Release 1 Documentation

Project Name: Cloud Diagram Translation & Reverse Engineering

Team Members & Responsibilities:

- Shambhavi Singh Research and implementation of prompt engineering techniques.
- Akshita Arora Networking diagram analysis and structured prompt development.
- Aamish Samotra Dataset creation and testing methodologies.
- Lida Wei Small-scale fine-tuning experiments and comparative analysis.

1. Objectives

The primary goal of Release 1 is to establish a foundation for translating natural language descriptions into cloud networking diagrams. This includes:

- Developing structured **prompt engineering** strategies.
- Identifying critical cloud networking elements.
- Creating a sample dataset for **model training and evaluation**.
- Conducting a **preliminary fine-tuning feasibility study**.

2. Deliverables

2.1 Core Functionalities

- **Structured Prompt Engineering**: Develop a set of structured prompts to generate accurate cloud diagrams.
- **Sample Dataset Development**: Curate a dataset of cloud network descriptions mapped to corresponding visual representations.
- **Initial Diagram Generation**: Generate diagrams using **Mermaid.js** and **Graphviz** based on prompt responses.
- **Reverse Translation Assessment**: Outline the methodology to convert diagrams back into textual descriptions.
- **Fine-Tuning Feasibility Study**: Conduct a small-scale test to compare the effectiveness of fine-tuning vs. prompt engineering.

3. Task Breakdown

3.1 Tasks Assigned to Team Members

Task	Description	Assigned To	Expected Outcome
Research Prompt Engineering	Study best practices for structured prompt creation.	Team Member 1	Documented prompt templates.
Identify Key Networking Elements	Define essential cloud networking components (subnets, IPs, ports, etc.).	Team Member 2	List of core networking concepts.
Create Sample Dataset	Develop a dataset of cloud network descriptions and corresponding diagrams.	Team Member 3	Sample dataset for testing.
Fine-Tuning Feasibility Study	Conduct a test to compare prompting vs. fine-tuning.	Team Member 4	Report on fine-tuning effectiveness.
Diagram Rendering via Mermaid.js	Implement code to generate diagrams using prompts.	Team Member 1 & 2	Working model for diagram rendering.
Reverse Translation Framework	Define an approach for converting diagrams back to text.	Team Member 3 & 4	Draft methodology for reverse translation.

4. Testing & Validation

- **Prompt Validation:** Run test cases to assess prompt accuracy in generating diagrams.
- Dataset Evaluation: Ensure the sample dataset covers diverse networking scenarios.
- **Reverse Translation Check:** Evaluate how accurately diagrams can be converted back to textual descriptions.
- **Fine-Tuning Impact:** Compare model performance before and after fine-tuning.

5. Risks & Mitigation Strategies

Risk	Impact	Mitigation Strategy
Inaccurate diagram generation	High	Refine prompt structures and iterate on test cases.
Lack of sufficient training data	Medium	Expand dataset by incorporating real-world network topologies.
Fine-tuning computational cost	High	Conduct feasibility tests before full-scale fine-tuning.
Reverse translation inconsistency	Medium	Implement rule-based validation for text outputs.
inconsistency	1110010111	implement rate outed variation for tent outputs.

6. Next Steps

- **Refine Prompt Engineering** based on test results.
- **Expand Dataset** with additional cloud network cases.
- **Prototype Reverse Translation** using structured input-output pairs.
- **Evaluate Fine-Tuning Impact** to determine long-term feasibility.
- Client Feedback Integration for iterative improvements.

7. Conclusion

Release 1 establishes the foundational framework for cloud diagram translation. The primary focus is on **prompt engineering**, **dataset creation**, **and feasibility analysis for fine-tuning**. Based on the outcomes of this release, the team will refine strategies for the subsequent development phases.