Corso di Linguaggi di Programmazione (corso A) A.A. 2017-2018 Docente: Giovanni Semeraro

Capitolo 3 – Linguaggi liberi da contesto e linguaggi dipendenti da contesto

Definizione di grammatica libera da contesto

■ Una grammatica G = (X, V, S, P) è *libera da contesto* (o *context-free* - C.F.) se, per ogni produzione, $v \rightarrow w$ v è un nonterminale.

$$G
ightharpoonup def$$
 $G
ightharpoonup def$
 $G
ightharpoonup def$
 $\forall v \rightarrow w \in P : v \in V$

Definizione di linguaggio libero da contesto

Un linguaggio L su un alfabeto X è libero da contesto se può essere generato da una grammatica libera da contesto.

L libero da contesto $\Leftrightarrow \exists G$ libera da contesto tale che L(G) = L.

Se si ha una grammatica C.F. che genera L, non è detto che non esista un'altra grammatica che generi lo stesso linguaggio.

Linguaggi liberi da contesto

- La maggior parte dei linguaggi di programmazione sono C.F.
- Il termine C.F. nasce dal fatto che la sostituzione di un NT non è condizionata dal contesto - ossia dai caratteri adiacenti - in cui compare.
- Un NTA in una forma di frase può sempre essere sostituito usando una produzione del tipo $A \rightarrow \beta$. La sostituzione è sempre valida.
- Viceversa, se L = L(G) e G non è C.F., non possiamo concludere che L non è C.F. perché non possiamo escludere che esista una grammatica C.F. G' per cui L=L(G').

Esempi di linguaggi C.F.

- Il linguaggio delle parentesi ben formate
- Il linguaggio dei numeri interi relativi
- II linguaggio $L = \{a^n b^n \mid n > 0\}$
- Il linguaggio delle stringhe con ugual numero di 0 e di 1.
- II linguaggio $L = \{a^n b^{2n} \mid n > 0\}$

Definizione di grammatica dipendente da contesto

- Una grammatica G = (X, V, S, P) è dipendente da contesto (o context-sensitive - C.S.) se ogni produzione è in una delle seguenti forme:
 - □ (1) $yAz \rightarrow ywz$ con $A \in V$, $y,z \in (X \cup V)^*$, $w \in (X \cup V)^+$ che si legge: "A può essere sostituita con w nel contesto y-z" (contesto sinistro y e contesto destro z).
 - \square (2) $S \rightarrow \lambda$ purché S non compaia nella parte destra di alcuna produzione.

Definizione di linguaggio dipendente da contesto

Un linguaggio L è dipendente da contesto se può essere generato da una grammatica dipendente da contesto.

Relazione tra linguaggi C.F. e C.S.

- Tale relazione sussiste perché le regole di produzione C.S. sono una generalizzazione di quelle C.F.
- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando:

$$y=z=\lambda$$
 contesto destro e sinistro equivalenti alla parola vuota (c'è una eccezione).

Eccezione

- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando contesto destro e sinistro sono equivalenti alla parola vuota.
 - □ Osservando con attenzione la definizione di grammatica C.F. si nota che, $w \in (X \cup V)^*$ mentre nella definizione di grammatica C.S. $w \in (X \cup V)^+$. Dunque le grammatiche C.F. ammettono produzioni del tipo, $A \longrightarrow \lambda$ con A che può anche non essere il simbolo iniziale, mentre le grammatiche C.S. non ammettono tali produzioni.
 - □ Chiameremo tutte le produzioni del tipo λ -produzioni o λ -regole.

Esempi

- Esempi di produzioni contestuali
 - \Box bC \rightarrow bc
 - \Box baACbA \rightarrow baAabA
- Esempio di grammatica contestuale

$$\Box S \rightarrow \lambda | bC \\
bC \rightarrow bc$$

$$S \rightarrow \lambda$$
 è una produzione C.S. ed S non compare a destra di un'altra produzione.

- Esempio di produzione non C.S. (né C.F.)
 - $\Box CB \rightarrow BC$

non è né C.S. né C.F. È una produzione *monotona* perché del tipo $v \rightarrow w$ con $|v| \leq |w|$

Definizione di grammatica monotona

Una grammatica G = (X, V, S, P) è monotona se ogni sua produzione è monotona, cioè se

$$\forall v \rightarrow w \in P : |v| \leq |w|$$

Definizione di linguaggio monotono

■ Un linguaggio *L* è *monotono* se può essere generato da una grammatica monotona.

Esempio

- Produzioni monotone
 - $\sqcap AB \rightarrow CDEF$
 - $\sqcap CB \rightarrow BC$
- Una produzione monotona può essere sostituita da una sequenza di produzioni contestuali senza alterare il linguaggio generato.
 - \square $AB \rightarrow CDEF$ può essere sostituita dalle seguenti produzioni contestuali:
 - $AB \rightarrow AG$
 - $AG \rightarrow CG$
 - \bullet $CG \rightarrow CDEF$

Esempio

- Produzioni monotone
 - \Box $CB \rightarrow BC$ può essere sostituita dalle seguenti produzioni contestuali:
 - \bullet $CB \rightarrow XB$
 - $\blacksquare XB \rightarrow XC$
 - $XC \rightarrow BC$ oppure
 - $CB \rightarrow X_1B$
 - $X_1B \rightarrow X_1X_2$
 - $X_1X_2 \to X_1C$
 - $X_1C \rightarrow BC$

Proposizione

- La classe dei linguaggi contestuali coincide con la classe dei linguaggi monotoni.
- Tale proposizione deriva immediatamente dal teorema che segue

Teorema

- Sia G una grammatica monotona, cioè tale che ogni produzione di G è della forma $v \rightarrow w$, con $|v| \leq |w|$, eccetto che ci può essere un'unica λ -produzione $S \rightarrow \lambda$ se S non appare alla destra di una produzione. Esiste allora una grammatica C.S. G' equivalente a G, cioè tale che L(G)=L(G').
- Il teorema precedente può essere enunciato anche nella seguente forma:

Teorema (seconda formulazione)

■ Un linguaggio L è dipendente da contesto se e solo se esiste una grammatica G tale che L = L(G) ed ogni produzione di G nella forma $u \rightarrow v$ ha la proprietà che: $0 < |u| \le |v|$, con una sola eccezione: se $\lambda \in L(G)$ allora $S \rightarrow \lambda$ è una produzione di G ed in tal caso S non può comparire nella parte destra di altre produzioni.

Dimostrazione

м

Dimostrazione

 $\blacksquare \Rightarrow$) Banale.

Se L è dipendente da contesto allora, per definizione, esiste G dipendente da contesto tale che L = L(G).

$$L
in C.S. \Leftrightarrow \exists G C.S. : L = L(G).$$

Allora ogni produzione di G è in una delle due forme:

- $\square \text{ (1)} \quad yAz \longrightarrow ywz \text{ con } A \in V, \ y,z \in (X \cup V)^*, \ w \in (X \cup V)^+$
- \square (2) $S \rightarrow \lambda$ con S che non compare nella parte destra di alcuna produzione.

Dunque, ogni produzione di G verifica la condizione $u \to v$, con $0 < |u| \le |v|$, se è del tipo (1), mentre se è del tipo (2) con S che non compare a destra di alcuna produzione, ricade nell'eccezione. Pertanto G è la grammatica cercata.

Dimostrazione

Sia G una grammatica in cui ogni produzione è nella forma $u \to v$, con $0 < |u| \le |v|$. Senza ledere la generalità della dimostrazione, possiamo supporre che una generica produzione di G abbia il formato: $A_1A_2...A_m \to B_1B_2...B_n$ $m \le n$ ove $A_i \in V$, i = 1, 2, ..., m

È legittimo fare questa assunzione in quanto, se A_j fosse un terminale potremmo sostituirlo nella produzione con un nuovo nonterminale ed aggiungere la nuova produzione $A'_j \rightarrow A_j$. Denotiamo con $C_1, C_2, ..., C_m$ m simboli nonterminali non presenti in G.

Dimostrazione

Utilizziamo le C_k , k = 1, 2, ..., m per costruire nuove regole contestuali che riscrivono la stringa $A_1A_2...A_m$ con $B_1B_2...B_n$.

$$A_{1}A_{2}...A_{m} \to C_{1}A_{2}...A_{m}$$

$$C_{1}A_{2}...A_{m} \to C_{1}C_{2}A_{3}...A_{m}$$
...
$$C_{1}C_{2}...C_{m-1}A_{m} \to C_{1}C_{2}...C_{m-1}C_{m}B_{m+1}...B_{n}$$

$$C_{1}C_{2}...C_{m-1}C_{m}B_{m+1}...B_{n} \to C_{1}...C_{m-1}B_{m}B_{m+1}...B_{n}$$
produzion
$$C_{1}B_{2}...B_{n} \to B_{1}B_{2}...B_{n}$$

La nuova grammatica che incorpora queste produzioni è contestuale e si può dimostrare che L(G)=L(G').

Lasciamo per esercizio tale dimostrazione. c.v.d.

Esempio

$$ABC \rightarrow DEFGH$$
 $m=3$
 $n=5$

6 produzioni contestuali

$$ABC \rightarrow C_1BC$$

 $C_1BC \rightarrow C_1C_2C$
 $C_1C_2C \rightarrow C_1C_2C_3GH$
 $C_1C_2C_3GH \rightarrow C_1C_2FGH$
 $C_1C_2FGH \rightarrow C_1EFGH$
 $C_1EFGH \rightarrow DEFGH$

Esercizio

Consideriamo il linguaggio:

$$L = \{a^n b^n c^n \mid n > 0\}$$

Determiniamo una grammatica che genera tale linguaggio.

Soluzione esercizio

Riferimenti

- Semeraro, G., Elementi di Teoria dei Linguaggi Formali, ilmiolibro.it, 2017 (http://ilmiolibro.kataweb.it/libro/informatica-e-internet/317883/elementi-di-teoria-dei-linguaggi-formali/).
 - □ Capitolo 3