# The Physics of Inertial Confinement Fusion at the National Ignition Facility

Ronak Desai Candidacy Oral Exam March 27<sup>th</sup> 2023

#### DEPARTMENT OF PHYSICS

Advisor Dr. Christopher Orban



Committee
Dr. Alexandra Landsman
Dr. Douglass Schumacher
Dr. Brian Skinner

### Academic Background

- Undergraduate: Rowan University
  - B.S. Physics
  - B.A. Mathematics
- Gap Year: Brookhaven National Laboratory
  - SULI Internship Program
- 3<sup>rd</sup> Year Grad Student: OSU
  - Plasma Physics
  - Particle In Cell Simulations
  - Machine Learning







#### What is Nuclear Fusion?

- Two lighter nuclei combine to form heavier nucleus
- $Q = (\Delta m)c^2$ 
  - $-Q_{DT} = 17.6 \text{ MeV}$



#### What is Nuclear Fusion?

- Two lighter nuclei combine to form heavier nucleus
- $Q = (\Delta m)c^2$ 
  - $-Q_{DT} = 17.6 \text{ MeV}$
- Compare DT and Coal:
  - DT: 300 GJ/g
  - Coal: 30 kJ/g
  - Factor of 10 Million!



#### How to Fuse Nuclei

- Need to overcome repulsive coulomb barrier
- $V_b \approx 1 \, MeV$ 
  - 500x hotter than solar core



#### How to Fuse Nuclei

- Need to overcome repulsive coulomb barrier
- $V_b \approx 1 \, MeV$ 
  - 500x hotter than solar core
- Can Tunnel through barrier Quantum Mechanically



Dense Matter (2004)

## Why DT Fusion?

- High Fusion Cross Section (FCS):  $\sigma$ 
  - Dependent on
     Geometric Cross
     Section and Tunneling
     Probability



https://scipython.com/blog/plotting-nuclear-fusion-cross-sections/

## Why DT Fusion?

- High Fusion Cross Section (FCS):  $\sigma$ 
  - Dependent on
     Geometric Cross
     Section and Tunneling
     Probability
- Low Temperature
  - $-E_{COM} \sim 60 keV$
  - T~10 keV
  - − 1 keV ~ 11 Million K



https://scipython.com/blog/plotting-nuclear-fusion-cross-sections/

#### Lawson Criterion

- Conditions for sustained fusion?
  - n: Number density high enough for frequent collisions
  - τ: Long confinement time for fuel to fully burn

#### Lawson Criterion

- Conditions for sustained fusion?
  - n: Number density high enough for frequent collisions
  - τ: Long confinement time for fuel to fully burn

$$n\tau > 10^{15} s/cm^3$$

for DT fusion

$$n au > rac{12k_BT}{\langle\sigma v
angle Q}$$

- T = Temperature
- Q = Energy Released
- $\langle \sigma v \rangle$  = Fusion Cross Section integrated over Maxwell-Boltzmann Distribution

### Types of Confinement



http://large.stanford.edu/courses/2011/ph241/olson1/

#### **Gravitational**

#### Types of Confinement



http://large.stanford.edu/courses/2011/ph241/olson1/

#### Gravitational



https://www.britannica.com/technology/fusion-reactor/Principles-of-magnetic-confinement

#### Magnetic

#### Types of Confinement



http://large.stanford.edu/courses/2011/ph241/olson1/

#### Gravitational



https://www.britannica.com/technology/fusionreactor/Principles-of-magnetic-confinement

#### Magnetic



## ICF Stages 1. Laser Heating

Shell-target. Ablated plasma

> S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)



## ICF Stages

- 1. Laser Heating
- 2. Capsule Expansion (Ablation)

Nature Phys **12**, 435–448 (2016)







## ICF Stages

- 1. Laser Heating
- 2. Capsule Expansion (Ablation)
- 3. Compression and Ignition

