Metaller

Fiziksel Özellikler

- Bütün metaller aşağıdaki karakteristik fiziksel özelliklere sahiptir
 - ✓ Elektrik ve ısı iletkenlikleri çok iyidir
 - ✓ Karakteristik bir metalik parlaklığa sahiptirler
 - ✓ Termoiyonik ve fotoelektrik etki gösterirler
 - ✓ Dövülebilir ve çekilebilirler
 - ✓ Kristal yapıları genellikle kübik sık istiflenme,

hekzagonal sık istiflenme ve iç merkezli kübiktir

✓ Kolaylıkla alaşım oluştururlar.

İletkenlik

- Metallerin tümü ısı ve elektriği çok iyi iletirler.
- Elektrik iletimi elektronların yer değiştirmesinin bir sonucudur.
- Bu iletkenliğe elektronik iletkenlik de denir.
- ➤ Bu durum, sodyum klorür gibi iyonik bileşiklerin sulu çözeltilerinde veya tuz erimlerinde, iletimden sorumlu olan iyonların yer değiştirmesinden farklıdır.
- > Çünkü sulu çözeltilerde ve tuz erimlerinde katyonlar katoda, anyonlar ise anoda göç eder.
- ➤ İyonik bileşikler kristal örgü hataları içeriyorsa, katı halde çok az miktarda elektrik iletebilir (yarı iletim).
- ➤ Herhangi bir katı ile metaller arasında elektrik iletimi bakımından önemli derecede farklılıklar vardır.

Çeşitli katıların elektrik iletkenliği

Katı	Bağ türü	İletkenlik (ohmcm ⁻¹)
Gümüş	Metalik	$6,3x10^5$
Bakır	Metalik	$6,0x10^5$
Sodyum	Metalik	$2,4x10^5$
Çinko	Metalik	$1,7x10^5$
Sodyum klorür	İyonik	10-7
Elmas	Kovalent	10-14
Kuartz	Kovalent	10-14

- > Periyodik cetvelde karbonun solundaki elementlerin çoğu metaldir.
- Karbon atomu dört değerlik elektronuna sahiptir.
- ➤ Bu elektronların hepsi dört bağ oluşturmak üzere kullanılırsa değerlik tabakası dolar ve elektrik iletimi için serbest elektron kalmaz.
- ➤ Karbonun solundaki elementler, değerlik orbitalleri sayısından daha az sayıda elektron içerdiklerinden boş orbitallere sahiptirler.

- Dış tabakadaki elektron sayısı ve boş orbitallerin varlığı, metallerdeki bağlanmayı ve iletkenliği açıklamak için kullanılan önemli özelliklerdir.
- ➤ Bir metal içindeki elektronların hareketliliği, yüksek termik iletkenlik sağlar.
- ➤ Genel bir kural olarak, elektriği yüksek derecede ileten metaller, ısıyı da aynı derecede iletirler.
- ➤ Termik enerji olarak metalin bir bölümünde soğurulan enerji, iletim görevi yapan elektronlar tarafından metal içinde kolaylıkla taşınır.
- Metalik elektriksel iletkenlik sıcaklık yükseldikçe azalır.
- Metaller paramanyetik özellik gösterdiklerine göre eşleşmemiş elektronlar içerirler.

Parlaklık

- Düzgün yüzeyli metaller parlak bir görünüşe sahiptir. Bakır ve altın dışındaki metaller gümüş renklidirler.
- > Bununla birlikte öğütüldüklerinde koyu gri ve siyah renkli görünürler.
- Metallerin parlaklığı oldukça karakteristik olup, iyot ve kükürt gibi ametal birkaç elementin küçük açılardan gözlenen parlaklığının aksine, metaller, bütün yansıma açılarından parlak görünür.
- Metaller bütün açılardan ışığı yansıttığı için ayna olarak kullanılırlar.
- Parlaklık, metaldeki serbest elektronların varlığından kaynaklanır.
- ➤ Bir metal içindeki elektronlar görünür ışıktaki enerjinin tamamını (tüm renkleri) soğurarak daha yüksek enerji düzeyine uyarılırlar.
- ➤ Kısa bir sürede orijinal enerji düzeylerine dönen bu uyarılmış elektronlar, soğurdukları ışının tamamını pratik olarak geri yayımlar.
- Bu durum metalin ışığı yansıtması olarak ortaya çıkar ve metal parlak görünür.
- Bakır ve altının kırmızı ve sarı renkleri, bu metallerin görünür ışıktaki bazı renkleri diğerlerine göre daha kolay soğurmasından kaynaklanır.

Termoiyonik Olay

- ➤ Metallerin ısıtılarak elektron yaymasına termoiyonik olay denir.
- ➤ Bu etki ilk olarak 1883'de Edison tarafından gözlendi.
- ➤ 1904'de Fleming tarafından lamba yapımında kullanıldı.

Fotoelektrik Etki

- Metallerin UV ışınları gibi kısa dalga boylu ışınlara maruz bırakıldığında elektron yayması, fotoelektrik etki olarak bilinir.
- Yayılan elektron sayısı, kullanılan ışığın şiddetine, kinetik enerjisi ile frekansına bağlıdır.
- > Alkali metaller kuvvetli fotoelektrik etki gösterirler.
- Dzellikle Cs, görünür ışın etkisiyle bile elektron yayar ve bu özelliği sebebiyle fotoelektrik hücrelerde kullanılır.

Dövülebilirlik ve Atomlaşma Enerjisi

- Dövülebilme ve çekilebilme metallerin tipik mekanik özelliklerindendir.
- Metal bağlarının üç boyutlu yönelmesinden dolayı, atomların bulunduğu düzlemler, iyonik katılardakinin aksine darbe altında kolayca kayar ve metal kristalleri parçalanmadan şekil değiştirebilir.

