Math 118B HW4

Zih-Yu Hsieh

February 20, 2025

1

Question 1 Let $g:[0,1] \to \mathbb{R}$ be a continuous function with g(1) = 0. Show that the sequence $f_n:[0,1] \to \mathbb{R}$ defined as $f_n(x) = x^n g(x)$ converges uniformly to zero.

Pf:

Intuitively, we'll break this into two parts: A region containing 1 (where x^n is not converging to 0), and the other region by some choice of $\delta > 0$.

Before starting, fix an arbitrary $\epsilon > 0$ for all purposes.

Behaviors around x = 1:

Given that g is continuous at 1, then for the chosen $\epsilon > 0$, there exists $\delta > 0$ (for simplicity, choose $\delta < 1$), such that for all $x \in [0,1]$, $|x-1| < \delta$ implies $|g(x) - g(1)| = |g(x)| < \epsilon$.

Which, because $x \in [0, 1]$, then for all $n \in \mathbb{N}$, $|x^n| \le 1$, showing that $|f_n(x)| = |x^n g(x)| \le |g(x)| < \epsilon$. So, for all $n \in \mathbb{N}$ and all $x \in (1 - \delta, 1] = [0, 1] \cap B_{\delta}(1)$, $|f_n(x)| < \epsilon$.

Behaviors for the rest of the regions:

Since for all $x \in (1 - \delta, 1]$ is well-behaved, the rest to consider is all $x \in [0, 1 - \delta]$.

First, since g is continuous on [0,1] a compact set, then $g([0,1]) \subseteq \mathbb{R}$ is also compact, showing that g is bounded. Hence, there exists M > 0, such that all $x \in [0,1]$ satisfies $|g(x)| \leq M$.

Then, from the previous construction, $0 < \delta < 1$, hence $0 < (1-\delta) < 1$, showing that $\lim_{n \to \infty} (1-\delta)^n = 0$. Therefore, since $\frac{\epsilon}{M} > 0$, there exists N, such that $n \ge N$ implies $|(1-\delta)^n| = (1-\delta)^n < \frac{\epsilon}{M}$.

Now, notice that for all $x \in [0, 1 - \delta]$, since $0 \le x \le (1 - \delta)$, then for all $n \in \mathbb{N}$, $0 \le x^n \le (1 - \delta)^n$.

Hence, for all $n \geq N$ and all $x \in [0, 1 - \delta]$, we can conclude the following:

$$|f_n(x)| = |x^n g(x)| = |x^n| \cdot |g(x)| \le x^n \cdot M \le (1 - \delta)^n \cdot M < \frac{\epsilon}{M} \cdot M = \epsilon$$

Now, for the N constructed in the second part, for any $n \geq N$, for all $x \in [0,1]$, there are two cases:

First, if $x \in (1 - \delta, 1]$, then from the first part, $|f_n(x)| < \epsilon$.

Else, if $x \in [0, 1-\delta]$, then from the second part, since $n \geq N$, we have $|f_n(x)| < \epsilon$ again.

Hence, ϵ is an upper bound of the set $\{|f_n(x)|\ x\in[0,1]\}$, showing that $\sup_{x\in[0,1]}|f_n(x)|=\|f_n\|_\infty<\epsilon$.

So, for all $\epsilon > 0$, there exists N, with $n \geq N$ implies $||f_n||_{\infty} < \epsilon$, showing that f_n converges to 0 uniformly.

2 (Part b not done)

Question 2 Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined as $f_n(x) = 1/(1 + n^2 x^2)$, $n \in \mathbb{Z}^+$.

- (a) For what values of x does the series $\sum f_n$ converge pointwise?
- (b) For what values of x does the series $\sum f_n$ converge uniformly?

Pf:

(a) For x=0, since for all $n \in \mathbb{N}$, $f_n(0)=1/(1+n^2\cdot 0^2)=1$, then the series $\sum_{n=1}^{\infty}f_n(0)$ diverges.

For $x \neq 0$, recall that $\sum_{n=1}^{\infty} \frac{1}{n^2x^2}$ converges (since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges). Now, since for all $n \in \mathbb{N}$, $0 < n^2x^2 < (1+n^2x^2)$, then $0 < \frac{1}{1+n^2x^2} < \frac{1}{n^2x^2}$, hence for all $N \in \mathbb{N}$, we can conclude the following:

$$0 < \sum_{n=1}^{N} f_n(x) = \sum_{n=1}^{N} \frac{1}{1 + n^2 x^2} < \sum_{n=1}^{N} \frac{1}{n^2 x^2}$$

Then, since the series $\sum_{n=1}^{\infty} \frac{1}{n^2 x^2}$ converges, while every term $f_n(x) > 0$ (since n, x > 0), then the above partial sum is bounded by the partial sum of $\sum_{n=1}^{\infty} \frac{1}{n^2 x^2}$, implies that $\sum_{n=1}^{\infty} f_n(x)$ converges.

