DISEÑO Y ADMINISTRACIÓN DE REDES

Área de Ingeniería Telemática

Casos prácticos

Análisis de infraestructuras para ToIP y datos.

Área de Ingeniería Telemática

Esquema de infraestructuras de ToIP y datos

ANÁLISIS DE INFRAESTRUCTURAS DE COMUNICACIONES:

-Auditoría de la red existente:

Aplicaciones, equipos y accesos.

Tráfico cursado tanto en voz como en datos.

Costes actuales.

-Fijación de objetivos:

Calidad de voz y datos deseada (retardo y compresión máxima).

Restricciones temporales y de calidad permitida.

Tipo de tráfico de voz y datos a cursar.

Dimensionado

-Evaluación de las tecnologías disponibles.

Aplicaciones, equipos y accesos.

Costes previstos.

-Viabilidad de la implantación.

Realizar planes de numeración o direccionamiento.

Garantía de coexistencia de equipos

-Análisis financiero.

Ejemplo:

Empresa con oficina central en CALAMOCHA y 3 delegaciones en Milán, París y Londres desea integrar sus comunicaciones de voz y datos de gestión utilizando una red de circuitos virtuales en estrella, donde el nodo central está en CALAMOCHA.

Objetivos:

Diseñar adecuadamente las capacidades de las líneas de acceso y las correspondientes Tasas medias (CIR) de los circuitos virtuales de acuerdo con el volumen de tráfico y la estructura de la red.

-Auditoría de la red existente:

Aplicaciones, equipos y accesos.

Tráfico cursado tanto en voz como en datos.

Costes actuales.

-Fijación de objetivos:

Calidad de voz y datos deseada (retardo y compresión máxima).

Restricciones temporales y de calidad permitida.

Tipo de tráfico de voz y datos a cursar.

Dimensionado

-Evaluación de las tecnologías disponibles.

Aplicaciones, equipos y accesos.

Costes previstos.

-Viabilidad de la implantación.

Realizar planes de numeración o direccionamiento.

Garantía de coexistencia de equipos

-Análisis financiero.

Tráfico cursado en voz:

Los cálculos se realizan midiendo el grado de ocupación de un circuito telefónico en una hora.

Se calcula en la hora cargada (cuando más demanda hay) y se mide en Erlang.

Un Erlang significa que un circuito telefónico está ocupado al 100% del tiempo.

Lo más habitual es analizar los recibos de telefonía y sumar el tiempo de todas las llamadas realizadas en la hora cargada. No tiene en cuenta las situaciones de congestión (cuando todos los circuitos están ocupados y no sabemos si hubiera habido más demanda)

Se puede hacer una estimación de cuánto llama en promedio un empleado y multiplicar por el número de éstos.

Tráfico cursado en voz:

Volviendo al ejemplo, cada empleado genera un tráfico de voz de 0.075 Erlangs en hora cargada.

LOCALIZACIÓN	DESTINO	N. EMPL.	TRÁF. (Frlangs)
CALAMOCHA	MILÁN (49%)		3.1
CALAMOCHA	PARÍS (33%)	84	2.1
CALAMOCHA	LONDRES (18%)		1.2
MILÁN	CALAMOCHA	40 3	
PARÍS	CALAMOCHA 28		2.1
LONDRES	CALAMOCHA	13	1

Tráfico cursado en datos:

Los cálculos se realizan midiendo la tasa de transferencia (en bps) de entrada y salida en el *router*.

No tiene en cuenta las situaciones de congestión (cuando la tasa de transferencia es la misma que la tasa del acceso).

Se mide tanto las tasas medias como los picos.

Se puede hacer una estimación de cuanta tasa requiere cada aplicación y sumar todas las tasas. Hay aplicaciones más sencillas de estimar (Voz, Video, multimedia en general, etc.) y otras más complicadas (Web, gestión, transferencia de ficheros, correo electrónico, etc.).

Existen herramientas para realizar los cálculos.

Tráfico cursado en datos:

Volviendo al ejemplo, se nos dan los siguientes datos

	DATOS		
LOCALIZACIÓN	PROMEDIO (Kbps) PICO (Kbps)		
CAL/MIL	44	58	
CAL/PAR	32	38	
CAL/LON	24	32	
MILÁN	20	45	
PARÍS	16	35	
LONDRES	12	30	

-Auditoría de la red existente:

Aplicaciones, equipos y accesos.

Tráfico cursado tanto en voz como en datos.

Costes actuales.

-Fijación de objetivos:

Calidad de voz y datos deseada (retardo y compresión máxima).

Restricciones temporales y de calidad permitida.

Tipo de tráfico de voz y datos a cursar.

Dimensionado

-Evaluación de las tecnologías disponibles.

Aplicaciones, equipos y accesos.

Costes previstos.

-Viabilidad de la implantación.

Realizar planes de numeración o direccionamiento.

Garantía de coexistencia de equipos

-Análisis financiero.

