Application of geometry in path

CHH3213

Planning Control

Math and Geometry Overview

CONTENTS

- Basic knowledge of Geometry
 - ◆ General geometry mathematical knowledge
 - ◆ Boost::geometry::rtree
- Geometric applications on path
 - ◆ Finds closest segment

Math and Geometry Overview

Basic Knowledge of Geometry

Projection

Find the projection point x of the point p on the segment p_1p_2 .

$$x = p_1 + \frac{t}{\|p_1 p_2\|} \cdot p_1 p_2$$

$$t = p_1 p \cdot \cos \theta$$

$$p_1 + p_1 p_2 \cdot \frac{p_1 p \cdot p_1 p_2}{\|p_1 p_2\|^2}$$

$$= \frac{p_1 p \cdot p_1 p_2}{\|p_1 p_2\|}$$

- ◆ Distance between two points
- Distance from the point to the line p $d = \frac{p_1 p_2 \times p_1 p}{\|p_1 p_2\|}$ p_1
- ◆ Distance from point to segment
- ◆ Distance from segment to segment

◆ Distance from point to segment

$$\theta_0 \in \left[-180^{\circ}, 180^{\circ} \right]$$

$$\mathbf{w}_0 \cdot \mathbf{v} \le 0 \Leftrightarrow \left| \theta_0 \right| \ge 90^{\circ} \Leftrightarrow \mathrm{d}(P, \mathbf{S}) = \mathrm{d}(P, P_1)$$

$$\theta_1 \in \left[-180^{\circ}, 180^{\circ} \right]$$

 $\mathbf{w}_1 \cdot \mathbf{v} \ge 0 \Leftrightarrow \mathbf{w}_0 \cdot \mathbf{v} \ge \mathbf{v} \cdot \mathbf{v} \Leftrightarrow$

$$|\theta_1| \le 90^\circ \Leftrightarrow d(P, \mathbf{S}) = d(P, P_2)$$

$$d(P,S) = \frac{v \times w_0}{\|v\|}$$

◆ Distance from segment to segment: Convert to the distance from point to segment.

$$\min\{d(p_0, S_2), d(p_1, S_2), d(q_0, S_1), d(q_1, S_1)\}$$

◆ Distance from line to line:

In any n-dimensional space:

Whenever $ac - b^2 \neq 0$, when it's 0, the two lines are parallel.

 $\vec{w}_c = \vec{w} + s\vec{u} - t\vec{v}$

 $\vec{u} \cdot \vec{w}_c = \vec{u} \cdot \vec{w} + s\vec{u} \cdot \vec{u} - t\vec{u} \cdot \vec{v}$

▶ Distance from segment to segment:

 $d = \|\overrightarrow{w}_c\|$

 $\vec{v} \cdot \vec{w}_c = \vec{v} \cdot \vec{w} + s\vec{v} \cdot \vec{u} - t\vec{v} \cdot \vec{v}$

 $\vec{w}_c = \vec{w} + s\vec{u} - t\vec{v}$

 $d = \|\vec{w}_c\|$

 $\vec{u} \cdot \vec{w}_c = \vec{u} \cdot \vec{w} + s\vec{u} \cdot \vec{u} - t\vec{u} \cdot \vec{v}$

stance from segment to segment:

 $\vec{v} \cdot \vec{w}_c = \vec{v} \cdot \vec{w} + s\vec{v} \cdot \vec{u} - t\vec{v} \cdot \vec{v}$

- Distance from segment to segment:
- \triangleright start of S_2 is closest to S_1

$$s = 0$$

$$t = 0$$

$$\overrightarrow{w}_c = \overrightarrow{w}$$

 $\vec{u} \cdot \vec{w}_c = 0$

$$s = -\frac{\vec{u} \cdot \vec{w}}{\vec{u} \cdot \vec{u}} = -\frac{\vec{u}}{\vec{u}}$$

end of S_2 is closest to S_1

$$\vec{w}_c = \vec{w} + s\vec{u} - t\vec{v}$$

 $\vec{u} \cdot \vec{w}_c = \vec{u} \cdot \vec{w} + s\vec{u} \cdot \vec{u} - t\vec{u} \cdot \vec{v}$

Distance from segment to segment:

 $d = \|\vec{w}_c\|$ $\vec{v} \cdot \vec{w}_c = \vec{v} \cdot \vec{w} + s\vec{v} \cdot \vec{u} - t\vec{v} \cdot \vec{v}$

$$s = 0$$

$$t = 1$$

$$\vec{w}_c = \vec{w} - \vec{v}$$

Determine which side of the segment the point is

The relative relationship between p0, p1, p2 can be generally described in the following ways:

1. Clockwise
$$\vec{a} \times \vec{b} < 0$$

2. Counter-Clockwise
$$\vec{a} \times \vec{b} > 0$$

3. Online-Before
$$\vec{a} \times \vec{b} = 0 \& \vec{a} \cdot \vec{b} < 0$$

4. Online-After
$$\vec{a} \times \vec{b} = 0 \& \vec{a} \cdot \vec{b} > 0 \& ||b|| > ||a||$$

5. WithIn
$$\vec{a} \times \vec{b} = 0 \& \vec{a} \cdot \vec{b} > 0 \& ||b|| < ||a||$$

Determine the position relationship by the cross product and dot product of \vec{a} $(p_1 - p_0)$ and \vec{b} $(p_2 - p_0)$.

