Computational Analysis of Sound and Music

Research Project – Tables & Figures

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Purpose

- Data visualization
 - present data in a visual format, making complex information easier to understand
- Supporting results
 - provide evidence and support for the results and findings presented in the text
- Enhancing clarity
 - clarify and enhance the interpretation of results by presenting them in a structured and organized manner.
- Comparison and analysis:
 - allow for comparisons between different datasets or experimental conditions

Purpose

- Summarize information:
 - tables summarize large amounts of data concisely
 - figures can illustrate trends, relationships, or distributions
- Reference and replication
 - Figures and tables serve as references for other researchers, enabling them to replicate experiments
- Complementing text
 - Complement the text by providing detailed information that may be cumbersome to explain fully in narrative form
- Highlighting key findings
 - Figures and tables highlight key findings and conclusions of the study, emphasizing important aspects of the research.

Examples

Comparison of related methods

Figure 1. An example for the illustration of four different levels of music transcription.

[1]

Examples

Dataset(s) metadata

TABLE II OVERVIEW OF THE DATASETS USED FOR TRAINING AND EVALUATION.

Dataset	# files	length
Ballroom [22], [23] ¹ Beatles [19] Hainsworth [24] Simac [25] SMC [26]	685 180 222 595 217	5 h 57 m 8 h 09 m 3 h 19 m 3 h 18 m 2 h 25 m
GTZAN [20], [21]	999	8 h 20 m

[7]

Examples

Dataset examples (spectrograms)

Fig. 4: Examples of log-Mel spectrograms of the original sound

Examples

Overall system flowchart

Fig. 1. Pipeline for the beat and downbeat tracking system.

[9]

Examples

DNN architecture comparison (flowcharts)

Fig. 2. Model architecture overview.

[10]

Examples

DNN architecture (flowchart)

Fig. 1. Comparison between existing state of the art (left) with our proposed approach (right). The neural network blocks are shaded light grey.

[5]

Examples

DNN architecture (table)

Table 1: Modified ResNet architectures

RB Number	RB Config			
	RN1	RN2		
	Input 5×5 stride=2			
1	$3 \times 3, 1 \times 1, P$	$3 \times 3, 1 \times 1, P$		
2	$3 \times 3, 3 \times 3, P$	$3 \times 3, 3 \times 3, P$		
3	$3 \times 3, 3 \times 3,$	$3 \times 3, 3 \times 3$		
4		$3 \times 3, 1 \times 1, P$		
5	$3 \times 3, 1 \times 1, P$	$1 \times 1, 1 \times 1$		
6		$1 \times 1, 1 \times 1$		
7		$1 \times 1, 1 \times 1$		
8		$1 \times 1, 1 \times 1$		
9	$1 \times 1, 1 \times 1$	$1 \times 1, 1 \times 1$		
10		$1 \times 1, 1 \times 1$		
11		$1 \times 1, 1 \times 1$		
12		$1 \times 1, 1 \times 1$		

RB: Residual Block, P: 2×2 max pooling after the block.

RB number 1-4 have 128 channels.

RB number 5-8 have 256 channels.

RB number 9-12 have 512 channels.

Examples

 Performance comparison of 3 models and 4 datasets (1 metric: AUC)

Fig. 6: Averaged AUC of the VAE, VIDNN, and VPDNN

Examples

List of hyperparameters

TABLE I OVERVIEW OF SIGNAL PROCESSING AND LEARNING PARAMETERS

Signal Conditioning		
Audio sample rate	$44.1\mathrm{kHz}$	
Window shape	Hann	
Window & FFT size	2048 samples	
Hop size	10 ms	
Filterbank freq. range	$30 \dots 17000 \text{Hz}$	
Sub-bands per octave	12	
Total number of bands	81	
Conv. Block		
Number of filters	16, 16, 16	
Filter size	3×3 , 3×3 , 1×8	
Max. pooling size	$1 \times 3, 1 \times 3, $	
Dropout rate	0.1	
Activation function	ELU	
TCN		
Number of stacks	1	
Dilations	$2^{0,,10}$	
Number of filters	16	
Filter size	5	
Spatial dropout rate	0.1	
Activation function	ELU	
Training		
Optimizer	Adam	
Learning rate	0.001	
Batch size	1	
Output activation function	sigmoid	
	binary cross-entropy	

Examples

Dataset(s) metadata

TABLE II OVERVIEW OF THE DATASETS USED FOR TRAINING AND EVALUATION.

Dataset	# files	length
Ballroom [22], [23] 1	685	5 h 57 m
Beatles [19]	180	8 h 09 m
Hainsworth [24]	222	3 h 19 m
Simac [25]	595	3 h 18 m
SMC [26]	217	2 h 25 m
GTZAN [20], [21]	999	8 h 20 m

Examples

 Performance comparison of 3 models and 4 datasets (multiple metrics)

TABLE III

OVERVIEW OF BEAT TRACKING PERFORMANCE.

	F-measure	CMLc	CMLt	AMLc	AMLt	D
Ballroom						
TCN BLSTM [5] BLSTM [6]	0.933 0.917 0.938	0.864 0.832 0.872	0.881 0.849 0.892	0.909 0.905 0.932	0.929 0.926 0.953	3.456 3.539 3.397
Hainsworth						
TCN BLSTM [5] BLSTM [6] SMC	0.874 0.884 0.871	0.755 0.769 0.732	0.795 0.808 0.784	0.882 0.873 0.849	0.930 0.916 0.910	3.518 3.507 3.395
TCN BLSTM [5] BLSTM [6] GTZAN	0.543 0.529 0.516	0.315 0.296 0.307	0.432 0.428 0.406	0.462 0.383 0.429	0.632 0.567 0.575	1.574 1.460 1.514
TCN BLSTM [5] BLSTM [6]	0.843 0.864 0.856	0.695 0.750 0.716	0.715 0.768 0.744	0.889 0.901 0.876	0.914 0.927 0.919	3.096 3.071 3.019

References

- [1] Bhattarai, B., & Lee, J. (2023). A Comprehensive Review on Music Transcription. Applied Sciences, 13(21), 11882. https://doi.org/10.3390/app132111882, Fig. 1, p. 3
- [2] Koutini, K., Eghbal-zadeh, H., & Widmer, G. (2019). CP-JKU submissions to DCASE'19: Acoustic scene classification and audio tagging with receptive-field-regularized CNNs (Technical Report), Tab. 1, p. 3
- [3] Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., & Kawaguchi, Y. (2020). Anomalous Sound Detection Based on Interpolation Deep Neural Network. In ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 271-275). Barcelona, Spain. https://doi.org/10.1109/ICASSP40776.2020.9054344, Fig. 4, p. 3
- [4] Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., & Kawaguchi, Y. (2020). Anomalous Sound Detection Based on Interpolation Deep Neural Network. In ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 271-275). Barcelona, Spain. https://doi.org/10.1109/ICASSP40776.2020.9054344, Fig. 6, p. 3
- [5] Davies, E. P. M., & Böck, S. (2019). Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5). https://doi.org/10.23919/EUSIPCO.2019.8902578, Fig. 1, p. 2
- [6] Davies, E. P. M., & Böck, S. (2019). Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5). https://doi.org/10.23919/EUSIPCO.2019.8902578, Tab. 1, p. 3
- [7] Davies, E. P. M., & Böck, S. (2019). Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5). https://doi.org/10.23919/EUSIPCO.2019.8902578, Tab. 2, p. 4

References

[8] Davies, E. P. M., & Böck, S. (2019). Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5). https://doi.org/10.23919/EUSIPCO.2019.8902578, Tab. 3, p. 4

[9] Hung, Y.-N., Wang, J.-C., Song, X., Lu, W.-T., & Won, M. (2022). Modeling beats and downbeats with a time-frequency transformer. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 401-405). https://doi.org/10.1109/ICASSP43922.2022.9747048, Fig. 1, p. 2

[10] Hung, Y.-N., Wang, J.-C., Song, X., Lu, W.-T., & Won, M. (2022). Modeling beats and downbeats with a time-frequency transformer. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 401-405). https://doi.org/10.1109/ICASSP43922.2022.9747048, Fig. 2, p. 2

