This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Bibliographic Fields

Document Identity

(19)	(19) [Publication Office]
000000000	Japan Patent Office (JP)
(12)00000	(12) [Kind of Document]
0000000	Japanese Patent Publication (B2)
(11)000000	(11) [Patent Number]
000000000000000000000000000000000000000	Patent No. 3421202*(P3421202)
(45)□□□□□	(45) [Issue Date]
00000000000000000000000000000000000000	Heisei 15*June 30 days (2003.6.30)
(43) 🗆 🗆 🗆 🗆	(43) [Publication Date of Unexamined Application]
60000000000000000000000000000000000000	1998 April 28*(1998.4.28)
Filing	
(24) 🗆 🗆 🗆 🗆	(24) [Registration Date]
00000 <u>0</u> 000000000000000000000000000000	Heisei 15*April 18*(2003.4.18)
(21)□□□□□□	(21) [Application Number]
0000000000	Japan Patent Application Hei 8- 268385
(22) 🗆 🗆 🗆 .	(22) [Application Date]
000000000000000000000000000000000000000	1996 October 9*(1996.10.9)
000000	*Request for Examination **
000000000000000000	2000 April 4*(2000.4.4)
Public Availability	
(45)	(45) [Issue Date]
00000000000000000000000000000000000000	Heisei 15*June 30 days (2003.6.30)
(43)□□□□□	(43) [Publication Date of Unexamined Application]
00000000000000000000000000000000000000	1998 April 28*(1998.4.28)
Technical	
(54)	(54) [Title of Invention]
00000000000	PROPYLENE POLYMER WHICH IS ACQUIRED MAKING USE OF POLYMERIZATION METHOD OF PROPYLENE ANDTHAT
(51)000000000	(51) [International Patent Classification, 7th Edition]

Page 1 Paterra Instant MT Machine Translation

C08F 2/02	C08F 2/02
4/654	4/654
10/00 510	10/00 510
OFIO .	[FI]
C08F 2/02	C08F 2/02
4/654	4/654
10/00 510	10/00 510
000000	[Number of Claims]
	8
	[Number of Pages in Document]
	13
(56)□□□□□	(56) [Cited Reference(s)]
0000	[Literature]
00 0000000000000	Japan Unexamined Patent Publication Sho 64- 69610(JP,A)
0000	[Literature]
00 0000000000000	Japan Unexamined Patent Publication Hei 7- 31 6220(JP,A)
0000	[Literature]
00 00000000000000	Japan Unexamined Patent Publication Hei 7- 179514(JP,A)
0000	[Literature]
00 0000000000000	Japan Unexamined Patent Publication Hei 8- 231 625(JP,A)
0000	[Literature]
00 000000000000	Japan Unexamined Patent Publication Hei 9- 52911(JP,A)
(58)	(58) [Field of Search]
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	(International Class 7,DB*)C08F 2/00 - 2/60,4/654
(65)	(65) [Publication Number of Unexamined Application (A)]
0000000000	Japan Unexamined Patent Publication Hei 10- 110 003
Parties	
Assignees	
(73)	(73) [Patent Rights Holder]
00000	[Identification Number]
00000000	000005968
0000000	[Name]
	MITSUBISHI CHEMICAL CORPORATION (DB 69- 056-6740)
0000000	[Address]

Page 2 Paterra Instant MT Machine Translation

	Tokyo Chiyoda-ku Marunouchi 2-5-2
Inventors	
(72) 🗆 🗆 🗆 🗆	(72) [Inventor]
0000	[Name]
	Fujita *
0000000	[Address]
000000000000000000	Mie Prefecture Yokkaichi City Toho-cho 1 Mitsubishi Chemical Corporation (DB 69-056-6740) Yokkaichi Central Research Laboratory *
(72)	(72) [Inventor]
0000	[Name]
0000	Nakamura Kenichi
	[Address]
	Mie Prefecture Yokkaichi City Toho-cho 1 Mitsubishi Chemical Corporation (DB 69-056-6740) Yokkaichi Central Research Laboratory *
Agents	
(74)	(74) [Attorney(s) Representing All Applicants]
00000	[Identification Number]
0000000	100068065
	[Patent Attorney]
	[Name]
aaa o aaaaa	Hasegawa Hajime (2 others)
	[Examiner]
000000	***Sawa **
Claims	
(57)	(57)[Claim(s)]
000010	[Claim 1]
00000000000000000000000000000000000000	Other than propylene, the; al to ethylene or carbon number 4 or more 12 0.01 - 30 weight % it is possible to include -olefin as comonomer, with polymerization method of the propylenic monomer, critical temperature of monomer component where polymerization temperature exists inside polymerization system compared to with melting point or higher of polymer which and is polymerizedhighly, it is higher than critical pressure of monomer component where polymerization pressure exists inside aforementioned polymerization system, polymerization temperature 170 deg C~250 deg C, polymerization pressure is inside range of 50 - 300 kg/cm ² , propylene itattaches on solventless polymerization under condition and makes feature, the

Page 3 Paterra Instant MT Machine Translation

·	polymerization method . of aforementioned propylene
	[Claim 2]
00000006000000000000000000000000000000	\boldsymbol{Q} of polymer is 6 or more , polymerization method . of propylene which is stated in Claim 1
	[Claim 3]
000000000000000000000000000000000000000	polymerization method . of propylene which uses Ziegler catalyst , states in Claim 1
00004	[Claim 4]
0000000000000000000001	polymerization method . of propylene which uses magnesium- bearing catalyst , states in Claim 1
000050	[Claim 5]
00000010000000000000000000000000000000	polymerization method . of propylene which uses catalyst which prepolymerization is donewith vinyl group-containing compound , states in Claim 1
	[Claim 6]
00000000000000000000000000000000000000	melting point of polymer which prepolymerization is done is 200 deg C or greater , polymerization method . of propylene which is stated in Claim 5
000.070	[Claim 7]
00010000000000000000000000000000000000	With polymer which was polymerized with method which is stated in Claim 1, MFR of said polymer is 5 - 1000 g/10 min, it makesfeature, propylene polymer.
	[Claim 8]
00000000000000000000000000000000000000	With polymer which was polymerized with method which is stated in Claim 1, Q of said polymer is 6 or more, it makesfeature, propylene polymer.
Specification	
000000000	[Description of the Invention]
□0001□	[0001]
00000000000	[Technological Field of Invention]
00000	this invention is something regarding polymerization method of propylene .
000000000000000000000000000000000000000	Furthermore details regard polymerization method of propylene which possesses the high stereoregularity with quite high activity.
□0002□	[0002]
000000	[Prior Art]
	Until recently as method which polymerizes propylene, uses the hexane, heptane etc as solvent gas phase method etc which designates bulk method, inert gas whichdesignates slurry method, propylene itself which as solvent as media is known

Page 4 Paterra Instant MT Machine Translation

Page 5 Paterra Instant MT Machine Translation

JP3421202B2 2003-6-30 polymerization under condition which ishigher than critical . 00000000000000000 pressure of monomer component where polymerization pressure exists inside theaforementioned polymerization system makes feature, offers polymerization method of theaforementioned propylene. □0006□ [0006] [Embodiment of the Invention] 000000000000000000000 this invention with temperature which is higher than critical temperature of monomer component which exists inside 00000000000000000 polymerization system and is polymerized with temperature of the melting point or higher of polymer which is polymerized. Namely, it makes temperature range of melting point or higher of polymer where polymerization temperature when from critical temperature of propylene which is offered to the polymerization, in addition producing copolymer, is high 0040000in comparisonwith all critical temperature of propylene and other comonomer component (You detail on description below, but the;al of ethylene and carbon number 4 or more -olefin etc) which are used, atsame time forms. □0007□ [0007] In addition, polymerization pressure makes high pressure in comparison with the critical pressure of monomer component which exists inside polymerization system. Furthermore in this invention, "melting point of polymer" with, polymerizing under same condition as condition which is done beforehand actually, as a result it meansthat melting 000(DSC)000000000000 point of produced polymer which is acquired was measured due to the differential thermal analysis (DSC). □0008□ [8000] When polymerization temperature, it is lower than critical 0000000000000000000 temperature of monomer component which existsinside polymerization system, monomer for polymerization doing, liquefaction because density of monomer becomes high, as benefit of this invention becomes impossible is enjoyed, cost of separation and reuse of monomer becomes high. Furthermore, when being lower than melting point of polymer , molecular weight distribution which is made objective of QD060000000000000000 this invention it is wide, preferably Q stops being acquired. propylene polymer of 6 or more is not desirable. □0009□

[0009]

00000000000000000000

In addition, when polymerization pressure, being lower than critical pressure of monomer component which exists inside polymerization system, supercritical phenomenon cannot reveal and cannotacquire high activity.

