

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 7 de julho de 2023

SEM CONSULTA

Duração da Prova: 1h 10

Uma pequena loja de eletrodomésticos pretende efetuar um estudo de simulação de modo a fazer uma melhor afetação de recursos humanos. Existem dois funcionários na área de atendimento e aconselhamento aos clientes, dois funcionários nas caixas de atendimento e um funcionário na zona de apoio ao cliente. A taxa de chegada segue uma distribuição uniforma entre 5 min e 7 min, sendo que 30% dos clientes abandonam o espaço sem efetuar qualquer compra. A escolha de produtos por parte do cliente tem uma duração que segue uma distribuição uniforme entre 30 e 200 min. O tempo de atendimento nas caixas de pagamento segue uma distribuição exponencial de valor médio 15 min. 15% dos clientes, no final das compras, dirigem-se ao apoio ao cliente. O apoio ao cliente tem um tempo de atendimento que segue uma distribuição exponencial de valor médio 40 min.

- a) Identifique e caracterize as entidades e as atividades. Apresente ciclo de atividades completo. (3 val)
- b) Identifique e caracterize o conjunto de eventos necessário à simulação do sistema descrito, segundo uma abordagem de Simulação Discreta por Eventos. Apresente todos os eventos, analise e justifique, com base na apresentação de um **grafo de eventos**, quantas e quais as rotinas de eventos que no **mínimo** teria de implementar. (3 val)
- c) Apresente, em pseudo-código, as rotinas dos eventos associados à gestão da fila nas caixas de pagamento.
 (3 val)
- d) Indique quais as <u>medidas de desempenho e 2 cenários alternativos a analisar</u>, de modo a sugerir melhorias no funcionamento do sistema. (2 val)
- e) Indique quantas e quais são as fontes de aleatoriedade do sistema. (2 val)
- f) Indique vantagens e desvantagens da elaboração e utilização de distribuições empíricas. (3 val)
- g) Fizeram-se 10 corridas de simulação com 2 dos cenários propostos. Considere, a tabela com os valores médios do atraso total por cliente. **Qual o cenário mais adequado?** Considere uma confiança de 90%. **Apresente todos os cálculos estatísticos que suportam as conclusões**. (4 val)

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 7 de julho de 2023

SEM CONSULTA

Duração da Prova: 1h 10

Resultados Simulação										\bar{X}	S^2	
Configuração 1	12,3	9,1	11,2	10,6	22	4,5	8	9,3	21,3	15,3	12,36	31,85
Configuração 2	3,6	4	8,9	5,7	7,5	9,5	5	11	7	9	7,12	6,25

			,						γ				
,	0.6000	0.7000	0.8000	0.9000	0.9333	0.9500	0.9600	0.9667	0.9750	0.9800	0.9833	0.9875	0.9900
1	0.325	0.727	1.376	3.078	4.702	6.314	7.916	9.524	12.706	15.895	19.043	25.452	31.821
2	0.289	0.617	1.061	1.886	2.456	2.920	3.320	3.679	4.303	4.849	5.334	6.205	6.965
3	0.277	0.584	0.978	1.638	2.045	2.353	2.605	2.823	3.182	3.482	3.738	4.177	4.541
4	0.271	0.569	0.941	1.533	1.879	2.132	2.333	2.502	2.776	2.999	3.184	3.495	3.747
5	0.267	0.559	0.920	1.476	1.790	2.015	2.191	2.337	2.571	2.757	2.910	3.163	3.365
6	0.265	0.553	0.906	1.440	1.735	1:943	2.104	2.237	2.447	2.612	2.748	2.969	3.143
7	0.263	0.549	0.896	1.415	1.698	1.895	2.046	2.170	2.365	2.517	2.640	2.841	2.998
8	0.262	0.546	0.889	1.397	1.670	1.860	2.004	2.122	2.306	2,449	2.565	2.752	2.896
9.	0.261	0.543	0.883	1.383	1.650	1.833	1.973	2.086	2.262	2.398	2.508	2.685	2.821
10	0.260	0.542	0.879	1.372	1.634	1.812	1.948	2.058	2.228	2.359	2.465	2.634	2.764
11	0.260	0.540	0.876	1.363	1.621	1.796	1.928	2.036	2.201	2.328	2.430	2.593	2.718

$$S^{2}(n) = \frac{\sum_{i=1}^{n} \left[X_{i} - \overline{X}(n) \right]^{2}}{n-1} \qquad \overline{X}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S^{2}(n)}{n}} \qquad t_{n} = \frac{\left[\overline{X}(N) - \mu \right]}{\sqrt{S^{2}(n)/n}}$$

$$n_a^*(\beta) = \min \left\{ i \ge n : t_{i-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{i}} \le \beta \right\}$$

$$\overline{Z}(n) = \frac{\sum_{j=1}^{n} Z_{j}}{n} \qquad Var[\overline{Z}(n)] = \frac{\sum_{j=1}^{n} \left[Z_{j} - \overline{Z}(n) \right]^{2}}{n(n-1)}$$

$$\widehat{f} = \frac{\left[S_{1}^{2}(n_{1}) / n_{1} + S_{2}^{2}(n_{2}) / n_{2} \right]^{2}}{\left[S_{1}^{2}(n_{1}) / n_{1} + S_{2}^{2}(n_{2}) / n_{2} \right]^{2}}$$

$$\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \sqrt{Var[\overline{Z}(n)]}$$

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 7 de julho de 2023

SEM CONSULTA

Duração da Prova: 1h 10

1-> Entidades: Existem dois funcionários na área de atendimento e aconselhamento aos clientes, dois funcionários nas caixas de atendimento e um funcionário na zona de apoio ao cliente, cliente.

