Neural Networks CMPT 419/726 Mo Chen SFU Computing Science Jan. 29, 2020

Bishop PRML Ch. 5

Neural Networks

- Neural networks arise from attempts to model human/animal brains
 - Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than plausibility

Applications of Neural Networks

- · Many success stories for neural networks, old and new
 - Credit card fraud detection
 - Hand-written digit recognition
 - Face detection
 - Autonomous driving (CMU ALVINN)
 - · Object recognition
 - · Speech recognition

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Feed-forward Networks

· We have looked at generalized linear models of the form:

$$y(x, w) = f\left(\sum_{j=1}^{M} w_j \phi_j(x)\right)$$

for fixed non-linear basis functions $\phi(\cdot)$

- We now extend this model by allowing adaptive basis functions, and learning their parameters
- In feed-forward networks (a.k.a. multi-layer perceptrons)
 we let each basis function be another non-linear function of
 linear combination of the inputs:

$$\phi_j(x) = f\left(\sum_{j=1}^M \cdots\right)$$

Feed-forward Networks

• Starting with input $x = (x_1, \dots, x_D)$, construct linear combinations:

$$a_j = \sum_{i=1}^{D} \left(w_{ji}^{(1)} x_i + x_{j0}^{(1)} \right)$$
 These a_j are known as activations

- Pass through an activation function $h(\cdot)$ to get output $z_i = h(a_i)$
 - Model of an individual neuron

Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)

Logistic sigmoid $1/(1 + \exp(-a))$ (useful forbinary classification)

Hyperbolic tangent $tanh(\cdot)$

Useful for multi-class classification

- · Useful for regression
- Threshold

Can use different activation functions in each unit

Activation Functions

Common choices of activation functions Softplus:

$$\log(1+e^x)$$

Hyperbolic tangent: tanh x

Rectified linear unit (ReLU): max(0, x)

Key feature: easy to differentiate

Feed-forward Networks

- Connect together a number of these units into a feed-forward network (DAG)
- Above shows a network with one layer of hidden units
- · Implements function:

$$y_k(x, w) = h \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ij}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are $(x_n, t_n), t_n \in \mathbb{R}$
 - Squared error naturally arises:

$$E(w) = \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

 For binary classification, this is another discriminative model, ML:

$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

$$E(w) = -\sum_{n=1}^{N} \{t_n \ln(y_n) + (1 - t_n) \ln(1 - y_n)\}$$

Parameter Optimization

- For either of these problems, the error function E(w) is nasty
 - Nasty = non-convex
 - Non-convex = has local minima

A Non-Convex function

Aside: Optimization Program

$$\begin{aligned} & \text{minimize} & & f(x) \\ & \text{subject to} & & g_i(x) \leq 0, i = 1, \dots, n \\ & & h_j(x) = 0, j = 1, \dots, m \end{aligned}$$

- Very difficult to solve in general
 - Trade-offs to consider: computation time, solution optimality
- Easy cases:
 - Find global optimum for **linear program**: f, g_i , h_j are linear
 - Find global optimum for $\operatorname{convex}\operatorname{program}:f$, g_i are convex , h_j is linear
 - ullet Find local optimum for **nonlinear program**: f , g_i , h_j are differentiable
- Neural Networks: Nonlinear and unconstrained

Convex Functions

Convex function

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
 for all $x, y \in \mathbb{R}^n$, for all $\theta \in [0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \le C\}$, are convex
 - Convex shape C: $x_1, x_2 \in C, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$

Convex Functions

Convex function

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
 for all $x, y \in \mathbb{R}^n$, for all $\theta \in [0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \le C\}$, are convex
 - Convex shape \mathcal{C} :

$$x_1, x_2 \in \mathcal{C}, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta) x_2 \in \mathcal{C}$$

• Superlevel sets of convex functions are not convex!

