

Számítógépes hálózatok #01 – Hálózatok alapvető működése

2024. szeptember 13.

Naszlady Márton Bese

naszlady@itk.ppke.hu

#01/1 - Hálózatok történelme

Az ember által alkotott hálózatok jóval korábbiak, mint a számítógép megjelenése.

Úthálózat

Az ember által alkotott hálózatok jóval korábbiak, mint a számítógép megjelenése.

- Úthálózat
- Vízhálózat

https://www.researchgate.net/figure/Modern-irrigation-system-layout_fig2_250143240

- Úthálózat
- Vízhálózat
- Elektromos hálózat

- Úthálózat
- Vízhálózat
- Elektromos hálózat
- Telefonhálózat

- Úthálózat
- Vízhálózat
- Elektromos hálózat
- Telefonhálózat
- Rádióadók

Elektronikus számítógép (és ezzel együtt elektronikus adat) megjelenése:

1950-es, 60-as évek

Ekkor már létezik két fontos rendszer:

posta- és telefonhálózat

Vannak már megoldott problémák!

(pl. címzés kérdése, üzenetek titkosítása, optimális útvonal keresése, ...)

Ezeket a létező megoldásokat alakítjuk át, terjesztjük ki a sajátságos igények szerint.

Számítógépek elektronikus összekötése az erőforrások megosztása érdekében:

ARPANET – 1970-es évek

Advanced Research Projects Agency (USA) által létrehozott hálózat.

Egyetemek "szuperszámítógépeit" köti össze a meglévő telefonvonalak használatával. Kutatási és katonai célokat szolgáló rendszer.

ARPANET

Az ARPANET hálózatának térképe az 1970-es években

https://en.wikipedia.org/wiki/File:Arpanet_in_the_1970s.png

Évek során egyre több belépő, egyre több elérhető hálózati eszköz. Az erőforrások egyszerűbb megosztásának, elérhetőségének rendszere:

World Wide Web – 1990-es évek

CERN (Európa)

Protokollok hiperszöveg (weboldal linkekkel) átvitelére és megjelenítésére. (Web böngésző)

A rendszerváltás előtt korlátozottan lehet ezzel foglalkozni.

SZTAKI

Számítástechnikai és Automatizálási Kutatóintézet

Néhány mérföldkő:

- 1979 első hálózati kapcsolat külföldre (Ausztria)
- 1983 első elektronikus levél külföldre
- 1986 saját fejlesztésű protokollok (LÓHALÁL, KÁPTALAN, ELLA, PETRA)
- 1991 első IP csomag érkezése Magyarországra (Linzi Egyetemről)
- 1993 HBONE: a hazai kutatóhelyeket (ELTE, BME, KFKI, ...) összekötő hálózat

TPS 1 nevű "sárga doboz", ezen keresztül érkezett az első IP csomag hazánkba

Egy akkoriban (1992) korszerű importált Cisco router, 10 Mbit/s portokkal

Üzleti szereplők és a lakosság számára is elérhetővé válik az internet.

1990-es évek közepe

A hazai hálózati forgalom kicserélésére létrejön a Budapest Internet eXchange:

BIX

A hazai internetszolgáltatók összefogására pedig az Internet Szolgáltatók Tanácsa:

ISZT

Port	Tag	AS szám	Sávszé- lesség
1	-	-	_
2	Matáv	AS5483	10M
3	Hungarnet	AS1955	4M
4	Datanet	AS3340	2x2M
5	Euroweb	AS5389	2M
6	Elender	AS5561	2M
7	IBM	AS2686	512K
8	Banknet	AS3244	64K
9	C3	AS6668	1M
10	GTS	AS6790	2x2M
11	Satrax-Net (Titász)	AS5565	128K
12	Westel	AS5596	2M
13	Westel 900	AS5513	2M
14	Alarmix	AS8321	512K
15	Interware + HunNet	AS8358	512K
16	Synergon	AS6722	64K
17	Isys	AS5393	128K
18	Kibernet	AS8229	64K
19	Qwerty	AS8536	64K

BIX-tagok 1998-ban

Egy modern optikai rendező a BIX-ben

Az internet napjainkban

5,2 milliárd ember

45 milliárd eszköz

A globális forgalom 1013 Tbit/s

Műszaki problémák

(vírusok, túlterheléses támadás)

Társadalmi problémák

(spam, fake news, adatlopás)

Világszintű szabályozás

Az internetnek nincs központja, azt szerződött szervezetek közösen tartják fenn.

