TABLE OF CONTENTS

ABSTRACT		ix
LIST OF FIGURES ABBREVIATIONS		
	1.1 The Emerging Threat of DDoS Attacks for IoT Networks	1
	1.2 Impact of Real-time Detection and Mitigation	1
	1.3 Dynamic Fuzz Testing Framework with AI	2
	1.4 Contribution and Future Prospects	2
2	LITERATURE SURVEY	3
	2.1 IoT Security Challenges	3
	2.2 DDoS Attacks on IoT Networks	4
	2.3 AI-Based IoT Security Solutions	5
	2.4 Dynamic Fuzz Testing for IoT Security	5
	2.5 NS3 Simulations for IoT Security	6
3	SYSTEM ARCHITECTURE AND DESIGN	7
	3.1 Layered Architecture Overview	7
	3.1.1 Device Layer	7
	3.1.2 Security and Detection Layer	7
	3.1.3 Fuzz Testing Layer	7
	3.1.4 Mitigation Layer	8
	3.1.5 Edge Computing and Analytics Layer	8
	3.1.6 Cloud Processing Layer	8
	3.2 Core Components of FuzzAIoT	8
	3.2.1 Graph Neural Networks (GNNs)	8
	3.2.2 Fuzz Testing Engine	9
	3.2.3 Traffic Filtering Module	9
	3.2.4 Mitigation Engine	9
	3.3 Scalability and Performance Considerations	9
	3.3.1 Scalability	9
	3.3.2 Low Latency Operations	9

	3.3.3	Adaptability	10
	3.4 Integr	ration with Existing Infrastructure	10
	3.4.1	Cloud and Edge Integration	10
	3.4.2	Legacy System Compatibility	10
	3.5 Sumn	nary of System Design	10
4	METHO	DOLOGY	11
	4.1 Add	lressing IoT Security using AI-Driven Techniques	11
	4.2 Dyn	namic Fuzz Testing	11
	4.2.1	Introduction to Dynamic Fuzz Testing	11
	4.2.2	Data Generation through Fuzz Testing	13
	4.3 Data	aset Preprocessing	13
	4.3.1	XML to CSV from Simulation Data	13
	4.3.2	Data Labelling and Balancing	13
	4.4 Trai	ning AI Model	14
	4.4.1	Model Architecture	14
	4.4.2	Training Process and Hyperparameter Tuning	15
	4.4.3	Validation	15
	4.5 Sim	ulation Environment	15
	4.5.1	Network Setup	15
	4.5.2	Traffic Simulation	16
	4.5.3	Visualization with NetAnim	16
	4.6 Miti	igation Strategy	16
	4.6.1	Blocking of malicious IPs	16
	4.6.2	Evaluation and Refinement	16
5	CODING	AND TESTING	17
	5.1 Sim	ulation Setup in NS3	17
	5.1.1	Network Topology Design	17
	5.1.2	Traffic Generation	18
	5.1.3	Mobility Model	20
	5.1.4	Setting up NetAnim	20
	5.2 Data	aset Generation	20
	5.2.1	Traffic Data Collection	20

	5.2.2 Data Conversion into CSV Format	21
	5.2.3 Data Balancing	24
	5.3 AI Model Training	24
	5.3.1 Model Architecture	25
	5.3.2 Training Process	26
	5.3.3 Validation	27
	5.4 Mitigation in NS3 – Real Time detection and Action	27
	5.4.1 Detection of Malicious IP Address	27
	5.4.2 Packet Filtering	27
	5.5 Conclusion of Testing and Implementation	28
6	RESULT AND DISCUSSIONS	29
	6.1 Introduction	29
	6.2 Results	29
	6.2.1 Training and Accuracy of the GNN Model	29
	6.2.2 Results of Validation	30
	6.2.2.1 Validation Accuracy	30
	6.2.2.2 Confusion Matrix	30
	6.2.3 Mitigation Strategy	31
	6.2.3.1 Packet Dropping	31
	6.2.3.2 Performance on Network	31
	6.3 Visualization of Results	31
	6.3.1 Loss and Accuracy Graphs	32
	6.3.2 Confusion Matrix	33
	6.3.3 Network Animation	34
7	CONCLUSION AND FUTURE ENHANCEMENT	35
	7.1 Summary of Headings	35
	7.1.1 AI-Driven Dynamic Fuzz Testing	35
	7.1.2 NS3 Simulation and Visualization	36
	7.1.3 Counter Measures	36
	7.2 Future Improvements	37
	7.2.1 Real-Time Mitigation	37
	7.2.2 Elaborated Attack Scenarios	37

7.2.3 Scalability Test	38
7.2.4 Adaptive Learning	38
7.2.5 Integration of Security Tool	38
7.3 Conclusion	39
REFERENCES	40
APPENDIX	
A CONFERENCE PUBLICATION	43
B PLAGIARISM REPORT	44