Monday, Feb 7

Population and Sampling Distributions

A population distribution is the probability distribution of one observation of a random variable (i.e., x).

A **sampling distribution** is the probability distribution of a *statistic* (e.g., \bar{x} or \hat{p}) which is a function of a sample of observations of a random variable (i.e., x_1, x_2, \ldots, x_n).

The sampling distribution depends on (a) the population distribution and (b) the design.

Properties of the Sampling Distribution of \bar{x}

Assume (a) that we have a population distribution of a quantitative variable x with mean μ_x and standard deviation σ_x , and (b) we observe a sample of n observations and compute the mean (\bar{x}) from this sample. Note that I will use a subscript on μ and σ to make explicit the variable in question.

Example: Consider the following population distribution, and several sampling distributions of \bar{x} based on samples of n=2, 3, or 4 observations.

Table 1: Population Distribution

\overline{x}	P(x)
20	0.6
30	0.4

$$\mu_x = 24$$
$$\sigma_x \approx 4.9$$

Table 2: Sampling Distribution of $\bar{x}, n = 2$

\bar{x}	$P(\bar{x})$
20	0.36
25	0.48
30	0.16

$$\mu_{\bar{x}}=24$$

$$\sigma_{\bar{x}} \approx 3.46$$

Table 3: Sampling Distribution of \bar{x} , n=3

\bar{x}	$P(\bar{x})$
20.00	0.216
23.33	0.432
26.67	0.288
30.00	0.064

$$\mu_{\bar{x}} = 24$$

$$\sigma_{\bar{x}} \approx 2.83$$

Table 4: Sampling Distribution of \bar{x} , n=4

\bar{x}	$P(\bar{x})$
20.0	0.1296
22.5	0.3456
25.0	0.3456
27.5	0.1536
30.0	0.0256

$$\mu_{\bar{x}} = 24$$

$$\sigma_{\bar{x}} \approx 2.45$$

Mean and Standard Deviation of \bar{x}

Assume that x has a mean of μ and a standard deviation of σ , and assume a sample of n observations.

- 1. The mean of the \bar{x} is μ_x i.e., $\mu_{\bar{x}} = \mu_x$. 2. The standard deviation of \bar{x} is σ_x/\sqrt{n} i.e., $\sigma_{\bar{x}} = \sigma_x/\sqrt{n}$).

Example: Assuming that $\mu_x = 24$ and $\sigma_x \approx 4.9$, what are the mean and standard deviation of \bar{x} based on a sample of n = 16 observations? What about n = 25 observations?

Sampling Distributions for Different Sample Sizes

Sampling Distributions for Different Means (n = 15)

Properties of the Sampling Distribution of \hat{p}

Assume (a) that we have a population distribution where x has only two values, "success" and "failure," and the probability of a success is p, and assume (b) we observe a sample of n observations and compute the proportion (\hat{p}) of observations in the sample that are "successes."

Example: Consider the following population distribution, and several sampling distributions of \hat{p} based on samples of n = 3, 4, or 5 observations.

Table 5: Population Distribution

\overline{x}	P(x)
Y	0.7
C	0.3

Note: Here we define Y as a "success" because our proportions will be based on the number of Y 's out of n .

Table 6: Sampling Distribution of \hat{p} , n=3

\hat{p}	$P(\hat{p})$
0	0.027
1/3	0.189
2/3	0.441
1	0.343

$$\mu_{\hat{p}} = 0.7$$
$$\sigma_{\hat{p}} \approx 0.26$$

Table 7: Sampling Distribution of \hat{p} , n=4

\hat{p}	$P(\hat{p})$
0	0.0081
1/4	0.0756
1/2	0.2646
3/4	0.4116
1	0.2401

$$\mu_{\hat{p}} = 0.7$$

$$\sigma_{\hat{p}} \approx 0.23$$

Table 8: Sampling Distribution of $\hat{p},\,n=5$

\hat{p}	$P(\hat{p})$
0	0.00243
1/5	0.02835
2/5	0.13230
3/5	0.30870
4/5	0.36015
1	0.16807

$$\mu_{\hat{p}} = 0.7$$

$$\sigma_{\hat{p}} \approx 0.2$$

Mean and Standard Deviation of \hat{p}

Assume (a) that we have a population distribution where x has only two values, "success" and "failure," and the probability of a success is p, and assume a sample of n observations.

- 1. The mean of \hat{p} is p i.e., $\mu_{\hat{p}} = p$. 2. The standard deviation of \hat{p} is $\sqrt{p(1-p)/n}$ i.e., $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$.

Example: Assuming the population distribution given above with p = 0.7, what are the mean and standard deviation of \hat{p} based on a sample of n=16 observations? What about n=25 observations?

Sampling Distributions for Different Sample Sizes

Sampling Distributions for Different Values of p (n = 20)

Example: Consider again the trebuchet experiment, but this time with a slightly different population distribution, which is shown below. The mean and standard deviation of x are $\mu_x = 2.2$ and $\sigma_x \approx 0.69$, respectively. A researcher would probably not know μ_x , but could estimate it by firing the trebuchet to create a sample of observations and use \bar{x} to estimate μ_x . The sampling distribution of \bar{x} based on a sample of n = 50 observations is also shown below.

What are the mean and the standard deviation of \bar{x} for such an experiment? Also what is the interval that has approximately a 0.95 probability of containing \bar{x} ?

Example: Imagine a survey of fish in a lake where 20% of the fish in the lake are infected with a parasite. Let x be whether or not a randomly selected fish has a parasite. The population distribution is shown below. A researcher would probably not know that 20% of the fish in the lake are infected, but could *estimate* the proportion of infected fish in the lake (0.2) using the proportion of infected fish from a sample of observations (\hat{p}) . The sampling distribution of \hat{p} based on a sample of n = 100 observations is also shown below.

What are the mean and standard deviation of \hat{p} from such a survey? Also what is the interval that has approximately a 0.95 probability of containing \hat{p} ?