

Description

The VSM10N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 100V, I_{D} = 10A$

 $R_{DS(ON)} < 17 m\Omega @ V_{GS} = 10V ~ (Typ:14 m\Omega)$

 $R_{DS(ON)} < 20m\Omega$ @ V_{GS} =4.5V (Typ:15.2m Ω)

- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current

Application

- DC/DC Primary Side Switch
- Telecom/Server
- Synchronous Rectification

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM10N10-S8	VSM10N10	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	10	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	7	Α	
Pulsed Drain Current	I _{DM}	70	Α	
Maximum Power Dissipation	P _D	3.1	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	R _{0JA}	40	°C/W
---	------------------	----	------

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Parameter Symbol Condition		Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.9	1.3	1.8	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =10A	-	14	17	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	15.2	20	mΩ
Forward Transconductance	G FS	V _{DS} =10V,I _D =10A	-	26	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	3000	3835	4200	PF
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	178	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	153	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	13	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_D =10 A , R_L =5 Ω ,	-	14	-	nS
Turn-Off Delay Time	$t_{d(off)}$	$R_G=1\Omega,V_{GS}=10V$	-	25	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg		-	90	-	nC
Gate-Source Charge	Q _{gs}	I _D =10A,V _{DD} =50V,V _{GS} =10V	-	10	-	nC
Gate-Drain Charge	Q_{gd}		-	24	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =10A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	10	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 10A	-	33		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)		54		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance