Dans chacun des cas suivant, on admet que la fonction f est définie et dérivable sur \mathcal{D}_f . Calculer la dérivée de f dans chaque cas.

a)
$$f(x) = \cos(3x^2)$$
, $\mathcal{D}_f = \mathbb{R}$

d)
$$f(x) = \ln(2 + \sin x)$$
, $\mathcal{D}_f = \mathbb{R}$

b)
$$f(x) = (1 + \ln(x))^4$$
, $\mathcal{D}_f =]0; +\infty[$

e)
$$f(x) = \ln(|1 + x|), \quad \mathcal{D}_f = \mathbb{R} \setminus \{-1\}$$

c)
$$f(x) = \sqrt{1+x^2}$$
, $\mathcal{D}_f = \mathbb{R}$

f)
$$f(x) = \frac{e^{-x}}{x^3 - x^2}$$
, $\mathcal{D}_f = \mathbb{R} \setminus \{0, 1\}$

Exercice 2 Voir correction -

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par $f(x)=e^x+\frac{1}{2}$

1) Étude d'une fonction auxiliaire

- a) Soit la fonction q dérivable, définie sur $[0; +\infty[$ par $q(x) = x^2e^x 1$. Étudier le sens de variation de la fonction g.
- b) Démontrer qu'il existe un unique réel a appartenant à $[0; +\infty[$ tel que g(a)=0.
- c) Déterminer le signe de g(x) sur $[0; +\infty[$.

2) Étude de la fonction f

- a) Déterminer les limites de la fonction f en 0 et en $+\infty$.
- b) On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$
- c) En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle]0; $+\infty[$.
- d) Démontrer que la fonction f admet pour minimum le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}$

Exercice 3

 $\operatorname{ extbf{-}}$ Voir correction $\operatorname{ extbf{-}}$

Pour chacune des fonctions suivantes :

- \triangleright déterminer son ensemble de définition \mathcal{D}_f
- ▷ déterminer ses limites aux bornes de son ensemble de définition en précisant les asymptotes éventuelles,
- ▷ étudier ses variations en précisant les extremums,
- \triangleright étudier le signe de f,
- \triangleright tracer l'allure de la courbe de f dans un repère.

a)
$$f(x) = e^{-1/x^2}$$

c)
$$h(x) = \ln(5 - \sqrt{x^2 - 144})$$

e)
$$r(x) = \frac{\ln(1-x)}{\ln(x)}$$

b)
$$g(x) = \frac{e^x + e^{-x}}{2}$$

d)
$$k(x) = \frac{1}{x^3 + x^2 - 2x}$$

f)
$$t(x) = \sin\left(\frac{\pi}{1 + (\ln(x))^2}\right)$$

- Exercice 4

- Voir correction

On se place dans le plan muni d'un repère orthonormé et du cercle trigonométrique. Soit t un réel appartenant à l'intervalle $[-\pi, \pi]$. On note M le point image de $\frac{\pi}{3}$ sur le cercle trigonométrique, et N le point image de t. On considère enfin le point K milieu du segment [MN].

On cherche la position de N sur le cercle trigonométrique telle que la distance IK soit minimale.

- 1) Quelles sont les coordonnées de M, N et K?
- 2) Justifier que, pour tout réel t appartenant à l'intervalle $[-\pi;\pi]$, on a

$$4IK^2 = 4 - 3\cos t + \sqrt{3}\sin t$$

3) On pose $f(t) = 4 - 3\cos t + \sqrt{3}\sin t$

Montrer que $f'(t) = 2\sqrt{3}\sin\left(t + \frac{\pi}{6}\right)$

- a) Résoudre dans $[-\pi;\pi]$ l'inéquation $\sin\left(t+\frac{\pi}{6}\right)\geqslant 0$
- b) En déduire le tableau de variation de la fonction f
- c) Conclure.

Exercice 5 -

——— Voir correction —

Soit f une fonction dérivable de [0,1] dans [0,1] telle que pour tout $x \in [0,1], |f'(x)| < 1$ Montrer que l'équation f(x) = x admet une unique solution dans [0; 1].

Exercice 6 -

———— Voir correction —

- 1) Montrer que pour tout réel x > 0, $\ln(x) < x$.
- 2) En déduire que pour tout réel x > 0, $\ln(x) < 2\sqrt{x}$
- 3) En déduire la limite de $\frac{\ln x}{x}$ lorsque $x \to +\infty$.

