

Università di Pisa

Dipartimento di Informatica Corso di Laurea Triennale in Informatica

Corso a Libera Scelta - 6 CFU

Green Computing

Professore: Prof. Stefano Forti

Autore: Filippo Ghirardini

${\bf Contents}$

1	Intr	troduzione 3				
	1.1	Trasformazione digitale	3			
	1.2	Consumo energetico	4			
	1.3	Dennard scaling	4			
	1.4	E-waste	4			
	1.5	Paris Agreement	4			
		1.5.1 Aziende	4			
	a		_			
2		en Computing	5			
	2.1	Approccio olistico	5			
	2.2	Pilastri fondamentali	5			
		2.2.1 Ingegneria del software sostenibile	5			
		2.2.2 Hardware ad alta efficienza energetica	6			
		2.2.3 Cloud computing e virtualizzazione	6			
		2.2.4 Gestione adattiva dell'energia	6			
		2.2.5 Energia da fonti rinnovabili	6			
		2.2.6 Riciclo, smaltimento, riuso	6			
	2.3	Applicazioni green	6			
	2.4	Ebook reader	7			
		2.4.1 Ciclo di produzione	7			
		2.4.2 Confronto	7			
		2.4.3 Salute	8			
		2.4.4 Dismissione	8			
	2.5	Blockchain	8			
		2.5.1 Proof of Work	9			
		2.5.2 Hardaware	9			
		2.5.3 Minatori	9			
		2.5.4 Analisi	9			
		2.5.5 Oggi				
		2.5.6 Conclusione				
		2.5.7 Proof of Stake				
	ъ		16			
3			$\frac{12}{10}$			
	3.1	Metriche				
		3.1.1 Categorie				
	3.2	Efficienza energetica				
		3.2.1 Power Usage Effectiveness				
		3.2.2 Datacentre Infrastructure Efficiency	13			

CONTENTS 1

Green Computing

Realizzato da: Ghirardini Filippo

A.A. 2023-2024

1 Introduzione

Il corso prevede di affrontare assieme due degli ambiti più importanti al giorno d'oggi: **trasformazione** digitale e transizione verde.

1.1 Trasformazione digitale

Con il tempo c'è stata un'evoluzione delle reti di comunicazioni esponenziale grazie alla diffusione di reti pervasive a banda ultra-larga e a basso costo. Inoltre, a causa della diffusione di servizi digitali per la condivisione di dati multimediali ad alta risoluzione, c'è una produzione, un trasferimento ed un consumo di una mole di dati sempre maggiore.

Numerosi sono i programmi di sviluppo nazionali ed europei mirati proprio alla trasformazione digitale, favoriti anche dalla pandemia di Covid-19. Un esempio classico è il PNRR:

1.2 Consumo energetico

Il consumo energetico da parte del settore ICT è ad oggi il 5% della domanda mondiale ed è previsto che superi il 20% nel 2030. La produzione di CO_2 del settore è pari al 2%, quanto quella degli aerei.

1.3 Dennard scaling

È una legge empirica che sostiene che riducendo la dimensione dei transistor, il rapporto tra potenza e superficie $(watt/cm^2)$ rimane costante.

1.4 E-waste

La continua emissione di dispositivi guasti o passati di moda contribuisce ad alimentare i rifiuti di apparecchiature elettriche ed elettroniche (RAEE).

Questi 50 milioni di rifiuti finiscono nei paesi in via di sviluppo dove non vengono smaltite correttamente (danno per l'ambiente e non-biodegradabilità).

1.5 Paris Agreement

Un accordo legalmente vincolante per mantenere il riscaldamento globale ben al di sotto dei 2C e idealmente sotto 1.5C basato sui seguenti principi:

- Obiettivo a lungo termine, con piani quinquennali
- Contributi dei vari paesi
- Ambizione
- Trasparenza sui dati
- Solidarietà dei paesi più sviluppati verso quelli in via di sviluppo

Per rispettare l'accordo ogni europeo dovrebbe ridurre le emissioni da 10 a 2 tonnellate di CO_2 .

1.5.1 Aziende

Le aziende informatiche sono interessate al green computing per:

- Ridurre i costi di gestione ed aumentare gli utili
- Migliorare la reputazione aziendale verso il personale
- Greenwashing
- Realizzare una trasformazione energetica

2 Green Computing

In generale, il green computing può aiutare le organizzazioni a ridurre l'impatto ambientale e a risparmiare sui costi energetici e di gestione.

