Job No.: Advertisement Shed 3 - 1 Address: 2 Southbelt, North Canterbury, New Zealand Date: 22/01/2024

Latitude: -45.4741 Longitude: 168.686335 Elevation: 319 m

## **General Input**

| Roof Live Load   | 0.25 KPa | Roof Dead Load                 | 0.25 KPa  | Roof Live Point Load | 1.1 Kn    |
|------------------|----------|--------------------------------|-----------|----------------------|-----------|
| Snow Zone        | N4       | Ground Snow Load               | 1.51 KPa  | Roof Snow Load       | 1.06 KPa  |
| Earthquake Zone  | 2        | Subsoil Category               | D         | Exposure Zone        | В         |
| Importance Level | 1        | Ultimate wind & Earthquake ARI | 100 Years | Max Height           | 4 m       |
| Wind Region      | NZ2      | Terrain Category               | 2.0       | Design Wind Speed    | 38.81 m/s |
| Wind Pressure    | 0.9 KPa  | Lee Zone                       | NO        | Ultimate Snow ARI    | 50 Years  |
| Wind Category    | High     | Earthquake ARI                 | 100       |                      |           |

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

#### **Pressure Coefficients and Pressues**

Shed Type = Mono Enclosed

For roof Cp, i = -0.6351

For roof CP,e from 0 m To 3.50 m Cpe = -0.9 pe = -0.58 KPa pnet = -0.92 KPa

For roof CP,e from 3.50 m To 7.0 m Cpe = -0.5 pe = -0.32 KPa pnet = -0.66 KPa

For wall Windward Cp, i = 0.4844 side Wall Cp, i = -0.6351

For wall Windward and Leeward CP,e from 0 m To 13.50 m Cpe = 0.7 pe = 0.57 KPa pnet = 1.14 KPa

For side wall  $\,$  CP,e  $\,$  from 0 m  $\,$  To 3.50 m  $\,$  Cpe =  $\,$  pe = -0.53  $\,$  KPa  $\,$  pnet = 0.04  $\,$  KPa

Maximum Upward pressure used in roof member Design = 0.92 KPa

Maximum Downward pressure used in roof member Design = 0.73 KPa

Maximum Wall pressure used in Design = 1.14 KPa

Maximum Racking pressure used in Design = 0.98 KPa

### **Design Summary**

## Rafter Design Internal

Internal Rafter Load Width = 4500 mm Internal Rafter Span = 7850 mm Try Rafter 2x360x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 8.40 S1 Upward = 8.40

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

## **Capacity Checks**

| M <sub>1.35D</sub>                | 11.70 Kn-m  | Capacity | 43.44 Kn-m  | Passing Percentage | 371.28 % |
|-----------------------------------|-------------|----------|-------------|--------------------|----------|
| $M_{1.2D+1.5L}$ 1.2D+Sn 1.2D+WnDn | 47.14 Kn-m  | Capacity | 57.92 Kn-m  | Passing Percentage | 122.87 % |
| Mo.9D-WnUp                        | -24.09 Kn-m | Capacity | -72.42 Kn-m | Passing Percentage | 300.62 % |

First Page

|                              |           | Pole Shed App | Ver 01 2022 |                    |          |
|------------------------------|-----------|---------------|-------------|--------------------|----------|
| V1.35D                       | 5.96 Kn   | Capacity      | 55.22 Kn    | Passing Percentage | 926.51 % |
| V1.2D+1.5L 1.2D+Sn 1.2D+WnDn | 24.02 Kn  | Capacity      | 73.64 Kn    | Passing Percentage | 306.58 % |
| V <sub>0.9D-WnUp</sub>       | -12.28 Kn | Capacity      | -92.04 Kn   | Passing Percentage | 749.51 % |

#### **Deflections**

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.835 mm

Deflection under Dead and Service Wind = 26.965 mm

Limit by Woolcock et al, 1999 Span/240 = 33.33 mm Limit by Woolcock et al, 1999 Span/100 = 80.00 mm

### Reactions

Maximum downward = 24.02 kn Maximum upward = -12.28 kn

## Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 76.25 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 68.64 Kn > -12.28 Kn

### **Girt Design Front and Back**

Girt's Spacing = 1300 mm Girt's Span = 2250 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.89 S1 Downward = 9.63 S1 Upward = 15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

