

ADDENDUM TO BENTLY NEVADA LLC TEST REPORT FC09-106A

FOR THE

ESSENTIAL INSIGHT.MESH (185300), WSIM (185310-01) AND REPEATER (185350-01)

FCC PART 15 SUBPART C SECTION 15.247 AND RSS-210 ISSUE 7 (2007)

TESTING

DATE OF ISSUE: SEPTEMBER 16, 2009

PREPARED FOR:

PREPARED BY:

Bently Nevada LLC 1631 Bently Parkway South Minden, NV 89423 Bonnie Robinson CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 900005991 W.O. No.: 88568

Date of test: June 22-24, 2009

Report No.: FC09-106B

This report contains a total of 25 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 25 Report No: FC09-106B

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(m) Number Of Channels	4
FCC 15.33(a) Frequency Ranges Tested	4
FCC 15.203 Antenna Requirements	4
EUT Operating Frequency	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Measurement Uncertainties	6
Report of Emissions Measurements	6
Testing Parameters	6
FCC 15.247(a)(2)/RSS-210 Occupied Bandwidth	8
FCC 15.247(b)(3) RF Power Output	13
FCC 15.247(d) OATS Radiated Spurious Emissions and Bandedge	16
FCC 15.247(e) Peak Power Spectral Density	22

Page 2 of 25 Report No: FC09-106B

ADMINISTRATIVE INFORMATION

TEST LOCATION:

CKC Laboratories, Inc.

5046 Sierra Pines Drive

DATE OF TEST: June 22-24, 2009 DATE OF RECEIPT: June 22, 2009

REPRESENTATIVE: Lane Killion

MANUFACTURER: Bently Nevada LLC

1631 Bently Parkway South Minden, NV 89423

Mariposa, CA 95338

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 (2007) and RSS-GEN Issue 2 (2007)

PURPOSE OF TEST:

Original Report: To perform the testing of the Essential Insight.mesh (185300), wSIM (185310-01) and Repeater (185350-01) with the requirements for FCC Part 15 Subpart B Section 15.247 devices.

Addendum A: Data correction FCC15.247 (d) Radiated Spurious Emissions and Bandedge

Addendum B: This addendum is to list the correct FCC Part 15 Subpart, which is Subpart C, not Subpart B. Purpose of Test now should state: To perform the testing of the Essential Insight.mesh (185300), wSIM (185310-01) and Repeater (185350-01) with the requirements for FCC Part 15 Subpart C Section 15.247 devices. Updated 15.247(b) power output table with no new testing.

APPROVALS

QUALITY ASSURANCE:

TEST PERSONNEL:

Steve Behm, Director of Engineering Services &

Quality Assurance

Mike Wilkinson, Senior EMC Engineer/Lab

Manager

SUMMARY OF RESULTS

Test	Specification/Method	Results
Occupied Bandwidth	FCC 15.247(a)(2)	Pass
	RSS-210 Issue 7 (2007) and RSS-GEN	
	Issue 2 (2007)	
RF Output Power	FCC 15.247 (b)(3)	Pass
Spurious Emissions	FCC 15.247(d)	Pass
Bandedge	FCC 15.247(d)	Pass
Peak Power Spectral Density	FCC 15.247 (e)	Pass
Site File No.	FCC 784962	
	IC 3082A-1	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested 15.247 Radiated Emissions: 9 kHz – 24 GHz

FCC 15.203 Antenna Requirements

The antenna is unique; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 2405-2480 MHz.

Page 4 of 25 Report No: FC09-106B

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following models have been tested by CKC Laboratories: Essential Insight.mesh (185300) and wSIM (185310-01)

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models. **Repeater (185350-01)**

EQUIPMENT UNDER TEST

Essential Insight.mesh WSIM

Manuf: Bently Nevada LLC Manuf: Bently Nevada LLC

Model: 185300 Model: 185310-01 Serial: 10.1C.DF Serial: 10.1C.DF

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Thermocouple</u> <u>Thermocouple</u>

Manuf: Bently Nevada LLC Manuf: Bently Nevada LLC

Model: Type K TC Model: Type J TC

Serial: NA Serial: NA

Power Supply Accelerometer (2 each)

