Memo pour l'année

LAURENT Thomas

Master 2 informatique 2018

Contents

1	Fou	Fouille de donnée						
	1.1	Pré traitement des données	2					
		1.1.1 Nettoyage des données	2					
		1.1.2 Normalisation	2					
	1.2	Classification	3					
		1.2.1 Évaluation des classifieurs	3					
	1.3	Arbre de décision	4					
		1.3.1 critères de sélection C4.5	4					
2	Rec	cherche Opérationnel	8					
3 Apprentissage par le pratique								
	3.1	Rappel	11					
		3.1.1 Matrices et calcules sur les Matrices	11					
	3.2	Algorithms Learn a Mapping From Input to Output	12					
		3.2.1 linear ML algorithms	12					
		3.2.2 Supervised machine learning	12					
		3.2.3 Unsupervised machine learning	12					
		3.2.4 semi-supervised machine leaning	12					
		3.2.5 Overview of dias and variance	13					
	3.3	Overfitting and Underfitting	14					
	3.4	Linear Algorithms	15					
		3.4.1 Régression linéaire	15					
		3.4.2 Least squares linear regression	16					
4	Rep	présentation des connaissances et raisonnement	17					
5	Out	tils formel	19					

6	\mathbf{XML}			
7	Anglais	23		

Chapter 1 Fouille de donnée

1.1 Pré traitement des données

1.1.1 Nettoyage des données

Caractéristiques descriptives

Objectifs: Résumer, décrire certains aspects (tendances, variation, dispersion...) des données en utilisant certaines mesures :

Moyenne (espérance) : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Ecart moyen : $\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$

Variance: $v = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Ecart type : $\alpha x := \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{n} (\sum_{i=1}^{n} x_i^2) - \bar{x}^2}$

Médiane : Valeur se trouvant au milieu d'une série de données ordonnées

 ${f Mode}$: Valeur la plus fréquente

 $\mathbf{Amplitude}\ :\! \min,\ \max$

1.1.2 Normalisation

 $\mathbf{Min\text{-}max} : v_n = \frac{v - v_{min}}{v_{max} - v_{min}}$

Min-max dans l'intervalle [A,B]: $v_n = \frac{v - v_{min}}{v_{max} - v_{min}} * (B - A) + A$

Z-Score: $v_n = \frac{v - moyenne}{ecart_t y p e}$

Decimal scaling: $v_n = \frac{v}{100^j}$

1.2 Classification

1.2.1 Évaluation des classifieurs

Matrice de confusion

Percent of correct classification:

$$PCC(\%) := \frac{N_c}{N_t} * 100$$

 ${\cal N}_c$: nombre d'instances correctement classées

 N_t : nombre d'instances testées $(N_t = |D_{test}|)$

Exemple:

$$: \begin{pmatrix} -c1 & c2 & c3 & c4 \\ c1 & 0 & 1 & 0 & 0 \\ c2 & 1 & 60 & 0 & 1 \\ c3 & 0 & 1 & 23 & 0 \\ c4 & 1 & 0 & 7 & 5 \end{pmatrix}$$

Taux d'erreurs : 100-PCC

$$\mathbf{PCC}(\%) = \frac{0+60+23+5}{100} * 100 = 88\%$$

1.3 Arbre de décision

1.3.1 critères de sélection C4.5

Construction d'un arbre de décision C4.5 La construction d'un arbre de décision avec C4.5 passe par deux phases:

- **Phase d'expansion**: La construction se fait selon l'approche descendante et laisse croître l'arbre jusqu'à sa taille maximale.
- **Phase d'élagage**: Pour optimiser la taille l'arbre et son pouvoir de généralisation, C4.5 procède à l'élagage (pour supprimer les sous-arbres qui ne minimisent pas le taux d'erreurs)
- Approche de construction d'un AD : Partitionner récursivement les données en sous-ensembles plus homogènes ... jusqu'à obtenir des partitions qui contiennent des objets qui appartiennent majoritairement à la même classe.
 - => Théorie de l'information pour caractériser le degré de mélange, homogénéité, impureté, incertitude...
- Théorie de l'information: Théorie mathématique ayant pour objet l'étude du contenu informationnel d'un message.

 Applications en codage, compression, sécurité...
- **Entropie** : Mesure la quantité d'incertitude dans une distribution de probabilités.

