The Application of Supervised Learning on Classifiers Problem: Apply Scikit-Learn to Label LOL Match Records with "Win/Loss"

Du Jiahe

Content

I.	Introduction	2
II.	Algorithms	2
III.	Requirements	5
IV.	Results	5
v.	Comparison and Discussion	. 8

I. Introduction

League of legends (LOL), a prevalent e-sport in the world, excites its followers because of the uncertainty of its outcomes. In this game, all kinds of information, such as the creation time and game duration, are related to the outcome of the game. In this project, approximate three million records of solo gamers are provided as the training set, and each record contains all publicly available statistical data of a game. In these data, label "1" in the field "winner" represents the team one won the game, and vice versa.

The main objective in this project is to create classifiers to process the data in training set and then label the test set, which comprises of about two million records, as "1" or "2". After successfully completing previous tasks, the performance of the models should be evaluated using scoring parameters and the result must be higher than 50%. To pachase further improvement, comparison of these classifiers will be discussed and the possible extension of the program to bettering this project will be proposed.

The implementation is realized by applying the library scikit-learn in Python. Classifiers include support vector machine, decision tree, and ensemble methods of bagging, boosting and random forest are applied in the project. Aim of evaluating them in various aspects, scoring parameters accuracy, average precision, f1 score and AUC score are used.

II. Algorithms

Classification method

The following table (table2.1) demonstrates the classifers build in this project. The second column indicates the parameters needed modified and their meaning. The field *Function* provides a brief introduction of each classifer and simply describe their advantages and disadvantages, which will be detailedly illustrated in the *Comparison and Discussion* section.

Table 2.1

Classifer	Parameter	Function
Support	Kernel = linear	This classifer is only applicable to
Vector	Choose from [linear, rbf, poly],	binary classification problems. It
Machine	which corresponding to not use	is efficient for high-dimension
	kernel function to ascend	data and large number of samples,
	dimension in fitting, using kernel to	but when applies to large number
	ascend dimension, and using radial	of samples, you should avoid
	basis function (Gaussian surface) to	overfitting when choosing the
	enhance dimension.	kernel.
Decision	Max_depth = 8	It supports multi-label
tree	maximum depth of the tree, no	classification. This model is
	limitation by default.	easlier to understand than the
		others, and it can be trained with
		small samples. However, it is
		more likely to generate a model
		that is too complicated. Usually,
		decision tree is not so stable and
		may overfit.
	Ensemble	
Random	n_estimator = 100	This ensemble method combines
forest	The number of estimators in the	the results of a certain number of
	ensemble.	base estimators, decision trees,
		whose aim is to reduced variance
		then obtain better robustness.
		Moreover, this model can reduce
		the overfitting of decision tree.
		For each estimator, set number of

		samples and features will be used,
		and the samples are chosen
		randomly with replacemnet. In
		addition, when the nodes are
		segmented in the process of
		building the tree, the selected
		segmentation points are the best
		segmentation points for all
		features
Adaboost	n_estimator = 350	The key of Adaboost is to adjust
	The number of estimators in the	the weight of the sample in each
	ensemble.	boosting. The sample that is
		mistakenly classified to a wrong
		class will get a greater weight, so
		the classifier will be forced to pay
		more attention to the sample with
		wrong label.

Parameter selection

In the process of building these classifers, gird-search (figure 2.1) is used to find the best parameter. This method summarized as exhaustive search, that is, in the selection of all candidate parameters, every possibility is tried by loop traversal, and the parameter with the best result will be chosen.

```
#random forest
n_estimators_range=[100]#10,50,200,300
param_rf = dict(n_estimators=n_estimators_range)
clf_rf = GridSearchCV(RandomForestClassifier(),param_rf)
```

Figure 2.1

III. Requirements

The following table demonstrates the prerequisite packages used in this project.

Table 3.1

Prerequisite packages	Function
pandas	Read data from csv file
sklearn.preprocessing	Preprocessing the data
sklearn.model_selection	Use gird-search to select the best paramete
sklearn	Decision tree model
sklearn.svm	Ssupport vector machine model
sklearn. ensemble	Adaboost and Random forest
Sklearn.metrics	Use scoring parameter to evaluate the models
time	Calculate the running time

IV. Results

• Scoring parameter

To illustrate the parameter clearly, the *confusion matrix* (table4.1) will be demonstrated first.

The total number of samples is N = TP + FN + FP + TN

Table 4.1

		Predicted class	
Actual		Yes	No
Class	Yes	TP	FN
	No	FP	TN

In table 4.2 are the parameters used to evalutate the classifiers in this project.

