Arnab Dey

Student ID: 5563169

Email: dey00011@umn.edu

Solution 1.a

 I_1 is denoted by a single closed interval $[a_1, b_1] \in \mathbb{R}$. VC-dimension of I_1 is $VC(I_1) = 2$.

Proof

The single closed interval $[a_1, b_1]$ can shatter 2 points on real line as shown below:

Figure 1: I_1 can shatter 2 points

But it cannot shatter 3 points on real line in the following configuration:

Figure 2: I_1 cannot shatter 3 points

Solution 1.b

 I_2 is denoted by union of two closed intervals i.e. $[a_1,b_1] \cup [a_2,b_2] \in \mathbb{R}$. VC-dimension of I_2 is $VC(I_2)=4$.

Proof

union of two closed intervals i.e. $[a_1, b_1] \cup [a_2, b_2]$ can shatter 4 points on real line as shown below. For clarity, all the combinations are not shown:

Figure 3: I_2 can shatter 4 points

But it cannot shatter 5 points on real line in the following configuration:

Figure 4: I_2 cannot shatter 5 points

Solution 1.c

 I_K is denoted by union of K closed intervals i.e. $[a_1,b_1] \cup [a_2,b_2] \cup \ldots \cup [a_K,b_K] \in \mathbb{R}$. VC-dimension of I_K is $VC(I_K) = 2K$.

Proof

As any single closed interval can shatter 2 points, union of K such disjoint intervals will be able to shatter $2 \times K$ points. But any alternate combination of 2K+1 negative and positive samples cannot be shattered by union of K disjoint intervals. In case of overlapped intervals, the union can be considered as a single closed interval and therefore, the number of points it can shatter will be always less than disjoint intervals.

Solution 2.a

pdf is given by $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, where $x > 0, \theta > 0$. Sample size is n. The set of all samples is denoted by $\{x^t\}_{t=1}^n$.

MLE Calculation

The likelihood function is given by

$$L = \prod_{t=1}^{n} \frac{1}{\theta} e^{-\frac{x^t}{\theta}}$$

Therefore, the log-likelihood function is given by

$$F = \ln L = \sum_{t=1}^{n} \left[-\ln \theta - \frac{x^{t}}{\theta} \right]$$

To maximize the log-likelihood, we find $\frac{\partial F}{\partial \theta}$ and set it to 0 to find the estimate of the parameter $\theta = \hat{\theta}$

$$\frac{\partial F}{\partial \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{t=1}^n x^t$$

$$\implies 0 = -\frac{n}{\hat{\theta}} + \frac{1}{\hat{\theta}^2} \sum_{t=1}^n x^t$$

$$\implies \hat{\theta} = \frac{\sum_{t=1}^n x^t}{n} \quad [\because \hat{\theta} > 0]$$

Solution 2.b

pdf is given by $f(x|\theta) = 2\theta x^{2\theta-1}$, where $0 < x \le 1, 0 < \theta < \infty$. Sample size is n. The set of all samples is denoted by $\{x^t\}_{t=1}^n$.

MLE Calculation

The likelihood function is given by

$$L = \prod_{t=1}^{n} 2\theta x^{t^{2\theta - 1}}$$

Therefore, the log-likelihood function is given by

$$F = \ln L = \sum_{t=1}^{n} \left[\ln 2 + \ln \theta + (2\theta - 1) \ln x^{t} \right]$$
$$= n \ln 2 + n \ln \theta + (2\theta - 1) \sum_{t=1}^{n} \ln x^{t}$$

To maximize the log-likelihood, we find $\frac{\partial F}{\partial \theta}$ and set it to 0 to find the estimate of the parameter $\theta = \hat{\theta}$

$$\frac{\partial F}{\partial \theta} = \frac{n}{\theta} + 2 \sum_{t=1}^{n} \ln x^{t}$$

$$\implies 0 = \frac{n}{\hat{\theta}} + 2 \sum_{t=1}^{n} \ln x^{t}$$

$$\implies \hat{\theta} = -\frac{n}{2 \sum_{t=1}^{n} \ln x^{t}}$$

Solution 2.c

pdf is given by $f(x|\theta) = \frac{1}{2\theta}$, where $0 \le x \le 2\theta$. Sample size is n. The set of all samples is denoted by $\{x^t\}_{t=1}^n$.

