1 Connected Spaces

Definition 1.1. A subset of a topological space is called clopen if it is open and closed.

Definition 1.2. A topological space \mathcal{X} is called connected if it has exactly two clopen sets: \varnothing and \mathcal{X} .

Note that the empty space \emptyset is not connected.

A subset of topological space is called connected or disconnected if so is the corresponding subspace.

Definition 1.3. A subset S of a topological space is called disconnected if it is empty or there are two open sets V and W such that:

- $(V \cap S) \cap (W \cap S) = V \cap W \cap S = \emptyset$
- $V \cap S \neq \emptyset$ and $W \cap S \neq \emptyset$
- $V \cap W \cap S = S$ (or equivalently, $S \subseteq V \cap W$)

Otherwise, we say S is connected.

Theorem 1.1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous map between topological spaces. Show that f preserves connectness.

Theorem 1.2. Suppose \mathcal{X} is a connected space, show that the quotient space \mathcal{X}/\sim is connected for any equivalence relation \sim on \mathcal{X} .

Proof. Consider the quotient map $f: \mathcal{X} \to \mathcal{X}/\sim$ which is onto, then $f(\mathcal{X})$ is connected since \mathcal{X} is connected.

Theorem 1.3. Suppose $\{A_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a collection of connected subsets of a topological space. Suppose that $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, show that $A = \bigcup_{\alpha} A_{\alpha}$ is connected.

Proof. Suppose A is disconnected, then there are two splitting V and W. We take $p \in \bigcap_{\alpha} A_{\alpha} \neq \emptyset$, since $A \subseteq V \cup W$, then $p \in V \cup W$, we may suppose $p \in V$. Then for any α , we have $V \cap A_{\alpha} \neq \emptyset$ cuase $p \in V \cap A_{\alpha}$, therefore $W \cap A_{\alpha} = \emptyset$, otherwise A_{α} is no longer connected.

Theorem 1.4. Let A be a connected set in a topological space. Suppose $A \subseteq B \subseteq \overline{A}$, show that B is connected.

<i>Proof.</i> Suppose B is disconnected and V,W is a splitting of B . We may suppose $A\subseteq V$, otherwise V,W also splits A . Then $W\subseteq \partial A$ while W is open, which means there is a smaller close set $\bar{A}\setminus W$ that contains A , which is unacceptible.
Definition 1.4. Suppose \mathcal{X} a topological space and $x \in \mathcal{X}$, the intersection of all clopen neighborhoods of x is called connected component of x . Note that the space \mathcal{X} is connected iff \mathcal{X} is a connected component of some point in \mathcal{X} .
Theorem 1.5. Show that any connected component is closed. Show that connected component is not necessary open.
<i>Proof.</i> The intersection of closed sets is closed. However, the infinite intersection of open sets is not necessary open. $\hfill\Box$
Lemma 1.1. Any connected component is connected.
<i>Proof.</i> Suppose X is a connected component of point x and V, W are splitting of X . We may suppose $x \in V$, then V is a clopen neighborhood of x and $X \subseteq V$, so $W = \emptyset$, which contradicts to the assumption that W is splitting. \square
Lemma 1.2. Suppose V is a connected component. Show that for any $y \in V$, V is the connected component of y .
<i>Proof.</i> Suppose $y \in W$ is the connected component of y , then $V \subseteq W$ cause every clopen neighborhood of x is also a clopen neighborhood of y . Suppose there is a clopen neighborhood of y that makes W a proper subset of V , then this clopen neighborhood forms a splitting on V while V is connected. \square
Theorem 1.6. Show that two connected components either coincide or disjoint.
<i>Proof.</i> If two connected components is not disjoint, then any point in the intersection of them will have the same connected component. \Box