A.1.1 DIODES SiC HAUTE TENSION DE DIFFERENTS PRO-FILS

2 structures de prototypes à prévoir : N+N-P+ et N+P-P+ Polytype : 4H-SiC envisagé

A.1.1.0.1 Plan de maquettage Pour la structure P+N-N+, schéma figure A.1, pour la structure P+P-N+, schéma rédaction réservée

FIGURE A.1 : Schematique de la diode complete d'après [?]

Profil de dopage : sera fourni ultérieurement

A.1.1.0.2 Moyens et matériaux Possibilités de fourniture de wafers; Les grosses sociétés ou laboratoires:http://www.imb-cnm.csic.es/index.php/en/clean-room-2/nanofabricationhttps://sicrystal.de/index.php/en/kontakt-en, http://www.wolfspeed.com Des sociétés Europe: http://www.sil-tronix-st.com/accueil fournissent les wafers silicium, sur lesquels on peut faire croître 3C ou 6H-SiC http://www.novasic.com/ fournissent des assemblages déjà épitaxiés sur spécification, ou des wafers SiC de base Plan B: Norstel

movens nécessaires :

Pour la structure NnP, tableau A.1.1.0.2:

ZONE — DESCRIPTION —

ZONE	DESCRIPTION	THOOLDE
N+	substrat	Epitaxie Physical Vapour Transport ou HTCVD
N-	intrinsèque	Epitaxie PVT ou HTCVD (Azote, Phosphore)
P+	zone P	Epitaxie PVT ou HTCVD (Al, Bore)
P++	transition contact	Epitaxie PVT ou HTCVD
gravure	Mesa	gravure sêche plasma, bâtis ICP (RIE), gaz fluorés (CF4?.
		mélange o_2ouAr
JTE	Protection P+	Implantation ionique (Al, Bore) 170 à 190keV, 320eV max
Sio2	Isolant	passivation en O2 humide, puis PECVD
Polymide	isolant extérieur	RR
cathode	métallisation Ni ou Ti/Ni/Al	gravure sèche, évaporation, eBeam, pulvérisation
	•••	- fours recuit $< 1650^{\circ}C$ sous N2
anode	métallisation Al ou Ni/Al	gravure sèche ionique, évaporation - fours de recuit idem

PROCEDE

L'implantation JTE -si elle est envisagée- sera réalisée en plusieurs passes, la dose moyenne proposée est $810^{1}2cm^{-2}$. Profil à communiquer ultérieurement. Une variante est proposée pour cette étape, par anneaux de garde, eux aussi réalisés en implantation Al, mais à profil constant. Géométrie à préciser ultérieurement. La passivation peut consister, après étape nettoyage, en dépot sous $1000 \circ C$ en atmosphère hydrogène pur. La gravure sêche peut s'effectuer préférentiellement en technique ICP plasma (inductif) (exemple 50 SF6 + 3 O2 1000W ICP) Photoresist: voir S1818

En chimie, prévoir nettoyages et gravure humide par solvants et acides classiques; Lithographie UV, résines 1µm négatives et positives - machine SUSS MJB4 Plasma O2 (stripper) pour nettoyage résidus, Four d'oxydation thermique. Dpts de couches dilectriques (silice et voire nitrure de silicium) par PECVD. Recuit RTA (jusqu' 900C) des couches mtalliques pour la formation des contacts ohmiques. Masque pour gravure plasma: bicouche Ti(10nm)/Ni(400nm), 6 niveaux de masques Cr/verre environ à prévoir

Tableau des mesures A.1.1.0.4

A.1.1.0.3 Procédés - procédure Rédaction réservée

A.1.1.0.4 Mesures

TYPE MESURE —	OBJECTIF —	QUI		
forward I-V reverse BV	On state off state	groupe ATLAS		
commutation en dynamique	DSRD	gr ATLAS Dacc		
TLM	résistance de contact	gr ATLAS		
SEM	surface caractérisation	RR		
TEM	métallisations	gr ATLAS		
X ray diffraction	metallisations	RR		
Secondary Mass Ion Spectroscopy	profil dopage	RR		
Raman Spectroscopy	qualité du recuit	RR		
Exposition à des rayonnements gamma, ou flux d'ions	in situ	RR		
RR = Rédaction réservée				