MLE Calculation

The likelihood function is given by

$$L = \prod_{t=1}^{n} \left[\frac{1}{2\theta} \right] = \frac{1}{(2\theta)^n}$$

As this is a decreasing function of θ , L will be maximum when θ will be minimum for a given number of samples(n). As $0 \le x \le 2\theta$, $\theta_{min} = \frac{max(x^1, x^2, \dots, x^n)}{2}$

Solution 3.a

P(x|C) denotes a Bernoulli density function for a class $C \in \{C_1, C_2\}$ and P(C) denotes the prior.

Given

$$P(C_1), P(C_2)$$
, and considering exhaustive events, $P(C_1) + P(C_2) = 1$
 $p_1 = P(x = 0|C_1) \implies (1 - p_1) = P(x = 1|C_1)$
 $p_2 = P(x = 0|C_2) \implies (1 - p_2) = P(x = 1|C_2)$

By Bayes rule, the posteriors are given by, $P(C_i|x) = \frac{P(x|C_i)P(C_i)}{P(x)}, i \in \{1, 2\}$. In case of Bernoulli density function, we have

$$P(x|C_i) = p_i^{1-x}(1-p_i)^x, x \in \{0,1\}, i \in \{1,2\}$$

and,

$$P(x) = \sum_{i=1}^{2} P(x|C_i)P(C_i)$$

For classification based on posteriors, we can create discriminant functions as follows,

$$g_i(x) = P(C_i|x) = \frac{P(x|C_i)P(C_i)}{P(x)}, i \in \{1, 2\}$$

As for both the values of i, the denominator is same, we can take the decision based on $P(x|C_i)P(C_i)$. Therefore, our discriminant function can be reduced to

$$g_i(x) = P(x|C_i)P(C_i), i \in \{1, 2\}$$

= $p_i^{1-x}(1-p_i)^x P(C_i)$ (1)

or equivalently, (natural logarithm of the above discriminant function),

$$g_i(x) = (1 - x) \ln p_i + x \ln(1 - p_i) + \ln(P(C_i)), i \in \{1, 2\}$$
(2)

Classification Rule Choose C_i if $g_i(x) = \max_k g_k(x)$ In other words, choose C_1 if,

$$(1-x)\ln p_1 + x\ln(1-p_1) + \ln(P(C_1)) \ge (1-x)\ln p_2 + x\ln(1-p_2) + \ln(P(C_2))$$

$$\implies (1-x)\ln\left(\frac{p_1}{p_2}\right) \ge x\ln\left(\frac{1-p_2}{1-p_1}\right) + \ln\left(\frac{1-P(C_1)}{P(C_1)}\right)$$
(3)

Solution 3.b

For *D*-dimensional independent Bernoulli densities specified by $p_{ij} = P(x_j = 0 | C_i), i \in \{1, 2\}, j \in \{1, 2, \dots, D\}, j \in \{1, 2, \dots, D\}$

$$P(x|C_i) = \prod_{j=1}^{D} p_{ij}^{1-x_j} (1 - p_{ij})^{x_j}$$
(4)

Therefore, as in case of Solution 3.a, the discriminant function can be given as follows,

$$g_i(x) = P(x|C_i)P(C_i) = \left[\prod_{j=1}^{D} p_{ij}^{1-x_j} (1-p_{ij})^{x_j}\right] P(C_i)$$

or equivalently, (natural logarithm of the above discriminant function),

$$g_i(x) = \sum_{j=1}^{D} \left[(1 - x_j) \ln p_{ij} + x_j \ln(1 - p_{ij}) \right] + \ln(P(C_i))$$
 (5)

