

Week 10, April 18th: Fourier series

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)

- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. We consider the 2π periodic function defined on $[-\pi, \pi[$ by $f(x) = e^x$.

- 1. Calculate the Fourier coefficients $c_n(f)$.
- 2. Use Parseval's formula to calculate $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$.

$\mathcal{E}_{xercise 2}$.

- 1. We consider the 2π periodic function defined by $f(x) = \frac{(\pi x)^2}{4}$ for $x \in [0, 2\pi[$. Show that f is continuous, and calculate its real Fourier coefficients.
- 2. Show that f is equal to its power series. Deduce the Euler formula $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 3. Show that the Fourier series of f can be differentiated term by term in all segment $[\delta, 2\pi \delta]$ for $0 < \delta < \pi$, and deduce that for all $x \in]0, 2\pi[$

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n}.$$

4. Thanks to Parseval's formula, calculate $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

$\mathcal{E}_{xercise 3}$.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^2 function such that f(x), f'(x) and f''(x) are $O\left(\frac{1}{|x|^2}\right)$ as $|x| \to \infty$. Show that the series of functions $\sum_{n \in \mathbb{N}} f(x+n)$ converges pointwise on \mathbb{R} . We note F(x) the limit.
- 2. Show that F is C^2 . Recall why the Fourier series associated to F converges uniformly, and that it is equal to its Fourier series (you will see later in the course that the hypothesis that F is C^2 is not necessary to prove that.)
- 3. Calculate the Fourier coefficients of *F*.
- 4. Deduce that for all $x \in \mathbb{R}$

$$\sum_{n\in\mathbb{Z}}f(x+n)=\sum f^*(n)e^{2i\pi nx},$$

where $f^*(n) = \int_{-\infty}^{\infty} f(t)e^{-2i\pi nt} dt$.

- 5. Let $I(x) = \int_{-\infty}^{\infty} e^{-u^2} e^{-2i\pi ux} du$. Show that $I'(x) = -2\pi^2 x I(x)$. We recall that $\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}$. Calculate I.
- 6. Show that for all s > 0

$$\sum_{n=-\infty}^{\infty} e^{-\pi n^2 s} = s^{-\frac{1}{2}} \sum_{n=-\infty}^{\infty} e^{-\frac{\pi n^2}{s}}.$$

2 More involved exercises

Exercise 4.

- 1. Calculate the Fourier series associated to the "square" signal, which is the 2π periodic function defined by f(x) = 1 for $x \in]0, \pi[$, f(x) = 0 for $x \in]\pi, 2\pi[$ and $f(0) = f(\pi) = \frac{1}{2}$.
- 2. Show that the Fourier series associated to f converges uniformly on all compact $[\delta, \pi \delta]$ for $0 < \delta < \frac{\pi}{2}$.
- 3. Show that the partial sums $S_{2n-1}(x) = \sum_{k=-(2n-1)}^{2n-1} c_k(f)e^{ikx}$ can be written

$$S_{2n-1}(x) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{x} \frac{\sin(2ns)}{\sin(s)} ds.$$

- 4. Show that the function S_{2n-1} has 2n critical points on $[0,\pi]$, which are $x_k = \frac{k\pi}{2n}$, $1 \le k \le 2n$.
- 5. Show that $S_{2n-1}(x_{2k}) < S_{2n-1}(x_{2k-1})$ for all $1 \le k \le n$.
- 6. Show that $S_{2n-1}(x_{2k+1}) < S_{2n-1}(x_{2k-1})$ for all $1 \le k < n$.
- 7. Deduce that S_{2n-1} attains its maximum in x_1 . We note M_n this maximum.
- 8. Show that M_n converges has $n \to \infty$ to

$$M = \frac{1}{2} + \frac{1}{\pi} \int_0^{\pi} \frac{\sin(s)}{s} ds.$$

9. We admit that $M \approx 1,089$ at the order 10^{-3} . Conclude.

Exercise 5.

1. Let ρ_n and θ_n be two sequences in $\mathbb R$ such that for all $t \in \mathbb R$, $\rho_n \cos(nt - \theta_n) \to 0$ as $n \to \infty$. Show that if ρ_n does not tend to 0 as $n \to \infty$, then you can construct $\delta > 0$, a strictly increasing sequence of integer n_k and closed segments I_k , with $I_{k+1} \subset I_k$ such that for all $t \in I_k$ you have

$$|\rho_{n_k}\cos(n_kt-\theta_{n_k})|\geq\delta.$$

- 2. Conclude that if $\rho_n \cos(nt \theta_n) \to 0$ as $n \to \infty$ for all t then $\rho_n \to 0$.
- 3. Show that if the trigonometric series $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converges pointwise on \mathbb{R} then $c_n \to 0$ as $|n| \to \infty$.