Manutenção de Hardware

CPU

Reinaldo Gomes reinaldo@cefet-al.bi

Sumário

- Clock
 - Interno e Externo
- Palavra binária
- Cronologia dos processadores
- Multiplicação de clock
- Tipos de soquetes e famílias de processadores
- Tecnologias proprietárias de microprocessadores

2

Velocidade do processador

Clock

- Termo que indica o número de instruções que pode ser executado em cada segundo
 - Uma instrução pode ser executada em um ciclo (pulso de clock)
 - Algumas instruções (mais complexas) podem precisar de mais de um ciclo para serem executadas
- A quantidade de vezes que o pulso básico se repete em um segundo define a velocidade da CPU

3

Velocidade do processador

Clock

- Unidade: Hz (Hertz) I ciclo/seg (frequência) <u>KHz</u> = 1000 Hz; <u>MHz</u> = 1000 KHz
- 25 Mhz (25.000.000 ciclos);
 - 40 ns cada ciclo
- Cada processador é projetado para trabalhar a até uma determinada frequência de operação
- Velocidade atual: **GigaHertz**

.

Velocidade do processador

Clock Interno

- Indica a frequência na qual o processador trabalha (operações internas por segundo)
 - Um Pentium IV de 2.0 GHz possui um clock interno de "2.0 GHz"

Clock Externo

- Conhecido como FSB (Front Side Bus)
 - Frequência do barramento externo
- Indica a frequência de trabalho de comunicação do processador com a placa-mãe (chipset, memória, interfaces, etc.)

Velocidade do processador

Clock Externo

- Está relacionado com o número de acessos que o processador realiza por segundo
 - Principalmente à memória
- Exemplo:
 - Pentium III de 500 MHz tem clock externo de 100 MHz
 - Significa dizer que faz cerca de 100 milhões de acesso à memória, por exemplo, em 1 segundo
- Cada processador possui um clock externo de trabalho pré-definido

Velocidade do processador

Clock Externo

Processador	Clock interno		Clock externo	
Pentium 4 3.2E	3.2 GHz		800 MHz	
Pentium 4 3.2	3.2 GHz	7	800 MHz	
Pentium 4 2,80E	2.8 GHz	1	800 MHz	
Pentium 4 2.80A	2.8 GHz		533 MHz	
Pentium 4 2,80C	2.8 GHz	-	800 MHz	
Celeron-D 2.53	2.53 GHz	T	533 MHz	
Celeron 2.4	2.4 GHz	1	400 MHz	
Athlon XP 2400+	2.0 GHz	1	266 MHz	
Athlon XP 3200+	2.25 GHz	7	400 MHz	
Sempron 2800	2.0 GHz		333 MHz	

Gerador de Clock

Clock

- Os valores de tempo alcançados não pertencem à ordem de grandeza da percepção humana
 - O momento que o cérebro emite uma ordem para mexer a mão e o instante que o movimento acontece, são gastos 200 milésimos de segundo
 - O cérebro humano leva 30 milésimos de segundo para registrar um som
 - O cérebro humano leva 40 milésimos de segundo para registrar e interpretar cada nova imagem

Palavra binária

Definição

• Quantidade de bits (interno) que o processador pode manipular por vez (instruções e dados)

Benefícios

- Maior velocidade
- Pode lidar com uma quantidade de dados maior simultaneamente
- Quanto maior a palavra binária, mais caro será o processador
 - E mais rápido!

Palavra binária

Bits externos

- Quantidade de bits que o barramento de dados (externo) consegue manipular simultaneamente
- Barramentos trabalham com 32 ou 64 bits

10

12

Cache

- Acelerar o desempenho da memória RAM
- Cache L2
 - Acelera a velocidade da memória
 - De maior tamanho (varia de acordo com o modelo do processador)
- Cache L1
 - Acelera a velocidade do cache L2
 - Geralmente de tamanho pequeno (de acordo com o fabricante)

Cache Ilustração Processador Núcleo Um Pentium IV de 3.2 GHz deveria usar memórias com Cache L1 velocidade de 3.2 GHz, entretanto, usam normalmente memórias Cache L2 DDR 400, que são 8 vezes mais lentas que o FSB ideal. A memória CACHE ajuda o processador a acessar a RAM de forma mais rápida

П

Evolução dos Processadores

- Padrão XT
 - 8086 (16 bits, acesso até 1MB de RAM) 1978
 - 8088
 - 16 bits i,8 bits x
 - Impulsionou a evolução dos processadores
 - Equipava os computadores padrão PC-XT
 - Clocks de 4,7 MHz, 8MHz, 10Mhz e 12MHz
 - Ambos da Intel

