Определения по матану, семестр 4

24 марта 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	9
2	Сходимость почти везде	9
3	Сходимость по мере	9
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	9
5	Интеграл ступенчатой функции	Ş
6	Интеграл неотрицательной измеримой функции	4
7	Суммируемая функция	4
8	Интеграл суммируемой функции	4
9	Произведение мер	Į.
10	Теорема Фубини	Į.
11	Образ меры при отображении	6
12	Взвешенный образ меры	6
13	Плотность одной меры по отношению к другой	6
14	Заряд, множество положительности 14.1 Заряд	6

15	Сферические координаты в \mathbb{R}^3 и в \mathbb{R}^m , их Якобианы	7
16	Интегральные неравества Гельдера и Минковского 16.1 Нераветсво Гельдера	7 7 7
17	Интеграл комплекснозначныйх функции	8
18	Пространство $L_p(E,\mu), \ 1 \le p < +\infty$	8
19	Пространство $L_{\infty}(E,\mu)$	8
20	Существенный супремум	9

1 Свойство, выполняющееся почти везде

 (X,\mathbb{A},μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x. $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

 (X,a,μ) - пространство с мерой, $\mu\cdot X<+\infty$ $f_n,f:X\to \overline{R}$ - п.в. конечны Говорят, что f_n сходится к f по мере μ (при $n\to+\infty$) (обозначается $f_n\stackrel{\mu}{\Rightarrow}f$) если $\forall \epsilon>0$ $\mu(X(|f_n-f|>\epsilon))\stackrel{n\to+\infty}{\to}0$

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,a,μ) - пространство с мерой $f_n,f:X\to R$ - п.в. конечны, измеримы $f_n\to f$. Тогда эта сходимость "почти равномерная"

5 Интеграл ступенчатой функции

< $\mathbb{X},$ $\mathbb{A},$ $\mu>$ - пространство с мерой $f=\sum\limits_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве ${\mathbb X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

6 Интеграл неотрицательной измеримой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${\bf X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sup(\int\limits_{\mathbb{X}} g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

7 Суммируемая функция

< $X, A, \mu >$ - пространство с мерой f—измерима, $\int\limits_{X} f^+$ или $\int\limits_{X} f^-$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\mathbb X},$ ${\mathbb A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\mathbb A}$ Тогда интегралом f на множестве E назовём

$$\int_{\mathbb{E}} f d\mu := \int_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E, если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны

9 Произведение мер

 $< X, \alpha, \mu >, < Y, \beta, \nu >$ - пространства с мерой μ, ν - σ -конечные меры $\alpha \times \beta = \{A \times B \subset X \times Y : A \in \alpha, B \in \beta\}$ $m_0 : \alpha \times \beta \to \overline{R}$ $m_0(A \times B) = \mu A \cdot \nu B$

m - называется произведением мер μ и ν , если m - мера, которая ялвяется Лебеговским продолжением m_0 с полукольца $\alpha \times \beta$ на некоторую σ -алгебру $\alpha \otimes \beta$. $m = \mu \times \nu$ - обозначение $< \mathbb{X} \times \mathbb{Y}, \alpha \otimes \beta, \mu \times \nu >$ - произведение пространств с мерой

10 Теорема Фубини

< $X, A, \mu>, <$ $Y, B, \nu>$ - пространство с мерой, $\mu, \nu-\sigma$ -конечные и полные, $m=\mu \times \nu,$ f — суммируемая на $X \times Y$ по m.

