

PROJET ACTUARIAT NON VIE

Réalisé par

Wissal BAYOUDH
Wissal KHEMIRI
Mustapha BOUATTOUR
Mohamed Amine HAMZA

Provisionnement Non Vie

Encadré par :

Najed Ksouri

Irad chammem

Table des matières

In	trod	uction	générale	1
1	Con	ntexte	général	2
	1.1	État d	le l'art du provisionnement en assurance non-vie	3
	1.2	Préser	ntation des données	3
	1.3	Métho	des d'évaluation des provisions pour sinistres	5
		1.3.1	Méthodes déterministes	5
		1.3.2	Méthodes stochastiques	7
2	Mis	e en o	euvre sur R et interprétation des résultats	8
	2.1	Donn	ées utilisées	10
	2.2	Analy	se des triangles	10
		2.2.1	Triangle des ouvertures	10
		2.2.2	Triangle des règlements	13
		2.2.3	Triangle des charges	16
		2.2.4	Analyse du triangle des charges	16
		2.2.5	Triangle des couts moyens	18
	2.3	Applio	eation des méthodes déterministes	19
		2.3.1	Application de la méthode de Chain-Ladder	19
		2.3.2	Application de la méthode de Bornhuetter-Ferg	20
	2.4	Applio	cation des méthodes stochastiques	22
		2.4.1	Application du modéle de Mack	22
		2.4.2	Application du modéle de Boostrap	24
	2.5	Applio	cation Pour le triangle de règlements	26
Bi	ibliog	graphie		35

Table des figures

1.1	Triangle des paiements cumulés	4
1.2	Table des paiements cumulés estimés	4
2.1	Triangle des règlements	10
2.2	Triangle des ouvertures	10
2.3	Triangle des ouvertures Cumulés	11
2.4	Le nombre de sinistres cumulés par nombre de survenance	11
2.5	Triangle des cadences des ouvertures	12
2.6	Tableau de statistiques descriptives	13
2.7	Triangle de règlements	13
2.8	Triangle des règlements cumulés	14
2.9	Les règlements cumulés par nombre de survenance	14
2.10	Triangle des cadences des règlements	15
2.11	Statistiques descriptives de règlements	15
2.12	Triangle cumulés des charges	16
2.13	Les charges cumulés par nombre de survenance	16
2.14	Triangle des cadences des charges	17
2.15	Statistique descriptives des charges	17
2.16	Triangle des couts moyen cumulés	18
2.17	Triangle des cadences des couts moyen	18
2.18	Statistiques descriptives des couts moyen	18
2.19	Estimation de nombre de tardifs	19
2.20	Estimation de P SAP Charges	19
2.21	Projection graphique des valeurs prédites par nombre de survenance	20
2.22	Estimation par la méthode de Bornhuetter-Ferguson	21
2.23	Calcul des Primes acquises sous R	21
2.24	Loss ratio de Bornhuetter-Ferguson	21
2.25	Evolution du loss ratio Bornhuetter-Ferguson	22
2.26	Estimation avec la méthode de Mack	22
2.27	Projection graphique des valeurs prédites par nombre de survenance	23
2.28	Graphique d'estimation pour les différents années de survenance	24

2.29	Estimation de nombre de tardifs avec la méthode de bootstrap	24
2.30	Graphique d'estimation de nombre de tardifs	25
2.31	Estimation de nombre de tardifs de chaque année	26
2.32	Estimation de triangle de règlements	26
2.33	Projection graphique des valeurs prédites par nombre de survenance	27
2.34	Estimation de triangle des règlements par la méthode de Mack chain-ladder $\ \ldots \ \ldots$	27
2.35	Graphique d'estimation de nombre de tardifs	28
2.36	Graphique d'estimation pour les différents années de survenance	29
2.37	Estimation de triangle des règlements par la méthode de Bootstrap chain-ladder	30
2.38	Graphique d'estimation de nombre de tardifs	30
2.39	Estimation de nombre de tardifs de chaque année par la méthode de Bootstrap chain-ladder	31
2.40	Estimation de triangle des règlements par la méthode de Bornhuetter-Ferguson	31
2.41	Loss ratio de Bornhuetter-Ferguson	32
2.42	Evolution du loss ratio Bornhuetter-Ferguson	33
2.43	calcul du PSAP	33

Introduction générale

Afin de pouvoir couvrir leurs engagements, les assureurs doivent établir des provisions, notamment pour les sinistres survenus dont les coûts ne sont pas totalement réglés. Les techniques traditionnelles pour quantifier ces provisions reposent sur l'agrégation de données individuelles en triangles de développement agrégés.

Les provisions sont une part primordiale dans le bilan d'une société d'assurance. D'après une étude Swiss Re (2008), la principale cause de non solvabilité des sociétés d'assurances américaines de 1969 à 2002 était liée à des pertes causées par des provisions mal estimées. En France, l'évolution de l'environnement réglementaire, de par les normes Solvabilité 2 et IFRS 17, impose un suivi plus précis des risques, notamment par l'estimation des provisions.

Dans ce projet nous allons appliquer des méthodes d'évaluation des provisions, pour obtenir le best estimate de la provision pour sinistres à payer selon les approches étudiées en classe.

CONTEXTE GÉNÉRAL

Ρ	lan

1	État	de l'art	du provisionnement en assurance non-vie	3
2	Prés	sentation	des données	3
3	Mét	hodes d	'évaluation des provisions pour sinistres	5
	1.3.1	Méthod	es déterministes	5
		1.3.1.1	Méthode Chain-Ladder	5
		1.3.1.2	Méthode de Bornhuetter-Ferguson	6
	1.3.2	Méthod	es stochastiques	7
		1.3.2.1	Modéle de Mack	7
		1.3.2.2	Le Modéle de Bootstrap	7

Introduction

Dans ce chapitre, nous allons tout d'abord étudier les méthodes d'évaluation des provisions, avant d'énoncer le sujet de notre projet . Nous finirons par le chargement et la compréhension des données.

1.1 État de l'art du provisionnement en assurance non-vie

En 1938, E. Astesan [1] a formalisé la technique des triangles de développement, engendrant ainsi la méthode très populaire dite Chain-Ladder.

En 1993, R. Mack [2] a démontré que les estimateurs de Chain-Ladder pouvaient être modélisés par un simple modèle stochastique. England et Verrall (2002) ont eux fourni un aperçu global des méthodes stochastiques pouvant être connectées à la méthode Chain-Ladder, notamment des méthodes de régression.

Nous allons tout d'abord introduire la notion de triangle de développement avant d'étudier quelques méthodes parmi les plus utilisées en provisionnement non-vie.