Manuf: HP Manuf: Bently Nevada LLC

Model: E3611A Model: 200157

Serial: 3125K01021 Serial: G09C02PB & G09C02ME

Remote Computer <u>EUT Serial Communication Test Fixture</u>

Manuf: Dell Manuf: Bently Nevada LLC

Model: Latitude E6400 Model: NA Serial: P00627027 Serial: NA

> Page 5 of 25 Report No: FC09-106B

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 6 of 25 Report No: FC09-106B

	SAMPLE CALCULATIONS							
	Meter reading	$(dB\mu V)$						
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
_	Distance Correction	(dB)						
_	Preamplifier Gain	(dB)						
=	Corrected Reading	$(dB\mu V/m)$						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Ouasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 7 of 25 Report No: FC09-106B

FCC 15.247(a)(2)/RSS-210 OCCUPIED BANDWIDTH

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Bently Nevada LLC
Specification: 15.247(a)(2)/RSS GEN

Work Order #: 88568 Date: 6/23/2009
Test Type: Radiated Scan Time: 11:37:53
Equipment: Essential Insight.mesh Sequence#: 3

Manufacturer: Bently Nevada LLC Tested By: Mike Wilkinson

Model: 185300 S/N: 10.1C.DF

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	08/07/2008	08/07/2010	02660
EMCO 3115 Horn Antenna	9006-3413	06/06/2008	06/06/2010	AN00327
Cable, Andrews Hardline HF-	NA	09/04/2007	09/04/2009	ANP04274
005-20				
Andrew-25'	N/A	05/19/2009	05/19/2011	AN01012
Cable, 10' 2.92mm 40 GHz	na	06/10/2009	06/10/2011	ANP01403
HP 8449B Preamp	3008A00301	11/13/2008	11/13/2010	2010

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Essential Insight.mesh*	Bently Nevada LLC	185300	10.1C.DF
Essential Insight.mesh	Bently Nevada LLC	185300	10.1C.DF
wSIM			

Support Devices:

Function	Manufacturer	Model #	S/N
Thermocouple	Bently Nevada LLC	Type K TC	NA
Thermocouple	Bently Nevada LLC	Type J TC	NA
Accelerometer	Bently Nevada LLC	200157	G09C02ME
Accelerometer	Bently Nevada LLC	200157	G09C02PB
Power Supply	HP	E3611A	3125K01021

Test Conditions / Notes:

Standard used was 15.247(a)(2)/RSS GEN OBW. EUT is an 802.15.4 transceiver and is operating on the Low, Mid, and High channels as noted in the datasheet readings. The transceiver is transmitting continuously with modulation EUT was placed 80cm from the ground plane on a 40cm Styrofoam block. EUT has 4 transducer ports. Ports 1 & 3 have accelerometers with 2 meter cables attached. Ports 2 & 4 have 2.5 meter long thermocouples attached. EUT is battery operated .A remotely located external DC power supply is supplying nominal EUT power and is set at +3.3 VDC. The remote computer is connected to the EUT through the Test Fixture and is controlling the function of the EUT. EUT is transmitting continuously on Low, Mid & High channels as noted for each reading. Low channel = 2405 MHz, Mid channel = 2440 MHz, High channel = 2480 MHz. The temperature was 23°C and the humidity was 38%. The frequency range investigated was: Carrier. Plots are corrected for transducers.

Channel	6 dB Bandwidth	26 dB Bandwidth	99% Bandwidth
2405 MHz	1.522 MHz	3.967 MHz	2.293 MHz
2445 MHz	1.509 MHz	3.228 MHz	2.257 MHz
2480 MHz	1.420 MHz	3.226 MHz	2.245 MHz

Page 8 of 25 Report No: FC09-106B

Test Setup Photos

Page 9 of 25 Report No: FC09-106B

Test Plots

FCC 15.247(a)(2) OCCUPIED BANDWIDTH - LOW CHANNEL

FCC 15.247(a)(2) OCCUPIED BANDWIDTH - MID CHANNEL

Page 10 of 25 Report No: FC09-106B

FCC 15.247(a)(2) OCCUPIED BANDWIDTH - HIGH CHANNEL

RSS-210 99% BANDWIDTH - LOW CHANNEL

Page 11 of 25 Report No: FC09-106B

RSS-210 99% BANDWIDTH - MID CHANNEL

RSS-210 99% BANDWIDTH - HIGH CHANNEL

Page 12 of 25 Report No: FC09-106B

FCC 15.247(b)(3) RF POWER OUTPUT

Test Setup Photos

Page 13 of 25 Report No: FC09-106B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Bently Nevada LLC

