

Transfer Learning in Deep Learning

Accelerating model training with pre-learned knowledge

MUKESH KUMAR

What is Transfer Learning?

Pre-trained Model Reuse

Apply existing knowledge to new, related tasks

Limited Data Solution

Works when training data is scarce

Resource Efficiency

Avoid expensive training from scratch

Why Use Transfer Learning?

- Time & Resource Savings

 Reduces computation needs dramatically
- Less Labeled Data Required

 Train with smaller datasets
- Performance Boost

 Higher accuracy on limited data
- Versatile Applications
 Images, text, speech recognition

Typical Workflow

Select Model Choose pretrained base Remove Layers Cut off final layers Add New Layers Build task-specific head **Configure Freezing** Decide which layers to train Train Fit on new data

Popular Pretrained Models

For Images

- VGG16 / VGG19
- ResNet50
- InceptionV3
- MobileNet

For Text

- BERT
- GPT
- RoBERTa
- T5

https://keras.io/api/applications/

Types of Transfer Learning

Use Case – Cats vs Dogs

Custom Classification Head

Dense layers with softmax output

Base: MobileNetV2/ResNet

Pre-trained feature extractors

Code Example (TensorFlow/Keras)

```
base model = tf.keras.applications.MobileNetV2(
  input shape=(128, 128, 3),
  include top=False,
  weights='imagenet'
base model.trainable = False # Freeze base
model = tf.keras.Sequential([
  base model,
  tf.keras.layers.GlobalAveragePooling2D(),
  tf.keras.layers.Dense(1, activation='sigmoid')
```


TensorFlow Transfer Learning Implemntation

Dölesin Ferufaner O Trefumitay Loepremet

Fine-tuning Example

Initial Training

Train with frozen base first

Unfreeze Partially

Enable training on deeper layers

Continue Training

Use smaller learning rate

Practical Tips

Input Normalization

Match base model's preprocessing

Data Augmentation

Rotate, flip, zoom to increase diversity

Learning Rate Schedule

Reduce LR during fine-tuning

Progressive Unfreezing

Train head first, then unfreeze gradually

Common Pitfalls

Performance Comparison

Real-World Applications

Summary

