Przecinanie się podziałów na płaszczyźnie

Tomasz Zachwieja & Filip Twardy

Problem

Tematem tego projektu jest wyznaczanie przecięcia dwóch podziałów płaszczyzny i wyznaczenie podziału z tego wynikającego. Jest to rozwinięcie problemu przecinania się odcinków, ponieważ podziały mogą być dużo bardziej złożonymi figurami.

Reprezentacja podziału

Do reprezentacji podziałów wykorzystana jest dwukierunkowa lista krawędzi (*Doubly Connected Edge List*, DCEL) umożliwiająca efektywne przechodzenie pomiędzy kolejnymi elementami podziału, tj:

- Wierzchołkami
- Krawędziami
- Ścianami

Każdy z tych elementów jest zawarty w DCEL i zawiera odpowiednie atrybuty i wskaźniki.

Krawędź (półkrawędź) e

- Origin(e) wierzchołek z którego wychodzi
- Twin(e) bliźniacza półkrawędź
- IncidentFace(e) ściana którą ogranicza
- Next(e) i Prev(e) kolejna i poprzednia półkrawędź na obwódce ściany tej półkrawędzi

Wierzchołek v

- Coordinates(v) współrzędne
- IncidentEdge(v) półkrawędzie incydentne do v

Ściana f

- OuterComponent(f) półkrawędź ograniczająca f dowolna
- InnerComponent(f) półkrawędzie elementów wewnątrz f

Vertex	Coordinates	IncidentEdge $\vec{e}_{1,1}$	
ν_1	(0,4)		
ν_2	(2,4)	$ec{e}_{4,2}$	
ν_3	(2,2)	$ec{e}_{2,1} \ ec{e}_{2,2}$	
v4	(1,1)		

Face	OuterComponent	InnerComponents $\vec{e}_{1,1}$ nil	
f_1	nil		
f_2	$ec{e}_{4,1}$		

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	ν_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_2	$\vec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$\vec{e}_{2,1}$	v_3	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	v_4	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	v_3	$\vec{e}_{3,2}$	f_1	$\vec{e}_{1,1}$	$\vec{e}_{2,2}$
$\vec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$\vec{e}_{4,1}$	v_3	$\vec{e}_{4,2}$	f_2	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	v_2	$\vec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

Algorytm

Program przyjmuje dwa podziały w postaci DCEL: *S1,S2* i wykonuje następujące kroki:

- 1. Skopiuj *S1,S2* do nowej DCEL
- Wyznacz wszystkie punkty przecięć krawędzi i stwórz nowe wierzchołki i krawędzie
- 3. Zaktualizuj DCEL o powstałe elementy

Przecinanie się krawędzi

Znajdowanie i wyznaczanie przecięć krawędzi jest wykonywane przy pomocy algorytmu zamiatania

Aktualizowanie krawędzi i wierzchołków

W zależności od przypadku (przecięcie dwóch krawędzi lub krawędź przechodząca przez wierzchołek) tworzone są odpowiednie półkrawędzie i wierzchołki

Bibliografia

- Computational Geometry Algorithms and Applications, 3rd Ed Mark de Berg
- homepages.math.uic.edu/~jan/mcs481/suboverlays.pdf