

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR MARGARITA OTERO

Rafael Sánchez

Revisión del 25 de octubre de 2019 a las 03:47.

Índice general

Ι	Sintaxis y semántica de primer orden	5
1.	Estructuras y lenguajes de primer orden 1.1. Introducción	7 7 8 8 9 9
2.	Términos y fórmulas de un lenguaje 2.1. Introducción	11 11 12 13 14 14
3.	Relación de satisfacción. 3.1. Satisfacibilidad	17 17 18 18
4.	Tautologías	21
5.	Consecuencia semántica	23
II	Apéndices	25
6.	Índices	27

ÍNDICE GENERAL

Parte I

Sintaxis y semántica de primer orden

Capítulo 1

Estructuras y lenguajes de primer orden

Introducción 1.1.

Definición 1 (Estructura). Una estructura (de primer orden) \mathcal{A} consta de un conjunto no vacío A(universo) y un conjunto de funciones, relaciones y elementos del universo.

Puede parecer una definición algo abstracta, así que vamos a ver algunos ejemplos:

Ejemplo 1 (Estructuras. Ejemplos)

- $\mathcal{G} = \langle G, \cdot, 1 \rangle$
- $R = \langle \mathbb{R}, +, -, \cdot, 0, 1, \leq \rangle$ $R_* = \langle \mathbb{R}, +, -, \cdot, 0, 1, \sin|_{[0,1]}, \exp \rangle$

Definición 2 (Lenguaje). Un lenguaje (de primer orden) consta de:

- Para cada $n \in \mathbb{N}^*$ un conjunto \mathcal{F}_n de símbolos de funciones n-arias.
- Para cada $m \in \mathbb{N}^*$ un conjunto \mathcal{R}_m de símbolos de relaciones m-arias.
- Un conjunto C de constantes.

Además de conjuntos de símbolos lógicos, variables $V = \{v_i\}_{i \in \mathbb{N}}$, cuantificadores (\exists, \forall) , conectores $(\land,\lor,\leftrightarrow,\rightarrow)$, símbolos de igualdad =, y paréntesis (). No se suelen especificar en la declaración del lenguaje.

Ejemplo 2 (Lenguajes. Ejemplos)

- $L = \{*, e\}$
- $L = \{\cdot, 1\}$
- $L = \{+, 0\}$
- $L = \{\cdot, ^{-1}, 1\}$

Además, para hablar del comportamiento de los reales vamos a usar el lenguaje:

$$L = \{+, -, \cdot, 0, 1, \leq \}$$

Es importante destacar que cuando escribimos + en la declaración del lenguaje no nos referimos a la función: $+: \mathbb{R}^2 \to \mathbb{R}$ si no a un símbolo que luego interpretamos como tal función en la estructura.

1.2. L-estructuras

Definición 3 (L-estructura). Dado un lenguaje 2 L, una L-estructura \mathcal{A} o una interpretación de L consta de:

- un universo $A \neq \emptyset$
- una función n-aria $f^A:A^n\to A$ para cada símbolo de función $f\in\mathcal{F}_n$
- una relación m-aria $R^{\mathcal{A}} \subseteq A^m$ para cada símbolo de relación $R \in \mathcal{R}_m$
- un elemento $e^{\mathcal{A}} \in A$ para cada constante $c \in \mathcal{C}$.

Notación. En la definición anterior:

 $L = \mathcal{F} \cup \mathcal{R} \cup \mathcal{C}$ (lenguaje), $\mathcal{F} = \bigcup_{n \in \mathbb{N}^*} \mathcal{F}_n$ (símbolos de función), $\mathcal{R} = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}_m$ (símbolos de relación), \mathcal{C} constantes.

Además, para cada símbolo $s \in L$, $s^{\mathcal{A}}$ es la interpretación de s a \mathcal{A} .

Ejemplo 3 (*L-estructura*. *Ejemplos*)

- $R = \langle \mathbb{R}, +^R, -^R, \cdot^R, \leq^R, 0^R, 1^R \rangle$ (interpretación del lenguaje de los reales con el universo \mathbb{R}). $\mathcal{A} = \langle A, +^A, -^A, \cdot^A, \leq^A, 0^A, 1^A \rangle$.

$$+, -, \cdot \in \mathcal{F}_2 \implies +^{\mathcal{A}}, -^{\mathcal{A}}, \cdot^{\mathcal{A}} : A^2 \to A$$

 $\leq \in R_2 \implies \leq^{\mathcal{A}} \in A^2; \quad 0, 1 \in \mathcal{C} \implies 0^{\mathcal{A}}, 1^{\mathcal{A}} \in A$

Observación. Podríamos intentar interpretar el lenguaje de los reales del ejemplo 2 con el universo $A = \mathbb{C}$, sin embargo, aunque podemos interpretar $+, -, \cdot, 0$ y 1 de la forma habitual, no existe una interpretación de \leq en \mathbb{C} .

Ejemplo 4 (Lenguajes comunes)

- $L_{\emptyset} = \{\}$. Es el lenguaje vacío, sigue teniendo símbolos generales. Sirve para expresar propiedades tales como: Existen tres elementos $(\exists x_1, x_2, x_3)$.
- $L_{<} = {<}$. Lenguaje para conjuntos ordenados. Con $< \in R_2$.
- $L_{grupos} = \{+, -, 0\}$ (aditivo), $\{\cdot, ^{-1}, 1\}$ (multiplicativo). Lenguaje para grupos. Con $+, \cdot \in \mathcal{F}_2$; $-,^{-1} \in \mathcal{F}_1; 0, 1 \in \mathcal{C}.$
- $L_{cuerpos} = \{+, -, \cdot, 0, 1\}$. Lenguaje para cuerpos.
- $L_{aritmtica} = \{+,\cdot,0,1,\leq\}$. Lenguaje para la aritmética. También podemos considerar añadir otro símbolo de función S, cuya interpretación natural sería la función sucesor.
- $L_{conj} = \{ \in \}$. Lenguaje para conjuntos. Todo se puede escribir con este lenguaje.