Determine which side of two segments the point is

Finds polyline side using two segments starting at given index.

Judge $sign(p_0p \times p_0p_1)$ and $sign(p_1p_2 \times p_1p)$

(1)
$$p_0 p_1 \times p_0 p > 0 \& p_1 p_2 \times p_1 p > 0$$
 Left side

(2)
$$p_0 p_1 \times p_0 p < 0 \& p_1 p_2 \times p_1 p < 0$$
 Right side

$$sign(p_0p_1 \times p_0p) \neq sign(p_1p_2 \times p_1p)$$
 Compare $||p_0p_1 \times p_0p||$ and $||p_1p_2 \times p_1p||$

Intersection

Calculate the intersection between segment p_0p_1 and p_2p_3

Curvature

$$\begin{cases} 2R \sin \theta = b \\ S = \frac{ac \sin \theta}{2} \\ \kappa = \frac{1}{R} \end{cases}$$

$$\kappa = \frac{4S}{abc}$$

$$2p_1p_2 \times p_2p_3$$

abc

Geometric applications on path

Finds closest segment using linear search

Algorithm 1 Finds closest segment using linear search

- 1: **Input**: given point p.
- 2: Calculates the distance as minimum distance min_{dist} from given point p to the start point p_0
- 3: **for** $i = 1, \dots, n$ **do**
- 4: Compute Unit vector $\vec{v} = \frac{p_i p_{i-1}}{\|p_i p_{i-1}\|}$
- 5: Compute $\vec{w} = p p_{i-1}$
- 6: Compute dot product $c_1 = \vec{v} \cdot \vec{w}$
- 7: **if** $c_1 \leq 0$ **then** continue
- 8: **end if**

Compute $c_2 = ||p_i - p_{i-1}||$

- 9: **if** $c_2 \le c_1$ **then** $dist = ||p p_i||$
- 10: **else** compute projection point p_{pro} $dist = ||p p_{pro}||$
- 11: **end if**Update minimum distance with $min_{dist} = min\{min_{dist}, dist\}$ Update closest segment index according to min_{dist}
- 12: end for
- 13: return closest segment index

Find closest segment given hint

It's similar to "finds closest segment using linear search".

Since the reference index is given, we can search forward and backward from the reference index

Algorithm 2 Finds closest segment given hint

- 1: **Input**: given point p, given hint index csi.
- 2: Using linear search for closest segment in **forward** direction.
- 3: Using linear search for closest segment in **backward** direction.
- 4: return closest segment index.

Find closest segment using R-tree

Base implementation API: boost::geometry::index::rtree.

Linear search is suitable for cases with a small number of line segments.

<u>boost::geometry::index::rtree</u>: This is self-balancing spatial index capable to store various types of Values and balancing algorithms.

The implementation of R-tree is well encapsulated in boost::geometry, and the main thing we need to master is its <u>querying skills</u>.

R-Tree

Nearest neighbours queries returns Values which are closest to some Geometry.

boost::geometry::index::nearest function uses Best-First Algorithm.

∱y axis

Addition Jacob computation

Computes the polyline distance given the a circle-based coverage of the vehicle. circular disks to cover the actual shape of a vehicle.

Compute FullBody Polyline

How to compute jacabian?

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} l \\ w \end{bmatrix}$$

$$x_c = x + l \cos \theta - w \sin \theta$$

$$y_c = y + l \sin \theta + w \cos \theta$$

$$jacob_{x} = \frac{\partial aist}{\partial x} = \frac{\partial aist}{\partial x_{c}} \cdot \frac{\partial x_{c}}{\partial x} = \frac{\partial aist}{\partial x_{c}}$$

$$jacob_{y} = \frac{\partial dist}{\partial y} = \frac{\partial dist}{\partial y_{c}} \cdot \frac{\partial y_{c}}{\partial y} = \frac{\partial dist}{\partial y_{c}}$$

$$\frac{\partial y_{c}}{\partial \theta} = l\cos\theta - w\sin\theta$$

$$jacob_{\theta} = \frac{\partial dist}{\partial \theta} = \frac{\partial dist}{\partial x_{c}} \cdot \frac{\partial x_{c}}{\partial \theta} + \frac{\partial dist}{\partial y_{c}} \cdot \frac{\partial x_{c}}{\partial \theta}$$

https://github.com/CHH3213/Books/tree/master/%E6%95%B0%E5%AD%A6/%E8%AE%A1%E7%AE%97%E5%87%A0%E4%BD%95%E5%AD%A6

THANKS