

Bases de Datos

Práctica 3 - Algebra Relacional

Ejercicio 1: Operaciones de proyección y selección

Una empresa de venta de música *on-line* necesita diseñar una base de datos para modelar las tarjetas de crédito de sus clientes. La información se organiza de la siguiente manera en la relación Tarjeta:

Tarjeta Tarjeta				
Cliente	Nombre	<u>Número</u>	Vencimiento	BancoEmisor
Caetano Veloso	VISA	9876 1234	08/2013	Banco Nación
Caetano Veloso	American Express	1357 9753	12/2014	Banco Santander Río
Caetano Veloso	Mastercard	2468 9321	07/2014	Banco Francés
Rubén Rada	VISA	3546 1212	09/2013	Banco Francés
Paco de Lucía	Mastercard	1035 9857	11/2015	Banco Credicoop
Silvio Rodríguez	Tarjeta Naranja	8345 6723	12/2015	Banco Nación

- 1. Mostrar el resultado de las operaciones:
 - $\prod_{< cliente>} (Tarjeta)$
 - $\sigma_{< nombre = 'VISA' >}(Tarjeta)$
 - \bullet $\sigma_{< vencimiento > 12/2013 >} (Tarjeta)$
 - $\blacksquare \prod_{< nombre, numero, bancoemisor >} (Tarjeta)$
- 2. ¿Cómo es el esquema resultante de las siguientes operaciones?
 - $\blacksquare \prod_{< cliente, nombre, numero >} (Tarjeta)$
 - \bullet $\sigma_{< bancoemisor =' BancoNacin'>}(Tarjeta)$
 - $\blacksquare \prod_{< numero>} (Tarjeta)$
- 3. De manera general, suponer la relación Z, donde $Z=< z_1,...,z_6>$
 - <u>a</u>) Indicar cómo es el esquema de $\prod_{\langle z_1 \rangle} (Z)$
 - b) Indicar cómo es el esquema de $\sigma_{< B>}(Z)$ (siendo B cualquier expresión booleana)
 - <u>c</u>) Indicar cómo es el esquema de $\prod_{\langle z_1 \rangle} (\sigma_{\langle B \rangle}(Z))$ (siendo B cualquier expresión booleana).
- 4. ¿Cómo deben ser L y B para que sea válido combinar: $\prod_{< L>} (\sigma_{< B>}(Z))$ ¿Y para que sea válida $\sigma_{< B>}(\prod_{< L>}(Z))$?
- 5. Resuelva las siguientes consultas
 - a) Nombres de Clientes del Banco Nación o del Banco Santander Río.
 - b) Número de las tarjetas de crédito Mastercard que vencen en el período de 12/2013 y 12/2015.
 - c) Nombres de los Clientes, nombre y números de las tarjetas del Banco Nación.

Ejercicio 2: Operaciones de Producto Cartesiano y Join Natural

Considerar las relaciones Alumno, Cursa, Materia y Profesor

Alumno NombreAlumno #Alumno FechaNacAlu LegajoTutor Sheldon Cooper 3110 1993 162 Raj Koothrappali 4220 1991 078 Leonard Hofstadter 4221 1988 052 Howard Wolowitz 5110 1990 162

Cursa			
#Alumno	CodigoMateria Nota		
3110	Bases de Datos	5	
3110	Introducción a la Programación	6	
3110	Programación con Objetos I	7	
4221	Bases de Datos	8	
4220	Bases de Datos	4	

 Materia

 CodigoMateria
 NotaMinimaCursada
 NotaMinimaPromocion

 Bases de Datos
 4
 7

 Introducción a la Programación
 4
 7

 Programación con Objetos I
 6
 9

Profesor			
Legajo	NombreProfesor	FechaNacProfesor	
078	Stephen Hawking	1960	
162	Alan Kay	1955	
052	John Hughes	1970	
191	Steve Jobs	1970	

- 1. ¿Cuál es el resultado de las siguientes operaciones? ¿Qué significado tienen?
 - a) $Cursa \times Alumno$
 - b) Cursa*Alumno
 - $\underline{\mathbf{c}}) \ C2 \bowtie_{<(cm=codigoMateria) \land (nota \geqslant notaMinimaCursada) >} Materia$
 - $\underline{\mathbf{d}}$) $C2 \bowtie_{\langle (cm=codigoMateria) \land (nota \geqslant notaMinimaPromocion) >} Materia$

donde $C2 = \prod_{(\#Alumno,cm,nota) < \#Alumno,codigoMateria,nota)} (Cursa)$ (En esta operación, se está renombrando el atributo <u>codigoMateria</u> en <u>cm</u>. Los dos atributos restantes #Alumno y <u>nota</u> permanecen con el mismo nombre.)