Classification Rule for D-dimensional Case Choose C_i if $g_i(x) = \max_k g_k(x)$ In other words, choose C_1 if,

$$\sum_{j=1}^{D} \left[(1 - x_j) \ln p_{1j} + x_j \ln(1 - p_{1j}) \right] + \ln(P(C_1)) \ge \sum_{j=1}^{D} \left[(1 - x_j) \ln p_{2j} + x_j \ln(1 - p_{2j}) \right] + \ln(P(C_2))$$

$$\implies \sum_{j=1}^{D} \left[(1 - x_j) \ln p_{1j} + x_j \ln(1 - p_{1j}) \right] \ge \sum_{j=1}^{D} \left[(1 - x_j) \ln p_{2j} + x_j \ln(1 - p_{2j}) \right] + \ln\left(\frac{1 - P(C_1)}{P(C_1)}\right)$$

Solution 3.c

Posterior probability is given by,

$$P(C_i|x) = \frac{P(x|C_i)P(C_i)}{P(x)}, i \in \{1, 2\}$$

where $P(x|C_i)$ is given by (4). P(x) is given by

$$P(x) = \sum_{i=1}^{2} P(x|C_i)P(C_i)$$

Posterior probabilities for different samples for different priors is tabulated below. Detail calculation has been given after the table.

Samples	$P(C_1) = 0.2$	$P(C_1) = 0.6$	$P(C_1) = 0.8$
(0,0)	$P(C_1 x) = 0.027$	$P(C_1 x) = 0.143$	$P(C_1 x) = 0.308$
	$P(C_2 x) = 0.973$	$P(C_2 x) = 0.857$	$P(C_2 x) = 0.692$
(0,1)	$P(C_1 x) = 0.692$	$P(C_1 x) = 0.931$	$P(C_1 x) = 0.973$
	$P(C_2 x) = 0.308$	$P(C_2 x) = 0.069$	$P(C_2 x) = 0.027$
(1,0)	$P(C_1 x) = 0.027$	$P(C_1 x) = 0.143$	$P(C_1 x) = 0.308$
	$P(C_2 x) = 0.973$	$P(C_2 x) = 0.857$	$P(C_2 x) = 0.692$
(1,1)	$P(C_1 x) = 0.692$	$P(C_1 x) = 0.931$	$P(C_1 x) = 0.973$
	$P(C_2 x) = 0.308$	$P(C_2 x) = 0.069$	$P(C_2 x) = 0.027$

Calculation

Sample: x = (0,0) From (4),

$$P(x|C_1) = p_{11}p_{12} = 0.6 \times 0.1 = 0.06$$

 $P(x|C_2) = p_{21}p_{22} = 0.6 \times 0.9 = 0.54$

Therefore,

$$P(x) = P(x|C_1)P(C_1) + P(x|C_2)P(C_2) = 0.06 \times P(C_1) + 0.54 \times P(C_2)$$
(6)

For $P(C_1) = 0.2, P(C_2) = 0.8,$

$$P(x) = 0.444$$

$$P(C_1|x) = \frac{0.06 \times 0.2}{0.444}$$

$$= 0.027$$

$$P(C_2|x) = \frac{0.54 \times 0.8}{0.444}$$

$$= 0.973$$
(7)

For $P(C_1) = 0.6, P(C_2) = 0.4$,

$$P(x) = 0.252$$

$$P(C_1|x) = \frac{0.06 \times 0.6}{0.252}$$

$$= 0.143$$

$$P(C_2|x) = \frac{0.54 \times 0.4}{0.252}$$

$$= 0.857$$
(8)

For $P(C_1) = 0.8, P(C_2) = 0.2,$

$$P(x) = 0.156$$

$$P(C_1|x) = \frac{0.06 \times 0.8}{0.156}$$

$$= 0.308$$

$$P(C_2|x) = \frac{0.54 \times 0.2}{0.156}$$

$$= 0.692$$
(9)

Sample: x = (0,1) From (4),

$$P(x|C_1) = p_{11}(1 - p_{12}) = 0.6 \times 0.9 = 0.54$$

 $P(x|C_2) = p_{21}(1 - p_{22}) = 0.6 \times 0.1 = 0.06$

Therefore,

$$P(x) = P(x|C_1)P(C_1) + P(x|C_2)P(C_2) = 0.54 \times P(C_1) + 0.06 \times P(C_2)$$
(10)

For $P(C_1) = 0.2, P(C_2) = 0.8,$

$$P(x) = 0.156$$

$$P(C_1|x) = \frac{0.54 \times 0.2}{0.156}$$

$$= 0.692$$

$$P(C_2|x) = \frac{0.06 \times 0.8}{0.156}$$

$$= 0.3077$$
(11)

