Quy nạp và Hồi quy

Nội dung

- ☐ Phép quy nạp toán học
- ☐ Định nghĩa đệ quy
- ☐ Các thuật toán quy nạp

Quy nạp toán học (Induction)

- \Box Được sử dụng để chứng minh các mệnh đề dạng $\forall x P(x), x \in Z^+$
- ☐ Gồm 2 bước:
 - □ **Cơ bản**: Chứng minh P(1) đúng
 - □ Bước quy nạp: Chứng minh P(n) -> P(n+1) đúng với mọi số dương n.
 - □ Kết luận ∀n P(n)

- ☐ Đặc trưng có thứ tự (Well-ordering property)
 - Mọi tập không rỗng của các số nguyên không âm có thành phần nhỏ nhất.
- ☐ Tính đúng đắn của quy nạp toán học
 - □ Giả sử tồn tại ít nhất một số n để P(n) sai.
 - O Gọi S là một tập các số nguyên không âm sao cho P(n) sai. Do đó, $S \neq \emptyset$.
 - Dựa vào đặc trưng có thứ tự, S có thành phần nhỏ nhất, giả sử là k (k > 1),
 - O k-1>0 và P(k-1) đúng (vì k là số nguyên nhỏ nhất mà P(k) sai)
 - \Box **Mà:** P(k-1) -> P(k) đúng
 - O Do đó, P(k) đúng (phản chứng)
 - □ Vì vậy, ∀n P(n).

□Ví dụ: Chứng minh tổng của n số nguyên lẻ đầu tiên là n^2 , với mọi số nguyên dương. P(n): $1 + 3 + 5 + 7 + ... + (2n-1) = n^2$

□Chứng minh:

- \square **Bước cơ bản**: P(1) đúng, vì $1 = 1^2$
- □ Bước quy nạp:
 - O Giả sử P(n) đúng, $1 + 3 + 5 + 7 + ... + (2n-1) = n^2$
 - O Khi đó P(n+1) đúng, vì

$$\underbrace{1+3+5+7+...+(2n-1)}_{n^2} + (2n+1) = (n+1)^2$$

- **□ Ví dụ:** Chứng minh n < 2ⁿ với mọi số nguyên dương n. P(n): n < 2ⁿ
- ☐ Chứng minh
 - \square **Bước cơ bản:** $1 < 2^1$ (luôn đúng)
 - Bước quy nạp: Nếu P(n) đúng thì P(n+1) cũng đúng với mọi n.
 - O Giả sử P(n): $n < 2^n$ đúng
 - O P(n+1): $n+1 < 2^{n+1}$ đúng, vì

$$n+1 < 2^n + 1 < 2^n + 2^n = 2^n(1+1) = 2^n(2) = 2^{n+1}$$

- **□Ví dụ**: Chứng minh n³ n chia hết cho 3 với mọi số nguyên dương. P(n): n³-n chia hết cho 3
- □Chứng minh
 - \square **Bước cơ bản**: P(1): $1^3 1 = 0$ chia hết cho 3 (luôn đúng)
 - □ **Bước quy nạp**: Nếu P(n) đúng thì P(n+1) đúng với mọi số nguyên dương.
 - O Giả sử P(n): n³-n chia hết cho 3
 - O Chứng minh P(n+1): $(n+1)^3 (n+1)$ chia hết cho 3

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$$

= $(n^3 - n) + 3n^2 + 3n$
= $(n^3 - n) + 3(n^2 + n)$
 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$
= $(n^3 - n) + 3(n^2 + n)$
 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$
= $(n^3 - n) + 3(n^2 + n)$
 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$
= $(n^3 - n) + 3(n^2 + n)$
 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$
= $(n^3 - n) + 3(n^2 + n)$
 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$
= $(n^3 - n) + 3(n^2 + n)$
= $(n^3 - n) + 3(n^2 + n)$

☐ Ví dụ: (Bài toán ném bánh) Một số lẻ người đứng trong sân sao cho khoảng cách giữa 2 người bất kỳ nào đều không giống nhau. Cùng một lúc, mỗi người sẽ ném 1 chiếc bánh về phía người gần nhất với mình. Chứng minh rằng có ít nhất một người không bị ai ném cả.

