PROJECT 2

Ames Housing Analysis

Poa Miao Er Poh Yong Quan Tan Jun Pin

Content

- 1. Introduction
- 2. Problem Statement
- Dataset Introduction
- 4. Data Cleaning
- 5. EDA & Visualisation
- 6. Models
- 7. Findings
- 8. Conclusions
- 9. Recommendations

Introduction

With the ever-rising cost of living, essential needs are getting more expensive.

Shelter or house always contributed to the biggest part of spending.

New home buyer at Ames, Iowa would like to own a home and invest at the same time

Houses are liability and asset at the same time. After purchasing as the price could increase in the future.

Problem Statement

Ensuring new home buyers could yield highest return of investment from their new house purchase, the objective for our projects are:

- To identify the best and worst permanent and non-permanent features affecting the sale price in Ames, lowa.
- To identify the non-permanent feature of house that could lead to high Sale Price after renovation.

Datasets Introduction

- House Transaction at Ames, lowa between the year 2006 to 2010
- Consists of 80 columns of the house features and the transaction price
- Features have both continuous variables and discrete variables
- List of complete data dictionary [here]

Data Cleaning - Outliers

Error	Outliers	After Data Cleaning	
Outliers in 'Lot_Area'	159,000 sqft & 115,149 sqft	Removed from dataset	

Data Cleaning

Error	Before data Cleaning	After Data Cleaning
'Year_Remod/Add' is earlier than 'Year_Built'	Id = 851 Year_Built = 2002 Year_Remod/Add = 2001	Id = 851 Year_Built = 2002 Year_Remod/Add = 2002
'Year_Sold' is earlier than 'Year_Built', 'Year_Remod/Add' & 'Garage_Yr_Blt'	Id = 2261 Garage_Yr_Blt = 2207 Yr_Sold = 2007	Id = 2261 Garage_Yr_Blt = 2007 Yr_Sold = 2007
	Id = 2181 Year_Remod/Add = 2009 Yr_Sold = 2007	Id = 2181 Year_Remod/Add = 2009 Yr_Sold = 2009
	Id = 1703 Year_Remod/Add = 2008 Yr_Sold = 2007	Id = 1703 Year_Remod/Add = 2008 Yr_Sold = 2008
'Garage_Yr_Blt' is earlier than 'Year_Built'	0.5% (11 units) of the datasets has 'Garate_Yr_Blt' earlier than 'Year_Built'	Remained (To clarify in later part)

Data Cleaning on 'Garage_Yr_Blt' is earlier than 'Year_Built'

- 11 units has garage built before house
- 5 units built on 1920s
- 6 units built between
 1930 2005
- More common in 1920s
- Homebuilders built garage first so they could live in it while financing and constructing the house *
- No changes on the data

	ld	Year_Built	Year_Remod/Add	Garage_Yr_Blt	Yr_Sold	Gar_aft_Built
336	694	1935	1998	1920.0	2009	-15.0
493	911	1935	1950	1926.0	2009	-9.0
77	1350	1927	1950	1920.0	2008	-7.0
1716	1528	1930	1950	1925.0	2008	-5.0
72	2613	1959	1959	1954.0	2006	-5.0
902	2110	2006	2006	2005.0	2007	-1.0
533	904	1941	1950	1940.0	2009	-1.0
1686	2627	1950	1950	1949.0	2006	-1.0
1907	1236	1963	1963	1962.0	2008	-1.0
1076	1352	1923	2000	1922.0	2008	-1.0
1964	1638	2006	2007	2005.0	2007	-1.0

- Stone Brook and Northridge Heights: nearly similar median price, not exceed each others' interquartile ranges
- Stone Brook and Mitchell: interquartile ranges do not intersect on the sale price scale

- The highest median: FV -- Floating Village Residential
- The lowest median: C(all) -- Commercial properties
- Outlier: RL -- Residential Low Density, probably due to poor zone and rich neighborhood

- Upward linear regression
- Sale price tend to increase when the ground living area increase
- clustered between about 1,000 to 2,000 square feet and at the price range of \$100,000 to \$200,000

- Upward linear relationship
- More people tend to buy houses which were built after year 2000 and at the price range of \$100,000 to \$200,000

- Upward linear relationship
- tend to buy houses at the rating of 5-7 and at the price range of \$100,000 to \$200,000.

Models

- Linear Regression, Ridge and Lasso were used for modelling
- Simple stacking of model to check if performance improves More tuning for ElasticNet

Simple Stack	mean(Ridge, Lasso, ElasticNet)
Weighted Stack	Ridge * 0.5 + Lasso * 0.3 + ElasticNet * 0.2

Models

R2 Validation Score		
Linear Regression	-6.31 *10 ²³	
Ridge	0.914	
Lasso	0.913	
Enet	0.887	
Stack	0.913	
Weighted Stack	0.915	

- Severe overfitting for the linear regression model seen in training vs test scores
- Regularised models do better out the training data set
- Slight improvement when the models are stacked

Findings

Ridge Coefficients

- Overall Quality of the house appears on both of Lasso and Ridge coefficients and has been given a very large coefficient. North Ridge and Stone Brook, Ground Living Area
- Age of house has a large negative coefficient
- **52.27%** of features got zeroed out in Lasso; Fireplace & Total Rooms

Conclusion

Problem Statements	Suggestions	
Identify the best and worst permanent and non-permanent features affecting the sale price in Ames, Iowa	Positive Coefficient Overall Quality Age of house Living Area Average/Bad Kitchen Neighborhood Average/Bad Basement	
Ensuring new home buyers could yield highest return of investment from their new house purchase	 Proposal to get house with lower overall quality, and remake & remodel to improve overall quality Northridge and Stone Brook; Northern part of Ames Big Ground Area 	

Recommendations

Model could include economic data such as interest rate and employment

Retrain models in the future in case of data drift

Expand datasets to other states of US

README.md - must always be named like this Start with EDA notebook and save that file as csy file Start with another notebook and use that csy file Image and data to be saved in separate folders for neater Pycarat can be used but need to use linear regression To extract betas from the sklearn models. Code is always inappropriate for a non-technical audience

Highlight model name and package name
Shap package

Omitted variable that is additional variables