Example 27: As shown in Figure 1, in  $\triangle$  ABC, D and E are the three equal points of AB and BC respectively, and 2 AD = DB, 2 BE = EC, if  $\angle CDE = \angle CAB$ , prove:  $\angle EDB = \angle DCA$ ;  $\angle DEC = \angle BCA$ ; ;  $\angle BCD = \angle ABC$   $2\angle DFA = \angle CDF$ , where F is the midpoint of BC.



Proof: According to the identity 
$$\frac{3}{2} \frac{\frac{C - \frac{2A + B}{3}}{C - A}}{\frac{2A + B}{3} - \frac{C + 2B}{3}} = \frac{\frac{\frac{2A + B}{3} - C}{\frac{2A + B}{3} - \frac{C + 2B}{3}}}{\frac{A - C}{A - B}}$$
 can be  $\frac{\frac{2A + B}{3} - C}{\frac{2A + B}{3} - B}$ 

obtained  $\angle EDB = \angle DCA \Leftrightarrow \angle CDE = \angle CAB$ .

According to the identity 
$$\frac{\frac{C-B}{C-A}}{\frac{C+2B}{3}-\frac{2A+B}{3}}=2\left(\begin{array}{c} \frac{\frac{2A+B}{3}-C}{\frac{2A+B}{3}-\frac{C+2B}{3}}\\ \frac{A-C}{A-B} \end{array}\right) \text{ can be}$$

obtained  $\angle DEC = \angle BCA \Leftrightarrow \angle CDE = \angle CAB$ .

According to the identity 
$$\frac{\frac{C-B}{C-\frac{2A+B}{3}}}{\frac{B-A}{B-C}} = 3 \left(1 - \frac{\frac{A-C}{A-B}}{\frac{2A+B}{3}-C}\right)$$
 can be obtained 
$$\frac{\frac{C-B}{C-\frac{2A+B}{3}}}{\frac{2A+B}{3}-\frac{C+2B}{3}}$$

 $\angle BCD = \angle ABC \Leftrightarrow \angle CDE = \angle CAB$ .