第一章 时域离散信号和系统

Discrete-Time Signals and Systems in the Time-Domain

图像传输与处理研究所 王柯俨

kywang@mail.xidian.edu.cn

http://web.xidian.edu.cn/kywang/teach.html

本章主要内容

- 时域离散信号(序列)的表示方法
- 典型的时域离散信号
- 时域离散系统:系统的线性、时不变性、因果稳定性
- 时域离散系统的时域分析方法,系统输入与输出 的描述

1.1 引言

- 信号 (signal)
 - □携带信息的函数,是信息的载体
 - □信号形式:模拟信号、时域离散信号、数字信号
- 系统 (system)
 - □ 若干相互作用、相互联系的事物按一定规律组成具有 特定功能的整体称为系统。
- 举例:
 - □ 手机、电视机、通信网、计算机网等都可以看成<u>系统</u>。 它们所传送的语音、音乐、图象、文字等都可以看成 信号。

1.1 引言

■ 系统

- □信号的概念与系统的概念常常紧密地联系在一起。
- □ 信号的产生、传输和处理需要一定的物理装置,这样 的物理装置常称为系统。
- □ **系统的基本作用**是对输入信号进行加工和处理,将其 转换为所需要的输出信号。
- □系统所处理的信号类型就是系统的类型。

1.1 引言

- 信号、系统数学描述的意义
 - □为了把握信号与系统特征参数
 - □系统输出的预测
 - □系统性能的分析
 - □综合

1.2 模拟信号、时域离散信号和数字信号

- ※时域离散信号和数字信号的定义
- ※时域离散信号的表示方法
- ※常用的时域离散信号

模拟信号

■ 模拟信号

$$x_a(t) = 0.9 \sin 50 \pi t$$

- □正弦信号的角频率 50 π
- □ 正弦信号的频率是 25Hz
- □ 周期是0.04s

时域离散信号

$$x_a(t) = 0.9 \sin 50 \pi t$$

采样

□采样频率

 $F_{s} = 200 Hz$

□采样间隔

$$T = 1/F_s = 0.005s$$

时域离散信号

$$x(n) = x_a(t)|_{t=nT} = 0.9 \sin 50 \pi nT - \infty < n < \infty$$

n表示第n个采样点,n 取整数

采样频率的选择?

时域离散信号: 获取

■ 方式一: 采样 模拟信号 → 时域离散采样信号

■ 方式二: 实验测试

测量体重 记录运动步数 测量气温

 $x(n) = \{110,109,107,108,106\}$ n 取值为 $\{0,1,2,3,4\}$

w

时域离散信号:表示

■ 公式表示

$$x(n) = x_a(t)|_{t=nT} = x_a(nT)$$

注意:

- □写明n的取值范围
- □闭合表达式存在

例:

$$x(n) = x_a(t)|_{t=nT} = 0.9 \sin 50\pi nT$$
 $-\infty < n < \infty$
 $x(n) = a^{|n|}, \quad 0 < a < 1, \quad -\infty < n < \infty$

7

时域离散信号:表示

- 用集合符号表示序列
 - □集合符合: {•},表示数的集合
 - □时域离散信号是一组有序的数的集合,可表示成集合。

例:将n代入

$$x(n) = x_a(t)|_{t=nT} = 0.9 \sin 50 \pi nT - \infty < n < \infty$$

得:

$$x(n) = \{\cdots, 0.0, 0.6364, 0.900, 0.6364, 0.0000, -0.6364, -0.9000, -0.6364, \cdots\}$$

表示n=0点的序列值

时域离散信号:表示

- ■用图形表示
 - □直观

□为了醒目,在每一条竖线的顶端加一个小黑点。

Matlab 语言中的序列表示

```
t=-0.025:0.001:0.025;

xat=0.9*sin(50*pi*t);

subplot(2,1,1);

plot(t,xat);axis([-0.025,0.03,-1,1]);

xlabel('t'); ylabel('xat(t)');

T=0.005; n=-5:5;

xaT=0.9*sin(50*pi*n*T);

subplot(2,1,2);

stem(n,xaT,'.');axis([-5,6,-1,1]);

xlabel('n');ylabel('xaT(n)');
```


STEM(Y) plots the data sequence Y as stems from the x axis terminated with circles for the data value. If Y is a matrix then each column is plotted as a separate series.

