Multivariate Random Variables

Max Turgeon

STAT 7200-Multivariate Statistics

Joint distributions

- Let X and Y be two random variables.
- The *joint distribution function* of *X* and *Y* is

$$F(x,y) = P(X \le x, Y \le y).$$

• More generally, let Y_1, \ldots, Y_p be p random variables. Their joint distribution function is

$$F(y_1, \ldots, y_p) = P(Y_1 \le y_1, \ldots, Y_p \le y_p).$$

Joint densities

 If F is absolutely continuous almost everywhere, there exists a function f called the density such that

$$F(y_1,\ldots,y_p)=\int_{-\infty}^{y_1}\cdots\int_{-\infty}^{y_p}f(u_1,\ldots,u_p)du_1\cdots du_p.$$

The joint moments are defined as follows:

$$E(Y_1^{n_1} \cdots Y_p^{n_p}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u_1^{n_1} \cdots u_p^{n_p} f(u_1, \dots, u_p) du_1 \cdots du_p.$$

Exercise: Show that this is consistent with the univariate definition of $E(Y_1^{n_1})$, i.e. $n_2 = \cdots = n_p = 0$.

Marginal distributions i

From the joint distribution function, we can recover the marginal distributions:

$$F_i(x) = \lim_{\substack{y_j \to \infty \\ j \neq i}} F(y_1, \dots, y_p).$$

• More generally, we can find the joint distribution of a subset of variables by sending the other ones to infinity:

$$F(y_1, \dots, y_r) = \lim_{\substack{y_j \to \infty \\ j > r}} F(y_1, \dots, y_p), \quad r < p.$$

Marginal distributions ii

 Similarly, from the joint density function, we can recover the marginal densities:

$$f_i(x) = \int_{-\infty}^{\infty} f(u_1, \dots, u_p) du_1 \cdots \widehat{du_i} \cdots du_p.$$

In other words, we are integrating out the other variables.

Example i

- Let $R = [a_1, b_1] \times \cdots \times [a_p, b_p] \subseteq \mathbb{R}^p$ be a hyper-rectangle, with $a_i < b_i$, for all i.
- If $\mathbf{Y} = (Y_1, \dots, Y_p)$ is **uniformly distributed** on R, then its density is given by

$$f(y_1, \dots, y_p) = \begin{cases} \prod_{i=1}^p \frac{1}{b_i - a_i} & (y_1, \dots, y_p) \in R, \\ 0 & \text{else.} \end{cases}$$

For convenience, we can also use the indicator function:

$$f(y_1, \dots, y_p) = \prod_{i=1}^p \frac{I_{[a_i, b_i]}(y_i)}{b_i - a_i}.$$

6

Example i

We then have

$$F(y_1, \dots, y_p) = \int_{-\infty}^{y_1} \dots \int_{-\infty}^{y_p} f(u_1, \dots, u_p) du_1 \dots du_p$$

= $\prod_{i=1}^p \left(\frac{y_i - a_i}{b_i - a_i} I_{[a_i, b_i]}(y_i) + I_{[b_i, \infty)}(y_i) \right).$

Finally, note that we recover the univariate uniform distribution by sending all components but one to infinity:

$$F_i(x) = \lim_{\substack{y_j \to \infty \\ j \neq i}} F(y_1, \dots, y_p) = \frac{x - a_i}{b_i - a_i} I_{[a_i, b_i]}(x) + I_{[b_i, \infty)}(x).$$

7

Introduction to Copulas i

- Copula theory provides a general and powerful way to model general multivariate distributions.
- The main idea is that we can decouple (and recouple) the marginal distributions and the dependency structure between each component.
 - Copulas capture this dependency structure.
 - Sklar's theorem tells us about how to combine the two.

Introduction to Copulas ii

Definition

A p-dimensional copula is a function $C:[0,1]^p \to [0,1]$ that arises as the distribuction function (CDF) of a random vector whose marginal distributions are all uniform on the interval [0,1].

In particular, we have

$$C(1,\ldots,u_i,\ldots,1) = u_i, \qquad u_i \in [0,1].$$

C

Introduction to Copulas iii

Probability integral transform

If Y is a continuous (univariate) random variable with CDF ${\cal F}_Y$, then

$$F_Y(Y) \sim U(0,1).$$

Proof

$$P(F_Y(Y) \le x) = P(Y \le F_Y^{-1}(x))$$

= $F_Y(F_Y^{-1}(x))$
= x .

