# INFRASTRUCTURE MAPPING SOUTHERN ALBERTA REGION



# ECOLOGICAL INFRASTRUCTURE MAPPING – SOUTHERN ALBERTA REGION

Prepared by

O2 Planning + Design Inc.

For

**Alberta Environment** 

April 18, 2008



ISBN No. 978-0-7785-9972-2 (Printed Version) ISBN No. 978-0-7785-9973-9 (On-line Version) Web Site: http://www.environment.alberta.ca

.

.

.

•

Although prepared with funding from Alberta Environment (AENV), the contents of this report do not necessarily reflect the views or policies of AENV, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Any comments, questions or suggestions regarding the content of this document may be directed to:

Air, Land and Waste Policy Branch 10<sup>th</sup> Floor, Oxbridge Place 9820 – 106 Street Edmonton, Alberta T5K 2J6 Fax: (780) 422-4192

Additional copies of this document may be obtained by contacting:

Information Centre Alberta Environment Main Floor, Oxbridge Place Edmonton, Alberta T5K 2J6 Telephone: (780) 427-2700 Fax: (780) 422-4086

E-mail: env.infocent@gov.ab.ca



# ECOLOGICAL INFRASTRUCTURE MAPPING - SOUTHERN ALBERTA REGION

FINAL DRAFT - REVISED APRIL 18, 2008

Presented to:

Alberta Environment

Presented by:

02 Planning + Design Inc.





# Ecological Infrastructure Mapping – Southern Alberta Region

# **FINAL DRAFT**

Presented to: Alberta Environment

O2 Planning + Design Inc. April 18, 2008

# **Executive Summary**

An assessment of ecosystem goods and services (EGS) in southern Alberta was initiated in 2006 by Alberta Environment. Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life (Daily 1997). The current study builds on the first two project phases by expanding the discussion of landscape patterns required to sustain the provision of ecosystem goods and services based on an identification of ecological infrastructure in the Southern Alberta region. Ecological infrastructure refers to the core features of a network that provides ecosystem services (Tzoulas et al. 2007): in this case, in the Southern Alberta region. At a regional scale, it includes the system of structural and functional terrestrial and aquatic landscape features such as clean water and habitat (Quinn, unpublished work, 2007). Components of ecological infrastructure chosen for mapping in the scope and scale of the current project include:

- 1. Stream corridors
- 2. Natural vegetation patches and stepping stones
- 3. Waterbody complexes
- 4. Areas of high species richness potential
- 5. Alluvial soils
- 6. Unique land cover types or areas

GIS models were created in ArcGIS 9.2 to support the identification and mapping of ecological infrastructure components.

The stream corridors map showed a high density of stream corridors in the forested landscapes to the west and southeast; very few corridors exist in the central Southern Alberta region. The largest patches of natural vegetation over 10 000 ha in size are located in the southeast and northeast. The central part of Southern Alberta has few large patches of natural vegetation, and those that remain in this area will be regionally valuable. The greatest concentration of waterbody complexes is in the northeast portion of Southern Alberta, which has a number of small complexes of standing water. When the top five classes (highest 50%) of species rich areas were selected, grasslands, forests, riparian areas and wetland cover types were picked out. Alluvial soils were found to be concentrated near the base of the Rocky Mountains along the western border of Southern Alberta. Unique land cover types including ridges and low percentage cover types were mapped, but ridges were difficult to analyze at this scale.

A combined map of all ecological infrastructure components was created in which each pixel was assigned a sum value of each ecological infrastructure component it included. The high value of several landscape units to overall regional ecological infrastructure was evident. To identify the areas of coincidence between ecological infrastructure and a spatial representation of ecosystem services in the region, the ecological infrastructure was analyzed against a map representing areas with high importance to the provision of ecosystem services.

••••••••••••••••••••••••

The ecological infrastructure was found to encompass 99.6% of all areas identified as high ecosystem service provision. In terms of the condition of ecosystem services, those areas of high service provision that are coincident with ecological infrastructure are most likely to be in good condition through landscape connections and within large natural patches that promote functioning ecological processes. For future application, each component of ecological infrastructure can be mapped on smaller scales, depending on the desired objectives. These processes and models can therefore support informed land use planning in the region.

# **Table of Contents**

| Executive Summary                                   |      |
|-----------------------------------------------------|------|
| List of Abbreviations                               |      |
| 1.0 Introduction                                    |      |
| 1.1 Structure of Report                             | 2    |
| 1.2 Rationale                                       | 3    |
| 1.3 Methods                                         | 3    |
| 1.4 Scope                                           |      |
| 2.0 Ecological Infrastructure Components            |      |
| 3.0 Landscape Units                                 | 9    |
| 4.0 Mapping Ecological Infrastructure               | . 11 |
| 4.1 Stream Corridors                                |      |
| 4.1.1 Data and Assumptions                          | . 13 |
| 4.1.2 Model                                         | 13   |
| 4.2 Natural Vegetation Patches and Stepping Stones  | . 15 |
| 4.2.1 Data and Assumptions                          |      |
| 4.2.2 Model                                         |      |
| 4.3 Waterbody Complexes                             |      |
| 4.3.1 Data and Assumptions                          |      |
| 4.3.2 Model                                         | . 21 |
| 4.4 Areas of High Species Richness Potential        |      |
| 4.4.1 Data and Assumptions                          |      |
| 4.4.2 Model                                         |      |
| 4.5 Alluvial Soils                                  | . 26 |
| 4.5.1 Data and Assumptions                          | . 26 |
| 4.5.2 Model                                         | . 26 |
| 4.6 Unique Land Cover Types or Areas                | . 29 |
| 4.6.1 Ridge Features                                | . 29 |
| 4.6.1.1 Data and Assumptions                        |      |
| 4.6.1.2 Model                                       | . 30 |
| 4.6.2 Low Percentage Cover Types                    |      |
| 4.6.2.1 Data and Assumptions                        |      |
| 4.6.2.2 Model                                       |      |
| 5.0 Conclusions and Implications                    |      |
| 6.0 Effects on Ecosystem Goods and Services         | . 37 |
| 7.0 Recommendations for Future Application          |      |
| 8.0 References                                      | . 44 |
| Appendix A - Data Sources                           | . 50 |
| Appendix B - Project Analysis Tables                |      |
| Appendix C - ArcGIS 9.2 Flowcharts                  | . 54 |
| Appendix D - Vertebrate Species of Southern Alberta | . 65 |

# **List of Figures**

| Figure 1.1. The EGS assessment area                                                           |    |
|-----------------------------------------------------------------------------------------------|----|
| Figure 4.1. Stream corridor dispersal functions and approximate widths (adapted from Forma    |    |
| 1995)                                                                                         | 4  |
| Figure 4.2. Stream corridors in Southern Alberta 1                                            | 4  |
| Figure 4.3. Natural patch sizes in Southern Alberta                                           | 8  |
| Figure 4.4. Waterbody complexes in Southern Alberta                                           | 2  |
| Figure 4.5, Species richness potential in Southern Alberta.                                   | 1  |
| Figure 4.6. Alluvial soils in Southern Alberta                                                | 8  |
| Figure 4.7. Landform classification for Southern Alberta                                      | 1  |
| Figure 4.8. Low percentage land cover types in Southern Alberta                               | 14 |
| Figure 6.1. Aggregated scoring of ecological infrastructure components                        | 8  |
| Figure 6.2. Coincidence of analysis between ecological infrastructure mapping (EIM) and areas | 0  |
| high value to ecosystem services (EGS).                                                       | C  |

# **List of Tables**

| Table 2.1. Natural and anthropogenic assets in Southern Alberta                               |
|-----------------------------------------------------------------------------------------------|
| Table 6.1. Ecosystem services on which the components of ecological infrastructure have the   |
| greatest impacts                                                                              |
| Table 6.2. Areas of coincidence and non-coincidence between ecological infrastructure         |
| components and areas of high ecosystem service provision                                      |
| Table A.1. Data sources, data and general processing.                                         |
| Table B.1. Project analysis table comparing features of resource survey methods to components |
| of ecological infrastructure mapping. 52                                                      |

# **List of Abbreviations**

| AAFC         | Agriculture and Agri-Food Canada                             |
|--------------|--------------------------------------------------------------|
| AAFRD        | Alberta Agriculture and Rural Development                    |
| AENV         | Alberta Environment                                          |
| AGRASID      |                                                              |
| ASRD         | Alberta Sustainable Resource Development                     |
| AVI          | Alberta Vegetation Inventory                                 |
| CanSIS       |                                                              |
| CFS          |                                                              |
| DEM          | Digital Elevation Model                                      |
|              | Ecosystem Goods and Services                                 |
| ETM          | Enhanced Thematic Mapper                                     |
| GOA          |                                                              |
| GIS          | Geographic Information Systems                               |
| HSI          |                                                              |
| LU           | Landscape Unit                                               |
| NAESI        | National Agri-Environmental Standards Initiative             |
| NAHARPNation | nal Agri-Environmental Health Analysis and Reporting Program |
| NSR          | Alberta Natural Subregions                                   |
| SAL          | Southern Alberta Landscapes                                  |
| TPI          | Topographic Position Index                                   |

............

# 1.0 Introduction

An assessment of ecosystem goods and services (EGS) in southern Alberta was initiated in 2006 by Alberta Environment. The EGS assessment was intended to provide important background information in support of developing the Southern Alberta Landscapes (SAL) regional strategy and to identify areas of further investigation and study regarding the importance of EGS in southern Alberta. The project was conceived as a two-phase effort: Phase 1 involved the completion of a survey of ecosystem goods and services initiatives in southern Alberta and elsewhere (Ecosystem Goods and Services Assessment - Southern Alberta, Phase 1 Report: Key Actors and Initiatives, Integrated Environments (2006) Ltd. and O2 Planning + Design. Inc. 2007a) while the second phase was a subjective, qualitative evaluation of the relative importance of the ecosystem services to society in southern Alberta (Ecosystem Goods and Services Assessment - Southern Alberta, Phase 2 Report: Conceptual Linkages and Initial Assessment, Integrated Environments (2006) Ltd. and O2 Planning + Design. Inc. 2007b). The geographical scope of the EGS assessment includes the southern portion of the province of Alberta, referred to as 'Southern Alberta' in the current document (Figure 1.1).



Figure 1.1. The EGS assessment area.

Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life

(Daily 1997). These services provide us with valuable economic goods, are essential for the ongoing maintenance of critical life-support systems and confer a wide range of highly valued non-market benefits. The purpose of the Phase 2 EGS study was to identify which ecosystem goods and services are important to southern Alberta and how they help sustain the region's vibrant economy and quality of life. The objectives of the Phase 2 EGS Assessment were to: a) inform people about ecosystem goods and services and how they are important to economic production in southern Alberta, b) help people understand how land use decisions and human activities impact these services, c) determine what landscape patterns are required to sustain the ongoing delivery of ecosystem goods and services and, d) undertake a gap analysis to identify directions for further study and investigation.

The current study builds on the first two project phases by expanding the discussion of landscape patterns required to sustain the provision of ecosystem goods and services based on an identification of ecological infrastructure in the Southern Alberta region.

Ecological infrastructure refers to the core features of a network that provides ecosystem services (Tzoulas et al. 2007): in this case, in Southern Alberta. At a regional scale, it includes the system of structural and functional terrestrial and aquatic landscape features such as clean water and habitat (Quinn, unpublished work, 2007). Large patches of natural vegetation and wide regional corridors are important components of regional-scale ecological infrastructure.

In the current study, Geographic Information Systems (GIS) models were constructed and applied to the southern Alberta region in order to identify areas of ecological infrastructure.

# 1.1 Structure of Report

••••••••••••••••••

Section 1.0 presents an introduction to the project, including the rationale for mapping ecological infrastructure in Southern Alberta, the relationship to ecosystem goods and services and an overview of the study methods.

Section 2.0 discusses the relevant components of ecological infrastructure for this scale and region.

Section 3.0 describes the conceptual division of Southern Alberta into Landscape Units (LUs) in order to better evaluate ecological infrastructure at a regional scale, where many different landscape patterns are present.

Sections 4.0 present the tools and analyses used to identify each component of ecological infrastructure chosen for this study and show the results.

Section 5.0 makes conclusions regarding the ecological infrastructure analysis and discusses implications.

Section 6.0 analyses the results in terms of their coincidence with ecosystem goods and services and potential implications.

Chapter 7.0 concludes with recommendations for future work and application of the tools and models for different scales of analysis.

#### 1.2 Rationale

Identifying ecological infrastructure in a region can support several objectives:

- To permit the functioning of natural ecological process in the provision of ecosystem goods and services;
- To support biodiversity in the region, maintain wildlife habitat and enable movement of populations;
- To maintain clean water at the source and as it moves through the region's landscapes; and,
- · To protect the integrity of the landscapes across the region.

A major function of well-managed ecological infrastructure is maintaining ecosystem services and building resilience in the landscape (Colding 2007, Tzoulas et al. 2007). Ecosystem services have been defined as the delivery, provision, protection or maintenance of goods and services that humans obtain from ecosystem functions (Bolund and Hunhammar 1999, de Groot et al. 2002, Millenium Assessment 2003 in Tzoulas 2007). A functional ecological infrastructure across the region can aid in biodiversity conservation and water quality protection and in sequestering carbon against increased climate change. The added resiliency in the landscape would also help buffer against climate change-induced impacts on the area. When properly and proactively planned, developed and maintained, ecological infrastructure provides a solid framework for economic growth and environmental conservation (Schrijnen 2000, Walmsley 2006, Tzoulas et al. 2007).

Spatial identification of critical ecological infrastructure in the region can aid in macro-scale assessment of asset (land cover type) condition in providing ecosystem goods and services. As such, this project addresses one of the research gaps (Gap #4) identified in the *Ecosystem Goods and Services Assessment – Southern Alberta Phase 2 Report* (Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b). In order to assess the condition of a natural asset, it was recommended that two scales of analysis be conducted. The current work addresses the regional-scale evaluation of asset condition by looking at asset composition, configuration and connectivity.

#### 1.3 Methods

In order to map ecological infrastructure in Southern Alberta, the study area was first subdivided into landscape units (LUs) based on common spatial pattern, configuration and ecology to create smaller units of analysis (Section 3.0).

GIS models were created in ArcGIS 9.2 to support the identification and mapping of ecological infrastructure components (Section 4.0). The project input datasets included the integrated southern Alberta inventories land cover, Alberta base hydrographic features data, Alberta AGRASID and Canada Soil Information System soils data and digital elevation model (DEM) data. Datasets and general processing are detailed in Appendix A.

Results from the ecological infrastructure mapping were compared with maps of ecosystem goods and services prepared from the *Phase 2* assessment (Integrated

Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b) to produce a coincidence of analysis map.

