ACSE Labs

Lab Report

姓名:廖冠勳

系級:電信

學號:0860306

Lab 03 - System

A. 實驗目的

- 瞭解 System 特性,包含 Memoryless/Memory, Linear/Non-Linear, Causal/Noncausal。
- 設計 FIR、IIR 過程中,了解 Pole 與 Zero 對訊號的物理意義,並以此性質作為濾波 與放大的功能。
- 了解系統的 Frequency 與 Phase response,用以調校達到所需的效果。
- 了解 SNR 的物理意義,並以 SNR 為基準,設計濾波器以達到對 SNR 的需求。

B. 實驗原理

FIR/IIR 系統性質:

	FIR	IIR			
Differential 表 示式	y(n) = a(0)x(n) + a(1)x(n-1) + a(2)x(n-2)	y(n) = b(1)y(n-1) + a(0)x(n) + a(1)x(n-1)			
特徴	只有x項次有係數	比起 FIR 多加了一項 Non-Causal Output			
Z - transform	$Y(z) = a(0)X(z) + a(1)X(z)z^{-1} + a(2)X(z)z^{-2}$ $= \left[a(0) + a(1)z^{-1} + a(2)z^{-2}\right]X(z)$	$Y(z) = b(1)Y(z)z^{-1} + a(0)X(z) + a(1)X(z)z^{-1}$ $\Rightarrow \left[1 - b(1)z^{-1}\right]Y(z) = \left[a(0) + a(1)z^{-1}\right]X(z)$			
Transferfunction	$a(0) + a(1)z^{-1} + a(2)z^{-2}$	$\frac{a(0) + a(1)z^{-1}}{1 - b(1)z^{-1}}$			
Pole/Zero 設計 Gudline	對於 FIR 的 system,只要設計其 Zero 即可。	對於 FIR 的 system,要同時設計其 Zero、Pole。Pole 要放在想要增益的特定頻率, Zero 要放在濾除的特定頻率。			
Pole / Zero 圖示	1 0.8 0.6 0.4	1 0.8 0.6 0.4 1 1 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2			
	1. Pole 越靠近單位圓越容易造成增益無限大而造成系統的 unstable, Zero 越靠				
Pole 與 Zero 設計	近單位圓對濾除特定頻率有較好的效果。				
技巧	2. Pole、Zero 設計在非實數軸上時,必須使用 Complex Conjugate。否則無法給				
	實係數的 Transfer Function。				

- 系統 Frequency / Phase Response:
 - Frequency Response: (以 Zero 為例)

$$H(z) = 1 - a_1 z^{-1} \rightarrow H(e^{j\omega}) = 1 - a_1 e^{-j\omega}$$

 $|H(e^{j\omega})| = |e^{-j\omega}(e^{j\omega} - a_1)| = |e^{j\omega} - a_1|$

exp(jw)可視為複數平面上單位圓上的點:

- \triangleright (1,0)對應到 $w = 0, 2N\pi -> 低頻區$
- ▶ (0,i)對應到 w = π/2
- \triangleright (-1,0)對應到 w = -π > 高頻區
- ► (0,-i)對應到 $w = 3\pi/2$
- ► 因此當 w 變動時就會在複數平面上的單位圓進行變動,從(1,0)到(-1,0)可視為從低頻 移動到高頻之意。

以 Zero 為例,若 Zero 設計在複數平面上的右半平面,根據 Transfer function zero 在分子的特性,在右半平面低頻區,因為距離 Zero 較近,Transfer Function 整體就會隨之下降。所以如下圖,High pass filter 即可如此理解。同理可推 Low pass filter。

■ Phase Response:

Phase Response 造成的原因

$$|Y(e^{j\omega})| = |H(e^{j\omega})| |\widehat{X}(e^{j\omega})| \Rightarrow z + 1$$

$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

女中 何 計算 Phase delay $h[n] = \delta[n-n_d] \Rightarrow y(n) = x(n-n_d)$ $H(e^{j\omega}) = e^{-j\omega n_d} \Rightarrow H(e^{j\omega}) = 1, \forall \omega$ delay 自身状態 中本 $H(e^{j\omega}) = -\omega n_d, |\omega| < \pi$ Obviously, phase delay $n_d = -\frac{\Delta H(e^{j\omega})}{\omega}$

系統本身的 Transfer function 可視為一個複數,而複數可視為由一個實數乘上相位變化:

$$\{Re\}e^{jw}$$

實數項會造成增益,虛數項會造成項位變化,項位變化所造成的 delay 可由相位圖上的斜率推得。

C. 實驗模擬結果與分析

■ FIR Filter:

• Result :

■ IIR Filter :

Signal Type	兩個 Sinusoidal signal 相加			
Amplitud e	1V			
Frequenc	1/4 與 1/8 (rad)			
合成波	Signal Combined 1 1 0 50 100 150 200 250 300			
想要得到的波形	Original Signal 0.5 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5			
濾得的波 形	0.4 IIR fitered signal			
Pole Zero Position	1 -			
Frequenc y Response	48.3 9 pnu 48.25 48.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Normalized Frequency (×π rad/sample)			
SNR	28. 1479 dB			
分析	系統的 Frequency Response 有明顯在其中一點降到 0 並在 0 點前有明顯增益點,即 1/8*pi 增益,1/4*pi 降到 0,所以可確定 zero 與 pole 擺放位置符合直覺。			