

MIDTERM WORKSHOP

16 - 19 November 2020

PILOT PROJECT

Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings

ACTION 1

17 November 2020

OVERVIEW AND CLASSIFICATION
OF TECHNOLOGIES FOR
SEISMIC STRENGTHENING
AND
ENERGY UPGRADING
OF EXISTING BUILDINGS

Pilot Project: Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings

Work Progress in Action 1

Elvira Romano, Paolo Negro 17 November 2020

Contents

- Introduction
- Sub-action 1.1 Work progress
- Sub-action 1.2 Work progress
- Sub-action 1.3 Work progress

Introduction

Action 1: Sub-actions

1 - TECHNOLOGIES FOR SEISMIC STRENGTHENING AND ENERGY UPGRADING

SUB-ACTION 1.1 - Building typologies needing upgrading

Identify representative classes of buildings regarding both seismic & energy performance

SUB-ACTION 1.2 - Technology options for seismic upgrading

Classify technologies in terms of expected seismic safety improvement, cost and disruption of service, use of raw materials, Life Cycle Analysis effects, and compatibility with energy upgrading technologies

SUB-ACTION 1.3 - Technology options for energy upgrading

Classify technologies in terms of expected energy efficiency improvement, cost and disruption of service, use of raw materials, Life Cycle Analysis effects, and compatibility with seismic strengthening technologies

Action 1: Tasks

Timeline

Timeline

Sub-action 1.1

Work Progress

Building typologies needing upgrading

Distribution of building typologies by year of construction

- Analysis of EU dwellings distribution by year of construction, building typologies (based on number of dwellings), surface area
- Classification of EU buildings by construction technology (EU projects: TABULA/EPISCOPE; NERA)
- Analysis of buildings share by year of construction at regional/province level per each EU country

European climatic zones & seismicity

- Maps of Europe in terms of seismic hazard (ESHM13) and climatic zones (in terms of HDD)
- Specific analysis of seismic hazard and climatic zones per EU Member State
- Identification of EU regions with high seismic and climatic exposure: (1) Bulgaria, (2) Croatia, (3)
 Greece, (4) Italy, and (5) Romania

MASONRY

RC (PT - GR - CY)

Building typologies needing upgrading

Prioritization of building typologies needing upgrading

- EU regions with moderate to high seismic exposure and high HDD climatic exposure (e.g. from Zone 3 to Zone 5)
- Correlation of seismic hazard-climatic zones with building distribution in terms of age of construction and construction technologies

Correlation matrix for the five selected EU Member States

HDD	SE	EU			
עעח	Low	Moderate	High	Country	
Zone 1		X (Andros)	X (Athens)	\$	GR
Zone 1	X (Sassari)	X (Salerno)	X (Naples)	0	IT
		X (Pleven)	X (Plovdiv)		BG
	X (Zadar)	X (Split)	X (Dubrovník)	3	HR
Zone 2		X (Kozani)	X (Thessaloniki)	\$	GR
	X (Bari)	X (Pisa)	X (Perugia)	0	IT
		X (Bucharest)			RO
		X (Sofia)	X (Blagovgrad)		BG
	X (Osijek)	X (Primorje-Gorski kotar)	X (Zagreb)	3	HR
Zone 3		X (Dykiti Makedonia)		\$	GR
	X (Como)	X (Vicenza)	X (Bergamo)	0	IT
	X (Cluj)	X (Satu Mare)	X (Vrancea)	•	RO
Zone 4	X (Verbano-Cusio-Ossola)			0	IT
Zone 4	X (Bistrita)	X (Hargita)	X (Covasna)	•	RO
Zone 5	X (Aosta)	X (Bolzano)	X (Trento)	0	IT

- Masonry constructions for the majority of buildings in Bulgaria,
 Croatia, Italy, and Romania
- Same fractions of masonry and RC constructions in Greece