As for polymerization temperature and polymerization pressure homopolymerization or copolymerization?, or

C	itchanges with molecular weight regulator for example hydrogen or other presence or absence or other condition, but when homopolymer of for example propylene is produced, as for critical temperature of propylene as for melting point of polymer which in 91.4 deg C, is acquired, it differs depending upon level of the stereoregularity of polymer which is acquired, but because they are 160 - 165 deg C generally, It is necessary to polymerize with 165 deg C or greater.
45.4kg/cm ²	In addition, because as for polymerization pressure, as for critical pressure of propylene they are 45.4 kg/cm ² , it is necessary to polymerize with pressure which is higher than 45.4 kg/cm ² .
□0010□	[0010]
	In addition, regarding to this invention, polymerization temperature 170 deg C~250 deg C, polymerization pressure solventless polymerization isdone in inside range of 50 - 300 kg/cm ² .
00000000000000000000000000000000000000	Regarding to this invention, solventless polymerization, system for slurry polymerization, solution polymerization which uses solvent is something which polymerizes in composition which designates monomer as main component unlike system which advances the polymerization with state which it melts or disperses catalyst and polymer, or including solvent, in finger naming and the polymerization system.
00000000000000000000000000000000000000	To typical, polymerization advances in monomer composition of supercritical state.
00000000000000000000000000000000000000	But, it is not something which removes coexistence of solvent of trace, fact that rather it is used for case of catalyst component, additive, monomer or other supply as diluent, or carrier is desirable embodiment.
□0011□	[0011]
00000000000000000000000000000000000000	If it is something which it can withstand temperature, pressure or other condition which is adopted for method of this invention as polymerization equipment which can be used with the this invention, there is not especially restriction, be able to use public knowledge polymerization equipment reaction system it can use loop type reactor etc which circulates with stirring tank, blower which possesses for example stirrer blade-equipped power unit.
□0012□	[0012]
00000000000000000000000000000000000000	In addition, regarding to this invention, as monomer which is offered topolymerization, other than propylene, ethylene or carbon number 4 or more ,usually the;al to carbon number 12 you can list -olefin as comonomer, can list ethylene, butene -1, 4- methyl -pentene -1, hexene -1, octene -1, decene -1, 3 - methyl -butene -1, etc concretely.

000-000-1000000000	
00000000000000000000000000000000000000	Quantity of comonomer is not something which especially is restricted. They are 15 weight %extent from 0.01 - 30 weight %, preferably 0.1.
□0013□	[0013]
00000000000000000000000000000000000000	In addition, following to method of this invention , as for propylene polymer which was polymerized, it is desirable for MFR to be 5 - $1000 \text{ g}/10 \text{ min}$
□□□□MFR□ASTMD1238□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	Furthermore, this MFR conforming to ASTM D1238, is something which ismeasured, (230 deg C, 2.16kg load).
□0014□	[0014]
00000000000000000000000000000000000000	Furthermore, following to method of this invention, as for propylene polymer which was polymerized, it is desirable for Q to be 6 or more.
000000000000000000000000000000000000	When Q is this range, moldability of mechanical strength corresponding and external appearance of molded article are superior, when it is too low, there is a tendency where external appearance of moldability and molded article is inferior.
00000Mw/Mn(Mw:000000000000000000000000000000000000	Furthermore Q is something which is calculated with Mw/Mn (weight average molecular weight, Mn which was measured by Mw:gel permeation chromatograph (GPC) is number average molecular weight which wasmeasured by GPC.).
□0015□	[0015]
	As for catalyst which is used with this invention, it can recognize theeffect of this invention, if you obtain with those of option, butbecause Ziegler catalyst, especially being a catalyst of magnesium bearing type is superior, activity in high temperature, it is desirable.
00000000000(A)0000(B)00 0000(A)000(B)0000(C)0000 0000000000	Concretely, below-mentioned component (A) and component (B), or component (A), component (B) and it is something which consists of combination of component (C).
00000000000000000000000000000000000000	It is not something where here, "Of combination it consists " with as for notion that whereyou say, that component which is used is only raising/holdingShimesu thing (namely, component (A) and (B), component (A), (B) and (C)) you say and mean, coexistence of goal-consistent other component is not removed.
□0016□	[0016]
00(A)0000000000000000000000000000000000	<component a="">component (A) is solid component for Ziegler catalyst which contains titanium, magnesium and halogen as essential ingredient.</component>
00000000000000000000000000000000000000	Here "It contains as essential ingredient " with may include goal-consistent other element outside raising/holding Shimesu three components to say, these element each one may exist as

00000000000000000000000000000000000000	compound of the goal-consistent option, and these element may exist as is connected mutually, it issomething which is shown.
000000000000000000000000000000000000000	solid component itself which includes titanium, magnesium and halogen is somethingof public knowledge.
□□□□□□□□53-45688□□54- 3894□□□54-31092□□54-39483□□54- 94591□□54-118484□□55- 90510□□55-75411□□□55- 90510□□55-90511□□55- 127405□□55-147507□□55- 155003□□56-18609□□56- 70005□□56-72001□□56- 86905□□56-90807□□56- 155206□□57-3803□□57- 34103□□57-92007□□57- 121003□□58-5309□□58-5310□□58- 5311□□58-8706□□58-27732□□58- 32604□□58-32605□□58- 127708□□58-117206□□58- 127708□□58-183708□□58- 183709□□59-149905□□59- 149906□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	for example Japan Unexamined Patent Publication Showa 53-45688 number, same 54 - 3894, same 54 - 31,092, same 54 - 39483, same54 - 94591, same 54 - 118484, same 54 - 131,589, same 55 - 75411, same55 - 90510, same 55 - 90511, same 55 - 127405, same 55 - 147507, same55 - 155003, same 56 - 18609, same 56 - 70005, same 56 - 72001, same56 - 86905, Same 56 - 90807, same 56 - 155206, same 57 - 3803, same 57 - 34103,same 57 - 92007, same 57 - 121003, same 58 - 5309, same 58 - 5,310,same 58 - 5,311, same 58 - 8706, same 58 - 27732, same 58 - 32604,same 58 - 32605, same 58 - 67703, same 58 - 117206, same 58 - 127708,same 58 - 183708, Same 58 - 183709, those which are stated in same 59 - 149905,same 59 - 149906 each disclosure etc are used.
□0017□	[0017]
	Regarding to this invention, you can list carbonate etc of magnesium halide, di alkoxy magnesium, alkoxy magnesium halide, magnesium oxyhalide, dialkyl magnesium, magnesium oxide, magnesium hydroxide, magnesium as the magnesium compound which becomes magnesium source which is used.
00000000000000000000000000000000000000	Desirable ones are magnesium halide, di alkoxy magnesium, alkoxy magnesium halide among these.
□0018□	[0018]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In addition, as for titanium compound which becomes titanium source, it can increase compound which is displayed with General Formula Ti (OR') $\leq 10^{2}$ (As for R' with hydrocarbon residue, with those of preferably carbon number $1\sim10$ extent, as for the X halogen is shown here, q $1\sim10$ extent of $1\sim10$.
0000000	As embodiment,
TiCl₄ □	TiCl ₄ ,
TiBr₄ □	TiBr ₄ .

