Math 459 Lecture 17

Todd Kuffner

Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{k-1} X_{i,k-1} + \varepsilon_i$$

- response variable Y related to predictors/covariates/explanatory variables X_1, \ldots, X_{k-1}
- ▶ observe *n* predictor-response pairs $\{X_{ij}, Y_i\}$, i = 1, ..., n, j = 0, 1, ..., k 1
- $\varepsilon_i \stackrel{iid}{\sim} g(\cdot)$; usually $E(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = \sigma^2$

Model in Matrix Form

$$Y = X\beta + \varepsilon$$

with

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & X_{11} & \cdots & X_{1,k-1} \\ 1 & X_{21} & \cdots & X_{2,k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \cdots & X_{n,k-1} \end{pmatrix},$$

$$\begin{pmatrix} \beta_0 \\ \rho \end{pmatrix} \qquad (\varepsilon_1)$$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-1} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

What this actually means

The random variable Y is a linear combination of the random variables $X_1, \ldots, X_{k-1}, \varepsilon$.

- ▶ often the goal is prediction of $Y \Rightarrow$ (conditional) mean of Y is best predictor under squared-error loss
- \blacktriangleright the conditional distribution Y|X has

$$E(Y|X) = \beta_0 + \sum_{j=1}^{\kappa-1} \beta_j X_j + E(\epsilon|X), \operatorname{Var}(\epsilon|X) = \sigma^2 I_{n \times n}$$

- each unknown parameter β_j represents the expected change in Y per unit change in X_j , when all other predictors are held fixed
- ▶ i.e. β_j is the partial derivative of the conditional mean E(Y|X) w.r.t. X_j , $\beta_j = \partial E(Y|X)/\partial X_j$
- 'linear' means the *parameters* enter linearly

Frequentist Estimation by Least Squares

The least squares estimator is the solution to

$$\min_{\beta} (Y - X\beta)^T (Y - X\beta)$$

and this is equal to

$$\hat{\beta} = (X^T X)^{-1} X^T Y, \ \hat{\sigma}^2 = \frac{(Y - X \hat{\beta})^T (Y - X \hat{\beta})}{n - k}$$

provided $(X^TX)^{-1}$ exists.

• if we assume $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n})$, the likelihood function is

$$L(\beta, \sigma^2; Y, X) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} (Y - X\beta)^T (Y - X\beta)\right)$$

▶ maximizing this is equivalent to the least squares problem

Towards a Bayesian Analysis

When a Bayesian encounters this model, she sees X and Y and immediately thinks there must be some sampling model for each of them:

$$p(X|\psi), p(Y|\theta)$$

but in fact we have a joint density $f(x, y|\psi, \theta)$ and hence a joint likelihood $L(\psi, \theta)$.

- we need a joint prior $p(\psi, \theta)$
- ▶ Bayesians like to assume the distribution of X, $p(X|\psi)$, and hence the parameter ψ , provides no information about $p(Y|X,\theta)$
- ▶ i.e. prior independence of ψ and θ , $p(\psi, \theta) = p(\psi)p(\theta)$

If we assume that $p(\psi, \theta) = p(\psi)p(\theta)$ and, if the likelihood factors, then the posterior distribution factors

$$p(\psi, \theta|X, y) = p(\psi|X)p(\theta|X, y)$$

and the second factor (i.e. the regression model) can be studied by itself without information loss:

$$p(\theta|X,y) \propto p(\theta)p(y|X,\theta)$$

In a fixed design, the Xs are not random, and then p(X) is known (there are no parameters ψ).

Bayesian Linear Regression with Noninformative Prior

Common to use uniform prior on $(\beta, \log \sigma)$, which is the same as

$$p(\beta, \sigma^2|X) \propto \sigma^{-2}$$

Based on the above justification, and to facilitate the use of Gibbs sampling, we factor the joint posterior as

$$p(\beta, \sigma^2 | X, y) = p(\beta | \sigma^2, X, y) p(\sigma^2 | X, y)$$

Start by finding the posterior for β , conditional on σ , then find marginal distribution of σ^2 .