Sklar's Theorem i

- Using the Probability integral transform, we can prove one part of Sklar's theorem.
- More precisely, let $\mathbf{Y} = (Y_1, \dots, Y_p)$ be a continuous random vector with CDF F, and let F_1, \dots, F_p be the CDFs of the marginal distributions.
- We know that $F_1(Y_1), \ldots, F_p(Y_p)$ are uniformly distributed on [0,1], and therefore the CDF of their joint distribution is a copula C.

Sklar's Theorem ii

$$C(u_1, \dots, u_p) = P(F_1(Y_1) \le u_1, \dots, F_p(Y_p) \le u_p)$$

$$= P(Y_1 \le F_1^{-1}(u_1), \dots, Y_p \le F_p^{-1}(u_p))$$

$$= F(F_1^{-1}(u_1), \dots, F_p^{-1}(u_p)).$$

• By taking $u_i = F_i(y_i)$, we get

$$F(y_1, \ldots, y_p) = C(F_1(y_1), \ldots, F_p(y_p)).$$

Sklar's Theorem iii

Theorem

Let $\mathbf{Y}=(Y_1,\ldots,Y_p)$ be any random vector with CDF F, and let F_1,\ldots,F_p be the CDFs of the marginal distributions.

There exist a copula C such that

$$F(y_1, \dots, y_p) = C(F_1(y_1), \dots, F_p(y_p)).$$
 (1)

If the marginal distributions are absolutely continuous, then ${\cal C}$ is unique.

Conversely, given a copula C and univariate CDFs F_1, \ldots, F_p , then Equation 1 defines a valid CDF for a p-dimensional random vector.

Examples i

• Gaussian copulas: Let Φ be the CDF of the standard univariate normal distribution, and let Φ_{Σ} be the CDF of multivariate normal distribution with mean 0 and covariance matrix Σ . The Gaussian copula C_G is defined as

$$C_G(u_1,\ldots,u_p) = \Phi_{\Sigma}(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_p)).$$

Examples ii

```
# Gaussian copula where correlation is 0.5
gaus_copula <- normalCopula(0.5, dim = 2)
sample_copula1 <- rCopula(1000, gaus_copula)
plot(sample_copula1)</pre>
```

Examples iii

Examples iv

```
# Compare with independent copula,
# i.e. two independent uniform variables.
gaus_copula <- normalCopula(0, dim = 2)
sample_copula2 <- rCopula(1000, gaus_copula)
plot(sample_copula2)</pre>
```

Examples v

Examples vi

Examples vii

For a properly chosen θ :

Name	C(u,v)
Ali-Mikhail-Haq	$\frac{uv}{1-\theta(1-u)(1-v)}$
Clayton	$\max\left((u^{-\theta} + v^{-\theta} - 1)^{1/\theta}, 0\right)$
Independence	uv

Examples viii

```
# Clayton copula with theta = 0.5
clay_copula <- claytonCopula(param = 0.5)
sample_copula1 <- rCopula(1000, clay_copula)
plot(sample_copula1)</pre>
```

Examples ix

Examples x

Conditional distributions

- Let f_1, f_2 be the densities of random variables Y_1, Y_2 , respectively. Let f be the joint density.
- The *conditional density* of Y_1 given Y_2 is defined as

$$f(y_1|y_2) := \frac{f(y_1, y_2)}{f_2(y_2)},$$

whenever $f_2(y_2) \neq 0$ (otherwise it is equal to zero).

• Similarly, we can define the conditional density in p>2 variables, and we can also define a conditional density for Y_1,\ldots,Y_r given Y_{r+1},\ldots,Y_p .

Expectations

- Let $\mathbf{Y} = (Y_1, \dots, Y_p)$ be a random vector.
- Its expectation is defined entry-wise:

$$E(\mathbf{Y}) = (E(Y_1), \dots, E(Y_p)).$$

 Observation: The dependence structure has no impact on the expectation.