Evolução dos Processadores

- Padrão AT
 - 1991 Lancamento da série x86
 - **80-286**
 - 16bits i, 16bits x 6,8,10 e 20 Mhz
 - Compatível com o 8086/8088 (era possível executar os mesmos programas)
 - Uso do MS-DOS
 - Até 16 Mb RAM
 - Multitarefa

14

Evolução dos Processadores

- Padrão AT
 - **80-386**
 - **32bits** 16,20,25 e 33 Mhz
 - O windows 3.1e 95 surgiram a partir deste processador
 - Até 64Mb RAM
 - Surgimento da memória
 Cache (memória de alta velocidade e "cara" –
 128k, 256k na mobo)

15

Evolução dos Processadores

- Padrão AT
 - 80-386SX
 - Por dentro, um autêntico 386. Externamente, trabalha como um 286 (Acesso a 16MB RAM, palavra binária de 16 bits)
 - Vantagem: placas-mãe mais baratas
 - 80-386DX
 - O Verdadeiro 386

,

Evolução dos Processadores

- Padrão AT
 - **80-486**
 - **32bits** i de 25,33, 50, 66,75,100 e 120 Mhz
 - Cache interno de 8KB
 - A frequência do processador era tão alta que os circuitos de apoio não acompanhavam
 - Surgimento da multiplicação de clock

486DX (x1) 486DX2 (x2) 486DX4 (x3)

17

Multiplicação de clock

- Surgimento a partir do 486DX
 - A FSB da placa-mãe não conseguia acompanhar as altas frequências alcançadas pelos processadores
 - Não existia circuitos de apoio, memórias e barramentos que acompanhassem
 - Se fabricados, seriam muito "caros"
 - A multiplicação de clock
 - Técnica que multiplica a frequência FSB por um número (multiplicador) até alcançar a frequência interna do processador
 - Feito por meio de "jumpeamento" na placa-mãe ou no SETUP (jumperless)

Evolução dos Processadores

80-486

FSB	80486DX (Clock x 1)	80486DX2 (Clock x 2)	80486DX4 (Clock x 3)
25 MHz	80486DX-25	80486DX2-50	80486DX4-75
33 MHz	80486DX-33	80486DX2-66	80486DX4-100
50 MHz	80486DX-40	80486DX2-80	80486DX4-120

No microprocessador DX2, sua frequência de operação interna é o dobro da externa

A multiplicação de clock permitiu o surgimento de placas-mãe "upgradable" (subst. processador)

Surgimento do cooler para resfriamento do processador

19

Evolução dos Processadores

- Intel **Pentium** (1993)
 - 32 bits
 - Maior cache interno
 - Pentium: 50, 60,66,75,90,..., 200 mhz
 - Pentium MMX: aumentar o desempenho de programas gráficos, aplicações 3D, imagens e sons
 - 166, 200 e 233 MMX
 - Soquete 4: Pentium 60/66 MHz
 - Soquete 5: Pentium 75/90/100/120 MHz
 - **Soquete 7**: Pentium MMX e Overdrive

20

Evolução dos Processadores

Resumo

Fabricante	Modelo	Bits		
		Interno	Externo	
Intel	8008	8	8	
Intel	8088 (XT)	16	8	
Intel	80286	16	16	
Intel	80386-SX	32	16	
	80386-DX	32	32	
Intel	80486	32	32	
Intel	Pentium	32	64	
Intel (1994)	Itanium (Servidores de rede)	64	64	
AMD (2003)	Athlon 64 (Para usuários)	64	64	
Intel (2005)	Pentium 4 (Para usuários)	64	64	

21

Evolução dos Processadores

- Surgimento de reais concorrentes da Intel: AMD e Cyrix
 - Desenvolveram processadores Pentium-Compatíveis até mesmo melhor que o Pentium
 - Cyrix 6x86 (M1), 5x86
 - AMD K5, AMD 5x86

22

Evolução dos Processadores

Pentium Overdrive

- Processador com cooler acoplado (nativo)
- Clock já vem definido de fábrica (sem configuração de jumper)
- Alimentação de 5V
- 120 ou 133 Mhz
- Instalado em placas projetadas para Pentium 60/66

23

Evolução dos Processadores

Pentium Pro

- Desenvolvido para servidores de rede
- Introdução do cache dentro do próprio microprocessador
 - Acesso ao cache na frequência e operação interna do processador
- Cache L1 = 16K,L2 = 256, 512 ou 1MB
- Soquete 8

Pentium II

- Disponível em modelos de cartucho (slot 1)
- Clock interno de 233 a 500 Mhz

Evolução dos Processadores

Pentium III

- Disponível em dois modelos: ZIF e Slot I
- Contém pequenas melhorias feitas no Pentium II para obter um melhor desempenho
- FSB de 100 ou 133 MHz

