Examen de PROBABILIDAD Y ESTADÍSTICA

Ingeniería del Software		29 JUNIO 2020			
CURSO	1º	HORA 15.00	Mod	U-Tad	
GRUPO	MAIS 1A	DURACIÓN 3 horas	В	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL	
ALUMNO					
DNI					

Problema 1 (2,5 ptos)

Queremos analizar si existe relación lineal entre la distancia y el tiempo de viaje transcurrido entre el domicilio y el lugar de trabajo. Se han analizado las distancias (km) y tiempos (minutos) de 5 empleados y los datos son los siguientes:

X_i	3	7	11,1	17	12
Y_i	8	18	26	40	33

- a) ¿ puedes decir que existe una relación lineal entre las variables distancia y tiempo de viaje? Interpretar el valor de r
- b) Predecir el tiempo que tarda en llegar al trabajo un empleado que vive a 14 km de distancia y dar una medida de la fiabilidad de dicha predicción
- c) ¿Cuál de las dos variables es más dispersa, la distancia o el tiempo? Indica cómo efectúas la comparación
- d) ¿Qué porcentaje de variabilidad en el tiempo de llegada al trabajo no queda explicado por la distancia?

Problema 2 (2,5 ptos)

De un test para detectar la presencia de un determinado virus se sabe que la probabilidad de que resulte positivo en personas enfermas es del 96%, y la probabilidad de que el test falle en personas sanas es del 5%.

Se sabe también que las personas infectadas por el virus ascienden al 0.1% de la población.

- a) Si una persona ha obtenido un test negativo, ¿cuál es la probabilidad de que esté equivocado?
- b) ¿Cuál es el porcentaje total de positivos que se obtienen con ese test?
- c) ¿Cuáles son los coeficientes falso-positivo y falso-negativo del test?

Problema 3 (2,5 ptos)

La duración de un láser semiconductor sigue una distribución Normal de media 7.000 horas y desviación típica 600 horas.

- a) ¿Cuál es el porcentaje de aparatos láser que fallan antes de 5000 horas?
- b) ¿Cuál es la duración en horas excedida por el 35% de los láseres?
- c) Si se utilizan 3 láseres en un producto y se supone que funcionan de manera independiente ¿Cuál es la probabilidad de que al cabo de 7.500 horas sigan funcionando los tres?

Problema 4 (2,5 ptos)

En un taller sospechan que el voltaje medio de un tipo de baterías es inferior a los 12 V que figuran en la información del fabricante.

Para contrastar esta hipótesis, analizan una muestra de 11 baterías y se obtiene un voltaje medio de 11,3 V y una desviación típica de 0,7V

- a) ¿Qué puedes decir sobre el voltaje medio de la marca de baterías? Calcular el p-valor y responder al 1% y al 5%.
- b) Obtener un intervalo de confianza (al 99%) para el voltaje medio de las baterías suponiendo
 - b.1.) la varianza poblacional desconocida

- b.2.) la varianza poblacional conocida $\vartheta^2=0.5$
- Comparar los errores máximos de estimación en ambos casos
- c) Si la desviación típica es conocida como en el caso anterior,¿Cuántas baterías habría que analizar como mínimo para estimar el voltaje medio de la marca con el 99% de confianza y un error máximo de 0,3V?