Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Базовые определения		b
1.1 Декодирование		3
1.2 Отношение сигнал-шум		3
1.3 Код		3
1.4 Дублирование		3
1.3 Код		3
1.6 Жёсткое vs мягкое декодирование	4	1
1.7 Спектральная эффективность	4	1
1.8 Декодирования	4	1
1.9 Критерий минимального расстояня: выбор ближайшего кодово		1
2 Блоковые коды	4	1
2 Блоковые коды	4	1
3.1 Систематическое кодирование		
3.2 Размерность и расстояние кола по проверочной матрице	I.	5
3.3 Граница Синглтона		5
3.3 Граница Синглтона		5
3.5 Синдромное декодирование		5

1 Базовые определения

Кодер источника — убирает избыточность (например, архиватор или jpeg), может быть с потерями.

Кодер канала — вносит контроллируемую избыточность.

Канал — вероятностная модель передачи данных, определяется $P(Y \mid X)$, где X — данные, непосредственно передающиеся, Y — принимаемые данные на выходе канала.

1.1 Декодирование

- По критерию идеального наблюдателя: минимизация P_e за счёт выбора в каждой точке x, наиболее вероятного при условии y (т.е. $\max_x p(x \mid y)$).
- По максимуму правдоподобия выбор для x области, где его правдоподобие $p(y \mid x)$ выше других x: $\max_x p(y \mid x)$.

При P(x) = const критерии эквивалентны.

1.2 Отношение сигнал-шум

$$E_s = \alpha^2$$

 $P_{
m noise}\sim \sigma^2=rac{N_0}{2}\,(N_0-{
m c}$ пектральная плотность мощности шума, берём половину, т.к. комплексная часть не интересует)

 $\underline{\text{Ha}}$ символ: $\frac{E_s}{N_0}$

На бит:
$$\frac{E_b}{N_0}=\frac{E_s}{N_0R}$$

Принято измерять в децибелах: $10\log_{10}\left(rac{E_b}{N_0}
ight)$

Для 2-АМ:
$$P_e = Q\Big(\sqrt{2rac{E_b}{N_0}}\Big)$$

1.3 Кол

Определение 1.3.1 (*Код*) Множество $\mathcal C$ допустимых кодовых последвоательностей алфавита X (на практике — они блоковые)

Определение 1.3.2 (Кодер) Отображение $\mathcal{B}^n \hookrightarrow \mathcal{C}$

Определение 1.3.3 (*Скорость кода*) Отношение длины кодовой и исходной последовательностей

1.4 Дублирование

Если m раз продублировать каждый символ, то $P_e=Q\Big(\sqrt{2m\frac{E_b}{N_0}}\Big)$, но $R=\frac{1}{m}$, т.ч. если смотреть в пересчёте на бит — прироста нет.

1.5 Теоремы Шеннона

Есть трейдофф между скоростью и ошибками.

Теорема 1.5.4 (Прямая теорема Шеннона) Оказывается, что со скоростью, сколь угодно близкой к C, но меньшей C можно достигать сколь угодно малые P_e начиная с некоторой длина блока кода.

Теорема 1.5.5 (Обратная теорема Шеннона) Если R > C, то P_e ограничена снизу.

т.е. теоретический результат идеален. Теорема не конструктивна, но знаем, как достичь. Но:

- декодеры неэффективны
- конкретные (не асимптотические) вероятности ошибок плохие

btw случайные коды реализуют теорему Шеннона;)

Пропускная способность канала —

$$C = \max_{P(x)} I(X;Y)$$

, где $I(X;Y) = H(Y) - H(Y \mid X)$ — определяется через свойства канала.

Источники субоптимальности:

- конечность длины блока
- несовершенство кода
- субоптимальность декодера
- дискретизация выхода канала

1.6 Жёсткое vs мягкое декодирование

Жёсткое — декодер использует жёсткие оценки для каждого символа.

• Torдa AБГШ → BSC

Мягкое — декодер использует вероятности для каждого символа/напрямую принятое значение.

1.7 Спектральная эффективность

 $\beta = \frac{R}{W}$ — число бит на Гц ширины спектра.

1.8 Декодирования

Списочное декодирование — декодер возвращает не один, а несколько вариантов.

Побитовое — часто используются L_i — лог. отношения правдоподобия — логарифм отношения вероятности всех слов с 1-цей ко всем словам с нулём на этой позиции. То есть зависит и от остальных прянятых символов. Используется

1.9 Критерий минимального расстояня: выбор ближайшего кодового слова к принятому.

2 Блоковые коды

Если минимальное расстояние -d:

- Внутри шара радиуса d-1 нет других кодовых слов ightarrow Находит d-1 ошибок
- Шары радиуса $\left| \frac{d-1}{2} \right|$ не пересекаются ightarrow Исправляет $\left| \frac{d-1}{2} \right|$ ошибок

3 Линейные колы

q-ичный код (n,k,d) — k-мероное подпространство $GF(q)^n$ с минимальным расстоянием d.

Можно задать порождающей матрицей $G\in \mathrm{GF}^{k imes n}$, код — «образ» — все линейные комбинации строк G.

Можно задать проверочной матрицей $H\in \mathrm{GF}(q)^{r imes n},\;$ т.ч. $r\geq n-k=\mathrm{rank}\; H,\;$ код - её «ядро» $Hx^T=0\Longleftrightarrow xH^T=0.$

Столбцы H — это базис ортогонального дополнения к коду, т.е. $GH^T = 0$.

Домножение слева на обратимую матрицу не меняет кода.

Домножение G справа на перестановочную переставляет сигнальные символы $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ коды эквивалентны.

3.1 Систематическое кодирование

$$G=(I_k\mid A)$$
, где I_k — единичная матрица. Проверочная матрица к ней: $H=(A^T\mid -I_{n-k}).$

Любой код можно привести к систематическому виду с точностью до эквивалетного: операциями над строками + перестановой столбцов.

3.2 Размерность и расстояние кода по проверочной матрице

3.3 Граница Синглтона

$$n-k \ge d-1$$

3.4 Код Хэминга

3.5 Синдромное декодирование

У каждого класса смежности $\mathrm{GF}(q)^n$ по аддитивной подгруппе кода — находим вектор ошибок минимального веса.

Классы определяются синдромом —
$$s=yH^T=(x+e)H^T=u\underbrace{GH^T}_0+eH^T=eH^T.$$