${\rm M5MS04}$ - Bayesian Statistics Project2

Thomas Ng February 18, 2013

1 Question 1

1.1 1a

handwritten

1.2 1b

hand written

1.3 1c - Reproduce computations for the educational testing example

First, we reproduce the marginal posterior density $p(\tau|y)$. Basically, we just plot the marginal poserior density $p(\tau|y)$ against τ .

Second, we plot the Conditional posterior means of treatment effects, $E(\theta_j|\tau,y)$. Essentially, we plot $E(\theta_j|\tau,y)$ against τ . Notice the line for school C crosses the lines for E and F because C has a higher measurement error . This can be seen in the dataframe and its estimate is hence shrunk more strongly toward the overall mean in the Bayesian analysis.

We compute the conditional mean $E[\theta_j|\tau,y]$ by using tower property. The detailed calculations is written on the following page:

$$E[\theta_j|\tau, y] = E[E[\theta_j|\mu, \tau, y]|\tau, y]$$

Conditional posteiror means of treatment effects

Third, we reproduce the plot Conditional posterior standard deviations of treatment effects, $sd(\theta_j|\tau, y)$. Here, we use the following (detailed calculations on next page):

$$Var(\theta_j|\tau,y) = E[Var(\theta_j|\mu,\tau,y)|\tau,y] + Var(E[\theta_j|\mu,\tau,y]|\tau,y)$$

We obtain the above and square root it to get $sd(\theta_j|\tau,y)$.

Condtional posterior standard deviations of treatment effects

Fourth, to reproduce the summary table of 200 simulations of treatment effects in the eight schools, we adopt the following theoretical algorithm:

- Sample $(\tau^2)^{(t)} simp(\tau^2|y)$ using the grid method
- Sample $\mu^{(t)} \sim p(\mu | (\tau^2)^{(t)}, y)$
- Sample $\theta_j^{(t)} \sim p(\theta_j | \mu^{(t)}, (\tau^2)^{(t)}, y)$ indepdently for j = 1,, J

After we sample the θ_j s, we can compute their posterior quantiles. In my case, we set the number of simulations to be 200.

School Posterior quantiles

	2.5%	25%	50%	75%	97.5%	
Α	-4	5	11	16	27	
В	-8	0	6	13	21	
C	-10	-1	3	9	20	
D	-7	1	6	12	23	
Ε	-10	-1	3	8	19	
F	-11	-1	4	9	17	
G	-3	6	11	16	25	
H	-10	1	6	12	22	

Fifth, we reproduce histograms of 2 quantities of interest computed from the 200 simulation draws: (a) the effect in school A, θ_j ; (b) the largest effect, $max\{\theta_j\}$.

The second histogram on the right depicts the effect of the most successful of the 8 coaching programs at each simulation .

1.4 1d

To compute the probability that its coaching program is the best is equivalent to traversing the vector of simulations of the treatment effects of each school / coaching program and count the number of θ_j that is equal to $\max\{\theta_j\}$.

For example, for school A, we traverse the vector of θ_A s and count the number of elements in the vector θ_A that is equal to $max\{\theta_j\}$. Thus,

$$Pr(\theta_i = max\{\theta_j\}) = Pr(school \ i \ is \ the \ best) = \frac{num \ of \ \{\theta_i = max\{\theta_j\}\}}{num \ of \ simulations}$$

School 1 prob of being best coaching program:

0.26 or 52 / 200

School 2 prob of being best coaching program:

0.105 or 21 / 200

School $\,$ 3 prob of being best coaching program:

0.07 or 14 / 200

School 4 prob of being best coaching program:

0.135 or 27 / 200

For each pair of schools, j and k, we compute the probability that the coaching program for school j is better than that for school k again by traversing the vectors of θ_j and θ_k and then compare them elements by elements to count how many elements of θ_j is greater than $\theta_k \,\,\forall\, k \neq j$. The matrix below with row j and columns k illustrates this probability. For instance, the first row shows $Pr(\theta_1 > \theta_k) \,\,\forall\, k \neq 1$

$$Pr(\theta_j > \theta_k) =$$

1.5 1e - Suppose $\tau^2 = \infty$

When $\tau^2 = \infty$, we can directly sample θ_j from $\theta_j | \mu, \tau^2, y \sim N(y_j, \sigma_j^2)$, since the distribution of θ_j doesn't depend on mu anymore. This means different schools / coaching programs have different means y_j , i.e. group means have no pattern and nothing in common.