.

数字信号

- 数字信号与离散信号的区别?
 - □时间离散、幅度离散

例: 时域离散信号 $x(n) = 0.9 \sin 50 \pi nT$ $-\infty < n < \infty$

 $x(n) = \{\cdots, 0.0, 0.6364, 0.900, 0.6364, 0.0000, -0.6364, -0.9000, -0.6364, \cdots\}$

- □用<u>四位二进制数</u>表示离散序列x(n)的幅度
- □其中第一位表示符号位
- □用x[n]表示经过二进制编码后的信号

 $x[n] = \{\cdots, 0.000, 0.101, 0.111, 0.101, 0.000, 1.101, 1.111, 1.101, \cdots\}$

数字信号

数字信号

- 编码位数的选择
 - □ 将x[n]转换为十进制

```
x[n] = \{\cdots, 0.000, 0.101, 0.111, 0.101, 0.000, 1.101, 1.111, 1.101, \cdots\}
x[n] = \{\cdots, 0.0, 0.625, 0.875, 0.625, 0.0, -0.625, -0.875, -0.625, \cdots\}

存在误差
x(n) = \{\cdots, 0.0, 0.6364, 0.900, 0.6364, 0.0000, -0.6364, -0.9000, -0.6364, \cdots\}
```

□ 量化误差: 幅度值上有误差, 有损变换 与二进制编码位数有关

小结

- 时域离散信号的表示方法
- 问题:
 - □ 采样间隔如何确定?
 - □连续信号 —— 离散信号,是否有损变换?
- 离散序列的二进制编码 ——> 数字信号
- 问题:
 - □ 是否有损变换?
 - □ 如何减少误差?

1.2.3 常用时域离散信号

1.单位脉冲序列(1)

$$\delta(n) = \begin{cases} 0, n \neq 0 \\ 1, n = 0 \end{cases}$$

时移性
$$\delta(n-j) = \begin{cases} 0, n \neq j \\ 1, n = j \end{cases}$$

抽样性
$$f(n)\delta(n) = f(0)\delta(n)$$

1.单位脉冲序列(2)

■ 任意序列的表示

$$x(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m)$$

$$f(n) = \left\{1, 1, 5, 0, -3, 0, 0, \right\} = \delta(n+1) + 1.5\delta(n) - 3\delta(n-2)$$

2.单位阶跃序列

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

用单位脉冲序列表示

$$u(n) = \sum_{m=0}^{\infty} \delta(n-m)$$

注意:

 $\delta(n)$ 与u(n)是差和关系,不再是微分关系。

3.矩形序列

$$R_N(n) = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & \sharp \text{ the } \end{cases}$$

下标N 称为矩形序列的长度

4.实指数序列

 $x(n) = a^n u(n)$ a 取实数,其大小影响序列波形

5.正弦序列

$$x(n) = A\sin(\Omega nT + \theta) = A\sin(\omega n + \theta)$$

- \blacksquare \top 采样间隔; Ω 模拟信号的角频率
- ω 数字域的数字频率 $\omega = \Omega T$

注意:

- $\square \omega$ (rad) 和 Ω (rad/s) 不同
- $\square \omega$ 和 Ω 的对应关系可推论到 一般情况

6.复指数序列

$$x(n) = e^{j\omega n}$$

■ *ω* 数字频率,用欧拉公式展开

$$x(n) = \cos(\omega n) + j\sin(\omega n)$$

■ 特点:

$$e^{j(\omega+2\pi M)n} = e^{j\omega n}$$
 M,n 为整数

$$\cos[(\omega + 2\pi M)n] = \cos \omega n$$

$$\sin[(\omega + 2\pi M)n] = \sin \omega n$$

- □周期信号 -- 以2π为周期(对ω而言)
- □ 主值区间 -- [-π,π]或 [0,2π]

7.周期序列

■ 满足下式,则称为周期序列

$$x(n) = x(n+N) - \infty < n < \infty$$

■ 周期: 满足上式的最小正整数N

7.周期序列

$$x(n) = x(n+N) - \infty < n < \infty$$

■ 正(余)弦序列的周期性?是否为周期序列?

$$x(n) = A\sin(\omega n + \varphi)$$

$$x(n+N) = A\sin(\omega n + \omega N + \varphi)$$

■ 正弦序列X(n)为周期序列的条件?

