ÉLECTROCINÉTIQUE II Régimes transitoires

Exercices indispensables: 1, 2, 4.

Exercice 1 Dans le circuit a), l'interrupteur K_2 est fermé. À t=0, on ferme l'interrupteur K_1 puis à t'=4 ms on ouvre K_2 . Calculer l'intensité i(t), en tracer la courbe représentative.

Exercice 2 Dans le circuit b) le condensateur C_1 a une charge initiale q_0 et le condensateur C_2 est déchargé. On ferme le circuit à t=0. Calculer $i(t), u_{AB}(t)$ et $u_{CD}(t)$. Tracer les courbes représentatives. A.N. $C_1=6\,\mu\text{F}, C_2=3\,\mu\text{F}, R=20\,\Omega, q_0=3.10^{-4}\,\text{C}.$

Exercice 3 Dans le circuit c), la f.é.m. e(t) est périodique de période 2T, avec e(t) = E > 0 pour 0 < t < T et e(t) = 0 pour T < t < 2T. À t = T/2 on ferme l'interrupteur alors que le condensateur est déchargé. Calculer q(t) en supposant T = 20RC. Tracer la courbe représentative de q(t).

Exercice 4 On ferme le circuit d) à t=0, l'intensité i étant nulle. Calculer les intensités des courants qui passent dans les trois branches en fonction du temps. Interpréter le résultat obtenu quand $t\to\infty$.

Exercice 5 Dans le circuit e), on ferme l'interrupteur à t = 0. On suppose en outre que $L = R^2C$ et qu'initialement le condensateur est déchargé. Donner l'expression des fonctions $i_1(t)$, $i_2(t)$ et q(t).