Definizione 2.0.1 (Green Computing). Il green computing tratta la progettazione, la realizzazione e l'utilizzo di sistemi ICT, computer e dispositivi elettronici¹ in modo responsabile e sostenibile dal punto di vista ambientale, considerando in particolare il consumo energetico e impronta di carbonio.

Definizione 2.0.2 (CO_2 -eq). L'anidride carbonica equivalente è una misura che esprime l'impatto di una certa quantità di gas serra rispetto alla stessa quantità di anidride carbonica.

Definizione 2.0.3. Energy Star Il progetto Energy Star nasce negli anni '90 ed è stata una delle prime iniziative relative al green computing per dare un indicatore dell'efficienza energetica. Il problema principale è che è **facoltativo**.

2.1 Approccio olistico

Per funzionare segue un approccio **olistico**, analizzando tutto il **ciclo di vita** di un sistema, sia vericalmente che orizzontalmente.

- Progetto: progettare in modo sostenibile computer, server, sistemi di raffreddamento e software a basso consumo e alta efficienza.
- **Produzione**: attenzione a non sprecare risorse limitate, ridurre gli scarti di fabbricazione e utilizzare fonti rinnovabili per la produzione.
- Trasporto: cercare di ridurre e ammortizzare l'uso di carburanti fossili sostituendoli con veicoli elettrici o ibridi e facendo spedizioni accorpate.
- Uso: utilizzare i sistemi cercando di ridurre il consumo con politiche di risparmio (e.g. ibernazione)
- Dismissione: lo smaltimento di dispositivi elettronici attraverso il riciclo

2.2 Pilastri fondamentali

2.2.1 Ingegneria del software sostenibile

È possibile fare in modo che i programmi consumino meno energia e che il loro dispiegamento nelle varie fasi del ciclo di vita produca minori gas inquinanti. In particolare, programmare sfruttando le peculiarità di linquaggi e hardware che possano rendere il software più disponibile.

¹Tutti quei dispositivi che si appoggiano all'informatica per funzionare, e.g. aspirapolvere

- 2.2.2 Hardware ad alta efficienza energetica
- 2.2.3 Cloud computing e virtualizzazione
- 2.2.4 Gestione adattiva dell'energia
- 2.2.5 Energia da fonti rinnovabili
- 2.2.6 Riciclo, smaltimento, riuso

È possibile sensibilizzare l'utente sul giusto uso dei mezzi a sua disposizione e quindi della loro conseguente fine di utilizzo. Ottimizzare l'impiego dei dispositivi porta una determinante longevità, minimizzando quindi il rifiuto.

- Inoltre, per ridurre la produzione di rifiuti è fondamentale **riutilizzare** (ad esempio rivendendo) i dispositivi elettronici ancora validi. In molti casi è sufficiente sostituire componenti degradati (e.g. le batterie) e mantenere il resto. Oltretutto molti dispositivi possono essere considerati obsoleti per certi scopi ma ancora ottimi per altri (e.g. server).
- È fondamentale ingegnerizzare il processo di **smaltimento** in modo da permettere il **riciclo** di parte dei componenti. Ad esempio dalle schede stampate si possono recuperare metalli preziosi come l'oro. La legislazione italiana necessita il corretto trattamento dei rifiuti per ridurre l'inquinamento. Di conseguenza anche la scelta di macchinari e strumenti mirati allo smaltimento è fondamentale per fare in modo che un'azienda possa essere ritenuta green.
- La tecnologia stessa può essere uno strumento potente per **sensibilizzare** il consumatore su queste tematiche e per fargli conoscere le aziende green.

2.3 Applicazioni green

Sfruttare i sistemi ICT per l'**ottimizzazione** di processi che sfruttano risorse limitate (e.g. combustibili fossili nel trasporto, energia elettrica nel riscaldamento, acqua potabile nell'irrigazione) è un aspetto importante del green computing.

2.4 Ebook reader

Entro il 2025 si prevede che gli e-reader rappresenteranno circa il 75% del mercato totale, anche se allo stesso tempo il numero di libri cartacei prodotti e venduti è in continuo aumento.

2.4.1 Ciclo di produzione

Vediamo il ciclo di vita di un libro tradizionale cartaceo

Le materie prime necessarie sono, per un libro a copertina morbida, 150 – 300g di carta e 7.5lt di acqua. Sono necessari 2KWh e la loro distribuzione (assumendo che non si usi la macchina per comprarlo) produce circa 10 volte quella della produzione. L'utilizzo è trascurabile dal punto di vista energetico in quanto al massimo serve una luce per leggere.

