基础物理实验报告

用示波器观测动态磁滞回线

姓 名: 仇是

学 号: 2200011630

指导教师姓名:

序 号: 6组5号

二〇二四年 4月

1 实验现象记录与数据处理

1.1 观察铁氧体的饱和动态磁滞回线

(1) 图像绘制

固定外磁场频率 f=100Hz, $R_1=2$ Ω , $R_2=50$ k Ω ,C=10 μ F。不断增大幅值最终达到饱和磁滞回线,记录上下两支上的数据点共 18 个.

利用公式: $B=\frac{R_2C}{N_2S}u_c$ 以及 $H=\frac{N_1}{lR_1}u_{R1}$

计算出对应的外磁场与磁感应强度,如下表所示:

测量次数	$U_{R_1}(\text{mV})$	H (A/m)	U_c (mV)	B (mT)
1	297	171.3	14.5	389.8
2	60	34.6	10.95	294.4
3	49	28.3	10.5	282.3
4	43.5	25.1	10.15	272.8
5	20	11.5	7.4	198.9
6	0	0.0	3.75	100.8
7	-19.4	-11.2	0	0.0
8	-49.6	-28.6	-6.05	-162.6
9	-61.2	-35.3	-7.55	-203.0
10	85	49.0	10.15	272.8
11	60	34.6	7.05	189.5
12	49	28.3	5.45	146.5
13	20	11.5	0	0.0
14	0	0.0	-3.95	-106.2
15	-11.8	-6.8	-6.05	-162.6
16	-19.4	-11.2	-7.35	-197.6
17	-61.2	-35.3	-11.4	-306.5
18	-290.5	-167.6	-14.5	-389.8

特别地,可以得到 B_S =389.8mT, B_r =100.8mT, H_c =11.5A/m

(2) 不同频率的饱和磁滞回线

保持其他参量不变,改变外磁场频率 f=50Hz

测得 H=0 所对应的 2 U_C =7.75mV,B=0 处对应的 2 U_{R_1} =29mV

由示波器的仪器误差得 σ_{U_c} =0.05mV, $\sigma_{U_{R_1}}$ =0.2mV

算得 B_r , H_c 的不确定度分别为 $\sigma_{U_{B_r}} = \frac{R_2 C}{N_2 S} \sigma_{U_C} = 1 \text{ mT}$, $\sigma_{H_c} = \frac{N_1}{lR_1} \sigma_{U_{R_1}} = 0.14 \text{A/m}$ 。

则两者的值为 $B_r=(100.7\pm1)$ mT, $H_c=(11.8\pm0.14)$ A/m

改变外磁场频率 f=150Hz

测得 H=0 所对应的 2 U_C =7.7mV,B=0 处对应的 2 U_{R_1} =29mV

同理得到 $\sigma_{U_{Br}}$ =1mT, σ_{H_c} =0.14A/m, B_r =(101.1±1) mT, H_c =(12.0±0.14) A/m.

两相比较可以看出 B_r 和 H_c 基本一致,这可能是因为高频磁化下铁氧体产生的损耗很小,剩磁和矫顽力变化不大。

(3) 积分常量对李萨如图的影响

固定 f=50Hz, 分别改变积分常量为 0.5s, 0.05s, 0.01s 图形如下所示:

0.5s 0.05s

0.01s

可以看出,随着积分常量的减小,李萨如图发生了畸变,且畸变越来越严重。这是因为只有在 R_2C 远大于 T 的时候才会有 U_c 正比于 B,导致测量出现严重误差,然而真实的磁滞回线并不会受此影响。

1.2 测量铁氧体的动态磁化曲线

固定外磁场频率 f=100Hz, R_1 =2 Ω , R_2 =50k Ω ,C=10 μ F。,调节幅值并记录下 2U_C 和 2U_{R1},以此计算出各点的 B_m , H_m 。数据如下表所示:

	$U_{R_1}(mV)$	H (A/m)	U_c (mV)	<i>B</i> (mT)	$\mu_m = \frac{B}{\mu H}$
1	4.8	2.8	0.45	12.1	3476.17
2	11.8	6.8	1.1	29.6	3456.53
3	19.7	11.4	2	53.8	3764.38
4	30.3	17.5	3.2	86.0	3915.95
5	40	23.1	4.5	121.0	4171.40
6	50	28.8	5.85	157.3	4338.26
7	60	34.6	7.1	190.9	4387.69
8	70	40.4	8.2	220.4	4343.55
9	80	46.2	9.25	248.7	4287.27
10	90	51.9	10.1	271.5	4161.10
11	100	57.7	10.7	287.6	3967.46
12	110	63.5	11.3	303.8	3809.04
13	120	69.2	11.8	317.2	3646.11
14	130	75.0	12.2	328.0	3479.73
15	155	89.4	12.95	348.1	3097.90
16	170	98.1	13.25	356.2	2889.99
17	185	106.7	13.5	362.9	2705.77
18	200	115.4	13.75	369.6	2549.19
19	225	129.8	14	376.3	2307.14
20	250	144.2	14.2	381.7	2106.09
21	275	158.7	14.45	388.4	1948.34
22	300	173.1	14.5	389.8	1792.16

不难看出,起始磁导率约为 3476,最大磁导率为 4387 作出 B-H 图 $\mu-H$ 图:

1.3 不同频率下硅钢的磁滞回线

固定外磁场频率 f=100Hz,R₁=2 Ω ,R₂=50k Ω ,C=10 μ F,固定磁场幅值为 H=400A/m 当频率为 20Hz 时测得 2 U₁=68.1mV,2 U₂=42.6mV,2 U₃=208mV ,计算出 Bm=937.4mT,Br=591.8mT,Hc=102A/m

固定外磁场频率 f=100Hz,R₁=2 Ω ,R₂=50k Ω ,C=10 μ F,固定磁场幅值为 H=400A/m 当频率为 40Hz 时测得 2 U₁=68.0mV,2 U₂=45.1mV,2 U₃=247mV ,计算出 Bm=958.0mT,Br=622.4mT,Hc=120.0A/m

固定外磁场频率 f=100Hz, $R_1=2\,\Omega$, $R_2=50$ k Ω , $C=10\,\mu$ F,固定磁场幅值为 H=400A/m 当频率为 60Hz 时测得 $2\,U_1=67.9$ m $V_2\,U_2=46.6$ m $V_2\,U_3=281$ mV,计算出 Bm=943.9mT,Br=640.5mT,Hc=136.4A/m

可以看出频率增大时 Bm 基本不变, Br 和 Hc 逐渐增大, 与铁氧体情况不相同。

2 分析与讨论

2.1 思考题

- 1, 态磁滞回线是铁磁体在一系列不变化的电流下得到的磁化曲线, 动态磁滞回线是在 交变电流下得到的; 受到材料本身形状, 电流频率, 电流大小等的影响。
- 2, 铁氧体: 剩磁和矫顽力都比较小且基本不随外磁场频率变化而变化 硅钢: 剩磁和矫顽力较大, 两者均随外磁场频率增大而增大
- 3,积分常量应远大于外磁场变化周期,对于饱和磁滞回线的测量,要求电流幅值足够

大

4,可以将两个通道的信号分别显示,观察相位。若 U_{R_1} 超前则为逆时针绕行,若 U_c 超前则为顺时针绕行。

3 收获与感想

本实验最大的收获便是重温了示波器的使用方法,尤其是调节不同 XY 轴坐标的校准步骤。