

NOTAS

	Matrizes	pg. 1 a 28	
OL OL			
Definição: Representa-re uma	ating de m linha	exemplos	
- 1			
Amxn = a11 a12 an =	[aij]mxn	$A_{3X2} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}$	$\boldsymbol{B}_{1X4} = \begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix}$
a21 a22 a2n	descrimina e elemente	da matriz	
$A m \times n = \begin{bmatrix} a_{11} & a_{12} & & a_{4n} \\ a_{21} & a_{22} & & a_{2n} \\ a_{m1} & a_{m2} & & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & & a_{4n} \\ a_{21} & a_{22} & & a_{2n} \\ a_{m1} & a_{m2} & & a_{mn} \end{bmatrix}$		$C_{3X3} = \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\boldsymbol{D}_{1X1} = \left[\sqrt{41}\right]$
		10 0 0 1	Joseph III
02		(313) matriz que	dada
Definição: Squaldowle de Motrize	5		
Linhas, columas e elementos iognois			
Tipes Especiais Amxn			
(madrada (man)			
@ Nula (aij = 0)			
(3) Coluna (n=1)	Ex: Ex C 2		
	I3 = [0 0 0]		
W Linha (m=1)	1 10013	Em [0 0]	
6 Dia openal - matriz quadrada ende	aij=0 pana iti	[00]	0::-0 :>
(I dentidade - matriz quadrodo ene	leaij = 1 e pana i≠jaij	= 0 6/ T 12 (m=n	, un so pare 151)
1 Triangular Superior - Eleme	entes abaixo da diagonol nu	des [003]	
(Trianquelan Inferior - Eleme		3000	aij=o pana i <i)< td=""></i)<>
C Junifact Infriet	[e # √2]	4 -2 3 0 V2 3 5 1	
Siméhica → Orde m=n e aij-a	ji - π + 1		
	[15 / -4]		
perações			
	at some de also esta	skovite di mitrice di associa	endim
Adição - A+B = aij + Bij Jmx	n	l a sona de matrizes de erdern q	200
Propriedodes:	- Peruin no Mod late us	ponint devide a programação -> s	ona a column B c/as
(a) A + B = B + A	Lo Compillare madement	> 6-6-F	Columns A)
b) A+ (B+c) = (A+B) + c	3 2 3 4 4 7 6 7 0 0 2 0	= 5 2 4 1	2 0 F - (1 2 8 4)
nautor	1 2 3 4	5 9 9 11	4×4
a + 0 = A, 0 & a matriz nula	F *	2 4 6 10 Cz, * 4	Fz. = 1 6+F= 8

	Sistemas 1	means	
Definições			
	ē de mequações,	m incégnitos	
(
	$X_2 + \ldots + a_{sn} \cdot x_n = 0$		
1 a21. X1 + a22.)	$(2 + \dots + \alpha_{2n} \cdot x_n = 6$	32	
	•		
ams Xs + amz	x2 + + amn xn = 1	3m	
any = 1 × c	≤m, 1≤j≤n		tenus)
	Matriz de 1	Natriz de coeficientes	fow
matriz de coeficient		independentes	
The state of the s	And the second second	b1]	
1 a21 a22 a	2n X2 =	P5	
	: \ :	· (/	X = B
ami ans o	lmn Xn	hal	

$$\begin{cases}
X_{1} + 4X_{2} + 3X_{3} = 1 \\
2X_{1} + 5X_{2} + 4X_{3} = 4
\end{cases}$$

$$\begin{cases}
X_{1} + 4X_{2} + 3X_{3} = 1 \\
2X_{3} + 5X_{2} + 4X_{3} = 4
\end{cases}$$

$$\begin{cases}
X_{1} - 3X_{2} - 2X_{3} = 5
\end{cases}$$

$$\begin{cases}
X_{1} - 3 - 2
\end{cases}$$

$$\begin{cases}
X_{1} - 3 - 2
\end{cases}$$

$$\begin{cases}
X_{2} - 2X_{3} = 5
\end{cases}$$

25 avando não aparece um termo é pop ele é nulo.

$$\begin{cases}
X_1' + X_2' = 1 \\
-X_3' + 3X_2' = 5
\end{cases}$$

$$\begin{bmatrix}
1 & 1 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
X_3' \\
X_2'
\end{bmatrix}
=
\begin{bmatrix}
1 \\
5
\end{bmatrix}$$

Operações elementares

Permuta

Permuta das i-esímas e j-esímas linhas (Li ← L3)

$$\begin{bmatrix} 1 & 0 \\ 4 & -1 \\ 3 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 3 & 5 \\ 4 & -1 \end{bmatrix}$$