Covariance and Correlation i

 The multivariate generalization of the variance is the covariance matrix. It is defined as

$$Cov(\mathbf{Y}) = E\left((\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^T\right),$$

where $\mu = E(\mathbf{Y})$.

Exercise: The (i, j)-th entry of Cov(Y) is equal to

$$Cov(Y_i, Y_j).$$

Covariance and Correlation ii

- Recall that we obtain the correlation from the covariance by dividing by the square root of the variances.
- Let V be the diagonal matrix whose i-th entry is $\mathrm{Var}(Y_i)$.
 - In other words, V and Cov(Y) have the same diagonal.
- Then we define the correlation matrix as follows:

$$Corr(\mathbf{Y}) = V^{-1/2}Cov(\mathbf{Y})V^{-1/2}.$$

Exercise: The (i, j)-th entry of Corr(Y) is equal to

$$Corr(Y_i, Y_j)$$
.

Example i

Assume that

$$Cov(\mathbf{Y}) = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix}.$$

Then we know that

$$V = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 25 \end{pmatrix}.$$

Example ii

• Therefore, we can write

$$V^{-1/2} = \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.33 & 0 \\ 0 & 0 & 0.2 \end{pmatrix}.$$

We can now compute the correlation matrix:

Example ii

$$Corr(\mathbf{Y}) = \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.33 & 0 \\ 0 & 0 & 0.2 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix} \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.33 & 0 \\ 0 & 0 & 0.2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0.17 & 0.2 \\ 0.17 & 1 & -0.2 \\ 0.2 & -0.2 & 1 \end{pmatrix}.$$

Measures of Overall Variability

- In the univariate case, the variance is a scalar measure of spread.
- In the multivariate case, the *covariance* is a matrix.
- No easy way to compare two distributions.
- For this reason, we have other notions of overall variability:
- Generalized Variance: This is defined as the determinant of the covariance matrix.

$$GV(\mathbf{Y}) = \det(Cov(\mathbf{Y})).$$

2. **Total Variance**: This is defined as the trace of the covariance matrix.

$$TV(\mathbf{Y}) = \operatorname{tr}(\operatorname{Cov}(\mathbf{Y})).$$

Examples i

9 10

```
A \leftarrow matrix(c(5, 4, 4, 5), ncol = 2)
results <- eigen(A, symmetric = TRUE,
                  only.values = TRUE)
c("GV" = prod(results$values),
  "TV" = sum(results$values))
## GV TV
```

Examples ii

9 10

```
# Compare this with the following
B \leftarrow matrix(c(5, -4, -4, 5), ncol = 2)
\# GV(A) = 9; TV(A) = 10
c("GV" = det(B)).
  "TV" = sum(diag(B)))
## GV TV
```

Measures of Overall Variability (cont'd)

- As we can see, we do lose some information:
 - In matrix B, we saw that the two variables are negatively correlated, and yet we get the same values
- But GV captures some information on dependence that TV does not.
 - Compare the following covariance matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}.$$

 Interpretation: A small value of the sampled Generalized Variance indicates either small scatter in data points or multicollinearity.

Geometric Interlude i

• A random vector \mathbf{Y} with positive definite covariance matrix Σ can be used to define a distance function on \mathbb{R}^p :

$$d(x,y) = \sqrt{(x-y)^T \Sigma^{-1}(x-y)}.$$

- This is called the *Mahalanobis distance* induced by Σ .
 - **Exercise**: This indeed satisfies the definition of a distance:
 - $1. \ d(x,y) = d(y,x)$
 - 2. $d(x,y) \ge 0$ and $d(x,y) = 0 \Leftrightarrow x = y$
 - 3. $d(x,z) \le d(x,y) + d(y,z)$

Geometric Interlude ii

• Using this distance, we can construct *hyper-ellipsoids* in \mathbb{R}^p as the set of all points x such that

$$d(x,0) = 1.$$

Equivalently:

$$x^T \Sigma^{-1} x = 1.$$

• Since Σ^{-1} is symmetric, we can use the spectral decomposition to rewrite it as:

$$\Sigma^{-1} = \sum_{i=1}^{p} \lambda_i^{-1} v_i v_i^T,$$

where $\lambda_1, \ldots, \lambda_p$ are the eigenvalues of Σ .

