2017年全国硕士研究生入学统一考试数学三试题

— ,	选择题:1□8	小题,每小题。	4 分,共 32 分.	下列每题给出的	的四个选项中,只有	了一个选项符合
题目	要求的.					

度日要求的.

(1) 若函数
$$f(x) = \begin{cases} \frac{1-\cos\sqrt{x}}{ax}, & x>0 \\ b, & x\leq 0 \end{cases}$$

(A) $ab = \frac{1}{2}$ (B) $ab = -\frac{1}{2}$ (C) $ab = 0$ (D) $ab = 2$ (2) 二元函数 $z = xy(3-x-y)$ 的极值点是() (A) $(0,0)$ (B) $(0,3)$ (C) $(3,0)$ (D) $(1,1)$ (3) 设函数 $f(x)$ 可导,且 $f(x)f'(x)>0$,则() (A) $f(1)>f(-1)$ (B) $f(1) (C) $|f(1)|>|f(-1)|$ (D) $|f(1)|<|f(-1)|$ (B) $f(1) (D) $|f(1)|<|f(-1)|$ (D) $|f(1)|<|f(-1)|$ (D) $|f(1)|>|f(-1)|$ (D) $|f(1)|>|$$$

(10)差分方程 $y_{t+1} - 2y_t = 2^t$ 通解为 $y_t = 1$

(11) 设生产某产品的平均成本 $ar{C}(q)$ = $1+e^{-q}$,其中产量为q,则边际成本为 ___

(12)设函数
$$f(x,y)$$
 具有一阶连续偏导数,且 $df(x,y) = ye^y dx + x(1+y)e^y dy$, $f(0,0) = 0$, 则 $f(x,y)$ =

则
$$f(x,y) = \frac{1}{(13)$$
设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, $\alpha_1 \cdot \alpha_2 \cdot \alpha_3$ 为线性无关的 3 维列向量组。则向量组 $A\alpha_1 \cdot A\alpha_2 \cdot \alpha_3$

 $A\alpha_3$ 的秩为 _____

(14)设随机变量
$$X$$
 的概率分布为 $P\{X=-2\}=\frac{1}{2}$, $P\{X=1\}=a$, $P\{X=3\}=b$, 若

(15)(本题满分 10 分)

$$\Re \lim_{x \to 0^+} \frac{\int_0^x \sqrt{x - t} e^t dt}{\sqrt{x^3}}$$

(16)(本题满分 10 分)

计算积分
$$\iint_{D} \frac{y^3}{(1+x^2+y^4)^2} dxdy$$
, 其中 D 是第一象限中以曲线 $y = \sqrt{x}$ 与 x 轴为边界的

无界区域.

(17)(本题满分 10 分)

$$\vec{x} \lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln(1+\frac{k}{\lambda})$$

(18)(本题满分 10 分)

已知方程 $\frac{1}{\ln(1+x)}$ $-\frac{1}{x}$ =k在区间(0,1)内有实根,确定常数 k 的取值范围.

(19)(本题满分 10 分)

设
$$a_0=1$$
, $a_1=0$, $a_{n+1}=\frac{1}{n+1}(na_n+a_{n-1})(n=1,2,3\cdots)$, $S_{(x)}$ 为幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数

(I)证幂
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径不小于 1.

(II)证
$$(1-X)S'(x) - xS(x) = 0(x \in (-1,1))$$
, 并求 $S(x)$ 表达式.

(20)(本题满分11分)

设 3 阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有 3 个不同的特征值,且 $\alpha_3 = \alpha_1 + 2\alpha_2$

(I)证明 r(A) = 2;

(II)若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$, 求方程组 $Ax = \beta$ 的通解.

(21)(本题满分 11 分)

设二次型
$$f(x_1,x_2,x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$$
 在正交变换 $x = Qy$ 下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$,求 a 的值及一个正交矩阵 Q .

(22)(本题满分 11 分)

设随机变来那个为
$$X$$
, Y 相互独立,且 X 的概率分布为 $P(X=0)=P(X=2)=\frac{1}{2}$, Y

的概率密度为 $f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

(I)求 $P(Y \leq EY)$;

(II)求Z = X + Y的概率密度.

(23)(本题满分11分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的,设 n 次测量结果 $X_1, X_2, ..., X_n$ 相互独立且均服从正态分布 $N(\mu, \sigma^2)$.该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu| (i = 1, 2, \cdots n)$,利用 $Z_1, Z_2, \cdots Z_n$ 估计 σ .

- (I)求 Z_1 的概率密度;
- (II)利用一阶矩求 σ 的矩估计量;
- (III)求 σ 的最大似然估计量.