Multiplicação

Multiplicação da i-éxima linha por um escalar não nulo K (Li -> K Li)

$$\begin{bmatrix} 1 & 0 \\ 4 & -1 \\ -3 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ -12 & 3 \\ -3 & 5 \end{bmatrix}$$

Substituição

Substituição da i-érima linha pela i-érima linha mais K rezes a j-érina linha Li -> Li + K.Lj

Ex:
$$L_3 \rightarrow L_3 + 2L_1 \rightarrow -3+2\cdot 1 = -1$$

$$\begin{bmatrix}
1 & 0 \\
4 & -1 \\
-3 & 5
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 \\
4 & -1 \\
-1 & 5
\end{bmatrix}$$

A = [aij] mo								
3 det [a] = 1	a1 = [a]	-> 6	A = \(\frac{1}{2}\)					
2 4= [a, a	22] 1AI=	an an	- a,, au	- azı a,	7 ->	$B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	2] -1] (-1) - (-1).(2) = L,	
[0.23 0]	1 022 022	l.			10.		
3 $A = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$	an an	, A =	an an an	an an an	= a ₁		(a13. a22. a31 +	
				dos dues co	CLLS -	Q23 - Q32 +	an an an	
Ex: A =	-1 2 0 1	3 7	[A] = -1	2 3 L -1	0 1		7 + 5. (-1) 1 + 3	
	1 2	1	1	2 1	1 2	(-1) + (-	2) +0-(3+2	
						-3-5	= -8	
repriedadus						la 123 68	bolotni	
1 Se 3.		now our col	una mula o	le A entã	e 141=0			
3 Dada 1			a per 1° →				near ne	

© Trecorda a pesiçãe de 2 linhos e determinante truc (3) O determinante não se altira se semanmes a un constante	
(8) det (AB) = del	
Desenvohimento de Laplace	
- Reduções de cálcula de determinante	
-s Oado Aij ordem 3	
-s Oade Aij erdem 3 [1A1 = a.s. Δs. + a.s. Δs. + a.s. Δs.]	1A1 = (a11 a12 a13)
smole Δig = (-1) 1 Aig	ase ass ass
A = \alpha \cdot \alpha \cd	an an ans
(an an ass) (an an ass	ase ass ass
$ \boxed{ } \begin{array}{c} \boxed$	= 013 . (-1) . (021 . 033 - 023 . 031) +
(a ₁₃ . Δ ₁₃ = a ₁₃ . (-1) . a ₂₁ a ₂₂ =	a 13.1. (a21. a32 - a22. a01)
Exemple:	
$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -2 & -1 & 2 \end{bmatrix} 1A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -2 & -1 & 2 \end{bmatrix}$	
	-2 Z
1 -2 3 1 -2	$\Delta_{22} = (-1)^{2+2}$, $\begin{vmatrix} 4 & 3 \\ -2 & 2 \end{vmatrix}$ = 1. $(1.2) - (-6) = \frac{8}{2}$
1 -2 3 1 -2	-2 2
-2 -1 2 -2 -1	$\Delta 3z = (-1)^{3+2}$. $\begin{vmatrix} 4 & 3 \\ 2 & -1 \end{vmatrix} = -(-1 - 6) = \frac{7}{2}$
1. 1. 2 (+ (+2).(-1).(-2) (+ 3.2.(-1)	4 -2.(-2) +1.(8) -1.7 =

$\begin{bmatrix} 2 & -1 \\ -11/2 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$	2] = [2.6 - 1.11	4-4 = [1 0 1	
Propriedades				
inversivel a (AB) 1	a, 3 B-1 tal que BA =			
Calculo da inversa por	natrizes elementares			
A I	rei	Lx = 1 . t.	L L2:	13 116 0 1 ~ 4 0 L] ~ L2+(-11)L1
$\begin{bmatrix} 1 & 1/3 & 1/6 & 0 \\ 0 & 1/3 & -11/6 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1/3 & 1/6 & 0 \\ 0 & 1/3 & -11/6 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1/3 & 1/6 & 0 \\ 0 & 1 & -11/2 & 3 \end{bmatrix}$ $L_1 \Rightarrow L_1 + (-\frac{1}{3})L_2$ $- \Lambda \qquad = 3$	~ [1 0 2 -11/2	3]	
$\begin{array}{c} \text{Ex2 A : } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix} \rightarrow \end{array}$	1 0 1 1 0 0 1 2 1 1 0 1 0 0 2 1 1 0 0 1 L2 = L2 + (-1).L1			1 0 0 1 0 1 -L 0 1 01-1/2 1/2 0 0 0 1 1 -1 -1 13 A-L
$A \cdot A^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 0 & 2 \end{bmatrix}$	1			
Comando no Mat	lab: inv(A)			

