Package 'AquaCropR'

December 17, 2018

Title Ac	quaCrop for R
Version	0.0.0.9000

Maintainer Anyela V Camargo <anyelavcamargo@gmail.com>

Description The AquaCropR package is the R implementation of the AquaCrop crop growth model developed by FAO (http://www.fao.org/aquacrop) to address food security and assess the effect of the environment and management on crop production. AquaCrop simulates the yield response of herbaceous crops to water and is particularly well suited to conditions in which water is a key limiting factor in crop production. The AquaCrop model simulates final crop yield in four steps which consist on the simulation of development of green crop canopy cover, crop transpiration, above-ground biomass, and final crop yield. Temperature and water stresses directly affect one or more of the above processes.

Nutrient deficiencies and salinity effects are simulated indirectly by moderating canopy cover development over the season, and by reducing crop transpiration and the normalized water productivity. The effect of CO2 concentration on biomass is simulated by altering the normalised water productivity.

AquaCrop requires a relatively small number of explicit parameter values such as weather and soil propertiers, and crop management practices. Crop associated variables are normally known and are available for the majority of crops.

Imports XML, xml2, pracma, kulife, Rdpack, dplyr

Depends R (>= 3.5.1)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

RdMacros Rdpack

R topics documented:

About	3
AdjustCCx	4
AerationStress	5
as date	5

2

1	_
as_datenum	6
as_datenum_string	6
as_date_list	6
BiomassAccumulation	7
calcAVP	7
CalculateHIGC	8
CalculateHILinear	8
calculate_sowingdate	9
CanopyCover	9
CapillaryRise	10
CCDevelopment	10
CCRequiredTime	11
ChangeDateFormat	12
CheckGroundwaterTable	12
	13
	13
	14
	14
	14
	15
	15
	16
	16
	10 17
	17 17
	17 17
1	
ϵ	20
1 7	21
1 = =	22
	22
	23
	23
5	24
5	24
$\phi = -1$	25
get_ea_rh	25
get_Eto	26
get_month	26
get_net_radiation	27
get_slope_saturation_vp	27
get_stefan_Boltzmann	28
get_year	28
GroundwaterInflow	29
GrowingDegreeDay	29
	30
e	30
	31
-	31
	31 32
· ·	32 33
·	33
	33 34
muanse	J4

About 3

About	t About how to run the simulation	
Index		54
	WaterStress	53
	UpdateTime	
	UpdateCCxCDC	
	Transpiration	
	TemperatureStress	
	Solution	
	SoilParameters	
	SoilHydraulicProperties	
	SoilEvaporation	
	RootZoneWater	47
	RootDevelopment	46
	ResetInitialConditions	46
	ReadWeatherInputs	45
	ReadModelParameters	45
	ReadModelInitialConditions	44
	ReadIrrigationManagement	44
	ReadGroundwaterTable	43
	ReadFileLocations	40
	ReadFieldManagement	
	ReadClockParameters	
	RainfallPartition	
	PreIrrigation	
	PerformSimulation	
	OutputParameters	
	IrrigationManagementParameters	
	Irrigation	34

Description

About how to run the simulation

Usage

About()

Format

These are the steps to run your simulation:

First Create all the input files as specified in the ReadFileLocations section.

Second Use the ReadFileLocations() function to load your files into the model (e.g. F <- ReadFileLocations('FileLocation.xml'))

Third Use the Initialise() function to initialise your variables. Refer to the Initialise section to get familiar with the function (e.g. I <- Initialise(F))

Fourth Use the PerformSimulation() function to perform the simulation. Refer to the Perform-Simulation section to get familiar with the function (e.g. O <- PerformSimulation(I)). PerformSimulation will output all the variables create by the model in the form of a list. Refer to OutputParameters for more information about these variables

4 AdjustCCx

Examples

```
F <- ReadFileLocations('FileSetup.xml')</pre>
I <- Initialise(F)</pre>
0 <- PerformSimulation(I)</pre>
names(0)
Example of FileSetup.xml file:
<?xml version="1.0"?>
<FileSetup>
<Input>input/</Input>
<WeatherFilename>Weather.csv</WeatherFilename>
<CO2Filename>MaunaLoaCO2.csv</CO2Filename>
<ClockFilename>Clock.xml</ClockFilename>
<CropRotationFilename>CropRotation.xml</CropRotationFilename>
<FieldManagementFilename>FieldManagement.xml/FieldManagementFilename>
<InitialWCFilename>InitialWaterContent.xml</InitialWCFilename>
<GroundwaterFilename>WaterTable.xml</GroundwaterFilename>
<SoilFilename>Soil.xml</SoilFilename>
<\!CropRotationCalendarFilename\!>\!CropRotationCalendar.xml<\!/CropRotationCalendarFilename\!>\!CropRotationCalendarFilename\!>\!CropRotationCalendarFilename\!>\!CropRotationCalendarFilename\!>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!CropRotationCalendarFilename>\!
</FileSetup>
```

AdjustCCx

Adjust CCx value for changes in CGC due to water stress during the growing season

Description

Adjust CCx value for changes in CGC due to water stress during the growing season

Usage

```
AdjustCCx(CCprev, CCo, CCx, CGC, CDC, dt, tSum, Crop)
```

Arguments

CCprev	Prev Cannopy cover
CCo	initial canopy cover at the time of 90% crop emergence
CCx	Maximum canopy cover
CGC	Canopy growth coefficient
CDC	Canopy decline coefficient
dt	Delta time
tSum	tSum
Crop	Parameters for a given crop

Value

with CCxAdj for a n time-step.

AerationStress 5

Examples

```
AdjustCCx(CCprev, CCo, CCx, CGC, CDC, dt, tSum, Crop)
```

AerationStress

Calculate aeration stress coefficient

Description

Calculate aeration stress coefficient

Usage

```
AerationStress(Crop, InitCond, thRZ)
```

Arguments

Crop Parameters for a given crop
InitCond Crop setting initial structure
thRZ aeration stress (root zone)

Value

list with NewCond and Ksa aeration stress coefficient for a n time-step.

Examples

```
AerationStress(Crop, InitCond, thRZ)
```

as_date

Number of days from sdat to origin

Description

Number of days from sdat to origin

Usage

as_date(sdat)

Arguments

sdat

date in format "%Y-%m-%d"

6 as_date_list

	1 4	
as	datenum	1

Number of days from sdat to origin

Description

Number of days from sdat to origin

Usage

```
as_datenum(sdat, o = "0000-01-01", f = "Y-m-d")
```

Arguments

sdat date in format "%Y-%m-%d" as default

o origin format

as_datenum_string

Number of days from sdat to origin

Description

Number of days from sdat to origin

Usage

```
as_datenum_string(x)
```

Arguments

Y

date where x should be in the format: x['Year'], x['Month'], x['Day']

 as_date_list

It's datavec in Matlab. Converts data in numeric format to date in vector format i.e. yyyy, m, d

Description

It's datavec in Matlab. Converts data in numeric format to date in vector format i.e. yyyy, m, d

Usage

```
as_date_list(sdat, origin_value = "0000-01-01")
```

BiomassAccumulation 7

BiomassAccumulation Calculate biomass accumulation (g m-2)

Description

Calculate biomass accumulation (g m-2)

Usage

```
BiomassAccumulation(Crop, InitCond, Tr, TrPot, Et0, Tmax, Tmin, GDD,
   GrowingSeason)
```

Arguments

Crop Parameters for a given crop
InitCond Crop setting initial structure

Tr actual transpiration
TrPot potential transpiration
Et0 Evapotranspiration

Tmax max temp for n time-step
Tmin min temp for n time-step
GDD Growing degree days
GrowingSeason crop developmental stage

Value

NewCond for a n time-step.

