Lezione 1 Algebra

Federico De Sisti2024-10-01

1 Cosa c'è su e-leaning di Francesco Mazzini

Date appelli

Esercizi settimanali

All'esame ti chiedono due esercizi delle schede scelti a caso

Ci sono 2 esoneri (primo 17 dicembre) (secondo ?? maggio)

Libri

M. Artin Algebra

IN. Hernstein: Algebra (difficile)

2 Gruppi

Definizione 1 (Gruppo)

Un gruppo è un dato di un insieme G con un'operazione \cdot tali che:

1) L'operazione è associativa

$$f \cdot (gh) = (f \cdot g) \cdot h \quad \forall f, g, h \in G$$

2) Esistenza elemento neutro

$$\exists e \in G \ tale \ che \ g \cdot e = e \cdot g = g \quad \forall g \in G.$$

3) esistenza degli inversi

$$\forall g \in G \quad \exists \quad g^{-1} \in G \quad tale \ che \ g^{-1} \cdot g = g \cdot g^{-1} = e.$$

Nomenclatura 1 (notazione)

 (G,\cdot) dato $g \in G$ denotiamo con:

1)
$$g^0 = e$$

$$(2)g^1 = g$$

$$3)g^n = g \cdot \dots \cdot g4)g^{-n} = (g^{-1})^n$$

Osservazione:

Con questa notazione:

$$(g^n)^m = g^{nm}$$

$$g^n \cdot g^m = g^{n+m}$$

Esempi

- 1) $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$
- 2) $GL_n(\mathbb{K}) = \{A \in Mat_{n \times n}(\mathbb{K}) | det(A) \neq 0\}$ con prodotto
- 3) $SL_n(\mathbb{K}) = \{ A \in Mat_{nn}(\mathbb{K}) | det(A) = 1 \}$
- 4) X insieme

$$S_X = \{ \text{ funzioni } X \to X \text{ invertibili} \}$$

Speciale Se $X = \{1, \dots, n\}$

Allora chiamiamo

$$S_n = S_X$$
.

(è i lgruppo di permutazioni su n elementi)

Si chiama gruppo simmetrico

Definizione 2 (Gruppo diedrale)

 $n \geq 3$ Consideriamo l'n-agono regoalre nel piano (3-agono, triangolo) D_n è l'insieme delle simmetrie del piano che preservano l'n-agono Si chiama gruppo diedrale, l'operazione è la composizione

Esempio:

Per n=3 abbiamo D_3

TODO INSERISCI DISEGNO gruppo diedrale

Esercizio

Determina gli inversi e tutti i possibili prodotti degli elementi di D_3

Definizione 3 (Gruppo Abeliano)

(G,) gruppo si dice Abeliano se l'operazione è commutativa

$$f \cdot g = g \cdot f)$$

Definizione 4 (Gruppo finito)

 (G,\cdot) gruppo si dice finito se la sua cardinalità è finita

$$|G| < +\infty$$

Definizione 5 (Ordine del gruppo)

 $L(G,\cdot)$ gruppo, l'ordine di $G \ \dot{e} \ |G|$

Definizione 6 (Ordine di un elemento)

$$ord(g) = \min\{n \in \mathbb{N} | g^n = e\}$$

$$se \not\exists n \in \mathbb{N} \ tale \ che \ g^n = e \quad poniamo \quad ord(g) = +\infty$$

Definizione 7 (Gruppo ciclico)

 $n \geq 3$ consideriamo C_n l'insieme delle isometrie del piano che preservano l' n-agono e preservano l'orientazione, questo si chiama gruppo cicliclo

Esempio

Nel caso di n=3 abbiamo solamente 3 elementi: identità, e le due rotazioni (ordine dispari) **Esercizi**

1) si dimostri che l'elemento neutro in un gruppo è unico

2) si dimostri che ogni elemento in un gruppo ammette un unico elemento inverso $\,$

per casa

- 1) Trvoare un'applicazione biunivoca $S_3 \to D_3$
- 2) Dimostrare che non esiste un'applicazione biunivoca $S_4 \to D_4$
- 3) Dimostrare che i seguenti nkn sono gruppi
- $\cdot Mat_{n\times n}(\mathbb{K})$ con prodotto riche per colonne

