68/49940

: 61689/00R00229/US

APR 1 4 2004

Partial Translation of JP-A 2002-6815 Part A (Pages 5-6)

Technology Center 2600

BEST AVAILABLE COPY

[0036]

Fig. 10 shows another embodiment of a backlight in a case where an LCD shutter is used as described above. In this embodiment, the LCD shutter 30 is disposed on an upper side of a light source portion 20 of the backlight, and a liquid crystal panel 10 is mounted on an upper side of the LCD shutter via a light diffusing plate. As a polarizing plate of the LCD shutter 30, reflection type polarizing plates 30c and 30d are disposed on both sides of the liquid crystal. In the same way as Fig. 9, a driving electrode of the LCD shutter 30 is disposed so as to correspond to a divided area of the liquid crystal panel 10. The inside surface of the light source 20 is all surrounded by reflecting boards, and a fluorescence tube may be disposed inside. Also, in the light source portion 20, a light source of surface emitting type may be incorporated.

[0037]

A reflection type polarizing plate 30 (c, d), has such a property that light of specified polarized wave surface is transmitted light which does not coincide with the polarized surface, e.g. s-wave, is without absorption. As a result, through an area where the shutter is opened, for example, p-wave is transmitted and the liquid crystal panel is irradiated with the p-wave. With respect to light in an area where the shutter is closed, as shown in the figure, s-wave is totally reflected to the light source portion 20 side and at the light source

Your Ref.: \$68/49940

Our Ref.: 61689/00R00229/US

portion 20, the light in which the polarized wave surface thereof is rotated is again emitted through the area where the shutter is opened to the liquid crystal panel side. Accordingly, transmitting light through the LCD shutter portion increases, and light of the light source portion 20 can be efficiently utilized. An intensity of the irradiated light can be higher in comparison with the case where a reflection type of an ordinary polarizing panel is used. Furthermore, a heat-resisting property may be added since there is no absorption at the

[0038]

polarizing plate.

Such a reflection type polarizing plate is come into practical use as a product, for example, as 3MDBEF (Trade Name). To the polarizing plate is added a heat-resisting property by attaching to a backside polarizing plate of the liquid crystal panel in a form of polarizing film, a compatibility with a liquid crystal display apparatus of the invention is also improved since it is possible to share such a reflection type polarizing plate with the polarizing plate on a front face side of the liquid crystal panel.

[Fig. 10]

【図10】

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-006815

(43)Date of publication of application: 11.01.2002

(51)Int.CI.

G09G 3/36 G02F 1/133 G09F 9/00 G09G 3/20

HO4N 5/66

(21)Application number: 2000-191092

(71)Applicant : SONY CORP

(22)Date of filing:

21.06.2000

(72)Inventor: YANO TOMOYA

YOSHIKAWA TOSHIHIKO

(54) LIQUID CRYSTAL DISPLAY DEVICE

57) Abstract:

PROBLEM TO BE SOLVED: To eliminate animation blur of a liquid crystal display device.

SOLUTION: The device is provided with a TFT type liquid crystal panel 10, a back light 20, a scan driver 13 which receives signals from a timing generating section 12 and forms scanning signals for the panel 10, a data driver 14 which supplies horizontal direction image data based on a clock and a back driver 18 which controls the back light 20 of the panel 10. The back light 20 is composed of plural fluorescent tubes L1, L2,...Ln which are successively turned on in accordance with the scanning timing of the panel 10. Back light beams are passed through the plural regions of the panel 10 with a prescribed timing to eliminate blur caused by a moving image.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出辦公開番号 特開2002-6815

(P2002-6815A)

(43)公開日 平成14年1月11日(2002.1.11)

(51)IntCl7		膜別配号		ΡI			7	-77-1*(多考)
G09G	3/36			G09G	3/36			2H098
G02F	1/133	535		G02F	1/133		535	5 C O O B
G09P	9/00	337		G097	9/00		337B	5 C O 5 8
G09G	3/20	812		G096	3/20		612Z	5 C O B O
		660					660V	5 G 4 3 5
			等查請求 完	长趙求 献	求項の数 B	OL	(全11頁)	最終更に続く

(21) 出票書号	(\$182000-191092(P2000-191092)	(71) 出國人	000002185			
			ソニー株式会社			
(22)出版日	平成12年6月21日(2000.6.21)		東京都品川区北品川6丁目74855号			
		(72) 発明者	谷野 友敬			
			東京都品川区北島川6丁目7番95号 ソニ			
			一株式会社内			
		(72)発明者	吉川 俊彦			
			東京都島川区北島川6丁目7番35号 ソニ			
			一株式会社内			
		(74)代理人	100086841			
			 			

