Politechnika Warszawska

MSI

C5. Uczenie się przez obserwację (indukcja)

Włodzimierz Kasprzak

Zadanie 1. Klasteryzacja cech

Dany jest zbiór 15 próbek uczących 4 klas o postaci 3-wymiarowych wektorów cech. Załóżmy, że ich przynależność do klasy nie jest znana. Zastosować algorytm kwantyzacji z ustalaniem liczby klastrów – wykonać 2 iteracje tego algorytmu. Kwantyzacja korzysta z klasteryzacji kśrednich.

Oszacować wyniki wykonania 2 iteracji algorytmu kwantyzacji.

(Z uwagi na całkowite wartości cech mogą wystąpić zerowe wariancje – wtedy przyjąć wartość wariancji za równą 0.25).

Porównać przynależność próbek do klastrów z ich rzeczywistą klasą, podaną w ostatniej kolumnie tabelki.

Indeks	0	1	2	Klasa
1	16	27	10	1
2	16	27	12	1
3	18	29	8	1
4	17	28	8	1
5	18	29	8	1
6	27	43	5	2
7	31	48	7	3
8	23	35	7	4
9	22	34	5	4
10	28	36	6	4
11	29	45	6	4
12	27	43	7	2
13	28	44	5	3
14	28	44	7	3
15	28	44	8	3

Rozwiązanie 1 (1)

1) Jeden klaster.

Środek masy (reprezentant klastra) i wartości min-max dla próbek:

$$m_0 = [23.7333 \ 37.0667 \ 7.2667];$$

$$Min = [16 \ 27 \ 5]$$

$$Max = [31 \ 48 \ 12]$$

Odchyl. std. =
$$[5.4046 \quad 7.6855 \quad 1.9074]$$

2) Dwa klastry. Inicjalizacja reprezentantów:

$$m_1 = m_0 - (m_0 - Min)/2 =$$
[19.8667 32.0333 6.1333]

$$m_2 = m_0 + (Max - m_0)/2 =$$
[27.3667 42.5333 9.6333]

MSI Ćwiczenie 5

30

Rozwiązanie 1 (2)

2) Dwie klasy (c.d.)

<u>Iterujemy:</u>

- Klasyfikuj próbki
- Modyfikuj reprezentantów klastrów
 Iteracja 1

$$m_1(1) = [18.5714 \ 29.8571 \ 8.2857]$$

$$m_2(1) = [28.2500 \ 43.3750 \ 6.3750]$$

Iteracja 2

Brak zmian → Stop

3) Analiza

Kl. 1: 7 próbek, std duże → podziel na 2

Kl. 2: 8 próbek, std duże → podziel na 2

Index	0	1	2	Class Iter 1	ClassI ter 2
1	16	27	10	1	1
2	16	27	12	1	1
3	18	29	8	1	1
4	17	28	8	1	1
5	18	29	8	1	1
6	27	43	5	2	2
7	31	48	7	2	2
8	23	35	7	1	1
9	22	34	5	1	1
10	28	36	6	2	2
11	29	45	6	2	2
12	27	43	7	2	2
13	28	44	5	2	2
14	28	44	7	2	2
15	28	44	8	2	2

Rozwiązanie 1 (3)

4) Cztery klastry

<u>Inicjalizacja</u>

$$m_{1n} = m_1 - (m_1 - Min)/2 =$$
 $[17.2857 28.4286 6.6429]$
 $m_{2n} = m_1 + (m_0 - m_1)/2 =$
 $[21.1524 33.4619 7.7762]$
 $m_{3n} = m_2 - (m_2 - m_0)/2 =$
 $[25.9917 40.2208 6.8208]$
 $m_{4n} = m_2 + (Max - m_2)/2 =$
 $[29.6250 45.6875 9.1875]$

<u>Iteracja</u>

- Klasyfikuj próbki
- Modyfikuj reprezentantów

Rozwiązanie 1 (4)

4) Cztery klastry (c.d.)

Iteracja 1

Liczba próbek w klastrze=[5 2 4 4]

$$m_1(1) = [17.0 \ 28.0 \ 9.2]$$

$$m_2(1) = [22.5 \quad 34.5 \quad 6.0]$$

$$m_3(1) = [27.5 \ 41.5 \ 5.75]$$

$$m_4(1) = [29.0 \ 45.25 \ 7.0]$$

Iteracja 2

Liczba próbek(klaster)= [5 2 3 5],

• • •

$$m_3(1) = [27.333 \ 40.667 \ 6.0]$$

$$m_4(1) = [28.8 \ 45.0 \ 6.6]$$

Iteracja 3: brak zmian → stop

Index	0	1	2	Class Iter 1	ClassI ter 2
1	16	27	10	1	1
2	16	27	12	1	1
3	18	29	8	1	1
4	17	28	8	1	1
5	18	29	8	1	1
6	27	43	5	3	3
7	31	48	7	4	4
8	23	35	7	2	2
9	22	34	5	2	2
10	28	36	6	3	2
11	29	45	6	4	2
12	27	43	7	3	3
13	28	44	5	3	4
14	28	44	7	4	4
15	28	44	8	4	4

Zadanie 2. Uczenie się drzewa decyzyjnego – DTL i kryterium zysku informacji

Wykonać uczenie drzewa decyzyjnego metodą DTL (Quinlan ID3), w którym wybór testu (atrybutu) dokonuje się na podstawie przyrostu (zysku) informacji, dla podanego obok zbioru uczącego *P*.

Przeprowadzić niezbędne obliczenia.

Próbka	Atrybut (Test)	Atrybut (Test)	Atrybut(Test)	Klasa
X	a1	a2	a3	C
x ₁	1	1	1	1
X ₂	1	1	2	1
X ₃	1	1	3	1
X ₄	2	2	2	1
x ₅	2	2	3	1
x ₆	1	2	3	2
X ₇	1	2	2	2
x ₈	1	2	3	2
X ₉	2	1	1	2
x ₁₀	2	2	1	2

Rozwiązanie 2 (1)

Początkowa entropia: H(P) = H([5/10, 5/10]) = 1.0

1) Obliczenia dla korzenia drzewa P

Obliczamy entropię pozostałą dla zbioru P po zastosowaniu każdego z atrybutów (log oznacza logarytm o podstawie 2)

Dla atrybutu a1:

Dla a1=1 mamy 6 elementów (3 są klasy "1" i 3 klasy "2"), dla a1=2 mamy 4 elementy (2 są klasy "1" i 2 klasy "2")

```
H_{zostało}(P \mid a1) = 6/10 (-3/6 \log (3/6) - 3/6 \log (3/6)) + 4/10 (-2/4 \log(2/4) - 2/4 \log(2/4)) = 6/10 * 1 + 4/10 * 1 = 1
```

Dla atrybutu a2:

Dla a2=1 mamy 4 elementy (z czego 3 są klasy "1" zaś 1 klasy "2") oraz dla a2=2 mamy 6 elementów (z czego 2 są klasy "1" zaś 4 są klasy "2)

$$H_{zostało}$$
 (P | a2) = 4/10 (-3/4 log (3/4) - 1/4 log (1/4)) + 6/10 (-2/6 log(2/6) - 4/6 log(4/6)) = 0.8755

Rozwiązanie 2 (2)

Dla atrybutu a3:

Mamy 3 elementy "1" (z czego 1 jest klasy "1" zaś 2 klasy "2"), 3 elementy "2" (z czego 2 są klasy "1" zaś 1 klasy "2"), 4 elementy "3" (z czego 2 są klasy "1" zaś 2 są klasy "2")

 $H_{zostało}$ (P | a3) = 3/10 (-1/3 log (1/3) - 2/3 log (2/3)) + 3/10 (-2/3 log(2/3) - 1/3 log(1/3)) + 4/10 (-2/4 log(2/4) - 2/4 log(2/4)) = 0.9510

Podsumowując, w korzeniu drzewa uzysk informacji (zmniejszenie niepewności) wynieść może:

$$ZI(P \mid a1) = 1 - 1 = 0.000$$

$$ZI(P \mid a2) = 1 - 0.8755 = 0.1245$$

$$ZI(P \mid a3) = 1 - 0.9510 = 0.049$$

H(P|a1)=1, H(P|a2)=0.8755, H(P|a3)=0.9510

a2?

Wniosek: Największy uzysk daje zastosowanie w korzeniu drzewa atrybutu a2.

Rozwiązanie 2 (3)

2) Węzły poziomu II

Określamy uzysk przy zastosowaniu pozostałych atrybutów a1 i a3 w węzłach (a2=1), (a2=2) powstałych dla wszystkich możliwych wartości atrybutu a2 w korzeniu drzewa:

Węzeł (a2=1) - pozostały 4 elementy

Dla atrybutu a1 mamy 3 elementy "a1=1" (klasy "1" są 3 i klasy 2 jest 0), oraz 1 elementy "a1=2" (z czego 0 jest klasy 1 i 1 jest klasy "2")

 $H_{zostało}$ (a2=1 | a1) = 3/4 (-3/3 log 3/3) + 1/4 (-2/2 log 2/2) = 0 W zasadzie można już opuścić obliczenia dla a3, gdyż nie

będzie większego zysku niż dla a1, ale mimo to sprawdźmy.

Rozwiązanie 2 (4)

Dla atrybutu a3 – mamy 2 elementy "1" (z czego 1 klasy "1" oraz 1 klasy "2"), 1 element "2" (klasy 1) i 1 element "3" klasy "1" $H_{zostało}$ (a2=1 | a3) = $2/4(-1/2 \log(1/2) - 1/2 \log(1/2)) + 1/4$ (-1 log 1) = 2/4 2*(-1/2 * (-1)) + 0 + 0 = 2/4 * 1 = 2/4 = 0.5 Wniosek: Wybieramy w węźle (a2=1) atrybut a1.

Rozwiązanie 2 (4)

Na poziomie III z węzła (a2=1) wychodzą już tylko dwa liście (a2=1, a1=1) i (a2=1, a1=2) (nie będą dalej analizowane), gdyż zawierają próbki wyłącznie jednej klasy – dla a1=1 jest to klasa 1, a dla a1=2 - klasa 2.

Rozwiązanie 2 (5)

Wezeł (a2=2) - jest 6 elementów

Dla atrybutu a1 mamy 3 elementy "1" (wszystkie klasy 2), i 3 elementy "2" (z czego 1 jest klasy "1" oraz 2 elementy klasy "2")

• $H_{zostało}(a2=2 \mid a1) = 3/6$ (-1 log 1) + 3/6 (-1/3 log (1/3) -2/3 log (2/3)) = 3/6 * 0 + 3/6 * (1/3 * 1.585 + 2/3 * 0.585)= $\frac{1}{2}$ * 0.91835 = 0.45917

Dla atrybutu a3 mamy 1 element "1" klasy "1" oraz 2 elementy "2" z czego 1 jest klasy "1" i 1 klasy "2" oraz 3 elementy "3" (1 klasy 1 i 2 klasy 2)

 $H_{zostało}$ (a2=2 | a3) = 1/6 (-1 log 1) + 2/6 (-1/2 log(1/2) - 1/2 log (1/2) + 3/6 (-1/3 log(1/3) - 2/3 log (2/3))= 0 + 2/6 * 1 + $\frac{1}{2}$ * 0.91835 = 1/3 = 0.79

Wniosek: atrybut a1 prowadzi do mniejszej entropii – daje większy uzysk – wybieramy a1 na węzeł poziomu II.

Rozwiązanie 2 (6)

W tej gałęzi drzewa na poziomie III pozostaje już jedynie atrybut a3.

Jednak dla gałęzi (a2=2, a1=1), nie ma on znaczenia – wszystkie pozostałe tu elementy x6-x8 są klasy 2.

Jedynie w gałęzi (a2=2, a1=2) dodany zostaje węzeł z testem a3. Oddziela on od siebie pozostałe elementy x4, x5, x10.

Rozwiązanie 2 (7)

Powstało drzewo decyzyjne o postaci:

Zadanie 3. Uczenie się drzewa decyzyjnego – DTL i iloraz zysku informacji

Wykonać uczenie drzewa decyzyjnego metodą DTL (Quinlan ID3), w którym wybór testu (atrybutu) dokonuje się na podstawie ilorazu zysku informacji, dla podanego obok zbioru uczącego P. Przeprowadzić niezbędne obliczenia.

Porównać wynik wynikiem zadania 2

Duálsta	Λ tlst /Ts .t\	Λ tlt /Tt)	A4::: : -:::1/T= =4\	I/I
Próbka		Atrybut (Test)		Klasa
X	a1	a2	a3	С
x ₁	1	1	1	1
x ₂	1	1	2	1
X ₃	1	1	3	1
X ₄	2	2	2	1
X ₅	2	2	3	1
x ₆	1	2	3	2
X ₇	1	2	2	2
x ₈	1	2	3	2
X ₉	2	1	1	2
x ₁₀	2	2	1	2

Rozwiązanie 3

Musimy jawnie uwzględnić entropię każdego węzła w drzewie decyzyjnym, gdyż potrzebne jest porównanie zysku informacji normalizowanego entropią wartości każdego z atrybutów dla danego węzła (Split(węzeł | atrybut)).

Okaże się, że drzewo decyzyjne w porównaniu z rozwiązaniem poprzedniego zadania nie ulegnie zmianie.

Zadanie 4. Klasyfikator ML i Bayesa

Nad przestrzenią cech \Re^2 ustalić należy (graficznie i analitycznie) rozkłady 3 klas, uwzględniając następujących 10 próbek uczących:

$c_k = (x,$	y) (1; 2	,5)	(0.5; 3)	(0; 3,5)	(2; 3)	(4; 4)	(3; 5)	(1; 1)	(2; 0)	(3; 1)	(2; 2)
Klasa	2 1		1	1	2	2	2	3	3	3	3

- (A) Podać wyniki uczenia dla 3 klasyfikatorów:
 - 1) klasyfikatora geometrycznego minimalnej odległości,
 - 2) klasyfikatora ML (największej wiarygodności)
 - 3) klasyfikatora Bayesa.
- (W klasyfikatorach ML i Bayesa przyjąć rozkłady Gaussa prawdopodobieństw warunkowych a priori)
- (B) Podać wyniki klasyfikacji próbki (2; 2,5) w powyższych klasyfikatorach

Rozwiązanie 4 (1)

A)

1) Klasyfikator geometryczny

Centroidy (μ_i) obszarów klas:

2) Klasyfikator ML.

Klasa "i"	μ_{i}
1	(0.5; 3)
2	(3; 4)
3	(2; 1)

Rozkłady warunkowe apriori: $p(c \mid klasa_i) = N(\mu_i, \Sigma_i)$, i = 1,2,3

Klasa "i"	μ_i	Σ (2D) lub σ_r (1D)	Σ ⁻¹ (macierz odwrotna)
1	(1/2; 3)	1-wymiarowy: $\sigma_r^2 = 1/3$ 2D: $\Sigma = \begin{bmatrix} 1/6 & -1/6 \\ -1/6 & 1/6 \end{bmatrix}$	UWAGA: det(Σ)=0 ! Zastosować rozkład 1D zmiennej r: exp(-1/2 (r^2)/σ_r^2)
2	(3, 4)	1-wymiarowy: $\sigma_r^2 = 4/3$ 2D: $\begin{bmatrix} 2/3 & 1/3 \\ 5/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$	$\det(\Sigma) = 0.3333$ $\Sigma^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$
3	(2; 1)	1-wymiarowy: $\sigma_r^2 = 1$ $\Sigma = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$	$\det(\Sigma) = 0.25$ $\Sigma^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Rozwiązanie 4 (2)

Dla klasy 1 rozkład 2D jest zdegenerowany – wyznacznik macierzy Σ_1 wynosi zero - musimy zastąpić rozkład 2D rozkładem 1D nowej zmiennej "r(c)" – odległością punktu c od centroidy (środka masy) punktów danej klasy. W celu uczciwego porównywania wyników klasyfikacji dla trzech klas określimy 1-wymiarowe rozkłady warunkowe a priori dla wszystkich trzech klas: $r_i(c) = \|c - \mu_i\|, i = 1,2,3$

$$r_i([x,y]) = \sqrt{(x-\mu_i)^2 + (y-\mu_i)^2}$$

Otrzymamy rozkłady warunkowe a priori zmiennej *r*:

$$p_i(r \mid \mu_i, \sigma_i) = N(0, \sigma_i), i = 1,2,3$$

$$N(0,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

Wyznaczamy wartości $r^2(c_k)$:

$c_k = (x, y)$	(1; 2.5)	(0.5; 3)	(0; 3.5)	(2; 3)	(4; 4)	(3; 5)	(1; 1)	(2; 0)	(3; 1)	(2; 2)
μ_i	(0.5; 3)	(0.5; 3)	(0.5; 3)	(3; 4)	(3; 4)	(3; 4)	(2; 1)	(2; 1)	(2; 1)	(2; 1)
r_k^2	0.5	0	0.5	2	1	1	1	1	1	1

Rozwiązanie 4 (3)

Stąd wariancje rozkładów dla trzech klas wynoszą:

$$\sigma_1^2(r) = \frac{1}{3}(0.5 + 0 + 0.5) = \frac{1}{3}$$

$$\sigma_2^2(r) = \frac{1}{3}(2 + 1 + 1) = \frac{4}{3}$$

$$\sigma_3^2(r) = \frac{1}{4}(1 + 1 + 1 + 1) = 1$$

3) Klasyfikator Bayesa

Dodatkowo do definicji rozkładów warunkowych a priori, jak dla klasyfikatora ML powyżej, potrzebny jest rozkład a priori prawdopodobieństwa klas:

$$p(klasa) = [3/10, 3/10, 4/10]$$
.

Rozwiązanie 4 (4)

- B) Klasyfikacja próbki, c = (2, 2.5)
- 1) Klasyfikator geometryczny z miarą euklidesową:
- Klasa 1: $r_1^2(c) = |(2, 2.5) (0.5, 3)| = 1.5^2 + 0.5^2 = 2.25 + 0.25 = 2.5$
- Klasa 2: $r_2^2(c) = |(2, 2.5) (3, 4)| = 1 + 1.5^2 = 3.25$
- Klasa 3: $r_3^2(c) = |(2, 2.5) (2, 1)| = 0 + 1.5^2 = 2.25$

Reguła decyzyjna:

$$\underset{i}{\operatorname{arg\,min}} r_i^2 = \underset{i}{\operatorname{arg\,min}} [2.5, 3.25, 2.25] = 3$$

Zwycięża klasa 3.

2) Klasyfikator ML.

$$\underset{i}{\operatorname{arg\,max}} p_{i}(r_{i}(c) | (0, \sigma_{i}))$$

Reguła decyzyjna:

$$\arg\max_{i} \frac{1}{\sigma_{i}\sqrt{2\pi}} \cdot \exp\left(-\frac{r_{i}^{2}}{2\sigma_{1}^{2}}\right) = \frac{1}{\sqrt{2\pi}} \arg\max_{i} \frac{1}{\sigma_{i}} \cdot \exp\left(-\frac{r_{i}^{2}}{2\sigma_{1}^{2}}\right)$$

22

Dla klasy 1: $0.02351 \cdot 1.732 = 0.040719$

gdzie
$$\exp\left(-\frac{2.5}{2/3}\right) = \exp(-3.75) \cong 0.02351$$
 $\frac{1}{\sigma_1} = \frac{1}{\sqrt{\frac{1}{3}}} \cong 1.732$

MSI Ćwiczenie 5

Rozwiązanie 4 (5)

Dla klasy 2: $0.2956 \cdot 0.866 = 0.2559896$

gdzie
$$\exp\left(-\frac{3.25}{2 \cdot \frac{4}{3}}\right) = \exp(-1.21875) \approx 0.2956$$
 $\frac{1}{\sigma_2} = \frac{1}{\sqrt{\frac{4}{3}}} \approx 0.866$

Dla klasy 3: $0.3246 \cdot 1 = 0.3246$

gdzie
$$\exp\left(-\frac{2.25}{2 \cdot 1}\right) = \exp(-1.125) \approx 0.3246$$
 $\frac{1}{\sigma_r} = \frac{1}{\sqrt{1}} = 1$

Stąd: $\underset{i}{\text{arg max}} [0.04071, 0.25599, 0.32460] = 3$

Zwycięża klasa 3.

3) Klasyfikator Bayesa

Uwzględniamy dodatkowo do ML rozkład a priori klas: p(i) = [0.3, 0.3, 0.4]

Stąd: $arg max [0.3 \cdot 0.04071, 0.3 \cdot 0.25599, 0.4 \cdot 0.32460] = 3$

Zwycięża klasa 3.

Zadanie 5. Klasyfikator k-NN

Nad przestrzenią cech \Re^2 ustalić należy (graficznie) rozkłady 4 klas, uwzględniając następujących 11 próbek uczących:

(x,y)	(1;2,5)	(1; 3)	(1;3,5)	(2; 3)	(4; 3)	(2; 2)	(1; 1)	(2; 0)	(3; 1)	(3,5;1,5)	(4; 1,5)
Klasa	1	1	1	2	2	3	3	3	3	4	4

- (A) Narysować diagram Voronoia uzyskany w procesie uczenia klasyfikatora według k=4 sąsiadów (4-NN).
- (B) Podać wynik klasyfikacji wektora cech (2; 2,5) w tym klasyfikatorze.

Zadanie 6. Klasyfikator SVM

- A) Zdefiniować problem uczenia klasyfikatora SVM dla podanego niżej zbioru 2-wymiarowych cech i dwóch klas,
- B) Podać spodziewane w tym przypadku rozwiązanie w graficzny sposób,
- C) Rozwiązać problem analitycznie lub algorytmicznie i podać dokładne rozwiązanie.

Zadany jest następujący zbiór próbek uczących:

Indeks "i"	1	2	3	4	5	6
$C_i = (c_{i1}, c_{i2})$	(2; 2)	(1; 4)	(1; 6)	(2; 1)	(4; 2)	(5; 2)
Klasa Ω_k =	Ω_1	Ω_1	Ω_1	Ω_2	Ω_2	Ω_2

Rozwiązanie 6 (1)

A) Postać pierwotna ("prymalna") problemu optymalizacji dla procesu uczenia liniowego klasyfikatora SVM.

Minimalizacja kwadratowej funkcji celu: $\frac{1}{2}\mathbf{a}^T\mathbf{a}$ przy ograniczeniach liniowych: $y_i(\mathbf{a}^T\cdot\mathbf{c}_i+a_0)\geq 1$; i=1,...,N Gdzie $\mathbf{a}=(a_1,a_2,...,a_n)$ – wektor normalny do hiperpłaszczyzny.

Szukane parametry: wektor normalny a i wyraz wolny a_0 .

W tym zadaniu konkretnie: n = 2, h = 3 \rightarrow $\hat{\mathbf{a}} = (a_0, a_1, a_2)$, $\mathbf{a} = (a_1, a_2)$ N = 6 próbek: i = 1, 2, ... 6.

Optymalizacja oznacza, że przy zadanych ograniczeniach maksymalizowany jest też "margines rozwiązania": $\tau = 1 / |\mathbf{a}|$.

Hiperpłaszczyzna – w tym przypadku prosta skierowana – separuje obszary 2 klas w przestrzeni cech: $H(\mathbf{c})$: $a_0 + \mathbf{a}^T \mathbf{c} = 0$, gdzie wektor cech $\mathbf{c} = (c_1, c_2)$.

Rozwiązanie 6 (2)

B) Rozwiązanie graficzne

Poszukujemy 3 wektorów wspierających: 2 z nich należą do jednej klasy a 1 do klasy drugiej. Wyznaczają one dwie wzajemnie równoległe proste wspierające: $H_{+1}(c) = 1$, i $H_{-1}(c) = -1$. Pomiędzy tymi prostymi nie leżą żadne

inne próbki uczące.

Odstęp pomiędzy prostymi jest największy spośród możliwych rozwiązań tego typu.

Rozwiązanie 6 (3)

C) Rozwiązanie analityczne – wykorzystamy rozwiązanie ogólnego problemu programowania kwadratowego

Np. funkcja quadprog w MATLAB-ie służy do rozwiązania ogólnego problemu optymalizacji kwadratowej o postaci:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{f}^T \mathbf{x}$$

przy ograniczeniach: $Ax \leq b$.

Szukany jest wektor x.

Aby wyrazić problem uczenia klasyfikatora SVM jako specyficzne quadprog należy zdefiniować macierze H, A i wektory f, b,

dla wywołania funkcji: x = quadprog(H, f, A, b).

Problem uczenia klasyfikatora SVM przedstawimy jako minimalizację funkcji

o postaci:
$$\frac{1}{2} \begin{bmatrix} \mathbf{a} \ a_0 \end{bmatrix} \begin{pmatrix} \mathbf{I}_n & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ a_0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_0 \end{pmatrix}$$
przy czym:
$$\mathbf{K} = \begin{pmatrix} a_1 \\ a_2 \\ a_0 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} \mathbf{I}_n & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{f} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
MSI
$$\dot{\mathbf{f}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Rozwiązanie 6 (4)

Ograniczenia dla
$$n=2$$
 i $N=6$

przyjmują postać:
$$\begin{pmatrix}
y_1 & 0 & 0 & 0 \\
0 & y_2 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & y_N
\end{pmatrix}
\begin{pmatrix}
{}^1c_1 & {}^1c_2 & 1 \\
{}^2c_1 & {}^2c_2 & 1 \\
\vdots & \vdots & \ddots & \vdots \\
a_0
\end{pmatrix} \ge \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

gdzie
$$\mathbf{A} = -\begin{pmatrix} y_1 & 0 & 0 & 0 \\ 0 & y_2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & y_N \end{pmatrix} \begin{pmatrix} {}^{1}c_1 & {}^{1}c_2 & 1 \\ {}^{2}c_1 & {}^{2}c_2 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ {}^{N}c_1 & {}^{N}c_2 & 1 \end{pmatrix} \qquad \mathbf{b} = -\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{b} = -\begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}$$

Podstawiając próbki uczące otrzymamy konkretnie:

$$\mathbf{A} = -\begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & -1 & \\ & & & & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 6 & 1 \\ 2 & 1 & 1 \\ 4 & 2 & 1 \\ 5 & 2 & 1 \end{pmatrix} \qquad \mathbf{A} = -\begin{pmatrix} 2 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 6 & 1 \\ -2 & -1 & -1 \\ -4 & -2 & -1 \\ -5 & -2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -1 \\ -1 & -4 & -1 \\ -1 & -6 & -1 \\ 2 & 1 & 1 \\ 4 & 2 & 1 \\ 5 & 2 & 1 \end{pmatrix}$$

$$\mathbf{A} = -\begin{pmatrix} 2 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 6 & 1 \\ -2 & -1 & -1 \\ -4 & -2 & -1 \\ -5 & -2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -1 \\ -1 & -4 & -1 \\ -1 & -6 & -1 \\ 2 & 1 & 1 \\ 4 & 2 & 1 \\ 5 & 2 & 1 \end{pmatrix}$$

Rozwiązanie 6 (5)

Rozwiązanie: $\mathbf{x} = [-1, 2, -1]$, tzn. $a_1 = -1$, $a_2 = 2$, $a_0 = -1$

Równanie prostej separującej: $H(\mathbf{c})$: $-1 + (-1) c_1 + 2 c_2 = 0$

Margines wynosi: $\tau = \frac{1}{\|\mathbf{a}\|} = \frac{1}{\sqrt{5}} \approx 0.447$

Zadanie 7. SVM – wybór i porównanie rozwiązań

Zakładamy zbiór uczący dla klasyfikatora SVM w postaci:

j	1	2	3	4	5	6
${}^{j}\mathbf{c} = ({}^{j}c_{1}, {}^{j}c_{2})$	(0;1)	(1; 3)	(2; 6)	(2;1)	(3;3)	(4; 4.5)
Class	1	1	1	-1	-1	-1

Załóżmy hipotezy istnienia dwóch zbiorów wektorów nośnych klasyfikatora SVM:

$$A = \{(0, 1), (1, 3), (3, 3); B = \{(3, 3), (4, 4.5), (0, 1)\}.$$

Należy sprawdzić, który z tych zbiorów stanowi potencjalne rozwiązania klasyfikatora SVM.

Zilustrować rozwiązania graficznie.

Wskazówka: należy znaleźć równania prostych separujących, sprawdzić marginesy rozwiązań i spełnianie ograniczeń.

Rozwiązanie 7 (1)

Zbiór próbek uczących:

Rozwiązanie 7 (2)

Zbiór A

1) Prosta separująca

Ograniczenia dla "wektorów nośnych" dają układ trzech równań:

$$y_i(\mathbf{a}^T \cdot \mathbf{c} + a_0) = 1; \quad i = 1,2,3.$$

$$\begin{cases} 1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + a_0) = 1 \\ 1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_0) = 1 \\ -1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} + a_0) = 1 \end{cases}$$

Rozwiązanie 7 (3)

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ -1 & -3 & -3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ -1 & -3 & -3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ -1 & -3 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 0.5 \end{bmatrix}$$

Rozwiązanie 7 (4)

Stąd równanie prostej skierowanej

$$\mathbf{H}^*(\mathbf{c}): \boxed{-1c_1 + \frac{1}{2}c_2 + \frac{1}{2} = 0}$$

Graficznie - linia w układzie x-y:

$$y = 2x - 1$$

2) Margines rozwiązania

$$d = \frac{1}{|\mathbf{a}|} = \frac{1}{\sqrt{(-1)^2 + 0.5^2}} = \frac{2}{\sqrt{5}} \approx 0.8944$$

3) Sprawdzenie ograniczeń:

Nr	Próbka (c_1, c_2)	$a_1 c_1 + a_2 c_2 + a_0 = ?$	Powinno być	Ograniczenie spełnione?
1	(0,1)	1	= 1	True
2	(1,3)	1	= 1	True
3	(2,6)	1.5	≥ 1	True
4	(2,1)	-1	≤ -1	True
5	(3,3)	-1	= -1	True
6	(4, 4.5)	-1.25	≤ -1	True

Rozwiązanie 7 (6)

Zbiór B

1) Równanie prostej separującej

$$\begin{cases} -1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} + a_0) = 1 \\ -1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 4 \\ 4.5 \end{bmatrix} + a_0) = 1 \\ 1 \cdot ([a_1 \ a_2] \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + a_0) = 1 \end{cases}$$

$$\begin{bmatrix} -1 & -3 & -3 \\ -1 & -4 & -4.5 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.2 \\ -1.2 \\ 0.8 \end{bmatrix}$$

Rozwiązanie 7 (7)

Prosta H*(c):
$$-1\frac{1}{5}c_1 + \frac{4}{5}c_2 + \frac{1}{5} = 0$$

Graficznie w układzie x-y:

$$y = 1.5 x - 0.25$$

2) "Margines" rozwiązania:

$$d = \frac{1}{|\mathbf{a}|} = \frac{1}{\sqrt{\left(\frac{-6}{5}\right)^2 + \left(\frac{4}{5}\right)^2}} = \frac{5}{\sqrt{52}} \approx 0.6934$$

3) Sprawdzenie ograniczeń

Nr	Próbka (c_1, c_2)	$a_1c_1 + a_2c_2 + a_0 = ?$	Powinno być	Ograniczenie spełnione?
1	(0,1)	1	= 1	True
2	(1,3)	1.4	≥ 1	True
3	(2,6)	2.6	≥ 1	True
4	(2,1)	-1.4	≤ -1	True
5	(3,3)	-1	= -1	True
6	(4, 4.5)	-1	≤ -1	True

Rozwiązanie 7 (5)

Ilustracja obu hipotetycznych rozwiązań:

Rozwiązanie 7 (8)

<u>Odpowiedź</u>

Oba zbiory wyznaczają rozwiązania spełniające ograniczenia, ale zbiór A wyznacza rozwiązanie o większym "marginesie".

