FMI, Mate, Anul I Logică matematică

Seminar 4

(S4.1) Fie LP logica propoziţională. Să se arate următoarele:

- (i) Mulţimea Expr a expresiilor lui LP este numărabilă.
- (ii) Mulţimea Form a formulelor lui LP este numărabilă.

Demonstraţie:

- (i) Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup \bigcup_{n \in \mathbb{N}^*} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ şi V este numărabilă, obţinem, că $|Sim| = |V| + |\{\neg, \rightarrow, (,)\}| = \aleph_0 + 4 = \aleph_0$. Deci Sim este numărabilă. Conform Propoziției 2.42.(i), rezultă că Sim^n este numărabilă pentru orice $n \geq 1$. Aplicând Propoziția 2.42.(iii) rezultă că Expr este cel mult numărabilă. Deoarece $Sim \subseteq Expr$ şi Sim este numărabilă, rezultă că Expr este, de asemenea, numărabilă.
- (ii) Avem că $V \subseteq Form \subseteq Expr$. Prin urmare, $\aleph_0 = |V| \le |Form|$ şi $|Form| \le |Expr| = \aleph_0$. Aplicând Teorema Cantor-Schröder-Bernstein, obţinem că $|Form| = \aleph_0$. Prin urmare, Form este numărabilă.

(S4.2) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

Demonstrație: Pentru orice formulă φ notăm cu $l(\varphi)$ numărul parantezelor deschise şi cu $r(\varphi)$ numărul parantezelor închise care apar în φ .

Definim următoarea proprietate P: pentru orice formulă φ ,

$$\varphi$$
 are proprietatea P ddacă $l(\varphi) = r(\varphi)$.

Demonstrăm că orice formulă φ are proprietatea P folosind Principiul inducției pe formule (Propoziția 3.6). Avem următoarele cazuri:

- $\varphi = v \in V$. Atunci $l(\varphi) = l(v) = 0 = r(v) = r(\varphi)$.
- $\varphi = (\neg \psi)$ şi ψ satisface P. Obţinem $l(\varphi) = l(\psi) + 1 = r(\psi) + 1 = r(\varphi)$.
- $\varphi = (\psi \to \chi)$ şi ψ, χ satisfac \boldsymbol{P} . Obţinem $l(\varphi) = l(\psi) + l(\chi) + 1 = r(\psi) + r(\chi) + 1 = r(\varphi)$.

(S4.3) Să se dea o definiție recursivă a mulțimii variabilelor unei formule.

Demonstrație: Se observă că $Var: Form \to \mathcal{P}(V)$ satisface următoarele condiții:

$$(R0) Var(v) = \{v\}$$

$$(R1) \quad Var(\neg \varphi) \quad = Var(\varphi)$$

$$(R2) \quad Var(\varphi \to \psi) \quad = Var(\varphi) \cup Var(\psi).$$

Aplicăm Principiul recursiei pe formule pentru $A = \mathcal{P}(V)$ și pentru

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

 $G_{\neg}: A \to A, \qquad G_{\neg}(\Gamma) = \Gamma,$
 $G_{\to}: A \times A \to A, \quad G_{\to}(\Gamma, \Delta) = \Gamma \cup \Delta.$

pentru a concluziona că Var este unica funcție care satisface (R0), (R1) și (R2).

(S4.4) Să se arate că pentru orice $e: V \to \{0,1\}$ și pentru orice formule φ, ψ avem:

(i)
$$e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi);$$

(ii)
$$e^+(\varphi \wedge \psi) = e^+(\varphi) \wedge e^+(\psi)$$
.

Demonstrație:

(i) Avem că

$$e^{+}(\varphi \vee \psi) = e^{+}(\neg \varphi \to \psi) = e^{+}(\neg \varphi) \to e^{+}(\psi) = \neg e^{+}(\varphi) \to e^{+}(\psi)$$

$$\stackrel{(*)}{=} e^{+}(\varphi) \vee e^{+}(\psi).$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$ avem $\neg x \rightarrow y = x \lor y$:

\boldsymbol{x}	y	$\neg x$	$\neg x \to y$	$x \lor y$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	1	0	0

