Solução do Problema Afiro - Solver HiGHS

Análise Computacional

16 de setembro de 2025

1 Informações do Problema

Informações do Problema:

• Nome: Afiro

• Número de Variáveis: 32

• Número de Restrições: 27

• Inviabilidade Primal: 0.000e+00

• Inviabilidade Dual: 0.000e+00

• Valor Primal: -4.648e+02

• Valor Dual: -4.648e+02

• Gap: -1.314e-19

• Número de Iterações: 7

2 Variáveis Primais e Custos Reduzidos

Tabela 1: Variáveis primais e custos reduzidos do problema Afiro

Coordenada x	Valor x	Coordenada z	Valor z
1	80.000000	1	0.000000
2	25.500000	2	0.000000
3	54.500000	3	0.000000
4	84.800000	4	0.000000
5	80.000000	5	0.000000
6	0.000000	6	2.249657
7	0.000000	7	2.270400
8	0.000000	8	2.290200
9	0.000000	9	2.228914
10	-0.000000	10	0.000000
11	-0.000000	11	0.000000
12	-0.000000	12	0.000000

Continua na próxima página

Coordenada	x Valor x	Coordenada z	Valor z
13	18.214286	13	0.000000
14	61.785714	14	0.000000
15	84.800000	15	0.000000
16	500.000000	16	0.000000
17	475.920000	17	0.000000
18	24.080000	18	0.000000
19	-0.000000	19	0.000000
20	215.000000	20	0.000000
21	0.000000	21	0.000000
22	0.000000	22	0.000000
23	0.000000	23	0.000000
24	0.000000	24	0.000000
25	0.000000	25	2.065800
26	0.000000	26	2.092200
27	0.000000	27	2.120486
28	0.000000	28	2.148771
29	339.942857	29	0.000000
30	383.942857	30	0.000000
31	-0.000000	31	0.000000
32	0.000000	32	10.000000

3 Variáveis Duais (Multiplicadores de Lagrange)

Tabela 2: Variáveis duais do problema Afiro

Coordenada y	Valor y	
1	-0.628571	
2	-0.000000	
3	-0.344771	
4	-0.228571	
5	-0.000000	
6	-0.000000	
7	-0.000000	
8	-2.249657	
9	-2.270400	
10	-2.290200	
11	-0.942857	
12	-0.000000	
13	-0.874343	
14	-0.342857	
15	-0.000000	
16	-0.000000	
17	-0.000000	
18	-0.000000	
19	-0.000000	
20	-0.000000	
Continue ne próvime págine		

Continua na próxima página

Coordenada y	Valor y
21	-0.942857
22	-0.628571
23	-0.000000
24	-0.942857
25	-0.000000
26	-0.000000
27	-0.000000

4 Observações

- O solver HiGHS foi configurado com o método IPM (Interior Point Method).
- Este arquivo contém a solução detalhada para o problema Afiro.
- As variáveis duais representam os multiplicadores de Lagrange das restrições.
- Os custos reduzidos (z) indicam o impacto de forçar variáveis não-básicas na base.