

* Traveling Salesman Problem *

Puroblem: The problem asks to yind the shortest tour through a given set of m cities that visits each city exactly once before returning to the city where it started.

Its the problem of yinding the Shortest Hamiltonian Circuit of the graph

Technique: Exhaustive Search (Brube Force)

Tour Length $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ a+8+1+7=18

a>b>d>c>a a+3+1+5=11 optimal

a>c>b>d>a 5+8+3+7=23

 $a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$ 5 + 1 + 3 + 2 = 11 optimal

a > d > b + c > a 7 + 3 + 8 + 5 = 23

a>d>c+b>a 7+1+8+2=18

		DATE: / /
Observations:		
- Pairs of tours mig direction		
- Approach is practice		
Tokaki passatations	riggeles v	bill be 184
- We can get all the all the pumutation cities.		
persutations by he pursutations where	aly, (Eg: Ch	oose only
This will real so 10	preced	el (0 ₀)
Jhis will reduce the	se number	el (0 ₀)
Jois Will reduce to	se number	el (0 ₀)
Jois Will reduce to	se number	el (0 ₀)
Jois Will reduce to	se number	el (0 ₀)
Jois Will reduce to	se number	el (0 ₀)
Jois Will reduce to	se number	el (0 ₀)

PAGE NO.:

PAGE NO.	1	-	_
DATE:	1	1	-
	,	,	

Huyman Trees *

Motivation: Encode a text that comprises characters yrom some n-characters alphabet by assigning to each of the text's characters some sequence of bits called the codeword.

Example: Consider jue-character alphabet with yollowing occurrence probabilities:

character	A	В	C	D	
probability	0.35	0.1	0.2	0.2	0.15

We construct Huyman Coding Tree as.

PAGE NO. :			
DATE:	1	1	

Notes:

- Constructs a tree that assigns shorted bit Strings to high-yrequency characters & longer ones to low-yrequency characters.
- prefix free on prejix codes- no codeword is a prejix of a character codeword of another Character.
- Fixed length us variable length encoding
- For the example, the expected number of bits per character in this code is,
 - = 2 * 0.35 + 3 * 0.1 + 2 * 0.2 + 2 * 0.2 + 3 * 0.15
 - = 2.25.
 - Compression ratio

= 3-2.25 * 100 = 25%.

3

L) Fixed length would have used 3.

Huyyman uses 25.1. less memory than its yixed length encoding.

	1. Show	that	Hayyman	Codas
- Exp	e compression	actio	typically	Jallin
bar	e Compression		<i>J</i> · <i>0</i>	J
bet	ween 20% &	801.		And the Contract of the Contra

Exercise

1. Construct a Hyman tree yor the Jollowing data & obtain its Huggman code:

Character B B C D E -probability 0.5 0.35 0.5 0-1 0-4 0.2

Encode the text

DAD_BE using the Obtained Code

Decode the text whose encoding is

What is the achieved compression actio".

Technique: Greedy algorithm.

PAGE NO.:		
DATE :	1	1

The Knapsack Paublem x

Criven items, weights & values, yind the maximum value of a subset of the p given items that yit into the knapsach of capacity w, and an optimal subset itsely.

Recurrence Relation

Technique: Dynamic Programming.

Example:

W=5 item	weight	value
- Cers	2	12
2	1	10
2	3	20
4	2	15

	î	0	1	2	3	4	5	
	0		0	0		0		
W=2, 0,=12	1	0	0	12	12	12	12	
Wz=1,02=10	2	0	10	la	22	22	22	
W3 3 103:20	3	0	10	12	22	30	32	
la 2, 1542 15	4	0	10	15	25	30	37	

To yind the items included:

	1					
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	124	121	12	12
2	0	10	12	93	22	22
	0	10	12	95,	30	321
-		10	15	25	30	37

Items included are: 1, 2 and 4.

PAGE NO.:

A CONTRACTOR OF THE PARTY OF TH			
Exercise:			
$-\omega = 10$			
item	weight		
	7	42	
2	3	12	
3	4	40	
4	5	25	

* Fake - Goin Problem x

Identify the Jake coin among p-identically tooking coins

Technique: Decrease and Conquer Edecrease by 1)

Idea: Divide n coins into my two piles of old each; leaving one extra coin apart if n is odd, and put the two piles on the scale.

If the piles weigh the same, the coin put aside may be jake. (Assume yake coin weighs less) Otherwise, we can proceed ahead in the Same manner with the lighter pile, which must be the one with yake Coin.

Recurrence relation for the number of weighings w(n) needed by this algorithm in the worst case:

$$\omega(n) = \begin{cases} 0 & n=1 \\ \omega(n/a) + 1 & \text{otherwise} \end{cases}$$

PAGE	NO.	:		
DATE	:	1	1	

Paoblem is similar to worst care of binary Search.

W(n) = login.

Assignment

Discuss the problem if it is solved by dividing the coins into three piles of about n/3 each.

What will be the eject on ejiciency?

Note:

* Strasser's Matrix Multiplication

$$\begin{bmatrix}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{bmatrix} = \begin{bmatrix}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{bmatrix} * \begin{bmatrix}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{bmatrix}$$

$$= \begin{bmatrix}
m_1 + m_4 - m_5 + m_4 & m_3 + m_5 \\
m_2 + m_4 & m_1 + m_3 - m_2 + m_6
\end{bmatrix}$$

$$m_1 = (a_{00} + a_{11}) * (b_{00} + b_{11})$$
 $m_2 = (a_{10} + a_{11}) * b_{00}$
 $m_3 = a_{00} * (b_{01} - b_{11})$
 $m_4 = a_{11} * (b_{10} - b_{00})$
 $m_5 = (a_{00} + a_{01}) * b_{11}$
 $m_6 = (a_{10} - a_{00}) * (b_{00} + b_{01})$
 $m_7 = (a_{01} - a_{11}) * (b_{10} + b_{11})$

For a 2+2 matrices multiplication:

Brute Force: 8 multiplications & 4 additions Strasserie : 7 multiplications & 18 add/sub

Recurrence relations jor sumber of

$$M(n) = \begin{cases} 7M(n/2) & \text{jar } n>1 \\ 1 & \text{n}=1 \end{cases}$$

$$M(n) = 7 M(n/a)$$

assume $n = 2k$
 $M(a^{k}) = 7 M(2^{k-1}) \rightarrow (1)$

put $k = k - 1$ in (1)

 $M(2^{k}) = 7 M(2^{k-2}) \rightarrow (2)$

put (2) in (1)

$$M(3^{k}) = 7^{2}M(3^{k-2})$$

= $7^{k}M(3^{k-2})$
= ...
= $7^{k}M(3^{k-2})$
= 7^{k}

This is smaller than n3 as required by Brute Force.

If we consider additions,

$$A(n) = \int 7A(n|a) + 18(n|a)^{2}$$
 $n > 1$
 0

Example:

$$A = \begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$$

$$m_1 = 6 + 8 = 48$$

$$C = \begin{cases} 48 - 10 - 8 - 12 \\ 72 - 10 \end{cases}$$

$$= \begin{bmatrix} 18 & 14 \\ 62 & 66 \end{bmatrix}$$

Note: