INFLUENCE OF A SMALL PERTURBATION ON POINCARÉ-ANDRONOV OPERATORS WITH NOT WELL DEFINED TOPOLOGICAL DEGREE

Oleg Makarenkov 1

(Submitted by J. Mawhin)

ABSTRACT. Let $\mathcal{P}_{\varepsilon} \in C^0(\mathbf{R}^n, \mathbf{R}^n)$ be the Poincaré-Andronov operator over period T>0 of T-periodically perturbed autonomous system $\dot{x}=f(x)+\varepsilon g(t,x,\varepsilon)$, where $\varepsilon>0$ is small. Assuming that for $\varepsilon=0$ this system has a T-periodic limit cycle x_0 we evaluate the topological degree $d(I-\mathcal{P}_{\varepsilon},U)$ of $I-\mathcal{P}_{\varepsilon}$ on an open bounded set U whose boundary ∂U contains $x_0([0,T])$ and $\mathcal{P}_0(v)\neq v$ for any $v\in\partial U\backslash x_0([0,T])$. We give an explicit formula connecting $d(I-\mathcal{P}_{\varepsilon},U)$ with the topological indices of zeros of the associated Malkin's bifurcation function. The goal of the paper is to prove the Mawhin's conjecture claiming that $d(I-\mathcal{P}_{\varepsilon},U)$ can be any integer in spite of the fact that the measure of the set of fixed points of \mathcal{P}_0 on ∂U is zero.

1. Introduction

Consider the system of ordinary differential equations

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon),$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20. Key words and phrases. Topological degree, perturbed Poincaré-Andronov map, zero measure singularities.

The work is partially supported by the Grant BF6M10 of Russian Federation Ministry of Education and CRDF (US), and by RFBR Grant 06-01-72552, and by the President of Russian Federation Young Candidate of Science grant MK-1620.2008.1.

where $f \in C^1(\mathbf{R}^n, \mathbf{R}^n)$, $g \in C^0(\mathbf{R} \times \mathbf{R}^n \times [0, 1], \mathbf{R}^n)$, $g(t + T, v, \varepsilon) \equiv g(t, v, \varepsilon)$ and $\varepsilon > 0$ is a small parameter. We suppose that equation (1.1) defines a flow in \mathbf{R}^n , i.e. assume the uniqueness and global existence for the solutions of the Cauchy problems associated to (1.1). For each $v \in \mathbf{R}^n$ we denote by $x_{\varepsilon}(\cdot, v)$ the solution of (1.1) with $x_{\varepsilon}(0, v) = v$. Thus, the Poincaré-Andronov operator over the period T > 0 is defined by

$$\mathcal{P}_{\varepsilon}(v) := x_{\varepsilon}(T, v).$$

The problem of the existence (and even stability, see Ortega [11]) of T-periodic solutions of (1.1) with initial conditions inside an open bounded set U can be solved by evaluating the topological degree $d(I - \mathcal{P}_{\varepsilon}, U)$ of $I - \mathcal{P}_{\varepsilon}$ on U (see [6]). In the case when \mathcal{P}_0 has no fixed points on the boundary ∂U of U the problem is completely solved by Capietto, Mawhin and Zanolin [2] who proved that $d(I-\mathcal{P}_0,U)=(-1)^nd(f,U)$ generalizing the result by Berstein and Halanay [1] where U is assumed to be a neighborhood of an isolated zero of f. In the case when \mathcal{P}_0 has fixed points on ∂U the pioneer result has been obtained by Mawhin [10] who considered the situation when f = 0. Mawhin proved that if $g_0(v) = \int_0^T g(\tau, v, 0) d\tau$ does not vanish on ∂U then $d(I - \mathcal{P}_{\varepsilon}, U)$ is defined for $\varepsilon > 0$ sufficiently small and it can be evaluated as $d(I - \mathcal{P}_{\varepsilon}, U) = d(-g_0, U)$. This paper studies an intermediate situation when the fixed points of \mathcal{P}_0 fill a part of ∂U . Current results on this subject deal with the case when ∂U contains a fixed number of fixed points, e.g. Feckan [4], Kamenskii-Makarenkov-Nistri [5]. As a part of a wider study of this problem Jean Mawhin (his seminar, November 2005) asked a question on evaluating $d(I-\mathcal{P}_{\varepsilon},U)$ in the case when ∂U contains a curve of fixed points of \mathcal{P}_0 . He settled the following conjecture:

Mawhin's conjecture. For small $\varepsilon > 0$ the topological degree $d(I - \mathcal{P}_{\varepsilon}, U)$ can be any integer depending on the perturbation term g in spite of the fact that the measure of $\{v \in \partial U : \mathcal{P}_0(v) = v\}$ is zero.

The goal of this paper is to evaluate $d(I - \mathcal{P}_{\varepsilon}, U)$ and to give a proof of the above conjecture in the case when $\{v \in \partial U : \mathcal{P}_0(v) = v\}$ forms a curve coming from a T-periodic limit cycle of the unperturbed system

$$\dot{x} = f(x).$$

Our fundamental assumption is that the algebraic multiplicity of the multiplicator +1 of the linearized system

$$\dot{y} = f'(x_0(t))y$$

equals to 1. In this case we say that the cycle x_0 is nondegenerate.