Examples

BiomassAccumulation(Crop, InitCond, Tr, TrPot, Et0, Tmax, Tmin, GDD, GrowingSeason)

calcAVP

calculate Water vapour pressure (Kpa) according to FAO

Description

calculate Water vapour pressure (Kpa) according to FAO

Usage

calcAVP(x)

Arguments

list with three parameters x[[1]] = RH, x[[2]] = TMAX, x[[3]] = TMIN

AVP actual vapour pressure

8 CalculateHILinear

Examples

```
RH = 57.8
TMAX = 22.96
TMIN = 9.23
calcAVP(RH, TMAX, TMIN)
```

CalculateHIGC

Calculate harvest index growth coefficient.

Description

Calculate harvest index growth coefficient.

Usage

```
CalculateHIGC(Crop)
```

Arguments

Crop list

Value

list with HIGC and tHI.

Examples

CalculateHIGC(Crop)

CalculateHILinear

Calculate time to switch to linear harvest index build-up, and associated linear rate of build-up. Only for fruit/grain crops.

Description

Calculate time to switch to linear harvest index build-up, and associated linear rate of build-up. Only for fruit/grain crops.

Usage

```
CalculateHILinear(Crop)
```

Arguments

Crop list

Value

list with tSwitch and dHILin.

Examples

```
CalculateHILinear(Crop)
```

calculate_sowingdate 9

calculate_sowingdate calculate sowingdate

Description

calculate sowingdate

Usage

```
calculate_sowingdate(weather_data, start_date, end_date, thr = 5, day,
  month, year, P, year_list, Crop, ccl = 100)
```

Arguments

weather_data weather data

start_date start window 'dd/mm'

day label in dataset
month label in dataset
year label in dataset
P label irrigation
year_list year to be analysed

Crop crop name

ccl crop calendar length

CanopyCover Simulate canopy growth/decline

Description

Simulate canopy growth/decline

Usage

```
CanopyCover(Crop, Soil, InitCond, GDD, Et0, GrowingSeason)
```

Arguments

Crop Parameters for a given crop

Soil properties of soil

InitCond Crop setting initial structure

GDD Growing degree days
Et0 Evapotranspiration

GrowingSeason crop developmental stage

10 CCDevelopment

Value

NewCond for a n time-step.

Examples

```
CanopyCover(Crop, Soil, InitCond, GDD, Et0, GrowingSeason)
```

 ${\tt CapillaryRise}$

Calculate capillary rise from a shallow groundwater table

Description

Calculate capillary rise from a shallow groundwater table

Usage

```
CapillaryRise(Soil, Groundwater, InitCond, FluxOut)
```

Arguments

Soil properties of soil
Groundwater ground water table

InitCond Crop setting initial structure

FluxOut Flux

Value

list with NewCond and CrTot for a n time-step.

Examples

```
CapillaryRise(Soil, Groundwater, InitCond, FluxOut)
```

CCDevelopment

Calculate canopy cover development by end of the current simulation day

Description

Calculate canopy cover development by end of the current simulation day

Usage

```
CCDevelopment(CCo, CCx, CGC, CDC, dt, Mode)
```

CCRequiredTime 11

Arguments

CCo	CCDevelopment
CCx	Maximum canopy cover
CGC	Canopy growth coefficient
CDC	Canopy decline coefficient
dt	Canopy approaching maximum size
Mode	crop calendar mode

Value

CC canopy for a n time-step.

Examples

```
CCDevelopment(CCo, CCx, CGC, CDC, dt, Mode)
```

CCRequiredTime	Function to find time required to reach CC at end of previous day,
	given current CGC or CDC

Description

Function to find time required to reach CC at end of previous day, given current CGC or CDC

Usage

```
CCRequiredTime(CCprev, CCo, CCx, CGC, CDC, dt, tSum, Mode)
```

Arguments

CCprev	Prev Cannopy cover
CCo	Initial canopy cover at the time of 90% crop emergence
CCx	Maximum canopy cover
CGC	Canopy growth coefficient
CDC	Canopy decline coefficient
dt	delta time
tSum	tSum
Mode	Stage

Value

tReq eequired time for a n time-step.

Examples

```
CCRequiredTime(CCprev, CCo, CCx, CGC, CDC, dt, tSum, Mode)
```

12 CheckGroundwaterTable

ChangeDateFormat

change date format

Description

change date format

Usage

```
ChangeDateFormat(x)
```

Arguments

```
x date, where year = x[[1]], DOY = x[[2]]
```

Value

d

Examples

```
year = '2011'
DOY = 1
ChangeDateFormat(year, DOY)
```

CheckGroundwaterTable Check for presence of a groundwater table, and, if present, to adjust compartment water contents and field capacities where necessary

Description

Check for presence of a groundwater table, and, if present, to adjust compartment water contents and field capacities where necessary

Usage

```
CheckGroundwaterTable(Soil, Groundwater, InitCond, ClockStruct)
```

Arguments

Soil structure of Soil
Groundwater ground water table

InitCond Crop setting initial structure

ClockStruct Model time settings

Value

NewCond model values for n time-step

CheckModelTermination 13

Examples

CheckGroundwaterTable(Soil, Groundwater, InitCond)

CheckModelTermination Function to check and declare model termination

Description

Function to check and declare model termination

Usage

CheckModelTermination(ClockStruct, InitialiseStruct)

Arguments

```
ClockStruct the Clock list
InitialiseStruct the crop initial conditions in list format
```

Value

ClockStruct.

Examples

 ${\tt CheckModelTermination(ClockStruct,\ InitialiseStruct)}$

check_file_exist

check file exist and load

Description

check file exist and load

Usage

```
check_file_exist(filename)
```

Arguments

filename, file name

check_xml_exist

check file exist and load

Description

check file exist and load

Usage

```
check_xml_exist(filename)
```

Arguments

filename,

file name

```
check_xml_table_exist check file exist and load
```

Description

check file exist and load

Usage

```
check_xml_table_exist(filename)
```

Arguments

filename,

file name

 ${\tt ComputeCropCalendar}$

Compute additional parameters needed to define crop

Description

Compute additional parameters needed to define crop

Usage

ComputeCropCalendar(Crop, CropName, CropChoices, Weather, ClockStruct)

Arguments

Crop list

CropName list with crops names
CropChoices crops to be analysed
Weather dataset with weather data

ClockStruct crop calendar

Compute Variables 15

Value

Crop.

Examples

ComputeCropCalendar(Crop, CropName, CropChoices, Weather, ClockStruct)

ComputeVariables

Compute additional variables needed to run AquaCrop

Description

Compute additional variables needed to run AquaCrop

Usage

ComputeVariables(ParamStruct, Weather, ClockStruct, GwStruct, CropChoices, FileLocation)

Arguments

ParamStruct Crop Structure

Weather Weather data

ClockStruct Crop calendar

GwStruct Ground water table

CropChoices Crops to be analysed

FileLocation list with file locations

Value

ParamStruct.

