

Bounding boxer

데이터 탐색/처리

020

Contents

프로젝트 개요

모델링 및 분석

03

수 스 솔루션 DEMO 활용방안 기대효과

05

1. 프로젝트 개요

Deep learning-based semiconductor EDS AI system

01 프로젝트 개요 반도체 산업 동향

반도체 산업 통향

지속적인 연구개발(R&D) 투자

☑ 인공지능, 5G, 자율주행 등 기술 발전에 따라 **반도체의 수요 증가 예상**

01 프로젝트 개요 불량을 선별하는 EDS 공정

반도체 8대 공정

웨이퍼가 포함하고 있는 반도체 칩의 <mark>불량을 선별</mark>하는 공정 수율을 높이기 위해 필요한 공정

01 프로젝트 개요

기존 반도체 산업의 문제점

수작업 작업자의 검사력 차이 2차 결함 발생

제조 및 제조과정 공정, 설비상의 문제 공정의 step수 증가

> **높은 비용** 레이저 장비 비용 인건비

프로젝트의 목적

컴퓨터 비전을 이용 객체탐지 AI 모델 구축 -> EDS 공정 문제 해결

> **수율▲ 비용▼** 솔루션 제시

01 프로젝트 개요

Skill Set

개발 환경

공유 문서

Pretrained Mode

Web 프레임워크

Annotation Tool

2. 데이터 탐색 ♣전처리

Deep learning-based semiconductor EDS AI system

02 데이터 탐색 및 전처리

전체 데이터 처리 프로세스

데이터 처리과정

원본 데이터 탐색 및 평가

train: ../train/images
val: ../valid/images
test: ../test/images

nc: 4

names: ['0', '1', '2', '3']

4개의 class

pattern 1 patte

pattern 2

3 0.4095 0.886 0.0375 0.036 2 0.6365 0.1375 0.0365 0.035 2 0.7235 0.1425 0.005 0.005 3 0.5615 0.3815 0.0365 0.035 3 0.559 0.3875 0.0365 0.035 3 0.556 0.4225 0.035 0.0315 3 0.546 0.4585 0.036 0.035 3 0.5065 0.5195 0.0365 0.034 3 0.5055 0.5195 0.0365 0.034 3 0.4685 0.665 0.0365 0.036 3 0.464 0.7025 0.0365 0.0365 3 0.464 0.7025 0.0365 0.0365 2 0.185 0.7775 0.0035 0.035 3 0.439 0.781 0.041 0.0415 3 0.439 0.781 0.041 0.0375

> 행 : 결함 개수 / 열 [Class, X, Y, W, H]

YOLOV5 TEST

Class mAP50 mAP50-95: all 0.474 0.286 0 0.901 0.687 1 0.249 0.0746 2 0.272 0.0952

Result

- · mAP 지표 저조
- · 'straight' class 검출 불가 >> 새로운 Labeling 필요

도메인 탐색을 통한 결함(object) 정의

Class 개설정

원본데이터

0:bdot

1: curve

2 : dot

3: straight

15개 class

'cloudy' 삭제

최종 14개 class 확정

다양한 데이터셋 생성 후 성능 평가

Dataset 1

· num_classes: 15

Dataset 2

- num classes: 14
- · bdot 폴리곤 처리
- · curve, scratch 바운딩박스 변경

bdot

curve

scratch

성능TEST 결과

Dataset 1 (mAP 0,753)

- · dot, bdot 개수가 가장 많지만 낮은 AP
- · curve, scratch 가장 낮은 AP
- · cloudy 개수가 적고 AP가 낮아 mAP 하락 >> 일부 dot으로 변경, 나머지 삭제 >> mAP 0,808

Dataset 2 (mAP 0.185)

- dot 0.223
- · bdot 0.96
- curve 0.0117
- scratch 0.224

다양한 데이터셋 생성 후 성능 평가

Dataset 3

- · num_classes: 14
- · bdot 일부 dot 처리
- · curve 폴리곤 처리

bdot

curve

scratch

Dataset 4

- · 김프에서 curve, scratch 합성하여 각 20장씩 총 40장 증식
- · roboflow 활용하여 Grayscale, Rotation, Tiling 이미지 증식

· bdot, dot 미세조정

bdot

dot

scratch

curve

.