#### Capacity Checks

| $M_{Wind+Snow}$ | 0.94 Kn-m | Capacity | 1.87 Kn-m  | Passing Percentage | 198.94 % |
|-----------------|-----------|----------|------------|--------------------|----------|
| Vo 9D-WnUn      | 1.67 Kn-m | Capacity | 12.06 Kn-m | Passing Percentage | 722.16 % |

### **Deflections**

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Second page

Deflection under Snow and Service Wind = 10.13 mm

Limit by Woolcock et al, 1999 Span/100 = 22.50 mm

Sag during installation = 1.55 mm

### Reactions

Maximum = 1.67 kn

## **Girt Design Sides**

Girt's Spacing = 1300 mm

Girt's Span = 2000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =9.63 S1 Upward =14.36

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

### **Capacity Checks**

| MWind+Snow             | 0.74 Kn-m | Capacity | 1.94 Kn-m  | Passing Percentage | 262.16 % |
|------------------------|-----------|----------|------------|--------------------|----------|
| $V_{0.9D\text{-W}nUp}$ | 1.48 Kn-m | Capacity | 12.06 Kn-m | Passing Percentage | 814.86 % |

#### **Deflections**

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.32 mm

Limit by Woolcock et al. 1999 Span/100 = 20.00 mm

Sag during installation =0.97 mm

### Reactions

Maximum = 1.48 kn

## Middle Pole Design

## Geometry

| 200 SED H5 (Minimum 225 dia. at Floor Level) | Dry Use       | Height | 3700 mm           |
|----------------------------------------------|---------------|--------|-------------------|
| Area                                         | 35448 mm2     | As     | 26585.7421875 mm2 |
| Ix                                           | 100042702 mm4 | Zx     | 941578 mm3        |
| Iy                                           | 100042702 mm4 | Zx     | 941578 mm3        |
| Lateral Restraint                            | 1300 mm c/c   |        |                   |

### Loads

Total Area over Pole =  $18 \text{ m}^2$ 

| Dead        | 4.50 Kn    | Live        | 4.50 Kn   |
|-------------|------------|-------------|-----------|
| Wind Down   | 13.14 Kn   | Snow        | 19.08 Kn  |
| Moment wind | 13.20 Kn-m | Moment snow | 6.78 Kn-m |
| Phi         | 0.8        | K8          | 1.00      |
| K1 snow     | 0.8        | K1 Dead     | 0.6       |
| K1wind      | 1          |             |           |

### Material

| Peeling | Steaming | Normal  | Dry Use  |
|---------|----------|---------|----------|
| fb =    | 36.3 MPa | $f_S =$ | 2.96 MPa |
| fc =    | 18 MPa   | fp =    | 7.2 MPa  |
| ft =    | 22 MPa   | E =     | 9257 MPa |

### Capacities

| PhiNcx Wind | 510.45 Kn | PhiMnx Wind | 27.34 Kn-m | PhiVnx Wind | 62.96 Kn |
|-------------|-----------|-------------|------------|-------------|----------|
| PhiNcx Dead | 306.27 Kn | PhiMnx Dead | 16.41 Kn-m | PhiVnx Dead | 37.77 Kn |
| PhiNcx Snow | 408.36 Kn | PhiMnx Snow | 21.87 Kn-m | PhiVnx Snow | 50.36 Kn |

#### Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.55 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.30 < 1 OK$ 

Deflection at top under service lateral loads = 29.63 mm < 37.00 mm

# Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

#### Assumed Soil Properties

| Gamma | 18 Kn/m3                    | Friction angle | 30 deg | Cohesion | 0 Kn/m3 |
|-------|-----------------------------|----------------|--------|----------|---------|
| K0 =  | $(1-\sin(30))/(1+\sin(30))$ |                |        |          |         |

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$ 

### Geometry For Middle Bay Pole

| $D_S =$ | 0.6 mm | Pile Diameter |  |  |  |
|---------|--------|---------------|--|--|--|
| -       | 1.600  | D'1 1 1       |  |  |  |

L= 1600 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

#### Loads

| Moment Wind = | 13.20 Kn-m | Moment Snow = | Kn-m    |
|---------------|------------|---------------|---------|
| Shear Wind =  | 4.40 Kn    | Shear Snow =  | 6.78 Kn |

## Pile Properties

Safety Factory 0.55

Hu = 7.93 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 14.27 Kn-m Ultimate Moment Capacity of Pile

#### Checks

Applied Forces/Capacities = 0.92 < 1 OK

# **Uplift Check**

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

## internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.83 Kn

Uplift on one Pile = 12.51 Kn

Uplift is ok