DTFT Table

Time Signal	DTFT	
$1, -\infty < n < \infty$	$2\pi\sum_{k=0}^{\infty}\delta(\Omega-2\pi k)$	
	$\lim_{k=-\infty} O(32 - 2nk)$	
$\begin{bmatrix} -1, &, -3, -2, -1 \end{bmatrix}$	$\frac{2}{1 - e^{-j\Omega}}$	
$sgn[n] = \begin{cases} -1, &, -3, -2, -1 \\ 1, & 0, 1, 2, \dots \end{cases}$	$1-e^{-j\Omega}$	
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\Omega - 2\pi k)$ $1, -\infty < \Omega < \infty$	
$\delta[n]$		
$\delta[n-q], q = \pm 1, \pm 2, \pm 3, \dots$	$e^{-jq\Omega}, q = \pm 1, \pm 2, \pm 3, \dots$	
$a^n u[n], a < 1$	$e^{-jq\Omega}$, $q = \pm 1, \pm 2, \pm 3, \dots$ $\frac{1}{1 - ae^{-j\Omega}}$, $ a < 1$	
$e^{j\Omega_o n}, \Omega_o$ real	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_o - 2\pi k), \Omega_o \text{ real}$	
$\begin{bmatrix} 1, & n = -q, -q+1, \dots \end{bmatrix}$	$\frac{\sin[(q+\frac{1}{2})\Omega]}{\sin(\Omega/2)}$	
$p_{q}[n] = \begin{cases} 1, & n = -q, -q+1, \dots \\ & , -1, 0, 1, \dots q \\ 0, & otherwise \end{cases}$	$\sin(\Omega/2)$	
0, otherwise		
$\frac{B}{\pi} \operatorname{sinc}\left[\frac{B}{\pi}n\right]$	$\sum_{k=-\infty}^{\infty} p_{2B}(\Omega + 2\pi k)$	
$\cos(\Omega_{_{o}}n)$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) + \delta(\Omega - \Omega_o - 2\pi k) \right]$	
$\cos(\Omega_o n + \theta)$	$\left[\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) + e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right] \right]$	
$\sin(\Omega_o n)$	$j\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) - \delta(\Omega - \Omega_o - 2\pi k) \right]$	
$\sin(\Omega_o n + \theta)$	$j\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) - e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$	

DTFT Properties

Property Name	Property	
Linearity	ax[n] + bv[n]	$aX(\Omega) + bV(\Omega)$
Time Shift	x[n-q],	$e^{-jq\Omega}X(\Omega)$, q any integer
	q any integer	
Time Scaling	$x(at), a \neq 0$	$\frac{1}{a}X(\Omega/a), a \neq 0$
Time Reversal	x[-n]	$X(-\Omega)$
		$\overline{X(\Omega)}$ if $x[n]$ is real
Multiply by <i>n</i>	nx[n]	$j\frac{d}{d\Omega}X(\Omega)$
Multiply by Complex Exponential	$e^{j\Omega_o n}x[n], \Omega_o \text{ real}$	$X(\Omega - \Omega_o)$, Ω_o real
Multiply by Sine	$\sin(\Omega_o n)x[n]$	$\frac{j}{2} [X(\Omega + \Omega_o) - X(\Omega - \Omega_o)]$
Multiply by Cosine	$\cos(\Omega_o n)x[n]$	$\frac{1}{2} \left[X(\Omega + \Omega_o) + X(\Omega - \Omega_o) \right]$
Summation	$\sum_{i=-\infty}^{n} x[i]$	$\frac{1}{1 - e^{-j\Omega}} X(\Omega) + \pi \sum_{k = -\infty}^{\infty} X(0) \delta(\Omega - 2\pi k)$
Convolution in Time	x[n]*h[n]	$X(\Omega)H(\Omega)$
Multiplication in Time	x[n]w[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega - \lambda) W(\lambda) d\lambda \text{(conv.)}$
Parseval's Theorem (General)	$\sum_{n=-\infty}^{\infty} x[n] \overline{v[n]} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) \overline{V(\Omega)} d\Omega$	
Parseval's Theorem (Energy)	$\sum_{n=-\infty}^{\infty} x^2[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^2 d\Omega \text{if } x(t) \text{ is real}$ $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^2 d\Omega$	
Using CTFT Table to find Inverse	Form $\Gamma(\omega) = X(\omega) p_{2\pi}(\omega)$ and look up $\gamma(t) \leftrightarrow \Gamma(\omega)$	
of a DTFT $X(\Omega)$: $x[n] = ??$	Then get $x[n] = \gamma(t) _{t=n}$	