

# Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

## 利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 → 無发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

#### 状态表的化简

时序电路的两个状态  $S_i$ 和  $S_j$ ,如果它们对每一个输入所产生的输出完全相同,且它们的次态等价,则这两个状态是等价的(可以合并为一个状态)——状态化简

### (一)完全定义状态表的化简方法——隐含(蕴含)表法

- 俩俩比较原始状态表中的所有状态,找出能合并、不能合并、能否 合并待定的状态对。
- 追踪能否合并待定的状态对,直至确定它们能合并或不能合并,从 而找到原始状态表中的所有等价状态对。
- 基于这些等价状态对确定最大等价状态类,获得原始状态表的最小 覆盖集,建立最简状态表

## 等价状态的判定条件

必要条件

状态表中的任意两个状态  $S_i$ 和  $S_j$ 同时满足下列两个条件,它们可以合并为一个状态

- 1. 在所有不同的现输入下,现输出分别相同
- 2. 在所有不同的现输入下,次态分别为下列情况之一
  - (1) 两个次态完全相同
  - (2) 两个次态为其现态本身或交错
  - (3) 两个次态为状态对封闭链中的一个状态对
  - (4) 两个次态的某一后续状态对可以合并

#### 隐含表(蕴含)法

------ 等价状态的判定条件

状态表中的任意两个状态 S<sub>i</sub> 和 S<sub>i</sub> 同时满足下列两个条件,它们可以合并为一个状态

- 1. 在所有不同的现输入下,现输出分别相同
- 状态合并的 必要条件
- 2. 在所有不同的现输入下, 次态分别为下列情况之一
  - (1) 两个次态完全相同
  - (2) 两个次态为其现态本身或交错
  - (3) 两个次态为状态对封闭链中的一个状态对
  - (4) 两个次态的某一后续状态对可以合并
- ① 建立隐含表
- ② 比较
- ③ 追踪



例1: 化简如下状态表

| 现态 | Q <sup>n+1</sup> / Z |     |  |
|----|----------------------|-----|--|
| Qn | X=0                  | X=1 |  |
| а  | c/0 b/1              |     |  |
| b  | f/0 a/1              |     |  |
| С  | d/0 g/0              |     |  |
| d  | d/1 e/0              |     |  |
| е  | c/0 e/1              |     |  |
| f  | d/0 g/0              |     |  |
| g  | c/1                  | d/0 |  |



#### ④ 获得最大等价状态类

#### 等价状态类的定义——

If:  $S_i \equiv S_j$ ,  $S_j \equiv S_m$ 

Then:  $S_i \equiv S_j \equiv S_m$ , 即 {  $S_i$  ,  $S_j$  ,  $S_m$  }

#### 最大等价状态类——

某一等价状态类不属于其他任何 等价状态类

#### 等价状态对:

{a,b}, {a,e} {b,e}, {c,f}



{a,b,e}、 {c,f}

Let 
$$\begin{cases} q_1 = \{ a, b, e \} \\ q_2 = \{ c, f \} \\ q_3 = d \\ q_4 = g \end{cases}$$

| 现态 | Q <sup>n+1</sup> / Z |             |  |
|----|----------------------|-------------|--|
| Qn | X=0                  | X=1         |  |
| а  | c/0                  | b / 1       |  |
| b  | f / 0                | a/1         |  |
| С  | d/0                  | g / 0       |  |
| d  | d/1                  | e/ <b>0</b> |  |
| е  | c/0                  | e/ 1        |  |
| f  | d/0                  | g/0         |  |
| g  | c/1                  | d/0         |  |

| 现态    | Q <sup>n+1</sup> / Z |                    |  |
|-------|----------------------|--------------------|--|
| Qn    | X=0                  | X=1                |  |
| $q_1$ | $q_2/0 q_1/1$        |                    |  |
| $q_1$ | q <sub>2</sub> / 0   | q <sub>1</sub> / 1 |  |
| $q_2$ | $q_3/0$              | q <sub>4</sub> / 0 |  |
| $q_3$ | q <sub>3</sub> /1    | q <sub>1</sub> / 0 |  |
| $q_1$ | $q_2/0$              | q <sub>1</sub> / 1 |  |
| $q_2$ | $q_3/0$              | q <sub>4</sub> /0  |  |
| a،    | g <sub>2</sub> /1    | g <sub>2</sub> / 0 |  |

#### 化简后的状态表

| 现态                          | Q <sup>n+1</sup> / Z |                    |  |
|-----------------------------|----------------------|--------------------|--|
| Qn                          | X=0                  | X=1                |  |
| $\mathbf{q}_1$              | $q_2/0$              | q <sub>1</sub> / 1 |  |
| $q_2$                       | $q_3/0$              | $q_4/0$            |  |
| $q_3$                       | $q_3/1$              | q <sub>1</sub> /0  |  |
| $q_{\scriptscriptstyle{4}}$ | $q_2/1$              | $q_3/0$            |  |

最小覆盖集: {q<sub>1</sub>, q<sub>2</sub>, q<sub>3</sub>, q<sub>4</sub>}

#### 例2: 化简如下状态表

| 现态 | Q <sup>n+1</sup> / Z |                                   |                                   |                                   |
|----|----------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Qn | $X_1X_2 = 00$        | X <sub>1</sub> X <sub>2</sub> =01 | X <sub>1</sub> X <sub>2</sub> =10 | X <sub>1</sub> X <sub>2</sub> =11 |
| а  | b/0                  | c/0                               | b/1                               | a/ <mark>0</mark>                 |
| b  | e/                   | c/0                               | b/ 1                              | d/1                               |
| С  | a/ <mark>0</mark>    | b/ <mark>0</mark>                 | c/1                               | d / 1                             |
| d  | c/1                  | d/0                               | a/1                               | b/0                               |
| е  | c/0                  | c/ <mark>0</mark>                 | c/1                               | e/ <mark>0</mark>                 |







| 现态    | Q <sup>n+1</sup> / Z |             |                    |                    |
|-------|----------------------|-------------|--------------------|--------------------|
| Qn    | $X_1X_2 = 00$        | $X_1X_2=01$ | $X_1X_2=10$        | $X_1X_2=11$        |
| $q_1$ | $q_2/0$              | $q_2/0$     | q <sub>2</sub> /1  | q <sub>1</sub> / 0 |
| $q_2$ | q <sub>1</sub> / 0   | $q_2/0$     | q <sub>2</sub> /1  | q <sub>3</sub> / 1 |
| $q_3$ | q <sub>2</sub> /1    | $q_3 / 0$   | q <sub>1</sub> / 1 | q <sub>2</sub> / 0 |