Санкт-Петербургский Государственный университет ИТМО Факультет програмной инженерии и компьютерной техники

Лабораторная работа №4 по дисциплине "Вычислительная математика"

Аппроксимация функции методом наименьших квадратов

Вариант №7

Работу выполнила:

Д. А. Карасева Группа: Р3217

Преподаватель:

Т. А. Малышева

 ${
m Caнкт-}\Pi{
m e}{
m Te}{
m p}{
m fypr}$ 2024

Содержание

1.	Цель работы	3
2.	Описание методов. Расчетные формулы	4
3.	Вычислительная часть	6
4.	Листинг программы	8
5.	Примеры и результаты работы программы	9
6.	Вывол	11

1. Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Предусмотреть ввод исходных данных из файла/консоли (таблица должна содержать от 8 до 12 точек); Реализовать метод наименьших квадратов, исследуя все указанные функции; Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений; Для линейной зависимости вычислить коэффициент корреляции Пирсона; Вычислить коэффициент детерминации, программа должна выводить соответствующее сообщение в зависимости от полученного значения R; Программа должна отображать наилучшую аппроксимирующую функцию; Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом); Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

2. Описание методов. Расчетные формулы

Метод наименьших квадратов

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b $F(a,b) = \sum_{i=1}^n (y_i - (ax_i + b))^2$ принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Метод наименьших квадратов с точки зрения линейной алгебры и матриц. Цитируется "INTRODUCTION TO LINEAR ALGEBRA" GILBERT STRANG (библиотека в моем коде считает МНК именно так)

Решение по методу наименьших квадратов одномерной задачи ax = b имеет вид

$$\overline{x} = \frac{a^T b}{a^T a}$$

Геометрически это решение совпадает с проекцией: $p = \overline{x}$ а является точкой на прямой, определенной вектором а, ближайшей к b.

Решение по методу наименьших квадратов для несовместной системы Ax=b, состоящей из m уравнений с п неизвестными, удовлетворяет соотношению

$$A^T A \overline{x} = A^T b$$

Оно известно под названием "нормальных уравнений". Если столбцы матрицы A являются линейно независимымы, то матрица A^TA обратима и единственное решение дается формулой

$$\overline{x} = (A^T A)^{-1} A^T b$$

Проекция точки в на пространство столбцов, таким образом, имеет вид

$$p = A\overline{x} = A(A^T A)^{-1} A^T b$$

Рисунок 2.1

3. Вычислительная часть

$$y = \frac{23x}{x^4 + 7}, x \in [-2; 0], h = 0.2$$

Сформировать таблицу табулирования заданной функции на указанном интервале

i	1	2	3	4	5	6	7	8	9	10	11
\mathbf{x}_i	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
y_i	-2	-2.36	-2.71	-2.97	-3.04	-2.875	-2.48	-1.93	-1.30	-0.65	0

Линейная аппроксимация: $\phi(x)=a+bx$. Вычислим суммы SX = -11, SXX = 15.4, SY = -22.3, SXY = 27.08

$$\begin{cases} n*a + SX*b = SY \\ SX*a + SXX*b = SXY \end{cases} \begin{cases} 11*a - 11*b = -22.3 \\ -11*a + 15.4*b = 27.08 \end{cases} \begin{cases} a = -0.94 \\ b = 1.086 \end{cases}$$
$$\phi(x) = -0.94 + 1.086x$$

i	1	2	3	4	5	6	7	8	9	10	11
X_i	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
y_i	-2	-2.36	-2.71	-2.97	-3.04	-2.87	-2.48	-1.93	-1.30	-0.65	0
$\phi(x_i)$	-3,11	-2,89	-2,67	-2,46	-2,24	-2,026	-1,80	-1,59	-1,37	-1,15	-0,94
$(\phi(x_i) - y_i)^2$	1,23	0,27	0,0014	0,25	0,63	0,72	0,45	0,118	0,0042	0,25	0,88

$$\sigma = \sqrt{\frac{\sum ((\phi(x_i) - y_i)^2)}{n}} = 0.66$$

Квадратичная аппроксимация: $\phi(x)=a+bx+cx^2$. Вычислим суммы SX = -11, SXX = 15.4, SXXX = -24.2, SXXXX = 40.53, SY = -22.3, SXY = 27.08, SXXY = -40.75

$$\begin{cases} n*a + SX*b + SXX*c = SY \\ SX*a + SXX*b + SXXX*c = SXY \\ SXX*a + SXXX*b + SXXXX*c = SXY \\ 11*a - 11*b + 15.4*c = -22.3 \\ -11*a + 15.4*b + -24.2*c = 27.08 \\ 15.4*a + -24.2*b + 40.53*c = -40.75 \\ a = -0.92 \\ b = 1.13 \\ c = 0.02 \end{cases}$$

 $\phi(x) = -0.92 + 1.13x + 0.02x^2$

$$\sigma = \sqrt{\frac{\sum ((\phi(x_i) - y_i)^2)}{n}} = 0.65$$

Среднеквадратичное отклонение квадратичной аппроксимации меньше, соответственно приближение лучше.

Рисунок 3.1

4. Листинг программы

Репозиторий на GitHub

Функция, отвечающая за реализацию метода наименьших квадратов def least squares fit(x, y, function):n = len(x)if function = linear function: # Linear function: y = ax + bA = np.vstack([x, np.ones(n)]).Tcoeffs, _, _, = np.linalg.lstsq(A, y, rcond=None)a, b = coeffsf fitted = linear function(x, a, b) $\# \operatorname{print}(A)$ elif function = quadratic function: # Quadratic function: $y = ax^2 + bx + c$ A = np.vstack([x ** 2, x, np.ones(n)]).Tcoeffs, $_{-}$, $_{-}$, $_{-}$ = np.linalg.lstsq(A, y, rcond=None)a, b, c = coeffsf fitted = quadratic function (x, a, b, c)elif function = cubic function: # Cubic function: $y = ax^3 + bx^2 + cx + d$ A = np.vstack([x ** 3, x ** 2, x, np.ones(n)]).Tcoeffs, _, _, = np.linalg.lstsq(A, y, rcond=None)a, b, c, d = coeffsf fitted = cubic function (x, a, b, c, d)elif function = exponential function: # Exponential function: y = a * exp(bx)A = np.vstack([np.exp(x), np.ones(n)]).Tcoeffs, $_{-}$, $_{-}$, $_{-}$ = np.linalg.lstsq(A, y, rcond=None)a, b = coeffsf fitted = exponential function (x, a, b)elif function = logarithmic function: # Logarithmic function: y = a * log(x) + bA = np.vstack([np.log(x), np.ones(n)]).Tcoeffs, _, _, = np.linalg.lstsq(A, y, rcond=None)a, b = coeffsf fitted = logarithmic function (x, a, b)elif function = power function: # Power function: $y = a * x^b$ A = np.vstack([x, np.log(x)]).T $coeffs \;,\; _,\; _,\; _ = \; np.\; linalg \;.\; lstsq\left(A,\;\; np.\; log\left(y\right),\;\; rcond = None\right)$ a, b = coeffs $f_fitted = power_function(x, np.exp(a), b)$ print (A) else: raise ValueErrorНеверный (" типфункции ") rms error = np.sqrt(np.mean((y - f fitted) ** 2))

return [float(i) for i in coeffs], rms error

5. Примеры и результаты работы программы

Рисунок 5.1

Введите название файла (или оставьте пустым для консольного ввода): 1.txt

 $[[\ 1.2\ 0.18232156]$

[2.9 1.06471074]

 $[4.1 \ 1.41098697]$

 $[5.5 \ 1.70474809]$

 $[6.7 \ 1.90210753]$

 $7.8 \ 2.05412373$

 $9.2 \ 2.21920348$

[10.3 2.3321439]]

------ Результаты -----

Функция: $linear_function$

Коэффициенты: [1.4543295810901444, 5.291059872750014]

Среднеквадратичная ошибка: 0.41016067346312185

Функция: quadratic function

Коэффициенты: [0.025973674183265644, 1.15256305863677, 5.943053107110677]

Среднеквадратичная ошибка: 0.35635136003661705

Функция: $\mathrm{cubic}_f unction$

Коэффициенты: [-0.0023713802938570587, 0.06687472776413161, 0.9547538603232554,

6.177878914311304

Среднеквадратичная ошибка: 0.35348037500486135

Функция: exponential function

Среднеквадратичная ошибка: 3.2867280713001745e+50

Функция: logarithmic function

Коэффициенты: [6.008624101281966, 4.295866104732609]

Среднеквадратичная ошибка: 1.528592655161903

Функция: power function

Коэффициенты: [0.8457308598240646, 2.0745143764766403]

Среднеквадратичная ошибка: 42.99491458916805

Наилучшая аппроксимирующая функция: cubic function

Коэффициенты: [-0.0023713802938570587, 0.06687472776413161, 0.9547538603232554,

6.177878914311304]

Среднеквадратичная ошибка: 0.35348037500486135

6. Вывод

В результате выполнения лабораторной работы я изучила алгоритм аппроксимация функции методом наименьших квадратов, смогла программно реализовать его на языке Python.