The report was then written to describe the methodology used to develop the geospatial models as well as the supporting rationale for the identification of landscape units and ecological infrastructure components.

## 1.4 Scope

....

.

....

•••••••••••

The scope of this phase of the project is to conduct a regional-scale assessment of ecological infrastructure in Southern Alberta. While this assessment covers many components, some components of ecological infrastructure, while important, are more appropriate for evaluation at finer scales of analysis or for regions with different physical geography and ecological characteristics.

Appendix B relates the relationship of identified ecological infrastructure components to recommended resource survey features (Bastedo et al. 1986, Cook et al. 1993). Those components to be analyzed during this phase are shown and recommendations are given where future analyses may be appropriate.

# 2.0 Ecological Infrastructure Components

The region is composed of both natural and anthropogenic assets, or land cover types. The area of each asset can vary, altering the landscape composition. Natural assets refer to the stock of natural resources from which many goods are produced in Southern Alberta (Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b). Anthropogenic assets are defined as man-made assets, the footprint of which now occupies areas of former natural assets (Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b). In Southern Alberta, natural and anthropogenic assets are described in Table 2.1.

Table 2.1. Natural and anthropogenic assets in Southern Alberta.

|                                                   | Natural Assets                                                                                                                                                                                                                            |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Native Prairie                                    | Native Prairie                                                                                                                                                                                                                            |  |  |
| Needle and thread dry<br>mixed grass              | western porcupine grass, needle and thread grass, western wheat grass, blue grama grass, June grass, plains wheat grass, pasture sagewort, silver sagebrush                                                                               |  |  |
| Northern wheat dry mixed grass                    | needle and thread grass, June grass, northern wheatgrass, western wheatgrass, Idaho fescue, Kentucky bluegrass, snowberry, sagebrush                                                                                                      |  |  |
| Needle and thread sand<br>grass – dry mixed grass | pasture sagewort, prickly pear cactus, western wheatgrass, sandberg bluegrass, blue grama grass, June grass, green needle grass, foxtail barley                                                                                           |  |  |
| Mixed grass                                       | rough fescue, porcupine grass, June grass, sand grass, western wheatgrass, silver sagebrush                                                                                                                                               |  |  |
| Fescue grasslands                                 | western wheatgrass, rough fescue, Parry's oat grass, needle and thread grass, silver sagebrush, June grass, western porcupine grass, Idaho fescue                                                                                         |  |  |
| Rocky Mountain and parkland fescue                | willow, rough fescue, Parry's oat grass, sand grass, Idaho fescue                                                                                                                                                                         |  |  |
| Prairie treed and riparian cottonwood             | narrow-leaved cottonwood, green ash, saskatoon, western clematis, chokecherry, poison ivy, skunkbrush, golden currant, reed canary grass, bluegrass, slender wheatgrass, perennial ragweed, Indian hemp, prairie sagewort, showy milkweed |  |  |
| Prairie shrub                                     | silver sagebrush, western porcupine grass, needle and<br>thread grass, snowberry, green needle grass, juniper,<br>sand grass, rough fescue, bunchgrass fescue, western<br>wheatgrass                                                      |  |  |
| Badlands and thin breaks                          | northern wheatgrass, June grass, sedge, thread-leaved sedge, moss phlox                                                                                                                                                                   |  |  |

| Forest                        |                                                                                                     |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--|
| Forest shrub                  | common wild rose, thorny buffaloberry, red-osier dogwood                                            |  |
| Hardwood forest               | trembling aspen, balsam poplar                                                                      |  |
| Mixed wood forest             | aspen, balsam poplar, white spruce, balsam fir                                                      |  |
| Spruce and fir forest         | white spruce, Engelmann spruce, Douglas fir                                                         |  |
| Pine forest                   | lodgepole pine, jack pine, limber pine                                                              |  |
| Aquatic                       |                                                                                                     |  |
| Lentic (standing)             | lakes, potholes, open marshes, ponds                                                                |  |
| Lotic (flowing)               | perennial streams, intermittent channels                                                            |  |
| Wetlands (forest and prairie) | bogs, fens, marshes, sloughs, wet meadows, riparian zones                                           |  |
| Geologic                      |                                                                                                     |  |
| Bare soil and rock            | mountain tops, scree slopes                                                                         |  |
| Ice                           | glaciers                                                                                            |  |
|                               | Anthropogenic Assets                                                                                |  |
| Agricultural                  |                                                                                                     |  |
| Cereal crops                  | barley, buckwheat, canary seed, grain corn, oats, millet, rye, wheat                                |  |
| Oilseeds and legumes          | canola, flax, mustard, safflower, sunflower, chickpeas, dry<br>beans, dry peas, lentils             |  |
| Specialty crops               | catnip, mint, onions, soybeans, sugar beets, sweet corn, turf sod, potatoes                         |  |
| Forage crops                  | alfalfa, oats silage, silage corn, sweet clover, milk-vetch, white clover                           |  |
| Tame pasture                  | brome grass, creeping red fescue, crested wheatgrass, meadow bromegrass, meadow fescue, crown vetch |  |
| Other Anthropogenic           |                                                                                                     |  |
| Roads and rails               | highways, gravel roads, forestry and access roads, railroads                                        |  |
| Rural / agricultural          | houses, yards and outbuildings                                                                      |  |

| Cities and towns                          | cities, towns, villages, summer villages                                             |  |
|-------------------------------------------|--------------------------------------------------------------------------------------|--|
| Well sites                                | active oil wells                                                                     |  |
| Pipelines, transmission and seismic lines | pipelines (on native prairie), seismic lines (in forested areas), transmission lines |  |
| Feedlots                                  | confined feeding operations                                                          |  |
| Recreation                                | campgrounds, ski hills                                                               |  |
| Mines and pits                            | coal mines, limestone quarries, gravel pits, burrow pits                             |  |
| Industrial sites                          | potato processing plants, saw mills                                                  |  |
| Reservoirs                                | anthropogenic lentic water bodies                                                    |  |
| Canals                                    | major anthropogenic canals, aqueducts and ditches                                    |  |

Ecological infrastructure consists of natural assets that should ideally take the form of a patch and corridor spatial configuration that includes corridors and stepping stones (individual habitat patches) to counteract effects of fragmentation (Ahern 1995, Bryant 2006). According to Forman (1995) key components of an ecological infrastructure include:

- · strategic points;
- · aggregate-with-outliers pattern;
- indispensable patterns;
  - o large patches of natural vegetation;
  - well-vegetated riparian corridors;
  - o connectivity through corridors or stepping stones; and,
  - heterogeneous remnants of natural patches derived from a large patch nearby (Forman 1995, Pirnat 2000).

Strategic points are locations on the landscape that have important contents and source effects, such as large natural areas or unusual features; are especially sensitive to change; or are centres of flows or movement such as stream corridors and steep slopes (Forman 1995).

The aggregate-with-outliers pattern refers to a landscape pattern in which land uses are aggregated yet corridors and small patches of nature are scattered throughout developed areas, and outliers of human activity are positioned along major natural boundaries (Forman 1995). This model has a range of development and ecological benefits, including providing a wide range of settings for development and nature; efficiency of movement for humans and ecological processes; maintenance of large patches and the ecosystem services they provide; and variance in grain size providing visual diversity.

The current project focuses on indispensable landscape patterns, which, at a broad scale, encompass the ideas of strategic points and aggregate-with-outliers

patterns. Indispensable landscape patterns focus on configuration and connectivity of natural assets.

#### Landscape Configuration and Connectivity

Landscape configuration refers to the spatial arrangement of land cover types, including patch size, isolation and shape. In terms of regional biodiversity, the point at which spatial planning is most important is when 10-40% of the natural vegetation has been removed (Forman and Collinge 1997, Kennedy et al. 2003).

Connectivity can be defined as the "degree to which habitat for a species is continuous or traversable across a spatial extent" (Andersson 2006). Connectivity is also important for many ecological processes such as disturbance regulation, biological control and nutrient cycling, among others. Structural connectivity and functional connectivity are both elements of this definition. Connectivity is best described in ecological terms by multivariate descriptions including: area, number of patches, patch extent, level of aggregation, and perimeter area fractal dimension (Bierwagen 2005).

Connectivity between large patches can be maintained through corridors and stepping stones. A corridor is defined as a strip of land that differs in composition from the surrounding matrix (Fleury and Brown 1997), while a stepping stone is a habitat patch where an animal stops while moving along a heterogeneous route (Forman 1995). Having appropriate corridors and stepping stones for wildlife can alleviate problems of habitat fragmentation in the landscape by connecting patches too small to contain viable populations over the long-term and allowing for gene flow between populations.

Each large patch of natural vegetation should have at least two connections to other patches in order to include diverse habitat types within the connected areas and to minimize potential barriers to movement or unexpected events that could disrupt dispersal (Fleury and Brown 1997).

Components of ecological infrastructure chosen for mapping in the scope and scale of the current project include:

- 1. Stream corridors
- 2. Natural vegetation patches and stepping stones
- 3. Waterbody complexes
- 4. Areas of high species richness potential
- 5. Alluvial soils
- 6. Unique land cover types or areas

These components of ecological infrastructure have precedence in previous biodiversity planning studies for the mixed-grass prairie ecoregion (National Agri-Environmental Standards Initiative (NAESI) – Development of Habitat-Based Biodiversity Standards; O2 Planning + Design Inc. et al. 2007) and regional land use planning projects (Calgary Regional Partnership (CRP) Land Use Plan; O2 Planning + Design Inc., in progress).

•••••••••••••••••••••••

# 3.0 Landscape Units

There are several ways of dividing a region into appropriate units for management that do not necessarily follow administrative boundaries. One common management division is the watershed or subbasin: the area drained by a river or stream and its tributaries (Forman and Godron 1986). This is the unit of choice for many resource planning exercises and environmental protection schemes, and is useful for many applications particularly when fluvial processes are the focus of interest.

Another basis for division is the selection of *landscapes*. A landscape is defined as a "heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in similar form throughout" (Forman and Godron 1986). A landscape generally contains more than one watershed, and its boundary may or may not correspond to watershed boundaries (Forman and Godron 1986). Landscapes are generally defined on the scale of kilometers. Landscapes reflect both the human use of the area as well as underlying physiographic conditions and ecological potential.

The use of landscapes as a basis for divisional units in this project is to reflect the differences in land use and ecology in the regional ecological infrastructure. A rare cover type in one LU, for example, may be quite common in several others and would not be identified on a large-scale regional analysis alone. Another practical reason for using LUs to subdivide the region is to reduce the considerable computation required for many of these analyses.

With the intention to subdivide the region into 10-30 distinct units, several layers of ecological data were considered. Natural Subregions (NSRs) were considered but these are partially based on elevation, which creates many small island polygons across the region. The Canadian Soil Information System (CanSIS) soil polygons are the basis of the Canadian ecological hierarchy (from coarse to fine scale):

- ecozones
- ecoprovinces
- ecoregions
- ecodistricts

Soil polygons and ecodistricts are too fine in scale for the current project and would create too many polygons. To get around this problem, the next highest category, ecoregions, was used and crossed with watershed basins to provide relevant units for both landscape and watershed analysis. The result is 26 distinct landscape units based on soils and hydrology (Figure 3.1).

Use of this landscape unit framework is consistent across multiple scales, so that broad-scale analyses (such as the current study) could delineate units using watershed basins and ecoregions while fine-scale analyses could use watershed sub-basins and ecodistricts. This nested hierarchy has the potential to scale down in future applications.



Figure 3.1. Landscape Units.

••••••••••••••••••••••

# 4.0 Mapping Ecological Infrastructure

Tools and models were developed to spatially identify the regional components of ecological infrastructure identified in Section 2.0. The tools and models that were developed for this project accompany this report in a set of DVDs containing all input datsets, output datasets, ArcGIS 9.2 models and ArcGIS 9.2 map templates (MXDs). If the project DVDs are extracted to the root of a user's C drive, the models can be run and any links within this document will work.

## 4.1 Stream Corridors

Stream corridors were based on the identification of lotic watercourses from the integrated southern Alberta inventories. Lotic relates to actively moving water, as opposed to still waters which are analyzed in Section 4.3.

Depending on management objectives (e.g., water quality protection, maintenance of ecological processes, wildlife habitat), the appropriate width of a stream buffer can vary. Water quality protection buffers are typically much narrower than riparian buffers for wildlife habitat. A riparian buffer is defined as an area of land and vegetation adjacent to a watercourse or waterbody, often consisting of perennial vegetation, that receives different management from the surrounding landscape (Dosskey 1998, WDNR 2006).

Mid-order (third- and fourth-order) streams have high biodiversity and are responsible for conserving the water quality and the organisms of the lower-order streams flowing into it, and are often given the greatest attention when it comes to riparian buffers (Spackman and Hughes 1995). While important, first- to third-order streams often have sharper gradients and can be susceptible to high erosion and sedimentation without adequate vegetation cover, which leads to habitat degradation (EC 2004). These streams are also important as they carry runoff into the larger streams and watercourses, thus having a large impact on water quality in the higher order rivers downstream (WDNR 2006). Water quality protection is critical in these first- to third-order streams.

Castelle et al. (1994) recommended a 15-30 m buffer width for water quality considerations, while Environment Canada (EC 2004) recommended a 30 m minimum buffer along at least seventy-five percent of a stream's length. In Manitoba, a healthy riparian buffer is defined as a 20 m strip of natural vegetation on each side of the annual high water mark, with cultivation limited to at least 10 m from the edge of the bank (Manitoba Conservation 1995).

Recommended buffers are widened when the riparian function as wildlife corridor and habitat is taken into account. Adequate stream buffer widths varied from 10-30 m above the annual high-water mark for 90% of vascular plants and from 75-175 m for 90% of avian species (Spackman and Hughes 1995). While the authors suggested that widths of stream buffers depend highly on the individual characteristics of the stream and that other variables such as elevation and slope of the streambank may be better habitat width predictors, they did recommend natural riparian corridors of >150 m for maintaining avian species diversity. Kennedy et al.'s (2003) literature review determined that 75% of

riparian buffer studies reviewed recommended a 100 m minimum riparian width to conserve water quality and wildlife habitat.

A buffer of 100 m in width should encompass both the riparian area and upland corridor adjacent to most streams. Riparian areas are the streamside environments that are influenced by hydrologic processes creating a distinct vegetation community. These areas are especially high in biodiversity due to the diversity of local habitat types, the availability of both aquatic and terrestrial resources, and the higher primary productivity and greater moisture availability (Bennett 1999, Chapman and Ribic 2002, Peak and Thompson 2006).

A typical stream corridor cross-section showing ecological functions is given in Figure 4.1.



Figure 4.1. Stream corridor dispersal functions and approximate widths (adapted from Forman 1995).