Dlatego potencjalnym rozwiązaniem jest zbiór A.

Zad. 8. Klasyfikator SVM "zakłócany szumem" – analiza możliwych rozwiązań

Zaproponować prostą metodę sprawdzania "zbiorów kandydatów na wektory nośne" dla klasyfikatora SVM, tzn. po wybraniu odpowiedniej liczby próbek ze zbioru uczącego należy znaleźć rozwiązanie (równanie hiperpłaszczyzny $H(\mathbf{c})$), wyznaczyć "margines rozwiązania", sprawdzić spełnianie ograniczeń (ewentualnie określić i dodać wartość kary ϵ w przypadku niespełniania ograniczenia przez próbkę).

Kryterium uczenia klasyfikatora SVM ("zakłócanego szumem") wynosi: $\min_{\tilde{\mathbf{a}} \in R^{n+1}} f(\tilde{\mathbf{a}}) = \min_{\mathbf{a} \in R^n} (\frac{1}{2} |\mathbf{a}|^2 + C \sum_{i=1}^N \varepsilon_i)$

Założyć, że współczynnik kary C wynosi 1, a zbiór uczący obejmuje 6 poniższych próbek (po 3 w klasach +1 i -1), w przestrzeni cech \Re^2 :

$\mathbf{c} = (c_1, c_2)$	(1; 2)	(1; 3)	(1; 4)	(1; 1)	(2; 1)	(3; 1)
Klasa	+1	+1	+1	-1	-1	-1

Rozw. 8. Analiza rozwiązań "wektorów nośnych" (1)

Ponieważ rozmiar przestrzeni cech, n=2, poszukujemy zbioru 3 (h=n+1) "wektorów nośnych", z których 2 próbki należą do jednej klasy a jedna do drugiej.

A) Jeśli przyjmiemy, że dwie próbki należą do klasy "+1" to każda ich kombinacja (2 próbek z 3 możliwych) daje hiperpłaszczyznę wspierającą "+1" o równaniu $c_1 = 1$. Możliwe jest dobranie jednego z trzech punktów klasy "-1".

Rozwiązanie 8 (2)

- Jeśli dobierzemy próbkę [1, 1] to margines rozwiązania wyniesie 0 (obie proste wspierające pokrywają się), ale wszystkie ograniczenia będą spełnione. Jednak: $f(\widetilde{a}^{(1)}) = \infty$
- Jeśli dobierzemy próbkę [2, 1] to H(\mathbf{c}): $-2 \cdot \mathbf{c}_1 + 0 \cdot \mathbf{c}_2 + 3 = 0$.

Margines rozwiązania wyniesie 0.5, ale dla próbki [1, 1] nie będzie spełnione ograniczenie: H([1, 1])=1, czyli $\underline{-1 \cdot 1} = 1 - \varepsilon \implies \varepsilon = 2$.

Kara wyniesie C · $\varepsilon = 2$, a funkcja celu: $f(\widetilde{a}^{(2)}) = \frac{1}{2} \cdot 2^2 + 2 = 4$

$$f(\widetilde{a}^{(2)}) = \frac{1}{2} \cdot 2^2 + 2 = 4$$

• Jeśli dobierzemy próbkę [3, 1] to H(c): $-1 \cdot c_1 + 0 \cdot c_2 + 2 = 0$.

Margines rozwiązania wyniesie 1.0, ale dla próbek [1, 1] i [2,1] nie bedzie spełnione ograniczenie:

$$H([1, 1]) = 1$$
, czyli $-1 \cdot 1 = 1 - \varepsilon_1 \implies \varepsilon_1 = 2$;

$$H([2, 1]) = 0$$
, czyli $-1 \cdot 0 = 1 - \varepsilon_2 \implies \varepsilon_2 = 1$.

Funkcja celu:
$$f(\widetilde{\boldsymbol{a}}^{(3)}) = \frac{1}{2} \cdot 1^2 + 3 = 3.5$$

Rozwiązanie 8 (3)

B) Jeśli przyjmiemy, że dwie próbki należą do klasy "-1" to w tym przypadku każda ich kombinacja (2 próbek z 3 możliwych) daje prostą wspierającą "-1" o równaniu $c_2 = 1$. Możliwe jest dobranie jednego z trzech punktów klasy "+1".

B1) Niech zbiór próbek-kandydatów jest następujący:

$${}^{1}\mathbf{c} = (1,2)$$
, klasy +1
 ${}^{2}\mathbf{c} = (1,1)$, klasy -1
 ${}^{3}\mathbf{c} = (2,1)$, klasy -1

Pomimo, że rozwiązanie w przypadku klasycznego liniowego SVM jest dla nas oczywiste, rozwiążemy jednak ten przypadek w sposób ogólny, dla ilustracji potrzebnego nam algorytmu, a także uwzględnimy rozwiązania nie spełniające wszystkich ograniczeń.

Rozwiązanie 8 (4)

Równanie prostej skierowanej znajdujemy analogicznie jak w zadaniu 6. Ma ono postać, $H^*(c)$: $0 c_1 + 2 c_2 - 3 = 0$

Alternatywnie możemy rozwiązać problem poprzez mnożniki Lagrange'a, korzystając z własności SVM, że hiperpłaszczyzna rozdzielająca obszary klas zadana jest sumą iloczynów skalarnych danej próbki (tu: kolejnych punktów ze zbioru kandydatów) z kandydatami na "wektory nośne": $d_{\Lambda,a_0}({}^1\mathbf{c}) = \sum_{j=1}^3 \lambda_j y_j({}^1\mathbf{c}^{T}{}^j\mathbf{c}) + a_0 = {}^1y$ Niezbadna jest tu dodania

Niezbędne jest tu dodanie jednego równania, gdyż nieznane jest także a_0 .