Nature Phys **12**, 435–448 (2016)







Hohlraum

Nature Phys 12, 435-448 (2016)

## ICF Stages

- 1. Laser Heating
- 2. Capsule Expansion (Ablation)
- 3. Compression and Ignition
- 4. Fuel Burn







#### Hohlraum Temperature

- Laser enters through Laser Entrance Hole (LEH)
- Heats inner surface of cylinder



#### Hohlraum Temperature

- Laser enters through Laser Entrance Hole (LEH)
- Heats inner surface of cylinder

• 
$$I \sim \sigma_{SB} T^4$$
  
-  $I = \frac{P \sim 500 \, TW}{A_H \sim 1 \, cm^2} \sim 10^{15} W / cm^2$   
-  $T_r \sim 250 \, eV$ 



#### Hohlraum Temperature

- Laser enters through Laser Entrance Hole (LEH)
- Heats inner surface of cylinder
- $I \sim \sigma_{SB} T^4$ -  $I = \frac{P \sim 500 \, TW}{A_H \sim 1 \, cm^2} \sim 10^{15} \, W/cm^2$ 
  - $-T_r \sim 250 \ eV$
- Want High Temperature
  - Small Hohlraum
  - Small LEH



## Capsule

- Outer Shell: Ablator
  - Vaporized by Laser



## Capsule

- Outer Shell: Ablator
  - Vaporized by Laser
- Inner Shell: DT Ice
  - T~18K
  - Most of Fuel Mass



## Capsule

- Outer Shell: Ablator
  - Vaporized by Laser
- Inner Shell: DT Ice
  - − T~18K
  - Most of Fuel Mass
- Inner Core: DT gas
  - Low Density
  - Reaches Highest Temperature



### 1D Hydrodynamics

- Shock Waves Drive Compression
  - Sharp pressure changes from short pulse laser



## 1D Hydrodynamics

- Shock Waves Drive Compression
  - Sharp pressure changes from short pulse laser
- Euler Equations of Hydrodynamics
  - mass, momentum, energy



Specific Volume 
$$V \equiv \frac{1}{\rho}$$

Shock 
$$\frac{p_2}{p_1} = \frac{4 - V_2/V_1}{4V_2/V_1 - 1}$$

$$\frac{\text{Isentropic}}{\text{Compression}} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{5/3}$$

### 1D Hydrodynamics

- Shock Waves Drive Compression
  - Sharp pressure changes from short pulse laser
- Euler Equations of Hydrodynamics
  - mass, momentum, energy
- Ex) Want  $\frac{V_2}{V_1} = \frac{1}{4}$ :
  - $-\frac{p_2}{p_1} \rightarrow \infty$  for 1 shock!
  - $-\frac{p_2}{p_1} \approx 10$  isentropically



Specific Volume 
$$V \equiv \frac{1}{\rho}$$

Shock 
$$\frac{p_2}{p_1} = \frac{4 - V_2/V_1}{4V_2/V_1 - 1}$$

$$\frac{\text{Isentropic}}{\text{Compression}} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{5/3}$$

#### **Shocks**

 Several Weak Shocks better than One Strong Shock



11

#### Shocks

- Several Weak Shocks better than One Strong Shock
- Laser pulse tuned so shocks converge at center
- Isentrope Parameter  $\alpha > 1$ 
  - Strong Shocks Increase
  - Want to minimize



Laser off

'Foot'

t (ns)

'Toe'

#### **Shell Ablation**

- Momentum Conservation
- (1) X-rays heat Ablator
  - Shell gets vaporized



#### **Shell Ablation**

- Momentum Conservation
- (1) X-rays heat Ablator
  - Shell gets vaporized
- (2) Material ejected
  - outward
  - speed:  $v_{ex}$



#### **Shell Ablation**

- Momentum Conservation
- (1) X-rays heat Ablator
  - Shell gets vaporized
- (2) Material ejected
  - outward
  - speed:  $v_{ex}$
- (3) Implosion of shell
  - inward
  - speed:  $v_{imp}$



