7 FORMULARIUM

Note: numbers in the right column refer to equations in the textbook. In some cases, equations are not explicitly given in the textbook, but are part of the text or a footnote. In those cases, they are numbered according to the closest numbered equation.

7.1 GASLAWS, WATER VAPOUR AND THERMODYNAMICS (APPENDIX B)

(*T* in Kelvin, unless otherwise stated; some definitions are given in table B.2: they are referred to as TB2.x)

•				ie ue	efinitions are given in table B.2: they	are referred to as	
Equation of state	$p = \rho \frac{R^*}{M} T$	· = /	oRT				B.1
Hydrostatic	$dp = -g\rho$	dz					B.11
equilibrium		$g = 9.8 \text{ m s}^{-2}$					
Thermodynamics	$dQ = c_v dT$	$Q = c_v dT + p d\alpha$				B.10	
,	رد ۱۵۰	r	dp				
	$aQ = c_p a$	<i>i</i> –	ρ				
	$dQ = c_p dQ$ $c_p - c_v =$	R					B.7
Dry air	$M_{\rm d}$ = 29 kg	g km	ol-1				B.3a
(occurs in text)							
Dry-adiabatic	$\frac{dT}{T} = \frac{R}{c_p} \frac{dr}{\rho}$ $\theta = T \left(\frac{p_o}{r}\right)$	<u>p</u>					B.13
	$T - c_p \rho$) _					
	$\sigma = (p_0)$	$\frac{R}{c_n}$					
	$\theta = T\left(\frac{10}{p}\right)$) "					B.14
Relative humidity	ри –						TB2.6
RH	$RH = \frac{1}{e_{\text{sat}}}$						
Specific humidity	ρ_v						TB2.4
q	$q = {\rho}$						
,	$R_d \approx R_d e$						B.19
	$q \sim \frac{\overline{R_v}}{\overline{R_v}} \frac{\overline{p}}{p}$						
	$q = \frac{\rho_v}{\rho}$ $q \approx \frac{R_d}{R_v} \frac{e}{p}$ $q = \frac{r}{1+r}$ $r = \frac{\rho_v}{\rho}$						B.17
Mixing ratio r	$\frac{1+r}{\rho_v}$	$\frac{1+r}{\rho_v}$					TB.3
Wilking ratio /	$r = \frac{1}{\rho_d}$						15.5
Dew point T _d	$e = e_{\text{sat}}(T_{\text{d}})$	$e = e_{\text{sat}}(T_{\text{d}})$					TB2.7
Virtual	<i>m</i>	Т			T(4 : 0 (4)		TB2.5
temperature T_{ν}	$T_v = \frac{1}{1}$	´1	R_d	$\frac{-}{e}$ $$	$\approx T(1 + 0.61q)$		
	1 - (1 –	$\overline{R_v}$	\sqrt{p}			
Wet bulb	$\rho = \rho$ (T) –	R_v	$\frac{c_p}{n}$	$(T-T) \equiv \rho \cdot (T) - \nu(T-T)$		TB2.8
temperature T_w	sat (1)	<i>V)</i>	R_d	L_v^P	$ET(1+0.61q)$ $(T-T_w) = e_{\text{sat}}(T_w) - \gamma(T-T_w)$		
and	with $\gamma = -$	R _V C _γ	$\frac{p}{p}$				
psychiometer		ra =1	,				
equation					1		
Thermodynamic		ı	pend	IS			
properties of dry		on					
and moist air (note: L_{ν} is given in the	property	Τ	q	р	value	unit	
text, section B.5)	R*				8314	J kmol ⁻¹ K ⁻¹	B.1a
,	$R_{\rm v}$				462	J kg ⁻¹ K ⁻¹	B.4a
	$R_{\rm d}$				287	J kg ⁻¹ K ⁻¹	B.3b
	R		•		287(1+0.61q)	J kg ⁻¹ K ⁻¹	B.6
	$\mathcal{C}_{\mathrm{pd}}$				1004	J kg ⁻¹ K ⁻¹	B.7a
	$\mathcal{C}_{ ext{vd}}$				717	J kg ⁻¹ K ⁻¹	B.7b
	Cp		•		1004(1+0.84q)	J kg ⁻¹ K ⁻¹	B.8
	$C_{\rm V}$		•		717(1+0.37q)	J kg ⁻¹ K ⁻¹	B.9