- ➤ İyonik kristallerde kristali bir arada tutan kuvvet, negatif ve pozitif iyonlar arasındaki elektrostatik çekim kuvvetidir.
- ➤ Böyle bir kristalin bir kısmı basınç altında kaldığında düzlemler yer değiştiriyorken, aynı yüklü iyonlar birbirine yaklaşır ve bu iyonların birbirini itmesi nedeniyle kristal parçalanır.
- Bu yüzden iyonik kristaller tel ve levha haline getirilemez.

- Metalik kristallerde ise basınç etkisiyle kristalin bir kısmının kayması esas yapıyı bozmaz.
- Bu nedenle metaller dövülebilir ve gerilmeye karşı dayanıklıdır.
- Ancak bu açıklamalar kovalent bağlar içeren metaller için geçerli değildir.
- > Çünkü kovalent kristallerde şekil değiştirme, kristaldeki kovalent bağların kırılmasıyla gerçekleştiğinden kristal parçalanır.
- Yukarıdaki açıklamalar, metallerde, fiziksel yapı bozulmasına karşı çok fazla bir direnç olmadığını,
- > Buna karşın yapıyı bir arada tutan büyük bir bağlayıcı kuvvetin varlığını gösterir.
- Bu kuvvet atomlaşma ısısı (ΔH°) olarak bilinir.

$$M_{(k)} \xrightarrow{\Delta H} M_{(g)}$$

Metal	ΔH° (kJmol ⁻¹)	E.N. (°C)	K.N. (°C)
Li	162	181	1331
Na	108	98	890
K	90	64	766
Rb	82	39	701
Cs	78	29	685
Be	324	1277	2477
Mg	146	650	1120
Ca	178	838	1492
Sr	163	768	1370
Ba	178	714	1638
В	565	2030	3927
Al	326	660	2447
Ga	272	30	2237
Sc	376	1539	2480
Ti	469	1668	3280
V	562	1900	3380
Cr	397	1875	2642
Mn	285	1245	2041
Fe	415	1537	2887
Co	428	1495	2887
Ni	430	1453	2837
Cu	339	1083	2582
Zn	130	420	908

$$M_{(k)} \xrightarrow{\Delta H} M_{(g)}$$

- Atomlaşma ısıları, periyodik cetvelde bir grup içinde yukarıdan aşağı doğru inildikçe azalır.
- ➤ Bu özellik bağlayıcı kuvvetin çekirdeklerarası uzaklıkla ters orantılı olduğunu gösterir.
- Atomlaşma enerjisi, I. Grup'tan III. Grup'a doğru gidildikçe artar.
- Çünkü; metalik bağ kuvveti, bağ elektronlarının sayısıyla ilişkilidir.
- ➤ Örneğin I. sıra geçiş elementlerinde (Sc-Ti-V) eşleşmemiş d elektronlarının artışıyla atomlaşma enerjisi artar.
- Zn'ye doğru gidildikçe d elektronları eşleşir,
- Metalik bağa katılan her bir atom başına düşen elektron sayısı azalır
- ➤ Ve atomlaşma enerjisi Zn'de bir minimum değere ulaşır.

- ➤ Bir metalin bağlanma enerjisi, her bir atomda bağlanma için uygun eşleşmemiş elektron sayısına bağlıdır.
- Bu enerji büyük bir aralıkta değişir
- ➤ Bazı durumlarda iyonik kristalleri bir arada tutan örgü enerjisinin büyüklüğüne yaklaşır.
- Atomlaşma enerjisi, moleküler katıları bir arada tutan van der Waals kuvvetlerinden çok daha büyüktür.
- Metallerin erime ve kaynama sıcaklıkları da, atomlaşma enerjilerindeki yolu izler.

- Metallerin dövülebilme ve çekilebilme gibi mekanik özellikleri, birim hücredeki örgü taneciklerinin aynı düzenlemeyi koruyarak, birbirine komşu tabakaların yer değiştirmesine bağlıdır.
- ➤ Bu özellikler kristal örgü hataları ve örgüde safsızlıkların varlığı gibi faktörlerden etkilenir.
- ➤ Yüksek simetri özelliğinden dolayı, yüzey merkezli kübik yapılarda tabakaların birbiri üzerinden kaydırılma imkanı; hekzagonal sık istiflenmiş yapıyla karşılaştırıldığında daha yüksektir.
- ➤ Bu yüzden, yüzey merkezli kübik kristaller, hekzagonal sık istiflenmiş ve iç merkezli kübik kristallere oranla daha yumuşaktır.
- ➤ Kristal türü, metal bağında yer alan her bir atomun s ve p elektron sayısıyla ilişkili olarak, elementin periyodik cetveldeki yerine göre değişir

Bağa katılan atom başına düşen s ve p elektron sayısı	Yapı
1,5'den az	İç merkezli kübik
1,7 - 2,1	Hekzagonal sık istiflenme
2,5 - 3,2	Yüzey merkezli kübik
~ 4	Ametalik elmas yapısı

METALLERIN KRISTAL YAPILARI

ymks: yüzey merkezli kübik istifleneme, hsi: hekzagonal sık istiflenme, imks: iç merkezli kübik istiflenme, chsi: çift hekzagonal sık istiflenme, öy: özel yapı

Bağ uzunlukları

- Eğer bir metaldeki değerlik elektronları çok sayıda bağa yayılmışsa, her bir bağ daha zayıf ve dolayısıyla daha uzun olur.
- Alkali metaller gaz halinde iki atomlu moleküller olarak bulunur.
- Metal kristalindeki atomlararası uzaklıklar, iki atomlu moleküllerinkinden daha uzundur.
- Metal kristalindeki bağlar daha uzun ve zayıf olmasına rağmen,
- M₂ molekülündeki bağlardan sayıca daha fazladır ve dolayısıyla metal kristalindeki toplam bağ enerjisi daha büyüktür.
- ➤ Bu özellik metal kristalinin süblimleşme entalpisinin, M₂ molekülünün ayrışma entalpisiyle karşılaştırıldığında görülebilir.