JP3421202B2

 $Ti(OC_2 H_5)Cl_3 \square$ $Ti(OC_2 H_5)_2 Cl_2 \square$

□0019□

000TiXO4 (0000X0000000000)00000 0000000

□0020□

 Ti (OC₂ H₅) Cl₃ ,
Ti (OC₂ H₅) ₂ Cl₂ .

You can list Ti (OC₂ H₅) ₃ Cl, Ti (O-iC₃ H₇) Cl₃, Ti (O-nC₄ H₉) Cl₃, Ti (O-nC₄ H₉) ₂ Cl₂, Ti (OC₂ H₅) Br₃, Ti (OC₂ H₅) (OC₄ H₉) ₂ Cl, Ti (O-nC₄ H₉) ₃ Cl, Ti (O-C₆ H₅) Cl₃, Ti (O-iC₄ H₉) ₂ Cl₂ , Ti (OC₅ H₁₁) C₁₃, Ti (OC₆ H₁₃) C₁₃, Ti (OC₂H₅) ₄, Ti (OnC < sub > 3 < /sub > H < sub > 7 < /sub >) < sub > 4 < /sub > . Ti (OnC₄ H₉) ₄ . Ti (OiC₄ H₉) ₄ . Ti (OnC₆ H₁₃) ₄ , Ti (OnC₈ H₁₇) ₄ , Ti {OCH₂ CH (C₂ H₅) $C \leq b \leq 4 \leq b \leq etc.$

[0019]

In addition, electron donor which it mentions later in TiX*₄ (Here as for X* halogen is shown.) the molecular compound which reacts can be used.

As embodiment , you can list TiCl₄ *
CH₃ COC₂ H₅ ,
TiCl₄ * CH₃ CO₂ CO₂ *
C₆ H₅ ,
TiCl₄ *
C₆ H₅ NO₂ ,
TiCl₄ *
CTICl₄ +
CTICl₄ O etc.

Even in these titanium compound desirable ones are TiCl₄, Ti (OC₂ H₅) ₄, Ti (OC₄ H₉) ₄, Ti (OC₄ H₉) Cl₃ etc.

[0020]

As halogen source, it is normal to be supplied from halogen compound of theabove-mentioned magnesium and/or titanium, but it is possible also to supply from the halogenating agent of public knowledge such as halide of aluminum and halide of

00000000000000000000000000000000000000	the halide, phosphorus of silicon.
00000000000000000000000000000000000000	halogen which is included in catalyst component fluorine, chlorine, bromine, iodine or is good even with these blend, especially chlorine is desirable.
□0021□	[0021]
CH ₃ SiCl ₃	As for solid component which is used for this invention, also use of SiCl ₄ , CH ₃ SiCl ₃ or other silicon compound, methyl hydrogen polysiloxane or other polymeric silicon compound, Al (OiC ₃ H ₇) ₃ , Al Cl ₃ , Al Br ₃ , Al (OC ₂ H ₅) clor other aluminum compound and B (OCH ₃) clor other aluminum compound and B (OCH ₃) clor other aluminum compound and B (OCH ₅) clor other aluminum compound and B (OCH ₅) clor other aluminum compound and B (OCH ₅) clor other aluminum compound and B (OCH ₅) clor other aluminum compound and B (OCH ₆) clor other aluminum compound compound, B (OC ₆) clor other aluminum compound compound, B (OC ₆) clor other aluminum compound compound, B (OC ₆) clor other aluminum compound compound compound, B (OC ₆) clor other aluminum compound compound compound component as silicon, aluminum and boron or other component there is not aninconvenience.
00000000000000000000000000000000000000	Furthermore, when this solid component is produced, using electron donor as the internal donor, it is possible also to produce.
□0022□	[0022]
	esters , ethers , diether of alcohols , phenols , ketones , aldehydes , carboxylic acid and organic acid or inorganic acid and nitrogen-containing electron donor etc like oxygen containing electron donor , ammonia , amine , nitrile , isocyanate like acyl amides , acid anhydride are illustrated is possible electron donor which canbe utilized in production of this solid component (internal donor) as.
□0023□	[0023]
0000000	More concrete,
(0)00000	(J2) methanol,
00000	ethanol,
000000	propanol,
000000	pentanol,
000000	hexanol,
000000	octanol,
000000	dodecanol,
00000000000	octadecyl alcohol,

Page 11 Paterra Instant MT Machine Translation

000000000	benzyl alcohol,
000000000000	phenylethyl alcohol,
00000000	cumyl alcohol,
00000000000000000000000000000000000000	alcohols, of isopropyl benzyl alcohol or other carbon number 1 through 18
(0)00000	(jp2) phenol,
00000	cresol,
000000	xylenol,
00000000	ethyl phenol,
000000000	propyl phenol ,
00000000	cumyl phenol,
00000000	nonylphenol,
000000000000000000	carbon number 6 which is possible to possess naphthol or
006000250000000	other alkyl group or phenols, of 25
	aldehydes, (jp5) methyl formate, methyl acetate, ethylacetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, cellosolve acetate, ethyl propionate, methyl butyrate, ethyl valerate, ethyl stearate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl crotonate, ethyl cyclohexane carboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl toluate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, cellosolve benzoate, methyl toluate, ethyl toluate, amyl toluate, ethyl ethylbenzoate, methyl anisate, ethyl anisate, ethyl ethoxybenzoate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, ;ga of ketones, (jp4) acetaldehyde, propionaldehyde, octyl aldehyde, benzaldehyde, tolualdehyde, naphthaldehyde or other carbon number 2 to 15 of (jp3) acetone, methylethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone or other carbon number 3 to 15-butyrolactone, the;al-valerolactone, coumarin, phthalide, ethylene carbonate or other carbon number 2 to 20 organic acid esters, acid halide, (jp8) methyl ether, ethyl ether, isopropyl ether, butyl ether, amyl ether, tetrahydrofuran, anisol, diphenylether or other carbon number 2 to 20 ethers, 2,2- diisopropyl -1,3- dimethoxy propane, 2- isopropyl -2- isopentyl -1,3- dimethoxy propane, 2- phenyl -2- s-butyl -1,3- dimethoxy propane or other diether of inorganic acid esters, (jp7) acetyl chloride, benzoyl chloride, toluoyl chloride, anisoyl chloride, phthaloyl
30000(0)00000000000000000	chloride, isophthaloyl chloride or other carbon number 2 to 15 like (jp6) ethyl silicate, butyl silicate, phenyl
30000000000000000(0)0 300000000000000000	triethoxysilane or other silicate ester and (jp9) acetic acid
JUUUUUUUUUUUUUUU	amide, benzoic acid amide, toluamide or other acyl amides, (jp10) methylamine, ethylamine, diethylamine, tributyl
	amine, piperidine, tri benzylamine, aniline, pyridine,
2001:50000000(0)0000	picoline, tetramethyl ethylenediamine or other amines, (jp11
30000000000000000000) acetonitrile, benzonitrile, tolunitrile or other nitriles, etc

00000000000000000000000000000000000000	can be listed.
00000000000000000000000000000000000000	2 kinds or more you can use these electron donor.
00000000000000000000000000000000000000	As for being desirable among these with organic acid ester and organic acid halide, and diether, as for especially being desirable it is a phthalic acid ester, cellosolve acetate, phthalic acid halide and diether.
□0024□	[0024]
00000000000000000000000000000000000000	As for amount used of above-mentioned each component, it can recognize effect of this invention, if it can with those of option, but generally, inside of following range is desirable.
00000000000000000000000000000000000000	As for amount used of titanium compound, inside of range of 1 X 10 ⁻⁴ -1000 is goodwith mole ratio vis-a-vis amount used of magnesium compound which is used, it is inside range of preferably 0.01~10.
00000000000000000000000000000000000000	When compound for that is used as halogen source, amount used titanium compound and/or magnesium compound includes halogen, it is inside range of 1 X 10 ⁻² ~1000, preferably 0.1 ~100, with mole ratio vis-a-vis amount used of magnesium which is used it does not include ofregardless.
□0025□	[0025]
00000000000000000000000000000000000000	amount used of silicon , aluminum and borated compound is inside range of 1 X 10 ⁻³ -100, preferably 0.01~1, with mole ratio vis-a-vis amount used of above-mentioned magnesium compound .
00000000000000000000000000000000000000	amount used of electron donating compound is inside range of 1 X 10 ⁻³ ~10, preferably 0.01~5, with mole ratio vis-a-vis amount used of above-mentioned magnesium compound.

