La fonction exponentielle

1^{re} Spécialité mathématiquesAnalyse - Démonstrations

I. Généralités sur la fonction exponentielle

2. Propriétés algébriques

Démonstration (lemme) :

Pour tout réel x, on pose $\varphi(x) = \exp(x) \times \exp(-x)$.

Calculons $\varphi'(x) = u'(x)v(x) + u(x)v'(x)$.

avec
$$u(x) = \exp(x)$$
 $u'(x) = \exp(x)$ $v(x) = \exp(-x)$ $v'(x) = -\exp(-x)$ (du type $ag'(ax+b)$)

Donc
$$\varphi'(x) = \exp(x) \exp(-x) + \exp(x)(-\exp(-x))$$

= $\exp(x) \exp(-x) - \exp(x) \exp(-x)$
= 0

Donc φ est une fonction constante.

En particulier
$$\varphi(x)=\varphi(0)$$
 pour tout réel x
$$=\exp(0)\times\exp(0)$$

$$=1\times 1=1$$

Donc $\exp(x) \exp(-x) = 1$ pour tout réel x.

Donc $\exp(x) \neq 0$ pour tout réel x.

Démonstration (relation fonctionnelle) :

Soit $y \in \mathbb{R}$. Soit $f: x \mapsto \frac{\exp(x+y)}{\exp(x)}$ définie sur \mathbb{R} car $\exp(x) \neq 0$ pour tout x. Calculons f'(x).

Posons $u(x) = \exp(x+y)$ $u'(x) = \exp(x+y)$ (du type ag'(ax+b)) $v(x) = \exp(x)$ $v'(x) = \exp(x)$

Donc
$$f'(x) = \frac{\exp(x+y)\exp(x) - \exp(x+y)\exp(x)}{(\exp(x))^2}$$

= 0

Donc f est une fonction constante sur \mathbb{R} .

Donc
$$f(x) = f(0)$$

= $\frac{\exp(y)}{\exp(0)}$
= $\exp(y)$ pour tout $x \in \mathbb{R}$.

Donc $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$ d'où $\exp(x+y) = \exp(x) \times \exp(y)$ pour tout réels x et y.

Démonstrations (conséquences de la relation fonctionnelle)

• Pour $\exp(-x)$:

$$\exp(x + (-x)) = \exp(x) \times \exp(-x)$$

$$\Leftrightarrow \exp(0) = \exp(x) \times \exp(-x)$$

$$\Leftrightarrow 1 = \exp(x) \times \exp(-x)$$

$$\Leftrightarrow \exp(-x) = \frac{1}{\exp(x)}$$

• Pour $\exp(x-y)$:

$$\exp(x - y) = \exp(x + (-y))$$

$$= \exp(x) \times \exp(-y)$$

$$= \exp(x) \times \frac{1}{\exp(y)}$$

$$= \frac{\exp(x)}{\exp(y)}$$

• Pour $\exp(nx)$:

$$\exp(nx) = \exp(\underbrace{x + x + \dots + x}_{n \text{ fois}}) \text{ avec } n \in \mathbb{N}$$

$$= \underbrace{\exp(x) \times \exp(x) \times \dots \times \exp(x)}_{n \text{ fois}}$$

$$= (\exp(x))^n$$

4. Lien avec les suites géométriques

<u>Démonstration</u>:

Soit a un réel.

Soit u la suite définie pour tout entier naturel n par $u_n=e^{na}$.

Calculons
$$\frac{u_{n+1}}{u_n} = \frac{e^{(n+1)a}}{e^{na}}$$
$$= e^{na+a-na}$$
$$= e^a$$

Donc la suite u est géométrique de raison $q = e^a$.

II. Étude et applications de la fonction exponentielle

1. Signe de la fonction exponentielle

<u>Démonstration</u>:

Pour tout $x \in \mathbb{R}$, $e^x = (e^{\frac{x}{2}})^2$. Donc $e^x > 0$ pour tout $x \in \mathbb{R}$.

2. Variations de la fonction exponentielle

Démonstration :

Pour tout $x \in \mathbb{R}$, $\exp'(x) = \exp(x)$ et $\exp(x) > 0$. Donc la fonction \exp est strictement croissante sur \mathbb{R} .

4. Fonctions définies par $f(t)=e^{kt}$ avec $k\in\mathbb{R}$

$\underline{\mathsf{D\'emonstration}}:$

$$\overline{\text{On a } k \in \mathbb{R}. \text{ Soit } f: t \mapsto e^{kt}.}$$
 Calculons $f'(t)$.

On a
$$f:t\mapsto kt\mapsto e^{kt}$$
 .

Donc
$$f(t) = g(ax + b)$$
 avec $a = k$ $g = \exp$

$$b = 0$$
 $g' = \exp$

Donc
$$f'(t) = ag'(ax + b)$$

= $k \exp(kt)$
= ke^{kt}

Donc f'(t) est du signe de k.

Si k > 0

$51 \kappa > 0$:	
t	$-\infty$ $+\infty$
Signe de $f'(t)$	+
Variations de $f(t)$	

Si k < 0:

t	$-\infty$ $+\infty$
Signe de $f'(t)$	-
$\begin{array}{c} \text{Variations} \\ \text{de } f(t) \end{array}$	