Работа 4.3.1 Дифракции Френеля и Фраунгофера

Балдин Виктор Алексеевич группа Б01-303

Цель работы: исследовать являения дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

1 Дифракция Френеля

Установка

Рис. 1: Схема установки.

Схема установки представлена на Рис. 1.

Теория

Распределение интенсивности света в плоскости Π рассчитаем с помощью зон Френеля. При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определеяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношение

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a — расстояние от щели до плоскости П. Вид наблюдаемой картины определяется $uucnom\ \Phi penena\ \Phi$:

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}$$

– число зон Френеля, которые укладываются в ширине щели $D.~p=\frac{1}{\Phi^2}$ называется волновым параметром.

2 Дифракция Фраунгофера на щели

Теория

Для выкладок ниже нам потребуется знать *принцип Гюйгенса-Френеля*. Он формулируется следующим образом

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Теперь рассмотрим первое применение этого принципа, получившее название ме-mod зон Φ ренеля

Рис. 2: Построение зон Френеля

Для этого рассмотрим действие световой волны действующей из точки A в какой-то точке B.

В этом случае можно, взяв точку M_0 в качестве центра (см. рис. 1), построить ряд концентрических сфер, радиусы которых начинаются с b и увеличиваются каждый раз на половину длины волны $\lambda/2$. При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами r_1, r_2 и т. д.

Из геометрических соображений посчитав, можно получить, что

$$r_i = i\sqrt{a\lambda} \tag{2}$$

Введем так же обозначение: число Френеля

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}} \tag{3}$$

В этом пункте рассмотрим дифракцию, когда ширина щели становится значительно меньше ширины первой зоны Френеля, т.е. если

$$D \ll \sqrt{a\lambda} \tag{4}$$

Это условие всегда выполняется при достаточно большом a. В этом случае говорят,

что дифракция Фраунгофера. При выполнении пункта (2) у нас заметно упрощаются фазовые соотношения, что поясняет рис. 2, в итоге с хорошим приближением можно считать, что разность хода между соседними лучами равна

$$\Delta = r_2 - r_1 \approx D \sin \theta \approx D \cdot \theta \tag{5}$$

Здесь предполагается, что θ достаточно мал.

Схема установки

Дифракцию Фраунгофера можно наблюдать на подобной установке

Рис. 4: Схема установки для пункта 2

Объектив здесь нужен для удобства, так как неудобно работать с очень узкими щелями. Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 .

Посчитав легко определить угловую координату любой темной полосы:

$$\theta_m = \frac{m\lambda}{D} \tag{6}$$

И расстояние от центра соответственно

$$X_m = f_2 m \frac{\lambda}{D} \tag{7}$$

Ход работы

Дифракция Френеля

1-4

Соберем установку на рис. 1. Для этого включим ртутную лампу и поставим после нее фильтр с щелью. После щели нужно будет поставить линзу так, чтобы щель была в фокусе. Для этого воспользуемся зрительной трубой, настроенной на бесконечность. Поскольку, если линза находится в нужном месте, из нее выходит пучок параллельных лучей, зрительная труба, настроенная на бесконечность, должна показать четкое изображение щели. После установки линзы поместим щель S_2 и микроскоп после неё. На этом сборка установки завершена.

Найдем нуль микрометрического винта щели S_2 . Для этого посмотрим свозь щель на лампу накаливания и начнем поворачивать винт из нулевого положения до тех пор, пока свет от лампы не станет виден. При этом положение винта будет нулем.

$$\boxed{d, \text{mkm} \mid 20 \mid 17 \mid 18}$$

$$\Delta d = 0.5, \text{mkm}$$

$$< d >= 18.3 \pm 1.0, \text{mkm}$$

(Погрешность d была посчитана как корень суммы квадратов статистической и приборной).

6-9

Поставив микроскоп за щелью, получим дифракционную картину. Заметим, что количество полос должно увеличиваться по мере отодвигания микроскопа от щели.

Измерим положение микроскопа x, при котором видно n полос и найдем расстояние a доплоскостии наблюдения, которое равно смещению относительно положения $x_0=540.0\pm0.5\,\mathrm{mm}$

$\mid n \mid$	x_{min}, MM	x_{max} , MM	x, MM	Δx , mm	a, MM	Δa , mm
1.0	525.0	532.0	529	4	12	4
2.0	532.0	535.0	533.5	1.6	6.5	1.7
3.0	535.0	536.0	535.5	0.7	4.5	0.9
4.0	536.0	536.0	536.0	0.5	4.0	0.7
5.0	536.0	537.0	536.5	0.7	3.5	0.9

$$\Delta n = 0$$
, $\Delta x_{min} = 0.5$ mm, $\Delta x_{max} = 0.5$ mm

Поскольку суммарная ширина зон френеля не меняется и равна D, из формулы (1) следует, что зависимость между a и 1/m должна быть линейной, что и видно из следующего графика

Заметим, что вертикальный сдвиг линейной зависимости равен 1.3 мм и находится в пределах погрешности.

10-11

Независимо змерим ширину щели с помощью микроскопа и микрометра.

Иллюстрация, не является измерением.

В результате получилось

$$d_{ ext{mex}} = (258-18) \pm 1.1 \, ext{mkm} = 240 \pm 1.1 \, ext{mkm}$$
 $d_{ ext{oht}} = 240 \pm 10 \, ext{mkm}$

12

Для исследования дифракции Френеля на препятствии, поставим в место щели S_2 тонкую вертикальную нить и настроим микроскоп на ее резкое изображение

При удалении от нити всегда наблюдается четное число темных дифракционных полос.

2.1 Дифракция Фраунгофера на щели

1-3

Для того, чтобы наблюдать дифракцию френеля, нужно поставить еще одну линзу O_2 после щели, чтобы в ее фокальной плоскости появилась картина из параллельных лучей. После этого достаточно настроить микроскоп на эту фокальную плоскость, сняв щель S_2 со скамьи и получив четкое изображение щели S_1 в окуляре.

4-7 Пронаблюдаем дифракционную картину

m	x_{min} , MM	x_{max} , MM	x, MM
-5.0	0.26	0.38	0.320
-4.0	0.54	0.64	0.590
-3.0	0.80	0.90	0.850
-2.0	1.08	1.18	1.130
-1.0	1.36	1.42	1.390
1.0	1.94	1.98	1.960
2.0	2.16	2.28	2.220
3.0	2.48	2.52	2.500
4.0	2.72	2.86	2.790
5.0	3.00	3.10	3.050

$$\Delta m = 0$$
, $\Delta x_{min} = 0.01$ mm, $\Delta x_{max} = 0.01$ mm, $\Delta x = 0.014$ mm

Измерение проводились при ширине щели

$$D = (17.0 \pm 0.5) \times 20 \, \mathrm{Mkm} = 340 \pm 10 \, \mathrm{Mkm}.$$

И фокусном расстоянии линзы

$$f = 160 \,\mathrm{mm}$$

Если $A = (274.0 \pm 0.9)$ мкм – угол наклона графика, то

$$\lambda = D\frac{A}{f} = 582 \pm 19\,\mathrm{HM}$$

Вывод

Мы изучили два основных типа дифракции: Френеля и Фраунгофера при разных размерах щели и провели качественные наблюдения этих явлений, а также экспериментально проверили справедливость теоретических формул.