Multimedia Data Communication Through Cognitive Radio Networks

Ansuman Bhattacharya¹

¹N. I. T. Meghalaya, Shillong, India.

26 March, Meghalaya, India

- Introduction
- **Problem Statement**
- **Our Contribution**
- Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- **Problem Statement**
- **Multi-path Routing**
 - Proposed Model
 - Performance Analysis
- **On-Demand Routing**
 - Proposed Model
 - Performance Analysis
- Conclusion

- Introduction

- **Sample Division Multiplexing**
 - Connection Establishment and Data Transmission Process
 - Performance Analysis

Proposed Model

- - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

Bandwidth Management and Cognitive Radio Networks

- Wireless Communication: the fastest growing industry in telecommunication.
- Rapid growth of 802.11 hotspots in uncoordinated fashion.
- Increasing trend of multimedia communication.
- Problem of maintaining QoS for multimedia signal.
- Limited availability of radio spectrum.
- The available radio spectrum is not utilized uniformly.
- CR technology for increasing the effective utilization of the available spectrum.
 - Opportunistic sharing of the spectrum using white spaces.

- 1 Introduction
- 2 Problem Statement
- Our Contribution
- 4 Sample Division Multiplexing
 - Proposed Model
 Connection Establishment and Data Transmission Process
 - Performance Analysis
- Problem Statement
- Multi-path Routing
 - Proposed Model
 - Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- 8 Conclusion

as White)

Spectrum Divided into Channels(Unused Channels shown

- A part of the spectrum divided into 16 channels and marked as x_0, x_1, \dots, x_{15} .
- Each of these channels having same bandwidth, B_{min}, equal to the minimum bandwidth required among different types of multimedia signals.
- Let a video signal transmission need eight consecutive x_i 's.
- Problem: There is no continuous band consisting of eight consecutive channels though a total of nine randomly distributed channels are still available.

Problem Statement cont.

Problem

To devise an appropriate technique for the transmission of the given multimedia signal through eight of these available nine channels, without compromising the *QoS* at the receiving end.

Routing in Cognitive Radio Networks

- In a general CRN,
 - channels may have different bandwidths,
 - may have varying propagation characteristics and
 - may be available for unequal time durations.
- In a dynamic CRN,
 - PUs may use the channels for intermediate durations,
 - channel switching may be required and
 - routs may be changed.
- Distance minimization techniques or channel selection approaches to path assignment may not yield optimal results.

Sequential and joint path-channel selection algorithms that minimize the hop count and maintain conflict free channels constitute a challenging research problem in *CRN*s.

Multi-path Routing

Outline

- 1 Introduction
- 2 Problem Statement
- Our Contribution
- Sample Division Multiplexing
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- Problem Statement
- Multi-path Routing
 - Proposed Model

Proposed Model

- Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- 8 Conclusion

Our Contribution

- In a fragmented spectrum, even when no contiguous white space of required bandwidth is available, communication is possible over the required number of fragmented channels.
- We use the technique of Sample Division Multiplexing (SDM).

Our Contribution cont.

- In *SDM* a multimedia signal is decomposed into a number of sample sets, each transmitted over a bandwidth of B_{min} .
- Each sample set is transmitted through one available channel in the white space such that different sample sets occupy different channels in the available spectrum holes.
- At the receiver end, all the packets are used to reconstruct the original signal.
- Suitable algorithms for channel sensing and allocation avoiding the hidden node problem and possible collision are used.

Our Contribution cont.

- There is a need to design new routing protocols that
 - considers the spectrum sensing function,
 - spectrum decision,
 - MAC layer spectrum access technology and
 - end-to-end performance requirements for *CRN*s.
- A novel scheme for multi-hop routing in a CRN for multimedia communication has been proposed,
 - even when a contiguous band of required width is not available for any hop in the route.
 - scheme is based on an extension of the idea of SDM.

- Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

Sample Division Multiplexing

Consider a band-limited signal of a bandwidth W.

- Sampling Frequency 2W.
- Samples are s_0, s_1, \dots, s_{N-1} .
- Number of samples *N* taken over time period *T*.
- Sampling interval of $\tau = \frac{1}{2W}$.
- Thus, $T = N\tau$.

Sample Division Multiplexing cont.

- Let required number of available channels to maintain QoS be *n*.
- Partition of the *N* samples in *n* subsets, $SS_0, SS_1, SS_2, \cdots, SS_{n-1}$

$$SS_i = \{s_j | j = i \mod n, 0 \le i, j \le n - 1\}$$
 (1)

- Note that in each SS_i , the samples are separated by $n\tau$,
- Transmission bandwidth, $\frac{W}{n} \leq B_{min}$.

Utilized Spectrum with Sample Division Multiplexing

- $COGCH_i$ are Cognitive Channels, $i = 0, 1, \dots, n-1$.
- Corresponding to each time frame of a suitable duration T, samples are taken in the set SS_i to form a data sub-packet SP_i.
- The header of each SP_i contains the identity of the time frame and the sub-packet number (SPN) equal to i.

