Applied Math., Computational Math., Probability and Statistics

Individual

(Please select 5 problems to solve)

1. Let Z_1, \dots, Z_n be i.i.d. random variables with $Z_i \sim N(\mu, \sigma^2)$. Find

$$E(\sum_{i=1}^{n} Z_i | Z_1 - Z_2 + Z_3).$$

2. Let X_1, \dots, X_n be pairwise independent. Further, assume that $EX_i = 1 + i^{-1}$ and that $\max_{1 \le i \le n} E|X_i|^{1+\epsilon} < \infty$ for some $\epsilon > 0$. Show that

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\longrightarrow}1.$$

3. Let Z_1, \dots, Z_6 be i.i.d. random variables with $Z_i \sim N(0,1)$. Set

$$U^{2} = \frac{(Z_{1}Z_{2} + Z_{3}Z_{4} + Z_{5}Z_{6})^{2}}{Z_{2}^{2} + Z_{4}^{2} + Z_{6}^{2}}, \quad V^{2} = \frac{U^{2}(Z_{2}^{2} + Z_{4}^{2})}{U^{2} + Z_{6}^{2}}.$$

Find and identify the densities of U^2 and V^2 .

4. Suppose that three characteristics in a large propulation can be observed according to the following frequencies

$$p_1 = \theta^3$$
, $p_2 = 3\theta(1 - \theta)$, $p_3 = (1 - \theta)^3$,

where $\theta \in (0,1)$. Let N_j , j = 1,2,3 be the observed frequencies of characteristic j in a random sample of size n.

- (a) Construct the approximate level (1α) maximum likelihood confidence set for θ .
- (b) Derive the asymptotic distribution for the frequency substitution estimator $\hat{\theta}_2 = 1 (N_3/n)^{1/3}$.
- **5.** (1) Suppose

$$S = \begin{bmatrix} \sigma & \mathbf{u}^T \\ 0 & S_c \end{bmatrix}, \quad T = \begin{bmatrix} \tau & \mathbf{v}^T \\ 0 & T_c \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \beta \\ \mathbf{b}_c \end{bmatrix},$$

where σ , τ and β are scalars, S_c and T_c are n-by-n matrices, and \mathbf{b}_c is an n-vector. Show that if there exists a vector \mathbf{x}_c such that

$$(S_c T_c - \lambda I) \mathbf{x}_c = \mathbf{b}_c$$

and $\mathbf{w}_c = T_c \mathbf{x}_c$ is available, then

$$\mathbf{x} = \begin{bmatrix} \gamma \\ \mathbf{x}_c \end{bmatrix}, \quad \gamma = \frac{\beta - \sigma \mathbf{v}^T \mathbf{x}_c - \mathbf{u}^T \mathbf{w}_c}{\sigma \tau - \lambda}$$

solves $(ST - \lambda I)\mathbf{x} = \mathbf{b}$.

- (2) Hence or otherwise, derive an $O(n^2)$ algorithm for solving the linear system $(U_1U_2 \lambda I)\mathbf{x} = \mathbf{b}$ where U_1 and U_2 are n-by-n upper triangular matrices, and $(U_1U_2 \lambda I)$ is nonsingular. Please write down your algorithm and prove that it is indeed of $O(n^2)$ complexity.
- (3) Hence or otherwise, derive an $O(pn^2)$ algorithm for solving the linear system $(U_1U_2\cdots U_p \lambda I)\mathbf{x} = \mathbf{b}$ where $\{U_i\}_{i=1}^p$ are all n-by-n upper triangular matrices, and $(U_1U_2\cdots U_p \lambda I)$ is non-singular. Please write down your algorithm and prove that it is indeed of $O(pn^2)$ complexity.
- **6.** (1) Let $A \in \mathbb{R}^{m \times n}$, i.e. A is an m-by-n real matrix. Show that there exists an m-by-m orthogonal matrix U and an n-by-n orthogonal matrix V such that

$$U^T A V = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_p),$$

where $p = \min\{m, n\}$ and

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_p \ge 0.$$

(2) Let rank(A) = r. Show that for any positive integer k < r,

$$\min_{\operatorname{rank}(B)=k} ||A - B||_2 = \sigma_{k+1}.$$

(*Hint*: Consider the matrix $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, where \mathbf{u}_i and \mathbf{v}_i are columns of U and V respectively.)