密码学二级

分级通关系列教程

古典密码

■ 单表代换密码

加密:

- 明文a b c d e f g h l j k l m n o p q r s t u v w x y z
- 密文XNYAHPOGZQWBTSFLRCVMUEKJDI

解密:

- ABC DE F G HI J K L MN O PQR S T U V W X Y Z
- dlr yvo hez xwptb gf jqnm us k ac l

古典密码

■ 维吉利亚密码 (多表代换)

英文中a~z,由0~25表示。

假设串长为m,明文为P,密文为C,密钥为K则

$$C = (P_1 + K_1, P_2 + K_2, \dots, P_m + K_m) mod 26$$

$$P = (C_1 - K_1, C_2 - K_2, \dots, C_m - K_m) mod 26$$

例如,假设明文为: ILOVEMIMAXUE ,密钥为: AWSL

则密文为: IHGGEIAXATMP。

(密钥若长度不够可以继续重复,例如 AWSLAWSLAWSL)

古典密码

■ Hill密码

$$(c1, c2, c3) = (x1, x2, x3) \begin{pmatrix} k11 & k12 & k13 \\ k21 & k22 & k23 \\ k31 & k32 & k33 \end{pmatrix} (mod 26)$$

自然语言判断 http://practicalcryptography.com/cryptanal ysis/text-characterisation/quadgrams/

■基本思想

If the text looks very similar to English (or <u>another language</u>), we consider the key to be a good one.

- 四字母词
 - ATTACK ⇒ATTA, TTAC, and TACK

■ 统计词频/训练

$$p(\text{ATTA}) = \frac{\text{count}(\text{ATTA})}{N}$$

Quadgram	Count	Log Probability
AAAA	1	-6.40018764963
QKPC	0	-9.40018764963
YOUR	1132	-3.34634122278
TION	4694	-2.72864456437
ATTA	359	-3.84509320105

■ 计算一段文字概率

$$p(ATTACK) = p(ATTA) \times p(TTAC) \times p(TACK)$$

 $\log (p(ATTACK)) = \log (p(ATTA)) + \log (p(TTAC)) + \log (p(TACK))$

■原理

- 在长度相同的情况下,概率对数越大(绝对值越小),与自然语言越接近

背包加密

- 背包加密算法(根据文档自学)
- 求解问题(0,1背包)

已知一背包加密的公钥为

{615436700291,415460700271,15508700231,846430100773,677471501215,139578302079,1791 68604148,789306608798,563224517265,364498233536,229056467022,670323428329,11593448 1316,44989786476,518624653302,149955258190,728568829281,796899516776,546782575075, 178164449829,356328899658,712657799316,569303048254,223205396187,446410792374,8928 21584748,524144817108,132888933895,611875519857,877653387647,839906074973,35774353 074}, 密文为 6020587936087, 试求明文二进制表示。

求公钥中, 哪些整数相加的和恰好等于密文6020587936087

格和LLL算法

首先介绍格(Lattice)的概念,设 $B = \{\beta_0, \beta_1, \dots, \beta_{m-1}\}$ 是实向量空间 \mathbb{R}^{n+1} 的一组线性无

关的向量,那么由B形成的格定义为 $L(B) = \{\sum_{i=0}^{m-1} v_i \beta_i \mid v_i \in \mathbb{Z} \}$ 。设向量 $\beta = (r_0, r_1, \dots, r_n)$,

其长度用欧氏范数 $\|\beta\| = \sqrt{\sum_{i=0}^{n} r_i^2}$ 来表示,LLL 算法输入向量组 B ,可以在多项式时间内,在

L(B) 中找到一组长度"最短",接近正交的另外一组m 个线性无关的向量组B'。

格和LLL算法

设背包加密的公钥为 $pk = (b_0, b_1, \dots, b_{n-1})$,密文为 $c = \sum_{i=0}^{n-1} b_i v_i$,下面求向量v。

构造矩阵
$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & 0 \\ b_0 & b_1 & \cdots & b_{n-1} & -c \end{pmatrix}$$
,那么 $A \begin{pmatrix} v_0 \\ v_1 \\ \cdots \\ v_{n-1} \\ 1 \end{pmatrix} = \begin{pmatrix} v_0 \\ v_1 \\ \cdots \\ v_{n-1} \\ 0 \end{pmatrix}$,

设矩阵 A 的列向量为 $\beta_0, \beta_1, \dots, \beta_n$,如果 $c \neq 0$,那么它们是 n+1 个线性无关的向量,可以

看成是实向量空间 \mathbb{R}^{n+1} 的一组基底, $(v_0, v_1, \dots, v_{n-1}, 0)^T = v_0 \beta_0 + v_1 \beta_1 + \dots + v_{n-1} \beta_{n-1} + \beta_n$,

所以 $(v_0, v_1, \dots, v_{n-1}, 0)^T \in L(A)$ 。又因为 $(v_0, v_1, \dots, v_{n-1}, 0)^T$ 的每一项为 0 或者 1,所以其长度较小,通过在 $\beta_0, \beta_1, \dots, \beta_n$ 上运用 LLL 算法,会生成一组新的"最短"的基底,可能在新的基底中出现 $(v_0, v_1, \dots, v_{n-1}, 0)^T$,从而得到背包问题的解v。