Conditional posterior $\beta | \sigma$

 $\beta|\sigma$ is the exponential of a quadratic form in $\beta\Rightarrow$ conditional posterior

$$\beta | \sigma, X, y \sim \mathcal{N}(\hat{\beta}, (X^T X)^{-1} \sigma^2)$$

which can be seen noting that $\hat{\beta} = (X^T X)^{-1} X^T Y$

Marginal posterior of σ^2

Written as

$$p(\sigma^2|y) = \frac{p(\beta, \sigma^2|X, y)}{p(\beta|\sigma^2, X, y)}$$

which is a scaled inverse- χ^2 so that

$$\sigma^2 \sim \text{Inv-}\chi^2(n-k,s^2)$$

with

$$s^{2} = \frac{1}{n-k} (Y - X\hat{\beta})^{T} (Y - X\hat{\beta})$$

- ▶ marginal posterior of $\beta|X, y$, found by averaging over σ , is multivariate t with (n-k) degrees of freedom (and some covariance matrix)
- ▶ in practice we use MCMC by drawing from σ and then drawing $\beta | \sigma$, so we don't really need to use $\beta | X, y$ explicitly

Is the posterior proper?

The joint posterior $p(\beta, \sigma^2|X, y)$ is proper provided that

- 1. n > k
- $2. \ \operatorname{rank}(X) = k$

Posterior Predictive Density

Common use of regression modeling is prediction of future observation \tilde{y} corresponding to a covariate vector x^* .

• from above we know that \tilde{y} , conditional on the parameters, has distribution

$$\tilde{y}|\beta, \sigma^2, x^* \sim \mathcal{N}(x^*\beta, \sigma)$$

▶ posterior predictive density of \tilde{y} , denoted $p(\tilde{y}|y)$, represented as a *mixture* of these sampling densities $p(\tilde{y}|\beta, \sigma^2)$, averaged over the posterior of β, σ^2 :

$$p(\tilde{y}|y) = \int p(\tilde{y}|\beta, \sigma^2) p(\beta, \sigma^2|y) d\beta d\sigma^2$$

Sampling from the posterior

To sample from $p(\beta, \sigma^2|X, y)$,

- 1. Compute $\hat{\beta}$ and $(X^TX)^{-1}$.
- 2. Compute s^2 .
- 3. Draw σ^2 from scaled inverse- χ^2 distribution.
- 4. Draw β from multivariate normal distribution above.

Gibbs Sampling

If we know the full conditional distributions $p(\beta|\sigma^2, X, Y)$ and $p(\sigma^2|\beta, X, Y)$, we can sample from the joint posterior $p(\beta, \sigma^2|X, Y)$ using the Gibbs sampler:

Initialize
$$\beta_{(1)}$$
, $\sigma^2_{(1)}$
For $t = 1: T$

$$\beta_{(t+1)} \sim p(\beta_{(t)}|\sigma_{(t)}^2, X, Y)$$

 $\sigma_{(t+1)} \sim p(\sigma_{(t)}^2|\beta_{(t+1)}, X, Y)$

END

The puffin data from LearnBayes package

Measurements on breedings of the common puffin on different habits at Great Island, Newfoundland. A data frame with 38 observations on the following 5 variables.

```
Nest nesting frequency (burrows per 9 square meters)
Grass grass cover (percentage)
Soil mean soil depth (in centimeters)
Angle angle of slope (in degrees)
Distance distance from cliff edge (in meters)
```

Frequentist Fit

summary(fit)

```
Call:
```

lm(formula = Nest ~ Grass + Soil + Angle + Distance, data = puffin)

Residuals:

Min 1Q Median 3Q Max -4.0166 -2.1088 0.2293 1.2505 6.9881

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.117840 3.185028 3.177 0.00323 **
Grass -0.007408 0.019459 -0.381 0.70586
Soil 0.209211 0.077238 2.709 0.01062 *
Angle 0.082389 0.077796 1.059 0.29727
Distance -0.366571 0.057473 -6.378 3.18e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.647 on 33 degrees of freedom Multiple R-squared: 0.8792, Adjusted R-squared: 0.8645

Minor detour (the graph package is not on CRAN)

```
source("http://bioconductor.org/biocLite.R")
biocLite(c("graph", "RBGL", "Rgraphviz"))
install.packages("gRain", dependencies=TRUE)
```

Bayesian Fit with MCMCpack

```
library(MCMCpack)
```

Warning: package 'MCMCpack' was built under R version 3.2.4

summary(Bfit)

```
Iterations = 1001:25976
Thinning interval = 25
Number of chains = 1
Sample size per chain = 1000
```

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
(Intercept)	10.083975	3.25933	0.1030689	0.1081777
Grass	-0.006773	0.01968	0.0006224	0.0006627
Soil	0.204445	0.08408	0.0026587	0.0026587
Angle	0.087999	0.08374	0.0026481	0.0026481
Distance	-0.363486	0.06300	0.0019924	0.0021090
sigma2	7.409313	1.92603	0.0609063	0.0609063