Metal	Kristalde bağ uzunluğu (pm)	M ₂ molekülünde bağ uzunluğu (pm)	Metalin süblimleşme enerjisi (kJmol ⁻¹)	M ₂ için ayrışma entalpisi/2 (kJmol ⁻¹)
Li	304	267	161	54
Na	372	308	108	38
K	462	392	90	26
Rb	486	422	82	24
Cs	524	450	78	21

Metallerde Bağlanma İle İlgili Teoriler

₃Li: [He] 2s¹

imks

- Metallerin ve alaşımların yapısı ve bağları, iyonik ve kovalent bileşiklerden daha az bilinmektedir.
- Metallerdeki bağların izahı diğer bağlarınkine benzemez.
- > Çünkü metal atomları aynı türden 8 (imks) veya 12 (ymks ve hsi) atomla sarılmıştır M
- Metal atomları tarafından sağlanan elektronlar, iki elektronlu normal bağlar oluşturmaya yetmez.
- Örneğin, Li iç merkezli kübik yapıda kristallenir.
- Her bir Li atomu komşu 8 Li atomu tarafından çevrilmiştir.
- Li atomlarının her biri 3 elektron içerir.
- ➤ Bunların ikisi ıs orbitaline yerleşmiştir ve çekirdek tarafından oldukça kuvvetli bir şekilde çekilirler.
- Bu durumda her bir Li atomu metalik bağ için sadece ı elektron kullanabilir.

₃Li: [He] 2s¹

- ➤ Bu tek elektronun diğer 8 Li atomuyla eşit olarak paylaşılıp iki elektronlu kimyasal bağlar oluşması mümkün değildir.
- Bu nedenle metallerdeki bağlanma ile ilgili teoriler,
- > Saf bir metal içindeki çok sayıda özdeş atomlar ve alaşımlardaki farklı metal atomları arasındaki bağları açıklayabilmelidir.
- ➤ Bir metalin sıvı halde (Hg) veya çözelti halinde (Na/NH₃) metalik özellikleri değişmemektedir
- ➤ Bu teoriler yönlenmiş bağlarla ilgilenmezler ve ayrıca metallerdeki elektronların hareketliliğini yorumlamaya çalışırlar.

Serbest Elektron Teorisi

Metalik yapı

- > 1900'lü yılların başında
- ➤ Drude, metali, içinde elektronların hareket ettiği bir örgü olarak kabul etti ve elektronların hareketini gaz moleküllerinin serbest hareketine benzetti.
- ➤ Bu fikir 1923'de Lorentz tarafından geliştirildi.
- Lorentz, değerlik elektronlarının oldukça düşük iyonlaşma enerjilerini dikkate alarak,
- Metalleri, serbest değerlik elektronlar denizine yerleştirilmiş pozitif iyonların oluşturduğu katı kürelerden meydana gelen örgü olarak tanımladı.
- ➤ Bu model, elektronların serbest hareketini ve kristali bir arada tutan kuvvetin, elektron bulutuyla pozitif iyonlar arasındaki etkileşimden kaynaklandığını açıklayabilmektedir.
- Ancak bu teori, değerlik elektron sayısının artışıyla bağlanma enerjisinin artmasını kalitatif olarak açıklamasına karşın, kantitatif hesaplamalarda başarılı sonuçlar vermemiştir.

Değerlik Bağı Teorisi

- ➤ İç merkezli kübik bir yapıya sahip olan lityum kristali içinde, koordinasyon sayısı sekiz olan bir lityum atomunu inceleyelim.
- ➤ Bu lityum atomu, bir değerlik elektronuna sahiptir ve ancak komşu lityum atomlarının biriyle iki elektronlu bir kovalent bağ verebilir.
- ➤ Kristal içindeki bu atom, diğer komşu lityum atomlarına da eşit olarak bağlanmalıdır.
- ➤ Bu durumda, a ve b'de sadece iki türü verilen pek çok düzenleme mümkündür.
- > Bir lityum atomu iyonlaşırsa iki bağ oluşturabilir.
- c ve d'de verilen yapılara benzer pek çok yapı mümkündür.
- Pauling, gerçek yapının bu mümkün bağlanma şekillerinin bir melezi olduğunu ileri sürmüştür.
- Çok sayıda mümkün yapı, çok düşük enerji demektir.
- ➤ Bu da yapıyı bir arada tutan bağlayıcı kuvvetin büyük olması anlamına gelir
- ➤ Gerçekten de metalik lityumdaki atomlaşma enerjisi, Li₂ molekülünden üç kat daha fazla bulunmuştur.

- Atomlaşma enerjisinin I. Grup'tan III. Grup'a gidildikçe artması,
- Atomlar arasındaki bağ sayısının arttığını ve daha fazla sayıda mümkün yapı yazılabileceğini doğrular.
- İyonların varlığı metallerdeki elektrik iletimini açıklamakla birlikte,
- Bu teori
 - ✓ ısı iletimi,
 - ✓ parlaklık,
- ✓ çözelti ve sıvı halde metalik özelliklerin korunmasını yorumlamada yetersiz kalır.

