### Specifying models – fixed and random effects

**Rob Davies** 

r.davies1@lancaster.ac.uk

Spring 2016

#### Aims for the class

- Understand the use of Information Criteria and Likelihood Ratio *Tests* for evaluating models
- Practise running linear mixed-effects models with varying fixed or random effects structures
- Practise evaluating models



- A minimal model observed responses can be predicted only by the average response - the intercept
- Specific response values are then random deviations from this
- Will our our capacity to predict responses be improved by adding
- What about the experimental factors we manipulate? Or variables



- A minimal model observed responses can be predicted only by the average response - the intercept
- Specific response values are then random deviations from this average
- Will our our capacity to predict responses be improved by adding
- What about the experimental factors we manipulate? Or variables



- A minimal model observed responses can be predicted only by the average response – the intercept
- Specific response values are then random deviations from this average
- Will our our capacity to predict responses be improved by adding other terms?
- What about the experimental factors we manipulate? Or variables



- A minimal model observed responses can be predicted only by the average response – the intercept
- Specific response values are then random deviations from this average
- Will our our capacity to predict responses be improved by adding other terms?
- What about the experimental factors we manipulate? Or variables carrying information about test conditions, particants or stimuli?



## Simplicity and parsimony

We can expect to deal with a trade-off between too much and too little simplicity in model specification

- Models with too many parameters may tend to identify effects that are spurious
- Effects may be unintuitive and hard to explain and not reproduced
- Contrastingly, if we omit key variables we will likely mis-estimate

## Simplicity and parsimony

We can expect to deal with a trade-off between too much and too little simplicity in model specification

- Models with too many parameters may tend to identify effects that are spurious
- Effects may be unintuitive and hard to explain and not reproduced in future samples
- Contrastingly, if we omit key variables we will likely mis-estimate

## Simplicity and parsimony

We can expect to deal with a trade-off between too much and too little simplicity in model specification

- Models with too many parameters may tend to identify effects that are spurious
- Effects may be unintuitive and hard to explain and not reproduced in future samples
- Contrastingly, if we omit key variables we will likely mis-estimate the 'true' population value of the effects we seek to identify

### We can use Information Criteria statistics like AIC or BIC to evaluate models

Understood within an approach: Information-theoretic methods- for linear models we can compare the F,  $R^2$  and information criteria indices

- Information-theoretic methods are grounded in the insight that the distance between a model and observed outcomes corresponds to the 'information lost' when you use a model to approximate reality

#### We can use Information Criteria statistics like AIC or BIC to evaluate models

Understood within an approach: Information-theoretic methods- for linear models we can compare the F,  $R^2$  and information criteria indices

- Information-theoretic methods are grounded in the insight that the distance between a model and observed outcomes corresponds to the 'information lost' when you use a model to approximate reality
- Information criteria AIC or BIC estimates of information loss

### We can use Information Criteria statistics like AIC or BIC to evaluate models

Understood within an approach: Information-theoretic methods- for linear models we can compare the F,  $R^2$  and information criteria indices

- Information-theoretic methods are grounded in the insight that the distance between a model and observed outcomes corresponds to the 'information lost' when you use a model to approximate reality
- Information criteria AIC or BIC estimates of information loss
- The process of model selection aims to minimise information loss

$$AIC = -2ln(I) + 2k \tag{1}$$

- -2ln(I) -2 times the log of the likelihood of the model given the data
- (/) likelihood

$$AIC = -2ln(I) + 2k \tag{1}$$

- -2ln(I) -2 times the log of the likelihood of the model given the data
- (1) likelihood
  - Is proportional to the probability of observed data conditional on



$$AIC = -2ln(I) + 2k \tag{1}$$

- -2ln(I) -2 times the log of the likelihood of the model given the data
- (1) likelihood
  - Is proportional to the probability of observed data conditional on some hypothesis being true



$$AIC = -2ln(I) + 2k \tag{2}$$

- You want a more likely model less information loss closer to reality – you want more negative or lower AIC
- You can link models that are more likely closer to reality with
- Linear models with smaller residuals would have larger  $R^2$  more



$$AIC = -2ln(I) + 2k \tag{2}$$

- You want a more likely model less information loss closer to reality – you want more negative or lower AIC
- You can link models that are more likely closer to reality with models with smaller residuals
- Linear models with smaller residuals would have larger  $R^2$  more



$$AIC = -2ln(I) + 2k \tag{2}$$

- You want a more likely model less information loss closer to reality – you want more negative or lower AIC
- You can link models that are more likely closer to reality with models with smaller residuals
- Linear models with smaller residuals would have larger  $R^2$  more of observed outcome (response) variance is explained by better models



$$BIC = -2ln(I) + kln(N)$$
 (3)

