycarbonylamino,  $C_{1-5}$  alkylthio group such as methylthio and the like, and the like are also preferable as  $R_5$ . Particularly, hydroxy group, nitrile group,  $C_{1-5}$  alkoxy-carbonylamino group such as t-butoxycarbonylamino and the like,  $C_{1-5}$  alkoxy-carbonyl group such as methoxycarbonyl, t-butoxycarbonyl and the like are preferable.

[0042] When Z is optionally substituted methylene group, R<sub>5</sub> is, besides the aforementioned carbocyclic ring and heterocycle, nitrile group, C<sub>1-5</sub> alkoxy-carbonyl group such as methoxycarbonyl, t-butoxycarbonyl and the like, carboxyl group, carbamoyl group, (mono or di-C<sub>1-5</sub> alkyl)carbamoyl such as methylaminocarbonyl, diethylaminocarbonyl and the like, and the like are preferable, particularly nitrile group is preferable.

[0043] As R<sub>13</sub>, besides the aforementioned carbocyclic ring and heterocycle, hydroxy group, nitrile group, C<sub>1-5</sub> alkoxy-carbonylamino group such as t-butoxycarbonylamino and the like, C<sub>1-5</sub> alkoxy-carbonyl group such as methoxycarbonyl, t-butoxycarbonyl and the like, and the like are also preferable.

[0044] As the combination of  $R_3$  and  $R_4$ , that wherein  $R_3$  is a hydrogen atom and  $R_4$  is a group of the formula: -Z- $R_5$  is preferable.

[0045] As the combination of  $R_{11}$  and  $R_{12}$ , that wherein  $R_{11}$  is a hydrogen atom and  $R_{12}$  is a group of the formula:  $-Z_1-R_{13}$  is preferable.

[0046] As the group which is a heterocycle having a skeleton consisting of 3 to 15 atoms and formed by  $R_3$  and  $R_4$ , or  $R_{11}$  and  $R_{12}$ , together with the adjacent nitrogen atom, and which is attached by a secondary nitrogen atom forming the heterocycle, a group attached by a secondary nitrogen atom constituting a heterocycle having a skeleton consisting of 3 to 15 atoms including atoms such as carbon atom(s), oxygen atom(s), sulfur atom(s) and the like, besides at least one nitrogen atom, is used, which is, for example, aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidino, piperazin-1-yl, morpholino, indolin-1-yl and the like. Particularly, a heterocycle having a skeleton consisting of 5 or 6 atoms including atoms such as carbon atom(s), oxygen atom(s), sulfur atom(s) and the like, besides at least one nitrogen atom, and attached by a secondary nitrogen atom is preferable, such as pyrrolidin-1-yl, piperidino, piperazin-1-yl, morpholino and

the like.

10

15

20

25

30

35

40

45

50

55

[0047] The heterocycle having a skeleton consisting of 3 to 15 atoms and attached by a secondary nitrogen atom forming its ring, which is formed by  $R_3$  and  $R_4$ , or  $R_{11}$  and  $R_{12}$  together with the adjacent nitrogen atom, may have substituents such as those similar to the substituents of the aforementioned heterocycle group represented by  $R_1$ .

[0048] Of these substituents, hydroxy group, nitrile group, C<sub>1-5</sub> alkoxy-carbonyl group such as methoxycarbonyl, t-butoxycarbonyl and the like, and the like are preferable.

[0049] As the compound (I') of the present invention, the compound (I) of the present invention, and the like are preferable.

[0050] As the compound (I) of the present invention, for example, the following compound and the like are also preferable.

- (1) Compound (I) wherein X is a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen.
- (2) Compound (I) wherein Y is C<sub>1-5</sub> alkylene group.
- (3) Compound (I) wherein Y is C<sub>1-5</sub> alkylene group, and R<sub>2</sub> is hydroxy group, C<sub>1-5</sub> alkoxy group or C<sub>1-5</sub> alkylthio group.
- (4) Compound (I) wherein  $R_5$  is (a) a non-aromatic carbocycle having 3 to 15 carbon atoms or (b) a non-aromatic heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s).
- (5) Compound (I) wherein Z is  $C_{2-10}$  alkylene group optionally having substituent(s),  $R_5$  is hydroxy group, nitrile group,  $C_{1-5}$  alkoxy-carbonyl, carboxyl group, carbamoyl group, (mono or di- $C_{1-5}$  alkyl)carbamoyl group, ( $C_{1-5}$  alkoxy-carbonyl)amino group or  $C_{1-5}$  alkylthio group.
- (6) Compound (I) wherein Z is methylene group optionally having substituent(s), and  $R_5$  is nitrile group,  $C_{1-5}$  alkoxy-carbonyl group, carboxyl group, carbamoyl group or (mono or di- $C_{1-5}$  alkyl)carbamoyl group.
- (7) Compound (I) wherein the substituent(s) of heterocycle and a carbocycle having 3 to 15 carbon atoms are selected from the group consisting of  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkyl,  $C_{6-14}$  aryl,  $C_{1-3}$  alkylenedioxy, hydroxy,  $(C_{1-5}$  alkoxy-carbonyl)amino,  $(C_{1-5}$  acyl)amino,  $(C_{1-5}$  alkyl)amino,  $(C_{1-5}$  alkyl-carbonyloxy, oxo and thioxo.
- (8) Compound (I) wherein  $R_1$  is a heterocycle having a skeleton consisting of 5 to 12 atoms including 1 or 2 nitrogen atom(s), which is optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl) amino, ( $C_{1-5}$  alkoxy-carbonyl) amino, ( $C_{1-5}$  acyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo and thioxo.
- (9) Compound (I) wherein  $R_1$  is a heterocycle having a skeleton consisting of 8 to 12 atoms including a nitrogen atom, which is optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino,  $C_{1-5}$  alkylthio, nitrile, nitro,  $C_{1-5}$  alkoxy-carbonyl, carboxyl,  $C_{1-5}$  alkyl-carbonyloxy, oxo and thioxo. (10) Compound (I) wherein  $R_1$  is 1-indolinyl optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkenyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl) amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  acyl)( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo and thioxo.
- (11) Compound (I) wherein  $R_2$  is a carbocycle having 5 to 7 carbon atoms or a heterocycle having a skeleton consisting of 5 to 7 atoms including 1 or 2 heteroatom(s), which is optionally substituted by substituent(s) selected from the group consisting of  $C_{1.8}$  alkyl,  $C_{2.8}$  alkenyl,  $C_{2.8}$  alkynyl,  $C_{7.16}$  aralkyl,  $C_{3.8}$  cycloalkyl,  $C_{3.8}$  cycloalkenyl,  $C_{6.14}$  aryl,  $C_{1.8}$  alkoxy,  $C_{1.3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1.5}$  alkyl) amino, ( $C_{1.5}$  alkyl-carbonyl) amino, ( $C_{1.5}$  acyl) amino, ( $C_{1.5}$  alkyl)amino,  $C_{1.5}$  alkyl-carbonyloxy, oxo and thioxo.
- (12) Compound (I) wherein  $R_2$  is phenyl optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl) amino, ( $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl.
- (13) Compound (I) wherein X is oxygen atom or NH, and Y is C<sub>1-3</sub> alkylene group.
  - (14) Compound (I) wherein X is oxygen atom, and Y is methylene group.
  - (15) Compound (I) wherein R<sub>3</sub> is hydrogen atom, and R<sub>4</sub> is a group of the formula: -Z-R<sub>5</sub>.
  - (16) Compound (I) wherein Z is a bond or C<sub>1-4</sub> alkylene group, and R<sub>5</sub> is a carbocycle having 5 to 8 carbon atoms

or a heterocycle having a skeleton consisting of 5 to 11 atoms including 1 to 5 hetero atom(s), which is optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkoxy-carbonyl)amino, ( $C_{1-5}$  acyl)amino, ( $C_{1-5}$  alkyl)amino,  $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl.

(17) Compound (I) wherein  $R_1$  is a group selected from the group consisting of

, -X-Y-R<sub>2</sub> is a group selected from the group consisting of

$$-NH$$
  $\longrightarrow NH$   $\longrightarrow NH$   $\longrightarrow NH$ 

, and -NR3R4 is a group selected from the group consisting of

MeO~~ F NH N N NH N NH Et<sub>2</sub>N NH Me Me Me O H Me Me O H

(18) Compound (i) wherein  $\mathbf{R}_1$  is a group selected from the group consisting of

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

, -X-Y- $R_2$  is a group selected from the group consisting of

25

40

55

, and  $-NR_3R_4$  is a group selected from the group consisting of

(19) Compound (I) wherein R<sub>1</sub> is a group selected from the group consisting of

, -X-Y-R2 is a group selected from the group consisting of

5

10

15

30

35

40

45

50

55

OMe OMe OMe OME OME

, and -NR<sub>3</sub>R<sub>4</sub> is a group selected from the group consisting of

HN NH HN NH HN NH NH NH NH NH

- 25 (20) Any compound produced in the Examples to be mentioned below.
  - (21) The following Example compounds:

Example 23-6: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide,

Example 23-11: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide,

Example 23-16: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide,

Example 27-1: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide,

Example 27-4: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide,

Example 31-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide,

Example 31-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide,

Example 31-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide,

Example 33-3: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide,

Example 33-5: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide,

Example 33-6: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide,

Example 47-3: (rac)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide,

Example 66-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidine-carboxamide,

Example 66-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3R)-2-oxoazepanyl]-5-pyrimidine-carboxamide,

Example 66-3: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy] -N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide,

Example 66-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-

5-pyrimidinecarboxamide,

5

10

15

20

25

30

35

40

45

55

Example 66-8: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide,

Example 66-11: 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide,

Example 66-12: 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-ox-oazepanyl]-5-pyrimidinecarboxamide,

Example 66-14: 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide,

Example 66-15: 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide,

Example 66-16: 2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-ox-oazepanyl]-5-pyrimidinecarboxamide,

Example 66-17: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide,

Example 66-20: 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide,

Example 66-21: 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide, and salts thereof.

[0051] The compound (I) of the present invention and a salt thereof can be produced according to a known method or a similar method. For example, compound (I) or a salt thereof can be produced by reacting a compound of the formula

$$\begin{array}{c}
L_1 \downarrow O \\
\downarrow N \downarrow N \\
R_1
\end{array}$$
(II)

wherein  $L_1$  is a leaving group and other symbols are as defined above, or a salt thereof, with an amine compound represented by  $R_3R_4NH$  ( $R_3$  and  $R_4$  are as defined above).

**[0052]** As the leaving group usable for  $L_1$ , a suitable group capable of leaving, which is generally used in the field of organic synthetic chemistry, can be employed [e.g., groups capable of leaving, as described in Compendium of Organic Synthetic Methods, vols. 1-7, John Wiley & Sons Inc. New York (1971-1992), and R.C. Larock, Comprehensive Organic Transformation, VCH, New York (1989) and the like].

[0053] Specific examples of  $L_1$  include hydroxy, substituted hydroxy (e.g.,  $C_{1-6}$  alkyloxy or  $C_{6-10}$  aryloxy,  $C_{1-6}$  alkyloxy-carbonyloxy or  $C_{6-10}$  aryloxy-carbonyloxy, (di- $C_{1-6}$  alkyloxy-carbonyloxy, (di- $C_{1-6}$  alkyloxy-carbonyloxy, (di- $C_{1-6}$  alkyloxy-carbonyloxy, di- $C_{1-6}$  alkyloxy-carbonyloxy-carbonyloxy-carbonyloxy, (di- $C_{1-6}$  alkyloxy-carbonyloxy) or di- $C_{1-6}$  alkyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy, di- $C_{1-6}$  alkyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy-carbonyloxy

[0054] When reactive groups, such as amino, carboxy, hydroxy and the like, are contained, besides reaction points, in the structural formulas of compound (II) and R<sub>3</sub>R<sub>4</sub>NH, these groups may be protected by a suitable protecting group according to a conventional method. After reaction, these protecting groups may be removed according to a conventional method.

[0055] As such protecting groups, for example, those generally used in this field, which are described in T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> edition, John Wiley & Sons Inc. New York (1991) and the like, can be employed.

[0056] For a so-called amide bond forming reaction of compound (II) or a salt thereof and an amine compound represented by R<sub>3</sub>R<sub>4</sub>NH, a reaction known *per se* can be employed [for example, Izumiya et al., Peputidogousei no Kiso to Jikken (Basic and Experiment of Peptide Synthesis), Maruzen (1985) and R.C. Larock, Comprehensive Organic Transformation, VCH, New York (1989) and the like]. Some examples are given in the following. When L<sub>1</sub> is hydroxy,

a so-called coupling reagent is preferably used.

10

20

30

35

40

45

50

[0057] As such reagent, for example, N,N'-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIPCI), water-soluble carbodiimide (WSC, e.g., 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), carbonyldiimidazole, benzotriazolyl-N-hydroxytrisdimethylaminophosphonium hexafluorophosphorylate (Bop), diphenylphosphoryl azide (DPPA) and the like are used.

[0058] When carbodiimide is used as a coupling reagent, N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like may be used as an additive. In addition, when L<sub>1</sub> is hydroxy, activated ester method with p-nitrophenyl ester, N-hydroxysuccinimide ester and the like, carboxylic acid activation methods such as mixed acid anhydride method using various carboxylic acids, various carbonic acids or various phosphoric acids or azide method and the like can be beneficially used.

[0059] The reaction between compound (II) or a salt thereof and an amine compound represented by R<sub>3</sub>R<sub>4</sub>NH is generally carried out by agitation in an inert solvent.

[0060] The inert solvent to be used for the reaction is free of any particular limitation as long as the reaction is not adversely influenced. For example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as dioxane, diethoxyethane, tetrahydrofuran and the like; halogenated hydrocarbons such as dichloromethane, chloroform and the like; alkylnitriles such as acetonitrile, propionitrile and the like; nitroalkanes such as nitromethane, nitroethane and the like; and amides such as dimethylformamide, dimethylacetamide and the like are preferable.

[0061] A small amount of reeactable solvent (e.g., water, alcohol and the like) may be added depending on the property of the reactive group. While the reaction temperature varies depending on the starting material compound (II), amine compound represented by  $R_3R_4NH$ , the kind of additives, the kind of solvent and the like, it is generally from about -40°C to about 100°C, preferably from about -30°C to about 50°C. The reaction time is generally from about 1 minute to about 48 hours, preferably from about 15 minutes to about 24 hours.

[0062] The compound (II) and a salt thereof can be produced easily according to a known reaction or a similar reaction [e.g., Katritzky et al. ed., Comprehensive Heterocyclic Chemistry, vol. 3, and Brown et al. ed., The Pyrimidines, The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and the like]. The compound represented by  $R_3R_4NH$  may be a commercially available compound as it is or can be produced easily according to a known reaction or a similar reaction.

[0063] The compound (I) of the present invention or a salt thereof can be also produced by reacting a compound of the formula

$$\begin{array}{c|c}
R_3 \\
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
X_{-\gamma} R_2 \\
N \\
\downarrow N
\end{array}$$
(III)

wherein  $L_2$  is a leaving group and other symbols are as defined above, or a salt thereof, with a compound of the formula:  $R_1$ -H ( $R_1$  is as defined above).

[0064] As the leaving group usable for L<sub>2</sub>, a suitable group capable of leaving, which is generally used in the field of organic synthetic chemistry, can be employed [e.g., groups capable of leaving, as described in Compendium of Organic Synthetic Methods, vols. 1-7, John Wiley & Sons Inc. New York (1971-1992), and R.C. Larock, Comprehensive Organic Transformation, VCH, New York (1989) and the like].

[0065] As the preferable L<sub>2</sub>, the leaving group used for introducing an amino group into the 2-position of pyrimidine, as described in Brown et al. ed., The Pyrimidines, The Chemistry of Heterocyclic Compounds, vol. 52, John Wiley & Sons Inc., New York (1994) and the like can be used.

[0066] Specific examples of  $L_2$  to be used include halogen atom such as fluorine, chlorine, bromine and the like, mercapto,  $C_{1-6}$  alkylthio,  $C_{6-10}$  arylthio or 4 to 8-membered heteroarylthio optionally having 1 to 3 heteroatom(s), hydroxy,  $C_{1-6}$  alkyloxy,  $C_{6-10}$  aryloxy,  $C_{1-6}$  alkylsulfonyl,  $C_{6-10}$  arylsulfonyl,  $C_{1-6}$  alkylsulfinyl,  $C_{6-10}$  arylsulfinyl, thiocyanate, cyano,  $C_{1-6}$  alkylcarbonyloxy,  $C_{6-10}$  arylcarbonyloxy, or amino optionally mono or di-substituted with  $C_{1-6}$  alkyl or  $C_{6-10}$  aryl, and the like, wherein the above-mentioned  $C_{1-6}$  alkyl and  $C_{6-10}$  aryl are optionally substituted by 1 to 5 halogen atom(s) (fluorine, chlorine, bromine and the like).

[0067] When reactive groups, such as amino, carboxy, hydroxy and the like, are contained, besides reaction points, in the structural formulas of compound (III) and R<sub>1</sub>-H, these groups may be protected by a suitable protecting group according to a conventional method. After reaction, these protecting groups may be removed according to a conven-

tional method.

10

15

20

25

30

35

40

55

[0068] As such protecting groups, for example, those generally used in this field, which are described in T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> edition, John Wiley & Sons Inc. New York (1991) and the like, can be employed.

[0069] For a so-called aromatic nucleophilic substitution reaction of compound (III) or a salt thereof and a secondary amine compound represented by R<sub>1</sub>-H, a reaction known *per se* can be employed [for example, The Pyrimidines, The Chemistry of Heterocyclic Compounds, vol. 52, John Wiley & Sons Inc., New York (1994) and the like]. This reaction is generally carried out by agitation in or without a solvent.

[0070] The solvent to be used for the reaction is free of any particular limitation as long as the reaction is not adversely influenced. For example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as dioxane, diethoxyethane, tetrahydrofuran and the like; halogenated hydrocarbons such as dichloromethane, chloroform and the like; alkylnitriles such as acetonitrile, propionitrile and the like; nitroalkanes such as nitromethane, nitroethane and the like; amides such as dimethylformamide, dimethylacetamide and the like; alcohols such as methanol, ethanol and the like or water are preferable.

[0071] The reaction can be also carried out in the presence of a base, if necessary. Examples of the base include organic amines such as triethylamine, diisopropylethylamine and the like; basic inorganic salt such as sodium hydrogencarbonate, potassium carbonate and the like, and the like. This reaction can be also accelerated by the use of an acid catalyst. As such acid catalyst, for example, mineral acids such as hydrochloric acid, sulfuric acid and the like; organic acids such as trifluoroacetic acid, trifluoromethanesulfonic acid and the like; Lewis acids such as boron trifluoride, lanthanoide triflate and the like, and the like are used.

[0072] Particularly when  $L_2$  is halogen, this reaction can be also accelerated by the use of palladium phosphine complex [e.g., combination of  $Pd(dba)_2$  and  $tri-C_{1-6}$  alkylphosphine or  $tri-C_{6-10}$  arylphosphine and the like] as a catalyst. [0073] While the reaction temperature varies depending on the starting material compound (III), a salt thereof, a secondary amine compound represented by  $R_1$ -H, the kind of additives, the kind of solvent and the like, it is generally from about 0°C to about 200°C, preferably from about 20°C to about 150°C. The reaction time is generally from about 1 minute to about 120 hours, preferably from about 15 minutes to about 72 hours.

[0074] The compound (III) and a salt thereof can be produced easily according to a known reaction or a similar reaction [e.g., Katritzky et al. ed., Comprehensive Heterocyclic Chemistry, vol. 3, and Brown et al. ed., The Pyrimidines, The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and the like]. The compound represented by R<sub>1</sub>-H may be a commercially available compound as it is or can be produced easily according to a known reaction or a similar reaction.

[0075] The compound (I) of the present invention or a salt thereof can be also produced by reacting a compound of the formula

$$\begin{array}{c}
R_3 \\
R_4 \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N \\
R_1
\end{array}$$
(IV)

wherein L<sub>3</sub> is a leaving group and other symbols are as defined above, or a salt thereof, with a compound of the formula: R<sub>2</sub>-Y-X<sub>1</sub>-H (R<sub>2</sub>, Y and X<sub>1</sub> are as defined above), and if desired, subjecting the resulting compound to oxidation.

[0076] As the leaving group usable for  $L_3$ , those similar to the leaving groups mentioned with regard to  $L_2$  can be employed.

[0077] When reactive groups, such as amino, carboxy, hydroxy and the like, are contained, besides reaction points, in the structural formulas of compound (IV) and R<sub>2</sub>-Y-X<sub>1</sub>-H, these groups may be protected by a suitable protecting group according to a conventional method. After reaction, these protecting groups may be removed according to a conventional method.

[0078] As such protecting groups, for example, those generally used in this field, which are described in T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> edition, John Wiley & Sons Inc. New York (1991) and the like, can be employed.

[0079] For a so-called aromatic nucleophilic substitution reaction of compound (IV) or a salt thereof and a compound represented by  $R_2$ -Y- $X_1$ -H, a reaction known *per se* can be employed [for example, The Pyrimidines, The Chemistry of Heterocyclic Compounds, vol. 52, John Wiley & Sons Inc., New York (1994) and the like]. This reaction is generally

carried out by agitation in or without a solvent.

10

30

35

40

45

[0080] The solvent to be used for the reaction is free of any particular limitation as long as the reaction is not adversely influenced. For example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as dioxane, diethoxyethane, tetrahydrofuran and the like; halogenated hydrocarbons such as dichloromethane, chloroform and the like; alkylnitriles such as acetonitrile, propionitrile and the like; nitroalkanes such as nitromethane, nitroethane and the like; amides such as dimethylformamide, dimethylacetamide and the like; alcohols such as methanol, ethanol and the like or water are preferable.

[0081] The reaction can be also carried out in the presence of a base, if necessary. Examples of the base include organic amines such as triethylamine, diisopropylethylamine and the like; basic inorganic salt such as sodium hydrogencarbonate, potassium carbonate and the like; metal hydrides such as sodium hydride, lithium hydride and the like, and the like.

[0082] This reaction can be also accelerated by the use of an acid catalyst. As such acid catalyst, for example, mineral acids such as hydrochloric acid, sulfuric acid and the like; organic acids such as trifluoroacetic acid, trifluoromethanesulfonic acid and the like; Lewis acids such as boron trifluoride, lanthanide triflate and the like, and the like are used.

[0083] While the reaction temperature varies depending on the starting material compound (IV), a compound represented by R<sub>2</sub>-Y-X<sub>1</sub>-H, the kind of additives, the kind of solvent and the like, it is generally from about 0°C to about 200°C, preferably from about 20°C to about 150°C. The reaction time is generally from about 1 minute to about 120 hours, preferably from about 15 minutes to about 72 hours.

[0084] When X<sub>1</sub> is sulfur atom, a compound (I) wherein X is sulfone or sulfoxide, or a salt thereof, can be produced by producing compound (I) or a salt thereof under the above-mentioned conditions and the like, and oxidizing the compound.

[0085] As the oxidation used for this reaction, a reaction known *per se* [e.g., reaction described in Hudlicky, Oxidations in Organic Chemistry, The American Chemical Society (1990) and the like] can be used. Preferably, for example, it is a reaction using organic peracids such as benzoic acid, m-chlorobenzoic acid and the like, peroxides such as hydrogen peroxide, t-butyl hydroperoxide and the like, and the like.

[0086] The compound (IV) and a salt thereof can be produced easily according to a known reaction or a similar reaction [e.g., Katritzky et al. ed., Comprehensive Heterocyclic Chemistry, vol. 3, and Brown et al. ed., The Pyrimidines, The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and the like]. The compound represented by R<sub>2</sub>-Y-X<sub>1</sub>-H may be a commercially available compound as it is or can be produced easily according to a known reaction or a similar reaction.

[0087] The compound (I) of the present invention can be also produced by reacting a compound of the formula

wherein  $X_1$  is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom and other symbols are as defined above, or a salt thereof, with a compound represented by  $R_2$ -Y-L<sub>4</sub> (L<sub>4</sub> is leaving group and  $R_2$  and Y are as defined above), and if desired, subjecting the resulting compound to oxidation.

[0088] As the leaving group usable for  $L_4$ , a suitable group capable of leaving, which is generally used in the field of organic synthetic chemistry, can be employed [e.g., groups capable of leaving, as described in Compendium of Organic Synthetic Methods, vols. 1-7, John Wiley & Sons Inc. New York (1971-1992), and R.C. Larock, Comprehensive Organic Transformation, VCH, New York (1989) and the like].

[0089] As  $L_4$ , for example, hydroxy, halogen atom (fluorine, chlorine, bromine and the like), substituted sulfonyloxy such as  $C_{1-6}$  alkanesulfonyloxy,  $C_{6-10}$  arenesulfonyloxy and the like are preferable, wherein  $C_{1-6}$  alkane and  $C_{6-10}$  arene are optionally substituted by 1 to 5 halogen atom(s) (fluorine, chlorine, bromine and the like).

[0090] When reactive groups, such as amino, carboxy, hydroxy and the like, are contained, besides reaction points, in the structural formulas of compound (V) and R<sub>2</sub>-Y-L<sub>4</sub>, these groups may be protected by a suitable protecting group according to a conventional method.

[0091] After reaction, these protecting groups may be removed according to a conventional method. As such pro-

#### EP 1 223 170 A1

tecting group, for example, those generally used in this field, which are described in T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> edition, John Wiley & Sons Inc. New York (1991) and the like, can be employed.

- [0092] For a so-called nucleophilic substitution reaction of compound (V) or a salt thereof and a compound represented by  $R_2$ -Y-L<sub>4</sub>, a reaction known per se can be employed [for example, reactions described in Comprehensive Organic Transformations, VCH, New York (1989) and the like]. To be specific, when, for example, L<sub>4</sub> is hydroxy, the conditions using a so-called Mitsunobu reagent (e.g., combination of diethyl azobiscarboxylate and triphenylphosphine and the like), and the like can be employed. When L<sub>4</sub> is halogen or substituted sulfonyloxy and the like, the reaction beneficially proceeds in the presence of a base.
- 10 [0093] As such base, organic amines such as triethylamine, diisopropylethylamine and the like; basic inorganic salt such as sodium hydrogencarbonate, potassium carbonate and the like; metal hydrides such as sodium hydride, lithium hydride and the like, and the like are used.
  - [0094] A so-called nucleophilic substitution reaction of compound (V) or a salt thereof and a compound represented by R<sub>2</sub>-Y-L<sub>4</sub> is generally carried out by agitation in an inert solvent.
  - [0095] The inert solvent to be used for the reaction is free of any particular limitation as long as the reaction is not adversely influenced. For example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as dioxane, diethoxyethane, tetrahydrofuran and the like; halogenated hydrocarbons such as dichloromethane, chloroform and the like; alkylnitriles such as acetonitrile, propionitrile and the like; nitroalkanes such as nitromethane, nitroethane and the like; amides such as dimethylformamide, dimethylacetamide and the like; and mixed solvents thereof are preferable.

20

40

45

50

55

- [0096] While the reaction temperature varies depending on the starting material compound (V), a compound represented by R<sub>2</sub>-Y-L<sub>4</sub>, the kind of additives, the kind of solvent and the like, it is generally from about -80°C to about 150°C, preferably from about -30°C to about 100°C. The reaction time is generally from about 1 minute to about 48 hours, preferably from about 15 minutes to about 24 hours.
- [0097] The compound (V) and a salt thereof can be produced easily according to a known reaction or a similar reaction [e.g., Katritzky et al. ed., Comprehensive Heterocyclic Chemistry, vol. 3, and Brown et al. ed., The Pyrimidines, The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and the like]. The compound represented by R<sub>2</sub>-Y-L<sub>4</sub> may be a commercially available compound as it is or can be produced easily according to a known reaction or a similar reaction.
- [0098] The compound (I) of the present invention and a salt thereof can be produced by converting the substituents represented by R<sub>1</sub>, X, Y, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub>, of compound (I) to those represented by R<sub>1</sub>, X, Y, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub>, which are respectively different chemically. For such conversion of the substituents, a reaction known *per se* can be used. For example, reactions described in Comprehensive Organic Transformations, VCH, New York (1989) and the like can be employed.
- 35 [0099] The starting material compounds (II), (III), (IV) and (V) and salts thereof to be used in the present invention can be produced according to the above-mentioned known method or a method analogous thereto.
  - [0100] To be specific, for example, compounds (II'), (II") and (V') and salts thereof can be produced according to the method represented by the scheme 1 or a method analogous thereto.

-3.

# Scheme 1

Step 1:

30

35

40

45

50

[0101] A compound of the formula

wherein  $R_6$  is a carboxyl-protecting group and  $R_1$  is as defined above, can be produced by subjecting a compound of the formula

$$R_6$$
 $O$ 
 $O$ 
 $H$ 
 $SR_7$ 
 $(VI)$ 

wherein  $R_7$  is  $C_{1-6}$  alkyl,  $C_{6-10}$  aryl or a 4 to 8-membered heteroaryl optionally having 1 to 3 heteroatom(s), wherein  $C_{1-6}$  alkyl and  $C_{6-10}$  aryl are optionally substituted by 1 to 5 halogen atom(s) (fluorine, chlorine, bromine and the like) and  $R_6$  is as defined above, and a compound represented by  $R_1$ -H ( $R_1$  is as defined above) to a method described in Production Method 2 or a method analogous thereto.

[0102] Particularly preferable reaction conditions are alcohols such as methanol, ethanol and the like as a solvent, reaction temperature of about 30 - about 120°C, and reaction time of from about 1 hour to about 48 hours.

[0103] In the formula (VI), as the carboxyl-protecting group represented by R<sub>6</sub>, a protecting group generally used in the field of organic synthesis chemistry can be used [e.g., protecting groups described in Green and Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> ed., John Wiley & Sons Inc., New York (1991) and the like].

[0104] As particularly preferable carboxyl-protecting group represented by R<sub>6</sub>, for example, an ester-forming protecting groups, such as methyl, ethyl, methoxymethyl, methoxymethyl, benzyloxymethyl, tert-butyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, o-nitrobenzyl, benzhydrile, trityl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, allyl and the like, are used.

[0105] In the formula (VI), as a group represented by  $R_7$ ,  $C_{1-6}$  alkyl and  $C_{6-10}$  aryl are particularly preferable.

[0106] The compound (VI) and a salt thereof can be produced according to the method described in C.W. Todd et al., the Journal of The American Chemical Society, vol. 65, p. 350 (1943) or a method similar thereto.

#### Step 2:

•.

5

10

15

20

25

30

35

40

45

50

55

[0107] A compound represented by the formula

$$R_6$$
 $O$ 
 $O$ 
 $Y$ 
 $R_2$ 
 $R_1$ 
 $(VIII)$ 

wherein each symbol is as defined above, can be produced by subjecting a compound represented by the formula

wherein  $R_1$  and  $R_6$  are as defined above, and a compound represented by  $R_2$ -Y-L<sub>4</sub> (each symbol is as defined above) to the method described in Production Method 4 or a method similar thereto.

[0108] When  $L_4$  is a halogen atom such as chlorine, bromine and the like, particularly preferable reaction conditions are the use of aromatic hydrocarbons such as benzene, toluene, xylene and the like, ethers such as diethoxyethane, tetrahydrofuran and the like or amides such as dimethylformamide, dimethylacetamide and the like as a solvent in the presence of basic inorganic salts such as sodium hydrogencarbonate, potassium carbonate and the like or metal hydrides such as sodium hydride, lithium hydride and the like, and the like at a reaction temperature of about -30 - about 100°C, and the reaction time of from about 0.5 hour to about 48 hours.

## Step 3:

[0109] A compound represented by the formula

$$H \xrightarrow{O} \xrightarrow{O} \xrightarrow{V} R_2$$
 $R_1 \qquad (II')$ 

wherein the symbols in the formula are as defined above, can be produced by deprotecting the carboxylate residue

(-COOR<sub>6</sub>) of the compound represented by the formula

wherein each symbol is as defined above.

[0110] The carboxyl-protecting group represented by R<sub>6</sub> can be removed under deprotection conditions generally employed in the field of organic synthesis chemistry [e.g., deprotection method described in Green and (Wuts), Protective Groups in Organic Synthesis, 2<sup>nd</sup> ed., John Wiley & Sons Inc., New York (1991) and the like]. For example, a method using an acid, a method using a base, a method using reduction, a method using UV light, a method using a palladium complex, a method using a Lewis acid and the like can be mentioned.

**[0111]** Examples of preferable acid include organic acids such as formic acid, trifluoroacetic acid, benzenesulfonic acid, p-toluenesulfonic acid and the like; inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid and the like, and the like, with which tert-butyl, p-methoxybenzyl, benzhydrile and the like are hydrolyzed.

[0112] Examples of preferable base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and the like; alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide and the like; alkali metal carbonates such as sodium carbonate, potassium carbonate and the like; alkali metal hydrogencarbonates such as sodium hydrogencarbonate, potassium hydrogencarbonate and the like; alkali metal hydrogencarbonates such as sodium hydrogencarbonate, potassium hydrogencarbonate and the like; alkali metal acetates such as sodium acetate, potassium acetate and the like; alkaline earth metal phosphates such as calcium phosphate, magnesium phosphate and the like; alkali metal hydrogenphosphate such as disodium hydrogenphosphate, dipotassium hydrogenphosphate and the like, inorganic base such as aqueous ammonia and the like; organic base such as trimethylamine, triethylamine, diisopropylethylamine, pyridine, picoline, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-en, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]-7-undecene and the like, and the like, with which methyl, ethyl and the like are hydrolyzed.

[0113] Examples of preferable reduction include reduction with sodium borohydride, reduction with zinc/acetic acid, catalytic reduction and the like, by which 2,2,2-trichloroethyl, benzyl, p-nitrobenzyl, benzhydrile and the like can be deprotected.

[0114] By the method using UV light, o-nitrobenzyl and the like can be deprotected.

[0115] By the method using palladium complex, allyl and the like can be deprotected.

**[0116]** Examples of preferable Lewis acid include zinc chloride, zinc bromide, titanium tetrachloride, trimethylsilyl triflate and the like, with which methoxymethyl, 2-methoxyethoxymethyl, benzhydryl and the like can be deprotected.

[0117] The solvent for such deprotection is not particularly limited as long as it has no possibility of causing anything other than the objective reaction. For example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as dioxane, diethoxyethane, tetrahydrofuran and the like; alcohols such as methanol, ethanol and the like; halogenated hydrocarbons such as dichloromethane, chloroform and the like; alkylnitriles such as acetonitrile, propionitrile and the like; nitroalkanes such as nitromethane, nitroethane and the like; amides such as dimethylformamide, dimethylacetamide and the like; water or mixed solvents thereof are preferable.

[0118] While the reaction temperature varies depending on the starting material compound (VIII), deprotection conditions, the kind of solvent and the like, it is generally from about -80°C to about 150°C, preferably from about -30°C to about 100°C. The reaction time is generally from about 1 minute to about 72 hours, preferably from about 15 minutes to about 24 hours.

# 50 Step 4:

[0119] A compound represented by the formula

55

5

10

15

20

25

30

35

$$R_6$$
 $C_1$ 
 $N$ 
 $N$ 
 $R_1$ 
 $C_1$ 
 $C_1$ 
 $C_1$ 
 $C_1$ 
 $C_1$ 
 $C_1$ 

wherein each symbol is as defined above, can be produced by converting hydroxy of a compound represented by the formula

$$R_{6} \xrightarrow{O} O$$
 $N \xrightarrow{N} N$ 
 $R_{1} \qquad (VII)$ 

wherein each symbol is as defined above, to chlorine.

[0120] Such conversion reaction is described in detail in, for example, The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and the like, and such methods or similar reactions can be employed.

[0121] It is preferable to carry out the reaction using phosphorus oxychloride as a chlorinating agent, without solvent at room temperature to boiling point temperature. The reaction time is generally from about 1 hour to about 24 hours. [0122] In this Step, an example wherein hydroxy was converted to chlorine is shown. However, this Step is not particularly limited to the conversion to chlorine and a different leaving group may be employed for the next reaction. As such leaving group, a leaving group represented by L<sub>3</sub> can be employed, and a synthetic method thereof may be one described in the above-mentioned publications and the like.

## Step 5:

5

15

20

25

35

[0123] A compound represented by the formula

wherein the symbols in the formula are as defined above, can be produced by reacting a compound represented by

#### EP 1 223 170 A1

wherein each symbol is as defined above, with a compound represented by  $R_2$ -Y-X<sub>1</sub>-H ( $R_2$ , Y and X<sub>1</sub> are as defined above) under the conditions described in Production Method 3, whereafter subjecting the resulting compound to oxidation if necessary.

[0124] Preferable reaction conditions are reaction in the presence of basic inorganic salts such as sodium hydrogencarbonate, potassium carbonate and the like or metal hydrides such as sodium hydride, lithium hydride and the like, and the like, in aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as diethoxyethane, tetrahydrofuran and the like; amides such as dimethylformamide, dimethylacetamide and the like; alcohols such as methanol, ethanol, isopropanol and the like as a solvent, reaction temperature of from about -30°C to about 100°C, and the reaction time of from about 0.5 hour to about 48 hours.

#### Step 6:

5

10

15

20

25

30

35

40

45

50

[0125] A compound represented by the formula

 $H \xrightarrow{O} \xrightarrow{O} \xrightarrow{P_2}$ 

wherein each symbol is as defined above, can be produced by deprotecting a carboxylic acid ester residue (-COOR<sub>6</sub>) of the compound represented by the formula

$$R_6$$
  $X Y R_2$   $X_1$   $X$ 

wherein each symbol is as defined above, under the same reaction conditions as in Step 3.

#### Step 7:

[0126] A compound represented by the formula

wherein each symbol is as defined above, can be produced by protecting hydroxy of a compound represented by the formula

wherein each symbol is as defined above, by a protecting group R<sub>8</sub>, and deprotecting the carboxylic acid residue (-COOR<sub>6</sub>) under the same reaction conditions as in step 3.

[0127] As the hydroxy-protecting group represented by R<sub>8</sub>, a protecting group generally used in the field of organic synthesis chemistry can be used [for example, protecting group described in Green and Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> ed., John Wiley & Sons Inc., New York (1991) and the like]. Preferably, ether type protecting group such as benzyl, p-methoxybenzyl, p-nitrobenzyl, o-nitrobenzyl, benzhydrile, trityl, 2,2,2-trichloroethyl, 2-trimethylsilyl ethyl, allyl and the like; silyl ether type protecting group such as trimethylsilyl, tert-butyldimethylsilyl, diphenyl tert-butylsilyl and the like, and the like are used.

[0128] The method of introducing these protecting groups is described in detail in the above-mentioned publications and the like. Carboxylic acid ester residue (-COOR<sub>6</sub>) can be deprotected under the same reaction conditions as in Step 3.

### Step 8:

5

15

20

25

30

35

40

45

50

[0129] A compound represented by the formula

R4 N O R8 N N N (XII)

wherein each symbol is as defined above, can be produced by reacting a compound represented by the formula

HOO R8

wherein each symbol is as defined above, with an amine compound represented by R<sub>3</sub>R<sub>4</sub>NH wherein each symbol is as defined above, under the conditions described in Production Method 1.

#### Step 9:

[0130] A compound represented by the formula

wherein each symbol is as defined above, can be produced by deprotecting a hydroxy-protecting group  $R_8$  of a compound represented by the formula

wherein each symbol is as defined above.

5

10

15

20

25

30

35

40

50

[0131] The hydroxy-protecting group R<sub>8</sub>, can be removed under the deprotection conditions generally employed in the field of organic synthesis chemistry [for example, deprotection methods described in Green and Wuts, Protective Groups in Organic Synthesis, 2<sup>nd</sup> ed., John Wiley & Sons Inc., New York (1991) and the like].

[0132] The compound (II) other than the above-mentioned compound (II') and (II"), compound (III), (IV) and compound (V) other than compound (V') can be produced according to a method similar to the above-mentioned or a combination of methods described in The Chemistry of Heterocyclic Compounds, vols. 16 and 52, John Wiley & Sons Inc., New York (1962 and 1994) and Comprehensive Organic Synthesis, vols. 1-9, Pergamon Press, Oxford (1991) and the like.

[0133] The compound (I) and a salt thereof of the present invention thus obtained can be isolated and purified by a known means, such as solvent extraction, solvent exchange, phase transfer, salting out, crystallization, recrystallization, chromatography and the like. When a protecting group is contained in the reaction product, the protecting group is removed if necessary by a typical method to give compound (I) or a salt thereof. In the field of organic synthesis chemistry, the protecting groups of amino, hydroxy and carboxy have been conventionally studied and methods of protection and deprotection have been established. These methods can be used for the production of the compound (I) of the present invention and synthetic intermediates thereof.

[0134] A reaction product obtained by the above-mentioned method, which contains the objective compound (I) or reaction product (I) obtained by other known methods may be obtained as an enantiomer or diastereomer mixture in some cases. Such mixture can be separated by fractional recrystallization, column chromatography and the like.

[0135] The compound (I') and a salt thereof of the present invention can be produced according to the above-mentioned production method of compound (I) of the present invention or a salt thereof.

[0136] The salts of compound (I) or (I') of the present invention are preferably pharmacologically acceptable. For example, salts with inorganic base, salts with organic base, salts with inorganic acid, salts with organic acid, salts with basic or acidic amino acid and the like are used.