Ezek közül a meghatározó szervezetek közül az alábbiakat emeljük ki:

- International Organization for Standardization (ISO)
- Institute of Electrical and Electronics Engineers (IEEE)
- Internet Assigned Numbers Authority (IANA)
- Internet Engineering Task Force (IETF)

ISO

International Organization for Standardization

Nemzetközi szabványosítással foglalkozó szervezet, világméretű szabványok kiadásával foglalkozik az élet sok területén.

- ISO 9001 szabvány a minőségirányítási rendszerekről
- ISO 7498-1 szabvány a hálózati protokollok rétegekbe szervezéséről
- ISO 3166-1 szabvány a Föld országainak neveiről és rövidített országkódjairól
- ISO 8601 szabvány a dátum-idő egységes írásmódjáról
- ISO 3103 szabvány a teafőzésről

IEEE

Institute of Electrical and Electronics Engineers

Elektronikai, villamosmérnöki és számítástudományi szabványok kidolgozásával, konferenciák szervezésével, kutatással és publikációval foglalkozik.

A hálózati protokollok fejlesztését munkacsoportokban végzi, időről időre protokollt leíró szabványokat ad ki.

- IEEE 802.3u szabvány: 100Base-TX Ethernet protokoll ("100 megabites kábeles net")
- IEEE 802.11ax szabvány: 6 GHz frekvencián (is) üzemelő Wi-Fi 6 protokoll

IANA

Internet Assigned Numbers Authority

A világméretű hálózatokban kiosztható cím- és számtartományok kezeléséért felelős szervezet. Az IANA alá földrajzi területenként illetékes alszervezetek tartoznak.

- a 19.0.0.0/8 tartományba tartozó IP címek a Ford Motor Company-hez tartoznak
- a 80-as port a HTTP, a 22-es port az SSH szolgáltatás számára fenntartott

IETF

Internet Engineering Task Force

Nyílt szabványügyi szervezet, a számítógépes hálózatokat meghatározó szabványok kidolgozásával és támogatásával foglalkozik. Fő tevékenysége az **RFC**-k kiadása (*Request for Comments*), mely mindenki számára hozzászólható formában tartalmaz javaslatokat egyes szabványok bevezetésére.

- RFC 1034 és RFC 1035 domain nevek
- RFC 2068 HTTP protokoll
- RFC 5322 email

A jövőben

Látható trendek:

növekvő adatforgalom (+20%-kal nőtt 2022-ről 2022-ra)

növekvő felhasználószám (+2%-kal nőtt 2022-ről 2023-ra)

növekvő eszközszám (+14%-kal nőtt 2022-ről 2023-ra)

Feltörekvő technológiák és ezek várható hatásai:

- internet of things
- mesterséges intelligencia
- kvantumszámítás
- ?

#01/1 – Összefoglalás

- **Múlt** 1900-as évektől: posta, telefon
 - 1970-es évektől: ARPANET
 - 1990-es évektől: WWW

Jelen Négy fontos szervezet:

- ISO és IEEE szabványok
- IANA globális nyilvántartás
- IETF RFC-k

Egyre több adat, eszköz, felhasználó Jövő

#01/2 - Hálózati alapfogalmak

Adatkommunikációs rendszer

Azt a rendszert, amiben egy küldő az üzenetet a címzett számára a közös hozzáférésű médiumon keresztül, egyezményes protokoll szerint juttatja el, *adatkommunikációs rendszernek* nevezzük.

