Learn in Depth Mastering Embedded Systems Diploma

Unit 4 System Architecture Lecture 2 Part 1

Collision Avoidance Report

Using Sta	te Diagrams for System Design and Validatio	n
	By: Yara Ashraf	

Case Study

The collision avoidance system detects an object ahead via an ultrasonic sensor. If the distance between the system and the obstacle is less than the determined threshold, the robot will stop. If the calculated distance is more than the threshold, the robot will keep moving at the average speed.

Actual System

Sequence Diagram

Algorithm Logic:

- Distance threshold = 50m
- If US distance <= threshold, DC Motor speed will be set to 0m/s
- If distance > threshold, DC Motor speed will be set to 30m/s

Block Diagram

Ultrasonic Sensor Stage Diagram

DC Motor State Diagram

CA State Diagram

Simulation Trace

C Project Output

```
ic main.c ⋈ in State.h
                    .h CA.h
                             .c CA.c
                                     .c US.c
                                              .h US.h
                                                       .c DC.c
TO #THETANE DE'H
🥋 Problems 🔎 Tasks 📮 Console 🛭 🔳 Properties
<terminated> (exit value: -1,073,741,510) CA_Modules.exe [C/C++ Application] D:\Embedded_Systems_Diploma\Git\L
US ----> CA
CA driving: distance = 55, speed = 0
CA ----> DC
DC_busy: speed = 30
US waiting: distance = 48
US ----> CA
CA_waiting: distance = 48, speed = 30
CA ----> DC
DC_busy: speed = 0
US waiting: distance = 52
US ----> CA
CA_driving: distance = 52, speed = 0
CA ----> DC
DC_busy: speed = 30
US waiting: distance = 50
US ----> CA
CA_waiting: distance = 50, speed = 30
CA ----> DC
DC_busy: speed = 0
US waiting: distance = 45
US ----> CA
CA_waiting: distance = 45, speed = 0
CA ----> DC
DC_busy: speed = 0
US waiting: distance = 53
US ----> CA
CA_driving: distance = 53, speed = 0
CA ----> DC
DC_busy: speed = 30
US_waiting: distance = 46
US ----> CA
CA_waiting: distance = 46, speed = 30
CΔ ----> Sneed = Ø ---> DC
```