n^2+1 UNIT EQUILATERAL TRIANGLES CANNOT COVER AN EQUILATERAL TRIANGLE OF SIDE >n IF ALL TRIANGLES HAVE PARALLEL SIDES

JINEON BAEK AND SEEWOO LEE

ABSTRACT. Conway and Soifer showed that an equilateral triangle T of side $n+\varepsilon$ with sufficiently small $\varepsilon>0$ can be covered by n^2+2 unit equilateral triangles. They conjectured that it is impossible to cover T with n^2+1 unit equilateral triangles no matter how small ε is. We make progress towards their conjecture by showing that if we require the sides of all triangles to be parallel to the sides of T (e.g. Δ and ∇), then it is impossible to cover T with n^2+1 unit equilateral triangles for any $\varepsilon>0$. As the coverings of T by Conway and Soifer only involve triangles with parallel sides, our result determines the exact minimum number n^2+1 of unit equilateral triangles with parallel sides required to cover T.

1. Introduction

Conway and Soifer provided two ways to cover an equilateral triangle T of side > n with $n^2 + 2$ unit equilateral triangles (Figure 1 and 2), and conjectured that $n^2 + 1$ unit equilateral triangles cannot cover T [3, 4].

For Figure 1, we first cover the upper part of the original equilateral triangle of side length $n + \epsilon$ equilateral triangle of side length n - 1 with $(n - 1)^2$ triangles (light red triangles). After that, the remaining part is a trapezoid of lengths $1 + \epsilon$, $n + \epsilon$, $1 + \epsilon$, and n - 1. Now put 2n - 2 triangles from left, alternatively (green triangles), then we can check that the remaining part is a parallelogram of lengths $1 + \epsilon$ and ϵn , minus a small equilateral triangle of length ϵ on the left-upper corner. This can be covered with 2 triangles if $\epsilon < 1/(n+1)$ (blue triangles).

For Figure 2, we cover the large triangle from the bottom. We first cover the bottom layer with n upward triangles and n-1 downward triangles, with $\epsilon' = \epsilon/(n-1)$ deviations (light red triangles). Then the resulting shape is a trapezoid of lengths $1 - \epsilon'$, $n + (n-1)\epsilon'$, $1 - \epsilon'$, and $n - 1 + n\epsilon'$, with small "bump" triangles of lengths

 ϵ' . Now we stack the next bottom layer with n-1 upward triangles and n-2 downward triangles, with ϵ'' deviations. To cover the upper side of the light red trapezoid tightly, our new ϵ'' should satisfy $(n-1)+(n-2)\epsilon''=(n-1)+n\epsilon'$, hence $\epsilon''=n\epsilon'/(n-2)$. Continue this until you stack up the total (n-1) layers, where the top layer (blue triangles) consists of 2 upward triangles and 1 downward triangle with deviation

$$\frac{n}{n-2}\frac{n-1}{n-3}\frac{n-2}{n-4}\cdots\frac{3}{1}\epsilon' = \frac{n(n-1)}{2}\epsilon' = \frac{n}{2}\epsilon.$$

The remaining part of the triangle can be covered with three triangles of unit lengths if $1 + 2 \cdot \frac{n}{2} \epsilon \leq \frac{3}{2}$, i.e. if $\epsilon \leq \frac{1}{2n}$.

Theorem 1 (Conway and Soifer [3, 4]). $n^2 + 2$ unit equilateral triangles can cover an equilateral triangle T of side $n + \varepsilon$ for a sufficiently small $\varepsilon > 0$.

Conjecture 1 (Conway and Soifer [3]). $n^2 + 1$ unit equilateral triangles cannot cover an equilateral triangle T of side > n.

