Лабораторная работа №1.

Численные методы решения нелинейных уравнений.

Цель. Используя пакет **Octave** найти приближенный корень нелинейного уравнения методом простой итерации, его модификации и методом Ньютона. Сранить методы по количеству итераций.

Задача 1.

Используя пакет **Octave**, локализовать корни уравнения f(x) = 0 графически.

Написать скрипт на встроенном в **Octave** языке программирования реализующий метод простой итерации. С помощью этого скрипта найти любой корень уравнения с точностью $\varepsilon = 10^{-4}$.

Задача 2.

Написать скрипт на встроенном в **Octave** языке программирования реализующий модифицированный метод простой итерации. С помощью этого скрипта найти тот же корень уравнения с точностью $\varepsilon = 10^{-4}$.

Задача 3.

Написать скрипт на встроенном в **Octave** языке программирования реализующий метод Ньютона. С помощью этого скрипта найти тот же корень уравнения с точностью $\varepsilon = 10^{-4}$.

Сравнить результаты всех трех методов между собой и с результатами встроенной в **Octave** функции **fzero**().

Примечание. Использовать одинаковые начальные приближения для всех методов. В каждом методе должно быть не менее 3-х итераций.

Порядок выполнения работы

Задача 1.

- 1. Используя **Octave** построить график функции y = f(x) и по графику определить интервал [a, b] локализации любого корня.
 - $2. Привести уравнение к итерационному виду <math>x = \varphi(x)$, всеми

возможными способами.

3.Для каждой функции $y = \varphi(x)$, полученной во 2 пункте используя **Octave,** в одной системе координат на отрезке локализации [a, b] построить графики:

$$y = f(x), y = x, y = \varphi(x)$$

и определить те функции $y = \varphi(x)$, которые имеют абсциссу точки пересечения графиков функций $y = \varphi(x)$ и y = x совпадающую с абсциссой точки пересечения графиков функций y = f(x) и y = 0.

- 4. Используя **Octave**, в одной системе координат построить графики всех функций $y = |\varphi'(x)|$ и функции y = 1. Визуально выбрать ту функцию, для которой выполняется условие сходимости метода простой итерации $|\varphi'(x)| \leq q < 1$.
- 5. Для выбранной в пункте 4 функции по графику определить на каком из концов отрезка [a,b] функция $y=|\varphi'(x)|$ принимает максимальное значение и найти $q=\max_{x\in[a,b]}|\varphi'(x)|$, т.е. $q=|\varphi'(b)|$ если функция $y=|\varphi'(x)|$ возрастает на [a,b] и $q=|\varphi'(a)|$ если функция $y=|\varphi'(x)|$ убывает на [a,b].
- 6. Написать скрипт рассчитатывающий члены итерационной последовательности по формуле $x^{(k+1)} = \varphi(x^{(k)})$ и значение $\varepsilon_0 = \frac{1-q}{q} \varepsilon$. Результаты представить в виде таблицы. Каждое значение округлить до 6 значащих цифр.

No		разность	точность
итерации	корень		
1		$ x^{(1)} - x^{(0)} $	$arepsilon_0$
	$x^{(1)}$		
2		$ x^{(2)}-x^{(1)} $	$arepsilon_0$
	$x^{(2)}$		
k		$ x^{(k)} - x^{(k-1)} $	$arepsilon_0$
	$\chi^{(k)}$		

- 7. Определить номер итерации k начиная с которого выполняется условие $|x^{(k)}-x^{(k-1)}|\leqslant \varepsilon_0$.
 - 8. Выписать $x^{(k)}$ —корень, найденный с точностью не меньшей чем ε .

Задача 2.

- 1. В **Octave** построить график функции y = f'(x) на интервале [a,b]. Если f'(x) < 0, то положить f(x) = -f(x), т.е. решать уравнение -f(x) = 0
- 2. Используя построенный в предыдущем пункте график определить на каком из концов отрезка [a,b] функция y=f'(x) принимает минимальное значение и найти $m=\min_{x\in [a,b]}f'(x)$, т.е. m=f'(a) если функция y=f'(x) возрастает на [a,b] и m=f'(b) если функция y=f'(x) убывает на [a,b]. Определить на каком из концов отрезка [a,b] функция y=f'(x) принимает максимальное значение и найти $M=\max_{x\in [a,b]}f'(x)$, т.е. M=f'(b) если функция y=f'(x) возрастает на [a,b] и M=f'(a) если функция y=f'(x) убывает на [a,b].

