Einführung in die Algebra

BLATT 2

Jendrik Stelzner

23. Januar 2014

Aufgabe 2.1.

Auf X' sei eine G-Aktion definiert als

$$G \times X' \to X', (g, H(\tilde{g}, x)) \mapsto g * H(\tilde{g}, x) := H(g\tilde{g}, x),$$

wobei $H(\tilde{g},x)\in X'$ die Bahn von $(\tilde{g},x)\in G\times X$ bezeichnet. [Korrektur: Es fehlt der Nachweis der Wohldefiniertheit, d.h. die Unabhängigkeit vom Repräsentanten der Bahn.] Es handelt sich bei * um ein G-Aktion, da für alle $H(g,x)\in X'$

$$1 * H(g, x) = H(1 \cdot g, x) = H(g, x)$$

und für $g_1, g_2 \in G$ und $H(\tilde{g}, x) \in X'$

$$g_1 * (g_2 * H(\tilde{g}, x)) = g_1 * H(g_2 \tilde{g}, x) = H(g_1 g_2 \tilde{g}, x) = (g_1 g_2) * H(\tilde{g}, x).$$

Weiter sei die H-Abbildung Φ definiert als

$$\Phi: X \mapsto X', x \mapsto H(1, x).$$

 Φ ist eine H-Abbildung, da für alle $h \in H$ und $x \in X$

$$\Phi(hx) = H(1, hx) = H(h, x) = h * H(1, x) = h * \Phi(x).$$

Dabei gilt des zu bemerken, dass H(1, hx) = H(h, x), da

$$H(1, hx) = (Hh^{-1})(1, hx) = H(h^{-1}(1, hx)) = H(h, x),$$

wobei die Multiplikation die in der Aufgabe gegebene H-Aktion auf $G \times X$ ist. Es gilt nun zu zeigen, dass $f \mapsto f \circ \Phi$ eine Bijektion zwischen der Menge der G-Abbildungen von X' nach Y und der Menge der H-Abbildungen von X nach Y definiert.

Es gilt zunächst die Wohldefiniertheit der induzierten Abbildung zu überprüfen, d.h. dass für eine G-Abbildung $f: X' \to Y$ die Komposition $f \circ \Phi$ eine H-Abbildung von X nach Y ist. Dies ist aber der Fall, da offenbar $f \circ \Phi: X \to Y$, und für alle $h \in H$ und $x \in X$,

$$(f \circ \Phi)(hx) = f(H(1, hx)) = f(H(h, x))$$

= $f(h * H(1, x)) = hf(H(1, x)) = h(f \circ \Phi)(x).$

Die Injektivität ergibt sich daraus, dass für G-Abbildungen $f,f':X'\to Y$ mit $f\circ\Phi=f'\circ\Phi$ für alle $H(g,x)\in X'$ gilt

$$f(H(g,x)) = f(g*H(1,x)) = g*f(H(1,x)) = g*(f \circ \Phi)(x)$$

= $g*(f' \circ \Phi)(x) = g*f'(H(1,x)) = f'(g*H(1,x)) = f'(H(g,x)),$

also f = f'.

Die Surjektivität der Abbildung ergibt sich daraus, dass sich für jede H-Abbildung $\psi: X \to Y$ eine G-Abbildung $f: X' \to Y$ konstruieren lässt, so dass $\psi = f \circ \Phi$: Für $H(g,x) \in X'$ sei $f(H(g,x)) := g\psi(x)$. Dieser Ausdruck ist wohldefiniert, denn ist H(g,x) = H(g',x'), so ist $(g',x') = h(g,x) = (gh^{-1},hx)$ für ein $h \in H$ und somit

$$g\psi(x) = gh^{-1}h\psi(x) = gh^{-1}\psi(hx) = g'\psi(x').$$

f ist eine G-Abbildung, da für alle $g \in G$ und $H(\tilde{g},x) \in X'$

$$f(g*H(\tilde{g},x))=f(H(g\tilde{g},x))=g\tilde{g}\psi(x)=gf(H(\tilde{g},x)).$$

Aufgabe 2.2.

Angenommen, es ist ord Z=1, also $Z=\{1\}$, aber die Anzahl der Konjugationsklassen in G ist echt größer als $\frac{\operatorname{ord} G}{p}$. Sei dann x_1,\ldots,x_n ein Repräsentantensystem der Konjugationsklassen von $G-\{1\}$; nach Annahme ist dabei $n\geq \frac{\operatorname{ord} G}{p}$. Es ist nun $(G:Z_{x_i})\neq 1$ für $i=1,\ldots,n$, da sonst $Z_{x_i}=G$, also $1\neq x_i\in Z$, im Widerspruch zur Annahme dass $Z=\{1\}$. Da $(G:Z_{x_i})$ ein Teiler von ord G ist, muss daher $(G:Z_{x_i})\geq p$ für $i=1,\ldots,n$. Es ist daher

$$\operatorname{ord} G = \operatorname{ord} Z + \sum_{i=1}^{n} (G : Z_{x_i}) \ge 1 + \frac{\operatorname{ord} G}{p} p = 1 + \operatorname{ord} G,$$

also $0\geq 1$, was offensichtlich falsch ist. Also muss, wenn die Anzahl den Konjugationsklassen in G echt größer als $\frac{\operatorname{ord} G}{p}$ ist, ord $Z\geq 2$.

