Cyfrowe Przetwarzanie Obrazu Filtry splotowe

Wojciech Kowalewski

fraktal@amu.edu.pl

Wydział Matematyki i Informatyki UAM Uniwersytet im. Adama Mickiewicza w Poznaniu

Wiosna 2021

Operacje w dziedzinie przestrzennej obrazu

- Przypomnienie: Dość ogólną grupę operacji w dziedzinie przestrzennej można zdefiniować następująco:
 - \blacksquare niech f(x, y) oznacza obraz źródłowy, natomiast g(x, y) obraz wynikowy
 - przekształcenie g(x, y) = T(f(x, y)) działa na pewnym sąsiedztwie piksela (x, y) obrazu f(x, y). Pokazuje to poniższy rysunek dla piksela (x_0, y_0) i jego otoczenia wymiaru 3 (otoczenia są zwykle kwadratami o nieparzystej długości krawędzi w ogólności otoczenia mogą być prostokątami):

 Przykładem tak rozumianego przekształcenia jest operacja splotu i bardzo do niej podobna operacja korelacji krzyżowej.

Przykład ideowy

- W każdym pikselu (x, y) obrazu f(x, y) zaczepiamy centralnie jądro filtra w(s, t)
- Następnie w każdym pikselu obrazu, który jest pokryty przez jądro filtra wykonujemy mnożenie wartości filtra i wartości obrazu.
- Finalnie sumujemy otrzymane iloczyny i zastępujemy wartość f(x, y) obliczoną sumą.

$$T(f(x,y)) = \sum_{m=-1}^{1} \sum_{m=-1}^{1} f(x+m, y+n) \cdot w(m, n)$$

 Takie przekształcenie jest źródłem bardzo wielu klasycznych filtrów obrazowych i jest w istocie operacją korelacji krzyżowej

Korelacja krzyżowa

 Załóżmy, że f, g są ciągłymi rzeczywistymi funkcjami jednej zmiennej. Korelacją krzyżową funkcji f i g nazywamy funkcję zdefiniowaną przez formułę

$$(f \star g)(s) = \int_{-\infty}^{\infty} f(t)g(s+t) dt$$
 (1)

- Odpowiednikiem *jądra* z poprzedniego slajdu jest tu funkcja *f*
- Operacja korelacji krzyżowej nie jest przemiennna pokazuje to poniższy rysunek (na podstawie Wikipedii)

Korelacja krzyżowa funkcji f i g może być równoważnie zdefiniowana jako

$$(f \star g)(s) = \int_{-\infty}^{\infty} f(t - s)g(t) dt$$
 (2)

Splot funkcji

 Załóżmy, że f, g są ciągłymi rzeczywistymi funkcjami jednej zmiennej. Spłotem funkcji f i g nazywamy funkcję zdefiniowaną przez formułę

$$(f * g)(s) = \int_{-\infty}^{\infty} f(t)g(s-t) dt$$
 (3)

 Operacja splotu jest przemiennna - pokazuje to poniższy rysunek (na podstawie Wikipedii) - formalny dowód przemienności jest oczywisty (zamiana zmiennych pod całką)

Splot funkcji f i g może być zatem równoważnie zdefiniowany jako

$$(f * g)(s) = \int_{-\infty}^{\infty} f(s - t)g(t) dt$$
 (4)

Własności korelacji krzyżowej i splotu

Łączność splotu

$$f * (g * h) = (f * g) * h$$
 (5)

► Rozdzielość splotu względem dodawania

$$f * (g + h) = (f * g) + (f * h)$$
 (6)

 Relacja splotu i korelacji krzyżowej - splot jest równoważny korelacji krzyżowej, jeżeli wykres jednej z funkcji w splocie odbijemy względem osi Y:

$$(f(t) * g(t))(t) = (f(-t) * g(t))(t)$$
(7)

Splot korelacji i korelacja splotu

$$f \star (g * h) = (f \star g) * h \tag{8}$$

 Pewna przewaga splotu nad korelacją krzyżową - splot w przeciwieństwie do korelacji krzyżowej jest operacją przemienną

Korelacji krzyżowa i splot funkcji dyskretnej

 Załóżmy, że f, g są wektorami rzeczywistymi. Wówczas Korelacja krzyżowa ma postać formuły

$$(f \star g)[n] = \sum_{m=-\infty}^{\infty} f[m] \cdot g[n+m]$$
 (9)

natomiast splot jest definiowany przez formułę

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m] \cdot g[n-m]$$
(10)

