Exercises

- 1. Draw the full decision tree for the parity function of four Boolean attributes, A, B, C, and D. Is it possible to simplify the tree?
- Consider the training examples shown in Table 4.7 for a binary classification problem.
 - (a) Compute the Gini index for the overall collection of training examples.
 - (b) Compute the Gini index for the Customer ID attribute.
 - (c) Compute the Gini index for the Gender attribute.
 - (d) Compute the Gini index for the Car Type attribute using multiway split.
 - (e) Compute the Gini index for the Shirt Size attribute using multiway split.
 - (f) Which attribute is better, Gender, Car Type, or Shirt Size?
 - (g) Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.
- Consider the training examples shown in Table 4.8 for a binary classification problem.
 - (a) What is the entropy of this collection of training examples with respect to the positive class?

Table 4.7. Data set for Exercise 2.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sperts	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Table 4.8. Data set for Exercise 3.

Instance	a_1	a_2	a 3	Target Class
1	Т	T	1.0	+
2	Т	T	6.0	+
3	Т	F	5.0	-
4	F	F	4.0	+
5	F	T	7.0	-
6	F	T	3.0	-
7	F	F	8.0	_
8	Т	F	7.0	+
9	F	T	5.0	-

⁽b) What are the information gains of a_1 and a_2 relative to these training examples?

⁽c) For a₃, which is a continuous attribute, compute the information gain for every possible split.

- (d) What is the best split (among a_1 , a_2 , and a_3) according to the information gain?
- (e) What is the best split (between a_1 and a_2) according to the classification error rate?
- (f) What is the best split (between a_1 and a_2) according to the Gini index?
- Show that the entropy of a node never increases after splitting it into smaller successor nodes.
- 5. Consider the following data set for a binary class problem.

A	В	Class Label
T	F	+
T	Т	+
T	Т	+
T	F	_
T	Т	+
F	F	_
F	F	_
F	F	_
T	Т	_
T	F	_

- (a) Calculate the information gain when splitting on A and B. Which attribute would the decision tree induction algorithm choose?
- (b) Calculate the gain in the Gini index when splitting on A and B. Which attribute would the decision tree induction algorithm choose?
- (c) Figure 4.13 shows that entropy and the Gini index are both monotonously increasing on the range [0, 0.5] and they are both monotonously decreasing on the range [0.5, 1]. Is it possible that information gain and the gain in the Gini index favor different attributes? Explain.
- 6. Consider the following set of training examples.

X	Y	Z	No. of Class C1 Examples	No. of Class C2 Examples
0	0	0	5	40
0	0	1	0	15
0	1	0	10	5
0	1	1	45	0
1	0	0	10	5
1	0	1	25	0
1	1	0	5	20
1	1	1	0	15

- (a) Compute a two-level decision tree using the greedy approach described in this chapter. Use the classification error rate as the criterion for splitting. What is the overall error rate of the induced tree?
- (b) Repeat part (a) using X as the first splitting attribute and then choose the best remaining attribute for splitting at each of the two successor nodes. What is the error rate of the induced tree?
- (c) Compare the results of parts (a) and (b). Comment on the suitability of the greedy heuristic used for splitting attribute selection.
- The following table summarizes a data set with three attributes A, B, C and two class labels +, -. Build a two-level decision tree.

A	В	C	Number of Instances	
			+	_
T	T	T	5	0
	\mathbf{T}	\mathbf{T}	0	20
T	F	\mathbf{T}	20	0
F	F	T	0	5
T	\mathbf{T}	F	0	0
F	T	F	25	0
T	F	F	0	0
F	F	F	0	25

- (a) According to the classification error rate, which attribute would be chosen as the first splitting attribute? For each attribute, show the contingency table and the gains in classification error rate.
- (b) Repeat for the two children of the root node.
- (c) How many instances are misclassified by the resulting decision tree?
- (d) Repeat parts (a), (b), and (c) using C as the splitting attribute.
- (e) Use the results in parts (c) and (d) to conclude about the greedy nature of the decision tree induction algorithm.
- 8. Consider the decision tree shown in Figure 4.30.
 - (a) Compute the generalization error rate of the tree using the optimistic approach.
 - (b) Compute the generalization error rate of the tree using the pessimistic approach. (For simplicity, use the strategy of adding a factor of 0.5 to each leaf node.)
 - (c) Compute the generalization error rate of the tree using the validation set shown above. This approach is known as reduced error pruning.