[0137] Examples of preferable salts with inorganic base include alkali metal salts such as sodium salt, potassium salt and the like; alkaline earth metal salts such as calcium salt, magnesium salt and the like; aluminum salt, ammonium salt and the like.

[0138] Examples of preferable salts with organic base include trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, N,N'-dibenzylethylenediamine and the like.

[0139] Examples of preferable salts with inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like.

[0140] Examples of preferable salts with organic acid include salts with formic acid, acetic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid and the like.

[0141] Examples of preferable salts with basic amino acid include salts with arginine, lysin, ornithine and the like,

examples of preferable salts with acidic amino acid include salts with aspartic acid, glutamic acid and the like.

[0142] It is also possible to convert compounds (I), (I') and salts thereof of the present invention to hydrate thereof according to a known method.

[0143] As the salts of the above-mentioned starting material compounds used for the production of compounds (I), (I') and salts thereof of the present invention, the same salts with the salts of compounds (I) and (I') are used.

[0144] The prodrug of compound (I), (I') or a salt thereof of the present invention may be a compound that converts to compound (I), (I') or a salt thereof due to the reaction of enzyme, gastric acid and the like under the physiological conditions in the body. That is, a compound that converts to compound (I), (I') or a salt thereof by enzymatic oxidation, reduction, hydrolysis and the like, and a compound that converts to compound (I), (I') or a salt thereof by hydrolysis and the like by gastric acid and the like.

10

20

30

35

40

50

55

[0145] A prodrug of compound (I), (I') or a salt thereof of the present invention is exemplified by a compound wherein an amino group of compound (I) or (I') is acylated, alkylated, phosphorylated (e.g., compound where amino group of compound (I) or (I') is eicosanoylated, alanylated, pentylaminocarbonylated, (5-methyl-2-oxo-1,3-dioxolen-4-yl)methoxycarbonylated, tetrahydrofuranylated, pyrrolidylmethylated, pivaloyloxymethylated, tetr-butylated and the like); compound wherein a hydroxy group of compound (I) or (I') is acylated, alkylated, phosphorinated, borated (e.g., compound where hydroxy group of compound (I) or (I') is acetylated, palmitoylated, propanoylated, pivaloylated, succinilated, fumarilated, alanilated, dimethylaminomethylcarbonylated and the like); compound wherein a carboxyl group of compound (I) or (I') is esterified or amidated (e.g., compound where carboxyl group of compound (I) or (I') is ethyl esterified, phenyl esterified, carboxymethyl esterified, dimethylaminomethyl esterified, pivaloyloxymethyl esterified, ethoxycarbonyloxyethyl esterified, phthalidyl esterified, (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl esterified, cyclohexyloxycarbonyethyl esterified, methylamidated and the like) and the like. These compounds can be produced from compound (I) or (I') by a method known *per se.* 

[0146] A prodrug of compound (I) or (I') may be a compound that converts to compound (I) or (I') under physiological conditions as described in lyakuhin no Kaihatsu (Development of pharmaceutical products), vol. 7, Molecule Design, 163-198, Hirokawa Shoten (1990).

[0147] The compound (i), (i'), a salt thereof and a prodrug thereof (hereinafter sometimes to be simply referred to as the compound of the present invention) can be used safely as an agent for the prophylaxis or treatment of the diseases induced by promoted metabolism of cGMP.

**[0148]** The compound of the present invention can be admixed with a pharmaceutically acceptable carrier and orally or parenterally administered as a solid preparation such as tablet, capsule, granule, powder and the like; or a liquid preparation such as syrup, injection and the like.

[0149] Various organic or inorganic carriers conventionally used as materials for pharmaceutical preparations are used as a pharmacologically acceptable carrier, which is added as excipient, lubricant, binder, disintegrant for solid preparations; and solvent, dissolution aids, suspending agent, isotonicity agent, buffer, soothing agent and the like for liquid preparations. If necessary, additive for pharmaceutical preparations, such as preservative, antioxidant, coloring agent, sweetening agent and the like, can be also used.

[0150] Examples of preferable excipient include lactose, sucrose, D-mannitol, starch, crystalline cellulose, light silicic anhydride and the like.

[0151] Examples of preferable lubricant include magnesium stearate, calcium stearate, talc, colloidal silica and the like.

**[0152]** Examples of preferable binder include crystalline cellulose, sucrose, D-mannitol, dextrin, hydroxypropyl cellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone and the like.

**[0153]** Examples of preferable disintegrant include starch, carboxymethylcellulose, calcium carboxymethylcellulose, sodium crosscarmellose, sodium carboxymethyl starch, and the like.

45 [0154] Examples of preferable solvent include water for injection, alcohol, propylene glycol, macrogol, sesame oil, corn oil, and the like.

[0155] Examples of preferable dissolution aids include polyethylene glycol, propylene glycol, D-mannitol, benzyl benzoate, ethanol, Tris aminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, and the like.

[0156] Examples of preferable suspending agent include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, lauryl aminopropionate, lecithin, benzalkonium chloride, benzethonium chloride, monostearic glyceride and the like; hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, sodium carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylcellulose and the like.

[0157] Examples of preferable isotonicity agent include sodium chloride, glycerol, D-mannitol, and the like.

[0158] Examples of preferable buffer include phosphate buffer, acetate buffer, carbonate buffer, citrate buffer, and the like.

[0159] Examples of preferable soothing agent include benzyl alcohol and the like.

[0160] Examples of preferable preservative include p-oxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.

#### EP 1 223 170 A1

[0161] Examples of preferable antioxidant include sulfite, ascorbic acid and the like.

[0162] The compound of the present invention can prevent or treat diseases induced by promoted metabolism of cGMP, in human and other mammals, such as angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases, disorders of male or female genital function and the like, by inhibiting the action of cGMP-PDE, particularly cGMP-PDE V. While the dose of the compound of the present invention varies depending on the condition and body weight of administration subject, administration route and the like, the compound of the present invention as an active ingredient is generally given by intravenous, muscular injection and the like once to 3 times a day in a single dose of about 0.1-80 mg/kg body weight, preferably 1-25 mg/kg body weight, in the case of, for example, parenteral administration to an adult. In the case of oral or nasal administration, the dose is given at once or divided in three doses, wherein a single dose of the compound of the present invention as an active ingredient is about 1-100 mg/kg body weight, preferably 2-50 mg/kg body weight.

[0163] The present invention is explained in more detail by the following Reference Examples and Examples. These are mere examples and do not limit the present invention in any way.

[0164] The extraction by column chromatography in the following Reference Examples and Examples was performed under observation by TLC (thin-layer chromatography). In the TLC observation, 60F<sub>254</sub> (Merck) was used as a TLC plate, the solvent used as an elution solvent in the column chromatography was used as a solvent and UV detector was used for detection. As silica gel for column, Kieselgel 60 (70-230 or 230-400 mesh) manufactured by Merck was used.

[0165] The NMR spectrum was measured with Varian Gemini 200 (200 MHz) type spectrometer using tetramethyl-silane as an internal or external standard, and all  $\delta$  values are shown in ppm. For mass analysis, cation was measured by atmospheric pressure chemical ionization (APCI) using platform II spectrometer (MICROMASS). The figures in parentheses for mixed solvents are mixing volume ratios of respective solvents and % of the mixed solvent means percent by volume. The abbreviations in Examples and Reference Examples mean the following.

25

20

10

s: singlet

d: doublet

t: triplet

q: quartet

30 dd: double doublet

m: multiplet

br: broad

J: coupling constant

### 35 Examples

### Reference Example 1

ethyl 2-methylthio-4-hydroxypyrimidine-5-carboxylate

[0166]

45

40

OH N N

50

55

[0167] To a 4N sodium hydroxide solution (200 mL) was added S-methylisothioureasulfate (55.6 g, 0.2 mol), and after stirring for 30 min, at room temperature a solution of diethyl ethoxymethylenemalonate (80.8 mL, 0.35 mol) in ethanol (100 mL) was dropwise added slowly over 1 h. After stirring for 18 h, the precipitated crystals were collected by filtration, washed several times with cold ethanol and the obtained crystals were added to 1N hydrochloric acid (300 mL). The mixture was stirred for 30 min and the precipitated crystals were collected by filtration, washed several times with cold water and dried with heating under vacuum to give the title compound (26 g, 61%) as crystals.

1H-NMR (δ ppm, CDCl<sub>3</sub>): 1.42 (3H, t, J=7.0 Hz), 2.60 (3H, s), 4.44 (2H, q, J=7.0 Hz), 8.76 (1H, s), 13.25 (1H, br)

### Reference Example 2-1

ethyl 4-hydroxy-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

5 [0168] To a solution of indoline (3.58 g, 30 mmol) in ethanol (50 mL) was added ethyl 2-methylthio-4-hydroxypyrimidine-5-carboxylate (5.35 g, 25 mmol) and the mixture was heated under reflux for 18 h. The reaction mixture was allowed to cool to room temperature and the precipitated crystals were collected by filtration. The crystals were washed several times with cold ethanol and dried to give the title compound (5.5 g, 77%) as crystals.

[0169] In the same manner as in Reference Example 2-1, compounds of Reference Examples 2-2 to 2-14 were synthesized.

Reference Example 2-2: ethyl 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl) -4-hydroxy-5-pyrimidinecarboxylate
Reference Example 2-3: ethyl 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-hydroxy-5-pyrimidinecarboxylate
Reference Example 2-4: ethyl 4-hydroxy-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 2-5: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-hydroxy-5-pyrimidinecarboxylate

Reference Example 2-6: ethyl 4-hydroxy-2-(6-nitro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 2-7: ethyl 4-hydroxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 2-8: ethyl 4-hydroxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 2-9: ethyl (RS)-4-hydroxy-2-(3-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 2-10: ethyl 4-hydroxy-2-(7-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

Reference Example 2-11: ethyl (RS)-4-hydroxy-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 2-12: ethyl 4-hydroxy-2-(7-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 2-13: ethyl (R)-4-hydroxy-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 2-14: ethyl (S)-4-hydroxy-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate [0170] Respective structural formulas and NMR data are shown in the following Table.

[Table 1]

30

35

10

15

20

25

CO<sub>2</sub>Et OH N N

45

40

50

| •   |           | <del>,                                     </del> |          |                                                |
|-----|-----------|---------------------------------------------------|----------|------------------------------------------------|
|     | Reference | X                                                 | yield(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> ) |
|     | Example   |                                                   | }        | }                                              |
|     | No.       |                                                   |          |                                                |
| 5   | 2-1       | н                                                 | 77       | 1.42 (3H, t, J=7.0 Hz), 3.21 (2H,              |
|     | 2 1       |                                                   |          | t, J=7.6 Hz), 4.32 (2H, t, J=7.6               |
|     |           |                                                   | 1        |                                                |
|     |           |                                                   |          | Hz), 4.42 (2H, q, J=7.2 Hz), 7.02              |
|     |           |                                                   |          | (1H, t, J=7.0 Hz), 7.20-7.30 (2H,              |
| 10  |           |                                                   |          | m), 8.50 (1H, d, J=7.0 Hz), 8.84               |
|     |           | <u> </u>                                          |          | (1H, s)                                        |
|     | 2-2       | 5-F                                               | 55       | 1.42 (3H, t, J=7.6 Hz), 3.19 (2H,              |
|     |           | <u> </u>                                          |          | t, J=8.4 Hz), 4.33 (2H, t, J=8.4               |
|     |           |                                                   | 1        | Hz), 4.42 (2H, q, J=7.0 Hz), 6.86-             |
| 15  | •         |                                                   | 1        | 6.98 (2H, m), 8.39-8.50 (1H, br),              |
|     |           | 1                                                 | [        | 8.82 (1H, s)                                   |
|     | 2-3       | 5,6-                                              | 72       | 1.42 (3H, t, J=7.4 Hz), 3.10 (2H,              |
|     | 2-3       | 1 .                                               | 12       | •                                              |
|     |           | OCH <sub>2</sub> O                                | }        | t, J=8.8 Hz), 4.31 (2H, t, J=8.0               |
| 20  |           | 1                                                 | 1        | Hz), $4.41$ (2H, q, $J=7.4$ Hz), $5.96$        |
|     |           |                                                   |          | (2H, s), 6.70 (1H, s), 8.20 (1H,               |
| !   |           |                                                   |          | br s), 8.79 (1H, s)                            |
|     | 2-4       | 5-MeO                                             | 82       | 1.42 (3H, t, J=7.6 Hz), 3.18 (2H,              |
|     |           |                                                   |          | t, J=8.4 Hz), 3.81 (3H, s), 4.30               |
| 25  |           |                                                   |          | (2H, t, J=8.4 Hz), 4.41 (2H, q,                |
|     | ·         |                                                   | 1        | J=7.6 Hz), 6.72-6.81 (2H, m), 8.40             |
|     |           |                                                   |          | (1H, d, J=7.5 Hz), 8.81 (1H, s)                |
|     | 2-5       | 5-Br                                              | 65       | 1.42 (3H, t, 7.6 Hz), 3.19 (2H, t,             |
|     |           | •                                                 | •        | J=8.4 Hz), 4.32 (2H, t, J=8.4 Hz),             |
| 30  |           |                                                   | <u>'</u> | 4.42 (2H, q, J=7.0 Hz), 7.30-7.38              |
|     |           |                                                   |          | (2H, m), 8.38 (1H, d, J=7.5 Hz),               |
|     |           |                                                   |          |                                                |
|     | 2.6       | 6 110                                             | A.F.     | 8.83 (1H, s)                                   |
| 0.5 | 2-6       | 6-NO <sub>2</sub>                                 | 45       | 1.44 (3H, t, J=7.0 Hz), 3.29 (2H,              |
| 35  |           |                                                   |          | t, $J=8.4 Hz$ ), $4.37-4.50 (4H, m)$ ,         |
|     |           |                                                   |          | 7.31 (1H, d, $J=8.2 \text{ Hz}$ ), 7.90 (1H,   |
|     |           |                                                   |          | dd, J=8.0, 2.2 Hz), 8.94 (1H, br               |
|     |           |                                                   |          | s), 9.31 (1H, d, J=2.2 Hz)                     |
| 40  | 2-7       | 4-MeO                                             | 78       | 1.42 (3H, t, J=7.0 Hz), 3.12 (2H,              |
| 40  |           |                                                   |          | t, J=8.4 Hz), 3.86 (3H, s), 4.34               |
|     |           |                                                   |          | (2H, t, J=8.4 Hz), 4.42 (2H, q)                |
|     |           |                                                   |          | J=7.0 Hz), 6.70 (1H, d, $J=8.2 Hz$ ),          |
|     |           |                                                   | ]        | 7.18-7.28 (2H, m), 8.14 (1H, d,                |
| 45  |           |                                                   |          | J=8.0 Hz), 8.83 (1H, s)                        |
| 45  | 2-B       | 5-Me                                              | 76       | 1.42 (3H, t, J=7.4 Hz), 2.33 (3H,              |
|     | 2-6       | 5-Me                                              | '6       | · · · · · · · · · · · · · · · · · · ·          |
|     |           |                                                   |          | s), 3.17 (2H, t, J=8.8 Hz), 4.29               |
|     |           |                                                   |          | (2H, t, J=8.8 Hz), 4.42 (2H, q,                |
| 50  |           |                                                   |          | J=6.8 Hz), 7.00-7.08 (2H, m), 8.36             |
| 30  |           |                                                   |          | (1H, d, J=8.8 Hz), 8.82 (1H, s)                |
|     | 2-9       | (RS)-                                             | 84       | 1.32-1.47 (6H, m), 3.40-3.60 (1H,              |
| i   |           | 3-Me                                              |          | m), 3.84 (1H, dd, J=12.2, 6.6 Hz),             |
|     |           |                                                   |          | 4.37-4.56 (4H, m), 7.05 (1H, t,                |
| 55  | İ         |                                                   |          | J=7.2 Hz), 7.19-7.30 (2H, m), 8.46             |
|     |           |                                                   |          | (1H, br d, J=7.2 Hz), 8.84 (1H, s)             |
| L.  |           |                                                   |          |                                                |

|    | 2-10 | 7-Me0  | 29 | 1.37 (3H, t, J=7.0 Hz), 3.13 (2H, t, J=8.2 Hz), 4.04 (3H, s), 4.34 |
|----|------|--------|----|--------------------------------------------------------------------|
| _  |      |        |    | (2H, q, J=7.0 Hz), 4.51 (2H, t,                                    |
| 5  |      |        |    |                                                                    |
|    | ·    |        |    | J=8.2 Hz), 6.89-7.00 (2H, m), 7.21                                 |
|    |      | 4      |    | (1H, t, J=8.0 Hz), 8.66 (1H, s)                                    |
|    | 2-11 | (RS) - | 46 | 1.30-1.48 (6H, m), 2.70 (1H, d,                                    |
| 10 |      | 2-Me   |    | 16.2 Hz), 3.42 (1H, dd, J=16.2,                                    |
|    |      |        |    | 9.2  Hz), $4.41  (2H, q,  J=7.4  Hz$ ),                            |
|    |      |        |    | 4.98-5.13 (1H, m), 7.03 (1H, t,                                    |
|    |      |        |    | J=6.6 Hz), $7.20-7.30 (2H, m)$ , $8.43$                            |
| 15 |      |        |    | (1H, d, J=8.2 Hz), 8.82 (1H, s)                                    |
| 13 | 2-12 | 7-Ме   | 41 | 1.41 (3H, t, J=7.4 Hz), 2.26 (3H,                                  |
|    |      |        |    | s), 3.06 (2H, t, J=8.2 Hz), 4.31-                                  |
|    |      |        |    | 4.48 (4H, m), 6.95-7.20 (3H, m),                                   |
|    |      |        |    | 8.77 (2H, s)                                                       |
| 20 | 2-13 | (R) -  | 85 | 1.30-1.48 (6H, m), 2.70 (1H, d,                                    |
|    |      | 2-Me   |    | 16.2 Hz), 3.42 (1H, dd, J=16.2,                                    |
|    |      |        |    | 9.2 Hz), 4.41 (2H, q, J=7.4 Hz),                                   |
|    |      |        |    | 4.98-5.13 (1H, m), 7.03 (1H, t,                                    |
| 25 |      |        |    | J=6.6 Hz), 7.20-7.30 (2H, m), 8.43                                 |
|    |      |        |    | (1H, d, J=8.2 Hz), 8.82 (1H, s)                                    |
|    | 2-14 | (S) -  | 57 | 1.30-1.48 (6H, m), 2.70 (1H, d,                                    |
|    |      | 2-Me   |    | 16.2 Hz), 3.42 (1H, dd, J=16.2,                                    |
| 30 |      |        |    | 9.2 Hz), 4.41 (2H, q, J=7.4 Hz),                                   |
|    |      |        |    | 4.98-5.13 (1H, m), 7.03 (1H, t,                                    |
| 1  |      |        |    | J=6.6 Hz), 7.20-7.30 (2H, m), 8.43                                 |
|    |      |        |    | (1H, d, J=8.2 Hz), 8.82 (1H, s)                                    |
|    |      |        |    | (111, α, 0-0.2 112), 0.02 (111, 5)                                 |

#### Reference Example 3-1

35

ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxylate

40 [0171] To a solution of ethyl 4-hydroxy-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate (7.1 g, 27.6 mmol) in N,N-dimethylformamide (100 ml) were added potassium carbonate (7.8 g, 60 mmol) and 4-fluorobenzylbromide (3.74 ml, 30 mmol) and the mixture was stirred at 80°C for 18 h. The reaction mixture was allowed to cool to room temperature and water was added. The precipitated crystals were collected by filtration, washed several times with cold water and cold ether and dried to give the title compound (8.6 g, 79%).

[0172] In the same manner as in Reference Example 3-1, compounds of Reference Examples 3-2 to 3-22 were synthesized.

Reference Example 3-2: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-5-pyrimidinecarboxylate Reference Example 3-3: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-(trifluoromethyl)benzyl]oxy}-5-pyrimidinecarboxylate Reference Example 3-4: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxylate

Reference Example 3-5: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinecarboxylate
Reference Example 3-6: ethyl 4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 3-7: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-(2-methoxyethoxy)-5-pyrimidinecarboxylate
Reference Example 3-8: ethyl 4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 3-9: ethyl 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxylate

Reference Example 3-10: ethyl (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecar-boxylate

Reference Example 3-11: ethyl (RS)-4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidine-

### EP 1 223 170 A1

| ca | rt. | $\sim$             | vlo | ıtc |
|----|-----|--------------------|-----|-----|
| va | ı   | $\omega_{\Lambda}$ | VIC |     |

25

30

35

40

45

50

55

- Reference Example 3-12: ethyl 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidine-carboxylate
- Reference Example 3-13: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxylate

  Reference Example 3-14: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxylate
  - Reference Example 3-15: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinecarboxylate
    Reference Example 3-16: ethyl 4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- Reference Example 3-17: ethyl 4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxy-late
  - Reference Example 3-18: ethyl 4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecar-boxylate
  - Reference Example 3-19: ethyl 4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- 15 Reference Example 3-20: ethyl 4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
  - Reference Example 3-21: ethyl 4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 3-22: ethyl 4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- 20 [0173] Respective structural formulas and NMR data are shown in the following Tables.

[Table 2]

5

CO<sub>2</sub>Et X N N

10

| DCl <sub>3</sub> )    |
|-----------------------|
| ļ                     |
|                       |
| 2), 3.22              |
| 23-4.40               |
| , 6.96-               |
| 28 (2H,               |
| 8.20-                 |
| 3 (1H, s)<br>2), 3.21 |
| 22-4.40               |
| , 6.95-               |
| H, t,                 |
| (1H, br),             |
|                       |
| 2), 3.21              |
| 18-4.42               |
| , 7.01                |
| 18-7.29               |
| , 8.10-               |
| (1H, s)<br>(1), 3.20  |
| 82 (3H,               |
| , 5.54                |
| H, m),                |
| 3), 8.20-             |
| 1H, s)                |
|                       |

50

| 5  | 3-5 | <del>≺</del> —0Et       | 99 | 1.37 (3H, t, J=7.4 Hz), 1.52<br>(3H, t, J=7.0 Hz), 3.21 (2H,<br>t, J=8.4 Hz), 4.23-4.38 (4H,<br>m), 4.59 (2H, q, J=7.2 Hz),<br>7.00 (1H, t, J=6.6 Hz), 7.19-<br>7.28 (2H, m), 8.32-8.42 (1H,<br>br), 8.89 (1H, s)                 |
|----|-----|-------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 3-6 | -0 Br                   | 94 | 1.37 (3H, t, J=7.0 Hz), 3.21<br>(2H, t, J=8.8 Hz), 4.21-4.40<br>(4H, m), 5.54 (2H, s), 7.01<br>(1H, t, J=7.0 Hz), 7.18-7.28<br>(2H, m), 7.41 (2H, d, J=8.0<br>Hz), 7.52 (2H, d, J=8.0 Hz),<br>8.17-8.50 (1H, br), 8.93 (1H, s)    |
| 20 | 3-7 | <b>←</b> 0 <b>∕</b> 0Me | 98 | 1.37 (3H, t, J=7.0 Hz), 3.21<br>(2H, t, J=8.0 Hz), 3.49 (3H,<br>s), 3.86 (2H, t, J=4.4 Hz),<br>4.22-4.40 (4H, m), 4.65 (2H,<br>t, J=5.2 Hz), 7.00 (1H, t,<br>J=7.2 Hz), 7.18-7.29 (2H, m),<br>8.23-8.42 (1H, br), 8.90 (1H,<br>s) |

[Table 3]

CO<sub>2</sub>ET

:

| Reference<br>Example<br>No. | х       | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                   |
|-----------------------------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-8                         | -0 F    | 86           | 1.35 (3H, t, J=7.0 Hz), 3.20 (2H, t, J=8.8 Hz), 4.25-4.40 (4H, m), 5.53 (2H, s), 6.85-6.98 (2H, m), 7.08 (2H, t, J=8.8 Hz), 7.50 (2H, dd, J=5.4, 8.4 Hz), 8.15-8.43 (1H, br), 8.92 (1H, s)                      |
| 3-9                         | — O OMe | 81           | 1.36 (3H, t, J=7.0 Hz), 3.19<br>(2H, t, J=8.8 Hz), 3.82 (3H,<br>s), 4.23-4.40 (4H, m), 5.56<br>(2H, s), 6.80-6.95 (3H, m),<br>7.07-7.12 (2H, m), 7.30 (1H,<br>t, J=8.4 Hz), 8.00-8.42 (1H,<br>br), 8.91 (1H, s) |

[Table 4]

N N Me

| Reference<br>Example<br>No. | Х    | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                           |
|-----------------------------|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-10                        | -0 F | 95           | 1.29-1.42 (6H, m), 2.62 (1H, d, J=16.0 Hz), 3.44 (1H, dd, J=9.2, 15.8 Hz), 4.33 (2H, q, J=9.4 Hz), 5.02 (1H, quintet, J=7.0 Hz), 5.54 (2H, s), 6.97-7.14 (3H, m), 7.19-7.28 (2H, m), 7.51 (2H, dd, J=5.4, 8.8 Hz), 8.29 (1H, d, J=7.0 Hz), 8.93 (1H, s) |
| 3-11                        | OMe  | 99           | 1.30-1.44 (6H, m), 2.70 (1H, d, J=15.2 Hz), 3.43 (1H, dd, J=8.2, 15.2 Hz), 3.81 (3H, s), 4.34 (2H, q, J=7.0 Hz), 4.92-5.12 (1H, br), 5.56 (2H, s), 6.80-7.14 (4H, m), 7.18-7.35 (3H, m), 8.20-8.35 (1H, br), 8.92 (1H, s)                               |

[Table 5]

N N N

| Reference<br>Example<br>No. | Х    | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                             |
|-----------------------------|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-12                        | -0 F | 95           | 1.35 (3H, t, J=7.0 Hz), 3.11<br>(2H, t, J=8.4 Hz), 4.20-4.38<br>(4H, m), 5.53 (2H, s), 5.96<br>(2H, s), 6.71 (1H, s), 7.07<br>(2H, t, J=8.8 Hz), 7.44-7.53<br>(2H, m), 7.70-8.20 (1H, br),<br>8.89 (1H, s) |

[Table 6]

:

5

10

15

20

25

30

35

40

45

50

Br N

ÇO,Et

 $^{1}H-NMR(\delta ppm, CDCl_{3})$ Reference Х yield (육) Example No. 1.35 (3H, t, J=7.0 Hz), 3.20 (2H, t, J=8.8 Hz),4.22-4.38 (4H, m), 5.53 80 3-13 (2H, s), 7.08 (2H, t, J=8.4 Hz), 7.29-7.39 (2H, m), 7.49 (2H, dd, J=5.6, 8.8 Hz), 8.08-8.30 (1H, br), 8.92 (1H, s) 1.36 (3H, t, J=7.0 Hz), 3.18 (2H, t, J=8.4 Hz), 3.82 (3H, s), 4.22-4.41 83 3 - 14(4H, m), 5.55 (2H, s), 6.85 (1H, dd, J=3.0, 8.0 Hz), 7.05-7.12 (2H, m), 7.27-7.35 (3H, m), 8.00-8.30 (1H, br), 8.91 (1H, 1.37 (3H, t, J=7.0 Hz), 1.51 (3H, t, J=6.8 Hz), -- 0Et 3.19 (2H, t, J=8.6 Hz), 3-15 94 4.22-4.39 (4H, m), 4.55 (2H, q, J=7.0 Hz), 7.30-7.39 (2H, m), 8.17-8.33 (1H, br), 8.88 (1H, s) 1.37 (3H, t, J=7.2 Hz), 3.20 (2H, t, J=8.4 Hz),4.22-4.40 (4H, m), 5.52 73 3-16 (2H, s), 7.29-7.43 (4H,m), 7.52 (2H, d, J=8.8Hz), 8.00-8.30 (1H, br),

55

8.93 (1H, s)

[Table 7]

MeO MeO

| 15 | Reference<br>Example | Х      | yield<br>(%) | $^{1}$ H-NMR( $\delta$ ppm, CDC1 <sub>3</sub> )                                                                                                       |
|----|----------------------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | No.                  |        |              |                                                                                                                                                       |
| 20 | 3-17                 | -0 F   | 92           | 1.35 (3H, t, J=7.0 Hz), 3.19<br>(2H, t, J=8.4 Hz), 3.81 (3H,<br>s), 4.20-4.38 (4H, m), 5.54<br>(2H, s), 6.71-6.82 (2H, m),<br>7.08 (2H, t, J=8.8 Hz), |
|    |                      |        |              | 7.43-7.53 (2H, m), 8.00-8.40 (1H, br), 8.90 (1H, s)                                                                                                   |
| 25 | 3-18                 | -0 OMe | 77           | 1.36 (3H, t, J=7.0 Hz), 3.18 (2H, t, J=8.4 Hz), 3.81 (6H, s), 4.15-4.41 (4H, m), 5.56                                                                 |
| 30 |                      |        |              | (2H, s), 6.68-6.88 (3H, m),<br>7.02-7.20 (2H, m), 7.20-7.38                                                                                           |
|    |                      |        |              | (1H, m), 8.00-8.40 (1H, br),                                                                                                                          |

[Table 8]

5 CO<sub>2</sub>Et X N N N

)Ma

| 15 | Reference<br>Example<br>No. | х                | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                             |
|----|-----------------------------|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 3-19                        | <del>≺</del> OEt | 87           | 1.37 (3H, t, J=7.4 Hz), 1.51<br>(3H, t, J=7.2 Hz), 3.12 (2H,<br>t, J=8.8 Hz), 3.87 (3H, s),<br>4.25-4.40 (4H, m), 4.58 (2H,<br>q, J=7.0 Hz), 6.58 (1H, d, |
| 25 |                             |                  |              | J=8.0 Hz), 7.22 (1H, d,<br>J=8.2 Hz), 8.00 (1H, br d,<br>J=8.2 Hz), 8.88 (1H, s)                                                                          |

30
3-20
Br
83
1.37 (3H, t, J=6.6 Hz), 3.12
(2H, t, J=9.2 Hz), 3.87 (3H,
s), 4.23-4.40 (4H, m), 5.53
(2H, s), 6.59 (1H, d, J=8.4
Hz), 7.19 (1H, d, J=8.2 Hz),
7.41 (2H, d, J=8.4 Hz), 7.52
(2H, d, J=8.4 Hz), 7.80-8.05
(1H, br), 8.92 (1H, s)

50

40

45

[Table 9]

| Reference<br>Example<br>No. | Х      | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                              |
|-----------------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-21                        | ⊶— 0Et | 81           | 1.36 (3H, t, J=6.8 Hz),<br>1.51 (3H, t, J=7.2 Hz),<br>2.33 (3H, s), 3.17 (2H,<br>t, J=8.4 Hz), 4.20-4.38<br>(4H, m), 4.57 (2H, q,<br>J=7.2 Hz), 7.00-7.08 (2H,<br>m), 8.14-8.30 (1H, br),<br>8.88 (1H, s)                   |
| 3-22                        | → 0 Br | 89           | 1.36 (3H, t, J=7.0 Hz),<br>2.33 (3H, s), 3.17 (2H,<br>t, J=8.6 Hz), 4.20-4.40<br>(4H, m), 5.53 (2H, s),<br>6.99-7.08 (2H, m), 7.41<br>(2H, d, J=8.4 Hz), 7.52<br>(2H, d, J=8.4 Hz), 8.00-<br>8.35 (1H, br), 8.92 (1H,<br>s) |

### Reference Example 4-1

Ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate

[0174] To a solution of ethyl 4-hydroxy-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate (500 mg, 1.75 mmol) in N,N-dimethylformamide (10 mL) were added potassium carbonate (500 g, 4 mmol), sodium iodide (300 mg, 2 mmol) and 4-methoxybenzyl chloride (0.29 mL, 2 mmol), and the mixture was stirred at 80°C for 18 h. The reaction mixture was allowed to cool to room temperature and water was added. The precipitated crystals were collected by filtration, washed several times with cold water and cold ether, and dried to give the title compound (550 mg, 78%).

[0175] In the same manner as in Reference Example 4-1, compounds of Reference Examples 4-2 to 4-32 were synthesized.

Reference Example 4-2: ethyl 4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 4-3: ethyl 4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 4-4: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-5-pyrimidinecarboxylate
Reference Example 4-5: ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
Reference Example 4-6: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-5-pyrimidinecarboxylate
Reference Example 4-7: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-5-pyrimidinecarboxylate
Reference Example 4-8: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate
Reference Example 4-9: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate

### EP 1 223 170 A1

Reference Example 4-10: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-5-pyrimidinecarboxylate

Reference Example 4-11: ethyl 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

- 5 Reference Example 4-12: ethyl 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidine-carboxylate
  - Reference Example 4-13: ethyl 4- (1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidine-carboxylate
- Reference Example 4-14: ethyl 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxy10 late Reference Example 4-15: ethyl 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate

15

20

25

40

45

50

55

- Reference Example 4-16: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate Reference Example 4-17: ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-5-pyrimidinecarboxylate Reference Example 4-18: ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-19: ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-20: ethyl 4-[(4-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-21: ethyl 4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-22: ethyl 4-[(4-methoxybenzyl)oxyl-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-23: ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2.3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-24: ethyl 4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-25: ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-26: ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-27: ethyl 4-[(4-methoxybenzyl)oxy]-2-(7-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-28: ethyl (R)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 4-29: ethyl (R)-4-[(3-fluoro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- Reference Example 4-30: ethyl (R)-4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- Reference Example 4-31: ethyl (R)-4-[(2-fluoro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
  - Reference Example 4-32: ethyl (R)-4-[(2-chloro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate
- Reference Example 4-33: ethyl (S)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecar-boxylate

[Table 10]

CO<sub>2</sub>Et N N

10

5

:

|    | Reference | х     | yield | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                             |
|----|-----------|-------|-------|----------------------------------------------------------------------------------------------------------------------------|
|    | Example   |       | (%)   | (o pp, 02023,                                                                                                              |
| 15 | No.       |       | ( )   |                                                                                                                            |
| 20 | 4-1       | OMe   | 78    | 1.34(3H, t, J=7.0 Hz0, 3.22<br>(2H, t, J=8.4 Hz), 3.81 (3H,<br>s), 4.32 (2H, q, J=6.8 Hz),<br>5.53 (2H, s), 6.88-7.08 (3H, |
| 25 |           |       |       | m), 7.18-7.30 (2H, m), 7.45 (2H, d, J=8.8 Hz), 8.38 (1H, br d, J=8.0 Hz), 8.92 (1H, s)                                     |
| 30 | 4-2       | -0 F  | 92    | 1.24 (3H, t, J=7.0 Hz), 3.23<br>(2H, t, J=8.8 Hz), 4.19-4.20<br>(2H, m), 5.65 (2H, s), 6.88-                               |
| 30 |           | •     |       | 7.06 (3H, m), 7.20-7.42 (3H, m), 8.42 (1H, d, J=7.4 Hz), 8.91 (1H, s)                                                      |
| 35 | 4-3       | -0 CI | 91    | 1.36 (3H, t, J=7.0 Hz), 3.21<br>(2H, t, J=8.6 Hz), 4.20-4.40<br>(2H, m), 5.56 (2H, s), 7.01                                |
| 40 |           |       |       | (1H, t, J=7.4 Hz), 7.18-7.28<br>(2H, m), 7.36 (2H, d, J=8.4<br>Hz), 7.48 (2H, d, J=8.4 Hz),<br>8.20-8.50 (1H, br), 8.93    |
|    |           | ļ     |       | (1H, s)                                                                                                                    |

45

50

|    | ·   |               |          |                                 |
|----|-----|---------------|----------|---------------------------------|
|    | 4-4 | . ✓ Me        | 73       | 1.36 (3H, t, J=7.4 Hz), 2.26    |
|    |     | <b>←</b> 0.↓↓ | ĺ        | (3H, s), 2.34 (3H, s), 3.22     |
| 5  | [   | we we         | <b>\</b> | (2H, t, J=8.4 Hz), 4.24-4.40    |
| J  |     |               |          | (4H, m), 5.54 (2H, s), 7.01     |
|    |     |               |          | (1H, t, J=8.0 Hz), 7.08-7.30    |
|    |     |               |          | (4H, m), 8.29-8.45 (1H, br),    |
|    |     |               |          | 8.92 (1H, s)                    |
| 10 | 4-5 | 0             | 98       | 1.36 (3H, t, J=7.4 Hz), 3.22    |
|    |     | -n   ] >      |          | (2H, t, J=8.0 Hz), 4.25-4.38    |
|    |     |               | }        | (4H, m), 5.50 (2H, s), 5.96     |
|    |     |               |          | (2H, s), 6.81 (1H, d, J=8.0     |
|    |     |               |          | Hz), 6.93-7.04 (3H, m),         |
| 15 |     |               |          | 7.19-7.28 (2H, m), 8.24-8.45    |
|    |     |               |          | (1H, br), 8.92 (1H, s)          |
|    | 4-6 | 11.           | 90       | <del></del>                     |
|    | 4-6 | o-Me          | 80       | 1.37 (3H, t, J=6.8 Hz), 3.20    |
| 20 |     |               | }        | (2H, t, J=9.2 Hz), 3.77 (3H,    |
|    |     |               | Ì        | s), 3.86 (3H, s), 4.24-4.41     |
|    |     |               | ·        | (4H, m), 5.62 (2H, s), 6.78-    |
|    | į   | Me O          | İ        | 6.86 (2H, m), 6.99 (1H, t,      |
|    | į   | 9             |          | J=7.4 Hz), 7.17-7.29 (3H,       |
| 25 |     |               | i<br>!   | m), 8.20-8.40 (1H, br), 8.93    |
|    |     |               | ļ        | (1H, s)                         |
|    | 4-7 | -0            | 61       | 1.25 (6H, d, J=6.0 Hz), 3.19    |
|    |     | 0iPr          | ,        | (2H, t, J=8.0 Hz), 4.26 (2H,    |
| 30 |     | ,             |          | t, J=8.6 Hz), 4.61 (1H,         |
|    |     |               |          | sevenplet, J=6.0 Hz), 5.50      |
|    |     |               |          | (2H, s), 6.92 (2H, d, J=8.8     |
|    |     |               |          | Hz), 7.02 (1H, d, $J=7.6 Hz$ ), |
|    |     | ·             |          | 7.18-7.32 (2H, m), 7.42 (2H,    |
| 35 |     |               |          | d, J=8.6 Hz), 8.31 (1H, br      |
|    |     |               |          | s), 8.80 (1H, s)                |
|    | 4~8 | -0~           | 74       | 1.34 (3H, t, J=7.4 Hz), 1.41    |
|    |     | <b>└ /</b> 0, |          | (3H, t, J=7.0 Hz), 3.21 (2H,    |
| 40 |     | ]             |          | t, J=8.4 Hz), 4.03 (2H, q,      |
|    |     |               | 1        | J=7.0 Hz), 4.25-4.39 (4H,       |
|    |     |               |          | m), 5.53 (2H, s), 6.90 (2H,     |
|    |     |               |          | d, J=9.4 Hz), 7.00 (1H, t,      |
|    |     |               |          | J=6.6 Hz), 7.18-7.30 (2H,       |
| 45 |     |               |          | m), 7.44 (2H, d, J=8.8 Hz),     |
|    |     |               |          | 8.36 (1H, br d, J=9.2 Hz),      |
|    |     |               |          | 8.91 (1H, s)                    |
|    | 4-9 | -0~\^F        | 81       | 1.36 (3H, t, J=7.4 Hz), 3.22    |
| 50 |     |               |          | (2H, t, J=8.8 Hz), 3.90 (3H,    |
|    |     | · OMe         |          | s), 4.24-4.40 (4H, m), 5.51     |
|    |     |               |          | (2H, s), 6.90-7.07 (2H, m),     |
|    |     |               |          | 7.20-7.32 (4H, m), 8.35 (1H,    |
|    |     |               |          | br s), 8.93 (1H, s)             |
| 55 |     |               |          |                                 |

|    | 4-10 | — 0 Me | 80 | 1.34 (3H, t, J=7.2 Hz), 2.23<br>(2H, t, J=8.8 Hz), 3.22 (2H, |
|----|------|--------|----|--------------------------------------------------------------|
| 5  | 1    | Unic   |    | t, $J=8.8 Hz$ ), 3.83 (3H, s),                               |
|    |      |        |    | 4.25-4.39 (4H, m), 5.51 (2H,                                 |
|    |      |        |    | s), 6.82 (1H, d, J=8.0 Hz),                                  |
|    |      |        |    | 7.00 (1H, t, J=7.0 Hz),                                      |
| 10 |      |        |    | 7.00-7.38 (4H, m), 8.40 (1H,                                 |
|    |      | ļ      |    | br s), 8.91 (1H, s)                                          |
|    | 4-11 | -0~(C) | 81 | 1.37 (3H, t, J=7.0 Hz), 3.22                                 |
|    |      | OMe    |    | (2H, t, J=8.8 Hz), 3.91 (3H,                                 |
| 15 |      |        |    | s), 4.25-4.40 (4H, m), 5.50                                  |
|    |      |        |    | (2H, s), 6.90-7.08 (2H, m),                                  |
|    |      |        |    | 7.20-7.30 (2H, m), 7.41 (1H,                                 |
|    | ł    | }      |    | dd, J=2.2, 8.4 Hz), 7.56                                     |
| 20 | 1    |        |    | (1H, d, J=2.2 Hz), 8.20-8.45                                 |
|    |      |        |    | (1H, br), 8.93 (1H, s)                                       |
|    | 4-12 | -0     | 60 | 1.34 (3H, t, J=7.0 Hz), 3.22                                 |
|    | }    |        |    | (4H, t, J=8.8 Hz), 4.26-4.39                                 |
| 25 |      |        |    | (4H, m), 4.58 (2H, t, J=8.8                                  |
| 25 |      |        |    | Hz), 5.52 (2H, s), 6.78 (1H,                                 |
|    |      |        | •  | d, J=8.2 Hz), 7.01 (1H, t,                                   |
|    |      | Į į    |    | J=7.8 Hz), 7.20-7.31 (3H,                                    |
|    | 1    |        |    | m), 7.38 (1H, s), 8.37 (1H,                                  |
| 30 | j    | }      |    | br s), 8.92 (1H, s)                                          |

