Thursday, September 13, 2018 8:34 AM Regine's

In person office hours: Thu, 1130 -1230

in SSW 1017

Online office hours: Wed, 2-3 pm

in the same online class room

example Suppose a blood test is

100% effective in defecting (certain)

disease, when it is present. Also,

the test yields "false positives"

for 1% of healthy population.

If .1% of the population has

the disease, what's the probability

that a person who tests positive actually has the disease?

D = person has the disease D = person tests positive What to compute P(D | D) P(D | D)P(D | D)

$$P(D) = .001$$

$$P(D) = \frac{P(D \cap \Phi)}{P(\Phi)} = \frac{P(\Phi \mid D) P(D)}{P(\Phi \mid D) P(D)} = \frac{P(\Phi \mid D) P(D)}{P(\Phi \mid D)} = \frac{P(\Phi \mid D)}$$

9_13 Page 2

$$E = E \wedge S = E \wedge \left(\bigcup_{k=1}^{n} F_{k} \right)$$

$$= \bigcup_{k=1}^{n} \left(E \wedge F_{k} \right)$$

$$= \sum_{k=1}^{n} P(E \wedge F_{k}) =$$

$$= \sum_{k=1}^{n} P(E \wedge F_{k}) =$$

$$= \sum_{k=1}^{n} P(E \wedge F_{k}) =$$

$$= \sum_{k=1}^{n} P(E \mid F_{k}) P(F_{k}) = P(E)$$

$$= \sum_{k=1}^{n} P(E \mid F_{k}) P(F_{k}) = P(E)$$

$$= \sum_{k=1}^{n} P(E \mid F_{k}) P(F_{k}) = P(E)$$

Bayes Formula

Think of E = outcome of an experiment

("data")

$$F_1, F_2, ..., F_n = hypothesis \left(\bigcup_{i=1}^n F_i = S' i \neq j : F_i \cap F_j = \emptyset \right)$$

$$P(F_{k} | E) = P(F_{k} \cap E)$$

$$P(E)$$

$$P(E)$$

$$P(F_{k})$$

$$P(F_{k})$$

example a plane is missing and it is equally likely to have gone down in one of 3 regions. Let $1-\beta$; be the probability that the plane would be found upon a search of the i^{th} region, i=1,2,3, if it is this region.

What's the probability that the plane is in region $i \in \{1,2,3\}$, given that the search of region $i \in \{1,2,3\}$, given that

F, Fz, F3 = events that the plane is in region 1,2,3.

E = search of region l is fruitless.

prior: $P(F_1) = P(F_2) = P(F_3) = \frac{1}{3}$

model: $P(E|F_1) = \beta_1$, $P(E|F_2) = 1 = P(E|F_3)$

$$P(F_i | E) = \frac{P(E|F_i)P(F_i)}{\sum_{i=1}^{3} P(E|F_i)P(F_i)} =$$

β₁ · ¹/₃ _ <u>β</u>₁

$$\frac{\beta_{1} \cdot \frac{1}{3}}{\beta_{1} \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}} = \frac{\beta_{1}}{\beta_{1} + 2}$$

$$P(F_{2} \mid E) = \dots = \frac{1}{\beta_{1} + 2} = P(F_{3} \mid E)$$

$$\frac{1}{\beta_{1} + 2} \Rightarrow \frac{\beta_{1}}{\beta_{1} + 2} \text{ as long as } \beta_{1} < 1$$

$$\Rightarrow \text{ plane is now more likely to be in ragion } \lambda \text{ or } 3.$$

In general, P(E|F) is not equal to P(E).

Independence

Sometimes new information does not change your beliefs.

$$P(E|F) = P(E)$$

$$\frac{P(EnF)}{P(F)}$$

$$\langle = \rangle$$
 $P(E \cap F) = P(F) P(E)$.

Def. Two events E and F are independent if $P(E \cap F) = P(E) P(F)$.