On a regional scale, where a corridor is intended to be used by a variety of species and persist over a long period of time, the corridor should be on the scale of kilometres in width. Continuous corridors across landscapes offer:

- effective linkages for communities and ecological processes (Bennett 1999);
- protection of habitat across the aquatic / terrestrial interface for a range of species;
- maintenance / improvement of water quality by providing sediment control and absorbing and filtering dissolved substances (Castelle et al. 1994, Dramstad et al. 1996, Kennedy et al. 2003);
- maintenance of water quality through temperature and oxygen control (Castelle et al. 1994, Kennedy et al. 2003); and,
- · flood control functions.

••••••••••••••••••••••

#### 4.1.1 Data and Assumptions

Lotic areas were selected from forest and grassland portions of the integrated southern Alberta inventories, excluding piped canals. Lotic areas from the forest portion were merged with the lotic areas from the grassland portion to create a dataset that covered the entire Southern Alberta region. The integrated Southern Alberta inventories hydrology was then buffered by 100 m on each side to identify stream corridors. The accuracy of the output stream corridors is the same as the accuracy of the integrated southern Alberta inventories data.

Some anomalous buffers were created in the forest portion, possibly due to the input polygons having complex geometry. An attempt was made to use the line boundaries of the polygons but selecting from the line features of the coverage could not be performed due to the line features lack of attribute data. Alternatively, an attempt was made to convert the selected polygons to lines but the attempt crashed ArcGIS on each of five attempts. It may be possible to run the model on a smaller subset of the forested portion of the integrated southern Alberta inventories data.

#### 4.1.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.2.

Figure 4.2. Stream corridors in Southern Alberta.



### 4.1.1 Data and Assumptions

Lotic areas were selected from forest and grassland portions of the integrated southern Alberta inventories, excluding piped canals. Lotic areas from the forest portion were merged with the lotic areas from the grassland portion to create a dataset that covered the entire Southern Alberta region. The integrated Southern Alberta inventories hydrology was then buffered by 100 m on each side to identify stream corridors. The accuracy of the output stream corridors is the same as the accuracy of the integrated southern Alberta inventories data.

Some anomalous buffers were created in the forest portion, possibly due to the input polygons having complex geometry. An attempt was made to use the line boundaries of the polygons but selecting from the line features of the coverage could not be performed due to the line features lack of attribute data. Alternatively, an attempt was made to convert the selected polygons to lines but the attempt crashed ArcGIS on each of five attempts. It may be possible to run the model on a smaller subset of the forested portion of the integrated southern Alberta inventories data.

#### 4.1.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.2.

Figure 4.2. Stream corridors in Southern Alberta.



••••••••••••••••••••••••

# 4.2 Natural Vegetation Patches and Stepping Stones

Guidelines for natural patch size are often dependent on a target species, although some studies describe the patch size required to sustain ecological functions (e.g., primary productivity, nutrient and hydrological cycling, disturbance regimes). Species-dependent guidelines for patch sizes can range from 4 m<sup>2</sup> (for some invertebrates) up to 220 000 ha for wide-ranging mammals such as bears and cougars (Kennedy et al. 2003). The requirements of other species, such as grassland butterflies, may be more modest. A two-hectare minimum patch size was suggested for butterfly species in Oregon (Schultz and Crone 2005). Small mammals (e.g., rodents) make use of patches of 1 to 10 ha in size (Kennedy et al. 2003). In Illinois, Herkert et al. (1993) showed that patches of 20 ha benefited the least area-sensitive avian species, and patches of 50 to 100 ha benefited the species with greater fragmentation sensitivity. Some wetland birds (e.g., willets, marbled godwits) require grassland patches larger than 100 ha for nesting and brood-rearing cover (Fitzgerald et al. 1999). In areas with hard boundaries and no semi-natural adjacent habitat such as pasture, minimum patch area to support grassland species increases. Two hundred hectares is recommended for grassland patch size in these situations (USDA 1999). The Partners In Flight bird conservation areas model recommends that a block of high-quality grassland (minimum 800 ha in size) be maintained as a core area within a 1.6 km wide 'buffer' that provides another 1000 ha of additional grassland habitat (Fitzgerald et al. 1999). Flocks of other grassland species such as greater prairie chickens and sharp-tailed grouse require grassland patches up to 4000 ha in size, similar to meso-carnivores such as the swift fox (Fitzgerald et al. 1999). When interconnected, a system of patches of over 100 ha in size starts to encompass a variety of habitats that can support populations of medium-sized animals such as covotes and hawks (Barnes and Adams 1999). Patches of over 5000 to 10 000 ha in size start to protect ecosystem integrity and function, providing a wide variety of habitat types for a full range of small-, medium- and large-sized animals (Barnes and Adams 1999, Kennedy et al. 2003, Amos 2004).

Landscape connectivity is perceived differently by different organisms (Andersson 2006). Inter-patch distance (the distance species will travel over unsuitable habitat to reach another patch) depends on the species in question. Deer mice in prairie and badlands were found to travel approximately 60 m to forage and have a 140 m effective dispersal distance (Morris 1992). Other animals have slightly larger dispersal ranges. Frogs, salamanders and small mammals often do not travel more than 300 m from a suitable habitat patch, and reptiles travel only slightly further to a 500 m distance from a patch (Gibbs 2000). Flying animals tend to have greater thresholds for inter-patch distances, although small birds will often not travel more than 200 m to neighbouring habitat (Kampf and Stavast (2005). Schultz and Crone (2005) recommend that suitable habitat patches remain within 1 km of each other for prairie butterfly species, and Herkert et al. (1993) recommend that habitat patches for grassland birds are within 1.6 km of each other.

Stepping stones are discrete patches of natural habitat functionally connected within a given distance. As distance between stepping stones increases, so does the composition of plant pollinators (Steffan-Dewenter and Tscharntke 1999).

Having a diversity of native pollinators is important because of the strong temporal fluctuations that occur naturally in pollinator populations (Kremen *et al.*, 2002). This ecosystem service is particularly important in agricultural areas.

However, even isolated patches have value, especially if they represent high-quality habitat. Isolated wetlands, for example, have demonstrated ecological value in terms of maintaining metapopulation connectivity for semi-aquatic species (Gibbons et al. 2006).

In Southern Alberta, natural patches of vegetation were classified into several functional categories based on area (Table 4.1).

Table 4.1. Size classes for natural patch size distribution analysis.

| Patch Size    | Function                                                                                                                                | Reference                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| < 2 ha        | invertebrate habitat                                                                                                                    | Forman 1995              |
|               | act as 'outliers' of natural habitat                                                                                                    | Kennedy et al. 2003      |
| 2 - 50 ha     | act as stepping stones and provide<br>habitat for small mammals and<br>small grassland birds (e.g.,<br>grasshopper sparrow, dickcissel) | Herkert et al. 1993      |
|               |                                                                                                                                         | Helzer and Jelinski 1999 |
|               |                                                                                                                                         | USDA 1999                |
|               |                                                                                                                                         | Walk and Warner 1999     |
|               |                                                                                                                                         | Smallwood 2001           |
|               |                                                                                                                                         | Smith Fargey 2001        |
|               |                                                                                                                                         | Kennedy et al. 2003      |
| 50 - 100 ha   | act as stepping stones and provide                                                                                                      | Herkert et al. 1993      |
|               | habitat for small- to medium-sized<br>birds and mammals (e.g., upland<br>sandpiper, savannah sparrow)                                   | Helzer and Jelinski 1999 |
|               |                                                                                                                                         | Walk and Warner 1999     |
|               |                                                                                                                                         | Johnson and Igl 2001     |
| 100 - 1000 ha | benefit populations of medium-sized<br>animals (e.g., coyote, hawk) when<br>the patches are interconnected                              | Herkert et al. 1993      |
|               |                                                                                                                                         | Barnes and Adams 1999    |
|               | offer habitat for wetland birds (e.g., willet, marbled godwit) and small mammals                                                        | Fitzgerald et al. 1999   |
|               | conserve core grassland bird<br>habitat, especially when surrounded<br>by low-intensity land uses                                       |                          |

| Patch Size       | Function                                                                                                  | Reference                                       |
|------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1000 - 10 000 ha | start to protect ecosystem integrity and function                                                         | Barnes and Adams 1999<br>Fitzgerald et al. 1999 |
|                  | accommodate species with large<br>home ranges (e.g., swift fox, sharp-<br>tailed grouse)                  | Downey et al. 2004                              |
|                  | provide a wide variety of habitat<br>types for a full range of small-,<br>medium- and large-sized mammals |                                                 |
| > 10 000 ha      | sustain viable ecological processes in the long term                                                      | Amos 2004                                       |
|                  | may accommodate species with the<br>largest home ranges (e.g., bear,<br>cougar)                           |                                                 |

In addition, the five largest patches of natural vegetation in each LMU were identified. Four or five large patches are required in a landscape where any single patch contains a limited proportion of the species pool (Forman 1995, Dramstad et al. 1996).

Stepping stones also have significant ecological value, including:

- enhancing / ensuring connectivity for a full range of species across the landscape;
- · recharging depleted gene pools for various species;
- providing habitat for some smaller species (e.g., small mammals, grassland birds, wetland species nesting in grasslands); and,
- in the absence of a large patch, some generalist species can survive in a number of well-connected smaller patches (Dramstad et al. 1996).

For the purposes of this project and at the regional, stepping stones were functionally defined by movement patterns demonstrated by medium-sized mammals and birds. Thus, stepping stones were defined as natural patches between 50 and 100 ha in size which provide connectivity value when clustered within a functional distance of 500 m (Kampf and Stavast 2005). At a smaller scale, stepping stones for small birds and mammals may be appropriate (e.g., natural patches between 2 to 50 ha connected within 200 m of each other).

## 4.2.1 Data and Assumptions

All natural vegetation was selected from the integrated southern Alberta inventories and dissolved into a region-wide dataset of natural vegetation. Patch sizes were calculated and the patch size distribution mapped.

Due to the large size of the data, processing had to be done in ArcInfo Workstation and then translated back into ArcGIS 9.2. Since data attributes are lost in translation, the type of natural landcover (e.g., grassland, shrub, forest) cannot be determined after the dissolve. A 'natural patch' can therefore be

comprised of many different types of native vegetation. Without this processing constraint or if this analysis was performed on fewer polygons at a finer scale, an additional step could be taken for identifying patches of native grassland. For grassland polygons, all native grassland types within each polygon could be summed and the total compared to a 70% threshold value to determine whether the polygon could be considered 'natural vegetation' (Bunce et al. 2005). This summed area of native grassland could then be used to determine the area of a large grassland patch rather that the total polygon area in order to avoid overreporting of natural patch sizes. The accuracy of the natural patch analysis output is the same as the accuracy of the integrated southern Alberta inventories data.

#### 4.2.2 Model

•••••••••••••••••

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.3.

Figure 4.3. Natural patch sizes in Southern Alberta.



# 4.3 Waterbody Complexes

.

...

•••••••••••••••••

Waterbody complexes are areas of permanent or intermittent wetlands and bodies of water connected by narrow patches of natural vegetation.

Wetlands include areas that are temporarily, seasonally or permanently covered by shallow water and contain wet vegetation. Wetlands represent hotspots of biodiversity, and the prairie pothole wetlands have been described as the most important waterfowl breeding ground in North America as well as an important staging area for migrating shorebirds (Canadian Prairie PIF 2004).

Ecological values of wetlands and waterbody complexes include:

- important groundwater / surface water connection and groundwater recharge;
- · productive wildlife habitat for resident and migratory species;
- buffer protects breeding and nesting habitat for waterbirds (EC 2004, Horn et al. 2005);
- wetland complexes have very high biodiversity and can provide benefits similar to those of large patches (Huel 2000);
- vegetated buffers prevent movement of salts and sediment into cropland and slow soil erosion (SWCC 1996, Huel 2000); and,
- water storage, recharge and flood control functions (SWCC 1996, Huel 2000).

Wetlands, including prairie potholes and riparian wetlands, should be surrounded by natural cover to protect their function and habitat value. In terms of water quality protection, Madison et al. (1992) found that grass filter strips >5 m wide removed 90% of nitrates and phosphorus. Huel (2000) recommended a 10 m minimum buffer to maintain wetland water quality in Saskatchewan.

Environment Canada's (EC 2004) review found that a huge range of 6-104 m was found to protect wetlands from agricultural herbicide drift, nitrates, and non-point source agricultural pollution. Grass buffer widths of 10-60 m around isolated wetlands appeared to be adequate for trapping most sediments in runoff (Melcher and Skagen 2005).

In terms of wildlife habitat, nesting waterfowl use a varying width of natural vegetation around wetlands with 90% of waterfowl nesting within 200 m of the wetland (EC 2004). Most nests in the Prairie Pothole Region are within 300 m of wetland edges (Horn et al. 2005). Small predators such as striped skunk and red fox tend to hunt within 50 m of wetlands (Horn et al. 2005), so buffer widths larger than 50 m would tend to reduce predation on nesting species. A buffer zone of approximately 165 m around a wetland would capture 95% of Ambystoma salamander populations (Horn et al. 2005). Huel (2000) recommended maintaining a 3:1 ratio of upland permanent cover to wetland area around each wetland to maintain wildlife use of wetlands in Saskatchewan. This buffer size was corroborated by Sargent and Carter (1999), who recommends an area of permanent grassland three to six times larger than the wetland itself to maximize benefits to nesting species.

Figure 4.3. Natural patch sizes in Southern Alberta.



## 4.3 Waterbody Complexes

••••••••

...

....

•••••••

•••

•••••••

Waterbody complexes are areas of permanent or intermittent wetlands and bodies of water connected by narrow patches of natural vegetation.

Wetlands include areas that are temporarily, seasonally or permanently covered by shallow water and contain wet vegetation. Wetlands represent hotspots of biodiversity, and the prairie pothole wetlands have been described as the most important waterfowl breeding ground in North America as well as an important staging area for migrating shorebirds (Canadian Prairie PIF 2004).

Ecological values of wetlands and waterbody complexes include:

- important groundwater / surface water connection and groundwater recharge;
- · productive wildlife habitat for resident and migratory species;
- buffer protects breeding and nesting habitat for waterbirds (EC 2004, Horn et al. 2005);
- wetland complexes have very high biodiversity and can provide benefits similar to those of large patches (Huel 2000);
- vegetated buffers prevent movement of salts and sediment into cropland and slow soil erosion (SWCC 1996, Huel 2000); and,
- water storage, recharge and flood control functions (SWCC 1996, Huel 2000).

Wetlands, including prairie potholes and riparian wetlands, should be surrounded by natural cover to protect their function and habitat value. In terms of water quality protection, Madison et al. (1992) found that grass filter strips >5 m wide removed 90% of nitrates and phosphorus. Huel (2000) recommended a 10 m minimum buffer to maintain wetland water quality in Saskatchewan.