Тогда:

• при «почти всех» x функция $f_x \in \mathbb{L}(\mathbb{Y}, \nu)$, то есть суммируема на \mathbb{Y} по ν при «почти всех» y функция $f^y \in \mathbb{L}(\mathbb{X}, \mu)$

$$x \mapsto \phi(x) \mid \phi(x) = \int_{\mathbb{Y}} f_x d\nu \in \mathbb{L}(\mathbb{X}, \mu)$$
$$u \mapsto \psi(u) \mid \psi(u) = \int_{\mathbb{Y}} f^y d\mu \in \mathbb{L}(\mathbb{Y}, \nu)$$

 $y \mapsto \psi(y) \mid \psi(y) = \int_{\mathbb{X}} f^y d\mu \in \mathbb{L}(\mathbb{Y}, \nu)$

Это есть эти функции суммируемы в некотором контексте (\mathbb{X}, μ и \mathbb{Y}, ν соответсвено)

$$\int_{\mathbb{X}\times\mathbb{Y}} fdm = \int_{\mathbb{X}} \phi(x)d\mu = \int_{\mathbb{X}} (\int_{\mathbb{Y}} fd\nu(y))d\mu(x)$$

$$\int\limits_{\mathbb{X}\times\mathbb{Y}}fdm=\int\limits_{\mathbb{Y}}\psi(x)d\nu=\int\limits_{\mathbb{Y}}(\int\limits_{\mathbb{X}}fd\mu(x))d\nu(y)$$

11 Образ меры при отображении

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, \underline{\ })$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}). Пусть для $\forall E \in \mathbb{B} \ \nu(E) = \mu(\Phi^{-1}(E))$. ν является мерой на Y и называется образом меры μ при отображении Φ .

12 Взвешенный образ меры

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, _)$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}). $\omega: X \to \overline{\mathbb{R}}, \ \omega \geq 0$ — измеримая. Пусть для $E \in \mathbb{B}$ $\nu(E) = \int\limits_{\Phi^{-1}(E)} \omega \ d\mu$.

u является мерой на Y и называется взвешенным образом меры μ . При $\omega \equiv 1$ взвешенный образ меры является обычным образом меры.

13 Плотность одной меры по отношению к другой

 (X,\mathbb{A},μ) — пространство с мерой. $\omega:X\to\overline{\mathbb{R}},\ \omega\geq 0$ — измеримая. $\nu(E)=\int_E\omega(x)\ d\mu.\ \nu$ — мера на X. ω называется плотностью ν относительно $\mu.$

14 Заряд, множество положительности

14.1 Заряд

 $(X, \mathbb{A}, _)$ — пространство с σ -алгеброй. $\phi : \mathbb{A} \to \mathbb{R}$ (конечная, не обязательно неотрицательная). ϕ счётно аддитивна. Тогда ϕ — заряд.

14.2 Множество положительности

 $A \subset X$ — множество положительности, если $\forall B \subset A, B$ измеримо: $\phi(B) \geq 0$.е

15 Сферические координаты в R^3 и в R^m , их Якобианы

$$x_1 = r \cdot \cos \phi_1$$

$$x_2 = r \cdot \sin \phi_1 \cdot \cos \phi_2$$

$$x_3 = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cos \phi_3$$

$$\vdots$$

$$x_{m-2} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{n-3} \cdot \cos \phi_{n-2}$$

$$x_{m-1} = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{n-2} \cdot \cos \phi_{n-1}$$

$$x_m = r \cdot \sin \phi_1 \cdot \sin \phi_2 \cdot \cdots \sin \phi_{n-2} \cdot \sin \phi_{n-1}$$

$$\mathcal{J} = r^{n-1} \cdot (\sin \phi_1)^{n-2} \cdot (\sin \phi_2)^{n-3} \cdots (\sin \phi_{n-2})^1 \cdot (\sin \phi_{n-1})^0$$

Что тут происходит идейно. Сначала мы проецируем наш m-мерный вектор на нормаль к (m-1)-мерной гиперплоскости. Потом рассматриваем проекцию на эту гиперплоскость и в ней рекурсивно повторяем процедуру пока не дойдём до нашего любимого \mathbb{R}^2 . Уже в нём рассматривем обычные полярные координаты (отсюда и другие ограничения на размер угла).

