PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-100637

(43)Date of publication of application: 05.04.2002

(51)Int.CI.

H01L 21/336 H01L 21/20 H01L 29/786

(21)Application number : 2001-236924

(71)Applicant: SEMICONDUCTOR ENERGY LAB

CO LTD

(22)Date of filing:

21.02.1995

(72)Inventor: KUSUMOTO NAOTO

YAMAZAKI SHUNPEI

(54) THIN FILM TRANSISTOR AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a manufacturing method of a thin film transistor by using laser crystallization.

SOLUTION: A predetermined region constituted of amorphous silicon on an insulator surface is crystallized by a scanning irradiation of laser light, and then the crystallized predetermined region is used as an active layer of a thin film transistor. Since the crystallized island-like semiconductor region is constituted of a single crystal or a region regarded as a single crystal, the thin film transistor with excellent electrical characteristics can be manufactured by using the island-like semiconductor region as the active layer.

LEGAL STATUS

[Date of request for examination]

05.09.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-100637

(P2002-100637A)

(43)公開日 平成14年4月5日(2002.4.5)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

H01L 21/336

21/20 29/786 H01L 21/20

5F052

29/78

627G 5F110

審查請求 有

請求項の数10 OL (全 13 頁)

(21)出願番号

特職2001-236924(P2001-236924)

(62)分割の表示

特職2001-156269(P2001-156269)の

分割

(22)出顧日

平成7年2月21日(1995.2.21)

(71) 出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72) 発明者 楠本 直人

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 山崎 舜平

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 蒋麒トランジスタ及びその作製方法

(57)【要約】

【課題】 レーザー結晶化を用いた薄膜トランジスタの 作製方法を提供する。

【解決手段】 絶縁表面上の非晶質珪素からなる所定の 領域にレーザー光を走査しながら照射して該所定の領域 を結晶化し、該結晶化された所定の領域を用いて薄膜ト ランジスタの活性層を形成することを特徴とする。この ように結晶化された島状半導体領域は、単結晶または単 結晶と見なせる領域で構成されるため、該島状半導体領 域を活性層に用いることにより、電気特性に優れた薄膜 トランジスタを作製できる。

【特許請求の範囲】

【請求項1】絶縁表面上の非晶質珪素からなる所定の領域にレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項2】絶縁表面上の非晶質珪素からなる所定の領域に波長1064nmのレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項3】絶縁表面上の非晶質珪素からなる所定の領域に波長532nmのレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項4】絶縁表面上の非晶質珪素からなる所定の領域に波長355nmのレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項5】絶縁表面上の非晶質珪素からなる所定の領域にエキシマレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて 薄膜トランジスタの活性層を形成することを特徴とする 薄膜トランジスタの作製方法。

【請求項6】絶縁表面上の非晶質珪素からなる所定の領域にYAGレーザー光を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項7】絶縁表面上の非晶質珪素からなる所定の領域にYAGレーザー光の第2高調波を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項8】絶縁表面上の非晶質珪素からなる所定の領域にYAGレーザー光の第3高調波を走査しながら照射して該所定の領域を結晶化し、該結晶化された所定の領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜トランジスタの作製方法。

【請求項9】請求項6乃至請求項8のいずれか一において、前記YAGレーザー光は、Nd:YAGレーザー光 であることを特徴とする薄膜トランジスタの作製方法。

【請求項10】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長1064nmのレーザー光を 走査しながら照射して該所定の領域を結晶化し、該結晶 化された所定の領域を用いて薄膜トランジスタの活性層 を形成することを特徴とする薄膜トランジスタの作製方 法。 【請求項11】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長532nmのレーザー光を走 査しながら照射して該所定の領域を結晶化し、該結晶化 された所定の領域を用いて薄膜トランジスタの活性層を 85 形成することを特徴とする薄膜トランジスタの作製方 法。

【請求項12】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長355nmのレーザー光を走 査しながら照射して該所定の領域を結晶化し、該結晶化 10 された所定の領域を用いて薄膜トランジスタの活性層を 形成することを特徴とする薄膜トランジスタの作製方 法。

【請求項13】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたエキシマレーザー光を走査しなが 15 ら照射して該所定の領域を結晶化し、該結晶化された所 定の領域を用いて薄膜トランジスタの活性層を形成する ことを特徴とする薄膜トランジスタの作製方法。

【請求項14】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたYAGレーザー光を走査しながら 20 照射して該所定の領域を結晶化し、該結晶化された所定 の領域を用いて薄膜トランジスタの活性層を形成するこ とを特徴とする薄膜トランジスタの作製方法。

【請求項15】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたYAGレーザー光の第2高調波を 25 走査しながら照射して該所定の領域を結晶化し、該結晶 化された所定の領域を用いて薄膜トランジスタの活性層 を形成することを特徴とする薄膜トランジスタの作製方 法。

【請求項16】絶縁表面上の非晶質珪素からなる所定の 30 領域に連続発振されたYAGレーザー光の第3高調液を 走査しながら照射して該所定の領域を結晶化し、該結晶 化された所定の領域を用いて薄膜トランジスタの活性層 を形成することを特徴とする薄膜トランジスタの作製方 注