- -2ln(I) -2 times the log of the likelihood of the model given the data
- +kln(N) is the number of parameters in the model times the log
- Crudely, the penalty for greater complexity is heavier in BIC
- Models with more parameters may fit the data better but some of



$$BIC = -2ln(I) + kln(N)$$
 (3)

- -2ln(1) -2 times the log of the likelihood of the model given the data
- +kln(N) is the number of parameters in the model times the log of the sample size
- Crudely, the penalty for greater complexity is heavier in BIC
- Models with more parameters may fit the data better but some of



$$BIC = -2ln(I) + kln(N)$$
 (3)

- -2ln(1) -2 times the log of the likelihood of the model given the data
- +kln(N) is the number of parameters in the model times the log of the sample size
- Crudely, the penalty for greater complexity is heavier in BIC
- Models with more parameters may fit the data better but some of



$$BIC = -2ln(I) + kln(N)$$
 (3)

- -2ln(1) -2 times the log of the likelihood of the model given the data
- +kln(N) is the number of parameters in the model times the log of the sample size
- Crudely, the penalty for greater complexity is heavier in BIC
- Models with more parameters may fit the data better but some of those effects may be spurious



- Example compare models varying in fixed effects: model 1, just main effects; model 2, main effects plus interactions
- Example compare models varying in random effects: model 1,
- If the more complex model better approximates reality then it will

- Example compare models varying in fixed effects: model 1, just main effects; model 2, main effects plus interactions
- Example compare models varying in random effects: model 1, just random effect of subjects on intercepts; model 2, random effects of subjects and items on intercepts
- If the more complex model better approximates reality then it will

- Example compare models varying in fixed effects: model 1, just main effects; model 2, main effects plus interactions
- Example compare models varying in random effects: model 1, just random effect of subjects on intercepts; model 2, random effects of subjects and items on intercepts
- If the more complex model better approximates reality then it will be more likely given the data
  - BIC or AIC will be closer to negative infinity: -2In(I) will be larger
  - e.g. 10 is better than 1000, -1000 better than -10

- Example compare models varying in fixed effects: model 1, just main effects; model 2, main effects plus interactions
- Example compare models varying in random effects: model 1, just random effect of subjects on intercepts; model 2, random effects of subjects and items on intercepts
- If the more complex model better approximates reality then it will be more likely given the data
  - BIC or AIC will be closer to negative infinity: -2ln(I) will be larger
  - e.g. 10 is better than 1000, -1000 better than -10

- Example compare models varying in fixed effects: model 1, just main effects; model 2, main effects plus interactions
- Example compare models varying in random effects: model 1, just random effect of subjects on intercepts; model 2, random effects of subjects and items on intercepts
- If the more complex model better approximates reality then it will be more likely given the data
  - BIC or AIC will be closer to negative infinity: -2ln(I) will be larger
  - e.g. 10 is better than 1000, -1000 better than -10

### Reporting standards; Using AIC and BIC

So far, I tend to see such analyses reported more in ecology, little in psychology

- Report briefly the model comparisons: "Compared a simpler model: model 1, just main effects; model 2, main effects plus interactions"

### Reporting standards; Using AIC and BIC

So far, I tend to see such analyses reported more in ecology, little in psychology

- Report briefly the model comparisons: "Compared a simpler model: model 1, just main effects; model 2, main effects plus interactions"
- Report the AIC or BIC for the different models

### Reporting standards; Using AIC and BIC

So far, I tend to see such analyses reported more in ecology, little in psychology

- Report briefly the model comparisons: "Compared a simpler model: model 1, just main effects; model 2, main effects plus interactions"
- Report the AIC or BIC for the different models
  - Report and explain the model selection which model is more useful?, based on aims and information criteria

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); glmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- The test statistic is the comparison of the likelihood of the simpler model with the more complex model
- Comparison by division 2log likelihood—complex likelihood—simple

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); glmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- The test statistic is the comparison of the likelihood of the simpler model with the more complex model
- Comparison by division 2log likelihood complex likelihood simple

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); glmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- Comparison by division  $2log \frac{likelihood-complex}{likelihood-simple}$

- With df equal to the difference in the number of parameters of the



Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); olmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- Comparison by division  $2log \frac{likelihood-complex}{likelihood-simple}$
- The likelihood ratio is compared to the  $\chi^2$  distribution for a significance test
- With df equal to the difference in the number of parameters of the



Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); olmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- Comparison by division  $2log \frac{likelihood-complex}{likelihood-simple}$
- The likelihood ratio is compared to the  $\chi^2$  distribution for a significance test
- Assuming the null hypothesis that the simpler model is adequate
- With df equal to the difference in the number of parameters of the

