Algoritmos e Estruturas de Dados IV

Bacharelado em Ciência da Computação 2021/2

Prof. Thamer Horbylon Nascimento

thamer.nascimento@ifgoiano.edu.br

Árvores Balanceadas

ÁMORES ALL

- Subtipo de árvore binária de busca.
- O nome AVL é derivado de seus criadores:
 - Adelson-Velskii e E.M. Landis.
- Possui a propriedade de autobalanceamento dinâmico.

- Uma árvore é considerada balanceada se e somente se para qualquer nó, a altura de suas duas subárvores diferem de no máximo 1.
- Exemplos:

Definição

- Uma árvore vazia é uma árvore AVL.
- Sendo *T* uma árvore binária de busca com subárvores esquerda *L* e direita *R*, *T* será uma árvore AVL se:
 - L e R forem árvores AVL.
 - Fator de balanceamento das subárovres for -1, 0 ou 1.
 - | hl hr |, que são as alturas das subárvores L e R, respectivamente.

Árvores AVL

- Uma árvore é considerada balanceada se e somente se para qualquer nó, a altura de suas duas subárvores diferem de no máximo 1.
- Para preservar esta característica, a implementação deve incluir um algoritmo de rebalanceamento.
- A complexidade no pior caso de inserção, busca e exclusão é O(log n).

Fator = 0
Alturas das subárvores são iguais.

Fator = 1
Altura da subárvore esquerda é maior que da direita.

Fator = -1
Altura da subárvore direita é maior que da esquerda.

- Rotações:
 - Realizada se o fator de balanceamento não for: -1, 0 ou 1.

Rotações

- As posições dos nós de uma subárvore são intercambiáveis.
- Rotações simples:
 - Rotação para a esquerda.
 - Rotação para a direita.
- Combinações (rotações complexas):
 - Rotação Esquerda-direita.
 - Rotação Direita-esquerda.

• Nó pai e direita, são transformados em nós esquerda e pai.

- Nó pai e direita, são transformados em nós esquerda e pai.
 - Pai Esquerda.
 - Direita ——— Pai.

• Considere o nó inicial

• Considere o nó inicial

• Se **y** tem uma subárvore à esquerda, faça **x** pai da subárvore esquerda de **y**.

• Se **y** tem uma subárvore à esquerda, faça **x** pai da subárvore esquerda de **y**.

- Se **x** é a raiz, então, faça **y** a raiz da árvore.
- Senão, se x é filho à esquerda de p, faça y o filho à esquerda de p.
- Senão, faça **y** o filho à direita de **p**.

- Se **x** é a raiz, então, faça **y** a raiz da árvore.
- Senão, se x é filho à esquerda de p, faça y o filho à esquerda de p.
- Senão, faça y o filho à direita de p.

• Faça de **x** a subárvore à esquerda de **y**.

• Faça de **x** a subárvore à esquerda de **y**.

Exercícios

• Faça a rotação para a esquerda dos nós 10 e 20 da árvore abaixo.

• Utilizando como base o algoritmo de rotação para a esquerda, crie um algoritmo de rotação para a direita.

• Nó pai e esquerda, são transformados em nós direita e pai.

- Nó pai e esquerda, são transformados em nós direita e pai.
 - Pai Direita.
 - Esquerda —— Pai.

• Considere o nó inicial

• Considere o nó inicial

• Se **x** tem uma subárvore à direita, faça **y** pai da subárvore à direita de **x**.

• Se **x** tem uma subárvore à direita, faça **y** pai da subárvore à direita de **X**.

- Se **y** é a raiz, então, faça **x** a raiz da árvore.
- Senão, se y é filho à esquerda de p, faça x o filho à esquerda de p.
- Senão, faça **x** o filho à direita de **p**.

- Se **y** é a raiz, então, faça **x** a raiz da árvore.
- Senão, se y é filho à esquerda de p, faça x o filho à esquerda de p.
- Senão, faça **x** o filho à direita de **p**.

• Faça de **y** a subárvore à direita de **x**.

• Faça de **y** a subárvore à direita de **x**.

Exercícios

• Faça a rotação para a direita dos nós 10 e 20 da árvore abaixo.

• Os nós são deslocados para a esquerda e depois para a direita.

• Os nós são deslocados para a esquerda e depois para a direita.

• Os nós são deslocados para a esquerda e depois para a direita.

• Faça uma rotação à esquerda em x e y.

• Faça uma rotação à esquerda em **x** e **y**.

• Faça uma rotação à direita em y e z.

• Faça uma rotação à direita em **y** e **z**.

• Os nós são deslocados para a direita e depois para a esquerda.

• Os nós são deslocados para a direita e depois para a esquerda.

• Faça uma rotação à direita em x e y.

• Faça uma rotação à direita em **x** e **y**.

• Faça uma rotação à esquerda em **z** e **y**.

• Faça uma rotação à esquerda em **z** e **y**.

Árvore AVL

• Exemplo de estrutura:

```
typedef struct no No;

struct no {
    int chave;
    int fb;
    void *dado;
    No *esq, *dir, * pai;
};

typedef struct avl {
    No *raiz;
    //É posível inserir outros dados.
}AVL;
```

• Declaração da variável:

AVL arvore;

Árvores AVL

• Continuação...