CS711: Introduction to Game Theory and Mechanism Design

Teacher: Swaprava Nath

Mixed Strategies

• iterated elimination of dominated strategies

- iterated elimination of dominated strategies
- preservation of equilibrium

- iterated elimination of dominated strategies
- preservation of equilibrium
- situation where stability and security coincide two player zero sum games

- iterated elimination of dominated strategies
- preservation of equilibrium
- situation where stability and security coincide two player zero sum games
- discussions limited to pure strategies but an equilibrium may not exist

Penalty shootout game

•	S\G	·	
	L	-1,1	1,-1
	R	1,-1	-1,1

S∖G	L	R
L	-1,1	1,-1
R	1,-1	-1,1

• probability distribution over the set of strategies

	S\G	$\frac{4}{5}$	1/5 R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

• mixed strategy of a player

	S\G	$\frac{4}{5}$	$\frac{1}{5}$ R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$

	S\G	$\frac{4}{5}$	$\frac{\frac{1}{5}}{R}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i

	S\G	$\frac{4}{5}$	$\frac{1}{5}$ R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player \overline{i}
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$

	S\G	$\frac{4}{5}$	1/5 R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - \triangleright σ_i is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $\triangleright \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$

	S∖G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- Utility of player i at a mixed strategy profile (σ_i, σ_{-i}) is

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- Utility of player i at a mixed strategy profile (σ_i, σ_{-i}) is

$$u_i(s_1,\ldots,s_n)$$

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - \triangleright σ_i is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- ullet Utility of player i at a mixed strategy profile (σ_i, σ_{-i}) is

$$(\sigma_1(s_1) \times \ldots \times \sigma_n(s_n)) u_i(s_1, \ldots, s_n)$$

	S\G	$\frac{4}{5}$	$\frac{\frac{1}{5}}{R}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- ullet Utility of player i at a mixed strategy profile (σ_i,σ_{-i}) is

$$\sum_{(s_1,\ldots,s_n)\in S_1\times\ldots\times S_n} (\sigma_1(s_1)\times\ldots\times\sigma_n(s_n)) u_i(s_1,\ldots,s_n)$$

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player i
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- ullet Utility of player i at a mixed strategy profile (σ_i, σ_{-i}) is

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{(s_1, \dots, s_n) \in S_1 \times \dots \times S_n} (\sigma_1(s_1) \times \dots \times \sigma_n(s_n)) u_i(s_1, \dots, s_n)$$

probability distribution over the set of strategies

	S∖G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- mixed strategy of a player
 - ▶ finite set A, $\Delta(A)$ is defined as the set of all probability distributions over A i.e., $\Delta(A) = \{p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1\}$
 - $ightharpoonup \sigma_i$ is a mixed strategy of player \overline{i}
 - $\sigma_i \in \Delta(S_i)$ which implies
 - \bullet $\sigma_i: S_i \mapsto [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- non-cooperative game players pick their strategies independently
- ullet the joint probability that player 1 picks s_1 and 2 picks $s_2=\sigma_1(s_1) imes\sigma_2(s_2)$
- ullet Utility of player i at a mixed strategy profile (σ_i, σ_{-i}) is

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{(s_1, \dots, s_n) \in S_1 \times \dots \times S_n} (\sigma_1(s_1) \times \dots \times \sigma_n(s_n)) u_i(s_1, \dots, s_n)$$

overload of the notation u_i

	S\G	$\frac{4}{5}$	1 5 R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

$$\bullet$$
 $\sigma_1=(rac{2}{3},rac{1}{3})$ and $\sigma_2=(rac{4}{5},rac{1}{5})$

	S\G	4 5 L	$\frac{\frac{1}{5}}{R}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- \bullet $\sigma_1=(\frac{2}{3},\frac{1}{3})$ and $\sigma_2=(\frac{4}{5},\frac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$

	S\G	$\frac{4}{5}$	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- $\sigma_1 = (\frac{2}{3}, \frac{1}{3})$ and $\sigma_2 = (\frac{4}{5}, \frac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$

	S\G	$\frac{4}{5}$	$\frac{1}{5}$ R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- $\sigma_1 = (\frac{2}{3}, \frac{1}{3})$ and $\sigma_2 = (\frac{4}{5}, \frac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\bullet \ \ \frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$

	S\G	4 5 L	$\frac{\frac{1}{5}}{R}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- \bullet $\sigma_1=(\frac{2}{3},\frac{1}{3})$ and $\sigma_2=(\frac{4}{5},\frac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$
- utility at a mixed strategy profile (σ_1, σ_2) is an expected utility taken w.r.t. the probability distribution $\sigma_1 \cdot \sigma_2$