Per quanto riguarda invece gli e-book reader, sono necessari circa 15Kg di materie prime (metalli rari, sabbia, etc...) e 300lt di acqua (batterie, chip, oro dei circuiti). Sono necessari 100KWh per la produzione e assumiamo i costi di distribuzione di un volo Milano-Roma.

2.4.2 Confronto

Considerando i dati precedenti:

1. Quanti libri si producono con le materie prime necessarie per produrre un e-book reader?

$$\frac{15Kg}{0.150Kg} = 100 \quad \frac{15Kg}{0.300Kg} = 50$$

2. Quanti libri si producono con l'acqua necessaria per produrre un e-book reader?

$$\frac{300lt}{7.5lt} = 40$$

3. Quanti libri si producono con l'energia necessaria per produrre un e-book reader?

$$\frac{100KWh}{2KWh} = 50$$

4. Quanti libri serve produrre e trasportare per inquinare quanto per la produzione e il trasporto di un e-book reader?

2.4 Ebook reader 7

 $\mbox{Produzione e-book reader} = 0.319 \frac{g}{Kw/h} \cdot 100 Kw/h = 31.9 Kg \quad \mbox{Distribuzione e-book reader} = 41.8 Kg$

Totale e-book reader = 31.9Kg + 41.8Kg = 73.7Kg

Produzione libro = $0.319 \frac{g}{Kw/h} \cdot 2Kw/h = 0.638Kg$ Distribuzione libro = $0.638Kg \cdot 10 = 6.380Kg$

Totale libro = 6,380Kg + 0.638Kg = 7.018Kg

Libri per e-book reader =
$$\frac{73.7Kg}{7.018Kg} = 10.5$$

5. Qual'è la media dei valori delle risposte precedenti (quanti libri vale un e-book reader)?

$$\frac{\frac{100+50}{2} + 40 + 50 + 10.5}{5} = 43.9$$

6. Quanti libri bisogna leggere all'anno per ammortizzare un e-book reader su 5 anni di vita media?

$$\frac{43.9}{5} = 8.8$$

2.4.3 Salute

La produzione di libri ed e-book reader produce ossidi di azoto e zolfo che entrano in profondità nei polmoni, peggiorando l'asma, causando la tosse cronica e aumentando il rischio di morte prematura. Un e-book reader produce 70 volte questi prodotti rispetto che ad un libro cartaceo.

2.4.4 Dismissione

Libro	E-book reader
La decomposizione può generare il doppio delle emissioni e degli impatti tossici sulle falde acquifere rispetto alla sua intera produzione	In caso di smaltimento illegale in uno dei paesi in via di sviluppo, i lavoratori (spesso bambini) saranno esposti all'impatto tossico di alcune sostanze smantellate.
Può essere prestato, regalato, donato	Se correttamente riciclato, molti materiali
ad una biblioteca oppure correttamente riciclato.	si potranno recuperare o smaltire correttamente.

2.5 Blockchain

Bitcoin nasce nel 2008 come prima tecnologia basata sulla blockchain.

Definizione 2.5.1 (Blockchain). Blockchain è un libro mastro distribuito in grado di registrare e validare transazioni in assenza di un'entità centrale (e.g. banca).

In particolare una blockchain ha le seguenti caratteristiche:

- Distribuita: tutti i nodi partecipanti ne conservano una copia per trasparenza
- Immutabile: i record nella catena non possono essere né modificati né cancellati
- Marcata temporalmente: ogni transazione ha un timestamp
- Unanime: tutti i nodi partecipanti devono riconoscere la validità delle transazioni
- Anonima: l'identità dei partecipanti non è rivelata
- Sicura: tutti i record vengono criptati individualmente
- Programmabile per mezzo di SmartContracts

2.5.1 Proof of Work

La blockchain si basa sul concetto per cui ogni blocco, composto dalla transazione e dal riferimento a quella precedente, possa essere aggiunto solo quando viene fornita una **proof of work** da parte dei minatori, che risolvono problemi difficili (e.g. scomposizione in fattori primi).

