Complexité algorithmique

Timothée Pecatte

DIU Bloc 5 25/06/2020

Table des matières

Introduction

2 Rappels et définitions

3 Classes de complexité

Introduction

Introduction : chemin eulérien

Existe-il un cycle passant par chaque arête exactement une fois?

Introduction: chemin hamiltonien

Existe-il un cycle passant par chaque sommet exactement une fois?

Introduction 0000

Objectif : classer les problèmes en fonction de leur complexité.

Rappels et premières définitions

Rappels de complexité algorithmique

Definition

Un **problème** = une **entrée** et sa **sortie** correspondante.

Exemple (Problème du cycle Eulérien)

Entrée : un graphe G.

Sortie : un cycle Eulérien *C* de *G* s'il existe, "Impossible" sinon.

Definition

Une **instance** d'un problème A = une entrée spécifique.

Exemple (Instance du problème du cycle Eulérien)

Problèmes de décision

Definition

Un problème de décision = sortie booléenne.

Exemple (Problème de décision du cycle Hamiltonien)

Étant donné un graphe G, existe-t-il un cycle Hamiltonien dans G?

Exemple

Étant donné un entier n, est-il premier?

Exemple

Étant donné un entier n sous forme de produit de nombres premiers, est-il premier?

D'autres exemples

Exemple

Étant donné un graphe G, est-il 3-coloriable?

Exemple

Étant donné un graphe planaire G, est-il 4-coloriable?

Exemple

Étant donné un programme C, le programme s'arrête-il toujours?

Exemple

Étant donné une formule logique (composée de OU,ET,NEG), existe-il une assignation des variables qui rend la formule vraie?

Temps de calcul

Definition (Résolution)

A résout un problème de décision $P: \forall$ entrée I (instance) valide pour P, A(I) = VRAI si et seulement si $I \in P$.

Definition (Complexité)

 $t_A(I) = \text{temps de calcul de } A \text{ sur } I \text{ (nombre d'instructions)}$ élémentaires).

$$T_A(n) = \max\{t_A(I) \mid \text{taille}(I) = n\}$$

 $T_P(n) = \min\{t_A(n) \mid A \text{ résout } P\}$

Remarque

D'autres mesures de complexité possibles : mémoire, temps de calcul sur architecture parallèle, ...

En pratique

- Rarement accès à $T_P(n)$: utilisation de O
- Etude asymptotique : pas toujours utile sur des données réelles
- Modèles de calculs réels complexes à modéliser
- Problème Eulérien et Hamiltonien : vérification facile O(n)
- Énumération de tous les sous-ensembles d'arêtes : $O(n2^n)$
- Caractérisation des graphes Eulériens $\Rightarrow O(n)$
- Cycle Hamiltonien:???

Quelle granularité utiliser pour séparer les problèmes ?

Classes de complexité

Réduction polynomiale

Definition (Réduction - avec les mains)

Le problème P est plus facile que le problème Q si l'on peut se servir d'un algorithme pour le problème Q afin de résoudre le problème P.

Remarque

Si un algorithme A consiste en O(f(n)) appels à un algorithme B avec des entrées de taille O(g(n)), et que la complexité de B est O(h(n)) opérations élémentaires, alors la complexité de A est $O(f(n) \times (g \circ h)(n))$.

Algorithme linéaire (O(n)) + stabilité par réduction "raisonnable" ⇒ tous les algorithmes de complexité polynomiale.

Classe polynomiale P : les problèmes "faciles"

Definition

Un problème A appartient à la classe P s'il existe un algorithme qui résout A en temps polynomial.

Example

- Eulérien
- 2-couleur
- Accessibilité : étant donnés un graphe G et deux sommets s, t ∈ G, existe-t-il un chemin de s à t?
- Connexité : est-ce qu'un graphe donné est connexe?
- PGCD
- Primalité
- Recherche de motif dans un texte

La classe P

Facile ou difficile?

Problème dans P ou pas dans P?

- Si le problème $\in P$:
 - fournir un algorithme
 - montrer qu'il est correct
 - montrer qu'il est polynomial en la taille des données
- Si le problème ∉ P :
 - montrer qu'aucun algorithme polynomial n'existe!
 - en général très compliqué

Example

Hamiltonien $\in P$??

Au-delà de P?

