





## Estruturas de Dados II Algoritmo de Floyd-Warshall

Prof. Leonardo C. R. Soares - leonardo.soares@ifsudestemg.edu.br
Instituto Federal do Sudeste de Minas Gerais
12 de setembro de 2024

<sup>&</sup>lt;sup>a</sup>Este material é fortemente baseado nas notas de aula do professor Marco Antonio Moreira de Carvalho - UFOP







#### Histórico

O algoritmo proposto por *Robert Floyd* em 1962 é baseado no algoritmo de *Stephen Warshall* do mesmo ano para cálculo de fechos transitivos em grafos.

- ▶ Warshall, Stephen (January 1962). "A theorem on Boolean matrices". Journal of the ACM 9 (1): 11–12. doi:10.1145/321105.321107.
- ► Floyd, Robert W. (June 1962). "Algorithm 97: Shortest Path". Communications of the ACM 5 (6): 345. doi:10.1145/367766.368168.







#### Princípio

O algoritmo calcula os caminhos mais curtos entre todos os pares de vértices de um grafo direcionado e ponderado que eventualmente possua arcos com peso negativo mas que não possua ciclos de custo negativo.

O conceito de relaxação do comprimento dos caminhos mais curtos é novamente empregado: incrementalmente aprimora-se uma estimativa utilizada até que o valor ótimo seja atingido.







#### Princípio

O algoritmo compara os caminhos entre os vértices i e j passando por k vértices intermediários,  $k=1,\ldots,n$ . Ou seja, todos os caminhos entre cada par de vértices são analisados.







#### Princípio

O algoritmo compara os caminhos entre os vértices i e j passando por k vértices intermediários,  $k=1,\ldots,n$ . Ou seja, todos os caminhos entre cada par de vértices são analisados.

Uma matriz armazena o valor dos caminhos mais curtos entre os vértices, porém, não há informação sobre composição do caminho.







#### k = 0

Na iteração k=0, somente os caminhos representados por uma única adjacência no grafo são conhecidos.



#### k = 1

Na iteração k=1, todos os caminhos que passam pelo **vértice 1** são descobertos. Em particular, o caminho [2,1,3] substitui o caminho [2,3]



#### k=2

Na iteração k=2, todos os caminhos que passam pelo **vértice 2** ou pelos **vértices 2 e 1** são descobertos. O caminho [4,2,3] não é considerado, dado que [4,2,1,3] é um caminho mais curto.



#### k = 3

Na iteração k=3, todos os caminhos que passam pelo vértice 3 ou pelos vértices 3 e 2 ou 1 são descobertos.



#### k = 4

Na iteração k=4, todos os caminhos mais curtos são determinados.

$$k = 4$$
:  
 $3 \xrightarrow{2} 4 \xrightarrow{-1} 2$   
 $3 \xrightarrow{2} 4 \xrightarrow{-1} 2 \xrightarrow{4} 1$   
 $1 \xrightarrow{-2} 3 \xrightarrow{2} 4 \xrightarrow{-1} 2$ 













#### Terminologia

- lackbox L: Matriz que armazena os caminhos mais curtos entre os vértices;
  - ▶ Inicialmente, L é inicializada com os pesos dos arcos do grafo  $(d_{ij})$ ;
  - lacktriangle Caso não haja arco entre dois vértices i e j,  $d_{ij}=\infty$
- ▶  $l_{ii}$ : Elemento da matriz L na linha i e coluna j.



```
Entrada: Grafo G=(V,E) e matriz de pesos D=\{d_{ij}\} para os arcos \{i,j\} 1 \leftarrow D; // \text{Inicializa os elementos da matriz } L 2 para k \leftarrow 1 até n faça 3 para i \leftarrow 1 até n faça 4 para j \leftarrow 1 até n faça 5 se l_{ij} > l_{ik} + l_{kj}; então 6 lim 6 fim 8 fim 9 fim
```







#### Ciclos de custo negativo

O algoritmo de Floyd-Warshall detecta ciclos de custo negativo. Caso haja valores negativos na diagonal principal da matriz L (inclusive durante a execução do algoritmo), significa que o vértice relacionado está contido em um ciclo de custo negativo.

Em outras palavras, é possível sair do vértice, percorrer parte do grafo e retornar ao vértice inicial com custo negativo.