Figure 4.30. Decision tree and data sets for Exercise 8.

9. Consider the decision trees shown in Figure 4.31. Assume they are generated from a data set that contains 16 binary attributes and 3 classes, C_1 , C_2 , and C_3 .

Figure 4.31. Decision trees for Exercise 9.

Compute the total description length of each decision tree according to the minimum description length principle.

• The total description length of a tree is given by:

$$Cost(tree, data) = Cost(tree) + Cost(data|tree).$$

- Each internal node of the tree is encoded by the ID of the splitting attribute. If there are m attributes, the cost of encoding each attribute is log₂ m bits.
- Each leaf is encoded using the ID of the class it is associated with. If there are k classes, the cost of encoding a class is log₂ k bits.
- Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
 computation, you can assume that the total cost of the tree is obtained
 by adding up the costs of encoding each internal node and each leaf node.
- Cost(data|tree) is encoded using the classification errors the tree commits
 on the training set. Each error is encoded by log₂ n bits, where n is the
 total number of training instances.

Which decision tree is better, according to the MDL principle?

- 10. While the .632 bootstrap approach is useful for obtaining a reliable estimate of model accuracy, it has a known limitation [127]. Consider a two-class problem, where there are equal number of positive and negative examples in the data. Suppose the class labels for the examples are generated randomly. The classifier used is an unpruned decision tree (i.e., a perfect memorizer). Determine the accuracy of the classifier using each of the following methods.
 - (a) The holdout method, where two-thirds of the data are used for training and the remaining one-third are used for testing.
 - (b) Ten-fold cross-validation.
 - (c) The .632 bootstrap method.
 - (d) From the results in parts (a), (b), and (c), which method provides a more reliable evaluation of the classifier's accuracy?
- 11. Consider the following approach for testing whether a classifier A beats another classifier B. Let N be the size of a given data set, p_A be the accuracy of classifier A, p_B be the accuracy of classifier B, and $p=(p_A+p_B)/2$ be the average accuracy for both classifiers. To test whether classifier A is significantly better than B, the following Z-statistic is used:

$$Z = \frac{p_A - p_B}{\sqrt{\frac{2p(1-p)}{N}}}.$$

Classifier A is assumed to be better than classifier B if Z > 1.96.

204 Chapter 4 Classification

Table 4.9 compares the accuracies of three different classifiers, decision tree classifiers, naïve Bayes classifiers, and support vector machines, on various data sets. (The latter two classifiers are described in Chapter 5.)

Table 4.9. Comparing the accuracy of various classification methods.

Data Set	Size	Decision	naïve	Support vector
Data See	(N)	Tree (%)	Bayes (%)	machine (%)
Anneal	898	92.09	79.62	87.19
Australia	690	85.51	76.81	84.78
Auto	205	81.95	58.05	70.73
Breast	699	95.14	95.99	96.42
Cleve	303	76.24	83.50	84.49
Credit	690	85.80	77.54	85.07
Diabetes	768	72.40	75.91	76.82
German	1000	70.90	74.70	74.40
Glass	214	67.29	48.59	59.81
Heart	270	80.00	84.07	83.70
Hepatitis	155	81.94	83.23	87.10
Horse	368	85.33	78.80	82.61
Ionosphere	351	89.17	82.34	88.89
Iris	150	94.67	95.33	96.00
Labor	57	78.95	94.74	92.98
Led7	3200	73.34	73.16	73.56
Lymphography	148	77.03	83.11	86.49
Pima	768	74.35	76.04	76.95
Sonar	208	78.85	69.71	76.92
Tic-tac-toe	958	83.72	70.04	98.33
Vehicle	846	71.04	45.04	74.94
Wine	178	94.38	96.63	98.88
Zoo	101	93.07	93.07	96.04

Summarize the performance of the classifiers given in Table 4.9 using the following 3 \times 3 table:

win-loss-draw	Decision tree	Naïve Bayes	Support vector machine
Decision tree	0 - 0 - 23		
Naïve Bayes		0 - 0 - 23	
Support vector machine			0 - 0 - 23

Each cell in the table contains the number of wins, losses, and draws when comparing the classifier in a given row to the classifier in a given column.

12. Let X be a binomial random variable with mean Np and variance Np(1-p). Show that the ratio X/N also has a binomial distribution with mean p and variance p(1-p)/N.