Page 13 Paterra Instant MT Machine Translation

JP3421202B2

□0026□	[0026]
00(A)0000000000000000000000000000000000	solid component in order to produce component (A) above- mentioned titanium source, magnesium source and halogen source, furthermore is produced making use of electron donor or other other component, likebelow for example by production method in accordance with necessary.
(0)00000000000000000000000000000000000	(J2) magnesium halide and according to need electron donor and titanium-containing compound method which contacts
(0)00000000000000000000000000000000000	method . which treats (jp2) alumina or magnesia with halogenated phosphorus compound, the magnesium halide, electron donor, titanium halogen containing compound contacts that
(0)000000000 00000000000000000000000000	(jp3) magnesium halide and titanium tetraalkoxide and specific polymeric silicon compound contacting, in the solid component which is acquired, halogen compound, and according to need electron donor of titanium halogen compound and/or silicon the method. which contacts
00000000000000000000000000000000000000	As this polymeric silicon compound, those which are shown with formula below are suitable.
□0027□	[0027]
0010	[Chemical Formula 1]
$ \begin{array}{c} H \\ \downarrow \\ S \text{ i } -0 \xrightarrow{f} \end{array} $	
□0028□	[0028]
(DDDDR ² DDDD1~10DDDDDDDDDDrDDD DDDDDDDDDDDDDDDDDDDDDDD	(Here, as for R ² as for hydrocarbon residue, r of carbon number 1~10extent, kind of degree of polymerization where viscosity of this polymeric silicon compound becomes 1 - 100 centistokes extent is shown.)
00000000000000000000000000000000000000	Among these, methyl hydrogen polysiloxane, 1,3,5,7-tetramethyl cyclotetrasiloxane, 1,3,5,7,9-pentamethyl cyclopentasiloxane, ethyl hydrogen polysiloxane, phenyl hydrogen polysiloxane, cyclohexyl hydrogen polysiloxane
	etc is desirable.
□0029□	[0029]
(0)00000000000000000000000000000000000	Melting (jp4) magnesium compound with titanium tetraalkoxide and electron donor, method, which the titanium compound contacts solid component which it precipitated

2003-6-30

00000000000000000000000000000000000000	with halogenating agent or the titanium halogen compound
(8)000000000000000000000000000000000000	(jp5) Grignard reagent or other organomagnesium compound halogenating agent, reductant etc and after action, in this according to need electron donor and the titanium compound method, which contacts
(8)88888888888888888888888888888888888	In (jp6) alkoxy magnesium compound halogenating agent and/or titanium compound method which contacts under existing or absence of electron donor
□0030□	[0030]
00000(A)00000000000 000000000	As manufacturing condition of component (A) of this invention, inside ofbelow-mentioned range is desirable.
□□□□□□-50~200 deg C□□□□□□□□□0~100 deg C□□□□□□□□	contact temperature - is 50 - 200 deg Cextent , preferably 0~100 deg Cextent , .
	As contact method, mechanical method with such as rotating ball mill, vibrating mill, jet mill, medium-stirring mill. Under existing of inactivity diluent, you can list method etc which contacts with chuming.
00000000000000000000000000000000000000	You can list hydrocarbon and halohydrocarbon, polysiloxane etc of aliphatic or aromatic as inactivity diluent which this time is used.
□0031□	[0031]
0000000000(A)00000000 000000000000000000	component (A) which is used with this invention can also use as those whichpass prepolymerization step which consists of fact that contacting, youpolymerize vinyl group-containing compound, for example olefins, diene compound, styrene etc.
00000000000000000000000000000000000000	As embodiment of olefins which is used occasion where prepolymerization is done, those of for example carbon number 2~20extent . There is a ethylene , propylene , 1-butene , 3- methyl butene -1,1- pentene , 1- hexene , 4-methylpentene -1,1- octene , 1- decene , 1- undecene , 1-eicosene etc concretely, there are 1 and 3-butadiene , isoprene , 1,4- hexadiene , 1,5-hexadiene , 1,3- pentadiene , 1,4- pentadiene , 2,4- pentadiene , 2,6-octadiene , cis-2,trans -4- hexadiene , trans -2, trans -4- hexadiene , 1,3- heptadiene , 1,4- heptadiene , 1,5-heptadiene , 1,6-heptadiene , 2,4- heptadiene , dicyclopentadiene , 1,3- cyclohexadiene , 1,4- cyclohexadiene , cyclopentadiene , 1,3- cyclo heptadiene , 4- methyl -1,4- hexadiene , 5-methyl -1,4- hexadiene , 1,9- decadiene , 1,13- tetradecadiene , p- divinyl benzene , m- divinyl benzene , o-divinyl benzene , dicyclopentadiene etc as the embodiment of diene compound .

1,3-000000000004-000-1,4- 00000005-000-1,4- 0000000000p-00000000m- 0000000000-	
00000000000000000000000000000000000000	In addition, you can list styrene, ;al -methylstyrene, allyl benzene, chlorostyrene etc as embodiment of the styrene.
□0032□	[0032]
	As for reaction condition of titanium component and above- mentioned vinyl group-containing compound, it canrecognize effect of this invention, if it can with those of option, but inside of following range is desirable generally.
00000000000000000000000000000000000000	amount of prepolymerization of vinyl group-containing compound per titanium solid component 1gram 0.001 - 1000 gram, preferably 1~100gram, furthermore is inside range of preferably 5~50gram.
□□□□□□□□□□-150~85 deg □□□□□□□0~50 deg C□□□□	reaction temperature at time of prepolymerization - is 150 - 85 deg C, preferably $0\sim50$ deg C.
00000000000000000000000000000000000000	Low polymerization temperature is desirable and, "This polymerization", namely the; al -olefin in comparison with polymerization temperature when polymerizing.
00000000000000000000000000000000000000	Reaction does generally under agitating, it is desirable, thattime n-hexane, n-heptane or other inert solvent to be possible also, it is possible also, in additionwith types of vinyl compound to do that itself of above-mentioned vinyl compound to exist, as media it is possible also to execute with the gas state.
00000000000000200000 00000000	In addition 2 kinds or more also to jointly use this vinyl group-containing compound it is possible.
00000000000000000000000000000000000000	In addition, as for melting point of polymer which prepolymerization is done, it is desirable from reason of activity improvement of component (A) to be 200 deg C or greater.
□0033□	[0033]
000000(B)00000000001000 0000000000000000000 000000	As for component (B) of <component (b)="">this invention, blend, of organo-aluminum compound, or organo-aluminum compound which is displayed with below-mentioned General Formula [II] and isdisplayed with below-mentioned General Formula [III] organo-aluminum compound which are displayed with below-mentioned General Formula [1]</component>
$AIR^3_{3-n} X^1_n \square I \square$	AIR ³ _{3- n} X ¹ _n [1]

