Polycyclic Group Based Cryptography and Implementation

Yoongbok Lee

College of William and Mary Department of Mathematics

Honors Thesis 2017-2018

- Introduction to Cryptography
 - Public-key Cryptography
 - Vulnerability
- Introduction to Groups
 - Finitely Presented Group
- Group Based Cryptography
 - Examples of Group Based Cryptography
- My research
 - Ko-Lee protocol & Nonlinear Decomposition Attack
 - implementation and efficiency analysis

Cryptography

- Definition
 - The art of encoding and decoding messages

- Public-key
 - A cryptography based on a publicly known key and a secret private key

Public-key Cryptogrpahy

Diffie-Hellman

- Example: Diffie-Hellman protocol
 - In some set G
 - Alice and Bob's private key a and b, respectively.
 - For a known element $g \in G$, Alice and Bob's keys: g^a and g^b , respectively.
 - Shared secret key: $(g^a)^b = (g^b)^a = g^{ab}$

Vulnerability

 Relies on the hardness of decomposing large composite numbers

 the size of keys has to grow to avoid possible brute-force attacks

Group

- A group G is a collection of elements under a binary operation (*) that satisfies these properties :
 - identity $\exists e \in G$ such that g * e = e * g = g for all $g \in G$
 - inverse $\forall g \in G, \exists h \text{ such that } g*h = h*g = e.$ We write $h = g^{-1}$
 - associativity $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- Note: A group does not have to be commutative! $(ab \neq ba)$

Finitely Presented Group

Group given by its generators and relations

• $G = \langle x_1, x_2, \cdots | r_1, r_2, \cdots \rangle$ where each r_i 's represent the identity of the group

Group Based Cryptography

Cryptosystem based on various kinds of groups (including the group of integers under addition)

Examples of Group Based Cryptography

- Diffie-Hellman protocol
 - ElGamal protocol

- Anshel-Anshel-Goldfeld protocol
- Ko-Lee protocol

Algorithmic Problems for Platform Groups

- decision and search problems
 - word problem Given a word $g \in G$, decide whether g = e in G.
 - membership problem Given a word $g \in G$ and a subgroup $H \leqslant G$, decide whether $g \in H$
 - conjugacy problem Given elements $g, h \in G$, decide if $g = x^{-1}hx$ for some $x \in G$

Diffie-Hellman Based Cryptosystem

- Given: Group G, A, B where A, $B \subseteq G$, $ab = ba(a \in A, b \in B)$, and $g \in G$
- Alice's key : g^a , Bob's key : g^b

• Shared key = $g^{ab} = g^{ba}$, can be obtained by both sides efficiently.

Nonlinear Decomposition Attack

- Main Idea: decomposing an element in a pre-determined set of elements
- works only if the membership search problem is efficiently solvable
- applicable to many other Diffie-Hellman scheme protocols

implementation and efficiency analysis

- Goal
 - Build a functional model of the attack
 - analyze the complexity of the model
- GAP
 - provides various built-in functions related to Abstract Algebra
 - package "Polycyclic"
- Current status
 - Implementation complete, working as intended
 - Implement in different platform groups and protocols

Implementation

- Decryption
 - find generating set of g^A in terms of $g^{a'}$ s, $a \in A$.
 - solve Alice's public key (g^a) in terms of those generating set
 - compute g^{ab}

Testing the Implementation

Average time in milliseconds of 100 trials $|G| = 2 \times p^6$

	Alice and Bob	Eve
5	~0	15.92
7	~0	38.56
11	~0	719.44
13	~0	5112.64
17	~0	11982.76
19	~0	23941.04
21	$\sim 1/4$	113164.88