Introduction to Artificial Intelligence

Game Playing

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Summer Term 2003

Outline

- Perfect play
- Resource limits
- Games of chance
- Games of imperfect information

Games vs. Search Problems

Game playing is a search problem

Defined by

- Initial state
- Successor function
- Goal test
- Path cost / utility / payoff function

Characteristics of game playing

- "Unpredictable" opponent:
 Solution is a strategy specifying a move for every possible opponent reply
- Time limits:
 Unlikely to find goal, must approximate

Game Playing

Plan of attack

Computer considers possible lines of play

[Babbage, 1846]

Algorithm for perfect play

[Zermelo, 1912; Von Neumann, 1944]

Finite horizon, approximate evaluation

[Zuse, 1945; Wiener, 1948; Shannon, 1950]

First chess program

[Turing, 1951]

Machine learning to improve evaluation accuracy

[Samuel, 1952-57]

Pruning to allow deeper search

[McCarthy, 1956]

Types of Games

perfect information

imperfect information

deterministic	chance
chess, checkers, go, othello	backgammon monopoly
	bridge, poker, scrabble nuclear war

Game Tree: 2-Player / Deterministic / Turns

Minimax

Perfect play for deterministic, perfect-information games

Idea

Choose move to position with highest minimax value, i.e., best achievable payoff against best play

Minimax: Example

2-ply game

Minimax Algorithm

```
function MINIMAX-DECISION(game) returns an operator
  for each op in Operators[game] do
      Value[op] \leftarrow Minimax-Value(Apply(op, game), game)
  end
  return the op with the highest VALUE[op]
function MINIMAX-VALUE(state, game) returns a utility value
  if TERMINAL-TEST[game](state) then
      return UTILITY[game](state)
  else if MAX is to move in state then
      return the highest MINIMAX-VALUE of SUCCESSORS(state)
  else
      return the lowest MINIMAX-VALUE of SUCCESSORS(state)
```

Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time $O(b^m)$ (depth-first exploration)

Space O(bm) (depth-first exploration)

Note

Finite strategy can exist even in an infinite tree

Resource Limits

Complexity of chess

 $b \approx 35$, $m \approx 100$ for "reasonable" games Exact solution completely infeasible

Standard approach

- Cutoff teste.g., depth limit (perhaps add quiescence search)
- Evaluation functionEstimates desirability of position

Evaluation Functions

Estimate desirability of position

Black to move
White slightly better

White to move Black winning

Evaluation Functions

Typical evaluation function for chess

Weighted sum of features

$$EVAL(s) = w_1f_1(s) + w_2f_2(s) + \cdots + w_nf_n(s)$$

Example

$$w_1 = 9$$

 $f_1(s) = \text{(number of white queens)} - \text{(number of black queens)}$

Cutting Off Search

Does it work in practice?

$$b^m = 10^6, \quad b = 35 \qquad \Rightarrow \qquad m = 4$$

Not really, because ...

4-ply pprox human novice (hopeless chess player)

8-ply \approx typical PC, human master

12-ply pprox Deep Blue, Kasparov

Properties of α - β

Effects of pruning

- Reduces the search space
- Does not affect final result

Effectiveness

Good move ordering improves effectiveness

Time complexity with "perfect ordering": $O(b^{m/2})$

Doubles depth of search

For chess:

Can easily reach depth 8 and play good chess

The Idea of α - β

 α is the best value (to MAX) found so far off the current path

If value x of some node below V is known to be less than α ,

then value of V is known to be at most x, i.e., less than α ,

therefore MAX will avoid node V

Consequence

No need to expand further nodes below ${\cal V}$

The α - β Algorithm

```
function MAX-VALUE(state, game, \alpha, \beta) returns the minimax value of state
   inputs: state /* current state in game */
            game /* game description */
               /* the best score for MAX along the path to state */
                /* the best score for MIN along the path to state */
   if CUTOFF-TEST(state) then return EVAL(state)
  for each s in Successors(state) do
       \alpha \leftarrow \mathsf{MAX}(\alpha, \mathsf{MIN-VALUE}(s, game, \alpha, \beta))
       if \alpha \geq \beta then return \beta
   end
   return α
```

The α - β Algorithm

```
function MIN-VALUE(state, game, \alpha, \beta) returns the minimax value of state
   inputs: state /* current state in game */
            game /* game description */
               /* the best score for MAX along the path to state */
                /* the best score for MIN along the path to state */
   if CUTOFF-TEST(state) then return EVAL(state)
  for each s in Successors(state) do
       \beta \leftarrow \mathsf{MIN}(\beta, \mathsf{MAX-VALUE}(s, game, \alpha, \beta))
       if \beta \leq \alpha then return \alpha
   end
   return β
```

Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess

Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Go

Human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic Games: Backgammon

Nondeterministic Games in General

Chance introduced by dice, card-shuffling, etc.

Simplified example with coin-flipping

Algorithm for Nondeterministic Games

EXPECTMINIMAX gives perfect play

if state is a Max node then return the highest ExpectMinimax value of Successors(state)

if state is a MIN node then return the lowest EXPECTIMINIMAX value of Successors(state)

if state is a chance node then return average of EXPECTMINIMAX value of Successors(state)

Pruning Continued

More pruning occurs if we can bound the leaf values

Nondeterministic Games in Practice

Problem

 α - β pruning is much less effective

Dice rolls increase b

21 possible rolls with 2 dice

Backgammon

pprox 20 legal moves

depth 4 =
$$20^4 \times 21^3 \approx 1.2 \times 10^9$$

TDGAMMON

Uses depth-2 search + very good \mathbf{EVAL} \approx world-champion level

Digression: Exact Values DO Matter

Behaviour is preserved only by positive linear transformation of EVAL Hence EVAL should be proportional to the expected payoff

Games of Imperfect Information

Typical examples

Card games: Bridge, poker, skat, etc.

Note

Like having one big dice roll at the beginning of the game

Games of Imperfect Information

Idea for computing best action

Compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals

Requires information on probability the different deals

Special case

If an action is optimal for all deals, it's optimal.

Bridge

GIB, current best bridge program, approximates this idea by

- generating 100 deals consistent with bidding information
- picking the action that wins most tricks on average

Commonsense Example

Day 1

Road A leads to a small heap of gold pieces 10 points

Road B leads to a fork:

- take the left fork and you'll find a mound of jewels 100 points
- take the right fork and you'll be run over by a bus -1000 points

Best action: Take road B (100 points)

Day 2

Road A leads to a small heap of gold pieces 10 points

Road B leads to a fork:

- take the left fork and you'll be run over by a bus -1000 points - take the right fork and you'll find a mound of jewels 100 points

Best action: Take road B (100 points)

Commonsense Example

Day 3

Road A leads to a small heap of gold pieces (10 points)

Road B leads to a fork:

- guess correctly and you'll find a mound of jewels
- guess incorrectly and you'll be run over by a bus

100 points -1000 points

Best action: Take road A (10 points)

NOT: Take road B $(\frac{-1000+100}{2} = -450 \text{ points})$

Proper Analysis

Note

Value of an actions is NOT the average of values for actual states computed with perfect information

With partial observability, value of an action depends on the information state the agent is in

Leads to rational behaviors such as

- Acting to obtain information
- Signalling to one's partner
- Acting randomly to minimize information disclosure

Summary

- Games are to Al as grand prix racing is to automobile design
- Games are fun to work on (and dangerous)
- They illustrate several important points about Al
 - perfection is unattainable, must approximate
 - it is a good idea to think about what to think about
 - uncertainty constrains the assignment of values to states