Environment Canada's (EC 2004) review found that a huge range of 6-104 m was found to protect wetlands from agricultural herbicide drift, nitrates, and non-point source agricultural pollution. Grass buffer widths of 10-60 m around isolated wetlands appeared to be adequate for trapping most sediments in runoff (Melcher and Skagen 2005).

In terms of wildlife habitat, nesting waterfowl use a varying width of natural vegetation around wetlands with 90% of waterfowl nesting within 200 m of the wetland (EC 2004). Most nests in the Prairie Pothole Region are within 300 m of wetland edges (Horn et al. 2005). Small predators such as striped skunk and red fox tend to hunt within 50 m of wetlands (Horn et al. 2005), so buffer widths larger than 50 m would tend to reduce predation on nesting species. A buffer zone of approximately 165 m around a wetland would capture 95% of Ambystoma salamander populations (Horn et al. 2005). Huel (2000) recommended maintaining a 3:1 ratio of upland permanent cover to wetland area around each wetland to maintain wildlife use of wetlands in Saskatchewan. This buffer size was corroborated by Sargent and Carter (1999), who recommends an area of permanent grassland three to six times larger than the wetland itself to maximize benefits to nesting species.

A suggestion for wetland buffers that integrates the need for water quality protection and wildlife habitat is to keep a 10 m buffer of permanent vegetation around each wetland and then maintain a second buffer of 100 m in semi-natural land such as forage or pasture managed with wildlife-friendly methods (e.g., deferred grazing, late hay cut, etc.; e.g., Huel 2000, EC 2004, Gabor et al. 2004).

Wetlands surrounded by a 100 m buffer of perennial vegetation are valuable in terms of both water quality protection and wildlife use (EC 2004, Horn et al. 2005, Semlitsch 1998). A 100 m buffer was therefore chosen for the scale of the current project.

### 4.3.1 Data and Assumptions

In the grassland areas, there are some intermittent waterbodies present in the AltaLIS data that were not in the integrated southern Alberta inventories land cover. Therefore, intermittent waterbodies and wetlands from AltaLIS hydrography polygon data were added to the integrated southern Alberta inventories permanent waterbody and wetland data to form a complete waterbodies data set. In forested areas, waterbodies and wetlands in the integrated southern Alberta inventories were used.

All waterbodies and wetlands were buffered by 100 m and clumped to identify overlapping areas. Waterbody complexes were defined as areas consisting of two or more waterbodies or wetlands connected within 200 m where the total wetland / water body area is greater than 5 ha (BCMOFR 1995).

Due to the size of the integrated southern Alberta inventories, it was necessary to pass some of the model processing to ArcInfo workstation to avoid having errors due to memory limitations in ArcGIS 9.2. The accuracy of the waterbody complex output dataset is the same as the accuracy of the integrated southern Alberta inventories data.

#### 4.3.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.4.





## 4.4 Areas of High Species Richness Potential

Species richness is a measurable characteristic of environmental condition and is often used as a surrogate for biodiversity, among other methods. Species richness is a relatively simple way to evaluate biodiversity and refers to the number of species overall, or within specific taxa, which exist within a defined area. Species richness is often measured at very large scales: states (Scott et al. 1993), ecoregions (Davis et al. 1999), countries (Prendergast et al. 1993) or continents (Ricketts et al. 1999).

Areas of high species richness potential for terrestrial vertebrates were identified in order to protect habitats of high wildlife value in Southern Alberta. Species richness mapping uses species-habitat associations to map the number of species potentially present in a land polygon. If a species uses a given habitat type it receives a '1'; if the species does not use that habitat it receives a '0'. This binary habitat association matrix is then used to associate a number of species to each habitat type on the map, clipped to individual species ranges.

An analysis of surrogate measures of biodiversity found that species richness was an immediate and ready source of information on biodiversity at large scales because of the ease of obtaining broad-scale geographic distribution information but is not the best biodiversity surrogate at finer scales as rare species are typically under-represented (O2 Planning + Design Inc. et al. 2007). Thus, species richness maps require careful interpretation if used for biodiversity planning as the areas of high species richness may not represent the full range of species present in the area. Rare species occupy a small amount of the total biomass of a region and may play a disproportionate role in the ecosystem. Greater attention to areas containing instances of rare or endemic species may be desired during planning processes.

If more detailed biodiversity planning is required, rarity-weighted species richness mapping may be considered. For this process, the habitat association matrix is inversely weighted by the area each species occupies. Thus, species found throughout the region of interest are given zero weight while species found in only one area are weighted as 1. By summing each weighted species incidence, a rarity-weighted richness map may be produced where high values indicate the presence of endemic and specialist species and low values indicate more common species assemblages.

For the current assessment, mapping of straight species richness potential was thought sufficient for ecological infrastructure mapping of Southern Alberta, in combination with the other components.

## 4.4.1 Data and Assumptions

The habitat association matrices from NAESI and AAFC range data (see Appendix A) were used to identify species occurring within the Southern Alberta region (Appendix D). A complete usage matrix was coded for all cover types so that a value of '1' denoted species use of that cover type and a value of '0' denoted that the species did not use that cover type. In grassland areas, cover type was determined by assigning the dominant cover type to the polygon if the

polygon was considered 'natural' (>70% native vegetation cover; see Section 4.2.1). Values were summed across the region to show the total number of species using each polygon. Species were spatially limited by their ranges or by the natural subregions in which they occurred. The accuracy of the species richness output dataset is the same as the accuracy of the CanSIS soil polygon data (1:1 000 000).

#### 4.4.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.5.

Figure 4.5. Species richness potential in Southern Alberta.



## 4.5 Alluvial Soils

Alluvial soils are formed by streams that deposit suspended material in response to a decrease in velocity. The resulting sediments are well-sorted and coarse textured, which generally means high porosity (Dunne and Leopold 1978) and the ability to store water and allow for subsurface flow. Fine particles of silt and clay are typically deposited above larger particles of sand and gravel.

Alluvial soils often represent areas of important groundwater / surface water connections, contributing to both shallow and deep groundwater recharge. These sites may be ideal for cottonwood forests which provide unique habitat to a wide range of plant and animal species (Willms et al. 2006). Alluvial soils also support higher productivity through greater moisture availability (Bennett 1999) and may be a contributing factor to increased biodiversity in those areas.

Alluvial soils represent sensitive ecological areas for a variety of reasons. Removal of groundwater in shallow alluvial soils adjacent to streams may be equivalent to direct removal from the stream itself due to the high connectivity between the stream and the surrounding saturated soils. In cases where alluvial soils are directly adjacent to streams and rivers, they may directly influence both stream flow and water quality. Being permeable, alluvial and other coarse textured soils are sensitive areas that may lead to the contamination of groundwater aquifers through inappropriate land use. For example, wastewater treatment methods in areas of alluvial soils under direct stream influence can seriously impact water quality. Therefore, septic fields should be restricted in these areas, with particular emphasis on those areas adjacent to streams that are potable water sources. Point and non-point pollution from agriculture and industrial uses in these areas can also be especially problematic.

## 4.5.1 Data and Assumptions

Alluvial soils were identified in grassland landscapes from AGRASID data; however, AGRASID does not cover forest soils. Since the scale of CanSIS soils data in the forest areas is too broad, it was decided that an analysis of alluvial soils in forest landscapes would not be run in the scope of this project but may be used in later phases if finer-scale data becomes available.

AGRASID soils having a primary parent materials with fluvial or undifferentiated textures were selected from the AGRASID data and then spatially compared to the 100 m stream buffers for all named streams from the AltaLIS 1:20000 base hydrography. The accuracy of the alluvial soils output dataset is the same as the accuracy of the AGRASID soil polygon data (1:100 000).

#### 4.5.2 Model

•••••••••••••••••••••

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes





### 4.5 Alluvial Soils

Alluvial soils are formed by streams that deposit suspended material in response to a decrease in velocity. The resulting sediments are well-sorted and coarse textured, which generally means high porosity (Dunne and Leopold 1978) and the ability to store water and allow for subsurface flow. Fine particles of silt and clay are typically deposited above larger particles of sand and gravel.

Alluvial soils often represent areas of important groundwater / surface water connections, contributing to both shallow and deep groundwater recharge. These sites may be ideal for cottonwood forests which provide unique habitat to a wide range of plant and animal species (Willms et al. 2006). Alluvial soils also support higher productivity through greater moisture availability (Bennett 1999) and may be a contributing factor to increased biodiversity in those areas.

Alluvial soils represent sensitive ecological areas for a variety of reasons. Removal of groundwater in shallow alluvial soils adjacent to streams may be equivalent to direct removal from the stream itself due to the high connectivity between the stream and the surrounding saturated soils. In cases where alluvial soils are directly adjacent to streams and rivers, they may directly influence both stream flow and water quality. Being permeable, alluvial and other coarse textured soils are sensitive areas that may lead to the contamination of groundwater aquifers through inappropriate land use. For example, wastewater treatment methods in areas of alluvial soils under direct stream influence can seriously impact water quality. Therefore, septic fields should be restricted in these areas, with particular emphasis on those areas adjacent to streams that are potable water sources. Point and non-point pollution from agriculture and industrial uses in these areas can also be especially problematic.

### 4.5.1 Data and Assumptions

Alluvial soils were identified in grassland landscapes from AGRASID data; however, AGRASID does not cover forest soils. Since the scale of CanSIS soils data in the forest areas is too broad, it was decided that an analysis of alluvial soils in forest landscapes would not be run in the scope of this project but may be used in later phases if finer-scale data becomes available.

AGRASID soils having a primary parent materials with fluvial or undifferentiated textures were selected from the AGRASID data and then spatially compared to the 100 m stream buffers for all named streams from the AltaLIS 1:20000 base hydrography. The accuracy of the alluvial soils output dataset is the same as the accuracy of the AGRASID soil polygon data (1:100 000).

#### 4.5.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.6.

Figure 4.6. Alluvial soils in Southern Alberta.



## 4.6 Unique Land Cover Types or Areas

Unique, special or valued land cover types or areas represent specific environmental components of ecological significance. Features identified under this heading include ridge topography and low percentage cover types. Wetlands are also often considered as unique or special land cover types; however, these have been called out as a separate heading due to their ecological importance in Southern Alberta. Mapping these areas can help capture those species and ecological processes missed by species richness potential mapping, which often under-represents rare species.

### 4.6.1 Ridge Features

Many physical and biological processes are highly correlated with topographic position on the landscape (Weiss nd.). Ridges, like stream corridors, are continuous linear landscape features that provide natural corridors for landscape connectivity. Ridges provide important movement corridors for wildlife (Quinn, pers. comm., 2007). Wildlife corridors that contain a variety of topographic positions typically support more species and a greater abundance of animals than a single topographic position such as a midslope (Lindenmayer and Nix 1992).

#### 4.6.1.1 Data and Assumptions

A broad-scale landform analysis was performed using a topographic position index (TPI) function (Weiss nd.) performed at two separate scales – one larger and one smaller – and a classification authored by Andrew Jenness. The TPI compares the elevation of each cell in a DEM to the mean elevation of a specified neighbourhood around that cell (Weiss nd.). Positive TPI values represent locations higher than the surrounding average (e.g., ridges) while negative TPI values represent lower than average values (e.g., valleys).

In this case, the parameters used for the larger TPI were an outer radius of 1000 m and an inner radius of 975 m. The parameters used for the smaller TPI were an outer radius of 100 m and an inner radius of 75 m. The two TPI rasters were standardized in preparation for classification using the formula:

Standardized TPI = {[(TPI - Mean TPI) / TPI Standard Deviation] \* 100}

The resulting classification categories include:

- 1. canyons, deeply incised streams
- 2. midslope drainages, shallow valleys
- 3. upland drainages, headwaters
- 4. U-shape valleys
- 5. plains
- 6. open slopes
- upper slopes, mesas
- 8. local ridges / hills in valleys

1

Č

- 9. midslope ridges, small hills in plains
- 10. mountain tops, high ridges

These categories are extremely scale-dependent, however. Soil transport, water balance, and species movement and distribution may be affected at the scale used in this analysis (Weiss nd., Guisan et al. 1999).

This analysis identified very few ridges of moderate size that were not mountain tops. The landform analysis can be performed at varying scales to isolate landforms of varying sizes. It is recommended that a smaller extent be used if the radii of the larger TPI are increased to avoid the very long processing times that can result. It is also recommended that the topography of the areas be relatively similar throughout the analysis area. Better results can be obtained by performing this analysis on a mountainous region separately from a flat region to avoid skewing the distribution of elevations into data that is no longer normally distributed. The accuracy of the output landform classification is equal to the DEM accuracy.

#### 4.6.1.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

#### C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.7.

Figure 4.7. Landform classification for Southern Alberta.



## 4.6.2 Low Percentage Cover Types

...

•••••••••••••••••••••••

These are areas of unique ecology that may provide special ecosystem services and contribute to regional biodiversity value. For example, badlands typically cover very little of the landscape in terms of area but are important for specialized, rare and often sensitive species (e.g., short-horned lizard) that contribute to regional biodiversity and ecological processes (Powell 2005).

Low percentage cover types were defined as those that cover less than 6% of the landscape or regional area (O2 Planning + Design Inc. et al. 2007). In Southern Alberta, these cover types include:

| Forest Portion of Southern<br>Alberta | Agricultural Portion of Southern<br>Alberta            |
|---------------------------------------|--------------------------------------------------------|
| <ul> <li>Douglas fir</li> </ul>       | • pine                                                 |
| <ul> <li>forest riparian</li> </ul>   | <ul> <li>white spruce &amp; forest riparian</li> </ul> |
| <ul> <li>forest shrub</li> </ul>      | <ul> <li>hardwood</li> </ul>                           |
| • lentic                              | <ul> <li>grassland shrub</li> </ul>                    |
| • lentic large                        | • prairie treed & riparian complexes                   |
| • lentic small                        | <ul> <li>needle &amp; thread sand grass DMG</li> </ul> |
| • lotic                               | <ul> <li>mixed grass</li> </ul>                        |
| • lotic large                         | fescue grassland                                       |
| • lotic small                         | fescue parkland                                        |
| <ul><li>mixedwood</li></ul>           | <ul> <li>badlands</li> </ul>                           |
|                                       | • water                                                |

#### 4.6.2.1 Data and Assumptions

The integrated southern Alberta inventories land cover was used to identify the proportion of each land cover type across both the forested and agricultural portions of Southern Alberta.

Low percentage cover types analysis was performed separately on the forest and grassland portions due to the difference in land cover types. Total areas for each cover type throughout each portion were calculated and cover types occupying less than 6% of the respective portion were identified. The accuracy of the low percentage cover type analysis output is the same as the accuracy of the integrated southern Alberta inventories dataset.

#### 4.6.2.2 Mode

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

Figure 4.7. Landform classification for Southern Alberta.