[Table 11]

CO<sub>2</sub>Et N N N N

| Reference<br>Example<br>No. | Х      | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                 |
|-----------------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-13                        | -0. T° | 86           | 1.36 (3H, t, J=7.4 Hz),<br>3.20 (2H, t, J=8.0 Hz),<br>4.27-4.39 (4H, m), 5.48<br>(2H, s), 5.97 (2H, s),<br>6.79-7.04 (5H, m), 8.10-<br>8.43 (1H, br), 8.90 (1H, s)                            |
| 4-14                        | OMe    | 92           | 1.34 (3H, t, J=8.0 Hz),<br>3.21 (2H, t, J=8.4 Hz),<br>3.81 (3H, s), 4.24-4.38<br>(4H, m), 5.51 (2H, s),<br>6.84-6.96 (4H, m), 7.44<br>(2H, d, J=8.8 Hz), 8.17-<br>8.43 (1H, br), 8.90 (1H, s) |

[Table 12]

[Table 13]

. 5

:

CO<sub>2</sub>Et N N

Hz), 7.45 (2H, d, J=8.8

8.87 (1H, s)

Hz), 7.90-8.25 (1H, br),

10

15

20

25

30

35

40

45

50

55

|                          |     | (0)          |                                                                                                                                                              |
|--------------------------|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference<br>Example No. | Х   | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                |
| 4-15                     | OMe | 100          | 1.34 (3H, t, J=7.4 Hz),<br>3.12 (2H, t, J=8.4 Hz),<br>3.81 (3H, s), 4.24-4.37<br>(4H, m), 5.50 (2H, s),<br>5.96 (2H, s), 6.71 (1H,<br>s), 6.91 (2H, d, J=8.8 |

CO<sub>2</sub>Et

 $^{1}H-NMR(\delta ppm, CDCl_{3})$ yield Reference X Example (융) No. 81 1.34 (3H, t, J=7.0 Hz), 4-16 3.20 (2H, t, J=8.4 Hz),3.81 (3H, s), 4.24-4.38 (4H, m), 5.51 (2H, s),6.91 (2H, d, J=8.6 Hz), 7.29-7.36 (2H, m), 7.44 (2H, d, J=8.6 Hz), 8.16-8.32 (1H, br), 8.90 (1H,

Br

1.37 (3H, t, J=7.0 Hz), 3.18 (2H, t, J=8.4 Hz), 3.77 (3H, s), 3.86 (3H,

s), 4.23-4.41 (4H, m),

5.59 (2H, s), 6.79-6.85 (2H, m), 7.21-7.33 (3H, m), 8.05-8.30 (1H, br),

1.40 (3H, t, J=7.4 Hz), 3.20 (2H, t, J=8.8 Hz), 4.23-4.39 (4H, m), 5.47

(2H, s), 5.97 (2H, s), 6.81 (1H, d, J=7.8 Hz), 6.90-7.05 (2H, m), 7.28-7.38 (2H, m), 8.10-8.35

(1H, br), 8.91 (1H, s)

8.92 (1H, s)

81

78

o Me

Me.O

5

:

10

15

20

[Table 14]

4-17

4-18

25

35

30

40

45

50

| Reference<br>Example<br>No. | Х    | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                              |
|-----------------------------|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-19                        | -0 0 | 84           | 1.35 (3H, t, J=7.0 Hz),<br>3.19 (2H, t, J=8.6 Hz),<br>3.81 (3H, s), 4.22-4.37<br>(4H, m), 5.48 (2H, br s),<br>5.96 (2H, s), 6.72-6.84<br>(3H, m), 6.95-7.05 (2H,<br>m), 8.00-8.23 (1H, br),<br>8.90 (1H, s)                |
| 4-20                        | OMe  | 63           | 1.34 (3H, t, J=J=7.0 Hz),<br>3.19 (2H, t, J=8.0 Hz),<br>3.81 (6H, s), 4.25-4.36<br>(4H, m), 5.52 (2H, s),<br>6.72-6.83 (2H, m), 6.91<br>(2H, d, J=8.8 Hz), 7.46<br>(2H, d, J=8.8 Hz), 8.10-<br>8.45 (1H, br), 8.89 (1H, s) |

[Table 15]

4-22

5

;

3.11 (2H, t, J=8.8 Hz),3.77 (3H, s), 3.85 (6H, s), 4.24-4.40 (4H, m), 5.61 (2H, s), 6.57 (2H,

d, J=8.0 Hz), 6.80-6.83(2H, m), 7.13-7.24 (2H,m), 7.90-8.05 (1H, br),

1.34 (3H, t, J=7.4 Hz),

3.13 (2H, t, J=8.4 Hz), 3.81 (3H, s), 3.87 (3H, s), 4.25-4.37 (4H, m),

5.53 (2H, s), 6.59 (1H, d, J=8.4 Hz), 6.91 (2H,d, J=8.8 Hz), 7.22 (1H,t, J=8.2 Hz), 7.45 (2H)d, J=8.8 Hz), 7.95-8.09

(1H, br), 8.90 (1H, s)

8.92 (1H, s)

84

10

15

20

25

30

35

40

|                             |      |           | Me                                            |
|-----------------------------|------|-----------|-----------------------------------------------|
| Reference<br>Example<br>No. | Х    | yield (%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> ) |
| 4-21                        | o-Ne | 84        | 1.37 (3H, t, J=7.0 Hz),                       |

45

50

[Table 16]

N N N

| Reference<br>Example<br>No. | Х   | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                           |
|-----------------------------|-----|--------------|---------------------------------------------------------------------------------------------------------|
| 4-23                        | OMe | 86           | 1.34 (3H, t, J=7.4 Hz),<br>2.33 (3H, s), 3.17 (2H,<br>t, J=8.4 Hz), 3.81 (3H,<br>s), 4.23-4.38 (4H, m), |

| 25 |      |                  |    | 5.53 (2H, s), 6.91 (2H, d, J=8.8 Hz), 6.99-7.08 (2H, m), 7.45 (2H, d,          |
|----|------|------------------|----|--------------------------------------------------------------------------------|
| 30 |      |                  |    | J=8.8 Hz), 8.15-8.29 (1H, br), 8.90 (1H, s)                                    |
| 30 | 4-24 | o Me             | 90 | 1.37 (3H, t, J=7.0 Hz),<br>2.33 (3H, s), 3.16 (2H,                             |
| 35 |      | Me <sup>-0</sup> |    | t, J=8.4 Hz), 3.77 (3H, s), 3.86 (3H, s), 4.20-4.40 (4H, m), 5.61 (2H,         |
|    |      |                  |    | s), 6.80-6.85 (2H, m),<br>6.96-7.06 (3H, m), 8.00-<br>8.40 (1H, br), 8.92 (1H, |
| 40 |      |                  |    | s)                                                                             |

yield

(8)

100

[Table 17]

Reference

Example

No.

5

:

CO<sub>2</sub>Et X N N Me

 $^{1}H-NMR(\delta ppm, CDCl_{3})$ 

1.36 (3H, d, J=7.0 Hz), 2.71 (1H, d, J=16.8 Hz), 3.44 (1H, dd, J=7.0, 15.6 Hz), 3.82 (3H, s), 4.32

(2H, q, J=7.0 Hz), 4.95-5.09 (1H, m), 5.52 (2H, s), 6.92 (2H, d, J=8.8 Hz), 7.02 (1H, t, J=8.0

Hz), 7.20-7.30 (2H, m), 7.45 (2H, d, J=8.4 Hz), 8.31 (1H, d, J=8.4 Hz),

10

15

20

25

30

[Table 18]

X

35

N N N

8.91 (1H, s)

45

40

50

## EP 1 223 170 A1

| Reference<br>Example<br>No. | х   | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                                  |
|-----------------------------|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-26                        | OMe | 72           | 1.34 (3H, t, J=7.2 Hz), 3.43-3.58 (1H, m), 3.73- 3.88 (4H, m), 4.32 (2H, q, J=7.0 Hz), 4.50 (1H, dd, J=9.8, 12.0 Hz), 5.54 (2H, s), 6.92 (2H, d, J=8.8 Hz), 7.04 (1H, t, J=6.6 Hz), 7.19-7.28 (2H, m), 7.46 (2H, d, J=8.4 Hz), 8.28-8.39 (1H, br), 8.91 (1H, s) |

[Table 19]

Me N

| Reference<br>Example<br>No. | . <b>x</b> | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                        |
|-----------------------------|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-27                        | OMe        | 46           | 1.33 (3H, t, J=7.0 Hz),<br>2.25 (3H, s), 3.05 (2H,<br>t, J=7.4 Hz), 3.80 (3H,<br>s), 4.30 (2H, q, J=6.8<br>Hz), 4.43 (2H, t, J=7.8<br>Hz), 5.42 (2H, s), 6.85<br>(2H, d, J=8.8 Hz), 7.00-<br>7.15 (3H, m), 7.35 (2H,<br>d, J=8.8 Hz), 8.83 (1H,<br>s) |

[Table 20]

|    | Reference | X      | yield | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> ) |
|----|-----------|--------|-------|------------------------------------------------|
|    | Example   |        | (%)   | La La La La La La La La La La La La La L       |
|    | -         |        | ( '8/ | 1                                              |
| 5  | No.       |        |       | 1 04 100                                       |
|    | 4-28      | -0~    | 96    | 1.36 (3H, d, J=7.0 Hz),                        |
|    |           | OMe    | }     | 2.71 (1H, d, J=16.8 Hz),                       |
|    | ļ         | 5,,,0  |       | 3.44 (1H, dd, J=7.0, 15.6                      |
|    | ĺ         |        |       | Hz), 3.82 (3H, s), 4.32                        |
| 10 |           |        |       | (2H, q, J=7.0 Hz), 4.95-                       |
|    |           |        |       | 5.09 (1H, m), 5.52 (2H,                        |
|    |           |        |       | , , , , , , , , , , , , , , , , , , , ,        |
|    |           |        |       | s), 6.92 (2H, d, J=8.8                         |
|    |           |        |       | Hz), 7.02 (1H, t, J=8.0                        |
| 15 |           | 1      |       | Hz), 7.20-7.30 (2H, m),                        |
|    |           |        |       | 7.45 (2H, d, J=8.4 Hz),                        |
|    |           |        |       | 8.31 (1H, d, J=8.4 Hz),                        |
|    |           |        |       | 8.91 (1H, s)                                   |
|    | 4-29      | -^ & F | 97    | 1.30-1.40 (6H, m), 2.72                        |
| 20 | 7 23      | -0 1 7 | ,     | (1H, d, J=16.4 Hz), 3.44                       |
|    |           | OMe    |       | 1                                              |
|    |           |        |       | (1H, dd, J=9.2, 15.4 Hz),                      |
|    |           |        |       | 3.90 (3H, s), 4.34 (2H,                        |
| İ  |           |        |       | q, $J=7.4 Hz$ ), $4.95-5.13$                   |
| 25 |           |        |       | (1H, m), 5.50 (2H, s),                         |
|    |           |        |       | 6.90-7.15 (2H, m), 7.20-                       |
|    |           |        |       | 7.32 (4H, m), 8.28 (1H,                        |
|    |           |        |       | d, J=9.2 Hz), 8.92 (1H,                        |
|    |           |        |       | s)                                             |
| 30 | 4-30      | -^-CI  | 94    |                                                |
|    | 4-30      | -0 Y Y | 94    | 1.30-1.42 (6H, m), 2.72                        |
|    | l         | OMe    |       | (1H, d, J=15.8 Hz), 3.43                       |
|    |           |        |       | (1H, dd, J=9.4, 14.0 Hz),                      |
|    |           |        |       | 3.91 (3H, s), 4.34 (2H,                        |
| 35 |           |        |       | q, $J=7.0 Hz$ ), $4.95-5.08$                   |
|    |           |        |       | (1H, m), 5.49 (2H, s),                         |
|    |           |        |       | 6.88-7.08 (2H, m), 7.20-                       |
|    |           | j      |       | 7.35 (1H, m), 7.37-7.44                        |
|    |           |        |       | (2H, m), 7.55 91H, d,                          |
| 40 | ٠         |        |       | J=2.2 Hz), 8.29 (1H, d,                        |
|    |           |        |       |                                                |
|    | 4 21      |        |       | J=7.0 Hz), 8.92 (1H, s)                        |
| ,  | 4-31      | -0     | 98    | 1.28-1.40 (6H, m), 2.72                        |
|    |           | F OMe  |       | (1H, d, J=16.6 Hz), 3.44                       |
| 45 |           |        |       | (1H, dd, J=9.6, 15.8 Hz),                      |
|    | J         |        |       | 3.80 (3H, s), 4.32 (2H,                        |
| 1  |           |        |       | q, J=7.0 Hz), 4.95-5.12                        |
| ł  | }         |        | ł     | (1H, m), 5.57 (2H, s),                         |
| 50 |           |        |       | 6.62-6.77 (2H, m), 7.02                        |
| 50 | Ì         |        | -     | (1H, t, J=7.4 Hz), 7.20-                       |
|    |           |        |       | 7.35 (2H, m), 7.52 (1H,                        |
|    |           |        |       |                                                |
| ļ  | ŀ         |        |       | t, J=8.4 Hz), 8.32 (1H,                        |
| 55 |           |        |       | d, J=8.6 Hz), 8.92 (1H,                        |
| 55 |           |        |       | s)                                             |

| 5  | 4-32 | CIOMe | 100        | 1.30-1.41 (6H, m), 2.72<br>(1H, d, J=16.4 Hz), 3.44<br>(1H, dd, J=9.6, 16.2 Hz),                          |
|----|------|-------|------------|-----------------------------------------------------------------------------------------------------------|
| 10 |      |       |            | 3.81 (3H, s), 4.35 (2H, q, J=7.4 Hz), 4.95-5.10 (1H, m), 5.62 (2H, s),                                    |
| 10 |      |       | <br> -<br> | 6.85 (1H, dd, J=2.2, 8.4<br>Hz), 6.97 (1H, d, J=2.4<br>Hz), 7.04 (1H, d, J=6.8<br>Hz), 7.19-7.28 (2H, m), |
| 15 |      |       | -          | 7.62 (1H, d, J=8.8 Hz),<br>8.29 (1H, d, J=7.0 Hz),<br>8.93 (1H, s)                                        |

[Table 21]

20

25

30

50

55

 $^{1}H-NMR(\delta ppm, CDCl_{3})$ Reference X yield 35 Example (%) No. 4-33 66 1.36 (3H, d, J=7.0 Hz), 2.71 (1H, d, J=16.8 Hz), 40 3.44 (1H, dd, J=7.0, 15.6 Hz), 3.82 (3H, s), 4.32 (2H, q, J=7.0 Hz), 4.95-5.09 (1H, m), 5.52 (2H, s), 6.92 (2H, d, J=8.845 Hz), 7.02 (1H, t, J=8.0 Hz), 7.20-7.30 (2H, m), 7.45 (2H, d, J=8.4 Hz),

## Reference Example 5-1

ethyl 4-chloro-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

[0176] To ethyl 4-hydroxy-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate (2.85 g, 10 mmol) was added phos-

8.31 (1H, d, J=8.4 Hz),

8.91 (1H, s)

### EP 1 223 170 A1

phorus oxychloride (10 mL, 2 mmol) and the mixture was stirred at  $120^{\circ}$ C for 15 h. The reaction mixture was concentrated under reduced pressure. The obtained residue was dissolved in ethyl acetate, washed with saturated aqueous sodium hydrogencarbonate solution (×3) and saturated brine (×1) and dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure to give the title compound (2.9 g, 100%).

[0177] In the same manner as in Reference Example 5-1, a compound of Reference Example 5-2 was synthesized. Reference Example 5-2: (RS)-ethyl 4-chloro-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate [0178] Respective structural formulas and NMR data are shown in the following Table.

[Table 22]

CO<sub>2</sub>Et

ċ

| Reference<br>Example<br>No. | х  | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                  |
|-----------------------------|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-1                         | н  | 100          | 1.42 (3H, t, J=7.2 Hz),<br>3.21 (2H, t, J=7.6 Hz),<br>4.31 (2H, t, J=7.6 Hz),<br>4.42 (2H, q, J=7.2 Hz),<br>7.03 (1H, t, J=7.2 Hz),<br>7.20-7.30 (2H, m), 8.50<br>(1H, d, J=7.6 Hz), 8.84<br>(1H, s)                           |
| 5-2                         | Me | 100          | 1.34-1.43 (6H, m), 2.74<br>(1H, d, J=15.8 Hz), 3.45<br>(1H, dd, J=9.0, 15.6 Hz),<br>4.38 (2H, q, J=7.4 Hz),<br>4.97-5.13 (1H, m), 7.07<br>(1H, t, J=7.2 Hz), 7.22-<br>7.32 (2H, m), 8.36 (1H,<br>d, J=8.2 Hz), 8.98 (1H,<br>s) |

### Reference Example 6

ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethoxy)benzyl]oxy}-5-pyrimidinecarboxylate

[0179]

5

10

15

20

25

30

35

40

45

[0180] To a solution of ethyl 4-chloro-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate (520 mg, 1.72 mmol) in N,N-dimethylformamide (5 mL) was added potassium carbonate (829 mg, 6 mmol) and 4-(trifluoro)methoxybenzyl alcohol (384 mg, 2 mmol) and the mixture was stirred at 100°C for 18 h. The reaction mixture was allowed to cool to room temperature and water was added, which was followed by extraction with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure and the residue was applied to silica gel column chromatography and eluted with hexane-ethyl acetate (4:1) to give the title compound (420 mg, 53%).

<sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 1.36 (3H, t, J=7.0 Hz), 3.22 (2H, t, J=8.8 Hz), 4.20-4.40 (4H, m), 5.59 (2H, s), 7.01 (1H, t, J=7.8 Hz), 7.18-7.28 (3H, m), 7.57 (2H, d, J=8.8 Hz), 8.20-8.40 (1H, br), 8.94 (1H, s)

#### Reference Example 7-1

ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-5-pyrimidinecarboxylate

[0181] To a solution of ethyl 4-chloro-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate (607 mg, 2.0 mmol) in isopropanol (5 mL) were added sodium carbonate (424 mg, 4 mmol) and 4-fluorobenzylamine (313 mg, 4 mmol) and the mixture was heated under reflux for 18 h. The reaction mixture was allowed to cool to room temperature and water was added. The precipitated crystals were collected by filtration, washed several times with cold water and cold ether and dried to give the title compound (637 mg, 81%).

[0182] In the same manner as in Reference Example 7-1, compounds of Reference Examples 7-2 to 7-16 were synthesized.

Reference Example 7-2: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino)-5-pyrimidinecarboxylate Reference Example 7-3: ethyl 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

Reference Example 7-4: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-5-pyrimidinecarboxylate Reference Example 7-5: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-5-pyrimidinecarboxylate Reference Example 7-6: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-thienylmethyl)amino]-5-pyrimidinecarboxylate

Reference Example 7-7: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-furylmethyl)amino]-5-pyrimidinecarboxylate Reference Example 7-8: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-5-pyrimidinecarboxylate Reference Example 7-9: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-5-pyrimidinecarboxylate Reference Example 7-10: ethyl 4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate Reference Example 7-11: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethoxybenzyl)amino]-5-pyrimidinecarboxylate

Reference Example 7-12: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methylbenzyl)amino]-5-pyrimidinecarboxylate Reference Example 7-13: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidinecarboxylate Reference Example 7-14: ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinecarboxylate Reference Example 7-15: ethyl (RS)-4-[(4-methoxybenzyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate

Reference Example 7-16: ethyl (RS)-4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl) - 5-pyrimidinecarboxylate

[0183] Respective structural formulas and NMR data are shown in the following Table.

[Table 23]

CO<sub>2</sub>Et

| Reference | Χ .    | yield | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                                    |
|-----------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example   |        | (%)   |                                                                                                                                                                                                                                                                   |
| No.       |        |       |                                                                                                                                                                                                                                                                   |
| 7-1       | → NH F | 81    | 1.37 (3H, t, J=7.0 Hz),<br>3.17 (2H, d, J=8.0 Hz),<br>4.20-4.35 (4H, m), 4.75<br>(2H, d, J=5.6 Hz), 6.90-<br>7.24 (5H, m), 7.35 (2H,<br>dd, J=4.0, 7.0 Hz), 8.21-<br>8.33 (1H, br), 8.51-8.62<br>(1H, br), 8.78 (1H, s)                                           |
| 7-2       | NH CF, | 99    | 1.38 (3H, t, J=7.2 Hz), 3.14 (2H, t, J=8.4 Hz), 4.13-4.36 (4H, m), 4.85 (2H, d, J=6.0 Hz), 6.93 (1H, t, J=8.0 Hz), 7.00- 7.14 (1H, br), 7.18 (1H, d, J=8.0 Hz), 7.49 (2H, d, J=8.0 Hz), 7.60 (2H, d, J=8.0 Hz), 8.00-8.35 (1H, br), 8.68 (1H, br s), 8.79 (1H, s) |
| 7-3       | NH O   | 85    | 1.36 (3H, t, J=7.2 Hz),<br>3.17 (2H, t, J=8.4 Hz),<br>4.20-4.35 (4H, m), 4.69<br>(2H, d, J=5.4 Hz), 5.94<br>(2H, s), 6.74-6.98 (4H,<br>m), 7.10-7.24 (2H, m),<br>7.32 (1H, d, J=8.8 Hz),<br>8.51 (1H, br s), 8.77<br>(1H, s)                                      |

|               | 7-4   |        | 100  | 1.37 (3H, t, J=7.0 Hz),      |
|---------------|-------|--------|------|------------------------------|
|               |       | NH     | ļ    | 2.04 (2H, quintet, J=7.6     |
| 5             |       |        |      | Hz), 2.76 (2H, t, $J=8.0$    |
| 3             | ĺ     |        |      | Hz), 3.16 (2H, t, J=8.8      |
|               |       |        |      | Hz), 3.59 (2H, $q$ , $J=6.2$ |
|               |       |        | İ    | Hz), 4.16-4.36 (4H, m),      |
|               |       |        |      | 6.96 (1H, t, J=7.4 Hz),      |
| 10            |       |        |      | 7.12-7.32 (7H, m), 8.25      |
| 10            |       |        | ļ    | (1H, br s), 8.40 (1H, d,     |
|               | ]     |        | }    | 1                            |
|               | 7 -   | NH\^   |      | J=8.4 Hz), 8.74 (1H, s)      |
|               | 7–5   |        | 91   | 1.35 (3H, t, J=7.0 Hz),      |
| 15            |       | OMe    | 1    | 2.94 (2H, t, J=6.8 Hz),      |
|               |       |        | 1    | 3.19 (2H, t, J=8.4 Hz),      |
|               |       |        | j    | 3.69-3.83 (5H, m), 4.23-     |
|               |       |        |      | 4.34 (4H, m), 6.87 (2H,      |
|               |       |        | }    | d, J=8.4 Hz), 6.96 (1H,      |
| 20            |       |        |      | t, J=7.2 Hz), 7.14-7.25      |
|               |       |        | ĺ    | (4H, m), 8.28 (1H, br s),    |
|               |       |        |      | 8.45 (1H, d, J=8.0 Hz),      |
|               |       |        |      | 8.74 (1H, s)                 |
|               | 7-6   | C=2    | 100  | 1.36 (3H, t, J=7.4 Hz),      |
| 25            | , - 0 | → NH.  | 100  | 3.18 (2H, t, J=8.4 Hz),      |
|               |       |        | į    | l :                          |
|               |       |        |      | 4.23-4.34 (4H, m), 4.95      |
|               |       |        |      | (2H, d, J=5.2 Hz), 6.91-     |
|               | !     |        | <br> | 7.08 (3H, m), 7.13-7.23      |
| 30            |       |        |      | (2H, m), 8.39 (1H, d,        |
|               |       |        |      | J=8.2 Hz), $8.48-8.62$ (1H,  |
|               |       |        |      | br), 8.77 (1H, s)            |
|               | 7-7   | 9-7    | 92   | 1.36 (3H, t, J=6.8 Hz),      |
|               |       | → NH ✓ |      | 3.15 (2H, t, J=8.4 Hz),      |
| 35            | ,     |        |      | 4.22-4.35 (4H, m), 4.77      |
|               |       |        |      | (2H, d, J=5.2 Hz), 6.25-     |
|               |       |        |      | 6.34 (2H, m), 6.96 (1H,      |
|               |       | !      |      | t, J=8.0 Hz), 7.16-7.25      |
|               |       |        |      | (2H, m), 7.39 (1H, s),       |
| 40            |       |        |      | 8.39 (1H, d, J=8.2 Hz),      |
|               |       |        |      | 1                            |
|               |       |        |      | 8.40-8.55 (1H, br s),        |
|               |       |        |      | 8.76 (1H, s)                 |
| 45            |       |        |      |                              |
| <del>43</del> | 7-8   |        | 92   | 1.38 (3H, t, J=6.8 Hz),      |
| ·             |       | →NH ←  |      | 3.15 (2H, t, J=8.4 Hz),      |
|               |       |        |      | 4.18-4.37 (4H, m), 4.78      |
|               |       | ;<br>  |      | (2H, d, J=5.8 H2), 6.88-     |
| 50            |       |        |      | 7.02 (2H, m), 7.04-7.23      |
| 35            |       |        |      | (3H, m), 7.24-7.36 (1H,      |
|               |       |        |      | m), 8.10-8.33 (1H, br),      |
|               |       |        |      | 8.62 (1H, br s), 8.79        |
|               |       |        |      | (1H, s)                      |
| 55            |       |        |      | , , . <del>.</del> ,         |
|               |       |        |      |                              |

|    | 7-9    | OMe                  | 95  | 1.36 (3H, t, J=7.0 Hz),                 |
|----|--------|----------------------|-----|-----------------------------------------|
|    |        | <b>→</b> NH <b>→</b> |     | 3.17 (2H, t, J=8.4 Hz),                 |
| 5  |        |                      | ĺ   | 3.80 (3H, s), 4.22-4.34                 |
|    |        |                      | ]   | (4H, m), 4.72 (2H, d,                   |
|    | {      |                      |     | J=5.6 Hz), 6.84-6.98 (3H,               |
|    | ]      |                      |     |                                         |
|    | 1      |                      |     | m), 7.09-7.21 (2H, m),                  |
| 10 | ł      |                      |     | 7.31 (2H, d, J=9.4 Hz),                 |
|    |        |                      |     | 8.33 (1H, d, J=8.0 Hz),                 |
|    |        |                      |     | 8.50 (1H, br s), 8.77                   |
|    |        |                      |     | (1H, s)                                 |
|    | 7-10   | F                    | 100 | 1.35 (3H, t, J=7.0 Hz),                 |
| 15 |        | — NH. ↓ 〕            |     | 3.19 (2H, t, J=8.4 Hz),                 |
|    |        |                      | ł   | 4.21-4.37 (4H, m), 4.90                 |
|    |        | F                    |     | (2H, d, J=5.2 Hz), 6.85-                |
|    |        |                      |     |                                         |
|    | ĺ      |                      |     | 7.00 (3H, m), 7.16-7.29                 |
| 20 |        |                      | ļ   | (3H, m), 8.42-8.57 (2H,                 |
|    |        |                      |     | m), 8.76 (1H, s)                        |
|    | 7-11   | OMe                  | 100 | 1.36 (3H, t, J=7.4 Hz),                 |
|    |        | → NH OMe             | [   | 3.16 (2H, t, J=8.4 Hz),                 |
|    |        | UNG                  |     | 3.85 (3H, s), 3.87 (3H,                 |
| 25 |        |                      |     | s), 4.22-4.34 (4H, m),                  |
|    |        |                      |     | 4.72 (2H, d, J=5.4 Hz),                 |
|    | •      |                      |     | 6.80-6.98 (4H, m), 7.09-                |
|    |        |                      |     | 7.22 (2H, m), 8.34 (1H,                 |
|    |        |                      |     | d, J=8.0 Hz), 8.50 (1H,                 |
| 30 |        |                      |     | I .                                     |
|    |        | . Mo                 | 100 | br s), 8.77 (1H, s)                     |
|    | 7-12   | ine i                | 100 | 1.36 (3H, t, J=7.4 Hz),                 |
|    | ĺ      | → NH ✓               |     | 2.33 (3H, s), 3.16 (2H,                 |
|    |        |                      | •   | t, J=8.4 Hz), 4.20-4.35                 |
| 35 |        |                      |     | (4H, m), 4.75 (2H, d,                   |
|    |        |                      |     | J=5.6 Hz), 6.93 (1H, t,                 |
|    |        |                      |     | J=8.0 Hz), 7.09-7.31 (5H,               |
|    |        |                      |     | m), 8.31 (1H, d, J=8.0                  |
|    |        |                      | ·   | Hz), 8.53 (1H, br s),                   |
| 40 |        | II                   |     | 8.77 (1H, s)                            |
|    | 7-13   |                      | 86  | 1.39 (3H, t, J=7.0 Hz),                 |
|    | 1 / 13 | → NH.                |     | 3.14 (2H, t, J=8.6 Hz),                 |
|    |        | , W.                 |     | 4.22 (2H, t, J=8.8 Hz),                 |
| 45 |        |                      |     | 4.34 (2H, q, J=7.2 Hz),                 |
| 45 |        |                      |     | , , , , , , , , , , , , , , , , , , , , |
|    |        |                      | •   | 4.92 (2H, d, J=5.6 Hz),                 |
|    |        |                      |     | 6.92 (1H, t, J=8.4 Hz),                 |
|    |        |                      |     | 7.08-7.23 (3H, m), 7.33                 |
| 50 |        |                      |     | (1H, d, J=7.6 Hz), 7.64                 |
| 30 | }      |                      |     | (1H, dt, J=1.8, 7.6 Hz),                |
|    |        |                      |     | 8.17-8.31 (1H, br), 8.63                |
|    |        |                      |     | (1H, d, J=4.8 Hz), 8.79                 |
|    |        |                      |     | (1H, s), 8.94 (1H, br t,                |
| 55 |        |                      |     | J=5.0 Hz)                               |

|    | 7-14 | → NH N | 72 | 1.39 (3H, t, J=6.8 Hz),<br>3.13 (2H, t, J=8.6 Hz), |
|----|------|--------|----|----------------------------------------------------|
| 5  |      |        |    | 4.00-4.40 (4H, m), 4.80                            |
|    |      |        |    | (2H, d, J=5.8 Hz), 6.92                            |
|    |      |        |    | (1H, t, J=8.2 Hz), 6.97-                           |
|    |      |        |    | 6.12 (1H, br), 7.18 (1H,                           |
| 10 |      |        |    | d, J=8.0 Hz), 7.29 (2H,                            |
|    |      |        |    | d, J=6.2 Hz), 7.90-8.30                            |
|    |      |        |    | (1H, br), 8.55 (2H, d,                             |
|    |      |        |    | J=4.6 Hz), $8.62-8.74$ (1H,                        |
| 15 |      |        |    | br), 8.80 (1H, s)                                  |

[Table 24]

5

CO<sub>2</sub>Et X N N N

10

|    | Reference      | х        | yield    | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                               |
|----|----------------|----------|----------|-------------------------------------------------------------------------------------------------------------|
| 15 | Example<br>No. |          | (왕)<br>· |                                                                                                             |
|    | 7-15           | → NH OMe | 83       | 1.29-1.40 (6H, m), 2.66<br>(1H, d, J=15.8 Hz0, 3.39<br>(1H, dd, J=9.4, 16.0 Hz),                            |
| 20 |                |          |          | 3.80 (3H, s), 4.28 (2H, q, J=7.2 Hz), 4.70 (2H, d, J=5.6 Hz), 4.90-5.08 (1H, m), 6.82-7.00 (3H,             |
| 25 |                |          |          | m), 7.10-7.32 (3H, m),<br>8.27 (1H, d, J=7.8 Hz),<br>8.40 (1H, br t, J=7.0<br>Hz), 8.76 (1H, s)             |
| 30 | 7-16           | -NH 0    | 90       | 1.28-1.40 (6H, m), 2.66<br>(1H, d, J=16.4 Hz), 3.39<br>(1H, dd, J=9.4, 15.6 Hz),<br>4.29 (2H, q, J=7.0 Hz), |
| 35 |                |          |          | 4.67 (2H, d, J=6.0 Hz),<br>4.94-5.08 (1H, m), 5.94<br>(2H, s), 6.77-6.90 (3H,<br>m), 6.95 (1H, t, J=7.6     |
| 40 |                |          |          | Hz), 7.10-7.30 (2H, m),<br>8.25 (1H, d, J=8.2 Hz),<br>8.48 (1H, br t, J=7.0<br>Hz), 8.76 (1H, s)            |

45

## Reference Example 8-1

5-methoxy-2,3-dihydro-1H-indole

50

[0184] To a solution of 5-methoxyindole (528 mg, 3.6 mmol) in acetic acid (5 mL) was added sodium cyanoborohydride (452 mg, 7.2 mmol) by small portions at room temperature and the mixture was stirred for 18 h in situ. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogencarbonate solution (×3) and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give almost pure title compound (503 mg, 94%).

[0185] In the same manner as in Reference Example 8-1, compounds of Reference Examples 8-2 to 8-9 were synthesized.

Reference Example 8-2: 6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indole

## EP 1 223 170 A1

Reference Example 8-3: 5-fluoro-2,3-dihydro-1H-indole

Reference Example 8-4: 5-methyl-2,3-dihydro-1H-indole

Reference Example 8-5: 4-methoxy-2,3-dihydro-1H-indole

Reference Example 8-6: 7-methoxy-2,3-dihydro-1H-indole

Reference Example 8-7: (RS)-3-methyl-2,3-dihydro-1H-indole

Reference Example 8-8: 7-methyl-2,3-dihydro-1H-indole

Reference Example 8-9: 6-(trifluoromethyl)-2,3-dihydro-1H-indole

[0186] Respective structural formulas and NMR data are shown in the following Table.

# [Table 25]

10

15

20

25

30

35

40

45

50

55

| Reference<br>Example<br>No. | Structural<br>Formula | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                        |
|-----------------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 8-1                         | MeO H                 | 94           | 2.94 (2H, t, J=8.0 Hz),<br>3.81 (3H, s), 4.30 (2H,<br>t, J=8.4 Hz), 6.73-6.82<br>(2H, m), 8.39 (1H, br d,<br>J=8.0 Hz), 8.81 (1H, s) |

| 5         | 8-2 | O N             | 80  | 2.94 (2H, t, J=8.4 Hz),<br>3.56 (2H, t, J=8.4 Hz),<br>5.86 (2H, s), 6.32 (1H,<br>s), 6.65 (1H, s)                                                                                   |
|-----------|-----|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | 8-3 | F N             | 100 | 3.02 (2H, t, J=8.4 Hz),<br>3.57 (2H, t, J=8.0 Hz),<br>6.55 (1H, dd, J=4.8, 8.4<br>Hz), 6.71 (1H, dt, J=2.6,<br>8.8 Hz), 6.84 (1H, d,<br>J=8.8 Hz)                                   |
| 15        | 8-4 | Me HN           | 100 | 2.28 (3H, s), 3.04 (2H,<br>t, J=8.0 Hz), 3.61 (2H,<br>t, J=8.0 Hz), 6.25 (1H,<br>d, J=7.6 Hz), 6.90 (1H,<br>d, J=8.0 Hz), 7.01 (1H,<br>s)                                           |
| 25        | 8-5 | OMe H           | 100 | 2.99 (2H, t, J=8.4 Hz),<br>3.58 (2H, t, J=8.0 Hz),<br>3.82 (3H, s), 6.35 (2H,<br>t, J=8.0 Hz), 7.02 (1H,<br>t, J=7.8 Hz)                                                            |
| 30        | 8-6 | OMe H           | 100 | 3.06 (2H, t, J=8.2 Hz),<br>3.59 (2H, t, J=8.2 Hz),<br>3.82 (3H, s), 6.64-6.84<br>(3H, m)                                                                                            |
| <i>35</i> | 8-7 | H<br>N<br>Me    | 100 | 1.32 (3H, d, J=6.8 Hz),<br>3.11 (1H, t, J=8.4 Hz),<br>3.37 (1H, q, J=7.8 Hz),<br>3.70 (1H, t, J=8.4 Hz),<br>6.65 (1H, d, J=7.6 Hz),<br>6.74 (1H, t, J=7.4 Hz),<br>6.98-7.13 (2H, m) |
| 45        | 8-8 | Me H            | 100 | 2.15 (3H, s), 3.06 (2H,<br>t, J=8.4 Hz), 3.58 (2H,<br>t, J=8.4 Hz), 6.68 (1H,<br>t, J=7.2 Hz), 6.87 (1H,<br>d, J=7.0 Hz), 6.99 (1H,<br>d, J=7.6 Hz)                                 |
| 50        | 8-9 | CF <sub>3</sub> | 100 | 3.26 (2H, t, J=8.8 Hz),<br>4.14 (2H, J=8.6 Hz), 7.26<br>(2H, s), 8.48 (1H, s)                                                                                                       |

(RS)-2-hydroxymethylindoline

[0187] To a solution of (RS)-indoline-2-carboxylic acid (8.16 g, 50 mmol) in tetrahydrofuran (50 ml) was added under ice-cooling lithium aluminum hydride (5.7 g, 150 mmol) and the mixture was stirred at 60°C for 18 h. The reaction mixture was stirred under ice-cooling and ethanol and 1N hydrochloric acid were added. The precipitate was filtered off and the mother liquor was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was applied to silica gel column chromatography and eluted with ethyl acetate-hexane (1:4-1:1) to give the title compound (4.8 g, 64%).

[0188] In the same manner as in Reference Example 9-1, a compound of Reference Example 9-2 was synthesized from (S)-indoline-2-carboxylic acid.

Reference Example 9-2: (S)-2-hydroxymethylindoline

[0189] Respective structural formulas and NMR data are shown in the following Table.

## [Table 26]

10

15

35

40

| 20 | Reference<br>Example<br>No. | Structural<br>Formula | Yield<br>(%)   | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                   |
|----|-----------------------------|-----------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| 25 | 9-1                         | N OH                  | 64             | 1.83 (1H, dd, J=7.8, 15.8<br>Hz), 3.12 (1H, dd, J=9.0,<br>15.6 Hz), 3.58 (1H, dd,<br>J=6.2, 10.6 Hz), 3.73 (1H, |
| 30 | 9-2                         | H OH                  | 100<br>(crude) | dd, J=3.6, 10.6 Hz), 3.98-<br>4.15 (1H, m), 6.60-6.77<br>(2H, m), 6.95-7.13 (2H, m)                             |

## Reference Example 10

(R)-2-hydroxymethylindoline

[0190]

45

[0191] To a solution of (R)-mandelic acid (8.72 g, 58 mmol) in ether (100 ml) was added (RS)-2-hydroxymethylindoline (4.27 g, 28.6 mmol), and the mixture was stirred for a while and concentrated under reduced pressure until the amount of the solvent became 50 ml. The precipitated crystals were collected by filtration and washed with cold ether. This operation was repeated twice to give (R)-2-hydroxymethylindoline (R)-dimandelate (5.3 g). To the thus-obtained mandelate (5.3 g) was added 0.5N aqueous sodium hydroxide solution and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.5 g, 72%).

<sup>1</sup>H-NMR ( $\delta$  ppm, CDCl<sub>3</sub>): 1.83 (1H, dd, J=7.8, 15.8 Hz), 3.12 (1H, dd, J=9.0, 15.6 Hz), 3.58 (1H, dd, J=6.2, 10.6 Hz), 3.73 (1H, dd, J=3.6, 10.6 Hz), 3.98-4.15 (1H, m), 6.60-6.77 (2H, m), 6.95-7.13 (2H, m)

#### Reference Example 11-1

10

15

20

25

30

35

40

45

### (R)-1-p-tosyl-2-p-tosyloxymethylindoline

[0192] To a solution of (R)-2-hydroxymethylindoline (2.4 g, 16.1 mmol) in pyridine (25 mL) was added under ice-cooling p-toluenesulfonyl chloride (6.9 g, 36.2 mmol) and the mixture was stirred at room temperature for 18 h. The solvent was concentrated under reduced pressure and to the obtained residue were added ethyl acetate and 1N hydrochloric acid. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was applied to silica gel column chromatography and eluted with ethyl acetate-hexane (1:4-1:1) to give the title compound (10.5 g, 70%).

[0193] In the same manner as in Reference Example 11-1, a compound of Reference Example 11-2 was synthesized from (S)-2-hydroxymethylindoline.

Reference Example 11-2: (S)-1-p-tosyl-2-p-tosyloxymethyl-indoline

[0194] Respective structural formulas and NMR data are shown in the following Table.

## [Table 27]

| Reference<br>Example<br>No. | Structural<br>Formula | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                     |
|-----------------------------|-----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11-1                        | NTs_OTs               | 79           | 2.35 (3H, s), 2.47 (3H,<br>s), 2.80-2.09 (2H, m),<br>4.01 (1H, dd, J=8.4, 9.6                                                                                     |
| 11-2                        | NTs OTs               | 70           | Hz), 4.24-4.44 (2H, m), 7.03 (2H, d, J=4.4 Hz), 7.12-7.28 (3H, m), 7.36 (2H, d, J=8.4 Hz), 7.48 (2H, d, J=8.4 Hz), 7.58 (1H, d, J=7.6 Hz), 7.78 (2H, d, J=6.6 Hz) |

### Reference Example 12-1

## (S)-2-methylindoline

[0195] To a solution of (R)-1-p-tosyl-2-p-tosyloxymethylindoline (5.8 g, 12.7 mmol) in tetrahydrofuran (50 mL) was added under ice-cooling lithium aluminum hydride (2.4 g, 63.5 mmol) and the mixture was stirred at 60°C for 3 days. The reaction mixture was stirred under ice-cooling and ethanol and 1N aqueous sodium hydroxide solution were added. The precipitate was filtered off and the mother liquor was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was applied to silica gel column chromatography and eluted with ethyl acetate-hexane (1:4) to give the title compound (1.5 g, 90%).

[0196] In the same manner as in Reference Example 12-1, a compound of Reference Example 12-2 was synthesized from (S)-1-p-tosyl-2-p-tosyloxymethylindoline.

Reference Example 12-2: (R)-2-methylindoline

[0197] Respective structural formulas and NMR data are shown in the following Table. Optical purity was determined by measuring the amide, which is obtained by reacting (S)-2-methylindoline and (R)-2-methylindoline respectively with (S)- $\alpha$ -methoxy- $\alpha$ -trifluoromethylphenylacetyl chloride in pyridine, for <sup>1</sup>H-NMR and calculating the integral ratio of the 2-position methyl group.

## [Table 28]

5

10

15

20

30

35

| Reference<br>Example | Struc-<br>tural | yield<br>(%) | Optical purity | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                     |
|----------------------|-----------------|--------------|----------------|----------------------------------------------------------------------------------------------------|
| No.                  | Formula         |              | (ee, %)        |                                                                                                    |
| 12-1                 |                 | 90           | 80             | 1.29 (3H, d, J=6.2<br>Hz), 2.63 (1H, dd,<br>J=7.6, 15.4 Hz),                                       |
| 12-2                 | H               | 89           | >95            | 3.14 (1H, dd, J=8.4,<br>15.4 Hz), 3.90-4.08<br>(1H, m), 6.57-6.73<br>(2H, m), 6.94-7.08<br>(2H, m) |

### Reference Example 13-1

(2,3-dihydrobenzo[b]furan-5-yl)methanol

[0198] To a solution of 2,3-dihydrobenzo[b]furan-5-carboxylic acid (1.64 g, 10 mmol) in tetrahydrofuran (10 mL) was added under ice-cooling lithium aluminum hydride (949 mg, 25 mmol) and the mixture was stirred at 60°C for 1 h. The reaction mixture was stirred under ice-cooling and methanol and 1N hydrochloric acid were added. The precipitate was filtered off and the mother liquor was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.5 g, 100%).

[0199] In the same manner as in Reference Example 13-1, a compound of Reference Example 13-2 was synthesized from 4-isopropoxybenzoic acid.

Reference Example 13-2: 4-isopropoxybenzyl alcohol

[0200] Respective structural formulas and NMR data are shown in the following Table.

## [Table 29]

| 40 |  |
|----|--|
|    |  |
| 45 |  |
|    |  |
| 50 |  |
|    |  |

| Reference<br>Example<br>No. | Structural<br>Formula | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                   |
|-----------------------------|-----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13-1                        | но                    | 100          | 1.52 (1H, br t, J=8.0 Hz),<br>3.21 (2H, t, J=8.8 Hz),<br>4.52-4.63 (4H, m), 6.76<br>(1H, d, J=8.0 Hz), 7.10<br>(1H, d, J=8.2 Hz), 7.22<br>(1H, s)               |
| 13-2                        | HO                    | 100          | 1.33 (6H, d, J=5.8 Hz),<br>1.52 (1H, br t, J=5.6 Hz),<br>4.55 (1H, sevenplet, J=6.0 Hz), 4.61 (2H, d, J=5.4 Hz), 6.87 (2H, d, J=6.6 Hz), 7.27 (2H, d, J=6.6 Hz) |

### Reference Example 14-1

10

15

20

25

30

35

40

45

50

(2,3-dihydrobenzo[b]furan-5-yl)methyl chloride

[0201] To a solution of (2,3-dihydrobenzo[b]furan-5-yl)methanol (1.5 g, 10 mmol) in dichloromethane (10 mL) were added under ice-cooling triethylamine (1.67 mL, 12 mmol) and methanesulfonyl chloride (0.85 mL, 10 mmol) and the mixture was stirred at room temperature for 1 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.6 g, 100%).

[0202] In the same manner as in Reference Example 14-1, a compound of Reference Example 14-2 was synthesized from 4-isopropoxybenzyl alcohol.

Reference Example 14-2: 4-isopropoxybenzyl chloride

[0203] Respective structural formulas and NMR data are shown in the following Table.

### [Table 30]

| Reference<br>Example<br>No. | Structural<br>Formula | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                      |
|-----------------------------|-----------------------|--------------|---------------------------------------------------------------------------------------------------------------------|
| 14-1                        | cı (C)                | 100          | 3.21 (2H, t, J=8.4 Hz),<br>4.50-4.62 (4H, m), 6.75<br>(1H, d, J=8.0 Hz), 7.08<br>(1H, d, J=8.0 Hz), 7.23<br>(1H, s) |
| 14-2                        | CI                    | 100          | 1.33 (6H, d, J=5.0 Hz),<br>4.45-4.62 (3H, m), 6.85<br>(2H, d, J=6.6 Hz), 7.29<br>(2H, d, J=6.6 Hz)                  |

### Reference Example 15

methyl 3-chloro-4-methoxybenzoate

#### [0204]

[0205] To a solution of 3-chloro-4-hydroxybenzoic acid (3.45 g, 20 mmol) in N,N-dimethylformamide (10 mL) were added potassium carbonate (6.9 g, 50 mmol) and methyl iodide (large excess) and the mixture was stirred at 60°C for 2 h. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (4.0 g, 100%).

 $^{1}$ H-NMR (δ ppm, CDCl<sub>3</sub>) : 3.90 (3H, s), 3.97 (3H, s), 6.95 (1H, d, J=8.8 Hz), 7.95 (1H, dd, J=2.2, 8.8 Hz), 8.06 (1H, d, J=2.2 Hz)

3-chloro-4-methoxybenzyl alcohol

[0206]

10

15

20

25

30

35

40

[0207] To a solution of methyl 3-chloro-4-methoxybenzoate (1.2 g, 6 mmol) in tetrahydrofuran (10 ml) was added under ice-cooling lithium aluminum hydride (455 mg, 12 mmol) and the mixture was stirred at room temperature for 1 h. The reaction mixture was stirred under ice-cooling and 0.1N hydrochloric acid was added. The mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.1 g, 100%).

1H-NMR (δ ppm, CDCl<sub>3</sub>): 1.69 (1H, br t, J=6.0 Hz), 3.91 (3H, s), 4.61 (2H, d, J=5.4 Hz), 6.91 (1H, d, J=8.4 Hz), 7.22

(1H, dd, J=2.2, 8.4 Hz), 7.39 (1H, d, J=2.2 Hz)

### Reference Example 17

3-chloro-4-methoxybenzyl chloride

[0208]

[0209] To a solution of 3-chloro-4-methoxybenzyl alcohol (1.1 g, 6 mmol) in tetrahydrofuran (5 mL) were added under ice-cooling triethylamine (1.67 mL, 12 mmol) and methanesulfonyl chloride (0.51 ml, 6 mmol) and the mixture was stirred at room temperature for 18 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (700 mg, 61%). <sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 3.91 (3H, s), 4.52 (2H, s), 6.90 (1H, d, J=8.4 Hz), 7.25 (1H, dd, J=2.2, 8.8 Hz), 7.42 (1H, d, J=2.2 Hz)

### Reference Example 18-1

3-fluoro-4-methoxybenzyl alcohol

[0210] To a solution of 3-fluoro-4-methoxybenzaldehyde (1 g, 6.5 mmol) in methanol (15 mL) was added under ice-cooling sodium borohydride (378 mg, 10 mmol) and the mixture was stirred at room temperature for 1 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1 g, 100%).

[0211] In the same manner as in Reference Example 18-1, a compound of Reference Example 18-2 was synthesized from 2-fluoro-4-methoxybenzaldehyde.

Reference Example 18-2: 2-fluoro-4-methoxybenzyl alcohol

[0212] Respective structural formulas and NMR data are shown in the following Table.

[Table 31]

5

10

15

25

35

40

45

50

55

| Reference<br>Example<br>No. | Structural<br>Formula | yield<br>(%) | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                          |
|-----------------------------|-----------------------|--------------|------------------------------------------------------------------------------------------------------------------------|
| 18-1                        | HO F                  | 100          | 1.64 (1H, br t, J=5.8 Hz),<br>3.89 (3H, s), 4.62 (2H, d,<br>J=5.8 Hz), 6.94 (1H, t,<br>J=8.8 Hz), 7.00-7.15 (2H,<br>m) |
| 18-2                        | F OMe                 | 47           | 1.69 (1H, t, J=5.6 Hz),<br>3.80 (3H, s), 4.67 (2H, d,<br>J=5.8 Hz), 6.58-6.72 (2H,<br>m), 7.30 (1H, t, J=8.8 Hz)       |

#### 20 Reference Example 19-1

3-fluoro-4-methoxybenzyl chloride

[0213] To a solution of 3-fluoro-4-methoxybenzyl alcohol (1 g, 6.5 mmol) in dichloromethane (10 mL) were added under ice-cooling triethylamine (1.8 mL, 13 mmol) and methanesulfonyl chloride (0.60 mL, 7 mmol) and the mixture was stirred at room temperature for 30 min. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.1 g, 100%).

30 [0214] In the same manner as in Reference Example 19-1, a compound of Reference Example 17-2 was synthesized from 2-fluoro-4-methoxybenzyl alcohol.

Reference Example 19-2: 2-fluoro-4-methoxybenzyl chloride

[0215] Respective structural formulas and NMR data are shown in the following Table.

[Table 32]

| Reference | Structural | yield | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> ) |
|-----------|------------|-------|------------------------------------------------|
| Example   | Formula    | (%)   |                                                |
| No.       | _          |       |                                                |
| 19-1      | OMe        | 100   | 3.89 (3H, s), 4.53 (2H, s),                    |
|           | CI L       |       | 6.92 (1H, t, J=9.2 Hz),                        |
|           |            |       | 7.00-7.15 (2H, m)                              |
| 19-2      | FOMe       | 82    | 3.80 (3H, s), 4.61 (2H, s),                    |
| 1         | CI         |       | 6.58-6.71 (2H, m), 7.30                        |
|           |            |       | (1H, t, J=8.4 Hz)                              |

-chloro-4-methoxybenzaldehyde

#### 5 [0216]

10

OHC

[0217] To a solution of 2-chloro-4-hydroxybenzaldehyde (2 g, 12.8 mmol) in N,N-dimethylformamide (25 mL) were added potassium carbonate (3.46 g, 25 mmol) and methyl iodide (large excess) and the mixture was stirred at room temperature for 18 h. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.55 g, 70%).

<sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 3.89 (3H, s), 6.84-6.95 (2H, m), 7.90 (1H, d, J=8.8 Hz), 10.33 (1H, s)

#### 20 Reference Example 21

2-chloro-4-methoxybenzyl alcohol

#### [0218]

25

30

35

[0219] To a solution of 2-chloro-4-methoxybenzaldehyde (1.55 g, 9 mmol) in methanol (20 mL) was added under ice-cooling sodium borohydride (378 mg, 10 mmol) and the mixture was stirred at room temperature for 30 min. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.5 g, 97%).

<sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 1.87 (1H, br t, J=6.2 Hz), 3.80 (3H, s), 4.71 (2H, d, J=5.8 Hz), 6.81 (1H, dd, J=2.6, 8.6 Hz), 6.93 (1H, d, J=2.6 Hz), 7.35 (1H, d, J=8.4 Hz)

#### 40 Reference Example 22

2-chloro-4-methoxybenzyl chloride

#### [0220]

45

50

55

[0221] To a solution of 2-chloro-4-methoxybenzyl alcohol (1.5 g, 8.7 mmol) in dichloromethane (10 mL) were added under ice-cooling triethylamine (2.4 mL, 17.4 mmol) and methanesulfonyl chloride (0.74 mL, 9.5 mmol) and the mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.01 g, 61%).  $^{1}$ H-NMR ( $\delta$  ppm, CDCl<sub>3</sub>): 3.80 (3H, s), 4.67 (2H, s), 6.80 (1H, dd, J=2.6, 8.8 Hz), 6.95 (1H, d, J=2.6 Hz), 7.35 (1H, d, J=8.4 Hz)

methyl 4-acetamidebenzoate

5 [0222]

10

15

20

30

35

40

45

50

55

[0223] To a solution of methyl 4-aminobenzoate (7.56 g, 50 mmol) in tetrahydrofuran (50 mL) were added under ice-cooling triethylamine (10 mL, 73 mmol) and acetyl chloride (3.91 mL, 55 mmol) and the mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained crystals were recrystallized from dichloromethane-isopropyl ether to give the title compound (6.4 g, 76%).

<sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 2.21 (3H, s), 3.90 (3H, s), 7.40-7.52 (1H, br), 7.59 (2h, d, J=8.8 Hz), 8.00 (2H, d, J=8.8 Hz)

### Reference Example 24

4-hydroxymethylacetanilide

25 [0224]

[0225] To a solution of methyl 4-acetamidebenzoate (483 mg, 2.5 mmol) in tetrahydrofuran (10 mL) was added under ice-cooling lithium aluminum hydride (190 mg, 5 mmol) and the mixture was stirred at room temperature for 1 h. The reaction mixture was stirred under ice-cooling and 1N hydrochloric acid was added. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (230 mg, 56%).

1H-NMR (δ ppm, CDCl<sub>3</sub>): 2.02 (3H, s), 4.42 (2H, br s), 5.00-5.15 (1H, br), 6.53 (1H, br s), 7.22 (2H, d, J=8.8 Hz), 7.51 (2H, d, J=8.4 Hz)

#### Reference Example 25

4-chloromethylacetanilide

[0226]

[0227] To a solution of 4-hydroxymethylacetanilide (230 mg, 1.4 mmol) in tetrahydrofuran (5 mL) were added under ice-cooling triethylamine (0.39 mL, 2.8 mmol) and methanesulfonyl chloride (0.17 mL, 2 mmol) and the mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (200 mg, 78%). <sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 2.18 (3H, s), 4.56 (2H, s), 7.28-7.38 (3H, m), 7.50 (2H, d, J=8.6 Hz)

ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxylate

#### Reference Example 27

ethyl 2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxylate

[0228] In the same manner as in Reference Example 3-1 using ethyl 4-hydroxy-2-(2,3-dihydro-1H-indol-1-yl)-5-py-rimidinecarboxylate and ethyl 4-hydroxy-2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-5-pyrimidinecarboxylate as starting materials, compounds of Reference Examples 26 and 27 were synthesized.

[0229] Respective NMR data are shown in the following Table.

| Reference Example No. | yield (%) | ¹H-NMR(δ ppm, CDCl₃)                                                                                                                                                                                                                                |
|-----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26                    | 77        | 1.41 (3H, t, J=7.0 Hz), 1.73 (3H, d, J=8.8 Hz), 3.17 (2H, t, J=8.8 Hz), 4.22 (2H, t, J=8.4 Hz), 4.37 (2H, q, J=7.2 Hz), 6.34 (1H, q, J=6.2 Hz), 6.98 (1H, t, J=7.2 Hz), 7.16-7.40 (4H, m), 7.50 (2H, d, J=7.0 Hz), 8.00-8.40 (1H, br), 8.90 (1H, s) |
| 27                    | 94        | 1.30-1.52 (6H, m), 1.67-1.77 (3H, m), 2.67 (1H, d, J=15.0 Hz), 3.29-3.48 (1H, m), 4.37 (2H, q, J=7.0 Hz), 4.80-5.02 (1H, m), 6.32 (1H, t, J=6.0 Hz), 7.00 (1H, t, J=7.6 Hz), 7.13-7.53 (7H, m), 8.00-8.30 (1H, m), 8.89 (1H, s)                     |

#### Example 1-1

t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate

[0230] To a suspension of ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxylate (5.0 g, 13 mmol) in ethanol (25 mL) were added 10% aqueous sodium hydroxide solution (15 mL) and tetrahydrofuran (15 mL) and the mixture was heated under reflux for 30 min. The reaction mixture was allowed to cool to room temperature and 1N hydrochloric acid was added to adjust the reaction mixture to pH 5. The precipitated crystals were collected by filtration, washed several times with water, dried with heating under vacuum to give 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxylic acid (4.8 g, 100%) as crystals. To the obtained suspension of the obtained carboxylic acid (183 mg, 0.5 mmol), t-butyl glycine (89 mg, 0.53 mmol) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (102 mg, 0.53 mmol) in dichloromethane (2 mL) was added triethylamine (0.21 mL, 1.5 mmol) and the mixture was stirred at room temperature for 18 h. Water and ethyl acetate were added to the reaction mixture and the organic layer was concentrated under reduced pressure. The obtained residue was subjected to silica gel chromatography and eluted with ethyl acetate to give the title compound (210 mg, 88%).

[0231] In the same manner as in Example 1-1, compounds of Examples 1-2 to 1-46 were synthesized. Example 1-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

Example 1-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(3-methoxypropyl)-5-pyrimidinecarboxamide

Example 1-4: N-(2-cyanoethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

Example 1-5: N-(2-cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide Example 1-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-propyl-5-pyrimidinecarboxamide Example 1-7: N-(2-amino-2-oxoethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

15

5

10

20

25

30

35

40

45

#### EP 1 223 170 A1

- Example 1-8: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide
- Example 1-9: (RS)-1-({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)-3-piperidinecar-boxamide
- 5 Example 1-10: N-cyclohexyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide
  Example 1-11: 2-(2,3-dihydro-1H-indol-1-yl)-N,N-diethyl-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide
  Example 1-12: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidinecarboxamide
- Example 1-13: methyl (2S)-1-({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy)-5-pyrimidinyl)carbonyl)-2-pyrrolidinecarboxylate
  - Example 1-14: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-hexyl-5-pyrimidinecarboxamide Example 1-15: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide
- Example 1-16: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-ethoxyethyl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

  Example 1-17: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N,N-bis(2-hydroxyethyl)-5-pyrimidinecarboxamide
  - Example 1-18: {2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}(4-hydroxy-1-piperidinyl)methanone
  - Example 1-19: {2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl} (1-pyrrolizinyl)methanone

- 20 Example 1-20: ethyl 1-({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)-4-piperidinecar-boxylate
  - Example 1-21: N-(1,3-benzodioxol-5-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecar-boxamide
  - Example 1-22: methyl (2S)-2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]-3-hydroxypropanoate
  - Example 1-23: 1-[4-({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)-1-piperazinyl]-1-ethanone
  - Example 1-24: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-hydroxyethyl)-5-pyrimidinecarboxamide Example 1-25: N-(2.5-difluorobenzyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide
- Example 1-26: t-butyl 4-({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)-1-piperazine-carboxylate
  - Example 1-27: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-[4-(trifluoromethyl)benzyl]-5-pyrimidinecarboxamide
  - Example 1-28: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-thienylmethyl)-5-pyrimidinecarboxamide
- Example 1-29: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2,2,2-trifluoroethyl)-5-pyrimidinecarboxamide Example 1-30: N-[2-(acetylamino)ethyl]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide
  - Example 1-31: ethyl 3-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]propanoate
- Example 1-32: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N,N-dimethyl-5-pyrimidinecarboxamide Example 1-33: (2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)[(2S)-2-(hydroxymethyl)-pyrroliz-inyl]methanone
  - Example 1-34: ethyl (2S)-2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]-4-(methylsulfanyl)butanoate
- 45 Example 1-35: {2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}(4-methyl-1-piperazinyl)-methanone
  - Example 1-36: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(3-methoxyphenyl)-5-pyrimidinecarboxamide Example 1-37: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-[2-(4-morpholinyl)ethyl]-5-pyrimidinecarboxamide
- Example 1-38: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]acetate Example 1-39: N-[4-(aminosulfonyl)phenethyl]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide
  - Example 1-40: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide Example 1-41: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(3-phenylpropyl)-5-pyrimidinecarboxamide
- Example 1-42: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-phenethyl-5-pyrimidinecarboxamide
  - Example 1-43: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-furylmethyl)-5-pyrimidinecarboxamide
  - Example 1-44: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(1-naphthylmethyl)-5-pyrimidinecarboxamide
  - Example 1-45: 2-(2,3-dihydro-1H-indol-1-yl)-N-(3-fluorobenzyl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

## EP 1 223 170 A1

Example 1-46: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2,6-difluorobenzyl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinecarboxamide [0232] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Tables.

|    | <del></del> |                  |          |                                   |
|----|-------------|------------------|----------|-----------------------------------|
|    | Example     | R                | yield    | MASS spectrum (APCIMS, m/z)       |
|    | No.         |                  | (융)      | $^{1}H-NMR(\delta ppm, CDCl_{3})$ |
| 5  | 1-1         | Me > 0 NH        | 88       | 479 (M+H) <sup>+</sup>            |
|    |             | Me Me O          | <b>S</b> | 1.47 (9H, s), 3.22 (2H, t,        |
|    | }           |                  |          | J=8.8 Hz), 4.08 (2H, d,           |
|    | !           |                  |          | J=4.6 Hz), 4.30 (2H, t,           |
| :  |             |                  |          | J=7.8 Hz), 5.63 (2H, s),          |
| 10 | 1           | ,                |          | 6.95-7.30 (5H, m), 7.53 (2H,      |
|    | ļ           |                  |          | dd, J=5.8, 8.2 Hz)                |
|    | 1-2         |                  | 83       | 455 (M+H) *                       |
|    |             | NH→              |          | 3.23 (2H, t, J=8.6 Hz), 4.32      |
| 15 |             |                  |          | (2H, t, J=8.0 Hz), 4.55 (2H,      |
|    |             |                  |          | d, J=5.2 Hz), 5.49 (2H, s),       |
|    |             |                  |          | 6.90-7.07 (3H, m), 7.10-7.32      |
|    |             |                  |          | (9H, m), 7.50-7.63 (1H, br),      |
| 20 |             |                  |          | 8.20-8.45 (1H, br), 9.17          |
|    |             |                  |          | (1H, s)                           |
|    |             |                  |          | (111, 3)                          |
|    | 1-3         |                  | 91       | 437 (M+H) <sup>+</sup>            |
| 25 | 1 3         | MeO NH           | J.       | 1.77 (2H, quintet, J=6.6          |
|    |             | ·                |          | Hz), 3.17-3.26 (5H, m), 3.36      |
|    | j           | ļ                |          | (2H, t, J=5.8 Hz), 3.48 (2H,      |
| į  |             |                  |          | q, J=5.4 Hz), 4.30 (2H, t,        |
| 30 |             |                  |          | J=8.0 Hz), 5.59 (2H, s),          |
| 30 |             |                  |          | 6.94-7.13 (5H, m), 7.19-7.64      |
| j  |             |                  |          | (3H, m), 8.20-8.40 (1H, br),      |
|    |             |                  |          | 9.13 (1H, s)                      |
| _  |             |                  |          | 9.13 (In, s)                      |
| 35 | 1-4         | NC \             | 96       | 418 (M+H) <sup>+</sup>            |
|    | 1-4         | " NH <del></del> | 90       | 410 (M+N)                         |
|    | 1-5         |                  | 82       | 404 (M+H) +                       |
|    | - 0         | NC NH            |          | 102 ()                            |
| 40 | 1-6         | Me.              | 82       | 407 (M+H) <sup>+</sup>            |
| }  | - 0         | Me NH            | 02       | 0.79 (3H, t, J=7.8 Hz), 1.45      |
|    |             | İ                |          | (2H, sextet, J=7.0 Hz),           |
| ļ  |             |                  |          | 3.17-3.38 (4H, m), 4.31 (2H,      |
| 45 |             |                  |          | t, J=8.8 Hz), 5.55 (2H, s),       |
|    |             |                  |          | 6.95-8.50 (8H, m), 8.24-8.43      |
|    |             |                  |          | ·                                 |
| į  |             | <del></del>      |          | (1H, br), 9.14 (1H, s)            |

|    | 1-7                                   | H <sub>2</sub> N NH-                  | 19           | 422 (M+H) <sup>†</sup><br>3.23 (2H, t, J=8.4 Hz), 4.10 |
|----|---------------------------------------|---------------------------------------|--------------|--------------------------------------------------------|
| 5  |                                       | 0                                     |              | (2H, d, J=5.2 Hz), 4.31 (2H,                           |
|    |                                       |                                       |              | t, 10.8 Hz), 5.66 (2H, s),                             |
|    |                                       |                                       | }            | 6.00-6.10 (1H, br), 6.95-                              |
|    | •                                     |                                       |              | 7.28 (5H, m), 7.50-7.60 (2H,                           |
| 10 | ]                                     |                                       |              | m), 8.09 (1H, t, J=8.0 Hz),                            |
|    |                                       |                                       |              | 8.20-8.42 (1H, br), 9.07                               |
|    |                                       |                                       |              | (1H, s)                                                |
|    | 1-8                                   | NH-→                                  | 28           | 476 (M+H) <sup>+</sup>                                 |
| 15 |                                       | HN WALL                               |              | }                                                      |
|    |                                       |                                       |              | ·                                                      |
|    |                                       |                                       | <del> </del> | A76 (MUN) †                                            |
|    | 1-9                                   | N-                                    | 23           | 476 (M+H) <sup>+</sup>                                 |
| 20 | ļ                                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ļ            |                                                        |
|    |                                       | H₂NOC                                 |              |                                                        |
|    | 1-10                                  |                                       | 35           | 447 (M+H) <sup>+</sup>                                 |
|    |                                       |                                       |              |                                                        |
| 25 |                                       | \ \\                                  | l            |                                                        |
|    | 1-11                                  | Et₂N →                                | 33           | 421 (M+H) <sup>+</sup>                                 |
|    |                                       | _                                     | }            | 0.08-1.20 (6H, m), 3.10-3.25                           |
| 30 | ,                                     | 1                                     | Ì            | (4H, m), 3.40-3.62 (2H, m),                            |
|    |                                       |                                       |              | 4.27 (2H, t, J=9.0 Hz), 5.48                           |
|    |                                       |                                       |              | (2H, s), 6.93-7.13 (3H, m),                            |
|    |                                       |                                       |              | 7.14-7.27 (2H, m), 7.41 (2H,                           |
| 35 |                                       | ]                                     |              | dd, J=5.2, 10.4 Hz), 8.24-                             |
|    | 1 10                                  | -                                     |              | 8.34 (2H, m)                                           |
|    | 1-12                                  |                                       | 49           | 490 (M+H) *                                            |
|    |                                       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |              |                                                        |
| 40 | · · · · · · · · · · · · · · · · · · · |                                       |              |                                                        |
|    | 1-13                                  | CO₂Me                                 | 76           | 477 (M+H) <sup>+</sup>                                 |
|    |                                       | N->                                   |              |                                                        |
|    |                                       |                                       |              |                                                        |
| 45 | 1-14                                  | Mo ~~~                                | 42           | 449 (M+H) <sup>+</sup>                                 |
|    |                                       | Me NH                                 |              |                                                        |
|    | 1-15                                  | NH-                                   | 33           | 449 (M+H) <sup>+</sup>                                 |
|    |                                       | 1 -0 NII                              |              |                                                        |
| 50 |                                       | 1                                     |              |                                                        |

| [Table 3 | 4]     |    |                                                                                                                                                                                                                                                     |
|----------|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-16     | Et0 NH | 54 | 437 (M+H) +  1.10 (3H, t, J=7.0 Hz), 3.21 (2H, t, J=8.4 Hz), 3.40 (2H, q, J=7.0 Hz), 3.47-3.64 (4H, m), 4.29 (2H, t, J=8.4 Hz),  5.59 (2H, s), 6.93-7.30 (5H, m), 7.46 (2H, dd, J=5.0, 8.6 Hz), 7.70 (1H, br s), 8.20-  8.45 (1H, br), 9.14 (1H, s) |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
| 45 |  |
| 50 |  |

| 1-17 | HO N                  | 19 | 453 (M+H) +                                                                                                                                                                                                                                                                                                                             |
|------|-----------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-18 | HO(N                  | 27 | 449 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-19 |                       | 43 | 419 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-20 | EtO <sub>2</sub> C-N  | 56 | 505 (M+H) +  1.25 (3H, t, J=7.2 Hz),  1.40-2.05 (4H, m), 2.38-2.58 (1H, m), 2.83-3.12 (2H, m),  3.21 (2H, t, J=8.0 Hz),  3.40-3.75 (1H, m), 4.13 (2H, q, J=7.0 Hz), 4.27 (2H, t, J=9.2 Hz), 4.35-4.60 (1H, m), 5.49 (2H, s), 6.92-7.14 (3H, m), 7.14-7.25 (2H, m),  7.41 (2H, dd, J=5.0, 8.8 Hz), 8.29 (1H, d, J=8.8 Hz),  8.35 (1H, s) |
| 1-21 | \$ NH                 | 28 | 499 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-22 | MeO <sub>2</sub> C NH | 55 | 467 (M+H) +                                                                                                                                                                                                                                                                                                                             |
| 1-23 | AcN N->               | 58 | 476 (M+H) + 2.09 (3H, s), 3.00-3.80 (10H, m), 4.28 (2H, t, J=8.8 Hz), 5.49 (2H, s), 6.92-7.28 (5H, m), 7.40 (2H, dd, J=5.2, 9.0 Hz), 8.25 (1H, d, J=9.0 Hz), 8.40 (1H, s)                                                                                                                                                               |
| 1-24 | HO NH                 | 27 | 409 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-25 | FNH                   | 48 | 491 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-26 | <b>:</b> **•O-        | 40 | 534 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  |
| 1-27 | F <sub>a</sub> C NH   | 54 | 523 (M+H) <sup>+</sup> 3.23 (2H, t, J=8.0 Hz), 4.33 (2H, t, J=8.2 Hz), 4.60 (2H, d, 8.8 Hz), 5.52 (2H, s), 6.95-7.07 (4H, m), 7.20-7.35 (5H, m), 7.49-7.68 (3H, m), 8.20-8.45 (1H, br), 9.17 (1H, s)                                                                                                                                    |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
|    |  |

**5** 

| 1-28 | NH→                          | 47 | 461 (M+H) <sup>+</sup>                                                                                                                                                                                                                    |
|------|------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-29 | F <sub>3</sub> C NH          | 40 | 447 (M+H) +                                                                                                                                                                                                                               |
| 1-30 | AcNH NH                      | 94 | 450 (M+H) +  1.94 (3H, s), 3.21 (2H, t, J=8.4 Hz), 3.35-3.60 (4H, m), 4.28 (2H, t, J=8.4 Hz),  5.62 (2H, s), 6.30-6.45 (1H, br), 6.95-7.30 (5H, m), 7.47 (2H, dd, J=3.0, 8.4 Hz),  7.60-7.72 (1H, br), 8.15-  8.45 (1H, br), 9.10 (1H, s) |
| 1-31 | Et0 <sub>2</sub> C NH        | 71 | 465 (M+H) +                                                                                                                                                                                                                               |
| 1-32 | Me₂N <del></del>             | 71 | 393 (M+H) +                                                                                                                                                                                                                               |
| 1-33 | N—OH                         | 35 | 449 (M+H) +                                                                                                                                                                                                                               |
| 1-34 | SMe<br>EtO <sub>2</sub> C NH | 69 | 524 (M+H) <sup>+</sup>                                                                                                                                                                                                                    |
| 1-35 | Me-N_N                       | 25 | 448 (M+H) +                                                                                                                                                                                                                               |

|    | [Table 35] |                                 |    |                                                                                                                    |  |
|----|------------|---------------------------------|----|--------------------------------------------------------------------------------------------------------------------|--|
| 5  | 1-36       | MeO NH                          | 17 | 471 (M十H) <sup>+</sup>                                                                                             |  |
|    | 1-37       | °N NH→                          | 21 | 478 (M+H) <sup>+</sup>                                                                                             |  |
| 10 | 1-38       | EtO <sub>2</sub> C NH           | 91 | 451 (M+H) +                                                                                                        |  |
| 15 | 1-39       | NH <sub>2</sub> SO <sub>2</sub> | 61 | 548 (M+H) <sup>+</sup>                                                                                             |  |
|    | 1-40       | NH                              | 28 | 456 (M+H) +<br>3.22 (2H, t, J=8.8 Hz), 4.32<br>(2H, t, J=8.4 Hz), 4.73 (2H,                                        |  |
| 20 |            |                                 |    | d, J=4.8 Hz), 5.62 (2H, s),<br>6.97-7.10 (1H, m), 7.12-7.28<br>(5H, m), 7.49 (2H, dd,<br>J=5.6, 8.8 Hz), 7.64 (1H, |  |
| 25 |            |                                 |    | dt, J=1.8, 7.8 Hz), 8.29-<br>8.50 (3H, m), 9.17 (1H, s)                                                            |  |

| 30 | 1-41 | NH    | 52 | 483 (M+H) +            |
|----|------|-------|----|------------------------|
| 35 | 1-42 | ○ NH- | 51 | 469 (M+H) +            |
| 40 | 1-43 | O NH→ | 59 | 445 (M+H) <sup>+</sup> |
|    | 1-44 | NH-   | 70 | 505 (M+H) +            |
| 45 | 1-45 | F     | 58 | 473 (M+H) +            |
| 50 | 1-46 | F NH  | 59 | 491 (M+H) <sup>+</sup> |

## Example 2

55

[0233] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-5-py-

rimidinecarboxylate as a starting material, compounds of Examples 2-1 to 2-5 were synthesized.

Example 2-1: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]acetate Example 2-2: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidine-carboxamide

Example 2-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidinecarboxamide

Example 2-4: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-5-pyrimidinecarboxamide

Example 2-5: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]acetate

[0234] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

20

25

30

35

40

45

50

10

15

| Example | R                       | yield | MASS spectrum (APCIMS, m/z)                                                                                                                                                                                               |
|---------|-------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.     |                         | (왕)   | $^{1}$ H-NMR( $\delta$ ppm, CDCl <sub>3</sub> )                                                                                                                                                                           |
| 2-1     | EtO <sub>2</sub> C NH—— | 51    | 450 (M+H) †  1.28 (3H, t, J=7.0 Hz), 3.22 (2H, t, J=8.4 Hz), 4.15-4.35 (6H, m), 5.76 (2H, s), 7.00 (1H, t, J=7.0 Hz), 7.08-7.45 (5H, m), 7.53 (1H, t, J=7.0 Hz), 7.92 (1H, t, J=7.0 Hz), 8.20-8.50 (1H, br), 9.13 (1H, s) |
| 2-2     | ONH-                    | 55    | 449 (M+H) <sup>†</sup>                                                                                                                                                                                                    |
| 2-3     |                         | 37    | 490 (M+H) <sup>+</sup>                                                                                                                                                                                                    |
| 2-4     | NH                      | 22    | 455 (M+H) +                                                                                                                                                                                                               |
| 2-5     | Me Me O                 | 77    | 479 (M+H) <sup>+</sup>                                                                                                                                                                                                    |

### Example 3

[0235] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethyl)ben-zylloxy}-5-pyrimidinecarboxylate as a starting material, compounds of Examples 3-1 to 3-6 were synthesized.

Example 3-1: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-4-{[4-(trifluoromethyl)benzyl]oxy)-5-pyrimidinecarboxamide

Example 3-2: 2-(2,3-dihydro-1H-indol-1-yl)-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-4-{[4-(trifluoromethyl)benzyl]oxy)-5-pyrimidinecarboxamide

### EP 1 223 170 A1

Example 3-3: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethyl)benzyl]oxy}-5-pyrimidinecarboxamide Example 3-4: t-butyl 2-{[(2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethyl)benzyl]oxy)-5-pyrimidinyl)carbonyl]-amino}acetate

Example 3-5: N-(cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethyl)benzyl]oxy}-5-pyrimidinecarboxamide

Example 3-6: ethyl 2-{[(2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethyl)benzyl]oxy}-5-pyrimidinyl)carbonyl]-amino) acetate

[0236] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

## [Table 37]

| ı | Example | R        | yield | MASS spectrum (APCIMS, m/z)                                                                                                                                                                                                    |
|---|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | . No.   |          | (웅)   | $^{1}$ H-NMR( $\delta$ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                |
|   | 3-1     | ON NH-   | 36 .  | 499 (M+H) †  1.50-2.10 (4H, m), 3.15-3.40 (3H, m), 3.59-3.80 (3H, m), 3.90-4.10 (1H, m), 4.29 (2H, t, J=8.0 Hz), 5.68 (2H, s), 7.00 (1H, t, J=8.0 Hz), 7.15- 7.30 (3H, m), 7.60-7.75 (4H, m), 8.20-8.45 (1H, br), 9.16 (1H, s) |
|   | 3-2     | O NH     | 26    | 540 (M+H) <sup>†</sup>                                                                                                                                                                                                         |
|   | 3-3     | NH       | 28    | 505 (M+H) <sup>+</sup>                                                                                                                                                                                                         |
|   | 3-4     | Me NH NH | 57    | 529 (M+H) <sup>+</sup>                                                                                                                                                                                                         |
|   | 3-5     | NC NH    | 57    | 454 (M+H) <sup>+</sup>                                                                                                                                                                                                         |

| 3-6 | EtO <sub>2</sub> C NH | 20 | 501 (M+H) <sup>+</sup> |
|-----|-----------------------|----|------------------------|
|     |                       |    |                        |

## Example 4

[0237] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 4-1 to 4-6 were synthesized.

5 Example 4-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate

Example 4-2: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 4-3: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarbox-amide

Example 4-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide Example 4-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide Example 4-6: N-(1H-benzimidazol-2-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxamide

15 [0238] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 38]

20

10

$$\begin{array}{c}
R \downarrow O \\
N \downarrow N
\end{array}$$
OM6

35

30

40

45

50

|    | Example No. | R       | yield(%) | MASS spectrum (APCIMS, m/z) |
|----|-------------|---------|----------|-----------------------------|
| 5  | 4-1         | Me O NH | 75       | 491 (M+H) <sup>+</sup>      |
| 10 | 4-2         | NH►     | 70       | 461 (M+H) *                 |
| 15 | 4-3         | HN      | 49       | 488 (M+H) <sup>†</sup>      |
| 20 | 4-4         | N NH    | 69       | 468 (M+H) *                 |
| 20 | 4-5         | NH      | 34       | 467 (M+H) +                 |
| 25 | 4-6         | H H     | 40       | 506 (M+H) <sup>†</sup>      |

## 30 Example 5

35

40

45

50

55

[0239] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinecar-boxylate as a starting material, compounds of Examples 5-1 to 5-5 were synthesized.

Example 5-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 5-3: t-butyl 3-({[2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinyl]carbonyl}amino)propylcarbamate

Example 5-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 5-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-ethoxy-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0240] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 39]

Example

No.

5-1

5-2

5-3

5-4

5-5

Me

Me 0

R

5

:

R O Me

yield

(왕)

62

75

68

78

87

399 (M+H) +

396 (M+H) +

442 (M+H) +

391 (M+H) +

376 (M+H) +

MASS spectrum (APCIMS,

m/z)
<sup>1</sup>H-NMR( $\delta$  ppm, CDCl<sub>3</sub>)

1.50-1.63 (12H, m), 3.21

(2H, t, J=8.0 Hz), 4.13 (2H, d, J=4.8 Hz), 4.31 (2H, t, J=8.0 Hz), 4.67

(2H, q, J=6.8 Hz), 7.00 (1H, t, J=6.8 Hz), 7.20-7.28 (2H, m), 8.05 (1H, br t, J=7.0 Hz), 8.10-8.42

(1H, br), 9.10 (1H, s)

15

10

20

25

30

35

40

45

[0241] In the same manner as in Example 1-1 using ethyl 4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-py-rimidinecarboxylate as a starting material, compounds of Examples 6-1 to 6-6 were synthesized.

Example 6-1: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

NH--

Example 6-2: t-butyl 3-({[4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)-propyl-carbamate

Example 6-3: 4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 6-4: 4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide Example 6-5: 4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide Example 6-6: N-(1H-benzimidazol-2-ylmethyl)-4-[(4-bromobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

[0242] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 40]

| Example No. | R       | yield<br>(%)    | MASS spectrum (APCIMS, m/z) |
|-------------|---------|-----------------|-----------------------------|
| 6-1         | HN NH   | 34 <sup>-</sup> | 537 (M+H) *                 |
| 6-2         | Me Me O | 48              | 583 (M+H) <sup>+</sup>      |
| 6-3         | Me N NH | 55              | 532 (M+H) <sup>+</sup>      |

| 6-4 | NH-  | 48 | 517 (M+H) <sup>+</sup> |
|-----|------|----|------------------------|
| 6-5 | NH-  | 67 | 517 (M+H) <sup>+</sup> |
| 6-6 | N NH | 92 | 556 (M+H) *            |

#### Example 7

[0243] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-(2-methoxyethoxy)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 7-1 to 7-3 were synthesized.

