

Clustering

Le clustering est la technique non supervisée la plus répandue en datamining.

Elle permet de distinguer des groupes homogènes (classes, segments, clusters) au sein d'un grand volume de données.

- De part leur constitution, ces groupes peuvent apporter une information pertinente sur les données, notamment s'ils sont représentés graphiquement à l'aide d'une ACP.
- Ils peuvent aussi servir à découper une étude en sous-parties, chacune pouvant bénéficier de traitements particuliers.

Méthodes de clustering :

- Généralités
- K-means
- Classification hiérarchique ascendante

Généralités

L'objectif des méthodes est

- ➤ à la fois, de regrouper les observations ayant des caractéristiques <u>similaires</u> au sein d'une même classe,
- → distance entre observations
- → à la fois de construire des classes les plus <u>dissemblables</u> possibles.
- → distance entre classes

Recherche exhaustive impossible

Notons que le nombres de partitions distinctes de n objets est

$$\frac{1}{e} \sum_{k \ge 1} \frac{k^n}{k!}$$

Par exemple pour 30 objets, on a plus 10^{23} partitions possibles.

⇒ Algorithme de recherche performant

Les métriques sur les observations : variables quantitatives

Pour trouver des <u>similarités</u> entre les observations il faut définir une métrique sur les observations :

Distance euclidienne:
$$d_2(x,y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2\right)^{1/2}$$

Atténue l'impact des individus hors norme car pas d'écart au carré

Distance de Mahalanobis : $d(x,y) = ((x-y)^T \Sigma^{-1} (x-y))^{1/2}$ Σ = matrice carrée définie positive (permet d'introduire une corrélation entre les variables)

-1 1

Les métriques sur les observations : variables qualitatives

Dans le cas où les variables sont qualitatives, on utilise le tableau disjonctif complet indiquant la présence ou l'absence des modalités des variables

Ind.	X1	X2
1	Bleu	Rond
2	Rouge	Carré
3	Vert	Carré

Ind.	X1			X	2
	Bleu	Vert	Rouge	Rond	Carré
1	1	0	0	1	0
2	0	0	1	0	1
3	0	1	0	0	1

La distance entre deux individus est définie par

$$d^{2}(i,i') = \frac{n}{p} \sum_{j}^{m} \frac{1}{n_{i}} (\delta_{ij} - \delta_{i'j})^{2}$$

où δ_{ij} =1 si l'individu i présente la modalité j et 0 sinon, m est le nombre de modalités, p le nombre de variables et n_i l'effectif de la modalité j.

Dans l'exemple, l'individu 2 est plus proche de l'individu 3 que de l'individu 1 car ils partagent la modalité « Carré »

$$d^{2}(1,2) = \frac{3}{2} \left[\frac{1}{1} (1-0)^{2} + \frac{1}{1} (0-0)^{2} + \frac{1}{1} (0-1)^{2} + \frac{1}{1} (1-0)^{2} + \frac{1}{2} (0-1)^{2} \right] = \frac{3}{2} \times \frac{7}{2}$$

$$d^{2}(2,3) = \frac{3}{2} \left[\frac{1}{1} (0-0)^{2} + \frac{1}{1} (0-1)^{2} + \frac{1}{1} (1-0)^{2} + \frac{1}{1} (0-0)^{2} + \frac{1}{2} (1-1)^{2} \right] = \frac{3}{2} \times 2$$

Les métriques sur les observations : variables mixtes

Une solution simple consiste à transformer les variables quantitatives en variables catégorielles mais perte d'information et problème du découpage en classes.

On utilise plutôt une mesure mixte:

$$d^{2}(i,i') = \frac{1}{p} \sum_{i}^{p} \delta_{j}(i,i')$$

où δ_j mesure la contribution de la variable j telle que : $0 \le \delta_j \le 1$ et $\delta_j = 0 \iff x_{ij} = x_{i'j}$

Pour les variables qualitatives, on a tout simplement

$$\delta_{j}(i,i') = \begin{cases} 1 & \text{si } x_{ij} = x_{i'j} \\ 0 & \text{sin on} \end{cases}$$

Pour les variables quantitatives, on a

$$\delta_{j}(i,i') = \left(\frac{x_{ij} - x_{i'j}}{s_{j}}\right)^{2} \frac{1}{\max_{k} (x_{kj}/s_{j}) - \min_{k} (x_{kj}/s_{j})}$$

où s_j mesure est l'écart-type de la variable j.

