

Interview Task: Offshore Decommissioning

Presented by:

Karan Soni

Date: 22.11.2024

Place: Flensburg

Index

- 1. Steps involved for Offshore Decommissioning
- 2. Factors Affecting Decommissioning
- 3. Vessels
- 4. Steps involved in my approach to Decommissioning Offshore Wind Farm
- 5. Fuel Usage, CO2 Emissions, and Cost Analysis for Ships
- 6. Flow chart of the code
- 7. Results
- 8. References

Decommissioning Decommissioning Post-**Pre-Decommissioning Operations Decommissioning**

Reference: [1]

Starting	Removal		Step					
turbine composed of:	options (# lifts)	Initial Condition	Remove blade 1	Remove blade 2	Remove blade 3	Remove hub	Remove Nacelle	Remove tower to give final condition
2 tower sections:	1 (6)		R	A	8	T		
nacelle:	2 (3)					F		
hub:	3 (4)		R			P	9	
3 blades:	4 (3)		R					
	5 (1)							
	Felling							2

Figure 1.1: Traditional offshore turbine decommissioning options [1]

Figure 1.2: Offshore Wind turbine with Monopile Foundation [1]

2. Factors Affecting Decommissioning

- Foundation type
- Vessel Availability
- Distance to port
- Water depth
- Weather conditions
- Time
- CO2 Emission
- Costs

3. Vessels

1. Survey Vessel:

Fuel Type: HFO, Diesel, MGO, LNG, Methanol, Ammonia, Electricity

Size: Length: 80-100 m and Breadth: 15-18 m

Survey depth capacity: 2500 -3000 m [2] [3] [4] [5]

2. SPIVs or Heavy Lift Vessel:

Fuel Type: HFO, Diesel, MGO, LNG, Methanol, Ammonia, Electricity

Size: Length: 220-382 meter and Breadth: 102-124 m

Lifting Capacity: 20000 -60000 tonnes [5] [6] [7]

Figure 2.1: Survey Vessel [2]

Figure 2.2: Heavy Lift Vessel [6]

3. Vessels

3. Support Vessel:

Dive support Vessel
 Offer a place to launch, supply, recover, to assist underwater

Crew boats Transferring person, environmental studies, support of shallow waters or the

enforcement of safety zones

Workboats
 Cutting processes

Multicats
 Light transport, underwater support and stability handling

Tugs Normally they come with a small crane for stability handling.

Cargo barges
 Used for the transportation of components [1]

Pre-decommissioning

1. Decommissioning Strategy: Partial Remove Approach

2. Regulation, Financial resources: Right now, I assume, it is okay.

3. Environment Impact: Finding Co2 Emissions

Decommissioning Operation

4. Wind Turbine : 8 Wind Turbines (Assume 8MW one wind Turbine)

Turbine Type	Nacelle	Rotor blades	Tower
4 MW	165 t	20 t	300 t
8 MW	450 t	35 t	650 t

Table 4.1: Wind turbine components weight [1]

Figure 4.1: Selected Decommissioning process for Wind Turbine [1]

5. Foundation : Cut (Monopile Foundation)

6. Offshore substation, Cables Assuming Constant

Post-Decommissioning

Ignore it

Foundation type

availability Vessel

Distance to port

Water depth

Weather conditions

Time

Monopile Foundation

Survey, SPIVs, Dive support, Crew boat, Work boat, Multicats, Cargo

barges, Tugs

80km

40 m

Normal

4 [hours] + 15 days [assuming decommissioning per wind turbine] +

4.5 [hours]

Vessel	Speed (km/h) / Travel Time = Dis./ speed	Port to Site	On Site	Site to Port
Survey	18 -28	22 (3.63 hours)	-	22
SPIVs	18 - 28	22	-	18 (4.44 hours)
Dive support	15 - 22	22	-	22
Crew boat	28 - 37	28 (2.85 hours)	-	`28
Work boat	15 - 23	22	-	22
Multicats	15 - 22	22	-	22
Cargo	18 - 27	22	-	18 (4.44 hours)

Table 4.2: Vessel, speed, travel time and case [6]

Vessel	Fuel Consumptions ranges (litres/h) for Diesel	Port to Site	On Site	Site to Port	Total Fuel Consumptions for Diesel
Survey	200 - 300	250	200	250	
SPIVs	200 - 300	250	200	300	
Dive support	300 - 500	400	300	400	
Crew boat	100 - 200	150	100	`150	
Work boat	200 -400	300	200	300	
Multicats/ Tugs	300 -500	400	300	400	
Cargo	500 - 1000	700	500	1000	

Table 4.3: Vessel, Fuel Consumptions and case [6]

Case: Take to Wake

Fuel	Carbon Factor (gCo2/g Fuel)	Cost Energy [USD/kWh]	Energy Content (kWh/litres)
HFO	3.114	0.043432836	9.6
Diesel	3.206	0.06618267	10
MGO	3.206	0.066	9.8
LNG	2.750	0.0423	9
Methanol	1.375	0.055175879	6
Ammonia	0	0.123870968	4.5
Electricity	0	-	-