Page 16 Paterra Instant MT Machine Translation

Page 17 Paterra Instant MT Machine Translation

₂ Al Cl, (i- C₃ H₇
)₂ Al Cl, (n- C₄ H₉)
₂ Al Cl, (i- C₄ H₉)
Al Cl₂ , (n- C₆ H₁₃)
₂ Al Cl, (n- C₈ H₁₇)
₂ Al Cl, (n- C₁₀ H₁₇)

₂ A1 Cl and a (C₂ H₅

) ₂ Al Br etc as embodiment of organo-aluminum compound which is displayed with General Formula [II].
□0036□	[0036]
0000111 000000000000000000000000000000	As embodiment of organo-aluminum compound which is displayed with General Formula [III],
$(CH_3)_2 Al(OC_2 H_5) \square$	(CH ₃) ₂ AI (OC ₂ H ₅),
$(C_2 H_5)_2 Al(OCH_3) \square (C_2 H_5)_2 Al(OC_2 H_5) \square (i-C_3 H_7)_2 Al(OC_2 H_5) \square (i-C_3 H_7)_2 Al(OCH_3) \square (n-C_4 H_9)_2 Al(OC_2 H_5) \square (n-C_6 H_{13})_2 Al(OC_4 H_9) \square (n-C_8 H_{17})_2 Al(OCH_3) \square (n-C_{10} H_{21})_2 Al(OC_2 H_5) \square (CH_3) Al(OCH_3)_2 \square (C_2 H_5) Al(OC_2 H_5)_2 \square (i-C_3 H_7) Al(OC_4 H_9)_2 \square (n-C_4 H_9) Al(OC_6 H_5)_2 \square (n-C_6 H_{13}) Al(OC_6 H_{13})_2 \square \square (n-C_{10} H_{21}) Al(OCH_3)_2 \square \square \square \square \square$	(C ₂ H ₅) ₂ A1 (OCH ₃), (C ₂ H ₅) ₂ A1 (OC ₂ H ₅), (i- C ₃ A1 (OC ₂ H ₅), (i- C ₃ H ₇) ₂ A1 (OC ₂ H ₅), (n- C ₃ H ₇) ₂ A1 (OCH ₃), (n- C ₄ H ₉) ₂ A1 (OC ₄ H ₅), (n- C ₆ H ₅), (n- C ₆ H ₁₃) ₂ A1 (OC ₄ H ₁₃), (n- C ₈ H (OC ₄ H ₅), (n- C ₈), (n- C ₁₀ H ₂₁) ₂ A1 (OC+sub>3), (n- C ₂ A1 (OC ₂ H ₅), (n- C ₂) (C ₂ H ₅) A1 (OCH ₃) ₂ H ₅) A1 (OC ₂ H ₅) A1 (OC ₂ H ₅) A1 (OC ₂) (C ₆ H ₅ H ₉) A1 (OC ₆ H ₇) A1 (OC ₆ H ₅) A1 (OC ₆ H ₁₃) A1 (OCH ₃) A1 (OCH ₃) (Sub>2 etc.
□0037□	[0037]
00(B)00000011000000000000000000000000000	When blend of organo-aluminum compound of General Formula [II] and organo-aluminum compound of General Formula [III] is used component (B) as, those mixing ratio, $0.1 - 100$, are inside rangeof preferably $0.1 \sim 10$, with mole ratio of the latter for former.
□□(B)□□□□□□□□(A)□□□□□□□ □□□□□□□□□□(Al/Ti)□0.1~1000□□□ □□1~200□□□□□□□□	amount used of component (B) with mole ratio for titanium component in component (A) is inside range of 0.1 - 1000 preferably 1~200 with (A1/Ti).
□0038□	[0038]
0000000000(c)00000000 000000000000000000	Regarding to <component (c)="">this invention, uses electron donor component (C) as to be possible, preferably concretely esters, diether of organic acid or inorganic acid, you can use those which are chosen from ethers and amines.</component>

□0039□	[0039]
	As organic acid esters, 1 - dibasic carboxylic acid of carbon number 1~20 or 1 - dihydric alcohol of carbon number 1~20 of carbon dioxide (With this invention, it handles carbon dioxide as organic acid) (ether alcohol is included.) with ester (intramolecular ester is included.) is representative.
	methyl formate, methyl acetate, ethylacetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, cellosolve acetate, ethyl propionate, methyl butyrate, ethyl valerate, ethyl stearate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl crotonate, ethyl cyclohexane carboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl toluate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, cellosolve benzoate, methyl toluate, ethyl toluate, amyl toluate, ethyl ethylbenzoate, methyl anisate, ethyl anisate, ethyl ethoxybenzoate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, ;ga-butyrolactone, you can list the;al-valerolactone, coumarin, phthalide, ethylene carbonate etc concretely.
□0040□	[0040]
	As inorganic acid ester , before, kind of alcohol which was inscribed it canincrease ester silicon , boron , phosphorus and aluminum , or other oxyacid and concerning organic acid ester .
	Portion of atomic valency of these element may be sufficed hydrocarbon residue (carbon number 1~8extent) orwith halogen atom .
00000000000000000000000000000000000000	In this kind of inorganic acid ester, ester of oxyacid of silicon isdesirable.
□0041□	[0041]
فه موه موه ف	As embodiment,
(CH ₃)Si(OCH ₃) ₃ □	(CH $<$ sub $>$ 3 $<$ /sub $>$) Si (OCH $<$ sub $>$ 3 $<$ /sub $>$) $<$ sub $>$ 3 $<$ /sub $>$,
$(CH_3)Si(OC_2H_5)_3$	(CH ₃) Si (OC ₂ H ₅) ₃ ,
$(C_2 H_5)_2 Si(OCH_3)_2 \square$	(C ₂ H ₅) ₂ Si (OCH ₃) ₂ ,
$(n-C_6 H_{13})Si(OCH_3)_3 \square$	(n- C ₆ H ₁₃) Si (OCH ₃) ₃ ,
$(C_2 H_5)Si(OC_2 H_5)_3 \square$	(C ₂ H ₅) Si (OC ₂ H ₅) ₃ .

