

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு இரண்டாம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

2nd Term Examination - 2024

இணைந்த	கணிதம்	-	(B)
--------	--------	---	------------

Combined mathematics - (B)

Gr	-12	(2025)
.		(=0=0)

 \mathbf{T}

В

பகுதி - B

- 11) (a) $f(x) = x^2 (3K+1)x + (K+1)(K-2)$ எனக் கொள்வோம். இங்கு $K\epsilon$ $\mathbb R$ ஆகும். f(x) = 0 இன் பிரித்துக் காட்டியை K சார்பில் எழுதுக. இதிலிருந்து f(x) = 0 இந்க இரு வேறுவேறான மெய்மூலங்கள் இருக்கின்றதெனக் காட்டுக.
 - f(x)=0 இன் மூலங்கள் lpha, eta எனக் கொள்வோம். lpha+eta, lphaeta ஆகியவற்றை K சார்பில் எழுதுக. lpha, eta ஆகிய இரண்டும் மறையாக இருக்குமாறு K இன் பெறுமானங்களைக் காண்க.

பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி $\alpha+1$, $\beta+1$ என்பவற்றை மூலகங்களாக் கொண்ட சமன்பாடு $x^2-3(K+1)x+K(K+2)=0$ என்பதை உய்த்தறிக.

(b) f(x) என்பது படி இரண்டிலும் கூடிய பல்லுறுப்பி சார்பு , a, $b \in R$, $a \neq b$ ஆகும். மீதித் தேற்றத்தை மீண்டும் மீண்டும் பயன்படுத்துவதன் மூலம் f(x) ஆனது (x-a)(x-b) ஆல் வகுக்கப்படும் போது மீதி $\left\{\frac{f(b)-f(a)}{b-a}\right\}(x-a)+f(a)$ எனக் காட்டுக.

 $f(x) = x^3 + Px^2 + qx + 1$ எனக் கொள்வோம்.

இங்கு p, $q \in \mathbb{R}$ ஆகும். f(x) ஆனது (x-1)(x-2) இனால் வகுக்கப்படும் போது பெறப்படும் மீதி -10x+5 எனவும் தரப்பட்டுள்ளது. மேலேயுள்ள முடிவை மாத்திரம் பயன்படுத்தி P=-5 எனக் காட்டி. q இன் பெறுமானத்தையும் காண்க.

- 12) (a) முதற் கோட்பாடுகளிலிருந்து $\sqrt{\sin x}$ இன் 1ம் வகையீட்டுப் பெறுமதியைக் காண்க.
 - (b) பின்வரும் சார்புகளை x குறித்து வகையிடுக.
 - (i) $\frac{x^2-1}{x^2+1}$
 - (ii) $\frac{1+e^x}{1-e^x}$
 - (iii) x^{x^2+1}
 - (c) $y = e^x \cos e^x$ नजीं जं

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + (e^{2x} + 2)y = 0$$
 எனக் காட்டுக.