Aufgabe 2.3.

Zunächst gilt es zu bemerken, dass $x \in X$ genau dann ein Fixpunkt von G ist, falls gx = x für alle $g \in G$, also $G_x = G$, und somit $(G:G_x) = 1$. Da $Gx = \{x\}$ ist x auch der einzige Repräsentant der Bahn von x.

Sei x_1, \ldots, x_n ein Respräsentantensystem der Bahnen auf X. Dann ist nach der Bahnengleichung

$$17 = \text{ord } X = \sum_{i=1}^{n} (G : G_{x_i}),$$

wobei für je $i=1,\ldots,n$ der Index $(G:G_{x_i})$ ein Teiler von ord G ist, und daher $(G:G_{x_i})\in\{1,7,11,77\}$. Betrachtet man nun alle Möglichkeiten, 17 als Summe aus diesen Zahlen darzustellen, so ergibt sich, dass

$$17 = 11 + 6 \cdot 1 = 2 \cdot 7 + 3 \cdot 1 = 7 + 10 \cdot 1 = 17 \cdot 1.$$

Es gibt also in jedem möglichen Fall paarweise verschiedene $i_1,i_2,i_3\in\{1,\ldots,n\}$ mit $(G:G_{x_{i_j}})=1$. Also sind x_{i_1},x_{i_2} und x_{i_3} drei (paarweise verschiedene) Fixpunkte von G

Aufgabe 2.4.

(i)

Es sei x_1,\ldots,x_n ein Repräsentantensystem der Bahnen auf X. Für $i=1,\ldots,n$ gilt: Da $(G:G_{x_i})$ ein Teiler von ord $G=p^k$ ist, ist $(G:G_{x_i})=p^{l_i}$ für ein $l_i\in\{0,1,\ldots,k\}$. Durch passende Durchnummerierung der x_i kann davon ausgegangen werden, dass es ein $j\in\{0,\ldots,n\}$ gibt, so dass $(G:G_{x_i})=1$, also $l_i=0$, für $i=1,\ldots,j$, und $(G:G_{x_i})\geq p$, also $l_i\geq 1$ für i>j. Insbesondere sind x_1,\ldots,x_j die Fixpunkte von G (vergleiche anfänglich Bemerkung in Aufgabe 2.3). Nach der Bahnengleichung ist nun

$$|X| = \sum_{i=1}^{n} (G: G_{x_i}) = j + \sum_{i=j+1}^{n} p^{l_i} = j + p \sum_{i=j+1}^{n} \underbrace{p^{l_i-1}}_{\in \mathbb{N}},$$

also insbesondere ord $X \equiv j \pmod p$. Da j gerade die Anzahl der Fixpunkte von G ist, ist dies die zu zeigende Aussage.

(ii)

Zunächst gilt es zu bemerken, dass die zu zeigende Aussage für $N=\{1\}$ nicht gilt. Im Folgenden wird sie daher unter der zusätzlichen Annahme $N\neq\{1\}$ gezeigt. Da N ein Normalteiler ist, ist $gNg^{-1}=N$ für alle $g\in G$. Also ist $h\in Gh\subseteq N$ für alle $h\in N$, wobei $Gh=\{ghg^{-1}:g\in G\}$ die Bahn von h unter der Konjugationsaktion ist. Es folgt, dass N die disjunkte Vereinigung von Bahnen ist. Angenommen $N\cap Z=\{1\}$. Da $Z=\{g\in G:Gg=\{g\}\}$ ist dann 1 das einzige Element $h\in N$ mit $Gh=\{h\}$. Nach der Klassengleichung ist daher

$$\operatorname{ord} N = 1 + \sum_{i=1}^{n} \underbrace{(G: Z_{x_i})}_{\neq 1},$$

wobei x_1, \ldots, x_n ein Repräsentantensystem der Bahnen in $N-\{1\}$ ist. Da jedes $(G:Z_{x_i})$ als Teiler von ord $G=p^k$ eine p-Potenz ist, und $(G:Z_{x_i})\neq 1$ für alle $i=1,\ldots,n$, folgt aus der obigen Gleichung, dass

$$\operatorname{ord} N \equiv 1 \mod p.$$

Da jedoch ord N ebenfalls ein von 1 verschiedener Teiler von ord $G=p^k$ ist, muss ord $N\equiv 0 \bmod p$. Wegen dieses Widerspruches muss $N\cap Z\supsetneq \{1\}$.

Aufgabe 2.5.

Da die Ordnung des Zentrums Z von G ein Teiler von ord $G=p^3$ ist, muss ord $Z\in\{1,p,p^2,p^3\}$. Es ergibt sich jedoch, dass ord Z=p sein muss:

Da Z abelsch ist, G jedoch nicht, muss $Z \neq G$ und somit ord $Z \neq p^3$.

Wäre ord $Z=p^2$, so wäre ord $G/Z=\frac{\text{ord }G}{\text{ord }Z}=p$, also G/Z zyklisch, und G daher, wie aus der Vorlesung bekannt, abelsch.

Auch ist aus der Vorlesung bekannt, dass $Z \neq \{1\}$, da G eine nichttriviale p-Gruppe ist.

Es muss also ord Z = p.