Earley Parsing

Natalie Parde UIC CS 421

Earley Parsing

- Top-down dynamic parsing approach
- Table is length n+1, where n is equivalent to the number of words
- Table entries contain three types of information:
 - A subtree corresponding to a single grammar rule
 - Information about the progress made in completing the subtree
 - The position of the subtree with respect to the input

In Earley parsing, table entries are known as states.

- States include structures called dotted rules
- A within the righthand side of a state's grammar rule indicates the progress made towards recognizing it
- A state's position with respect to the input is represented by two numbers, indicating (1) where the state begins, and (2) where its dot lies

Example States

- Input: Book that flight.
- $S \to VP, [0,0]$
 - Top-down prediction for this particular kind of S
 - First 0: Constituent predicted by this state should begin at the start of the input
 - Second 0: Dot lies at the start of the input as well
- NP → Det Nominal, [1,2]
 - NP begins at position 1
 - Det has been successfully parsed
 - Nominal is expected next
- VP → V NP •, [0,3]
 - Successful discovery of a tree corresponding to a VP that spans the entire input

Earley Algorithm

- An Earley parser moves through the n+1 sets of states in a chart in order
- At each step, one of three operators is applied to each state depending on its status
 - Predictor
 - Scanner
 - Completer
- States can be added to the chart, but are never removed
- The algorithm never backtracks
- The presence of S $\rightarrow \alpha$ •, [0,n] indicates a successful parse

Earley Operators: Predictor

Predictor

- Creates new states
- Applied to any state that has a non-terminal immediately to the right of its dot (as long as the non-terminal is not a POS category)
- New states are placed into the same chart entry as the generating state
- They begin and end at the same point in the input where the generating state ends

$S \rightarrow \bullet VP, [0,0]$

- VP → Verb, [0,0]
- VP → Verb NP, [0,0]
- VP → Verb NP PP, [0,0]
- VP → Verb PP, [0,0]
- VP → VP PP, [0,0]

Earley Operators: Scanner

- Used when a state has a POS category to the right of the dot
- Examines input and incorporates a state corresponding to the prediction of a word with a particular POS into the chart
- VP → Verb NP, [0,0]
 - Since category following the dot is a part of speech (Verb)....
 - Verb → book •, [0,1]

Earley Operators: Completer

- Applied to a state when its dot has reached the right end of the rule
- Indicates that the parser has successfully discovered a particular grammatical category over some span of input
- Finds all previously created states that were searching for this grammatical category, and creates new states that are copies with their dots advanced past the grammatical category
- NP → Det Nominal •, [1,3]
 - What incomplete states end at position 1 and expect an NP?
 - VP → Verb NP, [0,1]
 - VP → Verb NP PP, [0,1]
 - So, add VP → Verb NP •, [0,3] and the new incomplete VP → Verb NP PP, [0,3] to the chart

Earley Algorithm: Example

Book that flight.

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP \ VP$ $S \rightarrow VP$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb \ NP$

Chart	State	Rule	Start, End	Added By
0	S0	$\gamma \rightarrow {}^{ullet}$ S	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor

Earley Algorithm: Example

Book • that flight.

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP VP$ $S \rightarrow VP$ $NP \rightarrow Det Nominal$ $Nominal \rightarrow Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$

Chart	State	Rule	Start, End	Added By
0	S0	$\gamma \rightarrow \bullet S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor

Earley Algorithm: Example

Book that • flight.

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP \ VP$ $S \rightarrow VP$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb \ NP$

Chart	State	Rule	Start, End	Added By
0	S0	$\gamma \rightarrow \bullet S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	VP o Verb ullet	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \bullet$	1, 2	Scanner
2	S12	NP → Det • Nominal	1, 2	Completer
2	S13	Nominal \rightarrow • Noun	2, 2	Predictor

Earley Algorithm: Example

Book that flight. •

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP \ VP$ $S \rightarrow VP$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb \ NP$

Chart	State	Rule	Start, End	Added By
0	S0	$\gamma \rightarrow {}^{ullet} S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	VP o Verb ullet	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	NP → Det • Nominal	1, 2	Completer
2	S13	Nominal → • Noun	2, 2	Predictor
3	S14	Noun → flight •	2, 3	Scanner
3	S15	Nominal \rightarrow Noun •	2, 3	Completer
3	S16	NP → Det Nominal •	1, 3	Completer
3	S17	$VP \rightarrow Verb NP \bullet$	0, 3	Completer
3	S18	$S \rightarrow VP \bullet$	0, 3	Completer

Which states participate in the final parse?

Chart	State	Rule	Start, End	Added By
0	S0	$\gamma \rightarrow {}^{\bullet} S$	0, 0	Start State
0	S1	$S \to \bullet \; NP \; VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	$Verb \to book \; \bullet$	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \to VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	$NP \to Det \bullet Nominal$	1, 2	Completer
2	S13	Nominal \rightarrow • Noun	2, 2	Predictor
3	S14	Noun \rightarrow flight •	2, 3	Scanner
3	S15	Nominal \rightarrow Noun •	2, 3	Completer
3	S16	$NP \rightarrow Det Nominal \bullet$	1, 3	Completer
3	S17	$VP \rightarrow Verb NP \bullet$	0, 3	Completer
3	S18	$S \rightarrow VP \bullet$	0, 3	Completer

As with CKY, the example algorithm acted as a recognizer.

- We can retrieve parse trees by adding a field to store information about the completed states that generated constituents
- How to do this?
 - Have the Completer operator add a pointer to the previous state onto a list of constituent states for the new state
 - When an S is found in the final chart, just follow pointers backward

Which states participate in the final parse?

Chart	State	Rule	Start, End	Added By (Backward Pointer)
0	S0	$\gamma ightarrow \circ S$	0, 0	Start State
0	S1	$S \to \bullet \; NP \; VP$	0, 0	Predictor
0	S2	$S \rightarrow {}^{\bullet}VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	$VP \rightarrow \circ Verb NP$	0, 0	Predictor
1	S6	$Verb \to book \bullet$	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	Det \rightarrow that •	1, 2	Scanner
2	S12	$NP \to Det \bullet Nominal$	1, 2	Completer
2	S13	$Nominal \to \bullet \; Noun$	2, 2	Predictor
3	S14	Noun \rightarrow flight •	2, 3	Scanner
3	S15	Nominal \rightarrow Noun •	2, 3	Completer (S14)
3	S16	$NP \rightarrow Det Nominal \bullet$	1, 3	Completer (S11, S15)
3	S17	$VP \to Verb \; NP \; \bullet$	0, 3	Completer (S6, S16)
3	S18	$S \rightarrow VP \bullet$	0, 3	Completer (S17)

Successful Earley Parse