$$\omega N = 2\pi M$$
 M为正整数

■ 周期: 满足上式的最小正整数N

$$N = 2\pi M / \omega$$

7.周期序列

$\omega N = 2\pi M$ M为正整数 $N = 2\pi M/\omega$

■ 周期性?

$$x(n) = \sin(\frac{\pi}{4}n)$$

$$x(n) = \sin(\frac{1}{4}n)$$

■ 数字频率 *ω*

$$\omega = \frac{\pi}{4}$$

$$2\pi / \omega = 8$$

8.任意序列描述

■ 基于单位脉冲序列描述

Q: 为什么这样描述?

$$x(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m)$$

任意序列 -- 单位脉冲序列的移位加权和

$$x[n] = 0.5\delta[n+2] + 1.5\delta[n-1] - \delta[n-2] + \delta[n-4] + 0.75\delta[n-6]$$

1.3 时域离散系统

- ※线性时不变时域离散系统
- ※线性时不变系统输出和输入之间的关系
- ※系统的因果性和稳定性

1.3.1 线性时不变时域离散系统

1. 线性性质

满足线性叠加原理

设 $x_1(n)$ 、 $x_2(n)$ 分别为系统的输入,则系统的输出分别为:

$$y_1(n) = T[x_1(n)], y_2(n) = T[x_2(n)]$$

设
$$x(n) = ax_1(n) + bx_2(n)$$
 a,b 为常数

如下式成立,则该系统是线性系统

$$y(n) = T[x(n)] = T[ax_1(n) + bx_2(n)]$$
$$= ay_1(n) + by_2(n)$$

输入线性组合 → 输出线性组合

线性系统举例

■ 线性系统?

$$y(n) = T[x(n)] = [x(n)]^{2}$$

$$x(n) = ax_{1}(n) + bx_{2}(n)$$

$$y(n) = [x(n)]^{2} = [ax_{1}(n) + bx_{2}(n)]^{2}$$

$$\neq [ax_{1}(n)]^{2} + [bx_{2}(n)]^{2}$$

v

2. 时不变特性

■ 移位不变性

如果
$$y(n) = T[x(n)]$$

 $y_1(n) = T[x(n-n_0)] = y(n-n_0)$

则称系统具有移位不变性

- □具有移位不变性的系统为时不变系统。
- □时不变系统对输入信号的运算关系 T[•] 在整个运算过程中不随时间变化。其输出随输入信号移位而移位,且保持波形不变。

输入移位 ── 输出相应移位

2. 时不变特性

- 例: (1) y(n) = nx(n) 是否是时不变系统?
 - (2) y(n) = ax(n) + b 是否是线性时不变系统?
- (2)解:时不变性

$$\Rightarrow x_1(n) = x(n - n_0)$$

$$\mathbf{y}_1(n) = T[x_1(n)] = ax(n - n_0) + b = y(n - n_0)$$

线性性质

1.3.2 线性时不变系统的输出和输入之间的关系

■ 系统的单位脉冲响应 (对 $\delta(n)$ 的零状态响应)

$$h(n) = T[x(n)] = T[\delta(n)]$$

■ 任意输入信号

$$x(n) = \sum_{n=0}^{\infty} x(m)\delta(n-m)$$

■ 系统的输出为

线性叠加原理

$$y(n) = T\left[\sum_{m=-\infty}^{\infty} x(m)\delta(n-m)\right] = \sum_{m=-\infty}^{\infty} T\left[x(m)\delta(n-m)\right]$$
$$= \sum_{m=-\infty}^{\infty} x(m)T\left[\delta(n-m)\right] = \sum_{m=-\infty}^{\infty} x(m)h(n-m) = x(n) * h(n)$$

取样性质

时不变性

卷积运算

求解 y(n) = x(n)*h(n)

- 卷积运算的图解法或列表法
- 用MATLAB计算两个有限长序列的卷积
- ■解析法:直接按卷积公式求解

re.