Specification: **15.247(b)(3)**

 Work Order #:
 88568
 Date:
 6/23/2009

 Test Type:
 Radiated Scan
 Time:
 13:18:56

Equipment: Essential Insight.mesh Sequence#: 1

Manufacturer: Bently Nevada LLC Tested By: Mike Wilkinson

Model: 185300 S/N: 10.1C.DF

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	08/07/2008	08/07/2010	02660
EMCO 3115 Horn Antenna	9006-3413	06/06/2008	06/06/2010	AN00327
Cable, Andrews Hardline HF-	NA	09/04/2007	09/04/2009	ANP04274
005-20				
Andrew-25'	N/A	05/19/2009	05/19/2011	AN01012
Cable, 10' 2.92mm 40 GHz	na	06/10/2009	06/10/2011	ANP01403
HP 8449B Preamp	3008A00301	11/13/2008	11/13/2010	2010

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Essential Insight.mesh*	Bently Nevada LLC	185300	10.1C.DF
wSIM	Bently Nevada LLC	185310-01	10.1C.DF

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
Thermocouple	Bently Nevada LLC	Type K TC	NA
Thermocouple	Bently Nevada LLC	Type J TC	NA
Accelerometer	Bently Nevada LLC	200157	G09C02ME
Accelerometer	Bently Nevada LLC	200157	G09C02PB
Power Supply	НР	E3611A	3125K01021
Remote Computer	Dell	Latitude E6400	P00627027

Test Conditions / Notes:

Standard used was FCC 15.247 (b3)

EUT is an 802.15.4 transceiver and is operating on the Low, Mid, and High channels as noted in the datasheet readings. The transceiver is transmitting continuously with modulation.

EUT was placed 80cm from the ground plane on a 40cm Styrofoam block.

EUT has 4 transducer ports. Ports 1 & 3 have accelerometers with 2 meter cables attached. Ports 2 & 4 have 2.5 meter long theromcouples attached.

EUT is battery operated. A remotely located external DC power supply is supplying nominal EUT power and is set at +3.3 VDC

The remote computer is connected to the EUT through the Test Fixture and is controlling the function of the EUT.

EUT is transmitting continuously on Low, Mid & High channels as noted for each reading.

Low channel = 2405 MHz, Mid channel = 2440 MHz, High channel = 2480 MHz.

RBW = 3 MHz, VBW 3X RBW

The temperature was 23°C and the humidity was 38%.

The frequency range investigated was: Carrier.

Page 14 of 25 Report No: FC09-106B Transducer Legend:

T1=CAB-ANP01012-051909 T2=CAB-ANP01403-061009 T3=Cable 20m andrews T4=ANT AN00327 1GHz-18GHz T5=AMP-AN02010-111308

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

Measu	rement Data:	K6	eading lis	tea by ma	argin.		16	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	2405.440M	99.1	+2.2	+2.4	+5.0	+28.3	+10.0	112.8	137.0	-24.2	Vert
			-34.2						Low Chan	nel	
2	2439.580M	98.5	+2.2	+2.4	+5.0	+28.4	+10.0	112.3	137.0	-24.7	Vert
			-34.2						Mid Chanr	nel	
3	2479.660M	96.6	+2.2	+2.5	+5.1	+28.5	+10.0	110.8	137.0	-26.2	Vert
			-34.1						High Chan	nel	
4	2440.500M	88.8	+2.2	+2.4	+5.0	+28.4	+10.0	102.6	137.0	-34.4	Horiz
			-34.2						Mid Chanr	nel	
5	2479.560M	88.0	+2.2	+2.5	+5.1	+28.5	+10.0	102.2	137.0	-34.8	Horiz
			-34.1						High Chan	nel	
6	2405.460M	83.4	+2.2	+2.4	+5.0	+28.3	+10.0	97.1	137.0	-39.9	Horiz
			-34.2						Low Chan	nel	

Power Output Calculations

Frequency (MHz)	Field Strength (dBuV/m @ 3m)	Power Level (dBm)	Limit (dBm)	Results
2405	112.8	16.4	30	Pass
2440	112.3	15.9	30	Pass
2480	110.8	14.4	30	Pass

Power output calculated in accordance with KDB 558074 using power density formula:

$$P = \frac{(E \cdot d)^2}{30 \cdot G}$$
 where G is declared by the manufacturer to be 1.14 dBi.