Quando viene richiesta una transazione si crea un blocco che viene distribuito a tutti i partecipanti. La difficoltà della proof of work aumenta con l'aumentare delle capacità computazionali dei nodi che scrivono nella blockchain, in modo tale da equilibrare:

- Sicurezza: ad esempio evitando attacchi di doppia-spesa, o aggiunta di blocchi falsi
- Velocità di esecuzione delle transazioni (stabilita attorno ai 10 minuti)

2.5.2 Hardaware

La potenza hardware per Bitcoin si misura in **GigaHash** al secondo (un hash è un calcolo da risolvere). L'hardware necessario si è evoluto con il tempo:

- 2008 CPU, 0.01GH/s con un consumo di 2.5Wh/GH
- $2009 \mathbf{GPU}$, 0.2 2GH/s

2.5.3 Minatori

Possiamo suddividere le categorie dei minatori in:

- Piccoli, il 15% del totale, con un consumo fino a 0.1MW per 0.9PH/s
- Medi, il 19% del totale, con un consumo tra 0.1MW e 1MW per 9PH/s
- Grandi, il 66% del totale, con un consumo maggiore di 1MW per oltre 9PH/s

I minatori si dividono in **pool** dove condividono il potere di calcolo:

2.5.4 Analisi

Consideriamo che al 2019 il consumo dell'hardware più efficiente era di $1.4 \cdot 10^{-5} Wh/GH$ e che per raffreddarlo veniva utilizzato il 5% del consumo. Il numero di hash eseguiti in un'ora a novembre del 2019 era di $3.56 \cdot 10^{11} TH$. La localizzazione geografica dei minatori era:

- Cina con il 68% ad un costo di 0.55 $\frac{kgCO_2-eq}{kWH}$
- \bullet EU con l'11% ad un costo di $0.28\frac{kgCO_2-eq}{kWH}$
- Privati con il 21% ad un costo di $0.475 \frac{kgCO_2 eq}{kWH}$

Considerando queste informazioni

1. Qual è un limite inferiore al consumo energetico annuo di Bitcoin?

Consumo per hash =
$$1.4 \cdot 10^{-5} \frac{Wh}{GH} + 5\% = 1.47 \cdot 10^{-5} \frac{Wh}{GH}$$

Consumo per ora = $1.47 \cdot 10^{-5} \frac{Wh}{GH} \cdot 3.56 \cdot 10^{14} GH = 5.2332 \cdot 10^{9} W = 5.2332 \cdot 10^{6} kW$
Consumo annuo = $5.2332 \cdot 10^{6} kWh * 8760h = 4.5842832 \cdot 10^{10} kWh$

2. Quante emissioni di carbonio vengono prodotte all'anno se si utilizza quel limite inferiore come stima?

Consumo **Cina** =
$$4.5842832 \cdot 10^{10} kWh \cdot 0.68 \cdot 0.55 \frac{kgCO_2 - eq}{kWH} = 1.7145219168 \cdot 10^{10} kgCO_2 - eq$$
Consumo **EU** = $4.5842832 \cdot 10^{10} kWh \cdot 0.11 \cdot 0.28 \frac{kgCO_2 - eq}{kWH} = 1.4119592256 \cdot 10^9 kgCO_2 - eq$
Consumo **privati** = $4.5842832 \cdot 10^{10} kWh \cdot 0.21 \cdot 0.475 \frac{kgCO_2 - eq}{kWH} = 4.572822492 \cdot 10^9 kgCO_2 - eq$

2.5.5 Oggi

Nella primavera del 2021 alcuni stati come la Cina proibiscono il mining di Bitcoin e questo ha aumentato l'intensità del mining del 43% rispetto al 2019. Si noti che al momento la Cabon Footprint del Bitcoin è di 77.42 Mega Tonnellate di CO_2 ogni anno. In pratica una transazione con Bitcoin equivale a 1,000,000 transazioni VISA.

Bitcoin Energy Consumption

Bitcoin Energy Consumption Relative to Several Countries

Ad oggi esiste il **Crypto Climate Accord** che ha come obiettivo quello di contribuire a raggiungere gli Accordi di Parigi tramite l'utilizzo di energie rinnovabili entro il 2030.

2.5.6 Conclusione

La blockchain è una tecnologia all'avanguardia che potrebbe avere un impatto molto grande su molti settori. È importante eseguire un'analisi di costi e benefici per valutare se conviene o meno:

- 1. **Emissioni** di carbonio
- 2. Rischi di **centralizzazione**: se qualcuno ottenesse il 51% della computing power avrebbe il controllo della blockchain
- 3. Possibilità di controllo per evitare traffici illegali

2.5.7 Proof of Stake

Per affrontare le problematiche indicate ai punti 1 e 2 si vorrebbe introdurre la **proof of stake**, dove l'abilità di minare è determinata in base alla quantità di moneta che un utente possiede. Il minatore non viene premiato con la moneta al completamento del calcolo ma con degli interessi. In questo modo si evita anche l'attacco del 51% poiché si rende necessario avere il 51% della moneta (più difficile).

