A Short Proof of König's Matching Theorem

Hsu, Heng-Yu

National Taiwan University

May 20, 2015

Definition: Matching

Matching

Given a graph G = (V, E), a matching M of G is a set of pairwise non-adjacent edges where $M \subseteq E$.

Definition: Matching

Matching

Given a graph G = (V, E), a matching M of G is a set of pairwise non-adjacent edges where $M \subseteq E$.

Maximum Matching

A maximum matching M_G of G is a matching whose cardinality is largest. Denote $\nu(G) = |M_G|$.

Definition: Vertex Cover

Vertex Cover

Given a graph G = (V, E), a vertex cover W of G is a set of vertices where $W \subseteq V$ and $E(G \setminus W) = \emptyset$.

Definition: Vertex Cover

Vertex Cover

Given a graph G = (V, E), a vertex cover W of G is a set of vertices where $W \subseteq V$ and $E(G \setminus W) = \emptyset$.

Minimum Vertex Cover

A minimum vertex cover W_G of G is a vertex cover whose cardinality is smallest. Denote $\tau(G) = |W_G|$.

König's Matching Theorem

If a graph G=(V,E) is a bipartite graph, then $\nu(G)= au(G)$

König's Matching Theorem

If a graph G=(V,E) is a bipartite graph, then $\nu(G)= au(G)$

• Idea of proof

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

- Idea of proof
 - First, prove $\nu(G) \leq \tau(G)$

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

- Idea of proof
 - First, prove $\nu(G) \leq \tau(G)$
 - Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

- Idea of proof
 - First, prove $\nu(G) \leq \tau(G)$
 - Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

Fact

Fact

Fact

For any graph, $\nu(G) \leq \tau(G)$.

ullet Let M_G be the maximum matching in G and $|M_G|=
u(G)$

Fact

- Let M_G be the maximum matching in G and $|M_G| = \nu(G)$
- We can find a vertex set W covered M_G where $|W| = \nu(G)$ by selecting one of vertices for every edges in M_G

Fact

- Let M_G be the maximum matching in G and $|M_G| = \nu(G)$
- We can find a vertex set W covered M_G where $|W| = \nu(G)$ by selecting one of vertices for every edges in M_G
 - Question: Is it possible to select the same vertex?

Fact

- Let M_G be the maximum matching in G and $|M_G| = \nu(G)$
- We can find a vertex set W covered M_G where $|W| = \nu(G)$ by selecting one of vertices for every edges in M_G
 - Question: Is it possible to select the same vertex? Impossible

Fact

- Let M_G be the maximum matching in G and $|M_G| = \nu(G)$
- We can find a vertex set W covered M_G where $|W| = \nu(G)$ by selecting one of vertices for every edges in M_G
 - Question: Is it possible to select the same vertex? Impossible
- There may be $E(G \setminus W) \neq \emptyset$; therefore $|W| \leq |W_G|$, a minimum vertex cover of G.

Fact

- Let M_G be the maximum matching in G and $|M_G| = \nu(G)$
- We can find a vertex set W covered M_G where $|W| = \nu(G)$ by selecting one of vertices for every edges in M_G
 - Question: Is it possible to select the same vertex? Impossible
- There may be $E(G \setminus W) \neq \emptyset$; therefore $|W| \leq |W_G|$, a minimum vertex cover of G.
- Finally, $\nu(G) = |M_G| = |W| \le |W_G| = \tau(G)$

Observation 1

Observation 1

Given a bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then there exists a component g in G where $\nu(g) < \tau(g)$.

• If there are two components, say G_1 and G_2 , in G, then

Observation 1

- If there are two components, say G_1 and G_2 , in G, then
 - $\nu(G) = \nu(G_1) + \nu(G_2)$, and $\tau(G) = \tau(G_1) + \tau(G_2)$

Observation 1

- If there are two components, say G_1 and G_2 , in G, then
 - $\nu(G) = \nu(G_1) + \nu(G_2)$, and $\tau(G) = \tau(G_1) + \tau(G_2)$
- If there are n components $\mathbb{C}_G = \{G_1, \cdots, G_n\}$ in G, then

Observation 1

- If there are two components, say G_1 and G_2 , in G, then
 - $\nu(G) = \nu(G_1) + \nu(G_2)$, and $\tau(G) = \tau(G_1) + \tau(G_2)$
- ullet If there are n components $\mathbb{C}_G=\{\mathit{G}_1,\cdots,\mathit{G}_n\}$ in G , then
 - $\nu(G) = \sum_{g \in \mathbb{C}_G} \nu(g)$, and $\tau(G) = \sum_{g \in \mathbb{C}_G} \tau(g)$

