USE THE LAB INSTRUCTIONS -CONNECTING LOGIC GATE CIRCUITS TO COMPLETE THIS LAB.

VERY IMPORTANT: DISCONNECT THE POWER SUPPLY FROM YOUR CIRCUIT WHEN WIRING YOUR CIRCUITS.

Purpose: To study the operation of various logic gates.

Name:

Part A - Basic Gates

• Wire each of the following circuits in your breadboard. Complete the truth table for each circuit.

1. AND Gate

Input A (pin 1)	Input B (pin 2)	Output Y (pin 3)
0	0	0
0	1	0
1	0	0
1	1	1

Name:

2. OR Gate

3. NAND Gate

4. NOR Gate

Input A (pin 2)	Input B (pin 3)	Output Y (pin 1)
0	0	
0	1	
1	0	
1	1	

5. Exclusive OR (XOR) Gate

Name:

Part B - Combining Logic Gates

Purpose: To investigate two gates of a 74LS00 (NAND) chip to create a three input OR gate.

- Wire each of the following circuits in your breadboard. Complete the truth table for each circuit.
- Note that the output of one gate in one chip goes into the input of a second gate in the same chip.

1. Combining two NAND gates.

Name:

В	A	A•B	$\overline{\mathbf{A} \bullet \mathbf{B}} = \mathbf{X}$	C	C•X	<u>C•X</u> =Y
0	0	0	1	1	1	0
0	1	0	1	1	1	0
1	0	0	1	1	1	0
1	1	1	0	1	0	1
0	0	0	1	0	0	1
0	1	0	1	0	0	1
1	0	0	1	0	0	1
1	1	1	0	0	0	1

Name:

2. Combining three OR gates.

1	N	_	n	۵.
	IN	а	rr	ıe

D	C	В	A	A+B=Z	Z+C=X	D+X=Y
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	1	1	1
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Page 9 of 11

Questions:

- 1. Given your knowledge of **AND** gates,
 - a. What would be the output of a three input AND gate circuit if the inputs were low, high, low (0 1 0)?

The output would be 0 or Low.

- b. What three inputs would produce a high output?

 The three input that would produce a high output are (1, 1, 1),
- 2. Given what you know about **NAND** gates, create the truth table of a **three** input NAND gate.

Input A	Input B	Input C	Output X
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

3. Given your knowledge of **XOR** gates, create the truth table of a **three** input XOR gate.

Name:

Input A	Input B	Input C	Output X
0	0	0	0
0	1	0	1
0	0	1	1
0	1	1	0
1	0	0	1
1	1	0	0
1	0	1	0
1	1	1	1

4.	Complete	the senter	nce with the	correct gate:
• •	Compiete	tile belitel	100 111011 0110	confect gate.

Circuit 2 in part B above, is a four input _____OR____ (AND, OR, NAND, NOR, XOR) gate.