求解 y(n) = x(n)*h(n)

- 卷积运算的图解法 $y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$
 - (1) 画出x(m)和h(m)的波形;
 - (2) 反转平移: h(m)反转→ h(-m),右移n → h(n m)
 - (3) 乘积: x(m) h(n m)
 - (4) 求和: m从-∞到∞对应乘积项求和。

$$x[n] = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1.8 - 0.3n, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$

$$x[n] = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1.8 - 0.3n, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$

求解 y(n)

■ 卷积运算的列表法 $y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$

例:

$$x[n] = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1.8 - 0.3n, & 0 \le n \le 5 \\ 0, & \text{otherwise} \end{cases}$$

Matlab计算

```
 \begin{array}{lll} xn = & [2,1,-2]; \\ hn = & [1,2,-1]; \\ yn = & conv(xn,hn); \\ n = & 0: length(yn)-1; \\ subplot(1,1,1); stem(n,yn,'.'); line([0,5],[0,0]) \\ xlabel('n'); ylabel('y(n)'); \\ grid on; axis([0,5,-6,6]) \\ \end{array}
```

注意: 函数默认序列均从0开始。

问题:两个有限长序列卷积和的长度?

—— 两个序列长度之和减1

Matlab计算

■ 序列不从0开始

```
x(n) = \delta(n+2) + \delta(n+1) + \delta(n) + \delta(n-1) + \delta(n-2)h(n) = x(n)
```

```
h=ones(1,5);nh=-2:2;
x=h;nx=nh;
nys=nh(1)+nx(1);
nyf=nh(end)+nx(end);
y=conv(h,x);ny=nys:nyf;
stem(ny,y,'.');line([-4,4],[0,0])
xlabel('n');ylabel('y(n)');
grid on;axis([-4,4,-6,6])
```


解析法 (1)

■ 条件:已知信号的解析表达式,直接按公式计算

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$

■ 解法:根据信号的非零值区间,确定求和的上下限,分段 计算

例:
$$x(n) = a^n u(n), \quad h(n) = R_4(n)$$

$$y(n) = x(n) * h(n) = h(n) * x(n) = \sum_{m=-\infty}^{\infty} R_4(m) a^{n-m} u(n-m)$$

$$u(n-m) \neq 0 \quad \Rightarrow \quad n \geq m$$

$$R_4(m) \neq 0 \quad \Rightarrow \quad 0 \leq m \leq 3$$

m取值与n有关

解析法 (2)

$$x(n) = a^n u(n), h(n) = R_4(n)$$

$$u(n-m) \neq 0 \implies n \geq m$$

 $R_{A}(m) \neq 0 \implies 0 \leq m \leq 3$

■ 分段计算

$$n < 0$$
, $y(n) = 0$

$$0 \le n \le 3$$
, $0 \le m \le n$, $y(n) \ne 0$

$$y(n) = \sum_{m=0}^{n} R_4(m)a^{n-m}u(n-m) = \sum_{m=0}^{n} a^{n-m} = a^n \frac{1-a^{-n-1}}{1-a^{-1}}$$

$$n \ge 4$$
, $0 \le m \le 3$, $y(n) \ne 0$

$$y(n) = \sum_{m=0}^{n} R_4(m)a^{n-m}u(n-m) = \sum_{m=0}^{3} a^{n-m} = a^n \frac{1-a^{-4}}{1-a^{-1}}$$

1

卷积运算的性质

■ 任意序列与单位脉冲序列的卷积等于该序列本身; 如果卷积一个移位 n₀ 的单位脉冲序列,即将该序 列移位 n₀

$$x(n) = x(n) * \delta(n)$$
$$x(n-n_0) = x(n) * \delta(n-n_0)$$

- 卷积运算服从交换率、结合率和分配率
 - □ 交換率: y(n) = x(n) * h(n) = h(n) * x(n)
 - □ 结合率: $x(n)*[h_1(n)*h_2(n)] = [x(n)*h_1(n)]*h_2(n)$
 - □ 分配率: $x(n)*[h_1(n)+h_2(n)] = x(n)*h_1(n)+x(n)*h_2(n)$

卷积运算的性质

■串联系统等效

$$y(n) = [x(n) * h_1(n)] * h_2(n) = x(n) * [h_1(n) * h_2(n)] = x(n) * h(n)$$
$$h(n) = h_1(n) * h_2(n)$$

卷积运算的性质

■ 并联系统等效

$$y(n) = x(n) * h_1(n) + x(n) * h_2(n) = x(n) * [h_1(n) + h_2(n)]$$
$$h(n) = h_1(n) + h_2(n)$$

■ 例1.3.6 (P18)

1.3.3系统的因果性和稳定性

■ 因果性 —— 系统的可实现性

系统n时刻的输出取决于n时刻及n时刻以前的输入信号, 而和n时刻以后的输入信号无关。

例: y(n) = x(n) + x(n+1) 系统的因果性?

