GSM Global System for Mobile Communication

Hany El-Ghaish

- Geographic network areas

The GSM service area is the collection of PLMNs in which you can use one mobile station.

An MSC/VLR service area is made up of several LA's and is covered by one MSC.

SERVICE AREA

A Location Area (LA) is a group of cells. It is:

- The largest area in which a mobile station may roam without updating location
- · Served by one or more BSCs, but only one MSC
- The area within which paging messages are sent out to all mobile subscribers

LOCATION AREA

IDENTITY NUMBERS

The Location Area Identity (LAI):

- Determines the need for location updating
- · Is the area in which a mobile station is paged
- Consists of three parts

- Cell

A cell is the smallest radio coverage area in the network.

IDENTITY NUMBERS

The CGI is used to identify cells within the GSM network.

GERMANY: 262 - 02 - 4867 - 6832

CH₃

GSM bands

GSM Frequency Bands

System	P-G5M 900	E-GSM 900	GSM(DCS) 1800	GSM(PCS) 1900
Uplink (MS → BS) Downlink(BS → MS)	890 - 915 MHz 935 - 960 MHz	880 - 915 MHz 925 - 960 MHz	1710 - 1785 MHz 1805 - 1880 MHz	1850 - 1910 MHz 1930 - 1990 MHz
Wavelength	≅ 33 cm	≅ 33 cm	≅ 17 cm	≅ 16 cm
Bandwidth	25 MHz	35 MHz	75 MHz	60 MHz
Duplex distance	45 MHz	45 MHz	95 MHz	80 MHz
Carrier separation	200 kHz	200 kHz	200 kHz	200 kHz
No. of carriers	124	174	374	299
Channel rate	270.8 kbps	270.8 kbps	270.8 kbps	270.8 kbps

Uplink and downlink

Two carriers make up the radio channel required for communication between the Mobile Station (MS) and Base Transceiver Station (BTS).

For digital systems:

 Time Division Multiple Access (TDMA) is the GSM standard

Figure 1 GSM RF Channel

- TDMA frame structure
 - -Bit rate of the radio carrier is 270.833 Kbps
 - -Bit duration = 1/270.833=3.69 µsec
 - -One time slot =148 bits+8.25 guard bits=156.25 bits
 - -Time slot duration =156.25x3.69 µsec= 0.577 msec
 - -Frame duration=0.557x8= 4.615 msec

- · TDMA frame structure
 - -Bit rate of the radio carrier is 270.833 Kbps
 - -Bit duration = 1/270.833=3.69 μsec
 - -One time slot =148 bits+8.25 guard bits=156.25 bits
 - -Time slot duration = 156.25x3.69 μ sec= 0.577 msec
 - -Frame duration=0.557x8= 4.615 msec

- Types of channels
 - 1. Physical channels
 - 2. Logic channels

- Types of logic channels
 - 1. Traffic channels
 - 2. Control channels

AIR INTERFACE Channel Logical Physical Traffic FR EFR HR

- Types of Traffic channels
 - 1. Full rate
 - 13 Kbps data rate
 - 2. Enhanced full rate
 - 12.2 Kbps data rate
 - 3. Half rate
 - increase network capacity

Data

Redundancy

ENG_TRCT

Types of control channels

· Broadcast control channel

· Common control channel

· Dedicated control channel

AIR INTERFACE Channel Logical **Physical** Control Traffic FR **EFR** HR **CCCH AGCH** RACH ENG_TRCT

The Broadcast Channels (BCHs)

- Is transmitted by BS all the time.
 Monitored by MSs periodically (every 30 sec).
 All BCHs are downlink.

Logical channel	Function	BTS	MS
Frequency Correction Channel (FCCH)	Supply MS with reference freq.	•Transmits a carrier frequency.	 Identifies BCCH carrier synchronizes with the frequency.
Synch. Channel (SCH)	For TDMA frame synchronization.	•Transmits frame number and BSIC.	•Synchronizes with frame structure.
Broadcast Control Channel (BCCH)	·Carries parameters needed to identify and access network. ·It is transmitted at constant power at all times and checked by all MSs.		Receives LAI May update MS sets its output power level.

