

Isotropicity of Semantic Spaces

Sara Rajaee

Contextual Embedding Space

Representing linguistic knowledge

Based on context, CWRs encode different level of linguistic knowledge.

Isotropy

- Uniform distribution
- Equal elongations concerning different directions

Why Isotropy is Important?

In anisotropic embedding space:

- High cosine similarity between random embeddings
- Word representations power is limited
- Longer convergence time

Measuring Isotropy

Review - PCA

PCs represent the directions explaining a maximal amount of variance.

Measuring Isotropy

PC-based metric

 $W: Embedding \ matrix$ $w_i: i^{th} \ word's \ embedding$ $U = \{eignevectors \ of \ W^TW\}$

$$F(u) = \sum_{i=1}^{M} \exp(u^T w_i)$$

$$I_{PC}(W) = \frac{\min_{u \in U} F(u)}{\max_{u \in U} F(u)}$$

Measuring Isotropy

Cosine Similarity

Average cosine similarity between randomly sampled word embeddings.

$$I_{Cos}(W) = \frac{1}{N} \sum_{i=1, x_i \neq y_i}^{N} Cos(x_i, y_i)$$

Language models

- GPT-2
 - Unidirectional language model
- BERT
 - Bidirectional encoders
 - Masked language modeling
- RoBERTa
 - More training data (compared to BERT)

Probing Isotropy

Global assessment

- All contextualized models are anisotropic in all layers
- GPT-2 has exceedingly anisotropic embedding space (except in the input layer)

Probing Isotropy

Local assessment

- Contextualized models are more isotropic.
- GPT-2 is still anisotropic.

	GPT-2	BERT	RoBERTa
Baseline	5.02E-174	5.05E-05	2.70E-06
k=1	2.49E-220	0.010	0.015
k = 3	9.42E-66	0.040	0.290
k = 6	1.40E-41	0.125	0.453
k = 9	1.18E-41	0.131	0.545
k = 20	4.06E-47	0.262	0.603

Table 2: CWRs isotropy after clustering and making zero-mean each cluster separately. The results are reported for the different number of clusters (k) on STS-B dev set.

Probing Isotropy

A superficial metric

 Exceptional cases where cosine similarity does not work (near zero cosine similarity in anisotropic space)

Motivation

 Clustered structure in contextual embedding space

Motivation

 Clustered structure in contextual embedding space

Motivation

 Clustered structure in contextual embedding space

Motivation

- Clustered structure in contextual embedding space
- Higher isotropy in the local view

1 2

Clustering embeddings using k-means.

Making each cluster zero-mean separately

3

Removing few top dominant directions calculated using PCA in each cluster individually

Setups

- Semantic Textual Similarity(STS)
- Recognizing Textual Entailment(RTE)
- The Corpus of Linguistic Acceptability(CoLA)
- The Stanford Sentiment Treebank(SST-2)
- The Microsoft Research Paraphrase Corpus(MRPC)
- Word-in-Context(WiC)
- Boolean Questions(BoolQ)

Setups

- Regression task
 - Using the cosine similarity of the sentence embeddings as score
- Classification task
 - Training an MLP on top of BERT, while its weights are frozen

Experiments

Model	STS 2012	STS 2013	STS 2014	STS 2015	STS 2016	SICK-R	STS-B
				Baseline			
GPT-2	1.4E-178	1.0E-170	1.4E-172	2.9E-177	6.0E-174	9.9E-140	2.6E-105
BERT	3.1E-05	1.9E-04	2.6E-04	3.7E-07	2.8E-04	4.2E-05	1.1E-04
RoBERTa	3.1E-06	3.1E-07	3.8E-06	3.8E-06	3.5E-06	3.7E-07	2.9E-06
				Global approach			
GPT-2	0.57	0.40	0.05	0.12	0.60	0.57	0.51
BERT	0.48	0.41	0.55	0.72	0.65	0.63	0.58
RoBERTa	0.67	0.87	0.87	0.84	0.85	0.90	0.88
				Cluster-based approach			
GPT-2	0.71	0.74	0.47	0.74	0.74	0.78	0.70
BERT	0.68	0.61	0.77	0.81	0.75	0.82	0.73
RoBERTa	0.89	0.91	0.93	0.92	0.89	0.94	0.90

Semantic Textual Similarity - Isotropy

Experiments

	Model	STS 2012	STS 2013	STS 2014	STS 2015	STS 2016	SICK-R	STS-B
	GPT-2	26.49	30.25	35.74	41.25	46.40	45.05	24.8
Baseline	BERT-base	42.87	59.21	59.75	62.85	63.74	58.69	47.4
	RoBERTa-base	33.09	56.44	46.76	55.44	60.88	61.28	56.0
Global approach	GPT-2	51.42	69.71	55.91	60.35	62.12	59.22	55.7
	BERT-base	54.62	70.39	60.34	63.73	69.37	63.68	65.5
	RoBERTa-base	51.59	73.57	60.70	66.72	69.34	65.82	70.1
	GPT-2	52.40	72.71	59.23	62.19	64.26	59.51	62.3
Cluster-based approach	BERT-base	58.34	75.65	63.55	64.37	69.63	63.75	66.0
	RoBERTa-base	54.87	76.70	64.18	67.05	69.28	66.93	71.4