Egy adatkommunikációs rendszer létrehozásához tehát öt dolog kell:

- 1. üzenet
- 2. küldő / feladó
- 3. címzett / fogadó
- 4. médium / átviteli közeg
- 5. protokoll

Nem szükséges a rendszerhez, de gyakran előfordul:

6. zaj

Üzenet

Az **üzenet** egy olyan információ (adat), amit egyik helyről a másikra szeretnénk átvinni.

Példák: szöveg, szám, kép, hang, videó, bináris adat, ...

Küldő

A küldő / feladó az a szereplő, akinél kezdetben az üzenet ott van.

Példák: asztali számítógép, okostelefon, kamera, távirányító, hőmérő, ...

Címzett

A címzett / fogadó az a szereplő, aki az üzenetet meg fogja kapni.

Példák: asztali számítógép, okostelefon, monitor, TV, kazán, ...

Médium

A **médium / átviteli közeg** az a fizikai anyag és/vagy jelenség, amiben és/vagy ahogyan az üzenet terjedni tud, és ahogy az az egyik pontból a másikba eljut.

Példák: elektromos jel a vezetékben, fény az optikai szálban, mikrohullám az éterben, hang a vízben, feltekert papírdarab a palackban a tengerbe dobva, ...

Protokoll

A protokoll az az egyezményes rendszer, ami az átvitel szabályait írja le.

Példák: milyen feszültségszintek jelentik az egyes logikai értékeket, milyen színű fény mit jelent, milyen kódolást (nyelvet) használnak a felek az adat reprezentációjára, ...

Zaj

A **zaj** az a jelenség, amit a környezet vált ki, és ami hatással van a médiumban terjedő fizikai jelenségre; adott esetben segítheti vagy ronthatja annak terjedését.

Példák: vezeték impedanciája, optikai szál csatlakozójára rakódott piszok, a távirányító és a TV között sétáló macska, ...

Interfész

Azt az érintkezési felületet, ahol két rendszer találkozik és adatot cserél, *interface*-nek (interfész) nevezzük. Az adatcserének egyezményes szabályai vannak (protokoll).

Fizikai interfész

Azt az interfészt, ami a számítástechnikai eszközön megvalósuló logikát (operációs rendszert, szoftvert) az adatkommunikációs rendszer fizikai médiumához kapcsolja, *physical interface*-nek (fizikai interfész) nevezzük.

Fizikai interfész

A physical interface az alábbiakat tudja:

- kapcsolódási pont a médiumhoz (pl. csatlakozó, antenna, ...),
- · kapcsolódási pont a számítógép belső logikájához (pl. eléri a processzort, memóriát),

• tartalmazza az adat fizikai jelenséggé (és vissza) alakítási protokollját.

https://www.conrad.hu/p/joy-it-esp8266-12f-fejlesztoi-panel-1-db-1707668 https://www.myaleashop.com/ont-huawei-hg8010h.html https://lonelybinary.com.au/products/arduino-ethernet-module-w5500 https://www.emag.hu/cisco-8-port-gigabit-smart-switch-sg250-08-k9-eu/pd/DHKDGSMBM/

Hálózati eszköz

Azt a számítástechnikai berendezést, melynek van legalább egy fizikai interfésze, ami révén ő maga küldőként vagy címzettként tud viselkedni egy adatkommunikációs rendszerben, *hálózati eszköznek* hívjuk.

Hálózati eszköz lehet például:

- számítógép,
- okostelefon,
- VoIP telefonkészülék,
- WiFi-s hőmérő,
- Bluetooth-os okosvillanykörte,
- távirányító,
- router,
- ...

Hálózati eszköz

A hálózati eszköz a fogadott üzenettel azt csinál, amit csak akar!

Megteheti, hogy...

- figyelmen kívül hagyja azt,
- visszaküldi azt azon a fizikai interfészen, amin fogadta,
- továbbküldi azt egy másik fizikai interfészén,
- többszörözi az üzenetet, és minden fizikai interfészén kiküld belőle egy-egy példányt,
- megváltoztatja az üzenet tartalmát, és úgy küldi azt tovább egy vagy több helyre,
- stb.

Számítógépes hálózat

A hálózati eszközök és a köztük lévő kapcsolatok által alkotott adatkommunikációs rendszerekből álló rendszert *számítógépes hálózatnak* (computer network) nevezzük.

