Probabilistic model of data

Probabilistic model of data

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$\theta = \{\pi_1, \pi_2, \pi_3, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3\}$$

Gaussian

GMM

Flexibility

GMM vs Guassian

	Gaussian	GMM
Flexibility		(??)
# of parameters	77	
Parameters	μ, Σ	$\{\pi_1, \pi_2, \pi_3\}$ $\{\mu_1, \mu_2, \mu_3\}$ $\{\Sigma_1, \Sigma_2, \Sigma_3\}$

$$\max_{\theta} p(X \mid \theta)$$

$$\max_{\theta} p(X \mid \theta) = \prod_{i=1}^{N} p(x_i \mid \theta)$$

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to
$$\pi_1 + \pi_2 + \pi_3 = 1$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$
subject to $\pi_1 + \pi_2 + \pi_3 = 1; \ \pi_k \ge 0; \ k = 1, 2, 3.$

$$\sum_{k} \ge 0;$$

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to
$$\pi_1 + \pi_2 + \pi_3 = 1$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to
$$\pi_1 + \pi_2 + \pi_3 = 1$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

Summary

Gaussian Mixture Model is a flexible probability distribution

It is hard to fit (train) with SGD