Geometric Interlude iii

We thus get a new parametrization if the hyper-ellipsoid:

$$\sum_{i=1}^{p} \left(\frac{v_i^T x}{\sqrt{\lambda_i}} \right)^2 = 1.$$

Theorem: The volume of this hyper-ellipsoid is equal to

$$\frac{2\pi^{p/2}}{p\Gamma(p/2)}\sqrt{\lambda_1\cdots\lambda_p}.$$

- In other words, the Generalized Variance is proportional to the square of the volume of the hyper-ellipsoid defined by the covariance matrix.
 - Note: the square root of the determinant of a matrix (if it exists) is sometimes called the Pfaffian.

Statistical Independence

• The variables Y_1, \ldots, Y_p are said to be *mutually independent* if

$$F(y_1,\ldots,y_p)=F(y_1)\cdots F(y_p).$$

• If Y_1, \ldots, Y_p admit a joint density f (with marginal densities f_1, \ldots, f_p), and equivalent condition is

$$f(y_1,\ldots,y_p)=f(y_1)\cdots f(y_p).$$

• Important property: If Y_1, \ldots, Y_p are mutually independent, then their joint moments factor:

$$E(Y_1^{n_1} \cdots Y_p^{n_p}) = E(Y_1^{n_1}) \cdots E(Y_p^{n_p}).$$

Linear Combination of Random Variables

- Let $\mathbf{Y} = (Y_1, \dots, Y_p)$ be a random vector. Let \mathbf{A} be a $q \times p$ matrix, and let $b \in \mathbb{R}^q$.
- Then the random vector $\mathbf{X} := \mathbf{AY} + b$ has the following properties:
 - Expectation: $E(\mathbf{X}) = \mathbf{A}E(\mathbf{Y}) + b$;
 - Covariance: $Cov(\mathbf{X}) = \mathbf{A}Cov(\mathbf{Y})\mathbf{A}^T$

Transformation of Random Variables i

- More generally, let $h: \mathbb{R}^p \to \mathbb{R}^p$ be a one-to-one function with inverse $h^{-1} = (h_1^{-1}, \dots, h_p^{-1})$. Define $\mathbf{X} = h(\mathbf{Y})$.
- Let J be the Jacobian matrix of h^{-1} :

$$\begin{pmatrix} \frac{\partial h_1^{-1}}{\partial y_1} & \cdots & \frac{\partial h_1^{-1}}{\partial y_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_p^{-1}}{\partial y_1} & \cdots & \frac{\partial h_p^{-1}}{\partial y_p} \end{pmatrix}.$$

Then the density of X is given by

$$g(x_1,\ldots,x_p)=f(h_1^{-1}(x_1),\ldots,h_p^{-1}(x_p))|\det(J)|.$$

Transformation of Random Variables ii

- A few comments:
 - This result is very useful for computing the density of transformations of normal random variables.
 - If h is a linear transformation $\mathbf{Y} \mapsto A\mathbf{Y}$, then $J = A^{-1}$ (Exercise!).
 - See practice problems for further examples (or go back to your notes from mathematical statistics).

Characteristic function

- We will make use of the **characteristic function** φ_Y of a p-dimensional random vector \mathbf{Y} .
- The function $\varphi_Y: \mathbb{R}^p \to \mathbb{C}$ is defined as the expected value

$$\varphi_Y(\mathbf{t}) = E(\exp(i\mathbf{t}^T\mathbf{Y})),$$

where $i^2 = -1$.

- Note: The characteristic function of a random variable always exists.
- Example: The characteristic function of the constant random variable \mathbf{c} is $\varphi(\mathbf{t}) = \exp(i\mathbf{t}^T\mathbf{c})$.