Korzystamy z ograniczenia o ważonej sumie mnożników Lagrange'a równej zeru.

$$d_{\Lambda,a_0}(^2\mathbf{c}) = \sum_{j=1}^{3} \lambda_j y_j(^2\mathbf{c}^{T})^j \mathbf{c} + a_0 = ^2y$$

$$d_{\Lambda,a_0}({}^{3}\mathbf{c}) = \sum_{j=1}^{3} \lambda_j y_j({}^{3}\mathbf{c}^{T}{}^{j}\mathbf{c}) + a_0 = {}^{3}y$$

Ćwiczenie 5

Rozwiązanie 8 (5)

Po podstawieniu danych otrzymujemy układ 4 równań z 4 niewiadomymi:

$$\lambda_{1} (1,2)^{T} (1,2) - \lambda_{2} (1,2)^{T} (1,1) - \lambda_{3} (1,2)^{T} (2,1) + a_{0} = 1$$

$$\lambda_{1} (1,1)^{T} (1,2) - \lambda_{2} (1,1)^{T} (1,1) - \lambda_{3} (1,1)^{T} (2,1) + a_{0} = -1$$

$$\lambda_{1} (2,1)^{T} (1,2) - \lambda_{2} (2,1)^{T} (1,1) - \lambda_{3} (2,1)^{T} (2,1) + a_{0} = -1$$

$$\lambda_{1} - \lambda_{2} - \lambda_{3} = 0$$

Po wymnożeniu wektorów układ równań ma postać:

$$\lambda_{1} 5 - \lambda_{2} 3 - \lambda_{3} 4 + a_{0} = 1$$

$$\lambda_{1} 3 - \lambda_{2} 2 - \lambda_{3} 3 + a_{0} = -1$$

$$\lambda_{1} 4 - \lambda_{2} 3 - \lambda_{3} 5 + a_{0} = -1$$

$$\lambda_{1} - \lambda_{2} - \lambda_{3} = 0$$

Rozwiązanie układu (mnożniki Lagrange'a λ_i i a_0):

$$\begin{array}{lll} \bullet & \lambda_1=2 \ , & \lambda_2=2 \ , & \lambda_3=0 \ , & a_0=-3 \end{array}$$
 MSI
$$\begin{array}{lll} \lambda_3=0 \ , & \alpha_0=-3 \end{array}$$

Rozwiązanie 8 (6)

Z warunku K-K-T, na podstawie znanych mnożników Lagrange'a wyliczamy współczynniki kierunkowe szukanej prostej, $\mathbf{a} = (a_1, a_2)^T$:

$$\mathbf{a} = \sum_{j=1}^{3} y_{j} \lambda_{j}^{j} \mathbf{c}$$

$$\begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Stąd równanie prostej separującej ma postać:

$$0 c_1 + 2 c_2 - 3 = 0$$

"Margines" tego rozwiązania:

$$d = \frac{1}{\|\mathbf{a}\|} = \frac{1}{\sqrt{a_1^2 + a_2^2}} = \frac{1}{\sqrt{0^2 + 2^2}} = \frac{1}{2}$$

Sprawdzamy ograniczenia dla tego rozwiązania ->

Rozwiązanie 8 (7)

Sprawdzamy ograniczenia dla tego rozwiązania:

Nr	a= (a a)	$a_1c_1 + a_2c_2 + a_0 =$? Powinno	Błąd
	$\mathbf{c} = (c_1, c_2)$		być	3
1	(1,2)	1	= 1	0
2	(1,3)	3	≥ 1	0
3	(1,4)	5	≥ 1	0
4	(1,1)	-1	= -1	0
5	(2,1)	-1	= -1	0
6	(3,1)	-1	≤-1	0

Wartość funkcji celu:

$$f(\widetilde{a}^{(4)}) = \frac{1}{2} \cdot 2^2 + 0.0 = 2.0$$

Rozwiązanie 8 (8)

Analogicznie znajdujemy i sprawdzamy pozostałe dwa zbiory potencjalnych wektorów nośnych:

(obliczenia pominięto).

Pozostałe zbiory - próbka klasy "+1" wynosi:

•
$${}^{1}c = (1,3) \rightarrow f(\widetilde{a}^{(5)}) = \frac{1}{2} \cdot 1^{2} + 1 = 1.5$$
 \rightarrow najlepsze rozwiązanie!

lub

•
$${}^{1}c = (1,4) \rightarrow f(\widetilde{a}^{(6)}) = \frac{1}{2} \cdot \frac{2}{3}^{2} + (\frac{2}{3} + \frac{4}{3}) = 2.222$$

Zadanie 9. Regresja liniowa

Wyznaczyć aproksymację liniową funkcji, y=f(x), w oparciu o poniższy zbiór próbek (x_i, y_i) (i=1,2,...,6).

i	1	2	3	4	5	6
X	1	1	1	1	2	3
У	2	3	4	1	1	1

Rozwiązanie 9. Regresja liniowa

Idea rozwiązania.

Rozwiązanie problemu metodą najmniejszych kwadratów (MNK).

Poszukiwana jest funkcja liniowa o postaci parametrycznej:

$$y = f(x \mid a, b) = a x + b$$

Początkowy układ 6 równań dla zadanych próbek uczących:

$$a \cdot 1 + b = 2 + \varepsilon_1$$
; $a \cdot 1 + b = 3 + \varepsilon_2$
 $a \cdot 1 + b = 4 + \varepsilon_3$; $a \cdot 1 + b = 1 + \varepsilon_4$
 $a \cdot 2 + b = 1 + \varepsilon_5$; $a \cdot 3 + b = 1 + \varepsilon_6$

Sumaryczna funkcja błędu: $U(a, b) = \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 + \varepsilon_5^2 + \varepsilon_6^2$

Jest to funkcja kwadratowa względem a, b. Poszukiwane minimum znajdujemy w punkcie o zerowych pochodnych cząstkowych funkcji U względem nieznanych parametrów a, b:

$$(1/2) (\partial U / \partial a) = 0 ; (1/2) (\partial U / \partial b) = 0.$$

Zadanie 10. Aproksymacja wielomianem

Informacja o zależności dwóch zmiennych x, y dana jest w postaci wyników N=9 niezależnych pomiarów obarczonych błędami przypadkowymi:

$$x = [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]$$

 $y = [1.02, 0.88, 0.48, 0.44, 0.33, 0.30, 0.15, 0.14, 0.12]$

Dokonać aproksymacji funkcji, y = f(x), wielomianem 3-go stopnia.