Hence, all $x \in \mathbb{R} \setminus \{0\}$ has $\sum_{n=1}^{\infty} f_n(x)$ converges.

(b) Even though the series $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise on $\mathbb{R}\setminus\{0\}$, we can prove that it doesn't converge uniformly: Recall that the Weierstrass Theorem states that given a sequence of functions $f_n: U \to \mathbb{R}$

However, for all r > 0, the series $\sum_{n=1}^{\infty} f_n(x)$ would converge uniformly on the region $(-\infty, -r] \cup [r, \infty)$: Recall that the Weierstrass's Theorem (or Weierstrass M-Test) states that given a sequence of functions $f_n : U \to \mathbb{R}$ (where $U \subseteq \mathbb{R}$), let $M_n = \sup_{x \in U} |f(x)|$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} M_n$ converges implies $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on U.

For all $x \in (-\infty, -r] \cup [r, \infty)$, since $0 < r^2 \le x^2$, then for all $n \in \mathbb{N}$, $0 < (1+r^2n^2) \le (1+n^2x^2)$, showing that $0 < \frac{1}{1+n^2x^2} \le \frac{1}{1+n^2r^2}$. Hence, we can conclude that $0 < f_n(x) \le f_n(r)$, while $r \in (-\infty, -r] \cup [r, \infty)$, showing that $f_n(r) = \sup |f_n(x)| = \max |f_n(x)|$ on the given region $(-\infty, -r] \cup [r, \infty)$.

Then, since $\sum_{n=1}^{\infty} f_n(r)$ converges (since $r \neq 0$, which it satisfies the condition in **Part (a)**), then by Weierstrass's Theorem, since $\sum_{n=1}^{\infty} \sup |f_n(x)|$ converges for the region $(-\infty, -r] \cup [r, \infty)$, then the series of functions $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.

2

Hence, for any r > 0, $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on $(-\infty, -r] \cup [r, \infty)$.

Question 3 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $f_n(x) = f(x+1/n), n \in \mathbb{Z}^+$.

- (a) Does the sequence $\{f_n\}$ converge uniformly to f in \mathbb{R} ?
- (b) Does the sequence $\{f_n\}$ converge uinformly to f in any $K \subset \mathbb{R}$ compact?

Pf:

(a) Regardless of the continuous function f, since for all $x \in \mathbb{R}$, the sequence (x+1/n) for $n \in \mathbb{Z}^+$ satisfies $\lim_{n\to\infty}(x+1/n)=x$, then $\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}f(x+1/n)=f(x)$ (since f is continuous, which the limit of the function is the function of the limit). So, we can conclude that $f_n(x)$ converges pointwise onto f for all $x \in \mathbb{R}$.

However, it's not true that f_n would converge uniformly to f in \mathbb{R} , and here is a counterexample: Take $f(x) = x^2$ a continuous function, which for all $n \in \mathbb{N}$, all $x \in \mathbb{R}$ satisfies:

$$|f_n(x) - f(x)| = \left| f\left(x + \frac{1}{n}\right) - f(x) \right| = \left| \left(x + \frac{1}{n}\right)^2 - x^2 \right| = \left| \frac{1}{n} \left(2x + \frac{1}{n}\right) \right|$$

Hence, for x > 0, $|f_n(x) - f(x)| = \frac{2x}{n} + \frac{1}{n^2}$. Hence, for all M > 0, choose x = nM > 0, we have $|f_n(x) - f(x)| = \frac{2nM}{n} + \frac{1}{n^2} > 2M > M$, showing that the collection $\{|f_n(x) - f(0)| | x \in \mathbb{R}\}$ is not bounded, which the supremum doesn't exists in \mathbb{R} . Therefore, the norm $||f_n - f||_{\infty}$ is not even defined, which is not valid to talk about uniform convergence of f_n .

Hence, even though f_n converges to f pointwise on \mathbb{R} , it's not guaranteed that f_n converges to f uniformly on \mathbb{R} .

(b) Given that $K \subset \mathbb{R}$ is compact, then there exists $m, M \in K$, which $m = \min(K)$ and $M = \max(K)$. Now, consider the set $[m, M + 1] \subset \mathbb{R}$: it is closed and bounded under standard topology, which is compact, hence the continuous function f is uniformly continuous on [m, M + 1].