A rendszert felépítő hálózati eszközöket *node*-oknak, a köztük lévő összeköttetéseket *link*eknek nevezzük.

Az ilyen rendszereket leggyakrabban gráf(szerű) módon ábrázoljuk, ahol a csúcsok a node-ok, az élek pedig a linkek.

#01/2 – Összefoglalás

Definíciók

- adatkommunikációs rendszer
- interface
- physical interface
- hálózati eszköz
- számítógépes hálózat

- Fogalmak node és link
 - üzenet, küldő, címzett, médium, protokoll
 - Mit csinálhat a hálózati eszköz az adattal?

#01/3 - Számítógépes hálózatok jellemzése

Osztályozási szempontok

Egy számítógépes hálózatban sokféle dolgot osztályozhatunk sokféle szempontból:

- Linkek osztályozása...
 - ...adatáramlás jellege szerint
 - …kapcsolódó eszközök száma szerint
- Hálózat osztályozása...
 - ...topológia szerint
 - ...kiterjedés szerint
- Átvitel osztályozása...
 - …címzettek száma szerint
 - …linkek viselkedése szerint

Linkek osztályozása az adatáramlás jellege szerint

Egy számítógépes hálózatban a két node-ot összekötő linken megvalósuló adatáramlás jellege háromféle lehet:

- 1. Simplex átvitel
- 2. Half-duplex átvitel
- 3. Full-duplex átvitel

Linkek osztályozása az adatáramlás jellege szerint Simplex átvitel

Egyirányú közlés, az egyik node csak küldeni tud, a másik node csak fogadni képes.

Példák: klasszikus televízió- és rádióadás, színházi előadás, zenehallgatás ...

https://www.freepik.com/free-photos-vectors/old-tv-mockup, https://wagner.edu/performing-arts/academic-programs/ba-theatre/, https://www.pexels.com/photo/3756943/

Linkek osztályozása az adatáramlás jellege szerint

Half-duplex átvitel

Kétirányú közlés, mindkét node képes fogadásra és küldésre is, azonban egyszerre csak az egyik irányba történhet adatátvitel.

Példák: walkie-talkie, CB rádió, jól moderált vita, ...

https://www.bresser.de/en/Electronics/Outdoor/Camping/BRESSER-FM-Walkie-Talkie-2piece-Set-with-large-range-up-to-6-km-and-free-hand-mode.html https://www.metroman.hu/termekek/Walkie-Talkie-PMR/CB-radio-AM-1-W--FM-4-W-COBRA-19DXIVEU, https://ahaslides.com/blog/how-to-hold-a-student-debate/

Linkek osztályozása az adatáramlás jellege szerint Full-duplex átvitel

Kétirányú közlés, mindkét node képes fogadásra és küldésre is, és ezt egyidőben is képesek művelni.

Példák: telefon, személyes beszélgetés, videochat ...

https://www.indiamart.com/proddetail/beetel-telephone-13786918073.html, https://www.verywellmind.com/five-ways-to-be-more-outgoing-3024715 https://www.umlaut.com/en/stories/video-chat-applications-tested-how-secure-and-reliable-are-zoom-and-others-really

Linkek osztályozása a kapcsolódó eszközök száma alapján

Egy hálózatban lévő link a hozzá kapcsolódó eszközök számától függően kétféle lehet:

- 1. Point-to-Point link
- 2. Multipoint link

Linkek osztályozása a kapcsolódó eszközök száma alapján Point-to-Point link

A link pontosan két node-ot köt össze közvetlen módon. A link teljes átviteli kapacitása a két eszköz által maximálisan kihasználható.

Példák: telefonhívás két készülék között, két eszköz vezetékes kapcsolata, randi ...

https://securityintelligence.com/news/windows-trojan-spreads-to-android-and-ios-devices-via-usb/, https://www.istockphoto.com/hu/fot%C3%B3k/dating-couple

Linkek osztályozása a kapcsolódó eszközök száma alapján Multipoint link

A link több mint két eszközt köt össze úgy, hogy az eszközök a médiumot közösen, megosztva használják.

