Итоговая работа. Часть 3

Приведение наблюдаемых координат ИСЗ на стандартную эпоху

Постановка задачи

Со станции слежения за ИСЗ, геодезические координаты которой известны, в момент времени UTС с помощью лазерного дальномера измерены расстояния ρ'_s до ИСЗ, а из обработки наблюдений ИСЗ на фоне звезд получены топоцентрические направления α'_s , δ'_s на спутник (см. задание № 2). По этим данным необходимо определить геоцентрические координаты ИСЗ $(\vec{x}, \vec{y}, \vec{z})$ в средней экваториальной равноденственной системе координат стандартной эпохи J2000.0.

Исходные данные

Условные геодезические координаты станций слежения в референцной Системе координат 1942 г. (СК-42):

I.Звенигород	II. Новосибирск	III.Симферополь
$B = 55^{\circ}42'43'', 510$	$B = 55^{\circ}00'48'', 110$	$B = 44^{\circ}57'18'', 490$
$L = 2^{h}27^{m}03^{s}, 867$	$L = 5^{\circ}32^{\circ}21^{\circ}, 333$	$L = 2^{h}16^{m}15^{u}, 867$
H = 237,529 M	H = 208,378 M	H = 253,755 M

Элементы ориентирования СК-42 в ЕСК-90:

```
\Delta X = +27.0 \text{ M} \omega_x = +0'', 10 \Delta m = +0.25 \cdot 10^{-6}. \Delta Y = -143.0 \text{ M} \omega_y = -0'', 34 \Delta Z = -83.0 \text{ M} \omega_z = -0'', 65
```

Параметры эллипсоида Красовского:

```
большая полуось a = 6378245,0 м, сжатие f = 1/298,3.
```

Результаты наблюдений ИСЗ «Ресурс-О1» № 2 на станциях слежения:

І. Звенигород.

Набл. #	Дата (д. м. г.)	UTC (h m s)	р' <u>.</u> (м)	α'. (h m s)	(° ^{δ'} ; ")
1	01.08.1991	19 38 04,566	744309,37	18 46 19,01	21 01 46,50
2	04.08.1991	18 44 56,898	869067,53	00 06 02,46	56 58 31,11
3	07.08.1991	19 25 51,057	681421,84	16 38 52, 94	44 19 57,06
4	08.08.1991	19 39 19, 305	856346,22	16 15 24,57	23 37 01,68
5	11.08.1991	18 46 11,637	796175,96	07 16 05,35	84 03 32, 30
6	12.08,1991	18 59 39,885	723210,20	14 24 36, 49	69 05 21, 41
7	16.08.1991	18 18 12,534	673747,65	21 10 05,69	57 00 27, 69
8	18.08.1991	18 45 09,030	757719,62	17 28 28,04	23 26 10, 59
9	24.08.1991	18 34 14,037	1038434,83	12 08 40,51	51 35 40, 69
10	25.08.1991	18 45 54, 354	1046342,14	160622,81	13 33 17, 98

II. Новосибирск.

Набл. №	Дата (д.м.г.)	UTC (h m s)	р', (м)	α', (h m s)	(* ' * *)
1	05.08.1991	15 44 38,013	792252,49	23 16 02,85	57 59 31, 54
2	09.08.1991	16 40 18,936	985018,76	14 05 48,54	38 14 27, 59
3	14.08.1991	16 12 19,833	857248,64	16 06 32, 49	24 48 08, 33
4	15.08.1991	16 25 48,081	1116423, 36	16 00 34,81	11 18 52, 95
5	17.08.1991	15 19 12,165	820345,76	07 26 23,72	82 23 42,00
6	19.08.1991	15 46 08,661	798117,96	14 51 37,83	45 42 16, 75
7	25.08.1991	15 33 25,737	958123,64	13 51 08,87	42 24 45, 91
8	26.08.1991	15 46 53,985	1129907,24	14 29 32,86	27 22 01, 93
9	30.08.1991	15 05 26,634	806436,73	16 05 57, 64	29 42 32, 57
10	31.08.1991	15 20 42,813	1142701,72	13 15 14,20	38 59 01, 84

III. Симферополь.

Набл. ₩	Дата (д.м.г.)	UTC (h m s)	р', (м)	α'. (h m s)	(° ^{δ′} ; ")
1	07.08.1991	19 22 15,195	779467,67	20 32 45,89	13 33 42, 47
2	08.08.1991	19 37 31,374	680536,12	16 48 07, 64	60 28 42,77
3	09.08.1991	19 50 59,622	796954,96	15 53 52, 64	32 51 28,80
4	13.08.1991	19 09 32,271	659008,45	19 22 53, 26	25 29 56, 30
5	15.08.1991	19 38 16,698	975684,04	14 52 05,09	32 47 51,01
6	17.08.1991	18 29 52,851	844736,07	23 16 47, 83	55 58 15,80
7	26.08.1991	18 57 34,671	991558,54	15 39 33, 61	18 35 37,80
8	29.08.1991	18 02 39,072	653966,84	19 51 43, 15	30 33 58,76
9	30.08.1991	18 17 55,251	822242,34	14 22 08,40	62 33 39,66
10	31.08.1991	18 31 23,499	932912,06	14 45 48, 65	38 02 50,74

Выписка из бюллетеня «Всемирное время и координаты полюса»

Дата: (0°UT) 1991	UT1-UTC	× _P	у _р (^в)	Дата: (0°UT) 1991	UT1-UTC	× ₍ ^p)	у _Е (^E)
ABr. 01	+0,1854	+0,091	+0,546	ABr. 16	+0,1634	+0,142	+0,528
02	+0,1839	+0,095	+0,545	17	+0,1622	+0,145	+0,526
03	+0,1824	+0,099	+0,544	18	+0,1611	+0,148	+0,525
04	+0,1811	+0,102	+0,543	19	+0,1602	+0,151	+0,523
05	+0,1799	+0,106	+0,543	20	+0,1592	+0,154	+0,521
06	+0,1788	+0,110	+0,542	21	+0,1582	+0,157	+0,520
07	+0,1776	+0,113	+0,541	22	+0,1570	+0,159	+0,518
08	+0,1766	+0,117	+0,539	23	+0,1557	+0,162	+0,516
09	+0,1752	+0,120	+0,538	24	+0,1542	+0,165	+0,514
10	+0,1736	+0,124	+0,537	25	+0,1524	+0,168	+0,512
11	+0,1718	+C,127	+0,536	26	+0,1505	+0,170	+0,510
12	+0,1699	+0,130	+0,534	27	+0,1485	+0,173	+0,508
13	+0,1680	+C,133	+0,533	28	+0,1464	+0,176	+0,506
14	+0,1663	+0,136	+0,531	29	+0,1444	+0,178	+0,504
15	+0,1647	+0,139	+0,530	30	+0,1425	+0,181	+0,502
				31	+0,1407	+0,184	+0,500

Алгоритм вычислений

1. Переход от шкалы всемирного координированного времени UTC к шкале всемирного времени UT1

$$UT1=UTC+\Delta UTC$$
,

где ΔUTC=(UT1-UTC) --- поправка за разность шкал всемирного времени UTC и UT1, выбираемая из Бюллетеня всемирного времени или принимаемая по радио.

2. Вычисление юлианской даты эпохи наблюдений JD(t)

$$JD(t) = 1721013,5 + 367 \cdot Y - \inf \left[7 \cdot \frac{Y + \inf \left(\frac{M+9}{12} \right)}{4} \right] + \inf \left(\frac{275 \cdot M}{9} \right) + D + UT1,$$

где У — номер года (например, 1991),

М — помер месяца в году,

D - номер дня в месяце,

UT1⁴— всемирное время по шкале UT1, выраженное в долях суток, int() — функция выделения целой части аргумента.

3. Вычисление матрицы прецессии Р

$$\mathbf{P}=\mathbf{R}_3(-z_A)\cdot\mathbf{R}_2(\theta_A)\cdot\mathbf{R}_3(-\varsigma_A).$$

 ${f R}_1, {f R}_2, {f R}_3$ — матрицы вращения вокруг соответствующих координатных осей x,y,z в положительном направлении (т. е. в правой системе — против часовой стрелки). Изменение знака аргумента автоматически приводит к смене направления вращения. Для некоторого произвольного угла ω матрицы ${f R}_1, {f R}_2, {f R}_3$ имеют вид:

$$\begin{split} \mathbf{R_1}(\omega) = & \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\omega & \sin\omega \\ 0 & -\sin\omega & \cos\omega \end{pmatrix}, \qquad \mathbf{R_2}(\omega) = \begin{pmatrix} \cos\omega & 0 & -\sin\omega \\ 0 & 1 & 0 \\ \sin\omega & 0 & \cos\omega \end{pmatrix}, \\ \mathbf{R_3}(\omega) = & \begin{pmatrix} \cos\omega & \sin\omega & 0 \\ -\sin\omega & \cos\omega & 0 \\ 0 & 0 & 1 \end{pmatrix}. \end{split}$$

Прецессионные параметры Ньюкома-Андуайе (ζ_A , θ_A , z_A), определяющие положение среднего равноденствия и экватора эпохи наблюдений, вычисляются по формулам:

$$\varsigma_A = 2306',2181 \cdot T + 0',30188 \cdot T^2 + 0',017998 \cdot T^3,$$

$$\theta_A = 2004',3109 \cdot T - 0',42665 \cdot T^2 - 0',041883 \cdot T^3,$$

$$z_A = 2306',2181 \cdot T + 1',09468 \cdot T^2 + 0',018203 \cdot T^3,$$

где T— время, отсчитываемое в юлианских столетиях по 36525 суток в системе всемирного времени UT1 от стандартной эпохи J2000.0, совпадающей с юлианской датой JD2451545,0, до эпохи наблюдений JD(t)

$$T = \frac{JD(t) - 2451545,0}{36525} \ .$$

4. Вычисление матрицы нутации N

$$\mathbf{N} = \mathbf{R}_1 (-\varepsilon_0 - \Delta \varepsilon - d\varepsilon) \cdot \mathbf{R}_3 (-\Delta \psi - d\psi) \cdot \mathbf{R}_1 (\varepsilon_0),$$

где $\Delta \psi$ — долгопериодическая часть нутации по долготе;

dw — короткопериодическая часть нутации по долготе;

Δε — долгопериодическая часть нутации наклона;

dε — короткопериодическая часть нутации наклона;

 $\epsilon_{\rm o}$ — средний наклон эклиптики к экватору.

