Data Warehousing & OLAP

Excerpt from "Data Mining: Concepts and Techniques", 3rd Ed. Jiawei Han, Micheline Kamber, and Jian Pei Chapter 4

Outline

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Implementation and Usage
- Summary

What is a Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP US. OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - <u>data quality</u>: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Three Data Warehouse Models

Enterprise warehouse

 collects all of the information about subjects spanning the entire organization

Data Mart

- a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

Virtual warehouse

- A set of views over operational databases
- Only some of the possible summary views may be materialized

Extraction, Transformation, and Loading (ETL)

Data extraction

 get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions

Refresh

propagate the updates from the data sources to the warehouse

Metadata Repository

- Meta data is the data defining warehouse objects. It stores:
- Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
- Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
- The algorithms used for summarization
- The mapping from operational environment to the data warehouse
- Business data
 - business terms and definitions, ownership of data, charging policies

Outline

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Implementation and Usage
- Summary

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

Data Cube Measures: Three Categories

- <u>Distributive</u>: if the result derived by applying the function to *n* aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with Marguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

A Concept Hierarchy: Dimension (location)

Multidimensional Data

 Sales volume as a function of product, month, and region

Product Month

Dimensions: *Product, Location, Time* Hierarchical summarization paths

A Star-Net Query Model

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: select and project
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Fig. 4.12 Typic

OLAP Operatio

Outline

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Implementation and Usage
- Summary

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube with L levels? $T = \prod_{i=1}^{n} (L_i + 1)$

Materialization of data cube

- Materialize <u>every</u> (cuboid) (full materialization), none (no materialization), or <u>some</u> (partial materialization)
- Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.

Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations,
 e.g., dice = selection + projection
- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on {brand, province_or_state} with the condition "year = 2004", and there are 4 materialized cuboids available:
 - 1) { year, item_name, city}
 - 2) { year, brand, country}
 - 3) { year, brand, province_or_state}
 - 4) { item_name, province_or_state} where year = 2004 Which should be selected to process the query?

OLAP Server Architectures

Relational OLAP (ROLAP)

- Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middleware
- Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
- Greater scalability
- Multidimensional OLAP (MOLAP)
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers (e.g., Redbricks)
 - Specialized support for SQL queries over star/snowflake schemas

Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

From On-Line Analytical Processing (OLAP) to On Line Analytical Mining (OLAM)

- Why online analytical mining?
 - High quality of data in data warehouses
 - DW contains integrated, consistent, cleaned data
 - Available information processing structure surrounding data warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 - OLAP-based exploratory data analysis
 - Mining with drilling, dicing, pivoting, etc.
 - On-line selection of data mining functions
 - Integration and swapping of multiple mining functions, algorithms, and tasks

Summary

- Data warehousing: A multi-dimensional model of a data warehouse
 - A data cube consists of dimensions & measures
 - Star schema, snowflake schema, fact constellations
 - OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Implementation: Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - OLAP query processing
 - OLAP servers: ROLAP, MOLAP, HOLAP

References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT Press, 1999.
- J. Han. Towards on-line analytical mining in large databases. ACM SIGMOD Record, 27:97-107, 1998.
- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
 SIGMOD'96
- J. Hellerstein, P. Haas, and H. Wang. Online aggregation. SIGMOD'97

References (II)

- C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley, 2003
- W. H. Inmon. Building the Data Warehouse. John Wiley, 1996
- R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2ed. John Wiley, 2002
- P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record, 24:8–11, Sept. 1995.
- P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD'97
- Microsoft. OLEDB for OLAP programmer's reference version 1.0. In http://www.microsoft.com/data/oledb/olap, 1998
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE'94
- A. Shoshani. OLAP and statistical databases: Similarities and differences. PODS'00.
- D. Srivastava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering queries with aggregation using views. VLDB'96
- P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.
- J. Widom. Research problems in data warehousing. CIKM'95
- K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient Compression, ACM Trans.
 on Database Systems (TODS), 31(1): 1-38, 2006