

基于混合神经网络模型的脑卒中风险预测

毕业论文答辩

汇报人:毛文月

学号: 2017300030077

指导老师: 蔡朝晖

目录

- •相关背景
- •设计目的
- •算法设计
- •实验设计
- •实验分析
- 总结展望

相关背景

- 脑卒中
 - 也称卒中、中风
 - 急性脑血管疾病
- 脑卒中发病率、死亡率、致残率均较高
 - 我国第一位死亡原因
 - 我国成年人残疾的首要原因
 - 世界范围内第二主要死亡原因
- 2016 Global Burden of Disease, Injuries and Risk Factors Study report
 - 每年550万人死亡
 - 每年1.16亿人残疾

相关背景

• 脑卒中难以彻底治愈, 复发率高

• 临床医生预测卒中对患者的影响,提出治疗方案和干预方法。

• 预测的结果称为预后

相关背景

• ASPECTS, DAWN, DEFUSE 3等标准对脑卒中 治疗进行衡量和指导

• 分析临床数据,包括患者的年龄、性别、发病的时间、剧烈程度、量表评分对预后预测

• CT、MRI等医学影像辅助,定位缺血区域,识别细胞存活情况,做出更准确的预后

设计目的

- 希望有一个智能自动分析算法预测预后
- 使用深度学习的方法,对预后效果进行二分类
 - 轻度或严重

- 模拟现实中临床医师结合临床数据和医学影像进行预后的预测
 - 临床数据(一维)和医学影像(高维)都作为输入

设计目的

• 设计并比较两种仅针对医学影像的模型

• 设计仅针对临床数据的模型

• 设计两种混合医学影像和临床数据的模型,比较两种混合模型、医学影像模型、临床数据模型

- 3D-CNN
 - 仅处理医学影像
 - 医学影像基本为三维图像
 - 使用的CNN均为3D的CNN

输入层	卷积层/过滤器大小	输入通道	输出通道	
Conv1	$3 \times 3 \times 3$	1	8	
MaxPool1	$2 \times 2 \times 2$	8	8	
Conv2	$3 \times 3 \times 3$	16	16	
MaxPool2	$3 \times 3 \times 3$	16	16	
Conv3	$3 \times 3 \times 3$	16	32	
MaxPool3	$4 \times 4 \times 4$	32	32	
Linear	无	32	2	

- ResNet18
 - 2D的CNN有RGB通道 可以应用于彩色图像处 理
 - · 3D的灰度医学影像按照 某一平面展开以多通道 作为2D的CNN的处理
 - 增加网络深度实现更好 结果的同时,消除过深 的网络的影响

输入层名	卷积层/过滤器大小	输入通道大小	输出通道大小	
Conv1	卷积层: 7×7	Z	64	
	池化层: 3×3			
Conv2	卷积层1: 3×3	64	64	
	卷积层2: 3×3	64	64	
Conv2p	与Conv2参数相同	64	64	
Conv3	卷积层1: 3×3	64	128	
	卷积层2: 3×3	128	128	
Conv3p	与Conv3参数相同	128	128	
Conv4	卷积层1: 3×3	128	256	
	卷积层2: 3×3	256	256	
Conv4p	与Conv4参数相同	256	256	
Conv5	卷积层1: 3×3	256 512		
	卷积层2: 3×3	512 512		
Conv5p	与Conv5参数相同	512	512	
FC	全连接层1	512 32		
	输出层	32	2	

- 多层感知器(MLP)
 - 仅处理临床数据

层名	类型	输入通道大小	输出通道大小
隐藏层1	全连接层	n	50
隐藏层2	全连接层	50	100
隐藏层3	全连接层	100	10
输出层	全连接层	10	2

