My Presentation

And Some Things About It

John Doe

Institute of Physics University of São Paulo

February 31, 2019

Summary

- A Silly Idea
- Playing Around With Our New Toy
- 3 Fourier's Physics Playground
 - Maxwell's Electrodynamics
 - Heisenberg's Uncertainty Principle

A Silly Idea

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

J. Doe (IFUSP)

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$y(x) = \frac{f(x)}{\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right]y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(f + \alpha g)(x) \longrightarrow \mathcal{F} \longrightarrow \hat{f}(\xi) + \alpha \hat{g}(\xi)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \longrightarrow \mathcal{F} \longrightarrow i\xi \hat{f}(\xi)$$

J. Doe (IFUSP)

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$\downarrow$$

$$\mathcal{F}$$

$$\left[-\xi^2 + i\gamma\xi + \omega_0^2\right] \hat{y}(\xi) = \hat{f}(\xi)$$

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} \,\mathrm{d}\xi$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f + \alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

 \mathbb{I}

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x)e^{-ix\xi} dx$$

,

$$(\widehat{f + \alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

- (ㅁ) (🗇) (호) (호) (호) (호)

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

The inverse does work

for appropriate functions

and, sometimes, the Fourier Transform of a function is not in the same set as the original function, but let's forget about this since we do not know a decent theory of integration

J. Doe (IFUSP) My Presentation 15/52

Playing Around With Our New Toy

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\hat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の < ○ □ < □ > < □ > < □ > ○ □ の へ ○ □ < □ > ○ □ の ○ □

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

$$f(t) = \cos(2\pi\nu_0 t)e^{-\pi t^2}$$
$$\hat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

J. Doe (IFUSP) My Presentation 18/52

$$\widehat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

J. Doe (IFUSP) My Presentation 19/52

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

<ロ> < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$
$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

J. Doe (IFUSP)

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$
 $e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$ $\widehat{f}(\omega) = \sqrt{2\pi} \delta(\omega - \omega_0)$

J. Doe (IFUSP)

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$

$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

4ロ > 4個 > 4 差 > 4 差 > 1 差 り Q (^*)

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$

$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

$$\widehat{f}(\omega) = \sqrt{2\pi} \delta(\omega - \omega_0)$$

(4 마) 4 년) 4 년) 4 년) 9 () 9

-1.0

Cosines

0.0 Tempo t 0.5

1.0

-0.5

Cosines

$$\widehat{f}(\omega) = \sqrt{\frac{\pi}{2}} \left(\delta \left(\omega - \omega_0 \right) + \delta \left(\omega + \omega_0 \right) \right)$$

< ロ > < 리 > < 直 > < 필 > < 필 > < 필 > 이익()

Fourier's Physics Playground Maxwell's Electrodynamics

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

- 4 ロ b 4 個 b 4 필 b 4 필 b 9 Q @

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

- 4 ロ ト 4 昼 ト 4 き ト 4 き - 少 9 (で

Too hard, let's try something different

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Wave Equations

$$\begin{cases} \nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon_0} \\ \nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J} \end{cases}$$

- イロナイ掛ナイミナイミナ - ミー りへ()

All Wave Equations In One

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -g(\mathbf{r}, t)$$

- イロトイ団トイミトイミト ヨー 少く(^)

Fourier's Opinion

$$\widehat{g}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(\mathbf{r},t) e^{-i\omega t} dt$$

$$g(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{g}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

Fourier's Opinion

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(\mathbf{r},t) e^{-i\omega t} dt$$

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

Fourier's Opinion

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -g(\mathbf{r}, t)$$

$$\nabla^2 \widehat{\psi}(\mathbf{r},\omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r},\omega) = -\widehat{g}(\mathbf{r},\omega)$$

- イロト 4 個 ト 4 恵 ト 4 恵 ト 9 久 ()

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') \, d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

イロ > イ同 > イヨ > イヨ > ヨ りなら

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- (ㅁ) (@) (를) (를) (O (O

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- イロトイ団トイミトイミト ミ めQで

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$abla^2 G(\mathbf{r} - \mathbf{r}') + rac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

Solution for $\mathbf{r} - \mathbf{r}' \neq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