1.2.1. Subestructuras

Definición 4 (Subestructura de una L-estructura). Sean \mathcal{B}, \mathcal{A} L-estructuras (con universos \mathcal{B} y \mathcal{A} respectivamente), decimos que \mathcal{A} es una subestructura de \mathcal{B} ($\mathcal{A} \subseteq \mathcal{B}$) si:

- $f^{\mathcal{A}} = f^{\mathcal{B}}|_{A^n}$ para cada $f \in \mathcal{F}_n$. $R^{\mathcal{A}} = R^{\mathcal{B}} \cap A^m$ para cada $R \in R_m$.
- $C^{\mathcal{A}} = C^{\mathcal{B}}$
- $A \subseteq B$

Ejemplo 5 (Subestructuras. Ejemplos)

Sean los lenguajes: $L_1 = \{+, 0\}, L_2 = \{+, -, 0\}$. Vamos a considerar las L_1 -estructuras:

$$W = \langle \mathbb{N}, +^W, 0^W \rangle; \ Z = \langle \mathbb{Z}, +^Z, 0^Z \rangle$$

Donde es fácil ver que se cumplen las condiciones de subestructura y podemos afirmar que $W \subseteq Z$. Sin

9

embargo, si consideramos las L_2 -estructuras:

$$W' = \langle \mathbb{N}, +^{W'}, -^{W'}, 0 \rangle; \ Z' = \langle \mathbb{Z}, +^{Z'}, -^{Z'}, 0 \rangle$$

Vamos a dar una definición de -W' ya que el opuesto no está bien definido en \mathbb{N} . -W': $n \to 0$. Con esta interpretación es fácil ver que no se cumple que $-W' = f^{Z'}$ ya que:

$$-W'(2) = 0$$
 y sin embargo $-Z'(2) = -2$

Observación. Consideremos el lenguaje $L_{<}=\{<\}$ de conjuntos ordenados, y las L-estructuras $\mathcal{A}=\{<\}$ $\langle A, \langle \rangle, \mathcal{B} = \langle B, \langle \rangle$ (que sólo tienen una relación). Es fácil ver que:

$$\mathcal{A} \subseteq \mathcal{B} \iff A \subseteq B \text{ (suponemos } <^{\mathcal{A}} = <^{\mathcal{B}} \cap A^2)$$

1.3. **Homomorfismos**

Definición 5 (Homomorfismo y monomorfismo). Sean \mathcal{A} , \mathcal{B} L-estructuras y $\varphi: A \to B$ una función, decimos que $\varphi: \mathcal{A} \to \mathcal{B}$ es un homomorfismo de \mathcal{A} en \mathcal{B} si:

- 1. $\forall a_1, \ldots, a_n \in A$ se cumple: $\varphi(f^{\mathcal{A}}(a_1, \ldots, a_n)) = f^{\mathcal{B}}(\varphi(a_1), \ldots, \varphi(a_n))$ 2. $\forall a_1, \ldots, a_n \in A$ se cumple: $(a_1, \ldots, a_m) \in R^{\mathcal{A}} \implies (\varphi(a_1), \ldots, \varphi(a_m) \in \mathcal{B})$
- 3. $\forall c \in \mathcal{C}$ se cumple: $\varphi(c^{\mathcal{A}}) = c^{\mathcal{B}}$

Además, si la segunda condición resulta ser necesaria y suficiente, φ es un monomorfismo.

Ejemplo 6 (Ejemplo de monomorfismo)

Sean $\mathcal{A} = \langle A, +, 0 \rangle$, $\mathcal{B} = \langle B, +, 0 \rangle$ y $\varphi(a + b) = \varphi(a) + \varphi(b)$; $\varphi(0) = 0$. Es fácil ver que φ es un homomorfismo. Además, la única relación es la igualdad (que existe aunque no se especifique) y como $\varphi(a) = \varphi(b) \iff a = b \text{ estamos ante un monomorfismo.}$

Lenguaje asociado a una estructura 1.4.

En ocasiones vamos a querer considerar lenguajes que contengan elementos interpretados de una estructura.

Definición 6 (Lenguaje asociado a una estructura. Extensión de un lenguaje). Sea L un lenguaje, Auna L-estructura, decimos que $L_A = L \cup \{c_a\}_{a \in A}$ es el **lenguaje asociado** a la **estructura** A.

Diremos que L_A es una extensión de L. En general, L' es una extensión de L (aunque no indiquemos a que estructura está asociado).

Ejemplo 7 (Ejemplo de extensión de un lenguaje)

Sea el lenguaje $L = \{\leqslant\}$ y $W = \langle \mathbb{N}, \leqslant \rangle$ una L-estructura, $L_{\mathbb{N}} = \{\leqslant, \{c_n\}_{n \in \mathbb{N}}\} = \{\leqslant, 0, 1, 2, \ldots\}$ es una extensión de L.

Definición 7 (Expansión de una estructura). Sea \mathcal{A} una L-estructura, y \mathcal{A}' una L'-estructura, decimos que \mathcal{A}' es una expansión de \mathcal{A} (o análogamente, \mathcal{A} es un reducto de \mathcal{A}') si:

- 1. A' = A2. $s^{A'} = s^A \forall s \in L$

Ejemplo 8 (Ejemplo de expansión de una estructura)

Se consideran las estructuras: $\mathcal{R}_1 = \langle \mathbb{R}, + \rangle$ y $\mathcal{R}_2 = \langle \mathbb{R}, +, \cdot \rangle$. Entonces \mathcal{R}_2 es una expansión de \mathcal{R}_1 , o análogamente \mathcal{R}_1 es un reducto de \mathcal{R}_2 .

Observación. Sea L un lenguaje con constantes, $\mathcal{A} = \langle A, f^{\mathcal{A}}, \dots, R^{\mathcal{A}}, \dots, c^{\mathcal{A}}, \dots \rangle$ una L-estructura y L_A una extensión de L asociada a \mathcal{A} . Podemos considerar la L_A -estructura \mathcal{A}_A como la expansión de \mathcal{A} al lenguaje L_A :

 $\mathcal{A}_A = \langle A, \dots, f^{\mathcal{A}_A}, \dots, R^{\mathcal{A}_A}, c^{\mathcal{A}_A}, \{c_a\}_{a \in A}^{\mathcal{A}_A} \rangle$

Con la interpretación $f^{\mathcal{A}_A}=f^{\mathcal{A}},\,R^{\mathcal{A}_A}=R^{\mathcal{A}},\,c_a^{\mathcal{A}_A}=a.$ Donde dos constantes distintas (sintácticamente) pueden ser interpretadas de la misma forma. Veamos un ejemplo:

Sea $L = \{ \leq, 0 \}$ un lenguaje, $\mathcal{N} = \langle \mathbb{N}, \leq, 0^{\mathcal{N}} \rangle$ una L-estructura y $L_{\mathbb{N}} = \{ \leq, 0 \} \cup \{ c_n \}_{n \in \mathbb{N}}$ una extensión de L, entonces:

 $\mathcal{N}_{\mathbb{N}} = \langle \mathbb{N}, \leq, 0^{\mathcal{N}_{\mathbb{N}}}, c_0^{\mathcal{N}_{\mathbb{N}}}, c_1^{\mathcal{N}_{\mathbb{N}}}, \ldots \rangle$

y en $\mathcal{N}_{\mathbb{N}}$ las constantes: $0^{\mathcal{N}_{\mathbb{N}}}$ y $c_0^{\mathcal{N}_{\mathbb{N}}}$ tienen la misma interpretación, el valor $0 \in \mathbb{N}$, aún siendo constantes distintas

Capítulo 2

Términos y fórmulas de un lenguaje

2.1. Introducción

Con los elementos de un lenguaje podemos definir sucesiones finitas de símbolos del lenguaje. Pueden ser:

- **Términos**. Que pueden ser fuonciones o elementos.
- Fórmulas. Que pueden ser propiedades o subconjuntos de un universo.

