图像配准作业

姓名: 王霄汉

班级: 自动化钱 61

学号: 2160405061

提交日期: 2019.3.4

一. 手动标点:

二. 输出两幅图中对应点的坐标:

>> fixedPoints

fixedPoints =

1.0e+03 *

0.9032	1.2549
0.6333	1.3989
1.0371	1.4549
1.9993	1.9764

2.7405 0.82710.8892 0.27731.8262 0.7579

>> movingPoints

movingPoints =

1.0e+03 *

1.19301.69100.96801.90401.37601.85002.43802.11102.85800.81200.92900.75501.95500.9830

三. 计算转换矩阵:

根据转换矩阵的计算公式

$$H = QP^{T} (PP^{T})^{-1}$$

需要先将采集的点阵转置并添加全一的一行,得到3*7的标准矩阵如下

M =

1.0e+03 *

0.9032	0.6333	1.0371	1. 9993	2.7405	0.8892	1.8262
1. 2549	1. 3989	1. 4549	1.9764	0.8271	0. 2773	0.7579
0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010

N = | | | 1.0e+03 *

1. 1930	0.9680	1.3760	2.4380	2.8580	0.9290	1.9550
1.6910	1.9040	1.8500	2. 1110	0.8120	0.7550	0.9830
0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010

然后带入上式中可以得到H如下

四. 输出转换之后的图像:

五. 代码示例:

```
clc;clear;%利用函数手动标点获取坐标
```

```
A=imread('C:\Users\Administrator\Desktop\数字图像处理作业\图
像配准\Image A.jpg');
```

B=imread('C:\Users\Administrator\Desktop\数字图像处理作业\图

```
像配准\Image B.jpg');

cpselect(A,B);

%计算转换矩阵 H

M=[fixedPoints';ones(1,7)];
N=[movingPoints';ones(1,7)];
H=N*M'*inv(M*M');

%进行仿射变换

tform=fitgeotrans(fixedPoints,movingPoints,'affine');
B1=imwarp(B,tform);
```

%显示图像

```
subplot (1,2,1); imshow (B1); subplot (1,2,2); imshow (A);
```

六. 心得体会:

在图像处理的过程中,相当多的步骤可以利用 MATLAB 中的相关函数。但同时需要注意使用这些函数的条件,将课程中的方法进行适当的处理,再带入函数中。

在计算转换矩阵 H 之后,遇到了不知道如何使用 H 的问题。因为仿射变换采用的是矩阵右乘,而图像配准中则是 H 左乘到 P 上。考虑到通过计算 P P MP 的方式将左乘转换为右乘时,需要计算原图像的 P 矩阵列数达到千万级,最终选择了直接利用函数 fitgeotrans(),跳过了对 H 矩阵的使用。