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); olmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

- Comparison by division 2log likelihood\_simple
- The likelihood ratio is compared to the  $\chi^2$  distribution for a significance test
- Assuming the null hypothesis that the simpler model is adequate
- With df equal to the difference in the number of parameters of the models being compared
  - Alternatively, we can say:
  - where deviance =  $-2log(likelihood_{model})$



## Likelihood ratio test comparison

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); olmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

• The likelihood ratio is compared to the  $\chi^2$  distribution for a

- Comparison by division 2log likelihood\_simple
- significance test
- Assuming the null hypothesis that the simpler model is adequate
- With df equal to the difference in the number of parameters of the models being compared
  - Alternatively, we can say:  $deviance = deviance_{simple} - deviance_{complex}$
  - where deviance =  $-2log(likelihood_{model})$



## Likelihood ratio test comparison

Likelihood ratio test comparisons appear increasingly wide-spread in psychology and are recommended for evaluating the relative utility of fixed or random effects Baayen et al.,

2008; Barr et al., 2013; Bates (LME developer list); olmm wiki dot; but see Bolker et al., 2009; Pinheiro & Bates, 2000

• The likelihood ratio is compared to the  $\chi^2$  distribution for a

- Comparison by division 2log likelihood\_simple
- significance test
- Assuming the null hypothesis that the simpler model is adequate
- With df equal to the difference in the number of parameters of the models being compared
  - Alternatively, we can say:  $deviance = deviance_{simple} - deviance_{complex}$
  - where deviance =  $-2log(likelihood_{model})$

## Model comparisons among mixed-effects models – use anova() function

```
anova(full.lmer0, full.lmer1)
```

- anova (..., ....) compare pairs of models named in brackets
- full.lmer1 compared to a more complex model more



## Model comparisons among mixed-effects models – use anova() function

```
anova (full.lmer0, full.lmer1)
```

- anova (..., ....) compare pairs of models named in brackets
- full.lmer0 including a simpler model fewer parameters (predictors)
- full.lmer1 compared to a more complex model more



## Model comparisons among mixed-effects models – use anova() function

```
anova(full.lmer0, full.lmer1)
```

- anova (..., ...) compare pairs of models named in brackets
- full.lmer0 including a simpler model fewer parameters (predictors)
- full.lmer1 compared to a more complex model more predictors – includes simpler model as a special case



> anova(full.lmer.0, full.lmer.1, full.lmer.2, full.lmer.3)

object: logrt ~ (1 | subjectID) + (1 | item\_name)

# Running the *anova*(,) comparison will deliver AIC, BIC, and likelihood comparisons for varying models

Comparison of models: 0, no fixed effects, just random intercepts; 1, with subject attribute predictors; 2, plus item effects; 3, plus interactions between subject effects and item effects

```
..1: logrt ~ zAge + zTOWRE_wordacc + zTOWRE_nonwordacc + (1 | subjectID) +
..1:
        (1 | item_name)
..2: logrt ~ zAge + zTOWRE_wordacc + zTOWRE_nonwordacc + item_type +
        zLength + zOrtho_N + (1 | subjectID) + (1 | item_name)
..2:
..3: logrt ~ (zAge + zTOWRE_wordacc + zTOWRE_nonwordacc) * (item_type +
        zLength + zOrtho_N) + (1 | subjectID) + (1 | item_name)
..3:
            AIC BIC logLik deviance Chisa Chi Df Pr(>Chisa)
object 4 -17981 -17952 8994.4 -17989
..1 7 -17982 -17931 8998.0 -17996 7.1782
                                                       0.06643 .
..2 10 -18320 -18247 9169.7 -18340 343.5400
                                                   3 < 2e-16 ***
..3 19 -18416 -18278 9227.0 -18454 114.5129
                                                   9 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
                                                   4 D > 4 A > 4 B > 4 B > B
```

Data: ML.all.correct

Models:

- AIC, BIC and LRT comparisons should be consistent in their indications – which model appears preferable
- Things get tricky where dealing with complex sets of predictors indicators may diverge
- Remember that BIC may penalise complexity more heavily especially if conducting exploratory research
- Remember that you may be obliged to include all effects built-in by design – if conducting a confirmatory study

- AIC, BIC and LRT comparisons should be consistent in their indications – which model appears preferable
- Things get tricky where dealing with complex sets of predictors indicators may diverge
- Remember that BIC may penalise complexity more heavily especially if conducting exploratory research
- Remember that you may be obliged to include all effects built-in by design – if conducting a confirmatory study