	S\G	4 5 L	$\frac{\frac{1}{5}}{R}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- \bullet $\sigma_1=(rac{2}{3},rac{1}{3})$ and $\sigma_2=(rac{4}{5},rac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$
- utility at a mixed strategy profile (σ_1, σ_2) is an expected utility taken w.r.t. the probability distribution $\sigma_1 \cdot \sigma_2$
- all the properties of expectation holds e.g., linearity

	S\G	$\frac{4}{5}$	1 5 R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- \bullet $\sigma_1=(rac{2}{3},rac{1}{3})$ and $\sigma_2=(rac{4}{5},rac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$
- utility at a mixed strategy profile (σ_1, σ_2) is an expected utility taken w.r.t. the probability distribution $\sigma_1 \cdot \sigma_2$
- all the properties of expectation holds e.g., linearity
- utility at the strategy profile $(\lambda \sigma_i + (1 \lambda)\sigma_i', \sigma_{-i})$ is given by

$$u_i(\lambda \sigma_i + (1 - \lambda)\sigma'_i, \sigma_{-i}) =$$

	S\G	$\frac{4}{5}$	$\frac{1}{5}$ R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- \bullet $\sigma_1=(rac{2}{3},rac{1}{3})$ and $\sigma_2=(rac{4}{5},rac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$
- utility at a mixed strategy profile (σ_1, σ_2) is an expected utility taken w.r.t. the probability distribution $\sigma_1 \cdot \sigma_2$
- all the properties of expectation holds e.g., linearity
- utility at the strategy profile $(\lambda \sigma_i + (1-\lambda)\sigma_i', \sigma_{-i})$ is given by

$$u_i(\lambda \sigma_i + (1 - \lambda)\sigma_i', \sigma_{-i}) = \lambda u_i(\sigma_i, \sigma_{-i}) + (1 - \lambda)u_i(\sigma_i', \sigma_{-i}), \forall \sigma_{-i} \in \underset{i \neq i}{\times} \Delta(S_j)$$

	S\G	$\frac{4}{5}$	1/5 R
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- $\sigma_1 = (\frac{2}{3}, \frac{1}{3})$ and $\sigma_2 = (\frac{4}{5}, \frac{1}{5})$
- $u_1(\sigma_1, \sigma_2) =$
- $\frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (-1)$
- $u_2(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{5} \cdot (1)$
- utility at a mixed strategy profile (σ_1, σ_2) is an expected utility taken w.r.t. the probability distribution $\sigma_1 \cdot \sigma_2$
- all the properties of expectation holds e.g., linearity
- utility at the strategy profile $(\lambda \sigma_i + (1 \lambda)\sigma'_i, \sigma_{-i})$ is given by

$$u_i(\lambda \sigma_i + (1 - \lambda)\sigma_i', \sigma_{-i}) = \lambda u_i(\sigma_i, \sigma_{-i}) + (1 - \lambda)u_i(\sigma_i', \sigma_{-i}), \forall \sigma_{-i} \in \underset{j \neq i}{\underbrace{\times}} \Delta(S_j)$$

formal proof left as exercise

Definition (Mixed Strategy Nash Equilibrium)

MSNE is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ s.t.

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i' \in \Delta(S_i), \ \forall i \in N.$$

relation of PSNE and MSNE?

Definition (Mixed Strategy Nash Equilibrium)

MSNE is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ s.t.

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i' \in \Delta(S_i), \ \forall i \in N.$$

- relation of PSNE and MSNE?
- PSNE ⇒ MSNE

Definition (Mixed Strategy Nash Equilibrium)

MSNE is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ s.t.

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i' \in \Delta(S_i), \ \forall i \in N.$$

- relation of PSNE and MSNE?
- PSNE ⇒ MSNE
- equivalence of the definition with pure strategies on the RHS

Definition (Mixed Strategy Nash Equilibrium)

MSNE is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ s.t.