Example I i

Take the density of a normal distribution:

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Using the definition, we get

Example I ii

$$\varphi(t) = \int_{-\infty}^{\infty} \exp(itx) \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x^2 - 2\mu x + \mu^2 - 2it\sigma^2 x)}{2\sigma^2}\right) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x^2 - 2(\mu + it\sigma^2)x + \mu^2)}{2\sigma^2}\right) dx.$$

Example I ii

Let's complete the square:

$$\begin{split} x^2 - 2(\mu + it\sigma^2)x + \mu^2 &= \left(x - (\mu + it\sigma^2)\right)^2 \\ &+ \left(\mu^2 - (\mu + it\sigma^2)^2\right) \\ &= \left(x - (\mu + it\sigma^2)\right)^2 \\ &+ \left(\mu^2 - (\mu^2 + 2it\mu\sigma^2 - (t\sigma^2)^2)\right) \\ &= \left(x - (\mu + it\sigma^2)\right)^2 \\ &+ \left((t\sigma^2)^2 - 2it\mu\sigma^2\right). \end{split}$$

Example I iv

• We thus get

$$\varphi(t) = e^{\frac{-\left((t\sigma^2)^2 - 2it\mu\sigma^2\right)}{2\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-\left(x - (\mu + it\sigma^2)\right)^2}{2\sigma^2}\right) dx$$
$$= \exp\left(-\frac{t^2\sigma^2}{2} + it\mu\right).$$

Example II

Take the density of a gamma distribution:

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} \exp(-\beta x)}{\Gamma(\alpha)}.$$

Using the definition, we get

$$\varphi(t) = \int_0^\infty \exp(itx) \frac{\beta^{\alpha} x^{\alpha - 1} \exp(-\beta x)}{\Gamma(\alpha)} dx$$

$$= \frac{(\beta - it)^{\alpha}}{(\beta - it)^{\alpha}} \int_0^\infty \frac{\beta^{\alpha} x^{\alpha - 1} \exp(-(\beta - it)x)}{\Gamma(\alpha)} dx$$

$$= \frac{\beta^{\alpha}}{(\beta - it)^{\alpha}} \int_0^\infty \frac{(\beta - it)^{\alpha} x^{\alpha - 1} \exp(-(\beta - it)x)}{\Gamma(\alpha)} dx$$

$$= \left(1 - \frac{it}{\beta}\right)^{-\alpha}.$$

Properties of the characteristic function i

- 1. $\varphi_Y(0) = 1$
- 2. $|\varphi_Y(\mathbf{t})| \leq 1$ for all \mathbf{t}
- 3. $\varphi_Y(-\mathbf{t}) = \overline{\varphi_Y(\mathbf{t})}$
- 4. $\varphi_Y(\mathbf{t})$ is uniformly continuous.
- 5. If $\mathbf{Y} = A\mathbf{X} + b$, then $\varphi_{\mathbf{Y}}(t) = \exp(it^T b)\varphi_{\mathbf{X}}(A^T t)$
- 6. Two random vectors are equal in distribution if and only if their characteristic functions are equal.
- 7. The components of $\mathbf{Y} = (Y_1, \dots, Y_p)$ are mutually independent if and only if $\varphi_Y(\mathbf{t}) = \prod_{i=1}^p \varphi_{Y_i}(t_i)$.

Properties of the characteristic function ii

Levy Continuity Theorem

Let \mathbf{Y}_n be a sequence of p-dimensional random vectors, and let φ_n be the characteristic function of \mathbf{Y}_n . Then \mathbf{Y}_n converges in distribution to \mathbf{Y} if and only if the sequence φ_n converges pointwise to a function φ that is continuous at the origin. When this is the case, the function φ is the characteristic function of the limiting distribution \mathbf{Y} .

Example i

- Let X_n be Poisson with mean n.
 - Exercise: The characteristic function of a $Pois(\mu)$ random variable is $\varphi(t) = \exp(\mu(e^{it} 1))$.
- Let $Y_n = \frac{X_n n}{\sqrt{n}}$ be the standardized random variable.
- To show: Y_n converges in a distribution to a standard normal random variable.
- From the properties above, we have

$$\begin{split} \varphi_{\mathbf{Y}_n}(t) &= \exp(-itn/\sqrt{n})\varphi_{\mathbf{X}_n}(t/\sqrt{n}) \\ &= \exp\left(n(e^{it/\sqrt{n}}-1)-itn/\sqrt{n}\right). \end{split}$$

Example ii

- We will show that this converges to the characteristic function of the standard normal: $\varphi(t) = \exp(-t^2/2)$.
 - We will use a change of variables and the Taylor expansion of the exponential distribution around 0.
- First, define $u=it/\sqrt{n}$. We then get $n=-t^2/u^2$ (here we fix t).
 - Note that $u \to 0$ is now equivalent to $n \to \infty$.

