Facultad de Ingeniería en Tecnologías de la Información y la Comunicación Matemáticas Discretas Jorge M. Londoño P.

Cálculo de predicados

- 1. Para cada una de las siguientes frases indicar <u>los predicados</u>, <u>el universo del discurso</u>, asignar un <u>nombre a cada predicado</u> y escribir la frase como una <u>expresión lógica</u>. (1 punto c/u)
 - a) Todos los basketbolistas son altos
 - b) Los hijos de mis tios son mis primos
 - c) Los hijos de mis hermanos son mis sobrinos
 - d) Las aves de rapiña cazan pequeños roedores
 - e) Si un número no se pueden escribir como el cociente de dos enteros, es irracional.
 - f) Todo par mayor a dos se puede escribir como la suma de dos primos (<u>Conjetura de Goldbach</u>)
- 2. Hacer las particularizaciones indicadas en las siguientes expresiones:
 - a) S_{v}^{x} ($\forall x P(x) \land \exists y Q(y) \lor R(x,y)$)
 - b) S_a^x ($\exists z(P(x,z) \ v \ \forall xQ(z,x))$)
 - c) $S_b^z S_c^x$ ($\exists z(P(x,z) \ V \ \forall xQ(z,x))$)
- 3. El predicado R(x,y) en un universo con 4 individuos a,b,c,d tiene los siguientes valores de verdad:

R	а	b	С	d
а	F	V	F	V
b	F	V	V	F
С	F	V	F	F
d	V	V	F	V

Evaluar las siguientes expresiones, indicar cuantas interpretaciones tienen y el valor de verdad de cada interpretación (1 punto c/u)

a) $\forall x \exists y R(x,y)$

- b) $\exists y \neg \forall x R(x,y)$
- c) $\forall y \ R(x,y)$
- d) $\exists z \ R(z,x)$
- e) $\forall x \exists y R(u,v)$
- f) $\exists y \ \forall x \ (R(x,y) \rightarrow R(y,x))$

Para rayar:

	a	b	С	d
а				
b				
С				
d				

- 4. Unificar:
- a) P(x,a,b) con P(y,y,z)
- b) Q(a,x,c) con Q(x,y,x)
- c) R(a,x) con R(x,b)
- d) S(x,z,z) con S(y,y,c)

5. Comprobar:

- a) $\neg \exists x P(x) \equiv \forall x \neg P(x)$
- b) $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$
- c) $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$
- d) $\exists x (P \land Q(x)) \equiv P \land \exists x Q(x)$
- e) $\forall x (PvQ(x)) \equiv Pv\forall xQ(x)$