35 【請求項17】請求項14乃至請求項16のいずれか一 において、前記YAGレーザー光は、Nd:YAGレー ザー光であることを特徴とする薄膜トランジスタの作製 方法。

【請求項18】絶縁表面上の非晶質珪素からなる所定の 領域にレーザー光を走査しながら照射して該所定の領域 を結晶化し、該結晶化された所定の領域を用いて薄膜ト ランジスタの活性層を形成する薄膜トランジスタの作製 方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項19】絶縁表面上の非晶質珪素からなる所定の 領域に波長1064nmのレーザー光を走査しながら照 射して該所定の領域を結晶化し、該結晶化された所定の 50 領域を用いて薄膜トランジスタの活性層を形成する薄膜 トランジスタの作製方法であって、

前配結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項20】絶縁表面上の非晶質珪素からなる所定の 領域に波長532nmのレーザー光を走査しながら照射 して該所定の領域を結晶化し、該結晶化された所定の領 域を用いて薄膜トランジスタの活性層を形成する薄膜ト ランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項21】絶縁表面上の非晶質珪素からなる所定の 領域に波長355nmのレーザー光を走査しながら照射 して該所定の領域を結晶化し、該結晶化された所定の領 域を用いて薄膜トランジスタの活性層を形成する薄膜ト ランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項22】絶縁表面上の非晶質珪素からなる所定の 領域にエキシマレーザー光を走査しながら照射して該所 定の領域を結晶化し、該結晶化された所定の領域を用い て薄膜トランジスタの活性層を形成する薄膜トランジス タの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項23】絶縁表面上の非晶質珪素からなる所定の 領域にYAGレーザー光を走査しながら照射して該所定 の領域を結晶化し、該結晶化された所定の領域を用いて 薄膜トランジスタの活性層を形成する薄膜トランジスタ の作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項24】絶縁表面上の非晶質珪素からなる所定の 領域にYAGレーザー光の第2高調波を走査しながら照 射して該所定の領域を結晶化し、該結晶化された所定の 領域を用いて薄膜トランジスタの活性層を形成する薄膜 トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項25】絶縁表面上の非晶質珪素からなる所定の 領域にYAGレーザー光の第3高調波を走査しながら照 射して該所定の領域を結晶化し、該結晶化された所定の 領域を用いて薄膜トランジスタの活性層を形成する薄膜 トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向

は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項26】請求項23乃至請求項25のいずれかーにおいて、前記YAGレーザー光は、Nd:YAGレー 05 ザー光であることを特徴とする薄膜トランジスタの作製方法。

【請求項27】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長1064nmのレーザー光を 走査しながら照射して該所定の領域を結晶化し、該結晶 10 化された所定の領域を用いて薄膜トランジスタの活性層 を形成する薄膜トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

15 【請求項28】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長532nmのレーザー光を走 査しながら照射して該所定の領域を結晶化し、該結晶化 された所定の領域を用いて薄膜トランジスタの活性層を 形成する薄膜トランジスタの作製方法であって、

20 前記結晶化された所定の領域における結晶成長の方向は、キャリアの移動する方向に一致することを特徴とする薄膜トランジスタの作製方法。

【請求項29】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振された波長355nmのレーザー光を走 25 査しながら照射して該所定の領域を結晶化し、該結晶化 された所定の領域を用いて薄膜トランジスタの活性層を 形成する薄膜トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす 30 る薄膜トランジスタの作製方法。

【請求項30】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたエキシマレーザー光を走査しなが ら照射して該所定の領域を結晶化し、該結晶化された所 定の領域を用いて薄膜トランジスタの活性層を形成する 35 薄膜トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項31】絶縁表面上の非晶質珪素からなる所定の 40 領域に連続発振されたYAGレーザー光を走査しながら 照射して該所定の領域を結晶化し、該結晶化された所定 の領域を用いて薄膜トランジスタの活性層を形成する薄 膜トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 45 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項32】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたYAGレーザー光の第2高調波を 走査しながら照射して該所定の領域を結晶化し、該結晶

50 化された所定の領域を用いて薄膜トランジスタの活性層

を形成する薄膜トランジスタの作製方法であって、 前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項33】絶縁表面上の非晶質珪素からなる所定の 領域に連続発振されたYAGレーザー光の第3高調波を 走査しながら照射して該所定の領域を結晶化し、該結晶 化された所定の領域を用いて薄膜トランジスタの活性層 を形成する薄膜トランジスタの作製方法であって、

前記結晶化された所定の領域における結晶成長の方向 は、キャリアの移動する方向に一致することを特徴とす る薄膜トランジスタの作製方法。

【請求項34】請求項31乃至請求項33のいずれか一において、前記YAGレーザー光は、Nd:YAGレーザー光であることを特徴とする薄膜トランジスタの作製方法。

【請求項35】請求項18乃至請求項34のいずれか一において、前記結晶成長の方向は、前記レーザー光の走査方向と一致することを特徴とする薄膜トランジスタの作製方法。

【請求項36】請求項18乃至請求項34のいずれか一において、前記キャリアの移動する方向は、ゲイト電極に垂直な方向であることを特徴とする薄膜トランジスタの作製方法。

