SRN							

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE20EC101

April 2021: END SEMESTER ASSESSMENT- B.TECH. I SEMESTER **UE20EC101 – Electronic Principles and Devices**

Tin	ne: 1	80 mins Answer All Questions Max Marks:	100
1.	a	With a neat circuit diagram Explain Forward and Reverse Characteristics of a semiconductor Diode. Discuss the effect of Temperature on V-I Characteristics.	7M
	b	Solve the following using second approximation for a diode.	7M
		(i) Determine Vo, I_1 , I_{D1} , and I_{D2} for the circuit shown in the Figure below.	
		$ \begin{array}{c c} I_1 & 2k\Omega \\ R & \downarrow^{I_{D_1}} & \downarrow^{I_{D_2}} \end{array} $	
		$E \longrightarrow 12 \text{V}$ $D_1 \longrightarrow \text{Si}$ $D_2 \longrightarrow \text{Si}$ V_o	
		(ii) Determine I ₁ , I ₂ and V ₁ for the circuit shown in the Figure below	
		$E \xrightarrow{I_1} Si$ D_1 $18V D_2 \qquad Si$ $-V_1 +$	
	С	Using Shockley's equation, Calculate the applied voltage V_D , if diode current is 5mA, thermal voltage is 26.4 mV and Reverse saturation current is 1.2nA. Consider Ideality factor as 1.	6M
2.	a	For the following Circuits, Determine the output waveform for the network and calculate the output dc level and the required PIV of each diode. Consider Ideal Diodes.	7M
		(i) (ii)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

		SRN	
	b	With a neat diagram explain working principle of Full wave Rectifier (centre-Tap) with C filter. Considering 500µF capacitor with load current of 150mA at 3% ripple calculate the dc voltage. Assume f=50Hz.	7M
	c	Determine the range of values of V $_{\rm i}$ that will maintain the Zener diode in the "on" state.	6M
		$R \longrightarrow I_R$	
		$+$ 110 Ω $\downarrow I_Z$ $\downarrow L$	
		$V_{Z} = 20 \text{ V}$ $I_{ZM} = 60 \text{ mA}$ $R_{L} = 1.5 \text{ k}\Omega V_{L}$	
		-	
3.	a	Simplify the given Boolean expression and Realize the same using NAND Gates only.	4 M
		F = XY + X(Y+Z) + Y(Y+Z)	
	b	Write the Truth Table for Full Adder and Realize the same using	7 M
		(i) Basic Gates (ii) NAND Gates only.	
	c	For the following Sequential Circuits write the Circuit diagram and Characteristic Table	9 M
		(i) JK Flip Flop	
		(ii) 4-bit Serial Input Serial Output (SISO) shift register (Consider input 1101).	
		(iii) 3 bit Asynchronous up-counter	
	a	With a neat diagram explain Input and output V-I characteristics of NPN BJT Common Base Transistor and find the amplification factor for the following Circuit.	7M
		$I_{E} \qquad P \qquad n \qquad P \qquad I_{C}$ $E \qquad B \qquad C \qquad I_{C}$ $R_{in} = 20 \Omega \qquad I_{B} \qquad R_{out} = 200 \text{ k}\Omega \qquad R_{C} = 1 \text{k}\Omega \qquad V_{out}$	
	b	Derive the Expression for Collector Current in terms of β and I_{CEO} and Find the value of I_B , α and β if $I_E=1.2mA$ and $I_C=1.15mA$.	7M
	С	With a neat diagram explain Cellular Communication and describe HAND-OFF strategy.	6 M
	a	List the Characteristics of Embedded System and discuss the types of embedded systems based on Generation.	6M
	b	Give the differences between Microprocessor and Microcontroller	6M
	c	Draw the Data Flow Model of ARM Processor and explain the same.	8M