1.2 Présentation des données

Les données sont représentées sous forme de triangle qui reflète la dynamique de liquidation des sinistres. Les données utilisées sont annuelles et les notations utilisées sont les suivantes [3] :

- i: l'indice des années de survenance i = 1, ...n
- -j: l'indice des années de développement
- $Y_{i,j}$: les paiements non cumulés des sinistres survenus l'année i , en i+j-1 années de développement
- $C_{i,j}$: les paiements cumulés des sinistres survenus l'année i, en j années de développement[3]

$$C_{i,j} = Y_{i,1} + Y_{i,2} + \dots + Y_{i,j} = \sum_{K=1}^{j} Y_{i,k}$$

Le triangle contenant les paiements cumulés se présente sous la forme ci-dessous :

	1	2		n-1	n
1	C _{1,1}	C _{1,2}		C _{1,n-1}	C _{1,n}
2	C _{2,1}	C _{2,2}	***	$C_{2,n-1}$	
		-		<u> </u>	
		:	:		
n-1	C _{n-1,1}	C _{n-1,2}			
n	C _{n,1}				

Figure 1.1: Triangle des paiements cumulés

L'objectif est d'estimer la partie inférieure du triangle de liquidation à partir des informations que nous disposons dans la partie supérieure. Les $C_{i,j}$ sont les valeurs estimées des règlements cumulés.

j	1	2		n-1	n
1	C _{1,1}	C _{1,2}		C _{1,n-1}	C _{1,n}
2	C _{2,1}	C _{2,2}		C _{2,n-1}	$\hat{C}_{2,n}$
		*		***	
1	2	2	2		
n-1	C _{n-1,1}	C _{n-1,2}		$\hat{C}_{n-1,n-1}$	$\widehat{C}_{n-1,n}$
n	C _{n,1}	$\hat{C}_{n,2}$		$\hat{C}_{n,n-1}$	$\widehat{C}_{n,n}$

Figure 1.2: Table des paiements cumulés estimés

Apres l'estimation des $Y_{i,j}$ et $\hat{C}_{i,j}$, on peut déterminer les provisions pour chaque année de sinistre notées :

$$\widehat{R}_i = \hat{Y}_{i,n+2-i} + \hat{Y}_{i,n+3-i} + \ldots + \hat{Y}_{i,n} = \hat{C}_{i,n} - C_{i,n+1-i}$$

La réserve totale s'obtient à partir de l'expression :

$$\widehat{R}_i = \sum_{i=2}^n \widehat{R}_i = \sum_{i=2}^n \left(\hat{C}_{i,n} - C_{i,n+1-i} \right)$$

Pour l'estimation de la partie inferieure nous avons utilisé les méthodes déterministes de Chain Ladder et Bornhuetter-Ferguson ainsi que les méthodes stochastiques de Mack, GLM et bootstrap.

Dans la partie suivante, nous présentons et appliquons ces différentes méthodes au triangle de règlements en vue de déterminer la réserve à constituer

1.3 Méthodes d'évaluation des provisions pour sinistres

1.3.1 Méthodes déterministes

Les méthodes déterministes reposent sur la stabilité du délai qui s'écoule entre la survenance d'un sinistre et les règlements. Ces méthodes s'avèrent plus pratiques dans l'estimation de la charge finale lorsque les hypothèses suivantes sont vérifiées [4]:

- Absence de changement de structure du portefeuille
- Absence de l'inflation...

1.3.1.1 Méthode Chain-Ladder

Description de la méthode : Il s'agit de considérer que l'évolution des charges cumulées d'une année à une autre reste semblable pour toutes les années de survenance. Cette évolution est caractérisée par un facteur multiplicatif propre à chaque année de développement.

Considérons le facteur de développement individuel :

$$\lambda_j = \frac{C_{j,i+1}}{C_{i,j}} \qquad \forall i, j = 1...n$$

La méthode de Chain Ladder repose sur l'hypothèse d'indépendance des facteurs de développement λ_i des années de survenance.

Disposant d'un triangle de n années et en considérant les coefficients de passage d'une année à une autre commun pour les années de survenance, l'estimateur du facteur de développement est donné par :

$$\hat{\lambda}_j = \frac{\sum_{i=1}^{n-j} C_{ij+1}}{\sum_{i=1}^{n-1} C_{i,j}} j = 1 \dots n$$

Ces facteurs nous permettent d'estimer par la suite [3] :

— Les charges ultimes par exercice :

$$C_{i,j} = C_{i,n+1-i} \cdot \prod_{j=n+1-i}^{j-1} \hat{\lambda}_j \quad \text{ Pour } i=2,\dots n \text{ et } j=n+2-i,\dots,n$$

Connaissant ces charges futures, on détermine le montant de provision pour l'année de survenance
 i par la relation :

$$\hat{R}_1 = \hat{C}_{i,n} - \hat{C}_{i,n+1-i}$$
 pour $i = 2, ..., n$

— Le montant total de réserve sera donc estimé comme suit :

$$\hat{R} = \sum_{i=2}^{n} \hat{R}_{i} = \sum_{i=2}^{n} \hat{C}_{i,n} - \hat{C}_{i,n+1-i}$$

les résultats sont obtenus à partir du logiciel R et Excel. Par ailleurs, les paiements, les évaluations et les provisions sont en milliers de FCFA.

1.3.1.2 Méthode de Bornhuetter-Ferguson

Description de la méthode: La méthode de Bornhuetter-Ferguson permet d'insérer un indicateur d'exposition qui est en général le montant des primes acquises. Elle a l'avantage d'assurer une meilleure stabilité des estimations. En effet, cette méthode repose sur une hypothèse exogène d'estimation préalable de la charge finale sur laquelle est appliquée un taux de liquidation. En procédant ainsi, les estimations récentes dépendent moins des anciens paiements comparativement à la méthode de Chain Ladder qui reflète une dépendance entre les années. La méthode de Bornhuetter-Ferguson s'adapte donc aux triangles dont les paiements sont instables. [3]

Classiquement, on suppose qu'il existe μ_i et des facteurs de développement $\alpha_1, \alpha_2, \dots \alpha_n$ avec $\alpha_n = 1$ tel que :

$$\begin{split} &E\left(C_{i,1}\right) = \alpha_{1}\mu_{i} \\ &E\left(C_{i,j+k}/C_{i,1}\ldots C_{i,j}\right) = C_{i,j} + \left[\alpha_{j+k} - \alpha_{j}\right]\mu_{i} \\ &E\left(C_{i,j}\right) = \alpha_{j}\mu_{i} \end{split}$$

On estime statistiquement $\alpha(\alpha_1, \alpha_2, \dots, \alpha_n)$ et $\hat{\mu}_i$ un estimateur de $E(C_{i,n})$. Connaissant ces deux estimations, nous déduisons la charge ultime par la formule :

$$\hat{C}_{i,n} = C_{i,j} + \left[1 - \widehat{\alpha}_{j-i}\right] \hat{\mu}_i$$

A partir de la méthode Chain Ladder, Bornhuetter-Ferguson propose l'estimateur:

$$\hat{\alpha}_i = \prod_{k=j+1}^n \frac{1}{\hat{\lambda}_k}$$

En fin nous estimons $\hat{\mu}_i$ à partir du ratio de sinistralité (loss ratio) par année de survenance :

$$L_{i,j} = \frac{c_{ij}}{P_i}$$

1.3.2 Méthodes stochastiques

Un modèle stochastique suppose que la variable à modéliser possède un élément aléatoire. Dans cette partie, nous présentons deux autres modèles usuels à savoir :

Le modèle de Mack et le modèle Bootstrap qui permettent non seulement l'obtention des provisions mais aussi de déterminer le degré d'incertitude correspondant à la réserve. Ce qui peut s'avérer une information capitale pour les stratégies financières de la compagnie [3].

1.3.2.1 Modéle de Mack

Le modèle de Mack (1993) est la méthode stochastique du modèle de Chain Ladder évoqué dans la première partie. Sous certaines hypothèses, nous obtenons à partir de ce modèle la même réserve trouvée par Chain Ladder. Ces hypothèses sont les suivantes[3] :

$$H_{1}:\left\{ C_{i,1},\ldots,C_{i,n}\right\} ,\left\{ C_{j1},\ldots,C_{j,n}\right\} ,\quad i\neq j \text{ sont indépendants}\,;$$

$$H_2: E\left[\tfrac{c_{ik+1}}{C_{i,1}}, \ldots, C_{i,k}\right] = \lambda_k * C_{i,k}$$

$$H_3: Var\left[C_{i,k+1}/C_{i,1},\ldots,C_{i,k}\right] = \sigma_k^2*C_{i,k}$$

Avec i = 1...n et k=1...n-1

1.3.2.2 Le Modéle de Bootstrap

Inventé par **Efron** en 1979, le modèle de bootstrap consiste à effectuer un ré échantillonnage avec remise en utilisant des simulations de Monte-Carlo. Il permet d'estimer en particulier la variabilité d'un paramètre. Elle est beaucoup utilisée en assurance non vie du fait de sa simplicité. '

Hypothèse: Le modèle de Bootstrap suppose que les éléments de l'échantillon de départ sont indépendants et identiquement distribués (iid). Le problème qui se pose est le suivant : les paiements non cumulés $Y_{i,j}$ ne sont pas en général identiquement distribués. C'est pourquoi, on fait recours aux résidus du modèle et en particulier les résidus de Pearson. Pour corriger les biais dans la comparaison des estimations analytiques et bootstrap d'erreur de prédiction, il est conseillé d'ajuster les résidus en intégrant le nombre de paramètres de régression dans l'erreur bootstrap de prédiction.

