5.2 Homogeneous Linear Systems

When looking for solutions for a homogeneous linear system with constant coefficients, we use a similar technique as we did for general homogeneous linear equations with constant coefficients. Namely, we try to find solution vectors of the form

$$\mathbf{X} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} e^{\lambda t} = \mathbf{K} e^{\lambda t}.$$

If X, as above, is a solution vector of $\mathbf{X}' = \mathbf{A}\mathbf{X}$, then $\mathbf{X}' = \mathbf{K}\lambda e^{\lambda t}$, giving us

$$\mathbf{K}\lambda e^{\lambda t} = \mathbf{A}\mathbf{K}e^{\lambda t} \rightarrow \lambda \mathbf{K} = \mathbf{A}\mathbf{K} \rightarrow \mathbf{A}\mathbf{K} - \lambda \mathbf{K} = \mathbf{0}.$$

Since $\mathbf{K} = \mathbf{I}\mathbf{K}$, this last equation is the same as

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K} = \mathbf{0}.$$

In order for this system to have a non-trivial solution (i.e. $K \neq 0$), we must have

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

This polynomial equation in λ is called the **characteristic equation** of the matrix \mathbf{A} ; its solutions are the **eigenvalues** of \mathbf{A} ; a solution $\mathbf{K} \neq \mathbf{0}$ corresponding to an eigenvalue λ is called an **eigenvector** of \mathbf{A} . A solution to the homogeneous system is then $\mathbf{X} = \mathbf{K}e^{\lambda t}$. Much like in previous work, there are three cases to discuss: real and distinct eigenvalues, repeated eigenvalues, and complex eigenvalues.

• Distinct Real Eigenvalues:

Theorem: General Solution - Homogeneous System (Distinct Eigenvalues)

Let $\lambda_1, \lambda_2, ..., \lambda_n$ be n distinct eigenvalues of the coefficient matrix \mathbf{A} of the homogeneous linear system, and let $\mathbf{K}_1, \mathbf{K}_2, ..., \mathbf{K}_n$ be the corresponding eigenvectors. Then the general solution of the homogeneous system on the interval $(-\infty, \infty)$ is

$$\mathbf{X} = c_1 \mathbf{K_1} e^{\lambda_1 t} + c_2 \mathbf{K_2} e^{\lambda_2 t} + \dots + c_n \mathbf{K_n} e^{\lambda_n t}.$$

• Example: Solve

$$\frac{dx}{dt} = 2x + 3y$$
$$\frac{dy}{dt} = 2x + y .$$

Solution: From the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$$

we get eigenvalues of $\lambda_1=-1$ and $\lambda_2=4$.

For $\lambda_1 = -1$, we get

$$(2+1)k_1 + 3k_2 = 0$$

$$2k_1 + (1+1)k_2 = 0.$$

Solving the system, we get that $k_1 = -k_2$. If we let $k_2 = -1$, we get the eigenvector

$$\mathbf{K_1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

For $\lambda_2 = 4$, we get

$$(2-4)k_1 + 3k_2 = 0$$

$$2k_1 + (1-4)k_2 = 0.$$

Solving the system, we get that $k_1 = \frac{3}{2}k_2$. If we let $k_2 = 2$, we get the eigenvector

$$\mathbf{K_2} = \binom{3}{2}.$$

Therefore the general solution is

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}.$$

While this solution is equivalent to the solution

$$x(t) = c_1 e^{-t} + 3c_2 e^{4t}, y(t) = -c_1 e^{-t} + 2c_2 e^{4t},$$

we tend to leave our solutions in matrix form, which gives us a more condensed form.

*When solving for the eigenvectors, we will always get a free variable, which we can let be any non-zero number. This means that the eigenvector for a specific eigenvalue is not unique. However, c_1 and c_2 in the general solution will "absorb" any difference that may come from our choice of eigenvector.

When dealing with a system of more than 2 equations, it is typical to use Gauss-Jordan elimination to find eigenvectors.

