Amendments to the Claims:

The following listing of claims replaces all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A fluorine-containing allyl ether compound represented by the formula 1,

$$H_2C = (1)$$

wherein R represents an organic group comprising at least one fluorine atom and an alicyclic structure, said organic group being free from aromatic rings.

- 2. (Original) A fluorine-containing allyl ether compound according to claim 1, wherein the alicyclic structure comprises a cyclohexane structure or bicyclo[2.2.1]heptane structure.
- 3. (Currently amended) A fluorine-containing allyl ether compound according to elaim 1 represented by the formula (1),

$$H_2C = \begin{pmatrix} 1 \end{pmatrix}$$

wherein the organic group R comprises an organic group comprising an alicyclic group and a hexafluoroisopropanol group or unit derived therefrom, which is represented by the formula 2,

$$CF_3$$
 CF_3
 CF_3

wherein R^1 represents a hydrogen or alkyl group having a carbon atom number of from 1 to 6 and optionally contains a heteroatom.

4. (Currently Amended) A fluorine-containing allyl ether compound according to elaim 1 represented by the formula 1,

$$H_2C = \begin{pmatrix} 1 \end{pmatrix}$$

wherein the organic group R is an organic group represented by one of the following formulas,

$$(CF_3)_{n=1,2,3} \qquad (F)_{n=1-5} \qquad (F_3C - CF_3)_{n=1,2,3} \qquad F_3C$$

$$(F_3C - CF_3)_{n=0,1,2,3} \qquad (F_3C - CF_3)_{n=1,2,3} \qquad F_3C$$

$$(F_3C - CF_3)_{n=0,1,2,3} \qquad (F_3C - CF_3)_{n=1,2,3} \qquad (F_3C - CF_3)_{n=$$

wherein

 R^1 is H or a C_1 - C_6 alkyl group and optionally contains a heteroatom;

 R^2 is a $-C_0 - C_5$ -bond or a C_1 - C_5 alkyl group;

R³ is H or F;

R⁴ is CF₃, OH, CO₂H, CO₂R⁵, or OCOR⁵, where R⁵ is a C₁-C₆ alkyl group;

 R^6 is H or F; and

 R^7 is H or C_1 - C_5 alkyl group.

5-11. (Canceled)