Il ne s'agit que des exemples les plus utilisés de métriques mais il en existe bien d'autres (entre des mots, entre des images,...)

Quelques considérations techniques

CENTRER ET RÉDUIRE LES VARIABLES

	Pop. (T)	Life exp.	Nb. child
Argentina	41050	75,87	2,19
Armenia	3099	74,44	1,77

Distance entre Argentine et Armenie = $(41050-3099)^2 + (75,87-74,44)^2 + (2,19-1,77)^2 = 1440278405$ $\cong (41050-3099)^2$

Centrer et réduire les variables :

$$x_i^k \leftarrow \frac{x_i^k - \overline{x}^k}{s_k}$$

Réduire?

- Si on ne réduit pas, alors les variables ayant une très grande variabilité auront une trop forte contribution
- Si on réduit les variables qui ne sont que du bruit auront la même variance que les autres

RÉDUIRE LA DIMENSION

When the dimensionality increases, the volume of the space increases so fast that the available data become sparse.

Recouvrement					
	Vol.	Vol.			
d	hypercube	sphère	%		
2	4	3,1	78,5%		
4	16	4,9	30,8%		
6	64	5,2	8,1%		
8	256	4,1	1,6%		
10	1024	2,6	0,2%		

TECH

Les métriques sur les classes

Pour construire des classes <u>dissemblables</u> il faut définir une métrique sur les classes, c'est-à-dire une distance entre deux ensembles de points. Soit d une distance entre points (euclidienne par exemple), on a les distances entre classes suivantes :

$$d_{\min}(C_1, C_2) = \min_{x \in C_1, y \in C_2} d(x, y)$$

détecte les formes allongées voire sinueuses, sensible à l'effet de de Chaîne (2 points éloignés sont considérés comme appartenant à la même classe car reliés par une série de points proches les uns des autres)

$$d_{\max}(C_1,C_2) = \max_{x \in C_1, y \in C_2} d(x,y)$$

très sensible aux observations atypiques

☐ *Distance moyenne* entre deux observations des deux classes :

$$d_{moy}(C_1,C_2) = moyenne \quad d(x,y)$$

moins sensible au bruit, tend à produire des classes de même variance.

$$d_{Ward}(C_1, C_2) = \frac{n_1 \times n_2}{n_1 + n_2} d(g_1, g_2)^2$$
 où n_i et g_i sont l'effectif et le centre de gravité de la classe C_i

la plus utilisée, permet de fusionner les deux classes faisant le moins baisser l'inertie inter-classes, tend à produire des classes sphériques de même effectif . 7

Inertie inter et intra classes

d=distance euclidienne

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}d^{2}(x_{i},g)}_{1}$$

) =

$$\frac{1}{n} \sum_{k=1}^{p} \sum_{i=1}^{n_k} d^2(x_i - g_k) + \frac{1}{n} \sum_{k=1}^{p} n_k d^2(g_k, g)$$

- > Chercher la partition qui minimise l'inertie intra classes (homogénéité des observations dans les classes)
- > Chercher la partition qui maximise l'inertie inter classes (dissimilarité des classes entre elles)

Le coefficient

$$R^2 = \frac{I_{inter}}{I_{...}}$$

est le pourcentage d'inertie du nuage expliquée par les classes. L'objectif est d'obtenir un R² proche de 1 avec un minimum de classes (si nb classes =n alors R²=1)

Il peut servir pour

- Comparer deux partitionnements ayant le <u>même nombre de classes</u>
- Sélectionner le nombre de classes (courbe R² vs nb classes. on choisit le dernier saut important du R²)

Algorithme des k-means (1/2)

Soit C le nombre de classes souhaitées.

