

第2章 矩阵分析与计算

∰ 讲授人: 牛言涛
∅ 日期: 2020年2月19日

MATLAB数组定义与创建

数组操作方法

MATLAB处理向量

CONTENTS

矩阵分析与处理

矩阵分解

矩阵方程的MALAB求解

2.5 矩阵分解

- 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、 满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等。
- 常见的有三种: 三角分解法 (Triangular Factorization), QR 分解法 (QR Factorization), 奇异值分解法 (Singular Value Decomposition)。
- MATLAB中,矩阵分解函数表:

函数名	功能描述	函数名	功能描述
chol	矩阵Cholesky分解	qr	矩阵QR分解:规正交矩阵与上三角形矩阵
cholinc	稀疏矩阵的不完全Cholesky分解	svd	矩阵奇异值分解:两个正交矩阵,一个对 角矩阵
lu	矩阵LU分解:上三角形矩阵和下三角形矩阵	schur	矩阵Schur(舒尔)分解,与eig()特征值特征 向量类似
Luinc	稀疏矩阵的不完全LU分解		

1. 对称正定矩阵的三角分解——Cholesky分解

- A 是对称正定矩阵,数学描述 $A = L^T L$
- 下三角矩阵与对称矩阵的 Cholesky 分解算法

$$L = \begin{bmatrix} l_{11} & & & & & \\ l_{21} & l_{22} & & & & \\ \vdots & \vdots & \ddots & & & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}$$

• 函数调用格式D = chol(A)

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2} \qquad l_{ji} = \frac{1}{l_{jj}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk} \right), \ j < i$$

```
>> A = gallery('lehmer', 5) %生成正定矩阵
    1.0000
              0.5000
                         0.3333
                                   0.2500
                                              0.2000
    0.5000
              1.0000
                         0.6667
                                   0.5000
                                              0.4000
    0.3333
              0.6667
                         1.0000
                                   0.7500
                                              0.6000
    0.2500
              0.5000
                         0.7500
                                   1.0000
                                              0.8000
    0.2000
                                   0.8000
                                              1.0000
               0.4000
                         0.6000
\rangle\rangle D = cho1(A)
D =
    1.0000
                         0.3333
                                   0.2500
                                              0.2000
               0.5000
              0.8660
                         0.5774
                                   0.4330
                                              0.3464
                         0.7454
                                   0.5590
                                              0.4472
                                              0.5292
                                   0.6614
                                              0.6000
                                         0
```

```
>> err = norm(A - D'*D,'fro') %验证误差
err =
2.9374e-16
```

2. 实对称矩阵的QDQ分解

- 对任何一个实对称矩阵A,都存在正交矩阵Q(满足条件Q'Q = QQ' = I),使得 Q'AQ = D(D为对角矩阵)。这里,D是由A的特征值组成的对角矩阵,而Q是对应
- 例:设对称矩阵A,对A进行QDQ分解。

$$A = \begin{bmatrix} 2 & 1 & 4 & 6 \\ 1 & 2 & 1 & 5 \\ 4 & 1 & 3 & 4 \\ 6 & 5 & 4 & 2 \end{bmatrix}$$

的特征向量。

```
A =
\rangle\rangle [V, D] = eig(A)
V =
    0. 5157
            0.6081
                        0. 2983
                                  0.5247
    0. 4260
             -0.2885
                       -0.7789
                                  0.3586
             -0.7113
                                  0.4762
    0. 0570
                        0.5139
   -0.7412
             0. 2026
                       -0.2006
                                  0.6077
D =
   -5. 3556
            -1. 1538
                        2, 2449
                                13, 2645
>> err = norm(A - V*D*V', 'fro') %误差验证
err =
   1.7372e-14
```

 \rangle A = [2, 1, 4, 6; 1, 2, 1, 5; 4, 1, 3, 4; 6, 5, 4, 2]

3. 矩阵的LU分解

- 矩阵的LU分解就是将一个矩阵表示一个可交换下三角矩阵和一个上三角矩阵的乘积 形式。(方阵A非奇异, $det(A) \neq 0$,LU分解总是可以进行的。)
 - (1) [L,U] = lu(A): A = LU, 矩阵L往往不是一个下三角阵,但可以通过交换成为一个下三角阵。
 - (2) [L, U, P] = lu(A): $PA = LU_{\circ}$
- 例:用LU分解法求方程组的解

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20 \\ x_1 + 3x_2 + 2x_3 + x_4 = 11 \\ 2x_1 + 10x_2 + 9x_3 + 7x_4 = 40 \\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 \end{cases}$$

```
>> A = [2, 5, 4, 1; 1, 3, 2, 1; 2, 10, 9, 7; 3, 8, 9, 2]; %系数矩阵
>> b = [20, 11, 40, 37]'; %右端向量
>> [L,U] = 1u(A) %矩阵LU分解
= 1
   0.6667
            -0.0714 1.0000
   0.3333
             0.0714
                       0.6800
                                 1,0000
    0. 6667
            1.0000
    1.0000
                                       0
II =
    3,0000
              8. 0000
                        9. 0000
                                  2,0000
              4.6667
                       3, 0000
                                 5. 6667
                       -1.7857
                                 0.0714
                                 -0.1200
```