Page 15 of 25 Report No: FC09-106B

FCC 15.247(d) OATS RADIATED SPURIOUS EMISSIONS AND BANDEDGE

Test Setup Photos

Page 16 of 25 Report No: FC09-106B

Test Data

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: **Bently Nevada LLC** FCC 15.247 / 15.209 Specification:

Work Order #: 88568 Date: 6/23/2009 Test Type: Equipment: Time: 16:30:43 **Maximized Emissions**

Essential Insight.mesh Sequence#: 4

Manufacturer: Bently Nevada LLC Tested By: Mike Wilkinson Model:

185300 S/N: 10.1C.DF

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
EMCO 3115 Horn	9006-3413	06/06/2008	06/06/2010	AN00327
Antenna				
Chase CBL6111C	2456	12/22/2008	12/22/2010	01991
Bilog				
ARA MWH-1826/B	1005	11/12/2008	11/12/2010	AN02046
Horn Antenna				
HP-8447D Preamp	2727A05444	06/20/2008	06/20/2010	AN00062
Cable, Andrews	NA	09/04/2007	09/04/2009	ANP04274
Hardline HF-005-20				
Andrew-25'	N/A	05/19/2009	05/19/2011	AN01012
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
HP 8449B Preamp	3008A00301	11/13/2008	11/13/2010	2010
Loop Ant	1074	04/10/2009	04/10/2011	AN00226
Site A 10 meter cable		05/10/2009	05/10/2011	MA10M
set				

Equipment Under Test (* = EUT):

1 1	-):		
Function	Manufacturer	Model #	S/N
Essential Insight.mesh*	Bently Nevada LLC	185300	10.1C.DF
wSIM	Bently Nevada LLC	185310-01	10.1C.DF

Support Devices:

Function	Manufacturer	Model #	S/N
Thermocouple	Bently Nevada LLC	Type K TC	NA
Thermocouple	Bently Nevada LLC	Type J TC	NA
Accelerometer	Bently Nevada LLC	200157	G09C02ME
Accelerometer	Bently Nevada LLC	200157	G09C02PB
Power Supply	HP	E3611A	3125K01021
EUT Serial Communication	Bently Nevada LLC	None	None
Test Fixture			
Remote Computer	Dell	Latitude E6400	P00627027

Page 17 of 25 Report No: FC09-106B

Test Conditions / Notes:

Standard used was FCC 15.247 d /15.209 Spurious

EUT was placed on a 40cm Styrofoam block 80cm from the ground plane.

EUT has 4 transducer ports. Ports 1 & 3 have accelerometers with 2 meter cables attached. Ports 2 & 4 have 2.5 meter long theromcouples attached.

EUT is battery operated .A remotely located external DC power supply is supplying nominal EUT power and is set at +3.3 VDC

The remote computer is connected to the EUT through the Test Fixture and is controlling the function of the EUT.

EUT is transmitting continuously on Low, Mid & High channels as noted for each reading.

Low channel = 2405 MHz.

Mid channel = 2440 MHz.

High channel =2480 MHz.

RBW = 100 kHz, VBW 3X RBW. 1-24 GHz.

RBW = 120 kHz, VBW 3X RBW. 30-1000 MHz.

RBW = 9 kHz, VBW 3X RBW. 150 kHz -30 MHz.

RBW = 200 Hz, VBW 3X RBW. 9 - 150 kHz.

Duty Cycle correction applied as per 15.35 and noted when applied. Correction factor was derived from measured 5 RF on time pulses of 4.4 ms in $100 \text{ ms} = 22\% = 22/100 = 20 \log .22 = -13.15 \text{dB}$.

The temperature was 23 degrees C and the humidity was 38%.

The frequency range investigated was: 9 kHz - 24.0 GHz.

