Fundamentals of Machine Learning

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

: 7H 2/25 2 GUFZN 3/252 - (1/22 2 2 d Exter)

Of Statistially

Tuproved 31 (00 | 5M

Weekly Objectives

- Learn the most classical methods of machine learning
 - Rule based approach
 - Classical statistics approach
 - Information theory appraoch
- Rule based machine learning
 - How to find the specialized and the generalized rules
 - Why the rules are easily broken
- Decision Tree
 - How to create a decision tree given a training dataset
 - Why the tree becomes a weak learner with a new dataset
- Linear Regression
 - How to infer a parameter set from a training dataset
 - Why the feature engineering has its limit

) Potest

RULE BASED MACHINE LEARNING

From the Last Week

"H1252 4-921 W"= lear

- Definition of machine learning
 - A computer program is said to
 - learn from experience E
 - With respect to some class of tasks T
 - And performance measure P, if its performance at tasks in T, as measured by P, improves with experience E
- More experience → more thumbtack toss, more prior knowledge
 - Data: We have observed the sequence data of D with a_H and a_T
 - Our hypothesis
 - The gambling result of thumbtack follows the binomial distribution of θ
- Our first trial other than thumbtack
 - Rule based learning
 - Still, about choosing a better hypothesis

Supervised Learning

You know the true answers of some of instances

A Perfect World for Rule Based Learning

- **Imagine**
 - A perfect world with

Training data is error-free, noisefree

- No observation errors, No inconsistent observations

Target function is deterministic

- No stochastic elements in the system we observe

 (= Randow e Heet)

 Full information in the observations to regenerate the system
- A perfect world of "EnjoySport"

Target function is contained in hypotheses set

- Observation on the people
 - Sky, Temp, Humid, Wind, Water, Forecast → EnjoySport

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Function Approximation > ML= 226

- Machine Learning?
 - The effort of producing a better approximate function
 - Remember PAC Learning Theory?
- In the perfect world of EnjoySport
 - Instance X
 - Features: O: <Sunny, Warm, Normal, Strong, Warm, Same>
 - Label: Y: <Yes>
 - Training Dataset **D**
 - A collection of observations on the instance
 - Hypotheses **H**
 - Potentially possible function to turn X into Y
 - h_i : <Sunny, Warm, ?, ?, ?, Same> \rightarrow Yes
 - How many hypotheses exist?
 - Target Function c (= すらいいのと (** ないかいがく なない) : 川っていれては h(x)=c(x) for all x in D
 - Unknown target function between the features and the label

Determine A hypothesis **h** in **H** such that h(x)=c(x) for all x in X

<u>Determine</u>

A hypothesis **h** in **H** such

Graphical Representation of Function Approximation

- What would be the better function approximation?
 - Generalization vs. Specialization

Find-S Algorithm

- Find-S Algorithm
 - Initialize h to the most specific in H
 - For instance x in D
 - if x is positive
 - For feature f in O
 - If f_i in $h == f_i$ in x
 - Do nothing
 - Else
 - f_i in $h = f_i$ in $h \cup f_i$ in x
 - Return h
- Instances
 - x₁: <Sunny, Warm, Normal, Strong, Warm, Same>
 - x₂: <Sunny, Warm, Normal, Light, Warm, Same>

행생한/

- x₄: <Sunny, Warm, Normal, Strong, Warm, Change>
- Hypotheses

 $h_0 = <\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset> : \text{orthology} \\ \text{orthology}$

- h₁=<Sunny, Warm, Normal, Strong Warm, Same>
- h_{1,2,3}=<Sunny, Warm, Normal, (2), Warm, Same>
- $h_{1,2,3,4}$ =<Sunny, Warm, Normal, ?, Warm,
- Any problems?
 - Many possible hs, and can't determine the \haterian converge : ላ ኒሞ በን ጎንጌንኒ ሙዲ እ