Related, Karabash and Soifer showed that for every non-equilateral triangle T, n^2+1 triangles similar to T and with the ratio of linear sizes $1:(n+\varepsilon)$ can cover T [7], so the "equilaterality" is essential for Conjecture 1 to be true [3, 8]. Also, Karabash and Soifer generalized the coverings of Conway and Soifer and showed that a $trigon^1$ made of n unit equilateral triangles can be covered by n+2 triangles of side $1-\varepsilon$ [7]. A similar problem of covering a square of side $n+\varepsilon$ with unit squares has been also extensively studied [5, 6, 2, 9, 1]. Still, to the best of the authors' knowledge, the original Conjecture 1 raised by Conway and Soifer hasn't been addressed directly in the literature.

Define an equilateral triangle as vertical if one side of the triangle is parallel to the x-axis. Note that both triangles \triangle and ∇ are vertical, and all the unit triangles used in Conway and Soifer's constructions (Figure 1 and 2) are vertical. Also, the generalized covering of trigons by Karabash and Soifer [7] only uses vertical triangles as well. Thus, it is natural to ask if one can cover the equilateral triangle of side > n with $n^2 + 1$ vertical unit triangles. In this paper, we show that it is impossible.

Theorem 2. $n^2 + 1$ unit vertical equilateral triangles cannot cover an vertical equilateral triangle of side > n.

Our proof generalizes to an arbitrary union X of n vertical triangles with disjoint interiors: it is impossible to cover X with n+1 vertical equilateral triangles of side < 1.

Theorem 3. Let X be any union of n unit vertical equilateral triangles S_1, S_2, \ldots, S_n with disjoint interiors. Then X cannot be covered by n+1 vertical equilateral triangles of sides less than one.

To recover Theorem 2 from Theorem 3, assume by contradiction that an vertical equilateral triangle T of side > n can be covered by $n^2 + 1$ unit vertical equilateral triangles. Shrink the covering so that T have side exactly n and the small triangles have side < 1. Then we get contradiction by Theorem 3 as T is a union of n^2 unit vertical triangles with disjoint interiors.

As the coverings of T by Conway and Soifer (Figure 1 and 2) and the coverings of trigons by Karabash and Soifer only uses vertical triangles, we match the exact minimum number of unit vertical equilateral triangles required for covering.

¹A connected shape formed by unit equilateral triangles with matching edges.

Corollary 1. The minimum number of unit vertical equilateral triangles required to cover a vertical equilateral triangle of side $n + \varepsilon$ with a sufficiently small $\varepsilon > 0$ is exactly $n^2 + 2$.

Also, the minimum number of unit vertical triangles required to cover a trigon made of n vertical equilateral triangles of side $1 + \varepsilon$ with a sufficiently small $\varepsilon > 0$ is exactly n + 2.

2. Proof of Theorem 3

Take the standard Cartesian xy-coordinate system of a plane. Inside the plane, take the triangular grid of unit equilateral triangles with the x-axis as one of the three axes of the triangular grid.

For every unit vertical triangle T, define its rescaled y-coordinate z_T as the y-coordinate of the horizontal side of T divided by $\sqrt{3}/2$. Note that $\sqrt{3}/2$ is the height of a unit equilateral triangle, so the value of z_T is an integer for every triangle T in the triangular grid. Define the function $\tilde{f}_T : \mathbb{R} \to \mathbb{R}$ as the following. For any $z \neq z_T$, the value $\tilde{f}_T(z)$ is the length of the part of the line $y = \sqrt{3}z/2$ covered by triangle T (the value is zero if T is disjoint from the line). The value of $\tilde{f}_T(z_T)$ is chosen so that \tilde{f}_T is right-continuous everywhere: 1 if T is pointed upwards, and 0 if T is pointed downwards.

In this paper, let S^1 be the abelian group quotient \mathbb{R}/\mathbb{Z} . For every unit vertical triangle T, define $f_T: S^1 \to \mathbb{R}$ as the function $f_T(t+\mathbb{Z}) = \sum_{n \in \mathbb{Z}} \tilde{f}_T(t+n)$. For any real number x, let $\{x\}$ be the value in [0,1) equal to x modulo 1. Define $\nabla_0(x+\mathbb{Z}) = \{x\}$ and $\Delta_0(x+\mathbb{Z}) = 1 - \{x\}$ for any $x+\mathbb{Z} \in S^1$ with representative $x \in \mathbb{R}$. For every $a \in S^1$, define the functions $\Delta_a, \nabla_a: S^1 \to \mathbb{R}$ as the functions $\nabla_a(x) = \nabla_0(x-a)$ and $\Delta_a(x) = \Delta_0(x-a)$. If an unit vertical triangle T is pointed upwards, we have $f_T = \Delta_{y_T}$, and if T is pointed downwards, we have $f_T = \nabla_{y_T}$.

