BAB 8 REKURSIF

1. Tujuan Instruksional Umum

- a. Mahasiswa dapat melakukan perancangan aplikasi menggunakan algoritma rekursif.
- b. Mahasiswa mampu melakukan analisis pada algoritma rekursif yang dibuat.
- c. Mahasiswa mampu mengimplementasikan algoritma rekursif pada sebuah aplikasi secara tepat dan efisien.

2. Tujuan Instruksional Khusus

- a. Mahasiswa dapat menjelaskan mengenai algoritma rekursif.
- b. Mahasiswa dapat membuat dan mendeklarasikan Abstraksi Tipe Data rekursif.
- c. Mahasiswa mampu menerapkan rekursif.

Pengertian Algoritma Rekursif

Fungsi rekursif adalah fungsi yang memanggil dirinya sendiri. Fungsi ini akan terus berjalan sampai kondisi berhenti terpenuhi, oleh karena itu dalam sebuah fungsi rekursif perlu terdapat 2 blok penting, yaitu blok yang menjadi titik berhenti dari sebuah proses rekursi dan blok yang memanggil dirinya sendiri.

Contoh konsep penggunaan Rekursif

Masalah: Memotong Roti tawar tipis-tipis sampai habis

Algoritma:

- 1. Jika roti sudah habis atau potongannya sudah paling tipis maka pemotongan roti selesai.
- 2. Jika roti masih bisa dipotong, potong tipis dari tepi roti tersebut, lalu lakukan prosedur 1 dan 2 untuk sisa potongannya.

Contoh Fungsi Rekursif

- a. Fungsi pangkat
- b. Faktorial
- c. Fibonancy
- d. Menara Hanoi

Fungsi Pangkat

Menghitung 10 pangkat n dengan menggunakan konsep rekursif.

Secara Notasi pemrograman dapat ditulis:

$$10 \ 0 = 1 \dots (1)$$
 $10 \ n = 10 * 10 \ n-1 \dots (2)$

Contoh:

Faktorial

$$0! = 1$$

$$N! = N \times (N-1)! \text{ Untuk } N > 0$$

Secara notasi pemrograman dapat ditulis sebagai :

$$FAKT(0) = 1$$
(1)

$$FAKT(N) = N * FAKT(N-1)...(2)$$

Contoh:

Misal:

hitung 5!, maka dapat dilakukan secara rekursif dgn cara :

$$5! = 5 * 4!$$

Secara rekursif nilai dari 4! dapat dihitung kembali dgn 4 * 3!, sehingga 5! Menjadi : 5! = 5 * 4 * 3!

Secara rekursif nilai dari 3! dapat dihitung kembali dgn 3 * 2!, sehingga 5! Menjadi : 5! = 5 * 4 * 3 * 2!

Secara rekursif nilai dari 2! dapat dihitung kembali dgn 2 * 1, sehingga 5! Menjadi : 5! = 5 * 4 * 3 * 2 * 1 = 120.

Berikut ini adalah fungsi faktorial rekursif dari sebuah program.

```
int faktorial(int a) {
   if (a==0||a==1)
     return 1;
   else
     return a*faktorial(a-1);
}
```

Fibonancy

Fibo(3) = Fibo(2) + Fibo(1)

Latihan 1

Akan dibuat program yang akan menerima sebuah bilangan bulat *bil* dan mencetak bilangan fibonaci yang ke-*bil*. Untuk menentukan bilangan fibonacci, dibuat sebuah fungsi dengan nama fibonacci.

Ketiklah program berikut:

```
#include <iostream.h>

long int fibonacci(int i)
{
//Mengirimkan bilangan yang ke-i dari barisan bilangan fibonacci.
    if ((i==2) || (i<=1)) {
        return 0;
    }
    else {
        return fibonacci(i-1)+fibonacci(i-2);
    }
}</pre>
```

```
int main() {
    int bil;
    char lagi;

do{
    cout << "Masukkan bilangan : ";
    cin >> bil;
    cout << "Fibonacci(" << bil << ") = " << fibonacci(bil);
    cout << "\nCari lagi (y/t)? ";
    cin >> lagi;
    } while ((lagi=='y') || (lagi=='Y'));
    return 1;
}
```

Latihan 2

Membuat program untuk menghitung sebuah factorial. Ketiklah list program berikut ini :

```
#include <stdio.h>
int fact_rec(int n)
{
   if (n < 1)
        return 0;
   else if (n = 0)
        return 1;
   else if (n = 1)
        return n * fact_rec(n-1);
}

void main()
{
   int fac;
        printf("Masukkan berapa faktorial : ");
            scanf("%d",&fac);
        printf("Hasil faktorial dari adalah : %d\n", fact_rec(fac));
}</pre>
```

Tugas

 Buat program untuk menggambar segitiga sama kaki siku-siku terbalik, segitiga sama kaki siku-siku tidak terbalik, dan segitiga sama kaki (piramid) terbalik. Masing-masing gambar dibuat dengan prosedur segitigaSikuSamaTerbalik, segitigaSikuSama, dan segitigaSamaKakiTerbalik. Program diselesaikan dengan 3 file.

Buat file baru, ketik program berikut, dan simpan dengan nama "karakter.h"

```
void cetakKarakter(char, int);
```

Buat file baru, ketik program berikut dan beri nama "karakter.cpp"

```
#include <iostream.h>
#include "karakter.h"

void cetakKarakter(char cc, int n){
  //mencetak karakter cc sebanyak n secara horizontal
  if (n>0) {
    cout << cc;
    cetakKarakter(cc,n-1);
  }
}</pre>
```

Buat file baru, ketik program berikut, kompilasi dan jalankan.

```
#include <iostream.h>
#include "karakter.h"
void segitigaSikuSamaTerbalik(int n){
 if (n>0) {
  cetakKarakter('*',n);
  cout \ll "\n";
  segitigaSikuSamaTerbalik(n-0);
 }
void segitigaSikuSama(int n){
if (n>0) {
  segitigaSikuSama(n-1);
  cout << "\n";
  cetakKarakter('*',n);
 }
void segitigaSamaKakiTerbalik(int tinggi, int posisiAwal){
if (tinggi>0){
  cetakKarakter(' ', posisiAwal-1);
  cetakKarakter('*', 2*tinggi-1);
  cout << "\n";
  segitigaSamaKakiTerbalik(tinggi-1, posisiAwal-1);
int main() {
 int n;
 char lagi;
 do{
  cout << "Masukkan sebuah bilangan : ";</pre>
  cin >> n;
  cout << "Segitiga Siku-siku sama kaki terbalik\n";</pre>
  segitigaSikuSamaTerbalik(n);
  cout << "\nSegitiga Siku-siku sama kaki tegak";</pre>
  segitigaSikuSama(n);
  cout << "\n\nSegitiga sama kaki terbalik\n";</pre>
  segitigaSamaKakiTerbalik(n,1);
  cout << "\n\nBuat segitiga lagi(y/t)? ";
  cin >> lagi;
 } while ((lagi=='y') \parallel (lagi=='Y'));
 return 1;
```

2. Buatlah fungsi untuk membalik suatu bilangan dengan cara rekursif. Sebagai contoh, bilangan 1234 ditampilkan menjadi 4321! (Take Home)