Példák: társasági összejövetel, párhuzamosan kapcsolt fényfüzér, futárszolgálat...

https://www.courriera1.com/en/, https://www.ledvonal.hu/led-fenyfuzer-kulteri-e27-20-db-x-05w-13-m-meleg-feher-fekete-ip65

Hálózatok osztályozása topológia szerint

A számítógépes hálózatban lévő hálózati eszközök közötti kapcsolatok rendszerét (mely node-ok mely más node-okhoz kapcsolódnak) hálózati topológiának nevezzük.

A topológia leírása gráfként vagy mátrixként (tömbként) történhet.

Hálózatok osztályozása topológia szerint

Topológia	Előnyök	Hátrányok
teljes	node vagy link hibája nem zavaró	baromi drága
csillag	robusztusabb	központ kiesése esetén minden leáll
busz	olcsó	ki beszélhet?
gyűrű	nem drága, robusztusabb	hiba esetén hosszabb út

Kevert topológia: az igényeknek megfelelően különböző topológiák használata a hálózat egyes rész-hálózatai esetében

Hálózatok osztályozása kiterjedés szerint

Mérettartomány	Lefedett terület	Elnevezés	Rövidítés
1 m	pár négyzetméter	Personal Area Network	PAN
10 m	helyiség	Local Area Network	LAN
100 m	épület	Local Area Network	LAN
1 km	telephely, kampusz	Local Area Network	LAN
10 km	város	Metropolitan Area Network	MAN
100 km	ország	Wide Area Network	WAN
1 000 km	kontinens	Wide Area Network	WAN
10 000 km	bolygó	az internet	

Létezik még és valamennyire hasonlót takar: WLAN, VLAN, SAN, CAN

Átvitel osztályozása címzettek száma szerint

Unicast

Egyetlen küldő egyetlen másik címzettnek küld (telefon)

Multicast

Egyetlen küldő több másik címzettnek küld (rádió)

Broadcast

Egyetlen küldő mindenki másnak küld (sziréna)

Anycast

Egyetlen küldő bármelyik "közel" lévő címzettnek küld (Segítség, tűz van!)

Kapcsolt hálózatok

Ha nem két szomszédos node küld üzenetet, akkor útvonalat kell köztük találni.

- Többféle útvonal is létezhet
- Az útvonalat egyben vagy részletenként is lefoglalhatjuk
- Az üzenetet egyben vagy részletenként is elküldhetjük

Attól függően, hogy van-e kizárólagosan használt útvonal a küldő és címzett között, illetve hogy az üzenet egyben vagy darabokban kerül elküldésre, háromféle osztály van:

- Circuit-switched (vonalkapcsolt)
- Message-switched (üzenetkapcsolt)
- Packet-switched (csomagkapcsolt)

Circuit-switched (vonalkapcsolt)

A küldő és a címzett között egy **elejétől végéig lefoglalt útvonalat építünk ki** az adatátvitel teljes időtartama alatt, amit csak ők ketten használnak.

Előny: megbízható, késleltetésmentes, folyamatos kapcsolat

Hátrány: erőforrások kisajátítása

Message-switched (üzenetkapcsolt)

A küldő és címzett közötti **nincs egyben lefoglalt útvonal**, de **az üzenet egészben**, node-tól node-ig terjed.

Előny: nem sajátítja ki az erőforrásokat olyan nagy mértékben

Hátrány: az üzenet nagyobb késéssel érhet célba

Packet-switched (csomagkapcsolt)

Az átvinni kívánt **üzenetet részekre bontjuk**, és ezek a csomagok mint önálló üzenetek, message-switched (üzenetkapcsolt) módon közlekednek.

Előny: még inkább fair erőforrás-elosztás

Hátrány: csomagok sorrendjének keveredése

#01/3 – Összefoglalás

Fogalmak

- simplex, half-duplex, full-duplex
- point-to-point link, multipoint link
- teljes, gyűrű, csillag, busz topológia
- PAN, LAN, MAN, WAN
- unicast, multicast, broadcast, anycast
- circuit-, message-, packet- switched network

#01/4 - Átvitel közös médium esetén

Tekintett esetek

Most két node közötti közvetlen átvitelt vizsgálunk.