Also, for all $x \in K$ and all $n \in \mathbb{N}$, since $m \le x \le M$, and $0 < \frac{1}{n} \le 1$, then $m \le x + \frac{1}{n} \le M + 1$, hence $x, (x+1/n) \in [m, M+1]$ (which also $K \subseteq [m, M+1]$).

Now, since f is uniformly continuous on [m, M+1], then for all $\epsilon > 0$, there exists $\delta > 0$, such that for all $x, y \in [m, M+1]$, $|x-y| < \delta$ implies $|f(x)-f(y)| < \epsilon$. Then, for the given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \delta$ based on Archimedean's Property, which for all $n \geq N$ (with $\frac{1}{n} \leq \frac{1}{N}$), the following is true:

$$\forall x \in K \subseteq [m, M+1], \quad \left(x + \frac{1}{n}\right) \in [m, M+1], \quad \left|\left(x + \frac{1}{n}\right) - x\right| = \frac{1}{n} \le \frac{1}{N} < \delta$$
$$\left|\left(x + \frac{1}{n}\right) - x\right| < \delta \implies |f_n(x) - f(x)| = \left|f\left(x + \frac{1}{n}\right) - f(x)\right| < \epsilon$$

Hence, for all $\epsilon > 0$, there exists N, with $n \ge N$ implies $|f_n(x) - f(x)| < \epsilon$ for all $x \in K$, showing that for all $n \ge N$, since ϵ is an upper bound for the set $\{|f_n(x) - f(x)| \mid x \in K\}$, then $\sup_{x \in K} |f_n(x) - f(x)| = \|f_n - f\|_{\infty} \le \epsilon$ on K.

Hence, f_n converges to f uniformly on K, given that K is compact.

Question 4 Let $f_n: [-1,1] \to \mathbb{R}$ be defined as $f_n(x) = xe^{-nx^2}$, $n \in \mathbb{Z}^+$.

- (a) Find the point-wise limit of the sequence $\{f_n\}$.
- (b) Is the convergence uniform?
- (c) Is f differentiable? If so, find:

$$f'(0)$$
, $\lim_{n\to\infty} f'_n(0)$

Pf:

(a) First, if x = 0, then $f_n(0) = 0 \cdot e^{-n \cdot 0^2} = 0$, so $\lim_{n \to \infty} f_n(0) = 0$.

Else, if $x \neq 0$, since $x \in [-1, 1]$, then $|x| \leq 1$; hence, for all $n \in \mathbb{N}$, $|f_n(x)| = |xe^{-nx^2}| \leq e^{-nx^2} = (e^{x^2})^{-n}$ (while $x^2 > 0$, hence $e^{x^2} > 1$).

Hence, this implies $\lim_{n\to\infty} (e^{x^2})^{-n} = 0$. So, for all $\epsilon > 0$, there exists N, with $n \geq N$ implies $|(e^{x^2})^{-n}| = (e^{x^2})^{-n} < \epsilon$. Hence, for $n \geq N$, we have $|f_n(x)| \leq (e^{x^2})^{-n} < \epsilon$, showing that $\lim_{n\to\infty} f_n(x) = 0$.

So, we can conclude that for all $x \in [-1,1]$, $\lim_{n\to\infty} f_n(x) = 0$, which $f_n(x)$ converges pointwise to f(x) = 0.

(b) Our claim is that the above convergence is in fact a uniform convergence.

We'll again break it into two parts: region containing 0, and the region not containing 0. Similarly, we'll choose an arbitrary $\epsilon > 0$ for all purposes (and for simplicity, let $\epsilon < 1$).

Behavior about 0:

Notice that since for all $x \in [-1, 1]$, since for all $n \in \mathbb{N}$, $-nx^2 \le 0$, then $e^{-nx^2} \le 1$. Hence, we have $|f_n(x)| = |xe^{-nx^2}| \le |x|$.

Hence, for all $x \in [-1, 1]$ satisfying $|x| < \epsilon$ (or $x \in (-\epsilon, \epsilon)$), we have the following:

$$\forall n \in \mathbb{N}, \quad |f_n(x)| < |x| < \epsilon$$

Behavior for the Remaining Region:

Now, for all $x \in [-1, -\epsilon] \cup [\epsilon, 1]$ (the remaining region $[-1, 1] \setminus (-\epsilon, \epsilon)$), since $|x| \ge \epsilon$, then $x^2 \ge \epsilon^2$. Hence, for all $n \in \mathbb{N}$, we have $-nx^2 \le -n\epsilon^2$, or $e^{-nx^2} \le e^{-n\epsilon^2}$.

