PROCESSAMENTO DE LINGUAGEM NATURAL

Modelos n-gramas

TÓPICOS

- 1. Introdução
- 2. Modelos de linguagem
- 3. N-gramas

LINGUAGENS

• O que é a linguagem?

"Sistema de símbolos de um vocabulário que, quando colocados numa determinada ordem e expressos num determinado contexto, emitem um significado."

- O que define a ordem das palavras?
 - Cada macaco no seu
 - galho
 - Macaco cada no galho seu X Cada macaco no seu galho
- Como ensinar o computador a definir qual é a próxima palavra ou a ordem correta delas?

- Geralmente definida com base na probabilidade de ocorrência
 - Cada macaco no seu galho
 - P(galho | cada macaco no seu)
 - Macaco cada no galho seu X Cada macaco no seu galho
 - P(macaco cada no galho seu) < P(cada macaco no seu galho)

- Aplicações de geração de texto
 - Sequência já gerada: Cada macaco no seu

Próxima palavra	Probabilidade
galinheiro	0,0003
anzol	0,000002
galho	0,004
toca	0,00005

- Aplicações de tradução
 - Probabilidade de uma sentença

Possíveis sentenças	Probabilidade
Macaco cada no galho seu	0,00003
Cada macaco no seu galho	0,0005
Galho no seu cada macaco	0,000004

- Aplicações de correção
 - Probabilidade de uma sentença corrigida
 - Sentença original: saudade corta como aço de navaia
 - Opções de correção: navalha ou navais

Possíveis sentenças	Probabilidade
saudade corta como aço de navalha	0,005
saudade corta como aço de navais	0,00002

TÓPICOS

- 1. Introdução
- 2. Modelos de linguagem
- 3. N-gramas

MODELO DE LINGUAGEM

- Modelo computacional que infere a probabilidade de uma sequência de palavras
- Usado para prever
 - A próxima palavra dada uma sequência
 - P(w5 | w1, w2, w3, w4)
 - A ocorrência de uma sequência de palavras
 - P(w1, w2, w3, w4, w5)

MODELO DE LINGUAGEM

- Regra da cadeia
 - A probabilidade de uma sentença pode ser estimada pela multiplicação das probabilidades de cada palavra, estimada com base nas palavras anteriores

 $P(w1, w2, w3, w4, w5) = P(w1) \times P(w2|w1) \times P(w3|w1, w2) \times P(w4|w1, w2, w3) \times P(w5|w1, w2, w3, w4)$

P(Cada macaco no seu galho) = P(Cada) x P(macaco|Cada) x P(no|Cada macaco) x P(seu|Cada macaco no) x P(galho|Cada macaco no seu)

MODELO DE LINGUAGEM

- Estimando probabilidades
 - A partir de um grande corpus
 - Com base nas contagens das sequências

```
P(galho|Cada macaco no seu) = 

freq(Cada macaco no seu galho)
freq(Cada macaco no seu)
```

Mas não é necessário "olhar" para toda a sequência

P(<s> Cada macaco no seu galho </s>) = P(Cada|<s>) x P(macaco|Cada) x P(no|Cada macaco) x P(seu|Cada macaco no) x P(galho|Cada macaco no seu) x P(</s>|Cada macaco no seu galho)

TÓPICOS

- 1. Introdução
- 2. Modelos de linguagem
- 3. N-gramas

N-GRAMA

- Sequência de *n* palavras (*tokens*)
 - unigrama = 1 palavra (token)
 - <S>, Cada, macaco, no, seu, galho,
 - bigrama = 2 palavras (tokens)
 - <S> Cada, Cada macaco, macaco no, no seu, seu galho, galho
 - trigrama = 3 palavras (tokens)
 - <S> Cada macaco, Cada macaco no, macaco no seu, no seu galho, seu galho

N-GRAMA

• Treinamento de um modelo de linguagem

Colab - NLTK

Modelo de trigrama

OUTROS "N-GRAMAS"

- Expressões multipalavras
 - Combinações de palavras que
 - juntas representam algo mais do que a simples composição das suas ideias
 - não podem ter partes substituídas por sinônimos
 - Dica: http://mwetoolkit.sourceforge.net/
- Entidades nomeadas
 - Uma ou mais palavras que
 - têm um papel no mundo
 - Dica: BERT para NER

O QUE VIMOS?

- Introdução
- Modelos de linguagem
- N-gramas

PRÓXIMA VIDEOAULA

Representação vetorial de textos

REFERÊNCIAS

- Curso de Processamento de Linguagem Natural
 - Profa. Helena Caseli (UFSCar)
- Curso de Processamento de Linguagem Natural
 - Prof. Thiago Pardo (ICMC-USP)
- Curso de Linguística Computacional
 - Prof. Thiago Castro Ferreira (UFMG)