The paper is organized as follows. In Section 2 for a fixed point v_{ε} of $\mathcal{P}_{\varepsilon}$ satisfying $v_{\varepsilon} \to v_0 \in x_0([0,T])$ as $\varepsilon \to 0$ we obtain an asymptotic direction of the vector $v_{\varepsilon} - v_0$. By means of this result we evaluate in Section 3 the topological index of such fixed points $v_{\varepsilon} \to v_0 \in x_0([0,T])$ as $\varepsilon \to 0$ that $v_{\varepsilon} \in U$. Finally in Section 4 we give a proof of the Mawhin's conjecture provided that a technical assumption (see assumption 4.1) is satisfied.

2. Direction the fixed points of Poincaré-Andronov operator move when the perturbation increases

Since the cycle x_0 is nondegenerate we can define (see [3], Ch. IV, § 20, Lemma 1) a matrix function Z_{n-1} solving the adjoint system

$$\dot{z} = -(f'(x_0(t)))^* z$$

and having the form $Z_{n-1}(t) = \Phi(t)e^{\Lambda t}$, where Φ is a continuous T-periodic $n \times n - 1$ matrix function and Λ is a $n - 1 \times n - 1$ -matrix with different from 0 eigenvalues. Let z_0 be the T-periodic solution of (2.1) satisfying $z_0(0)^*\dot{z}_0(0) = 1$. Finally, we denote by Y_{n-1} the $n \times n - 1$ matrix function whose columns are solutions of the linearized system (1.3) satisfying $Y_{n-1}(0)^*Z_{n-1}(0) = I$.

The results of this paper are formulated in terms of the following auxiliary functions:

$$M(\theta) = \int_{0}^{T} z_{0}(\tau)^{*} g(\tau - \theta, x_{0}(\tau), 0) d\tau,$$

$$M^{\perp}(t, \theta) = \left(e^{\Lambda T}\right)^{*} \left(\left(e^{\Lambda T}\right)^{*} - I\right)^{-1} \int_{t-T+\theta}^{t+\theta} \left(Z_{n-1}(\tau)\right)^{*} g(\tau - \theta, x_{0}(\tau), 0) d\tau,$$

$$\angle(u, v) = \arccos \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|}.$$

The function M was proposed by Malkin (see [9], formula 3.13) and the function M^{\perp} is a generalization of the function M_z^{\perp} of [8].

Next Theorem 2.1 shows that if a family $\{x_{\varepsilon,\lambda}\}_{\lambda\in\Lambda}$ of T-periodic solutions of (1.1) emanate from $x_0(\cdot + \theta_0)$ then a suitable projection of $x_{\varepsilon,\lambda}(t) - x_0(t + \theta_0)$ can be always controlled. Though motivated by the Mawhin's conjecture, Theorem 2.1 can be of a general interest in the theory of oscillations playing a role of the first approximation formula (see Loud [7], formula 1.3, Lemma 1 and formula for x at p. 510) in the case when the zeros of the bifurcation function M are not necessary isolated.

THEOREM 2.1. Let x_0 be a nondegenerate T-periodic cycle of (1.2). Let $\{x_{\varepsilon,\lambda}\}_{\lambda\in\Lambda}$ be a family of T-periodic solutions of (1.1) such that $x_{\varepsilon,\lambda}(t)\to x_0(t+\theta_0)$ as $\varepsilon\to 0$ uniformly with respect to $t\in[0,T]$ and $\lambda\in\Lambda$. Then

$$\angle (Z_{n-1}(t+\theta_0)^*(x_{\varepsilon,\lambda}(t)-x_0(t+\theta_0)), M^{\perp}(t,\theta_0)) \to 0 \quad as \ \varepsilon \to 0$$

uniformly with respect to $t \in [0,T]$ and $\lambda \in \Lambda$.

Proof. The proof makes use of the idea of Theorem 3.1 of [8]. In the sequel (A, B) denotes the matrix composed by columns of matrixes A and B. Let $a_{\varepsilon} \in C^0([0, T], \mathbf{R}^n)$ be given by

(2.2)
$$a_{\varepsilon}(t) = (z_0(t+\theta_0), Z_{n-1}(t+\theta_0))^* (x_{\varepsilon}(t) - x_0(t+\theta_0)).$$

Denoting $Y(t) = (\dot{x}_0(t), Y_{n-1}(t))$ by Perron's lemma [12] (see also Demidovich ([3], Sec. III, §12) we have

$$(z_0(t), Z_{n-1}(t))^* Y(t) = I$$
, for any $t \in \mathbf{R}$.