Common Convex Functions on R

- $f(x) = e^{ax}$ is convex for all $x, a \in \mathbb{R}$
- $f(x) = x^a$ is convex on x > 0 if $a \ge 1$ or $a \le 0$; concave if 0 < a < 1
- $f(x) = \log x$ is concave
- $f(x) = x \log x$ is convex for x > 0 (or $x \ge 0$ if defined to be 0 when x = 0)

Common Convex Functions on \mathbb{R}^n

- f(x) = Ax + b is convex for any A, b
- Every norm on \mathbb{R}^n is convex
- $f(x) = \max(x_1, x_2, ..., x_n)$ is convex
- $f(x) = \frac{x_1^2}{x_2} (\text{for } x_2 > 0)$
- Log-sum-exp softmax: $f(x) = \frac{1}{k} \log(e^{kx_1} + e^{kx_2} + \dots + e^{kx_n})$

Descent Methods

 The typical strategy for optimization problems of this sort is a descent method:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

- As we've seen before, these come in many flavours
 - Gradient descent $\nabla E(w^{(\tau)})$
 - Stochastic gradient descent $\nabla E_n({m w}^{(au)})$
 - Newton-Raphson (second order)
- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima

Numerical Solution: Gradient Methods

- Start from χ^0 and construct a sequence χ^k such that $\chi^k \to \chi^*$
 - Calculate x^{k+1} from x^k by "going down the gradient"
 - Unconstrained case: $x^{k+1} = x^k \alpha^k \nabla f(x)$, $\alpha^k > 0$

Numerical Solution: Gradient Methods

- Start from χ^0 and construct a sequence χ^k such that $\chi^k \to \chi^*$
 - Calculate x^{k+1} from x^k by "going down the gradient"
 - Unconstrained case: $x^{k+1} = x^k \alpha^k \nabla f(x)$, $\alpha^k > 0$
- More generally, $x^{k+1} = x^k + \alpha^k d^k$ for some d such that $\nabla f(x^k) \cdot d^k < 0$
 - $v_j(x) \cdot u < 0$
- Tuning parameters: descent direction \boldsymbol{d}^k , and step size $\boldsymbol{\alpha}^k$

Descent Direction

- Steepest descent: $d^k = -\nabla f(x^k)$
 - $x^{k+1} = x^k \alpha^k \nabla f(x)$
- Simple but sometimes leads to slow convergence
 Newton's method: $d^k = \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)^{-2.8 2.6 2.4 2.2 2 1.8 1.6 1.4}$ Minimize the quadratic approximation:
 - Minimize the quadratic approximation

$$f^{k}(x) = f(x^{k}) + \nabla f(x^{k})^{\mathsf{T}} (x - x^{k}) + \frac{1}{2} (x - x^{k})^{\mathsf{T}} \nabla^{2} f(x^{k}) (x - x^{k})$$

• Set gradient to zero to obtain next iterate $\nabla f^k(x) = \nabla f(x^k) + \nabla^2 f(x^k) (x - x^k) = 0$ $\Rightarrow x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$

- · Fast convergence, but matrix inverse required
- Alternatively, use an algorithm to minimize a quadratic function

Step Size

• Recall
$$x^{k+1} = x^k + \alpha^k d^k$$
, with $\nabla f(x^k)^{\mathsf{T}} d^k < 0$

- Line search: choose $\alpha^k = \min_{\alpha \geq 0} f \left(x^k + \alpha^k d^k \right)$
 - Requires minimization
- Constant step size: $\alpha^k = \alpha$
 - May not converge
- Diminishing step size: $\alpha^k \to 0$
 - Still need to explore all regions $\sum \alpha^k = \infty$
 - For example: $\alpha^k = \frac{\alpha^0}{k}$

Numerical Solution: Second Order Methods

minimize
$$f(x)$$
 minimize $(r^k)^{\mathsf{T}} d_x + \frac{1}{2} d_x^{\mathsf{T}} \mathbf{B}_k d_x$
where $d_x \coloneqq x - x^k$,

• Quadratize f(x):

$$r^k = \nabla f(x_k)$$
$$B_k = Hf(x_k)$$

· Convexify if needed, eg. by removing negative eigenvalues

Example

Computing Gradients

- The function $y(x_n, w)$ implemented by a network is complicated
 - It isn't obvious how to compute error function derivatives with respect to weights
- Numerical method for calculating error derivatives, use finite differences:

$$\frac{\partial E_n}{\partial w_{ii}} \approx \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}$$

- How much computation would this take with W weights in the network?
 - O(|W|) per partial derivative (evaluation of E_n)
 - O(|W|²) total per gradient descent step (there are |W| partial derivatives)

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Feed-forward Networks

- Connect together a number of these units into a feed-forward network (DAG)
- · Above shows a network with one layer of hidden units

• Implements function:
$$y_{(n),k}(x_n, w) = h \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{l=1}^{D} w_{jl}^{(1)} x_{(n),l} + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Error Backpropagation

- Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_{ii}^{(m)}}$
 - O(W) to compute derivatives wrt all weights
- First, feed training example x_n forward through the network, storing all activations a_i
- Calculating derivatives for weights connected to output nodes is easy
 - e.g. For linear output nodes $y_k = \sum_i w_{ki}^{(L)} z_{(n),i}^{(L-1)}$: $\frac{\partial E_n}{\partial w_{ki}^{(L)}} = \frac{\partial}{\partial w_{ki}^{(L)}} \frac{1}{2} \left(y_{(n),k} t_{(n),k} \right)^2 = \left(y_{(n),k} t_{(n),k} \right) z_{(n),i}^{(L-1)}$
- For hidden layers, propagate error backwards from the output nodes

hidden units Error Backpropagation

 $y_{(n),k}, E_n$:

n: data point

k: component

 $w_{ji}^{(m)}$:

- m: layer
- *j*: index matching output
- i: index matching input

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k} (y_{(n),k} - t_{(n),k})^{2}, \qquad y_{(n),k} = \sum_{i} w_{ki}^{(L)} z_{(n),i}^{(L-1)}$$

$$E_n(w) = \frac{1}{2} \sum_{k} (y_{(n),k} - t_{(n),k})^2$$

$$\frac{\partial E_n}{\partial w_{ki}^{(L)}} = \frac{\partial}{\partial w_{ki}^{(L)}} \frac{1}{2} \sum_{k'} (y_{(n),k'} - t_{(n),k'})^2 = (y_{(n),k} - t_{(n),k}) z_{(n),i}^{(L-1)} \tag{*}$$

$$(x)_{n),k} - t_{(n),k} z_{(n),i}^{(L-1)}$$
 (*)

Chain Rule for Partial Derivatives

- A "reminder"
- For f(x,y), with f differentiable wrt x and y, and x and y differentiable wrt u:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

Error Backpropagation

We can write

$$\frac{\partial E_n}{\partial w_{ji}^{(m)}} = \frac{\partial}{\partial w_{ji}^{(m)}} E_n \left(a_{(n),1}^{(m)}, a_{(n),2}^{(m)}, \dots, a_{(n),D}^{(m)} \right) \quad x_D$$

· Using the chain rule:

$$\frac{\partial E_n}{\partial w_{ji}^{(m)}} = \frac{\partial E_n}{\partial a_{(n),j}^{(m)}} \frac{\partial a_{(n),1}^{(m)}}{\partial w_{ji}^{(m)}} + \sum_{k \neq j} \frac{\partial E_n}{\partial a_{(n),k}^{(m)}} \frac{\partial a_{(n),k}^{(m)}}{\partial w_{ki}^{(m)}} \quad x_0$$

where $\sum_{k}(\cdots)$ runs over all other nodes k in the same layer (m)

• Since $a_{(n),k}^{(m)}$ does not depend on $w_{ji}^{(m)}$, all terms in the summation go to 0:

$$\frac{\partial E_n}{\partial w_{ii}^{(m)}} = \frac{\partial E_n}{\partial a_{(n),i}^{(m)}} \frac{\partial a_{(n),j}^{(m)}}{\partial w_{ii}^{(m)}}$$

Error Backpropagation cont.

 $W_{Mk}^{(-)}$ • Introduce error $\delta_{(n),j}^{(m)} \coloneqq \frac{\partial E_n}{\partial a_{(n),j}^{(m)}}$ inputs $\frac{\partial E_n}{\partial w_{ji}^{(m)}} = \delta_{(n),j}^{(m)} \frac{\partial a_{(n),j}^{(m)}}{\partial w_{ji}^{(m)}} x_1$ outputs $w_{01}^{(2)}$

Other factor is

$$\frac{\partial a_{(n),j}^{(m)}}{\partial w_{ji}^{(m)}} = \frac{\partial}{\partial w_{ji}^{(m)}} \sum_{k} w_{jk}^{(m)} z_{k}^{(m-1)} = z_{i}^{(m-1)}$$

$$\frac{\partial E_{n}}{\partial w_{ii}^{(m)}} = \delta_{(n),j}^{(m)} z_{i}^{(m-1)}$$

hidden units

Error Backpropagation cont.