- Hamiltonien ∈ P??
- Algorithme en $O(n2^n)$, Hamiltonien $\in EXP \rightarrow pas$ suffisant?
- Supposons qu'une opération prend $1\mu s = 10^{-6} s$:

n/f(n)	n	n ²	n ³	2 ⁿ	3 ⁿ	n!
10	10μs	0.1 <i>ms</i>	1ms	1ms	59 <i>ms</i>	3.63 <i>s</i>
20	20μs	0.4 <i>ms</i>	8ms	1 <i>s</i>	58 min	77094 ans
40	40μs	1.6 <i>ms</i>	64 <i>ms</i>	12.73 ј	385253 ans	2.58 · 10 ³⁴ ans
60	60μs	3.6 <i>ms</i>	216 <i>ms</i>	36533 ans	$1.34\cdot 10^{15}$ ans	2.63 · 10 ⁶⁸ ans

- Et si on "boostait" ma machine?
- Et si on utilisait un serveur de calcul?
- Et si on parallélisait massivement les calculs?

Exponentielle à éviter

1.000 fois plus puissant : 109 opérations/s

n/f(n)	n	n ²	n ³	2 ⁿ	3 ⁿ	n!
10	10 <i>ns</i>	$0.1 \mu s$	1μ s	1μ s	59 <i>μs</i>	3.63 <i>ms</i>
20	20 <i>ns</i>	0.4 <i>μs</i>	8μ s	1ms	3.48 s	77, 1 ans
40	40 <i>ns</i>	$1.6 \mu s$	64 <i>μs</i>	18.34 h	385, 25 ans	2.58 · 10 ³¹ ans
60	60 <i>ns</i>	3.6 <i>μs</i>	$216\mu s$	36, 5 ans	$1.34\cdot 10^{12}$ ans	2.63 · 10 ⁶⁵ ans

1.000.000 fois plus puissant : 10¹² opérations/s

n/f(n)	n	n ²	n ³	2 ⁿ	3 ⁿ	n!
10	10 <i>ps</i>	0.1 <i>ns</i>	1ns	$1\mu s$	59 <i>μs</i>	3.63 <i>ms</i>
20	20 <i>ps</i>	0.4 <i>ns</i>	8ns	1ms	3.48 ms	28.16 ј
40	40 <i>ps</i>	1.6 <i>ns</i>	64 <i>ns</i>	1.1 s	140.71 j	2.58 · 10 ²⁸ ans
60	60 <i>ps</i>	3.6 <i>μs</i>	216 <i>ns</i>	13.34 ј	$1.34\cdot 10^9$ ans	2.63 · 10 ⁶² ans

P or not P?

Introduction

Quand on ne sait pas...

- Pour beaucoup de problème, on ne sait pas :
 - aucun algo polynomial connu ⇒ tous sont exponentiels...
 - …mais aucune preuve que le problème ∉ P!
- Idée : inventer une classe intermédiaire : P ⊆ NP ⊆ EXP

ATTENTION

NP veut dire Nondeterministic Polynomial

NP ne veut pas dire NON POLYNOMIAL!

Classe NP: définition avec certificats

Definition

 $P \in NP$ si pour chaque **instance positive** I (réponse OUI), il existe un certificat C(I) (de sa positivité) vérifiant :

- 1 taille de C(I) : **polynomiale** en la taille des données du problème
- 2 vérification à partir de C(I): en temps polynomial

Example

Hamiltonien \in NP , Eulérien \in NP.

- NP : solution facile à vérifier
- P : solution facile à trouver
- On a bien $P \subseteq NP$

NP- Intuitivement

Coloration de graphe

- j'ai un graphe G et un entier k (une instance I)
- je me demande si G peut être proprement colorié en ≤ k couleurs
- quelqu'un observe par-dessus mon épaule, réfléchit et répond "oui" (instance positive)
- je doute : je lui demande une "preuve" (certificat C(I))
- je vérifie, sur la base de sa "preuve", qu'il dit vrai
- si la taille de C(I) et l'algorithme de vérification sont polynomiaux (en la taille des données), le problème est dans NP

NP: définition non-déterministe

Definition

Un problème A appartient à la classe NP s'il existe un algorithme **non-déterministe** qui résout A en temps polynomial.

Algorithme 1 Hamiltonien(V, E)

- 1: choisir un sommet $s \in V$
- 2: chemin $\leftarrow \emptyset$
- 3: tant que $V \neq \emptyset$ faire
- 4: **si** *s* n'a pas de voisin **alors retourner** IMPOSSIBLE
- 5: choisir *t* un voisin de *s*
- 6: $V \leftarrow V \setminus s$
- 7: $chemin \leftarrow (s, t) :: chemin$
- 8: *s* ← *t*
- 9: fin tant que

NP, et alors?