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i' \in \Delta(S_i), \ \forall i \in N.$$

- relation of PSNE and MSNE?
- PSNE ⇒ MSNE
- equivalence of the definition with pure strategies on the RHS

Theorem

Consider an NFG $G=\langle N,(S_i)_{i\in N},(u_i)_{i\in N}\rangle$. A mixed strategy profile $(\sigma_i^*,\sigma_{-i}^*)$ is an MSNE if and only if

$$u_i(\sigma_i^*, \sigma_{-i}^*) \geqslant u_i(s_i, \sigma_{-i}^*) \ \forall s_i \in S_i, \ \forall i \in N.$$

• Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNF

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- ullet (\Leftarrow) pick any arbitrary mixed strategy σ_i for i

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- (\Leftarrow) pick any arbitrary mixed strategy σ_i for i
- We can write

$$u_i(\sigma_i, \sigma_{-i}^*)$$

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- (\Leftarrow) pick any arbitrary mixed strategy σ_i for i
- We can write

$$u_i(\sigma_i, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i}^*)$$

Proof

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- (\Leftarrow) pick any arbitrary mixed strategy σ_i for i
- We can write

$$u_i(\sigma_i, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i}^*)$$

$$\leq \sum_{s_i \in S_i} \sigma_i(s_i) u_i(\sigma_i^*, \sigma_{-i}^*)$$

Proof

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- (\Leftarrow) pick any arbitrary mixed strategy σ_i for i
- We can write

$$u_{i}(\sigma_{i}, \sigma_{-i}^{*}) = \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) u_{i}(s_{i}, \sigma_{-i}^{*})$$

$$\leq \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*})$$

$$= u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i})$$

Proof

- Proof: (\Rightarrow) s_i is a special case of the mixed strategy, where the mixed strategy of player i is degenerate at s_i , hence the inequality holds by definition of MSNE
- (\Leftarrow) pick any arbitrary mixed strategy σ_i for i
- We can write

$$\begin{aligned} u_{i}(\sigma_{i}, \sigma_{-i}^{*}) &= \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) u_{i}(s_{i}, \sigma_{-i}^{*}) \\ &\leqslant \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) \\ &= u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) \\ &= u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) \end{aligned}$$

	S∖G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

• Is the mixed strategy profile an MSNE?

	S∖G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players

	S∖G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players
- Expected utility for player 2 from L = $\frac{2}{3}(1) + \frac{1}{3}(-1) = 1/3$, and that from R = -1/3

	S\G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players
- Expected utility for player 2 from L = $\frac{2}{3}(1)+\frac{1}{3}(-1)=1/3$, and that from R = -1/3
- Expected utility will increase if player 2 moves probability mass from R to L

	S\G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players
- \bullet Expected utility for player 2 from L $=\frac{2}{3}(1)+\frac{1}{3}(-1)=1/3,$ and that from R =-1/3
- Expected utility will increase if player 2 moves probability mass from R to L
- ⇒ this is not an MSNE

	S∖G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players
- \bullet Expected utility for player 2 from L $=\frac{2}{3}(1)+\frac{1}{3}(-1)=1/3,$ and that from R =-1/3
- Expected utility will increase if player 2 moves probability mass from R to L
- ⇒ this is not an MSNE
- Hints at some balance among the expected utilities at different strategies

	S∖G	$\frac{4}{5}$ L	$\frac{1}{5}$
$\frac{2}{3}$	L	-1,1	1,-1
$\frac{1}{3}$	R	1,-1	-1,1

- Is the mixed strategy profile an MSNE?
- To prove, one needs to show if there exists or does not exist a better mixed strategy for any of the players
- Expected utility for player 2 from L = $\frac{2}{3}(1)+\frac{1}{3}(-1)=1/3$, and that from R = -1/3
- Expected utility will increase if player 2 moves probability mass from R to L
- ⇒ this is not an MSNE
- Hints at some balance among the expected utilities at different strategies

	S\G	$\frac{1}{2}$	$\frac{1}{2}$ R
	L	-1,1	1,-1
-	R	1,-1	-1,1

Repeat the calculations

support of a mixed strategy

support of a mixed strategy

Definition (Support of a Mixed Strategy)

The support of a mixed strategy σ_i is the subset of the strategy space of i on which the mixed strategy σ_i has positive mass, and is denoted by

$$\delta(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \}.$$

support of a mixed strategy

Definition (Support of a Mixed Strategy)

The support of a mixed strategy σ_i is the subset of the strategy space of i on which the mixed strategy σ_i has positive mass, and is denoted by

$$\delta(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \}.$$

• using the definition of support, we find a characterization of the MSNE

support of a mixed strategy

Definition (Support of a Mixed Strategy)

The support of a mixed strategy σ_i is the subset of the strategy space of i on which the mixed strategy σ_i has positive mass, and is denoted by

$$\delta(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \}.$$

• using the definition of support, we find a characterization of the MSNE

Theorem (Characterization of a MSNE)

support of a mixed strategy

Definition (Support of a Mixed Strategy)