- IMCM混合模型
 - 临床诊断治疗中, 医学影像作为辅助诊断的工具
 - 医生提取医学影像的影像特征
 - 设计神经网络提取医学影像特征

影像特征

- IMCM混合模型
 - 首先处理影像数据,得到影像特征
 - 影像特征和临床数据作为另一个处理模型的输入,输出二分类结果

- IMCM冻结模型
 - 模型训练结束后固定参数,再进行后续的操作
 - 称为冻结
 - 冻结ImageModel模型

$$y = IM(x)$$

out = $FC(y)$

$$y = IM_{freeze}(x)$$

$$out = CM(y, z)$$

训练结束后固定IM层参数

- ICFC混合模型
 - 与IMCM模型相同,首先提取影像特征
 - 对临床数据进行特征提取
 - 两个特征作为全连接层的输入,输出为二分类结果

• ICFC冻结模型

$$y = CM(x)$$
$$out = CFC(y)$$

$$y_1 = IM_{frezze}(x_1)$$

$$y_2 = CM_{frezze}(x_2)$$

$$out = ICFC(y_1, y_2)$$

UNIVERS 1893 2 18 3 3

• 数据筛选

- 影像数据增强
 - 对69条数据进行增强
 - 获得345个影像数据
- 选取CT灌注成像
 - 输入通道为32层

• 临床数据编码

序号	临床数据信息	编码方式
1	左侧ASPECTS评分	评分直接输入
2	右侧ASPECTS评分	评分直接输入
3	mTICI评分	评分直接输入
4	入院时NIHSS评分	评分直接输入
5	年龄	年龄数字直接输入
6	性别	男性为1,女性为0
7	急诊gcs评分	评分直接输入
8	发病前mRS评分	评分直接输入
9	发病到检测CT时间	以分钟为单位输入
10	发病到开通时间	以分钟为单位输入
11	术前ASPECTS评分	评分直接输入
12	溶栓前NIHSS评分	评分直接输入

- 临床预后指标
 - mRS: 改良rankin评分量表

等级	表现
0	无症状
1	有轻微残疾但无明显症状, 能完成日常活动
2	有轻微残疾,但可以处理个人日常事务
3	中度残疾,除了行走,其余活动需他人帮助
4	中重度残疾, 离开他人帮助不能行走和生活
5	重度残疾, 卧床不起, 需他人持续护理
6	死亡

- 临床预后指标
 - NIHSS: 美国国立卫生研究院卒中量表,用以评估急性神经功能障碍。对低分为0,最高分为42,越高说明越严重。一般认为,6分及以上影响较大。
 - gcs: 一种昏迷指数的评估。正常人得分是满分15分, 说明意识清醒。分数越低,说明昏迷程度越严重。
 - ASPECTS: 卒中项目早期CT评分,用以评价缺血性卒中患者的大脑中,动脉供血区早期缺血改变。对CT图像进行评分,分数越高说明影响越小。

- 临床预后指标
 - · 以90天随访mRS,术后24小时NIHSS,术后1周 NIHSS指标作为拟合对象。
 - 算法针对二分类, 所以需要进行编码

序号	名称	编码结果	编码范围	人数
1	90天随访mRS	0	0,1,2	39
		1	3,4,5,6	30
2	术后24小时NIHSS	0	0~5	37
		1	6及以上	32
3	术后1周NIHSS	0	0~5	41
		1	6及以上	28

- 医学影像模型结果
 - 345个数据
 - 300个数据作为训练集
 - 45个数据作为测试集
 - 训练100代
- 三个评价指标
 - 训练集loss
 - 训练集准确率
 - 测试集准确率

- 医学影像模型结果
 - 训练loss
 - loss函数使用交叉熵

• ResNet18收敛性优于3D-CNN

- 医学影像模型结果
 - 训练集准确率

• ResNet18接近100%, 3D-CNN上升缓慢

- 医学影像模型效果
 - 测试集准确率

• ResNet18容易过拟合, 3D-CNN欠拟合

- 临床数据模型结果
 - 69个数据, 40个数据作为训练集, 29个数据作为测试集
 - 训练1000代

指标	训练集loss	训练集准确率	测试集准确率
90天随访mRS	0.43	0.90	0.41
术后24小时NIHSS	0.36	0.95	0.69
术后1周NIHSS	0.39	0.93	0.59

• 结果与数据集较小有较大关系

- 混合模型结果
 - ImageModel模型选取ResNet18
 - ClinicalModel模型选取MLP
 - 345条数据, 300条训练, 45条测试
 - 训练100代

• 混合模型结果

临床指标\模型	评价指标	ResNet18	MLP	IMCM	ICFC
90天随访mRS	test acc	0.47	0.44	0.67	0.58
	test auc	0.43	0.50	0.58	0.58
	test f1	0.45	0.31	0.65	0.59
术后 24 小时 NIHSS	test acc	0.42	0.44	0.53	0.56
	test auc	0.39	0.50	0.66	0.50
	test f1	0.42	0.31	0.52	0.38
术后一周	test acc	0.47	0.44	0.56	0.42
NIHSS	test auc	0.44	0.50	0.36	0.41
	test f1	0.43	0.31	0.38	0.41

- 局限性
 - 数据量少,筛选严格
 - 模型训练易饱和
 - 混合模型准确率依旧低

总结展望

- 未来工作展望
 - 不使用冻结模型,选取端到端模型。同时输入同时训练进行输出
 - 修改临床数据模型,不使用MLP,尝试使用RNN
 - 对临床数据进行数据消融,消去贡献较小的数据
 - 联合多个中心的数据
 - 同步更新学习率

总结展望

- 设计总结
 - 设计并实现两种混合神经网络模型(IMCM、ICFC)
 - 为卒中预后提供可行方案

THANKS

汇报人: 毛文月

学号: 2017300030077