

BABD

Masters in Business Analytics and Big Data

Data Preparation

Mauricio Soto - mauricioabel.soto@polimi.it

Incomplete Data

- Inspection
- Elimination
- ► Identification
- Replacement
 - mean value of numerical attributes
 - mean value of the target class
 - value estimated sing statistical inference

Noisy Data

- Univariate
 - Normal-like distribution

$$[\bar{\mu}-2\bar{\sigma},\bar{\mu}+2\bar{\sigma}]$$

contains about 96% of the data

lacktriangle In the general case, Tchebysheff theorem states taht for $\gamma>1$

$$[\bar{\mu} - \gamma \bar{\sigma}, \bar{\mu} + \gamma \bar{\sigma}]$$

contains $1 - 1/\gamma^2$ proportion of the observations

- Multi variate
 - Clustering techniques

Box-plot

- $D_q = q_U q_L = q_{0.75} q_{0.25}$
- ▶ internal lower edge= $q_L 1.5 D_q$
- \triangleright external lower edge= $q_L 3 D_q$

Data transformation

Decimal Scaling

$$x'_{ij} = \frac{x_{ij}}{10^k}$$

▶ **Min-Max** in the interval $[x'_{\min,j}, x'_{\max,j}]$

$$x'_{ij} = \frac{x_{ij} - x_{\min,j}}{x_{\max,j} - x_{\min,j}} (x'_{\max,j} - x'_{\min,j}) + x'_{\min,j}$$

z-index

$$x'_{ij} = \frac{x_{ij} - \bar{\mu}_j}{\bar{\sigma}_i}$$

Data reduction

- Sampling
 - Simple sampling
 - Stratified sampling
- Selection
 - ► Filter methods
 - Wrapper methods
 - Embedded methods
- Discretization, Aggregation
- ▶ **Projection** (ex. PCA)

PCA: Principal Component Analysis

- ightharpoonup Covariance data matrix V = X'X
- lacktriangle New components p_j obtained as a linear transformation of original data $p_j = X w_j$
- ▶ Variance of $p_j = w'_j X'X w_j = w'_j Vw_j$
- ► Maximizing the variance:

$$\max_{w_1} w_1' V w_1 \text{ s.t. } w_1' w_1 = 1$$

 \triangleright w_j is the j-th eigenvector of V, which explains a variance λ_j which is the j-th eigenvector

Nonlinear reduction

