Информатика. Упражнение 3 Прямой, обратный и дополнительный коды двоичных целых чисел

Цель работы: познакомиться со способами замены операции вычитания операцией сложения.

Для упрощения и удешевления арифметико-логического устройства (АЛУ) разработано много специальных методов. Одним из таких методов является использование специальных способов кодирования чисел, позволяющих исключить в АЛУ операцию вычитания.

Алгоритмы сложения и вычитания двоичных чисел сильно отличаются друг от друга. Чтобы наглядно убедиться в этом, выполним следующие действия:

```
1) сложение 7 + 2 = 9,
 в двоич. сист.счисления:
  + 1 1 1
   010
  1001
2) вычитание
 а) Уменьшаемое больше вычитаемого: 7 - 2 = 5,
  в двоич. сист.счисления:
  _ 1 1 1
   010
   101
 б) Уменьшаемое меньше вычитаемого: 2 - 7 = -5.
  Операция состоит из трёх действий:
  1. меняем местами уменьшаемое и вычитаемое и их знаки,
  2. повторяем пункт а)
    _ 1 1 1
     0 1 0
      101
  3. меняем знак разности и в итоге получаем
     10 - 111 = -101
```

Вычитание, в отличие от сложения, не обладает свойством коммутативности. При сложении образуется единица переноса влево, а при вычитании слева занимается единица.

Обратный код

Для простоты будем рассматривать четырёхбитный формат целого числа:

Обозначим количество разрядов в формате числа через n. В n входит и знаковый разряд.

Определение 1.

Обратный код положительного числа - само число.

Обратный код отрицательного числа а вычисляется по формуле

$$a_{o6p} = 2^n - 1 - |a|$$
,

или получается инвертированием всех разрядов модуля *a,* т.е. заменой всех единиц в двоичном коде |a| на нули и нулей на единицы.

Рассмотрим применение обратного кода на примере. Вычислим разность *5* - *2*. Заменим -2 на обратный код:

$$-2_{06p} = (2^4 - 1 - 2)_{10} = (10000 - 1 - 10)_2 =$$

= $(1111 - 10)_2 = 1101_2$

Вычислим сумму $5 + (-2_{06p})$:

$$^{+0}$$
 1 0 1 $^{+0}$ 1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 $^{-3}$ 1 $^{-1}$ Циклический перенос единицы

Сумму $5 + (-2_{06p})$ можно записать так:

$$5 + 2^4 - 1 - 2 > 2^4$$

Это неравенство является условием необходимости циклического переноса. Заменив 2⁴ на единицу, получим

$$5 + 1 - 1 - 2 = 5 - 2 = 3$$

В общем случае, если a>0 , b>0 , и a>b , то сложение в обратном коде выглядит так:

Итак, в общем случае условием необходимости циклического переноса служит неравенство

$$a - b \ge 1$$
.

К сожалению, общий алгоритм замены вычитания в прямом коде сложением в обратном коде распадается на несколько случаев. Рассмотрим часть из них.

- 1) Случай a b при a > 0, b > 0, a > b уже рассмотрен.
- 2) a b при a > 0, b > 0, b > a. Пусть a = 2 b = 5.

$$-5_{\text{ofp}} = 1010$$

```
_{+}0\ 0\ 1\ 0 \frac{1\ 0\ 1\ 0}{1\ 1\ 0\ 0} перевод в прямой код => 1\ 0\ 1\ 1\ = -3
```

Результат получился в обратном коде:

```
2 + 2^4 - 1 - 5 = 2^4 - 1 - (5 - 2) < 2^4
```

В общем случае условие получения результата в обратном коде:

```
a + 2^n - 1 - b < 2^n, или a - b < 1.
```

3) **Переполнение** может произойти, если оба слагаемых имеют одинаковые знаки. Найдём сумму 5 + 7:

```
\begin{array}{c} +0\ 1\ 0\ 1 \\ \hline 0\ 1\ 1\ 1 \\ 1\ 1\ 0\ 0 \end{array}
```

Признаком переполнения служит несовпадение знака слагаемых со знаком суммы. Сложим -5 и -7 :

```
^{+1\ 0\ 1\ 0}_{1\ 0\ 0\ 1\ 0}
```

Получился положительный знак суммы при отрицательных слагаемых.