Example iii

• Recall the Taylor expansion: as $u \to 0$, we have

$$\exp(u) = 1 + u + \frac{u^2}{2} + o(u^2),$$

where $o(u^2)$ represents a quantity that goes to zero faster than u^2 .

Example iv

We then get

$$n(e^{it/\sqrt{n}} - 1) - itn/\sqrt{n} = -\frac{t^2}{u^2}(e^u - 1) + \frac{t^2}{u}$$

$$= -\frac{t^2}{u^2}\left(u + \frac{u^2}{2} + o(u^2)\right) + \frac{t^2}{u}$$

$$= -\frac{t^2}{u} - \frac{t^2}{2} - \frac{t^2}{u^2}o(u^2) + \frac{t^2}{u}$$

$$= -\frac{t^2}{2} - \frac{t^2}{u^2}o(u^2).$$

Example v

• Since the second term goes to zero as $u \to 0$, we can conclude that

$$n(e^{it/\sqrt{n}}-1)-itn/\sqrt{n}\to \frac{-t^2}{2}, \qquad n\to\infty.$$

 And since the exponential function is continuous everywhere, we get

$$\varphi_{\mathbf{Y}_n}(t) \to \exp\left(\frac{-t^2}{2}\right) \text{ for all } t, \qquad n \to \infty.$$

• The result follows from the Levy Continuity Theorem.

Weak Law of Large Numbers

 We can prove the multivariate (weak) Law of Large Numbers using the Levy Continuity theorem.

WLLN

Let \mathbf{Y}_n be a random sample with characteristic function φ and mean μ . Assume φ is differentiable at the origin. Then $\frac{1}{n} \sum_{k=1}^n \mathbf{Y}_k \to \mu \text{ in probability as } n \to \infty.$

Proof (WLLN) i

- First, note that since φ is differentiable at the origin, we have $\varphi'(0) = i\mu$.
- We can look at the Taylor expansion of φ around 0:

$$\varphi(\mathbf{t}) = 1 + \mathbf{t}^T \varphi'(0) + o(\mathbf{t}) = 1 + i\mathbf{t}^T \mu + o(\mathbf{t}).$$

Now note that the characteristic function of $\frac{1}{n}\sum_{k=1}^{n}\mathbf{Y}_{k}$ is given by

Proof (WLLN) ii

$$\varphi_n(\mathbf{t}) = E\left(\exp\left(i\mathbf{t}^T \frac{1}{n} \sum_{k=1}^n \mathbf{Y}_k\right)\right)$$

$$= E\left(\prod_{k=1}^n \exp\left(i\left(\frac{\mathbf{t}}{n}\right)^T \mathbf{Y}_i\right)\right)$$

$$= \prod_{k=1}^n E\left(\exp\left(i\left(\frac{\mathbf{t}}{n}\right)^T \mathbf{Y}_i\right)\right)$$

$$= \varphi\left(\frac{\mathbf{t}}{n}\right)^n.$$

Proof (WLLN) iii

• Using the Taylor expansion of φ , we get

$$\varphi_n(\mathbf{t}) = \varphi\left(\frac{\mathbf{t}}{n}\right)^n$$
$$= \left(1 + i\left(\frac{\mathbf{t}}{n}\right)^T \mu + o\left(\frac{1}{n}\right)\right)^n.$$

 The left-hand side converges to the exponential distribution:

$$\varphi_n(\mathbf{t}) \to \exp(i\mathbf{t}^T \mu).$$

• But this is simply the characteristic function of the constant random variable μ .

58

Cramer-Wold Theorem

Two random vectors \mathbf{X} and \mathbf{Y} are equal in distribution if and only if the linear combinations $\mathbf{t}^T\mathbf{X}$ and $\mathbf{t}^T\mathbf{Y}$ are equal in distribution for all vectors $\mathbf{t} \in \mathbb{R}^p$.

