Recall that a linear operator T on a vector sipace V of dim n is diagonalizable if I a basis consisting of sigenvectors of T.

I {v₁,...,v_n} are linearly ind. eigenvectors, of T, then T is a diagonalizable.

Theorem: Let T be a linear operator on a finite dimensional vector space V of dimension n. 2/2, $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T and suppose v_2 is an eigenvector of T corresponding to λ_i for each i. Then $\{v_1, v_2, \ldots, v_k\}$ are linearly independent.

Peroof: Let a_1, \dots, a_k be s.t. $a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$

$$(T - \lambda_k I) v_j = (\lambda_j - \lambda_k) v_j$$

$$(T - \lambda_k I) (\alpha_i v_i + \cdots + \alpha_k v_k) = (T - \lambda_k I) o = 0$$

$$\begin{array}{lll} \Rightarrow & \alpha_{1}\left(\lambda_{1}-\lambda_{k}\right)v_{1}+\cdots+\alpha_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right)v_{k-1}^{2}=0 \\ \text{Consider} & \left(T-\lambda_{k-1}I\right)v_{j}^{2}=\left(\lambda_{j}-\lambda_{k-1}\right)v_{j}^{2} \\ \text{By a similar argument as above, we have} \\ & \alpha_{1}\left(\lambda_{1}-\lambda_{k}\right)\left(\lambda_{1}-\lambda_{k-1}\right)v_{1}^{2}+\cdots+\alpha_{k-2}\left(\lambda_{k-2}-\lambda_{k}\right)\left(\lambda_{k-2}-\lambda_{k-1}\right)v_{k-1}^{2}=0 \\ \end{array}$$

After K-1 such steps, we have

$$\alpha_1 (\lambda_1 - \lambda_k) (\lambda_1 - \lambda_{k-1}) - \cdots (\lambda_1 - \lambda_2) \vartheta_1 = 0$$

=) $a_1 = 0$ (since $(\lambda_1 - \lambda_1) - ... (\lambda_1 - \lambda_2) \neq 0$)

Hence we have $a_2v_2 + \cdots + a_kv_k = 0$

By a similar argument, $G_2 = 0$. 2 so on.

Therefore

{v₁,..., v_k} are linearly independent -

Corollary: If an nxn matrix A has n distinct eigenvalues then A is diagonalizable.

Example: Consider
$$A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$

The characterestic polynomial $A = \begin{pmatrix} 1 & 4 \\ 1 & 4 \end{pmatrix}$
is given by $A = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -2 \\ 4 & 4 \end{pmatrix}$
is given by $A = \begin{pmatrix} 1 & -2 \\ 4 & 4 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -2 \\ 4 & 4 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -2 \\ 4 & 4 \end{pmatrix}$

Example 1: $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

The characterstic polynomial of A is $J(\pi) = (\pi - 2)^2$

Example 2: $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

Characteristic polynomial of A is given by

$$f(\lambda) = (\lambda - 2)^2.$$

Hence 2 is the only eigenvalue of A.

Let
$$V = (x, y)$$
 be an eigenvector.

 $L_A v = A v = 2v$ i.e. $(2x+y, 2y) = 2(x,y)$

Hence there does not exist a basis of V consisting of leigenvectors of T.

Therefore T is not diagonalizable.

Example 3: Let $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$

The Characterestic poly of A is
$$f(\lambda) = (\lambda-2)^{2}(\lambda-3).$$
Hence $\frac{1}{2}$ and $\frac{1}{2}$ are eigenvalues of A.

Let $\frac{1}{2}$ be $\frac{1}{2}$ then $\frac{1}{2}$ $\frac{$

 $E_2 \subset W_1 = \{(x_1y,3): 3=0\}$

$$\begin{array}{lll}
J_{1} := (1,0,0) & J_{2} := (0,1,0) & \text{is a basis of } W, \\
AV_{1} &= \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} & \text{kence } V_{1} \in E_{2}. \\
AV_{2} &= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} & \text{kence } V_{2} \in E_{2}. \\
E_{3} &= \begin{cases} (x_{1}y_{1},3) : 2x = 3x, 2y + 3 = 3y, 33 = 33 \end{cases} \\
&= \begin{cases} (x_{1}y_{1},3) : x = 0 & y = 3 \end{cases}. \\
&= Span \end{cases} \begin{cases} (0,1,1) \end{cases}.$$

Quantity of that $v_3 = (0,1,1) \in E_3$.

