Bill Davis 605.421

1. 19.1-3 Binary Representation of Binomial Heaps

There are $\binom{n}{k}$ binary k-strings containing exactly j 1's. And since there are also $\binom{n}{k}$ nodes per level of a binomial tree, there must be k ones per node per level of a tree when counting the lowest node as 0.

Since binomial trees have defined sizes, ie they either have 1,4,8,16 ... nodes, $2^0, 2^1, 2^2, 2^3$..., a node of degree k will have subtrees of size $2^0 + 2^1 + 2^2 + ... 2^{k-1} = 2^{k-1}$, therefore it will have k 1's in it's binary representation.

2. 19.2-5 Binomial-Heap-Minimum

Binomial-Heap-Minimum may not work as coded. If all of the nodes in the heap have value ∞ , then Binomial-Heap-Minimum will return NULL, even though there are elements in the Heap.

It can be altered to account for this by,

```
\begin{array}{l} \mathbf{y} \leftarrow head[\mathbf{H}] \ // \ \mathrm{This} \ \mathrm{sets} \ \mathrm{a} \ \mathrm{default} \ \mathrm{return} \ \mathrm{value} \\ \mathbf{x} \leftarrow head[\mathbf{H}] \\ \min \leftarrow \infty \\ \mathrm{while} \ \mathbf{x} \neq \mathrm{NILL} \\ \mathrm{do} \ \mathrm{if} \ key[\mathbf{x}] < \min \\ \mathrm{do} \ \mathrm{if} \ key[\mathbf{x}] < \min \\ \mathrm{then} \ \min \leftarrow key[\mathbf{x}] \\ y \leftarrow x \\ x \leftarrow sibling[\mathbf{x}] \\ \mathrm{return} \ \mathbf{y} \end{array}
```

This way if there is an element $< \infty$ we will select it, otherwise we'll return the first value.

3. 19.2-6 Binomial-Heap-Delete

We can alter Binomial-Heap-Delete to work in the case where there is no representation for $-\infty$.

Binomial-Heap-Delete(H,x)

y = Binomial-Heap-Extract-Min(H) Binomial-Heap-Decrease-Key(H,x, y-1) Binomial-Heap-Extract-Min(H) Binomial-Insert(y)

In this manner they key x always has the lowest value. It simply requires two deletes and an insert, all of which can be done in $O(\lg n)$

4. Minimum spanning tree with binomal heaps

A binomial heap can be used to manage both the edge and vertex list. For the edge list the operations are straightforward. Extracting the minimum-weight edge is simply Binomial-Heap-Extract-Min, and $E_i \leftarrow E_i \bigcup E_j$ is the Union operation.

Vertex operations are slightly more complicated. Once we extract an edge from the edge list we need to determine which heaps the endpoints belong in. This requires a new operation to search the heap looking for elements. For example, once we extract the minimum-weight edge (u,v) from E_i , we have to determine which V_i and V_j , u and v belong in. After this we can reuse the union operation to merge V_i and V_j if neccessary.

The runtime of this algorithm should be $E \lg(E)$, since we require approx. E Extract-Min operations which happen in E time.