Since $|x| \le 1$, we have $|f_n(x)| = |xe^{-nx^2}| \le e^{-n\epsilon^2}$. Then, let $N = \frac{-\ln(\epsilon)}{\epsilon^2}$. For all positive integer $n > N = \frac{-\ln(\epsilon)}{\epsilon^2}$, the following is true:

$$n\epsilon^2 > -\ln(\epsilon), \quad -n\epsilon^2 < \ln(\epsilon), \quad e^{-n\epsilon^2} < \epsilon$$

Hence, for all n > N, every $x \in [-1, -\epsilon] \cup [\epsilon, 1]$ satisfies $|f_n(x)| \le e^{-n\epsilon^2} < \epsilon$.

So, given arbitrary $\epsilon > 0$, using the N proposed in the second part, for all $n \ge N$, there are two cases:

First, if $x \in (-\epsilon, \epsilon)$, then by the first part, we get $|f_n(x)| < \epsilon$.

Else, if $x \in [-1, -\epsilon] \cup [\epsilon, 1]$, then by the second part, $|f_n(x)| < \epsilon$ again.

Hence, ϵ is an upper bound of the collection $\{|f_n(x)| \mid x \in [-1,1]\}$, showing that $\sup_{x \in [-1,1]} |f_n(x)| = \|f_n\|_{\infty} < \epsilon$.

Since for all $\epsilon > 0$, there exists N, with $n \ge N$ implies $||f_n||_{\infty} < \epsilon$, then $f_n(x)$ converges to f(x) = 0 uniformly on [-1, 1].

(c) Since f(x) = 0, it is differentiable. And, f'(0) = 0.

Then, with $f_n(x) = xe^{-nx^2}$, its derivative $f'_n(x) = e^{-nx^2} + xe^{-nx^2} \cdot (-2nx) = e^{-nx^2}(1-2nx^2)$. Which, $f'_n(0) = e^{-n\cdot 0^2}(1-2n\cdot 0^2) = e^0 \cdot 1 = 1$. Hence, $\lim_{n\to\infty} f'_n(0) = 1$, so $1 = \lim_{n\to\infty} f'_n(0) \neq f'(0) = 0$.

5

Question 5 Let $f_n: [-1,1] \to \mathbb{R}$ be a sequence of functions uniformly bounded, i.e.

$$\exists M > 0 \quad s.t. \sup_{x \in [-1,1], \ n \in \mathbb{N}} |f_n(x)| \le M$$

Define:

$$f(x) = \sup_{n \in \mathbb{N}} f_n(x)$$

Give an example showing that in general F is not a continuous function.

Assuming that the f_ns are differentiable and f'_n are uniformly bounded, i.e.

$$\exists K > 0 \quad s.t. \quad \sup_{x \in [-1,1], \ n \in \mathbb{N}} |f'_n(x)| \le K$$

Prove that F is continuous.

Pf:

Example of Not continuous F:

For all $n \in \mathbb{N}$, define $f_n : [-1, 1] \to \mathbb{R}$ as follow:

$$f_n(x) = \begin{cases} \frac{1}{n} & x \in \mathbb{Q} \cap [-1, 1] \\ 0 & x \in \mathbb{Q}^C \cap [-1, 1] \end{cases}$$

Which, for all $x \in [-1,1]$ and all $n \in \mathbb{N}$, if $x \in \mathbb{Q}$, then $|f_n(x)| = |\frac{1}{n}| \leq 1$; similarly, if $x \in \mathbb{Q}^C$, then $|f_n(x)| = |0| \leq 1$. Hence, the sequence f_n is uniformly bounded.

Yet, if consider $F(x) = \sup_{n \in \mathbb{N}} f_n(x)$, these are the cases:

First, if $x \in \mathbb{Q}$, then for all $n \in \mathbb{N}$, we have $f_n(x) = \frac{1}{n}$. Hence, $F(x) = \sup_{n \in \mathbb{N}} \{\frac{1}{n}\} = 1$.

Else, if $x \in \mathbb{Q}^C$, then for all $n \in \mathbb{N}$, we have $f_n(x) = 0$. Hence, F(x) = 0.