最終頁に続く

(54) 【発明の名称】 被品表示数量

(57)【要約】

【課題】 液晶表示装置の動画ポケを解消する。

【解決手段】 10はTFT型の液晶パネル、20はバックライトである。13、14はタイミング生成部12の信号を受けて液晶パネル10のスキャン信号を形成するスキャンドライバと、クロックに基づいて水平方向の画像データを供給するためのデータドライバである。18は液晶パネルのバックライトをコントロールするバックライトドライバであり、バックライト20が複数本の蛍光灯上1、L2、・・・Lnによって構成され、この蛍光灯を液晶パネルの走査タイミングに応じて順次発光させる。液晶パネル10の複数の領域には所定のタイミングでバックライト光が透過するようになり、勤きのある画像のボケが解消する。

(2) 特開2002-6815 (P2002-6815 L

【特許請求の範囲】

【請求項1】 複数のゲート線と複数のデータ線と、前 記ゲート線と前記データ線との交点に対応してマトリックス状に配置された画素セルからなる液晶パネルと、 前記液晶パネル上に画像を表示するために、前記ゲート 線を選択すると共に、前記データ線に画像を表示するた

めの画像信号を供給する駆動手段と、 前記駆動手段が駆動する周期に対応して前記液晶パネル の一部分を点滅させて照明する照明手段と、

を有することを特徴とする液晶表示装置。

【請求項2】 前記液晶パネルは前記駆動手段により線 順次で駆動され、前記照明手段が前記線順次の駆動タイ ミングに応じて点滅されることを特徴とする請求項1に 記載の液晶表示装置。

【請求項3】 育記液晶パネルの一部分が前記駆動手段 により駆動された後に、前記照明手段が前記液晶パネル の駆動された部分を照明する点灯タイミングが所定時間 遅れていることを特徴とする請求項2に記載の液晶表示 装置。

【請求項4】 前記点灯タイミングの遅れは次式を満足していること特徴とする請求項3に記載の液晶表示装置。

 $\Delta t = (1-duty) \times F$

但し Δt:点灯のタイミング遅れ

duty:照明手段の点域のデューティ

【請求項5】 前記液晶パネルの液晶応答速度が次式を 満足することを特徴とする請求項4に記載の液晶表示装 置。

 $\tau < (1 - duty - A) \times F$

但し τ:液晶の応答時間

A:液晶パネルの縦方向に対する照明手段の照明範囲の 比

【請求項6】 前記照明手段が複数の線光源からなることを特徴とする請求項1に配載の液晶表示装置。

【請求項7】 前記照明手段が動作中は常時点灯している線光源と、該線光源と液晶パネルの間に配置され、線 光源の光束を点域制御する液晶シャッタとを有すること を特徴とする請求項1に記載の液晶表示装置。

【請求項8】 前記照明手段が、前記光源を一方向に反射して収束させる反射板と、該反射板からの光束を線状に収束させる集光手段と、該集光手段により収束した光束で液晶パネルの背面を走査するように照射する偏向手段とを有することを特徴とする請求項1に記載の液晶表示装置。

【請求項9】 前記液晶パネルがアクティブマトリック ス型の液晶パネルによって構成されていることを特徴と する請求項1に記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光潔からの光をライトパブルで変調して画像を形成し、投写することができる液晶表示装置に関わり、特に動画像を表示するときに好選な照明光源を使用した液晶表示装置に関するものである。

[0002]

【従来の技術】ランプなどの光源と、空間光変調素子とされる液晶をライトバブルとして画像を表示する液晶表示装置は、表示部をフラットに構成することができると共に、消費電力の点でも陰極線管を使用する場合に比較して少なくすることができ、近年、その普及度が非常に高くなっている。しかしながら、液晶表示装置の場合は、通常は液晶パネルの背面に照明用の光源を備え、このバックライトを利用しないと表示画像の輝度を高くすることが困難になると共に、液晶の物理的な学動を利用して光の透過度が制御される構造から、結果的に画像信号に対する底等速度が低いという問題が生じる。

【0003】ライトバブルを構成する液晶パネルは近年、単純マトリックス型の液晶パネルに対して、トランジスタによって各面素の透過率を制御するTFT型の液晶パネルが多く使用されており、このアクティブタイプの液晶パネルの場合は、データドライブ用のIC回路を使用して表示のために入力された面像データを1フィルド期間保持させることが可能になっている。そのため、バックライトの照射光を有効に利用することができ、高コントラスト、高輝度の表示装置を構築することができる反面、動きのある個所で動画ボケが生じるという問題がある。

【0001】上記したような動画ボケに対応するために 液晶の応答速度を改善する方法として、液晶のセルギャップを減くする方法、粘性の低い材料を使用する方法、 高温で使用する方法等が考えられる。また、応答速度を 早くするモードとしてVAモード、OCBモード等が考 えられておりこれらの技術を採用して1フィールドを1 7ms以下の応答速度とすることが可能とされている。 【0005】

【発明が解決しようとする課題】しかしながら、アクティブマトリックス方式駆動において、いわゆるホールド型のディスプレーでは応答速度に係わらず動画ボケを解消することが困難である。以下、この点を図13を参照して説明する。図13の(a)に示すように比較的暗い表示画面にの一部に例えば4×8画素の白い移動極識のが表示され、この移動極識が時間の経過と同時に水平方向に移動している場合を考える。

【0006】この場合は、次の表示フレーム画面S1を示す図(b)では、移動係識が4面素右方向に移動し、さらに次のフレーム画面S2を示す(c)では、さらに4面素右方向にずれるものとする。1フレームの周期を1/60secとすると、画面S1では網目にされた領

(3) 特開2002-6815 (P2002-6815)

城 q 1 が 1 フレーム期間表示され、次のフレーム画面で 白から黒に変化することになるが、視聴者の視覚ではこ の部分は残像として残っているため、黒とは認識されない。同様に次のフレーム画面 S 2 では、網目の領域 q 2 はほぼ黒と認識されるが網目の部分 q 2 は黒とは認識されない。

【0007】このような視覚の積分効果は実験によると、通常数10ms以内の短時間内の光刺激はほぼ完全に積分されるといわれており、液晶パネルの駆動方法に見られるように、特に、1フレーム(1フィールド)を単位として画像データを書き換える液晶パネルのアクティブドライブ方法を採用する場合は、このような時間内の刺激は、移動している標識Qの輪郭が移動方向の前後に沿ってぼける動画ボケを生じるという問題が生じる。【0008】

【課題を解決するための手段】本発明は上記したような問題点を解消するために請求項1の発明では、複数のゲート線と複数のデータ線と、前記ゲート線と前記データ線との交点に対応してマトリックス状に配置された画素セルからなる液晶パネルと、前記液晶パネル上に画像を表示するために、前配ゲート線を選択すると共に、前記データ線に画像を表示するための画像信号を供給する驱動手段とを備えている液晶表示装置において、前記駆動手段が駆動する周期に対応して前記液晶パネルの一部分を点滅させて照明する照明手段を有するようにしたものである。

【0009】液晶パネルの駆動手段は線順次でデータが 入力されるように駆動され、前記照明手段が前記線順次 の駆動タイミングに応じて点滅されるようにしている。 この場合は前記液晶パネルの一部分が前記駆動手段によ り駆動された後に、前記照明手段が前記液晶パネルの駆動された部分を照明する点灯タイミングは所定時間連れ るようにする。

【0010】前記点灯タイミングの遅れは次式を満足するようにし、麹度の低下をできるだけ少なくなるようにする。

 $\Delta t = (1-duty) \times F$

但し Δt:点灯のタイミング遅れ

duty: 照明手段の点域のデューティ

F: 駅動手段が1フィールドの画像信号を駆動するために要する時間

【0011】液晶パネルの応答速度が考慮される場合は、液晶の分割数とともに、次式を流足するようにする。

 $\tau < (1 - duty - A) \times F$

但し で:液晶の応答時間

A:液晶パネルの縦方向に対する照明手段の照明範囲の 比

【0012】前配照明手段は動作中は常時点灯している 線光源と、該線光源と液晶パネルの間に配置され、線光 源の光束を点減削削する液晶シャッタとし、シャッタを 構成する偏光板として反射型の偏光板を使用することが 好ましい。また、前記照明手段として、光源を一方向に 反射して収束させる反射板と、該反射板からの光束を観 状に収束させる塩光手段と、該風光手段により収束した 光束の方向を傾向して液晶パネルに照射する偏向手段を 有するものを使用することもできる。

[0013]

【発明の実施の形態】図1は本発明の実施の形態を示す表示装置の概要をブロック図としたものである。この図において10はTFT型の液晶パネルを示し、画像表示を行うために例えばTNセルの両端子に電圧をかけることによって、各頭素毎の光透過率を制御するようにしている。制御電極は敵細加工が施されているTFT(薄膜トランジスタ)によって構成されており、通常は背面に蛍光ランプを光辺とするバックライト20が設けられている。

【0014】このようなTFT型の液晶パネル10は、マトリックス状に配設されているスキャン電極とデータ電極の交点で、浮膜トランジスタに印加された面像データが1フィールド期間保持されるようにドライブされる。したがって、バックライトの光源を有効に利用することができ、コントラストを高くすると共に、輝度も高くなる。

【0015】11は図示されていない例えばパーソナルコンピュータや、映像ソースから供給されている画像情報から同期信号を抽出する同期信号生成部であり、少なくとの抽出された水平同期信号と、垂直同期信号が次のタイミング生成部12に供給される。13はタイミング生成部12の信号を受けて液晶パネル10のスキャン信号を形成するスキャンドライバ、14は同じくタイミング生成部12から供給されたクロックに基づいて水平方向の両位データを供給するためのデータドライバである。15は例えばアナログ信号で映像信号が供給されているときはその信号をデジタルデータに変換すると共に、種種の図形データや、キャラクタデータをメモリから読み出して表示すべき画像信号を生成し、所定のタイミングで次の信号処理部16に供給する。

【0016】信号処理部16は液晶パネル10の表示特性に対応して輝度レベルや色相、成いはコントラスト等の表示に係わる信号処理を行う信号処理部である。そしてこの信号処理部16で適性に補正された画像データが先のデータドライバ14に供給され、1ライン毎にデータが液品パネルに書き込まれ、通常は1フィールド期間保持される。

【0017】17は本発明の画像表示装置の全体的な制御を行っている制御部(CPU)であり、この制御部17によって表示画像の拡大、縮小、その他各種の表示モードを選択させることができるようになされている。また、18は液晶パネルのパックライトをコントロールす

(4) 特別2002-6815 (P2002-6815 |

るバックライトドライバであり、バックライト20が複数本の蛍光灯L1、L2、・・・Lnによって構成されているときは、後で述べるようにこの蛍光灯を順次発光させて複数の領域に分けて表示面を所定のタイミングで照射することができるように側倒している。

【0018】なお、19は必要に応じて複数本のバックライトの駆動モードを変えるモード切替部を示すが、必ずしも必要とするものではない。また、上駅映像信号生成部15には供給された映像信号の動き検出を行う動き検出部15Aを設け、この動き検出のデータを制御部17に供給してバックライトの点灯モードを変更させることができる。さらに、RAM16Aを設けうることによって、信号処理のためのデータを外部から書き換えるようにしてもよい。

【0019】図2(a)は5本の蛍光管L1、L2、L3、L4、L5によって構成されているバックライト(背面光源)20の関面から見た模式図を示す。各蛍光管L1、L2、L3、L4、L5は液晶パネルで構成されている表示部10の背面に水平ラインに沿って配置されており、5本の蛍光管と必要に応じて設けられている反射板によって表示部10を異直方向に5分割した領域B1、B2、B3、B4、B5に背面からほぼ均一な光を照射するように配置される。表示面の分割数は2~10程度の範囲で任意に定めることができる。

【0020】図2(b)はバックライトの他の形態を示すもので、同じく5本の蛍光管し1. L2. L3, L4, L5に対して斜め方向に平板状の反射板m1, m2, m3, m4, m5を使用し、各蛍光管し1、L2、L3、L4、L5から放出された光を上方に反射させるようにしている。この場合は、図2(a)に比較してバックライト20の厚みを薄くすることができる。なお、通常は表示部10の下面に図に示すように光拡散板を配置して表示面の照度が均一となるようにする。

【0021】図3は上記したようなバックライト20に よって照射された液晶パネル10の表示面Sが、ブロッ クB1、B2、B3、B4、B5に分割されている状態を示 しており、このように表示面Sを垂直方向に分割して所 定のタイミングで時分割的に照射すると、本発明の一つ の課題としている動画ボケを低減することができる。 【0022】各蛍光管L1、L2、L3、L4、L5を駆動 するバックライトドライバの一例を図4に示す。先に示 したタイミング生成部12から供給されているフレーム 同期信号Sbは、それぞれ運延量が異なるように設定さ れている5個の遅延回路13 a、13 a、・・・に供給 され、それぞれバックライト電源部13b、13b、・ ・・に供給される。各バックライト電源13bは、それ ぞれ所定時間遅延された信号で起動され、所定の期間 (パルスデューティ) 蛍光灯を点灯させるよな電源電圧 を各蛍光管L1、L2、L3、L4、L5に供給する。 【0023】通常は各蛍光管L1、L2、L3、L4、L5

は上から下方に向かって順次点灯し、次に消滅を繰り返すように駆動されるが、後で述べるように動き検出に基づいて各フィールド遅延回路の遅延量を制御したり、各バックライト電源の出力を制御して、種種の点灯モードが設定できるようにすることが好ましい。動画ボケを解消する場合は各蛍光管の点灯時間(デューティ)が従来の常時照射型の蛍光管に比較して短くなる。しかし、後で述べるように発光輝度が高くなるように電源電圧を選ぶことによって、同一電力で同一の輝度を実現することができる。

【0024】以下、3本の蛍光管を使用し液晶の表示面 を3分割した領域で照射する場合の液晶パネルの書き込 みタイミングと、蛍光管の点灯タイミングを図5に示 す。液晶の水平ラインをm本とすると第1の領域B1は 「1~m/3」、第2の領域B2は「(m/3)+1~ 2m/3」、第3の領域B3は「(2m/3)+1~ m」本の水平(スキャン)ラインに分割される。面盤デ ータは水平ライン1から、水平ラインmまでを順次フレ ーム周期F(例えば1/30ms~1/120ms)で 取り込まれる。この取り込まれた画像データに対応して 液晶分子が物理的に応答し、画像データに対応した光透 過特性を呈するまでの各ラインの応答時間で(以下、立 ち上がり応答速度という)が各プロックの最終水平ライ ンm/3、及び2(m/3)、及びフィールドの最終ラ イン加上に示されている。この立ち上がり応答速度で は、図面上では短い時間に設定されているが、現在のT FT型液晶パネルの場合は実際は数ms~10数msと 考えることができる。

【0025】第1の領域B1「1~m/3」では、第1 の領域の最終水平ラインm/3にデータの取り込みが終 了する時点f1から、少なくともこの液晶の立ち上がり 応答時間でより長い△ t を経過した時点で第1の蛍光管 L1を点灯させる原動信号SL1を発生する。次に第2 の領域B2となる表示部のバックライト光源である蛍光 臂1.2は、第2の領域の最終水平ライン2(m/3)に データの取り込みが終了する時点f2から同様にΔt理 れた信号SL2によって起動され第2の領域B2の照射 が行われる。同様に第3の領域B3は、第3の領域の最 終水平ラインmにデータが取り込まれた時点13の後、 △ t 後に蛍光管1.3が信号SL3によって起動される。 【0026】データが取り込まれた後に液晶分子が立ち 上がり、光透過率が所定の値となるまでの応答時間、す なわち、液晶の立ち上がり応答時間をが、上記のデータ が書き換えられる時の液晶分子の立ち下がりの応答時間 と等しいと考えると、△tは△t≒(1-duty)×Fで あることが好ましい。

但し、ド:フィールド時間、duty:照射時間/F また、逆に液晶の応答速度ではでく(1-duty-1/n) メドであることが好ましい。ここで、1/n=Aは有効 画面の連直方向サイズに対するある時刻における照明節 (5) 特別2002-6815 (P2002-6815)

囲の比率を示す。

【0027】例えば、duty:50%、ブロック分割数n=5、1フィールド時間17mSの場合は上記式から液晶の応答速度は5mS以下であることが望ましく、この条件において液晶の応答速度は考慮することなく動画ボケを解消するように設計することができる。

【0028】液晶の応答速度の遅い場合はバックライト 発光デューティを短くし、または表示面の分割数を増加 することによって対応することができる。実際に液晶の 応答速度は立ち上がり、立ち下がりが同等であることは 少なく、また、応答速度が先の条件を満たさない場合が ある。例えばノーマリホワイトTNモードの場合は透過 率の立ち上がり速度が遅く、立ち下がりが早い。この場合はム t を先の値と比較して適当に長くすることによっ て立ち上がりのボケを改善する。

【0029】各強光管の駆動信号を示す信号SLの立ち下がりは、当該ブロックのデータが最初のラインで番き換えられる直前、さらに詳しくは当該ラインの液晶の透過率が新しい画像データに応答する直前まで点灯しておくことができ、信号SLの斜線を引いた期間が隣接するブロックの蛍光管の発光期間と重複した領域になる。したがって、上記の実施例では蛍光管を点灯するduty(TB1、TB2、TB3)は1フレーム期間の1/3より長くすることができ、液晶パネルに対して十分な輝度を与えることができる。但し、立ち下がりが遅い場合はムセを先の値と比較して短くするが、これらの微調整は液晶の応答特性に応じて調整すればよい。

