CS2105

An Awesome Introduction to Computer Networks

Lecture 12: Physical Layer and Wrap Up

© CS2105 Lecture 12 - 3

Last Lecture!

© CS2105 Lecture 12 - 4

Network Security (previous)

- Principles of cryptography
 - Symmetric key encryption
 - Public-key encryption
- Message integrity and digital signatures
 - Digital signature: 1. A, compute message digest, 2. encrypt digest with A's private key, 3. decrypt with A's public key, 4. compute new digest and compare with sent and signed digest
 - Send secure message: 1. encrypt with B's public key, 2. decrypt with B's private key.
- VPN's and firewalls (non-examinable)

Lecture 12

After this class, you are expected to understand:

- Different methods of digital transmission
- The theoretical capacity of a channel calculated from Shannon's formula
- How modulation techniques work and the concept of a constellation diagram

© CS2105 Lecture 12 - 6

Application Transport Network Link Physical

We are here

Lecture 12: Roadmap

- 1. Digital transmission
- 2. Analog transmission
- 3. A quick revision
- 4. Exam matters

Digital and Analog Signals

- Physical layer moves data in the form of electromagnetic signals across transmission medium
- Os and 1s can be transmitted as either analog signals or digital signals
 - Analog signal is continuous, with infinitely many levels
 - Digital signal has a limited number of defined values

Digital Transmission

In digital transmission, we encode 0s and 1s with different voltages to be transmitted over the wire

We will introduce 3 digital encoding methods

NRZ (Non-Return-to-Zero)

- NRZ encoding uses two voltage levels. It has two variations.
 - NRZ-L: absolute voltage level determines value of a bit.
 - NRZ-I: inverts the voltage if bit 1 is encountered.

O No inversion: Next bit is 0

• Inversion: Next bit is 1

RZ (Return-to-Zero)

RZ encoding uses three voltage levels. It always returns the voltage to zero halfway through a bit interval.

Manchester

- Manchester coding inverts the signal in the middle of a bit.
 - A -ve to +ve transition represents 1. A +ve to -ve transition represents 0.

Lecture 12: Roadmap

- 1. Digital transmission
- 2. Analog transmission
- 3. A quick revision
- 4. Exam matters

Analog Signal

The most basic analog signal is a sine wave.

Channel Bandwidth

- A transmission channel only allows signals in a certain frequency range to pass through.
- The difference in the highest frequency and lowest frequency that can pass through a channel is known as the bandwidth of the channel.

Signal to Noise Ratio (SNR)

- A transmission channel introduces noise that distorts the signal.
 - Signal to noise ratio (SNR) measures the strength of signal over noise.

Receiver Comparator

At the receiver side, the signal is generally sent to a comparator circuit of some sort.

Shannon Channel Capacity

The theoretical maximum bit rate of a noisy channel is given by the Shannon Capacity C:

- ❖ Example: Phone line has a bandwidth of 3,000 Hz (300 to 3,300 Hz) and SNR of 3,162. The capacity of the channel is 34,881 bps.
 - The highest bit rate for a telephone line is 34.881 kbps

Analog Transmission

Analog Encoding

- * To transmit 0s and 1s with analog signal, we can change A, f, or ϕ .
- ❖ Amplitude Shift Keying (ASK) changes peak amplitude (A) to represent 0s and 1s.
- Frequency Shift Keying (FSK) changes frequency (f) to represent 0s and 1s.
- * Phase Shift Keying (PSK) changes phase (ϕ) to represent 0s and 1s.

Amplitude Shift Keying (ASK)

- Peak amplitude of the signal varies with data values.
- ASK is susceptible to noise.

Frequency Shift Keying (FSK)

- Amplitude and phase remain constant.
- FSK is limited by the bandwidth of the channel.

Phase Shift Keying (PSK)

- ❖ One signal element with phase 0°.
- Another with phase 180°.

QPSK Constellation Diagram

- Can we transmit faster?
 - Send signals with 4 possible phases:

Phase	Values represent
O ⁰	11
90 °	01
180 ⁰	00
270 ⁰	10

Now every signal tells the receiver 2 bits of data!

8-PSK Constellation Diagram

Let's use more phases to carry more data over every signal.

100

Now every signal tells the receiver 3 bits of data!

QAM

Can we transfer even faster?

- Quadrature Amplitude Modulation (QAM) combines ASK and PSK. Many combinations are possible.
 - A signal unit in a 2^k-QAM scheme is a combination of amplitude and phase that represents k bits.
 - Baud rate is the number of signal elements (signal units) per second.
 - Bit rate is the number of bits receiver receives per second.

16-QAM

❖ 16-QAM: 16 different signal elements.

Every signal differs in either amplitude or phase.

Receiver checks both to determine the data carried by

a signal.

Summary of Physical Layer

- Wi-Fi transmits analog signal and Ethernet transmits digital signal.
- Ethernet, RFID, and NFC use Manchester coding.
- USB uses NRZ-I.
- Singapore TV broadcast uses DVB-T, which uses QPSK, 16-QAM, or 64-QAM.
- Wi-Fi uses PSK, QPSK, 16-QAM or 64-QAM.

Lecture 12: Roadmap

- 1. Digital transmission
- 2. Analog transmission
- 3. A quick revision
- 4. Exam matters

© CS2105 Lecture 12 - 30

A Day in the Life of a Web Request

- You enter a programming lab, turn on a PC and want to visit Meta, i.e., the company formerly known as www.facebook.com.
 - Let's sketch out the steps and protocols involved in such a seemingly simple scenario.
 - Some details are omitted and can be referred to from previous lecture notes ©.

