1. Popravni Kolokvij iz Moderne fizike 2 28. 6. 2013

- 1. Kolikšna je gibalna količina pozitrona pri razpadu β mirujočega kisikovega jedra ($^{14}_{8}O \rightarrow ^{14}N + e^{+} + \nu_{e}$) v primeru, da tudi končno dušikovo jedro miruje? Uporabi semiempirično masno enačbo in relativstične izraze za kinematiko!
- 2. a) Ali je razpad $X \to J/\psi \pi^0$ možen preko močne interakcije? Če je možen nariši kako poteka; če ni možen povej zakaj. $[X = \bar{c}c: J^P = 1^+; J/\psi = \bar{c}c, J^P = 1^-]$
 - b) Preko katere reakcije poteka $\Omega^-\to \Lambda K^-,$ nariši kvarkovski diagram.
 $[\Omega^-=sss,\Lambda=uds]$
 - c) Določi razmerje $\sigma(\mu^+\mu^- \to b\bar{b})/\sigma(\mu^+\mu^- \to \tau^+\tau^-)$ pri energijah $E \ll m_Z$.
 - d) Ali je razpad $K^{*+}\to K^+\pi^0$ možen preko močne interakcije ? Če je možen nariši kako poteka; če ni možen povej zakaj. $[K^{*+}=u\bar{s}:\ J^P=1^-]$
- 3. Določi totalni presek σ in diferencialni presek $\frac{d\sigma}{d\Omega}(\theta)$ pri elastičnem sipanju majhnega telesa na togem telesu, ki ga opisuj parabola $z = Ax^2 B$, kjer sta A in B znani konstanti. Telo je rotacijsko simetrično okoli osi z.

4. Obravnavaj molekulo Li_2 v okviru metode Linear combination of atomic orbitals (LCAO), kjer sta Litijevi jedri na razdalji R. Zapiši enačbo, ki vodi do energije zunanjih elektronov v Li_2 , interakcijo med elektroni pa zanemari. Integralov, ki jih dobiš, ni potrebno izvrednotiti, izrazi pa podintegralski izraz z r in θ , ki sta označena na sliki.

Zunanji elektron prostega Litijevega atoma je v orbitali 2S z radialnim delom valovne funkcije

$$R_{20} = 2(2r_B)^{-3/2}(1 - r/2r_B)e^{-r/2r_B}$$
.