В соответствии с рекомендациями МАС значения нутации по долготе ($\Delta \psi$, $d \psi$) и нутации наклона ($\Delta \varepsilon$, $d \varepsilon$) вычисляются по Теории нутации 1980, разложения которой по фундаментальным аргументам l, l', F, D, Ω содержат по 106 членов для каждой составляющей. В учебных целях учтем только несколько наиболее значительных из них:

$$\begin{split} \Delta \psi &= - (17'', 1996 + 0'', 01742 \cdot T) \cdot \sin \Omega + (0'', 2062 + 0'', 00002 \cdot T) \cdot \sin (2\Omega) - \\ &- (1'', 3187 + 0'', 00016 \cdot T) \cdot \sin (2F - 2D + 2\Omega) - \\ &- (0'', 1426 + 0'', 00034 \cdot T) \cdot \sin (l') + \dots, \\ \mathrm{d} \psi &= - (0'', 2274 + 0'', 00002 \cdot T) \cdot \sin (2F + 2\Omega) + \\ &+ (0'', 0712 + 0'', 00001 \cdot T) \cdot \sin (l) + \dots, \\ \Delta \varepsilon &= (9'', 2025 + 0'', 00089 \cdot T) \cdot \cos \Omega + (-0'', 0895 + 0'', 00005 \cdot T) \cdot \cos (2\Omega) + \\ &+ (0'', 5736 - 0'', 00031 \cdot T) \cdot \cos (2F - 2D + 2\Omega) + \dots, \\ \mathrm{d} \varepsilon &= (0'', 0977 - 0'', 00005 \cdot T) \cdot \cos (2F + 2\Omega) + \dots \end{split}$$

Разложения фундаментальных аргументов имеют вид:

$$\begin{split} l &= 485866'',733 + \left(1325' + 715922'',633\right) \cdot T + 31'',310 \cdot T^2 + 0'',064 \cdot T^3, \\ l' &= 1287099'',804 + \left(99' + 1292581'',224\right) \cdot T - 0'',577 \cdot T^2 - 0'',012 \cdot T^3, \\ F &= 335778'',877 + \left(1342' + 295263'',137\right) \cdot T - 13'',257 \cdot T^2 + 0'',011 \cdot T^3, \\ D &= 1072261'',307 + \left(1236' + 1105601'',328\right) \cdot T - 6'',891 \cdot T^2 + 0'',019 \cdot T^3, \\ \Omega &= 450160'',280 - \left(5' + 482890'',539\right) \cdot T + 7'',455 \cdot T^2 + 0'',008 \cdot T^3, \end{split}$$

где $I' = 360^{\circ} = 1296000''$:

l — средняя аномалия Луны;

l' — средняя аномалия Солнца;

F — средний аргумент широты Луны;

D — разность средних долгот Луны и Солнца;

 Ω — средняя долгота восходящего узла орбиты Луны.

Средний наклон ε_{n} эклиптики к экватору задается разложением

$$\varepsilon_0 = 84381'', 448 - 46'', 8150 \cdot T - 0'', 00059 \cdot T^2 + 0'', 001813 \cdot T^3$$
.

В приведенных формулах T отсчитывается также как и ранее от стандартной эпохи J2000.0 в юлианских столетиях по 36525 суток.

5. Вычисление матрицы поворота истинной экваториальной равноденственной системы координат вокруг оси аппликат против часовой стрелки на угол, равный истинному звездному времени в Гринвиче

$$S = R_3(\tilde{S})$$
,

где \tilde{S} — истинное гринвичское звездное время в момент наблюдений $\tilde{S} = 6^h 41^m 50^s, 54841 + 8640184^s, 812866 \cdot T + 0^s, 093104 \cdot T^2 - \\ -6^s, 2 \cdot 10^{-6} \cdot T^3 + UT1 + \Delta\alpha,$ $\Delta\alpha^s = \frac{1}{15} \left(\Delta\psi'' + \mathrm{d}\psi'' \right) \cdot \cos\varepsilon - \mathrm{Hytakus} \ \mathrm{no} \ \mathrm{nps}$ по прямому восхождению,

 $\varepsilon = \varepsilon_0 + \Delta \varepsilon + d\varepsilon$ — истинный наклон эклиптики к экватору.

6. Вычисление матрицы учета движения полюсов, обеспечивающей переход от мгновенной гринвичской системы координат к общеземной

$$\Pi = \mathbf{R}_2(-x_p) \cdot \mathbf{R}_1(-y_p),$$

где x_{p}, y_{p} — координаты мгновенного полюса эпохи наблюдений относительно МУН. Поскольку эти величины не превышают 1", то при вы-

числении матриц \mathbf{R}_1 и \mathbf{R}_2 косипусы углов можно принять равными 1, а синусы заменить значениями самих углов, выраженными в радианах:

$$\Pi = \begin{pmatrix} 1 & 0 & x_p \\ 0 & 1 & -y_p \\ -x_p & y_p & 1 \end{pmatrix}.$$

7. Вычисление по топоцентрическим сферическим координатам ИСЗ $(\rho'_s, \alpha'_s, \delta'_s)$ его топоцентрических прямоугольных координат (x'_s, y'_s, z'_s) в истинной экваториальной равноденственной системе координат эпохи наблюдений

$$\begin{pmatrix} x'_s \\ y'_s \\ z'_s \end{pmatrix} = \rho'_s \cdot \begin{pmatrix} \cos \alpha'_s \cdot \cos \delta'_s \\ \sin \alpha'_s \cdot \cos \delta'_s \\ \sin \delta'_s \end{pmatrix}.$$

8. Переход от эллипсоидальных геодезических координат (B, L, H) станции слежения к пространственным прямоугольным координатам (X, Y, Z) с началом в центре эллипсоида Красовского:

$$X = (N+H) \cdot \cos B \cdot \cos L,$$

$$Y = (N+H) \cdot \cos B \cdot \sin L,$$

$$Z = (N+H-N \cdot e^2) \cdot \sin B,$$

где В — геодезическая широта,

L — геодезическая долгота,

Н — геодезическая высота,

N — радиус кривизны первого вертикала (внутренний отрезок нормали к поверхности эллипсоида в точке с координатами B, L — от поверхности до пересечения с малой осью эллипсоида)

$$N = \frac{a}{\sqrt{1 - e^2 \cdot \sin^2 B}},$$

- а большая полуось эллипсоида,
- e первый эксцентриситет эллипсоида, $e^2 = f \cdot (2 f)$,

f — сжатие эллипсоида.

9. Преобразование координат станции слежения из референцной системы СК-42 в общеземную систему ЕСК-90 по 7-параметрическим формулам Гельмерта:

$$\begin{pmatrix} \overline{X} \\ \overline{Y} \\ \overline{Z} \end{pmatrix} = \begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix} + (1 + \Delta m) \cdot \begin{pmatrix} 1 & \omega_z & -\omega_y \\ -\omega_z & 1 & \omega_x \\ \omega_y & -\omega_x & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix},$$

где (\bar{X}, \bar{Y}, Z) — прямоугольные координаты в общеземной системе ECK-90:

(1+∆m) — масштабный коэффициент, характеризующий различие линейных масштабов в двух системах координат;

 ω_{x} , ω_{y} , ω_{z} — углы Кардано (в радианах), соответствующие последовательным поворотам вокруг осей абсцисс, ординат и аппликат при переходе от референцной системы координат (X, Y, Z) к общеземной $(\overline{X}, \overline{Y}, \overline{Z})$;

 ΔX , ΔY , ΔZ — координаты центра референц-эллипсоида Красовского в общеземной системе ЕСК-90 (см.рис.1.1).

Рис.1.1

10. Преобразование координат станции слежения из общеземной системы ЕСК-90 в мгновенную гринвичскую систему координат эпохи наблюдений

$$\begin{pmatrix} X \\ \tilde{Y} \\ \tilde{Z} \end{pmatrix} = \Pi^{\mathsf{T}} \cdot \begin{pmatrix} X \\ \overline{Y} \\ \overline{Z} \end{pmatrix}.$$

 Определение истинных экваториальных равноденственных координат станции слежения на эпоху наблюдений

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \mathbf{S}^{\mathsf{T}} \cdot \begin{pmatrix} \tilde{X} \\ \tilde{Y} \\ \tilde{Z} \end{pmatrix}.$$

12. Определение геоцентрических координат ИСЗ $(\tilde{x}_s, \tilde{y}_s, \tilde{z}_s)$ в истинной экваториальной равноденственной системе координат эпохи наблюдений

$$\begin{pmatrix} \bar{x}_s \\ \bar{y}_s \\ \bar{z}_s \end{pmatrix} = \begin{pmatrix} x_s' \\ y_s' \\ z_s' \end{pmatrix} + \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix}.$$

13. Определение геоцентрических координат ИСЗ (x_i, y_i, z_i) в средней экваториальной равноденственной системе координат эпохи наблюдений

$$\begin{pmatrix} x_s \\ y_s \\ z_s \end{pmatrix} = \mathbf{N}^\mathsf{T} \cdot \begin{pmatrix} \tilde{x}_s \\ \tilde{y}_s \\ \tilde{z}_s \end{pmatrix}.$$

14. Определение геоцентрических координат ИСЗ $(\bar{x}_s, \bar{y}_s, \bar{z}_s)$ в средней экваториальной равноденственной системе координат стандартной эпохи J2000.0

$$\begin{pmatrix} \bar{x}_s \\ \bar{y}_s \\ z_s \end{pmatrix} = \mathbf{P}^1 \cdot \begin{pmatrix} x_s \\ y_s \\ z_s \end{pmatrix}.$$

Исходные данные							
Координаты станций слежений							
В	55.0133638000						
L	5,5392591						
Н	208,378						
Э.	лементы ориентировани	ия СК-42 в ЕСК 90					
ΔΧ	27,0						
ΔΥ	-143,0						
ΔZ	-83,0	в радианах					
ωx	0,10	0,000000484814					
ωγ	-0,34	-0,000001648367					
ω	-0,65	-0,000003151289					
Δm	0,0000002500						
	Параметры эллипсоид	а Красовского					
a	6378245						
f	0,0033523299						
	Результаты наблю,	дений ИСЗ					
UTC	15,7816625000						
ρι	1129907,24						
α_s	14,4924611000						
δ_s	27,3672027778						
E	Всемирное время и коор	одинаты полюса					
ΔUTC	0,1505						
X _p	0,170						
У р	0,510						
	Дата						
Υ	1991						
M	8						
D	26						

Вспомогательные вычисления 0,99999235042 0,000933565997 0,000811399509 -0,000933566304 0,99999564227 0,00000000000

-0,000933566304 -0,000811399156	-0,000000757495	0,000000000000
0,999999996	-8,48734E-05	0
7,78686E-05	0,917468446	-0,397808552
3,37633E-05	0,39780855	0,91746845
0,6712292291		

9. Матрица центра

1	-0,000003151289	0,000001648367
0,000003151289	1	0,000000484814
-0,000001648367	-0,000000484814	1

1,0000002500 1+m*матрица центра

7.111	матрица центра	
1,000000250000	-0,000003151290	0,000001648367
0,000003151290	1,000000250000	0,000000484814
-0.000001648367	-0.000000484814	1.000000250000

1+m*матрица центра*матрица (XYZ) 441071,263607704000 3638926,100522840000 5202497,652446790000

П-трансп

1,000000000000	0,000000000002	-0,000000824183
0,000000000000	0,99999999997	0,000002472550
0,000000824183	-0,000002472550	0,999999999997

S-трансп

3560	173292	0,	5168	3544	46		0
168	354446	-0,	8560	732	92		0
	0				0		1

N-трансп

0,99999996398	0,000077868626	0,000033763347
-0,000077869142	0,999999996852	0,000015266600
-0.000033762158	-0.000015269229	0.99999999313

Р-трансп

0,999997927674	-0,001867158592	-0,000811398095
0,001867157978	0,999998256858	-0,000001515012
0,000811399509	0,000000000000	0,999999670815
0,000811399509	0,000000000000	0,999999670815

	Вычислен		
UT1	1. Переход от шкалы UTC 15,781704305556		
JD	 Вычисление Юлианской да 2448495,1575710100 	ты наблюдений	
т	 Вычисление матрицы -0,083500134948 	прецессии	
ξ _A Θ _A	-192,567428258803 -167,363180964782		
ZA	-192,561900760484		
R ₂ A ₄	0,99999670815	0	0,000811399509
ILOX	-0,000811399509	0	0,999999670815
	0,99999564227	0,000933566304	0
R ₁ Z _A	-0,000933566304 0	0,999999564227 0	0 1
	0,999999564202	0,000933593102	0
R∋ξ _A	-0,000933593102 0	0,999999564202 0	0
	0,999997927674	0,001867157978	0,000811399509
Р	-0,001867158592 -0,000811398095	0,999998256858 -0,000001515012	0,000000000000 0,99999670815
r	4. Вычисление матриць 1296000	ы нутации	
I I1	-142960344,4184580000 -9534232.221060900000		-39711,206782905000 -2648,397839183580
F	-144914982,433659000000		-40254,161787127400
D Ω	-132775248,768920000000 1031562,631610510000		-36882,013546922200 286,545175447365
ε0 Δψ	84385,357053648500 17,513015361061		23,440376959347 0,004864726489
dψ Δε	-0,006629010632 3,054962135137		-0,000001841392 0,000848600593
de de	0,094271270426		0,000048600393
Rı	1 0	0.017468440780	0 207909551514
***	0	0,917468449780 0,397808551514	-0,397808551514 0,917468449780
	0,99999996398	-0,000084873356	0
R ₃	0,000084873356 0	0,999999996398 0	0 1
	1	0	0
R ₁₂	0	0,917474523380 -0,397794543638	0,397794543638 0,917474523380
N	0,999999996398 0,000077868626	-0,000077869142 0,999999996852	-0,000033762158 -0,000015269229
F. D	0,000033763347	0,000015266600	0,99999999313
	ие матрицы поворота истинной экваториалы и аппликат против часовой стрелки на угол, р 		
ε	Гринвиче 84388.506287054000		
Δα SI	1,070770476412 50669,157476892300		
JI	-0,856073292198	-0.516854446034	0
R ₁ SI	0,516854446034 0	-0,856073292198	0
6. Вычис.	ление матрицы учета движения полюсов, об	еспечивающей перех	
	гринвичской СК к общ 1 0	0.999999999999	-0.000002472550
B ₁	0	0,000002472550	0,9999999999
	1	0	0,000000824183
B ₂	-0,000000824183	1 0	0
	1	0	0,000000824183
П	0,000000000000 -0,00000824183	0,999999999997 0,000002472550	-0,000002472550 0,99999999999
	ление по топоцентрическим сферическим к		
(x ₁)	рямоугольных координат в истинной равнод -797291.734463580000	ценственнои экватори	альнои СК
(y ₁) (z ₁)	-609287,124190874000 519408,761435239000		
8. Пер	оеход от эллипсоидальных геодезических ко нанственным прямоугольным координатам (
e2	Красовского: 0.006693421623	, ., =, = послот в цен	,
N	6392621,615945260000		
X Y	441074,045007357000 3638921,278597170000		
Z 9. Пр	5202498,843073210000 еобразование координат станции слежения		ую ЕСК90 по 7-
(X90)	параметрическим формула 441098,263607704000	ам гельмерта	
(Y90) (Z90)	3638783,100522840000 5202414,652446790000		
10. Преобр	азование координат станции слежения из о гринвичскую СК эпохи на		ЕСК90в мгновенную
(XMr) (YMr)	441093,975872062000 3638795,963740890000		
(Zмг) 11. Определ	5202406,018904360000 ение истинных экваториальных равноденств	венных координат ста	нции слежения эпоху
(хиэр)	наблюдений 1503119,099974760000		
(уИЭР) (zИЭР)	-3343057,422865880000 5202406.018904360000		
	пение геоцентрических координат ИСЗ в ист		й равноденственной
(xU3Ps)	СК на эпоху наблюд 705827,365511177000	, c. (PIP)	
(yU3Ps) (zU3Ps)	-3952344,547056760000 5721814,780339600000	•	
	ение геоцентрических координат ИСЗ в сред эпохи наблюден		равноденственной СК
(xCЭPs) (yCЭPs)	705712,786945034000 -3952312,144128090000		
(zCЭPs)	5721851,295410110000 ение геоцентрических координат ИСЗ в сред		равноденственной СК
(xCЭP2000)	стандартной эпохи J 708448,218815490000		
(yCЭP2000)	-3950996,246097220000 5722422,026873700000		
(zC3P2000)			

Исходные данные						
Координаты станций слемений						
В	55,0133638					
L	5,5392591					
H	208,378					
	Элементы ориентирования С	K-42 a ECK 90				
	27					
ΔΥ	-143					
ΔZ	-83	в радианах				
sa.	0,1	=PAДИАНЫ(C11/3600)				
ω _r	-0,34	=PAДИАНЫ(C12/3600)				
sa.	-0,65	«РАДИАНЫ(C13/3600)				
Δm	=0.25*(10*(-6))					
	Параметры аллипсонда Кр	асовского				
a	6378245					
f	=1/298,3					
	Результаты наблюдень	ий ИСЗ				
UTC	15,7816625					
	1129907,24					
α. δ.	14,4924611					
δ.	27,3672027778					
	Всемирное время и координ	аты полюса				
ΔUTC	0,1505					
X ₀	0,17					
V+	0,51					
Y	1991					
M D	8 26					
U .	20					

Вспомогательные вычисления

	вспомогательные вычис.	ления		
=MYMHOK(J13:L15;J17:L19)	=MYMHOX(J13:L15;J17:L19)	=MYMHOX(J13:L15;J17:L19)		
=MYMHOЖ(J13:L15;J17:L19)	=MYMHOX(J13:L15;J17:L19)	=MYMHOX(J13:L15;J17:L19)		
=MYMHOЖ(J13:L15;J17:L19)	=MYMHOX(J13:L15;J17:L19)	=MYMHOX(J13:115;J17:119)		
=MYMHOH(J41:L43;J45:L47)	=MYMHOЖ(J41:143;J45:147)	=MYMHOH(J41143;J45147)		
=MYMHOK(J41:L43;J45:L47)	=MYMHOX(J41:L43;J45:L47)	=MYMHOX(J41:143;J45:147)		
=MYMHOH(J41:L43;J45:L47)	=MYMHOж(J41:L43;J45:L47)	=MУМНОЖ(J41±43;J45±47)		
=SIN(РАДИАНЫ(С4)]^2				
	9. Матрица центра			
1	=D13	=-1*D12		
=B47*-1	1	*D11		
=C47*-1	=-1*C48	1		
1+m				
=1+C14	1+т*матрица центра			
=SASS2*A47	1+m-матрица центра =\$A\$52*B47	=SASS2*C47		
=5A552*A47 =\$A\$52*A48	=\$A\$52*B47 =\$A\$52*B48	#\$A\$52*C47 #\$A\$52*C48		
=5A552*A48 =\$A\$52*A49	=\$A\$52*B48 =\$A\$52*B49	#\$A\$52*C48 #\$A\$52*C49		
*5A\$5Z*A49	=\$A\$52*B49	#\$A\$52*C49		
	1+т*матрица центра*матрица	(XYZ)		
=MVMHOW(A54:C56;J91:J93)				
=MYMHOЖ(A54:C56;J91:J93)				
=MYMHOK(A54:C56;J91:J93)				
	П-трансп			
=TPAHCП(J77:L79)	=TPAHCП(J77:179)	=TPAHCП(J77:179)		
=TPAHCΠ(J77:L79)	=TPAHCП(J77:179)	=TPAHCП(J77:179)		
=TPAHCП(J77:L79)	=TPAHCΠ(J77±79)	=TPAHCII(177:179)		
	S-трансп			
=TPAHCT(//64:L66)	=TPAHCI((64166)	=TPAHCI(J64166)		
=TPAHCΠ(J64:L66)	=TPAHCII(J64166)	=TPAHCП(J64:L66)		
=TPAHCП(J64:L66)	=TPAHCΠ(J64:166)	=TPAHCП(J641.66)		
	N-трансп			
=TPAHCI(US3:LSS)	=TPAHCII(JS3:LSS)	=TPAHCII(JS3:LSS)		
=TPAHCT(US3:LSS) =TPAHCT(US3:LSS)	=TPAHCT(J53:L55) =TPAHCT(J53:L55)	=TPAHCTI(J53:L55) =TPAHCTI(J53:L55)		
=TPAHCT(US3:LSS) =TPAHCT(US3:LSS)	=TPAHCT(J53:L55) =TPAHCT(J53:L55)	=TPAHCTI(J53:L55) =TPAHCTI(J53:L55)		
- managaraa	-17-Art.(q.23.133)	-177001(133033)		
	Р-трансп			
=TPAHCI(J25:L27)	=TPAHCR(J25:1.27)	=TPAHCII(J25:L27)		
=TPAHCΠ(J25:L27)	=TPAHCП(J25:1.27)	=TPAHCΠ(J25:L27)		

