Recherche Opérationnelle: graphes IT UNIVERSITY RAZAFINJATOVO M. Heriniaina

Chapitre 1

Graphe

Quoi:

Un graphe non orienté est un couple de deux ensembles :

- (a) Un ensemble des sommets dont le nombre est appelé ordre du graphe.
- (b) Un ensemble des arêtes qui relient les sommets deux a deux. Deux sommets reliés par une arête sont adjacents. Le degré d'un sommet est le nombre d'arêtes reliées a ce sommet.

Quand les arêtes ont un sens, on dit que le graphe est orienté.

Exemple :graphe non orienté

- On a ici un graphe non orienté avec 5 sommets;
- Les sommets A et B, A et C,..., sont adjacents;
- $\deg A=3$, $\deg B=3$, $\deg C=2$, $\deg E=3$, $\deg D=1$.

Exemple :graphe orienté

1. Représentation non graphique

1.1. Tableau. Les X représentent les arêtes (les arcs si le graphe est orienté); ils peuvent être remplacé par les longueurs ou autre mesure de ces arêtes ou arcs.

Graphe non orienté

Graphe orienté

(1.6)

1.2. Dictionnaire. Utilisé seulement pour les graphes orientés. Il fournit pour chaque sommet la liste de ces prédécesseurs ou ces successeurs.

Sommets	Prédécesseurs
А	
В	А
С	А
D	В
E	A,B,C

ou

Sommets	Successeurs
А	B,C,E
В	D,E
С	E
D	
Е	

1.3. Matrice d'adjacences. Cette représentation donne une matrice carrée dont les termes 1 indique la présence d'un arc entre deux sommets.

$\boxed{\ \rightarrow\ }$	Α	В	С	D	Е
Α		Χ	Χ		Х
В				Х	Х
С					Х
D					
Е					

$$\begin{pmatrix}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
(1.7)

2. Coloration d'un graphe

- (a) Consiste a affecter a tous les sommets une couleur de telle sorte que deux sommets adjacents ne portent pas la même couleur.
- (b) Un sous-ensemble de l'ensemble des sommets est un stable s'il ne contient que des sommets non adjacents deux a deux.
- (c) Une coloration avec k couleurs est une partition des sommets en k stables.
- (d) Le nombre de stabilité d'un graphe est le cardinal de son plus grand stable. Le nombre chromatique d'un graphe est le plus petit entier t tel qu'il existe une partition de ses sommets en t stables (nombre minimum de couleur).

Dans le cas réel, colorer un graphe équivaut a séparer des événements incompatibles. En utilisant le nombre chromatique, la coloration d'un graphe peut-être perçu comme un problème d'optimisation.

Les stables sont par exemple $\{A, D\}$, $\{B, C\}$ et $\{E\}$. Le nombre chromatique est égal a 3. Remarquons qu'on peut aussi avoir $\{A\}$, $\{B, C\}$ et $\{D, E\}$. Il n'y a donc pas forcement unicité.

2.1. Algorithme de coloration.

- Ranger les sommets par ordre de degré décroissant.
- Attribuer au premier sommet de la liste une couleur.
- Suivre la liste en attribuant la même couleur au sommet non adjacent a ceux déjà colorés.
- Attribuer une deuxième couleur pour le premier sommet de la liste non coloré et répéter les étapes précédentes.

Pour notre exemple, on a :

Sommets	Α	В	Е	С	D
Degrés	3	3	3	2	1

— On colore A en rouge.

- Le seul sommet non adjacent a A est le sommet D, donc on colore D en rouge.
- On colore B en bleu, idem pour C.
- On colore E en vert.

EXERCICE 1.1. L'ITU doit organiser les examens de repêchage; on suppose qu'il y a 7 cours A,B,C,D,E,F,G et que les pairs des examens suivants ont des étudiants en communs : A et B; A et C; A et D; A et G; B et C; B et D; B et E; B et G; C et D; C et F; C et G; D et E; D et F; E et F; E et G; F et G.

Comment organiser ces examens de façon minimale?