## 4.6.2 Low Percentage Cover Types

00000

•••••••

These are areas of unique ecology that may provide special ecosystem services and contribute to regional biodiversity value. For example, badlands typically cover very little of the landscape in terms of area but are important for specialized, rare and often sensitive species (e.g., short-horned lizard) that contribute to regional biodiversity and ecological processes (Powell 2005).

Low percentage cover types were defined as those that cover less than 6% of the landscape or regional area (O2 Planning + Design Inc. et al. 2007). In Southern Alberta, these cover types include:

| Forest Portion of Southern<br>Alberta | Agricultural Portion of Southern<br>Alberta            |  |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|
| <ul> <li>Douglas fir</li> </ul>       | • pine                                                 |  |  |  |  |  |  |  |
| <ul> <li>forest riparian</li> </ul>   | <ul> <li>white spruce &amp; forest riparian</li> </ul> |  |  |  |  |  |  |  |
| <ul> <li>forest shrub</li> </ul>      | <ul> <li>hardwood</li> </ul>                           |  |  |  |  |  |  |  |
| • lentic                              | grassland shrub                                        |  |  |  |  |  |  |  |
| • lentic large                        | • prairie treed & riparian complexes                   |  |  |  |  |  |  |  |
| • lentic small                        | <ul> <li>needle &amp; thread sand grass DMG</li> </ul> |  |  |  |  |  |  |  |
| • lotic                               | <ul> <li>mixed grass</li> </ul>                        |  |  |  |  |  |  |  |
| • lotic large                         | fescue grassland                                       |  |  |  |  |  |  |  |
| • lotic small                         | fescue parkland                                        |  |  |  |  |  |  |  |
| <ul> <li>mixedwood</li> </ul>         | <ul> <li>badlands</li> </ul>                           |  |  |  |  |  |  |  |
|                                       | • water                                                |  |  |  |  |  |  |  |

#### 4.6.2.1 Data and Assumptions

The integrated southern Alberta inventories land cover was used to identify the proportion of each land cover type across both the forested and agricultural portions of Southern Alberta.

Low percentage cover types analysis was performed separately on the forest and grassland portions due to the difference in land cover types. Total areas for each cover type throughout each portion were calculated and cover types occupying less than 6% of the respective portion were identified. The accuracy of the low percentage cover type analysis output is the same as the accuracy of the integrated southern Alberta inventories dataset.

#### 4.6.2.2 Model

A flow diagram of the ArcGIS 9.2 model is presented in Appendix C. The model is located in an ArcGIS Toolbox in the following location:

C:\EIM\Tools\Toolboxes

The results of the model over the entire Southern Alberta region are presented in Figure 4.8.

Figure 4.8. Low percentage land cover types in Southern Alberta.



The results of the model over the entire Southern Alberta region are presented in Figure 4.8.

Figure 4.8. Low percentage land cover types in Southern Alberta.



# 5.0 Conclusions and Implications

The stream corridors map shows a high density of stream corridors in the forested landscapes to the west and southeast; very few corridors exist in the central Southern Alberta region (e.g., in the LUs Bow-Fescue Grassland, Bow-Mixed Grassland, Upper South Saskatchewan-Mixed Grassland, Upper South Saskatchewan-Moist Mixed Grassland) (Figure 4.2). In this area, stream corridors will be especially critical to maintaining ecosystem goods and services.

The natural patch size analysis revealed the location of large natural patches in Southern Alberta (Figure 4.3). The largest patches of natural vegetation over 10 000 ha in size were located in the southeast (Missouri-Moist Mixed Grassland, Missouri-Fescue Grassland and Missouri-Mixed Grassland) and northeast (Red Deer-Moist Mixed Grassland, Lower North Saskatchewan-Moist Mixed Grassland). Although there were many large patches in the western forested LUs, there were no natural patches >10 000 ha. The central part of Southern Alberta had few large patches of natural vegetation, and those that remain in this area will be regionally valuable.

The greatest concentration of waterbody complexes is in the northeast portion of Southern Alberta, which has a number of small complexes of standing water (Red Deer-Mixed Grassland, Red Deer-Moist Mixed Grassland, Lower North Saskatchewan-Mixed Grassland, Lower North Saskatchewan-Moist Mixed Grassland, Battle-Moist Mixed Grassland) (Figure 4.4). These areas all are important as areas of localized moisture in a predominantly dry region. Wetlands and water bodies in large complexes are important for biodiversity and ecosystem processes, as species can easily migrate to the next closest wetland if one dries up. Slightly larger waterbody complexes are found in the Red Deer-Aspen Parkland LU in the north and the Bow-Mixed Grassland in the centre of the region. Large, permanent wetlands and waterbodies are important for many neotropical migrants and overwintering amphibians, as well as many other ecosystem services such as climate and water regulation and cultural and aesthetic services. The western portion of Southern Alberta has few areas of standing waterbodies, but the complexes that exist along stream corridors are also of value.

Species richness mapping across Southern Alberta shows the highest species richness potential in the forested hills running north-south between the mountain peaks and the shrubby parkland habitats at the base of the foothills (Figure 4.5). There is also high species richness potential in the southeast around the Cypress Hills area. While native grassland also has high potential for species richness, the overall number of species with ranges covering the western forested portion of the region is greater than in the agricultural portion. In addition, forests have a vertical which adds to habitat diversity and thus high species richness potential. When the top five classes (highest 50%) of species rich areas are selected, however, both grasslands and forests as well as riparian and wetland cover types are picked out. Within the forested portion of Southern Alberta, cutblocks appear as low species richness potential. While these are considered 'grassland' in the integrated southern Alberta inventories landcover data, these blocks are outside the ranges of grassland species and thus contain few species. This is likely a good check on the legitimacy of the method.

Locations of alluvial soils are spread out around the outsides of the region with a couple thin bands reaching across the central grasslands (Figure 4.6). The base of the Rocky Mountains along the western border of Southern Alberta show a high concentration of alluvial soils; this is logical, as most streams traveling quickly through the hills would slow down upon reaching flatter terrain and deposit their suspended sediments along the edges of the foothills. A similar spatial pattern is shown in the Cypress Hills area to the southeast. These areas are extremely important in terms of water quality and quantity protection.

The landform classification (Figure 4.7) was not found to be very accurate at this large scale, as it averaged the results into a few middle landform categories. The map still shows general features of the mountains to the west and coulees across the agricultural areas, but it would be a more effective model at a finer scale.

Low percentage cover types differ considerably between the forested and the agricultural portion of Southern Alberta (Figure 4.8). In the agricultural portion (the central and eastern portion), patches of native grassland can be seen interspersed throughout with a large area of mixed grass around the Cypress Hills. Patches of fescue grassland are located near the base of the foothills. Other low percentage cover types in the agricultural portion include native trees and shrubs such as pine and white spruce / forest riparian; these represent only small portions on the map. In the forested portion, the patches of low percentage cover types are smaller and patchier than in the agricultural portion. Mixedwood is one low percentage cover type that is particularly high in biodiversity and other ecosystem goods and services (Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b).

••••••••••••••••••••••••

# 6.0 Effects on Ecosystem Goods and Services

There is a direct, though not necessarily linear, relationship between the condition of natural assets and the type, quantity and quality of ecosystem services they provide. From a macro-scale perspective, the condition of natural assets varies depending on the spatial configuration and connectivity of natural assets in the region and the composition of the surrounding landscape. For example, a hectare of native grassland within a large patch of 1000 ha of grassland will provide greater ecosystem services such as biodiversity and climate regulation than an isolated hectare of grassland within an urbanized area. While both are important to landscape and environmental goals, the former hectare of grassland is in better condition with respect to ecosystem goods and services provision. Section 4.4 in the Ecosystem Goods and Services Assessment — Southern Alberta Phase 2 Report describes the relationship between asset condition and EGS (Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007).

The effect of landscape configuration and connectivity (defined through ecological infrastructure) on ecosystem services is demonstrated in Table 6.1.

A coincidence of analysis between the components of ecological infrastructure and each group of ecosystems services (regulating, supportive, provisioning and cultural; see Table 6.1) was conducted. The analysis involved first rasterizing each of the components of ecological infrastructure based on the majority value within each 1 ha pixel. This pixel resolution was considered appropriate to the resolution of the data. To create a combined map of all ecological infrastructure components, two methods were used. In the first, a binary map was created in which each pixel containing at least one of the ecological infrastructure components was given a value of '1' while all other pixels were assigned a '0'. In the second map, an additive map was created in which each pixel was assigned a sum value of each ecological infrastructure component it included. Thus, a pixel that represented a stream corridor within a large patch of natural vegetation in an area of high species richness potential was assigned a '3', while a pixel that represented a stream corridor on its own was assigned a '1'. Pixels not covered by any ecological infrastructure components were given a value of '0'. This map gives a range of values between '0' and '6', '6' being the maximum possible value a pixel could be assigned (i.e., an area that represented a stream corridor, a waterbody complex, an area of high species richness potential, alluvial soils, a low percentage cover type, and either part of large patch or a stepping stone complex) (Figure 6.1). This map shows the relative contribution of each map pixel to regional ecological infrastructure. The high value of several landscape units to overall regional ecological infrastructure is evident (e.g., Upper South Saskatchewan-Cypress Upland, Missouri-Moist Mixed Grassland, Missouri-Fescue Grassland, Upper South Saskatchewan-Fescue Grassland, among others)

Table 6.1. Ecosystem services on which the components of ecological infrastructure have the greatest impacts.

•••••••••••••••••••••

| Regulating Services                                     |                |                    |                        |                  |                                        | Supporting Services |                    |                |                      |                  | Provisioning Services |                   |              |                 | Cultural and Aesthetic<br>Services |                   |           |                               |                       |            |
|---------------------------------------------------------|----------------|--------------------|------------------------|------------------|----------------------------------------|---------------------|--------------------|----------------|----------------------|------------------|-----------------------|-------------------|--------------|-----------------|------------------------------------|-------------------|-----------|-------------------------------|-----------------------|------------|
| Ecological<br>Infrastructure<br>Components              | Gas regulation | Circate regulation | Disturbance regulation | Water regulation | Erosion control and sediment retention | Waste treatment     | Biological control | Soil formation | Primary productivity | Nutrient cycling | Polination            | Habitat / refugia | Water supply | Food production | Raw materials                      | Genetic resources | Aesthetic | Spiritual and traditional use | Science and education | Recreation |
| Stream corridors                                        | х              | х                  | х                      | х                | х                                      | х                   |                    |                |                      | х                | х                     | х                 | х            | x               |                                    |                   | ×         | x                             | x                     | ×          |
| Natural<br>vegetation<br>patches and<br>stepping stones | ×              | ×                  | х                      |                  |                                        |                     | ×                  |                | ×                    |                  | ×                     | ×                 | ×            | ×               | х                                  | ×                 | ×         | ×                             | ×                     | ×          |
| Waterbody complexes                                     | х              | x                  | ×                      | ×                | ×                                      | х                   |                    |                | ×                    | ×                |                       | ×                 | ×            | ×               |                                    |                   | ×         | ×                             | ×                     | ×          |
| Areas of high species richness potential                |                |                    |                        |                  |                                        |                     | ×                  |                |                      |                  | ×                     | ×                 |              |                 |                                    | ×                 |           |                               | x                     | ×          |
| Alluvial soils                                          |                |                    | х                      | х                |                                        | ×                   |                    |                |                      |                  |                       |                   | ×            |                 |                                    |                   |           |                               | x                     |            |
| Unique land cover types or areas                        |                |                    |                        |                  | x                                      |                     | ×                  | ×              |                      |                  |                       | ×                 |              |                 | ×                                  | ×                 | ×         | ×                             | x                     |            |



Figure 6.1. Aggregated scoring of ecological infrastructure components.

To identify the areas of coincidence between ecological infrastructure and a spatial representation of ecosystem services in the region, the binary map of ecological infrastructure as well as each individual ecological infrastructure component was analyzed against a map representing the mean value of the importance of an asset to all ecosystem services. These values ranged from '-2' (the asset has a strong negative effect on the provision of ecosystem services) to '2' (the asset has a strong positive effect on the provision of ecosystem services). For the coincidence of analyses, areas considered high in terms of ecosystem service provision were defined as those areas with an average value > '1': the top 25% of mapped values.

The results of crossing the ecological infrastructure with areas of high importance to ecosystem services showed high correlation and some interesting results (Figure 6.2; Table 6.2).

•••••••••••••••••••••••



Figure 6.2. Coincidence of analysis between ecological infrastructure mapping (EIM) and areas of high value to ecosystem services (EGS).

•••••••••••



Figure 6.1. Aggregated scoring of ecological infrastructure components.

To identify the areas of coincidence between ecological infrastructure and a spatial representation of ecosystem services in the region, the binary map of ecological infrastructure as well as each individual ecological infrastructure component was analyzed against a map representing the mean value of the importance of an asset to all ecosystem services. These values ranged from '-2' (the asset has a strong negative effect on the provision of ecosystem services) to '2' (the asset has a strong positive effect on the provision of ecosystem services). For the coincidence of analyses, areas considered high in terms of ecosystem service provision were defined as those areas with an average value > '1': the top 25% of mapped values.

The results of crossing the ecological infrastructure with areas of high importance to ecosystem services showed high correlation and some interesting results (Figure 6.2; Table 6.2).



Figure 6.2. Coincidence of analysis between ecological infrastructure mapping (EIM) and areas of high value to ecosystem services (EGS).