- 2. ¿Cuál es el resultado de las siguientes operaciones? ¿Qué significado tienen? Suponer que un profesor sólo puede ser tutor de alumnos mucho menores que él.
 - a) $Profesor \times Alumno$
 - b) Profesor * Alumno
 - <u>c</u>) Profesor ⋈_{<fechaNacProfesor+30≤fechaNacAlu>} Alumno Nota: Tenga en cuenta que solamente se está guardando el año de nacimiento del profesor, y no la fecha completa.

- 3. Sean las relaciones R_1 y R_2 tales que $R_1 = \langle x, y, z, w \rangle$ y $R_2 = \langle a, b, x, d \rangle$. Indique cuál es la condición que debe cumplirse para que una combinación entre una tupla de R_1 y una tupla R_2 forme parte de:
 - a) $R_1 \times R_2$
 - b) $R_1 * R_2$
 - c) $R_1 \bowtie_{< B>} R_2$
- 4. Resuelva las siguientes consultas
 - a) Nombres y #Alumno de los alumnos cuyos tutores nacieron después del 1965.
 - <u>b</u>) Nombres y codigoMateria de los alumnos que obtuvieron exactamente la nota mínima o la nota mínima de promoción.
 - c) Nombres de los profesores cuyo legajo sea mayor a 100 y cuyos alumnos nacieron después de 1991.

Ejercicio 3: Operaciones de conjuntos

Sean las relaciones de *Boca* y *River* que representan las estadísticas de Boca y River en los 4 primeros partidos del campeonato inicial de fútbol, considerando que el *dominio* son los números del 1 al 30 para todos los atributos.

R_1		
Goles	Tiros al Arco	<u>Corners</u>
0	5	10
2	4	6
3	10	12
3	9	14

R_2		
Goles	<u>Tiros al Arco</u>	<u>Corners</u>
1	9	10
2	4	6
4	8	8
3	10	12

- 1. ¿Cuál es el resultado de las siguientes operaciones?
 - $\blacksquare R_1 \bigcup R_2$
 - $\blacksquare R_1 \cap R_2$
 - $R_1 R_2$
- 2. De manera general (considerar dos relaciones R_1 y R_2 cualesquiera): ¿cómo deben ser los esquemas de R_1 y R_2 para que puedan llevarse a cabo las operaciones: $R_1 \bigcup R_2$, $R_1 \bigcap R_2$ y $R_1 R_2$?

Ejercicio 4: Operación de división

Club

NombreClub	AnioFundacion
Boca Juniors	1980
River Plate	1985
Independiente	1985

Participó

NombreClub	NombreCampeonato	
Boca Juniors	Copa Sudamericana 1982	
Boca Juniors	Copa Sudamericana 1985	
Independiente	Copa Libertadores 1987	
River Plate	Copa Sudamericana 1982	
Boca Juniors	Copa Libertadores 1987	
River Plate	Copa Sudamericana 1985	
Independiente	Copa Sudamericana 1982	
Independiente	Copa Sudamericana 1985	

Campeonato

NombreCampeonato	SedePrincipal
Copa Libertadores 1987	Capital Federal
Copa Sudamericana 1982	Esquel
Copa Sudamericana 1985	Junin de los andes

- 1. Considerar las relaciones Club, Participó y Campeonato. ¿Qué significado tienen las siguientes consultas?
 - <u>a</u>) $Participo \div \prod_{< nombre Campeonato >} Campeonato$
 - $\underline{\underline{b}}$) $Participo \div \prod_{< nombre Club >} Club$
- 2. Si se quiere obtener las materias que cursan todos los alumnos regulares. ¿Cuál/es de las siguientes consultas son válidas para obtener dicho resultado? Justificar para cada opción.
 - <u>a</u>) $Alumno \div \prod_{<\#Alumno>} Cursa$
 - b) $\prod_{<\#Alumno,codMateria>} Cursa \div \prod_{<\#Alumno>} Alumno$
 - c) $\prod_{\neq Alumno, codMateria} Cursa \div \prod_{\neq Alumno} Cursa$
- 3. Considerar la relación:

Visita

NombreCiudad	NombrePasajero
Atenas	Caetano Veloso
El Cairo	Silvio Rodríguez
El Cairo	Rubén Rada

¿Qué significan las siguientes consultas?

