113年衛生福利資料科學中心

R軟體推廣課程《進階篇》

預測模型

講師:劉品崧 統計分析師

花蓮慈濟醫院

課程大綱

- 前言
- 迴歸模型預測(linear)
- 迴歸模型預測(logistic)
- 分類預測KNN

前言

- 預測 & 模型
- 模型的信度與效度
- 建立預測模型之流程

預測

- 人類自古以來就一直嘗試想要預測
 - 巫術、觀天象、卜卦、塔羅牌、擲筊 etc
- 目的
 - 如果能夠得知結果,可以提早應對
 - e.g. 重複入院患者的住院天數較長,提早開始安排控床
 - 如果能夠影響結果,可以提早介入
 - e.g. 電商發現在FB投放的廣告比起IG有更多觸及率,加碼FB

• 使用將預測因子與實際結果建立模型

模型

- 模型的鏈結函數會因為實際結果的資料類型而有所不同
- 利用預測因子套用模型可以獲得預測結果
- 預測結果可以和實際結果比較,得知模型的準確度

模型的信度與效度

Court 1

(地圖製造 MakeWorld.tw)

- 效度(validity):執行動作與實際目標的準確性
- 信度(reliability): 準確性是否能穩定、一致地、重複地產生

效度很好 信度很好

效度普通 信度不好

效度不好 信度很好

效度不好 信度不好

內部驗證與外部驗證(validation)

Cross validation

- 自己的模型拿來預測自己的結果 → 自說自話,沒有說服力
 - 缺乏內部 & 外部的信效度
- 交叉驗證 Cross validation
 - 將資料分割為訓練資料集(train)以及驗證資料集(valid)
 - 常見的分割比例如7:3或8:2或2:1
 - 以train產生模型
 - 以valid套用模型而產生預測
 - 以valid預測的結果與實際值比較模型的準確度

Cross validation

內部驗證流程解析

(1)整理資料集

Full dataset

ID	住院天數	年齡
BB	16	59
00	12	84
LL	17	63
FF	2	60
SS	6	1
QQ	24	38
DD	9	84
MM	9	36
NN	3	3
AA	8	72

9

K-fold validation

執行K = 5次的train & valid程序

Full dataset				
ID	住院天數	年齡		
BB	16	59		
00	12	84		
LL	17	63		
FF	2	60		
SS	6	1		
QQ	24	38		
DD	9	84		
MM	9	36		
NN	3	3		
AA	8	72		

If K = 5 Dataset 1							
:	年龄	三齿令		Outcome	Factor		
	59			•••	•••		
	84		D (1.0			
	63		Dataset 2				
	60		ID Outcome Facto				
	60			•••	•••		
	1	╡	•••				
	38						
	84		<u>:</u>				
	36		Dataset 5				
	3		ID	Outcome	Factor		
	72			•••	•••		

Dataset	第1迴圈	第2迴圈	第3迴圈	第4迴圈	第5迴圈
1	Valid	Train	Train	Train	Train
2	Train	Valid	Train	Train	Train
3	Train	Train	Valid	Train	Train
4	Train	Train	Train	Valid	Train
5	Train	Train	Train	Train	Valid

Summary:建立預測模型之流程

- 1. 瞭解資料:預測結果的種類、預測因子的轉換
- 2. 分割資料:訓練(train)資料集、驗證(valid)資料集
- 3. <u>建立模型</u>:模型公式(formula)、決定鏈結(link)函數
- 4. 訓練模型:以訓練資料集配適(fit)模型,取得參數(parameter)
- 5. <u>驗證模型</u>:以驗證資料集套用模型,評估準確性(accuracy)
- 6. 調整模型:模型架構,因子選擇

迴歸模型預測(linear)

- 瞭解資料
- 分割資料
- 建立模型
- 訓練模型
- 驗證模型

12

線性模型架構

•
$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots + \varepsilon$$

= $\hat{Y} + \varepsilon$

- Y:實際值; \hat{Y} :預測值; ϵ :殘差,是實際值與預測值的誤差
- α :截距,當所有input為0時 \hat{Y} 的基礎值
- X_i : 第i個因子的input; β_1 : 第i個因子的權重
- 實際範例
 - 預測住院天數 = 3.85124 + (0.08344 * 年龄)
 - 預測住院天數 = 4.25318 + (0.08288 * 年龄) + (-0.92894 * 性別為女性)

預測準確度評估指標

- RMSE root mean square error
 - 殘差(residual) = 實際值 預測值
 - RMSE = $\sqrt{mean(residual^2)}$

R語言指令

- 建構模型
 - glm(formula = 模型公式, data = 訓練資料集)
- 預測結果
 - predict(object = 模型物件, newdata = 要放進去的資料)

15

模型驗證與比較

- 結果來說,訓練資料集訓練產生的模型,其預測能力不算太好,R²=53.0%。
- 但可以在驗證資料 集被重複再現,具 有一定的信度。

訓練資料集(n=63)

• RMSE: 21.94

• *r*: 0.7280

• RMSE: 25.87

• *r*: 0.7045

迴歸模型預測(logistic)

- 瞭解資料
- 分割資料
- 建立模型
- 訓練模型
- 驗證模型

Logistic regression model架構

• 當outcome是二元變數時, $ln(\frac{p}{1-p}) = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots + \varepsilon$

•
$$\hat{p} = \frac{1}{1 + e^{(-(\alpha + \beta_1 X_1 + \beta_2 X_2))}}$$

• 實際範例

- $ln(\frac{$ 出院後半年內允亡} 出院後半年內存活) = -1.4404 + 0.2273 * 年齡為65歲以上
- 若年齡為65歲以上,則出院後半年內死亡的機率為0.229153

•
$$\hat{p} = \frac{1}{1 + e^{(-(-1.4404 + 0.2273 * 1))}} = 0.229153$$

• 若年齡為65歲以下,則出院後半年內死亡的機率為0.191483

•
$$\hat{p} = \frac{1}{1 + e^{(-(-1.4404 + 0.2273*0))}} = 0.191483$$

預測準確度評估指標

- 比較實際結果與預測結果的交叉表
 - 要先從訓練結果去找出最佳切點
 - 依據訓練模型的切點及
 驗證資料predict probability來預測事件是否會發生

• 準確率 = 預測正確數量 =
$$\left(\frac{21+9}{42}\right) * 100\% = 71.4\%$$

- AUROC, ROC曲線下面積
 - 越接近1越好,代表可以被完美預測

R語言指令

- 修改機率函數
 - glm(formula = 模型公式, data = 訓練資料集, family = "binomial")
- 製作ROC物件
 - roc(response = 實際事件向量, predictor = 預測機率向量)
- 找尋預測機率的最佳切點
 - coords(roc = roc物件, x = "best", ret = "threshold")

模型驗證與比較

- 結果來說,訓練資料集訓練產生的模型,其預測能力很好, c=93.69%。
- 再現的過程並沒有展現相同的預測力,需要再調整。

驗證資料集(n=53)

• c: 0.9369

驗證資料集(n=42)

• *c*: 0.7938

分類預測KNN

- 瞭解資料
- 分割資料
- 建立模型
- 訓練模型
- 驗證模型

KNN的概念與用途

- 當想要預測的變項是多分類的時候
 - 中午吃什麼 → 雞腿便當、豬排丼、咖哩烏龍麵?
 - 多個分類之間不具備序位、可量測距離、連續等特性
- 此時不能再使用linear或是logistic regression
- 最簡易而常見的分類模型就是KNN模型
 - k-nearest neighbors
 - 利用歐式距離作為計算方式
 - 把最像你的K個其他人抓出來,投票決定你最有可能是誰!

歐式距離Euclidean distance

- 模型若有m個因子,將會對應出m維度的空間
- 二維空間:年齡、CCI
 - 總共i個valid樣本會與全部j個train樣本計算歐式距離
 - 距離 $_{valid_i \ vs \ train_j} = \sqrt{(age_{valid_i} age_{train_j})^2 + (CCI_{valid_i} CCI_{train_j})^2}$
 - 進而找出最k個最鄰近(k-nearest neighbors)的train樣本進行投票
 - 三維空間(或以上)
 - $d(p,q) = \sqrt{(p_1 q_1)^2 + (p_2 q_2)^2 + \dots + (p_n q_n)^2}$

KNN的流程

Age = 60, CCI = 8

預測住院天數分類:>7日

Train dataset

• DV: 住院天數分類

• 分為3組 · 1-3天 · 4-6天 · 7天以上

• IV:年齡、CCI

Test dataset

- 把你的sample標在這個地圖上
- If K = 5則找尋離你最近的的5個人
- 5個人裡面哪一個類型最多
- 你就會被預測為那個類型

25

預測準確度評估指標

- 比較實際結果與預測結果的交叉表
 - 準確率
 - $\bullet = \frac{預測正確數量$ 總樣本數量
 - $\bullet = \left(\frac{17+5+2}{41}\right) * 100\% = 58.5\%$

R語言指令

- 建構指令可以容許的matrix物件
 - as.matrix(data[, c("var1", "var2", "var3")])
- 執行knn
 - knn(train = train的因子, test = test的因子, cl = train的答案, k = 3)

模型驗證與比較

結果來說,訓練資料集訓練產生的模型,其預測能力普通,準確度只有
58.5%。

			預測結果	
		1-3天	4-6天	7 天以上
實際結果	1-3天	17	2	0
	4-6天	8	5	1
	7 天以上	5	1	2

課程討論 & Final remark

- Summary
 - 瞭解資料
 - 分割資料
 - 建立模型
 - 訓練模型
 - 驗證模型
 - 調整模型

See more

- Stack Overflow
- STHDA

- 劉品崧
 - Email: psliu520@gmail.com
 - PubMed : Peter Pin-Sung Liu

使用圖片版權來源

Created by Setyo Ari Wibowo from Noun Project