xabaaxabbaxaabax

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.0 [April-06-16]

Compiled for a PARALLEL COMPUTER ARCHITECTURE

One master and 19 compute nodes are available.

Program started at Thu Apr 7 19:02:17 2016 Program finished at Thu Apr 7 19:28:34 2016

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (from parmfile) 310705631

Start parameters:

Theta values were generated from the FST-calculation

M values were generated from the FST-calculation

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

 Population
 1
 2
 3
 4

 1 Romanshorn___0
 m
 a
 b
 a

 2 Arbon___1
 a
 m
 a
 b

 3 Kreuzlingen___2
 b
 a
 m
 a

 4 Frauenfeld___3
 a
 b
 a
 m

Order of parameters:

3	Θ_3	=	Θ_1 [m]					
4	Θ_4	=	Θ_1 [m]					
5	ь.	->1 =	M $_{2->1}$ [a]	<0	lisplayed>			
6	N/I	->1 =	M $_{3->1}^{2}$ [b]	<0	lisplayed>			
7	M	->1 ->1 =	M $_{2->1}^{3->1}$ [a]					
8	M 1	=	$M_{2->1}^{2->1}$ [a]					
9	M	->2 ->2 =	$M_{2->1}^{2->1}$ [a]					
10	M ₄	->2	$M_{3->1}^{2->1}$ [b]					
11	N/ 4-	->2	$M_{3->1}^{3->1}$ [b]					
12	M 2	->3 = ->3 =	$M_{2\rightarrow 1}$ [a]					
13	M ₄	->3 ->2 =						
14	M ₄ -	->3 =	1					
15	M ₁ -	->4						
	N / 2-	->4 =	$M_{3->1}$ [b]					
16	M ₃₋	->4 =	$M_{2->1}$ [a]					
Mutation rate	among loc	i:				Muta	tion rate is	constant for all loci
Analysis strat	tegy:							Bayesian inference
Proposal dist	ributions fo	r paramete	er					
Parameter			Pro	posal				
Theta			Slice sar	npling				
М			Slice sar	npling				
Prior distribut	tion for para	ameter						
Parameter	Prior	Minimu	m ľ	∕lean*	Maximun	n	Delta	Bins
Theta	Uniform	0.00000	0.05	0000	0.100000	0.0	10000	500
М	Uniform	0.00000	5000.00	0000	10000.000000	1000.0	00000	500
Markov chain	settings:							Long chain
Number of ch	_							1
Recorded s								5000
Increment		rv x sten [l	วไ					100
			plicates) [c]					2
Visited (sar								1000000
Number of								5000
Number of	uiscaiu iie	es per cha	iii (buiii-iii)					5000
Multiple Merle	ov chaine:							
Multiple Mark							1 oboire	with tomporatures
Static heat	ing scheme	;			4000	0000		with temperatures
					1000	00.000	3.00	1.50 1.00
							Swa	apping interval is 1

Print options:

xabaaxabbaxaabax -- 3

Data file:	infile.xabaaxabbaxaabax
Output file:	outfile-xabaaxabbaxaabax1
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 10

Population	Locus	Gene copies
1 Romanshorn0	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
2 Arbon1	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
3 Kreuzlingen2	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
4 Frauenfeld3	1	20
	2	20
	3	20
	4	20
	5	20
	6	20

xabaaxabbaxaabax -- 5

		xabaaxabbax	
	7	20	
	8	20	
	9	20	
	10	20	
Total of all populations	1	80	
	2	80	
	3	80	
	4	80	
	5	80	
	6	80	
	7	80	
	8	80	
	9	80	
	10	80	