- $\underline{\mathbf{a}}$) $\prod_{< nombre Ciudad >} Visita$
- \underline{b}) $\prod_{< nombre Pasajero >} Visita$
- c) $Visita \div \prod_{< nombre Ciudad >} Visita$
- $\underline{\mathbf{d}}$) $Visita \div \prod_{< nombre Pasajero >} Visita$
- 4. ¿Cuál de las siguientes condiciones es necesaria para calcular $R_1 \div R_2$?
 - $R_1 = R_2$
 - $\blacksquare R_1 \subseteq R_2$
 - $\blacksquare R_2 \subseteq R_1$

- 5. ¿Cuál de los siguientes es el esquema resultante de $R_1 \div R_2$?
 - $\blacksquare R_1 \bigcup R_2$
 - $\blacksquare R_1 R_2$
 - $\blacksquare R_2 \cap R_1$

Ejercicio 5: Ejercicios Integrales

Para cada sub-ejercicio, marcar las claves (propias y foráneas) de cada relación y resolver las consultas enumeradas.

1. Sea la siguiente bases de datos que representa los alumnos y sus entregas de las prácticas.

```
ALUMNO (<u>NroAlumno</u>, Nombre, Grupo)
PRACTICA (<u>NroPractica</u>, Curso, Fecha)
ENTREGA (<u>NroAlumno</u>, <u>NroPractica</u>, Nota)
```

Donde el nroPractica en la tabla PRACTICAS no se puede repetir, es decir, no puedo tener P1 del curso 1 y del curso 2.

- a) Obtener los alumnos que han entregado prácticas de segundo y tercer curso.
- b) Obtener los alumnos que solo han entregado prácticas de segundo curso.
- c) Obtener los alumnos que han entregado prácticas de segundo curso y pertenecen al grupo "BD-11"
- d) Obtener los nombres de los alumnos que han aprobado todas las prácticas de tercer curso.
- e) Obtener los nombres de los alumnos que han entregado todas las prácticas de tercer curso.
- 2. Un grupo de amigos muy amigos tiene un sistema que les permite saber quién es <u>El mejor amigo</u>. Dada la fecha cercana del <u>Día del Amigo</u>, están utilizando a full este sistema ya que el objetivo es registrar cuántos regalos se hacen entre ellos (el mejor amigo siempre es el que regala más cosas!).

El sistema registra la siguiente información:

```
AMIGO < <u>nombre</u>, edad, fechaIngresoAlGrupo>
REGALO < <u>nombre</u>, <u>destinatario</u>, <u>fecha</u>, tipoRegalo, valor>
FECHA_ESPECIAL < <u>fecha</u>, eventoConmemorativo>
```

Resuelva las siguientes consultas:

- <u>a</u>) Obtener el listado de <nombre, fechaIngresoAlGrupo, destinatario> de todos los regalos que hizo en lo que va de este año 2015 y en noviembre de 2013
- <u>b</u>) Obtener el listado de amigos bienvenidos, que son los que recibieron regalos en la fecha que ingresaron al grupo.
- c) Obtener el listado de amigos tacaños, que son los que nunca hicieron un regalo.
- <u>d</u>) Obtener el listado de amigos por compromiso, que son los que solamente hicieron regalos en las fechas especiales.
- e) Obtener el listado de amigos creativos, que son los que regalaron todos los tipos de regalo cuyo valor superaba los \$100 a algún amigo sin importar la fecha.

