Protocolo DNS

Redes y Comunicaciones

Historia

- Internet: necesidad de utilizar nombres en lugar de direcciones IP.
- Mecanismos para mapear nombre de internet (nombre de dominio) a dir. IP.
- 1973, archivo global, HOSTS.TXT, mantenido por el SRI (Stanford Research Institute, hoy SRI International).
- Sistema Centralizado: Solicitudes de cambio por E-MAIL. Bajado por FTP.
- 1980 el servicio era muy difícil de mantener y no escalaba.
- 1983 Paul Mockapetris, de USC, desarrolla DNS (Domain Name System): [RFC-882], [RFC-883].
- 1984 Primeras implementaciones Unix BSD.
- El servicio a ido teniendo modificaciones: [RFC-1034], [RFC-1035], etc.
- Servicio NO utilizado directamente por los usuarios.

Redes y Comunicaciones Protocolo DNS 2/42

Aspectos de DNS

- DNS cubre los siguientes aspectos:
 - Especifica la sintaxis de los nombres y las reglas para delegar autoridad sobre los nombres.
 - Especifica sistema distribuido para "mapear" nombres con direcciones y otras operaciones.
 - Define la implementación de un protocolo para comunicación de las componentes del sistema.
- Descentralizar el mecanismo de asignación de nombres, aunque sigue sistema jerárquico.
- Delegar autoridad y responsabilidad de la asignación y mapeo en organismos intermedios.
- Podemos verlo como una base de datos (DB) distribuída.

Elementos de DNS

- Nombre de dominio FQDN: lista de etiquetas (labels) separadas por puntos.
- Se leen desde el nodo/etiqueta de la izquierda hasta la raíz del árbol (el punto), estructura jerárquica con sub-nombres (niveles).
- La sintaxis jerárquica refleja la delegación de autoridad.
- No son case-sensitive, cada etiqueta Máximo 63 chars.
- Máximo etiquetas 127, nombre no más de 255 chars, acepta valores internacionales, UTF-8, Unicode.

```
paraguil (No FQDN)
paraguil.cities.org. (FQDN)
paraguil.cities.org (Considerado FQDN)
```

Esquema de Nombres de DNS

Esquema de Nombres de DNS (Cont'd)

TLDs (Top Level Domains)

- Los TLDs se podrían clasificar en 3 grupos:
 - gTLDs, Generic TLDs: contienen dominios con propósitos particulares, de acuerdo a diferentes actividades. políticas definidas por el ICANN:**Unsponsored TLD** o definidas por otra organización: **Sponsored TLD**.
 - ccTLD Country-Code TLDs: contienen dominios delegados a los diferentes países del mundo. ISO 3166-1 alfa-2.
 - .ARPA TLD: es un dominio especial, usado internamente para resolución de reversos.

Generic TLDs antes de new gTLDs

Generic TLDs antes de new gTLDs (Cont'd)

Generic TLDs actualmente

- A partir de 2012 se comenzó a aceptar nuevas aplicaciones para new gTLDs.
- Proceso de licitación, donde hay en juego grandes sumas de dinero.
- Nuevos dominios registrados (500+):
 - .academy, .casa, ...
 - .beer, .bike, .futbol, ...
 - .pizza, .paris
 - .wiki, .viajes, ...
 - ...

Country Code y ARPA TLD

Country Code TLD

Esquema de Nombres de DNS (CC)

Esquema de Nombres de DNS (CC Cont'd)

Esquema de Nombres de DNS (ARPA Cont'd)

Esquema de Nombres de DNS (ARPA Cont'd)

- \$ host 163.10.8.30 30.8.10.163.in-addr.arpa domain name pointer host163-10-8-30.presi.unlp.edu.ar.
- \$ host 2800:340:0:64::145