Instances X

Version Space

- Many hypotheses possible, and No way to find the convergence
- Need to setup the perimeter of the possible hypothesis
- The set of the possible hypotheses == Version Space, **VS**
 - General Boundary, G
 - Is the set of the maximally general hypotheses of the version space
 Specific Boundary, S
 - Is the set of the maximally specific hypotheses of the version space

Every hypothesis, *h*, satisifies

 $VS_{H,D} = \{h \in H | \exists s \in S, \exists g \in G, g \ge h \ge s\}$ where $x \ge y$ means x is more general or equal to y

S: {<Sunny, Warm, ?, Strong, ?, ?>}

<Sunny, ?,?,Strong,?,?>

<Sunny, Warm,?,?,?,?>

<?, Warm,? Strong,?,?>

G: {<Sunny, ?,?,?,?,?>, <?, Warm, ?, ?, ?, ?>}orz

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

CAM 112/2/2/2

Candidate Elimination Algorithm

- Candidate Elimination Algorithm
 - Initialize S to maximally specific h
 in H
 - Initialize G to maximally general h in H

= (26755)2/2 V.522 7/26G) & = (27)

- For instance x in D > Octa ol & snay Zira 42 (Gars = 5253) in 421)
 - If y of x is positive eff to the state of a state feature state of a state o

 - Specialize G as much as needed to exclude o in x
 - Remove any h in S, for which h(o)=y
- Generate h that satisfies $\exists s \in S, \exists g \in G, g \geq h \geq s$

Zv

Progress of Candidate Elimination Algorithm

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold 2	Non't Come	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

GO, G1, G2: {<?,?,?,?,?>} :9320 -> x,, 720}3

Progress of Candidate Elimination Algorithm

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

Mynth)

S2, S3: {<Sunny, Warm, ?, Strong, Warm, Same>}

G3: {<Sunny,?,?,?,?,>, <?,Warm,?,?,?,>, <?,?,?,?,Same>}

G0, G1, G2: {<?,?(?)?,?,?>}

hasertout.

Progress of Candidate Elimination Algorithm

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Hypotheses H

S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

S2, S3: {<Sunny, Warm, ?, Strong, Warm, Same>]

S4: {<Sunny, Warm, ?, Strong, ?, ?>}

Still many hs; 6/4 Tone for Colory (F. Rule Breed

ing, KAIST

G4: {<Sunny,?,?,?,?>, <?,Warm,?,?,?,?>}

HZMM Cye, 4csoferny, G3: {<Sunny,?,?,?,?,?>,/<?,Warm,?,?,?,?>, <

G0, G1, G2: {<?,?,?,?,?,?>}

How to classify the next instance?

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

- A subset of H that satisfies the training data, D
- Imagine a new instance kicks in
- 1nfacov () <Sunny, Warm, Normal, Strong, Cool, Change> → 5世子 : マッチ.
 - 😉 <Rainy, Cold, Normal, Light, Warm, Same> → G হুণ্ড ্র ব্যায়
 - Sunny, Warm, Normal, Light, Warm, Same>
 - How to classify these?
 - Which h to apply from the subset?
 - Or, a classification by all of **h**s in the subset
 - How many are **h**s satisfied?

Is this working? : Jeel of My

- Will the candidate-elimination algorithm converge to the correct hypothesis?
 - Converge? → Able to select a hypothesis
 - Correct? → The hypothesis is true in the observed system
- Given the assumption, yes and yes Training data is error-free, noise-free
 - No observation errors, No inconsistent observations
 - No stochastic elements in the system we observe

Target function is deterministic

- Full information in the observations to regenerate the system
- However, we don't live in the perfect world
 - Any noise in o of x in D
 - Decision factor other than o of x (42 fuctor)

Target function is contained in hypotheses set

- > a correct h can be removed by the noise: Man eliminatem ma
- -> Cannot say yes and no : 954e my 3/7/4/34 do go len algo :en 17