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5% (Intercept) 3.86041 7.79296 10.094169 12.364227 16.37203 Grass -0.04390 -0.02070 -0.007058 0.006583 0.03036
```

Posterior Density Plot

What MCMCregress does

Simulates from posterior using Gibbs sampling.

$$y_i = x_i'\beta + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$
$$\beta \sim \mathcal{N}(b_0, B_0^{-1}), \quad \sigma^{-2} \sim \text{Gamma}(\frac{c_0}{2}, \frac{d_0}{2})$$

and β, σ^{-2} assumed to be a priori independent

- ▶ b_0 prior mean for β ; if scalar then all means the same
- default prior precision of β is B0 = 0, equivalent to improper uniform prior on β ; if scalar then it is value times identity matrix
- ▶ $c_0/2$: shape parameter for inverse gamma prior on σ^2
- ▶ $d_0/2$: scale parameter for inverse gamma prior

More details

- \blacktriangleright multivariate normal draw for β
- inverse gamma draw for conditional error variance $\sigma^2 | \beta$
- output is mcmc object (can use with coda)
- ightharpoonup conditional error variance is the first block in the sampler, so only β is initialized

Example using LearnBayes package

Source: N.B. Al-Majed and M.R. Preston (2000). "Factors Influencing the Total Mercury and Methyl Mercury in the Hair of Fishermen in Kuwait," Environmental Pollution, Vol. 109, pp. 239-250 <u>Description</u>: Factors related to mercury levels among fishermen and a control group of non-fishermen.

Fisherman indicator (fisherman)

Age in years (age)

Residence Time in years (restime)

Height in cm (height)

Weight in kg (weight)

Fish meals per week ((fishmlwk)

Parts of fish consumed: 0=none, 1=muscle tissue only, 2=mt and sometimes whole fish, 3=whole fish (fishpart)

Methyl Mercury in mg/g (MeHg)

Total Mercury in mg/g (TotHg)

```
data <- read.csv(file="fishermen_mercury.csv")
attach(data)
head(data)</pre>
```

f	isherman	age	restime	height	weight	${\tt fishmlwk}$	fishpart	MeHg	TotHg
1	1	45	6	175	70	14	2	4.011	4.484
2	1	38	13	173	73	7	1	4.026	4.789
3	1	24	2	168	66	7	2	3.578	3.856
4	1	41	2	183	80	7	1	10.988	11.435
5	1	43	11	175	78	21	1	10.520	10.849
6	1	58	2	176	75	21	1	6.169	6.457

```
par(mfrow = c(2, 2))
plot(jitter(fishpart), MeHg)
plot(jitter(fishmlwk), MeHg)
plot(jitter(fishpart), TotHg)
```

plot(jitter(fishmlwk), TotHg)

Linear model for total mercury against height, weight, age, restime, fishmlwk and fishpart

```
Call:
lm(formula = TotHg ~ age + height + weight + restime + fishmlwk +
   fishpart, x = TRUE, y = TRUE)
Residuals:
   Min
           1Q Median
                         3Q
-4.7487 -1.3973 -0.3171 0.7519 11.0089
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.92133 5.82703 -3.076 0.00257 **
           0.04986 0.03456 1.443 0.15157
age
height
          0.03701 0.03420 1.082 0.28118
weight 0.16790 0.03511 4.782 4.69e-06 ***
restime -0.05791 0.05324 -1.088 0.27874
fishmlwk 0.14380 0.04407 3.263 0.00141 **
fishpart 0.35247 0.32244 1.093 0.27638
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.558 on 128 degrees of freedom
Multiple R-squared: 0.2761, Adjusted R-squared: 0.2422
F-statistic: 8.138 on 6 and 128 DF, p-value: 1.848e-07
```

Using the blinreg function in LearnBayes

```
theta.sample = blinreg(fit$y, fit$x, 5000)
```

Samples from joint posterior, taking the response and design matrix defined in the linear model fit above.

Posterior Summaries

apply(theta.sample\$beta, 2, quantile, c(0.025, 0.5, 0.975))

```
X(Intercept) Xage Xheight Xweight Xrestime
2.5% -29.600940 -0.01720058 -0.03139177 0.09859833 -0.16622606
50% -17.886906 0.05036845 0.03668394 0.16746942 -0.05804612
97.5% -6.308901 0.12037359 0.10586953 0.23673457 0.04725259
Xfishmlwk Xfishpart
2.5% 0.0564391 -0.2776243
50% 0.1436992 0.3575589
97.5% 0.2287748 0.9904738
```

quantile(theta.sample\$sigma, c(0.025, 0.5, 0.975))

```
2.5% 50% 97.5%
2.279657 2.562344 2.925803
```