#### Spherical Rocket

- 1D Rocket Model
  - $-M\frac{dv_{imp}}{dt} = v_{ex}\frac{dM}{dt} \rightarrow v_{imp} = v_{ex} \ln\left(\frac{M_0}{M}\right)$  Standard Rocket Equation
  - Radius of shell changes as fuel implodes inwards

#### Spherical Rocket

- 1D Rocket Model
  - $-M\frac{dv_{imp}}{dt} = v_{ex}\frac{dM}{dt} \rightarrow v_{imp} = v_{ex} \ln\left(\frac{M_0}{M}\right)$  Standard Rocket Equation
  - Radius of shell changes as fuel implodes inwards
- Implosion Velocity Scaling
  - $-v_{imp}\sim v_a A$
  - Aspect Ratio:  $A \approx \frac{R_0}{\Delta R_0}$ 
    - Thin shell drives faster implosions
  - Ablation Velocity:  $v_a$ 
    - speed at which shell recedes
    - related to hohlraum temperature



#### Ignition and Burn

- Kinetic Energy of Imploding Shell goes to Internal Energy of DT Fuel.
  - $KE = \frac{1}{2}Mv_{imp}^2$



#### Ignition and Burn

- Kinetic Energy of Imploding Shell goes to Internal Energy of DT Fuel.
  - $KE = \frac{1}{2}Mv_{imp}^2$
- Ignition Condition:  $n\tau > \frac{10^{15}s}{cm^3}$

$$- n\tau = \frac{\rho}{m} \frac{R}{v_{th}} \sim \rho R : \ln \frac{g}{cm^2}$$

- How to Quantify how much is burned?: Φ
  - Burn Efficiency:  $Φ \equiv \frac{\rho R}{\rho R + H_B}$
  - $H_B$  is the burn parameter



#### Gain and Yield

• Given  $\rho R$  and  $T_H$ , we know fraction of fuel that gets burned  $\Phi$ 

$$- \Phi \equiv \frac{\rho R}{\rho R + H_B}$$

#### Gain and Yield

• Given  $\rho R$  and  $T_H$ , we know fraction of fuel that gets burned  $\Phi$ 

$$-\Phi \equiv \frac{\rho R}{\rho R + H_B}$$

- Alpha Particles cause heating:
  - Q = 3.5 MeV per DT pair or 67 MJ/mg
- Multiply by total fuel mass  $M_f$

### Gain and Yield

• Given  $\rho R$  and  $T_H$ , we know fraction of fuel that gets burned  $\Phi$ 

$$-\Phi \equiv \frac{\rho R}{\rho R + H_B}$$

- Alpha Particles cause heating:
  - Q = 3.5 MeV per DT pair or 67 MJ/mg
- Multiply by total fuel mass  $M_f$
- Fusion Energy Yield in MJ is "Y"

$$-Y = M_f Q \Phi$$

- Gain:  $G \equiv \frac{Y}{E_L}$ 
  - $-E_L$  is the laser energy on target

# Instabilities and Symmetry



S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)

#### **Rayleigh-Taylor Instability**



Aspect Ratio:  $A \equiv R/\Delta R$ 

# Instabilities and Symmetry



S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)

#### **Rayleigh-Taylor Instability**



Case to Capsule:  $CCR = d_H/d_C$ 



Aspect Ratio:  $A \equiv R/\Delta R$ 

# Instabilities and Symmetry



S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)

# $d_C$ $\downarrow$ $d_H$

#### **Rayleigh-Taylor Instability**

Case to Capsule:  $CCR = d_H/d_C$ 



R  $\Delta R$ 

Convergence:  $C \equiv R_0/R_H$ 

Aspect Ratio:  $A \equiv R/\Delta R$ 

# Neutron Yield Scaling

$$Y \sim P_{abl}^{0.64} \frac{v_{imp}^{4.47}}{\alpha^{1.44}} S^{4.67}$$



Plasma Phys. Control. Fusion 61 (2019)

