

Aufgabenstellung

Erstellen Sie im Team Auswertungen zu den Wetterdaten Bremens von 1890 bis 2013 Die Daten liegen in folgender Form vor:

Datum	QN	TG	TN	TM	TX	RFM	FM	FX	so	NM	RR	PM	SHK
18900101	5	-999	-5.5	-4.4	-1.4	97.00	-999	-999	-999	8.0	.2	1030.60	0
18900102	5	-999	-7.4	-4.6	-3.3	98.00	-999	-999	-999	7.3	.0	1024.40	0
20121213	3	-8.5	-5.9	-2.2	.3	91.54	2.9	7.1	.117	6.3	.0	1011.33	6
20121214	3	-8.3	-6.1	-1.0	3.3	92.04	5.0	13.0	.300	7.3	6.8	1001.13	4

Erklärung der einzelnen Einträge (von links nach rechts)

- 1. Datum des Wettereintrags im Format JJJJMMTT
- 2. QN Qualitätsniveau der Daten
- 3. TG Minimum der Temperatur in 5 cm über dem Erdboden (°C)
- 4. TN Minimum der Temperatur in 2 m über dem Erdboden (°C)
- 5. TM Mittel der Temperatur in 2 m über dem Erdboden (°C)
- 6. TX Maximum der Temperatur in 2 m über dem Erdboden (°C)
- 7. RFM Mittel der relativen Feuchte (%)
- 8. FM Mittel der Windstärke (bft)
- 9. FX Maximum der Windgeschwindigkeit (Spitzenböe) (bft)
- 10. SO Summe der Sonnenscheindauer (h)
- 11. NM Mittel des Bedeckungsgrades
- 12. RR Niederschlagshöhe (mm)
- 13. PM Mittel des Luftdrucks (hpa)
- 14. SHK Schneehöhe (cm)
- -999 = es liegen keine Daten vor = leer

Beau- fort- grad	Bezeichnung		schwindigkeit in freiem Gelände	Beispiele für die Auswirkungen des Windes im Binnenland
		m/s	km/h	
0	Windstille	0 - 0,2	< 1	Rauch steigt senkrecht auf
1	leiser Zug	0,3 - 1,5	1 - 5	Windrichtung angezeigt durch den Zug des Rauches
2	leichte Brise	1,6 - 3,3	6 - 11	Wind im Gesicht spürbar, Blätter und Windfahnen bewegen sich
3	schwache Brise schwacher Wind	3,4 - 5,4	12 - 19	Wind bewegt dünne Zweige und streckt Wimpel
4	mäßige Brise mäßiger Wind	5,5 - 7,9	20 - 28	Wind bewegt Zweige und dünnere Äste, hebt Staub und loses Papier
5	frische Brise frischer Wind	8,0 - 10,7	29 - 38	kleine Laubbäume beginnen zu schwanken, Schaumkronen bilden sich auf Seen
6	starker Wind	10,8 - 13,8	39 - 49	starke Äste schwanken, Regenschirme sind nur schwer zu halten, Telegrafenleitungen pfeifen im Wind
7	steifer Wind	13,9 - 17,1	50 - 61	fühlbare Hemmungen beim Gehen gegen den Wind, ganze Bäume bewegen sich
8	stürmischer Wind	17,2 - 20,7	62 - 74	Zweige brechen von Bäumen, erschwert erheblich das Gehen im Freien
9	Sturm	20,8 - 24,4	75 - 88	Äste brechen von Bäumen, kleinere Schäden an Häusern (Dachziegel oder Rauchhauben abgehoben)
10	schwerer Sturm	24,5 - 28,4	89 - 102	Wind bricht Bäume, größere Schäden an Häusern
11	orkanartiger Sturm	28,5 - 32,6	103 - 117	Wind entwurzelt Bäume, verbreitet Sturmschäden
12	Orkan	ab 32,7	ab 118	schwere Verwüstungen

Tabelle1: Beaufort-Skala (bft)

JAVA-Programmierung

25.01.2014 PET

PP Wetterdatenanalyse Seite 2 von 3

Aufgabe 1: (je 10 Punkte pro Unteraufgabe)

- 1. Ermitteln Sie die Durchschnittstemperatur (TM) über alle Daten
- 2. Ermitteln Sie die Tage mit den fünf höchsten Windgeschwindigkeiten. (FX)
- 3. Ermitteln Sie die fünf heißesten Monate (TX)
- 4. Ermitteln Sie den Tag mit der höchsten Schneehöhe

Geben Sie Daten wie folgt in einem Fenster aus:

dabei steht in der Variablen <strText> folgender formatierter Text drin:

```
Aufgabe 1.1: Durchschnittstemperatur des Mittels der Temperatur in 2 m über
dem Erdboden (TM): XXXXXXXXXXXXX
Aufgabe 1.2: Stärkste Winde von 1 - 5 (1 am stärksten)
Wind 1 am XXXXXXXX: XXX
Wind 2 am XXXXXXXX: XXX
Wind 3 am XXXXXXXX: XXX
Wind 4 am XXXXXXXX: XXX
Wind 5 am XXXXXXXX: XXX
Aufgabe 1.3: Wärmste Monate von 1 - 5 (1 am wärmsten)
Monat 1 am JJJJMM mit XXX Grad Durchschnittstemperatur
Monat 2 am JJJJMM mit XXX Grad Durchschnittstemperatur
Monat 3 am JJJJMM mit XXX Grad Durchschnittstemperatur
Monat 4 am JJJJMM mit XXX Grad Durchschnittstemperatur
Monat 5 am JJJJMM mit XXX Grad Durchschnittstemperatur
Aufgabe 1.4:
Die höchste Schneehöhe seit der Wetteraufzeichnung in Bremen betrug XXXX cm
und wurde gemessen am TT.MM.JJJJ
```

Aufgabe 2: (je 10 Punkte pro Gliederungspunkt)

Stellen Sie die Daten aus Aufgabe 1 visuell mit JChart2D wie folgt dar:

- Ein Balkendiagramm mit den 5 stärksten Winden (X-Achse=Datum; Y-Achse=bft)
- Ein Kreisdiagramm mit den fünf Temperaturen (Legende: Datum) (beide statisch)
- Ein Liniendiagramm über alle Temperaturdaten (TM) (dynamisch)

Benutzen Sie dafür drei Buttons, die nach ihrer Betätigung jeweils eine Grafik in einem Fenster anzeigt.

Weitere Bewertungspunkte:

OOP-Programmierpraktiken:

•	Vererbung und Kapselung	(5 Punkte)
---	-------------------------	------------

• GUI: Trennung von Steuerungs- und Programmlogik (5 Punkte)

Programmdokumentation:

•	kurze Sourcecode-Kommentierungen	(5 Punkte)
•	ausführliche Programmierbeschreibung mit	(10 Punkte)
•	UML-Klassendiagrammdarstellung	(5 Punkte)

Abgabehinweise

Die Java-Sourcecode-Dateien als ZIP-File (Wetter_Nachname_Nachname.zip) und die Dokumentation als PDF-Datei (Wetter_Nachname_Nachname.pdf)

Abgabetermin: Programm und Dokumentation bis **Freitag, den 28. Februar 2014** per E-Mail an: j.petermann2@schule.bremen.de