

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS BIOLÓGICAS FACULDADE DE BIOTECNOLOGIA CURSO DE BACHARELADO EM BIOTECNOLOGIA

DAVI JOSUÉ MARCON

ANÁLISE GEÔMICA DE BACTÉRIAS ISOLADAS DO PARQUE ESTADUAL UTINGA - PARÁ

Belém 2022

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS BIOLÓGICAS FACULDADE DE BIOTECNOLOGIA CURSO DE BACHARELADO EM BIOTECNOLOGIA

DAVI JOSUÉ MARCON

ANÁLISE GEÔMICA DE BACTÉRIAS ISOLADAS DO PARQUE ESTADUAL UTINGA - PARÁ

Trabalho de Conclusão de Curso apresentado para obtenção do grau de Bacharel em Biotecnologia.

Orientador: Prof. Dr. Rafael Azevedo Baraúna

Belém 2022

SUMÁRIO

1	INTRODUÇÃO	3
1.1	Contexto	3
1.2	Justificativa	3
2	OBJETIVOS	4
2.1	Objetivo Geral	4
2.2	Objetivos Específicos	4
3	REFERENCIAIS TEÓRICOS	5
3.1	Metabolitos secundários	5
3.2	Resistência a antimicrobianos	5
3.3	Actinomicetos	6
3.3.1	Rhodococcus	6
3.4	Brevibacillus brevis	7
3.5	Estudo genômico de MIB's	8
4	METODOLOGIA	9
4.1	Seleção de amostras	9
4.2	Extração de DNA e sequenciamento	9
4.3	Análise Genômica	9
5	RESULTADOS E DISCUSSÃO	11
5.1	Sequenciamento e controle de qualidade das leituras	11
5.2	Montagem das contigs	14
5.2.1	016	14
5.2.2	094	14
5.3	Predição de espécies e montagem de genoma	15
6	CONCLUSÃO	16
	REFERÊNCIAS	17

1 INTRODUÇÃO

1.1 Contexto

- Necessidade de novos Compostos
- Uso de Biotecnologia para solução de problemas industriais A biotecnologia

Os ambientes amazônicos são um reservatório de biodiversidade muito importantes, a riqueza de espécies e o uso da biotecnologia como ferramenta para a solução de problemas relacionados a saúde humana e animal, industriais eu patrimônio genético são fontes interessantes para o desenvolvimento sustentável baseado no uso de tecnologia de ponta para a formulação de novas tecnologias. micro-organismos do solo amazônico podem ser a fonte de novos fármacos para doenças já conhecidas, a cura para doenças emergentes, biofábricas para novos processos industriais e biorremediadores de impactos ambientais.

1.2 Justificativa

Bactérias ambientais são interessantes alvos para a descoberta de compostos de relevância biotecnológica, especialmente como solução para os crescentes níveis de resistência a antimicrobianos encontrados em microorganismos patogênicos. A caracterização genômica e prospecção de genes de interesse desses microorganismos, especialmente do ambiente amazônico, são passos importantes em busca de genes para produção de compostos de potencial farmacológico e industrial.

2 OBJETIVOS

2.1 Objetivo Geral

Predizer o potencial biotecnológico de bactérias ambientais utilizando ferramentas *in silico*

2.2 Objetivos Específicos

- 1. Caracterizar os organismos sequênciados utilizando seus genomas
- 2. Predizer as características metabólicas dos organismos
- 3. Analisar os microorganismos quanto ao potêncial de produção de compostos de interesse biotécnológico

3 REFERENCIAIS TEÓRICOS

3.1 Metabolitos secundários

O metabolismo celular bacteriano é o conjunto de processos bioquímicos anabólicos e catabólicos no qual as células bacterianas produzem novos substâncias a partir de substrato ou outras substâncias, os produtos dessas reações são conhecidos como metabólitos. Podendo ser classificados como primários ou secundários, sendo os primários o conjunto de substâncias essenciais para a sobrevivência do organismo, relacionadas a produção de energia e as funções vitais da célula, já os secundários não estão relacionados a sobrevivência da célula, mas sim sua perpetuação no ambiente utilizando estratégias de resistência a situações adversas (GOKULAN; KHARE; CERNIGLIA, 2014).

A maquinaria responsável pela produção desses compostos, normalmente está relacionada a aglomerados de genes biossintéticos (*Biosyntetic Genes Cluster - BGC*) que são dois ou mais genes agrupados codificam a via biosintética para a produção de um metabólito, sendo capazes de produzir compostos das seguintes classes: alcalóides, carboidratos, esteroídes, lipídeos, peptídeos (com ou sem modificações pós-traducionais), policetídeos e terpenóides (MEDEMA et al., 2015).

Esses metabólitos possuem uma diversa gama de funções, seja como metodologia de "guerra química" com outros microorganismos, mediadores de atividade mutualística entre espécies ou simbiose química (O'BRIEN; WRIGHT, 2011). Apesar de não serem considerados essenciais para a vida desses organismos (DEMAIN; SANCHEZ, 2009) são de grande importância para sua dispersão e adaptação em ambientes hostis e excassos de nutrientes.

É importante ressaltar que a produção de metabólitos de ação antimicrobiana, está relacionada com a resistência a antimicrobianos, uma vez que, microorganismos produtores de substâncias antimicrobianas precisam resistir a sua ação de forma a evitar o suicídio causado pelas suas próprias substâncias (CUNDLIFFE; DEMAIN, 2010).

3.2 Resistência a antimicrobianos

Bactérias possuem diversos mecanismos para proteção contra agentes antimicrobianos como: desativação do fármaco, mutação no sítio de ligação do fármaco, expressão de bombas de efluxo e desvios metabólicos. Esses mecanismos, podem estar associados a elementos genéticos móveis permitindo a transferência entre indivíduos da mesma espécie ou não (MADIGAN et al., 2021, p. 150). A resistência a antibióticos é um problema emergente que está associado a mortalidade em patógenos bacterianos e sua solução é complexa e permeia a necessidade de políticas públicas, vigilância e controle do uso de antibióticos, medidas de prevenção e o desenvolvimento de novas opções de tratamento (FRIERI; KUMAR; BOUTIN, 2017).

3.3 Actinomicetos

Actinomicetos são um filo de microorganismos gram-positivos de alto conteúdo guanina e citosina que contém as classes: Acidimicrobiia, Actinobacteria, Coriobacteriia, Nitriliruptoria, Rubrobacteria, e Thermoleophilia(YADAV et al., 2018). Dentre suas principais caracteristicas podemos ressaltar a presença de micélios e a produção de hifas filamentosas (CHATER, 2016). Sua dispersão ambiental é enorme e já foram isolados de ambientes diversos como: lagos salinos, mar profundo e solo (CLAVO et al., 2021; FELÍCIO et al., 2021; SAPKOTA et al., 2020). Além da simbose com animais, fungos, insetos, línquens e plantas (HEI et al., 2021; MEIJ et al., 2017). A capacidade de se adaptar a diversos ambientes está intimamente relacionada com a capacidade de produzir substâncias bioativas com funções igualmente diversas (BERGEIJK et al., 2020)

Essas bactérias foram uma fonte importante para o desenvolvimento de compostos de funções diversas como: antibactericidas, antifungicos, antihelminticos, antitumorais, anticancererigenos, antinflamatorios, antivirais, imunossupressores, inseticidas e herbicidas (DEMAIN; SANCHEZ, 2009; JOSE; MAHARSHI; JHA, 2021). 64% dos antibióticos derivados de produtos naturais foram obtidos a partir de actinomicetos filamentosos, especialmente durante a era de ouro dos antibióticos (1940-1960) sendo 20 utilizados clinicamente (HUTCHINGS; TRUMAN; WILKINSON, 2019). Segundo Genilloud (2017), continuam sendo uma fonte relevante para o isolamento de caracterização de compostos de interesse biotecnológicos, e com o emprego de metodologias modernas de investigação podem continuar a fornecer substâncias relevantes para mercado.