2.2. Términos

Definición 8 (Términos de un lenguaje). Sea L un lenguaje, y M(L) el conjunto de palabras (sucesiones finitas de elementos de L). El conjunto de **términos** de L, Ter(L), es el menor subconjunto de M(L) que contiene a las constantes, variables y es cerrado para cada función n-aria $f \in \mathcal{F}_n$ con $n \in \mathbb{N}$, es decir:

si
$$t_1, \ldots, t_n \in \text{Ter}(L) \implies ft_0 t_1 \ldots t_n \in \text{Ter}(L)$$

Ejemplo 9 (Ejemplos de términos)

- $L = \{+, -, \cdot, 0, 1\}.$
 - Son términos:
 - $+v_0v_1$
 - 0
 - $+ + v_0 v_1 + 1 v_2$
- $L = {\cdot, 1}.$

Son términos:

- v₀
- 1
- $\bullet v_0v_1$
- v_0v_11

Observación. Si consideramos el lenguaje $L = \{+, -, 0, 1\}$, vemos que también pertenecen al conjunto de términos los siguientes:

$$0, 1, +1 1, + + 1 1 1, + + 1 1 + 1 1, \dots$$

Y por tanto vemos que los enteros son términos abreviados del lenguaje. $(2 \equiv +1 \ 1)$.

Observación (Notación). Durante el curso usaremos:

- x, y, z para referirons a variables $\{v_i\}_{i \in \mathbb{N}}$.
- $\blacksquare \ a,b,c$ para referir
nos a elementos del universo de una estructura.

■ $t(x_1, ..., x_n)$ para referirnos a un término $t \in \text{Ter}(L)$ donde aparecen algunas variables $x_1, ..., x_n$. Esto es una abreviatura, formalmente $t \in M(L)$ pero $t(x_1, ..., x_n) \notin M(L)$

Definición 9 (Función asociada a un término). Sea $t \in \text{Ter}(L)$, y \mathcal{A} una L-estructura, la **función** asociada al término t es $t^{\mathcal{A}}$, donde distinguimos ciertos casos:

- 1. Si t es $t(x_1, \ldots, x_n)$, entonces $t^{\mathcal{A}} : A^n \to A$; $(a_1, \ldots, a_n) \mapsto t^{\mathcal{A}}(a_1, \ldots, a_n)$.
- 2. Si t es x_i , entonces $t^{\mathcal{A}}(a_1,\ldots,a_n)=a_i$.
- 3. Si t es c, entonces $t^{\mathcal{A}}(a_1, \ldots, a_n) = c^{\mathcal{A}}$
- 4. Si t es $ft_1 ... t_m$, entonces $t^{\mathcal{A}}(a_1, ..., a_n) = f^{\mathcal{A}}(t_1^{\mathcal{A}}(a_1, ..., a_n), ..., t_m^{\mathcal{A}}(a_1, ..., a_n))$.

Observación. Se $t \in \text{Ter}(L)$ no tiene variables, entonces $t^A : A^n \to A$ es una función constante para cualquier n, es decir:

$$t = t(x_1, x_2) = \dots = t(x_1, \dots, x_n)$$

Ejemplo 10 (Ejemplo de funciones asociadas a términos)

■ Sea $t: 1+(1+1) \in \text{Ter}(L)$, $y \mathcal{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$, si consideramos t como $t(x_1, \ldots, x_n)$, entonces:

$$t^{\mathcal{Q}}: \mathbb{Q}^3 \to \mathbb{Q}; \ (a, b, c) \mapsto 3.$$

■ Sea $t: 1 + x \in \text{Ter}(L)$, $y \mathcal{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$, si consideramos t como t(x), entonces:

$$t^{\mathcal{Q}}: \mathbb{Q} \to \mathbb{Q}; \ 2 \mapsto 3; \ a \mapsto 1 + a$$

Y además, si consideramos que t es t(x, y), entonces:

$$t^{\mathcal{Q}}: \mathbb{Q}^2 \to \mathbb{Q}; \ (2,5) \mapsto 3; \ (a,b) \mapsto 1+a$$

■ Sea el lenguaje $L_{\mathbb{R}} = \{+, -, \cdot, 0, 1\} \cup \{c_r\}_{r \in \mathbb{R}}$, y sea $t : (x \cdot x) + (c_2 \cdot y) + (x \cdot y)$ (recordamos que c_2 se interpreta en $\mathcal{R}_{\mathbb{R}}$ como $2 \in \mathbb{R}$), entonces la función asociada a t(x, y) en la estructura $\mathcal{R}_{\mathbb{R}}$ es:

$$t^{\mathcal{R}_{\mathbb{R}}}: \mathbb{R}^2 \to \mathbb{R}; \ (a,b) \mapsto (a \cdot a) + (c_2^{\mathcal{R}_{\mathbb{R}}} \cdot b) + (a \cdot b) = a^2 + 2b + ab$$

2.2.1. Sustitución

Definición 10 (Término sustituido). Sea el término $t:t(x_1,\ldots,x_n)\in \mathrm{Ter}(L)$. Y sean m términos en los que pueden aparecer las variables $x_1,\ldots,x_n,\ s_1:s_1(x_1,\ldots,x_n),\ldots,s_m:s_m(x_1,\ldots,x_n)\in \mathrm{Ter}(L)$ con $m\leq n$.

Denotamos por $t(s_1/x_1, \ldots, s_m/x_m)$ al **término sustituido**.

Ejemplo 11 (Sustitución en un término)

Sean los términos t: x+y, s: x+1, el término sustituido t(s/x) es:

$$t(s/x) = (x+1) + y$$

Proposición 1 (Sustitución). Sean $x, y_1, \ldots, y_m \in V$ variables distintas, y $t: t(x, y_1, \ldots, y_m)$, $s: s(x, y_1, \ldots, y_m) \in \text{Ter}(L)$ términos, entonces $\forall (a, \mathbf{b}) \in A^{m+1}$ se tiene que:

la función asociada a
$$t(s/x)$$
, $(t(s/x))^A$ evaluada en $(a, \mathbf{b}) = t^A(s^A(a, \mathbf{b}), \mathbf{b})$

Demostración. Para demostrarlo vamos a ver las equivalencias en una tabla:

2.2. TÉRMINOS

t	$t^{\mathcal{A}}(s^{\mathcal{A}}(a,\mathbf{b}),\mathbf{b})$	t(s/x)	$t(s/x)^{\mathcal{A}}(a,\mathbf{b})$
x	$s^{\mathcal{A}}(a, \mathbf{b})$	s	$s^{\mathcal{A}}(a, \mathbf{b})$
$ y_i - $	b_{i}	y_i	b_i
c	$c^{\mathcal{A}}$	c	$c^{\mathcal{A}}$
$ft_1 \dots t_n$	(*)	(**)	(***)

$$f^{\mathcal{A}}(t_1^{\mathcal{A}}(s^{\mathcal{A}}(a, \mathbf{b}), \mathbf{b})), \dots, t_n^{\mathcal{A}}(s^{\mathcal{A}}(a, \mathbf{b}), \mathbf{b}))$$

$$f^{\mathcal{A}}(t_1^{\mathcal{A}}(s^{\mathcal{A}}(a, \mathbf{b}), \mathbf{b})), \dots, t_n^{\mathcal{A}}(s^{\mathcal{A}}(a, \mathbf{b}), \mathbf{b}))$$

$$(\star\star\star)$$

$$f^{\mathcal{A}}(t_1^{\mathcal{A}}(s^{\mathcal{A}}(a,\mathbf{b}),\mathbf{b})),\dots,t_n^{\mathcal{A}}(s^{\mathcal{A}}(a,\mathbf{b}),\mathbf{b}))$$

y como podemos observar, en todos las filas coinciden la segunda y la cuarta columna, con lo que hemos demostrado que son equivalentes. \diamondsuit

2.2.2. Estructura generada por un subgrupo

Sea $\mathcal{G} = \langle G, \cdot, ^-1, 1 \rangle$ un grupo, $L = \{\cdot, ^-1, 1\}$ un lenguaje y $S \subseteq G$ un subgrupo. Consideramos los s_1, \ldots, s_n elementos del subgrupo S, podemos expresar la estructura asociada como:

$$s_1^{m_1}, \dots, s_n^{m_n} = (x_1^{m_1}, \dots, x_n^{m_n})^{\mathcal{G}}(s_1, \dots, s_n)$$

Donde definimos $x_i^{m_i}$ como: $x_i \cdot (x_i \cdot \cdots \cdot (x_i \cdot x_i))) \ldots)$ (el producto de x_i m_i veces).

Observación. Va a ser util definir ciertas abreviaturas para la expresión de los términos:

- -1 t_i se abrevia por t_i^{-1} .
- $\cdot t_1 t_2$ se abrevia por $t_1 \cdot t_2$.
- x_i^0 se abrevia por 1.

Una vez establecidas las abreviaturas, podemos definir la estructura generada por un subgrupo.

Definición 11 (Estructura generada por un subgrupo). Sea \mathcal{G} un grupo (como el definido anteriormente), y $S \subseteq G$, la **estructura generada** por el **subgrupo** S es:

$$\langle S \rangle = \{ t^{\mathcal{G}}(s_1, \dots, s_n) \mid t \in \text{Ter}(L), \ n \in \mathbb{N}, \ s_i \in S \}$$

De esta noción surge la definición de subestructura generada por un conjunto.

Proposición 2 (Subestructura generada por un conjunto). Sea L un lenguaje, A una L-estructura, y $X \subseteq A$ un subconjunto. Si $X \neq \emptyset$ o en L hay al menos una constante, el conjunto:

$$\langle X \rangle_{\mathcal{A}} = \{ t^{\mathcal{A}}(a_1, \dots, a_n) \mid t \in \text{Ter}(L); a_1, \dots, a_n \in X \text{ con } n \in \mathbb{N} \}$$

es la mínima subestructura de A que contiene a X.

2.3. Fórmulas

Sea L un lenguaje, $L = \{f, \ldots, R, \ldots, c, \ldots\}$ además del conjunto de variables $V = \{v_i\}_{i \in \mathbb{N}}$ y conectores lógicos: $=, \neg, \rightarrow, \forall$. En la sección anterior caracterizamos el conjunto de *términos* del lenguaje. Ahora vamos a caracterizar las *fórmulas*.

Definición 12 (Fórmulas de un lenguaje). Sea L un lenguaje. El conjunto de L-fórmulas, For(L), es el mínimo subconjunto de M(L) (palabras de L) que contiene a fórmulas atómicas y es cerrado por \neg , \rightarrow y $\forall v_i$ para cada $i \in \mathbb{N}$.

Las fórmulas atómicas pueden ser de dos tipos:

- $\blacksquare = t_1 t_2 \text{ con } t_1, t_2 \in \text{Ter}(L).$
- $Rt_1 ... t_m$, para todo $t_i \in Ter(L)$ y $R \in \mathcal{R}_m$.

Observación. Sean $F, G \in For(L)$, entonces como For(L) es cerrado para los operadores lógicos:

$$\neg F, \rightarrow FG \ (F \rightarrow G), \ \forall v_i F$$
 también son fórmulas de L

El resto de conectores lógicos los usamos como abreviaturas de $\neg, \rightarrow, \forall$. Por ejemplo:

- $F \vee G$ como abreviatura de $\neg F \rightarrow G$.
- $\exists v_i$ como abreviatura de $\neg \forall v_i \neq F$.

Ejemplo 12 (Ejemplos de fórmulas)

Sea $L = \{+, -, \cdot, 0, 1, \leq\}$ y consideramos los términos abreviados de $L: t_1: 3x_1 + 2, t_2: x_1 - x_3, t_3: y^2 - 2x + 1.$

- $3x_1 + 2 = x_1 x_3$, es una fórmula atómica abreviada (= t_1t_2).
- $3x_1 + 2 \leq x_1 x_3$, es una fórmula atómica abreviada ($\leq t_1 t_2$).
- $\forall x \exists y \ x \leq y$, es una fórmula abreviada.
- $\exists y \ x \leq y$, es una fórmula abreviada $(\neg \forall v_0 \ \neg \leq v_0 v_1)$.
- $\exists y \ y^2 2x + 1 = 0.$

Definición 13 (Subfórmula). Una subfórmula G de un fórmula $F \in For(L)$ es una fórmula que aparece en F.

Ejemplo 13 (Ejemplos de subfórmulas)

Sea $F \in \text{For}(L), F : \forall x \exists y \ x \leq y$, las subfórmulas que aparecen en F son:

$$\forall x \; \exists y \; x \leqslant y, \; \exists y \; x \leqslant y, \; x \leqslant y$$

Ejemplo 14 (Árbol de decisión de una fórmula)

Sea $F \in \text{For}(L)$, $F : (\exists x \ x \leq 1) \lor (\forall y \ y+1=3)$. Podemos representar su árbol de decisión, cuyos nodos son las subfórmulas de F.

$$(\exists x \ x \leqslant 1) \lor (\forall y \ y+1=3)$$

$$(\exists x \ x \leqslant 1) \quad (\forall y \ y+1=3)$$

$$\exists x \ x \leqslant 1 \quad \forall y \ y+1=3$$

2.3.1. Variables libres y ligadas

Sea $F \in \text{For}(L)$ una fórmula en la que aparecen algunas variables, éstas pueden aparecer asociadas, libres o ligadas. Antes de dar una definición veamos un ejemplo.

