

FCC TEST REPORT

FCC ID: 2AJFC-QHY168C

On Behalf of

Light Speed Vision (Beijing) Co.,Ltd.

Camera

Model No.: QHY168C, QHY165C, QHY247C, QHY367C, QHY268C, QHY42M

Prepared for : Light Speed Vision (Beijing) Co.,Ltd.

Address Xinyuan Science Park A808, Shahezhen Changping Road

No.97 Changping Beijing China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building B, East Area of Nanchang Second Industrial Zone,

Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

Report Number : T1870155 03

Date of Receipt : February 17, 2017

Date of Test : February 17, 2017- March 15, 2017

Date of Report : March 15, 2017

Version Number : REV0

Report No.: T1870155 03

TABLE OF CONTENTS

De	escript	ion	Page
1.	Sumi	mary of standards and results	4
	1.1.	•	
2.	GEN	ERAL INFORMATION	
	2.1.	Description of Device (EUT)	
	2.2.	Tested Supporting System Details	
	2.3.	Block Diagram of connection between EUT and simulators	
	2.4.	Test mode Description	
	2.5.	Test Facility	7
	2.6.	Measurement Uncertainty	7
3.	POW	VER LINE CONDUCTED Emission test	8
	3.1.	Test Equipment	8
	3.2.	Block Diagram of Test Setup	8
	3.3.	Power Line Conducted Emission Test Limits	8
	3.4.	Configuration of EUT on Test	9
	3.5.	Operating Condition of EUT	9
	3.6.	Test Procedure	9
	3.7.	Conducted Disturbance at Mains Terminals Test Results	10
4.	Radi	ated emission Test	13
	4.1.	Test Equipment	13
	4.2.	Block Diagram of Test Setup	13
	4.3.	Radiated Emission Limit	14
	4.4.	Configuration of EUT on Test	15
	4.5.	Operating Condition of EUT	15
	4.6.	Test Procedure	15
	4.7.	Radiated Disturbance Test Results	16
5.	Photo	ograph	21
	5.1.	Photos of Radiated Emission Test (In Semi Anechoic Chamber)	21
	5.2.	Photos of Power Line Conducted Emission Test	
6.	Photo	os of the EUT	23

TEST REPORT DECLARATION

Applicant : Light Speed Vision (Beijing) Co.,Ltd. Manufacturer : Light Speed Vision (Beijing) Co.,Ltd.

EUT Description : Camera

> QHY168C, QHY165C, QHY247C, QHY367C, (A) Model No.

QHY268C, QHY42M

Report No.: T1870155 03

Trademark **M** QHYCCD (B)

· DC 12V **Ratings Supply** (C)

DC 12V from Adapter with AC 120V/60Hz (D) Test Voltage

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart B Class B 2016, ANSI C63.4:2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Reak Yang Tested by (name + signature)....: **Test Engineer**

Reak Yang Simple Guan Approved by (name + signature).....: Project Manager

Date of issue: March 15, 2017

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION								
Description of Test Item	Standard	Limits	Results					
Power Line Conducted	FCC Part 15:2016	Class B	D					
Emission Test	ANSI C63.4:2014	Class B	ı					
Dadistal Essissian Tast	FCC Part 15:2016	Class D	P					
Radiated Emission Test	ANSI C63.4:2014	Class B	r					

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Description : Camera

Model Number : QHY168C, QHY165C, QHY247C, QHY367C, QHY268C, QHY42M

Diff

There is no difference between all the models, except the appearance:

color and model name, so this report performs the model QHY168C.

Test Voltage : DC 12V from Adapter with AC 120V/60Hz

AC Adapter : Input: AC 100-240V, 50/60Hz

Output: DC 12V/6A

Highest frequency: 480MHz

Software version : EACAP_QT_V134

Hardware version : QHY168C_V3

Trademark : **MODE OF CONTROL**

Applicant : Light Speed Vision (Beijing) Co.,Ltd.

Address Xinyuan Science Park A808, Shahezhen Changping Road No.97

· Changping Beijing China

Manufacturer : Light Speed Vision (Beijing) Co.,Ltd.

Address Xinyuan Science Park A808, Shahezhen Changping Road No.97

Changping Beijing China

Sample Type : Prototype production

2.2.Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	Personal Computer	DELL	D11M	CN-0LV772-C088 7-378-H8UR	DOC
2	Monitor	DELL	E2014Hf	CN-011HFV-7287 2-397-CHEM	DOC
3	USB Keyboard	ACER	SK-9625	KBUSB15805000 37E0100	DOC
4	USB Mouse	ACER	MS.11200.014	M-UAY-ACR2	DOC
5.	Printer	HP	HP1020	CNCJ410726	DOC

2.3.Block Diagram of connection between EUT and simulators

	Signal Cable Description of the above Support Units											
No.	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)							
(a)	USB Port	USB Cable	150CM	Yes(Shielding and foil shields)	Yes							
(b)	VGA Port	VGA Cable	120CM	Yes(Shielding)	Yes							
(C)	Serial Port	Serial Cable	150CM	Yes(Shielding)	Yes							

EUT: Camera

2.4.Test mode Description

No.	Test Mode						
※1. Communicate with PC							
2.	Standby						
Note: ※ i	Note: * is worst case mode for, so this report only reflected the						
	worst mode.						

2.5.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.
Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,
Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2.6. Measurement Uncertainty

(95% confidence levels, k=2)

Test Item	Uncertainty
Uncertainty for Conduction emission	2.71dB
test	2.71uD
	3.90 dB (Distance:
Uncertainty for Radiation Emission test	3m Polarize: V)
(<1G)	3.92 dB (Distance:
	3m Polarize: H)
	4.26 dB (Distance:
Uncertainty for Radiation Emission test	3m Polarize: V)
(>1G)	4.28 dB (Distance:
	3m Polarize: H)

3. POWER LINE CONDUCTED EMISSION TEST

3.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101165	2016.09.29	1 Year
2.	L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.09.29	1 Year
3.	L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2016.09.29	1 Year
4.	Pulse Limiter	Schwarzbeck	9516F	9618	2016.09.29	1 Year
5	Cable	Resenberger	SUCOFLEX 104	MY6562/4	2016.09.29	1 Year

3.2.Block Diagram of Test Setup

3.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	$dB(\mu V)$	$dB(\mu V)$				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.6.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.7.

3.7. Conducted Disturbance at Mains Terminals Test Results

EUT	:	Camera	Test Date	:	2017.03.8
M/N	:	QHY168C	Temperature	:	24.1℃
Test Engineer	:	Reak Yang	Humidity	:	51%
Test Mode	:	Communicate with PC			
Test Results	:	PASS			

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, so this report only reflected the worst mode.
- 3. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector and quasi-peak detector need not be carried out.
- 4. If the limits for the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Limit: FCC Part 15 B QP EUT: CCD Camera

M/N: QHY
Mode: Working

Note:

Phase: **L1**Power: AC 120V/60Hz

Temperature: 2 Humidity: 54 %

Report No.: T1870155 03

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1		0.1500	42.28	6.19	48.47	66.00	-17.53	peak		
2		0.2220	38,38	6,19	44.57	62.74	-18.17	peak		
3	*	0.5910	33.53	6,19	39.72	56.00	-16.28	peak		
4		0.9750	19.96	6.21	26.17	56.00	-29.83	peak		
5		5.7750	21.46	6.33	27.79	60.00	-32.21	peak		
6		15.5550	28.61	6.55	35.16	60.00	-24.84	peak		

*:Maximum data x:Over limit I:over margin (Reference Only Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Limit: FCC Part 15 B QP

EUT: CCD Camera M/N: QHY Mode: Working

Note:

Phase:

AC 120V/60Hz Power:

Temperature: Humidity: 54 %

Report No.: T1870155 03

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
*	0.2220	37.76	6.19	43.95	62.74	-18.79	peak		
	0.3810	26.03	6.19	32.22	58.26	-26.04	peak		
	0.5940	28.63	6.19	34.82	56.00	-21.18	peak		
	0.9870	18.61	6.21	24.82	56.00	-31.18	peak		
	3.5700	15.93	6.27	22.20	56,00	-33,80	peak		
Ę	15.6180	26.67	6,55	33.22	60.00	-26.78	peak		
	*	MHz * 0.2220 0.3810 0.5940 0.9870	Mk. Freq. Level MHz dBuV * 0.2220 37.76 0.3810 26.03 0.5940 28.63 0.9870 18.61 3.5700 15.93	Mk. Freq. Level Factor MHz dBuV dB * 0.2220 37.76 6.19 0.3810 26.03 6.19 0.5940 28.63 6.19 0.9870 18.61 6.21 3.5700 15.93 6.27	Mk. Freq. Level Factor ment MHz dBuV dB dBuV * 0.2220 37.76 6.19 43.95 0.3810 26.03 6.19 32.22 0.5940 28.63 6.19 34.82 0.9870 18.61 6.21 24.82 3.5700 15.93 6.27 22.20	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV * 0.2220 37.76 6.19 43.95 62.74 0.3810 26.03 6.19 32.22 58.26 0.5940 28.63 6.19 34.82 56.00 0.9870 18.61 6.21 24.82 56.00 3.5700 15.93 6.27 22.20 56.00	Mk. Freq. Level Factor ment Limit Margir MHz dBuV dB dBuV dBuV dB * 0.2220 37.76 6.19 43.95 62.74 -18.79 0.3810 26.03 6.19 32.22 58.26 -26.04 0.5940 28.63 6.19 34.82 56.00 -21.18 0.9870 18.61 6.21 24.82 56.00 -31.18 3.5700 15.93 6.27 22.20 56.00 -33.80	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector * 0.2220 37.76 6.19 43.95 62.74 -18.79 peak 0.3810 26.03 6.19 32.22 58.26 -26.04 peak 0.5940 28.63 6.19 34.82 56.00 -21.18 peak 0.9870 18.61 6.21 24.82 56.00 -31.18 peak 3.5700 15.93 6.27 22.20 56.00 -33.80 peak	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dB Detector Comment * 0.2220 37.76 6.19 43.95 62.74 -18.79 peak 0.3810 26.03 6.19 32.22 58.26 -26.04 peak 0.5940 28.63 6.19 34.82 56.00 -21.18 peak 0.9870 18.61 6.21 24.82 56.00 -31.18 peak 3.5700 15.93 6.27 22.20 56.00 -33.80 peak

*:Maximum data x:Over limit I:over margin

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

4. RADIATED EMISSION TEST

4.1.Test Equipment

For fr	For frequency range 30MHz~1GHz (At Semi Anechoic Chamber)											
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.						
Ittili	Equipment	Wandracturer	Wiodel Ivo.	Scriai 140.	Last Car.	Interval						
	Test Receiver	Rohde&Schwarz	ESR	1316.3003	2016.09.29	1 Year						
1				K03-1020								
				82-Wa								
2	Antenna	Schwarzbeck	VULB9168	9168-438	2016.09.30	2 Year						

For fr	equency range a	bove 1GHz (At Ser	ni Anechoic (Chamber (3m))		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum Analyzer	Agilent	E4407B	MY49510055	2016.09.29	1 Year
2	Horn Antenna	Schwarzbeck	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.21	1 Year
3	Amplifier	Agilent	8449B	3008A02664	2017.01.19	1 Year
4	Cable	Resenberger	SUCOFLEX 104	329112/4	2016.09.29	1 Year

4.2.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.3. Radiated Emission Limit

Frequency	Distance	Field Strengths Limits
MHz	(Meters)	dB(μV)/m
30 ~ 88	3	40.0
88 ~ 216	3	43.5
216 ~ 960	3	46.0
960 ~ 1000	3	54.0
Above 1GHz	3	74(Peak) 54(Average)

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. Frequency range of radiated measurements:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

4.4.Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.6.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Analyzer Spectrum Analyzer E4407B) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

4.7. Radiated Disturbance Test Results

Frequency Range	:	30MHz~1000MHz			
EUT	:	Camera	Test Date	:	2017.03.08
M/N	:	QHY168C	Temperature	:	24.1℃
Test Engineer	:	Reak Yang	Humidity	:	54%
Test Mode	:	Communicate with PC			
Test Results	:	PASS			

Note: 1 The test result

Note: 1. The test results are listed in next pages.