# Neutron Yield Scaling

$$Y \sim P_{abl}^{0.64} \frac{v_{imp}^{4.47}}{\alpha^{1.44}} S^{4.67}$$

- $P_{abl}$ : Ablation Pressure
  - Laser Energy
- $v_{imp}$ : Implosion Velocity
  - Aspect Ratio



Plasma Phys. Control. Fusion 61 (2019)

# Neutron Yield Scaling

$$Y \sim P_{abl}^{0.64} \frac{v_{imp}^{4.47}}{\alpha^{1.44}} S^{4.67}$$

- $P_{abl}$ : Ablation Pressure
  - Laser Energy
- $v_{imp}$ : Implosion Velocity
  - Aspect Ratio
- *S* : Scale
  - Mass and Radius
- $\alpha$ : Isentrope Parameter
  - Laser Pulse Profile



Plasma Phys. Control. Fusion 61 (2019)

# Hybrid-E Campaign

- High Yield Big Radius Implosion Design
  - Increased Scale of NIF capsules ~15%
  - Kept Hohlraum Size Same
  - Differences in  $P_{abl}$ ,  $v_{imp}$ ,  $\alpha$  negligible



# Hybrid-E Campaign

- High Yield Big Radius Implosion Design
  - − Increased Scale of NIF capsules ~15%
  - Kept Hohlraum Size Same
  - Differences in  $P_{abl}$ ,  $v_{imp}$ ,  $\alpha$  negligible
- N170827 (HDC Campaign)
  - $-R \approx 910 \, \mu m$
  - Y = 0.053 MJ
- N210207 (HYBRID-E Campaign)
  - $-R \approx 1050 \, \mu m$
  - Y = 0.174 MJ





# Hybrid-E Campaign

- High Yield Big Radius Implosion Design
  - − Increased Scale of NIF capsules ~15%
  - Kept Hohlraum Size Same
  - Differences in  $P_{abl}$ ,  $v_{imp}$ ,  $\alpha$  negligible
- N170827 (HDC Campaign)
  - $-R \approx 910 \, \mu m$
  - Y = 0.053 MJ
- N210207 (HYBRID-E Campaign)
  - $-R \approx 1050 \, \mu m$
  - Y = 0.174 MJ
- Over 3x increase in yield, scaling predicts 2x increase
  - Scaling works best within same campaign

Phys. Plasmas 26, 052704 (2019)



$$\frac{Y_{21}}{Y_{17}} \sim \left(\frac{R_{21}}{R_{17}}\right)^{4.67}$$
$$= (1.15)^{4.67} \approx 2$$

• DT most viable candidate for controlled fusion

- DT most viable candidate for controlled fusion
- Physical Considerations
  - Laser Energy, Hohlraum/Capsule Size
- Engineering Considerations
  - Capsule Smoothness, Laser Efficiency

- DT most viable candidate for controlled fusion
- Physical Considerations
  - Laser Energy, Hohlraum/Capsule Size
- Engineering Considerations
  - Capsule Smoothness, Laser Efficiency
- N210207->N210808 Shot
  - 8x gain increase: same capsule size
  - mainly due to engineering advances

- DT most viable candidate for controlled fusion
- Physical Considerations
  - Laser Energy, Hohlraum/Capsule Size
- Engineering Considerations
  - Capsule Smoothness, Laser Efficiency
- N210207->N210808 Shot
  - 8x gain increase: same capsule size
  - mainly due to engineering advances
- Future of NIF
  - N210808->N221204 had G = 0.72 -> 1.5
  - N221204->N23???? has G=1.5 -> ???
    - 8% thicker ablator, 8% increase in laser energy
    - Symmetry Improvements