【請求項37】請求項1乃至請求項36のいずれか一に おいて、前記レーザー光は、線状のレーザー光であるこ とを特徴とする薄膜トランジスタの作製方法。

【請求項38】請求項1乃至請求項37のいずれか一に おいて、前記結晶化の際、前記レーザー光を走査するに 伴って結晶成長が進行することを特徴とする薄膜トラン ジスタの作製方法。

【請求項39】請求項1乃至請求項38のいずれか一に おいて、前記非晶質珪素からなる所定の領域の上面は、 長方形、正多角形、円形もしくは楕円形であることを特 徴とする薄膜トランジスタの作製方法。

【請求項40】請求項1乃至請求項39のいずれか一に おいて、前記結晶化された所定の領域は、単結晶領域で あることを特徴とする薄膜トランジスタの作製方法。

【請求項41】請求項1乃至請求項39のいずれか一に おいて、前記結晶化された所定の領域は、単結晶と見な せる領域であることを特徴とする薄膜トランジスタの作 製方法。

【請求項42】請求項1乃至請求項41のいずれか一に 記載の作製方法を用いて作製されたことを特徴とする薄 膜トランジスタ。

【請求項43】請求項42に記載の薄膜トランジスタを 用いたことを特徴とする表示装置。

【請求項44】請求項42に記載の薄膜トランジスタを 用いたことを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本明細書で開示する発明は、結晶性を有する薄膜半導体を用い、かつ、ゲイト電極を有する半導体装置、例えば、薄膜トランジスタの作製方 3 法に関する。薄膜トランジスタの応用範囲としては、アクティブマトリクス型の液晶表示装置が知られている。これは、マトリクス状に配置された数十万以上の画素のそれぞれにスイッチング素子として薄膜トランジスタを配置し、微細で高精細の表示をおこなうものである。

10 [0002]

【従来の技術】近年、ガラスや石英基板上に形成された 薄膜半導体を用いたトランジスタ(薄膜トランジスタや TFTと称される)が注目されている。これは、ガラス 基板や石英基板の表面に数百~数千Åの厚さを有する薄 15 膜半導体を形成し、この薄膜半導体を用いてトランジス タ(絶縁ゲイト型電界効果トランジスタ)を形成する技 術である。

【0003】このような薄膜トランジスタは、非晶質珪素(アモルファスシリコン)薄膜を用いたものと結晶性 20 珪素を用いたものが実用化されている。結晶性珪素を用いた薄膜トランジスタは特性が優れているため、将来性が期待されている。現在、実用化されている結晶性珪素 半導体を用いた薄膜トランジスタでは、結晶性珪素薄膜は非晶質珪素博膜を熱アニールする方法、もしくは、直 25 接、結晶性珪素膜を気相成長法によって成膜する方法によって得られている。しかしながら、プロセスの低温化という点ではレーザー等の強光を照射することによって、非晶質珪素膜を結晶化せしめる光アニール法が有望とされている。(例えば、特開平4-37144)

30 【0004】光アニールによって結晶性半導体薄膜を得る場合には大きく分けて2つの方法がある。第1の方法は半導体薄膜を形成する素子の形状にエッチングしてから光アニールする方法である。他の方法は平坦な膜を光アニールしたのち、形成する素子の形状にエッチングする方法である。一般に前者の方が後者よりも良好な特性(特に電界効果移動度)が得られることが知られていた。これは前者の方法では、光アニールの結果、膜が収縮し、パターンの中央部に応力が加わるためであると推定されている。

40 [0005]

【発明が解決しようとする課題】しかしながら、この場合にも問題は存在する。すなわち、初期特性は良いものの、長時間使用するにしたがって、急激に特性が悪化するという問題である。

- 45 【0006】従来の方法によって特性の劣化が生じた原因を図3を用いて説明する。最初、図3(A)に示されるような長方形32の非晶質珪素の島状半導体領域31を形成したとする。これを光アニールすると結晶化によって膜が僅かだが収縮する(図の点線は光アニール前の
- 50 島状半導体領域の大きさを示す)。また、この収縮過程

において、島状領域領域の外周部に歪みが蓄積した領域 33が形成される。このような領域33の結晶性はそれ ほど良好なものではない。(図3(B))

【0007】このような島状領域を横断してゲイト電極 34を形成した場合(図3(C))には、図3(D)に そのゲイト電極に沿った(a-b)断面を示すように、 ゲイト電極34およびゲイト絶縁膜35の下に歪みの蓄 積した領域33が存在することとなる。ゲイト電極に電 圧を印加すると、領域33とゲイト絶縁膜35の界面特 性が良好でないために電荷がトラップされるようにな り、この電荷による寄生チャネル等によって劣化が発生 する。(図3(D))

【0008】本発明はこのような特性の劣化に鑑みてな されたものであり、劣化の少ない絶縁ゲイト型半導体装 置の作製方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明の第1は以下のよ うな工程を有する。

