Resumen de Lógica

Uziel Ludueña

December 10, 2020

Contents

1	Rel	aciones binarias	4
	1.1	Propiedades notables de relaciones binarias	4
	1.2	Relaciones de equivalencia	4
	1.3	Correspondencia entre relaciones de equivalencia y particiones	5
2	Ord	lenes parciales	6
	2.1	Diagramas de Hasse	7
	2.2	Elementos maximales, maximos, minimales y minimos	7
	2.3	Supremos	7
	2.4	Infimos	8
	2.5	Homomorfismos de posets	8
	2.6	Isomorfismo de posets	8
	2.7	Reticulados	9
3	Ver	sion algebraica del concepto de reticulado	13
	3.1	Subreticulados	15
	3.2	Homomorfismo de reticulados	15
	3.3	Congruencia de reticulados	17
4	Ret	iculados acotados	19
	4.1	Subreticulados acotados	19
	4.2	Homomorfismo de reticulados acotados	19
	4.3	Congruencias de reticulados acotados	20

5	Ret	iculados complementados	21			
	5.1	Subreticulados complementados	21			
	5.2	Homomorfismo de reticulados complementados	22			
	5.3	Congruencias de reticulados complementados	23			
6	Alg	ebras de Boole	24			
7	Teo	remas del filtro primo y de Rasiova Sikorski	26			
8	Sint	taxis de la logica de primer orden	29			
	8.1	Ocurrencias	29			
	8.2	Variables	30			
	8.3	Tipos	30			
	8.4	Terminos	31			
		8.4.1 Unicidad de la lectura de terminos	31			
		8.4.2 Subterminos	32			
	8.5	Formulas	34			
		8.5.1 Unicidad de la lectura de formulas	35			
		8.5.2 Subformulas	35			
	8.6	Variables libres	36			
9	Sen	nantica de la logica de primer orden	37			
	9.1	Estructuras de tipo τ	37			
	9.2	El valor de un termino de una estructura	38			
	9.3	El valor de verdad de una formula en un estructura	39			
	9.4	Equivalencia de formulas	40			
	9.5	Homomorfismos	41			
10	Not	acion declaratoria para terminos	42			
11	Not	acion declaratoria para formulas	43			
12	12 Teorias de primer orden					

13 Definicion del concepto de prueba				
13.1 Reglas	47			
13.2 Axiomas logicos	50			
13.3 Justificaciones	50			
13.4 Concatenaciones balanceadas de justificaciones	52			
13.5 Pares adecuados	53			
13.6 Dependencia de constantes en pares adecuados $\dots \dots \dots \dots \dots \dots$	54			
13.7 Definicion de prueba	54			
4 El concepto de teorema				
15 Propiedades basicas de pruebas y teoremas				
15.1 Consistencia	57			
16 El algebra de Lindenbaum				
17 Teorema de la completitud	61			
18 Interpretacion semantica del algebra de Lindembaum	63			
19 La aritmetica de Peano	64			

1 Relaciones binarias

Definición 1. Una relacion binaria sera un conjunto cuyos elementos son pares ordenados. Una relacion binaria sobre un conjunto A sera una relacion binaria, la cual es subconjunto de A^2 .

Notese que si R es una relacion binaria sobre A y $A \subseteq B$, entonces R es una relacion sobre B. Como es usual, cuando R sea una relacion binaria sobre un conjunto A, diremos aRb en lugar de $(a,b) \in R$

1.1 Propiedades notables de relaciones binarias

Algunas propiedades que puede cumplir una relacion binaria R sobre un conjunto A son:

- Reflexividad: xRx, cualesquiera sea $x \in A$
- Transitividad: xRy y yRz implica xRz, cualesquiera sean $x, y, z \in A$
- Simetria: xRy implica yRx, cualesquiera sean $x, y \in A$
- Antisimetria: xRy y yRx implica x = y, cualesquiera sean $x, y \in A$

1.2 Relaciones de equivalencia

Definición 2. Sea A un conjunto cualquiera. Por una relacion de equivalencia sobre A entenderemos una relacion binaria sobre A la cual es reflexiva, transitiva y simetrica, con respecto a A.

Definición 3. Dada una funcion $F: A \to B$, definimos:

$$\ker F = \{(x, y) \in A^2 : F(x) = F(y)\}\$$

Definición 4. Dada una relacion de equivalencia R sobre A y $a \in A$, definimos:

$$a/R = \{b \in A : aRb\}$$

El conjunto a/R sera llamado la clase de equivalencia de a, con respecto a R.

Observacion 1. $a \in a/R$, pues R es reflexiva, por lo tanto aRa.

Observacion 2. $aRb \iff a/R = b/R$, sencillo de demostrar con las propiedades

Observacion 3. $a/R \cap b/R = \emptyset$ o a/R = b/R, sencillo de demostrar viendo que pasa si aRb y si no aRb

Definición 5. Dada una relacion de equivalencia R sobre A, definimos:

$$A/R = \{a/R : a \in A\}$$

Diremos que A/R es el cociente de A por R. Notese que A/R es el conjunto de clases de equivalencia de cada elemento de A.

Observacion 4. Sea $F: A \to B$, entonces:

- 1. F es inyectiva \iff ker $F = \{(x, y) \in A^2 : x = y\}$
- 2. Si F es sobreyectiva, entonces hay una biyeccion entre $A/\ker F$

Definición 6. Si R es una relacion de equivalencia sobre A, definimos la funcion $\pi_R \colon A \to A/R$ por $\pi_R(a) = a/R$, para cada $a \in A$. Esta funcion es llamada la proyeccion canonica respecto de R.

Observacion 5. Sea R una relacion de equivalencia sobre A. Entonces ker $\pi_R = R$

1.3 Correspondencia entre relaciones de equivalencia y particiones

Definición 7. Dado un conjunto A, por una particion de A entenderemos a un conjunto \mathcal{P} tal que:

- Cada elemento de \mathcal{P} es un subconjunto no vacio de A
- Si $S_1, S_2 \in \mathcal{P}$ y $S_1 \neq S_2$, entonces $S_1 \cap S_2 = \emptyset$
- $\bullet \ \ A = \bigcup_{S \in \mathcal{P}} S$

Observacion 6. Si \mathcal{P} es una particion de A, entonces para cada $a \in A$ hay un unico $S \in \mathcal{P}$ tal que $a \in S$.

Definición 8. Dada una particion \mathcal{P} de un conjunto A, podemos definir una relacion binaria asociada a \mathcal{P} de la siguiente manera:

$$R_{\mathcal{P}} = \{(a, b) \in A^2 : a, b \in S, \text{ para algun } S \in \mathcal{P}\}$$

Teorema 1. Sea A un conjunto cualquiera. Sean

$$Part = \{particiones \ de \ A\}$$

$$ReEq = \{relaciones \ de \ equivalencia \ sobre \ A\}$$

Entonces, las funciones:

$$f: Part \to ReEq$$

$$\mathcal{P} \to R_{\mathcal{P}}$$

$$g: ReEq \rightarrow Part$$
 $R \rightarrow A/R$

son biyecciones una de la otra

Proof. Se acepta sin demostracion

2 Ordenes parciales

Definición 9. Una relacion binaria sobre R sobre un conjunto A sera llamada un *orden parcial sobre* A, si es reflexiva, transitiva y antisimetrica respecto de A.

Muchas veces denotaremos con \leq a una relacion binaria que sea un orden parcial.

Ademas, si hemos denotado \leq a cierto orden parcial sobre un conjunto A, entonces:

- 1. Denotaremos con < a la relacion binaria $\{(a,b) \in A^2 : a \leq b \text{ y } a \neq b\}$. Cuando se de que a < b, diremos que a es menor que b, o que b es mayor que a
- 2. Denotaremos con \prec a la relacion binaria $\{(a,b) \in A^2 : a < b \text{ y no existe } z \text{ tal que } a < z < b\}$. Cuando se de que $a \prec b$, diremos que a es cubierto por b o que b cubre a a.

Definición 10. Un *conjunto* parcialmente ordenado o poset, es un par (P, \leq) , donde P es un conjunto no vacio cualquiera $y \leq e$ un orden parcial sobre P. Dado un poset (P, \leq) , el conjunto P sera llamado el *universo* de (P, \leq) .

2.1 Diagramas de Hasse

Dado un poset (P, \leq) . con P finito, podemos realizar un diagrama llamado diagrama de Hasse, siguiendo las siguientes instrucciones:

- 1. Asociar en forma inyectiva a cada $a \in P$ un punto p_a del plano
- 2. Trazar un segmento de recta uniendo los puntos p_a y p_b , cada vez que $a \prec b$
- 3. Realizar los antes dicho de tal forma que:
 - (a) Si $a \prec b$, entonces p_a esta por debajo de p_b
 - (b) Si un punto p_a ocurre en un segmento del diagrama, entonces lo hace en alguno de sus extremos

La relacion de \leq puede ser reconstruida facilmente apartir del diagrama. $a \leq b$ sucedera si y solo si $p_a = p_b$ o hay una sucesion de caminos ascendentes de segmentos desde p_a hasta p_b .

2.2 Elementos maximales, maximos, minimales y minimos

Definición 11. Sea (P, \leq) un poset.

Diremos que $a \in P$ es un elemento maximal de (P, \leq) , si no existe un $b \in P$ tal que a < b.

Diremos que $a \in P$ es un elemento maximo de (P, \leq) si $b \leq a$, para todo $b \in P$. En caso de existir, sera denotado como 1, y muchas veces diremos que (P, \leq) tiene un 1 para expresar que (P, \leq) tiene un maximo

Diremos que $a \in P$ es un elemento minimal de (P, \leq) , si no existe un $b \in P$ tal que b < a.

Diremos que $a \in P$ es un elemento minimo de (P, \leq) si $a \leq b$ para todo $b \in P$. En caso de existir, sera denotado como 0, y muchas veces diremos que (P, \leq) tiene un 0 para expresar que (P, \leq) tiene un minimo

Observacion 7. Un poset (P, \leq) tiene a lo sumo 1 maximo (resp. minimo)

Observacion 8. Todo elemento maximo (resp. minimo) de (P, \leq) es un elemento maximal (resp. minimal) de (P, \leq)

2.3 Supremos

Sea (P, \leq) un poset. Dado $S \subseteq P$, diremos que un elemento $a \in P$ es cota superior de S en (P, \leq) cuando $b \leq a$, para todo $b \in S$. Notese que todo elemento de P es cota superior de \emptyset en (P, \leq) . Un

elemento $a \in P$ sera llamado supremo de S en (P, \leq) , cuando se den las siguientes propiedades:

- 1. a es cota superior de S en (P, \leq)
- 2. Para cada $b \in P$, si b es cota superior de S en (P, \leq) , entonces $a \leq b$

2.4 Infimos

Sea (P, \leq) un poset. Dado $S \subseteq P$, diremos que un elemento $a \in P$ es cota inferior de S en (P, \leq) cuando $a \leq b$, para todo $b \in S$. Notese que todo elemento de P es cota inferior de \emptyset en (P, \leq) . Un elemento $a \in P$ sera llamado infimo de S en (P, \leq) , cuando se den las siguientes propiedades:

- 1. a es cota inferior de S en (P, \leq)
- 2. Para cada $b \in P$, si b es cota inferior de S en (P, \leq) , entonces $b \leq a$

Observacion 9. Si a es supremo (resp. infimo) de S en (P, \leq) y a' es supremo (resp. infimo) de S en (P, \leq) , entonces a = a'

Observacion 10. a es supremo (resp. infimo) de P en $(P, \leq) \iff a$ es maximo (resp. minimo) de (P, \leq)

2.5 Homomorfismos de posets

Definición 12. Sea (P, \leq) y (P', \leq') posets. Una funcion $F: P \to P'$ sera llamada un homomorfismo de (P, \leq) en (P', \leq') si para todo $x, y \in P$ se cumple que $x \leq y$ implica $F(x) \leq' F(y)$. Escribiremos $F: (P, \leq) \to (P', \leq')$ para expresar que F es un homomorfismo de (P, \leq) en (P', \leq')

2.6 Isomorfismo de posets

Definición 13. Sea (P, \leq) y (P', \leq') posets. Una funcion $F: P \to P'$ sera llamada un *isomorfismo* $de(P, \leq)$ en (P', \leq') si F es biyectiva, F es un homomorfismo de (P, \leq) en (P', \leq') y F^{-1} es un homomorfismo de (P, \leq) en (P', \leq') en (P, \leq) . Escribiremos (P, \leq) $\tilde{=}$ (P', \leq') cuando exista un isomorfismo de (P, \leq) en (P', \leq') y en tal caso diremos que (P, \leq) y (P', \leq') son isomorfos.

Definición 14. Dada una funcion $F: A \to B$ y $S \subseteq A$, denotaremos con F(S) al conjunto $\{F(a): a \in S\}$

Lema 2. Sean (P, \leq) y (P', \leq') posets. Supongamos F es un isomorfismo de (P, \leq) y (P', \leq')

- 1. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es cota superior (resp. cota inferior) de $S \iff F(a)$ es cota superior (resp. inferior) de F(S)
- 2. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que existe $\sup(S) \iff \exp(F(S))$, y en el caso de que existan tales elementos, se tiene que $F(\sup(S)) = \sup(F(S))$
- 3. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que existe $\inf(S) \iff existe \inf(F(S))$, y en el caso de que existan tales elementos, se tiene que $F(\inf(S)) = \inf(F(S))$
- 4. Para cada $a \in P$, a es maximo (resp. minimo) \iff F(a) es maximo (resp. minimo)
- 5. Para cada $a \in P$, a es maximal (resp. minimal) \iff F(a) es maximal (resp. minimal)
- 6. Para $a, b \in P$, tenemos $a \prec b \iff F(a) \prec' F(b)$
- Proof. (a) Supongamos a es cota superior de S. Sea $s \in S$. Como $s \le a$, tenemos que $F(s) \le' F(a)$. Supongamos ahora que F(a) es cota superior de F(S). Sea $s \in S$. Como $F(s) \le' F(a)$, tenemos que $s = F^{-1}(F(s)) \le F^{-1}(F(a)) = a$.
- (b) Supongamos que existe $\sup(S)$. Entonces por (a) $F(\sup(S))$ es cota superior de F(S). Supongamos b es cota superior de F(S), entonces $F^{-1}(b)$ es cota superior de S. Por lo tanto, $\sup(S) < F^{-1}(b)$ y entonces $F(\sup(S)) < b$. La vuelta es analoga.
 - (c) La prueba es analoga a (b)
- (d) Supongamos $a \in P$ es maximo. Pero entonces $a = \sup(P)$, y entonces $F(a) = \sup(F(P)) = \sup(P')$. La vuelta es analoga.
- (e) Supongamos $b \in P$ tal que no existe $a \in P$ tal que $b \le a \Rightarrow a = b$. Sea $c \in P$ tal que $F(b) \le' F(c)$, entonces $b \le c$, y entonces b = c, F(b) = F(c). Luego F(b) es maximal. La vuelta es analoga.
- (f) Sean $a, b \in P$ tal que $a \prec b$. Luego tenemos que $F(a) \leq' F(b)$. Supongamos existe $z \in P$ tal que $F(a) \leq' F(z) \leq' F(b)$, entonces tendriamos $a \leq z \leq b$. Como $a \prec b$, se sigue que z = a o z = b. Luego $F(a) \prec' F(b)$. La vuelta es analoga.

2.7 Reticulados

Definición 15. Diremos que un poset (P, \leq) es un *reticulado* si para todo $a, b \in P$, existen $\sup(\{a, b\})$ e $\inf(\{a, b\})$

Definición 16. Dado un reticulado (P, \leq) , definimos 2 operacion binarias:

$$s: P^2 \to P$$

$$(a,b) \to \sup(\{a,b\})$$

$$i: P^2 \to p$$

 $(a,b) \to \inf(\{a,b\})$

Escribiremos $a \mathbf{s} b$ en lugar de s(a,b) y $a \mathbf{i} b$ en lugar de i(a,b)

Lema 3. Dado un reticulado (L, \leq) y elementos $x, y \in L$, se cumplen:

- 1. $x \leq x s y$
- $2. x i y \leq x$
- 3. $x \cdot s \cdot x = x \cdot i \cdot x = x$
- 4. $x \mathbf{s} y = y \mathbf{s} x$
- 5. $x \mathbf{i} y = y \mathbf{i} x$

Proof. (1) Claramente $(x \mathbf{s} y)$ es cota superior de x. Por lo tanto $x \leq x \mathbf{s} y$

- (2) Claramente $(x \mathbf{i} y)$ es cota inferior de x. Por lo tanto $x \mathbf{i} y \leq x$
- (3) Supongamos $(x \mathbf{s} x) = z \neq x$. Tenemos que z es cota superior de x por lo tanto $x \leq z$. Pero tambien x es cota superior de x y por lo tanto z no puede ser la minima cota superior. El caso del infimo es analogo.

(4)
$$(x \mathbf{s} y) = \sup(\{x, y\}) = \sup(\{y, x\}) = (y \mathbf{s} x)$$

(5)
$$(x \mathbf{i} y) = \inf(\{x, y\}) = \inf(\{y, x\}) = (y \mathbf{i} x)$$

Lema 4. Dado un reticulado (L, \leq) y elementos $x, y \in L$, son equivalentes:

- 1. $x \leq y$
- 2. $x \cdot s \cdot y = y$
- 3. x i y = x

Proof. (1) \Rightarrow (2) Claramente y es cota superior de $\{x,y\}$ por (1). Y trivialmente es la minima ya que es igual a uno de sus elementos.

 $(2) \Rightarrow (3)$ Claremente y es cota superior de $\{x,y\}$, por lo tanto $x \leq y$. Luego se tiene que x es cota inferior de $\{x,y\}$. Trivialmente es la maxima.

$$(3) \Rightarrow (1)$$
 Claramente x es cota inferior de $\{x,y\}$, por lo tanto $x \leq y$.

Lema 5 (Leyes de absorcion). Dado un reticulado (L, \leq) y elementos $x, y \in L$, se tiene que:

1.
$$x s (x i y) = x$$

2.
$$x i (x s y) = x$$

Proof. (1) Claramente $(x \mathbf{i} y) \leq x$, y por lo tanto $(x \mathbf{i} y) \mathbf{s} x = x$

(2) Claramente
$$x \leq (x \mathbf{s} y)$$
, y por lo tanto $x \mathbf{i} (x \mathbf{s} y) = x$

Lema 6. Dado un reticulado (L, \leq) y elementos $x, y, z \in L$, se tiene que:

1.
$$(x \ s \ y) \ s \ z = x \ s \ (y \ s \ z)$$

2.
$$(x i y) i z = x i (y i z)$$

Proof. (1) Notese que $x \mathbf{s} (y \mathbf{s} z)$ es cota superior de $\{x, y, z\}$ ya que:

$$x \le x \mathbf{s} (y \mathbf{s} z)$$

 $y \le (y \mathbf{s} z) \le x \mathbf{s} (y \mathbf{s} z)$
 $z \le (y \mathbf{s} z) \le x \mathbf{s} (y \mathbf{s} z)$

En particular, tenemos que $x \mathbf{s} (y \mathbf{s} z)$ es cota superior de $\{x,y\}$, y entonces tenemos que $x \mathbf{s} y \le x \mathbf{s} (y \mathbf{s} z)$. Es decir, $x \mathbf{s} (y \mathbf{s} z)$ es cota superior de $\{x \mathbf{s} y, z\}$, y por lo tanto $(x \mathbf{s} y) \mathbf{s} z \le x \mathbf{s} (y \mathbf{s} z)$.

Notese ahora que $(x \mathbf{s} y) \mathbf{s} z$ es cota superior de $\{x,y,z\}$, ya que:

$$x \le (x \mathbf{s} y) \le (x \mathbf{s} y) \mathbf{s} z$$

 $y \le (x \mathbf{s} y) \le (x \mathbf{s} y) \mathbf{s} z$
 $z < (x \mathbf{s} y) \mathbf{s} z$

En particular, tenemos que $(x \mathbf{s} y) \mathbf{s} z$ es cota superior de $\{y, z\}$, y por lo tanto $y \mathbf{s} z \leq (x \mathbf{s} y) \mathbf{s} z$. Es decir, $(x \mathbf{s} y) \mathbf{s} z$ es cota superior de $\{x, y \mathbf{s} z\}$, y por lo tanto $x \mathbf{s} (y \mathbf{s} z) \leq (x \mathbf{s} y) \mathbf{s} z$.