Proposition

$P \subset \mathsf{NP}$

- NP ne nous permet pas de distinguer entre des problèmes qu'on sait être dans P et des problèmes qui ont l'air plus durs.
- Exemple : Eulérien ∈ NP et Hamiltonien ∈ NP.
- Idée : se restreindre aux problèmes de NP les "plus durs"
- Pour rendre "plus durs" plus précis, on va maintenant formaliser la notion de réduction

Réduction polynomiale "many-one"

Definition

 $Q \leq_m^p P$ (Q se réduit à P) si et seulement si $\exists f$, calculable en temps polynomial, telle que : $\forall I$ entrée valide de Q, $I \in Q \Leftrightarrow f(I) \in P$.

Exemple

Eulérien \leq_m^p Hamiltonien : réduction illustrée précédemment.

Remarque

Attention : si Q se réduit à P, c'est que Q est plus simple que P (d'où la notation $Q \leq_m^p P$)

Proposition

La classe P est close par réduction polynomiale "many-one".

Problèmes équivalents

Example

MAX-clique : étant donné un graphe G, trouver une **clique** maximale. (une clique est un ensemble de sommets tous reliés $deux-\dot{a}-deux$)

Example

MAX-indépendant : étant donné un graphe G, trouver un **ensemble indépendant** maximal. (un ensemble indépendant est un ensemble de sommets qui ne sont reliés par aucune arête)

Proposition

MAX-clique $\leq_m^p MAX$ -indépendant MAX-indépendant $\leq_m^p MAX$ -clique.

Classe NP-complet

Definition

Un problème est NP-complet si :

- 1 il est dans NP
- 2 chaque problème de NP peut se réduire vers lui

Proposition

Pour montrer qu'un problème P est NP-complet, il "suffit" de montrer :

- $\mathbf{n} P \in \mathsf{NP}$
- 2 il existe un problème NP-complet Q tel que $Q \leq_m^p P$
- une seule réduction suffit
- mais il faut réduire depuis un problème NP-complet...

L'œuf et la poule

Montrer qu'un problème est NP-complet implique de réduire un problème NP-complet vers lui...mais il faut bien commencer quelque part!

Remarque

Il n'est a priori pas évident qu'il existe au moins un problème NP-complet

Theorem (Cook 1971)

Le problème **SAT** est NP-complet

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee x_4 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_4)$$

SAT est NP-complet : preuve avec les mains

SAT \in NP : étant donné les valeurs, il suffit d'évaluer la formule pour voir si celle ci est satisfaite.

Plus dur que tous les problèmes de NP :

- $P \in NP$: soit A un algorithme non-déterministe qui le résout.
- Choix de A réalisés en "lançant une pièce" o variables booléenes $c_1, c_2, \dots c_p$
- Soit I une instance de P.
- Formule $\varphi_A(0,1,1,\ldots)$ qui est satisfiable si et seulement si l'algorithme A répond OUI sur l'entrée I avec les résultat de lancés $0,1,1,\ldots$
 - Le modèle de calcul des machines de Turing permet d'écrire une telle formule.
- $f(I) = \varphi_A(c_1, \dots, c_p)$ satisfiable si et seulement I est positive

Et après : c'est les soldes!

Richard Karp, 1972, Reducibility Among Combinatorial Problems

- CLIQUE : le problème de la clique (voir aussi le problème de l'ensemble indépendant)
 - SET PACKING : Set packing (empaquetage d'ensemble)
 - VERTEX COVER : le problème de couverture par sommets
 - SET COVERING : le problème de couverture par ensembles
 - FEEDBACK ARC SET : feedback arc set
 - FEEDBACK NODE SET : feedback vertex set
 - DIRECTED HAMILTONIAN CIRCUIT: voir graphe hamiltonien
 - UNDIRECTED HAMILTONIAN CIRCUIT: voir graphe hamiltonien
- 0-1 INTEGER PROGRAMMING : voir optimisation linéaire en nombres entiers

Quand y'en a plus...

- 3-SAT : satisfaction avec clause comportant 3 littéraux
 - CHROMATIC NUMBER : coloration de graphe
 - CLIQUE COVER : partition en cliques
 - FXACT COVER: converture exacte.
 - MATCHING à 3 dimensions : appariement à 3 dimensions
 - STEINER TREE : voir arbre de Steiner
 - HITTING SET: ensemble intersectant
 - KNAPSACK : problème du sac à dos
 - JOB SEQUENCING : séquençage de tâches
 - PARTITION : problème de partition
 - MAX-CUT : problème de la coupe maximum

"Computers and Intractability: A Guide to the Theory of NP-Completeness" de Garey et Johson, $1979 \Rightarrow > 300$ problèmes NP-Completenes

A quoi ça sert?