Focus on building typologies needing upgrading within the Italian context

Seismic zone	Climatic zone	Combined demand	Number of masonry buildings	% of masonry buildings	Number of RC buildings	% of RC buildings
1-2	D-E-F	Very High	2,413,644	33.4	1.169.256	31,07
1-2	A-B-C	High	813,921	11.3	550.449	14,63
3-4	D-E-F	Medium	2,962,771	41.1	1.321.892	35,13
3-4	A-B-C	Low	1,022,432	14.2	721.242	19,17
Total			7,212,768	100.0	3.762.839	100.0

Sub-action 1.2

Work Progress

Technology options for seismic upgrading

Overview of seismic strengthening technologies for existing buildings

Classification of technologies for seismic upgrading

Classification by Life Cycle Thinking (LCT) criteria: 17 criteria and definition of grade (1–5)

	LIFE CYCLE THINKING (LCT) CRITERIA	SCORE 1–5			
Α	Holistic - integrated compatible	1 No compatible with ho	stic 5	Fully compatible	
В	Incremental Rehabilitation	1 No compatible with Inc	r. Rehab 5	Fully compatible	
С	Disruption of the occupants / relocation	1 Relocation of occupan	s 5	Minimum disruption/short-no downtime	
D	Disruption to the building, such as to the electrical/plumbing distribution systems	1 No disruption to electri	cal/plumbing systems 5	No disruption to electrical/plumbing systems	

Classification by cost of intervention, disruption time, compatibility with energy upgrading

- Construction cost breakdowns of masonry and RC retrofitted buildings for a total of 25 case studies
- Average range of construction costs
- Cost-effectiveness analysis exploring 3 iso-performance retrofit solutions on a selected RC building

Masonry buildings: 4 case studies

Case study	Improvement in the quality of the masonry	Perimeter ties	Roof/floor diaphragm	Improving in-plane res. of the walls	Retrofit of foundation system	Retrofit for static actions
Historic palace - Mantova province, Italy (Table2)	(Local retrofit of masonry walls)	✓	~			✓
Historical Palace, Garda lake, Italy (Table 3)	(Local retrofit of masonry walls)	✓	~	~	~	~
Historical Church, Mantova province, Italy (Table 4)	(Local retrofit of masonry walls)	✓	~	(diaphragm arches)		~
Residential Building, Bergamo province, Italy (Table 5)		✓	~	√	~	

Case study	Strength. of frame joints	Exoskel. with shear walls	Shell exoskel.	Floor/roof diaphragm	Seismic base isolation	Retrofit for static loads	Energy efficiency retrofit
Gym Hall, Brescia, IT (Table7)			√	√			√
School, Varese, IT (Table 8)		~					
School, Lecco, IT (Table 9)		*					
Residentia I Building, Garda Iake, IT (Table 10)		~		√			~

RC buildings: 4 case studies

Sub-action 1.3

Work Progress

Technologies options for energy upgrading

Overview of energy upgrading technologies for existing buildings

Classification of technologies for energy

upgrading

Classification by building typologies

- Building typologies in 11 target countries
 - Single family house, Multi family house, Apartment Block, and non-residential buildings
- Correlation of EETs with building typologies
- Impact of EETs on targeted building stock

6. Romania

1. Bulgaria

2. Croatia

3. Cyprus

4. Greece

5. Italy

7. Slovenia

HIGH **MODERATE**

- 1. Austria
- 2. France
 - 3. Portugal
 - 4. Spain

Classification by cost of intervention, disruption time, compatibility with seismic upgrading

	CRITERIA AND INDICATORS	MEASURE UNIT
1	Unitary cost of implementation	€/m² or €/unit
2	Unitary energy saved	kWh/m² or kWh/unit
3	Unitary cost-effectivity	kWh saved/€ invested
4	(Unitary) Disruption time	hours/m ² or hours/unit
5	Unitary environmental impact	KgCO ₂ /m ² or KgCO ₂ /unit
6	Users' comfort achieved	PPD/m ² or PPD/unit
7	Life span	Years
8	Recycling possibility	Totally/Partial/Not applicable
9	Potential health risks in case of fire	High/Moderate/Low
10	Degree of compatibility with seismic retrofit measures	Totally/Restricted/Non compatible
11	Degree of relevance	Points

- Indicator Seismic Retrofit 20 Technologies (SRT) (global and local)
- **Classification** by selected indicators
- Ranking of EETs through multi-criteria decision making analysis