Solution for $\mathbf{r} - \mathbf{r}' eq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

(ロ) (型) (差) (差) 差 から()

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

J. Doe (IFUSP)

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) \,d\tau'$$

$$G(\mathbf{r}) = \frac{1}{4\pi \, \mathbf{r}} e^{\pm ik\, \mathbf{r}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\mathbf{r}}}{\mathbf{r}} d\tau'$$

<ロ > ←回 > ←回 > ← 三 > ← 三 ・ 夕 へ ○

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) \,d\tau'$$

$$G(\mathbf{z}) = \frac{1}{4\pi \, \mathbf{z}} e^{\pm ik\, \mathbf{z}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\imath}}{\imath} \,\mathrm{d}\tau'$$

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) d\tau'$$

$$G(\mathbf{z}) = \frac{1}{4\pi \, \mathbf{z}} e^{\pm ik\, \mathbf{z}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\boldsymbol{\imath}}}{\boldsymbol{\imath}} \,\mathrm{d}\tau'$$

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 少 9 (で

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \widehat{g}(\mathbf{r}',\omega)e^{i\omega t \pm i\omega\frac{r}{c}} d\omega d\tau$$

- (ㅁ) (@) (호) (호) (호) (호)

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \widehat{g}(\mathbf{r}',\omega) e^{i\omega t \pm i\omega \frac{t}{c}} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}', t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}', t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

4ロト 4個ト 4 差ト 4 差ト 差 り Q ()*

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

4ロト 4個ト 4 差ト 4 差ト 差 り Q ()*

Back at Maxwell's

$$V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} \, \mathrm{d}\tau'$$

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} \, \mathrm{d}\tau'$$

- イロト 4回 ト 4 き ト 4 き ト - き - りへ()

One Last Step

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

Jefimenko Equations

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{z}}}{\mathbf{z}^2} \left[\rho \right] + \frac{\hat{\mathbf{z}}}{c \, \mathbf{z}} \left[\frac{\partial \rho}{\partial t} \right] - \frac{1}{c^2 \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] d\tau'$$

$$\mathbf{B}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \left(\frac{1}{\mathbf{z}^2} \left[\mathbf{J} \right] + \frac{1}{c \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] \right) \times \hat{\mathbf{z}} d\tau'$$

- 4 ㅁ > 4 圊 > 4 분 > 4 분 > - 분 - 约 Q (C)

Fourier's Physics Playground Heisenberg's Uncertainty Principle

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k | \psi \rangle = \int \langle k | x \rangle \langle x | \psi \rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k | \psi \rangle = \int \langle k | x \rangle \langle x | \psi \rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

- イロト 4 個 ト 4 恵 ト 4 恵 ト 9 久 ()

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x} \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i\frac{\partial\psi}{\partial k} \\ K |\psi\rangle = k\psi(k) \end{cases}$$

<ロ> <回> <回> < 回> < 三> < 三> < 三 の へ ○

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x} \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i\frac{\partial \psi}{\partial k} \\ K |\psi\rangle = k\psi(k) \end{cases}$$

←ロ ト ← 倒 ト ← 差 ト ← 差 ・ 夕 へ ○

Fourier Diplomacy

$$|x\rangle \stackrel{\mathcal{F}}{\longleftrightarrow} |k\rangle$$

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\psi(k)$: what is k?

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\boxed{\mathbf{2} \; \psi(k) : \mathsf{what}} \; \mathsf{is} \; k?$

Definite Position

$$\psi(x) = \sqrt{\frac{\pi}{2}} \left(\delta \left(x - x_0 \right) + \delta \left(x + x_0 \right) \right)$$

J. Doe (IFUSP) My Presentation 47/52

Undefinite Momentum

J. Doe (IFUSP)

Uncertainty Relation

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

The uncertainty relation is a consequence of the general fact that anything narrow in one space is wide in the transform space and vice versa. So if you are a 45 kg weakling and are taunted by a 270 kg bully, just ask him to step into momentum space!

Ramamurti Shankar

J. Doe (IFUSP)

Acknowledgments

The author is extremely thankful to Prof. Antônio F. R. T. Piza for the short, yet wonderful, conversations about this seminar.

J. Doe (IFUSP) My Presentation 5

References

The End