vipertools

Release 0.0.1

Sophia Maedler

CONTENTS:

1	parse	1
2	stitch	2
Рy	thon Module Index	4
Ind	dex	5

CHAPTER

ONE

PARSE

Contains functions to parse imaging data into a usable formats for downstream pipelines.

vipertools.parse.parse_phenix(phenix_dir, flatfield_exported=True, parallel=False)

Function to automatically rename TIFS exported from Harmony into a format where row and well ID as well as Tile position are indicated in the file name. Example of an exported file name: "Row $\{\#\}$ _Well $\{\#\}$ _Channel $\}$ _zstack $\{\#\}$ _r $\{\#\}$ _c $\{\#\}$.tif"

Parameters

- **phenix_dir** Path indicating the exported harmony files to parse.
- **flatfield_exported** boolean indicating if the data was exported from harmony with or without flatfield correction.
- parallel boolean value indicating if the data parsing should be performed with parallelization or without (CURRENTLY NOT FUNCTIONAL ONLY USE AS FALSE)

STITCH

Collection of functions to perform stitching of parsed image Tiffs.

Function to generate a scaled down thumbnail of stitched image. Can be used for example to get a low resolution overview of the scanned region to select areas for exporting high resolution stitched images.

Parameters

- **input_dir** Path to the folder containing exported TIF files named with the following nameing convention: "Row{#}_Well{#}_{channel}_zstack{#}_r{#}_c{#}.tif". These images can be generated for example by running the vipertools.parse.parse_phenix() function.
- pattern Regex string to identify the naming pattern of the TIFs that should be stitched together. For example: "Row1_Well2_{channel}_zstack3_r{row:03}_c{col:03}.tif". All values in {} indicate thos which are matched by regex to find all matching tifs.
- outdir path indicating where the stitched images should be written out
- **overlap** value between 0 and 1 indicating the degree of overlap that was used while recording data at the microscope.
- **name** string indicating the slidename that is added to the stitched images generated
- **stitching_channel** string indicating the channel name on which the stitching should be calculated, the positions for each tile calculated in this channel will be passed to the other channels.
- **crop** dictionary of the form {'top':0, 'bottom':0, 'left':0, 'right':0} indicating how many pixels (based on a generated thumbnail, see vipertools.stitch.generate_thumbnail) should be cropped from the final image in each indicated dimension. Leave this set to default if no cropping should be performed.

Function to generate a scaled down thumbnail of stitched image. Can be used for example to get a low resolution overview of the scanned region to select areas for exporting high resolution stitched images.

Parameters

- **input_dir** Path to the folder containing exported TIF files named with the following nameing convention: "Row{#}_Well{#}_{channel}_zstack{#}_r{#}_c{#}.tif". These images can be generated for example by running the vipertools.parse.parse_phenix() function.
- pattern Regex string to identify the naming pattern of the TIFs that should be stitched together. For example: "Row1_Well2_{channel}_zstack3_r{row:03}_c{col:03}.tif". All values in {} indicate thos which are matched by regex to find all matching tifs.
- outdir path indicating where the stitched images should be written out

- **overlap** value between 0 and 1 indicating the degree of overlap that was used while recording data at the microscope.
- name string indicating the slidename that is added to the stitched images generated
- **export_examples** boolean value indicating if individual example tiles should be exported in addition to performing thumbnail generation.

PYTHON MODULE INDEX

٧

vipertools.parse,??
vipertools.stitch,1

INDEX