4. Codage de nombres entiers naturels

Principes de fonctionnement des ordinateurs

Jonas Lätt Centre Universitaire d'Informatique

Trouvé une erreur sur un transparent? Envoyez-moi un message

- sur Twitter @teachjl ou
- par e-mail jonas.latt@unige.ch

Contenu du cours

Partie I: Introduction

Partie II: Codage de l'information

Partie III: Circuits logiques

Partie IV: Architecture des ordinateurs

- 1. Introduction
- 2. Histoire de l'informatique
- 3. Information digitale et codage de l'information
- 4. Codage des nombres entiers naturels
- 5. Codage des nombres entiers relatifs
- 6. Codage des nombres réels
- 7. Codage de contenu média
- 8. Portes logiques
- 9. Circuits logiques combinatoires et algèbre de Boole
- 10. Réalisation d'un circuit combinatoire
- 11. Circuits combinatoires importants
- 12. Principes de logique séquentielle
- 13. Réalisation de la bascule DFF
- 14. Architecture de von Neumann
- 15. Réalisation des composants
- 16. Code machine et langage assembleur
- 17. Réalisation d'un processeur
- 18. Performance et micro-architecture
- 19. Du processeur au système

"Il existe 10 genres de personnes: Ceux qui comprennent le système binaire et ceux qui ne le comprennent pas."

Rappel: codage de l'information

Représentation externe ("Monde réel")

Représentation interne (Espace des états binaires)

Aujourd'hui: codage de nombres entiers

Représentation d'entiers: idée

Un nombre exprimé en base décimale

Le même nombre en base binaire

Chaque chiffre du nombre, exprimé en base binaire, est représenté par un état binaire dans l'ordinateur.

La notation positionnelle décimale

945

Notation positionnelle

Cas général (decimal): x =

Cas général: n'importe quelle base

En base quelconque: x =

Conversion d'une base quelconque vers la base décimale: appliquez simplement la definition ci-dessus.

523₍₆₎

Autre exemple: base binaire

 $1000010_{(2)}$

En base 2: sommez simplement les poids des positions de chiffre 1.

Conversion de base décimale vers base b

- On divise successivement par la base b
- Le reste de la division devient un chiffre du résultat, à écrire de droite à gauche
- Exemple: conversion de la base 10 vers la base 6.

A vous de jouer!

Conversion vers la base 3:

$$77_{(10)} = ?_{(3)}$$

http://votamatic.unige.ch ZGWB

Conversion de base 10 vers base 2

Méthode de décomposition en puissances de 2

La méthode de conversion présentée ci-dessus fonctionne aussi pour la base 2. Mais voici une autre méthode qui est plus pratique pour une conversion manuelle.

Listez toutes les puissances de 2 de 2⁰ à 2^{k-1}. De manière répétée

- Choisissez la plus grande puissance inférieure ou égale au nombre
- Ajoutez-la au résultat et soustrayez-la du nombre.

128 64 32 16 8 4 2 1

$$77_{(10)} =$$

Commentaire sur l'ordre des chiffres

En français, on écrit et on lit un nombre de gauche à droite, donc en commençant par le chiffre de poids élevé.

945

En mathématiques, on développe une série en commençant par le terme d'indice faible.

$$5 \cdot 10^0 + 4 \cdot 10^1 + 9 \cdot 10^2$$

Les deux choix sont arbitraires

La base hexadécimale (16)

La base hexadécimale (16) est particulière

Les chiffres 0-9 ne suffisent pas! Il faut des chiffres pour 10-15. On utilise:

$$10_{(10)} = A_{(16)}$$

$$11_{(10)} = B_{(16)}$$

$$12_{(10)} = C_{(16)}$$

$$13_{(10)} = D_{(16)}$$

$$14_{(10)} = E_{(16)}$$

$$15_{(10)} = F_{(16)}$$

Exemple: convertissons le nombre hexadécimal F8A en décimal:

Conversion binaire -> hexadécimal

Décimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binaire	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Неха																

Pour convertir un nombre binaire en hexadécimal, il suffit de le traduire par groupes de quatre chiffres binaires, et vice-versa.

$$1110\ 0010_{(2)} = car$$

$$1110_{(2)} =$$
, et

$$0010_{(2)} =$$

Exercice

Convertissez le nombre F37₍₁₆₎ en base binaire.

http://votamatic.unige.ch

DMGG

Décimal	0	1	2	3	4	5	6	7	80	9	10	11	12	13	14	15
Binaire	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hexa																

Codage à taille fixe pour les nombres entiers

Codage de nombres entiers

Idée:

- 1. On fixe un nombre de bits (ici: 8)
- 2. On convertit l'entier naturel en base binaire, et on assigne les chiffres 0/1 aux états binaires de la représentation interne.

Notation:

Les mots

La plupart du temps, les ordinateurs regroupent l'information par **mots** (anglais: **word**), des séquences de bits de longueur fixe (8 bits, 16 bits, 32 bits, 64 bits, etc.)

Exemple: Un mot à 16 bits.

L'ordinateur applique ses opérations (p.ex. les opérations arithmétiques) à des *mots* entiers.

La fonction de codage a donc typiquement la taille d'un mot.

Plus grand nombre en k bits

Quel est le plus grand nombre entier naturel qu'on peut représenter à l'aide d'un *mot* à 16 bits?

