

## planetmath.org

Math for the people, by the people.

# $\begin{array}{c} \text{proof that forcing notions are equivalent to} \\ \text{their composition} \end{array}$

 ${\bf Canonical\ name} \quad {\bf ProofThatForcingNotionsAre EquivalentTo Their Composition}$ 

Date of creation 2013-03-22 12:54:26 Last modified on 2013-03-22 12:54:26

Owner Henry (455) Last modified by Henry (455)

Numerical id 5

Author Henry (455)

Entry type Proof

Classification msc 03E40 Classification msc 03E35

Related topic EquivalenceOfForcingNotions

This is a long and complicated proof, the more so because the meaning of Q shifts depending on what generic subset of P is being used. It is therefore broken into a number of steps. The core of the proof is to prove that, given any generic subset G of P and a generic subset G of P and a generic subset G of G such that  $\mathfrak{M}[G][H] = \mathfrak{M}[G * H]$ , and conversely, given any generic subset G of G we can find some generic G of G and a generic G of G such that G is G and a generic G of G such that G is G is G in G and G is G in G in G in G is G in G in

We do this by constructing functions using operations which can be performed within the forced universes so that, for example, since  $\mathfrak{M}[G][H]$  has both G and H, G \* H can be calculated, proving that it contains  $\mathfrak{M}[G * H]$ . To ensure equality, we will also have to ensure that our operations are inverses; that is, given G,  $G_P * G_H = G$  and given G and H,  $(G * H)_P = P$  and  $(G * H)_Q = H$ .

The remainder of the proof merely defines the precise operations, proves that they give generic sets, and proves that they are inverses.

Before beginning, we prove a lemma which comes up several times:

## Lemma: If G is generic in P and D is dense above some $p \in G$ then $G \cap D \neq \emptyset$

Let  $D' = \{p' \in P \mid p' \in D \lor p' \text{ is incompatible with } p\}$ . This is dense, since if  $p_0 \in P$  then either  $p_0$  is incompatible with p, in which case  $p_0 \in D'$ , or there is some  $p_1$  such that  $p_1 \leq p$ ,  $p_0$ , and therefore there is some  $p_2 \leq p_1$  such that  $p_2 \in D$ , and therefore  $p_2 \leq p_0$ . So G intersects D'. But since a generic set is directed, no two elements are incompatible, so G must contain an element of D' which is not incompatible with p, so it must contain an element of D.

### G \* H is a generic filter

First, given generic subsets G and H of P and  $\hat{Q}[G]$ , we can define:

$$G * H = \{ \langle p, \hat{q} \rangle \mid p \in G \land \hat{q}[G] \in H \}$$

G\*H is closed

Let  $\langle p_1, \hat{q}_1 \rangle \in G * H$  and let  $\langle p_1, \hat{q}_1 \rangle \leq \langle p_2, \hat{q}_2 \rangle$ . Then we can conclude  $p_1 \in G$ ,  $p_1 \leq p_2$ ,  $\hat{q}_1[G] \in H$ , and  $p_1 \Vdash \hat{q}_1 \leq \hat{q}_2$ , so  $p_2 \in G$  (since G is closed) and

 $\hat{q}_2[G] \in H$  since  $p_1 \in G$  and  $p_1$  forces both  $\hat{q}_1 \leq \hat{q}_2$  and that H is downward closed. So  $\langle p_2, \hat{q}_2 \rangle \in G * H$ .

#### G\*H is directed

Suppose  $\langle p_1, \hat{q}_1 \rangle$ ,  $\langle p_1, \hat{q}_1 \rangle \in G * H$ . So  $p_1, p_2 \in G$ , and since G is directed, there is some  $p_3 \leq p_1, p_2$ . Since  $\hat{q}_1[G], \hat{q}_2[G] \in H$  and H is directed, there is some  $\hat{q}_3[G] \leq \hat{q}_1[G], \hat{q}_2[G]$ . Therefore there is some  $p_4 \leq p_3, p_4 \in G$ , such that  $p_4 \Vdash \hat{q}_3 \leq \hat{q}_1, \hat{q}_2$ , so  $\langle p_4, \hat{q}_3 \rangle \leq \langle p_1, \hat{q}_1 \rangle, \langle p_1, \hat{q}_1 \rangle$  and  $\langle p_4, \hat{q}_3 \rangle \in G * H$ .