W wersji dwuwymiarowej wzory te mają postać:

$$(f \star g)[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot g[m+k, n+l]$$
 (11)

oraz

$$(f * g)[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot g[m-k, n-l]$$
(12)

Filtry splotowe

- Przemienność splotu powoduje, że jest o częściej używany jako ogólna koncepcja filtracji sygnałów (jedno i wielowymiarowych)
- W praktyce oczywiście nośniki zarówno sygnałów jak i jąder filtrów są skończone, zatem wzory (9) oraz (12) przyjmują postaci

$$(f * g)[n] = \sum_{m = -M_1}^{M_2} f[m] \cdot g[n - m], \quad n = N_1, \dots, N_2$$
 (13)

oraz

$$(f*g)[n,m] = \sum_{k=-K_1}^{K_2} \sum_{l=-L_1}^{L_2} f[k,l] \cdot g[m-k,n-l], \quad m = M_1, \dots, M_2, \ n = N_1, \dots, N_2$$
 (14)

▶ W przypadku obrazu f[x,y] o wymiarach $M \times N$ oraz kwadratowego jądra filtru w o nieparzystm wymiarze S otrzymujemy (s = S/2 + 1)

$$(w*f)[n, m] = \sum_{k=-s}^{s} \sum_{l=-s}^{s} w[k, l] \cdot f[m-k, n-l], \quad m = 0, \dots, M-1, \quad n = 0, \dots, N-1$$
 (15)

Filtry splotowe

- Wzór (7) pokazuje, że jeżeli w[x] jest jądrem korelacji krzyżowej, to odpowiadające mu jądro splotu będzie obrócone o 180 stopni względem swojego środka (odbicie w pionie)
- Analogicznie jest dla przypadku dwuwymiarowego: jeżeli w[x, y] jest jądrem korelacji krzyżowej, to odpowiadające mu jądro splotu będzie obrócone o 180 stopni względem swego środka (odbicie w pionie i następnie odbicie w poziomie).
- Ponadto jeżeli jądro ma nieparzysty wymiar K, to zaczepienie go w pozycjach 0,..., K/2 oraz N − K/2 − 1,..., N − 1 filtrowanego sygnału jednowymiarowegp powoduje brak K/2 wartości w sygnale z lewej i prawej strony. Analogicznie jest w przypadku sygnału dwuwymiarowego.
- Powoduje to potrzebę rozszerzania sygnału o K/2 (tzw. padding) na końcach dziedziny w każdym jej kierunku.
- Kolejne dwa slajdy pokazują to w przypadku jedno i dwuwymiarowym, zarówno dla korelacji krzyżowej jak i splotu.

Correlation Convolution Corigin f w ✓ Origin f w rotated 180° 00010000 12428 00010000 82421 00010000 0 0 0 1 0 0 0 0 8 2 4 2 1 1 2 4 2 8 L Starting position alignment L Starting position alignment Zero padding 0 0 0 0 0 1 0 0 0 0 0 0 1 2 4 2 8 8 2 4 2 1 L Starting position L Starting position 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 4 2 8 8 2 4 2 1 Position after 1 shift Position after 1 shift 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 2 4 2 1 Position after 3 shifts 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 4 2 8 8 2 4 2 1 Final position Final position Correlation result Convolution result 08242100 0 1 2 4 2 8 0 0 Extended (full) correlation result Extended (full) convolution resul.

0 0 0 1 2 4 2 8 0 0 0 0

0 0 0 8 2 4 2 1 0 0 0 0

Normalizacja filtrów

► Rozpatrzmy filtr z jądrem o rozmiarze 3 i postaci:

1	1	1
1	1	1
1	1	1

 Jasne jest, że takie jądro łatwo może spowodować przekroczenie zakresu jasności kanału w pikselu: jeżeli zastosujemy je do fragmentu obrazu o wartościach

255	255	255
255	255	255
255	255	255

otrzymamy wartość $9 \cdot 255 = 2295$, co znacznie przekracza zakres [0,255] i spowoduje automatyczne obcięcie do wartości 255.

W celu uniknięcia takich obcięć można filtr poddać normalizacji, która w tym przypadku może być najprościej wykonana przez podzielnie każdej wartości filtra przez sumę jego wszystkich wartości, tzn. w tym przypadky przez 9:

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Normalizacja filtrów

► Filtry

-1	-1	-1
-1	8	-1
-1	-1	-1

-1	0	1
-1	0	1
-1	0	1

nie wymagają tak rozumianej normalizacji, ale łatwo mogą doprowadzić do przekroczenia zakresu wartości piksela poniżej wartości zero.