Peremfeltételek:

- van küldő node
- van címzett node
- kettejük között van médium

Vizsgált esetek:

- 1. point-to-point link köti össze a node-okat
- 2. multipoint link köti össze a node-okat (és vannak más node-ok is)

A fizikai jelenség terjedésének szemléltetése:

Vizsgálatok – S-PP eset

Adott az (A) és (B) node és az őket összekötő <u>simplex</u> point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Vizsgálatok – S-PP eset

Adott az (A) és (B) node és az őket összekötő <u>simplex</u> point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Megfigyelés:

Az (A) node bármikor, bármilyen hosszan adhat, ezt a (B) node mindig fogadni tudja.

A B node sosem adhat.

Következtetés:

Nem kell feltételhez kötni az adást; az 🗚 akkor ad, amikor kedve tartja.

Vizsgálatok – FD-PP eset

Adott az (A) és (B) node és az őket összekötő <u>full-duplex</u> point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Vizsgálatok – FD-PP eset

Adott az (A) és (B) node és az őket összekötő <u>full-duplex</u> point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Egy full-duplex link tekinthető úgy, mint két darab ellentétes irányú simplex link.

Vizsgálatok – FD-PP eset

0

Adott az (A) és (B) node és az őket összekötő <u>full-duplex</u> point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Következtetés:

Nem kell feltételhez kötni az adást; az A és a B is akkor ad, amikor kedve tartja.

Vizsgálatok – HD-PP eset

Adott az (A) és (B) node és az őket összekötő half-duplex point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Vizsgálatok – HD-PP eset

Adott az (A) és (B) node és az őket összekötő half-duplex point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

A half-duplex esetben hiba, ún. **ütközés** történik akkor, ha egyidőben mindkét node ad. **Az ütközést el kell kerülni!**

Vizsgálatok – HD-PP eset

0

Adott az (A) és (B) node és az őket összekötő half-duplex point-to-point link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Megfigyelés:

Ha az (A) node adása közben a (B) node is ad (vagy fordítva), akkor ütközés lép fel.

Következtetés:

Csak akkor szabad adni, ha ezzel nem váltunk ki ütközést.

Vizsgálatok – MP eset

Adott az A és B és C node és az őket összekötő <u>multipoint</u> link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Vizsgálatok – MP eset

Adott az (A) és (B) és (C) node és az őket összekötő <u>multipoint</u> link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Vizsgálatok – MP eset

Adott az (A) és (B) és (C) node és az őket összekötő <u>multipoint</u> link.

Mikor adhatnak a node-ok, és ez hogyan függ össze az üzenet érthetőségével?

Megfigyelés:

Ha bármely node adása közben a bármely más node is adni kezd ugyanazon a linken, akkor ütközés lép fel.

Következtetés:

Csak akkor szabad adni, ha ezzel nem váltunk ki ütközést.

Ütközéselkerülés

"Csak akkor szabad adni, ha ezzel nem váltunk ki ütközést."

Biztos, hogy amíg érzem, hogy valaki ad, addig nem adok.

Ütközéselkerülés

"Csak akkor szabad adni, ha ezzel nem váltunk ki ütközést."

Ha nem érzem, hogy valaki ad, akkor adhatok?

#01/4 – Összefoglalás

Ábrázolás Érteni kell az adatterjedési diagrammokat.

Fogalmak ütközés

Elvek "Csak úgy szabad adni, hogy ne legyen ütközés!"

#01/5 – Ütközéselkerülés

Algoritmusok ütközéselkerülésre

Az ütközések elkerülésére alkotott elméleti megoldások három csoportba sorolhatók.

Random access protocols

Nincs "irányítóközpont", minden node maga dönti el, hogy ad-e vagy sem. Az, hogy valaki mikor kezd el adni, "random" módon dől el.

Controlled-access protocols

Van egy "irányítóközpont" vagy "token", aminek a felhatalmazása által egyvalaki adhat. Lehet, hogy ezt a felhatalmazást kérni kell.

Channelization protocols

Az egyes node-ok által küldendő üzenetek nem ütköznek, mert azokat térben vagy időben elkülönítjük egymástól.

Random access protocol példák

ALOHA algoritmus:

- Ha van mit adnom, akkor egyből adom.
- Ha adtam, akkor erre visszajelzést (acknowledgement ACK) várok a címzettől.
- ullet Ha nem kapok visszajelzést t időn belül, akkor azt hiszem, hogy ütközés történt.
- Ütközés esetén várok random ideig, majd újra próbálkozom.
- Ha 15. alkalommal sem sikerül a küldés, akkor feladom.

Random access protocol példák

CSMA/CD algoritmus:

- Ha adnom kell, akkor előtte megvizsgálom, hogy szabad-e a médium.
- Foglaltság esetén várok amíg szabaddá nem válik. Ha szabad, akkor elkezdek adni.
- Adás közben folyamatosan figyelem az ütközést. Ha ütközés történik, akkor kiküldök egy kis zajt, majd várok t időt. A t értékét random választom a $[0,2^N]$ intervallumból, ahol N az eddigi sikertelen küldési próbálkozások száma.
- Ha N > 15 akkor feladom.

Controlled-access protocol példák

Polling algoritmus:

- Valami magasabb hatalom kiosztott számomra egy sorszámot.
- A magasabb hatalom felszólít, hogy adjak, ha akarok.
- Ha van mit adni, akkor adok; ha nincs, akkor visszajelzem, hogy nincs rá igényem.
- A magasabb hatalom felszólítja a többieket is (akármilyen sorrendben).

Controlled-access protocol példák

Reservation algoritmus:

- Valami magasabb hatalom kiosztott számomra egy sorszámot, és meghatározta, hogy mikor lehet adásra jelentkezni.
- Ha adni akarok, akkor a megadott időben elküldöm a sorszámomat a többieknek.
- A megadott idő után látjuk, hogy ki az, aki adni akar, és ki az, aki nem.
- Növekvő sorszám szerint mindenki elmondja, amit akar.
- Újra lehet adásra jelentkezni.

Channelization protocol példák

Frequency-division multiple access:

- Van egy saját frekvenciatartományom, ahol közölhetem az üzenetet.
- Mindenki más különböző frekvenciasávban közli a saját üzeneteit.
- A fizika megóv minket az ütközéstől.

Channelization protocol példák

Time-division multiple access:

- Van egy saját időtartományom, amikor közölhetem az üzenetet.
- Mindenki más különböző időtartományban közli a saját üzeneteit.
- A jó időzítés megóv minket az ütközéstől.

#01/5 – Összefoglalás

Elvek

- random access protocol
- controlled-access protocol
- channelization protocol

Algoritmusok

- ALOHA
- CSMA/CD
- Polling
- Reservation

#01/6 - Az ISO / OSI referenciamodell

Kapcsolt hálózatok

A két nem szomszédos node közötti üzenet átvitelekor **kapcsolásra (switching)** lesz szükség. Honnan tudja a közbülső node, hogy melyik linken küldje tovább az üzenetet?

Kapcsolás a gyakorlatban

Üzenetkapcsolás gyakorlati példája – postai levél

- 1. Az üzenetet átadom az első közbülső node-nak: feladom a postahivatalban a levelet.
- 2. Az üzenet node-ról node-ra vándorol: a levél utazik a posták között.
- 3. Az utolsó node kézbesíti az üzenetet a címzettnek: a végén kiviszi a postai kézbesítő.

címzés = közbülső posták utasítása a kézbesítéshez

Message-switched network példa

Valaki küld egy postai levelet az ITK Tanulmányi Osztályának.

Message-switched network példa

Az üzenet feladásakor azt ki kell egészíteni egy célba juttatást segítő **cím** adattal.

Ezt a címzést az adattal együtt kell továbbítani.