#### G\*H is generic

Suppose D is a dense subset of  $P * \hat{Q}$ . We can project it into a dense subset of Q using G:

$$D_Q = \{\hat{q}[G] \mid \langle p, \hat{q} \rangle \in D\}$$
 for some  $p \in G$ 

### Lemma: $D_Q$ is dense in $\hat{Q}[G]$

Given any  $\hat{q}_0 \in \hat{Q}$ , take any  $p_0 \in G$ . Then we can define yet another dense subset, this one in G:

$$D_{\hat{q}_0} = \{ p \mid p \leq p_0 \land p \Vdash \hat{q} \leq \hat{q}_0 \land \langle p, \hat{q} \rangle \in D \} \text{ for some } \hat{q} \in \hat{Q} \}$$

#### Lemma: $D_{\hat{q}_0}$ is dense above $p_0$ in P

Take any  $p \in P$  such that  $p \leq p_0$ . Then, since D is dense in  $P * \hat{Q}$ , we have some  $\langle p_1, \hat{q}_1 \rangle \leq \langle p, \hat{q}_0 \rangle$  such that  $\langle p_1, \hat{q}_1 \rangle \in D$ . Then by definition  $p_1 \leq p$  and  $p_1 \in D_{\hat{q}_0}$ .

From this lemma, we can conclude that there is some  $p_1 \leq p_0$  such that  $p_1 \in G \cap D_{\hat{q}_0}$ , and therefore some  $\hat{q}_1$  such that  $p_1 \Vdash \hat{q}_1 \leq \hat{q}_0$  where  $\langle p_1, \hat{q}_1 \rangle \in D$ . So  $D_Q$  is indeed dense in  $\hat{Q}[G]$ .

Since  $D_Q$  is dense in  $\hat{Q}[G]$ , there is some  $\hat{q}$  such that  $\hat{q}[G] \in D_Q \cap H$ , and so some  $p \in G$  such that  $\langle p, \hat{q} \rangle \in D$ . But since  $p \in G$  and  $\hat{q} \in H$ ,  $\langle p, \hat{q} \rangle \in G * H$ , so G \* H is indeed generic.

## $G_P$ is a generic filter

Given some generic subset G of  $P * \hat{Q}$ , let:

$$G_P = \{ p \in P \mid p' \leq p \land \langle p', \hat{q} \rangle \in G \}$$
 for some  $p' \in P$  and some  $\hat{q} \in Q$ 

#### $G_P$ is closed

Take any  $p_1 \in G_P$  and any  $p_2$  such that  $p_1 \leq p_2$ . Then there is some  $p' \leq p_1$  satisfying the definition of  $G_P$ , and also  $p' \leq p_2$ , so  $p_2 \in G_P$ .

#### $G_P$ is directed

Consider  $p_1, p_2 \in G_P$ . Then there is some  $p'_1$  and some  $\hat{q}_1$  such that  $\langle p'_1, \hat{q}_1 \rangle \in G$  and some  $p'_2$  and some  $\hat{q}_2$  such that  $\langle p'_2, \hat{q}_2 \rangle \in G$ . Since G is directed, there is some  $\langle p_3, \hat{q}_3 \rangle \in G$  such that  $\langle p_3, \hat{q}_3 \rangle \leq \langle p'_1, \hat{q}_1 \rangle, \langle p'_2, \hat{q}_2 \rangle$ , and therefore  $p_3 \in G_P$ ,  $p_3 \leq p_1, p_2$ .

#### $G_P$ is generic

Let D be a dense subset of P. Then  $D' = \{\langle p, \hat{q} \rangle \mid p \in D\}$ . Clearly this is dense, since if  $\langle p, \hat{q} \rangle \in P * \hat{Q}$  then there is some  $p' \leq p$  such that  $p' \in D$ , so  $\langle p', \hat{q} \rangle \in D'$  and  $\langle p', \hat{q} \rangle \leq \langle p, \hat{q} \rangle$ . So there is some  $\langle p, \hat{q} \rangle \in D' \cap G$ , and therefore  $p \in D \cap G_P$ . So  $G_P$  is generic.

## $G_Q$ is a generic filter

Given a generic subset  $G \subseteq P * \hat{Q}$ , define:

$$G_Q = {\hat{q}[G_P] \mid \langle p, \hat{q} \rangle \in G}$$
 for some  $p \in P$ 

(Notice that  $G_Q$  is dependent on  $G_P$ , and is a subset of  $\hat{Q}[G_P]$ , that is, the forcing notion inside  $\mathfrak{M}[G_P]$ , as opposed to the set of names Q which we've been primarily working with.)

#### $G_Q$ is closed

Suppose  $\hat{q}_1[G_P] \in G_Q$  and  $\hat{q}_1[G_P] \leq \hat{q}_2[G_P]$ . Then there is some  $p_1 \in G_P$  such that  $p_1 \Vdash \hat{q}_1 \leq \hat{q}_2$ . Since  $p_1 \in G_P$ , there is some  $p_2 \leq p_1$  such that for some  $\hat{q}_3$ ,  $\langle p_2, \hat{q}_3 \rangle \in G$ . By the definition of  $G_Q$ , there is some  $p_3$  such that  $\langle p_3, \hat{q}_1 \rangle \in G$ , and since G is directed, there is some  $\langle p_4, \hat{q}_4 \rangle \in G$  and  $\langle p_4, \hat{q}_4 \rangle \leq \langle p_3, \hat{q}_1 \rangle, \langle p_2, \hat{q}_3 \rangle$ . Since G is closed and  $\langle p_4, \hat{q}_4 \rangle \leq \langle p_4, \hat{q}_2 \rangle$ , we have  $\hat{q}_2[G_P] \in G_Q$ .