	Вычисления		
	1. Переход от шкалы UTC к шкал =C19+(C24/3600)	e UT1	
JD	2. Вычисление Юлианской даты наб =1721013,5+367*C28-ЦЕЛОЕ(7*((C28+ЦЕЛОЕ((C29+9)/12))/4))+ЦЕЛОЕ((275*C29)/9)+С30+(людений	
т	3. Вычисление матрицы прецег и/16-2451545\/26525	CON	
ξ. Α.	=2306,2181*18+0,30188*(J8)^2+0,017998*(J8)^3 =2004,3109*J8-0,42665*(J8)^2-0,041883*(J8)^3		
	=2004,5309 36-0,42865 (18)*2-0,041885 (18)*5 =2306,2181*38+1,09468*(18)*2+0,018203*(18)*3		
	«COS(РАДИАНЫ(J10/3600))	0	=-SIN(PAДИАНЫ(J10/3600))
R:0x	0	1	0 =COS(PADIAHHI(J10/3600))
			4
R.7.	«COS(РАДИАНЫ(-J11/3600)) «SIN(РАДИАНЫ(-J11/3600))	=SIN(РАДИАНЫ(-J11/3600)) =COS(РАДИАНЫ(-J11/3600))	0
	0	0	i
	«COS(РАДИАНЫ(.19/3600)) «SIN(РАДИАНЫ(.19/3600))	=SIN(РАДИАНЫ(-19/3600)) =COS(РАДИАНЫ(-19/3600))	0
R ₁ E ₄	=-SIN(РАДИАНЫ(-19/3600)) 0	=COS(РАДИАНЫ(-J9/3600)) 0	0
	=MYMHOж(A34:C36;J21:L23)	=MVMHOH(A34:C36;J21:L23)	=MVMHDH(A34:C36;J21:L23)
P	=MVMHOH(A34:C36:J21:L23)	=MYMH0K(A34:C36:J21:L23)	=MYMH0Ж(A34:C36:J21:L23)
	=MУMHOж(A34:C36:J21:L23) 4. Вынисление матрицы нутац	=MУMHOЖ/A34:C36:J21:L23) ии	=MVMHOЖ/A34:C36:J21:L23)
	1296000 =485866.733+((1325*)29)+715922.633)*)8+31.31*(J8^2)+0.064*(J8^3)	=J30/3600	
11 F	**************************************	=131/3600 =132/3600	
D		=132/9600 =133/3600	
n	#450150 79./(5170)+497000 520(10+74551)0477/4551(047)+0.0091(047)	=134/3600	
ε0 Δψ	=-(17,1996+(0,01742*18))*SIN(PAДИАНЫ(К34))+(0,2062+(0,00002*18))*SIN(PAДИАНЫ(2*K34	=J35/3600 =J36/3600	
ds.	=(9,2025+(0,00089*18))*COS(РАДИАНЫ(34))+(-0,0895+(0,00005*18))*COS(РАДИАНЫ(2*К3 =(0,0977-(0,00005*18))*COS(РАДИАНЫ(2*К32+2*К34))	=139/3600	
	1	0	0
R _i	0	=COS(РАДИАНЫ(-K35-K38-K39)) =-SIN(РАДИАНЫ(-K35-K38-K39))	=K43*-1 =K42
Rs .	=-SIN(РАДИАНЫ(-K36-K37))	=345	0
		0	1
Ru	1 0	0 =COS(РАДИАНЫ(J3S/3600))	0 uK51*.1
		=CUS(РАДИАНЫ(135/3600)) =SIN(РАДИАНЫ(135/3600))	#KS1*-1
N	=MYMHOH(A39:C41;49:L51) =MYMHOH(A39:C41;49:L51)	=MYMHOW(A39:C41;149:L51) =MYMHOW(A39:C41;149:L51)	=МУМНОЖ(А39:C41;I49:L51) =МУМНОЖ(А39:C41;I49:L51)
	=MYMHOH(A39:C41;J49:L51)	=MVMHOЖ(A39:C41;J49:L51)	=MУMHOЖ(A39:C41;J49:L51)
5. Вычисление матрица	ы поворота истинной экваториальной равноденственной системы координат вокруг оси Гринвиче	аппликат против часовой стрелки на угол,	равный истинному звездному времени в
ε Δα	=135+138+139 =(1/15)*(136+137)*COS(РАДИАНЫ(160/3600))		
SI	=(24110,54841+(8640184,812866*)8)+(0,093104*(J8^2])-(6,2*(10^(-6))*(J8^3))+J4*3600+J61		
	«COS(РАДИАНЫ(J62*15)/3600)	=SIN(РАДИАНЫ(J62*15)/3600)	0
RiSI		=164 0	0
	6. Вычисление матрицы учета движения полюсов, обеспечивающей перехо	д от мгновенной гринвичской СК к общезе	мной
		0	0