(ii) Avem că

$$\begin{array}{lcl} e^+(\varphi \wedge \psi) & = & e^+(\neg(\varphi \to \neg \psi)) = \neg e^+(\varphi \to \neg \psi) = \neg(e^+(\varphi) \to e^+(\neg \psi)) \\ & = & \neg(e^+(\varphi) \to \neg e^+(\psi)) \\ \stackrel{(**)}{=} & e^+(\varphi) \wedge e^+(\psi). \end{array}$$

Pentru (**), demonstrăm că pentru orice $x, y \in \{0, 1\}$ avem $\neg(x \to \neg y) = x \land y$:

\boldsymbol{x}	y	$\neg y$	$x \rightarrow \neg y$	$\neg(x \to \neg y)$	$x \wedge y$
1	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	0
0	0	1	1	0	0

(S4.5) Demonstrați că, pentru orice formule φ , ψ , avem:

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \to \varphi$ ddacă $e^+(\psi) \le e^+(\varphi)$ pentru orice evaluare $e: V \to \{0, 1\}$.
- (ii) $\varphi \sim \psi$ ddacă $\vDash \varphi \leftrightarrow \psi$ ddacă $e^+(\varphi) = e^+(\psi)$ pentru orice evaluare $e: V \to \{0, 1\}$.

Demonstrație:

(i) Avem că

$$\psi \vDash \varphi \iff \text{pentru orice } e: V \to \{0,1\}, \ e \vDash \psi \text{ implică } e \vDash \varphi$$
 $\iff \text{pentru orice } e: V \to \{0,1\}, \ \text{dacă } e^+(\psi) = 1, \ \text{atunci } e^+(\varphi) = 1$
 $\iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\psi) \le e^+(\varphi)$

şi

$$\models \psi \to \varphi \iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\psi \to \varphi) = 1$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\psi) \to e^+(\varphi) = 1$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\psi) \le e^+(\varphi)$$

(ii) Avem că

$$\varphi \sim \psi \iff Mod(\varphi) = Mod(\psi) \iff Mod(\varphi) \subseteq Mod(\psi) \text{ si } Mod(\psi) \subseteq Mod(\varphi)$$

$$\iff \varphi \vDash \psi \text{ si } \psi \vDash \varphi$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\varphi) \le e^+(\psi) \text{ si } e^+(\psi) \le e^+(\varphi)$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, \ e^+(\varphi) = e^+(\psi)$$

şi

$$\begin{tabular}{ll} &\vDash\varphi\leftrightarrow\psi&\iff& \text{pentru orice }e:V\to\{0,1\},\ e^+(\varphi\leftrightarrow\psi)=1\\ &\iff& \text{pentru orice }e:V\to\{0,1\},\ e^+(\varphi)\leftrightarrow e^+(\psi)=1\\ &\iff& \text{pentru orice }e:V\to\{0,1\},\ e^+(\varphi)=e^+(\psi). \end{tabular}$$

(S4.6) Arătați că pentru orice formule φ , ψ , χ , avem:

- (i) $\psi \vDash \varphi \rightarrow \psi$;
- (ii) $(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$;
- (iii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iv) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;

(v)
$$\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi);$$

(vi)
$$\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$1 \rightarrow a = a,$$
 $a \rightarrow 1 = 1,$ $0 \rightarrow a = 1,$ $a \rightarrow 0 = \neg a,$ $1 \land a = a,$ $0 \land a = 0,$ $1 \lor a = 1,$ $0 \lor a = a$

 $si \ a \rightarrow b = 1 \iff a < b.$

(i) Fie $e: V \to \{0,1\}$ a.î. $e \vDash \psi$, deci $e^+(\psi) = 1$. Avem că

$$e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$$

Prin urmare, $e \vDash \varphi \rightarrow \psi$.

(ii) Fie $e: V \to \{0,1\}$ a.î. $e \vDash (\varphi \to \psi) \land (\psi \to \chi)$, deci $e^+((\varphi \to \psi) \land (\psi \to \chi)) = 1$. Avem că

$$1 = e^+((\varphi \to \psi) \land (\psi \to \chi)) = (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\chi)),$$

de unde tragem concluzia că $e^+(\varphi) \to e^+(\psi) = 1$ şi $e^+(\psi) \to e^+(\chi) = 1$. Prin urmare, $e^+(\varphi) \le e^+(\psi)$ şi $e^+(\psi) \le e^+(\chi)$. Obţinem atunci, din tranzitivitatea lui \le , că $e^+(\varphi) \le e^+(\chi)$. Rezultă că

$$e^+(\varphi \to \chi) = e^+(\varphi) \to e^+(\chi) = 1.$$

Prin urmare, $e \vDash \varphi \rightarrow \chi$.

