| Last name  |  |
|------------|--|
|            |  |
| First name |  |

## LARSON—MATH 310-CLASSROOM WORKSHEET 11 Linear Combinations, Span, Generating Set, Vector Space

Review: Chapter 3 of Klein's Coding the Matrix text

- 1. What is a linear combination of vectors  $\hat{v_1}, \ldots, \hat{v_n}$ ?
- 2. What is the *span* of vectors  $\hat{v_1}, \ldots, \hat{v_n}$ ?
- 3. Let  $\mathcal{V}$  be a set of vectors. What is a generating set of vectors for  $\mathcal{V}$ ?
- 4. What is  $\mathbb{R}^n$ ?
- 5. What are the *standard* generators for  $\mathbb{R}^n$ ?
- 1. Book problem:

**Example 3.2.11:** I claim that  $\{[3,0,0],[0,2,0],[0,0,1]\}$  is a generating set for  $\mathbb{R}^3$ . To prove that claim, I must show that the set of linear combinations of these three vectors is equal to  $\mathbb{R}^3$ . That means I must show two things:

- 1. Every linear combination is a vector in  $\mathbb{R}^3$ .
- 2. Every vector in  $\mathbb{R}^3$  is a linear combination.

The first statement is pretty obvious since  $\mathbb{R}^3$  includes all 3-vectors over  $\mathbb{R}$ . To prove the second statement, let [x,y,z] be any vector in  $\mathbb{R}^3$ . I must demonstrate that [x,y,z] can be written as

## 2. Book problem:

Exercise 3.2.15: For each of the subproblems, you are to investigate whether the given vectors span  $\mathbb{R}^2$ . If possible, write each of the standard generators for  $\mathbb{R}^2$  as a linear combination of the given vectors. If doing this is impossible for one of the subproblems, you should first add one additional vector and then do it.

- 1. [1, 2], [3, 4]
- 2. [1, 1], [2, 2], [3, 3]
- 3. [1,1],[1,-1],[0,1]