La calidad de voz deseada y permitida viene marcada por las características de los CODECs, su uso por parte de las aplicaciones de voz y las tecnologías de acceso y transporte de información.

Una lista de estos CODECs es: G711, G723, G729, etc.

Además de los CODECs hay que conocer los parámetros de paquetización IP entre los que destaca el número de muestras por datagrama IP.

Volviendo al ejemplo, se nos dice que usemos la norma G.729 con 4 muestras por datagrama.

Esto supone (10*4+12+8+20)*8bit/40ms=16kbps a nivel IP

Para el cálculo del tipo de tráfico de voz y datos a cursar se utiliza el mismo método que en la auditoría de la red existente.

-Auditoría de la red existente:

Aplicaciones, equipos y accesos.

Tráfico cursado tanto en voz como en datos.

Costes actuales.

-Fijación de objetivos:

Calidad de voz y datos deseada (retardo y compresión máxima).

Restricciones temporales y de calidad permitida.

Tipo de tráfico de voz y datos a cursar.

Dimensionado

-Evaluación de las tecnologías disponibles.

Aplicaciones, equipos y accesos.

Costes previstos.

-Viabilidad de la implantación.

Realizar planes de numeración o direccionamiento.

Garantía de coexistencia de equipos

-Análisis financiero.

Dimensionado de sistemas de voz

15

Dimensionado de sistemas de voz

1.- Sistemas con pérdidas.

El parámetro de calidad es la probabilidad de perdidas

Modelo Erlang-B

N=número de servidores (circuitos)

TABULADAS
$$\longrightarrow B = E_{1,N}(A) = \frac{A/N!}{\sum_{k=1}^{N} A^{k}/k!}$$

Diseño y Administración de Redes

Casos Prácticos. Análisis de infraestructuras para ToIP y datos.

2.- Sistemas con demora.

Capacidad del buffer ilimitada. El sistema no tiene pérdidas.

El parámetro de calidad es la probabilidad de demora.

El modelo a aplicar es Erlang-C Prob_Demora=P_D=ERLANG-C (A,N)

$$\overline{T}' = \frac{h}{N - A} \qquad P'(T_D \ge t) = e^{-t/\overline{T}'} \qquad \overline{x}' = \frac{A}{N - A} + N$$

$$P_D = E_{2,N}(A) = \frac{A^N}{N!} \frac{N}{N - A} P(0)$$

$$\overline{T} = \frac{h}{N - A} P_D \qquad P(T_D \ge t) = e^{-t/\overline{T}'} P_D \qquad \overline{x} = \frac{A}{N - A} P_D + A$$

2.- Sistemas con demora.

Capacidad de buffer limitada. El número de llamadas en espera es finito. Existen pérdidas. Las llamadas son rechazadas tras un time-out de espera (la espera está acotada)

El parámetro de calidad es la probabilidad de pérdida.

El modelo a aplicar puede ser:

–Modelo exacto: si se conocen los parámetros del sistema.

Dimensionado de sistemas de voz

Tanto

Prob_Pérdidas=B=ERLANG-B (A,N)

Prob_Demora=P_D=ERLANG-C (A,N)

están TABULADAS para facilitar los cálculos.

EJEMPLO: Centralitas. Las centralitas son sistemas con buffer de espera limitados.

Ej: Criterio de calidad: Probabilidad de demora para el tráfico de voz < 1%.

ERLANG-C(6.1, N_{CAL-MIL}) < 0.01

Solución 1: Voz y datos se integran utilizando el mismo circuito virtual

LOCALIZACIÓN	N. Canales	BW	C _{voz}	C _{DATOS}	TOTAL	CIR
CAL -> MIL	14	16 Kbps	224 Kbps	44 Kbps	268 Kbps	384 Kbps
CAL -> PAR	11	16 Kbps	176 Kbps	32 Kbps	208 Kbps	256 Kbps
CAL -> LON	7	16 Kbps	112 Kbps	24 Kbps	136 Kbps	192 Kbps
MIL -> CAL	14	16 Kbps	224 Kbps	20 Kbps	244 Kbps	256 Kbps
PAR -> CAL	11	16 Kbps	176 Kbps	16 Kbps	192 Kbps	192 Kbps
LON -> CAL	7	16 Kbps	112 Kbps	12 Kbps	124 Kbps	128 Kbps

Solución 1: Voz y datos se integran utilizando el mismo circuito virtual

Cálculo capacidad accesos . En el tráfico de datos se considera la capacidad de pico en lugar de la promedio.

$$A_{-MIL_SALIENTE} = 224 + 45 = 269 \text{ Kbps}$$

$$A_{PAR\ SALIENTE} = 176 + 35 = 211 \ Kbps$$

$$A_{LON\ SALIENTE} = 112 + 30 = 142 \text{ Kbps}$$

Ej:
$$A_{CAL_ENTRANTE} = 224 + 176 + 112 + 45 + 35 + 30 = 622 \text{ Kbps}$$

$$A_{-MIL\ ENTRANTE} = 224 + 58 = 282 \text{ Kbps}$$

$$A_{PAR\ ENTRANTE} = 110 + 38 = 158 \text{ Kbps}$$

$$A_{ION\ ENTRANTE} = 70 + 32 = 102 \text{ Kbps}$$

Se escoge el máximo de los dos para el acceso bidireccional

LOCALIZACIÓN	Saliente	Entrante	Acceso	CIR _{VOZ+DATOS}
CAL	640	622	1024 Kbps	384,256,192 Kbps
MIL	269	282	384 Kbps	384 Kbps
PAR	211	148	256 Kbps	256 Kbps
LON	142	102	192 Kbps	192 Kbps

Solución 2: Voz y datos se integran utilizando circuitos

LOCALIZACIÓN	N. Canales	BW	C _{voz}	C _{DATOS}	CIR voz	CIR datos
CAL -> MIL	14	16 Kbps	224 Kbps	44/58 Kbps	256 Kbps	48/64 Kbps
CAL -> PAR	11	16 Kbps	176 Kbps	32/38 Kbps	192 Kbps	32/48 Kbps
CAL -> LON	7	16 Kbps	112 Kbps	24/32 Kbps	128 Kbps	32/32 Kbps
MIL -> CAL	14	16 Kbps	224 Kbps	20/45 Kbps	256 Kbps	32/48 Kbps
PAR -> CAL	11	16 Kbps	176 Kbps	16/35 Kbps	192 Kbps	16/48 Kbps
LON -> CAL	7	16 Kbps	112 Kbps	12/30 Kbps	128 Kbps	16/32 Kbps

La velocidad del acceso es la misma que la solución 1.

Solución 3:

Los datos se transmiten por la red Frame Relay y la voz por la red telefónica.

LOCALIZACIÓN	Saliente	Entrante	Acceso	CIR DATOS
CAL	128	110	128 Kbps	48/64,32/48,32 Kbps
MIL	45	58	64 Kbps	32/48 Kbps
PAR	35	38	64 Kbps	16/48 Kbps
LON	30	32	64 Kbps	16/32 Kbps

-Auditoría de la red existente:

Aplicaciones, equipos y accesos.

Tráfico cursado tanto en voz como en datos.

Costes actuales.

-Fijación de objetivos:

Calidad de voz y datos deseada (retardo y compresión máxima).

Restricciones temporales y de calidad permitida.

Tipo de tráfico de voz y datos a cursar.

Dimensionado

-Evaluación de las tecnologías disponibles.

Equipos, aplicaciones y accesos.

Costes previstos.

-Viabilidad de la implantación.

Realizar planes de numeración o direccionamiento.

Garantía de coexistencia de equipos

-Análisis financiero.

También disponemos de la siguiente información de la operadora. Vemos que los valores de las tasas están tabulados.

CIR (Kbps)	Cuota mensual (euros)
0	6
8	6
16	6
32	6
48	12
64	12
96	18
128	32
192	40
256	48
384	54
512	60
1024	100
1536	150
1984	200

Línea Acceso (Kbps)	Cuota mensual (euros)
64	30
128	30
192	30
256	60
384	60
512	60
1024	100

Coste solución 1:

```
Coste accesos = CAccesoCAL + CAccesoMIL + CAccesoPAR + CAccesoLON

= CA-1024Kbps + CA-384Kbps + CA-256Kbps + CA-192Kbps

= 100€ + 60€ + 60€ + 30€

= 220€
```

```
Coste de los circuitos = CCCAL-MIL + CCCAL-PAR + CCCAL-LON

= CC-384Kbps + CC-256Kbps + CC-192Kbps

= 54€ + 48€ + 40€

= 142€
```

Coste total= Caccesos + Ccircuitos =220€ + 142€ = 362€

Coste solución 2:

```
CAccesoCAL +
Coste accesos
                                    CAccesoMIL +
                                                       CAccesoPAR +
                                                                        CAccesoLON
                  CA-1024Kbps +
                                    CA-384Kbps +
                                                       CA-256Kbps +
                                                                        CA-192Kbps
                  100€
                                    60€
                                                       60€
                                                                         30€
                  220€
Coste circuitos voz =
                           CCvozCAL-MIL +
                                             CCvozCAL-PAR +
                                                                CCvozCAL-LON
                = CCV-256Kbps + CCV-192Kbps +
                                                       CCV-128Kbps
                           48€
                                              40€
                                                                32€
                 = 120€
                                             CCdatCAL-PAR +
Coste circuitos datos =
                           CCdatCAL-MIL +
                                                                CCdatCAL-LON
                           CCD-48Kbps +
                                             CCD-32Kbps +
                                                                CCD-32Kbps
                 = 12€
                                    6€
                                                       6€
                           24€
```

Coste total = Caccesos + Ccircuitosvoz + Ccircuitosdatos = 220€ + 120€ + 24€ = 364€