Luego tenemos que $(x \mathbf{s} y) \mathbf{s} z = x \mathbf{s} (y \mathbf{s} z)$

(2) Es analoga, si alguien la quiere hacer

Lema 7. Dado un reticulado (L, \leq) y elementos $x, y, z, w \in L$, se tiene que si $x \leq z$ y $y \leq w$, entonces

1.
$$x s y \leq z s w$$

2.
$$x i y \leq z i w$$

Proof. (1) Notese que

$$x \leq z \leq z \ \mathbf{s} \ w$$

$$y \le w \le z \mathbf{s} w$$

Luego z s w es cota superior de $\{x,y\}$ y por lo tanto x s $y \leq z$ s w

(2) Notese que

$$z \ge x \ge x \mathbf{i} y$$

$$w \ge y \ge x \mathbf{i} y$$

Luego x i y es cota inferior de $\{z,w\}$ y por lo tanto x i $y \leq z$ i w

Lema 8. Dado un reticulado (L, \leq) y elementos $x, y, z \in L$, se tiene que $(x \ i \ y) \ s \ (x \ i \ z) \leq x \ i \ (y \ s \ z)$

Proof. Notese que

$$(x \mathbf{i} y), (x \mathbf{i} z) \leq x$$

$$(x \mathbf{i} y), (x \mathbf{i} z) \leq y \mathbf{s} z$$

Tenemos entonces que $(x \ \mathbf{i} \ y), (x \ \mathbf{i} \ z) \leq x \ \mathbf{i} \ (y \ \mathbf{s} \ z)$ y por lo tanto $(x \ \mathbf{i} \ y) \ \mathbf{s} \ (x \ \mathbf{i} \ z) \leq x \ \mathbf{i} \ (y \ \mathbf{s} \ z)$

Lema 9. Sea (L, \leq) un reticulado. Dados elementos $x_1, \ldots, x_n \in L$, con $n \geq 2$, se tiene que:

$$(\dots(x_1 \ s \ x_2) \ s \ \dots) \ s \ x_n = \sup(\{x_1, \dots, x_n\})$$

 $(\dots(x_1 \ i \ x_2) \ i \ \dots) \ i \ x_n = \inf(\{x_1, \dots, x_n\})$

Proof. Lo haremos por induccion en n. Claramente el resultado vale para n=2. Supongamos que vale para n y veamos entonces que vale para n+1. Sean $x_1, \ldots, x_{n+1} \in L$. Por hipotesis tenemos que

$$(\dots(x_1 \mathbf{s} x_2) \mathbf{s} \dots) \mathbf{s} x_n = \sup(\{x_1, \dots, x_n\})$$

Es claro que $(...(x_1 \mathbf{s} x_2) \mathbf{s} ...) \mathbf{s} x_{n+1}$ es cota superior de $\{x_1, ..., x_{n+1}\}$. Sea z otra cota superior de $\{x_1, ..., x_{n+1}\}$, entonces tenemos que:

$$(\ldots(x_1 \mathbf{s} x_2) \mathbf{s} \ldots) \mathbf{s} x_n \leq z$$

Pero ademas $x_{n+1} \leq z$ y por lo tanto:

$$(\ldots(x_1 \mathbf{s} x_2) \mathbf{s} \ldots) \mathbf{s} x_{n+1} \leq z$$

La demostracion para el infimo es analoga.

3 Version algebraica del concepto de reticulado

Definición 17. Una terna $(L, \mathbf{s}, \mathbf{i})$, donde L es un conjunto y \mathbf{s} , \mathbf{i} son dos operaciones binarias sobre L sera llamada reticulado cuando cumpla:

- (I1) $x \mathbf{s} x = x \mathbf{i} x = x$, cualesquiera sea $x \in L$
- (I2) $x \mathbf{s} y = y \mathbf{s} x$, cualesquiera sean $x, y \in L$
- (I3) x
iy=yix,cualesquiera sean $x,y\in L$
- (I4) $(x \mathbf{s} y) \mathbf{s} z = x \mathbf{s} (y \mathbf{s} z)$, cualesquiera sean $x, y, z \in L$
- (I5) $(x \mathbf{i} y) \mathbf{i} z = x \mathbf{i} (y \mathbf{i} z)$, cualesquiera sean $x, y, z \in L$

- (I6) $x \mathbf{s} (x \mathbf{i} y) = x$, cualesquiera sean $x, y \in L$
- (I7) $x \mathbf{i} (x \mathbf{s} y) = x$, cualesquiera sean $x, y \in L$

En tal caso que $(L, \mathbf{s}, \mathbf{i})$ sea un reticulado, diremos que L es el universo del reticulado.

Teorema 10. Sea (L, s, i) un reticulado. La relacion binaria definida por:

$$x \le y \iff x \ s \ y = y$$

es un orden parcial sobre L para el cual se cumple que:

$$\sup(\{x,y\}) = x \ \boldsymbol{s} \ y$$

$$\inf(\{x,y\}) = x \ \mathbf{i} \ y$$

 $cualesquiera\ sean\ x,y\in L$

Proof. \leq es reflexiva en L, pues $x \leq x \iff x$ **s** x = x

 \leq es antisimetrico en L, pues si $x\leq y$ tenemos que x sy=y, y por otro lado, tenemos que $y\leq x$ y entonces x sy=x. Luego x=y

 \leq es transitivo, pues si suponemos que $x \leq y$ y $y \leq z$ entonces

$$x \mathbf{s} z = x \mathbf{s} (y \mathbf{s} z) = (x \mathbf{s} y) \mathbf{s} z = y \mathbf{s} z = z$$
. Luego $x \le z$

Tenemos entonces que \leq es un orden parcial sobre L.

Veamos ahora que $\sup(\{x,y\})=x$ **s** y. Es claro que x **s** y es cota superior de $\{x,y\}$. Supongamos que $x,y\leq z$, entonces:

$$(x \mathbf{s} y) \mathbf{s} z = x \mathbf{s} (y \mathbf{s} z) = x \mathbf{s} z = z$$

Luego x **s** $y \le z$ y por lo tanto x **s** y es la menor cota superior.

Para probar que $\inf(\{x,y\}) = x \mathbf{i} y$, primero probaremos que para todo $u, v \in L$,

$$u \le v \iff u \mathbf{i} \ v = u$$

Supongamos $u \mathbf{s} v = v$, entonces $u \mathbf{i} v = u \mathbf{i} (u \mathbf{s} v) = u$

Ahora si veamos que $\inf(\{x,y\}) = x \mathbf{i} y$. Es claro que $x \mathbf{i} y$ es cota inferior de $\{x,y\}$. Supong-

amos que $z \leq x, y$, entonces:

$$(x i y) i z = x i (y i z) = x i z = z$$

Luego $z \le x$ i y y por lo tanto x i y es la mayor cota inferior.

3.1 Subreticulados

Definición 18. Dados reticulados $(L, \mathbf{s}, \mathbf{i})$ y $(L', \mathbf{s'}, \mathbf{i'})$ diremos que $(L, \mathbf{s}, \mathbf{i})$ es un *subreticulado de* $(L', \mathbf{s'}, \mathbf{i'})$ si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. $\mathbf{s} = \mathbf{s}'|_{L \times L}$
- 3. $i = i'|_{L \times L}$

Definición 19. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. Un conjunto $S \subseteq L$ es llamado subuniverso de $(L, \mathbf{s}, \mathbf{i})$ si es no vacio y cerrado bajo las operaciones \mathbf{s} y \mathbf{i}

Observacion 11. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. S es subuniverso de $(L, \mathbf{s}, \mathbf{i}) \iff (S, \mathbf{s}|_{S \times S}, \mathbf{i}|_{S \times S})$ es un subreticulado de $(L, \mathbf{s}, \mathbf{i})$

3.2 Homomorfismo de reticulados

Definición 20. Sean $(L, \mathbf{s}, \mathbf{i})$ y $(L', \mathbf{s'}, \mathbf{i'})$ reticulados. Una funcion $F: L \to L'$ sera llamada un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$ si para todo $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x) \mathbf{s}' F(y)$$

$$F(x \mathbf{i} y) = F(x) \mathbf{i}' F(y)$$

Un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s}', \mathbf{i}')$ sera llamada isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s}', \mathbf{i}')$ cuando sea biyectivo, y su inversa sea tambien un homomorfismo.

Escribiremos $F: (L, \mathbf{s}, \mathbf{i}) \to (L', \mathbf{s'}, \mathbf{i'})$ cuando F sea un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$

Escribiremos $(L, \mathbf{s}, \mathbf{i}) = (L', \mathbf{s}', \mathbf{i}')$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s}', \mathbf{i}')$

Lema 11. Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo

Proof. Debemos probar que F^{-1} es tambien un homomorfismo, es decir que para todo $x, y \in L'$:

$$F^{-1}(x \mathbf{s}, y) = F^{-1}(x) \mathbf{s} F^{-1}(y)$$

$$F^{-1}(x \mathbf{i}' y) = F^{-1}(x) \mathbf{i} F^{-1}(y)$$

Sean $z, w \in L$ los unicos elementos de L tal que cumplen que F(z) = x y F(w) = y. Estos elementos existen y son unicos pues F es biyectiva. Entonces, tenemos que:

$$F^{-1}(F(z) \mathbf{s}, F(w)) = F^{-1}(F(z)) \mathbf{s} F^{-1}(F(w))$$

$$F^{-1}(F(z) i' F(w)) = F^{-1}(F(z)) i F^{-1}(F(w))$$

Y por propiedades de homomorfismo y de funciones con inversa tenemos que:

$$F^{-1}(F(z \mathbf{s} w)) = z \mathbf{s} w$$

$$F^{-1}(F(z \mathbf{i} w)) = z \mathbf{i} w$$

Lema 12. Sean (L, s, i) y (L', s', i') reticulados y sea $F: (L, s, i) \to (L', s', i')$ un homomorfismo. Entonces I_F es un subuniverso de (L', s', i'). Es decir que F es tambien un homomorfismo de (L, s, i) en $(I_F, s'|_{I_F \times I_F}, i'|_{I_F \times I_F})$

Proof. Ya que L no es vacio tenemos que I_F tambien es no vacio. Sean $a,b\in I_F$. Sean $x,y\in L$ tales que F(x)=a y F(y)=b. Se tiene que:

$$a \ \mathbf{s'} \ b = F(x) \ \mathbf{s'} \ F(y) = F(x \ \mathbf{s} \ y) \in I_F$$

$$a$$
 i' $b = F(x)$ i' $F(y) = F(x i y) \in I_F$

Por lo tanto I_F es cerrado bajo s' y i'

Lema 13. Sean (L, s, i) y (L', s', i') reticulados y sean (L, \leq) y (L', \leq') los posets asociados. Sea

 $F: L \to L'$ una funcion. Entonces F es un isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s}', \mathbf{i}') \iff F$ es un isomorfismo de (L, \leq) en (L', \leq')

Proof.

 \Rightarrow

Supongamos F es un isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$. Sean $x, y \in L$ tales que $x \leq y$. Tenemos que y = x s y, por lo cual F(y) = F(x s y) = F(x) s' F(y), produciendo $F(x) \leq' F(y)$.

Ahora sean $x,y\in L'$ tales que $x\leq' y$. Tenemos que y=x s' y, por lo cual $F^{-1}(y)=F^{-1}(x$ s' $y)=F^{-1}(x)$ s $F^{-1}(y)$ produciendo $F^{-1}(x)\leq F^{-1}(y)$.

Supongamos F es un isomorfismo de (L, \leq) en (L', \leq') . Sean $x, y \in L$ tales que y = x **s** y. Tenemos entonces que $x \leq y$ y por lo tanto $F(x) \leq' F(y)$, produciendo $F(y) = F(x \mathbf{s} y) = F(x) \mathbf{s}'$ F(y)

Ahora sean $x,y \in L'$ tales que y=x **s'** y. Tenemos entonces que $x \leq y$ y por lo tanto $F^{-1}(x) \leq F^{-1}(y)$, produciendo $F^{-1}(y) = F^{-1}(x$ **s'** $y) = F^{-1}(x)$ **s** $F^{-1}(y)$

3.3 Congruencia de reticulados

Definición 21. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$ sera una relacion de equivalencia θ la cual cumpla:

$$x\theta x' y y\theta y' \Rightarrow (x \mathbf{s} y)\theta(x' \mathbf{s} y') y (x \mathbf{i} y)\theta(x' \mathbf{i} y')$$

Gracias a tal propiedad podemos definir sobre L/θ dos operaciones binarias $\tilde{\mathbf{s}}$ y $\tilde{\mathbf{i}}$

$$x/\theta \tilde{\mathbf{s}} y/\theta = (x \mathbf{s} y)/\theta$$

$$x/\theta \ \tilde{\mathbf{i}} \ y/\theta = (x \ \mathbf{i} \ y)/\theta$$

Definición 22. La terna $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}})$ es llamada *cociente de* $(L, \mathbf{s}, \mathbf{i})$ sobre θ , y la denotaremos con $(L, \mathbf{s}, \mathbf{i})/\theta$

Lema 14. $(L/\theta, \tilde{s}, \tilde{i})$ es un reticulado. El orden parcial $\tilde{\leq}$ asociado a este reticulado cumple:

$$x/\theta \leq y/\theta \iff y\theta(x \ s \ y)$$

Proof. Veamos que la estructura $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}})$ cumple las propiedades para ser reticulado una a una. Sea $x/\theta, y/\theta, z/\theta$ elementos cualesquiera de L/θ .

(I1)
$$x/\theta \tilde{\mathbf{s}} x/\theta = x/\theta \tilde{\mathbf{i}} x/\theta = x/\theta$$
, pues $x \mathbf{s} x = x \mathbf{i} x = x$

(I2)
$$x/\theta \tilde{\mathbf{s}} y/\theta = y/\theta \tilde{\mathbf{s}} x/\theta$$
, pues $x \mathbf{s} y = y \mathbf{s} x$

(I3)
$$x/\theta \tilde{\mathbf{i}} y/\theta = y/\theta \tilde{\mathbf{i}} x/\theta$$
, pues $x \mathbf{i} y = y \mathbf{i} x$

...

Ahora veamos que el orden parcial \leq dado se cumple en este reticulado. Por definicion, $x/\theta \leq y/\theta \iff y/\theta = x/\theta \text{ is } y/\theta$, por lo cual $x/\theta \leq y/\theta \iff y/\theta = (x \text{ s } y)/\theta$ y por lo tanto $y\theta(x \text{ s } y)$

Lema 15. Si $F:(L, \mathbf{s}, \mathbf{i}) \to (L', s', i')$ es un homomorfismo, entonces ker F es una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$

Proof. Ya sabemos que ker F es una relacion de equivalencia, veamos que en este caso cumple la propiedad para ser congruencia.

Sean $x, x', y, y' \in L$ tal que $x\theta x'$ y $y\theta y'$. Luego, tenemos que F(x) = F(x') y F(y) = F(y'). Entonces claramente $F(x \mathbf{s} y) = F(x) \mathbf{s}'$ $F(y) = F(x') \mathbf{s}'$ $F(y') = F(x' \mathbf{s} y')$, y por lo tanto $(x \mathbf{s} y)\theta(x' \mathbf{s} y')$

Claramente tambien $F(x \mathbf{i} y) = F(x) \mathbf{i}' F(y) = F(x') \mathbf{i}' F(y') = F(x' \mathbf{i} y')$, y por lo tanto $(x \mathbf{i} y)\theta(x' \mathbf{i} y')$

Lema 16. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado y sea θ una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$. Entonces π_{θ} es un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}})$. Ademas $\ker \pi_{\theta} = \theta$.

Proof. Sean $x, y \in L$. Tenemos que

$$\pi_{\theta}(x \mathbf{s} y) = (x \mathbf{s} y)/\theta = x/\theta \tilde{\mathbf{s}} y/\theta = \pi_{\theta}(x) \tilde{\mathbf{s}} \pi_{\theta}(y)$$

$$\pi_{\theta}(x \mathbf{i} y) = (x \mathbf{i} y)/\theta = x/\theta \tilde{\mathbf{i}} y/\theta = \pi_{\theta}(x) \tilde{\mathbf{i}} \pi_{\theta}(y)$$

Por lo tanto π_{θ} conserva la operacion supremo e infimo.

4 Reticulados acotados

Definición 23. Por un reticulado acotado entenderemos una 5-upla $(L, \mathbf{s}, \mathbf{i}, 0, 1)$, tal que $(L, \mathbf{s}, \mathbf{i})$ es un reticulado, $0, 1 \in L$, y ademas se cumplen las siguientes propiedades

- 1. 0 s x = x, para cada $x \in L$
- 2. 1 **s** x = 1, para cada $x \in L$

4.1 Subreticulados acotados

Definición 24. Dados reticulados acotados $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ y (L', s', i', 0', 1') diremos que $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ es un *subreticulado acotado de* (L', s', i', 0', 1') si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. 0 = 0' y 1 = 1'
- 3. $s = s'|_{L \times L}$
- 4. $i = i'|_{L \times L}$

Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Un conjunto $S \subseteq L$ es llamado un *subuniverso* de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ si $0, 1 \in S$, y S es cerrado bajo las operaciones s e i.

4.2 Homomorfismo de reticulados acotados

Definición 25. Sean $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ y (L', s', i', 0', 1') reticulados acotados. Una funcion $F: L \to L'$ sera llamada un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1') si para todo $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x)s'F(y)$$

$$F(x \mathbf{i} y) = F(x)i'F(y)$$

$$F(0) = 0'$$

$$F(1) = 1'$$

Un homomorfismo $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1') sera llamado *isomorfismo* cuando sea biyectivo y su inversa tambien sea un homomorfismo.

Escribiremos $F:(L, \mathbf{s}, \mathbf{i}, 0, 1) \to (L', s', i', 0', 1')$ cuando F sea un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1')

Escribiremos $(L, \mathbf{s}, \mathbf{i}, 0, 1) = (L', s', i', 0', 1')$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1')

Lema 17. Si $F: (L, s, i, 0, 1) \to (L', s', i', 0', 1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Se acepta sin demostracion

Lema 18. Sean (L, s, i, 0, 1) y (L', s', i', 0', 1') reticulados y sea $F: (L, s, i, 0, 1) \rightarrow (L', s', i', 0', 1')$ un homomorfismo. Entonces I_F es un subuniverso de (L', s', i', 0', 1'). Es decir que F es tambien un homomorfismo de (L, s, i, 0, 1) en $(I_F, s'|_{I_F \times I_F}, i'|_{I_F \times I_F}, 0', 1')$

Proof. Se acepta sin demostracion

4.3 Congruencias de reticulados acotados

Definición 26. Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ sera una relacion de equivalencia θ la cual sera una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$. Tenemos definidas sobre L/θ dos operaciones binarias $\tilde{\mathbf{s}}$ y $\tilde{\mathbf{i}}$

$$x/\theta \tilde{\mathbf{s}} y/\theta = (x \mathbf{s} y)/\theta$$

 $x/\theta \tilde{\mathbf{i}} y/\theta = (x \mathbf{i} y)/\theta$

La 5-upla $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}}, 0/\theta, 1/\theta)$ es llamada cociente de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ sobre θ y la denotaremos con $(L, \mathbf{s}, \mathbf{i}, 0, 1)/\theta$

Lema 19. Sea (L, s, i, 0, 1) un reticulado acotado y θ una congruencia sobre (L, s, i, 0, 1).

- 1. $(L/\theta, \tilde{s}, \tilde{i}, 0/\theta, 1/\theta)$ es un reticulado acotado
- 2. π_{θ} es un homomorfismo de (L, s, i, 0, 1) en $(L/\theta, \tilde{s}, \tilde{i}, 0/\theta, 1/\theta)$ cuyo nucleo es θ

Proof. (1) Cuando hablemos de $z, w \in L/\theta$, automaticamente tendremos definidos $x, y \in L$ tal que $x/\theta = z$ y $y/\theta = w$. Demostraremos una a una las propiedades que se deben cumplir:

• $z \tilde{\mathbf{s}} z = z \tilde{\mathbf{i}} z = z$, cualesquiera sea $z \in L/\theta$, pues $x \mathbf{s} x = x \mathbf{i} x = x$

- $z \tilde{\mathbf{s}} w = w \tilde{\mathbf{s}} z$, cualesquiera sean $z, w \in L/\theta$, pues $x \mathbf{s} y = y \mathbf{s} x$
- $z \tilde{\mathbf{i}} w = w \tilde{\mathbf{i}} z$, cualesquiera sean $z, w \in L/\theta$, pues $x \mathbf{i} y = y \mathbf{i} x$
- ullet ... Faciles de demostrar ...
- $0/\theta \ \tilde{\mathbf{s}} \ z = z$, para cada $z \in L/\theta$, pues $0 \ \mathbf{s} \ x = x$
- $1/\theta \ \tilde{\mathbf{s}} \ z = 1$, para cada $z \in L/\theta$, pues 1 **s** x = 1
- (2) Es directo de su analogo para reticulados ternas. Capaz en un futuro lo hago

Lema 20. Si $F: (L, s, i, 0, 1) \to (L', s', i', 0', 1')$ es un homomorfismo de reticulados acotados, entonces ker F es una congruencia sobre (L, s, i, 0, 1)

Proof. Es directo de su analogo para reticulados ternas. Capaz en un futuro lo hago \Box

5 Reticulados complementados

Definición 27. Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Dado $a \in L$, diremos que a es complementado cuando exista un elemento $b \in L$ (llamado complemento de a) tal que:

$$a \mathbf{s} b = 1$$

$$a \mathbf{i} b = 0$$

Definición 28. Entonderemos por reticulado complementado a una 6-upla $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ tal que $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ es un reticulado acotado y c es una operación unaria sobre L tal que:

- 1. $x \mathbf{s} x^c = 1$, para cada $x \in L$
- 2. $x \mathbf{i} x^c = 0$, para cada $x \in L$

5.1 Subreticulados complementados

Definición 29. Dados reticulados complementados $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ diremos que $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ es un *subreticulado complementado de* $(L', s', i', {}^{c'}, 0', 1')$ si se dan las siguientes condiciones:

1. $L \subseteq L'$

2.
$$0 = 0'$$
 y $1 = 1'$

3.
$$s = s'|_{L \times L}$$

4.
$$i = i'|_{L \times L}$$

5.
$$c = c'|_{L}$$

Sea $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un reticulado complementado. Un conjunto $S \subseteq L$ es llamado un *subuniverso* de $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ si $0, 1 \in S$, y S es cerrado bajo las operaciones s, i y c .

5.2 Homomorfismo de reticulados complementados

Definición 30. Sean $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ reticulados complementados. Una funcion $F: L \to L'$ sera llamada un *homomorfismo de* $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$ si para todo $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x)s'F(y)$$

$$F(x \mathbf{i} y) = F(x)i'F(y)$$

$$F(x^c) = F(x)^{c'}$$

$$F(0) = 0'$$

$$F(1) = 1'$$

Un homomorfismo $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^c, 0', 1')$ sera llamado *isomorfismo* cuando sea biyectivo y su inversa tambien sea un homomorfismo.

Escribiremos $F:(L,\mathbf{s},\mathbf{i},{}^c,0,1)\to (L',s',i',{}^{c'},0',1')$ cuando F sea un homomorfismo de $(L,\mathbf{s},\mathbf{i},{}^c,0,1)$ en $(L',s',i',{}^{c'},0',1')$

Escribiremos $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) = (L', s', i', {}^{c'}, 0', 1')$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$

Lema 21. Si $F: (L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) \to (L', s', i', {}^{c'}, 0', 1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Se acepta sin demostracion

Lema 22. Sean $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ $y(L', s', i', {}^{c'}, 0', 1')$ reticulados y sea $F: (L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) \rightarrow (L', s', i', {}^{c'}, 0', 1')$ un homomorfismo. Entonces I_F es un subuniverso de $(L', s', i', {}^{c'}, 0', 1')$. Es decir que F es tambien

un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, {}^{c}, 0, 1)$ en $(I_F, \mathbf{s}'|_{I_F \times I_F}, \mathbf{i}'|_{I_F \times I_F}, {}^{c'}|_{I_F}, 0', 1')$

Proof. Se acepta sin demostracion

5.3 Congruencias de reticulados complementados

Definición 31. Sea $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un reticulado complementado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ sera una relacion de equivalencia θ sobre L la cual cumpla:

- 1. θ es una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, 0, 1)$
- 2. $x/\theta = y/\theta$ implies $x^c/\theta = y^c/\theta$

Las condiciones anteriores nos permiten definir sobre L/θ dos operaciones binarias $\tilde{\mathbf{s}}$ y $\tilde{\mathbf{i}}$ y una operacion binaria \tilde{c} de la siguiente manera:

$$x/\theta \ \tilde{\mathbf{s}} \ y/\theta = (x \ \mathbf{s} \ y)/\theta$$

 $x/\theta \ \tilde{\mathbf{i}} \ y/\theta = (x \ \mathbf{i} \ y)/\theta$
 $(x/\theta)^{\tilde{c}} = x^c/\theta$

La 6-upla $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}}, \tilde{c}, 0/\theta, 1/\theta)$ es llamada *cociente de* $(L, \mathbf{s}, \mathbf{i}, c, 0, 1)$ sobre θ y la denotaremos con $(L, \mathbf{s}, \mathbf{i}, c, 0, 1)/\theta$

Lema 23. Sea $(L, s, i, {}^{c}, 0, 1)$ un reticulado complementado y θ una congruencia sobre $(L, s, i, {}^{c}, 0, 1)$.

- 1. $(L/\theta, \tilde{s}, \tilde{i}, \tilde{c}, 0/\theta, 1/\theta)$ es un reticulado complementado
- 2. π_{θ} es un homomorfismo de $(L, \mathbf{s}, \dot{\mathbf{i}}, {}^{c}, 0, 1)$ en $(L/\theta, \tilde{\mathbf{s}}, \tilde{\dot{\mathbf{i}}}, {}^{\tilde{c}}, 0/\theta, 1/\theta)$ cuyo nucleo es θ

Proof. (1) Por un lema anterior, ya sabemos que $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}}, 0/\theta, 1/\theta)$ es un reticulado acotado. Osea solo nos falta ver que $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}}, \bar{c}, 0/\theta, 1/\theta)$ satisface las propiedades de reticulado complementado. Sea $x/\theta \in L/\theta$. Sabemos que x s $x^c = 1$ y por lo tanto x/θ $\tilde{\mathbf{s}}$ $x^c/\theta = (x$ s $x^c)/\theta = 1/\theta$. Similarmente, sabemos que x i $x^c = 0$ y por lo tanto x $\tilde{\mathbf{i}}$ $x^c = 0/\theta$

(2) Por lema anterior tenemos que π_{θ} es un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en $(L/\theta, \tilde{\mathbf{s}}, \tilde{\mathbf{i}}, 0/\theta, 1/\theta)$ cuyo nucleo es θ . Notese que por definicion de \tilde{c} tenemos que $x^c/\theta = (x/\theta)^{\tilde{c}}$, y por lo tanto $\pi_{\theta}(x^c) = (\pi_{\theta}(x))^{\tilde{c}}$, cualquiera sea $x \in L$.

Lema 24. Si $F: (L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) \to (L', s', i', {}^{c'}, 0', 1')$ es un homomorfismo de reticulados complementados, entonces ker F es una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$

Proof. Se acepta sin demostracion

6 Algebras de Boole

Definición 32. Un reticulado $(L, \mathbf{s}, \mathbf{i})$ se llamara distributivo cuando cumpla la siguiente propiedad

$$Dis_1 \quad x \ \mathbf{i} \ (y \ \mathbf{s} \ z) = (x \ \mathbf{i} \ y) \ \mathbf{s} \ (x \ \mathbf{i} \ z)$$
cualesquiera sean $x,y,z \in L$

Diremos que un reticulado acotado $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ (resp. complementado $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$) es distributivo cuando $(L, \mathbf{s}, \mathbf{i})$ lo sea.

Consideremos la distributividad dual a Dis_1 , es decir:

$$Dis_2 \quad x \ \mathbf{s} \ (y \ \mathbf{i} \ z) = (x \ \mathbf{s} \ y) \ \mathbf{i} \ (x \ \mathbf{s} \ z)$$
 cualesquiera sean $x,y,z \in L$

Lema 25. Sea (L, s, i) un reticulado. Entonces (L, s, i) satisface $Dis_1 \iff (L, s, i)$ satisface Dis_2 Proof. Supongamos (L, s, i) satisface Dis_1 . Notese que

$$(x \mathbf{s} y) \mathbf{i} (x \mathbf{s} z) = ((x \mathbf{s} y) \mathbf{i} x) \mathbf{s} ((x \mathbf{s} y) \mathbf{i} z) \quad (Dis_1 + idempotencia)$$

$$= x \mathbf{s} (z \mathbf{i} (x \mathbf{s} y)) \qquad (Dis_1)$$

$$= x \mathbf{s} ((z \mathbf{i} x) \mathbf{s} (z \mathbf{i} y)) \qquad (Conmutatividad)$$

$$= (z \mathbf{i} y) \mathbf{s} ((z \mathbf{i} x) \mathbf{s} x) \qquad (idempotencia)$$

$$= (z \mathbf{i} y) \mathbf{s} x$$

Por lo tanto cumple Dis_2 .

Supongamos ahora $(L, \mathbf{s}, \mathbf{i})$ satisface Dis_2 . Notese que

$$(x \mathbf{i} y) \mathbf{s} (x \mathbf{i} z) = ((x \mathbf{i} y) \mathbf{s} x) \mathbf{i} ((x \mathbf{i} y) \mathbf{s} z) \quad (Dis_2 + idempotencia)$$

$$= x \mathbf{i} (z \mathbf{s} (x \mathbf{i} y)) \qquad (Dis_2)$$

$$= x \mathbf{i} ((z \mathbf{s} x) \mathbf{i} (z \mathbf{s} y)) \qquad (Conmutatividad)$$

$$= (z \mathbf{s} y) \mathbf{i} ((z \mathbf{s} x) \mathbf{i} x) \qquad (idempotencia)$$

$$= (z \mathbf{s} y) \mathbf{i} x$$

Por lo tanto cumple Dis_1 .

Definición 33. Por un Algebra de Boole entenderemos un reticulado complementado distributivo.

Lema 26. Si $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento.

Proof. Supongamos $x \in L$ tiene complementos y, z. Se tiene que:

$$y = y \mathbf{i} 1 = y \mathbf{i} (x \mathbf{s} z) = (y \mathbf{i} x) \mathbf{s} (y \mathbf{i} z) = 0 \mathbf{s} (y \mathbf{i} z) = y \mathbf{i} z$$

$$z = z \mathbf{i} 1 = z \mathbf{i} (x \mathbf{s} y) = (z \mathbf{i} x) \mathbf{s} (z \mathbf{i} y) = 0 \mathbf{s} (z \mathbf{i} y) = z \mathbf{i} y$$

Por lo tanto $y \le z$ y $z \le y$, entonces y = z.

Lema 27. Sea $(B, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un algebra de Boole, y sean $x, y \in B$. Se tiene que $y = (y \ \mathbf{i} \ x) \ \mathbf{s} \ (y \ \mathbf{i} \ x^c)$

Proof. Se tiene que:

$$y = y i 1 = y i (x s x^{c}) = (y i x) s (y i x^{c})$$

Teorema 28. Sea (B, s, i, c, 0, 1) un algebra de Boole.

1.
$$(x i y)^c = x^c s y^c$$

2.
$$(x \ s \ y)^c = x^c \ i \ y^c$$

3.
$$x^{cc} = x$$

4.
$$x i y = 0 \iff y \le x^c$$

5.
$$x \le y \iff y^c \le x^c$$

Proof.

(1) Veamos que x^c **s** y^c es complemento de x **i** y:

$$(x^c \mathbf{s} y^c) \mathbf{s} (x \mathbf{i} y) = ((x^c \mathbf{s} y^c) \mathbf{s} x) \mathbf{i} ((x^c \mathbf{s} y^c) \mathbf{s} y) = 1 \mathbf{i} 1 = 1$$

$$(x^c \mathbf{s} y^c) \mathbf{i} (x \mathbf{s} y) = ((x^c \mathbf{s} y^c) \mathbf{i} x) \mathbf{s} ((x^c \mathbf{s} y^c) \mathbf{i} y) = 0 \mathbf{s} 0 = 0$$

Como es un algebra de Boole, se tiene que el complemento es unico y por lo tanto $(x \mathbf{i} y)^c = x^c \mathbf{s} y^c$.

- (2) Facil, igual al (1)
- (3) Por definicion, x es complemento de x^c . Como tenemos un algebra de Boole, este complemento es unico y por lo tanto $x^{cc} = x$
- (4) Facil, usar lema anterior
- (5) Supongamos $x \leq y$. Entonces x **i** y = x, lo cual por (1) nos dice que x^c **s** $y^c = x^c$, obteniendo $y^c \leq x^c$. Supongamos ahora $y^c \leq x^c$, luego x^c **i** $y^c = y^c$, lo cual por (1) nos dice que x^{cc} **s** $y^{cc} = y^{cc}$. Esto por (3) nos dice que x **s** y = y y por lo tanto $x \leq y$.

7 Teoremas del filtro primo y de Rasiova Sikorski

Definición 34. Un filtro de un reticulado $(L, \mathbf{s}, \mathbf{i})$ sera un subconjunto $F \subseteq L$ tal que:

- 1. $F \neq \emptyset$
- 2. $x, y \in F \Rightarrow x \mathbf{i} y \in F$
- 3. $x \in F, x \le y \Rightarrow y \in F$

Definición 35. Dado un conjunto $S \subseteq L$, denotemos con [S] el siguiente conunto:

$$\{y \in L : y \ge s_1 \mathbf{i} \dots \mathbf{i} s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \ge 1\}$$

Lema 29. Supongamos que S es no vacio. Entonces [S] es un filtro. Mas aun, si F es un filtro y $S \subseteq F$, entonces $[S] \subseteq F$. Es decir, [S] es el menor filtro que contiene a S.

Proof. Ya que $S \subseteq [S)$, tenemos que $[S) \neq \emptyset$.

Claramente [S) cumple la propiedad (3), pues $x \in [S), x \le y \Rightarrow y \in [S)$

Veamos que cumple la 2. Sean $y, z \in S$, entonces tenemos que $y \geq s_1$ **i** ... **i** s_n y $z \geq t_1$ **i** ... **i** t_m , con $s_1, \ldots, s_n, t_1, \ldots, t_m \in S$. Claramente y **i** $z >= s_1$ **i** ... **i** s_n **i** t_1 **i** ... **i** t_m Dado este resultado, diremos que [S] es el filtro generado por S.

Definición 36. Sea (P, \leq) un poset. Un subconjunto $C \subseteq P$ sera llamado una cadena si para cada $x, y \in C$ se tiene que $x \leq y$ o $y \leq x$

Lema 30 (Zorn). Sea (P, \leq) un poset y supogamos cada cadena de (P, \leq) tiene cota superior. Entonces hay un elemento maximal en (P, <)

Proof. Supongamos que el lema es falso, es decir, tenemos un poset (P, \leq) tal que cada cadena de (P, \leq) tiene cota superior, pero para cada $x \in P$, se tiene que existe un $y \in P$ tal que x < y.

Por definicion $P \neq \emptyset$, (en caso de que se permitiese $P = \emptyset$, de todas formas la cadena vacia debe tener cota superior, y por lo tanto $P \neq \emptyset$)

Sea $z \in P$ un elemento cualquiera, y sea b una funcion que asigna a cada cadena de P un elemento mayor a su cota superior (cota superior estricta). En particular elegimos b tal que $b(\{\}) = z$

Definimos una cadena $A \subseteq P$ como valida cuando se cumpla la siguiente propiedad:

• Para todo $x \in A$, se tiene que $x = b(\{y \in A : y < x\})$

Es facil ver que si A y B son dos cadenas validas distintas, entonces $A\subset B$ o $B\subset A$

Con esta ultima afirmacion, si tenemos una cadena valida A y un $x \in A$, siempre que exista un y < x, se tiene que o $y \in A$ o y no esta en ninguna cadena valida.

Se sigue que U= "union de todas las cadenas validas posibles", es tambien, una cadena valida. Sea x=b(U). Pero entonces $U \cup \{x\}$ es una cadena valida tambien. Ademas $U=U \cup \{x\}$ por definicion de U, y por lo tanto $x \in U$. Abs!, pues x deberia ser cota superior <u>estricta</u> de U

Definición 37. Un filtro F de un reticulado $(L, \mathbf{s}, \mathbf{i})$ sera llamado primo cuando se cumplan:

1. $F \neq L$

2.
$$x \mathbf{s} y \in F \Rightarrow x \in F \text{ o } y \in F$$

Teorema 31 (Teorema del Filtro Primo). Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado distributivo y F un filtro. Supongamos $x_0 \in L - F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ $y F \subseteq P$

Proof. Sea

$$\mathcal{F} = \{F_1 : F_1 \text{ es un filtro}, x_0 \not\in F_1 \text{ y } F \subseteq F_1\}$$

Notese que $\mathcal{F} \neq \emptyset$, por lo cual (\mathcal{F}, \subseteq) es un poset. Veamos que cada cadena en (\mathcal{F}, \subseteq) tiene cota superior. Sea C una cadena. Si $C = \emptyset$, entonces cualquier elemento de \mathcal{F} es cota de C. Supongamos entonces $C \neq \emptyset$. Sea

$$G = \{x \in L : x \in F_1, \text{ para algun } F_1 \in C\}$$

Veamos que G es un filtro. Es claro que G es no vacio. Supongamos $x, y \in G$. Sean $F_1, F_2 \in \mathcal{F}$ tales que $x \in F_1$ y $y \in F_2$. Si $F_1 \subseteq F_2$, entonces ya que F_2 es un filtro, tenemos que x i $y \in F_2 \subseteq G$. Similarmente, si $F_2 \subseteq F_1$, entonces x i $y \in F_1 \subseteq G$. No es necesario ver que pasa si $F_1 \not\subseteq F_2$ y $F_2 \not\subseteq F_1$ ya que G es una cadena.

Por otro lado, sean $x \in G$ e y tal que $x \leq y$. Dado que $x \in G$, tenemos que $x \in F_1$ para algun $F_1 \in C$. Como F_1 es un filtro, tenemos que $y \in F_1$, y por lo tanto $y \in G$. Hemos demostrado que G es un filtro.

Ademas, $x_0 \notin G$, por lo que $G \in \mathcal{F}$ es cota superior de C. Por lema de Zorn, (\mathcal{F}, \subseteq) tiene un elemento maximal P. Veamos que P es un filtro primo. Supongamos x s $y \in P$ y $x, y \notin P$. Notese que $[P \cup \{x\})$ es un filtro el cual contiene propiamente a P. Entonces ya que P es maximal de (\mathcal{F}, \subseteq) , tenemos que $x_0 \in [P \cup \{x\})$. Analogamente tenemos que $x_0 \in [P \cup \{y\})$. Por lo tanto, tenemos elementos $p_1, \ldots, p_n \in P$ tal que:

$$x_0 \geq p_1 \mathbf{i} \ldots \mathbf{i} p_n \mathbf{i} x$$

Identicamente tenemos elementos $q_1, \ldots, q_m \in P$ tales que:

$$x_0 \ge q_1 \mathbf{i} \dots \mathbf{i} q_m \mathbf{i} y$$

Sea $p = p_1$ **i** ... **i** p_n **i** q_1 **i** ... **i** q_m , tenemos que $x_0 \ge p$ **i** x y $x_0 \ge p$ **i** y. Se tiene entonces que $x_0 \ge (p$ **i** x) **s** (p **i** y) = p **i** (x **s** y) $\in P$. **Abs!** pues $x_0 \not\in P$

Teorema 32 (Rasiova y Sikorski). Sea $(B, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un algebra de Boole. Sea $x \in B, x \neq 0$. Supongamos que $(A_1, A_2, ...)$ es un infinitupla de subconjuntos de B tal que existe $\inf(A_j)$, para cada j = 1, 2, ... Entonces hay un filtro primo P el cual cumple:

1. $x \in P$

2. $A_j \subseteq P \Rightarrow \inf(A_j) \in P$, para cada j = 1, 2, ...

Proof. Se acepta sin demostracion

8 Sintaxis de la logica de primer orden

8.1 Ocurrencias

Definición 38. Dadas palabras $\alpha, \beta \in \Sigma^*$, con $|\alpha|, |\beta| \ge 1$, y un natural $i \in \{1, \dots, |\beta|\}$, se dice que α ocurre a partir de i en β cuandos se de que existan palabras δ, γ tales que $\beta = \delta \alpha \gamma$ y $|\delta| = i - 1$ Notese que una palabra α puede ocurrir en β a partir de i y tambien a partir de j, con $i \ne j$. Por ejemplo, aba ocurre dos veces en la palabra

abacaba

Cuando dos ocurrencias no se superpongan en alguna posicion, se las llamara disjuntas

A veces, diremos que una ocurrencia esta contenida o sucede dentro de otra. Por ejemplo, la segunda ocurrencia de b esta contenida en la segunda ocurrencia de aba

Tambien se podra hablar de *reemplazos* de ocurrencias por palabras. Por ejemplo, podriamos reemplazar las ocurrencias de *aca* por *abacaba*, dando como resultado

ababacababa

En algunos casos, se debera especificar que los reemplazos se haran simultaneamente en vez de secuencialmente. Por ejemplo, no es lo mismo primero reemplazar aca por d y luego d por bb

abbbba

Que hacerlo simultaneamente dando como resultado

abdba

Definición 39. Diremos que α es subpalabra (propia) de β cuando ($\alpha \notin \{\varepsilon, \beta\}$ y) existan palabras δ, γ , tales que $\beta = \delta \alpha \gamma$

Definición 40. Diremos que β es un tramo inicial (propio) de α si hay una palabra de γ tal que $\alpha = \beta \gamma$ (y $\beta \notin \{\varepsilon, \alpha\}$). En forma similar se define tramo final (propio)

8.2 Variables

Definición 41. Sea Var el siguiente conjunto de palabras del alfabeto $\{X, 0, 1, \dots, 9, 0, 1, \dots, 9\}$:

$$Var = \{X\mathbf{0}, \dots, X\mathbf{9}, X1\mathbf{0}, \dots, X2\mathbf{0}, \dots, X10\mathbf{0}, \dots\}$$

Es decir, el n-esimo elemento de Var sera la palabra de la forma $X\alpha$, donde α es el resultado de reemplazar en la representacion decimal de n su ultimo simbolo por el numeral en bold, y el resto por sus numerales en italics.

A los elementos de Var se los llamara variables.

Denotaremos con x_i al i-esimo elemento de Var, para cada $i \in \mathbb{N}$.