Thus

(2.3)
$$x_{\varepsilon}(t) - x_0(t + \theta_0) = Y(t + \theta_0)a_{\varepsilon}(t), \text{ for any } t \in \mathbf{R}.$$

By subtracting (1.2) where x is replaced by $x_0(\cdot + \theta_0)$ from (1.1) where x is replaced by x_{ε} we obtain

$$\dot{x}_{\varepsilon}(t) - \dot{x}_0(t + \theta_0) = f'(x_0(t + \theta_0))(x_{\varepsilon}(t) - x_0(t + \theta_0))$$

(2.4)
$$+\varepsilon g(t, x_{\varepsilon}(t), \varepsilon) + o(t, x_{\varepsilon}(t) - x_0(t + \theta_0)),$$

where $o(t,v)/\|v\| \to 0$ as $\mathbf{R}^n \ni v \to 0$ uniformly with respect to $t \in [0,T]$. By substituting (2.3) into (2.4) we have

$$\dot{Y}(t+\theta_0)a_{\varepsilon}(t)+Y(t+\theta_0)\dot{a}_{\varepsilon}(t)$$

$$= f'(x_0(t+\theta_0))Y(t+\theta_0)a_{\varepsilon}(t) + \varepsilon g(t,x_{\varepsilon}(t),\varepsilon) + o(t,x_{\varepsilon}(t)-x_0(t+\theta_0)).$$

Since $f'(x_0(t))Y(t) = \dot{Y}(t)$ the last relation can be rewritten as

$$(2.5) Y(t+\theta_0)\dot{a}_{\varepsilon}(t) = \varepsilon g(t, x_{\varepsilon}(t), \varepsilon) + o(t, x_{\varepsilon}(t) - x_0(t+\theta_0)).$$

Applying $Z_{n-1}(t+\theta_0)^*$ to both sides of (2.5) we have

$$(0, I)\dot{a}_{\varepsilon}(t) = \varepsilon Z_{n-1}(t+\theta_0)^* g(t, x_{\varepsilon}(t), \varepsilon) + Z_{n-1}(t+\theta_0)^* o(t, x_{\varepsilon}(t) - x_0(t+\theta_0)),$$

where 0 denotes the n-1 dimensional zero vector and I stays for the identical $n-1\times n-1$ matrix. So

$$(0, I)a_{\varepsilon}(t) = (0, I)a_{\varepsilon}(t_0) + \varepsilon \int_{t_0}^t Z_{n-1}(\tau + \theta_0)^* g(\tau, x_{\varepsilon}(\tau), \varepsilon) d\tau$$

(2.6)
$$+ \int_{t_0}^{t} Z_{n-1}(\tau + \theta_0)^* o(\tau, x_{\varepsilon}(\tau) - x_0(\tau + \theta_0)) d\tau.$$

From the definition of Z_{n-1} we have that $Z_{n-1}(t)^* = (e^{\Lambda T})^* Z_{n-1}(t-T)^*$ for any $t \in \mathbf{R}$ and so $(0, I)a_{\varepsilon}(t)$ satisfies

$$(2.7) (0,I)a_{\varepsilon}(t_0) = \left(e^{\Lambda T}\right)^* (0,I)a_{\varepsilon}(t_0-T) \text{for any } t_0 \in [0,T].$$

Solving (2.6)-(2.7) with respect to $(0, I)a_{\varepsilon,n}(t_0)$ we obtain

$$(0, I)a_{\varepsilon}(t_0) = \varepsilon \left(e^{\Lambda T}\right)^* \left(\left(e^{\Lambda T}\right)^* - I\right)^{-1} \int_{t_0 - T}^{t_0} Z_{n-1}(\tau + \theta_0)^* g(\tau, x_{\varepsilon}(\tau), \varepsilon) d\tau$$

+
$$\left(e^{\Lambda T}\right)^* \left(\left(e^{\Lambda T}\right)^* - I\right)^{-1} \int_{t_0 - T}^{t_0} Z_{n-1}(\tau + \theta_0)^* o(\tau, x_{\varepsilon}(\tau) - x_0(\tau + \theta_0)) d\tau$$

for any $t_0 \in [0, T]$. On the other hand from (2.2) we obtain

$$Z_{n-1}(t+\theta_0)^*(x_{\varepsilon}(t)-x_0(t+\theta_0))=(0,I)a_{\varepsilon}(t)$$

and therefore

$$Z_{n-1}(t+\theta_0)^*(x_{\varepsilon}(t)-x_0(t+\theta_0))-q_{\varepsilon}(t)$$

(2.8)
$$= \varepsilon \left(e^{\Lambda T} \right)^* \left(\left(e^{\Lambda T} \right)^* - I \right)^{-1} \int_{t-T}^t Z_{n-1}(\tau + \theta_0)^* g(\tau, x_{\varepsilon}(\tau), \varepsilon) d\tau,$$

where

$$q_{\varepsilon} = \left(e^{\Lambda T}\right)^* \left(\left(e^{\Lambda T}\right)^* - I\right)^{-1} \int_{t-T}^t Z_{n-1}(\tau + \theta_0)^* o(\tau, x_{\varepsilon}(\tau) - x_0(\tau + \theta_0)) d\tau.$$

