MATH 450 Seminar in Proof

Let $f: \mathbb{Z} \to 2\mathbb{Z}$ be defined by f(x) = 2x - 6. Prove that f is a bijection.

Proof. Let f be the function defined as in the question.

One-to-One: Let $f(x_1) = f(x_2)$, then

$$2x_1 - 6 = 2x_2 - 6 \tag{1}$$

$$2x_1 = 2x_2 \tag{2}$$

$$x_1 = x_1 \tag{3}$$

This means that if $f(x_1) = f(x_2)$ then, $x_1 = x_1$ thus f is one to one.

Onto: Let $x \in \mathbb{Z}$ and $y \in 2\mathbb{Z}$ such that, $x = \frac{y+6}{2}$.

$$f(x)=2x-6 \qquad \qquad \text{You can't choose x twice. Once it's chosen as (y+6)/2, you have to *show*} \\ =2\left(\frac{y+6}{2}\right)-6 \\ =y+6-6 \\ f(x)=y$$

This means that for every $y \in 2\mathbb{Z}$ there exists an $x \in \mathbb{Z}$. Thus f is a bijecction.