Molekül Orbitalleri Teorisi (Bant Teorisi)

- Molekül orbitalleri teorisinin metallere uygulanması, bu teorinin basit moleküllere uygulanmasının genişletilmiş bir şeklidir.
- Molekül orbitalleri teorisini, Li kristalindeki bağlanmayı açıklamak için uygulayalım:
- ➤ Li atomu 1s² 2s¹ 2p⁰ elektron dizilişine sahiptir.
- Li₂ molekülü gaz fazında kararlıdır ve bağ 2s atomik orbitallerinin girişimiyle oluşur.
- Ayrıca değerlik tabakasında üç tane 2p orbitali vardır ve bu boş orbitallerin varlığı metalik özellikler için çok önemlidir.
- ➤ N, O, F, Ne ve uyarılmış C atomları, değerlik tabakalarında boş atomik orbital taşımadığından ametalik özellik gösterirler.
- > Boş atomik orbitaller başlıca iki farklı şekilde ilave bağ oluşturmak için kullanılabilir:
 - ✓ Boş atomik orbitaller, diğer atom veya ligantlardan koordine bağlar oluşturmak üzere elektron çiftlerini kabul edebilir.
 - ✓ Atomların bir kaç elektronunu komşularıyla paylaştığı büyük moleküller oluşabilir. Bor hidrürler ve karboranlarda görülen bu durum metallerin önemli özelliklerinden biridir.

►Li₂ molekülünün MOT'a göre Li₂ 'de molekül orbitallerine yerleşmiş altı elektron vardır:

$$Li_2 \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*0}$$

- ▶ Bağlanma σ_{2s} -molekül orbitalinin dolu ve karşılık gelen σ^*_{2s} -orbitalinin boş olmasının bir sonucudur.
- ▶ İç tabaka elektronları ihmal edilirse, her iki Li atomundaki 2s orbitalleri, bir bağ ve bir karşıt bağ olmak üzere iki molekül orbitali verecek şekilde girişim yapar
- Değerlik elektronları bağ molekül orbitalini doldurur .

Molekül Orbitalleri Teorisi (Bant Teorisi)

- Üç Li atomunun Li₃ oluşturmak üzere birleştiğini düşünelim.
- Foriye göre üç tane 2s atomik orbitali, bir bağ, bir karşıt bağ ve bir de bağ yapmayan olmak üzere üç tane molekül orbitali oluşturacak şekilde girişim yapar.
- ➤ Bağ yapmayan molekül orbitalinin enerjisi, bağ ve karşıt bağ molekül orbitalleri enerjisinin arasındadır
- ➤ Üç Li atomundan gelen üç değerlik elektronundan ikisi bağ molekül orbitaline, biri ise bağ yapmayan molekül orbitaline yerleşecektir.
- Li₄ 'de dört atomik orbital, iki bağ ve iki karşıt bağ olarak dört molekül orbitali verir
- Li₄'de dört Li atomundan gelen dört değerlik elektronu, en düşük enerjili bağ molekül orbitallerine yerleşir
- Molekül orbital oluşumuna katılan atomik orbitallerin sayısı arttıkça, oluşan molekül orbitalleri arasındaki enerji düzeyleri farkı azalır.
- > Özellikle bağ ve karşıt bağ molekül orbitalleri arasında yer alan bağ yapmayan molekül orbitallerinin varlığı, bu iki grup orbital arasındaki enerji aralığını düşürür.

- ➤ Çok sayıda atom söz konusu olduğunda (Li_n), molekül orbitalleri arasındaki enerji düzeyleri o derece birbirine yaklaşır ki, hemen hemen bir süreklilik söz konusu olur.
- > Çok sayıda aynı tür atomik orbitalin girişimiyle oluşan, birbirine oldukça yakın çok sayıda enerji düzeyi içeren bu topluluğa **enerji bandı** adı verilir.
- > s orbitallerinden türetilen bant s bandı,
- p orbitallerinin girişimiyle oluşan bant p bandı olarak adlandırılır.
- Aynı değerlik tabakasında bulunan p orbitalleri, s orbitallerinden daha yüksek enerjili olduğundan,
- Bunların verdiği s ve p bantları arasında da bir enerji boşluğu vardır.
- d orbitallerinin girişimiyle de d bandı ele geçer.
- Elektronların içinde bulunduğu banda **değerlik bandı** ve bu bandı takip eden daha yüksek enerjili boş banda da **iletim bandı** denir.

Atom,

Atom₁

metal

- Molekül orbitallerinde olduğu gibi, her bir enerji düzeyi ters spinli iki elektron alabilir.
- ➤ Buna göre Li kristalindeki 2s değerlik bandındaki enerji düzeylerinin sadece yarısı doludur.
- ➤ T=0 K'de elektronların içinde bulunduğu en yüksek enerjili düzey **Fermi düzeyi** olarak adlandırılır.
- ➤ Buna göre Li'nin yarı dolu olan s bandının tam orta düzeyi Fermi düzeyine karşılık gelir.

Bazı Metallerin Fermi Enerjileri

Metal	$\mathbf{E_f}(\mathbf{eV})$
Na	3,22
Cu	7,00
Ag	5,46
Au	5,49
Mg	7,05
Zn	9,38
Al	11,58
Sn	9,99

- Fermi düzeyine yakın elektronlar yüksek derecede hareketliliğe sahiptirler
- ➤ Bu hareketli elektronlar metallerin yüksek ısı ve elektrik iletiminden sorumludurlar.
- ➤ İletim, molekül orbitallerinin, kristal içindeki bütün atomlar üzerine üç boyutlu olacak şekilde yayılmasından ve bir bant içindeki enerji düzeyleri arasında önemli bir enerji aralığı bulunmamasından kaynaklanır.
- ➤ Böylece Fermi düzeyine yakın elektronlar çok az bir enerjiyle boş enerji düzeylerine geçerler.
- Li'nin iyi elektrik ve ısı iletiminin kaynağı, değerlik tabakasının yarı dolu olmasıdır.

