

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

LESSON 18 IDEAL DIGITAL FILTERS

PhD. Nguyen Hong Quang

Assoc. Prof. Trinh Van Loan

PhD. Doan Phong Tung

Computer Engineering Department

□ CONTENT

- 1. Ideal low pass filter.
- 2. Ideal high-pass filter.
- 3. Ideal bandpass filter.
- 4. Ideal band-pass filter.
- 5. The actual filter specifications.

□ Lesson Objectives

After completing this lesson, you will be able to understand the following topics:

- The basic concepts and parameters of ideal filters include: low-pass filter, high-pass filter, band-pass filter and band-pass filter.
- Basic filter concepts and parameters.

1. Ideal low-pass filter

LPF: Low Pass Filter

$$H(\omega) = \begin{cases} 1, & |\omega| \le \omega_{C} \\ 0, & \omega_{c} < |\omega| \le \pi \end{cases}$$

Basic parameters of the filter

$$\omega_c$$
: cutoff frequency $-\omega_c \le \omega \le \omega_c$: pass band $\omega_c < |\omega| < \pi$: stop band

Impulse response

$$h_{lp}(n) = \frac{1}{2\pi} \int_{-\omega_{C}}^{\omega_{C}} e^{j\omega n} d\omega = \frac{1}{2\pi j n} e^{j\omega n} \Big|_{-\omega_{C}}^{\omega_{C}}$$
$$= \frac{1}{2\pi j n} \left(e^{j\omega_{C}n} - e^{-j\omega_{C}n} \right) = \frac{\sin \omega_{C}n}{\pi n}$$

$$n = 0 \rightarrow h(0) = \frac{1}{2\pi} \omega \Big|_{-\omega_C}^{\omega_C} = \frac{\omega_C}{\pi}$$

Characteristics of an ideal low-pass filter

- At all samples are integer times of 2 (even samples) except at n=0 then h(n)=0 because $\omega_C=\frac{\pi}{2}$
- With cutoff frequency $\omega_C = \frac{\pi}{M}$ thì h(nM) = 0
- The system is not causal so it is not physically possible

2. Ideal high-pass filter

HPF: High Pass Filter

$$\left|H(e^{j\omega})\right| = \begin{cases} 1 & \left\{-\pi \le \omega \le -\omega_C \\ \omega_C \le \omega \le \pi \\ 0 & \omega \text{ còn lại} \end{cases}$$

Basic parameters of the filter

 ω_c : cutoff frequency $-\omega_c < \omega < \omega_c$: stop band $\omega_c \le |\omega| \le \pi$: pass band

Impulse response of an ideal high-pass filter

•
$$n \neq 0$$

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{-\omega_C} e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{\omega_C}^{\pi} e^{j\omega n} d\omega = \frac{1}{2\pi j n} e^{j\omega n} \Big|_{-\pi}^{-\omega_C} + \frac{1}{2\pi j n} e^{j\omega n} \Big|_{\omega_C}^{\pi}$$
$$= -\frac{\sin \omega_C n}{2\pi j n} e^{j\omega n} \int_{-\pi}^{\pi} e^{j\omega n} d\omega = \frac{1}{2\pi j n} e^{j\omega n} \Big|_{\omega_C}^{\pi}$$

$$\bullet$$
 n = 0

•
$$n = 0$$

$$h(0) = \frac{1}{2\pi} \omega \Big|_{-\pi}^{\omega_C} + \frac{1}{2\pi} \omega \Big|_{\omega_C}^{\pi} = 1 - \frac{\omega_C}{\pi}$$

The relationship between low-pass filter and zero-phase high-pass filter:

$$h_{hp}(n) = \begin{cases} 1 - h_{lp}(0) & n = 0 \\ -h_{lp}(n) & n \neq 0 \end{cases}$$

3. Ideal Bandpass Filter

Ideal Band Pass Filter

$$\left|H(e^{j\omega})\right| = \begin{cases} 1 & \left\{-\omega_{C2} \le \omega \le -\omega_{C1} \\ \omega_{C1} \le \omega \le \omega_{C2} \\ 0 & \omega \text{ còn lại} \end{cases}$$

Basic parameters of the filter :

 ω_{c1} : lower cut-off frequency ω_{c2} : upper cut-off frequency $\omega_{C1} \leq |\omega| \leq \omega_{C2}$: pass band $|\omega| \leq \omega_{C1}$: stop band $\omega_{C2} \leq |\omega| \leq \pi$: stop band

