OPTIMIZING A CONVOLUTIONAL NEURAL NETWORK TO DETECT MELANOMA IN IMAGES

MA Capstone Final Presentation 2021

Christian Shadis

WHAT IS MACHINE LEARNING?

- Iterative function to minimize error
 - Predict: Multiply some input by some weight
 - Evaluate: Calculate loss (prediction error)
 - Adjust: Use loss to adjust weight

Predict

Evaluate

- Repeat
- Learns a pattern from data that humans otherwise couldn't

MELANOMA

- Most deadly type of skin cancer
- Looks very similar to seborrheic keratosis and other harmless nevi

APPLIED ML: IMAGE RECOGNITION

- Images are represented numerically
 - Mathematical operations allowed
- Grids of pixels transformed into a single prediction vector
- Trained on many images, each one labelled as a distinct class
 - I.e. every image in this dataset is labelled either melanoma, nevus, or seborrheic keratosis
- Model 'learns' patterns in the data with many iterations (epochs)
- Model's ability to predict the class of an input image increases

GOAL

Develop a convolutional neural network that can detect the presence of melanoma in images of skin lesions at an accuracy rate of at least 70%

CONVOLUTIONAL LAYERS: BASICS

- Receives input
- Iterates small kernel ('window') over image

Computes sum of products of corresponding

cells

Image						ſ			
0.604	0.545	0.553	0.62	0.601	0.522		Kernel		
0.639	0.573	0.541	0.573	0.616	0.6		0.202	-0.757	-0.667
0.659	0.631	0.573	0.541	0.589	0.635		-0.118	-0.595	-0.482
0.651	0.675	0.643	0.561	0.537	0.584		-0.51	0.132	-0.492
0.639	0.675	0.678	0.616	0.545	0.541				
0.627	0.639	0.659	0.655	0.612	0.561				
Result									
-1.87122	-1.9	-1.971	-1.912		(0.604 *0.	202) + (0.5	45*-0.757)	+	
-1.954	-1.888	-1.927	-1.974		(0.553*-0.	667)+(0.63	39*-0.118)	+	
-2.085	-1.958	-1.888	-1.936		(0.639*-0.118)+(0.573*-0.595) +				
-2.172	-2.066	-1.912	-1.87		(0.541 * -0).482)+(0.6	559*-0.51)	+	
					(0.631 * 0.132)+(0.573*-0.492)				
				\rightarrow	=	-1.87122			

CONVOLUTIONAL LAYERS: FEATURE MAPS

- For each different filter(kernel) applied, a "feature map" is generated
- Ex: a single image passed through a 16-filter Convolutional Layer might generate the following 16 feature maps:
 - As shown, the convolutional layer extracts high-level patterns in the images
 - For example, the round, darkened center of the lesion in the input image
 - 16 different images for 16 different 'kernels'

CONVOLUTION LAYERS: ACTIVATION

FUNCTIONS

- Non-linear function applied to every neuron
 - Emphasizes relationship between similar pixels
- Properties of Activation Functions:
 - Differentiable
 - Symmetry about x=0 preferred
 - Computationally inexpensive
- Common examples of Activation Functions:
 - ReLU sets negative input values to 0
 - LeakyReLU sets negative input values to very small value
 - Sigmoid (outdated for inner layers)
 - Tanh

ReLU

LeakyReLU (alpha=0.03)

CONVOLUTIONAL NEURAL NETWORK STRUCTURE

- **Input Layer**: Image represented as 256 x 256 x 3 image
- Convolution Layers: Extract patterns and important features
- Max-pool Layers: Retain most impactful features
- **Dropout Layers:** Randomly deactivate neurons (reduce overfitting)
- Flatten Layers: Reduces dimensionality from 3 to 1
- **Dense Layers**: traditional neural network structure
 - Each pixel's relationship with one another examined
- **Sigmoid Dense Layer**: calculate probability of match for each class
 - Transforms data to interval [0, 1] and select corresponding class
 - Ex. [0.01, 0.99] would select class 1 (melanoma) as the prediction for the input
- Output Layer: Vector containing predicted class of image
 - Ex. [0, 1]

TRAINING DATASET

- Dataset of 2750 images
 - Augmented to create set of over 100,000 images
 - Originally high-definition, re-sized to 256 x 256

Original Image
Resized Image
Augmented Image

DATA SELECTION DETAILS

- 1. Validation set selected and separated *before augmentation* (n = 200)
- 2. From pool of 100,000 images, select a *random sample* of images from each class
 - a. Training Set n = 2000
 - i. 1,000 melanoma, 1,000 non-melanoma
- 3. 90/10 train/validation split
 - a. Wide split due to data limitations
 - b. Training set is then split into 80/20 train/test
 - 1. 20% of training images are used to evaluate model accuracy *each iteration*
 - c. Model training occurs
 - d. 10% of original data that the model has not seen is now used to evaluate accuracy
 - i. This assures the model can generalize and is not simply 'memorizing' the data

REFACTORING OF CLASSIFICATION

In an effort to address poor results, I reframed the question from classifying between 3 lesions to just detecting the presence of melanoma, which was the original project goal.

CATEGORICAL BINARY

"Melanoma, Seborrheic Keratosis, or Nevus?" — "Melanoma or not?"

RESULTS

FINAL MODEL STRUCTURE

FINAL MODEL SPECS AND RESULTS

Total Layers: 16

•Conv Layers: 6

•Dense Layers: 3

Activation Function: LeakyReLU (0.3)

•Dropouts: 4

•Optimizer LR: 0.00001

Batch Size: 32

Accuracy: 62.5%

CONCLUSION

- Computational limitations cripple the dataset
 - Classification would likely be easier with HD images than downsampled, blurry ones
- Improved a model from a 38%-accurate categorical classifier to a 62%-accurate binary classifier

REFERENCES

- [1] J. Koushik (2016). Understanding Convolutional Neural Networks. ArXiv. abs/1605.09081.
- [2] I. Goodfellow and Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.
- [3] A. Trask (2019). Grokking Deep Learning. Manning Publications Co..
- [4] Glorot, X., Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 249–256). PMLR.
- [5] Santori, Pablo Lopez. (May 2020). Melanoma Detection Dataset, Version 1.
 Retrieved 10/14/2021 from https://www.kaggle.com/wanderdust/skin-lesion-analysistoward-melanoma-detection/.
- [6] Mishkin, D., Sergievskiy, N., Matas, J. (2016). Systematic evaluation of convolution neural network advances on the Imagenet. Computer Vision and Image Understanding,
- 161. https://doi.org/10.1016/j.cviu.2017.05.007
- [7] Davis, L. E., Shalin, S. C., Tackett, A. J. (2019). Current state of melanoma diagnosis and treatment. Cancer biology therapy, 20(11), 1366–1379. https://doi.org/10.1080/15384047.2019.1640032
- [8] Zheng, Alice (2015). Evaluating Machine Learning Models. O'Reilly Media, Inc..
- [9] Yedlin, M., Jafari, M. (2020, February 4). Binary cross-entropy. YouTube. Retrieved December 15, 2021, from https://www.youtube.com/watch?v=wpPkDSMzdKo