- Il s'agit du nombre n = 1111 1111 1111 $1111_{(2)}$
- Il suffit de realiser que $n + 1 = 1000000000000000000_{(2)} = 2^{16}$.
- Donc, $n = 2^{16} 1 = 65535$

Le sous-ensemble $\mathbb{N}_{(k)}$ des nombres naturels

- Un mot ne représente qu'un nombre limité de valeurs entières naturelles.
- Un **mot** de k bits peut représenter un nombre a compris entre 0 et 2^k -1. Nous appelons $\mathbb{N}_{(k)}$ ce sous-ensemble des nombres naturels:

$$\mathbb{N}_{(k)} = \{ x \mid 0 \le x < 2^k \}.$$

Ensemble		Plus grand nombre (en base binaire)	Plus grand nombre (en base hexadécimale)	Plus gd nbre (décimal)
$\mathbb{N}_{(8)}$	1	1111 1111	FF	255
$\mathbb{N}_{(16)}$	2	1111 1111 1111 1111	FF FF	65535
$\mathbb{N}_{(32)}$	4	•••	FF FF FF	~4.3*10 ⁹
$\mathbb{N}_{(64)}$	8	•••	FF FF FF FF FF FF	~1.8*10 ¹⁹

Notation: bits de poids fort et faible

- Bit de poids fort
- Most significant bit
- MSB

- Bit de poids faible
- Least significant bit
- LSB

Le codage $code_{\mathbb{N}_{(k)}}$

- Le codage $code_{\mathbb{N}_{(k)}}$ accepte des entiers naturels dans $\mathbb{N}_{(k)}$ et les convertit en séquences binaires.
- Principe: le nombre est exprimé en base binaire, et chaque chiffre correspond à un état.
- Le codage dépend de la taille du mot.

Exemple en $\mathbb{N}_{(16)}$:

Notation pour les états binaires en mémoire

Pour la suite de ce cours, pour décrire le contenu d'un **mot**, on ne s'embêtera pas à écrire des longues séquences de 0 et 1 comme

On utilisera plutôt une notation hexadécimale plus concise:

Donc:

$$61968_{(10)} \xrightarrow{\mathsf{code}_{\mathbb{N}_{(16)}}} \mathsf{0xF210}$$

4. Codage de nombres entiers naturels

Débordements

Débordements (overflow)

Problème: l'ensemble \mathbb{N} est infini, alors que le sousensemble $\mathbb{N}_{(k)}$ est de taille limitée. On ne peut pas représenter tous les nombres!

Exemple: En $\mathbb{N}_{(8)}$, donc en utilisant des mots à 8 bits, effectuons l'addition

130 + 170 = 300

Question: que faire?

Réponse: il n'y a rien à faire. Mais, on aimerait un comportement bien défini, reproduisible.

Résultat plus grand que 255!

Gestion des débordements

Exemple: débordement lors d'additions

Le circuit additionneur $add_{(k)}$

La fonction add₍₈₎ est une **fonction logique**. Elle travaille en représentation interne: c'est un opérateur qui applique une séquence de bits sur une autre séquence de bits.

Dans un ordinateurs, les fonctions logiques sont réalisées à l'aide de circuits logiques (voir chapitre 9).

Débordements

En base binaire, il est évident que le résultat est trop grand, car on «déborde à gauche»:

Comportement adopté: on ignore la retenue qui déborde

Le bit ignoré correspondait à une valeur de 256 (ou 2^k). On soustrait donc 256 (ou 2^k) du résultat.

Débordements

Débordements en $\mathbb{N}_{(k)}$: Représentation externe

Lors d'une addition ou soustraction de deux nombres en $\mathbb{N}_{(k)}$, un **débordement** désigne une situation dans laquelle le résultat ne se trouve pas en $\mathbb{N}_{(k)}$. En représentation externe, les règles de débordement s'énoncent par:

Addition en
$$\mathbb{N}_{(k)}$$
: $x,y \mapsto \begin{cases} x+y & \text{si } x+y < 2^k \\ x+y-2^k & \text{si } x+y \geq 2^k \end{cases}$

Soustraction en
$$\mathbb{N}_{(k)}$$
: $x,y \mapsto \begin{cases} x-y & \text{si } x-y \ge 0 \\ x-y+2^k & \text{si } x-y < 0 \end{cases}$

Exemple: débordement dans un octet (k=8):

	Calcul	Résultat z
Addition sans débordement	$egin{aligned} x &= 20 \ y &= 30 \ z &= \mathtt{decode}_{\mathbb{N}_{(8)}}(\mathtt{add}_{(8)}(\mathtt{X},\mathtt{Y})) \end{aligned}$	
Addition avec débordement	$egin{aligned} x &= 150 \ y &= 200 \ z &= \mathtt{decode}_{\mathbb{N}_{(8)}}(\mathtt{add}_{(8)}(\mathtt{X},\mathtt{Y})) \end{aligned}$	
Soustraction avec débordement	$egin{aligned} x &= 150 \ y &= 200 \ z &= \mathtt{decode}_{\mathbb{N}_{(8)}}(\mathtt{sub}_{(8)}(\mathtt{X}, \mathtt{Y})) \end{aligned}$	

Interprétation: gestion cyclique des débordements

- La règle de débordement équivaut à un traitement cyclique l'intervalle $\mathbb{N}_{(k)}$.
- Si on dépasse la valeur maximale, on recommence à zéro, et viceversa.

