Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 15: Raggiungibilità e controllabilità di sistemi a tempo continuo

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nella scorsa lezione

- ▶ Raggiungibilità e controllabilità: definizioni generali
 - ▶ Raggiungibilità di sistemi lineari a t.d.
 - ▶ Calcolo dell'ingresso di controllo
 - ▶ Sistemi non raggiungibili: forma di Kalman
 - ▶ Test PBH di raggiungibilità
 - ▶ Controllabilità di sistemi lineari a t.d.

In questa lezione

▶ Raggiungibilità di sistemi lineari a t.c.

▶ Calcolo dell'ingresso di controllo

▶ Controllabilità di sistemi lineari a t.c.

▶ Esercizi

Raggiungibilità di sistemi a tempo continuo: setup

$$\dot{x}(t) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = e^{Ft}x_0 + \int_0^t e^{F(t-\tau)}Gu(\tau)\,\mathrm{d}\tau$$

Raggiungibilità di sistemi a tempo continuo: setup

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = \int_0^t e^{F(t-\tau)} Gu(\tau) d\tau$$

Insieme di stati \bar{x} raggiungibili al tempo t a partire da x(0) = 0?

Quando possiamo raggiungere tutti i possibili stati $\bar{x} \in \mathbb{R}^n$?

Criterio di raggiungibilità

$$X_R(t)=$$
 spazio raggiungibile al tempo t $X_R=$ (massimo) spazio raggiungibile

Definizione: Un sistema Σ a t.c. si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$.

$$\mathcal{R} \triangleq \mathcal{R}_n = \begin{bmatrix} G & FG & F^2G & \cdots & F^{n-1}G \end{bmatrix} = \mathsf{matrice} \; \mathsf{di} \; \mathsf{raggiungibilità} \; \mathsf{del} \; \mathsf{sistema}$$

$$\Sigma$$
 raggiungibile \iff $\mathsf{Im}(\mathcal{R}) = \mathbb{R}^n \iff \mathsf{rank}(\mathcal{R}) = n$

N.B. Se un sistema Σ a t.c. è raggiungibile allora $X_R(t) = \mathbb{R}^n$ per ogni t > 0!!

Giacomo Baggio IMC-TdS-1920: Lez. 15 November 18, 2019 7 / 15

Osservazioni

Molti dei risultati sulla raggiungibilità a t.d. valgono anche a t.c.!

- 1. X_R è F-invariante
- 2. Forma canonica di Kalman:

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \ F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \ G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}.$$

3. Criterio PBH:

$$\Sigma$$
 raggiungibile \iff rank $\begin{bmatrix} zI - F & G \end{bmatrix} = n, \quad \forall z \in \mathbb{C}.$

Giacomo Baggio IMC-TdS-1920: Lez. 15 November 18, 2019

Esempio

$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

 $x_1(0) = x_2(0) = 0$

 Σ raggiungibile ?

Se $C_1 = C_2$, Σ non raggiungibile

November 18, 2019

9 / 15

Se $C_1 \neq C_2$, Σ raggiungibile!

Calcolo dell'ingresso di controllo

Se Σ è raggiungibile, come costruire un ingresso $u(\tau)$, $\tau \in [0, t]$, per raggiungere un qualsiasi stato $\bar{x} \in \mathbb{R}^n$ da un stato x_0 ad un tempo fissato t > 0?

$$u(au) = G^ op e^{F^ op (t- au)} \left(\int_0^t e^{F\sigma} GG^ op e^{F^ op\sigma} \ \mathrm{d}\sigma
ight)^{-1} (ar x - e^{Ft} x_0), \ \ au \in [0,t].$$

- **1.** $W_t = \int_0^t e^{F\sigma} GG^\top e^{F^\top \sigma} d\sigma = \text{Gramiano di raggiungibilità nell'intervallo } [0, t]$
- **2.** Ingresso non unico! $u(\tau) = \text{ingresso a minima energia} (\|u\|^2 = \int_0^t u(\tau)^\top u(\tau) d\tau)$

IMC-TdS-1920: Lez 15 November 18, 2019

Esempio

Ingresso a minima energia per raggiungere $x(t) = v_C(t) = 2$ al tempo t = 1 a partire da x(0) = 0?

$$u(\tau) = \frac{4e^{\tau}}{e - e^{-1}}, \ \tau \in [0, 1]$$

Controllabilità di sistemi a tempo continuo: setup

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = \bar{x}$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$0 = x(t) = e^{Ft}\bar{x} + \int_0^t e^{F(t-\tau)}Gu(\tau) d\tau$$

Insieme di stati \bar{x} controllabili al tempo t allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $\bar{x} \in \mathbb{R}$?

Controllabilità vs. raggiungibilità

$$X_C(t)=$$
 spazio controllabile al tempo t $X_C=$ (massimo) spazio controllabile

Definizione: Un sistema Σ a t.c. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$.

$$ar{x} \in X_C(t) \iff e^{Ft}ar{x} \in X_R \iff ar{x} \in e^{-Ft}X_R \iff ar{x} \in X_R$$

$$X_C = X_C(t) = X_R$$

controllabilità = raggiungibilità !!

Esercizio 1

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ -4 & 4 & 0 \end{bmatrix}$$

- 1. Si determini, se esiste, una $G \in \mathbb{R}^n$ tale che il sistema sia raggiungibile.
- 2. Si determini, se esiste, una $G \in \mathbb{R}^n$ tale che il sistema sia controllabile.

- 1. Non esiste una tale G.
- 2. $G = [0 \ 0 \ 0]^{\top}$.

Esercizio 2

[riadattato da Es. 2 tema d'esame 31 Agosto 2007]

$$\dot{x}(t) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} -1/2 & -1/2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- 1. Si determini se il sistema è raggiungibile.
- 2. Si determini, senza effettuare il calcolo, se esiste o meno un ingresso $u(\tau)$, $\tau \in [0,1]$, che porta il sistema da $x(0) = [0\ 0\ 1]^{\top}$ a $x(1) = [e\ e\ e^{-1}]^{\top}$.

- 1. Il sistema non è raggiungibile.
- 2. Un tale ingresso esiste.