【0030】バックライトから出射された光は理想的には表示画面を分割している領域のみに照射されることが好ましいが、実際には分割された表示面の他のブロックにも照射される。例えば、先に示した図2のように5本の蛍光灯を平行してバックライトとして配置したときは、B1領域には第2の蛍光管L2の照射光が漏れ込み、B2領域には本来のバックライトの蛍光管L2による照射光の他に隣接する蛍光管L1、およびL3の照射光が漏れ込む。このようなバックライトによる照射光の輝度を関面からみると、図6の各線覆で示すように、特にバックライトの構造によってはブロックの境界付近で、時間的には異なっているが少なくとも3個のバックライトの発光が影響する場合が生じる。

【0031】したがって、表示面の各ブロックの境界線で早い動きを示す画像がある場合は、先の動画ボケが目立つことになるが、この影響を少なくするためにはさらに表示面面の分割数を多くすることにより、例えば10分割することで、動画ボケを殆どなくすることができる。なお、上記のように表示面が分割されてバックライトが照射されるようにしているときに、全バックライトを同時に点灯したときに、3点差線で示すように表示面に類度むらが生じないように、バックライトの位置や、光鉱散板を配置しておくと、上記ようにバックライトを

点級制御しても、表示面の各境界領域の輝度は積分効果によって殆ど目立たなくすることができる。

【0032】ところで、バックライトの本数を増加すると、一般的には各表示面を照射するバックライトのdutyが下がるため表示画面の輝度がそれだけ低下する。そこで、各バックライトの発光電力を高くして短時間でも十分に高減度の発光が行われるようにすることが好まし

【0033】しかし、蛍光管をバックライトとするときは、原財電力を高くしたときに高温における輝度の消滅効果を考慮する必要がある。例えば、図7はバックライトとしての蛍光管の輝度と蛍光管に投入される電力(管電流)の関係を示している。蛍光管の場合は発光効率は環境温度に依存しており管電流が増加すると蛍光管自体の発熱により効率が低下する。低電流領域で効率が最適となるように設定されている通常の蛍光管の場合は、環境温度が固定されていると管電流を増加させたときに図の点線に示すように輝度が低下する。しかし、輝度が最速となる環境温度を設定すると、図の大線で示すように管電流の増加と共に、輝度を高くすることができるようになる

【0034】一般的には、管電流を増加したとき蛍光管の温度もそのまま上昇するが、管電流を増加してもduty駆動を行わせると、消費電力は管電流の大きさだけでは上昇しない。したがって、duty駆動にすれば、管電流を増加しても知度が低下しないようにすることができる。つまり、図8図(a)に示すように100%のduty(常時点灯)時の電力Pnの環境温度に対して十分な護度が得られるように設定すると、duty50%、または30%とするときは、同図(b)または(c)に示すように駆動時に管電流が増加するように制御し、輝度の平均電が高くなるようにすることができる。この場合、平均電力Pnは変化せず管温度はそれほど上昇しないので十分に発光輝度を高くすることができる。

【0035】図9は、バックライトを福品パネルの分割された各領域に対して照射する際に、照射光を液晶シャッタによって断続するようにする場合の実施例を示す。この間においては、バックライト20はL1、L2、L3、L1からなる4本の蛍光管によって構成されており、そのし方に液晶シャッタ30が設けられている。液晶シャッタ30はよく知られているように液晶板を挟んで上下に腐光板30A、30Bが配置されており、液晶シャッタの解射重極が液晶パネルの分割領域B1、B2、B3、B4年が応じた信号SLのタイミングで供給すれば、液晶パネルへの照射光を分割された領域B1、B2、B3、B4年に所定のタイミングで照射することができる。

【0036】図10に上記したような液品シャッタを使用する場合のバックライトの他の実施の形態を示す。こ

(6) 特別2002-6815 (P2002-6815)

の実施例ではバックライトの光源部20の上方に液晶シャッタ30が配置されており、その上方に光拡散板を介して液晶パネル10が載置されている。この液晶シャッタ30の偏光板としては反射型偏光板30c、および30dが液晶の両面に配置され、図9の場合と同機に液晶シャッタ30の駆動電極が液晶パネル10の分割領域に対応して設けられている。光源部20は内面が全て反射板で囲われており内部に蛍光管を配置してもよいが、この光源部20に面発光型の光源を内蔵するようにしてもよい。

【0037】反射型偏光板30(c、d)は特定の偏波面の光を透過するが、偏光面に一致していない光、例えばま波を吸収しないで反射するような特性を持たせる。すると、シャッタが開いている領域からは例えばp波を透過して液晶パネルに照射され、シャッタが閉じた傾域の光は図示しているようにs波が光源部20関に全反射され光源部20においてその偏光面が回転した光が再びシャッタが開いている領域から液晶パネル関に放出される。したがって、液晶シャッタ部を透過する光が増加し、光源部20の光を有効に利用することができ、反射型の通常の偏光板を使用する場合に比較して照射光の輝度を高くすることができる。また、偏光板において光の吸収がないので耐熱性を付加することができる。

