DATA AUGMENTATION MIT VARIATIONAL AUTOENCODERN

Henri Iser

28. April 2021

Rheinische Friedrich-Wilhelms-Universität Bonn

GLIEDERUNG

- 1. Motivation
- 2. Variational Autoencoder
- 3. Datensätze
- 4. Generieren neuer Beispiele
- 5. Evaluation
- 6. Fazit

MOTIVATION

MOTIVATION

- · Neuronale Netzwerke lösen komplexe Aufgaben
- · Anforderung der großen Datenmengen oft nicht erfüllbar (Few-Shot Learning)
 - ⇒ Data-Augmentation
- · Generative Modelle effizient
- · Hier Variational Autoencoder als Data Augmentation Ansatz

VARIATIONAL AUTOENCODER

AUTOENCODER

Abbildung: Encoder-Decoder Architektur¹

- · Merkmalsvektoren stellen Repräsentation der Eingabe dar
- · Merkmalsraum hat keine geometrische Struktur

¹ entnommen aus Lopez Pinaya u. a., 2019

VARIATIONAL AUTOENCODER

Abbildung: VAE Architektur

Rekonstruktions Fehler

$$\mathcal{L}_{NLL} = -\mathbb{E}_{z \sim Q_{\phi}(z,|x)} \left[\log P_{\theta}(x|z) \right]$$

KL-Divergenz

$$\mathcal{L}_{KL} = \mathcal{D}_{KL} \left[Q_{\phi}(x|z) || \mathcal{N}(0, I) \right]$$

β -VAE 1

$$\mathcal{L}_{VAE} = \underbrace{\mathbb{E}_{z} \left[\log P_{\theta}(x|z) \right]}_{\text{Rekonstruktionsfehler}} - \beta \cdot \underbrace{\mathbb{E}_{z} \left[\mathcal{D}_{KL} \left[Q_{\phi}(z|x) || \mathcal{N}(0,I) \right] \right]}_{\text{KL-Divergenz}}$$
 (1)

außerdem

$$\beta_{norm} = \beta \cdot \frac{d}{N},\tag{2}$$

 mit Latent-Space Dimension d

¹ vorgeschlagen von Higgins u. a., 2017

VARIATIONAL AUTOENCODER

- · Merkmalsraum \rightarrow Latent-Space
- · Zwischenräume stellen Interpolationen dar
- · Merkmale probabilistisch abgebildet

2222222222222222222

Abbildung: Interpolation innerhalb der Klasse 2

DATENSÄTZE

DATENSÄTZE

Abbildung: MNIST Datensatz

Abbildung: CelebA Datensatz

DATENSÄTZE - PROBEN1

Datensatz	# Attribute	kontinuierlich	# Klassen	# Beispiele	Balancing
card	15	0.40	2	690	0.99
diabetes	8	1.00	2	768	0.93
geneN	60	0.00	3	3175	0.93
glass	9	1.00	6	214	0.84
horse-colic	20	0.70	3	364	0.84
thyroid	21	0.29	3	7200	0.28

Tabelle: PROBEN1 Datensatz Sammlung

· numerische Attributsdaten

GENERIEREN NEUER BEISPIELE

SAMPLING IM LATENT-SPACE

Abbildung: Latent-Space MNIST

Abbildung: Interpolation im Latent-Space

Henri Iser

SAMPLING METHODEN

· Sampling aus Normalverteilung

$$\hat{z}_i \sim \mathcal{N}(0, \alpha)$$

· Addition von Rauschen (Noise)

$$\hat{z}_i = z_i + \epsilon, \epsilon \sim \mathcal{N}(0, \alpha)$$

· Interpolation / Extrapolation zu k-Nächsten Nachbarn

$$\hat{z}_i = \pm \alpha \cdot [\mu_{\phi}(x_k) - \mu_{\phi}(x_i)] + \mu_{\phi}(x_i)$$

SAMPLING METHODEN

· Sampling aus Normalverteilung — Wie werden Labels zugeordnet?

$$\hat{z}_i \sim \mathcal{N}(0, \alpha)$$

· Addition von Rauschen (Noise)

$$\hat{z}_i = z_i + \epsilon, \epsilon \sim \mathcal{N}(0, \alpha)$$

· Interpolation / Extrapolation zu k-Nächsten Nachbarn

$$\hat{z}_i = \pm \alpha \cdot [\mu_{\phi}(x_k) - \mu_{\phi}(x_i)] + \mu_{\phi}(x_i)$$

MULTI-VAE

- · Trainiere einen VAE je Klasse
- · Aufteilung des Datensatzes
- · (optional) Mix-In der anderen Klassen zu 20%

Abbildung: Aufteilung des Datensatzes¹

¹ entnommen aus Moreno-Barea, Jerez und Franco, 2020

SINGLE- / MULTI-VAE

Single-VAE

Multi-VAE

- selbst-überwacht Trainierbar
 ⇒ Nutzen großer Datenmengen
- Sampling hängt von Originalbeispielen ab

- · Label Information benötigt
- · Zufälliges Sampling möglich
- Erfasst Klassenmerkmale besser

GENERATIVE CLASSIFIER (GC)

Abbildung: Konzept: Generative Classifier

GENERATIVE CLASSIFIER - TRAINING

- Erzeugen verrauschter Originalbeispiele ⇒ Für numerische Daten
- Verwenden eines frühen VAE Modells, um "schlechte"
 Rekonstruktionen zu simulieren ⇒ Für Bilddaten
- ⇒ Zusätzliche Hyperparameter

EVALUATION

LATENT-SPACE CLUSTERBILDUNG

Abbildung: Clusterbildung bei diskreten Attributen (Datensatz thyroid)

PROBEN1 Performanz

Datensatz	β	Baseline	VAE	VAE + GC
card	norm=0.133	0.871	0.873	0.869
balance: Ja	0.5	0.871	0.868	0.864
Mix data: Nein	1.0	0.871	0.876	0.871
diabetes	norm=0.25	0.823	0.831	0.826
balance: Ja	0.5	0.823	0.830	0.822
Mix data: Nein	1.0	0.823	0.827	0.833
geneN	norm=0.033	0.813	0.802	0.814
balance: Nein	0.5	0.813	0.818	0.813
Mix data: Ja	1.0	0.813	0.812	0.813
glass	norm=0.222	0.985	0.977	0.985
balance: Ja	0.5	0.985	0.977	0.985
Mix data: Nein	1.0	0.985	0.984	0.985
horse	norm=0.1	0.828	0.837	0.844
balance: Ja	0.5	0.828	0.833	0.835
Mix data: Nein	1.0	0.828	0.836	0.828
thyroid	norm=0.095	0.954	0.952	0.956
balance: Nein	0.5	0.954	0.927	0.956
Mix data: Ja	1.0	0.954	0.925	0.954

- · Sampling aus $\mathcal{N}(0,I)$
- $\cdot \sim 6000$ Schritte (VAE)
- \cdot Latent-Space Dimension d=2

Tabelle: PROBEN1 Weighted-F1-Score

PROBEN1 Few-Shot Szenario

# Beispiele pro Klasse	# Generierte Beispiele	Baseline	VAE	VAE + GC
5	5	0.619	0.693	0.675
10	10	0.727	0.778	0.761
20	20	0.735	0.753	0.778
30	30	0.772	0.786	0.796
50	50	0.818	0.815	0.808
100	100	0.935	0.927	0.922

Tabelle: thyroid Weighted-F1-Score

Abbildung: F1 Verbesserung

- · Reduzierte Datensatzgröße
- Verbesserung nimmt mit mehr Daten ab

Evaluation Henri Iser 23

MNIST Few-Shot Szenario

Latent-Space Dimension $d=50,\,\beta=0.5$, keine β -Normalisierung

# Beispiele pro Klasse	Baseline	Noise	Interpolation	Extrapolation	Interpolation + Noise	Extrapolation + Noise	Multi-VAE
2	0.660	0.619	0.669	0.654	0.674	0.653	0.678
3	0.699	0.662	0.706	0.700	0.703	0.706	0.706
4	0.734	0.703	0.740	0.732	0.744	0.734	0.734
5	0.776	0.721	0.782	0.756	0.787	0.768	0.770
10	0.849	0.825	0.855	0.861	0.859	0.849	0.854
20	0.905	0.878	0.905	0.911	0.905	0.909	0.904
30	0.929	0.898	0.924	0.930	0.927	0.923	0.923
50	0.941	0.920	0.939	0.941	0.942	0.938	0.937
100	0.954	0.940	0.951	0.953	0.951	0.950	0.949
200	0.962	0.950	0.958	0.960	0.956	0.958	0.956
500	0.964	0.955	0.962	0.963	0.962	0.963	0.959
1000	0.965	0.952	0.963	0.964	0.964	0.963	0.960
2000	0.967	0.953	0.964	0.966	0.963	0.964	0.963

Tabelle: MNIST Few-Shot: Weighted-F1-Score

MNIST - NUR GENERIERTE DATEN

Latent-Space Dimension d=50, $\beta=0.5$, keine β -Normalisierung # Originalbeispiele = 5