3. La casa de comidas rápidas "PunqerNic" de la UNQ registra las comidas que se ofrecen de la siguiente manera:

```
COMIDA < codigo, codItem, esEspecial>
BEBIDA < codigo, codItem, centimetrosCubicos>
GUARNICION < codigo, codItem, tamaño>
ITEM < codItem, descripcion, precio, calorias>
ITEMenMENU < codMenu, codItem>
MENU < codMenu, nombre>
```

Se piden las siguientes consultas expresadas en Algebra Relacional:

- <u>a</u>) Listado de Menúes <codMenu, descripcion> que tengan, o bien una comida especial, o bien una bebida que tenga menos de 100 calorías.
- b) Listado de bebidas <codItem, cod, descripcion> que tengan la mismas calorías que centrimetrosCubicos.
- c) Listado de Comida < codItem, codigo, descripcion > que aparezcan en todos los menúes
- d) Listado de Guarnicion < codItem, codigo, descripcion > que no estén en ningún menú.
- <u>e</u>) Listado de Menúes <codMenu, nombre> que tienen solamente items con precios menores a < \$10 y calorías < 100.
- 4. Sea la siguiente base de datos que representa las óperas que se realizan en diferentes teatros.

```
TEATRO (<u>NombreTeatro</u>, Dirección, Ciudad)
OPERA (<u>NombreOpera</u>, DirectorOpera, <u>NombreTeatro</u>, FechaComienzoTemporada, FechaFinalTemporada)
INTERPRETE (<u>NombreInterprete</u>, Categoría, <u>NombreOpera</u>) (Categoría especifica si es Tenor, Soprano, etc.)
ORQUESTA (<u>NombreOrquesta</u>, <u>NombreOirector</u>, <u>CantidadIntegrantes</u>, <u>NombreOpera</u>)
TOCA EN(<u>NombreOrquesta</u>, <u>NombreTeatro</u>)
```

Donde:

- Todo intérprete interpreto al menos una opera
- Un intérprete puede interpretar muchas operas
- Una orquesta toca muchas operas
- Una opera pudo presentarse en un teatro sin que la misma involucre a una orquesta
- Una orquesta toca solamente en un teatro
- En opera se indica cada opera en que teatro se presentó y en qué temporadas
- a) Quiénes son los sopranos que participaron solo en óperas realizadas en la Ciudad de Buenos Aires?
- b) Qué orquestas participaron en la ópera "Maria de Buenos Aires" cuando esta ópera se hizo en teatros de Mar del Plata o Capital Federal?
- 5. Una empresa dedicada al alquiler de cabañas maneja la información relativa a las cabañas, su personal y las estadías que en ellas se realizaron en una base de datos con las siguientes tablas:

```
CABAñA (NroCab, Capacidad, Zona, Categoría)
PERSONAL (NroEmp, Nombre, Tarea, Salario)
ASIG_EMP (NroEmp, NroCab)
CLIENTE (NroCli, Nombre, Fecontacto, Origen)
ESTADIA (NroCab, NroCli, FInicio, Dias)
```

- a) Obtener los nombres de los empleados que tienen un salario menor a 1500 y están asignados a todas las cabañas de categoría A de la zona Balneario.
- b) Obtener todas las categorías de las cabañas en las que se hospedaron sólo clientes de origen "BRASIL"

6. Sea la siguiente base de datos que modela los pasajeros que se hospedan en diferentes hoteles.

HOTEL (CantidadHabitaciones, <u>CodHotel</u>, Dirección, Ciudad, DNIGerente)
PASAJERO(<u>DNIPasajero</u>, Nombre, Apellido, Ciudad, Domicilio, Edad, EstadoCivil, FechaNacimiento)
SE_HOSPEDA_EN(<u>DNIPasajero</u>, <u>CodHotel</u>, <u>FechaInicio</u>, FechaFin, CantDiasHospedaje, #Habitación, CategoríaHabitacion)
GERENTE(DNI, Nombre, Apellido, Domicilio, Ciudad)

Donde:

- El atributo categoríaHabitacion de la tabla SE HOSPEDA EN, indica si es "Alta", "Media" o "Baja".
- El atributo cantDiasHospedaje de la tabla SE_HOSPEDA_EN, representa la cantidad de días que un pasajero se hospedó en un hotel.
- Se debe tener en cuenta que pueden existir personas en la tabla Pasajero que nunca se hayan hospedado en ningún hotel.
- a) Devolver el dni, el nombre y fecha de nacimiento de aquellos pasajeros que se hospedaron en todos los hoteles de la ciudad de La Plata
- b) Devolver el dni y el nombre de aquellos pasajeros de más de 21 años que sólo se hospedaron en hoteles con capacidad de hasta 26 habitaciones.
- c) Devolver el código de los hoteles de La Plata que han hospedado pasajeros solteros o viudos entre el 1/6/2013 y el 30/6/2013
- d) Devolver el apellido y la ciudad de los gerentes de hoteles que han hospedado pasajeros menores de 30 años.
- e) Devolver el dni, el apellido y fecha de nacimiento de aquellos pasajeros que se hospedaron en todos los hoteles de la Capital Federal.
- 7. Sea la siguiente base de datos que modela los pacientes internados en hospitales.

PACIENTE(<u>DNI</u>, Nombre, Ciudad, Domiclio, Edad, EstadoCivil)
DIRECTOR(<u>DNI</u>, Nombre, Apellido, Domicilio, Ciudad)
HOSPITAL(CantidadHabitaciones, <u>CodHospital</u>, Dirección, Ciudad, DNIDirector)
PACIENTE INTERNADO EN(DNIPaciente, <u>Cod</u>Hospital, FechaInicio, FechaFin, #Habitación, TipoSala)

Donde:

- El atributo tipoSala indica si es sala "regular", "terapia" o "coronaria"
- Pueden existir personas en la tabla Paciente que nunca estuvieron internados en ningún hospital
- Los códigos de hospital no se repiten en diferentes ciudades
- a) Devolver el nombre y el dni de aquellos pacientes mayores de 65 años que solo han estado internados en habitaciones pertenecientes a salas regulares.
- b) Devolver el dni y nombre de los pacientes que han estado internados en todos los hospitales de la ciudad de La Plata.
- 8. Sea la siguiente base de datos que modela los eventos y los personajes históricos de los mismos.

EVENTOS (<u>Evento</u>, Lugar, FechalnicioEvento, FechaFinEvento)
PERSONAJES_HISTORICOS (<u>NombrePersonaje</u>, LugarNacimiento, FechaNacimiento, <u>Evento</u>)
MONUMENTOS (<u>NombreMonumento</u>, Ciudad, AñoInauguracion, <u>Evento</u>)
LIBRO (NombreLibro, AñoEdicion, Autor, NombrePersonaje)

- a) Cuáles son los libros que citan personajes históricos que participaron en eventos en mayo de 1810?
- b) Cuáles son los monumentos donde aparecen personajes históricos que participaron en eventos que empezaron y terminaron en 1850?
- c) Cuáles son los eventos representados en los monumentos de Bernal y que fueron inaugurados en 2006 o 2010?

- d) Cuáles son los eventos que ocurrieron en Salta y en los cuales participaron en forma conjunta San Martín y Belgrano como personajes históricos?
- 9. Sea la siguiente base de datos de ventas de tickets *online* de espectáculos.

TICKET (<u>#Ticket</u>, EmpresaVendedora, NombreEspectáculo, TipoUbicacion, Precio, MedioPago) ESPECTACULO (<u>NombreEspectaculo</u>, Lugar, Domicilio, Ciudad, Horario) EMPRESA (EmpresaVendedora, Domicilio, Ciudad, Website, Email)

- a) Cuáles son las empresas de venta de La Plata que sólo vendieron tickets para el recital de los Rolling Stones?
- b) Cuáles son los tickets de espectáculos de Capital Federal sólo vendidos por las empresas de Capital Federal y que se pagaron con tarjeta de crédito?
- c) Cuáles son las empresas de Bernal que vendieron tickets de espectáculos con un precio mayor a \$ 200 y que fueron pagadas con una tarjeta de crédito?
- d) Cuáles son los espectáculos que comienzan entre las 12hs y las 16hs que tuvo tickets vendidos por todas las empresas de La Plata?
- e) Cuáles son las empresas de venta de La Plata que vendieron tickets para Campo a \$ 400 para el recital de los Rolling Stones y para el recital de Aerosmith?
- 10. Sea la base de datos que modelan los museos con los dinosaurios que se exponen.

ESTAN_EN (<u>Dinosaurio</u>, Museo) VIVIO_EN (<u>Dinosaurio</u>, Epoca) TIENE DATOS (Museo, Epoca)

- a) Existe algún museo que tenga información de todas las épocas en donde vivieron los dinosaurios?
- b) Cuáles son los museos que tienen información sobre una época en la que vivió un dinosaurio y sin embargo no tiene datos de ese dinosaurio?
- 11. Sea la base de datos que modela las especies animales y las eras geológicas en las que vivieron.

ESPECIES_ANIMALES (NombreAnimal, Descripcion, AñosDeVida, Habitat) CONTINENTES (NombreContinente, Km², TempMaxima, TempMinima) ERAS_GEOLOGICAS (NombreEra, FInicio, FFin, Descripcion) HABITARON (NombreAnimal, NombreContinente, Region) HABITARON_DURANTE (NombreAnimal, NombreEra)

- a) Existe algún continente no poblado en la era Cenozoica?
- b) Cuáles son las especies sobrevivientes a todas las eras?
- 12. Sea la base de datos que modelan los empleados de diferentes departamentos de una empresa.

LUGAR_TRABAJO (Empleado, Departamento)
CURSO_DEPARTAMENTO (Departamento, Curso)
CURSO REALIZADO (Empleado, Curso)

Donde:

- LugarTrabajo indica qué empleados trabajan en cada departamento
- CursoDepartamento son los cursos que cada departamento le exige a sus empleados
- Curso_realizado son los cursos que ya hizo cada empleado
- a) Quiénes son los empleados que han hecho todos los cursos, independientemente de qué departamento los exija?
- b) Quiénes son los empleados que ya han realizado todos los cursos exigidos por sus departamentos?

13. Dentro del marco mundialista, se ha diseñado una base de datos para registrar los pases de los jugadores y la historia de su vida amorosa. Esta base de datos cuenta con las siguientes relaciones:

```
JUGADOR (pasaporteJugador, nyApJugador, paisJugador, fechaNacJugador, lugarNacJugador)
EQUIPO (nombreEquipo, pais, cantidadDeSocios, nombreCancha, capacidad)
VENTA (pasaporteJugador, pasaporteRepresentante, cotizEnDolares, equipoVendedor, equipoComprador, añoVenta)
REPRESENTANTE (pasaporteRepresentante, nyApRepresentante, paisRepresentante, comisionPromedio)
MUJERES (pasaporteEsposa, nyApEsposa, paisEsposa, profesionEsposa, tieneCirugias)
CASADO CON (pasaporteEsposa, pasaporteJugador)
```

con las siguientes consideraciones:

- Un jugador puede haber estado casado con varias mujeres.
- Un jugador puede haber sido vendido en diferentes oportunidades por diferentes representantes.

Resuelva las siguientes consultas usando Algebra Relacional:

- <u>a</u>) Devolver el nombre y apellido del representante, nombre y apellido del jugador y el año de venta de las operaciones donde el equipo vendedor era brasileño y se haya realizado entre 2010 y 2013.
- b) Devolver el nombre y apellido y la comisión promedio de los representantes que han vendido jugadores franceses o alemanes en los años 2012 y 2013 (Aclaración: Si un representante vendió en el año 2012 y no en el 2013, no debe aparecer como parte del resultado).
- <u>c</u>) Devolver el nombre y apellido, y el lugar de nacimiento de los jugadores argentinos que solamente tuvieron esposas que fueron modelos.
- <u>d</u>) Devolver el nyApJugador y la fecha de nacimiento de los jugadores que fueron comprados (no importa el año) por todos los equipos colombianos que tiene canchas con capacidad mayor a 40.000 personas.
- e) Devolver el nombre y apellido y el lugar de nacimiento de los jugadores, y el nombre y apellido de la esposa de los jugadores que son uruguayos casados con mujeres diseñadoras o que son chilenos casados con mujeres tenistas (Aclaración: un jugador uruguayo casado con una mujer tenista no es una respuesta correcta para esta consulta).
- 14. Sea la base de datos que modela los partidos de diferentes mundiales.

```
MUNDIAL (<u>Año</u>, Pais)
CANCHA (<u>NombreCancha</u>, <u>Ciudad</u>, Capacidad, <u>AñoMundial</u>)
PARTIDO (<u>Fecha</u>, <u>Año</u>, Equipo1, Equipo2, NombreCancha, GolesEq1, GolesEq2)
```

- a) Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?
- b) Qué equipos jugaron (para cualquiera de los mundiales) en todas las canchas habilitadas para el mundial correspondiente ?

Ejercicio 6: Máquinas, piezas, depósitos

Tenemos un esquema de BD que describe la información de una empresa que tiene varias plantas fabriles. Específicamente este esquema modela las máquinas de las plantas, las piezas que lleva cada máquina, los fabricantes de las piezas, y el stock de piezas de repuesto de los depósitos de la empresa.

```
FABRICANTE < codFabr, nombre>
MAQUINA < codMaq, codPlanta, codFabr>
PIEZA < codPieza, codFabr>
LLEVA < codMaq, codPieza, cantidad>
DEPOSITO < codDep, nombre, localidad>
STOCK < codPieza, codDep, cantidad>
PLANTA < codPlanta, localidad>
```

Tenga en cuenta las siguientes consideraciones:

- Cada máquina tiene un fabricante y cada pieza también; no necesariamente el fabricante de las piezas que lleva una máquina es el mismo que el de la máquina. P.ej. se puede tener un torno marca Siemens que incluye una lámpara marca Osram.
- Cada máquina está en una planta de la empresa, y tiene un fabricante que es otra empresa.
- La tabla fabricante incluye los fabricantes de máquinas y también los fabricantes de piezas.

Escriba las expresiones en álgebra relacional que permitan obtener:

- a) Los nombres de los depósitos que tienen al menos una pieza de cada fabricante.
- b) Códigos de las piezas que tienen más de 100 unidades en al menos un depósito de Bernal.
- c) Códigos de los depósitos en los que hay más cantidad de la piezas 1 que de la pieza 2.
- <u>d</u>) Códigos de los depósitos en los que hay más cantidad de la piezas 1 que de la pieza 2, o bien hay cantidad de la pieza 1 y no de la pieza 2.
- e) Localidades en las que hay al menos un depósito con stock de al menos una pieza que lleva la máquina 1.
- f) Las localidades en las que hay depósitos pero no plantas.
- g) Los nombres de los depósitos en los que hay stock de todas las piezas del fabricante con código 134.
- h) Códigos de las piezas de la máquina de código 1 que no son del mismo fabricante de la máquina.
- i) Códigos de las piezas que o bien forman parte de la máquina 1 o bien tienen stock en el depósito 3.
- j) Nombres de los fabricantes de las piezas que forman parte en al menos una máquina que está en alguna planta de Bernal.

Ejercicio 7: Viajeros

Un grupo de gente a la que le gusta viajar arma una BD con información sobre destinos y equipamiento modela el siguiente esquema:

```
EQUIPO < nomEquipo, precio>
DESTINO < nomDest, nomPais, tempPromedio>
VIAJERO < nomViajero, anioNacimiento>
CONOCE < nomViajero, nomDest, anioViaje>
TIENE < nomViajero, nomEquipo, cantidad>
SE_NECESITA < nomEquipo, nomDest>
PAIS < nomPais, continente>
```

teniendo en cuenta que para ir a un destino se necesita al menos una unidad del equipamiento pedido en todos los casos.

Resolver las siguientes consultas usando álgebra relacional, teniendo en cuenta que por ejemplo París y Roma son destinos; guante, gorro y visera son equipamientos.

- a) Nombres de los viajeros que tienen todo lo que necesitan para ir a Madrid.
- b) Nombres de los viajeros que fueron a Madrid, pero no tienen todo lo que necesitan para ir.
- c) Nombres de los viajeros que conocen Asia.
- <u>d</u>) Nombres de los viajeros que tienen más de 3 unidades de al menos un equipamiento que se necesita para ir a algún destino en Asia.
- e) Una tabla <nomViajero, anioNacimiento, nomDest, nomPais, continente, anioViaje> para los destinos que conoció cada viajero antes de sus 20 años (tomando años completos).
- f) Nombres de los viajeros que, o bien tienen 3 o más viseras, o bien conocen tanto Sidney o Tokio.
- g) Una tabla <nomViajero, anioNacimiento, nomEquipo, cantidad, precioUnit, precioTotal> que indica las posesiones de los viajeros nacidos después de 1980.
- h) Destinos de menos de 10 grados de temperatura promedio para los que se necesita gorro.
- i) Destinos de menos de 10 grados de temperatura promedio para los que no se necesita ni gorro ni guante.
- j) Tabla <nomViajero, cantGorros, cantGuantes> para los viajeros que tienen gorros y también guantes.

