INTERPRETATION VS. COMPILATION Computer Science III

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

Programming Languages

32-bit (4-byte) ADD instruction:

100000	00 100	00010	00011	00000000000
opcode	rc	ra	rb	(unused)

Could be something like: Reg[4] <- Reg[2] + Reg[3]

In assembly:

```
ADD(R2, R3, R4)
```

In any high-level language:

$$a = b + c;$$

- **Interpretation** is the process of executing a program in a high-level language by another program.
- Interpretation is an effective implementation strategy when performing a computation once or when exploring.
- There is a special program called an interpreter that reads a high-level program and executes it.
- Model of Interpretation:
 - Start with some hard-to-program machine, say M1.
 - Write a program P1 for M1 that simulates the operation of another easier machine M2.
 - Result, P1 is an interpreter for M2, it means, a virtual M2.
- Advantages
 - Portability
 - Flexibility.
 - Ease of debugging.

- **Interpretation** is the process of executing a program in a high-level language by another program.
- **Interpretation** is an effective implementation strategy when performing a computation once or when exploring.
- There is a special program called an interpreter that reads a high-level program and executes it.
- Model of Interpretation:
 - Start with some hard-to-program machine, say M1.
 - Write a program P1 for M1 that simulates the operation of another easier machine M2.
 - Result, P1 is an interpreter for M2, it means, a virtual M2.
- Advantages
 - Portability
 - Flexibility
 - Ease of debugging.

- **Interpretation** is the process of executing a program in a high-level language by another program.
- **Interpretation** is an effective implementation strategy when performing a computation once or when exploring.
- There is a special program called an interpreter that reads a high-level program and executes it.
- Model of Interpretation:
 - Start with some hard-to-program machine, say M1.
 - Write a program P1 for M1 that simulates the operation of another easier machine M2.
 - Result, P1 is an interpreter for M2, it means, a virtual M2.
- Advantages:
 - Portability
 - Flexibility.
 - Ease of debugging.

- **Interpretation** is the process of executing a program in a high-level language by another program.
- **Interpretation** is an effective implementation strategy when performing a computation once or when exploring.
- There is a special program called an interpreter that reads a high-level program and executes it.
- Model of Interpretation:
 - Start with some hard-to-program machine, say M1.
 - Write a program P1 for M1 that simulates the operation of another easier machine M2.
 - Result, P1 is an interpreter for M2, it means, a virtual M2.
- Advantages
 - Portability
 - Flexibility.
 - Ease of debugging.

- **Interpretation** is the process of executing a program in a high-level language by another program.
- **Interpretation** is an effective implementation strategy when performing a computation once or when exploring.
- There is a special program called an interpreter that reads a high-level program and executes it.
- Model of Interpretation:
 - Start with some hard-to-program machine, say M1.
 - Write a program P1 for M1 that simulates the operation of another easier machine M2.
 - ullet Result, P1 is an interpreter for M2, it means, a virtual M2.

Advantages:

- Portability.
- Flexibility.
- Ease of debugging.

- **Compilation** is the process of translating a program in a high-level language into a low-level language.
- **Compilation** is an effective implementation strategy when performing a computation many times.
- There is a special program called a compiler that reads a high-level program and translates it.
- Model of Compilation:
 - ullet Start with some hard-to-program machine, say M1
 - Write a program P2 for M1 that translates a program in a high-level language into a program in a low-level language.
 - Result, P2 is a compiler for M2.
- Advantages
 - Fast Execution
 - Efficiency
 - Portability.

- **Compilation** is the process of translating a program in a high-level language into a low-level language.
- **Compilation** is an effective implementation strategy when performing a computation many times.
- There is a special program called a compiler that reads a high-level program and translates it.
- Model of Compilation:
 - ullet Start with some hard-to-program machine, say M1
 - Write a program P2 for M1 that translates a program in a high-level language into a program in a low-level language.
 - Result, P2 is a compiler for M2.
- Advantages
 - Fast Execution
 - Efficiency
 - Portability.

- **Compilation** is the process of translating a program in a high-level language into a low-level language.
- **Compilation** is an effective implementation strategy when performing a computation many times.
- There is a special program called a compiler that reads a high-level program and translates it.
- Model of Compilation:
 - ullet Start with some hard-to-program machine, say M1
 - Write a program P2 for M1 that translates a program in a high-level language into a program in a low-level language.
 - Result, P2 is a compiler for M2.
- Advantages
 - Fast Execution
 - Efficiency.
 - Portability.

- **Compilation** is the process of translating a program in a high-level language into a low-level language.
- **Compilation** is an effective implementation strategy when performing a computation many times.
- There is a special program called a compiler that reads a high-level program and translates it.
- Model of Compilation:
 - Start with some hard-to-program machine, say M1.
 - ullet Write a program P2 for M1 that translates a program in a high-level language into a program in a low-level language.
 - Result, P2 is a compiler for M2.
- Advantages
 - Fast Execution
 - Efficiency.
 - Portability.

- **Compilation** is the process of translating a program in a high-level language into a low-level language.
- **Compilation** is an effective implementation strategy when performing a computation many times.
- There is a special program called a compiler that reads a high-level program and translates it.
- Model of Compilation:
 - Start with some hard-to-program machine, say M1.
 - ullet Write a program P2 for M1 that translates a program in a high-level language into a program in a low-level language.
 - Result, P2 is a compiler for M2.
- Advantages:
 - Fast Execution.
 - Efficiency.
 - Portability.

Interpretation Vs. Compilation

Characteristics differences:

	Compilation	Interpretation	
How does it treat input $x + 2$?	Generate a program	Computes # ± 2	
How does it treat input x + 2:	that computes x + 2	Computes x + 2	
When it happens?	Before Execution	During Execution	
What it complicates/slows?	Program Development	Program Execution	
Decisions made at	Compile Time	Run Time	

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/computer-science-iii