3. Рассчитать
$$\alpha = \frac{2}{M+m}$$
 и $q = \frac{M-m}{M+m}$.

4. Написать скрипт рассчитатывающий члены итерационной последовательности по формуле $x^{(k+1)} = x^{(k)} - \alpha f(x^{(k)})$ и значение $\varepsilon_0 = \frac{1-q}{q} \varepsilon$. Результаты представить в виде таблицы. Каждое значение округлить до 6 значащих цифр.

No॒	корень	разность	точност
итерации			Ь
1	$x^{(1)}$	$ x^{(1)} - x^{(0)} $	$arepsilon_0$
2	$x^{(2)}$	$ x^{(2)}-x^{(1)} $	$arepsilon_0$
		••	
k	$\chi^{(k)}$	$ x^{(k)}-x^{(k-1)} $	$arepsilon_0$

- 5. Определить номер итерации k начиная с которого выполняется условие $|x^{(k)}-x^{(k-1)}|\leqslant \varepsilon_0$.
 - 6. Выписать $x^{(k)}$ —корень, найденный с точностью не меньшей чем ε .

Задача 3.

1. Написать скрипт рассчитатывающий члены итерационной последовательности по формуле $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$. Результаты представить в виде таблицы. Каждое значение округлить до 6 значащих цифр.

No॒	корень	разность	точност
итерации			Ь
1	$x^{(1)}$	$ x^{(1)} - x^{(0)} $	ε
2	$x^{(2)}$	$ x^{(2)} - x^{(1)} $	ε
		•••	
k	$\chi^{(k)}$	$ x^{(k)} - x^{(k-1)} $	ε

- 2. Определить номер итерации k начиная с которого выполняется условие $|x^{(k)}-x^{(k-1)}|\leqslant \varepsilon$.
 - 3. Выписать $x^{(k)}$ —корень, найденный с точностью не меньшей чем ε .
 - 4. Сравнить количество итераций k в задачах 1,2 и 3.
- 5. Найти решение с помощью встроенной функции с той же точностью. Сравнить результаты трех методов с результатами встроенной функции.
 - 6. Вывод о скорости сходимости методов(по количеству итераций).

Варианты заданий.

	Уравнение		Уравнение
№	1	$\mathcal{N}_{\underline{0}}$	1
1	$0.5^x + 1 = (x - 2)^2$		$\sin(x - 0.5) - x + 0.8 = 0$
		16	
2	$(x-4)^2 \log_{0.5}(x-$		$tg^3x = x - 1, -\pi/2 \leqslant x \leqslant \pi/2$
	$3) = -1$ $x^2 \cos(2x) = -1$	17	
3	$x^2\cos(2x) = -1$		arctg(x-1) + 2x = 0
		18	
4	$(x-2)^2 2^x = 1$		$2\cos(x + \pi/6) + x^2 = 4x - 3$
		19	
5	$\sqrt{x+1} = 1/x$		$x^2 - 5 + 0.4^{2x} = 0$
		20	_
6	$(x-2)\cos(x)=1$		$\sqrt{x} - \cos(0.374 + x) = 0$
		21	
7	$(x-2)^3 \lg(x+11) =$		$\sin(0.5 + x) = 2x - 0.5$
	1	22	
8	$5\sin(x) = x - 1$		$\ln(x) + (x+1)^3 = 0$
		23	
9	$x^43^x = 2$		$3x - 2e^x = -3$
		24	
	$2\lg(x) - x/3 + 1 = 0$		$2\sin(x - 0.6) = 1.5 - x$
10		25	
	$2\sin(x+\pi/3) =$		$5x - 8\ln(x) = 8$
11	$0.5x^2 - 1$ $2x^2 - 0.5^x - 3 = 0$	26	
	$2x^2 - 0.5^x - 3 = 0$		$x = \sqrt{\lg(x+2)}$
12		27	, , ,

	$\cos(x+0.5) = x^3$		$1.8x^2 - \sin(10x)$
13		28	
	$2e^x = 5x + 2$		$ctg(1.05 + x) - x^2 = 0$
14		29	- ,
	$\sin(x - 0.5) - x +$		$\lg(x) - 7/(2x + 6) = 0$
15	sin(x - 0.5) - x + 0.8 = 0	30	, , , ,