Les résidus ajustés s'expriment par la formule [3] :

$$r_{ij}^{aj} = \sqrt{\frac{N}{N-P}} r_{ij}^p$$

où N et p sont respectivement la taille de l'échantillon et le nombre de paramètres de régression. On utilisera lors de l'application de cette méthode le modèle Log Poisson qui donne les mêmes résultats fournis par la méthode de Chain Ladder.

MISE EN OEUVRE SUR R ET

INTERPRÉTATION DES RÉSULTATS

Plan

1	Do	nnées ut	ilisées	10
2	Ana	lyse des	triangles	10
	2.2.1	Triangle	e des ouvertures	10
		2.2.1.1	Analyse de triangle des ouvertures	11
		2.2.1.2	Analyse graphique	11
		2.2.1.3	Analyse du triangle des cadences	12
	2.2.2	Triangle	e des règlements	13
		2.2.2.1	Analyse de triangle des règlements	13
		2.2.2.2	Analyse graphique	14
		2.2.2.3	Analyse du triangle des cadences	15
	2.2.3	Triangle	e des charges	16
	2.2.4	Analyse	du triangle des charges	16
		2.2.4.1	Analyse graphique	16
		2.2.4.2	Analyse du triangle des candences de charge cumulés	17
	2.2.5	Triangle	e des couts moyens	18
		2.2.5.1	Analyse de triangle des vouts moyen	18
		2.2.5.2	Analyse du triangle de cadences des couts moyens	18
3	\mathbf{App}	lication	des méthodes déterministes	19
	2.3.1	Applica	tion de la méthode de Chain-Ladder	19
		2.3.1.1	Estimation de nombre des tardifs	19
		2.3.1.2	Estimation de PSAP règlements	19
		2.3.1.3	Analyse graphique des résultat	20
	2.3.2	Applica	tion de la méthode de Bornhuetter-Ferg	20
		2.3.2.1	Calcul des Primes acquises	20

		2.3.2.2	Loss ratio de Bornhuetter-Ferguson	1
4	\mathbf{App}	lication	des méthodes stochastiques	2
	2.4.1	Applicat	tion du modéle de Mack	2
		2.4.1.1	Analyse graphique des résultat	3
	2.4.2	Applicat	tion du modéle de Boostrap	4
		2.4.2.1	Analyse Graphique	5
5	App	lication	Pour le triangle de règlements	6

Introduction

2.1 Données utilisées

En ce qui concerne les données que nous utiliserons par la suite, nous avons décidé d'appliquer les différentes méthodes sur des données de marché d'un assureur automobile.

2.2 Analyse des triangles

Le tableau ci-dessous présente un exemple du triangle des règlements décumulés :

		Triangle des règle	ments							
REG	1	2	3	4	5	6	7	8	9	10
2005	1171960	6 604 454	7 24 7 85 1	4 476 007	2140354	1315 501	1500 735	495 272	264 542	91392
2006	803 251	3 936 933	7 216 462	5 498 608	2 076 533	2775363	749 770	348 477	327 902	
2007	360 205	3 305 002	7 954 925	5 121 387	3 134 808	1652 229	1525 124	688 869		
2008	639 281	5 118 946	8 945 907	8 464 976	4 141 026	1430 473	695 916			
2009	1345 321	7 380 489	13 706 351	8 043 920	3 263 113	1278 109				
2010	1613 627	10 069 551	13 520 486	6 380 116	3886241					
2011	1484 187	9 634 063	10 671 624	5 886 916						
2012	2 907 655	10 322 393	8 763 518							
2013	3 465 669	9 640 431								
2014	3 619 805									

Figure 2.1: Triangle des règlements

- La partie supérieure du triangle représente les règlements décumulés.
- La partie inférieure est celle à estimer, elle constitue les provisions que la compagnie doit mettre de côté pour faire face à ses engagements.

En fonction des spécificités de chaque méthode d'estimation (Chain Ladder, Mack, bootstrap), nous utiliserons soit le triangle des règlements décumulés ou le triangle des règlements cumulés.

2.2.1 Triangle des ouvertures

Représente le nombre des sinistre survenus en années i et ouverts dans l'année j.

Figure 2.2: Triangle des ouvertures

2.2.1.1 Analyse de triangle des ouvertures

c'est le fait de transformer les triangles incrémentaux en des triangles cumulatifs en utilisant la formule des valeurs cumulés suivante :

$$Oc_{i,j} = \sum_{i=0,j=0}^{K} (O_{ij})$$

avec:

- $Oc_{i,j}$: le nombre cumulés des sinistres survenus l'année i jusqu'à l'année j de développement des sinistres.
- O_{ij} : le nombre des sinistres survenus l'année i et réglés ou ouverts l'année j.

	Triangle	des ouverture	5							
NB	1	2	3	4	5	6	7	8	9	10
2005	1330	2184	2266	2290	2294	2294	2298	2298	2298	2298
2006	1330	2204	2274	2300	2312	2312	2312	2312	2312	
2007	1786	3196	3358	3420	3440	3442	3444	3446		
2008	2278	3834	4002	4048	4056	4058	4062			
2009	2568	4150	4328	4382	4390	4392			-	
2010	2380	3864	3988	4024	4032					
2011	2424	3786	3970	4026						
2012	2348	3954	4182			- 1			-	
2013	2464	3918				- 1				
2014	1984	-	-	-						

Figure 2.3: Triangle des ouvertures Cumulés

2.2.1.2 Analyse graphique

La projection graphique du nombre de sinistres cumulés par nombre de survenance nous donne la figure suivante :

Figure 2.4: Le nombre de sinistres cumulés par nombre de survenance

Interprétation Ce graphe montre le nombre de sinistres cumulés par année de survenance. On constate la présence d'une grande évolution de nombres des sinistres au cours des années surtout entre les années 2005-2008. Aussi, il y a une irrégularité dans la gestion des sinistres expliquée par l'augmentation brutale des sinistres au cours ces années des cadences de nombre de sinistres selon les années de survenances. Cela implique des cadences de nombre de sinistres selon les années de survenances.

2.2.1.3 Analyse du triangle des cadences

L'analyse du triangle des cadences nous permet de détecter entre autres la présence des gros sinistres qui biaisent le triangle et ne permettent pas d'aboutie a des estimations fiables. Done, Il est necessaire de les isoles et de les traites separément du reste des sinistres. On definit les coefficients individuels du triangle de cadences comme suit :

$$\lambda_{i,j} = \frac{C_{i,j+1}}{C_{i,j}}$$

avec

— $C_{i,j+1}$: Le nombre de sinistres cumule de l'annete $\mathbf{j}+1$

— $C_{i,j}$: Le nombre de sinistres cumulé de l'année j.