Przykładowo prawy z nich zastosowany do fragmentu obrazu o wartościach

255	255	0
255	255	0
255	255	0

da wartość -765, co spowoduje automatyczne obcięcie do zera. Z drugiej strony filtr taki może wygenerować również wartość +765, co sugeruje co najmniej jego przeskalowanie przez 3.

 Dodatkowo można w takich sytuacjach dodać (poza operacją splotu) do działania filtra stałą wartość. Przykładowo prawy filtr można by zmodyfikować do postaci

-1/6	0	1/6
-1/6	0	1/6
-1/6	0	1/6

co implikuje wynik jego działania z zakresu [-127,127] i następnie dodać do wartości piksela wartość +127. Ostatecznie wartości będą z zakresu [0,254].

Filtry wygładzające (blur)

► Wygładzanie liniowe i jego modyfikacje

			1/25	1/25	1/25	1/25	1/25
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25
			1/25	1/25	1/25	1/25	1/25

 $\begin{array}{c|cccc} 1/12 & 1/12 & 1/12 \\ \hline 1/12 & 4/12 & 1/12 \\ \hline 1/12 & 1/12 & 1/12 \\ \hline \end{array}$

Lewy i środkowy filtr wygładzają jednostajnie (środkowy znacznie mocniej), natomiast prawy filtr preferuje piksel centralny w średniej (wariant nieliniowy)

► Rozmycie nieliniowe Gaussa - generatorem jest funkcja (link do wykresu)

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{(x-\mu_x)^2}{2\sigma_x^2} + \frac{(y-\mu_y)^2}{2\sigma_y^2}\right)}$$

Próbkowanie jej symetrycznej ($\mu_{\rm X}=\mu_{\rm y}=0,~\sigma_{\rm X}=\sigma_{\rm y}=1$) postaci na siatce 5x5 daje filtr

	1	4	7	4	1
	4	16	26	16	4
$\frac{1}{273}$.	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

W tym przypadku piksele są uwzględniane w średniej proporcjonalnie do ich odległości od piksela centralnego.

Kierunkowe filtry wygładzające (blur)

0	0	0	0	0
0	0	0	0	0
1/5	1/5	1/5	1/5	1/5
0	0	0	0	0
0	0	0	0	0

0	0	1/5	0	0
0	0	1/5	0	0
0	0	1/5	0	0
0	0	1/5	0	0
0	0	1/5	0	0
	0 0	0 0 0 0 0 0	0 0 1/5 0 0 1/5 0 0 1/5	0 0 1/5 0 0 0 1/5 0 0 0 1/5 0

1/5	0	0	0	0
0	1/5	0	0	0
0	0	1/5	0	0
0	0	0	1/5	0
0	0	0	0	1/5

0	0	0	0	1/5
0	0	0	1/5	0
0	0	1/5	0	0
0	1/5	0	0	0
1/5	0	0	0	0

Lewy górny wygładza w poziomie, a prawy górny w pionie. Dolne wygładzają wzdłuż kierunków nachylonych pod kątem 45 oraz 135 stopni.

Obliczanie pochodnych kierunkowych w obrazie

Pochodna kierunkowa pozioma z różnic centralnych :

$$\frac{\partial f}{\partial x}(x,y) \approx \frac{f(x+1,y)-f(x-1,y)}{2}$$

Może być odwzorowana w obrazie wynikowym przez filtr (dodatkowo odpowiednio znormalizowany)

-1	0	1
-1	0	1
-1	0	1

► Analogicznie pochodna kierunkowa pionowa z różnic centralnych :

$$\frac{\partial f}{\partial y}(x,y) \approx \frac{f(x,y+1) - f(x,y-1)}{2}$$

może być reprezentowana przez filtr typu

-1	-1	-1
0	0	0
1	1	1

▶ Podobnie pochodna kierunkowa w kierunku [1,-1] z różnic centralnych :

$$\frac{\partial f}{\partial y}(x,y) \approx \frac{f(x+1,y+1) - f(x-1,y-1)}{2\sqrt{2}}$$

może być reprezentowana przez filtr typu

-1	-1	0
-1	0	1
0	1	1

Obliczanie laplasjanu obrazu

► Laplasjan obrazu f(x,y) reprezentuje drugą pochodną w 2D :