Table 4.4: Fuel types, carbon factor and cost [7]

5. Fuel Usage, CO2 Emissions, and Cost Analysis for Ships

Figure 6.1: Energy Consumption Vs Co2 Emission [own drawing]

Figure 6.2: Energy Consumption Vs Cost [own drawing]

6. Flowchart of the code

6. Flowchart of the code

Fuel Usage, CO2 Emissions, and Cost Analysis for Ships:

 Co_2 Emission = Amount of fuel [litres] * Density [g /litres] * Co_2 Emission factor [g Co_2 /g Fuel]

Fuel Cost [USD] = Amount of fuel [litres] * Energy content [kwh/litres] * Energy costs[USD/kwh]

Case 1 and Case 3:

$$Co_2 \ Emission[kgCo_2] = \frac{Vessel \ Fuel \ consumption \ [\frac{liters}{hour}] * Travelling \ times \ [h] * Density \ [\frac{gram}{liters}] * Co_2 \ Emission \ Factor \ [\frac{gCo2}{g \ fuel}]}{1000}$$

Case 2:

 $\frac{Co_2 \ Emission[kgCo_2]}{Vessel \ Fuel \ consumption} [\frac{liters}{hour}] * \ working \ times \ [hours] * \ Decomissoning \ wind \ turbine} \ days \ [\frac{days}{wind \ turbine}] * \ Density \ [\frac{gram}{liters}] * \ No \ of \ Wind \ turbine * \ Co_2 \ Emission \ Factor \ [\frac{gCo2}{g \ fuel}] \ }{1000}$

7. Results

Figure 7.1: Vessel Types Vs Co2 emissions for different case [own drawing]

7. Results

CASE 1: Co2 Emission

CO2 Emission of Survey Vessel: 1375.0000 kg CO2

CO2 Emission of SPIVs Vessel: 0.0000 kg CO2

CO2 Emission of Dive Vessel: 0.0000 kg CO2

CO2 Emission of Crew boat Vessel: 825.0000 kg CO2

CO2 Emission of work boat Vessel: 1650.0000 kg CO2

CO2 Emission of multicats Vessel: 0.0000 kg CO2

CO2 Emission of tugs Vessel: 0.0000 kg CO2

CO2 Emission of cargo Vessel: 0.0000 kg CO2

Total CO2 Emission in Case 1: 3850.0000 kg CO2

Case 3: Co2 Emission
CO2 Emission of Survey Vessel: 1546.8750 kg CO2
CO2 Emission of SPIVs Vessel: 1856.2500 kg CO2
CO2 Emission of Dive Vessel: 0.0000 kg CO2
CO2 Emission of Crew boat Vessel: 928.1250 kg CO2
CO2 Emission of work boat Vessel: 1856.2500 kg CO2
CO2 Emission of multicats Vessel: 0.0000 kg CO2
CO2 Emission of tugs Vessel: 0.0000 kg CO2
CO2 Emission of cargo Vessel: 0.0000 kg CO2
Total CO2 Emission in Case 3: 6187.5000 kg CO2

Case 2: Co2 Emission

CO2 Emission of Survey Vessel: 396000.0000 kg CO2

CO2 Emission of SPIVs Vessel: 396000.0000 kg CO2

CO2 Emission of Dive Vessel: 0.0000 kg CO2

CO2 Emission of Crew boat Vessel: 198000.0000 kg CO2

CO2 Emission of work boat Vessel: 396000.0000 kg CO2

CO2 Emission of multicats Vessel: 0.0000 kg CO2

CO2 Emission of tugs Vessel: 0.0000 kg CO2

CO2 Emission of cargo Vessel: 0.0000 kg CO2

Total CO2 Emission in Case 2: 1386000.0000 kg CO2

Total CO2 Emission: 1396037.5000 kg CO2

Total CO2 Emission: 1396.0375 tonnes CO2

Figure 7.2: Script output [own Script]

7. References

- [1] Clara Ruiz, 25.01.2019. "Decommissioning of offshore Wind turbine" Escola de Camins.
- TFG Decommissioning Clara Ruiz.pdf, 15.11.2024.
- [2] Fugro, Creating a Safe and Liveable World | Fugro, 15.11.2024.
- [3] Geoquip Elena, Geoquip Elena + Deep-Push Cpt | Geoquip Marine, 15.11.2024.
- [4] Edda Wind, Home Edda Wind, 15.11.2024.
- [5] Taken data from present work, rasant, 15.11.2024.
- [6] Nunzia Capobianco Vincenzo Basile Francesca Loia Roberto Vona, 27.July.2022. "Endof-life management of oil and gas offshore platforms: challenges and opportunities for sustainable decommissioning." 14-capobianco-et-al.-118-2022.pdf, 17.11.2024.
- [7] Briefing, March, 2021. https://theicct.org/wp-content/uploads/2021/06/Well-to-wake-co2-mar2021-2.pdf 15.11.2024.