【0038】このような反射型の偏光板は、例えば3M DBEF(簡品名)として実用化されており、偏光フィルムの形で液晶パネルの背面偏光板に貼付することによって耐熱性を付加すると共に、液晶パネルの前面側の偏光板と共用できるため本発明の液晶表示装置との適合性を高くする。

【0039】図11は点光源または緑光源とされている 光源31を使用したパックライト30の実施例を示す。 この図に示されている照射型のパックライトは高輝度の 発光源(メタルハロイドランプ)31を利用できるよう にしたものである。光源31の出射光は楕円状のリフレ クター32によってほぼ平行光とされ、シリンドリカル レンズ33によって直線状に絞り込まれる。34は多角 形の回転ミラー(ポリゴンミラー)であり、シリンドリ カルレンズ33によって直線状に絞り込まれた光束を拡 散板10Aを介して液晶パネル10側に反射して照射する。

【0040】回転ミラー34を液晶パネル10に表示される画像のフレーム周期に対応してその回転位相、及び回転数を制御すると、新線で示した領域に光束を照射することがことができ、この光束部分が矢印方向に移動することによって液晶パネルの全面を時分割的に照射するパックライトが構成される。本実施例はパックライトが高輝度にできるため、スクリーンに映像を投影する液晶パネル(液晶プロジエクタ)のパックライトとして好適である。

【0041】上記各実施例は光源として主に蛍光管を使

用する場合について述べたが、発光源としては、近年開発されているフラットタイプの表示装置であるPDP (プラズマディスプレイパネル)の発光源を使用してもよい、また、フラットな光源として実用化されている有機EL板を面発光源とし使用すると、液晶パネルの分割された砂域を照射する出射光の制御が極めて容易にできる。

【00-12】さらに、高輝度の発光ダイオードを平板状に配置して回光源を作り、液晶パネルの背面に配置すると、その発光領域と発光タイミングがスキャンドライバの制御バルスを利用して簡単に制御することができるようになる。

【0043】また、図1に示されているように動き検出 15Aで表示すべき画像の動き検出を行うと、その検出 結果に対応してバックライトの点滅モードを動きに応じて変更させることができる。たとえば、表示画面に動き のない静止画の場合は、その期間はバックライトを構成 する蛍光管の点域制御を、図1のモード切換部19から 出力される信号によって全面点灯モードに変更する。ま たは液晶シャックの全てのシャック領域オープンにする ように制御する等によって高輝度の表示が可能になるよ うにする。

【004-4】また、動きの程度はよって画面を表示している領域の分割数を変更するように制御してもよい。例えば、バックライトの蛍光管数を増加してしておき、極めて動きの磁しい画像の場合は表示面の分割数を増加するように各蛍光管の発光タイミングを定めると共に、動きの少ない場面では分割数が小さくなるように蛍光管の発光タイミングを制御し、同時に発光輝度の制御をする。このような制御は図4に示した各フィールド遅延回路154、およびバックライト電源13bを制御部17からのフマンド信号に基づいて行えばよい。

【0045】図12(a)は、本発明の表示装置に遺店することができる、バックライトの他の実施の形態を示す。この図において21A、21Bは蛍光管、またはハロケンランプ等からなる光源であり、22はアクリル樹脂等によって形成されている導光板である。導光板22の一方の面には反射板23が設けられ、他方の面には表示装置としての液晶パネルが配置される。

【0016】 淳光板22の中心部には電圧が印加されることによって等方性の光透過特性が異方性の光透過特性 に変化する液晶板24が埋設されている。液晶板24は 例えば正の誘電率異方性を育するネマティック液晶が使用され、その配行方向は淳光方向と平行になっている。そして、一方の面はコモン電極とされ、他方の面にはストライン状の電極 (共に透明電極)が形成されている。程圧が印加された電極部分の領域しwからは導光板22 内をジクザグ状に反射しながら進行している光源21 (A、B)の光が取り出されるようにしている。このような光学素子はHーPDLC (407 うわか ポリヤーデス

(7) 特開2002-6815 (P2002-6815 十

パーズト リキット'クリスタル)と呼ばれている。

2004年 4月 9日 9時10分

【0047】図12(b)は導光板22の一部を拡大図 としたもので、液晶板24は液晶パネルと同様に微細な 間隔で水平方向に電極によって区分されている。 すなわ ち、下面はコモン電極面28とされるが、上面には水平 方向に数ミクロンの間隔で多数のストライプ電極27が 形成され、このストライプ電極27を表示装置の分割数 に対応してブロック化し引き出すようにしている。液晶 板24の上下間の電極に電圧が印加されていないとき は、導光板22は等方性の透過特性となっており、光源 21A、21Bから出射光は薄光板22の上面、および 下面で全反射を受けて図のように光源12(A,B)間 を往復している。

