Эвристические стратегии редукции термов в задачах формальной верификации

Трилис Алексей Андреевич

научный руководитель: А.М.Ляшин

НИУ ВШЭ — Санкт-Петербург

9 июня 2025 г

Введение

- Формальная верификация доказательство корректности программ
- Смарт-контракты подходящая область для верификации
- Coq¹ популярный инструмент для формальной верификации
- Ursus² фреймворк для верификации смарт-контрактов, построен на Coq

Трилис А.А.

¹The Coq Development Team, *The Coq Proof Assistant*, URL: https://rocq-prover.org/doc/v8.16/refman/.

²Pruvendo, *Ursus language documentation*, URL:

Фреймворк Ursus

Входные данные

```
v1 = стартовое состояние системы
                                                          v2 = указатель на глобальную переменную result
                                                          v3 = v1. в котором создана новая переменная х со значением v2
                                                          v4 = указатель на состояние переменной x в v3
                                                          v5 = значение указателя v4
uint64 result;
                                                          v6 = v5 + a
function f(uint64 a, uint64 b) {
                                                          v7 = v3, в котором значение переменной х заменено на v6
    uint64 x = result;
                                                          y8 = указатель на состояние переменной x в y7
    x = x + a;
                                                          v9 = значение указателя v8
    x = x - b:
                                                          y10 = y9 - b
    result = x:
                                                          v11 = v7. в котором значение переменной x заменено на v10
                                                          y12 = указатель на состояние переменной x в y11
                                                          v13 = значение указателя v12
                                                          y14 = y11, в котором значение глобальной переменной result заменено на y13
                                                          v15 = v14 (итоговое состояние системы)
```

- ullet Система уравнений Y вида $y_i = T_i(y_1, y_2, \dots, y_{i-1})$
- Спецификация $P(y_1, y_2, ..., y_n)$

Нужно упростить P, подставив все y_i и вычислив результат

Редукции в Соф

Редукция	Порядок	Достоинства	Недостатки	
cbv	call by value	Нет дубликации вычислений	Мёртвый код	
CDV	call by value	Пет дуоликации вычислении	Неэффективность реализации ³	
lazy	call by need	Мёртвый код не вычисляется	Дубликация вычислений ⁴	
tuzy	can by need	Мемоизация вычислений	Неэффективность реализации ³	
native_compute ⁵	call by value		Вычисляет до конца ⁶	
		Эффективность	Не подходит для	
			символьного вычисления	
			Вычисляет до конца ⁶	
vm_compute ⁷	call by value	Эффективность	Не подходит для	
			символьного вычисления	

³Gross, «Performance Engineering of Proof-Based Software Systems at Scale».

⁴https://github.com/rocq-prover/rocq/issues/18520

⁵Boespflug, Dénès и Grégoire, «Full Reduction at Full Throttle».

⁶https://github.com/rocq-prover/rocq/issues/4476

⁷Grégoire и Leroy, «A compiled implementation of strong reduction».

Цель и задачи

Цель: Оптимизация символьного вычисления результата функции в контексте системы Ursus. **Задачи**:

- Разработать несколько стратегий вычисления, используя классические порядки редукций и эвристики, продиктованные структурой специфических для Ursus данных.
- Подготовить набор программ на Ursus для использования в качестве тестовых данных.
- Сравнить разработанные стратегии на тестовом наборе и выявить среди них наиболее производительные.

Базовые стратегии

native

```
\begin{array}{l} (Y,P) \leftarrow \text{input} \\ F(x) \leftarrow x \\ \textbf{for} \ i \leftarrow 1 \ \text{to} \ |Y| \ \textbf{do} \\ F(x) \leftarrow F(\text{let} \ x_i = T_i \ \text{in} \ x) \\ \textbf{for} \ j \leftarrow i + 1 \ \text{to} \ |Y| \ \textbf{do} \\ T_j \leftarrow T_j[y_i := x_i] \\ \textbf{return} \ reduce(F(P)) \end{array}
```

topdown

```
 \begin{aligned} &(Y,P) \leftarrow \text{input} \\ &\textbf{for } i \leftarrow 1 \text{ to } |Y| \textbf{ do} \\ &T_i \leftarrow reduce(T_i) \\ &\textbf{for } j \leftarrow i+1 \text{ to } |Y| \textbf{ do} \\ &T_j \leftarrow T_j[y_i := T_i] \\ &P \leftarrow P[y_i := T_i] \\ &\textbf{return } reduce(P) \end{aligned}
```

bottomup

```
(Y, P) \leftarrow \text{input}
for i \leftarrow |Y| \text{ to } 1 \text{ do}
P \leftarrow P[y_i := T_i]
return reduce(P)
```

bottomup-reductions

```
(Y,P) \leftarrow \text{input}
\mathbf{for} \ i \leftarrow |Y| \ \text{to} \ 1 \ \mathbf{do}
T_i \leftarrow reduce(T_i)
P \leftarrow P[y_i := T_i]
\mathbf{return} \ reduce(P)
```

- Две версии каждой стратегии, с cbv и lazy
- Перед каждой стратегией удаляем y_i , не использующиеся в P