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$$

może być przybliżony przez

$$\nabla^2 f(x,y) \approx f(x+1,y) + f(x-1,y) + f(x,y+1)f(x,y-1) - 4f(x,y)$$

► Zatem może być przybliżony przez jeden z filtrów

0	-1	0
-1	4	-1
0	-1	0

0	1	0
1	-4	1
0	1	0

 Jedną z wad takiego przybliżenia jest jego anizotropowość - bardziej izotropowe wersje są reprezentowane przykładowo przez filtry

-1	-1	-1
-1	8	-1
-1	-1	-1

1/6	2/3	1/6
2/3	-10/3	2/3
1/6	2/3	1/6

Obliczanie laplasjanu obrazu

- Inną wadą laplasjanu jest jego wrażliwość na szum w celu jej zniwelowania działanie laplasjanu poprzedza się filterem wygładzającym Gaussa
- Z łączności splotu wynika, że można zbudować filtr wynikowy, będący splotem filtrów laplasjanu i Gaussa i do obrazu zastosować ten wynikowy filtr nosi on nazwę Laplacian of Gauss i jest oznaczany symbolem LoG.

▶ Jednym z filtrów używanych do jego reprezentacji jest

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	2	0
1	4	5	3	0	3	5	4	1
2	5	3	-12	-24	-12	3	5	2
2	5	0	-24	-50	-24	0	5	2
2	5	3	-12	-24	-12	3	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	0
0	1	1	2	2	2	1	1	0

LoG jako różnica filtrów Gaussa

 LoG można przybliżać różnicą 2 filtrów Gausa o różnym odchyleniu standardowym - taki filtr wynikowy oznaczony jest symbolem DoG (Difference of Gauss)

$$DoG(x, y, \sigma, K) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} - \frac{1}{2\pi K^2 \sigma^2} e^{-\frac{x^2 + y^2}{2K^2 \sigma^2}}$$

- ▶ dla $K \approx 1.6$ DoG najlepiej przybliża LoG
- ightharpoonup dla $K \approx 5$ DoG, wg pewnych teorii, przybliża sposób widzenia krawędzi przez człowieka

Wykrywanie krawędzi

- Krawędź w obrazie reprezentowana jest przez istotną zmianę jasności w ustalonym kierunku przy braku zmiany jasności w kierunku prostopadłym do ustalonego
- Naturalnym jest zatem szukanie krawędzi w obszarach z maksymalną wartością pochodnej (w 2D można liczyć jej moduł z sumy pochodnych kierunkowych)
- ▶ Punkty z maksimum pierwszej pochodnej są punktami z zerową drugą pochodną
- Z powyższych faktów wynika kilka różnych koncepcji szukania krawędzi w obrazie
- Filtr Robertsa używane są tu dwa składowe filtry obliczające pochodne kierunkowe w kierunkach [1,1] oraz [-1,1], reprezentowane przez jądro

	0	1		1	0
/1-	-1	0	12-	0	-1

Za ich pomocą oblicza się wektor pochodnych kierunkowych w każdym pikselu obrazu, a następnie jego moduł w metryce I_1 (prościej) lub I_2 . Finalny obraz jest reprezentowany przez te moduły. Filtr ten jest dość wrażliwy na szum, daje dość nieprecyzyjne i grube krawędzie, ale jego zaletą jest prostota i szybkość obliczeń.

Filtry Sobela i Prewita - działają identycznie jak filtr Robertsa, ale każdy używa innego zestawu jądra. Zarówno Sobel jak i Prewit reprezentuje pochodne kierunkowe obliczone wg różnic centralnych, ale w przypadku Sobela z większymi wagami przyłożonymi dla kierunku przechodzącego przez analizowany punkt

$s_1 =$	-1 -2 -1	0 0	1 2 1	$s_2 =$	1 0 -1	2 0 -2	1 0 -1
ρ_1 =	-1 -1 -1	0 0	1 1 1	p ₂ =	1 0 -1	1 0 -1	1 0 -1

Operator Sobela jest nieco bardziej izotropowy, a oba są bardziej odporne na szum niż filtr Robertsa.

Wykrywanie krawędzi

 Filtr Kirscha - stosuje 8 postaci jądra do oblicznia pochodnych kierunkowych (w klasycznych kierunkach geograficznych) w pikselu i wybiera ostatecznie tą, która daje maksymalną odpowiedź.