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00400	0.00580	0.00690	0.00800	0.01000	0.00730	0.00709
1	Θ_2	0.00400	0.00580	0.00690	0.00800	0.01000	0.00730	0.00709
1	Θ_3	0.00400	0.00580	0.00690	0.00800	0.01000	0.00730	0.00709
1	Θ_4	0.00400	0.00580	0.00690	0.00800	0.01000	0.00730	0.00709
1	M _{2->1}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{3->1}	0.0	0.0	70.0	200.0	560.0	210.0	201.2
1	M _{4->1}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{1->2}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{3->2}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{4->2}	0.0	0.0	70.0	200.0	560.0	210.0	201.2
1	M _{1->3}	0.0	0.0	70.0	200.0	560.0	210.0	201.2
1	M _{2->3}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{4->3}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{1->4}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
1	M _{2->4}	0.0	0.0	70.0	200.0	560.0	210.0	201.2
1	M _{3->4}	0.0	80.0	210.0	280.0	440.0	230.0	212.4
2	Θ_1	0.00700	0.00900	0.01050	0.01180	0.01460	0.01090	0.01079
2	Θ_2	0.00700	0.00900	0.01050	0.01180	0.01460	0.01090	0.01079
2	Θ_3	0.00700	0.00900	0.01050	0.01180	0.01460	0.01090	0.01079
2	Θ_4	0.00700	0.00900	0.01050	0.01180	0.01460	0.01090	0.01079
2	M _{2->1}	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	M _{3->1}	0.0	0.0	10.0	60.0	180.0	70.0	24.7
2	M _{4->1}	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	M _{1->2}	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	$M_{3->2}$	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	$M_{4->2}$	0.0	0.0	10.0	60.0	180.0	70.0	24.7
2	M _{1->3}	0.0	0.0	10.0	60.0	180.0	70.0	24.7
2	$M_{2->3}$	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	$M_{4->3}$	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	M _{1->4}	0.0	0.0	70.0	120.0	240.0	130.0	69.1
2	$M_{2->4}$	0.0	0.0	10.0	60.0	180.0	70.0	24.7
2	$M_{3->4}$	0.0	0.0	70.0	120.0	240.0	130.0	69.1
3	Θ_1	0.00960	0.01200	0.01370	0.01520	0.01840	0.01410	0.01402

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
3	Θ_3	0.00960	0.01200	0.01370	0.01520	0.01840	0.01410	0.01402
3	Θ_4	0.00960	0.01200	0.01370	0.01520	0.01840	0.01410	0.01402
3	M _{2->1}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{3->1}	0.0	0.0	70.0	120.0	260.0	130.0	77.9
3	M _{4->1}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{1->2}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{3->2}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{4->2}	0.0	0.0	70.0	120.0	260.0	130.0	77.9
3	M _{1->3}	0.0	0.0	70.0	120.0	260.0	130.0	77.9
3	M _{2->3}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{4->3}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{1->4}	0.0	20.0	110.0	160.0	280.0	150.0	101.4
3	M _{2->4}	0.0	0.0	70.0	120.0	260.0	130.0	77.9
3	$M_{3->4}$	0.0	20.0	110.0	160.0	280.0	150.0	101.4
4	Θ_1	0.00740	0.00940	0.01090	0.01220	0.01500	0.01130	0.01113
4	Θ_2^{1}	0.00740	0.00940	0.01090	0.01220	0.01500	0.01130	0.01113
4	Θ_3^2	0.00740	0.00940	0.01090	0.01220	0.01500	0.01130	0.01113
4	Θ_4^{3}	0.00740	0.00940	0.01090	0.01220	0.01500	0.01130	0.01113
4	M _{2->1}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{3->1}	0.0	0.0	90.0	140.0	300.0	150.0	97.9
4	M _{4->1}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{1->2}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{3->2}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{4->2}	0.0	0.0	90.0	140.0	300.0	150.0	97.9
4	M _{1->3}	0.0	0.0	90.0	140.0	300.0	150.0	97.9
4	M _{2->3}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{4->3}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	M _{1->4}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
4	$M_{2->4}$	0.0	0.0	90.0	140.0	300.0	150.0	97.9
4	M _{3->4}	0.0	40.0	130.0	200.0	300.0	150.0	120.4
5	Θ_1	0.00700	0.00920	0.01070	0.01200	0.01460	0.01090	0.01090
5	Θ_2^1	0.00700	0.00920	0.01070	0.01200	0.01460	0.01090	0.01090
5	Θ_3^2	0.00700	0.00920	0.01070	0.01200	0.01460	0.01090	0.01090
5	Θ_4^{3}	0.00700	0.00920	0.01070	0.01200	0.01460	0.01090	0.01090
5	M _{2->1}	0.0	0.0	10.0	60.0	180.0	70.0	26.6
5	M _{3->1}	0.0	0.0	50.0	120.0	260.0	130.0	74.2
5	M _{4->1}	0.0	0.0	10.0	60.0	180.0	70.0	26.6
5	M _{1->2}	0.0	0.0	10.0	60.0	180.0	70.0	26.6
5	M _{3->2}	0.0	0.0	10.0	60.0	180.0	70.0	26.6

