

You Only Look Once

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

Hadar Schreiber and Lital Alyagon

Detection = Classification + Localization

Speed Improvement

R-CNN	Pascal 2007 mAP	Speed	
		.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

YOLOVE http://pureddie.com/yolo

Previous Classifiers

Sliding window (VGGNet, Inception)

 Region Proposals: First predict which parts of the image contain interesting information

• In both approaches, we need to run the classifier many times

YOLO – You Only Look Once

Input image

Split into grids

Bicycle

Create bounding boxes and predict confidence P(object) for each box

Predict class probability: P(Class | Object) for each cell

Multiply the confidence value and the class probability

Choose best prediction using nonmaximal suppression Dog

Non-maximal suppression

Non-maximal suppression

- 1. Start with the bounding box that has the highest score
- Remove any remaining overlapping bounding boxes using IoU (Intersection over Union)
- 3. Go to step 1 until there are no more bounding boxes left

YOLO – You Only Look Once

Input image

Split into grids

Create bounding boxes and predict confidence P(object) for each box

Predict class probability: P(Class | Object) for each cell

Multiply the confidence value and the class probability

Choose best prediction using nonmaximal suppression

The Architecture

24 convolutional layers2 fully connected layers

- 7 x 7 grid
- 2 bounding boxes for each cell
- 5 parameters (4 coordinates and confidence value)
- 20 classed

 $7 \times 7 \times (2 \times 5 + 20) =$ **1470** parameters that the net needs to predict

YOLO Limitations

- Localization errors
- Low recall (the percent of the positive cases that we catch)

Goals:

- To create more accurate detector that still works fast
- To increase the number of detection classes

Coogle

JOSEPH

REDMON

ALI

FARHADI

RETURN IN....

YOLO9000

Better, Faster,

Stronger

Batch normalization – increase of 4% mAP

High resolution classifier

Train on ImageNet

Fine-tune on detection

Multi-scale training

Anchor boxes vs dimension clusters

Dimension Clusters

- Darknet-19: Improved network and infrastructure
 - 19 convolutional layers
 - 5 max pooling
 - Fully connected layers removed

VGG-16: 30.69 billion FLOPs

Darknet-19: 5.58 billion FLOPs

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool		Global	1000
Softmax			

Combine two data sets:

- Detection (COCO, 100K images, 80 classes)
- Classification dataset (ImageNet, 14 million images, 22k classes)

Combine two data sets:

- Detection (COCO, 100K images, 80 classes)
- Classification dataset (ImageNet, 14 million images, 22k classes)

- Detection image: Backpropagate based on the full YOLOv2 loss function
- Classification image: Only backpropagate loss from the classification specific parts of the architecture

Results

References

- Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection, 2016 IEEE
 Conference on Computer Vision and Pattern Recognition
- Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017

Questions?

Results

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
$YOLOv2\ 352 \times 352$	2007+2012	73.7	81
$YOLOv2\ 416 \times 416$	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
$YOLOv2\ 544\times544$	2007+2012	78.6	40