

Лекция №14. Первые интегралы.

Теорема (о неявной функции)

Пусть дана система уравнений

$$\varphi_i(y_1,\ldots,y_n,z)=0, \quad i=1,\ldots,n \quad z\in \mathbb{R}^m \quad m\geqslant 1.$$
 (1)

Функции $\varphi_i \in C^1$ в окрестности точки $M(y_1^0,\dots,y_n^0,z^0)$, в точке M уравнения (1) выполнены и Якобиан $|\frac{\partial \varphi_j}{\partial \varphi_j}|_{i,j=1,\dots,n} \neq 0$. Тогда в некоторой окрестности точки z^0 систему (1) можно разрешить относительно y_1,\dots,y_n , а именно существуют такие непрерывные функции $y_1(z),\dots,y_n(z)$, что для $i=1,\dots,n$ в окрестности точки z^0

$$\varphi_i(y_1(z), \dots, y_n(z), z) \equiv 0, \quad y_i(z^0) = y_i^0.$$

Функции y_1, \ldots, y_n – определяются однозначно и являются функциями класса C^1 .

Определение

Первым интегралом системы

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x}), \quad (t, \mathbf{x}) \in D_0, \mathbf{f} \in C^1$$
 (2)

в области $D \subset D_0$ называется функция $v(t, x_1, \ldots, x_n) \in C^1$, сохраняющая постоянное значение вдоль каждой проходящей в D интегральной кривой системы (2).

Знание одного первого интеграла позволяет уменьшить число неизвестных функций в исследуемой системе. Знание n независимых первых интегралов позволяет получить решение системы не прибегая к интегрированию.

В прикладных задачах первые интегралы часто имеют физический смысл законов сохранения.

Геометрический смысл первого интеграла.

Пусть $\frac{\partial v}{\partial x_i} \neq 0$. Тогда равенство $v(t,x_1,\ldots,x_n)=\mathrm{c}$, c – одно из значений, которые может принимать функция v в области D, определяет в пространстве (t,\boldsymbol{x}) n-мерную поверхность. И эта поверхность целиком состоит из интегральных кривых системы (2).

Если $\frac{\partial v}{\partial x_i} \neq 0$, то по теореме о неявной функции можно выразить x_i через оставшиеся переменные и подставить это выражение во все уравнения системы (2). Тем самым получим систему с меньшим числом неизвестных функций (быть может в меньшей области).

Для любой функции $\varphi(y_1,\ldots,y_k)\in C^1$ и первых интегралов v_1,\ldots,v_k сложная функция $\varphi(v_1,\ldots,v_k)$ —тоже первый интеграл. Таким образом первых интегралов бесконечно много.

Определение

Первые интегралы v_1,\dots,v_k называются функционально независимыми, если ранг матрицы $(\frac{\partial v_i}{\partial x_j})_{i=1...k,j=1...n}$ равен k.

Из линейной зависимости функции следует их функциональная зависимость. Обратное неверно, например, функции $v_1=(t-x_1)$, $v_2=(t-x_1)^2$ функционально зависимы, но линейно независимы в любой области.

Теорема

В окрестности любой точки $M(t_0, x_1^0, \dots, x_n^0)$ области D_0 существует n независимых первых интегралов системы (2).

Доказательство.

Возьмем произвольную точку $(t_0, c_1, \ldots, c_n) \in D_0$. По теореме Коши существует единственное решение системы (2), проходящее через эту точку. Обозначим его

$$x_i = \varphi_i(t, c_1, \dots, c_n), \quad i = 1, \dots, n.$$
(3)

По теореме о непрерывной зависимости решений от начальных условий функции φ_i – функции класса C^1 . Так как

$$\varphi_i(t, c_1, \dots, c_n) = c_i, \quad i = 1, \dots, n,$$

то при $t=t_0$ матрица $\left(\frac{\partial \varphi_i}{\partial c_j}\right)_{i,j=1,\dots,n}$ — единичная и ее определитель (якобиан функций $\varphi_1,\dots,\varphi_n$) отличен от 0.