• Error $\delta_{(n),i}^{(m)}$ can also be computed using chain rule:

$$\delta_{j}^{(m)} := \frac{\partial E_{n}}{\partial a_{(n),j}^{(m)}} = \sum_{k} \underbrace{\frac{\partial E_{n}}{\partial a_{(n),k}^{(m+1)}} \frac{\partial a_{(n),k}^{(m+1)}}{\partial a_{(n),j}^{(m)}}}_{\delta_{k}^{(m+1)}} \underbrace{\frac{\partial E_{n}}{\partial a_{(n),j}^{(m)}}}_{\delta_{k}^{(m+1)}}$$

where $\sum_{k} (\cdots)$ runs over all nodes k in the layer **after**.

$$a_{(n),k}^{(m+1)} = \sum_{i} w_{ki}^{(m+1)} z_{(n),i}^{(m)} = \sum_{i} w_{ki}^{(m+1)} h^{(m)} \left(a_{(n),i}^{(m)} \right)$$

$$\frac{\partial a_{(n),k}^{(m+1)}}{\partial a_{(n),j}^{(m)}} = w_{kj}^{(m+1)} \left(h^{(m)} \right)' \left(a_{(n),j}^{(m)} \right)$$

$$\frac{\partial a_{(n),j}^{(m)}}{\partial a_{(n),j}^{(m)}} = w_{kj}^{(m)} \quad (m-1) \quad (m+1) \quad (m-1) \quad (m-$$

$$\delta_{(n),j}^{(m)} = \sum_{k} \delta_{(n),k}^{(m+1)} w_{kj}^{(m+1)} \left(h^{(m)}\right)' \left(a_{(n),j}^{(m)}\right) = \left(h^{(m)}\right)' \left(a_{(n),j}^{(m)}\right) \sum_{k} \delta_{(n),k}^{(m+1)} w_{kj}^{(m+1)}$$

Error Backpropagation cont.

• Error $\delta_{(n),i}^{(m)}$ can also be computed using chain rule:

$$\delta_{(n),j}^{(m)} := \frac{\partial E_n}{\partial a_{(n),j}^{(m)}} = \sum_{k} \frac{\partial E_n}{\underbrace{\partial a_{(n),k}^{(m+1)}}} \frac{\partial a_{(n),k}^{(m+1)}}{\partial a_{(n),j}^{(m)}}$$

where $\sum_{k}(\cdots)$ runs over all nodes k in the layer **after**.

· Eventually:

$$\delta_{(n),j}^{(m)} = \left(h^{(m)}\right)' \left(a_{(n),j}^{(m)}\right) \sum_{k} \delta_{(n),k}^{(m+1)} \, w_{kj}^{(m+1)}$$

· A weighted sum of the later error "caused" by this weight

Error Backpropagation cont.

· Eventually:

$$\delta_{(n),j}^{(m)} = \left(h^{(m)}\right)' \left(a_{(n),j}^{(m)}\right) \sum_{k} \delta_{(n),k}^{(m+1)} w_{jk}^{(m+1)}$$

where $\sum_{k}(\cdots)$ runs over all nodes k in the layer **after**.

· Above recursion relation needs last set of errors: $\delta_j^{(L)}$

$$\frac{\partial E_n}{\partial w_{ii}^{(m)}} = \delta_{(n),j}^{(m)} z_i^{(m-1)} \tag{by definition}$$

$$\frac{\partial E_n}{\partial w_{ii}^{(L)}} = \delta_{(n),j}^{(L)} z_{(n),i}^{(L-1)} = \left(y_{(n),j} - t_{(n),j}\right) z_{(n),i}^{(L-1)} \tag{from before (*)}$$

$$\delta_{(n),j}^{(L)} = y_{(n),j} - t_{(n),j}$$
 (by comparison)

Summary

Output Definition / forward propagation

$$y_{(n),k}(x_n, w) = h^{(m+1)} \left(\sum_{j=1}^{M} w_{jk}^{(m+1)} h^{(m)} \left(\sum_{i=1}^{D} w_{ij}^{(m)} z_{(n),i}^{(m-1)} + w_{0j}^{(m)} \right) + w_{k0}^{(m+1)} \right)$$

