A direct proof of the Farkas–Minkowski proposition not involving Proposition 47.1 is given at the end of this section.

Remark: There is a generalization of the Farkas–Minkowski proposition applying to infinite dimensional real Hilbert spaces; see Theorem 48.12 (or Ciarlet [41], Chapter 9).

Proposition 47.2 implies our first version of Farkas' lemma.

Proposition 47.3. (Farkas Lemma, Version I) Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$ be any vector. The linear system Ax = b has no solution $x \geq 0$ iff there is some nonzero linear form $y \in (\mathbb{R}^m)^*$ such that $yA \geq 0_n^{\mathsf{T}}$ and yb < 0.

Proof. First assume that there is some nonzero linear form $y \in (\mathbb{R}^m)^*$ such that $yA \geq 0$ and yb < 0. If $x \geq 0$ is a solution of Ax = b, then we get

$$yAx = yb,$$

but if $yA \ge 0$ and $x \ge 0$, then $yAx \ge 0$, and yet by hypothesis yb < 0, a contradiction.

Next assume that Ax = b has no solution $x \ge 0$. This means that b does not belong to the polyhedral cone $C = \text{cone}(\{A^1, \ldots, A^n\})$ spanned by the columns of A. By Proposition 47.2, there is a nonzero linear form $y \in (\mathbb{R}^m)^*$ such that

- 1. $yA^{j} \geq 0$ for j = 1, ..., n.
- 2. yb < 0,

which says that $yA \geq 0_n^{\top}$ and yb < 0.

Next consider the solvability of a system of inequalities of the form $Ax \leq b$ and $x \geq 0$.

Proposition 47.4. (Farkas Lemma, Version II) Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$ be any vector. The system of inequalities $Ax \leq b$ has no solution $x \geq 0$ iff there is some nonzero linear form $y \in (\mathbb{R}^m)^*$ such that $y \geq 0_m^\top$, $yA \geq 0_n^\top$ and yb < 0.

Proof. We use the trick of linear programming which consists of adding "slack variables" z_i to convert inequalities $a_i x \leq b_i$ into equations $a_i x + z_i = b_i$ with $z_i \geq 0$ already discussed just before Definition 44.9. If we let $z = (z_1, \ldots, z_m)$, it is obvious that the system $Ax \leq b$ has a solution $x \geq 0$ iff the equation

$$\begin{pmatrix} A & I_m \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} = b$$

has a solution $\binom{x}{z}$ with $x \geq 0$ and $z \geq 0$. Now by Farkas I, the above system has no solution with with $x \geq 0$ and $z \geq 0$ iff there is some nonzero linear form $y \in (\mathbb{R}^m)^*$ such that

$$y \begin{pmatrix} A & I_m \end{pmatrix} \ge 0_{n+m}^{\top}$$

and yb < 0, that is, $yA \ge 0_n^\top$, $y \ge 0_m^\top$ and yb < 0.