

F2

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 804 031 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

29.10.1997 Bulletin 1997/44

(51) Int. Cl. 5. H04N 7/18

(21) Application number: 97106636.0

(22) Date of filing: 22.04.1997

(84) Designated Contracting States:
DE FR GB(72) Inventor: Yonezawa, Hiroki
Ohta-ku, Tokyo (JP)

(30) Priority: 23.04.1996 JP 101227/96

(74) Representative: Tiedtke, Harro, Dipl.-Ing. et al
Patentanwaltsbüro
Tiedtke-Bühling-Kinne & Partner
Bavariaring 4
80336 München (DE)(71) Applicant: CANON KABUSHIKI KAISHA
Tokyo (JP)

(54) Image display apparatus, camera control apparatus and method

(57) An image display apparatus capable of selecting an arbitrary camera from a plurality of cameras connected via a network and displaying an image sensed by the selected camera. The image display apparatus includes a first memory unit for storing predetermined map data, a map display unit for displaying a map on a screen based on the map data stored in the first memory unit, a symbol display unit for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen, and a second memory unit for storing the camera symbol in association with the position.

EP 0 804 031 A2

Description

BACKGROUND OF THE INVENTION

Present invention relates to an image display apparatus and a camera control apparatus capable of performing control operation of a camera located in a remote place.

As an example of an apparatus utilizing such image display apparatus and camera control apparatus, a monitoring apparatus comprising a plurality of video cameras, an image combine device used for combining analog images sensed by the video cameras, and a device called "switcher" which is capable of selecting an image (sensed by the video camera), has been provided. The monitoring apparatus is mainly utilized in a building relatively small and is called a local monitoring system. While the local monitoring system is available, a remote monitoring system is also available, utilizing a digital network e.g. LAN, ISDN or the like for an image transmission path instead of using analog cables, thereby enabling great extension of a transmission path.

Moreover, the recent monitoring system realizes image display and system control with the use of Graphical User Interface (GUI) by utilizing a personal computer as a monitoring terminal. By utilizing GUI in the monitoring apparatus, operation becomes easy for a user who is not familiar with the apparatus.

However, in the conventional system of this type, an operator has to select a video camera to be controlled by designating a camera ID or a camera name. Therefore, there has been a demand for a technique to display arrangement of video cameras so that an operator can immediately grasp the camera condition, and a technique which improves the operability of the video cameras.

SUMMARY OF THE INVENTION

The present invention has been made in consideration of the above situation, and has as its first object to provide an apparatus which can display arrangement of video cameras on a map with easy operation.

The second object of the present invention is to provide an apparatus which improves operability of a video camera displayed on the map.

In order to attain the above objects, the present invention provides, as its first construction, an image display apparatus capable of selecting an arbitrary camera from a plurality of cameras connected via a network and displaying an image, comprising: first memory for storing predetermined map data; map display means for displaying a map on a screen based on the map data stored in the first memory; symbol display means for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen; and second memory for storing the camera symbol in association with the position.

Furthermore, in accordance with the first construc-

tion of the present invention as described above, the present invention further comprises, as its second construction, input means for reading a map, wherein the input means converts the read map to digital data, and the first memory stores the map data converted by the input means.

Furthermore, in accordance with the first construction of the present invention as described above, the present invention further comprises, as its third construction, map generate means for generating a map, wherein the map generate means converts a generated map to digital data, and the first memory stores the map data converted by the map generate means.

In addition, in order to attain the above objects, the present invention provides, as its fourth construction, a camera control apparatus capable of selecting a controllable camera from a plurality of cameras connected via a network and controlling the camera, comprising: first memory for storing predetermined map data; map display means for displaying a map on a screen based on the map data stored in the first memory; symbol display means for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen; and second memory for storing the camera symbol in association with the position.

In accordance with the fourth construction of the present invention as described above, the present invention is characterized in that the symbol display means displays a possible range of panning operation of a camera which corresponds to the superimposed camera symbol, in association with a corresponding camera symbol.

Furthermore, in accordance with the above construction of the present invention as described above, the present invention is characterized in that the second memory stores the possible range of panning operation of the camera in association with the corresponding camera symbol.

Furthermore, in accordance with the fourth construction of the present invention as described above, the present invention is characterized in that the symbol display means is capable of changing a direction of a camera corresponding to the camera symbol by rotating the camera symbol.

Furthermore, in accordance with the above construction of the present invention as described above, the present invention is characterized in that the second memory stores the direction of the camera symbol in association with the corresponding camera symbol.

Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illus-

trate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

Fig. 1 is a block diagram showing an image transmission terminal and a monitoring terminal according to the first embodiment;

Fig. 2 is a block diagram showing software according to the first embodiment;

Fig. 3 shows an example on a display screen according to the present embodiment;

Fig. 4 shows an example on a display screen where a map is switched to map 530;

Fig. 5 shows an image display window 600 according to the present embodiment;

Fig. 6 shows dragging and dropping operation (D&D operation);

Fig. 7 shows a shape of a mouse cursor when D&D operation is performed;

Fig. 8 shows a condition where an image display area is changed by D&D operation;

Fig. 9 shows a display example of a camera icon representing a camera currently sensing an image;

Fig. 10 shows a condition where image displaying is quit by D&D operation;

Fig. 11 shows an example of a display screen of a map editor according to the present embodiment;

Fig. 12 shows a map name dialogue box according to the present embodiment;

Figs. 13-17 are flowcharts showing the steps of processing by the map editor according to the present embodiment;

Fig. 18 shows a condition where a map file is closed by the map editor;

Figs. 19A-19C show the main pull-down menu of the map editor, wherein Fig. 19A shows a file menu;

Fig. 19B, a map menu; and Fig. 19C, a camera menu;

Fig. 20 shows an example of a display screen of a map editor where a map file is newly generated;

Fig. 21 shows an example of a display screen of an information box storing map files;

Fig. 22 is a block diagram of a system where a scanner (means for reading a background bit map) is added to the construction shown in Fig. 1;

Fig. 23 shows an example of a display screen of a camera information dialogue box;

Fig. 24 shows an example of a display screen of a map editor where a camera icon is selected;

Fig. 25 shows an example of a display screen of a map editor where a map tag scroll bar is displayed;

Fig. 26 shows an example of a display screen of a map editor where a camera icon, representing a camera connected to a switcher and a combine device, is selected;

Fig. 27 shows an example of a display screen of a map editor where a camera icon, representing a camera connected to a switcher, is selected;

Fig. 28 shows an example of a display screen of a

camera information dialogue box in the system where a camera is connected to a switcher and a combine device;

Fig. 29 is a block diagram of a system where the switcher and the combine device are connected to an image transmission terminal;

Fig. 30 is a block diagram of a system where the switcher is connected to the image transmission terminal; and

Fig. 31 is an explanatory view showing contents of a map file according to the present embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will be described in detail in accordance with the accompanying drawings.