Графовые эвристики 1

- Стягивание вершин = подстановка термов
- Много вершин с outdeg = indeg = 1
- Можно их стянуть

contractions

```
 \begin{split} &(Y,P) \leftarrow \mathsf{input} \\ &T \leftarrow P(y_0,y_n) \\ & \mathsf{for} \ i \leftarrow 1 \ \mathsf{to} \ |Y| \ \mathsf{do} \\ & \mathsf{if} \ \frac{\mathsf{indeg}(y_i)}{\mathsf{indeg}(y_i)} = 1 \ \mathsf{and} \ \frac{\mathsf{outdeg}(y_i)}{\mathsf{if} \ \mathsf{indeg}(y_i)} = 1 \ \mathsf{then} \\ & \mathsf{for} \ j \leftarrow i + 1 \ \mathsf{to} \ n \ \mathsf{do} \\ & T_j \leftarrow T_j |y_i \coloneqq T_i| \\ & P \leftarrow P[y_i \coloneqq T_i] \\ & Y \leftarrow Y \setminus (y_i, T_i) \\ & \mathsf{return} \ basic \ strategy(Y, P) \end{split}
```

Графовые эвристики 2

- Почти все вершины с outdeg = 1
- Можно их стянуть
- От этого возникнет дубликация, но не очень большая

contractions-strong

```
 \begin{aligned} (Y,P) &\leftarrow \text{input} \\ \textbf{for } i \leftarrow 1 \text{ to } |Y| \textbf{ do} \\ \textbf{if } & \textit{outdeg}(y_i) = 1 \textbf{ then} \\ \textbf{for } j \leftarrow i + 1 \text{ to } n \textbf{ do} \\ & T_j \leftarrow T_j [y_i := T_i] \\ & P \leftarrow P[y_i := T_i] \\ & Y \leftarrow Y \setminus (y_i, T_i) \end{aligned}   \textbf{return } basic\_strategy(Y, P)
```

Эвристики на основе типов данных 1

- Определять indeg и outdeg сложно и долго
- Воспользуемся информацией о типах
- Все вершины типов LocalStateMapping^a и FieldType^b имеют indeg = outdeg = 1

```
contractions-typebased
```

```
(Y, P) \leftarrow \mathsf{input}
for i \leftarrow 1 to |Y| do
     if typeof(y_i) is LocalStateMapping or FieldType then
         for j \leftarrow i + 1 to n do
              \check{T}_i \leftarrow T_i[y_i := T_i]
         P \leftarrow P[y_i := T_i]

Y \leftarrow Y \setminus (y_i, T_i)
return basic strategy(Y, P)
```

^асостояние локальных переменных ^bпроекции структур

Эвристики на основе типов данных 2

- Вершины типа Ledger^a, как правило, имеют большой outdea
- Почти все вершины других типов имеют outdeg = 1

contractions-strong-typebased

```
(Y, P) \leftarrow \mathsf{input}
for i \leftarrow 1 to |Y| do
     if typeof(y_i) is not Ledger then
          for j \leftarrow i + 1 to n do
              T_i \leftarrow T_i[y_i := T_i]
         P \leftarrow P[y_i := T_i]

Y \leftarrow Y \setminus (y_i, T_i)
return basic strategy(Y, P)
```

^аглобальное состояние

Сравнение. Бенчмарки

- Синтетическая часть. Реализации алгоритма хеширования на языке Ursus, линейно увеличивающиеся по размеру кода
 - Simple, линейный код
 - Recursive, рекурсивный код
 - If, линейный код с условными операторами
 - IfAndRecursion, рекурсивный код с условными операторами
- Реальная часть. Верификация смарт-контракта мультисиг-кошелька из практики компании Pruvendo

Сравнение. bottomup

Сравнение. Базовые стратегии

native на некоторых примерах экспоненциален

lazy значительно эффективнее при большой размерности состояния

Сравнение. Эвристические стратегии

Графовые эвристики хуже, чем эвристики на типах Эвристики на типах показывают лучший результат

Сравнение. Лучшие стратегии

Результаты

- Разработано 40 стратегий, все они реализованы на языке Ltac
- Создан набор программ на Ursus для бенчмаркинга
- Лучшая стратегии демонстрирует асимптотическое улучшение в производительности относительно базовой
- Самая эффективная стратегия на всех рассмотренных программах не показывает результат значимо хуже любой другой стратегии
- Стратегии будут использоваться в дальнейших проектах по верификации

Сравнение. Код с условными операторами

Сравнение. Реальные данные

Характеристики функций							
Функция	Строк Вызовов функций Глубина рекурсии Условных о		Условных операторов				
submit	45	15	2	7			
confirm	22	7	2	4			
send	4	2	1	2			

						confirmTransaction			
						NL	NCSTL	TL	TCSTL
	submitTransaction			1	0.69	0.65	0.53	0.49	
	NL	NCSTL	TL	TCSTL	2	0.78	0.70	1.03	0.70
1	0.90	0.90	1.46	1.24	3	0.10	0.09	0.11	0.10
2	0.95	0.84	1.05	1.04	4	1.73	1.44	1.62	2.08
3	0.99	0.94	1.44	1.43	5	1.79	1.25	3.03	2.20
4	1.86	1.51	3.58	2.93	6	0.20	0.22	0.20	0.20
5	1.44	1.22	12.26	7.99	7	2.08	1.35	3.47	2.53
6	23.40	7.46	46.16	58.54	8	3.64	2.03	5.68	4.65
7	23.63	7.75	41.19	58.16	9	16.80	12.33	12.86	11.79
QED	11.51	12.63	78.09	87.26	QED	10.25	10.34	31.74	26.73
Σ	64.68	33.25	185.23	218.59	Σ	38.06	30.4	60.27	51.47

sendTransaction					
	NL	NCSTL	TL	TCSTL	
1	3.42	2.87	2.30	5.69	
QED	2.5	2.39	3.8	4.53	
Σ	5.92	5.26	6.1	10.22	