TEA013 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01, 27 set 2024

0

P01, 27 set 2024 Prof. Nelson Luís Dias

NOME: GABARITO

Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

 ${f 1}$ [20] Utilizando a fórmula usual para a derivada numérica de ordem 2,

$$\frac{\delta^2 \phi}{\delta x^2} = \frac{\phi_{i-1} - 2\phi_i + \phi_{i+1}}{\Delta x^2} + \mathcal{O}(\Delta x^2),$$

discretize o problema de valor de contorno

$$\frac{d^2\phi}{dx^2} = 0,$$
 $\phi(0) = 1,$ $\phi(1) = 2,$

para $x \in [0, 1]$ com

$$\Delta x = 1/4, \qquad x_i = i\Delta x, \ i = 0, \dots, 4.$$

O resultado é um sistema de 3 equações nas incógnitas ϕ_1 , ϕ_2 , ϕ_3 (note que $\phi_0 = 1$ e $\phi_4 = 2$ são conhecidos) com a forma

$$[A][\phi] = [b].$$

Obtenha as matrizes $[A]_{3\times 3}$ e $[b]_{3\times 1}$.

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \frac{\delta^2 \phi}{\delta x^2} &= \frac{\phi_{i-1} - 2\phi_i + \phi_{i+1}}{\Delta x^2} = 0, \\ \phi_{i-1} - 2\phi_i + \phi_{i+1} &= 0; \\ \phi_0 - 2\phi_1 + \phi_2 &= 0; \\ \phi_1 - 2\phi_2 + \phi_3 &= 0; \\ \phi_2 - 2\phi_3 + \phi_4 &= 0. \end{split}$$

mas $\phi_0 = 1$, $\phi_4 = 2$:

$$-2\phi_1 + \phi_2 = -1;$$

$$\phi_1 - 2\phi_2 + \phi_3 = 0;$$

$$\phi_2 - 2\phi_3 = -2.$$

Donde

$$\underbrace{ \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} }_{ \begin{bmatrix} A \end{bmatrix}} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{bmatrix} = \underbrace{ \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix}}_{ \begin{bmatrix} b \end{bmatrix}} \blacksquare$$

2 [20] Um esquema regressivo (*upwind*) de ordem 2. Expanda em série de Taylor u(x,t) desde x_i até x_{i-1} e x_{i-2} (igualmente espaçados), elimine $\frac{\partial^2 u}{\partial x^2}$ e encontre uma aproximação de diferenças finitas para $\frac{\partial u}{\partial x}|_{x_i}$ cujo erro é $\mathcal{O}(\Delta x^2)$. **Nota**: a expansão de série de Taylor de uma função f(x) em torno de x_0 é

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

SOLUÇÃO DA QUESTÃO:

$$u_{i-1} = u_i - \frac{\partial u}{\partial x} \Big|_i \Delta x + \frac{\partial^2 u}{\partial x^2} \Big|_i \frac{\Delta x^2}{2} + \mathcal{O}(\Delta x^3),$$

$$u_{i-2} = u_i - \frac{\partial u}{\partial x} \Big|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2} \Big|_i \frac{(2\Delta x)^2}{2} + \mathcal{O}(\Delta x^3).$$

Para eliminar $\partial^2 u/\partial x^2$, multiplicamos a primeira equação acima por 4, e subtraímos:

$$4u_{i-1} = 4u_i - \frac{\partial u}{\partial x} \Big|_i 4\Delta x + \frac{\partial^2 u}{\partial x^2} \Big|_i 2\Delta x^2 + \mathcal{O}(\Delta x^3),$$

$$u_{i-2} = u_i - \frac{\partial u}{\partial x} \Big|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2} \Big|_i 2\Delta x^2 + \mathcal{O}(\Delta x^3),$$

$$4u_{i-1} - u_{i-2} = 3u_i - 2\frac{\partial u}{\partial x} \Big|_i \Delta x + \mathcal{O}(\Delta x^3);$$

$$\frac{\partial u}{\partial x} \Big|_i = \frac{3u_i - 4u_{i-1} + u_{i-2}}{2\Delta x} + \mathcal{O}(\Delta x^2) \blacksquare$$

3 [20] Faça a análise de estabilidade para o esquema explícito que tenta resolver a equação da onda cinemática:

$$u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} \left(u_{i+1}^n - u_{i-1}^n \right).$$

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \epsilon_i^{n+1} &= \epsilon_i^n - \frac{\text{Co}}{2} (\epsilon_{i+1}^n - \epsilon_{i-1}^n), \\ t_n &= n \Delta t, \\ x_i &= i \Delta x, \\ \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i} k_l i \Delta x} &= \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l i \Delta x} - \frac{\text{Co}}{2} \left(\xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i+1) \Delta x} - \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i-1) \Delta x} \right); \end{split}$$

eliminando o fator comum $\xi_l e^{at_n + ik_l i\Delta x}$,

$$\begin{aligned} \mathbf{e}^{a\Delta t} &= 1 - \frac{\mathrm{Co}}{2} \left(\mathbf{e}^{+\mathrm{i}k_l \Delta x} - \mathbf{e}^{-\mathrm{i}k_l \Delta x} \right) \\ &= 1 - \mathrm{i}\mathrm{Co} \operatorname{sen} k_l \Delta x. \end{aligned}$$