* * * +
- Exercice 7 ———— Voir correction —

Soient $\lambda, \mu > 0$ deux réels tels que $\lambda + \mu = 1$.

- 1) Montrer que pour tout $x, y \in]0; +\infty[$, $\lambda x + \mu y \ge x^{\lambda} y^{\mu}$ avec égalité si et seulement si x = y.
- 2) Soient $(a_1, a_2, \dots, a_p) \in (\mathbb{R}^{+*})^p$ et $(b_1, b_2, \dots, b_p) \in (\mathbb{R}^{+*})^p$ des réels strictement positifs. Montrer que

$$\sum_{k=1}^{p} a_k^{\lambda} b_k^{\mu} \le \left(\sum_{k=1}^{p} a_k\right)^{\lambda} \left(\sum_{k=1}^{p} b_k\right)^{\mu}$$

Correction des exercice

Correction de l'exercice 1 :

a) $f = v \circ u$ avec $u(x) = 3x^2$ et $v(x) = \cos(x)$. On a $f' = u' \times v' \circ u$ avec u'(x) = 6x et $v'(x) = -\sin(x)$, ains

$$\forall x \in \mathbb{R}, \quad f'(x) = -6x\sin(3x^2)$$

b) $f = v \circ u$ avec $u(x) = 1 + \ln x$ et $v(x) = x^4$, donc $u'(x) = \frac{1}{x}$ et $v'(x) = 4x^3$.

$$\forall x \in]0; +\infty[, \quad f'(x) = \frac{4}{x}(1 + \ln(x))^3$$

c) $f = v \circ u$ avec $u(x) = 1 + x^2$ et $v(x) = \sqrt{x}$, donc u'(x) = 2x et $v'(x) = \frac{1}{2\sqrt{x}}$. Ainsi

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$$

d) $f = v \circ u$ avec $u(x) = 2 + \sin x$ et $v(x) = \ln(x)$, donc $u'(x) = \cos x$ et $v'(x) = \frac{1}{x}$. On a donc

$$\forall x \in \mathbb{R}, \quad f'(x) = \cos x \times \frac{1}{2 + \sin x} = \frac{\cos x}{2 + \sin x}$$

Remarque : si u est dérivable et u(x) > 0 pour tout x, alors $\ln(u)$ est dérivable et $(\ln u)' = \frac{u'}{u}$.

e) Sur] $-\infty$; -1[on a |1+x| = -1 - x et sur] -1; $+\infty$ [on a |1+x| = 1 + x. On a donc

$$\forall x \in \mathcal{D}_f, \ f(x) = \begin{cases} \ln(-1-x) & \text{si } x < -1\\ \ln(1+x) & \text{si } x > -1 \end{cases}$$

Ainsi, sur] $-\infty$, -1[, $f'(x)=\frac{-1}{-1-x}=\frac{1}{1+x}$ et sur] $-1;+\infty[$, $f'(x)=\frac{1}{1+x}.$ On peut donc en conclure :

$$\forall x \in \mathcal{D}_f, \quad f'(x) = \frac{1}{1+x}$$

f) $f = \frac{u}{v}$ avec $u(x) = e^{-x}$ et $v(x) = x^3 - x^2$, donc $u'(x) = -e^{-x}$ et $v'(x) = 3x^2 - 2x$. On a donc

$$\forall \in \mathcal{D}_f, \quad f'(x) = \frac{-e^{-x}(x^3 - x^2) - e^{-x}(3x^2 - 2x)}{(x^3 - x^2)^2}$$

$$= \frac{e^{-x}(-x^3 - 2x^2 + 2x)}{(x^3 - x^2)^2}$$

Correction de l'exercice 3:

a) > Ensemble de définition

Pour tout réel x, f(x) est défini si et seulement si $x^2 \neq 0$, si et seulement si $x \in \mathbb{R}^*$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$

▶ Limites

Étudion les limites en $-\infty$, en $+\infty$, en 0^- et en 0^+ .

- $\underline{\operatorname{En}} \infty \lim_{x \to -\infty} \frac{1}{x^2} = 0$, et $\lim_{X \to 0} e^X = 1$ donc par composition de limites, $\lim_{x \to -\infty} e^{-1/x^2} = 1$.
- $\underline{\operatorname{En}} + \infty$ De même qu'en $-\infty$, $\lim_{x \to +\infty} e^{-1/x^2} = 1$.

