Machine Learning

Lecture 2
The Learning Problem

Chen-Kuo Chiang (江 振 國) ckchiang@cs.ccu.edu.tw

中正大學 資訊工程學系

Section Summary

- When Can Machines Learn?
 - Lecture 1: The Learning Problem
 - What is Machine Learning
 - Applications of Machine Learning
 - Components of Machine Learning
 - Machine Learning and Other Fields

From Learning to Machine Learning

learning: acquiring skill
with experience accumulated from observations

observations → learning → skill

machine learning: acquiring skill
with experience accumulated/computed from data

data → ML → skill

What is skill?

A More Concrete Definition

skill

⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure with experience computed from data

An Application in Computational Finance

stock data → ML → more investment gain

Why use machine learning?

Dog Recognition

•如何定義柴犬?(Instagram: shiba_feifei)柴犬飛飛

Are these Shiba dogs?

Dog Recognition

- 'Define' Shiba Dogs : difficult.
- Learn from data (observations) and recognize: a 3-year-old can do so.
- 'ML-based Shiba Dog recognition system' can be **easier to build** than hand-programmed system.

ML: an alternative route to build complicated systems

Use Cases of Using Machine Learning

ML: an alternative route to build complicated systems

Some Use Scenarios

- when human cannot program the system manually —navigating on Mars
- when human cannot 'define the solution' easily
 - —speech/visual recognition
- when needing rapid decisions that humans cannot do —high-frequency trading
- when needing to be user-oriented in a massive scale
 - —consumer-targeted marketing

Key Essence of Machine Learning

- 使用機器學習的時機
- exists some 'underlying pattern' to be learned
 —so 'performance measure' can be improved
- but no programmable (easy) definition
 —so 'ML' is needed
- somehow there is data about the pattern —so ML has some 'inputs' to learn from

沒有data自然不能ML,例如說要辨識陽性陰性,只有陰(陽)性資料是辦不到的

key essence: help decide whether to use ML

Fun Time

Which of the following is best suited for machine learning?

- predicting whether the next cry of the baby girl happens at an even-numbered minute or not
- determining whether a given graph contains a cycle 現有演算法可解決
- deciding whether to approve credit card to some customer
 - 4 guessing whether the earth will be destroyed by the misuse of nuclear power in the next ten years 未被推毀過 => 無該種資料 => no

Applications of Machine Learning

- Daily Needs: Food, Clothing, Housing, Transportation
 - 1 Food (Sadilek et al., 2013)
 - data: Twitter data (words + location)
 - skill: tell food poisoning likeliness of restaurant properly
 - 2 Clothing (Abu-Mostafa, 2012)
 - data: sales figures + client surveys
 - skill: give good fashion recommendations to clients
 - 3 Housing (Tsanas and Xifara, 2012)
 - data: characteristics of buildings and their energy load
 - skill: predict energy load of other buildings closely
 - Transportation (Stallkamp et al., 2012)
 - data: some traffic sign images and meanings
 - skill: recognize traffic signs accurately

Components of Learning

Credit Approval

Applicant Information

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

unknown pattern to be learned:

'approve credit card good for bank?'

Formalize the Learning Problem

Basic Notations

- input: $\mathbf{x} \in \mathcal{X}$ (customer application)
- output: $y \in \mathcal{Y}$ (good/bad after approving credit card)
- unknown pattern to be learned \Leftrightarrow target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- data \Leftrightarrow training examples: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$ (historical records in bank)
- hypothesis

 skill with hopefully good performance:

 $g: \mathcal{X} \to \mathcal{Y}$ ('learned' formula to be used)

$$\{(\mathbf{x}_n, y_n)\}$$
 from $f \longrightarrow [ML] \longrightarrow g$

Learning Flow

```
\begin{array}{c} \text{unknown target function} \\ f\colon \mathcal{X} \to \mathcal{Y} \\ \text{(ideal credit approval formula)} \\ \\ \text{training examples} \\ \mathcal{D}\colon (\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N) \\ \\ \text{(historical records in bank)} \end{array} \qquad \begin{array}{c} \text{learning} \\ \text{algorithm} \\ \mathcal{A} \\ \text{('learned' formula to be used)} \end{array}
```

- target f unknown
 (i.e. no programmable definition)
- hypothesis g hopefully ≈ f but possibly different from f (perfection 'impossible' when f unknown)

What does *g* look like?

