

Оглавление

Описание	1
Описание верхнего уровня	1
Входные сигналы	1
Выходные сигналы	1
Двунаправленные сигналы	1
Программная модель	1
Регистр конфигурации и состояния	1
Регистр полученных данных	3
Описание работы	3
Алгоритмы работы	5
Конечный автомат	6

Описание

Данный проект подразумевает реализацию RTL-описания на языке Verilog одноканального приемника SL-канала.

Описание верхнего уровня

Входные сигналы

- rst_n асинхронный общий сигнал сброса
- clk сигнал тактовой частоты
- [31:0] D_in порт для записи данных в регистры
- wr_en После установки в 1 в выбранный портом addr регистр записывается необходимое число
- addr адрес регистра "0" регистр данных, "1" регистр конфигурации и состояния
- serial_line_zeroes_a асинхронный вход линии нулей SL-канала
- serial_line_ones_a асинхронный вход линии единий SL-канала

Выходные сигналы

- [31:0] D_out порт для чтения регистров
- irg вывод прерывания

Двунаправленные сигналы

Отсутствуют.

Программная модель

Пользователю для работы доступно несколько регистров:

- Регистр конфигурации и состояния (config_r и status_r)
- Регистр последнего успешно принятого сообщения (buffered_data_r)

Регистр конфигурации и состояния

Регистр конфигурации и состояния состоит из двух объединеных регистров - регистра конфигурации и регистра состояния. Регистру конфигурации соответвуют младшие 16 разрядов, регистру состояния - старшие.

Таблица 1. Назначение разрядов регистра конфигурации (config_r)

)	4	0	0	4	1	C	1	0	0	4.0	11	4.0	4.0	4.4	4 [
U	1	2	3	4	5	б	1/	8	9	10	11	12	13	14	15

Описание стр. 1 из 7

SR	BC[6:0]	PCE	IRQM	Res*	Res*
----	---------	-----	------	------	------

Oписание разрядов регистра конфигурации (config_r)

- 1. SR soft reset, включает (SR=1) и выключает (SR=0) приемник
- 2. BC bit count, количество бит в слове
- 3. IRQM interrupt request mask, маскирование прерываний модуля
- 4. PCE parity check enable, разрешение контроля четности(PCE = 1), или запрещение(PCE = 0)

Таблица 2. Связь разрядов IRQM и маскирования причин прерываний

Разряд поля IRQM	Маскируемый бит
IRQM[0]	IRQRM
IRQM[1]	IRQPEM
IRQM[2]	IRQWLC
IRQM[3]	IRQLE
IRQM[4]	IRQWCC
IRQM[5]	IRQICC

Таблица 3. Назначение разрядов регистра состояния (status_r)

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
WRP	PEF	Res*	IRQR	IRQP	IRQW	IRQL	IRQW	IRQIC	Res*						
									M	EM	LC	EF	CC	С	

Описание разрядов регистра состояния (status_r)

- 1. WRP word receiving process, флаг идущего процесса приема слова по SL-каналу
- 2. PEF parity error flag, присутствует ли ошибка четности в хранящемся в буфере сообщении
- 3. IRQRM interrupt request of recieved message прерывание успешно принятого сообщения
- 4. IRQPEM interrupt request of parity error message, принято слово не прошедшее проверку четности
- 5. IRQWLC interrupt request of word length check, принято слово не прошедшее проверку длины полученного слова на равенство значению BC регистра config_r
- 6. IRQLE interrupt request of level error on line, прерывание ошибки уровня напряжения на линии SL-канала
- 7. IRQWCC interrupt request of wrong configuration changed прерывание смены конфигурации во время приема сообщения
- 8. IRQICC interrupt request of incorrect configuration прерывание попытки смены конфигурации на неверную
- 9. Res* Зарезервированно

Регистр полученных данных

buffered_data_r[31:0]

Таблица 4. Назначение разрядов регистра полученных данных (buffered_data_r)

0 - 3	31
Dat	a

Data - данные к отправке.

Описание работы

Модуль принимает SL-сообщения. Сообщения могут иметь четную длинну от 8 до 32 бит. Бит четности проверяется автоматически. Частота импульсов принимаемых сообщений может меняться от 500кГц до 2МГц (при частоте тактового сигнала = 16МГц).