•
$$\underline{\operatorname{En}} \ 0$$
 On a $\lim_{\substack{x \to 0 \\ x < 0}} -\frac{1}{x^2} = \lim_{\substack{x \to 0 \\ x < 0}} -\frac{1}{x^2} = -\infty \text{ car } \forall x \in \mathbb{R}^*, \ x^2 > 0 \text{ donc } -\frac{1}{x^2} < 0.$

Comme $\lim_{\substack{x \to 0 \\ x < 0}} \mathrm{e}^X = 0$, on en déduit par composition de limites que $\lim_{\substack{x \to 0 \\ x < 0}} \mathrm{e}^{-1/x^2} = \lim_{\substack{x \to 0 \\ x < 0}} \mathrm{e}^{-1/x^2} = 0$

La courbe représentative de f a donc une asymptote horizontale d'équation y=1.

▶ Variations

f est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$ comme composée de fonctions dérivables,

$$\forall x \in \mathbb{R}^*, \quad f'(x) = \frac{2}{x^3} e^{-1/x^2}$$

On sait que $\forall x \in \mathbb{R}^*$, $e^{-1/x^2} > 0$, ainsi f'(x) est du même signe que $\frac{2}{x^3}$.

 $\forall x < 0, x^3 < 0$ donc $\frac{2}{x^3} < 0$ et $\forall x > 0, x^3 > 0$ donc $\frac{2}{x^3} > 0$. On en déduit le tableau de variation suivant :

⊳ Signe

 $\forall x \in \mathbb{R}^*, \ e^x > 0, \ donc \ \forall x \in \mathcal{D}_f, \ f(x) > 0.$

▶ Allure de la courbe

b) > Ensemble de définition

Pour tout réel x, g(x) est défini car e^x et e^{-x} sont bien définis.

▶ Limites

En
$$+\infty$$
, $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc par somme de limites, $\lim_{x \to +\infty} g(x) = +\infty$

En $-\infty$, $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} -x = +\infty$ donc $\lim_{x \to -\infty} e^{-x} = +\infty$ par composition de limites. Finalement, par somme de limites, $\lim_{x \to -\infty} g(x) = +\infty$

▶ <u>Variations</u>

g est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $g'(x) = \frac{e^x - e^{-x}}{2}$.

Étudions le signe de g'(x):

$$\forall x \in \mathbb{R}, \quad \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} \ge 0 \Longleftrightarrow \mathrm{e}^x - \mathrm{e}^{-x} \ge 0$$

$$\iff \mathrm{e}^{2x} - 1 \ge 0 \qquad \qquad \text{en multipliant par } \mathrm{e}^x > 0$$

$$\iff \mathrm{e}^{2x} \ge 1$$

$$\iff 2x \ge 0$$

$$\iff x \ge 0$$

On en déduit le tableau de signe suivant :

▷ Signe

 $\forall x \in \mathbb{R}, e^x > 0 \text{ et } e^{-x} > 0 \text{ donc par somme } g(x) > 0.$

On peut aussi constater d'après le tableau de variation que $\forall x \in \mathbb{R}, g'(x) \ge 1 > 0$.

⊳ Allure de la courbe

c) \triangleright Ensemble de définition

Pour que h(x) soit défini, il faut que $x^2 - 144 \ge 0$ et $5 - \sqrt{x^2 - 144} > 0$.

$$x^2 - 144 \ge 0 \iff x^2 \ge 144 \iff x \in]-\infty; -12] \cup [12; +\infty[.$$

De plus, lorsque $x \in]-\infty; -12[\cup]12; +\infty[$, on a $10-\sqrt{x^2-144}>0 \iff \sqrt{x^2-144}<5 \iff x^2-144<25 \iff x^2<169 \iff x \in [-13;13].$

On en conclut que $\mathcal{D}_h =]-13;-12] \cup [12;13[.$

▶ Limites

Remarquons que h est une fonction paire : $\forall x \in \mathcal{D}_h$, h(-x) = h(x). Ainsi, il suffit d'étudier les limites en 12 et en 13 pour connaître également les limites en -13 et en -12.