Lityum metalinin bant yapısı

Berilyum metalinin bant yapısı

- Eerilyumun iki değerlik elektronu vardır ve bu nedenle Be kristalinde 2s değerlik bandı tamamen doludur.
- ▶ İzole edilmiş bir Be atomunda 2s ve 2p orbitallerinin enerjileri arasındaki fark 160 kJmol¹ kadardır.
- Metalik Be'de olduğu gibi, bant oluşumu sırasında atomik orbitallerin girişimleri çok şiddetli ise, s ve p bantları oldukça genişler ve 2s bandının üst kısmı 2p bandının alt kısmıyla kısmen çakışır.
- ➤ Bantların bu çakışmasından dolayı, 2p bandının bir kısmı dolu, 2s bandının bir kısmı boş kalır.
- > Bu şekilde elektronların iletim bandındaki boş enerji düzeylerine sıçraması nedeniyle Be bir metal olarak davranır.
- Benzer bant yapısı IIB grubu metalleri, Zn, Cd ve Hg için de geçerlidir.
- ➤ Bant teorisi, hareketli elektronlarla, metallerin parlaklık, elektrik ve ısı iletimi özelliklerini çok iyi açıklar.

- ➤ Bir metal içindeki bant elektronları, görünür ışındaki enerjinin genel olarak tümünü soğurarak boş enerji düzeylerine geçerler.
- ➤ Kısa bir sürede eski yerlerine dönen bu uyarılmış elektronlar, soğurdukları ışının tamamını pratik olarak geri yayımladıklarından ve bu olay metalin ışığı yansıtması anlamına geldiğinden metaller parlaktır.
- Eğer bir metal parçası bir ucundan ısıtılırsa, bu kısımdaki elektronlar enerji (Ek = 3/2 kT) kazanır ve boş enerji düzeylerine (boş MO'ya) geçerler.
- Elektronlar metalin diğer bölgelerine hareket eder ve bu bölgeler ısınır.
- Benzer şekilde elektrik iletimi bir elektronun küçük bir miktar enerji kazanarak boş bir enerji seviyesine geçmesinden kaynaklanır.
- Elektrik alanı yokken elektronlar tüm yönlere doğru hareket edecektir.
- Pozitif ve negatif birer elektrot, metalin iki ucuna yerleştirildiği zaman, elektronlar (+) uca doğru daha kolay hareket eder ve dolayısıyla elektrik akımı metal içinde iletilir.

iletkenler

- ➤ İletkenlerde (metaller), ya değerlik bandı kısmen doludur (a)
- Veya değerlik bandı ile iletim bandı çakışmaktadır (b)
- Yani dolu ve boş molekül orbitalleri arasında önemli bir enerji aralığı yoktur ve elektron geçişi kolaylıkla gerçekleşebilir.

Yarıiletkenler

- Gerçek yarı iletkenler yalıtkanlara benzemekle birlikte,
- ➤ Tam dolu değerlik tabakası ile boş iletim bandı arasındaki enerji aralığı, kristalin ısıtılmasıyla az sayıda elektronun değerlik bandından boş iletim bandına geçmesini sağlayacak derecede küçüktür.
- Sıcaklığın yükseltilmesiyle iletim bandına geçen elektronların sayısı artar,
- ➤ İletim bandındaki bu elektronlarla değerlik bandında geriye kalan eşleşmemiş elektronlar, yarı iletkenlerin iletkenliğini sağlar.

Yalıtkanlar

- > Yalıtkanlarda (ametaller), değerlik bandı doludur
- Bu yüzden bant içinde elektron geçişi mümkün değildir.
- Ayrıca değerlik bandı ile bir sonraki boş iletim bandı arasında önemli bir enerji aralığı vardır.
- ➤ Bu nedenle elektronlar, serbest olarak hareket edebilecekleri bu boş banda geçemezler.

Mutlak sıfır sıcaklığında bazı yarı iletkenlerin enerji boşlukları

Bileşik	Enerji boşluğu (kJmol ⁻¹)	Bileşik	Enerji boşluğu (kJmol ⁻¹)
α - Sn	0	GaAs	145
PbTe	19	Cu ₂ O	212
Te	29	CdS	251
PbS	29	GaP	278
Ge	68	ZnO	328
Si	106	ZnS	376
InP	125	Elmas	579

- ➤ Ge ve Si için değerlik bandı ile iletim bandı arasındaki enerji boşluğu sırasıyla 68 ve 106 kJmol⁻¹ kadardır.
- ➤ Oda sıcaklığında ancak birkaç elektron, atomların termik titreşimlerinden enerji kazanarak iletim bandına geçebilir.

- Eğer bu kristaller bir elektrik devresine bağlanırsa, termik yolla uyarılmış bu elektronlar küçük miktarda akım taşır,
- Si ve Ge kristallerini bir miktar iletken yapar.
- Bu özellik gerçek yarı iletkenlik olarak tanımlanır.
- ➤ Bu tip yarı iletkenlerde bazı bağlar kırılarak değerlik elektronları hareket eder ve elektriği iletir.
- Sıcaklık artırıldığında çok sayıda elektron değerlik bandından iletim bandına uyarılmış olur.
- Belli bir kritik sıcaklık üzerinde bu durum kristalin parçalanmasına yol açar.
- Bu nedenle gerçek yarı iletkenler belli bir sıcaklık altında kullanılmalıdır.
- Bu sıcaklık Ge için 100 °C
- ➤ Si için 150 °C'dir.