Fig. 1 is a block diagram of the entire system including an image transmission terminal and a monitoring terminal. The device construction of the image transmitting side according to the present invention includes: a video camera 10, serving as an image signal generation apparatus; a camera controller 12 which controls the video camera 10; an image transmission terminal 20; and a bit map display 35.

The camera controller 12 directly controls pan, tilt, zoom, focus, diaphragm of the video camera 10 (hereinafter referred to as the camera) in accordance with an external control signal sent by the image transmission terminal 20. The external control signal is inputted via an interface which is provided by e.g. RS-232C. In case of the camera 10 not having the function of being controlled with respect to its panning or tilting, the camera controller 12 is not necessary. In addition, the camera controller 12 may control turning on and off of the power of the camera 10.

The image transmission terminal 20 is a computer which controls the camera 10 connected to the camera controller 12 by sending control codes to the camera controller 12, and transmits image data obtained by the camera 10 to network via a network interface 38. A work station (WS) or a personal computer (PC) or the like may be used as the above described computer.

The image transmission terminal 20 in the present embodiment will be described next.

The image transmission terminal 20 is constructed with a CPU 22 which controls the entire terminal, a main memory 24, a detachable external storage 25 e.g. floppy disk, CD ROM or the like, a secondary storage 26 such as hard disk, a mouse 28 serving as a pointing device, a keyboard 30, I/O board 32, a video capture board 34, a video board 36, the network interface 38, and a system bus 39 interconnecting each of the above described devices from the CPU 20 to the network interface 38.

In the above described construction, the pointing device is not limited to the mouse, but other devices, e.g. a touch panel on the display 35, may be provided.

It is preferable to have a construction such that software for the present system is read out of the medium of the external storage 25 or the network interface 38 and stored in the secondary storage 26.

The I/O board 32, connected to the camera controller 12, transmits and receives a camera control signal. Herein, the camera controller 12 may be incorporated in the image transmission terminal 20. Furthermore, the video capture board 34 captures a video output signal VD of the camera 10. The video output signal VD may be either an analog signal, e.g. NTSC, or a digital signal. However, in the case of an analog signal, it is necessary to include a function for A/D conversion. The video capture board 34 does not need to include a data compression function, however, if no compression function is included, it is preferable to perform data compression by software. A captured image is sent to the network interface 38 and a monitoring terminal 60 via network as compressed data. The captured image is also outputted from the capture board 34 to the video board 36 via the system bus 39, and is displayed in an arbitrary position of the bit map display 35. The display position is controlled by the CPU 22 which sends an instruction of a display position or a display area to the video board 36.

Note that the image transmission terminal 20 outputs an instruction signal to the camera controller 12 in accordance with the instruction sent by the monitoring terminal 60 on the network, in order to control the angles (pan angle, tilt angle, zoom value) of the camera 10. After the instruction signal is outputted, the image transmission terminal 20 receives information regarding the current camera condition from the camera controller 12. Then, the condition information is transmitted to the monitoring terminal 60 in a predetermined format along with the captured image data.

By having the above described construction, the image transmission terminal 20 transmits an image to the monitoring terminal 60 located in a remote place via the network 100, and receives a camera control signal from the monitoring terminal to perform camera control.

The monitoring terminal 60 (image receive terminal) will be described next with reference to Fig. 1 showing the brief construction thereof.

The monitoring terminal 60 sends a control signal of the camera 10 to the image transmission terminal 20. The image transmission terminal 20 controls the video camera in accordance with the controlled signal as described above, and a resultant condition of the camera 10 is returned to the monitoring terminal 60 via the network 100. The monitoring terminal 60 displays the condition information of the camera 10 on a display apparatus, such as a bit map display 135. In addition, the monitoring terminal 60 receives image data sent by the image transmission terminal 20, decompresses the compressed and encoded data utilizing software and displays the image data on the display apparatus in real-time. As can be seen from Fig. 1, the monitoring terminal 60 has the same construction as that of the

image transmission terminal 20 in Fig. 1, except the camera 10, camera controller 12 and capture board 34. Components having the same functions are referred by reference numerals having the same last two-digit. It is not necessary to exclude those components (camera 10, camera controller 12 and capture board 34). If the capability of CPU 22 is poor and decompression takes time, extended hardware having a function for decoding and decompressing data may be added.

10 Note that in the present embodiment, the image transmission terminal 20 and monitoring terminal 60 are provided separately. However, it is more realistic for a single terminal to have the both functions to serve as an image transmission terminal and a monitoring terminal.

15 In the foregoing construction, image data is received from the image transmission terminal 20 located in a remote place via the network 100, and is displayed in an arbitrary position on the bit map display 135, i.e., the monitoring display apparatus. Then video 20 camera control codes according to an instruction for controlling the camera 10, inputted by an operator with a keyboard 130 or a mouse 128, are transmitted to the image transmission terminal 20.

25 Fig. 2 is a block diagram showing software according to the first embodiment. In the monitoring terminal 60 shown in Fig. 1, software 410 is installed; and in the image transmission terminal 20 shown in Fig. 1, software 420 is installed. By virtue of the software 410 and 420, a plurality of terminals 20 and 60 are mutually operable via the network 100.

30 The software 410 installed in the monitoring terminal 60 includes: a camera control client 411 which remotely controls cameras 10 respectively connected to the image transmission terminal 20 on the network 100; an image receive software 412 which decodes, decompresses and displays a packet of image data sent from the image transmission terminal 20; and a map management software 413 which graphically displays the position, panning, and zooming of a camera by utilizing the map, camera symbol and the scope display as shown in Fig. 6 in accordance with a map file (stored in the secondary storage 126 or in the external storage 125) to be described later, and which has the GUI for performing camera control. The map management software 413 serves as map display means and symbol display means; more specifically, CPU 22 performs the display processing in accordance with the software 413.

35 In addition, the map management software 413 has a function to update display of camera icons on the map (to be described later) in accordance with the condition information of the camera 10 received from the image transmission terminal 20.

40 The image receive software 412 serves as main software for managing the cameras 10 of all the image 45 transmission terminals 20 connected to the network 100. The image receive software 412 has information such as camera names of each of the cameras 10, host names of the image transmission terminals (computer) 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750

conditions (pan, tilt, zoom), information regarding the cameras 10 such as whether or not it is controllable, and current conditions e.g., a current-controlled camera or a camera whose image is currently displayed or the like. These information are stored in the main memory 124 serving as secondary storage means. These information are also shared by the camera control client 411 and map management software 413 and utilized for changing display conditions of camera symbols or the like.

The software 420 installed in the image transmission terminal 20 consists of a camera control server 421 which controls conditions of the cameras 10 such as pan/tilt, zoom, white balance or the like of the cameras 10 connected to the image transmission terminal 20, and an image transmit software 422 which stores image data outputted by the cameras 10 and cooperates with the image receive software 412.