- (1) 非晶質半導体膜を、その最も狭い部分の幅が 1 00μm以下である第1の形状にエッチングし、島状半 導体領域を形成する工程
- (2) 前記半導体領域に光アニールを施して、結晶化 せしめる、もしくは、結晶性を高める工程
- 前記半導体領域の端部(もしくは周辺部)のう ち、少なくとも半導体装置のゲイト電極もしくはチャネ ルを形成する部分を端から10μm以上エッチングし て、第2の形状の半導体領域を形成する工程

【0010】また、本発明の第2は以下のような工程を 有する。

- (1) 非晶質半導体膜を、その最も狭い部分の幅が1 00μm以下である第1の形状にエッチングし、島状半 導体領域を形成する工程
- 前記半導体領域に光アニールを施して、結晶化 せしめる、もしくは、結晶性を高める工程
- 前記半導体領域の端部(もしくは周辺部)の一 部もしくは全部をエッチングする工程
- (4) 前記半導体領域を覆って、ゲイト絶縁膜を形成 する工程
- 前記半導体領域の端部のうち、エッチングされ た部分を横切ってゲイト電極を形成する工程
- (6) 前記ゲイト電極をマスクとしてN型もしくはP 型不純物を導入する、もしくは拡散する工程

【0011】上記本発明の第1および第2において、第 1の形状は長方形、正多角形、長円形(円を含む)のい ずれか、より、一般的には、外周上のいかなる点におい ても凹でない形状であると好ましい。

【0012】上記構成において、非晶質半導体膜は、ガ ラス基板や石英基板等の絶縁表面を有する基板上に形成 される。非晶質珪素膜は、プラズマCVD法や減圧熱C VD法で形成される。また、光アニールには、KrFエ

キシマレーザー (波長248nm) やXeClエキシマ レーザー(波長308nm)等の各種エキシマレーザー やNd:YAGレーザー(波長1064nm)やその第 2高調波(波長532nm)、同第3高調波(波長35 05 5 nm) 等を用いればよい。本発明では、光源がパルス 発振でも連続発振でもよい。また、特開平6-3187 01に開示されるがごとく、光アニールに際して、珪素 の結晶化を助長する金属元素(例えば、Fe、Co、N i、Pd、Pt等)を利用して、結晶化を促進せしめて 10 もよい。

【0013】また本明細書で開示する発明は、島状の半 導体領域を単結晶または単結晶と見なせる領域で構成す る場合に特に有効である。単結晶または単結晶と見なせ る領域は、後に実施例で詳細に説明するように、非晶質 15 珪素膜や結晶性を有する珪素膜に対して、線状にピーム 加工されたレーザー光を走査しながら照射することによ って得ることができる。

【0014】単結晶または単結晶と見なせる領域は、下 記の条件を満たしている領域として定義される。

- 20 ・結晶粒界が実質的に存在していない。
 - ・点欠陥を中和するための水素またはハロゲン元素を1 ×10¹⁵~1×10²⁰原子cm⁻³の濃度で含んでいる。
 - ・炭素および窒素の原子を1×10%~5×10%原子 cm⁻³の濃度で含んでいる。
- ・酸素の原子を1×10¹⁷~5×10¹⁹原子cm⁻³の濃 25 度で含んでいる。

なお、上記の元素の濃度は、SIMS (2次イオン分析 方法)で計測された計測値の最小値として定義される。 [0015]

- 【作用】本明細書で開示する発明においては、半導体装 30 置の特性に大きな影響を及ぼすチャネルに隣接しないよ うに、チャネル部分だけエッチングする。これはゲイト 電極が横断する部分にこのような領域が残らないように エッチングすることとも同様である。
- 【0016】図1には本発明の基本構成を示す。まず、 35 第1の形状として長辺a、短辺bの長方形12の島状非 晶質半導体領域11を複数(図では4つ)形成する。本 発明では、第1の形状の最も狭い部分の幅は100μm 以下であることが必要である。それ以上では、光アニー 40 ルの際の膜の収縮による特性向上の効果が認められない
- からである。したがって、bは100μm以下である。 (図1 (A))

【0017】次に、光アニールをおこなう。その結果、 島状半導体領域は結晶化すると同時に僅かだが収縮する (図の点線は光アニール前の島状半導体領域の大きさを 示す)。新たな島状領域の周辺は14で示される。ま た、島状半導体領域の周辺部に収縮過程による歪みの書 積した領域13ができる。(図1(B)) その後、島状半導体領域11の外周部をエッチングし、

50 目的とする素子を形成するための半導体領域15を形成

し (図1 (C))、ゲイト絶縁膜 (図示せず)、ゲイト 電極16を形成する。(図1 (D))

【0018】 歪みの蓄積した領域を全て除去する必要がないことを考えれば、図2のような方法も可能である。まず、長方形22の非晶質半導体領域21を形成し(図2(A))、これを光アニールすると、図1の場合と同様に領域は収縮し、周辺部には歪みの蓄積された領域23が形成される。(図2(B))

そして、ゲイト電極を形成する部分の周辺部を含む領域24をエッチングし(図2(C))、ゲイト絶縁膜(図示せず)、ゲイト電極26を形成する。ゲイト電極の下部のチャネル25には歪みの蓄積した領域が存在しないため、図1の場合と同様に劣化を低減できる。(図2(D))