- (d) $x=\sin n\theta$, $y=\cos m\theta$ எனின் $n^2(1-x^2)\left(\frac{dy}{dx}\right)^2=m^2(1-y^2)$ எனக் காட்டி $n^2(1-x^2)\frac{d^2y}{dx^2}-n^2x\frac{dy}{dx}+m^2y=0$ எனக் காட்டுக.. இங்கு n, m என்பன மெய்மாறிலிகள்.
- - (b) x > 0 இந்கு $\tan^{-1}\left(\frac{x}{2}\right) + \tan^{-1}\left(\frac{x}{3}\right) = \frac{\pi}{4}$ என்ற சமன்பாட்டைத் தீர்க்க இதிலிருந்து $\sin\left\{\frac{\pi}{4} \tan^{-1}\left(\frac{1}{3}\right)\right\} = \frac{1}{\sqrt{5}}$ எனக் காட்டுக.
 - $(c) \qquad x = \tan \alpha \ \left(0 < \alpha < \frac{\pi}{4} \right) \quad \text{எனும்} \quad \text{பிரதியீட்டைப்} \quad \text{பயன்படுத்தி} \qquad \sin^{-1} \left\{ \frac{2x}{1+x^2} \right\} + \\ \cos^{-1} \left\{ \frac{1-x^2}{1+x^2} \right\} + \tan^{-1} \left\{ \frac{2x}{1-x^2} \right\} = \pi \quad \text{எனும்} \quad \text{சமன்பாட்டைத் தீர்க்க.}$
- 14) (a) $\sin(A+B)$, $\sin(A-B)$ ஆகியவற்றை $\sin A$, $\sin B$, $\cos A$, $\cos B$ ஆகியவற்றின் சார்பில் எழுதுக. இதிலிருந்து $\sin C + \sin D = 2\sin\left(\frac{c+D}{2}\right)\cos(\frac{c-D}{2})$ எனக் காட்டுக $\sin C \sin D = 2\cos\left(\frac{c+D}{2}\right)\sin(\frac{c-D}{2})$ என்பதை உய்த்தறிக சமன்பாடு $\sin 7x + \sin 5x \cot x \ (\sin 7x \sin 5x) = 0$ ஐ தீர்க்க.
 - (b) $\sin 7\theta + \sin \theta$ ஐ கருதுவதன் மூலம் $\sin 7\theta = \sin \theta \ \{8\cos \theta \cos 2\theta \cos 3\theta 1\}$ எனக் காட்டுக. இதிலிருந்து $4\cos \theta \cos 2\theta \cos 3\theta 1$ இன் தீர்வுகளை 0 இந்கும் $\frac{\pi}{4}$ இந்கும் இடையில் காண்க.
 - (c) $\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta \tan 3\theta} = 4\cos 2\theta \cos 4\theta$ எனக் காட்டுக.
- (a) A,B ஆகிய புகையிரத நிலயங்களுக்கு இடையில் உள்ள புகையிரதப்பாதை ஆனது நேர்கோட்டின் வழியே அமைந்துள்ளதுடன் புகையிரதப் பாதையின் நீளம் 7d ஆகும். A இல் ஓய்வில் இருந்து புறப்படும் புயையிரதம் P ஆனது சீரான ஆர்முடுகல் f உடன் d தூரத்திற்கு இயங்கி பின் தனது ஆர்முடுகலை 2f என்னும் சீரான ஆர்முடுகலாக அதிகரித்து ஆர்முடுகல் f உடன் இயங்கிய நேரத்திற்கு இயங்கி உடனடியாக சீராக அமர்முடுகி சென்று நிலையம் B இல் ஓய்விற்கு வருகின்றது.
 - i) A இல் இருந்து B ற்கு புகையிரதத்தின் இயக்கத்திற்கான வேக நேர வரைபை வரைந்து அதிலிருந்து
 - ii) ஆர்முடுகல் f உடன் இயங்கிய நேரம் $T=\sqrt{\frac{2\ d}{f}}$ எனக் காட்டி ஆர்முடுகல் 2f உடன் இயங்கிய தூரத்தையும் காண்க.
 - iii) புகையிரம் இயங்கிய மொத்த நேரம் $\frac{8T}{3}$ எனக் காட்டி , அமர்முடுகலின் பருமனையும் காண்க.

