Part A: Build a classification model using text data

text_data = pd.read_csv("text_training_data.csv") text_data.head() **₹** headline label MyBook Disk Drive Handles Lots of Easy Backups not clickbait CIT Posts Eighth Loss in a Row not clickbait Candy Carson Singing The "National Anthem" Is ... clickbait 3 Why You Need To Stop What You're Doing And Dat... clickbait 27 Times Adele Proved She's Actually The Reale... clickbait #NOTE: THIS CODE IS FROM WEEK 10 CLASS CODE # Helper function to plot top positive and negative coefficients def visualize_coefficients(coefficients, feature_names, n_top_features=25): """Visualize coefficients of a linear model. Parameters coefficients : nd-array, shape (n_features,) Model coefficients. feature_names : list or nd-array of strings, shape (n_features,) Feature names for labeling the coefficients. n_top_features : int, default=25 How many features to show. The function will show the largest (most positive) and smallest (most negative) n_top_features coefficients, for a total of 2 * n_top_features coefficients. coefficients = coefficients.squeeze() if coefficients.ndim > 1: # this is not a row or column vector raise ValueError("coeffients must be 1d array or column vector, got" " shape {}".format(coefficients.shape)) coefficients = coefficients.ravel() if len(coefficients) != len(feature names): raise ValueError("Number of coefficients {} doesn't match number of" "feature names {}.".format(len(coefficients), len(feature_names))) # get coefficients with large absolute values coef = coefficients.ravel() positive_coefficients = np.argsort(coef)[-n_top_features:] negative_coefficients = np.argsort(coef)[:n_top_features] interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients]) # plot them plt.figure(figsize=(15, 5)) colors = ['#ff2020' if c < 0 else '#0000aa' for c in coef[interesting coefficients]] plt.bar(np.arange(2 * n_top_features), coef[interesting_coefficients], color=colors) feature_names = np.array(feature_names) plt.subplots_adjust(bottom=0.3) plt.xticks(np.arange(1, 1 + 2 * n_top_features), feature_names[interesting_coefficients], rotation=60, ha="right") plt.ylabel("Coefficient magnitude") plt.xlabel("Feature")

```
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
X_cv = pd.DataFrame(cv.fit_transform(text_data["headline"]).toarray())
y = text_data['label'].map({'clickbait': 1, 'not clickbait': 0})
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import f1_score, classification_report
X_train, X_test, y_train, y_test = train_test_split(X_cv, y, train_size=0.3, random_state=110)
X_train.shape
→ (7493, 20332)
param_grid = {
    'C': [0.1, 1, 10, 100],
lr = LogisticRegression()
grid = GridSearchCV(lr, param_grid, cv=5, scoring = 'f1')
grid.fit(X_train, y_train)
\overline{\Rightarrow}
                 GridSearchCV
      ▶ best_estimator_: LogisticRegression
             LogisticRegression ?
print("Best Parameters:", grid.best_params_)
print("Best score: ", grid.best_score_)
best_model = grid.best_estimator_
y_pred = best_model.predict(X_test)
score = f1_score(y_test, y_pred)
print("F1 score: ", score)

    Best Parameters: {'C': 100}
    Best score: 0.9630477889888389
```

visualize_coefficients(best_model.coef_[0], cv.get_feature_names_out(), n_top_features=20)

LogisticRegression + TfidVectorizer + GridSearchCV

F1 score: 0.9588615163836403

```
from sklearn.feature_extraction.text import TfidfVectorizer
tf = TfidfVectorizer()
X_tf = pd.DataFrame(tf.fit_transform(text_data["headline"]).toarray())
```

```
X_train, X_test, y_train, y_test = train_test_split(X_tf, y, train_size=0.2, random_state=110)
X_train.shape
→ (4995, 20332)
param_grid = {
    'C': [0.1, 1, 10, 100],
lr = LogisticRegression()
grid = GridSearchCV(lr, param_grid, cv=5, scoring = 'f1')
grid.fit(X_train, y_train)
print("Best Parameters:", grid.best_params_)
print("Best score: ", grid.best_score_)
best_model = grid.best_estimator_
y_pred = best_model.predict(X_test)
score = f1_score(y_test, y_pred)
print("F1 score: ", score)
visualize_coefficients(best_model.coef_[0], cv.get_feature_names_out(), n_top_features=20)
   Best Parameters: {'C': 100}
```

