Interpretable Machine Learning

Accumulated Local Effect (ALE) plot

- Understand ALE plots
- Difference between ALE and PD plots

ACCUMULATED LOCAL EFFECTS (ALE) Apley, Zhu (2020)

ALE plots estimate the marginal effect of a feature by accumulating its local effects (integrating partial derivatives), evaluated in regions supported by the data.

Computation Steps:

- **①** Estimate local effects $\frac{\partial \hat{f}(x_s, \mathbf{x}_{-s})}{\partial x_s}$ (via finite differences)
 - \Rightarrow Removes unwanted main effects of other features \mathbf{x}_{-S} (unlike M plots)

ACCUMULATED LOCAL EFFECTS (ALE) Apley, Zhu (2020)

ALE plots estimate the marginal effect of a feature by accumulating its local effects (integrating partial derivatives), evaluated in regions supported by the data.

Computation Steps:

- Estimate local effects $\frac{\partial \hat{t}(x_S, \mathbf{x}_{-S})}{\partial x_S}$ (via finite differences)
 - \Rightarrow Removes unwanted main effects of other features \mathbf{x}_{-S} (unlike M plots)
- **2** Average local effects over conditional distribution $\mathbb{P}(\mathbf{x}_{-S}|x_S)$ similar to M plots ⇒ Avoids extrapolation (unlike PD plots)

ACCUMULATED LOCAL EFFECTS (ALE) Apley, Zhu (2020)

ALE plots estimate the marginal effect of a feature by accumulating its local effects (integrating partial derivatives), evaluated in regions supported by the data.

Computation Steps:

- **1** Estimate local effects $\frac{\partial \hat{f}(x_s, \mathbf{x}_{-s})}{\partial x_s}$ (via finite differences)
 - \Rightarrow Removes unwanted main effects of other features \mathbf{x}_{-S} (unlike M plots)
- **2** Average local effects over conditional distribution $\mathbb{P}(\mathbf{x}_{-S}|x_S)$ similar to M plots ⇒ Avoids extrapolation (unlike PD plots)
- **Accumulate:** Integrate averaged local effects up to a specific value $x \in \mathcal{X}_S$
 - \Rightarrow Reconstructs main effect of x_s

FIRST ORDER ALE FUNCTION

Uncentered ALE Function evaluated at $x \in \mathcal{X}_{S}$ (domain of feature x_{S}):

$$\tilde{f}_{S, \text{ALE}}(x) = \underbrace{\int_{z_0}^{x} \underbrace{\mathbb{E}_{\mathbf{x}_{-S} \mid x_S = z_S}}_{\text{(2) average locally}} \left(\underbrace{\frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S}}_{\text{(1) local effect}} \right) dz_S = \int_{z_0}^{x} \int \frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S} d\mathbb{P}(\mathbf{x}_{-S} \mid z_S) dz_S$$

- x_S is feature of interest, with minimum value $z_0 = \min(x_S)$
- z_S is integration variable ranging over \mathcal{X}_S , used to evaluate local effects
- \bullet \mathbf{x}_{-S} denotes all other features (complement of S)

FIRST ORDER ALE FUNCTION

Uncentered ALE Function evaluated at $x \in \mathcal{X}_S$ (domain of feature x_S):

$$\tilde{f}_{S, \mathsf{ALE}}(x) = \underbrace{\int_{z_0}^x \underbrace{\mathbb{E}_{\mathbf{x}_{-S} \mid x_S = z_S}}_{\text{(2) average locally}} \left(\underbrace{\frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S}}_{\text{(1) local effect}} \right) dz_S = \int_{z_0}^x \int \frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S} d\mathbb{P}(\mathbf{x}_{-S} \mid z_S) dz_S$$

- x_S is feature of interest, with minimum value $z_0 = \min(x_S)$
- z_S is integration variable ranging over \mathcal{X}_S , used to evaluate local effects
- \bullet \mathbf{x}_{-S} denotes all other features (complement of S)

Centering (to ensure identifiability):

$$f_{S,ALE}(x) = \tilde{f}_{S,ALE}(x) - \underbrace{\int \tilde{f}_{S,ALE}(x_S) d\mathbb{P}(x_S)}_{\text{constant shift to mean zero}}$$

