

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta024

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) b) Să se calculeze distanța de la punctul D(1, -2, 3) la punctul E(0, 1, 2).
- (4p) c) Să se determine ecuația tangentei la hiperbola $x^2 4y^2 = 12$ în punctul P(-4, 1).
- (4p) d) Să se arate că punctele L(4, 2), M(3, 3) și N(2, 4) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1,1,2), B(1,2,1), C(2,1,1) si D(1,2,3).
- (2p) f) Să se determine $a,b,c \in \mathbb{R}$, astfel încât punctele A(1,1,2), B(1,2,1) și C(2,1,1) să aparțină planului x + ay + bz + c = 0.

SUBIECTUL II (30p)

1.

- (3p) a) Să se găsească un polinom $g \in \mathbf{Z}_4[X]$, de gradul întâi, care să aibă exact două rădăcini în \mathbf{Z}_4 .
- (3p) b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbf{Z}_6$ să verifice relația $3\hat{x} = \hat{0}$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 + x 2$, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(0).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(2x^2+7) = \log_2(x^4+8)$.
- (3p) e) Să se calculeze suma rădăcinilor polinomului $f = X^3 X 1$.

2.

- (3p) a) Să se găsească o funcție $f: \mathbf{R} \to \mathbf{R}$, derivabilă, astfel încât $f'(x) = x^2$, $\forall x \in \mathbf{R}$.
- (3p) b) Să se găsească o funcție continuă $f: \mathbf{R} \to \mathbf{R}$, neconstantă, astfel încât $\int_{0}^{1} f(x) dx = 2007$.
- (3p) c) Să se arate că funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = -x^2$ este concavă pe \mathbf{R} .
- (3p) d) Să se găsească o funcție $f: \mathbf{R} \to \mathbf{R}$ strict descrescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\int_{0}^{1} (x+2) \cdot e^{x} dx.$

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră numerele complexe $x_1 = \frac{-1 + i\sqrt{3}}{2}$, $x_2 = \frac{-1 - i\sqrt{3}}{2}$, matricele $A = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}$,

$$B = \begin{pmatrix} x_2 & 0 \\ 0 & x_1 \end{pmatrix}$$
, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ şi mulţimea $G = \{I_2, A, B\}$.

(4p) a) Să se calculeze $x_1 + x_2 + x_1x_2$.

(4p) b) Să se arate că $\det(A) = \det(B) = \det(I_2)$.

(4p) c) Să se arate că $A^2 = B$.

(2p) d) Să se determine matricea $M = A^2 + AB + B^2$.

(2p) e) Să se calculeze determinantul matricei

$$S_n = A^{3n-1} + A^{3n-2}B + A^{3n-3}B^2 + \dots + A^2B^{3n-3} + AB^{3n-2} + B^{3n-1}, \quad n \ge 1.$$

(2p) f) Să se arate că mulțimea G, în raport cu înmulțirea matricelor, formează o structură de grup.

(2p) g) Să se dea un exemplu de mulțime cu 3 elemente din $M_2(\mathbb{C})$ diferită de G, care este grup în raport cu înmulțirea matricelor.

SUBIECTUL IV (20p)

Se consideră funcția $f:(0,\infty)\to \mathbf{R}$, $f(x)=\ln x$ și integralele $I_n(p)$, unde $n,p\in \mathbf{N}^*$, $I_n(p)=\int_0^1 (1-x^p)^n dx$.

(4p) a) Să se calculeze $I_1(p) = \int_0^1 (1-x^p) dx$.

(4p) b) Utilizând metoda integrării prin părți, să se arate că $I_n(p) = \frac{np}{np+1} I_{n-1}(p), \forall n \ge 2$, $n, p \in \mathbb{N}^*$.

(2p) c) Să se arate că $I_n(n) = \frac{n}{n+1} \cdot \frac{2n}{2n+1} \cdot \dots \cdot \frac{n^2}{n^2+1}, \forall n \in \mathbb{N}^*.$

(4p) d) Să se calculeze f'(x), x > 0.

(2p) e) Utilizând teorema lui *Lagrange*, să se arate că $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}, \ \forall x > 0$.

(2p) f) Să se demonstreze că $\lim_{n\to\infty} \left(1+\frac{1}{n}\right) \left(1+\frac{1}{2n}\right) ... \left(1+\frac{1}{n^2}\right) = 1$.

(2p) g) Să se calculeze $\lim_{n\to\infty} I_n(n)$.