0.0.1 Graphs

Directed:

a) Directed graph

$$\begin{split} G &= & (V,E) \\ V &= & \{v_1,v_2,v_3,v_4,v_5,v_6\}, & |V| = 6 \\ E &= & \{(v_1,v_2),(v_2,v_3),(v_2,v_4),(v_3,v_4), \\ & (v_4,v_3),(v_3,v_5),(v_4,v_5),(v_5,v_6)\}, & |E| = 8 \end{split}$$

Undirected:

b) Undirected graph

$$\begin{split} G &= & (V,E) \\ V &= & \{v_1,v_2,v_3,v_4,v_5,v_6\}, & |V| = 6 \\ E &= & \{(v_1,v_2),(v_2,v_3),(v_2,v_4),(v_3,v_4), \\ & (v_3,v_5),(v_4,v_5),(v_5,v_6)\}, & |E| = 7 \end{split}$$

0.0.2 Tree

- Tree T = (V,E)
 - Graph with no cycles
 - |E| = |V| 1
 - Any two V connected by only one E
- \bullet A tree T spans a graph G = (V,E) (spanning tree) if
 - T = (V,E') & E \subseteq E' (T must have the same vertices and a subset of the graph edges)

0.0.3 Shortest Path Trees

• Graphs and Trees can be weighted

$$- G=(V,E,W)$$

$$-$$
 T=(V,E',W)

• Total cost of a tree T

$$C_{total}(T) = \sum_{i=1}^{|E|}$$

(sum of all tree edges weight)

• Minimum spanning tree T*

$$C_{total}(T^*) = min(C_{total}(T))$$

- algorithms used to compute MST: Prism, Kruskal
- \bullet Shortest Path Tree (SPT) rooted at vertex s
 - tree composed by the union of the shortest paths between s and each vertex of G
 - algorithms used to compute SPT: ${\bf Dijkstra},\,{\bf Bellman\text{-}Ford}$
- Computer networks use **Shortest Path Trees**

0.1 Routing in Layer 3 Networks

0.1.1 Forwarding, Routing

- Forwarding \rightarrow data plane
 - directing packet from input to output link
 - using a forwarding table
- Routing \rightarrow control plane
 - computing paths the packets will follow
 - routers exchange messages
 - each router creates its forwarding table

0.1.2 Importance of Routing

- End-to-end performance
 - path affects quality of service
 - delay, throughput, packet loss
- Use of network resources
 - balance traffic over routers and links
 - avoiding congestion by directing traffic to less-loaded links
- Transient disruptions
 - failures, maintenance
 - limiting packet loss and delay during changes

0.1.3 Shortest-Path Routing

Path-selection model

- Destination-based
- Load-insensitive (ex: static link weights)
- Minimum hop count or minimum sum of link weights

0.1.4 Shortest-Path Problem

- Given a network topology with link costs
 - $-\mathbf{c}(\mathbf{x},\mathbf{y})$ link cost from node x to node y
 - $-\infty$ if x and y are not direct neighbors
- ullet Compute the least-cost paths from source ${\bf u}$ to all nodes
 - $-\mathbf{p}(\mathbf{v})$ node predecessor of node \mathbf{v} in the path from \mathbf{u}

0.1.5 Dijkstra's Shortest-Path Algorithm

- Iterative algorithm
 - After k iterations \rightarrow known least-cost paths to k nodes
- ullet ${f S}
 ightarrow$ set of nodes for which least-cost path is known
 - Initially, $S=\{u\}$, where u is the source node
 - Add one node to ${\bf S}$ in each iteration
- $\mathbf{D}(\mathbf{v}) \to \mathrm{current}$ cost of path from source to node \mathbf{v}
 - Initially
 - * D(v)=c(u,v) for all nodes adjacent to u
 - * $\mathbf{D}(\mathbf{v}) = \infty$ for all other nodes \mathbf{v}
 - Continually update **D(v)** when shorter paths are learned

```
1 Initialization:
   S = \{u\}
   for all nodes v
    if v adjacent to u {
4
       D(v) = c(u,v) 
5
6
     else D(v) = ∞
8 Loop
9
    find node w not in S with the smallest D(w)
    add w to S
    update D(v) for all v adjacent to w and not in S:
11
12
       D(v) = \min\{D(v), D(w) + c(w,v)\}
1,3 until all nodes in S
```

0.1.6 Shortest-Path Tree

• Shortest-path tree from u

• Forwarding table at u

	link
V	(u,v)
W	(u,w)
×	(u,w)
У	(u,v)
Z	(u,v)
S	(u,w)
†	(u,w)
	I.

