CARTE-Enbridge Bootcamp

Basics of Machine Learning

Artificial Intelligence

Getting computers to behave intelligently:

- Perform non-trivial tasks as well as humans do
- Perform tasks that even humans struggle with

Many sub-goals:

- Perception
- Reasoning
- Control
- Planning

My poker face: AI wins multiplayer game for first time

Pluribus wins 12-day session of Texas hold'em against some of the world's best human players

Speech Recognition Perception + Reasoning

Autonomous Driving

Perception + Reasoning Control + Planning

Game Playing

Reasoning + Planning

Knowledge-Based Al

Write programs that simulate how people solve the problem

Fundamental limitations:

- Will never get better than a person
- Requires deep domain knowledge
- We don't know how we do some things (e.g., riding a bicycle)

Data-Based AI = Machine Learning

Write programs that learn the task from examples

- No need to know how we do it as humans
- Performance should improve with more examples
- X May need many examples!
- X May not understand how the program works!

Machine Learning:

Study of algorithms that

- Improve their <u>performance</u> P
- At some <u>task</u> T
- With experience E

Well defined task: <P,T,E>

The Machine Learning Process

Experience

 Examples of the form (input, correct output)

Task

Mapping from input to output

Performance

 "Loss function" that measures error w.r.t. desired outcome

Choices in ML Problem Formulation

Experience

 Examples of the form (input, correct output)

Task

Mapping from input to output

Performance

 "Loss function" that measures error w.r.t. desired outcome

Loan Applications

 What historical examples do I have? What is a correct output?

Predict probability of default?
 Loan decision? Credit score?

 Do I care more about minimizing False Positives? False negatives?

Machine Learning:

Study of algorithms that

- Improve their <u>performance</u> P Optimization, Evaluation
- At some <u>task</u> T Classification, regression, clustering
- With experience E Tabular, image, sequence

Well defined task: <P,T,E>

How will I rate "Chopin's 5th Symphony"?

Song	Rating
Some nights	222222222222222222222222222222222222
Skyfall	$\stackrel{\sim}{\sim}$
Comfortably numb	222
We are young	2222
Chopin's 5 th	???

Classification: Three Elements

1. Data:

- x: data example with d attributes
- y: label of example (what you care about)

2. Classification model: a function $f_{(a,b,c,...)}$

- Maps from X to Y
- (a,b,c,...) are the parameters

3. Loss function:

Penalizes the model's mistakes

Song	Rating
Some nights	
Skyfall	$\stackrel{\wedge}{\Sigma}$
Comfortably numb	222
We are young	
	• • •
Chopin's 5 th	???

Terminology Explanation

Song	Artist	Length	 Rating
Some nights	Fun	4:23	 $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$
Skyfall	Adele	4:00	 $\stackrel{\wedge}{\sim}$
Comf. Numb	Pink Floyd	6:13	 公公公
We are young	Fun	3:50	 公公公公
Chopin's 5 th	Chopin	5:32	 ???

Data example = data instance Attribute = feature = dimension Label = target attribute

What is a "model"?

A useful approximation of the world

Typically, there are many reasonable models for the same data

Training a model = finding appropriate values for (a,b,c,...)

- An optimization problem
- "appropriate" = minimizes the Loss (cost) function
- We will focus on a common training algorithm later on

Classification Loss Function

How unhappy are you with the answer that the model gave?

•
$$L(y, f(x)) = 1$$
 if: $y \neq f(x)$ otherwise

• **0-1 loss** function: intuitive but hard to optimize = train

• In practice, we use **approximations** of the 0-1 loss — getting warmer or getting colder

Why should this work at all?

The main theoretical basis of ML:

With a sufficient amount of "similar" data

+

an expressive model class:

Minimizing the loss function on the training data yields a highly accurate model on unseen test data, with high probability

Decision Trees: To play tennis or not to?

- **Data**: attributes describing the weather; (sunny? humidity level, ...)
- Target: 1if it's good to Play, 0 otherwise

- Model: f_T(x)
- Model parameters: T, the tree structure (and size)

Training (fitting) a Decision Tree

How to choose the attribute/value to split on at each level of the tree?

- Two classes (red circles / green crosses)
- Two attributes: X and Y
- 11 points in training data
- Idea: construct a decision tree such that the leaf nodes correctly predict the class for all the training examples

Training (fitting) a Decision Tree

Training (fitting) a Decision Tree

- 1. Find the best attribute to split on
- 2. Find the best split on the chosen attribute
- 3. Repeat 1 & 2 until stopping criterion is met

Common stopping criteria:

- Node contains very few data points
- Node is pure: most training data in node have same label

Final words on Decision Trees

Advantages

- Simple interpretation
- Fast predictions
- Handles mixed-type attributes

Caveats

- May be too simple for complex data
- Hard to figure out the right depth, stopping criterion, especially at the node level

Forecasting

Decision Trees predict discrete outcomes

Given X features, what is y outcome?

What about something continuous?

- How is something likely to change over time?
- Time series data tracks a value over time
 - e.g. temperature in one location, company sales data
- Often we want to predict what will happen next, i.e. in sequence

Time Series Data: Three Main Components

1. Trend: the long-term trajectory of the data

Avocado production is steadily increasing year-on-year

Time Series Data: Three Main Components

2. Seasonality: how the data changes according to the calendar

This is highly domain specific — e-commerce platforms experience the most sales around Christmas, but homes are sold most frequently in the summer

Time Series Data: Three Main Components

3. Noise: The random element left over

Noise comes from short-term changes that are unpredictable. More noise makes it harder to anticipate change

White noise (Image by Morn from Wiki Media Commons)

Regression

Examples:

- Stock price prediction
- Forecasting epidemics
- Weather prediction

We will look at:

- Linear Regression
- Ridge Regression
- LASSO

Regression

What is the temperature going to be tomorrow?

Linear Regression

Data: $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_i, y_i)\}$

x_i: data example with d attributes

y_i: target of example (what you care about)

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - f(x_i; \boldsymbol{\beta}))^2$$

Ridge Regression

- Linear Regression uses all features; model may be complicated
- Ridge Regression penalizes large parameter values

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares + penalty term

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - f(x_i; \boldsymbol{\beta}))^2 + \lambda \sum_{j=0}^{n} \beta_j^2$$

Lasso Regression

- As in Ridge Regression, Lasso penalizes large parameters
- Penalizes absolute instead of squared coefficient values
- Zeroes out more coefficients BUT optimization is more involved

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares + penalty term

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - f(x_i; \boldsymbol{\beta}))^2 + \lambda \sum_{j=0}^{n} |\beta_j|$$

Example: Prostate Cancer

Stamey et al. (1989)

- x: cancer volume, prostate weight, age, ...
- y: amount of prostate-specific antigen

Term	LS	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
${\tt gleason}$	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164

Recap

- ML vs Knowledge-Based Al
- The ML mindset
- Classification: definition and assumptions
- Decision Trees
- Time-Series Data
- Regression

