Emerging methods for Early detection of forest fires

S.NO:	TITLE OF THE PAPER	DETAILS OF THE PAPER	OBJECTIVES	METHODOLOGY USED	TAKE AWAY
2.	A review on early forest fire detection system using optical remote sensing	published on 2020	To fight forest fires occurring throughout the year with an increasing intensity in the summer and autumn periods.	Detection methods that use optical sensors or RGB cameras combine features that are related to the physical properties of flame and smoke, such as color, motion, spectral, spatial, temporal, and texture characteristics.	From this journal, we use modern optical sensor networks which are known for their long range communication capabilities and extremely suitable for sensor and telemetry applications.

	ı	T		T	
3.	Developing a real-time and automatic early warning system for forest fire.	Published on 2018 IEEE	To detect forest fires causing by climatic conditions and also caused by human.	The method using here is making use of stand-alone boxes which are deployed throughout the forest. Those boxes contain different sensors and a radio module to transmit data received from these sensors. Each sensor will be tested in individually and XBee modules are configured and paired using XCTU Software.	From this journal, we use Software solutions which are used for implementing microcontroller kits and to simulate and designing circuit boards.
4.	Early Fire Detection System using wireless sensor networks.	Published on 2018 IEEE	To detect fires from huge cause of forests.	The hierarchical architecture of Wireless Sensor Networks is most efficient and extensible for dense networks which simplifies the management of the forest as well as the communication and the localization of fire and sensors.	From this journal, we use cluster heads as landmark for the rest of sensor for localization in order to define their GPS coordinates according to the cluster head's coordinate.

5.	Automatic	Published	To avoid the huge	Based on the slow spread	From this
	Early Forest fire	2018 IEEE	damage of forest	of smoke, firstly a time	journal, we use
	Detection based		caused by fires.	delay parameter improves	Gaussian mixture
	Gaussian			Gaussian mixture model for	model. Because it
	Mixture Model.			extracting candidate smoke	can reconstruct
				regions. Then, two motion	background with
				features of smoke, the rate	the advantages of
				of area change and motion	small storage
				style are used to select	space, adaptive
				smoke regions from the	learning and
				candidate regions.	good noise
					toleration.

Reference:

- 1) Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–71
- 2) Bu, F.; Gharajeh, M.S. Intelligent and vision-based fire detection systems: A survey. Image Vis. Comput. 2019, 91, 103803.
- 3)Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018, 6, 18174–18183. [CrossRef]
- 4. Shen, D.; Chen, X.; Nguyen, M.; Yan, W.Q. Flame detection using deep learning. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; pp. 416–420.
- 5) . Wickramasinghe, C.; Wallace, L.; Reinke, K.; Jones, S. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. Int. J. Dig. Earth 2018

This is some of reference is referred for creating a leture survey.