

Themes, Working Understandings and Approach

John Sheehan

National Renewable Energy Laboratory Presented at the RBAEF Project Public Forum Washington, D.C.

February 23, 2004

Outline

- Mature Technology
- Motivation for Change
- Possibilities for Change
- Heading for High Ground

Mature Technology: Why?

- It is more important to know where we can get to rather than where we are
- Provides a consistent basis for comparison
- Unique feature of this project

Mature Technology: How?

- Technology performance parameters based on an expert optimist's most likely estimate
- A systematic approach
 - Consistent cost reduction categories
 - 1st vs nth plant for a given technology (several subcategories)
 - R&D-driven innovation
 - Consistent cost accounting framework
 - Calibration with existing mature technologies

Mature Technology: Working definitions

- Processing and Downstream Mobility Chains
 - Additional R&D
 would lead to only
 incremental
 improvement in cost
 and sustainability

Mature Technology: Working definitions

- Feedstock (Cellulosic Energy Crops)
- Asymptote not particularly useful
- Two reference points
 - Achievable in 20 30 years
 - A development effort comparable in size and degree of advancement to that of corn production today

Source: USDA NASS database

Mature Technology: Rationale

Driving with the low beams on...

Mature Technology: Rationale

Driving with the high beams on...

Mature Technology: Rationale

Avoiding comparison of apples & oranges

The Role of Biomass in America's Energy Future

The motivation for change: Our environmental footprint

- Resource supply and waste assimilation expressed as productive land area
 - Understanding the land area needed to meet the demands of society versus the total available land area of the planet

The motivation for change: Exceeding Earth's capacity

- 1977 milestone: Societal demands exceed capacity of the plant
- At the end of the 20th century, we needed the equivalent land mass of 1.20 "Earths"

The motivation for change Our environmental footprint

- The lion's share of our demand for the Earth's biocapacity comes from energy and agriculture
- The two "land services" most central to this study

The motivation for change Demands of developed nations

- We will examine the effects of both technical and societal change
- We will establish analytical continuity between analyses that allow for nontechnological change and the results of analyses that assume no significant societal change

Heading for High Ground

- We are looking for scenarios in which biomass offers the potential for <u>large</u> impacts on our ability to meet U.S. energy demand
- We need to avoid analysis of marginal long term options and even many promising nearterm opportunities
- Criteria for selection of technologies
 - Can make a big difference in energy supply
 - Can do so in an environmentally beneficial way
 - Publicly available information from which mature technology projections can be made