

X10 RF codes

www.rfxcom.com

1. Table of Contents

1. Tab	ole of Contents	2
	O RF formats	
2.1.	X10 standard - bit definitions	3
2.2.	X10 security format	4
	RFXSensor	
2.4.	Digimax:	6
2.5.	X10 PC Remote format	7
3. Cop	pyright notice	7
-		

2. X10 RF formats

2.1. X10 standard - bit definitions

```
bit 7 6 5 4 3 2 1 0
Byte 1
                нннн0 | 0 0
                0 1 1 0
                0 1 1 1 L-- bit4 of Unit number
                0 1 0 0
            C
            D
               0 1 0 1
            Ε
               1 0 0 0
            F
               1 0 0 1
            G
               1 0 1 0
            Н
               1 0 1 1
            I
               1 1 1 0
            J
               1 1 1 1
            K
               1 1 0 0
               1 1 0 1
            L
               0 0 0 0
            M
               0 0 0 1
            Ν
               0 0 1 0
            0
               0 0 1 1
            P
                H H H H = House code
Byte 2 is complement of Byte 1
            bit 7 6 5 4 3 2 1 0
Byte 3
                     | L----- bit1 of Unit number
                  L----- bit0 of Unit number
                 | L----- 1=Off command, 0=On command
                | L----- bit2 of Unit number
                L----- 1=Dim or Bright
With a Dim, Bright, All Units On or All Units Off command (bit7=1), the
unit numbers are not used.
The last On or Off command indicates which unit will dim or bright.
                 = 0x98
    Dim
    Bright
                 = 0x88
    All Lights On = 0x90
    All Lights Off= 0x80
To assemble the unit number:
  (Byte 1 bit 2, Byte 3 bit 6, bit 3, bit 4) + 1
Byte 4 is complement of Byte 3
NOTE: in 32 bits, standard X10 mode the bytes are transmitted as:
    Received order
                            Byte 1 Byte 2 Byte 3 Byte 4
    Bytes changed of position Byte 3 Byte 4 Byte 1 Byte 2
    Bits are changed 7-0 to 0-7 for all 4 bytes
```

2.2. X10 security format

```
Byte 1 is device address

Byte 2 lower nibble is complement of Byte 1, upper nibble is Byte 1

Byte 3 is the message code

Byte 4 is complement of Byte 3

Byte 5 is a random number (additional address code to Byte 1)

Byte 6 bit 7 is even parity bit of Byte 5
```

Byte 3 message codes are:

X10	Rec.	command	SH624	KR10	DS10	DS90	MS10	MS20	MS90	DM10	SD90	Digimax
0x00	0x00	ALERT (max delay)			X	X						
0x80	0x01	ALERT (bat low, max)			Х							
0x20	0x04	ALERT			Х	Х					Х	
0xA0	0x05	ALERT (battery low)			Х						Х	
0x01	0x80	NORMAL (max delay)			Х	Х						
0x81	0x81	NORMAL (bat low, max)			Х							
0x21		NORMAL			X	X					Х	
0xA1	0x85	NORMAL(battery low)			X						Х	
0x02	0x40	ALERT+Tamper (max delay)				X						
0x22	0x44	ALERT+Tamper				X						
0x03	0xC0	NORMAL+Tamper (max delay)				Х						
0x23	0xC4	NORMAL+Tamper				X						
0x30	0x0C	ALERT					X	X	X			
0x31	0x8C	NORMAL					X	X	Х			
0x04	0x20	Dark sensor						Х				
0x32	0x4C	ALERT+Tamper							Х			
0x33	0xCC	NORMAL+Tamper							X			
0x04	0x02	ARM AWAY (max)	X									
0x41	0x82	DISARM	Х									
0x42	0x42	Lights On	X									
0x43	0xC2	Lights Off	X									
0x44	0x22	PANIC	X									
0x50	0x0A	ARM HOME (max)	X									
0x60	0x06	ARM AWAY (min)	X	X								
0x61	0x86	DISARM		X								
0x62	0x46	Light On		X								
0x63	0xC6	Light Off		X								
0x64	0x26			X							Х	
0x70	0x0E	ARM HOME (min)	X									
0xC0	0x03	PANIC	Х									
0x38	0x1C	-										Х
0xD4	0x2B	Temp > Set										X
0x07	0xE0	MOTION								Х		
0x0F	0xF0	DARKNESS DETECTED				-				Х		
0x1F	0xF8	LIGHT DETECTED								Х		

NOTE: in 32 bits, standard X10 mode the bytes are transmitted as:
Received order Byte 1 Byte 2 Byte 3 Byte 4
Bytes changed of position Byte 3 Byte 4 Byte 1 Byte 2
Bits are changed 7-0 to 0-7 for all 4 bytes