Table 6.2. Areas of coincidence and non-coincidence between ecological infrastructure components and areas of high ecosystem service provision.

|                                                                                              | In Ecolo<br>Infrastructi |      | In Areas of High<br>Service Provi | Areas of Coincidence |           |      |  |
|----------------------------------------------------------------------------------------------|--------------------------|------|-----------------------------------|----------------------|-----------|------|--|
|                                                                                              | Area (ha)                | %    | Area (ha)                         | %                    | Area (ha) | %    |  |
| Ecological<br>Infrastructure (All)                                                           | 4 209 955                | 75.2 | 25 172                            | 0.4                  | 5 573 190 | 99.6 |  |
| Stream Corridors                                                                             | 1 069 686                | 19.1 | 4 326 711                         | 77.3                 | 1 270 796 | 22.7 |  |
| Natural Patches (Large<br>Patches & Stepping<br>Stones)                                      | 1 964 605                | 35.1 | 268 305                           | 4.8                  | 5 330 049 | 95.2 |  |
| Large Patches                                                                                | 1 490 674                | 26.6 | 1 449 529                         | 25.9                 | 4 148 953 | 74.1 |  |
| Stepping Stones                                                                              | 473 999                  | 8.5  | 4 414 671                         | 78.9                 | 1 183 683 | 21.1 |  |
| Waterbody Complexes                                                                          | 167 220                  | 3.0  | 5 385 775                         | 96.2                 | 212 381   | 3.8  |  |
| High Species Richness<br>Potential                                                           | 1 274 118                | 22.8 | 1 572 507                         | 28.1                 | 4 025 855 | 71.9 |  |
| Alluvial Soils                                                                               | 837 180                  | 15.0 | 5 119 000                         | 91.4                 | 479 362   | 8.6  |  |
| Low Percentage Cover<br>Types                                                                | 1 964 168                | 35.1 | 3 928 302                         | 70.2                 | 1 669 417 | 29.8 |  |
| High Species Richness<br>Potential & Natural<br>Patches (Large Patches<br>& Stepping Stones) | 2 262 072                | 40.4 | 189 786                           | 3.4                  | 5 408 568 | 96.6 |  |

The ecological infrastructure encompassed 99.6% of all areas identified as high ecosystem service provision. Natural patches alone, including both large patches and stepping stone complexes, included 95.2% of those areas. When combined with areas of high species richness potential, the percentage was increased to 96.6. Natural patches, large patches alone and high species richness potential were the components that gave the highest coincidence with areas of high ecosystem service provision. Of moderate value in predicting areas of high ecosystem services were stream corridors, stepping stones alone, and low percentage cover types. Other components of ecological infrastructure that had poor coincidence with mapped areas of high ecosystem services included alluvial soils and waterbody complexes. These components, and to some extent stream corridors, include other areas not considered as 'high' in terms of ecosystem service provision. The poor coincidence may be attributed to these analyses being unrelated (or indirectly related) to landcover type or asset, which was used to assign ecosystem service value. Alluvial soils may be overlain by any type of asset, including anthropogenic assets which have lower ecosystem service values. Similarly, waterbody complexes represent the zone of influence of waterbody ecology and are identified by buffering waterbodies. This buffer zone should ideally be in natural landcover in terms of a complete ecological

••••••••••••••••••••••••••

infrastructure, but in Southern Alberta these areas were often anthropogenic assets (e.g., agriculture) and had lower ecosystem service provision values.

In terms of the condition of ecosystem services, those areas of high service provision that are coincident with ecological infrastructure are most likely to be in good condition through landscape connections and within large natural patches that promote functioning ecological processes. Those areas currently providing ecosystem services that are outside the ecological infrastructure (e.g., unconnected or small patches) may be priority areas for enhancing ecosystem service condition by promoting connections or establishing natural buffers between stream corridors and waterbodies.

# 7.0 Recommendations for Future Application

This study indicates that a relatively limited set of ecological infrastructure components related to landscape pattern can have a significant and positive impact in terms capturing most ecosystem goods and services. A simple analysis using the large patches model, stepping stones model and species richness model may be used over any region or subset of this region if the goal is to identify areas of highest ecosystem service provision. If the goal is to identify areas for potential restoration or establishment of natural connections, other models such as alluvial soils, stream corridors, or waterbody complexes may be used. These are areas of potentially high ecosystem service provision if restored to natural assets. Other land uses, including anthropogenic assets, may be more appropriate outside the ecological infrastructure.

On a regional scale, the additive map of ecological infrastructure highlights those areas of importance where the provision of ecological services should be high and in good condition (see Section 6.0, Figure 6.1). While all components of ecological infrastructure are important, those areas incorporating a greater number of overlapping components may be prioritized in terms of land use planning for natural areas and conservation.

Each component of ecological infrastructure can be mapped on smaller scales, depending on the desired objectives. On scales of a single landscape unit or watershed, for example, 10 m to 100 m buffers around individual wetlands might be identified (e.g., Section 4.3). Finer-scale analyses can identify smaller-scale ecological processes such as microclimate regulation and local pollination or biological control which may be extremely valuable to that location. Full landform analysis, including identification of ridge features through the TPI model, also becomes applicable at finer scales.

Another method to identify critical landscape patterns and habitat at a finer scale is to model the habitat requirements of a suite of species chosen to represent specific ecological processes. This type of habitat suitability index (HSI) modelling may be valuable at the scale of natural subregions, for example. Species chosen for HSI modelling should have ranges that overlap the entire study area and should represent different habitat types, be sensitive to change at a variety of scales, and be representative of ecological processes (e.g., long range dispersal, pollination) (O2 Planning + Design et al. 2007).

At finer scales, site-level assessments could be used to evaluate asset condition in future analyses. For example, a grassland vegetation inventory is a useful tool to measure the condition of a single patch of an asset such as native grassland. These tools could be used to prioritize areas of potentially high ecosystem services and good landscape-level condition and for local restoration.

## 8.0 References

- Ahern, J. 1995. Greenways as a planning strategy. Landscape and Urban Planning. 33 (1/2): 131–155.
- Alberta Government. 2006. Alberta Natural Heritage Information Centre. Available at: http://www.cd.gov.ab.ca/preserving/parks/anhic/flashindex.asp (Accessed 2 August 2006).
- Amos, N. 2004. Criteria for Sites of Biological Significance in Victoria. Department of Sustainability and Environment: State of Victoria, AU.
- Andersson, E. 2006. Urban landscapes and sustainable cities. Ecology and Society, 11(1): 34-40.
- Barnes, T.G. and L. Adams. 1999. A Guide to Urban Habitat Conservation Planning. Cooperative Extension Service, University of Kentucky, College of Agriculture.: Kentucky.
- Bastedo, J. 1986. An ABC Resource Survey Method for Environmentally Significant Areas with Special Reference to the Biotic Surveys in Canada's North. Department of Geography, University of Waterloo, Waterloo, Ontario.
- BCMOFR (British Columbia Ministry of Forests and Range). 1995. Riparian Management Area Guidebook. Available online at: <a href="http://www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/riparian/Rip-toc.htm">http://www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/riparian/Rip-toc.htm</a> (Accessed 20 March 2008).
- Bennett, A.F. 1999. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. IUCN, Gland, Switzerland and Cambridge, U.K.
- Bierwagen, B.G. 2005. Predicting ecological connectivity in urbanizing landscapes. Environment and Planning B: Planning and Design, 32: 763-776.
- Bolund, P. and S. Hunhammar. 1999. Ecosystem services in urban areas. Ecological Economics, 29: 293–301.
- Bryant, M.M. 2006. Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landscape and Urban Planning, 76: 23-44.
- Bunce, R.G.H., G.B. Groom, R.H.G. Jongman, E. Padoa-Schioppa (Eds.) 2005.
  Handbook for Surveillance and Monitoring of European Habitats, First Edition. Alterra, Wageningen, 107 pp.
- Castelle, A., Johnson, A. and C. Conolly. 1994. Wetland and stream buffer size requirements – a review. Journal of Environmental Quality 23: 878-882.
- Chapman, E.W. and C.A. Ribic. 2002. The impact of buffer strips and stream-side grazing on small mammals in southwestern Wisconsin. Agriculture, Ecosystems and Environment, 88(1): 49-59.
- Colding, J. 2007. 'Ecological land-use complementation' for building resilience in urban ecosystems. Landscape and Urban Planning, 81: 46-55.
- Cook, K., A. Faulkner, P. Mooney, K. Hall, M. Healey, D. Watts, S. Brown and H. Schreier. An Evaluation of Environmentally Sensitive Areas in the Township

- of Langley, Volume 1: ESA Analysis. Prepared for The Corporation of the Township of Langley, Langley, B.C. Westwater Research Centre, University of British Columbia, Vancouver, B.C.
- CPPIF (Canadian Prairie Partners in Flight). 2004. Landbird Conservation Plan for Prairie Pothole Bird Conservation Region 11 in Canada. Canadian Wildlife Service, Edmonton, AB.
- Daily, G. (Ed.). 1997. Nature's Services: Societal Dependence on Natural Ecosystems. Washington: Island Press.
- Davis, F.W., D.M. Stoms, and S. Andelman. 1999. Systematic reserve selection in the USA: an example from the Columbia Plateau ecoregion. *Parks*, 9: 31-41.
- de Groot, R.S., M.A. Wilson and R.M.J. Boumans. 2002. A typology for the classification, description and evaluation of ecosystem functions, goods and services. *Ecological Economics*, 41: 393–408.
- Dosskey, M.G. 1998. Viewpoint: Applying riparian buffers to Great Plains rangelands. *Journal of Range Management*, 51(4): 428-431.
- Downey, B.A., Downey, B.L, Quinlan, R.W., Castelli, O., Remesz, V.J. and P.F. Jones (Eds.) 2004. MULTISAR: The Milk River Basin Habitat Suitability Models for Selected Wildlife Management Species. Alberta Sustainable Resource Management, Fish and Wildlife Division, Alberta Species at Risk Report No. 86: Edmonton, AB.
- Dramstad, W.E., Olson, J.D. and R.T.T. Forman. 1996. Landscape Ecology Principles in Landscape Architecture and Land-Use Planning. Harvard University Graduate School of Environmental Design and Island Press, Washington.
- Dunne, T. and L.B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company, New York.
- Eagles, P. 1980. Criteria for the designation of environmentally sensitive areas. In: Protection of Natural Areas in Ontario. University of Toronto Press, Toronto, Ontario.
- Eagles, P. 1984. The Planning and Management of Environmentally Sensitive Areas. Longman, London and New York.
- EC (Environment Canada). 2004. How Much Habitat is Enough? A Framework for Guiding Habitat Rehabilitation in Great Lakes Areas of Concern. Second Edition, Canadian Wildlife Service, Environment Canada, Ottawa.
- Fitzgerald, J.A., Pashley, D.N. and B. Pardo. 1999. Partners in Flight Bird Conservation Plan for The Northern Mixed-grass Prairie (Physiographic Area 37), Version 1.0. American Bird Conservancy.
- Fleury, A.M. and R.D. Brown. 1997. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario. Landscape and Urban Planning, 37: 163-186.
- Forman, R.T.T. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press: Cambridge.
- Forman, R. and S. Collinge. 1997. Nature conserved in changing landscapes with and without spatial planning. *Landscape and Urban Planning* 37: 129-135.

- Forman, R.T.T. and M. Godron. 1986. Landscape Ecology. Wiley: New York.
- Gabor, T.S., North, A.K., Ross, L.C.M., Murkin, H.R., Anderson, J.S. and M. Raven. 2004. Natural Values. The Importance of Wetlands and Upland Conservation Practices in Watershed Management: Functions and Values for Water Quality and Quantity. Ducks Unlimited Canada.
- Gibbons, J.W., C.T. Winne, D.E. Scott, J.D. Willson, X. Glaudas, K.M. Andrews, B.D. Todd, L.A. Fedewa, L. Wilkinson, R.N. Tsaliagos, S.J. Harper, J.L. Greene, T.D. Tuberville, B.S. Metts, M.E. Dorcas, J.P. Nestor, C.A. Young, T. Akre, R.N. Reed, K.A. Buhlmann, J. Norman, D.A. Croshaw, C. Hagen and B.B. Rothermel. 2006. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation. *Conservation Biology*, 20(5): 1457-1465.
- Gibbs, J.P. 2000. Wetland loss and biodiversity conservation. Conservation Biology, 14(1): 314-317.
- Guisan, A., S.B. Weiss and A.D. Weiss. 1999. GLM versus CCA spatial modeling of plant species distribution. *Plant Ecology*, 143: 107-122.
- Helzer, C.J. and D.E. Jelinski. 1999. The relative importance of patch area and perimeter-area ratio to grassland breeding birds. *Ecological Applications* 9(4): 1448-1458.
- Herkert, J.R., Szafoni, R.E., Kleen, V.M. and J.E. Schwegman. 1993. Habitat Establishment, Enhancement and Management for Forest and Grassland Birds in Illinois. Division of Natural Heritage, Illinois Department of Conservation, Natural Heritage Technical Publication No. 1, Springfield, Illinois. Northern Prairie Wildlife Research Center Online. Available at: http://www.npwrc.usgs.gov/resource/birds/manbook/manbook.htm (Accessed 13 June 2006).
- Horn, D.J., Phillips, M.L., Koford, R.R., Clark, W.R., Sovada, M.A. and R.J. Greenwood. 2005. Landscape composition, patch size, and distance to edges: interactions affecting duck reproductive success. *Ecological Applications* 15(4): 1367-1376.
- Huel, D. 2000. Managing Saskatchewan Wetlands A Landowner's Guide. Saskatchewan Wetland Conservation Corporation, Regina.
- Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007a.

  Ecosystem Goods and Services Assessment Southern Alberta, Phase 1
  Report: Key Actors and Initiatives. Prepared for Alberta Environment,
  Calgary, Alberta.
- Integrated Environments (2006) Ltd. and O2 Planning + Design Inc. 2007b.

  Ecosystem Goods and Services Assessment Southern Alberta, Phase 2
  Report: Conceptual Linkages and Initial Assessment. Prepared for Alberta Environment, Calgary, Alberta.
- Jennings, M.D. and J.P. Reganold. 1991. Hierarchy and subsidy-stress as a theoretical basis for managing environmentally sensitive areas. *Landscape* and *Urban Planning* 21: 31-45.
- Johnson, D.H. and L.D. Igl. 2001. Area requirements of grassland birds: a regional perspective. *The Auk*, 118(1): 24-34.

•

.

•••••••••••••••••••

- Kampf, H. and F. Stavast. 2005. Committee of Experts for the Development of the Pan-European Ecological Network: Report on the Implementation of the Pan-European Ecological Network, The Netherlands, 2005. Ministry of Agriculture, Nature and Food Quality: Ede, NL. Available at: http://www9.minlnv.nl/pls/portal30/docs/FOLDER/MINLNV/LNV\_INTER NATIONAL/MLV\_INTERNATIONAL\_SITE/NATURE/PAN\_EUROPEA N\_ECOLOGICAL\_NETWORK.PDF (Accessed 28 August 2006).
- Kennedy, C., Wilkinson, J. and J. Balch. 2003. Conservation Thresholds for Land Use Planners. Environmental Law Institute, Washington D.C.
- Kremen, C., N.M. Williams and R.W. Thorp. 2002. Crop pollination from native bees at risk from agricultural intensification. *Proceedings of the National Academy of Sciences of the United States of America*, 99(26): 16812-16816.
- Lindenmayer, D.B. and H.A. Nix. 1993. Ecological principles for the design of wildlife corridors. Conservation Biology, 7(3): 627-631.
- Madison, C., Blevins, R., Frye, W. and B. Barfield. 1992. Tillage and grass filter strip effects upon sediment and chemical losses. Agronomy Abstracts. ASA, Madison, Wisconsin.
- Manitoba Conservation. 1995. State of the Environment Report for Manitoba, 1995.