Atividades do cliente: chegada, saída, escolha de produtos, cliente_atendimento, cliente_espera_atendimento, cliente_espera_apoio, cliente_apoio;

Atividades dos funcionários: funcionário_Livre, funcionário atende cliente (todos os funcionarios fazem isto)

2-> 12 eventos (inícios e fins de todas as atividades, exceto as de espera, esta só têm um evento)

função clienteEscolheProduto():

```
c)/ Função para chegada de clientes
função chegadaCliente():
  totalClientes += 1
  tempoChegada <- gerarTempoUniforme(5, 7)
  tempoAtual += tempoChegada
  if (probabilidade(30)):
    // Cliente abandona sem comprar
    retornar
  else:
    tempoEscolha <- gerarTempoUniforme(30, 200)
    tempoCompra <- tempoAtual + tempoEscolha
    adicionarEvento(tempoCompra, "clienteEscolheProduto")
```

```
adicionarClienteFila(filaCaixa)
if (funcionarioCaixaDisponível()):
    chamarCaixa()

// Função para atendimento nas caixas
função chamarCaixa():
    cliente <- removerClienteFila(filaCaixa)
    tempoAtendimento <- gerarTempoExponencial(15)
    tempoAtual += tempoAtendimento
    clientesAtendidos += 1
    if (probabilidade(15)):
        // Cliente vai ao apoio ao cliente
        tempoApoio <- gerarTempoExponencial(40)
        adicionarEvento(tempoAtual + tempoApoio, "
atendimentoApoioCliente")
```

// Verificar se há mais clientes na fila if (temClientesNaFila(filaCaixa)):

chamarCaixa()

```
// Função para eventos gerais
função adicionarEvento(tempoEvento, tipoEvento):
    // Adicionar o evento na lista de eventos

função processarEventos():
    enquanto (existemEventos()):
        evento <- removerProximoEvento()
        tempoAtual <- evento.tempo
        se (evento.tipo == "chegadaCliente"):
            chegadaCliente()
        senão se (evento.tipo == "clienteEscolheProduto"):
            clienteEscolheProduto()
        senão se (evento.tipo == "chamarCaixa"):
            chamarCaixa()
        senão se (evento.tipo == "atendimentoApoioCliente"):
            atendimentoApoioCliente()</pre>
```

d) Medidas de desempenho: Tempos médio de espera, tempos médio de atendimento na caixa e apoio ao cliente.

Cenários a analisar: Aumento do número de funcionários de atendimento (caixa) para reduzir o tempo de espera; Aumento do número de funcionários de apoio ao cliente para reduzir o tempo de espera;

e) Taxa de chegada de clientes Abandono de clientes Duração de escolha de produtos Tempo de atendimento nas caixas Taxa de apoio ao cliente Tempo de atendimento no apoio ao cliente

6

f) Vantagens: Precisão e realismo; Flexibilidade; Intuitividade;

Desvantagens:
Dependência de dados de alta qualidade
Complexidade Computacional
Generalização Limitada

Embora as distribuições empíricas ofereçam uma representação fiel e detalhada dos dados reais e sejam flexíveis para se adaptar a diferentes formas de dados, elas exigem dados de alta qualidade e quantidade significativa, podem ser computacionalmente intensivas e têm limitações na generalização dos resultados. Portanto, a escolha entre distribuições empíricas e teóricas deve considerar as especificidades do problema em questão, a disponibilidade de dados e os objetivos da análise.

g) Passos a seguir:

- Calcular intervalos de confiança para cada configuração
- Intervalo de confiança para a configuração 1 -> (9.891,14.829)
- Intervalo de confiança po cenário 2 -> (6.027,8.213)

O intervalo de confiança para a média da Configuração 1 é mais amplo (6.34,18.26) em comparação com o da Configuração 2 (3.05,11.19).

Isso indica que, com 90% de confiança, a média da Configuração 2 é mais precisa e está menos sujeita a variações do que a média da Configuração 1.

Conclusão:

Considerando o critério de intervalo de confiança com 90%, a Configuração 2 parece ser mais adequada, pois apresenta um intervalo de confiança mais estreito para a média dos resultados de simulação. Isso sugere que a média da Configuração 2 é mais estável e menos variável em comparação com a Configuração 1