Statistik 2, Übung 13, Tafelbild

HENRY HAUSTEIN

Aufgabe 1

Lineare Regression: $y = \beta_0 + \beta_1 x$ mit

$$\hat{\beta}_1 = \operatorname{Cor}(X, Y) = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

 \Rightarrow kann auch der Taschenrechner: Menü 6 (Statistik) $\rightarrow y = a + bx$

Test für Koeffizienten β_1 (FS II, Seite 14)

$$H_0: \beta_1 = a$$
 $H_1: \beta_1 \neq a$
$$T = \frac{\hat{\beta}_1 - a}{\hat{\sigma}} \sqrt{n}\tilde{s}$$

kritische Werte: $\pm t_{n-2;1-\alpha/2}$

 \tilde{s} ist die Populationsstandardabweichung, alternativ könnte man auch $\sqrt{n-1}s$ mit s als Stichprobenstandardabweichung (\nearrow FS II, Seite 13)

Prognoseintervall (FS II, Seite 15)

$$\hat{y}(x) \pm \hat{\sigma} \sqrt{1 + \frac{1}{n} \left(1 + \frac{(x - \bar{x})^2}{\tilde{s}^2}\right)} \cdot t_{n-2;1-\alpha/2}$$

Aufgabe 2

 $R^2=\mathrm{Cor}(X,\hat{Y})^2\Rightarrow$ kann auch der Taschenrechner: nach Durchführung der Regression gibt der TR einen Wert $r=\dots$ aus $\Rightarrow R^2=r^2$

Test für Koeffizienten β_0 (FS II, Seite 14)

$$H_0: \beta_0 = a \qquad H_1: \beta_0 \neq a$$

$$T = \frac{\hat{\beta}_0 - a}{\hat{\sigma}\sqrt{1 + \frac{\bar{x}^2}{\bar{s}^2}}} \sqrt{n}$$

kritische Werte: $\pm t_{n-2;1-\alpha/2}$

Aufgabe 3

der Taschenrechner kann auch dieses Modell vollautomatisch schätzen