		Triangle des cad	ences							
IB	1	2	3	4	5	6	7	8	9	10
2005		164,21%	103,75%	101,06%	100,17%	100,00%	100,17%	100,00%	100,00%	100,00%
2006		165,71%	103,18%	101,14%	100,52%	100,00%	100,00%	100,00%	100,00%	
2007		178,95%	105,07%	101,85%	100,58%	100,06%	100,06%	100,06%		
2008		168,31%	104,38%	101,15%	100,20%	100,05%	100,10%			
2009		161,60%	104,29%	101,25%	100,18%	100,05%				
2010		162,35%	103,21%	100,90%	100,20%					
2011		156,19%	104,86%	101,41%						
2012		168,40%	105,77%							
2013		159,01%								
2014								0		

Figure 2.5: Triangle des cadences des ouvertures

On remarque une forte irrégularité pendant la première année (au déla de 150%), ainsi une irrégularité légère pendant les 2 année suivantes et les restes années de développements prennent des valeurs au alentour de 100% (ce qui est expliqué par la graphe de triangle des ouverture cumulés) Cette Irrégularité présente des valeurs abbérante/atypique surtout pour l'années 2007 de la première année de développement dont la valeur est 178.95

Analyse Statistiques descriptives Afin d'approfondir notre analyse, nous avons réalisé une analyse descriptive de triangle de cadence.

La figure ci-dessous montre le résultat obtenu :

	Analys	se des cadences							
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	164,97%	104,31%	101,25%	100,31%	100,03%	100,08%	100,02%	100,00%	100,00%
Ecartype	6,24%	0,85%	0,28%	0,17%	0,03%	0,06%	0,03%	0,00%	0,00%
Coef Variation	3,78%	0,82%	0,28%	0,17%	0,03%	0,06%	0,03%	0,00%	0,00%
Min	158,73%	103,46%	100,97%	100,14%	100,01%	100,02%	99,99%	100,00%	100,00%
Max	171,21%	105,17%	101,53%	100,48%	100,06%	100,15%	100,05%	100,00%	100,00%

Figure 2.6: Tableau de statistiques descriptives

L'analyse descriptive nous amène à remarquer l'irrégularité pour la premiere année (la plus remarquable) avec une moyenne de 164.97% et de Ecartype de 6.23%, par contre la présence d'une stabilité pour le restes des années (sauf la deuxième et la troisième). Le coefficient de variation est très volatiles pour la première année (3.78%), et légèrement volatile pour la deuxième et la troisième année de développement (respectivement de 0.81% et 0.28%).

Les irrégularités sont expliquées par soit la mauvaise gestion des sinistres, soit le retard d'ouvertures des sinistres, soit le retard de couvrements des sinistres.

2.2.2 Triangle des règlements

Nous présentons dans la table suivante le triangle des règlements cumulés, utilisés pour estimer la réserve :

Figure 2.7: Triangle de règlements

2.2.2.1 Analyse de triangle des règlements

En utilisant la formule des valeurs cumulés , nous avons obtenus le triangle des règlements cumulés présenté dans la figure suivante :

		Triang	gle des règlement	ts							
REG		1	2	3	4	5	6	7	8	9	10
	2005	1 171 960	7 776 414	15 024 265	19 500 271	21 640 625	22 956 126	24 456 861	24 952 133	25 216 675	25 308 068
	2006	803 251	4 740 185	11 956 646	17 455 255	19 531 788	22 307 151	23 056 921	23 405 397	23 733 299	
	2007	360 205	3 665 206	11 620 131	16 741 518	19 876 326	21 528 555	23 053 679	23 742 548		
	2008	639 281	5 758 227	14 704 134	23 169 110	27 310 136	28 740 608	29 436 524			
	2009	1 345 321	8 725 810	22 432 161	30 476 081	33 739 194	35 017 303				
	2010	1 613 627	11 683 178	25 203 664	31 583 780	35 470 021					
	2011	1 484 187	11 118 250	21 789 874	27 676 791						
	2012	2 907 655	13 230 048	21 993 565							
	2013	3 465 669	13 106 099								
	2014	3 619 805									

Figure 2.8: Triangle des règlements cumulés

2.2.2.2 Analyse graphique

La projection graphique du règlement de sinistres cumulés par nombre de survenance nous donne la figure suivante :

Figure 2.9: Les règlements cumulés par nombre de survenance

Interprétation On constate des irrégularités dues à la grande évolution de règlements de sinistres au cours des années surtout pour l'année 2010, Ce qui montre une mauvaise gestion des sinistres ou bien l'existance des clients abérrants par la présence soit d'un grand nobmre de sinistres soit des sinistres avec des coûts de règlements importants.

2.2.2.3 Analyse du triangle des cadences

La figure ci-dessous présente le triangle des cadences de règlements cumulés :

		Triangle des cade	ences							
NB	1	2	3	4	5	6	7	8	9	10
2	005	663,54%	193,20%	129,79%	110,98%	106,08%	106,54%	102,03%	101,06%	100,36%
2	006	590,12%	252,24%	145,99%	111,90%	114,21%	103,36%	101,51%	101,40%	
2	007	1017,53%	317,04%	144,07%	118,72%	108,31%	107,08%	102,99%		
2	008	900,74%	255,36%	157,57%	117,87%	105,24%	102,42%			
2	009	648,60%	257,08%	135,86%	110,71%	103,79%				
2	010	724,03%	215,73%	125,31%	112,30%					
2	011	749,11%	195,98%	127,02%						
2	012	455,01%	166,24%							
2	013	378,17%								
2	014		1	100		9		1		

Figure 2.10: Triangle des cadences des règlements

On remarque une forte irrégularité pour les sept premières années expliquée par la grande fluctuation des valeurs de réglements cumulés. Ils existent des valeurs très anormales surtout pour la première années de développement surtout pour la valeur 1017.53% qui correspond à l'année 2007, par contre, les valeurs commencent à se stabiliser à partir de la huitième année de développement pour atteindre des valeurs normales.

Analyse Statistiques descriptives Afin d'approfondir notre analyse, la figure ci-dessous représente le résultat de la statistique descriptive de cette triangle des cadences de règlements :

-1	Analys	se des cadences							
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	680,76%	231,61%	137,94%	113,75%	107,53%	104,85%	102,17%	101,23%	100,36%
Ecartype	188,69%	45,01%	10,94%	3,27%	3,65%	2,00%	0,61%	0,17%	0,00%
Coef Variation	27,72%	19,43%	7,93%	2,88%	3,39%	1,90%	0,60%	0,17%	0,00%
Min	492,08%	186,60%	127,01%	110,48%	103,88%	102,85%	101,56%	101,06%	100,36%
Max	869,45%	276,62%	148,88%	117,02%	111,17%	106,85%	102,79%	101,40%	100,36%

Figure 2.11: Statistiques descriptives de règlements

On constate la présence des valeurs excentrique pour les sept premières ans surtout pour la première année de développement avec une moyenne de 680.7600%. En plus une forte volatilité est ramarquable, avec des valeurs de coefficients de variations allant de 138.23% de la 1re année jusqu'à 0.61% de la septième année. Donc, Ce Triangle d'analyse de règlements de sinistres cumulés nous confirme la présence des irrégularités peut qui sont probablement expliquées par la présence du mauvais gestion des sinistres ou de retard de règlement de ces sinistres.