1	•			2501000(1-0.00095(T-273.15))	J kg ⁻¹	B.23b
$L_{ m v}$	•				·	D.230
γ	•	•	•	1 + 0.84q p	Pa K ⁻¹	B.23
·				$65.5 \frac{1 + 0.014}{1 - 0.00095(T - 273.15)} \frac{p}{101300}$		
e _{sat}	•			$611.2 \exp \left[\frac{17.62(T - 273.15)}{-30.03 + T} \right]$	Pa	B.20a
(over				$611.2 exp \left {} \right $		
water)				[-30.03 + 1]		
S	•			$e_{\rm sat}(T) \frac{4284}{(-30.03+T)^2}$ (with $e_{\rm sat}$ over water)	Pa K ⁻¹	B.21a
(over				$(-30.03+T)^2$ (with e_{sat} over water)		
water)						
e _{sat}	•			[22.46(T - 273.15)]	Pa	B.20b
				$611.2 exn \left \frac{22.10(1-273.13)}{2.13} \right $	' "	0.200
(over ice)				$611.2 \exp \left[\frac{22.46(T - 273.15)}{-0.53 + T} \right]$		
S	•			$e_{\rm sat}(T) \frac{6123}{(-0.53+T)^2}$ (with $e_{\rm sat}$ over ice)	Pa K ⁻¹	B.21b
(over ice)				$e_{\text{sat}}(T)$ $(-0.53+T)^2$ (with e_{sat} over ite)		
(0001100)						

7.2 RADIATION (PARTLY FROM APPENDIX A) AND SOIL HEAT FLUX

Planck curve	$M_{b\lambda} = \frac{c_1 \lambda^{-5}}{\left[exp\left(\frac{C_2}{2\pi}\right) - 1\right]} \text{W m}^{-2} \mu\text{m}^{-1}$	A.1
	$exp(\frac{GZ}{\lambda T})-1$ $C_1 = 3.74 \ 10^8 \ \text{W m}^{-2} \ \mu\text{m}^4, \ C_2 = 1.439 \ 10^4 \ \mu\text{m K}$	
Stefan-Boltzmann	$M_{\rm b} = \sigma T^4 \text{W m}^{-2} \text{with } \sigma = 5.67 10^{-8} \text{W m}^{-2} \text{K}^{-4}$	A.2
Wien	$\lambda_{\rm m} T = 2897.8 \ \mu{\rm m K}$	A.3
Lambert-Beer	$dI_{\alpha} = -I_{\alpha} k_{\alpha} a \rho ds$	2.9
Radiation at top of	νη νη ρ ως γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	2.3
atmosphere	$K_0^{\downarrow} = \overline{I_0} \left(\frac{a_{\text{Sun}}}{d_{\text{Sun}}} \right) \cos(\theta_z)$	2.3
	$\overline{I_0} = 1365 \text{ W m}^{-2}$	
	$\cos(q_z) = \sin(\delta)\sin(\phi) + \cos(\delta)\cos(\phi)\cos(w)$ $= -\frac{1}{2} + \frac{1}{2}$	A.10
	$\overline{K_0^{1/24}} = \frac{\overline{I_0}}{\pi} \left(\frac{\overline{d}_{Sun}}{d_{Sun}}\right)^2 \left[\omega_S \sin(\delta) \sin(\phi) + \cos(\delta) \cos(\phi) \sin(\omega_S)\right]$	A.15
	(θ_z : zenit angle, δ: declination angle, ϕ : latitude, ω : hour angle,	
	ω_s : daylength (radians))	
Global radiation (empirical estimate	$\frac{\omega_s : \text{daylength (radians))}}{\overline{K^{\downarrow}}^{24} = \overline{K_o^{\downarrow}}^{24} \left(a + b \frac{n}{N_d} \right)}$	2.17
daily sum)	$(N_d: \text{daylength (hours)} = 2\frac{24}{2\pi}\omega_s)$	
Extinction of radiation	$(N_d: \text{daylength (hours}) = 2\frac{24}{2\pi}\omega_s)$ $I_{\lambda} = I_{\lambda 0} \exp\left[-m_r \int_0^{\infty} k_{\lambda,i} q_i \rho dz\right] = I_{\lambda 0} \tau_{\lambda \theta,i}$	2.10
Global radiation as sum of direct and diffuse	$K^{\downarrow} = S + D = I\cos(\theta_z) + D$	2.4
Optical thickness	$\delta_{\lambda,i} \equiv \int_{0}^{\infty} k_{\lambda,i} q_{i} \rho dz$	2.11
Optical mass (vertical, relative)	$\delta_{\lambda,i} \equiv \int_0^\infty k_{\lambda,i} q_i \rho dz$ $m_a = \int_\infty^0 \rho ds$	2.5
,	$m_v = \int_0^\infty \rho dz$	2.6
	$m_a = m_v m_r$	2.7
	$m_r \approx [\cos(\theta_z)]^{-1}$	2.8
Transmissivities	$\tau_{b,\theta} = \frac{I}{I_0}$	2.15
	$\tau_b = \frac{K^{\downarrow}}{K_0^{\downarrow}}$	2.16