Dedicated Control Channels (DCCHs)

- > Carry messages between MS and network.
 > SDCCH is used for call setup, update, authentication

Logical ch.	Function	BTS	Switches to SDCCH. Call set up is performed. MS receives TCH assignment [carrier + time slot]	
Stand-alone Dedicated Control Channel (SDCCH) UL+DL	·Exchange signaling information in uplink and downlink.			
Slow Associated Control Channel (SACCH) UL+DL	Conveys power control and timing information in downlink. Conveys link quality reports in uplink.	•Instructs MS about: ∢Transmit power ∢Time advance.	•Sends measurements of its BTS and neighboring BTSs during a call.	
Fast Associated Control Channel (FACCH) UL+DL	·Steals TCH to carry handover and channel reassignment.	•Transmits handover information.	•Transmits handover request	

GSM Course

CH4

CH 4 ELEMENTS OF DIGITAL MOBILE

In this chapter we will see :

- 1. Elements of digital mobile
- 2. speech coding
- 3. Channel coding
- 4. Interleaving
- 5. Security in GSM
- 6. Modulation in GSM

ELEMENTS OF DIGITAL MOBILE **GSM** Reception Chain Channel Demodulator 33.85 kbps Burst Deassembling and demultiplexing 22.8 kbps Deciphering 22.8 kbps De-Interleaver _____22.8 kbps Recovered speech Channel decoder

MOBILE

1. Low bit rate

speech coding must give :

- 2. Preserving the essential elements of speech quality
- 3. An acceptable cost of the equipment
- GSM sends information about speech not the speech itself

· First step A/D converter

ELEMENTS OF DIGITAL MOBILE **Pulse Code Modulation** \square A/D is performed by PCM. □ PCM involves 4 steps: 1- Bandlimiting (FILTERING) 2- Sampling 3- Quantizing 4- Encoding -Bandlimiting **ENG_TRCT** F(f)H(f)Baseband signal

-Sampling

 $f_s = 2 f_x \text{ sample/sec}$

- \square A/D is performed by PCM.
- □ PCM involves 4 steps:
 - 1- Bandlimiting
 - 3- Quantizing

- 2- Sampling
- 4- Encoding

-Bandlimiting

- o Number of levels = 2^13=8192 levels.
- o This gives 13 bit/sample.

- \square A/D is performed by PCM.
- □ PCM involves 4 steps:
 - 1- Bandlimiting
 - 3- Quantizing

- 2- Sampling
- 4- Encoding

-Bandlimiting

o Encoding rate = $8000 \times 13 = 104 \text{ kb/sec.}$

- Predictive coding
 - 1. We send information about noise not the voice itself (pitch, tone, ... etc)

2. Less power and less co-channel interference Voice activity VAD detection Discontinuous Voice 8000 s/sec Voice frame Speech coder transmission 13 b/sample Noise frame Comfort noise **ENG_TRCT**

· DTX

· Channel coding

- o Mobile channel is error-prone.
- o Compressed speech is sensitive to errors.
- o Error correction is necessary.
- Channel coding adds extra bits to help in error correction.

o GSM uses:

- 1. Block code
- 2. Convolutional code

· Convolutional code

- · Interleaving
- First level : Block interleaving

- second level : Burst interleaving
 - -Normal Burst has 2 of 57b blocks
 - -If Burst is lost BER=25%
 - -To reduce it to 12.5% we put 2 blocks of two 20 msec

20 msec speech 8x57=456 bits 20 msec speech 8x57=456 bits 20 msec speech 8x57=456 bits

57 bits 57 bits

Normal Burst

security

Security Attacks

Passive attacks

Active attacks

ELEMENTS OF DIGITAL MOBILE NORMAL FLOW **ENG_TRCT**

GSM security

- · TMSI
- Authentication
- · IMEI check
- · ciphering

Authentication

- It is a processor system that performs the authentication function

Ciphering Process

Deciphering Process

ENG_TRCT

Gaussion Minimum Shift Keying

- 1. High bandwidth efficiency i.e. high bit rate per Hz
- 2. Low power drain
- 3. Good BER performance
- 4. Low implementation cost
- · GMSK is the modulation scheme of the GSM system

Thanks