  Focus on Agriculture. Available at:

  <a href="http://www.gov.mb.ca/conservation/annualreport/soe-reports/soe95/agricult.html">http://www.gov.mb.ca/conservation/annualreport/soe-reports/soe95/agricult.html</a> (Accessed 11 October 2006).
- Melcher, C.P. and S.K. Skagen. 2005. Grass Buffers for Playas in Agricultural Landscapes: A Literature Synthesis. U.S. Geological Survey, Biological Resources Discipline, Open-File Report 2005-1220.
- Millennium Assessment. 2003. Ecosystems and Human Well-being: A Framework for Assessment. Millennium Ecosystem Assessment Series. Island Press: Washington, DC.
- Morris, D.W. 1992. Scales and costs of habitat selection in heterogeneous landscapes. *Evolutionary Ecology* 6(5): 412-432.
- O2 Planning + Design Inc., Elutis Modelling and Consulting Inc. and Aquila Applied Ecologists. 2007. Development of Habitat-Based Biodiversity Standards. National Agri-Environmental Standards Initiative Technical Series Report No. 3-14. 645 p.
- Peak, R.G. and F.R. Thompson. 2006. Factors affecting avian species richness and density in riparian areas. *Journal of Wildlife Management*, 70(1): 173-179.
- Pirnat, J. 2000. Conservation and management of forest patches and corridors in suburban landscapes. Landscape and Urban Planning, 52: 135-143.
- Powell, L. 2005. Southern Alberta's rare lizard. Croaks and Trills (Alberta Conservation Association), 10(2): 4-5.
- Prendergast, J.R., R.M. Quinn, J.H. Lawton, B.C. Eversham, and D.W. Gibbons. 1993. Rare species, the coincidence of diversity hotspots and conservation strategies. *Nature*, 365: 335-337.
- Quinn, M. (Associate Professor, Environmental Science and Planning, University of Calgary), personal communication, October 2007.

- Ricketts, T.H., E. Dinerstein, D.M. Olson, and C. Loucks. 1999. Who's where in North America? Patterns of species richness and the utility of indicator taxa for conservation. *BioScience*, 49: 369-381.
- Sargent, M.S. and K.S. Carter, Eds. 1999. Managing Michigan Wildlife: A Landowners Guide. Michigan United Conservation Clubs, East Lansing, MI. Available at: <a href="http://www.dnr.state.mi.us/publications/pdfs/huntingwildlifehabitat/Landowners Guide/Species Mgmt/Waterfowl.htm">http://www.dnr.state.mi.us/publications/pdfs/huntingwildlifehabitat/Landowners Guide/Species Mgmt/Waterfowl.htm</a> (Accessed 20 September 2006).
- Schrijnen, P.M. 2000. Infrastructure networks and red-green patterns in city regions. Landscape and Urban Planning, 48: 191-204.
- Schultz, C.B. and E.E. Crone. 2005. Patch size and connectivity thresholds for butterfly habitat restoration. Conservation Biology, 19(3): 887-896.
- Scott, J.M., F. Davis, R. Csuti, R. Noss, B. Butterfield, C. Groves, J. Anderson, S. Caico, F. D'Erchia, T.C. Edwards, J. Ulliman, and R.G. Wright. 1993. Gap analysis: a geographical approach to protection of biodiversity. Wildlife Monographs. 123: 1-41.
- Semlitsch, R.D. 1998. Biological delineation of terrestrial buffer zones for pondbreeding salamanders. *Conservation Biology* 12(5): 1113-1119.
- Smallwood, K.S. 2001. Linking habitat restoration to meaningful units of animal demography. Restoration Ecology 9(3): 253-261.
- Smith Fargey, K. (Ed.) 2004. Shared Prairie Shared Vision: The Northern Mixed Grass Transboundary Conservation Initiative. Conservation Site Planning Workshop Proceedings and Digital Atlas. Canadian Wildlife Service, Environment Canada, Regina, SK.
- Spackman, S.C. and J.W. Hughes. 1995. Assessment of minimum stream corridor width for biological conservation: species richness and distribution along mid-order streams in Vermont, USA. *Biological Conservation* 71(3): 325-332.
- Steffan-Dewenter, I. and T. Tscharntke. 1999. Effects of habitat isolation on pollinator communities and seed set. *Oecologia*, 121(3): 432-440.
- SWCC (Saskatchewan Wetland Conservation Corporation). 1996. Native Prairie Stewardship Factsheet: Managing Prairie Wetlands. Regina, SK.
- Sweetgrass Consultants Ltd. 1997. Environmentally Significant Areas of Alberta, Volumes 1, 2 and 3. Prepared for Resource Data Division, Alberta Environmental Protection, Edmonton.
- Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J. and P. James. 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landscape and Urban Planning, 81: 167-178.
- USDA (United States Department of Agriculture). 1999. Grassland Birds. Fish and Wildlife Management Leaflet No. 8, Natural Resources Conservation Service, Wildlife Habitat Management Institute, Madison and Wildlife Habitat Council, Silver Spring.

•••••••••••••••••••••••••

- Walk, J.W. and R.E. Warner. 1999. Effects of habitat area on the occurrence of grassland birds in Illinois. The American Midland Naturalist 141(2): 339– 344.
- Walmsley, A. 2006. Greenways: multiplying and diversifying in the 21st century. Landscape and Urban Planning, 76: 252–290.
- WDNR (Wisconsin Department of Natural Resources). 2006. Chapter 5 Riparian Management Zones. Water Quality, Best Management Practices Field Manual.

  Available at: <a href="http://dnr.wi.gov/org/land/Forestry/Usesof/bmp/bmpRMZ.htm">http://dnr.wi.gov/org/land/Forestry/Usesof/bmp/bmpRMZ.htm</a> (Accessed 11 October 2006).
- Weiss, A.D. nd. Topographic Position and Landforms Analysis. Ecoregional Data Management Team, The Nature Conservancy, Northwest Division, Seattle, Washington.

  Available at:

  <a href="http://www.jennessent.com/arcview/TPI">http://www.jennessent.com/arcview/TPI</a> Weiss poster.htm (Accessed 31 March 2008).
- Willms, C.R., Pearce, D.W. 2nd S.B. Rood. 2006. Growth of riparian cottonwoods: a developmental pattern and the influence of geomorphic context. *Trees*, 20: 210-218.

## Appendix A - Data Sources

Data sources for the project included Alberta Environment (AENV), Canadian Forest Service (CFS), Alberta Sustainable Resource Development (ASRD), Alberta Agriculture and Rural Development (AARD) and O2 Planning + Design Inc. (O2; processed data). Data and processing are described in Table A.1.

Table A.1. Data sources, data and general processing.

| Data Source | Data and Processing                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOA         | Integrated Southern Alberta Inventories (Forest and Grassland)                                                                                                                                       |
|             | Digital Elevation Model (DEM) Data                                                                                                                                                                   |
|             | <ul> <li>DEM tiles were mosaicked using ArcGIS 9.2 Data<br/>Management Tools → Raster → Mosaic command</li> </ul>                                                                                    |
|             | o Parameters:                                                                                                                                                                                        |
|             | <ul> <li>Mosaic Method: BLEND</li> </ul>                                                                                                                                                             |
|             | <ul> <li>Mosaic Colormap Mode: FIRST</li> </ul>                                                                                                                                                      |
|             | Digital hydrography (lines and polygons) for the study area                                                                                                                                          |
|             | CFS Canada Mosaic based on Landsat 7 Enhanced Thematic Mapper (ETM) data from bands 7, 4, and 2                                                                                                      |
|             | <ul> <li>Imagery is circa 1990 and was used for broad-scale<br/>cartographic presentation and visual verification of landscape<br/>units (LUs)</li> </ul>                                            |
|             | <ul> <li>Imagery was clipped to the area surrounding the integrated<br/>southern Alberta inventories dataset and re-projected to NAD<br/>83 TM-115 with a 25-m cell size</li> </ul>                  |
|             | Alberta Natural Subregions (NSR)                                                                                                                                                                     |
|             | <ul> <li>Clipped to study area boundary and reprojected to NAD 83<br/>TM-115</li> </ul>                                                                                                              |
|             | <ul> <li>Data acquired from SRD website February 10<sup>th</sup>, 2008. Data<br/>currency is June 2, 2005 and positional accuracy is at mos<br/>+/- 500 metres throughout the study area.</li> </ul> |
|             | Used for delineation of LMUs                                                                                                                                                                         |
|             | Alberta AGRASID soils data                                                                                                                                                                           |
| AAFC        | National Agri-Environmental Health Analysis and Reporting Program<br>(NAHARP) species range maps by CANSIS soil polygon converted to<br>file geodatabase                                             |

••••••••••••••••••••••••

| Data Source | Data and Processing                                                                                                                                   |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 02          | Percent slope                                                                                                                                         |  |  |  |
|             | <ul> <li>Derived from processing of DEM using ArcGIS 9.2 Spatial<br/>Analyst → Surface → Slope command</li> </ul>                                     |  |  |  |
|             | <ul> <li>Values higher than 100 were classified as 100 and a 100 m<br/>radius focal mean was applied to smooth anomalous<br/>stepped areas</li> </ul> |  |  |  |
|             | Accuracy is +/- 100 m                                                                                                                                 |  |  |  |
|             | Hillshade                                                                                                                                             |  |  |  |
|             | <ul> <li>Created for cartographic output using ArcGIS 9.2 Spatial<br/>Analyst → Surface → Hillshade command</li> </ul>                                |  |  |  |
|             | <ul> <li>A 100 m radius focal mean was applied to smooth<br/>anomalous stepped areas</li> </ul>                                                       |  |  |  |
|             | Not used for analysis so accuracy is not applicable                                                                                                   |  |  |  |

## Appendix B - Project Analysis Tables

Table B.1. Project analysis table comparing features of resource survey methods to components of ecological infrastructure mapping.

| _                              | 1.                                                       |                                                                                                                                                          |                                                                                                                                        |                                                                                      |
|--------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Resource<br>Survey<br>Features | Components<br>of Ecological<br>Infrastructure<br>Mapping | Data                                                                                                                                                     | Current Analysis                                                                                                                       | Potential Future<br>Analysis                                                         |
| Landform                       | Areas of unique land cover                               | DEM                                                                                                                                                      | Map identifying major ridge topography                                                                                                 | Other landforms more appropriate at sub-regional/local scale                         |
| Drainage<br>network            | Stream corridors  Waterbody complexes                    | integrated<br>southern Alberta<br>inventories lotic<br>integrated<br>southern Alberta<br>inventories<br>lentic<br>AltaLIS<br>intermittent<br>waterbodies | Map identifying streams<br>buffered to 100 m on<br>each side  Map identifying<br>permanent and<br>intermittent water body<br>complexes |                                                                                      |
| Aquifer<br>areas               | Alluvial soils                                           | AgraSID                                                                                                                                                  | Map identifying alluvial soils in grassland areas                                                                                      | Alluvial soils<br>identification in forested<br>areas when data<br>becomes available |
| Vegetation<br>cover            | Large natural patches                                    | integrated<br>southern Alberta<br>inventories                                                                                                            | Map identifying large<br>patches of native<br>vegetation that meet<br>certain size threshold<br>criteria for varying<br>species groups |                                                                                      |
|                                | Stepping stones                                          | integrated<br>southern Alberta<br>inventories                                                                                                            | Map identifying functionally connected patches of native vegetation                                                                    |                                                                                      |

••••••••••••••

| Resource<br>Survey<br>Features                     | Components<br>of Ecological<br>Infrastructure<br>Mapping | Data                                          | Current Analysis                                                                                                                   | Potential Future<br>Analysis |
|----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Wildlife<br>habitat<br>(in addition,<br>see below) | Large natural patches                                    | integrated<br>southern Alberta<br>inventories | Map identifying large<br>patches of native<br>vegetation that meet<br>certain size threshold<br>criteria (see Vegetation<br>Cover) |                              |
|                                                    | Stepping<br>stones                                       | integrated<br>southern Alberta<br>inventories | Map identifying<br>functionally connected<br>patches of native<br>vegetation (see<br>Vegetation Cover)                             |                              |
| Bird and other wildlife distribution               | Species<br>richness<br>potential<br>mapping              | integrated<br>southern Alberta<br>inventories | Map identifying approximate number of species per land cover polygon                                                               |                              |

# Appendix C - ArcGIS 9.2 Flowcharts





















# Appendix D – Vertebrate Species of Southern Alberta

### **Amphibians**

| Species Name            | Range in<br>Hectares |
|-------------------------|----------------------|
| Ambystoma macrodactylum | 3338862              |
| Ambystoma tigrinum      | 10825481             |
| Bufo boreas             | 2641185              |
| Bufo cognatus           | 2497959              |
| Bufo hemiophrys         | 11538642             |
| Pseudacris maculata     | 12225232             |
| Pseudacris regilla      | 61842                |
| Pseudacris triseriata   | 578244               |
| Rana luteiventris       | 1946729              |
| Rana pipiens            | 7877056              |
| Rana sylvatica update   | 13473118             |
| Spea bombifrons         | 7777011              |

