HSS64 Datasheet 64-Channel High Speed Switch IC

Preliminary

April 2020
e-mail: leolsi@leolsi.com

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. LEOLSI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. LeoLSI disclaims all liability arising from this information and its use. Use of LeoLSI devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless LeoLSI from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any LeoLSI intellectual property rights.

GENERAL DESCRIPTION

The HSS64 is a monolithic CMOS device containing 64 independently selectable switches. These switches are fabricated with an advanced submicron CMOS process that provides low power dissipation, low on resistance, low leakage currents, and high signal bandwidth. The HSS64 is designed to operate in 3.3V for digital circuits and 5V for analog switches. Each switch can operate with a wide input and output voltage range. In addition, the thermal shutdown function will automatically turn off the channel temperature exceeds 150°C. The off-leakage current is only 10nA at room temperature of 25°C.

All digital input pins adopt the Schmitt trigger I/O, which has 1.0-V to 2.3-V input noise margin to ensure TTL/CMOS-logic compatibility when using a 3.3-V power supply.

FEATURE

3.3V logic-compatible input (V_{IH} =2.3V, V_{IL} =1.0V) Dual supply operation: 3.3V for digital, 5V for analog. Analog signal frequency: DC-to-100MHz Low on-resistance: 43 Ω (@typ) Wide range analog input from -2.5V to 7V (@max) Thermal shutdown temperature: 150°C Chip-ID programmable with OTP memory

Multi-channel switch control
Switching control using CMOS interface command
10mm x 10mm 144-pin FC-FBGA package

APPLICATIONS

Data-acquisition systems
Mechanical reed-relay replacement
Communication systems

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS___

PIN MAPPING TABLE	7
PIN DESCRIPTIONS	7
ABSOLUTE MAXIMUM RATINGS	8
ELECTRICAL CHARACTERISTICS	8
TIMING CHARACTERISTICS	12
Timing Diagram of Digital I/O Signals	13
Power and Reset sequence	13
Switch On/Off Timing Diagram	16
TEST CIRCUITS	17
TEST RESULTS	18
FUNCTIONAL DESCRIPTION	19
Internal Structure	19
Connection	19
Power-up Sequence	20
Interface Protocol & Types of Commands	21
- 1-Clock Commands (Writing Commands Only)	21
- 2-Clock commands (Writing Commands Only)	21
Controlling Switches	22
- States of Switches	22
- Initialization of Switches	22
- Changing States of Switches	23
- Setting REJECT Flags	23
Protection from Excessive Current	23
- Current Limiting (Default: Disable)	23
- Thermal Shutdown (Default: Disable)	23
Commands Descriptions	25
- Suffixes of the Commands	25
- 1-Clock Commands	26
- 2-Clock commands	29
PACKAGE INFORMATION	555
REVISION HISTORY	566

HSS64 Specification

64-Channel High Speed Switches

LIST OF FIGURES_

Figure 1. Timing Diagram of Digital Signals.	13
Figure 2. Power-up Sequence.	13
Figure 3. Power-down Sequence.	14
Figure 4. Reset and Stand-by Sequence.	15
Figure 5. Switch On/Off Timing Diagram.	16
Figure 6. Test Circuits.	17
Figure 7. Test Results.	18
Figure 8. Internal Structure of HSS64.	19
Figure 9. Example for connecting HSS64s	20
Figure 10. Power-up Sequence.	20
Figure 11. Timing Diagram for 1-Clock Commands	21
Figure 12. Timing Diagram for 2-Clock commands	22
Figure 13. Example for Writing to Control Registers.	28
Figure 14. Example for DIRECT_CHP_COR Command	33
Figure 15. Example for DIRECT_BNK_COR Command	35
Figure 16. Example for REJECT_CHP_COR Command	37
Figure 17. Example for DIRECT_CHP_CHN Command	39
Figure 18. Example for DIRECT_BNK_CHN Command	41
Figure 19. Example for REJECT_CHP_CHN Command	43
Figure 20. Example for DIRECT_COR_SW Command	47
Figure 21. Example for DIRECT_CHN_SW Command	49
Figure 22. Example for REJECT_COR_SW Command	51
Figure 23. Example for REJECT_CHN_SW Command	53
Figure 24. Package Information.	55
Figure 25. IC and package information	오류! 책갈피가 정의되어 있지 않습니다.
Figure 26. Application Eample	오류! 책갈피가 정의되어 있지 않습니다.
Figure 27. Recommended I/O connection	오류! 책갈피가 정의되어 있지 않습니다.

64-Channel High Speed Switches

LIST OF TABLES_____

Table 1. 1-Clock Commands List	26
Table 2. Operation of Initialization Commands	27
Table 3. 2-Clock commands List	29
Table 4. General Control Register.	32
Table 5. Current Limiting Control Register	45
Table 6. Thermal Shutdown Control Register.	46

PIN MAPPING TABLE____

Top V	iew												
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	DATA[3]	DATA[1]	CLK	DVDD(VPP)	AOUT62	AOUT60	AOUT59	AOUT57	AOUT56	AOUT54	AOUT52	DVSS	А
В	DATA[2]	DATA[0]	CSN	AOUT63	AIN61	AOUT61	AIN58	AOUT58	AIN56	AOUT55	AOUT53	DVDD	В
С	TEST_IN	RSTN	WRN	AIN63	AIN62	AIN60	AIN59	AIN57	AIN55	AIN54	AOUT51	AOUT50	С
D	AOUT0	AOUT1	AOUT2	AIN0	AIN1	AIN2	AIN53	AIN52	AIN51	AIN50	AOUT49	AOUT48	D
Е	AOUT3	AOUT4	AOUT5	AIN3	AIN4	AIN5	AIN49	AIN48	AIN45	AIN44	AOUT47	AOUT46	Е
F	AOUT6	AOUT7	AIN6	AIN7	AIN8	AIN9	AIN47	AIN46	AIN43	AIN42	AOUT45	AOUT44	F
G	AOUT8	AOUT9	AIN10	AIN11	AIN12	AIN25	AIN29	AIN33	AIN41	AIN40	AOUT43	AOUT42	G
Н	AOUT10	AOUT11	AIN13	AIN14	AIN15	AIN24	AIN28	AIN32	AIN39	AIN38	AOUT41	AOUT40	Н
J	AOUT12	AOUT13	AIN16	AIN19	AIN21	AIN23	AIN27	AIN31	AIN37	AIN36	AOUT39	AOUT38	J
K	AOUT14	AOUT15	AIN17	AIN18	AIN20	AIN22	AIN26	AIN30	AIN34	AIN35	AOUT37	AOUT36	K
L	AVDD	AOUT17	AOUT19	AOUT21	AOUT23	AOUT25	AOUT27	AOUT29	AOUT31	AOUT33	AOUT35	AVDD	L
M	AVSS	AOUT16	AOUT18	AOUT20	AOUT22	AOUT24	AOUT26	AOUT28	AOUT30	AOUT32	AOUT34	AVSS	M
	1	2	3	4	5	6	7	8	9	10	11	12	

PIN DESCRIPTIONS_

PIN NAME	I/O	Descriptions	
CLK	DI	System clock	
RSTN	DI	System reset. Active Low	
CSN	DI	Chip select. Active Low	
WRN	DI	Data write enable. Active Low	
DATA[3:0]	DIO	Data bus	
TEST_IN	DI	Tied to GND in Normal mode	
PAGE_UP	DI	Tied to GND in Normal mode	
VPP	PWR	Tied to GND in Normal mode	
AIN[63:0]	Al	Analog switch input	
AOUT[63:0]	AO	Analog switch output	
AVDD	PWR	Analog Power	
AVSS	GND	Analog Ground	
DVDD	PWR	Digital Power	
DVSS	GND	Digital Ground	

Al: analog input Dl: digital Input PWR: power AO: analog output DIO: digital Input / Output GND: ground

ABSOLUTE MAXIMUM RATINGS_

(All Voltages Referenced to GND, Unless Otherwise Noted.)

AVDD (for Analog Switch)	0.3V to +6V
DVDD (for Digital Control)	0.3V to +4.5V
Voltage at any digital pin	0.3V to +4.5V
Voltage at any analog pin	0.3V to +6V
Continuous current into any terminal	50mA
Peak current into analog switch I/O	100mA
(current pulse with 1ms and 10% duty	cycle)

Operating temperature range-40°C to +125°C Storage temperature range-55°C to +125°C Junction temperature....+150°C ESD protection on all pins (HBM, MM)....≥TBD

Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at those or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS_____

AVDD=5.0V, AVSS=0V, DVDD=3.3V, DVSS=0V, and TA = +25°C, unless otherwise noted.

PARAMETER		SYMPOL	SYMBOL CONDITION			UNIT	
		STIMBOL CONDITION		MIN	TYP		MAX
POWER SU	PPLIES						
Analag Cuny	ali i Malta ca	A)/DD	AVSS=0V	4.5	5	5.5	V
Analog Supp	bly voltage	AVDD	AVSS=-2.5V	2.5	5	5.5	V
Digital Supp	ly Voltage	DVDD		3.0	3.3	3.6	V
Analog Grou	ınd Voltage	AVSS		-3	-2.5	0	V
Digital Grou	nd Voltage	DVSS		-	0	-	V
ANALOG S	WITCH					•	
		V _{AIN1}	AVSS=0V, AVDD=5V	0		5	V
Input Signal	Range	V _{AIN2}	AVSS=-2.5V, AVDD=2.5V	-2.5		2.5	V
		V _{AIN3}	AVSS=-2.5V, AVDD=5V	-2.5		7	V
Channel On	Current	I _{CH_ON}	AVDD=5V, V _{AIN} =0V or 5V			50	mA
Switch On-re	Switch On-resistance		I _{CH_ON} =10mA		43		Ω
	Source Off Leakage Current	I _{S_OFF}	AVDD=5V, V _{AIN} =5, V _{AOUT} =0V		0.01	0.1	uA
Leakage Current	Drain Off Leakage Current	I _{D_OFF}	AVDD=5V, V _{AIN} =0V, V _{AOUT} =5V		0.01	0.1	uA
	Channel On Leakage Current	I _{CH_OFF}	AVDD=5V, V _{AIN} =0V or 5V		0.01	0.1	uA

HSS64 Specification

64-Channel High Speed Switches

	Source Off		AVDD=5V, AVSS=-2.0V or -2.5V			
	Leakage Current	I_{S_OFF}	V _{AIN} =5, V _{AOUT} =0V	0.01	0.02	uA
Leakage Current	Drain Off Leakage Current	I _{D_OFF}	AVDD=5V, AVSS=-2.0V or -2.5V V _{AIN} =5, V _{AOUT} =0V	0.01	0.02	uA
	Channel On Leakage Current	I _{CH_OFF}	AVDD=5V, AVSS=-2.0V or -2.5V V _{AIN} =0V or 5V	0.01	0.02	uA
Thermal Shutdown Temperature		T _{ST}		+150		ပ္
Thermal Shutdown Hysteresis		T _{SH}		20	_	°C

ELECTRICAL CHARACTERISTICS (Continued)_

AVDD=5.0V, AVSS=0V, DVDD=3.3V, DVSS=0V, and TA = +25°C, unless otherwise noted.

PARAMETER		OVER 1	VALUE				
		SYMBOL CONDITION		MIN	TYP	MAX	UNIT
DIGITAL I/O							
Logic Input	Input High	V _{IH}		0.7* DVDD			V
Voltage	Input Low	V _{IL}				0.3* DVDD	V
Logic Input	Input High	I _{IH}		-1		1	uA
Current	Input Low	I _{IL}		-1		1	uA
SWITCH DYN	AMIC CHARACTE	RISTICS					
Switching	Turn ON Time	t _{ON}	Clock base (calculate for special condition)		175		ns
Time	Turn OFF Time	toff			235		ns
	Input Off- Capacitance	C _{AIN_OFF}			2.5		pF
Capacitance	Output Off- Capacitance	C _{AOUT_OFF}			2.5		pF
	Output On- Capacitance	C _{AOUT_ON}			5		pF
Off-Isolation			No Load, f _{SW} =1MHz		TBD		dB
Channel-to-Channel Crosstalk			No Load, f _{SW} =1MHz		TBD		dB
Switching Freq	luency	f _{SW}				1.25	MHz

