MF728 Problem Set # 3

1. Caplet Pricing in Different Models:

- (a) The discount factor is about: 0.9844964370054085
- (b) Price of the option on 1Y Libor under BS model is: 0.00018393250976716114
- (c) The best σ_n is (F x σ), which is about: 0.001875
- (d) The price under normal model is about: 0.00018410496263719832

 These two prices are similar, both of them are around 0.000184. Also, the price. under normal model is higher, that's because normal model allow the negative returns while log-normal model doesn't.
- (e) The results are shown below:

Strikes	Prices	Delta	Gamma	Vega	Theta
0.5%	2.280744e-14	-7.710340e-11	2.606216e-07	6.1083209e-12	-4.581240e-13
0.75%	3.024581e-08	-6.158899e-05	0.122619909	2.873904e-06	-2.155428e-07
1.0%	1.241694e-05	-0.01453869	15.446653064	0.0003620309	-2.715231e-05
1.25%	0.000183932	-0.11570475	52.220556771	0.0012239193	-9.179394e-05

0.5% has the highest delta and theta, 1.25% has the highest gamma and vega.

2. Stripping Caplet Volatilities:

(a) Here's the result of each cap:

[0.0015690285168345522, 0.002579156333477651, 0.0033317526059298327, 0.0036973590534893574, 0.0044478173462264734]

(b) Here're the plot of caps and caplets volatilities:

From the shape we can conclude that, it seems that each cap's volatility is about the average of former and later caplets volatilities.