## References

- 1. S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Clarendon Press, 2004)
- 2. S. Pfalzner, An Introduction to Inertial Confinement Fusion (CRC Press, 2006)
- 3. O. Hurricane et al., Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the national ignition facility, Plasma Physics and Controlled Fusion 61, 014033 (2019)
- 4. R. Betti and O. Hurricane, Inertial-confinement fusion with lasers, Nature Physics 12, 435 (2016)
- 5. A. Zylstra et al., Burning plasma achieved in inertial fusion, Nature 601, 542 (2022)
- 6. H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Lawson criterion for ignition exceeded in an inertial fusion experiment, Phys. Rev. Lett. 129, 075001 (2022)
- 7. A. L. Kritcher et al., Achieving record hot spot energies with large hdc implosions on nif in hybrid-e, Physics of Plasmas 28, 072706 (2021)
- 8. S. Le Pape et al., Fusion energy output greater than the kinetic energy of an imploding shell at the national ignition facility, Phys. Rev. Lett. 120, 245003 (2018)
- 9. O. Hurricane et al., Approaching a burning plasma on the nif, Physics of Plasmas 26, 052704 (2019)
- 10. A. L. Kritcher et al., Design of an inertial fusion experiment exceeding the lawson criterion for ignition, Phys. Rev. E 106, 025201 (2022)
- 11. <u>IAEA Webinar Explores NIF's Ignition and Energy Gain Breakthroughs (Ilnl.gov)</u>

# **National Ignition Facility**

- Size of a Sports Stadium
- 192 laser beams
  - angles: 23, 30, 40, 50
  - ~2 MJ peak energy
  - ~500 TW Peak Power
  - Nd-glass laser
  - $-351\mu m$  (frequency tripled)
  - 1 shot every 8 hours



# **Tunneling Coulomb Barrier**



• 
$$\Psi'' = \frac{2m (V - E)}{\hbar^2} \Psi$$

• 
$$\Psi = e^{-\phi(x)}$$

• 
$$-\phi''(x) + \phi'(x)^2 = \frac{2m(V-E)}{\hbar^2}$$

• 
$$\phi(x) \approx \int_{x_0}^{x} \sqrt{\frac{2m(V-E)}{\hbar^2}} dx'$$

• 
$$V(r) = \frac{e^2}{4\pi\epsilon_0 r}$$
,  $E = \frac{e^2}{4\pi\epsilon_0 r_{tp}}$ 

• 
$$\phi(r_{tp}) \sim \sqrt{r_{tp}} \sim 1/\sqrt{E}$$

• 
$$\Psi(r_{tp}) \sim e^{1/\sqrt{E}}$$

- (1) Schrodinger Equation
- (2) Assume form of  $\Psi$

(3) 
$$\phi''(x) = 0$$
 (slowly varies)

- (4) WKB (w/ eq. (2))
- (5) For 1D Z=1 Barrier
- (6) Apply eq. (4) to eq. (5)
- (7) Apply eq. (2) to eq. (6)

#### **Fusion Cross Section**

- $\sigma_{geo} \sim \lambda^2 \sim p^{-2} \sim \frac{1}{\epsilon}$   $P_{tun} \sim e^{-\sqrt{\frac{1}{\epsilon}}}$





# Reactivity

$$\langle \sigma v \rangle_{DT} = \begin{cases} 4.2 \times 10^{-20} (T_{keV})^4 cm^3 s^{-1} & \text{if } 3 < T_{keV} < 6\\ 1.1 \times 10^{-18} (T_{keV})^2 cm^3 s^{-1} & \text{if } 8 < T_{keV} < 25 \end{cases}$$



S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)

$$\langle \sigma v \rangle = \frac{4\pi}{(2\pi m_r)^{1/2}} \frac{1}{(k_{\rm B}T)^{3/2}} \int_0^\infty \sigma(\epsilon) \ \epsilon \ \exp(-\epsilon/k_{\rm B}T) d\epsilon.$$