Idea rozwiązania

To zadanie rozwiązujemy metodą najmniejszych kwadratów (MNK). Wielomian stopnia trzeciego jest postaci:

$$y = f(x | a, b, c, d) = ax^3 + bx^2 + cx + d$$
.

Początkowy układ 9 równań (liniowe względem a, b, c, d):

$$a \cdot 0^{3} + b \cdot 0^{2} + c \cdot 0 + d = 1.02 + \varepsilon_{1}$$

$$a \cdot 0.5^{3} + b \cdot 0.5^{3} + c \cdot 0.5 + d = 0.88 + \varepsilon_{2}$$

. . .

Zadanie 11. Model kNN w aproksymacji funkcji

Zastosować model pamięciowy uczenia się aproksymacji funkcji nad przestrzenią cech \Re^2 . Zadanych jest 11 próbek uczących:

$\mathbf{c} = (\mathbf{x}, \mathbf{y})$	(1;2,5)	(1; 3)	(1;3,5)	(2; 3)	(4; 3)	(2; 2)	(1; 1)	(2; 0)	(3; 1)	(3,5;1,5)	(4;1,5)
$f(\mathbf{c})$	1	1	1	2	2	3	3	3	3	4	4

Podać wartości aproksymowanej funkcji w metodzie 4 najbliższych sąsiadów dla cech (2; 2,5), (3, 3) i (1, 2).

Idea rozwiązania dla (2; 2.5).

Znajdujemy 4 najbliższych sąsiadów tego punktu -

$\mathbf{c} = (\mathbf{x}, \mathbf{y})$	(1;2,5)	(1; 3)	(1;3,5)	(2; 3)	(4; 3)	(2; 2)	(1; 1)	(2; 0)	(3; 1)	(3,5;1,5)	(4;1,5)
<i>c</i> – (2; 2.5)	1 -	$\sqrt{1.25}$	$\sqrt{2}$	0.5	$\sqrt{4.25}$	0.5	$\sqrt{3.25}$	2.5	$\sqrt{3.25}$	$\sqrt{3.25}$	$\sqrt{5}$

Rozwiązanie 11. Model kNN w aproksymacji

Idea rozwiązania dla (2; 2.5) (c.d.).

Najbliżsi 4 sąsiedzi to: (1, 2.5), (1, 3), (2, 3) i (2, 2):

c=(x, y)	(1;2,5)	(1; 3)	(1;3,5)	(2; 3)	(4; 3)	(2; 2)	(1; 1)	(2; 0)	(3; 1)	(3,5;1,5)	(4;1,5)
c- (2; 2.5)	1	$\sqrt{1.25}$	$\sqrt{2}$	0.5	$\sqrt{4.25}$	0.5	$\sqrt{3.25}$	2.5	$\sqrt{3.25}$	$\sqrt{3.25}$	$\sqrt{5}$

Stosujemy wzór na aproksymację funkcji w modelu kNN (średnia wartość dla k sąsiadów) otrzymując:

$$z = f(2,2.5) \approx \frac{1}{4} (1+1+2+3) = \frac{7}{4}$$

Zadanie 12. Model kNN w aproksymacji funkcji

Zilustrować zasadę modelu pamięciowego w uczeniu się aproksymacji funkcji, z zastosowaniem algorytmu k sąsiadów (kNN), dla k = 3. Niech pamięć zawiera przykłady uczące $U = \{x_1, x_2, ..., x_{25}\}$, reprezentowane pojedynczą cechą c o postaci:

$$c_i = \varphi(x_i) = 0.006\pi \cdot i^{\frac{3}{2}}$$

Wartości przyjmowane dla tych przykładów przez funkcję docelową wynoszą: $f(c) = \frac{\sin c}{c}$

Obliczyć sumaryczny błąd i błąd średniokwadratowy dla aproksymacji funkcji reprezentowanej przez zapamiętane przykłady na zbiorze przykładów $T = (x_1, x_2, ..., x_8)$, zadanych jako:

$$\varphi(x_i') = 0.05\pi \cdot i^{\frac{4}{3}}$$

Rozwiązanie 12 (1)

Idea rozwiązania

Należy napisać nieduży program, który posiada następujące kroki obliczeniowe:

1. Wyznacza 25 przykładów (próbek) uczących *U:*

i	1	2	3	4	•••	•••	24	25
c	0.006π	0.017π	0.031π	0.048π	•••	•••	0.705π	0.75π
<i>f</i> (c)	0.9999	0.9995	0.9984	0.9962	• • •	• • •	0.3610	0.3001

- 2. Próbki te są pamiętane i reprezentują komórki Voronoia w dziedzinie funkcji (w tym przypadku jest to 1-wymiarowa dziedzina i komórki mają postać przedziałów na osi c).
- 3. Wyznacza 8 przykładów w zbiorze testowym *T*:

i	1	2	3	4	5	6	7	8
<i>c</i> '	0.05π	0.126π	0.216π	0.317π	0.427π	0.545π	0.670π	0.800π
$f(c^{\bullet})$		• • •	•••	• • •	• • •	• • •	• • •	• • •

Rozwiązanie 12 (2)

Idea rozwiązania (c.d.)

4. Dla przykładów ze zbioru $T(c_i \in T)$ wyznacza aproksymację wartości funkcji $f'(c_i)$ w oparciu o 3 najbliższych sąsiadów $\{c_k\}$:

$$f'(c_i') = \frac{1}{3} \sum_{k=1}^{3} f(c_k)$$

5. Każda z 8 aproksymowanych wartości jest porównywana z rzeczywistymi wartościami funkcji podanymi w zbiorze testowym:

$$\varepsilon_i = f(c_i') - f'(c_i')$$
, dla $i = 1, 2, ..., 8$

6. Sumaryczny błąd dla tych 8 aproksymowanych wartości: $\mathbf{E} = \sum_{i=1}^{3} \varepsilon_i$

7. Błąd średniokwadratowy:
$$E_2 = \frac{1}{8} \sum_{i=1}^{8} \varepsilon_i^2$$