Section 4.2 — Example 9 Worksheet Counting Bit Additions in Algorithm 2

Problem (from Example 9)

How many additions of bits are required by Algorithm 2 (Addition of Integers) to add two integers with at most n bits in their binary representations?

Key idea

At each bit position j (from right to left), Algorithm 2 forms the three-bit sum

$$a_j + b_j + c$$
 $(c \in \{0, 1\})$ is the incoming carry,

then outputs the sum bit s_j and the next carry c'. Computing $a_j + b_j + c$ can be done with at most two one-bit additions:

- 1. add the pair $a_j + b_j$ (one bit-addition);
- 2. add the carry: $(a_j + b_j) + c$ (one more bit-addition, sometimes trivial if c = 0 and no carry occurs).

Hence the total number of bit additions is less than 2n; in particular it is $\leq 2n$ and therefore the running time is O(n).

Worked examples (Algorithm 2, step-by-step)

A. Two-bit example

Add $a = (11)_2$ and $b = (01)_2$.

We process bits from right (least significant) to left (most significant). Let c be the incoming carry; initially c = 0.

Thus the result is $s = (100)_2 = (100)_2$. Bit-addition count: at most 2 per column \Rightarrow at most 4 total.

B. Four-bit example

Add $a = (1011)_2$ and $b = (0110)_2$.

j	a_j	b_{j}	c (in)	s_{j}	c (out)
0	1	0	0	1	0
1	1	1	0	0	1
2	0	1	1	0	1
3	1	0	1	0	1
$s_4 = c_{\text{final}} = 1$					

Hence $a + b = (1\,0001)_2 = (10001)_2$. Again, at most two bit additions per column \Rightarrow at most $2 \cdot 4 = 8$ bit additions.

Why "less than 2n" and O(n)?

Some columns may not *need* to add the carry (e.g., c = 0 and $a_j + b_j < 2$); practical implementations can skip that second bit-addition. Therefore the # of bit additions is < 2n and certainly $\le 2n$. As a function of n, that is linear time: O(n).

Your turn

Use Algorithm 2. Show your table of columns j, a_j , b_j , c (in), s_j , c (out).

Two easier

- 1. $(0101)_2 + (0011)_2$
- 2. $(1001)_2 + (0001)_2$

One harder

3. $(11101101)_2 + (10111011)_2$