Example: Solve

$$x' = -4x + y + z$$

$$y' = x + 5y - z$$
.

$$z' = y - 3z$$

Solution: From the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -4 - \lambda & 1 & 1 \\ 1 & 5 - \lambda & -1 \\ 0 & 1 & -3 - \lambda \end{vmatrix} = -(\lambda + 3)(\lambda + 4)(\lambda - 5) = 0$$

we get eigenvalues of $\lambda_1=-3$, $\lambda_2=-4$, and $\lambda_3=5$.

For $\lambda_1 = -3$, we get

$$(\mathbf{A} + 3\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 8 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1 - k_3 = 0$ and $k_2 = 0$. If we let $k_3 = 1$, then we get the eigenvector

$$\mathbf{K_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Similarly, for $\lambda_2 = -4$, we get

$$(\mathbf{A} + 4\mathbf{I}|\mathbf{0}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 9 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -10 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1 - 10k_3 = 0$ and $k_2 + k_3 = 0$. If we let $k_3 = 1$, then we get the eigenvector

$$\mathbf{K_2} = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix}.$$

Last, for $\lambda_3 = 5$, we get

$$(\mathbf{A} - 5\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -9 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1 - k_3 = 0$ and $k_2 - 8k_3 = 0$. If we let $k_3 = 1$, then we get the eigenvector

$$\mathbf{K_3} = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix}.$$

Therefore the general solution is

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t} + c_3 \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}.$$

• Repeated Eigenvalues:

If m is a positive integer and $(\lambda - \lambda_1)^m$ is a factor of the characteristic equation, but $(\lambda - \lambda_1)^{m+1}$ is not, then λ_1 is said to be an eigenvalue of multiplicity m. When this happens, we have two cases.

Case I: We can find m linearly independent eigenvectors $\mathbf{K}_1, \mathbf{K}_2, ..., \mathbf{K}_m$ corresponding to our eigenvalue. In this case our general solution will contain

$$c_1\mathbf{K}_1e^{\lambda_1t} + c_2\mathbf{K}_2e^{\lambda_1t} + \dots + c_m\mathbf{K}_me^{\lambda_1t}$$

Case II: We can only find one eigenvector corresponding to our eigenvalue. Then we can find m linearly independent solutions of the form

$$\begin{split} \mathbf{X}_{1} &= \mathbf{K}_{11} e^{\lambda_{1} t} \\ \mathbf{X}_{2} &= \mathbf{K}_{21} t e^{\lambda_{1} t} + \mathbf{K}_{22} e^{\lambda_{1} t} \\ &\vdots \\ \mathbf{X}_{m} &= \mathbf{K}_{m1} \frac{t^{m-1}}{(m-1)!} e^{\lambda_{1} t} + \mathbf{K}_{m2} \frac{t^{m-2}}{(m-2)!} e^{\lambda_{1} t} + \dots + \mathbf{K}_{mm} e^{\lambda_{1} t}. \end{split}$$

Looking at a basic case, suppose that λ_1 is an eigenvector of multiplicity two and that there is only one eigenvector associated. Then a second solution of the form

$$\mathbf{X}_2 = \mathbf{K}te^{\lambda_1 t} + \mathbf{P}e^{\lambda_1 t}.$$

To find K and P, we substitute this solution into our system and simplify to get

$$(\mathbf{A}\mathbf{K} - \lambda_1 \mathbf{I})te^{\lambda_1 t} + (\mathbf{A}\mathbf{P} - \lambda_1 \mathbf{P} - \mathbf{K})e^{\lambda_1 t} = \mathbf{0}.$$

Since this holds for all values of t, we must have that

$$(\mathbf{AK} - \lambda_1 \mathbf{I}) = \mathbf{0}, \qquad (\mathbf{AP} - \lambda_1 \mathbf{P}) = \mathbf{K}.$$

*The first equation states that **K** must be an eigenvector associated with λ_1 , so we only need to solve the second equation for **P**.

• Example: Solve

$$\mathbf{X}' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{X}.$$

Solution: From the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = -(\lambda + 1)^2(\lambda - 5) = 0$$

we get eigenvalues of $\lambda_1=\lambda_2=-1$, and $\lambda_3=5$.

