15.095: Machine Learning under a Modern Optimization Lens

Recitation 1

Sep 7th, 2018

Recitations

- Basic knowledge about optimization and machine learning
- 4 How to use julia, JuMP and other packages like OptImpute and Optimal Trees
- Review of the course material

Outline

- Introduction to Optimization
- Modeling and Logical Constraints
- Big-M method
- Ouality

Optimization: Definition

The target of the optimization problem is to minimize (maximize) a function f(x) when x satisfies the condition $g(x) \le q$.

$$\min f(x)$$
 s.t. $g(x) \le q$.

- f(x): objective function
- $g(x) \le q$: constraints
- x : decision variables

Optimization: Definition

$$\min f(x)$$
 s.t. $g(x) \leq q$.

- x satisfying all of the constraints is called a feasible solution. The set of feasible solutions is called the feasible set.
- A feasible solution x^* that minimizes the objective function is called an **optimal feasible solution**, or simply, an **optimal solution**.
- The value $f(x^*)$ is called the **optimal cost**.
- If for every real number K we can find a feasible solution x whose cost is less than K, we say that the optimal cost is $-\infty$, or in other words that the problem is **unbounded**.
- By changing f(x) to -f(x), we can rewrite maximization problems as minimization problems.

Different Types of Optimization Problems

- Linear Optimization: f(x), g(x) are both linear functions. (15.081,15.093)
- Nonlinear Optimization: Some constraints or the objective function are nonlinear. (15.084)
- **Onvex Optimization:** Minimizing convex functions over convex sets.(15.084)
 - Convex set C: For all x and y in C and all t in the interval (0,1), the point (1-t)x+ty also belongs to C.
 - Convex function $f: X \to \mathbb{R}$: $\forall x_1, x_2 \in X, \forall t \in [0, 1]: f(tx_1 + (1 t)x_2) \le tf(x_1) + (1 t)f(x_2).$
 - Benefits of convexity: Local minimum must be a Global minimum
- Integer Optimization: All of the decision variables x are restricted to be integers. Mixed Integer Optimization (MIO): Some decision variables are restricted to be integers, others are not. (15.083)
- Robust Optimization: Optimization under uncertainty. (15.094)

Modeling: Logical Constraints

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$.

- Exactly k of $x_1, x_2, \dots x_n$ are equal to 1. $x_1 + x_2 + x_3 + \dots + x_n = k$
- 2 At most k of $x_1, x_2, \dots x_n$ are equal to 1. $x_1 + x_2 + x_3 + \dots + x_n \le k$
- **3** If $x_1 = 1$, then $y_1 = 1$. $x_1 < y_1$
- If at least k of $x_1, x_2, ... x_n$ equals 1, then $y_1 = 1$. $x_1 + x_2 + x_3 + ... + x_n - (k-1) \le n * y_1$

Modeling: Logical Constraints

Assume $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ are binary decision variables $\{0, 1\}$.

• If at least k of $x_1, x_2, \dots x_n$ equal 1, then at least one of $y_1, y_2, \dots y_n$ equals 1.

$$x_1 + x_2 + x_3 + \ldots + x_n - (k-1) \le n * (y_1 + y_2 + y_3 + \ldots + y_n)$$

- ② If $x_1 = 1$, then we add C to the objective. We do not add a constraint. Add the term $C * x_1$ to the objective function.
- **3** Consider a min problem. If at least one of $x_1, x_2, ...x_n$ equals 1, then we add C to the objective.
 - We introduce a new binary variable z. We add C*z to the objective and add the constraint: $x_1 + x_2 + \ldots + x_n \le n*z$.

One important thing is we can only use the above constraints when x and y are restricted to be **binary variables**.

Big-M Method for Modeling

Suppose that we have a continuous variable α_i , which is a free variable if $z_i = 1$, but if $z_i = 0$ then we must enforce $\alpha_i = 0$. How do we model this?

We add the constraint:

 $-Mz_i \le \alpha_i \le Mz_i$, where M is a big number.

For example, we may set M=1,000,000 when solving the optimization problem.

Duality: Formulation

Original Problem:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{'}x \\ \text{subject to} & a_{i}^{'}x \geq b_{i}, \ i \in M_{1}, \\ & a_{i}^{'}x \leq b_{i}, \ i \in M_{2}, \\ & a_{i}^{'}x = b_{i}, \ i \in M_{3}, \\ & x_{j} \geq 0, \ j \in N_{1}, \\ & x_{j} \leq 0, \ j \in N_{2}, \\ & x_{j} \ \text{free}, \ j \in N_{3}. \end{array}$$

Dual Problem:

maximize
$$p'b$$
 subject to $p_i \geq 0, i \in M_1,$ $p_i \leq 0, i \in M_2,$ p_i free, $i \in M_3.$ $p_i'A_j \geq c_j, i \in N_1,$ $p_i'A_j \leq c_j, i \in N_2,$ $p_i'A_j = c_i, i \in N_3.$

Duality: Properties

Theorem (Weak Duality)

If x is a feasible solution to the primal problem and p is a feasible solution to the dual problem, then

$$p'b \leq c'x$$
.

Theorem (Strong Duality)

If a linear programming problem has an optimal solution, then so does its dual, and the respective optimal costs are equal.

Duality: Usage

- Dual problem is easier to solve sometimes.
- Oual Simplex Method to solve linear optimization problems.
- Tractable reformulations for robust optimization problems.
- Lagrangian duality in nonlinear optimization.

References

- Intro to Optimization: Bertsimas and Tsitsiklis, *Introduction to Linear Optimization*, Chapter 1.
- Ouality: Bertsimas and Tsitsiklis, Introduction to Linear Optimization, Chapter 4.