【0019】本発明においては、光アニールの際の非晶質半導体領域の形状(第1の形状)はできるだけ単純な形状が好ましい。例えば、長方形や正多角形、円、楕円を含む長円形等である。例えば、図4(A)のように中央部に凹部のある形状42を有する半導体領域41に光アニールをおこなうと、膜の収縮の際に、中央の凹部44は上と下に引っ張られるため、当該部分にクラック等が発生しやすい。(図4(B))

【0020】これは、図4(C)に示す(矢印は収縮の方向を示す)ように、膜の収縮が最も広い部分を中心にして発生するためである。したがって、第1の形状としては、くびれのあるようなものではなく、全ての点で凸である、もしくは、いかなる点でも凹でない形状を用いるのがよい。

【0021】そのような観点からは、例えば、第1の形状として図1のような長方形を採用するとしても、長辺 a と短辺りの比率があまりに大きなものは好ましくない。本発明では a / b ≤ 10 とすると良い。

【0022】また、島状の半導体領域を単結晶と見なせる領域、または実質的に単結晶と見なせる領域として構成した場合、その結晶化の際に島状の半導体領域の周辺部において、やはり歪みが蓄積してしまう。

【0023】この歪みは、やはり島状の半導体領域の周辺部に集中して存在するので、島状の半導体領域の周囲を除去することにより、この歪みの悪影響を抑制することができる。

[0024]

【実施例】〔実施例1〕図5を用いて本実施例を説明する。図5には2つの薄膜トランジスタの断面図が描かれているが、左側のものは、薄膜トランジスタをゲイト電極に垂直(図3のa-bに垂直)に切った断面であり、右側のものは、ゲイト電極に平行に(図3のa-bにそって)切った断面である。なお、上方より見た様子は図1を参考にするとよい。

【0025】まず、ガラス基板501上に下地膜として 酸化珪素膜502を3000Aの厚さにスパッタ法また はプラズマCVD法によって形成した。次にプラズマC VD法または減圧熱CVD法により非晶質珪素膜503 を500人の厚さに成膜した。そして、非晶質珪素膜に 燐をドーピングし、薄膜トランジスタのソース/ドレイ 05 ンとなるN型不純物領域504、505を形成した。 (図5(A))

【0026】次にこの非晶質珪素膜503をエッチングして、島状珪素領域506、507を形成した。(図5(B))

- 10 次に、KrFエキシマレーザー光を照射することにより、珪素膜の結晶化をおこなった。この際には、燐の導入された領域504、505も同時に結晶化・活性化される。レーザーのエネルギー密度は150~500mJ/cm²が好ましかった。また、レーザー照射工程を2
 15 回以上に分け、それぞれ異なったエネルギーのレーザー光を照射してもよかった。
- 【0027】本実施例では、最初、エネルギー密度25 0mJ/cm²のレーザー光を2~10パルス照射し、 次に、エネルギー密度400mJ/cm²のレーザー光 20 を2~10パルス照射した。レーザー照射時の基板温度 は200℃とした。レーザーの最適なエネルギー密度 は、基板温度や非晶質珪素の膜質に依存する。この結 果、島状珪素領域506、507の端部に歪みの蓄積さ れた領域508が形成された。(図5(C))
- 25 【0028】次に、島状珪素領域の端部509をエッチングし、新たに、島状珪素領域510、511を形成した。この工程でエッチングされた部分は図の点線509で示される。(図5(D))
- そして、プラズマCVD法によって、厚さ1200Åの 30 酸化珪素膜512(ゲイト絶縁膜)を形成した。また、 その上に、厚さ5000Åのアルミニウム膜(0.3% のスカンジウム(Sc)を含む)をスパッタ法によって 堆積し、これをエッチングして、ゲイト電極513、5 14を形成した。(図5(E))
- 35 【0029】次に、プラズマCVD法によって厚さ5000Åの酸化珪素膜515(層間絶縁物)を堆積し、これにコンタクトホールを開孔した。そして、スパッタ法によって、厚さ5000Åのアルミニウム膜を堆積し、これをエッチングして、ソース/ドレインの電極・配線40516、517を形成した。(図5(F))以上の工程
 - .0 516、517を形成した。(図5(F))以上の工程によって、薄膜トランジスタが完成した。特性を安定させるため、コンタクトホール開孔工程以後に1気圧の水素雰囲気(250~350℃)でアニールするとよかった。
- 45 【0030】〔実施例2〕図6を用いて本実施例を説明 する。図5と同様、図6には2つの薄膜トランジスタの 断面図が描かれており、左側のものは、薄膜トランジス タをゲイト電極に垂直に切った断面であり、右側のもの は、ゲイト電極に平行に切った断面である。なお、上方 50 より見た様子は図2を参考にするとよい。