Table 4.2

Parameter	Introduction			
Accuracy	$\frac{\text{number of samples correctly predicted}}{\text{accuary}} = \frac{\text{TP + TN}}{\text{TP + TN}}$			
	$\frac{1}{\text{total number of samples}} = \frac{1}{N}$			
	It reflects the ability of the classifier to judge the whole samples and			
	the probability of correctly classified samples.			
Precison	$precision = \frac{TP}{TP + FP}$			
	It only reflects the ability of the classifier to correctly classify class			
	1.			
Recall	$recall = \frac{samples correctly classified as class 1}{tatal samples of calss 1} = \frac{TP}{TP + FN}$			
	it reflects the proportion of samples of class1 correctly classified as			
	class1.			
F1_score	$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$			
	This parameter combines the performance of precision and recall and			
	shows the balanced point of them.			
Roc_auc_score	AUC is the area under curve of ROC, and ROC is based on FP and			
	TP to evaluate the prediction ability of the model. Usually, this value			
	is between 0.5 and 1, and bigger th better.			

• Evaluating each classifier

Table 4.3

Parameter	SVM	Decision tree	Adaboost	Random
				forest
Accuracy	0.9563	0.9632	0.9638	0.9646
Precison	0.9366	0.9397	0.9410	0.9421
Recall	0.9697	0.9781	0.9776	0.9783
F1_score	0.9599	0.9636	0.9642	0.9649
Roc_auc_score	0.9596	0.9632	0.9638	0.9646

Running time/s	59.6854	0.2309	45.1608	6.7080	
----------------	---------	--------	---------	--------	--

From table 4.3 it can be concluded that *Random Forest* performs best.

Its scoring parameters score the highest, and the running time is relatively short.

Although *Decision Tree* only takes a very short running time, its performance is slightly worse than that of *Random forests*. *Adaboost* is also doing well, but its running time is too long, which is unsatisfactory.

Screencut of the result

The following figures are the output on console of the four classifers. They are given the same order as table 4.3.

```
svm------
acc_test: 0.9596327601282425
pre_test: 0.9366602356585851
recall_test: 0.9696999220576773
f1_svm: 0.959926701065728
roc_test: 0.9596610441522643
running time: 59.68543815612793 seconds
```

```
dt-----
acc_test: 0.9632274361216361
pre_test: 0.93974607710834
recall_test: 0.9781761496492596
f1_test: 0.9636703940106541
roc_test: 0.9632694350261413
running time: 0.23090314865112305 seconds
```

```
Aba------
acc_test: 0.9638103565529972
pre_test: 0.9409988840321737
recall_test: 0.977689010132502
f1_boost: 0.9642085034830652
roc_test: 0.9638493490887273
running time: 45.160842418670654 seconds
```

```
rf------
acc_test: 0.964587583794812
pre_test: 0.9421331261685186
recall_test: 0.9783710054559626
f1_rf: 0.9649738144428963
roc_test: 0.9646263087733213
running time: 6.708074569702148 seconds
```

Figure 4.1

V. Comparison and Discussion

Data proprocessing

When dealing with big data project, it may happen that the difference between the orders of magnitude of the feature is so large that leads to the dissaatified performance of the classifer, such as low accuracy and long running time.

in this project, the fields of the records contain the *game ID*, winner, and other 18 features. Since the orders of magnitude of the data in certain field is much larger than the others (figure 5.1), which means the value of this feature does not obey the standard normal distribution, the performance of the classifiers will become very poor.

winner	gameDura	se	asonId	firstBlood	firstTower	firstInhibito	firstBaron	firstDragor	firstRiftHer
	2 203	3	9	0	0	0	0	0	0
	1 1799)	9	2	2	1	1	2	0
	2 1876	6	9	1	2	2	0	2	0
	1 1423	3	9	1	2	1	1	2	1
	1 2093	3	9	1	2	1	0	1	0
	1 1649)	9	1	1	1	0	1	0
	2 1365	5	9	2	2	2	2	2	2
	1 1645	5	9	1	1	0	0	2	0
	2 2479)	9	1	1	2	2	1	0
	2 2088	3	9	1	2	2	2	1	2
	1 1508	3	9	2	2	0	2	2	1
	1 1683	2	a	1	1	1	1	1	Ω

Figure 5.1

Therefore, standardlization (figure 5.2) is used to preprocess the data to ensure the classifiers work well. With this algorithm, the value range of each feature can be set between 0 and 1, and thus increasing the robustness to the feature.

```
#input training set
train = read_csv(r"new_data.csv")
train = train.values
scaler= MinMaxScaler((0,1))
train=scaler.fit_transform(train)
```

Figure 5.2

• Feature selection

After data preprocessing, it is necessary to select meaningful features then input them into the models of machine learning for training. This is related to the divergence of the feature and relanvance of the features and the target. If a feature is not divergent and its variance is closer to 0, it not so helpful for the model to do the classification. Also, the feature that is not relavant to the target is less important for the model. Therefor, feature

selection can descent the dimension of the features, thus enhances the accuracy and reduces the running time of the program.

