

Weyl's law for singular Riemannian manifolds

Dario Prandi

CNRS, L2S, CentraleSupélec, Gif-sur-Yvette, France

joint work with:

Y. Chitour (L2S, CentraleSupélec), L. Rizzi (CNRS, Institut Fourier, Grenoble)

EquaDiff2019

Session MS32: Degenerate diffusion processes and their control

July 7th 2019

Leiden, NL

Classical Weyl's law

- (M, g) smooth, compact Riemannian manifold (with smooth boundary)
- Δ Laplace-Beltrami operator on $L^2(M, d\mu_g)$

$$\Delta = -\operatorname{div}\circ\nabla = -\frac{1}{\sqrt{|g|}}\frac{\partial}{\partial x_i}\left(\sqrt{|g|}g^{ij}\frac{\partial}{\partial x_j}\right)$$

lacksquare Δ is self-adjoint with compact resolvent

$$\operatorname{spec}(\Delta) = \{0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_k \to \infty\}$$

Weyl's function:

$$N(\lambda) := \#\{\text{eigenvalues } \lambda_k \leq \lambda\}$$

Theorem (Weyl's law)

$$N(\lambda) \sim c_n \operatorname{vol}(M) \lambda^{n/2}, \qquad \lambda \to \infty$$

1

The problem

Theorem (Weyl's law)

For a compact Riemannian manifold with boundary:

$$N(\lambda) \sim c_n \operatorname{vol}(M) \lambda^{n/2}, \qquad \lambda \to \infty$$

Remark: $vol(M) < \infty$ is not necessary for discreteness of $spec(\Delta)$

Problem: study the Weyl's law for singular Riemannian structures

A singular example (the Grushin sphere)

• $\mathbb{S}^2 \subset \mathbb{R}^3$. Let X, Y generators of rotations around x and y axes

$$X = y\partial_z - z\partial_y \qquad Y = x\partial_z - z\partial_x$$

- g metric s.t. X, Y are orthonormal. Singular at $\mathcal{S} = \{z = 0\}$
- close to the plane z = 0, in local coordinates:

$$g \sim dz^2 + rac{1}{z^2}d\theta^2, \qquad \Delta \sim -\partial_z^2 + z^2\partial_\theta^2 - rac{1}{z}\partial_z, \qquad d\mu_g \sim rac{1}{|z|}d\mu_{\mathbb{S}^2}$$

Figure 1: Taken from Agrachev, Boscain, Sigalotti 2008

A singular example (the Grushin sphere)

• $\mathbb{S}^2 \subset \mathbb{R}^3$. Let X, Y generators of rotations around x and y axes

$$X = y\partial_z - z\partial_y \qquad Y = x\partial_z - z\partial_x$$

- g metric s.t. X, Y are orthonormal. Singular at $S = \{z = 0\}$
- close to the plane z = 0, in local coordinates:

$$g \sim dz^2 + rac{1}{z^2}d\theta^2, \qquad \Delta \sim -\partial_z^2 + z^2\partial_\theta^2 - rac{1}{z}\partial_z, \qquad d\mu_g \sim rac{1}{|z|}d\mu_{\mathbb{S}^2}$$

Proposition (Boscain, Laurent - 2009)

The Laplace-Beltrami operator with domain $C_c^{\infty}(\mathbb{S}^2 \setminus \mathcal{S})$ is essentially self-adjoint and it has compact resolvent.

Proposition (Boscain, P, Seri - 2014)

The Weyl's function has the following asymptotics

$$N(\lambda) \sim \frac{1}{4}\lambda \log \lambda, \qquad \lambda \to \infty$$

The setting

Singular Riemannian structures

- (\mathcal{M},g) non-complete Riemannian manifold
- metric, measure, curvature, ... explode at the metric boundary
- singularity ⊆ metric boundary

Definition

The Laplace-Beltrami operator on $L^2(\mathcal{M}, d\mu_g)$ is the unique self-adjoint operator associated with the closure of the quadratic form

$$Q(u) = \int_{\mathcal{M}} \|\nabla u\|_{g}^{2} d\mu_{g}, \qquad \forall u \in C_{c}^{\infty}(\mathcal{M})$$

- Friedrichs extension of Δ with domain $C_c^\infty(\mathcal{M})$
- On smooth functions $\Delta u = -\operatorname{div}(\nabla u)$

Λ

Assumptions on the singularity

Definition (Assumption Σ)