		1
Models for broadband transmissivities	$\tau_{b,\theta} = \left[\left(\tau_{bv,cda} \right)^{m_r} \right]^{T_L} = \exp(\delta_{b,cda} m_r T_L)$	2.18
	$\frac{K^{\downarrow}}{K^{\downarrow}} = \tau_b = 0.868 \ e^{-0.0387 \ m_r T_{L,2}}$	2.19
	10	
	(with T_L the Linke turbidity and $\delta_{\rm b,cda}$ the broadband optical thickness	
<u> </u>	of a clean, dry atmosphere).	2.25
Brunt	$\varepsilon_{ m a,clear} = c_1 + c_2 \sqrt{e_a}$ with e_a in mbar and	2.25
	$c_1 = 0.52$ and $c_2 = 0.065$ hPa ^{-0.5}	
Incoming longwave	$L^{\downarrow} = \varepsilon_a \sigma T_a^4 \text{ W m}^{-2},$	2.24
radiation (empirical	with	
estimate)	$\begin{aligned} \varepsilon_{a} &= f_{\text{cloud}} + (1 - f_{\text{cloud}}) \varepsilon_{\text{a,clear}} \\ L^{\uparrow} &= L_{e}^{\ \uparrow} + (1 - \varepsilon_{\text{s}}) L^{\downarrow} \end{aligned}$	2.26
Upwelling longwave		2.28
radiation	with	
	$L_e^{\uparrow} \approx \varepsilon_S \sigma T_S^4$ $\frac{\partial T}{\partial T}$	2.27
Soil heat flux	$G = -\lambda_s \frac{\partial T}{\partial z}$	
	$\int \int \int \partial z_d$	2.29
	$\frac{\partial G}{\partial z_d} = -\rho_s c_s \frac{\partial T}{\partial t}$	2.30
	l u	
	$\frac{\partial T}{\partial t} = \kappa_s \frac{\partial^2 T}{\partial z_d^2}$	2.31
	$\partial t = \frac{\partial z_d^2}{\partial z_d^2}$	
Sine-wave forcing of <i>T</i> at surface	$T(z_d, t) = \overline{T} + A(0)e^{-\frac{z_d}{D}}\sin\left(\omega t - \frac{z_d}{D}\right)$	2.35
341.435	with $\omega = \frac{2\pi}{P}$ (<i>P</i> is period of sine wave)	
	Damping depth (penetration depth):	
	2λ 2κ	
	$D = \left \frac{2\lambda}{\omega \rho_s c_s} \right = \left \frac{2\kappa_s}{\omega} \right $	2.37
	\ \(\frac{1}{2} \cdot \c	
	Amplitude at depth z _d :	
	$A(z_d) = A(0)e^{-\frac{z_d}{D}}$	2.36
	Flux density at depth z_d and time t :	
	$G(z_d, t) = A(0)e^{-\frac{Z_d}{D}} \sqrt{\omega \rho_s c_s \lambda_s} \sin \left[\omega t - \frac{Z_d}{D} + \frac{\pi}{4} \right]$	2.38
Force-restore method	$\frac{\partial T_{top}}{\partial t} = \frac{1}{C_s d_{top}} \{ \underbrace{(Q^* - H - L_v E)}_{\text{force}} - \underbrace{\Lambda_s (T_{top} - T_{bot})}_{\text{rectangle}} $	2.40
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	with:	
	$\Lambda_s = C_s d_{top} \omega$ and $d_{top} = \sqrt{\kappa_s/2\omega}$	
Frost penetration depth	$z_f = a\sqrt{-I_n}$	2.51
	1 / 1 10	L

7.3 TURBULENT FLUXES

K-theory (equation 3.1 in the book is the example for temperature)	$H = -\overline{\rho}c_p K_h \frac{\partial \overline{\theta}}{\partial z}$	3.1a
the example for temperature)	$E = -\overline{\rho} K_e \frac{\partial \overline{q}}{\partial z}$	3.1b
	$\tau = \overline{\rho} K_m \frac{\partial \overline{u}}{\partial z}$	3.1c
Flux densities	$H = \overline{\rho} c_p \overline{w'\theta'}$	3.13a
(do not occur as numbered equations in the book, see	$E = \overline{\rho} \ \overline{w'q'}$	3.13b
page 88)	$\tau = -\overline{\rho} \ \overline{u'w'}$	3.13c
Turbulent scales (moisture, temperature, velocity (friction velocity), virtual temperature)	$u_* = \sqrt{\frac{ au}{\overline{ ho}}}$	3.17a

		Т
	$\theta_* = -\frac{H}{\overline{\rho}c_p u_*}$	3.17b
	$q_* = -\frac{E}{\overline{\rho}u_*}$	3.17c
	$\theta_{v*} = -\frac{H_v}{\overline{\rho}c_p u_*}$ $\overline{e} = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)$	3.17d
TKE and TKE equation	$\overline{e} = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)$	3.9
	$\frac{d\overline{e}}{dt} = -\overline{u'w'}\frac{\partial\overline{u}}{\partial z} + g\frac{\overline{w'^{\theta_{v'}}}}{\overline{\theta_{v}}} - \varepsilon + \cdots$ Stability parameter $\frac{z}{L} = -\frac{\kappa zg}{\overline{\theta_{v}}}\frac{H_{v}}{\overline{\rho}c_{p}u_{*}^{3}}$	3.10
Stability parameter and	Stability parameter $\frac{z}{z} = -\frac{\kappa zg}{\overline{z}} \frac{H_v}{z}$	3.19
Obukhov length	r r	2.40
	Obukhov length: $L=rac{ar{ heta}_v}{\kappa g}rac{u_*^2}{ heta_{v*}}=-rac{ar{ heta}c_par{ heta}_vu_*^3}{\kappa g H_v}$	3.19b
Aerodynamic	$H = -\overline{\rho}c_p \frac{\overline{\theta}(z_2) - \overline{\theta}(z_1)}{r_{\text{ob}}}$	3.24a
resisistance	$r_{ m ah}$	
	$E = -\overline{\rho} \frac{\overline{q}(z_2) - \overline{q}(z_1)}{r}$	3.24b
	for neutral conditions:	3.25a
	$r_{\rm ae}=r_{\rm ah}=r_{\rm am}=rac{ln\left[rac{z_2}{z_1} ight]}{\kappa u_*}$ (with u_*)	
	$r_{\rm ah} = \frac{\ln\left[\frac{z_{\theta 2}}{z_{\theta 1}}\right] \ln\left[\frac{z_{u2}}{z_{u1}}\right]}{\kappa^2 \left[\overline{u}(z_2) - \overline{u}(z_1)\right]} $ (with windspeed)	3.25b
Richardson numbers	(κ=0.4, von Karman constant)	
	$Ri_{f} = \frac{g}{\overline{\theta_{v}}} \frac{\overline{w'^{\theta_{v'}}}}{\overline{u'w'}} \frac{\partial \overline{u}}{\partial z}$	3.11
	$Ri_{g} = \frac{g}{\overline{\theta_{v}}} \frac{\partial \overline{\theta_{v}}}{\left[\frac{\partial \overline{u}}{\partial z}\right]^{2}}$	3.33
	$Ri_f = \frac{K_h}{K_{}} Ri_g$	3.34a
Buoyancy flux (these are hidden in footnote	Surface flux (energy): $H_v = H(1 + 0.61\overline{q}) + 0.61c_p\overline{\theta}E$	3.10b
6 (page 85) and footnote 16 (page 101))	Turbulent flux (kinematic): $\overline{w'\theta_v'} = \overline{w'\theta'}(1 + 0.61\overline{q}) + 0.61\overline{\theta} \ \overline{w'q'}$	3.19b
Flux-gradient relationships	$\frac{\partial \overline{\theta}}{\partial z} \frac{\kappa z}{\theta_*} = \phi_h \left(\frac{z}{L}\right)$	3.20a
	$\frac{\partial \overline{q}}{\partial z} \frac{\kappa_z}{q_*} = \phi_e \left(\frac{z}{L}\right)$	3.20b
		3.20c
	$\frac{\partial \overline{u} \kappa z}{\partial z u_*} = \phi_m \left(\frac{z}{L}\right)$ $Ri_g = \frac{\phi_h}{\phi_m^2} \frac{z}{L}$	3.34b
	$\phi_h = \phi_e = \phi_m^2 = \left(1 - 16\frac{z}{L}\right)^{-\frac{1}{2}}$ (if $L < 0$)	3.21a
	$\phi_h = \phi_e = \phi_m = \left(1 + 5\frac{z}{L}\right) \qquad \text{(if } L > 0\text{)}$	3.21b

		1
	With the above functions: $\frac{z}{z} = Ri \qquad \text{(if } t < 0)$	3.36a
	$\frac{z}{L} = Ri_g \qquad \text{(if } L < 0\text{)}$	3.300
	$\frac{z}{L} = \frac{Rig}{1 - 5Rig} (if L > 0)$	3.36b
	Neutral conditions:	2 204
	$\frac{\partial \overline{\theta}}{\partial z} \frac{\kappa z}{\theta_*} = 1$	3.20d
		3.20e
	$\frac{\partial \overline{q} \kappa z}{\partial z q_*} = 1$	
	$\frac{\partial \overline{u} \kappa z}{\partial z u_*} = 1$	3.20f
Integrated flux-gradient	(these are not explicitly included in the book, but the consequence of 3.20) $\theta = (700) \qquad (700) \qquad (700)$	3.29a
relationships	$\bar{\theta}(z_{\theta 2}) - \bar{\theta}(z_{\theta 1}) = \frac{\theta_*}{\kappa} \left[ln \left(\frac{z_{\theta 2}}{z_{\theta 1}} \right) - \Psi_h \left(\frac{z_{\theta 2}}{L} \right) + \Psi_h \left(\frac{z_{\theta 1}}{L} \right) \right]$	
	$\overline{u}(z_{u2}) - \overline{u}(z_{u1}) = \frac{u_*}{\kappa} \left[ln \left(\frac{z_{u2}}{z_{u1}} \right) - \Psi_m \left(\frac{z_{u2}}{L} \right) + \Psi_m \left(\frac{z_{u1}}{L} \right) \right]$	3.29b
	$\Psi_m\left(\frac{z}{L}\right) = 2\ln\left(\frac{1+x}{2}\right) + \ln\left(\frac{1+x^2}{2}\right) - 2\arctan(x) + \frac{\pi}{2} \text{(if } L < 0\text{)}$	3.30a
	with $x = \left(1 - 16\frac{Z}{I}\right)^{\frac{1}{4}}$	
	$\Psi_h\left(\frac{z}{L}\right) = 2\ln\left(\frac{1+x^2}{2}\right) \text{(if } L<0\text{)}$	3.30b
	with $x = \left(1 - 16\frac{Z}{I}\right)^{\frac{1}{4}}$	
	$\Psi_m\left(\frac{z}{l}\right) = \Psi_h\left(\frac{z}{l}\right) = -5\frac{z}{l}$ (if $l > 0$)	3.30c
	Neutral:	
	$\overline{u}(z_{u2}) - \overline{u}(z_{u1}) = \frac{u_*}{\kappa} ln\left(\frac{z_{u2}}{z_{u1}}\right)$	3.23a
	$\bar{\theta}(z_{\theta 2}) - \bar{\theta}(z_{\theta 1}) = \frac{\theta_*}{\kappa} ln\left(\frac{z_{\theta 2}}{z_{\theta 1}}\right)$	3.23b
General equations for H	H	3.43a
and <i>u</i> *	$= \frac{-\overline{\rho}c_p\kappa^2\Delta\overline{\theta}\Delta\overline{u}}{-\overline{\rho}c_p\kappa^2\Delta\overline{\theta}\Delta\overline{u}}$	
(these equations do not occur explicitly in the book, but are directly related to 3.43)	$= \frac{1}{\left[\ln\left(\frac{Z_{\theta 2}}{Z_{\theta 1}}\right) - \Psi_h\left(\frac{Z_{\theta 2}}{L}\right) + \Psi_h\left(\frac{Z_{\theta 1}}{L}\right)\right] \left[\ln\left(\frac{Z_{u2}}{Z_{u1}}\right) - \Psi_m\left(\frac{Z_{u2}}{L}\right) + \Psi_m\left(\frac{Z_{u1}}{L}\right)\right]}$	
	$\kappa \Lambda \overline{u}$	3.43b
	$u_* = \frac{1}{\left[\ln\left(\frac{Z_{u2}}{Z_{u1}}\right) - \Psi_m\left(\frac{Z_{u2}}{L}\right) + \Psi_m\left(\frac{Z_{u1}}{L}\right)\right]}$	0.100
Analytical solutions	$-\overline{\rho}c_p\kappa^2\Delta\overline{\theta}\Delta\overline{u}$	3.47
(L<0)	$H = \frac{-\overline{\rho}c_p\kappa^2\Delta\overline{\theta}\Delta\overline{u}}{\left[\ln\left(\frac{Z_2}{Z_1}\right)\right]^2}(1 - 16Ri_{b^*})^{\frac{3}{4}}$	
	$u_* = \frac{\kappa \Delta \overline{u}}{\left[\ln\left(\frac{Z_2}{Z_1}\right)\right]} (1 - 16Ri_{b^*})^{\frac{1}{4}}$	3.48
	with:	
	$Ri_{b^*} = \sqrt{z_1 z_2} \left[ln \left(\frac{z_2}{z_1} \right) \right] \frac{g}{\overline{\theta_v}} \frac{\Delta \overline{\theta_v}}{(\Delta \overline{u})^2}$	3.49
	(as a consequence: $L = \frac{\overline{\theta_v}}{g} \frac{(\Delta \overline{u})^2}{\Delta \overline{\theta_v} \ln(\frac{z_2}{z_1})}$	3.49b
Analytical solutions (L>0)	$H = \frac{-\overline{\rho}c_p\kappa^2\Delta\overline{\theta}\Delta\overline{u}}{\left[\ln\left(\frac{z_2}{z_c}\right)\right]^2}(1 - 5Ri_b)^2 \text{ (provided that } Ri_b < 0.2)$	3.50
	$u_* = \frac{\kappa \Delta \overline{u}}{\left[ln\left(\frac{z_2}{z_1}\right)\right]} (1 - 5Ri_b)$ (provided that $Ri_b < 0.2$)	3.51
·	·	

with:	
$Ri_b = (z_2 - z_1) \frac{g}{\overline{\theta_v}} \frac{\Delta \overline{\theta_v}}{(\Delta \overline{u})^2}$	3.52
(as a consequence: $L = \frac{(z_2 - z_1)}{\ln(\frac{z_2}{z_1})} \frac{(1 - 5Ri_b)}{Ri_b}$)	3.52b

7.4 SOIL WATER FLOW

Warrilow model	$\frac{d\theta}{dt} = \frac{1}{D_r} [P - E(\theta) - D(\theta)]$	4.4
	$E(\theta) = \beta_w(\theta)E_p \text{with} \beta_w = \begin{bmatrix} 1 & \text{for } \theta_c < \theta < \theta_s \\ \frac{\theta - \theta_w}{\theta_c - \theta_w} & \text{for } \theta_w < \theta < \theta_c \\ 0 & \text{for } \theta < \theta_w \end{bmatrix}$	4.2
	$D = k(\theta) = k_s \left(\frac{\theta - \theta_w}{\theta_s - \theta_w}\right)^n$	4.3
Vapour pressure	$\ln\left(\frac{e}{e_{\text{sat}}}\right) = 7.5x10^{-7} \text{ cm}^{-1}(h+\pi)$	4.10
Effective conductivity	$k_{\text{eff}} = \frac{\sum_{j=1}^{N} L_j}{\sum_{j=1}^{N} \frac{L_j}{k_{\cdot}}}$	4.15
Continuity eq.	$\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} - S$	4.21
Richards' equation	$\frac{\partial \theta}{\partial t} = C(h) \frac{\partial h}{\partial t} = \frac{\partial \left[k(h) \left(\frac{\partial h}{\partial z} + 1 \right) \right]}{\partial z} - S(z)$ $\frac{\partial \theta}{\partial t} = C(h) \frac{\partial h}{\partial t} = \frac{\partial \left[k(h) \left(\frac{\partial h}{\partial z} + 1 \right) \right]}{\partial z} - S(z)$	4.22
Soil hydraulic functions	$\theta(h) = \theta_r + \frac{3}{(1 + \alpha h ^n)^{\frac{n-1}{n}}}$	4.23
	$k(\theta) = k_s S_e^{\lambda} \left[1 - \left(1 - S_e^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}} \right]^2$	4.24
	with $S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$	4.25
Infiltration	Horton: $I = I_f + (I_0 - I_f)e^{-\beta t}$	4.26
	$I_{\text{cum}} = I_f t + \frac{I_0 - I_f}{\beta} [1 - e^{-\beta t}]$	4.27
	Green Ampt horizontal: $I_{\mathrm{cum}} = \left[-2k_t h_f(\theta_t - \theta_i)\right]^{\aleph} t^{\aleph} = St^{\aleph}$	4.35
	Green Ampt vertical: $t = \frac{\theta_t - \theta_i}{k_t} \left[s_f + h_f \ln \left(\frac{s_f - h_f}{-h_f} \right) \right]$	4.40
Capillary rise	$z_c = \frac{2\sigma\cos\varphi}{\rho gr}$ $Z = \int_0^z dz = -\int_0^h \frac{k(h)}{q + k(h)} dh$	4.7
	$Z = \int_0^z dz = -\int_0^h \frac{k(h)}{q + k(h)} dh$	4.43

7.5 SOLUTE TRANSPORT

Solute flux	$J = J_{dif} + J_{con} + J_{dis} = qC_l - \theta \left(D_{dif} + D_{dis}\right) \frac{\partial C_l}{\partial z}$	5.5
Mass balance	$\frac{\partial C_T}{\partial t} = -\frac{\partial J}{\partial z} - S_s$	5.6
General transport equation	$\frac{\partial}{\partial t}(\rho_b C_a + \theta C_l) = \frac{\partial}{\partial z} \left(\theta D_e \frac{\partial C_l}{\partial z}\right) - \frac{\partial}{\partial z} (q C_l) - S_s$	5.8

Pulse breakthrough	$C(z,t) = \frac{-zC_0}{2\sqrt{\pi D_e t^3}} \exp\left(-\frac{(z-vt)^2}{4D_e t}\right)$	5.12
Retardation factor	$R = 1 + \frac{\rho_b S_d}{\theta}$	5.16a
First order decay	$M(t) = M_0 e^{-\mu t}$	5.20
Salinization root zones	$C_l(z) = \frac{C_0}{1 + (L_f - 1)\frac{ z }{D_r}}$	5.26
	$\frac{\bar{C}}{C_0} = \frac{1}{1 - L_f} \ln \left(\frac{1}{L_f} \right)$	5.30
Residence time in groundwater	$T_{res} = \frac{\phi H}{R} \ln \left(\frac{L}{2x}\right)$ $C_{out} = C_{in} + (C_{orig} - C_{in})e^{\frac{-Rt}{\phi H}}$	5.32
	$C_{out} = C_{in} + (C_{orig} - C_{in})e^{\overline{\phi H}}$	5.37