 $\beta = ((1,0,0), (0,1,0), (0,1,1))$ is a basis of \mathbb{R}^3 consisting of eigenvectors of A.

Definition of (algebraic) multiplicity of an eigenvalue:

Let T be a linear operator on a finite dimensional vector space V of dimension n. Let I, be an eigenvalue of T. Then the (algebraic) multiplicity of Io is the largest

positive integer k s.t. $(\lambda - \lambda_0)^k$ divides the Characterstic polynomial $3(\lambda)$ of T.

Theorem: Let T be a linear operator on a finite dim. Vector space V. Let λ_0 be an eigenvalue of T. Then $1 \leq \dim(E_{\lambda_0}) \leq \operatorname{multiplicity} Q_{\lambda_0}$.

Proof: Let $k = \dim(E_{\lambda_0})$

Then $\exists \{v_1, ..., v_k\}$ which is a basis of E_{λ_0} .

Extending this we get a basis $\beta = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$

$$\begin{bmatrix} T \end{bmatrix}^{\beta} = \begin{pmatrix} \lambda_0 T_k & C_{k \times (n-k)} \\ O_{(n-k) \times k} & B_{(n-k) \times (n-k)} \end{pmatrix}$$

Then the Characteristic poly of T is given

$$f(\lambda) = \det \left(\left[T \right]_{\beta}^{\beta} - \lambda I_{n} \right) = \det \left((\lambda_{o} - \lambda) I_{k} \right)$$

$$B - \lambda I_{n-k}$$

=
$$det(\lambda - \lambda)I_k) det(B - \lambda I_{n-k})$$
.

$$= (\lambda - \lambda)^k g(\lambda)$$

Proposition: Let T be a linear operator on a finite dinersional vector space V. Let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T and suppose $V_i \in E_{\lambda_i}$ for $i=1,2,\dots,k$. 92 $v_1 + v_2 + \dots + v_k = 0$, then $v_7 = 0$.

Prod: Exercise.

Theonem: Let T be a linear operator on V & A1,..., The be distinct eigenvalues of T. Suppose Sj be a linearly

independent set consisting of eigenvectors with eigenvalue λ_j . Then $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is linearly independent.

Proof: Let $S_j = \{y_j^{i_1}, y_{j_2}, \dots, y_{j_n}\}$.

Let Gij be Such that

$$\sum_{j=1}^{k} \frac{n_j}{i=1}$$

$$\alpha_{ji} v_{ji} = 0$$

Define
$$w_j = \sum_{i=1}^{n_j} \alpha_{ji} v_{ji}$$

then
$$w_j \in E_{\lambda_j}$$
 (Since $w_j \in Span(S_j) \ge S_j \subseteq E_{\lambda_j}$)

Also $\sum_{j=1}^{j} \sum_{i=1}^{j} a_{ji}v_{ji} = \sum_{j=1}^{j} w_j = 0$

By the previous proposition, we have

 $w_j = 0 + j$
 $a_{ji}v_{ji} = 0 + j$
 $a_{ji}v_{ji} = 0 + j$

Also $a_{ji}v_{ji} = 0 + j$

A hence s_{is} linearly independent.

Theorem: Let T be a linear operator on a finite dimensional vector space V such that the characteristic polynomial of T splits. Then T is diagonalizable iff the dim (Exi) = multiplicity of 2; for each eigenvalue λ_i of T.

Proof: Let n = dim(V) & $\lambda_1, \dots, \lambda_k$ be eigenvalues of T. eigenvalue λ_i of T. Assume that T is diagonalizable. Let B be a basis of V consisting of eigenvectors of T.

Let $\beta_i = \beta \cap E_{\lambda_i}$ & $\eta_i = \# \beta_i$ Let $d_i = dim(E_{\lambda_i})$ and $m_i = multiplicity of <math>\lambda_i$ By a previous theorem, dis m. In the fact that a linearly ind. set us a vector space of dim di has size at most di implies that $n_i \leq d_i$ Notice that $\Sigma n = n$ (Since B is a basis) Also $\geq m_1 = \deg(\mathfrak{F}(\lambda)) = n$

$$n = \sum n_i \leq \sum d_i \leq \sum m_i = n$$

$$\Rightarrow \sum (m_i - d_i) = 0$$

$$\Rightarrow m_i - d_i \Rightarrow \forall i$$

$$(*) \Rightarrow m_i - d_i = 0 + i$$

Let us now assume that $di = m_i$. $\forall i$ Let β_i be a basis of E_{λ_i} . By the previous theorem $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is linearly independent. $\# \beta = \sum \# \beta_i = \sum d_i = \sum m_i = n = \dim(v)$

Hence B is a basis consisting of, eigenvectors of T.

Hence T is a diagonalizable.

Definition: Let T be a linear transformation from a vector space & itself. A subspace W is said to be invariant under T or T-invariant if TreW + reW (i.e. T(W) SW)

Examples: 1) {0} is a T-invariant for every linear operator. T

2) V is T-invariant for every linear operators T.

- W= Null (T). vis a T-invariant subspace.
- 4) WeR(T) is a T-invariant subspace.
- Let vo be an eigenvector with eigenvalue 2.

Let W = Span(3v3) $T(av) = a Av = Aav \in \text{Span}(\{v\}).$

Hence W is T-invariant.

6) Ez the eigenspace corresponding to 2 is T-invariant.

If The is a linear operator on W.

Theorem: Let T be a linear operator on V and W be a T-invariant subspace. Then the characteristic polynomial of T/w divides the char. poly. of T.

Proof: Let $\alpha = (v_1, ..., v_k)$ be an ordered basis of W.

and $\beta = (v_1, ..., v_k, v_{k+1}, ..., v_n)$ be an ordered basis of V.

 $\left[T \middle|_{W} \right]_{X}^{X} = B a kxk matrix$

 $A = \begin{bmatrix} T \end{bmatrix}^{\beta} = \begin{bmatrix} B & C_{k \times (n-k)} \\ Q_{n-k} \times k & D_{(n-k) \times (n-k)} \end{bmatrix}$

Let $f(\lambda)$ be the char. poly of T b $g(\lambda)$ be the char. poly of $T|_{W}$ i. i.e $f(\lambda) = \det(A - \lambda I_{n})$ be $g(\lambda) = \det(B - \lambda I_{k})$.

$$\frac{1}{4} = \text{det} \left(A - \lambda I_{n} \right) = \text{det} \left(B - \lambda I_{k} \right) \\
= \text{det} \left(B - \lambda I_{k} \right) = \text{det} \left(D - \lambda I_{n+k} \right) \\
= g(\lambda) p(\lambda).$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}$$

Another example of a T-invariant subspace

Let $v \in V$ and define $W = \text{span } \{v, Tv, T^{2}v, \dots\}$ Where $T^{k}v = T(T(T, y, Tv))$ $V \in V$

Exercise: W is invariant under T.

Definition: The subspace W is called the T-cyclic subspace generated by v.

Theorem: Let W be a T-cyclic subspace generated by a non-zero vector VSuppose $\dim(W) = k$. Then $\{V, Tv, ..., T^{k-1}\}$ is a basis of W. Mosseover if $A_0V + a_1Tv + \cdots + a_{k-1}T^{k-1}v + T^kv = 0$, then the Characteristic polynomial of $T|_W$ is given by $g(\lambda) = (-1)^k \left(a_0 + a_1\lambda + \cdots + a_{k-1}\lambda^{k-1} + \lambda^k \right)$.

Proof: Let j be the largest positive integer such that $\{v, To, ..., T^{j-1}v\}$ is a linearly independent set.

Tue & pan &0, ..., Tizz. Claim: The e popular laj. Let us assume that the claim is proved for upto 1-1. (Base case is l=j). T(v) = T(T'v) But The E span Su, ..., Tib) $=) T^{1-1}v = b_0v + \cdots + b_{j-1}T^{j-1}v$ $=) T^{l}v = (b_{0}Tv + \cdots + b_{j-2}T^{3}v) + b_{j-1}T^{3}v$ € span ({v, Tv, ..., Tits),

i.e
$$Tv \in Span(v, ..., Tv)$$
 t t .

 $Span(v, ..., Tv) \subseteq W$
 $Span(v, ..., Tv) = W$

Hence $\{v, ..., Tvv\}$ is a basis $\{v, ..., Tvv\}$.

Let $-T^{k}v = a_{0}v + a_{1}Tv + \cdots + a_{k-1}T^{k-1}v$. Then for $\beta = (v, Tv, ..., T^{k-1}v)$,

Then the characteristic polynomial
$$g(x)$$
 is given by

$$\det \left(\begin{bmatrix} T \end{bmatrix}_{W} \right)_{B}^{B} - \lambda I_{k} = \det \begin{pmatrix} 0 & 0 & 0 & -a_{0} \\ 0 & 0 & 1 & -a_{k-1} \end{pmatrix}$$

$$\det \left(\begin{bmatrix} T \end{bmatrix}_{W} \right)_{B}^{B} - \lambda I_{k} = \det \begin{pmatrix} 0 & 0 & 0 & -a_{0} \\ 0 & 0 & -\lambda & -a_{k-1} \\ 0 & 0 & -\lambda & -a_{k-1} \\ 0 & 0 & -\lambda & -a_{k-1} \end{pmatrix}$$

$$= -\lambda \det \begin{pmatrix} -\lambda & 0 & \cdots & -a_{1} \\ 1 & -\lambda & \vdots \\ 0 & 0 & \vdots \\ 0 & 0 & 0 \end{pmatrix} + (-1)^{k+1} (-a_{0}) \det \begin{pmatrix} 1-\lambda & 0 \\ 1-\lambda & 0 \\ 0 & 0 \end{pmatrix}$$

$$= -\lambda \left((-1)^{k-1} \left(a_{1} + a_{2} \lambda + \cdots + a_{k-1} \lambda^{k-2} + \lambda^{k-1} \right) \right) + (-1)^{k} a_{0}$$

$$= (-1)^{k} \left(a_{0} + a_{1} \lambda + \cdots + a_{k-1} \lambda^{k-1} + \lambda^{k} \right)$$

Given a polynomial $p(\lambda) = a_0 + a_1 \lambda + \cdots + a_n \lambda^n$ we define $p(T) := a_0 I + a_1 T + \dots + a_n T^n$.

Thus $p(T)v = a_0v + a_1 Tv + \cdots + a_n Tv$. Exercise: $p(T)q(T)v = q(T)p(T)v + v \in V$ 2 polynomials p_{-q} .

Cayley - Hamilton Theorem:

Let V be a finite dim. vector space & T be a linear operator on V with Characteristic polynomial $f(\lambda)$. Then f(T) is the zero operator.

Peroof: Enough to show that given a vector $v \in V$, f(T)v = 0.

Let W be the T-cylic subspace generated by V.

Then W is invariant under T K suppose $a_0v + a_1v + \cdots + a_{k-1}T^{k-1}v + T^kv = 0 \longrightarrow (*)$ then $g(x) = (-1)^k (a_0 + a_1x + \cdots + x^k)$ is the charpoly of T/W.

(*) can be rewritten as g(T)v = 0.

Let $\mathfrak{Z}(\lambda)$ be the Char. poly of T. By a theorem above, $\mathfrak{Z}(\lambda)$ a polynomial $p(\lambda)$ s.t

Hence
$$f(T) v = p(T)/g(T)v$$

 $= p(T)/g(T)v$
 $= p(T)(0)$
Hence $f(T)$ is the 300 operator. $= 0$

