Electiva Bases de datos Ensambles

Jimmy Mateo Guerrero¹

¹Departamento de Sistemas Facultad de Ingeniería

Contenido

Ensambles

2 Bagging

- Conjunto de modelos que se usan juntos como un meta modelo.
- Usar conocimiento de distintas fuentes al tomar decisiones.

- Comité de expertos:
 - muchos elementos
 - todos con alto conocimiento
 - todos sobre el mismo tema
 - votan

- Dos componentes base
 - Un método para seleccionar o construir los miembros
 - Distintos datasets x distintos modelos x distintas configuraciones
 - Un método para combinar las decisiones
 - Votación simple, votación ponderada, promedio, función específica, selectividad . . .

- Ensambles Planos:
 - Muchos expertos, todos buenos.
 - Necesito que sean lo mejor posible individualmente (De lo contrario, usualmente no sirven.).
 - Pero necesito que opinen distinto en algunos casos (Si todos opinan siempre igual... me quedo con uno solo!).

- Un aprendiz se dice inestable si el clasificador que produce sufre cambios importantes ante pequeñas variaciones en los datos de entrenamiento.
 - Inestables: árbol de decisiones, redes neuronales.
 - Estables: La regresión lineal, el vecino más cercano.
- Subsampling es mejor para los alumnos inestables.

- Existen dos tipos de algoritmos de votación:
 - aquellos que cambian adaptativamente la distribución del conjunto de entrenamiento basado en el desempeño de clasificadores anteriores (boosting).
 - y los que no (como en Bagging).

Bagging

- Bootstrap aggregating (Breiman 96)
- Clasificadores de votos generados por diferentes muestras de bootstrap (réplicas)
- Se generan T muestras de bootstrap B1, B2, ..., BT y se construye un Ci clasificador a partir de cada muestra de bootstrap Bi
- Un último clasificador C * se construye a partir de C1, C2, ..., CT cuya salida es la clase predicha mas frecuente o votada por los clasificadores.

Bagging

- Boosting (Schapire 90), AdaBoost M1 (Freund y Schapire 96)
- Genera los clasificadores secuencialmente, mientras que Bagging puede generarlos en paralelo.
- AdaBoost cambia los pesos de las instancias de entrenamiento proporcionadas como entrada para cada inductor en función de los clasificadores que se construyeron previamente.
- El objetivo es obligar al inductor a minimizar el error esperado sobre diferentes distribuciones de entrada.
- C * = votación ponderada. El peso de cada classfier depende de su rendimiento en el conjunto de entrenamiento utilizado para construir

- Boosting: buscar nuevos modelos para las instancias mal clasificadas por los anteriores.
- Fuerza al algoritmo a centrarse en los ejemplos mal clasificados por las hipótesis anteriores.
- Las instancias incorrectas son ponderadas por un factor inversamente proporcional al error en el conjunto de entrenamiento, es decir, 1/(2Ei). Pequeños errores de entrenamiento, como $0.1\,\%$, harán que los pesos crezcan en varios órdenes de magnitud.

Bibliografía I

Aurélien Géron

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Publisher: O'Reilly Media, Year: 2017

Jake VanderPlas.

Python Data Science Handbook: Essential Tools for Working with Data

O'Reilly Media, Year: 2016

Brett Lantz.

Machine learning with R Packt Publishing, Year: 2013