Non-complete Riemannian manifold ${\mathcal M}$ such that in a neighborhood of the metric boundary:

- 1. the distance from the metric boundary δ is smooth
- 2. $\operatorname{Hess}(\delta) \leq 0$ (convexity of the metric boundary)
- 3. there exists C > 0 such that

$$|\mathsf{Sec}| \leq \frac{C}{\delta^2}, \qquad \mathsf{inj} \geq \frac{\delta}{C},$$

- "unbounded geometry" but not too much
- cover "strongly regular" almost-Riemannian structures
- rules out conic singularities (see Cheeger)
- if convexity is $strict \Rightarrow \mathsf{inj} \geq \frac{\delta}{C}$ (by Klingenberg-type arguments)

5

Assumptions on the singularity

Definition (Assumption Σ)

Non-complete Riemannian manifold ${\mathcal M}$ such that in a neighborhood of the metric boundary:

- 1. the distance from the metric boundary δ is smooth
- 2. $\operatorname{Hess}(\delta) \leq 0$ (convexity of the metric boundary)
- 3. there exists C > 0 such that

$$|\mathsf{Sec}| \leq \frac{\mathcal{C}}{\delta^2}, \qquad \mathsf{inj} \geq \frac{\delta}{\mathcal{C}},$$

Proposition (Chitour, P, Rizzi)

Assume that $\mathcal M$ has compact metric completion and satisfies Assumption Σ . Then Δ has compact resolvent and hence its spectrum is discrete.

- \Rightarrow Weyl's function $N(\lambda)$ is well defined
- Only 1 and 2 are required for the Proposition

Results

Weyl's asymptotics for singular Riemannian manifolds

Theorem (Chitour, P, Rizzi)

Let \mathcal{M} be a non-complete Riemannian manifold with compact metric completion satisfying assumption Σ . With $\mathcal{M}_{\varepsilon} = \{x \in \mathcal{M} \mid \delta(x) \geq \varepsilon\}$, we have

$$N(\lambda) \asymp \lambda^{n/2} \operatorname{vol}\left(\mathcal{M}_{1/\sqrt{\lambda}}\right), \qquad \lambda \to \infty$$

Weyl's asymptotics for singular Riemannian manifolds

Theorem (Chitour, P, Rizzi)

Let $\mathcal M$ be a non-complete Riemannian manifold with compact metric completion satisfying assumption Σ . With $\mathcal M_\varepsilon=\{x\in\mathcal M\mid \delta(x)\geq \varepsilon\}$, we have

$$\mathit{N}(\lambda) symp \lambda^{n/2} \operatorname{vol}\left(\mathcal{M}_{1/\sqrt{\lambda}}
ight), \qquad \lambda o \infty$$

 Consequence of quantitative heat kernel estimates and Karamata theory with remainder

Eigenfunctions $\{\phi_k\}_k$ concentrate at the singularity for high energy:

Theorem (Chitour, P, Rizzi)

If vol $\mathcal{M}=+\infty$, then there exists a density one set $S\subseteq\mathbb{N}$ such that for any compact $K\subset\mathcal{M}$ it holds

$$\lim_{\substack{k \to \infty \\ k \in S}} \int_K |\phi_k|^2 d\mu_g = 0.$$

Exact Weyl's law for singular structures

Refinement yielding exact Weyl's law

Theorem (Chitour, P, Rizzi)

Let $\mathcal M$ be a non-complete Riemannian manifold with compact metric completion and satisfying assumption Σ . Assume also that

$$\upsilon(\lambda) = \mathsf{vol}(\mathcal{M}_{1/\sqrt{\lambda}})$$

is slowly varying¹ (in the sense of Karamata). Then it holds

$$N(\lambda) \sim c_n \lambda^{n/2} v(\lambda)$$

Reduces to the classical Weyl's law if $\operatorname{vol}(\mathcal{M}) < +\infty$

$$\lim_{\lambda \to \infty} \frac{v(a\lambda)}{v(\lambda)} = 1, \quad \forall a > 0.$$

Examples include: $\log \lambda$, $\log_k \lambda = \log_{k-1} \log \lambda$, $\exp(\log \lambda / \log \log \lambda)$, etc...

 $^{^1\}mathrm{That}$ is, $\upsilon:\mathbb{R}_+ o \mathbb{R}_+$ is continuous and

Application: Almost-Riemannian surfaces

Let $N = \mathcal{M} \sqcup \mathcal{S}$, dim N = 2. The structure is an m-regular ARS, $m \in \mathbb{N}$, if locally near \mathcal{S} we have

$$g = dx^2 + \frac{e^{\varphi(x,z)}}{x^{2m}}dz^2, \qquad \varphi \in C^{\infty}, \qquad \mathcal{S} = \{x = 0\}.$$

Equivalently: A local orthonormal frame is

$$X = \partial_x, \qquad Z = x^m e^{-\varphi/2} \partial_z$$

Generalize the Grushin sphere example

Application: Almost-Riemannian surfaces

Let $N = \mathcal{M} \sqcup \mathcal{S}$, dim N = 2. The structure is an m-regular ARS, $m \in \mathbb{N}$, if locally near \mathcal{S} we have

$$g = dx^2 + \frac{e^{\varphi(x,z)}}{x^{2m}}dz^2, \qquad \varphi \in C^{\infty}, \qquad \mathcal{S} = \{x = 0\}.$$

Equivalently: A local orthonormal frame is

$$X = \partial_x, \qquad Z = x^m e^{-\varphi/2} \partial_z$$

Proposition (Chitour, P, Rizzi)

Strongly regular ARS satisfy the assumption Σ

- the boundaries of $\mathcal{M}_{\varepsilon} = \{x \in \mathcal{M} \mid \delta(x) > \varepsilon\}$ are strictly convex
- the curvature always explodes to $-\infty$
- false in presence of "tangency" points

Application: Almost-Riemannian surfaces

Let $N = \mathcal{M} \sqcup \mathcal{S}$, dim N = 2. The structure is an m-regular ARS, $m \in \mathbb{N}$, if locally near \mathcal{S} we have

$$g = dx^2 + \frac{e^{\varphi(x,z)}}{x^{2m}}dz^2, \qquad \varphi \in C^{\infty}, \qquad \mathcal{S} = \{x = 0\}.$$

Theorem (Chitour, P, Rizzi)

For an m-regular ARS on an compact surface it holds

i. *If* m > 1,

$$N(\lambda) \simeq \lambda^{(m+1)/2}$$
.

ii. *If* m = 1,

$$N(\lambda) \sim \frac{\widehat{\sigma}(\mathcal{S})}{8\pi} \lambda \log \lambda, \qquad \widehat{\sigma}(\mathcal{S}) = \int_{\mathcal{S}} e^{\frac{\varphi}{2}} dz.$$

Coincides with the result by Colin de Verdière - Hillaret - Trélat, where the Riemannian measure is replaced by a smooth one.

Singular structures with prescribed Weyl's law

Example of inverse problem:

Theorem (Colin de Verdière - 1987)

Let $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_k$. Then, there exists a complete Riemannian manifold such that these are its first k eigenvalues

Question: Can we build (singular) Riemannian manifolds with prescribed asymptotic distribution of eigenvalues λ_k as $k \to \infty$?

• Equivalent to prescribe Weyl's law $\mathit{N}(\lambda)$ as $\lambda \to \infty$

Singular structures with prescribed Weyl's law

Theorem (Chitour, P, Rizzi)

For any compact manifold M of dimension $n \geq 2$ and non-decreasing slowly varying function $\upsilon : \mathbb{R}_+ \to \mathbb{R}_+$ there exists a singular Riemannian structure on M such that

$$N(\lambda) \sim c_n \lambda^{n/2} v(\lambda)$$

The singularity can be prescribed on a submanifold of any codimension

- The structure satisfies Σ
- The volume function satisfies $\operatorname{vol}(\mathcal{M}_{1/\sqrt{\lambda}}) \sim \upsilon(\lambda)$
- $\partial \mathcal{M}_{\varepsilon}$ are strictly convex
- The Laplace-Beltrami with domain $C_c^{\infty}(\mathcal{M})$ is essentially self-adjoint (follows from P, Rizzi, Seri 2017 + Nenciu, Nenciu 2009)

Strategy of proof

The variational method

Let $\Omega \subset \mathbb{R}^n$. Let $-\Delta$ with Dirichlet b.c. on $\partial\Omega$ (smooth).