16 Интегральные неравества Гельдера и Минковского

16.1 Нераветсво Гельдера

$$(X,\mathbb{A},\mu)\ f,g:E\subset X\to C\ (E\text{ - изм.})-\text{ заданы п.в., измеримы}$$

$$p,q>1:\frac{1}{p}+\frac{1}{q}=1.\ \underline{\text{Тогда:}}\int\limits_{E}|fg|d\mu\leq \left(\int\limits_{E}|f|^{p}d\mu\right)^{\frac{1}{p}}\cdot \left(\int\limits_{E}|g|^{q}d\mu\right)^{\frac{1}{q}}$$

16.2 Нераверство Минковского

$$(X,\mathbb{A},\mu)$$
 f,g — заданы п.в, измеримы $1 \leq p < +\infty.$ $\underline{\text{Тогда:}} \left(\int\limits_E |f+g|^p d\mu \right)^{\frac{1}{p}} \leq \left(\int\limits_E |f|^p d\mu \right)^{\frac{1}{p}} \cdot \left(\int\limits_E |g|^p d\mu \right)^{\frac{1}{p}}$

17 Интеграл комплекснозначныйх функции

ТООО: Лев и Вадим

18 Пространство $L_p(E,\mu), 1 \leq p < +\infty$

$$(X,\mathbb{A},\mu)\,E\subset\mathbb{A}$$
 $L_p'(E,\mu)=\{\ \mathrm{f}: \mathrm{п.в.}\ E\to\mathbb{C},\ \mathrm{изм.},\ \int\limits_E|f|^pd\mu<+\infty\}$

Это линейное пространство (по нер-ву Минковского и линейности пространства измеримых функций).

У этого пространства есть дефект - если определить норму как $||f|| = \left(\int\limits_E |f|^p\right)^{\frac{1}{p}},$

то будет сразу много нулей пространства (ненулевые функции, которые п.в. равны 0 будут давать норму 0). Поэтому перейдем к фактор-множеству функций по отношению эквивалентности:

$$f \sim g$$
, если $f = g$ п.в.

$$L_p(E,\mu):=L_p'(E,\mu)/_{\sim}$$
 - лин. норм. пр-во с нормой $||f||=\left(\int\limits_{E}|f|^p\right)^{rac{\hat{r}}{p}}.$

<u>NB1</u>: Его элементы — классы эквивалентности обычных функций. Будем называть их тоже функциями. Они не умеют вычислять значение в точке (т.к. можно всегда подменить значение на любое другое и получить представителя все того же класса эквивалентности), но зато их можно интегрировать!

NB2: также иногда будем обозначать $||f||_p$ за норму f в пространстве L_p .

19 Пространство $L_{\infty}(E,\mu)$

$$L_{\infty}(E,\mu) = \{ f : \text{п.в. } E \to \mathbb{C}, \ \operatorname{ess\,sup} |f| < +\infty \}$$

NB1: $||f||_{\infty} = \operatorname{ess\,sup} |f|$.

<u>NB2</u>: Новый вид нер-ва Гельдера : $||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$ (причем можно брать $p = +\infty, q = 1$ или наоборот).

20 Существенный супремум

 $(X, \mathbb{A}, \mu), E \subset X$ — изм., $f : \pi$.в. $E \to \overline{\mathbb{R}}$.

<u>Тогда</u>: $\underset{x \in E}{\operatorname{Enssup}} f(x) = \inf\{A \in R : f(x) \le A \text{ п.в. } x\}.$

В этом определении A - существенная верхняя граница. Свойства:

- 1. $\operatorname{ess\,sup}_{E} f \leq \sup_{E} f$
- 2. $f(x) \leq \operatorname{ess\,sup} f$ при п.в. $x \in E$.
- 3. $\int_{E} |fg| d\mu \le \operatorname{ess\,sup}_{E} |g| \cdot \int_{E} |f| d\mu$.