Classification of technologies for energy

upgrading

Classification by building typologies

- Building typologies in 11 target countries
 - Single family house, Multi family house, Apartment Block, and non-residential buildings
- Correlation of EETs with building typologies
- Impact of EETs on targeted building stock

HIGH MODERATE

- 1. Austria
- 2. Croatia
- 3. Cyprus

1. Bulgaria

- 4. Greece
- 5. Italy
- 6. Romania
- 7. Slovenia

4. Spain

2. France

3. Portugal

Classification by cost of intervention, disruption time, compatibility with seismic upgrading

	CRITERIA AND INDICATORS	MEASURE UNIT
1	Unitary cost of implementation	€/m² or €/unit
2	Unitary energy saved	kWh/m² or kWh/unit
3	Unitary cost-effectivity	kWh saved/€ invested
4	(Unitary) Disruption time	hours/m ² or hours/unit
5	Unitary environmental impact	KgCO ₂ /m ² or KgCO ₂ /unit
6	Users' comfort achieved	PPD/m ² or PPD/unit
7	Life span	Years
8	Recycling possibility	Totally/Partial/Not applicable
9	Potential health risks in case of fire	High/Moderate/Low
10	Degree of compatibility with seismic retrofit measures	Totally/Restricted/Non compatible
11	Degree of relevance	Points

Example: ENV-WA-01
External Thermal Insulation Composite system (ETICS)

	Description	Value
1	Preparation of the supporting wall Application of ETICS (Lower bound) Application of ETICS (Higher bound)	30 €/m² 65 €/m² 110 €/m²
4	Preparation of the supporting wall Application of ETICS (Lower bound) Application of ETICS (Higher bound)	1 h/m² 0.75 h/m² 1.5 h/m²
7	Lower bound Higher bound Average	16 years 35 years 30 years
10	EET – SRTs compatibility	77.5 points

Action 1: Next steps

References

European Statistical System (ESS). Population and Housing Census – Eurostat 2011 Census Hub, <u>Dwellings data</u>

Eurostat Database. Environment and Energy - Energy Statistics, Cooling and heating degree days by country - <u>annual data</u>.

Giardini, D., Wössner, J. & Danciu, L. (2014) 'Mapping Europe's seismic hazard', *Eos Trans. AGU*, 95(29): 261–262, doi: 10.1002/2014EO290001

Thank you

Contact us: JRC-REEBUILD@ec.europa.eu

European Commission

© European Union 2020

Except:

Slide 1: (left to right) x-bracing image, Khun Ta, ©stock.adobe.com; thermal vision image, smuki, ©stock.adobe.com; areal view of residential area, whitcomberd, ©stock.adobe.com; house and tools icon, gheatza and Artco, ©stock.adobe.com; Slide 5,6,19: (top to bottom) house and tools icon, gheatza and Artco, ©stock.adobe.com; Slide 8: (bottom left) house and tools icon, gheatza and Artco, ©stock.adobe.com; Slide 9: (counter clock) house and tools icon, gheatza and Artco, ©stock.adobe.com; building icon, Artco, ©stock.adobe.com; (bottom middle) Seismic hazard map, Giardini et al., ©The Authors, 2014; Slide 11: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; building icon, Artco, ©stock.adobe.com; Slide 12: (counter clock) house and tools icon, gheatza and Artco, ©stock.adobe.com; damaged house icon, chartgraphic, ©stock.adobe.com; Slide 13: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; damaged house icon, chartgraphic, ©stock.adobe.com; Slide 15: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; formal tools icon, gheatza and Artco, ©stock.adobe.com; house with leaf icon, Artco, ©stock.adobe.com; fright corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; fright thermal vision image, smuki, ©stock.adobe.com; Slide 17,18: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; formal vision image, smuki, ©stock.adobe.com; Slide 16. (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; formal vision image, smuki, ©stock.adobe.com; Slide 17,18: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; formal vision image, smuki, ©stock.adobe.com; Slide 17,18: (top right corner) house and tools icon, gheatza and Artco, ©stock.adobe.com; formal vision ima