8.3 Tipos

Definición 42. Por un tipo (de primer orden) entenderemos una 4-upla $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ tal que:

- 1. Hay alfabetos finitos $\Sigma_1, \Sigma_2, \Sigma_3$ tales:
 - (a) $\mathcal{C} \subseteq \Sigma_1^+, \mathcal{F} \subseteq \Sigma_2^+, \mathcal{R} \subseteq \Sigma_3^+$
 - (b) $\Sigma_1, \Sigma_2, \Sigma_3$ son disjuntos de a pares
 - (c) $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ no contiene ningun simbolo de la lista: $\forall \exists \neg \lor \land \rightarrow \leftrightarrow$ (), $\equiv X \ \theta \ 1 \ \dots \ \theta \ 0 \ 1 \ \dots \ \theta$
- 2. $a: \mathcal{F} \cup \mathcal{R} \to \mathbf{N}$ es una funcion que a cada $p \in \mathcal{F} \cup \mathcal{R}$ le asocia un numero natural a(p), llamado la aridad de p
- 3. Ninguna palabra de \mathcal{C} (resp. \mathcal{F}, \mathcal{R}) es subpalabra propia de otra palabra de \mathcal{C} (resp. \mathcal{F}, \mathcal{R})

A los elementos de C (resp. \mathcal{F}, \mathcal{R}) los llamaremos nombres de constante (resp. nombres de funcion, nombres de relacion) de tipo τ

Dado $n \ge 1$, definamos

$$\mathcal{F}_n = \{ f \in \mathcal{F} : a(f) = n \}$$

$$\mathcal{R}_n = \{ r \in \mathcal{R} : a(r) = n \}$$

8.4 Terminos

Dado un tipo τ , definamos recursivamente los conjuntos de palabras T_k^{τ} , con $k \geq 0$, de la siguiente manera:

$$T_0^{\tau} = Var \cup \mathcal{C}$$

 $T_{k+1}^{\tau} = T_k^{\tau} \cup \{ f(t_1, \dots, t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, \dots, t_n \in T_k^{\tau} \}$

Sea

$$T^\tau = \bigcup_{k>0} T_k^\tau$$

Los elementos de T^{τ} seran llamados terminos de tipo τ . Un termino t es llamado cerrado si x_i no ocurre en t, para cada $i \in \mathbf{N}$.

Definimos tambien:

$$T_c^{\tau} = \{ t \in T^{\tau} : t \text{ es cerrado} \}$$

Lema 33. Supongamos $t \in T_k^{\tau}$, con $k \geq 1$. Entonces ya sea $t \in Var \cup \mathcal{C}$ o $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_{k-1}^{\tau}$

Proof.

Caso k = 1: Es directo ya que por definicion:

$$T_1^{\tau} = Var \cup \mathcal{C} \cup \{f(t_1, \dots, t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, \dots, t_n \in T_0^{\tau}\}$$

Caso $k \implies k+1$. Sea $t \in T_{k+1}^{\tau}$. Por definicion tenemos que $t \in T_k^{\tau}$ o $t = f(t_1, \ldots, t_n)$ con $f \in \mathcal{F}_n, n \ge 1, t_1, \ldots, t_n \in T_k^{\tau}$. Si se da $t \in T_k^{\tau}$ entonces aplicamos hipotesis inductiva. Si no se da tal cosa, entonces es justamente lo que nos dice el enunciado del lema.

8.4.1 Unicidad de la lectura de terminos

Lema 34 (Mordizqueo de Terminos). Sean $s, t \in T^{\tau}$ y supongamos que hay palabras x, y, z, con $y \neq \varepsilon$ tales que s = xy y t = yz. Entonces $x = z = \varepsilon$ o $s, t \in \mathcal{C}$. En particular si un termino es tramo inicial o final de otro termino, entonces dichos terminos son iguales.

Proof. Se acepta sin demostracion
$$\Box$$

Teorema 35 (Lectura unica de terminos). Dado $t \in T^{\tau}$ se da una de las siguientes:

- 1. $t \in Var \cup C$
- 2. Hay unicos $n \geq 1, f \in \mathcal{F}_n, t_1, \ldots, t_n \in T^{\tau}$ tales que $t = f(t_1, \ldots, t_n)$

Proof. Solo necesitamos demostrar la unicidad del punto 2, el resto ya se demostro. Supongamos que

$$t = f(t_1, \dots, t_n) = g(s_1, \dots, s_m)$$

con $n, m \geq 1, f \in \mathcal{F}_n, g \in \mathcal{F}_m, t_1, \ldots, t_n, s_1, \ldots, s_m \in T^{\tau}$. Claramente f = g y por lo tanto n = m = a(f). Ahora bien, si leemos letra por letra apartir del primer parentesis '(', terminara primero t_1 o s_1 , pero nunca deben diferir entre si. Esto nos dice que t_1 es tramo inicial de s_1 o viceversa. Por lema anterior, $t_1 = s_1$. Con el mismo razonamiento podemos demostrar que se cumple $t_2 = s_2, \ldots, t_n = s_n$

8.4.2 Subterminos

Definición 43. Sean $s, t \in T^{\tau}$. Diremos que s es subtermino (propio) de t si (no es igual a t y) s es subpalabra de t.

Lema 36. Sean $r, s, t \in T^{\tau}$

- 1. Si $s \neq t = f(t_1, ..., t_n)$ y s ocurre en t, entonces dicha ocurrencia sucede dentro de algun $t_j, j = 1, ..., n$
- 2. Si r, s ocurren en t, entonces dichas ocurrencias son disjuntas o una ocurre dentro de otra. En particular las distintas ocurrencias de r en t son disjuntas
- 3. Si t' es el resultado de reemplazar una ocurrencia de s en t por r, entonces $t' \in T^{\tau}$

Proof.

- (1) Haremos analisis por casos:
 - Si s ocurriera en t a partir de $i \in \{1, ..., |f|\}$, entonces tenemos que s es de la forma $g(s_1, ..., s_m)$ (no puede ser ni Var ni C), y por lo tanto g es tramo final de f **Abs!**
 - Es claro que s no comienza ni con ",", ni con "(", ni con ")"
 - Solo queda el caso en el que la ocurrencia de s comienza en algun t_j . (Fotocopia dice \rightarrow Lema de Mordizqueo para Terminos nos conduce a que debe estar contenida en t_j y listo, pero yo soy menos picante y no entiendo porque)

Supongamos que la ocurrencia no esta contenida en t_j , y sea t_k (j < k) el ultimo termino que forma parte de la ocurrencia (aunque sea parcialmente).

Es evidente que este k existe, pues la ocurrencia de s no puede tomar el ultimo parentesis de t, sino, seria tramo final de t y podriamos aplicar Lema de Mordizqueo para terminos directamente. Ademas, s no puede terminar con una ",".

Sea $n = |t_j|$ y $m = |t_k|$. Se usara la notación p[i] para referirse a la letra i-esima de p.

Tenemos entonces que $s = t_j[l] \dots t_j[n], t_{j+1}, \dots t_{k-1}, t_k[1] \dots t_k[r]$ Notese que hay una coma justo despues de $t_j[n]$, por lo tanto apartir de algun $i \in \{l, \dots, n\}$ debe comenzar el nombre de una funcion. Esta funcion no cierra su parentesis dentro de t_j . Es importante notar que los parentesis se cierran a la derecha, no a la izquierda, osea que no nos importa la parte $t_j[1] \dots t_j[l-1]$, y por lo tanto esto nos dice que los parentesis en t_j no estan balanceados Abs!

(2) Supongamos $t \in Var \cup \mathcal{C}$, si r, s ocurren en t, entonces r = s = t y por lo tanto r esta contenida en la ocurrencia de s.

Ahora supongamos que vale para T_k^{τ} y veamos para T_{k+1}^{τ} . Si $t \in T_k^{\tau}$ podemos aplicar hipotesis directamente, y sino, tenemos que $t = f(t_1, \ldots, t_n)$, para $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_k^{\tau}$. Si r o s ocurren a partir de algun $i \in \{1, \ldots, |f|\}$, entonces solo pueden ocurrir a partir de 1, y eso hace que las ocurrencias se contengan trivialmente. Ahora si no pasa esto, las ocurrencias suceden dentro de los t_i . Sean r_1, \ldots, r_q y s_1, \ldots, s_w los indices de los terminos donde ocurren r y s respectivamente. Tomemos cualquier $1 \leq x \leq q$ y $1 \leq y \leq w$. Si $r_x = s_y$ entonces por hipotesis las ocurrencias se contienen o son disjuntas, y sino, las ocurrencias son claramente disjuntas.

(3) Supongamos $t \in Var \cup \mathcal{C}$, si s ocurre en t entonces s = t. Si reemplazamos la ocurrencia por r, entonces t' = r es un termino. Ahora supongamos que vale para T_k^{τ} y veamos para T_{k+1}^{τ} . Si $t \in T_k^{\tau}$ entonces vale por hipotesis. Si $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_k^{\tau}$, de nuevo tenemos dos casos. Si s ocurre apartir de $\{1, \ldots, |f|\}$ entonces s ocurre a partir de 1, y por lo tanto t = s, y por lo tanto t' = r es termino. Sino, s ocurre en algun t_i , y por hipotesis, reemplazar en ese termino la ocurrencia nos da como resultado un termino, y por lo tanto $t' \in T^{\tau}$ es termino.

8.5 Formulas

Definición 44. Sea τ un tipo. Las palabras de alguna de las siguientes dos formas:

$$(t \equiv s)$$
, con $t, s \in T^{\tau}$
 $r(t_1, \dots, t_n)$, con $r \in \mathcal{R}_n, n \ge 1$, y $t_1, \dots, t_n \in T^{\tau}$

seran llamadas formulas atomicas de tipo τ

Definición 45. Dado un tipo τ definamos recursivamente los conjuntos de palabras F_k^{τ} , con $k \geq 0$, de la siguiente manera:

$$\begin{split} F_0^\tau &= \{\text{formulas atomicas}\} \\ F_{k+1}^\tau &= F_k^\tau \cup \{\neg \varphi : \varphi \in F_k^\tau\} \cup \{(\varphi \vee \psi) : \varphi, \psi \in F_k^\tau\} \cup \{(\varphi \wedge \psi) : \varphi, \psi \in F_k^\tau\} \\ &\quad \cup \{(\varphi \to \psi) : \varphi, \psi \in F_k^\tau\} \cup \{(\varphi \leftrightarrow \psi) : \varphi, \psi \in F_k^\tau\} \\ &\quad \cup \{\forall v \varphi : \varphi \in F_k^\tau, v \in Var\} \cup \{\exists v \varphi : \varphi \in F_k^\tau, v \in Var\} \end{split}$$

Sea

$$F^\tau = \bigcup_{k \ge 0} F_k^\tau$$

Los elementos de F^{τ} seran llamados formulas de tipo τ

Lema 37. Supongamos $\varphi \in F_k^{\tau}$, con $k \geq 1$. Entonces φ es de alguna de las siguientes formas:

- $(t \equiv s)$, $con \ t, s \in T^{\tau}$
- $r(t_1,\ldots,t_n)$, $con\ r\in\mathcal{R}_n,t_1,\ldots,t_n\in T^{\tau}$
- $(\varphi_1 \eta \varphi_2)$, $con \ \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, $\varphi_1, \varphi_2 \in F_{k-1}^{\tau}$
- $\neg \varphi_1, \ con \ \varphi_1 \in F_{k-1}^{\tau}$
- $Qv\varphi_1$, $con\ Q \in \{\forall,\exists\}, v \in Var\ y\ \varphi_1 \in F_{k-1}^{\tau}$

Proof. Induccion en k simple.

8.5.1 Unicidad de la lectura de formulas

Proposicion 38 (Mordizqueo de formulas). Si $\varphi, \psi \in F^{\tau}$ y x, y, z son tales que $\varphi = xy$, $\psi = yz$ y $y \neq \varepsilon$, entonces $z = \varepsilon$ y $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \ y \ v \in Var\})^*$. En particular ningun tramo inicial propio de una formula es una formula

Proof. Se acepta sin demostracion

Teorema 39 (Lectura unica de formulas). Dada $\varphi \in F^{\tau}$ se da una y solo una de las siguientes:

- 1. $(t \equiv s)$, con $t, s \in T^{\tau}$
- 2. $r(t_1,\ldots,t_n)$, con $r \in \mathcal{R}_n, t_1,\ldots,t_n \in T^{\tau}$
- 3. $(\varphi_1 \eta \varphi_2)$, con $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, $\varphi_1, \varphi_2 \in F^{\tau}$
- 4. $\neg \varphi_1$, $con \varphi_1 \in F^{\tau}$
- 5. $Qv\varphi_1$, con $Q \in \{\forall, \exists\}, v \in Var \ y \ \varphi_1 \in F^{\tau}$

Mas aun, tales descomposiciones son unicas.

Proof. Si una formula φ satisface (1), entonces φ no puede contener simbolos del alfabeto $\{\land, \lor, \to, \leftrightarrow\}$ lo cual garantiza que φ no puede satisfacer (3). Ademas φ no puede satisfacer (2), (4), (5) ya que comienza con "(". Es facil ver que cumplir (2), (3), (4), (5) es excluyente tambien.

La unicidad de la decomposicion de (4), (5) es obvia. La de (3) se desprende del lema anterior (supongamos que lo descomponemos de otra forma, entonces φ_1 sera tramo inicial propio de φ'_1 o al reves). La de (1), (2) se desprenden del lema analogo para terminos.

8.5.2 Subformulas

Definición 46. Una formula φ sera llamada una *subformula (propia)* de una formula ψ , cuando φ (sea no igual a ψ y) tenga alguna ocurrencia en ψ .

Lema 40. Sea τ un tipo

- 1. Las formulas atomicas no tienen subformulas propias
- 2. Si φ ocurre propiamente en $(\psi \eta \phi)$, entonces tal ocurrencia es en ψ o en ϕ
- 3. Si φ ocurre propiamente en $\neg \psi$, entonces tal ocurrencia es en ψ

- 4. Si φ ocurre propiamente en $Qx_k\psi$, entonces tal ocurrencia es en ψ
- 5. Si φ_1, φ_2 ocurren en φ , entonces dichas ocurrencias son disjuntas o una contiene a la otra

6. Si λ' es el resultado de reemplazar alguna ocurrencia de φ en λ por ψ , entonces $\lambda' \in F^{\tau}$

Proof. Se acepta sin demostracion

8.6 Variables libres

Definición 47. Definimos recursivamente la relacion "v ocurre libremente en φ a partir de i", donde $v \in Var, \varphi \in F^{\tau}$ y $i \in \{1, \ldots, |\varphi|\}$ de la siguiente manera:

- 1. Si φ es atomica, entonces v ocurre libremente en φ a partir de $i\iff v$ ocurre en φ a partir de i
- 2. Si $\varphi = (\varphi_1 \eta \varphi_2)$, entonces v ocurre libremente en φ a partir de $i \iff v$ ocurre libremente en φ_1 a partir de i-1 o v ocurre libremente en φ_2 a partir de $i-|(\varphi_1 \eta)|$
- 3. Si $\varphi = \neg \varphi_1$, entonces v ocurre libremente en φ a partir de $i \iff v$ ocurre libremente en φ_1 a partir de i-1
- 4. Si $\varphi = Qw\varphi_1$, entonces v ocurre libremente en φ a partir de $i \iff v \neq w$ y v ocurre libremente en φ_1 a partir de i |Qw|

Dados $v \in Var, \varphi \in F^{\tau}$ y $i \in \{1, ..., |\varphi|\}$, diremos que "v ocurre acotadamente en φ a partir de i cuando v ocurre en φ a partir de i y v no ocurre libremente en φ a partir de i

Definición 48. Dada una formula φ , sea

 $Li(\varphi) = \{v \in Var : \text{ hay un } i \text{ tal que } v \text{ ocurre libremente en } \varphi \text{ a partir de } i\}$

Los elementos de $Li(\varphi)$ seran llamados variables libres de φ . Una sentencia sera una formula φ tal que $Li(\varphi) = \emptyset$. Usaremos S^{τ} para denotar el conjunto de las sentencias de tipo τ .

Lema 41. Sea τ un tipo

- 1. $Li((t \equiv s)) = \{v \in Var : v \text{ ocurre en } t \text{ o } v \text{ ocurre en } s\}$
- 2. $Li(r(t_1,\ldots,t_n)) = \{v \in Var : v \text{ ocurre en algun } t_i\}$

- 3. $Li(\neg \varphi) = Li(\varphi)$
- 4. $Li((\varphi \eta \psi)) = Li(\varphi) \cup Li(\psi)$
- 5. $Li(Qx_i\varphi) = Li(\varphi) \{x_i\}$

Proof. Para (1), (2), tenemos por definiciones que si $v \in Var$ ocurren en $(t \equiv s)$ (resp. en $(r(t_1, \ldots, t_n))$), entonces v ocurre en t o v ocurre en s (resp. v ocurre en algun t_i).

Para (3), notar que si $v \in Li(\varphi)$, entonces v ocurre libremente a partir de i en φ , y entonces ocurrira libremente a partir de i+1 en $\neg \varphi$ y por lo tanto $v \in Li(\neg \varphi)$. Ahora bien si $v \in Li(\neg \varphi)$, entonces ocurre libremente a partir de i, pero por definicion ocurre libremente a partir de i-1 en φ , y entonces $v \in L(\varphi)$

Para (4), notar que si $v \in Li((\varphi \eta \psi))$, entonces v ocurre libremente en $(\varphi \eta \psi)$ a partir de i. Por definicion, tenemos que v ocurre libremente en φ a partir de i-1 o v ocurre libremente en ψ a partir de $i-|(\varphi \eta|,$ con lo cual $v \in Li(\varphi) \cup Li(\psi)$. Ahora si $v \in Li(\varphi) \cup Li(\psi)$, tenemos 2 casos. Si $v \in Li(\varphi)$, entonces v ocurre libremente en φ a partir de i, y por definicion v ocurre libremente en $(\varphi \eta \psi)$ a partir de i+1, con lo cual $v \in Li((\varphi \eta \psi))$. Si $v \in Li(\psi)$, entonces v ocurre libremente en v a partir de v a partir de v por definicion v ocurre libremente en v a partir de v por definicion v ocurre libremente en v a partir de v por definicion v ocurre libremente en v a partir de v por definicion v ocurre libremente en v por lo tanto $v \in Li((\varphi \eta \psi))$.

Para (5) supongamos que $v \in Li(Qx_j\varphi)$, entonces hay un i tal que v ocurre libremente en $Qx_j\varphi$ a partir de i. Por definicion tenemos que $v \neq x_j$ y v ocurre libremente en φ a partir de $i - |Qx_j|$, con lo cual $v \in Li(\varphi) - \{x_j\}$ Supogamos ahora que $v \in Li(\varphi) - \{x_j\}$. Por definicion tenemos que hay un i tal que v ocurre libremente en φ a partir de i. Ya que $v \neq x_j$ esto nos dice por definicion que v ocurre libremente en $Qx_j\varphi$ a partir de $i + |Qx_j|$, con lo cual $v \in Li(Qx_j\varphi)$

9 Semantica de la logica de primer orden

9.1 Estructuras de tipo τ

Definición 49. Sea A un conjunto y sea $n \in \mathbb{N}$. Por una operacion n-aria sobre A, entenderemos una funcion cuyo dominio es A^n y cuya imagen esta contenida en A.

Definición 50. Sea A un conjunto y sea $n \in \mathbb{N}$. Por una relacion n-aria sobre A entenderemos un subconjunto de A^n .

Definición 51. Sea A un conjunto, $n \in \mathbb{N}$ y τ un tipo. Una estructura o modelo de tipo τ sera un par $\mathbf{A} = (A, i)$ tal que:

- 1. A es un conjunto no vacio llamado el universo de ${\bf A}$
- 2. i es una funcion con dominio $\mathcal{C} \cup \mathcal{F} \cup \mathcal{R}$ tal que:
 - (a) para cada $c \in \mathcal{C}$, i(c) es un elemento de A
 - (b) para cada $f \in \mathcal{F}_n$, i(f) es una operación n-aria sobre A
 - (c) para cada $r \in \mathcal{R}_n$, i(r) es una relacion n-aria sobre A

Lema 42. Dados A, B conjuntos finitos no vacios, hay $|B|^{|A|}$ funciones tales que su dominio es A y su imagen esta contenida en B.

Proof. Notese que a cada elemento $a \in A$ podemos asignarle cualquier $b \in B$, esto nos da facilmente $|B|^{|A|}$ funciones posibles. Mas formalmente, deberiamos probar que la siguiente funcion es biyectiva:

$$F: \{f: D_f = A \text{ y } I_f \subseteq B\} \to B^{|A|}$$
$$f \to (f(a_1), \dots, f(a_n))$$

Lo cual es bastante facil de hacer.

9.2 El valor de un termino de una estructura

Definición 52. Sea $\mathbf{A} = (A, i)$ una estructura de tipo τ . Una asignacion de \mathbf{A} sera un elemento de $A^{\mathbf{N}} = \{\text{infinituplas de elementos de } A\}$. Si $\vec{a} = (a_1, a_2, \dots)$ es una asignacion, entonces diremos que a_i es el valor que \vec{a} le asigna a la variable x_i

Definición 53. Sea $\mathbf{A} = (A, i)$ una estructura de tipo $\tau, t \in T^{\tau}$ y $\vec{a} \in A^{\mathbf{N}}$ una asignacion, definimos recursivamente $t^{\mathbf{A}}[\vec{a}]$:

- 1. Si $t = x_i \in Var$, entonces $t^{\mathbf{A}}[\vec{a}] = a_i$
- 2. Si $t = c \in \mathcal{C}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(c)$
- 3. Si $t = f(t_1, \dots, t_n)$ con $f \in \mathcal{F}_n, n \ge 1$ y $t_1, \dots, t_n \in T^{\tau}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(f)(t_1^{\mathbf{A}}[\vec{a}], \dots, t_n^{\mathbf{A}}[\vec{a}])$

El elemento $t^{\mathbf{A}}[\vec{a}]$ sera llamado el valor de t en la estructura \mathbf{A} para la asignación \vec{a}

Lema 43. Sea **A** una estructura de tipo τ y sea $t \in T^{\tau}$. Supongamos que \vec{a}, \vec{b} son asignaciones tales que $a_i = b_i$, cada vez que x_i ocurra en t. Entonces $t^{\mathbf{A}}[\vec{a}] = t^{\mathbf{B}}[\vec{b}]$

Proof. Sea Teo_k la proposicion que dice que el lema vale para $t \in T_k^{\tau}$.

 Teo_0 es facil de probar (constantes no cambian con las asignaciones, y las simples variables obviamente tendran el mismo valor).

Veamos $\text{Teo}_k \implies \text{Teo}_{k+1}$. Supongamos $t \in T_{k+1}^{\tau} - T_k^{\tau}$ y sean \vec{a}, \vec{b} asignaciones tales que $a_i = b_i$ cada vez que x_i ocurra en t. Notese que $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_k^{\tau}$. Para cada $j = 1, \ldots, n$ tenemos que $a_i = b_i$ cada vez que x_i ocurra en t_j , entonces por hipotesis inductiva tenemos que

$$t_i^{\mathbf{A}}[\vec{a}] = t_i^{\mathbf{A}}[\vec{b}], j = 1, \dots, n$$

Se tiene entonces que $t^{\mathbf{A}}[\vec{a}] = i(f)(t_1^{\mathbf{A}}[\vec{a}], \dots, t_n^{\mathbf{A}}[\vec{a}]) = i(f)(t_1^{\mathbf{A}}[\vec{b}], \dots, t_n^{\mathbf{A}}[\vec{b}]) = t^{\mathbf{A}}[\vec{b}]$

9.3 El valor de verdad de una formula en un estructura

Definición 54. Sea $\vec{a} \in A^{\mathbf{N}}$ una asignacion y $a \in A$, denotaremos con $\downarrow_i^a (\vec{a})$ a la asignacion que resulta de reemplazar en \vec{a} el i-esimo elemento por a.

Definición 55. Sea **A** una estructura de tipo τ , $\vec{a} \in A^{\mathbf{N}}$ una asignacion y $\varphi \in F^{\tau}$, definimos entonces recursivamente la relacion $A \models \varphi[\vec{a}]$ (escribiremos $A \not\models \varphi[\vec{a}]$ cuando no se de $A \models \varphi[\vec{a}]$):

1. Si
$$\varphi=(t\equiv s)$$
, entonces $\mathbf{A}\models\varphi[\vec{a}]\iff t^{\mathbf{A}}[\vec{a}]=s^{\mathbf{A}}[\vec{a}]$

2. Si
$$\varphi = r(t_1, \dots, t_m)$$
, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff (t_1^{\mathbf{A}}[\vec{a}], \dots, t_m^{\mathbf{A}}[\vec{a}]) \in i(r)$

3. Si
$$\varphi = (\varphi_1 \wedge \varphi_2)$$
, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi_1[\vec{a}] \text{ y } \mathbf{A} \models \varphi_2[\vec{a}]$

4. Si
$$\varphi = (\varphi_1 \vee \varphi_2)$$
, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi_1[\vec{a}] \text{ o } \mathbf{A} \models \varphi_2[\vec{a}]$

5. Si
$$\varphi = (\varphi_1 \to \varphi_2)$$
, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi_2[\vec{a}] \text{ o } \mathbf{A} \not\models \varphi_1[\vec{a}]$

- 6. Si $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff$ ya sea se dan $\mathbf{A} \models \varphi_1[\vec{a}]$ y $\mathbf{A} \models \varphi_2[\vec{a}]$ o se dan $\mathbf{A} \not\models \varphi_1[\vec{a}]$ y $\mathbf{A} \not\models \varphi_2[\vec{a}]$
- 7. Si $\varphi = \neg \varphi_1$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \not\models \varphi_1[\vec{A}]$
- 8. Si $\varphi = \forall x_i \varphi_1$, entocnes $\mathbf{A} \models \varphi[\vec{a}] \iff \text{para cada } a \in A$, se da que $\mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$
- 9. Si $\varphi = \exists x_i \varphi_1$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff$ hay un $a \in A$ tal que $\mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$

Cuando se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} satisface φ en la asignacion \vec{a} y en tal caso diremos que φ es verdadera en \mathbf{A} para la asignacion \vec{a} .

Cuando se de $\mathbf{A} \not\models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} no satisface φ en la asignacion \vec{a} y en tal caso diremos que φ es falsa en \mathbf{A} para la asignacion \vec{a} .

Tambien hablaremos del valor de verdad de φ en \mathbf{A} para la asignacion \vec{a} el cual sera igual a 1 si se da $\mathbf{A} \models \varphi[\vec{a}]$ y 0 en caso contrario.

Lema 44. Supongamos que \vec{a}, \vec{b} son asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi[\vec{b}]$

Corolario 45. Si φ es una sentencia, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi[\vec{b}]$, cualesquiera sean las asignaciones \vec{a}, \vec{b}

Proof. Trivial ya que las sentencias no tienen variables libres, y por lo tanto aplica el lema anterior.

Definición 56. Dada una sentencia φ , diremos que φ es *verdadera* en **A** cuando su valor de verdad sea 1, y, en caso de que su valor de verdad sea 0, diremos que es *falsa*

Ademas una sentencia de tipo τ sera llamada universalmente valida si es verdadera en cada modelo de tipo τ

9.4 Equivalencia de formulas

Definición 57. Dadas $\varphi, \psi \in F^{\tau}$ diremos que φ y ψ son equivalentes cuande se de la siguiente condicion:

$$\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \psi[\vec{a}]$$
, para cada modelo de tipo τ, \mathbf{A} y cada $\vec{a} \in A^{\mathbf{N}}$

Escribiremos $\varphi \sim \psi$ cuando φ y ψ sean equivalentes. Notese que \sim es una relacion de equivalencia.

Lema 46. Son validas las siguientes propiedades:

- 1. Si $Li(\phi) \cup Li(\psi) \subseteq \{x_{i_1}, \dots, x_{i_n}\}$, entonces $\phi \sim \psi \iff la \ sentencia \ \forall x_{i_1}, \dots, \forall x_{i_n} (\phi \leftrightarrow \psi)$ es universalmente valida
- 2. Si $\phi_i \sim \psi_i$, i = 1, 2, entonces $\neg \phi_1 \sim \neg \psi_1$, $(\phi_1 \eta \phi_2) \sim (\psi_1 \eta \psi_2)$ y $Qv\phi_1 \sim Qv\psi_1$

3. Si $\phi \sim \psi$ y α' es el resultado de reemplazar en una formula α algunas (posiblemente 0) ocurrencias de ϕ por ψ , entonces $\alpha \sim \alpha'$

9.5 Homomorfismos

Definición 58. Dado un modelo de tipo τ , $\mathbf{A} = (A, i)$, para cada $s \in \mathcal{C} \cup \mathcal{F} \cup \mathcal{R}$, usaremos $s^{\mathbf{A}}$ para denotar a i(s).

Definición 59. Sean A, B modelos de tipo τ . Una funcion $F: A \to B$ sera un homomorfismo de A en B si se cumplen las siguientes:

- 1. $F(c^{\mathbf{A}}) = c^{\mathbf{B}}$, para todo $c \in \mathcal{C}$
- 2. $F(f^{\mathbf{A}}(a_1,\ldots,a_n)) = f^{\mathbf{B}}(F(a_1),\ldots,F(a_n))$, para cada $f \in \mathcal{F}_n, a_1,\ldots,a_n \in A$
- 3. $a_1, \ldots, a_n \in r^{\mathbf{A}}$ implica $(F(a_1), \ldots, F(a_n)) \in r^{\mathbf{B}}$, para todo $r \in \mathcal{R}_n, a_1, \ldots, a_n \in A$

Un isomorfismo de \mathbf{A} en \mathbf{B} sera un homomorfismo de \mathbf{A} en \mathbf{B} el cual sea biyectivo y cuya inversa sea un homomorfismo de \mathbf{B} en \mathbf{A} . Diremos que los modelos \mathbf{A} y \mathbf{B} son isomorfos (en simbolos: $\mathbf{A} = \mathbf{B}$) cuando haya un isomorfismo F de \mathbf{A} en \mathbf{B} .

Diremos que $F \colon \mathbf{A} \to \mathbf{B}$ es un homomorfismo para expresar que F es un homomorfismo de \mathbf{A} en \mathbf{B}

Diremos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo para expresar que F es un isomorfismo de \mathbf{A} en \mathbf{B}

Lema 47. Sea $F: \mathbf{A} \to \mathbf{B}$ un homomorfismo. Entonces

$$F(t^{\mathbf{A}}[(a_1, a_2, \dots)]) = t^{\mathbf{B}}[(F(a_1), F(a_2), \dots)]$$

para cada $t \in T^{\tau}, (a_1, a_2, \dots) \in A^{\mathbf{N}}$

Lema 48. Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, \dots)] \iff \mathbf{B} \models \varphi[(F(a_1), F(a_2), \dots)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$. En particular **A** y **B** satisfacen las mismas sentencias de tipo τ .

10 Notacion declaratoria para terminos

Definición 60. Sea t un termino de tipo τ , entonces escribiremos $t =_d t(v_1, \ldots, v_n)$ para declarar que v_1, \ldots, v_n son variables distintas tales que toda variable que ocurre en t pertenece a $\{v_1, \ldots, v_n\}$

Convencion 1. Cuando hayamos hecho la declaración $t =_d t(v_1, \ldots, v_n)$, si P_1, \ldots, P_n son palabras cualesquiera, entonces $t(P_1, \ldots, P_n)$ denotara la palabra que resulta de reemplazar simultaneamente cada ocurrencia de v_1 por P_1, \ldots , cada ocurrencia de v_n por P_n

Convencion 2. Cuando hayamos declarado $t =_d t(v_1, \ldots, v_n)$, si **A** es un modelo de tipo τ y $a_1, \ldots, a_n \in A$, entonces con $t^{\mathbf{A}}[a_1, \ldots, a_n]$ denotaremos al elemento $t^{\mathbf{A}}[\vec{b}]$, donde \vec{b} es una asignacion tal que a cada v_i le asigna el valor a_i

Lema 49. Sea τ un tipo cualquiera y supongamos $t \in T^{\tau}$. Si $t =_d t(v_1, \ldots, v_n)$, entonces se da alguna de las siguientes:

- 1. t = c, para algun $c \in C$
- 2. $t = v_j$, para algun j
- 3. $t = f(t_1, ..., t_m)$, con $f \in \mathcal{F}_m$ y $t_1, ..., t_m \in T^{\tau}$ tales que las variables que ocurren en cada uno de ellos estan en $\{v_1, ..., v_n\}$

Convencion 3. Cuando hayamos declarado $t =_d t(v_1, \ldots, v_n)$ y se de el caso (3) del lema anterior, tendremos hechas las declaraciones $t_1 =_d t_1(v_1, \ldots, v_n), \ldots, t_m =_d t_m(v_1, \ldots, v_n)$

Lema 50. Sea τ un tipo cualquiera $y \ t \in T^{\tau}$. Supongamos $t =_d t(v_1, \ldots, v_n)$. Sea \mathbf{A} un modelo de tipo τ . Sean $a_1, \ldots, a_n \in A$. Se tiene que:

- 1. Si t = c, entonces $t^{\mathbf{A}}[a_1, \dots, a_n] = c^{\mathbf{A}}$
- 2. Si $t = v_j$, entonces $t^{\mathbf{A}}[a_1, \dots, a_n] = a_j$
- 3. Si $t = f(t_1, \ldots, t_m)$, con $f \in \mathcal{F}_m$ y $t_1, \ldots, t_m \in T^{\tau}$, entonces

$$t^{\mathbf{A}}[a_1, \dots, a_n] = f^{\mathbf{A}}(t_1^{\mathbf{A}}[a_1, \dots, a_n], \dots, t_m^{\mathbf{A}}[a_1, \dots, a_n])$$

Proof. TODO

11 Notacion declaratoria para formulas

Definición 61. Si φ es una formula de tipo τ , entonces escribiremos $\varphi =_d \varphi(v_1, \ldots, v_n)$ para declarar que v_1, \ldots, v_n son variables distintas tales que $Li(\varphi) \subseteq \{v_1, \ldots, v_n\}$.

Convencion 4. Cuando hayamos hecho la declaración $\varphi =_d \varphi(v_1, \dots, v_n)$, si P_1, \dots, P_n son palabras cualesquiera, entonces $\varphi(P_1, \dots, P_n)$ denotaria la palabra que resulta de reemplazar simultaneamente cada ocurrencia libre de v_1 en φ por P_1, \dots , cada ocurrencia libre de v_n en φ por P_n

Convencion 5. Cuando hayamos declarado $\varphi =_d \varphi(v_1, \ldots, v_n)$, si \mathbf{A} es un modelo de tipo τ y $a_1, \ldots, a_n \in A$, entonces $\mathbf{A} \models \varphi[a_1, \ldots, a_n]$ significara que $\mathbf{A} \models \varphi[\vec{b}]$, donde \vec{b} es una asignacion tal que a cada v_i le asigna el valor a_i . En general, $\mathbf{A} \not\models \varphi[a_1, \ldots, a_n]$ significara que no sucede $\mathbf{A} \models \varphi[a_1, \ldots, a_n]$

Lema 51. Sea τ un tipo cualquiera $y \varphi \in F^{\tau}$. Supongamos $\varphi =_d \varphi(v_1, \ldots, v_n)$, entonces se cumple una y solo una de las siguientes:

- 1. $\varphi = (t \equiv s)$, con $t, s \in T^{\tau}$, unicos y tales que las variables que ocurren en t o en s estan todas en $\{v_1, \ldots, v_n\}$
- 2. $\varphi = r(t_1, \ldots, t_m)$, con $r \in \mathcal{R}_m$ y $t_1, \ldots, t_m \in T^{\tau}$, unicos y tales que las variables que ocurren en cada t_i estan todas en $\{v_1, \ldots, v_n\}$
- 3. $\varphi = (\varphi_1 \land \varphi_2), \ con \ \varphi_1, \varphi_2 \in F^{\tau}, \ unicas \ y \ tales \ que \ Li(\varphi_1) \cup Li(\varphi_2) \subseteq \{v_1, \dots, v_n\}$
- 4. $\varphi = (\varphi_1 \vee \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$, unicas y tales que $Li(\varphi_1) \cup Li(\varphi_2) \subseteq \{v_1, \dots, v_n\}$
- 5. $\varphi = (\varphi_1 \to \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$, unicas y tales que $Li(\varphi_1) \cup Li(\varphi_2) \subseteq \{v_1, \dots, v_n\}$
- 6. $\varphi = (\varphi_1 \leftrightarrow \varphi_2), \ con \ \varphi_1, \varphi_2 \in F^{\tau}, \ unicas \ y \ tales \ que \ Li(\varphi_1) \cup Li(\varphi_2) \subseteq \{v_1, \dots, v_n\}$
- 7. $\varphi = \neg \varphi_1$, con $\varphi_1 \in F^{\tau}$, unica y tal que $Li(\varphi_1) \subseteq \{v_1, \dots, v_n\}$
- 8. $\varphi = \forall v_j \varphi_1, \ con \ v_j \in \{v_1, \dots, v_n\}, \ y \ \varphi_1 \in F^{\tau}, \ unica \ y \ tal \ que \ Li(\varphi_1) \subseteq \{v_1, \dots, v_n\}$
- 9. $\varphi = \forall v_j \varphi_1, \ con \ v_j \in Var \{v_1, \dots, v_n\}, \ y \ \varphi_1 \in F^{\tau}, \ unica \ y \ tal \ que \ Li(\varphi_1) \subseteq \{v_1, \dots, v_n, v\}$
- 10. $\varphi = \exists v_j \varphi_1, \ con \ v_j \in \{v_1, \dots, v_n\}, \ y \ \varphi_1 \in F^{\tau}, \ unica \ y \ tal \ que \ Li(\varphi_1) \subseteq \{v_1, \dots, v_n\}$
- 11. $\varphi = \exists v_j \varphi_1, \ con \ v_j \in Var \{v_1, \dots, v_n\}, \ y \ \varphi_1 \in F^{\tau}, \ unica \ y \ tal \ que \ Li(\varphi_1) \subseteq \{v_1, \dots, v_n, v\}$

Proof. TODO

Convencion 6. Cuando hayamos declarado $\varphi =_d \varphi(v_1, \dots, v_n)$ entonces:

• Si se da el caso (1) del lema anterior, supondremos tacitamente que tambien hemos hecho las declaraciones $t =_d t(v_1, \ldots, v_n)$ y $s =_d s(v_1, \ldots, v_n)$

- Si se da el caso (2) del lema anterior, supondremos tacitamente que tambien hemos hecho las declaraciones $t_1 =_d t_1(v_1, \ldots, v_n), \ldots, t_m =_d t_m(v_1, \ldots, v_n)$
- Si se da alguno de los casos (3), (4), (5) o (6) del lema anterior, supondremos tacitamente que tambien hemos hecho las declaraciones $\varphi_1 =_d \varphi_1(v_1, \dots, v_n)$ y $\varphi_2(v_1, \dots, v_n)$
- Si se da alguno de los casos (7), (8) o (10) del lema anterior, supondremos tacitamente que tambien hemos hecho la declaración $\varphi_1 =_d \varphi_1(v_1, \dots, v_n)$
- Si se da alguno de los casos (9) u (11) del lema anterior, supondremos tacitamente que tambien hemos hecho la declaración $\varphi_1 =_d \varphi_1(v_1, \dots, v_n, v)$

Lema 52. Supongamos $\varphi =_d \varphi(v_1, \ldots, v_n)$. Sea $\mathbf{A} = (A, i)$ un modelo de tipo τ y sean $a_1, \ldots, a_n \in A$. Entonces:

1. $Si \varphi = (t \equiv s)$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff t^{\mathbf{A}}[a_1, \dots, a_n] = s^{\mathbf{A}}[a_1, \dots, a_n]$$

2. $Si \varphi = r(t_1, \ldots, t_m)$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff (t_1^{\mathbf{A}}[a_1, \dots, a_n], \dots, t_m^{\mathbf{A}}[a_1, \dots, a_n]) \in r^{\mathbf{A}}$$

3. $Si \varphi = (\varphi_1 \wedge \varphi_2), entonces$

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \models \varphi_1[a_1, \dots, a_n] \ y \ \mathbf{A} \models \varphi_2[a_1, \dots, a_n]$$

4. $Si \varphi = (\varphi_1 \vee \varphi_2)$, entonces

$$\mathbf{A} \models \varphi[a_1,\ldots,a_n] \iff \mathbf{A} \models \varphi_1[a_1,\ldots,a_n] \ o \ \mathbf{A} \models \varphi_2[a_1,\ldots,a_n]$$

5. $Si \varphi = (\varphi_1 \rightarrow \varphi_2)$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \models \varphi_2[a_1, \dots, a_n] \ o \ \mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$$

6. $Si \varphi = (\varphi_1 \leftrightarrow \varphi_2)$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff ya \text{ sea se dan } \mathbf{A} \models \varphi_1[a_1, \dots, a_n] \text{ y } \mathbf{A} \models \varphi_2[a_1, \dots, a_n], \text{ o se dan}$$

 $\mathbf{A} \not\models \varphi_1[a_1, \dots, a_n] \text{ y } \mathbf{A} \not\models \varphi_2[a_1, \dots, a_n]$

7. $Si \varphi = \neg \varphi_1$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$$

8. $Si \varphi = \forall v_i \varphi_1, entonces$

$$\mathbf{A} \models \varphi[a_1,\ldots,a_n] \iff \mathbf{A} \models \varphi_1[a_1,\ldots,a_{j-1},a,a_{j+1},\ldots,a_n], \text{ para todo } a \in A$$

9. Si $\varphi = \forall v \varphi_1$, con $v \notin \{v_1, \dots, v_n\}$ y $\varphi_1 =_d \varphi_1(v_1, \dots, v_n, v)$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \models \varphi_1[a_1, \dots, a_n, a], \ para \ todo \ a \in A$$

10. Si $\varphi = \exists v_j \varphi_1$, entonces

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \models \varphi_1[a_1, \dots, a_{i-1}, a, a_{i+1}, \dots, a_n], \text{ para algun } a \in A$$

11. Si $\varphi = \exists v \varphi_1, \ con \ v \notin \{v_1, \dots, v_n\} \ y \ \varphi_1 =_d \varphi_1(v_1, \dots, v_n, v), \ entonces$

$$\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{A} \models \varphi_1[a_1, \dots, a_n, a], \text{ para algun } a \in A$$

Proof. Se acepta sin demostracion

Dos teoremas de reemplazo

Teorema 53 (De reemplazo para terminos).

Supongamos $t =_d t(w_1, \ldots, w_k), s_1 =_d s_1(v_1, \ldots, v_n), \ldots, s_k =_d s_k(v_1, \ldots, v_n).$ Todas las variables de $t(s_1, \ldots, s_k)$ estan en $\{v_1, \ldots, v_n\}$ y si declaramos $t(s_1, \ldots, s_k) =_d t(s_1, \ldots, s_k)(v_1, \ldots, v_n)$, entonces para cada estructura \mathbf{A} y $a_1, \ldots, a_n \in A$ se tiene que:

$$t(s_1, \dots, s_k)^{\mathbf{A}}[a_1, \dots, a_n] = t^{\mathbf{A}}[s_1^{\mathbf{A}}[a_1, \dots, a_n], \dots, s_k^{\mathbf{A}}[a_1, \dots, a_n]]$$

Proof. Se acepta sin demostracion

Definición 62. Sea $\varphi \in F^{\tau}$, $v, w \in Var$. Diremos que v es sustituible por w en φ cuando ninguna ocurrencia libre de v en φ sucede dentro de una ocurrencia de una subformula de la forma $Qw\psi$ en φ .

Lema 54. Sea $\varphi \in F^{\tau}$, $v, w \in Var$. Se cumplen las siguientes propiedades:

- 1. $Si \varphi$ es atomica, entonces v es sustituible por w en φ
- 2. Si $\varphi = (\varphi_1 \eta \varphi_2)$, entonces v es sustituible por w en $\varphi \iff v$ es sustituible por w en φ_1 y φ_2
- 3. Si $\varphi = \neg \varphi_1$, entonces v es sustituible por w en $\varphi \iff v$ es sustituible por w en φ_1

- 4. Si $\varphi = Qv\varphi_1$, entonces v es sustituible por w en φ
- 5. $Si \varphi = Qw\varphi_1 \ y \ v \in Li(\varphi_1)$, entonces v no es sustituible por w en φ
- 6. Si $\varphi = Qw\varphi_1 \ y \ v \notin Li(\varphi_1)$, entonces v es sustituible por w en φ
- 7. $Si \varphi = Qu\varphi_1$, $con u \neq v, w$, entonces v es sustituible por w en $\varphi \iff v$ es sustituible por w en φ_1

Teorema 55. Supongamos $\varphi =_d \varphi(w_1, \ldots, w_k), t_1 =_d t_1(v_1, \ldots, v_n), \ldots, t_k =_d t_k(v_1, \ldots, v_n)$ supongamos ademas que cada w_j es sustituible por t_j en φ . Entonces:

- 1. $Li(\varphi(t_1,\ldots,t_k))\subseteq\{v_1,\ldots,v_n\}$
- 2. Si declaramos $\varphi(t_1,\ldots,t_k)=_d \varphi(t_1,\ldots,t_k)(v_1,\ldots,v_n)$, entonces para cada estructura \mathbf{A} y $\vec{a}\in A^n$ se tiene

$$\mathbf{A} \models \varphi(t_1, \dots, t_k)[\vec{a}] \iff \mathbf{A} \models \varphi[t_1^{\mathbf{A}}[\vec{a}], \dots, t_k^{\mathbf{A}}[\vec{a}]]$$

Proof. Se acepta sin demostracion

Elementos definibles

Definición 63. Sea **A** un modelo de tipo τ . Diremos que un elemento de a de A es definible en **A** si hay una formula $\varphi =_d \varphi(v)$ tal que $\mathbf{A} \models \varphi[a]$ y para cada $b \in A - \{a\}$ se tiene que $A \not\models \varphi[b]$. Es decir, a es el unico elemento de A que cumple $\mathbf{A} \models \varphi[a]$. En tal caso tambien diremos que φ define a en \mathbf{A} .

12 Teorias de primer orden

Definición 64. Una teoria de primer orden sera un par (Σ, τ) , donde τ es un tipo y Σ es un conjunto de sentencias de tipo τ . Los elementos de Σ seran llamados axiomas propios de (Σ, τ) . Un modelo de (Σ, τ) sera una estructura de tipo τ la cual satisfaga todos los axiomas propios de (Σ, τ) .

13 Definicion del concepto de prueba

13.1 Reglas

Definición 65. Definiremos una serie de conjuntos los cuales poseen informacion deductiva basica. Sea T_c^{τ} el conjunto de los terminos cerrados de tipo τ . Sean

- (1) $Partic^{\tau} = \{ (\forall v \varphi(v), \varphi(t)) : \varphi =_d \varphi(v) \in F^{\tau} \ y \ t \in T_c^{\tau} \}$
- $(2) \quad Exist^{\tau} \qquad = \{(\varphi(t), \exists v \varphi(v)) : \varphi =_{d} \varphi(v) \in F^{\tau} \text{ y } t \in T_{c}^{\tau}\}$
- $(3) \quad Evoc^{\tau} \qquad = \{(\varphi, \varphi) : \varphi \in S^{\tau}\}$
- $(4) \quad Absur^{\tau} \qquad = \{((\neg \varphi \to (\psi \land \neg \psi)), \varphi) : \varphi, \psi \in S^{\tau}\} \cup \{((\varphi \to (\psi \land \neg \psi)), \neg \varphi) : \varphi, \psi \in S^{\tau}\}$
- (5) $ConjElim^{\tau} = \{((\varphi \land \psi), \varphi)) : \varphi, \psi \in S^{\tau}\} \cup \{((\varphi \land \psi), \psi)) : \varphi, \psi \in S^{\tau}\}$
- $(6) \quad EquivElim^{\tau} = \{((\varphi \leftrightarrow \psi), (\varphi \to \psi)) : \varphi, \psi \in S^{\tau}\} \cup \{((\varphi \leftrightarrow \psi), (\psi \to \varphi)) : \varphi, \psi \in S^{\tau}\}$
- $(7) \quad DisjInt^{\tau} \quad = \{(\varphi, (\varphi \lor \psi)) : \varphi, \psi \in S^{\tau}\} \cup \{(\psi, (\varphi \lor \psi)) : \varphi, \psi \in S^{\tau}\}$

Diremos que φ se deduce de ψ por la regla de particularizacion (resp. existencia, evocacion, absurdo, conjuncion-eliminacion, equivalencia-eliminacion, disjuncion-introduccion), con respecto a τ para expresar que $(\psi, \varphi) \in Partic^{\tau}$ (resp. $Exist^{\tau}, Evoc^{\tau}, Absur^{\tau}, ConjElim^{\tau}, EquivElim^{\tau}, DisjInt^{\tau}$). Sea

 $Commut^{\tau} = Commut1^{\tau} \cup Commut2^{\tau}$

donde

$$Commut1^{\tau} = \{((t \equiv s), (s \equiv t)) : s, t \in T_c^{\tau}\}$$
$$Commut2^{\tau} = \{((\varphi \leftrightarrow \psi), (\psi \leftrightarrow \varphi)) : \varphi, \psi \in S^{\tau}\}$$

Diremos que φ se deduce de ψ por regla de commutatividad, con respecto a τ para expresar que $(\psi, \varphi) \in Commut^{\tau}$

Sean

$$\begin{split} ModPon^{\tau} &= \{(\varphi, (\varphi \to \psi), \psi) : \varphi, \psi \in S^{\tau}\} \\ ConjInt^{\tau} &= \{(\varphi, \psi, (\varphi \land \psi)) : \varphi, \psi \in S^{\tau}\} \\ EquivInt^{\tau} &= \{((\varphi \to \psi), (\psi \to \varphi), (\varphi \leftrightarrow \psi)) : \varphi, \psi \in S^{\tau})\} \\ DisjElim^{\tau} &= \{(\neg \varphi, (\varphi \lor \psi), \psi) : \varphi, \psi \in S^{\tau}\} \cup \{(\neg \psi, (\varphi \lor \psi), \varphi) : \varphi, \psi \in S^{\tau}\} \end{split}$$

Diremos que φ se deduce de ψ_1 y ψ_2 por la regla de *Modus Ponens* (resp. conjuncion-introduccion, equivalencia-introduccion, disjuncion-eliminacion), con respecto a τ para expresar que $(\psi_1, \psi_2, \varphi) \in ModPon^{\tau}$ (resp. $ConjInt^{\tau}, EquivInt^{\tau}, DisjElim^{\tau}$).

Sea

$$DivPorCas^{\tau} = \{((\varphi_1 \vee \varphi_2), (\varphi_1 \rightarrow \psi), (\varphi_2 \rightarrow \psi), \psi) : \varphi_1, \varphi_2, \psi \in S^{\tau}\}$$

Diremos que φ se deduce de ψ_1, ψ_2, ψ_3 por la regla de division por casos con respecto a τ para expresar que $(\psi_1, \psi_2, \psi_3, \varphi) \in DivPorCas^{\tau}$.

Sea

$$Reemp^{\tau} = Reemp1^{\tau} \cup Reemp2^{\tau}$$

donde

$$\begin{aligned} Reemp1^{\tau} &= \{ ((t \equiv s), \gamma, \hat{\gamma}) : s, t \in T_c^{\tau}, \gamma \in S^{\tau}, \hat{\gamma} = \text{ resultado de reemplazar en } \gamma \text{ una ocurrencia de t por s} \} \\ Reemp2^{\tau} &= \{ (\forall v_1 \dots v_n(\varphi \leftrightarrow \psi), \gamma, \hat{\gamma}) : \varphi, \psi \in F^{\tau}, Li(\varphi) = Li(\psi) = \{ v_1, \dots, v_n, n \geq 0, \gamma \in S^{\tau}, \\ \hat{\gamma} &= \text{ resultado de reemplazar en } \gamma \text{ una ocurrencia de } \varphi \text{ por } \psi \} \} \end{aligned}$$

Diremos que φ se deduce de ψ_1, ψ_2 por la regla de reemplazo, con respecto a τ para expresar que $(\psi_1, \psi_2, \varphi) \in Reemp^{\tau}$.

Sea

$$Trans^{\tau} = Trans1^{\tau} \cup Trans2^{\tau} \cup Trans3^{\tau}$$

donde

$$\begin{split} Trans1^{\tau} &= \{((t \equiv s), (s \equiv u), (t \equiv u)) : t, s, u \in T_c^{\tau}\} \\ Trans2^{\tau} &= \{((\varphi \rightarrow \psi), (\psi \rightarrow \varPhi), (\varphi \rightarrow \varPhi)) : \varphi, \psi, \varPhi \in S^{\tau}\} \\ Trans3^{\tau} &= \{((\varphi \leftrightarrow \psi), (\psi \leftrightarrow \varPhi), (\varphi \leftrightarrow \varPhi)) : \varphi, \psi, \varPhi \in S^{\tau}\} \end{split}$$

Diremos que φ se deduce de ψ_1, ψ_2 por la regla de transitividad, con respecto a τ para expresar que $(\psi_1, \psi_2, \varphi) \in Trans^{\tau}$.

Sea

$$Generaliz^{\tau} = \{(\psi, \forall v \hat{\psi}) : \psi \in S^{\tau}, v \text{ no ocurre en } \psi \text{ y existe } c \in \mathcal{C} \text{ tal que } c \text{ ocurre en } \psi \text{ y}$$
$$\hat{\psi} = \text{resultado de reemplazar en } \psi \text{ cada ocurrencia de } c \text{ por } v\}$$

Lema 56. $Si(\varphi_1, \varphi_2) \in Generaliz^{\tau}$, entonces el nombre de constante c del cual habla la definicion de $Generaliz^{\tau}$ esta univocamente determinado por el par (φ_1, φ_2)

Proof. Notese que c es el unico nombre de constante que ocurre en φ_1 y no ocurre en φ_2 .

Escribiremos $(\varphi_1, \varphi_2) \in Generaliz^{\tau}$ via c para expresar que $(\varphi_1, \varphi_2) \in Generaliz^{\tau}$ y que c es el unico nombre de constante que ocurre en φ_1 y no ocurre en φ_2 . Diremos que φ_2 se deduce de φ_1 por la regla de generalización con nombre de constante c, con respecto a τ , para expresar que $(\varphi_1, \varphi_2) \in Generaliz^{\tau}$ via c.

Sea

$$Elec^{\tau} = \{(\exists v \varphi(v), \varphi(e)) : \varphi =_d \varphi(v) \in F^{\tau}, Li(\varphi) = \{v\}, \ y \ e \in \mathcal{C} \text{ no ocurre en } \varphi\}$$

Lema 57. Si $(\varphi_1, \varphi_2) \in Elec^{\tau}$, entonces el nombre de constante e del cual habla la definicion de $Elec^{\tau}$ esta univocamente determinado por el par (φ_1, φ_2)

Proof. Notese que e es el unico nombre de constante que ocurre en φ_2 pero no en φ_1 . Esto es porque en la definicion, $Li(\varphi) = \{v\}$, por lo tanto sabemos que e va a ocurrir en φ_2 .

Escribiremos $(\varphi_1, \varphi_2) \in Elec^{\tau}$ via e para expresar que $(\varphi_1, \varphi_2) \in Elec^{\tau}$ y que e es el unico nombre de constante que ocurre en φ_2 y no ocurre en φ_1 . Diremos que φ_2 se deduce de φ_1 por la

regla de eleccion con nombre de constante e, con respecto a τ , para expresar que $(\varphi_1, \varphi_2) \in Elec^{\tau}$ via e.

Lema 58. Sea τ un tipo. Todas las reglas excepto las reglas de eleccion y generalizacion son universales en el sentido que si φ se deduce de ψ_1, \ldots, ψ_k por alguna de estas reglas, entonces $((\psi_1 \wedge \cdots \wedge \psi_k) \to \varphi)$ es una sentencia valida.

13.2 Axiomas logicos

Definición 66. Llamaremos axiomas logicos de tipo τ a todas las sentencias de alguna de las siguientes formas:

- $(\varphi \leftrightarrow \varphi)$
- $(t \equiv t)$
- $(\varphi \vee \neg \varphi)$
- $(\varphi \leftrightarrow \neg \neg \varphi)$
- $(\neg \forall v \psi \leftrightarrow \exists v \neg \psi)$
- $(\neg \exists v \psi \leftrightarrow \forall v \neg \psi)$

donde $t \in T_c^\tau, \varphi \in S^\tau, \psi \in F^\tau, v \in Var$ y $Li(\psi) \subseteq \{v\}$. Con $AxLog^\tau$ denotaremos el conjunto

$$\{\varphi \in S^{\tau} : \varphi \text{ es un axioma logico de tipo } \tau\}$$

13.3 Justificaciones

Definición 67. Llamaremos numerales a lo siguientes simbolos:

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

Usaremos Num para denotar al conjunto de numerales. Notese que $Num \cap \omega = \emptyset$. Sea $S \colon Num^* \to Num^*$ definida de la siguiente manera:

$$S(\varepsilon) = 1$$

$$S(\alpha 0) = \alpha 1$$

$$S(\alpha 1) = \alpha 2$$

$$S(\alpha 2) = \alpha 3$$

$$S(\alpha 3) = \alpha 4$$

$$S(\alpha 4) = \alpha 5$$

$$S(\alpha 5) = \alpha 6$$

$$S(\alpha 6) = \alpha 7$$

$$S(\alpha 7) = \alpha 8$$

$$S(\alpha 8) = \alpha 9$$

$$S(\alpha 9) = S(\alpha) 0$$

Definamos -: $\omega \to Num^*$ de la siguiente manera:

$$\overline{0} = \varepsilon$$

$$\overline{n+1} = S(\overline{n})$$

Sea $Nombres_1$ el conjunto formado por las siguientes palabras:

EXISTENCIA
COMMUTATIVIDAD
PARTICULARIZACION
ABSURDO
EVOCACION
CONJUNCIONELIMINACION
EQUIVALENCIAELIMINACION
DISJUNCIONINTRODUCCION
ELECCION

GENERALIZACION

Sea $Nombres_2$ el conjunto formado por las siguientes palabras:

MODUSPONENS TRANSITIVIDAD CONJUNCIONINTRODUCCION EQUIVALENCIAINTRODUCCION DISJUNCIONELIMINACION REEMPLAZO

Una justificacion basica es una palabras perteneciente a la union de los siguientes conjuntos de palabras:

$$\begin{split} & \{ \text{CONCLUSION, AXIOMAPROPIO, AXIOMALOGICO} \} \\ & \{ \alpha(\overline{k}) : k \in \mathbf{N} \text{ y } \alpha \in Nombres_1 \} \\ & \{ \alpha(\overline{j}, \overline{k}) : j, k \in \mathbf{N} \text{ y } \alpha \in Nombres_2 \} \\ & \{ \text{DIVISIONPORCASOS}(\overline{j}, \overline{k}, \overline{l}) : j, k, l \in \mathbf{N} \} \end{split}$$

Usaremos JustBas para denotar al conjunto formado por todas las justificaciones basicas. Una justificacion es una palabra que ya sea es una justificacion basica o pertenece a la union de los

siguientes conjuntos de palabras:

$$\{ \text{HIPOTESIS} \overline{k} : k \in \mathbf{N} \}$$
$$\{ \text{TESIS} \overline{j} \alpha : j \in \mathbf{N} \text{ y } \alpha \in JustBas \}$$

Usaremos Just para denotar el conjunto formado por todas las justificaciones.

Cabe destacar que los elementos de Just son palabras del alfabeto formado por los siguientes simbolos:

13.4 Concatenaciones balanceadas de justificaciones

Lema 59. Sea $\mathbf{J} \in Just^+$. Hay unicos $n \geq 1$ y $J_1, \ldots, J_n \in Just$ tales que $\mathbf{J} = J_1 \ldots J_n$

Definición 68. Dada $\mathbf{J} \in Just^+$, usaremos $n(\mathbf{J})$ y $\mathbf{J}_1, \dots, \mathbf{J}_{n(\mathbf{J})}$ para denotar los unicos n y J_1, \dots, J_n cuya existencia garantiza el lema anterior.

Definición 69. Dados numeros naturales $i \leq j$, usaremos $\langle i, j \rangle$ para denotar al conjunto $\{i, i + 1, \ldots, j\}$. A los conjuntos de la forma $\langle i, j \rangle$ los llamaremos bloques.

Definición 70. Dada $J \in Just^+$ definamos:

$$\mathcal{B}^{\mathbf{J}} = \{\langle i,j\rangle | \exists k: \mathbf{J}_i = \mathrm{HIPOTESIS}\overline{k} \ \mathrm{y} \ \mathbf{J}_j = \mathrm{TESIS}\overline{k}\alpha \ \mathrm{para} \ \mathrm{algun} \ \alpha \in JustBas \}$$

Definición 71. Diremos que $J \in Just^+$ es balanceada si se dan las siguientes:

- 1. Por cada $k \in \mathbb{N}$ a lo sumo hay un i tal que $\mathbf{J}_i = \text{HIPOTESIS}\overline{k}$ y a lo sumo hay un i tal que $\mathbf{J}_i = \text{TESIS}\overline{k}\alpha$, con $\alpha \in Just Bas$.
- 2. Si $\mathbf{J}_i = \text{HIPOTESIS}\overline{k}$, entonces hay un l > i tal que $\mathbf{J}_l = \text{TESIS}\overline{k}\alpha$, con $\alpha \in Just Bas$.
- 3. Si $\mathbf{J}_i = \text{TESIS}\overline{k}\alpha$, con $\alpha \in Just Bas$, entonces hay un l < i tal que $\mathbf{J}_l = \text{HIPOTESIS}\overline{k}$.
- 4. Si $B_1, B_2 \in \mathcal{B}^{\mathbf{J}}$, entonces $B_1 \cap B_2 = \emptyset$ o $B_1 \subseteq B_2$ o $B_2 \subseteq B_1$

13.5 Pares adecuados

Lema 60. Sea $\varphi \in S^{\tau+}$. Hay unicos $n \ge 1$ y $\varphi_1, \ldots, \varphi_n \in S^{\tau}$ tales que $\varphi = \varphi_1 \ldots \varphi_n$.

Definición 72. Dada $\varphi \in S^{\tau+}$, usaremos $n(\varphi)$ y $\varphi_1, \dots, \varphi_{n(\varphi)}$ para denotar los unicos n y $\varphi_1, \dots, \varphi_n$ cuya existencia garantiza el lema anterior.

Definición 73. Un par adecuado de tipo τ es un par $(\varphi, \mathbf{J}) \in S^{\tau +} \times Just^+$ tal que $n(\varphi) = n(\mathbf{J})$ y \mathbf{J} es balanceada.

Si $\langle i, j \rangle \in \mathcal{B}^{\mathbf{J}}$, entonces φ_i sera la *hipotesis* del bloque $\langle i, j \rangle$ en (φ, \mathbf{J}) y φ_j sera la *tesis* del bloque $\langle i, j \rangle$ en (φ, \mathbf{J}) .

Diremos que φ_i esta bajo la hipotesis φ_l en (φ, \mathbf{J}) o que φ_l es una hipotesis de φ_i en (φ, \mathbf{J}) cuando haya en $\mathcal{B}^{\mathbf{J}}$ un bloque de la forma $\langle l, j \rangle$ el cual contenga a i.

Sean $i, j \in \langle 1, n(\varphi) \rangle$. Diremos que i es anterior a j en (φ, \mathbf{J}) si i < j y ademas para todo $B \in \mathcal{B}^{\mathbf{J}}$ se tiene que $i \in B \Rightarrow j \in B$.

13.6 Dependencia de constantes en pares adecuados

Definición 74. Dadas $e, d \in \mathcal{C}$, diremos que e depende directamente de d en (φ, \mathbf{J}) si hay numeros $1 \leq l \leq j \leq n(\varphi)$ tales que:

- 1. l es anterior a j en (φ, \mathbf{J})
- 2. $\mathbf{J}_j = \alpha \text{ELECCION}(\bar{l}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\} \text{ y } (\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_j) \in \text{Elec}^{\tau} \text{ via } e$
- 3. d ocurre en φ_l

Dados $e, d \in \mathcal{C}$ diremos que e depende de d en $(\boldsymbol{\varphi}, \mathbf{J})$ si existen $e_0, \dots, e_{k+1} \in \mathcal{C}$, con $k \geq 0$ tales que:

- 1. $e_0 = e y e_{k+1} = d$
- 2. e_i depende directamente de e_{i+1} en $(\boldsymbol{\varphi}, \mathbf{J})$, para $i = 0, \dots, k$

13.7 Definicion de prueba

Definición 75. Sea (Σ, τ) una teoria de primer orden. Sea φ una sentencia de tipo τ . Una *prueba* $de \varphi$ en (Σ, τ) sera un par adecuado (φ, \mathbf{J}) de algun tipo $\tau_1 = (\mathcal{C} \cup \mathcal{C}_1, \mathcal{F}, \mathcal{R}, a)$ con \mathcal{C}_1 finito y disjunto con \mathcal{C} tal que:

- 1. Cada φ_i es una sentencia de tipo τ_1
- 2. $\varphi_{n(\varphi)} = \varphi$
- 3. Si $\langle i, j \rangle \in \mathcal{B}^{\mathbf{J}}$, entonces $\varphi_{j+1} = (\varphi_i \to \varphi_j)$ y $\mathbf{J}_{j+1} = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$
- 4. Para cada $i = 1, ..., n(\varphi)$ se da una de las siguientes:
 - (a) $\mathbf{J}_i = \text{HIPOTESIS}\overline{k} \text{ para algun } k \in \mathbf{N}$
 - (b) $\mathbf{J}_i = \alpha \text{CONCLUSION}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$ y hay un j tal que $\langle j, i-1 \rangle \in \mathcal{B}^{\mathbf{J}}$ y $\boldsymbol{\varphi}_i = (\boldsymbol{\varphi}_j \to \boldsymbol{\varphi}_{i-1})$
 - (c) $\mathbf{J}_i = \alpha \mathbf{AXIOMALOGICO}$, con $\alpha \in \{\varepsilon\} \cup \{\mathbf{TESIS}\overline{k} : k \in \mathbf{N}\}$ y φ_i es un axioma logico de tipo τ_1
 - (d) $\mathbf{J}_i = \alpha \mathbf{AXIOMAPROPIO}$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$ y $\boldsymbol{\varphi}_i \in \Sigma$

- (e) $\mathbf{J}_i = \alpha \text{PARTICULARIZACION}(\bar{l}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\},$ $l \text{ anterior a } i \text{ y } (\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in Partic^{\tau_1}$
- (f) $\mathbf{J}_i = \alpha \text{COMMUTATIVIDAD}(\bar{l}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l \text{ anterior a } i \text{ y } (\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in Commut^{\tau_1}$
- (g) $\mathbf{J}_i = \alpha \text{ABSURDO}(\bar{l})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, l anterior a i y $(\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in Absur^{\tau_1}$
- (h) $\mathbf{J}_i = \alpha \text{EVOCACION}(\overline{l})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, l anterior a i y $(\varphi_l, \varphi_i) \in Evoc^{\tau_1}$
- (i) $\mathbf{J}_i = \alpha \text{EXISTENCIA}(\bar{l})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, l anterior a i y $(\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in Exist^{\tau_1}$
- (j) $\mathbf{J}_i = \alpha \text{CONJUNCIONELIMINACION}(\bar{l}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\},$ $l \text{ anterior a } i \text{ y } (\varphi_l, \varphi_i) \in ConjElim^{\tau_1}$
- (k) $\mathbf{J}_i = \alpha \mathrm{DISJUNCIONINTRODUCCION}(\bar{l}), \ \mathrm{con} \ \alpha \in \{\varepsilon\} \cup \{\mathrm{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l \ \mathrm{anterior} \ \mathrm{a} \ i \ \mathbf{y} \ (\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in DisjElim^{\tau_1}$
- (l) $\mathbf{J}_i = \alpha \text{EQUIVALENCIAELIMINACION}(\bar{l}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l \text{ anterior a } i \text{ y } (\varphi_l, \varphi_i) \in EquivElim^{\tau_1}$
- (m) $\mathbf{J}_i = \alpha \text{MODUSPONENS}(\overline{l_1}, \overline{l_2}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in ModPon^{\tau_1}$
- (n) $\mathbf{J}_i = \alpha \text{CONJUNCIONINTRODUCCION}(\overline{l_1}, \overline{l_2}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in ConjInt^{\tau_1}$
- (o) $\mathbf{J}_i = \alpha \text{EQUIVALENCIAINTRODUCCION}(\overline{l_1}, \overline{l_2}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in EquivInt^{\tau_1}$
- (p) $\mathbf{J}_i = \alpha \mathrm{DISJUNCIONINTRODUCCION}(\overline{l_1}, \overline{l_2})$, con $\alpha \in \{\varepsilon\} \cup \{\mathrm{TESIS}\overline{k} : k \in \mathbf{N}\}$, $l_1 \ \mathrm{y} \ l_2$ anteriores a $i \ \mathrm{y} \ (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in DisjElim^{\tau_1}$
- (q) $\mathbf{J}_i = \alpha \text{REEMPLAZO}(\overline{l_1}, \overline{l_2})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, $l_1 \ \text{y} \ l_2 \ \text{anteriores a} \ i \ \text{y} \ (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in Reemp^{\tau_1}$
- (r) $\mathbf{J}_i = \alpha \text{TRANSITIVIDAD}(\overline{l_1}, \overline{l_2}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l_1 \text{ y } l_2 \text{ anteriores a } i \text{ y } (\boldsymbol{\varphi}_{l_1}, \boldsymbol{\varphi}_{l_2}, \boldsymbol{\varphi}_i) \in Trans^{\tau_1}$
- (s) $\mathbf{J}_i = \alpha \mathrm{DIVISIONPORCASOS}(\overline{l_1}, \overline{l_2}, \overline{l_3}), \text{ con } \alpha \in \{\varepsilon\} \cup \{\mathrm{TESIS}\overline{k} : k \in \mathbf{N}\},$ $l_1, l_2 \text{ y } l_3 \text{ anteriores a } i \text{ y } (\varphi_{l_1}, \varphi_{l_2}, \varphi_{l_3}, \varphi_i) \in DivPorCas^{\tau_1}$

- (t) $\mathbf{J}_i = \alpha \text{ELECCION}(\bar{l})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in \mathbf{N}\}$, l anterior a i y $(\boldsymbol{\varphi}_l, \boldsymbol{\varphi}_i) \in Elec^{\tau_1}$ via un nombre de constante e, el cual no pertenece a \mathcal{C} y no ocurre en $\boldsymbol{\varphi}_1, \dots, \boldsymbol{\varphi}_{i-1}$
- (u) $\mathbf{J}_i = \alpha \text{GENERALIZACION}(\overline{l})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, l anterior a i y $(\varphi_l, \varphi_i) \in Generaliz^{\tau_1}$

via un nombre de constante e, el cual cumple:

- i. $c \notin \mathcal{C}$
- ii. Para cada $u \in \langle 1, n(\boldsymbol{\varphi}) \rangle$, si $\mathbf{J}_u = \alpha \text{ELECCION}(\overline{v})$, con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\overline{k} : k \in \mathbf{N}\}$, entonces no se da que $(\boldsymbol{\varphi}_v, \boldsymbol{\varphi}_u) \in Elec^{\tau_1}$ via c.
- iii. c no ocurre en ninguna hipotesis de φ_l
- iv. Ningun nombre de constante que ocurra en φ_l o en sus hipotesis, depende de c.

14 El concepto de teorema

Definición 76. Cuando haya una prueba de φ en (Σ, τ) , diremos que φ es un *teorema* de la teoria (Σ, τ) , y escribiremos $(\Sigma, \tau) \vdash \varphi$.

15 Propiedades basicas de pruebas y teoremas

Lema 61 (Cambio de indice de hipotesis). Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) . Sea $m \in \mathbf{N}$ tal que $\mathbf{J}_i \neq \text{HIPOTESIS}\overline{m}$, para cada $i = 1 = \dots, n(\varphi)$. Supongamos que $\mathbf{J}_i = \text{HIPOTESIS}\overline{k}$ y que $\mathbf{J}_j = \text{TESIS}\overline{k}\alpha$, con $[\alpha]_1 \notin Num$. Sea $\tilde{\mathbf{J}}$ el resultados de reemplazar en \mathbf{J} la justificación \mathbf{J}_i por HIPOTESIS \overline{m} y reemplazar la justificación \mathbf{J}_j por TESIS $\overline{m}\alpha$. Entonces $(\varphi, \tilde{\mathbf{J}})$ es una prueba formal de φ en (Σ, τ) .

Proof. Se acepta sin demostracion \Box

Lema 62 (Cambio de constantes auxiliares). Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) . Sea \mathcal{C}_1 el conjunto de nombres de constante que ocurren en φ y que no pertenecen a \mathcal{C} . Sea $e \in \mathcal{C}_1$. Sea $\tilde{e} \notin \mathcal{C} \cup \mathcal{C}_1$ tal que $(\mathcal{C} \cup (\mathcal{C}_1 - \{e\}) \cup \{\tilde{e}\}, \mathcal{F}, \mathcal{R}, a)$ es un tipo. Sea $\tilde{\varphi}_i$ = resultado de reemplazar en φ_i cada ocurrencia de e por \tilde{e} . Entonces $(\tilde{\varphi}_1, \dots, \tilde{\varphi}_{n(\varphi)}, \mathbf{J})$ es una prueba forma de φ en (Σ, τ) .

Proof. Se acepta sin demostracion \Box

Lema 63. Sea (Σ, τ) una teoria.

- 1. $Si(\Sigma,\tau) \vdash \varphi_1, \ldots, \varphi_n \ y(\Sigma \cup \{\varphi_1, \ldots, \varphi_n\}, \tau) \vdash \varphi, \ entonces(\Sigma,\tau) \vdash \varphi$
- 2. Si $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$ y φ se deduce por alguna regla universal a partir de $\varphi_1, \dots, \varphi_n$, entonces $(\Sigma, \tau) \vdash \varphi$
- 3. $(\Sigma, \tau) \vdash (\varphi \rightarrow \psi)$ si y solo si $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$

Proof.

- (1) Como $(\Sigma, \tau) \vdash \varphi_1, \ldots, \varphi_n$, hay una prueba formal $(s_1 \ldots s_{k_i}, J_1 \ldots J_{k_i})$ para cada φ_i . Si $(\Sigma, \tau) \vdash \varphi$, terminamos. Sino, comencemos la prueba de φ concatenando las pruebas de todas las φ_i , reasignando los indices correspondientes en las justificaciones. Ahora en esta prueba podemos usar $\varphi_1, \ldots, \varphi_n$ para probar φ . Como $(\Sigma \cup \{\varphi_1, \ldots, \varphi_n\}, \tau\}) \vdash \tau$, usamos esa prueba formal seguido de lo que fuimos construyendo, reemplazando los indices correspondientes, y cambiando las apariciones de AXIOMAPROPIO cuando hablamos de alguna $\varphi_1, \ldots, \varphi_n$ por EVOCACION con el indice correspondiente.
- (2) En particular, el lema dice que $(\{\varphi_1, \dots, \varphi_n\}, \tau) \vdash \varphi$. Por lo tanto $(\Sigma \cup \{\varphi_1, \dots, \varphi_n\}, \tau) \vdash \varphi$. Por (1) queda demostrado $(\Sigma, \tau) \vdash \varphi$.

$$\Box$$
 TODO

15.1 Consistencia

Definición 77. Una teoria (Σ, τ) sera *inconsistente* cuando haya una sentencia φ tal que (Σ, τ) \vdash $(\varphi \land \neg \varphi)$. Una teoria (Σ, τ) sera *consistente* cuando no sea inconsistente.

Lema 64. Sea (Σ, τ) una teoria.

- 1. Si (Σ, τ) es inconsistente, entonces $(\Sigma, \tau) \vdash \varphi$, para toda sentencia φ
- 2. Si (Σ, τ) es consistente $y(\Sigma, \tau) \vdash \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente
- 3. Si $(\Sigma, \tau) \not\vdash \neg \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente

Proof.

- (1) Si (Σ, τ) es inconsistente, entonces por definicion $(\Sigma, \tau) \vdash (\psi \land \neg \psi)$. Dada una sentencia cualquiera φ , tenemos que φ se deduce por la regla del absurdo a partir de $\psi \land \neg \psi$, y por lema anterior $(\Sigma, \tau) \vdash \varphi$.
- (2) Supongamos que (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$. Si $(\Sigma \cup \{\varphi\}, \tau)$ fuera inconsistente, entonces $(\Sigma \cup \{\varphi\}, \tau) \vdash (\psi \land \neg \psi)$, y por lema anterior $(\Sigma, \tau) \vdash (\psi \land \neg \psi)$, $\mathbf{Abs!}$

(3) Si
$$(\Sigma, \tau)$$
 fuera inconsistente, $(\Sigma, \tau) \vdash \neg \varphi$, **Abs!**. Luego (Σ, τ) es consistente.

Definición 78. Dada (Σ, τ) una teoria, escribiremos $(\Sigma, \tau) \models \varphi$ cuando φ sea verdadera en todo modelo de (Σ, τ) .

Teorema 65 (Teorema de Correccion). $(\Sigma, \tau) \vdash \varphi \implies (\Sigma, \tau) \models \varphi$

Proof. Se acepta sin demostracion
$$\Box$$

Corolario 66. Si (Σ, τ) tiene un modelo, entonces (Σ, τ) es consistente.

Proof. Supongamos **A** es un modelo de (Σ, τ) . Si (Σ, τ) fuera inconsistente, tendriamos que hay una $\varphi \in S^{\tau}$ tal que $(\Sigma, \tau) \vdash (\varphi \land \neg \varphi)$, lo cual por el teorema de Correccion nos diria que **A** $\models (\varphi \land \neg \varphi)$ \square

16 El algebra de Lindenbaum

Definición 79. Sea $T = (\Sigma, \tau)$ una teoria. Definimos la siguiente relacion sobre S^{τ} .

$$\varphi \dashv \vdash_T \psi \iff T \vdash (\varphi \leftrightarrow \psi)$$

Lema 67. $+_T$ es una relacion de equivalencia

Proof. La relacion es reflexiva que $(\varphi \leftrightarrow \varphi)$ es un axioma logico, y por lo tanto $((\varphi \leftrightarrow \varphi), AXIOMALOGICO)$ es una prueba formal de $(\varphi \leftrightarrow \varphi)$ en T.

La relacion es simetrica, pues supongamos $\varphi \dashv \vdash_T \psi$, es decir $T \vdash (\varphi \leftrightarrow \psi)$. Como $(\psi \leftrightarrow \varphi)$ se deduce de $(\varphi \leftrightarrow \psi)$ por la regla de commutatividad, tenemos que $T \vdash (\psi \leftrightarrow \varphi)$.

La relacion es transitiva, pues supongamos $\varphi \dashv \vdash_T \psi$ y $\psi \dashv \vdash_T \Phi$. Como $\varphi \leftrightarrow \Phi$ se deduce de $(\varphi \leftrightarrow \psi)$, $(\psi \leftrightarrow \Phi)$ por la regla de transitividad, tenemos que $T \vdash (\varphi \leftrightarrow \Phi)$.

Definición 80. Sea τ un tipo y $\varphi \in S^{\tau}$. Se dice que φ es refutable en (Σ, τ) si $(\Sigma, \tau) \vdash \neg \varphi$

Lema 68. Dada una teoria $T = (\Sigma, \tau)$, se tiene que:

- 1. $\{\varphi \in S^{\tau} : \varphi \text{ es un teorema de } T\} \in S^{\tau} / \dashv \vdash_{T}$
- 2. $\{\varphi \in S^{\tau} : \varphi \text{ es refutable en } T\} \in S^{\tau} / \dashv \vdash_{T}$

Proof. (1) Sean φ, ψ teoremas de T, veremos que $\varphi \dashv \vdash_T \psi$. La siguiente prueba justifica que $(\Sigma \cup \{\varphi, \psi\}, \tau) \vdash (\varphi \leftrightarrow \psi)$

1. HIPOTESIS1 2. TESIS1AXIOMAPROPIO $\begin{array}{l} (\varphi \rightarrow \psi) \\ \psi \end{array}$ 3. CONCLUSION 4. ${\bf HIPOTESIS2}$ TESIS2AXIOMAPROPIO 5. $(\psi \to \varphi)$ 6. CONCLUSION $(\varphi \leftrightarrow \psi)$ EQUIVALENCIAINTRODUCCION(3,6) 7.

Y por lo tanto $(\Sigma, \tau) \vdash (\varphi \leftrightarrow \psi)$ lo cual implica $\varphi \dashv \vdash_T \psi$.

Ahora veamos que si φ es un teorema de T y $\varphi \dashv \vdash_T \psi$, ψ es tambien un teorema de T. La siguiente prueba justifica que $(\Sigma \cup \{\varphi, \varphi \leftrightarrow \psi\}) \vdash \psi$, y por lo tanto $(\Sigma, \tau) \vdash \psi$.

(2) Sean φ, ψ refutables en T, veremos que $\varphi \dashv \vdash_T \psi$. La siguiente prueba justifica que $(\Sigma \cup \{\neg \varphi, \neg \psi\}, \tau) \vdash (\varphi \leftrightarrow \psi)$.

```
1.
                                                      HIPOTESIS1
2.
               \neg \psi
                                                      HIPOTESIS2
                                                       AXIOMAPROPIO
3.
               (\varphi \land \neg \varphi)
4.
                                                       TESIS2CONJUNCIONINTRODUCCION(1,3)
               (\neg\psi\to(\varphi\wedge\neg\varphi))
5.
                                                       CONCLUSION
                                                      TESIS1ABSURDO(5)
6.
               (\varphi \to \psi)
7.
                                                       CONCLUSION
8.
                                                      HIPOTESIS3
                                                      HIPOTESIS4
9.
10.
                \neg \psi
                                                       AXIOMAPROPIO
               (\psi \land \neg \psi)
11.
                                                       TESIS4CONJUNCIONINTRODUCCION(8, 10)
               (\neg\varphi\to(\psi\wedge\neg\psi))
12.
                                                       CONCLUSION
13.
                                                       TESIS3ABSURDO(5)
               (\psi \to \varphi)
14.
                                                       CONCLUSION
               (\varphi \leftrightarrow \psi)
                                                      EQUIVALENCIAINTRODUCCION(7, 14)
15.
```

Como $(\Sigma, \tau) \vdash \neg \varphi, \neg \psi, (\Sigma, \tau) \vdash (\varphi \leftrightarrow \psi)$, lo cual dice $\varphi \dashv \vdash_T \psi$.

Ahora veamos que si φ es refutable en T y $\varphi \dashv \vdash_T \psi$, entonces ψ tambien es refutable en T. La siguiente prueba justifica que $(\Sigma \cup \{\neg \varphi, \varphi \leftrightarrow \psi\}, \tau) \vdash \neg \psi$, y por lo tanto $(\Sigma, \tau) \vdash \neg \psi$.

1.	ψ	HIPOTESIS1
2.	$(\varphi \leftrightarrow \psi)$	AXIOMAPROPIO
3.	$(\psi ightarrow arphi)$	${\bf EQUIVALENCIAELIMINACION(2)}$
4.	arphi	MODUSPONENS(1,3)
5.	eg arphi	AXIOMAPROPIO
6.	$(\varphi \wedge \neg \varphi)$	${\tt TESIS1CONJUNCIONINTRODUCCION}(5)$
7.	$(\psi \to (\varphi \land \neg \varphi))$	CONCLUSION
8.	$ eg\psi$	ABSURDO(7)

Definición 81. Dada una teoria $T = (\Sigma, \tau)$ y $\varphi \in S^{\tau}$, $[\varphi]_T$ denotara la clase de φ con respecto a la relacion de equivalencia $\dashv \vdash_T$. Definiremos sobre $S^{\tau}/\dashv \vdash_T$ la siguiente operacion binaria s^T :

$$[\varphi]_T \mathbf{s}^T [\psi]_T = [(\varphi \lor \psi)]_T$$

En forma analoga, definimos una operacion binaria i^T sobre $S^{\tau}/\dashv \vdash_T$:

$$[\varphi]_T \mathbf{i}^T [\psi]_T = [(\varphi \wedge \psi)]_T$$

Ademas definimos una operacion unaria c^T sobre $S^{\tau}/\dashv \vdash_T$:

$$([\varphi]_T)^{c^T} = [\neg \varphi]_T$$

Denotaremos ademas con 1^T al conjunto $\{\varphi \in S^\tau : \varphi \text{ es un teorema de } T\}$ y con 0^T al conjunto $\{\varphi \in S^\tau : \varphi \text{ es refutable en } T\}$.

Observacion 12 (s^T bien definida). Si $[\varphi]_T = [\varphi']_T$ y $[\psi]_T = [\psi']_T$, entonces $[(\varphi \lor \psi)]_T = [(\varphi' \lor \psi')]_T$

Teorema 69. Sea $T = (\Sigma, \tau)$ una teoria. Entonces $(S^{\tau}/ \dashv \vdash_T, s^T, i^T, c^T, 0^T, 1^T)$ es un algebra de Boole.

$$Proof.$$
 TODO

Definición 82. Dada una teoria $T = (\Sigma, \tau)$, denotaremos con \mathcal{A}_T al algebra de Boole $(S^{\tau}/ + T, s^T, i^T, c^T, 0^T, 1^T)$. El algebra \mathcal{A}_T sera llamada el algebra de Lindenbaum de la teoria T.

Lema 70. Sea T una teoria y sea \leq^T el orden parcial asociado al algebra de Boole \mathcal{A}_T (es decir $[\varphi]_T \leq^T [\psi]_T \iff [\varphi]_T \mathbf{s}^T [\psi]_T = [\psi]_T$), entonces se tiene que:

$$[\varphi]_T \leq^T [\psi]_T \iff T \vdash (\varphi \to \psi)$$

Proof. TODO □

17 Teorema de la completitud

Lema 71. Sean $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ y $\tau' = (\mathcal{C}', \mathcal{F}', \mathcal{R}', a')$ tipos. Se cumplen:

- 1. Si $C \subseteq C', \mathcal{F} \subseteq \mathcal{F}', \mathcal{R} \subseteq \mathcal{R}' \ y \ a'|_{\mathcal{F} \cup \mathcal{R}} = a, \ entonces \ (\Sigma, \tau) \vdash \varphi \ implica \ (\Sigma, \tau') \vdash \varphi$
- 2. Si $C \subseteq C', \mathcal{F} \subseteq \mathcal{F}', \mathcal{R} \subseteq \mathcal{R}'$ y a' = a, entonces $(\Sigma, \tau') \vdash \varphi$ implies $(\Sigma, \tau) \vdash \varphi$, cada vez que $\Sigma \cup \{\varphi\} \subseteq S^{\tau}$

Proof. Se acepta sin demostracion

Lema 72 (Lema del infimo). Sea $T = (\Sigma, \tau)$ una teoria y supongamos que τ tiene una cantidad infinita de nombres de constante que no ocurren en las sentencias de Sigma. Entonces para cada formula $\varphi =_d \varphi(v)$, se tiene que en el algebra de Lindembaym \mathcal{A}_T :

$$[\forall v \varphi(v)]_T = \inf(\{[\varphi]_T : t \in T_c^\tau\})$$

Lema 73 (Lema de Coincidencia). Sea $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ y $\tau' = (\mathcal{C}', \mathcal{F}', \mathcal{R}', a')$ dos tipos cualesquiera y sea $\tau_{\cap} = (\mathcal{C}_{\cap}, \mathcal{F}_{\cap}, \mathcal{R}_{\cap}, a_{\cap})$ donde:

$$C_{\cap} = C \cap C'$$

$$F_{\cap} = \{ f \in \mathcal{F} \cap \mathcal{F}' : a(f) = a'(f) \}$$

$$R_{\cap} = \{ r \in \mathcal{R} \cap \mathcal{R}' : a(r) = a'(r) \}$$

$$a_{\cap} = a|_{\mathcal{F}_{\cap} \cup \mathcal{R}_{\cap}}$$

Entonces τ_{\cap} es un tipo tal que $T^{\tau_{\cap}} = T^{\tau} \cap T^{\tau'}$ y $F^{\tau_{\cap}} = F^{\tau} \cap F^{\tau'}$. Sean \mathbf{A} y \mathbf{A}' modelos de tipo τ y τ' respectivamente. Supongamos A = A' y que $c^{\mathbf{A}} = c^{\mathbf{A}'}$, para cada $c \in \mathcal{C}_{\cap}$, $f^{\mathbf{A}} = f^{\mathbf{A}'}$, para cada $f \in \mathcal{F}_{\cap}$ y $f^{\mathbf{A}} = f^{\mathbf{A}'}$, para cada $f \in \mathcal{F}_{\cap}$. Entonces se cumplen:

- 1. Para cada $t =_d t(\vec{v}) \in T^{\tau_{\cap}}$ se tiene que $t^{\mathbf{A}}[\vec{a}] = t^{\mathbf{A}'}[\vec{a}]$, para cada $\vec{a} \in A^n$
- 2. Para cada $\varphi =_d \varphi(\vec{v}) \in F^{\tau_{\cap}}$ se tiene que $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A}' \models \varphi[\vec{a}]$
- 3. $Si \Sigma \cup \{\varphi\} \subseteq S^{\tau_{\cap}}, \ entonces (\Sigma, \tau) \models \varphi \iff (\Sigma, \tau') \models \varphi$

Proof. Se acepta sin demostracion

Lema 74. Sea τ un tipo. Hay una infinitupla $(\gamma_1, \gamma_2, \dots) \in F^{\tau N}$ tal que:

- 1. $|Li(\gamma_i)| \leq 1$, para cada j = 1, 2, ...
- 2. $Si |Li(\gamma)| \leq 1$, entonces $\gamma = \gamma_j$ para algun $j \in \mathbf{N}$

Teorema 75 (Teorema de Completitud). Sea $T = (\Sigma, \tau)$ una teoria de primer orden. Si $T \models \varphi$, entonces $T \vdash \varphi$

Corolario 76. Toda teoria consistente tiene un modelo

Corolario 77 (Teorema de Compacidad). Sea (Σ, τ) una teoria.

- 1. Si (Σ, τ) es tal que (Σ_0, τ) tiene un modelo, para cada subconjunto finito $\Sigma_0 \subseteq \Sigma$, entonces (Σ, τ) tiene un modelo
- 2. Si $(\Sigma, \tau) \models \varphi$, entonces hay un subconjunto finito $\Sigma_0 \subseteq \Sigma$ tal que $(\Sigma_0, \tau) \models \varphi$

18 Interpretacion semantica del algebra de Lindembaum

Definición 83. Sea $T = (\Sigma, \tau)$ una teoria. Dada $\varphi \in S^{\tau}$ definamos

$$\mathrm{Mod}_T(\varphi) = \{\mathbf{A} : \mathbf{A} \text{ es modelo de } T \neq \mathbf{A} \models \varphi\}$$

Lema 78. Dadas $\varphi, \psi \in S^{\tau}$, se tiene:

1.
$$[\varphi]_T \leq^T [\psi]_T \iff \operatorname{Mod}_T(\varphi) \subseteq \operatorname{Mod}_T(\psi)$$

2.
$$[\varphi]_T = [\psi]_T \iff \operatorname{Mod}_T(\varphi) = \operatorname{Mod}_T(\psi)$$

3.
$$[\varphi]_T <^T [\psi]_T \iff \operatorname{Mod}_T(\varphi) \subsetneq \operatorname{Mod}_T(\psi)$$

Proof. TODO
$$\Box$$

19 La aritmetica de Peano

Definición 84. Sea $\tau_A = (\{0,1\}, \{+^2, .^2\}, \{\leq\}, a)$. Denotaremos con ω a la estructura de tipo τ_A que tiene a ω como universo e interpreta los nombres τ_A en la manera usual, es decir:

$$\begin{array}{ll} 0^{\pmb{\omega}} & = 0 \\ 1^{\pmb{\omega}} & = 1 \\ \leq^{\pmb{\omega}} & = \{(n,m) \in \omega^2 : n \leq m\} \\ +^{\pmb{\omega}}(n,m) = n+m, \text{ para cada } n,m \in \omega \\ .^{\pmb{\omega}}(n,m) & = n.m, \text{ para cada } n,m \in \omega \end{array}$$

Sea Σ el conjunto formado por las siguientes sentencias:

1.
$$\forall x_1 \forall x_2 \forall x_3 \ x_1 + (x_2 + x_3) \equiv (x_1 + x_2) + x_3$$

2.
$$\forall x_1 \forall x_2 \ x_1 + x_2 \equiv x_2 + x_1$$

3.
$$\forall x_1 \forall x_2 \forall x_3 \ x_1.(x_2.x_3) \equiv (x_1.x_2).x_3$$

4.
$$\forall x_1 \forall x_2 \ x_1.x_2 \equiv x_2.x_1$$

5.
$$\forall x_1 \ x_1 + 0 \equiv x_1$$

6.
$$\forall x_1 \ x_1.0 \equiv 0$$

7.
$$\forall x_1 \ x_1.1 \equiv 1$$

8.
$$\forall x_1 \forall x_2 \forall x_3 \ x_1 \cdot (x_2 + x_3) \equiv (x_1 \cdot x_2) + (x_1 \cdot x_3)$$

9.
$$\forall x_1 \forall x_2 \forall x_3 \ (x_1 + x_3 \equiv x_2 + x_3 \rightarrow x_1 \equiv x_2)$$

10.
$$\forall x_1 \ x_1 \le x_1$$

11.
$$\forall x_1 \forall x_2 \forall x_3 \ ((x_1 \le x_2 \land x_2 \le x_3) \to x_1 \le x_3)$$

12.
$$\forall x_1 \forall x_2 \ ((x_1 \le x_2 \land x_2 \le x_1) \to x_1 \equiv x_2)$$

13.
$$\forall x_1 \forall x_2 \ (x_1 \le x_2 \lor x_2 \le x_1)$$

14.
$$\forall x_1 \forall x_2 \ (x_1 \le x_2 \leftrightarrow \exists x_3 \ x_2 \equiv x_1 + x_3)$$

15. 0 < 1

Es facil ver que estas sentencias son satisfechas por $\boldsymbol{\omega}$, por lo cual $\boldsymbol{\omega}$ es un modelo de la teoria (Σ, τ_A) . Definamos

$$Verd_{\pmb{\omega}} = \{\varphi: S^{\tau_A}: \pmb{\omega} \models \varphi\}$$

Observacion 13. Sea $\mathbf{Q}^{\geq 0}$ la estructura de tipo τ_A que tiene a $r \in \mathbf{Q} : r \geq 0$ como universo e interpreta los nombres de τ_A de la manera usual. Notese que $\mathbf{Q}^{\geq 0}$ tambien es un modelo de la teoria (Σ, τ_A) definida justo antes. Pero entonces los teoremas de (Σ, τ_A) deben ser verdaderos en $\mathbf{Q}^{\geq 0}$, pero la sentencia $\forall x (x \leq 1 \to (x \equiv 0 \land x \equiv 1))$ es falsa en $\mathbf{Q}^{\geq 0}$, por lo cual no es un teorema de (Σ, τ_A) , sin embargo pertenece a $Verd_{\mathbf{w}}$.

Es decir, los axiomas que habiamos definido antes son demasiado generales y deberiamos agregar axiomas mas característicos de la estructura particular de ω .

Definición 85. Dada una formula $\psi \in F^{\tau_A}$ y variables v_1, \ldots, v_{n+1} , con $n \geq 0$, tales que $Li(\psi) \subseteq \{v_1, \ldots, v_{n+1}\}$ y $v_i \neq v_j$ siempre que $i \neq j$, denotaremos con $Ind_{\psi, v_1, \ldots, v_{n+1}}$ a la siguiente sentencia de tipo τ_A

$$\forall v_1, \dots, \forall v_n \ ((\psi(\vec{v}, 0) \land \forall v_{n+1} \ (\psi(\vec{v}, v_{n+1}) \to \psi(\vec{v}, +(v_{n+1}, 1)))) \to \forall v_{n+1} \ \psi(\vec{v}, v_{n+1}))$$

donde suponemos que hemos declarado $\psi =_d \psi(v_1, \dots, v_{n+1})$.

Sea Σ_A el conjunto que resulta de agregarla al Σ definido anteriormente todas las sentencias de la forma $Ind_{\psi,v_1,...,v_{n+1}}$. La teoria (Σ_A, τ_A) sera llamada $Aritmetica\ DE\ Peano\ y$ la denotaremos con Arit.

Lema 79. ω es un modelo de Arit

Observacion 14. $Ind_{\psi,v_1,...,v_{n+1}}$ es verdadera en ω .

Proof. Supongamos que no. Entonces existen valores $\vec{v} = (v_1, \dots, v_n)$ tal que

$$\boldsymbol{\omega} \not\models ((\psi(\vec{v},0) \land (\forall v_{n+1} \ (\psi(\vec{v},v_{n+1}) \rightarrow \psi(\vec{v},+(v_{n+1},1)))) \rightarrow \forall v_{n+1} \ \psi(\vec{v},v_{n+1}))[(v_1,\ldots,v_n,\ldots)]$$

Pero entonces $\boldsymbol{\omega} \models (\psi(\vec{v},0) \land (\forall v_{n+1} \ (\psi(\vec{v},v_{n+1}) \rightarrow \psi(\vec{v},+(v_{n+1},1)))) \ y \ \boldsymbol{\omega} \not\models \forall v_{n+1} \ \psi(\vec{v},v_{n+1}), \text{ por lo tanto existe un valor para } v_{n+1} \text{ que no satisface } \psi(\vec{v},v_{n+1}).$ Es facil ver que ese valor no puede ser 0, y por lo tanto no puede ser 1, y por lo tanto no puede ser 2, $\boldsymbol{Abs!}$

Observacion15. $\mathbf{Q}^{\geq 0}$ no es un modelo de Arit

Proof. TODO

Definición 86. Definimos la funcion $\hat{}$: $\omega \to \{(\)\ ,\ +\ 0\ 1\}^*$ de la siguiente manera:

$$\widehat{0}=0$$

$$\widehat{1}=1$$

$$\widehat{n+1}=+(\widehat{n},1), \text{ para cada } n\geq 1$$

Proposicion 80. Hay un modelo de Arit el cual no es isomorfo a ω

Lema 81. Las siguientes sentencias son teoremas de la aritmetica de Peano:

- 1. $\forall x \ 0 \le x$
- 2. $\forall x \ (x \le 0 \to x \equiv 0)$
- 3. $\forall x \forall y \ (x + y \equiv 0 \rightarrow x \equiv 0 \land y \equiv 0)$
- 4. $\forall x \ (\neg(x \equiv 0) \rightarrow \exists z (x \equiv z+1))$
- 5. $\forall x \forall y \ (x < y \rightarrow x + 1 \le y)$
- 6. $\forall x \forall y \ (x < y + 1 \rightarrow x \le y)$
- 7. $\forall x \forall y \ (x \leq y+1 \rightarrow (x \leq y \lor x \equiv y+1))$

Proof. Prueba de (1) - TODO

Prueba de (2)

1.	$x_0 \le 0$	HIPOTESIS1
2.	$\forall x \ 0 \le x$	TEOREMA
3.	$0 \le x_0$	PARTICULARIZACION(2)
4.	$x_0 \le 0 \land 0 \le x_0$	${\bf CONJUNCIONINTRODUCCION} (1,3)$
5.	$\forall x_1 \forall x_2 \ ((x_1 \le x_2 \land x_2 \le x_1) \to x_1 \equiv x_2)$	AXIOMAPROPIO
6.	$\forall x_2((x_0 \le x_2 \land x_2 \le x_0) \to x_0 \equiv x_2)$	PARTICULARIZACION(5)
7.	$((x_0 \le 0 \land 0 \le x_0) \to x_0 \equiv 0)$	PARTICULARIZACION(6)
8.	$x_0 \equiv 0$	TESIS1MODUSPONENS(4,7)
9.	$(x_0 \le 0 \to x_0 \equiv 0)$	CONCLUSION
10.	$\forall x \ (x \le 0 \to x \equiv 0)$	GENERALIZACION(9)

Prueba de (3)

$$1. x_0 + y_0 \equiv 0$$

$$0 \equiv x_0 + y_0$$

3.
$$\exists x_3 \ (0 \equiv x_0 + x_3)$$

4.
$$\forall x_1 \forall x_2 \ (x_1 \le x_2 \leftrightarrow \exists x_3 \ x_2 \equiv x_1 + x_3)$$

5.
$$(x_0 \le 0 \leftrightarrow \exists x_3 \ 0 \equiv x_0 + x_3)$$

6.
$$x_0 \le 0$$

7.
$$\forall x \ (x \le 0 \to x \equiv 0)$$

8.
$$(x_0 \le 0 \to x_0 \equiv 0)$$

9.
$$x_0 \equiv 0$$

10.
$$0 + y_0 \equiv 0$$

11.
$$\forall x_1 \ x_1 + 0 \equiv x_1$$

12.
$$y_0 + 0 \equiv y_0$$

13.
$$\forall x_1 \forall x_2 \ x_1 + x_2 \equiv x_2 + x_1$$

14.
$$y_0 + 0 \equiv 0 + y_0$$

15.
$$0 + y_0 \equiv y_0$$

16.
$$y_0 \equiv 0$$

17.
$$x_0 \equiv 0 \land y_0 \equiv 0$$

18.
$$(x_0 + y_0 \equiv 0 \rightarrow (x_0 \equiv 0 \land y_0 \equiv 0))$$

19.
$$\forall x \forall y \ (x + y \equiv 0 \rightarrow (x \equiv 0 \land y \equiv 0))$$

HIPOTESIS1

COMMUTATIVIDAD(1)

EXISTENCIA(2)

AXIOMAPROPIO

PARTICULARIZACION²(5)

REEMPLAZO(5,3)

TEOREMA

PARTICULARIZACION(7)

MODUSPONENS(6, 8)

REEMPLAZO(9,1)

AXIOMAPROPIO

PARTICULARIZACION(11)

AXIOMAPROPIO

PARTICULARIZACION²(13)

REEMPLAZO(14, 12)

TRANSITIVIDAD(15, 10)

 ${\tt TESIS1CONJUNCIONINTRODUCCION} (12,16)$

CONCLUSION

GENERALIZACION²(18)

Prueba de (4) - TODO

Prueba de (5) - TODO

Prueba de (6) - TODO

Prueba de (7)

1.	$x_0 \le y_0 + 1$	HIPOTESIS1
2.	$x_0 \le y_0$	HIPOTESIS2
3.	$(x_0 < y_0 + 1 \to x_0 + 1 \le y_0 + 1)$	$PARTICULARIZACION^2(2)$
4.	$x_0 + 1 \le y_0 + 1$	TESIS1MODUSPONENS(1,3)
5.	$(x_0 < y_0 + 1 \to x_0 + 1 \le y_0 + 1)$	CONCLUSION
6.	$x_0 \le 0$	REEMPLAZO(5,3)
7.	$\forall x \ (x \le 0 \to x \equiv 0)$	TEOREMA
8.	$(x_0 \le 0 \to x_0 \equiv 0)$	PARTICULARIZACION(7)
9.	$x_0 \equiv 0$	MODUSPONENS(6, 8)
10.	$0 + y_0 \equiv 0$	REEMPLAZO(9,1)
11.	$\forall x_1 \ x_1 + 0 \equiv x_1$	AXIOMAPROPIO
12.	$y_0 + 0 \equiv y_0$	PARTICULARIZACION(11)
13.	$\forall x_1 \forall x_2 \ x_1 + x_2 \equiv x_2 + x_1$	AXIOMAPROPIO
14.	$y_0 + 0 \equiv 0 + y_0$	$PARTICULARIZACION^2(13)$
15.	$0 + y_0 \equiv y_0$	REEMPLAZO(14, 12)
16.	$y_0 \equiv 0$	TRANSITIVIDAD(15, 10)
17.	$x_0 \equiv 0 \land y_0 \equiv 0$	${\tt TESIS1CONJUNCIONINTRODUCCION} (12,16)$
18.	$(x_0 + y_0 \equiv 0 \rightarrow (x_0 \equiv 0 \land y_0 \equiv 0))$	CONCLUSION
19.	$\forall x \forall y \ (x + y \equiv 0 \rightarrow (x \equiv 0 \land y \equiv 0))$	GENERALIZACION $^2(18)$