Online Food Orders Analysis with Python

In this project, we aim to analyze a dataset titled "Online Food Orders Analysis with Python." The dataset contains information about online food orders, including details such as order ID, customer ID, order date, order time, items ordered, quantity, price, and delivery information. We will use Python and various data analysis libraries to explore, visualize, and derive insights from the dataset.

Import Library

```
In [1]: import pandas as pd
In [2]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
```

C:\Users\Syed Arif\anaconda3\lib\site-packages\scipy__init__.py:146: UserWar
ning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of Sc
iPy (detected version 1.25.1</pre>

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>

Uploading Csv fle

```
In [3]: df = pd.read_csv(r"C:\Users\Syed Arif\Desktop\onlinefoods.csv")
```

Data Preprocessing

.head()

head is used show to the By default = 5 rows in the dataset

In [4]: df.head()

Out[4]:

	Age	Gender	Marital Status	Occupation	Monthly Income	Educational Qualifications	Family size	latitude	longitude	Piı codı
0	20	Female	Single	Student	No Income	Post Graduate	4	12.9766	77.5993	56000 ⁻
1	24	Female	Single	Student	Below Rs.10000	Graduate	3	12.9770	77.5773	560009
2	22	Male	Single	Student	Below Rs.10000	Post Graduate	3	12.9551	77.6593	560017
3	22	Female	Single	Student	No Income	Graduate	6	12.9473	77.5616	560019
4	22	Male	Single	Student	Below Rs.10000	Post Graduate	4	12.9850	77.5533	560010
4										>

.tail()

tail is used to show rows by Descending order

In [5]: df.tail()

Out[5]:

	Age	Gender	Marital Status	Occupation	Monthly Income	Educational Qualifications	Family size	latitude	longitude	CC
383	23	Female	Single	Student	No Income	Post Graduate	2	12.9766	77.5993	5600
384	23	Female	Single	Student	No Income	Post Graduate	4	12.9854	77.7081	5600
385	22	Female	Single	Student	No Income	Post Graduate	5	12.9850	77.5533	5600
386	23	Male	Single	Student	Below Rs.10000	Post Graduate	2	12.9770	77.5773	5600
387	23	Male	Single	Student	No Income	Post Graduate	5	12.8988	77.5764	5600
4										•

.shape

It show the total no of rows & Column in the dataset

In [6]: df.shape

Out[6]: (388, 13)

.Columns

It show the no of each Column

.dtypes

This Attribute show the data type of each column

```
In [8]: df.dtypes
Out[8]: Age
                                          int64
        Gender
                                         object
        Marital Status
                                         object
                                         object
        Occupation
        Monthly Income
                                         object
         Educational Qualifications
                                         object
                                          int64
         Family size
                                        float64
         latitude
                                        float64
         longitude
         Pin code
                                          int64
        Output
                                         object
         Feedback
                                         object
                                         object
        Unnamed: 12
         dtype: object
```

.unique()

In a column, It show the unique value of specific column.

.nuique()

It will show the total no of unque value from whole data frame

```
In [11]: df.nunique()
Out[11]: Age
                                         16
         Gender
                                          2
         Marital Status
                                          3
         Occupation
                                          4
                                          5
         Monthly Income
                                          5
         Educational Qualifications
                                          6
         Family size
                                         77
         latitude
                                         76
         longitude
                                         77
         Pin code
         Output
                                          2
                                          2
         Feedback
         Unnamed: 12
                                          2
         dtype: int64
```

.describe()

It show the Count, mean, median etc

```
In [12]: df.describe()
```

Out[12]:

	Age	Family size	latitude	longitude	Pin code
count	388.000000	388.000000	388.000000	388.000000	388.000000
mean	24.628866	3.280928	12.972058	77.600160	560040.113402
std	2.975593	1.351025	0.044489	0.051354	31.399609
min	18.000000	1.000000	12.865200	77.484200	560001.000000
25%	23.000000	2.000000	12.936900	77.565275	560010.750000
50%	24.000000	3.000000	12.977000	77.592100	560033.500000
75%	26.000000	4.000000	12.997025	77.630900	560068.000000
max	33.000000	6.000000	13.102000	77.758200	560109.000000

.value_counts

It Shows all the unique values with their count

.isnull()

It shows the how many null values

In [14]: df.isnull()

Out[14]:

	Age	Gender	Marital Status	Occupation	Monthly Income	Educational Qualifications	Family size	latitude	longitude	Pi cod
0	False	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	Fals
383	False	False	False	False	False	False	False	False	False	Fals
384	False	False	False	False	False	False	False	False	False	Fals
385	False	False	False	False	False	False	False	False	False	Fals
386	False	False	False	False	False	False	False	False	False	Fals
387	False	False	False	False	False	False	False	False	False	Fals
200 rawa y 12 aglumna										

388 rows × 13 columns

4

```
In [15]: sns.heatmap(df.isnull())
```

Out[15]: <AxesSubplot:>

In [17]: df['Occupation'].value_counts().plot(kind = 'pie' , title = 'Pie Chart for general autopct="%.0f%", colormap='nipy_spectral_r')

Out[17]: <AxesSubplot:title={'center':'Pie Chart for gender'}, ylabel='Occupation'>

Distribution of Feedback

