

加减运算

用加法代替减法

10 - 3 = 7

 $-3 \equiv 9 \; (mod \; 12)$

$$10 + 9 = 19$$

$$\frac{19}{12} = 1 \cdots 7$$
 19 mod 12 = 7

模

相当于 求余数

模运算的性质

带余除法——设 $x,m\in \mathbb{Z}, m>0$ 则存在唯一决定的整数q和r,使得: x=qm+r , $0\leq r< m$

数论中余数的定义

<u>4</u>为 补数 -3 = (-1)*12 + <mark>9</mark>

二者绝对值 之和=模

$$9 = 0*12 + 9$$

$$21 = 1*12 + 9$$

$$33 = 2*12 + 9$$

$$-15 = (-2)*12 + 9$$

.....

(mod 12) 把所有整数分为 12 类 (余数为 0~11)

mod 12 余数相同的数,都是同一类,都是等价的

即 10+(-3)、10+9、10+21 在 (mod 12)的条件下效果相同

在 (mod m) 的条件下,若能找到负数的补数,就可以用正数的加法来等价替代减法

模 - a的绝对值 = a 的补数

加减运算

加减运算

补码的作用:

使用补码可将减法操作转变为等价的加法,ALU 中无需集成减法器。 执行加法操作时,符号位一起参与运算

留个坑:溢出的判断?

移码

(a) The is it is		
真值(十进制)	补码	移码
-128	1000 0000	0000 0000
-127	1000 0001	0000 0001
-126	1000 0010	0000 0010
3	1111 1101	0111 1101
-2	1111 1110	0111 1110
-1	1111 1111	0111 1111
0	0000 0000	1000 0000
1	0000 0001	1000 0001
2	0000 0010	1000 0010
3	0000 0011	1000 0011
124	0111 1100	1111 1100
125	0111 1101	1111 1101
126	0111 1110	1111 1110
127	0111 1111	1111 1111

真值增大

移码表示的整数 很方便对比大小

△ 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研