3. 矩阵的LU分解

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{44} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$=\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} & l_{21}u_{14} + u_{24} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} & l_{31}u_{14} + l_{32}u_{24} + u_{34} \\ l_{41}u_{11} & l_{41}u_{12} + l_{42}u_{22} & l_{41}u_{13} + l_{42}u_{23} + l_{43}u_{33} & l_{41}u_{14} + l_{42}u_{24} + l_{43}u_{34} + u_{44} \end{bmatrix}$$

LU分解公式,其中L和U中元 素的求解方法。

按颜色顺序依次计算

$$u_{1j} = a_{1j} (j = 1, 2, \dots, n)$$

$$l_{i1} = \frac{a_{i1}}{u_{11}} (i = 2, 3, \dots, n)$$

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, j = i, i+1, \dots, n$$

$$l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}) / u_{jj}, i = j+1, j+2, \dots, n$$

3. 矩阵的LU分解


```
>> A
A =
                      1
          10
>> [L, U, P] = 1u(A) %L通过交换构成一个下三角阵
L =
    1.0000
                   0
                                       0
    0.6667
              1.0000
    0.6667
             -0.0714
                        1.0000
    0.3333
              0.0714
                        0.6800
                                  1.0000
    3,0000
              8,0000
                        9.0000
                                  2,0000
                                  5.6667
              4.6667
                        3.0000
                       -1.7857
                                  0.0714
                   0
         0
                                 -0.1200
                   0
     0
                       0
```

$$Ax = b \Leftrightarrow P^{-1}L(Ux) = b \Leftrightarrow$$
$$P^{-1}LY = b \Leftrightarrow Y = L^{-1}Pb$$

```
\rangle\rangle V = inv(L)*P*b \%PA = LU
Y =
   37,0000
   15, 3333
   -3.5714
    0.0000
                    Ux = Y \Leftrightarrow x = U^{-1}Y
\rangle\rangle X = inv(U)*Y
X =
    1,0000
    2,0000
    2,0000
   -0.0000
>> X1 = A\b %按照左除的方法求解线性方程组的解
X1 =
    1.0000
    2.0000
    2.0000
   -0.0000
```

4. 矩阵的QR分解

• 对矩阵A进行QR分解,就是把A分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式,QR分解只能对方阵进行。调用格式: [Q,R] = qr(A).

```
>> A = magic(5) %五阶魔方矩阵
A =
    17
          24
                  1
                             15
                        8
    23
                 7
                       14
                             16
                 13
                             22
                       20
          12
                       21
                              3
    10
                 19
    11
          18
                 25
>> [Q,R] = qr(A) %QR分解
Q =
   -0.5234
                         0.6735
              0.5058
                                   -0.1215
                                             -0.0441
                        -0.0177
   -0.7081
              -0.6966
                                    0.0815
                                             -0.0800
   -0.1231
              0.1367
                        -0.3558
                                  -0.6307
                                             -0.6646
   -0.3079
              0.1911
                        -0.4122
                                  -0.4247
                                              0.7200
   -0.3387
                        -0.4996
                                    0.6328
                                             -0.1774
              0.4514
\mathbf{R} =
  -32.4808
            -26.6311
                       -21. 3973
                                 -23, 7063
                                            -25.8615
             19.8943
                        12. 3234
                                    1.9439
                                              4.0856
                       -24.3985
                                 -11.6316
                                             -3.7415
                    0
                                 -20.0982
                                             -9.9739
                    0
                    0
                                            -16.0005
```

```
>> B = gallery('lehmer', 5) %生成正定矩阵
B =
    1.0000
              0.5000
                        0.3333
                                   0.2500
                                             0.2000
    0.5000
              1.0000
                        0.6667
                                   0.5000
                                             0.4000
    0.3333
              0.6667
                                   0.7500
                        1.0000
                                             0.6000
    0.2500
              0.5000
                        0.7500
                                   1.0000
                                             0.8000
              0.4000
                        0.6000
                                   0.8000
                                             1,0000
    0.2000
>> [Q,R] = qr(B) %QR分解
   -0.8266
              0. 5628
                        0.0000
                                  -0.0000
                                            -0.0000
   -0.4133
             -0.6070
                                  -0.0000
                        0.6788
                                             0.0000
   -0.2755
             -0.4047
                       -0.5296
                                  0.6927
                                             0.0000
   -0.2066
             -0.3035
                       -0.3972
                                  -0.5632
                                            -0.6247
   -0.1653
             -0.2428
                       -0.3178
                                  -0.4505
                                             0.7809
   -1.2098
             -1.1797
                       -1.0808
                                  -0.9588
                                            -0.8266
             -0.8442
                       -0.9950
                                  -0.9640
                                            -0.8586
                       -0.5657
                                  -0.7092
                                            -0.6818
                   0
                                  -0.4041
                                            -0.4855
         0
                                             0.2811
         0
                   0
```

