UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i:	MAT 1100 — Kalkulus.
Eksamensdag:	Fredag, 9. desember 2005.
Tid for eksamen:	09.00 - 12.00.
Oppgavesettet er på 2	2 sider.
Vedlegg:	Formelsamling.
Tillatte hjelpemidler:	
i matte njerpennaler.	Godkjent Karkulator.
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.	
	Kandidatnr.
	Del 1
Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil, lar være å svare på et spørsmål, eller krysser av mer enn ett alternativ på et spørsmål, får du 0 poeng.	
1. Integralet $\int \frac{dx}{x^2-9}$ er lik:	
$\Box \frac{1}{3} \arctan x + c \qquad \Box \frac{1}{3} \ln \left \frac{x-3}{x+3} \right + c$	
2. Hvis $f(x,y)=x\ln y$, $\mathfrak{a}=(1,e)$ og $\mathfrak{r}=(1,1)$ så er den retningsderiverte $f'(\mathfrak{a};\mathfrak{r})$ lik:	
$\square 0 \qquad \square \frac{1}{2} + \frac{e^2}{2} \qquad \square \frac{1}{2}$	$+\frac{e}{2}$ \Box $1+e^{-1}$ \Box $1-e$
3. Mengden $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ er	
	\square Hverken lukket eller åpen
4. Når $f(x,y) = \int_{x}^{y} e^{\sin t} dt$ er $\frac{\partial f}{\partial x}$ lik:	
$\Box \sin t \qquad \Box -e^{\sin x} \qquad \Box$	$e^{-\sin t}$ \Box $e^{\sin x}$ \Box $\cos y e^{\sin x}$
5. I kulekoordinater (ρ, θ, ϕ) kan likningen $x^2 + y^2 = z^2$ skrives som:	
$\square \rho = 1, \ \theta = \frac{\pi}{2}, \ \phi = \pi \qquad \square \theta = \frac{\pi}{2} \text{ og } \theta = 0 \qquad \square \rho = \theta = \phi$	
$\Box \phi = \frac{\pi}{4} \text{ eller } \phi = \frac{3\pi}{4} \qquad \Box \rho = 1$	
Slutt på Del 1	

Del 2

I DENNE DELEN MÅ DU BEGRUNNE ALLE SVARENE DINE

Oppgave I

Finn integralene

a)
$$\int \frac{dx}{(2005x-1)^2}$$
 b) $\int x^{3/2} \sin(x^{5/2}+1)dx$ c) $\int e^{\sqrt{x}} dx$

Oppgave II

a) Regn ut grenseverdien

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

b) Finn $\frac{\partial f}{\partial x}$ og $\frac{\partial f}{\partial y}$ for $f(x, y, z) = \cos xy + ye^z + \sqrt{x + y + z}$.

Oppgave III

Definer $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R} \text{ ved } f(x,y) = \ln(x^2 + y^2).$

- a) Regn ut f(1,1) og f(e,0). Er f en kontinuerlig funksjon? Forklar svaret ditt.
- b) Tegn tre nivåkurver til f. Skisser grafen til f.
- c) Regn ut gradienten til f. I hvilken retning vokser f hurtigst i punktet (1,1)?

Oppgave IV

Oslo kommune planlegger å bygge et akvarium med volum 5000 m³. Kostnadene er gitt ved:

Fronten – ei glassplate: 1000 nkr. per m². Sidekantene – 3 stk. i stål: 300 nkr. per m². Bunnen – i sement: 500 nkr. per m².

a) Anta glassplata har lengde ℓ og høyde h. Forklar hvorfor det koster

$$f(\ell, h) = 100 \left(13\ell h + \frac{30000}{\ell} + \frac{25000}{h} \right)$$

nkr. å bygge akvariet.

b) Finn de ℓ og h som minimaliserer byggekostnadene. Ikke alle av medlemmene i bystyret har bestått eksamen i MAT1100, så du må huske på å begrunne svaret ditt.