ALE ESTIMATION: ILLUSTRATION

- Motivation: Partial derivatives are not well-defined for all models (e.g., tree-based methods). ⇒ Use finite differences within intervals instead.
- \bullet Partition the feature range of x_S into K intervals (vertical lines)
 - Define intervals:

$$x_S \in [\min(x_S), \max(x_S)] \Rightarrow x_S \in [z_0, z_{1,S}] \cup [z_{1,S}, z_{2,S}] \cup \dots \cup [z_{K-1,S}, z_{K,S}]$$

- Equidistant: preserves resolution
- Quantile-based: balances sample size per interval

ALE ESTIMATION: ILLUSTRATION

- For each observation in k-th interval, i.e., $\{i: x_S^{(i)} \in [z_{k-1,S}, z_{k,S}]\}$:
 - ullet Replace $x_{S}^{(i)}$ with upper/lower interval bounds, keeping $\mathbf{x}_{-S}^{(i)}$ fixed
 - Compute observation-wise finite difference of *i*-th obs. in *k*-th interval $\leadsto \hat{f}(z_{k,S},\mathbf{x}_{-S}^{(i)}) \hat{f}(z_{k-1,S},\mathbf{x}_{-S}^{(i)})$ (approximates local effect)

ALE ESTIMATION: ILLUSTRATION

- ullet For each observation in k-th interval, i.e., $\{i: x_S^{(i)} \in [z_{k-1,S}, z_{k,S}]\}$:
 - ullet Replace $x_{S}^{(i)}$ with upper/lower interval bounds, keeping $\mathbf{x}_{-S}^{(i)}$ fixed
 - Compute observation-wise finite difference of *i*-th obs. in *k*-th interval $\leadsto \hat{f}(z_{k,S},\mathbf{x}_{-S}^{(i)}) \hat{f}(z_{k-1,S},\mathbf{x}_{-S}^{(i)})$ (approximates local effect)
- Average these finite differences over all observations in each interval
 - ightsquigarrow Approximates inner integral $\mathbb{E}_{\mathbf{x}_{-s}|\mathbf{x}_s=\mathbf{z}_s}\left[\partial\hat{\mathbf{f}}/\partial\mathbf{z}_s\right]$
- Accumulate these averages from z_0 to the point of interest $x \in \mathcal{X}_S$
 - \leadsto Approximates **outer integral** over $z_{\mathcal{S}} \in [z_0, x] \Rightarrow$ uncentered ALE function

ALE ESTIMATION: FORMULA

Estimated uncentered ALE: For a point $x \in \mathcal{X}_{\mathcal{S}}$, define:

$$\hat{\tilde{f}}_{S,ALE}(x) = \sum_{k=1}^{k_S(x)} \frac{1}{n_S(k)} \sum_{i: \ x_S^{(i)} \in [z_{k-1,S}, z_{k,S}]} \left[\hat{f}(z_{k,S}, \mathbf{x}_{-S}^{(i)}) - \hat{f}(z_{k-1,S}, \mathbf{x}_{-S}^{(i)}) \right]$$

- $[z_{k-1,S}, z_{k,S}]$: k-th interval of feature x_S with interval bounds $z_{k-1,S}$ and $z_{k,S}$
- $k_S(x)$: index of the interval in which x lies
- $n_S(k)$: number of observations in interval k
- $\mathbf{x}_{-S}^{(i)}$: all other features held fixed for *i*-th observation

ALE ESTIMATION: FORMULA

Estimated uncentered ALE: For a point $x \in \mathcal{X}_{S}$, define:

$$\hat{\tilde{f}}_{S,ALE}(x) = \sum_{k=1}^{k_S(x)} \frac{1}{n_S(k)} \sum_{i: \ x_S^{(i)} \in [z_{k-1,S}, z_{k,S}]} \left[\hat{f}(z_{k,S}, \mathbf{x}_{-S}^{(i)}) - \hat{f}(z_{k-1,S}, \mathbf{x}_{-S}^{(i)}) \right]$$

- $[z_{k-1,S}, z_{k,S}]$: k-th interval of feature x_S with interval bounds $z_{k-1,S}$ and $z_{k,S}$
- $k_S(x)$: index of the interval in which x lies
- $n_S(k)$: number of observations in interval k
- $\mathbf{x}_{-S}^{(i)}$: all other features held fixed for *i*-th observation

Centering: Ensure identifiability by subtracting mean uncentered ALE (constant *c*):

$$\hat{f}_{S,ALE}(x) = \hat{\tilde{f}}_{S,ALE}(x) - c, \qquad c = \frac{1}{n} \sum_{i=1}^{n} \hat{\tilde{f}}_{S,ALE}(x_S^{(i)}).$$

Efficient centering (used in implementations): Use weighted trapezoidal averaging of interval-wise boundary values (avoids redundant re-evaluation at all n points):

$$c = \sum_{k=1}^{K} \frac{1}{2} \cdot \left(\hat{\tilde{f}}_{S,ALE}(z_{k-1,S}) + \hat{\tilde{f}}_{S,ALE}(z_{k,S})\right) \cdot \frac{n_S(k)}{n}$$

Plotting ALE: Visualize the pairs $(z_{k,S}, \hat{f}_{S,ALE}(z_{k,S}))$ for all interval boundaries $z_{k,S}$.

