Příklad 1 - lineární regrese

V experimentu byla změřena závislost síly, napínající pružinu, na její délce, viz obrázek. Pro velikost síly, působící na pružinu, platí lineární vztah

$$F = k \cdot \Delta y$$
,

kde k je tuhost pružiny a $\Delta y = y - y_0$ je prodloužení pružiny v důsledku působení síly F.

Naměřená závislost byla proložena obecnou přímkou danou rovnicí $\lambda(x)=ax+b$ s následujícími parametry: $a=0.3354,\ \sigma_a=0.0014,\ b=-7.2931,\ \sigma_b=0.0603,\ \mathrm{cov}(a,b)=-0.000084.$

Určete tuhost pružiny k a její délku v nezatíženém stavu y_0 .

Poznámky k řešení:

- (a) Jaké jsou jednotky parametrů a, σ_a, b, σ_b a cov(a, b)?
- (b) Jaký je vztah mezi tuhostí pružiny k, délkou nezatížené pružiny y_0 a nafitovanými parametry a, b? Pro výpočet chyb k a y_0 použijte tyto vztahy a metodu přenosu chyb.
- (c) Výsledky zapište **ve správném tvaru** a se správnou jednotkou SI!

(10 bodů)

Příklad 2 - odhady parametrů

V tabulce je uvedeno 8 změřených hodnot rychlosti proudící kapaliny.

n	$v \text{ (cm s}^{-1})$
1	3.89
2	3.38
3	7.08
4	3.32
5	4.40
6	1.76
7	5.85
8	3.07

- (a) Vypočítejte nejlepší odhad očekávané hodnoty a standardní odchylky náhodné proměnné $\boldsymbol{v}.$
- (b) Nakreslete graf hustoty pravděpodobnosti náhodné proměnné v.
- (c) Určete průměrnou rychlost proudící kapaliny a její chybu. Výsledek zapište **ve správném tvaru**!

(5 bodů)