4) При использовании обратного кода нуль в прямом коде представляется двумя способами: +0 и -0. Отрицательный нуль получается при замене вычитания сложением в обратном коде. Отрицательному нулю, имеющему в прямом коде вид 1000, соответствует обратный код 1111. Вычтем из двух два:

```
в прямом коде .0\ 0\ 1\ 0 0\ 0\ 0\ 0 или +0 в обратном коде .0\ 0\ 1\ 0 1\ 1\ 1\ 1 и, преобразовав в прямой код, получаем 1\ 0\ 0\ 0 или -0
```

- 5) Оба слагаемых отрицательные. Возможны два способа вычисления суммы.
- а) Сложить модули чисел и присвоить сумме знак минус.
- б) Сложить в обратном коде. В этом случае нужно учесть две особенности:

так как знаковые разряды обоих слагаемых равны 1, то нужен циклический перенос; если после циклического переноса знаковый разряд равен 0, то произошло переполнение.

Пусть a<0 и b<0. Тогда

```
\begin{array}{c} 1 \\ a_{06p} + b_{06p} = 2^n - 1 - |a| + 2^n - 1 - |b| = \\ = 2^n - 1 - (|b| + |a|) = (a + b)_{06p}, \end{array}
```

Рассмотрим конкретный пример. Пусть a = -2 и b = -3. Подставим эти значения в формулу сложения в обратном коде:

```
\begin{array}{c} 1 \\ 2^4 - 1 - 2 + 2^4 - 1 - 3 = 2^4 - 1 + 2^4 - 1 - (3 + 2) = \\ 1 \\ = 2^4 - 1 - 5 = -5_{\text{обр}} = 1010_2. \\ \text{Непосредственно складывая в обратном коде, получим} \\ +1 \ 1 \ 0 \ 1 \\ \underline{1 \ 1 \ 0 \ 0} \\ 1 \ 1 \ 0 \ 0 \ 1 => \ 1 \ 0 \ 1 \ 0 => 1101 =-5 \\ |\underline{\qquad} \uparrow \\ \text{циклический перенос единицы} \end{array}
```

Дополнительный код

В обратном коде, если в результате сложения появляется единица слева от знакового разряда, то нужно делать циклический перенос. В дополнительном коде циклический перенос делать не нужно, а единица слева от знакового разряда отбрасывается.

Определение 2.

Дополнительный код положительного числа равен самому числу. Дополнительный код отрицательного числа больше обратного на единицу:

```
a_{\text{доп}} = a_{\text{обр}} + 1 = 2^{\text{n}} - |a|.
```

Пример 1. Найдём a + b при a = 5 и b = -2:

```
b_{06p} = 1101
b_{ДОП} = 1101 + 1 = 1110
+0 1 0 1
\frac{1110}{10011} = 3
\uparrow
отбрасывается
```

Пример 2. Найдём a + b при a = -5 и b = 2:

```
a_{06p} = 1010
a_{доп} = 1010 + 1 = 1011
+1 \ 0 \ 1 \ 1
0 \ 0 \ 1 \ 0
1 \ 1 \ 0 \ 1 = > прямой код 1011 = -3
```

В отличие от обратного кода в дополнительном коде при вычитании a - a получается +0. Положим a = 2 и вычислим

```
^{+0} 0 1 0 ^{1} 1 1 1 0
```

Задание

- 1. Получите у преподавателя номер варианта набора чисел (табл. 1)
- 2. Нужно для каждой из заданных шести пар чисел выполнить сложение и вычитание в прямом, обратном и дополнительном кодах, используя следующий 6-битный формат числа:

±			

Табл. 1. Варианты заданий							
№ вариан та	ПАРЫ ЧИСЕЛ						
1	12; 5	-7; 21	17; 19	-5; -5	25; - 4	-7; -9	
2	18; 7	-2; 11	15; 20	-15; - 15	27; - 2	-17; - 9	
3	11; 15	-3; 24	14; 21	-7; -7	26; - 5	-7; - 19	
4	21; 1	-7; 22	13; 22	5; 5	27; - 4	-6; - 20	
5	23; 4	-5; 13	12; 23	-2; -2	28; - 3	-5; - 21	
6	4; 15	-1; 20	-11; - 24	-3; -3	29; - 1	-4; - 22	
7	11; 9	-10; 21	10; 25	3; 3	30; - 1	-3; - 23	
8	13; 6	-8; 15	9; 26	-4; -4	15; - 14	-2; - 24	
9	17; 5	-9; 16	-8; - 27	-25; - 25	16; - 14	-8; - 21	
10	27; 4	-4; 23	7; 28	-17; - 17	17; - 12	-1; - 29	
11	25; 6	-3; 25	6; 29	15; 15	18; - 13	-17; - 10	
12	11; 1	-17; 1	5; 30	-8; -8	19; - 10	-18; - 9	
13	19; 5	-13; 2	41; 9	-9; -9	20; - 9	-19; - 6	
14	10; 9	-10; 25	10; 25	3; 3	22; - 1	-7; - 23	
15	17; 7	-7; 20	-17; - 23	-10; - 10	21; - 5	-27; - 3	
16	16; 5	-6; 21	16; 19	-1; -1	26; - 4	-6; - 10	

	_					
17	18; 9	-2; 11	15; 20	-15; - 15	27; - 2	-17; - 9
18	12; 14	-4; 23	12; 22	-6; -6	25; - 6	-7; - 14
19	21; 6	-11; 20	16; 18	21; 21	27; - 4	-6; - 20
20	23; 7	-5; 11	13; 21	-12; - 12	26; - 5	-1; - 25
21	4; 15	-1; 20	-11; - 24	-3; -3	29; - 1	-4; - 22
22	11; 10	-10; 21	10; 25	3; 3	30; - 1	-3; - 23
23	14; 6	-8; 15	9; 26	-4; -4	15; - 14	-2; - 24
24	15; 7	-9; 16	-8; - 27	-25; - 25	16; - 14	-8; - 21
25	27; 2	-5; 25	4; 28	-6; -6	17; - 12	-2; - 28
26	24; 7	-3; 25	3; 29	15; 15	18; - 13	-17; - 10
27	11; 1	-17; 1	2; 30	-18; - 18	19; - 11	-18; - 1
28	11; 12	-14; 2	26; 9	19; 19	20; - 9	-19; - 6
29	14; 7	-7; 20	-14; - 23	10; 10	21; - 5	-26; - 3
30	18; 5	-2; 11	12; 21	17; 17	27; - 2	-17; - 8

Пример выполнения задания для пары чисел 7; 12

```
В 6-битном формате
7_{\text{np}} = 000111
                           12_{np} = 001100 - 12_{np} = 101100
                           12_{\text{ofp}} = 001100 - 12_{\text{ofp}} = 110011
7_{\text{ofp}} = 000111
7_{\text{доп}} = 000111
                           12_{\text{доп}} = 001100 - 12_{\text{доп}} = 110100
В прямом коде
                                          7-12=-(12-7)
 7 + 12
 000111
                                   101100
                                  -000111
+001100
 010011 = 19
                                          100101 = -5
```

```
В обратном коде
                                     7-12=7+(-12)
 7+12
 000111
                               000111
                              +110011
+001100
 010011 = 19
                                     111010_{o6p} = 100101_{np} = -5
В дополнительном коде
                                     7-12=7+(-12)
 7+12
                               000111
 000111
+001100
                              +110100
 010011 = 19
                                     \overline{11}1011_{\text{доп}} = 111010_{06p} = 100101_{\text{пp}} = -5
```