Reinforcement Learning

2. Markov Decision Processes

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Markov Decision Processes

The agent tries an action and once the environment receives the action it gives the agent the next state and it's reward

- ► S: state space
- A: action space probability
- $ightharpoonup T: S \times A \to \Pi(S)$: transition function
- $ightharpoonup r: S imes A o {\rm I\!R}$: reward function
- ▶ An MDP describes a problem, not a solution to that problem

Stochastic transition function

- Deterministic problem = special case of stochastic
- $T(s^t,a^t,s^{t+1}) = p(s'|s,a) \quad \text{next state given the current state and action}$ probability

∢□▶∢∰▶∢臺▶∢臺▶

Rewards: over states or action?

Reward over states

Reward over actions in states

Deterministic versus stochastic policy

- ▶ Goal: find a policy $\pi:S\to A$ maximizing an agregation of rewards on the long run <=> behaviour
- ► Important theorem: for any MDP, there exists a deterministic policy that is optimal

Agregation criterion: mere sum

Goal of the agent is to maximize the reward

► The computation of value functions assumes the choice of an agregation criterion (discounted, average, etc.)

- ▶ The sum over a infinite horizon may be infinite, thus hard to compare
- Mere sum (finite horizon N) $V^{\pi}(S_0) = r_0 + r_1 + r_2 + \ldots + r_N$

Agregation criterion: average over a window

 $lackbox{ Average criterion on a window: } V^\pi(S_0) = rac{r_0 + r_1 + r_2}{3}...$

Agregation criterion: discounted

- ▶ Discounted criterion: $V^{\pi}(s_{t_0}) = \sum_{t=t_0}^{\infty} \gamma^t r(s_t, \pi(s_t))$
- $ightharpoonup \gamma \in [0,1]$: discount factor

 - $\begin{tabular}{ll} \hline \bullet & \mbox{if } \gamma=0, \mbox{ sensitive only to immediate reward} \\ \hline \bullet & \mbox{if } \gamma=1, \mbox{ future rewards are as important as immediate rewards} \\ \end{tabular}$
- The discounted case is the most used

this sum won't diverge to infinity because of gamma

between 0 and 1

Markov Property

- ▶ An MDP defines s^{t+1} and r^{t+1} as $f(s_t, a_t)$
- $\blacktriangleright \quad \mathsf{Markov \ property}: \ p(s^{t+1}|s^t,a^t) = p(s^{t+1}|s^t,a^t,s^{t-1},a^{t-1},...s^0,a^0)$
- ▶ In an MDP, a memory of the past does not provide any useful advantage
- Reactive agents $a_{t+1} = f(s_t)$, without internal states nor memory, can be optimal

Markov property: Limitations

- Markov property is not verified if:
 - the observation does not contain all useful information to take decisions (POMDPs)
 - or if the next state depends on decisions of several agents (Dec-MDPs, Dec-POMDPs, Markov games)
 - or if transitions depend on time (Non-stationary problems)

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

