A. BEDANJAN N. de LESTABLE M. RICHJARDI					Q	P	M	•	P	b	5	et		9		<i>3</i> 201	φ.	2			
1. SCHÖNENBERGER																					
		Lsti(1 e in	depen	dest	wi	h di	stri b	u k on	(F										
4.	FÍ	N) =	1	- exp	1-1	3n)		β	>0	ún	d n) 0									
0	Let	sel	ting				4 x,		λη \ ,	dn =	18										
		The same of			ha)								
							= 5 = 1	P ((x,	χ; :dn 74	x	n + 0	~1)))	inde	per d	en b				
							s = = (1	e - e - 1	s (in	1 + Ca	()	^								
						۸-	91 10	e e													
	The	ujov	2	w he		we	ta	ke	the		lini)	Ó	<u>j</u> 1	P("	dn	(n		we	hau	2	

H(n) = e=n Which is a GEV distribution with paremeter \$ = 0 => F & NDA (H.) 1. Now we st up: no - man &x, ... , x, y cn = Kn11d - K And F () = 1 - () X As before we have: $P\left(\frac{\prod_{\lambda} - c_{\lambda}}{d\lambda} \left(\frac{1}{\lambda}\right) = F^{\lambda}\left(\frac{d\lambda}{d\lambda} + c_{\lambda}\right)$ $= \left(\frac{1}{\lambda} - \left(\frac{1}{\lambda} + d_{\lambda} + c_{\lambda}\right)\right)$ K + Ka inc h + Ka inc K 1 - 1 (2) 4] 1 Therefore by taking the limit in P[n.cn (n) we have 14 (n) = e - (1 + m) - 1/2 e which is a GEV distraibution with parameter &= 1/2 => FE MOALHILL)

The glock out what we worked: \(\text{Va} \) is Fo (a) = 6 e. p (u-or) (a) A. We conjude the regalive by returns with our matter and the control of (X) is except and extension in the first out of the control of (X) is except and the result of (X) is except and the result of (X) is except and the result of (X) is the regalive by return and file file of (X) is the reconstriction of the file of (X) is the reconstriction of the file of (X) is the reconstriction of (X). The first of (X) is the reconstriction of (X) is the reconstriction of (X) is the reconstriction of (X). The first of (X) is the reconstriction of (X) is the reconstriction of (X) is the reconstriction of (X). The first of (X) is the reconstriction of (X) is the reconstriction of (X) is the reconstriction of (X). The first of (X) is the reconstriction of (X) is the reconstriction of (X) is the reconstriction of (X).								
Austion 3 1. We compute the regalize by returns with our matter out the way after the sample we are exact protein the way after and the post is on our payther cate 1. We salether a thrusheld of O. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the Harbold of J. O.L. for the way after our the J.								
Guestion 3 We conjunt to the significant log returns with our matter with the war matter with the war matter with the war and excess plat: (X; en(Xi) Y x; or war fly then water and war and	We fi	nd out	what	wet	van le d	: \dag{\dag{u}}	6 ;	
Guestion 3 We conquite the regalize leg-neturns with our match code then we consider the sample mean excess pole ?: I (X; en (Xi) Y x; > c twhen a log of the regalize the page time of the pole of the pole of the pole of the pole of the page time of the pole of the page time of the pole of the page time of the		7	Fo (a) =	; Ge, pr (u	りもしん)		
we compute the rigative by returns with our matter cale that we can excess prot : (X; en (Xi) + x.>0 where en (v) = \$\frac{1}{2}\$, (X:-v) \$\frac{1}{2}\$, \text{Size}\$ The plot is on our purther cade (We selected - threshold of 0 01 for the regard ve (by returns and fit a GDD and to the excess distribution over the Heshold try maximum likelihood eshination. The function that we maximized is; The function that we maximized is; \$\frac{1}{2}\$ & \$\frac{1}{2								
We compute the negative by returns with our matter code that we can plat: We compute the sample near excess plat: $ \frac{1}{1}(X_1 - e_1(X_1) + X_1 + e_2) $ Where $e_1(v) = \frac{1}{4}(X_1 - v) + \frac{1}{4} + e_2 + e_3 + e_4 $ The plat is on our plyther code We sale that a throughold of 0.01 for the negative (by returns and fit a GDD model to the excess distribution our the theolold by maximum likelihood ephration. The function that we maximisely to: $ \frac{1}{4} = \frac{1}{4} + 1$	Questic	3 3						
where $e_{1}(v) = \frac{2}{5}$, $(x_{1} \cdot v)$ the source $\frac{2}{5}$ that is an our pyther case The prior is on our pyther case We siletted a thrushold of 0.01 for the negative by returns and $\frac{2}{5}$ in a GDD model to the excess distribution over the theological transmitted by maximum bitablihood onto a transmitted as in the form $\frac{2}{5}$ the form $\frac{2}{5}$ the form $\frac{2}{5}$ the prior $\frac{2}{5}$ the pri			the negati	ive leg-net	wins c	tith our r	natleh code	then
where en (v) = \$\frac{1}{2} \text{ (x; -v) then cade} The part 1s on our pry than cade The part 1s on our pry than cade Our sole that = threshold of 0.01 for the negative Cog returns and \$\frac{1}{2} \tau \text{ GDD model} \tau \text{ the excess distriction for over the throbold } by maximum likelihood estimation. The function that we maximized is: \$\frac{7}{2} \text{ log (g \in (\hat{k}, 1))} \text{ when it is a partity \$\hat{k}\$; \$\frac{7}{2} \text{ log (g \in (\hat{k}, 1))} \text{ and \$\frac{7}{2} \text{ log (g \in (\hat{k}, 1))} \text{ when it is a partity \$\hat{k}\$; \$\frac{7}{2} \text{ log (g \in (\hat{k}, 1))} \text{ when it is a partity \$\hat{k}\$; We had only \$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	we @					ces plet:		
The poly is on our pythen cade We selected a threshold of 001 for the regardine to the theshold of the excess distraction for the theshold by maximum exceptions and each maken. The function that we maximized is: $ \hat{\xi}_{2} = \log \left(g_{2} \circ (\hat{x}, 1) \right) $ Where $\hat{x}_{3} = \hat{x}_{3} =$	1		0					
The plot is on our pythen cade . We selected a threshold of 0.01 for the negative log returns and fit a GDD model to the excess distration for our the theshold by maximum likelihood estimation. The function that we naximized is, The function $\hat{X}_{i}^{i} = \hat{X}_{i}^{i} = 0$ for $\hat{X}_{i}^{i} = 0$. We find out $\hat{\xi} = 0.2188$ We find out $\hat{\xi} = 0.2188$	where	en (v)	-					
. We sletted - threshold of 0.01 for the negative log returns and $\hat{g}(t)$ a GDD model to the excess distribution over the theolold by maximum likelihood estimation. The function that we maximized is, $\tilde{f}(t) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \frac{1}{2} \right)$ We find out $\hat{g} = 0.2189$	The got	Ci 40			cade			
fit a GDD model to the excess distribution over the theshold by maximum likelihood estimation. The function they we next might as, The function $\hat{X}_{i=1}$ (by (g_{i}, p_{i}, p_{i+1})) whose $\hat{X}_{i} = \hat{X}_{i} - 0$ We find out $\hat{\xi} = 0.2189$	1							
fit a GDD model to the excess distribution over the theshold by maximum likelihood estimation. The function they we next might as, The function $\hat{X}_{i=1}$ (by (g_{i}, p_{i}, p_{i+1})) whose $\hat{X}_{i} = \hat{X}_{i} - 0$ We find out $\hat{\xi} = 0.2189$								
by maximum likelihood eph nahan. The function that we maximized is, $ \tilde{\chi}_{=1}^{2} \log g_{\xi,p}(\hat{x},1) $ where N_{0} is the maximix $\hat{\chi}_{i}^{2}$ $ \tilde{\chi}_{i} = \chi_{i} - u $ $ g_{\xi,p}(\hat{\chi}_{i}) = \frac{A}{\rho} \left(1 - \frac{\rho}{2} \hat{\chi}_{i}^{2}\right)^{-1/2} \frac{1}{\rho} $ We find out $\hat{\xi} = 0.2189$								
The function that we maximized is, $X_{i} = X_{i} = 0$ $X_{i} = X_{i} = 0$ $X_{i} = X_{i} = 0$ We find out $\hat{\xi} = 0.2189$						1) N D W 07	l our th	the hold
We find out $\hat{\xi} = 0.2188$								
We find only $\hat{\xi} = 0.2189$			Z 00) (9 & B (x:1)				
$\hat{X}_{i} = X_{i} - U$ $g_{i, p}(\hat{X}_{i}) = \frac{1}{6} \left(1 + \frac{1}{6} \hat{X}_{i} - \frac{1}{6} \hat{X}_{i} \right)$ We find only $\hat{\xi} = 0.2189$								
We god out \(\hat{\xi} = 0.2189	Whole	No						
We god out \(\hat{\xi} = 0.2189		a .	$(\hat{x}_3) = \Lambda$	1 = (2)	1 ()			
		7 - 1		6			-	
	We f	md o	ul ê =	0.2189				
			ĬŜ =	0,00734				
					-			
						N		