DOWER CO.	ICHMPTION					
POWER CON	ISUMPTION				Т	Т
			AVDD=5V, AVSS= 0V	4	5	
	Static	I _{AVDD_ST}	AVDD=5V, AVSS= -2.0V	4	5	mA
			AVDD=5V, AVSS= -2.5V	13	15	
			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =10KHz,	4	5	
			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =100KHz,	4	5	
Analog Operating			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	11	15	-
Current (AVDD)			AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =10KHz,	6	10	-
,	Dynamic	I _{AVDD_DYN}	AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =100KHz,	6	10	mA
			AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	17	20	
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =10KHz,	14	15	-
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =100KHz,	14	15	
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	23	25	
		I _{AVSS_ST}	AVDD=5V, AVSS= 0V	4	5	mA
St	Static		AVDD=5V, AVSS= -2.0V	4	5	
			AVDD=5V, AVSS= -2.5V	13	15	
			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =10KHz,	4	5	mA
			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =100KHz,	4	5	
Analog Operating			AVDD=5V, AVSS= 0V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	11	15	
Current (AVSS)			AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =10KHz,	6	10	
	Dynamic	I _{AVSS_DYN}	AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =100KHz,	6	10	
			AVDD=5V, AVSS= -2.0V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	17	20	
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =10KHz,	14	15	_
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =100KHz,	14	15	
			AVDD=5V, AVSS= -2.5V, f _{CLK} =10MHz, f _{SW} =1.25MHz,	23	25	
Digital	Static	I _{DVDD_ST}	DVDD=3.3V	4	5	mA
Operating Current (DVDD)	Dynamic	I _{DVDD_DYN}	DVDD=3.3V, f _{CLK} =10MHz, Combined operation of Reset, and DUT-Reject	6	10	mA

All switch On/Off operating simultaneously

TIMING CHARACTERISTICS_

AVDD=5.0V, AVSS=0V, DVDD=3.3V, DVSS=0V, and TA = +25°C, unless otherwise noted.

PARAMETER	SYMBOL CONDITION	VALUE				
PARAMETER	SYMBOL CONDITION		MIN	TYP	MAX	UNIT
DIGITAL I/O SIGNALS						
CLK Period	tperiod		20			ns
CLK Frequency	f _{CLK}				50	MHz
DATA to CLK Setup Time	t _{DS}		10			ns
DATA to CLK Hold Time	t _{DH}		5			ns
CSN to CLK Setup Time	tcs		10			ns
CSN to CLK Hold Time	tcH		5			ns
WRN to CLK Setup Time	tws		10			ns
WRN to CLK Hold Time	t _{WH}		5			ns
POWER AND RESET SEQUENCE	<u> </u>					
Power-up Period	t _{PU}		500			us
Power-down Period	t _{PD}		500			us
Power-on Reset Time	t _{RST}		500			us
0TD D 1T		CLK freq. >= 10MHz	200			us
OTP Read Time	tord	CLK freq. < 10MHz	2000			cycle
SWITCH ON/OFF TIMING DIAGR	АМ					
1-Clock Command Control Time	tsw1				3	cycle
2-Clock Command Control Time	t SW2				6	cycle

Timing Diagram of Digital I/O Signals

Figure 1. Timing Diagram of Digital Signals.

Power and Reset sequence

(a) In case AVSS = 0 V

Figure 2. Power-up Sequence.

(a) In case AVSS = 0 V

(b) In case AVSS < 0 V

Figure 3. Power-down Sequence.

(a) In case RSTN is OPEN or kept HIGH before $(t_{PU} + t_{PU} + t_{RST})$.

(b) In case RSTN changes from LOW to HIGH after $(t_{PU} + t_{PU} + t_{RST})$.

Figure 4. Reset and Stand-by Sequence.

Switch On/Off Timing Diagram

(a) 1-clock command switch on/off timing diagram.

(b) 2-clock command switch on/off timing diagram.

(c) Detail tON / tOFF timing diagram.

Figure 5. Switch On/Off Timing Diagram.

TEST CIRCUITS

Off isolation= $20log(V_{AOUT}/V_{AIN})$, On Loss= $20log(V_{AOUT}/V_{AIN})$

Figure 6. Test Circuits.

TEST RESULTS___

TBD

TBD

On-resistance vs. vain

On-resistance(room temp) vs. vain

TBD

TBD

Cross talk vs. Frequency

Isolation vs. Frequency

TBD

On Loss vs. Frequency

Figure 7. Test Results.

FUNCTIONAL DESCRIPTION

Internal Structure

HSS64 is analog switches with control logic. It consists of 8 switching Cores and control logics. Since each switching Core has 8 switches, a HSS64 contains 64 switches. Each switch has an ID from 0 to 7.

The switches in HSS64 can also be grouped into Channels. A Channel indicates the switches of the same ID in all cores. For example, Channel1 indicates Switch1s in Core0, Core1, Core2, ..., and Core7. The host can control the switches either by Cores or Channels. Figure 8 shows the internal structure of Cores, Channels, and Switches.

Figure 8. Internal Structure of HSS64.

Connection

In system application, control signals can be shared among multiple HSS64s. Figure 9 shows an example for the connection of multiple HSS64s.

HSS64s with the same control signals are called Bank. Since there are multiple HSS64s in a Bank, there should be a way to specify the target chip for the control commands. To support this, Chip-ID is used.

Chip-ID is a 5-bit number decided either from the internal OTP memory. Each HSS64 acquires its Chip-ID on bootstrap, and user can specify the target chip of the control commands by sending target Chip-ID with them. Since Chip-ID is a 5-bit number, the maximum number of HSS64s in one bank is 32.

Figure 9. Example for connecting HSS64s.

Power-up Sequence

HSS64 requires two kinds of Power/Ground pairs – AVDD/AVSS and DVDD/DVSS. As the names imply, AVDD/AVSS pair is for Analog circuits, and DVDD/DVSS pair is for Digital logic. To ensure reliable operation on power-up, it is required that each Power and Ground should be provided in proper order. Figure 10 shows the Power-up sequence of HSS64.

Figure 10. Power-up Sequence.

As depicted in Figure 10, the logic power, DVDD, should be provided first. If AVDD is provided prior to DVDD, the switch control logic's state is undefined until DVDD is supplied, which may unintentionally turn on the switches before DVDD is supplied. Note that for negative AVSS, AVSS also should be provided after DVDD, because negative AVSS means a certain voltage (AVDD – AVSS) is applied to the analog circuit.

If HSS64 is supplied with DVDD and AVDD, the internal POR of HSS64 generates RESET signal internally, and HSS64 changes to RESET state until the RESET signal from POR is released. RESET from POR is released after t_{RST} , and HSS64 starts reading its own internal OTP memory.

External RESET is also supported through a pin named RSTN, and actual RESET signal is generated from both POR and RSTN signals. This leads to that on power-up, if RSTN is released before POR is released (i.e. RSTN changes from LOW to HIGH before $t_{PU} + t_{RST}$ is elapsed), actual RESET signal is still active (i.e. RESET is being issued) until RESET from POR is released. On the other hand, if RSTN is kept LOW though POR is released, actual RESET signal is still active until RSTN is released.

However, since RSTN pin is internally pulled-up, user may leave RSTN pin OPEN in most of the cases. For the detailed timing of power-up sequence, refer to Figure 2. Power-up Sequence.

Interface Protocol & Types of Commands

Controlling HSS64s is performed through commands from the host. The host sends commands through two control signals (CSN and WRN) and 4-bit wide data pins. CSN signal is used to select the target Bank, and WRN signal decides the type of the command. The protocol for each command is decided by the type of the command – 1/2 clock commands.

- 1-Clock Commands (Writing Commands Only)

1-clock commands are the commands for which WRN signal goes LOW for single cycle. Figure 11 shows the timing diagram for 1-clock commands.

Figure 11. Timing Diagram for 1-Clock Commands.

The 1-clock commands consist of the commands which are applied to all switches of all HSS64s in the bank. Since the target for the 1-clock command is all switches in all Cores of all HSS64s, they require neither Chip ID nor Core ID.

- 2-Clock commands (Writing Commands Only)

2-clock commands are the commands for which WRN signal goes LOW for two clocks. Each command includes Chip-ID, Core-ID, Command, and Parameters, and it is mainly used to control the switches. Figure 12 shows the timing diagram for 2-clock commands.

Figure 12. Timing Diagram for 2-Clock commands.

As shown in Figure 12, IDs and commands are received through DATA[3:0] pins. Chip-ID specifies the target HSS64 in the bank, and Core-ID specifies the target Core / Channel of the target chip. Addr[3:0] is the actual command, and WData[7:0] is a parameter to control the states of the 8 switches specified by Chip-ID and Core-ID. All of the 2-clock commands are for writing WData[7:0] to target registers.

Controlling Switches

- States of Switches

The main usage of HSS64 is to control AIN – AOUT connection by changing the states of its switches. Each switch can be in one of two states – ON, OFF.

In ON state, the switch is turned-on, and the AIN signal is CONNECTED to the corresponding AOUT signal.

In **OFF** state, the switch is turned-off, and the AIN signal is DISCONNECTED from the corresponding AOUT signal.

Besides ON/OFF states, each switch has an additional flag named **REJECT**. If REJECT flag is set for a switch, the switch changes to OFF state automatically, and further commands to turn on the switch are ignored. Only special 1-clock commands or external reset (RSTN) can clear the REJECT flag.

- Initialization of Switches

The initialization of the switches can be done through initialization commands. There are four initialization commands. They are,

1-clock command 0x2: RESET_ALL
 1-clock command 0x3: CLEAR_ALL
 1-clock command 0x4: ENABLE_ALL
 1-clock command 0x5: INITIAL ALL

Since all of these commands are 1-clock commands, they are executed by all HSS64s in the selected bank by CSN signal. The states of all switches in the bank are simultaneously changed by these commands, and it helps set the initial states of all switches with less commands. For the detailed information about each command, refer to Commands Descriptions.

- Changing States of Switches

To change the states of switches, DIRECT_XXX commands are used.

2-clock command 0x2: DIRECT_CHP_COR
 2-clock command 0x3: DIRECT_BNK_COR
 2-clock command 0x5: DIRECT_CHP_CHN
 2-clock command 0x6: DIRECT_BNK_CHN
 2-clock command 0xA: DIRECT_COR_SW
 2-clock command 0xB: DIRECT_CHN_SW

DIRECT_XXX commands directly specify the ON-OFF states of the target switches. The target switches are specified using Chip-ID and Core-ID in the transmitted command, combined with the suffix of the command. The intended ON-OFF states for the target switches are transmitted through WData[7:0]. To turn on the switch, corresponding bit of WData should be '1', and to turn off, it should be '0'. For the detailed information about each DIRECT_XXX commands, refer to *Commands Descriptions*.

Setting REJECT Flags

A REJECT flag is used to let the switch ignore further ON-OFF related commands. It is useful when we want some switches to stay OFF while we control many switches simultaneously with commands such as DIRECT_BNK_COR. REJECT flags can be controlled by REJECT_XXX commands. There are four commands to set REJECT flags.

2-clock command 0x4: REJECT_CHP_COR
 2-clock command 0x7: REJECT_CHP_CHN
 2-clock command 0xC: REJECT_COR_SW
 2-clock command 0xD: REJECT_CHN_SW

REJECT flags are set to '1' according to the transmitted WData[7:0] of REJECT_XXX commands. If a bit of WData is '0', corresponding REJECT flag(s) is set to '1'. Otherwise, corresponding REJECT flag(s) does not change. The target switches are specified by Chip-ID and Core-ID of the transmitted command. For the detailed information about REJECT_XXX commands, refer to *Commands Descriptions*.

Protection from Excessive Current

- Current Limiting (Default: Disable)

HSS64 supports Current Limiting to protect itself from excessive high current. If current more than the threshold flows through a switch, the switch is automatically DISCONNECTED by internal protection circuit. The threshold is 60mA at 25°C.

Once the switch is disconnected by Current Limiting, the switch does not work until it is turned off. To make the disconnected switch work again, it should be turned off first, then it can work after it is turned on again.

Current Limiting feature is enabled by CL_EN bit (bit 1) of General Control Register (i.e. enabled if CL_EN = 1). For more information about CL_EN bit, refer to $WR_GCON(0x1)$ of Commands Descriptions.

- Thermal Shutdown (Default: Disable)

HSS64 supports thermal shutdown to protect itself from excessive high current. If the temperature of a switch goes above the threshold (+150°C, typ.), the switch is automatically DISCONNECTED by internal thermal shutdown circuit. The threshold is loaded from internal OTP memory programmed during manufacturing. Thermal Shutdown is the secondary protection scheme for the case that Current Limiting does not work for some reasons even though excessive high current flows. The switch turns on again after the device temperature drops by approximately 20°C (typ.).

Once the switch is disconnected by Thermal Shutdown, the switch does not work until the temperature goes below the

HSS64 Specification

64-Channel High Speed Switches

threshold.

Thermal Shutdown feature is enabled by TS_EN bit (bit 0) of General Control Register (i.e. enabled if TS_EN = 1). For more information about TS_EN bit, refer to WR_GCON of Commands Descriptions.

Commands Descriptions

Suffixes of the Commands

Most of HSS64's commands are to control the states of the switches. Basically, each command can control switches in Core unit. However, to reduce the number of commands for setting the states of the switches, several variations of commands are supported, and they can address target switches in different ways from basic command (i.e. in Core unit). To represent this easily, commands have suffixes which represent the range of the target switches. The suffixes are.

- > * ALL
- > *_BNK_COR / *_BNK_CHN
- > *_CHP_COR / *_CHP_CHN
- *_COR_SW / *_CHN_SW

_ALL suffix is for 1-clock commands. It represents that the target switches for this command is ALL SWITCHES IN THE BANK.

BNK COR / BNK CHN suffixes are for 2-clock commands. They represent that the target switches for this command are ALL SWITCHES IN THE BANK. While WData for BNK COR commands are in Core unit, WData for BNK_CHN commands are in Channel unit. Since WData is applied to all Cores / Channels in all HSS64s in the Bank, Chip-ID / Core-ID are ignored.

_CHP_COR / _CHP_CHN suffixes are for 2-clock commands. They represent that the target switches for this command are ALL SWITCHES IN THE SPECIFIED CHIP. While WData for _CHP_COR commands are in Core unit, WData for _CHP_CHN commands are in Channel unit. Since WData is applied to all Cores / Channels in the specified HSS64, Core-ID is ignored.

_COR_SW /_CHN_SW suffixes are for 2-clock commands. They represent that the target switches for this command are SWITCHES OF THE SPECIFIED CORE / CHANNEL IN THE SPECIFIED CHIP. While WData for _COR_SW commands are in Core unit, WData for _ CHN_SW commands are in Channel unit. Since WData is applied to single Core / Channel in the specified HSS64, both Chip-ID / Core-ID are used.

- 1-Clock Commands

Table 1 shows the list of the 1-clock commands.

Table 1. 1-Clock Commands List.

Addr	Command	Description
0x0	RSVD	Reserved
0x1	RSVD	Reserved
0x2	RESET_ALL	Turns-off all switches of all chips in the Bank (i.e. OFF state). REJECT flags are cleared.
0x3	CLEAR_ALL	Turns-off all switches of all chips in the Bank (i.e. OFF state). REJECT flags are NOT affected.
0x4	ENABLE_ALL	Turns-on all switches of all chips in the Bank (i.e. ON state). Switches with REJECT flags remain in OFF state.
0x5	INITIAL_ALL	Turns-on all switches of all chips in the Bank (i.e. ON state). REJECT flags are cleared. Switches with REJECT flags are also changed to ON state.
0x6 ~ 0xA	RSVD	Reserved
0xB	EN1_WCON	First sequence to enable writing to control register. Should be followed by EN2_WCON command to enable writing. Otherwise, both EN1_WCON and EN2_WCON commands are canceled.
0xC	EN2_WCON	Enables writing to control registers. Should be preceded by EN1_WCON. If not preceded by EN1_WCON, EN2_WCON is ignored. Note) To enable writing to control registers, EN1_WCON -> EN2_WCON commands should be issued in order. Otherwise, both EN1_WCON and EN2_WCON commands are canceled.
0xD	DIS_WCON	Disables writing to control register.
0xE	RSVD	Reserved
0xF	RSVD	Reserved

RESET_ALL (0x2) / CLEAR_ALL (0x3) / ENABLE_ALL (0x4) / INITIAL_ALL (0x5)

RESET_ALL / CLEAR_ALL / ENABLE_ALL / INITIAL_ALL commands are mainly used for initialization of switches in the selected Bank. These commands are applied to all switches of all HSS64s in the Bank simultaneously.

RESET_ALL / CLEAR_ALL commands turn off (i.e. change to OFF state) all switches of all HSS64s in the Bank. The difference between these two commands is that while RESET_ALL command also clears REJECT flags altogether, CLEAR ALL command does not affect REJECT flags.

INITIAL ALL / ENABLE ALL commands turn on (i.e. change to ON state) all switches of all HSS64s in the Bank. The difference between these two commands is that while INITIAL ALL command also clears REJECT flags of all switches, ENABLE_ALL command does not affect REJECT flags.

Table 2 shows the operation of the four initialization commands.

Table 2. Operation of Initialization Commands.

Command	ON-OFF States	REJECT Flags		
RESET_ALL	OFF	CLEARED		
CLEAR_ALL	OFF	NOT AFFECTED		
INITIAL_ALL	ON	CLEARED		
ENABLE_ALL	ON	NOT AFFECTED		

■ EN1_WCON (0xB) / EN2_WCON (0xC) / DIS_WCON (0xD)

By default, writing to control registers is disabled to prevent unintentional corruption of them. Therefore, it is needed to enable writing to control registers before updating control registers. By issuing EN1_WCON and EN2_WCON commands in order, writing to control register is internally enabled, and control registers can be updated by following 2-clock commands. Figure 13 shows an example for writing to GCON register.

Figure 13. Example for Writing to Control Registers.

As shown in Figure 13, writing to control register is internally enabled by issuing EN1_WCON and EN2_WCON commands in order, and control registers are updated by WR_GCON command, a 2-clock command.

After updating the control register, DIS_WCON command is issued to disable writing to control register again.

- 2-Clock commands

Table 3 shows the list of 2-clock commands.

Table 3. 2-Clock commands List.