- AIC, BIC and LRT comparisons should be consistent in their indications – which model appears preferable
- Things get tricky where dealing with complex sets of predictors indicators may diverge
- Remember that BIC may penalise complexity more heavily especially if conducting exploratory research
- Remember that you may be obliged to include all effects built-in by design – if conducting a confirmatory study

- AIC, BIC and LRT comparisons should be consistent in their indications – which model appears preferable
- Things get tricky where dealing with complex sets of predictors indicators may diverge
- Remember that BIC may penalise complexity more heavily especially if conducting exploratory research
- Remember that you may be obliged to include all effects built-in by design – if conducting a confirmatory study

# A more realistic model of effects of item type (words vs. nonwords) and subject reading ability

Taking into account random effect of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \beta_{subject} + \beta_{item} + \beta_{subject*itemtype} + \beta_{item*ability} + \epsilon \tag{4}$$

- What about effect of random variation between participants?
  - Allow intercept to vary random effect of subjects on intercepts –
  - Allow effect of itemtype to vary random effect of subject on slopes

# A more realistic model of effects of item type (words vs. nonwords) and subject reading ability

Taking into account random effect of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \beta_{subject} + \beta_{item} + \beta_{subject*itemtype} + \beta_{item*ability} + \epsilon$$

$$(4)$$

- What about effect of random variation between participants?
  - Allow intercept to vary random effect of subjects on intercepts some have slower average some have faster average than average overall
  - Allow effect of itemtype to vary random effect of subject on slopes

# A more realistic model of effects of item type (words vs. nonwords) and subject reading ability

Taking into account random effect of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \beta_{subject} + \beta_{item} + \beta_{subject*itemtype} + \beta_{item*ability} + \epsilon$$

$$(4)$$

- What about effect of random variation between participants?
  - Allow intercept to vary random effect of subjects on intercepts some have slower average some have faster average than average overall
  - Allow effect of itemtype to vary random effect of subject on slopes - subjects can be affected by word frequency in different ways

# A more realistic repeated measures model of the item type and reading ability effects

Taking into account random effects of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \beta_{subject} + \beta_{item} + \beta_{subject*itemtype} + \beta_{item*ability} + \epsilon$$

$$(5)$$

- What about effect of random variation between stimuli?
  - Allow intercept to vary random effect of items on intercepts –
  - Allow effect of reading ability to vary random effect of items on

# A more realistic repeated measures model of the item type and reading ability effects

Taking into account random effects of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \beta_{subject} + \beta_{item} + \beta_{subject*itemtype} + \beta_{item*ability} + \epsilon$$

$$(5)$$

- What about effect of random variation between stimuli?
  - Allow intercept to vary random effect of items on intercepts some items harder and elicit slower average response than others
  - Allow effect of reading ability to vary random effect of items on

# A more realistic repeated measures model of the item type and reading ability effects

Taking into account random effects of subjects and items

$$RT = \beta_0 + \beta_{ability} + \beta_{itemtype} + \beta_{ability*itemtype} + \frac{\beta_{subject}}{\beta_{subject}} + \beta_{item} + \frac{\beta_{subject*itemtype}}{\beta_{subject*itemtype}} + \beta_{item*ability} + \epsilon$$
(5)

- What about effect of random variation between stimuli?
  - Allow intercept to vary random effect of items on intercepts some items harder and elicit slower average response than others
  - Allow effect of reading ability to vary random effect of items on slopes?

# Remember the kind of between-subject differences in intercepts and slopes we need to account for

Note this plot shows the per-subject linear model coefficients – in LMEs the estimation (prediction) of random effects (conditional modes) of e.g. subjects on intercepts and slopes adjusts ('shrinks') the estimates towards the average



#### Random effect of subjects on intercepts

Differences in individuals' average response speed compared to the group average

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + \epsilon_{ij}$$
 (6)

- $\beta_0$  common intercept, average outcome given the other effects

#### Random effect of subjects on intercepts

Differences in individuals' average response speed compared to the group average

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + \epsilon_{ij}$$
 (6)

- $\beta_0$  common intercept, average outcome given the other effects
- $U_{0,i}$  adjustments to the intercept required to explain differences between common average and average for each *i* individual

#### Random effect of subjects on slopes of fixed effects

Accounting for variation in within-subjects frequency effect on RTs

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + \epsilon_{ij}$$
 (7)

- $\beta_1 X_i$  the group average itemtype effect
- $U_1$  adjustments required to model differences between group

#### Random effect of subjects on slopes of fixed effects

Accounting for variation in within-subjects frequency effect on RTs

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + \epsilon_{ij}$$
 (7)

- $\beta_1 X_i$  the group average itemtype effect
- U<sub>1,i</sub> adjustments required to model differences between group average itemtype effect and itemtype effect for each *i* individual