In this project, selection methods from scikit learn are used. The following table show the evaluation function applied in the project.

Table 5.1

Evaluation function	Introduction
chi2	Chi-square test is a widely used hypothesis testing method. It
	counts the deviation degree between actual observation value
	and theoretical inference value, which determines the chi-
	square value. The smaller the chi-square value, the greater
	the consistency of the feature and target.
f_classif	It is mainly used to judge whether the variance between
	two samples is obviously different, and it is mainly used in
	the task of classifying feature into category.
mutual_info_classif	This value is the mutual information between variables and
	target values, and it usually used in classification tasks.
	Mutual information is a significant measurement of
	information, which can be regarded as the amount of
	information about one random variable contained in another
	random variable, or the uncertainty of a random variable
	reduced by knowing another random variable.

The following are the result of the feature selection of the 18 features (figure 5.3), which are the columns 0 to 17. The feature chosen by all three algorithms are set to be the features used in the models.

```
chi2_scores:
[4.82959507e-01 nan 8.61375730e+01 4.41410767e+02
1.54225190e+03 8.00876122e+02 3.31444734e+02 2.02790073e+02
4.25465315e+03 2.04455060e+03 7.93557864e+02 1.19417185e+03
1.13422426e+03 4.68530311e+03 2.15923389e+03 1.12979868e+03
1.33588741e+03 1.22381932e+03]
selected index: [3 4 5 6 8 9 10 11 12 13 14 15 16 17]
```

Figure 5.3

• Overall performance of the four classifers

From the outcomes it can be summarized that the performance of ensemble methods is better than a single classifier. Since the goal of the ensemble methods is to combine the predicted results of multiple base estimators, built by using a given learning algorithm, to achieve better generalization capability and robustness than a single estimator. For *Adaboost* and *Random Forest*, they combine multiple weak models, *Decision Tree*, and strengthen the integrated model. However, when dealing with different data sets, their algorithms will contribute different performances, and the following table (table 5.2) shows some of their disctintions.

Table 5.2

Difference	Adaboost	Random Forest
Sample selection	All samples	Ramdonly choose the
		subset of all samples with
		replacement
Weight	Misclassified samples	All have same weight
	have greater weight	
Estimator	Iteratively generate in	Parallelly generate
	order	
Characteristic	All tree weighted voting to	

	determine the predicted	Split nodes during tree
	value of the dependent	construction
	variable	
Advantage	The algorithm is easier to	Reduce variance of the
Advantage	The algorithm is easier to understand and it can be	Reduce variance of the feature and avoid
Advantage		

Although their performance for this dataset are similar, but the running time of *Random Forest* is much shorter than *Adaboost*. For *Support Vector Machine*, when the dataset is large, the model is hard to implement because of its design of algorithm. Meanwhile, on a great extend, its performance depends on the choice of the kernel and other parameters, which are selected according to experience and with a certain degree of randomness. As the outcome above, this classifier takes a long time and not performs so well.

Experience gained in this project

This project brought me into the field of big data processing. In this project, I mainly applied the algorithm in scikit learn to achieve the objectives. For the dataset, I obtain a preliminary understanding of data preprocessing and feature selection, and put it into practice. As for classifiers, I learnt the basic knowledge of their principles, parameters, advantages and disadvanges, then compared them to master their relationship. In order to get their performance, I also attempt to figure out the meaning and application condition of the scoring parameters. In general, I gained tremendous experience of how to deal with a big data project.

• Possible improvement if time permitting

I complete the project with a relatively short time, so if more time is provided, I will definitely make improvements to optimize my project. First of all, I want to explore more about parameters and parameters selection and find better parameters to fit the samples so

as to improve the accuarcy. I also intend to acquire more knowledge about classifiers and their characteristic. Secondly, I am interested in feature engineering, and I am willing to learn more about it even if it doesn't involve much of this task. Additionally, to make my result more convincing and reducing randomicity, I will run the program for a few more time to obtain the average scores. In conclusion, I want to go deeper into the field of big data processing and complete my work better.