Kinematics, Kinetics, Amputee Gait (part 1)

MCE 493/593 & ECE 492/592 Prosthesis Design and Control October 16, 2014

Antonie J. (Ton) van den Bogert Mechanical Engineering Cleveland State University

Today

- Calculating joint angles & joint torques
- Design & control of the Vanderbilt prosthesis
- Design of a passive exoskeleton

- Next week:
 - studies of amputee gait

Definitions

- Kinematics: the study of motion
 - positions, velocities, accelerations
 - joint angles
- Kinetics: the study of forces related to motion
 - ground reaction forces
 - joint contact forces
 - joint moments (torques)
 - inverse dynamic analysis

Link-segment Model (Winter)

- Body is divided into links, connected by joints
- At each joint, there is a resultant force and a resultant moment between two links
 - This is an abstraction, imagining torque motors at joints

Winter Fig 4.3

Free body diagram (FBD) and link-segment

equations

$$\sum F_x = ma_x$$

$$\sum F_{y} = ma_{y}$$

$$\sum M = I\alpha$$

include all forces and moments acting on the segment, and no others!

Winter Fig. 4.5

 R_{xp} , R_{yp} : reaction force vector at p (proximal end) P_{xp} , P_{yp} : position vector from center of mass to p and the same variables for distal end (d)

$$R_{xp} + R_{xd} = ma_x$$

$$R_{yp} + R_{yd} - mg = ma_y$$

$$M_p + M_d + \left(P_{xp}R_{yp} - P_{yp}R_{xp}\right) + \left(P_{xd}R_{yd} - P_{yd}R_{xd}\right) = I\alpha$$

Mass properties

For each body segment we need to know:

- mass (kg)
- location of center of mass
- moment of inertia (kg m²)

Data sources:

- Cadaver studies at Wright-Patterson Air Force Base
 - Dempster 1955, Clauser 1969, Chandler 1975
- Gamma ray absorption studies
 - Vladimir Zatsiorsky, Institute of Physical Culture, USSR, ~1980

Statistical models extracted from data

Table in Winter's textbook, based on Dempster's data

Table 3.1 Anthropometric Data		c1	c2		c3			
		Segment Weight/	Center of Mass/ Segment Length		Radius of Gyration/ Segment Length			
Segment	Definition	Total Body Weight	Proximal	Distal	C of G	Froximal	Distal	Density
Hand	Wrist axis/knuckle II middle finger	0.006 M	0.506	0.494 P	0.297	0.587	0.577 M	1.16
Forearm	Elbow axis/ulnar styloid	0.016 M	0.430	0.570 P	0.303	0.526	0.647 M	1.13
Upper arm	Glenohumeral axis/elbow axis	0.028 M	0.436	0.564 P	0.322	0.542	0.645 M	1.07
Forearm and hand	Elbow axis/ulnar styloid	0.022 M	0.682	0.318 P	0.468	0.827	0.565 P	1.14
Total arm	Glenohumeral joint/ulnar styloid	0.050 M	0.530	0.470 P	0.368	0.645	0.596 P	1.11
Foot	Lateral malleolus/head metatarsal II	0.0145 M	0.50	0.50 P	0.475	0.690	0.690 P	1.10
Leg	Femoral condyles/medial malleolus	0.0465 M	0.433	0.567 P	0.302	0.528	0.643 M	1.09
Thigh	Greater trochanter/femoral condyles	0.100 M	0.433	0.567 P	0.323	0.540	0.653 M	1.05
Foot and leg	Femoral condyles/medial malleolus	0.061 M	0.606	0.394 P	0.416	0.735	0.572 P-	1.09
Total leg	Greater trochanter/medial malleolus	0.161 M	0.447	0.553 P	0.326	0.560	0.650 P	1.06

Estimating the mass properties

Assume we have measured:

- body mass (BM)
- global coordinates of proximal marker (Xp,Yp)
- global coordinates of distal marker (Xd, Yd)
- segment length L (possibly from markers)

Now we can estimate:

- Segment mass M = c1 * BM

- Center of mass Xcm = (1-c2)*Xp + c2*Xd

Ycm = (1-c2)*Yp + c2*Yd

- Moment of inertia $I = M*(c3*L)^2$

(with respect to center of mass)

Segment kinematics

- Compute in each frame (sample):
 - Center of mass position: Xcm, Ycm (2 slides ago)
 - Segment angle: θ = atan2(Yp-Yd, Xp-Xd)
- Low-pass filter (5-20 Hz)
- Take second derivative at sample i (time interval h)

$$\ddot{x}_{i} = \frac{\left(\frac{x_{i+1} - x_{i}}{h}\right) - \left(\frac{x_{i} - x_{i-1}}{h}\right)}{h} = \frac{x_{i+1} - 2x_{i} + x_{i-1}}{h^{2}}$$