2.2.3 Triangle des charges

2.2.4 Analyse du triangle des charges

Nous présentons dans la table suivante le triangle des charges : En appliquant la formule des valeurs cumulés , nous avons obtenus le triangle des charges cumulés présenté ci-dessous :

		Tria	ingle des charges	5							
REG		1	2	3	4	5	6	7	8	9	10
	2005	25 045 962	30 954 620	33 050 733	31 349 969	30 751 671	29 799 268	29 158 651	28 396 589	27 732 513	27 752 608
	2006	22 888 865	32 798 213	32 628 708	32 133 457	30 762 408	28 824 519	28 174 907	27 340 405	26 872 939	
	2007	23 478 829	35 405 412	37 229 597	36 496 080	34 053 726	31 401 781	30 261 939	29 884 350		
	2008	28 759 303	42 718 157	44 619 548	43 721 478	40 612 950	38 997 944	38 030 028			(
	2009	33 658 423	56 720 354	58 115 989	56 472 277	52 464 696	50 648 367				
	2010	39 995 511	56 285 084	56 005 790	52 982 562	50 614 425					
	2011	38 910 075	55 571 562	53 058 812	50 125 413						
	2012	51 589 381	65 226 156	65 848 407							
	2013	47 829 213	64 537 251								
	2014	43 231 429									

Figure 2.12: Triangle cumulés des charges

2.2.4.1 Analyse graphique

La projection graphique des charges de sinistres cumulés par nombre de survenance nous donne la figure suivante :

Figure 2.13: Les charges cumulés par nombre de survenance

Interprétation: A partir du graphique précédent, On constate la croissance des charges de sinistres au cours des années et il atteints le maximum l'année 2012. Cela nous montre des irrégularités dans la gestion des règlements des sinistres et la gestion de provisionnement des sinistres à payer.

2.2.4.2 Analyse du triangle des candences de charge cumulés

La figure ci-dessous présente le triangle des cadences de charge cumulés :

		Triangle des cad	ences							
NB	1	2	3	4	5	6	7	8	9	10
	2005	123,59%	106,77%	94,85%	98,09%	96,90%	97,85%	97,39%	97,66%	100,07%
	2006	143,29%	99,48%	98,48%	95,73%	93,70%	97,75%	97,04%	98,29%	
	2007	150,80%	105,15%	98,03%	93,31%	92,21%	96,37%	98,75%		
	2008	148,54%	104,45%	97,99%	92,89%	96,02%	97,52%			
	2009	168,52%	102,46%	97,17%	92,90%	96,54%				
	2010	140,73%	99,50%	94,60%	95,53%					
	2011	142,82%	95,48%	94,47%		j .				
	2012	126,43%	100,95%							
	2013	134,93%								
	2014									

Figure 2.14: Triangle des cadences des charges

On constate une forte irrégularité pour la première année. De plus, il existe des valeurs très atypiques pour pour chaque première année des années de développement de 168.52% et 150.80% respectivement pour les années 2009 et 2007. Puis, les valeurs commencent à se stabiliser pour atteindre des valeurs normales à partir de la deuxième année de développement.

Analyse Statistiques descriptives : Afin d'approfondir notre analyse, la figure ci-dessous représente le résultat de la statistique descriptive de cette triangle des cadences de charges :

22 300	Analys	se des cadences						0	
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	142,18%	101,78%	96,51%	94,74%	95,08%	97,37%	97,73%	97,98%	100,07%
Ecartype	12,73%	3,44%	1,66%	1,90%	1,81%	0,59%	0,74%	0,31%	0,00%
Coef Variation	8,95%	3,38%	1,72%	2,01%	1,91%	0,61%	0,76%	0,32%	0,00%
Min	129,46%	98,34%	94,85%	92,84%	93,26%	96,78%	96,99%	97,66%	100,07%
Max	154,91%	105,22%	98,18%	96,64%	96,89%	97,96%	98,47%	98,29%	100,07%

Figure 2.15: Statistique descriptives des charges

On remarque que pour la première année de développement la présence d'une valeurs atypique avec une moyenne de 142.18%. On constate la présence d'une grande volatilité pour les sept premières années avec des valeurs de coefficients de variations allant de 8.95% jusqu'à 0.75%. Cela confirme que la triangle des charges de sinistre cumulés présente des irrégularités expliquées par la mauvaise prédiction des Provisions SAP ou de retard de règlement des sinistres.

2.2.5 Triangle des couts moyens

2.2.5.1 Analyse de triangle des vouts moyen

Nous présentons dans la table suivante le triangle des couts moyens cumulés :

	Triangle d	les couts moyen	S				Δ.			
REG	1	2	3	4	5	6	7	8	9	10
2005	18 832	14 173	14 585	13 690	13 405	12 990	12 689	12 357	12 068	12 077
2006	17 210	14 881	14 349	13 971	13 306	12 467	12 186	11 825	11 623	
2007	13 146	11 078	11 087	10 671	9 899	9 123	8 787	8 672		
2008	12 625	11 142	11 149	10 801	10 013	9 610	9 362			
2009	13 107	13 668	13 428	12 887	11 951	11 532				
2010	16 805	14 567	14 044	13 167	12 553					
2011	16 052	14 678	13 365	12 450						
2012	21 972	16 496	15 746							
2013	19 411	16 472								
2014	21 790									

Figure 2.16: Triangle des couts moyen cumulés

2.2.5.2 Analyse du triangle de cadences des couts moyens

La figure ci-dessous présente le triangle des cadences des couts moyen :

	Т	riangle des cade	ences	1						
NB	1	2	3	4	5	6	7	8	9	10
2005		75,26%	102,91%	93,86%	97,92%	96,90%	97,68%	97,39%	97,66%	100,07%
2006	8	86,47%	96,42%	97,37%	95,24%	93,70%	97,75%	97,04%	98,29%	
2007		84,27%	100,08%	96,25%	92,77%	92,16%	96,31%	98,69%		
2008		88,25%	100,07%	96,87%	92,71%	95,98%	97,42%			
2009		104,28%	98,25%	95,97%	92,73%	96,49%				
2010		86,68%	96,41%	93,76%	95,34%					
2011		91,44%	91,05%	93,16%						
2012		75,08%	95,45%							
2013		84,86%								
2014	- 0						1			

Figure 2.17: Triangle des cadences des couts moyen

Analyse Statistiques descriptives : Afin d'approfondir notre analyse, la figure ci-dessous représente le résultat de la statistique descriptive de cette triangle des cadences des couts moyen :

	Analys	e des cadences							
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	86,29%	97,58%	95,32%	94,45%	95,05%	97,29%	97,71%	97,98%	100,07%
Ecartype	8,22%	3,37%	1,57%	1,93%	1,82%	0,58%	0,71%	0,31%	0,00%
Coef Variation	9,52%	3,46%	1,64%	2,04%	1,91%	0,59%	0,73%	0,32%	0,00%
Min	78,07%	94,20%	93,75%	92,52%	93,23%	96,71%	96,99%	97,66%	100,07%
Max	94,50%	100,95%	96,89%	96,38%	96,87%	97,87%	98,42%	98,29%	100,07%

Figure 2.18: Statistiques descriptives des couts moyen

2.3 Application des méthodes déterministes

2.3.1 Application de la méthode de Chain-Ladder

En appliquant la méthode de Chain Ladder , on trouve les résultats suivants :

2.3.1.1 Estimation de nombre des tardifs

	Triangl	e des ouvertu	гез								
IB	1	2	3	4	5	6	7	8	9	10	NB Tardifs
2005	1330	2184	2266	2290	2294	2294	2298	2298	2298	2298	0
2006	1330	2204	2274	2300	2312	2312	2312	2312	2312	2312	(
2007	1786	3196	3358	3420	3440	3442	3444	3446	3446	3446	C
2008	2278	3834	4002	4048	4056	4058	4062	4063,0087	4063,0087	4063,0087	- 3
2009	2568	4150	4328	4382	4390	4392	4395,628	4396,7195	4396,7195	4396,7195	5
2010	2380	3864	3988	4024	4032	4033	4037	4038	4038	4038	ε
2011	2424	3786	3970	4026	4038	4039	4043	4044	4044	4044	18
2012	2348	3954	4182	4235	4247	4249	4252	4253	4253	4253	7
2013	2464	3918	4090	4142	4154	4156	4159	4160	4160	4160	242
2014	1984	3262	3406	3449	3459	3460	3463	3464	3464	3464	1480
							5-			5	1822
		1	2	3	4	5	6	7	8	9	
		164,43%	104,40%	101,26%	100,29%	100,04%	100,08%	100,02%	100,00%	100,00%	

Figure 2.19: Estimation de nombre de tardifs

On remarque que le nombre de tardifs par l'estimation ponctuel vaut 1,821.96 qui presque égale à celle de chain ladder de 1822.