Semantic Textual Similarity

Experiments

	RTE	CoLA	SST-2	MRPC	WiC	BoolQ	Average
Baseline	54.4	38.0	80.1	70.2	60.0	64.7	61.2
Global approach	56.2	38.8	80.2	72.1	60.7	64.9	62.1
Cluster-based approach	56.5	40.7	82.5	72.4	61.0	66.4	63.2

Investigating linguistic knowledge

Punctuations and Stopwords

local dominant directions carry structural and syntactic information about the sentences they appear.

- ★ A man is crying.
- ★ A woman is dancing.

Punctuations and Stopwords

- Use a dataset consists of groups in which sentences are structurally and syntactically similar but have no semantic similarity.
- pick 200 different structural groups.
- Find the percentage of each representation's nearest neighbors that are in the same group.

Punctuations and Stopwords

Original	shapley participated in the "great debate" with heber d.
1	morris put in the "heroic speech" with heber energy.
2	hall met in the "ninth season" with walton moore.
3	patel helped in the "double coup" with ibn salem.
4	chu sent in the "universal text" with uz.
5	smith exhibited in the "red year" with william james.

(Ravfogel et al., 2020)

Punctuations and Stopwords

The percentage of nearest neighbours that share similar structural and syntactic knowledge, before (lighter, pattern-filled) and after removing dominant directions in pre-trained CWRs.

Word frequency

- CWRs are biased toward their frequency
- Parts of removed PCs encode frequency information
- The proposed method can overcome frequency bias

BERT's CWRs visualization using PCA on STS-B dev set. Points color indicates their frequency calculated based on Wikipedia dump; the lighter point, the more frequent.

Verb Tense

 Verb representations are distributed based on their tense, not their semantic similarity

Distribution of "make" and "made" in BERT's embedding space

Verb Tense

Baseline				Removed PCs				
Model	ST-SM	ST-DM	DT-SM	Isotropy	ST-SM	ST-DM	DT-SM	Isotropy
GPT-2	48.82	48.19	50.86	2.26E-05	9.32	9.53	9.49	0.17
BERT	13.44	14.24	14.87	2.24E-05	10.31	10.50	10.32	0.32
RoBERTa	5.89	6.31	6.86	1.22E-06	4.78	5.00	4.89	0.73

Table 4: The mean Euclidean distance of a sample occurrence of a verb to all other occurrences of the same verb with the Same-Tense and the Same-Meaning (ST-SM), the Same-Tense but Different-Meaning (ST-DM), and a Different-Tense but the Same-Meaning (DT-SM). Semantically, it is desirable for DT-SM to be lower than ST-DM.

Convergence time

Isotropy decreases the convergence time

Summary

- Pre-trained LM models are highly anisotropic.
- Cosine similarity is an inappropriate metric for isotropy.
- Our cluster-based approach can consistently improve performance on different tasks.
- Discarded directions encode tense information, structural frequency knowledge

Fine-tuning LMs

Analyzing the effect of fine-tuning on isotropy of embedding space

Fine-tuning

- Adding a simple classification layer on top of the pre-trained model
- Training the pre-trained layers and the classifier jointly
- Leading to performance improvement

Questions

- How does isotropy change during fine-tuning?
- Does isotropy enhancement lead to performance improvement?
- How does the distribution of CWRs change upon fine-tuning?

Setups

BERT and RoBERTa

Using BERT and RoBERTa-base, which have 12 attention heads and 768 dimensions.

Siamese Architecture

Fine-tuning two pretrained models simultaneously.

How does isotropy change during fine-tuning?

The embedding space of fine-tuned models is highly anisotropic.

Isotropy Enhancement

Zero-mean

Clustering+ ZM

Global app

Clusterbased app

Making all representations zero-mean.

Clustering embeddings and making each cluster zero-mean separately.

Discarding a few top dominant directions calculated using PCA.

Clustering
embeddings and
discarding a few
top dominant
directions in each
cluster.