Organización del DNS

- Sistema distribuido y jerárquico.
- Organización mediante dominios, sub-dominios y host o servicios.
- IANA a través del ICANN (Internet Corporation for Assigned Names and Numbers) controla el funcionamiento.
- Existen organizaciones paralelas: Open Root Server Network (ORSN), OpenNIC.
- Delegación mediante RIRs (Regional Internet Registers):
 - American Registry for Internet Numbers (ARIN).
 - RIPE NCC -Europa y parte de Asia- (RIPE).
 - Asia-Pacific Network Information Centre (APNIC).
 - Latin American and Caribbean NIC (LACNIC).
 - African Network Information Centre (AfriNIC).
- Nombres se delegan a países, direcciones IP no.

Organización del DNS (Cont'd)

Ejemplo: Delegación de autoridad

- ada.info.unlp.edu.ar
- "Ada" fue registrada por la administración de la red de la Facultad de Informática.
- El administrador de la Facultad obtuvo previamente la autoridad sobre el dominio "info.unlp.edu.ar". a partir de la administración de la universidad UNLP.
- La Universidad obtuvo autoridad sobre el dominio "unlp.edu.ar" a partir de la administración de "edu.ar", RIU (Red Inter-universitaria).

Ejemplo: Delegación de autoridad (Cont'd)

- La RIU obtuvo autoridad sobre "edu.ar" a partir de la delegación de la Cancillería o el ente a cargo de ".AR" (Argentina).
- La administración de nombres en la Argentina, sea la Secretaría Legal y Técnica u otro ente obtuvo la autoridad delegada a partir del IANA o ICANN.

Delegación de Dominios

- Actualidad: 13 ROOT Servers distribuidos en todo el mundo.
- 7 de los cuales trabajan con redundancia y las réplicas están distribuidos geográficamente.
- Redundancia, combinada con Ruteo Anycast.

```
A.ROOT-SERVERS.NET. # Versign-grs.com
518400
                NS
518400
                NS
                        B.ROOT-SERVERS.NET. # ISI.edu
518400
      IN
                NS
                        C.ROOT-SERVERS.NET. # Cogent.com (ANYCAST)
518400 TN
                NS
                        D.ROOT-SERVERS.NET. # UMD.edu (Univ. Maryland)
518400 TN
                NS
                        E.ROOT-SERVERS.NET. # NASA.gov
518400 TN
                        F.ROOT-SERVERS.NET. # ISC.org (ANYCAST)
518400 TN
                NS
                        G.ROOT-SERVERS.NET. # NIC.mil
518400 TN
                        H.ROOT-SERVERS.NET. # ARMY.mil
518400
                        I.ROOT-SERVERS.NET. # NIC.ddn.mil (ANYCAST)
518400
                        J.ROOT-SERVERS.NET. # Versign-grs.com (ANYCAST)
518400
                        K.ROOT-SERVERS.NET. # RIPE.net (ANYCAST)
518400
                NS
                        L.ROOT-SERVERS.NET. # ICANN.org (ANYCAST)
518400
                NS
                        M.ROOT-SERVERS.NET. # WIDE.ad.ip (ANYCAST)
```

Distribución de ROOT Servers

Distribución de ROOT Servers (Cont'd)

Redes y Comunicaciones

Distribución de ROOT Servers, Anycast

Tipos de Servidores

- Servidor Raíz: servidor que delega a todos TLD (Top Level Domains). No debería permitir recursivas.
- Servidor Autoritativo: servidor con una zona o sub-dominio de nombres a cargo. podría sub-delegar.
- Servidor Local/Resolver Recursivo: es un servidor que es consultado dentro de una red. mantiene cache. Puede ser **Servidor Autoritativo**. Permite recursivas "internas". También llamado **Caching Name Server**.
- Open Name Servers: servidores de DNS que funcionan como locales para cualquier cliente. Por ejemplo 8.8.8.8, 8.8.4.4, 4.2.2.2, 4.2.2.3.