Save z, α

Gradient computation / backpropagation

- Last layer: $\frac{\partial E_n}{\partial w_{ik}^{(L)}} = \left(y_{(n),k} t_{(n),k}\right) z_{(n),i}^{(L-1)}$
- Previous layers: Define $\delta_{(n),j}^{(m)}\coloneqq \frac{\partial E_n}{\partial a_{(n),j}^{(m)}}$ Starting from last layer,

$$\delta_{(n),j}^{(L)} = y_{(n),j} - t_{(n),j}$$

Recursion:
$$\frac{\partial E_n}{\partial w_{i,i}^{(m)}} = \delta_{(n),j}^{(m)} z_{(n),i}^{(m-1)},$$

where
$$\delta_{(n),j}^{(m)} = (h^{(m)})' (a_{(n),j}^{(m)}) \sum_{k} \delta_k^{(m+1)} w_{jk}^{(m+1)}$$

O(|W|)

Summary

Output Definition / forward propagation

$$y_{(n),k}(x_n, w) = h^{(m+1)} \left(\sum_{j=1}^{M} w_{jk}^{(m+1)} h^{(m)} \left(\sum_{i=1}^{D} w_{ij}^{(m)} z_{(n),i}^{(m-1)} + w_{0j}^{(m)} \right) + w_{k0}^{(m+1)} \right)$$

Save z, α

Gradient computation / backpropagation

Last layer: $\frac{\partial E_n}{\partial w_{in}^{(L)}} = (y_{(n),k} - t_{(n),k}) z_{(n),i}^{(L-1)}$

Previous layers: Define $\delta_{(n),j}^{(m)} \coloneqq \frac{\partial E_n}{\partial a^{(m)}}$ Starting from last layer,

$$\delta_{(n),i}^{(L)} = y_{(n),i} - t_{(n),i}$$

Recursion:
$$\frac{\partial E_n}{\partial w_{\cdot \cdot}^{(m)}} = \delta_{(n),j}^{(m)} z_{(n),i}^{(m-1)},$$

Goes through one layer of weights

Tensorflow Playground

https://playground.tensorflow.org

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Deep Learning

- Collection of important techniques to improve performance:
 - · Multi-layer networks
 - Convolutional networks, parameter tying
 - Hinge activation functions (ReLU) for steeper gradients
 - Momentum
 - Drop-out regularization
 - Sparsity
 - Auto-encoders for unsupervised feature learning
 - ...
- Scalability is key, can use lots of data since stochastic gradient descent is memory-efficient, can be parallelized

Hand-written Digit Recognition

```
3681796691
6757863485
21797/2845
4819018894
7618641560
7592658197
222234480
0 4 3 8 0 7 3 8 5 7
0146460243
7/28169861
```

- · MNIST standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images

LeNet-5, circa 1998

- LeNet developed by Yann LeCun et al.
 - · Convolutional neural network
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 "filter")
 - Breaking symmetry

ImageNet

- ImageNet standard dataset for object recognition in images (Russakovsky et al.)
 - 1000 image categories, ≈1.2 million training images (ILSVRC 2013)

GoogLeNet, circa 2014

- GoogLeNet developed by Szegedy et al.. CVPR 2015
- Modern deep network
- ImageNet top-5 error rate of 6.67% (later versions even better)
- Comparable to human performance (especially for fine-grained categories)

ResNet, circa 2015

- ResNet developed by He et al., ICCV 2015
- 152 layers
- ImageNet top-5 error rate of 3.57%
- Better than human performance (especially for fine-grained categories)

Key Component 1: Convolutional Filters

- Share parameters across network
- Reduce total number of parameters
- Provide translation invariance, useful for visual recognition

Common Operations

- Fully connected (dot product)
- Convolution
 - · Translationally invariant
 - · Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - · Activation functions, e.g. ReLU

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

Convolutional neural network (CNN)

- Has translational invariance properties from convolution
- · Common used for computer vision

Recurrent neural network RNN

- Has feedback loops to capture temporal or sequential information
- Useful for handwriting recognition, speech recognition, reinforcement learning
- Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

Others

 General feedforward networks, variational autoencoders (VAEs), conditional VAEs

Training Neural Networks

- Data preprocessing
 - · Removing bad data
 - Transform input data (e.g. rotating, stretching, adding noise)
- Training process (optimization algorithm)
 - Choice of loss function (eg. L1 and L2 regularization)
 - Dropout: randomly set neurons to zero in each training iteration
 - Learning rate (step size) and other hyperparameter tuning
- Software packages: efficient gradient computation
 - Caffe, Torch, Theano, TensorFlow

Key Component 2: Rectified Linear Units (ReLUs)

