TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

OLYMPIC TOÁN HỌC CẤP TRƯỜNG Năm học 2024-2025 Ngày 15 tháng 2 năm 2025

Môn thi: **Đại số** Thời gian: **120** phút (không kể phát đề) Đề thi gồm **01** trang

CÂU 1 (4,0 điểm). Tìm *a* để hệ phương trình dưới đây có vô số nghiệm

$$\begin{cases} 2X_1 + 3X_2 + X_3 = 4, \\ X_1 - aX_2 - 2X_3 = -5, \\ 7X_1 + 3X_2 + (a-5)X_3 = 7. \end{cases}$$

CÂU 2 (4,0 điểm). Tìm tất cả các đa thức P(X) thỏa mãn $P(X)P(X+1) = P(X^2+X)$.

CÂU 3 (4,0 điểm). Cho $A = \left[a_{ij}\right]_{n \times n}$ là một ma trận vuông cỡ n. Vết của A, ký hiệu bởi Tr(A), là một số được định nghĩa như sau

$$\operatorname{Tr}(A) = a_{11} + a_{22} + \dots + a_{nn}$$

Cho biết Tr(A+B) = Tr(A) + Tr(B) và Tr(cA) = cTr(A) với mọi số c và với mọi ma trận vuông cùng cỡ A và B.

- (a) Chứng minh rằng $A^2 = \text{Tr}(A)A \det(A)I$ với mọi ma trận vuông A cỡ 2.
- (b) Chứng minh rằng $\text{Tr}(A^2) = \text{Tr}(A)^2 2\text{det}(A)$ và det(A+I) = det(A) + Tr(A) + 1 với mọi ma trận vuông A cỡ 2.
- (c) Tìm tất cả các ma trận vuông A cỡ 2 thỏa mãn $A^2 + A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

CÂU 4 (4,0 điểm). Với mỗi số nguyên dương n, xét đinh thức cỡ n

$$D_n = \begin{vmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{vmatrix},$$

với quy ước $D_0 = 1$.

- (a) Tính D_1 và D_2 .
- (b) Chứng minh các đẳng thức sau đúng với mọi $n \ge 3$: $D_n = D_{n-1} D_{n-2}$ và $D_n = -D_{n-3}$.
- (c) Tính D_{2025} .

CÂU 5 (4,0 điểm). Cho ma trận

$$A = \left[\begin{array}{cc} 0.8 & 0.6 \\ 0.2 & 0.4 \end{array} \right].$$

- (a) Tính các giá trị riêng λ_1 và λ_2 của A.
- (b) Tìm hai véctơ riêng v_1 và v_2 của A tương ứng với các giá trị riêng λ_1 và λ_2 .
- (c) Tìm các số x_1 và x_2 sao cho $v = x_1 v_1 + x_2 v_2$, trong đó $v = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$. Từ đó tính giới hạn $\lim_{n \to \infty} A^n v$.

1