ECE216: Digital Electronics Laboratory

Exp -6

Table of Content

Task	Title	Page No.
Experiment 1	Understanding the combinational logic by implementing the	1
	boolean function using basic logic gates	
Experiment 2	To design and analyze the circuit for Full adder and Full	6
	subtractor using Logic Gates.	
Practical work	Practical work evaluation based on Experiment 1 and	9
evaluation 1	Experiment 2.	
Experiment 3	Understanding the combinational logic by implementing the	12
	boolean function using multiplexer	
Experiment 4	Understanding the combinational logic by implementing the	16
	boolean function using decoder	
Practical work	Practical work evaluation based on Experiment 3 and	20
evaluation 2	Experiment 4.	
Project evaluation 1	Design and Implementation of application-based projects-1	23

Experiment 5	Understanding the sequential logic by implementing the flip	26
	flop with the help of logic gates	
Experiment 6	Understanding the sequential logic by implementing the	28
	counter with flip flop.	
Practical work	Practical work evaluation based on Experiment 5 and	31
evaluation 3	Experiment 6.	
Experiment 7	To visualize the output of decade counter on seven segment	34
	display	
Experiment 8	To implement and simulate combinational and sequential	37
	circuit using DSCH/Proteus.	
Practical work	Practical work evaluation based on Experiment 7 and	41
evaluation 4	Experiment 8.	
Project evaluation 2	Design and Implementation of application-based projects-2	44

3-bit syn by an 343. Skt Rycolff, T-FF ABC J=K=1, Han JICFF T ylip py #Skt for ข

Solu fa brole 9. OR

- 5. Cautions:
- 1. Do not press the IC on breadboard until pins are aligned with pours.
- 2. Make connection properly.
- 3. There should not any short circuit in the circuit.
- 4. Avoid the heating of IC.

Pin configuration of IC 7476

Pin configuration of IC 4027

6. Learning Outcomes: Student will be able to design counter using flip flop.

Pin configuration of ICs:

3-bit syn the sty3. Statu digr, Rykio, FF, T-FF ABC J=K=1, Han JICFF Noh! T ylip hy 0 70 Noch 0 O

Solu for brole 9. DA -bit syn a con com

Next well (12 April 2021) 0-7 Sup6 CAZ - Syllabe 3-bit up 3-Lit Down 7-51+ Up 4022 4-Sit down la white if (20 mis) 20 61 Up p mens 7-5ir does la simple (28 min) to her er med Short an (15-2014:11)
and eploy