5. 矩阵的奇异值分解

- 设A为m*n阶矩阵,q=min(m,n),A'*A的q个非负特征值的算术平方根叫作A的奇异值。
- 奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,能适用于任意的矩阵, 在信号处理、统计学、机器学习等领域有着广泛的应用。

• 调用格式:

- s = svd(A) 以降序顺序返回矩阵 A 的奇异值。
- [U,S,V] = svd(A) 执行矩阵 A 的奇异值分解,因此 A = U*S*V'。
- [U,S,V] = svd(A,'econ') 为 m×n 矩阵 A 生成精简分解:
 - m > n 只计算 U 的前 n 列, S 是一个 n×n 矩阵。
 - m = n svd(A, 'econ') 等效于 svd(A)。
 - m < n 只计算 V 的前 m 列, S 是一个 m×m 矩阵。

5. 矩阵的奇异值分解

- 奇异值分解: $A = U \Sigma V^T$
 - 假设A是一个N*M的矩阵,那么得到的U
 是一个N*N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量);
 - Σ是一个N * M的矩阵(除了对角线的元素 都是0,对角线上的元素称为奇异值);
 - V'(V的转置)是一个N*N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量)。

```
\rangle A = round (5*randn (5.4))
    -6
         -10
    -3
\rangle\rangle [U, S, V] = svd(A)
                      %奇异值分解
II =
                                   -0.7765
   -0.3760
              -0.1404
                         -0.4712
                                                0.1183
    0.1380
               0.1115
                          0.7982
                                    -0.5751
                                               -0.0247
    0.4104
              -0.6260
                                   -0.1263
                         -0.0945
                                              -0.6441
    0.8188
               0. 2066
                         -0.2967
                                    -0.1925
                                                0.4022
   -0.0268
              -0.7303
                                                0.6394
                          0.2095
                                     0.1152
   19, 4602
              13, 2726
                                          0
                          4.1457
                                     1.3978
                               0
                                          0
V =
               0. 2506
                                     0.5222
    0.7585
                         -0.2986
   -0.3020
               0.9251
                         -0.1974
                                    -0.1183
   -0.2135
              -0.2798
                         -0.9318
                                    -0.0884
    0.5366
               0.0550
                                    -0.8399
                         -0.0598
```

5. 矩阵的奇异值分解

>> A = round(5*randn(5, 4))									
A =									
-6	1	4	-3						
1	. 0	-4	2						
4	-10	1	4						
13	-2	-3	9		1				
-3	-9	2	-1	I J. :	$=\frac{1}{-}AV$				
>> [U,	s, v] =	svd(A)	%奇异值分解	i i	$=\frac{1}{\sigma_i}AV_i$				
υ =					- <i>i</i>				
-0.	3760	-0.1404	-0.4712	-0.7765	0. 1183				
0.	1380	0. 1115	0.7982	-0. 5751	-0.0247				
0.	4104	-0.6260	-0.0945	-0. 1263	-0. 6441				
0.	8188	0. 2066	-0. 2967	-0. 1925	0. 4022				
-0.	0268	-0.7303	0. 2095	0.1152	0.6394				
S =									
19.	4602	0	0	0					
	0	13. 2726	0	0					
	0	0	4. 1457	0					
	0	0	0	1. 3978					
	0	0	0	0					
V =									
0.	7585	0. 2506	-0. 2986	0. 5222					
-0.	3020	0. 9251	-0. 1974	-0. 1183					
-0.	2135	-0. 2798	-0. 9318	-0.0884					
0.	5366	0.0550	-0. 0598	-0.8399					

```
>> B = A' *A %求矩阵B为A的转置与A的乘积 \left(A^TA\right)v_i=\lambda_iv_i
B =
   231
          -45
                 -69
                       156
   -45
          186
                 -18
                       -52
          -18
   -69
                  46
                       -45
                                                   >> sd = diag(sd)
   156
          -52
                 -45
                       111
                                                   sd =
>> [V, D] = eig(B) %求特征值特征向量
                                                       1.3978
V =
                                                       4. 1457
   -0.5222
               0.2986
                           0.2506
                                      0.7585
                                                      13, 2726
    0.1183
               0.1974
                                     -0.3020
                           0.9251
                                                      19, 4602
    0.0884
                0.9318
                          -0.2798
                                     -0.2135
                                                   \rangle\rangle U1 = 1./sd(1)*A*V(:,1)
    0.8399
               0.0598
                           0.0550
                                      0.5366
                                                   U1 =
                                                       0.7765
                                                      0. 5751
    1.9539
                     0
                                 0
                                                       0.1263
              17. 1869
                                 0
                                                       0.1925
                        176, 1617
                     0
                                                      -0.1152
                                    378, 6976
                                 0
                                                   \rightarrow U2 = 1./sd(2)*A*V(:,2)
>> sd = sqrt(D)
                                                   U2 =
sd =
                                                       0.4712
    1.3978
                                                      -0.7982
                     0
                                 0
                                                       0.0945
               4. 1457
                                                       0.2967
                          13. 2726
                                                      -0.2095
                                     19.4602
                     0
                                 0
```


感谢聆听