Examples

 ${\tt ComputeVariables(ParamStruct,\ Weather,\ ClockStruct,\ GwStruct,\ CropChoices,\ File Location)}$

conver2num

Convert to numeric

Description

Convert to numeric

Usage

conver2num(sdata)

Arguments

sdata

dataset

convertDOY

convert to DOY

Description

convert to DOY

Usage

convertDOY(fdate)

Arguments

fdate date

Value

DOY

Examples

```
convertDOY('01-01-2000')
```

convert_list_2numeric convert list values to numeric

Description

convert list values to numeric

Usage

```
convert_list_2numeric(slist, lnames = NULL)
```

Arguments

slist list

1names field names to transform FIXME: do it for subsets

```
{\tt convert\_table\_list\_2numeric}
```

convert list values to numeric

Description

convert list values to numeric

Usage

```
convert_table_list_2numeric(slist, lnames = NULL)
```

Arguments

slist list

1names field names to transform FIXME: do it for subsets

Convert_to_List

convert data.frame to list

Description

convert data.frame to list

Usage

Convert_to_List(sdat)

Arguments

sdat data.frame

CropParameters

Crop Parameters to be provided in CropFile.

Description

Crop Parameters to be provided in CropFile.

Usage

CropParameters()

Format

A file in xml format should be provided with the following fields. Guidance on appropriate parameter values for different crop types can be obtained from the FAO AquaCrop manual Steduto et sl (2009), Agronomy Journal, 2009, 101, 426-437.

CropType Determines the category of crop Units: - Default value: 1 = Leafy vegetable; 2 = Root/tuber; 3 = Fruit/grain

CalendarType Determines time units for crop development Units: - Default value: 1 = Calendar days; 2 = GDD's

SwitchGDD Determines if inputs (when specified in calendar day mode) are converted to GDD's. Conversion is recommended to ensure accurate phenology. Units: - Default value: 0 = No 1 = Yes

PlantingDate Default planting date (may be overwritten) Units: dd/mm Default value: -

HarvestDate Default latest harvest date (may be overwritten) Units: dd/mm Default value: -

Emergence Time from sowing/transplanting to emergence/transplant recovery Units: Days/GDD's Default value: -

MaxRooting Time from sowing/transplanting to maximum root development Units: Days/GDD's Default value: -

Senescence Time from sowing/transplanting to start of canopy senescence Units: Days/GDD's Default value: -

Maturity Time from sowing/transplanting to physiological maturity Units: Days/GDD's Default value: -

HIstart Time from sowing/transplanting to start of yield formation Units: Days/GDD's Default value: -

Flowering Duration of flowering (only for fruit/grain crops) Units: Days/GDD's Default value: -

YldForm Duration of yield formation Units: Days/GDD's Default value: -

GDDmethod Method used to calculate GDD's Units: - Default value: -

Tbase Base temperature below which crop growth does not occur Units: oC Default value: -

Tupp Upper temperature above which crop growth does not occur Units: oC Default value: -

PolHeatStress Determines if pollination is affected by heat stress Units: - Default value: $0 = N_0$; $1 = Y_0$ es

Tmax up Maximum temperature above which pollination begins to fail Units: oC Default value: -

Tmaxlo Maximum temperature above which pollination fails completely Units: oC Default value:

PolColdStress Determines if pollination is affected by cold stress Units: - Default value: 0 = No;

Tmin up Minimum temperature below which pollination begins to fail Units: oC Default value: -

 $\textbf{Tmin lo} \ \ \text{Minimum temperature below which pollination fails completely Units: oC Default value:}$

BioHeatStress Determines if biomass production is affected by temperature stress Units: - Default value: 0 = No; 1 = Yes

GDD up Minimum number of GDD's required for full biomass production Units: GDD's Default value: -

GDD lo Minimum number of GDD's required for any biomass production to occur Units: GDD's Default value: -

CropParameters 19

fshape b Shape factor describing the reduction in biomass production due to insufficient GDD's Units: GDD's Default value: -

PctZmin Percentage of minimum effective rooting depth at sowing/transplanting Units: % Default value: 70

Zmin Minimum effective rooting depth Units: Metres Default value: -

Zmax Maximum effective rooting depth Units: Metres Default value: -

fshape r Shape factor describing the decreasing speed of root expansion over time Units: - Default value: 1.5

fshape ex Shape factor describing the effects of water stress on root expansion Units: - Default value: -6

SxTopQ Maximum water extraction at the top of the root zone Units: m3 m-3 day-1 Default value:

SxBotQ Maximum water extraction at the bottom of the root zone Units: m3 m-3 day-1 Default value: -

a Tr Exponent parameter describing the effect of canopy decline on transpiration/photosynthetic capacity Units: - Default value: 1

SeedSize Soil surface area covered by an individual seedling at 90% emergence Units: cm2 Default value: -

PlantPop Plant population Units: plants ha-1 Default value: -

CCmin Minimum fractional canopy cover size below which yield formation does not occur Units: - Default value: -

CCx Maximum fractional canopy cover size Units: - Default value: -

CDC Canopy decline coefficient Units: day-1/GDD-1 Default value: -

CGC Canopy growth coefficient Units: day-1/GDD-1 Default value: -

Kcb Maximum crop coefficient when canopy is fully developed Units: - Default value: -

fage Decline of crop coefficient due to ageing of the canopy Units: % day-1 Default value: -

WP Water productivity normalised for reference evapotranspiration and atmospheric carbon dioxide Units: g m-2 Default value: -

WPy Adjustment of water productivity parameter in yield formation stage Units: % of WP Default value: -

fsink Crop sink strength coefficient Units: - Default value: -

bsted Water productivity adjustment parameter for CO2 effects given by (Steduto et al., 2007) Units: - Default value: 0.000138

bface Water productivity adjustment parameter for CO2 effects given by FACE experiments Units: - Default value: 0.001165

HIO Reference harvest index Units: - Default value: -

HIini Initial harvest index Units: - Default value: -

dHI pre Possible increase of harvest index due to pre-anthesis water stress Units: % Default value:

a HI Coefficient describing the positive impact on harvest index of restricted vegetative growth post-anthesis Units: - Default value: -

b HI Coefficient describing the negative impact on harvest index of stomatal closure post-anthesis Units: - Default value: -

dHIO Maximum possible increase in harvest index above reference value Units: % Default value:

20 Drainage

Determinant Crop determinacy, which affects period of potential vegetative growth Units: - Default value: 0 = Indeterminant

- exc Excess of potential fruits that is produced by the crop Units: % Default value: -
- **MaxFlowPct** Percentage of total flowering period at which peak flowering occurs Units: % Default value: 33.33
- p up1 Upper soil water depletion threshold for water stress effects on canopy expansion Units: -Default value: -
- **p up2** Upper soil water depletion threshold for water stress effects on stomatal control Units: Default value: -
- p up3 Upper soil water depletion threshold for water stress effects on canopy senescence Units: -Default value: -
- p up4 Upper soil water depletion threshold for water stress effects on crop pollination Units: -Default value: -
- p lo1 Lower soil water depletion threshold for water stress effects on canopy expansion Units: -Default value: -
- p lo2 Lower soil water depletion threshold for water stress effects on stomatal control Units: -Default value: -
- p lo3 Lower soil water depletion threshold for water stress effects on canopy senescence Units: -Default value: -
- **p lo4** Lower soil water depletion threshold for water stress effects on crop pollination Units: Default value: -
- **fshape w1** Shape factor describing water stress effects on canopy expansion Units: Default value:
- **fshape w2** Shape factor describing water stress effects on stomatal control Units: Default value:
- **fshape w3** Shape factor describing water stress effects on canopy senescence Units: Default value: -
- fshape w4 Shape factor describing water stress effects on crop pollination Units: Default value: -
- **ETadj** Determines if water stress thresholds are adjusted for variations in daily reference evapotranspiration Units: Default value: 0 = No 1 = Yes
- **Aer** Water deficit below saturation at which aeration stress begins to occur Units: % Default value: 5
- LagAer Lag before aeration stress affects crop growth Units: days Default value: 3
- **beta** Reduction to p lo3 parameter when early canopy senescence is triggered due to water stress Units: % Default value: 12
- **GermThr** Proportion of total available water needed in the root zone for the crop to germinate Units: Default value: 0.2