The support of a mixed strategy σ_i is the subset of the strategy space of i on which the mixed strategy σ_i has positive mass, and is denoted by

$$\delta(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \}.$$

• using the definition of support, we find a characterization of the MSNE

Theorem (Characterization of a MSNE)

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ is a MSNE iff $\forall i \in N$

1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and

support of a mixed strategy

Definition (Support of a Mixed Strategy)

The support of a mixed strategy σ_i is the subset of the strategy space of i on which the mixed strategy σ_i has positive mass, and is denoted by

$$\delta(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \}.$$

• using the definition of support, we find a characterization of the MSNE

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- 2. $u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- $\mathbf{2.} \ u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \not\in \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	T
Н	1,-1	-1,1
Т	-1,1	1,-1

Theorem (Characterization of a MSNE)

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ is a MSNE iff $\forall i \in N$

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- $\mathbf{2.} \ u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \not\in \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	Т
Н	1,-1	-1,1
Т	-1,1	1,-1

 \bullet Let the probability of player 1 choosing H be p – similarly, for player 2, let that probability be q

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- $2. \ u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \not \in \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	Т
Н	1,-1	-1,1
Т	-1,1	1,-1

- ullet Let the probability of player 1 choosing H be p similarly, for player 2, let that probability be q
- support = $({H},{H})$

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- 2. $u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	T
Н	1,-1	-1,1
Т	-1,1	1,-1

- ullet Let the probability of player 1 choosing H be p similarly, for player 2, let that probability be q
- support = $({H},{H})$
 - for player 2, $s_2 = T$ violates condition 2

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- $2. \ u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \not \in \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	T
Н	1,-1	-1,1
Т	-1,1	1,-1

- ullet Let the probability of player 1 choosing H be p similarly, for player 2, let that probability be q
- support = $({H},{H})$
 - for player 2, $s_2 = T$ violates condition 2
- support = $({H},{H,T})$

Theorem (Characterization of a MSNE)

- 1. $u_i(s_i, \sigma_{-i}^*)$ is the same for all $s_i \in \delta(\sigma_i^*)$, and
- 2. $u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \ \forall \ s_i \in \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$
- Penalty shootout game / matching coins game

$1 \setminus 2$	Н	T
Н	1,-1	-1,1
Т	-1,1	1,-1

- ullet Let the probability of player 1 choosing H be p similarly, for player 2, let that probability be q
- support = $({H},{H})$
 - for player 2, $s_2 = T$ violates condition 2
- support = $({H},{H,T})$
 - the expected utility for player 2 has to be equal for H and T cannot happen violates condition 1

• support =
$$({H,T},{H,T})$$

- support = $({H,T},{H,T})$
 - condition 2 is vacuously satisfied

- support = $({H,T},{H,T})$
 - condition 2 is vacuously satisfied
 - lacktriangle consider player 1 chooses H w.p. p and player 2 chooses H w.p. q in the MSNE

- support = $({H,T},{H,T})$
 - condition 2 is vacuously satisfied
 - lacktriangle consider player 1 chooses H w.p. p and player 2 chooses H w.p. q in the MSNE
 - \blacktriangleright condition 1 for player 1: $u_1(H,(q,1-q))=u_1(T,(q,1-q)),$ gives the value of q

- support = $({H,T},{H,T})$
 - condition 2 is vacuously satisfied
 - ightharpoonup consider player 1 chooses H w.p. p and player 2 chooses H w.p. q in the MSNE
 - condition 1 for player 1: $u_1(H,(q,1-q))=u_1(T,(q,1-q))$, gives the value of q
 - ▶ condition 1 for player 2: $u_2((p, 1-p), H) = u_2((p, 1-p), T)$, gives the value of p

- support = $({H,T},{H,T})$
 - condition 2 is vacuously satisfied
 - $lue{}$ consider player 1 chooses H w.p. p and player 2 chooses H w.p. q in the MSNE
 - condition 1 for player 1: $u_1(H,(q,1-q))=u_1(T,(q,1-q))$, gives the value of q
 - ▶ condition 1 for player 2: $u_2((p, 1-p), H) = u_2((p, 1-p), T)$, gives the value of p
 - ▶ hence the MSNE for this game $((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}))$

Two more exercises (in class)

• Football or Cricket game

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

Two more exercises (in class)

• Football or Cricket game

$1 \backslash 2$	F	C
F	2,1	0,0
С	0,0	1,2

• An arbitrary added strategy for player 2

$1 \setminus 2$	F	C	D
F	2,1	0,0	1,1
С	0,0	1,2	2,0