Задача об оптимальном расписании (случай идентичных машин)

Identical-machines scheduling problem, IMS

Александр Стешенко ФПМИ МФТИ

12.11.2023

Аннотация

В данной работе рассматривается задача IMS, Identical-Machine Scheduling, являющаяся частным случаем задачи об оптимальном расписании — одной из важнейших **NP**-полных задач. Суть задачи заключается в нахождении оптимальной последовательности выполнения некоторого множества задач с разным временем выполнения на нескольких идентичных машинах. В ходе работы будет доказана **NP**-полнота задачи об оптимальном расписании (и, как следствие, ее частного случая IMS). Также будет построен жадный алгоритм Грэма, дающий $\frac{4}{3}$ -приближение для задачи IMS, проанализированный Рональдом Грэмом в 1960-х для решения IMS и смежных ей задач.

Содержание

1	Введение		3
	1.1	Общая информация	3
	1.2	Область применения	3
2	Теория		
	2.1	Формальная постановка задачи	4
	2.2	Необходимые определения	4
3	NP-	-полнота IMS с ограничением k на время работы	6
4	Алгоритм Грэма для $rac{4}{3}$ -приближения решения IMS		8
	4.1	Описание алгоритма	8
	4.2	Доказательство приближения	8
	4.3	Псевдокод	8
	4.4	Реализация на языке С++	9
	4.5	Анализ результатов	9
5	Зак	лючение	10
6	Лит	гература	10

1 Введение

1.1 Общая информация

Задача об оптимальном расписании на идентичных машинах (процессорах, исполнителях) — один из вариантов задачи об оптимальном расписании. В задаче об оптимальном расписании в общем случае требуется найти последовательность исполнения, позволяющую выполнить все задачи за минимальное время, причем каждая машина имеет свою производительность, а каждая задача - свою трудоемкость. В случае IMS рассматриваются идентичные, то есть имеющие одинаковую производительность, машины, но задачи разной трудоемкости.

Обозначим явно следующие особенности рассматриваемой проблемы:

- 1. Каждая машина выполняет только одну задачу в один момент времени;
- 2. Каждая задача должна выполняться только на одной машине и без прерываний;
- 3. Смена задач происходит мгновенно;
- 4. Производительность машин постоянна, а трудоемкость задач известна заранее;
- 5. Задачи не зависят друг от друга и могут быть выполнены в любом порядке.

Если зафиксировать также ограничение k на итоговое время работы, то задачу распознавания ситуации, в которой можно составить корректное расписание, можно рассматривать **NP**-полную, что будет доказано ниже.

1.2 Область применения

Задача IMS является ключом к многим повседневным задачам. Помимо очевидных приложений в ускорении работы произодств, больниц и планирования работы команд, задача IMS может быть применена в оптимизации распределённых вычислений и распредлённого хранения, вычислений на видеокартах, планировщиков операционных систем и множестве других задач.

2 Теория

2.1 Формальная постановка задачи

Будем использовать следующие обозначения:

- 1. M машины, |M| = m;
- 2. J задачи, |J| = n;
- 3. $p: J \times M \longrightarrow \mathbb{R}_+$, где p_{ij} время выполнения задачи i на машине j.

Так как все машины имеют в нашем случае одинаковую производительность, будем в дальнейшем считать $p: J \longrightarrow \mathbb{R}_+$, где p_i - время выполнения задачи i на любой машине.

Определение 2.1. Тогда задача IMS заключается в нахождении такой $x: J \times M \longrightarrow \{0,1\}$ (расписания), что:

1.

$$\max_{j \in M} \sum_{i} x_{ij} p_i \longrightarrow min =: T_{min}(J, M, p)$$

2.

$$\forall i \sum_{j \in M} x_{ij} = 1$$

2.2 Необходимые определения

Определение 2.2. Детерминированной машиной Тьюринга с k лентами называется кортеж $\langle \Sigma, \Gamma, Q, q_1, q_a, q_r, k, \delta \rangle$, где Σ, Γ, Q — конечные непустые множества, и $\Sigma \subset \Gamma, \Gamma \cap Q = ,q_1,q_a,q_r \in Q$ попарно различны, а δ есть функция из $(Q \setminus \{q_a,q_r\}) \times \Gamma^k$ в $Q \times \Gamma^k \times \{L,N,R\}^k$. Множество Σ называется входным алфавитом, Γ — ленточным алфавитом, Q — множеством состояний, q_1,q_a,q_r — начальным, принимающим и отвергающим состояниями соответственно, а δ — функцией перехода. Среди элементов Γ выделяют специальный символ #, не входящий в множество Σ .

Определение 2.3. Машина распознаёт язык A за время T(n), если она принимает все слова, лежащие в A, отвергает все слова, не лежащие в A, и на каждом слове x работает не больше T(|x|) шагов.

Определение 2.4. Классом **DTIME**(T(n)) называется класс языков, которые распознаются за время O(T(n)). Иными словами, время работы машины на любом слове длины n не превосходит некоторой константы, умноженной на T(n).