- Aşılı yarı iletkenler (safsızlık yarıiletkenleri), bir yalıtkana uygun safsızlıkların aşılanmasıyla üretilir.
- Bu tür yarı iletkenler n- ve p- tipi olmak üzere iki çeşittir.
- Eklenen safsızlıkların oluşturduğu bant, değerlik ve iletim bantları arasında bir yerde bulunur ve elektronların değerlik bandından safsızlık bandına veya safsızlık bandından iletim bandına uyarılmasında bir köprü görevi yapar.
- ➤ Pratikte P ve As gibi V. Grup elementleri n-tipi yarı iletkenler için aşı elementi olarak kullanılırken,
- > B, Al, Ga, ve In gibi III. Grup elementleri p-tipi aşı elementi olarak kullanılır.
- > n-tipi yarı iletkenler, aynı tür atomlardan oluşmuş katı bir yalıtkana, bu kristali oluşturan atomlardan daha fazla sayıda elektron içeren atomların eklenmesiyle hazırlanır.
- ➤ Aşılama olarak bilinen bu işlemde, safsızlık olarak eklenen atom derişimi, kristaldeki 10⁹ ev sahibi atom başına 1'dir.
- ➤ Silisyum kristali içindeki her bir Si atomu komşu dört Si atomuyla çevrilidir, yani dört bağ verir.

- ➤ Si'nin değerlik tabakası 3s² 3p² elektron yapısına sahiptir ve diğer dört Si atomundan dört kovalent bağ oluşturmak üzere gelen 4 elektronla değerlik tabakası tam dolar (3s² 3p6).
- ➤ Si kristali, değerlik bandının tam dolu olması nedeniyle oda sıcaklığında yalıtkandır.
- ➤ Böyle bir yalıtkana, değerlik elektron sayısı kendinden bir fazla olan As (4s²4p³) gibi bir atom aşılandığında, bu As atomları Si kristalindeki Si atomlarının birkaçı ile yer değiştirir.
- Böylece kristalde normal duruma göre elektron fazlalığı oluşur.

- Eklenen As atomları çok az sayıda olduğundan, kristal içinde birbirinden çok uzakta bulunacak ve bunların elektronları lokalize olarak dar bir bant oluşturacaktır.
- ➤ Bu aşı bandı, elektron verici bant olarak adlandırılır ve enerjice boş olan iletim bandına daha yakındır.
- Aşı bandında bulunan elektronların bir kısmı termik yolla iletim bandına kolaylıkla geçerler ve iletkenlik sağlanır.
- ➤ Başka bir deyişle, termik uyarma As'nin bir elektronunun komşu Si atomuna geçmesine, oradan da Si-Si (p-p) girişimiyle oluşan molekül orbitalleri yardımıyla tüm kristal içinde hareket etmesine sebep olur.
- ➤ Yük taşıyıcıların negatif elektronlar olduğunu belirtmek için bu yarı iletkenlere n-tipi yarı iletkenler denmiştir.
- Diğer bir aşılama yöntemi, silisyuma (veya germanyuma), III. Grup elementi olan Ga (4s²4p¹) gibi elektron bakımından daha fakir atomları eklemektir.
- ➤ Bu tür atomların Si ile yer değiştirmesi sonucu, kristal içinde elektron eksikliği ortaya çıkar.
- ➤ Başka bir deyişle, aşılanan atomlardaki elektron eksikliği, kristal içinde dolu değerlik bandının hemen üzerinde çok dar boş bir bant oluşmasına yol açar.

- \triangleright Elektron alıcı bant olarak da adlandırılan bu bant T = 0 K'de boştur,
- Fakat daha yüksek sıcaklıklarda, Si'nin değerlik bandından termik yolla uyarılan elektronlar kolaylıkla bu banda geçer.
- ➤ Böylece değerlik bandında elektron boşluğu oluşur ve bu boşluklar, elektron eksikliğini belirtmek için pozitif boşluklar olarak adlandırılır.
- Değerlik bandındaki bu boşluklara elektronların göçmesiyle iletkenlik sağlanır.
- ➤ Bu pozitif boşluklar iletkenliğe sebep olduğu için bu tip yarı iletkenlere p-tipi yarı iletkenlik denir.

- ➤ LED (Light Emmitted Diode) 'ler yarı iletkenlerden yapılır
- ➤ Bir LED tarafından yayılan ışığın rengi aşılı yarı iletkendeki bant boşluğunun büyüklüğüne bağlıdır.

Süper iletkenlik

- Elektriği hemen hemen hiç direnç göstermeden ileten maddelere süper iletken denir.
- Diğer bir deyişle, bir süper iletkenin elektrik direnci sıfır veya sıfıra çok yakındır.
- ➤ Bu yüzden elektrik akımı enerji kaybı olmaksızın taşınır ve teorik olarak akım sınırsız iletilir.
- Metallerin normal sıcaklıklardaki yüksek elektrik iletkenliği, sıcaklığın düşürülmesiyle daha da artar.
- ➤ 1911'de H.K. Onnes, Hg 4,2 K (-269°C) ve Pb 7 K (-266,2°C) gibi metallerin mutlak sıfıra yakın sıcaklıklarda süper iletken olduğunu keşfetti.

Hollandalı Fizikçi Heike Onnes

- Daha sonra düşük sıcaklıklarda böyle 20 tane element daha keşfetti.
- Maddelerin elektrik direncinin ani olarak düştüğü ve süper iletimin görüldüğü bir **kritik sıcaklık** (T_k) vardır.
- ➤ 1950'lerden beri bilinen ve yaklaşık 4 K'lık bir T_k'ya sahip olan Niyop ve Titandan oluşan süper iletken alaşımın süper iletken özellik göstermesi için, sıvı helyum sıcaklığına (-269 °C) kadar soğutulması gerekir.

<u> </u>	V/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4
Nb ₃ Ge	23,3 K
Nb ₃ Si	19 K
Nb ₃ Sn	18,1 K
Nb ₃ Al	18 K
V ₃ Si	17,1 K
Ta ₃ Pb	17 K
V ₃ Ga	16,8 K
Nb ₃ Ga	14,5 K
V_3 In	13,9 K

- ➤ Daha sonraki yıllarda 20 K (-253 °C) civarında süper iletkenlik gösteren alaşımlar bulundu.
- ➤ Bu alaşımlar, nükleer fizik araştırmalarında, NMR görüntülerini elde etmek için, tıpta ve askeri uygulamalarda gerekli olan yüksek derecede güçlü elektromıknatıslar için tel yapımında kullanıldı.
- Süper iletken çok ince bir telden aşırı derecede yüksek bir akım geçirilebilir.
- Süper iletken telden hazırlanan ve çok sayıda sarımlara sahip küçük bir bobin oldukça yüksek manyetik alan oluşturur.