(dependent = not independent).

example Draw a card from a standard 5d card deck.

$$E = \text{"ace"}, F = \text{"spade"}$$

$$P(E \cap F) = \frac{1}{5d}$$

$$P(E) = \frac{4}{52} = \frac{1}{13}; P(F) = \frac{13}{52} = \frac{1}{4}$$

$$=) P(E \cap F) = P(E) P(F)$$

$$=) E \text{ and } F \text{ are independent.}$$
We will write $E = \prod_{i=1}^{n} F_{i}$ independent.

example 2 coins, "fair"

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{4}$$

example () Toss 2 fair dice $E_1 = \text{sum } \text{if } \text{the upturned } \text{faces is } 6.$ $F = 1^{\text{st}} \text{ die comes } \text{up } \text{f.}$ $P(E, \Gamma F) = \frac{1}{36}$; $P(F) = \frac{1}{6}$; $P(E_1) = \frac{5}{36}$ $P(E, \Gamma F) \neq P(F)P(E_1)$ $P(E, \Gamma F) \neq P(F)P(E_1)$

Q d fair dice, F = same $E_{\lambda} = sum$ of upturned faces is F. $P(E_{\lambda} \cap F) = \frac{1}{36}$; $P(F) = \frac{1}{6}$; $P(E_{\lambda}) = \frac{6}{36}$ $P(E_{\lambda} \cap F) = P(F) P(E_{\lambda})$ F = same F =

always check your intuition!

Note: If EIF then so are

EIF.

$$P(E \cap F^{c}) = P(E) - P(E \cap F)$$

$$= P(E) - P(E) P(F)$$

$$= P(E) (I-P(F)) = P(E) P(F^{c})$$

, __C

example (motivating independence of more than 2 events)

Suppose EIF, EIG, FIG

"pairwise independent"

Is Ell(FnG)?

2 fair dice E = sum is 7 F = 1 die is 4 G = 2 die is 3

{EIF, EIG, FIG3 => pairwise independence.

 $P(E) = \frac{1}{6} \neq P(E|F \cap G) = 1$

=> E / (F/G) //

So, pairwise independee is not enough!

Def Three events E, F, G are independent

if P(En FnG) = P(E) P(F)P(G)

and $P(E \cap F) = P(E) P(F)$ { $P(E \cap G) = P(E) P(G)$ { $P(E \cap G) = P(E)$ { P(E) = P(E) { P(E

and
$$P(E \cap F) = P(E) \cap P(F)$$
 pairwize $P(E \cap G) = P(E) \cap P(G)$ independence $P(F \cap G) = P(F) \cap P(G)$

example (illustration that this definition is better)

So E, F, G are independent

Is E IL (FUG)?

P(En(F)G) = P((EnF)U(EnG)) = P(EnF) + P(EnG) - P((EnF)n(EnG)) = P(E)P(F) + P(E)P(G) - P(E)P(F)P(G) $= P(E) \left\{ P(F) + P(G) - P(F)P(G) \right\}$ $= P(E) \left\{ P(F) + P(G) - P(F)P(G) \right\}$ = P(E) P(FUG)

EL(FUG).

(Ind this will hold for any events formed from different events among E, F, G.

Def For any finite collection of events $F_1, F_2, ..., F_n$ we say that they are independent if for every subset $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$ ($1 \le k \le n$)

$P(F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_k}) = P(F_{i_l}) P(F_{i_1}) \dots P(F_{i_k})$

example 1) A system of n components is said to be parallel if it functions as long as at least one of the components is functioning.

Assume that component i functions with probability fis $1 \le i \le n$

independently of each other.

what's the chance of the system being functional?

A: = component i is functioning

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = 1 - P\left(\left(\bigcup_{i=1}^{n}A_{i}\right)^{2}\right)$$

$$= 1 - P\left(\bigcap_{i=1}^{n} A_{i}^{c} \right)$$

$$= \left| - \frac{r}{r} \left(- p_i \right) \right|$$

2) Roll 2 fair dice, independently,

another approach

het E = sum of 5 occurs before sum of 7

F = 1st trial results in "5"

G = 1 st trial results in "7"

H = 1st trial results in neither

FGH

$$P(E) = P(E|F)P(F) +$$
+ $P(E|G)P(G) +$
+ $P(E|H)P(H) =$

$$= 1 \times \frac{1}{9} + 0 \times P(G) + P(E) \cdot \frac{13}{18}$$

$$= P(E) = \frac{1}{9} + \frac{13}{18} \cdot P(E)$$

example You are given a choice

i) win a prize by shooting basket ball once & making it

or Shoot 3 times & win

if you make it at least 2 times.

Which option should you choose?

Which opliving

"Make" the shot Wprob. P;

2)
$$P(win) = P(SSS) + P(SSF) + P(FSS) + P(SFS)$$

= $p^3 + 3p^2(1-p)$

9_13 Page 13