Example 7-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-(2-methoxyethoxy)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide Example 7-2: t-butyl 3-({[2-(2,3-dihydro-1H-indol-1-yl)-4-(2-methoxyethoxy)-5-pyrimidinyl]carbonyl}amino)propylcarbamate

Example 7-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-(2-methoxyethoxy)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide [0244] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 41]

15 0Me

> yield(%) R MASS spectrum Example (APCIMS, m/z)No.

426 (M+H) <sup>4</sup> 66 7-1 50 472 (M+H) \* 7-2 Me Me 57 406 (M+H) \* 7-3 NH-

### Example 8

50 [0245] In the same manner as in Example 1-1 using ethyl 4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 8-1 to 8-5 were synthesized.

Example 8-1: t-butyl 2-({[4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)

Example 8-2: (RS)-4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 8-3: 4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 8-4: 4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarbox-

97

10

20

25

30

35

40

45

amide

Example 8-5: 4-[(4-fluorobenzyl)oxy]-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarbox-amide

[0246] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 42]

10

15

20

25

30

35

40

45

55

| Example No. | R                   | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|---------------------|--------------|-----------------------------|
| 8-1         | Me → 0 NH → Me Me 0 | 82           | 497 (M+H) <sup>+</sup>      |
| 8-2         | OM NH-              | 53           | 467 (M+H) <sup>+</sup>      |
| 8-3         | HN NH               | 76           | 494 (M+H) <sup>+</sup>      |
| 8-4         | NH NH               | 76           | 474 (M+H) *                 |
| 8-5         | NH→                 | 67           | 474 (M+H) <sup>+</sup>      |

## 50 Example 9

[0247] In the same manner as in Example 1-1 using ethyl 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxyben-zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 9-1 to 9-5 were synthesized.

 $\label{lem:example 9-1:t-butyl 2-[({2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy)-5-pyrimidinyl)} - amino] acetate$ 

Example 9-2: (RS)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 9-3: 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecar-

boxamide

Example 9-4: 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecar-boxamide

Example 9-5: 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecar-boxamide

[0248] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

# [Table 43]

R O O OME

| Example | R                  | yield | MASS spectrum (APCIMS,                                                                                                                                                                                                                                                      |
|---------|--------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.     |                    | (웅)   | $m/z$ ) <sup>1</sup> H-NMR( $\delta$ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                               |
| 9-1     | Me → O → NH → Me O | 85    | 509 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                      |
| 9-2     | OM NH->            | 55    | 479 (M+H) †  1.50-2.00 (4H, m), 3.20 (2H, t, J=8.0 Hz), 3.30- 3.50 (1H, m), 3.60-3.70 (3H, m), 3.83 (3H, s), 3.90-4.05 (1H, m), 4.33 (2H, t, J=8.0 Hz), 5.70 (2H, d, J=2.2 Hz), 6.85- 7.12 (4H, m), 7.20-7.35 (2H, m), 7.65-7.80 (1H, br), 8.20-8.40 (1H, br), 9.13 (1H, s) |
| 9-3     | HN NH              | 74    | 506 (M+H) <sup>†</sup>                                                                                                                                                                                                                                                      |

| 9-4 | N NH | 70 | 486 (M+H) <sup>+</sup> |
|-----|------|----|------------------------|
| 9-5 | NH-  | 70 | 486 (M+H) <sup>+</sup> |

Example 10

[0249] In the same manner as in Example 1-1 using ethyl (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 10-1 to 10-5 were synthesized. Example 10-1: t-butyl (RS)-2-({[4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl} amino) acetate

Example 10-2: (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 10-3: (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 10-4: (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 10-5: (RS)-4-[(4-fluorobenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

[0250] Respective structural formulas and MASS spectrum data are shown in the following Table.

100

10

5

30

25

35

40

45

50

[Table 44]

Example

No.

10-1

10-2

10-3

10 - 4

10-5

R

NH-

Me

Me

R O F

yield(%)

83

87

73

55

39

MASS spectrum (APCIMS, m/z)

493 (M+H) +

463 (M+H) +

490 (M+H) +

470 (M+H) +

470 (M+H) +

15

5

10

20

25

30

35

40

45

#### Example 11

[0251] In the same manner as in Example 1-1 using ethyl (RS)-4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 11-1 to 11-5 were synthesized. Example 11-1: t-butyl (RS)-2-({[4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate

Example 11-2: (RS)-4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 11-3: (RS)-4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

 $\label{lem:example 11-4: (RS)-4-[(3-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide$ 

[0252] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

55

[Table 45]

5

10

N N Me

|    | Example | R       | yield | MASS spectrum (APCIMS,                                                                           |
|----|---------|---------|-------|--------------------------------------------------------------------------------------------------|
| 15 | No.     |         | (%)   | $m/z$ ) <sup>1</sup> H-NMR( $\delta$ ppm, CDCl <sub>3</sub> )                                    |
|    |         |         |       |                                                                                                  |
| 20 | 11-1    | Me O NH | 92    | 505 (M+H) *                                                                                      |
| 20 | 11-2    | ON NH-  | 80    | 575 (M+H) <sup>+</sup>                                                                           |
| 25 | 11-3    | HN      | 59    | 502 (M+H) <sup>+</sup>                                                                           |
| 30 | 11-4    | NH      | 82    | 482 (M+H) + 1.35 (3H, d, J=6.2 Hz), 2.72 (1H, d, J=15.6 Hz), 3.44 (1H, dd,                       |
| 35 |         |         |       | J=9.8, 16.2 Hz), 3.73<br>(3H, s), 4.74 (2H, d,<br>J=4.6 Hz), 4.95-5.10<br>(1H, m), 5.62 (2H, s), |
| 40 |         |         |       | 6.83-7.32 (8H, m), 7.62 (1H, dt, J=2.0, 7.6 Hz), 8.24-8.32 (2H, m), 8.53 (1H, br t, J=7.0        |
| 45 |         |         |       | Hz), 9.17 (1H, s)                                                                                |

### Example 12

[0253] In the same manner as in Example 1-1 using ethyl 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-fluor-50-50 obenzyl)-oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 12-1 to 12-6 were synthesized Example 12-1: t-butyl [({2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)-amino]acetate

 $\label{eq:condition} \mbox{Example 12-2: (RS)-2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl) -4-[(4-fluorobenzyl) oxy]-N- (2-oxo-3-azepanyl) -5-pyrimidinecarboxamide$ 

Example 12-3: (RS)-2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-fluorobenzyl)oxy]-N-(tetrahydro-2-furanyl-methyl)-5-pyrimidinecarboxamide

Example 12-4: 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 12-5: 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-{(4-fluorobenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

[0254] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 46]

:

10

15

20

25

Example R yield MASS spectrum (%) (APCIMS, m/z)

12-1 Me O NH  $\rightarrow$  54 523 (M+H)  $^{\dagger}$ 

30 12-2 39 520 (M+H) <sup>†</sup> 35 12-3 493 (M+H) + 12 12-4 40 500 (M+H) + 40 NH---12-5 49 500 (M+H) <sup>+</sup> 45

#### Example 13

50

[0255] In the same manner as in Example 1-1 using ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl) oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 13-1 to 13-5 were synthesized. Example 13-1: t-butyl 2-[({2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl}carbonyl)-aminolacetate

Example 13-2: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 13-3: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 13-4: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 13-5: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

[0256] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

## [Table 47]

558 (M+H) \*

528 (M+H) \*

s)

555 (M+H) \*

535 (M+H) +

535 (M+H) <sup>+</sup>

MASS spectrum (APCIMS,

m/z)  $^{1}H-NMR(\delta ppm, CDCl_{3})$ 

1.50-2.60 (4H, m), 3.15-3.40 (3H, m), 3.62-3.75 (3H, m), 3.75-4.02 (1H,m), 4.32 (2H, t, J=8.4Hz), 5.50 (2H, s), 7.12 (2H, t, J=8.8 Hz), 7.30-7.40 (2H, m), 7.47 (2H, dd, J=6.0, 9.0 Hz),

7.60-7.75 (1H, m), 8.10-8.30 (1H, br), 9.14 (1H,

20

10

15

:

|    | Example<br>No. | R       | yield<br>(%) |
|----|----------------|---------|--------------|
| 25 | 13-1           | Me Me O | 62           |
| 30 | 13-2           | O NH→   | 44           |
| 35 |                |         |              |
| 40 |                |         | •            |
| 45 | 13-3           | HN NH → | 49           |
| 50 | 13-4           | NH NH   | 46           |
|    | 13-5           | NH-     | 62           |

Example 14

· 55

[0257] In the same manner as in Example 1-1 using ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxyben-

### EP 1 223 170 A1

zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 14-1 to 14-6 were synthesized.

Example 14-1: t-butyl 2-[((2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)-amino]acetate

Example 14-2: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 14-3: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 14-4: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-[2-(dimethylamino)ethyl]-4-[(3-methoxybenzyl)oxy]-5-pyrimidinecarboxamide

10 Example 14-5: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 14-6: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(3-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

[0258] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

## [Table 48]

20

Br O OMe

30

25

5

15

35

40

45

50

| Example No. | R                        | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                              |
|-------------|--------------------------|--------------|------------------------------------------------------------------------------------------------------------------------|
| 14-1        | Me → O NH → NH → Me Me O | 60           | 570 (M+H) <sup>+</sup>                                                                                                 |
| 14-2        | ON NH                    | 50           | 540 (M+H) <sup>+</sup>                                                                                                 |
| 14-3        | HN NH                    | 28           | 567 (M+H) <sup>†</sup> 1.50-2.26 (6H, m), 3.14- 3.40 (4H, m), 3.79 (3H, s), 4.29 (2H, t, J=8.8 Hz), 4.70-4.80 (1H, m), |

|       |                      |            | 5.68 (2H, s), 5.97 (1H,<br>t, J=7.0 Hz), 6.82-6.90<br>(1H, m), 7.08-7.14 (2H,<br>m), 7.23-7.35 (3H, m),<br>8.00-8.35 (1H, br), 8.83 |
|-------|----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 14-4  | Me <sub>2</sub> N NU | 33         | (1H, d, J=6.2 Hz), 9.09<br>(1H, s)<br>527 (M+H) +                                                                                   |
| 3.4.5 | 2 Nn -               |            | 547 04 10 1                                                                                                                         |
| 14-5  | NH NH                | 50         | 547 (M+H) *                                                                                                                         |
| 14-6  | NH-                  | 64         | 547 (M+H) <sup>+</sup>                                                                                                              |
|       | 14-5                 | 14-5 NH NH | 14-5 NH 50                                                                                                                          |

### Example 15

35

40

45

50

55

[0259] In the same manner as in Example 1-1 using ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinecarboxylate as a starting material, compounds of Examples 15-1 to 15-4 were synthesized.

Example 15-1: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 15-2: t-butyl 2-({[2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinyl]carbonyl}amino)propylcar-bamate

30 Example 15-3: N-(1,3-benzodioxol-5-ylmethyl)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-5-pyrimidinecarboxamide

Example 15-4: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-ethoxy-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide **[0260]** Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 49]

5

10

15

20

25

30

35

40

45

R O M

| Example No. | R                 | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|-------------------|--------------|-----------------------------|
| 15-1        | HN NH             | 25           | 475 (M+H) <sup>+</sup>      |
| 15-2        | Me O NH → Me Me O | 46           | 521 (M+H) +                 |
| 15-3        | NH                | 56           | 498 (M+H) <sup>+</sup>      |
| 15-4        | NH-               | 63           | 455 (M+H) <sup>+</sup>      |

## Example 16

[0261] In the same manner as in Example 1-1 using ethyl 4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 16-1 to 16-5 were synthesized.

Example 16-1: (RS)-4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 16-2: t-butyl 3-({[4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl)amino)-propylcarbamate

Example 16-3: 4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 16-4: 4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecar-boxamide

Example 16-5: 4-[(4-bromobenzyl)oxy]-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecar-boxamide

50 [0262] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 50]

Br

MASS spectrum

(APCIMS,

| 15 | Example No. |
|----|-------------|
| 20 | 16-1        |
| 25 |             |
| 30 | 16-2        |

5

10

15

| No.  |          | (%) | m/z)                                                                                                                                                                                                           |
|------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |          |     | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                  |
| 16-1 | HN       | 29  | 616 (M+H) †  1.40-2.30 (6H, m), 3.15-  3.40 (4H, m), 4.28 (2H, t, J=8.4 Hz), 4.68-4.80 (1H, m), 5.64 (2H, s), 5.86-  6.00 (1H, m), 7.20-7.38 (6H, m), 8.00-8.30 (1h, br), 8.76 (1H, d, J=7.0 Hz), 9.09 (1h, s) |
| 16-2 | Me NH NH | 45  | 662 (M+H) <sup>+</sup>                                                                                                                                                                                         |
| 16-3 | Me N NH  | 47  | 611 (M+H) <sup>†</sup>                                                                                                                                                                                         |
| 16-4 | NH       | 42  | 596 (M+H) <sup>†</sup>                                                                                                                                                                                         |
| 16-5 | NH       | 58  | 596 (M+H) <sup>†</sup>                                                                                                                                                                                         |

yield

R

45

50

40

35

### Example 17

[0263] In the same manner as in Example 1-1 using ethyl 4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 17-1 to 17-4 were synthesized.

Example 17-1: t-butyl 2-({[4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl)amino)acetate

Example 17-2: (RS)-4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 17-3: (RS)-4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 17-4: 4-[(4-fluorobenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0264] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 51]

15

20

25

30

35

5

10

| Example No. | R       | yield (%) | MASS spectrum (APCIMS, m/z) |
|-------------|---------|-----------|-----------------------------|
| 17-1        | Me O NH | 60        | 509 (M+H) <sup>+</sup>      |
| 17-2        | O NH    | 66        | 479 (M+H) <sup>+</sup>      |
| 17-3        | HN NH   | 67        | 506 (M+H) <sup>+</sup>      |
| 17-4        | NH-     | 83        | 486 (M+H) <sup>+</sup>      |

## Example 18

[0265] In the same manner as in Example 1-1 using ethyl 4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 18-1 to 18-5 were synthesized. Example 18-1: t-butyl 2-({[4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl)-amino)acetate

Example 18-2: (RS)-4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 18-3: (RS)-4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 18-4: 4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 18-5: 4-[(3-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

[0266] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 52]

5

10

15

| 20 | Example | R                                        | yield | MASS spectrum (APCIMS, |
|----|---------|------------------------------------------|-------|------------------------|
|    | No.     |                                          | (%)   | m/2)                   |
| 25 | 18-1    | Me O NH                                  | 96    | 521 (M+H) *            |
|    | 18-2    | ONH-                                     | 56    | 491 (M+H) <sup>+</sup> |
|    | 18-3    | HN NH-                                   | 84    | 518 (M+H) <sup>+</sup> |
| 35 | 18-4    | NH—NH—NH—NH—NH—NH—NH—NH—NH—NH—NH—NH—NH—N | 50    | 498 (M+H) <sup>+</sup> |
| 40 | 18-5    | NH→                                      | 43    | 498 (M+H) <sup>+</sup> |

#### 45 Example 19

50

[0267] In the same manner as in Example 1-1 using ethyl 4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 19-1 to 19-4 were synthesized.

Example 19-1: (RS)-4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxam-

Example 19-2: t-butyl 3-({[4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)propylcarbamate

Example 19-3: 4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 19-4: 4-ethoxy-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide [0268] Respective structural formulas and MASS spectrum data are shown in the following Table.

yield

(8)

75

69

88

89

MASS spectrum (APCIMS,

m/z)

426 (M+H)

472 (M+H) +

421 (M+H) +

406 (M+H) \*

[Table 53]

Example

No.

19-1

19-2

19-3

19 - 4

N N N

OMe

R

Me Me O

-NH-

HN.

15

5

10

20

25

30

35

Example 20

[0269] In the same manner as in Example 1-1 using ethyl 4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 20-1 to 20-4 were synthesized.

Example 20-1: (RS)-4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 20-2: t-butyl 3-({[4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl} amino)-propylcarbamate

Example 20-3: 4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 20-4: 4-[(4-bromobenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

[0270] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

50

45

[Table 54]

OMe

| Example No. | R       | yield<br>(%) | MASS spectrum (APCIMS, m/z)                                                                                                                                                                                                                                                                                                 |
|-------------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |         |              | $^{1}$ H-NMR( $\delta$ ppm, CDC1 <sub>3</sub> )                                                                                                                                                                                                                                                                             |
| 20-1        | HN NH—  | 44           | 567 (M+H) <sup>†</sup>                                                                                                                                                                                                                                                                                                      |
| 20-2        | Me Ne O | 50           | 613 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                      |
| 20-3        | Me N NH | 68           | 562 (M+H) <sup>†</sup> 2.57 (3H, s), 3.13 (2H, t, J=8.0 Hz), 3.87 (3H, s), 4.31 (2H, t, J=10.0 Hz), 4.71 (2H, d, J=4.8 Hz), 5.55 (2H, s), 6.58 (1H, d, J=8.2 Hz), 7.21 (1H, t, J=8.0 Hz), 7.35 (2H, d, J=8.6 Hz), 7.51 (2H, d, J=8.4 Hz), 7.80-8.05 (1H, br), 8.08 (1H, s), 8.20- 8.30 (1H, br), 8.46 (1H, s), 9.15 (1H, s) |
| 20-4        | NH NH   | 66           | 547 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                      |

## Example 21

[0271] In the same manner as in Example 1-1 using ethyl 4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 21-1 to 21-4 were synthesized. Example 21-1: (RS)-4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 21-2: t-butyl 3-({[4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl)amino)propylcar-bamate

Example 21-3: 4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarbox-amide

Example 21-4: 4-ethoxy-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide [0272] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 55]

(10020 00)

20

25

30

35

40

10

15

| Example No. | R                                        | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|------------------------------------------|--------------|-----------------------------|
| 21-1        | HN NH                                    | 68           | 410 (M+H) <sup>+</sup>      |
| 21-2        | Me Me O                                  | 57           | 456 (M+H) <sup>+</sup>      |
| 21-3        | Me N NH                                  | 85           | 405 (M+H) <sup>+</sup>      |
| 21-4        | NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-N | 95           | 390 (M+H) <sup>+</sup>      |

### Example 22

[0273] In the same manner as in Example 1-1 using ethyl 4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 22-1 to 22-4 were synthesized.

Example 22-1: (RS)-4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 22-2: t-butyl 3-({[4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)-propylcarbamate

Example 22-3: 4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 22-4: 4-[(4-bromobenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecar-boxamide

[0274] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 56]

**5**,

10

15

20

25

30

35

45

Me R O Br

| Example | R       | yield | MASS spectrum (APCIMS, |
|---------|---------|-------|------------------------|
| No.     |         | (%)   | m/z)                   |
| 22-1    | HN NH - | 33    | 551 (M+H) <sup>+</sup> |
| 22-2    | Me Me O | 63    | 597 (M+H) <sup>+</sup> |
| 22-3    | Me N NH | 75    | 546 (M+H) <sup>+</sup> |

| 22-4 | NH- | 69 | 531 (M+H) <sup>+</sup> |
|------|-----|----|------------------------|
|      | N   |    |                        |
|      |     |    |                        |

### 40 Example 23

[0275] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 23-1 to 23-49 were synthesized.

Example 23-1: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate

Example 23-2: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 23-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidinecarboxamide

Example 23-4: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide Example 23-5: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate

Example 23-6: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecar-boxamide

Example 23-7: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-ethoxyethyl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide Example 23-8: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 23-9: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-piperidinyl)-5-pyrimidinecar-

boxamide

5

15

20

- Example 23-11: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide
- Example 23-12: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(2-pyridinyl)ethyl]-5-pyrimidinecarboxamide
- Example 23-13: 2-(2,3-dihydro-1H-indol-1-yl)-N-(6-hydroxyhexyl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide
- 10 Example 23-14: N-[2-(diethylamino)ethyl]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecar-boxamide
  - Example 23-15: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[1-(pyrrolizinyl)ethyl]-5-pyrimidinecarboxamide
  - Example 23-16: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxam-
    - Example 23-17: 2-(2,3-dihydro-1H-indol-1-yl)-N-(3-hydroxypropyl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide
    - Example 23-18: N-cyclopropyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide Example 23-19: 2-(2,3-dihydro-1H-indol-1-yl)-N-[2-(dimethylamino)ethyl]-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide
    - Example 23-20: t-butyl 6-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]-hexylcarbamate
- Example 23-22: t-butyl 3-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]-propylcarbamate

  - Example 23-24: N-(1-benzyl-4-piperidinyl)-2-(2,3-dihydro-1H-indol-1-yl) -4-[(4-methoxybenzyl)oxy]-5-pyrimidinecar-boxamide
  - Example 23-25: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[3-(2-methyl-1-piperidinyl)propyl]-5-pyrimidinecarboxamide
  - Example 23-26: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(4-morpholinyl)ethyl]-5-pyrimidinecar-boxamide
- Example 23-27: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(1-piperidinyl)ethyl]-5-pyrimidinecarbox-amide
  - Example 23-28: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-propinyl)-5-pyrimidinecarboxamide Example 23-29: 2-(2,3-dihydro-1H-indol-1-yl)-N-[4-(dimethylamino)benzyl]-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide
- 40 Example 23-30: 2-(2,3-dihydro-1H-indol-1-yl)-N-[3-(dimethylamino)propyl]-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecar-boxamide
  - Example 23-31: N-(1,3-benzodioxol-5-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidine-carboxamide
  - Example 23-32: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-thienylmethyl)-5-pyrimidinecarboxamide
  - Example 23-33: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2,2,2-trifluoroethyl)-5-pyrimidinecarboxamide
  - Example 23-34: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[3-(methylsulfanyl)propyl]-5-pyrimidinecarboxamide
- Example 23-35: N-(cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide Example 23-36: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-methoxyethyl)-5-pyrimidinecarboxamide
  - Example 23-37: N-[4-(diethylamino)phenyl]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecar-boxamide
- Example 23-38: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(1-methyl-2-pyrrolizinyl)ethyl]-5-pyrimidinecarboxamide
  - Example 23-39: 2-(2,3-dihydro-1H-indol-1-yl)-N-(5-isoquinolinyl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide Example 23-40: 2-(2,3-dihydro-1H-indol-1-yl)-N-(1H-indazol-5-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxam-

## EP 1 223 170 A1

| •  | ide                                                                                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Example 23-41: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(2-oxo-1-imidazolidinyl)ethyl]-5-pyrimi-                                                                                                    |
|    | dinecarboxamide                                                                                                                                                                                                        |
| _  | Example 23-42: N-[2-(acetylamino)ethyl]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarbox-                                                                                                     |
| 5  | amide                                                                                                                                                                                                                  |
|    | Example 23-43: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide                                                                                                    |
| •  | Example 23-44: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-hydroxyethyl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide                                                                                                       |
|    | Example 23-45: N-(1H-benzimidazol-2-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidi-                                                                                                       |
| 10 | necarboxamide                                                                                                                                                                                                          |
|    | Example 23-46: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[4-(1,2,3-thiadiazol-4-yl)benzyl]-5-pyrimidi-                                                                                                  |
|    | necarboxamide                                                                                                                                                                                                          |
|    | Example 23-47: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[2-(2-thienyl)ethyl]-5-pyrimidinecarboxam-                                                                                                     |
|    | ide                                                                                                                                                                                                                    |
| 15 | Example 23-48: N-(2-amino-2-oxoethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarbox-                                                                                                       |
|    | amide                                                                                                                                                                                                                  |
|    | Example 23-49: N-(cycloheptyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide [0276] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table. |
|    | The spective structural formulas, MASS spectrum data and Mivin data are shown in the following Table.                                                                                                                  |
| 20 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 25 |                                                                                                                                                                                                                        |
| 23 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 30 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    | ·                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                        |
| 35 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 40 |                                                                                                                                                                                                                        |
| 40 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 45 |                                                                                                                                                                                                                        |
|    | •                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 50 |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |
| 55 |                                                                                                                                                                                                                        |
| JJ |                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                        |

[Table 57]

R O OMe

| Example No. | R                     | yield (%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )  463(M+H) <sup>+</sup>                                                                                                                                                                                                                 |
|-------------|-----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 1        | EtO <sub>2</sub> C NH | 1,        |                                                                                                                                                                                                                                                                                                                  |
| 23-2        | ONH-                  | 48        | 461 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                           |
| 23-3        | ON NH                 | 32        | 502 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                           |
| 23-4        | NH-                   | 35        | 467 (M+H) † 1.70 (2H, quintet, J=6.6 Hz), 2.02 (2H, quintet, J=7.6 Hz), 2.38 (2H, t, J=8.0 Hz), 3.15-3.40 (8H, m), 3.82 (3H, s), 4.31 (2H, t, J=8.8 Hz), 5.60 (2H, s), 6.87- 7.04 (3H, m), 7.22 (2H, dd, J=2.6, 6.8 Hz), 7.45 (2H, d, J=8.6 Hz), 7.80 (1H, br t, J=6.8 Hz), 8.37 (1H, d, J=8.0 Hz), 9.09 (1H, s) |
| 23-5        | Me → O → NH → Me Me O | 69        | 491 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                           |
| 23-6        | HN NH                 | 60        | 488 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                           |
| 23-7        | Et0√NH→               | 62        | 449 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                           |

| 5  | 23-8  | N NH                  | 51 | 468 (M+H) *            |
|----|-------|-----------------------|----|------------------------|
|    | 23-9  | H O NH                | 28 | 474 (M+H) *            |
| 10 | 23-10 | N=NNH-                | 55 | 485 (M+H) <sup>+</sup> |
| 15 | 23-11 | Me N NH               | 92 | 483 (M+H) <sup>+</sup> |
|    | 23-12 | NH-                   | 65 | 482 (M+H) <sup>+</sup> |
| 20 | 23-13 | HO NH                 | 84 | 477 (M+H) *            |
|    | 23-14 | Et <sub>2</sub> N NH  | 28 | 476 (M+H) *            |
| 25 | 23-15 | N~_NH                 | 47 | 474 (M+H) <sup>+</sup> |
| 30 | 23-16 | NH NH -               | 86 | 468 (M+H) *            |
|    | 23-17 | HO NH-                | 35 | 435 (M+H) <sup>†</sup> |
| 35 | 23-18 | VH—►                  | 63 | 417 (M+H) *            |
|    | 23-19 | Me <sub>2</sub> N NH→ | 36 | 448 (M+H) <sup>+</sup> |
| 40 | 23-20 | Me O NH               | 87 | 576 (M+H) *            |
| 45 | 23-21 | Me Me O NH            | 81 | 548 (M+H) *            |
| 50 | 23-22 | Me Ne O NH            | 95 | 534 (M+H) <sup>+</sup> |
| 55 | 23-23 | Me Ne O               | 82 | 520 (M+H) <sup>+</sup> |

| N NH- | 23-24 | N—NH— | 81 | 550 (M+H) <sup>†</sup> |
|-------|-------|-------|----|------------------------|
|-------|-------|-------|----|------------------------|

[Table 58]

| 5              | 23-25 | N NH                 | 26 | 516 (M+H) <sup>†</sup> |
|----------------|-------|----------------------|----|------------------------|
| 10             | 23-26 | ° N NH→              | 80 | 490 (M+H) <sup>†</sup> |
| 45             | 23-27 | N-√NH-               | 75 | 488 (M+H) <sup>+</sup> |
| 15             | 23-28 | NH→                  | 57 | 415 (M+H) *            |
| 20             | 23-29 | Me <sub>2</sub> N NH | 82 | 510 (M+H) *            |
|                | 23-30 | Me <sub>2</sub> N NH | 50 | 462 (M+H) <sup>+</sup> |
| 25             | 23-31 | NH-                  | 70 | 511 (M+H) <sup>+</sup> |
| 30             | 23-32 | NH-                  | 70 | 473 (M+H) <sup>+</sup> |
|                | 23-33 | CF <sub>3</sub> NH→  | 72 | 459 (M+H) <sup>+</sup> |
| 35             | 23-34 | MeS NH─►             | 54 | 465 (M+H) <sup>+</sup> |
| 40             | 23-35 | NC NH-               | 73 | 416 (M+H) <sup>+</sup> |
| 40             | 23-36 | Me0√NH→              | 61 | 435 (M+H) <sup>+</sup> |
| 45             | 23-37 | Et <sub>2</sub> N NH | 38 | 524 (M+H) <sup>+</sup> |
| 50             | 23-38 | NMe NH-              | 27 | 488 (M+H) <sup>+</sup> |
| - <del>-</del> | 23-39 | NH-                  | 37 | 504 (M+H) *            |
| 55             | .,    | ~                    |    |                        |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
| 45 |  |
| 50 |  |
| 55 |  |

| 23-40 | N NH NH  | 37   | 493 (M+H) *                                                                                                                                                                                                                                                                           |
|-------|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-41 | HN N NH  | 38   | 489 (M+H) *                                                                                                                                                                                                                                                                           |
| 23-42 | AcNH NH  | 71   | 462 (M+H) † 1.92 (3H, s), 3.22 (2H, t, J=8.6 Hz), 3.30-3.43 (2H, m), 3.44-3.53 (2H, m), 3.84 (3H, s), 4.32 (2H, t, J=8.0 Hz), 5.56 (2H, s), 6.32- 6.43 (1H, br), 6.90- 7.07 (3H, s), 7.18- 7.26 (2H, m), 7.42 (2H, d, J=8.8 Hz), 7.60-7.75 (1H, br), 8.25-8.47 (1H, br), 9.09 (1H, s) |
| 23-43 | NH-      | 42   | 468 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                |
| 23-44 | H0       | 50   | 421 (M+H) *                                                                                                                                                                                                                                                                           |
| 23-45 | H H      | . 61 | 507 (M+H) <sup>†</sup> 3.21 (2H, t, J=8.4 Hz), 3.81 (3H, s), 4.30 (1H, t, J=8.8 Hz), 4.73 (2H, d, J=5.8 Hz), 5.54 (2H, s), 6.87 (2H, d, J=8.4 Hz), 7.01 (1H, t, J=8.0 Hz), 7.20-7.40 (7H, m), 7.50-7.64 (2H, m), 8.14 (1H, t, J=7.0 Hz), 8.20-8.50 (1H, br), 9.15 (1H, s)             |
| 23-46 | N. S. NH | 80   | 551 (M+H) <sup>†</sup> 3.23 (2H, t, J=8.4 Hz), 3.72 (3H, s), 4.34 (2H, t, J=8.4 Hz), 4.61 (2H, d, J=5.0 Hz), 5.49 (2H, s), 6.82 (2H, d, J=8.8 Hz), 7.01 (1H, t, J=7.4 Hz), 7.20-7.32 (6H, m), 7.75 (1H, t,                                                                            |

|       |                       |    | J=7.0 Hz), 7.93 (2H, d, J=8.0 Hz), 8.35-8.43 (1H, m), 8.68 (1H, s), 9.17 (1H, s) |
|-------|-----------------------|----|----------------------------------------------------------------------------------|
| 23-47 | NH-                   | 90 | 487 (M+H) <sup>+</sup>                                                           |
| 23-48 | H <sub>2</sub> N NH—> | 60 | 434 (M+H) <sup>+</sup>                                                           |
| 23-49 | NH                    | 73 | 473 (M+H) <sup>+</sup>                                                           |

#### 20 Example 24

5

10

15

25

30

35

40

45

50

55

[0277] In the same manner as in Example 1-1 using ethyl 4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 24-1 to 24-5 were synthesized.

Example 24-1: (RS)-4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 24-2: 4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidinecarboxamide

Example 24-3: N-benzyl-4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide Example 24-4: t-butyl 2-({[4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetata

Example 24-5: ethyl 2-({[4-[(2,6-difluorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate

[0278] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 59]

15

5

10

20

25

30

| Example No. | . <b>R</b>               | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|--------------------------|--------------|-----------------------------|
| 24-1        | O™NH→                    | 31           | 467 (M+H) <sup>+</sup>      |
| 24-2        | N NH                     | 28           | 508 (M+H) <sup>+</sup>      |
| 24-3        | NH                       | 49           | 473 (M+H) <sup>+</sup>      |
| 24-4        | Me → O NH → NH → Me Me O | 83           | 497 (M+H) <sup>+</sup>      |
| 24-5        | EtO <sub>2</sub> C NH—►  | 60           | 469 (M+H) <sup>+</sup>      |

### 35 Example 25

[0279] In the same manner as in Example 1-1 using ethyl 4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-py-rimidinecarboxylate as a starting material, compounds of Examples 25-1 to 25-7 were synthesized.

Example 25-1: 4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-ethoxyethyl)-5-pyrimidinecarboxamide Example 25-2: 4-[(4-chlorobenzyl)oxy]-N-(cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide Example 25-3: ethyl 2-({[4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate Example 25-4: (RS)-4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 25-5: 4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidine-carboxamide

Example 25-6: N-benzyl-4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

Example 25-7: t-butyl 2-({[4-[(4-chlorobenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate

[0280] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

50

45

[Table 60]

R O CI

| <b>—</b> |                                        | 1 2 3 . 3 | W200 /27072                       |
|----------|----------------------------------------|-----------|-----------------------------------|
| Example  | R                                      | yield     | MASS spectrum (APCIMS,            |
| No.      |                                        | (%)       | m/z)                              |
|          |                                        |           | $^{1}H-NMR(\delta ppm, CDCl_{3})$ |
| 25-1     | Et0~NH-                                | 70        | 453 (M+H) +                       |
|          | M                                      |           | 1.09 (3H, t, $J=7.0 Hz$ ),        |
|          |                                        |           | 3.22 (2H, t, J=8.4 Hz),           |
|          |                                        |           | 3.30-3.65 (6H, m), 4.29           |
|          |                                        |           | (2H, t, J=8.8 Hz), 5.60           |
|          |                                        |           | (2H, s), 6.99 (1H, t,             |
|          |                                        |           | J=7.2 Hz), 7.15-7.48              |
|          |                                        |           | (6H, m), 7.70 (1H, br             |
|          |                                        |           | s), 8.20-8.50 (1H, br),           |
|          |                                        |           | 9.15 (1H, s)                      |
| 25-2     | 110~                                   | 18        | 420 (M+H) <sup>+</sup>            |
|          | NC NH                                  |           |                                   |
| 25-3     | EtO,C NH-                              | 45        | 467 (M+H) <sup>+</sup>            |
|          | 21020 1111                             |           | ,                                 |
| 25-4     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 39        | 465 (M+H) +                       |
|          | NH-                                    |           |                                   |
|          |                                        |           |                                   |
| 25-5     |                                        | 42        | 506 (M+H) <sup>+</sup>            |
|          | N NH→                                  |           |                                   |
|          |                                        |           |                                   |
| 25-6     | NH→                                    | 65        | 471 (M+H) <sup>+</sup>            |
|          | <b>₩</b>                               |           |                                   |
|          |                                        |           |                                   |
| 25-7     | Me > 0                                 | 20        | 495 (M+H) <sup>†</sup>            |
|          | Me Me O                                |           |                                   |
|          |                                        |           |                                   |

## Example 26

[0281] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 26-1 to 26-5 were synthesized.

Example 26-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-5-pyrimidinyl}carbonyl)amino]acetate

Example 26-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-5-pyrimidinecarboxamide Example 26-3: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecar-

boxamide

Example 26-4: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate

Example 26-5: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3,4-dimethylbenzyl)oxy]-N-(2-oxo-3-piperidinyl)-5-pyrimidine-carboxamide

[0282] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 61]

20

5

10

15

25

30

35

40

45

| Example No. | R         | yield (%) | MASS spectrum (APCIMS, m/z) |
|-------------|-----------|-----------|-----------------------------|
| 26-1        | Me O NH - | 51        | 489 (M+H) <sup>+</sup>      |
| 26-2        | NH        | 30        | 465 (M+H) <sup>+</sup>      |

| 26-3 | HN NH—                | 25 | 486 (M+H) <sup>+</sup> |
|------|-----------------------|----|------------------------|
| 26-4 | EtO <sub>2</sub> C NH | 65 | 461 (M+H) <sup>+</sup> |
| 26-5 | H 0 NH →              | 37 | 472 (M+H) <sup>+</sup> |

#### Example 27

[0283] In the same manner as in Example 1-1 using ethyl 4-(1,3-benzodioxol-5-ylmethoxy) -2- (2,3-dihydro-1H-indol-1-yl) -5-pyrimidinecarboxylate as a starting material, compounds of Examples 27-1 to 27-6 were synthesized.

Example 27-1: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 27-2: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-piperidinyl)-5-pyrimi-dinecarboxamide

Example 27-3: t-butyl 2-({[4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}-amino) acetate

Example 27-4: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecar-

boxamide

Example 27-5: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecar-boxamide

[0284] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 62]

 $\begin{array}{c}
R \downarrow 0 \\
N \downarrow N
\end{array}$ 

20

5

10

15

25

30

35

40

50

| Example No. | R        | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|----------|--------------|-----------------------------|
| 27-1        | HN NH-   | 52           | 502 (M+H) <sup>+</sup>      |
| 27-2        | N → NH → | 12           | 488 (M+H) <sup>+</sup>      |
| 27-3        | Me NH NH | 35           | 505 (M+H) <sup>+</sup>      |
| 27-4        | NH NH    | 65           | 482 (M+H) <sup>+</sup>      |
| 27-5        | NH—      | 67           | 482 (M+H) <sup>+</sup>      |

### 45 Example 28

[0285] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl) oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 28-1 to 28-4 were synthesized.

Example 28-1: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidine-carboxamide

Example 28-2: t-butyl 3-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]-propylcarbamate

Example 28-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 28-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarbox-amide

[0286] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 63]

R O MeO OMe

| Example No. | R       | yield<br>(%) | MASS spectrum (APCIMS, m/z)                                                                                                                                                                                                                                                                                     |
|-------------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28-1        | HN NH   | 30           | <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )<br>518(M+H) <sup>+</sup>                                                                                                                                                                                                                                          |
| 28-2        | Me Me O | 68           | 564 (M+H) + 1.43 (9H, s), 1.63 (2H, quintet, J=6.2 Hz), 3.07 (2H, q, J=6.6 Hz), 3.22 (2H, t, J=8.4 Hz), 3.43 (2H, q, J=6.2 Hz), 3.74 (3H, s), 3.85 (3H, s), 4.32 (2H, t, J=8.4 Hz), 5.00-5.15 (1H, m), 5.62 (2H, s), 6.83-7.08 (4H, m), 7.20-7.25 (1H, m), 7.40-7.70 (1H, br), 8.30-8.43 (1H, br). 9.09 (1H, s) |
| 28-3        | Me N NH | 80           | 513 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                          |
| 28-4        | NH      | 50           | 498 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                          |

## Example 29

[0287] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 29-1 to 29-6 were synthesized. Example 29-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxa-

Example 29-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxa-

mide

25

30

35

40

45

50

55

Example 29-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 29-4: N-(1H-benzimidazol-2-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-5-pyrimidinecarboxamide

Example 29-5: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecar-boxamide

Example 29-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

10 [0288] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 64]

 $\begin{array}{c} R \downarrow 0 \\ N \downarrow N \end{array}$ 

Example R yield MASS spectrum (%) (APCIMS, m/z)

29-1 NH 51 496 (M+H) +

61 496 (M+H) + 29-2 65 496 (M+H) + 29-3 22 535 (M+H) + 29 - 429-5 47 516 (M+H) + 29-6 55 511 (M+H) + HH.

#### Example 30

[0289] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-5-py-

rimidinecarboxylate as a starting material, compounds of Examples 30-1 to 30-6 were synthesized.

Example 30-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide Example 30-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide Example 30-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide Example 30-4: N-(1H-benzimidazol-2-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-5-pyrimidinecarboxamide

Example 30-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide Example 30-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

[0290] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 65]

15

25

20

10

30

35

40

45

50

55

Example 31

| Example No. | R                                        | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|------------------------------------------|--------------|-----------------------------|
| 30-1        | N NH                                     | 93           | 482 (M+H) *                 |
| 30-2        | NH-                                      | 90           | 482 (M+H) <sup>+</sup>      |
| 30-3        | NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-NH-N | 83           | 482 (M+H) <sup>+</sup>      |
| 30-4        | N NH                                     | 24           | 521 (M+H) <sup>+</sup>      |
| 30-5        | HN NH                                    | 70           | 502 (M+H) +                 |
| 30-6        | Me N NH                                  | 65           | 497 (M+H) <sup>+</sup>      |

[0291] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxyben-zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 31-1 to 31-8 were synthesized. Example 31-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(4-pyridinylmethyl)-5-pyrimidine-

carboxamide

15

20

25

30

Example 31-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 31-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 31-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidine-carboxamide

Example 31-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 31-7: N-cycloheptyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide

Example 31-8: N-(2-amino-2-oxoethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-5-pyrimidine-carboxamide

[0292] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 66]

R O OMe

Example R yield MASS spectrum No. (8) (APCIMS, m/z)35 31-1 75 486 (M+H) + NH 31 - 279 486 (M+H) + 40 31-3 73 486 (M+H) + 45

50

| 31-4 | N NH     | 80 | 525 (M+H) <sup>+</sup> |
|------|----------|----|------------------------|
| 31-5 | HN NH    | 93 | 506 (M+H) <sup>+</sup> |
| 31-6 | Me N NH  | 77 | 501 (M+H) *            |
| 31-7 | NH→      | 42 | 491 (M+H) *            |
| 31-8 | H₂N NH—➤ | 48 | 452 (M+H) <sup>+</sup> |

Example 32

5

10

15

20

25

30

35

45

50

55

[0293] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylben-zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 32-1 to 32-5 were synthesized.