2. This mode is worst case mode, so this report only reflected the worst mode.

3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Frequency Range	:	Above 1GHz			
EUT	:	Camera	Test Date	:	2017.03.12
M/N	:	QHY168C	Temperature	:	23.5℃
Test Engineer	:	Reak Yang	Humidity	:	51%
Test Mode	:	Communicate with PC			
Test Results	:	PASS			

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, so this report only reflected the worst mode.
- 3. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Limit: FCC Class B Radiation

EUT: CCD Camera

M/N: QHY Mode:Working

Note:

Polarization: Horizontal

Power: AC 120V/60Hz

Distance: 3m

Temperature:

Humidity: 54 %

Report No.: T1870155 03

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu√	dB	dBuV/m	dBuV/m	dВ	Detector	cm	degree	Comment
1		34.1561	18.57	13.46	32.03	40.00	-7.97	peak			
2		52.9453	13.51	13.45	26.96	40.00	-13.04	peak			
3	9	162.0414	19.57	14.41	33.98	43.50	-9.52	peak			
4	*	282.9852	29.08	13.01	42.09	46.00	-3.91	peak			
5		480.5276	23.60	17.08	40.68	46.00	-5.32	peak			
6		965.5421	18.21	23.88	42.09	54.00	-11.91	peak			

Note:1. *:Maximum data; x:Over limit; 1:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Limit: FCC Class B Radiation

EUT: CCD Camera

M/N: QHY Mode:Working

Note:

Polarization: Vertical

Power: AC 120V/60Hz

Distance: 3m

Temperature: 24.1

Report No.: T1870155 03

Humidity: 54 %

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz dE	dBu∀	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.2760	19.53	13.47	33.00	40.00	-7.00	QP			
2	*	45.3755	20.26	13.69	33.95	40.00	-6.05	peak			
3		52.9453	16.22	13.45	29.67	40.00	-10.33	peak			
4	8	153.2004	18.98	14.56	33.54	43.50	-9.96	peak			
5		254.7284	24.78	12.18	36.96	46.00	-9.04	peak			
6	7.	7.26.8052	9.68	21.33	31.01	46.00	-14.99	peak			

Note:1. *:Maximum data; x:Over limit; I:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Limit: FCC Part 15_Above 1G_Peak

EUT: Camera M/N: QHY Mode:Wokring Note:

Polarization: Horizontal

Power: AC 120V/60Hz

Distance:

23.5 Temperature:

Humidity: 51 %

Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBu∨	dB	dBu√/m	dBuV/m	dB	Detector	cm	degree	Comment
*	1122.991	51.44	-8.50	42.94	74.00	-31.06	peak			
	1167.262	50.96	-8.36	42.60	74.00	-31.40	peak			
	1771.670	48.59	-6.57	42.02	74.00	-31.98	peak			
	2187.960	45.97	-3.43	42.54	74.00	-31.46	peak			
	1296.125	49.09	-7.37	41.72	74.00	-32.28	peak			
-	1498.363	48.91	-7.00	41.91	74.00	-32.09	peak			
	*	* 1122.991 1167.262	* 1122.991 51.44 1167.262 50.96 1771.670 48.59 2187.960 45.97 1296.125 49.09	MHz Lev el dBuV Factor dBuV * 1122.991 51.44 -8.50 1167.262 50.96 -8.36 1771.670 48.59 -6.57 2187.960 45.97 -3.43 1296.125 49.09 -7.37	Level Factor ment MHz dBuV dB dBuV/m * 1122.991 51.44 -8.50 42.94 1167.262 50.96 -8.36 42.60 1771.670 48.59 -6.57 42.02 2187.960 45.97 -3.43 42.54 1296.125 49.09 -7.37 41.72	Level Factor ment MHz dBuV dB dBuV/m dBuV/m * 1122.991 51.44 -8.50 42.94 74.00 1167.262 50.96 -8.36 42.60 74.00 1771.670 48.59 -6.57 42.02 74.00 2187.960 45.97 -3.43 42.54 74.00 1296.125 49.09 -7.37 41.72 74.00	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dBuV/m dB * 1122.991 51.44 -8.50 42.94 74.00 -31.06 1167.262 50.96 -8.36 42.60 74.00 -31.40 1771.670 48.59 -6.57 42.02 74.00 -31.98 2187.960 45.97 -3.43 42.54 74.00 -31.46 1296.125 49.09 -7.37 41.72 74.00 -32.28	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dBuV/m dB Detector * 1122.991 51.44 -8.50 42.94 74.00 -31.06 peak 1167.262 50.96 -8.36 42.60 74.00 -31.40 peak 1771.670 48.59 -6.57 42.02 74.00 -31.98 peak 2187.960 45.97 -3.43 42.54 74.00 -31.46 peak 1296.125 49.09 -7.37 41.72 74.00 -32.28 peak	MHz dBuV dB dBuV/m dBuV/m dBuV/m dB Detector cm * 1122.991 51.44 -8.50 42.94 74.00 -31.06 peak 1167.262 50.96 -8.36 42.60 74.00 -31.40 peak 1771.670 48.59 -6.57 42.02 74.00 -31.98 peak 2187.960 45.97 -3.43 42.54 74.00 -31.46 peak 1296.125 49.09 -7.37 41.72 74.00 -32.28 peak	Level Factor ment Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree * 1122.991 51.44 -8.50 42.94 74.00 -31.06 peak -8.36 42.60 74.00 -31.40 peak -8.36 42.60 74.00 -31.40 peak -8.36 42.60 74.00 -31.98 peak -8.36 42.60 74.00 -31.98 peak -8.36 42.54 74.00 -31.46 peak -8.36 -8.36 42.54 74.00 -31.46 peak -8.36 -8.36 42.60 74.00 -31.40 peak -8.36 -8.36 42.60 74.00 -31.40 peak -8.36 -8.36 42.60 74.00 -31.40 peak -8.36 -8.36 42.60 74.00 -31.46 peak -8.36 -8.36 42.60 74.00 -31.46 peak -8.36 -8.36 42.60 74.00 -32.2

Note:1. *:Maximum data; x:Over limit; I:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note:

Limit: FCC Part 15_Above 1G_Peak

EUT: Camera M/N: QHY Mode:Wokring Power: AC 120V/60Hz

Temperature: 23.5
Humidity: 51 %

Report No.: T1870155 03

Distance:

Polarization: Vertical

Radiated Emission Measurement

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1862.398	48.59	-6.18	42.41	74.00	-31.59	peak			
2	*	1585.278	49.37	-6.86	42.51	74.00	-31.49	peak			
3		1411.657	48.21	-7.01	41.20	74.00	-32.80	peak			
4		1308.714	47.94	-7.31	40.63	74.00	-33.37	peak			
5		1110.398	48.20	-8.53	39.67	74.00	-34.33	peak			
6		2081.372	46.00	-4.37	41.63	74.00	-32.37	peak			

Note:1. *:Maximum data; x:Over limit; 1:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

5. PHOTOGRAPH

5.1.Photos of Radiated Emission Test (In Semi Anechoic Chamber)

Report No.: T1870155 03

6. PHOTOS OF THE EUT

Page 25 of 34 Report No.: T1870155 03

Page 29 of 34 Report No.: T1870155 03

Page 30 of 34 Report No.: T1870155 03

----END OF REPORT----