Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергий

Дедков Денис, Маслов Артём группа Б01-108а 25.09.2023

Цель и задачи работы:

- 1. С помощью сцинтилляционного счётчика измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе, алюминии.
- 2. По линейным коэффициентам ослабления потока γ -лучей определить энергию γ -квантов.

Ключевые слова: закон Стефана-Больцмана, излучение АЧТ, постоянная Стефана-Больцмана, постоянная Планка.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 1:

Рис. 1: Схема экспериментальной установки.

Источник γ -лучей И окружён свинцовой оболочкой. Коллиматор выделяет узкий параллельный пучок γ -квантов, который проходит через набор поглотителей Π , и регистрируется сцинтилляционным счётчиком C (кристалл NaI(Tl)). Сигнал со счётчика усиливается каскадом фотоэлектронного умножителя и формирователявыпрямителя Φ , и регистрируется пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика.

Оборудование и приборы

Экспериментальная установка №5.1б.

- 1. Набор поглотителей из алюминия, свинца и железа. Инвентарный номер №410134125708.
- 2. Блок детектирования сцинтилляционный РАДЭК БДЕГ-40. Заводской номер №2914. Инвентарный номер №4024.
- 3. Высоковольтный источник питания Scaler 1403. Инвентарный номер №410134125708.
- 4. Источник гамма-излучения в свинцовой оболочке.
- 5. Штангенциркуль. Погрешность измерения равна половине цены деления $\sigma_{\rm штангенциркуль} = 0.05$ мм.

Первичные экспериментальные данные

Первичные экспериментальные данные приведены в таблицах 1-4. Погрешность измерения L_i одинакова и равна $\sigma_{\text{штангенциркуль}} = 0.05$ мм.

Условные обозначения: N — число частиц попадающих на счётчик за время T. L — суммарная толщина поглотителя, L_i — толщина отдельных частей поглотителя.

Таблица 1. Радиационный фон.

\overline{N}	σ_N	<i>T</i> , c
3526	59	60
7098	84	120
10841	104	180
3503	59	60
7152	85	120

Таблица 3. Поглотитель из железа.

L, mm	σ_L , mm	T, c	N	σ_N	L_i , mm
0.00	0.05	10	643507	802	0.00
9.95	0.07	20	740734	861	9.95
19.95	0.09	30	637471	798	10.00
29.95	0.10	40	485600	697	10.00
40.05	0.11	60	421336	649	10.10
50.05	0.12	60	245765	496	10.00
60.25	0.13	70	165630	407	10.20
70.20	0.14	80	113871	337	9.95
79.90	0.15	80	70480	265	9.70

Таблица 2. Поглотитель из свинца.

L, mm	σ_L , mm	T, c	N	σ_N	L_i , mm
0.00	0.05	10	641276	801	0.00
4.65	0.07	20	718829	848	4.65
9.55	0.09	30	606177	779	4.90
14.05	0.10	40	475507	690	4.50
18.40	0.11	60	445987	668	4.35
23.20	0.12	60	263648	513	4.80
28.05	0.13	70	180240	425	4.85
32.85	0.14	80	126171	355	4.80
37.65	0.15	80	80038	283	4.80

Таблица 4. Поглотитель из алюминия.

L, mm	σ_L , mm	T, c	N	σ_N	L_i , mm
0.00	0.05	10	646042	804	0.00
20.10	0.07	20	878138	937	20.10
39.90	0.09	30	883858	940	19.80
59.60	0.10	40	788453	888	19.70
79.50	0.11	60	792969	890	19.90
99.50	0.12	60	537202	733	20.00
119.15	0.13	70	428662	655	19.65
139.10	0.14	80	335148	579	19.95
158.95	0.15	80	232567	482	19.85

Обработка экспериментальных данных

Уровень радиационного фона определим как:

$$n_{\text{mym}} = <\frac{N}{T}>$$

где < x > — среднее значение x.

$$n_{\text{mym}} = 59 \pm 1, \ \varepsilon = 1.2\%$$

Среднеквадратичное отклонение $n_{\rm mym}$ определялось по формуле:

$$\sigma_{n_{\text{mym}}} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (n_i - \langle n \rangle)^2}$$

Построим график зависимости количества зарегистрированных в секунду γ -квантов n от толщины поглощающего слоя l в обычном и логарифмическом масштабе (рис. 2, 3).

Рис. 2: График зависимости n(l).

Рис. 3: График зависимости $\ln n(l)$.

Погрешность n оценивалась по формулам:

$$\sigma_n = \sqrt{\sigma_{N/t}^2 + \sigma_{n_{\text{mym}}}^2}$$

Дедков Д.А., Маслов А.С., Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергий. МФТИ, 2023 г.

$$\begin{split} \sigma_{N/t} &= \frac{N}{t} \cdot \varepsilon_N = \frac{N}{t} \cdot \frac{\sigma_N}{N} \\ \sigma_{\ln n} &= \frac{1}{n} \cdot \sigma_n \end{split}$$

Кресты погрешности малы и на графиках не видны.

С помощью метода наименьших квадратов проведём на графике в логарифмическом масштабе прямые. Коэффициенты наклона прямых:

$$\mu_{\mathrm{Pb}} = 1.12 \pm 0.012 \ \mathrm{cm}^{-1}$$
 $\mu_{\mathrm{Fe}} = 0.55 \pm 0.002 \ \mathrm{cm}^{-1}$
 $\mu_{\mathrm{Al}} = 0.20 \pm 0.001 \ \mathrm{cm}^{-1}$

Определим линейные коэффициенты поглощения, приведённые к плотности вещества:

$$\mu' = \frac{\mu}{\rho}$$

$$\begin{split} \mu'_{Pb} &= 0.083 \pm 0.001 \; \frac{\text{см}^2}{\text{г}} \\ \mu'_{Fe} &= 0.069 \pm 0.001 \; \frac{\text{см}^2}{\text{г}} \\ \mu'_{Al} &= 0.073 \pm 0.001 \; \frac{\text{см}^2}{\text{г}} \\ \text{Были взяты следующие значения плотности:} \\ \rho_{Pb} &= 13.35 \; \text{г/см}^3 \\ \rho_{Fe} &= 7.87 \; \text{г/см}^3 \end{split}$$

Обсуждение результатов и выводы

В работе были измерены линейные коэффициенты поглощения Pb, Fe, Al:

$$\mu_{\rm Pb} = 1.12 \pm 0.012~{\rm cm}^{-1}$$
 $\mu_{\rm Fe} = 0.55 \pm 0.002~{\rm cm}^{-1}$
 $\mu_{\rm Al} = 0.20 \pm 0.001~{\rm cm}^{-1}$

 $\rho_{Al} = 2.7 \, \text{г/cm}^3$

Табличные значения линейных коэффициентов поглощения μ в см⁻¹:

E_{γ} , МэВ	Al	Fe	Pb
0.6	0.210	0.605	1.349
0.8	0.184	0.526	0.982

По табличным данным можно сделать вывод, что энергия измеряемых в работе гамма-квантов была в диапазоне [0.6; 0.8] МэВ.