Example 32-1: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-N-(4-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 32-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 32-3: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 32-4: N-(1H-benzimidazol-2-ylmethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-5-pyrimidinecarboxamide

[0294] Example 32-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

40 [0295] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 67]

Example

No.

32-1

32 - 2

32-3

32 - 4

5

10

R O OMe Me N N N

15

20

25

30

35

45

55

32-5

R yield MASS spectrum
(%) (APCIMS, m/z)

NH 35 482 (M+H) +

61 482 (M+H) +

47

56

45

482 (M+H) +

497 (M+H) +

502 (M+H) +

### 40 Example 33

[0296] In the same manner as in Example 1-1 using ethyl 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 33-1 to 33-6 were synthesized.

Example 33-1: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(4-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 33-2: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 33-3: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 33-4: N-(1H-benzimidazol-2-ylmethyl)-4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

Example 33-5: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidine-carboxamide

Example 33-6: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

[0297] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 68]

Example

No.

33-1

33-2

33-3

33 - 4

33-5

33-6

R O OMe
CI

NH-

'NH

yield

(육)

22

54

58

43

53

76

MASS spectrum

(APCIMS, m/z)

502 (M+H) +

502 (M+H) +

502 (M+H) +

656 (M+H) +

522 (M+H) +

516 (M+H) +

15

5

10

20

25

*30* 

35

40

55

### Example 34

[0298] In the same manner as in Example 1-1 using ethyl 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1+indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 34-1 to 34-7 were synthesized. Example 34-1: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 34-2: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

50 Example 34-3: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 34-4: N-(1H-benzimidazole-2-ylmethyl)-4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

Example 34-5: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 34-6: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 34-7: N-(2-amino-2-oxoethyl)-4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-py-

## rimidinecarboxamide

[0299] Respective structural formulas and NMR data are shown in the following Table.

# [Table 69]

R O O O

| Example<br>No. | . R   | yield<br>(%) | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                                                                                 |
|----------------|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34-1           | NH NH |              | 3.10-3.30 (4H, m), 4.34<br>(2H, t, J=8.0 Hz), 4.52-<br>4.65 (4H, m), 5.43 (2H,<br>s), 6.75 (1H, d, J=7.6<br>Hz), 6.90-7.30 (7H, m),<br>7.70-7.80 (1H, br), 8.22-<br>8.50 (3H, m), 9.15 (1H, s) |

| 5           | 34-2 | NH-     | 40 | 3.10-3.28 (4H, m), 4.34<br>(2H, t, J=8.2 Hz), 4.54-<br>4.66 (4H, m), 5.46 (2H,<br>s), 6.73 (1H, d, J=8.0<br>Hz), 6.95-7.25 (6H, m),<br>7.49 (1H, d, J=8.2 Hz),<br>7.73 (1H, t, J=7.0 Hz),<br>8.30-8.52 (3H, m), 9.15<br>(1H, s) |
|-------------|------|---------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15          | 34-3 | NH NH   | 66 | 3.09-3.28 (4H, m), 4.34<br>(2H, t, J=8.4 Hz), 4.58<br>(2H, t, J=8.4 Hz), 4.72<br>(2H, d, J=4.8 Hz), 5.57<br>(2H, s), 6.75 (1H, d,<br>J=8.0 Hz), 7.00 (1H, t,<br>J=7.8 Hz), 7.10-7.36 (6H,                                       |
| <b>20</b> . |      |         |    | m), 7.62 (1H, dt, J=1.8,<br>7.6 Hz), 8.30-8.50 (3H,<br>m), 9.17 (1H, s)                                                                                                                                                         |
| 25          | 34-4 | H H     | 56 | 3.03 (2H, t, J=8.4 Hz),<br>3.23 (2H, t, J=8.4 Hz),<br>4.33 (2H, t, J=8.8 Hz),<br>4.52 (2H, t, J=8.4 Hz),<br>4.80 (2H, d, J=5.4 Hz),                                                                                             |
| 30          |      |         |    | 5.55 (2H, s), 6.67 (1H, d,<br>J=5.4 Hz), 7.01 (1H, t,<br>J=8.4 Hz), 7.18-7.31 (5H,<br>m), 7,50-7.60 (2H, m)                                                                                                                     |
| 35          | 34-5 | HN NH-  | 43 | 1.40-2.24 (6H, m), 3.14-<br>3.40 (6H, m), 4.32 (2H, t,<br>J=8.4 Hz), 4.57 (2H, t,<br>J=8.8 Hz), 4.68-4.80 (1H,<br>m), 5.65 (2H, s), 5.88-                                                                                       |
| 40          |      |         |    | 6.00 (1H, m), 6.77 (1H, d, J=7.6 Hz), 7.00 (1H, t, J=6.8 Hz), 7.18-7.43 (4H, m), 8.39 (1H, d, J=8.8 Hz), 8.79 (1H, d, J=9.0 Hz), 9.09 (1H, s)                                                                                   |
| 45          | 34-6 | Me N NH | 82 | 2.55 (3H, s), 3.10-3.29<br>(4H, m), 4.33 (2H, t,<br>J=8.8 Hz), 4.60 (2H, t,<br>J=8.4 Hz), 4.69 (2H, d,                                                                                                                          |
| 50          |      |         |    | J=4.8 Hz), 5.53 (2H, s),<br>6.76 (1H, d, J=8.4 Hz),<br>7.00 (1H, t, J=7.0 Hz),<br>7.18-7.30 (4H, m), 8.15<br>(1H, s), 8.20-8.44 (3H,                                                                                            |
| 55          |      |         |    | m), 9.15 (1H, s)                                                                                                                                                                                                                |

|    | 34-7 | H <sub>2</sub> N NH | 75 | 3.23 (4H, t, J=8.4 Hz),<br>4.08 (2H, d, J=5.4 Hz), |
|----|------|---------------------|----|----------------------------------------------------|
| 5  |      | 0                   |    | 4.32 (2H, t, J=8.0 Hz),                            |
|    |      |                     |    | 4.59 (2H, t, J=8.4 Hz),                            |
|    |      |                     |    | 5.58 (2H, s), 5.70-5.88                            |
|    | 1    |                     |    | (1H, br), 6.60-6.81 (2H,                           |
| 10 |      |                     |    | m), 7.00 (1H, t, J=7.6                             |
|    |      |                     |    | Hz), 7.20-7.40 (3H, m),                            |
|    |      |                     |    | 8.06 (1H, br t, J=6.8 Hz),                         |
|    |      |                     |    | 8.37 (1H, d, J=8.0 Hz),                            |
| 15 |      |                     |    | 9.07 (1H, s)                                       |

## Example 35

[0300] In the same manner as in Example 1-1 using ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 35-1 to 35-6 were synthesized. Example 35-1:t-butyl 2-({[4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino) acetate

Example 35-2: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanyl-methyl)-5-pyrimidinecarboxamide

25 Example 35-3: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 35-4: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 35-5: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 35-6: N-(1H-benzimidazole-2-ylmethyl)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

[0301] Respective structural formulas and MASS spectrum data are shown in the following Table.

35

30

40

45

50

[Table 70]

5

10

15

20

25

30

35

40

50

| Example No. | R       | yield(%) | MASS spectrum (APCIMS, m/z) |
|-------------|---------|----------|-----------------------------|
| 35-1        | Me Me O | 80       | 523 (M+H) *                 |
| 35-2        | O NH    | 53       | 593 (M+H) <sup>+</sup>      |
| 35-3        | HN NH   | 81       | 520 (M+H) <sup>+</sup>      |
| 35-4        | NH NH   | 68       | 500 (M+H) <sup>†</sup>      |
| 35-5        | NH -    | 65       | 500 (M+H) <sup>+</sup>      |
| 35-6        | N NH NH | 71       | 539 (M+H) <sup>+</sup>      |

#### Example 36

[0302] In the same manner as in Example 1-1 using ethyl 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyben-zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 36-1 to 36-5 were synthesized. Example 36-1: t-butyl 2-[({2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl}carbonyl) amino]-acetate

Example 36-2: (RS)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 36-3: (RS)-2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 36-4: 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 36-5: 2-(5-fluoro-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidine-carboxamide

[0303] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 71]

R O OME

| 15 |  |
|----|--|
| 20 |  |
| 25 |  |
| 30 |  |

5

10

| Example No. | R       | yield (%) | MASS spectrum (APCIMS, m/z) |
|-------------|---------|-----------|-----------------------------|
| 36-1        | Me Ne O | 93        | 509 (M+H) <sup>+</sup>      |
| 36-2        | ON NH-  | 60        | 479 (M+H) <sup>+</sup>      |
| 36-3        | HN NH   | 84        | 506 (M+H) <sup>+</sup>      |
| 36-4        | NH NH   | 74        | 486 (M+H) *                 |
| 36-5        | NH-     | 62        | 486 (M+H) <sup>†</sup>      |

## Example 37

40

35

[0304] In the same manner as in Example 1-1 using ethyl 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 37-1 to 37-6 were synthesized. Example 37-1: t-butyl 2-[({2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl)-amino]acetate

- Example 37-2: (RS)-2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-N-(tetrahydro-2-furan-ylmethyl)-5-pyrimidinecarboxamide
  - Example 37-3: (RS)-2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide
  - Example 37-4: 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide
  - Example 37-5: 2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide
  - Example 37-6: N-(1H-benzimidazole-2-ylmethyl)-2-(6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-5-yl)-4-[(4-methoxyben-zyl)oxy]-5-pyrimidinecarboxamide
- 55 [0305] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 72]

R O OME

| 7 | Example<br>No. | R                     | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|---|----------------|-----------------------|--------------|-----------------------------|
|   | 37-1           | Me → O → NH → Me Me O | 83           | 535 (M+H) <sup>+</sup>      |
|   | 37-2           | O NH                  | 66           | 505 (M+H) <sup>+</sup>      |

25

30

35

40

55

5

10

15

20

| 37-3 | HN NH  | 71 | 532 (M+H) <sup>+</sup> |
|------|--------|----|------------------------|
| 37-4 | N NH   | 66 | 512 (M+H) <sup>+</sup> |
| 37-5 | NH-    | 84 | 512 (M+H) *<br>        |
| 37-6 | N NH - | 81 | 551 (M+H) <sup>+</sup> |

## Example 38

- ⊏xampie . 45

[0306] In the same manner as in Example 1-1 using ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyben-zyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 38-1 to 38-6 were synthesized. Example 38-1: t-butyl 2-[({2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinyl)carbonyl) amino]-acetate

Example 38-2: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 38-3: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 38-4: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-[2-(dimethylamino)ethyl]-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxamide

Example 38-5: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidine-carboxamide

Example 38-6: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(3-pyridinylmethyl)-5-pyrimidine-

## carboxamide

5

10

15

20

25

30

35

40

45

50

55

[0307] Respective structural formulas and MASS spectrum data are shown in the following Table.

## [Table 73]

| Example | R                    | yield | MASS spectrum          |
|---------|----------------------|-------|------------------------|
| No.     |                      | (용)   | (APCIMS, m/z)          |
| 38-1    | Me O NH              | 79    | 570 (M+H) <sup>†</sup> |
| 38-2    | ONH-                 | 80    | 540 (M+H) +            |
| 38-3    | HN NH                | 55    | 567 (M+H) *            |
| 38-4    | Me <sub>2</sub> N NH | 86    | 527 (M+H) <sup>+</sup> |
| 38-5    | NH-                  | 89    | 547 (M+H) <sup>+</sup> |
| 38-6    | NH                   | 54    | 547 (M+H) <sup>+</sup> |

#### Example 39

[0308] In the same manner as in Example 1-1 using ethyl 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxy-benzyl)oxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 39-1 to 39-4 were synthesized. Example 39-1: (RS)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 39-2: t-butyl 3-[({2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-5-pyrimidinyl}carbon-yl)amino]-propylcarbamate

Example 39-3: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 39-4: 2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-4-[(2,5-dimethoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0309] Respective structural formulas and MASS spectrum data are shown in the following Table.

yield

(%)

74

35

55

68

MASS spectrum

(APCIMS, m/z)

597 (M+H) +

643 (M+H) +

592 (M+H) +

577 (M+H) +

[Table 74]

Example

No.

39-1

39 - 2

39-3

39 - 4

R O MeO O O Me

NH-

R

Me Me O

15

5

10

20

25

30

35

## Example 40

[0310] In the same manner as in Example 1-1 using ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 40-1 to 40-4 were synthesized. Example 40-1: t-butyl 2-({[4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate

Example 40-2: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanyl-methyl)-5-pyrimidinecarboxamide

Example 40-3: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 40-4: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-bromo-2,3-dihydro-1H-indol-1-yl)-N-[2-(dimethylamino)ethyl]-5-pyrimidinecarboxamide

[0311] Respective structural formulas and MASS spectrum data are shown in the following Table.

50

[Table 75]

Example

No. 40-1

40 - 2

40 - 3

40 - 4

5

yield

(왕)

90

51

75

95

MASS spectrum (APCIMS, m/z)

584 (M+H) \*

554 (M+H) +

581 (M+H) +

541 (M+H) +

R

NH-

NH---

NH-

Me.

Me Me O

Me,N-

15

10

20

25

30

35

40

### Example 41

[0312] In the same manner as in Example 1-1 using ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 41-1 to 41-4 were synthesized.

Example 41-1: t-butyl 2-({[4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl] carbonyl}amino) acetate

Example 41-2: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furan-ylmethyl)-5-pyrimidinecarboxamide

Example 41-3: (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 41-4: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridylmethyl)-5-pyrimidinecarboxamide

50 [0313] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 76]

50 Example 42

41-3

41 - 4

|   | Example | R                                     | yield | MASS spectrum (APCIMS,                         |
|---|---------|---------------------------------------|-------|------------------------------------------------|
|   | No.     |                                       | (%)   | m/z)                                           |
|   |         |                                       |       | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> ) |
|   | 41-1    | Me 0                                  | 74    | 535 (M+H) *                                    |
|   |         | Me Me O                               |       | 1.47 (9H, s), 3.20 (2H,                        |
|   |         | ME U                                  |       | t, J=8.4 Hz), 3.81 (3H,                        |
|   |         |                                       |       | s), 4.08 (2H, d, J=4.8                         |
|   |         |                                       |       | Hz), 4.31 (2H, t, J=8.0                        |
|   |         |                                       |       | Hz), 5.55 (2H, s), 5.98                        |
|   |         |                                       |       | (2H, s), 6.85-6.94 (3H,                        |
| į |         |                                       |       | m), 6.96-7.07 (2H, m),                         |
| i |         |                                       |       | 7.91 (1H, t, J=7.0 Hz),                        |
|   |         |                                       |       | 8.00-8.40 (1H, br), 9.09                       |
|   |         |                                       |       | (1H, s)                                        |
|   | 41-2    | \mathcal{M}                           | 51    | 505 (M+H) <sup>+</sup>                         |
|   |         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |       |                                                |
|   |         | •                                     |       | •                                              |

[0314] In the same manner as in Example 1-1 using ethyl 4-[(4-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, t-butyl 2-({[4-[(4-methoxybenzyl)oxy]-2-(5-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)acetate was synthesized.

532 (M+H) +

512 (M+H) +

Yield 90%, MASS spectrum (APCIMS, m/z): 520

## 20 Example 43

5

10

15

25

[0315] In the same manner as in Example 1-1 using ethyl 4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 43-1 to 43-4 were synthesized. Example 43-1: (RS)-4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 43-2: t-butyl 3-({[4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl]amino)propylcarbamate

Example 43-3: 4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 43-4: 4-[(2,5-dimethoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridylmethyl)-5-pyrimidinecarboxamide

[0316] Respective structural formulas and MASS spectrum data are shown in the following Table.

35

40

45

50

[Table 77]

R OMeO OM

15

5

10

Example R yield MASS spectrum No. (육) (APCIMS, m/z)43-1 35 548 (M+H) + 20 NH-43-2 594 (M+H) + 82 25 Me Me 0 43-3 75 543 (M+H) + 30 43-4 528 (M+H) + 62 NH-35

# Example 44

-

[0317] In the same manner as in Example 1-1 using ethyl 4-[(4-methoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 44-1 to 44-4 were synthesized. Example 44-1: (RS)-4-[(4-methoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 44-2: t-butyl 3-({[4-[(4-methoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl)carbonyl} amino)propylcarbamate

Example 44-3: 4-[(4-methoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 44-4: 4-[(4-methoxybenzyl)oxy]-2-(4-methoxy-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridylmethyl)-5-pyrimidine-carboxamide

[0318] Respective structural formulas and MASS spectrum data are shown in the following Table.

55

50

[Table 78]

Example

No.

44-1

44-2

44 - 3

44 - 4

5

10

yield

(8)

56

80

75

61

MASS spectrum (APCIMS, m/z)

518 (M+H) +

564 (M+H) +

513 (M+H) <sup>†</sup>

498 (M+H) +

R

H

NH-

Me' Me

15

| 20 |  |
|----|--|
|    |  |

25

30

35

45

55

40

Example 45 [0319] In the same manner as in Example 1-1 using ethyl 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1Hindol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 45-1 to 45-6 were synthesized. Example 45-1: (RS)-4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 45-2: t-butyl 3-({[4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)propylcarbamate

Example 45-3: 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

50 Example 45-4: 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 45-5: 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 45-6: N-(1H-benzimidazole-2-ylmethyl)-4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

[0320] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 79]

R O OMe
N N N

| Example | R | yield | MASS spectrum                                    |  |
|---------|---|-------|--------------------------------------------------|--|
| No.     |   | (웅)   | (APCIMS, m/z)                                    |  |
|         |   |       | $^{1}$ H-NMR ( $\delta$ ppm, CDCl <sub>3</sub> ) |  |

| 45-1 | HN                           | 30 | 502 (M+H) *                                                                                                                                                                                                                                                             |
|------|------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45-2 | Me O NH NH NH NH NH NH NH NH | 62 | 548 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                  |
| 45-3 | Me N NH                      | 43 | 497 (M+H) <sup>†</sup> 2.33 (3H, s), 2.54 (3H, s), 3.18 (2H, t, J=8.8 Hz), 3.84 (3H, s), 4.31 (2H, t, J=8.4 Hz), 4.69 (2H, d, J=5.2 Hz), 5.54 (2H, s), 6.88 (2H, d, J=8.8 Hz), 7.00-7.08 (2H, m), 7.40 (2H, d, J=8.4 Hz), 8.13-8.32 (3H, m), 8.44 (1H, s), 9.13 (1H, s) |
| 45-4 | NH-                          | 62 | 482 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                  |
| 45-5 | NH-                          | 83 | 482 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                  |
| 45-6 | NH H                         | 57 | 521 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                  |

#### Example 46

10

15

20

25

30

35

40

45

50

[0321] In the same manner as in Example 1-1 using ethyl 4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 46-1 to 46-4 were synthesized.

5 Example 46-1: (RS)-4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-py-rimidinecarboxamide

Example 46-2: t-butyl 3-({[4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbon-yl}amino)propylcarbamate

Example 46-3: 4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide

Example 46-4: 4-[(2,5-dimethoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0322] Respective structural formulas and MASS spectrum data are shown in the following Table.

# [Table 80]

| <del></del> | T       | <b>v</b> |                        |
|-------------|---------|----------|------------------------|
| Example     | R       | yield    | MASS spectrum          |
| No.         |         | (왕)      | (APCIMS, m/z)          |
| 46-1        | HN NH - | 30       | 532 (M+H) <sup>†</sup> |
| 46-2        | Me Me O | 73       | 578 (M+H) *            |
| 46-3        | Me N NH | 77       | 527 (M+H) <sup>+</sup> |
| 46-4        | NH      | 83       | 512 (M+H) <sup>†</sup> |

# Example 47

[0323] In the same manner as in Example 1-1 using ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 47-1 to 47-3 were synthesized. Example 47-1: t-butyl (RS)-2-({[4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl]amino)acetate

#### EP 1 223 170 A1

Example 47-2: (rac)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 47-3: (rac)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

[0324] Respective structural formulas and MASS spectrum data are shown in the following Table.

# [Table 81]

10

15

20

25

30

35

| Example No. | R                        | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|--------------------------|--------------|-----------------------------|
| 47-1        | Me → 0 NH → NH → Me Me O | 80           | 505 (M+H) <sup>+</sup>      |
| 47-2        | ON NH                    | 82           | 475 (M+H) *                 |
| 47-3        | HN NH                    | 65           | 502 (M+H) <sup>+</sup>      |

# Example 48

40 [0325] In the same manner as in Example 1-1 using ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 48-1 to 48-3 were synthesized. Example 48-1: (RS)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 48-2: (RS)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 48-3: (RS)-N-(1H-benzimidazole-2-ylmethyl)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

[0326] Respective structural formulas and MASS spectrum data are shown in the following Table.

50

45

[Table 82]

5

15

20

25

30

35

40

45

50

55

10 Me

| Example No. | R    | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|-------------|------|--------------|-----------------------------|
| 48-1        | NH-  | 88           | 482 (M+H) <sup>+</sup>      |
| 48-2        | NH-  | 35           | 482 (M+H) *                 |
| 48-3        | N NH | 48           | 521 (M+H) <sup>+</sup>      |

# Example 49

[0327] In the same manner as in Example 1-1 using ethyl 4-[(4-methoxybenzyl)oxy]-2-(7-methyl-2,3-dihydro-1Hindol-1-yl)-5-pyrimidinecarboxylate as a starting material, 4-[(4-methoxybenzyl)oxy]-2-(7-methyl-2,3-dihydro-1H-indol-1-yl)-N-(3-pyridinylmethyl)-5-pyrimidinecarboxamide was synthesized.

Yield 25%, MASS spectrum (APCIMS, m/z): 482

# Example 50

[0328] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoromethoxy)benzyl]oxy)-5-pyrimidinecarboxylate as a starting material, 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-4-{[4-(trifluoromethoxy)-benzyl]oxy}-5-pyrimidinecarboxamide was synthesized.

15 Yield 48%, MASS spectrum (APCIMS, m/z): 522

# Example 51

5

10

[0329] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]5-pyrimidinecarboxylate as a starting material, compounds of Examples 51-1 to 51-6 were synthesized.
Example 51-1: N-(cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-5-pyrimidinecarboxamide
Example 51-2: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate
Example 51-3: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide

Example 51-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidine-carboxamide

Example 51-5: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-5-pyrimidinecarboxamide

Example 51-6: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)amino]-5-pyrimidinyl}carbonyl)amino]ace-

30 [0330] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

35

40

45

50

[Table 83]

| 4 | ı. | 5 |  |
|---|----|---|--|
|   |    |   |  |

| Example<br>No. | R                     | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                                  |
|----------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51-1           | NC NH→                | 35           | 403 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                     |
| 51-2           | EtO <sub>2</sub> C NH | 32           | 450 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                     |
| 51-3           | O NH                  | 35           | 448 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                     |
| 51-4           | O NH                  | 25           | 489 (M+H) <sup>†</sup> 1.20-1.90 (5H, m), 2.07 (3H, t, J=7.6 Hz), 2.45 (2H, t, J=8.0 Hz), 3.13 (2H, t, J=8.8 Hz), 3.21- 3.50 (4H, m), 4.21 (2H, t, J=8.8 Hz), 4.71 (2H, d, J=5.4 Hz), 6.80-7.42 (6H, m), 7.70 (1H, br t, J=7.4 Hz), 8.24 (1H, dd, J=8.0 Hz), 8.60 (1H, s), 9.23 (1H, br s) |

|  | 51-5 | NH             | 34 | 454 (M+H) <sup>+</sup> |
|--|------|----------------|----|------------------------|
|  | 51-6 | Me O NH → NH → | 60 | 478 (M+H) <sup>+</sup> |

# Example 52

[0331] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino}-5-pyrimidinecarboxylate as a starting material, compounds of Examples 51-1 to 52-7 were synthesized.

EP 1 223 170 A1 Example 52-1: N-(cyanomethyl)-2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino}-5-pyrimidinecarboxamide Example 52-2: ethyl 2-{[(2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino)-5-pyrimidinyl)carbonyl]amino)ac-Example 52-3: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino)-N-(tetrahydro-2-furanylmethyl)-5-pyrimidinecarboxamide Example 52-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino)-N-[3-(2-oxo-1-pyrrolizinyl)propyl]-5-pyrimidinecarboxamide Example 52-5: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-{{4-(trifluoro)benzyl]amino}-5-pyrimidinecarboxamide Example 52-6: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-{[4-(trifluoro)benzyl]amino)-5-pyrimidinyl}carbonyl)amino] 10 Example 52-7: 2-(2,3-dihydro-1H-indol-1-yl)-N-(2-ethoxyethyl)-4-{[4-(trifluoro)benzyl]amino}-5-pyrimidinecarboxamide [0332] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table. 15 20 25

30

35

40

45

50

[Table 84]

R O H CF

55 Example 53

| Example<br>No. | R                     | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                                              |
|----------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52-1           | NC NH-                | 35           | 453 (M+H) *                                                                                                                                                                                                                                                                                            |
| 52-2           | EtO <sub>2</sub> C NH | 28           | 500 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                 |
| 52-3           | ON NH→                | 30           | 498 (M+H) *                                                                                                                                                                                                                                                                                            |
| 52-4           | O NH                  | 25           | 539 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                 |
| 52-5           | NH -                  | 45           | 504 (M+H) <sup>†</sup> 3.13 (2H, t, J=8.0 Hz), 4.17 (2H, t, J=8.4 Hz), 4.60 (2H, d, J=5.4 Hz), 4.82 (2H, d, J=5.4 Hz), 6.25 (1H, t, J=7.0 Hz), 6.91 (1H, t, J=7.2 Hz), 7.00-7.40 (4H, m), 7.50 (2H, d, J=8.8 Hz), 7.59 (2H, d, J=8.8 Hz), 8.00- 8.23 (1H, br), 8.35 (1H, s), 9.24 (1H, br t, J=7.0 Hz) |
| 52-6           | Me NH NH NH           | 15           | 528 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                 |
| 52-7           | Et0√NH→               | 16           | 486 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                 |

[0333] In the same manner as in Example 1-1 using ethyl 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 53-1 to 53-3 were synthesized.

#### EP 1 223 170 A1

Example 53-1: 4-[(1,3-benzodioxol-5-ylmethyl)amino]-N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide

Example 53-2: t-butyl 2-({[4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl) amino)acetate

Example 53-3: 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0334] Respective structural formulas and MASS spectrum data are shown in the following Table.

# [Table 85]

10

15

20

25

30

35

Example R yield MASS spectrum (APCIMS, m/z)No. (8) 53-1 71 480 (M+H) \* 53-2 39 504 (M+H) + Me Me 0 53-3 35 481 (M+H) \*

# Example 54

40 [0335] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 54-1 to 54-4 were synthesized. Example 54-1: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-5-pyrimidinyl)carbonyl)amino]ace-tate

Example 54-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-5-pyrimidinecarboxamide

Example 54-3: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-5-pyrimidinyl)carbonyl)amino]acetate

Example 54-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-phenylpropyl)amino]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide

[0336] Respective structural formulas and MASS spectrum data are shown in the following Table.

55

[Table 86]

Example

No.

54-1

54-2

54 - 3

54-4

5

yield

(왕)

78

69

55

20

460 (M+H) \*

464 (M+H) \*

488 (M+H) +

465 (M+H) +

MASS spectrum (APCIMS,

m/z)

R

Ö

`NH·

Et0,C

Me

Me

Me

10

15

20

25

30

35

40

Example 55

[0337] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 55-1 to 55-4 were synthesized.

Example 55-1: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-5-pyrimidinyl}carbonyl)amino] acetate

Example 55-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-5-pyrimidinecarboxamide Example 55-3: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

Example 55-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxyphenethyl)amino]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide

[0338] Respective structural formulas and MASS spectrum data are shown in the following Table.

50

[Table 87]

Example

No.

55-1

55-2

55-3

55-4

5

R O H
N O ME

yield

(8)

73

49

69

24

MASS spectrum

(APCIMS, m/z)

476 (M+H) +

 $480 (M+H)^{+}$ 

504 (M+H) \*

481 (M+H) +

R

NH—

NH-

NH-

EtO,C

Me

Me

10

15

20

25

30

Example 56

[0339] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-thienylmethyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 56-1 to 56-4 were synthesized.
Example 56-1: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-thienylmethyl)amino]-5-pyrimidinyl)carbonyl)amino]ace-total

Example 56-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-thienylmethyl)amino]-5-pyrimidinecarboxamide Example 56-3: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-thienylmethyl)amino]-5-pyrimidinyl)carbonyl)amino]acetate

Example 56-4: 2-(2,3-dihydro-1H-indol-1-yl)-N-(4-pyridinylmethyl)-4-[(2-thienylmethyl)amino]-5-pyrimidinecarboxamide

[0340] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

50

45

40

[Table 88]

Example

No.

56-1

56-2

56-3

56-4

Me.

Me Me O

R

Me Me

5

MASS spectrum (APCIMS,

m/z)
<sup>1</sup>H-NMR( $\delta$  ppm, CDCl<sub>3</sub>)

3.17 (2H, t, J=9.2 Hz),

4.28 (2H, t, J=8.8 Hz), 4.58 (2H, d, J=5.6 Hz), 4.93 (2H, d, J=5.4 Hz), 6.20 (1H, br t, J=7.0 Hz), 6.90-7.08 (3H, m),

7.10-7.40 (7H, m), 8.31-8.39 (2H, m), 9.00-9.10

yield

(왕)

41

45

49

38

'NH

NH-

438 (M+H) +

442 (M+H) +

(1H, br)

466 (M+H) +

443 (M+H) +

10

15

20

25

30

35

40

45

# Example 57

[0341] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-furylmethyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 57-1, 56-2 were synthesized. Example 57-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-furylmethyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

50 Example 57-2: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-furylmethyl)amino]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarbox-amide

[0342] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 89]

Example

No.

57-1

57-2

5

yield

(8)

50

32

MASS spectrum

(APCIMS, m/z)

450 (M+H) +

447 (M+H) +

R

0

NH

Me.

Me Me

10

| 15 |  |
|----|--|
|    |  |
|    |  |
|    |  |

20

25

# Example 58

[0343] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 58-1 to 58-6 were synthesized.

Example 58-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

Example 58-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-5-pyrimidinecarboxamide

Example 58-3: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate Example 58-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxam-

Example 58-5: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-N-(2-oxo-3-piperidinyl)-5-pyrimidinecar-boxamide

Example 58-6: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluorobenzyl)amino]-N-(2-oxo-3-azepanyl)-5-pyrimidinecar-boxamide

[0344] Respective structural formulas and MASS spectrum data are shown in the following Table.

45

35

40

50

[Table 90]

Example

No. 58-1

58-2

58-3

58-4

5

10

15

20

25

30

35

40

45

| $\mathbb{R} \downarrow 0$              | H            |            |    |
|----------------------------------------|--------------|------------|----|
| N N                                    | /n\ <u> </u> | <b>/ \</b> | `F |
| /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |              |            |    |
|                                        |              |            |    |

yield

(용)

70

32

25

18

MASS spectrum

(APCIMS, m/z)

478 (M+H) +

454 (M+H) +

450 (M+H) +

455 (M+H) +

R

0

NH--

NH-

EtO,C

Me Me Me

| 58-5 | H 0<br>N → 0 | 26 | 461 (M+H) <sup>+</sup> | 17 |
|------|--------------|----|------------------------|----|
| 58-6 |              | 5  | 475 (M+H) <sup>+</sup> |    |
| 30 0 | HN HNH——     | 3  | 473 (1111)             |    |

Example 59

[0345] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 59-1 to 59-6 were synthesized.

- 50 Example 59-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-5-pyrimidinyl}carbonyl)amino]ac-
  - Example 59-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-5-pyrimidinecarboxamide Example 59-3: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino] -5-pyrimidinyl}carbonyl)amino]ac-
- 55 Example 59-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-N-(4-pyridinylmethyl)-5-pyrimidinecarboxa-

Example 59-5: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

Example 59-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

[0346] Respective structural formulas and MASS spectrum data are shown in the following Table.

# [Table 91]

5

20

25

30

35

40

50

55

|         | <u> </u>              |       |                        |
|---------|-----------------------|-------|------------------------|
| Example | R                     | yield | MASS spectrum          |
| No.     |                       | (웅)   | (APCIMS, m/z)          |
| 59-1    | Me NH NH              | 70    | 490 (M+H) *            |
| 59-2    | NH                    | 28    | 466 (M+H) +            |
| 59-3    | EtO <sub>2</sub> C NH | 62    | 462 (M+H) +            |
| 59-4    | N NH                  | 12    | 467 (M+H) <sup>†</sup> |
| 59-5    | HN NH                 | 25    | 487 (M+H) <sup>+</sup> |
| 59-6    | NH NH                 | 72    | 479 (M+H) <sup>+</sup> |

# 45 Example 60

[0347] In the same manner as in Example 1-1 using ethyl 4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, compounds of Examples 60-1 to 60-6 were synthesized.

Example 60-1: t-butyl 2-({[4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl}amino)-acetate

Example 60-2: N-benzyl-4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxamide Example 60-3: ethyl 2-({[4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinyl]carbonyl]amino)acetate

Example 60-4: 4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-N-(4-pyridinylmethyl)-5-pyrimidinecarboxamide

Example 60-5: (RS)-4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidine-carboxamide

Example 60-6: (RS)-4-[(2,6-difluorobenzyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-piperidinyl)-5-pyrimidine-

carboxamide

[0348] Respective structural formulas and MASS spectrum data are shown in the following Table.

# [Table 92]

Example

No.

60-1

60-2

60 - 3

60 - 4

60 - 5

60-6

10

5

yield

(왕)

53

18

52

13

25

10

MASS spectrum

(APCIMS, m/z)

496 (M+H) +

472 (M+H) +

468 (M+H) +

473 (M+H) +

493 (M+H) +

479 (M+H) +

R

Me

EtO,C

NH-

`NH-

15

20

25

30

35

40

45

#### Example 61

[0349] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methylbenzyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 61-1 to 61-4 were synthesized.

Example 61-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methylbenzyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

Example 61-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methylbenzyl)amino]-5-pyrimidinecarboxamide Example 61-3: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methylbenzyl)amino]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide

55 [0350] Respective structural formulas and MASS spectrum data are shown in the following Table.

[Table 93]

5

10

| 15 | Example No. | R         | yield<br>(%) | MASS spectrum (APCIMS, m/z) |
|----|-------------|-----------|--------------|-----------------------------|
|    | 61-1        | Me O NH > | 80           | 474 (M+H) <sup>†</sup>      |
| 20 | 61-2        | NH→       | 15           | 450 (M+H) <sup>+</sup>      |
| 25 | 61-3        | HN WH-    | 7            | 471 (M+H) <sup>+</sup>      |

30

# Example 62

[0351] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 62-1 to 62-4 were synthesized.

Example 62-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidinyl]carbonyl)amino]ac-35

Example 62-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidinecarboxamide Example 62-3: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidinyl]carbonyl)amino]ace-

Example 62-4: (RS)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-4-[(2-pyridinylmethyl)amino]-5-pyrimidine-40 carboxamide

[0352] Respective structural formulas and MASS spectrum data are shown in the following Table.

45

50

yield

(%)

48

45

32

5

MASS spectrum

(APCIMS, m/z)

461 (M+H) +

437 (M+H) +

433 (M+H) +

458 (M+H) +

[Table 94]

Example

No.

62-2

62-3

62-4

5

R O H N

R

Me Me O

EtO,C

NH

10

15

20

25

30

Example 63

35

[0353] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 63-1 to 63-4 were synthesized. Example 63-1: t-butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

Example 63-2: N-benzyl-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinecarboxamide Example 63-3: ethyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinyl}carbonyl)amino]acetate

Example 63-4: 2-(2,3-dihydro-1H-indol-1-yl)-N-(ethoxyethyl)-4-[(4-pyridinylmethyl)amino]-5-pyrimidinecarboxamide [0354] Respective structural formulas and MASS spectrum data are shown in the following Table.

50

45

[Table 95]

5

10

15

20

25

30

35

40

45

50

55

N N N

| Example | R                     | yield | MASS spectrum          |
|---------|-----------------------|-------|------------------------|
| No.     |                       | (왕)   | (APCIMS, m/z)          |
| 63-1    | Me Ne O               | 53    | 461 (M+H) <sup>+</sup> |
| 63-2    | NH                    | 62    | 437 (M+H) <sup>+</sup> |
| 63-3    | Et0 <sub>2</sub> C NH | 78    | 433 (M+H) *            |
| 63-4    | Et0√NH→               | 45    | 419 (M+H) <sup>+</sup> |

# Example 64

[0355] In the same manner as in Example 1-1 using ethyl (RS)-4-[(4-methoxybenzyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, (RS)-4-[(4-methoxybenzyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide was synthesized.

Yield 71%, MASS spectrum (APCIMS, m/z): 481

# Example 65

[0356] In the same manner as in Example 1-1 using ethyl (RS)-4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate as a starting material, (RS)-4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide was synthesized.

Yield 38%, MASS spectrum (APCIMS, m/z): 495

# Example 66-1

5

10

15

20

25

30

35

40

50

2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide

[0357] To a suspension of ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate (5.5 g, 13.6 mmol) in ethanol (50 mL) were added 10% aqueous sodium hydroxide solution (30 mL) and tetrahydrofuran (30 mL) and the mixture was heated under reflux for 30 min. The reaction mixture was allowed to cool to room temperature and 1N hydrochloric acid was added to adjust the reaction mixture to pH 5. The precipitated crystals were collected by filtration, washed several times with water, and dried with heating under vacuum to give 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylic acid (4.9 g, 96%) as crystals. A suspension of the obtained carboxylic acid (564 mg, 1.5 mmol), L-α-amino-ε-caprolactam (384 mg, 3.0 mmol), 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (612 mg, 3.0 mmol) and 1-hydroxybenzotriazole (408 mg, 3.0 mmol) in dichloromethane (2 mL) was stirred at room temperature for 18 h. Water and ethyl acetate were added to the reaction mixture and the organic layer was concentrated under reduced pressure. The obtained residue was subjected to silica gel chromatography and eluted with ethyl acetate to give the title compound (650 mg, 89%).

[0358] In the same manner as in Example 66-1, compounds of Examples 66-2 to 66-25 were synthesized from ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate, ethyl 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-5-pyrimidinecarboxylate, ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-5-pyrimidinecarboxylate, ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-5-pyrimidinecarboxylate, ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-5-pyrimidinecarboxylate, ethyl 4-[(3-chloro-4-methoxybenzyl) oxy]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methoxybenzyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methyl)oxyl-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methyl-2-(4-methyl-2-yl)-6-pyrimidinecarboxylate, ethyl 4-[(4-methyl-2-(4-methyl-2-yl)-6-pyrimidinecarb 5-pyrimidinecarboxylate, ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (RS)-4-[(4-methoxybenzyl)oxy]-2-(3-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, (R)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (R)-4-[(3-fluoro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (R)-4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (R)-4-[(2-fluoro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (R)-4-[(2-chloro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (S)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 4-[(1,3-benzodioxol-

4-[(2-chloro-4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl (S)-4-[(4-methoxybenzyl)oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate, ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-5-pyrimidinecarboxylate, ethyl (RS)-4-[(4-methoxybenzyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate and ethyl (RS)-4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-5-pyrimidinecarboxylate.

Example 66-2: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide

Example 66-3: 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide

Example 66-4: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-isopropoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecar-boxamide

Example 66-5: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-ethoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide

#### EP 1 223 170 A1

- Example 66-6: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidine-carboxamide
- Example 66-7: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxy-3-methylbenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
- 5 Example 66-8: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidine-carboxamide
  - Example 66-9: 4-(2,3-dihydro-1-benzofuran-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-py-rimidinecarboxamide
- Example 66-10: 4-[(4-methoxybenzyl)oxy]-2-(5-methyl-2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-11: 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-12: 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide
- 15 Example 66-13: 4-[(4-methoxybenzyl)oxy]-2-[(3RS)-3-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-14: 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-15: 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-py-rimidinecarboxamide

20

30

45

50

55

- Example 66-16: 2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide
- Example 66-17: 4-[(3-chloro-4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide
- 25 Example 66-18: 2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(2-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepa-nyl]-5-pyrimidinecarboxamide
  - Example 66-19: 4-[(2-chloro-4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-20: 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-21: 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - Example 66-22: 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino] -N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
- Example 66-23: 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)amino]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecar-boxamide
  - Example 66-24: 4-[(4-methoxybenzyl)amino]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
- Example 66-25: 4-[(1,3-benzodioxol-5-ylmethyl)amino]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(4-methoxy-0 benzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide
  - [0359] Respective structural formulas, MASS spectrum data and NMR data are shown in the following Table.

