Các bài toán về phương trình bậc nhất đối với sin và cos

1. Lý thuyết

- Phương trình bậc nhất đối với sin và cos có dạng: a.sinx + b.cosx = c (với a; b là các số thực, a; b khác 0).
- Điều kiện có nghiệm: $a^2 + b^2 \ge c^2$.

2. Các dạng bài tập

Dạng 1: Giải phương trình bậc nhất đối với sin và cos

- Phương pháp giải:

Chia cả hai vế của phương trình cho $\sqrt{a^2 + b^2}$, ta được:

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}} (*)$$

* Đặt
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}; \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \text{ với } \alpha \in [0; 2\pi)$$

Khi đó phương trình (*) đưa về dạng

$$\sin x \cos \alpha + \cos x \sin \alpha = \frac{c}{\sqrt{a^2 + b^2}}$$

 \Leftrightarrow sin $(x + \alpha) = \frac{c}{\sqrt{a^2 + b^2}}$. Đưa về phương trình lượng giác cơ bản.

* Hoặc đặt
$$\sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}; \cos \alpha = \frac{b}{\sqrt{a^2 + b^2}} \text{ với } \alpha \in [0; 2\pi)$$

Khi đó phương trình (*) đưa về dạng

$$\sin x \sin \alpha + \cos x \cos \alpha = \frac{c}{\sqrt{a^2 + b^2}}$$

 \Leftrightarrow $\cos(x-\alpha) = \frac{c}{\sqrt{a^2+b^2}}$. Đưa về phương trình lượng giác cơ bản.

* Phương trình có nghiệm khi
$$0 \le \left| \frac{c}{\sqrt{a^2 + b^2}} \right| \le 1 \Leftrightarrow \left| c \right| \le \sqrt{a^2 + b^2} \Leftrightarrow c^2 \le a^2 + b^2$$
.

Chú ý: Các công thức đặc biệt

$$\sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$

$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = -\sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$$

- Ví dụ minh họa:

Ví dụ 1: Giải các phương trình sau:

a)
$$\sin 4x + \sqrt{3}\cos 4x = \sqrt{2}$$

b)
$$5\sin 2x + 12\cos 2x = 13$$

c)
$$\sin^2 x - 2\cos x \sin x + 1 = 0$$

Lời giải

a)
$$\sin 4x + \sqrt{3}\cos 4x = \sqrt{2} \Leftrightarrow \frac{1}{2}\sin 4x + \frac{\sqrt{3}}{2}\cos 4x = \frac{\sqrt{2}}{2}$$
 (1)

$$\text{Dặt } \cos \frac{\pi}{3} = \frac{1}{2}; \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

Khi đó (1)
$$\Leftrightarrow \sin 4x \cos \frac{\pi}{3} + \cos 4x \sin \frac{\pi}{3} = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin\left(4x + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \begin{bmatrix} 4x + \frac{\pi}{3} = \frac{\pi}{4} + k2\pi \\ 4x + \frac{\pi}{3} = \pi - \frac{\pi}{4} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} 4x = -\frac{\pi}{12} + k2\pi \\ 4x = \frac{5\pi}{12} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{48} + \frac{k\pi}{2} \\ x = \frac{5\pi}{48} + \frac{k\pi}{2} \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = -\frac{\pi}{48} + \frac{k\pi}{2}$; $x = \frac{5\pi}{48} + \frac{k\pi}{2}$; $k \in \mathbb{Z}$.

b)
$$5\sin 2x + 12\cos 2x = 13 \iff \frac{5}{13}\sin 2x + \frac{12}{13}\cos 2x = 1$$
 (2)

Đặt
$$\cos \alpha = \frac{5}{13}$$
; $\sin \alpha = \frac{12}{13}$ với $\alpha \in [0; 2\pi)$

Khi đó (2) $\Leftrightarrow \sin 2x \cos \alpha + \cos 2x \sin \alpha = 1$

$$\Leftrightarrow \sin(2x + \alpha) = 1$$

$$\Leftrightarrow 2x + \alpha = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

$$\Leftrightarrow 2x = -\alpha + \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

$$\Longleftrightarrow x = -\frac{\alpha}{2} + \frac{\pi}{4} + k\pi \left(k \in \mathbb{Z} \right)$$

Vậy họ nghiệm của phương trình là: $x = -\frac{\alpha}{2} + \frac{\pi}{4} + k\pi$; $k \in \mathbb{Z}$ với

$$\cos\alpha = \frac{5}{13}; \sin\alpha = \frac{12}{13}.$$

c) $\sin^2 x - 2\cos x \sin x + 1 = 0$

$$\Leftrightarrow \frac{1-\cos 2x}{2} - \sin 2x + 1 = 0$$

$$\Leftrightarrow$$
 1-cos 2x - 2sin 2x + 2 = 0

$$\Leftrightarrow$$
 cos 2x + 2sin 2x = 3

Ta thấy: $1^2 + 2^2 < 3^2$. Vậy phương trình trên vô nghiệm.

Ví dụ 2: Giải các phương trình sau:

a)
$$3\sin 3x - \sqrt{3}\cos 9x = 1 + 4\sin^3 3x$$

b)
$$\cos 3x - \sin 5x = \sqrt{3}(\cos 5x - \sin 3x)$$

Lời giải

a)
$$3\sin 3x - \sqrt{3}\cos 9x = 1 + 4\sin^3 3x$$

$$\Leftrightarrow$$
 3sin 3x - 4sin³ 3x - $\sqrt{3}$ cos 9x = 1

$$\Leftrightarrow \sin 9x - \sqrt{3}\cos 9x = 1$$

$$\Leftrightarrow \frac{1}{2}\sin 9x - \frac{\sqrt{3}}{2}\cos 9x = \frac{1}{2}$$

$$\Leftrightarrow \sin 9x.\cos \frac{\pi}{3} - \cos 9x.\sin \frac{\pi}{3} = \frac{1}{2}$$

$$\Leftrightarrow \sin\left(9x - \frac{\pi}{3}\right) = \frac{1}{2}$$

$$\Leftrightarrow \begin{bmatrix} 9x - \frac{\pi}{3} = \frac{\pi}{6} + k2\pi \\ 9x - \frac{\pi}{3} = \pi - \frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 9x = \frac{\pi}{2} + k2\pi \\ 9x = \frac{7\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{18} + \frac{k2\pi}{9} \\ x = \frac{7\pi}{54} + \frac{k2\pi}{9} \end{bmatrix}, (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là:
$$x = \frac{\pi}{18} + \frac{k2\pi}{9}$$
; $x = \frac{7\pi}{54} + \frac{k2\pi}{9}$; $(k \in \mathbb{Z})$

b)
$$\cos 3x - \sin 5x = \sqrt{3}(\cos 5x - \sin 3x)$$

$$\Leftrightarrow \cos 3x - \sin 5x = \sqrt{3}\cos 5x - \sqrt{3}\sin 3x$$

$$\Leftrightarrow$$
 cos 3x + $\sqrt{3}$ sin 3x = $\sqrt{3}$ cos 5x + sin 5x

$$\Leftrightarrow \frac{1}{2}\cos 3x + \frac{\sqrt{3}}{2}\sin 3x = \frac{\sqrt{3}}{2}\cos 5x + \frac{1}{2}\sin 5x$$

$$\Leftrightarrow \cos 3x \cos \frac{\pi}{3} + \sin 3x \sin \frac{\pi}{3} = \cos 5x \cos \frac{\pi}{6} + \sin 5x \sin \frac{\pi}{6}$$

$$\Leftrightarrow \cos\left(3x - \frac{\pi}{3}\right) = \cos\left(5x - \frac{\pi}{6}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x - \frac{\pi}{3} = 5x - \frac{\pi}{6} + k2\pi \\ 3x - \frac{\pi}{3} = -5x + \frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} -2x = \frac{\pi}{6} + k2\pi \\ 8x = \frac{\pi}{2} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{12} - k\pi \\ x = \frac{\pi}{16} + \frac{k\pi}{4} \end{bmatrix}$$

Vậy họ nghiệm của phương trình là: $x = -\frac{\pi}{12} - k\pi$; $x = \frac{\pi}{16} + \frac{k\pi}{4}$; $k \in \mathbb{Z}$.

Dạng 2: Tìm điều kiện để phương trình a.sinx + b.cosx = c có chứa tham số m có nghiệm

- Phương pháp giải:

Điều kiện có nghiệm: $a^2 + b^2 \ge c^2$.

- Ví dụ minh họa:

Ví dụ 1: Tìm m để phương trình: $(m-1)\cos x + 2\sin x = m+3$ có nghiệm.

Lời giải

Để phương trình có nghiệm: $(m-1)^2 + 2^2 \ge (m+3)^2$

$$\Leftrightarrow$$
 m² - 2m + 1 + 4 \geq m² + 6m + 9

$$\Leftrightarrow$$
 $-8m \ge 4$

$$\Leftrightarrow$$
 m $\leq -\frac{1}{2}$.

Vậy m ≤ $-\frac{1}{2}$ thì phương trình (m-1)cosx + 2sinx = m+3 có nghiệm.

Ví dụ 2: Tìm m để phương trình: $(m-1)\sin x + m\cos x = m+1$ có nghiệm.

Lời giải

Để phương trình có nghiệm: $(m-1)^2 + m^2 \ge (m+1)^2$

$$\Leftrightarrow$$
 $m^2 - 2m + 1 + m^2 \ge m^2 + 2m + 1$

$$\Leftrightarrow$$
 m² -4m \geq 0

$$\Leftrightarrow$$
 m(m-4) \geq 0

$$\Leftrightarrow \begin{bmatrix} \begin{cases} m \ge 0 \\ m - 4 \ge 0 \\ m \le 4 \end{cases} \Leftrightarrow \begin{bmatrix} m \ge 4 \\ m \le 4 \\ m \le 0 \end{cases} \Leftrightarrow \begin{bmatrix} m \ge 4 \\ m \le 0 \end{cases}$$

Vậy $m \ge 4$ hoặc $m \le 0$ thì phương trình (m-1)sinx + mcosx = m+1 có nghiệm.

3. Bài tập tự luyện

Câu 1. Họ nghiệm của phương trình $\sqrt{3} \sin 2x - \cos 2x + 1 = 0$ là:

$$\mathbf{A}. \left[x = k\pi \\ x = \frac{\pi}{3} + k\pi \right] (k \in \mathbb{Z})$$

$$\mathbf{B}. \begin{bmatrix} x = k\pi \\ x = \frac{2\pi}{3} + 2k\pi \\ \end{pmatrix}$$

C.
$$x = 2k\pi$$

$$x = \frac{2\pi}{3} + 2k\pi (k \in \mathbb{Z})$$

$$\mathbf{D}. \begin{bmatrix} x = k\pi \\ x = \frac{2\pi}{3} + k\pi \\ (k \in \mathbb{Z}) \end{bmatrix}$$

Câu 2. Có bao nhiều nghiệm thuộc khoảng $(0;2\pi)$ của phương trình $\cos 4x - \sin 4x = 1$?

A. 5

B. 3

C. 6

D. 7

Câu 3. Họ nghiệm của phương trình: $\sin 3x - \sqrt{3}\cos 3x = 2\cos 5x$ là:

A.
$$\begin{bmatrix} x = \frac{5\pi}{48} + \frac{k\pi}{5} \\ x = -\frac{5\pi}{12} - k\pi \end{bmatrix} (k \in \mathbb{Z})$$

$$\mathbf{B}. \begin{bmatrix} \mathbf{x} = \frac{5\pi}{48} + \frac{\mathbf{k}\pi}{4} \\ \mathbf{x} = -\frac{5\pi}{12} - \mathbf{k}2\pi \end{bmatrix} (\mathbf{k} \in \mathbb{Z})$$

C.
$$x = \frac{5\pi}{48} + \frac{k\pi}{4}$$
$$x = -\frac{5\pi}{12} - k\frac{\pi}{2} \quad (k \in \mathbb{Z})$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{5\pi}{48} + \frac{k\pi}{4} \\ x = -\frac{5\pi}{12} - k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Câu 4. Tính tổng tất cả các nghiệm của phương trình $\cos^2 x - \sin 2x = \sqrt{2} + \sin^2 x$ trên khoảng $(0; 2\pi)$.

A.
$$\frac{3\pi}{4}$$

B.
$$\frac{7\pi}{8}$$

C.
$$\frac{21\pi}{8}$$

D.
$$\frac{11\pi}{4}$$

Câu 5. Họ nghiệm của phương trình: $\sqrt{3}(\sin 2x + \cos 5x) = \sin 5x - \cos 2x$ là:

A.
$$\begin{bmatrix} x = \frac{\pi}{6} + \frac{k2\pi}{3} \\ x = -\frac{\pi}{6} + \frac{k2\pi}{7} \end{bmatrix} (k \in \mathbb{Z})$$

$$\mathbf{B.} \begin{bmatrix} x = \frac{\pi}{6} - \frac{k2\pi}{3} \\ x = \frac{\pi}{6} - \frac{k\pi}{7} \end{bmatrix} (k \in \mathbb{Z})$$

C.
$$x = \frac{\pi}{6} + \frac{k2\pi}{3}$$
$$x = \frac{\pi}{6} + \frac{k2\pi}{7} \quad (k \in \mathbb{Z})$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{6} - \frac{k\pi}{3} \\ x = \frac{\pi}{6} + \frac{k\pi}{7} \end{bmatrix} (k \in \mathbb{Z})$$

Câu 6. Các nghiệm của phương trình $1 + \sin 2x = \cos 2x$ là:

A.
$$x = k2\pi; x = \frac{\pi}{3} + k2\pi; k \in \mathbb{Z}$$

B.
$$x = k2\pi; x = \frac{\pi}{4} + k2\pi; k \in \mathbb{Z}$$

C.
$$x = k\pi; x = -\frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$

D.
$$x = \frac{\pi}{3} + k\pi; x = \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$$

Câu 7. Số nghiệm thuộc khoảng $(0;\pi)$ của phương trình $\sin x(\sin x + 2\cos x) = 2$ là

A. 0

В.

C. 2

D. 3

Câu 8. Tổng các nghiệm thuộc khoảng $(-\pi;\pi)$ của phương trình

 $\sin x + \cos x = 2\sqrt{2}\sin x \cos x$ là:

Α. π

B.
$$\frac{3\pi}{4}$$

C.
$$\frac{\pi}{4}$$

 $\mathbf{D.} \; \frac{\pi}{2}$

Câu 9. Họ nghiệm của phương trình: $4(\sin^4 x + \cos^4 x) + \sqrt{3}\sin 4x = 2$ là:

A.
$$x = \frac{\pi}{4} + \frac{k\pi}{7}$$

$$x = -\frac{\pi}{12} + \frac{k\pi}{7}$$
 $(k \in \mathbb{Z})$

B.
$$x = \frac{\pi}{4} + \frac{k\pi}{5}$$
$$x = -\frac{\pi}{12} + \frac{k\pi}{5} \quad (k \in \mathbb{Z})$$

C.
$$x = \frac{\pi}{4} + \frac{k\pi}{3}$$
$$x = -\frac{\pi}{12} + \frac{k\pi}{3} \quad (k \in \mathbb{Z})$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{4} + \frac{k\pi}{2} \\ x = -\frac{\pi}{12} + \frac{k\pi}{2} \end{bmatrix} (k \in \mathbb{Z})$$

Câu 10. Họ nghiệm của phương trình: $\frac{\cos x - 2\sin x \cdot \cos x}{2\cos^2 x + \sin x - 1} = \sqrt{3} \text{ là:}$

A.
$$x = \frac{\pi}{18} + \frac{k\pi}{3}, k \in \mathbb{Z}$$

B.
$$x = \frac{\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$

C.
$$x = -\frac{\pi}{18} + \frac{k\pi}{3}, k \in \mathbb{Z}$$

D.
$$x = -\frac{\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$

Câu 11. Tìm tất cả các giá trị của m để phương trình $3\sin x - 4\cos x = 2m$ có nghiệm.

A.
$$-\frac{5}{2} < m \le \frac{5}{2}$$
 B. $m \le -\frac{5}{2}$ **C.** $m \ge \frac{5}{2}$

B.
$$m \le -\frac{5}{2}$$

C.
$$m \ge \frac{5}{2}$$

$$-\frac{5}{2} \le m \le \frac{5}{2}$$

Câu 12. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-10;10] để phương trình $(m+1)\sin^2 x - \sin 2x + \cos 2x = 0$ có nghiệm?

Câu 13. Phương trình $2\sin x \cos x + \sqrt{3}\cos 2x + m = 0$ có nghiệm khi và chỉ khi:

$$\mathbf{A.} -2 \leq \mathbf{m} < 2$$

B.
$$-2 \le m \le 2$$

C.
$$m \le 2$$

$$-2 < m \le 2$$

Câu 14. Tìm m để phương trình $(2m-1)\cos 2x + 2m\sin x\cos x = m-1$ vô nghiệm.

B.
$$m \in (-\infty; 0] \cup \left[\frac{1}{2}; +\infty\right)$$

C.
$$0 \le m \le \frac{1}{2}$$

D.
$$0 < m < \frac{1}{2}$$

Câu 15. Gọi M, m lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = \sqrt{3} \sin 3x - \cos 3x + 2$. Giá trị của M, m là:

A.
$$M = 4$$
; $m = 0$

B.
$$M = 2$$
; $m = -2$

A.
$$M = 4$$
; $m = 0$ **B.** $M = 2$; $m = -2$ **C.** $M = \frac{5}{2}$; $m = \frac{3}{2}$ **D.** $M = 3$; $m = \frac{3}{2}$

D.
$$M = 3$$
; $m =$

1

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	D	D	D	C	C	A	В	D	D	D	A	В	D	A