3-Manifolds

Alec Zabel-Mena

January 29, 2023

Contents

1	Manifolds																5
	1.1 Topological Manifolds												 				5

4 CONTENTS

Chapter 1

Manifolds

1.1 Topological Manifolds

Definition. A topological *n*-manifold is a second countable Hausdorff space M, together with a collection $\{(M_{\alpha}, \phi_{\alpha})\}$ for which

- (1) $\{M_{\alpha}\}$ is a collection of open sets of M covering M; that is, $M_{\alpha} \subseteq M$ is open and $M = M_{\alpha}$.
- (2) ϕ_a is a homeomorphism of M_{α} onto an open subset U of \mathbb{R}^n .

We call the pairs $(M_{\alpha}, \phi_{\alpha})$ charts of M, and we call the collection of all such charts of M an **atlas** of M. We define the **dimension** of M to be dim M = n.

- **Example 1.1.** (1) Every subset of \mathbb{R}^N is second countable and Hausdorff, so that a subset \mathbb{R}^N is an *n*-manifold uf every point of M has a neighborhood homeomorphic to \mathbb{R}^n , for $n \leq N$. In particular, \mathbb{R}^n is an *n*-manifold.
 - (2) The *n*-sphere $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ (see figure 1.1) is an *n*-manifold. It is a second countable Hausdorff space, since it is a subspace of \mathbb{R}^n . Moreover, the stereographic projection $h: S^n \setminus (0, \dots, 0, 1) \to \mathbb{R}^n$ is a homeomorphism. So for $x \in S^n$, $x \neq (0, \dots, 0, 1)$, x has a neighborhood homeomorphic to \mathbb{R}^n . Now, if we take the composition of $\mathbb{R}^n \times \{0\}$ with h to obtain the map $h': S^n \setminus (0, \dots, 0, -1) \to \mathbb{R}^n$, then we get that $S^n \setminus (0, \dots, 0, -1)$ is a neighborhood of $(0, \dots, 0, 1)$ homeomorphic to \mathbb{R}^n .
 - (3) The *n*-torus $T = \underbrace{S_1 \times \cdots \times S^1}_{n \text{ times}}$ (see figure 1.2) is the quotient space obtained fron \mathbb{R}^n by identfying two points $x, y \in \mathbb{R}^n$ if, and only if there is some $g \in G$ for which g(x) = y, where G is the group generated by all translations by distance 1 along the coordinate axes. Let $x \in T^n$ and $U = \partial B(x, \frac{1}{4})$ the sphere centered about x of radius $\frac{1}{4}$ and let $g: \mathbb{R}^n \to \mathbb{R}^n$ the quotient map of the quotient space of T^n . Then $q^{-1}|_{q(U)}$ is a homoemorphism. This makes T an n-manifold, with atlas $\{(U, q^{-1}|_{q(U)})\}$.
 - (4) Identify the antipodal points of S^n , then the resulting quotient space is an *n*-manifold called *n*-dimensional real projective space which we denote by \mathbb{PR}^n . Let $x \in$

Figure 1.1: The 2-Sphere of \mathbb{R}^3 is a 2-manifold.

Figure 1.2: The 2-torus is a 2 manifold of \mathbb{R}^2 .

 $\mathbb{P}\mathbb{R}^n$, since S^n is an n-manifold, there is a neighborhood U of x and a homeomorphism $h:U\to\mathbb{R}^n$. Let -U=a(U), where $a:S^n\to S^n$ is the antipodal map. Then -U is a neighborhood of -x, and $-h=h\circ a$ is a homeomorphism of U onto \mathbb{R}^n . Then the collection $\{(U,h)\}$ is an atlas for $\mathbb{P}\mathbb{R}^n$.

(5) Consider the unit circle S^2 and the following "trefoil knot" K_3 pictured below in figure 1.3 Both of these are 1-manifolds, and are homeomorphic to each other. Consider the

Figure 1.3: The unit circle S^2 and the trefoil knot.

neighborhoods on either space (colored in red). Notice that each of these neighborhoods is homeomorphic to an interval in \mathbb{R}_1 , and hence homeomorphic to each other.

Definition. Let M be an n-dimensional manifold. A p-dimensional submanifold of M is a closed subset L of M for which there exists an atlas $\{(M_{\alpha}, \phi_a)\}$ of M such that for all $x \in L$, there exists a chart $(M_{\alpha}, \phi_{\alpha})$ in where $x \in M_{\alpha}$ and $\phi_{\alpha}(L \cap M_{\alpha}) = \{0\} \times \mathbb{R}^{p}$.

Lemma 1.1.1. Submanifolds of manifolds are manifolds.

Lemma 1.1.2. Let M be an m-manifold, and N an n-manifold. Then the product $M \times N$ is an (n+m)-manifold.

Proof. We have that both M and N are Hausdorff, which makes $M \times N$ Hausdorff. Moreover, since M and N are second countable, they have countable bases \mathcal{B}_M and \mathcal{B}_N . Then the product $\mathcal{B}_M \times \mathcal{B}_N$ serves as a countable basis for $M \times N$.

Now, let $\{(M_{\alpha}, \phi_{\alpha})\}$ and $\{(N_{\beta}, \psi_{\beta})\}$ be at lases for M and N respectively. Then since each M_{α} is open in M, and each N_{β} is open in N, $M_{\alpha} \times N_{\beta}$ is open in $M \times N$. Moreover we also have that $M = \bigcup M_{\alpha}$, $N = \bigcup N_{\alpha}$ so that

$$M \times N = (\bigcup M_{\alpha}) \times (\bigcup N_{\beta}) = \bigcup M_{\alpha} \times N_{\beta}$$

Now, we also have that ϕ_{α} is a homeomorphism of M_{α} onto an open subset of \mathbb{R}^m , and ψ_{β} is a homeomorphism of N_{β} onto an open subset of \mathbb{R}^n . Since ϕ_{α} and ψ_{β} are homeomorphisms, they are continuous with continuous inverses ϕ_{α}^{-1} and ψ_{β}^{-1} . This makes the map $\phi_{\alpha} \times \psi_{\beta}$ continuous with continuous inverse $(\phi_{\alpha} \times \psi_{b})^{-1}$, which makes $\phi_{\alpha} \times \psi_{b}$ a homeomorphism of $M_{\alpha} \times N_{\beta}$ onto a subset of $\mathbb{R}^m \times \mathbb{R}^n \simeq \mathbb{R}^{m+n}$. Therefore $M \times N$ is an (m+n)-manifold.

Example 1.2. The equator, S^1 of S^2 is a submanifold of S^2 (see figure 1.1).

Definition. We define the **boundry** of an *n*-manifold M to be the set ∂M , of all points of M for which there is a neighborhood homeomorphic to a neighborhood of H^n , but no neighborhood homeomorphic to a neighborhood of \mathbb{R}^n ; where $H^n = \{x \in \mathbb{R}^n : x_1 \geq 0\}$.

Definition. Let $H^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \geq 0\}$. We define an *n*-manifold with boundry to be a second countable Hausdorff space M with atlas $\{(M_\alpha, \phi_\alpha)\}$ such that ϕ_α is a homeomorphism from M_α to an open subset of \mathbb{R}^n , or H^n .

Example 1.3. (1) The unit ball $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is an *n*-dimensional manifold with boundry $\partial B^n = S^{n-1}$. For interior points of B^n , this is clear. For points in S^{n-1} , extending the stereographic projection gives the required homeomorphism.

(2) The **pair of pants** (see figure 1.4) Is a 2-manifold with boundry.

Figure 1.4:

(3) The 1-holed torus is a 2-manifold with boundry.

Definition. A *p*-dimensional submanifold with boundry of an *n*-dimensional manifold M is a closed subset L of M for which there is an atlas $\{(M_{\alpha}, \phi_a)\}$ of M and $0 \le p \le n$, such that for every $x \in L$ in the interior of M, there is a chart (M_{α}, ϕ_a) such that $x \in M_{\alpha}$, and $\phi_{\alpha}(L \cap M_{\alpha}) = \{0\} \times \mathbb{R}^p$, and for every $x \in L$ in the boundry of M, there is a chart $(M_{\alpha}, \phi_{\alpha})$ such that $x \in M_{\alpha}$, and with $\phi_{\alpha}(L \cap M_{\alpha}) = \{0\} \times \mathbb{R}^p$, and for which $\phi_{\alpha}(x) \in \{0\} \times \partial H^p$.

Lemma 1.1.3. The boundry of an n-manifold is an (n-1)-submanifold with boundry.

Example 1.4. The diameter of the ball B^2 is a submanifold with boundry.

Definition. We call an *n*-manifold M closed if M is compact with nonempty boundry ∂M .

Example 1.5. The *n*-sphere and *n*-torus are closed manifolds. Additionally, the projection map $\pi_y: T^2 \to S^1$ fo $T^2 = S^1 \times S^1$ onto the second factor is a continuous map between manifolds.

Lemma 1.1.4. If M is an n-manifold with boundry, then its boundry ∂M is an (n-1)-manifold without boundry.

Proof. We first notice by our definition of boundry that $\partial M \subseteq M$. Since M is second countable and Hausdorff, ∂M inherits these properties as a subspace of M.

Now, consider a point $x \in \partial M$. Then by definition, there is a neighborhood U of x for which U is homeomorphic to a neighborhood V of H^n . Let $\phi: U \to V$ be the given homeomorphism. Notice, that $\partial H^n = \{x \in \mathbb{R}^n : x_1 = 0\}$, and that $\phi(x) \in V$ implies $\phi(x) \in V \cap \partial H^n$. Since V is open in H^n , $V \cap \partial H^n$ is open in ∂H^n as a subspace of H^n . So that $\phi(U) \simeq V \cap \partial H^n$ and U is homeomorphic to an open set in ∂H^n .