Transducer Legend:

Transaucer Begena.	
T1=CAB-ANP01012-051909	T2=CAB-ANP01403-061009
T3=Cable 20m Andrews	T4=ANT AN00327 1GHz-18GHz
T5=15.35 Duty Cycle Correction	T6=AMP-AN02010-111308

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1 T5	T2 T6	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	$dB\muV/m$	dB	Ant
1	4880.920M	48.8	+2.7	+3.7	+10.5	+33.4	-10.0	42.6	54.0	-11.4	Horiz
	Ave		-13.2	-33.3					High Chan	nel with	
									duty cycle		
									correction	added	
^	4880.920M	48.8	+2.7	+3.7	+10.5	+33.4	-10.0	55.8	54.0	+1.8	Horiz
			+0.0	-33.3					High Chan	nel	
3	4880.940M	48.1	+2.7	+3.7	+10.5	+33.4	-10.0	41.9	54.0	-12.1	Vert
	Ave		-13.2	-33.3					Mid Chann	nel with	
									duty cycle		
									correction	added	
^	4880.940M	48.1	+2.7	+3.7	+10.5	+33.4	-10.0	55.1	54.0	+1.1	Vert
			+0.0	-33.3					Mid Chanr	nel	
5	4960.940M	46.7	+2.7	+3.7	+10.6	+33.5	-10.0	40.8	54.0	-13.2	Vert
	Ave		-13.2	-33.2					High Chan	nel with	
									duty cycle		
									correction	added	
٨	4960.940M	46.7	+2.7	+3.7	+10.6	+33.5	-10.0	54.0	54.0	+0.0	Vert
			+0.0	-33.2					High Chan	nel	
7	4958.940M	33.4	+2.7	+3.7	+10.6	+33.5	-10.0	40.7	54.0	-13.3	Horiz
			+0.0	-33.2					High Chan	nel	

Page 18 of 25 Report No: FC09-106B

8 4810.940M	44.4	+3.0	+3.8	+10.3	+33.2	-10.0	38.0	54.0 -16.0	Horiz
Ave		-13.2	-33.5					Low Channel with	
								duty cycle	
								correction added	
^ 4810.940M	44.4	+3.0	+3.8	+10.3	+33.2	-10.0	51.2	54.0 -2.8	Horiz
		+0.0	-33.5					Low Channel	
10 4811.160M	43.5	+3.0	+3.8	+10.3	+33.2	-10.0	37.1	54.0 -16.9	Vert
Ave		-13.2	-33.5					Low Channel with	
								duty cycle	
								correction added	
^ 4811.160M	43.5	+3.0	+3.8	+10.3	+33.2	-10.0	50.3	54.0 -3.7	Vert
		+0.0	-33.5					Low Channel	
12 7216.020M	35.7	+3.7	+4.3	+14.4	+35.6	-10.0	37.0	54.0 -17.0	Horiz
Ave		-13.2	-33.5					Low Channel with	
								duty cycle	
								correction added	
^ 7216.020M	35.7	+3.7	+4.3	+14.4	+35.6	-10.0	50.2	54.0 -3.8	Horiz
		+0.0	-33.5					Low Channel	
14 9757.900M	32.7	+4.0	+5.3	+13.9	+37.9	-10.0	36.5	54.0 -17.5	Horiz
Ave		-13.2	-34.1					Mid Channel with	
								duty cycle	
								correction added	
^ 9757.900M	32.7	+4.0	+5.3	+13.9	+37.9	-10.0	49.7	54.0 -4.3	Horiz
		+0.0	-34.1					Mid Channel	
16 9761.900M	30.7	+4.0	+5.3	+13.9	+37.9	-10.0	34.5	54.0 -19.5	Vert
Ave		-13.2	-34.1					Mid Channel with	
								duty cycle	
								correction added	
^ 9761.900M	30.7	+4.0	+5.3	+13.9	+37.9	-10.0	47.7	54.0 -6.3	Vert
		+0.0	-34.1					Mid Channel	
18 7321.320M	31.8	+3.6	+4.4	+14.2	+35.9	-10.0	33.1	54.0 -20.9	Horiz
Ave		-13.2	-33.6					Mid Channel with	
								duty cycle	
								correction added	
^ 7321.320M	31.8	+3.6	+4.4	+14.2	+35.9	-10.0	46.3	54.0 -7.7	Horiz
		+0.0	-33.6					Mid Channel	
20 7215.970M	29.9	+3.7	+4.3	+14.4	+35.6	-10.0	31.2	54.0 -22.8	Vert
Ave		-13.2	-33.5					Low Channel with	
								duty cycle	
								correction added	
^ 7215.970M	29.9	+3.7	+4.3	+14.4	+35.6	-10.0	44.4	54.0 -9.6	Vert
		+0.0	-33.5					Low Channel	