Ejercicio 8: Tower Defense

Se ha modelado un esquema de BD para un juego del tipo Tower Defense (es un tipo de juego de estrategia que vas poniendo torrecitas que disparan a tus enemigos en caso de querer invadirte - http://en.wikipedia.org/wiki/Tower_defense -) con la siguiente información:

```
TORRE_DEFENSA (las torres de defensa te previenen de posibles invasiones)

<iddDef, tipoDefensa, potenciaDisparo, nivelTorre, idUsuario>
TIPO_DEFENSA: (contienen los posibles tipos de defensa)

<tipoDefensa, nombreDefensa, indiceDefensa>
TORRE_RECURSO: (son torres que construyen tus recursos para poder fabricar los distintos elementos: metales, maderas, piedras, etc. También pueden tener almacenados sus recursos).

<idodocumentos: de recursos que tienen espacio suficiente, existen estas torres que tienen mucho más almacenaje. Las torres pueden almacenar solamente un tipo de recurso)

<idodocumentos de recursos que tienen espacio suficiente, existen estas torres que tienen mucho más almacenaje. Las torres pueden almacenar solamente un tipo de recurso)

<idodocumentos de recursos posibles que se generan en el juego:

<tipoRecurso, recurso>

USUARIO: es la tabla contiene a los usuarios que participan del juego:
```

Resuelva las siguientes consultas usando el Algebra Relacional:

<idUsuario, nombre, nivelJugador>

- <u>a</u>) Todos los nombres y nivel de usuario que tengan al menos una torre de defensa con nivelTorre = 2 y una torreAlmacenaje que almacene "piedra".
- b) El listado de TorreRecurso que tienen colmada su capacidad de almacenaje (utilizar los campos maximoUnid y unidAlmacenadas)
- c) Para todos los usuarios, calcular su poder defensivo. (Aclaración: por tipo de defensa, el poder defensivo es: potenciaDisparo * nivelTorre * indiceDefensa del tipo de defensa correspondiente). Esta expresión debe tener la siguiente estructura: <idUsuario, nombre, idDef, poderDefensivo>
- d) Los nombres de usuario de aquellos usuarios que tengan todos los tipos de recursos definidos en el sistema.
- e) Los usuarios que no tienen todas las torres de recursos posibles (una para cada tipo de recurso).

Ejercicio 9: Barcos, puertos y empleados

Se tiene el siguiente esquema de BD que describe el funcionamiento de una a compañía naviera que lleva cargas con diferentes barcos entre diferentes países.

```
BARCO <matricula, codPaisBandera, nombre, capacidad>
PUERTO <codPuerto, nombre, codPais>
PAIS <codPais, nombrePais, continente, gradoCorrupcion>
REGISTRO_PUERTO <codPuerto, matricula, fechaEntrada, fechaSalida>
EMPLEADO <legajo, nombreEmpleado>
TAREA <legajo, codPuerto, fechaInicio, fechaFin>
```

Escriba las expresiones en álgebra relacional que permitan obtener:

- a) Los nombres de los países por los que pasó el barco de matrícula XTW8930 durante el 2013.
- b) Las matrículas de los barcos que estaban en un puerto de un país muy corrupto (grado de corrupción > 7) el 01/03/2012.
- <u>c</u>) Las matrículas de los que estaban navegando (esto es, en ningún puerto) el 01/03/2012. Ayuda: son todos menos los que estaban en algún puerto.
- d) Las matrículas de los barcos que estaban en un puerto del país de su bandera el 01/03/2012.

- e) Nombres de los barcos que pararon en todos los puertos de Brasil.
- <u>f</u>) Nombres de los barcos que pararon en todos los continentes (sólo nos interesan los continentes de los países cargados).
- g) Nombres de los empleados que conocen todos los continentes.
- $\underline{\mathbf{h}}$) Nombres de los puertos en los que en 2012 pasó el barco XTW8930 pero no trabajó el empleado de legajo 486.
- i) Nombres de las parejas de países (A,B) tales que el grado de corrupción de B es dos puntos mayor que el de A. Por ejemplo, si en Kazasthán es 3, en Nepal es 5, y en Maldivas es 7, entonces en la respuesta deben incluirse (Kazasthán, Nepal) y (Nepal, Maldivas).