2.3.1.2 Estimation de PSAP règlements

Après l'application du modèle Chain Ladder , la figure ci-dessous représente l'estimation obtenu ainsi les valeurs des facteurs de développement.

Figure 2.20: Estimation de P SAP Charges

On remarque que les facteurs de développement obtenus par la méthode de Mack sont presque égaux aux celles de la méthode de Chain Ladder.

2.3.1.3 Analyse graphique des résultat

Figure 2.21: Projection graphique des valeurs prédites par nombre de survenance

2.3.2 Application de la méthode de Bornhuetter-Ferg

La première année de survenance est une année complète (ie tous les sinistres ont été réglé) et que le S/P de cette année là est de 95% (à la fin), donc on calcule la charge utlime de l'année 2005 comme suit :

$$Prime acquises = \frac{ChargesSinistres}{S/P}$$

AN:

$$\frac{25308068}{0.95} = 26640071$$

Après l'application du modèle Bornhuetter-Ferg, la figure ci-dessous représente l'estimation obtenu ainsi les valeurs des facteurs de développement :

2.3.2.1 Calcul des Primes acquises

Selon l'exercice qu'l existe une évolution annuelle de la prime acquise de 4%, la formule est la suivante : avec i=1...9

$$Primeacquises_i = Primeacquises_{i-1} * 1.04$$

K.	Tr	iangle des règ	lements								
REG	1.	2	3	4	5	6	7	8	9	10	PSAP_REG
2005	1171960	7 776 414	15 024 265	19 500 271	21640625	22 956 126	24 456 861	24 952 133	25 216 675	25 308 068	
2006	803 251	4 740 185	11 956 646	17 455 255	19 531 788	22 307 151	23 056 921	23 405 397	23 733 299	23 819 315	86 01
2007	360 205	3 665 206	11 620 131	16 741 518	19 876 326	21528555	23 053 679	23 742 548	24 033 425	24 120 529	377 98
2008	639 281	5 758 227	14 704 134	23 169 110	27 310 136	28 740 608	29 436 524	30 075 840	30 444 309	30 554 648	1 118 12
2009	1345 321	8 725 810	22 432 161	30 476 081	33 739 194	35 017 303	36 656 342	37 452 462	37 911 304	38 048 706	3 03140
2010	1613627	11 683 178	25 203 664	31583 780	35 470 021	37 925 269	39 700 420	40 562 653	41059599	41208411	5 738 39
2011	1 484 187	11 118 250	21789874	27 676 791	31390658	33 563 531	35 134 525	35 897 593	36 337 386	36 469 083	8 792 29
2012	2 907 655	13 230 048	21993 565	29 855 484	33 861 704	36 205 624	37 900 284	38 723 421	39 197 834	39 339 898	17 346 33
2013	3 465 669	13 106 099	28 438 518	38 604 279	43 784 474	46 815 252	49 006 513	50 070 859	50 684 294	50 867 988	37 76188
2014	3 619 805	20 946 240	45 450 596	61697570	69 976 586	74 820 392	78 322 477	80 023 522	81 003 916	81297497	77 677 69
											151 930 12

Figure 2.22: Estimation par la méthode de Bornhuetter-Ferguson

Figure 2.23: Calcul des Primes acquises sous R

2.3.2.2 Loss ratio de Bornhuetter-Ferguson

		F	REG	1-рс	Prime	acquises	Loss Ratio Estimé	PSAP			
			2005	0,000	<i>/</i> .	26 640 071	95,00%		7.0		
			2006	0,36:	<i>'</i> .	27 705 674	85,66%		85 706		
			2007	1,573	<i>.</i>	28 813 901	82,40%		372 058		
			2008	3,66:	<i>.</i>	29 966 457	98,23%	1	077 207		
			2009			31 165 115	112,36%	_	789 886		
			2010			32 411 720	109,44%		939 303		
			2011			33 708 189	82,11%	-	672 568		
			2012			35 056 516	62,74%		697 730		
			2013			36 458 777	35,95%		729 323		
			2014			37 917 128	9,55%		458 632		
			201	00,00.	(*)	01 011 120	0,007		822 412		
SIP		0	1	2	3	4	5	6	7	8	9
2	004 4,	10%	29,19%	56,40%	73,20%	81,23%	86,17%	91,80%	93,66%	94,66%	95,00%
2	005 2,	90%	17,11%	43,16%	63,00%	70,50%	80,51%	83,22%	84,48%	85,66%	
2	006 1,	25%	12,72%	40,33%	58,10%	68,98%	74,72%	80,01%	82,40%	30	17
2	007 2,	13%	19,22%	49,07%	77,32%	91,14%	95,91%	98,23%	- 17	100	
2	008 4,	32%	28,00%	71,98%	97,79%	108,26%	112,36%	30	79	17	
2	009 4,	98%	36,05%	77,76%	97,45%	109,44%			- 19		
2	2010 4,	10%	32,98%	64,64%	82,11%		100	100		100	17
7	2011 8,3	29%	37,74%	62,74%	- 1	- 1					14
2	2 012 9,	51%	35,95%	14	100	1/2	100	100	- 2		
2	2013 9,	55%		- 1	- 1		- 1	- 1			

Figure 2.24: Loss ratio de Bornhuetter-Ferguson

Avant l'estimation : On constate que le ratio S/P reste toujours inférieur à 100% sauf pour l'année de 2009 et 2010 à partir de la quatrième année de développement et pour le 2 l'année . Alors l'entreprise d'assurance dans ces années n'a pas pu couvert ces charges probablement à cause de retard de règlements sinistres ou d'augmentation de nombre de sinistres ou de la survenance de gros sinistre et des sinistres non estimées particulièrement pour l'année de 2006.

Aprés l'estimation : On remarque que le ratio S/P estimé est inférieur à 100% selement pour les trois premières années. De Plus, il est croissant ,ce ratio, au cours des années. Alors Cette assurance est en cas de ruine. Un graphe ci-dessous illustre bien ce qu'on a dit

évolution du loss ratio

Figure 2.25: Evolution du loss ratio Bornhuetter-Ferguson

2.4 Application des méthodes stochastiques

2.4.1 Application du modéle de Mack

On commence par l'importation de triangle de nombres et le triangle de règlements. Il faut noter que la partie inférieure de triangle pour l'estimation doit contenir des valeurs manquants afin que le modèle de MackChainLadder accepte ses valeur.

Figure 2.26: Estimation avec la méthode de Mack

On remarquer que le nombre de tardifs par l'estimation ponctuel vaut 1,821.96 qui presque égale à celle de chain ladder de 1822 .

On remarque que les facteurs de développement obtenus par la méthode de Mack sont presque égaux aux celles de la méthode de Chain Ladder.

2.4.1.1 Analyse graphique des résultat

Figure 2.27: Projection graphique des valeurs prédites par nombre de survenance

Interprétation Pour les deux derniéres années, la prévision est supérieure aux nombre de sinistres effectués, De plus, on peut vérifier la troisième hypothèse de modèle de Mack : les résidus sont non structurés.