3.3.1 Rhodococcus

O gênero *Rhodococcus* contem actinomicetos de diversidade genômica e fisiológica, contendo alguns membros patógenos para humanos, animais e plantas. Sua importância biotecnológica é encontrada principalmente por conter algumas cepas com capacidade de degradar compostos orgânicos. Devido seu grande tamanho gênomico (8.5-10Mb) esses microorganismos possuem grande liberdade para modificar seu genoma com recombinações, translocações e inserções, contendo diversas vias catabólicas, e mantendo multiplas funções metabólicas (CAPPELLETTI et al., 2019).

Rhodococcus são os microorganismos mais adequados para o desenvolvimento de tecnologias de remediação de ambientes por serem capazes de degradar poluentes persistentes e por terem sido isolados de ambientes contaminados com hidrocarbonetos (inclusive em forma gasosa)(KUYUKINA; IVSHINA, 2019). Sua resitência a intemperes como frio, calor, acidez, salinidade, pode ser explorada para o desenvolvimentode biorremediadores de derramamento de derivados de petróleo.

Além da capacidade de remediação biológica, podemos ressaltar o potencial de produção de diversas moléculas como: biosulfactantes, biofloculantes, carotenoides, ácidos graxos poli-

insaturados, poli-hidroxi-alcalóides e triacil-glicerois (CAPPELLETTI et al., 2020). Essas estruturas especialmente as mais complexas como os Carotenoides e os Ácidos graxos Poli-Insaturados são de grande interesse industrial pois sua síntese é complexa e custosa, o uso de microorganismos pode facilitar e reduzir os custos nesses processos.

Dentre as possibilidades para o uso biotecnológico de *Rhodococcus* temos o uso como biofábricas para óleo, biocatálise em processos industriais e valorização de rejeitos (ALVA-REZ et al., 2021; KRIVORUCHKO; KUYUKINA; IVSHINA, 2019; ANTHONY et al., 2019; CHATTERJEE et al., 2020).

3.4 Brevibacillus brevis

Brevibacillus (anteriormente Bacillus brevis) é um gênero com grande potêncial para uso organismo para uso como organismo de expressão heteróloga por ter crescimento rápido, baixa produção de proteases extracelulares e boa eficiência de transformação por eletroporação, além disso diversos membros do gênero produzem substâncias com atividades larvicidas e antimicrobianas e tem grande importância agroecológica por sua relação mutualística com plantas promovendo seu crescimento, protegendo de doenças e removendo metais pesados do solo (PANDA et al., 2014; RAY; PATEL; AMIN, 2020).

Yao, Zhang e Wu (2020) ressaltam capacidade prolífica de *Brevibacillus* para expressão heteróloga especialmente sua capacidade de produzir moléculas com eficiência ao ser mediada por promotores endógenos com repetição em tandem e peptídeos sinal, sugerindo a importância do uso de estratégias eficazes de otimização do hospedeiro, do vetor, do processo fermentativo e o estudo detalhado dos promotores do gênero para melhoria desse modelo.

Exemplos importantes de metabólitos obtidos de *Brevibacillus* temos os peptídeos antimicrobianos (AMP), sendo esses classificados pela sua síntese ribossomal ou não, tendo diversos usos como o biocontrole em plantas, preservantes para alimentos em prateleiras(YANG; YOU-SEF, 2018). Além dos AMPS podemos citar a probdigiosina com atividade algicida e compostos ainda não elucidados com grande atividade antiproliferativa (ZHANG et al., 2022; ARUMU-GAM et al., 2018). Além dos metabólitos, algumas vias bioquímicas dos *Brevibacillus* são interessantes pela capacidade de degradar Ácido Polilático (plástico biodegradável), a síntese de exopolissacarídeos e a biodegradação de polietileno (YU et al., 2022; YILDIZ et al., 2015; HADAD; GERESH; SIVAN, 2005; ALI; ZAKARYA; KHALED, 2022).

A espécie *Brevibacillus Brevis* contém espécies majoritariamente mesofílicas, e sua distinção é baseada em similaridade genômica, sondagem molecular e análises quimiotaxonômicas (RAY; PATEL; AMIN, 2020).