Results

	Baseline	Zero-mean	Clustering+ZM	Global	Cluster-based	
	Perf. Isotropy	Perf. Isotropy	Perf. Isotropy	Perf. Isotropy	Perf. Isotropy	
Pre-trained [†]	54.14 1.1E-5	59.70 1.1E-4	67.73 0.31	69.20 0.59	74.01 0.83 64.43 0.60	
Fine-tuned [†]	84.41 4.1E-3	84.94 6.6E-3	80.10 0.11	82.14 0.22		
Pre-trained [‡]	33.99 2.5E-6	37.66 8.3E-2	60.32 0.69	65.99 0.86	73.86 0.95 60.96 0.28	
Fine-tuned [‡]	81.08 3.3E-4	81.34 6.1E-3	76.03 0.05	79.71 0.18		

Spearman correlation performance and isotropy.

Results

		Globa	l App.	Cluster-based App.		
	Baseline	100 least dir.	700 least dir.	100 least dir.	700 least dir.	
	Perf. Isotropy	Perf. Isotropy Perf. Isotro		Perf. Isotropy	Perf. Isotropy	
BERT	84.41 4.1E-3	84.93 2.2E-3	82.93 2.2E-3	77.87 0.10	75.10 0.16	
RoBERTa	81.08 3.3E-4	81.66 3.2E-4	78.59 1.4E-2	73.19 0.13	71.39 0.13	

Spearman correlation performance and isotropy.

Summary

- The fine-tuned embedding space is **anisotropic**.
- Increasing isotropy hurts the performance.
- High sensitivity to a few top dominant directions
- The clustered structure of CWRs has been **faded**.

Multilingual Embedding Space

Probing Isotropy in Multilingual Space

Setups

Models

- English BERT
- **mBERT**

English Languages

- English
- Spanish
- Arabic
- Turkish
- Sundanese
- Swahili

Data

Wikipedia articles

Probing Isotropy

	BERT		mBERT					
	En	En	Es	Ar	Tr	Su	Sw	
$\overline{I_{Cos}(\mathcal{W})}$	0.34	0.24	0.27	0.27	0.25	0.25	0.27	
$I_{PC}(\mathcal{W})$	2.4E-5	6.4E-5	5.0E-5	1.6E-5	2.5E-4	1.2E-4	7.8E-5	

Sensitivity to Rogue Dimensions

Cosine Similarity

$$x = (x_1, x_2, ..., x_d)$$

$$y = (y_1, y_2, ..., y_d)$$

$$Cos(x,y) = \frac{\sum_{i=1}^{d} x_i y_i}{\|x\| \|y\|}$$

	$I_{Cos}(\mathcal{W})$	First	Second	Third
BERT	0.34	0.385	0.005	0.005
English	0.24	0.041	0.029	0.020
Spanish	0.27	0.033	0.029	0.018
Arabic	0.27	0.033	0.025	0.022
Turkish	0.25	0.036	0.024	0.024
Sundanese	0.25	0.036	0.016	0.016
Swahili	0.27	0.025	0.018	0.014

The contribution of top-three dimensions to the expected cosine similarity in BERT and mBERT models.

Outlier Dimensions

Outliers are the specific dimensions with consistently high value across all representations.

Figure 3: Outlier LayerNorm features 308, 381 in BERT-base-uncased (randomly sampled input).

Outlier Dimensions

		MRPC	STS-B	MNLI	MNLI-mm	COLA	SST-2	QQP	QNLI	RTE
	Baseline (full model)	87.2	88.8	84.1	84.2	56.8	92.5	89.8	90.6	61.7
Post-ft	Non-outlier [†] Outlier-308 Outlier-381	+0.3 -10.5 -4.6	-0.1 -23.4 -4.4	-0.2 -2.2 -13.7	-0.1 -1.8 -13.0	+0.2 -2.16 -22.2	0 -0.6 -3.4	-0.1 -1.0 -10.8	0 -1.9 -7.3	-0.4 -7.2 -5.0
	Random non-outlier pair [‡] Outliers 308 + 381	-1.1 -8.6	0.0 -44.1	+0.3 -27.9	+0.2 -27.2	-0.5 -32.3	+0.1 -20.8	+0.1 -13.0	0 -12.2	+0.5 - 10.0

Performance of BERT-based on GLUE.

Outlier Dimensions

The average of representations.

Isotropy Enhancement

	Ar-Ar	Ar-En	Es-Es	Es-En	Es-En-WMT	Tr-En	En-En
Baseline	51.76 (8E-5)	10.61 (<i>IE-4</i>)	64.15 (3E-5)	31.26 (5E-4)	11.39 (<i>1E-4</i>)	17.78 (<i>1E-4</i>)	60.82 (2E-6)
Individual Zero-shot	64.26 (0.60) 52.76 (6E-5)	23.10 (0.57) 19.36 (0.04)	70.88 (0.54) 65.69 (8E-4)	46.23 (0.50) 43.82 (0.09)	13.47 (0.50) 13.68 (8E-3)	25.59 (0.55) 19.89 (0.03)	71.99 (0.54)

STS performance and Isotropy.

THANK YOU!