International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: bs-BA

Sortiranje

Aizhani je dat niz od N cijelih brojeva: $S[0], S[1], \ldots, S[N-1]$. Svi elementi niza su međusobno različiti brojevi od N-1. Ona želi da zamjenom mjesta nekih elemenata sortira dati niz u rastući. Njen drug Ermek će također mijenjati mjesta nekim elementima datog niza, ali ne obavezno tako da to pomaže Aizhani u sortiranju.

Aizhan i Ermek se igraju sa elementima datog niza, mijenjajući redosljed elemenata kroz više rundi. U svakoj rundi, prvo Ermek zamijeni mjesta nekim elementima niza, pa zatim Aizhan uradi isto. Preciznije, i Ermek i Aizhan prvo odaberu dva ispravna indeksa i zamijene mjesta elementima koji se nalaze na tim pozicijama. Obratite pažnju da pozicije ne moraju biti različite. U slučaju jednakih pozicija, element mijenja mjesto sa samim sobom, što znači da ne dolazi do promjene u samom nizu.

Aizhan zna da Ermeka nije briga oko sortiranja niza S. Ona također unaprijed zna koje će pozicije Ermek izabrati za zamjenu. Ermek planira da napravi ukupno M zamjena, koje su numerisane redom brojevima od 0 do M-1. Za svako i između 0 i M-1 uključivo, Ermek će u i-toj rundi izabrati pozicije X[i] i Y[i].

Kako Aizhan želi da sortira niz S, ona prije početka svake runde provjeri da li je niz već sortiran u rastući, i ako jeste, prekida igru. Zadati su početni niz S i indeksi koje će Ermek birati tokom igre. Vaš zadatak je odredite niz zamjena mjesta elemenata koje Aizhan može iskoristiti za sortiranje niza. U nekim od podzadataka od vas se zahtijeva da nađete najmanji mogući broj zamjena, da bi niz bio sortiran. Možete pretpostaviti da je moguće sortirati zadati niz S u M ili manje rundi.

Primjetite da ako Aizhan vidi da je niz S već sortiran poslije Ermekove zamjene, ona može izabrati da zamijeni dvije iste pozicije (na primjer, pozicije 0 i 0). Kao krajnji rezultat, niz S je sortiran na kraju te runde, pa je Aizhan postigla ono što je željela. Takođe primjetite da ako je početni niz S već sortiran, tada je minimalni broj rundi potrebnih za sortiranje jednak S0.

Primjer 1

Pretpostavimo da važi:

- Početni niz je S = 4, 3, 2, 1, 0.
- Ermek želi da napravi M=6 zamjena.
- Nizovi X i Y koji opisuju pozicije koje će Ermek izabrati za mijenjanje mjesta su X = 0, 1, 2, 3, 0, 1 i Y = 1, 2, 3, 4, 1, 2. Drugim riječima, parovi pozicija koje je Evegenije planira da upotrebi u igri su (0,1), (1,2), (2,3), (3,4), (0,1) i (1,2).

Sa ovakvom postavkom, Aizhan može sortirati zadati niz S u rastući 0, 1, 2, 3, 4 za tri runde, tako što će izabrati sljedeće parove pozicija: (0, 4), (1, 3) i na kraju (3, 4).

Sljedeća tabela opisuje tok igre između Aizhan i Ermeka:

Runda	Igrač	Par pozicija koje se mijenjaju	Niz
početak			4, 3, 2, 1, 0
0	Ermek	(0,1)	3, 4, 2, 1, 0
0	Aizhan	(0,4)	0, 4, 2, 1, 3
1	Ermek	(1,2)	0, 2, 4, 1, 3
1	Aizhan	(1,3)	0, 1, 4, 2, 3
2	Ermek	(2,3)	0, 1, 2, 4, 3
2	Aizhan	(3,4)	0, 1, 2, 3, 4

Primjer 2

Pretpostavimo da važi:

- Početni niz je S = 3, 0, 4, 2, 1.
- Ermek želi da napravi M = 5 zamjena.
- Parovi pozicija koje Ermek planira da upotrebi u igri su (1, 1), (4, 0), (2, 3), (1, 4) i (0, 4).

Sa ovakvom postavkom, Aizhan može sortirati zadati niz S u rastući za tri runde, tako što će izabrati sljedeće parove pozicija: (1,4), (4,2) i na kraju (2,2).

Sljedeća tabela opisuje tok igre između Aizhan i Ermeka:

Runda	Igrač	Par pozicija koje se mijenjaju	Niz
početak			3, 0, 4, 2, 1
0	Ermek	(1,1)	3, 0, 4, 2, 1
0	Aizhan	(1,4)	3, 1, 4, 2, 0
1	Ermek	(4,0)	0, 1, 4, 2, 3
1	Aizhan	(4,2)	0, 1, 3, 2, 4
2	Ermek	(2,3)	0, 1, 2, 3, 4
2	Aizhan	(2,2)	0, 1, 2, 3, 4

Zadatak

Zadati su niz S, broj M i nizovi pozicija (indeksa) X i Y. Odredite niz zamjena mjesta koje Aizhan može upotrebiti da sortira niz S. U podzadacima S i S traženi niz zamjena mjesta mora biti najkraći mogući.

Potrebno je implementirati funkciju findSwapPairs— Ovu će funkciju grader pozvati tačno jednom.

- N: dužina niza S.
- lacktriangle S: niz cijelih brojeva koji sadrži početne vrijednosti niza $oldsymbol{S}$.
- M: broj zamjena koje Ermek planira da uradi.

- X, Y: nizovi cijelih brojeva dužine M. Za svako $0 \le i \le M 1$, u i-toj rundi Ermek planira da zamijeni brojeve koji su na pozicijama X[i] i Y[i].
- P, Q: nizovi cijelih brojeva. Ovi nizovi opisuju jedan mogući niz zamjena mjesta koji Aizhan omogućava da sortira niz S. Označimo sa R broj zamjena koje je vaš program izračunao tj. dužinu niza zamjena mjesta. Za svako i između 0 i R-1 uključivo, pozicije koje je Aizhan izabrala za zamjenu mjesta u i-toj rundi sačuvati redom u P[i] i Q[i]. Možete pretpostaviti da je memorija za nizove P i Q već alocorana Aizhani da oba niza imaju po M elemenata.
- lacktriangle Ova funkcija vraća broj $oldsymbol{R}$, koji je definisan ranije u tekstu.

Podzadaci

podzadatak	bodovi	N	M	dodatna ograničenja za X, Y	ograničenja za R
1	8	$1 \le N \le 5$	$M=N^2$	X[i] = Y[i] = 0 za svako i	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	$m{X}[i] = m{Y}[i] = m{0}$ za svako $m{i}$	$R \leq M$
3	16	$1 \le N \le 100$	M=30N	X[i] = 0, Y[i] = 1 za svako i	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nema	$R \leq M$
5	20	$6 \leq N \leq 2,000$	M=3N	nema	najmanje moguće
6	26	$6 \leq N \leq 200,000$	M=3N	nema	najmanje moguće

Možete pretpostaviti da postoji rješenje za M ili manje rundi.

Lokalni grader

Lokalni grader čita ulazne podatke iz fajla sorting. in u sljedećem formatu:

- red 1: N
- red 2: S[0] ... S[N 1]
- red 3: M
- \blacksquare red 4, ..., M + 3: X[i] Y[i]

Lokalni grader daje sljedeći izlaz:

- lacktriangledown red 1: vrijednost R koju vraća funkcija findSwapPairs
- redovi 2+i, za $0 \le i < R$: P[i] Q[i]