Exercise 5.9: For each of the LTL-formulas below, construct a Büchi automaton that accepts exactly those traces that satisfy the formula:

- (1) $\Box \Diamond e \lor \Diamond \Box f$.
- (2) $\Box \Diamond e \land \Box \Diamond f$
- (3) \Box ($e \rightarrow e \cup f$).

Exercise 5.10: Write an LTL-formula that exactly describes the set of traces that are accepted by the Büchi automaton shown in <u>figure 5.9</u>. Explain your answer. ■

Figure 5.9: Exercise: From a Büchi Automaton to LTL

Exercise 5.15: Consider the LTL-formula $\phi = (e \cup f) \lor \neg e$. First compute the closure $Sub(\phi)$. Then apply the tableau construction to build the generalized Büchi automaton M_{ϕ} . It suffices to construct only the reachable states.

Exercise 5.19: Consider a transition system with two variables *x* and *y* of type nat. Suppose the transitions of the system are described by the conditional statement

if
$$(x > y)$$
 then $x := x + 1$ else $y := x$.

First, describe the transition region as a formula *Trans* over the variables x, y, x', and y'. Consider the region A given by the formula $1 \le y \le 5$. Compute the pre-image of the region A.