MEAN CONNECTOME

ERIKA DUNN-WEISS

1. Posed Statistical Decision Theoretic

This is an attempt to follow my notes from class and replicate what we discussed.

- 1.1. Sample Space. $\Omega = \mathcal{A}_n = \{0,1\}^{n \times n}$, the set of adjacency matrices \mathcal{A}_n on graphs $\mathcal{G}_n = (V, E, Y)$.
- 1.2. **Model.** $P = SBM_n^k(\rho, \beta)$. We posit the probability of an edge between u, v is given by $P(u \sim v) = P_{uv}$ and the distribution of edges between any pair of vertices u, v is $a_{u,v} \sim Bern(P_{uv})$
- 1.3. Action Space. $A = (0,1)^n \subseteq \Theta$, where Θ is the parameter space. This is desirable since this is a parameter estimation problem.
- 1.4. **Decision Rule Class.** The decision rule is to minimize the loss defined by the loss function below.
- 1.5. **Loss Function.** $l: \Theta \times A \to \mathbb{R}_{>0}$ where $l(\theta, \delta(\Omega))$ is the cost of action δ under parameter θ . More explicitly, $l(\theta, \delta(\Omega)) = \prod_{uv} \hat{P_{uv}}^{a_{uv}} (1 \hat{P_{uv}}^{1-a_{uv}})$, where $\hat{P_{uv}} = \frac{1}{m} \sum^m a_{uv} + \frac{\epsilon}{m^2}$ such that $\frac{\epsilon}{m^2} \leftarrow 0$ asymptotically. Since $P_{uv} \in [0, 1]$, you have issues at the boundaries when $P_{uv} = 0$ or 1, as the whole estimation becomes zero probability. Thus the use of \hat{P} is a necessary smoothing.
- 1.6. **Risk Function.** $R(\theta, \delta) = E_p(L(\theta, \delta(\Omega)))$. The risk function is taken as the expected loss.

Date: Mar 2, 2015.