Observation 1

- If there are two components, say G_1 and G_2 , in G, then
 - $\nu(G) = \nu(G_1) + \nu(G_2)$, and $\tau(G) = \tau(G_1) + \tau(G_2)$
- ullet If there are n components $\mathbb{C}_G=\{\mathit{G}_1,\cdots,\mathit{G}_n\}$ in G , then
 - $\nu(G) = \sum_{g \in \mathbb{C}_G} \nu(g)$, and $\tau(G) = \sum_{g \in \mathbb{C}_G} \tau(g)$
 - $\forall g \in \mathbb{C}_G$ are also bipartite graph. If $\nu(G) < \tau(G)$, then there exists a component g such that $\nu(g) < \tau(g)$ where $g \in \mathbb{C}_G$.

Observation 1

Given a bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then there exists a component g in G where $\nu(g) < \tau(g)$.

- If there are two components, say G_1 and G_2 , in G, then
 - $\nu(G) = \nu(G_1) + \nu(G_2)$, and $\tau(G) = \tau(G_1) + \tau(G_2)$
- If there are n components $\mathbb{C}_G = \{G_1, \cdots, G_n\}$ in G, then
 - $\nu(G) = \sum_{g \in \mathbb{C}_G} \nu(g)$, and $\tau(G) = \sum_{g \in \mathbb{C}_G} \tau(g)$
 - $\forall g \in \mathbb{C}_G$ are also bipartite graph. If $\nu(G) < \tau(G)$, then there exists a component g such that $\nu(g) < \tau(g)$ where $g \in \mathbb{C}_G$.

Conclusion

We can only consider "connected bipartite graph" without loss of generality.

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 夕 Q ©

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• If G is a path with n vertices ...

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

- If G is a path with n vertices ...
- When *n* is even, $\nu(G) = \frac{n}{2} = \tau(G)$

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

- If G is a path with n vertices ...
- When *n* is even, $\nu(G) = \frac{n}{2} = \tau(G)$

• When *n* is odd, $\nu(G) = \lfloor \frac{n}{2} \rfloor = \tau(G)$

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• If G is a cycle with n vertices ...

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

- If G is a cycle with n vertices ...
- When *n* is even, then $\nu(G) = \frac{n}{2} = \tau(G)$

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• What if *n* is odd?

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• What if *n* is odd?

• $\nu(G) = 2$, but $\tau(G) = 3$,

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• What if *n* is odd?

• $\nu(G) = 2$, but $\tau(G) = 3$, Y0000000000000!

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• What if *n* is odd?

- $\nu(G) = 2$, but $\tau(G) = 3$, Y0000000000000!
- Did we find the new world?

Observation 2

Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• What if *n* is odd?

- $\nu(G) = 2$, but $\tau(G) = 3$, Y0000000000000!
- Did we find the new world? NO

Note

If a graph G is an odd cycle, then G is NOT a bipartite graph.

Note

If a graph G is an odd cycle, then G is NOT a bipartite graph.

• It's trivial by using BICOLOURING ALGORITHM

Note

If a graph G is an odd cycle, then G is NOT a bipartite graph.

- It's trivial by using BICOLOURING ALGORITHM
- BICOLOURING ALGORITHM: decide whether graph G is bicolouring or not in O(n+m) time.

Note

If a graph G is an odd cycle, then G is NOT a bipartite graph.

- It's trivial by using BICOLOURING ALGORITHM
- BICOLOURING ALGORITHM: decide whether graph G is bicolouring or not in O(n+m) time.

Property

If a graph G is bipartite graph iff G is bicolouring.

Note

If a graph G is an odd cycle, then G is NOT a bipartite graph.

- It's trivial by using BICOLOURING ALGORITHM
- BICOLOURING ALGORITHM: decide whether graph G is bicolouring or not in O(n+m) time.

Property

If a graph G is bipartite graph iff G is bicolouring.

Conclusion

Thus, G is neither a path nor a cycle, and then it is useful that G exist some vertices whose degree is larger than 3.

• First, prove $\nu(G) \leq \tau(G)$

• First, prove $\nu(G) \leq \tau(G)$

• Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

• First, prove $\nu(G) \leq \tau(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

• Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

• First, prove $\nu(G) \leq \tau(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

• Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

Observations and Lemma

• Observation 1 (done): Given a bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then there exists a component $G^{'}$ in G where $\nu(G^{'}) < \tau(G^{'})$.

