Propositional Logic

4 The rules of logic gives precise meaning to mathematical statements.

y These rules are used to dishinguish between valid and invalid mathematical arguments.

Proposition

- A proposition is a declarative statement.
- A declarative statement declares a fact.
- 7 That can be either true or false. But it Cannot be both.

ex: Declarative sentence are propositions

- Washington D.c is capital of USA. (True)
- = 2 (True)
- 2 +2 = 3 (False)
- Canada is the capital of Torronto (False)

Sentenus not propositions

1) What home is it? [Not a declarative sentence]

(2) of $\pm y = 2$ $\begin{cases} x = 1, y = 1 & \text{then } 1 + 1 = 2 \text{ (True)} \\ x = 2, y = 1 & \text{then } 2 + 1 = 2 \text{ (False)} \\ \text{A proposition can be either (True or } \\ \text{False, cannot be both.} \end{cases}$

Terminologics

Propositional Vamable -> Variable that represent proposition.

(Fruth value of proposition) True -T False - F

Propositional Logic - Area of logic that deals with proposition.

Propositional Logic was first developed by Greek philosopher Aristotle More than 2300 years ago.

Definitions

Negation of P

Let P be a proposition. The negation of p.

is denoted by 'TP' read as "not P"

(P is True TP is false and VILLA VONSA)

Aruth Pable (TP)

P	7P
T	F
F	T

Conjunction of P and q

The conjunction PAQ is true when both p and q are true and Is false otherwise.

Pnq => propostion "P and q"

Truth Table. (PAQ)

P	9	PNQ
7 F T	TFF	TF
F	1	

ייטון ייטן וטוי

Disjunction of PVa

Let p and q be propositions. The disjunction of p and q, denoted by pvq is the proposition "p or q". The disjunction pvq is false when both p and q, are false and is frue otherwise.

Truth Table for PVq.

P	19:	Prq
1	J.	T
9	F	T
F-	T	T
F	F.	F

L'x cluse - OR (PAqi)

The exclusive or of p and q denoted by P + q is the proposition that is true when exactly one of p and q is true and is false otherwise

P	9	PD 9
TFF	T F T F	F T T F

A student can have soup with dinner and A student can have soup with dinner

The exclusive or of p and q is the statement that is true when exactly statement of p and q is frue.

One of p and q is frue.

P 19 -> A shedent can have.

Boup on salad but not both i with dinner.

Us a fair way of saying that traking both is not permitted.

Conditional Statement or Implication

Let p and q be propositions.

The conditional statement p -> q is the proposition "if p, then q".

P -> 9 is false, p is frue and 9 is false. and frue other wise.

P -> hypothesis Q -> conclusion.

Onuth Table

P	19	P->9
9	T	T
T	F	F
F	F	T_

Let P -s Maria learn discrete mathematics"

Q -s Maria will find a (job

Express English meaning P-99

P-99 IF maria learns discrete mathematics

pho she will find a Job

Let p and q be propositions. The beconditional statement p => 9 is the proposition "p if and only if q".

P = q is true when p and q have the same truth value

F	e a	
P	a	P => 9
T	TF	F
F	F	T

Logic and Bit operation

A bit is symbol for two value

o and 1

False True Bit is represented Boolean vanable.

Bit String
A bit string is a sequence of zero more bits. The length of this string the number of bits in the string.
Bit string P 01 1011 0110
Biturse OR 11 1011 11.11 AND 01 0001 0100
XOR 10 . LO10 1011
Compound Proposition
5 important logical connectives. —> Conjunction.
_) dis junction.
exclusive 07.
-> implication -> biconditional operator. -> Negation.

These connection are used to build complicated compound propositions.

Construct the truth table for compound.

proposition.

(PV 79) -> (PN9)

Pricedence of logical operators

Operator greeden

7 1

A 2

V 3

A 4

S

S

TP 19 in Negation applied first

PV 9 17 -> PV (917)

PN 9 VY -> (PN9) VY

PN 9 VY -> Fort

Construct truth table for each of 6.

$$P Q Q \rightarrow TP P \Rightarrow Q Q \rightarrow TP \Leftrightarrow (P \rightarrow Q)$$

$$T T T$$

$$F F F F$$

$$F F T$$

$$F F T$$