0.1.7 Link-State Routing

- Each router keeps track of its incident links
 - link up, link down
 - cost on the link
- Each router broadcasts link state
 - every router gets a complete view of the graph
- Each router runs Dijkstra's algorithm, to
 - compute the shortest paths
 - construct the forwarding table

0.1.8 Detection of Topology Changes

- Beacons generated by routers on links
 - periodic "hello" messages in both directions
 - few missed "hellos" \rightarrow link failure

0.1.9 Broadcasting the Link State

- How to Flood the link state?
 - every node sends link-state information through adjacent links
 - next nodes forward that info to all links except the one where the information arrived

- When to initiate flooding?
 - Topology change
 - * link or node failure/recovery
 - * link cost change

- Periodically
 - * refresh link-state information
 - * typically 30 minutes

0.1.10 Scaling Link-State Routing

- Overhead of link-state routing
 - flooding link-state packets throughout the network
 - running Dijkstra's shortest-path algorithm
- Introducing hierarchy through "areas"

0.1.11 Bellman-Ford Algorithm

- $\bullet\,$ Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

0.1.12 Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 - node x maintains costs of direct links c(x,v)
- $D_x(y) = \text{estimate of least cost from } x \text{ to } y$
 - node x maintains distance vector $\mathbf{D}_x = [\mathbf{D}_x(\mathbf{y}): \mathbf{y} \in \mathbf{N}]$
- Node x maintains also its neighbors' distance vectors
 - for each neighbor v, x maintains $\mathbf{D}_v = [\mathbf{D}_v(\mathbf{y}): \mathbf{y} \in \mathbf{N}]$
- Each node v periodically sends D_v to its neighbors
 - and neighbors update their own distance vectors
 - $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges
- Iterative, asynchronous, each local iteration caused by:
 - local link cost change
 - distance vector update message from neighbor
- Distributed
 - node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors, if necessary

Each node:

0.1.13 Routing Information Protocol (RIP)

- Distance vector protocol
 - nodes send distance vectors every 30 seconds
 - or when an update causes a change in routing
- RIP is limited to small networks

0.1.14 BGP - The Exterior Gateway Routing Protocol

(a) A set of BGP routers. (b) Information sent to F

0.2 Unique Spanning Tree in Ethernet Networks

0.2.1 L2 Networking - Single Tree Required

- Ethernet frame
 - No hop-count
 - Could loop forever
 - broadcast frame, mis-configuration

• Layer 2 network

- Required to have tree topology
- Single path between every pair of stations
- Spanning Tree Protocol (STP)
 - Running in bridges
 - Helps building the spanning tree
 - Blocks ports

0.2.2 Constructing a Spanning Tree

- Distributed algorithm
 - switches need to elect a "root"
 - * the switch with the smallest identifier
 - each switch identifies if its interface is on the shortest path from the root
 - messages(Y,d,X)
 - * from node X
 - * claiming Y is the root
 - \ast and the distance is d

0.2.3 Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root
 - switch sends a message out every interface
 - identifying itself as the root with distance 0
- Other switches update their view of the root
 - upon receiving a message, check the root id
 - if the new id is smaller, start viewing that switch as root
- Switches compute their distance from the root
 - add 1 to the distance received from a neighbor
 - identify interfaces not on a shortest path to the root and exclude them from the spanning tree

0.3 Maximum Flow of a Network

0.3.1 Flow Network Model

- Flow network
 - source s
 - sink t
 - nodes a, b and c
 - Edges are labeled with capacities (ex: bit/s)

- Communication networks are not flow networks
 - they are queue networks
 - flow networks enable to determine limit values

0.3.2 Maximum Capacity of a Flow Network

- Max-flow min-cut theorem
 - maximum amount of flow transferable through a network
 - equals minimum value among all simple cuts of the network
- \bullet Cut \to split of the nodes V into two disjoint sets S and T
 - $-S \cup T = V$
 - there are $2^{|V|-2}$ possible cuts
- Capacity of cut (S,T):

$$c(S,T) = \sum_{(u,v)|u \in S, v \in T, (u,v) \in E} c(u,v)$$

- (sum of the cost of all edges from S to T)