[Table 96]

N N N

| Example<br>No. | R     | х   | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> ) |
|----------------|-------|-----|--------------|---------------------------------------------------------------------------|
| 66-1           | HN NH | OMe | 43           | 488 (M+H) <sup>+</sup>                                                    |

| 5  | 66-2 | HN ,NH | CMe     | 29 | 488 (M+H) <sup>+</sup>                                                              |
|----|------|--------|---------|----|-------------------------------------------------------------------------------------|
| 10 | 66-3 | HN NH  | -0 0    | 90 | 502 (M+H) <sup>+</sup>                                                              |
| 10 | 66-4 | HN NH→ | OiPr    | 62 | 516 (M+H) <sup>+</sup>                                                              |
| 15 | 66-5 | HN NH→ | -0~~    | 96 | 502 (M+H) * 1.20-1.63 (5H, m), 1.70-2.24 (4H, m), 3.17-                             |
| 20 |      |        | ·       |    | 3.40 (4H, m),<br>4.02 (2H, q,<br>J=7.0 Hz), 4.31<br>(2H, t, J=8.0<br>Hz), 4.68-4.80 |
| 25 |      |        |         |    | (1H, m), 5.67<br>(2H, s), 5.91<br>(1H, br s),<br>6.82-7.03 (3H,                     |
| 30 |      |        |         |    | m), 7.17-7.30<br>(2H, m), 7.50<br>(2H, d, J=8.4<br>Hz), 8.36 (1H,                   |
| 35 |      |        |         |    | br s), 8.80 (1H,<br>br d, J=6.8 Hz),<br>9.08 (1H, s)                                |
| 40 | 66-6 | HN NH→ | OMe OMe | 70 | 506 (M+H) *                                                                         |
| 45 | 66-7 | HN NH  | OMe OMe | 50 | 502 (M+H) *                                                                         |
| 43 | 66-8 | HN     | OMe CI  | 34 | 522 (M+H) <sup>+</sup>                                                              |
| 50 | 66-9 | HN NH  | -0~~~~  | 63 | 500 (M+H) <sup>†</sup><br>1.15-2.23 (6H,<br>m), 3.14-3.32<br>(6H, m), 4.32          |
| 55 |      |        |         |    | (2H, t, J=8.4<br>Hz), 4.57 (2H,                                                     |

|    |   | <br>                                              | <del></del> , |                                         |
|----|---|---------------------------------------------------|---------------|-----------------------------------------|
|    |   |                                                   |               | t, J=8.8 Hz),                           |
|    |   |                                                   |               | 4.70-4.80 (1H,                          |
| 5  |   |                                                   |               | m), 5.65 (2H,                           |
| _  |   |                                                   |               | s), 5.89 (1H, br                        |
|    |   |                                                   |               | t, $J=7.0 Hz$ ),                        |
|    | [ |                                                   |               | 6.77 (1H, d,                            |
| 40 |   |                                                   |               | J=8.0 Hz), 7.00                         |
| 10 |   |                                                   |               | (1H, t, J=6.2                           |
|    | ļ |                                                   |               | Hz), 7.20-7.38                          |
|    |   |                                                   |               | (2H, m), 7.43                           |
|    |   |                                                   |               | (1H, br s), 8.40                        |
| 15 |   |                                                   |               | (1H, br d, J=7.0                        |
|    |   |                                                   |               | Hz), 8.78 (1H,                          |
|    |   |                                                   |               | br d, J=7.0 Hz),                        |
|    |   |                                                   | ļ             | 9.09 (1H, s)                            |
| 20 | L | <br><u>, , , , , , , , , , , , , , , , , , , </u> |               | , , , , , , , , , , , , , , , , , , , , |

[Table 97]

R O N N N N

| Example<br>No. | R     | <b>x</b> | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> ) |
|----------------|-------|----------|--------------|---------------------------------------------------------------------------|
| 66-10          | HN NH | OMe OMe  | 61           | 502 (M+H) <sup>+</sup>                                                    |

[Table 98]

Example R X yield (%)

MASS spectrum
(APCIMS, m/z)

<sup>1</sup>H-NMR(δ ppm, CDCl<sub>3</sub>)

| 25 |  |
|----|--|
|    |  |

| 66-11 | O NH  | OMe | 50 | 502 (M+H) <sup>†</sup> 1.30-1.62 (5H, m), 1.70-2.24 (4H, m), 2.71 (1H, d, J=16.2 Hz), 3.20-3.50 (3H, m), 3.79 (3H, s), 4.78 (1H, dd, J=6.2, 9.8 Hz), 5.02 (1H, quintet, J=8.0 Hz), 5.65 (2H, s), 6.24 (1H, br t, J=7.0 Hz), 6.82-7.03 (3H, m), 7.18-7.30 (2H, m), 7.50 (2H, d, J=8.8 Hz), 8.31 (1H, d, J=8.8 Hz), 8.77 (1H, d, J=4.8 Hz), 9.07 (1H, s) |
|-------|-------|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66-12 | HN NH | OMe | 92 | 502 (M+H) *                                                                                                                                                                                                                                                                                                                                            |

EP 1 223 170 A1

[Table 99]

X N N N

| 15 | Example<br>No. | R     | х   | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm, CDCl <sub>3</sub> ) |
|----|----------------|-------|-----|--------------|---------------------------------------------------------------------------|
| 20 | 66-13          | HN NH | OMe | 40           | 502 (M+H) <sup>+</sup>                                                    |

[Table 100]

N N N

| Example     | R                      | х           | yield   | MASS spectrum             |
|-------------|------------------------|-------------|---------|---------------------------|
| No.         |                        |             | (%)     | (APCIMS, m/z)             |
|             |                        |             | \ \ \ \ | <sup>1</sup> H-NMR(δ ppm, |
|             | }                      |             |         | CDCl <sub>3</sub> )       |
| 66-14       | Q -                    |             | 75      | 502 (M+H) *               |
| 00-14       | l l NH <del>&gt;</del> | <b>←</b> 0  | , ,     |                           |
|             | HN Y                   | OMe         |         | 1.30-1.60 (5H, m),        |
|             |                        |             |         | 1.70-2.24 (4H, m),        |
|             |                        |             |         | 2.71 (1H, d,              |
| ,           |                        | ·           |         | J=15.8 Hz), 3.22-         |
| }           |                        |             |         | 3.50 (3H, m), 3.80        |
|             |                        |             |         | (3H, s), 4.74 (1H,        |
|             |                        |             |         | dd, J=6.4, 10.0           |
|             |                        |             |         | Hz), 5.03 (1H,            |
| Ì           |                        |             |         | quintet, J=8.0            |
|             |                        |             |         | Hz), 5.66 (2H, s),        |
|             |                        |             |         | 5.90-6.02 (1H br),        |
| -           |                        |             |         | 6.84-7.04 (3H, m),        |
|             |                        |             |         | 7.20-7.30 (2H, m),        |
|             |                        |             |         | 7.50 (2H, d, J=8.4        |
|             |                        | ,           |         | Hz), 8.32 (1H, d,         |
|             |                        |             |         | J=7.6 Hz), 8.77           |
|             |                        |             |         | (1H, d, J=6.6 Hz),        |
|             |                        |             |         | 9.08 (1H, s)              |
| 66-15       | L <sub>.</sub> NH →    | -0~         | 55      | 502 (M+H) *               |
|             | HN ~                   | OMe         |         | 1.30-1.70 (5H, m),        |
| 1           |                        | -,          |         | 1.73-2.23 (4H, m),        |
|             |                        |             |         | 2.71 (1H, d,              |
|             |                        |             |         | J=16.8 Hz), 3.22-         |
|             |                        |             |         | 3.50 (3H, m), 3.80        |
| 1           |                        |             |         | (3H, s), 4.75 (1H,        |
|             |                        |             |         | dd, J=5.8, 9.4            |
|             |                        |             |         | Hz), 4.90-5.08            |
|             |                        |             |         | (1H, m), 5.65 (2H,        |
|             |                        |             |         | s), 5.95 (1H, br          |
| 1           |                        |             |         | t, J=7.0 Hz),             |
|             |                        |             |         | 6.88-7.05 (3H, m),        |
| [           |                        |             |         | 7.18-7.30 (2H, m),        |
|             |                        |             |         | 7.50 (2H, d, J=8.6        |
|             |                        |             |         | Hz), 8.32 (1H, d,         |
|             |                        |             |         | J=7.6 Hz), 8.77           |
| ]           |                        |             |         | (1H, d, J=5.6 Hz),        |
|             |                        | 1           |         | 9.07 (1H, s)              |
| <del></del> |                        | <del></del> |         |                           |

| •  | CC 16 | 0        |        | 77       | 1.34 (3H, d, J=6.6                    |
|----|-------|----------|--------|----------|---------------------------------------|
|    | 66-16 |          | -0     | 1 ''     |                                       |
|    |       | HN       | OMe    |          | H <sub>2</sub> ), 1.40-1.70           |
| 5  |       |          | 1      |          | (3H, m), 1.80-2.28                    |
|    |       | }        |        | -        | (4H, m), 2.72 (1H,                    |
|    |       |          |        | 1        | d, J=16.0 Hz),                        |
|    |       |          |        |          | 3.22-3.50 (3H, m),                    |
|    |       |          |        |          | 3.80 (3H, s), 4.75                    |
| 10 |       |          |        | ļ        |                                       |
| 70 | •     |          |        | ĺ        | (1H, dd, J=6.0,                       |
|    |       |          |        | İ        | 11.4 Hz), 5.02                        |
|    |       |          |        |          | (1H, quintet,                         |
| -  |       |          |        |          | J=7.0 Hz), 5.63                       |
|    | ľ     | ļ        |        | ł        | (2H, s), 5.91 (1H,                    |
| 15 |       |          |        |          | t, J=6.0 H2),                         |
|    |       |          |        |          | 6.90-7.08 (2H, m),                    |
|    |       |          |        |          | 7.19-7.37 (4H, m),                    |
|    | 1     | ļ        |        | 1        | 8.28 (1H, d, J=7.0                    |
|    |       |          |        |          |                                       |
| 20 | }     |          |        |          | Hz), 8.76 (1H, d,                     |
|    |       | ·        |        |          | J=5.0 Hz), 9.08                       |
|    |       |          |        | <u> </u> | (1H, s)                               |
|    | 66-17 | <b>Q</b> | → 0 CI | 79       | 1.35 (3H, d, J=6.2                    |
|    | ]     | HN V NH  |        | 1        | Hz), 1.40-1.70                        |
| 25 | İ     |          | OMe    | 1        | (3H, m), 1.80-2.27                    |
|    |       |          |        |          | (4H, m), 2.72 (1H,                    |
|    |       |          |        |          | d, J=14.6 Hz),                        |
|    |       |          |        |          | 3.25-3.50 (3H, m),                    |
|    |       |          |        |          | 1                                     |
| 30 |       |          |        |          | 3.89 (3H, s), 4.75                    |
|    |       |          |        |          | (1H, dd, J=6.0,                       |
|    |       |          |        |          | 10.0 Hz), 5.00                        |
|    |       |          |        |          | (lH, quintet,                         |
|    |       |          |        | Į        | J=7.0 Hz), 5.62                       |
| 35 |       |          |        |          | (2H, s), 5.91 (1H,                    |
|    |       |          |        |          | t, J=6.0 Hz),                         |
|    |       |          |        |          | 6.90-7.07 (2H, m),                    |
|    |       |          |        |          | 7.19-7.29 (3H, m),                    |
|    | t.    |          |        |          | 1                                     |
| 40 |       |          |        |          | 7.45 (1H, dd,                         |
|    |       |          |        |          | J=2.2, 8.4 Hz),                       |
|    |       |          |        |          | 7.58 (1H, d, J=2.2                    |
|    |       |          |        |          | Hz), 8.27 (1H, d,                     |
|    |       |          |        |          | J=6.6 Hz), 8.75                       |
| 45 |       |          |        |          | (1H, d, J=5.8 Hz),                    |
| .0 | ,     |          |        |          | 9.08 (1H, s)                          |
|    | 66-18 | 0        | -^^    | 80       | 1.30-2.23 (10H,                       |
|    |       | HN NH    | -0 T ] |          | m), 2.71 (1H, d,                      |
|    |       |          | F OMe  |          | · · · · · · · · · · · · · · · · · · · |
| 50 |       |          | .      |          | J=15.8 Hz), 3.20-                     |
|    |       |          | İ      |          | 3.50 (3H, m), 3.80                    |
|    |       | •        |        |          | (3H, s), 4.75 (1H,                    |
|    |       |          | }      |          | dd, J=6.6, 11.2                       |
|    |       |          | i      |          | Hz), 4.96-5.13                        |
|    |       |          | Į      |          | (1H, m), 5.70 (2H,                    |
| 55 |       |          |        |          | ABq), 5.90 (1H, t,                    |
| ı  |       |          |        |          | <u></u>                               |

| •  |       |       |        |    |                                                                                                          |
|----|-------|-------|--------|----|----------------------------------------------------------------------------------------------------------|
| 5  |       |       |        |    | J=7.0 Hz), 6.63-<br>6.76 (2H, m), 7.01<br>(1H, t, J=7.4 Hz),<br>7.20-7.30 (2H, m),                       |
| 10 | ,     |       |        |    | 7.50 (1H, t, J=8.4<br>Hz), 8.32 (1H, d,<br>J=7.8 Hz), 8.70<br>(1H, d, J=6.2 Hz),<br>9.08 (1H, s)         |
| 15 | 66-19 | HN NH | CI OMe | 79 | 1.28-1.70 (6H, m),<br>1.71-2.26 (4H, m),<br>2.70 (1H, d,<br>J=16.6 Hz), 3.21-                            |
| 20 |       |       |        |    | 3.49 (3H, m), 3.80<br>(3H, s), 4.77 (1H, dd, J=6.4, 9.6<br>Hz), 4.95-5.10                                |
| 25 | ·     |       |        |    | (1H, m), 5.75 (2H, ABq), 5.86 (1H, t, J=7.0 Hz), 6.82 (1H, dd, J=2.6,                                    |
| 30 |       |       |        |    | 8.4 Hz), 6.94-7.04<br>(2H, m), 7.17-7.28<br>(2H, m), 7.49 (1H,<br>d, J=8.8 Hz), 8.24<br>(1H, br d, J=5.4 |
| 35 |       |       | ,      |    | Hz), 8.67 (1H, d,<br>J=5.4 Hz), 9.10<br>(1H, s)                                                          |

[Table 101]

| 15 | No.   | ĸ       | X   | yield<br>(%) | MASS spectrum (APCIMS, m/z) <sup>1</sup> H-NMR(δ ppm,  CDCl <sub>3</sub> )                          |
|----|-------|---------|-----|--------------|-----------------------------------------------------------------------------------------------------|
| 20 | 66-20 | HAZ HAZ | OMe | 54           | 1.30-1.70 (5H, m),<br>1.73-2.23 (4H, m),<br>2.71 (1H, d,<br>J=16.8 Hz), 3.22-<br>3.50 (3H, m), 3.80 |
| 25 |       | _       |     |              | (3H, s), 4.75 (1H,                                                                                  |

| •  |       |             |             |    | <del></del>                          |
|----|-------|-------------|-------------|----|--------------------------------------|
|    |       |             |             |    | dd, J=5.8, 9.4                       |
|    |       |             |             |    | Hz), 4.90-5.08                       |
| 5  |       | ]           |             |    | (1H, m), 5.65 (2H,                   |
|    | 1     |             |             |    | s), 5.95 (1H, br                     |
|    |       |             |             |    | t, J=7.0 Hz),                        |
|    |       |             |             |    | 6.88-7.05 (3H, m),                   |
| 10 | 1     |             |             |    | 7.18-7.30 (2H, m),                   |
|    |       |             |             |    | 7.50 (2H, d, J=8.6                   |
|    |       |             |             |    | Hz), 8.32 (1H, d,                    |
|    |       |             |             |    | J=7.6 Hz), 8.77                      |
| 15 |       |             |             |    | (1H, d, J=5.6 Hz),                   |
|    |       |             |             |    | 9.07 (1H, s)                         |
|    | 66-21 | ↓ ,NH>      | -0          | 55 | 1.30-1.60 (5H, m),                   |
|    |       | HN T        | OMe         |    | 1.70-2.24 (4H, m),                   |
| 20 |       |             |             |    | 2.71 (1H, d,                         |
|    |       |             |             |    | J=15.8 Hz), 3.22-                    |
|    |       |             |             |    | 3.50 (3H, m), 3.80                   |
|    |       |             |             |    | (3H, s), 4.74 (1H,                   |
| 25 |       |             |             |    | dd, J=6.4, 10.0                      |
|    |       |             |             |    | Hz), 5.03 (1H,                       |
|    |       |             |             |    | quintet, J=8.0                       |
|    |       |             |             |    | Hz), 5.66 (2H, s),                   |
| 30 |       |             |             |    | 5.90-6.02 (1H br),                   |
|    |       | j           |             |    | 6.84-7.04 (3H, m),                   |
|    |       |             |             |    | 7.20-7.30 (2H, m),                   |
|    |       |             |             |    | 7.50 (2H, d, J=8.4 Hz), 8.32 (1H, d, |
| 35 |       |             | }           |    | J=7.6 Hz), 8.77                      |
|    | i     |             |             |    | (1H, d, J=6.6 Hz),                   |
|    | ļ     |             |             |    | 9.08 (1H, s)                         |
|    |       | <del></del> | <del></del> |    | \                                    |

EP 1 223 170 A1

[Table 102]

X N N N

| Exa | mple | R     | Х     | yield | MASS spectrum               |
|-----|------|-------|-------|-------|-----------------------------|
| N   | lo.  |       |       | (୫)   | (APCIMS, m/z)               |
|     |      |       |       |       | $^{1}$ H-NMR( $\delta$ ppm, |
|     |      |       |       |       | CDCl <sub>3</sub> )         |
| 66  | -22  | HN NH | -NH O | 32    | 501 (M+H) <sup>+</sup>      |
|     |      |       |       |       |                             |

|     | 66-23 | HN NH | →NH → OMe | 98 | 487 (M+H) <sup>+</sup> |
|-----|-------|-------|-----------|----|------------------------|
| - { |       |       |           |    |                        |

[Table 103]

Example

No.

66-24

66-25

5

X

yield

(%)

92

32

OMe

MASS spectrum

(APCIMS, m/z)

 $^{1}H-NMR(\delta ppm, CDCl_{3})$ 

501 (M+H) +

515 (M+H) +

10

15

20

25

---

# 30 Example 67

2-(2,3-dihydro-1H-indol-1-yl)-4-hydroxy-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide

R

HN

[0360]

35

40

45

50

HN N N O OH

[0361] 2-(2,3-Dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide (98 mg, 0.2 mmol) was dissolved in trifluoroacetic acid (0.5 mL) and the mixture was stirred at room temperature for 15 min. Water was added to the reaction mixture, and the precipitated crystals were collected by filtration, washed several times with water and ether, and dried with heating under vacuum to give the title compound (70 mg, 91%). 

<sup>1</sup>H-NMR (δ ppm, CDCl<sub>3</sub>): 1.50-2.30 (4H, m), 3.20-3.40 (4H, m), 3.50-3.85 (2H, m), 4.32 (2H, t, J=8.0 Hz), 4.72-4.83 (1H, m), 6.63-6.74 (1H, m), 7.00-7.10 (1H, m), 7.17-7.28 (2H, m), 8.42 (1H, d, J=7.8 Hz), 8.83 (1H, s), 9.74 (1H, br s)

#### EP 1 223 170 A1

# Example 68-1

4-({[2-(2,3-dihydro-1H-indol-1-yl)-5-({[(3S)-2-oxoazepanyl]amino}carbonyl)-4-pyrimidinyl]oxy}methyl)-phenylacetate

[0362] To a solution of 2-(2,3-dihydro-1H-indol-1-yl)-4-hydroxy-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide (37 mg, 0.1 mmol) in N,N-dimethylformamide (1 mL) were added potassium carbonate (28 mg, 0.2 mmol), sodium iodide (14 mg, 0.1 mmol) and 4-chloromethylphenylacetate (0.023 mL, 0.15 mmol) and the mixture was stirred at 60°C for 2 h. Water was added to the reaction mixture, and the precipitated crystals were collected by filtration, washed several times with water and ether, and dried with heating under vacuum to give the title compound (34 mg, 72%).

[0363] In the same manner as in Example 68-1, a compound of Example 68-2 was synthesized. Example 68-2: 4-{[4-(acetylamino)benzyl]oxy}-2-(2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecar-boxamide

[0364] Respective structural formulas and NMR data are shown in the following Table.

[Table 104]

HN N N

|         |         | ,     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                 |
|---------|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example | . R     | yield | $^{1}H-NMR(\delta ppm, CDCl_{3})$                                                                                                                                                                                                                     |
| No.     |         | (%)   |                                                                                                                                                                                                                                                       |
| 68-1    | OAC OAC | 72    | 1.30-1.70 (6H, m), 1.70-2.35 (4H, m), 3.14-3.40 (3H, m), 4.29 (2H, t, J=9.2 Hz), 4.70-4.81 (1H, m), 5.71 (2H, s), 5.90 (1H, br t, J=7.6 Hz), 6.95-7.44 (5H, m), 7.60 (2H, d, J=8.4 Hz), 8.28-8.40 (1H, br), 8.70 (1H, d, J=6.2 Hz), 9.10 (1H, s)      |
| 68-2    | NHAC    | 62    | 1.30-1.70 (3H, m), 1.70- 2.38 (7H, m), 3.15-3.40 (3H, m), 4.30 (2H, t, J=8.0 Hz), 4.70-4.85 (1H, m), 5.68 (2H, s), 5.83- 6.00 (1H, m), 6.60-6.80 (1H, br), 6.85-7.32 (5H, m), 7.52 (2H, s), 8.20- 8.40 (1H, br), 8.78 (1H, d, J=7.0 Hz), 9.09 (1H, s) |

## Example 69-1

2-[((2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetic acid

#### [0365]

10

15

25

35

40

HO<sub>2</sub>C N O

[0366] t-Butyl 2-[({2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-fluorobenzyl)oxy]-5-pyrimidinyl)carbonyl)amino]acetate (210 mg, 0.4 mmol) was dissolved in trifluoroacetic acid -dichloromethane (4:1, 2 mL) and the mixture was stirred at room temperature for 15 min. The reaction mixture was concentrated under reduced pressure and the precipitated crystals were recrystallized from ethyl acetate to give the title compound (140 mg, 70%).

<sup>1</sup>H-NMR (δ ppm, DMSO-d<sub>6</sub>): 3.18 (3H, t, J=8.6 Hz), 3.99 (2H, d, J=5.4 Hz), 4.24 (3H, t, J=8.8 Hz), 5.68 (1H, s), 6.98 (1H, t, J=7.4 Hz), 7.14-7.30 (4H, m), 7.62 (2H, dd, J=5.6 Hz), 8.15-8.30 (2H, m), 8.55 (1H, s)

#### Example 70

2-(2,3-dihydro-1H-indol-1-yl)-N-[(S)-2-oxoazepanyl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxamide

## 30 Example 71

2-(2,3-dihydro-1H-indol-1-yl)-4-[(RS)-1-phenylethoxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

# Example 72

2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxamide

[0367] In the same manner as in Example 1-1 using ethyl 2-(2,3-dihydro-1H-indol-1-yl)-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 70 to 72 were synthesized.

[0368] Respective structural formulas and NMR data are shown in the following Table.

[Table 105]

45

55

R O O Me

10

|    | Example | R        | yield | <sup>1</sup> H-NMR (δ ppm, CDCl <sub>3</sub> )                                                                                           |
|----|---------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
|    | No.     |          | (%)   |                                                                                                                                          |
| 15 | 70      | HN NH->  | 53    | 1.32-2.19 (9H, m), 2.20-<br>2.38 (1H, m), 3.05-3.40<br>(4H, m), 4.00-4.30 (2H, m),<br>4.78 (1H, dd, J=5.8, 9.4                           |
| 20 |         |          |       | Hz), 6.19-6.31 (1H, m),<br>6.43 (1H, br t, J=6.8 Hz),<br>6.96 (1H, t, J=7.4 Hz),<br>7.10-7.53 (6H, m), 8.00-<br>8.40 (1H, br), 9.00-9.20 |
| 23 |         | <u> </u> |       | (2H, m)                                                                                                                                  |
|    | 71      | NH NH    | 61    | 1.87 (3H, d, J=6.6 Hz),<br>3.17 (2H, t, J=8.8 Hz),<br>4.00-4.32 (3H, m), 4.84                                                            |
| 30 |         |          |       | (2H, d, J=4.4 Hz), 6.46<br>(1H, q, J=6.2 Hz), 6.97<br>(1H, t, J=6.6 Hz), 7.12-                                                           |
| 35 |         |          | ,     | 7.40 (6H, m), 7.49 (2H, dd, J=1.8, 8.0 Hz), 7.70 (1H, dt, J=1.4, 7.6 Hz), 8.00-8.40 (1H, br), 8.56 (1H, d,                               |
| 40 |         |          |       | J=4.4 Hz), 9.02 (1H, s),<br>9.15 (1H, s)                                                                                                 |
|    | 72      | Me N NH  | 72    | 1.84 (3H, d, J=6.6 Hz),<br>2.58 (3H, s), 3.17 (2H, t,<br>J=8.8 Hz), 4.00-4.30 (3H,                                                       |
| 45 |         |          |       | m), 4.83 (2H, d, J=4.8 Hz),<br>6.45 (1H, q, J=6.6 Hz),<br>6.97 (1H, t, J=8.4 Hz),<br>7.13-7.50 (6H, m), 8.00-                            |
| 50 |         |          |       | 8.35 (1H, br), 8.38 (1H,<br>s), 8.55 (1H, s), 8.75 (1H,<br>t, J=5.0 Hz), 9.13 (1H, s)                                                    |

## Example 73

2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(S)-2-oxoazepanyl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxamide

## Example 74

2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(RS)-1-phenylethoxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide

## Example 75

2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(5-methyl-2-pyrazinyl)methyl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxamide

[0369] In the same manner as in Example 1-1 using ethyl 2-[(R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(RS)-1-phenylethoxy]-5-pyrimidinecarboxylate as a starting material, compounds of Examples 73 to 75 were synthesized.

[0370] Respective structural formulas and NMR data are shown in the following Table.

# [Table 106]

20

25

10

15

30

35

40

45

50

| Example No. | R     | yield (%) | $^{1}$ H-NMR( $\delta$ ppm, CDCl <sub>3</sub> )                                                                                                                                                                                                                       |
|-------------|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73          | HN NH | 36        | 1.20-2.15 (12H, m), 2.20-<br>2.37 (1H, m), 2.65 (1H, d,<br>J=15.4 Hz), 3.10-3.44 (3H,<br>m), 4.70-5.00 (2H, m), 6.30-<br>6.51 (1H, m), 6.52-6.70 (1H,<br>m), 6.98 (1H, t, J=7.2 Hz),<br>7.08-7.59 (7H, m), 8.00-8.33<br>(1H, m), 9.00-9.20 (1H, m)                    |
| 74          | N NH  | 46        | 1.30-1.50 (3H, m), 1.85 (3H, d, J=6.0 Hz), 2.66 (1H, d, J=15.8 Hz), 3.27-3.45 (1H, m), 4.70-5.05 (4H, m), 6.35-6.52 (1H, m), 6.98 (1H, t, J=6.8 Hz), 7.04-7.60 (8H, m), 7.69 (1H, t, J=7.6 Hz), 8.00-8.38 (1H, m), 8.55 (1H, d, J=4.0 Hz). 9.01 (1H, s), 9.14 (1H, s) |

|    | 75 | N NH | 37 | 1.20-1.40 (3H, m), 1.83 (3H,<br>t, J=6.2 Hz), 2.50-2.71 (4H, |
|----|----|------|----|--------------------------------------------------------------|
| 5  |    | Me N |    | m), 3.28-3.48 (1H, m), 4.70-                                 |
|    |    |      |    | 5.03 (3H, m), 6.32-6.50 (1H, m), 6.99 (1H, t, J=7.0 Hz),     |
|    |    |      |    | 7.01-7.50 (6H, m), 8.00-8.40                                 |
|    |    |      |    | (3H, m), 8.55 (1H, s), 8.73                                  |
| 10 |    | ·    |    | (1H, s), 9.13 (1H, s)                                        |

#### Formulation Example 1

#### 15 [0371]

20

25

30

35

40

45

50

55

| (1) Example compound 66-14 | 10 | mg |
|----------------------------|----|----|
| (2) lactose                | 60 | mg |
| (3) cornstarch             | 35 | mg |
| (4) gelatin                | 3  | mg |
| (5) magnesium stearate     | 2  | mg |

[0372] A mixture of Example compound 66-14 (10 mg), lactose (60 mg) and cornstarch (35 mg) was granulated using a 10% aqueous gelatin solution (0.03 ml, 3 mg of gelatin) by passing through a 1 mm mesh sieve, which granules were dried at 40°C and passed through the sieve again. The thus-obtained granules were mixed with magnesium stearate (2 mg) and compressed. The obtained core tablet was coated with a sugar coating containing an aqueous suspension of sucrose, titanium dioxide, talc and gum arabic. The coated tablets were polished with beeswax to give coated tablets.

## Example 2

[0373]

| (1) Example compound 66-14 | 10 | mg |
|----------------------------|----|----|
| (2) lactose                | 70 | mg |
| (3) cornstarch             | 50 | mg |
| (4) soluble starch         | 7  | mg |
| (5) magnesium stearate     | 3  | mg |

[0374] Example compound 66-14 (10 mg) and magnesium stearate (3 mg) were granulated using an aqueous soluble starch solution (0.07 ml, 7 mg of soluble starch), dried and mixed with lactose (70 mg) and cornstarch (50 mg). The mixture was compressed to give tablets.

#### Example 3

[0375]

| (1) Example compound 66-14 | 5 mg                        |
|----------------------------|-----------------------------|
| (2) common sait            | 20 mg                       |
| (3) distilled water        | to the total amount of 2 ml |

[0376] Example compound 66-14 (5 mg) and common salt (20 mg) were dissolved in distilled water. Water was added to make the total amount 2 ml. The solution was filtered and aseptically filled in 2 ml ampoules. The ampoules were sterilized and sealed to give a solution for injection.

#### **Experimental Example 1**

20

40

45

50

- (1) Cloning of gene encoding PDE V derived from human lung
- cDNA was cloned using a gene trapper positive selection system (Gibco BRL). The selected *Escherichia coli* was cultured and DNA was extracted, reacted using Thermo Sequenase Core Sequencing Kit (Amersham), and the nucleotide sequence of cDNA fragment was determined by SQ-3000 DNA sequencer (Hitachi). The obtained clone had a sequence consisting of 3036 bases containing a sequence consisting of 2499 bases depicted in SEQ ID No.:2. This cDNA fragment coded for novel PDE V consisting of 833 amino acids depicted in SEQ ID No.:1. The homology at the amino acid level with known bovine-derived PDE V (Linda M. McAllister et al., J. Biol. Chem. 268(30), 22863 (1993), NCBI GenBank Accession No. L16545) was 92%. A plasmid pPDE50 containing DNA encoding PDE V derived from human lung of the present invention was introduced into *Escherichia coli* (Escherichia coli) DH10B to give a transformant: *Escherichia coli* (Escherichia coli) DH10B/pPDE50.
- 15 (2) Construction of Escherichia coli expression vector

[0378] The cDNA encoding PDE V derived from human lung obtained in the above-mentioned (1) was cleaved with EcoRl and Xhol, and ligated with pGEX4T-2 (Pharmacia Biotech) treated in the same manner. Using a ligation solution, Escherichia coli BL21 (Funakoshi) was transformed to give Escherichia coli (Escherichia coli) BL21/pPDE51 that expresses PDE V derived from human lung of the present invention.

[0379] This transformant: Escherichia coli BL21/pPDE51 has been deposited at the National Institute of Bioscience and Human-Technology (NIBH) since July 13, 1998 under deposit No. FERM BP-6417 and at the Institute for Fermentation, Osaka under deposit No. IFO 16185 since June 18, 1998.

- 25 (3) Expression and purification of recombinant type PDE V derived from human lung in Escherichia coli
  - [0380] Using Escherichia coli BL21/pPDE51 obtained in the above-mentioned (2), recombinant type PDE V derived from human lung of the present invention was obtained. The expression and purification by Escherichia coli were done in accordance with the protocol attached to GST Gene Fusion System (Pharmacia Biotech). As a result, 12.5 mg of the objective ca. 100 kDa recombinant type PDE V derived from human lung was obtained from 1 L of Escherichia coli culture.
  - (4) Detection of PDE activity of PDE V derived from human lung
- <sup>35</sup> [0381] The PDE activity of PDE V derived from human lung was detected using Phosphodiesterase [<sup>3</sup>H]cGMP SPA enzyme assay kit (Amersham). As a result, PDE activity was acknowledged in the enzyme solution obtained in the above-mentioned (2). BL21 was transformed with pGEX4T-2 and used as a control. This did not show PDE activity.
  - (5) Designing inhibitor search system

[0382] Into a 96 well plate (OPTI plate, Packard) was added a buffer [10  $\mu$ I, 0.5M Tris-HCI (pH 7.5), 83 mM MgCl<sub>2</sub> and 17 mM EGTA], the recombinant type PDE V derived from human lung (10  $\mu$ I, 0.025 mg/mI) obtained in the above-mentioned (3), ultrapure water (65  $\mu$ I), inhibitor sample (5  $\mu$ I) and [ $^3$ H]cGMP (10  $\mu$ I), and the mixture was allowed to react at 30°C for 30 min. After the completion of the reaction, SPA beads solution [50  $\mu$ I, 18 mg/mI Yttrium silicate beads, 18 mM ZnSO<sub>4</sub>] was added and the mixture was stood at room temperature for about 20 min, after which applied to measurement with a scintillation counter (Topcount, Packard). In contrast to the radioactivity (1780 cpm) without addition, the radioactivity of 10367 cpm was observed when the recombinant type PDE V derived from human lung was added. Addition of various concentrations of sildenafil (Drugs of Future 22(2), 1997), which is an inhibitor of PDE V, to this reaction resulted in the inhibition of PDE activity. About 2 nM of sildenafil inhibited the enzyme reaction by 50%. Based on such results, it was confirmed that search of PDE inhibitor is possible using this assay system.

- (6) Practicing inhibitor search
- [0383] Using the method designed in the above-mentioned (5), the representative compound of the present invention was measured for recombinant type human lung derived PDE inhibitory activity (IC<sub>50</sub> value). The results are shown in Table 107.

## [Table 107]

| Example | PDE inhibitory activity (IC <sub>50</sub> :nM) |
|---------|------------------------------------------------|
| 31-6    | 1.47                                           |
| 33-3    | 0.582                                          |
| 66-6    | 0.304                                          |

# Industrial Applicability

[0384] The compound (I), a salt thereof and a prodrug thereof of the present invention have a potent and selective cGMP-PDE, particularly cGMP-PDE V, inhibitory activity, and can be used as an agent for the prophylaxis or treatment of diseases caused by promoted metabolism of cGMP (e.g., angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases, or disorders of male or female genital function and the like).

# SEQUENCE LISTING

| 5  | <11       | 0> T | aked | a Ch         | emic | al I    | ndus       | trie | s, L | td.  |      |      |     |      |     |         |
|----|-----------|------|------|--------------|------|---------|------------|------|------|------|------|------|-----|------|-----|---------|
|    | <12       | 0> P | yrim | idin         | e-5- | Carb    | oxam       | i de | Comp | ound | s, I | heir | Pro | duct | ion | And Use |
|    | <13       | 0> 2 | 655W | 00P          |      |         |            |      |      |      |      |      |     |      |     | •       |
| 10 | <15       | 0> 1 | P11- | <b>289</b> 8 | 68   |         |            |      |      |      |      |      |     |      |     |         |
|    | <15       | i> 1 | 999- | 10-1         | 2    |         |            |      |      |      |      |      |     |      |     |         |
| 15 | <16       | 0> 2 |      |              |      |         |            |      | -    |      |      |      |     |      |     |         |
| 15 | <210> 1   |      |      |              |      |         |            |      |      |      |      |      |     |      |     |         |
|    | <21       | 1> 8 | 33   |              |      |         |            |      |      |      |      |      |     |      |     |         |
| 20 | <212> PRT |      |      |              |      |         |            |      |      |      |      |      |     |      |     |         |
|    | <21       | 3> H | uman |              |      |         |            |      |      |      |      |      |     |      |     |         |
|    | <40       | 0> 1 |      |              |      |         |            |      |      |      |      |      |     |      |     |         |
| 25 | Met       | Leu  | Pro  | Phe          | Gly  | Asp     | Lys        | Thr  | Arg  | Glu  | Met  | Val  | Asn | Ala  | Trp | Phe     |
|    | 1         |      |      |              | 5    |         |            |      |      | 10   |      |      |     |      | 15  |         |
| 30 | Ala       | Glu  | Arg  | Val          | His  | Thr     | He         | Pro  | Val  | Cys  | Lys  | Glu  | Gly | Ile  | Arg | Gly     |
| 30 |           |      |      | 20           |      |         |            |      | 25   |      |      |      |     | 30   |     |         |
|    | His       | Thr  | Glu  | Ser          | Cys  | Ser     | Cys        | Pro  | Leu  | Gln  | Gln  | Ser  | Pro | Arg  | Ala | Asp     |
| 35 |           |      | 35   |              |      |         |            | 40   |      |      |      |      | 45  |      |     |         |
|    | Asn       | Ser  | Val  | Pro          | Gly  | Thr     | Pro        | Thr  | Arg  | Lys  | Ile  | Ser  | Ala | Ser  | Glu | Phe     |
|    |           | 50   |      |              |      |         | <b>5</b> 5 |      |      | •    |      | 60   |     |      |     |         |
| 40 |           | Arg  | Pro  | Leu          | Arg  |         | He         | Val  | Val  | Lys  | Asp  | Ser  | Glu | Gly  | Thr | Val     |
|    | 65        |      |      | _            |      | 70<br>- |            |      | _    |      | 75   |      |     |      |     | 80      |
| 45 | Ser       | Phe  | Leu  | Ser          |      | Ser     | Glu        | Lys  | Lys  |      | Gln  | Me t | Pro | Leu  | Thr | Pro     |
|    | _         |      |      |              | 85   |         |            |      |      | 90   |      |      |     |      | 95  |         |
|    | Pro       | Arg  | Phe  |              | His  | Asp     | Glu        | Gly  |      | Gln  | Cys  | Ser  | Arg |      | Leu | Glu     |
| 50 |           |      | _    | 100          |      | _       |            |      | 105  |      |      |      |     | 110  |     |         |
|    | Leu       | Val  |      | Asp          | He   | Ser     | Ser        |      | Leu  | Asp  | Val  | Thr  |     | Leu  | Cys | His     |
|    |           |      | 115  |              |      |         |            | 120  |      |      |      |      | 125 |      |     |         |
| 55 | Lys       | lle  | Phe  | Leu          | His  | He      | His        | Gly  | Leu  | lle  | Ser  | Ala  | Asp | Arg  | Туг | Ser     |

|    |     | 130 | ı    |     |     |     | 135 | i    |     |     |       | 140 | )   |       |         |       |
|----|-----|-----|------|-----|-----|-----|-----|------|-----|-----|-------|-----|-----|-------|---------|-------|
|    | Leu | Phe | Leu  | Val | Cys | Glu | Asp | Ser  | Ser | Asn | ı Asp | Lys | Phe | : Lei | 1 I l e | e Ser |
| 5  | 145 |     |      |     |     | 150 |     |      |     |     | 155   | ;   |     |       |         | 160   |
|    | Arg | Leu | Phe  | Asp | Val | Ala | Glu | Gly  | Ser | Thr | Leu   | Glu | Glu | Val   | Ser     | Asn   |
| 10 |     |     |      |     | 165 |     |     |      |     | 170 | •     |     |     |       | 175     | ;     |
|    | Asn | Cys | He   | Arg | Leu | Glu | Trp | Asn  | Lys | Gly | Ile   | Val | Gly | His   | Val     | Ala   |
|    |     |     |      | 180 |     |     |     |      | 185 |     |       |     |     | 190   | ı       |       |
| 15 | Ala | Leu | Gly  | Glu | Pro | Leu | Asn | Ile  | Lys | Asp | Ala   | Tyr | Glu | Asp   | Pro     | Arg   |
|    |     |     | 195  |     |     |     |     | 200  |     |     |       |     | 205 |       |         |       |
| 20 | Phe | Asn | Ala  | Glu | Val | Asp | Gln | He   | Thr | Gly | Tyr   | Lys | Thr | Gln   | Ser     | He    |
|    |     | 210 |      |     |     |     | 215 |      |     |     |       | 220 |     |       |         |       |
|    | Leu | Cys | Me t | Pro | Ile | Lys | Asn | His  | Arg | Glu | Glu   | Val | Yal | Gly   | Val     | Ala   |
| 25 | 225 |     |      |     |     | 230 |     |      |     |     | 235   |     |     |       |         | 240   |
|    | Gln | Ala | He   | Asn | Lys | Lys | Ser | Gly  | Asn | Gly | Gly   | Thr | Phe | Thr   | Glu     | Lys   |
|    |     |     |      |     | 245 |     |     |      |     | 250 |       |     |     |       | 255     |       |
| 30 | Asp | Glu | Lys  | Asp | Phe | Ala | Ala | Tyr  | Leu | Ala | Phe   | Cys | Gly | He    | Va!     | Leu   |
|    |     |     |      | 260 |     |     |     |      | 265 |     |       |     |     | 270   |         |       |
| 35 | His | Asn | Ala  | Gln | Leu | Tyr | Glu | Thr  | Ser | Leu | Leu   | Glu | Asn | Lys   | Arg     | Asn   |
|    |     |     | 275  |     |     |     |     | 280  |     |     |       |     | 285 |       |         |       |
|    | Gln |     | Leu  | Leu | Asp | Leu |     | Ser  | Leu | He  | Phe   |     | Glu | GIn   | Gln     | Ser   |
| 40 | _   | 290 |      |     | _   | _   | 295 |      |     |     |       | 300 |     | _     |         |       |
|    |     | Glu | Val  | He  | Leu |     | Lys | He   | Ala | Ala |       | He  | Ile | Ser   | Phe     |       |
| 45 | 305 |     |      |     | _   | 310 |     |      |     |     | 315   |     |     | _     | _       | 320   |
|    | GIn | Val | Gln  | Lys |     | Thr | 11e | Phe  | He  |     | Asp   | Glu | Asp | Cys   |         | Asp   |
|    |     |     |      | •   | 325 |     |     |      |     | 330 |       |     | _   |       | 335     | _     |
| 50 | Ser | Phe | Ser  | Ser | Val | Phe | HIS | Me t |     | Cys | Glu   | Glu | Leu |       | Lys     | Ser   |
|    | _   |     |      | 340 |     |     |     |      | 345 |     |       | _   |     | 350   | _       |       |
|    | Ser |     |      | Leu | Thr | Arg | Glu |      | Asp | Ala | Asn   | Lys |     | Asn   | Туг     | Met   |
| 55 |     |     | 355  |     |     |     |     | 360  |     |     |       |     | 365 |       |         |       |