Drainage

Redistribute stored soil water

Description

Redistribute stored soil water

Usage

```
Drainage(Soil, InitCond)
```

Arguments

Soil structure characteristics

InitCond Crop setting initial structure

Value

NewCond, DeepPerc and FluxOut for n time-step

Examples

Drainage(Soil, InitCond)

EvapLayerWaterContent Get water contents in the evaporation layer

Description

Get water contents in the evaporation layer

Usage

EvapLayerWaterContent(InitCond, Soil, Wevap)

Arguments

InitCond Crop setting initial structure

Soil properties of soil wevap watwe evaporation

Value

Wevap for a n time-step.

Examples

EvapLayerWaterContent(InitCond, Soil, Wevap)

22 Extract Weather Data

 ${\tt export_as_xml}$

export dataframe as xml

Description

export dataframe as xml

Usage

```
export_as_xml(sdata, filename)
```

Arguments

sdata dataset

filename name of file

ExtractWeatherData

Extract weather data for current time step.

Description

Extract weather data for current time step.

Usage

ExtractWeatherData(InitialiseStruct)

Arguments

InitialiseStruct

Crop setting initial structure

ClockStruct crop calendar

Value

list with Weather for n time-step

Examples

ExtractWeatherData(ClockStruct, InitialiseStruct)

flowerfun 23

flowerfun Flower function

Description

Flower function

Usage

flowerfun(xx)

Arguments

xx parameter

Germination

Check if crop has germinated

Description

Check if crop has germinated

Usage

Germination(InitCond, Soil, Crop, GDD, GrowingSeason)

Arguments

InitCond Crop setting initial structure

Soil properties of soil

Crop Parameters for a given crop
GDD Growing degree days

GrowingSeason crop developmental stage

Value

NewCond for a n time-step.

Examples

```
Germination(InitCond, Soil, Crop, GDD, GrowingSeason)
```

24 get_day

```
get_atmospheric_pressure
```

Calculate atmospheric pressure (P)

Description

Calculate atmospheric pressure (P)

Usage

```
get_atmospheric_pressure(z)
```

Arguments

Z

elevation above sea level (m)

Value

P atmospheric pressure (kPa)

Examples

```
get_atmospheric_pressure(1800)
```

get_day

get parameter day from date string

Description

get parameter day from date string

Usage

```
get_day(x)
```

Arguments

Χ

date, where year = x[[1]], DOY = x[[2]]

Value

day of the month

get_ea_dp 25

get_ea_dp	Calculate actual vapor pressure (ea) derived from dewpoint tempera-
	ture

Description

Calculate actual vapor pressure (ea) derived from dewpoint temperature

Usage

```
get_ea_dp(Tdew)
```

Arguments

Tdew Dewpoint temperature (oC)

Value

ea

Examples

```
get_ea_dp(14.65)
```

get_ea_rh

Calculate actual vapor pressure (ea) derived from mean relative humidity

Description

Calculate actual vapor pressure (ea) derived from mean relative humidity

Usage

```
get_ea_rh(rh, eoTmax, eoTmin)
```

Arguments

rh relative humidity (%)
eoTmax saturation vapour Tmax
eoTmin saturation vapour Tmin

Value

ea

Examples

```
get_ea_rh(57.44)
```

26 get_month

get_Eto

Calculate ETo using Penman_Monteith

Description

Calculate ETo using Penman_Monteith

Usage

```
get_Eto(x)
```

Arguments

Χ

weather parameters Tmax = x[[1]], Tmax <- x[[1]], Tmin <- x[[2]], RA <- x[[3]], Wind <- x[[4]], Tdew <- x[[5]], altitude <- x[[6]] = max temperature

Examples

```
get_Eto(x)
```

 ${\tt get_month}$

get parameter month from date string

Description

get parameter month from date string

Usage

```
get_month(x)
```

Arguments

Х

date, where year = x[[1]], DOY = x[[2]]

Value

month of the year

get_net_radiation 27

get_net_radiation

Calculate net radiation mm/day

Description

Calculate net radiation mm/day

Usage

```
get_net_radiation(Tmax, Tmin, RA, altitude, easqrt)
```

Arguments

Tmax max temperature
Tmin min temperature

RA solar radiation, all Sky Insolation Incident on a Horizontal Surface (MJ/m^2/day)

 $\begin{array}{ll} \text{altitude} & \text{(m)} \\ \text{easqrt} & \text{sqrt(ea)} \end{array}$

Value

```
rn_mm_day mm/day
```

Examples

```
get_net_radiation(29.5, 18.88, 27.47, 83.64)
```

```
get_slope_saturation_vp
```

Slope of saturation vapour pressure curve

Description

Slope of saturation vapour pressure curve

Usage

```
get_slope_saturation_vp(Tmean)
```

Arguments

Tmean mean temperature (oC)

Value

delta Slope of saturation vapour pressure curve T(kPa oC-1)

Examples

```
get_slope_saturation_vp(1800)
```

28 get_year

```
get_stefan_Boltzmann
                       get stefan Boltzmann temp
```

Description

```
get stefan Boltzmann temp
```

Usage

```
get_stefan_Boltzmann(t)
```

Arguments t

temperature

Value

temperature

Examples

```
get_stefan_Boltzmann(14.88)
```

get_year

get parameter year from date string

Description

```
get parameter year from date string
```

Usage

```
get_year(x)
```

Arguments

Х

date, where year = x[[1]], DOY = x[[2]]

Value

year

GroundwaterInflow 29

GroundwaterInflow Calculate capillary rise in the presence of a shallow groundwater table

Description

Calculate capillary rise in the presence of a shallow groundwater table

Usage

```
GroundwaterInflow(Soil, InitCond)
```

Arguments

Soil properties of soil

InitCond Crop setting initial structure

Value

list with NewCond and GwIn groundwater inflow for a n time-step.

Examples

```
GroundwaterInflow(Soil, InitCond)
```

GrowingDegreeDay

Calculate number of growing degree days on current day.

Description

Calculate number of growing degree days on current day.

Usage

```
GrowingDegreeDay(Crop, InitCond, Tmax, Tmin)
```

Arguments

Crop structure

InitCond initial crop settings

Tmax max temperature for n time-step
Tmin min temperature for n time-step

Value

list with NewCond and GDD for n time-step

Examples

```
GrowingDegreeDay(Crop, InitCond, Tmax, Tmin)
```

30 HarvestIndex

Chaut	hC+0~0
Growt	hStage

Calculate number of growing degree days on current day

Description

Calculate number of growing degree days on current day

Usage

```
GrowthStage(Crop, InitCond, GrowingSeason)
```

Arguments

Crop Parameters for a given crop
InitCond Crop setting initial structure
GrowingSeason crop developmental stage

Value

NewCond for a n time-step.