- 6 -

【0031】まず、ガラス基板601上に下地膜として酸化珪素膜602を3000人の厚さにスパッタ法またはプラズマCVD法によって形成した。次にプラズマCVD法または減圧熱CVD法により非晶質珪素膜603を500人の厚さに成膜した。そして、その表面に1~100ppmの酢酸ニッケル(もしくは酢酸コパルト)を含有する水溶液を塗布して、酢酸ニッケル(酢酸コパルト)層604を形成した。酢酸ニッケル(酢酸コパルト)層604は極めて薄いので膜状になっているとは限らない。(図6(A))

【0032】次に、これを350~450℃で2時間、窒素雰囲気中で熱アニールして、酢酸ニッケル(酢酸コパルト)を分解せしめると同時に、ニッケル(もしくはコパルト)を非晶質珪素膜603中に拡散させた。そして、非晶質珪素膜603をエッチングして、島状珪素領域605、606を形成した。(図6(B))

【0033】次に、KrFエキシマレーザー光を照射することにより、光アニールによる珪素膜の結晶化をおこなった。本実施例では、最初、エネルギー密度200m J/cm^2 のレーザー光を2~10パルス照射し、次に、エネルギー密度350m J/cm^2 のレーザー光を2~10パルス照射した。レーザー照射時の基板温度は200℃とした。

【0034】レーザーの最適なエネルギー密度は、基板温度や非晶質珪素の膜質に加え、添加されたニッケル(コバルト)の濃度にも依存する。本実施例では、2次イオン質量分析(SIMS)法による分析の結果、 $1 \times 10^{18} \sim 5 \times 10^{18}$ 原子 $/cm^3$ の濃度のニッケル(コバルト)が含有されていることが確認された。このように、結晶化を促進する触媒元素を用いて、光アニールをおこなう方法に関しては、特開平6-318701に開示されている。この結果、島状珪素領域605、606の端部に歪みの蓄積された領域607が形成された。(図6(C))

【0035】次に、島状珪素領域の端部607のうち、ゲイト電極が横断する部分のみをエッチングし、新たに、島状珪素領域を形成した。この工程でエッチングされた部分は図の点線608で示される。(図6(D))そして、プラズマCVD法によって、厚さ1200人の酸化珪素膜609(ゲイト絶縁膜)を形成した。また、その上に、厚さ5000人の多結晶珪素膜(1%の燐を含む)を減圧CVD法によって堆積し、これをエッチングして、ゲイト電極610、611を形成した。(図6(E))

【0036】次に、イオンドーピング法によって燐イオンを珪素膜に、ゲイト電極をマスクとして導入した。本実施例では、ドーピングガスとして水素で5%に希釈したフォスフィン(PH_3)を用いた。加速電圧は $60\sim110\,k\,V$ が好ましかった。ドーズ量は $1\times10^{14}\sim5\times10^{15}$ 原子/ $c\,m^2$ とした。このようにして、N型の

不純物領域 (=ソース/ドレイン) 612、613を形成した。

【0037】ドーピング後は、450℃で4時間の熱アニールをおこなうことにより、不純物を活性化せしめる05 ことができた。これは、半導体領域中にニッケル(コバルト)が含有されているためである。(特開平6-267989を参照のこと)活性化のための熱アニール工程の後、レーザー光等を照射して光アニールを施してもよい。

10 【0038】上記の工程の後、1気圧の水素雰囲気(250~350℃)でアニールすることにより、ゲイト絶縁膜と半導体領域の界面の不対結合手を中和させた。 (図6(F))

次に、プラズマCVD法によって厚さ5000人の酸化 15 珪素膜616(層間絶縁物)を堆積し、これにコンタクトホールを開孔した。そして、スパッタ法によって、厚さ5000人のアルミニウム膜を堆積し、これをエッチングして、ソース/ドレインの電極・配線614、615を形成した。(図6(G))

20 【0039】〔実施例3〕本実施例は、非晶質珪素膜に対して、珪素の結晶化を助長する金属元素を導入し、さらにレーザー光の照射を行うことにより、実質的に単結晶と見なせる領域を形成し、この実質的に単結晶と見なせる領域を用いて薄膜トランジスタの活性層を構成する 25 場合の例を示す。

【0040】図7に本実施例に示す薄膜トランジスタの一部の工程を示す。まずガラス基板701上に下地膜として酸化珪素膜702をプラズマCVD法またはスパッタ法により、3000人の厚さに成膜した。次に非晶質30 珪素膜703を500人の厚さにプラズマCVD法または減圧熱CVD法で成膜した。

【0041】そして試料を基板ごとスピナー700の上に配置する。この状態で所定のニッケル濃度に調整されたニッケル酢酸塩溶液を塗布し、水膜704形成した。 35 この状態が図7(A)に示されている。そして、スピナ

5 この状態が図 7 (A) に示されている。そして、スピデーを用いたスピンドライを行うことにより、不要なニッケル酢酸塩溶液を吹き飛ばし、微量のニッケル元素が非晶質珪素膜の表面に接して保持された状態とした。

【0042】次にパターニングを行うことにより、薄膜40 トランジスタの活性層705を形成する。この状態においては、活性層705は非晶質珪素膜で構成されている。(図7(B))