7.6 PLANT TRANSPORT PROCESSES

$S_p(z) = \frac{L_{\text{root}}(z)}{\int_{-D_r}^{0} L_{\text{root}}(z) \partial z} T_p$	
	6.17
	6.18
$v = -\frac{r^2}{8\eta} \frac{\partial H_p}{\partial x}$	6.19
Transpiration:	6.21
$E = -\rho \frac{q_e - q_i}{r_s}$	
Photosynthesis and net CO ₂ exchange:	
$A_n = -F_c = \rho \frac{q_{\rm ce} - q_{\rm ci}}{r_{\rm s.c}} = \rho \frac{q_{\rm ce} - q_{\rm ci}}{1.6r_{\rm s}} = \frac{g_s}{1.6} \rho (q_{\rm ce} - q_{\rm ci})$	6.23
$q_{ci} - \Gamma$	6.28
$\frac{1}{q_{ce} - \Gamma} = J_{max} - u_d D_e$	
with $f_{max} \approx 0.9$ and	
$a_d \approx 0.07 \text{ (kPa)}^{-1} \text{ (C}_3 \text{ plants) or } a_d \approx 0.15 \text{ (kPa)}^{-1} \text{ (C4 plants)}$	
$g_{s,c} \approx \frac{a_1}{\rho(q_{ce} - \Gamma)} A_n - \frac{a_2}{1.6\rho a_3 D_0} T$	6.30
where a_1 , a_2 , a_3 and D_0 are plant-dependent constants (some of	
which are not dimensionless)	
$NEE = A_n - R_s = A_g - R_d - R_s$	6.32
$WP_{m} = \frac{DM_{a}}{1000} = 1000 \frac{\mu}{1000}$	
-u $-u$	6.35
· · · · · · · · · · · · · · · · · · ·	
is in kg m ⁻² and T_a in m; μ and D_a should have identical units, usually Pa)	
$T_{\text{leaf}} = T_a + \frac{r_b}{\rho c_n} (Q_{\text{leaf}}^* - L_v E_{\text{leaf}})$	6.41
	$S(z) = \alpha_{\rm rw}(z) \; \alpha_{\rm rs}(z) \; S_p(z) \; \text{ with } T_a = \int_{-D_T}^0 S(z) \partial z$ $v = -\frac{r^2}{8\eta} \frac{\partial H_p}{\partial x}$ Transpiration: $E = -\rho \frac{q_e - q_i}{r_s}$ Photosynthesis and net CO ₂ exchange: $A_n = -F_c = \rho \frac{q_{\rm ce} - q_{\rm ci}}{r_{\rm s,c}} = \rho \frac{q_{\rm ce} - q_{\rm ci}}{1.6r_s} = \frac{g_s}{1.6} \rho (q_{\rm ce} - q_{\rm ci})$ $\frac{q_{\rm ci} - \Gamma}{q_{\rm ce} - \Gamma} = f_{max} - a_d D_e$ with $f_{max} \approx 0.9$ and $a_d \approx 0.07 \; (\text{kPa})^{-1} \; (\text{C3 plants}) \; \text{or} \; a_d \approx 0.15 \; (\text{kPa})^{-1} \; (\text{C4 plants})$ $g_{s,c} \approx \frac{a_1}{\rho (q_{ce} - \Gamma)} A_n - \frac{a_2}{1.6\rho a_3 D_0} T$ where a_1 , a_2 , a_3 and D_0 are plant-dependent constants (some of which are not dimensionless) $NEE = A_n - R_s = A_g - R_d - R_s$ $WP_T = \frac{DM_a}{T_a} = 1000 \frac{\mu}{D_a} $ (note that the factor 1000 has units of kg m ⁻³ ; this implies that DM_a is in kg m ⁻² and T_a in m; μ and D_a should have identical units, usually Pa)

7.7 COMBINATION METHODS

		1
Energy balance method	$\beta \equiv \frac{H}{L_v E} = \frac{c_p}{L_v} \frac{\Delta \overline{\theta}}{\Delta \overline{q}} = \gamma \frac{\Delta \overline{\theta}}{\Delta \overline{e}}$	7.1
	$H = \beta \frac{Q * - G}{1 + \beta}$	7.2a
	$H=etarac{Q*-G}{1+eta}$ $L_{v}E=rac{Q*-G}{1+eta}$	7.2b
Penman or Penman- Monteith	$I. F = \frac{s(Q^* - G) + \frac{\rho c_p}{r_a} \left[e_{\text{sat}} \left(\overline{T}_a \right) - \overline{e}_a \right]}{r_a}$	7.13
	$L_{v}E = \frac{s + \gamma}{c_{v}E} \left[e_{sat}(\overline{T}_{a}) - \overline{e}_{a} \right]$ $S + \gamma \left(1 + \frac{r_{c}}{r_{a}} \right)$	7.16
	$S + \gamma \left(1 + \frac{\varepsilon}{r_a}\right)$	
Equilibrium evaporation and Priestley-Taylor	$L_{\nu}E_{eq} = \frac{s}{s+\gamma}(Q^* - G)$	7.17
	$L_{\nu}E = \alpha_{\rm PT} \frac{s}{s + \gamma} (Q^* - G)$	7.18
	with α _{PT} ≈1.26	
Makkink	$L_{\nu}E = 0.65 \frac{s}{s + \gamma} K^{\downarrow}$	7.20