Sistemas de Numeração

Introdução

O homem através dos tempos sentiu a necessidade da utilização de sistemas numéricos. Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, binário, octal e hexadecimal. Com exceção do sistema decimal, os outros destacados no parágrafo anterior são utilizados nas áreas de circuitos digitais, automação e ambientes computacionais.

Sistema binário de numeração:

O sistema binário de numeração é um sistema no qual existem apenas dois algarismos — > 0(zero) ou 1(um)

Para entender melhoro sistema de numeração, vamos tomar como exemplo o número 594 na base 10, cuja notação passará a ser denominada 594 $_{10}$ isto significa que:

$$5 \times 100 + 9 \times 10 + 4 \times 1$$
 $5 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} = 594_{10}$

agora podemos entender melhor o sistema de numeração binário, cuja base é 2:

$$2^{18} \, 2^{17} \, 2^{16} \, 2^{15} \, 2^{14} \, 2^{13} \, 2^{12} \, 2^{11} \, 2^{10} \, 2^{9} \, 2^{8} \, 2^{7} \, 2^{6} \, 2^{5} \, 2^{4} \, 2^{3} \, 2^{2} \, 2^{1} \, 2^{0}$$

mais significativo menos significativo

$$5_{10} \longrightarrow 101_2$$

Para converter um número decimal em um binário temos dois métodos

a) arranjo na base dois:

$$0+0+4+0+1=5$$

Portanto o número 001012 corresponde a 510

b) Outro método: divisão pela base desejada

Se o número é decimal podemos dividir por 2 e assim teremos o resultado da conversão

$$\begin{array}{c|cccc}
5 & 2 & & & \\
1 & 2 & 2 & & \\
& & 0 & & \\
& & & & 1 & & \\
\end{array}$$

$$\begin{array}{c|cccc}
1 & 01_2 & & & \\
\end{array}$$

O processo de conversão de um binário para um decimal, é fazer o arranjo conforme a tabela:

2⁰ - 1 2¹ - 2

2^{2 -} 4 2³ - 8

2⁴ - 16

 $2^{5} - 32$ $2^{6} - 64$

2⁷ - 128

28 - 256

2⁹ - 512

210 - 1024

 $2^{11} - 2048$ $2^{12} - 4096$

2¹³ - 8192

2¹⁴ - 16384

etc

O sistema octal

Um sistema octal significa que sua base terá apenas oito algarismos 0, 1

,2,3,4,5,6 e 7

Veja a tabela a seguir

decimal	octal
0	0
1	1
2	3
3	
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
etc	etc

Conversão de decimal para Octal

Mesmoprocedimentodooctalparadecimal

 144_8 --- \rightarrow para decimal

$$1x 8^{2} + 4x8^{1} + 4x8^{0} = 1x64 + 4x8 + 4x1 = 64 + 32 + 4 = 100_{10}$$

Decimal para Octal

Conversão do Octal para binário

O sistema octal é um octeto composto por três bits então:

$$34_8 \longrightarrow 3 \mid 4$$

$$011 \mid 100 \longrightarrow 011100_2$$

Conversão de binário para Octal

$$110010_2 - - - 110 \quad 010$$
 $6 \quad 2 \quad \longrightarrow 62_8$

Sistema Hexadecimal

O sistema hexadecimal é um sistema que possui dezesseis algarismos: 0,

DECIMAL	HEXADECIMAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	C
13	D
14	E
15	F

Conversão de um sistema hexadecimal para decimal

$$3 F_{16} \longrightarrow 3 \times 16^{1} + F \times 16^{0} = 3 \times 16 + F \times 1 = 3 \times 16 + 15 \times 1 = 63_{10}$$

Conversão do sistema hexadecimal para o sistema binário

O sistema hexadecimal é um sistema de 4 bits

C13₁₆
$$\longrightarrow$$
 C | 1 | 3
1100 | 0001 | 0011 \longrightarrow 110000010011₂

Conversão de um sistema binário para hexadecimal

 $10010000_2 \rightarrow 1001 0000 \rightarrow 50_{16}$

Conversão de um sistema decimal para hexadecimal

2 métodos

a)
$$1000 \boxed{16}$$

62 $\boxed{16}$

14 3 \longrightarrow 3 $\boxed{14.8} \longrightarrow$ 3E8₁₆

1111101000₂
$$\longrightarrow$$
 0011 1110 1000
3 E 8 \longrightarrow 3E8₁₆

Exercícios

1) Converter os seguintes números binários abaixo em decimal
1001100 1111 11111 10000 10001 1010110 011001100110101
2) Converter os seguintes números decimais abaixo para binários
78 102 215 404 808 5429 16383 512 12 2 17 33 43 7
3) Converter os números octais abaixo para sistema decimal
14 67 153 1544 15874
4) Converter os seguintes números octais abaixo em binários 477 1523 4764 10000 4321
5) Converter os seguintes números abaixo em binário para octal 1011 10011100

110101110

10000000001

6) Converter os números em decimal abaixo em octal 107 185 2048 4097
7) Converter os números no sistema hexadecimal abaixo para binário 84 7F 3B8C 47FD F1CD
8) Converter os binários abaixo para sistema de numeração em hexadecimal

10011 1110011100 100110010011 1111101111

9) Converter os seguintes números decimais abaixo em hexadecimais48620004096