【0043】この状態でレーザー光を照射し、非晶質珪素膜でなる活性層705を結晶化させた。ここで用いるレーザー光は線状にピーム加工されたものある。レーザー光の照射は、活性層の一方の辺から対向する辺に向かって、線状レーザーが走査されながら照射されるよう行う。またレーザー光としては、パルス発振のエキシマレーザーを用いることが必要である。ここでは、KrFエ50キシマレーザー(波長248nm)を用いる。

【0044】このレーザー光の照射は、基板を500℃の温度に加熱しながら行う。これは、レーザー光の照射に従う結晶構造の急激な変化を緩和するためである。この加熱温度は、450℃~ガラス基板の歪み点以下の温度の範囲とすることが好ましい。

【0045】非晶質珪素膜に対して線状のレーザー光が 照射されると、レーザー光が照射された領域が瞬間的に 溶融する。そして、この線状のレーザー光が走査されて 照射されることで、結晶成長が徐々に進行していき、単 結晶と見なせる領域を得ることができる。

【0046】即ち、図7 (C) に示すように非晶質珪素 膜で構成された活性層の一方の端部から線状のレーザー 光708が徐々に走査されながら照射されると、707 で示されるような単結晶と見なせる領域がレーザー光の 照射に伴って成長していき、最終的に活性層全体を単結 晶と見なせる状態とすることができる。

【0047】このようにして、単結晶と見なせる珪素薄膜で構成された活性層709が得られた。(図7 (D))

【0048】ここで示す単結晶と見なせる領域というのは、その領域中において、以下の条件を満たしていることが必要とである。

- ・結晶粒界が実質的に存在していない。
- ・点欠陥を中和するための水素またはハロゲン元素を1×10¹⁵~1×10²⁰原子cm⁻³の濃度で含んでいる。
- ・ 炭素および窒素の原子を 1 × 1 0 ¹⁶~ 5 × 1 0 ¹⁸原子 c m⁻³の濃度で含んでいる。
- ・酸素の原子を1×10¹⁷~5×10¹⁹原子cm⁻³の濃度で含んでいる。

【0049】また、本実施例で示すような珪素の結晶化を助長する金属元素を利用している場合には、その膜中に当該金属元素を1×10¹⁶~5×10¹⁹cm⁻³の濃度で含んでいる必要がある。この濃度範囲の意味するところは、これ以上の濃度範囲では、金属としての特性が表れてしまい半導体としての特性が得られず、またこの濃度範囲以下では、そもそも珪素の結晶化を助長する作用を得ることができないということである。

【0050】これらのことより分かるように、上記のレーザー光の照射によって得られる単結晶とみなせる珪素 膜の領域は、単結晶ウエハーのような一般的な単結晶と は本質的に異なるものである。

【0051】このレーザー光の照射による結晶化の際に おいても膜の収縮が発生し、その歪みは活性層の周辺部 に行くほど蓄積する。即ち、図7(D)の710で示さ れる部分に歪みが集中して蓄積してしまう。

【0052】また、一般に活性層の厚さは、数百A~数 千A程度である。またその大きさは数 μ m角~数百 μ m 角である。即ち、非常に薄い薄膜状の形状を有してい る。このような薄い薄膜状の状態において、図7 (C) に示すような結晶成長が進行すると、その周囲、即ち結 晶成長の成長終点付近やそれ以上結晶成長が進行しない 領域に歪みが集中して発生してしまう。

【0053】このように主に2つの原因により、活性層の周囲に歪みが集中して存在することとなってしまう。

05 活性層中にこのような歪みが集中している領域が存在することは、薄膜トランジスタの動作において悪影響を及ばす原因ともなるもので、好ましいものではない。

【0054】そこで、本実施例においても、活性層の周囲全周をエッチングする。こうして図7(E)に示すよ 10 うな実質的に単結晶と見なせる領域で構成され、また応力の影響が低減された活性層711を得ることができる。(図7(E))

【0055】活性層を711を得た後、図8(A)に示すように、活性層711を覆ってゲイト絶縁膜712と 15して酸化珪素膜を1000Åの厚さにプラズマCVD法で成膜した。さらにP(リン)を多量にドーピングした多結晶珪素膜を減圧熱CVD法で5000Åの厚さに成膜し、パターニングを施すことにより、ゲイト電極713を形成した。(図8(A))

20 【0056】次にP(リン)イオンの注入をプラズマドーピング法またはイオン注入法により行い、自己整合的にソース領域714とドレイン領域716を形成した。そしてゲイト電極713がマスクとなることによって不純物イオンが注入されない領域715をチャネル形成領25 域として画定した。(図8(B))

【0057】次に層間絶縁膜として酸化珪素膜717をTEOSガスを用いたプラズマCVD法で7000Åの厚さに成膜した。そしてコンタクトホールの形成後、チタンとアルミニウムの積層膜を用いて、ソース電極とド30レイン電極の形成を行った。また図面では示されないが、ゲイト電極713へのコンタクト電極も同時に形成した。そして最後に350℃の水素雰囲気中において1時間の加熱処理を加えることにより、図8(C)に示すような薄膜トランジスタを完成させた。