Page 19 Paterra Instant MT Machine Translation

$(n-C_{10}H_{21})Si(OC_2 H_5)_3 \square$	(n- C ₁₀ H ₂₁) Si (OC ₂ H ₅) ₃ ,				
$(CH_2 = CH)Si(OCH_3)_3$	(CH ₂ =CH) Si (OCH ₃) ₃ ,				
Cl(CH ₂) ₃ Si(OCH ₃) ₃ □	Cl (CH ₂) ₃ Si (OCH ₃) ₃ ,				
Si(OCH ₃) ₄ □	Si (OCH ₃) ₄ ,				
Si(OC ₂ H ₅) ₃ Cl□	Si (OC ₂ H ₅) ₃ Cl,				
$(C_2 H_5)_2 Si(OC_2 H_5)_2 \square$	(C ₂ H ₅) ₂ Si (OC ₂ H ₅) ₂ ,				
$(C_{17}H_{35})Si(OCH_3)_3$	(C ₁₇ H ₃₅) Si (OCH ₃) ₃ ,				
Si(OC ₂ H ₅) ₄ □	Si (OC ₂ H ₅) ₄ ,				
$(C_6 H_5)Si(OCH_3)_3 \square$	(C ₆ H ₅) Si (OCH ₃) ₃ ,				
Si(OCH ₃) ₂ Cl ₂ □	Si (OCH < sub > 3 < /sub >) < sub > 2 < /sub > CI < sub > 2 < /sub > ,				
$(C_6 H_5)_2 Si(OCH_3)_2 \square$	(C ₆ H ₅) ₂ Si (OCH ₃) ₂ ,				
$(C_6 H_5)(CH_3)Si(OCH_3)_2 \square$	(C ₆ H ₅) (CH ₃) Si (OCH ₃) ₂ ,				
$ \begin{array}{c} (C_6 \ H_5 \) Si(OC_2 \ H_5 \)_3 \ \Box (i\text{-}C_3 \ H_7 \)_2 \ Si(OCH_3 \)_2 \\ \Box (i\text{-}C_3 \ H_7) Si(OC_2 \ H_5 \)_3 \ \Box (i\text{-}C_4 \ H_9 \)_2 \ Si(OCH_3 \)_2 \\ \Box (C_6 \ H_{11})_2 \ Si(OCH_3 \)_2 \ \Box (C_6 \ H_{11}) (CH_3 \) Si(OCH_3 \)_2 \ \Box (C_6 \ H_5 \)_2 \\ Si(OC_2 \ H_5 \)_2 \ \Box (C_6 \ H_5) (CH_3 \) Si(OC_2 \ H_5 \)_2 \ \Box (n\text{-}C_3 \ H_7 \) Si(OC_2 \ H_5 \)_3 \ \Box (CH_3 \) Si(OC_3 \ H_7 \)_3 \ \Box (C_6 \ H_5) (CH_2) Si(OC_2 H_5 \)_3 \ \Box $	(C ₆ H ₅) Si (OC ₂ H ₅) (i- C ₃ H ₅) (i- C ₃ H ₇) (i- C ₃) (i- C ₃) Si (OCH ₃) Si (OCH ₃) Si (OC ₂) Si (OCH ₃) Si (OC ₂ H ₅) Sub>3) Si (OCH ₃) (i- C ₄ H ₉) Sub>2 Si (OCH ₃) Si (OCH ₅) Si (OCH ₆ H ₇) Si (OCH ₃) Si (OCH ₃) Si (OCH ₅) Si (
□0042□	[0042]				
	[Chemical Formula 2]				

□0043□ [0043] $(CH_3)_3 CSi(CH_3)(OCH_3)_2 \square$ (CH₃) ₃ CSi (CH₃) $(OCH \le sub \ge 3 \le sub \ge 2 \le sub \ge 3$ $(CH_3)_3 CSi(HC(CH_3)_2)(OCH_3)_2 \square$ (CH₃) ₃ CSi (HC (CH₃) ₂) (OCH₃) $\leq sub \geq 2 \leq sub \geq 1$ (CH₃) ₃ CSi (CH₃) $(CH_3)_3 CSi(CH_3)(OC_2 H_5)_2 \square$ (OC < sub > 2 < /sub > H < sub > 5 < /sub >) < sub > 2 < /sub >(CH₃) ₃ CSi (C₂ $(CH_3)_3 CSi(C_2 H_5)(OCH_3)_2 \square$ $H \le b \le (sub \ge 1) (OCH \le b \le 3 \le b \ge 1) \le b \ge 2 \le b \le 1$ $(C_2 H_5)_3 CSi(CH_3)(OCH_3)_2 \square$ (C₂ H₅) ₃ CSi (CH < sub > 3 < /sub >) (OCH < sub > 3 < /sub >) < sub > 2 < /sub > , $(CH_3)_3 CSi(n-C_3 H_8)(OCH_3)_2 \square$ (CH₃) ₃ CSi (n- C₃ H₈) (OCH₃) ₂, (CH₃)(C₂ H₅)CH-Si(CH₃)(OCH₃)₂ □ (CH₃) (C₂ H₅) CH-Si (CH₃) (OCH₃) ₂, (CH₃)□ (CH < sub > 3 < / sub >) $CSi(sec-C_3 H_8)(OCH_3)_3 \square$ CSi (s - C < sub > 3 < / sub > H < sub > 8 < / sub >)(OCH < sub > 3 < /sub >) < sub > 3 < /sub > , $((CH_3)_2 CHCH_2)Si(OCH_3)_2 \square$ ((CH₃) ₂ CHC H₂) Si (OCH₃) ₂, $(CH_3)_3 CSi(i-C_3H_8)(OCH_3)_2 \square$. (CH₃) ₃ CSi (i-C₃H₈) (OCH₃) $\langle sub \rangle 2 \langle sub \rangle$,

Page 21 Paterra Instant MT Machine Translation

 $C_2 H_5C(CH_3)_2 Si(CH_3)(OCH_3)_2 \square$ $C \le b \ge 2 \le b \ge H \le b \ge 5 \le (CH \le b \ge 3 \le b \ge 1)$ ₂ Si (CH₃) (OCH₃) $\leq sub \geq 2 \leq sub \geq 1$ $(CH_3)_3 CSi(n-C_4H_9)(OCH_3)_2 \square$ $(CH \le b \le 3 \le b \le 3 \le b \le CSi (n-1)$ $C \leq sub \leq 4 \leq sub \leq H \leq sub \leq 9 \leq sub \leq 1$ (OCH $\leq sub \leq 3 \leq sub \leq 1$) ₂, $C_2H_5C(CH_3)_2$ Si(CH₃)(OC₂ H₅)₂ $C \leq sub \geq 2 \leq sub \geq H \leq sub \geq 5 \leq sub \geq C (CH \leq sub \geq 3 \leq sub \geq 1)$ ₂ Si (CH₃) (OC₂ H₅) ₂, (CH₃)₃ CSi(OCH₃)₃ □ (CH₃) ₃ CSi (OCH₃ $) \leq sub > 3 \leq sub >$ $(CH_3)_3 CSi(OC_2 H_5)_3 \square$ (CH₃) ₃ CSi (OC₂ $H \leq 5 \leq sub > 1 \leq sub > 3 \leq sub >$ $(C_2 H_5)_3 CSi(OC_2 H_5)_3 \square$ (C₂ H₅) ₃ CSi (OC < sub > 2 < /sub > H < sub > 5 < /sub >) < sub > 3 < /sub > . $(CH_3)_3 CSi(i-C_4 H_9)(OCH_3)_2 \square$ (CH₃) ₃ CSi (i- C₄ $(CH_3)(C_2H_5)CHSi(OCH_3)_3$ (CH₃) (C₂H₅) CHSi $(OCH \le sub \ge 3 \le sub \ge 3 \le sub \ge 3$ $(CH_3)_3CSi(sec-C_4H_9)(OCH_3)_2$ (CH₃) ₃CSi (s -C₄ $H \le b > 9 \le b > 1$ (OCH \le sub \rightarrow 3 \le sub \rightarrow 1 \le sub \rightarrow 2 \le sub \rightarrow 2 \le sub \rightarrow 1. $(i-C_3 H_7)_2 Si(OCH_3)_2 \square$ (i- C₃ H₇) ₂ Si $(OCH \le sub \ge 3 \le sub \ge 0 \le sub \ge 2 \le sub \ge 0$ (C₆ H₁₁) (CH₃) Si $(C_6 H_{11})(CH_3)Si(OCH_3)_2$ $(OCH \le sub \ge 3 \le sub \ge) \le sub \ge 2 \le sub \ge$ $(CH_3)_3 CSi(n-C_6 H_{13})(OCH_3)_2 \square$ (CH₃) ₃ CSi (n- C₆ $H \le b > 13 \le b > 1 \le b > 3 \le b > 1 \le b > 2 \le b > 1 \le b > 2 \le b > 1 \le$ $(C_6 \ H_{11})_2 \ Si(OCH_3)_2 \ \Box(CH_3)_3 \ CSi(C_6)$ You can list ($C \le b \le 6 \le b \le H \le b \le 11 \le b \le 1$ H_{11})(OCH₃)₂ \square (i-C₃ H_7)₂ Si(OC₂ H_5)₂ \square ((CH₃ ₂ Si (OCH₃) ₂ ,)₃ C)₂ Si(OCH₃)₂ \square (CH₃)₃ CSi(C₅ H₅)(OCH₃)₂ (CH₃) ₃ CSi (C₆ \square (i-C₄ H₉)₂ Si(OCH₃)₂ \square HC(CH₃)₂C(CH₃)₂ H₁₁) (OCH₃) ₂, (i- $Si(CH_3)(OCH_3)_2 \square (C_6 H_{11})(CH_3)Si(OC_2 H_5)_2$ C₃ H₇) ₂ Si \square HC(CH₃)₂ C(CH₃)₂ Si(OCH₃)₃ \square (C₅H₅)₂ (OC < sub > 2 < /sub > H < sub > 5 < /sub >) < sub > 2 < /sub > . $Si(OCH_3)_2$ $\square(i-C_3)$ H₇)Si(OCH₃ ((CH₃) ₃ C) ₂ Si (OCH₃) ₂, (CH₃) ₃ CSi (C₅ H₅) (OCH₃) ₂, (i- C₄ H₉) ₂ Si (OCH₃)₂, HC (CH₃) ₂C (CH₃) ₂ Si (CH₃) (OCH₃) ₂, (C₆ H₁₁) (CH₃) Si (OC₂ H₅) ₂, HC (CH₃)₂ C (CH₃) ₂ Si (OCH < sub > 3 < /sub >) < sub > 3 < /sub > .(C₅H₅) ₂ Si