- 1 Introduction
- 2 Problem Statement
- Our Contribution
- 4 Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- 5 Problem Statement
- Multi-path Routing
 - Proposed Model
 - Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- 8 Conclusion

System Model

Assumptions

- All Secondary Users (SU) have the same priority.
- 2 All *Primary Users* (*PU*) have the same priority which is greater than that of a *SU*.
- Any given node in the system has the maximum capability of providing some m number of channels.
- A Common Control Channel (CCC) is used for coordination between the various SUs, the communications being done in discrete time slots.

- Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

- Connection establishment process consists of Sensing and Allocation.
- When the transmitter buffer becomes full, a status bit B_{Tx} is set to 1 indicating that this node wants to transmit a message.
- 3 The transmitter needs *m* channels to transmit its message.
- A node can always sense the channels used by all of its 1-distance neighbors for transmission.
- While allocating a channel, the hidden node problem is avoided.

Beginning of Transmission cont.

Steps

- Grab the *CCC* and reserve *m* channels at the receiving node.
- Sense the used channels of the 1-distance neighbors.
- Out of the free channels, choose *m* channels not being used by any of its 1-distance neighbors in receiving messages from some 2-distance neighbors (to avoid hidden node problem).
- Allocate the m free channels to the destination node.

Nodes with their Respective Sensing Regions

A wants to allocate communication channels for sending multimedia data.

End of Transmission

Steps

- The transmitting node will release all the data channels using channel release message.
- 2 To abort a transmission, all the channels allocated to both transmitting and destination nodes are released.
- When receiving node releases one or more channels the next channel reservation request from its waiting queue is considered on First-Come-First-Serve basis.

- Sample Division Multiplexing Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

Performance Analysis

Maximum Number of Nodes within 2-distance

• Total number of nodes within distance 2 from a node is given by,

$$N_2 \le \Delta + \Delta(\Delta - 1) \le \Delta^2$$
 (2)

where Δ is the maximum node degree in the *CRN*.

Probability of Getting Channels Free

 The probability of any one channel being free can be expressed as,

$$p_1 = \frac{C - b_t}{C} \tag{3}$$

where C is the total number of channels in the whole spectrum and b_t is the actual average demand of N_2 nodes.

 The probability of success of a particular user in getting all n channels free in one single attempt is given by,

$$p_n = \frac{\binom{C - b_t}{n}}{\binom{C}{n}} = \frac{(C - n)!(C - b_t)!}{C!(C - b_t - n)!}$$
(4)

where n is the number of channels required by a node, n > 1.

Attempts for Getting Channels

- Getting a free channel in exactly after k attempts is equal to $p_1(1-p_1)^{k-1}$.
- The maximum number of attempts required for getting all free channels when all channels work in parallel is given by,

$$\alpha_{max} = \sum_{k>1} k p_1 (1 - p_1)^{k-1} = \frac{1}{p_1} = \frac{C}{C - b_t}$$
 (5)

- **Sample Division Multiplexing**
 - Proposed Model Connection Establishment and Data Transmission Process
 - Performance Analysis
- **Problem Statement**
- - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

Problem Statement

Suppose a node A needs a total bandwidth of 6 B_{min} corresponding to 6 channels, each of bandwidth B_{min} , to transmit some multimedia data to another node A'.

Problem Statement contd.

- Let DN number of channels required for certain multimedia communication.
- Let AN denote the available number of channels of a node.
- Transmit a multimedia signal requiring DN channels even when
 - there does not exist any single route in which each node will have AN ≥ DN,
 - but there exist multiple routes so that the sum of the ANs in all these routes is at least equal to DN.
- To the best of our knowledge, there is no existing techniques in the literature that can achieve this in CRNs.

Multi-path Routing

- **Sample Division Multiplexing**
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- **Multi-path Routing**
 - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

- 1 Introduction
- 2 Problem Statement
- Our Contribution
- 4 Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- Problem Statement
- Multi-path RoutingProposed Model
 - Porformance Analysis
 - Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- Conclusion

System Model

Assumptions

- All PU's have the same priority.
- All *SU*'s have the same priority, less than the priority of a *PU*.
- There is a *CCC* for coordinating the various *SU*s.
- Communication through CCC are effected in discrete time slots as collision-free Bit-Map protocol.
- Time slot is δ_{max} , where δ_{max} is the maximum node-degree of the network graph G.
- Each node has a unique node id and knows the id's of every other node of the network.
- Network graph is strongly connected.
- Topology remains unchanged during initialization process.

System Model cont.

- B_{Tx} of a node is 1 means this node wants to transmit a message.
- A node u is called a 1-distance neighbor of a node v if u falls under the communication range of node v, denoted as $v \to u$.
- The communication range of a node depends on its maximum available power.
- Since different nodes may have different maximum available power, an edge v → u does not necessarily imply an edge u → v.
- There will be an undirected edge between u and v if both $v \rightarrow u$ and $u \rightarrow v$ exist.
- The proposed routing protocol consists of two phases :
 - exploring AN of all nodes in the network and
 - find and reserve routes.