Proof

Let $\varphi_{\mathbf{X}}, \varphi_{\mathbf{Y}}$ be the characteristic functions of \mathbf{X} and \mathbf{Y} , respectively. Let $s \in \mathbb{R}$. Using the definition, we can see that

$$\varphi_{\mathbf{t}^T \mathbf{X}}(s) = E(\exp(is(\mathbf{t}^T \mathbf{X}))) = E(\exp(i(s\mathbf{t})^T \mathbf{X})) = \varphi_{\mathbf{X}}(s\mathbf{t}).$$

The result follows from the uniqueness of characteristic functions.

Multivariate Slutsky's Theorem i

Let \mathbf{X}_n be a sequence of q-dimensional random vectors that converge in distribution to \mathbf{X} , and let \mathbf{Y}_n be a sequence of p-dimensional random vectors that converge in distribution to a constant vector $\mathbf{c} \in \mathbb{R}^p$. Then for any continuous function $f: \mathbb{R}^{p+q} \to \mathbb{R}^k$, we have

$$f(\mathbf{X}_n, \mathbf{Y}_n) \to f(\mathbf{X}, \mathbf{c})$$
 in distribution.

- Common examples of *f* include:
 - $f(\mathbf{X}, \mathbf{Y}) = \mathbf{X} + \mathbf{Y}$
 - $f(\mathbf{X}, \mathbf{Y}) = \mathbf{X}^T \mathbf{Y}$ when p = q.

Multivariate Slutsky's Theorem ii

- Note that both X_n or Y_n could be *matrices*:
 - This follows from the correspondence between the space of $n \times p$ matrices and \mathbb{R}^{np} given by stacking the columns of a matrix into a single column vector.
 - For example, if A_n are $r \times q$ matrices converging to A, then we could conclude

$$A_n \mathbf{X}_n \to A \mathbf{X}$$
.

Proof (Slutsky) i

 By the Continuous mapping theorem, it is sufficient to show that

$$(\mathbf{X}_n, \mathbf{Y}_n) \to (\mathbf{X}, c)$$
 in distribution.

• For any $\mathbf{u} \in \mathbb{R}^q, \mathbf{v} \in \mathbb{R}^p$, the Cramer-Wold theorem implies

$$\mathbf{u}^T \mathbf{X}_n \to \mathbf{u}^T \mathbf{X}$$

 $\mathbf{v}^T \mathbf{Y}_n \to \mathbf{v}^T \mathbf{c}$.

Proof (Slutsky) ii

• From the univariate Slutsky's theorem, we get

$$\mathbf{u}^T \mathbf{X}_n + \mathbf{v}^T \mathbf{Y}_n \to \mathbf{u}^T \mathbf{X} + \mathbf{v}^T \mathbf{c}$$
.

• If we let $\mathbf{w}=(\mathbf{u},\mathbf{v})$, we have just shown that, for all $\mathbf{w}\in\mathbb{R}^{q+p}$, we have

$$\mathbf{w}^T(\mathbf{X}_n, \mathbf{Y}_n) \to \mathbf{w}^T(\mathbf{X}, c).$$

 Using once more the Cramer-Wold theorem, we can conclude the proof of this theorem.

Sample Statistics i

- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ .
- Sample mean: We define the sample mean $\bar{\mathbf{Y}}_n$ as follows:

$$\bar{\mathbf{Y}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{Y}_i.$$

- Properties:
 - $E(\bar{\mathbf{Y}}_n) = \mu$ (i.e. $\bar{\mathbf{Y}}_n$ is an unbiased estimator of μ);
 - $\operatorname{Cov}(\mathbf{\bar{Y}}_n) = \frac{1}{n}\Sigma.$
 - From WLLN: $\bar{\mathbf{Y}}_n \to \mu$ in probability.

Sample Statistics ii

Sample covariance: We define the sample covariance S_n as follows:

$$\mathbf{S}_n = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{Y}_i - \bar{\mathbf{Y}}_n) (\mathbf{Y}_i - \bar{\mathbf{Y}}_n)^T.$$

- Properties:
 - $E(\mathbf{S}_n) = \frac{n-1}{n} \Sigma$ (i.e. \mathbf{S}_n is a biased estimator of Σ);
 - If we define $\tilde{\mathbf{S}}_n$ with n instead of n-1 in the denominator above, then $E(\tilde{\mathbf{S}}_n) = \Sigma$ (i.e. $\tilde{\mathbf{S}}_n$ is an unbiased estimator of Σ).

