Graph theory

undirected graph

Figure 2.1: An example of a graph with eight vertices and 18 edges.

Adjacency Matrix

	Vertex 1	Vertex 2	Vertex 3	Vertex 4	Vertex 5	Vertex 6	Vertex 7	Vertex 8	Vertex 9
Vertex 1	0	1	0	0	0	0	0	0	0
Vertex 2	1	0	0	1	1	0	0	1	0
Vertex 3	0	0	0	1	0	0	0	0	0
Vertex 4	0	1	1	0	0	0	0	0	0
Vertex 5	0	1	0	0	0	1	1	0	1
Vertex 6	0	0	0	0	1	0	0	0	0
Vertex 7	0	0	0	0	1	0	0	0	0
Vertex 8	0	1	0	0	0	0	0	0	0
Vertex 9	0	0	0	0	1	0	0	0	0

http://theoryofprogramming.com/tag/adjacency-matrix/

Graph theory

directed graph (digraph)

v2 a4 a6 v4

With loops en arcs

					OUT
	<i>V</i> ₁	v_2	<i>V</i> ₃	V_4	Σ
<i>V</i> ₁	1	1	0	0	2
<i>V</i> ₂	0	0	1	0	1
<i>V</i> ₃	1	1	0	0	2
<i>V</i> ₄	0	0	1	1	2
NΣ	2	2	2	1	7