- 35 【0058】このようにして得られた薄膜トランジスタは、活性層が単結晶と見なせるような珪素膜で構成されているので、その電気的な特性もSOI技術等を利用して作製された単結晶珪素膜を用いた薄膜トランジスタに匹敵するものとすることができる。
- 40 【0059】〔実施例4〕本実施例は、実施例3に示した構成において、活性層を構成するべくパターニングされた非晶質珪素膜に対するレーザー光の照射の仕方を工夫し、より結晶化がし易いように工夫した例である。
- 【0060】図9に示すのは、実施例3に示した工程に 45 おける活性層に対するレーザー光の照射方法である。こ の場合、パターニングされた非晶質珪素膜901(後に 活性層となるので活性層と呼ぶこととする)の一方の辺 に平行に長手方向を有する線状のレーザー光を照射す る。そして照射しつつ矢印の方向に走査することによっ 50 て、活性層901を単結晶と見なせる領域に変成する。

【手統補正書】

【提出日】平成13年9月5日 (2001.9.5) 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】絶縁表面上の非晶質珪素膜にレーザー光を 照射し、該レーザー光を照射した領域を走査して前記非 晶質珪素膜を結晶成長させ、該結晶成長させた珪素膜を 用いてソース領域、ドレイン領域及びチャネル形成領域 を含む活性層を形成する薄膜トランジスタの作製方法で あって、

前記レーザー光は、連続発振された波長532nmのレーザー光であることを特徴とする薄膜トランジスタの作製方法。

【請求項2】絶縁表面上の非晶質珪素膜にレーザー光を照射し、該レーザー光を照射した領域を走査して前記非晶質珪素膜を結晶成長させ、該結晶成長させた珪素膜を用いてソース領域、ドレイン領域及びチャネル形成領域を含む活性層を形成する薄膜トランジスタの作製方法であって、

前記レーザー光は、連続発振された波長355nmのレ

ーザー光であることを特徴とする薄膜トランジスタの作 製方法。

30 【請求項3】絶縁表面上の非晶質珪素膜にレーザー光を 照射し、核レーザー光を照射した領域を走査して前記非 晶質珪素膜を結晶成長させ、該結晶成長させた珪素膜を 用いてソース領域、ドレイン領域及びチャネル形成領域 を含む活性層を形成する薄膜トランジスタの作製方法で 35 あって、

前記レーザー光は、Ndを用いたレーザーから連続発振されたレーザー光であることを特徴とする薄膜トランジスタの作製方法。

【請求項4】絶縁表面上の非晶質珪素膜にレーザー光を 40 照射し、該レーザー光を照射した領域を走査して前記非 晶質珪素膜を結晶成長させ、該結晶成長させた珪素膜を 用いてソース領域、ドレイン領域及びチャネル形成領域 を含む活性層を形成する薄膜トランジスタの作製方法で あって、

45 前記レーザー光は、Ndを用いたレーザーから連続発振 されたレーザー光の第2高調波であることを特徴とする 薄膜トランジスタの作製方法。

【請求項5】絶縁表面上の非晶質珪素膜にレーザー光を 照射し、該レーザー光を照射した領域を走査して前記非 50 晶質珪素膜を結晶成長させ、該結晶成長させた珪素膜を

薄膜トランジスタ及びその作製方法

特開2002-100637

用いてソース領域、ドレイン領域及びチャネル形成領域 を含む活性層を形成する薄膜トランジスタの作製方法で あって、

前記レーザー光は、Ndを用いたレーザーから連続発振 されたレーザー光の第3高調波であることを特徴とする 05 とを特徴とする薄膜トランジスタの作製方法。 薄膜トランジスタの作製方法。

【請求項6】請求項3乃至請求項5のいずれか一におい て、前記Ndを用いたレーザーは、Nd:YAGレーザ ーであることを特徴とする薄膜トランジスタの作製方 法。

【請求項7】請求項1乃至請求項6のいずれか一におい

て、前記レーザー光は、線状のレーザー光であることを 特徴とする薄膜トランジスタの作製方法。

【請求項8】請求項1乃至請求項7のいずれか一におい て、前記レーザー光を照射した領域は、溶融しているこ

【請求項9】請求項1乃至請求項8のいずれか一に記載 の作製方法を用いて作製されたことを特徴とする薄膜ト ランジスタ。

【請求項10】請求項9に記載の薄膜トランジスタを用 10 いたことを特徴とする表示装置。

フロントページの続き

Fターム(参考) 5F052 AA02 AA11 AA18 BA07 BB02

BB07 CA01 DA02 DA10 DB02

DB03 FA02 FA06 HA03 JA01

5F110 AA14 BB01 CC02 DD02 DD13

EE06 EE08 EE38 EE44 EE45

FF02 FF30 GG01 GG02 GG04

GG13 GG23 GG25 GG33 GG34

GG45 GG47 GG60 HJ01 HJ04

HJ12 HJ13 HJ23 HL03 HL04

HL11 HL23 NN02 NN04 NN23

NN35 PP01 PP03 PP04 PP05

PP06 PP07 PP10 PP13 PP23

PP24 PP27 PP29 PP34 PP38

QQ11 QQ24

20

25