

Photogrammetry & Robotics Lab

Control for Self-Driving Cars

Jens Behley, Nived Chebrolu

Part of the Course: Techniques for Self-Driving Cars by C. Stachniss, J. Behley, N. Chebrolu, B. Mersch, I. Bogoslavskyi

Self-Driving Car Scenario

Control Strategy

How to follow a trajectory?

What controls are needed?

Understanding Motion

Kinematic Modelling

2D Bicycle Model

Rolling Condition for Wheels

Kinematic Constraint

$$v = r\omega$$

Instantaneous Center of Curvature

For rolling motion to occur, each wheel has to move along its y-axis

Bicycle Model Kinematics

Desired point is center of rear axle

Bicycle Model

State:

$$[x, y, \theta, \delta]^{T}$$

$$\delta = tan^{-1}(\frac{L}{R})$$

Kinematics:

$$\dot{x} = v \cos(\theta)$$
$$\dot{y} = v \sin(\theta)$$

$$\dot{\theta} = \frac{v \tan(\delta)}{L}$$

Control:

Bicycle Model

Constraints:

 $v < v_{\text{max}}$

$$\delta < |\delta_{\rm max}|$$

Kinematic Vs. Dynamic Modeling

Vehicle Actuation

Steering Model

Vehicle Actuation

Throttle/Brake

Feedback Control

Open Loop vs. Feedback Control

Feedback Control

Feedback Control

PID Controller

Position Control Task

- Move the robot to the desired goal location x_{des}
- How to generate the suitable control signal u?
- Robot location estimated via sensor measurements z

Kinematics For A Point Mass

- Consider the robot as a point mass
- Moving freely in 1D space

Position Control Task

• Position control task is to reach the desired position $x_{des} = 1$ and stop there

• At each time instant, we apply a control u_t

• How to achieve this task using a PID controller?

Kinematics of a rigid body

- System model : $x_t = x_{t-1} + \dot{x}\Delta t$
- Initial state: $x_0 = 0, \dot{x}_0 = 0$

Proportional control law

$$u_t = K_P(x_{des} - x_t)$$

• Proportional-derivative control law $u_t = K_P(x_{des} - x_t) + K_D(\dot{x}_{des} - \dot{x}_t)$

- Proportional-derivative control law $u_t = K_P(x_{des} x_t) + K_D(\dot{x}_{des} \dot{x}_t)$
- What happens with high gains?

- Proportional-derivative control law $u_t = K_P(x_{des} x_t) + K_D(\dot{x}_{des} \dot{x}_t)$
- What happens with low gains?

- What happens when there is a systematic bias?
- Ex: robot wheels are not same size ...

• Idea: Estimate the systematic error ...

$$u_{t} = K_{P}(x_{des} - x_{t}) + K_{D}(\dot{x}_{des} - \dot{x}_{t})$$

$$+K_{I} \int_{0}^{t} (x_{des} - x_{t}) dt$$

PID Controller

• Idea: Estimate the systematic error ...

PID Controller

• Idea: Estimate the systematic error ...

$$u_{t} = K_{P}(x_{des} - x_{t}) + K_{D}(\dot{x}_{des} - \dot{x}_{t}) + K_{I} \int_{0}^{t} (x_{des} - x_{t}) dt$$

- Reasonable for steady state system
- May be dangerous to error build up (wind-up effect)

PID Control - Summary

- P = simple proportional control, sufficient in most cases.
- PD = reduce overshoot (e.g. when acceleration can be controlled)
- PI = compensate for systematic error/bias
- PID = combination of the above properties.

Following A Trajectory

How to follow a trajectory?