From (2.8) we obtain

$$\angle \left(Z_{n-1}(t+\theta_0)^* (x_{\varepsilon}(t) - x_0(t+\theta_0)), M^{\perp}(t,\theta_0) \right) \\
= \angle \left(Z_{n-1}(t+\theta_0)^* \frac{x_{\varepsilon}(t) - x_0(t+\theta_0)}{\|x_{\varepsilon} - x_0(\cdot + \theta_0)\|_{[0,T]}}, M^{\perp}(t,\theta_0) \right) \\
-\angle \left(Z_{n-1}(t+\theta_0)^* \frac{x_{\varepsilon}(t) - x_0(t+\theta_0)}{\|x_{\varepsilon} - x_0(\cdot + \theta_0)\|_{[0,T]}} - \frac{q_{\varepsilon}(t)}{\|x_{\varepsilon} - x_0(\cdot + \theta_0)\|_{[0,T]}}, M^{\perp}(t,\theta_0) \right) \\
+\angle \left(\left(e^{\Lambda T} \right)^* \left(\left(e^{\Lambda T} \right)^* - I \right)^{-1} \int_{t-T}^t Z_{n-1}(\tau + \theta_0)^* g(\tau, x_{\varepsilon}(\tau), \varepsilon) d\tau, M^{\perp}(t,\theta_0) \right).$$

But the difference of the first two terms in the right hand part of the last equality tends to zero as $\varepsilon \to 0$ and thus the thesis follows.

Next theorem is a reformulation of Theorem 2.1 suitable for our further considerations.

THEOREM 2.2. Let x_0 be a nondegenerate T-periodic cycle of (1.2). Let $\{x_{\varepsilon,\lambda}\}_{\lambda\in\Lambda}$ be a family of T-periodic solutions of (1.1) such that $x_{\varepsilon,\lambda}(t)\to x_0(t+\theta_0)$ as $\varepsilon\to 0$ uniformly with respect to $t\in[0,T]$ and $\lambda\in\Lambda$. Let $l\in\mathbf{R}^n$ be an arbitrary vector such that $\langle l,\dot{x}_0(\theta_0)\rangle=0$. Assume that $\langle l,Y_{n-1}(\theta_0)M^{\perp}(0,\theta_0)\rangle\neq 0$. Then there exists $\varepsilon_0>0$ such that

$$\langle l, x_{\varepsilon,\lambda}(0) - x_0(\theta_0) \rangle > 0$$
 or $\langle l, x_{\varepsilon,\lambda}(0) - x_0(\theta_0) \rangle < 0$

according as

$$\langle l, Y_{n-1}(\theta_0) M^{\perp}(0, \theta_0) \rangle > 0$$
 or $\langle l, Y_{n-1}(\theta_0) M^{\perp}(0, \theta_0) \rangle < 0$

for any $\lambda \in \Lambda$ and any $\varepsilon \in (0, \varepsilon_0]$.

Proof. By Perron's lemma [12] (see also Demidovich ([3], Sec. III, §12) we have

$$v = Y_{n-1}(t)Z_{n-1}(t)^*v + \dot{x}_0(t)z_0(t)^*v$$

for any $v \in \mathbf{R}^n$ and $t \in \mathbf{R}$. Therefore

$$\begin{split} \langle l, x_{\varepsilon,\lambda}(0) - x_0(\theta_0) \rangle \\ &= \langle l, Y_{n-1}(\theta_0) Z_{n-1}(\theta_0)^* (x_{\varepsilon,\lambda}(0) - x_0(\theta_0)) \\ &+ \dot{x}_0(\theta_0) z_0(\theta_0)^* (x_{\varepsilon,\lambda}(0) - x_0(\theta_0)) \rangle \\ \langle Y_{n-1}(\theta_0)^* l, Z_{n-1}(\theta_0)^* (x_{\varepsilon,\lambda}(0) - x_0(\theta_0)) \rangle \,. \end{split}$$

Since $\langle Y_{n-1}(\theta_0)^*l, M^{\perp}(0,\theta_0)\rangle \neq 0$ then by Theorem 2.1 there exists $\varepsilon_0 > 0$ such that

$$\operatorname{sign} \langle Y_{n-1}(\theta_0)^* l, Z_{n-1}(\theta_0)^* (x_{\varepsilon,\lambda}(0) - x_0(\theta_0)) \rangle = \operatorname{sign} \langle Y_{n-1}(\theta_0)^* l, M^{\perp}(0,\theta_0) \rangle$$

for any $\varepsilon \in (0, \varepsilon_0]$ and $\lambda \in \Lambda$ and thus the proof is complete.

3. The topological degree of the perturbed Poincaré-Andronov operator

To proceed to the proof of our main Theorem 3.1 we need three additional theorems which are formulated below for the convenience of the reader.

Malkin's Theorem (see [9], p. 41) Assume that T-periodic solutions x_{ε} of (1.1) satisfy the property $x_{\varepsilon}(t) \to x_0(t + \theta_0)$ as $\varepsilon \to 0$. Then $M(\theta_0) = 0$.

Capietto-Mawhin-Zanolin Theorem (see [2], Corollary 2). Let $V \subset \mathbb{R}^n$ be an open bounded set. Assume that $\mathcal{P}_0(v) \neq v$ for any $v \in \partial V$. Then $d(I - \mathcal{P}_0, V) = (-1)^n d(f, V)$.

Kamenskii-Makarenkov-Nistri Theorem (see [5], Corollary 2.8). Assume that $\theta_0 \in [0,T]$ is an isolated zero of the bifurcation function M. Then there exist $\varepsilon_0 > 0$ and r > 0 such that $\mathcal{P}_{\varepsilon}(v) \neq v$ for any $||v - v_0|| = r$ and any $\varepsilon \in (0, \varepsilon_0]$. Moreover $d(I - \mathcal{P}_{\varepsilon}, B_r(v_0)) = \operatorname{ind}(\theta_0, M)$.