For $\lambda_1=\lambda_2=-1$, we get

$$(\mathbf{A} + \mathbf{I} | \mathbf{0}) = \begin{pmatrix} 2 & -2 & 2 & 0 \\ -2 & 2 & -2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1-k_2+k_3=0$. Since we only have one equation, and three known variables, we have two free variables. If we let $k_2=1, k_3=0$, then we get $k_1=1$. If we let $k_2=0, k_3=1$, then we get $k_1=-1$. This gives us two eigenvectors

$$\mathbf{K_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{K_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Since neither eigenvector is a constant multiple of the other, we have two linearly independent eigenvectors.

For $\lambda_3 = 5$, we go through the normal process and get

$$(\mathbf{A} + 5\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -4 & -2 & 2 & 0 \\ -2 & -4 & -2 & 0 \\ 2 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1 - k_3 = 0$ and $k_2 + k_3 = 0$. If we let $k_3 = 1$, then we get the eigenvector

$$\mathbf{K_3} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

Therefore the general solution is

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} e^{5t}.$$

Example: Solve

$$\mathbf{X}' = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} \mathbf{X}.$$

Solution: From the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -18 \\ 2 & -9 - \lambda \end{vmatrix} = (\lambda + 3)^2 = 0$$

we get eigenvalues of $\lambda_1 = \lambda_2 = -3$.

For $\lambda_1 = \lambda_2 = -3$, we get

$$(\mathbf{A} + 3\mathbf{I}|\mathbf{0}) = \begin{pmatrix} 6 & -18 & 0 \\ 2 & -6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $k_1 - 3k_2 = 0$. If we let $k_2 = 1$, then we get the eigenvector

$$\mathbf{K_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
.

Since there was only one free variable, we cannot find another linearly independent eigenvector. Therefore, we need to find a second solution of the form

$$\mathbf{X}_2 = \mathbf{K}te^{\lambda_1 t} + \mathbf{P}e^{\lambda_1 t}.$$

By earlier work, we showed $\mathbf{K}=\mathbf{K_1}$, so we only need to find \mathbf{P} . Using $(\mathbf{AP}-\lambda_1\mathbf{P})=\mathbf{K}$, we get

$$(\mathbf{A} + 3\mathbf{I}|\mathbf{K}) = \begin{pmatrix} 6 & -18 & 3 \\ 2 & -6 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -6 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Therefore, $2p_1 - 6p_2 = 1$. If we let $p_1 = 1/2$, then we get that $p_2 = 0$, giving us

$$\mathbf{P} = \binom{1/2}{0}.$$

Hence, our second solution is

$$\mathbf{X}_2 = {3 \choose 1} t e^{-3t} + {1/2 \choose 0} e^{-3t},$$

and the general solution is

$$\mathbf{X} = c_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t} + c_2 \left[\begin{pmatrix} 3 \\ 1 \end{pmatrix} t e^{-3t} + \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e^{-3t} \right].$$

For a case where we have an eigenvalue of multiplicity 3, where we can only find one eigenvector, we follow a similar pattern and get a third solution of

$$\mathbf{X}_3 = \mathbf{K} \frac{t^2}{2} e^{\lambda_1 t} + \mathbf{P} t e^{\lambda_1 t} + \mathbf{Q} e^{\lambda_1 t},$$

where

$$(\mathbf{A}\mathbf{K} - \lambda_1 \mathbf{I}) = \mathbf{0}, \qquad (\mathbf{A}\mathbf{P} - \lambda_1 \mathbf{P}) = \mathbf{K}, \qquad (\mathbf{A}\mathbf{Q} - \lambda_1 \mathbf{Q}) = \mathbf{P}.$$

*For cases where the multiplicity of λ_1 is $m \geq 3$, it may be possible to find k < m linearly independent eigenvectors. In this case, we would have to produce m-k other linearly independent solutions like above.