Addr	Command	Function		
0x0	RSVD	Reserved		
0x1	WR_GCON	Writes to General Control Register. Chip-ID specifies the target HSS64. Core-ID is ignored. WData is the written value to GCON register.		
0x2	DIRECT_CHP_COR	Changes ON-OFF states of all switches in the specified HSS64. Updates all Cores' ON-OFF states of the target HSS64. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID specifies the target HSS64. Core-ID is ignored. WData represents the update value for ON-OFF states of all Cores in the target HSS64. 0: OFF, 1: ON		
0x3	DIRECT_BNK_COR	Changes ON-OFF states of all switches of all HSS64s in the selected Bank. Updates all Cores' ON-OFF states of all HSS64s in the selected Bank. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID is ignored. Core-ID is ignored. WData represents the update value for ON-OFF states of all Cores in the target HSS64. 0: OFF, 1: ON		
0x4	REJECT_CHP_COR	Changes the REJECT flags of the specified HSS64. ON-OFF states are updated according to REJECT flags' values. Chip-ID specifies the target HSS64. Core-ID is ignored. WData[0] represents the update value for REJECT flags of Core0. WData[1] represents the update value for REJECT flags of Core1. WData[2] represents the update value for REJECT flags of Core2. WData[3] represents the update value for REJECT flags of Core3. WData[4] represents the update value for REJECT flags of Core4. WData[5] represents the update value for REJECT flags of Core5. WData[6] represents the update value for REJECT flags of Core6. WData[7] represents the update value for REJECT flags of Core7. 0: REJECT, 1: No Change.		
0x5	DIRECT_CHP_CHN	Changes ON-OFF states of all switches in the specified HSS64. Updates all Channels' ON-OFF states of the target HSS64. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID specifies the target HSS64. Core-ID is ignored. WData represents the update value for ON-OFF states of all Channels in the target HSS64. 0: OFF, 1: ON		

(Continued)

(Continued)

0x6	DIRECT_BNK_CHN	Changes ON-OFF states of all switches of all HSS64s in the selected Bank. Updates all Channels' ON-OFF states of all HSS64s in the selected Bank. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID is ignored. Core-ID is ignored. WData represents the update value for ON-OFF states of all Channels in the target HSS64. 0: OFF, 1: ON
0x7	REJECT_CHP_CHN	Changes the REJECT flags of the specified HSS64. ON-OFF states are updated according to REJECT flags' values. Chip-ID specifies the target HSS64. Core-ID is ignored. WData[0] represents the update value for REJECT flags of Channel0. WData[1] represents the update value for REJECT flags of Channel 1. WData[2] represents the update value for REJECT flags of Channel 2. WData[3] represents the update value for REJECT flags of Channel 3. WData[4] represents the update value for REJECT flags of Channel 4. WData[5] represents the update value for REJECT flags of Channel 5. WData[6] represents the update value for REJECT flags of Channel 6. WData[7] represents the update value for REJECT flags of Channel 7. 0: REJECT, 1: No Change.
0x8	WR_CLCON	Writes to Current Limiting Control Register. Chip-ID specifies the target HSS64. Core-ID is ignored. WData is the written value to CLCON register.
0x9	WR_TSDCON	Writes to Thermal Shutdown Control Register. Chip-ID specifies the target HSS64. Core-ID is ignored. WData is the written value to TSDCON register.
0xA	DIRECT_COR_SW	Changes ON-OFF states of the specified Core in the specified HSS64. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID specifies the target HSS64. Core-ID specifies the target Core. WData represents the update value for ON-OFF states of the target Core in the target HSS64. 0: OFF, 1: ON
0xB	DIRECT_CHN_SW	Changes ON-OFF states of the specified Channel in the specified HSS64. Switches whose REJECT flags are '1' remain in OFF state. Chip-ID specifies the target HSS64. Core-ID specifies the target Channel. WData represents the update value for ON-OFF states of the target Channel in the target HSS64. 0: OFF, 1: ON

(Continued)

64-Channel High Speed Switches

(Continued)

0xC	REJECT_COR_SW	Changes the REJECT flags of the specified Core of the specified HSS64. ON-OFF states are updated according to REJECT flags' values. Chip-ID specifies the target HSS64. Core-ID specifies the target Core. WData represents the update value for REJECT flags of the specified Core. 0: REJECT, 1: No Change.
		Changes the REJECT flags of the specified Channel of the specified HSS64.
		ON-OFF states are updated according to REJECT flags' values.
0xD	REJECT_CHN_SW	Chip-ID specifies the target HSS64. Core-ID specifies the target Channel.
		WData represents the update value for REJECT flags of the specified Channel.
		0: REJECT, 1: No Change.
0xE		
~_	RSVD	Reserved
0xF		

■ WR_GCON (0x1)

WR_GCON command is used to update General Control Register. Table 4 shows the contents of General Control Register.

Table 4. General Control Register.

Bit Name	Bits	Descriptions	Reset	Remarks
RSVD	[7:2]	Reserved	-	-
CL_EN	1	Current Limiting Enable. 0: Disable, 1: Enable.	0	Initialized from OTP
TS_EN	0	Thermal Shutdown Enable. 0: Disable, 1: Enable.	0	Initialized from OTP

Though the default values for CL_EN / TS_EN registers are loaded from internal OTP memory on bootstrap, their values can be changed by WR_GCON command.

Note that writing to General Control Register is prohibited by default. To write to General Control Register, EN1_WCON / EN2_WCON commands should be preceded. For more information about EN1_WCON / EN2_WCON commands, refer to EN1_WCON / EN2_WCON / DIS_WCON of Commands Descriptions.

■ DIRECT_CHP_COR (0x2)

DIRECT_CHP_COR command changes all of the ON-OFF states in the target HSS64. The input WData value is written to all Cores of the specified HSS64. The target HSS64 is specified by Chip-ID. Figure 14 shows an example for DIRECT_CHP_COR command.

Figure 14. Example for DIRECT_CHP_COR Command.

HSS64 Specification

64-Channel High Speed Switches

In Figure 14, the input Chip-ID from the command is 0x1. All Cores of the HSS64 whose Chip-ID is 0x1, is updated with the value of WData[7:0] (= 0x5A). Since all Cores are updated, the Core-ID included in the command is ignored. Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

■ DIRECT_BNK_COR (0x3)

DIRECT_BNK_COR command changes all of the ON-OFF states in HSS64s in the selected Bank. The input WData value is written to all Cores of the HSS64s. Figure 15 shows an example for DIRECT_BNK_COR command.

Figure 15. Example for DIRECT BNK COR Command.