- 1. Decompose $\Omega = \sqcup_i \Omega_i$, where Ω_i are cubes
- 2. Consider $-\Delta_{\Omega_i}^{\pm}$ with Dirichlet (–) or Neumann (+) conditions

Proposition (Dirichlet-Neumann bracketing)

$$\sum_{i} N_{\Omega_{i}}^{-}(\lambda) \leq N(\lambda) \leq \sum_{i} N_{\Omega_{i}}^{+}(\lambda)$$

3. Via an explicit computation:

$$N_{\Omega_i}^{\pm}(\lambda) = \frac{\omega_n}{(2\pi)^n} \operatorname{vol}(\Omega_i) \lambda^{n/2} + explicitly bounded remainder$$

4. Limit for small cubes \Rightarrow Weyl's law for smooth domains of \mathbb{R}^n

The Tauberian method

Let Δ be the Laplace-Beltrami for a smooth manifold M

1. Consider the heat trace

$$Z(t) = \int_{M} p_{t}(x, x) d\mu_{g}(x) = \sum_{i=1}^{\infty} e^{-t\lambda_{i}} = \int_{0}^{\infty} e^{-t\lambda} dN(\lambda)$$

2. Small time behaviour of $Z(t) \leftrightarrow$ large eigenvalue behaviour of $N(\lambda)$

Theorem (Karamata)

$$Z(t) \sim ct^{-\alpha}$$
 \Rightarrow $N(\lambda) \sim \tilde{c}\lambda^{\alpha}$

3. Minakshisundaram-Pleijel asymptotics

$$Z(t) \sim \text{vol}(M)(4\pi t)^{-n/2}$$
 $t \to 0$

4. Weyl's law for smooth manifolds with boundary

Step 1: decomposition

Decompose the manifold:

Apply the variational method

$$N_{\mathcal{S}_{\varepsilon}}^{-}(\lambda) + N_{\mathcal{M}_{\varepsilon}}^{-}(\lambda) \leq \mathit{N}(\lambda) \leq \mathit{N}_{\mathcal{S}_{\varepsilon}}^{+}(\lambda) + \mathit{N}_{\mathcal{M}_{\varepsilon}}^{+}(\lambda)$$

- $\blacksquare \ \ \mathsf{Need to \ estimate} \ \ \textit{$N_{\mathcal{S}_{\varepsilon}}$} \ \ \mathsf{and} \ \ \textit{$N_{\mathcal{M}_{\varepsilon}}^{\pm}(\lambda)$}$
- How to choose $\varepsilon = \varepsilon(\lambda)$?

Step 2: estimate close to the singularity

Lemma (Hardy inequality)

Thanks to the convexity assumption there exist $C_H > 0$ such that

$$\int_{\mathcal{S}_{\varepsilon}} \|\nabla u\|^2 d\mu_{\mathbf{g}} \geq \frac{C_H}{\varepsilon^2} \int_{\mathcal{S}_{\varepsilon}} |u|^2 d\mu_{\mathbf{g}}, \qquad \forall u \in H^1(\mathcal{S}_{\varepsilon})$$

Implies a lower bound for the Dirichlet/Neumann spectrum close to ${\cal S}$

Corollary (Estimate close to the metric boundary)

$$N_{S_{\varepsilon}}^{\pm}(\lambda) \equiv 0$$
 if $\lambda < \frac{C_H}{\varepsilon^2}$

Remark: As $\lambda \to \infty$ we have to let $\varepsilon \to 0$

Step 3: estimate for the truncation

For all $\varepsilon>0$, $\mathcal{M}_{\varepsilon}$ is a smooth manifold with convex boundary

$$N_{\mathcal{M}_{\varepsilon}}^{\pm}(\lambda) = \frac{\omega_n}{(2\pi)^n} \operatorname{vol}(\mathcal{M}_{\varepsilon}) \lambda^{n/2} (1 + R_{\varepsilon}(\lambda))$$

Need to know how the remainder depends on $\varepsilon!$

Theorem (Ingham - 1960)

There exists a universal constant C>0 (depending only on the dimension) such that, if as $t\to 0$

$$\int_{M} p_{t}(x,x) d\mu_{g} \sim ct^{-\alpha} \left(1 + \chi(t)\right)$$

then, as $\lambda \to \infty$

$$\mathit{N}(\lambda) \sim \widetilde{\mathit{c}} \lambda^{lpha} \left(1 + \mathit{R}(\lambda)
ight), \qquad |\mathit{R}(\lambda)| \leq rac{\mathit{C}}{|\log \chi(\lambda^{-1})|}$$

Step 4: Quantitative remainder formula for heat trace

Theorem (Chitour, P, Rizzi)

