

Machine Learning

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet $^{2}(x)$

1534

852

178

$$\rightarrow$$
 m = Number of training examples

How do we represent h?

$$h_e(x) = \Theta_0 + \Theta_1 \times Shorthard: h(x)$$

Linear regression with one variable. (x)
Univariate linear regression.

Lone variable

Machine Learning

Linear regression with one variable

Cost function

Training Set

	Size in feet ² (x)	Price (\$) in 1000's (y)	
-	2104	460 7	
	1416	232	· M= 47
	1534	315	
	852	178	
	•••)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Andrew Ng

error faction

Machine Learning

Cost function intuition I

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1) \qquad \bigcirc \swarrow^{(i)}$$

(for fixed
$$\theta_1$$
, this is a function of x)

$$\frac{h_{\theta}(x)}{3}$$
(function of the parameter θ_1)

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{$$

$$h_{\theta}(x)$$

$$(\text{for fixed }\theta_1, \text{ this is a function of } x)$$

$$J(\theta_1)$$

$$(\text{function of the parameter }\theta_1)$$

$$J(\theta_1)$$

$$J$$

Andrew Ng

Machine Learning

Cost function intuition II

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

Machine Learning

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\Theta_0,\Theta_1)$ $J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0$, $\Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {

(for
$$j = 0$$
 and $j = 1$)

Assignment

$$\frac{\theta_{j} := \theta_{j} - \alpha}{\theta_{j}} J(\theta_{0}, \theta_{1})$$
learning rate

Correct: Simultaneous update

$$\underline{\quad } \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow$$
 tempt := θ_1

$$\rightarrow \theta_0 := \text{temp0}$$

$$\theta_1 := \text{temp1}$$

$$:= \theta_0 - \alpha \frac{\partial}{\partial \theta} J(\theta_0, \theta_1)$$

$$\Rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow (\theta_0) := \text{temp0}$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

 $\rightarrow \overline{\theta_1 := \text{temp1}}$

Andrew Ng

Truth assetion

Machine Learning

Gradient descent intuition

Gradient descent algorithm

Andrew Ng

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$= \frac{2}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.