HSS64 Specification

64-Channel High Speed Switches

In Figure 15, WData[7:0] is written to all Cores of all HSS64s in the Bank. Since all Cores of all HSS64s are the target of DIRECT_BNK_COR command, Chip-ID and Core-ID are ignored. Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

■ REJECT_CHP_COR (0x4)

REJECT_CHP_COR command controls REJECT flags of the specified HSS64 in Core unit. According to each bit's value of WData[7:0], it sets REJECT flags of each Core's eight switches. Figure 16 shows an example for REJECT_CHP_COR command.

Figure 16. Example for REJECT_CHP_COR Command.

64-Channel High Speed Switches

In Figure 16, target HSS64 is selected by the Chip-ID (= the one with Chip-ID is 0x1). Each bit of WData decides REJECT flags of each Core. From bit0 to bit7 of WData[7:0] corresponds to Core0 to Core7. Since bit0, bit2, bit6, and bit7 are '0's, REJECT flags of Core0, Core2, Core6, Core7 are set to '1'.

■ DIRECT_CHP_CHN (0x5)

DIRECT_CHP_CHN command changes all of the ON-OFF states in the target HSS64. The input WData value is written to all Channels of the specified HSS64. The target HSS64 is specified by Chip-ID. Figure 17 shows an example for DIRECT_CHP_CHN command.

Figure 17. Example for DIRECT_CHP_CHN Command.

64-Channel High Speed Switches

In Figure 17, the input Chip-ID from the command is 0x1. All Channels of the HSS64 whose Chip-ID is 0x1, is updated with the value of WData[7:0] (= 0x5A). Since all Channels are updated, the Core-ID included in the command is ignored. Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

40

■ DIRECT_BNK_CHN (0x6)

DIRECT_BNK_CHN command changes all of the ON-OFF states in HSS64s in the selected Bank. The input WData value is written to all Channels of the HSS64s. Figure 18 shows an example for DIRECT_BNK_CHN command.

Figure 18. Example for DIRECT_BNK_CHN Command.

64-Channel High Speed Switches

In Figure 18, WData[7:0] is written to all Channels of all HSS64s in the Bank. Since all Channels of all HSS64s are the target of DIRECT_BNK_CHN command, Chip-ID and Core-ID are ignored. Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

■ REJECT_CHP_CHN (0x7)

REJECT_CHP_CHN command controls REJECT flags of the specified HSS64 in Channel unit. According to each bit's value of WData[7:0], it sets REJECT flags of each Channel's eight switches. Figure 19 shows an example for REJECT_CHP_CHN command.

Figure 19. Example for REJECT_CHP_CHN Command.

64-Channel High Speed Switches

In Figure 19, target HSS64 is selected by the Chip-ID (= the one with Chip-ID is 0x1). Each bit of WData decides REJECT flags of each Channel. From bit0 to bit7 of WData[7:0] corresponds to Channel0 to Channel7. Since bit0, bit2, bit6, and bit7 are '0's, REJECT flags of Channel0, Channel2, Channel6, Channel7 are set to '1'.

WR_CLCON (0x8)

WR CLCON command is used to update Current Limiting Control Register. Table 5 shows the contents of Current Limiting Control Register.

Table 5. Current Limiting Control Register.

Bits	Descriptions	Reset	Remarks
7	TRM_VAL write enable. TRM_VAL is updated only if the written value of TV_WEN is '1'.		
[6:4]	Current limit trimming (8step). Specifies the trimming value for Current Limiting target limit current. Used for the trimming of target limit current. Note) UPDATED ONLY IF TV_WEN == '1'.	000 Initialized from OTP	
3	CS write enable. CS is updated only if the written value of CS_WEN is '1'.		
[2:0]	100: 250 mA 101: 300 mA 110: 350 mA 111: 400 mA	000	Initialized from OTP
	7 [6:4]	TRM_VAL write enable. TRM_VAL is updated only if the written value of TV_WEN is '1'. Current limit trimming (8step). Specifies the trimming value for Current Limiting target limit current. Used for the trimming of target limit current. Note) UPDATED ONLY IF TV_WEN == '1'. CS write enable. CS is updated only if the written value of CS_WEN is '1'. Limit current select. Specifies the target limit current for Current Limiting. 000: 50 mA 001: 100 mA 010: 150 mA 101: 200 mA 100: 250 mA 101: 300 mA 101: 300 mA 110: 350 mA	TRM_VAL write enable. TRM_VAL is updated only if the written value of TV_WEN is '1'. Current limit trimming (8step). Specifies the trimming value for Current Limiting target limit current. Used for the trimming of target limit current. Note) UPDATED ONLY IF TV_WEN == '1'. CS write enable. CS is updated only if the written value of CS_WEN is '1'. Limit current select. Specifies the target limit current for Current Limiting. 000: 50 mA 001: 100 mA 010: 150 mA 011: 200 mA 100: 250 mA 101: 300 mA 101: 350 mA 111: 400 mA

TRM_VAL register is the trimming value for target limit current. The target limiting current is specified by CS register. However, actual temperature which triggers Current Limiting can be different from the target limiting current. Current Limiting circuit is trimmed with TRM_VAL register to minimize this difference.

CS register specifies the actual target limit current for Current Limiting. Current limiting occurs if current flows more than specified in CS register.

Though the default values for TRM VAL / CS registers are loaded from internal OTP memory on bootstrap, their values can be changed by WR_CLCON command. To make it possible to update TRM_VAL / CS registers respectively, TV_WEN / CS_WEN bits are supported. To update TRM_VAL register, TV_WEN should be HIGH. To update CS register, CS_WEN should be HIGH. The write-enable feature helps update either TRM_VAL or CS register keeping the other register's value not changed.

Note that writing to Current Limiting Control Register is prohibited by default. To write to Current Limiting Control Register, EN1_WCON / EN2_WCON commands should be preceded. For more information about EN1_WCON / EN2_WCON commands, refer to EN1_WCON / EN2_WCON / DIS_WCON of Commands Descriptions.

WR_TSDCON (0x9)

WR TSDCON command is used to update Thermal Shutdown Control Register. Table 6 shows the contents of Thermal Shutdown Control Register.

Table 6. Thermal Shutdown Control Register.