Fig. 3 shows a screen, selected from a map file to be described later, displayed on the bit map display 135 of the monitoring terminal 60. Reference numeral 500 denotes a map window where a plurality of maps 510, 520, 530 and 540 are managed. The maps 510, 520, 530 and 540 respectively indicate a layout of an office, a store or a storage. The number of stored maps depends upon the capability of the system, thus no limitation is set herein. Each of the maps 510, 520, 530 and 540 has tags 510a, 520a, 530a and 540a respectively. When a cursor 28a is positioned on any of the tags 510a, 520a, 530a, or 540a and clicked with the mouse 28, the map corresponding to the selected tag is displayed in the map display area 502. The camera symbols (camera icons) arranged on the map are also displayed. In Fig. 3, the map 520 is selected from the maps 510-540 and displayed in the map display area 502. Camera icons 521, 522, 523, 524 arranged on the map 520 are also displayed. Herein, if the tag 530a of the map 530 is selected, the map 530 is displayed in the map display area 502 as shown in Fig. 4, and camera icons 531 and 532 arranged on the map 530 are also displayed.

Fig. 5 shows an image display window 600 which displays inputted image signals. Fig. 5 shows an example where an image signal received via the network 100 is displayed in each of the windows.

Referring to Fig. 5, the areas 610, 612, 614, 616, 618 and 620 in the image display window 600 denote the image display areas. Although the present embodiment has six image display areas, the present invention is not limited to this. The map window 500 shown in Fig. 3 and the image display window 600 shown in Fig. 5 may be displayed on the same screen, or may be displayed in a separate monitor apparatus. The image display window 600 also has a trash icon 632 for deleting (log off) a displayed camera image from the image display area. In addition, a camera control panel 640 is arranged by the image display window 600. The camera control panel 640 comprises various buttons for controlling a camera, so that panning/tilting zooming of a selected camera can be controlled. Note that the panel

640 may be displayed on the same screen as the windows 500 and 600, or may be displayed on a different screen.

Referring to the camera control panel 640 shown in Fig. 5, reference numerals 641 and 642 denote buttons for controlling a tilt angle; 643 and 644, buttons for controlling a pan angle; and 645, a button for setting the camera angle at a home position (pan angle: pan head setting direction, tilt angle: a predetermined value). Reference numeral 646 denotes a button for instructing enlargement, and 647, a button for instructing reduction. These buttons are selected by operating the mouse 28 to move the cursor on a desired button and clicking with the mouse.

The Graphical User Interface (GUI) used in the monitoring system of the present embodiment will be described next with reference to Figs. 6-10.

When a camera icon is dragged from any of the map 510, 520, 530 or 540 and dropped in an arbitrary image display area (the area 614 in Fig. 6) in the image display window 600, a moving image sensed by the camera corresponding to the selected (dragged and dropped) icon is displayed on the image display area where the icon is dropped. (Herein, the drag and drop operation is equivalent to the operation of moving the cursor 28a to a predetermined subject, moving (drag) the cursor 28a while the mouse 28 is depressed, and releasing (drop) the depression at a predetermined position. This operation will be referred to as D&D operation hereinafter.) Fig. 6 shows the condition where the camera icon 523 is dragged and dropped in the image display area 614. During the dragging operation, the mouse cursor 28a is displayed in the shape of a camera as shown in Fig. 7, enabling an operator to easily confirm that the cursor is currently subjected to D&D operation. At this stage, the map management software 413 searches an ID number of the corresponding camera 10 on the basis of position information of the dragged camera icon 523, and informs the image receive software 412 with respect to the ID of the camera 10 which is subject to D&D operation. The image receive software 412 then finds out panning/tilting angles and the name of the camera 10, and a host name of the image transmission terminal 20 to which the camera 10 is connected, on the basis of the ID, and notifies these information to the camera control client 411 and the map management software 413.

On the basis of the information, the camera control client 411 connects the camera control server 421 of the image transmission terminal 20, to which the subject camera 10 is connected, with the network. Thereafter, camera control is performed by both the camera control client 411 and the camera control server 421. Information such as pan/tilt angles of the camera 10 is constantly notified from the camera control client 411 to the image receive software 412.

The map management software 413 performs to transmit data from a VRAM (video RAM) (not shown) in the video board 136, in order to change the direction of

a camera icon in correspondence with the actual direction of the camera 10, or to draw a view scope 910 indicative of display operation of the camera as shown in Fig. 9, or to draw a control pointer 920 in the view scope 910 to be used for controlling panning/tilting and zooming of the camera 10. Note that in order to perform the above-described display, map data stored in the main memory 24 is updated.

The map management software 413 is constantly informed of the information such as pan/tilt of the camera 10 by the image receive software 412. When the pan/tilt or zoom of the camera 10 is changed by the camera control panel 640, the change is immediately reflected on the camera icons 521, 522, 523, 524; 531 and 532. More specifically, when one camera icon is selected, and the button on the camera control panel 640 or the pointer 920 displayed in the selected camera icon is operated by the mouse 28, the instruction information is transferred to the image transmission terminal 20. Then, in accordance with a packet of condition information which is sent by the image transmission terminal 20 regarding the camera 10, the directions or the like of the corresponding camera icon are corrected and displayed.

Note that in a case where a plurality of image transmission terminals and a plurality of monitoring terminals exist on the network, an operator of each monitoring terminal can freely operate a desired camera, as long as the camera is not being operated by someone else. In this case, each of the image transmission terminal may transmit camera condition information to the monitoring terminal which most currently performed camera control, or may transmit the information to each of the monitoring terminals. In the latter case, the display conditions of the plurality of camera icons (camera icons corresponding to the cameras operated by someone on the network) displayed on the map are changed accordingly.

In response to a request sent by the image receive software 412, transmission of image data is executed. The image receive software 412 requests the image transmit software 422 of the image transmission terminal 20, to which the corresponding camera 10 is connected, to transmit the data corresponding to one frame via the network 100. In response to the request, the image transmission software 422 divides the frame of the newest-captured data into packets and transmits it to the image receive software 412. The image receive software 412 reconstructs a frame from the packets and displays the image in a corresponding display area, then again performs image transmit request. This process is rapidly repeated, whereby displaying a moving picture of the video camera 10 on the bit map display 135. To display images sensed by a plurality of cameras 10, the aforementioned processing is sequentially repeated: sending an image transmission request to the image transmit software 422 stored in the image transmission terminal 20 to which each of the cameras 10 is connected, compressing the captured image, dividing

the image into packets, data transmission via network, receiving the packets, reconstructing the frame, decoding, decompressing and displaying.

The displayed image in the window can be moved by D&D operation of the image display area as shown in Fig. 8. Fig. 8 shows the condition where an image sensed by the video camera 523 displayed in the image display area 614 is moved to the image display area 612.

At this stage, the image receive software 412 clears the image displayed in the image display area 614 and changes internal parameters such that the image of the corresponding video camera 10 is displayed in the area 612, which is the destination of the D&D operation. Thereafter, the image is displayed in the image display area 612. Note that the logical network connection is not disconnected by this operation. In other words, once connection is established with the network, it will not be disconnected unless the image display area is dragged and dropped into the trash icon 632. In a case of quitting the displaying of an image sensed by the video camera, as shown in Fig. 10, the image display area is dragged and dropped into the trash icon 632 in the image display window 600. Fig. 10 shows the condition after quitting displaying of an image sensed by the camera 10 corresponding to the camera icon 523, which was displayed in the image display area 614. The image receive software 412 clears the image displayed in the image display area 614 and stops sending the image transmit request to the corresponding image transmit software 422. Further, the image receive software 412 notifies the camera control client 411 and the map management software 413 that the displaying is stopped. Upon receiving the information regarding stopping of displaying, the camera control client 411 disconnects the network connection of the camera control server 421. Moreover, the map management software 413 removes the scope display from the camera icon 523 corresponding to the camera 10 and updates the map data stored in the main memory 24.

The system which performs the above described operation utilizes a text file called "map file" to set names of the map, tag names, a bit map displayed on the background, a camera icon which is superimposed on the map, directions of the pan head and the like.

In the map file, "map data" and "camera data" having more than one data is stored, and information with respect to a background bit map to be displayed with a camera icon is described.

The setting of the present system can be easily changed by referring to an arbitrary map file.

For the purpose of explanatory convenience, the terms used in the present specification are defined as follows.

Herein, "map data" includes:

- (1) a name of a single map (referred to as a "map name");
- (2) a name of a tag of a map (referred to as a "map

tag name"); and

(3) a name of an actual file of a background bit map displayed on the map window 502 (referred to as a "bit map name").

"Camera data" includes:

(1) a name of an image transmission terminal to which each of the cameras is connected (referred to as a "host name");

(2) a position where a camera icon defined by absolute coordinates on the background bit map is combined with a background (referred to as a "camera position");

(3) an initial direction of a pan head of a camera (when a camera faces the center of the possible range of panning, the camera direction will be herein referred to as a camera's "initial direction");

(4) a name of a camera (referred to as a "camera name"); and

(5) a parameter indicative of whether or not the camera is remotely controllable (referred to as a "camera type").

The combination of corresponding map data and camera data, and a combined screen of a camera icon and a background bit map, generated based on these data, will be referred to as the "map."

Since all the above elements are described in the map file as text data, they can be edited by a general text editor. However in this case, the series of processing: edit, display and confirm, must be repeatedly performed. To improve this process, the present embodiment suggests to utilize the "map editor" which enables easy edit operation in a short period of time in the manner of WYSIWYG (What You See Is What You Get).

Before providing description on the map editor, the contents of the map file are first described.

Fig. 31 shows an example of contents of the map file (text file) generated by the map editor according to the present embodiment.

As mentioned above, the map file includes the map data and camera data.

The symbol "+" shown in Fig. 31 is a delimiter for starting map description. Three types of data: a map name, a file name of image data to be used as the background of the map, and a map tag name, are described in a single line, being separated from one another by a space or a tab. Note that the data to be used as the background of the map is not limited to image data, but may be drawing data.

The symbol "\$" is a delimiter for starting camera data description. The data described thereafter in a single line are: map name, address (name) of an image transmission terminal on the network, camera position defined by (X, Y) coordinates, initial direction of the pan head, form of connection (value between 0 to 2), channel number (value between 0 to 4), camera name and

camera type (in the present embodiment, either VCC or OTHER).

For instance, in Fig. 31, the three lines starting from the map name "FLOOR1" indicate that the camera symbols called "CAMERA1", "CAMERA2" and "CAMERA3" are displayed on the map corresponding to "FLOOR1."

The form of connection, channel number, and camera types will be briefly described next.

The form of connection indicates the connection form of a plurality of cameras connected to the image transmission terminal. If connected as shown in Fig. 1, "0" is set; if connected with a switcher, "1"; and if connected with a switcher and a combine device, "2".

In a case where only a single camera is connected to the image transmission terminal, a switcher is unnecessary, thus "0" is set as the channel number. In a case where a plurality of cameras (camera controller 12) are connected, the switcher is necessary, thus the respective channel number 1, 2, 3 or 4 is described.

The camera type to be set in the present embodiment is either VCC or OTHER. VCC denotes a camera capable of remote operation, and OTHER denotes a camera incapable of remote operation.

Hereinafter, description will be provided on the map editor.

Fig. 11 shows the GUI of the map editor. Reference numeral 3100 denotes a map editor window; and 3110, a map display window where a background bit map is displayed for a map corresponding to any of map tags 3130, 3132 and 3134 selected immediately before displaying. Fig. 11 shows the condition after the tag 3130 having the map tag name "MAP1" is selected by mouse click. The map having the map tag named "MAP1" includes camera data indicated by camera icons 3180, 3182, 3184 and 3186. Below each of the camera icons 3180, 3182, 3184 and 3186, camera names "CAMERA1", "CAMERA2", "CAMERA3" and "CAMERA4" respectively, are displayed. The map tag names "MAP1", "MAP2" and "MAP3" are displayed on the map tags 3130, 3132 and 3134. The tag 3120 is a map generate tag. When the tag 3120 is clicked, a map name dialogue box 700 as shown in Fig. 12 is displayed and a new map can be generated. Reference numeral 3140 denotes a slider bar, which is displayed if the map display window 3110 is smaller than the displayed bit map, and enables to scroll the bit map and the camera icons. Reference numeral 3150 denotes a camera generate icon. If the icon 3150 is dragged and dropped on a background bit map displayed in the map display area, a camera icon is newly generated on the dropped position. Reference numeral 3160 denotes a camera delete icon. If a camera icon, superimposed on the background bit map in the map display window 3110, is dragged and dropped into the icon 3160, the selected camera icon is deleted. Reference numeral 3170 denotes a pull-down menu display area. All the functions of the map editor can be selected from the menu. The present embodiment provides "file" 3170a, "map" 3170b, "camera" 3170c, and "help" 3170d as the pull-

down menu. Descriptions thereof will be provided later in detail.

Description will be provided next on the steps of generating a map file by utilizing the above described map editor, with reference to the flowcharts shown in Figs. 13-17.

When the map editor (application) is started (S1), the map editor first determines whether or not the editor was quit without previously closing a map file (S2). If it is determined that the map editor was quit without closing a map file, at the time of start-up of the map editor, the map file is automatically opened, displaying the bit map and camera icons (S3). Note that if the map editor is quit after a map file is closed, the map file will not be opened at the next start-up of the map editor. In this case, the condition such as that shown in Fig. 18 is displayed, where the map generate tag 3120, and map tags 3130, 3132 and 3134 are not shown.

