Esercizi esame Linguaggi per il Global Computing

Francesca Del Nin

June 2019

1 Esercizio B

1.1 Testo

Dimostrare che ogni processo del CCS finito termina in un numero finito di passi.

$$P,Q = 0 \mid \alpha.P \mid P+Q \mid P|Q \mid P_{\setminus L} \mid P[f]$$

1.2 Dimostrazione con somme finite

Voglio dimostrare che $\forall S \in CCS \ se \ S \xrightarrow{\alpha} S', \ S' \ finito \implies S \ termina in un numero finito di passi, definisco <math>size(S)$ come il numero di passi del processo S:

$$\begin{aligned} size(0) &= 0 \\ size(\alpha.P) &= 1 + size(P) \\ size(P|Q) &= size(P) + size(Q) \\ size(P+Q) &= max\{size(P), size(Q)\} \\ size(P_{\backslash L}) &= size(P) \\ size(P[f]) &= size(P) \end{aligned}$$

E' anche possibile dimostrare che il numero di stati raggiungibili da S è finito, per fare questo definisco B come il bound superiore al numero di stati raggiungibili da P:

$$B(0) = 1$$

$$B(\alpha.P) = 1 + B(P)$$

$$B(P|Q) = B(P) * B(Q)$$

$$B(P+Q) = B(P) + B(Q)$$

$$B(P_{\setminus L}) = B(P)$$

$$B(p[f]) = B(P)$$

Dimostrazione Dimostro che se $S \xrightarrow{\alpha} S' \implies size(S) > size(S')$ e che se i sottoprocessi di S sono finiti (size S' è finita) allora S termina. Dimostrazione per induzione sulla struttura di S, l'ipotesi e che se i sottoprocessi di S terminano in un numero finito di passi allora anche S termina in un numero finito di passi. Inoltre è possibile dimostrare che anche il numero di stati raggiungibili è finito, l'ipotesi è che se il numero di stati stati raggiungibili dai sottoprocessi di S è finito, allora anche gli stati raggiungibili da S sono finiti.

Caso Base S = 0:

S non esegue nessun passo per cui $S \not\xrightarrow{\alpha} \Longrightarrow$ S termina in un numero finito di passi. Inoltre B(0)=1 e size(0)=0

Caso Induttivo Prefix $S = \alpha . P$:

Per la regola ACT $\alpha.P \xrightarrow{\alpha} P$ e per ipotesi induttiva so che P termina in un numero finito di passi (size(P) è finita). size(S) = 1 + size(P) quindi anch'essa finita perche si aggiunge un passo ai passi (finiti) di P.

Inoltre è possibile dimostrare che anche il bound al numero di stati raggiungibili è finito dato che B(P) è finito per ipotesi induttiva è B(S) = B(P) + 1 e quidi finito.

Caso Induttivo Parallelo S = P|Q:

size(S) = size(P) + size(Q)e B(S) = B(P) * B(Q). Ci sono tre casi in basse alle regole PAR:

 $PAR_{\backslash L}$ $S=P|Q \xrightarrow{\alpha} P'|Q$ e S'=P'|Q, so per ipotesi induttiva che P e Q sono finiti e terminano in un numero finito di passi, e so che size(S')=size(P')+size(Q) e so che la premessa alla regola SUM1 $P \xrightarrow{\alpha} P'$ vale. Quindi size(P)=1+size(P') (perche fa un passo da P a P') e si ha che size(S)=size(P)+size(Q)=1+size(P')+size(Q)>size(P')+size(Q)=size(S').

Per ipotesi induttiva P e Q terminano per cui anche S termina.

Inoltre B(S) = B(P) * B(Q) e per ipotesi B(P) e B(S) sono finiti per cui anche il limite superiore al numero di stati raggiungibili da S è finito.

 $PAR_{\backslash R}$ Analogo con P e Q scambiati

 $SINC\ S=P|Q\xrightarrow{\alpha}P'|Q'$ e S'=P'|Q', so per ipotesi induttiva che P' e Q' sono finiti. In questo caso i due processi si sincronizzano eseguendo un passo, quindi size(S)=1+size(S')>size(S') e S termina in un numero finito di passi.

