Project Title: AI-Powered Construction Site Safety Monitoring System

1. Introduction

• 1.1 Project Overview:

- This project aims to develop an AI-powered system to enhance safety on construction sites by detecting workers not wearing helmets.
- The initial phase focuses on real-time helmet detection using a webcam, with future enhancements including:
 - Detection of other safety gear (e.g., safety vests, gloves)
 - Outdoor camera support
 - Fall detection
 - Integration with an alarm system and SMS/notification alerts to site supervisors.

• 1.2 Project Goals:

- o Improve worker safety on construction sites.
- Reduce the incidence of head injuries.
- o Increase awareness of safety protocols.
- Provide real-time monitoring and alerts for immediate response.

2. System Architecture

• 2.1 Hardware:

- Webcam (initially)
- o (Future) Outdoor cameras
- o (Future) Sensors for fall detection
- o Alarm system (e.g., siren, buzzer)

• 2.2 Software:

- Frontend: Web application (e.g., using React, Angular) for:
 - Real-time video feed display
 - Alert visualization (e.g., red flags, notifications)
 - Historical incident data viewing
 - System configuration (e.g., camera settings, sensitivity adjustments)
- o **Backend:** Server (e.g., Python with Flask/Django, Node.js) for:
 - Image/video processing and analysis (using an AIML model)
 - Alert triggering (alarm, SMS/notifications)
 - Data storage and retrieval (database e.g., PostgreSQL, MongoDB)

• 2.3 AI Model:

- **Type:** Deep Learning model (e.g., Convolutional Neural Network CNN) or Pre-Trained Model like YOLO, SSD
- **Purpose:** To accurately identify individuals wearing and not wearing helmets in real-time video streams.
- Training Data: Dataset of images/videos of construction workers with and without helmets.

3. Workflow

1. Video Capture: Webcam captures a live video stream of the construction site.

2. Image Processing:

- Video stream is divided into frames.
- Each frame is processed by the AI model to detect the presence of workers and determine if they are wearing helmets.

3. **Decision Making:**

• If a worker is detected without a helmet, the system triggers an alert.

4. Alerting:

- Alarm: The alarm system is activated (e.g., siren sounds).
- Notification: SMS/email alerts are sent to the site supervisor/owner.

5. Data Logging:

o Information about the incident (timestamp, location, image/video snippet) is stored in the database for future analysis and reporting.

6. User Interface:

• The frontend displays the live video feed, alerts (visual and textual), and historical incident data.

4. Future Enhancements

- **Safety Gear Detection:** Extend the system to detect other safety gear (e.g., safety vests, gloves, boots).
- Outdoor Camera Support: Adapt the system for use with outdoor cameras, considering factors like lighting, weather conditions, and camera placement.
- **Fall Detection:** Integrate sensors or utilize advanced AI techniques to detect worker falls on the construction site.
- Improved Alerting:
 - Implement more sophisticated alerting mechanisms (e.g., push notifications, voice alerts).
 - Integrate with existing site safety management systems.
- **Data Analysis and Reporting:** Generate reports on safety incidents, identify high-risk areas, and provide insights for improving overall site safety.

5. Conclusion

This project has the potential to significantly enhance worker safety on construction sites. By leveraging the power of AI and IoT, we can create a proactive system that monitors for potential hazards and alerts stakeholders in real-time. Continuous development and refinement of the system will further improve its effectiveness and contribute to a safer working environment for construction workers.