Examples

```
GrowthStage(Crop, InitCond, GrowingSeason)
```

HarvestIndex

Function to simulate build up of harvest index

Description

Function to simulate build up of harvest index

Usage

```
HarvestIndex(Soil, Crop, InitCond, Et0, Tmax, Tmin, GDD, GrowingSeason)
```

Arguments

Soil	properties of soil
2011	properties of soil

Crop Parameters for a given crop
InitCond Crop setting initial structure

Et0 Evapotranspiration

Tmax max temp for n time-step
Tmin min temp for n time-step
GDD Growing degree days
GrowingSeason crop developmental stage

HIadjPollination 31

Value

NewCond for a n time-step.

Examples

```
HarvestIndex(Soil, Crop, InitCond, Et0, Tmax, Tmin, GDD, GrowingSeason)
```

HIadjPollination

Calculate adjustment to harvest index for failure of pollination due to water or temperature stress

Description

Calculate adjustment to harvest index for failure of pollination due to water or temperature stress

Usage

```
HIadjPollination(InitCond, Crop, Ksw, Kst, HIt)
```

Arguments

InitCond	Crop setting initial structure
Crop	Parameters for a given crop

Ksw Water stress

Kst Temperature stress

HIt Harvest index on current day

Value

with NewCond for a n time-step.

Examples

```
HIadjPollination(InitCond, Crop, Ksw, Kst, HIt)
```

HIadjPostAnthesis

Function to calculate adjustment to harvest index for post-anthesis water stress

Description

Function to calculate adjustment to harvest index for post-anthesis water stress

Usage

```
HIadjPostAnthesis(InitCond, Crop, Ksw)
```

32 HIadjPreAnthesis

Arguments

InitCond Crop setting initial structure

Crop Parameters for a given crop

Ksw

Value

NewCond for a n time-step.

Examples

HIadjPostAnthesis(InitCond, Crop, Ksw)

 ${\it HIadjPreAnthesis} \qquad \qquad \textit{Function to calculate adjustment to harvest index for pre-anthesis wa-}$

ter stress

Description

Function to calculate adjustment to harvest index for pre-anthesis water stress

Usage

HIadjPreAnthesis(InitCond, Crop)

Arguments

InitCond Crop setting initial structure

Crop Parameters for a given crop

Value

NewCond for a n time-step.

Examples

HIadjPreAnthesis(InitCond, Crop)

HIrefCurrentDay 33

HIrefCurrentDay	Calculate reference (no adjustment for stress effects) harvest index on
	current day

Description

Calculate reference (no adjustment for stress effects) harvest index on current day

Usage

```
HIrefCurrentDay(InitCond, Crop, GrowingSeason)
```

Arguments

InitCond Crop setting initial structure
Crop Parameters for a given crop
GrowingSeason crop developmental stage

Value

NewCond for a n time-step.

Examples

HIrefCurrentDay(InitCond, Crop, GrowingSeason)

Infiltration

Infiltrate incoming water (rainfall and irrigation)

Description

Infiltrate incoming water (rainfall and irrigation)

Usage

```
Infiltration(Soil, InitCond, Infl, Irr, IrrMngt, FieldMngt, FluxOut,
   DeepPerc0, Runoff0)
```

Arguments

Soil properties of soil

InitCond Crop setting initial structure

Infl Infiltration
Irr Irrigation

IrrMngt Irrigation management
FieldMngt Field management

FluxOut Flux

DeepPerc0 Deep percolation Runoff water Runoff

34 Irrigation

Value

list with NewCond, DeepPerc, RunoffTot, Infl and FluxOut for a n time-step.

Examples

Infiltration(Soil, InitCond, Infl, Irr, IrrMngt, FieldMngt, FluxOut, DeepPerc0, Runoff0)

Initialise

Function to initialise AquaCropR

Description

Function to initialise AquaCropR

Usage

Initialise(FileLocation)

Arguments

filename

An xml file with locations

Value

list with FileLocation.

Examples

ReadFileLocations('dummy.xml')

Irrigation

Get irrigation depth for current day

Description

Get irrigation depth for current day

Usage

```
Irrigation(InitCond, IrrMngt, Crop, Soil, ClockStruct, GrowingSeason, P,
   Runoff)
```

Arguments

InitCond Crop setting initial structure
IrrMngt Irrigation management
Crop parameters for a given crop

Soil properties of soil ClockStruct crop calendar

GrowingSeason crop developmental stage

P precipitation Runoff water Runoff

Value

list with NewCond and Irr for a n time-step.

Examples

Irrigation(InitCond, IrrMngt, Crop, Soil, ClockStruct, GrowingSeason, P, Runoff)

IrrigationManagementParameters

Irrigation Management Parameters

Description

Irrigation Management Parameters

Usage

IrrigationManagementParameters()

Format

The irrigation management file defines the input variables controlling irrigation practices in AquaCrop file in xml format should be provided with the following fields:

IrrSchFilename File name of an irrigation schedule. This file will only be used if triggering irrigation based on an input time series. When writing the file, the following information should be provided:

day

month

year

 $irrigation Depth \ \ \, mm$

IrrMethod Method of irrigation, where:

- 0 rainfed
- 1 irrigation based on soil moisture status
- 2 irrigation on a fixed interval
- 3 pre-specified irrigation time-series
- 4 net irrigation

IrrInterval Time interval between irrigation events (days), if triggering based on a fixed interval

- **SMT1** Percentage of total available water at which irrigation is initiated in the first of the four main crop growth stages, if triggering based on soil moisture status.
- **SMT2** Percentage of total available water at which irrigation is initiated in the second of the four main crop growth stages, if triggering based on soil moisture status.
- **SMT3** Percentage of total available water at which irrigation is initiated in the third of the four main crop growth stages, if triggering based on soil moisture status.
- **SMT4** Percentage of total available water at which irrigation is initiated in the fourth of the four main crop growth stages, if triggering based on soil moisture status.

MaxIrr Maximum irrigation depth (mm day-1).

36 OutputParameters

AppEff Irrigation application efficiency (%).

NetIrrSMT Percentage of total available water to maintain when in net irrigation mode.

WetSurf Soil surface area wetted by irrigation (%).

When multiple crop types are considered in a single simulation, a unique irrigation management file can be created, and is assigned to each crop type in the crop rotation file.

OutputParameters

OutputParameters to be provided in at the end of the simulation

Description

OutputParameters to be provided in at the end of the simulation

Usage

OutputParameters()

Format

A dataset with the following variables will be provided as output of the AquaCropR simulation:

Water contents output file The water contents list reports the simulated water content (m3 m-3) in each soil compartment at the end of each simulation day. A variable, 'Season', is also reported that takes a value of 1 on days during a growing season, and a value of 0 on days outside a growing season. Note that if the soil water balance is not simulated in the off-season, water contents on these days will be denoted by zero values

Water fluxes output file The water fluxes list provides various simulated water fluxes and states on each simulation day, including:

wRZ Water in the crop root zone (mm)

zGW Water table depth (m). A value of -999 indicates no groundwater table was considered **wSurf** Ponded water (mm)

Irr TotIrr (mm)

Infl Infiltration (mm)

DP Deep percolation below the base of the soil profile (mm)

CR Capillary rise in to the soil profile (mm)

GWin Horizontal groundwater inflow to the soil profile (mm)

Es Soil evaporation (mm)

EsX Potential soil evaporation (mm)

Tr Crop transpiration (mm)

TrX Potential crop transpiration (mm)

Et0 Reference Evapotranspiration (mm)

Crop growth output file The crop growth output list reports various simulated aspects of crop development on each simulation day, including:

GDD Number of growing degree days on the current day

TotGDD Cumulative growing degree days in the current season

RootDepth Crop effective rooting depth (m)

CC Fractional canopy cover

PerformSimulation 37

RefCC Fractional canopy cover under no water-stress conditions

Bio Accumulated aboveground biomass (g m-2)

RefBio Accumulated aboveground biomass under no water stress conditions (g m-2)

HI Fractional reference harvest index

HIadj Fractional harvest index adjusted for water stress effects

Yield Crop yield (tonne ha-1)

PlantingDate Calendar planting date (dd/mm/yyyy)

As previously noted, the variable 'Season' denotes whether a growing season was active on a given day and values of zero are assigned to all fluxes/states outside of the growing season if the off-season soil water balance is not simulated.