Page 22 Paterra Instant MT Machine Translation

(OCH₃) ₂ , (i- C₃ H₇) Si (OCH₃) ₃

Fact that it is desirable among these, carbon of the; al position being secondary or tertiary, carbon of carbon number 3~20, particularly preferably; al position being terniery, is silicon compound which possesses branched chain hydrocarbon residue of carbon number 4~12, . _____ Here, "branched chain" with, branched aliphatic and 00000000000 cycloaliphatic are included. □0044□ [0044] As amines, generally known "hindered amine" is suitable. $\square\square$ N-Especially N- substitution (As for substituent lower alkyl group or lower alkyl aluminum group) or unsubstituted pyrrolidine or piperidine 2, 2, 5 and 5 - (When of pyrrolidine) or 2, 2, 6 and 6 -tetra lower alkyl substituted compound are $(\Box\Box\Box\Box\Box\Box\Box\Box)\Box\Box\Box2,2,6,6$ representative. Below-mentioned ones can be illustrated as that kind of amines. □0045□ [0045] [Chemical Formula 3] CH_s CH3 сн. □0046□ [0046] [Chemical Formula 4]

Page 23 Paterra Instant MT Machine Translation

etc.

□0047□	[0047]
00000000000000000000000000000000000000	As ethers , those which it can call hindered ether are suitable.
00000000000000000000000000000000000000	Especially, at least two it possesses lower alkoxy group on carbon atom of the one, this said carbon atom furthermore those which at least one it possesses 6-member ring substituent is representative.
000000 000000	Below-mentioned ones can be illustrated as that kind of ethers .
□0048□	[0048]
	[Chemical Formula 5]

$$CH_3 - \left(\bigcirc \right) - \frac{CH_3}{C(OC_2H_5)_2}$$

□0049□

 $\Box\Box 6\Box$

[0049]

[Chemical Formula 6]

□0050□

[0050]

[Chemical Formula 7]

□0051□

[0051]

 $\square \square 8 \square$

[Chemical Formula 8]

□0052□

0000000(c)0000000 000000000000

[0052]

With this invention, it can also use diether compound component (C) as.

If it is a diether compound, there is not restriction. Desirable ones are diether which possesses branched aliphatic hydrocarbon and/or cycloaliphatic hydrocarbon group even amongthem.

Among these, it can use 1 and 3 -diether desirably, especially, 2 and 2-diisobutyl -1,3- dimethoxy propane, 2- isopropyl -2- isopentyl -1,3- dimethoxy propane, 2,2- dicyclohexyl -1,3- dimethoxy propane, 2,2- bis (cyclohexyl methyl) - 1 and 3 - dimethoxy propane, 2,2- diisopropyl -1,3- dimethoxy propane, 2-cyclopentyl -2- isopropyl -1,3- dimethoxy propane, 2-cyclopentyl -2- s-butyl -1,3- dimethoxy propane, 2-cyclohexyl -2- isopropyl -1,3- dimethoxy propane, 2-cyclohexyl -2- isopropyl -1,3- dimethoxy propane, 2-

Page 27 Paterra Instant MT Machine Translation

	cyclohexyl -2- s-butyl -1,3- dimethoxy propane, 2- isopropyl -2- s-butyl -1,3- dimethoxy propane, 2- phenyl -2- s-butyl -1,3- dimethoxy propane, 2- phenyl -2- benzyl -1,3- dimethoxy propane, 2- benzyl -2- isopropyl -1,3- dimethoxy propane, 2- benzyl -2- s-butyl -1,3- dimethoxy propane, 2- (1 -methyl butyl) - 2 -isopropyl -1,3- dimethoxy propane, 2- (1 -methyl butyl) - can use 2 -s-butyl -1,3- dimethoxy propane desirably
□□(C)□□□□□□□□□□□□□(B) □□□□□□□□□□□□□□□□□□□□□□	amount used when component (C) is used, is inside range of 0.01 - 100 and inside range of preferably 0.1 ~10, with mole ratio for component (B).
□0053□	[0053]
00000000000(A)000(B)000 000(A)0(B)000(C)00000000000000000000000000000	With formation >this invention of <catalyst (a)="" (a),="" (b)="" according="" and="" as="" at="" be="" being="" both="" can="" catalyst="" coexisting="" component="" component,="" components="" consists="" crossing,="" dividing="" for="" form="" fourth="" inside="" into="" it="" itcontacts="" kind="" need="" of="" olefin="" one="" or="" outside="" polymerization="" polymerized,="" several="" something="" stepwise,="" td="" the="" the(c),="" this="" time,="" times="" to="" under="" underexisting="" vessel="" which="" with.<=""></catalyst>
□0054□	[0054]
00(A)0(B)000(C)00000000000000000000000000000	component (A), (B) or there is not especially restriction in supply method to contacting site of (C). It is normal respectively dispersing to hexane, heptane or other aliphatic hydrocarbon solvent, each one separatelyto add to polymerization vessel.
DD(A)DDDDDDDDDDDDDDDD (C)DDDDDDDDDDDDDDDDDDD	component (A) component (B) or component (C) with can also add to the polymerization vessel separately with state of solid.
□0055□	[0055]
30000	[Working Example(s)]
30000000000000000000000000000000000000	In Working Example below, using Perkin Elmer make DSCtype 2, it did differential thermal analysis (DSC measurement)which measures melting point.
3001	Working Example 1

JP3421202B2 2003-6-30 In flask which nitrogen substitution is done, dehydration and 10 gram and and suspension state it introduced toluene 100ml which deoxygenation is done in {Production of component (A)} satisfactory, next Mg (OEt) ₂ introduced made. □□□□TiCl₄ 20□□□□□□□□□□00 Next, it introduced TiCl₄ 20ml, temperature rise did in 90 deg C andintroduced 2 -isopropyl -2- isopentyl -1.3deg 00000-1,3dimethoxy propane 1.9ml, temperature rise did in 110 deg C 00000001.900000000 and 3 hours reacted. After reaction termination, you washed with toluene. Next, it introduced TiCl₄ 20ml and toluene 100ml, 2 hours reacted with 110 deg C. C 2 0 0 0 0 0 0 0 0000n-After reaction termination, with n-heptane washing in 000000000000(A)0000 satisfactory, solid component inorder to produce component 000000(A-1)0000 (A) (A-1) with it did. This titanium content was 2.5 weight %. □0056□ [0056] Next, in autoclave which nitrogen substitution is done, n-000000000nheptane which wasrefined in same way as description above 200 ml was introduced in satisfactory, solid component which is synthesized at description above 5 gram was introduced, triethyl aluminum 1.5gram was introduced next, 4 -□20 CO4-000000methylpentene -1 the prepolymerization was executed with 20 deg 10000000000 deg C. 000000n-After prepolymerization ending, with n-heptane washing in 000000000000(A)0000 satisfactory, component (A) with it did. Removing portion, when you inspected amount of prepolymerization they were 10.6 gram poly 4-1/000000(A-1)00000 methylpentene -1/gram solid component (A-1). Furthermore melting point of poly 4- methylpentene -1 was C00000 231 deg C. □0057□ [0057] In stainless steel autoclave of internal volume 1.0liter which possesses {Polymerization of propylene } churning and temperature control equipment in satisfactory dehydration and 000000025 propylene which deoxygenation is done triethyl aluminum deg 8.9milligram was introduced with 25 deg C 100 ml. component (B) as.

