D-加群代数の Picard-Vessiot 理論

2008年12月18日,筑波大学数学系談話会 天野勝利 (筑波大学数理物質科学研究科)

概略

- 1. Picard-Vessiot 理論とは? (線形常微分, 差分類似)
- 2. Hopf 代数とは?
- 3. D-加群代数の PV 理論 (A. and 増岡)

1. Picard-Vessiot 理論とは?

1.1. 線形常微分 PV 理論

$$(A,\partial)$$
 $normalized Mathematical Mathemati$

$$A^\partial:=\{a\in A\mid \partial(a)=0\}$$
 定数環 (constants) $ar{ heta}.~K=\mathbb{R}(x),~\partial=rac{d}{dx}\Rightarrow K$ は differential field. K 上で線形常微分方程式 $(\partial^2+1)y=0$ $(y$ は未知関数)を考える.

解空間

splitting field

 $\mathbb{R}\sin x + \mathbb{R}\cos x \hookrightarrow \mathbb{R}(x,\sin x,\cos x) =: L$

 $\Rightarrow L/K$ は PV 拡大 (Galois 拡大に相当する概念).

微分 Galois 群

$$G(L/K) := \operatorname{Aut}_{\partial}(L/K)$$

$$= \{g: L \to L \ (K \perp \text{auto.}) \mid g \circ \partial = \partial \circ g\}.$$

一般に, 微分 Galois 群は定数体 (この場合 $L^{\partial}=K^{\partial}=$

ℝ) 上の代数群の構造をもつ.

この場合 $G(L/K)\simeq \mathbb{R}/2\pi\mathbb{Z}$ (circle group).

Galois 対応

例.
$$K=\mathbb{C}(x),\ \partial=rac{d}{dx}$$
 $(x(1-x)\partial^2+(\gamma-(lpha+eta+1)x)\partial-lphaeta)y=0$ $lpha=eta=rac{1}{2},\quad \gamma=-rac{1}{2}$

$$egin{align} y_1&=(x-rac{1}{2})(x-1)^{-rac{3}{2}},\ y_2&=y_1w,\quad w&=\int(x-rac{1}{2})^{-2}(x-1)^{rac{1}{2}}x^{rac{1}{2}}dx \end{align}$$

解空間

splitting field

$$\mathbb{C}y_1 + \mathbb{C}y_2 \, \hookrightarrow \, \mathbb{C}(\sqrt{x-1},\sqrt{x},w) =: L$$

 $\Rightarrow L/K$ は PV 拡大

$$G(L/K)\simeq \left\{g=\left(egin{array}{cc} c_1 & c_3 \ 0 & c_2 \end{array}
ight)\in GL_2(\mathbb{C}) \; \left| egin{array}{cc} c_1^2=1 \ c_2^2=1 \end{array}
ight\}$$

$$egin{array}{lll} \sqrt{x-1} & \mapsto & c_1 \sqrt{x-1} \ g: & \sqrt{x} & \mapsto & c_2 \sqrt{x} \ & w & \mapsto & c_1 c_2 w + c_1 c_3 \end{array}$$

1.2. 差分 PV 理論 (van der Put-Singer, 1997)

$$(A, au)$$
 $mathcal{h}^{\sigma} ext{ difference ring :} \Leftrightarrow \left\{ egin{array}{l} A : ext{ comm. ring,} \\ au : A
ightarrow A & ext{ ring auto.} \end{array}
ight.$

$$A^{ au}:=\{a\in A\mid au(a)=a\}$$
 定数環 (constants)

例.
$$K=\mathbb{C}(s),\, au:f(s)\mapsto f(s+1)$$
 とする.

K 上で線形常差分方程式 (au-s)y=0 (y は未知関数)を考える.

解空間 splitting field
$$\mathbb{C}\Gamma(s) \hookrightarrow \mathbb{C}(s,\Gamma(s))=:L$$
 $\Rightarrow L/K$ は PV 拡大.

差分 Galois 群

$$egin{aligned} G(L/K) &:= \operatorname{Aut}_{ au}(L/K) \ &= \{g: L
ightarrow L \; (K \perp ext{auto.}) \mid g \circ au = au \circ g \}. \end{aligned}$$

この場合,
$$G(L/K)\simeq \mathbb{G}_{\mathrm{m}}(\mathbb{C})=\mathbb{C}^{ imes}$$
.

$$\mathbb{C}^{ imes}
ightarrow c \Gamma(s)\mapsto c\Gamma(s).$$

しかし、今の例のように「差分体の拡大」ではうまくいか ないことがある (次の例) 例. $K=\mathbb{C},\, au=\mathrm{id}_K$ とする.

Fibonacci 漸化式 $a_{n+2}=a_{n+1}+a_n$ を考える $(au:a_n\mapsto a_{n+1}).$

$$lpha = \left\{ \left(rac{1+\sqrt{5}}{2}
ight)^n
ight\}, eta = \left\{ \left(rac{1-\sqrt{5}}{2}
ight)^n
ight\} \in ($$
数列の環 $)$

とすれば、2 次元の解空間 $\mathbb{C}\alpha+\mathbb{C}\beta$ を得る.

しかし、この解空間を含む difference field は存在しない:

$$lphaeta = \{(-1)^n\}, \quad (lphaeta + 1)(lphaeta - 1) = (lphaeta)^2 - 1 = 0.$$

そこで、零因子を許した difference algebra を使って PV 拡大を構成する.

$$L=\mathbb{C}(lpha) imes\mathbb{C}(lpha)
ightarrow (a,b), \qquad au(a,b)=(au b, au a).$$
すると、

$$\mathbb{C} lpha + \mathbb{C} eta \, \hookrightarrow \, L$$
 $lpha \, \mapsto \, (lpha, lpha)$ $eta \, \mapsto \, (lpha^{-1}, -lpha^{-1}).$

$$G(L/K):=\operatorname{Aut}_{ au}(L/K)\simeq \mathbb{G}_{\mathrm{m}}(\mathbb{C}) imes \mathbb{Z}/2\mathbb{Z}.$$

Galois 対応

(良い性質を満たす

中間 difference algebra) (closed subgroups)

<u>要求.</u> (1) 微分・差分作用素を統一的に扱いたい 余可換な Hopf 代数 *D*

(2) 上記の $L/(\mathbb{C} \times \mathbb{C})$ も PV 拡大と呼びたい、etc. それには、L や $\mathbb{C} \times \mathbb{C}$ のような、体ではないがそれに準ずるような良い algebra のクラスを定式化したい.

アルチン単純 (AS) *D*-加群代数

2. Hopf 代数とは?

k を体とし、以下すべて k 上で考える.

A: algebra と algebra map $\Delta:A\to A\otimes_k A,$ $arepsilon:A\to k$ と anti-algebra map $S:A\to A$ があって, 次の (1)–(3) を満たすとき, $(A,\Delta,arepsilon,S)$ を Hopf 代数という.

(1) 次が可換:

$$egin{array}{cccc} A & \stackrel{\Delta}{\longrightarrow} & A \otimes A \ & \downarrow_{\mathrm{id} \otimes \Delta} & & \downarrow_{\mathrm{id} \otimes \Delta} \ A \otimes A & \stackrel{\Delta \otimes \mathrm{id}}{\longrightarrow} & A \otimes A \otimes A \end{array}$$

(2) 次も可換:

(3) $a\in A$ に対して $\Delta(a)=\sum a_1\otimes a_2$ と書くとき、 $\sum S(a_1)a_2=\sum a_1S(a_2)=arepsilon(a)$ ($^{orall}a\in A$).

 $\Delta(a) = \sum a_1 \otimes a_2$ という記法は sigma notation と呼ばれ, よく用いられる.

 Δ は余積 (coproduct), arepsilon は余単位射 (counit), Sは antipode と呼ばれる.

例. (affine group scheme の座標環)

A が可換 Hopf 代数 のとき、 $\mathbb{G}=\operatorname{Spec} A$ として、 Δ 、arepsilon、S に対応する scheme morphism

$$\Delta^*: \mathbb{G} \times \mathbb{G} \to \mathbb{G}, \ \varepsilon^*: \{1\} \to \mathbb{G}, \ S^*: \mathbb{G} \to \mathbb{G}$$

を考えて可換図式を書き換えてみると、これらがそれぞれ群の積、単位元、逆元を与える morphism として群の公理を満たしていることがわかる. だから、affine group scheme と可換 Hopf 代数とは同等な概念である.

例. (余可換な Hopf 代数の代表例)

Hopf 代数 A が, $\sum a_1 \otimes a_2 = \sum a_2 \otimes a_1$ ($\forall a \in A$) を満たすとき,余可換という. (A が可換かつ余可換なら Spec A は abelian group scheme となる.)