# Generierte Beispiele pro Klasse	Baseline	Noise	Interpolation + Noise	Extrapolation + Noise	Multi-VAE
2	0.776	0.402	0.636	0.542	0.635
3	0.776	0.518	0.681	0.637	0.666
4	0.776	0.542	0.699	0.616	0.697
5	0.776	0.555	0.686	0.574	0.712
10	0.776	0.618	0.740	0.696	0.764
20	0.776	0.670	0.748	0.740	0.773
30	0.776	0.700	0.765	0.744	0.769
50	0.776	0.726	0.774	0.754	0.763
100	0.776	0.750	0.797	0.771	0.768
200	0.776	0.765	0.790	0.761	0.771
500	0.776	0.788	0.792	0.770	0.774
1000	0.776	0.775	0.788	0.773	0.767
2000	0.776	0.777	0.792	0.765	0.770

Tabelle: Weighted-F1-Score bei nur generierten Daten

MNIST - Nur generierte Daten

Abbildung: Weighted-F1-Score bei nur generierten Daten

MNIST Few-Shot: Mehr generierte Daten

Latent-Space Dimension $d=50,\,\beta=0.5$, keine β -Normalisierung # Generierte Beispiele pro Klasse = 2000

# Beispiele	Baseline	Noise	Interpolation	Extrapolation	Multi-VAF
pro Klasse	Dasetine		+ Noise	+ Noise	MULLI VAL
2	0.660	0.679	0.668	0.638	0.634
3	0.699	0.716	0.715	0.711	0.687
4	0.734	0.748	0.747	0.740	0.724
5	0.776	0.779	0.795	0.772	0.768
10	0.849	0.851	0.868	0.871	0.839
20	0.905	0.894	0.907	0.919	0.897
30	0.929	0.905	0.922	0.936	0.916
50	0.941	0.914	0.935	0.945	0.925
100	0.954	0.923	0.946	0.951	0.936
200	0.962	0.929	0.952	0.960	0.934
500	0.964	0.939	0.957	0.960	0.924
1000	0.965	0.946	0.960	0.961	0.913
2000	0.967	0.953	0.963	0.964	0.905

Tabelle: MNIST Few-Shot: Weighted-F1-Score

EINFLUSS DES β -FAKTORS

Abbildung: Latent-Space MNIST mit verschiedenen Werten für β

· Hohe β -Werte führen zu unscharfen Rekonstruktionen

β -VAE DISENTANGLEMENT

(a)
$$\beta = 150$$

(b)
$$\beta = 1$$

Abbildung: Dimension Sweep CelebA; Trainiert mit β_{norm}

LIMITATIONEN VON VAE

Abbildung: Unschärfe Auftreten beim VAE¹

UNIVERSITÄT BONN Lab

30

 $^{^{}m 1}$ entnommen aus Plumerault, Borgne und Hudelot, 2020

FAZIT

Numerische Daten (PROBEN1):

- · Auf numerischen Daten Hyperparameter sensitiv, besonders bei diskreten Attributen
- · Geringe Verbesserung der Klassifikations Güte
- · Im Vergleich zu Moreno-Barea, Jerez und Franco, 2020 (GAN) geringere Performanz
- · Few-Shot kleine, konsistente Verbesserung

Bilddaten (MNIST, CelebA):

- · Nützliche Latent-Space Struktur
- · Dekorrelation unabhängiger Merkmale (eta-VAE)
- · Few-Shot: Konsistente Verbesserung
- · Single-VAE > Multi-VAE durch selbst-überwachtes Lernen
- · Starke Unschärfe Effekte

QUELLEN

Higgins, Irina u. a. (2017). "B-Vae: Learning Basic Visual Concepts With a Constrained Variational Framework". In: Iclr 2017.

Lopez Pinaya, Walter Hugo u. a. (2019). "Autoencoders". In: Machine Learning: Methods and Applications to Brain Disorders, S. 193–208. DOI: 10.1016/8978-0-12-815739-8.00011-0. arXiv: 2003.05991.

Moreno-Barea, Francisco J., José M. Jerez und Leonardo Franco (2020). "Improving classification accuracy using data augmentation on small data sets". In: Expert Systems with Applications 161, S. 113696. ISSN: 09574174. DOI: 10.1016/j.eswa.2020.113696. URL: https://doi.org/10.1016/j.eswa.2020.113696.

Plumerault, Antoine, Hervé Le Borgne und Céline Hudelot (2020). "AVAE: Adversarial Variational Auto Encoder". In: January, S. 1–16. arXiv: 2012.11551. URL: http://arxiv.org/abs/2012.11551.