• First, prove $\nu(G) \leq \tau(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

• Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

Observations and Lemma

- Observation 1 (done): Given a bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then there exists a component G' in G where $\nu(G') < \tau(G')$.
- Observation 2 (done): Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.

• First, prove $\nu(G) \leq \tau(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

• Then, show that $\nu(G) < \tau(G)$ in bipartite graph is impossible.

Observations and Lemma

- Observation 1 (done): Given a bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then there exists a component G' in G where $\nu(G') < \tau(G')$.
- Observation 2 (done): Given a connected bipartite graph G = (V, E), if $\nu(G) < \tau(G)$, then G is not a path nor a cycle.
- Lemma (todo): Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

König's Matching Theorem

If a graph G=(V,E) is a bipartite graph, then $\nu(G)= au(G)$

• Proof:

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

- Proof:
- By the Fact, we know that $\nu(G) \leq \tau(G)$ for all graph G

König's Matching Theorem

If a graph G = (V, E) is a bipartite graph, then $\nu(G) = \tau(G)$

- Proof:
- By the Fact, we know that $\nu(G) \leq \tau(G)$ for all graph G
- By Observation 1 & 2 and Lemma, we prove the theorem.

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

_emma

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

Suppose a minimal counterexample G, i.e. for all subgraph H of G hold $\nu(H) = \tau(H)$ except G which holds $\nu(G) < \tau(G)$.

• Let u be the vertex where deg $(u) \ge 3$, $e = (u, v) \in E(G)$, and $H = G \setminus \{v\}$

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

- Let u be the vertex where deg $(u) \ge 3$, $e = (u, v) \in E(G)$, and $H = G \setminus \{v\}$
- I think there are 2 cases when first reading the paper:

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

- Let u be the vertex where deg $(u) \ge 3$, $e = (u, v) \in E(G)$, and $H = G \setminus \{v\}$
- I think there are 2 cases when first reading the paper:
 - **1** $\nu(H) < \nu(G)$

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

- Let u be the vertex where deg $(u) \ge 3$, $e = (u, v) \in E(G)$, and $H = G \setminus \{v\}$
- I think there are 2 cases when first reading the paper:
 - **1** $\nu(H) < \nu(G)$
 - $e \notin M_G$

Lemma

Given a connected bipartite graph G, G is neither a path nor a cycle, then $\nu(G) = \tau(G)$.

Technique

- Let u be the vertex where deg $(u) \ge 3$, $e = (u, v) \in E(G)$, and $H = G \setminus \{v\}$
- I think there are 2 cases when first reading the paper:
 - 1 $\nu(H) < \nu(G) \Rightarrow e \in M_G$ (Haha I'm smart)
 - $e \notin M_G$

• But ...

- But ...
 - $\bullet \in M_G$
 - $e \notin M_G$

- But ...
 - $\mathbf{0}$ $e \in M_G$
 - u ∈ W_G
 - $v \in W_G$
 - $e \notin M_G$

- But ...
 - $\mathbf{0}$ $e \in M_G$
 - u ∈ W_G
 - $v \in W_G$
 - 2 $e \notin M_G$
 - $u \in W_G$
 - $v \in W_G$

- But ...
 - $\mathbf{1} e \in M_G$
 - u ∈ W_G
 - $v \in W_G$
 - 2 $e \notin M_G$
 - u ∈ W_G
 - $v \in W_G$
 - Note that both $u, v \notin W_G$ is impossible

- But ...
 - $\mathbf{0} \ e \in M_G$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - 2 $e \notin M_G$
 - u ∈ W_G
 - $v \in W_G$
 - Note that both $u, v \notin W_G$ is impossible

- But ...
 - $\mathbf{1} e \in M_G$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $e \notin M_G$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - Note that both $u, v \notin W_G$ is impossible

- But ...
 - **1** $e \in M_G$ **DO NOT** forget $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - **2** $e \notin M_G$ **DO NOT** forget $\nu(H) = \nu(G)$ or $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - Note that both $u, v \notin W_G$ is impossible

- But ...
 - **1** $e \in M_G$ **DO NOT** forget $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - **2** $e \notin M_G$ **DO NOT** forget $\nu(H) = \nu(G)$ or $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - Note that both $u, v \notin W_G$ is impossible
- Actually, there are many cases. (Haha UCCU)

- But ...
 - **1** $e \in M_G$ **DO NOT** forget $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - **2** $e \notin M_G$ **DO NOT** forget $\nu(H) = \nu(G)$ or $\nu(H) < \nu(G)$
 - $u \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - $v \in W_G$... maybe $\tau(H) = \tau(G)$ or $\tau(H) < \tau(G)$
 - Note that both $u, v \notin W_G$ is impossible
- Actually, there are many cases. (Haha UCCU)