- 因果性的判别方法(时域)
 - □定义
 - □单位脉冲响应

$$h(n) = 0$$
, $n < 0$ (充要条件)

(因果系统的单位脉冲响应必定是因果序列)

系统的因果性

注: 非因果数字系统可利用存储器,延时实现。

- 稳定性——输入输出稳定(BIBO稳定) 对任意有界的输入,系统的输出有界。
- 线性时不变系统稳定的充要条件:

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$
 单位脉冲响应绝对可和

证明: 1) 充分性: 设输入信号有界, |x(n)| < p, p是常数

$$|y(n)| = \left|\sum_{m=-\infty}^{\infty} h(m)x(n-m)\right| \le \sum_{m=-\infty}^{\infty} |h(m)||x(n-m)|$$

$$\leq p \sum_{m=-\infty}^{\infty} |h(m)| < \infty$$

因此,输出有界。

系统的稳定性

2)必要性(反证法):设单位脉冲响应不满足绝对可和条件,即:对于任意大的数M,存在 n_1

$$\sum_{n=0}^{n_1} |h(n)| > M$$

输入信号有界

$$x(n_1 - k) = \begin{cases} 1 & h(k) \ge 0 \\ -1 & h(k) < 0 \end{cases}$$

$$y(n_1) = \sum_{k=0}^{n_1} h(k)x(n_1 - k) = \sum_{k=0}^{n_1} |h(k)| \ge M$$

系统不稳定 证毕 h(n)不满足绝对可和,输入有界

输出无界,系统不稳定

м.

系统的稳定性

- 稳定性的判别方法(时域)
 - □单位脉冲响应绝对可和

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$
 (充要条件)

□输入单位阶跃序列,输出趋于常数(包括零) (第**2**章)

例题: 试分析 $h(n) = a^n u(n)$ 的因果性与稳定性,其中**a**为实常数。

1.4 时域离散系统的输入输出描述

-线性常系数差分方程描述

- ※线性时常系数差分方程
- ※线性时常系数差分方程的递推解法
- ※用MATLAB求解差分方程
- ※应用举例——滑动平均滤波器

.

系统的数学描述(回顾)

- 输入输出描述
 - □模拟系统:
 - 微分方程(时域)、传输函数(频域)
 - □时域离散系统:
 - 差分方程(时域)、基于Z变换的传递函数(频域)
- ■内部描述
 - □状态变量

.

1.4.1线性常系数差分方程

■ N阶线性常系数差分方程 —— 线性时不变时域离散系统

$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{i=1}^{N} a_i y(n-i)$$

$$\sum_{i=0}^{N} a_i y(n-i) = \sum_{i=0}^{M} b_i x(n-i) \quad a_0 = 1$$

- x(n) 为系统输入,y(n) 为系统输出, a_i 和 b_i 均为常数
- 无交叉项相乘
- y(n-i) 项中i的最大值与最小值之差 -- 差分方程的<u>阶数</u>

1.4.2线性常系数差分方程的求解

- 经典解法
 - □ 类似于模拟系统中微分方程的解法,较麻烦
- 递推解法 (第1章)
- Z变换方法 (第2章)
- Matlab求解

.

递推解法(1)

$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{i=1}^{N} a_i y(n-i)$$

■ 输入信号和初始条件

$$x(n), x(n-1), \dots, x(n-M)$$

 $y(n-1), y(n-2), \dots, y(n-N)$

■ 递推求解

$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{i=1}^{N} a_i y(n-i)$$

100

递推解法(2)

■ **例1.4.1:** y(n) = ay(n-1) + x(n), 式中, $x(n) = \delta(n)$, y(-1) = 1 求系统 $n \ge 0$ 的输出。

解: 由
$$y(n) = ay(n-1) + x(n)$$
 得
$$n = 0 y(0) = ay(-1) + \delta(0) = a + 1$$

$$n = 1 y(1) = ay(0) + \delta(1) = a(a+1)$$

$$n = 2 y(2) = ay(1) + \delta(2) = a^{2}(a+1)$$

$$\vdots$$

$$y(n) = ay(n-1) + \delta(n) = a^{n}(a+1)u(n)$$

Q: 输入是单位脉冲序列,那么输出是单位脉冲响应吗?