Now, take the projection map $\pi_y: \partial H^n \to \mathbb{R}^{n-1}$ onto the second factor, defined by $\pi_y: (0, (x_2, \dots, x_n)) \to (x_2, \dots, x_n) = (y_1, \dots, y_{n-1})$. Then π_y defines a homeomorphism of ∂H^n onto \mathbb{R}^{n-1} , so that $\pi_y \circ \phi$ is a homeomorphism of U onto an open set of \mathbb{R}^{n-1} . This makes ∂M an (n-1)-manifold. Moreover, since $x \in \partial M$ was arbitrary, there is no $x \in \partial M$ with neighborhood homeomorphic to an open set in H^{n-1} , so that $\partial(\partial M) = \emptyset$; i.e. ∂M is without boundry.

1.2 Smooth Manifolds

Definition. We call a map $f: \mathbb{R}^n \to \mathbb{R}^n$ q-smooth, or C^q , if it has continuous partial derivatives of order q. We call f smooth, or C^{∞} , if it has continuous partial derivatives of all orders.

Definition. A C^q -manifold, wit q > 0 is a topological manifold with an atlas that is C^q . That is, for any charts $(M_{\alpha}, \phi_{\alpha})$ and $(M_{\beta}, \phi_{\beta})$, $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is C^q wherever it is defined. We call C^{∞} -manifolds smooth manifolds, or differentiable manifolds.

Example 1.6. (1) \mathbb{R}^n is a smooth manifold, as are all its open subsets.

(2) Consider the *n*-manifold S^n with charts

$$(S^n \setminus (0, \dots, 0, 1), h) \qquad (S^n \setminus (0, \dots, 0, -1), h')$$

where

$$h(x_1, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \dots, x_n)$$
 and $h'(x_1, \dots, x_{n+1}) = \frac{1}{1 + x_{n+1}}(x_1, \dots, x_n)$

The map $h' \circ h^{-1}$ is smooth. Notice that

$$h^{-1}(y_1, \dots, y_n) = \left(\frac{2y_1}{1 + y_1^2 + \dots + y_n^2}, \dots, \frac{2y_n}{1 + y_1^2 + \dots + y_n^2}\right)$$

So that

$$h' \circ h^{-1} = \frac{1}{y_1^2 + \dots + y_n^2} (y_1, \dots, y_n)$$

Moreover, for all q > 0, $\partial^q h' \circ h^{-1}$ exists, which makes $h' \circ h^{-1}$ smooth. This makes S^n a smooth manifold.

(3) The product of smooth manifolds are smooth manifolds. In particular, the torus $T^2 = S^1 \times S^1$ is a smooth manifold.

Definition. Let M and N manifolds with atlases $\{(M_{\alpha}, \phi_{\alpha})\}$ and $\{(N_{\beta}, \psi_{\beta})\}$. We call a map $f: M \to N$ q-smooth, or C^q if $\psi_{\beta} \circ \phi_{\alpha}^{-1}$ is C^q wherever it is defined. We call C^q -maps between manifolds C^q -diffeomorphisms. We call C^{∞} -diffeomorphisms diffeomorphisms. We call any two C^q -manifolds diffeomorphic if there exists a C^q -diffeomorphism between them.

- **Example 1.7.** (1) The map $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is a smooth map, but it is not a diffeomorphism, since $f'(x) = 3x^2$ has a singular point at 0 (elaborate?). It is not even a C^1 -diffeomorphism.
 - (2) The projection map of $T^2 = S^1 \times S^1$ onto the second factor is a smooth map between manifolds.

Definition. LEt M a C^q -manifold, for some $q \geq 1$, and let $x \in M$ and (M_α, ϕ_α) a chart containing x. We call x a **critical point** of a map $f: M-<\mathbb{R}$ if it is a critical point of $f \circ \phi_\alpha^{-1}$. If $g: \mathbb{R}^n \to \mathbb{R}^n$ is a map, we call x a **nondegenerate** critical point if the Hessian of g is nonsingular at x, and we call x a **nondegenerate** critical point of f if it is a nondegenerate critical point of $f \circ \phi_\alpha^{-1}$.

Definition. We define a Morse function on a manifold M to be a smooth map $f: M \to \mathbb{R}$ such that

- (1) f has nondegenerate critical points.
- (2) Distinct critical points map to distinct values.

Example 1.8. The projection map of the Torus $T^2 \subseteq \mathbb{R}^3$ on to the thrid coordinate is a map with critical points. It has 1 maximum value, 2 minimum values, and 2 saddle points. Moreover these critical points are nondegenerate, so that the projection is a Morse function.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.