Rappel sur les probabilisées

Quelques rappels de probabilités : Soient X et Y deux variables aléatoires discrètes prenant leurs valeurs dans DX=x1,..,xn et DY=y1,..,ym respectivement.

$$\begin{split} P(x_i) &= \frac{|x_i|}{\sum_{j=1}^n |x_j|} \\ &\sum_{i=1}^n P(x_i) = 1 \\ P(x_i|y_i) &= \frac{P(x_i,y_i)}{p(y_i)} \\ P(x_i,y_i) &= p(x_i) * p(y_i) \text{ Si X et Y sont indépendantes} \end{split}$$

Exemple:

$$: \begin{pmatrix} Anne & Sexe & \# & \% \\ M1 & M & 25 & 25/55 \\ M1 & F & 4 & 4/55 \\ M2 & M & 25 & 25/55 \\ M2 & F & 1 & 1/55 \end{pmatrix}$$

$$P(sexe = M) = P(Sexe = MetAnne = M1) + P(Sexe = MetAnne = M2) = 50/55$$

$$P(Anne = M2|sexe = M) = P(Sexe = MetAnne = M2)/P(Sexe = M) = \frac{25}{55}/\frac{50}{55} = \frac{25}{50} = \frac{1}{2}$$

Entropie

Entropie: Mesure la quantité d'incertitude (manque d'information) dans une distribution de probabilités. Soit X une variable aléatoire discrète prenant ses valeurs dans DX = x1, .., xn. Soit P la distribution de probabilités associée à X.

$$H(X) = -\sum_{i=1}^{n} p(x_i) * log_2(p(x_i))$$

Par convention, quand p(x) = 0, 0 * log(0) = 0

Exemple:

$$\begin{array}{|c|c|c|} X & P(X) \\ \hline x_1 & 1/3 \\ x_2 & 1/3 \\ x_3 & 1/3 \\ \hline \end{array}$$

$$H(X) = -p(x_1) * log_2(p(x_1)) - p(x_2) * log_2(p(x_2)) - p(x_3) * log_2(p(x_3))$$

$$H(X) = -3(\frac{1}{3} * log_2(\frac{1}{3})) = log_2(3) = 1.58$$

Autre exemples:

$$\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right] : H(X) = 1.5$$

$$[1,0,0]: H(X) = 0$$

$$[\frac{1}{2}, \frac{1}{2}] : H(X) = 1$$

Propriétés:

$$H(X) >= 0$$

H(X) est maximale pour une distribution uniforme (toutes les valeurs sont équiprobables).

Entropie conjointe : L'entropie conjointe de deux variables aléatoires X et Y est l'incertitude relative à ces deux variables conjointement.

$$H(X,Y) = -\sum_{i,j=1}^{n} p(x_i, y_i) * log_2(p(x_i, y_i))$$

Exemple: [0.2, 0.1, 0.3, 0.4]: H(X, Y) = 1.85

Critère de sélection: Gain d'information:

$$GAIN(T, A) = Info(T) - Info(T|A)$$

Avec Info(T): Entropie au niveau de T (avant de partitionner)

$$Info(T) = -\sum_{c_i} freq(c_i, T) * log_2(freq(c_i, T))$$

Avec
$$freq(c_i, T) = p(c_i) = \frac{|c_i|}{|T|}$$

Avec Info(T|A) l'entropie conditionnelle de T une fois partitionné selon les valeurs de l'attribut A.

$$Info(T|A) = \sum_{a_{j \in A}} freq(a_j, T) * Info(T|a_j)$$

Critère de sélection: Gain Ration:

Le gain d'information favorise les attributs ayant de larges domaines.

