Zadania do deklaracji (piątek)

Zadanie 1-4 Znajdź ekstrema (jeśli istnieja) funkcji

1.
$$f: \mathbb{R}^3 \to \mathbb{R}: f(x, y, z) = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{z}{2} \text{ dla } x, y, z > 0.$$

2.
$$f: \mathbb{R}^2 \to \mathbb{R}: f(x,y) = x^2 + 4xy$$

3.
$$f: \mathbb{R}^2 \to \mathbb{R}: f(x,y) = xy(1-x)(2-y)$$

4.
$$f: \mathbb{R}^3 \to \mathbb{R}: f(x,y) = y^2 + z^2 + 2xy$$

Zadanie 5 Wyznacz wartości parametru a dla którego funkcja $h(x,y) = ay(e^x - 1) + x \sin x + 1 - \cos y$ ma ekstremum lokalne w punkcie (0,0).

Zadanie 6 Sprawdzić, że funkcja $f(x,y) = e^{-x}(xe^{-x} + \cos y), x, y \in \mathbb{R}$ ma nieskończenie wiele wiele punktów krytycznych, a w każdym z nich – maksimum lokalne właściwe

Zadanie 7 Oblicz $\frac{\partial^2 f}{\partial x_2 \partial x_1}(0)$ i $\frac{\partial^2 f}{\partial x_1 \partial x_2}(0)$ dla $f: \mathbb{R}^2 \to \mathbb{R}$ zadanej wzorem

$$f(x) = \begin{cases} 0 & \text{dla } x = 0\\ x_1 x_2 \frac{x_1^2 - x_2^2}{\|x\|^2} & \text{dla } x \neq 0 \end{cases}.$$

Czy ta funkcja jest klasy C^2 ?

Zadanie 8 Koryta dwóch rzek (na pewnym obszarze) można w przybliżeniu opisać przez parabolę $y=x^2$ oraz prostą linię x-y-2=0. Potrzeba połączyć te dwie rzeki kanałem o najmniejszej długości. Przez jakie punkty będzie przepływał ten kanał?

Zadanie 9 Znajdź maksimum funkcji (a) f(x,y) = x + y oraz (b) $f(x,y) = (x+y)^2$ na okręgu $x^2 + y^2 = 1$.

Zadanie 10 Znajdź kresy funkcji f zadanych poniższymi wzorami na zbiorze M, zbadaj czy są one osiągane.

1

1.
$$f(x,y) = x^2 + y^2$$
 $M = \{(x,y) \in \mathbb{R}^2 : 2x + 3y = 7\}$

2.
$$f(x,y) = \sqrt{(x-2)^2 + y^2}$$
 $M = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$

3.
$$f(x, y, z) = xyz$$
 $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = x + y + z = 1\}$

4.
$$f(x,y) = Ax + By + C$$
 $M = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$

5.
$$f(x,y) = \frac{x \ln(1+y)}{2x^2 + y^2}$$
, $A = \{(x,y) : 0 < x \le y \le 1\}$.

Zadanie 11 Czy istnieje punkt z płaszczyzny w \mathbb{R}^3 o równaniu 3x-2z=0, dla którego suma kwadratów odległości od punktów (1,1,1) i (2,3,4) jest najmniejsza? Jeśli tak, to znajdź wszystkie takie punkty.

Zadanie 12 Załóżmy, że funkcja $f: \mathbb{R}^2 \to \mathbb{R}^2$ jest różniczkowalna i f(x,y) = (u(x,y),v(x,y)), gdzie $u,v: \mathbb{R}^2 \to \mathbb{R}$. Funkcję f traktujemy jako odwzorowanie $f: \mathbb{C} \to \mathbb{C}$, tzn. dla z=x+iy (gdzie $i^2=-1$)

$$f(x) = u(z) + iv(z).$$

Udowodnić, że pochodna zespolona

$$f'(z) = \lim_{w \to 0} \frac{f(z+w) - f(z)}{w},$$
 (gdzie $w \in \mathbb{C}$)

istnieje wtedy i tylko wtedy, gdy

$$\frac{\partial u}{\partial x}(z) = \frac{\partial v}{\partial y}(z)$$
 i $\frac{\partial u}{\partial y}(z) = -\frac{\partial v}{\partial x}(z)$.

Wykazać, że funkcja $g: \mathbb{C} \to \mathbb{C}$, $g(z) = \overline{z}$, nie ma pochodnej zespolonej.

Zadanie 13 Niech $f: \mathbb{R}^d \to \mathbb{R}$ będzie funkcją jednorodną stopnia 1, tzn. taką, że dla dowolnego $t \in \mathbb{R}$ i $x \in \mathbb{R}^d$ zachodzi f(tx) = tf(x). Wykazać, że f jest różniczkowalna w 0 wtedy i tylko wtedy, gdy f jest funkcją liniową.