

Vocabulary

Review

1. How is a *product* different from a *quotient?*

2. Circle the *product* of 12 and 4. Underline the *quotient* of 12 and 4.

reciprocals

 $\frac{a}{b}$ and $\frac{b}{a}$, where

 $a \neq 0$ and $b \neq 0$

Vocabulary Builder

reciprocal (noun) rih sıp ruh kul

Related Term: multiplicative inverse

Definition: Two numbers are **reciprocals** if their product is 1.

Main Idea: To write the **reciprocal** of a fraction, switch the numerator and denominator of the fraction.

Examples:
$$\frac{4}{5}$$
 and $\frac{5}{4}$, $-\frac{7}{8}$ and $-\frac{8}{7}$, 5 and $\frac{1}{5}$, $1\frac{1}{2}$ and $\frac{2}{3}$

Use Your Vocabulary

3. Draw a line from each expression in Column A to its *reciprocal* in Column B.

Column A	Column B
$\frac{3}{4}$	2
$\frac{1}{2}$	$-\frac{3}{5}$
-2	$-\frac{1}{2}$
$1\frac{3}{4}$	$\frac{4}{3}$
$-\frac{5}{3}$	$\frac{4}{7}$

ke note

Key Concept Multiplying and Dividing Real Numbers

The product or quotient of two real numbers with different signs is negative.

The quotient of 0 and any nonzero real number is 0.

The product or quotient of two real numbers with the same sign is positive.

The quotient of any real number and 0 is undefined.

4. Write negative, positive, undefined, or zero for each result.

$$5(-9)$$

$$-8(-2)$$

$$0 \div 9$$

$$9 \div 0$$

5. Write 4 or (-4) to make each equation true.

Problem 1 Multiplying Real Numbers

Got It? What is each product?

$$6(-15)$$

$$-\frac{7}{10}\left(\frac{3}{5}\right)$$

$$(-4)^2$$

6. In 6(-15) and $-\frac{7}{10}(\frac{3}{5})$, the signs of the numbers are the same / different.

So, the product of 6 and (-15) and the product of $-\frac{7}{10}$ and $\frac{3}{5}$ will be positive / negative.

7. Multiply.

$$6(-15) = -\frac{7}{10} \left(\frac{3}{5}\right) =$$

$$-\frac{7}{10}\left(\frac{3}{5}\right) =$$

8. In 12(0.2) and (-4)(-4), the signs of the numbers are the same / different.

9. Multiply.

$$12(0.2) = (-4)^2 = (-4)(-4) =$$

Problem 2 Simplifying Square Root Expressions

Got It? What is the simplified form of $\sqrt{100}$?

10. Circle the equation that uses the positive square root of 100.

$$2 \cdot 50 = 100$$

$$4 \cdot 25 = 100$$

23

$$10 \cdot 10 = 100$$

11. Will the simplified form of $\sqrt{100}$ be *positive* or *negative*? Explain.

12. The simplified form of $\sqrt{100}$ is

Problem 3 Dividing Real Numbers

Got !!? You make five withdrawals of equal amounts from your bank account. The total amount you withdraw is \$360. What is the change in your account balance each time you make a withdrawal?

13. Complete the model.

Relate	total amount withdrawn	divided by	number of withdrawals	is	change in account balance each time
Write		÷	5	=	

14. The change in the account balance per withdrawal is -\$

ake note

Property Inverse Property of Multiplication

For every nonzero real number a, there is a **multiplicative inverse** $\frac{1}{a}$ such that $a\left(\frac{1}{a}\right) = 1$.

The reciprocal of a nonzero number of the form $\frac{a}{b}$ is $\frac{b}{a}$. The product of a number and its reciprocal is 1, so the reciprocal of a number is its multiplicative inverse.

Dividing by a fraction is equivalent to multiplying by the reciprocal of the fraction. In general, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ for b, c, and $d \neq 0$.

Problem 4 Dividing Fractions

Got lt? What is the value of $\frac{3}{4} \div \left(-\frac{5}{2}\right)$?

Underline the correct word to complete each sentence.

- **15.** The expression shows multiplication / division.
- **16.** To divide fractions, multiply the **first / second** fraction by the reciprocal of the first / second fraction.
- **17.** Simplify the expression below.

$$\frac{3}{4} \div \left(-\frac{5}{2}\right) = \frac{3}{4} \cdot \left(-\frac{1}{2}\right)$$
Multiply by the reciprocal of $-\frac{5}{2}$.
$$= -\frac{1}{20}$$
Multiply.
$$= \text{Simplify.}$$

Got lt? Reasoning Is $\frac{3}{4} \div \left(-\frac{5}{2}\right)$ equivalent to $-\left(\frac{3}{4} \div \frac{5}{2}\right)$? Explain.

18. Dividing a number by $\frac{5}{2}$ is equivalent to multiplying the number by

20. Is $\frac{3}{4} \div \left(-\frac{5}{2}\right)$ equivalent to $-\left(\frac{3}{4} \div \frac{5}{2}\right)$? Explain.

Lesson Check • Do you UNDERSTAND?

Reasoning Use a number line to explain why $-15 \div 3 = -5$.

- **21.** In words, $-15 \div 3$ means dividing -15 into equal groups.
- **22.** To model $-15 \div 3$ on a number line, start at -15. Then use arrows to show three equal groups. The first equal group is shown.

23. What do the three arrows showing the equal groups represent?

24. Divide: $-15 \div 3 =$

Math Success

 $Check\ of f\ the\ vocabulary\ words\ that\ you\ understand.$

- Inverse Property of Multiplication
- multiplicative inverse
- reciprocal

Rate how well you can multiply and divide real numbers.