Best score: 0.9623268177651176 F1 score: 0.9562709731543624

LogisticRegression + CountVectorizer + GridSearchCV + Lemmatizer (PorterStemmer)

```
import nltk
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
stemmer = nltk.stem.PorterStemmer()
class LemmaTokenizer(object):
    def __init__(self):
        self.wnl = WordNetLemmatizer()
    def __call__(self, doc):
        return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
lv = CountVectorizer(tokenizer=LemmaTokenizer())
X_lv = pd.DataFrame(lv.fit_transform(text_data["headline"]).toarray())
/opt/anaconda3/lib/python3.10/site-packages/sklearn/feature_extraction/text.py:521: UserWarning: The parameter 'token_patter
      warnings.warn(
X_train, X_test, y_train, y_test = train_test_split(X_lv, y, train_size=0.2, random_state=110)
X_train.shape
→ (4995, 19650)
param_grid = {
    'C': [0.1, 1, 10, 100],
```

```
}
lr = LogisticRegression()
grid = GridSearchCV(lr, param_grid, cv=5, scoring = 'f1')
grid.fit(X_train, y_train)
print("Best Parameters:", grid.best_params_)
print("Best score: ", grid.best_score_)
best_model = grid.best_estimator_
y_pred = best_model.predict(X_test)
score = f1_score(y_test, y_pred)
print("F1 score: ", score)

Best Parameters: {'C': 100}
Best score: 0.9664784529506232
F1 score: 0.9615665034892199
```

The Logistic Regression + Grid Search + Lemmetization had the best performance. The best parameters are {'C': 100}. But they are all good.

Part B: Build a Predictive Neural Network Using Keras

data = pd.read_csv("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv")
data.head()
data.drop(columns=['rownames'])

₹		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows x 5 columns

```
import tensorflow.keras as keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation
from tensorflow.keras.optimizers import SGD

data = data.iloc[:,1:]
X = data.loc[:, data.columns != 'Species']
y = data['Species']
X
```

```
₹
          Sepal.Length Sepal.Width Petal.Length Petal.Width
      0
                    5.1
                                 3.5
                                               1.4
                                                            0.2
      1
                    4.9
                                 3.0
                                               1.4
                                                            0.2
      2
                    4.7
                                 3.2
                                               1.3
                                                            0.2
      3
                    4.6
                                 3.1
                                               1.5
                                                            0.2
      4
                    5.0
                                 3.6
                                               1.4
                                                            0.2
     145
                    6.7
                                 3.0
                                               5.2
                                                            2.3
     146
                    6.3
                                 25
                                               5.0
                                                            19
     147
                    6.5
                                 3.0
                                               5.2
                                                            2.0
     148
                    62
                                                            23
                                 34
                                               54
     149
                                 3.0
                    5.9
                                               5.1
                                                            1.8
     150 rows x 4 columns
y = keras.utils.to_categorical(data['Species'].map({'setosa': 0, 'versicolor': 1, 'virgi|nica': 2}), num_classes=3)
🚁 /opt/anaconda3/lib/python3.10/site-packages/pandas/core/series.py:1031: RuntimeWarning: invalid value encountered in cast
       arr = np.asarray(values, dtype=dtype)
model = Sequential()
model.add(Dense(16, activation='relu', input_dim=4))
model.add(Dense(16, activation='relu'))
model.add(Dense(3, activation='softmax'))
/opt/anaconda3/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`in
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
print(X_train.shape)
print(y_train.shape)

→ (112, 4)
     (112.3)
model.fit(X_train, y_train,
          epochs=100,
          batch size=20)
#score = model.evaluate(X, y, batch_size=150) # extract loss and accuracy from test data evaluation

→ Epoch 1/100
     6/6 -
                             - 0s 901us/step - accuracy: 0.4175 - loss: 0.8479
     Epoch 2/100
                             - 0s 687us/step - accuracy: 0.3207 - loss: 0.7702
    6/6
    Epoch 3/100
    6/6 -
                             0s 779us/step - accuracy: 0.3572 - loss: 0.7269
     Epoch 4/100
     6/6
                             - 0s 758us/step - accuracy: 0.4351 - loss: 0.7079
    Epoch 5/100
                             - 0s 678us/step - accuracy: 0.6489 - loss: 0.6840
    6/6
     Epoch 6/100
     6/6
                             - 0s 696us/step - accuracy: 0.6478 - loss: 0.6808
    Epoch 7/100
                             - 0s 615us/step - accuracy: 0.6853 - loss: 0.6550
    6/6
     Epoch 8/100
    6/6 -
                             - 0s 781us/step - accuracy: 0.6511 - loss: 0.6635
     Epoch 9/100
                             Os 2ms/step - accuracy: 0.6760 - loss: 0.6384
    6/6
    Epoch 10/100
                             - 0s 853us/step - accuracy: 0.6958 - loss: 0.6434
    6/6
     Epoch 11/100
```