Algumas versões do algoritmo consideram que não haverá ciclos de custo negativo e definem inicialmente a distância de um vértice para si próprio como  $-\infty$ , implicando em não haver atualização possível.

















|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | $\infty$ | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Matriz L inicial.



$$j=1, l_{11} = \min\{l_{11}; (l_{11}+l_{11})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{11}+l_{12})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{11}+l_{13})\} = \infty$$

$$j=4$$
,  $l_{14}=\min\{l_{14}; (l_{11}+l_{14})\}=\infty$ 

$$j=5, l_{15} = \min\{l_{15}; (l_{11}+l_{15})\} = \infty$$

$$j=6, l_{16} = \min\{l_{16}; (l_{11}+l_{16})\} = \infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | $\infty$ | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 1, i=1.

A matriz não é alterada.









$$j=1, l_{21} = \min\{l_{21}; (l_{21}+l_{11})\}=\infty$$

$$j=2, l_{22} = \min\{l_{22}; (l_{21}+l_{12})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{21}+l_{13})\}=1$$

$$j=4, l_{24} = \min\{l_{24}; (l_{21}+l_{14})\}=3$$

$$j=5, l_{25} = \min\{l_{25}; (l_{21}+l_{15})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{21}+l_{16})\} = \infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | $\infty$ | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 1, i=2.

A matriz não é alterada novamente.





$$j=1, l_{31} = \min\{l_{31}; (l_{31}+l_{11})\}=3$$

$$j=2, l_{32} = \min\{l_{32}; (l_{31}+l_{12})\}=4$$

$$> j=3, l_{33} = \min\{l_{33}; (l_{31}+l_{13})\}=0$$

$$j=4, l_{34} = \min\{l_{34}; (l_{31}+l_{14})\}=2$$

$$j=5, l_{35} = \min\{l_{35}; (l_{31}+l_{15})\} = \infty$$

$$\downarrow$$
 j=6,  $l_{36} = \min\{l_{36}; (l_{31}+l_{16})\}=\infty$ 

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | $\infty$ | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 1, i=3. A matriz é alterada!







#### Fast forward

Não há outras alterações para k=1 e i=4,5,6.

Nos próximos slides só serão exibidas as iterações do algoritmo em que ocorreram alterações na matriz  ${\cal L}.$ 









|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

 $\mathsf{Matriz}\ L\ \mathsf{para}\ k=1.$ 



$$j=1, l_{11} = \min\{l_{11}; (l_{12}+l_{21})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{12}+l_{22})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{12}+l_{23})\}=2$$

$$j=4, l_{14} = \min\{l_{14}; (l_{12}+l_{24})\}=4$$

$$j=5, l_{15} = \min\{l_{15}; (l_{12}+l_{25})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{12}+l_{26})\}=\infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 2, i=1.



$$j=1, l_{31} = \min\{l_{31}; (l_{32}+l_{21})\}=3$$

$$j=2, l_{32} = \min\{l_{32}; (l_{32}+l_{22})\}=4$$

$$> j=3, l_{33} = \min\{l_{33}; (l_{32}+l_{23})\}=0$$

$$j=4$$
,  $l_{34} = \min\{l_{34}; (l_{32}+l_{24})\}=2$ 

$$j=5$$
,  $l_{35} = \min\{l_{35}; (l_{32}+l_{25})\}=6$ 

$$j=6, l_{36} = \min\{l_{36}; (l_{32}+l_{26})\} = \infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | $\infty$ | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 2, i=3.









|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Matriz L para k=2.



$$= j=1, l_{11} = \min\{l_{11}; (l_{13}+l_{31})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{13}+l_{32})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{13}+l_{33})\}=2$$

$$j=4, l_{14} = \min\{l_{14}; (l_{13}+l_{34})\}=4$$

$$j=5, l_{15} = \min\{l_{15}; (l_{13}+l_{35})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{13}+l_{36})\} = \infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 3, i=1.





$$j=1, l_{21} = \min\{l_{21}; (l_{23}+l_{31})\}=4$$

$$j=2, l_{22} = \min\{l_{22}; (l_{23}+l_{32})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{23}+l_{33})\}=1$$

$$j=4, l_{24} = \min\{l_{24}; (l_{23}+l_{34})\}=3$$

$$j=5, l_{25} = \min\{l_{25}; (l_{23}+l_{35})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{23}+l_{36})\}=\infty$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | $\infty$ | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 3, i=2.









|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | 4        | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Matriz L para k=3.







$$= j=1, l_{11} = \min\{l_{11}; (l_{14}+l_{41})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{14}+l_{42})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{14}+l_{43})\}=2$$

$$j=4$$
,  $l_{14} = \min\{l_{14}; (l_{14}+l_{44})\}=4$ 

$$j=5, l_{15} = \min\{l_{15}; (l_{14}+l_{45})\}=3$$

$$\triangleright$$
 j=6,  $l_{16} = \min\{l_{16}; (l_{14}+l_{46})\}=6$ 

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | $\infty$ |
| 2 | 4        | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 4, i=1.