3.5 Estudo genômico de MIB's

- Nesse tópico podes iniciar abordando a questão do desinteresse em prospectar novas moléculas por conta dos processos padrões serem custosos, e que isso levou ao desinteresse da industria. - No entanto com o advento de novas tecnologias (escreve um pouco de cada), estão sendo retomadas a exploração pelo potencial biossintetico de microrg. - Que antes do sequenciamento do genoma pouco se sabia sobre o potencial biossintético das bactérias - Depois inicia sobre a importância das analises genômicas, cita estudos que mostram o amplo conteúdo de genes biossinteticos - Podes abordar sobre cada ferramenta que vais utilizar, apesar de que eu acho que metodologia não deve ter na introdução.

Ramírez-Rendon et al. (2022) ressalta a relevância de bactérias para a descoberta de importantes fármacos e propõe que organismos de fontes não convencionais como cavernas, fontes termais, areas de alta salinidade, solos áridos, oceanos e mares continuem sendo estudados especialmente com tecnologias como metagnômica e mineração genômica pois podem ter um papel importante no combate de possíveis surtos de doenças como a SARS-COV2 e epidemias causadas por bactérias resistentes.

Em condições laboratoriais, muitos genes relacionados a síntese de compostos bioativos são silenciados, limitando a produção a produção desses produtos, propondo que o uso de eliciadores é necessário para expressão dos genes relacionados a produção desses compostos(RUTLEDGE; CHALLIS, 2015). Felício et al. (2021) propõe o uma metodologia de eliciação para expressão, purificação e caracterização desses compostos além de ressaltar que até 45% dos compostos produzidos por microorganismos são metabólitos secundários eliciados.

Através de Tecnologias modernas como a ferramenta ANTI-SMASH (MEDEMA et al., 2011) é possível predizer genes putativos e *clusters* gênicos relacionados a produção de metabólitos secundários e de síntese ribossomal. Essa tecnologia de mineração *in silico* permite prever redes metabólicas e possíveis promotores da expressão desses compostos, principalmente por utilizar bancos de dados produzidos a partir de outras ferramentas como BAGEL, NORINE e CLUSEAN (JONG et al., 2010; HEEL et al., 2013; CABOCHE et al., 2007; WEBER et al., 2009). A incorporação de diversas ferramentas e banco de dados permite uma análise robusta e completa utilizando tecnologias do estado da arte da biologia computacional.

4 METODOLOGIA

4.1 Seleção de amostras

Foram selecionados 2 microorganismos de espécies diferentes do banco de amostras ambientais provenientes do parque estadual Utinga - Belém, PA gentilmente disponibilizadas pelo Centro de Gênomica e Biologia de Sistemas. Incluindo uma actinobactéria do gênero *Rhodococcus* (ACT016) e e uma bactéria do filo *Firmicutes*: *Brevibacillus brevis*(ACT094). Essa amostras foram previamente identificadas utilizando sequênciamento do gene de RNA ribossomal 16s utilizando os primers universais 8F: 5'-AGAGTTTGATCATGGCTCAG-3' e 1492R: 5'-CGGTTACCTTGTTACGACTT-3' com o sequenciador ABI Prism 3500 Genetic Analyzer (Applied BioSystems). Posteriormente as espécies foram preditas utilizando homologia baseada no alinhamento contra o banco de dados de RNA ribossomal do NCBI utilizando a ferramenta blast.

4.2 Extração de DNA e sequenciamento

As amostras foram cultivadas em meio Tryptone Soy Broth (TSB) por 48 horas á 28 graus, e seu DNA foi extraído utilizando o kit HiPureA Multi-sample DNA Purification Kit(HI-MEDIA) seguindo as orientações do fabricante. O DNA foi quantificado usando quantificador Qubit(Thermo Fisher) e sua integridade foi avaliada por eletroforese em gel de agarose 1% complementado com brometo de etídeo 0.5%. As bibliotecas foram preparadas utilizando o protocolo do fabricante e sequenciadas no equipamento Ion GeneStudio S5 Plus (Thermo Fisher)

4.3 Análise Genômica

O pipeline Bactopia, filtrou as leituras, montou e anotou o genoma automaticamente. Paralelamente, as amostras foram filtradas manualmente utilizando a ferramenta Trimmomatic utilizando os seguintes parâmetros: "LEADING:3 TRAILING:30 SLIDINGWINDOW:4:15 MIN-LEN:36"e foram realizadas montagens manuais utilizando o software Shovill com os montadores SKESA e SPADES utilizando parâmetros automáticos e kmers específicos (21,33,55,77,99,127). As melhores montagens foram selecionadas após visualização da qualidade no software QUAST. Após isso as melhores montagens foram submetidas ao programa KRAKEN para determinar a pureza das montagens e predição de espécies. Posteriormente os genomas foram montados em um único cromossomo utilizando o software RAGOUT utilizando genomas de referência proximos a espécie predita pelo KRAKEN, a pureza das montagens foi verificada utilizando o software BUSCO.

Finalmente os genomas foram anotados utilizando o software PROKKA, seus genes

de resistência a antibióticos foram preditos utilizando o ARIBA e seus clusters de metabólitos secundários foram preditos utilizando a ferramenta ANTISMASH.

Foram utilizados os softwares GoFeat, fastqc e Artemis para criação de figuras a partir dos dados gerados.

5 RESULTADOS E DISCUSSÃO

5.1 Sequenciamento e controle de qualidade das leituras

Após o sequenciamento das amostras, foram obtidas 7.8 milhões de leituras de tamanho médio de 223 pares de base para a amostra ACT016 e 7.4 milhões de leituras com tamanho médio de 222 pares de base para a amostra ACT094. Após a filtrar as leituras utilizando a ferramenta Trimmomatic, retivemos 6.2 milhões de leituras com tamanho médio 113 pares de base *perda*21,5% para ACT016 e 6.1 milhões de leituras com tamanho médio 145 pares de base *perdade*18,5%.

Baseando-se num tamanho de genoma variável de 3 a 10 milhões de bases para Rhodo-coccus, podemos determinar a cobertura real estimada pela fórmula $C = (L \cdot N)/G$ sendo C a cobertura, L o comprimento médio das reads e G o tamanho do genoma. A partir disso, obtivemos que a cobertura para a amostra ACT016 Após filtrar as leituras está entre 70 e 233,53 vezes. Para a amostra ACT094, consideramos o tamanho do genoma de referência de Brevibacillus $Brevis(NZ_LR134338)$ de 6.2 milhões de bases e estimamos a cobertura em aproximadamente 142,66 vezes.

As qualidades médias das sequências pode ser observada a partir dos gráficos a seguir gerados pela ferramenta FASTQC:

Figura 1 – Gráficos representando a qualidade média das leituras da amostra ACT016 na escala PHRED

Figura 2 – Gráficos representando a qualidade média das leituras da amostra ACT094 na escala PHRED

A partir desses gráficos podemos observar a perda de qualidade no final das leituras, um tipo de limitação técnica comum ao utilizar sequenciadores da plataforma *Illumina*, porém o término em baixa qualidade pode ser removido após a filtração, tendo uma qualidade média ao longo da sequência próximo de PHRED 26 e removendo sequências abaixo de PHRED 20 (que representa probabilidade de erro maior que 1 em 100).

5.2 Montagem das contigs

5.2.1 016

Figura 3 – Report do software QUAST para as montagens da amostra 016

Statistics without reference	016_bactopia_skesa_contigs	016_bactopia_spades2_contigs	016_bactopia_spades_contigs	016_manual_more_kmers	016_manual_spades_contigs		
# contigs	2893	1073	2859	267	211		
# contigs (>= 0 bp)	2893	1073	2859	373	314		
# contigs (>= 1000 bp)	2088	976	2069	241	189		
# contigs (>= 5000 bp)	154	471	162	185	146		
# contigs (>= 10000 bp)	9	195	9	148	119		
# contigs (>= 25000 bp)	0	15	0	90	80		
# contigs (>= 50000 bp)	0	0	0	31	40		
Largest contig	12 514	41 308	12 514	168 716	222 317		
Total length	5 931 701	6 487 418	5 931 691	6 431 423	6 438 566		
Total length (>= 0 bp)	5 931 701	6 487 418	5 931 691	6 458 455	6 467 051		
Total length (>= 1000 bp)	5 340 891	6 418 042	5 350 903	6 413 515	6 424 096		
Total length (>= 5000 bp)	1 013 529	5 074 604	1 063 244	6 277 148	6 315 422		
Total length (>= 10000 bp)	100 586	3 102 397	100 586	5 997 032	6 110 524		
Total length (>= 25000 bp)	0	468 443	0	5 023 485	5 423 825		
Total length (>= 50000 bp)	0	0	0	2 903 777	4 003 427		
N50	2719	9684	2758	46 660	84 527		
N90	1002	2969	1010	14 230	18 884		
auN	3216.4	11 552	3258.2	61 550	78 958		
L50	702	210	692	38	29		
L90	2086	667	2057	130	97		
GC (%)	68.06	68.1	68.05	68.09	68.08		
Mismatches							
# N's per 100 kbp	0	0	0	0	0		
# N's	0	0	0	0	0		

