1. (1 point)

(1) Find a particular solution to the nonhomogeneous differential equation $y'' + 4y' + 4y = 8x^2 + 4x + 8$. (Note: it might be better to first do part (b) before part (a).)

 $y_p =$ ______ help (formulas)

(2) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y = _____ help (formulas)

2. (1 point)

(1) Find a particular solution to the nonhomogeneous differential equation y'' - y' = -5. (Note: it might be better to first do part (b) before part (a).)

 $y_p =$ _____ help (formulas)

(2) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

v = _____ help (formulas)

3. (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals.

$$y'' + 9y = \sec(3x).$$

(1) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ _____ help (formulas)

(2) Find a particular solution to the nonhomogeneous differential equation $y'' + 9y = \sec(3x)$.

 $y_p =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y = help (formulas)

4. (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals.

$$y'' - 4y = xe^{2x}.$$

(1) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ _____ help (formulas)

(2) Find a particular solution to the nonhomogeneous differential equation $y'' - 4y = xe^{2x}$.

 $y_p =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y =

1

help (formulas)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America