Figure 2.28: Graphique d'estimation pour les différents années de survenance

Ce graphe montre une visibilité sur l'estimation des tardifs pour les différents années de survenances au cours la période de développement, ce qui permet de constater que les nombre de tardifs commencent à diminuer pour les dernières années ce qui est normal

2.4.2 Application du modéle de Boostrap

On commence par appliquer le modèle de bootstrap sur le triangle de nombre cumulés afin d'estimer le nombre des tardifs. La figure ci-dessous présente le résultat obtenu :

Figure 2.29: Estimation de nombre de tardifs avec la méthode de bootstrap

On conclu que les nombre des tardiffs obtenus par le modèle bootstrap vaut 1,821 ce qui est presque égale aux valeurs obtenus par les modèles de chain ladder et Mack. Les trois méthodes d'estimation de provisionnement(classique, Mack, Boostrap) reposent sur les hypothèses de Chain Ladder.

2.4.2.1 Analyse Graphique

Figure 2.30: Graphique d'estimation de nombre de tardifs

Le premier graphique permet de tracer la distribution d'ouverture de sinistre et à l'aide de la deuxième graphique de la courbe **ecdf**, on peut remarquer que cette distribution se rassemble à la loi Log normal. les graphiques des boites à moustaches, vérifie la variabilité des ouvertures des sinistres selon les années de survenance ce qui est important pour les dernières années de 2013 et 2014

	IBNR	IBNR.S.E	CDR(1)5.E	CDR(1)75%	CDR(1)95%
2005	0.0000000	0.000000	0.000000	0.000000	0.00000
2006	0.0000000	0.000000	0.000000	0.000000	0.00000
2007	0.0000000	0.000000	0.000000	0.000000	0.00000
2008	0.9343985	3.085518	3.085518	1.140034	6.08008
2009	4.6467396	5.450866	4.679577	6.587076	13.67373
2010	5.9724038	6.178502	3.393462	6.877145	11.91682
2011	16.8265081	9.795547	7.576199	21.141331	32.39884
2012	70.9189809	19.032744	17.049782	82.302787	100.16804
2013	240.7003469	35.443134	29.639205	260.396550	294.06882
2014	1480.5094056	115.369186	108.581052	1553.911841	1664.18353
Total	1820.5087835	125.766967	117.235887	1897.258887	2019.34782

Figure 2.31: Estimation de nombre de tardifs de chaque année

2.5 Application Pour le triangle de règlements

On commence par l'application du modéle chain-ladder classique sur le triangle de nombre cumulés afin d'estimer le triangle de règlements. La figure ci-dessous présente le résultat obtenu :

	1	2	3	4	5	6	7	8	9	10
2005	1171960	7776414	15024265	19500272	21640626	22956127	24456862	24952134	25216676	25308068
2006	803251	4740184	11956646	17455254	19531787	22307150	23056920	23405397	23733299	23819315
2007	360205	3665207	11620132	16741519	19876327	21528556	23053680	23742549	24033427	24120530
2008	639281	5758227	14704134	23169110	27310136	28740609	29436525	30075842	30444311	30554649
2009	1345321	8725810	22432161	30476081	33739194	35017303	36656343	37452463	37911305	38048706
2010	1613627	11683178	25203664	31583780	35470021	37925269	39700421	40562654	41059600	41208411
2011	1484187	11118250	21789874	27676790	31390657	33563531	35134524	35897593	36337386	36469082
2012	2907655	13230048	21993566	29855485	33861705	36205625	37900286	38723422	39197836	39339899
2013	3465669	13106100	28438520	38604281	43784476	46815255	49006516	50070863	50684297	50867991
2014	3619805	20946236	45450588	61697560	69976575	74820380	78322464	80023509	81003904	81297483

Figure 2.32: Estimation de triangle de règlements

Figure 2.33: Projection graphique des valeurs prédites par nombre de survenance

Méthode Mack chain-ladder

On applique maintenant la méthode de Mack chain-ladder sur le triangle de nombre cumulés. Ci-dessous les résultat obtenus :

Figure 2.34: Estimation de triangle des règlements par la méthode de Mack chain-ladder

On remarque que le règlement des sinistres par l'estimation ponctuel vaut 151,930,108.32 qui presque égale à celle de chain ladder de 151,930,121. On remarque aussi que les facteurs de développement obtenus par la méthode de Mack sont presque égaux aux celles de la méthode de Chain Ladder.

Analyse graphique des résultats

Figure 2.35: Graphique d'estimation de nombre de tardifs

le premier graph (dont il y a des boxplot) montre que pour les cinq dernières années, l'estimation des valeurs de règlement des sinistres avec une large Intervalle d'erreur particulièrement pour l'année 2014, en plus, on peut aussi vérifier la 3me hypothèse de modèle de Mack que les résidus sont non structurés.

plot(reglements.cum_chMack, lattice=TRUE)

Figure 2.36: Graphique d'estimation pour les différents années de survenance

Ce graphe montre une visibilité sur l'estimation des règlements pour les différents années de survenances au cours de la période de développement, ce qui permet de constater que les nombre de tardifs commencent à diminuer pour les dernières années.

Méthode Bootstrap chain-ladder

BootChainLadder	(Triangle = re	gLements.cu	n, $R = 999$,	process.di	str = "gamma")
Latest	Mean Ultimate	Mean IBNR	IBNR.S.E	IBNR 75%	IBNR 95%
2005 25,308,068	25,308,068	9	9	0	0.00e+00
2006 23,733,299	23,812,391	79,092	286,031	95,782	5.44e+05
2007 23,742,549	24, 114, 712	372,163	491,338	563,840	1.27e+06
2008 29,436,525	30,548,126	1,111,601	796,475	1,562,886	2.66e+06
2009 35,017,303	38,067,072	3,049,769	1,348,878	3,811,587	5.59e+06
2010 35,470,021	41,172,434	5,702,413	1,799,956	6,888,610	8.79e+06
2011 27,676,790	36,401,959	8,725,169	2,219,260	10, 108, 315	1.26e+07
2012 21,993,566	39, 260, 871	17,267,305	3,389,196	19,374,320	2.30e+07
2013 13,106,100	51, 131, 164	38,025,064	7,475,509	42,325,043	5.25e+07
2014 3,619,805	82,641,860	79,022,055	27,102,211	94,477,685	1.29e+08
	Totals				
Latest:	2.39e+08				
Mean Ultimate:	3.92e+08				
Mean IBNR:	1.53e+08				
IBNR.S.E	2.97e+07				
Total IBNR 75%:	1.71e+08				
Total IBNR 95%:	2.04e+08				

Figure 2.37: Estimation de triangle des règlements par la méthode de Bootstrap chain-ladder

On voit que les provisions de règlements estimés par le modèle bootstrap vaut 1.55e+08 ce qui est un peu supérieur aux valeurs obtenus par les modèles de chain ladder et Mack

Analyse graphique des résultats

Figure 2.38: Graphique d'estimation de nombre de tardifs

Le premier graph permet de tracer la distribution des provisions des règlements et à l'aide de la deuxième graphique de la courbe ecdf, on remarque que cette distribution se rassemble à la loi Log normal.

les graphiques des boites à moustaches vérifie la variabilité des provisions selon les années de survenance ce qui est apparu important pour les années entre 2010 et 2013.