#### Can allow random effects of both subjects and items

Solving the 'language-as-fixed-effect' problem in one model

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (8)

- $W_{0,i}$  random effect of items on intercepts where W terms correspond to random effects of items
- $W_1$ ; may require a random effect of items on slopes of

#### Can allow random effects of both subjects and items

Solving the 'language-as-fixed-effect' problem in one model

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (8)

- $W_{0,i}$  random effect of items on intercepts where W terms correspond to random effects of items
- $W_1$  may require a random effect of items on slopes of within-items effects e.g. effect of ability differences between participants

## Mixed effects models – both fixed effects and random effects

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (9)

- $\beta_0 + \beta_1 X_i$  fixed effect of predictors fixed because replicable by manipulation or selection
- $U_{0,i} + U_{1,i} + W_{0,i} + W_{1,i} + \epsilon_{ii}$  random effects of group on

## Mixed effects models – both fixed effects and random effects

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (9)

- $\beta_0 + \beta_1 X_i$  fixed effect of predictors fixed because replicable by manipulation or selection
- $U_{0,i} + U_{1,i} + W_{0,i} + W_{1,i} + \epsilon_{ii}$  random effects of group on intercepts and slopes - random because differences due to sampling

## We could model random differences between participants items as fixed effects but we do not

We incorporate random effects terms in models to capture the spread, the variance, associated with random differences in intercepts or slopes

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (10)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_{0,i}}^2 + \sigma_{W_{1,i}}^2 + \sigma_{W_{0,i}W_{1,i}}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over

## We could model random differences between participants items as fixed effects but we do not

We incorporate random effects terms in models to capture the spread, the variance, associated with random differences in intercepts or slopes

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (10)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over



## We could model random differences between participants items as fixed effects but we do not

We incorporate random effects terms in models to capture the spread, the variance, associated with random differences in intercepts or slopes

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (10)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over



## Mixed-effects models often specify random effects variances and covariances

Covariances may be included because random intercepts and slopes may correlate e.g. if slow subjects are more vulnerable to difference in conditions



Figure: Per-subject Ime coefficients for intercepts and slope of item type effect

- If we knew the random effects, we could find the fixed effects. estimates by minimising differences between predicted and observed outcomes - like linear modelling
- If we knew the fixed effects the regression coefficients we

- If we knew the random effects, we could find the fixed effects. estimates by minimising differences between predicted and observed outcomes - like linear modelling
- If we knew the fixed effects the regression coefficients we could work out the residuals and the random effects

- At the start, we know neither, but we can move between partial estimation of fixed and random effect in an iterative approach
  - Using provisional values for the fixed effects to estimate the random

  - To converge on the maximum likelihood estimates of effects when

An intuitive account of estimation in mixed-effects models

estimation of fixed and random effect in an iterative approach

At the start, we know neither, but we can move between partial

- Using provisional values for the fixed effects to estimate the random effects
- To converge on the maximum likelihood estimates of effects when

- At the start, we know neither, but we can move between partial estimation of fixed and random effect in an iterative approach
  - Using provisional values for the fixed effects to estimate the random effects
  - Using provisional values for the random effects to estimate the fixed effects again
  - To converge on the maximum likelihood estimates of effects when

- At the start, we know neither, but we can move between partial estimation of fixed and random effect in an iterative approach
  - Using provisional values for the fixed effects to estimate the random effects
  - Using provisional values for the random effects to estimate the fixed effects again
  - To converge on the maximum likelihood estimates of effects when the estimates stop changing

# Restricted maximum likelihood (*REML* = *TRUE*) and maximum likelihood (*REML* = *FALSE*) methods

- Restricted maximum likelihood (REML = TRUE)

- Restricted maximum likelihood (REML = TRUE)
  - REML estimates the variance components while taking into account the loss of degrees of freedom resulting from the estimation of the fixed effects

- Restricted maximum likelihood (REML = TRUE)
  - REML estimates the variance components while taking into account the loss of degrees of freedom resulting from the estimation of the fixed effects
  - REML estimates vary if the fixed effects vary

- REML estimates vary if the fixed effects vary
- Therefore not recommended to compare the likelihood of models
- REML method recommended for comparing the likelihood of
- ML method REML= FALSE recommended for comparing models

- REML estimates vary if the fixed effects vary
- Therefore not recommended to compare the likelihood of models varying in fixed effects fitted using REML (Pinheiro & Bates, 2000)
- REML method recommended for comparing the likelihood of
- ML method REML= FALSE recommended for comparing models