2.3. RFXSensor

```
Message examples:
01F11607 RFXSensor Temperature sensor addr:01F1 ACRF addr:1 Temperature = 22 deg.
00F01384 RFXSensor Temperature sensor addr:00F0 ACRF addr:0 Temperature = 19.5 deg.
FF0F8118 RFXSensor Device addr:FF0F ACRF addr:FF Error: No 1-Wire device connected
The format is:
Message length 32 bits (decimal)
   □ 1<sup>st</sup> address byte.
   □ 2<sup>nd</sup> address byte.
       This is byte 1 with the complement of the upper nibble (bit 7-4).
       1 byte measured temperature /humidity etc in hex if byte 4-bit 4 is 0
          info or error code present
                                                          if byte 4-bit 4 is 1
          info codes:
              01 = sensor addresses incremented
              02 = Low Voltage detected (not yet implemented)
          error codes:
              81 = no 1-wire device connected
              82 = 1-Wire ROM CRC error
              83 = 1-Wire device connected is not a DS1820
              84 = no end of read signal received from 1-Wire device
              85 = 1-Wire scratchpad CRC error
       Temperature + sensor type / info-error flag / parity
       3 bits sensor type:
              000 = temperature sensor (MSB = 0.5 degrees bit off)
              100 = temperature sensor (MSB = 0.5 degrees bit on)
              001 = RFU (humidity sensor)
              010 = RFU (pressure sensor)
              011 = RFU
              101 = RFU
              110 = RFU
              111 = RFU
       1 bit = info-error flag
       4bits parity, complement of:
              byte 1 bit 7654 + byte 1 bit 3210 + byte 2 bit 7654 + byte 2 bit 3210+
              byte 3 bit 7654 + byte 3 bit 3210 + byte 4 bit 7654
         is 1<sup>st</sup> byte of sensor address
Byte 1
Byte 2
         is 2<sup>nd</sup> byte of sensor address
Byte 3
         measured temperature / humidity etc. or error/info code
         bit7 = 0.5 degrees bit if a temperature sensor, bit 7-5 is the sensor type,
Byte 4
         bit 4 is error flag, bit 3-0 is 4 bits parity
```

2.4. Digimax:

```
Message example:
2C 186B 14 15 16 5
                       Digimax addr:186B Temp<Set Temp:21 Set:22 bits=44
The format is:
Message length 44 bytes (decimal)
   1. 2 bytes address.
      This is really a 16 bits address and the 2^{nd} byte is not a complement
      of the 1st byte.
      Addresses I have seen are AC93, 455C, 186B
   2. 4 bits status
         a. xx00 device has no set temperature (set temp always 0x00)
         b. xx01 demand for heat
         c. xx10 no demand for heat
         d. xx11 initializing
   3. 4 bits parity over address and status
      Formula to calculate the 4 bits parity is:
      complement (addrl bit 7 6 5 4 + addrl bit 3 2 1 0 + addr2 bit 7 6 5
      4 + addr2 bit 3 2 1 0 + status bit 7 6 5 4)
   4. 1 byte measured temperature in hex
   5. 1 byte
      bit 7
      bit 6 : 0 = heating mode, 1 = cooling mode
      bit 5-0: set temperature in hex
   6. 4 bits parity over measured temperature and set temperature.
      Formula to calculate the 4 bits parity is:
      complement (temp bit 7 6 5 4 + temp bit 3 2 1 0 + set bit 7 6 5 4 +
      set bit 3 2 1 0)
Byte 1 is 1<sup>st</sup> byte device address
Byte 2 is 2<sup>nd</sup> byte device address
Byte 3 bit 7-4 is the status
       Bit 3-0 4 bits parity
Byte 4 measured temp
Byte 5 heating/cooling mode and set temp
Byte 6 bit 7-4 4 bits parity.
```

2.5. X10 PC Remote format

```
Byte 1 is &HEE

Byte 2 is complement of Byte 1

Byte 3 is the message code

Byte 4 is complement of Byte 3
```

Byte 3 message codes are:

	shift	command							
0xD4		PC							
0x02		0							
0x82	0xD1	1 (shift MP3)							
0x42	0xD2	2 (shift DVD)							
0xC2	0xD3	3 (shift CD)							
0x22	0xD4	4							
0xA2	0xD5	5							
0x62		6							
0xE2		7							
0x12		8							
0x92		9							
0xC0		CH-							
0x40		CH+							
oxE0		VOL-							
0x60		VOL+							
0xA0		MUTE							
0x3A		INFO							
0x38		REW							
0xB8		FF							
0xB0		PLAY							
0x72		PAUSE							
0x70		STOP							
0xB6		MENU							
0xFF		REC							
0xC9		EXIT							
0xD8	0xD9	TEXT							
0xF2	0xD7	TELETEXT							
0xBA		A+B							
0x52	0xD6	ENT							

```
NOTE: in 32 bits, standard X10 mode the bytes are transmitted as:
Received order Byte 1 Byte 2 Byte 3 Byte 4
Bytes changed of position Byte 3 Byte 4 Byte 1 Byte 2
Bits are changed 7-0 to 0-7 for all 4 bytes
```

3. Copyright notice

All materials contained in this document are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of RFXCOM.