Fonte: O Autor (2022)

A melhor montagem para a amostra ACT016 é a montagem *manual_spades* que foi feita utilizando o montador spades junto com a correção do software shovill. Essa montagem foi escolhida por ter o maior valor de L50 (menor quantidade de contigs para atingir 50 % do número de pares de base) e maior *contig* em tamanho absoluto (222 mil pares de base). O conteúdo GC de 60 % dessa montagem está de acordo com o descrito por Yadav et al. (2018) para Actinomicetos.

5.2.2 094

Figura 4 – Report do software QUAST para as montagens da amostra 094

Fonte: O Autor (2022)

De maneira similar, a melhor montagem para a amostra 094 também é a montagem *manual_spades*. possuindo um valor similar a montagem *more_kmers* porém se diferenciando por possuir a maior *contig* com aproximadamente 80 mil pares de base a mais, um fator muito relevante para a posterior montagem do genoma completo. O conteúdo GC também está de acordo com valores comumente encontrados em *Brevibacillus brevis* (NAKAMURA, 1991).

5.3 Predição de espécies e montagem de genoma

Os melhores conjuntos de *contigs* montadas foram submetidas ao software KRAKEN2 para predição de espécie, para a amostra 016 a espécie predita foram *Rhodococcus* com 71,66 % de *contigs* identificadas, mas importunamente 18,45 % das *contigs* não foram identificadas, determinando que a amostra 016 foi predita como *Rhodococcus* não identificado. A partir desse resultado o genoma de referência sugerido para a montagem foi o de código de acesso NZ_CP054690 da cepa *Rhodococcus sp. W8901*.

Para a amostra 094, 85.52 % das *contigs* foram preditas como *Brevibacillus brevis* concordando com os resultados previamente obtidos a partir de sequenciamento de sanger. O genoma NZ_CP030117 da cepa *DZQ7* referência para montagem de genomas dessa espécie.

As montagens utilizando genomas de referência escolhidos, foram avaliadas quanto a presença de genes ortólogos. Na amostra 016 foram encontrados 120 BUSCOs completos e únicos, 2 genes completos e duplicados e 2 genes fragmentados, o valor de genes completos únicos de 98% foi considerada satisfatória para a montagem e de pureza suficiente para a anotação do genoma. Já na amostra 094, 121 BUSCOs completos e únicos foram encontrados, 1 gene completo e duplicado, 1 busco fragmentado e 1 busco faltando, com o percentual de 98,4% também foi considerada suficiente para prosseguimento da anotação.

o software PROKKA foi capaz de predizer 5738 CDSs para a amostra 016 e 6082 CDS para a amostra 094, contendo genes de diversas funções celulares.

6 CONCLUSÃO

REFERÊNCIAS

ALI, S. A.; ZAKARYA, S.; KHALED, S. Screening and optimisation of the biodegradation potential for low density polyethylene (ldpe) films by fusarium equiseti and brevibacillus parabrevis. **Biosciences Biotechnology Research Asia**, Biosciences Biotechnology Research Asia, v. 19, n. 1, p. 215, 2022.

ALVAREZ, H. M. et al. Rhodococcus as biofactories for microbial oil production. **Molecules**, MDPI, v. 26, n. 16, p. 4871, 2021.

ANTHONY, W. E. et al. Development of rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. **Biotechnology for biofuels**, Springer, v. 12, n. 1, p. 1–14, 2019.