$$= j=1, l_{21} = \min\{l_{21}; (l_{24}+l_{41})\}=4$$

$$j=2, l_{22} = \min\{l_{22}; (l_{24}+l_{42})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{24}+l_{43})\}=1$$

$$j=4, l_{24} = \min\{l_{24}; (l_{24}+l_{44})\}=3$$

$$j=5, l_{25} = \min\{l_{25}; (l_{24}+l_{45})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{24}+l_{46})\}=5$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | 6        |
| 2 | 4        | 0        | 1        | 3        | 2        | $\infty$ |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 4, i=2.







$$j=1, l_{31} = \min\{l_{31}; (l_{34}+l_{41})\}=3$$

$$j=2, l_{32} = \min\{l_{32}; (l_{34}+l_{42})\}=4$$

$$> j=3, l_{33} = \min\{l_{33}; (l_{34}+l_{43})\}=0$$

$$j=4, l_{34} = \min\{l_{34}; (l_{34}+l_{44})\}=2$$

$$j=5, l_{35} = \min\{l_{35}; (l_{34}+l_{45})\}=6$$

$$j=6, l_{36} = \min\{l_{36}; (l_{34}+l_{46})\}=4$$

|   | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | 0        | 1        | 2        | 4        | 3        | 6        |
| 2 | 4        | 0        | 1        | 3        | 2        | 5        |
| 3 | 3        | 4        | 0        | 2        | 6        | $\infty$ |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0        |

Iteração k = 4, i=3.





$$j=1, l_{51} = \min\{l_{51}; (l_{54}+l_{41})\} = \infty$$

$$j=2, l_{52} = \min\{l_{52}; (l_{54}+l_{42})\} = \infty$$

$$j=3, l_{53}=\min\{l_{53}; (l_{54}+l_{43})\}=\infty$$

$$j=4, l_{54} = \min\{l_{54}; (l_{54}+l_{44})\}=-3$$

$$j=5, l_{55} = \min\{l_{55}; (l_{54}+l_{45})\}=0$$

$$j=6, l_{56} = \min\{l_{56}; (l_{54}+l_{46})\}=-1$$

|   | 1        | 2        | 3        | 4  | 5        | 6        |
|---|----------|----------|----------|----|----------|----------|
| 1 | 0        | 1        | 2        | 4  | 3        | 6        |
| 2 | 4        | 0        | 1        | 3  | 2        | 5        |
| 3 | 3        | 4        | 0        | 2  | 6        | 4        |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0  | $\infty$ | 2        |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3 | 0        | $\infty$ |
| 6 | $\infty$ | $\infty$ | $\infty$ | 8  | 3        | 0        |

Iteração k = 4, i=5.









|   | 1        | 2        | 3        | 4        | 5        | 6  |
|---|----------|----------|----------|----------|----------|----|
| 1 | 0        | 1        | 2        | 4        | 3        | 6  |
| 2 | 4        | 0        | 1        | 3        | 2        | 5  |
| 3 | 3        | 4        | 0        | 2        | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0  |

Matriz L para k = 4.





$$j=1, l_{11} = \min\{l_{11}; (l_{15}+l_{51})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{15}+l_{52})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{15}+l_{53})\}=2$$

$$j=4, l_{14} = \min\{l_{14}; (l_{15}+l_{54})\}=0$$

$$j=5, l_{15} = \min\{l_{15}; (l_{15}+l_{55})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{15}+l_{56})\}=2$$

|   | 1        | 2        | 3        | 4        | 5        | 6  |
|---|----------|----------|----------|----------|----------|----|
| 1 | 0        | 1        | 2        | 4        | 3        | 6  |
| 2 | 4        | 0        | 1        | 3        | 2        | 5  |
| 3 | 3        | 4        | 0        | 2        | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0  |

Iteração k = 5, i=1.







$$j=1, l_{21} = \min\{l_{21}; (l_{25}+l_{51})\}=4$$

$$j=2, l_{22} = \min\{l_{22}; (l_{25}+l_{52})\}=0$$

$$> j=3, l_{23} = \min\{l_{23}; (l_{25}+l_{53})\}=1$$

$$j=4, l_{24} = \min\{l_{24}; (l_{25}+l_{54})\}=-1$$

$$j=5, l_{25} = \min\{l_{25}; (l_{25}+l_{55})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{25}+l_{56})\}=1$$

|   | 1        | 2        | 3        | 4        | 5        | 6  |
|---|----------|----------|----------|----------|----------|----|
| 1 | 0        | 1        | 2        | 0        | 3        | 2  |
| 2 | 4        | 0        | 1        | 3        | 2        | 5  |
| 3 | 3        | 4        | 0        | 2        | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0  |