Q: 初始状态的个数=?

Q: 系统(差分方程)的阶数 N=?

递推解法(3)

■ (接上例): 求系统的单位脉冲响应?

$$y(n) = ay(n-1) + x(n)$$

式中,
$$x(n) = \delta(n)$$
, $y(-1) = 0$

解: 由 y(n) = ay(n-1) + x(n) 得

$$n = 0$$
 $y(0) = ay(-1) + \delta(0) = 1$

$$n = 1$$
 $y(1) = ay(0) + \delta(1) = a$

$$n = 2$$
 $y(2) = ay(1) + \delta(2) = a^2$

:

$$y(n) = ay(n-1) + \delta(n) = a^n u(n)$$

$$h(n) = y(n) = a^n u(n)$$

法 适 合 计 算 机 求 解

.

1.4.3 Matlab 求解差分方程(1)

```
%调用filter解差分方程y(n)-ay(n-1)=x(n)
a=4/5; ys=1; %设差分方程系数a=4/5,初始状态: y(-1)=1
xn=[1,zeros(1,30)]; %x(n)=单位脉冲序列,长度N=31
B=1;A=[1,-a]; %差分方程系数
xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xi
yn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出信y(n)
n=0:length(yn)-1;
subplot(1,2,1);stem(n,yn,'.');
title('(a)');xlabel('n');ylabel('y(n)');
```

100

Matlab 求解差分方程(2)

```
%调用filter解差分方程y(n)-ay(n-1)=x(n)
a=4/5; ys=0; %设差分方程系数a=4/5,初始状态: y(-1)=0
xn=[1,zeros(1,30)]; %x(n)=单位脉冲序列,长度N=31
B=1;A=[1,-a]; %差分方程系数
xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xi
yn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出信y(n)
n=0:length(yn)-1;
subplot(1,2,2);stem(n,yn,'.');axis([0,30,0,2]);
title('(b) ');xlabel('n');ylabel('h(n)');
```

Matlab 求解差分方程(3)

$$y(n) = ay(n-1) + x(n), \quad x(n) = \delta(n)$$

1.4.4举例—滑动平均滤波器(1)

■ 取输入信号的最近几个值,进行算术平均

$$y(n) = \frac{1}{5}[x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-4)]$$
(五项滑动平均滤波器)

- <u>作用</u>:对输入信号进行平滑,相当于低通滤波器, 滤除高频分量,保留低频分量
- 单位脉冲响应为:

$$h(n) = \frac{1}{5} [\delta(n) + \delta(n-1) + \delta(n-2) + \delta(n-3) + \delta(n-4)]$$

Q: 阶数? 因果性? 稳定性?

滑动平均滤波器(2)

■ 例: 五项滑动平均滤波器

$$h(n) = \frac{1}{5} [\delta(n) + \delta(n-1) + \delta(n-2) + \delta(n-3) + \delta(n-4)]$$

输入如下,求输出y(n)。

滑动平均滤波器(3)

■ 五项滑动平均滤波器

$$h(n) = \frac{1}{5} [\delta(n) + \delta(n-1) + \delta(n-2) + \delta(n-3) + \delta(n-4)]$$

输出如下:

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \frac{1}{5} \sum_{k=-\infty}^{\infty} x(k) [\delta(n-k) + \delta(n-k-1) + \dots + \delta(n-k-4)]$$

$$= \frac{1}{5} [x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-4)]$$

■ P20 商品价格平滑

本章主要内容

- 时域离散信号(序列)的定义和表示方法
- ■典型的时域离散时间序列的特征
- 时域离散线性时不变系统的分析:
 - □系统的因果稳定性、线性、时不变性
 - □时域离散系统的输入与输出的描述
 - □线性常系数差分方程的求解: 卷积运算、递推解法

100

作业

■ P32-34:

1, 3, 4, 5(4,5,7,8), 6(1,4), 7(用列表法计算), 8(1), 11, 12

- 编程(选做):
- 1. 常见离散信号的MATLAB产生和图形显示
- 2. **P35**: 18