Business Analytics Lecture 4: Text Similarity

Ulrich Wohak¹

 $^{1}\mbox{Department of Economics}$ Vienna University of Economics and Business

1/10

Introduction

- In todays lecture we will try to answer a deceptive simple question: How similar are two documents?
- For humans this is often an easy task: ((cat, dog), (dog, animal), (dog, rocket ship))
- Are the tuple elements similar?
- How similar are they?
- How can we frame this question in a way that computers give us an answer?

Introduction (ii)

- We will frame this question s.t. we can map our input text into 'document vectors'
- Then we can apply techniques from linear algebra
- Before we do this, we will need to introduce a few new concepts
- We've already encounter the simplest form of such document vectors before: the (binary) BoW representation
- Why might this be too simplistic?

From BoW to frequencies

- We will want to augment our binary BoW representation to account for token frequency because:
 - 1. The frequency of a token in a document is a good indicator for its relevance
 - 2. The **relative frequency** of a token with respect to all other documents in the corpus gives an even better notion of importance
- We will augment our binary vector representations to a 'counter' vector representation
- What problem might such a representation (mechanically) induce?

From BoW to frequencies

- To formalize our discussion a little bit, let's introduce: term frequency (tf)
- Generally speaking, there is strong (positive) correlation between the length of a document and the tf for a particular token
- ullet Longer documents o higher frequencies
- ullet Short documents o lower frequencies
- Hence, our 'count', or tf, should depend on document length!

Example

- Consider the following counts for the token 'dog' in two documents:
 - 1. $tf('dog', d_1) = 3$
 - 2. $tf('dog', d_2) = 100$
 - ightarrow Token 'dog' seems more important in d_2 than d_1
- Do we change our opinion if we also consider that:
 - 1. d_1 is an email by a veterinarian with $len(d_1) = 30$ and
 - 2. d_2 is Tolstoy's War & Pease with $len(d_2) = 580,000$
- With this, we can compute the 'normalised' tf
 - 1. $ntf('dog', d_1) = \frac{3}{30} = 0.1$
 - 2. $ntf('dog', d_2) = \frac{100}{580k} = 0.00017$
- \rightarrow These can be considered probabilities!

Inverse Document Frequency

- So far we only considered normalization of a token with respect to the document it belongs to
- Intuition: If token w appears a lot in d_i but rarely in d_j , $j \neq i$, then w is important for d_i
- How can we express this mathematically?
- We simply take the log of the inverse document frequency:

$$idf(w,D) = log\left(\frac{|D|}{\sum_{d \in D} \mathbb{1}\{w \in d\}}\right) \tag{1}$$

January 2024

7/10

Wohak, Ulrich Department of Economics

Let's put it together: tf-idf

- Let's put the notion of tf and idf together
- Unsurprisingly, we will refer to the whole transformation as tf-idf
- Interpretation: tf-idf(w, d, D) tell us the importance of token w in document d given its usage in D.
- We calculate this quantity simply by multiplying tf times idf:

$$tf - idf(w, d, D) = tf(w, d)idf(w, D)$$
 (2)

⇒ This is how early search engines performed queries!

Cosine Similarity

- Now let's take a step back and think about what we have constructed
- For each $d \in D$ we have a (meaningful) vector representation
- We can now use linear algebra to assess whether two vectors are similar
- We simply check whether they point in a similar direction by calculating the (cosine) of the angle between them: Cosine Similarity

$$\cos\theta = \frac{A \cdot B}{|A||B|} \tag{3}$$

Cosine Similarity

- Insert pic of cosine sim
- Cosine Similarity has nice properties:
 - 1. $cos\theta \in [-1, 1]$
 - 2. $cos\theta = 1 \Rightarrow v_i = v_j$
 - 3. $cos\theta = -1 \Rightarrow v_i, v_j$ point in opposite directions
 - 4. $cos\theta$ increases in similarity
- Let's look at some code!