MAC0105 - Exercícios

Gabriel Haruo Hanai Takeuchi - NUSP: 13671636

Exercício 11

Escreva a tabela verdade das seguintes proposições:

(a)
$$p \implies (q \lor r)$$

Resposta:

p	q	r	$p \implies (q \lor r)$
T	T	T	T
T	T	F	T
T	F	T	T
F	T	T	T
T	F	F	F
F	T	F	T
F	F	T	T
F	F	F	T

(b)
$$\neg q \implies (\neg q \lor r)$$

Resposta:

p	q	r	$\neg q \vee r$	$ \neg q \implies (\neg q \lor r) $
T	T	T	T	T
T	T	F	F	T
T	F	T	T	T
F	T	T	T	T
T	F	F	T	T
F	T	F	F	T
F	F	T	T	T
F	F	F	T	T

A sentença $\neg q \implies (\neg q \vee r)$ é uma tautologia.

$$\text{(c) } (p \land (p \implies q)) \implies q$$

Resposta:

p	q	$p \implies q$	$p \wedge (p \implies q)$	$ \mid (p \land (p \implies q)) \implies q $
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

A sentença $(p \land (p \implies q)) \implies q$ é uma tautologia.

(d)
$$p \implies q$$

Resposta:

$$\begin{array}{c|cccc} p & q & p \Longrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

(e)
$$\neg (p \implies q)$$

Resposta:

p	q	$\mid \neg(p \implies q) \mid$
T	T	F
$\mid T \mid$	F	T
F	T	F
F	F	F

(f)
$$\neg p \land q$$

Resposta:

p	q	$\neg p \wedge q$
T	T	F
T	F	F
F	T	T
F	F	F

Exercício 12

Prove os seguintes itens de forma direta ou utilizando a contrapositiva. Pense bem qual a melhor forma de provar cada item.

(a) Se x é ímpar, então x^2 é ímpar.

Proof. Vamos provar diretamente.

Suponha que x seja ímpar. Logo, existe $k \in \mathbb{N}$ tal que x = 2k + 1. Multiplicando x por x, temos

$$x^{2} = (2k + 1)^{2}$$
$$= (4k^{2} + 4k) + 1$$
$$= 2(2k^{2} + 2k) + 1.$$

Observe que $2k^2+2k\in\mathbb{N}$. Note que x^2 é da forma 2m+1, sendo $m=2k^2+2k\in\mathbb{N}$. Logo, x^2 é da forma de um número ímpar, como queríamos.

(b) Suponha que x e y são números reais. Se $y^3 + yx^2 \le x^3 + xy^2$, então $y \le x$.

Proof. Vamos provar por contrapositiva, ou seja, $y > x \implies y^3 + yx^2 > x^3 + xy^2$. Suponha que y > x. Logo,

$$y > x \implies y(y^2 + x^2) > x(x^2 + y^2),$$
 isto pois $(x^2 + y^2) > 0$
 $\implies y^3 + yx^2 > x^3 + xy^2$

Como queríamos.

(c) Sejam $x, y \in z$ números inteiros. Se $x \mid y \in y \mid z$, então $x \mid z$ ($a \mid b$ significa que a divide b).

Proof. Vamos provar diretamente.

Suponha que $x \mid y$. Logo, $\exists a \in \mathbb{Z}$ tal que $y = a \cdot x$. Suponha que $y \mid z$, ou seja, $a \cdot x \mid z$. Logo, $\exists b \in \mathbb{Z}$ tal que $z = b \cdot a \cdot x$. Note que $z = (b \cdot a) \cdot x$, onde $ab \in \mathbb{Z}$. Portanto, $x \mid z$.

Exercício 15

Seja p uma proposição como abaixo:

$$p = \forall x, y \in \mathbb{N}, ((x < y) \implies (\exists z \in \mathbb{N}, x < z < y))$$

Faça o que é pedido nos itens abaixo:

(a) Escreva a negação $\neg p$ de p:

Resposta:

(b) Escreva em língua portuguesa, com palavras, o significado de p e de $\neg p$:

Resposta:

Em português, p é:

Para quaisquer x, y naturais, se x é menor que y, então existe z natural tal que z está entre x e y. Em português, $\neg p$ é:

Existe pelo menos um par x, y de naturais tais que x é menor que y e todo natural é menor-igual a x ou maior-igual a y.

(c) p é verdadeira? Justifique.

Resposta:

A proposição p é falsa. Vamos mostrar um contraexemplo:

Suponha x = 1, y = 2. Não existe natural entre x e y que seja diferente de x e y.

(d) $\neg p$ é verdadeira? Justifique.

Resposta:

A proposição $\neg p$ é verdadeira. Basta mostrar um exemplo de x,y que satisfaça as condições impostas.

O exemplo sempre ocorre se y=x+1. Portanto, suponha x,y=x+1. Perceba que qualquer número natural está no intervalo $[0,x]\cup[y,+\infty]=[0,x]\cup[x+1,+\infty]$. Logo, existem x,y tais que (x< y) e $(\forall z\in\mathbb{N},z\leq x\vee z\geq y)$.

Portanto, $\neg p$ é verdadeiro.