Multivariate Central Limit Theorem

Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ . Then

$$\sqrt{n}\left(\bar{\mathbf{Y}}_n - \mu\right) \to N_p(0, \Sigma).$$

Proof

This follows from the Cramer-Wold theorem and the univariate CLT (**Exercise**).

Example i

- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample from a p-dimensional distribution with mean μ and covariance matrix Σ .
 - Exercise: $E(\mathbf{Y}_n\mathbf{Y}_n^T) = \Sigma + \mu\mu^T$.
- Using Slutsky's theorem and the WLLN, we will show that $\mathbf{S}_n \to \Sigma$.
- By the WLLN, we have that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_i \mathbf{Y}_i^T \to \Sigma + \mu \mu^T.$$

Example ii

We then have that

$$\begin{split} \tilde{\mathbf{S}}_n &= \frac{1}{n} \sum_{i=1}^n (\mathbf{Y}_i - \bar{\mathbf{Y}}_n) (\mathbf{Y}_i - \bar{\mathbf{Y}}_n)^T \\ &= \frac{1}{n} \sum_{i=1}^n \left(\mathbf{Y}_i \mathbf{Y}_i^T - \bar{\mathbf{Y}}_n \mathbf{Y}_i^T - \mathbf{Y}_i \bar{\mathbf{Y}}_n^T + \bar{\mathbf{Y}}_n \bar{\mathbf{Y}}_n^T \right) \\ &= \frac{1}{n} \sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^T - \bar{\mathbf{Y}}_n \bar{\mathbf{Y}}_n^T - \bar{\mathbf{Y}}_n \bar{\mathbf{Y}}_n^T + \bar{\mathbf{Y}}_n \bar{\mathbf{Y}}_n^T \\ &= \left(\frac{1}{n} \sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^T \right) - \bar{\mathbf{Y}}_n \bar{\mathbf{Y}}_n^T \to \Sigma \qquad \text{(Slutsky)}. \end{split}$$

• But since $\tilde{\mathbf{S}}_n = \frac{n-1}{n} \mathbf{S}_n$, we also have $\mathbf{S}_n \to \Sigma$.

Multivariate Delta Method i

Let \mathbf{Y}_n be a sequence of p-dimensional random vectors such that

$$\sqrt{n} \left(\mathbf{Y}_n - \mathbf{c} \right) \to \mathbf{Z}$$
 in distribution,

where $\mathbf{c} \in \mathbb{R}^p$. Furthermore, assume $g: \mathbb{R}^p \to \mathbb{R}^q$ is differentiable at \mathbf{c} with derivative $\nabla g(\mathbf{c})$. Then

$$\sqrt{n}\left(g(\mathbf{Y}_n) - g(\mathbf{c})\right) \to \nabla g(\mathbf{c})\mathbf{Z}$$
 in distribution.

Multivariate Delta Method ii

In other words, we can derive useful approximations: if \mathbf{Y}_n is a random sample with mean \mathbf{c} and covariance matrix Σ :

- $E(g(\mathbf{Y}_n)) \approx g(\mathbf{c});$
- $\operatorname{Var}(g(\mathbf{Y}_n)) \approx \nabla g(\mathbf{c}) \Sigma \nabla g(\mathbf{c})^T$.

Example

By the Central Limit Theorem, we have

$$\sqrt{n}\left(\bar{\mathbf{Y}}_n - \mu\right) \to N_p(0, \Sigma).$$

• From the Delta method, we get

$$\sqrt{n} \left(g(\bar{\mathbf{Y}}_n) - g(\mu) \right) \to N_p(0, \nabla g(\mu) \Sigma \nabla g(\mu)^T).$$

• For example, if $\mathbf{Y}_n > 0$, then we have

$$\sqrt{n} \left(\log(\bar{\mathbf{Y}}_n) - \log(\mu) \right) \to N_p(0, \tilde{\mu} \Sigma \tilde{\mu}^T),$$

where \log is applied entrywise, and $\tilde{\mu} = (\mu_1^{-1}, \dots, \mu_p^{-1})$.