Включить << C:\Users\yura\Desktop\pacчеты_Lavart_мазут\функции_2хода.mcdx Расчет дымогарных труб второго хода дымовых газов Задаемся температурой дымовых газов на выходе из дымогарных труб 2го $t''_{2x} = 500$ хода $t_{vx} = 336.915$ Температура на входе во 2йход ДГ $a := t \stackrel{\sim}{}_{n\kappa} \qquad b := t \stackrel{\sim}{}_{2\kappa}$ $x(a,b) := fQ_{2x_mmo}(a,b)$ $y(a,b) := fQ_{2x_\delta}(a,b)$ $y(a,b) := fQ_{2x_\delta}(a,b)$ $t''_{n\kappa} = 1060.929$ $\Gamma_{2r} := \Gamma_{nr} = 27469.188$ Температура на выходе из 2го хода ДГ полученная решением системы уравнений $t_{2x} = sol_{1} = 640.018$ x(a,b) - y(a,b) = 0 $sol4 := \mathbf{find}(a,b) = \begin{bmatrix} 1060.929 \\ 640.018 \end{bmatrix}$ $I''_{2x} := I_2(t''_{2x}) = 15795.5$ Рассчитаем среднюю температуру дымовых газов $t_{2x_cp} := \frac{t''_{n\kappa} + t''_{2x}}{2} = 850.474$ $T_{2x cn} := t_{2x cn} + 273.15 = 1123.624$ Рассчитаем температурный напор в дымогарных трубах 2го хода дымовых газов $\Delta t_{2x} := \frac{\Delta t_{2x_6} - \Delta t_{2x_M}}{\ln\left(\frac{\Delta t_{2x_6}}{\Delta t}\right)} = 733.475$ $\Delta t_{2x_6} := t^{"}_{n\kappa} - t_2 = 990.929$ $\Delta t_{2x_M} := t^{"}_{2x} - t_1 = 525.018$ $\omega_{2x} \coloneqq \frac{B_{mon,nuga} \cdot V_{z} \cdot T_{2x_cp}}{F_{\mathcal{H}c} \cdot 2x \cdot 273} = 35.671$ Рассчитаем скорость в жаровой трубе Определим параметры дымовых газов при средней температуре дымовых газов $v_{2x \partial z} := v_{\partial z} (t_{2x cp}) = 1.354 \cdot 10^{-4}$ $\lambda_{2x \partial z} := \lambda_{\partial z} (t_{2x cp}) = 0.094$ $Pr_{2x} = Pr_{2x}(t_{2x}, c_n) = 0.545$ Рассчитаем коэффициент теплоотдачи конвекцией во 2м ходу дымовых газов $\alpha_{m\kappa_{-}2x} := 0.023 \cdot \frac{\lambda_{2x_{-}\partial z}}{d_{2x}} \cdot \left(\frac{\omega_{2x} \cdot d_{2x}}{v_{2x_{-}\partial z}}\right)^{0.8} \cdot Pr_{2x_{-}\partial z}^{0.4} = 62.878$ Рассчитаем коэффициент $k_{z_{2}x} := \left(\frac{7.8 + 16 \cdot r_{H2O}}{\sqrt{10 \cdot p_{m} \cdot r_{n} \cdot s_{2x}}} - 1\right) \cdot \left(1 - 0.37 \cdot 10^{-3} \cdot \left(t^{2} + 273.15\right)\right) = 51.283$ ослабления лучей газовой средой

2x	:=1-e ⁻	$k{z_2x} \cdot r_n \cdot p_m$	$s_{2x} = 0$.075			Pa	ıccı	нита	ем с	теп	ень	чер	НО	гы і	газс	ВС	йч	асті	и фа	акела	a
2x	$:= a_{z=2x}$ •	$a_{\mu.2x} \cdot C_{\varepsilon_{\underline{-}}}$	$_{2x} = 6$.28	Pa	ассч	ита	ем	коэ	ффиі	циеі	IT Te	ЭΠЛ	оот	дач	ии	зл	уче	ние	м, Е	Вт/(м	ı2K
	$\psi_{2x} := 0.65$			нач	енис	коэ	ффі	ици	ент	а теі	ΊЛΟ	вой	эфф	рек	гив	нос	ти					
	$K_{2x} := \psi$	$a_{2x} + a_{x}$	$+\alpha_{n_2x}$ = 44.953					Рассчитаем коэффициент теплопередачи														
	Q _{2х_тмс}	$:= \frac{K_{2x} \cdot Z}{B_{mon}}$	$\Delta t_{2x} \cdot F$	$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$	= 113	99.01	6	-	Pac	счита	аем	теп.	по і	вос	при	ГКН	гое	тр	убаг	ми 2	2го х	ЮД
	Q_{2x_6} :=	$\varphi_m \cdot \langle I \rangle_2$	$x-I^{"}_2$	$(x_x) =$	9.016)	Расчет уравнения баланса тепла, кДж/м3															
	Q_{2x_mmo}	Q_{2x_6} :	=-1.8	319•	10^{-12}	2		Не	ЕВЯЗ	ка те	пло	вого	о ба	лан	нса							