Max-Flow Algorithm

Find and Reserve Routes

- Now we need to find the routes, if any, and reserve them.
- We actually map this problem to the network flow problem.
- We run the Ford-Fulkerson max-flow algorithm to find the maximum possible flow.
- If this maximum flow is less than DN, then routing can not be possible.
- If the maximum flow is greater than equal to DN, routes can be found with total flow DN from the source.
- The source node starts the channel reservation procedure to reserve the desired number of channels along the route(s) as computed by the algorithm.

- **Sample Division Multiplexing**
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- **Multi-path Routing**
 - Proposed Model
 - Performance Analysis
- - Proposed Model
 - Performance Analysis

Result 1:

The initialization time T_{SD} for exploring the available number of channels between every pair of nodes is $O(\Delta \delta_{max})$, where δ_{max} is the maximum node-degree and Δ is the diameter of the network graph G.

Result 2:

The time complexity of the proposed protocol is $O(pf + T_{SD})$, where p is the number of edges in the graph G, f is the maximum flow in G and T_{SD} is the initialization time for exploring the available number of channels between every pair of nodes.

- The source node may have to wait for $O(\delta_{max})$ time to get the *RESPONSE* message from all of its 1-distance neighbors.
- To know the edge capacity from all of its 1-distance neighbors, at most $O(\delta_{max})$ message exchange is required.

Ealier Work

- Multi-hop multi-path routing in a *CRN* for multimedia communication has been proposed even when a contiguous band of required width is not available for any hop in the route. Complexity is $O(pf + T_{SD})$.
 - p is the number of edges in the graph G
 - f is the maximum flow in G
 - T_{SD} is the initialization time for exploring the available number of channels between every pair of nodes, where complexity of T_{SD} is $O(\Delta \delta_{max})$
 - δ_{max} is the maximum node-degree
 - \bullet Δ is the diameter of the network graph G
- Scheme is based on an extension of the idea of Sample Division Multiplexing (SDM).

- **Sample Division Multiplexing**
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- - Proposed Model
 - Performance Analysis
- **On-Demand Routing**
 - Proposed Model
 - Performance Analysis

Multi-path Routing

- **Introduction**
- **2** Problem Statement
- Our Contribution
- Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- Problem Statement
- Multi-path Routing
 - Proposed Model
 - Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- 8 Conclusion

System Model

Assumptions

- All PU's have the same priority.
- All SU's have the same priority, less than the priority of a PU.
- There is a *CCC* for coordinating the various *SU*s.
- Communication through CCC are effected in discrete time slots as collision-free Bit-Map protocol.
- Each node has a unique node id.
- Topology remains unchanged during initialization process.

Removed assumptions

- Every node knows the *id* of every other node of the network.
- Network graph is strongly connected.
- A node u is called a 1-distance neighbor of a node v if u falls under the communication range of node v, denoted as $v \to u$.
- There will be an undirected edge between u and v if both $v \rightarrow u$ and $u \rightarrow v$ exist.
- We need three control messages ROUTE REQUEST, ROUTE REPLY and BUSY.

- **Introduction**
- **Problem Statement**
- Our Contribution
- Sample Division Multiplexing
 - Proposed Model
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- 5 Problem Statement
- Multi-path Routing
 - Proposed Model
 - Performance Analysis
- On-Demand Routing
 - Proposed Model
 - Performance Analysis
- **8** Conclusion

Theorem

The worst-case time complexity of the proposed protocol is $O(|E| \times DN)$, where E is the number of edges in the network and DN is the demand number of channels for communicating the multimedia signal.

- **Sample Division Multiplexing**
 - Connection Establishment and Data Transmission Process
 - Performance Analysis
- - Proposed Model

Proposed Model

- Performance Analysis
- - Proposed Model
 - Performance Analysis
- Conclusion

Conclusion

- We proposed a novel technique of SDM for communicating a multimedia signal in a cognitive radio network without defragmenting the white spaces.
- The technique is based on finding a set of non-contiguous white spaces whose total width will be equal to the required bandwidth of the multimedia signal.
- We sub-divide the samples from the original signal in the time domain, form sub-packets with these subsets of samples and transmit these sub-packets through the set of channels so found.

Conclusion

- A multi-path routing protocol for multimedia communication in a CRN has been proposed.
 - exchanging control messages it explores the available number of channels between every pair of 1-distance neighbor nodes.
 - Max-flow algorithm finds the route for the required number of channels.
- Time complexity of our protocol is $O(pf + T_{SD})$.
- Simulation results show that splitting the message and routing them along multiple paths leads to an improved performance.

Conclusion

- An on-demand fully distributed multi-path routing protocol for multimedia communication in a CRN has been proposed.
- We have relaxed some strong assumptions.
- Worst-case time complexity of our protocol is $O(|E| \times DN)$.
- Simulation results establish the fact that the average time complexity of our proposed algorithm gives us an improved performance.
- Finding a tight upper bound on the worst-case time complexity of our proposed algorithm is an open problem.

Thank You!