MATH 345 Exam 2

T.J. Liggett

April 2021

1 Problems

Let A be a subset of a topological space X. Prove that $\partial A = \emptyset$ iff A is open and closed.

Proof. (\rightarrow) First, we must show that if $\partial A = \emptyset$, then A is open and closed.

Let A be a subset of a topological space X, where $\partial A = \emptyset$. By the definition of boundary, $Cl(A) - Int(A) = \emptyset$, so Cl(A) = Int(A).

Consider that the interior of A is the union of all open sets contained in A, and thus $Int(A) \subset A$. Also, the closure of A is the intersection of all closed sets that contain A, and $A \subset Cl(A)$.

Since $Cl(A) = Int(A) \subset A$ and $A \subset Cl(A)$, it follows that Cl(A) = A and Int(A) = Cl(A) = A. By Theorem 2.2, A is open as Int(A) = A and A is closed as Cl(A) = A. Thus, if $\partial A = \emptyset$, then A is open and closed.

 (\leftarrow) Next, we show that if A is open and closed, then $\partial A = \emptyset$.

Let A be both open and closed. By Theorem 2.2, since A is closed Cl(A) = A and since A is open Int(A) = A. Thus,

$$\partial A = Cl(A) - Int(A) = A - A = \emptyset.$$

Thus, if A is open and closed, then $\partial A = \emptyset$.

Therefore, $\partial A = \emptyset$ iff A is open and closed.