

Welcome to the Course Exercises

Future Internet Communication Technologies

Prof. Dr. Panagiotis Papadimitriou

David Dietrich

Ahmed Abujoda

- Types of sessions
 - Tutorials
 - Demos
 - Experiments
- Experiments
 - Max. 8 groups (8 laptops available)
 - Local or with access to the FiLab testbed of IKT
 - Some experiments require interaction between groups

- Laptops for the class
 - Use: virtual machines or
 - ... the FiLab testbed
 - OS: Ubuntu LTS
 - Preinstalled software
 - Login (if no auto-login)
 - User: student
 - Password: label on the top-right of your keyboard
 - Login to FiLab is different

- Emulab is a network testbed used to investigate, develop and test network solutions and concepts as well as to verify new theoretical approaches.
- The name Emulab refers both to a facility and to a software system.
- The primary Emulab installation is run by the Flux Group, part of the School of Computing at the University of Utah.
- We built an Emulab, we call it Future Internet Lab.

- 80 nodes with at least
 - 4-core Xeon CPUs 2.26GHz
 - 6 GB RAM
 - 4 or 8 NICs available for experiments
- 400 ports @ 1 Gbps
- 40 ports @ 10 Gbps
- 1 Gbps connection to the Internet

- Full exclusive access to experimental nodes
- Customized topologies without rewiring
 - CISCO 6900 switch with 720
 Gbps backplane switching,
 384 ports
- 20 nodes each prepared for specific purposes
 - Programable network cards (NetFPGA)
 - Wireless support

Institut für Kommunikations-Technik

Lets have an excursion to the FiLab server rooms – after the session today

Using FiLab Testbed

Institut für Kommunikations-Technik

Getting Ready for the Exercises

Institut für Kommunikations-Technik

- Booting up the laptop
 - Make sure that the power supply is connected properly
 - Press the corresponding icon on the menu bar to start the installed applications:

- For experiments in the FiLab testbed
 - Experiments will already be configured and started
 - Open a command shell window
 - Login to the experimental nodes (password: fi2016)
 - -X allows working with graphical user interface of remote applications (Wireshark, Firefox)
 - The prompt will display the name of the experimental node
 - "student-laptopX" indicates that you work locally

ssh [-X] student@[node].[experiment].filab.filab.uni-hannover.de

- One home directory for the entire class
 - Subdirectories for each group
 - Accessible from any FiLab experimental node
- Accessing a directory
 - Accessing group 3's home directorycd ~/group3
 - Accessing the parent directory or a child directory cd . . ; cd child directory
 - List files (-a: all files, -l: details)

 ls [-al]

- Display file content
 cat file_name
 more file name
- File editor, for example *nano* nano file_name
- Alternative file editor if display is available: gedit gedit file name &

- Limited access for the user
 - Sufficient for many cases, e.g. sending pings
- Privileged access for the super user (root)
 - Required for critical tasks, e.g. host configuration
- The shell prompt indicates the current user type
 - \$ <user command>
 - # <super user command>
 - Do not type in "\$" or "#"
 - Use sudo to temporary become a super user sudo <super user command>

Starting Firefox

firefox

- Current command shell window is blocked till Firefox has been closed
- Terminate with <Ctrl>-<C> or start a new command shell

firefox &

- Firefox runs as background process
- Current command shell is not blocked and can be used further

- List interfaces (IP, MAC addresses, ...) ifconfig
- List routes
- Tracing route to a remote host, e.g. www.uni-hannover.de
 - traceroute www.uni-hannover.de
- Round-trip time ping a remote PC, e.g. ping 192.168.1.7
- Wireshark traffic capturing software wireshark

Wireshark – GUI

Institut für Kommunikations-Technik

8 Laptops – 8 groups (today)

Laptop ID	Group	Node	Workdir
11	1	alice	~/group1
12	2	bob	~/group2
13	3	carol	~/group3
14	4	dave	~/group4
15	5	alice	~/group5
16	6	bob	~/group6
17	7	carol	~/group7
18	8	dave	~/group8

Login using SSH

ssh -X student@[alice|bob|carol|dave].abcd2.filab.filab.uni-hannover.de

- Login to your experimental node using SSH
- Create a new text file and place it in the group directory of another group (group1 -> group2, ..., group8 -> group1)
- Browse your own group directory and find a "message" from another group
 - Are the home directories of all experimental nodes mapped to a shared file system? _____

- Use ifconfig to identify the network interfaces that connect your node with other experimental nodes
 - See page 8 for IP network address ranges
 - Not all nodes are directly connected
- My node: _____ (alice, bob, carol, dave)

Link to node:	Interface name	IP address	MAC (HWaddr)
alice	eth	10	: : : :
bob	eth	10	: : : :
carol	eth	10	: : : :
dave	eth	10	: : : :

- Start wireshark
 - Are you able to capture any interface?
 - Are you able to execute commands in the shell from where you launched wireshark?
- Start wireshark with root privileges (sudo) and as background process (&)
 - Start capturing on Device "any"
 - Apply filter "icmp"

- In the shell, ping to any other experimental node
- Look at the first 4 packets and complete the following table

No.	Source IP	Dest. IP	ICMP type
	10	10	
	10	10	
	10	10	
	10	10	