Chapitre 17 : Limites de suites réelles

I - Limite d'une suite

- 1) Suites convergentes
- 2) Suites réelles de limite infinie
- 3) Suites divergentes
- 4) Limites et ordre
- 5) Opérations sur les limites
- 6) Equivalents
- 7) Relations de comparaison classiques

II - Théorèmes de convergence pour les suites monotones

- 1) Les théorèmes principaux
- 2) Suites adjacentes

III - Quelques éléments sur l'étude des suites définies par une relation $u_{n+1} = f(u_n)$

- 1) Le problème de l'existence de la suite
- 2) Une condition nécessaire de convergence
- 3) Des exemples de méthodes dans trois cas favorables

Exemples de compétences attendues

- Savoir utiliser les équivalents usuels pour calculer des limites de suites dont le terme général est explicite.
- 2 Savoir étudier des suites (u_n) définies par le premier terme et une relation de récurrence $u_{n+1} = f(u_n)$ dans les cas favorables où f est continue monotone ou contractante (guidé ou non). Savoir calculer le terme général d'une telle suite avec un programme Python.
- $oldsymbol{3}$ Savoir étudier les suites (x_n) dont le terme général est solution d'une équation paramétrée par n
- $oldsymbol{\bullet}$ Savoir montrer que deux suites sont adjacentes. Savoir trouver une valeur approchée de la limite à ε près au moyen d'un programme Python.

Chapitre 18: L'espace vectoriel \mathbb{K}^n et ses sous-espaces vectoriels $(d\acute{e}but)$

Dans tout ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

- I L'espace vectoriel \mathbb{K}^n
- 1) Définition de l'espace vectoriel \mathbb{K}^n
- 2) Règles de calculs
- 3) Exemples
- II Sous-espaces vectoriels de \mathbb{K}^n
- 1) Définition et exemples
- 2) Combinaisons linéaires
- III Indépendance linéaire, base
- 1) Familles libres, familles liées

Exemples de compétences attendues

- Savoir justifier qu'une partie de \mathbb{K}^n est un sous-espace vectoriel de \mathbb{K}^n . (en utilisant la définition, ou en mettant en évidence une famille génératrice)
- **2** Savoir déterminer un système d'équations cartésiennes décrivant un sous-ev de \mathbb{K}^n à partir d'une famille génératrice du sous-ev.
- $oldsymbol{3}$ Savoir effectuer le procédé inverse : déterminer une famille génératrice d'un sous-ev de \mathbb{K}^n à partir d'un système d'équations cartésiennes décrivant celui-ci.
- 4 Savoir déterminer si une famille est libre ou liée.

Questions de cours possibles :

- Montrer que l'intersection de deux sous-espaces vectoriels de \mathbb{K}^n est un sous-espace vectoriel de \mathbb{K}^n .
- Démontrer que, si \mathcal{F} est une famille de vecteurs de \mathbb{K}^n , alors $Vect\mathcal{F}$ est un sous-espace vectoriel et c'est le plus petit (au sens de l'inclusion) qui possède les vecteurs de \mathcal{F} .
- Soit $\mathcal{F} = (\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_p})$ une famille de vecteurs de \mathbb{K}^n et \overrightarrow{x} un vecteur de \mathbb{K}^n . Si \mathcal{F} est libre et $\overrightarrow{x} \notin Vect\mathcal{F}$, montrer que la famille $(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_p}, \overrightarrow{x})$ est encore libre.