Topology

Trishan Mondal

Assignment-1

\S Problem 1

A metric space is called **sequentially compact** if every sequence has a convergent subsequence. Call a metric space **totally bounded** if for every $\epsilon > 0$, the metric space can be covered by finitely many open balls of radius ϵ . Prove that TFAE for a metric space (X, d):

- 1. X is compact.
- 2. X has the Bolzano-Weirstrass property, in every infinite set has a limit point in X.
- 3. X is sequentially compact.
- 4. X is totally bounded and complete.

Solution. (Compact \iff sequentially compact) Consider, X is a comapct metric space, also assume (x_n) is a sequence in X. Let, A be the set of limit points of the sequence. If $A \cap X = \phi$ then for any $a \in X$, there is $\delta_a > 0$ such that $B(a, \delta_a)$ contains finitely many x_n . Notice that, $\{B(a, \delta_a) : a \in X\}$ is an open cover of X. So, there is finitely many $a_i \in X$ such that, $\bigcup_{i=1}^n B(a_i, \delta_{a_i})$ is covers X but it contains finitely many of $(x_n) \to \leftarrow$.

Let, X is sequentially compact also assume that, $\{G_{\alpha}\}_{\alpha\in\Lambda}$ is an open cover of X. Let, $\delta>0$ be a number such that $B(\delta,x)$ is contained in some of G_{α} , for every $x\in X$. Suppose, $\{G_{\alpha}\}$ do not have finite subcover. Let $x_0=x$ (as mentioned above) and consider $B(x,\delta)=B_1$. Clearly this don't cover X. Take $x_1\in X\setminus B_1$. Again take $B_2=B(x_1,\delta)$. By our assumption $B_1\cup B_2$ don't cover X. So take $x_3\in X\setminus (B_1\cup B_2)$. Continue this process, we will get an infinite sequence (x_n) of centers of B_i 's. By sequential compactness, a subsequence $(x_{n_i})\to \tilde{x}\in X$. But $d(x_{n_i},x_{n_j})\geq \delta$ for distinct i and j. This contradicts the fact that the subsequence is convergent $\to \leftarrow$. So, Finite number of B_i covers X. Each of B_i is contained in some G_i and hence every open cover has a finite subcover.

(sequentially comapct \iff totally bounded and complete) We will start with a lemma.

• LEMMA: A metric space is totally bounded if and only if every sequence has a Cauchy subsequence.

Proof. (\Leftarrow) We may assume $X \neq \emptyset$. Given $\epsilon > 0$, we inductively construct an ϵ -net $\{p_1, \ldots, p_N\}$ as follows. Choose p_1 arbitrarily. Having chosen p_1, \ldots, p_n , if $\{p_1, \ldots, p_n\}$ is not yet an ϵ -net, let p_{n+1} be

a point such that $d(p_m, p_{n+1}) \ge \epsilon$ for each m = 1, ..., n. We claim that this process must terminate. Indeed, if it didn't, we would obtain a sequence $\{p_n\}_{n=1}^{\infty}$ any two of whose points are at distance $\ge \epsilon$ from each other; but such a sequence clearly has no Cauchy subsequence.

(⇒) Let S_k be a (1/2k)-net for $k=1,2,3,\ldots$ Given a sequence $\{p_n\}$ in X, extract a subsequence $\left\{q_n^{(1)}\right\}$ contained in a radius-(1/2) neighborhood about one of the points in S_1 . From $\left\{q_n^{(1)}\right\}$ extract a subsequence $\left\{q_n^{(2)}\right\}$ contained in a radius-(1/4) neighborhood about one of the points in S_2 . Keep going inductively: $\left\{q_n^{(k)}\right\}$ is a subsequence of $\left\{q_n^{(k-1)}\right\}$ contained in a radius-(1/2k) neighborhood about one of the points in S_k . This is possible because for each k the sequence $\left\{q_n^{(k-1)}\right\}$ is infinite while S_k is finite. Note that $d\left(q_n^{(k)}, q_{n'}^{(k)}\right) < 1/k$ for all k, n, n'. Now consider the diagonal subsequence $\left\{q_k^{(k)}\right\}$. This is a subsequence of the original $\{p_n\}$; moreover, if $m, n \geq N$ then $q_m^{(m)}$ and $q_n^{(n)}$ are both contained in the subsequence $\left\{q_n^{(N)}\right\}$, and thus are at distance <1/N. Thus $\left\{q_k^{(k)}\right\}$ is a Cauchy subsequence of $\{p_n\}$. □

X is totally bounded \iff every sequence has a cauchy subsequence

X is totally bounded + complete \iff every sequence has a cauchy subsequence which converges in X X is totally bounded + complete \iff X is compact sequentially

(Bolzano-Weirstrass property \iff X is sequentially compact.) Let, X is sequentially compact. Consider an infinite subset S of X then take a countable subset S call it S'. We can treat elements of S' as an elements of sequence (x_n) . Since this sequence has a converging subsequence whose limit lies in X, there is a limit point of S lies in X. So, X satisfies Bolzano-Weirstrass property.

If X satisfies Bolzano-Weirstrass property then every sequence of x has a limit point in X so, there is a converging subsequence of it. So, X is sequentially compact.

We have shown $1 \iff 3 \iff 4,2 \iff 3$. And hence our proof is complete.

\S Problem 2

Given an example to show Heine-Borel theorem fails in metric spaces, ie. a set may be closed and bounded yet fail to be compact.

Solution. Consider $\mathbb{R}^2 \setminus \{(0,0)\}$ with the Euclidian metric restricted from \mathbb{R}^2 . It is not hard to see that the set,

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 \le 1\}$$

is closed in $\mathbb{R}^2 \setminus \{(0,0)\}$ because take any point in D, any open disk around that has non trivial intersection with D. This set is clearly bounded. Take any sequence Sequences in $\mathbb{R}^2 \cap D$ which converges to (0,0) in \mathbb{R}^2 don't have any limit in D.

§ Problem 3

Prove that a totally bounded metric space is separable ie. contains a countable dense subset.

Solution. Let, X be a totally bounded metric space. Let, B_i^n be the 'open balls' of radius $\frac{1}{n}$ that covers all X for, $1 \le i \le p_n$ and $n \in \mathbb{N}$. Here p_n is the number of open balls required to cover the space. Let, c_{ij} be the center of the ball B_i^j . Let us take the collection of all possible centers.

$$\mathcal{C} := \left\{ B_i^j : j \in \mathbb{N} \text{ and } 1 \le i \le p_j \right\}$$

Clearly, $\mathcal C$ is countable set. Now, consider any $x\in X$ and any $\epsilon>0$. By 'archimedean property' there is $N\in\mathbb N$ such that $\frac{1}{N}<\epsilon$. We know, X can be covered by B_i^N . So, $x\in B_j^N$ for some j. Now, $d(x,c_{iN})\leq \frac{1}{N}<\epsilon$. Hence, $\mathcal C$ is dense in X.