Tipos de Servidores (Cont'd)

Forwarder Name Server: interactúan directamente con el sistema de DNS exterior. Son DNS proxies de otros DNS internos.

Servidor Primario y Secundario: solo una cuestión de implementación.

donde se modifican los datos realmente.

Funcionamiento de DNS

- Modelo cliente/servidor, Request/Response.
- También hay diálogo entre los servidores.
- Protocolo corre sobre UDP y TCP, puerto 53.
- El cliente escoge cualquier puerto no privilegiado.
- No Trabaja sobre texto ASCII.
- Si el mensaje supera los 512 bytes se utiliza TCP, e.g. zone transfer.
- Clientes: resolver + cualquier aplicación que requiera la resolución de nombres.
 - Unix el resolver conjunto de funciones C library (libc).
 - Otras implementaciones Smart Resolver servidor Local en cada equipo, caching.
- Servidores: BIND (Berkeley Internet Name Domain/Daemon) de ISC; UNBOUND.

Estructura de mensaje de DNS

Resolución de Nombres, Iterativo vs. Recursivo

Resolución de Nombres, Iterativo vs. Recursivo

Servicios y Registros de DNS

- Servidor de DNS almacena la información formando base de datos (DB) de RR (Resource Records).
- No necesariamente es DB relacional.
- Cada registro diferente tipo de información:

```
Registros A, AAAA (Address): nombre \rightarrow IP, IPv6.
```

Registros PTR (Pointer): $IP \rightarrow nombre$.

Registros CNAME (Canonical Name): nombre \rightarrow nombre.

Registros HINFO (Hardware Info): nombre \rightarrow info.

Registros TXT (Textual): nombre \rightarrow info.

Registros MX (Mail Exchanger): nombre-dom \rightarrow mail exchanger(s).

Registros NS (Name Server): nombre-dom \rightarrow dns server(s).

Registros SOA (Start Of Authority): params. de dominio.

Registros A (Address)

```
# less /etc/bind/db.cities.org
...
berlin.cities.org. IN A 172.20.1.100
brasilia.cities.org. IN A 172.20.1.5
paraguil-br0.cities.org. IN A 172.20.1.1
```

Registros AAAA (IPv6 Address)

```
# less /etc/bind/db.cities.org
berlin.cities.org. IN AAAA 2001:db8:1234:4567::100
brasilia.cities.org. IN AAAA 2001:db8:1234:4567::5
```

Registros PTR (Pointer)

```
# less /etc/bind/db.172
1.1.20
         TN
                  PTR.
                           paraguil-br0.cities.org.
5.1.20
          IN
                  PTR.
                           brasilias.cities.org.
100.1.20 IN
                  PTR.
                           berlin.cities.org.
5.1.19
          IN
                  PTR.
                           sucre.lat.org.
1.1.19
          IN
                  PTR.
                           paraguil-tap2.lat.org.
```

Registros CNAME (Canonical Name)

```
# less /etc/bind/db.cities.org
...
ftp.cities.org. IN CNAME berlin.cities.org.
www.cities.org. IN CNAME berlin.cities.org.
```

Registros MX (Mail Exchanger)

```
# less /etc/bind/db.cities.org
cities.org.
                TN
                         MX 1
                                 brasilia.cities.org.
cities.org.
                TN
                         MX 10
                                 berlin.cities.org.
. . .
# dig -t mx gmail.com
gmail.com
           IN
                  МΧ
                         5 gmail-smtp-in.l.google.com.
gmail.com
           IN
                  MX
                        10 alt1.gmail-smtp-in.l.google.com.
gmail.com
           IN
                  MΧ
                        10 alt2.gmail-smtp-in.l.google.com.
gmail.com
           IN
                  MΧ
                        50 gsmtp147.google.com.
gmail.com
           TN
                  MΧ
                        50 gsmtp183.google.com.
```