Inoltre B(S) = B(P) * B(Q) e per ipotesi B(P) e B(Q) sono finiti per cui anche B(S) lo è.

Caso Induttivo Non Determinismo S = P+Q:

 $size(S) = max\{size(P), size(Q)\}$ e B(S) = B(P) + B(Q), ci sono due casi in base alle regole SUM:

- $SUM_{\backslash L}$ in questo caso $S=P+Q\xrightarrow{\alpha}P'=S'$, ovvero S fa un passo e va in P', in questo caso si ha $size(S)=max\{size(P),size(Q)\}$ e a sua volta ci sono due casi:
 - Max=P in questo caso size(S) = size(P) e $S \xrightarrow{\alpha} S' = P'$ quindi size(S') = size(P') e siccome P ha fatto un passo per arrivare in P' è vero anche che size(P) = 1 + size(P') e quindi size(S) = size(P) > size(P') = size(S').

Inoltre per ipotesi induttiva Q e P terminano per cui anche S termina.

- Max=Q in questo caso size(S) = size(Q) e $S \xrightarrow{\alpha} S' = P'$ quindi size(S') = size(P'). Sappiamo che size(Q) > size(P) e che P fa un passo per andare in P'. Si deduce che size(S) = size(Q) > size(P) > size(P') = size(S'). Inoltre per ipotesi induttiva Q e P terminano per cui anche S termina.
- $SUM_{\backslash R}$ analogo con P e Q scambiati.

In tutti i casi si ha che B(S) = B(P) + B(Q) e per ipotesi sappiamo che B(P) e B(Q) sono finiti, per cui anche B(S) è finito.

Caso Induttivo Restriction $S=P_{\setminus L}$:

In questo caso size(S) = size(P) e B(S) = B(P).

Per la regola RES $P_{\backslash L} \xrightarrow{\alpha} P'_{\backslash L}$ quindi $size(S') = size(P'_{\backslash L}) = size(P')$. Sappiamo che P fa un passo $(\alpha \not\in L)$ e va in P', per cui $size(P) = 1 + size(P') > size(P') \Rightarrow size(S') > size(S')$. Per ipotesi induttiva size(P') è finita per cui S termina.

Inoltre B(S) = B(P) e B(S') = B(P') per ipotesi si ha che B(P') è finito (in quanto sottoprocesso di S) per cui anche B(S) lo è.

Caso Induttivo Relabeling S=P[f] :

Anche in questo caso size(S) = size(P) e B(S) = B(P).

Per la regola REL $P[f] \xrightarrow{f(\alpha)} P'[f] = S'$, e size(S') = size(P'). Per la premessa alla regola sappiamo che P fa un passo e va in P', per cui si ha che size(P) = 1 + size(P') quindi size(S) > size(S'), inoltre per ipotesi induttiva P' termina in un numero finito di passi per cui anche S termina.

Anche il numero di stati raggiungibili è finito perché per ipotesi B(P') è finito in quanto sottoprocesso di P(=S) e B(S) = B(P) = B(P') per cui è finito.

1.3 Dimostrazione con somme infinite

In questo caso non è possibile dimostrare che il numero di stati raggiungibili è finito perché il bound superiore al numero di stati è definito come la somma tra tutti i bound dei processi sommati, ovvero B(P+Q) = B(P) + B(Q), quindi nel caso di una scelta tra un numero infinito di processi la somma sarebbe infinita.

Si può comunque dimostrare che i processi che contengono scelte non deterministiche tra un numero infinito di processi terminano.

Per fare ciò utilizzo la struttura della grammatica che genera CCS,l'ipotesi induttiva è quindi che se il processo generato ha lunghezza finita (indipendentemente dalla presenza di somme infinite) allora termina in un numero finito di passi.

Procedo per induzione sula lunghezza della derivazione:

1.3.1 Caso Base

In questo caso la lunghezza è 0, l'unico processo di lunghezza 0 è 0, che non ha passi possibili e size(0) = 0.

1.3.2 Casi Indittuvi

in questo caso la lunghezza della dervazione è n+1 e per ipotesi sappiamo che fino alla lunghezza n è vero che il processo termina in un numero finito di passi, ovvero size(derivaizone fino ad n) = k con k finito.

Caso $S = \alpha.P$ In questo caso alla derivazione di P stiamo "aggiungendo" α e quindi size(S) = 1 + size(P) e siccome size(P) è finita per ipotesi induttiva anche size(S) lo è.

Caso S = P|Q $P \in Q$ sono processi che terminano in un numero finito di passi, ovvero la loro funzione size è finita. Sappiamo che size(P+Q) = size(P) + size(Q) quindi è finita.

Caso $S = P_{\setminus L}$ In questo caso sappiamo che P è finito e applichiamo una restrizione a P, il processo S termina quindi in un numero finito di passi perchè P termina per ipotesi e size(S) = size(P).

Caso S = S[f] P termina per ipotesi induttiva e stiamo applicando una funzione di relabeling ai canali di P, size(S) = size(P) e quindi termina in un numero finito di passi dato che P termina in un numero finito di passi per ipotesi.

Caso $S = \sum_{i \in I} P_i$ in questo caso la somma è infinta, ci sono quindi infiniti P_i che vengono sommati, per ipotesi induttiva ognuno dei P_i termina in un numero finito passi ovvero $size(P_i) = k$ con k finito. $size(S) = max\{size(P_i)|i \in I\}$, ma sappiamo che ogni $size(P_i)$ è finita per cui anche size(S) è finita.

2 Esercizio Q

2.1 Testo

Dimostrare il teorema di Knaster-Tarski nel caso di reticoli completi

Enunciato teorema Sia L un reticolo completo e $f: L \to L$ una funzione monotona \Rightarrow l'insieme dei punti fissi di f in L è un reticolo completo.

Def. reticoli completi : un insieme parzialmente ordinato in cui ogni sottoinsieme ha lub e glb

2.2 Dimostrazione

Per dimostrare che l'insieme dei punti fissi di f in L è un reticolo completo dimostro che dato $\langle P, \leq \rangle$ l'insieme dei punti fissi di f:

- il lub di P = gfp (greatest fixed point) di f e quindi $\in L$
- il glb di P = lfp (least fixed point) di fe quindi $\in L$
- $\bullet\,$ ogni sottoinsieme dei punti fissi di f in L ha lubeglbed essi $\in L$

I primi due punti dimostrano il Lemma di Knaster Tarski e il terzo dimostra che è un complete lattice.

Punto 1 Dimostro che dato $P_1 = \{x \in L | x \leq f(x)\}$ ovvero l'insieme di tutti i postfix points il *lub* di tale insieme è il greatest fixed point di f (ed appartiene all'insieme).

Si ha che $\forall x \in P_1$ vale $x \leq f(x)$ per definizione, per monotonia di f si ha che $f(x) \leq f(f(x))$ e quindi $f(x) \in P_1$

Sia $u = \forall P_1$ allora $\forall x \in P_1.x \leq u$ e per monotonia di f vale anche che $\forall x \in P_1.f(x) \leq f(u)$, questo indica che f(u) è un upper bound dell'insieme P_1 (perché $x \leq f(x) \leq f(u)$). Ma u è il least upper bound quindi $u \leq f(u) \Rightarrow u \in P_1$.

Dato che $u \in P_1$ per monotonia di f si ha che $f(u) \le f(f(u)) \Rightarrow f(u) \in P_1$, quindi $f(u) \le u$ Allora:

- $u \leq f(u)$
- $f(u) \leq u$

 $\Rightarrow u = f(u) = \forall P_1$ Siccome ogni fixed point appartiene all'insieme P_1 e u = f(u) è il lub di tale insieme, allora f(u) è il lub per tutti i fixed point e quindi è il greatest fixed point, ed appartiene all'insieme.

Punto 2 Dimostro che dato $P_2 = \{x \in L | x \ge f(x)\}$ ovvero l'insieme dei prefixed point di f in L il glb di tale insieme è uguale al least fixed point di f

E' vero che $\forall x \in P_2 x \geq f(x)$ e per monotonia di $f: f(x) \geq f(f(x)) \Rightarrow f(x) \in P_2$.

Sia $g = \wedge P_2$ allora $g \leq x. \forall x \in P_2$. Per monotonia di f è vero che $\forall x \in P_2. f(g) \leq f(x)$ ovvero f(g) è un lower bound di P_2 .

g è il greatest lower bound di P_2 quindi $g \geq f(g)$, allora $g \in P_2$

Per monotonia di $f(g) \ge f(f(g)) \Rightarrow f(g) \in P_2$ e quindi $g \le f(g)$ in quanto g è greatest lower bound di P_2 . Quindi:

- $g \ge f(g)$
- $f(g) \ge g$

 $\Rightarrow g = f(g) = \wedge P_2$. g è chiaramente un fixed point, e siccome tutti i fixed point appartengono a P_2 e f(g) è il greatest lower bound di $P_2 \Rightarrow f(g)$ è il least fixed point, ed appartiene a L.

Punto 3 Devo dimostrare che per ogni sottoinsieme di P esistono lub e glb e cha appartengono a P.

Sia $S \subseteq P$ e $s = \forall S$ (least upper bound di S), dimostro che esiste un elemento di P che è maggiore di tutti gli elementi di S, e che tale elemento è il più piccolo elemento di P (comunque più grande di S).

Definisco $U = \{x \in P | s \leq x\}$ ovvero l'insieme degli elementi più grandi di s in P (upper closure). U è quindi l'intervallo degli elementi da s al Top element di L: $U = [s....\top]$. Si ha che $s \in U$.

Ora dimostro che U è chiuso rispetto a f, ovvero:

Definizione di chiusura sia $f: S \to T$, e $S' \subseteq S$, allora si dice che S' è chiuso rispetto ad f se e solo se: $f[S'] \subseteq S'$, dove f[S'] è l'immagine di f in S.

Quindi voglio dimostrare che $f[U] \subseteq U$. Dimostro che:

- **a** $s \leq f(s)$
- **b** $\forall x \in U \ s \leq f(x)$

a $\forall e \in S$ vale che $e \leq s$ per definizione di lub. Dato che S è un sottoinsieme dei punti fissi vale che e = f(e) e per monotonia di f vale che $f(e) \leq f(s) \Rightarrow \forall e \in S.e \leq f(s)$, ovvero f(s) è un upper bound di S, ma per definizione di least upper bound si ha che $s \leq f(s)$.

b $\forall x \in U \ s \leq x$ per definizione di U. Per monotonia di f: $f(s) \leq f(x)$, per **a** $s \leq f(s) \Rightarrow s \leq f(x) \forall x \in U$.

Per **a** e **b** $\Rightarrow \forall x \in U \ f(x) \in U$. Ovvero U è chiuso rispetto ad f.

Siccome $f:U\to U$ e U è un reticolo completo in quanto intervallo di un reticolo completo (L), e per **Punto 1** e **Punto 2** vale che $f:U\to U$ con U reticolo completo ha lub e glb in U $\Rightarrow f$ ha lub e glb in U e lub=greatest fixed point e glb=least fixed point di f in U.

Siccome $s \leq x \forall x \in U$ allora s è il greatest lower bound di U, quindi s = least fixed point di f in U. Allora S ha lub in F perchè il lub di S = s = least fixed point di f in U e quindi $\in F$.

Analogamente i può dimostrare che S ha glb in F, e siccome questo vale $\forall S\subseteq P\Rightarrow P$ è un reticolo completo

2.3 Knaster Tarski in CCS

Sia $R \subseteq Proc \times Proc$ to se $(P,Q) \in R$ allora:

- $\forall P \xrightarrow{\alpha} P' \exists Q \xrightarrow{\alpha} Q' \text{ tc } (P', Q') \in R$
- $\forall Q \xrightarrow{\alpha} Q' \exists P \xrightarrow{\alpha} P' \text{ tc } (P', Q') \in R$

Definisco

$$F(R) = \{(P, Q)|\text{proprietà sopra}\}$$

Allora se $(P,Q) \in R \Rightarrow (P,Q) \in F(R)$, ovvero $R \subseteq F(R)$ cioè R è bisismulazione.

F è monotona perchè più grande è R più coppie ci sono in F(R) (mantiene la relazione di \leq da R a F).

R è bisimulazione sse $R\subseteq F(R)$. $\sim=$ \cup bisimulazioni cioè $\sim=$ $\cup\{R|R$ è bisimulazione $\}=\cup\{R|R\subseteq F(R)\}$ quindi $\sim=$ max Fixed Point(F).