Step 1:

- On start-up, your PC needs an IP → from DHCP server
 - DHCP request encapsulated in UDP segment, then in IP datagram, then in Ethernet frame.
 - Frame is broadcast on subnet.

lecture 6

notes

- DHCP server receives and processes this frame, starts negotiation with your PC for IP.
- Intermediate switches learn your position when forwarding your frames.

Details in lecture 9 notes

Step 2:

- DHCP server also tells you IP addresses of first-hop router and local DNS server.
- After you type <u>www.facebook.com</u>, browser needs to know IP of this website → from local DNS server
 - To know the MAC address of local DNS server, PC
 broadcasts ARP query. Local DNS server replies with its MAC address.
 - DNS query encapsulated in UDP segment, then in IP datagram, then in Ethernet frame, sent to local DNS server.
- Details in lecture 2 Local DNS server replies to your PC with IP of Facebook.

Details in lecture 9 ~

Step 3:

PC sends HTTP request to Facebook.

Details in lecture 5 notes

 TCP socket opened; 3-way handshake with Facebook / server.

 HTTP messages exchanged after TCP connection setup.

Details in lectures 2, 3 notes

- Frames sent to first-hop router.
- IP datagrams forwarded from campus network to ISP SingNet.
 - · Private IP translated by NUS NAT router.
 - IP datagram routed on the Internet using RIP or other routing protocols.

Details in lecture 7

Step 4:

- When Facebook is contacted
 - Negotiate for secure connection.
 - HTTPS = HTTP + SSL/TLS
 - Digital certificate of Facebook verified.
 - Message encryption and authentication.

Details in lecture 11 notes

This page is secure (valid HTTPS).

Certificate - valid and trusted

The connection to this site is using a valid, trusted server certificate issued by DigiCert SHA2 High Assurance Server CA.

View certificate

Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.3, X25519, and AES_128_GCM.

Lessons from CS2105

- Network systems are so complex!
 - There are many issues to consider, to support different applications running on a large number of hosts through different access technologies and physical media.
- To deal with complexity:
 - Separation of concerns
 - 5 protocol layers
- To deal with scalability:
 - Hierarchical systems

© CS2105 Lecture 12 - 36

What's Next?

- CS3103 Computer Networks and Protocols
 - Continuation of CS2105 in selected areas.
 - Use the same textbook as ours.
 - Cover network management, TCP congestion control and routing protocols in more details.
- CS4222 Wireless and Sensor Networks

CS4274 Mobile and Multimedia Networking

Lecture 12: Roadmap

- 1. Digital transmission
- 2. Analog transmission
- 3. A quick revision
- 4. Exam matters

Examination Matters

1. SoC has prepared E-exam SOPs for students, please refer to the guide: https://mysoc.nus.edu.sg/academic/e-exam-sop-for-students/

Please ensure that you read through and set up what you need before the exam date.

2. You should sit for the exam in insolation in a quiet environment with all the required hardware and software. If there's any circumstances that require you to attempt your exams in campus, please email your request to socexams@comp.nus.edu.sg by 10 November 2021, Wednesday latest.

CS2105 Final Preparation

- Mock Final Exam: Online LumiNUS Quiz
- When: Opens this weekend (by 14 Nov), closes 21 Nov
- Duration: 1 hour (~1/2 of real final exam)
- Marks: 0% for taking mock exam right/wrong answers don't count
- Scope (the same as final exam):
 - Materials from Lectures 1 to 11 (not 12) and all Tutorials

CS2105 Final Preparation

- Consultation Session
- When: Zoom, Thu 18 November 2021, 4-6 PM
- Will make announcement, with Zoom link
- All Profs. Lifeng, Jithin, and Roger

© CS2105 Lecture 12 - 41

CS2105 Final Assessment

- Time: 09:00 11:00, Monday 29 November 2021
- Venue: Online LumiNUS Quiz
- Open book assessment
 - You may bring any printed and PDF materials
- iPad allowed for viewing only; non-programmable calculator allowed
- Scope:
 - Materials from Lectures 1 to 11 (not 12) and all Tutorials

CS2105 Final Assessment

- Format (similar to Midterm) 50 marks total
 - # of MCQs 1 mark each
 - # of Multiple Response Questions (MRQ) 2 marks each
 - # of Fill-in-the-Blanks Questions 2 marks each
- In MRQ, wrong answers reduce marks. Don't randomly guess.

Tips for Final Assessment

Preparation

- Review lecture notes and tutorial questions.
- Focus on understanding, rather than memorization.
- A mock paper will be released on LumiNUS.
 - Answers provided.
 - For your practice; don't post them onto the Internet.

During exam

- Read the instructions/questions carefully.
- A (non-programmable) calculator is allowed and may be helpful.

© CS2105 Lecture 12 - 44

Consultation

- Discuss on LumiNUS Forum
- Email lecturers
 - zhoulife@comp.nus.edu.sg
 - jithin@comp.nus.edu.sg
 - rogerz@comp.nus.edu.sg
- Zoom/Office consultation (Upon email appointment)
 - Office: COM2 #02-56 (Lifeng)
 - Office: AS6 #04-17 (Jithin)
 - Office: AS6 #05-05 (Roger)

© CS2105 Lecture 12 - 45

Thank you!

