Putnum and Beyond Solution Manual

Jacob Denson

December 1, 2015

Table Of Contents

1	Basic Concepts		
	1.1	Preliminaries	2
	1.2	Norms	4
	1.3	First Properties of Norm Spaces	4

Chapter 1

Basic Concepts

1.1 Preliminaries

Exercise 1.1. Basic Vector Space Terminology.

(a) Show that if A is an absorbing set or a nonempty balanced set, then $0 \in A$.

Proof. If *A* is absorbing, there is $\lambda > 0$ for which $0 \in \lambda A$. But then

$$0 = \lambda^{-1} 0 \in \lambda^{-1} \lambda A = A$$

If *A* is a non-empty balanced set, then $0 \in 0A \subset A$, since |0| < |1|. \square

(b) Show that if A is balanced, then $\alpha A = A$ whenever $|\alpha| = 1$.

Proof. It is obvious that
$$\alpha A \subset A$$
. Conversely, since $|\alpha^{-1}| = 1$, $\alpha^{-1}A \subset A$. Given $a \in A$, $\alpha^{-1}a \in \alpha^{-1}A \subset A$, but then $a = \alpha(\alpha^{-1}a) \in \alpha A$.

(c) Suppose that \mathcal{B} is a collection of balanced subsets of X. Show that $\bigcup \{S : S \in \mathcal{B}\}$ and $\bigcap \{S : S \in \mathcal{B}\}$ are both balanced.

Proof. For any $|\alpha| \le 1$, $B \in \mathcal{B}$, $\alpha B \subset B$, so that

$$\alpha \bigcap_{B \in \mathcal{B}} B = \bigcap_{B \in \mathcal{B}} \alpha B \subset \bigcap_{B \in \mathcal{B}} B$$

$$\alpha \bigcup_{B \in \mathcal{B}} B = \bigcup_{B \in \mathcal{B}} \alpha B \subset \bigcup_{B \in \mathcal{B}} B$$

and therefore the union and intersection of balanced sets is balanced
(d) Suppose that C is a collection of convex subsets of X . Show that $\bigcap \{S \in C\}$ is convex.
<i>Proof.</i> If $C \in \mathcal{C}$ $a, b \in C$, $\lambda \in [0,1]$, then $\lambda a + (1 - \lambda)B \in C$. By putting $\forall C \in \mathcal{C}$ in the front of these statements, we obtain the statement for the intersection.
(e) Show that if A is convex, then $x + A$ and αA are convex.
<i>Proof.</i> If $x + a, x + b \in x + A$, $\lambda \in [0, 1]$, then
$\lambda(x+a) + (1-\lambda)(x+b) = x + (\lambda a + (1-\lambda)b) \in x + A$
and therefore $x + A$ is convex.
Exercise 1.2. (a) Show that the "addition" and "multiplication by scalars' defined for sets obey the commutative and associative laws for vector spaces. That is, show that $A+B=B+A$, that $A+(B+C)=(A+B)+C$, and that $\alpha(\beta A)=(\alpha\beta)A$. Show also that $(x+A)+(y+B)=(x+y)+(A+B)$.
(b) Show that $\alpha(A+B) = \alpha A + \alpha B$.
(c) Show that $(\alpha + \beta)A \subset \alpha A + \beta A$, but that equality does not always hold.
<i>Proof.</i> The equations can be verified pointwise. If the equations is satisfied on the left side by a point, it holds on the right side, and vice versa. This is not true of the third question, since
Exercise 1.3. (a) Prove that A is convex if and only if $sA + tA = (s + t)A$ for all positive s and t. (Consider the special case in which $s + t = 1$).
Proof. s

1.2 Norms

1.3 First Properties of Norm Spaces

Exercise 1.4. Let K be a compact Hausdorff space and let X be a normed space. By Corollary 1.3.4, the collection of all continuous functions from K into X is a vector spacewhen functions are added and multiplied by scalars in the usual way. Define a norm on this vector space by the formula

$$||f||_{\infty} = \begin{cases} \max\{||f(x)|| : x \in K\} & \text{if } K \neq \emptyset \\ 0 & K = \emptyset \end{cases}$$

The resulting normed space is denoted C(K, X).

(a) Show that $\|\cdot\|_{\infty}$ is in fact a norm on C(K,X).

Proof. $||f + g|| \le ||f|| + ||g||$, since sup(*A* + *B*) ≤ sup *A* + sup *B* for any *A* and *B*. $||\alpha f|| = |\alpha|||f||$, since

$$\max\{||\alpha f(x)|| : x \in K\} = |\alpha|\max\{||f(x)|| : x \in K\}$$

And if ||f|| = 0, then ||f(x)|| = 0 for all x, so that f(x) = 0 for all x. \square

(b) Show that if X is a Banach space, then so is C(K, X).

Proof. Let $f_1, f_2,...$ be a Cauchy sequence in C(K, X), so that $||f_i - f_j|| \to 0$.