PerformSimulation

Perform simulation

Description

Perform simulation

Usage

PerformSimulation(InitialiseStruct)

Arguments

InitialiseStruct

Crop setting initial structure

Value

list with Outputs results.

Examples

PerfomSimulation(InitialiseStruct)

 ${\tt PreIrrigation}$

Calculate pre-irrigation when in net irrigation mode

Description

Calculate pre-irrigation when in net irrigation mode

Usage

```
PreIrrigation(Soil, Crop, IrrMngt, InitCond)
```

38 RainfallPartition

Arguments

Soil structure characteristics

Crop crop settings

IrrMngt irigation management settings
InitCond Crop setting initial structure

Value

list with NewCond and PreIrr for n time-step

Examples

```
PreIrrigation((Soil, Crop, IrrMngt, InitCond)
```

 ${\tt RainfallPartition}$

Partition rainfall into surface runoff and infiltration

Description

Partition rainfall into surface runoff and infiltration

Usage

```
RainfallPartition(P, Soil, FieldMngt, InitCond)
```

Arguments

P precipitation

Soil structure characteristics

InitCond Crop setting initial structure

IrrMngt Irrigation management

Value

list with NewCond, Runoff and Infl for n time-step

Examples

```
RainfallPartition(P, Soil, FieldMngt, InitCond)
```

ReadClockParameters 39

ReadClockParameters

Read input files and initialise model clock parameters

Description

Read input files and initialise model clock parameters

Usage

ReadClockParameters(FileLocation)

Arguments

FileLocation list with file locations

Value

ClockStruct crop calendar.

Examples

ReadClockParameters(FileLocation)

ReadFieldManagement

Read input files and initialise model clock parameters

Description

Read input files and initialise model clock parameters

Usage

ReadFieldManagement(FileLocation)

Arguments

FileLocation list with file locations

Value

FieldManagement list.

Examples

ReadFieldManagement(FileLocation)

40 ReadFileLocations

ReadFileLocations

Read files input and output file locations

Description

Read files input and output file locations

Usage

ReadFileLocations(filename)

Arguments

filename

An xml file with locations

Format

An xml file should be provided with the following fields

Input Files location

ClockFilename Name of clock file (xml format) which is used to set the duration of the simulation. When writing the file, the following information should be provided:

SimulationStartTime Time when the simulation starts (yyyy-mm-dd)

SimulationEndTime Time when the simulation ends (yyyy-mm-dd)

OffSeason Specifies whether (as 'Y' or 'N') Soil water balance is simulated outside the growing season

WeatherFilename Name of weather input file (csv format) which defines time-series of daily weather inputs. When writing the file, the following information should be provided in comma separated format:

day day

month month

year year

mintp Day Minimum Temperature (oC)

mxtp Day Maximum Temperature (oC)

p Daily precipitation (mm)

evp Daily reference evapotranspiration (mm)

CO2Filename Name of Annual CO2 file (csv format) which contains time-series of atmospheric carbon dioxide (CO2) concentrations. When writing the file, the following information should be provided in comma separated format:

```
year year
```

co2 CO2 concentation (ppm)

SoilFilename Name of Soil file (xml format) which defines the input variables needed to parameterise the soil components in the model. When writing the file, the following file's names, as well as the variables listed in the SoilParameters section, should be provided.

SoilProfileFilename Name of Soil profile name (xml format) which defines the discretisation of the soil profile in to compartments and layers. When writing the file, the following information should be provided.

ReadFileLocations 41

CompartmentNo Soil compartment number

Thickness Compartment thickness (m)

LayerNo Associated soil layer number

SoilTextureFilename Name of Soil Texture file (xml format) which calculates soil hydraulic properties from textural properties. If the user specifies in the soil input file to calculate soil hydraulic properties from textural properties, the soil texture input file must be provided. The soil texture input file defines the textural properties of each soil layer, which are then assigned to individual soil compartments according to the discretisation of the soil profile. When writing the file, the following information should be provided:

LayerNo Soil layer number

Thickness Thickness of the layer (m)

Sand Sand content (%)

Clay Clay content (%)

OrgMat t (% by weight)

DensityFactor default value of 1

Note. The number of data rows should match the number of soil layers specified in the soil input file. Using these input values, AquaCrop calculates the hydraulic properties of each soil layer (water contents at saturation, field capacity, and permanent wilting, along with the saturated hydraulic conductivity) based on the pedotransfer function model https://en.wikipedia.org/wiki/Pedotransfer_function.

SoilHydrologyFilename Name of FieldManagement file (xml format). If the user specifies in the soil input file that soil hydraulic properties are pre-defined, a soil hydrology input file must be provided. When writing the file, the following information should be provided:

LayerNo Soil layer number

LayerThickness Thickness of the layer (m)

thS Water content at saturation (m3 m-3)

thF Water content at field capacity (m3 m-3)

thWP Water content at permanent wilting point (m3 m-3)

Ksat Saturated hydraulic conductivity (mm day-1)

Note: The number of data rows should equal exactly the number of soil layers specified in the soil input file.

CropRotationFilename Name of Crop Rotation file (xml format) which defines the crop types and any specified rotation to be simulated. When writing the file, the following information should be provided:

Number of crop types modelled

SpecifiedPlantingCalendar If a crop rotation calendar is specified, denoted by a 'Y' or 'N' character

CropInfo Information about each crop should be provided through these variables:

croptype Crop name

CropFilename Crop input filename in xml format. The crop file defines the input variables needed to parameterise the crop component of AquaCrop. A unique version of the crop input file should be created for each individual crop type modelled during the simulation period, as defined by the variables **NumberofCropOptions** and **CropRotationCalendarFilename**. When writing the file, the variables listed in **CropParameters** should be provided

IrrigationFilename Irrigation management input filename in xml format. When writing the file, the variables listed in the IrrigationManagementParameters section should be provided.

42 ReadFileLocations

A rotation calendar must be specified if more than one crop type is considered. When a rotation calendar is specified, the planting and latest harvest dates specified in each crop input file will be overwritten by the values given in the rotation calendar

FieldManagementFilename Name of FieldManagement file (xml format) which defines the input variables controlling field management practices in the model. When writing the file, the following information should be provided

Mulches If the soil surface is covered by mulches, where '0' is 'No' and '1' is 'Yes'.

MulchPctGS Soil surface area (%) covered by any mulches during the growing season.

MulchPctOS Soil surface area (%) covered by any mulches during the off season.

fMulch Factor defining the proportional reduction of soil evaporation due to presence of mulches.

Bunds If soil bunds are present on the field, where '0' is 'No' and '1' is 'Yes'.

zBund Height of any soil bunds (m).

BundWater Initial depth of water between any soil bunds (mm).

