Part 4,1 For the set of Equations (6) take 1^{st} three Equations, For 1^{st} Equation, Let t=0.

At t=0 $u_1=a_1e^{b_1\cdot 0}=a_1$ $u_2=a_2$

multiply three Equations by [dz], d, and [-1] respectively,

 $d_{2}f_{0} = a_{1}d_{2} + a_{2}d_{2}$ $d_{1}F_{1} = a_{1}u_{1}d_{1} + a_{2}u_{2}d_{1}$ $(-1)f_{2} = -a_{1}u_{1}^{2} - a_{2}u_{2}^{2}$

 $-f_{2}+d_{1}f_{1}+d_{2}f_{2}=-a_{1}(u_{1}^{2}-d_{1}u_{1}-d_{2})-a_{2}(u_{2}^{2}-d_{1}u_{2}-d_{2})=0$

since p(u;)=0

 $-f_{2} + d_{1}f_{1} + d_{2}f_{0} = 0$ $[d_{1}f_{1} + d_{2}f_{0} = f_{2}]$

Now taking 2nd, 3rd, 4th Equations (6)

 $d_2 f_1 = a_1 d_2 + a_2 d_2$ $d_1 f_2 = a_1 u_1 d_1 + a_2 u_2 d_1$ $(-1) f_3 = a_1 u_1^2 - a_2 u_2^2$

 $-f_3 + d_1 f_2 + d_2 f_1 = -a_1(u_1^2 - d_1 u_1 - d_2) - a_2(u_2^2 - d_1 u_2 - d_2) = 0$

 $d_1 f_2 + d_2 f_1 = f_3$