So, F(x) is in fact the indicator function:

$$F(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [-1, 1] \\ 0 & x \in \mathbb{Q}^C \cap [-1, 1] \end{cases}$$

Which is continuous nowhere on [-1, 1].

f'_n are uniformly bounded implies F is continuous:

Given that f'_n are uniformly bounded:

$$\exists K > 0, \quad \sup_{x \in [-1,1], \ n \in \mathbb{N}} |f'_n(x)| \le K$$

Then, for all distinct $x, y \in [-1, 1]$ (WLOG, assume x < y) and all $n \in \mathbb{N}$, since f_n is differentiable, then by Mean Value Theorem, there exists $c \in (x, y)$, such that the following is true:

$$\left| \frac{f_n(x) - f_n(y)}{x - y} \right| = |f'_n(c)| \le K, \quad |f_n(x) - f_n(y)| \le K|x - y|$$

This proves that all f_n are Lipschitz Continuous.

Now, for all $x_0 \in [-1, 1]$ and all $\epsilon > 0$, consider $F(x_0)$ and $\delta = \frac{\epsilon}{2K} > 0$. Which, the following statements are true:

• First, since $\frac{\epsilon}{2} > 0$, and $F(x_0) = \sup_{n \in \mathbb{N}} f_n(x_0)$, then since $F(x_0) - \frac{\epsilon}{2}$ is no longer an upper bound, then there exists $n \in \mathbb{N}$, such that $F(x_0) - \frac{\epsilon}{2} < f_n(x_0) \le F(x_0)$.

Which, for all $x \in [-1,1]$ satisfying $|x-x_0| < \delta = \frac{\epsilon}{2K}$, by Lipschitz Continuity proven before: $|f_n(x) - f_n(x_0)| \le K|x-x_0| < K \cdot \frac{\epsilon}{2K} = \frac{\epsilon}{2}$. Hence, the following is true:

$$-\frac{\epsilon}{2} < f_n(x) - f_n(x_0) < \frac{\epsilon}{2}, \quad f_n(x_0) - \frac{\epsilon}{2} < f_n(x)$$

Hence, since $f_n(x) \leq F(x)$ by definition, then $f_n(x_0) - \frac{\epsilon}{2} < f_n(x) \leq F(x)$. Combining with the previous inequality, we get:

$$F(x_0) - \frac{\epsilon}{2} < f_n(x_0), \quad F(x_0) - \epsilon < f_n(x_0) - \frac{\epsilon}{2} < F(x)$$

• Then, based on the same x chosen above (with $|x-x_0| < \delta = \frac{\epsilon}{2K}$), we'll prove that $F(x) < F(x_0) + \epsilon$: Suppose the contrary, that $F(x) \ge F(x_0) + \epsilon$, then $F(x) - \frac{\epsilon}{2} \ge F(x_0) + \frac{\epsilon}{2}$. Since $F(x) = \sup_{n \in \mathbb{N}} f_n(x)$, then since $F(x) - \frac{\epsilon}{2}$ is no longer an upper bound of the set, there exists $m \in \mathbb{N}$, such that $F(x) - \frac{\epsilon}{2} < f_m(x) \le F(x)$.

Which, based on the Lipschitz Continuity, we can conclude the following:

$$|f_m(x_0) - f_m(x)| < K|x_0 - x| < K \cdot \frac{\epsilon}{2K} = \frac{\epsilon}{2}$$
$$-\frac{\epsilon}{2} < f_m(x_0) - f_m(x) < \frac{\epsilon}{2}, \quad f_m(x) - \frac{\epsilon}{2} < f_m(x_0) < f_m(x) + \frac{\epsilon}{2}$$

Then, the following inequalities are true:

$$F(x) - \frac{\epsilon}{2} < f_m(x), \quad F(x) - \epsilon < f_m(x) - \frac{\epsilon}{2}, \quad f_m(x_0) \le F(x_0)$$

$$F(x) - \epsilon < f_m(x) - \frac{\epsilon}{2} < f_m(x_0) \le F(x_0), \quad F(x) < F(x_0) + \epsilon$$

However, recall that $F(x) \ge F(x_0) + \epsilon$ is our initial assumption, which contradicts with the above inequality.

So, our assumption must be false, we must have $F(x) < F(x_0) + \epsilon$.

Combining both inequality, we can conclude that $F(x_0) - \epsilon < F(x) < F(x_0) + \epsilon$, showing that $|F(x) - F(x_0)| < \epsilon$.

Hence, for all $x \in [-1, 1]$, $\epsilon > 0$, there exists $\delta > 0$, with $|x - x_0| < \delta$ implies $|F(x) - F(x_0)| < \epsilon$, showing that F(x) is continuous on [-1, 1].

6

Question 6 Find the value of $\sum_{k=1}^{\infty} k^2/3^k$.

Pf: