Questions de cours.

- 1. Énoncer le Théorème de Division Euclidienne dans $\mathbb{K}[X]$ et démontrer l'unicité.
- 2. Énoncer et démontrer une caractérisation de l'ordre de multiplicité d'une racine d'un polynôme.
- **3.** En utilisant le fait que \mathbb{C} est algébriquement clos (i.e. tout polynôme non constant admet une racine), donner les irréductibles de $\mathbb{C}[X]$.

1 Arithmétique dans \mathbb{Z}

Exercice 1.1 (*). On suppose que a, b, c sont des entiers relatifs non multiples de 3. Montrer que $a^2 + b^2 + c^2$ est multiple de 3.

Exercice 1.2 (*). Soit $(a,b,c) \in \mathbb{Z}^3$. Si $a \wedge b = 1$, montrer que $a \wedge (bc) = a \wedge c$.

Exercice 1.3 (Nombres de Fermat, \star). Soit $k \in \mathbb{N}^*$. Montrer que si $2^k + 1$ est premier, alors k est une puissance de 2.

Exercice 1.4 (\star) . Soit p un nombre premier et a un entier non divisible par p. Montrer que :

$$\forall k \in \mathbb{N}, \ a^{(p-1)p^k} \equiv 1 \mod p^{k+1}.$$

Exercice 1.5 (*). Trouver le dernier chiffre de l'écriture décimale de $7^{7^7} = 7^{(7^{(7^7)})}$.

Exercice 1.6 (Centrale '86, *). Combien de chiffres y a-t-il dans l'écriture en base 10 de 4444⁴⁴⁴⁴?

2 Polynômes

Exercice 2.1 (*). On considère $P = 2X^3 + 5X^2 + X - 2$.

- 1. Déterminer les racines de P.
- **2.** Résoudre l'équation $2\sin^3\theta + 5\sin^2\theta + \sin\theta 2 = 0$.

Exercice 2.2 (*). Montrer que le polynôme $(X^2 + X + 1)$ divise $(X^{3m+2} + X^{3n+1} + X^{3p})$ pour tout triplet $(m, n, p) \in \mathbb{N}^3$.

Exercice 2.3 (\star) . Soit $(m, n, k) \in \mathbb{N}^3$. En développant l'égalité $(1 + X)^{m+n} = (1 + X)^m (1 + X)^n$, montrer que :

$$\binom{m+n}{k} = \sum_{i+j=k} \binom{m}{i} \binom{n}{j}.$$

Exercice 2.4 (*). Soit $P \in \mathbb{R}[X]$ un polynôme non constant. Montrer que si P est scindé sur \mathbb{R} , alors P' l'est aussi.

Exercice 2.5 (*). Trouver tous les polynômes $P \in \mathbb{R}[X] \setminus \{0\}$ t.q. $P(X^2) = P(X)P(X+1)$.

Exercice 2.6 (*). Soit $n \in \mathbb{N}^*$.

- **1.** Factoriser $P_n = \sum_{k=0}^n X^k \text{ sur } \mathbb{C}$.
- **2.** Calculer $\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n+1}\right)$.

Exercice 2.7 (\star) .

1. Démontrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme $U_n \in \mathbb{R}[X]$ t.q.

$$\forall \theta \in \mathbb{R}, \sin(n\theta) = U_n(\cos\theta)\sin\theta.$$

- **2.** Donner le degré de U_n et son coefficient dominant.
- **3.** Pour $n \ge 2$, déterminer les racines de U_n .
- **4.** Démontrer que :

$$\forall n \in \mathbb{N}, (1 - X^2) U_n'' - 3XU_n' + (n^2 - 1) U_n = 0.$$

Exercice 2.8 (*). Soit $P = X^3 - X - 1$. On note α , β et γ les racines complexes de P. Calculer $\alpha^4 + \beta^4 + \gamma^4$.