ARUMUGAM, T. et al. Isolation, structure elucidation and anticancer activity from brevibacillus brevis egs 9 that combats multi drug resistant actinobacteria. **Microbial pathogenesis**, Elsevier, v. 115, p. 146–153, 2018.

BERGEIJK, D. A. van et al. Ecology and genomics of actinobacteria: new concepts for natural product discovery. **Nature Reviews Microbiology**, Nature Publishing Group, v. 18, n. 10, p. 546–558, 2020.

CABOCHE, S. et al. Norine: a database of nonribosomal peptides. **Nucleic acids research**, Oxford University Press, v. 36, n. 1, p. D326–D331, 2007.

CAPPELLETTI, M. et al. Biotechnology of rhodococcus for the production of valuable compounds. **Applied Microbiology and Biotechnology**, Springer, v. 104, n. 20, p. 8567–8594, 2020.

CAPPELLETTI, M. et al. Genomics of rhodococcus. In: **Biology of Rhodococcus**. [S.l.]: Springer, 2019. p. 23–60.

CHATER, K. F. Recent advances in understanding streptomyces. **F1000Research**, Faculty of 1000 Ltd, v. 5, 2016.

CHATTERJEE, A. et al. Bioconversion of renewable feedstocks by rhodococcus opacus. **Current opinion in biotechnology**, Elsevier, v. 64, p. 10–16, 2020.

CLAVO, R. F. et al. Evaluation of antimicrobial and antiproliferative activities of actinobacteria isolated from the saline lagoons of northwestern peru. **PloS one**, Public Library of Science San Francisco, CA USA, v. 16, n. 9, p. e0240946, 2021.

CUNDLIFFE, E.; DEMAIN, A. L. Avoidance of suicide in antibiotic-producing microbes. **Journal of Industrial Microbiology and Biotechnology**, Oxford University Press, v. 37, n. 7, p. 643–672, 2010.

DEMAIN, A. L.; SANCHEZ, S. Microbial drug discovery: 80 years of progress. **The Journal of antibiotics**, Nature Publishing Group, v. 62, n. 1, p. 5–16, 2009.

FELÍCIO, R. de et al. Chemical elicitors induce rare bioactive secondary metabolites in deep-sea bacteria under laboratory conditions. **Metabolites**, MDPI, v. 11, n. 2, p. 107, 2021.

FRIERI, M.; KUMAR, K.; BOUTIN, A. Antibiotic resistance. **Journal of infection and public health**, Elsevier, v. 10, n. 4, p. 369–378, 2017.

- GENILLOUD, O. Actinomycetes: still a source of novel antibiotics. **Natural product reports**, Royal Society of Chemistry, v. 34, n. 10, p. 1203–1232, 2017.
- GOKULAN, K.; KHARE, S.; CERNIGLIA, C. Production of secondary metabolites of bacteria. In: BATT, C. A.; TORTORELLO, M. L. (Ed.). **Encyclopedia of Food Microbiology (Second Edition)**. Second edition. Oxford: Academic Press, 2014. p. 561–569. ISBN 978-0-12-384733-1. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780123847300002032.
- HADAD, D.; GERESH, S.; SIVAN, A. Biodegradation of polyethylene by the thermophilic bacterium brevibacillus borstelensis. **Journal of applied microbiology**, Wiley Online Library, v. 98, n. 5, p. 1093–1100, 2005.
- HEEL, A. J. V. et al. Bagel3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. **Nucleic acids research**, Oxford University Press, v. 41, n. W1, p. W448–W453, 2013.
- HEI, Y. et al. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis from qinghai-tibet plateau. **Microbiological Research**, Elsevier, v. 244, p. 126652, 2021.
- HUTCHINGS, M. I.; TRUMAN, A. W.; WILKINSON, B. Antibiotics: past, present and future. **Current Opinion in Microbiology**, v. 51, p. 72–80, 2019. ISSN 1369-5274. Antimicrobials. Disponível em: https://www.sciencedirect.com/science/article/pii/S1369527419300190.
- JONG, A. D. et al. Bagel2: mining for bacteriocins in genomic data. **Nucleic Acids Research**, Oxford University Press, v. 38, n. suppl_2, p. W647–W651, 2010.
- JOSE, P. A.; MAHARSHI, A.; JHA, B. Actinobacteria in natural products research: Progress and prospects. **Microbiological Research**, Elsevier, v. 246, p. 126708, 2021.
- KRIVORUCHKO, A.; KUYUKINA, M.; IVSHINA, I. Advanced rhodococcus biocatalysts for environmental biotechnologies. **Catalysts**, MDPI, v. 9, n. 3, p. 236, 2019.
- KUYUKINA, M. S.; IVSHINA, I. B. Bioremediation of contaminated environments using rhodococcus. In: **Biology of Rhodococcus**. [S.l.]: Springer, 2019. p. 231–270.
- MADIGAN, M. et al. **Brock biology of microorganisms**. 16. ed. London, England: Pearson Education, 2021.
- MEDEMA, M. H. et al. antismash: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. **Nucleic acids research**, Oxford University Press, v. 39, n. suppl_2, p. W339–W346, 2011.
- MEDEMA, M. H. et al. Minimum information about a biosynthetic gene cluster. **Nature chemical biology**, Nature Publishing Group, v. 11, n. 9, p. 625–631, 2015.
- MEIJ, A. Van der et al. Chemical ecology of antibiotic production by actinomycetes. **FEMS microbiology reviews**, Oxford University Press, v. 41, n. 3, p. 392–416, 2017.
- NAKAMURA, L. Bacillus brevis migula 1900 taxonomy: reassociation and base composition of dna. **International Journal of Systematic and Evolutionary Microbiology**, Microbiology Society, v. 41, n. 4, p. 510–515, 1991.

- O'BRIEN, J.; WRIGHT, G. D. An ecological perspective of microbial secondary metabolism. **Current Opinion in Biotechnology**, Elsevier, v. 22, n. 4, p. 552–558, 2011.
- PANDA, A. K. et al. Brevibacillus as a biological tool: a short review. **Antonie Van Leeuwenhoek**, Springer, v. 105, n. 4, p. 623–639, 2014.
- RAMÍREZ-RENDON, D. et al. Impact of novel microbial secondary metabolites on the pharma industry. **Applied Microbiology and Biotechnology**, Springer, p. 1–24, 2022.
- RAY, S.; PATEL, N.; AMIN, D. Brevibacillus. In: **Beneficial Microbes in Agro-Ecology**. [S.l.]: Elsevier, 2020. p. 149–167.
- RUTLEDGE, P. J.; CHALLIS, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. **Nature reviews microbiology**, Nature Publishing Group, v. 13, n. 8, p. 509–523, 2015.
- SAPKOTA, A. et al. Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. **International journal of microbiology**, Hindawi, v. 2020, 2020.
- WEBER, T. et al. Clusean: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. **Journal of biotechnology**, Elsevier, v. 140, n. 1-2, p. 13–17, 2009.
- YADAV, A. N. et al. Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: **New and future developments in microbial biotechnology and bioengineering**. [S.l.]: Elsevier, 2018. p. 13–41.
- YANG, X.; YOUSEF, A. E. Antimicrobial peptides produced by brevibacillus spp.: structure, classification and bioactivity: a mini review. **World journal of microbiology and biotechnology**, Springer, v. 34, n. 4, p. 1–10, 2018.
- YAO, D.; ZHANG, K.; WU, J. Available strategies for improved expression of recombinant proteins in brevibacillus expression system: a review. **Critical reviews in biotechnology**, Taylor & Francis, v. 40, n. 7, p. 1044–1058, 2020.
- YILDIZ, S. Y. et al. Genomic analysis of brevibacillus thermoruber 423 reveals its biotechnological and industrial potential. **Applied microbiology and biotechnology**, Springer, v. 99, n. 5, p. 2277–2289, 2015.
- YU, J. et al. Comparison of polylactic acid biodegradation ability of brevibacillus brevis and bacillus amyloliquefaciens and promotion of pla biodegradation by soytone. **Biodegradation**, Springer, p. 1–11, 2022.
- ZHANG, Y. et al. Transcriptome analysis reveals the algicidal mechanism of brevibacillus laterosporus against microcystis aeruginosa through multiple metabolic pathways. **Toxins**, Multidisciplinary Digital Publishing Institute, v. 14, n. 7, p. 492, 2022.