Introduction to Mobile Robotics

Proximity Sensors

Sensors of Wheeled Robots

Perception of the environment

Tactile Sensors

Measure contact with objects

Touch sensor

Bumper sensor

Ultrasound Sensors

- Emit an ultrasound signal
- Wait until they receive the echo
- Time of flight sensor

Time of Flight Sensors

$$d = v \times t / 2$$

v: speed of the signal

t: time elapsed between broadcast of signal and reception of the echo.

Properties of Ultrasounds

Signal profile [Polaroid]

Sources of Error

Opening angle

Crosstalk

Specular reflection

Typical Ultrasound Scan

Parallel Operation

- Given a 15 degrees opening angle, 24 sensors are needed to cover the whole 360 degrees area around the robot.
- Let the maximum range we are interested in be 10m.
- The time of flight then is 2*10/330 s=0.06 s
- A complete scan requires 1.45 s
- To allow frequent updates (necessary for high speed) the sensors have to be fired in parallel.
- This increases the risk of crosstalk

Laser Range Scanner

Properties

- High precision
- Wide field of view
- Some laser scanners are security approved for emergency stops (collision detection)

Computing the End Points

- Laser data comes as an array or range readings,
 e.g. [1; 1.2; 1.5; 0.1; 81.9; ...]
- Assume a field of view of 180 deg
- First beams starts at -½ of the fov
- Maximum range: ~80 m (SICK LMS)

Robots Equipped with Laser Scanners

Typical Scans

Structured Light Sensors

Microsoft Kinect

Asus Xtion

Structured Light Sensors

- An infrared projector illuminates the scene with a known light pattern
- Scene is captured by an infrared sensor, depth is derived from pattern distortion

Structured Light Depth Video

Structured Light Pros and Cons

- Pros
 - Cheap
 - Dense range image
 - Relatively precise at a range up to ~5 meters
- Cons
 - Low operational range
 - Sensitive to sunlight
 - Sensitive to dark surfaces
 - Sensitive to reflecting surfaces

Summary

- Different types of range sensors:
 - Sonar
 - LiDAR
 - Structured light
- Accurate and reliable measurements possible...
- ...however, many error sources remain