Определение 2.5. $P = \bigcup_{c=1}^{\infty} \mathbf{DTIME}(n^c)$.

Определение 2.6. Классом **NTIME**(T(n)) называется множество языков, распознаваемых на недетерминированной машине Тьюринга за время O(T(n)).

Определение 2.7. NP = $\bigcup_{c=1}^{\infty}$ NTIME (n^c) .

Альтернативное определение:

Определение 2.8. Классом **NP** называется множество языков A, для которых существует функция V(x,s) с булевыми значениями, вычислимая за полиномиальное время от длины первого аргумента, такая что:

- 1. Если $x \in A$, то $\exists s : V(x,s) = 1$;
- 2. Если $x \notin A$, то $\forall s \hookrightarrow V(x,s) = 0$.

Определение 2.9. Пусть A и B суть два языка. Тогда A сводится по Карпу к B, если существует всюду определённая функция $f:\{0,1\}^* \to \{0,1\}^*$, вычислимая за полиномиальное время, такая что $x \in A \Leftrightarrow f(x) \in B$ Обозначение: $A \leqslant_p B$.

Определение 2.10. Язык B является **NP**-трудным, если для любого $A \in \mathbf{NP}$ выполнено $A \leqslant_p B$. Язык B является **NP**-полным, если он **NP**-трудный и лежит в **NP**.

3 NP-полнота IMS с ограничением k на время работы

Напомним, что задача минимизации не может лежать или быть полной в какомто сложностном классе; в нем может лежать задача распознавания. Необходимо явно задать язык, с которым будем работать, установив ограничение на возможные решения. В нашем случае ограничим общее время работы некоторой константой k.

Определение 3.1.
$$IMS_k = \{ \langle J, M, p \rangle \mid T_{min}(J, M, p) < k \}$$

Таким образом, задача отыскания оптимального расписания не проще, чем распознавание языка $\mathsf{IMS_k}$, т.к. имея оптимальное расписание для некоторой тройки $\langle J, M, p \rangle$ можно за полиномиальное время найти $T_{min}(J,M,p)$ и тем самым однозначно ответить на вопрос ее принадлежности языку $\mathsf{IMS_k} \ \forall k$.

Согласно определению 2.9, для доказательства \mathbf{NP} -полноты $\mathsf{IMS_k}$ будет достаточно доказать:

- 1. $\mathsf{IMS}_{\mathsf{k}} \in \mathbf{NP};$
- 2. IMS_k является \mathbf{NP} -трудным.

Теорема 3.2. $IMS_k \in \mathbf{NP}$

Доказательство. Воспользуемся сертификатным определнием 2.7 принадлежности языка **NP**. Рассмотрим функцию V(x,s), и сертификат s — фукнцию x из 2.1. При записи на ленте s можно представить как булевую матрицу размера $n \times m$, где $s[i][j] = 1 \Leftrightarrow$ задачу i будет выполнять машина j. Тогда машина Тьюринга, вычисляющая V(x,s), должна будет проверить следующие условия:

1.

$$\forall i \sum_{j \in M} s_{ij} = 1$$

2.

$$\max_{j \in M} \sum_{i} s_{ij} p_i \longrightarrow t, \ t \le k$$

Оба условия могут быть проверены за полиномиальное время, т.к. требуется лишь вычислить две линейные от размера входа суммы для каждого из линейного числа входных значений и сравнить значения с константами. Таким образом, $\mathsf{IMS}_k \in \mathbf{NP}$. \square

Определение 3.3.

SUBSETSUM (SSP) =
$$\{\langle S=\{s_1,s_2,...,s_n\},q\rangle\mid\exists S'\subseteq S:\sum_{s\in S'}=q\}$$

Утверждение 3.4. SSP является NP - полным языком.

Данный факт примем общеизвестным

Теорема 3.5. IMS_k является NP-трудным.

Доказательство. Согласно 2.9 будет достаточно показать, что известный **NP**-полный язык SSP \leq_p IMS_k. Сведем решение задачи B из класса SSP к IMS_k, построив f следующим образом:

- 1. f считает $\sum_{i=1}^{n} s_i = Q$ за линейное время
- 2. Сравнивает Q и 2q за константное время
- 3. (a) Если Q < 2q рассматривает $A := \mathsf{IMS_q}(S \cup \{2q-Q\}, 2, S \cup \{2q-Q\})$
 - (b) Если Q>2q рассматривает $A:=\mathsf{IMS_q}(S\cup\{Q-2q\},2,S\cup\{Q-2q\})$
 - (c) Если Q=2q рассматривает $A:=\mathsf{IMS}_{\mathsf{g}}(S,2,S)$

Добавление задачи во множество позволяет максимально сравнять время работы двух машин. Переход линеен, $A \in \mathsf{IMS_k} \Leftrightarrow B \in \mathsf{SSP}$

Получили задачу из класса $\mathsf{IMS_k}$ за полиномиальное время. Решение исходной и получившихся задач будет эквивалентно, так как в любом случае имеем $Q' = \sum_{i=1}^{n+1} s_i = 2q$, и если в исходном множестве можно было выделить подмножество суммы q, то при решении $\mathsf{IMS_k}$ передадим на первую машину это подмножество, а на другую - остальные элементы S, и $T_{min} = q$. Если же в исходном множестве такого подмножества не было, то не будет ни одного способа резделить задачи между машинами поровну и, учитывая Q' = 2q одна из машин привысит время работы q.

Теорема 3.6. IMS_k является \mathbf{NP} -полным.

Доказательство. Согласно $3.2\,\text{IMS}_k \in \mathbf{NP},$ а согласно $3.5-\text{IMS}_k$ является \mathbf{NP} -трудным. Тогда по определнию получаем, что IMS_k \mathbf{NP} -полон.

4 Алгоритм Грэма для $\frac{4}{3}$ -приближения решения IMS

4.1 Описание алгоритма

Жадный алгоритм, предложенный Рональдом Грэмом для приближения задачи IMS за полиномиальное время в 1969 году:

- 1. Отсортируем задачи по убыванию их трудоемкости;
- 2. Каждая машина, освбождаясь, выбирает первую доступную в списке задачу, начинает выполнять ее и удаляет ее из списка. Если свободны одновременноо две машины, машина с меньшим индексом берет задачу с меньшим индексом. Если доступных задач в списке нет, машина простаивает;
- 3. Алгоритм завершается, если в списке не осталось доступных задач, и все машины простаивают;
- 4. Приближенное время работы находится как максимум по времени работы всех

Напомним, что решаем задачу в статическом случае, то есть когда новых задач не появляется после начала работы.

4.2 Доказательство приближения

Теорема 4.1. Обозначим результат работы приведенного алгоритма как T', а оптимальное значение - T_{min} , m - количество машин. Тогда имеет место:

$$1 \le \frac{T'}{T_{min}} \le \frac{4}{3} - \frac{1}{3m}$$

 \mathcal{A} оказательство. 1. $1 \leq \frac{T'}{T_{min}}$ очевидно в силу оптимальности T_{min} .

2. Приведено в работе Грэма на страницах 422-426

4.3 Псевдокод

Graham approximation for IMS problem

Require:
$$n \ge 0, \ m \ge 0, \ J = \{J_1 \ge 0, ..., J_n \ge 0\}$$

Ensure: $T_{min}(J,m) \le T'(J,m) \le \frac{4}{3}(T_{min}(J,m))$
 $M_1, ..., M_m \leftarrow 0$
 $sort - decrease - order(J)$
 $i \leftarrow 0$
while $i < n$ do
 $j = argmin(M_1, ..., M_m)$
 $M_j = M_j + J_i$
 $i = i + 1$
end while
 $T' \leftarrow max(M_1, ..., M_m)$

Итого имеем алгоритмическую сложность O(nlogn + nlogm) = O(n(logn + logm)) и укладываемся в полином. При этом алгоритм, основанный на переборе, имеет асимптотику $O(m^n)$.

4.4 Реализация на языке С++

Приведена тут.

4.5 Анализ результатов

Были проведены две серии тестов: сравнивающие время работы наивного алгоритма и алгоритма Грэма, а также проверяющие степень приближения ответа алгоритмом Грэма. Сравнение времени на приближения задачи IMS алгоритмом Грэма и точного ее решения на случайных задачах представлено ниже:

Видно, что наивный алгоритм приближения имеет экспоненциальную скорость работы, в то время как приближение Грэма - субэкспоненциальную. Даже на двух машинах и нескольких десятках задач наивный алгоритм становится практически не применим, в то время как построенный алгоритм даже не меняет продолжительность своей работы вне пределов погрешности. Проверим выводы на наборе из трёх машин:

Можем сделать те же самые выводы. Для числа машин больше 4 время работы наивного алгоритма становится недопустимо большим, а потому для таких наборов входных данных сравнение времени работы опустим.

Тестирование приближения решения IMS на 100 тестах подтвердило теоретическую оценку приближения $\frac{4}{3} - \frac{1}{3m}$.

5 Заключение

Предложенный Р. Л. Грэмом алгоритм для задачи IMS весьма эффективен, ведь позволяет со сложностью O(n(logn+logm)) с точностью до множителя $\frac{4}{3}$ приблизить **NP**-полную задачу. Уже при небольших входных данных время работы алгоритма, основанного на полном переборе становится непозволительно долгим, что лишает всякого смысла нахождение точного решения задачи IMS при $\mathbf{P} \neq \mathbf{NP}$. В то же время точность $\frac{4}{3}$ является приемлемой при решении большинства практических задач.

6 Литература

- 1. Bounds on Multiprocessing Timing Anomalies, R. L. Graham;
- 2. Сложность вычислений, конспект лекций, Д.В. Мусатов.