Aufgabe 1 (4 Punkte):

Seien $p, q \in \mathbb{N}$ Primzahlen, $p \neq q$. Zeigen Sie $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$ und bestimmen Sie $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]$. Finden Sie ferner ein primitives Element für $\mathbb{Q}(\sqrt{p}, \sqrt{q})|\mathbb{Q}$.

January:
$$\alpha \in \mathbb{Q}(1p, 1q)$$
 and $\mathbb{Q}(1p, 1q) = \mathbb{Q}(\alpha)$

Wille $\alpha := 1p + 1q$

$$= (\alpha - 1p)^2 = q$$

Noch an aign: $1q \in \mathbb{Q}(\alpha)$

$$= (\alpha - 1q)^2 = p$$

$$= (\alpha - 1q)^2 =$$

Aufgabe 2 (4 Punkte):

Sei $z = e^{2\pi i/5} \in \mathbb{C}$.

- Bestimmen Sie das Minimalpolynom von z über Q.
- (ii) Zeigen Sie, dass [Q(z + z⁴) : Q] = 2 ist.
- (iii) Bestimmen Sie den Grad von Q(z) über Q(z + z⁴).

i) Wash Patz 3.17 (2) Veranschaulch fran sich 7-ten Einbeitev uzzeln von C graphisch in der Gauß's den Zahlenderus, so liegen diese in regelmüßger Absländen über den Einbeiters vereicht. Men apricht deshalb bei
$$Q_{(p,q(C))} - Q_{(p,q(C))} - Q_{$$

=> 0x printives Element

Aufgabe 2 (4 Punkte):

Sei
$$z = e^{2\pi i/5} \in \mathbb{C}$$
.

- Bestimmen Sie das Minimalpolynom von z über Q.
- (ii) Zeigen Sie, dass [Q(z + z⁴) : Q] = 2 ist.
- (iii) Bestimmen Sie den Grad von $\mathbb{Q}(z)$ über $\mathbb{Q}(z + z^4)$.

Wir winen:
$$[O(z): Q] = grad_{Nz,Q} = 4$$

thus dem gradients print:
 $4=[O(z): Q] = [O(z): Q(z+z^4)] \cdot [O(z+z^4): Q]$
 $\Rightarrow [O(z+z^4): Q] + 4$
 $\Rightarrow [O(z+z^4): Q] \in \{1,2,4\}$
 $\Rightarrow [O(z+z^4): Q] \in \{1,2,4\}$

Anata:
$$M_{z+z^4,Q} = X^2 + aX + b \in QX$$
 $M_{z+z^4,Q}(z+z^4) = 0$
 $(z+z^4)^2 + a \cdot (z+z^4) + b = 0$
 $= z^2 + 2 \cdot z^5 + z^8 + az + az^4 + b = 0$
 $= z^2 + 2 \cdot z^5 + z^8 + az + b + 2 = 0$
 $= a \cdot z^4 + z^3 + z^2 + az + b + 2 = 0$

Walle $a := 1$ and $b := -1$
 D_{aan} if $az^4 + z^3 + z^2 + az + b + 2$
 $= 0$
 $M_{z+z^4,Q} = 0$

Für jede rationale Nullstelle eines ganzzahligen Polynoms gilt, dass der Zähler ihrer gekürzten Darstellung das Absolutglied und der Nenner den Leitkoeffizienten des Polynoms teilt.

Seien also $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ mit $a_i\in\mathbb{Z}$ ein Polynom vom Grad n und $x_0=rac{p}{a}$ (wobei $p,q\in\mathbb{Z}$ teilerfremd sind) eine rationale Nullstelle von f, dann ist a_0 durch p teilbar und a_n durch q teilbar.

(iii) Bestimmen Sie den Grad von Q(z) über Q(z + z⁴).

Bestimmen Sie den Grad von
$$\mathbb{Q}(z)$$
 über $\mathbb{Q}(z+z^4)$.

$$\left[\mathbb{Q}(z):\mathbb{Q}(z+z^4)\right] = \frac{\mathbb{Q}(z):\mathbb{Q}}{\mathbb{Q}(z+z^4):\mathbb{Q}} = \frac{1}{2} = 2$$

Fadn. at z

Definition 3.8. Eine algebraische Körpererweiterung L|K heißt normal, wenn sie eine der folgenden, äquivalenten Bedingungen erfüllt:

- (1) Jedes irreduzible Polynom aus K[X], das in L eine Nullstelle besitzt, zerfällt über L bereits in Linearfaktoren.
- (2) Es gibt ein nicht-konstantes Polynom f ∈ K[X], sodass L der Zerfällungs-

Aufgabe 3 (4 Punkte):

Zeigen Sie, dass Körpererweiterungen vom Grad 2 stets normal sind

Sei L/K Härpererveiterung mit [L: K]= 2 Sei J∈ K[X] ein ive dusibles Polynom mt eine Wulltelle « E L 2=[L:K(a)]. [K(a):K] > [K(x): K] ∈ {1,23 grad & < Wenn man & ramet windslyn => grad {1,23 Julls grad f= 1 > f it ein Line af ultr, d.h. redillt über Line Line af altocen Fulls grad f= 2 Daon finder in geL[X] mit gead(g)=1 solum $f = (X - \alpha) \cdot g$ find statt ven

Aufgabe 4 (4 Punkte):

Sei $f = T^4 - 5 \in \mathbb{Q}[T]$ und $x \in \mathbb{R}$ eine Wurzel von f.

- (i) Bestimmen Sie den Zerfällungskörper L (mit L ⊆ C) von f über Q. Was ist [L : Q]?
- (ii) Bestimmen Sie das Minimalpolynom von y := x + ix über \mathbb{Q} (wobei $i = \sqrt{-1} \in \mathbb{C}$).

T= 75 & hat die Wullstellen

T-5=0

 $x_0 = 4\sqrt{5}$ $x_1 = 4\sqrt{5} \cdot e^{\frac{2\pi i}{4}}$

Definition 3.7. Sei K ein Körper und $f \in K[X]$ ein nicht-konstantes Polynom. Ein Erweiterungskörper L von K wird Zerfällungskörper von f über K

(1) f über L in Linearfaktoren zerfällt, d. h. es gibt $a_1, \ldots, a_n \in L$ und $c \in K^{\times}$

$$f = c \prod_{i=1}^{n} (X - \alpha_i),$$

(2)(L über K von Nullstellen von f erzeugt wird.

$$x_{2} = 415 \quad 3_{4}^{2} \qquad \text{Lefully hirter}$$

$$x_{3} = 415 \quad 3_{4}^{3} \qquad L = Q(x_{0}, x_{1})$$

$$= Q(x_{0}, x_{1})$$

$$= -9rady$$

$$= -9rady$$

$$= -9rady$$

$$= -9rady$$

$$= -(x_{-1}) \cdot (x_{+1}) \cdot \phi_{+}$$

$$= (x_{-1}) \cdot (x_{-1}) \cdot (x_{-1}) = x_{-1}^{2} + 1$$

$$\phi_{+} = (x_{-1}) \cdot (x_{-1}) \cdot (x_{-1}) = x_{-1}^{2} + 1$$

= (2-1).(x+1)

$$x_{2} = 475 \quad \xi_{4}^{2}$$

$$x_{3} = 475 \quad \xi_{4}^{2}$$

$$L = Q(x_{0}, x_{1}, x_{2}, x_{3}) = Q(475) \cdot Q(475) \cdot Q$$

$$L : Q = [L : Q(475)] \cdot [Q(475) : Q$$

$$= qrad_{1475} \cdot Q$$

Aufgabe 4 (4 Punkte):

Sei $f = T^4 - 5 \in \mathbb{Q}[T]$ und $x \in \mathbb{R}$ eine Wurzel von f

- (i) Bestimmen Sie den Zerfällungskörper L (mit $L\subseteq\mathbb{C})$ von füber $\mathbb{Q}.$ Was ist $[L:\mathbb{Q}]?$
- (ii) Bestimmen Sie das Minimalpolynom von y:=x+ix über $\mathbb Q$ (wobei $i=\sqrt{-1}\in\mathbb C$).

$$y^2 = (x + ix)^2 = x^2 + 2ix^2 + i^2x^2$$

= $x^2 + 2ix^2 - x^2$
= $2 \cdot i \cdot x^2$

$$y^{4} = (y^{2})^{2} = (2ix^{2})^{2} = 4 \cdot i^{2} \cdot x^{4} = -4 x^{4}$$

$$x^{4} - 5 = 0$$

$$\Rightarrow -\frac{1}{4} \cdot (-4x^{4}) - 5 = 0$$

Beh.
$$M_{Y}, Q = X^{4} + 20 = (-4)^{4}$$

 $\Rightarrow g(y) = (-4)^{4}$ $f(y) = (-4)^{4}$ $f(y) = (-4)^{4}$

Worth zu reigen: X+20 irredisibel über a

g hot heine Wullstille in Q wegen dem Lema van Yauß!

$$x^{4}+20 = (x^{2}+ax+b) \cdot (x^{2}+cx+d)$$

$$= x^{4}+(a+c)x^{3}+(b+d+ac)x^{2}+(ad+bd)x + b\cdot d$$

$$\Rightarrow \pm) \quad \alpha + c = 0$$

$$\pm) \quad b + d + \alpha c = 0$$

$$\pm) \quad ad + b \cdot c = 0$$

$$\pm) \quad b \cdot d = 20$$