Next, the map file is edited. An operator can edit a map file by newly generating a map file (S4-S8), or by opening an existing map file and editing thereof (S9-S13).

First, it is determined whether or not a map file is to be newly generated. More specifically, it is determined whether or not the menu "NEW" (new map file generate means) is selected (mouse click) from the file menu 3170a which is the pull-down menu shown in Fig. 19 (S4). When the menu "NEW" is selected, it is determined whether or not a name is set for the current-editing map file (S5). If it is not set, a name is assigned to the current-open map file, and the file is saved and closed (S6). If a name has been already set for the current-editing map file, the edit is overwritten in the current-open map file and saved, then the file is closed (S7). Then, a new map file whose name has not been set is edited (S8). Immediately after the menu "NEW" is selected, the map generate tag 3120 is displayed as shown in Fig. 20 to enable new map generation.

In order to generate a new map, map generate means is selected. In this case, in the flowcharts of Figs. 13-17, steps S9, S14, S16, S20, S21 and S23 are skipped, and it is determined in step S25 whether or not means for generating a new map is selected. More specifically, the map generate tag 3120 (Fig. 20) is clicked with a mouse or selected from a menu. The menu "NEW-MAP" is selected from the map menu 3170b which is a pull-down menu shown in Fig. 19B.

When means for generating a new map is selected, the map name dialogue box 700 shown in Fig. 12 is opened, enabling to input a map name and a map tag name to generate a new map (S26). The input map tag name is displayed on the map tag of the map (S27); however, the map name is normally not displayed on the screen. When the map name, map tag name or map file name are to be viewed, map information display means is selected. More specifically, the menu "MAP FILE INFORMATION" is selected from the file menu 3170a shown in Fig. 19A. By this selection, determination is made that the map file information display means is

selected (S21), thereafter a map file information box 710 shown in Fig. 21 is displayed, enabling to see a list of an actual file name, map name and map tag name of the current-open map file (S22).

- 5 When a background of a map is to be specified, it is determined whether or not designation is made to read a file for a background bit map. More specifically, it is determined whether or not the menu "READ BACKGROUND BITMAP" is selected from the map menu 3170b shown in Fig. 19B (S28). When the menu "READ BACKGROUND BITMAP" is selected, the bit map of a map for the current-open map file is read (S29). The bit map data is stored in the secondary storage 126. When the background is not specified, the background is displayed in white. In the present embodiment, the secondary storage 126 serves as the first memory means.

- 10 Description will now be provided for storing bit map data. As shown in Fig. 22, a scanner 150, serving as an image read apparatus (input means for reading a map), is connected to the monitoring terminal 60 which starts the map editor. This enables to directly read the bit map of a map. The read bit map data is stored in the secondary storage 126. By the above process, it is possible to realize bit map reading. Note that although the scanner 150 is connected to the monitoring terminal 60, it may be connected to the image transmission terminal 20 so that data can be received by the terminal 60 via the network 100. Moreover, although the above description states that the bit map data is temporarily stored in the secondary storage 126, the data read by the scanner 150 may be directly handled when the menu "READ BACKGROUND BITMAP" is selected. It should be noted however that it is better to store the data read by the scanner 150 in the secondary storage 126 for the subsequent use.

- 15 It is also possible to generate a background bit map by utilizing a drawing tool (map draw means), i.e., application software, instead of reading data from an image read apparatus e.g. the scanner. The drawing tool may be easily started by adding it to the menu 3170. By storing background bit map data generated by the drawing tool in the secondary storage 126, the above described bit map reading is realized. Note that another application stored outside the system may be used as the drawing tool. In such case, it is preferable to include a function which can convert the background bit map data generated by the outside drawing tool into a form applicable to the present system and a function for reading the converted data. The drawing generated by the drawing tool may not be stored in the form of bit map data, but figures such as lines and circles may be stored in the form of drawing parameters (coordinates data or the like).

- 20 Generating a camera icon will be described next.
- 25 When a camera icon representing a subject camera is to be generated, camera icon generate means is selected from a menu. More specifically, the menu "NEW CAMERA" is selected from the camera menu 3170c shown in Fig. 19C. When it is determined that the

menu "NEW CAMERA" is selected (S34 in Fig. 16), the camera information dialogue box 720 shown in Fig. 23 is automatically opened. Herein, camera data such as position and initial direction of a camera icon is inputted, and a new camera icon is generated and displayed on a corresponding position (S35). Information such as position and initial direction of the camera icon is used at the time of displaying the camera icon on a background. Note that the position (X, Y) of the generated camera icon can be moved by D&D operation. When the position of a camera icon is changed by D&D operation, attribute data (e.g. camera position, camera direction or the like) of the camera may be updated at the moved position.

In the above mentioned camera information dialogue box 720, it is possible to set a camera name, a host name, a camera position, a pan head's (optical axis of the camera) initial direction, and a camera type. The camera position is indicated by (X, Y) coordinates on the background bit map, and the initial direction of pan head is the center of the possible range of panning. The camera type, that is, whether or not the pan head is electrically controllable, is selected by a radio button 520a located at the bottom of the camera information dialogue box 720 in Fig. 23.

If a camera icon (e.g. 3180 in Fig. 11) displayed on the bit map is selected while a new camera icon is not generated, the camera menu 3170c shown in Fig. 19C is displayed. The menu "CAMERA INFORMATION DIALOGUE" (camera data change means) is selected from the camera menu 3170c (S41) to open the camera information dialogue box 720, and camera data for the camera represented by the selected camera icon can be changed (S42).

Selecting a camera icon is realized by clicking a camera icon with a mouse (S36). The selected camera icon 3186 is displayed as shown in Fig. 24, e.g. with an yellow frame (shown in black in Fig. 24), so that it is easy to distinguish the selected camera from other cameras. Since a camera is selected one at a time, the yellow frame of the selected camera icon disappears when another camera icon is selected (S37). Referring to Fig. 24, when a camera icon is selected, a control pointer 800 indicative of the initial direction of a pan head and a view angle range 810 indicative of an image-sensing range are displayed, with an extended line 820 which is drawn in the direction of the pan head as the central axis. The view angle range 810 is not necessarily be shown; instead, the initial direction of the pan head may be indicated by an arrow or the like. Note that a potential pan angle of a pan head is limited (normally, less than 180°). In the case where a camera is set controllable in the camera information dialogue box 720 shown in Fig. 23, the potential pan angle of the camera is indicated by the lines 840a and 840b as shown in Fig. 24, enabling easy pan control operation with the camera icon. The potential pan angle can be inputted in the camera information dialogue box 720 in Fig. 23. Note that such data is stored in the main memory 24.

