STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 5: Probability

Lecture Outline

- We've started interacting with data
- Data summaries: sample mean and standard deviation
- Summaries are limited
 - ► To go further we need statistical models
 - Use probability to describe the variation in the data
- Over the next few lectures we will look at probability
 - Start today with foundational knowledge
 - ▶ Much of this knowledge remains important even in complex applications

Probability: mathematical language of uncertain events

- What is the probability that:
 - ▶ A heart attack victim has an enlarged heart?
 - ▶ The All Black kicker is successful with their next kick?
 - ▶ A rat will choose one reward (out of many) when moving through a maze?
 - A person has a certain genotype?
 - A female skink is a breeder?
 - ► An earthquake of magnitude 5 or larger occurs this year?
 - ► A cancer patient will die within 12 months?
 - ▶ The sliced ham you got at the supermarket is safe to consume?

Probability

- Setup
 - ▶ Random process with a number of possible outcomes
 - Roll a die. Possible outcomes: 1, 2, 3, 4, 5, or 6
 - Flip a coin. Possible outcomes: head or tail
 - Blood group of randomly selected patient. Possible outcomes: A, B, AB, O
 - The set of all possible outcomes is called the sample space
- A probability has to satisfy a number of mathematical principles, including:
 - Between 0 and 1
 - We can't have a probability of -0.4 or 1.2
 - Probabilities sum to 1
 - If we observe the random process, we must see one of the possible outcomes
 - If we flip a coin, we must see either a head, or a tail.

Probability

- From here, things get a little murky
 - ▶ There are several definitions (or interpretations) of probability
- We can define probability in terms of relative frequency:
 - ► The probability of an outcome is the proportion of times the outcome occurs if we were to observe the random process a large (infinite) number of times.
 - Imagine a (bored!) person repeatedly tossing a coin¹

¹ John Edmund Kerrich

Mutually exclusive outcomes

- Two outcomes are mutually exclusive (or disjoint) if they cannot both happen
 - e.g. a coin flip cannot land on heads and tails
 - e.g. A patient cannot be both A and AB blood group
- The probability of mutually exclusive outcomes can be found with addition
 - ▶ For two outcomes *A* and *B* that are mutually exclusive:

$$\Pr(A \text{ or } B) = \Pr(A) + \Pr(B)$$

- Die roll: A: roll a 1, B: roll a 6
 - Pr(A or B) = Pr(A) + Pr(B) = 1/6 + 1/6 = 1/3
- Penguins: A: observe blood group A, B: observe blood group B
 - $ightharpoonup \Pr(A \text{ or } B) = \Pr(A) + \Pr(B)$

Events

- We often work with collections of outcomes
 - These are called events
- Examples:
 - \blacktriangleright Die roll: event A: roll 1, 2, or 4, event B: roll 5 or 6.
 - ▶ Blood group: event C: blood group A or AB, event D: B or AB
- Events can be mutually exclusive if they have no outcomes in common
 - \blacktriangleright Events A and B are mutually exclusive
 - Pr(A or B) = Pr(A) + Pr(B) = 3/6 + 2/6 = 5/6
 - ▶ Events C and D are not mutually exclusive
 - What is Pr(C or D)?
- An event can comprise a single outcome
 - ightharpoonup e.g. the event E: roll a 3

Venn diagram

- Venn diagrams can be used to visualize small sample spaces
- Die roll: event A: roll 4 or less, event B: roll odd number

Venn diagram

¹https://xkcd.com/2090/

Venn diagram and sets

- Venn diagrams are useful when looking at when:
 - ▶ Event A or B occurs
 - This is inclusive, i.e. A or B means that event A, B or both A and B occur.
 - ► Event A and event B occurs

Sets of interest

• A or B: 1, 2, 3, 4, 5

ullet A and B: 1, 3

Probabilities

- What is Pr(A or B)?
 - ► Same question asked a few slides ago (the events were called C and D then)
 - ► Events A and B are not mutually exclusive
 - $\Pr(A) + \Pr(B) = 4/6 + 3/6 = 7/6$
 - Clearly incorrect

Probabilities

- What is Pr(A or B)?
 - ▶ Probability of observing a 1, 2, 3, 4, or 5: probability of 5/6
- ullet Problem with $\Pr(A)+\Pr(B)$ is that it double counts outcomes 1 and 3

▶ Double counting Pr(A and B)

General addition rule

If A and B are any two events, then the probability that at least one of them
occurs is

$$Pr(A \text{ or } B) = Pr(A) + Pr(B) - Pr(A \text{ and } B)$$

- If events A and B are mutually exclusive, then Pr(A and B) = 0.
- Example (from previous slide)
 - ▶ Pr A + Pr(B) Pr(A and B) = 4/6 + 3/6 2/6 = 5/6

Complement

- Compliment: STAT115 students are amazing!
- ullet Complement of event A: the outcomes in the sample space that are not in A
- Roll a die: sample space is $\{1, 2, 3, 4, 5, 6\}$
 - ▶ The event E is rolling even: $\{2,4,6\}$
 - Its complement E^{\complement} is $\{1,3,5\}$
- $Pr(E) + Pr(E^{\complement}) = 1$, or $Pr(E) = 1 Pr(E^{\complement})$
 - ▶ For the example above: Pr(E) = 0.5, $Pr(E^{\complement}) = 0.5$
- Complements seem obvious and simple
 - ▶ I frequently remind 400-level students how useful they can be

Complements

- Complements 'play nice' with Venn diagrams
- What is:
 - $ightharpoonup \Pr(A^{\complement})$?
 - ▶ $Pr(B^{\complement})$?
 - ▶ $Pr((A \text{ or } B)^{\complement})$?
 - ▶ $Pr((A \text{ and } B)^{\complement})$?

Complement: real example

+ Detector

Animal location

- The picture represents an array of 'detectors' (e.g. motion activated camera)
 - Assume we know the probability the animal is detected (in some period of time) for each of the 10 detectors, based on its location
 - p_1, p_2, \ldots, p_{10}
- What is the probability it is seen by at least one detector?

Complement: real example

+ Detector

Animal location

- There are over 1000 possible ways an animal could be detected:
 - ▶ Seen at one detector: detector 1, detector 2, detector 3, ...
 - ► Seen at two detectors: detector 1 & 2, detector 1 & 3
 - ► etc
- There is only one way an animal cannot be seen
 - ► Complement of being seen by at least one detector

Summary

- We are working toward statistical model for data
 - Use probability to describe the variation in the data
- Foundational knowledge in probability
 - Outcomes and events
 - ► Sample space, sets, and complements
 - General addition rule
- Relate probability back to examples
- Tomorrow: everyone bring a coin
 - Explore some (interactive) probability results