성능TEST 결과

Dataset 3 (mAP 0.74)

- · curve 0 0276
- · dot 0 511
- · scratch 0 521

Dataset 4 (mAP 0,896)

- curve 0.641
- · dot 0.633
- · bdot 0.652
- scratch 0.635

인사이트 도출

데이터 탐색

다양한 데이터셋 생성

3. 모델링 및 분석

Deep learning-based semiconductor EDS AI system

03 모델링 및 분석 사전훈련된 모델 비교

	mAP	Training Time / 1 epoch total
YOLOv5s	0.911	12s/1 epoch 1.998h
YOLOv6l 6finetuned	0.917	55s/1 epoch 6.989
YOLOv7s	0.875	1m7s/1 epoch 6.349h
YOLOv8s	0.868	42s/1 epoch 2.428h
DETECTRON	0.886	3s/1 epoch 54m

성능 비교

mAP와 소요시간을 비교한 결과 YOLOv5가 가장 우수하다!

MAP XI班

mAP = AP의 합 / 클래스 개수

정밀도와 재현율은 반비례 관계를 갖기 때문에 이 두 값을 모두 고려하여 정확도를 평가하는 것이 좋다. 그래서

나온 것이 precision-recall 곡선 및 AP 개념이다. 정밀도와 재현율 모두 우수하다면 면적(AP)이 넓어 정확도가 높다고 평가한다.

03 모델링 및 분석 사전훈련된 모델 비교

YOLOv4

- YOLOv3 + CSP Darknet53
 (Backbone) + SPP + PAN + BoF + BoS
- YOLOv5는 Darknet이 아닌 PyTorch를 이용하여 환경구성 및 구현이 쉽다.

YOLOv6

- Yolov5에 비해 더 깊어지고 head 부분의 scale이 하나 더 생김
- 더 다양한 size의 object를 잘 detection 한다

YOLOv7

- inference 시에 추가적인 비용없이 네트워크 성능 향상을 위한 방법이다.
- 전체적인 성능은 높은 편이지만 YOLOv5에 비해 낳다.

YOLOv8

• 모델 활용이 쉽고 전체적인 성능이 높은 편이지만 YOLOv5에 비해 낮다.

Detectron

- Facebook에서 개발한 object detection, segmentations PyTorch 프레임워크
- Detectron은 데이터 이미지 수가 적은 경우 유리
- 기존 데이터의 양이 충분하고 증식이 쉬운 이미지 이기에 Detectron보다는 YOLOv5가 적합하다.

YOLOv5 선정 이유

- 1. YOLOv5의 Backbone을 **PyTorch**로 구현하여 **접근성이 좋다**
- 2. YOLOv5는 YOLOv6, YOLOv7에 비해 **속도가 빠르다**
- 3. Detectron은 속도는 빠르나 리소스를 많이 사용하여 YOLOv5에 비해 **범용성** 면에서 아쉬운 점이 있다.

Backbone

- 다양한 피처맵 추출
- Convolution, Pooling layers
- YOLOv5 BottleneckCSP

Neck

- 피처맵 융합
- PAN을 사용하여 성능 향상

Head

- 피처맵 바탕으로 위치 탐지
- 9개의 anchor box 사용
- 최종 bounding box 생성

〈YOLOv5 작동원리 그림 예시〉

03 모델링 및 분석 선정된 YOLOv5 모델의 구조

YOLOv5 작동원리

어떤 워리로 작동되나요?

우선 Backbone에서 이미지를 받아 위치 정보가 담긴 Tensor로 변환합니다. 그리고 여러 번의 텐서연산을 거쳐서 다양한 해상도의 Feature map을 추출합니다.

Neck에서는 Feature map을 받아 융합합니다.

마지막으로 **Head**에서 **Anchor box를 이용하여 Bounding box를 구성**하고 **객체 탐지를 실시**합니다.

03 모델링 및 분석 왜 YOLOv5가 가장 적합한가?