(iii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).(ii), trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi),$$

deci că

$$e^+(\varphi) \rightarrow (e^+(\psi) \rightarrow e^+(\chi)) = e^+(\varphi) \wedge e^+(\psi) \rightarrow e^+(\chi).$$

Metoda 1: Ne folosim de următoarele tabele:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi) \rightarrow e^+(\chi)$	$e^+(\varphi) \rightarrow (e^+(\psi) \rightarrow e^+(\chi))$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	0	1
0	0	1	1	1
0	0	0	1	1

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\varphi) \wedge e^+(\psi)$	$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi)$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	1

Metoda 2: Raţionăm direct. Avem cazurile:

(a)
$$e^+(\varphi) = 0$$
. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b)
$$e^+(\varphi) = 1$$
. Atunci

$$e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)) = 1 \to (e^{+}(\psi) \to e^{+}(\chi)) = e^{+}(\psi) \to e^{+}(\chi),$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \to e^{+}(\chi) = 1 \wedge e^{+}(\psi) \to e^{+}(\chi) = e^{+}(\psi) \to e^{+}(\chi).$$

(iv) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).
(ii), trebuie să demonstrăm că

$$e^+(\varphi \lor (\varphi \land \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \lor (e^+(\varphi) \land e^+(\psi)) = e^+(\varphi).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 1 \vee (1 \wedge e^+(\psi)) = 1 \vee e^+(\psi) = 1 = e^+(\varphi).$$

(b) $e^+(\varphi) = 0$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 0 \vee (0 \wedge e^+(\psi)) = 0 \vee 0 = 0 = e^+(\varphi).$$

(v) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).
(ii), trebuie să demonstrăm că

$$e^+(\varphi \wedge \psi \to \chi) = e^+((\varphi \to \chi) \vee (\psi \to \chi)),$$

deci că

$$(e^+(\varphi) \land e^+(\psi)) \rightarrow e^+(\chi) = (e^+(\varphi) \rightarrow e^+(\chi)) \lor (e^+(\psi) \rightarrow e^+(\chi)).$$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$(e^{+}(\varphi) \wedge e^{+}(\psi)) \to e^{+}(\chi) = (0 \wedge e^{+}(\psi)) \to e^{+}(\chi)$$

$$= 0 \to e^{+}(\chi) = 1,$$

$$(e^{+}(\varphi) \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi)) = (0 \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi))$$

$$= 1 \vee (e^{+}(\psi) \to e^{+}(\chi)) = 1.$$

(b) $e^+(\varphi) = 1$. Avem următoarele subcazuri:

(b1)
$$e^+(\psi) = 0$$
. Atunci

$$\begin{split} (e^+(\varphi) \wedge e^+(\psi)) &\to e^+(\chi) &= (1 \wedge 0) \to e^+(\chi) \\ &= 0 \to e^+(\chi) = 1, \\ (e^+(\varphi) \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \vee (0 \to e^+(\chi)) \\ &= e^+(\chi) \vee 1 = 1. \end{split}$$

(b2) $e^{+}(\psi) = 1$. Atunci

$$\begin{split} (e^+(\varphi) \wedge e^+(\psi)) &\to e^+(\chi) &= (1 \wedge 1) \to e^+(\chi) = 1 \to e^+(\chi) \\ &= e^+(\chi), \\ (e^+(\varphi) \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \vee (1 \to e^+(\chi)) \\ &= e^+(\chi) \vee e^+(\chi) = e^+(\chi). \end{split}$$

(vi) Fie $e: V \to \{0,1\}$ o evaluare arbitrară.

$$e^+(\neg\varphi\to(\neg\psi\leftrightarrow(\psi\to\varphi)))=\neg e^+(\varphi)\to(\neg e^+(\psi)\leftrightarrow(e^+(\psi)\to e^+(\varphi))).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare,

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = 0 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi)))$$
$$= 1.$$

(b) $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ şi, prin urmare,

$$\neg e^{+}(\varphi) \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi))) = 1 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0))$$

$$= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0)$$

$$= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)$$

$$= 1.$$