§9.3 差分方程的一般概念

2017-2018 学年 II

Outline

• 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。 假设 x 取非负整数

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$ y_0 y_1

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$ y_0 y_1 y_2

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$ y_0 y_1 y_2 y_n

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$ y_0 y_1 y_2 y_n y_{n+1}

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设x取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
", ", ", ", ", ", "
 y_0 y_1 y_2 y_n y_{n+1}

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
", ", ", ", ", ", "
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设x取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
", ", ",, ", "
 y_0 y_1 y_2 y_n y_{n+1}

定义 称 $y_{n+1} - y_n$ 为函数的一阶差分,记为 Δy_n ,即:

$$\Delta y_n = y_{n+1} - y_n$$

例设 $y_n = n^2 - 3n + 2$,求 Δ y_n

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设x取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
", ", ",, ", "
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

例设
$$y_n = n^2 - 3n + 2$$
,求 Δy_n

$$\Delta y_n = y_{n+1} - y_n$$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
|| , || , || ,, || , ||
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

例设
$$y_n = n^2 - 3n + 2$$
,求 Δ y_n

$$\begin{array}{ll}
\mathbf{m} & \Delta y_n = y_{n+1} - y_n \\
&= () - ()
\end{array}$$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
|| , || , || ,, || , ||
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

例设
$$y_n = n^2 - 3n + 2$$
,求 Δ y_n

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数,记:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
|| , || , || ,, || , ||
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

例设
$$y_n = n^2 - 3n + 2$$
,求 Δ y_n

$$\mu \Delta y_n = y_{n+1} - y_n$$

$$= ((n+1)^2 - 3(n+1) + 2) - (n^2 - 3n + 2)$$

- 微积分所研究的函数 y = f(x), 其自变量 x 是连续变化。
- 但在某些应用问题中, y = f(x) 的自变量 x 是离散的。

假设 x 取非负整数. i:

$$f(0)$$
 $f(1)$ $f(2)$ $f(n)$ $f(n+1)$
|| , || , || ,, || , ||
 y_0 y_1 y_2 y_n y_{n+1}

$$\Delta y_n = y_{n+1} - y_n$$

例设
$$y_n = n^2 - 3n + 2$$
,求 Δ y_n

$$\mathbf{g} \quad \Delta y_n = y_{n+1} - y_n \\
= ((n+1)^2 - 3(n+1) + 2) - (n^2 - 3n + 2) = 2n - 2$$

例设 $y_n = n^2 + 3^n$, 求 Δy_n

解

例设 $y_n = n^2 + 3^n$,求 Δy_n

 $\mathbf{M} \quad \Delta y_n = y_{n+1} - y_n$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$\mathbf{m} \quad \Delta y_n = y_{n+1} - y_n$$

$$()-(n^2+3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$\mathbf{m} \quad \Delta y_n = y_{n+1} - y_n$$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$\mathbf{m} \quad \Delta y_n = y_{n+1} - y_n$$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

= $(n^2 + 2n + 1 +) - (n^2 + 3^n)$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$\mathbf{m} \quad \Delta y_n = y_{n+1} - y_n$$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

= $(n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

例设
$$y_n = n^2 + 3^n$$
, 求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$
 $= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$
 $= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

定义 二阶差分 $\Delta^2 y_n$:

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分 $\Delta^2 y_n$:

$$\Delta^2 y_n =$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^2 y_n = \Delta(\Delta y_n) =$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^2 y_n = \Delta(\Delta y_n) = \Delta y_{n+1} -$$

例设
$$y_n = n^2 + 3^n$$
, 求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$
 $= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$
 $= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^2 y_n = \Delta(\Delta y_n) = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$
$$= () - ($$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$
$$= () - (y_{n+1} - y_{n})$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$
$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n})$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分 $\Delta^2 y_n$:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$
$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分 $\Delta^2 y_n$:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$
例设 $y_{n} = n^{2} + 3^{n}$, 求 $\Delta^{2} y_{n}$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

$$\begin{array}{ll}
\mathbf{p} & \Delta^2 y_n = \Delta y_{n+1} - \Delta y_n \\
&= () - ()
\end{array}$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

$$\mu \Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= () - (2n+1+2\cdot 3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

$$= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$\Delta^{2} y_{n} = \Delta(\Delta y_{n}) = \Delta y_{n+1} - \Delta y_{n}$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n}) = y_{n+2} - 2y_{n+1} + y_{n}$$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

$$\frac{1}{m} \Delta^2 y_n = \Delta y_{n+1} - \Delta y_n \\
= (2(n+1) + 1 + 2 \cdot 3^{n+1}) - (2n+1+2 \cdot 3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$
 $= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$
 $= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_n) = y_{n+2} - 2y_{n+1} + y_n$$

例设 $y_n = n^2 + 3^n$ 、求 $\Delta^2 y_n$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n
解 $\Delta y_n = y_{n+1} - y_n$
 $= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$
 $= (n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_n) = y_{n+2} - 2y_{n+1} + y_n$$

例设 $y_n = n^2 + 3^n$,求 $\Delta^2 y_n$

例设
$$y_n = n^2 + 3^n$$
,求 $\Delta^2 y_n$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

解 $\Delta y_n = y_{n+1} - y_n$

$$= ((n+1)^2 + 3^{n+1}) - (n^2 + 3^n)$$

= $(n^2 + 2n + 1 + 3 \cdot 3^n) - (n^2 + 3^n) = 2n + 1 + 2 \cdot 3^n$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_n) = y_{n+2} - 2y_{n+1} + y_n$$

例设 $y_n = n^2 + 3^n$,求 $\Delta^2 y_n$

$$\mathbf{P} \quad \Delta^2 y_n = \Delta y_{n+1} - \Delta y_n \\
= (2(n+1) + 1 + 2 \cdot 3^{n+1}) - (2n+1+2 \cdot 3^n) \\
= (2n+3+3 \cdot 2 \cdot 3^n) - (2n+1+2 \cdot 3^n)$$

例设
$$y_n = n^2 + 3^n$$
,求 Δy_n

$$\begin{aligned}
\mathbf{m} \quad \Delta y_n &= y_{n+1} - y_n \\
&= \left((n+1)^2 + 3^{n+1} \right) - \left(n^2 + 3^n \right) \\
&= \left(n^2 + 2n + 1 + 3 \cdot 3^n \right) - \left(n^2 + 3^n \right) = 2n + 1 + 2 \cdot 3^n
\end{aligned}$$

定义 二阶差分
$$\Delta^2 y_n$$
:

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_n) = y_{n+2} - 2y_{n+1} + y_n$$

例设 $y_n = n^2 + 3^n$,求 $\Delta^2 y_n$

$$\omega$$
 $\Delta^2 V_n = \Delta V_{n+1} - \Delta V_n$

$$= (2(n+1) + 1 + 2 \cdot 3^{n+1}) - (2n+1+2 \cdot 3^n)$$

$$= (2n+3+3 \cdot 2 \cdot 3^n) - (2n+1+2 \cdot 3^n) = 2+4 \cdot 3^n$$

例设 $y_n = n^2$,求 $\Delta^2 y_n$

解

例设
$$y_n = n^2$$
, 求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n =$$

例设
$$y_n = n^2$$
, 求 $\Delta^2 y_n$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

例设 $y_n = n^2$,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$μ$$

$$Δyn = yn+1 - yn = (n+1)2 - n2 = 2n + 1$$

$$Δ2yn = Δyn+1 - Δyn$$

$$= () - (2n+1)$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1) - (2n+1)$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1) - (2n+1) = 2$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

解

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1) - (2n+1) = 2$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\mathbf{M} \qquad \Delta y_n = y_{n+1} - y_n =$$

例设
$$y_n = n^2$$
, 求 $\Delta^2 y_n$

$$\begin{aligned}
\Delta y_n &= y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1 \\
\Delta^2 y_n &= \Delta y_{n+1} - \Delta y_n \\
&= (2(n+1)+1) - (2n+1) = 2
\end{aligned}$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\mathbf{M}$$
 $\Delta y_n = y_{n+1} - y_n = (n+1)^3 - 1$

例设
$$y_n = n^2$$
, 求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1) - (2n+1) = 2$$

$$\mathbf{M}$$
 设 $y_n = n^3$,求 $\Delta^2 y_n$

$$\mathbf{M}$$
 $\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 0$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1) - (2n+1) = 2$$

例设
$$y_n = n^3$$
, 求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例 设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= () - (3n^2 + 3n + 1)$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (3(n+1)^2 + 3(n+1) + 1) - (3n^2 + 3n + 1)$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (3(n+1)^2 + 3(n+1) + 1) - (3n^2 + 3n + 1)$$

$$= () - (3n^2 + 3n + 1)$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (2(n+1)+1)-(2n+1)=2$$

$$\Theta$$
 设 $y_n = n^3$,求 $\Delta^2 y_n$

$$\begin{aligned}
& \Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1 \\
& \Delta^2 y_n = \Delta y_{n+1} - \Delta y_n \\
& = \left(3(n+1)^2 + 3(n+1) + 1\right) - \left(3n^2 + 3n + 1\right) \\
& = \left(3n^2 + 9n + 7\right) - \left(3n^2 + 3n + 1\right)
\end{aligned}$$

例设
$$y_n = n^2$$
,求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

例设
$$y_n = n^3$$
, 求 $\Delta^2 y_n$

$$\Delta y_n = y_{n+1} - y_n = (n+1)^3 - n^3 = 3n^2 + 3n + 1$$

$$\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n$$

$$= (3(n+1)^2 + 3(n+1) + 1) - (3n^2 + 3n + 1)$$

$$= (3n^2 + 9n + 7) - (3n^2 + 3n + 1) = 6n + 6$$

差分方程

• 如下的方程都是所谓的差分方程

$$y_{n+2} + 2y_{n+1} - y_n = 3$$
, $y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$,
 $\Delta y_n - 4y_n = 3$, $\Delta y_n - 4y_{n-1} = e^{n-2}$,

差分方程

• 如下的方程都是所谓的差分方程

$$y_{n+2} + 2y_{n+1} - y_n = 3$$
, $y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$,
 $\Delta y_n - 4y_n = 3$, $\Delta y_n - 4y_{n-1} = e^{n-2}$,

定义 若方程含有未知函数若干时期的值或未知函数的差分,则称为差分 方程

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	
$\Delta y_n - 4y_n = 3$	
$\Delta y_n - 4y_{n-1} = e^{n-2}$	

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	2
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	
$\Delta y_n - 4y_n = 3$	
$\Delta y_n - 4y_{n-1} = e^{n-2}$	

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	2
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	3
$\Delta y_n - 4y_n = 3$	
$\Delta y_n - 4y_{n-1} = e^{n-2}$	

差分方程的阶

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	2
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	3
$\Delta y_n - 4y_n = 3$	
$\Delta y_n - 4y_{n-1} = e^{n-2}$	

(要将 Δy_n 换成 $y_{n+1} - y_n$)

差分方程的阶

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	2
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	3
$\Delta y_n - 4y_n = 3$	1
$\Delta y_n - 4y_{n-1} = e^{n-2}$	

(要将 Δy_n 换成 $y_{n+1} - y_n$)

差分方程的阶

定义 差分方程中未知函数附标的最大值与最小值的差,称为差分方程的阶

例

差分方程	阶
$y_{n+2} + 2y_{n+1} - y_n = 3$	2
$y_{n+2} + 2y_{n+1} - y_n = 3y_{n-1}$	3
$\Delta y_n - 4y_n = 3$	1
$\Delta y_n - 4y_{n-1} = e^{n-2}$	2

(要将 Δy_n 换成 $y_{n+1} - y_n$)

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

问题 能否解出 y_n ?

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

问题 能否解出 y_n?

公式 上述差分方程的通解为:

$$y_n = \begin{cases} c\alpha^n + \frac{b}{1-a}, & \alpha \neq 1\\ & , & \alpha = 1 \end{cases}$$

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

问题 能否解出 y_n?

公式 上述差分方程的通解为:

$$y_n = \begin{cases} c\alpha^n + \frac{b}{1-a}, & \alpha \neq 1\\ & , & \alpha = 1 \end{cases}$$

其中 c 是常数

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

问题 能否解出 y_n?

公式 上述差分方程的通解为:

$$y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1\\ c + nb, & a = 1 \end{cases}$$

其中 c 是常数

定义 一阶常系数常数项线性差分方程的标准形式:

$$y_{n+1} - ay_n = b$$

问题 能否解出 y_n?

公式 上述差分方程的通解为:

$$y_n = \begin{cases} c\alpha^n + \frac{b}{1-a}, & \alpha \neq 1\\ c + nb, & \alpha = 1 \end{cases}$$

其中 c 是常数,与初始值 y_0 的关系是:

$$c = \begin{cases} y_0 - \frac{b}{1-a}, & a \neq 1 \\ y_0, & a = 1 \end{cases}$$

由 所以

$$y_{n+1} - ay_n = b$$

$$y_n =$$

$$=\begin{cases} \left(y_0-\frac{b}{1-a}\right)\alpha^n+\frac{b}{1-a}, & \alpha\neq 1\\ y_0+nb, & \alpha=1 \end{cases}$$

$$y_{n+1} - ay_n = b \quad \Rightarrow \quad y_{n+1} = ay_n + b$$

$$y_n =$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right)\alpha^n + \frac{b}{1-a}, & \alpha \neq 1 \\ y_0 + nb, & \alpha = 1 \end{cases}$$