#### Birds

| Species Name              | Range in<br>Hectares |                      |          |
|---------------------------|----------------------|----------------------|----------|
| Accipiter cooperii        | 9713495              | Anas crecca          | 13722076 |
| Accipiter gentilis        | 13722076             | Anas cyanoptera      | 10504362 |
| Accipiter striatus        | 8084461              | Anas discors         | 13722076 |
| Actitis macularia         | 13722076             | Anas platyrhynchos   | 13722076 |
| Aechmophorus occidentalis | 13722076             | Anas strepera        | 12923781 |
| Aegolius acadicus         | 13722076             | Anser albifrons      | 9775117  |
| Aegolius funereus         | 3570032              | Anthus rubescens     | 13722076 |
| Agelaius phoeniceus       | 13722076             | Anthus spragueii     | 13140657 |
| Aix sponsa                | 1957620              | Aquila chrysaetos    | 13722076 |
| Ammodramus bairdii        | 11332096             | Archilochus colubris | 8964772  |
| Ammodramus leconteii      | 11319077             | Ardea herodias       | 13488367 |
| Ammodramus nelsoni        | 4985161              | Asio flammeus        | 13722076 |
| Ammodramus savannarum     | 7368906              | Asio otus            | 13722076 |
| Anas acuta                | 13722076             | Athene cunicularia   | 9951446  |
| Anas americana            | 13722076             | Aythya affinis       | 13722076 |
| Anas clypeata             | 13722076             | Aythya americana     | 12681689 |
|                           |                      |                      |          |

| Aythya collaris           | 13722076 | Ceryle alcyon                            | 49700076            |
|---------------------------|----------|------------------------------------------|---------------------|
| Aythya marila             | 3934712  | Chaetura vauxi                           | 13722076<br>5851114 |
| Aythya valisineria        | 10147371 | Charadrius melodus                       | 6987942             |
| Bartramia longicauda      | 11672592 | Charadrius semipalmatus                  | 13722076            |
| Bombycilla cedrorum       | 13722076 | Charadrius vociferus                     | 13722076            |
| Bombycilla garrulus       | 13722076 | Chen caerulescens                        | 12869351            |
| Bonasa umbellus           | 10637263 | Chen rossii                              | 4289167             |
| Botaurus lentiginosus     | 13722076 |                                          |                     |
| Branta canadensis         | 13722076 | Chlidonias niger                         | 13624954            |
| Bubo scandiacus           | 13609574 | Chondestes grammacus                     | 7454144             |
|                           | 13722076 | Chordeiles minor Cinclus mexicanus       | 13722076            |
| Bubo virginianus          | 13722076 |                                          | 4966296             |
| Bucephala albeola         |          | Circus cyaneus                           | 13722076            |
| Bucephala clangula        | 13722076 | Cistothorus palustris                    | 11119744            |
| Bucephala islandica       | 1815210  | Coccothraustes vespertinus               | 13722076            |
| Buteo jamaicensis         | 13722076 | Coccyzus erythropthalmus                 | 9068787             |
| Buteo lagopus             | 13722076 | Colaptes auratus                         | 13722076            |
| Buteo platypterus         | 5839352  | Columba livia                            | 11608173            |
| Buteo regalis             | 6435533  | Contopus cooperi                         | 13721479            |
| Buteo swainsoni           | 13722076 | Contopus sordidulus                      | 13722076            |
| Calamospiza melanocorys   | 11317011 | Corvus brachyrhynchos                    | 13722076            |
| Calcarius Iapponicus      | 13722076 | Corvus corax                             | 2752446             |
| Calcarius mccownii        | 10265268 | Coturnicops                              | 10538219            |
| Calcarius ornatus         | 10739885 | noveboracensis<br>Cvanocitta cristata    | 11922512            |
| Calcarius pictus          | 2463916  | Cyanocitta stelleri                      | 3607665             |
| Calidris alpina           | 10647222 | Cygnus buccinator                        | 5125555             |
| Calidris himantopus       | 2278372  | Cygnus columbianus                       | 13722076            |
| Calidris melanotos        | 11878104 | Cypseloides niger                        | 61845               |
| Calidris minutilla        | 13722076 |                                          | 1885218             |
| Calidris pusilla          | 13722076 | Dendragapus obscurus  Dendroica coronata |                     |
| Callypte anna             | 366108   |                                          | 13722076            |
| Carduelis flammea         | 13722076 | Dendroica magnolia                       | 2903080             |
| Carduelis hornemanni      | 13722076 | Dendroica palmarum                       | 1023306             |
| Carduelis pinus           | 13722076 | Dendroica petechia                       | 13722076            |
| Carduelis tristis         | 13691708 | Dendroica striata                        | 13722076            |
| Carpodacus cassinii       | 1734442  | Dendroica tigrina                        | 536577              |
| Carpodacus purpureus      | 4539959  | Dendroica townsendi                      | 1958805             |
| Cathartes aura            | 11336413 | Dolichonyx oryzivorus                    | 8054967             |
| Catharus fuscescens       | 13722076 | Dryocopus pileatus                       | 3037870             |
| Catharus guttatus         | 13722076 | Dumetella carolinensis                   | 13719380            |
| Catharus minimus          | 200009   | Empidonax alnorum                        | 6882511             |
| Catharus ustulatus        | 13722076 | Empidonax difficilis                     | 15822               |
| Catoptrophorus            | 12961376 | Empidonax flaviventris                   | 7505824             |
| semipalmatus              |          | Empidonax hammondii                      | 2071891             |
| Centrocercus urophasianus | 1703012  | Empidonax minimus                        | 13722076            |
| Certhia americana         | 13722076 | Empidonax oberholseri                    | 4243379             |

| Empidonax occidentalis    | 1565255  | Mergus serrator           | 13722076 |
|---------------------------|----------|---------------------------|----------|
| Empidonax traillii        | 12908540 | Mimus polyglottos         | 1887918  |
| Eremophila alpestris      | 13722076 | Miniotilta varia          | 5109563  |
| Euphagus carolinus        | 13721885 | Molothrus ater            | 13722076 |
| Euphagus cyanocephalus    | 13534785 | Myadestes townsendi       | 9629305  |
| Falcipennis canadensis    | 3086810  | Nucifraga columbiana      | 6922997  |
| Falco columbarius         | 13722076 | Numenius americanus       | 10572292 |
| Falco mexicanus           | 13540956 | Nycticorax nycticorax     | 4624272  |
| Falco peregrinus          | 5731214  | Oporornis agilis          | 1247915  |
| Falco rusticolus          | 13722076 | Oporornis philadelphia    | 60927    |
| Falco sparverius          | 13722076 | Oporornis tolmiei         | 3173024  |
| Fulica americana          | 13722076 | Oxyura jamaicensis        | 11457450 |
| Gallinago delicata        | 13722076 | Pandion haliaetus         | 13722076 |
| Gavia immer               | 13722076 | Passer domesticus         | 13722076 |
| Geothylpis trichas        | 13722076 | Passerculus sandwichensis | 13722076 |
| Glaucidum gnoma           | 4339805  | Passerella iliaca         | 13722076 |
| Grus canadensis           | 13722076 | Passerina amoena          | 3373571  |
| Haliaeetus leucocephalus  | 8959440  | Pelecanus erythrorhynchos | 13722076 |
| Hirundo rustica           | 13722076 | Perdix perdix             | 11977134 |
| Histrionicus histrionicus | 3274849  | Perisoreus canadensis     | 179531   |
| Icteria virens            | 7773880  | Petrochelidon pyrrhonota  | 13722076 |
| Icterus bullockii         | 2355238  | Phalacrocorax auritus     | 13623042 |
| Icterus galbula           | 13080096 | Phalaenoptilus nuttallii  | 999734   |
| Ixoreus naevius           | 3170762  | Phalaropus tricolor       | 13722076 |
| Junco hyemalis            | 13722076 | Phasianus colchicus       | 13248232 |
| Lagopus leucura           | 2824734  | Pheucticus Iudovicianus   | 12808060 |
| Lanius excubitor          | 13722076 | Pheucticus melanocephalus | 9828766  |
| Lanius Iudovicianus       | 13138588 | Pica hudsonia             | 13722076 |
| Larus argentatus          | 13722076 | Picoides arcticus         | 7206233  |
| Larus californicus        | 13722076 | Picoides dorsalis         | 3375596  |
| Larus delawarensis        | 13722076 | Picoides pubescens        | 13722076 |
| Larus philadelphia        | 13722076 | Picoides villosus         | 13722076 |
| Larus pipixcan            | 13722076 | Pinicola enucleator       | 13722076 |
| Leucosticte tephrocotis   | 12153438 | Pipilo maculatus          | 13289411 |
| Limnodromus scolopaceus   | 13722076 | Piranga ludoviciana       | 13722076 |
| Limosa fedoa              | 12410597 | Plectrophenax nivalis     | 13722076 |
| Lophodytes cucullatus     | 6167759  | Podiceps auritus          | 13722076 |
| Loxia curvirostra         | 13722076 | Podiceps grisegena        | 8601792  |
| Loxia leucoptera          | 13722076 | Podiceps nigricollis      | 13722076 |
| Melanerpes lewis          | 2682796  | Podilymbus podiceps       | 13000545 |
| Melanitta fusca           | 10392338 | Poecile atricapilla       | 13722076 |
| Melospiza georgiana       | 1706317  | Poecile gambeli           | 5357113  |
| Melospiza lincolnii       | 13722076 | Poecile hudsonica         | 4137239  |
| Melospiza melodia         | 13722076 | Poecile rufescens         | 1887689  |
| Mergus merganser          | 13722076 | Pooecetes gramineus       | 13722076 |

| Porzana carolina                | 13722076 |
|---------------------------------|----------|
|                                 | 620136   |
| Progne subis Quiscalus quiscula | 12136945 |
| Rallus limicola                 | 9700021  |
| Recurvirostra americana         | 11733902 |
|                                 | 8580231  |
| Regulus calendula               |          |
| Regulus satrapa                 | 6578315  |
| Riparia riparia                 | 13722076 |
| Salpinctes obsoletus            | 7335452  |
| Sayornis phoebe                 | 2961456  |
| Sayornis saya                   | 11351403 |
| Seiurus aurocapillus            | 2856726  |
| Seiurus novemboracensis         | 13722076 |
| Selasphorus rufus               | 3656748  |
| Setophaga rutilla               | 2515772  |
| Sialia currucoides              | 13722076 |
| Sialia mexicana                 | 203278   |
| Sitta canadensis                | 13722076 |
| Sitta carolinensis              | 12994317 |
| Sphyrapicus nuchalis            | 11528540 |
| Sphyrapicus varius              | 2636341  |
| Spizella arborea                | 13722076 |
| Spizella breweri                | 9995126  |
| Spizella pallida                | 13722076 |
| Spizella passerina              | 13722076 |
| Stelgidopteryx serripennis      | 13722076 |
| Stellula caliope                | 2824307  |
| Sterna caspia                   | 1145615  |
| Sterna fosteri                  | 11184873 |
| Sterna hirundo                  | 13722076 |
| strix nebulosa                  | 25641    |
| Strix varia                     | 3883006  |
| Sturnella neglecta              | 13540597 |
| Sturnus vulgaris                | 13722076 |
| Sumia ulula                     | 6666514  |
| Tachycineta bicolor             | 13722076 |
| Tachycineta thalassina          | 11590835 |
| Toxostoma rufum                 | 13364956 |
| Tringa flavipes                 | 13722076 |
| Tringa melanoleuca              | 13722076 |
| Tringa solitaria                | 12003905 |
| Troglodytes aedon               | 13295698 |
| Troglodytes troglodytes         | 1460735  |
| Turdus migratorius              | 13722076 |
| Tympanuchus phasianellus        | 13722076 |

| Tyrannus tyrannus             | 13722076 |
|-------------------------------|----------|
| Tyrannus verticalis           | 11703077 |
| Vermivora celata              | 13722076 |
| Vermivora peregrina           | 12700643 |
| Vermivora ruficapilla         | 372194   |
| Vireo cassinii                | 1126984  |
| Vireo gilvus                  | 13722076 |
| Vireo olivaceus               | 13722076 |
| Vireo philadelphicus          | 10512014 |
| Vireo solitarius              | 3852508  |
| Wilsonia canadensis           | 108194   |
| Wilsonia pusilla              | 13722076 |
| Xanthocephalus xanthocephalus | 13722076 |
| Zenaida macroura              | 13691998 |
| Zonotrichia albicollis        | 13721966 |
| Zonotrichia atricapilla       | 743869   |
| Zonotrichia leucophrys        | 13722076 |
| Zonotrichia querula           | 11787131 |
|                               |          |

#### **Mammals**

| Species Name              | Range in<br>Hectares |                           |          |
|---------------------------|----------------------|---------------------------|----------|
| Alces alces               | 5274264              | Myotis septentrionalis    | 260648   |
| Canis latrans             | 13722076             | Myotis volans             | 12936820 |
| Canis lupus               | 13610350             | Myotis yumanensis         | 1073964  |
| Castor canadensis         | 13722076             | Neotama cinerea           | 5198790  |
| Cervus elaphus            | 5814491              | Neotamias minimus         | 11029397 |
| Clethrionomys gapperi     | 13722076             | Neotamias ruficaudus      | 488024   |
| Dipodomys bursarius       | 3202473              | Ochotona princeps         | 3329513  |
| Eptesicus fucus           | 13722076             | Odocoileus hemionus       | 13722076 |
| Erthizon dorsatum         | 13722076             | Odocoileus virginianus    | 13722076 |
| Euderma maculatum         | 434177               | Ondatra zibethicus        | 13722076 |
| Glaucomys sabrinus        | 7935019              | Onychomys leucogaster     | 10269136 |
| Lasionycteris noctivagans | 13722076             | Oreamnos americanus       | 5876828  |
| Lasiurus blossevillii     | 3952359              | Ovis canadensis           | 9762133  |
| Lasiurus borealis         | 13722076             | Perognathus fasciatus     | 3126613  |
| Lasiurus cinereus         | 13722076             | Peromyscus leucopus       | 2065464  |
| Lemmiscus curtatus        | 11339510             | Peromyscus maniculatus    | 13722076 |
| Lepus americanus          | 9365103              | Phenacomys ungava         | 3777383  |
| Lepus townsendii          | 13509122             | Procyon lotor             | 13219703 |
| Lontra canadensis         | 5693844              | Puma concolor             | 11932388 |
| Lynx canadensis           | 8434258              | Reithrodontomys megalotis | 3553682  |
| Lynx rufus                | 7752476              | Sorex arcticus            | 90194    |
| Marmota caligata          | 3437046              | Sorex cinereus            | 13722076 |
| Marmota flaviventris      | 2859619              | Sorex hoyi                | 5967865  |
| Marmota monax             | 2813157              | Sorex monticolus          | 6233651  |
| Martes americana          | 2669144              | Sorex preblei             | 17195    |
| Martes pennanti           | 1428092              | Sorex vagrans             | 671009   |
| Mephitis mephitis         | 13722076             | Spermophilus columbianus  | 3120267  |
| Microtus longicaudus      | 8311290              | Spermophilus franklinii   | 1118746  |
| Microtus ochrogaster      | 10029                | Spermophilus lateralis    | 3444541  |
| Microtus pennysylvanicus  | 13722076             | Spermophilus richardsonii | 13270148 |
| Microtus richardsoni      | 2582144              | Spermophilus              | 11943703 |
| Mustela erminea           | 9147394              | tridecemlineatus          |          |
| Mustela frenata           | 13722076             | Sylvilagus nuttallii      | 12155606 |
| Mustela nivalis           | 13473118             | Synaptomys borealis       | 5236969  |
| Mustela vison             | 13722076             | Tamiasciurus hudsonicus   | 412      |
| Myotis californicus       | 427                  | Taxidea taxus             | 13217645 |
| Myotis ciliolabrum        | 8652160              | Thomomys talpoides        | 12064247 |
| Myotis evotis             | 13046900             | Ursus arctos              | 10731928 |
| Myotis lucifugus          | 13722076             | Ursus americanus          | 2374668  |

| Vulpes velox    | 11693142 | Zapus princeps | 13722076 |
|-----------------|----------|----------------|----------|
| Vulpes vulpes   | 13722076 |                |          |
| Zapus hudsonius | 5587922  |                |          |

## Reptiles

••••••••••••••••••••

| Species Name          | Range in<br>Hectares |                     |          |
|-----------------------|----------------------|---------------------|----------|
| Charina bottae        | 887933               | Pituophis catenifer | 13028213 |
| Chrysemys picta       | 2994933              | Thamnophis elegans  | 13722076 |
| Crotalus viridis      | 6616467              | Thamnophis radix    | 12129301 |
| Heterodon nasicus     | 5410479              | Thamnophis sirtalis | 8132907  |
| Phrynosoma hernandesi | 3843930              |                     |          |