Message-switched network példa

Az üzenet továbbításakor minden node megnézi a címzést, és ez alapján küldi tovább az üzenetet a következő node-nak.

Közbülső node-ok utasítása

Az üzenet node-ról node-ra juttatását a

címzés

segíti. Ez a címzés kiegészíti az üzenetet, annak eredeti tartalma változatlan marad.

A valójában továbbított üzenet bővebb,

annak két része van,

a cím és az eredeti üzenet.

Enkapszuláció

0

Az enkapszuláció fogalma alatt azt értjük, hogy az egymástól megkülönböztetett szerepet betöltő, de egyben kezelt adattagokat összevonjuk, így képezve egy új, bővobb adatot

bővebb adatot. Az enkapszulált adat is kiegészíthető további adattagokkal, majd pedig ez is enkapszulálható. És így tovább...

Három testvérnek küld ajándékot: Marcinak mézet, Lucának lekvárt, Bercinek befőttet.

A posta már egy becsomagolt (és megcímzett) dobozt vesz át.

Kovács család Szolnok, Kossuth u. 1.

A postás gépkocsivezető már egy csomagokkal megpakolt furgont vezet el Szolnokra.

Az üvegek enkapszulálva vannak a dobozba. A dobozok enkapszulálva vannak a furgonba.

A furgon vezetőjét nem érdekli az enkapszulált adat tartalma (mi van a raktérben).

A csomagkézbesítőt nem érdekli az enkapszulált adat tartalma (mi van a dobozban).

Amiről nem tud a nagyi...

Fontos a nagymamának, hogy a csomagját hányszor és milyen egyéb adattal együtt enkapszuláljuk és dekapszuláljuk az átvitel során?

Nem.

Amiről nem tud a nagyi...

Ha a *posta-nagyi* és *posta-Kovácsék* interfész változatlan, akkor számít bármit, hogy a rendszerben még hány szereplő van, és feléjük milyen az interfész?

Nem.

Cégek közti levelezés

Egyik cég

CEO ← ők szeretnének egymással beszélni → CEO szóbeli üzenet szóbeli üzenet Titkárság Titkárság nyomtatott levél nyomtatott levél Posta postai küldemény

Másik cég

A "titkárság" réteg különböző implementációi

Mindegyik alkalmas arra, hogy beszédből szöveget készítsen, és fordítva.

Az egyes implementációk ára és minősége eltérő. Mikor melyiket érdemes használni?

ISO OSI referenciamodell

ISO/IEC 7498-1 szabvány: **Open Systems Interconnection** – Basic Reference Model Szabályokat fogalmaz meg nyílt rendszerek (open systems) összekapcsolására.

- az adatáramlást 7 absztrakciós rétegbe osztja fel,
- a rétegek között interfészek vannak,
- a rétegek csak az alattuk és felettük lévő réteggel kommunikálnak,
- a réteg implementációja szabadon változtatható mindaddig, míg az interfész marad.

ISO OSI referenciamodell

A rétegek az alábbi absztrakt funkcióért felelnek:

7. Application layer alkalmazás működése (pl. levelezés, weblapok letöltése, ...)

6. Presentation layer adatok prezentálása (pl. tömörítés, titkosítás, ...)

5. Session layer munkamenet kezelése (pl. autentikáció, szinkronitás tartása)

4. Transport layer megbízható adattovábbítás (pl. ne vesszen el, ne keveredjen)

3. Network layer a hálózatban való adatmozgatás (pl. útvonal node-okon át)

2. Data link layer adatmozgatás egy linken át (pl. két szomszédos node között)

1. Physical layer bitek fizikai jelenségként való átvitele (pl. elektromos jelként)

#01/6 – Összefoglalás

Fogalmak

- Enkapszuláció
- Réteg

Szabvány

Az OSI modell rétegei és a rétegek feladata:

- 7. Application layer
- 6. Presentation layer
- 5. Session layer
- 4. Transport layer
- 3. Network layer
- 2. Data link layer
- 1. Physical layer

VÉGE

Pázmány Péter Katolikus Egyetem

Információs Technológiai és Bionikai Kar