2.3. FÓRMULAS

Ejemplo 15 (Ejemplos de tipos de variables)

- La fórmula $\forall x \ 0 \leq x$ expresa 0 es mínimo. En esta fórmula, x aparece dos veces, la primera está asociada al operador, y la segunda es una variable ligada
- Consideramos la fórmula: $(\forall x \ 0 \le x) \lor x = 3$. En ella x aparece tres veces, la primera está asociada al operador, y la segunda es una variable ligada y la última es una aparición libre.

Definición 14 (Aparición de una variable. Tipos). Sea L un lenguaje, $F \in For(L)$ una fórmula y $x \in V$ una variable.

- 1. Decimos que x aparece en F si x es algunos de los símbolos de F.
- 2. Una aparición de x en F está **asociada** a \forall si la aparición va precedida de \forall .
- 3. Una aparición de x en F es **ligada** si x aparece en una subfórmula G de F tal que $\forall xG$ es una subfórmula de F.
- 4. Una aparición de x en F es **libre** si no está asociada a \forall y no es ligada.

Observación (Notación). Sea $F \in For(L)$, escribimos $F(x_1, \ldots, x_n)$ si las variables *libres* de F están en $\{x_1, \ldots, x_n\}$. Por ejemplo:

- F(x): $\exists y \ x = 2y$, expresa $x \ es \ par$.
- ullet Podemos incluso sustituir variables libres por otros términos, si s es x+1 entonces:

$$F(s/x): \exists y \ x+1=2y$$
, que expresa $x+1$ es par

Sin embargo, hay sustituciones que aunque sintácticamente podemos hacerlas, no tienen sentido semánticamente, por ejemplo:

$$F(y/x): \exists y \ y=2y$$
, que no expresa y es par

Definición 15 (Variable sustituible). Sea L un lenguaje, $F \in For(L)$, $x \in V$, $s \in Ter(L)$.

- 1. x es **sustituible** por s en F si no hay una aparición libre de x en una subfórmula de F de la forma $\forall yG$ donde y es una variable de s.
- 2. Si x es sustituible por s en F, F(s/x) o F[s/x] denota la fórmula obtenida de F sustiyendo simultanemante las apariciones libres de x por s.

Ejemplo 16 (Ejemplos de sustitución en fórmulas)

• Sea $F : \forall y \ x = z, \ x \in V \ y \ s : x + 1 \in \text{Ter}(L)$.

$$F[s/x]: \forall y \ x+1=z$$

• Sea $F: (\exists x \ x = z) \lor (x + y = 1), \ x \in V \ y \ s : y + 1 \in Ter(L).$

$$F[y+1/x]: (\exists x \ x=z) \lor (y+1+y=1)$$

Observación. Si $s \in \text{Ter}(L)$ no tiene variables, entonces se puede sustituir en cualquier variable en cualquier fórmula.

Definición 16 (Cierre universal). Sea $F \in For(L)$, un **cierre universal** de F es una fórmula obtenida precediendo a F con $\forall x_1 \dots \forall x_n$ si F es $F(x_1, \dots, x_n)$.

Ejemplo 17 (Ejemplo de cierre universal)

Sea $F: x \leq 2$, cierres universales de F pueden ser: $\forall x \ x \leq 2$, $\forall x \forall y \forall z \ x \leq 2$.

Definición 17 (Enunciado). Una fórmula se llama enunciado (o fórmula cerrada) si no tiene variables libres.

Observación. Los cierres universales de fórmulas son enunciados.

Definición 18 (Fórmula existencial). Una fórmula abreviada es **existencial** si es de la forma $\exists x_1 \dots \exists x_n F$ con F sin cuantificadores.

Ejemplo 18 (Ejemplo de fórmula existencial)

Una fórmula existencial puede tener variables libres. Por ejemplo:

$$F(z): \exists x_1 \exists x_2 \ (x_1 = x_2 \lor x_1 + 3 = z)$$

Capítulo 3

Relación de satisfacción.

En esta sección vamos a hablar de la satisfacibilidad de fórmulas en distintas estructuras. Como ejemplo introductorio, sea $L = \{\leqslant\}$ un lenguaje, $\mathcal{Z} = \langle \mathbb{Z}, \leqslant \rangle$, $\mathcal{N} = \langle \mathbb{N}, \leqslant \rangle$ L-estructuras y $E : \forall x \ 0 \leqslant x$ una L-fórmula.

Vemos que se cumple (formalmente, se satisface) en \mathcal{N} pero no en \mathcal{Z} , ya que $-1 \in \mathbb{Z}$ no satisface E en \mathcal{Z} .

3.1. Satisfacibilidad

Definición 19 (Satisfacibilidad de una fórmula). Sea L un lenguaje, A una L-estructura, $F(x_1, \ldots, x_n) \in For(L)$, $\mathbf{a} = (a_1, \ldots, a_n) \in A^n$ y $\mathbf{x} = (x_1, \ldots, x_n)$. Decimos que a satisface F en A ($A \models F(\mathbf{a})$), o A satisface F cuando a la variable \mathbf{x} se le asigna el valor \mathbf{a} , o $F(\mathbf{a})$ se satisface en A si:

- Si F es $Rt_1 \dots t_l$ y $(t_1^{\mathcal{A}}(\mathbf{a}), \dots, t_l^{\mathcal{A}}(\mathbf{a})) \in \mathcal{R}^{\mathcal{A}}$.
- Si F es $\neg G$ y $\mathcal{A} \not\models G(\mathbf{a})$.
- Si F es $G \to H$ y si $A \models G(\mathbf{a})$ entonces $A \models H(\mathbf{a})$.
- Si F es $\forall vG$ con $v \neq x_i$, $G(v, x_2, ..., x_n)$ y $\forall d \in A$ se tiene que: $A \models G(d, \mathbf{a})$, es decir $\forall d \in A$, $A \models G(d, a_2, ..., a_n)$.

Ejemplo 19 (Ejemplo de relación de satisfacción)

Sea $L = \{+, -, \cdot, 0, 1, <\}$ y $\mathcal{R} = \langle \mathbb{R}, +, -, \cdot, 0, 1, <\rangle$. Sea $F : \exists x (x < 2 \land 4 < x^2)$ una fórmula abreviada, ¿existe $(a, b) \in \mathbb{R}^2$ tales que $\mathcal{R} \models F(a, b)$?

F sin abreviar sería:

$$F: \neg \forall x \ (x < 2 \rightarrow \neg 4 < x^2)$$

Entonces tenemos:

$$\mathcal{R} \vDash F(a,b) \iff \mathcal{R} \not\vDash \forall x (x < 2 \to \neg 4 < x^2)(a,b)$$

$$\iff \exists d \in \mathbb{R}, \ \mathcal{R} \not\vDash \forall x (x < 2 \to \neg 4 < x^2)(d,b)$$

$$\iff \exists d \in \mathbb{R}, \ \mathcal{R} \vDash (x < 2)(d,b) \ y \ \mathcal{R} \not\vDash (\neg 4 < x^2)(d,b)$$

$$\iff \exists d \in \mathbb{R}, \ d < 2 \ y \ \mathcal{R} \vDash (4 < x^2)(d,b)$$

$$\iff \exists d \in \mathbb{R}, \ d < 2 \ y \ 4 < d^2; \ \text{se satisface tomando} \ d = -3 \in \mathbb{R}$$

Con lo que concluimos que: $\mathcal{R} \models F(-3, b)$.