 $\lim_{\substack{x \to 13 \\ x \to 13}} (x^2 - 144) = 169 - 144 = 25, \text{ et } \lim_{\substack{X \to 25 \\ x \to 13}} \sqrt{X} = 5 \text{ donc par composition de limites, } \lim_{\substack{x \to 13 \\ x \to 13}} \sqrt{x^2 - 144} = 5. \text{ Ainsi, } \lim_{\substack{x \to 13 \\ x \to 13}} (5 - \sqrt{x^2 - 144}) = 0.$

Comme $\lim_{X\to 0} \ln(X) = -\infty$, on en déduit par composition de limites que $\lim_{x\to 13} h(x) = \lim_{x\to -13} h(x) = -\infty$.

$$\lim_{x \to 12} (x^2 - 144) = 0 \text{ donc } \lim_{x \to 12} \sqrt{x^2 - 144} = 0 \text{ donc } \lim_{x \to 12} h(x) = \lim_{x \to -12} h(x) = \ln(5).$$

▶ Variations

 $x\mapsto x^2-144$ s'annule en x=12, donc $x\mapsto \sqrt{x^2-144}$ n'est pas dérivable en x=12.

$$\forall x \in]-13; -12[\cup]12; 13[, \quad h'(x) = \frac{-2x}{2\sqrt{x^2 - 144}} \times \frac{1}{5 - \sqrt{x^2 - 144}}$$
$$= \frac{-x}{\sqrt{x^2 - 144}} \times \frac{1}{5 - \sqrt{x^2 - 144}}$$

Il a déjà été établi que $\forall x \in]-13;-12[\cup]12;13[$, $5-\sqrt{x^2-144}>0$ et $x^2-144\geq 0$ donc h'(x) est du signe de xx. On en déduit le tableau de variations suivant :

x	$-\infty$	-13	-12	12	13	$+\infty$
h'(x)			+		-	
h(x)		$-\infty$	$\ln(5)$	ln(5)	$-\infty$	

 $\, \rhd \, \, \mathrm{Signe}$

$$\forall x \in \mathcal{D}_h, \quad h(x) \ge 0 \Longleftrightarrow \ln(5 - \sqrt{x^2 - 144}) \ge 0$$

$$\iff 5 - \sqrt{x^2 - 144} \ge 1$$

$$\iff \sqrt{x^2 - 144} \le 4$$

$$\iff x^2 - 144 \le 16$$

$$\iff x^2 \le 160$$

$$\iff x \in [-\sqrt{160}; \sqrt{160}]$$

$$\iff x \in [-4\sqrt{10}; 4\sqrt{10}]$$

On remarque que $12 < \sqrt{160} < 13$, donc on a finalement :

x	$-\infty$	-13	$-4\sqrt{10}$	-12	2 12		$4\sqrt{10}$		13	+∞
h(x)			- 0	+		+	0	_		

▶ Allure de la courbe

▷ Ensemble de définition d)

Pour tout réel x, k(x) est défini si et seulement si $x^3 + x^2 - 2x \neq 0$. On résout donc $x^3 + x^2 - 2x = 0$:

$$x^{3} + x^{2} - 2x = 0 \iff x(x^{2} + x - 2) = 0$$
$$\iff x = 0 \quad \text{ou} \quad x^{2} + x - 2 = 0$$
$$\iff x = 0 \quad \text{ou} \quad x = 1 \quad \text{ou} \quad x = -2$$

donc finalement k est définie sur $\mathcal{D}_k = \mathbb{R} \setminus \{-2, 0, 1\}$.

▶ Limites

Pour tout $x \in \mathcal{D}_k$, on a $x^3 + x^2 - 2x = x^3 \left(1 + \frac{1}{x} - \frac{2}{x^2}\right)$.

Or $\lim_{x \to +\infty} \left(1 + \frac{1}{x} - \frac{2}{x^2}\right) = \lim_{x \to -\infty} \left(1 + \frac{1}{x} - \frac{2}{x^2}\right) = 1$, donc par produit de limites on a $\lim_{x \to -\infty} (x^3 + x^2 - 2x) = -\infty$ et $\lim_{x \to +\infty} (x^3 + x^2 - 2x) = +\infty$ et donc $\lim_{x \to -\infty} k(x) = \lim_{x \to +\infty} k(x) = 0$

Pour savoir si $\frac{1}{x^3+x^2-2x}$ tend vers $+\infty$ ou vers $-\infty$ lorsque x tend vers -2, 0 et 1, il faut étudier le signe du polynôme x^3+x^2-2x .

On sait que $x^3 + x^2 - 2x = x(x-1)(x+2)$, donc on en déduit le tableau de signe suivant :

x	$-\infty$		-2		0		1		$+\infty$
$x^3 + x^2 - 2x$		_	0	+	0	_	Ó	+	

Ainsi,
$$\lim_{\substack{x \to -2 \\ x < -2}} k(x) = -\infty$$
, $\lim_{\substack{x \to -2 \\ x > -2}} k(x) = +\infty$, $\lim_{\substack{x \to 0 \\ x < 0}} k(x) = +\infty$, $\lim_{\substack{x \to 0 \\ x < 0}} k(x) = -\infty$, $\lim_{\substack{x \to 1 \\ x < 1}} k(x) = -\infty$ et $\lim_{\substack{x \to 1 \\ x > 1}} k(x) = +\infty$

▶ Variations

k est dérivable sur son ensemble de définition comme inverse de fonctions dérivables dont le dénominateur ne s'annule pas (sur \mathcal{D}_k).

$$\forall x \in \mathcal{D}_k, \quad k'(x) = \frac{-(3x^2 + 2x - 2)}{(x^3 + x^2 - 2x)^2}$$
$$= \frac{-3x^2 - 2x + 2}{(x^3 + x^2 - 2x)^2}$$

Or $\forall x \in \mathcal{D}_k$, $(x^3 + x^2 - 2x)^2 \ge 0$ donc k(x) est du signe de $-3x^2 - 2x + 2$. On étudie le signe de ce trinôme : $\Delta = (-2)^2 - 4 \times (-3) \times 2 = 28$ donc il a deux racines, $x_1 = \frac{2 - \sqrt{28}}{-6} = \frac{-1 + \sqrt{7}}{3}$ et $x_2 = \frac{-1 - \sqrt{7}}{3}$ On a $\frac{-1 - \sqrt{7}}{2} < 0$ et $\frac{-1 + \sqrt{7}}{2} > 0$ car $\sqrt{7} > 1$.

Puisque 4 < 7 < 9, on a $2 < \sqrt{7} < 3$, donc $\sqrt{7} - 1 < 2$ et finalement $\frac{\sqrt{7} - 1}{3} < \frac{2}{3} < 1$.

De même, on a $-1 - \sqrt{7} > -4$ donc $\frac{-1 - \sqrt{7}}{3} > \frac{-4}{3} > 2$.

On en déduit le tableau de variations suivant :

x	$-\infty$ –	$2 \qquad \frac{-1-\sqrt{7}}{3} \qquad \qquad 0$	$\frac{-1+\sqrt{7}}{3}$	1 +∞
k'(x)	_	- 0 +	+ 0 -	_
k(x)	0	$+\infty \qquad +\infty$ $k\left(\frac{-1-\sqrt{7}}{8}\right)$	$k\left(\frac{-1+\sqrt{7}}{8}\right)$ $-\infty$ $-\infty$	+∞

▶ Signe

 $\forall x \in \mathcal{D}_k, k(x)$ est du même signe que $x^3 + x^2 - 2x$ (voir plus haut).

▷ Allure de la courbe

e) > Ensemble de définition

Pour tout réel x, r(x) est défini si et seulement si x > 0 et 1 - x > 0, si et seulement si $x \in]0,1[$. Ainsi $\mathcal{D}_r =]0,1[$.

▶ <u>Limites</u>

 $\lim_{x\to 0}\ln(x)=-\infty \text{ et } \lim_{x\to 0}\ln(1-x)=\ln(1)=0. \text{ Par quotient de limites, } \lim_{x\to 0}r(x)=0.$

 $\lim_{\substack{x\to 1\\x<1}}\ln(x)=0^-\text{ et }\lim_{x\to 1}\ln(1-x)=\lim_{X\to 0}\ln(X)=-\infty.\text{ Par quotient de limites, on a donc }\lim_{x\to 1}r(x)=+\infty.$

▶ Variations

r est dérivable sur]0,1[comme quotient de fonctions dérivables.

$$\forall x \in]0,1[, \quad r'(x) = \frac{\frac{-1}{1-x} \times \ln(x) - \ln(1-x) \times \frac{1}{x}}{(\ln(x))^2}$$
$$= \frac{1}{x(1-x)(\ln(x))^2} \times (-x\ln(x) - (1-x)\ln(1-x))$$

On remarque que $\forall x \in]0,1[$, $1-x \in]0,1[$ donc $\ln(x)<0$ et $\ln(1-x)<0$. Ainsi, $-x\ln(x)>0$ et $-(1-x)\ln(1-x)>0$, d'où l'on conclut que r'(x)>0 pour tout $x \in]0,1[$.

Ainsi on a

x	() 1
r'(x)		+
r(x)		+∞ 0

▶ Signe

 $\forall x \in]0, 1[, \ln(x) < 0 \text{ et } \ln(1-x) < 0 \text{ donc } r(x) > 0.$

▷ Allure de la courbe

f) > Ensemble de définition

Pour tout réel x, t(x) est défini si et seulement si x > 0 et $1 + (\ln(x))^2 \neq 0$.

Or si x > 0, alors $\ln(x)$ est bien défini et $(\ln(x))^2 \ge 0$ donc $1 + (\ln(x))^2 \ge 1 > 0$. donc t(x) est bien défini. Finalement $\mathcal{D}_t =]0; +\infty[$.

▶ Limites

 $\lim_{x\to 0} \ln(x) = -\infty$ donc $\lim_{x\to 0} (\ln(x))^2 = +\infty$, et par opérations $\lim_{x\to 0} \frac{\pi}{1+(\ln(x))^2} = 0$. Puisque $\lim_{X\to 0} \sin(X) = 0$, on a par composition de limites $\lim_{x\to 0} t(x) = 0$.

De même, $\lim_{x \to +\infty} \ln(x) = +\infty$ donc $\lim_{x \to +\infty} (\ln(x))^2 = +\infty$ et par opérations et compositions de limites, $\lim_{x \to +\infty} t(x) = 0$.

▶ <u>Variations</u>

Sur $]0, +\infty[$, la dérivée de $u: x \mapsto \frac{\pi}{1 + (\ln(x))^2}$ est $u'(x) = \frac{-\pi \times 2 \times \ln(x) \times \frac{1}{x}}{(1 + (\ln(x))^2)^2} = \frac{-2\pi \ln(x)}{x(1 + (\ln(x))^2)^2}$ t est donc dérivable sur $]0; +\infty[$ comme composée de fonctions dérivables et

$$\forall x \in]0; +\infty[, \quad t'(x) = \frac{-2\pi \ln(x)}{x(1 + (\ln(x))^2)^2} \times \cos\left(\frac{\pi}{1 + (\ln(x))^2}\right)$$

• Étude du signe de $\frac{-2\pi \ln(x)}{x(1+(\ln(x))^2)^2}$

 $\forall x>0,\ (1+(\ln(x))^2)^2>0$ donc $\forall x>0,\ \frac{-2\pi\ln(x)}{x(1+(\ln(x))^2)^2}$ est du signe opposé à $\ln(x)$, c'est à dire positif lorsque x>1 et négatif lorsque 0< x<1.

• Étude du signe de $\cos\left(\frac{\pi}{1 + (\ln(x))^2}\right)$

Remarquons que $\forall x \in]0; +\infty[$, $1 + \ln(x)^2 \ge 1$ donc $0 \le \frac{\pi}{1 + (\ln(x))^2} \le \pi$.

On sait que pour tout $X \in [0, \pi]$, $\cos(X) \ge 0 \Longleftrightarrow 0 \le X \le \frac{\pi}{2}$ et $\cos(X) \le 0 \Longleftrightarrow \frac{\pi}{2} \le X \le \pi$. Ainsi,

$$\cos\left(\frac{\pi}{1+(\ln(x))^2}\right) \ge 0 \Longleftrightarrow \frac{\pi}{1+\ln(x)^2} \le \frac{\pi}{2}$$

$$\Longleftrightarrow \frac{1}{1+\ln(x)^2} \le \frac{1}{2}$$

$$\Longleftrightarrow 1+\ln(x)^2 \ge 2$$

$$\Longleftrightarrow \ln(x)^2 \ge 1$$

$$\Longleftrightarrow \ln(x) \in]-\infty; -1[\cup]1; +\infty[$$

$$\iff x \in]0; e^{-1}[\cup]e; +\infty[$$

Finalement, on obtient le tableau suivant :

x	0		e^{-1}		1		е		$+\infty$
$\frac{-2\pi \ln(x)}{x(1+(\ln(x))^2)^2}$		+		+	0	_		_	
$\cos\left(\frac{\pi}{1 + (\ln(x))^2}\right)$		+	Ó	_		_	0	+	
t'(x)		+	Ô	_	0	+	0	_	
t(x)	1		<i>y</i> \		` ₀ -		, ¹ \		0

Calcul des extremums :
$$t(e^{-1}) = \sin\left(\frac{\pi}{1 + \ln(e^{-1})^2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

$$t(1) = \sin\left(\frac{\pi}{1 + \ln(1)^2}\right) = \sin(\pi) = 0$$
$$t(e) = \sin\left(\frac{\pi}{1 + \ln(e^1)^2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

▷ Signe

On a déjà remarqué que $\forall x > 0$, $\frac{\pi}{1 + \ln(x)^2} \in [0, \pi]$ donc $\sin\left(\frac{\pi}{1 + (\ln(x))^2}\right) \ge 0$.

▶ <u>Allure de la courbe</u>

Correction de l'exercice 4:

1) M a pour coordonnées $(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}) = (\frac{1}{2}, \frac{\sqrt{3}}{2}).$ N a pour coordonnées $(\cos t, \sin t)$

K a pour coordonnées $(\frac{1}{2}(\cos t + \frac{1}{2}), \frac{1}{2}(\sin t + \frac{\sqrt{3}}{2})).$

2) On a

$$IK^{2} = \left(\frac{1}{2}\cos t + \frac{1}{4} - 1\right)^{2} + \left(\frac{1}{2}\sin t + \frac{\sqrt{3}}{4}\right)^{2}$$
$$= \frac{1}{4}\cos^{2} t - \frac{3}{4}\cos t + \frac{9}{16} + \frac{1}{4}\sin^{2} t + \frac{\sqrt{3}}{4}\sin t + \frac{3}{16}$$

$$= \frac{1}{4} \underbrace{(\cos^2 t + \sin^2 t)}_{=1} - \frac{3}{4} \cos t + \frac{\sqrt{3}}{4} \sin t + \frac{12}{16}$$
$$= 1 - \frac{3}{4} \cos t + \frac{\sqrt{3}}{4} \sin t$$

donc on a bien $4IK^2 = 4 - 3\cos t + \sqrt{3}\sin t$.

3) On a $f'(t) = 3\sin t + \sqrt{3}\cos t$

Or
$$\sin\left(t + \frac{\pi}{6}\right) = \sin t \cos\left(\frac{\pi}{6}\right) + \cos t \sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin t + \frac{1}{2}\cos t$$
donc

$$2\sqrt{3}\sin\left(t + \frac{\pi}{6}\right) = 3\sin t + \sqrt{3}\cos t = f'(t)$$

a)
$$\sin\left(t+\frac{\pi}{6}\right) \geq 0 \Longleftrightarrow t+\frac{\pi}{6} \in [0+2k\pi,\pi+2k\pi].$$

Ainsi, dans $[-\pi,\pi]$, $\sin\left(t+\frac{\pi}{6}\right) \geq 0 \Longleftrightarrow t+\frac{\pi}{6} \in [0,\pi]$ et $t \in [-\pi,\pi]$
Ainsi

$$S = \left[-\frac{\pi}{6}, \frac{5\pi}{6} \right]$$

b) On a donc

t	$-\pi$		$-\frac{\pi}{6}$		$\frac{5\pi}{6}$		π
f'(t)		_	0	+	0	_	0
f(t)	7		$4-2\sqrt{3}$		$4 + 2\sqrt{3}$		→ ₇

c) On a $4-2\sqrt{3} < 7$ donc le minimum de f sur l'intervalle $[-\pi,\pi]$ est $4-2\sqrt{3}$ et il est atteint pour $t=-\frac{\pi}{6}$

Correction de l'exercice 5 : On pose g(x) = f(x) - x. Alors g est la somme de $x \mapsto f(x)$ et de $x \mapsto -x$ qui sont deux fonctions dérivables sur [0,1] donc g est dérivable sur [0,1]. De plus, $\forall x \in [0,1], g'(x) = f'(x) - 1$. Or $\forall x \in [0,1], |f'(x)| < 1$ donc f'(x) < 1 donc g'(x) < 0. On en déduit que g est strictement décroissante sur [0,1].

De plus, g(0) = f(0) et g(1) = f(1) - 1. Puisque f est à valeurs dans [0,1], on a $f(0) \ge 0$ et $f(1) \le 1$ donc $f(1) - 1 \le 0$. g est une fonction continue car dérivable, strictement décroissante sur [0,1], et $0 \in [f(0), f(1)]$ donc d'après le corollaire du théorème des valeurs intermédiaires il existe un unique réel $x \in [0,1]$ tel que g(x) = 0, il existe donc un unique réel $x \in [0,1]$ tel que f(x) = x.

Correction de l'exercice 6:

1) Étudions la fonction $g: x \mapsto x - \ln(x)$ définie sur $]0; +\infty[$. Elle est dérivable sur cet intervalle et $\forall x \in]0; +\infty[$, $g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. On en déduit que g'(x) est du signe de x-1 donc négative sur]0; 1[et positive sur $]1; +\infty[$. Puisque $g(1) = 1 - \ln(1) = 1$, on a :

x	0	1	$+\infty$
g'(x)	-	- 0	+
g(x)		1	

On en déduit que $\forall x \in]0; +\infty[, g(x) \ge 1 > 0 \text{ donc } x > \ln x.$

2) Pour tout $x \in]0; +\infty[$, $\ln(\sqrt{x}) = \frac{1}{2}\ln(x)$ (propriétés de la fonction ln). De plus, pour tout $x \in]0; +\infty[$, $\ln(\sqrt{x}) < \sqrt{x}$ d'après la question précédente. On en déduit que $\forall x \in]0; +\infty[$, $\frac{1}{2}\ln(x) < \sqrt{x}$ donc $\ln(x) < 2\sqrt{x}$.

3) Pour tout $x \in]0; +\infty[$, $\frac{\ln x}{x} < \frac{\sqrt{x}}{x}$ d'après la question précédente et car x > 0.

Ainsi, $\forall x \in]1; +\infty[$, $0 < \frac{\ln(x)}{x} < \frac{1}{\sqrt{x}}$ et puisque $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ on en déduit par encadrement de limites que $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.

Correction de l'exercice 7:

1) Fixons un réel y > 0 et posons $g: x \longmapsto \lambda x + \mu y - x^{\lambda} y^{\mu}$. g est dérivable sur \mathbb{R} et $g'(x) = \lambda - \lambda x^{\lambda - 1} y^{\mu}$. Pour tout $x \in]0; +\infty[$, on a

$$g'(x) \ge 0 \iff \lambda - \lambda x^{\lambda - 1} y^{\mu} \ge 0$$

$$\iff x^{\lambda - 1} y^{\mu} \le 1$$

$$\iff x^{\lambda - 1} \le y^{-\mu}$$

$$\iff x^{-\mu} \le y^{-\mu}$$

$$\iff x \ge y$$

$$\operatorname{car} -\mu < 0$$

On en déduit le tableau de variations de g :

x	0		y		$+\infty$
g'(x)		_	0	+	
g(x)	μy		× 0 <		<i>y</i>

on en déduit que $\lambda x + \mu y \ge x^{\lambda} y^{\mu}$ pour tout réel x > 0, avec égalité si et seulement si x = y. Ceci étant vrai quel que soit y, on en conclut finalement que l'inégalité est vraie pour tout $x, y \in]0, +\infty[$.

2) Pour tout $k \in \mathbb{N}, 1 \le k \le p$ on pose $a'_k = \frac{a_k}{\sum_{i=1}^p a_i}$ et $b'_k = \frac{b_k}{\sum_{i=1}^p b_i}$. On a alors d'après l'inégalité précédente : $\forall k \in [\![1,p]\!], \ (a'_k)^{\lambda}(b'_k)^{\mu} \le \lambda a'_k + \mu b'_k$. En faisant la somme de toutes ces inégalités pour k allant de 1 à p on obtient :

$$\sum_{k=1}^{p} (a'_k)^{\lambda} (b'_k)^{\mu} \leq \lambda \sum_{k=1}^{p} a'_k + \mu \sum_{k=1}^{p} b'_k$$

$$\sum_{k=1}^{p} \frac{a_k^{\lambda}}{(\sum_{i=1}^{p} a_i)^{\lambda}} \frac{b_k^{\mu}}{(\sum_{i=1}^{p} b_i)^{\mu}} \leq \lambda \underbrace{\sum_{k=1}^{p} a_k}_{=1} + \mu \underbrace{\sum_{k=1}^{p} b_k}_{\sum_{i=1}^{p} b_i}$$

$$\sum_{k=1}^{p} \frac{a_k^{\lambda}}{(\sum_{i=1}^{p} a_i)^{\lambda}} \frac{b_k^{\mu}}{(\sum_{i=1}^{p} b_i)^{\mu}} \leq \lambda + \mu$$

$$\sum_{k=1}^{p} \frac{a_k^{\lambda}}{(\sum_{i=1}^{p} a_i)^{\lambda}} \frac{b_k^{\mu}}{(\sum_{i=1}^{p} b_i)^{\mu}} \leq 1$$

d'où

$$\sum_{k=1}^{p} a_k^{\lambda} b_k^{\mu} \le \left(\sum_{i=1}^{p} a_i\right)^{\lambda} \times \left(\sum_{i=1}^{p} b_i\right)^{\mu}$$