Algebra Problem 2

Robin Boregrim

September 17, 2017

Innehållsförteckning

1	Uppgiften	4
2	Lösning	:
	2.1 Allmän lösning	
	2.2 Special fall	
	2.3 Svar	

1 Uppgiften

För vilka $n \ge 0$ är $2^n + 2 \cdot 3^n$ delbart med 8?

2 Lösning

2.1 Allmän lösning

Först använder vi oss av att $x^n = (x^2)^{n/2}$ för att få fram tal som vi kan förenkla med moduliräkning.

$$2^{n} + 2 \cdot 3^{n}$$

$$(2^{2})^{n/2} + 2 \cdot (3^{2})^{n/2}$$

$$4^{n/2} + 2 \cdot 9^{n/2}$$

$$16^{n/4} + 2 \cdot 9^{n/2}$$
(2)

Talen 16 och 9 är bra eftersom $16 \equiv 0 \mod 8$ och $9 \equiv 1 \mod 8$. Eftersom vi nu vill använda oss av moduliräkning för att beräkna delbarhet med 8 måste vi undvika rottäcken då $x \equiv y \not\Rightarrow \sqrt{x} \equiv \sqrt{y}$.

Vi måste därför ta hänsyn till två saker för att undvika rottecken:

Säg att vi har termen x^n som vi vill skriva om till $(x^y)^{n/y}$.

H1. Om n är mindre än y måste det fallet räknas separat.

H2. Om n inte är delbart med y måste termen förlängas till $x^{(n-z)} \cdot x^z$ där $n-z \equiv 0 \mod n$, vilket betyder att om skrivningen blir $(x^y)^{(n-z)/y} \cdot x^z$.

Av H1 följer att fall då n < 4 räknas separat då den största roten vi har bland termer i ekvation (2) är 4.

Av H2 följer att termen $16^{n/4}$ har fyra fall: $16^{n/4}$, $16^{(n-1)/4} \cdot 2$, $16^{(n-2)/4} \cdot 2^2$ och $16^{(n-2)/4} \cdot 2^3$.

Av H2 följer även att termen $2\cdot 9^{n/2}$ har två fall $2\cdot 9^{n/2}$ när n är jämnt och $2\cdot 3\cdot 9^{(n-1)/2}$ när n är ojämnt.

Av detta får vi dessa 4 fall av startekvationen (1) som vi sedan förenklar med moduliräkning.

Fall 1 om $n \equiv 0 \mod 4$

$$16^{n/4} + 2 \cdot 9^{n/2} \equiv 0^{n/4} + 2 \cdot 1^{n/2} = 2$$

Fall 2 om $n \equiv 1 \mod 4$

$$16^{n/4} \cdot 2 + 2 \cdot 3 \cdot 9^{n/2} \equiv 0^{n/4} \cdot 2 + 2 \cdot 3 \cdot 1^{n/2} = 6$$

Fall 3 om $n \equiv 2 \mod 4$

$$16^{n/4} \cdot 2^2 + 2 \cdot 9^{n/2} \equiv 0^{n/4} \cdot 2^2 + 2 \cdot 1^{n/2} = 2$$

Fall 4 om $n \equiv 3 \mod 4$

$$16^{n/4} \cdot 2^3 + 2 \cdot 3 \cdot 9^{n/2} \equiv 0^{n/4} \cdot 2^3 + 2 \cdot 3 \cdot 1^{n/2} = 6$$

Av detta kan vi konstatera att (1) aldrig är delbar med 8 för $n \le 4$ då (1) antingen är kongurent med 2 eller 6 när $n \le 4$.

2.2 Special fall

Då måste vi undersöka de 4 kvarvarande fallen för (1) där n=0,1,2,3. Fall 1n=0

$$2^0 + 2 \cdot 3^0 = 1 + 2 \cdot 1 = 3 \not\equiv 0 \mod 8$$

Fall 2 n = 1

$$2^1 + 2 \cdot 3^1 = 2 + 2 \cdot 3 = 8 \equiv 0 \mod 8$$

Fall 3 n = 2

$$2^2 + 2 \cdot 3^2 = 4 + 2 \cdot 9 = 22 \equiv 6 \not\equiv 0 \mod 8$$

Fall 4 n = 3

$$2^3 + 2 \cdot 3^3 = 8 + 2 \cdot = 35 \equiv 3 \not\equiv 0 \mod 8$$

Bara i fall 2 där n = 1 var $(1) \equiv 0 \mod 8$. Därför är n = 1 svaret.

2.3 Svar

 $2^n+2\cdot 3^n$ där $n\geq 0$ är bara delbart med 8 om n=1.