Proposición 3 (\models solo depende de las variables libres). Sea L un lenguaje, $\mathbf{x} = (x_1, \dots, x_n)$ e $\mathbf{y} = (y_1, \dots, y_m)$, con $x_i, y_i \in V$ $x_i \neq y_i$. Sean $F \in \text{For}(L)$, $F(\mathbf{x}, \mathbf{y})$ y A una L-estructura; entonces para todo $\mathbf{a} = (a_1, \dots, a_n) \in A^n$:

$$\mathcal{A} \models F(\mathbf{a}) \iff \text{existe } \mathbf{b} \in A^m : \mathcal{A} \models F(\mathbf{a}, \mathbf{b}) \iff \forall \mathbf{b} \in A^m \mathcal{A} \models F(\mathbf{a}, \mathbf{b})$$

Demostración. A completar.

 \Diamond

Definición 20 (Satisfacibilidad de un enunciado). Sea $E \in For(L)$ un enunciado (sin variables libres), \mathcal{A} una L-estructura. Decimos que \mathcal{A} satisface E, o E es verdadero en \mathcal{A} , o E se satisface en \mathcal{A} si al considerar E como E(y) se tiene que:

$$\mathcal{A} \models E(b)$$
 para todo (algún) $b \in A$

Lo escribimos como $\mathcal{A} \models E$

Observación. En la definición hablamos de que el enunciado se satisfaga para algún $b \in A$ o todo $b \in A$. Esto es equivalente ya que siendo E un enunciado:

$$\exists b \in A, \ \mathcal{A} \models E(b) \iff \forall b \in A, \ \mathcal{A} \models E(b)$$
 por la proposición 3

3.1.1. Validez de fórmulas

Definición 21 (Fórmula válida). Sea L un lenguaje:

- 1. Sea F un enunciado de L, decimos que F es una **fórmula válida** si $A \models F$ para toda L-estructura A.
- 2. Sea $G \in \text{For}(L)$, G es una fórmula válida si G es $G(x_1, \dots, x_n)$ y $\forall x_1 \dots x_n G$ es un enunciado válido.

3.2. Conjuntos definibles

Definición 22 (Conjunto definible). Sea L un lenguaje, A una L-estructura:

■ Un conjunto $X \subseteq A^n$ para algún n es **definible** (en \mathcal{A}) si existe una fórmula $F(x_1, \dots x_n) \in \text{For}(L)$ tal que:

$$X = \{ \mathbf{a} \in A^n \mid \mathcal{A} \models F(\mathbf{a}) \}$$

■ Un conjunto $X \subseteq A^n$ para algún n es **definible con parámetros** si existe una fórmula $F(x_1, \ldots x_n) \in \text{For}(L_A)$ tal que:

$$X = \{ \mathbf{a} \in A^n \mid \mathcal{A}_A \models F(\mathbf{a}) \}$$

Ejemplo 20 (Ejemplos de conjuntos definibles)

Sea $L = \{+, -, \cdot, 0, 1\}$, $C = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$. Sea $f(x_1, \dots, x_n) \in \mathbb{C}[x_1, \dots, x_n]$, entonces: 1.

 $X = \{ \mathbf{a} \in \mathbb{C}^n \mid f(\mathbf{a}) = 0 \}$ es un conjunto definible con parámetros

La fórmula F sería, $F(x_1, \ldots, x_n) : f(x_1, \ldots, x_n) = 0$ con $F \in For(L_{\mathbb{C}})$.

2.

 $X = \{(a,b) \in \mathbb{C}^2 \mid a \cdot b = 1\}$ es definible en \mathcal{C} sin parámetros

3. ¿Es $\{-\sqrt{2}, \sqrt{2}\}$ definible en \mathbb{C} ? Sí, la fórmula (abreviada) que lo define es $x^2 = 2$. $(= \cdot x \ x + 1 \ 1)$.

Observación. Si permitimos parámetros, cualquier subconjunto finito de \mathbb{C}^n es definible. Sea el conjunto:

$$X = \{(a_{11}, \dots, a_{1n}), \dots, (a_{m1}, \dots, a_{mn})\} \text{ con } a_{ij} \in \mathbb{C}$$

En el caso m=1, basta considerar la fórmula $F: x_1=a_{11} \wedge x_2=a_{12} \wedge \cdots \wedge x_n=a_{1n}$. En el caso general, $F_i(x_1,\ldots,x_n): x_1=a_{i1} \wedge x_2=a_{i2} \wedge \cdots \wedge x_n=a_{in} \in \text{For}(L_a)$. Con esto definimos X como:

$$X = \{\mathbf{b} = (b_1, \dots, b_m) \in \mathbb{C}^n \mid \mathcal{C} \models (F_1 \vee \dots \vee F_m)(\mathbf{b})\}\$$

Ejemplo 21

 $\overline{\text{Sea }L} = \{S, +, \cdot, 0, <\} \ y \ \mathcal{N} = \langle \mathbb{N}, S, +, \cdot, 0, < \rangle$. Podemos definir el conjunto de números pares naturales.

 \Diamond

 \Diamond

 \Diamond

Consideramos la L-fórmula:

$$x \text{ es par } : \exists y \ (x = y + y)$$

entonces, definimos el conjunto X de naturales pares como:

$$X = \{ m \in \mathbb{N} \mid \mathbb{N} \models (\exists y \ (x = y + y))(m) \}$$

Observación. Sea \mathcal{R} el cuerpo de los reales. Sea $F: y = 0, G: x = 0, \operatorname{con} F(x, y)$ y G(x, y). Se consideran los conjuntos:

$$X_1 = \{(a, b) \in \mathbb{R}^2 \mid \mathcal{R} \models F(a, b)\}$$
$$X_2 = \{(a, b) \in \mathbb{R}^2 \mid \mathcal{R} \models G(a, b)\}$$

Entonces $X_1 \bigcup X_2$ es definible mediante $F \vee G$.

Proposición 4 (Caracterización de las operaciones de conjuntos). Sea L un lenguaje, \mathcal{A} una L-estructura, $X, Y \subseteq A^n$ definibles mediante $F(x_1, \ldots, x_n)$ y $G(x_1, \ldots, x_m)$ respectivamente. Entonces:

- $X \bigcup Y$ es definible mediante $F \vee G$.
- $X \cap Y$ es definible mediante $F \wedge G$.
- $A^n \setminus X$ es definible mediante $\neg F$.
- \bullet Sea Z la proyección de X en las primeras n-1 coordenadas:

$$Z = \{(a_1, \dots, a_{n-1}) \in A^{n-1} \mid \text{ existe } b \in A : (a_1, \dots, a_{n-1}, b) \in X\}$$

es decir,

$$Z = \{(a_1, \dots, a_{n-1}) \in A^{n-1} \mid A \models (\exists x_n F)(a_1, \dots, a_{n-1})\}$$

• Sea $W \subseteq A^m$ definible mediante $H(x_1, \ldots, x_m)$.

$$X \times W \subseteq A^{n+m}$$
 es definible

Vamos a necesitar una fórmula de la forma $F \wedge H$, sin embargo, eso definiría la intersección. Notamos que $H': H(y_1/x_1, \ldots, y_m/x_m)$ también define W. Con ello obtenemos que:

$$X \times W = \{(\mathbf{a}, \mathbf{b}) \in A^{n+m} \mid \mathcal{A} \models (F \land H')(\mathbf{a}, \mathbf{b})\}$$

Demostración. Son propiedades que no se han demostrado en clase.

Proposición 5 (Satisfacibilidad de una sustitución). Sea L un lenguaje, $s \in \text{Ter}(L)$ con s siendo $s(x, y_1, \ldots, y_m)$ e y_i que aparece en s. Sea $F \in \text{For}(L)$, F es $F(x, y_1, \ldots, y_m, z_1, \ldots, z_l)$ con $(z_j \neq y_i)$, tal que x es sustituible por s en F. (Es decir, no hay subfórmulas de F de la forma $\forall y_i G$ con x libre en F).

Entonces para toda $L\text{-estructura }\mathcal{A}$ y $(a,\mathbf{b},\mathbf{c})\in A^{1+m+l}$ se tiene que:

$$\mathcal{A} \models F(s/x)(a, \mathbf{b}, \mathbf{c}) \iff \mathcal{A} \models F(s^{\mathcal{A}}(a, \mathbf{b}), \mathbf{b}, \mathbf{c})$$

Demostración. A completar.

Corolario 1 (a la proposición 5. Cambio de nombre a una variable ligada.). Sea L un lenguaje, $F(x, \mathbf{z}) \in For(L)$, $y \in V$ que no aparece en F. Entonces para toda L-estructura \mathcal{A} y $\in A^m$:

$$\mathcal{A} \models \forall y(F(y/x))(\mathbf{b}) \iff \mathcal{A} \models (\forall xF)(\mathbf{b})$$

En particular si F es F(x):

$$\forall y \ F(y/x) \leftrightarrow \forall x \ F$$
, es válida.

Demostración. A completar.

Capítulo 4

Tautologías

Recordemos los valores de verdad de algunas construcciones con P,Q variables proposicionales.

P	Q	$P \vee Q$	$P \to Q$	$P \to P$
1	1	1	1	1
1	0	1	0	1
0	1	1	1	1
0	0	0	1	1

El hecho de que en las implicaciones sólo haya un valor falso nos será de utilidad para construir tautologías.

Definición 23 (Formulas básica). Sea L un lenguaje, una **formula básica** de L es una formula o atómica o de la forma: $\forall xG$ con $G \in For(L)$.

Definición 24 (Subfórmulas básicas necesarias). Sea L un lenguaje, $F \in For(L)$, el conjunto de **subfórmulas básicas necesarias** de F, SBN(F) es:

- Si F es básica: $SBN(F) = \{F\}.$
- Si F es $\neg G$: SBN(F) = SBN(G).
- Si F es $G \to H$: SBN $(F) = SBN(G) \bigcup SBN(H)$.

Observación. Toda fórmula se obtiene de subfórmulas básicas necesarias usando \neg y \rightarrow .

Definición 25 (Distribución de valores de verdad). Sea L un lenguaje. Una distribución de valores de verdad (d.v.v.) de L es una aplicación:

$$\delta: \{F \in \operatorname{For}(L) \mid F \text{ es básica}\} \to \{0,1\}$$

Definición 26 (Tautología). Una **tautología** de L es una fórmula $F \in \text{For}(L)$ tal que $\bar{\delta}(F) = 1, \forall \delta$ (con δ una d.v.v.) donde $\bar{\delta}$ es la única aplicación $\bar{\delta}: F \to \{0,1\}$ que extiende a δ y satisface:

- $\bar{\delta}(\neg G) = 1 \text{ si } \bar{\delta}(G) = 0 \text{ y } \bar{\delta}(\neg G) = 0 \text{ si } \bar{\delta}(G) = 1$
- $\bar{\delta}(G \to H) = 0$ si $\bar{\delta}(G) = 0 \land \bar{\delta}(H) = 1$ y $\bar{\delta}(G \to H) = 1$ en el resto de casos.

Definición 27 (Fórmulas tautológicamente equivalentes). Sea L un lenguaje, $F, G \in For(L)$ fórmulas de L. Decimos que F y G son **tautológicamente equivalentes** si:

$$F \leftrightarrow G$$
es una tautología.

Observación. Para fórmulas abreviadas tomamos $\exists xG$ como fórmula básica también.

Ejemplo 22 (Comprobación de dos fórmulas tautológicamente equivalentes)

Sean las fórmulas $G: F_1 \to (F_2 \to F_3)$ y $H: (F_1 \wedge F_2) \to F_3$. Vamos a ver que G y H son tautológicamente equivalentes.

Tenemos que comprobar que $G \leftrightarrow H$ es una tautología. Es decir, $G \to H$ y $H \to G$ son tautologías. Supondremos que no lo son y al asignar los valores de verdad correspondientes llegaremos a una contradicción.

Se marcan en negrita las deducciones en cada paso (fila). Podemos ver que llegamos a una contradicción en el valor de verdad de la primera implicación, con lo que la expresión es una tautología. Se procede de forma análoga para el recíproco.

Proposición 6 (Tautologías y fórmulas válidas). Sea L un lenguaje. Las tautologías de L son fórmulas válidas de L.

Demostración. A completar.

Observación. La propiedad de ser tautología es puramente sintáctica.

 $\forall xF \to F$ no es una tautología.

Capítulo 5

Consecuencia semántica

Definición 28 (L-teoría). Sea L un lenguaje. Una L-teoría es un conjunto de enunciados de L (no tiene por qué ser finito).