FIGURE 3. Graphs of $\nabla_a(x)$ and $\Delta_a(x)$ for a = 0.3.

We now prove Theorem 3 by contradiction. Assume that the union X of n unit vertical equilateral triangles S_1, S_2, \ldots, S_n with disjoint interiors can be covered by n+1 triangles T'_0, T'_1, \ldots, T'_n of side < 1. Take arbitrary n+1 triangles T_0, T_1, \ldots, T_n of side 1 so that each T_i contains the smaller triangle T'_i .

of side 1 so that each T_i contains the smaller triangle T_i' .

Define $\tilde{g}: \mathbb{R} \to \mathbb{R}$ as the function $\tilde{g} = \sum_{i=0}^n \tilde{f}_{T_i} - \sum_{j=1}^n \tilde{f}_{S_j}$. Take any z different from the rescaled y-coordinates z_{T_i} and z_{S_j} of the triangles. As the triangles T_0, T_1, \ldots, T_n cover the union X of disjoint triangles S_1, S_2, \ldots, S_n , the total length of the parts of the line $y = \sqrt{3}z/2$ covered by T_i 's is at least the total length of the parts of the line $y = \sqrt{3}z/2$ coverved by S_j 's. Thus we have $\tilde{g}(z) \geq 0$. As \tilde{g}

is right-continuous, by sending the right limit we have $\tilde{g}(z) \geq 0$ for every $z \in \mathbb{R}$ including the case where z is equal to the rescaled y-coordinate of some triangle.

Define $g: S^1 \to \mathbb{R}$ as $g = \sum_{i=0}^n f_{T_i} - \sum_{j=1}^n f_{S_j}$ so that we have $g(z + \overline{\mathbb{Z}}) = \sum_{n \in \mathbb{Z}} \tilde{g}(z+n)$. Then consequently we have $g(t) \geq 0$ for every $t \in S^1$. It turns out that this is sufficient to derive a contradiction. Define \mathcal{T} as the abelian group generated by all functions ∇_a, Δ_a with $a \in S^1$. Then $g \in \mathcal{T}$ by the definition of g. We now examine the properties of $g \in \mathcal{T}$.

Denote the integral of any integrable function $f: S^1 \to \mathbb{R}$ over the whole S^1 as simply $\int f$. Say that two real numbers are equal modulo 1 if their difference is in \mathbb{Z} .

Lemma 1. Any function $f: S^1 \to \mathbb{R}$ in \mathcal{T} has the following properties.

- f is right-continuous.
- f is differentiable everywhere except for a finite number of points, and the derivative is always equal to a fixed constant $a \in \mathbb{Z}$.
- For all $x, y \in \mathbb{R}$, the value $f(y + \mathbb{Z}) f(x + \mathbb{Z})$ is equal to a(y x) modulo 1.
- The integral $\int f$ is equal to b/2 for some $b \in \mathbb{Z}$ where b-a is divisible by 2.

Proof. Check that all the claimed properties are closed under addition and negation. Then check that the functions ∇_a and Δ_a with $a \in S^1$ satisfy the claimed properties.

We observed that $g \in \mathcal{T}$ and $g(t) \geq 0$ for every $t \in S^1$. Also, for any unit vertical triangle T we have $\int f_T = 1/2$ so we also have $\int g = 1/2$ by the definition $g = \sum_{i=0}^n f_{T_i} - \sum_{j=1}^n f_{S_j}$. We now use the following lemma.