Recursive inverse dynamic analysis

- Start at segment at the end of the leg (foot)
- External force/moment known (force plate)
- Solve ankle force/moment
 - 3 equations, 3 unknowns
- Next segment: lower leg
- Ankle force/moment acting on lower leg = minus ankle force/moment acting on foot
- Solve knee force/moment
 - 3 equations, 3 unknowns
- ...and so on

Data file and Matlab code

			-											
	Α	AW	AX	BF	BG	ВО	BP	BU	BV	FN	FO	FQ	FR	FV
1	Time	RGTRO.PosX	RGTRO.PosY	RLEK.PosX	RLEK.PosY	RLM.PosX	RLM.PosY	RMT5.PosX	RMT5.PosY	FP1.CopX	FP1.CopY	FP1.ForX	FP1.ForY	FP1.MomZ
1254	12.52	0.46971	0.95828	0.41164	0.50086	0.27265	0.09972	0.39869	0.04227	0.41506	0	16.82711	741.5053	307.7679
1255	12.53	0.46911	0.95677	0.40686	0.49982	0.26338	0.09996	0.3892	0.04224	0.40731	0	21.06817	745.1191	303.49737
1256	12.54	0.46855	0.95511	0.40235	0.49859	0.25426	0.10033	0.3797	0.04216	0.40082	0	26.37835	750.5475	300.83486
1257	12.55	0.4681	0.95339	0.39824	0.49731	0.2452	0.10073	0.37031	0.04215	0.39167	0	32.35532	755.8463	296.04016
1258	12.56	0.46779	0.95156	0.39456	0.4959	0.23649	0.10105	0.36094	0.04207	0.38571	0	39.92746	761.7033	293.79952
1259	12.57	0.46767	0.94966	0.39133	0.49449	0.2277	0.10151	0.35163	0.04207	0.37846	0	41.5595	769.7909	291.33688

150 WN58DI
m=86 Kg
cad=118

D.A. Winter (1983) Energy generation and absorption... Clin Orthop Rel Res.

Vanderbilt prosthetic leg

Knowing able-bodied joint rotations and joint torques, we can use motors to produce:

- joint angle as a function of time (not a good idea)
- joint torque as a function (not a good idea)
- a relationship between angle and torque (great idea!)

Sources:

- Sup FC, Bohara A, Goldfarb M (2008) Design and Control of a Powered Transfemoral Prosthesis. Int J Rob Res 27(2): 263–273. (pneumatic)
- Sup FC, Varol HA, Mitchell J, Withrow T, Godlfarb M (2008) Design and Control of an Active Electrical Knee and Ankle. Proc IEEE RAS EMBS Int Conf Biomed Robot Mechatron. pp. 523-528.

Hardware

Control based on able-bodied gait

Relationship between joint motion and joint torque: sometimes spring-like, sometimes damper-like

Four phases in the gait cycle

Finite state machine

In each phase, fit a spring-damper model to Winter's angle-torque data

impedance control"

$$\tau = k_1 (\theta - \theta_e) + k_2 (\theta - \theta_e)^3 + b \dot{\theta}$$

(Sup, IJRS 2008)

Impedance Parameters for Prototypical Gait (Gait Data from Winter (1991)).

		Knee impedan	ice	
Mode	k ₁ (Nm/deg)	$k_2 (\mathrm{Nm/deg}^3)$	b (N s m ⁻¹)	$\theta_{\rm e}$ (deg)
1	3.78	73×10^{-3}	25×10^{-3}	12
2	0	9×10^{-6}	30×10^{-3}	37
3	0	9×10^{-3}	16×10^{-3}	52
4	0.093	2×10^{-6}	13×10^{-3}	44

Experimental tuning

Impedance Parameters Derived by Experimental Tuning

	Knee Impedance					
Mode	k_1 (Nm/deg)	$k_2 (\mathrm{Nm/deg}^3)$	b (N s m ⁻¹)	$\theta_{\rm e}$ (deg)		
1	7.5	0	0	14		
2	1.0	0.006	0	16		
3	0	0	0.005	0		
4	0.08	0	0.08	30		

Able-bodied testing with "bent-knee adapter"

What it did:

What it was designed to do:

Joint torques

What it was designed to do:

Power consumption and mechanical energy generated

60 Wh laptop battery \$140 weight 1 lb

60 W electric power needed for normal walking

Discussion

- Impedance control is very appealing
- Initial tests for gait:
 - Knee function during stance was abnormal
 - The knee did not do much that a C-leg could not do
 - The ankle generated power (unlike a passive foot)
 - C-leg + BIOM could be equivalent
 - Integrated knee-ankle device has advantages
- There aren't any clinical studies yet (that I know of)