GroundwaterFilename Name of Groundwater file (xml format) which defines any shallow water table conditions that may influence soil moisture levels

Watertable_present If water table is present, denoted by a 'Y' or 'N' character

Watertable method If a water table is present, whether it is 'Constant' or 'Variable'.

observations Observations of groundwater, where each observation contains two variables:

date (dd/mm/yyyy)

depth Water table depth (m)

InitialWCFilename Name of Initial Water Content file (xml format) which defines the initial moisture conditions throughout the soil profile at the start of the simulation, and also at the beginning of each growing season if the model does not simulate the soil water balance in the off-season. When writing the file, the following information should be provided:

type_of_value Format in which soil moisture input data is provided. Options available are to specify values based on:

Prop soil hydraulic properties

Num numerical values

Pct percentages of total available water

method Method used to calculate compartment water contents. If method is depth-based ('Depth'), observations will be linearly interpolated to the centre of each compartment. Alternatively, a layer-based method ('Layer') will apply uniform values to all compartments within a soil layer

number of input points Number of input soil moisture data points

input_data_points Soil moisture data observations, where each row contains two variables: **depth_layer** Point depth (m) or layer number

value Soil moisture value (defined format). If the format of soil moisture values is:

Prop values must be specified as either 'SAT' (Saturation), 'FC' (Field capacity), or 'WP' (Wilting point)

Num values must have units of m3 m-3

Pct values must have units of %

CropRotationCalendarFilename Name of Crop Rotation file (xml format). If the user specifies multiple crop types in the CropRotationFile or wishes to consider variable planting dates over a multi-season simulation, a crop rotation input file must be provided that defines the time series of growing seasons that will be simulated by AquaCrop. When writing the file, the following information should be provided:

ReadGroundwaterTable 43

PlantDate Planting date (dd/mm/yyyy)

HarvestDate Latest possible harvest date (dd/mm/yyyy)

Crop Crop type

Data only need to be specified for days when irrigation occurs. AquaCrop will automatically apply zero irrigation values to all other simulation days.

Value

list with FileLocation

Examples

ReadFileLocations('dummy.xml')

ReadGroundwaterTable

Read input file and initialise groundwater table parameters

Description

Read input file and initialise groundwater table parameters

Usage

ReadGroundwaterTable(FileLocation, ClockStruct)

Arguments

FileLocation list with file locations

ClockStruct crop calendar

Value

GwStruct water table.

Examples

```
ReadGroundwaterTable(FileLocation, ClockStruct) FIXME there is abug here
```

ReadIrrigationManagement

Compute additional variables needed to run AOS

Description

Compute additional variables needed to run AOS

Usage

ReadIrrigationManagement(ParamStruct, FileLocation, ClockStruct)

Arguments

ParamStruct Crop parameters structure
FileLocation list with file locations
ClockStruct crop calendar

Value

ParamStruct.

Examples

ReadIrrigation Management (Param Struct, File Location, Clock Struct)

 ${\tt ReadModelInitialConditions}$

Set up initial model conditions

Description

Set up initial model conditions

Usage

 $\label{lem:conditions} Read Model Initial Conditions (Param Struct, Gw Struct, Field Mngt Struct, Crop Choices, File Location, Clock Struct)$

Arguments

ParamStruct Crop details

GwStruct Water table details

FieldMngtStruct

field management structure

CropChoices crops whose performance is to be modelled

FileLocation file locations

ClockStruct crop calendar structure

ReadModelParameters 45

Value

InitCondStruct with intial conditions.

Examples

Read Model Initial Conditions (Param Struct, Gw Struct, Field Mngt Struct, Crop Choices, File Location, Clock Struct)

ReadModelParameters

Read input files and initialise soil and crop parameters

Description

Read input files and initialise soil and crop parameters

Usage

ReadModelParameters(FileLocation, ClockStruct)

Arguments

FileLocation list with file locations

ClockStruct crop calendar

Value

list with uodated ClockStruct ParamStruct and CropChoices.

Examples

ReadModelParameters(FileLocation, ClockStruct)

ReadWeatherInputs

Read and process input weather time-series

Description

Read and process input weather time-series

Usage

ReadWeatherInputs(FileLocation, ClockStruct)

Arguments

FileLocation file locations
ClockStruct list time

46 RootDevelopment

Value

list with WeatherDB.

Examples

ReadWeatherInputs(FileLocation, ClockStruct)

ResetInitialConditions

Reset initial model conditions for start of growing

Description

Reset initial model conditions for start of growing

Usage

ResetInitialConditions(InitialiseStruct, ClockStruct)

Arguments

InitialiseStruct

Crop setting initial structure

ClockStruct crop calendar

Value

list with InitialiseStruct and ClockStruct for a n time-step

Examples

 $ResetInitial Conditions (Initialise Struct, \ Clock Struct)$

 ${\tt RootDevelopment}$

Calculate root zone expansion

Description

Calculate root zone expansion

Usage

RootDevelopment(Crop, Soil, GroundWater, InitCond, GDD, GrowingSeason)

RootZoneWater 47

Arguments

Crop Parameters for a given crop

Soil properties of soil

InitCond Crop setting initial structure

GDD Growing degree days

GrowingSeason crop developmental stage

Groundwater ground water table

Value

NewCond for a n time-step.

Examples

RootDevelopment(Crop, Soil, GroundWater, InitCond, GDD, GrowingSeason)

RootZoneWater

Calculate actual and total available water in the root

Description

Calculate actual and total available water in the root

Usage

RootZoneWater(Soil, Crop, InitCond)

Arguments

Soil properties of soil

Crop parameters for a given crop

InitCond Crop setting initial structure

Value

list with Wr, Dr, TAW and thRZ for a n time-step.

Examples

RootZoneWater(Soil, Crop, InitCond)

SoilEvaporation

Calculate daily soil evaporation in AOS

Description

Calculate daily soil evaporation in AOS

Usage

```
SoilEvaporation(ClockStruct, Soil, Crop, IrrMngt, FieldMngt, InitCond, Et0,
    Infl, Rain, Irr, GrowingSeason)
```

Arguments

ClockStruct crop calendar
Soil properties of soil

Crop Parameters for a given crop
IrrMngt Irrigation management
FieldMngt Field management

InitCond Crop setting initial structure

Et0 Evapotranspiration

Infl Infiltration
Irr Irrigation

GrowingSeason crop developmental stage

P precipitation

Value

list with NewCond, EsAct actual evaporation and EsPot potential soil evaporation for a n time-step.

Examples

```
SoilEvaporation(ClockStruct, Soil, Crop, IrrMngt, FieldMngt,InitCond,Et0,Infl,Rain,Irr,GrowingSeason)
```

SoilHydraulicProperties

Calculate soil hydraulic properties, given textural inputs. Calculations use pedotransfer function equations described in Saxton and Rawls (2006)

Description

Calculate soil hydraulic properties, given textural inputs. Calculations use pedotransfer function equations described in Saxton and Rawls (2006)

SoilParameters 49

Usage

SoilHydraulicProperties(Soil)

Arguments

Soil

properties of soil

Value

list with thdry, thwp, hfc, ths and ksa for a n time-step.