Complex Eigenvalues:

Theorem: Solutions Corresponding to a Complex Eigenvalue

Let **A** be the coefficient matrix with real entries of a homogeneous systems of equations, and let \mathbf{K}_1 be an eigenvector corresponding to the complex eigenvalue $\lambda_1 = \alpha + i\beta$. Then

$$\mathbf{K}_1 e^{\lambda_1 t}$$
 and $\overline{\mathbf{K}_1} e^{\overline{\lambda_1} t}$

are solutions.

Much like in other cases, it is desirable to rewrite the solution in terms of real functions. To do this, we once again employ Euler's formula to write

$$\mathbf{K}_1 e^{(\alpha + \beta i)t} = \mathbf{K}_1 e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\overline{\mathbf{K}_1}e^{(\alpha-\beta i)t} = \overline{\mathbf{K}_1}e^{\alpha t}(\cos\beta t - i\sin\beta t).$$

By combining these two solutions together, in a similar fashion as before, we end up with a simplified set of solutions.

Theorem: Real Solutions Corresponding to a Complex Eigenvalue

Let $\lambda_1=\alpha+\beta i$ be a complex eigenvalue of the coefficient matrix ${\bf A}$ in the homogeneous systems of equations. Let ${\bf K}_1$ be an eigenvector corresponding to the complex eigenvalue $\lambda_1=\alpha+i\beta$ and let

$$\mathbf{B}_1 = \frac{1}{2}(\mathbf{K}_1 + \overline{\mathbf{K}}_1), \qquad \mathbf{B}_2 = \frac{i}{2}(-\mathbf{K}_1 + \overline{\mathbf{K}}_1).$$

Then

$$\mathbf{X}_1 = [\mathbf{B}_1 \cos \beta t - \mathbf{B}_2 \sin \beta t] e^{\alpha t}$$
 and $\mathbf{X}_2 = [\mathbf{B}_2 \cos \beta t + \mathbf{B}_1 \sin \beta t] e^{\alpha t}$ are linearly independent solutions on $(-\infty, \infty)$.

*Since \mathbf{B}_1 and \mathbf{B}_2 represent the real and imaginary parts of \mathbf{K}_1 , respectively, we often denote them by $\mathbf{B}_1 = Re(\mathbf{K}_1)$ and $\mathbf{B}_2 = Im(\mathbf{K}_1)$.

• Example: Solve

$$\mathbf{X}' = \begin{pmatrix} 2 & 8 \\ -1 & -2 \end{pmatrix} \mathbf{X}.$$

Solution: From the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 8 \\ -1 & -2 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0$$

we get eigenvalues of $\lambda_1=2i,\ \lambda_2=-2i.$ When $\lambda=2i,$ we get the system

$$(2-2i)k_1 + 8k_2 = 0$$

$$-k_1 + (-2 - 2i)k_2 = 0.$$

This means that $k_1 = (-2 - 2i)k_2$. If we let $k_2 = 1$, we get

$$\mathbf{K}_1 = \begin{pmatrix} -2 - 2i \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} + i \begin{pmatrix} -2 \\ 0 \end{pmatrix}.$$

Therefore the general solution is

$$\mathbf{X} = c_1 \left[{\binom{-2}{1}} \cos 2t - {\binom{-2}{0}} \sin 2t \right] + c_2 \left[{\binom{-2}{0}} \cos 2t + {\binom{-2}{1}} \sin 2t \right].$$

*We did not have to choose λ_1 when looking for our eigenvector. The process would work just as well starting with λ_2 . However, it is common practice to choose the eigenvalue with $\beta>0$ so that we do not have negative arguments inside the trig functions.

*Note: while it can be done, it is generally not advised to use row-reduction to solve a system involving complex values.

While we have explored solving homogeneous first-order systems of linear equations, we can adapt our techniques to solve second-order systems of the form $\mathbf{X}'' = \mathbf{A}\mathbf{X}$. For the base case where we have two equations in terms of x_1 and x_2 , we can introduce two new variables $x_3 = x_1'$ and $x_4 = x_2'$. This give us the larger system

$$\mathbf{X}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{A} & 0 & 0 \\ & 0 & 0 \end{pmatrix} \mathbf{X}.$$

However, since this method doubles the number of variables, we can very quickly produce very large systems.