Vector calculus

Problem set (solve analytically and numerically)

- 1. The temperature field at any point in a lake is given by $T(x,y,z) = \sin(yz) + \log(1+x^2)$ for all x,y,z. Plot this scalar field at the lake surface (z=0) and at 1 unit below the surface (z=1).
- 2. Compute the gradient of T(x,y,z). Plot this vector field at the lake surface.
- 3. At the point (1,1,0) on the lake surface, a boat is moving in the <3,1,0> direction. First calculate the unit vector for the boat's motion, and then compute the directional directive of the temperature field as seen by the boat. Hint: directional derivatives are projections of the gradient vector along some unit vector.

Rotating vectors

Coordinate transformations

Derive the individual components of the rotation matrix using the dot product of the rotated and original coordinate systems

How do we rotate tensors?

Rotating vectors

Coordinate transformations

- 1. For a fault with dip = 30° , calculate the unit vector in the dip direction (d) and in the direction normal to the plane (n).
- 2. This fault exists in a stress field given by a symmetric stress tensor [s22,s23,s33]. Compute the traction vector on this fault plane. Hint: traction vectors are the projection of the stress tensor onto a given plane. And a plane is uniquely described by the vector normal to it i.e. (n)
- 3. Project this computed traction vector onto the dip direction (d) and the fault-normal direction (n). These are the shear-traction and normal-traction respectively. Compare these expressions with the components you would have obtained simply by rotating the stress tensor by the dip angle. Hint: [S'] = [R][S][R']

Assignment

- 1. For the provided polygons and velocity vectors in a spherical coordinate system, first project them onto a cartesian coordinate system. Plot the original and transformed data.
- 2. The data represent the motion of the India-Eurasia collision as seen in the GPS-derived velocity field. Rotate the data and the polygons by 20° to a fault-based coordinate system.
- 3. How would you estimate the motion of all the sites relative to an India-fixed coordinate system?