Examples

SoilHydraulicProperties(Soil)

SoilParameters

Soil Parameters to be provided in SoilFile

Description

Soil Parameters to be provided in SoilFile

Usage

SoilParameters()

Format

An .csv file should be provided with the following fields

CalcSHP Determines if soil hydraulic properties are calculated from textural characteristics of soil layers Units:0 = No; 1 = Yes Default value: -

zSoil Total thickness of the soil profile Units: Metres Default value: -

nComp Number of soil compartments Units:- Default value: -

nLayer Number of soil layers Units:- Default value: -

EvapZsurf Thickness of the evaporating soil surface layer in direct contact with the atmosphere Units:Metres Default value: 0.04

EvapZmin Minimum thickness of full soil surface evaporation layer Units:Metres Default value: 0.15

EvapZmax Maximum thickness of full soil surface evaporation layer Units:Metres Default value: 0.3

Kex Maximum soil evaporation coefficient Units:- Default value: 1.1

fevap Shape factor describing the reduction in evaporation with decreasing water content in the soil surface layer Units:- Default value: 4

fWrelExp Relative water content of the soil surface layer at which the evaporation layer depth expands Units:- Default value: 0.4

fwcc Coefficient expressing the reduction in soil evaporation due to the sheltering effect of withered canopy cover Units:- Default value: 0.5

50 Solution

AdjREW Determines if the calculated value of readily evaporable water (REW) is overwritten by a user-defined value Units:0 = No, 1 = Yes Default value:

REW User-defined REW depth (only used if adjusting from the calculated value) Units: Millimetres Default value: -

AdjCN Determines if the curve number (CN) is adjusted each day based on surface moisture conditions Units:0 = No, 1 = Yes Default value: -

CN Curve number Units:- Default value: -

zCN Thickness of the soil surface layer used to calculate moisture content to adjust the curve number Units:Metres Default value: 0.3

zGerm Thickness of the soil surface layer used to calculate moisture content to determine if germination can occur Units:Metres Default value: 0.3

zRes Depth of any restrictive soil layer that inhibits root deepening Units:Metres Default value: Set to negative value if no restriction is present

fshape_cr Shape factor describing the strength of the effect of any shallow groundwater table on soil water content Units:- Default value: 16

Solution

Run AquaCrop for a n time step

Description

Run AquaCrop for a n time step

Usage

Solution(Weather, InitialiseStruct)

Arguments

Weather weather parameters or n time-step

InitialiseStruct

Crop setting initial structure

Value

list with NewCond, Outputs and ClockStruct for n time-step

Examples

Solution(Weather, ClockStruct, InitialiseStruct)

TemperatureStress 51

TemperatureStress

Calculate temperature stress coefficients

Description

Calculate temperature stress coefficients

Usage

```
TemperatureStress(Crop, Tmax, Tmin, GDD)
```

Arguments

Crop	Parameters for a given crop
Tmax	max temp for n time-step
Tmin	min temp for n time-step
GDD	Growing degree days

Value

Kst temperature stress a n time-step.

Examples

TemperatureStress(Crop, Tmax, Tmin, GDD)

Transpiration

Calculate crop transpiration on current day

Description

Calculate crop transpiration on current day

Usage

Transpiration(Soil, Crop, IrrMngt, InitCond, Et0, CO2, GrowingSeason)

Arguments

Soil properties of soil

Crop Parameters for a given crop
IrrMngt Irrigation management
InitCond Crop setting initial structure

Et0 Evapotranspiration

CO2 Infiltration

GrowingSeason crop developmental stage

52 UpdateTime

Value

list with NewCond, TrAct actual transpiration, TrPot_NS potential transpiration rate no water stress, TrPot0 potential transpiration rate, NewCond and IrrNet Initialise net irrigation, for a n time-step.

Examples

Transpiration(Soil, Crop, IrrMngt, InitCond, Et0, CO2, GrowingSeason)

Update CCx and CDC parameter valyes for rewatering in late season of an early declining canopy

Description

Update CCx and CDC parameter valyes for rewatering in late season of an early declining canopy

Usage

```
UpdateCCxCDC(CCprev, CDC, CCx, dt)
```

Arguments

CCprev Prev Canopy Cover
CDC Canopy decline coefficient
CCx Maximum canopy cover

dt dt parameter

Value

list with CCXadj and CDCadj for a n time-step.

Examples

UpdateCCxCDC(CCprev,CDC,CCx,dt)

UpdateTime Update current time in model

Description

Update current time in model

Usage

```
UpdateTime(ClockStruct, InitialiseStruct)
```

WaterStress 53

Arguments

ClockStruct crop calendar InitialiseStruct

Crop setting initial structure

Value

list with InitialiseStruct and ClockStruct for a n time-step

Examples

UpdateTime(ClockStruct, InitialiseStruct)

WaterStress

Calculate relative root zone water depletion for each stress type

Description

Calculate relative root zone water depletion for each stress type

Usage

```
WaterStress(Crop, InitCond, Dr, TAW, Et0, beta)
```

Arguments

Crop Parameters for a given crop
InitCond Crop setting initial structure

Dr Root zone water content at air dry

TAW Total available water Et0 Evapotranspiration

beta beta

Value

water stress list with Exp, Sto, Sen, Pol and StoLin for a n time-step.

Examples

```
WaterStress(Crop,InitCond,Dr,TAW,Et0, beta)
```

Index

About, 3	get_ea_rh, 25
AdjustCCx, 4	get_Eto, 26
AerationStress, 5	get_month, 26
as_date, 5	<pre>get_net_radiation, 27</pre>
as_date_list, 6	<pre>get_slope_saturation_vp, 27</pre>
as_datenum, 6	get_stefan_Boltzmann,28
as_datenum_string,6	get_year, 28
	GroundwaterInflow, 29
BiomassAccumulation, 7	GrowingDegreeDay, 29
1 400 7	GrowthStage, 30
calcAVP, 7	
calculate_sowingdate, 9	HarvestIndex, 30
CalculateHIGC, 8	HIadjPollination, 31
CalculateHILinear, 8	HIadjPostAnthesis, 31
CanopyCover, 9	HIadjPreAnthesis, 32
CapillaryRise, 10	HIrefCurrentDay, 33
CCDevelopment, 10	, , , , , , , , , , , , , , , , , , ,
CCRequiredTime, 11	Infiltration, 33
ChangeDateFormat, 12	Initialise, 3, 34
check_file_exist, 13	Irrigation, 34
check_xml_exist, 14	IrrigationManagementParameters, 35, 41
<pre>check_xml_table_exist, 14</pre>	
CheckGroundwaterTable, 12	OutputParameters, 3, 36
CheckModelTermination, 13	
ComputeCropCalendar, 14	PerformSimulation, 3, 37
ComputeVariables, 15	PreIrrigation, 37
conver2num, 15	
<pre>convert_list_2numeric, 16</pre>	RainfallPartition, 38
<pre>convert_table_list_2numeric, 17</pre>	ReadClockParameters, 39
Convert_to_List, 17	ReadFieldManagement, 39
convertDOY, 16	ReadFileLocations, 3, 40
CropParameters, 17, 41	ReadGroundwaterTable, 43
	ReadIrrigationManagement, 44
Drainage, 20	ReadModelInitialConditions, 44
	ReadModelParameters, 45
EvapLayerWaterContent, 21	ReadWeatherInputs, 45
export_as_xml, 22	
ExtractWeatherData, 22	ResetInitialConditions, 46
	RootDevelopment, 46
flowerfun, 23	RootZoneWater, 47
Germination, 23	SoilEvaporation, 48
•	SoilHydraulicProperties, 48
<pre>get_atmospheric_pressure, 24</pre>	· · · · · · · · · · · · · · · · · · ·
get_day, 24	SoilParameters, 40, 49
get_ea_dp, 25	Solution, 50

INDEX 55

```
TemperatureStress, 51
Transpiration, 51
UpdateCCxCDC, 52
UpdateTime, 52
WaterStress, 53
```