 $GL(\mathbb{K})$ con somma tra matrici

 $\mathbb{ZQ}\mathbb{R}conilprodotto$

Proposizione 1

 (G,\cdot) gruppi finito, Allora ogni elemento ah ordine finito

Dimostrazione

 $g \in G$ Considero il sottoinsieme

$$A = \{g, g^2, g^3, \ldots\} \subseteq G.$$

quindi $|A| < +\infty \Rightarrow \exists s, t \in \mathbb{N}, s > t \ tali \ che$

$$g^s = g^t$$
.

 $Moltiplico per g^{-t} a destra$

$$g^s = g^t \quad \Rightarrow \quad g^s \cdot g^{-t} = g^t \cdot g^{-t} \quad \Rightarrow \quad g^{s-t} = e.$$

Quindi
$$n = s - t \ge 1$$
 e $g^n = e \Rightarrow ord(g) \le n < +\infty$

Definizione 8 (Sottogruppo)

 (G,\cdot) gruppo $H\subseteq G$ sottosinsieme, si dice che H è un sottogruppo se (H,\cdot) è un gruppo.

In tal caso scriveremo $H \leq G$

Osservazione

 (G,\cdot) gruppo, $G\subseteq G$ sottoinsieme allora $H\leq G$ se H è chiuso rispettto a \cdot e H è chiuso rispetto agli inversi

(se
$$g, h \in G \Rightarrow g \cdot h \in H$$
 e se $h \in H \Rightarrow h^{-1} \in H$)

Proposizione 2

 (G,\cdot) gruppo $H\subseteq G$ sottoinsieme con $|H|<+\infty$ Allora:

1) $H \leq G$ se e solo se H è chiuso rispetto a.

Dimostrazione

- (\Rightarrow) ovvia
- (⇐) basta dimostrare che H è chiuso rispetto all inverso ovvero

 $se |H| < +\infty$

 $e~H~chiuso~rispetto~a~\cdot$

Allora H è chiuso rispetto agli inversi

 $Sia\ h\in H$

$$A = \{h, h^2, h^3, \ldots\} \subseteq H$$

Allora $|A| < \infty$

Ragionando come prima deduciamo $ord(h) < +\infty$

$$h \cdot h^{ord(h)-1} = h^{ord(h)-1} \cdot h = e.$$

Quindi $h^{-1} = h^{ord(h)-1} = h \cdot \ldots \cdot h \in H \Rightarrow h^{-1} \in H$

Esempi

- $1)C_n \leq D_n$
- 2) $SL_n(\mathbb{K}) \leq GL_n(\mathbb{K})$
- 3) (G, \cdot) gruppo $g \in G$

$$\langle g \rangle = \{ g^n \in G | n \in \mathbb{Z} \}.$$

Allora $\langle g \rangle \leq G$

Congruenze

 (G,\cdot) gruppo $H \leq G$

Definizione 9

 $f,g \in G$ si dicono congruenti modulo H se

$$f^{-1}g \in H$$
.

In tal caso scriveremo

$$f \equiv g \mod H$$
.

Esercizio

Dimostrare che al congruenza modulo ${\cal H}$ definisce una relazione di equivalenza su ${\cal G}$

Suggerimento

$$(f^{-1} \cdot g)^{-1} = g^{-1} \cdot (f^{-1})^{-1} = g^{-1} \cdot f$$

e H è chiuso rispetto agli inversi

Esercizi:

 (G,\cdot) è un gruppo $H \leq G$ Allora la classe di equivalenza di $g \in G$ modulo H è il sottoinsieme

$$gH = \{g \cdot h | h \in H\}.$$

C'è una classe di equivalenza speciale in G data da

$$e \cdot H = H$$
.

l'unica ad essere un sottogruppo

Dimostrare che esiste un'applicazione biunivoca tra $H \to gH \quad \forall g \in G$