The Learning Model

- assume $g \in \mathcal{H} = \{h_k\}$, i.e. approving if
 - *h*₁: annual salary > NTD 800,000
 - h_2 : debt > NTD 100,000 (really?)
 - *h*₃: year in job ≤ 2 (really?)
- hypothesis set H:
 - can contain good or bad hypotheses
 - up to A to pick the 'best' one as g

Practical Definition of Machine Learning

machine learning: use data to compute hypothesis *g*that approximates target *f*

Practical Definition of Machine Learning

Testing Stage

Fun Time

How to use the four sets below to form a learning problem for song recommendation?

$$S_1 = [0, 100]$$

$$S_2$$
 = all possible (userid, songid) pairs

 S_3 = all formula that 'multiplies' user factors & song factors, indexed by all possible combinations of such factors

 $S_4 = 1,000,000$ pairs of ((userid, songid), rating)

1
$$\mathcal{S}_1 = \mathcal{X}, \mathcal{S}_2 = \mathcal{Y}, \mathcal{S}_3 = \mathcal{H}, \mathcal{S}_4 = \mathcal{D}$$

$$\mathcal{S}_1 = \mathcal{Y}, \mathcal{S}_2 = \mathcal{X}, \mathcal{S}_3 = \mathcal{H}, \mathcal{S}_4 = \mathcal{D}$$

 $\mathcal{S}_1 = \mathcal{D}, \mathcal{S}_2 = \mathcal{H}, \mathcal{S}_3 = \mathcal{Y}, \mathcal{S}_4 = \mathcal{X}$

$$\mathfrak{S}_1 = \mathcal{D}, \mathcal{S}_2 = \mathcal{H}, \mathcal{S}_3 = \mathcal{Y}, \mathcal{S}_4 = \mathcal{X}$$

4
$$\mathcal{S}_1 = \mathcal{X}, \mathcal{S}_2 = \mathcal{D}, \mathcal{S}_3 = \mathcal{Y}, \mathcal{S}_4 = \mathcal{H}$$

Machine Learning and Artificial Intelligence

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Artificial Intelligence

compute something that shows intelligent behavior

- $g \approx f$ is something that shows intelligent behavior —ML can realize AI, among other routes
- e.g. chess playing
 - traditional AI: game tree
 - ML for AI: 'learning from board data'

ML is one possible route to realize Al

Machine Learning and Data Mining

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Data Mining

use (huge) data to find property
that is interesting

- if 'interesting property' same as 'hypothesis that approximate target'
 - —ML = DM (usually what KDDCup does)
- if 'interesting property' related to 'hypothesis that approximate target'
 - —DM can help ML, and vice versa (often, but not always)
- traditional DM also focuses on efficient computation in large database

Data Mining - 從大量資料中挖掘有趣的特性

- 英國倫敦基金公司Derwent Capital Markets於2011年曾利用Twitter 上發表的推文去統計大眾情緒以預測股市走勢,因此在當年全球 市場低迷之時,還能維持1.85%的報酬率,和S&P500下跌了2.2% 的指數相比,領先許多。
- 美國零售商Target利用公司內部所擁有的消費者購買資料進行分析,並由此去預測消費者的行為—例如預測孕婦在懷孕初、中期大概會想購買甚麼樣的物品;然後當消費者在網路上購買了某一項產品,系統就會自動提供更多其可能會感興趣的產品資訊。
 - · 當時Target寄送了孕婦用品廣告到有可能購買的消費者家中,其中一位收到廣告的孩子父親非常生氣,特地跑到Target去理論,認為自己女兒不需要這種產品,為何賣場要寄這種「有辱名節」的嫌疑廣告;結果事後才發現女兒是真的懷孕了。

Machine Learning and Statistics

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Statistics

use data to make inference about an unknown process

- g is an inference outcome; f is something unknown
 —statistics can be used to achieve ML
- traditional statistics also focus on provable results with math assumptions, and care less about computation

statistics: many useful tools for ML

Summary

- What is Machine Learning use data to approximate target
- Applications of Machine Learning almost everywhere
- Components of Machine Learning ${\cal A}$ takes ${\cal D}$ and ${\cal H}$ to get g
- Machine Learning and Other Fields related to DM, Al and Stats