Estimation de nombre de tardifs de chaque année

Afin de bien suivre et visualiser les PSAP_REG de chaque année, on utilise la commande CDR() sous R, on obtient le résultat suivant :

	IBNR	IBNR.S.E	CDR(1)S.E	CDR(1)75%	CDR(1)95%
2005	0.00	0.0	0.0	0.00	0.0
2006	79092.16	286030.5	286030.5	95781.83	544392.2
2007	372163.12	491338.1	420537.0	551312.10	1157276.8
2008	1111600.85	796475.4	623922.6	1452559.30	2260263.8
2009	3049768.88	1348878.2	991916.2	3549955.63	4936962.3
2010	5702412.97	1799955.9	1221510.4	6461418.29	7708543.8
2011	8725168.57	2219260.2	1531559.1	9722388.58	11453405.2
2012	17267304.63	3389196.2	2641570.6	18977460.44	21780043.5
2013	38025064.43	7475508.9	6209137.7	41628469.17	49277339.4
2014	79022055.03	27102211.1	24712964.1	93924352.79	123291126.9
otal	153354630.65	29664233.4	26631623.1	170041898.90	201059522.2

Figure 2.39: Estimation de nombre de tardifs de chaque année par la méthode de Bootstrap chain-ladder

Estimation BF (Bornhuetter-Ferguson)

La première année de survenance est une année complète (ie tous les sinistres ont été réglé) et que le S/P de cette année là est de 95% (à la fin), donc on calcule la charge utlime de l'année 2005 comme suit :

	1	2	3	4	5	6	7	8	9	10	
2005	1171960	7776414	15024265	19500272	21640626	22956127	24456862	24952134	25216676	25308068	
2006	803251	4740184	11956646	17455254	19531787	22307150	23056920	23405397	23733299	23819315	1. 26640071.5789474
2007	360205	3665207	11620132	16741519	19876327	21528556	23053680	23742549	24033427	24120530	2. 27705674.4421053
2008	639281	5758227	14704134	23169110	27310136	28740609	29436525	30075842	30444311	30554649	3. 28813901.4197895
2009	1345321	8725810	22432161	30476081	33739194	35017303	36656343	37452463	37911305	38048706	4. 29966457.4765811
2010	1613627	11683178	25203664	31583780	35470021	37925269	39700421	40562654	41059600	41208411	5. 31165115.7756443
2011	1484187	11118250	21789874	27676790	31390657	33563531	35134524	35897593	36337386	36469082	6. 32411720.4066701
2012	2907655	13230048	21993566	29855485	33861705	36205625	37900286	38723422	39197836	39339899	7. 33708189.2229369
2013	3465669	13106100	28438520	38604281	43784476	46815255	49006516	50070863	50684297	50867991	8. 35056516.7918544
2073	7////	13100100			17.17.14.14	74820380	78322464			77700000000	9. 36458777.4635285
2014	3619805	20946236	45450588	67697560	69976575	74820380	78322464	80023509	81003904	81297483	10. 37917128.5620697

Figure 2.40: Estimation de triangle des règlements par la méthode de Bornhuetter-Ferguson

selon l'exercice quil existe une évolution annuelle de la prime acquise de 4%, la formule est la suivante :

 $Primeacquises_i = Primeacquises_{i-1} * 1.04$

$Calcul\ Loss\ Ratios\ S/P$

S/P - Chargesinistres/Primeacquises

ratio_u	Ltime_CL								
4.399237	29.19066	56.39724	73.19902	81.23336	86.17142	91.80479	93.66392	94.65694	95.00000
2.899229	17.10907	43.15595	63.00245	70.49742	80.51473	83.22093	84.47871	85.66223	85.97269
1.250108	12.72027	40.32821	58.10223	68.98173	74.71587	80.00888	82.39963	83.40914	83.71143
2.133322	19.21557	49.06864	77.31681	91.13568	95.90926	98.23158	100.36502	101.59463	101.96283
4.316753	27.99864	71.97843	97.78908	108.25949	112.36057	117.61979	120.17431	121.64660	122.08748
4.978529	36.04615	77.76096	97.44555	109.43579	117.01097	122.48785	125.14810	126.68133	127.14046
4.403046	32.98382	64.64267	82.10702	93.12472	99.57085	104.23142	106.49517	107.79987	108.19057
8.294193	37.73920	62.73745	85.16387	96.59176	103.27787	108.11196	110.45998	111.81326	112.21851
9.505719	35.94772	78.00185	105.88474	120.09310	128.40599	134.41623	137.33555	139.01809	139.52193
9.546622	55.24215	119.86822	162.71686	184.55136	197.32607	206.56223	211.04844	213.63407	214.40833

Figure 2.41: Loss ratio de Bornhuetter-Ferguson

Avant l'estimation : On constate que le ratio S/P reste toujours inférieur à 100% sauf pour l'année de 2009 et 2010 à partir de la quatrième année de développement et pour le 2 l'année . Alors l'entreprise d'assurance dans ces années n'a pas pu couvert ces charges probablement à cause de retard de règlements sinistres ou d'augmentation de nombre de sinistres ou de la survenance de gros sinistre et des sinistres non estimées particulièrement pour l'année de 2006.

Aprés l'estimation : On remarque que le ratio S/P estimé est inférieur à 100% selement pour les trois premières années. De Plus, il est croissant ,ce ratio, au cours des années. Alors Cette assurance est en cas de ruine. Un graphe ci-dessous illustre bien ce qu'on a dit :

Analyse graphique des résultats

Figure 2.42: Evolution du loss ratio Bornhuetter-Ferguson

calcul du PSAP

$$PSAP = (1 - pc)P_{\text{rimeacquises}}$$
 Lossratio Estimé

psap	loss ratio estime	prime acquises	pc 1	Reg
0	95.000000	26640072	0.000000	2005
8570522	85.662232	27705674	0.361118	2006
37205818	82.399633	28813901	1.567052	2007
107720704	98.231581	29966457	3.659423	2008
278988581	112.360574	31165116	7.967164	2009
493930258	109.435786	32411720	13.925288	2010
667256775	82.107021	33708189	24.108893	2011
969772987	62.737454	35056517	44.093487	2012
972932295	35.947722	36458777	74.235074	2013
345863159	9.546622	37917129	95.547458	2014

Figure 2.43: calcul du PSAP

On constate des valeurs S/P supérieurs à 100% pour les années des 2009, 2010 qui représentent des valeurs bizarres de Loss ratio. l'assurance dans ces années n'a pas pu arriver à couvrir ses charges probablement à cause de retard de règlements sinistres ou d'augmentation de nombre de sinistres ou de la survenance de gros sinistre et des sinistres non estimées.

Conclusion générale

Les compagnies d'assurance recherchent des technologies permettant d'évaluer leurs performances Niveau d'approvisionnement et garantie de sa solvabilité. Les méthodes déterministes sont faciles à mettre en œuvre, ce qui justifie leur utilisation actuelle par les compagnies d'assurance. Cependant, ils ne permettent pas Compte tenu des aléas liés aux estimations des réserves, l'utilisation des réserves privera les compagnies d'assurance des avantages La mesure du risque est utile pour gérer ses activités. L'approche aléatoire fournit des informations sur les risques inhérents au niveau de don sélectionné. Par conséquent, utilisez-les pour déterminer le niveau de financement Il est nécessaire d'assurer la pérennité de l'entreprise.

Bibliographie

- [1] E. ASTESAN. (). « Université de Paris. Faculté de droit. Les Réserves techniques des sociétés d'assurances contre les accidents d'automobiles, thèse pour le doctorat... présentée... par Eugène Astesan, » adresse : R.PichonetR.Durand-Auzias, 1938...
- [2] . Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates.

 ASTIN BULLETIN 23(02):213–225. ().
- [3] M. D. KABA. (). « UModélisation des provisions pour sinistres à payer en assurance non vie, » adresse : https://www.actuarialab.net/storage/dramekaba.pdf?fbclid=IwAR26Llksg-SzNWGZeqoto78eD11YBcSKj-mBb3MJoGW3PsCKR1SkpBbiz5k..
- [4] M. D. K. Modélisation des provisions pour sinistres à payer en assurance non VIE. ().