

Distributed NEAT

Analyse und Optimierung für ein verteiltes System

Masterthesis

zur Erlangung des akademischen Grades Master of Science (M.Sc.) im Studiengang Angewandte Informatik an der Hochschule Flensburg

Simon Hauck

 $Matrikelnummer:\ 660158$

Erstprüfer: Prof. Dr. rer. nat. Tim Aschmoneit

Zweitprüfer: Noch unbekannt

25. Januar 2020

Zusammenfassung

In dieser Arbeit wird die Laufzeit des Neuro Evolution of Augmenting Topologies (NEAT) Algorithmus analysiert und für ein verteiltes System mit mehreren unabhängigen Recheneinheiten optimiert.

NEAT gehört zur Gruppe der neuroevolutionären Algorithmen. Diese basieren auf evolutionären Algorithmen und werden zur Optimierung von neuronalen Netzen eingesetzt.

Inhaltsverzeichnis

1	Motivation	T	
	1.1 Problemstellung	1	
	1.2 Ziel der Arbeit	1	
	1.3 Struktur der Arbeit	1	
2	Grundlagen	2	
	2.1 Neuronale Netze	2	
	2.2 Evolutionäre Algorithmen	2	
	2.3 NEAT	2	
	2.4 MPI	2	
3	Analyse	3	
	3.1 Anforderungen	3	
	3.2 Softwarearchitektur und Implementierung	3	
	3.3 Testsetup	3	
	3.4 Evaluation	3	
4	Software Architektur und Implementierung	4	
5	Evaluation	5	
	5.1 Testsetup	5	
	5.2 Ergebnisse	5	
6	Zusammenfassung und Ausblick	6	
\mathbf{Q}	nellenverzeichnis	7	
Ei	Eidesstattliche Erklärung		

Abbildungsverzeichnis

Akronymverzeichnis

 ${f T}$ Test

 ${f ro}{f A}{f A}{f A}{f A}$ Very much A's

NEAT NeuroEvolution of Augmenting Topologies

Motivation

- 1.1 Problemstellung
- 1.2 Ziel der Arbeit
- 1.3 Struktur der Arbeit

Grundlagen

2.1 Neuronale Netze

Test (T) and [1] with Stanley und Miikkulainen

- 2.2 Evolutionäre Algorithmen
- 2.3 **NEAT**
- 2.4 MPI

Analyse

- 3.1 Anforderungen
- 3.2 Softwarearchitektur und Implementierung
- 3.3 Testsetup
- 3.4 Evaluation

Software Architektur und Implementierung

Evaluation

- 5.1 Testsetup
- 5.2 Ergebnisse

Zusammenfassung und Ausblick

Quellenverzeichnis

[1] Kenneth O Stanley und Risto Miikkulainen. 2002. Evolving neural networks through augmenting topologies. *Evolutionary computation*, 10, 2, 99–127.

Eidesstattliche Erklärung

This is the beginning