Registros NS (Name Server)

```
# less /etc/bind/db.cities.org
; ## ZONA RAIZ
cities.org.
                      IN
                          NS berlin.cities.org.
cities.org.
                      IN
                          NS brasilia.cities.org.
; ## ZONA delegada
trees.cities.org.
                      IN
                          NS brasilia.cities.org.
trees.cities.org.
                      ΙN
                          NS berlin.cities.org.
trees.cities.org.
                      IN
                          NS oak.trees.cities.org.
; ## GLUE RECORD ##
oak.trees.cities.org. IN A 192.168.40.1
```

Registros SOA (Start Of Authority)

Ejemplos con DNS

Consultas a los DNS.

```
? host -t a berlin.cities.org 127.0.0.1
? dig +nocomments -t a brasilia.cities.org @127.0.0.1
? dig +recurse +short www.unlp.edu.ar @192.112.36.4
? dig +recurse +short www.unlp.edu.ar @127.0.0.1
? dig +short -t ptr 100.1.20.172.in-addr.arpa @127.0.0.1
? host -t mx cities.org 127.0.0.1
? host -t ns cities.org 127.0.0.1
```

TTL y Registros TXT

```
? dig www.unlp.edu.ar | grep -A1 "ANSWER SECTION"
;; ANSWER SECTION:
www.unlp.edu.ar. 155 IN A 163.10.0.145
? dig -t mx gmail.com | grep -A1 "ANSWER SECTION"
;; ANSWER SECTION:
gmail.com. 3599 IN MX 20 alt2.gmail-smtp-in.l.google.com.
```

TTL y Registros TXT

Otras Características del DNS

- Transferencia de Zona: AXFR.
 - Entre servidores de DNS primario y secundario.
 - Se realiza sobre TCP de forma periódica.
- Dynamic DNS: DDNS.
 - Actualización dinámica de registros, usada con IP dinámicas.
- Split DNS.
 - Responder de acuerdo de donde proviene la consulta.

Referencias

- [StevI] TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994. W. Richard Stevens.
- [KR] Kurose/Ross: Computer Networking (3rd Edition).
- [LX] The Linux Home Page: http://www.linux.org/.
- [Siever] Linux in a Nutshell, Fourth Edition June, 2003. O'Reilly. Ellen Siever, Stephen Figgins, Aaron Weber.
- [BIND] DNS and BIND, Fourth Edition By Paul Albitz, Cricket Liu. O'Reilly. La Third Edition de 1998 esta disponible online: http://www.unix.com.ua/orelly/networking/dnsbind/index.htm.
- [LNAG] Linux Network Administrators Guide. Olaf Kirch & Terry Dawson. 2nd Edition June 2000. http://oreilly.com/catalog/linag2/book/index.html.
- [RFC-768] http://www.rfc-editor.org/rfc/rfc768.txt. User Datagram Protocol (Jon Postel 1980 USC-ISI IANA).
- [RFC-793] http://www.rfc-editor.org/rfc/rfc793.txt. TCP Transmission Control Protocol (Jon Postel 1981 USC-ISI IANA).
- [RFC-882] http://www.rfc-editor.org/rfc/rfc882.txt. DOMAIN NAMES CONCEPTS and FACILITIES (P. Mockapetris 1983 ISI).
- [RFC-883] http://www.rfc-editor.org/rfc/rfc883.txt DOMAIN NAMES IMPLEMENTATION and SPECIFICATION (P. Mockapetris 1983 ISI).
- [RFC-1034] http://www.rfc-editor.org/rfc/rfc1034.txt. DOMAIN NAMES CONCEPTS AND FACILITIES (P. Mockapetris 1987 ISI).
- [RFC-1035] http://www.rfc-editor.org/rfc/rfc1035.txt. DOMAIN NAMES IMPLEMENTATION and SPECIFICATION (P. Mockapetris 1987 ISI).
- [COM05] Ethereal, Wireshark. Autor original Gerald Combs, 2005. http://www.ethereal.com/. http://www.wireshark.org/.