Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1.(currently amended) A current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) magnetic field sensor of the synthetic spin valve type having improved GMR and magnetorestriction qualities comprising:

a substrate;

a seed layer formed on the substrate;

an antiferromagnetic pinning layer formed on the seed layer;

a synthetic antiferromagnetic pinned layer formed on the pinning layer, said pinned layer further comprising ferromagnetic layer AP2, formed on said pinning layer, a non-magnetic coupling layer formed on AP2 and ferromagnetic layer AP1 formed on said coupling layer;

a spacer layer formed on said AP1 layer;

a laminated free layer formed on <u>said spacer</u> layer <u>AP1 of the pinned layer</u>, the free layer <u>including a plurality of layers of a second ferromagnetic material</u>, <u>each said</u> <u>layer being formed to a thickness between approximately 2.5 and 15 angstroms and each said layer being separated from an adjacent said layer by a lamina of a first ferromagnetic</u>

Serial No. 10/786,806

material formed to a thickness less than approximately 3 angstroms or by a Cu spacer layer formed to a thickness between approximately 1 and 4 angstroms; and wherein including at least one ultra thin each said lamina of [[a]] said first ferromagnetic material having has a positive coefficient of magnetostriction and at least one each said layer of [[a]] said second ferromagnetic material having has a negative coefficient of magnetostriction, whereby the coefficient of magnetostriction of said free layer can be made positive or negative; and

a capping layer formed on said free layer.

2.(currently amended) The sensor of claim 1, wherein said first ferromagnetic material is any of the ferromagnetic iron rich alloys of the form Co_xFe_{1-x} Co_xFe_{100-x} with x between [[0.25]] 25 and [[0.75]] 75 and said second ferromagnetic material is $Co_{90}Fe_{10}$.

3.(canceled)

4.(currently amended) The sensor of claim 2 wherein said AP1 layer includes at least one layer of said first ferromagnetic material formed to a thickness between approximately 2.5 and 15 angstroms, at least one layer of said second ferromagnetic material of thickness between approximately 2.5 and 15 angstroms.

Claims 4b-7 are canceled.

- 8.(original) The sensor of claim 1 wherein said free layer comprises:
 - a first layer of Co₉₀Fe₁₀;
 - a first lamina of Fe₅₀Co₅₀ formed on said first layer;
 - a second layer of Co₉₀Fe₁₀ formed on said first lamina;
 - a first spacer layer of Cu formed on said first lamina;
 - a third layer of Co₉₀Fe₁₀ formed on said first spacer layer;
 - a second lamina of Fe₅₀Co₅₀ formed on said second layer;
 - a fourth layer of Co₉₀Fe₁₀ formed on said second lamina;
 - a second spacer layer of Cu formed on said third layer;
 - a fifth layer of Co₉₀Fe₁₀ formed on said second spacer layer.
- 9.(original) The sensor of claim 8 wherein the thickness said first layer is between approximately 5 and 15 angstroms, the thickness of said second, third, fourth and fifth layers is between approximately 2.5 and 7.5 angstroms, the thickness of each lamina is less than approximately 3 angstroms and the thickness of each spacer layer is between approximately 1 and 4 angstroms.
- 10.(original) The sensor of claim 9 wherein the laminated configuration of the free layer produces a positive coefficient of magnetostriction.
- 11.(currently amended) The sensor of claim [[7]] $\underline{1}$ wherein said AP1 layer includes a lamination of bilayers, wherein each bilayer is a layer of Fe₅₀Co₅₀, of thickness between

approximately 7.5 and 15 angstroms, formed on a layer of Cu of thickness between approximately 1 and 4 angstroms.

12.(currently amended) A method of forming a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) magnetic field sensor of the synthetic spin valve type having improved GMR qualities and a coefficient of magnetostriction that can be varied from positive to negative by changing a laminated configuration of its free layer comprising:

providing a substrate;

forming a seed layer on the substrate;

forming an antiferromagnetic pinning layer on the seed layer;

forming a synthetic antiferromagnetic pinned layer on the pinning layer, said formation further comprising forming ferromagnetic layer AP2 on said pinning layer, forming a non-magnetic coupling layer on AP2 and forming ferromagnetic layer AP1 on said coupling layer;

forming a spacer layer on said AP1 layer;

forming a laminated free layer on the pinned spacer layer, said laminated free layer including a plurality of layers of a second ferromagnetic material, each said layer being formed to a thickness between approximately 2.5 and 15 angstroms and each said layer being separated from an adjacent said layer by a lamina of a first ferromagnetic material formed to a thickness less than approximately 3 angstroms or by a Cu spacer layer formed to a thickness between approximately 1 and 4 angstroms; and wherein each including at least one ultra-thin lamina of [[a]] said first ferromagnetic material having

has a positive coefficient of magnetostriction and at least one each layer of [[a]] said second ferromagnetic material having has a negative coefficient of magnetostriction, wherein whereby the number and arrangement of laminas of said first ferromagnetic material and the number and arrangement of layers of said second ferromagnetic material determine a coefficient of magnetostriction of the free layer having a value within a range from positive to negative; then

forming a capping layer formed on said free layer.

13.(currently amended) The method of claim 12, wherein said first ferromagnetic material is the iron rich ferromagnetic alloy of the form Co_xFe_{1-x} Co_xFe_{100-x} with x between [[0.25]] 25 and [[0.75]] 75 and said second ferromagnetic material is $Co_{90}Fe_{10}$.

Claims14 - 19 are canceled

20.(original) The method of claim 12 wherein formation of said free layer comprises:

forming a first layer of Co₉₀Fe₁₀;

forming a first lamina of Fe₅₀Co₅₀ on said first layer;

forming a second layer of Co₉₀Fe₁₀ on said first lamina;

forming a first spacer layer of Cu on said first lamina;

forming a third layer of Co₉₀Fe₁₀ on said first spacer layer;

forming a second lamina of Fe₅₀Co₅₀ on said second layer;

forming a fourth layer of Co₉₀Fe₁₀ on said second lamina;

forming a second spacer layer of Cu on said third layer;

forming a fifth layer of Co₉₀Fe₁₀ on said second spacer layer.

- 21. (original) The method of claim 20 wherein the thickness said first layer is between approximately 5 and 15 angstroms, the thickness of said second, third, fourth and fifth layers is between approximately 2.5 and 7.5 angstroms, the thickness of each lamina is less than approximately 3 angstroms and the thickness of each spacer layer is between approximately 1 and 4 angstroms.
- 22.(original) The method of claim 12 wherein the laminated configuration of the free layer produces a positive coefficient of magnetostriction.
- 23.(currently amended) The sensor method of claim [[7]] 12 wherein said AP1 layer includes a lamination of bilayers, wherein each bilayer is a layer of Fe₅₀Co₅₀, of thickness between approximately 7.5 and 15 angstroms, formed on a layer of Cu of thickness between approximately 1 and 4 angstroms.