We will say that the set $U \subset \mathbf{R}^n$ has a smooth boundary if given any $v \in \partial U$ there exists r > 0 and a homeomorphism of $\{\xi \in \mathbf{R}^{n-1} : \|\xi\| \leq 1\}$ onto $\partial U \cap B_r(v)$. Thus any set U with a smooth boundary possesses a tangent plane to ∂U at any $v \in \partial U$. This tangent plane will be denoted by $L_U(v)$. Moreover, if U has a smooth boundary and $\mathbf{R}^n \ni h \notin L_U(v)$ then there exists $\lambda_0 > 0$ such that either $\lambda h + v \in U$ for any $\lambda \in (0, \lambda_0]$ or $\lambda h + v \notin U$ for any $\lambda \in (0, \lambda_0]$. In this case we will say that h centered at v is directed inward to U or outward respectively.

THEOREM 3.1. Let x_0 be a nondegenerate T-periodic cycle of (1.2). Let $U \subset \mathbf{R}^n$ be an open bounded set with a smooth boundary and $x_0([0,T]) \subset \partial U$. Assume that $\mathcal{P}_0(v) \neq v$ for any $v \in \partial U \setminus x_0([0,T])$. Assume that M has a finite number of zeros $0 \leq \theta_1 < \theta_2 < \ldots < \theta_k < T$ on [0,T] and $\operatorname{ind}(\theta_i, M) \neq 0$ for any $i \in \overline{1,k}$. Assume that $Y_{n-1}(\theta_i)M^{\perp}(0,\theta_i) \notin L_U(x_0(\theta_i))$ for any $i \in \overline{1,k}$. Then for any $\varepsilon > 0$ sufficiently small $d(I - \mathcal{P}_{\varepsilon}, U)$ is defined. Moreover,

$$d(I - \mathcal{P}_{\varepsilon}, U) = (-1)^n d(f, U) - \sum_{i=1}^k \operatorname{ind}(\theta_i, M) D_i,$$

where $D_i = 1$ or $D_i = 0$ according as $Y_{n-1}(\theta_i)M^{\perp}(0,\theta_i)$ centered at $x_0(\theta_i)$ is directed inward to U or outward.

Proof. By Kamenskii-Makarenkov-Nistri theorem there exists r > 0 and $\varepsilon_0 > 0$ such that

(3.1)
$$d(I - \mathcal{P}_{\varepsilon}, B_r(x_0(\theta_i))) = \operatorname{ind}(\theta_i, M)$$

for any $\varepsilon \in (0, \varepsilon_0]$ and $i \in \overline{1, k}$. From Malkin's theorem we have the following "Malkin's property": r > 0 can be decreased, if necessary, in such a way that there exists $\varepsilon_0 > 0$ such that any T-periodic solution x_{ε} of (1.1) with initial condition $x_{\varepsilon}(0) \in B_r(x_0([0,T]))$ and $\varepsilon \in (0, \varepsilon_0]$ satisfies $x_{\varepsilon}(0) \in \bigcup_{i \in \overline{1,k}} B_r(x_0(\theta_i))$. Malkin's property implies that

(3.2)
$$d\left(I - \mathcal{P}_{\varepsilon}, \left(B_r(x_0([0,T])) \setminus \bigcup_{i \in \overline{1,k}} B_r(x_0(\theta_i))\right) \cap U\right) = 0$$

for any $\varepsilon \in (0, \varepsilon_0]$. Denote by l_i the perpendicular to $L_U(x_0(\theta_i))$ directed outward away from U or inward according as $(Z_{n-1}(\theta_i)^*)^{-1}M^{\perp}(0, \theta_i)$ centered at $x_0(\theta_i)$ is directed outward away from U or inward. From Theorem 2.2 and Malkin's

property we have that $\varepsilon_0 > 0$ can be diminished in such a way that for any $i \in \overline{1,k}$ any T-periodic solution x_{ε} of (1.1) with initial condition $x_{\varepsilon}(0) \in B_r(x_0(\theta_i))$ and $\varepsilon \in (0, \varepsilon_0]$ satisfies $x_{\varepsilon}(0) \in B_r(x_0(\theta_i)) \cap U$ or $x_{\varepsilon}(0) \notin B_r(x_0(\theta_i)) \cap U$ according as $D_i = 1$ or $D_i = 0$. This observation allows to deduce from (3.1) that

(3.3)
$$d(I - \mathcal{P}_{\varepsilon}, B_r(x_0(\theta_i)) \cap U) = \operatorname{ind}(\theta_i, M), \text{ if } D(\theta_i) = 1,$$

(3.4)
$$d(I - \mathcal{P}_{\varepsilon}, B_r(x_0(\theta_i)) \cap U) = 0, \text{ if } D(\theta_i) = 0,$$

for any $\varepsilon \in (0, \varepsilon_0]$ and $i \in \overline{1, k}$.