- (b) கிடைத்தரையில் உள்ள ஒரு புள்ளி O இல் இருந்து கிடையுடன் θ கோணத்தில் V கதியில் நிலைக்குத்துத் தளத்தில் ஒரு துணிக்கை P எறியப்படுகிறது. துணிக்கை ஆனது கிடைத்தரையில் துணிக்கை இயங்கும் தளத்தில் உள்ள புள்ளி A இற்கு நேர் மேலே 3a உயரத்தில் உள்ள புள்ளி B இல் உள்ள போது துணிக்கையின் கிடை, மேல்நோக்கிய நிலைக்குத்து கதிகள் முறையே $\sqrt{3ag}$, $\sqrt{3ag}$ ஆகும்.
- (அ) (i) V, θ ஐக் காண்க.
 - (ii) துணிக்கையின் எறியற் புள்ளி ஊடான கிடை வீச்சை காண்க.
- (ஆ) துணிக்கை P ஆனது B இல் உள்ள போது துணிக்கை Q ஆனது புள்ளி O இல் இருந்து துணிக்கை P இயங்கிய தளத்தில் கிடையுடன் α கோணத்தில் கதி u உடன் எறியப்படுகின்றது. இரு துணிக்கைகளும் O இன் ஊடான கிடைத்தரையை ஒரே புள்ளி C இல் ஒரே நேரத்தில் அடிக்கின்றன.
 - (i) u, α ஐக் காண்க.
 - (ii) கிடைத் தரையில் இருந்து துணிக்கைகள் P,Q அடைந்த அதிஉயர் உயரங்களைக் காண்க.
- O(a) முக்கோணி OAB இல் AB இன் நடுப்புள்ளி C ஆகும். D ஆனது OA இன் மீது OD:DA=1:2 ஆகுமாறு ஒரு புள்ளி ஆகும். OC உம் BD உம் E இல் சந்திக்கின்றன. $\overrightarrow{OA}=\underline{a},\ \overrightarrow{OB}=\underline{b}$ ஆகும்.
 - (அ) (i) \overrightarrow{OC} , \overrightarrow{OD} என்பவற்றை \underline{a} , \underline{b} சார்பில் காண்க.
 - (ii) $BE:ED=\lambda:1-\lambda$ எனில் \overrightarrow{OE} ஐ a,b,λ சார்பில் காண்க.
 - (iii) $\overrightarrow{OE} = \mu \ \overrightarrow{OC}$ எனில் λ , μ ஐக் காண்க.
 - (ஆ) பகுதி அ இல் $\underline{a}=12\underline{i},\ \underline{b}=2\underline{i}+8\underline{j}$ எனத் தரப்படின்
 - (i) \overrightarrow{OC} , \overrightarrow{DB} ஆகியவற்றை $\underline{\emph{i}}$, $\underline{\emph{j}}$ சார்பில் காண்க.
 - (ii) $\overrightarrow{OC}.\overrightarrow{DB}$ ஐக் கண்டு $B\widehat{E}C$ ஐக் காண்க.
 - (iii) P ஆனது OB இன் மீது A, E, P ஒரே நேர்கோட்டில் அமையுமாநான புள்ளி எனில் \overrightarrow{OP} ஐக் காண்க.
 - (b) ΔABC இல் A, B இல் இருந்து முறையே BC, CA இற்கு வரையும் செங்குத்துக்கள் சந்திக்கும் புள்ளி H ஆகும்.

H குறித்து A, B, C ஆகிய புள்ளிகளின் தானக் காவிகள் முறையே \underline{a} , \underline{b} , \underline{c} ஆகும்.

- (i) $\underline{a}.(\underline{b}-\underline{c})=0$ எனக் காட்டுக.
- (ii) $\underline{b} \cdot (\underline{c} \underline{a}) = 0$ எனக் காட்டுக.
- (iii) இவற்றில் இருந்து $AB \perp CH$ எனக் காட்டுக.

17) (a)

படத்தில் காட்டியவாறு ABCDE ஓர் ஐங்கோணி. $E\hat{A}B=A\hat{B}C=\frac{\pi}{2}, \quad AE=ED=DC=CB, \ AD=BD=\sqrt{3}\ AE$ ஆகும்.

- (i) $E\hat{A}D = 30^{\circ}$ எனக் காட்டுக.
- (ii) \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{EA} வழியே முறையே $2\sqrt{3}N$, 5N, $3\sqrt{3}N$, 1N விசைகள் தாக்குகின்றன. விளையுளின் பருமன், திசையைக் காண்க.
- (iii) முறையே \overrightarrow{AE} , \overrightarrow{DA} வழியே தாக்கும் P, Q மேலதிக விசைகளினால் விசைகள் யாவும் சமனிலையில் இருப்பின் P, Q ஐக் காண்க.
- (b) விறைப்பான உடல் ஒன்றில் A, B ஆகிய புள்ளிகளில் முறையே PN, QN ஒத்த சமாந்தர விசைகள் தாக்குகின்றன. அவற்றின் விளையுள் AB இன் மீது உள்ள புள்ளி O இன் ஊடு செல்கிறது.

P, Q என்பன முறையே RN, SN ஆல் அதிகரிக்கும் போதும் விளையுள் O இன் ஊடு செல்கிநது.

P,Q இந்கு பதில் முறையே Q,R ஒத்த சமாந்தர விசைகள் அதே புள்ளிகளில் தாக்கும் போதும் விளையுள் O இன் ஊடு செல்கிறது.

- (i) $Q^2 = RP$
- (ii) $\frac{P}{Q} = \frac{Q}{R} = \frac{R}{S}$
- (iii) $Q^3 = SP^2$
- (iv) $R-S=rac{(Q-R)^2}{P-Q}$ எனக் காட்டுக.