3 Performance

Un modello per misurare le performance di un sistema ICT è il seguente:

in cui abbiamo degli **input** elaborati dal sistema che produce **output** è che viene monitorato per la **QoS** (Quality of Service) da un **monitor**.

Il monitoraggio di metriche di performance in un sistema ICT è fondamentale per garantirne il corretto funzionamento e necessita quindi di un modello. Queste metriche devono essere messe in corrispondenza con una Quality of Service da garantire, e viene fatto nel Service Level Agreement (SLA).

3.1 Metriche

Definizione 3.1.1 (Metrica). Si tratta della misurazione di una caratteristica (o di un insieme di esse) di un sistema che fornisce un'informazione utile.

In sistemi complessi le metriche possono essere combinate mediante:

- Somma (e.g. latenza)
- Moltiplicazione (e.g. disponibilità)
- Max/Min (e.g banda)

3.1.1 Categorie

Le metriche di performance di un sistema ICT si dividono in 4 categorie:

• Elaborazione

- Capacità di calcolo: il massimo numero di richieste per unità di tempo che il sistema riesce a processare senza perdite
- Qualità: la precisione ottenuta dai risultati

• Trasmissione dati

- Banda: il massimo throughput di dati supportato da un collegamento all'altro o lungo un cammino nella rete. La banda disponibile si ottiene come differenza tra la banda nominale e quella attualmente in uso
- Latenza: l'intervallo di tempo in cui si completa il trasferimento di dati lungo un collegamento o un cammino di rete
- Jitter: la variazione di latenza tra richieste successive
- Packet loss: la percentuale di pacchetti non ricevuti sul totale di pacchetti inviati

• Immagazzinamento dati

- Capacità: spazio a disposizione per salvare i dati
- Throughput: massima quantità di dati che si riescono a scrivere/leggere per unità di tempo
- Qualità dell'esperienza dell'utente. Spesso riportata su una scala da 1 a 5 e può includere disponibilità, framerate, qualità video, etc.

3.2 Efficienza energetica

Dato il modello in precedenza, aggiungiamo l'**energia elettrica** utilizzata e l'**anidride carbonica** prodotta:

Un primo modo per valutare un sistema ICT dal punto di vista energetico è tramite l'efficienza:

$$\epsilon = \frac{\#calcoli}{E} = \left\lceil \frac{FLOPS}{J} \right\rceil \simeq \left\lceil \frac{FLOPS}{W} \right\rceil$$
(1)

Definizione 3.2.1 (Legge di Koomey). La quantità di calcoli per Joule di energia raddoppia all'incirca ogni 1.5 anni.

La legge si è dimostrata vera fino al 2010 circa. Oggi raddoppia ogni 2.5 anni si fermerà come quella di Moore e quella di Dennard.

Allo stesso modo la quantità di batteria necessaria per svolgere una certa quantità di calcoli diminuisce nel tempo (oggi di 16 volte ogni 10 anni).

3.2.1 Power Usage Effectiveness

L'energia consumata nel mondo ICT si divide in:

- Per i sistemi IT
 - Energia per alimentare server e dispositivi di rete
- Per i sistemi non IT
 - Sistemi di raffreddamento
 - Sistemi di allarme e UPS
 - Sistemi di illuminazione

Per valutare l'efficienza di un sistema ICT si usa il Power Usage Effectiveness (PUE):

$$PUE = \frac{P_{IT} + P_{non-IT}}{P_{IT}} = 1 + \frac{P_{non-IT}}{P_{IT}}$$
 (2)

3.2.2 Datacentre Infrastructure Efficiency

L'inverso del PUE è detto Datacentre Infrastructure Efficiency (DCiE):

$$DCiE = \frac{P_{IT}}{P_{IT} + P_{non-IT}} = \frac{1}{PUE}$$
 (3)

Sia PUE che DCiE sono influenzati da:

- \bullet Utilizzo del sistema nel tempo e nello spazio
- $\bullet~$ Età e progettazione del sistema
- \bullet Efficienza complessiva del sistema

Alcuni valori tipici sono:

PUE	DCiE	Level of Efficiency
3.0	33%	Very inefficient
2.5	40%	Inefficient
2.0	50%	Average
1.5	67%	Efficient
1.2	83%	Very efficient