Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki

Mateusz Śliwiński

Kierunek: Informatyka

Zastosowanie data science do analizowania preferencji zakupowych użytkowników oraz sugerowania im potencjalnych towarów i usług.

> Praca magisterska wykonana w Katedra Metod Matematycznych Informatyki pod kierunkiem dr. Andrzeja Jankowskiego

University of Warmia and Mazury in Olsztyn Faculty of Mathematics and Computer Science

Mateusz Śliwiński

Field of Study: Computer Science

Using data science to analyze users' shopping preferences and suggest potential goods and services.

Master's Thesis is performed in the Chair of Mathematical Methods of Computer Science under supervision of Andrzej Jankowski, PhD

Streszczenie

szablon streszczenia

Abstract

Using data science to analyze users' shopping preferences and suggest potential goods and services.

dfsf

Spis treści

Streszczenie]
Abstract	2
$\mathbf{W}\mathbf{step}$	4
Rozdział 1. Wymagania aplikacji	ŀ
Rozdział 2. Użyte technologie	6
Rozdział 3. Źródła danych	7
Rozdział 4. Wizualizacja danych	8
Rozdział 5. Trenowanie modeli	Ć
Rozdział 6. Opis wykorzystanych algorytmów	10
6.2. Sieć neuronowa	10 10 10 10
Rozdział 7. Implementacja i omówienie kodu	11
	11 11
Rozdział 8. Sprawdzanie efektywności uczenie zaespołowego- AB testy	12
Rozdział 9. Podsumowanie	13
Spis rysunków	14
Spis tabel	15
Rozdział 10. Spis algorytmów	16
Rozdział 11. Indeks stosowanych oznaczeń	17
Rozdział 12. Używane źródła danych i dokumentów z Internetu	18
Ribliografia	10

Wstęp

sdfsdfs

Wymagania aplikacji

sgsgfsdg

Użyte technologie

fgxf

Źródła danych

dasdsa

Wizualizacja danych

dasdsa

Trenowanie modeli

dasdsa

Opis wykorzystanych algorytmów

(tutaj jeszcze nie wiem jakich użyję więc wrzucam jak najwięcej, żeby mieć potem w czym wybierać)

6.1. Mierzenie dokładności algorytmów decyzyjnych

tutaj coś o błędach dfghdfgh

6.2. Sieć neuronowa

dfghdfgh

6.3. Drzewo decyzyjne – regresyjne

dfghdfgh

6.4. Regresyjny las losowy (ang. Regression forest)

fghfgh

6.5. Drzewo decyzyjne wzmocnione

ghjghj hjkgk

Implementacja i omówienie kodu

7.1. Algorytmy

 ${\rm fudtuy}$

7.2. Łączenie algorytmów

fudtuy

Sprawdzanie efektywności uczenie zaespołowego- AB testy

 cgjh

Podsumowanie

gh

Spis rysunków

dsa

Spis tabel

sdadsa

Spis algorytmów

sdadsa

Indeks stosowanych oznaczeń

sdadsa

Używane źródła danych i dokumentów z Internetu

 $Artificial\ neural\ network\ \texttt{https://en.wikipedia.org/wiki/Artificial_neural_network}, dostęp\ online:\ 20.01.2022.$

Bibliografia

[1] Artificial neural network https://en.wikipedia.org/wiki/Artificial_neural_network, do-stęp online: 20.01.2022.