Impulse response of an ideal bandpass filter

• $n \neq 0$

$$\begin{split} h(n) &= \frac{1}{2\pi} \int\limits_{-\omega_{C2}}^{-\omega_{C1}} e^{j\omega n} \, d\omega + \frac{1}{2\pi} \int\limits_{\omega_{C1}}^{\omega_{C2}} e^{j\omega n} \, d\omega = \frac{1}{2\pi j n} e^{j\omega n} \bigg|_{-\omega_{C2}}^{-\omega_{C1}} + \frac{1}{2\pi j n} e^{j\omega n} \bigg|_{\omega_{C2}}^{\omega_{C1}} \\ &= \frac{1}{\pi n} \left[\sin(\omega_{C2} n) - \sin(\omega_{C1} n) \right] \end{split}$$

 \bullet n = 0

$$h(0) = \frac{1}{2\pi} \omega \Big|_{-\omega_{C2}}^{-\omega_{C1}} + \frac{1}{2\pi} \omega \Big|_{\omega_{C2}}^{\omega_{C1}} = \frac{1}{2\pi} (-\omega_{C1} + \omega_{C2} + \omega_{C2} - \omega_{C1}) = \frac{\omega_{C2} - \omega_{C1}}{\pi}$$

4. Ideal band-pass filter

Ideal Band Stop Filter

$$\left|H(e^{j\omega})\right| = \begin{cases} -\pi \le \omega \le -\omega_{C2} \\ -\omega_{C1} \le \omega \le \omega_{C1} \\ \omega_{C2} \le \omega \le \pi \end{cases}$$

$$0 \qquad \omega \text{ còn lại}$$

Impulse response of an ideal band-pass filter

• $n \neq 0$

$$\begin{split} h(n) &= \frac{1}{2\pi} \int\limits_{-\pi}^{-\omega_{C2}} e^{j\omega n} \, d\omega + \frac{1}{2\pi} \int\limits_{-\omega_{C1}}^{\omega_{C1}} e^{j\omega n} \, d\omega + \frac{1}{2\pi} \int\limits_{\omega_{C2}}^{\pi} e^{j\omega n} d\omega \\ &= \frac{1}{2\pi j n} e^{j\omega n} \bigg|_{-\pi}^{-\omega_{C2}} + \frac{1}{2\pi j n} e^{j\omega n} \bigg|_{-\omega_{C1}}^{\omega_{C1}} + \frac{1}{2\pi j n} e^{j\omega n} \bigg|_{-\omega_{C2}}^{\pi} \\ &= \frac{1}{\pi n} \left[\sin(\omega_{C1} n) - \sin(\omega_{C2} n) \right] \end{split}$$

 \bullet n = 0

$$h(0) = \frac{1}{2\pi} \omega \Big|_{-\pi}^{-\omega_{C2}} + \frac{1}{2\pi} \omega \Big|_{-\omega_{C1}}^{\omega_{C1}} + \frac{1}{2\pi} \omega \Big|_{-\omega_{C1}}^{\omega_{C1}} = 1 + \frac{\omega_{C1} - \omega_{C2}}{\pi}$$

5. Realistic Filters

Parameters of the actual filter:

Parameters of the actual filter

R_p: ripple in the pass-band in dB

A_s: attenuation in the stop-band in dB

$$R_p = -20 \log_{10}(1 - \delta_1) > 0 \ (\approx 0)$$

$$A_{S} = -20 \log_{10} \delta_{2} > 0 (1)$$

Absolute scale: $|H(e^{j\omega})|$

Relative scale: $dB = -20 \log_{10} \frac{|H(e^{j\omega})|}{|H(e^{j\omega})|_{max}} \ge 0$

 $[0, \omega_p]$: pass-band, δ_1 : amplitude tolerance in pass-band

 $[\omega_s, \pi]$: stop-band, δ_2 amplitude tolerance in stop-band

 $[\omega_p, \omega_s]$: transient range

4. Summary

- Digital filters are characterized by their amplitude response.
- Ideal filters are proposed to study the theoretical properties. However, these filters cannot be implemented in practice without satisfying causality.
- The actual filter revises the specifications and adjusts the parameters to approximate the ideal filter.

IT 4172 Süghált Probigusing Chapter 3. Digital Filter 16

5. Exercises

- ☐ Determine and plot the impulse response of:
- a. The ideal low-pass filter has a cutoff frequency of $\frac{\pi}{3}$
- b. The ideal high-pass filter has a cutoff frequency of $\frac{\pi}{3}$
- c. The ideal bandpass filter has a cutoff frequency of $\frac{\pi}{3}$ and $\frac{\pi}{2}$
- d. The ideal band-pass filter has a cutoff frequency of $\frac{\pi}{3}$ and $\frac{\pi}{2}$

IT 4172 Signal Processing Chapter 3. Digital Filter

17

Next lesson. Lesson

18

LINEAR PHASE FIR DIGITAL FILTER

References:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Wish you all good study!