Vanishing gradient problem

- If derivatives very small, no/little progress via stochastic gradient descent
- Occurs with sigmoid function when activation is large in absolute value
- ReLU: $h(a_i) = \max(0, a_i)$
- Non-saturating, linear gradients (as long as non-negative activation on some training data)
- · Sparsity inducing

Key Component 3: Many, Many Layers

- ResNet: ≈152 layers ("shortcut connections")
- GoogLeNet: ≈27 layers ("Inception" modules)
- VGG Net: 16-19 layers (Simonyan and Zisserman, 2014)
- Supervision: 8 layers (Krizhevsky et al., 2012)

Key Component 3: Many, Many Layers

- ResNet: ≈152 layers ("shortcut connections")
- GoogLeNet: ≈27 layers ("Inception" modules)
- VGG Net: 16-19 layers (Simonyan and Zisserman, 2014)
- Supervision: 8 layers (Krizhevsky et al., 2012)

Key Component 3: Many, Many Layers

- ResNet: ≈152 layers ("shortcut connections")
- GoogLeNet: ≈27 layers ("Inception" modules)
- VGG Net: 16-19 layers (Simonyan and Zisserman, 2014)
- Supervision: 8 layers (Krizhevsky et al., 2012)

Key Component 4: Momentum

- · Trick to escape plateaus / local minima
- Take exponential average of previous gradients

$$\frac{\overline{\partial E_n}^{\tau}}{\partial w_{ji}} = \frac{\overline{\partial E_n}^{\tau}}{\partial w_{ji}} + \alpha \frac{\overline{\partial E_n}^{\tau-1}}{\partial w_{ji}}$$

· Maintains progress in previous direction

Key Component 5: Asynchronous Stochastic Gradient Descent

- Big models won't fit in memory
- Want to use compute clusters (e.g. 1000s of machines) to run stochastic gradient descent
- How to parallelize computation?
- Ignore synchronization across machines
 - Just let each machine compute its own gradients and pass to a server storing current parameters
 - Ignore the fact that these updates are inconsistent
 - Seems to just work (e.g. Dean et al. NIPS 2012)

Key Component 6: Learning Rate Schedule

• How to set learning rate η ?:

$$\boldsymbol{w}^{\tau} = \boldsymbol{w}^{\tau - 1} + \eta \nabla \boldsymbol{w}$$

- Option 1: Run until validation error plateaus. Drop learning rate by x%
- Option 2: Adagrad, adaptive gradient. Per-element learning rate set based on local geometry (Duchi et al. 2010)

Key Component 7: Data Augmentation

- Augment data with additional synthetic variants (10x amount of data)
- Or just use synthetic data, e.g. Sintel animated movie (Butler et al. 2012)

Key Component 8: Data and Compute

- · Get lots of data (e.g. ImageNet)
- Get lots of compute (e.g. CPU cluster, GPUs)
- Cross-validate like crazy, train models for 2-3 weeks on a GPU
- Researcher gradient descent (RGD) or Graduate student descent (GSD): get 100s of researchers to each do this, trying different network structures

Challenges

Interpretability:

Challenges

Data efficiency:

- ImageNet: 14 million images, 20000 categories
- AlphaStar: 200 years of gameplay

Challenges

- Problem formulation (what are you trying to predict?)
- Choice of model and optimization algorithm
- Data collection, post-processing
- Feature selection
- ...

More information

- https://sites.google.com/site/ deeplearningsummerschool
- http://tutorial.caffe.berkeleyvision.org/
- ufldl.stanford.edu/eccv10-tutorial
- http://www.image-net.org/challenges/LSVRC/ 2012/supervision.pdf
- Prof. Oliver Schulte's CMPT880: Deep Learning
- Project ideas
 - Long short-term memory (LSTM) models for temporal data
 - Learning embeddings (word2vec, FaceNet)
 - Structured output (multiple outputs from a network)
 - Zero-shot learning (learning to recognize new concepts without training data)
 - Transfer learning (use data from one domain/task, adapt to another)

Conclusion

- Readings: Ch. 5.1, 5.2, 5.3
- Feed-forward networks can be used for regression or classification
 - Similar to linear models, except with adaptive non-linear basis functions
 - These allow us to do more than e.g. linear decision boundaries
- Different error functions
- Learning is more difficult, error function not convex
 - Use stochastic gradient descent, obtain (good?) local minimum
- Backpropagation for efficient gradient computation