Project STRIKE: Swarm Tactical Reconnaissance and Intelligence with Kinetic Efficiency

PARTH BHARWAD

Wednesday, 10th September 2025

presented in partial fulfilment of the requirement for the degree of MSc Computer Science to the School of Engineering, Arts, Science and Technology

SITUATION

Modern battlefields demand real-time intelligence, surveillance, and reconnaissance (ISR)

SITUATION

Modern battlefields demand real-time intelligence, surveillance, and reconnaissance (ISR)

Traditional ISR assets (satellites, UAVs) are expensive, Centralized, slow to respond.

HOW ISR WORKS

Most militaries (including NATO/UK MOD) describe ISR as a **cycle** often called **TCPED**: **Tasking** → Commanders set requirements **Collection** → Sensors gather raw data **Processing** → Raw data is converted into usable form

Exploitation → Analysts interpret the processed data, identifying patterns or threats.

Dissemination → Intelligence is delivered quickly to decisionmakers, effectors (like artillery or aircraft), or other analysts.

How Project Strike Outsmarts Traditional ISR?

Centralization vs. Decentralization

Traditional ISR: Relies on centralized, high value platforms (satellites, AWACS, manned aircraft)

Weakness: A single point of failure disrupt the comms or disable the platform, and ISR collapses

STRIKE Advantage: A swarm is decentralized even if drones are lost, the mission continues

Agility vs. Rigidity

Traditional ISR: Tasking, processing, and dissemination cycles can take minutes to hours

Weakness: Slow to adapt in fluid, high threat environments

STRIKE Advantage: Swarm adapts in real time, dynamically reallocating drones to new tasks (patrol, recon, engage)

Survivability vs. Vulnerability

Traditional ISR: Large, expensive assets are high value targets for SAMs, jamming, or cyber attacks

Weakness: Losing one = catastrophic mission failure

STRIKE Advantage : Swarm resilience number of cheap drones are harder to neutralize than 1 large aircraft

Coverage vs. Blindspot

Traditional ISR: Limited by flight paths, orbits, and sensor range

Weakness: Gaps in surveillance, especially in urban area

STRIKE Advantage: Swarm disperses and blankets an area, providing persistent coverage and automatic gap filling

Intelligence overload vs. Efficiency

Traditional ISR: Produces a flood of data, requires analysts to sift through, Delays decisions

Weakness: Human bottleneck

STRIKE Advantage: Built in Al filtering → drones share processed, prioritized Intelligence instead of raw data. Speeds up decision making.

Counter ISR Capability

Traditional ISR: Not designed to actively contest or deceive enemy ISR.

STRIKE Advantage:

Swarms can:

Overwhelm sensors by presenting multiple moving targets.

Exploit clutter (urban environments, terrain masking).

Deceive enemy ISR by splitting into decoys and real engagement units.

Which countries are already working on it?

USA

Replicator Initiative: A program focused on accelerating the acquisition and fielding of thousands of inexpensive, autonomous drones by August 2025 to counter China's numerical Advantage

Perdix System: A foundational program that has developed over 670 micro drones capable of functioning as a swarm without requiring separate human control for each unit.

DARPA OFFSET: A program that envisions small infantry units using swarms of up to 250 drones and ground systems to conduct missions in urban environments.

Mixed Multi Domain Swarms (MMDS): The UK Defence Science and Technology Laboratory (Dstl) is developing a secure architecture that enables autonomous collaboration between air, land, and maritime robotic systems. The UK is also working on swarm attack technology.

France

France: The **ASSYDUS project** is designed to make a drone swarm appear as a single entity on radar. France also integrates drones into its national defense efforts.

CHINA

Unmanned Centric Doctrine: The People's Liberation Army (PLA) is actively transitioning to a force centered on unmanned systems, where AI is used to make critical battlefield decisions with minimal human oversight

Jiu Tian "Mothership" Drone: A large uncrewed aerial vehicle (UAV) that can act as a mothership to deploy smaller swarms at high speeds and long distances Amphibious

Assault Focus: The PLA's research is specifically focused on using drone swarms in a potential amphibious assault or blockade scenario against Taiwan

MISSION

- Provide fast, resilient, and scalable battlefield awareness.
- Survive and adapt under contested communication environments.
- Demonstrate cost effectiveness compared to legacy ISR assets.

