

本科毕业设计(论文)

题 目 基于人工智能的多用途脑机接口脑电图工具箱开发

专业名称	XXX	
学生姓名	XXX	
子 工紅11	ΛΛΛ	
指导教师	XXX	
毕业时间	2023 年 7 月	

西ルスま大学 本科毕业设计(论文)

摘 要

这里填写摘要

综上, 本文主要做的工作有:

- 1. 本文首先
- 2. 本文介绍
- 3. 本文通过

关键词: 机器学习,深度学习

西ルスま大学 本科毕业设计 (论文)

ABSTRACT

This is ABSTRACT

- 1. This paper analyzes
- 2. This article demonstrates

KEY WORDS: Interface, Machine Learning, Deep Learning

西北スま大学 本科毕业设计(论文)

目录

第一章 绪论	1
1.1 研究目的与意义	1
1.2 国内外发展状况	1
1.2.1 MATLAB 工具箱的发展现状	1
1.2.2 脑机接口概述与现状	1
1.3 研究内容	1
第二章 功能分析	3
2.1 总体设计思想	3
第三章 从图像预处理到分类器设计	4
参考文献	5
致谢	7
毕业设计小结	8
附录	9

西北ス業大学本科毕业设计(论文)

第一章 绪论

- 1.1 研究目的与意义 绪论
- 1.2 国内外发展状况
- **1.2.1 MATLAB** 工具箱的发展现状 1234
- **1.2.2 脑机接口概述与现状** 1234 引用 ^{[3][4]}。 引用见参考文献的 bib 格式 ^[6]。

1.3 研究内容

图像引用格式 列表格式

图 1.3.1 研究内容

1. 5..

西ルス煮大学 本科毕业设计 (论文)

- 2. 4..
- 3. 3..
- 4. 2..
- 5. 1..

西州ノ業大学 本科毕业设计(论文)

第二章 功能分析

第二章这里写

2.1 总体设计思想

这里写 2.1

第三章 从图像预处理到分类器设计

演示一下公式编写数学表达式如 (3.0.1):

$$y[n] = \sum_{k=0}^{N-1} \omega[k] \times x[n-k]$$
 (3.0.1)

其中 N-1 表示 FIR 滤波器的阶数, ω 是窗函数。常用的窗函数有矩形窗函数、Hamming 窗函数、Hanning 窗函数和 Blackman 函数,本文设计的工具箱使用的 Hamming 窗函数。

西北スまナッ 本科毕业设计(论文)

参考文献

- [1] 李飞, 戴加飞, 李锦等. 自回归模型和隐马尔可夫模型在癫痫脑电识别中的应用[J]. 北京生物医学工程, 2017, 36(5):478-482.
- [2] 中国电子技术标准化研究院. 脑机接口标准化白皮书[M]. 2021.
- [3] 葛松, 徐晶晶, 赖舜男等. 脑机接口: 现状, 问题与展望[J]. 生物化学与生物物理进展, 2020, 47(12):1227-1249.
- [4] 姜耿, 赵春临. 基于 EEG 的脑机接口发展综述[J]. 计算机测量与控制, 2022, 30(07):1-8.
- [5] 曹权权. 四类运动想象脑电信号特征提取与分类的机器学习方法研究[D]. 江西: 南昌大学, 2021.
- [6] Naser M Y M, Bhattacharya S. Towards practical bei-driven wheelchairs: A systematic review study[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31(01):1030-1044.
- [7] Li H, Feng X. A new ecg signal classification based on wpd and apen feature extraction[J]. Circuits Syst Signal Process, 2016, 35(01):339--352.
- [8] Stéphane M. A wavelet tour of signal processing.[M]. Academic Press, 1999.
- [9] 雷晴. 基于脑电信号的人体运动意图研究[D]. 武汉: 武汉理工大学, 2021.
- [10] Duan, Wen-yang, min Huang L, et al. A hybrid emd-ar model for nonlinear and non-stationary wave forecasting[J]. Journal of Zhejiang University-SCIENCE A, 2016, 17(01):115--129.
- [11] K C, L C, S P. High accuracy eeg biometrics identification using ica and ar model [J]. Journal of Information and Communication Technology, 2001, 16(02):2180-3862.
- [12] 陈舒, 周青. 基于 LMD 和 CSP 的多域融合脑电信号分类方法[J]. 计算机应用与软件, 2023, 40(03):130-136.
- [13] 吴晓佩. 基于多 SVM 分类器融合的高速公路异常事件检测方法[J]. 现代交通技术, 2014, 11(04):63-67.
- [14] 张淑清, 杜灵韵, 王册浩. 基于格拉姆角场与改进 CNN-ResNet 的风电功率预测方法[J]. 电网技术, 2022, 47(04):1540-1548.
- [15] K A, S I, H G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2012, 60(06):84 90.
- [16] Z X, Z X, L M, et al. Shufflenet: An extremely efficient convolutional neural net-

西ルスま大学 本科毕业设计(论文)

- work for mobile devices[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018.
- [17] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016.
- [18] Shamas M, Wendling F, El Falou W, et al. Eegnet: A novel tool for processing and mapping eeg functional networks[C]//2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2015.
- [19] Iandola F N, Han S, Moskewicz M W, et al. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. 2017. https://openreview.net/forum?id=S1xh5sYgx.
- [20] Leeb R, Brunner C. Bci competition 2008 graz data set b[Z]. https://www.bbci. de/competition/iv, 2008.

アルスネ大学 本科毕业设计(论文)

致 谢

写致谢

西州ノ業大学 本科毕业设计(论文)

毕业设计小结

毕业小结写一下

西ルスま大学 本科毕业设计(论文)

附 录

写一下附录, 我这里表格就不改了大家可以参考写自己的表格

表 3-1 脑机接口工具箱接口对照表

模块	函数	函数功能
图像预处理	pop_eegfiltnew	对数据进行滤波
	pop_epoch	对二维数据根据事件信息进行分段
	pop_rmbase	对分段数据基线校正
	pop_resample	对分段数据及进行降采样
特征提取	LMD	对分段数据提取 LMD 特征
	WPD	对分段数据提取 WPD 特征
	AR	对分段数据提取 AR 特征
	CSP	对分段数据提取 CSP 特征投影矩阵
分类器	SVM	训练支持向量机
	multSVM	训练基于一对多的多分类支持向量机
深度学习	myResNet18	训练 ResNet 网络
	myResNet50	训练 ResNet50 网络
	myshuffleNet	训练 shuffleNet 网络
	mySqeezeNet	训练 SqueezeNet 网络
	myAlexNet	训练 AlexNet 网络
	myEEGNet	训练 EEGNet 网络
	mySingleCNN	训练 SingleCNN 网络
其他	getresult	生成相关评估数据,并绘制混淆矩阵图
	one_hot	根据多标签数据生成 one_hot 数据标签集