Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого» Институт компьютерных наук и технологий Высшая школа программной инженерии

КУРСОВОЙ ПРОЕКТ

МОДЕЛИРОВАНИЕ СИСТЕМЫ, ФОРМАЛИЗОВАННОЙ КАК СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ

по дисциплине «Архитектура программных систем»

Выполнил студент гр. 3530202/80201

Григоренко С.А.

Руководитель Дробинцев Д.Ф.

«13» декабря 2020г.

Оглавление

Введение	
Исходные данные	4
Временная диаграмма	5
Вывод законов распределения	6
Пример технической системы (ВС или части ВС), удовлетворяющей формализованному описанию	7
Ограничения и требуемые характеристики	
Обобщенная блок-схема	9
Модульная структура	10
Результаты работы	12
Вывод	13

Введение

Целью практической курсовой является создание модели ВС или ее компонентов на некотором уровне детализации, описывающей и имитирующей ее структуру и функциональность.

Каждый реальный объект ВС обладает огромной сложностью, определяемой множеством состояний, множеством внутренних и внешних связей, множеством анализируемых характеристик. Модель дает приближенное описание объекта с целью получения требуемых результатов с определенной точностью и достоверностью. Степень приближения модели к описываемому объекту может быть различной и зависит от требований задачи.

Существуют различные типы моделей ВС: аналитические, аналоговые, физические и имитационные. В данной работе будет использоваться имитационная модель ВС. Одним из подходов к построению имитационной модели является построение ее в виде системы массового обслуживания (СМО).

Исходные данные

3. ИБ ИЗ1 ПЗ2 Д1031 Д10О3 Д2П1 Д2Б3 ОР1 ОД3

- 1. Параметры элементов модели.
 - 1.1 Источники:
 - ИБ бесконечный источник;
 - И31 пуассоновский закон распределения заявок;
 - 1.2 Приборы:
 - П32 равномерный закон распределения времени обслуживания;
- 2. Описание дисциплин постановки и выбора:
 - 2.1. Дисциплина буферизации:
 - Д1031 по кольцу;
 - 2.2. Дисциплина отказа:
 - Д10О3 самая старая в буфере;
 - 2.3. Дисциплина постановки на обслуживание:
 - 2.3.1. Дисциплина выбора заявок на обслуживание.
 - Д2Б5 по кольцу;
 - 2.3.2. Дисциплина выбора прибора:
 - Д2П1 приоритет по номеру прибора;
- 3. Виды отображения результатов работы программной модели:
 - 3.1. Динамическое отражение результатов:
 - ОДЗ временные диаграммы, текущее состояние;
 - 3.2. Отражение результатов после сбора статистики:
 - OP1 сводная таблица результатов;

Временная диаграмма

Вывод законов распределения

Пуассоновский закон распределения заявок:

$$F_{\lambda} = \frac{e^{-\lambda} * \lambda^{k}}{k!}$$

 λ – заданное значение

$$\tau = \frac{-1}{\lambda} * ln(F_{\lambda})$$

В программе данное выражение записано следующим образом: this -> lastGenTime += (-1/lambda) *log((float)qrand()/(float)RADN_MAX);

Равномерный закон распределения времени обслуживания:

$$F(x) = \begin{cases} 0, x < a \\ \frac{x - a}{x - b}, a \le x \le b \\ 1, x > b \end{cases}$$

В программе данное выражение записано следующим образом: float rdTime = (float)a+(float)(b-a)*(rand()%100)/100;

Пример технической системы (ВС или части ВС), удовлетворяющей формализованному описанию

Техническая система	Система управления уличным освещением
Источники	Источниками являются датчики
	освещенности, которые отсылают данные
	на обработку в виде пакета размером
	64Кб. Необходимо получать и
	обрабатывать информацию с
	фиксированного кол-ва датчиков (10)
Приборы	Приборами являются ЭВМ, которые
	обрабатывают полученную информацию и
	управляют светодиодными лампами
Буффер	Буфером является буфер коммутатора,
	который может быть от 320Кб (5 заявок) и
	может быть наращен до 620Кб (10 заявок)
	с шагом 64Кб
Дисциплина буферизации	По кольцу
Дисциплина выбора заявок на	По кольцу
обслуживание	
Дисциплина отказа	Самая старая в буфере
Дисциплина выбора прибора	Приоритет по номеру прибора

Ограничения и требуемые характеристики

Вероятность отказа должна составлять не более 10%.

Загрузка приборов более 90%.

Время пребывания заявки в системе не более 10 мс.

Рассматриваемый диапазон характеристик системы, доступные типы процессоров и характеристики программного-аппаратного комплекса,построенного на данном типе процессора приведены ниже в таблице компонентов системы.

_ 1 ' 1 1 ''	
Количество датчиков	10
Вес заявки	64Кб
Объем буфера	От 320Кб до 640Кб
Количество приборов	От 5 до 15
Скорость генерации заявок	Пуассоновский поток с $\lambda = 4$ мс
Скорость обработки заявок	Равномерный поток с границами(мс):

Стоимость компонентов системы:

Нужно подобрать минимальную конфигурацию по размеру буфера и количеству приборов, удовлетворяющих условиям, для наименьших затрат, связанных с их покупой.

Стоимость приборов:

[2;4] – 21 тыс. рублей

[4;5] – 14 тыс. рублей

Стоимость слота буфера – 3 тыс. рублей

Обобщенная блок-схема

Модульная структура

Разработка производилась в среде Qt Creator 5.15.2 на языке C++ с использованием графической библиотеки QT.

Приложение является объектно-ориентированным и содержит следующие классы:

- UI класс создающий пользовательский интерфейс
- Buffer класс буффера
- Source класс источника
- Device класс прибора
- Event класс описывающий системное событие
- Task класс описывающий задачу
- Controller класс управляющий системой
- Stats класс обрабатывающий статистические данные

Точка входа в программу — main.cpp, там метод открытия и отрисовки окна приложения. После создания окна начинается процесс обработки событий.

Пошаговый режим:

Результаты работы

Определение количества реализаций:

Количество реализаций, необходимое для получения нужной точности при заданной доверительной вероятности, можно оценивать по формуле:

$$N = \frac{t^2 (1-p)}{p\delta^2}$$

где р — вероятность отказа заявкам в обслуживании,

 $t_{\alpha} = 1.643$ для $\alpha = 0.9$,

 $\delta \! = \! 0.1$ — относительная точность.

По результатам работы программы получено, что в большинстве случаев для достижения заданной точности необходимо от 2000 до 6000 заявок. Однако, в случаях, когда р мало (<0.05) для достижения точности в 10% может потребоваться существенно больше заявок (20000-30000).

Анализ результатов:

Т. к. целью моделирования является выбор конфигурации системы, требующей наименьшее количество ресурсов и обрабатывающей максимальный поток информации, то начнем с проверки конфигурации с макс. числом источников и минимальным числом приборов и мин. размером буфера. Возьмем фиксированное количество источников равное 10.

Число	Число	Размер	Alpha	Beta	Lambda	Загруженность	Р отк	Т в
источников	приборов	буфера						сист
10	5	5	4	5	4	0.9999	0.55	3.9

Из таблицы видно, что в последнем случае мы получили необходимую загруженность приборов, но вероятность отказов не удовлетворяет нашим условиям. Попробуем увеличить количество приборов.

Число	Число	Размер	Alpha	Beta	Lambda	Загруженность	Р отк	Т в
источников	приборов	буфера						сист
10	10	5	4	5	4	0.9986	0.11	5.3

Видим, что вероятность отказов почти удовлетворяет нашим условиям, при этом загруженность все ещё на высоком уровне, попробуем добавить ещё один прибор.

Число	Число	Размер	Alpha	Beta	Lambda	Загруженность	Р отк	Т в
источников	приборов	буфера						сист
10	11	5	4	5	4	0.9780	0.04	5.2

Этот случай удовлетворяет всем условиям, но не является самым дешевым.

Стоимость: 5*3.000+11*14.000 = 169.000 рублей

Попробуем заменить приборы на их более производительные версии.

Число	Число	Размер	Alpha	Beta	Lambda	Загруженность	Ротк	Т в
источников	приборов	буфера						сист
10	7	5	2	4	4	0.9870	0.07	3.9

В этом случае вероятность отказа немного выше, но все ещё внутри заданных условий. С другой стороны мы существенно снизили время обработки одной заявки и сделали нашу систему немного дешевле. Расширение буффера не поможет нам снизить количество приборов, а лишь незначительно уменьшит вероятность отказа. Поэтому остановимся на данной конфигурации.

Стоимость: 5*3.000+7*21.000 = 162.000 рублей

Вывод

В ходе курсовой работы была реализована имитационная модель системы массового обслуживания на языке C++ с использованием графической библиотеки Qt. Используя написанную программу был проанализирован пример системы и подобрана оптимальная по стоимости комплектация этой системы.