Computer Vision Quality Inspection for Thermo Fisher Scientific

Dale DeFord Aug. 2024

Agenda

- 01 Business Problem
- 02 Exploratory Data Analysis
- 03 Predictive Modeling
- 04 Conclusions
- 05 Recommendation
 - 06 Next Steps

01

Business Problem

Thermo Fisher Scientific (TFS) in Hillsboro OR manufactures cutting edge Scanning Electron Microscopes (SEM). In production, Liquid Metal Ion Source (LMIS) units are imaged at a SEM and human inspected for quality issues. This process is costly and prone to human error.

Goal:

- Create an automated Computer Vision process that will accurately classify LMIS SEM images, thus reducing cost in man-hours and quality problems due to varying human inspection biases.

SEM System Manufactured at TFS

02

Data Analysis

LMIS SEM images were downloaded from TFS under Non-Disclosure Agreement (NDA).

- > 7,019 grayscale SEM image files
- Images labeled and sorted into 5 class folders
- Details will be omitted or intentionally vague due to NDA

NOTE: SEM image has been intentionally scaled down to protect intellectual property

Image Data Class Distribution

- NOTE: Many non-PASS images contained features from multiple classes
- Imagine trying to classify CAT vs DOG, and many of your images have a CAT and a DOG!

Predictive Modeling

BUSINESS REQUIREMENT:

- Minimization of false-positives in the PASS class:
 - > Top priority: avoid shipping non-PASS units to the customer.
 - > False-Positive rate within PASS class must be < 1%
- Scoring Metric: Accuracy

Baseline CNN Architecture

Model Iteration Trends

Best CNN Architecture

Best Model Results

Training Accuracy: 94.2%

Pre-FPR-Adjusted Test Accuracy: 83.5%

FPR-Adjusted Test Accuracy: 80.5%

PASS False-Pos Rate: 0.89%

04

Conclusions

1. Model performance likely capped due to limited data sample size and mixing of non-PASS classification types.

2. Final Model Metrics:

> Accuracy: **80.5**%

> PASS False-Positive Rate: **0.89%**

Recommendation

Initiate a production pilot evaluation of provided LMIS Image
 Classification executable and assess its performance vs. human; if accepted then discontinue human inspection of PASS class.

Runs the best model,
 sorts images into class
 folders for human review

Logs classification results to .cvs file

Recommendation

2. Monitor classification results via provided Power BI dashboard

Pulls production data from the csv log file

 Real-time monitor of classification trends and distributions

Filter by class, date or unit serial number

NOTE: Fictitious data shown, not actual TFS production data

06 Next Steps

- 1. Continue to improve the model:
 - a) Need more data!
 - I. Subject matter expert labeling ~2000 images each class
 - II. Train with 'clean' samples, i.e., no images that could be more than 1 class

b) Continue attempting transfer learning architectures, i.e., ResNet50

1. If adequate model accuracy can be achieved, implement another production pilot to eliminate human inspection of all images

Thanks!

A special thanks to collaborators at TFS:

- Jessica Panther, Manufacturing Engineering Supervisor
- Scott Gibson, Sr Engineering Mgr

Questions? Please contact me at:

Dale DeFord daledeford@gmail.com