Observe that our choice of r > 0 ensures that $\mathcal{P}_0(v) \neq v$ for any $v \in \partial (U \setminus B_r(x_0([0,T])))$. Thus, by Capietto-Mawhin-Zanolin theorem we have $d(I - \mathcal{P}_0, U \setminus B_r(x_0([0,T]))) = (-1)^n d(f, U \setminus B_r(x_0([0,T])))$. Without loss of generality we can consider r > 0 sufficiently small such that $d(f, U \setminus B_r(x_0([0,T]))) = d(f, U)$ obtaining

(3.5)
$$d(I - \mathcal{P}_0, U \setminus B_r(x_0([0, T]))) = (-1)^n d(f, U).$$

Since

$$d(I - \mathcal{P}_{\varepsilon}, U) = d\left(I - \mathcal{P}_{\varepsilon}, \left(B_r(x_0([0, T])) \setminus \bigcup_{i \in \overline{1,k}} B_r(x_0(\theta_i))\right) \cap U\right)$$
$$+d\left(I - \mathcal{P}_{\varepsilon}, \bigcup_{i \in \overline{1,k}} B_r(x_0(\theta_i)) \cap U\right)$$
$$+d(I - \mathcal{P}_{\varepsilon}, U \setminus B_r(x_0([0, T])))$$

the conclusion follows from formulas (3.2)-(3.5).

4. A proof of the Mawhin's conjecture

In this section we assume that the set $U \subset \mathbf{R}^n$ has a smooth boundary and there exists $v_{n-1} \in \mathbf{R}^{n-1}$ satisfying the following assumption

$$(4.1) Y_{n-1}(t) (e^{\Lambda T})^* ((e^{\Lambda T})^* - I)^{-1} (e^{\Lambda t})^* v_{n-1} \notin L_U(t) \text{ for any } t \in [0, T].$$

We note that assumption (4.1) does not depend on the perturbation term of (1.1) and relies to unperturbed system (1.2). Let D=1 or D=0 according as $Y_{n-1}(0) \left(e^{\Lambda T}\right)^* \left(\left(e^{\Lambda T}\right)^* - I\right)^{-1} \left(e^{\Lambda t}\right)^* v_{n-1}$ centered at $x_0(0)$ is directed inward to U or outward. Given odd $m \in \mathbb{N}$ we construct the perturbation term g in such a way that $d(I - \mathcal{P}_{\varepsilon}, U) = (-1)^n d(f, U) - m(2D - 1)$ for any $\varepsilon > 0$ sufficiently small. Without loss of generality we consider $T = 2\pi$.

Since $(z_0(t), Z_{n-1}(t))$ is nonsingular then $((z_0(t), \Phi(t))^*)$ is nonsingular as well. Define $\Omega: x_0([0, 2\pi]) \to \mathbf{R}^n$ as $\Omega(x_0(t)) = ((z_0(t), \Phi(t))^*)^{-1}$ for any $t \in [0, 2\pi]$. By Uryson's theorem (see [6], Ch. 1, Theorem 1.1) Ω can be continued to the whole \mathbf{R}^n in such a way that $\Omega \in C^0(\mathbf{R}^n, \mathbf{R}^n)$. Analogously, we consider

 $\widetilde{\Gamma} \in C^0(\mathbf{R}^n, \mathbf{R}^n)$ such that $\widetilde{\Gamma}(x_0(t)) = (\arcsin(\sin t), 0, \dots, 0)^*$ and denote by $\Gamma \in C^0(\mathbf{R}^n, \mathbf{R})$ the first component of $\widetilde{\Gamma}$. Let us define a 2π -periodic α -approximation of $\left(\left(\mathrm{e}^{\Lambda t}\right)^*\right)^{-1}$ on $[-2\pi, 0]$ by

$$\mathbf{e}_{\alpha}(t) = ((\mathbf{e}^{\Lambda t})^*)^{-1}, \text{ if } t \in [-2\pi, -\alpha],$$

$$\mathbf{e}_{\alpha}(t) = \frac{t}{-\alpha} \left(\left(\mathbf{e}^{-\Lambda \alpha} \right)^* \right)^{-1} + \left(1 - \frac{t}{-\alpha} \right) \left(\left(\mathbf{e}^{-2\pi\Lambda} \right)^* \right)^{-1}, \text{ if } t \in [-\alpha, 0],$$

which is continued to $(-\infty, \infty)$ by the 2π -periodicity. We are now in a position to introduce the required perturbation term, namely we consider that the perturbed system (1.1) has the following form

(4.2)
$$\dot{x} = f(x) + \varepsilon \Gamma(x)\Omega(x) \begin{pmatrix} D\sin(mt) + (1-D)\cos(mt) \\ (D\cos(mt) + (1-D)\sin(mt))e_{\alpha}(t)v_{n-1} \end{pmatrix},$$

where $\alpha > 0$ is sufficiently small. Consequently we denote by $\mathcal{P}_{\varepsilon}$ the Poincaré-Andronov operator of system (4.2) over the period 2π .