- Ayrıca süper iletken sıfır dirence sahip olduğundan kablolar ısınmaz.
- Akım kaybı olmadığına göre, bobin içinden bir kez akım geçirildiğinde bu akım sürekli devam eder.
- ➤ Örneğin, 4 K'da (-269 ºC) bir Nb/Ta alaşımında kullanılan akım, Cu tel sarım kullanılarak aynı gücün elde edildiği normal bir elektromıknatısta kullanılan akımın sadece % 0,3'ü kadardır.
- Düşük sıcaklık süper iletkenleri, çok pahalı olan sıvı helyum sıcaklığı gerektiğinden yaygın olarak kullanılamamıştır.

CaTiO₃'ın Perovskit yapısı

Zeolit kristalleri içinde süperiletken nanotüpler

Saf karbon nanotüpler 15 K'de süperiletkenlik gösterir

- Metalik olmayan ilk süper iletken 1964'de bulundu.
- Perovskit kristal yapısındaki bu bileşik, süper iletken alaşımlardan farklı tipte bir metal oksitti
- ➤ Ve T_k'sının sadece 0,01 K olması nedeniyle pratik bir kullanımı yoktu.
- ➤ Perovskit yapısı, ABO₃ şeklinde, A ve B'nin yükseltgenme basamağı +6'ya kadar değişen kübik bir yapıdır.
- ➤ Bu tip yapılara BaTiO₃, CaTiO₃ ve NaNbO₃ örnek olarak verilebilir.
- ➤ Süper iletkenlik Chevrel bileşikleri olarak adlandırılan bazı kükürt bileşiklerinde ve bazı organik bileşiklerde de gözlenmiştir.

- ➤ 1986'da G. Bednorz ve A. Müller, T_k değeri 35 K (-238 °C) olan yeni bir süper iletken buldular.
- ➤ Ba-La-Cu-O sisteminden elde edilen bu süper iletkenlerin T_k değerleri alaşımlar için bulunandan önemli derecede yüksekti.
- ➤ Bu bileşiklerin genel formülü La_(2-x)Ba_xCuO_(4-y) şeklindedir ve x'in 0,15 ile 0,20 arasında, y'nin ise oldukça küçük bir değerde olduğu belirlenmiştir.
- ➤ Bu tip süper iletkenler de perovskit yapısında olup iletken olmayan La₂CuO₄ 'deki La³⁺ iyonlarının % 7,5-10'unun Ba²⁺ iyonlarıyla yer değiştirmesiyle hazırlanabilir.
- Bundan sonra Ba²+ yerine Ca²+ ve Sr²+ kullanılarak benzer bileşikler sentezlendi.
- ightharpoonup Bu yolla T_k değeri yaklaşık 50 K (-223 $^{\circ}$ C) olan süper iletken oksit bileşikleri elde edildi.
- Bednorz ve Müller bu çalışmalarından dolayı 1987'de Fizik Nobel ödülünü aldı.

- Diğer çok önemli seramik süper iletken sistem 1987'de, Wu, Chu ve çalışma grubu tarafından bulunan Y-Ba-Cu-O sistemidir.
- ➤ Bu sistemin T_k değeri 93 K (-180 °C) gibi oldukça yüksek sayılabilecek bir sıcaklıktı.
- \triangleright Çünkü çok pahalı olan sıvı He yerine sıvı N₂ (KN = 77 K, -196 °C) kullanılabilir ve süper iletkenlerin pratikte uygulanabilirliği denenebilirdi.
- ➤ Perovskit yapısında olan bu oksit bileşikleri için önerilen formül YBa₂Cu₃O_{7-x} şeklindedir.
- ightharpoonup Y yerine Sm, Eu, Nd, Dy ve Yb gibi lantanitler kullanılarak T_k değeri 93 K'ye kadar çıkarıldı.
- ➤ Bu yüksek T_k değerinden dolayı, bu süper iletkenler **yüksek sıcaklık süper iletkenleri** olarak adlandırıldı.

- ▶ 1988'de lantanitlerin yerine Bi ve Tl'nin kullanıldığı $Bi_2Sr_2Ca_{(n-1)}CunO_{(2n+4)}$ ve $Tl_2Ba_2Ca_{(n-1)}CunO_{(2n+4)}$ formülleriyle verilen (n = 1, 2, 3, 4) ve T_k değerleri sırasıyla 110 K (-163 °C) ve 122 K'ya (-151 °C) kadar çıkan yeni yüksek sıcaklık süper iletken seramikleri hazırlandı.
- ➤ Buna ilaveten Bi_{1,7}Pb_{0,2}Sb_{0,1}Sr₂Ca₂Cu_{2,8}O_y bileşiğinin T_k değerinin 164 K (-109 °C) olduğu ileri sürüldü.