### Shocks Increasing DT Fuel Adiabat (Isentrope Parameter)

Phys. Plasmas 28, 072706 (2021)

# 1D Hydrodynamics

- Laser pulse is short and intense: Can't compress adiabatically!
  - Shock Waves Drive Compression
- Euler Equations of Hydrodynamics across shock interface
- Ex) Want 4x compression:
  - $-\frac{p_2}{p_1} \approx 10$  isentropically
  - $-\frac{p_2}{p_1} \rightarrow \infty$  for 1 shock!



Mass:

$$\rho_1 v_1 = \rho_2 v_2$$

Momentum: 
$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2$$

Energy:
$$e_1 + p_1/\rho_1 + v_1^2/2 = e_2 + p_2/\rho_2 + v_2^2/2$$
  
 $V \equiv 1/\rho$   $e = \frac{3}{2}pV$ 

$$\frac{p_2}{p_1} = \frac{4 - V_2/V_1}{4V_2/V_1 - 1}$$
$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{5/3}$$

# Spherical Rocket

1D Rocket Model

$$-M\frac{dv_{imp}}{dt} = v_{ex}\frac{dM}{dt} \rightarrow v_{imp} = v_{ex} \ln\left(\frac{M_0}{M}\right)$$
 Standard Rocket Equation

$$-\frac{dM}{dt} = -4\pi R^2 \dot{m}_a \to 1 - \frac{M}{M_0} \left( 1 - \ln \frac{M}{M_0} \right) = \frac{\epsilon}{3} \left( 1 - \left( \frac{R}{R_0} \right)^3 \right)$$

- $v_{imp} \sim v_a A_{if}$ 
  - Aspect Ratio:  $A_{if} \approx \frac{R_0}{\Lambda R_0}$
  - Ablation Velocity:  $v_a$ 
    - speed at which shell recedes



S. Atzeni, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004)

# Example: Yield/Gain Calculation

**EX)** 
$$\rho R = 2 \frac{g}{cm^2}$$
,  $H_B = 6 \frac{g}{cm^2}$ ,  $M_f = 0.2 \text{ mg}$ ,  $E_L = 1.9 \text{ MJ}$ 

- $\Phi = \frac{2}{2+6} = 0.25$
- $Y = 0.2 \times 67 \times 0.25 = 3.35 MJ$
- $G = \frac{3.35}{1.9} = 1.76$ 
  - More energy in than out!
- But: 400 MJ Laser -> 1.9MJ on target
- Need larger size/mass target for practical fusion power plant

Simplified Scaling Estimate

1. Energy Balance (Assume  $p_H = p_S$ )  $\frac{3}{2}pV_H + \frac{3}{2}pV_S = \frac{1}{2}M_Cv_{imp}^2$ 

$$\frac{3}{2}pV_H + \frac{3}{2}pV_S = \frac{1}{2}M_C v_{imp}^2$$

$$p = \rho \frac{\Delta R}{R_H} v_{imp}^2$$

Partially Fermi Degenerate Shell

$$p \propto \alpha \rho_C^{5/3}$$

$$\rho_C \propto \left(\frac{\Delta R}{R_H}\right)^{3/2} \frac{1}{\alpha^{3/2}} v_{imp}^3$$

Areal Density

$$\rho_C R_H \sim \frac{v_{imp}^3}{\alpha^{3/2}} S$$



$$\frac{p}{p_D} \equiv \alpha, \quad p_D \equiv \frac{(3\pi^2)^{\frac{2}{3}}\hbar^2}{5m_e} (\rho)^{5/3}$$

$$M_C \sim R_0^3 \sim S^3$$

4. Yield

$$Y \sim \Phi M_C \sim \rho_C R_H M_C \sim \frac{v_{imp}^3}{\alpha^{1.5}} S^4$$

