En analys av Sudokulösare

Av: Patrik Berggren och David Nilsson

Översikt över arbetet

- Flera olika lösningsmetoder undersöktes
- Fokus på signifikanta mätresultat
- Studie av enskilda lösares egenskaper
- Även om parallelisering

Bakgrund

- Sudoku ur ett datatekniskt perspektiv
 - Komplexitet
 - Lösningsapproacher
- Sudoku-pussel
 - Olika antal givna ledtrådar
 - Varierande svårighetsgrad

Deterministiska algoritmer

- Backtrack
 - Brute-force
 - För varje steg väljs en rot
- Regelbaserad
 - Uppsättning regler som appliceras
 - En blandning av heurstik och brute-force

Stokastisk: Boltzmann-maskin

- Generaliserat artificiellt neuralt n\u00e4tverk
- Översikt över algoritmen:
 - Sudoku-pussel kodas som constraints
 - Stegvis uppdatering av n\u00e4tverket
 - Minskande temperatur över tid
- Temperaturen bestämmer aktiviteten
 - Kontrolleras typiskt av simulated annealing
 - Olika parametrar

Metod

- Hur mäts prestanda med signifikans?
 - Varierande belastning
 - Stokastika algoritmer
 - Bootstrapping för okända fördelningar
- Hur generaliseras lösningsprestanda?
 - Många olika pussel testas
 - Bygg fördelningar för varje algoritm

Resultat: Backtrack

Resultat: Regelbaserad

Jämförelse:

Jämförelse och svårighetskorrelation

Resultat: Boltzmann-maskin

Snabbt avtagande temperatur

Resultat: Boltzmann-maskin

Långsamt avtagande temperatur

Sammanfattning

- Stora prestandaskillnader
- Olika algoritmer ger olika egenskaper
- Statistisk signifikans kräver resurser
- Finns flera möjligheter till parallellisering

Tack för oss!

Frågor?