В	0	=COS(РАДИАНЫ(-C26/3600)) =L70*-1	=SIN(РАДИАНЫ(-C26/36001) =K70
	1	0	#J75*-1
Во	0 «SIN(PAДИАНЫ(-C25/3600))	1 0	0
			•
п	=MYMHOW([691.71]731.75) -MYMHOW([691.71]731.75) -MYMHOW([691.71]731.75)	=MYMHOЖ(J69:L71;J73:L75) =MYMHOЖ(J69:L71;J73:L75)	=МУМНОЖ(J69:171;J73:175) =МУМНОЖ(J69:171;J73:175)
		=MVMHOЖ(J69:L71;J73:L75)	=MYMHOX(J69:L71;J73:L75)
7. Вычисл	ение по топоцентрическим сферическим координатам ИСЗ его топоцентрических прамо-	угольных координат в истинной равноденс	твенной экваториальной СК
(x _c)	«C20*COS(PADIAHHI(C21*15I)*COS(PADIAHHI(C22I)		
(x.) (y.) (z.)	=C20*COSIPA_IMAHЫ(C21*15I)*COSIPA_IMAHЫ(C22)) =C20*SIN(РАДИАНЫ(C21*15])*COS(РАДИАНЫ(C22)) =C20*SIN(РАДИАНЫ(C22))		
8. Переход от эллиг		эмоугольным координатам (X. У. 7) с изэлч	ом в шентре эллипсонда Красовского
	=C17*(2-C17)	,	
e2 N X	" <pre>"C19"(2-C17)" (*C16)"(KOPEH6[1-189"(SIN(PAДИАНЫ(C4))">2)) "(190+C6)" (COS(PAДИАНЫ(C4))" (COS(PAДИАНЫ(15"C5))</pre>		
X Y	«(J90+C6)*COS(РАДИАНЫ(С4))*SIN(РАДИАНЫ(15*CS))		
z	=(J90+C6-J90*J89)*SIN(PAДИАНЫ(C4))		
	9. Преобразование координат станции слежения из СК42 в общеземную ЕСК	90 по 7- параметрическим формулам Гель	мерта
(X90) (Y90)	≤C8+A59 ≤C9+A60		
(290)	=C10+A61		·
(Xwr)	 Преобразование координат станции слежения из общеземной системы ЕСК «МУМНОЖ/A65/C67:296:198) 	оов мгновенную гринвичскую СК эпохи наб	олодении
(XMF) (YMF) (ZMF)	-MYMHOK(A65:C67;996;198) -MYMHOK(A65:C67;996;198) -MYMHOK(A65:C67;996;198)		
(ZMr)	 -МУМНОЖ(А65:С67;96:198) 11. Определение истинных экваториальных равноденственных коорд 		
(xИЭР)	 Определение истинных экваториальных равноденственных коорд =MУМНОж(A71:C73;101:103) 	ина і станции слежения эпоху наблюдений	
(VM3P) (zM3P)	=MVMHOH(A71:C73:J101:J103)		
(2M3P)	=MУМНОЖ/A71:C73:J101:J103) 12. Определение геоцентрических координат ИСЗ в истинной экваториалы-	nii nasunneurmeuunii CK ua anoo uafioos	cusă
(xM3Ps)	a183+1106	р моден станенной ст. на эпоху наолюд	
(yM3Ps)	=J84+J107		
(zH3Ps)	=185+)108 13. Определение геоцентрических координат ИСЗ в средней экваториаль.	ună nasunneurrseuună CK annye unforces	and a
(xC9Ps)	-MVMHOW/A77-C78-1111-1112\	этоципсивенной сл эполи наблюден	
(xC3Ps) (xC3Ps) (xC3Ps)	-WYMHOW(J77:77:79:1113113) -MYMHOW(J77:77:79:1113113)		
(21.39%)	«МУМНОЖ(А77:С79;111:1113) 14. Определение геоцентрических координат ИСЗ в средней экваториальной	равноденственной СК стандартилй эплии	12000.0
(xC3P2000)	 Определение теоцентрических координат исэ в среднеи экваториальном МУМНОЖ(A83:C85.116.118) 	,	
(vC3P2000) (vC3P2000) (zC3P2000)	-MYMHOW/AB3.C8531163118) -MYMHOW/AB3.C8531163118)		
42C3F20001	-MFMRUMA65.C65311631181		