While introducing propylene into autoclave , temperature rise , increased pressure it did and itdesignated reaction system as supercritical state to 180 deg C, 100kg/cm ² .

 \Box

deg

C□100kg/cm²

00000000000(A)000(A- 1)000100000000000000000000000000000000	Next, 10 milligram it introduced component (A) which is produced atdescription above with component (A-1) standard, started polymerization and 45 min polymerized.				
000000000000150000000 0000000000	After polymerization termination, ethanol 15 ml was added, reaction was stopped.				
104	polymer of 104 gram was acquired, with MFR =51.8g/10 min, it was a I.I=95.3wt% with boiling n-heptane extraction.				
000Q006.200000	In addition, Q was 6.2.				
□0058□	[0058]				
□□□2	Working Example 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	In flask which nitrogen substitution is done, dehydration and n-heptane which deoxygenation is done it introduced 200 ml in {Production of component (A)} satisfactory, Mg Cl ₂ 0.8 mole introduced 0.4 mole, Ti (O-nC ₄ H ₉) ₄ next, 2 hours reacted with 95 deg C.				
C	After reaction termination, it lowered temperature to 40 deg C, 48 ml introduced methyl hydro polysiloxane (Those of 20 centistokes.) next, 3 hours reacted.				
0000000n-000000000	solid component which it forms was washed with n-heptane .				
□0059□	[0059]				
00000000000000000000000000000000000000	Next, in flask which nitrogen substitution is done, n-heptane which wasrefined in same way as description above 50 ml was introducedin satisfactory, solid component which is synthesized at description above 0.24 mole was introduced with Mg atom conversion.				
0.400000000000000000000000000000000000	Next, mixing SiCl ₄ 0.4mole to n-heptane 25ml, it introduced to flask with30 deg C, 30 min, 3 hours reacted with 70 deg C.				
00000n-000000000	After reaction termination , you washed with n-heptane .				
□□□n- □□□025□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	Next, mixing phthalic acid chloride 0.024mole to n-heptane 25ml, it introduced to flask with 70 deg C, 30 min, 1 hour reacted with 90 deg C.				
00000n-000000000	After reaction termination , you washed with n-heptane .				
00000n-000000000	After reaction termination, you washed with n-heptane.				
□□□□TiCl ₄ 25□□□□□□□□□□□100 deg C□3□□□□□□□□□	Next, introducing TiCl $<$ sub $>$ 4 $<$ /sub $>$ 25ml , 3 hours it reacted with 100 deg C.				
□□□□□□n- □□□□□□□□□□□□□□(A)□□□□ □□□□□□□□(A-1)□□□□	After reaction termination, with n-heptane washing in satisfactory, solid component inorder to produce component (A) (A-1) with it did.				

	This titanium content was 2.6 weight %.
□0060□	[0060]
00000000000000000000000000000000000000	Next, in autoclave which nitrogen substitution is done, nheptane which wasrefined in same way as description above 200 ml was introducedin satisfactory, solid component which is synthesized at description above 5 gram was introduced, triethyl aluminum 1.5gram was introduced next, 3 -methyl butene -1 the prepolymerization was executed with 10 deg C.
0000000n- 000000000000000(A)0000	After prepolymerization ending, with n-heptane washing in satisfactory, component (A) with it did.
00000000000000000000000000000000000000	Removing portion, when you inspected amount of prepolymerization they were 12.7 gram poly 3- methyl butene -1/gram solid component (A-1).
□□□□3-□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	Furthermore melting point of poly 3- methyl butene -1 was 302 deg C.
□0061□	[0061]
00000000000000000000000000000000000000	propylene was introduced into autoclave in same way as {Polymerization of propylene } Working Example -1.
00000(B)0000000000000000000000000000000	Next (CH ₃) ₃ CSi (n-C ₃ H ₇) (OCH ₃) ₂ 1.0milligram, hydrogen 5 ml was introduced next triethyl aluminum 4.7milligram, component (C) as component (B) as.
	While introducing propylene into autoclave, it did temperature rise, increased pressure and itdesignated reaction system as supercritical state to 200 deg C, 150kg/cm ² .
000000000000(A)000(A- 1)00030000000000000045 000000000000	Next 3 milligram it introduced component (A) which is produced atdescription above with component (A-1) standard and started thepolymerization and 45 min polymerized and stopped reaction in thesame way as Working Example -1.
127	polymer of 127 gram was acquired, with MFR =68.2g/10 min , it was a I.I=97.1wt% with boiling n-heptane extraction .
000Q007.100000	In addition, Q was 7.1.
□0062□	[0062]
□□□3~6	Working Example 3~6
000-20000000(A)000000- 100000(B)0000(C)00000001 00000000000000000000000000000	Using component (A) which is produced with Working Example -2, component whichit shows in Table 1 (B) and using component (C), other than making the polymerization condition which it shows in Table 1, you polymerized with condition which is completely similar to Working Example 2.

æ 1											
	#/\ (D)	(1 /1) (1/1)	单量体成分		童合時		重合結果				
実施例	成分(B) (使用量)	成分 (C) (使用量)	臨界温度	塩界圧力	温 度 (℃)	圧 カ (kg/cn²)	\$97-収量 (g)	MER (g/10 5))	I. I (wt%)	Q値	
実施例 1	haifa742=94 (8. 9mg)				180	100	104	51. 8	95, 3	6. 2	
実施例 2	\91f47\$\\\-204 (4.7ng)	(CH ₃) ₃ CSi(N-C ₃ H ₇ OCH ₃) ₂ (lmg)			200	150	127	68, 2	97. 1	7. 1	
実施例 3	}9 <i>47774676</i> 5=9&	CH ₃ COH ₈	70€VY 91. 4°C	プロビレン 45. 4kg/cm²	190	135	125	51. 6	96.8	7. 3	
実施例	(12ng) }9n- \ \$%7\$\\	(1.3mg) t-C ₄ H ₉ Si OCH ₃ n-C ₄ H ₉ OCH ₃		!	105	140	100	04.77	07.0	7.6	
4	(11.5mg)	n-C ₄ H g 'OCH ₈ (1.1mg)				185	140	129	34. 7	97. 3	7, 6
実施例 5	19n-19f4742-94 (18.5mg)	(C ₂ H ₅) ₂ Si(OCH ₈) ₂ (1.9mg)			200	140	115	88. 3	95. 4	7. 0	
実施例	hun-funtarioda	t-C ₄ H ₉ Si C ₂ H ₅ OC ₂ H ₅			210	170	111	117. 2	95. 2	6.8	
6	(27.3mg)	(2, 5mg)					!				

	[Brief Explanation of the Drawing(s)]
	[Figure 1]
00000000000000000000000000000000000000	It is a flowchart in order to help understanding of this invention .
Drawings	
0000	[Figure 1]

Page 33 Paterra Instant MT Machine Translation