BIKE SHARING DATASET: FIRST ORDER ALE

- Visual comparison: PD plot (top) vs. First-order ALE plot (bottom)
- Shape: Both plots show similar trends, but differ in y-axis scale due to centering
- Interpretation: ALE accounts for feature dependencies and avoids extrapolation into unsupported regions
 - → PD reflects model behavior in entire feature space ("true to the model")
 - → ALE focuses on effects in data-supported regions ("true to the data")

BIKE SHARING DATASET: SECOND ORDER ALE

Unlike bivariate PD plots, 2nd-order ALE plots only estimate pure interaction between two features (1st-order effects are not included).

PD VS. ALE

PD:

$$f_{\mathcal{S},PD}(x_{\mathcal{S}}) = \mathbb{E}_{\mathbf{x}_{-\mathcal{S}}}\left(\hat{f}(x_{\mathcal{S}},\mathbf{x}_{-\mathcal{S}})\right)$$

ALE:

$$f_{S,ALE}(x) = \int_{z_0}^{x} \mathbb{E}_{\mathbf{x}_{-S}|x_S=z_S} \left(\frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S} \right) dz - \text{const}$$

- ALE is faster: Needs $O(2 \cdot n)$ model calls vs. $O(n \cdot g)$ for PD with g grid points
- Difference 1: ALE averages
 - prediction changes (via partial derivatives, estimated by finite differences)
 - over conditional distribution $\mathbb{P}(\mathbf{x}_{-S}|x_S=z_S)$

PD VS. ALE

PD:

$$f_{S,PD}(x_S) = \mathbb{E}_{\mathbf{x}_{-S}}\left(\hat{f}(x_S,\mathbf{x}_{-S})\right)$$

ALE:

$$f_{S,ALE}(x) = \int_{z_0}^{x} \mathbb{E}_{\mathbf{x}_{-S}|x_S = z_S} \left(\frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S} \right) d\mathbf{z} - \text{const}$$

- ALE is faster: Needs $O(2 \cdot n)$ model calls vs. $O(n \cdot g)$ for PD with g grid points
- Difference 1: ALE averages the
 - prediction changes (via partial derivatives, estimated by finite differences)
 - over conditional distribution $\mathbb{P}(\mathbf{x}_{-S}|x_S=z_S)$
- Difference 2: ALE integrates these partial derivatives over $z_S \in [z_0, x] \subseteq \mathcal{X}_S$ \leadsto isolates effect of x_S and removes main effect of other dependent features

PD VS. ALE

PD:

$$f_{\mathcal{S},PD}(x_{\mathcal{S}}) = \mathbb{E}_{\mathbf{x}_{-\mathcal{S}}}\left(\hat{f}(x_{\mathcal{S}},\mathbf{x}_{-\mathcal{S}})\right)$$

ALE:

$$f_{S,ALE}(x) = \int_{z_0}^{x} \mathbb{E}_{\mathbf{x}_{-S}|x_S = z_S} \left(\frac{\partial \hat{f}(z_S, \mathbf{x}_{-S})}{\partial z_S} \right) dz - \int \tilde{f}_{S,ALE}(x_S) d\mathbb{P}(x_S)$$

- ALE is faster: Needs $O(2 \cdot n)$ model calls vs. $O(n \cdot g)$ for PD with g grid points
- Difference 1: ALE averages the
 - prediction changes (via partial derivatives, estimated by finite differences)
 - over conditional distribution $\mathbb{P}(\mathbf{x}_{-S}|x_S=z_S)$
- Difference 2: ALE integrates these partial derivatives over $z_S \in [z_0, x] \subseteq \mathcal{X}_S$ \leadsto isolates effect of x_S and removes main effect of other dependent features
- Difference 3: ALE is centered so that $\mathbb{E}_{x_S}(f_{S,ALE}(x)) = 0$

