

Procesamiento de señales, fundamentos

Maestría en sistemas embebidos Universidad de Buenos Aires MSE 5Co2O2O

Clase 5 - Applicaciones de DFT

x[n] \rightarrow h[n] \rightarrow y[n]TIME DOMAIN

FREQUENCY DOMAIN X[f] \rightarrow H[f] \rightarrow Y[f]

Ing. Pablo Slavkin slavkin.pablo@gmail.com wapp:011-62433453

Procesamiento de señales, fundamentos

- arrancar comentando el repaso de convolucion con otro enfoque
- Recordar el tema de la encuesta
- Dejar espacio al final de la clase para ver numeros Q

Enuestas

Encuesta anónima clase a clase

Propiciamos este espacio para compartir sus sugerencias, criticas constructivas, oportunidades de mejora y cualquier tipo de comentario relacionado a la clase.

Encuesta anónima

https://forms.gle/1j5dDTQ7qjVfRwYo8

Link al material de la material

Ing. Pablo Slavkin PDF MSE2020 Procesamiento de señales, fundamentos

Enuestas

Repaso Convolución

Multiplicacion?!

Algoritmo de Multiplicacion de 2do grado

- no hay que lanzar nada
- explicar 3 manera de multiplicar un numero
- darle forma de respuesta al impulso y senial

Repaso Convoluc<u>ión</u>

Descomposición delta

SUma deltas desplazadas

Ing. Pablo Slavkin PDF MSE2020 3/27

Procesamiento de señales, fundamentos

Repaso Convolución

- lanzar conv_as_multiply1
- muestro la misma cuenta con señales

Repaso Convolución

Convolucion formal

Convolucion

Ing. Pablo Slavkin PDF MSE2020 4/

Procesamiento de señales, fundamentos

- lanzar conv_as_multiply2
- muestro la misma cuenta con señales

$$(1x10^{1} + 2x10^{0}) * (3x10^{1} + 4x10^{0}) =$$

$$(3x10^{2} + 4x10^{1} + 6x10^{1} + 8x10^{0}) =$$

$$(3x10^{2} + 10x10^{1} + 8x10^{0}) =$$

$$(300 + 100 + 8) = 408$$

Procesamiento de señales, fundamentos

- comentar que tambien se puede ver como multiplicacion de polinomios
- en el caso de la convolucion, no se trata de 10x sino que queda expresado en ese orden cada termin

Ing. Pablo Slavkin PDF MSE2020 5/27

Repaso Convolución

Multiplicacion?!

- no hay que lanzar nada
- explicar 3 manera de multiplicar un numero
- darle forma de respuesta al impulso y senial

Convolucion en tiempo filtrado

Ing. Pablo Slavkin PDF MSE2020 7/27

Procesamiento de señales, fundamentos

- comentar lo que ya sabemos hacer con la convolucion en tiempo
- prepara la idea para F

Repaso Convolucion

Propiedades

- Conmutativa
- Distributiva
- Asociativa

Procesamiento de señales, fundamentos 2020-06-02 $x[n] \longrightarrow \begin{bmatrix} Linear \\ System \\ h[n] \end{bmatrix} \longrightarrow y[n]$ x[n] * h[n] = v[n]Repaso Convolucion $y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$

Repaso Multiplicacion

Propiedad conmutativa

Ing. Pablo Slavkin PDF MSE2020 9/27

Procesamiento de señales, fundamentos

Repaso Multiplicacion

Repaso Multiplicacion

Propiedad asociativa

Ing. Pablo Slavkin PDF MSE2020 10/27

Procesamiento de señales, fundamentos

Associative Property

| Journal or supplies for the service of the servi

 $x[n] \longrightarrow b_i[n] \bullet b_i[n] \longrightarrow y[n]$

Repaso Multiplicacion

Propiedad distributiva

Ing. Pablo Slavkin PDF MSE2020 Procesamiento de señales, fundamentos

Repaso Multiplicacion

Convolución vs Multiplicación

Teorema de la convolución

Procesamiento de señales, fundamentos

Convolución vs Multiplicación

Convolución vs Multiplicación

- explicar que cuando la entrada en t es la delta estamos simulando barrido en f, porque la delta tiene
- luego en F la entrada son círculos rotando multiplicados por círculos rotando, amplitud se escala y fase se corre la fase
- no hacemos la demostración del teorema, sino que lo probamos prácticamente
- explicar la conclusion y el teorema de la convolución

Multiplicación con DFT

Tiempo vs Frecuencia

Ing. Pablo Slavkin PDF MSE2020 13/27

Procesamiento de señales, fundamentos

Convolución vs Multiplicación

Multiplicación con DFT

lanzar conv vs dft1

2020-06-

- explicar multiplicacion usando DFT
- hacer notar que hay que estirar las cosas para que la salida tenga N+M-1
- explicar multiplicación usando DFT

Convolución vs Multiplicación

Teorema de la convolución

Ing. Pablo Slavkin PDF MSE2020

onvolución vs Multiplicación Procesamiento de señales, fundamentos Convolución vs Multiplicación Convolución vs Multiplicación

• explicar la conclusion y el teorema de la convolución

2020-06-0

• explicar que dado h r y(t) podemos dividir en frec y obtener x()

Convolución vs Multiplicación

Convolución circular

Ing. Pablo Slavkin PDF MSE2020 15/27

Procesamiento de señales, fundamentos

Convolución vs Multiplicación

Convolución vs Multiplicación

Convolución vs Multiplicación

• explicar el efecto de la convolución circular

$$x*y=$$
DTFT $^{-1}igl[$ DTFT $\{x\}\cdot\,$ DTFT $\{y\}igr]$,

Procesamiento de señales, fundamentos

Convolución vs Multiplicación

Teneral de señales, fundamentos

Teneral de señales, fundament

• explicar el tema de la DTFT y la transformada circular

Filtrado Pasabajos

Ing. Pablo Slavkin PDF MSE2020 17/27

- explicar ahora el uso de la convolution en el filtrado
- a partir de 64 puntos de fir conviene FFT, por menos conviene convolution en tiempo

Filtrado Pasaaltos

Ing. Pablo Slavkin PDF MSE2020 18/2:

- explicar ahora el uso de la convolution en el filtrado
- a partir de 64 puntos de fir conviene FFT, por menos conviene convolution en tiempo

Filtrado Definición

Ing. Pablo Slavkin PDF MSE2020 19/27

- explicar las zonas de los filtros, tipos de filtro
- relación de compromiso entre ripple y bandas, etc

Filtrado

PyFDA /opt/anaconda3/bin/pyfdax

Ing. Pablo Slavkin PDF MSE2020 20/27

- explicar ahora el uso de la convolution en el filtrado
- a partir de 64 puntos de fir conviene FFT, por menos conviene convolution en tiempo

Filtrado

Pyfda /opt/anaconda3/bin/pyfdax

Ing. Pablo Slavkin PDF MSE2020 21/27

- explicar ahora el uso de la convolution en el filtrado
- a partir de 64 puntos de fir conviene FFT, por menos conviene convolucino en tiempo

Convolución

Superponer y sumar

Procesamiento de señales, fundamentos
Convolución vs Multiplicación
Convolución

• explicar el detalle de overlap para sumar

Convolución con FFT

Superponer y sumar

Procesamiento de señales, fundamentos
Convolución vs Multiplicación
Convolución con FFT

• explicar el detalle de overlap para sumar

Filtrado con CIAA

Conversor PyFDA a fir.h para C

:1.HData[0:len(HData)//2+imparl))

Código en Python para convertir los coeficientes del fir extendidos en Q1.15 en C

```
import numpy as np
                                                           HAxe = fig.add subplot(2.1.2)
import matplotlib.pvplot as plt
                                                           HLn, = plt.plot(fData,np.abs(circularHData),'r-o'.label
import scipy, signal as sc
                                                           HAxe.legend()
          = plt.figure()
                                                           HAxe.grid(True)
                                                           HAxe.set xlim(-fs/2,fs/2)
          = 1024
firData.=np.load("5 clase/low pass 1k.npv").astype(float
                                                            def convertToC(h.H.fileName)
                                                               cFile = open(fileName, "w+")
firData=np.insert(firData,0,firData[-1]) #ojo que pydfa
                                                               cFile.write("#define h LENGTH {}\n".format(len(
        me quarda 1 dato menos.
                                                                        firData)))
          = len(firData)
                                                               cFile.write("#define h PADD LENGTH {}\n".format(len(
firExtendedData=np.concatenate((firData.np.zeros(N-1)))
impar=((N+M-1)%2)
                                                               cFile.write("#define H PADD LENGTH {}\n".format(len(
tData=np.linspace(0,(N+M-1)/fs,N+M-1,endpoint=False)
                                                                h*=2**15
fData=np.concatenate((np.linspace(-fs/2.0.(N+M-1)//2
                                                               h=h.astype(np.int16)
        endpoint=False).\
                                                               H*=2**15
      np.linspace(0,fs/2,(N+M-1)//2+impar,endpoint=
                                                                cFile.write("g15 t h[]={\n")
               False)))
firAxe = fig.add subplot(2.1.1)
                                                                cFile.write("};\n")
                                                                cFile.write("g15 t H[]={\n")
firln = nlt.nlot(tData_firExtendedData_'h.o'.label="h"
firAxe.legend()
                                                                    cFile.write("{},{},\n".format(np.real(i).astype
firAxe.grid(True)
                                                                    (np.int16).np.imag(i).astype(np.int16)))
firAxe.set xlim(0.(N+M-2)/fs)
                                                                cFile.write("}:\n")
firAxe.set_vlim(np.min(firData).np.max(firData))
                                                           convertToC(firExtendedData, HData, "5 clase/ciaa/psf2/src/
HData=np.fft.fft(firExtendedData)
                                                           plt.get current fig manager().window.showMaximized()
circularHData=np.concatenate((HData[len(HData)//2+impar
                                                           plt.show()
```


Procesamiento de señales, fundamentos

CIAA

Filtrado con CIAA

Filtrado con CIAA

- mostrar como pasar de pyfda a C
- lanzar psf1
- probar distintos filtros y ver resultado
- hacer notar el efecto del padding

Ing. Pablo Slavkin PDF MSE2020 24/27

Filtrado con CIAA

Con padding y convolución

Convolución en tiempo con padding en CIAA para filtrado

```
#include "sapi.h"
#include "arm math.h"
#include "arm const structs h"
#define MAX FFT LENGTH 2048
#define BITS 18
int16_t fftLength = 512;
int16 t blength = b LENGTH
g15 t x [ MAX FFT LENGTH]
g15 t fftOut [ ( MAX FFT LENGTH)*2 ]
q15 t fftMag [ ( MAX FFT LENGTH)/2+1 ]
uint16 t convLength = 0:
uint16 t sample = 0
int calcFftLength(int N.int M) {
  int convLength=N+M-1,i
  for(i=MAX FFT LENGTH;i>=convLength;i>>=1)
int sendStr(char A[].int N) { uartWriteByteArray ( UART USB .A
int sendBlock(g15 t A[].int N) { wartWriteByteArray ( WART USB
          .(uint8 t* )A .2*N ): ]
int main ( void ) {
```

```
( ADC ENABLE
cyclesCounterInit ( EDU CIAA NXP CLOCK SPEED )
  convLength=calcFftLength(fftLength,hLength)
  for(sample=0:sample<fftLength:sample++) {
     cvclesCounterReset():
     adc[sample] = (((int16 t )adcRead(CH1)-512)>>(10-BITS)
               )<<(6+10-BITS):
     apioToggle( LEDB):
     while(cyclesCounterRead()< 20400)
   for(sample=fftLength:sample<convLength:sample++)
   sendStr ("header" .6):
   sendBlock ( &fftlength .1 )
   sendBlock ( &convLength .1 ):
   arm conv fast g15 ( adc.fftLength.h.convLength-fftLength.
  arm rfft init g15 ( &S .convLength .0 .1 ):
  arm cmplx mag squared g15 ( fftOut ,fftMag ,convLength
                            ( fftMag .convLength/2+1 .&
  arm max q15
            maxValue .&maxIndex )
   sendBlock ( fftOut __convlength )
   sendBlock ( &maxValue .1 ):
   sendBlock ( (q15 t* )&maxIndex .1 );
  gpioToggle( LEDR);
```


Ing. Pablo Slavkin PDF MSE2020 25/27

Procesamiento de señales, fundamentos

CIAA

Filtrado con CIAA

Filtrado con CIAA

- mostrar como pasar de pyfda a C
- lanzar psf1
- probar distintos filtros y ver resultado
- hacer notar el efecto del padding

Filtrado con CIAA

Con padding y FFT

Convolución en tiempo con padding en CIAA para filtrado

```
#include "sapi.h"
                                                                 convienath=calcEftLenath(fftLenath.blenath):
#include "arm math.h"
                                                                  for(sample=0:sample<fftLength:sample++) {
#include "arm const structs h"
                                                                    cvclesCounterReset()
                                                                    adc[sample] = ((int16 t )adcRead(CH1)-512)<<6:
#define MAX FET LENGTH 1024
                                                                    apioToggle( LEDB):
int16 t fftLength = 128:
                                                                    while(cyclesCounterRead()< 20400)
int16 t hLength = h LENGTH;
                                                                  for(sample=fftLength:sample<convLength:sample++)
                                                                    adc[sample]=0
                                                                  sendStr
q15 t hTemp [ 2* MAX FFT LENGTH ]
                                                                  sendBloc
                                                                                  ( &fftLength ,
                                                                  sandRl ock
arm rfft instance g15 S
                                                                  arm rfft init d15 ( &S .convlength .8 .1 )
uint16 t convlenath = 0
                                                                                 ( &S .adc .fft0ut )
uint16 t sample = 6
int calcFftLength(int N.int M) {
  int convLength=N+M-1.i
                                                                  arm rfft init g15 ( &S .convLength .0 .1 );
  for(i=MAX_FFT_LENGTH:i>=convLength:i>>=1)
                                                                                 ( &S ,hTemp
                                                                    H[i]=H[i]*convLength
                                                                  arm cmplx mult cmplx g15(fftOut.H.H.convLength):
sendBlock ( H .convLength )
                                                                  arm cmplx mag squared g15 ( H .H .convLength/2+1
.(uint8 t* )A .2*N ):
                                                                                         ( H .convLength/2+1 .&maxValue
                                                                  arm may d15
                                                                           .&maxIndex
 nt main ( void ) f
                                                                  sendBlock ( &maxValue .1 )
                                                                  sendBlock ( (g15 t* )&maxIndex .1 ):
                   ( UART USB. 460800
                                                                  apioToggle( LEDR):
  cvclesCounterInit ( EDU CIAA NXP CLOCK SPEED ):
```


Ing. Pablo Slavkin PDF MSE2020 26/27

- mostrar como pasar de pyfda a C
- lanzar psf1
- probar distintos filtros y ver resultado
- hacer notar el efecto del padding

- [1] ARM CMSIS DSP. https://arm-software.github.io/CMSIS_5/DSP/html/index.html
- [2] Steven W. Smith. The Scientist and Engineer's Guide to Digital Signal Processing. Second Edition,
- 1999.

[3] Wikipedia.

https://en.wikipedia.org/wiki/Convolution theorem

Ing. Pablo Slavkin PDF MSE2020