	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCI ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name Dr. Vairachilai Shenbagavel				
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Titl	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00	0PM
Duration	2 Hours	Applicable 1 Batches	23CSBTB38	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Edu Spark – Educational YouTube Channel	

Context:

Edu Spark uploads new videos to increase total weekly views.

Videos Uploaded	Weekly Views
(x)	(y)
1	500
2	750
3	950
1	550
2	800

Objective:

Analyze the effect of video uploads on weekly views for EduSpark by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- o Use the given dataset where:
 - Independent Variable (x): Videos Uploaded
 - **Dependent Variable (y):** Weekly Views

2. Calculate the Baseline Value

o Compute the mean of all weekly views (y values).

3. Calculate SHAP Values

- o For each record, calculate the difference between the **predicted value** and the **baseline**.
- This difference is the **SHAP value**, attributed to the number of videos uploaded.

4. Compute Final Prediction

- o Use the **linear regression model** to calculate predicted weekly views for each video count.
- o Confirm that:

 $Final\ Prediction=Baseline+SHAP\ Value \ text\{Final\ Prediction\} = \ text\{Baseline\} + \ text\{SHAP\ Value\}Final\ Prediction=Baseline+SHAP\ Value\}$

5. Interpret the Results

- o Explain how the number of videos uploaded influenced each predicted view count.
- o Compare the predicted value to the actual value for each row.
- o Identify under prediction or over prediction, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - o Trend analysis
 - o SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	FreshBasket – Grocery App Usage Retention Prediction using	
	Multiple Linear Regression and SHAP Analysis	

Objective:

Evaluate how the number of push notifications and average delivery time influence user retention using Multiple Linear Regression, and explain the results through SHAP value interpretation.

Given Dataset:

Notification s (x ₁)	Avg Delivery Time (min) (x2)	Retention (%) (y)
5	30	75
7	25	85
4	35	70
6	20	90
3	40	65

Tasks:

1. Perform Multiple Linear Regression Analysis

- Use Notifications and Average Delivery Time as independent variables
- Use Retention (%) as the dependent variable

2. Calculate the Baseline Value

o Compute the mean of all retention values

3. Calculate SHAP Values

- Calculate SHAP Value
- o Distribute SHAP contributions between Notifications and Delivery Time based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Notifications) + SHAP (Delivery Time)

5. Interpret the Results

- o For each entry, explain how notifications and delivery time influenced the prediction
 - Compare predicted vs actual retention
 - o State whether the model overpredicted or underpredicted and suggest why

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - o Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - Comment on overprediction or underprediction and possible reasons behind it.