- REML estimates vary if the fixed effects vary
- Therefore not recommended to compare the likelihood of models varying in fixed effects fitted using REML (Pinheiro & Bates, 2000)
- REML method recommended for comparing the likelihood of models with the same fixed effects but different random effects
- ML method REML= FALSE recommended for comparing models

- REML estimates vary if the fixed effects vary
- Therefore not recommended to compare the likelihood of models varying in fixed effects fitted using REML (Pinheiro & Bates, 2000)
- REML method recommended for comparing the likelihood of models with the same fixed effects but different random effects
- ML method REML= FALSE recommended for comparing models with different fixed effects but the same random effects

# Model comparisons among mixed-effects models fitted using maximum likelihood (*REML* = *FALSE*) method

```
full.lmer.0 <- lmer(logrt ~
(1|subjectID) + (1|item_name),
data = ML.all.correct, REML = F)
```

- Maximum likelihood (REML = FALSE)
  - ML estimation methods can be used to fit models with varying fixed

## Model comparisons among mixed-effects models fitted using maximum likelihood (*REML* = *FALSE*) method

```
full.lmer.0 <- lmer(logrt ~
(1|subjectID) + (1|item_name),
data = ML.all.correct, REML = F)
```

- Maximum likelihood (REML = FALSE)
  - ML estimation methods can be used to fit models with varying fixed effects but the same random effects

#### Examine the fixed effects then the random effects

Start by examining models varying in the *fixed effects* but constant in the *random effects* 

- Compare maximum likelihood (REML = FALSE) models varying in fixed effects
  - Think about simpler models as simplifications or subsets of more
- Add effects of interest in blocks or sets of predictors

#### Examine the fixed effects then the random effects

Start by examining models varying in the *fixed effects* but constant in the *random effects* 

- Compare maximum likelihood (REML = FALSE) models varying in fixed effects
  - Think about simpler models as simplifications or subsets of more complex models
- Add effects of interest in blocks or sets of predictors

#### Examine the fixed effects then the random effects

Start by examining models varying in the *fixed effects* but constant in the *random effects* 

- Compare maximum likelihood (REML = FALSE) models varying in fixed effects
  - Think about simpler models as simplifications or subsets of more complex models
- Add effects of interest in blocks or sets of predictors

## Compare maximum likelihood models with varying fixed effects but the same random effects

```
full.lmer.1 <- lmer(logrt ~
  zAge + zTOWRE wordacc + zTOWRE nonwordacc +
  (1|subjectID) + (1|item_name),
  data = ML.all.correct, REML = FALSE)
summary(full.lmer.1)
```

- zAge + zTOWRE\_wordacc + zTOWRE nonwordacc + add fixed effects
- (1|subjectID) + (1|item\_name) to random effects of

## Compare maximum likelihood models with varying fixed effects but the same random effects

```
full.lmer.1 <- lmer(logrt ~
  zAge + zTOWRE wordacc + zTOWRE nonwordacc +
  (1|subjectID) + (1|item_name),
  data = ML.all.correct, REML = FALSE)
summary(full.lmer.1)
```

- zAge + zTOWRE\_wordacc + zTOWRE\_nonwordacc + add fixed effects
- (1|subjectID) + (1|item\_name) to random effects of subjects and items on intercepts 4 D > 4 B > 4 E > 4 E > 9 Q P

## Compare the model 1 with just subject effects to the model 2 also with item effects

```
full.lmer.2 <- lmer(logrt ~
zAge + zTOWRE_wordacc + zTOWRE_nonwordacc +
item_type + zLength + zOrtho_N +
(1|subjectID) + (1|item_name),
data = ML.all.correct, REML = F)
summary (full.lmer.2)
```

- item\_type + zLength + zOrtho\_N add item effects
- Everything else stays the same

## Compare the model 1 with just subject effects to the model 2 also with item effects

```
full.lmer.2 <- lmer(logrt ~
zAge + zTOWRE_wordacc + zTOWRE_nonwordacc +
item_type + zLength + zOrtho_N +
(1|subjectID) + (1|item_name),
data = ML.all.correct, REML = F)
summary (full.lmer.2)
```

- item\_type + zLength + zOrtho\_N add item effects
- Everything else stays the same

## Compare model 2 with subject and item effects to model 3 specifying interactions between subject and item effects

```
full.lmer.3 <- lmer(logrt ~
    (zAge + zTOWRE_wordacc + zTOWRE_nonwordacc) *
    (item_type + zLength + zOrtho_N) +
    (1|subjectID) + (1|item name),
    data = ML.all.correct, REML = FALSE)
summary (full.lmer.3)
```

 Notice that the (something) \* (something) get you interactions and main effects for all possible pairs of variables in the first set

```
(zAge + zTOWRE_wordacc + zTOWRE_nonwordacc) and the second set
(item_type + zLength + zOrtho_N) of predictors
```

## How do we know if increasing *model complexity* by adding predictors actually helps us to account for variation in outcome values?

