Tycho

Problem ID: tycho

Космічний дослідницький корабель *Tycho VIII* повинен повернутися до бази після збору мінеральних зразків. Тусhо рухається прямою лінією з позиції 0 до дому на позицію *b*. Рухаючись, він продовжує свій шлях повільною, але сталою швидкістю 1 одиниця на секунду. Кожну секунду Тусhо отримує 1 одиницю пошкоджень від важких планетарних умов.

Ситуацію ускладнює радіація від недалекої пульсари, яка додає d додаткових одиниць пошкоджень кожні p секунд. Однак радіаційних пошкоджень можна уникнути, шукаючи укриття в одному з n різних місць для приховування—печерах, рослинностях, великих каменях, трупах мегафауни планети—під час подорожі. Тусһо може вибрати будь-яку точку на маршруті та стояти на місці будь-яку цілу кількість секунд.

Початкова позиція 0 та дім на b обидва мають укриття, тому Тусhо не отримує радіаційні пошкодження там.

Яке є мінімальне пошкодження, яке отримає Тусhо під час повернення до дому?

Приклад

Розглянемо ситуацію, де дім знаходиться на позиції 18, а укриття ϵ на позиціях 8 та 15.

Припустимо, що період випромінювання пульсара дорівнює 4, тому якщо Тусһо не заховується в укритті, він отримуватиме пошкодження у моменти часу 4, 8, 12 тощо. Якщо Тусһо вирушає зі стартової позиції (де він прихований від радіації) у час 0, то він може дістатися до першого укриття через 8 секунд, отримавши випромінювання d у час 4 (але не отримуючи випромінювання в час 8, оскільки тоді він захищений). Продовжуючи рух без зупинки, він дістається до бази в позиції b в час 18, зазнавши ще d+d одиниць радіаційної шкоди (у часи 12 та 16 відповідно). Таким чином, він зазнає d+d+d=3d одиниць радіаційної шкоди та 18 одиниць шкоди від навколишнього середовища. Якщо ж Тусһо зупиниться на другому укритті (у позиції 15) на 1 секунду, то у цей час удар пульсара у час 16 не завдаєть йому шкоди, і він дістанеться до бази в позиції b в час 19 із загальним дискомфортом 2d+19 одиниць. Це краще для більшості значень d. Обидві ситуації показані тут:

Якщо період пульсара дорівнює 10, то Тусһо може зачекати на початковій позиції протягом 2 секунд, а потім просто повернутися додому, не зупиняючись в жодному укритті. Таким чином, він проходить перше укриття (на позиції 8) саме в той момент, коли пульсар спалахує і прибуває до дому в час 20, із загальним збитком від навколишнього середовища 20 і жодної шкоди від радіації.

Вхідні дані

 $0 < a_1 < \cdots < a_n < b$. Перший рядок містить чотири цілих числа b, p, d і n, розділені одинарним пробілом: розташування домашньої бази b, період спалахів пульсара p, додаткові радіаційні збитки d, спричинені кожним спалахом пульсара, кількість прихистків n. Наступні n рядків містять ціле число, що вказує розташування прихистків a_1 , ..., a_n , де $0 < a_1 < \cdots < a_n < b$.

Вихідні дані

Виведіть одне ціле число: мінімальну кількість пошкоджень, яку Тусhо повинен зазнати, щоб досягти місця призначення b.

Обмеження та оцінювання

Ви можете припустити, що $1 \le p < b$ та $0 \le n < b$. Ми завжди маємо: $1 \le b \le 10^{12}$, $0 \le d \le 10^6$, та $0 \le n \le 10^5$.

Ваше рішення буде перевірено на наборі тестових груп, кожна з яких має певну кількість балів. Кожна група містить певну кількість тестових випадків. Щоб отримати бали за групу тестів, потрібно вирішити всі тестові випадки в цій групі. Ваш кінцевий бал буде максимальним балом за одне відправлення.

Група Бали Обмеження

- 1 8 $p \le 10^6$ та Тусһо не повинен чекати *після* виходу з позиції 0.*
- 2 5 $b \le 1000, p \le 100, n \le 10$
- $3 7 b \le 1000$
- 4 15 $p \le 10^6, n \le 1000$
- 5 $20 p \le 100$

^{*} У групі тестів 1 Тусһо може все ще потрыбно чекати в позиції 0 *перед* початком руху. Наприклад, вхідні дані для прикладів 2, 3, та 4 належать до групи тестів 1.

Sample Input 1	Sample Output 1
18 4 5 2 8 15	29
Sample Input 2	Sample Output 2
18 4 0 2 8 15	18
Sample Input 3	Sample Output 3
18 10 100 2 8 15	20
Sample Input 4	Sample Output 4
18 4 100 0	418
Sample Input 5	Sample Output 5
65 20 100 3 14 25 33	172