Problem Set 2

D. Zack Garza

Tuesday 5th May, 2020

Contents

1	Humphreys 1.5	1
2	Humphreys 1.9	2

1 Humphreys 1.5

Proposition: Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and $M(\lambda), M(\mu)$ Verma modules. Then $M(\lambda) \otimes M(\mu)$ may not lie in \mathcal{O} .

Proof:

Let $M(\lambda)$, $M(\mu)$ be arbitrary Verma modules with highest weight vectors $v = 1 \otimes 1_{\lambda}$, $w = 1 \otimes 1_{\mu}$ respectively. We can then consider the weight of $v \otimes w$ in $N := M(\lambda) \otimes_{\mathbb{C}} M(\mu)$:

$$h \cdot (v \otimes w) = h \cdot v \otimes w + v \otimes h \cdot w$$
$$= \lambda(h)v \otimes w + v \otimes \mu(h)w$$
$$= \lambda(h)(v \otimes w) + \mu(h)(v \otimes w)$$
$$= (\lambda(h) + \mu(h))(v \otimes w).$$

Letting $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$, so $\lambda, \mu \in \mathfrak{h}^* \cong \mathbb{C}$, the claim is that it is possible for N to *not* be finitely-generated as a $U(\mathfrak{g})$ -module.

Let $\{y, h, x\}$ be the usual basis for \mathfrak{g} , for which $U(\mathfrak{g})$ has the usual associated PBW basis. We can use the fact that $\dim M(z) < \infty \iff z \in \mathbb{Z}^+$, so if we pick $\mu, \lambda \in \mathbb{Z}^{\leq 0}$ we have weight space decompositions

$$M(\lambda) = \bigoplus_{i \in \mathbb{Z}^+} M(\lambda)_{\lambda - 2i} := \bigoplus_{\substack{i \in \mathbb{Z}^+ \\ \lambda_i := \lambda - 2i}} M(\lambda)_{\lambda_i}$$
$$M(\mu) = \bigoplus_{j \in \mathbb{Z}^+} M(\mu)_{\mu - 2j} := \bigoplus_{\substack{j \in \mathbb{Z}^+ \\ \mu_i := \mu - 2j}} M(\mu)_{\mu_j}$$

where we can explicitly identify \mathbb{C} -bases $M(\lambda)_{\lambda_i} = \operatorname{span}_{\mathbb{C}} \left\{ y^i \ v^+ \right\}$ and $M(\mu)_{\mu_i} = \operatorname{span}_{\mathbb{C}} \left\{ y^i w^+ \right\}$ where v^+, w^+ are maximal weight vectors for $M(\lambda), M(\mu)$ respectively.

By the initial observation, this yields a weight space decomposition for N given by

$$N = M(\lambda) \otimes_{\mathbb{C}} M(\mu) = \bigoplus_{\nu \in \mathbb{Z}^+} \left(\bigoplus_{\lambda_i + \mu_i = \nu} M(\lambda)_{\lambda_i} \otimes_{\mathbb{C}} M(\mu)_{\mu_i} \right) := \bigoplus_{\nu \in \mathbb{Z}^+} N_{\nu}.$$

Since each weight space $N_{\nu} = \operatorname{span}_{\mathbb{C}} \left\{ y^{i}v^{+} \otimes y^{j}w^{+} \mid i+j=\nu \right\}$ has dimension $p_{2}(\nu)$, the (combinatorial) number of partitions of ν into two parts. In particular, $p_{2}(\nu)$ takes on arbitrarily large values as ν ranges over \mathbb{Z}^{+} , and thus N has weight spaces of arbitrarily large dimension.

Now suppose toward a contradiction that N is finitely generated as a $U(\mathfrak{g})$ -module, say by the n generators $\{m_1, \dots, m_n\}$. Then the \mathbb{C} -vector spaces spanned by the m_i is of dimension no larger than n^2 – however, picking $\nu > n^2$ yields $p_2(\nu) > n^2$, and thus there is a \mathbb{C} -subspace of dimension greater than n^2 by the above argument – a contradiction.

2 Humphreys 1.9

Proposition: Let $\psi: Z(\mathfrak{g}) \longrightarrow S(\mathfrak{h})$ be the twisted Harish-Chandra homomorphism. Then ψ is independent of the choice of a simple system in Φ .

Hint: any simple system has the form $w\Delta$ for some $w \in W$.

Proof:

For a given simple root system $\Delta_1 = \{\alpha_1, \dots, \alpha_\ell\}$, we can choose a PBW basis $\{h_i^{t_j} \mid 1 \leq i \leq \ell, j \in \mathbb{Z}^+\}$ for $U(\mathfrak{h})$. Then if $z \in \mathcal{Z}(\mathfrak{g})$, we can write $z = \sum_{i,j} c_{ij} h_i^{t_j}$ for some $c_{ij} \in \mathbb{C}$. We can then identify the (twisted) Harish-Chandra morphism as follows:

$$\psi: \mathcal{Z}(\mathfrak{g}) \qquad \xrightarrow{\xi} U(\mathfrak{h}) \qquad \longrightarrow S(\mathfrak{h}) = \mathbb{C}[\{h_i\}] = P(\mathfrak{h}^*) \qquad \xrightarrow{\tau_{\rho}} \mathbb{C}[\{h_i\}]$$

$$z \qquad \mapsto z = \sum_{i,j} c_{ij} h_i^{t_j} \qquad \mapsto \left(\lambda \mapsto \sum_{i,j} c_{ij} \lambda(h_i)^{t_j}\right) \qquad \mapsto \psi(z) = \sum_{i,j} (\lambda - \rho)(h_i)^{t_j},$$

where ξ is the Harish-Chandra morphism and τ_p is the twist sending $f(\lambda)$ to $f(\lambda - \rho)$. We thus find that ψ explicitly depends only on ρ and potentially the basis $\left\{h_i^{t_j}\right\}$

The claim is that if an alternative simple root system $\Delta_2 = \{\alpha'_1, \dots, \alpha'_\ell\}$ is chosen, $\psi(z)$ does not change. By the hint, there exists some uniform $w \in W$ such that $w\alpha_i = \alpha'_i$.

We can denote the positive root system induced by Δ_1 as Φ_1^+ and similarly Δ_2 induces Φ_2^+ . From this, a priori we may have two distinct weyl vectors:

HUMPHREYS 1.9

2

$$\rho_1 = \sum_{\beta \in \Phi_1^+} \beta$$
$$\rho_2 = \sum_{\beta' \in \Phi_2^+} \beta'$$

However, since W acts transitively on the Weyl chambers, it only permutes the elements in such a sum, and since $\Delta_1 = w\Delta_2$ we in fact obtain $\rho_1 = \rho_2 \coloneqq \rho$.

Not entirely sure how to show this, or if checking ρ and basis-invariance is sufficient here.