$Tl_2Ba_2Ca_2Cu_3O_{10}$	127-128 K
$(Tl_{1.6}Hg_{0.4})Ba_2Ca_2Cu_3O_{10+}$	126 K
$TlBa_2Ca_2Cu_3O_{9+}$	123 K
$(Tl_{0.5}Pb_{0.5})Sr_2Ca_2Cu_3O_9$	118-120 K
$Tl_2Ba_2CaCu_2O_6$	118 K
TlSnBa ₄ TmCaCu ₄ O _x	~115 K
$TlBa_2Ca_3Cu_4O_{11}$	112 K
TlBa ₂ CaCu ₂ O ₇₊	103 K
$Tl_2Ba_2CuO_6$	95 K
$TlSnBa_4Y_2Cu_4O_x$	86 K

$Sn_{1,0}Pb_{0,5}In_{0,5}Ba_4Tm_5Cu_7O_{20+}$	~185 K
SnInBa ₄ Tm ₄ Cu ₆ O ₁₈₊	~150 K
$Sn_4Ba_4(Tm_2Ca)Cu_7O_x$	~127 K

Süper iletkenlerin yıllara göre gelişimi

- Later, Meissner ve Ochsenfeld, bazı süper iletkenlerin, yapılarından manyetik alanın geçmesine izin vermediğini buldular.
- ➤ Meissner etkisi olarak adlandırılan bu etki havada yükselmeyi artırır.
- ➤ Bu durum daimi bir mıknatıs ile bir süper iletken arasındaki karşılıklı itme sonucu ortaya çıkar.
- Süper iletkenler eşleşmemiş elektron çiftlerinden kaynaklanan manyetik alanları da iter.
- Yani süper iletkenler diyamanyetiktir.

Meissner Etkisi

- Oda sıcaklığında çalışabilecek yüksek sıcaklık süper iletkenlerini hazırlamak için büyük bir yarış devam etmektedir.
- Böyle bir süper iletkenin bulunması aşağıda belirtilen amaçlar için çok yararlı olacaktır.
- Alternatif akımın normal tellerle taşınması yerine, süper iletkenden yapılmış dirençsiz kablolarla doğru akımın oldukça düşük kayıplarla taşınması mümkündür.
- Bilgisayar çiplerinin küçültülmesindeki en büyük zorluk, istenmeyen ısının nasıl uzaklaştırılacağıdır.
- Eğer çip yapımında süper iletken kullanılabilirse, ısı problemi büyük ölçüde azalabilir ve böylece süper iletkenler daha hızlı çalışan çip yapımında yardımcı olabilir.
- Güçlü elektromıknatıslar süper iletken sarımlar kullanılarak hazırlanmaktadır.
- Bunu daha yüksek sıcaklıklarda yapmak daha kolay olacaktır.
- Manyetik alan üzerinde yüzerek hareket eden ilk örnek tren Japonya'da yapılmıştır.
- Yüksek sıcaklık süper iletkenlerinin kullanılmasıyla bu daha da yaygınlaşacaktır.

Süper iletken bir mıknatıs kullanarak treni havaya kaldırmak mümkündür

Cooper çifti

- ➤ Metal, alaşım ve seramiklerde süper iletkenliğin nasıl oluştuğuna dair tam bir açıklama yoktur.
- Eununla birlikte, metal ve alaşımlarda süper iletkenliğin, *Cooper çifti* olarak bilinen iki elektronun, aynı anda ve birlikte kristal içindeki serbest hareketinden kaynaklandığı düşünülmektedir.

- > Seramik süper iletkenlerde ise aşağıdaki bulgular göze çarpmaktadır
- Tamamı olmasa da seramik süper iletkenlerin çoğu Cu taşır.
- ➤ Bu oksit bileşiklerindeki süper iletkenlik, Cu'nun +I, +II ve +III yükseltgenme basamaklarında bulunabilmesinden kaynaklanır.
- Örneğin La₂CuO₄ bileşiğinde, Ba²⁺ iyonları kristaldeki bazı La³⁺ iyonlarıyla yer değiştirir.
- Kristaldeki yük eksikliği bazı Cu²+ iyonlarının Cu³+'ya dönüşmesiyle dengelenir.
- ➤ Bu sistemdeki süper iletkenliğin, elektronların Cu²+'dan Cu³+'ya transferiyle gerçekleştiği düşünülmektedir.
- Eğer iki elektron aktarılırsa, elektronlar Cu+'dan Cu3+'ya geçer.
- Oksit süper iletkenlerin tamamı perovskit yapısına sahiptir.
- Diğer bir genel özellik, kristaldeki oksijen atomları eksikliğinin kritik olmasıdır.
- Normal olarak Cu atomları altı O atomuyla çevrili olduğuna göre, bir O boşluğu olduğunda komşu iki Cu atomu birbirleriyle doğrudan etkileşebilir.
- ► Bu da elektron transferinin $Cu^{2+} \rightarrow Cu^{3+}$ ve $Cu^{+} \rightarrow Cu^{3+}$ şeklinde olduğunu güçlendirir.

Sıcaklık - iletkenlik ilişkisi

Metal, yarı iletken ve süper iletkenlerin iletkenliğinin sıcaklıkla değişimi

- Maddelerin iletkenliği sıcaklıkla değişir.
- Metallerin elektrik iletimi sıcaklıkla azalır.
- ➤ Oysa sıcaklığın artışıyla elektronların hareketliliğinin artacağı, daha fazla elektronun iletim bandına geçip iletimde bir artış olacağı beklenir.
- Fakat sıcaklığın yükselmesi, metal kristali içindeki atomların titreşimlerini artıracağından elektronların serbest hareketi kısmen engellenir.
- Bu yüzden metallerin iletkenliği sıcaklığın artışıyla azalır.

- Yarıiletkenler için durum tersinedir.
- > Sıcaklığın artmasıyla dolu değerlik bandında bulunan ve enerji kazanarak iletim bandına ulaşan elektronlar iletkenliği artırır.
- Mutlak sıfır sıcaklığına yakın sıcaklıklarda ise, kristal içindeki titreşimler ihmal edilebilecek kadar küçüktür ve kristal en düzenli şeklini alır.
- ➤ Böyle bir ortamda elektronlar hiçbir dirençle karşılaşmadan hareket edebildiğinden süper iletkenlik gözlenir ve sıcaklığın artışıyla süper iletkenlik hızlı bir şekilde azalır.