Cross-validation

Vahid Partovi Nia

Lecture 04

Outline

Flexibility

Model Selection

Cross-validation

- Flexibility
- 2 Model Selection

statsmodels

Flexibility

Model Selection

statsmodels

Flexibility

Model Selection

Auto Dataset

Flexibility

Model Selection

Cross-validation

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	1	ford torino

Model Selection

Cross-validation

```
import pandas as pd path='data/' filename = path+'Auto.csv' auto = pd.read_csv(filename, na_values=['?'], na_filter=True) auto = auto.dropna()
```

Model Selection

Cross-validation

```
import pandas as pd
path='data/'
filename = path+'Auto.csv'
auto = pd.read_csv(filename, na_values=['?'], na_filter=True)
auto = auto.dropna()

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(auto['horsepower'], auto['mpg'], 'or', mfc='none');
```


Model Selection

Cross-validation

Flexibility

Model Selection

Cross-validation

Model Selection

Cross-validation

```
import numpy as np
import statsmodels.formula.api as smf
model = smf.ols(formula='mpg ~ horsepower', data=auto)
lr1 = model.fit()
lr1.summary2()
```


Model Selection

Cross-validation

Model Selection

Cross-validation

Leave-one-out

Flexibility

Model Selection

$$RSS = n\hat{\sigma}^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Model Selection

Cross-validation

 $\label{eq:continuous_selection} from sklearn.model_selection import LeaveOneOut \\ from sklearn.linear_model import LinearRegression \\ loo = LeaveOneOut() \\ loo . get_n_splits(auto)$

Model Selection

Cross-validation

```
X = auto[['horsepower']].values
y = auto['mpg'].values

rss = np.zeros(auto.shape[0])
i = 0
for train_i, test_i in loo.split(auto):
    Ir = LinearRegression()
    Ir = Ir.fit(X[train_i], y[train_i])
    rss[i]=(Ir.predict(X[test_i]) - y[test_i])**2
    i += 1
np.sum(rss)
```


Model Selection

Cross-validation

```
X = auto [['horsepower', 'displacement']].values
rss = np.zeros(auto.shape[0])
i = 0
for train_i, test_i in loo.split(auto):
    Ir = LinearRegression()
    Ir = Ir.fit(X[train_i], y[train_i])
    rss[i]=(Ir.predict(X[test_i]) - y[test_i])**2
    i += 1
np.sum(rss)
```

Model Selection

Cross-validation

$$RSS = \{RSS_1 + \dots + RSS_5\}$$

$$RSS_1 = \sum_{i=1}^{n/5} (y_i - \hat{y}_i)^2$$

$$RSS_2 = \sum_{i=1}^{n/5} (y_i - \hat{y}_i)^2$$

:

$$RSS_5 = \sum_{i=1}^{n/5} (y_i - \hat{y}_i)^2$$

Model Selection

```
from sklearn.model_selection import KFold
X = auto[['horsepower', 'displacement']].values
k = 5
rss = np.zeros(k)
kf = KFold(n_splits=k, shuffle=True)
i = 0
for train_i, test_i in kf.split(auto):
    Ir = LinearRegression()
    Ir = Ir.fit(X[train_i], y[train_i])
    rss[i]=np.sum((Ir.predict(X[test_i]) - y[test_i])**2)
rss
```


 ${\sf Flexibility}$

Model Selection

Cross-validation

Implement 10-fold