- Lỗi mắc phải khi chứng minh bằng quy nạp
- \Box "Định lý:" Với mọi số nguyên dương n, nếu x và y là 2 số nguyên dương thỏa mãn $\max(x, y) = n$, thì x = y
- ☐ Chứng minh
 - **Bước cơ bản**: Với n = 1. Nếu max(x, y) = 1 và x, y đều nguyên dương, ta có x = 1 và y = 1. P(1) đúng.
 - **Bước quy nạp**: Với k là một số nguyên dương, giả sử rằng bất kể khi nào max(x, y) = k và x, y đều nguyên dương thì x=y. Nếu để max(x, y) = k + 1, thì max(x 1, y 1) = k, do đó theo giả thuyết quy nạp ta có x 1 = y 1.
 - O Có nghĩa là x = y [đpcm]

Quy nạp mạnh (Strong induction)

- ☐ Quy nạp thông thường:
 - □ Dùng bước cơ bản: P(1)
 - \square Bước quy nạp: $P(n-1) \rightarrow P(n)$

- ☐ Quy nạp mạnh:
 - □ Dùng bước cơ bản: P(1)
 - \square Bước quy nạp: P(1) và P(2) ... P(n-1) -> P(n)

Quy nạp mạnh

- ☐ Ví dụ: Chứng minh một số nguyên dương lớn hơn 1 có thể được biểu diễn dưới dạng tích của các số nguyên tố.
- ☐ Chứng minh:
 - □ **Bước cơ bản**: P(2) đúng
 - □ Bước quy nạp: Giả sử P(2), P(3),...P(n) đúng.
 Chứng minh P(n+1) cũng đúng. Có 2 trường hợp:
 - O Nếu n+1 là số nguyên tố thì P(n+1) đương nhiên đúng
 - O Nếu n+1 là hợp số thì nó có thể được biểu diễn là tích của 2 số nguyên (n+1) = a*b sao cho 1<a,b<n+1
 - → Từ giả sử P(a) và P(b) đúng, ta có P(n+1) đúng.

Quy nạp mạnh

- ☐ Ví dụ: Một trò chơi trong đó 02 người chơi lần lượt lấy ra một số bất kỳ các que diêm (mà họ muốn) từ một trong 2 cột diêm. Người chơi nào lấy được que diêm cuối cùng sẽ thắng.
 - □ Chứng minh rằng nếu ban đầu 2 cột diêm chứa số que diêm bằng nhau thì người chơi thứ 2 luôn thắng

Định nghĩa đệ quy (Recursive definition)

☐ Một đối tượng (hàm, chuỗi, thuật toán, cấu trúc) trong một số trường hợp có thể được định nghĩa bằng chính nó. Quy trình này được gọi là **đệ quy (recursion)**.

Ví dụ:

☐ Định nghĩa đệ quy của một cấp số cộng:

$$a_n = a + nd$$

$$a_n = a_{n-1} + d$$
, $a_0 = a$

☐ Định nghĩa đệ quy của một cấp số nhân:

$$x_n = ar^n$$

$$x_n = rx_{n-1}, x_0 = a$$

Định nghĩa đệ quy

☐ Trong một số trường hợp, các đối tượng sẽ được định nghĩa một cách dễ dàng và dễ hiểu hơn khi sử dụng **định nghĩa đệ quy**.

Ví dụ:

- ☐ Thuật toán tính ước chung lớn nhất gcd:
 - \Box gcd(79,35) = gcd(35,9)
 - \square Tổng quát hơn: $gcd(a,b) = gcd(b, a \mod b)$
- ☐ Hàm giai thừa
 - n! = n(n-1)! và 0! = 1
- ☐ Các bộ sinh số giả ngẫu nhiên:
 - $\square x_{n+1} = (ax_n + c) \mod m$

Định nghĩa đệ quy các hàm

- ☐ Để định nghĩa đệ quy một hàm trên tập các số nguyên không âm
 - □ Xác định giá trị của hàm tại 0
 - □ Đưa ra một quy tắc để tìm giá trị của hàm tại n+1 với các số nguyên i <= n.

Ví dụ: định nghĩa hàm giai thừa

- $\Box 0! = 1$
- \square n! = n(n-1)!

Định nghĩa đệ quy các hàm

Ví dụ:

- ☐ Giả sử một hàm đệ quy trên tập các số nguyên dương:
 - \Box f(0) = 3
 - \Box f(n+1) = 2f(n) + 3
- ☐ Giá trị của f(0) là gì? 3
 - \Box f(1) = 2f(0) + 3 = 2(3) + 3 = 6 + 3 = 9
 - \Box f(2) = f(1+1) = 2f(1) + 3 = 2(9) + 3 = 18 + 3 = 21
 - \Box f(3) = f(2+1) = 2f(2) + 3 = 2(21) + 3 = 42 + 3 = 45
 - \Box f(4) = f(3+1) = 2f(3) + 3 = 2(45) + 3 = 90 + 3 = 93

Định nghĩa đệ quy

Ví dụ:

- ☐ Hàm f(n) = 2n + 1 với n = 0,1,2,... được định nghĩa đệ quy như sau:
 - \Box f(0) = 1
 - \Box f(n+1) = f(n) +2
- ☐ Chuỗi: $a_n = n^2$ với n = 1,2,3,... được định nghĩa đệ quy như sau:
 - \Box $a_1 = 1$
 - $\Box a_{n+1} = a_n^2 + (2n+1), n >= 1$

Các định nghĩa đệ quy

Ví dụ:

 \square Định nghĩa đệ quy của tổng n số nguyên dương đầu tiên $F(n) = \sum_{i=1}^{n} i$

- \Box F(1) = 1
- \Box F(n+1) = F(n) + (n+1), n >= 1

Định nghĩa đệ quy: xâu ký tự

- ☐ Cho trước tập các chữ cái ∑
 - \square Ví dụ: $\Sigma = \{a,b,c,d\}$
- $\square \sum^*$
 - \square Một tập gồm tất cả các xâu có chứa những kí tự trong Σ
 - \square Ví dụ: $\Sigma^* = \{\text{"",a,aa,aaa,aaa...,ab,...b,bb,bbb,...}\}$
- lacksquare Định nghĩa đệ quy của Σ^*
 - □ Xâu rỗng $\lambda \in \Sigma^*$
 - \square Nếu $w \in \Sigma^*$ và $x \in \Sigma$ thì $wx \in \Sigma^*$

Định nghĩa đệ quy: xâu ký tự (String)

Ví dụ:

☐ Tìm một định nghĩa đệ quy của l(w), là độ dài của xâu w.

☐ Giải pháp:

- \Box l("") = 0; (độ dài của xâu rỗng)
- \square l(wx) = l(w) + 1 nếu $w \in \Sigma^*$ và $x \in \Sigma$.

Định nghĩa đệ quy

- ☐ Các cấu trúc dữ liệu
 - □ Ví dụ: Cây có gốc (rooted tree)

- ☐ Bước cơ bản:
 - ☐ Một nút đơn (đỉnh) là một cây có gốc
- ☐ Bước đệ quy:
 - ☐ Giả sử T1, T2, ... Tk là các cây có gốc, thì đồ thị với một gốc r liên kết với T1, T2,... Tk là một cây có gốc.

- ☐ Một thuật toán được gọi là "**đệ quy**" nếu nó giải quyết một vấn đề bằng cách giải quyết vấn đề tương tự nhưng với kích thước đầu vào nhỏ hơn.
 - □ Dễ cài đặt
- □ Ví dụ:

ALGORITHM 1 A Recursive Algorithm for Computing n!.

```
procedure factorial(n): nonnegative integer)

if n = 0 then return 1

else return n \cdot factorial(n - 1)

{output is n!}
```

☐ Thuật toán đệ quy tính aⁿ.

ALGORITHM 2 A Recursive Algorithm for Computing a^n .

```
procedure power(a: nonzero real number, n: nonnegative integer) if n = 0 then return 1 else return a \cdot power(a, n - 1) {output is a^n}
```

☐ Thuật toán đệ quy tính ước chung lớn nhất

ALGORITHM 3 A Recursive Algorithm for Computing gcd(a, b).

```
procedure gcd(a, b): nonnegative integers with a < b)

if a = 0 then return b

else return gcd(b \bmod a, a)

{output is gcd(a, b)}
```

☐ Thuật toán đệ quy tính lũy thừa modulo bⁿ mod m

ALGORITHM 4 Recursive Modular Exponentiation.

```
procedure mpower(b, n, m): integers with b > 0 and m \ge 2, n \ge 0)
if n = 0 then
   return 1
else if n is even then
   return mpower(b, n/2, m)^2 \mod m
else
   return (mpower(b, \lfloor n/2 \rfloor, m)^2 \mod m \cdot b \mod m) \mod m
{output is b^n \mod m}
```

☐ Thuật toán đệ quy tìm kiếm tuyến tính

ALGORITHM 5 A Recursive Linear Search Algorithm.

```
procedure search(i, j, x: i, j, x \text{ integers}, 1 \le i \le j \le n)
if a_i = x then
    return i
else if i = j then
    return 0
else
    return search(i + 1, j, x)
{output is the location of x in a_1, a_2, \ldots, a_n if it appears; otherwise it is 0}
```

☐ Thuật toán đệ quy tìm kiếm nhị phân

ALGORITHM 6 A Recursive Binary Search Algorithm.

```
procedure binary search(i, j, x: i, j, x integers, 1 \le i \le j \le n)

m := \lfloor (i+j)/2 \rfloor

if x = a_m then

return m

else if (x < a_m \text{ and } i < m) then

return binary search(i, m - 1, x)

else if (x > a_m \text{ and } j > m) then

return binary search(m + 1, j, x)

else return 0

{output is location of x in a_1, a_2, \ldots, a_n if it appears; otherwise it is 0}
```

- ☐ Thuật toán sắp xếp trộn (merge sort)
 - □ Ví dụ: 8, 2, 4, 6, 9, 7, 10, 1, 5, 3

- ☐ Thuật toán sắp xếp trộn (merge sort)
 - \square Độ phức tạp $O(n \log n)$

ALGORITHM 9 A Recursive Merge Sort.

```
procedure mergesort(L = a_1, ..., a_n)

if n > 1 then
m := \lfloor n/2 \rfloor
L_1 := a_1, a_2, ..., a_m
L_2 := a_{m+1}, a_{m+2}, ..., a_n
L := merge(mergesort(L_1), mergesort(L_2))
{L is now sorted into elements in nondecreasing order}
```

□ Hai danh sách đã được sắp xếp gồm m và n phần tử có thể được trộn vào thành 1 danh sách được sắp xếp bằng cách sử dụng không nhiều hơn m + n − 1 phép so sánh.

ALGORITHM 10 Merging Two Lists.

```
procedure merge(L_1, L_2): sorted lists)
L := \text{empty list}
while L_1 and L_2 are both nonempty
remove smaller of first elements of L_1 and L_2 from its list; put it at the right end of L
if this removal makes one list empty then remove all elements from the other list and append them to L
return L\{L \text{ is the merged list with elements in increasing order}\}
```

- ☐ Tính đúng đắn của thuật toán đệ quy được chứng minh bằng phương pháp quy nạp [mạnh] toán học
- ☐ Ví dụ thuật toán aⁿ
 - **Bước cơ bản**: Nếu n = 0, bước đầu tiên của thuật toán cho chúng ta biết power(a, 0) = 1. Điều này đúng vì a^0 =1 với mọi a ≠ 0.
 - □ Bước đệ quy: Giả sử thuật toán tính chính xác được a^k, cần phải chứng minh rằng nó cũng tính chính xác được a^{k+1}
 - O power(a, k+1) = a * power(a, k) = a * $a^k = a^{k+1}$