Запись и чтение регистров

Управление модулем осуществляется путем записи/чтения регистров.

Для считывания текущего значения одного из регистров блока необходимо сформировать на шине addr соответствующее ему значение, указанное в таблице, длительностью не меньше такта опорной тактовой частоты. Значение регистра будет сформировано на шине d_out через такт опорной после фронта сигнала на шине addr.

Для записи значения в один из регистров блока необходимо сформировать:

- на шине addr значение соотвествующее регистру
- на шине d_in записываемую информацию,
- на порт wr_en значение "1".

Также на на шине d_out через такт опорной после фронта сигнала на шине addr будет сформировано значение записанного регистра. Значение шины d_out будет соответствовать значению последнего опрошенного или записанного регистра до формирования следующего запроса.

Таблица 5. Адреса регистров

Значение шины addr	Выбранный регистр				
1'b0	регистр данных				
1'b1	регистр конфигурации и состояния				

Смена конфигурации

Для изменения конфигурации приемника необходимо перезаписать регистр конфигурации и состояния. В конфигурационной части может быть установлена длинна слова, маскировка причин запроса перывания или осуществлен сброс модуля к исходным настройкам. Неверной считается

конфигурация с нечетными длиннами слова или длинной слова лежащей вне промежутка от 8 до 32 бит.

Прием сообщений Если на вход модуля начинают поступать импульсы, модуль переходит в режим приема сообщения, выставляется бит WRP = 1.

Модуль переходит в режим ожидания нового сообщения в сиутациях

- Успешного приема сообщения
- Приема сообщения с ошибкой
- Завершившейся ошибки уровня на линии

При переходе

Успешным приемом сообщения называется прием сообщения с совпадающим со значением поля ВС количеством информационных бит и, если включен контроль четности, верной четностью. В случае, если успешно принято слово с правильной четностью выставляется бит IRQRM = 1 и WRP = 0. Если контроль четности отключен успешно принято слово с неправильной четностью, выставляются биты IRQPEM = 1, PEF = 1 и WRP = 0.

В случае приема сообщения с ошибкой выставляются биты:

- Контроль четности включен и принято сообщение с ошибкой четности IRQPEM = 1 и WRP = 0
- Принято сообщение с несовпадающим с конфигурацией количесвом бит IRQWLC = 1 и WRP = 0

В случае, если во время приема произошла ошибка уровня, выставляется флаг IRQLEF = 1. Модуль вернется в режим ожидания сообщения только когда уровни на линиях будут восстановлены. До этого момента будет флаг WRP = 1, а бит причины прерывания IRQLEF будет невозможно сбросить.

В регистре данных всегда хранится последнее успешно принятое сообщение. А в бите PEF - наличие ошибки четности последнего успешно принятого сообщения.

После считывания сообщения необходимо сбросить бит IRQRM, и ожидать следующего сообщения.

Прерывания

Запрос прерывания проиходит произошло одно из событий и бит этого события не замаскирован:

- Успешно принято сообщение (IRQRM)
- Принято сообщение с ошибкой четности (IRQPEM)
- Принято сообщение неверной длинны (IRQWLC)
- Произошла ошибка уровня на линии (IRQLE)
- Была предпринята попытка записать некорректные данные в конфигурационный регистр (IRQICC)
- Изменение конфигурации в процессе отправки сообщения (IRQWCC)

Описание работы стр. 4 из 7

Причину возникновения можно посмотреть в соотвествующих полях регистра состояния. Для сбрасывания прерываний, вам необходимо считать регистр конфигурации и состояния и записать считанное снова, занулив биты прерываний. Более подробно работа прерываний рассмотрена в разделе Алгоритм работы.

Выключение модуля

Чтобы выключить модуль необходимо выставить поле регистра конфигурации SR = "1". Если сделать это во время отправки сообщения, прием сообщения прекращается. Регистры конфигурации и состояния возвращаются в начальное состояние. Когда приемник выключен, он не реагирует на сигналы на входах SL0 и SL1.

Алгоритмы работы

Рисунок 1. Алгоритм работы регистра состояния модуля SlReciever

Алгоритмы работы стр. 5 из 7

Конечный автомат

Конечный автомат стр. 6 из 7

Рисунок 2. Конечный автомат модуля SlReciever

Конечный автомат стр. 7 из 7