Furthermore, when a camera icon (e.g. 3180 in Fig. 11 or Fig. 24) is selected, the camera menu 3170c is displayed. By selecting the menu "DELETE CAMERA" from the camera menu 3170c (S39), it is possible to delete the selected camera icon from the window and delete the camera data of the camera from the map, so that an unnecessary camera icon can be deleted from the window (S40).

As has been described above, generating and deleting a camera icon is realized by selecting appropriate means from the menu, and is also realized by D&D operation with a mouse.

Generating a camera icon is performed in the following manner. The camera generate icon 3150 (Fig. 24) is dragged and dropped (S43) in the map display area (map display window 3110) whereby opening the camera information dialogue box 720. The coordinates of a position where the camera icon is dropped are automatically inputted to the camera information dialogue box 720 as a camera icon position. Parameters other than the position are inputted in the camera information dialogue box 720 by an operator and the OK button is depressed. The camera information dialogue box 720 is closed and a new camera icon is generated.

Meanwhile, deleting a camera icon is performed in the following manner. If a camera icon (e.g. 3180 in Fig. 24) is dragged and dropped into the camera delete icon 3160 (S45), the camera data of the camera is deleted from the map and the camera icon is deleted from the map display area (map display window 3110) (S46).

The position of a camera icon or the direction of a pan head can be changed not only by using the camera information dialogue box 720 but also by D&D operation using a mouse.

The position of a camera icon (e.g. 3180 in Fig. 24) can be changed by dragging and dropping the icon in the map display area (map display window 3110). By this operation, camera data regarding a position of the camera can be changed (S48).

The direction of the pan head can be changed by D&D operation of the control pointer 800 displayed on the extended line 820 which is drawn in the direction of the camera icon. By this operation, camera data with respect to the direction of the pan head of the subject camera is changed (S50). The control pointer 800 can be moved along the circumference of a circle having a rotation axle 830 of a camera icon at its center.

Next, description will be provided in a case where a map is changed while editing a map file having a plurality of maps. A map tag (e.g. 3130 in Fig. 24) of the map to be changed is clicked with a mouse (S51). Map data for the map and camera data are described in the map display area by displaying camera icons superimposing on the bit map (S52). If the number of maps is too large and the width of the total map tags exceeds the width of the map display window, a tag scroll button 3200 is displayed on both sides of the map tags. By clicking the button 3200, it is possible to scroll the entire tags in the direction of the arrow of the button 3200.

When a map name or a map tag name is to be changed, or an unnecessary map is to be deleted, the following process is performed.

When a map name or a map tag name is to be changed, it is determined whether or not the map name/map tag name change means (the menu "CHANGE TAG NAME/MAP NAME" in the map menu 3170b in Fig. 19B) is selected by mouse click (S30). If it is selected, the map name dialogue box 700 is opened for the currently selected map, whereupon a map name and a map tag name are inputted, performing the change processing (S31). The menu "CHANGE TAG NAME/MAP NAME" in the map menu 3170b may be selected by double-clicking the map tag.

In addition, when an unnecessary map is to be deleted, it is determined whether or not the map delete means (the menu "DELETE MAP" in the map menu 3170b in Fig. 19B) is selected by mouse click (S32). If it is selected, the subject map data, camera data and map tag are deleted (S33).

Upon completing edit of the subject map file, the map file is stored, whereby generating an actual text file in the secondary storage. This processing is performed in the following manner.

It is determined whether or not the means (the menu "SAVE" in the file menu 3170a in Fig. 19A) for saving the edited map file is selected (S16). If it is selected, it is then determined whether or not a name is set for the current-editing map file (S17). If it is not set, a name is assigned to the current-open map file and saved, then editing is continued (S18). If a name has been already set for the current-editing map file, the edit is overwritten in the current-open map file and saved, then editing is continued (S19).

In a case where the edited map file is named and saved, it is determined whether or not the menu "SAVE AS" is selected from the file menu 3170a in Fig. 19A (S20). If it is selected, a name is assigned to the current-open map file and saved, then editing is continued (S18).

Upon completing edit of the subject map file, if an operator wishes to keep the map editor open but wishes to prevent erroneous change on the map, the map file is simply closed. This processing is performed in the following manner.

It is determined whether or not the menu "CLOSE" is selected from the file menu 3170a in Fig. 19A (S14). If it is selected, the map file is closed (S15). After closing the map file, operation cannot be performed except generating a new map file, opening a map file and exiting the map editor.

When all the operation is finished, the map editor is exited. This processing is performed in the following manner.

When a button 3210 for the map editor shown in Fig. 11 is clicked, a menu (not shown) including "MOVE" and "QUIT" is displayed. It is determined whether or not "QUIT" is selected from the menu (S23), and if it is selected, the map editor is quit (S24). Note that the

same processing is performed by selecting "QUIT" from the file menu 3170a in Fig. 19A. At the time of quitting, the map editor saves, in an initial setting file, the condition of whether or not the map file is still subjected to editing, and the map file name. The initial setting file is referred to at the start-up of the map editor.

According to the present embodiment, edit of a map file can be easily realized by the above described map editor.

Note that the foregoing processing is performed by the CPU 22 on the basis of data stored in the main memory 24, utilizing programs (software) stored in the secondary storage 26.

15 <Modified Embodiment>

The modified embodiment provides an example of operation of the map editor in a case where, as shown in Fig. 29, a single image transmission terminal 20 is connected to an image signal switcher 5001 called "switcher" for switching RS-signals and analog signals, and an apparatus 5002 called "combine device" which performs switching of four analog image signals sent by four different cameras and combining four screens. The modified embodiment enables to connect up to four video cameras. The display form of a selected camera icon in the modified embodiment is different from that of the foregoing embodiment. In addition, in the modified embodiment, more data can be inputted into the camera information dialogue box.

Fig. 26 shows a condition where a camera icon, representing a video camera connected to the switcher 5001 and combine device 5002, is selected. Camera icons 4001, 4002, 4003 and 4004 represent video cameras connected to the same switcher and the combine device; and camera icons 4005 and 4006 represent video cameras connected to other image transmission terminals. The condition shown in Fig. 26 is the state immediately after the camera icon 4004 is clicked with a mouse.

As mentioned in the foregoing embodiment, a camera icon can be selected one at a time. The selected camera icon 4004 is displayed with a yellow frame. In the present embodiment, the mark "V" is displayed at the bottom right of the camera icon 4004, to indicate the connection with the switcher 5001 and combine device 5002. The camera icons 4001, 4002, and 4003 also have the same mark "V" below the icons, indicating that they are also connected with the same switcher and combine device.

Note that in accordance with an instruction sent by the CPU 22 via the I/O 32, the combine device 5002 combines images sensed by more than one designated cameras such that the images are as if sensed by a single camera, and outputs the combined image to the video capture board 34. For instance, in a case where an instruction is given to output an image sensed by a single camera only, the received image is directly outputted to the video capture board 34 without process-

ing. In a case where an instruction is given to combine images sensed by four cameras, the received four images are respectively reduced to one barter in the size, and all the four images are combined to generate one image having the size as large as the original image's size, then the image is outputted to the video capture board 34.

Although each of the images sent from respective cameras is small, it is possible to display the images sensed by four cameras, for instance, in the window 610 in Fig. 5. A technique to combine a plurality of images by the combine device and display the combined image in one display window is as follows. For instance, a plurality of camera icons having the "V" mark on the map are selected (e.g., by clicking an icon while depressing a shift key on the key board, additional selection of a camera icon is realized). Alternatively, while an image of one of the cameras connected to the combine device 5002 is displayed, an instruction is given, by utilizing combine instruct means, to the image transmission terminal 20, such that the combine device sends a combine instruction.

Moreover, as shown in Fig. 30, the system may be constructed with a switcher 5003 only, without including the combine device. In this case, instead of combining images sensed by a plurality of cameras, one camera is selected and the sensed image is received and displayed.

The difference between the switcher 5003 in Fig. 30 and the switcher 5001 in Fig. 29 is in that, selection of a control subject camera is equivalent to selection of a camera whose image is to be captured in the switcher 5003, while it is not equivalent in the switcher 5001.

As a matter of course, the operation performed in the construction shown in Fig. 30 can be performed in the construction shown in Fig. 29, by sending a camera select instruction to the switcher 5001 and simultaneously sending the same instruction to the combine device 5002.

Fig. 27 shows a condition where a camera icon, representing the camera connected to the switcher 5003 only, is selected. Camera icons 4101, 4102, 4103 and 4104 represent cameras connected to the same switcher, and camera icons 4105 and 4106 represent cameras connected to other switchers. The condition shown in Fig. 27 is the state immediately after the camera icon 4104 being clicked with a mouse.

As similar to the state shown in Fig. 26, the selected camera icon 4104 is displayed with an yellow frame. At the same time, the mark "S," indicating that the camera is connected to the switcher, is displayed at the bottom right of the camera icon 4104. The camera icons 4104, 4102 and 4103 have the same mark "S" below the icons, indicating that they are also connected to the same switcher.

In the modified embodiment, it is preferable that the camera information dialogue box, used for inputting/changing camera data, be displayed in the form shown in Fig. 28, in consideration of the switcher and

combine device. In the camera information dialogue box 750 shown in Fig. 28, radio buttons 752 (752a, 752b and 752c) and a switcher channel number dialogue box 754 are added to the camera information dialogue box 720 shown in Fig. 23. The radio buttons 752 specify a form of camera connection (single device, switcher, switcher and combine device), and the switcher channel number dialogue box 754 specifies a control I/O of the switcher to which the selected camera icon is connected. These data is referred when the camera control client 411 (Fig. 2) sends a camera control command to the camera control server 421, or when the map management software 413 displays a camera icon.

According to the above described modified embodiment, it is possible to easily edit a map file, which is a text file, in a short period of time, in the manner of WYSIWYG.

A map file such as that shown in Fig. 31 can be generated by the above described modified embodiment.

The generated map file may be uploaded, e.g., to a file server on a network, so that it can be distributed to users at each monitoring terminal.

Thus, if a camera server, corresponding to the image transmission terminal of the present embodiment, is established in the Internet, and map files of e.g. famous sightseeing spots or the like are uploaded to an appropriate server (may be a camera server), it is possible for an end user to enjoy sightseeing by remotely operating the camera while viewing the map of the sightseeing spot.

As described above, according to the present invention, it is possible to provide an apparatus which can display camera arrangement on a map with easy operation.

Moreover, it is possible to provide an apparatus where operability of the displayed camera on the map is improved.

The present invention is not limited to the above embodiments and various changes and modifications can be made within the spirit and scope of the present invention. Therefore, to appraise the public of the scope of the present invention, the following claims are made.

An image display apparatus capable of selecting an arbitrary camera from a plurality of cameras connected via a network and displaying an image sensed by the selected camera. The image display apparatus includes a first memory unit for storing predetermined map data, a map display unit for displaying a map on a screen based on the map data stored in the first memory unit, a symbol display unit for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen, and a second memory unit for storing the camera symbol in association with the position.

Claims

1. An image display apparatus capable of selecting an

arbitrary camera from a plurality of cameras connected via a network and displaying an image, characterized by comprising:

- first memory (125, 126) for storing predetermined map data;
 - map display means (135, 136) for displaying a map on a screen based on the map data stored in the first memory;
 - symbol display means (135, 136) for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen; and
 - second memory (125, 126) for storing the camera symbol in association with the position.
- 5
- 2. The image display apparatus according to claim 1 further comprising input means for reading a map, wherein said input means converts the read map to digital data, and said first memory stores the map data converted by said input means.
- 10
- 3. The image display apparatus according to claim 1 further comprising map generate means for generating a map, wherein said map generate means converts a generated map to digital data, and said first memory stores the map data converted by said map generate means.
- 15
- 4. A camera control apparatus capable of selecting a controllable camera from a plurality of cameras connected via a network and controlling the camera, characterized by comprising:
 - first memory (125, 126) for storing predetermined map data;
 - map display means (135, 136) for displaying a map on a screen based on the map data stored in the first memory;
 - symbol display means (135, 136) for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen; and
 - second memory (125, 126) for storing the camera symbol in association with the position.
- 20
- 5. The camera control apparatus according to claim 4, wherein said symbol display means displays a possible range of panning operation of a camera which corresponds to the superimposed camera symbol, in association with a corresponding camera symbol.
- 25
- 6. The camera control apparatus according to claim 5, wherein said second memory stores the possible range of panning operation of the camera in association with the corresponding camera symbol.
- 30
- 7. The camera control apparatus according to claim 4,

wherein said symbol display means is capable of changing a direction of a camera corresponding to the camera symbol by rotating the camera symbol.

- 35
- 8. The camera control apparatus according to claim 7, wherein said second memory stores the direction of the camera symbol in association with the corresponding camera symbol.
- 40
- 9. A map edit apparatus for generating a map file which is utilized by an apparatus, wherein in accordance with a map file including: camera data specifying a camera subjected to remote control operation and map data indicating a position of the camera, said apparatus displays a camera symbol corresponding to a camera at a corresponding position, and enables to select a desired camera symbol whereby displaying an image sensed by a camera corresponding to the selected camera symbol, characterized by comprising:
 - instruct means (128, 130) for instructing a position to display a camera symbol;
 - attribute setting means (128, 130) for setting attribute data for the camera symbol displayed at the position instructed by said instruct means; and
 - storing means (125, 126) for storing a map file in a predetermined form on the basis of the position data instructed by said instruct means and the attribute data set by said attribute setting means.
- 45
- 10. The map edit apparatus according to claim 9, wherein the attribute data set by said attribute setting means includes a camera name corresponding to the camera symbol, a camera position, and a direction of a pan head loading the camera.
- 50
- 11. The map edit apparatus according to claim 10, wherein said attribute setting means includes attribute input window display means for displaying an attribute input window where the camera name, the camera position, and the direction of the pan head loading the camera are input when the desired camera symbol is selected.
- 55
- 12. The map edit apparatus according to claim 10, wherein said attribute setting means includes camera symbol position change means for changing a position of a camera symbol in accordance with an instruction of a predetermined pointing device, wherein the position of the camera symbol is set by said camera symbol position change means.
- 13. The map edit apparatus according to claim 10, wherein said attribute setting means includes pointer display means for displaying a pointer to change the direction of the camera symbol when

- the desired camera symbol is selected, wherein in a case where the pointer is operated to change the direction of the camera symbol, in accordance with the direction of the pointer, a direction of a pan head of the camera corresponding to the selected camera symbol is changed. 5
14. The map edit apparatus according to claim 12, wherein the attribute data set by said attribute setting means includes an address of a terminal on a network connecting additional cameras to be controlled. 10
15. The map edit apparatus according to claim 12, wherein the attribute data set by said attribute setting means includes information indicative of whether or not a camera is remotely controllable. 15
16. The map edit apparatus according to claim 12, wherein said attribute setting means includes camera symbol position change means for changing a position of a camera symbol in accordance with an instruction of a predetermined pointing device, wherein the position of the camera symbol is set by said camera symbol position change means. 20
17. The map edit apparatus according to claim 9; further comprising: 25
- image file select means for selecting an image file used as a background to place a camera symbol; and
- background image display means for reading image data from the image file selected by said image file select means and superimposing on the camera symbol. 30
18. The map edit apparatus according to claim 9, wherein a plurality of areas where the camera symbols are arranged are displayed, and each of the areas includes a tab so that one of the areas can be selected. 40
19. The map edit apparatus according to claim 9, wherein the map file is a text file. 45
20. A control method of a map edit apparatus for generating a map file which is utilized by an apparatus, wherein in accordance with a map file including: camera data specifying a camera subjected to remote control operation and map data indicating a position of the camera, said apparatus displays a camera symbol corresponding to a camera at a corresponding position, and enables to select a desired camera symbol whereby displaying an image sensed by a camera corresponding to the selected camera symbol, comprising the steps of: 50
- instructing a position to display a camera sym-
- bol;
- setting attribute data for the camera symbol displayed at the position instructed in said instructing step; and
- storing a map file in a predetermined form on the basis of the position data instructed in said instructing step and the attribute data set in said attribute setting step. 55
21. A memory medium storing computer program codes for a map editor for generating a map file which is utilized by an apparatus, wherein in accordance with a map file including: camera data specifying a camera subjected to remote control operation and map data indicating a position of the camera, said apparatus displays a camera symbol corresponding to a camera at a corresponding position, and enables to select a desired camera symbol whereby displaying an image sensed by a camera corresponding to the selected camera symbol, comprising:
- program codes for instructing a position to display a camera symbol;
- program codes for setting attribute data for the camera symbol displayed at the position instructed in said instructing step; and
- program codes for storing a map file in a predetermined form on the basis of the position data instructed in said instructing step and the attribute data set in said attribute setting step.

FIG. 1

FIG.2

FIG.3

FIG.4

FIG.5

FIG. 6

EP 0 804 031 A2

FIG. 7

SHAPE OF MOUSE CURSOR BEING DRAGGED AND DROPPED

FIG. 8

EP 0 804 031 A2

FIG.9

FIG.10

FIG. 11

FIG.12

FIG.13

FIG. 14

FIG.15

FIG.16

FIG. 17

FIG.18

FIG.19A

3170a

FIG.19B

3170b

FIG.19C

3170c

FIG.20

FIG. 21

FIG.22

FIG.23

FIG. 24

FIG. 25

EP 0 804 031 A2

FIG. 26

FIG. 27

FIG.28

FIG. 29

FIG.30

FIG. 31

EP 0 804 031 A2

+
FL00R1 C:\map\image\map1.bmp F1①
FL00R2 C:\map\image\map2.bmp F2①
...
\$ FL00R1 CAMERA-SERVER1 100,100 95 0 0 CAMERA1 VCC①
FL00R1 CAMERA-SERVER2 200,100 120 1 1 CAMERA2 VCC①
FL00R1 CAMERA-SERVER2 300,100 200 1 2 CAMERA3 VCC①
...
CAMERA
DESCRIPTION
FL00R2 CAMERA-SERVER20 150,200 150 0 0 CAMERA20 OTHER①
...
[EOF]

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 804 031 A3

(12) EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
13.05.1998 Bulletin 1998/20

(51) Int. Cl.⁶: H04N 7/18

(43) Date of publication A2:
29.10.1997 Bulletin 1997/44

(21) Application number: 97106636.0

(22) Date of filing: 22.04.1997

(84) Designated Contracting States:
DE FR GB

(30) Priority: 23.04.1996 JP 101227/96

(71) Applicant:
CANON KABUSHIKI KAISHA
Tokyo (JP)

(72) Inventor: Yonezawa, Hiroki
Ohta-ku, Tokyo (JP)

(74) Representative:
Tiedtke, Harro, Dipl.-Ing. et al
Patentanwaltsbüro
Tiedtke-Bühling-Kinne & Partner
Bavariaring 4
80336 München (DE)

(54) Image display apparatus, camera control apparatus and method

(57) An image display apparatus capable of selecting an arbitrary camera from a plurality of cameras connected via a network and displaying an image sensed by the selected camera. The image display apparatus includes a first memory unit for storing predetermined map data, a map display unit for displaying a map on a screen based on the map data stored in the first memory unit, a symbol display unit for superimposing a camera symbol indicative of the camera at an arbitrary position of the map displayed on the screen, and a second memory unit for storing the camera symbol in association with the position.

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 97 10 6636

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	EP 0 690 628 A (SENSORMATIC ELECTRONICS CORP) 3 January 1996 * page 3, column 4, line 15 - page 5, column 8, line 11 * * figures 1-4 *	1,5-14, 17,20,21	H04N7/18
A	GAVER W W ET AL: "A VIRTUAL WINDOW ON MEDIA SPACE" HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '95 CONFERENCE PROCEEDINGS. DENVER, MAY 7 - 11, 1995, 7 May 1995, KATZ I R ET AL (ED.), pages 257-264, XP000538454 * the whole document *	1-21	
TECHNICAL FIELDS SEARCHED (Int.Cl.6)			
H04N			
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	20 March 1998	Van der Zaal, R	
CATEGORY OF CITED DOCUMENTS:			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USTRD)