EXERCÍCIOS DE MATEMÁTICA FINITA - 2018/2019

III - Grafos planares: característica de Euler e número cromático

- 1. Para que $n \in \mathbb{N}$ o grafo completo K_n é um grafo planar? Para que $m, n \in \mathbb{N}$ o grafo bipartido completo $K_{m,n}$ é um grafo planar?
- 2. a) Verifique se os grafos da figura são ou não planares. Caso o não sejam mostre que contêm um subgrafo do tipo K_5 ou $K_{3,3}$.

- b) Algum dos grafos da figura é o esqueleto de um poliedro convexo? Justifique a resposta.
 - c) Construa os duais dos grafos planares da figura.
- 3. Um grafo planar simples, não necessáriamente conexo, tem 10 vértices, todos de grau 3. Qual o número máximo de faces que G pode ter?
- 4. Seja P um policdro convexo cujas faces são triângulos e octógonos. Sabendo que P tem 24 vértices de grau 3, determine o número de faces triangulares e o número de faces octogonais de P.
 - Desenhe o esqueleto de um poliedro convexo satisfazendo as condições do enunciado.
- 5. Prove os seguintes corolários da Fórmula de Euler

a) Corolário 2Seja G = (V, E) um grafo planar, <u>simples</u> e <u>conexo</u>. Designemos por v, a os números, respectivamente de vértices, arestas de G. Então, <u>se $v \ge 3$ </u>:

$$a \leq 3v - 6$$

- b) Corolário 3 Qualquer grafo planar G tem um vértice de grau menor ou igual a 5.
- 6. Prove que se (v, a, f) é o triplo dos números de vértices, arestas e faces de um poliedro convexo então (v, a, f) satisfaz as condições do 2^o teorema de Steinitz:
 - (i) v a + f = 2 (Fórmula de Euler)
 - (ii) $4 \le v \le 2a/3$.
 - (iii) $4 \le f \le 2a/3$.
- 7. Existe algum poliedro convexo P satisfazendo as condições?
 - a) P tem 6 faces, 10 arestas e 7 vértices.
 - b) P tem 4 faces, 10 arestas e 8 vértices.
 - c) P tem 6 faces, 11 arestas e 7 vértices.

Justifique a sua resposta.

- 8. Consideramos dois poliedros combinatóricamente iguais se os seus esqueletos forem isomorfos.
 - a) Mostre que o cubo é o único poliedro regular com 6 faces, 12 arestas e 8 vértices.
 - b) Dê exemplo de um poliedro que não seja regular e que tenha 6 faces, 12 arestas e 8 vértices.

Construa um modelo do sólido em papel o cartolina. (Ou dê as coordenadas dos vértices).

9. Prove o **Teorema de Descartes:** Qualquer que seja o poliedro convexo \mathbf{P} , a curvatura $K(\mathbf{P})$ de \mathbf{P} é 4π :

$$K(P) := \sum_{V \ \textit{vertice} \ \textit{de} \mathbf{P}} \delta_{\mathbf{P}}(V) = 4\pi, \ \textit{com} \ \delta_{\mathbf{P}}(V) := \sum_{F \ \textit{face} \ \textit{de} \ P, \ V \in F} \angle_F(V)$$

- a) Ilustre o teorema de Descartes, calculando a curvatura dos poliedros convexos regulares.
- 10. Sólidos platónicos ou poliedros convexos regulares são os poliedros cujas faces são polígonos regulares todos iguais e cujos vértices têm todos os mesmo grau. Deduza (a partir da fórmula de Euler e dos resultados dados sobre grafos planares) que só há 5 poliedros regulares: o tetaedro, o cubo, o octaedro, o dodecaedro e o icosaedro.
- 11. Sólidos arquimedianos (para pensar) São os poliedros convexos cujas faces são polígonos regulares, não necessáriamente todos com o mesmo número de lados, mas dispostos pela mesma ordem cíclica à volta de cada vértice (isto é os vértices são todos "iguais").

Com um pouco mais de trabalho do que no exercício anterior pode deduzir que além dos sólidos platónicos há apenas mais 13 s'olidos arquimedianos.

2. Número cromáticos

- 12. Determine $\chi(K_n)$ e $\chi(G_n)$ onde G_n é o grafo que se obtem de K_n retirando uma aresta.
- 13. Estude os números cromáticos dos esqueletos dos sólidos platónicos.
- 14. Prove que se G é um grafo planar com menos de 12 vértices então $\chi(G) \leq 4$.

Sugestão: Prove que G tem um vértice de grau menor ou igual a 4 e adapte a demonstração do Teorema das 5 cores.