Le ratio de gain utilise le gain d'information avec un facteur pénalisant les attributs ayant des domaines trop larges.

$$GainRatio(T, A) = \frac{Gain(T, A)}{Split_Info(T, A)}$$

Avec $Split_Info(T,A) = -\sum_{a_{j \in A}} freq(a_j,T) * log_2(freq(a_j,T)) = EntropiedeA$

Chapter 2

Recherche Opérationnel

gggg

Chapter 3

Apprentissage par le pratique

3.1 Rappel

3.1.1 Matrices et calcules sur les Matrices

Addition

$$\begin{pmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{pmatrix}$$

Multiplication

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

$$(1*5) + (2*7) = 19$$

Transposer

$$\left(\begin{array}{rrr}1&3&5\\2&4&6\end{array}\right)=\left(\begin{array}{rrr}1&2\\3&4\\5&6\end{array}\right)$$

Inverse

Soit une matrice 2x2 comme : $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Soit Determinant D = ad - bc

Si D != 0 alors il existe une matrice inverse égal à : $\frac{1}{D} \left(egin{array}{cc} d & -b \\ -c & a \end{array}
ight)$

3.2 Algorithms Learn a Mapping From Input to Output

3.2.1 linear ML algorithms

Simplifier les processus d'apprentissage et réduire la fonction sur ce qu'on connait

Soit :
$$B0 + B1X1 + B2X2 + B3X3 = 0$$

Où B0,B1,B2,B3 sont les coefficients présent sur l'axe des ordonnées.

Et X1,X2,X3 sont les valeurs en Input.

3.2.2 Supervised machine learning

L'apprentissage supervisé peut se diviser en 2 partis

Classification: Quand les variables en sortie sont des Classe (Blue, Rouge, Vert, Carr, Homme)

Regression: Quand les variables en sortie sont des valeur numérique (euro, poids, quantits)

3.2.3 Unsupervised machine learning

Les problèmes de l'apprentissage non supervisé sont:

Clustering: L'art de faire des paquet d'éléments qui ont des points commun, comme regrouper les clients par paquet de choses qu'ils ont le plus en commun.

Association : Associer des règles d'apprentissage pour décrire une portion du data, comme une personne qui a acheté un item A et qui est aussi tenté par acheter un item B

3.2.4 semi-supervised machine leaning

L'apprentissage semi supervisé c'est avoir un bonne quantité de données en input X, et un peu de data avec le label Y.

3.2.5 Overview of dias and variance

La prédiction des erreurs pour les algorithmes sont regroupé en 3 points:

Bias Error : Simplifier l'hypothèse fait par le modèls pour faire une fonction d'apprentissage plus facile.

Variance Error : Et la quantité estimé par la fonction visé qui changera via un différent ensemble de data utilisé.

Irreductible Error : Ne peut pas être réduit

3.3 Overfitting and Underfitting

dddddddd

3.4 Linear Algorithms

Soit X l'ensemble des variables indépendantes sur l'axe des l'abscisse et Y l'ensemble des variable dépendantes sur l'axe des ordonnée.

3.4.1 Régression linéaire

Étant donné un plan à deux dimensions où l'abscisse contient les point d'entrée X et l'ordonnée contient les points de sortie Y, et un nouage de points précédaient acquitté de tout point éloigné du nuage.

 $Figure ap-linear-regression_1$

Avec: $y = \beta_0 + \beta_1 x$

Pour un hyperPlan (3d) : $y = \beta_0 + \beta_1 x_1 + ... \beta_n x_n$

Exemple:

$$5 = \beta_0 + 2 * \beta_1$$

$$\mathbf{2} = \beta_0 + 1 * \beta_1$$

3.4.2 Least squares linear regression

Calculer la régression linéaire avec la méthode Least squares: Soit

 $\mathbf{X} = [1, 2, 3, 4, 5]$ les variables indépendantes d'axe abscisse

 $\mathbf{Y} = [2,4,5,4,5]$ les variables dépendantes d'axe ordonnée

Calculons $y = \beta_0 + \beta_1 x$

Calcule de la moyenne de X et Y:

$$\mathbf{Xm} = \sum x_i \in X = 3$$

$$\mathbf{Ym} = \sum y_i \in Y = 4$$

Toutes ligne de régression doivent passer par le point (Xm,Ym). Calculer tout les écarts des $x_i \in X$ par rapport à Xm:

X	Y	X - Xm	Y-Ym	$(X - Xm)^2$	(X - Xm)(Y - Ym)
1	2	-2	-2	4	4
2	4	-1	0	1	0
3	5	0	1	0	0
4	4	1	0	1	0
5	5	2	1	4	

Chapter 4

Représentation des connaissances et raisonnement

ggggg

Chapter 5
Outils formel

уууууу

Chapter 6

\mathbf{XML}

uuuuu

Chapter 7

Anglais

ffffffff