```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
import datetime
import itertools
import warnings
from sklearn.metrics import mean_squared_error
import seaborn as sns
import statsmodels
plt.style.use('fivethirtyeight')
%matplotlib inline
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/\_testing.py:19: FutureWarning:
import pandas.util.testing as tm

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

df = pd.read\_csv("/content/drive/MyDrive/Ineuron/data\_stocks.csv")
df.head()

|   |      |     | DATE            | SP500         | NASDAQ.AAL      | NASDAQ.AAPL        | NASDAQ.ADBE           | NASDAQ.ADI | NASDAQ.ADP |
|---|------|-----|-----------------|---------------|-----------------|--------------------|-----------------------|------------|------------|
|   |      | 0   | 1491226200      | 2363.6101     | 42.3300         | 143.6800           | 129.6300              | 82.040     | 102.2300   |
|   |      | 1   | 1491226260      | 2364.1001     | 42.3600         | 143.7000           | 130.3200              | 82.080     | 102.1400   |
|   |      | 2   | 1491226320      | 2362.6799     | 42.3100         | 143.6901           | 130.2250              | 82.030     | 102.2125   |
|   | To u | ndo | cell deletion u | se Ctrl+M Z o | r the Undo opti | ion in the Edit me | enu × 0729            | 82.000     | 102.1400   |
| _ |      | 4   | 1491220440      | Z304.03U I    | 42.3370         | 143.0000           | ız <del>y</del> .8800 | 82.035     | 102.0600   |

5 rows × 502 columns

```
41261 2017-08-31 19:56:00

41262 2017-08-31 19:57:00

41263 2017-08-31 19:58:00

41264 2017-08-31 19:59:00

41265 2017-08-31 20:00:00

Name: DATE, dtype: datetime64[ns]

df.index = df['DATE']

df.drop('DATE',axis = 1,inplace=True)
```

SP500 NASDAQ.AAL NASDAQ.AAPL NASDAQ.ADBE NASDAQ.ADI NASDAQ.ADP NASDAQ.A

| DATE                       |         |       |        |         |       |         |     |
|----------------------------|---------|-------|--------|---------|-------|---------|-----|
| 2017-08-<br>31<br>19:56:00 | 2472.22 | 44.72 | 164.11 | 155.090 | 83.67 | 106.565 | 11  |
| 2017-08-<br>31<br>19:57:00 | 2471.77 | 44.73 | 164.12 | 155.160 | 83.65 | 106.590 | 11  |
| 2017-08-<br>31<br>19:58:00 | 2470.03 | 44.74 | 164.01 | 155.065 | 83.62 | 106.520 | 11  |
| 2017-08-<br>31<br>19:59:00 | 2471.49 | 44.71 | 163.88 | 154.960 | 83.58 | 106.400 | 11- |
| 2017-08-<br>31<br>20:00:00 | 2471.49 | 44.74 | 163.98 | 155.160 | 83.69 | 106.470 | 11- |

# NASDAQ.ADP

[ ] L, 21 cells hidden

# NASDAQ.EBAY

```
df_EBAY = df[["NASDAQ.EBAY"]].copy()
```

df\_EBAY.tail()

#### NASDAQ. EBAY

| DATE                |        |
|---------------------|--------|
| 2017-08-31 19:56:00 | 36.135 |
| 2017-08-31 19:57:00 | 36.130 |
| 2017-08-31 19:58:00 | 36.130 |
| 2017-08-31 19:59:00 | 36.120 |
| 2017-08-31 20:00:00 | 36.130 |

df\_EBAY.count()

NASDAQ.EBAY 41266

dtype: int64

### df\_EBAY.plot()

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f984aa24e48>



To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

from statsmodels.graphics.tsaplots import plot\_acf
plot\_acf(df\_EBAY)





##Converting series to stationary
df\_EBAY.shift(1)

#### NASDAQ. EBAY

| DATE                |         |
|---------------------|---------|
| 2017-04-03 13:30:00 | NaN     |
| 2017-04-03 13:31:00 | 33.3975 |
| 2017-04-03 13:32:00 | 33.3950 |
| 2017-04-03 13:33:00 | 33.4100 |
| 2017-04-03 13:34:00 | 33.3350 |
|                     |         |

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

**2017-00-31 13.37.00** 30.1330

**2017-08-31 19:58:00** 36.1300 **2017-08-31 19:59:00** 36.1300 **2017-08-31 20:00:00** 36.1200

41266 rows × 1 columns

X5 = df\_EBAY.values
train5 = X5[0:28886] # 27 data as train data
test5 = X5[28886:] # 9 data as test data
print(train5.size)
print(test5.size)
predictions5 = []

```
28886
12380
```

```
p5=d5=q5=range(0,2)
pdq5=list(itertools.product(p5,d5,q5))
warnings.filterwarnings('ignore')
for param in pdq5:
    try:
        model arima5 = ARIMA(train5, order=param)
        model_arima_fit5 = model_arima5.fit()
        print(param, model arima fit5.aic)
    except:
        continue
     (0, 0, 0) 83955.30612486275
     (0, 0, 1) 44870.471253968884
     (0, 1, 0) -135861.67620322717
     (0, 1, 1) -135872.0650324924
     (1, 0, 0) -135857.4009523872
     (1, 0, 1) -135867.62575643833
     (1, 1, 0) -135872.54671056976
     (1, 1, 1) -135876.14912516676
from statsmodels.tsa.arima model import ARIMA
model arima5 = ARIMA(train5, order=(4,1,4))
model arima fit5 = model arima5.fit()
predictions5 = model arima fit5.forecast(steps=12380)[0]
predictions5
     array([37.01556121, 37.01587908, 37.01520994, ..., 38.55472764,
            38.55485247, 38.5549773 ])
 To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X
res5
```

6

```
plt.plot(test5)
```

```
plt.plot(predictions5, color='red')
```

г

[<matplotlib.lines.Line2D at 0x7f9841a9c630>]