- **0s** 808us/step - accuracy: 0.6841 - loss: 0.6347

- **0s** 782us/step - accuracy: 0.6307 - loss: 0.6366

6/6 -

6/6

Epoch 12/100

```
0s 652us/step - accuracy: 0.6596 - loss: 0.6169
    6/6
    Epoch 14/100
    6/6
                             0s 787us/step - accuracy: 0.6575 - loss: 0.6195
    Epoch 15/100
                              0s 707us/step - accuracy: 0.7918 - loss: 0.6118
    6/6
    Epoch 16/100
    6/6 -
                             - 0s 700us/step - accuracy: 0.6517 - loss: 0.6146
    Epoch 17/100
    6/6
                             - 0s 715us/step - accuracy: 0.6949 - loss: 0.5706
    Epoch 18/100
                             - 0s 807us/step - accuracy: 0.7979 - loss: 0.5973
    6/6
    Epoch 19/100
    6/6
                             0s 703us/step - accuracy: 0.6895 - loss: 0.5959
    Epoch 20/100
                             - 0s 738us/step - accuracy: 0.7365 - loss: 0.5733
    6/6
    Epoch 21/100
    6/6
                             - 0s 710us/step - accuracy: 0.6448 - loss: 0.5582
    Epoch 22/100
                            - 0s 686us/step - accuracy: 0.7329 - loss: 0.5633
    6/6
    Epoch 23/100
    6/6
                             - 0s 591us/step - accuracy: 0.7365 - loss: 0.5347
    Epoch 24/100
    6/6
                            - 0s 785us/step - accuracy: 0.7003 - loss: 0.5453
    Epoch 25/100
                             - 0s 713us/step - accuracy: 0.6829 - loss: 0.5228
    6/6
    Epoch 26/100
                              0s 754us/step - accuracy: 0.8253 - loss: 0.5349
    6/6
    Epoch 27/100
    6/6
                            - 0s 748us/step - accuracy: 0.8237 - loss: 0.5289
    Epoch 28/100
    6/6
                             - 0s 697us/step - accuracy: 0.6640 - loss: 0.5258
    Epoch 29/100
                            - 0s 792us/step - accuracy: 0.7189 - loss: 0.4996
    6/6 -
score = model.evaluate(X_test, y_test, batch_size=128)
print(score)
                             - 0s 51ms/step - accuracy: 0.7368 - loss: 0.3811
→ 1/1 -
     [0.3811020255088806, 0.7368420958518982]
#Second Model
model = Sequential()
model.add(Dense(16, activation='relu', input_dim=4))
model.add(Dense(16, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
model.fit(X_train, y_train,
          epochs=100,
          batch_size=20)
score = model.evaluate(X_test, y_test, batch_size=128)
print(score)
   Epoch 1/100
                             - 0s 919us/step - accuracy: 0.3807 - loss: 1.0368
    /opt/anaconda3/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`in
      super().__init__(activity_regularizer=activity_regularizer, **kwargs)
    Epoch 2/100
    6/6 -
                            - 0s 932us/step - accuracy: 0.6998 - loss: 0.7465
    Epoch 3/100
    6/6
                            - 0s 628us/step - accuracy: 0.6697 - loss: 0.6915
    Epoch 4/100
    6/6
                             - 0s 727us/step - accuracy: 0.6284 - loss: 0.6928
    Epoch 5/100
    6/6
                            - 0s 751us/step - accuracy: 0.6715 - loss: 0.6444
    Epoch 6/100
    6/6
                              0s 674us/step - accuracy: 0.6368 - loss: 0.6646
    Epoch 7/100
    6/6
                              0s 726us/step - accuracy: 0.6710 - loss: 0.6377
    Epoch 8/100
    6/6
                             0s 736us/step - accuracy: 0.6372 - loss: 0.6464
    Epoch 9/100
                            0s 2ms/step - accuracy: 0.6306 - loss: 0.6403
    6/6
    Epoch 10/100
```