所以

$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$

$$y_1 = ay_0 + b$$

$$y_n =$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right)\alpha^n + \frac{b}{1-a}, & a \neq 1\\ y_0 + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$

所以
$$y_1 = \alpha y_0 + b$$

$$y_0 + D$$

$$y_2 = ay_1 + b =$$

$$y_n =$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right)\alpha^n + \frac{b}{1-a}, & \alpha \neq 1 \\ y_0 + nb, & \alpha = 1 \end{cases}$$

由
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + a[$

$$y_n =$$

$$=\begin{cases} \left(y_0 - \frac{b}{1-a}\right)\alpha^n + \frac{b}{1-a}, & \alpha \neq 1\\ y_0 + nb, & \alpha = 1 \end{cases}$$

曲
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
所以
$$y_1 = ay_0 + b$$

$$y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1 + a)b$$

$$y_n =$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right) \alpha^n + \frac{b}{1-a}, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

由
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1 + a)b$ $y_3 = ay_2 + b =$

$$y_n =$$

$$=\begin{cases} \left(y_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}, & a \neq 1\\ y_0 + nb, & a = 1 \end{cases}$$

曲
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
所以
$$y_1 = ay_0 + b$$

$$y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$$

$$y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b =$$

$$y_n =$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}, & \alpha \neq 1\\ y_0 + nb, & \alpha = 1 \end{cases}$$

曲
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$ $y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$:

$$y_n =$$

$$=\begin{cases} \left(y_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}, & a \neq 1\\ y_0 + nb, & a = 1 \end{cases}$$

曲
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$ $y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$:

$$y_n = \alpha^n y_0 +$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}, & \alpha \neq 1\\ y_0 + nb, & \alpha = 1 \end{cases}$$

由
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$ $y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$:

$$y_n = a^n y_0 + (1 + a + a^2 + \dots + a^{n-1})b$$

$$= \begin{cases} \left(y_0 - \frac{b}{1-a}\right) \alpha^n + \frac{b}{1-a}, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

曲
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
所以
$$y_1 = ay_0 + b$$

$$y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$$

$$y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$$
:

$$y_n = a^n y_0 + (1 + a + a^2 + \dots + a^{n-1})b$$

$$= \begin{cases} a^n y_0 + \frac{1 - a^n}{1 - a}b, & a \neq 1 \\ & a = 1 \end{cases}$$

$$= \begin{cases} \left(y_0 - \frac{b}{1 - a}\right)a^n + \frac{b}{1 - a}, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

由
$$y_{n+1} - ay_n = b \Rightarrow y_{n+1} = ay_n + b$$
 所以 $y_1 = ay_0 + b$ $y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1+a)b$ $y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$:

$$y_n = a^n y_0 + (1 + a + a^2 + \dots + a^{n-1})b$$

$$= \begin{cases} a^n y_0 + \frac{1 - a^n}{1 - a}b, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

$$= \begin{cases} \left(y_0 - \frac{b}{1 - a}\right)a^n + \frac{b}{1 - a}, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \quad \Rightarrow \quad y_{n+1} = ay_n + b$$

$$v_1 = av_0 + b$$

$$y_2 = ay_1 + b = a[ay_0 + b] + b = a^2y_0 + (1 + a)b$$

$$y_3 = ay_2 + b = a[a^2y_0 + (1+a)b] + b = a^3y_0 + (1+a+a^2)b$$

所以

$$y_n = a^n y_0 + (1 + a + a^2 + \dots + a^{n-1})b$$

$$= \begin{cases} a^n y_0 + \frac{1 - a^n}{1 - a}b, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases}$$

$$a = 1$$

$$=\begin{cases} \left(y_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}, & a \neq 1 \\ y_0 + nb, & a = 1 \end{cases} = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求
$$y_{n+1} - 3y_n = -9$$
 的通解,及满足初始条件 $y_0 = 5$ 的特解。

$$\mathbf{m}$$
 对应标准形式中 $a = \mathbf{n}$ 。

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求
$$y_{n+1} - 3y_n = -9$$
 的通解,及满足初始条件 $y_0 = 5$ 的特解。

$$\mathbf{m}$$
 对应标准形式中 $a = 3$, $b = 3$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

 \mathbf{m} 对应标准形式中 a=3, b=-9。

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

解 对应标准形式中
$$a = 3$$
, $b = -9$ 。所以通解为
$$y_n = c \cdot 3^n + \frac{-9}{1-3} =$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$\mathbf{R}$$
 对应标准形式中 $a=3$, $b=-9$ 。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$\mathbf{m}$$
 对应标准形式中 $a = 3$, $b = -9$ 。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

将 $y_0 = 5$ 代入通解:

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$\mathbf{m}$$
 对应标准形式中 $a = 3$, $b = -9$ 。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

将
$$y_0 = 5$$
 代入通解: $5 = c \cdot 3^0 + \frac{9}{2}$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

解 对应标准形式中
$$a = 3$$
, $b = -9$ 。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

将
$$y_0 = 5$$
 代入通解: $5 = c \cdot 3^0 + \frac{9}{2} = c + \frac{9}{2}$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$\mathbf{m}$$
 对应标准形式中 $\alpha = 3$, $b = -9$ 。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

将
$$y_0 = 5$$
 代入通解: $5 = c \cdot 3^0 + \frac{9}{2} = c + \frac{9}{2}$ \Rightarrow $c = \frac{1}{2}$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

 \mathbf{H} 对应标准形式中 $\alpha = 3$,b = -9。所以通解为

$$y_n = c \cdot 3^n + \frac{-9}{1-3} = c \cdot 3^n + \frac{9}{2}$$

将
$$y_0 = 5$$
 代入通解: $5 = c \cdot 3^0 + \frac{9}{2} = c + \frac{9}{2} \implies c = \frac{1}{2}$,所以特解是
$$y_n = \frac{1}{2} \cdot 3^n + \frac{9}{2}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求 $\Delta y_n + 3y_n = 6$ 的通解,及满足初始条件 $y_0 = 1$ 的特解。 解 $\Delta y_n = y_{n+1} - y_n$,所以方程改写为:

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求
$$\Delta y_n + 3y_n = 6$$
 的通解,及满足初始条件 $y_0 = 1$ 的特解。

$$解 Δyn = yn+1 - yn, 所以方程改写为:$$

$$y_{n+1} + 2y_n = 6$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求
$$\Delta y_n + 3y_n = 6$$
 的通解,及满足初始条件 $y_0 = 1$ 的特解。

$$解 Δyn = yn+1 - yn, 所以方程改写为:$$

$$y_{n+1} + 2y_n = 6$$

对应标准形式中
$$a = , b =$$
。

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$解 Δyn = yn+1 - yn, 所以方程改写为:$$

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 a = -2, b = ...

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

例 求
$$\Delta y_n + 3y_n = 6$$
 的通解,及满足初始条件 $y_0 = 1$ 的特解。

$$\mathbf{\mu} \Delta y_n = y_{n+1} - y_n$$
,所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 a = -2, b = 6。

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$解 Δyn = yn+1 - yn, 所以方程改写为:$$

$$y_{n+1} + 2y_n = 6$$

对应标准形式中
$$\alpha = -2$$
, $b = 6$ 。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} =$$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

解Δy_n = y_{n+1} - y_n, 所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 $\alpha = -2$, b = 6。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} = c \cdot (-2)^n + 2$$

将 $y_0 = 1$ 代入通解:

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

 \mathbf{M} Δ $y_n = y_{n+1} - y_n$,所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 $\alpha = -2$, b = 6。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} = c \cdot (-2)^n + 2$$

将 $y_0 = 1$ 代入通解: $1 = c \cdot (-2)^0 + 2$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

 \mathbf{M} Δ $y_n = y_{n+1} - y_n$,所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 $\alpha = -2$, b = 6。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} = c \cdot (-2)^n + 2$$

将
$$y_0 = 1$$
 代入通解: $1 = c \cdot (-2)^0 + 2 = c + 2$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

解Δy_n = y_{n+1} - y_n, 所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 $\alpha = -2$, b = 6。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} = c \cdot (-2)^n + 2$$

将
$$y_0 = 1$$
 代入通解: $1 = c \cdot (-2)^0 + 2 = c + 2 \implies c = -1$

$$y_{n+1} - ay_n = b \implies y_n = \begin{cases} ca^n + \frac{b}{1-a}, & a \neq 1 \\ c + nb, & a = 1 \end{cases}$$

$$\mathbf{M}$$
 Δ $\mathbf{y}_n = \mathbf{y}_{n+1} - \mathbf{y}_n$,所以方程改写为:

$$y_{n+1} + 2y_n = 6$$

对应标准形式中 a = -2, b = 6。所以通解为

$$y_n = c \cdot (-2)^n + \frac{6}{1 - (-2)} = c \cdot (-2)^n + 2$$

将 $y_0 = 1$ 代入通解: $1 = c \cdot (-2)^0 + 2 = c + 2 \implies c = -1$, 所以 特解是

$$y_n = -(-2)^n + 2$$