#### $G_Q$ is directed

Suppose  $\hat{q}_1[G_P], \hat{q}_2[G_P] \in G_Q$ . Then for some  $p_1, p_2, \langle p_1, \hat{q}_1 \rangle, \langle p_2, \hat{q}_2 \rangle \in G$ , and since G is directed, there is some  $\langle p_3, \hat{q}_3 \rangle \in G$  such that  $\langle p_3, \hat{q}_3 \rangle \leq \langle p_1, \hat{q}_1 \rangle, \langle p_2, \hat{q}_2 \rangle$ . Then  $\hat{q}_3[G_P] \in G_Q$  and since  $p_3 \in G$  and  $p_3 \Vdash \hat{q}_3 \leq \hat{q}_1, \hat{q}_2$ , we have  $\hat{q}_3[G_P] \leq \hat{q}_1[G_P], \hat{q}_2[G_P]$ .

#### $G_Q$ is generic

Let D be a dense subset of  $Q[G_P]$  (in  $\mathfrak{M}[G_P]$ ). Let  $\hat{D}$  be a P-name for D, and let  $p_1 \in G_P$  be a such that  $p_1 \Vdash \hat{D}$  is dense. By the definition of  $G_P$ , there is some  $p_2 \leq p_1$  such that  $\langle p_2, \hat{q}_2 \rangle \in G$  for some  $q_2$ . Then  $D' = \{\langle p, \hat{q} \rangle \mid p \Vdash \hat{q} \in D \land p \leq p_2\}.$ 

#### Lemma: D' is dense (in G) above $\langle p_2, \hat{q}_2 \rangle$

Take any  $\langle p, \hat{q} \rangle \in P * Q$  such that  $\langle p, \hat{q} \rangle \leq \langle p_2, \hat{q}_2 \rangle$ . Then  $p \Vdash \hat{D}$  is dense, and therefore there is some  $\hat{q}_3$  such that  $p \Vdash \hat{q}_3 \in \hat{D}$  and  $p \Vdash \hat{q}_3 \leq \hat{q}$ . So  $\langle p, \hat{q}_3 \rangle \leq \langle p, \hat{q} \rangle$  and  $\langle p, \hat{q}_3 \rangle \in D'$ .

Take any  $\langle p_3, \hat{q}_3 \rangle \in D' \cap G$ . Then  $p_3 \in G_P$ , so  $\hat{q}_3 \in D$ , and by the definition of  $G_Q$ ,  $\hat{q}_3 \in G_Q$ .

$$G_P * G_O = G$$

If G is a generic subset of P \* Q, observe that:

$$G_P * G_Q = \{ \langle p, \hat{q} \rangle \mid p' \leq p \land \langle p', \hat{q}' \rangle \in G \land \langle p_0, \hat{q} \rangle \in G \} \text{ for some } p', \hat{q}', p_0 \}$$

If  $\langle p, \hat{q} \rangle \in G$  then obviously this holds, so  $G \subseteq G_P * G_Q$ . Conversely, if  $\langle p, \hat{q} \rangle \in G_P * G_Q$  then there exist  $p', \hat{q}'$  and  $p_0$  such that  $\langle p', \hat{q}' \rangle, \langle p_0, \hat{q} \rangle \in G$ , and since G is directed, some  $\langle p_1, \hat{q}_1 \rangle \in G$  such that  $\langle p_1, \hat{q}_1 \rangle \leq \langle p', \hat{q}' \rangle, \langle p_0, \hat{q} \rangle$ . But then  $p_1 \leq p$  and  $p_1 \Vdash \hat{q}_1 \leq \hat{q}$ , and since G is closed,  $\langle p, \hat{q} \rangle \in G$ .

$$(G*H)_P = G$$

Assume that G is generic in P and H is generic in Q[G].

Suppose  $p \in (G * H)_P$ . Then there is some  $p' \in P$  and some  $\hat{q} \in Q$  such that  $p' \leq p$  and  $\langle p', \hat{q} \rangle \in G * H$ . By the definition of G \* H,  $p' \in G$ , and then since G is closed  $p \in G$ .

Conversely, suppose  $p \in G$ . Then (since H is non-trivial),  $\langle p, \hat{q} \rangle \in G * H$  for some  $\hat{q}$ , and therefore  $p \in (G * H)_P$ .

$$(G*H)_Q = H$$

Assume that G is generic in P and H is generic in Q[G].

Given any  $q \in H$ , there is some  $\hat{q} \in Q$  such that  $\hat{q}[G] = q$ , and so there is some p such that  $\langle p, \hat{q} \rangle \in G * H$ , and therefore  $\hat{q}[G] \in H$ .

On the other hand, if  $q \in (G * H)_Q$  then there is some  $\langle p, \hat{q} \rangle \in G * H$ , and therefore some  $\hat{q}[G] \in H$ .