25

Evolução dos Processadores

Celeron

- Desenvolvido para o mercado de baixo custo
- Um dos primeiros modelos utilizava o slot 1 e não tinha cache 12

Celeron A

- utilizava soauete 370
- Clocks: 66 a 850 MHz

Celeron D e Celeron M

- Linha de processadores para Desktop e portáteis
- Clock que varia de 2,26 GHz a 3,3 GHz

26

Evolução dos Processadores

Pentium 4 (2000)

- 32bits de 1,3 a 2,0 Ghz
- Processador de alto desempenho

Pentium 4 com Hyper-Threading (2002)

- 3.06 Ghz (32 bits)
- HT: Duplicação de algumas partes internas do processador (controladores e registradores)
 - Permite ao processador executar dois programas ao mesmo tempo (simula 2 processadores)
- Possui apenas I único nucleo
 - Outras partes são compartilhadas

27

Evolução dos Processadores

Pentium D (Dual Core)

- Dois núcleos (são dois processadores reais)
- 2.80 a 3.20 Ghz
- Cache L2 de 2 x IMB
- Soquete LGA775

Pentium Extreme Edition

- Capacidade de processamento de 4 processadores
- Um Dual Core onde em cada núcleo foi aplicada a tecnologia Hyper-Threading
 - Executa 4 programas ao mesmo tempo

28

Evolução dos Processadores

Pentium Extreme Edition

- Clock de 3,20 Ghz a 3,73 Ghz
- Cache 2x I MB
- Barramento externo de 800 Mhz e 1066 Mhz
- Soquete LGA775

29

Processadores Intel 64 Bits

Pentium 4

- Concorrente do Athlon 64 (AMD)
- 3Ghz, 3,2 GHz, 3,4 GHz, 3,6 GHz e 3,8 GHz
- Todos os programas de 32 bits rodam na sua plataforma
- Soquete LGA775

Itanium

- De altíssimo desempenho (para servidores e aplicações de grande exigência de processamento)
- Cache interno L1eL2 + Cache extra L3(2/4 MB)

Processadores Intel 64 Bits • Pentium IV e Itanium TIANIUM.

Processadores Intel 64 Bits

Itanium 2

- Plataforma de mais alto desembenho
- Cache interno L1eL2 + Cache extra L3 de 1,5MB, 3MB, 4MB, 6MB ou 9MB
- 1,3 a 1,66 GHz, 1,4 a 1,6 GHz e 1,0 a 1,3 GHz

Xeon

- Destinado ao mercado de servidores
- Trabalha com vários processadores simultâneos na blaca-mãe
- Lançado na época do Pentium II
- Modelos: Pentium II Xeon, Xeon, Xeon MP

32

Processadores Intel 64 Bits

■ Itanium 2 e Xeon

33

Processadores AMD 32 Bits

K6

- Mais indicado para aplicativos de escritórios (texto, planilhas)
- Em questão de aplicativos gráficos 3D e video, o desempenho é 20% menor se comparado com um Pentium MMX de mesmo clock

K6-2

 Possui instruções chamadas 3D Now! Que serve para agilizar os processos de imagens 3D em conjunto com uma placa aceleradora

34

Processadores AMD 32 Bits

AMD Athlon

- Processador "K7", ou seja, continuação dos processadores K6
- Encontrado em modelo ZIF (462) e cartucho (slot A)

Processadores AMD 32 Bits

- Duron
 - Processador desenvolvido para o mercado de baixo custo
 - Cache L2 de 64KB

3/

Processadores AMD 32 Bits

- Athlon XP (EXtreme Performance)
 - Utiliza a nomenclatura PR (Performance Reference)
 - Uma medida de desempenho entre os processadores Athlon de mesma pinagem
 - O Valor de desempenho não é o seu clock interno
 - 512 KB de Cache L2

38

Processadores AMD 32 Bits

Sempron

- Público alvo: usuários comuns e escritório
- Baixo custo (diminuição do poder computacional)
- Concorrente do Celeron D da Intel
- Soquete A (462)
- Atenção
 - O Sempron 2200+ não é um processador de 2200 Mhz.
 O 2200+ é uma medida de desempenho para processadores de mesma pinagem
 - <Ver Tabela de Processadores>

39

Processadores AMD 32 Bits

Sempron

Sempron 3100+

40

Processadores AMD 64 Bits

Sempron

- Soquete 754
- Inicialmente, sua extensão de 64 bits vinha desativada e mais tarde a AMD resolveu ativá-la
- Disponível para soquete **AM2** (64 bits)

41

Processadores AMD 64 Bits

Athlon 64

- Processadores voltados para o mercado doméstico. Lançado em 2003
- Público alvo: usuários que necesitam de um poder computacional maior do que o atingido pelo Sempron 64
- Soquete 754 e 939
- Acesso a até 1 TB de RAM
- Também utilizam a nomeclatura PR
- <ver tabela com relacao de modelos>

Processadores AMD 64 Bits

Athlon 64 FX

- Público alvo: usuários que procuram uma performance maior que o Athlon 64 pode oferecer
 - Voltados para o mercado de alto desempenho
- Soquete 939 ou 940

43

Processadores AMD 64 Bits

Athlon 64 X2

- Atlhon 64 Dual Core (núcleo dublo)
- Soquete 939

- Para instalar tal processador em uma placa dessa natureza, será necessário fazer um upgrade do BIOS
- Indicado para o mercado de alta performance
- Veja tabela com o resumo de processadores>

44

Processadores AMD 64 Bits

Turion 64

Processadores 64 Bits para a linha de notebooks

45

Processadores AMD 64 Bits

Athlon Opteron

- Linha de processadores para servidores
- Mais poderosos que o Athlon 64
- Produzido para competir com o Intel Xeon
- Suporte a multiprocessamento com até 8 processadores
 - Depende do modelo

44

Overclock

Overclock

- Técnica que submete o processador a trabalhar mais rápido que o normal
 - K6-2/450MHz trabalhar a 500MHz
 - Ao invés de 4,5x, utilizar o multiplicador 5,5x
 - Pentium III /700MHz trabalhar a 933MHz
 - Modificar o clock externo de 100 para 133 MHz
- Os processadores desconhecem sua própria velocidade de operação e acatam as informações fornecidas pela placa-mãe
 - Tudo depende do FSB configurado e o valor do multiplicador

Argumentos contrários

- O processador trabalha a uma velocidade maior do que foi projetado
 - Maior aquecimento do processador
 - Cuidados especiais com a refrigeração
- Surgimento de problemas com outros componentes que tem de trabalhar mais rápido
 - Memória, placa de vídeo, etc.
- Nem sempre o overclock funciona
 - Alguns modelos não permitem, outros funcionam de maneira duvidosa dependendo da marca/modelo
- Diminuição da vida útil

48

Tecnologia HyperTransport

- O processador não faz tudo sozinho
 - Link de alta velocidade de comunicação da CPU com o chipset
 - Desenvolvida pela AMD a partir do processador Athlon 64
 - Suporta um elevado tráfego de dados (transmissão e recepção a 3,2 GB/s)
 - Utiliza dois barramentos para comunicação externa
 - Um para o acesso à memória: (o desempenho tende a ser um pouco maior)
 - Um para acessar o chipset (norte):

49

Tecnologia HyperTransport

- O processador não faz tudo sozinho
 - Até entao, os processadores usavam apenas o barramento externo para os dois tipos de acesso

50

Tecnologia HyperThreading (HT)

- Desenvolvida pela Intel para aumentar a performance de seus processadores
 - Tecnologia que simula em um único processador físico, dois processadores lógicos
 - Torna o sistema mais rápido quando vários programas estão sendo executados
 - Rende um acréscimo de 20% na execução
 - Duplicação de registradores e controladores
 - Intel Xeon: primeiro processador a implementar HyperThreading

51

Tecnologia Cool n' Quiet (AMD)

- Sistema de gerenciamento de energia
 - Ajusta dinamicamente a frequência do processador
 - Reduz o clock do processador caso o mesmo não esteja requisitanto tanto desempenho
 - Menor geração de calor
 - Menor consumo de energia elétrica
 - Reduz a rotação da ventoinha do processador
 - Diminui o barulho gerado pelo micro
 - Quando o micro precisar de desempenho, o clock retorna ao estado normal
 - Presente em processadores da linha Athlon 64

52

Pinagem

- Produzido para um determinado tipo de fixação
 - Soquete ZIF (Zero Insertion Force)
 - Slot I (processadores em forma de cartucho)
- Soquete LGA775
 - Usado para Pentium D, Pentium Extreme e Celeron D
- Soquete 939 ou 940
 - Athlon 64 FX

Ver tabela com relação de soquetes e processadores compatíveis

53

Bibliografia

- FERREIRA, S. Montagem de Micros para Estudantes e Técnicos de PCs. Axcel: Rio de Janeiro, 2005.
- VASCONCELOS, L. Manutenção de micros na prática. Rio de Janeiro: Editora Laercio Vasconcelos, 2005.
- http://www.infowester.com.br
- http://www.clubedohardware.com.br
- Especificação de modelos de processador
 - http://processorfinder.intel.com
 - <u>http://www.amdcompare.com</u>

Bibliografia

- Softwares de apoio
 - http://www.hwinfo.com (HWINFO32)
 - <u>http://www.lavalys.com</u> (EVEREST)