Data Analysis of IBM Attrition

IBM 사조

공준택 김순영 김혜린 오희준 장인아

CONTENTS

01 Previously

Decision Tree

Random Forest

SVM

05 Conclusion

01 Previously

01 Previously

Previously | Decision Tree | | Random Forest SVM | Conclusion

	Α	В	С	D	E	F	G	Н
1	Age	Attrition	BusinessTr	DailyRate	Departme	DistanceFr	Education	Education
2	41	Yes	Travel_Rar	1102	Sales	1	2	Life Science
3	49	No	Travel_Free	279	Research &	8	1	Life Science
4	37	Yes	Travel_Rar	1373	Research &	2	2	Other
5	33	No	Travel_Free	1392	Research &	3	4	Life Science
6	27	No	Travel_Rar	591	Research &	2	1	Medical
7	32	No	Travel_Free	1005	Research &	2	2	Life Science
8	59	No	Travel_Rar	1324	Research &	3	3	Medical
9	30	No	Travel_Rar	1358	Research &	24	1	Life Science
10	38	No	Travel_Free	216	Research &	23	3	Life Science
11	36	No	Travel_Rar	1299	Research &	27	3	Medical
12	35	No	Travel_Rar	809	Research &	16	3	Medical
13	29	No	Travel_Rar	153	Research &	15	2	Life Science
14	31	No	Travel_Rar	670	Research &	26	1	Life Science
15	34	No	Travel_Rar	1346	Research &	19	2	Medical
16	28	Yes	Travel_Rar	103	Research &	24	3	Life Science
17	29	No	Travel_Rar	1389	Research &	21	4	Life Science
18	32	No	Travel_Rar	334	Research &	5	2	Life Science
19	22	No	Non-Trave	1123	Research 8	16	2	Medical

Data set: IBM 이직

데이터

주제 :

IBM 직원들의 이직 결정 <mark>요인</mark>들을 분석하여 지나친 이직을 막기위한 방법을 제시

Attrition

이직 여부

Relationship Satisfaction	관계 만족도
TotalWorkingYears	총 근무 기간(년)
TrainingTimesLastYear	작년 직업 훈련시간
WorkLifeBalance	일과 생활의 균형

Yes (1233)

NO (237)

34개 설명변수

- Logistic Reg.

1. step: 단계적 알고리즘을 사용해 AIC를 기준으로 모델 선택

```
null<-glm(Attrition~1,data=dat,family="binomial")
full<-glm(Attrition~.,data=dat,family="binomial")
step(null,scope = list(lower=null,upper=full),direction = "both")</pre>
```

변수의 추가와 삭제를 반복한 결정된 최종 모델

```
> formula(step1)
```

```
Attrition ~ OverTime + JobRole + MaritalStatus + EnvironmentSatisfaction + JobSatisfaction + JobInvolvement + BusinessTravel + YearsInCurrentRole + YearsSinceLastPromotion + DistanceFromHome + NumCompaniesWorked + Age + WorkLifeBalance + RelationshipSatisfaction + TrainingTimesLastYear + YearsWithCurrManager + Gender + EducationField + TotalWorkingYears + YearsAtCompany + StockOptionLevel
```


- Logistic Reg.

2. glm: 선택된 변수들로 적합

```
> fit<-glm(formula = Attrition ~ OverTime + TotalWorkingYears + MaritalStatus +
             EnvironmentSatisfaction + JobInvolvement + JobSatisfaction +
             NumCompaniesWorked + DistanceFromHome + YearsSinceLastPromotion +
             YearsInCurrentRole + RelationshipSatisfaction + WorkLifeBalance +
             Age + Gender + MonthlyIncome + Department + YearsWithCurrManager +
             YearsAtCompany + TrainingTimesLastYear + StockOptionLevel +
             DailyRate, family = "binomial", data = dat)
> summary(fit)
Call:
alm(formula = Attrition ~ OverTime + TotalWorkingYears + MaritalStatus +
    FnvironmentSatisfaction + lobInvolvement + lobSatisfaction +
    NumCompaniesWorked + DistanceFromHome + YearsSinceLastPromotion +
    YearsInCurrentRole + RelationshipSatisfaction + WorkLifeBalance +
    Age + Gender + MonthlyIncome + Department + YearsWithCurrManager +
    YearsAtCompany + TrainingTimesLastYear + StockOptionLevel +
    DailyRate, family = "binomial", data = dat)
Deviance Residuals:
             10 Median
    Min
                                30
                                        Max
-1.7151 -0.5395 -0.2941 -0.1203
                                     3.4094
```


- Logistic Reg.

OverTime (초과 근무)
MaritalStatus (결혼 상태)
BusinessTravel (출장)
NumCompaniesWorked (일했던 직장 수)
DistanceFromHome (집과의 거리)
YearsSinceLastPromotion (승진 후 경과 시간)

TotalWorkingYears (총 근무 기간) EnvironmentSatiscation (환경 만족도) JobInvolvement((직업 소속감) JobSatisfaction (직업 만족도) YearsInCurrentRole (직무 연차) RelationshipSatisfaction (관계 만족도)

- This week

Decision Tree

Random Forest

SVM

02 Decision Tree

<Original Data>

> roc.curve(test\$Attrition, pred.tree.ori[,2])
Area under the curve (AUC): 0.687

한 쪽으로 편향된 결과

No Yes 1233 237

(No가 yes보다 10배 정도 많음)

한 쪽으로 편향된 데이터를 어떻게 다룰 것인가?

- 1. Oversampling
- 2. Undersampling
- 3. Synthetic Data Generation

('ROSE' package 사용)

Random Over Sampling Examples

1. Oversampling

Minority class의 데이터를 replicate → balance를 맞춤

- Information loss가 없음
- Overfitting의 문제 (같은 obs.가 여러 존재)

data.over <- ovun.sample(Attrition~., data = train, method="over", N=table(train\$Attrition)[1]*2)\$data

(train data에서)
yes가 no의 개수만큼 되도록

<완전 성장 tree> 가지치기 할 수 없었음

> roc.curve(test\$Attrition, pred.tree.over[,2])
Area under the curve (AUC): 0.726

2. Undersampling

Majority class의 데이터를 줄임 → balance를 맞춤

- 데이터 크기가 클 때 유용 (계산 시간 감소)
- 중요한 정보의 손실이 발생할 수 있음

data.under <- ovun.sample(Attrition~.,data=train,method = "under",N=table(train\$Attrition)[2]*2,seed = 1)\$data

(train data에서)
no가 yes의 개수만큼 되도록

> table(train\$Attrition)
No Yes
871 158
> table(data.under\$Attrition)
No Yes
158 158

<가지치기한 tree>

> roc.curve(test\$Attrition, pred.tree.under[,2])\$auc
[1] 0.7023044

3. Synthetic Data Generation

데이터를 줄이거나 더하는 대신, 새로운 데이터를 만들어냄

- Synthetic minority oversampling technique (SMOTE) 이 널리 사용됨
- Bootstrapping과 k-nearest neighbors 이용

<가지치기한 tree>

> roc.curve(test\$Attrition, pred.tree.rose[,2])
Area under the curve (AUC): 0.737

03 Random Forest

randomForest: 다양한 의사 결정 나무를 만들어서 학습하고, 예측 시에 여러 모델의 예측 결과들을 종합해 사용한다.

장점) 일반적으로 성능이 뛰어나고, 여러 의사 결정 나무를 사용해 과적합 문 제를 피한다.

Random Forest 생성

```
library(ROSE)
library(randomForest)
data.rose <- ROSE(Attrition ~ ., data = train, seed = 1)$data
rf.fit<-randomForest(Attrition~.,data=data.rose,ntree=500,mtry=5)</pre>
```

randomForest: 랜덤 포레스트 생성

- data.rose: yes / no 불균형한 데이터를 비율을 맞춰준 data 사용
- ntree:나무의 개수
- mtry: 노드 나눌 때 고려할 변수의 개수

varImpPlot(rf.fit)

- 1) Job Role
- 2) Over Time
- **3) Age**
- 4) **Environment Satisfaction**
- 5) Job satisfaction

varimpPlot: 변수의 중요도를 평가하고 모델링에 사용할 변수를 선택

- importance() / varimpPlot() 사용해 결과 출력

Predict 예측

```
library(prediction)
library(ROCR)
pred.rf<-predict(rf.fit,newdata=test)
pred<-prediction(as.integer(pred.rf),test$Attrition)</pre>
```

predict: 만들어진 랜덤 포레스트에 test 데이터를 적용시켜 예측해본다.

```
Predict
예측
```

```
> auc<-performance(pred,measure = "auc")</pre>
```

- > auc<-auc@y.values[[1]]</pre>
- > auc

[1] 0.7313216

auc = 1.0 일 때 가장 완벽한 예측 auc = 0.7313

04 SVM


```
> svm <- svm(Attrition ~.,
               data = training_data_formula
> predictions_svm <- predict(svm, validation_data)</pre>
> summary(svm)
Call:
svm(formula = Attrition ~ ., data = training_data_formula)
Parameters:
   SVM-Type: C-classification
 SVM-Kernel: radial
      cost: 1
     gamma: 0.02941176
Number of Support Vectors: 291
( 141 150 )
Number of Classes: 2
Levels:
No Yes
```

E1071 패키지를 사용

predictions_svm No Yes No 317 24 Yes 52 47

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation
- best parameters:gamma cost0.1 1
- best performance: 0.2428049

tune.svm 함수를 통해 최적의 gamma와 cost를 찾아내 svm에 적용

- > roc.curve(validation_data\$Attrition, predictions_svm)
- Area under the curve (AUC): 0.761
- > roc.curve(validation_data\$Attrition, predictions_after_svm)

Area under the curve (AUC): 0.789


```
> t(svm_model_after_tune$coefs) %*%svm_model_after_tune$SV
     OverTimeNo OverTimeYes TotalWorkingYears MaritalStatusMarried MaritalStatusSingle EnvironmentSatisfaction.L
[1,] -21.48652
                   21.48652
                                    -18.71656
                                                         -3,440229
                                                                              8.805802
                                                                                                       -12.16127
     EnvironmentSatisfaction.O EnvironmentSatisfaction.C JobInvolvement.L JobInvolvement.O JobInvolvement.C JobSatisfaction
Γ1.7
                      9.698596
                                               -3.985678
                                                                -8.760645
                                                                                  3.919396
                                                                                                  0.8491415
                                                                                                                  -6.497664
     NumCompaniesWorked DistanceFromHome YearsSinceLastPromotion YearsInCurrentRole RelationshipSatisfaction.L
[1,]
               8.809673
                                 4.09585
                                                        5.043538
                                                                           -15.1861
                                                                                                     -1.964821
     RelationshipSatisfaction.O RelationshipSatisfaction.C WorkLifeBalance.L WorkLifeBalance.O WorkLifeBalance.C
                                                                                                                       Age
[1,]
                        2.89335
                                                 -6.572542
                                                                   -4.388903
                                                                                      3.446525
                                                                                                        2.538832 -11.91989
     GenderMale MonthlyIncome DepartmentResearch...Development DepartmentSales YearsWithCurrManager YearsAtCompany
Γ1.7 2.302842
                                                                                                         -8.920574
                    -17,79618
                                                     -4.335107
                                                                      3.887916
                                                                                          -18.69237
     TrainingTimesLastYear StockOptionLevel.L StockOptionLevel.Q StockOptionLevel.C DailyRate
[1,]
                  -15.1428
                                    -8.289982
                                                        13.52427
                                                                          -4.088099 -7.281296
```


05 Conclusion

05 Conclusion

Previously | Decision Tree | | Random Forest | SVM | Conclusion

[분석 방법 별 중요 변수]

Decision Tree

- 1) Over Time
- 2) JobRole
- 3) Education Field
- 4) MaritalStatus
- 5) WorklifeBalance

Random Forest

- 1) Job Role
- 2) Over Time
- **3) Age**
- **4) Environment Satisfaction**
- 5) Job satisfaction

[conclusion] 기업은 Over time 줄여라!!

- •입사 후 결정되는 "Over time", "Work and Life Balance"가 이직을 막을 결정적 변수
- •Job Role, Age, Marital State 는 현재 직장과 무관하게 정해지는 변수
- •Saticfaction은 전반적인 조건을 모두 통틀어 측정된다고 보아 해석x
- •임금과 관련된 변수는 초기 예상과 다르게 중요변수로 작용하지 않았음

[Appendix] 그리고 그것은 <mark>사실</mark>로 밝혀졌다…

IBM, 초과근무수당 안주다 고소당해

입력시간 | 2006, 01, 25 09:32 | 홍정민 jmhong@edaily.co, kr