Iteração k = 5, i=2.







$$> j=1, l_{61} = \min\{l_{61}; (l_{65}+l_{51})\} = \infty$$

$$j=2, l_{62} = \min\{l_{62}; (l_{65}+l_{52})\} = \infty$$

$$j=3, l_{63} = \min\{l_{63}; (l_{65}+l_{53})\} = \infty$$

$$j=4, l_{64} = \min\{l_{64}; (l_{65}+l_{54})\}=0$$

$$j=5, l_{65} = \min\{l_{65}; (l_{65}+l_{55})\}=3$$

$$j=6, l_{66} = \min\{l_{66}; (l_{65}+l_{56})\}=0$$

|   | 1        | 2        | 3        | 4        | 5        | 6  |
|---|----------|----------|----------|----------|----------|----|
| 1 | 0        | 1        | 2        | 0        | 3        | 2  |
| 2 | 4        | 0        | 1        | 3        | 2        | 5  |
| 3 | 3        | 4        | 0        | 2        | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3       | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 3        | 0  |

Iteração k = 5, i=6.









|   | 1        | 2        | 3        | 4  | 5        | 6  |
|---|----------|----------|----------|----|----------|----|
| 1 | 0        | 1        | 2        | 0  | 3        | 2  |
| 2 | 4        | 0        | 1        | -1 | 2        | 1  |
| 3 | 3        | 4        | 0        | 2  | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0  | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3 | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | 0  | 3        | 0  |

 $\mathsf{Matriz}\ L\ \mathsf{para}\ k=\mathsf{5}.$ 





$$j=1, l_{41} = \min\{l_{41}; (l_{46}+l_{61})\} = \infty$$

$$j=2, l_{42} = \min\{l_{42}; (l_{46}+l_{62})\} = \infty$$

$$> j=3, l_{43} = \min\{l_{43}; (l_{46}+l_{63})\} = \infty$$

$$j=4$$
,  $l_{44} = \min\{l_{44}; (l_{46}+l_{64})\}=0$ 

$$j=5, l_{45} = \min\{l_{45}; (l_{46}+l_{65})\}=5$$

$$j=6, l_{46} = \min\{l_{46}; (l_{46}+l_{66})\}=2$$

|   | 1        | 2        | 3        | 4  | 5        | 6  |
|---|----------|----------|----------|----|----------|----|
| 1 | 0        | 1        | 2        | 0  | 3        | 2  |
| 2 | 4        | 0        | 1        | -1 | 2        | 1  |
| 3 | 3        | 4        | 0        | 2  | 6        | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0  | $\infty$ | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3 | 0        | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | 0  | 3        | 0  |

Iteração k = 6, i=4.









|   | 1        | 2        | 3        | 4  | 5 | 6  |
|---|----------|----------|----------|----|---|----|
| 1 | 0        | 1        | 2        | 0  | 3 | 2  |
| 2 | 4        | 0        | 1        | -1 | 2 | 1  |
| 3 | 3        | 4        | 0        | 2  | 6 | 4  |
| 4 | $\infty$ | $\infty$ | $\infty$ | 0  | 5 | 2  |
| 5 | $\infty$ | $\infty$ | $\infty$ | -3 | 0 | -1 |
| 6 | $\infty$ | $\infty$ | $\infty$ | 0  | 3 | 0  |

Matriz L para k = 6.







#### Composição dos caminhos

Conforme visto, não são armazenadas informações sobre quais vértices compõem os caminhos mais curtos calculados, no entanto, o algoritmo pode ser modificado para gerar uma matriz com os caminhos mais curtos.







## Composição dos caminhos

Conforme visto, não são armazenadas informações sobre quais vértices compõem os caminhos mais curtos calculados, no entanto, o algoritmo pode ser modificado para gerar uma matriz com os caminhos mais curtos.

Applet para execução do algoritmo de Floyd-Warshall: https://www.cs.usfca.edu/ galles/visualization/Floyd.html











#### Exercícios

Execute o algoritmo de Floyd-Warshall para o grafo abaixo:









# Exercícios práticos

- Implemente o algoritmo de Floyd-Warshall conforme apresentado no pseudo-código.
- ► Modifique sua implementação para que seja gerada a matriz de rotas.