Page 19 of 25 Report No: FC09-106B

22 4880.940M	37.0	+2.7	+3.7	+10.5	+33.4	-10.0	30.8	54.0	-23.2	Horiz
Ave		-13.2	-33.3					Mid Chann	el with	
								duty cycle		
								correction a	added	
23 7441.930M	28.7	+3.6	+4.5	+14.1	+36.1	-10.0	30.0	54.0	-24.0	Vert
Ave		-13.2	-33.8					High Chan	nel with	
								duty cycle		
								correction a	added	
^ 7441.930M	28.7	+3.6	+4.5	+14.1	+36.1	-10.0	43.2	54.0	-10.8	Vert
		+0.0	-33.8					High Chan	nel	
25 7438.980M	27.8	+3.6	+4.5	+14.1	+36.1	-10.0	29.1	54.0	-24.9	Horiz
Ave		-13.2	-33.8					High Chan	nel with	
								duty cycle		
								correction a	added	
^ 7438.980M	28.9	+3.6	+4.5	+14.1	+36.1	-10.0	43.4	54.0	-10.6	Horiz
		+0.0	-33.8					High Chan	nel	

Page 20 of 25 Report No: FC09-106B

FCC 15.247(d) BANDEDGE - LOW CHANNEL

FCC 15.247(d) BANDEDGE - HIGH CHANNEL

Page 21 of 25 Report No: FC09-106B

FCC 15.247(e) PEAK POWER SPECTRAL DENSITY

Test Setup Photos

Page 22 of 25 Report No: FC09-106B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: **Bently Nevada LLC**

Specification: 15.247(e)

Work Order #: 88568 Date: 6/23/2009 Test Type: **Radiated Scan** Time: 11:37:53 Sequence#: 3

Equipment: Wireless Mesh Network Device,

802.15.4

Manufacturer: Bently Nevada LLC Tested By: Mike Wilkinson

Model: Essential Insight.mesh wSIM

10.1C.DF S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	08/07/2008	08/07/2010	02660
EMCO 3115 Horn	9006-3413	06/06/2008	06/06/2010	AN00327
Antenna				
Cable, Andrews	NA	09/04/2007	09/04/2009	ANP04274
Hardline HF-005-20				
Andrew-25'	N/A	05/19/2009	05/19/2011	AN01012
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
HP 8449B Preamp	3008A00301	11/13/2008	11/13/2010	2010

Equipment Under Test (* = EUT):

1 1	,		
Function	Manufacturer	Model #	S/N
Wireless Mesh Network	Bently Nevada LLC	Essential Insight.mesh	10.1C.DF
Device, 802.15.4*		wSIM	

Support Devices:

Function	Manufacturer	Model #	S/N
Thermocouple	Bently Nevada LLC	Type K TC	NA
Thermocouple	Bently Nevada LLC	Type J TC	NA
Accelerometer	Bently Nevada LLC	200157	G09C02ME
Accelerometer	Bently Nevada LLC	200157	G09C02PB
Power Supply	HP	E3611A	3125K01021

Test Conditions / Notes:

Standard used was FCC 15.247(e) PPSD. EUT is an 802.15.4 transceiver and is operating on the Low, Mid, and High channels as noted in the datasheet readings. The transceiver is transmitting continuously with modulation EUT was placed 80cm from the ground plane on a 40cm Styrofoam block. EUT has 4 transducer ports. Ports 1 & 3 have accelerometers with 2 meter cables attached. Ports 2 & 4 have 2.5 meter long thermocouples attached. EUT is battery operated. A remotely located external DC power supply is supplying nominal EUT power and is set at +3.3 VDC. The remote computer is connected to the EUT through the Test Fixture and is controlling the function of the EUT. EUT is transmitting continuously on Low, Mid & High channels as noted for each reading. Low channel = 2405 MHz, Mid channel = 2440 MHz, High channel =2480 MHz. The temperature was 23° C and the humidity was 38%. The frequency range investigated was: Carrier. Plots are corrected for transducers.

> Page 23 of 25 Report No: FC09-106B

Test Plots

FCC 15.247(e) PEAK POWER SPECTRAL DENSITY – LOW CHANNEL

FCC 15.247(e) PEAK POWER SPECTRAL DENSITY – MID CHANNEL

Page 24 of 25 Report No: FC09-106B

FCC 15.247(e) PEAK POWER SPECTRAL DENSITY – HIGH CHANNEL

Page 25 of 25 Report No: FC09-106B