PROPOSITION 4.1. Let $x_0([0,T]) \subset U \subset \mathbf{R}^n$ be an open bounded set with a smooth boundary and assume that there exists $v_{n-1} \in \mathbf{R}^n$ such that (4.1) is satisfied. Then given any odd m > 0 there exists $\alpha_0 > 0$ such that for any fixed $\alpha \in (0, \alpha_0]$ and $\varepsilon > 0$ sufficiently small $d(I - \mathcal{P}_{\varepsilon}, U)$ is defined and

$$d(I - \mathcal{P}_{\varepsilon}, U) = \begin{cases} (-1)^n d(f, U) - m, & \text{if } D = 1, \\ (-1)^n d(f, U) + m, & \text{if } D = 0. \end{cases}$$

Proof. By the definition of Ω and Γ we have

(4.3)
$$\begin{pmatrix} z_0(t)^* \\ Z_{n-1}(t)^* \end{pmatrix} \Omega(x_0(t)) = \begin{pmatrix} 1 & 0 \\ 0 & (e^{\Lambda t})^* \end{pmatrix},$$

$$\Gamma(x_0(t)) = \arcsin(\sin t).$$

Therefore, taking into account that m is odd, we obtain the following formula for the bifurcation function M

$$\begin{split} M(\theta) &= \int_0^{2\pi} \arcsin(\sin \tau) (D \sin(m(\tau - \theta)) + (1 - D) \cos(m(\tau - \theta))) d\tau \\ &= (-1)^{(m-1)/2} \frac{4D \cos(m\theta) + 4(1 - D) \sin(m\theta)}{m^2} \end{split}$$

whose zeros are $\theta_j = \frac{1}{m} \left(\frac{D\pi}{2} + j\pi \right), j \in \overline{0, 2m-1}$. Moreover,

(4.4)
$$\operatorname{ind}(\theta_j, M) = \operatorname{sign}(M'(\theta_j))$$

$$= (-1)^{(m-1)/2} \operatorname{sign}\left(\frac{4m\left(-D\sin\left(D\frac{\pi}{2} + j\pi\right) + (1-D)\cos\left(D\frac{\pi}{2} + j\pi\right)\right)}{m^2}\right).$$

Let us denote by M_{α}^{\perp} the function M^{\perp} corresponding to system (4.2). From (4.3) we have that

$$M_{\alpha}^{\perp}(0,\theta) = (e^{\Lambda T})^* ((e^{\Lambda T})^* - I)^{-1} \int_{-2\pi}^{0} (Z_{n-1}(s+\theta))^* g(s, x_0(s+\theta), 0) ds$$
$$= (e^{\Lambda T})^* ((e^{\Lambda T})^* - I)^{-1} (e^{\Lambda \theta})^* \circ$$
$$\circ \int_{-2\pi}^{0} (e^{\Lambda s})^* e_{\alpha}(s) v_{n-1} \arcsin(\sin(s+\theta)) (D\cos(ms) + (1-D)\sin(ms)) ds.$$

Since

$$\int_{-2\pi}^{0} \arcsin(\sin(s+\theta))(D\cos(ms) + (1-D)\sin(ms))ds$$

$$= -(-1)^{(m-1)/2} \cdot \frac{4(D\sin(m\theta) + (1-D)\cos(m\theta))}{m^2}$$

by taking into account that m is odd we have that $M_{\alpha}^{\perp}(0,\theta) \to M_0^{\perp}(0,\theta)$ as $\alpha \to 0$, where

$$M_0^{\perp}(0,\theta) = -\left(e^{\Lambda T}\right)^* \left(\left(e^{\Lambda T}\right)^* - I\right)^{-1} \left(e^{\Lambda \theta}\right)^* v_{n-1}(-1)^{(m-1)/2} \cdot \frac{4(D\sin(m\theta) + (1-D)\cos(m\theta))}{m^2}.$$

Put $q(\theta) = -(-1)^{(m-1)/2}(D\sin(m\theta) + (1-D)\cos(m\theta))$. Then, taking any $\theta \in [0, 2\pi]$ and using the definition of D we conclude that $Y_{n-1}(\theta)M_0^{\perp}(0, \theta)$ centered at $x_0(\theta)$ is directed inward to U or outward according as $\operatorname{sign}(q(\theta))(2D-1)=1$ or $\operatorname{sign}(q(\theta))(2D-1)=-1$. Therefore, there exists $\alpha_0 > 0$ such that for any $\alpha \in [0, \alpha_0]$ and any $\theta \in [0, 2\pi]$ we have that $Y_{n-1}(\theta)M_{\alpha}^{\perp}(0, \theta)$ centered at $x_0(\theta)$ is directed inward to U or outward according as $\operatorname{sign}(q(\theta))(2D-1)=1$ or $\operatorname{sign}(q(\theta))(2D-1)=-1$. Thus denoting by $\mathcal{P}_{\varepsilon,\alpha}$ the Poincaré-Andronov operator of system (4.2) from Theorem 3.1 we have that

$$(4.5) \quad d(I - \mathcal{P}_{\varepsilon,\alpha}, U) = (-1)^n d(f, U) - \sum_{j \in \overline{0, 2m-1} : \operatorname{sign}(q(\theta_j))(2D-1) = 1} \operatorname{ind}(\theta_j, M)$$

for any $\alpha \in (0, \alpha_0]$. Consider the case when D = 1. Then the property $\operatorname{sign}(q(\theta_i))(2D - 1) = 1$ is equivalent to