5	5	5		5	5	-3		5	-3	-3		-3	-3	-3
-3	-3	-3		-3	-3	-3		5	-3	-3		5	5	-3
	2	_	i		_		i				,			
-5	-3	-3		-3	-3	-3		-3	-3	5		-3	5	5
-3	0	-3 -3		-3 -3	-3	-3 5		-3	-3	5		-3 -3	0	5 5

- Filtr oparty na obliczeniu Laplasjanu wagi jądra laplasjanu sumują się do zera , zatem laplasjan daje odpowiedź zero w obszarach jednostajnej jasności. Jego istotą jest rozróżnianie dodatnich i ujemnych wartości drugiej pochodnej po przeciwnych stronach krawędzi. Filtr ten jest dość wrażliwy na szum, więc częściej stosuje się wersję LoG lub DoG.
- Detekcja krawędzi przez przejście przez zero drugiej pochodnej oblicza się tu (jak powyżej)
 obraz wartości laplasjanu i następnie stosuje się tu jedną z trzech ogólne koncepcji druga i
 trzecia będzie możliwa do realizacji w późniejszej części kursu:
 - Szukanie sąsiednich pikseli o przeciwnych znakach: jeżeli $LoG(x,y) \cdot LoG(x+i,y+j) < 0$ and $|LoG(x,y)| < |LoG(x+i,y+j)| \Rightarrow$ piksel \in krawędź
 - Progowanie wartością zero
 - Operacje morfologii matematycznej

Wykrywanie krawędzi

Filtr Frei'a Chena - stosuje 9 postaci jądra:

	-1 0 1	$\begin{array}{c c} -\sqrt{2} \\ 0 \\ \sqrt{2} \end{array}$	-1 0 1	$ \begin{array}{c cccc} -1 & 0 \\ -\sqrt{2} & 0 \\ -1 & 0 \end{array} $	$\begin{array}{c c} \hline & \sqrt{2} \\ \hline & 1 \\ \hline & 0 \\ \hline & 1 \\ \hline \end{array}$	$\begin{array}{c c} 0 \\ \hline 1 \\ \hline -\sqrt{2} \end{array}$	-1 0 1	$\sqrt{2}$ -1 0	
L	1 0 -1	0 1 0	-1 0 1	0 1 0 0 0 0 0 -1	$ \begin{array}{c cccc} & -\sqrt{2} \\ \hline & 1 & -2 \\ & -2 & 4 \\ \hline & 1 & -2 \\ \end{array} $	1 -2 1	-2 1 -2	1 4 1	-2 1 -2
				$\begin{array}{c c} 1 & 1 \\ 1 & 1 \\ \hline 1 & 1 \end{array}$	1 1 1				

Za wykrywanie krawędzi odpowiadają pierwsze 4 jądra. Kolejne 4 służą do wykrywania linii. Całość stanowi bazę ortogonalną 9-cio wymiarowej przestrzeni.

 Uwaga: Do zagadnienia wykrywania krawędzi wrócimy na zajęciach poświęconych filtracji w przestrzeni częstotliwości.

Filtry wyostrzające

 Naturalną koncepcją jest sumowanie wartości obrazu i jakiegoś filtra krawędziowego - przykładowo filtra laplasjanu:

	0 -1 -1 4 0 -1	4 -1	$+$ $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	0 0 1 0 0 0	= -	0 -1 0	-1 5 -1	0 -1 0			
	-1 -1 8 -1 -1 -1	8 -1	$+$ $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	0 0 1 0 0 0	⊣	-1 -1 -1	-1 9 -1	-1 -1 -1			
-1 -1 -1 -1 -1 -1 -1 -1 24 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-1 -1 -1 -1 -1	0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 0 0 0	=	-1 -1 -1 -1	-1 -1 -1 -1	-1 -1 25 -1	-1 -1 -1 -1	-1 -1 -1 -1

Filtry drugiej pochodnej można w powyższych formułach dodatkowo skalować przez ustaloną stałą.

Można również zastosować koncepcję dwukrokową (f(x, y) oznacza oryginalny obraz)

$$g(x, y) = f(x, y) - f_{smooth}(x, y)$$
$$f_{sharp}(x, y) = f(x, y) + k \cdot g(x, y)$$

gdzie f_{smooth} oznacza obraz po działaniu jakigoś filtra wygładzającego. Wartość k dobrze jest wziąć z zakresu [0.2,0.7] (wyższa oznacza silniejsze wyostrzanie).