Bit Name	Bits	Descriptions		Remarks
TT_WEN	7	TSD_TRIM write enable. TSD_TRIM is updated only if the written value of TT_WEN is '1'.	-	-
TSD_TRIM	[6:4]	Thermal shutdown temp. trim (8step). Specifies the trimming value for Thermal Shutdown target temperature. Jsed for the trimming of target temperature of Thermal Shutdown. Note) UPDATED ONLY IF TT WEN == '1'.		Initialized from OTP
RSVD	[3:2]	Reserved	-	-
TS_WEN	1	TSS write enable. TSS is updated only if the written value of TS_WEN is '1'.		-
Thermal shutdown hysteresis select. 0: Selects Hysteresis A (about 20°C) 1: Selects Hysteresis B (about 10°C) NOTE) UPDATED ONLY IF TS_WEN == '		0: Selects Hysteresis A (about 20°C)	0	Initialized from OTP

TSD TRIM register is the trimming value for Thermal Shutdown target temperature. The target temperature of LSW9X00 Thermal Shutdown circuit is 150°C. However, actual temperature which triggers Thermal Shutdown can be different from the target temperature (i.e. 150°C). Thermal Shutdown circuit is trimmed with TSD TRIM register to minimize this difference.

TSS register selects Thermal Shutdown Hysteresis. If a switch is turned off by Thermal Shutdown, the switch can be turned on after the temperature goes below (150 - Thermal Shutdown Hysteresis) °C.

Though the default values for TSD_TRIM / TSS registers are loaded from internal OTP memory on bootstrap, their values can be changed by WR_TSDCON command. To make it possible to update TSD_TRIM / TSS registers respectively, TT_WEN / TS_WEN bits are supported. To update TSD_TRIM register, TT_WEN should be HIGH. To update TSS register, TS WEN should be HIGH. The write-enable feature helps update either TSD TRIM or TSS register keeping the other register's value not changed.

Note that writing to Thermal Shutdown Control Register is prohibited by default. To write to Thermal Shutdown Control Register, EN1_WCON / EN2_WCON commands should be preceded. For more information about EN1_WCON / EN2_WCON commands, refer to EN1_WCON / EN2_WCON / DIS_WCON of Commands Descriptions.

■ DIRECT_COR_SW (0xA)

DIRECT_COR_SW command changes the ON-OFF states of a Core in the target HSS64. The input WData value is written to the target Core of the specified HSS64. The target HSS64 is specified by Chip-ID, and the target Core by Core-ID. Figure 20 shows an example for DIRECT_COR_SW command.

Figure 20. Example for DIRECT_COR_SW Command.

64-Channel High Speed Switches

In Figure 20, the input Chip-ID from the command is 0x1, and Core-ID is 0x6. According to the input Chip-ID and Core-ID, Core6 of the HSS64 whose Chip-ID is 0x1, is updated with the value of WData[7:0] (= 0x5A). Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

■ DIRECT_CHN_SW (0xB)

DIRECT_CHN_SW command changes the ON-OFF states of a Channel in the target HSS64. The input WData value is written to the target Channel of the specified HSS64. The target HSS64 is specified by Chip-ID, and the target Channel by Core-ID. Figure 21 shows an example for DIRECT_CHN_SW command.

Figure 21. Example for DIRECT CHN SW Command.

64-Channel High Speed Switches

In Figure 21, the input Chip-ID from the command is 0x2, and Core-ID is 0x4. According to the input Chip-ID and Core-ID, Channel4 of the HSS64 whose Chip-ID is 0x2, is updated with the value of WData[7:0] (= 0x5A). Note that the switches whose REJECT flags are set to '1' are not updated, and remain in OFF state.

DS_HSS64_V0.0

■ REJECT_COR_SW (0xC)

REJECT_COR_SW command updates REJECT flags of the specified Core. It receives Chip-ID and Core-ID, and uses them to specify the target Channel in the target HSS64. According to each bit's value of WData[7:0], it sets REJECT flags of each switch of the selected Core. Figure 22 shows an example for REJECT_COR_SW command.

Figure 22. Example for REJECT_COR_SW Command.

64-Channel High Speed Switches

In Figure 22, since Chip-ID is 0x1, the one with Chip-ID is 0x1 is selected as the target (i.e. the one with Chip-ID = 0x2 is not affected). Core-ID (= 0x6) specifies the target Core as Core6.

WData[7:0] contains the actual update value of REJECT flags. If a bit of WData is '0', it indicates that the corresponding switch's REJECT flag should be set to '1'. In Figure 22, since WData is 0x3A, bit7, bit6, bit2, bit0 of WData are ZERO. This results in that REJECT flags of switch7, switch6, switch2, switch0 are set to '1'. ON-OFF states of those switches are also set to OFF.

■ REJECT_CHN_SW (0xD)

REJECT_CHN_SW command updates REJECT flags of the specified Channel. It receives Chip-ID and Core-ID, and uses them to specify the target Channel in the target HSS64. The Core-ID is used as the Channel-ID. According to each bit's value of WData[7:0], it sets REJECT flags of each switch of the selected Channel. Figure 23 shows an example for REJECT_CHN_SW command.

Figure 23. Example for REJECT_CHN_SW Command.

64-Channel High Speed Switches

In Figure 23, since Chip-ID is 0x2, the one with Chip-ID is 0x2 is selected as the target (i.e. the one with Chip-ID = 0x1 is not affected). Core-ID (= 0x1) specifies the target Channel as Channel1, which includes all switch1 s from Core0 to Core7.

WData[7:0] contains the actual update value of REJECT flags. If a bit of WData is '0', it indicates that the corresponding switch's REJECT flag should be set to '1'. In Figure 23, since WData is 0x3A, bit7, bit6, bit2, bit0 of WData are ZERO. This results in that REJECT flags of switch1s in Core7, Core6, Core2, Core0 are set to '1'. ON-OFF states of those switches are also set to OFF.

PACKAGE INFORMATION

Figure 24. Package Information.

REVISION HISTORY____

Revision	Date	Description
0.0	2020-04	Initial draft

DOCUMENT INFORMATION___

Document name: HSS64 Datasheet

Product code: HSS64

Product description: Analog Switch IC

Document revision: 0.0 Revision date: 2020-04

Main Office

1F Jeongseong Building 414 Hyoryeong-ro, Seocho-gu, Seoul, Korea (06728)

Phone: 82-2-581-5510 Mail: leolsi@leolsi.com