1.2 Unsigned binary numbers

Counting in binary

Humans have ten fingers so humans use a base ten number system. Ex: 452 means 4×10^2 + 5×10^1 + 2×10^0 . Digital systems have two-valued signals (high, low) so digital systems use a base two number system. Ex: 1101 means $1\times2^3 + 1\times2^2 + 0\times2^1 + 1\times2^0$. A number in base ten is called a **decimal** number (from Latin "decem" meaning ten), while a number in base two is called a **binary** number (from Latin "bini" meaning two together).

Base ten has ten symbols for a digit: 0, 1, ..., 9. When counting up and reaching 9, the digit resets to 0 and a 1 carries to the next digit. Ex: 008, 009, 010, 011, or 098, 099, 100, 101. Base two has only two symbols for a digit: 0 and 1. So counting up results in frequent carries. Ex: 000, 001, 010, 011, 100, 101, 110, 111. Each digit in a binary number is called a **bit**, short for "binary digit".

PARTICIPATION ACTIVITY 1.2.1: Counting up in decimal and in binary.				
1 2 3 4	4 5	6 2x speed		
-	0		0	
*	1		1	
* *	2		10	Reset, carry
* * *	3		11	
* * * *	4		100	Reset, carry and reset, carry
* * * *	5		101	
* * * * *	6		110	Reset, carry
* * * * * *	7		111	
* * * * * * *	8		1000	Reset, carry and reset, carry and re
* * * * * * * *	9		1001	
* * * * * * * * *	10	Reset digit to 0, carry 1	1010	Reset, carry
* * * * * * * * * *	11		1011	
	98			
	99			
100 Reset digit to 0, carry 1 to next digit which is 9 so reset to 0, carry 1 to next digit				0,

Resets and carries happen on every other count.

Captions ^

- 1. Various quantities.
- 2. In base ten, the first digit goes up to 9, then the digit is reset to 0 and a 1 is carried to the next digit.
- 3. If the carry is to a digit that is already 9, then that digit is also reset to 0 and a 1 is carried to the next digit.
- 4. In base two, the first digit goes up to 1, then the digit is reset to 0 and a 1 is carried to the next digit.
- 5. If the carry is to a digit that is already 1, then that digit is also reset to 0 and a 1 is carried to the next digit.
- 6. Resets and carries happen on every other count.

Feedback?

Note: This section only covers unsigned binary numbers. An **unsigned binary** number can only represent non-negative values, such as a 4-bit binary number being 0000 (0), 0001 (1), 0010 (2), ..., 1111 (15). In contrast, a signed binary number uses the leftmost bit to represent whether a number is positive or negative.

initially but is assumed 0, so becomes 1. (Akin to 99 incrementing to 100).

CHALLENGE 1.2.1: Counting up with 3 bits. **ACTIVITY** Can you count from 000 to 111 in binary in 20 seconds? Jump to level 1 **Decimal** Binary (3 bits) 000 001 010 011 100 101

Feedback?

Converting from binary to decimal

Software and hardware developers benefit from being able to quickly convert between binary and decimal numbers.

Given a binary number, each digit's weight is summed to form a decimal number. Ex: $1101 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13$.

Given a decimal number, starting from the leftmost binary digit (greater than the decimal number), a 1 is placed in each digit as long as the resulting binary number doesn't exceed the decimal number.

Feedback?

Bits required to represent a number

A computer has a limited amount of storage available to represent numbers as bits. The number of bits available to store a number defines the range of numbers that can be represented. Ex: If 2 bits are available, then the decimal numbers 0 (00_2) , 1 (01_2) , 2 (10_2) , and 3 (11_2) can be represented, and the range is 0-3.

Adding binary numbers

For decimal numbers, adding by hand starts at the right and adds each digit, possibly carrying a 1 to the digit on the left. Adding binary numbers is identical.

Overflow

Overflow occurs when the result of a binary operation is too large to fit in allowed number of bits. Ex: For four-bit numbers, 1111 + 0001 is 10000, which is too large for four bits. When adding two unsigned numbers, if the leftmost bit generates a carry bit, overflow has occurred.

Provide section feedback

this

section?

https://learn.zybooks.com/zybook/UCMERCEDCSE031ChandrasekharSpring2024/chapter/1/section/2?content_resource_id=56178770