Reinforced concrete beam design

Flexure design

Design load

Design load = Live load * SF, qk + Dead load * SF, gk

where:

SF,qk and SF,gk are safety factors for live load and dead load respectively

Design moment

$$M_{ED} = \frac{ql^2}{8}$$

where:

q is design load

1 is length of the beam

Determine K and K'

$$K = \frac{M_{ED}}{bd^2 f_{ck}}$$

where:

M_{ED} is design moment

d is effective depth, d=h - cover - \emptyset_{tie} - $\emptyset/2$

b is width of the beam section

fck is characteristic compressive strength of the concrete

$$K' = 0.6 \delta - 0.18 \delta^2 - 0.21$$

(δ =1.0 means no redistribution and δ = 0.8 means 20% moment redistribution).

If $K \le K$ ', under reinforced (Singly reinforced concrete design) -No compression steel needed.

Lever arm (z)

$$z = \frac{d}{2} \left(1 + \sqrt{1 - 3.53K} \right) \le 0.95d$$

where:

d is effective depth of the concrete

Area of tensile reinforcement (A_s)

$$A_s = \frac{M_{ED}}{f_{vd}z}$$

where:

M_{ED} is design moment

z is lever arm

 f_{yd} is deign yield strength of steel = f_{yk} / γ_s

where:

fyk is characteristic yield strength of steel

Minimum reinforcement requirements

$$A_{s,min} \geq \frac{0.26 f_{ctm} b_t d}{f_{yk}} \geq 0.0013 b_t d$$
 , where $f_{ck} \geq 25$

where:

 f_{ctm} is tensile strength of the concrete f_{yk} is characteristic yield strength of steel b_t is breadth of the tension zone d is effective depth of the concrete

Maximum reinforcement requirement

$$A_{s,max} \leq 0.04A_c$$

where:

Ac is area of concrete

Number of reinforcement bars

$$n = \frac{A_s}{a_s}$$

where:

a_s is an area of a single reinforcement bar

Check minimum spacing between bars

$$Spacing > \emptyset_{bar} > 20 > A_{qq} + 5$$

If $K \ge K'$, over reinforced (**Doubly reinforced concrete design**) -compression steel needed.

Compression reinforcement (A_{s2})

$$A_{s2} = \frac{M_{Ed} - M'}{f_{sc}(d - d_2)}$$

Tension reinforcement (A_{s1})

$$A_{s1} = \frac{M'}{f_{yd}z} + A_{s2} \frac{f_{sc}}{f_{yd}}$$

where:

M_{ED} is design moment

$$M' = k'bd^2f_{ck}$$

d is effective depth, d=h - cover - \emptyset_{tie} - $\emptyset/2$

$$f_{sc} = 700 (x_u - d_2)/x_u \le f_{yd}$$

where:

 d_2 effective depth to compression reinforcement, d_2 = cover + \emptyset_{tie} + $\emptyset/2$

$$x_u = (\delta - 0.4)d$$

where

 δ is redistribution ratio

Shear design

Design shear load

$$V_{ED} = ql/2$$

where:

q is design load

l is length of the beam

Design shear stress

$$v_{ED} = V_{ED} / (b_w z)$$

where:

V_{ED} is design shear load at d distance from the face of the column

z is lever arm =
$$\frac{d}{2} (1 + \sqrt{1 - 3.53K}) \le 0.95d$$

bw is breadth of the beam section

Concrete strut capacity v_{Rd} (refer Table 1)

If $v_{ED} < v_{Rd,\max\cot\theta=2.5}$, proceed to calculating area of shear reinforcement. (cot $\theta=2.5$).

If $v_{ED} < v_{Rd,\max\cot\theta=1.0}$;

Determine θ from

$$\theta = 0.5 \sin^{-1} \left[\frac{v_{ED}}{0.20 f_{ck} (1 - \frac{f_{ck}}{250})} \right]$$

where:

v_{ED} is design shear stress

f_{ck} is characteristic compressive strength of the concrete

If $v_{ED} > v_{Rd,\max\cot\theta=1.0}$, redesign section.

Area of shear reinforcement

$$\frac{A_{SW}}{s} = \frac{v_{ED}b_w}{f_{ywd}\cot\theta}$$

where:

 v_{ED} is design shear stress b_w is breadth of the beam section f_{ywd} is deign yield strength of shear reinforcement s is spacing

Check maximum spacing for vertical shear reinforcement

$$s_{l,max} = 0.75 d$$

where:

d is effective depth, d=h - cover - \emptyset_{tie} - $\emptyset/2$

Table 1. Minimum and maximum concrete strut capacity in terms of stress(MPa)

f_{ck}	$v_{\rm Rd,max} \cot \cot \theta = 2.5$	$v_{\rm Rd,maxcotcot heta}$ = 1.0
20	2.54	3.68
25	3.10	4.50
28	3.43	4.97
30	3.64	5.28
32	3.84	5.58
35	4.15	6.02
40	4.63	6.72
45	5.08	7.38
50	5.51	8.00