We can use the *anova()* function to do the comparison

```
anova(full.lmer.0, full.lmer.1, full.lmer.2, full.lmer.3)
```

anova(full.lmer.0, full.lmer.1, full.lmer.2, full.lmer.3) compare the named models in pairs

# See that *anova()* results present information criteria statistics for each model plus likelihood ratio test comparisons

Each step increase in complexity appears warranted by improved model fit to data

```
> anova(full.lmer.0, full.lmer.1, full.lmer.2, full.lmer.3)
Data: ML.all.correct
Models:
object: logrt ~ (1 | subjectID) + (1 | item_name)
..1: logrt ~ zAge + zTOWRE_wordacc + zTOWRE_nonwordacc + (1 | subjectID) +
        (1 | item_name)
..2: logrt ~ zAge + zTOWRE_wordacc + zTOWRE_nonwordacc + item_type +
        zLength + zOrtho_N + (1 | subjectID) + (1 | item_name)
..2:
..3: loart ~ (zAae + zTOWRE_wordacc + zTOWRE_nonwordacc) * (item_type +
        zLength + zOrtho_N) + (1 | subjectID) + (1 | item_name)
                 BIC logLik deviance
            AIC
                                       Chisa Chi Df Pr(>Chisa)
object 4 -17981 -17952 8994.4 -17989
..1 7 -17982 -17931 8998.0 -17996 7.1782
                                                        0.06643 .
..2 10 -18320 -18247 9169.7 -18340 343.5400
                                                   3 < 2e-16 ***
..3 19 -18416 -18278 9227.0 -18454 114.5129
                                                   9 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
> |
```

# The distinction between exploratory and confirmatory studies may be useful here

Cumming (2014): between *pre specified* and *exploratory* or *question answering* and *question formulating* studies

- Confirmatory pre specified models test the effects of the variables or conditions you manipulated
- Exploratory question formulating models may be developed by building up complexity, with initially no clear idea about predictions

# The distinction between exploratory and confirmatory studies may be useful here

Cumming (2014): between *pre specified* and *exploratory* or *question answering* and *question formulating* studies

- Confirmatory pre specified models test the effects of the variables or conditions you manipulated
- Exploratory question formulating models may be developed by building up complexity, with initially no clear idea about predictions

- Current widely recommended approach (Barr et al., 2013; JML) Maximal random effects structure
- But this approach is disputed (Bates et al., 2015) prefer
- In the maximal approach:-

- Current widely recommended approach (Barr et al., 2013; JML) Maximal random effects structure
- But this approach is disputed (Bates et al., 2015) prefer parsimonious models, using LRTs to evaluate the utility of adding parameters
- In the maximal approach:-

- Current widely recommended approach (Barr et al., 2013; JML) Maximal random effects structure
- But this approach is disputed (Bates et al., 2015) prefer parsimonious models, using LRTs to evaluate the utility of adding parameters
- In the maximal approach:-
  - Test random intercepts subjects and items
  - Test random slopes for all within-subjects or within-items fixed

- Current widely recommended approach (Barr et al., 2013; JML) Maximal random effects structure
- But this approach is disputed (Bates et al., 2015) prefer parsimonious models, using LRTs to evaluate the utility of adding parameters
- In the maximal approach:-
  - Test random intercepts subjects and items
  - Test random slopes for all within-subjects or within-items fixed

- Current widely recommended approach (Barr et al., 2013; JML) Maximal random effects structure
- But this approach is disputed (Bates et al., 2015) prefer parsimonious models, using LRTs to evaluate the utility of adding parameters
- In the maximal approach:-
  - Test random intercepts subjects and items
  - Test random slopes for all within-subjects or within-items fixed effects

$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (11)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over
- Covariances are included because random intercepts and slopes



$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (11)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over
- Covariances are included because random intercepts and slopes



$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (11)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over
- Covariances are included because random intercepts and slopes



$$Y_{ij} = \beta_0 + \beta_1 X_i + U_{0,j} + U_{1,j} + W_{0,i} + W_{1,i} + \epsilon_{ij}$$
 (11)

- $\sigma_{U_0,i}^2 + \sigma_{U_1,i}^2 + \sigma_{U_0,iU_1,i}^2$  variances and covariance of random effects
- $\sigma_{W_0,i}^2 + \sigma_{W_1,i}^2 + \sigma_{W_0,iW_1,i}^2$  variances and covariance of random effects
- $\sigma_{\epsilon_{ii}}^2$  residuals error variance left over
- Covariances are included because random intercepts and slopes may correlate e.g. if slow subjects are more vulnerable to difference in conditions



## Examine the utility of random effects by comparing REML models with the same fixed effects but varying random effects

You can begin with random effects of subjects and items on intercepts

```
full.lmer.3 <- lmer(logrt ~
    (zAge + zTOWRE wordacc + zTOWRE nonwordacc) *
    (item_type + zLength + zOrtho_N) +
    (1|subjectID) + (1|item_name),
    data = ML.all.correct, REML = FALSE)
summary (full.lmer.3)
```

 Notice that REML = TRUE - we are focused on accurate comparisons of the random effects component

# Compare a model with both random effects of subjects and items on intercepts to a model with just the random effect of items on intercepts

```
full.lmer.3.i <- lmer(logrt ~
    (zAge + zTOWRE wordacc + zTOWRE nonwordacc) *
    (item_type + zLength + zOrtho_N) +
    (1|item_name),
    data = ML.all.correct, REML = FALSE)
summary(full.lmer.3.i)
```

- (1|item\_name) a comparison with the model including both random intercepts will tell us if the inclusion of the random effect of subjects on intercepts helps the model to fit the data better
- Repeat the comparison but for a second model including a random effect of subjects but not of items on intercepts to examine if the random affector items? ac

# Compare a model with both random effects of subjects and items on intercepts to a model with just the random effect of items on intercepts

```
full.lmer.3.i <- lmer(logrt ~
    (zAge + zTOWRE wordacc + zTOWRE nonwordacc) *
    (item_type + zLength + zOrtho_N) +
    (1|item_name),
    data = ML.all.correct, REML = FALSE)
summary(full.lmer.3.i)
```

- (1|item\_name) a comparison with the model including both random intercepts will tell us if the inclusion of the random effect of subjects on intercepts helps the model to fit the data better
- Repeat the comparison but for a second model including a random effect of subjects but not of items on intercepts to examine if the random effect of items a continuous

# Examine the utility of random effects of subjects on slopes of fixed effects are required

```
full.lmer.3.slopes <- lmer(logrt ~
    (zAge + zTOWRE wordacc + zTOWRE nonwordacc) *
    (item_type + zLength + zOrtho_N) +
    (item_type + zLength + zOrtho_N + 1|subjectID) + (1|item_name
    data = ML.all.correct, REML = FALSE)
summary(full.lmer.3.slopes)
```

(item\_type + zLength + zOrtho\_N + 1|subjectID) we specify a random effect of subjects on intercepts and on the slopes of the item type, length and neighbourhood effects

## How do we know if increasing *model complexity* helps us to account for variation in outcome values?

We can use the anova() function to compare models with or without the random effect of subjects on the slopes of the within-subjects fixed effects

```
anova (full.lmer.3, full.lmer.3.slopes)
    > anova(full.lmer.3, full.lmer.3.slopes)
    Data: ML.all.correct
    Models:
    full.lmer.3: logrt ~ (zAge + zTOWRE_wordacc + zTOWRE_nonwordacc) * (item_type +
    full.lmer.3:
                   zLength + zOrtho_N) + (1 | subjectID) + (1 | item_name)
    full.lmer.3.slopes: logrt ~ (zAge + zTOWRE_wordacc + zTOWRE_nonwordacc) * (item_type +
    full.lmer.3.slopes:
                          zLength + zOrtho_N) + (item_type + zLength + zOrtho_N + 1 |
    full.lmer.3.slopes: subjectID) + (1 | item_name)
                           AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
    full.lmer.3 19 -18416 -18278 9227.0 -18454
    full.lmer.3.slopes 28 -18740 -18538 9398.1 -18796 342.25 9 < 2.2e-16 ***
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Figure: Comparison of models with vs. without random effects of subjects on slopes of fixed effects

### Model comparison and selection

Remember: Simplicity and parsimony

- Trade-off between too much and too little simplicity in model selection
- Building random slopes into your model may reveal that there is
- Estimation procedures may run into convergence problems where

### Model comparison and selection

Remember: Simplicity and parsimony

- Trade-off between too much and too little simplicity in model selection
- Building random slopes into your model may reveal that there is quite a bit of variation in some effects – enough random variation that fixed effects are not significant – though that variation may be of interest
- Estimation procedures may run into convergence problems where

### Model comparison and selection

Remember: Simplicity and parsimony

- Trade-off between too much and too little simplicity in model selection
- Building random slopes into your model may reveal that there is quite a bit of variation in some effects – enough random variation that fixed effects are not significant – though that variation may be of interest
- Estimation procedures may run into convergence problems where there is too much model complexity and not enough data