【0048】しかし、液晶板24のある領域しwに電圧 が印加されると、この領域26の液晶分子はストライプ 状に図12(b)に示すように変移し、この変移領域と 変移していない領域が例えばp偏光波に対して回析格子 を形成する。するとこの回析格子となっている部分を通 過する光は異方性により、一方の側から侵入した光は上 方に、他方の方向から侵入した光は下方に進路を変え る。但し、s偏光波はそのまま導光されるが、光源、リ フレクタによる反射屈折を繰り返すことにより偏光情報 が失われ、再度他端から導光板に入射される。上方に反 射した例えばp偏光波はそのまま液晶パネルの分割した 領域を照射すると共に、下方に反射した偏光波も反射板 23によって反射され、結果的に液晶パネル側に照射さ

【0049】ストライプ電極27の選択パターンを液晶 パネルの分割表示領域に合わせて設定することにより液 晶パネルの任意の部分に光を照射することができるバッ クライトを構成することができる。図(c)に示されて いるように背面の反射板23を山形に変形すると、導光 板22内の平行光もジグザグに全反射をくり返すように なり、出射光をより多くすることができる。また、この 実施例のバックライトからは偏光方向が揃った光のみが 出射されるため液晶表示装置の照明光として好適にな る.

[0050]

【発明の効果】以上説明したように本発明の液晶表示装

[図6]

プロック1の舞座レベル プロック2の課度レイ プロック3の算度レベル -----ブロック4の輝度レベル ----ブロック5の輝度レベル 置は、透過型の液晶パネルの表示面を所定の領域に分割 すると共に、この分割された領域に対して所定のタイミ ングで光を照射するようにしているので、特に、高コン トラスト、高輝度が要望されているTFT型液晶表示装 置の用合に、動画によるボケを殆どなくすることができ るという効果を奏する。

【図面の簡単な説明】

[図1] 本発明の実施の形態を示す液晶表示装置のプロ ック図である。

【図2】 蛍光管を速応したバックライトの説明図であ

【図3】本発明の実施の形態を示す液晶表示装置の全体 図をボす模式図である。

【図1】バックライトの駆動系を示すプロック図であ

【図5】液晶パネルのデータの書き込みとバックライト の点以タイミングを示す波形図である。

【図6】5分割されたときのバックライトの輝度分布を 示す説明図である。

【217】 蛍光管の輝度と消費電力の関係を示すグラフで ある

【図8】バックライトを所定のデューティで駆動したと きの電力の説明図である。

【図9】液晶シャッタをバックライトの制御に使用する 時の説明図である。

【図10】液晶シャッタと反射型偏光板の組み合わせを 示す側面図である。

【2111】高輝度のバックライトを実現するときの実施 の形態を示す模式図である。

【図12】H-PDLCをバックライトとするときの説 明はこれる。

【図13】液晶表示装置で起きる動画ボケの説明図であ る、

【符号の説明】

1() 液品パネル、11 同期生成部、12 タイミン グ発生部、13 スキャンドライバ、14 データドラ イバ、15 映像信号生成部、16 信号処理部、17 制即部、18 バックライトドライバ、20 バック ライト

(8) 特別2002-6815 (P2002-6815 |

【図3】

(9) 特開2002-6815 (P2002-6815 !

【図4】

【図5】

【図8】

Y(P)

(10) 特開2002-6815 (P2002-6815)

[2]11]

[2]12]

【図13】

フロントページの就き

(51)Int.Cl.⁷ HO4N 5/66 識別記号 102 ΓI

HO4N 5/66

テーマコード(参考)

102B

(11) 初期2002-6815 (P2002-6815 ;

Fターム(参考) 2H093 NA16 NA43 NC12 NC34 NC44 NC45 ND02 ND04 ND07 ND08 NDO9 NEO6 50006 AF19 BB15 BB16 EA01 FA11 GA02 50058 AA09 AB03 BA03 BA05 BA29 BA35 BB25 EA26 EA51 5C080 AA10 BB05 DD01 DD07 EE19 FF11 FF12 JJ01 JJ02 JJ04 JJ05 JJ06 KK43 5G435 AA01 BB12 CC09 DD13 EE26

LL15

EE29 EE30 FF03 GG24 GG26

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.