Принцип на относителността на Галилей. Галилееви трансформации на координатите, скоростите и ускоренията. Класически закон за събиране на скорости

Принцип на относителността на Галилей. Галилееви трансформации на координатите

Дотук разглеждахме движението на телата спрямо избрана отправна система. Това се налага поради относителността на покоят и движението (2 въпрос). Спрямо друга отправна система тялото ще има други координати и различна скорост. Ако двете отправни системи са неподвижни една спрямо друга, лесно се намира връзката между координатите и скоростите на тялото в двете системи. Въпросът как да намерим тази връзка, ако едната отправна система се движи спрямо другата, е решен от Галилей за инерциални отправни системи т.е. системи, които се движат равномерно и праволинейно спрямо дадена инерциална отправна система (4 въпрос). На базата на многобройни наблюдения и опити, той е достигнал до т.нар. механичен принцип на относителността, който ние сега наричаме принцип на относителността на Галилей – законите на класическата механика действат по един и същ начин във всички инерциални системи. Те не се променят при преход от една инерциална система в друга, т.е. те са инвариантни спрямо всички инерциални системи. От това следва, че и механичните процеси, които се описват от тези закони, протичат еднакво във всички инерциални системи. С други думи чрез никакви механични опити в една инерциална система не е възможно да се установи дали тя е в състояние на покой или праволинейно равномерно движение. Двете състояния са неразличими едно от друго.

Нека да разгледаме две отправни системи **K** (**XYZ**) и **K'** (**X'Y'Z'**) (фиг. 1), като приемем, че **K** е неподвижна, а **K'** се движи спрямо нея с постоянна скорост \vec{u} (т.е. равномерно и праволинейно). Това означава, че ако системата **K** е инерциална, **K'** също е инерциална. Нека да намерим връзката между

координатите на тяло, което в даден момент от време се намира в т. А, в двете отправни системи. Ако означим радиус-векторът на тялото в \vec{K} с \vec{r} , а в $\vec{K'}$ – с $\vec{r'}$, връзката между тях се дава чрез радиус-векторът $\vec{r_0}$ на началото $\vec{O'}$ на система $\vec{K'}$ спрямо система \vec{K} :

(1)
$$\vec{r} = \vec{r_0} + \vec{r'} = \vec{r'} + \vec{u}t \ (\vec{r_0} = \vec{u}t).$$

Като използваме представянето на радиусвектора чрез координатите (2 въпрос) и имаме предвид, че според класическата механика времете тече по един и същ начин във всички отправни системи, можем да запишем:

(2)
$$\begin{cases} x = x' + u_x t \\ y = y' + u_y t \\ z = z' + u_z t \\ t = t' \end{cases}$$
 и обратната връзка –
$$\begin{cases} x' = x - u_x t \\ y' = y - u_y t \\ z' = z - u_z t \\ t' = t \end{cases}$$

Уравненията (2) се наричат Галилееви трансформации на координатите.

Галилееви трансформации на скоростите и ускоренията. Класически закон за събиране на скорости

Ако диференцираме (1) по времето ще получим скоростта на тялото спрямо К:

$$\vec{v} = \frac{\vec{dr}}{\vec{dt}} = \frac{\vec{dr}_0}{dt} + \frac{\vec{dr'}}{dt},$$
(3) $\vec{v} = \vec{u} + \vec{v'}$

където \overrightarrow{v}' е скоростта му спрямо **К'**. Равенството (3) се нарича Галилеев (класически) закон за събиране на скорости.

Ускорението на тялото можем да получим като вземем първата производна на скоростта по времето:

(4)
$$\vec{a} = \frac{\vec{dv}}{dt} = \frac{\vec{du}}{dt} + \frac{\vec{dv'}}{dt} = 0 + \vec{a'} = \vec{a'},$$

тъй като скоростта \vec{u} е константа. Ако умножим (4) по масата на тялото, ще получим връзка между уравненията на движение (вторият принцип на Нютон) на тялото в двете отправни ситеми:

$$\vec{F} = m\vec{a} = m\vec{a'} = \vec{F'}$$
,

т.е. силите, както и ускоренията в двете системи са равни — основното динамично уравнение на движение на тялото е едно и също в двете отправни системи. От казаното по-горе за координатите и скоростите следва още, че и законите за движение и законите за скоростта са едни и същи (различават се само с една постоянна величина — скоростта \vec{u} на системата \vec{K} спрямо \vec{K}). Следователно законите на механиката наистина са едни и същи в двете инерциални отправни системи \vec{K} и \vec{K} .