For $P(C_1) = 0.6, P(C_2) = 0.4,$

$$P(x) = 0.348$$

$$P(C_1|x) = \frac{0.54 \times 0.6}{0.348}$$

$$= 0.931$$

$$P(C_2|x) = \frac{0.06 \times 0.4}{0.348}$$

$$= 0.069$$
(12)

For $P(C_1) = 0.8, P(C_2) = 0.2,$

$$P(x) = 0.444$$

$$P(C_1|x) = \frac{0.54 \times 0.8}{0.444}$$

$$= 0.973$$

$$P(C_2|x) = \frac{0.06 \times 0.2}{0.444}$$

$$= 0.027$$
(13)

Sample: x = (1,0) From (4),

$$P(x|C_1) = (1 - p_{11})p_{12} = 0.4 \times 0.1 = 0.04$$

 $P(x|C_2) = (1 - p_{21})p_{22} = 0.4 \times 0.9 = 0.36$

Therefore,

$$P(x) = P(x|C_1)P(C_1) + P(x|C_2)P(C_2) = 0.04 \times P(C_1) + 0.36 \times P(C_2)$$

For $P(C_1) = 0.2, P(C_2) = 0.8,$

$$P(x) = 0.296$$

$$P(C_1|x) = \frac{0.04 \times 0.2}{0.296}$$

$$= 0.027$$

$$P(C_2|x) = \frac{0.36 \times 0.8}{0.296}$$

$$= 0.973$$

For
$$P(C_1) = 0.6, P(C_2) = 0.4,$$

$$P(x) = 0.168$$

$$P(C_1|x) = \frac{0.04 \times 0.6}{0.168}$$

$$= 0.143$$

$$P(C_2|x) = \frac{0.36 \times 0.4}{0.168}$$

$$= 0.857$$

For $P(C_1) = 0.8, P(C_2) = 0.2,$

$$P(x) = 0.104$$

$$P(C_1|x) = \frac{0.04 \times 0.8}{0.104}$$

$$= 0.308$$

$$P(C_2|x) = \frac{0.36 \times 0.2}{0.104}$$

$$= 0.692$$

Sample: x = (1,1) From (4),

$$P(x|C_1) = (1 - p_{11})(1 - p_{12}) = 0.4 \times 0.9 = 0.36$$

 $P(x|C_2) = (1 - p_{21})(1 - p_{22}) = 0.4 \times 0.1 = 0.04$

Therefore,

$$P(x) = P(x|C_1)P(C_1) + P(x|C_2)P(C_2) = 0.36 \times P(C_1) + 0.04 \times P(C_2)$$

For $P(C_1) = 0.2, P(C_2) = 0.8,$

$$P(x) = 0.104$$

$$P(C_1|x) = \frac{0.36 \times 0.2}{0.104}$$

$$= 0.692$$

$$P(C_2|x) = \frac{0.04 \times 0.8}{0.104}$$

$$= 0.308$$

For $P(C_1) = 0.6, P(C_2) = 0.4,$

$$P(x) = 0.232$$

$$P(C_1|x) = \frac{0.36 \times 0.6}{0.232}$$

$$= 0.931$$

$$P(C_2|x) = \frac{0.04 \times 0.4}{0.232}$$

$$= 0.069$$

For $P(C_1) = 0.8, P(C_2) = 0.2,$

$$P(x) = 0.296$$

$$P(C_1|x) = \frac{0.36 \times 0.8}{0.296}$$

$$= 0.973$$

$$P(C_2|x) = \frac{0.04 \times 0.2}{0.296}$$

$$= 0.027$$

Solution 4

σ	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P(C_1 \sigma)$	0.007	0.018	0.047	0.119	0.269	0.5	0.731	0.881	0.953	0.982	0.993
Error rate(%)	54	54	54	51	49	52	45	46	46	46	46

Table 1: Error-rate Vs. σ table

σ	1			
$P(C_1 \sigma)$	0.731			
Error rate(%)	47.5			

Table 2: Error rate on test dataset