Universidad Nacional Autónoma De Honduras

Energía Facultad de Ciencias Escuela de Física

LABORATORIO #4PLANTILLA Energía

Instructor (a):	
Nombre:	N ⁰ Cuenta:
Facha	NO Soggión

Objetivos

- 1.
- 2.
- 3.

Introducción

Procedimiento Experimental

Registro de datos experimentales

$$m = 27.8 g$$

h (cm)	t (s)
15	
20	
30	
40	
50	
60	
70	
80	
90	

Cuadro 1: Datos Experimentales

siendo

- h, la altura inical desde el lanzador hasta 10 cm abajo de la foto compuerta,
- t el tiempo de paso por la foto compuerta.

Tratamiento de Datos Experimentales

Con los datos experimentales calcule y anote en las tablas 2 y 3 $\,$

 \blacksquare La velocidad promedio en m/s de la pelota al pasar por la foto compuerta

$$\bar{v} = \frac{t}{d} \tag{1}$$

■ La velocidad de la pelota esperada en la foto compuerta, tomando la ecuación (6) esta es

$$v = \sqrt{2g\Delta y} = \sqrt{2gh} \tag{2}$$

■ La energía potencial al soltar la pelota, según ecuación (1)

$$U = mgh (3)$$

■ La energía cinética de la pelota al pasar por foto compuerta, según ecuación (2) y tomando como velocidad instantánea la velocidad promedio al pasar la foto compuerta, esta es

$$T = \frac{1}{2}m\bar{v}^2\tag{4}$$

Recuerde que la energía Cinética al soltar la pelota y la energía potencial al pasar por la posición final de las foto compuertas son ambas cero.

h (cm)	$\bar{v} \; (\mathrm{m/s})$	v (m/s)
15		
20		
30		
40		
50		
60		
70		
80		
90		

 ${\bf Cuadro~2:}~ {\it Tabla~comparativa~entre~las~velocidades~medias~y~velococidades~esperadas$

Con estos datos haga un gráfico de líneas comparativas entre \bar{v} y v para cada valor de altura. Haga un gráfico de columnas apiladas de la energía potencial y energía cinética para $h=0.4\,\mathrm{m}$ y otro para $h=0.8\,\mathrm{m}$

h (cm)	U (J)	T(J)
15		
20		
30		
40		
50		
60		
70		
80		
90		

Cuadro 3: Tabla de Energías potencial y Cinética

Análisis de resultados

Calcule el valor absoluto de la diferencia de \bar{U} y V para cada altura, además encuentre el promedio de estos errores. ¿Los puntos de los gráficos de barras referentes a \bar{V} y V se ven cercanos entre si? ¿son las diferencias pequeñas?, ¿y los promedios?, ¿a qué atribuye que estos valores no son cero?

Calcule el error teórico para la velocidad ${\mathcal U}$

$$E\%_v = \frac{|\bar{v} - v|}{v} \times 100 \tag{5}$$

¿Son estos errores significativos? Puede hacer una tabla para registrar estas cantidades.

Encuentre la energía mecánica de la pelota en su posición inicial de lanzamiento y posición final en la foto compuerta para cada valor de h, ¿la energía mecánica se mantiene constante?, ¿a qué atribuye las diferencias en estos valores?.

¿Qué simboliza la	as barras	apiladas	en los	gráficos	de	barras?,	¿Las	${\it barras}$	${\it apiladas}$	se	mantienen	a una
altura relativamen	nte const	ante para	un va	lor de h	dete	erminado	?, ¿A	qué se	debe est	ю?.		

Cuestionario

- 1. ¿Por qué en esta guía se dice que T_0 y U_f son cero?
- 2. ¿Qué ocurriría si se repitiera la práctica con una pelota con tres veces más masa?
- 3. ¿Qué ocurriría si se repitiera la práctica con una hoja de papel?

Conclusiones