По теореме о неявных функциях можно разрешить систему (3) относительно c_1,\dots,c_n в некоторой окрестности точки M

$$c_i = v_i(t, x_1, \dots, x_n), \quad i = 1, \dots, n.$$
 (4)

Функции v_i — независимые первые интегралы системы (2). Действительно, по теореме о неявных функциях $v_i \in C^1$. Числа c_1,\ldots,c_n — одни и те же во всех точках интегральной кривой, проходящей через точку (t_0,c_1,\ldots,c_n) . Значит v_i постоянны вдоль интегральных кривых и являются первыми интегралами. При любом фиксированном t вблизи t_0 системы функций (3) и (4) взаимно обратны поэтому произведение их якобианов

$$\Delta_1 = \left| \frac{\partial \varphi_i}{\partial c_i} \right|$$
 и $\Delta_2 = \left| \frac{\partial v_i}{\partial x_i} \right|$

равно единицы.

Значит $\Delta_2 \neq 0$, ранг матрицы $(\partial v_i/\partial x_j)$ равен n, и первые интегралы v_1, \ldots, v_n независимы.

Теорема

Пусть v_1,\ldots,v_n – независимые первые интегралы системы (2) в области D. Пусть точка $M(t_0,x_1^0,\ldots,x_n^0)\in D$ и $v_i(M)=\mathbf{c}_i,$ $i=1,\ldots,n$. Тогда равенства

$$v_i(t, x_1, \dots, x_n) = c_i, \quad i = 1, \dots, n$$

$$(5)$$

определяют решение системы (2) с начальными условиями $x_i(t_0)=x_i^0,\ i=1,\dots,n.$

Доказательство.

Так как v_1,\dots,v_n — независимые первые интегралы $\det(\frac{\partial v_i}{\partial x_j})_{i,j=1,\dots,n} \neq 0$ в точке M. По теореме о неявных функциях систему (5) можно разрешить относительно x_1,\dots,x_n в некоторой окрестности точки M

$$x_j = \varphi_j(t, c_1, \dots, c_n), \quad j = 1, \dots, n$$
(6)

Эти функции удовлетворяют системе (5), так как получены из нее. Решение системы (2) удовлетворяет (5) при $t=t_0$ в силу выбора c_1,\ldots,c_n , оно удовлетворяет (5) и при других t, так как первые интегралы постоянны вдоль решения.

Теорема

Пусть v_1,\ldots,v_n – независимые первые интегралы системы (2) в окрестности U точки $M^*(t_0,x_1^*,\ldots,x_n^*)$ и пусть w – первый интеграл системы (2). Тогда найдется функция $F\in C^1$ такая, что $w=F(v_1,\ldots,v_n)$ в некоторой окрестности точки M^* .

Доказательство.

Пусть точка $M(t_0,x_1^0,\dots,x_n^0)\in U$ и $c_i=v_i(M),\,i=1,\dots,n.$ Тогда равенства

$$c_i = v_i(t, x_1, \dots, x_n)$$

позволяют по теореме о неявной функции получить решение

$$x_j = \varphi_j(t, c_1, \ldots, c_n),$$

проходящее через точку М. Такие решения заполняют некоторую окрестность $U_1 \subset U$ точки M^* . Вдоль каждого решения имеем $w={\rm const},$ то есть

$$w(t, \varphi_1(t, c_1, \dots, c_n), \dots, \varphi_n(t, c_1, \dots, c_n)) \equiv$$

$$\equiv w(t_0, \varphi_1(t_0, c_1, \dots, c_n), \dots, \varphi_n(t_0, c_1, \dots, c_n)).$$

Обозначим правую часть через $F(c_1, ..., c_n)$, $F \in C^1$. Переходя от $c_1, ..., c_n$ к $x_1, ..., x_n$ и к $v_1, ..., v_n$, получаем

$$w(t,x_1,\ldots,x_n)\equiv F(v_1(t,x_1,\ldots,x_n),\ldots,v_n(t,x_1,\ldots,x_n)).$$

Первые интегралы автономной системы.

Теорема

B окрестности любой неособой точки система

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}), \quad \boldsymbol{f} \in C^1$$

имеет n-1 независимых первых интегралов, не содержащих t.