1 If
$$\nu(H) < \nu(G)$$

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$
 - thus, $\tau(G) = |W_H \cup \{v\}| = \tau(H) + 1 = \nu(H) + 1 \le \nu(G)$

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$
 - thus, $\tau(G) = |W_H \cup \{v\}| = \tau(H) + 1 = \nu(H) + 1 \le \nu(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$
 - thus, $\tau(G) = |W_H \cup \{v\}| = \tau(H) + 1 = \nu(H) + 1 \le \nu(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

• $\Rightarrow \nu(G) = \tau(G)$, a contradiction!

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$
 - thus, $\tau(G) = |W_H \cup \{v\}| = \tau(H) + 1 = \nu(H) + 1 \le \nu(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

- $\Rightarrow \nu(G) = \tau(G)$, a contradiction!
- **2** If $\nu(H) = \nu(G)$

- **1** If $\nu(H) < \nu(G)$
 - exists W_H where $|W_H| = \tau(H) = \nu(H) < \nu(G)$
 - $W_H \cup \{v\}$ is a cover of G, $|W_H \cup \{v\}| = \tau(G)$
 - thus, $\tau(G) = |W_H \cup \{v\}| = \tau(H) + 1 = \nu(H) + 1 \le \nu(G)$

Fact

For any graph, $\nu(G) \leq \tau(G)$.

- $\Rightarrow \nu(G) = \tau(G)$, a contradiction!
- **2** If $\nu(H) = \nu(G)$

Note

Note

Note

If
$$\nu(H) = \nu(G)$$
, then $e \notin M_G$.

• Assume v is NOT incident with any of edge in M_G

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f = (u, v') \in E(G \setminus M_G)$, and $v \neq v'$

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f=(u,v^{'})\in E(G\setminus M_G)$, and $v\neq v^{'}\deg(u)\geq 3$

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f=(u,v^{'})\in E(G\setminus M_G)$, and $v\neq v^{'}\deg(u)\geq 3$
- Let $G' = G \setminus \{f\}$, we can find a minimum cover $W_{G'}$ with $|W_{G'}| = \tau(G') = \nu(G') = \nu(G)$

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f=(u,v^{'})\in E(G\setminus M_G)$, and $v\neq v^{'}\deg(u)\geq 3$
- Let $G^{'}=G\setminus\{f\}$, we can find a minimum cover $W_{G^{'}}$ with $|W_{G^{'}}|= au(G^{'})=
 u(G)$
- Since v is not incident with any of edge in $M_G \Rightarrow v \notin W_{G'}$

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f = (u, v') \in E(G \setminus M_G)$, and $v \neq v' \deg(u) \geq 3$
- Let $G^{'}=G\setminus\{f\}$, we can find a minimum cover $W_{G^{'}}$ with $|W_{G^{'}}|= au(G^{'})=
 u(G)$
- Since v is not incident with any of edge in $M_G \Rightarrow v \notin W_{G'}$
- ullet \Rightarrow $u\in W_{G^{'}}$ and thus $W_{G^{'}}$ be a cover of G

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f=(u,v')\in E(G\setminus M_G)$, and $v\neq v'$ deg $(u)\geq 3$
- Let $G^{'}=G\setminus\{f\}$, we can find a minimum cover $W_{G^{'}}$ with $|W_{G^{'}}|= au(G^{'})=
 u(G)$
- Since v is not incident with any of edge in $M_G \Rightarrow v \notin W_{G'}$
- $\Rightarrow u \in W_{G'}$ and thus $W_{G'}$ be a cover of G
- $\Rightarrow \nu(G) = |W(G')| \ge \tau(G)$

Note

- Assume v is NOT incident with any of edge in M_G
- Then, exist an edge $f=(u,v^{'})\in E(G\setminus M_G)$, and $v\neq v^{'}\deg(u)\geq 3$
- Let $G^{'}=G\setminus\{f\}$, we can find a minimum cover $W_{G^{'}}$ with $|W_{G^{'}}|= au(G^{'})=
 u(G)$
- Since v is not incident with any of edge in $M_G \Rightarrow v \notin W_{G'}$
- $\Rightarrow u \in W_{G'}$ and thus $W_{G'}$ be a cover of G
- $\Rightarrow \nu(G) = |W(G')| \ge \tau(G)$
- $\nu(G) = \tau(G)$

