Graphs (CO3)

- A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as **vertices**, and the links that connect the vertices are called **edges**.
- Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices. Take a look at the following graph –

- In the given graph,
- V = {a, b, c, d, e}
- E = {ab, ac, bd, cd, de}

Graph Terminology

- Two vertices joined by an edge are called the **end vertices** or **endpoints** of the edge.
- If an edge is directed its first endpoint is called the **origin** and the other is called the **destination**.
- Two vertices are said to be **adjacent** if they are endpoints of the same edge.
- • An edge is said to be **incident** on a vertex if the vertex is one of the edges endpoints.
- The outgoing edges of a vertex are the directed edges whose origin is that vertex.
- The **incoming** edges of a vertex are the directed edges whose destination is that vertex.

- Adjacent, neighbors
 - Two vertices are adjacent and are neighbors if they are the
- endpoints of an edge
 - Example:
 - A and B are adjacent
 - A and D are not adjacent

• Degree: Number of edges incident on a node

- Degree (Directed Graphs)
 - In degree: Number of edges entering a node
 - Out degree: Number of edges leaving a node
 - Degree = Indegree + Outdegree

- A *path* is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is *simple* if each vertex is distinct.
- A *circuit* is a path in which the terminal vertex coincides with the initial vertex

•

- Simple path: [1, 2, 4, 5]
- Path: [1, 2, 4, 5, 4]
- Circuit: [1, 2, 4, 5, 4, 1]

- Cycle
 - A path from a vertex to itself is called a cycle.
 - A graph is called *cyclic* if it contains a cycle;
 - otherwise it is called *acyclic*

Directed Graph

- A directed graph is one in which every edge (u, v) has a direction, so that (u, v) is different from (v, u)
- There are two possible situations that can arise in a directed graph between vertices u and v.
- i) only one of (u, v) and (v, u) is present.

• ii) both (u, v) and (v, u) are present.

 Here (u,v) is possible where as (v,u) is not possible

In a directed edge, u is said to be adjacent to
v and v is said to be adjacent from u.

Undirected Graph

- In an undirected graph, there is no distinction between (u, v) and (v, u).
- An edge (u, v) is said to be directed from u to v if the pair (u, v) is ordered with u preceding v.
- E.g. A Flight Route
- An edge (u, v) is said to be undirected if the pair (u, v) is not ordered

• E.g. Road Map

- Complete Graph
- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If no of vertices = n, then there are n(n-1)/2 edges

Weighted Graph

Weighted graph is a graph for which each edge has an associated weight, usually given by a weight function w: E ® R

- Subgraph
 - A graph whose vertices and edges are subsets of another graph.
 - A subgraph G'=(V',E') of a graph G=(V,E) such that $V'\subseteq V$ and $E'\subseteq E$, Then G is a supergraph for G'.

- Spanning Subgraph
 - A *spanning subgraph* is a subgraph that contains all the vertices of the original graph.

Graph Representation (CO3)

- Adjacency Matrix
- Incidence Matrix
- Adjacency List

Graph Representation

- Adjacency, Incidence, and Degree
 - Assume e_i is an edge whose endpoints are (v_i, v_k)
 - The vertices v_i and vk are said to be **adjacent**
 - The edge ei is said to be incident upon v_i
 - **Degree** of a vertex v_k is the number of edges incident upon v_k . It is denoted as $d(v_k)$

Adjacency Matrix

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the $|V| \times |E|$ matrix in which entry $a_{i,j}$ is 1 if an edge exists otherwise it is 0

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency Matrix (Weighted Graph)

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the $|V| \times |E|$ matrix in which entry $a_{i,j}$ is weight of the edge if it exists otherwise it is 0

Adjacency List

- Adjacency-list representation
 - an array of |V| elements, one for each vertex in V
 - For each *u in V , ADJ* [*u*] points to all its adjacent vertices.

Spanning Trees

- A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.
- A graph may have many spanning trees.

Spanning Trees

Complete Graph

All 16 of its Spanning Trees

MST Algorithms

- Kruskal Algorithm
- Prim's Algorithm

Kruskal's Algorithm

- Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which
 - form a tree that includes every vertex
 - has the minimum sum of weights among all the trees that can be formed from the graph

Kruskal's Algorithm Working

- We start from the edges with the lowest weight and keep adding edges until we we reach our goal.
- The steps for implementing Kruskal's algorithm are as follows:
 - Sort all the edges from low weight to high
 - Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
 - Keep adding edges until we reach all vertices.

Kruskal's Algorithm Example

1

Start with a weighted graph

2

Choose the edge with least weight, if there are more than 1, choose any one.

3

Choose the next shortest edge and add it

Choose the next shortest edge that doesn't create a cycle and add it

5

Choose the next shortest edge that doesn't create a cycle and add it

Repeat until you have a spanning tree

Graph Traversal (CO3)

- Graph traversal is a technique used for a searching vertex in a graph.
- The graph traversal is also used to decide the order of vertices is visited in the search process.
- A graph traversal finds the edges to be used in the search process without creating loops.
- That means using graph traversal we visit all the vertices of the graph without getting into looping path.
- There are two graph traversal techniques and they are as follows...
 - DFS (Depth First Search)
 - BFS (Breadth First Search)

BFS (Breadth First Search)

• Example:

7/12/2023

BFS (Breadth First Search)

• Example:

7/12/2023