Lemma 2. Let $f: S^1 \to \mathbb{R}$ be any function in \mathcal{T} such that $\int f = 1/2$ and $f(x) \geq 0$ for every $x \in S^1$. Then there is a positive odd integer a and some $c \in [0,1)$ such that f is either $f(x) = \{ax + c\}$ or $f(x) = 1 - \{ax + c\}$.

FIGURE 4. Graphs of $x \mapsto \{ax+c\}$ and $x \mapsto 1 - \{ax+c\}$ for a=5 and c=0.7.

Proof. By Lemma 1, there is some odd number $a \in \mathbb{Z}$ such that f'(x) is a for all x except for a finite number of values. Let f(0) = c, then by Lemma 1 again we have f(x) equal to ax + c modulo 1 for all $x \in S^1$. Let $g: S^1 \to \mathbb{R}$ be the function $g(x) = \{ax + c\}$. Then for every $x \in S^1$, as the value f(x) is nonnegative and equal to ax + c modulo 1, we have $f(x) \geq g(x) \geq 0$. But note that the integral $\int g$ is

REFERENCES

exactly equal to 1/2 (see Figure 4). So f and g should be equal almost everywhere. As f is right-continuous by Lemma 1, f(x) should be equal to the right limit g(x-) of g. If a > 0, then g is right-continuous so $f(x) = g(x) = \{ax + c\}$. If a < 0, then the right limit of g is $1 - \{-ax + \{-c\}\}$ (this is the value in (0, 1] equal to ax + c modulo 1).

We now finish the proof of Theorem 3. By Lemma 2, the discontinuities of $g = \sum_{i=0}^n f_{T_i} - \sum_{j=1}^n f_{S_j}$ have to be equidistributed in S^1 with a gap of 1/a for some positive odd number a. But each T_i can be taken arbitrary as it contains the smaller triangle T_i' of side < 1. So take each T_i so that the rescaled y-coordinates $z_{T_0}, z_{T_1}, \ldots, z_{T_n}$ are different from $z_{S_1}, z_{S_2}, \ldots, z_{S_n}$ modulo 1 and $z_{T_1} - z_{T_0}$ is an irrational number. Then g has discontinuities at $z_{T_0} + \mathbb{Z}, z_{T_1} + \mathbb{Z}, \ldots, z_{T_n} + \mathbb{Z} \in S^1$, and two of them has an irrational gap. This gives contradiction and finishes the proof.

References

- [1] Fan Chung and Ron Graham. "Efficient Packings of Unit Squares in a Large Square". In: Discrete & Computational Geometry 64.3 (Oct. 2020), pp. 690-699. ISSN: 0179-5376, 1432-0444. DOI: 10.1007/s00454-019-00088-9. URL: http://link.springer.com/10.1007/s00454-019-00088-9 (visited on 06/06/2023).
- [2] Fan Chung and Ron Graham. "Packing equal squares into a large square". In: Journal of Combinatorial Theory, Series A 116.6 (2009), pp. 1167–1175.
- [3] John Conway and Alexander Soifer. "Cover-up". In: *Geombinatorics* 14.1 (2004), pp. 8–9.
- [4] John Conway and Alexander Soifer. Covering a Triangle with Triangles. 2005.
- [5] D Karabash and A Soifer. "A Sharp Upper Bound for Cover-up Squares". In: Geombinatorics 16 (2006), pp. 219–226.
- [6] D Karabash and A Soifer. "Note on Covering a Square with Equal Squares".In: Geombinatorics 18.1 (2008), pp. 13–17.
- [7] D Karabash and A Soifer. "On Covering of Trigons". In: Geombinatorics XV (1) (2005), pp. 13–17.
- [8] Alexander Soifer. "Coffee Hour and the Conway–Soifer Cover-Up". In: *How Does One Cut a Triangle?* (2009), pp. 147–156.
- [9] Shuang Wang, Tian Dong, and Jiamin Li. "A New Result on Packing Unit Squares into a Large Square". 2016. arXiv: 1603.02368.

University of Michigan - Ann Arbor Email address: jineon@umich.edu

University of California - Berkeley Email address: seewoo5@berkelev.edu