Obtención de estadísticas descriptivas

Jorge Iván Sánchez González A01761414 Ana Camila Jiménez Mendoza A01174422 Gustavo José Ortiz Zepeda A01637220

- 1. Carga los datos usando tu lector de csv o con pandas. Es recomendable hacerlo con pandas.
- Actividad Evaluable: Obtención de estadisticas descriptivas

En esta actividad trabajaras con el conjunto de datos asignado para el reto.

```
[] # imports
from sklearn import datasets
import pandas as pd
import numpy as np
from google.colab import files
import matplotlib.pyplot as plt
import seaborn as sns
```

Importamos las librerías necesarias para poder correr el programa y también añadimos el archivo csv con los datos a trabajar

```
[ ] # importar tabla
df = pd.read_csv('datos_2021.csv',na_values=' ')
```

Fig. 1.1

2. Verifica la cantidad de datos que tienen, las variables que contiene cada vector de datos e identifica el tipo de variables.

```
print(df.shape)
print(df.columns)
obj_columns = df.select_dtypes(include=np.object).columns.tolist()
df[obj_columns] = df[obj_columns].astype('string')
print(df.info())
(8760, 21)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8760 entries, 0 to 8759
Data columns (total 21 columns):
                  Non-Null Count Dtype
 # Column
    Estación SIMAJ 8760 non-null
            8760 non-null
                                 string
     Fecha
     Hora
                  8760 non-null
                                 int64
    03
                  5568 non-null
                                 float64
                 3216 non-null
3216 non-null
     NO2
     NOX
                  3216 non-null
                                  float64
     S02
                  2232 non-null
                                 float64
                  4296 non-null
                                 float64
     PM10
                   2088 non-null
 10
    PM2.5
                   561 non-null
                                  float64
 11 TMPT
                   7794 non-null
                                 float64
                   7416 non-null
                                 float64
                   7440 non-null
 14 WS
                   7440 non-null
                                  float64
 15 WD
                   7416 non-null
                                  string
 16 PP
                   7896 non-null
                                 float64
                   0 non-null
 18 PBA
                   0 non-null
                                  float64
 19 UV
                   0 non-null
                                  float64
 20 UVI
                   0 non-null
                                 float64
dtypes: float64(17), int64(1), string(3)
```

Las variables que se muestran proporcionadas por la base de datos en la *figura 1.2* son de tipo flotante o decimal (float64), entero (int64) y texto (string).

En total contamos con 21 distintas variables con 8760 datos, en la mayoría de casos las variables presentan ausencia de datos y de información por lo que posteriormente las iremos descartando.

3. Analiza las variables para saber qué representa cada una y en qué rangos se encuentran. Si la descripción del problema no te lo indica, utiliza el máximo y el mínimo para encontrarlo.

Min - Max

- Fecha: Representa el día
- Hora: Representa la hora, 0 23
- O3: Indica la cantidad de ozono, 0 0.139
- NO: Indica la cantidad de óxido nítrico, 0 0.268
- NO2: Indica la cantidad de dióxido de nitrógeno, 0 0.135
- NOX: Indica la cantidad de óxidos de nitrógeno, 0 0.349
- SO2: Indica la cantidad de dióxido de azufre, 0 0.0101
- CO: Indica la cantidad de monóxido de carbono, 0 3.896
- PM10: Indica la cantidad de partículas de 10µm de diámetro, 0 454.6
- PM2.5: Indica la cantidad de partículas de 2.5µm de diámetro, 11.5 180.9
- TMPI: temperatura media diaria (por sus siglas en inglés, Daily Mean Temperature). 0 44.9
- RH: humedad relativa (por sus siglas en inglés, Relative Humidity). 0 95.2
- WS: velocidad del viento (por sus siglas en inglés, Wind Speed). 0 13.58
- WD: dirección del viento (por sus siglas en inglés, Wind Direction).
- PP: precipitación (por sus siglas en inglés, Precipitation). 0 2.84
- RS: radiación solar (por sus siglas en inglés, Solar Radiation).
- PBA: presión barométrica (por sus siglas en inglés, Barometric Pressure).
- UV: radiación ultravioleta (por sus siglas en inglés, Ultraviolet Radiation).
- UVI: índice de radiación ultravioleta (por sus siglas en inglés, Ultraviolet Index).

[]	print(df.describe())						
		Hora	03	NO	NO2		NO	X \	
	count	8760.000000	5568.000000	3216.000000	3216.000000	3216	.0000	0	
	mean	11.500000	0.028869	0.013967	0.021505	0	.0354	7	
	std	6.922582	0.021738	0.023529	0.016476	0	.0356	8	
	min	0.000000	0.000000	0.000000	0.000000	0	.0000	0	
	25%	5.750000	0.011000	0.002000	0.011000	0.01400		0	
	50%	11.500000	0.026000	0.006000	0.019000	0.02600		0	
	75%	17.250000	0.042000	0.015000	0.030000	0	.0460	0	
	max	23.000000	0.139000	0.268000	0.135000	0	.3490	0	
		S02	CO	PM10	PM2.5	TMPI		Ι \	
	count	2232.000000	4296.000000	2088.000000	561.000000	7794.000000		0	
	mean	0.001104	0.685496	45.375383	46.036542	23.	3.199666		
	std	0.000984	0.432117	35.664791	21.425526	4.	27811	78118	
	min	0.000000	0.000000	0.000000	11.500000	0.	0.000000		
	25%	0.000500	0.432000	22.500000	30.200000	21.600000			
	50%	0.000800	0.585000	38.400000	42.500000	22.200000			
	75%	0.001400	0.830250	59.525000	56.500000	22.800000			
	max	0.010100	3.896000	454.600000	180.900000	44.900000			
		TMP	RH	WS	PP	RS	РВА	UV	UVI
	count	7416.000000	7440.000000	7440.000000	7896.000000	0.0	0.0	0.0	0.0
	mean	23.795577	47.760914	3.817481	0.010992	NaN	NaN	NaN	NaN
	std	5.395954	23.517940	2.311717	0.126035	NaN	NaN	NaN	NaN
	min	0.000000	0.000000	0.000000	0.000000	NaN	NaN	NaN	NaN
	25%	20.300000	29.600000	2.090000	0.000000	NaN	NaN	NaN	NaN
	50%	23.200000	45.100000	3.370000	0.000000	NaN	NaN	NaN	NaN
	75%	27.725000	67.000000	5.110000	0.000000	NaN	NaN	NaN	NaN
	max	37.600000	95.200000	13.580000	2.845000	NaN	NaN	NaN	NaN

Fig 1.3

4. Basándose en la media, mediana y desviación estándar de cada variable, qué conclusiones puedes entregar de los datos.

Basándonos en los rangos de la *figura 1.3*: podemos observar que hay datos como que en promedio, los niveles de contaminantes del aire como el ozono y el dióxido de nitrógeno son relativamente bajos. También los datos muestran poca variación de estos niveles promedio de contaminantes a lo largo del tiempo. Hay pico ocasionales en los niveles de contaminantes. Los niveles de contaminación a menudo cumplen (o están cerca) los estándares ambientales, es decir, una calidad de aire medianamente buena. Algunos contaminantes tienen consistentemente niveles promedio más altos que los demás lo que podría ser grave para el aire. La temperatura (TMP) y la humedad (RH) parece que influyen en los niveles de contaminantes, a las altas temperaturas y la baja humedad. Esto a su vez contribuye a la formación de contaminantes como el ozono. La velocidad del viento (WS) es importante para determinar el esparcimiento de los contaminantes.