5.1 The Likelihood Function: Bernoulli Distribution

Zongyi Liu

2023-06-09

5.1 The Likelihood Function: Bernoulli Distribution

In this section we introduced a new distribution: Bernoulli distribution, which can be expressed as

$$p(y|\theta) = \theta^y (1-\theta)^{(1-y)}$$

for y in the set $\{1,0\}$ and θ in the interval [0,1]. When y=1, the righthand side of the equation above reduces to θ , and when y=0, the righthand side of the equation above reduces to $1-\theta$.

The equation above demonstrates the Bernoulli distribution. We can show the sum of the probability:

$$\sum_{y} p(y)$$

Another perspective on Equation 5.1 is to think of the data value y as fixed by an observation, and the value of θ as variable. Equation 5.1 then specifies the probability of the fixed y value if θ has some particular value. Different values of θ yield different probabilities of the datum y. When thought of in this way, Equation 5.1 is the likelihood function of θ .

When we flip the coin N times, we have a set of data, $D = \{y_1, ..., y_N\}$, where each y_i is 0 or 1. By assumption, each flip is independent of the others. Therefore, the probability of getting the set of N flips $D = \{y_1, ..., y_N\}$ is the product of the individual outcome probabilities:

$$p({y_1,...,y_N}|\theta) = \Pi_i p(y_i|\theta) = \Pi_i \theta^{y_i} (1-\theta)^{(1-y_i)}$$