Jagannath University, Dhaka

Department of CSE Mid-Examination-2020

Course Code: CSER-2105, Math-III, Ordinary Differential Equations

Full Marks: 10 Time: 30 minutes

There are **Four** questions. Answer any **Three** of the questions.

1.	a)	What do you mean by order and degree of the differential equation (D. E.).	
	b)	Find the order and degree of the following D. E.	
		(i) $ \left(\frac{dy}{dx}\right)^2 + 2y^2 = 5\left(\frac{dy}{dx}\right) + 4y $ (ii) $ \frac{d^3y}{dx^3} + 3\left(\frac{d^2y}{dx^2}\right)^2 - \frac{dy}{dx} + y = 0 $ (iii) $ \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 - 9y = x. $	
2.		un (un)	
۷.		Form the D.E. of all conics whose axes coincide with the axes of co-ordinates.	
3.		Solve following differential equations:	
		$i) \frac{d^2 y}{dx^2} - y = xe^x \sin x.$	
		ii) $(1+x^2)\frac{dy}{dx} + y = \tan^{-1} x$.	
4.		Solve following Cauchy-Euler equation:	
		$x^{2} \frac{d^{2} y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = (x - 1)^{2}.$	