【パラメータ決定】

- ① マニピュレータ姿勢の plot を見ながら経験的に目標姿勢(相対系)を決定する.
 - · ideal_theta_demo.m

目標姿勢ファイルの作成. (ideal_theta_0000_0.csv)

· ideal arm theta demo.m

目標姿勢の plot

- ② 目標姿勢を絶対系に変換.
 - · ideal_theta_abs.m

ideal_theta_0000_0.csv を入力し, ideal_theta_0000_0_abs.csv を出力.

- ③ 目標姿勢 (ideal_theta_0000_0_abs.csv) に対して, 主成分分析.
 - · main analysis 2.m

ideal_theta_0000_0_abs.csv を入力し、以下のファイルを出力.

(赤字のファイルを以降で引き続き使用する.)

main matrix.csv:主成分行列

main_Y.csv:標準化中の Synergy (Y)

main_avg.csv:目標姿勢の平均値

main_Y2.csv:標準化から戻した Synergy

main_Y0.csv: 非負値化のオフセット

 $main_A_hukugen.csv$: 主成分で実現できる姿勢($\theta = S \sigma + \theta 0$ で表す θ)

main_ratios_d.csv: Synergy の寄与率

main_theta0.csv:自然状態姿勢(Y0+avg)

- ④ 主成分行列を相対系に変換
 - · matrix_abs_s.m

上記赤文字のファイルを入力し、main_matrix_abs_s.csv, main_theta0_abs_s.csv を出力.

· theta0 arm.m

main theta0 abs s.csv を入力し、自然状態姿勢を plot.

- ⑤ 主成分行列にフィルタリング
 - · matrix lowpass.m

main_theta0_abs_s.csv を入力し、フィルタリングをかけて main_matrix_lowpass.csv を 出力.

- ・A_hukugen_lowpass.m main_matrix_lowpass.csv から、主成分で実現できる姿勢(main_A_hukugen2.csv)を出力.
- ・arm_theta_hukugen_abs_lowpass.m main_A_hukugen2.csv を用いて、姿勢を plot

⑥ パラメータ設計

・pasig_matrix_abs_1022.m main_matrix_lowpass.csv, main_Y2.csv を入力し, ワイヤ経路 (pasig_loop2.csv), ワイヤ張力 (pasig_T.csv) を出力

⑦ 姿勢変化を plot

・arm_pin_kyodou_check_2wire_0902_offset_abs.m 姿勢変化の動画,最終姿勢を plot