- (1) G: 任意の群, A=kG (群環) とし, Δ, ε, S を $g \in G$ に対して $\Delta(g)=g\otimes g, \, \varepsilon(g)=1, \, S(g)=g^{-1}$ となるように定めると, A は余可換な Hopf 代数になる. (特に $G=\mathbb{Z}$ のとき, A は定数係数の差分作用素環と同一視できる.)
- (2) \mathfrak{g} : 任意の Lie 環, $A=U(\mathfrak{g})$ とし, Δ, ε, S を $h\in \mathfrak{g}$ に対して $\Delta(h)=1\otimes h+h\otimes 1,\ \varepsilon(h)=0,$ S(h)=-h となるように定めると, A は余可換な Hopf 代数になる.

3. D-加群代数の PV 理論

3.1. 作用素の環

k: base field (以下すべて k 上で考える)

D: 余可換な Hopf algebra

このとき $A \otimes_k D$ に次のような semi-direct な積を入れて algebra とみたものを A#D と書いて, smash 積と呼ぶ:

$$(a\otimes d)\cdot (a'\otimes d')=\sum a(d_1a')\otimes d_2d'.$$

以下, A#D の元を a#d のように書くことがある. V を D-加群とするとき,

$$V^D := \{v \in V \mid dv = arepsilon(d)v \; (^orall d \in D)\}$$

を V の constants と呼ぶ.

例. $(1) \, \operatorname{ch}(k) = 0, \, D = k[\partial]$ $\Delta(\partial) = \partial \otimes 1 + 1 \otimes \partial, \, \varepsilon(\partial) = 0, \, S(\partial) = -\partial$ このとき、

A が可換 D-加群代数 $\Leftrightarrow A$ は differential algebra. 実際, A が D-加群代数なら,

$$\partial(ab)=(\partial a)b+a(\partial b)\quad (a,b\in A).$$

さらに、例えば A=k[x] (多項式環)、 $\partial f=\dfrac{df}{dx}$ のとき、A#D はいわゆる Weyl 代数 (多項式係数の線形微分作用素環) と同じものになる.一般に、K が可換 D-加群代数なら、

$$K\#D=$$
 " K 係数の線形微分作用素環"

と思える.

(2)
$$D = k[au, au^{-1}]$$

$$\Delta(au)= au\otimes au,\, arepsilon(au)=1,\, S(au)= au^{-1}$$
このとき、

A が可換 D-加群代数 \Leftrightarrow A は difference algebra. 実際, A が D-加群代数なら,

$$au(ab) = (au a)(au b) \quad (a,b \in A).$$

テンソル積について.

K: 可換 D-加群代数のとき $,_{K\#D}\mathcal{M}$ を K#D-加群の圏とすると $,_{V}V$ (V) に対し $,_{K}V$ (V) に

$$(a\#d)(v\otimes w)=a\sum d_1v\otimes d_2w$$

によって K#D-加群構造を入れることができ, $V\otimes_K W\in K\#D$ となる.

これにより $(K_{\#D}\mathcal{M}, \otimes_K)$ は (symmetric) tensor category になる.

仮定. 次の節に進む前に次を仮定しておく.

(i) $D \mid \exists \text{ pointed } (\Rightarrow D = D^1 \# kG).$

ここで、 $\left\{egin{array}{ll} D^1 & ext{if 1 を含む D on irreducible component,} \ G=G(D): ext{ grouplike elements からなる群}
ight.$

(ii) D^1 は Birkhoff-Witt bialgebra (higher derivation を一般化したようなもの) になっている.

なお、k が標数 0 の代数閉体ならばこれらは常に成立する.

3.2. アルチン単純 (AS) *D*-加群代数

以下、D-加群代数はすべて可換代数とする.

定義. K: D-加群代数のとき、

- ・ K が単純 : \Leftrightarrow K に non-trivial な D-stable ideal が存在しない (\Leftrightarrow K が $_{K\#D}\mathcal{M}$ の simple object).
- ・K がアルチン単純 $(AS):\Leftrightarrow K$ がアルチン環かつ単純.

命題. K が AS D-加群代数のとき,

- (1) K^D は体.
- (2) $K=\prod_{g\in G/G_1}K_g$ (体の直積),各 K_g はすべて体同型. ここで,G=G(D) は D の grouplike element 全体からなる群で, G_1 は,K の素 ideal P を一つ fix したときに $G_1=\{g\in G|gP=P\}$ により定まる G の部分群. このとき $[G:G_1]<\infty$.
 - $(3)\ D(G_1) := D^1 \# kG_1,\ K_1 = K_{1G_1}$ とすると、

 $K_1\#D(G_1)\mathcal{M} \stackrel{pprox}{ o} K\#D\mathcal{M}$ (Abel 圏同値).

特に $, \forall V \in {}_{K\#D}\mathcal{M}$ は自由 K-加群.

例えば、(3) により $\S 2$ の $(\mathbb{C}(\alpha) \times \mathbb{C}(\alpha))/(\mathbb{C} \times \mathbb{C})$ を $\mathbb{C}(\alpha)/\mathbb{C}$ と同一視できる。 $(G \simeq \mathbb{Z}, G_1 \simeq 2\mathbb{Z}.)$

3.3. PV 拡大と splitting algebra

 $\underline{c義.}$ (1) L/K: AS D-加群代数の拡大が PV 拡大とは,

(a)
$$L^D = K^D$$
,

(b) L ⊃ ∃ A : 部分 D-加群代数

$$S.t.$$
 $\begin{cases} A\supset K, \ A\supset K, \ L$ は A の total quotient ring, $A\otimes_K A=A\cdot (A\otimes_K A)^D$ このとき,上記の A は L/K に対して一意的.

(2) K: AS D-加群代数, $V \in {}_{K\#D}\mathcal{M}, {}_{K}V < \infty$ と する. L が V の (minimal) splitting algebra とは,

 $\left\{egin{aligned} L & ext{id} & K & ext{を含む AS } D ext{-}
m 群代数, \ & \dim_{L^D} & \operatorname{Hom}_{K\#D}(V,L) = \operatorname{rank}_K V, \ & L & ext{の真部分 AS } D ext{-}
m 群代数で上記 2 条件を満たすものはない. \end{aligned}
ight.$

 $\operatorname{Hom}_{K\#D}(V,L)$ は L の中における V の解全体を表 しており、その L^D 上の次元が V の rank と一致すると いうことは,LがVの解を十分多く含んでいるという意味 をもつ.

3.4. 主結果

(I) Galois 対応.

 $L/K: \mathrm{PV}$ 拡大 のとき, $H = (A \otimes_K A)^D$ が K^D 上の可換 Hopf 代数の構造をもち,

{中間 AS D-加群代数} $\stackrel{1:1}{\leftrightarrow} \{H \supset I \text{ Hopf ideal}\}$ ($\stackrel{1:1}{\leftrightarrow} \{\mathbb{G} = \operatorname{Spec} H \text{ O closed subgroup scheme}\}$)

(II) splitting algebra の存在性と一意性.

K: AS D-加群代数

V: K#D-加群 (\Rightarrow 自由 K-加群)

 K^D が代数閉体, ${\rm rank}_K V < \infty$ のとき,V の ${\rm splitting}$ algebra L で,L/K が ${\rm PV}$ 拡大になるものが一意的に存在する.

(III) 圈同值.

 $\mathrm{rank}_K V < \infty$ のとき、V の $\mathrm{splitting\ algebra}\ L$ で、L/K が PV 拡大になるものが存在すれば、

$$\{\{V\}\} \approx \operatorname{Rep} \mathbb{G}.$$

ここで、 $\{\{V\}\}$ は $V \succeq V^{\vee} = \operatorname{Hom}_K(V,K)$ で"生成される" $(_{K\#D}\mathcal{M},\otimes_K)$ の abelian tensor subcategory.

(IV) PV 拡大の特徴づけ.

 $S(s) = -s, \quad S(c) = c$

L/K を AS D-加群代数の拡大 $\mathrm{s.t.}$ $L^D=K^D$ とするとき、

L/K がある $V \in {}_{K\#D}\mathcal{M}$ の splitting algebra \Leftrightarrow L/K が (有限生成) PV 拡大.

ちなみに、最初の三角関数の例での A や H にあたるものは次の通り.

 $egin{aligned} L &= \mathbb{R}(x,\sin x,\cos x) \supset A &= \mathbb{R}(x)[\sin x,\cos x] \supset \ K &= \mathbb{R}(x), \ H &= (A\otimes_K A)^\partial = \mathbb{R}[s,c], \ au au dash dash dots, \ &= (\sin x) \otimes (\cos x) - (\cos x) \otimes (\sin x), \ &= (\cos x) \otimes (\cos x) + (\sin x) \otimes (\sin x), \ &\Delta(s) &= s \otimes c + c \otimes s, \ \Delta(c) &= c \otimes c - s \otimes s, \ arepsilon(s) &= 0, \ arepsilon(c) &= 1 \end{aligned}$