Epoch 13/100

```
Epoch 11/100
     6/6
                              0s 748us/step - accuracy: 0.6425 - loss: 0.6245
     Epoch 12/100
     6/6
                              0s 745us/step - accuracy: 0.6548 - loss: 0.6073
     Epoch 13/100
     6/6
                              0s 705us/step - accuracy: 0.6553 - loss: 0.6130
    Epoch 14/100
                              0s 759us/step - accuracy: 0.6562 - loss: 0.6051
     6/6
     Epoch 15/100
     6/6
                              0s 618us/step - accuracy: 0.6728 - loss: 0.5797
     Epoch 16/100
                              0s 661us/step - accuracy: 0.6737 - loss: 0.5841
     6/6
     Epoch 17/100
     6/6
                             • 0s 679us/step - accuracy: 0.6181 - loss: 0.6181
    Epoch 18/100
     6/6 -
                              0s 788us/step - accuracy: 0.6211 - loss: 0.6123
     Epoch 19/100
                              0s 667us/step - accuracy: 0.6636 - loss: 0.5795
     6/6 -
     Epoch 20/100
     6/6
                              0s 2ms/step - accuracy: 0.6587 - loss: 0.5677
    Epoch 21/100
     6/6
                              0s 836us/step - accuracy: 0.6248 - loss: 0.5880
     Epoch 22/100
     6/6
                              0s 727us/step - accuracy: 0.6356 - loss: 0.5747
     Epoch 23/100
     6/6
                              0s 661us/step - accuracy: 0.6550 - loss: 0.5731
     Epoch 24/100
                              0s 678us/step - accuracy: 0.6387 - loss: 0.5579
     6/6
    Epoch 25/100
     6/6
                              0s 763us/step - accuracy: 0.6027 - loss: 0.5950
     Epoch 26/100
    6/6
                              0s 663us/step - accuracy: 0.6310 - loss: 0.5742
     Epoch 27/100
     6/6
                              0s 768us/step - accuracy: 0.6527 - loss: 0.5478
     Epoch 28/100
     6/6
                              Ac 681ms/sten - accuracy: 0 6615 - loss: 0 5360
#Second Model
model = Sequential()
model.add(Dense(16, activation='relu', input_dim=4))
model.add(Dense(16, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
model.fit(X_train, y_train,
          epochs=100,
          batch_size=20)
score = model.evaluate(X_test, y_test, batch_size=128)
print(score)
   Epoch 1/100
₹
     /opt/anaconda3/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`in
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
                             - 0s 865us/step - accuracy: 0.6235 - loss: 1.0708
     6/6
     Epoch 2/100
     6/6
                              0s 663us/step - accuracy: 0.6640 - loss: 1.0219
     Epoch 3/100
     6/6
                              0s 676us/step - accuracy: 0.6807 - loss: 0.9732
    Epoch 4/100
     6/6
                              0s 649us/step - accuracy: 0.6618 - loss: 0.9420
     Epoch 5/100
    6/6 -
                              0s 2ms/step - accuracy: 0.7147 - loss: 0.8856
     Epoch 6/100
     6/6
                              0s 755us/step - accuracy: 0.6543 - loss: 0.8868
     Epoch 7/100
                              0s 745us/step - accuracy: 0.6835 - loss: 0.8448
     6/6
     Epoch 8/100
                              0s 574us/step - accuracy: 0.5946 - loss: 0.8773
     6/6
     Epoch 9/100
     6/6
                             0s 656us/step - accuracy: 0.6449 - loss: 0.8215
     Epoch 10/100
```

- **0s** 684us/step - accuracy: 0.6592 - loss: 0.6145

6/6

```
6/6
                        - 0s 648us/step - accuracy: 0.6499 - loss: 0.8024
Epoch 11/100
                         0s 597us/step - accuracy: 0.6280 - loss: 0.8049
6/6 -
Epoch 12/100
                        - 0s 649us/step - accuracy: 0.6430 - loss: 0.7796
6/6 -
Epoch 13/100
6/6
                        - 0s 538us/step - accuracy: 0.6638 - loss: 0.7492
Epoch 14/100
                        - 0s 558us/step - accuracy: 0.6140 - loss: 0.7811
6/6
Epoch 15/100
6/6 -
                        - 0s 680us/step - accuracy: 0.6577 - loss: 0.7309
Epoch 16/100
                        - 0s 749us/step - accuracy: 0.6494 - loss: 0.7309
6/6
Epoch 17/100
6/6 -
                        - 0s 703us/step - accuracy: 0.6994 - loss: 0.6681
Epoch 18/100
                        - 0s 628us/step - accuracy: 0.7153 - loss: 0.6438
6/6 -
Epoch 19/100
6/6 -
                        - 0s 727us/step - accuracy: 0.6372 - loss: 0.7174
Epoch 20/100
6/6
                        - 0s 779us/step - accuracy: 0.6282 - loss: 0.7145
Epoch 21/100
                        - 0s 604us/step - accuracy: 0.6524 - loss: 0.6790
6/6 -
Epoch 22/100
6/6 -
                        - 0s 779us/step - accuracy: 0.6217 - loss: 0.7016
Epoch 23/100
6/6
                        - 0s 702us/step - accuracy: 0.6321 - loss: 0.6909
Epoch 24/100
                        - 0s 571us/step - accuracy: 0.6882 - loss: 0.6183
6/6 -
Epoch 25/100
6/6
                        - 0s 600us/step - accuracy: 0.6263 - loss: 0.6715
Epoch 26/100
                         0s 624us/step - accuracy: 0.6423 - loss: 0.6489
6/6
Epoch 27/100
                         0s 538us/step - accuracy: 0.7005 - loss: 0.5925
Epoch 28/100
                                         ----- A 7024 1---- A F702
```

The data with 3 hidden layer has the highest result. Too much hidden layer does not give a better result, but will cause overfitting.

Double-click (or enter) to edit