UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

TALLER

NOMBRE: Diego Nicolay Jiménez Carrión

FECHA: 12/05/2025

- 1. Dado: $f(n) = n^3 + 9n^2 \log(n)$ y $g(n) = n^2 \log(n)$
 - a) Comprobar si $f(n) \in O(g(n))$

Vamos a determinar si existen constantes c > 0 y n_0 tales que para todo n >= n_0

$$f(n) = n^3 + 9n^2 * log(n) \le c * g(n) = c * n^2 * log(n)$$

Sabiendo que

$$n^3 + 9n^2 * log(n) = n^2 * log(n) * (n / log(n) + 9)$$

Para valores grandes de n,(n/log(n)) domina, la expresión (n/log(n) + 9) crece sin estar limitada por lo que no existe un c finito que logre satisfacer la desigualdad para todo n suficientemente grande

Conclusión: $f(n) \notin O(g(n))$

b) Comprobar si f(n) ∉ O(n²)

Queremos ver si existe c > 0 y n_0 tales que

$$n^3 + 9n^2 * log(n) \le c * n^2 para todo n >= n_0$$

Dividimos entre n²

$$n + 9*log(n) <= c$$

El lado izquierdo crece sin estar limitada (ya que n $\to \infty$) por lo que no existe c que cumpla la desigualdad

Conclusión: $f(n) \notin O(n^2)$

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

2. Relaciones de pertenencia para funciones exponenciales

Sea
$$f(n) = 2^n y g(n) = 2^{2n} = 4^n$$

a)
$$f(n) \in O(g(n))$$
?

Verificamos si existen constantes c, n_0 tales que $2^n \le c \cdot 4^n$ para todo $n \ge n_0$

Equivalente a

$$(2^n)/(4^n) = (1/2)^n <= c$$

Como $(1/2)^n \to 0$ cuando $n \to \infty$ existe n_0 tal que para todo $n >= n_0 (1/2)^n <= 1$ Podemos elegir c = 1 y cualquier n_0

Conclusión: $f(n) \in O(g(n))$

b) $g(n) \in O(f(n))$?

Verificamos si existen c, no tales que

$$4^n \le c * 2^n$$
 para todo $n \ge n_0$

Equivale a

$$4^{n}/2^{n} = 2^{n} \le c$$
.

Pero $2^n \rightarrow \infty$ por lo que no existe c finito que acote 2^n para todo n grande.

Conclusión: $g(n) \notin O(f(n))$