Ejemplo 23 (Ejemplos de L-teorías)

- 1. Sea $L = \{\cdot, 1\}$ el lenguaje de grupos. Sean G_1, G_2, G_3 los axiomas de grupos. $T = \{G_1, G_2, G_3\}$ es una L-teoría.
- 2. GADST: (grupos abelianos divisibles sin torsión). Sea $L = \{+, 0\}$ y las propiedades:
 - G_1 : + es asociativa.
 - $G_2:0$ es el neutro.
 - $\bullet G_3: \forall x \exists y \ x+y=0.$
 - $\bullet G_4: \forall x \forall y \ x+y=y+x.$
 - $G_{5n}: \forall x \exists y \ x = n \cdot y \ (n\text{-divisible}). \ n \cdot y \ abrevia \sum_{1}^{n} y.$
 - \bullet $G_{6n}: \forall x(n \cdot x = 0 \rightarrow x = 0)$

Entonces $GADST = \{G_1, G_2, G_3, G_3\} \bigcup \{G_{5n}\}_{n>1, n \in \mathbb{N}} \bigcup \{G_{6n}\}_{n>1, n \in \mathbb{N}}.$

3. $\{ \forall x \ x \neq x \} \ y \ \{ F \land \neg F \}$ son teorías, aunque sean incoherentes.

Definición 29 (Modelo). Sea L un lenguaje, T una L-teoría. Un **modelo** de T es una L-estructura A tal que:

$$\mathcal{A} \models F$$
 para toda $F \in T$ y se escribe $\mathcal{A} \models T$

Ejemplo 24 (Ejemplos de modelos)

- 1. T_{grupos} en $L = \{\cdot, 1\}$, sea \mathcal{G} una L-estructura. \mathcal{G} es un modelo de $T_{\text{grupos}} \iff \mathcal{G}$ es un grupo.
- 2. $\mathcal{A} \models GADST \iff \mathcal{A}$ es un grupo abeliano divisible sin torsión.
- 3. $\{ \forall x \ x \neq x \} \ y \ \{ F \land \neg F \}$ no tienen modelos.

Observación (Notación). Mod(T) designa la clase de todos los modelos de T.

Observación. Sean T_1, T_2 teorías, si $T_1 \subseteq T_2$ entonces $Mod(T_2) \subseteq Mod(T_1)$.

Definición 30 (Teoría de una estructura). Sea \mathcal{A} una L-estructura, una **teoría** de \mathcal{A} es el conjunto:

$$te(A) = \{ F \in For(L) \mid F \text{ es un enunciado y } A \models F \}$$

Observación.

■ Sea F un enunciado. $A \models F$ establece una relación semántica entre un objeto semántico A y otro sintáctico F.

• Sea T una L-teoría (objeto sintáctico), también escribimos $A \models T$.

Definición 31 (Consecuencia semántica). Sea L un lenguaje, T una L-teoría, y F un L-enunciado. F es **consecuencia semántica** de T ($T \models F$) si $A \models F$ para toda estructura A tal que $A \models T$.

Observación.

- Si $T = \emptyset$, escribiremos $\models F$.
- Sea $G \in \text{For}(L)$, G es consecuencia semántica de T $(T \models G)$ si $T \models F$ para algún (o todo) cierre universal F de G.

$$T \vDash \forall x_1 \dots \forall x_n \ G \implies T \vDash G$$

Definición 32 (Fórmulas equivalentes respecto de una teoría). Sea L un lenguaje, T una L-teoría, $F_1, F_2 \in For(L)$. Diremos que F_1 y F_2 son **equivalentes respecto de** T si:

$$T \models \forall x_1 \dots \forall x_n \ (F_1 \leftrightarrow F_2)$$

Observación. Si $F_1, F_2 \in For(L)$ son equivalentes con respecto a T, entonces F_1 y F_2 definen el mismo conjunto en cualquier modelo de T.

Parte II

Apéndices

Capítulo 6

Índices

CAPÍTULO 6. ÍNDICES

Lista de definiciones

1.	Definición (Estructura)	7
2.	Definición (Lenguaje)	7
3.	Definición (L-estructura)	8
4.	Definición (Subestructura de una L-estructura)	8
5.	Definición (Homomorfismo y monomorfismo)	9
6.	Definición (Lenguaje asociado a una estructura. Extensión de un lenguaje)	9
7.	Definición (Expansión de una estructura)	9
8.	Definición (Términos de un lenguaje)	11
9.	Definición (Función asociada a un término)	12
10.	Definición (Término sustituido)	12
11.	Definición (Estructura generada por un subgrupo)	13
12.	Definición (Fórmulas de un lenguaje)	14
13.	Definición (Subfórmula)	14
14.	Definición (Aparición de una variable. Tipos)	15
15.	Definición (Variable sustituible)	15
16.	Definición (Cierre universal)	15
17.	Definición (Enunciado)	15
18.	Definición (Fórmula existencial)	16
19.	Definición (Satisfacibilidad de una fórmula)	17
20.	Definición (Satisfacibilidad de un enunciado)	18
21.	Definición (Fórmula válida)	18
22.	Definición (Conjunto definible)	18
23.	Definición (Formulas básica)	21
24.	Definición (Subfórmulas básicas necesarias)	21
25.	Definición (Distribución de valores de verdad)	21
26.	Definición (Tautología)	21
27.	Definición (Fórmulas tautológicamente equivalentes)	22
28.	Definición (L -teoría)	23
29.	Definición (Modelo)	
30.	Definición (Teoría de una estructura)	23
31.	Definición (Consecuencia semántica)	24
32.	Definición (Fórmulas equivalentes respecto de una teoría)	24

Lista de teoremas

1.	Proposición (Sustitución)	12
2.	Proposición (Subestructura generada por un conjunto)	13
3.	Proposición (⊨ solo depende de las variables libres)	17
	Proposición (Caracterización de las operaciones de conjuntos)	
5.	Proposición (Satisfacibilidad de una sustitución)	19
6.	Proposición (Tautologías y fórmulas válidas)	22

32 LISTA DE TEOREMAS

Lista de ejemplos

1.	Ejemplo	(Estructuras. Ejemplos)	7
2.	Ejemplo	(Lenguajes. Ejemplos)	7
3.			8
4.			8
5.			8
6.			9
7.	Ejemplo	(Ejemplo de extensión de un lenguaje)	9
8.			9
9.	Ejemplo	(Ejemplos de términos)	1
10.	Ejemplo		12
11.			12
12.	Ejemplo	(Ejemplos de fórmulas)	14
13.	Ejemplo	(Ejemplos de subfórmulas)	14
14.	Ejemplo	(Árbol de decisión de una fórmula)	14
15.	Ejemplo	(Ejemplos de tipos de variables)	15
16.	Ejemplo	(Ejemplos de sustitución en fórmulas)	15
17.	Ejemplo	(Ejemplo de cierre universal)	15
18.	Ejemplo	(Ejemplo de fórmula existencial)	16
19.	Ejemplo	(Ejemplo de relación de satisfacción)	۱7
20.	Ejemplo	(Ejemplos de conjuntos definibles)	18
22.	Ejemplo	(Comprobación de dos fórmulas tautológicamente equivalentes)	22
23.	Ejemplo	(Ejemplos de L -teorías)	23
24	Eiemplo	(Eiemplos de modelos)	23

34 LISTA DE EJEMPLOS

Lista de ejercicios