今도

BottleneckCSP 기술 데이터를 나누어 따로 처리하고 다시 합치는 방식으로 처리량을 줄여 속도를 높인다.

03 모델링 및 분석 왜 YOLOv5가 가장 적합한가?

53개의 깊은 층

DarkNet53기반의 Backbone으로 53개의 Convolution 층을 가진 깊은층의 모델로 더욱 정확하고 복잡한 객체 검출이 가능하고 GPU 사용이 가능

Partial Dense Block Dense Layer 2 Dense Layer k Dense Layer 1 conv conv ! conv **Partial Transition Layer** concat concat concat copy copy copy copy conv conv concat ! (b) Cross Stage Partial DenseNet

03 모델링 및 분석 왜 YOLOv5가 가장 적합한가?

BottleneckCSP 모듈 사용 BottleneckCSP 모듈의 Bottleneck의 역할로 잔차연결을 통해 하위층의 데이터 **손실 방지**하여 성능을 향상

03 모델링 및 분석 왜 YOLOv5가 가장 적합한가?

9개의 Anchor box 스케일의 크기에 따라 각기 다른 Bounding Box 예측으로 더 세밀한 예측이 가능

03 모델링 및 분석 YOLOv5 s. m. l 성능비교

YOLOv5 Large

YOLOv5 Large 모델의 장점

크고 복잡한 데이터 세트 처리 시 s, m에 비해 높은 mAP 점수!

그러나 성능 처리 시간이 길어지고 계산 요구사항이 높아짐

03 모델링 및 분석 용데에서 비교

SGD vs Adam

작은 데이터셋에 적합한 SGD

- SGD가 비교적 작은 데이터 세트에, Adam은 큰 데이터 세트에 효과적 - SGD가 모델 가중치를 더 자주 업데이트 하고 비교적 작은 데이터 세트의 특정 특성에 더 잘 적응

SGD의 간단한 최적화 알고리즘 SGD가 Adam보다 간단한 최적화 알고리즘으로 조정해야 할 하이퍼파라미터가 적음

모델 비교

03 모델링 및 분석 모델 분석을 통해 얻은 인사이트

?

)

4. Solution DEMO

Deep learning-based semiconductor EDS AI system

O4 Solution DEMO

detect 오류 1

정상회로 이미지를 rotation 했을 뿐인데 **결함이 있는것으로 detect** 되는 문제 발견

원인분석

- OpenCV를 활용해 copy, flip, rotation 처리하여 test dataset 생성
- 그러나 train dataset에 rotation, flip 처리한 이미지가 없음

해결

rotation, flip한 이미지를 새로 학습시켜서 문제 해결

정상회로에서 결함이 탐지됨

결함을 탐지하지 않음

bdot circle -

curve -

미세한 노이즈를 결함으로 탐지

Confusion Matrix

dot과 배경의

04 Solution DEMO 용EI마이저 비교

detect 오류 2

정상회로 이미지에서 미세한 노이즈를 dot으로 detect 하는 문제 발견

원인분석

Confusion Matrix 확인 결과 dot과 배경의 상관관계가 높아서 detect 됨

해결

배경과 dot이 구분될수있게 model confidence를 0.45에서 **0.55로** 높혀서 해결

5. 활용방안 및 기대효과

Deep learning-based semiconductor EDS AI system

05 활용방안 및 기대효과

용EI마이저 비교

활용방안

AI 알고리즘을 통해

- · **대량의 데이터를 빠르게** 처리, 분석 가능
- · **24시간 제조** 운영 가능
- · 수작업으로 인해 발생하는 2차 손실 감소
- · 제품 신뢰도 증가

>> 비용 절감, 생산성 향상, 불량품 감소

기대효과

하루 \$20,000 손실을 50% 감소 제조 공장이 하루에 \$10,000 가치의 1,000개의 웨이퍼를 처리하면 2%의 수율 손실 발생 추정 [하루 \$20,000의 손실]

- · AI를 이용하면 수율 손실의 50%▼
- · 잠재적 비용 **약 300만~3000만 달러** 절약 가능