|    | lyr | Ala | GIN | Iyr | yaı | Lys | ASII | IRI | met | 610 | Pro | Leu | ASI | 116  | P10  | ASI  |
|----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|
| E  |     | 370 |     |     |     |     | 375  |     |     |     |     | 380 |     |      |      |      |
| 5  | Val | Ser | Lys | Asp | Lys | Arg | Phe  | Pro | Trp | Thr | Thr | Glu | Asn | Thr  | Gly  | Ast  |
|    | 385 |     |     |     |     | 390 |      |     |     |     | 395 |     |     |      |      | 400  |
| 10 | Val | Asn | Gln | Gin | Cys | lle | Arg  | Ser | Leu | Leu | Cys | Thr | Pro | Ιle  | Lys  | Asn  |
|    |     |     |     |     | 405 |     |      |     | :   | 410 |     |     |     |      | 415  |      |
|    | Gly | Lys | Lys | Asn | Lys | Val | Ile  | Gly | Val | Cys | Gln | Leu | Val | Asn  | Lys  | Me t |
| 15 |     |     |     | 420 |     |     |      |     | 425 |     |     |     |     | 430  |      |      |
|    | Glu | Glu | Asn | Thr | Gly | Lys | Val  | Lys | Pro | Phe | Asn | Arg | Asn | Asp  | Glu  | Gln  |
| 20 |     |     | 435 |     |     |     |      | 440 |     |     |     |     | 445 |      |      |      |
| 20 | Phe | Leu | Glu | Ala | Phe | Val | He   | Phe | Cys | Gly | Leu | Gly | He  | Gln  | Asn  | Thr  |
|    |     | 450 |     |     |     |     | 455  |     |     |     |     | 460 |     |      |      |      |
| 25 | Gln | Met | Tyr | Glu | Ala | Val | Glu  | Arg | Ala | Met | Ala | Lys | Gin | Me t | Val  | Thr  |
|    | 465 |     |     |     |     | 470 |      |     |     |     | 475 |     |     |      |      | 480  |
|    | Leu | Glu | Val | Leu | Ser | Tyr | His  | Ala | Ser | Ala | Ala | Glu | Glu | Glu  | Thr  | Arg  |
| 30 |     |     |     |     | 485 |     |      |     |     | 490 |     |     |     |      | 495  |      |
|    | Glu | Leu | Gln | Ser | Leu | Ala | Ala  | Ala | Val | Val | Pro | Ser | Ala | Gln  | Thr  | Leu  |
| 35 |     |     |     | 500 |     |     |      |     | 505 |     |     |     |     | 510  |      |      |
|    | Lys | Ile | Thr | Asp | Phe | Ser | Phe  | Ser | Asp | Phe | Glu | Leu | Ser | Asp  | Leu  | Glu  |
|    |     |     | 515 |     |     |     |      | 520 |     |     |     |     | 525 |      |      |      |
| 40 | Thr | Ala | Leu | Cys | Thr | Ile | Arg  | Met | Phe | Thr | Asp | Leu | Asn | Leu  | Val  | Gln  |
|    |     | 530 |     |     |     |     | 535  | •   |     |     |     | 540 |     |      |      |      |
|    | Asn | Phe | Gln | Met | Lys | His | Glu  | Val | Leu | Cys | Arg | Trp | Ile | Leu  | Ser  | Val  |
| 45 | 545 |     |     |     |     | 550 |      |     |     |     | 555 |     |     |      |      | 560  |
|    | Lys | Lys | Asn | Tyr | Arg | Lys | Asn  | Val | Ala | Tyr | His | Asn | Trp | Arg  | His. | Ala  |
| 50 |     |     | •   |     | 565 | •   |      |     |     | 570 |     |     |     |      | 575  |      |
|    | Phe | Asn | Thr | Ala | Gln | Cys | Me t | Phe | Ala | Ala | Leu | Lys | Ala | Gly  | Lys  | Ile  |
|    |     |     |     | 580 |     |     |      |     | 585 |     |     |     |     | 590  |      |      |
| 55 | Gln | Asn | Lys | Leu | Thr | Asp | Leu  | Glu | lle | Leu | Ala | Leu | Leu | He   | Ala  | Ala  |

|           |          |            | 595        |     |          |       |          | 600  |           |          |     |        | 605       |      |      |          |
|-----------|----------|------------|------------|-----|----------|-------|----------|------|-----------|----------|-----|--------|-----------|------|------|----------|
|           | Leu      | Ser        | His        | Asp | Leu      | Asp   | His      | Arg  | Gly       | Val      | Asn | Asn    | Ser       | Туг  | He   | Gln      |
| 5         |          | 610        |            |     |          |       | 615      |      |           |          |     | 620    |           |      |      |          |
|           | Arg      | Ser        | Glu        | His | Pro      | Leu   | Ala      | Gln  | Leu       | Tyr      | Cys | His    | Ser       | He   | Me t | Glu      |
| 10        | 625      |            |            |     |          | 630   |          |      |           |          | 635 |        |           |      |      | 640      |
|           | His      | His        | His        | Phe | Asp      | Gln   | Cys      | Leu  | Met       | lle      | Leu | Asn    | Ser       | Pro  | Gly  | Asn      |
|           |          |            |            |     | 645      |       |          |      |           | 650      |     |        |           |      | 655  |          |
| 15        | Gln      | He         | Leu        | Ser | Gly      | Leu   | Ser      | Ile  | Glu       | Glu      | Tyr | Lys    | Thr       | Thr  | Leu  | Lys      |
|           |          |            |            | 660 |          |       |          |      | 665       |          |     |        |           | 670  |      |          |
| 20        | Ile      | Ile        | Lys        | Gln | Ala      | He    | Leu      | Ala  | Thr       | Asp      | Leu | Ala    | Leu       | Tyr  | Ile  | Lys      |
|           |          |            | 675        |     |          |       |          | 680  |           |          |     |        | 685       |      |      |          |
|           | Arg      | Arg        | Gly        | Glu | Phe      | Phe   | Glu      | Leu  | Ile       | Arg      | Lys | Asn    | Gln       | Phe  | Asn  | Leu      |
| 25        | •        | 690        |            |     |          |       | 695      |      |           |          |     | 700    |           |      |      |          |
|           | Glu      | Asp        | Pro        | His | Gln      |       | Glu      | Leu  | Phe       | Leu      |     | Met    | Leu       | Met  | Thr  | Ala      |
|           | 705      |            |            |     |          | 710   |          |      |           |          | 715 |        |           |      |      | 720      |
| <i>30</i> | Cys      | Asp        | Leu        | Ser | Ala      | He    | Thr      | Lys  | Pro       | Trp      | Pro | Ile    | Gln       | Gln  | Arg  | Ile      |
|           |          |            |            |     | 725      |       |          |      |           | 730      |     |        |           |      | 735  |          |
| 35        | Ala      | Glu        | Leu        |     | Ala      | Thr   | Glu      | Phe  |           | Asp      | GIn | Gly    | Asp       |      | Glu  | Arg      |
|           |          | ۵.         |            | 740 |          | 0.1   | •        | mı.  | 745       |          |     |        | <b>4</b>  | 750  |      |          |
|           | Lys      | Glu        |            | Asn | He       | GIU   | Pro      |      | ASP       | Leu      | мет | Asn    |           | Glu  | Lys  | LYS      |
| 40        | <b>4</b> | T          | 755        | D   | <b>G</b> | M - A | C1       | 760  | Clas      | nh -     | *1. |        | 765       | 11   | C    | ۲        |
|           | ASN      |            | 116        | Pro | 261      | met   |          | Yaı  | GLY       | rne      | 116 |        | Ala       | 116  | Cys  | Leu      |
| 45        | Cla      | 770        | Tvr        | Clo | 412      | Lan   | 775      | Иіс  | Val       | Sar      | Clu | 780    | Cuc       | Dha  | Dro  | Lau      |
|           |          | Leu        | 1 9 1      | UIU | WIG      | 790   | 1111     | 1113 | 741       | 261      | 795 | ութ    | Cys       | 1116 | Pro  | 800      |
|           | 785      |            | <b>C</b> 1 | 0   |          |       | <b>A</b> |      | C1 =      | <b>T</b> |     | C1     |           | T    |      |          |
| 50        | Leu      | Asp        | Gly        | Cys |          | Lys   | ASI      | Arg  | GIN       |          | тр  | GIII   | Ala       | ren  | Ala  | GIU      |
|           | ٥.       | <b>a</b> 1 | <b>C</b> 1 | •   | 805      | 1     | 71-      |      | <b>01</b> | 810      | C   | C1 · · | <b>01</b> | A1 - | 815  | <b>4</b> |
| EE        | GIn      | GIN        | 6111       |     | mei      | Leu   | 116      | ASN  |           | UIU      | 261 | ч      | GIN       |      | Lys  | Arg      |
| 55        |          |            |            | 820 |          |       |          |      | 825       |          |     |        |           | 830  |      |          |

Asn

|    | •                                                                      |   |
|----|------------------------------------------------------------------------|---|
| 5  | <210> 2                                                                |   |
| 3  | <211> 2499                                                             |   |
|    | <212> DNA                                                              |   |
| 10 | <213> Human                                                            |   |
|    | ⟨400⟩ 2                                                                |   |
| 15 | ATGTTGCCCT TTGGAGACAA AACAAGAGAA ATGGTCAATG CATGGTTTGC TGAGAGAGTT 6    | 0 |
|    | CACACCATCC CTGTGTGCAA GGAAGGTATC AGAGGCCACA CCGAATCTTG CTCTTGTCCC 126  | 0 |
|    | TTGCAGCAGA GTCCTCGTGC AGATAACAGT GTCCCTGGAA CACCAACCAG GAAAATCTCT 180  | 0 |
| 20 | GCCTCTGAAT TTGACCGGCC TCTTAGACCC ATTGTTGTCA AGGATTCTGA GGGAACTGTG 240  | ) |
| 20 | AGCTTCCTCT CTGACTCAGA AAAGAAGGAA CAGATGCCTC TAACCCCTCC AAGGTTTGAT 300  | ) |
|    | CATGATGAAG GGGACCAGTG CTCAAGACTC TTGGAATTAG TGAAGGATAT TTCTAGTCAT 360  | ) |
| 25 | TTGGATGTCA CAGCCTTATG TCACAAAATT TTCTTGCATA TCCATGGACT GATATCTGCT 420  | ) |
|    | GACCGCTATT CCCTGTTCCT TGTCTGTGAA GACAGCTCCA ATGACAAGTT TCTTATCAGC 480  | ) |
|    | CGCCTCTTTG ATGTTGCTGA AGGTTCAACA CTGGAAGAAG TTTCAAATAA CTGTATCCGC 540  | ) |
| 30 | TTAGAATGGA ACAAAGGCAT TGTGGGACAT GTGGCAGCGC TTGGTGAGCC CTTGAACATC 600  | } |
|    | AAAGATGCAT ATGAGGATCC TCGGTTCAAT GCAGAAGTTG ACCAAATTAC AGGCTACAAG 660  | ļ |
| 35 | ACACAAAGCA TTCTTTGTAT GCCAATTAAG AATCATAGGG AAGAGGTTGT TGGTGTAGCC 720  | ı |
|    | CAGGCCATCA ACAAGAAATC AGGAAACGGT GGGACATTTA CTGAAAAAGA TGAAAAGGAC 780  |   |
|    | TTTGCTGCTT ATTTGGCATT TTGTGGTATT GTTCTTCATA ATGCTCAGCT CTATGAGACT 840  |   |
| 40 | TCACTGCTGG AGAACAAGAG AAATCAGGTG CTGCTTGACC TTGCTAGTTT AATTTTTGAA 900  |   |
| •  | GAACAACAAT CATTAGAAGT AATTTTGAAG AAAATAGCTG CCACTATTAT CTCTTTCATG 960  |   |
| 45 | CAAGTGCAGA AATGCACCAT TTTCATAGTG GATGAAGATT GCTCCGATTC TTTTTCTAGT 1020 |   |
|    | GTGTTTCACA TGGAGTGTGA GGAATTAGAA AAATCATCTG ATACATTAAC AAGGGAACAT 1080 |   |
| 50 | GATGCAAACA AAATCAATTA CATGTATGCT CAGTATGTCA AAAATACTAT GGAACCACTT 1140 |   |
|    | AATATCCCAG ATGTCAGTAA GGATAAAAGA TTTCCCTGGA CAACTGAAAA TACAGGAAAT 1200 |   |
|    | GTAAACCAGC AGTGCATTAG AAGTTTGCTT TGTACACCTA TAAAAAATGG AAAGAAGAAT 1260 |   |
|    | AAAGTTATAG GGGTTTGCCA ACTTGTTAAT AAGATGGAGG AGAATACTGG CAAGGTTAAG 1320 |   |
| 55 | CCTTTCAACC GAAATGACGA ACAGTTTCTG GAAGCTTTTG TCATCTTTTG TGGCTTGGGG 1380 |   |

ATCCAGAACA CGCAGATGTA TGAAGCAGTG GAGAGAGCCA TGGCCAAGCA AATGGTCACA 1440 TTGGAGGTTC TGTCGTATCA TGCTTCAGCA GCAGAGGAAG AAACAAGAGA GCTACAGTCG 1500 5 TTAGCGGCTG CTGTGGTGCC ATCTGCCCAG ACCCTTAAAA TTACTGACTT TAGCTTCAGT 1560 GACTTTGAGC TGTCTGATCT GGAAACAGCA CTGTGTACAA TTCGGATGTT TACTGACCTC 1620 AACCTTGTGC AGAACTTCCA GATGAAACAT GAGGTTCTTT GCAGATGGAT TTTAAGTGTT 1680 10 AAGAAGAATT ATCGGAAGAA TGTTGCCTAT CATAATTGGA GACATGCCTT TAATACAGCT 1740 CAGTGCATGT TTGCTGCTCT AAAAGCAGGC AAAATTCAGA ACAAGCTGAC TGACCTGGAG 1800 15 ATACTTGCAT TGCTGATTGC TGCACTAAGC CACGATTTGG ATCACCGTGG TGTGAATAAC 1860 TCTTACATAC AGCGAAGTGA ACATCCACTT GCCCAGCTTT ACTGCCATTC AATCATGGAA 1920 CACCATCATT TTGACCAGTG CCTGATGATT CTTAATAGTC CAGGCAATCA GATTCTCAGT 1980 20 GGCCTCTCCA TTGAAGAATA TAAGACCACG TTGAAAATAA TCAAGCAAGC TATTTTAGCT 2040 ACAGACCTAG CACTGTACAT TAAGAGGCGA GGAGAATTTT TTGAACTTAT AAGAAAAAAT 2100 25 CAATTCAATT TGGAAGATCC TCATCAAAAG GAGTTGTTTT TGGCAATGCT GATGAÇAGCT 2160 TGTGATCTTT CTGCAATTAC AAAACCCTGG CCTATTCAAC AACGGATAGC AGAACTTGTA 2220 GCAACTGAAT TTTTTGATCA AGGAGACAGA GAGAGAAAAG AACTCAACAT AGAACCCACT 2280 30 GATCTAATGA ACAGGGAGAA GAAAAACAAA ATCCCAAGTA TGCAAGTTGG GTTCATAGAT 2340 GCCATCTGCT TGCAACTGTA TGAGGCCCTG ACCCACGTGT CAGAGGACTG TTTCCCTTTG 2400 35 CTAGATGGCT GCAGAAAGAA CAGGCAGAAA TGGCAGGCCC TTGCAGAACA GCAGGAGAAG 2460 2499 ATGCTGATTA ATGGGGAAAG CGGCCAGGCC AAGCGGAAC

40

45

#### Claims

## 1. A compound of the formula

50

#### wherein

5

10

15

20

25

30

45

50

- R<sub>1</sub> is a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), which\_ heterocycle is attached by a secondary nitrogen atom constituting the heterocycle;
- is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom
   (s) or a sulfur atom optionally oxidized with 1 or 2 oxygen,
- Y is a bond or a C<sub>1-5</sub> alkylene group,
- R<sub>2</sub> is (1) a hydrogen atom, (2) a hydroxy group, (3) a C<sub>1-5</sub> alkoxy group, (4) a C<sub>1-5</sub> alkylthio group, (5) a carbocycle having 3 to 15 carbon atoms or (6) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s),

provided that when Y is a bond,  $R_2$  is a carbocycle having 3 to 15 carbon atoms or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and;

one of R3 and R4

is a hydrogen atom or a group of the formula: -Z-R $_5$  (Z is a bond or C $_{1-10}$  alkylene group optionally having substituent(s) and R $_5$  is (1) a hydrogen atom, (2) a hydroxy group, (3) a C $_{1-5}$  alkoxy group, (4) a nitrile group, (5) a C $_{1-5}$  alkoxy-carbonyl group, (6) a carboxyl group, (7) a carbamoyl group, (8) a (mono or di-C $_{1-5}$  alkyl)carbamoyl group, (9) an amino group, (10) a (di or mono-C $_{1-5}$  alkyl)amino group, (11) a (C $_{1-5}$  alkoxy-carbonyl)amino group, (12) a C $_{1-5}$  alkylthio group, (13) a carbocycle having 3 to 15 carbon atoms or (14) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s));

the other R<sub>3</sub> and R<sub>4</sub>

is a group of the formula: -Z-R<sub>5</sub> (Z and R<sub>5</sub> are as defined above); and

may form, together with the adjacent nitrogen atom, a heterocycle having a skeleton consisting of 3 to 15 atoms, which heterocycle is attached by a secondary nitrogen atom constituting the heterocycle, wherein the above-mentioned heterocycle and a carbocycle having 3 to 15 carbon atoms are each optionally substituted by substituent(s) selected from the group consisting of  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{7-16}$  aralkyl,  $C_{3-8}$  cycloalkyl,  $C_{3-8}$  cycloalkenyl,  $C_{6-14}$  aryl,  $C_{1-8}$  alkoxy,  $C_{1-3}$  alkylenedioxy, hydroxy, halogen atom, amino, (di or mono- $C_{1-5}$  alkyl)amino, ( $C_{1-5}$  alkyl-carbonyl) amino, ( $C_{1-5}$  alkyl-carbonyloxy, oxo, thioxo,  $C_{1-6}$  acyl group, sulfamoyl and (di or mono- $C_{1-5}$  alkyl)sulfamoyl,

or a salt thereof.

- The compound of claim 1, wherein, when Z is a C<sub>2-10</sub> alkylene group optionally having substituent(s), R<sub>5</sub> is a hydrogen atom, a hydroxy group, a C<sub>1-5</sub> alkoxy group, a nitrile group, a C<sub>1-5</sub> alkoxy-carbonyl, a carboxyl group, a carbamoyl group, a (mono or di-C<sub>1-5</sub> alkyl)carbamoyl group, an amino group, a (di or mono-C<sub>1-5</sub> alkyl)amino group, a (C<sub>1-5</sub> alkoxy-carbonyl)amino group, a C<sub>1-5</sub> alkylthio group, a carbocycle having 3 to 15 carbon atoms, or a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and, when Z is a methylene group optionally having substituents, R<sub>5</sub> is a nitrile group, a C<sub>1-5</sub> alkoxy-carbonyl group, a carboxyl group, a carboxyl group, a carboxyl group, a carboxyl group, a carboxyl group, a carboxyl group, a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s).
  - 3. The compound of claim 1, wherein X is a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen.
  - The compound of claim 1, wherein Y is a C<sub>2-5</sub> alkylene group.
  - 5. The compound of claim 1, wherein Y is a C<sub>1-5</sub> alkylene group, R<sub>2</sub> is a hydroxy group, a C<sub>1-5</sub> alkoxy group or a C<sub>1-5</sub> alkylthio group.
    - The compound of claim 1, wherein R<sub>5</sub> is (1) a non-aromatic carbocycle having 3 to 15 carbon atoms or (2) a non-aromatic heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s).
- 7. The compound of claim 1, wherein Z is a C<sub>2-10</sub> alkylene group optionally having substituent(s), and R<sub>5</sub> is a hydroxy group, a nitrile group, a C<sub>1-5</sub> alkoxy-carbonyl, a carboxyl group, a carbamoyl group, a (mono or di-C<sub>1-5</sub> alkyl) carbamoyl group, a (C<sub>1-5</sub> alkoxy-carbonyl)amino group or a C<sub>1-5</sub> alkylthio group.

- 8. The compound of claim 1, wherein Z is a methylene group optionally having substituent(s), and R<sub>5</sub> is a nitrile group, a C<sub>1-5</sub> alkoxy-carbonyl group, a carboxyl group, a carbamoyl group or a (mono or di-C<sub>1-5</sub> alkyl)carbamoyl group.
- 9. The compound of claim 1, wherein the substituent(s) of the heterocycle and the carbocycle having 3 to 15 carbon atoms is selected from the group consisting of C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-3</sub> alkylenedioxy, hydroxy, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl)amino, C<sub>1-5</sub> alkylthio, nitrile, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl.

5

20

40

- 10. The compound of claim 1, wherein R<sub>1</sub> is a heterocycle having a skeleton consisting of 5 to 12 atoms including 1 or 2 nitrogen atom(s) and optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl)amino, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkylthio, nitrile, nitro, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl) sulfamoyl.
  - 11. The compound of claim 1, wherein R<sub>1</sub> is a heterocycle having a skeleton consisting of 8 to 12 atoms including a nitrogen atom and optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl) amino, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl)amino, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl.
- 12. The compound of claim 1, wherein R<sub>1</sub> is 1-indolinyl optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl)amino, (C<sub>1-5</sub> alkoxy-carbonyl) amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl) (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkylthio, nitrile, nitro, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl.
- 13. The compound of claim 1, wherein R<sub>2</sub> is a carbocycle having 5 to 7 carbon atoms or a heterocycle having a skeleton consisting of 5 to 7 atoms including 1 or 2 heteroatom(s), which heterocycle is optionally substituted by substituent (s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl) amino, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl) (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkylthio, nitrile, nitro, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl) sulfamoyl.
  - 14. The compound of claim 1, wherein R<sub>2</sub> is phenyl optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl)amino, (C<sub>1-5</sub> alkoxy-carbonyl) amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl) (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkylthio, nitrile, nitro, C<sub>1-5</sub> alkoxy-carbonyl, carboxyl, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl.
  - 15. The compound of claim 1, wherein X is an oxygen atom or NH, and Y is a C<sub>1-3</sub> alkylene group.
  - 16. The compound of claim 1, wherein X is an oxygen atom, and Y is a methylene group.
  - 17. The compound of claim 1, wherein R<sub>3</sub> is a hydrogen atom and R<sub>4</sub> is a group of the formula: -Z-R<sub>5</sub>.
- 18. The compound of claim 17, wherein Z is a bond or a C<sub>1-4</sub> alkylene group, R<sub>5</sub> is a carbocycle having 5 to 8 carbon atoms or a heterocycle having a skeleton consisting of 5 to 11 atoms having 1 to 5 heteroatom(s), which heterocycle is optionally substituted by substituent(s) selected from the group consisting of C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>7-16</sub> aralkyl, C<sub>3-8</sub> cycloalkyl, C<sub>3-8</sub> cycloalkenyl, C<sub>6-14</sub> aryl, C<sub>1-8</sub> alkoxy, C<sub>1-3</sub> alkylenedioxy, hydroxy, halogen atom, amino, (di or mono-C<sub>1-5</sub> alkyl)amino, (C<sub>1-5</sub> alkoxy-carbonyl)amino, (C<sub>1-5</sub> acyl)amino, (C<sub>1-5</sub> acyl) (C<sub>1-5</sub> alkyl)amino, C<sub>1-5</sub> alkyl-carbonyloxy, oxo, thioxo, C<sub>1-6</sub> acyl group, sulfamoyl and (di or mono-C<sub>1-5</sub> alkyl)sulfamoyl.
  - 19. The compound of claim 1, wherein R<sub>1</sub> is a group selected from

ОМе Me0 , -X-Y- $R_2$  is a group selected from

5

10

$$M_{\text{H}}$$
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 
 $M_{\text{H}}$ 

20. The compound of claim 1, wherein R<sub>1</sub> is a group selected from

, -X-Y- $R_2$  is a group selected from

, and -NR<sub>3</sub>R<sub>4</sub> is a group selected from

21. The compound of claim 1, wherein R<sub>1</sub> is a group selected from the group consisting of

,  $-X-Y-R_2$  is a group selected from the group consisting of

, and  $-NR_3R_4$  is a group selected from the group consisting of

- 22. (i) (RS)-2-(2,3-Dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxyl-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide (ii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, (iii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (iv) (RS)-4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (v) 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (vi) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (vii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (viii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, (ix) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-(2-pyridinylmethyl)-5-pyrimidinecarboxamide, (x) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1Hindol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (xi) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(5-methyl-2-pyrazinyl)methyl]-5-pyrimidinecarboxamide, (xii) (rac)-4-[(4-methoxybenzyl) oxy]-2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-N-(2-oxo-3-azepanyl)-5-pyrimidinecarboxamide, (xiii) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xiv) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide. (xv) 4-(1,3-benzodioxol-5-ylmethoxy)-2-(2,3-dihydro-1H-indol-1-yl)-4-[(4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xvi) 2-(2,3-dihydro-1H-indol-1-yl)-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xvii) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-(2,3-dihydro-1H-indol-1-yl)-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xviii) 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-1-yl] -N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xix) 4-[(4-methoxybenzyl)oxy]-2-[(2RS)-2-methyl-2,3-dihydro-1H-indol-I-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xx) 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxi) 4-[(4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide, 2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-4-[(3-fluoro-4-methoxybenzyl)oxy]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxiii) 4-[(3-chloro-4-methoxybenzyl)oxy]-2-[(2R)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide, (xxiv) 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3S)-2-oxoazepanyl]-5-pyrimidinecarboxamide or (xxv) 4-[(4-methoxybenzyl)oxy]-2-[(2S)-2-methyl-2,3-dihydro-1H-indol-1-yl]-N-[(3R)-2-oxoazepanyl]-5-pyrimidinecarboxamide.
- 23. A prodrug of the compound of claim 1.

5

10

15

20

25

30

35

40

45

50

55

24. A production method of the compound of claim 1, which comprises reacting a compound of the formula

$$\begin{array}{c}
L_1 \\
\downarrow \\
N \\
\downarrow \\
N
\end{array}$$

$$\begin{array}{c}
X \\
\downarrow \\
R_1
\end{array}$$

$$\begin{array}{c}
R_2 \\
(II)
\end{array}$$

wherein  $L_1$  is a leaving group and other symbols are as defined in claim 1, or a salt thereof, with an amine compound of the formula

wherein R<sub>3</sub> and R<sub>4</sub> are as defined in claim 1.

25. A production method of the compound of claim 1, which comprises reacting a compound of the formula

wherein  $L_2$  is a leaving group and other symbols are as defined in claim 1, or a salt thereof, with a compound of the formula

R<sub>1</sub>-H

wherein R<sub>1</sub> is as defined in claim 1.

5

10

15

20

25

30

35

40

45

50

55

26. A production method of the compound of claim 1, which comprises reacting a compound of the formula

$$\begin{array}{c|c}
R_3 \\
R_4 \\
N \\
N \\
N
\\
R_1
\end{array}$$
(IV)

wherein  $L_3$  is a leaving group and other symbols are as defined in claim 1, or a salt thereof, with a compound of the formula

wherein  $R_2$  and Y are as defined in claim 1 and  $X_1$  is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom, and if desired, subjecting the resulting compound to oxidation.

27. A production method of the compound of claim 1, which comprises reacting a compound of the formula

$$\begin{array}{c|c}
R_3 \\
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
X_1 \\
H \\
R_1
\end{array}$$

$$\begin{array}{c}
V \\
\end{array}$$

wherein symbols are as defined in claim 1, X<sub>1</sub> is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom, or a salt thereof, with a compound of the formula

R2-Y-L4

wherein R<sub>2</sub> and Y are as defined in claim 1 and L<sub>4</sub> is a leaving group, and if desired, subjecting the resulting compound to oxidation.

28. A pharmaceutical composition comprising a compound of the formula

R<sub>4</sub> N O X Y R

wherein symbols are as defined in claim 1, or a salt thereof or a prodrug thereof.

- **29.** The pharmaceutical composition of claim 28, which is a cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase inhibitor.
  - 30. The pharmaceutical composition of claim 28, which is a composition for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function.
  - 31. A method for inhibiting cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase, which comprises administering an effective amount of the compound of claim 1 or a prodrug thereof to a mammal.
- 35 32. A method for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function in a mammal, which comprises administering an effective amount of the compound of claim 1 or a prodrug thereof to the mammal.
- 40 33. Use of the compound of claim 1 or a prodrug thereof for the production of a cyclic guanosine-3',5'-monophosphoric acid phosphodiesterase inhibitor.
  - 34. Use of the compound of claim 1 or a prodrug thereof for the production of an agent for the prophylaxis or treatment of angina pectoris, heart failure, cardiac infarction, hypertension, pulmonary hypertension, arteriosclerosis, allergic diseases, asthma, renal diseases, cerebral function disorders, immunodeficiency, ophthalmic diseases or disorders of male or female genital function.
  - 35. A compound of the formula

50

45

5

10

15

20

30

$$R_{12} \xrightarrow{R_{11}} 0$$

$$X_{2} \xrightarrow{Y_{1}} R_{10}$$

$$R_{9}$$

| 14/) | $\sim$ | oin |  |
|------|--------|-----|--|

15

20

25

30

35

40

45

50

55

5

10

is a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 nitrogen atom(s), and optionally having substituent(s), which heterocycle is attached by a secondary nitrogen atom forming its ring,

 $X_2$ 

is an oxygen atom, a nitrogen atom optionally substituted by a hydrocarbon group having 1 to 5 carbon atom(s) or a sulfur atom optionally oxidized with 1 or 2 oxygen,

 $Y_1$ 

 $R_9$ 

is a bond or a C<sub>1-5</sub> alkylene group,

R<sub>10</sub>

is (1) a hydrogen atom, (2) a hydroxy group, (3) a  $C_{1-5}$  alkoxy group, (4) a  $C_{1-5}$  alkylthio group, (5) a  $C_{3-15}$  carbocycle optionally having substituent(s) or (6) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and optionally having substituent(s), one of  $R_{11}$  and  $R_{12}$  is a hydrogen atom or a group of the formula:  $-Z_1-R_{13}$  ( $Z_1$  is a bond or a  $C_{1-10}$  alkylene group optionally having substituent(s)),  $R_{13}$  is (1) a hydrogen atom, (2) a hydroxy group, (3) a  $C_{1-5}$  alkoxy group, (4) a nitrile group, (5) a  $C_{1-5}$  alkoxy-carbonyl group, (6) a carboxyl group, (7) a carbamoyl group, (8) a (mono or di- $C_{1-5}$  alkyl)carbamoyl group, (9) an amino group, (10) a (di or mono- $C_{1-5}$  alkyl)amino group, (11) a ( $C_{1-5}$  alkoxy-carbonyl)amino group, (12) a  $C_{1-5}$  alkylthio group, (13) a  $C_{3-15}$  carbocycle optionally having substituent(s) or (14) a heterocycle having a skeleton consisting of 3 to 15 atoms including 1 to 5 heteroatom(s) and optionally having substituent(s),

the other

is a group of the formula: -Z<sub>1</sub>-R<sub>13</sub> (Z<sub>1</sub> and R<sub>13</sub> are as defined above); and

R<sub>11</sub> and R<sub>12</sub>

may form, together with the adjacent nitrogen atom, a heterocycle having a skeleton consisting of 3 to 15 atoms and optionally having substituent(s) and attached by a secondary nitrogen atom

forming its ring], or a salt thereof.

36. A prodrug of the compound of claim 35.

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/07048

| A. CLASSIFICATION OF SUBJECT MATTER Int.Cl <sup>7</sup> C07D403/04, 401/14, 403/14, 405/14, 409/14, 417/14, 491/056, A61K31/506, 5377, 55, A61P43/00, 9/10, 9/04, 9/12, 37/08, 11/06, 13/12, 25/28, 37/04, 27/02, 15/00 According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                     |                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        | itional classification and IPC             | <del></del>                                                                                                                                                                                                                                                                                            |  |
| B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)  Int.Cl <sup>7</sup> C07D403/04, 401/14, 403/14, 405/14, 409/14, 417/14, 491/056, A61K31/506, 5377, 55, A61P43/00, 9/10, 9/04, 9/12, 37/08, 11/06, 13/12, 25/28,                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion searched other than minimum documentation to th                                                                                    | extent that such documents are in          | actudad in the Golde seconded                                                                                                                                                                                                                                                                          |  |
| Documenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tor searched which that imminum decamentation to an                                                                                    | o extensional such documents are n         | interest in the fields scarefied                                                                                                                                                                                                                                                                       |  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS, REGISTRY (STN)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |
| C. DOCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MENTS CONSIDERED TO BE RELEVANT                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |
| Category*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Citation of document, with indication, where a                                                                                         | propriate, of the relevant passages        | Relevant to claim No.                                                                                                                                                                                                                                                                                  |  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WO, 99/31073, A1 (YAMANOUCHI PH<br>24 June, 1999 (24.06.99),<br>RN=227449-90-3, 227450-02-4<br>& AU, 9915071, A & EP, 1054             |                                            | 0.), 1,3,10,11,13,<br>14,17,23-30,<br>33-36                                                                                                                                                                                                                                                            |  |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WO, 99/6046, A1 (KOS PHARMACEU<br>11 February, 1999 (11.02.99),<br>RN=75689-93-9<br>& AU, 9886800, A & EP, 1003<br>& NO, 2000000407, A |                                            | 35,36                                                                                                                                                                                                                                                                                                  |  |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE, 19636487, A (HOECHST AG.<br>12 March, 1998 (12.03.98) (Fa                                                                          |                                            | 35,36                                                                                                                                                                                                                                                                                                  |  |
| х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EP, 816358, A1 (HOECHST AG.) 07 January, 1998 (07.01.98), & DE, 19625089, A & US, 5939 & CA, 2208630, A & NO, 9702 & JP, 10-72463, A   | 424, A                                     | 35,36                                                                                                                                                                                                                                                                                                  |  |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EP, 816359, A1 (HOECHST AG.)<br>07 January, 1998 (07.01.98),                                                                           |                                            | 35,36                                                                                                                                                                                                                                                                                                  |  |
| Furthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r documents are listed in the continuation of Box C.                                                                                   | See patent family annex.                   |                                                                                                                                                                                                                                                                                                        |  |
| Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed |                                                                                                                                        |                                            | et with the application but cited to<br>cory underlying the invention<br>nee; the claimed invention cannot be<br>considered to involve an inventive<br>en alone<br>nee; the claimed invention cannot be<br>ntive step when the document is<br>ther such documents, such<br>a person skilled in the art |  |
| Date of the actual completion of the international search  28 November 2000 (28.11.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        | Date of mailing of the internation 12.12.0 | -                                                                                                                                                                                                                                                                                                      |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | Authorized officer                         |                                                                                                                                                                                                                                                                                                        |  |
| Facsimile No. Telephone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |
| POT/ICA /210 (considerant) (fully 1002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                        |  |

Form PCT/ISA/210 (second sheet) (July 1992)

## INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/07048

|                                                       |                                                                                                                                                                                                                                    | PC1/JP00/07048                         |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                                                                                                                                                    |                                        |  |
| Category*                                             | Citation of document, with indication, where appropriate, of the relevant pas                                                                                                                                                      | sages Relevant to claim No.            |  |
|                                                       | & DE, 19625088, A & US, 5773447, A & CA, 2208611, A & NO, 9702942, A & JP, 10-72462, A                                                                                                                                             |                                        |  |
| х                                                     | EP, 557879, Al (HOECHST AG.), 01 September, 1993 (01.09.93), & CA, 2089954, A & NO, 9300596, A & AU, 9333762, A & HU, 63409, A & ZA, 9301182, A & JP, 6-41120, A & IL, 104791, A & AU, 9510290, A & HU, 70638, A & US, 5571816, A  | 35,36                                  |  |
| <b>x</b>                                              | EP, 557877, Al (HOECHST AG.), 01 September, 1993 (01.09.93), & CA, 2089956, A & NO, 9300595, A & AU, 9333760, A & HU, 63410, A & ZA, 9301183, A & JP, 6-184137, A & IL, 104792, A & AU, 9511365, A & US, 5795899, A & HU, 70503, A | 35,36                                  |  |
| х                                                     | WO, 87/4928, A1 (MITSUI PETROCHEMICAL INDUSTRIES 27 August, 1987 (27.08.87), & EP, 257102, A1 & EP, 799617, A2 & US, 4959368, A & CA, 1305142, A & JP, 8-325268, A                                                                 | LTD.), 1-4,10,11,15, 16,23-28,35,36    |  |
| х                                                     | EP, 188094, A2 (MITSUI PETROCHEMICAL INDUSTRIES 23 July, 1986 (23.07.86), & JP, 61-140568, A & US, 4734418, A & CA, 1307786, A & HU, 42479, A                                                                                      | LTD.), 1-4,10,11,15-<br>18,23-30,33-36 |  |
| x                                                     | EP, 12361, A1 (HOECHST AG.), 25 June, 1980 (25.06.80), & DE, 2853220, A & ES, 486536, A & AU, 7953571, A & JP, 55-81863, A & ZA, 7906651, A & US, 4285946, A & CA, 1136623, A & ES, 491224, A & ES, 491225, A                      | 35,36                                  |  |
| х                                                     | GB, 933159, A (CIBA LTD.),<br>08 August, 1963 (08.08.63)<br>& US, 3234219, A                                                                                                                                                       | 35,36                                  |  |
| х                                                     | GB, 901749, A (CIBA LTD.),<br>25 July, 1962 (25.07.62)                                                                                                                                                                             | 35,36                                  |  |
| х                                                     | Chemical Abstracts, Vol.55, column 6489, Par. No column 6491, Par. No. c, RN=102548-49-2                                                                                                                                           | o. c to 35,36                          |  |
| A                                                     | EP, 640599, A1 (ONO PHARMACEUTICAL CO., LTD.), 01 March, 1995 (01.03.95), & US, 5525604, A & JP, 7-89958, A & CA, 2130878, A & CN, 1109055, x                                                                                      | 1-30,33-36                             |  |
|                                                       | A C10 (continuation of cocord shoot) (July 1000)                                                                                                                                                                                   |                                        |  |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)



International application No.

PCT/JP00/07048

|                                                                                                                                          | Observations where certain claims were found unsearchable (Continuation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
| ı. 🛚                                                                                                                                     | Claims Nos.: 31,32 because they relate to subject matter not required to be searched by this Authori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ty, namely:                                    |  |
|                                                                                                                                          | inventions as set forth in claims 31 and 32 pertain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to methods for treatment of                    |  |
| tne l                                                                                                                                    | human body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
| 2.                                                                                                                                       | Claims Nos.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |  |
|                                                                                                                                          | because they relate to parts of the international application that do not comply w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vith the prescribed requirements to such an    |  |
|                                                                                                                                          | extent that no meaningful international search can be carried out, specifically:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
| , _                                                                                                                                      | 1 ovinava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |  |
| 3.                                                                                                                                       | Claims Nos.:<br>because they are dependent claims and are not drafted in accordance with the sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cond and third sentences of Rule 6.4(a).       |  |
| Box II                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          | sternational Scarching Authority found multiple inventions in this international appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                                              |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                              |  |
|                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
| 1.                                                                                                                                       | As all required additional search fees were timely paid by the applicant, this inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mational search report covers all searchable   |  |
| _                                                                                                                                        | claims.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |  |
| 2. 🔲                                                                                                                                     | As all searchable claims could be searched without effort justifying an additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I fee, this Authority did not invite payment   |  |
| _                                                                                                                                        | of any additional fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · •                                            |  |
| 3. 🗀                                                                                                                                     | As only some of the required additional search fees were timely paid by the appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | icant, this international search report covers |  |
|                                                                                                                                          | only those claims for which fees were paid, specifically claims Nos.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                              |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
| 4. 🗖                                                                                                                                     | No required additional search fees were timely paid by the applicant. Consequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tly, this international                        |  |
| • Ш                                                                                                                                      | search report is restricted to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mentioned to the invention first mention first mention first mentioned to the invention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first mention first ment | •                                              |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |  |
|                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |  |
| D ·                                                                                                                                      | h on Protect The additional count for a country of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |  |
| Kemark                                                                                                                                   | k on Protest The additional search fees were accompanied by the application of additional search fees were accompanied the navment of additional search fees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |  |
|                                                                                                                                          | No protest accompanied the payment of additional search for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ccs.                                           |  |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)