$$E[\theta_j|Y,\mu,\sigma^2,\tau^2] = y_j$$

Therefore, individual coaching programs have their own individual means. Under this assumption, if we repeat the computation of the probabilities in part(d), we obtain:

$$Pr(\theta_i = max\{\theta_j\}) = Pr(school \ i \ is \ the \ best) = \frac{num \ of \ \{\theta_i = max\{\theta_j\}\}}{num \ of \ simulations}$$

School 1 prob of being best coaching program:

0.505 or 101 / 200

School 2 prob of being best coaching program:

0.035 or 7 / 200

School 3 prob of being best coaching program:

0.015 or 3 / 200

School 4 prob of being best coaching program:

0.025 or 5 / 200

School 5 prob of being best coaching program:

0 or 0 / 200

School 6 prob of being best coaching program:

0.005 or 1 / 200

School 7 prob of being best coaching program:

0.205 or 41 / 200

School 8 prob of being best coaching program:

0.21 or 42 / 200

$$Pr(\theta_j > \theta_k) =$$

1.6 1f - Suppose $\tau^2 = 0$

In this case, we have

$$\mu | \tau^2, y \sim N \left(\frac{\sum_j \frac{y_j}{\sigma_j^2}}{\sum_j \frac{1}{\sigma_j^2}}, \frac{1}{\sum_j \frac{1}{\sigma_j^2}} \right)$$

and

$$\theta_j | \mu, \tau^2, y \sim N(\mu, 0)$$

This essentially means $\theta_j = \mu$. Thus, we can sample μ from $\mu | \tau^2, y$ and then set $\theta_j = \mu$. The implication here is that individual coaching programs have the same mean, i.e. group means are all equal. So there is no difference between groups. Thus.

$$E[\theta_j|Y,\mu,\tau^2,\sigma^2] = \mu$$

We shall expect the probability of school j being the best coaching program should be the same across all schools. We should also expect the probability that the coaching program for school j is better than that for school k to be roughly the same (i.e. equally likely) for all j, because individual schools have same means,

i.e. no difference between them.

Thus, we obtain:

$$Pr(\theta_i = max\{\theta_j\}) = Pr(school \ i \ is \ the \ best) = \frac{num \ of \ \{\theta_i = max\{\theta_j\}\}}{num \ of \ simulations}$$

School 1 prob of being best coaching program:

0.145 or 29 / 200

School 2 prob of being best coaching program:

0.11 or 22 / 200

School 3 prob of being best coaching program:

0.12 or 24 / 200

School 4 prob of being best coaching program:

0.11 or 22 / 200

School 5 prob of being best coaching program:

0.075 or 15 / 200

School 6 prob of being best coaching program:

0.14 or 28 / 200

School 7 prob of being best coaching program:

0.145 or 29 / 200

School 8 prob of being best coaching program:

0.155 or 31 / 200

$$Pr(\theta_i > \theta_k) =$$

1.7 1g - Discuss how answers in parts d - f differ

In part d, we have the bayesian continuum. Part e and f represent the limit case, where we get the classical dichotomy, while part d repsents the bayesian continuum, i.e. a weighted average of the 2 extremes. In part e, when $\tau^2 \to \infty$, this means group means have no pattern, nothing in common. The estimated

treatment effect is essentially the observed treatment effect: $\hat{\theta}_j = y_j$. This basically reiterates the results of data and hence, uninformative, as we can simply observe from the observed treatment effect that school A has the best coaching program.

In part f, when $\tau^2 \to 0$, this means group means are all equal, i.e. $\hat{\theta}_j = E[\mu|y, \sigma^2, \tau^2] = \bar{y}$... In this case, all coaching programs are equally as good. Each school can be the best coaching program with probability $\frac{1}{8}$. This is uninformative either, since setting $\tau^2 = 0$ assume there is no difference between groups and thus obscures what the data is trying to tell us.

Relatively speaking, Part d is an informative and optimal case, as it is the weighted average of both extremes in part e and f. It constitutes a comparison with the classical dichotomy through **the Shrinkage Parameter**:

The Shrinkage Parameter for school(subgroup j) is:

$$B_j = \frac{1/\tau^2}{1/\sigma_j^2 + 1/\tau^2} = \frac{\sigma_j^2}{\tau^2 + \sigma_j^2}$$

Our estimate of $(\theta_j - \mu)$ is $(y_j - \mu)$ "shrunk by B_j ", i.e. shrink group means towards global means

$$E[\theta_i|Y, \mu, \sigma^2, \tau^2] - \mu = (1 - B_i)(y_i - \mu)$$