Année universitaire: 2021-2022

Algèbre 1 L1-MPI

TD n°3: Groupes Algébriques

Exercice 1. Dans l'ensemble \mathbb{Z} , on définit une loi de composition interne notée \oplus par:

$$\forall (a,b) \in \mathbb{Z}^2 : a \oplus b = 3a + b$$

- 1. La loi est-elle associative? Commutative? Existe t-il un élément neutre?
- 2. Étudier l'ensemble des éléments symétrisables à gauche? à droite?.

Exercice 2. On munit l'ensemble $G = \mathbb{Z} \times \mathbb{Z}$ de la loi de composition interne définie par $(m, n) \star (m', n') = (m + (-1)^n m', n + n')$.

- 1. Montrer que (G, \star) est un groupe. Ce groupe est-il commutatif?
- 2. On considère les parties de G, définies par

$$H = \{(a,0) \mid a \in \mathbb{Z}\} \quad et \quad K = \{(0,b) \mid b \in \mathbb{Z}\}$$

Montrer que H et K sont des sous-groupes et que chacun d'eux est isomorphe à \mathbb{Z} .

- 3. Montrer que l'application $G \to \mathbb{Z}$ qui à $(m,n) \mapsto n$ est un homomorphisme de groupes.
- 4. Montrer que H est un sous-groupe distingué de G mais que K n'est pas distingué.

Exercice 3. Petites questions théoriques

- 1. Soit un groupe G. Montrer que $a \in G$ et $b \in G$ commutent si et seulement si $aba^{-1} = b$.
- 2. soit G un groupe fini d'ordre p premier. Quelle est l'ordre d'un élément x de G distinct de l'élément neutre? Que peut-on en déduire pour le groupe engendré par x.
- 3. Déterminer tous les éléments d'ordre 4 du groupe multiplicatif \mathbb{C}^* ?.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{C}^*$ l'application qui à tout $x \in \mathbb{R}$ associe $e^{ix} \in \mathbb{C}^*$.

- 1. Justifier que \mathbb{R} et \mathbb{C}^* sont des groupes. Montrer que f est un homomorphisme de groupes.
- 2. Calculer son noyau ker(f) et son image Im(f). f est-elle injective? surjective?

Exercice 5. Dans l'ensemble \mathbb{R} , on définit une loi de composition notée \star par:

$$\forall (x,y) \in \mathbb{R}^2 : x \star y = (x^3 + y^3)^{\frac{1}{3}}$$

- 1. Vérifier la loi ★ est une loi de composition interne.
- 2. Montrer que (E,\star) est un groupe commutatif.
- 3. Montrer que $f:(\mathbb{R},+)\to(\mathbb{R},\star)$ définie par $f(x)=x^{\frac{1}{3}}$ est un isomorphisme de groupes.

Exercice 6. Soit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 6 & 7 & 1 & 2 & 4 \end{pmatrix}$.

- 1. Décomposer σ en produit de cycles à supports disjoints puis en produit de transpositions.
- 2. Calculer la signature de σ de 4 façons différentes.
- 3. Déterminer l'ordre de σ puis calculer σ^{2001} .

Exercice 7. Dans S_6 , on considère les permutations $\alpha = (136)(24)$ et $\beta = (1452)$.

- 1. Ecrire les permutations α et β sous forme de tableau.
- 2. Déterminer les décompositions en produits de cycles à supports disjoints de $\alpha\beta$ et $\beta\alpha$.
- 3. Déterminer les décompositions en produits de transpositions de α , β , $\alpha\beta$ et $\beta\alpha$.
- 4. Déterminer l'ordre et la signature de α , β , $\alpha\beta$ et $\beta\alpha$.
- 5. Calculer les inverses α^{-1} , β^{-1} , $(\alpha\beta)^{-1}$.