Longitudinal Control

Longitudinal PID Controller

Longitudinal PID Controller

Longitudinal PID Controller throttle **Feedforward Controller** velocity v_{ref} Sensor

Lateral Control

Cross-track error

Lateral Control

Heading/orientation error

Lateral PID Controller

Lateral PID Controller

Geometric Steering Control

Cross-track error

Stanley Controller

 Used successfully in the DARPA Grand Challenge

Stanley Controller

- Reduce both the error in heading and the nearest point on the reference trajectory
- Align Heading:

$$\delta = \psi$$

Cross-track error:

$$\delta = \tan^{-1} \left(\frac{k \, e_{cte}}{v} \right)$$

Steering limit:

$$\delta \in [\delta_{min}, \delta_{max}]$$

Stanley Controller

Combined control law:

$$\delta = \psi + \tan^{-1} \left(\frac{k \, e_{cte}}{v} \right)$$

$$\delta \in [\delta_{min}, \delta_{max}]$$

$$e_{cte}$$

Pros and Cons of Reactive Control

Pros

- Simple control rules
- Highly efficient to compute

Cons

- Cannot account for external constraints
- Gains must be hand-tuned
- Separation into longitudinal and lateral controllers ignores coupling
- Ignores future decisions

Advanced Control Paradigms

Model Predictive Control (MPC)

- Learning-based Approaches
 - Reinforcement Learning
 - Imitation Learning

Model Predictive Control (MPC)

Control as Optimization

- As before:
 - Plan trajectory → Follow trajectory
- Use optimization to find control commands using a simulation
- MPC uses predicted vehicle states to find optimal controls

More technical details in next lectures

Pros and Cons of MPC

Pros

- Preview accounts for future decisions
- Systematic procedure to derive controllers even for complex systems

Cons

- Higher computational and memory requirements than reactive controllers
- Still dependent on planned trajectory

Reinforcement Learning

Modular Approach

Perception

Planner

Controller

- Modular approach decomposes driving into components
- Decomposition allows separate development

Learning a Control Policy

- Learning a controller has potential to have improved controls
- Less assumptions & dependence on trajectories

Example: High-level planning → Vehicle Controls

- Provide only waypoints by planner
- Learn policy to reach waypoints

RL in a Nutshell

- Agent interacts with environment via action A_t based on state S_t
- Agent receives reward R_{t+1} and observes next state S_{t+1}

Task: Learn Policy

• Goal: Learn policy $\pi(S_t) = A_t$ that maximizes reward

- Examples
 - Positive reward (+10) for reaching goal location, negative reward (-1) for every action
 - Positive reward (+1) for staying in lane, negative reward (-10) for leaving lane

Simulation for Policy Learning

- Learning policy by trial-and-error
- Agent improves policy over time and discovers "good" actions

Example: Control of a Drone

Pros and Cons of Reinforcement Learning

Pros

- Learned controller can lead to superior performance
- Non-linear/non-continuous reward functions

Cons

- Interpretability & Explainability
- Training needs simulations
- Generalization to unseen conditions

Imitation Learning

End-to-end Driving

Neural Network

 Replace modules with single neural network that maps directly to control

Learn from Demonstrations

- Input: demonstrations from an expert
- Goal: train policy to mimic decisions

Pros and Cons of End-to-End Autonomous Driving

Pros

- Direct usage of relevant sensor information
- Demonstrations simple to generate, no annotations

Cons

- Interpretability & Validation harder
- Generalization to unseen conditions or extreme situations

Summary

- Kinematic modeling for a car
- Idea of feedback control
- Trajectory control using PID control
- Lateral control strategy based on geometry
- Dynamic control strategy using Model Predictive Control (MPC)
- Learning-based approaches relax certain assumptions

Resources

- "Robotics, Control and Vision" by Dr. Peter Corke
- "Introduction to Self-driving Cars" by Steven Waslander
- "Visual navigation for flying robots" by Dr. Jürgen Strum

Link: https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0

 "Control for Mobile Robots" by Dr. Magnus Egerstedt

Link: https://www.coursera.org/learn/mobile-robot

Resources (cont.)

- "Reinforcement Learning: An Introduction" (2nd Edition) by R. Sutton & A. Barto, 2020.
- "Deep Reinforcement Learning for Autonomous Driving: A Survey" by Kiran et al., Trans. on Intell. Transp. Sys., 2022.
- "Reaching the limit in autonomous racing: Optimal Control versus Reinforcement Learning" by Song et al., Science Robotics, 2023.

Thank you for your attention