Let (M,g) be a compact Riemannian manifold with convex ∂M . Let

$$|\operatorname{Sec}| \le K$$
, $\operatorname{Hess}(\delta) \ge -H$

Let χ be the remainder of the trace heat kernel asymptotics:

$$\int_{M} p_t^{\pm}(x,x) d\mu_g = \frac{\operatorname{vol}(M)}{(4\pi t)^{n/2}} \Big(1 + \chi(t) \Big)$$

Then there exists c > 0 depending only on n s.t.

$$|\chi(t)| \le c \left(\frac{t}{t_0}\right)^{1/2}, \qquad \forall t \le t_0 = \min\left\{\inf_{M}, \inf_{\partial M}, \frac{\pi}{\sqrt{K}}, \frac{1}{H}\right\}$$

Sharp exponent and sharp constant! (also for the corresponding $N(\lambda)$)

Step 5: conclusion

E.g. for the upper bound:

1. By Neumann bracketing

$$N(\lambda) \leq N_{S_{\varepsilon}}^{+}(\lambda) + N_{\mathcal{M}_{\varepsilon}}^{+}(\lambda)$$

2. Thanks to convexity/Hardy:

$$N_{S_{\varepsilon}}^{+}(\lambda) = 0$$
 if $\varepsilon \lesssim \frac{1}{\sqrt{\lambda}}$

3. Thanks to the remainder formula

$$N_{\mathcal{M}_{arepsilon}}^+(\lambda) = c_n \operatorname{vol}\left(\mathcal{M}_{arepsilon}\right) \lambda^{n/2} \left(1 + \mathcal{O}\left(rac{1}{\lambda arepsilon^2}
ight)
ight)$$

4. we must choose $\varepsilon \asymp \frac{1}{\sqrt{\lambda}}$

 $+ \ \mathsf{finer} \ \mathsf{decomposition} + \mathsf{detailed} \ \mathsf{study} \ \mathsf{of} \ \mathsf{small} \ \mathsf{slices} = \mathsf{sharp} \ \mathsf{result}$

Conclusion

Under the assumption Σ the picture is quite clear:

- rough non-classical Weyl's asymptotics
- exact non-classical Weyl's law in the slowly varying case
- singular structures with prescribed Weyl's law
- concentration of eigenfunctions

Open questions:

We do not have a (non slowly varying) example with

$$0 < \liminf_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{n/2} v(\lambda)} < \limsup_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{n/2} v(\lambda)} < +\infty$$

- What about more singular regimes?
- Singular magnetic field?

Thank you for your attention!

Y. Chitour, D. Prandi, L. Rizzi

Weyl's law for singular Riemannian manifolds

arXiv:1903.05639

(Generalized) Minkowski dimension

Tubular slice around the singularity: $\mathcal{M}_{\varepsilon}^{2\varepsilon} = \{ \varepsilon \leq \delta \leq 2\varepsilon \}$

Definition

The singularity has **generalized Minkowski dimension** *d* if

$$0<\liminf_{\varepsilon\to 0}\frac{\operatorname{vol}\left(\mathcal{M}_{\varepsilon}^{2\varepsilon}\right)}{\varepsilon^{n-d}}\leq \limsup_{\varepsilon\to 0}\frac{\operatorname{vol}\left(\mathcal{M}_{\varepsilon}^{2\varepsilon}\right)}{\varepsilon^{n-d}}<\infty$$

Corollary (Chitour, P, Rizzi)

Assume furthermore that the singularity has Minkowski dimension d. Then

$$N(\lambda) \simeq egin{cases} \lambda^{n/2} & d < n \\ \lambda^{n/2} \log \lambda & d = n \\ \lambda^{d/2} & d > n \end{cases} \quad \lambda \to \infty$$

Question: Is *d* the Hausdorff dimension of the metric boundary?

Singular measure VS regular measure

What happens if g is singular, but we use a smooth measure ω ?

Hilbert space	$L^2(\mathcal{M},d\mu_{ m g})$	$L^2(\mathcal{M},d\omega)$
Quadratic form	$\int_{\mathcal{M}}\ \nabla u\ ^2d\mu_g$	$\int_{\mathcal{M}} \ \nabla u\ ^2 d\omega$
Grushin example	$\partial_z^2 + z^2 \partial_\theta^2 + \frac{1}{z} \partial_\theta$	$\partial_z^2 + z^2 \partial_\theta^2$

- in the Riemannian case (no singularity) there is no difference
- no a priori reason to relate the two Weyl's asymptotics
- studied by Colin de Verdiére Hillaret Trélat (w.i.p., different ideas)
- for 2-dimensional regular ARS the results agree