Algorithme

Etape 1 : Choisir C individus au hasard comme centres initiaux des classes

Etape 2: On calcule les distances entre chaque individu et chaque centre de classe, et on affecte l'individu à la classe la plus proche

Etape 3 : On remplace les centres des classes par les C barycentres des classes définies à l'étape 2

Etape 4 : On itère à partir de l'étape 2 jusqu'à convergence

Algorithme des k-means (2/2)

Nombre de classes

Pour déterminer le nombre de classes, on représente la valeur du R² en fonction du nombre de classes et on applique la règle « du coude », c'est-dire le dernier grand saut d'information.

<u>Caractéristiques</u>

- ➤ Dépend de l'initialisation des centres ⇒ répéter plusieurs fois l'algorithme
- ➤ Nombre C de classes fixé à l'avance ⇒ tester plusieurs valeurs de C
- > Un individu atypique est détecté car il forme une classe à lui tout seul (en général)
- Complexité linéaire ⇒ adapté à de grands volumes de données
 (attention toutefois car il faut tester plusieurs nombres de classes et répéter l'algorithme plusieurs fois pour chaque classe)

Classification hiérarchique ascendante

Algorithme

Etape 1 : Chaque individu forme une classe

(n classes)

Etape 2 : On calcule les distances entre

les classes et on regroupe les deux classes les plus proches

(C classes \rightarrow C-1 classes)

Etape 3 : On itère à partir de l'étape 2

jusqu'à n'avoir qu'une seule

classe

Etape 4 : Choix du partitionnement à

partir de dendrogramme

Le **dendrogramme** représente la suite de partitions obtenues au cours de l'algorithme. L'axe des ordonnées représente une mesure de dissimilarité/inertie inter-classes (R² partiel,...).

On coupe le dendrogramme où la hauteur des branches est élevée. Cela permet d'obtenir simultanément :

- Le nombre de classes
- La constitution des classes

Basé sur la distance entre classes

Classification hiérarchique ascendante (2/2)

Caractéristiques

- > Regroupe des individus ou des variables dès qu'il y a une notion de distance
- > Pas de dépendance à l'initialisation
- Nombre de classes non fixé à l'avance
- > formes diverses des groupes grâce au choix de la distance
- ➤ A chaque étape le partitionnement dépend de celui obtenu avant ⇒ Optimum local
- Complexité exponentielle de l'algorithmique
- Possibilité de faire une méthode descendante, c-a-d avec une seule classe à l'initialisation qui se divise de façon successive.

Pertinence d'un clustering

Variable par variable on peut faire un test statistique (ANOVA si distribution gaussienne, Kruskal-Wallis sinon) pour savoir s'il y a une différence significative entre les classes.

TECH

Conclusion

Méthodes non hiérarchiques

- ✓ Il faut avoir une idée a priori du nombre de classes
- ✓ L'initialisation de l'algorithme peut avoir un impact sur la partition finale
- √ L'algorithme converge assez vite (complexité linéaire)

Algorithme hiérarchique

- ✓ La complexité de l'algorithme est exponentielle
- ✓ L'algorithme est glouton
- ✓ On n'a pas besoin de connaître à l'avance le nombre de classes

Quand cela est possible confirmer les résultats par plusieurs méthodes

<u>Alternatives</u>

- ✓ Méthodes basées sur l'estimation de la densité
- ✓ Le Fuzzy clustering qui n'attribut pas un objet à une classe mais donne la probabilité d'appartenir à une classe
- ✓ Méthodes (métriques) adaptées aux images, sons, textes,....

Avez-vous des questions?

Documents ayant servis à la rédaction des slides et TD :

- DataMining et Statistiques décisionnelles, Stéphane Tufféry, Ed. Technip
- https://penseeartificielle.fr/choisir-distance-machine-learning/
- http://eric.univ-lyon2.fr/~ricco/cours/slides/classif centres mobiles.pdf
- https://scikit-learn.org/stable/index.html