Proposition

Les problèmes NP-complet sont de complexité "équivalente". En particulier :

- 1 Si un seul problème NP-complet est polynomial \Rightarrow NP = P!
- Inversement, si un seul problème NP-complet n'est pas polynomial ⇒ tous les problèmes NP-complet aussi!

Actuellement:

- Aucun algorithme polynomial n'a été trouvé pour un problème NP-complet
- L'impossibilité de trouver des algorithmes polynomiaux n'a pas été prouvée non plus.

P vs NP

Quel est le bon schéma?

Conjecture

 $\mathsf{P} \neq \mathsf{NP}$

La grande question

P=NP?

- Recherches innombrables sur le sujet depuis des dizaines d'années
- Fait partie des 7 problèmes du millénaire du Clay Mathematics (1 million à la clé)
- Les implications sont multiples et réelles! Exemple : transactions bancaires cryptées sur le web (codage RSA)
- Gerhard J. Woeginger: liste avec 62 preuves de P = NP, 50 preuves de P ≠ NP, 2 preuves que le résultat n'est pas prouvable, et une preuve qu'il n'est pas décidable.
- Meilleure borner inférieure pour SAT : $T \cdot S \ge \Omega(n^{2-o(1)})$

Concrètement

Que faire face à un problème inconnu?

On observe notre problème P

- soit on pense que le problème est facile ⇒ on cherche un algorithme correct et polynomial (avec le meilleur temps possible!) qui le résout.
- soit on pense que le problèmeest difficile ⇒ on cherche à montrer qu'il est NP-complet, càd
 - toute solution proposée peut être polynomialement vérifiable (appartenance à NP)
 - prendre un problème NP-complet et le réduire polynomialement à P

Que faire face à un problème NP-complet?

Si Pb est NP-complet

- Premier constat : ne pas s'acharner à trouver un algorithme exact et rapide qui fonctionne sur toutes les instances
- Baisser ses exigences :
 - soit sur la rapidité d'exécution :
 Je veux la réponse exacte, je suis prêt à attendre (si la taille est petite, ça ira)
 - b soit sur l'exactitude de la réponse : Je veux une réponse rapide, tant pis si elle n'est pas tout à fait exacte
 - soit sur l'ensemble des instances autorisées : Je peux avoir un algorithme rapide et exact si mes données d'entrée sont "gentilles"

Que faire face à un problème NPC?

Retour sur le cas (c)

Je peux avoir un algorithme rapide et exact si mes données d'entrée sont "gentilles"

- NP-complet signifie qu'au moins une instance est "difficile"...
- ...mais pas forcément toutes!
- Pour certaines instances, le problème (pourtant NP-complet) pourrait être résolu en temps polynomial

Example

- MIN-COL limité aux graphes de degré maximum 2
- MIN-COL limité aux arbres

MIN-COL limité aux graphes de degré maximum 2

MIN-COL limité aux graphes de degré maximum 2 :

Instance : un graphe G de degré maximum 2

Question : quel est le nombre minimum de couleurs nécessaires pour colorier G de façon propre?

Exercice

- Si G est connexe et de degré max. 2, à quoi ressemble G?
- Si G n'est pas (forcément) connexe, à quoi ressemble-t-il?
- Montrer que le problème MIN-COL limité aux graphes de degré max. 2 est dans P

MIN-COL limité aux arbres

MIN-COL:

Instance: un arbre G

Question : quel est le nombre minimum de couleurs nécessaires

pour colorier G de façon propre?

Exercice

Montrer que le problème MIN-COL limité aux arbres est dans P

Que faire face à un problème NPC?

Retour sur le cas (b)

Je veux une réponse rapide, tant pis si elle n'est pas tout à fait exacte

- S'applique surtout aux problèmes d'optimisation
- Temps d'exécution exigé : polynomial
- Une possibilité : algorithmes d'approximation
 - algorithme polynomial
 - garantissant un résultat $\leq r \cdot c_{opt}$ (maximisation) ou $\geq r \cdot c_{opt}$ (minimisation)
 - pour toutes les instances
 - r est appelé le ratio d'approximation

Conclusion

- Tout une théorie existe (seulement effleurée ici)
- Permet d'estimer la difficulté des problèmes (P vs NP)
- Si le problème est NP-complet, on adapte sa stratégie de résolution

Slides basés en partie sur ceux du DIU à Nantes.