Mas $|e^{a\Delta t}| > 1$, \forall Co, e o esquema é incondicionalmente instável

 $\mathcal{L}\left\{\cosh(at)\right\}$

obrigatoriamente a partir de

$$\mathcal{L}\left\{\mathbf{e}^{at}\right\} = \frac{1}{s-a}.$$

$$\mathcal{L}\left\{\cosh(at)\right\} = \mathcal{L}\left\{\frac{e^{at} + e^{-at}}{2}\right\}$$

$$= \frac{1}{2} \left[\frac{1}{s-a} + \frac{1}{s+a}\right]$$

$$= \frac{1}{2} \frac{s+a+s-a}{s^2-a^2}$$

$$= \frac{1}{2} \frac{2s}{s^2-a^2}$$

$$= \frac{s}{s^2-a^2} \blacksquare$$

$$\mathcal{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}},$$

resolva a equação diferencial

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = 1$.

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\{y'' + y\} = \mathcal{L}\{t\}$$

$$s^{2}\overline{y} - sy(0) - y'(0) + \overline{y} = \frac{1}{s^{2}},$$

$$s^{2}\overline{y} - s - 1 + \overline{y} = \frac{1}{s^{2}},$$

$$\overline{y}(s^{2} + 1) - (s + 1) = \frac{1}{s^{2}},$$

$$\overline{y}(s^{2} + 1) = (s + 1) + \frac{1}{s^{2}} = \frac{s^{3} + s^{2} + 1}{s^{2}},$$

$$\overline{y} = \frac{s^{3} + s^{2} + 1}{s^{2}(s^{2} + 1)},$$

$$\overline{y} = \frac{A}{s} + \frac{B}{s^{2}} + \frac{Cs + D}{s^{2} + 1}.$$

Resolvendo para as frações parciais,

$$A = 0$$
, $B = 1$, $C = 1$, $D = 0$

ou

$$\overline{y} = \frac{s}{s^2 + 1} + \frac{1}{s^2},$$

$$y(t) = \cos(t) + t \blacksquare$$

TEA013 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02, 01 Nov 2024

0

P02, 01 Nov 2024 Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

f 1 [20] Utilizando-se a desigualdade de Cauchy-Schwarz, é possível mostrar que

$$\int_{-\infty}^{+\infty} \frac{\sqrt{\mathrm{e}^{-|x|}}}{\sqrt{1+x^2}} \, \mathrm{d}x \le \alpha,$$

onde α é um número real positivo. Encontre α . Note que

$$\frac{\mathrm{d}\arctan(x)}{\mathrm{d}x} = \frac{1}{1+x^2}.$$

SOLUÇÃO DA QUESTÃO:

A desigualdade de Cauchy-Schwarz é

$$|\langle f, g \rangle| \le ||f|| ||g||$$

Admitindo-se que f e g sejam reais e integráveis de $-\infty$ a $+\infty$, a desigualdade de Cauchy-Schwarz fica

$$\left| \int_{-\infty}^{+\infty} f(x)g(x) \, \mathrm{d}x \right| \le \sqrt{\int_{-\infty}^{+\infty} [f(x)]^2 \, \mathrm{d}x} \, \sqrt{\int_{-\infty}^{+\infty} [g(x)]^2 \, \mathrm{d}x} \; .$$

Agora basta escolher

$$f(x) = \frac{1}{\sqrt{1+x^2}},$$
$$g(x) = \sqrt{e^{-|x|}}:$$

$$\int_{-\infty}^{+\infty} \frac{\sqrt{\mathrm{e}^{-|x|}}}{\sqrt{1+x^2}} \, \mathrm{d}x \le \sqrt{\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x} \sqrt{\int_{-\infty}^{+\infty} \mathrm{e}^{-|x|} \, \mathrm{d}x}$$

$$= \sqrt{4 \int_{0}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x \int_{0}^{+\infty} \mathrm{e}^{-x} \, \mathrm{d}x}$$

$$= \sqrt{4 \times \frac{\pi}{2} \times 1}$$

$$= \sqrt{2\pi} \, \blacksquare$$

SOLUÇÃO DA QUESTÃO:

A resposta curta é: a série de Fourier de 1 é 1! A resposta um pouco mais longa é: a série de Fourier é

$$f(x) = 1 = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos nx + B_n \sin nx].$$

Compare: como 1 é par e os senos são ímpares, $B_n = 0, \forall n; A_0$ é necessariamente igual a 2, e todos os outros $A_n s$ são nulos:

$$A_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} \cos nx \, \mathrm{d}x = 0, \forall n > 0.$$

Fim da questão

SOLUÇÃO DA QUESTÃO:

Seja $f_I(x)$ a extensão ímpar de f(x), definida por

$$f_I(x) = \begin{cases} f(x), & 0 < x \ge 2, \\ 0, & x = 0, \\ -f(-x), & -2 \le x < 0. \end{cases}$$

A série de Fourier de $f_I(x)$ contém apenas senos:

$$f_I(x) = \sum_{n=1}^{\infty} B_n \operatorname{sen} \frac{2\pi nx}{L}$$

onde L = 4, e

$$B_n = \frac{2}{L} \int_{-L/2}^{L/2} f_I(x) \sin \frac{2\pi nx}{L} dx$$

= $\frac{1}{2} \int_{-2}^{2} f_I(x) \sin \frac{\pi nx}{2} dx$
= $\int_{0}^{2} f(x) \sin \frac{\pi nx}{2} dx$.

Mas f(x) = 2 - x, e portanto

$$B_n = \int_0^2 (2 - x) \sin \frac{\pi nx}{2} dx = \frac{4}{\pi n}.$$

Portanto, a série de fourier da extensão ímpar de f(x) é

$$f_I(x) = \sum_{n=1}^{\infty} \frac{4}{\pi n} \operatorname{sen} \frac{\pi n x}{2} \blacksquare$$

4 [20]

a) Seja

$$f(x) = \begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

Calcule $\widehat{f}(k)$.

b) Usando o resultado de a) e escrevendo f(0) em função de $\widehat{f}(k)$, calcule

$$\int_0^\infty \frac{\operatorname{sen}(k)}{k} \, \mathrm{d}k.$$

SOLUÇÃO DA QUESTÃO:

O cálculo de $\widehat{f}(k)$ é quase imediato:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-1}^{1} e^{-ikx} dx$$

$$= \frac{1}{2\pi i k} \left[-e^{-ikx} \right]_{x=-1}^{x=+1}$$

$$= \frac{1}{2\pi i k} \left[e^{ik} - e^{-ik} \right]$$

$$= \frac{1}{2\pi i k} [2i \operatorname{sen}(k)]$$

$$= \frac{\operatorname{sen}(k)}{\pi k}.$$

Prosseguindo,

$$f(x) = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} e^{ikx} dk$$

$$f(0) = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} dk$$

$$1 = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} dk$$

$$1 = 2 \int_{0}^{\infty} \frac{\sin(k)}{\pi k} dk \qquad \text{(pois o integrando \'e uma função par)}$$

$$\frac{\pi}{2} = \int_{0}^{\infty} \frac{\sin(k)}{k} dk \blacksquare$$

5 [20] Resolva parcialmente a equação da difusão-advecção

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = a^2 \frac{\partial^2 C}{\partial x^2}$$

sujeita apenas à condição inicial de um lançamento instantâneo de massa M em uma seção transversal de área A:

$$C(x,0) = \frac{M}{A}\delta(x),$$

onde $\delta(x)$ é a distribuição Delta de Dirac:

a) [10] Calcule a transformada de Fourier da equação diferencial parcial,

$$\widehat{C}(k,t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} C(x,t) \exp(-\mathrm{i}kx) \, dx,$$

e obtenha uma equação diferencial ordinária de \widehat{C} em t.

b) [10] Faça a transformada de Fourier de C(x, 0), e obtenha $\widehat{C}(k, 0)$.

SOLUÇÃO DA QUESTÃO:

a) A transformada de Fourier da equação diferencial é

$$\begin{split} \frac{\mathrm{d}\widehat{C}}{\mathrm{d}t} + \mathrm{i}ku\widehat{C} &= -a^2k^2\widehat{C}\\ \frac{\mathrm{d}\widehat{C}}{\mathrm{d}t} + \left(\mathrm{i}ku + a^2k^2\right)\widehat{C} &= 0 \ \blacksquare \end{split}$$

Note que, de acordo com o enunciado, não era necessário fazer mais nada neste item.

b) A transformada de Fourier da condição inicial é

$$\widehat{C}(k,0) = \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{M}{A} \delta(x) e^{-ikx} dx$$
$$= \frac{M}{2A\pi} \blacksquare$$

TEA013 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR

()

P03, 11 Dez 2024

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [20] Sabendo que

$$f(x) = e^{-|x|}$$
 \longleftrightarrow $\widehat{f}(k) = \frac{1}{\pi(1+k^2)},$ $g(x) = e^{-x^2}$ \longleftrightarrow $\widehat{g}(k) = \frac{1}{2\sqrt{\pi}}e^{-\frac{k^2}{4}},$

são pares de transformadas de Fourier, calcule

$$\mathscr{F}\left\{\int_{\xi=-\infty}^{+\infty} \mathrm{e}^{-\xi^2} \mathrm{e}^{-|x-\xi|} \,\mathrm{d}\xi\right\}.$$

SOLUÇÃO DA QUESTÃO:

A expressão acima é a transformada de Fourier da convolução [f * g](x); pelo Teorema da Convolução,

$$\mathscr{F}\left\{ [f * g](x) \right\} = 2\pi \widehat{f}(k) \widehat{g}(k)$$

$$= 2\pi \frac{1}{\pi (1+k^2)} \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}},$$

$$= \frac{1}{\sqrt{\pi} (1+k^2)} e^{-\frac{k^2}{4}} \blacksquare$$

2 [20] Utilizando o Teorema de Parseval,

$$\int_{-\infty}^{+\infty} f(x)g(x) dx = 2\pi \int_{-\infty}^{+\infty} \widehat{f}(-k)\widehat{g}(k) dk,$$

e sabendo que

$$\int_0^\infty \frac{\mathrm{e}^{-\frac{k^2}{4}}}{1+k^2}\,\mathrm{d}k = \frac{1}{2}\sqrt[4]{\mathrm{e}}\,\pi\,\mathrm{erfc}\left(\frac{1}{2}\right),$$

Obtenha

$$\int_{-\infty}^{+\infty} e^{-|x|} e^{-x^2} dx.$$

Obs: para os pares de transformadas, use o enunciado da questão 1.

SOLUÇÃO DA QUESTÃO:

$$f(x) = e^{-|x|}$$
 \longleftrightarrow $\widehat{f}(k) = \frac{1}{\pi(1+k^2)},$ $g(x) = e^{-x^2}$ \longleftrightarrow $\widehat{g}(k) = \frac{1}{2\sqrt{\pi}}e^{-\frac{k^2}{4}},$

Agora,

$$\int_{-\infty}^{+\infty} e^{-|x|} e^{-x^2} dx = 2\pi \int_{-\infty}^{+\infty} \frac{1}{\pi (1+k^2)} \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}} dk$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-\frac{k^2}{4}}}{1+k^2} dk$$

$$= \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} \frac{e^{-\frac{k^2}{4}}}{1+k^2} dk$$

$$= \frac{2}{\sqrt{\pi}} \frac{1}{2} \sqrt[4]{e} \pi \operatorname{erfc}\left(\frac{1}{2}\right)$$

$$= \sqrt[4]{e} \sqrt{\pi} \operatorname{erfc}\left(\frac{1}{2}\right) \blacksquare$$

3 [20] Obtenha a função de Green da equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} + xy = f(x),$$
$$y(0) = 0.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} + \xi y = f(\xi),$$

$$G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} + G(x,\xi)\xi y = G(x,\xi)f(\xi),$$

$$\int_{\xi=0}^{\infty} G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} \,\mathrm{d}\xi + \int_{\xi=0}^{\infty} G(x,\xi)\xi y \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi,$$

$$G(x,\xi)y(\xi) \bigg|_{\xi=0}^{\xi=\infty} - \int_{\xi=0}^{\infty} y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} \,\mathrm{d}\xi + \int_{\xi=0}^{\infty} G(x,\xi)\xi y \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi,$$

$$G(x,\infty)y(\infty) + \int_{\xi=0}^{\infty} \left[-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \xi G(x,\xi) \right] y(\xi) \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi.$$

Impomos

$$G(x, \infty) = 0,$$

$$-\frac{\mathrm{d}G(x, \xi)}{\mathrm{d}\xi} + \xi G(x, \xi) = \delta(\xi - x),$$

e resolvemos para G:

$$G(x,\xi) = u(x,\xi)v(x,\xi),$$

$$-\frac{\mathrm{d}(uv)}{\mathrm{d}\xi} + \xi uv = \delta(\xi - x),$$

$$u\left[-\frac{\mathrm{d}v}{\mathrm{d}\xi} + \xi v\right] - v\frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$-\frac{\mathrm{d}v}{\mathrm{d}\xi} = -\xi v$$

$$\frac{\mathrm{d}v}{\mathrm{d}v} = \xi \mathrm{d}\xi$$

$$\int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} = \int_{\eta=0}^{\xi} \eta \mathrm{d}\eta$$

$$\ln\left(\frac{v(x,\xi)}{v(x,0)}\right) = \frac{1}{2}\xi^2$$

$$v(x,\xi) = v(x,0) \exp\left(\frac{1}{2}\xi^2\right);$$

$$-v(x,0) \exp\left(\frac{1}{2}\xi^2\right) \frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\frac{1}{v(x,0)} \exp\left(-\frac{1}{2}\xi^2\right) \delta(\xi - x),$$

$$\mathrm{d}u = -\frac{1}{v(x,0)} \exp\left(-\frac{1}{2}\eta^2\right) \delta(\eta - x) \mathrm{d}\eta,$$

$$u(x,\xi) - u(x,0) = -\frac{1}{v(x,0)} \int_{\eta=0}^{\xi} \exp\left(-\frac{1}{2}\eta^2\right) \delta(\eta - x) \mathrm{d}\eta$$

$$= -\frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right),$$

$$u(x,\xi) = u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right),$$

$$G(x,\xi) = \left[u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right)\right] v(x,0) \exp\left(\frac{1}{2}\xi^2\right);$$

$$= \exp\left(\frac{1}{2}\xi^2\right) \left[G(x,0) - H(\xi - x) \exp\left(-\frac{1}{2}x^2\right)\right].$$

Para impor a condição de contorno,

$$G(x, \infty) = 0,$$

$$G(x, 0) - H(\infty - x) \exp\left(-\frac{1}{2}x^2\right) = 0,$$

$$G(x, 0) - \exp\left(-\frac{1}{2}x^2\right) = 0,$$

$$G(x, 0) = \exp\left(-\frac{1}{2}x^2\right).$$

Portanto,

$$G(x,\xi) = [1 - H(\xi - x)] \exp\left(\frac{1}{2}(\xi^2 - x^2)\right)$$

$$y'' + 4y' + (4 - 9\lambda)y = 0,$$
 $y(0) = y(1) = 0.$

SOLUÇÃO DA QUESTÃO: Se $\lambda = k^2 > 0$, k > 0,

$$r^{2} + 4r + (4 - 9k^{2}) = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 4(4 - 9k^{2})}}{2},$$

$$= \frac{-4 \pm \sqrt{36k^{2}}}{2}$$

$$= -2 \pm 3k.$$

Neste caso a solução geral é

$$y(x) = \exp(-2x) [A \cosh(3kx) + B \sinh(3kx)],$$

 $y(0) = A = 0,$
 $y(1) = \exp(-2)B \sinh(3k) = 0 \implies B = 0.$

Portanto, $\lambda > 0$ não é autovalor. Se $\lambda = 0$,

$$r^{2} + 4r + 4 = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2.$$

Só há uma raiz, e a solução geral agora é

$$y(x) = (A + Bx)e^{-2x},$$

 $y(0) = A = 0,$
 $y(1) = Be^{-2} = 0 \implies B = 0,$

e novamente $\lambda = 0$ não é autovalor. Se $\lambda = -k^2 < 0$, k > 0,

$$r^{2} + 4r + (4 + 9k^{2}) = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 4(4 + 9k^{2})}}{2},$$

$$= \frac{-4 \pm \sqrt{-36k^{2}}}{2},$$

$$= -2 \pm 3ki.$$

A solução geral é

$$y(x) = e^{-2x} [A\cos(3kx) + B\sin(3kx)],$$

$$y(0) = A = 0,$$

$$y(1) = e^{-2}B\sin(3kx) = 0;$$

$$\sin(3k) = 0,$$

$$3k_n = n\pi, \qquad n = 1, 2, 3, ...$$

$$k_n = \frac{n\pi}{3},$$

$$y_n(x) = e^{-2x} \sin(n\pi x),$$

$$\lambda_n = -\frac{n^2\pi^2}{9} \blacksquare$$

$$\frac{\partial \phi}{\partial t} = \alpha^2 \frac{\partial^2 \phi}{\partial x^2}; \qquad \phi(0, t) = 0, \qquad \phi(1, t) = 1, \qquad \phi(x, 0) = 0.$$

Sugestão: As condições de contorno em ϕ não são homogêneas! Faça $\phi(x,t) = u(x,t) + x$. Obtenha a EDP correspondente em u com condições de contorno homogêneas. Resolva para u(x,t) utilizando o método de separação de variáveis.

SOLUÇÃO DA QUESTÃO:

$$\phi(x,t) = u(x,t) + x,$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial u}{\partial t},$$

$$\frac{\partial \phi}{\partial x} = \frac{\partial u}{\partial x} + 1,$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 u}{\partial x^2}.$$

A equação diferencial em u não muda:

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}.$$

As condições de contorno correspondentes são

$$u(0,t) = \phi(0,t) - 0 = 0 - 0 = 0,$$

 $u(1,t) = \phi(1,t) - 1 = 1 - 1 = 0.$

A condição inicial é

$$u(x, 0) = \phi(x, 0) - x = -x.$$

Temos portanto condições de contorno homogêneas e prosseguimos.

$$u(x,t) = X(x)T(t),$$

$$X\frac{dT}{dt} = \alpha^2 T \frac{d^2 X}{dx^2},$$

$$\frac{1}{\alpha^2 T} \frac{dT}{dt} = \frac{1}{X} \frac{d^2 X}{dx^2} = \lambda.$$

A solução em termos de autofunções e autovalores é

$$\lambda_n = -n^2 \pi^2, \qquad n = 1, 2, 3, \dots$$

$$X_n(x) = \operatorname{sen}(n\pi x).$$

Procuramos portanto

$$u(x,0) = -x,$$

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 \pi^2 \alpha^2 t} \operatorname{sen}(n\pi x),$$

$$-x = \sum_{n=1}^{\infty} A_n \operatorname{sen}(n\pi x),$$

$$-x \operatorname{sen}(m\pi x) = \sum_{n=1}^{\infty} A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x)$$

$$-\int_0^1 x \operatorname{sen}(m\pi x) dx = \sum_{n=1}^{\infty} \int_0^1 A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x) dx$$

$$-\int_0^1 x \operatorname{sen}(m\pi x) dx = \int_0^1 A_m \operatorname{sen}^2(m\pi x) dx = A_m \frac{1}{2},$$

$$\frac{(-1)^m}{m\pi} = A_m \frac{1}{2},$$

$$A_m = 2 \frac{(-1)^m}{m\pi} \blacksquare$$

TEA013 Matemática Aplicada II Curso de Engenharia Ambiental

Departamento de Engenharia Ambiental, UFPR

F, 20 Dez 2024

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [20] **Sem utilizar frações parciais**, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{s}{(s-3)(s^2+1)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

A expressão acima é o produto de duas transformadas de Laplace conhecidas:

$$\mathcal{L}\left\{e^{3t}\right\} = \frac{1}{s-3},$$

$$\mathcal{L}\left\{\cos(t)\right\} = \frac{s}{s^2+1}.$$

Pelo Teorema da Convolução,

$$\mathcal{L}\{[f * g](t)\} = \overline{f}(s)\overline{g}(s),$$

$$= \frac{1}{s-3} \times \frac{s}{s^2+1} \Rightarrow$$

$$\mathcal{L}^{-1}\left\{\frac{s}{(s-3)(s^2+1)}\right\} = e^{3t} * \cos(t)$$

$$= \int_{\tau=0}^{t} e^{3(t-\tau)} \cos(\tau) d\tau$$

$$= \operatorname{Re}\left[e^{3t} \int_{\tau=0}^{t} e^{-3\tau} e^{i\tau} d\tau\right] = \operatorname{Re}\left[e^{3t} \int_{\tau=0}^{t} e^{(i-3)\tau} d\tau\right]$$

$$= \operatorname{Re}\left[e^{3t} \frac{1}{i-3} \int_{\tau=0}^{t} e^{(i-3)\tau} d(i-3)\tau\right]$$

$$= \operatorname{Re}\left\{\frac{e^{3t}}{i-3} e^{(i-3)\tau}\Big|_{\tau=0}^{t}\right\} = \operatorname{Re}\left\{\frac{e^{3t}}{i-3} \left[e^{(i-3)t} - 1\right]\right\}$$

$$= \operatorname{Re}\left\{\frac{1}{i-3} \left[e^{it} - e^{3t}\right]\right\} = \operatorname{Re}\left\{\frac{-i-3}{10} \left[e^{it} - e^{3t}\right]\right\}$$

$$= \frac{1}{10} \operatorname{Re}\left\{-ie^{it} + ie^{3t} - 3e^{it} + 3e^{3t}\right\}$$

$$= \frac{1}{10} \left[\operatorname{sen}(t) + 0 - 3\cos(t) + 3e^{3t}\right] \blacksquare$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \,\mathrm{d}\xi$$

onde H(x) é a função de Heaviside.

$$\int_{-\infty}^{x} \underbrace{H(\xi - a)}_{u} \underbrace{\cos(\xi) \, \mathrm{d}\xi}_{\mathrm{d}v} = H(\xi - a) \operatorname{sen}(\xi) \Big|_{-\infty}^{x} - \int_{-\infty}^{x} \operatorname{sen}(\xi) \delta(\xi - a) \, \mathrm{d}\xi$$
$$= H(x - a) \operatorname{sen}(x) - H(x - a) \operatorname{sen}(a)$$
$$= H(x - a) [\operatorname{sen}(x) - \operatorname{sen}(a)] \blacksquare$$

 ${f 3}$ [20] Aplique a designaldade de Schwarz para dois vetores ${m u}, {m v}$ do ${\mathbb R}^3$ tais que

$$u = (x, y, z),$$
 onde $x^2 + y^2 + z^2 = 1,$
 $v = (1, 2, 3),$

utilizando o produto escalar padrão. Simplifique ao máximo.

$$(u \cdot v)^{2} \le (u \cdot u)(v \cdot v)$$
$$(x + 2y + 3z)^{2} \le (x^{2} + y^{2} + z^{2})(1 + 4 + 9)$$
$$(x + 2y + 3z)^{2} \le 14 \blacksquare$$

$$f(x) = e^{-x}, \qquad 0 \le x \le 1.$$

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{\frac{2ni\pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2ni\pi x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1;$$

$$c_n = \int_0^1 e^{-x} e^{-2ni\pi x} dx$$

$$= -\frac{1}{e} \frac{(e - 1)(2i\pi n - 1)}{4\pi^2 n^2 + 1} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - x^2 y = f(x), \qquad y(0) = 1.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} - \xi^2 y = f(\xi),$$

$$G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} - G(x,\xi) \xi^2 y = G(x,\xi) f(\xi),$$

$$\int_0^\infty G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} \, \mathrm{d}\xi - \int_0^\infty G(x,\xi) \xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi) f(\xi) \, \mathrm{d}\xi,$$

$$[G(x,\xi)y(\xi)]_0^\infty - \int_0^\infty y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \int_0^\infty G(x,\xi) \xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi) f(\xi) \, \mathrm{d}\xi,$$

$$[G(x,\infty)y(\infty) - G(x,0)y(0)] - \int_0^\infty y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \int_0^\infty G(x,\xi) \xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi) f(\xi) \, \mathrm{d}\xi,$$

faça

$$G(x,\infty) = 0; \Rightarrow$$

$$-G(x,0) + \int_{\xi=0}^{\infty} \left[-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \xi^2 G(x,\xi) \right] y(\xi) \, \mathrm{d}\xi = \int_0^{\infty} G(x,\xi) f(\xi) \, \mathrm{d}\xi.$$

A equação diferencial em G é

$$-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \xi^2 G(x,\xi) y(\xi) = \delta(\xi - x),$$

$$\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \xi^2 G(x,\xi) y(\xi) = -\delta(\xi - x),$$

$$G(x,\xi) = u(x,\xi) v(x,\xi),$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + v\frac{\mathrm{d}u}{\mathrm{d}\xi} + \xi^2 uv = -\delta(\xi - x),$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + \xi^2 v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x),$$

$$\frac{\mathrm{d}v}{v} = -\xi^2 \,\mathrm{d}\xi,$$

$$\int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} = -\int_{\eta=0}^{\xi} \eta^2 \,\mathrm{d}\eta$$

$$\ln\left(\frac{v(x,\xi)}{v(x,0)}\right) = -\frac{\xi^3}{3}$$

$$v(x,\xi) = v(x,0) \exp\left(-\frac{\xi^3}{3}\right);$$

$$v(x,0) \exp\left(-\frac{\xi^3}{3}\right) \frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x),$$

$$\frac{\mathrm{d}u}{\mathrm{d}\eta} = -\frac{1}{v(x,0)} \exp\left(\frac{\eta^3}{3}\right) \delta(\eta - x),$$

$$\int_{u(x,0)}^{u(x,\xi)} \mathrm{d}u = -\int_{\eta=0}^{\xi} \frac{1}{v(x,0)} \exp\left(\frac{\eta^3}{3}\right) \delta(\eta - x) \,\mathrm{d}\eta,$$

$$u(x,\xi) = u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(\frac{x^3}{3}\right).$$

Obtemos, para $G(x, \xi)$,

$$G(x,\xi) = u(x,\xi)v(x,\xi)$$

$$= \left[u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(\frac{x^3}{3}\right) \right] v(x,0) \exp\left(-\frac{\xi^3}{3}\right)$$

$$= G(x,0) \exp\left(-\frac{\xi^3}{3}\right) - H(\xi - x) \exp\left(\frac{x^3}{3}\right) \exp\left(-\frac{\xi^3}{3}\right)$$

$$= \exp\left(-\frac{\xi^3}{3}\right) \left[G(x,0) - H(\xi - x) \exp\left(\frac{x^3}{3}\right) \right].$$

Mas

$$G(x, \infty) = 0,$$

$$G(x, 0) - \exp\left(\frac{x^3}{3}\right) = 0,$$

$$G(x, 0) = \exp\left(\frac{x^3}{3}\right);$$

finalmente,

$$G(x,\xi) = [1 - H(\xi - x)] \exp\left(\frac{x^3}{3}\right) \exp\left(-\frac{\xi^3}{3}\right) \blacksquare$$

TEA013 Matemática Aplicada II Curso de Engenharia Ambiental

(

Departamento de Engenharia Ambiental, UFPR S, 13 Dez 2024

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [20] Considere a equação diferencial

$$\frac{\partial \phi}{\partial \tau} = \frac{1}{2} \frac{\partial^2 \phi}{\partial \zeta^2} - i(\phi - 1),$$

com $i=\sqrt{-1}$, onde τ e ζ são quantidades adimensionais *reais* e ϕ é complexo. Discretize a equação utilizando um esquema totalmente implícito para $\frac{\partial^2 \phi}{\partial \zeta^2}$ e ϕ , e obtenha uma equação na forma

$$A\phi_{i+1}^{n+1} + B\phi_i^{n+1} + C\phi_{i-1}^{n+1} = \phi_i^n + D.$$

Obtenha cada um dos A, B, C e D em função de Fo = $\Delta \tau / \Delta \zeta^2$ e/ou Cr = $\Delta \tau$.

SOLUÇÃO DA QUESTÃO:

Discretiza-se em ζ : i = 0, 1, ..., M.

$$\begin{split} \frac{\phi_i^{n+1} - \phi_i^n}{\Delta \tau} &= \frac{1}{2} \frac{\phi_{i+1}^{n+1} - 2\phi_i^{n+1} + \phi_{i-1}^{n+1}}{\Delta \zeta^2} - \mathrm{i}(\phi_i^{n+1} - 1) \\ \phi_i^{n+1} - \phi_i^n &= \frac{\mathrm{Fo}}{2} \left[\phi_{i+1}^{n+1} - 2\phi_i^{n+1} + \phi_{i-1}^{n+1} \right] - \mathrm{i}\mathrm{Cr}(\phi_i^{n+1} - 1). \end{split}$$

Passando todos os termos em (n + 1) para o lado esquerdo, e todos os termos em n para o lado direito, tem-se

$$\underbrace{-\frac{\text{Fo}}{2}}_{A} \phi_{i+1}^{n+1} + \underbrace{(1+\text{iCr}+\text{Fo})}_{B} \phi_{i}^{n+1} \underbrace{-\frac{\text{Fo}}{2}}_{C} \phi_{i-1}^{n+1} = \phi_{i}^{n} + \underbrace{\text{iCr}}_{D} \blacksquare$$

 $\mathbf{2}$ [20] Utilizando **obrigatoriamente** transformada de Laplace, resolva o problema de valor inicial

$$3\frac{dx}{dt} + x = 6e^{2t}, \qquad x(0) = 0.$$

SOLUÇÃO DA QUESTÃO:

A transformada de Laplace da equação diferencial é

$$3s\overline{x} + \overline{x} = \frac{6}{s-2},$$

$$\overline{x}(3s+1) = \frac{6}{s-2},$$

$$\overline{x} = \frac{6}{3(s-2)(s+1/3)} = \frac{2}{(s-2)(s+1/3)}.$$

Separando em frações parciais,

$$\frac{2}{(s-2)(s+1/3)} = \frac{A}{s-2} + \frac{B}{s+1/3},$$

$$A = 6/7,$$

$$B = -6/7.$$

Invertendo,

$$\overline{x}(s) = \frac{6/7}{s-2} - \frac{6/7}{s+1/3},$$
$$x(t) = \frac{6}{7}e^{2t} - \frac{6}{7}e^{-t/3}.$$

3 [20] Se $\mathbb{V} = \mathbb{C}^3$ (ou seja: se \mathbb{V} é o conjunto das triplas de números complexos (x_1, x_2, x_3)), defina

$$\overline{x} = \frac{1}{3}(x_1 + x_2 + x_3).$$

Sejam agora $x, y \in \mathbb{V}$ e defina

$$[\boldsymbol{x},\boldsymbol{y}] \equiv \sum_{i=1}^{3} (x_i - \overline{x})^* (y_i - \overline{y}).$$

Verifique se [x, y] é um produto interno legítimo

SOLUÇÃO DA QUESTÃO:

(i)

$$[\boldsymbol{x},\boldsymbol{y}] = \sum_{i=1}^{3} (x_i - \overline{x})^* (y_i - \overline{y}) = \left[\sum_{i=1}^{3} (y_i - \overline{y})^* (x_i - \overline{x}) \right]^* = [\boldsymbol{y},\boldsymbol{x}]^*.$$

(ii)

$$[x, y + z] = \sum_{i=1}^{3} (x_i - \overline{x})^* ((y_i + z_i) - (\overline{y} + \overline{z}))$$

$$= \sum_{i=1}^{3} (x_i - \overline{x})^* (y_i - \overline{y}) + \sum_{i=1}^{3} (x_i - \overline{x})^* (z_i - \overline{z})$$

$$= [x, y] + [x, z]. \qquad \checkmark$$

(iii)

$$[\mathbf{x}, \alpha \mathbf{y}] = \sum_{i=1}^{3} (x_i - \overline{x})^* (\alpha y_i - \alpha \overline{y})$$
$$= \alpha \sum_{i=1}^{3} (x_i - \overline{x})^* (y_i - \overline{y}) = \alpha [\mathbf{x}, \mathbf{y}]. \qquad \checkmark.$$

Considere entretanto $x = (1, 1, 1) \neq 0$; então $\overline{x} = 1$ e

$$[x,x] = \sum_{i=1}^{3} (x_i - \overline{x})^* (x_i - \overline{x}) = \sum_{i=1}^{3} (1-1)^* (1-1) = 0;$$

existe portanto um vetor $x \neq 0$ tal que [x, x] = 0 e, portanto, [x, y] não é um produto interno legítimo

$$f(x) = x + i$$
, $-\pi \le x \le \pi$, $i = \sqrt{-1}$.

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{2\pi i \pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2\pi i \pi x}{L}} f(x) \, dx;$$

$$a = -\pi,$$

$$b = +\pi,$$

$$L = b - a = 2\pi;$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-\frac{2\pi i \pi x}{2\pi}} [x+i] \, dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-inx} [x+i] \, dx;$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} [\cos(nx) - i \sin(nx)] [x+i] \, dx$$

$$= \frac{1}{2\pi} \left\{ i \int_{-\pi}^{+\pi} \cos(nx) \, dx - i \int_{-\pi}^{+\pi} x \sin(nx) \, dx \right\};$$

$$\int_{-\pi}^{+\pi} \cos(nx) \, dx = 0,$$

$$\int_{-\pi}^{+\pi} x \sin(nx) \, dx = -\frac{2\pi (-1)^n}{n},$$

$$c_n = \frac{-i}{2\pi} \times -\frac{2\pi (-1)^n}{n} = i \frac{(-1)^n}{n}, \qquad n \neq 0.$$

O cálculo de c_0 precisa ser feito separadamente:

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} [x + i] dx = i.$$

Portanto,

$$(x+i) = i \left[1 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \frac{(-1)^n}{n} e^{inx} \right] \blacksquare$$

5 [20] Utilizando obrigatoriamente o método de separação de variáveis, $\phi(x,t) = X(x)T(t)$, resolva

$$\frac{\partial \phi}{\partial t} = \alpha^2 \frac{\partial^2 \phi}{\partial x^2}; \qquad \phi(0, t) = 0, \qquad \phi(1, t) = 0, \qquad \phi(x, 0) = 1.$$

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \phi(x,t) &= X(x)T(t), \\ X\frac{\mathrm{d}T}{\mathrm{d}t} &= \alpha^2 T\frac{\mathrm{d}^2 X}{\mathrm{d}x^2}, \\ \frac{1}{\alpha^2 T}\frac{\mathrm{d}T}{\mathrm{d}t} &= \frac{1}{X}\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = \lambda. \end{split}$$

A solução em termos de autofunções e autovalores é

$$\lambda_n = -n^2 \pi^2, \qquad n = 1, 2, 3, \dots$$

$$X_n(x) = \operatorname{sen}(n\pi x).$$

Procuramos portanto

$$\phi(x,0) = 1,$$

$$\phi(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 \pi^2 \alpha^2 t} \operatorname{sen}(n\pi x),$$

$$1 = \sum_{n=1}^{\infty} A_n \operatorname{sen}(n\pi x),$$

$$1 \operatorname{sen}(m\pi x) = \sum_{n=1}^{\infty} A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x)$$

$$\int_0^1 \operatorname{sen}(m\pi x) dx = \sum_{n=1}^{\infty} \int_0^1 A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x) dx$$

$$\int_0^1 \operatorname{sen}(m\pi x) dx = \int_0^1 A_n \operatorname{sen}(m\pi x) dx = A_m \frac{1}{2},$$

$$\frac{1 - (-1)^m}{m\pi} = A_m \frac{1}{2},$$

$$A_m = \frac{2(1 - (-1)^m)}{m\pi}.$$

Note que $A_m = 0$ se m é par. Apenas os valores ímpares sobrevivem. Redefina portanto

$$B_n = \frac{2}{(2n-1)\pi}, \qquad n = 1, 2, 3, \dots,$$

$$\phi(x,t) = \sum_{n=1}^{\infty} B_n e^{-(2n-1)^2 \pi^2 \alpha^2 t} \operatorname{sen}((2n-1)\pi x) \blacksquare$$