(4.6)
$$(-1)^{(m-1)/2} \operatorname{sign}(\sin(\pi/2 + j\pi)) = -1.$$

If $j \in \overline{0, 2m-1}$ satisfies (4.6) then (4.4) implies $\operatorname{ind}(\theta_j, M) = 1$. Since there exists exactly m elements of $\overline{0, 2m-1}$ satisfying (4.6) then (4.5) can be rewritten as $d(I - \mathcal{P}_{\varepsilon}, U) = d(f, U) - m$. Analogously, if D = 0 then $\operatorname{sign}(q(\theta_j))(2D - 1) = 1$

is equivalent to $(-1)^{(m-1)/2} \operatorname{sign}(\cos(j\pi)) = -1$ that in combination with (4.4) gives $\operatorname{ind}(\theta_j, M) = -1$ allowing to rewrite (4.5) in the form $d(I - \mathcal{P}_{\varepsilon}, U) = d(f, U) + m$.

At the end of the paper we note that system (1.2) should exhibit very complex behavior in order that assumption (4.1) be not satisfied with any $v_{n-1} \in \mathbf{R}^{n-1}$. Particularly, (4.1) holds true for the prototypic unperturbed system (1.2)

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1),$$

$$\dot{x}_2 = -x_1 - x_2(x_1^2 - x_2^2 - 1),$$

$$\dot{x}_3 = -x_3$$

possessing the nondegenerate 2π -periodic cycle $x_0(t) = \binom{\sin t}{\cos t}$ and $U = B_1(0) = \{v \in \mathbf{R}^3 : ||v|| < 1\}$. Indeed, it can be easily checked that $\Phi(t) = \left(\binom{\sin t}{0}, \binom{\cos t}{0}, \binom{0}{1}\right)^*$, $e^{\Lambda t} = \begin{pmatrix} e^{2t} & 0 \\ 0 & e^t \end{pmatrix}$ and $Y_{n-1}(t) = \Phi(t)e^{-\Lambda t}$ in this case. Thus, taking $v_{n-1} = \binom{1}{0}$ we have

$$Y_{n-1}(t) \left(\mathrm{e}^{\Lambda T} \right)^* \left(\left(\mathrm{e}^{\Lambda T} \right)^* - I \right)^{-1} \left(\mathrm{e}^{\Lambda t} \right)^* v_{n-1} = \frac{\mathrm{e}^{2t}}{\mathrm{e}^{2t} - 1} \left(\sin t, \cos t, 0 \right)^*.$$

This last vector centered at $x_0(t)$ is perpendicular to ∂U for any $t \in [0, 2\pi]$.

References

- [1] I. Berstein and A. Halanay, The index of a critical point and the existence of periodic solutions to a system with small parameter, Dokl. Akad. Nauk 111 (1956), 923–925.
- [2] A. CAPIETTO, J. MAWHIN AND F. ZANOLIN, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41–72.
- B. P. Demidovich, Lectures on the mathematical theory of stability, Izdat. Nauka, Moscow, 1967.
- [4] M. FECKAN, Bifurcation of periodic solutions in differential inclusions, Appl. Math. 42 (1997), 369–393.
- [5] M. KAMENSKII, O. MAKARENKOV AND P. NISTRI, A continuation principle for a class of periodically perturbed autonomous systems, Math. Nachr. 281 (2008), 42–61.
- [6] M. A. Krasnosel'skii and P. P. Zabreyko, Geometrical methods of nonlinear analysis. Fundamental Principles of Mathematical Sciences, vol. 263, Springer-Verlag, Berlin, 1984.
- [7] W. S. LOUD, Periodic solutions of a perturbed autonomous system, Ann. of Math. 70 (1959), 490–529.
- [8] O. MAKARENKOV AND P. NISTRI, On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes, Comm. Pure Appl. Anal. 7 (2008), 49–61.
- [9] I. G. Malkin, On Poincaré's theory of periodic solutions, Akad. Nauk SSSR. Prikl. Mat. Meh. 13 (1949), 633–646.
- [10] J. MAWHIN, Le Problème des Solutions Périodiques en Mécanique non Linéaire, Thèse de doctorat en sciences, Université de Liège, published in Degré topologique et solutions

- périodiques des systèmes différentiels non linéaires, Bull. Soc. Roy. Sci. Liège, Vol. 38, 1969, pp. 308–398.
- [11] R. Ortega, A criterion for asymptotic stability based on topological degree, Proceedings of the First World Congress of Nonlinear Analysts, Tampra, 1992, pp. 383–394.
- [12] O. Perron, Die Ordnungszahlen der Differentialgleichungssysteme, Math. Zeitschr 31 (1930), 748–766.

Manuscript received October 10, 2007

Oleg Makarenkov

Research Institute of Mathematics, Voronezh State University, 394006, Voronezh, Universitetskaja pl.1

Current address: Research Institute of Mathematics, Voronezh State University, 394006,

Voronezh, Universitetskaja pl.1

 $E\text{-}mail\ address:\ omakarenkov@math.vsu.ru}$

TMNA: Volume $00 - 0000 - N^{\circ} 00$