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	N4000	Madias	07 50/	7F 00/	Mada	2F 00/	2 E0/	Doromotor	Lacus
5 M _{1->3} 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M _{2>3} 0.0 0.0 10.0 60.0 180.0 70.0 26 5 M _{4>3} 0.0 0.0 110.0 60.0 180.0 70.0 26 5 M _{1->4} 0.0 0.0 10.0 60.0 180.0 70.0 26 5 M _{2>4} 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M _{3>4} 0.0 0.0 10.0 60.0 180.0 70.0 26 6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 M _{2>1}	a []	Mean	Median	97.5%	75.0%	Mode	25.0%	2.5%	Parameter	Locus
5 M _{1->3} 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M _{2->3} 0.0 0.0 10.0 60.0 180.0 70.0 26 5 M _{4->4} 0.0 0.0 110.0 60.0 180.0 70.0 26 5 M _{1->4} 0.0 0.0 10.0 60.0 180.0 70.0 26 5 M _{2->4} 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M _{3->4} 0.0 0.0 10.0 60.0 180.0 70.0 26 6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 M _{2->1}		74.2							M _{4->2}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2	74.2	130.0	260.0	120.0	50.0	0.0	0.0	M _{1->3}	5
5 M ₁₋₃₋₄ 0.0 0.0 10.0 60.0 180.0 70.0 26 5 M ₂₋₃₋₄ 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M ₃₋₃₋₄ 0.0 0.0 10.0 60.0 180.0 70.0 26 6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₃ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 M ₂₋₃₁ 0.0 100.0 210.0 280.0 420.0 230.0 201 6 M ₄₋₃₁ 0.0 100.0 210.0 280.0 420.0 230.0 211 <t< td=""><td>.6</td><td>26.6</td><td>70.0</td><td>180.0</td><td>60.0</td><td>10.0</td><td>0.0</td><td>0.0</td><td>$M_{2->3}$</td><td></td></t<>	.6	26.6	70.0	180.0	60.0	10.0	0.0	0.0	$M_{2->3}$	
5 M ₂₋₃₋₄ 0.0 0.0 50.0 120.0 260.0 130.0 74 5 M ₃₋₃₋₄ 0.0 0.0 10.0 60.0 180.0 70.0 26 6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₃ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 M ₂₋₅₁ 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M ₃₋₅₁ 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M ₁₋₅₂ 0.0 100.0 210.0 280.0 420.0 230.0 211	.6	26.6	70.0	180.0		10.0	0.0	0.0	$M_{4->3}$	
5 M ₃₋₃₄ 0.0 0.0 10.0 60.0 180.0 70.0 26 6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₃ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 M ₂₋₃₁ 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M ₃₋₂₁ 0.0 80.0 190.0 280.0 420.0 230.0 221 6 M ₄₋₂₁ 0.0 100.0 210.0 280.0 420.0 230.0 221 6 M ₃₋₂₂ 0.0 100.0 210.0 280.0 420.0 230.0 211	.6	26.6	70.0	180.0	60.0	10.0	0.0	0.0		
6 Θ ₁ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₂ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₃ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Θ ₄ 0.00480 0.00660 0.00790 0.00900 0.01140 0.00830 0.0081 6 Μ _{2->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->1} 0.0 80.0 190.0 280.0 420.0 230.0 201 6 M _{4->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 7 Θ ₁ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₂ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₃ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Μ _{2->1} 0.0 40.0 150.0 220.0 360.0 170.0 148 7 Μ _{3->1} 0.0 40.0 150.0 220.0 360.0 170.0 148		74.2								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6	26.6	70.0	180.0	60.0	10.0	0.0	0.0	$M_{3->4}$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.00811	0.00830	0.01140	0.00900	0.00790	0.00660	0.00480	Θ_1	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.00811	0.00830	0.01140	0.00900	0.00790	0.00660	0.00480	Θ_2	6
6 M _{2->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->1} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{4->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 7 Θ ₁ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₂ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₃ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 M _{2->1} 0.0 40.0 150.0 220.0 360.0 170.0 148 7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148	11	0.00811	0.00830	0.01140	0.00900	0.00790	0.00660	0.00480	Θ_3	6
6 M _{3->1} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{4->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 207 6 M _{4->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 207 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{3->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 7 Θ ₁ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₂ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₃ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 M _{2->1} 0.0 40.0 150.0 220.0 360.0 170.0 148 7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148	11	0.00811	0.00830	0.01140	0.00900	0.00790	0.00660	0.00480	Θ_4	6
6 M _{3->1} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{4->1} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 420.0 230.0 207 6 M _{4->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 207 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 80.0 190.0 280.0 420.0 230.0 211 6 M _{3->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 7 Θ ₁ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₂ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₃ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 M _{2->1} 0.0 40.0 150.0 220.0 360.0 170.0 148 7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148		211.2		420.0	280.0		100.0	0.0	M _{2->1}	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	207.6	230.0	480.0	280.0	190.0	80.0		M _{3->1}	6
6 M _{3->2} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->2} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{1->3} 0.0 80.0 190.0 280.0 480.0 230.0 207 6 M _{2->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{4->3} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{1->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 6 M _{2->4} 0.0 100.0 210.0 280.0 420.0 230.0 211 7 Θ ₁ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₂ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₃ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 Θ ₄ 0.00540 0.00740 0.00870 0.00980 0.01200 0.00890 0.0088 7 M _{2->1} 0.0 40.0 150.0 220.0 360.0 170.0 148 7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148	.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	$M_{4->1}$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	M _{1->2}	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	$M_{3->2}$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	207.6	230.0	480.0	280.0	190.0	80.0	0.0	$M_{4->2}$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	207.6	230.0	480.0	280.0	190.0	80.0	0.0	M _{1->3}	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	$M_{2->3}$	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	$M_{4->3}$	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	M _{1->4}	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	207.6	230.0	480.0	280.0	190.0	80.0	0.0	$M_{2->4}$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	211.2	230.0	420.0	280.0	210.0	100.0	0.0	$M_{3->4}$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	0.00883							Θ_1	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	0.00883	0.00890	0.01200	0.00980	0.00870	0.00740	0.00540	Θ_2	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00883							Θ_3	
7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148		0.00883							Θ_4	
7 M _{3->1} 0.0 40.0 130.0 200.0 320.0 170.0 131 7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							M _{2->1}	
7 M _{4->1} 0.0 40.0 150.0 220.0 360.0 170.0 148		131.4							M _{3->1}	
7 M _{1->2} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							M _{4->1}	
1.76		148.7							M _{1->2}	
7 M _{3->2} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							$M_{3->2}$	
7 M _{4->2} 0.0 40.0 130.0 200.0 320.0 170.0 131		131.4							$M_{4->2}$	
7 M _{1->3} 0.0 40.0 130.0 200.0 320.0 170.0 131		131.4							M _{1->3}	
7 M _{2->3} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							$M_{2->3}$	
7 M _{4->3} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							$M_{4->3}$	
7 M _{1->4} 0.0 40.0 150.0 220.0 360.0 170.0 148		148.7							M _{1->4}	
7 M _{2->4} 0.0 40.0 130.0 200.0 320.0 170.0 131		131.4							$M_{2->4}$	
7 M _{3->4} 0.0 40.0 150.0 220.0 360.0 170.0 148	.7	148.7	170.0	360.0	220.0	150.0	40.0	0.0	$M_{3->4}$	7

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
8	Θ_1	0.00400	0.00560	0.00690	0.00800	0.01000	0.00710	0.00704
8	Θ_{2}	0.00400	0.00560	0.00690	0.00800	0.01000	0.00710	0.00704
8	Θ_3	0.00400	0.00560	0.00690	0.00800	0.01000	0.00710	0.00704
8	Θ_4	0.00400	0.00560	0.00690	0.00800	0.01000	0.00710	0.00704
8	M _{2->1}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{3->1}	0.0	0.0	10.0	60.0	160.0	70.0	20.7
8	M _{4->1}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{1->2}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	$M_{3->2}$	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{4->2}	0.0	0.0	10.0	60.0	160.0	70.0	20.7
8	M _{1->3}	0.0	0.0	10.0	60.0	160.0	70.0	20.7
8	M _{2->3}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{4->3}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{1->4}	0.0	0.0	70.0	120.0	240.0	130.0	68.0
8	M _{2->4}	0.0	0.0	10.0	60.0	160.0	70.0	20.7
8	$M_{3->4}$	0.0	0.0	70.0	120.0	240.0	130.0	68.0
9	Θ_1	0.00740	0.00960	0.01110	0.01240	0.01500	0.01150	0.01129
9	Θ_{2}	0.00740	0.00960	0.01110	0.01240	0.01500	0.01150	0.01129
9	Θ_3	0.00740	0.00960	0.01110	0.01240	0.01500	0.01150	0.01129
9	Θ_4	0.00740	0.00960	0.01110	0.01240	0.01500	0.01150	0.01129
9	M _{2->1}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{3->1}	0.0	80.0	190.0	280.0	400.0	210.0	189.2
9	M _{4->1}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{1->2}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{3->2}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{4->2}	0.0	80.0	190.0	280.0	400.0	210.0	189.2
9	M _{1->3}	0.0	80.0	190.0	280.0	400.0	210.0	189.2
9	M _{2->3}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{4->3}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{1->4}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
9	M _{2->4}	0.0	80.0	190.0	280.0	400.0	210.0	189.2
9	M _{3->4}	20.0	140.0	250.0	320.0	440.0	270.0	248.2
10	Θ_1	0.00760	0.01000	0.01150	0.01300	0.01580	0.01190	0.01174
10	Θ_2	0.00760	0.01000	0.01150	0.01300	0.01580	0.01190	0.01174
10	Θ_3^2	0.00760	0.01000	0.01150	0.01300	0.01580	0.01190	0.01174
10	Θ_4^{3}	0.00760	0.01000	0.01150	0.01300	0.01580	0.01190	0.01174
10	M _{2->1}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{3->1}	0.0	20.0	110.0	180.0	300.0	150.0	122.4

Migrate 3.7.0: (http://popgen.sc.fsu.edu) [program run on 19:02:17]

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
10	M _{4->1}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{1->2}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{3->2}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{4->2}	0.0	20.0	110.0	180.0	300.0	150.0	122.4
10	M _{1->3}	0.0	20.0	110.0	180.0	300.0	150.0	122.4
10	M _{2->3}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	$M_{4->3}$	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{1->4}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
10	M _{2->4}	0.0	20.0	110.0	180.0	300.0	150.0	122.4
10	M _{3->4}	0.0	60.0	150.0	220.0	340.0	190.0	158.1
All	Θ_1	0.00740	0.00860	0.00970	0.01040	0.01160	0.00990	0.00969
All	Θ_2	0.00740	0.00860	0.00970	0.01040	0.01160	0.00990	0.00969
All	Θ_3	0.00740	0.00860	0.00970	0.01040	0.01160	0.00990	0.00969
All	Θ_4	0.00740	0.00860	0.00970	0.01040	0.01160	0.00990	0.00969
All	M _{2->1}	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	M _{3->1}	0.0	0.0	70.0	140.0	240.0	130.0	76.0
All	M _{4->1}	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	M _{1->2}	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	M _{3->2}	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	$M_{4->2}$	0.0	0.0	70.0	140.0	240.0	130.0	76.0
All	M _{1->3}	0.0	0.0	70.0	140.0	240.0	130.0	76.0
All	$M_{2->3}$	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	$M_{4->3}$	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	M _{1->4}	0.0	40.0	130.0	200.0	300.0	150.0	121.9
All	$M_{2->4}$	0.0	0.0	70.0	140.0	240.0	130.0	76.0
All	M _{3->4}	0.0	40.0	130.0	200.0	300.0	150.0	121.9

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Migrate 3.7.0: (http://popgen.sc.fsu.edu) [program run on 19:02:17]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel)) shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-4611.71	-2838.75	-2509.41
2	-6432.15	-3554.69	-3014.48
3	-7172.66	-3758.47	-3116.24
4	-6329.73	-3497.37	-2972.45
5	-7737.24	-3775.86	-3029.59
6	-3908.77	-2721.49	-2505.35
7	-4433.75	-2873.01	-2579.43
8	-4780.32	-3006.51	-2677.24
9	-6084.86	-3830.70	-3413.66
10	-6621.70	-3548.03	-2977.40
All	-58030.55	-33322.56	-28712.92

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = 82.327388

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	311966/311966	1.00000
Θ_2	311966/311966	1.00000
Θ_3	311966/311966	1.00000
Θ_4	311966/311966	1.00000
$M_{2\rightarrow 1}$	312378/312378	1.00000
$M_{3\rightarrow 1}$	312084/312084	1.00000
$M_{4\rightarrow 1}$	312378/312378	1.00000
$M_{1\rightarrow 2}$	312378/312378	1.00000
$M_{3\rightarrow 2}$	312378/312378	1.00000
$M_{4\rightarrow 2}$	312084/312084	1.00000
$M_{1\rightarrow 3}$	312084/312084	1.00000
$M_{2->3}$	312378/312378	1.00000
$M_{4->3}^{2->3}$	312378/312378	1.00000
$M_{1\rightarrow 4}$	312378/312378	1.00000
$M_{2\rightarrow4}$	312084/312084	1.00000
$M_{3\rightarrow4}$	312378/312378	1.00000
Genealogies	419330/5001455	0.08384

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.82605	10003.40
Θ_2	0.82605	10003.40
Θ_3^2	0.82605	10003.40
$\Theta_4^{\mathcal{S}}$	0.82605	10003.40
$M_{2->1}$	0.93047	3618.97
$M_{3\rightarrow 1}^{2\rightarrow 1}$	0.88797	6622.79
$M_{4\rightarrow 1}^{3\rightarrow 1}$	0.93047	3618.97
$M_{1->2}^{4->1}$	0.93047	3618.97
$M_{3->2}^{1->2}$	0.93047	3618.97
M $_{4->2}^{3->2}$	0.88797	6622.79
M $_{1->3}^{4->2}$	0.88797	6622.79
$M_{2->3}^{1->3}$	0.93047	3618.97
$M_{4->3}^{2->3}$	0.93047	3618.97
4->3 M	0.93047	3618.97
M 1->4 M _{2->4}	0.88797	6622.79
2->4 NA	0.93047	3618.97
Ln[Prob(D G)]	0.90488	5496.04

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect

the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run