Execution

Simulation Environment

- Python based simulation (NumPy, Matplotlib).
- 200m x 200m grid with obstacles and 1 high value target.
- 50 UAVs operating in swarm.

Swarm Behaviour

- Bio inspired rules: **Cohesion, Alignment, Separation**.
- Finite State Machine: PATROL → RECON → ENGAGE.

Optimization

- Genetic Algorithm (GA) tuned swarm parameters.
- Ran across multiple generations with crossover & mutation.

Evaluation Metrics

- Survivability of drones.
- Target neutralization success.
- Steps taken to neutralize target.
- Distance traveled.

CODE Execution

```
def main():
   """Main function to run the full Project STRIKE pipeline."""
  static obstacles = [Obstacle((50, 50), 10), Obstacle((150, 150), 15)]
  dynamic obstacles = [DynamicObstacle((100, 100), 5, (0.5, 0.5)), DynamicObstacle((10, 190), 8, (-0.2, 0.3))]
  no fly zones = [NoFlyZone((70, 90), (120, 140))]
  threat zones = [ThreatZone((20, 50), (170, 190), energy drain rate=0.5)]
   # --- Step 2: Genetic Algorithm Optimization ---
  print("--- Starting Genetic Algorithm to Find Optimal Weights ---")
  hvt initial pos = np.random.uniform(50, 150, 2)
  ga = GeneticAlgorithm(GA POPULATION SIZE, GA GENERATIONS, GA MUTATION RATE, GA CROSSOVER RATE,
                        hvt initial pos, static obstacles, dynamic obstacles, no fly zones, threat zones)
  best weights = ga.evolve()
  print(f"\n--- Starting {NUM STATISTICAL TRIALS} Statistical Trials ---")
  trial metrics = []
  if os.path.exists(OUTPUT DIR):
      for file in os.listdir(OUTPUT DIR):
          if file.endswith(" metrics.csv") or file.endswith(" log.csv"):
              os.remove(os.path.join(OUTPUT_DIR, file))
   for i in range(NUM STATISTICAL TRIALS):
      hvt = HighValueTarget(np.random.uniform(50, 150, 2))
      sim = Simulation(NUM UAVS, AREA SIZE, hvt, static obstacles, dynamic obstacles, no fly zones, threat zones, best weights)
      metrics = sim.run trial(trial id=i, log to csv=True)
      trial metrics.append(metrics)
      # Save metrics for statistical plotting later
      metrics df = pd.DataFrame([metrics])
      metrics_df.to_csv(os.path.join(OUTPUT_DIR, f'trial_{i} metrics.csv'), index=False)
   avg metrics = pd.DataFrame(trial metrics).mean(numeric only=True)
  print("\n--- Statistical Analysis Complete ---")
  print("Average Performance Metrics over all trials:")
   print(f" Average Survivability Rate: {avg metrics['survivability rate']:.2f}")
                                                               Ln 17, Col 23 Spaces: 4 UTF-8 CRLF {} Python 🔠 3.13.6 @ Go Live Reload
```


RESULTS

RESULTS

RESULTS

RESULTS & FINDINGS

1. Swarm Effectiveness

- Achieved 100% survivability across trials
- Outperformed centralized ISR in adaptability and resilience

2. Algorithm Strengths

- **PSO** → rapid target engagement
- ABC → strong reconnaissance/exploration
- ACO → efficient navigation in cluttered terrain

3. Optimization Impact

- Genetic Algorithm significantly improved efficiency
- Reduced wasted movement and time to neutralization

4. Broader Implications

- Demonstrates swarms as **cost effective**, **scalable ISR assets**
- Raises ethical/legal concerns (autonomy, accountability, escalation)

CONCLUSION

Key Takeaways

- Project STRIKE proved swarms are resilient, efficient, and scalable ISR assets.
- Outperformed centralized ISR in survivability, adaptability, and speed.
- Different algorithms fit different tasks (PSO, ABC, ACO).
- **Genetic Algorithm optimization** improved mission success and efficiency.

Challenges Ahead

- Ethical & legal debates (LAWS, accountability, escalation).
- Technical hurdles: secure comms, real-world deployment.

Final Thought

- Swarm intelligence offers a new paradigm for military ISR
- Fast, resilient, and autonomous but must be developed responsibly.

THE END

