

Apa itu NumPy?

- NumPy adalah paket dasar yang diperlukan untuk komputasi ilmiah dengan Python. Itu mengandung:
- objek array N-dimensi yang kuat
- fungsi aljabar linear dasar
- transformasi Fourier dasar
- kemampuan nomor acak yang canggih
- alat untuk mengintegrasikan kode Fortran
- alat untuk mengintegrasikan kode C/C++

dokumentasi NumPy

- Dokumentasi resmi
 - http://docs.scipy.org/doc/
- Buku NumPy
 - http://www.tramy.us/numpybook.pdf
- Daftar contoh
 - http://www.scipy.org/Numpy Example Li st With Doc

Struktur data ndarray

- NumPy menambahkan struktur data baru ke Python – ndarray
 - Array N-dimensi adalah kumpulan "item" homogen yang diindeks menggunakan bilangan bulat N
 - Didefinisikan oleh:
 - bentuk array, dan
 - 2. jenis item yang terdiri dari array

Bentuk susunan

- ndarray berbentuk persegi panjang
- Bentuk array adalah tuple dari N bilangan bulat (satu untuk setiap dimensi)

Jenis item array

- Setiap ndarray adalah kumpulan homogen dari tipe data yang persis sama
 - setiap item menggunakan blok memori dengan ukuran yang sama
 - setiap blok memori dalam array diinterpretasikan dengan cara yang persis sama

Type	Bit-Width	Character
bool_	boolXX	′?′
byte	intXX	'b'
short		'h'
intc		'i'
int_		'1'
longlong		'q'
intp		'p'
ubyte	uintXX	'B'
ushort		'H'
uintc		'I'
uint		'L'
ulonglong		′ Q ′
uintp		'P'
$_{ m single}$	floatXX	'f'
float_		'd'
longfloat		′g′
csingle	complexXX	'F'
complex_		'D'
clongfloat		'G'
object_		′0′
str_		'S#'
unicode_		′ U# ′
void		′∀#′

	Type	Bit-Width	Character	
	bool_	boolXX	'?'	
	byte	intXX	, a,	
	short		'h'	
	$_{ m intc}$		'i'	
	int_{-}		'1'	
	longlong		, d,	
	$_{ m intp}$		'p'	
	ubyte	uintXX	'B'	
	ushort		'H'	
	uintc		'I'	
	uint		'L'	
	ulonglong		′ Q ′	
	uintp		'P'	
	single	floatXX	′ f ′	
	float_		'd'	
	longfloat		'g'	
	csingle	complexXX	'F'	
	complex_		'D'	
	clongfloat		′ G ′	
	object_		′0′	
	str _		'S#'	
	unicode_		′ U# ′	
	void		′∀#′	

Contoh: membuat array

```
pip install numpy
import numpy
a = array([[1,2,3],
 [4,5,6],
 [7,8,9]])
shape
a.dtype
```

Pengindeksan array

- Gunakan tuple untuk mengindeks array multi-dimensi
- Contoh:

```
a[1,2]
```

Mengiris array

 Slicing arrays hampir sama dengan slicing list, kecuali Anda dapat menentukan beberapa dimensi

Contoh: Mengiris array

```
a[1]
a[1,:]
a[1,1:]
a[:1,1:]
```

Beberapa metode ndarray

- ndarray. tolist ()
 - Isi diri sebagai daftar bersarang
- ndarray. copy ()
 - Kembalikan salinan array
- ndarray. fill (scalar)
 - Isi array dengan nilai skalar

Operasi Dasar pada Array NumPy

Penjumlahan: arr1 + arr2

Pengurangan: arr1 - arr2

Perkalian: arr1 * arr2

Pembagian: arr1 / arr2

Fungsi Statistik pada NumPy

numpy.mean(): menghitung rata-rata

numpy.median(): menghitung median

numpy.std(): menghitung standar deviasi

numpy.var(): menghitung varians

Fungsi Aljabar Linear

numpy.dot():

menghitung hasil kali matriks

numpy.transpose():

menghitung transpose matriks

numpy.linalg.inv():

menghitung invers matriks

numpy.linalg.det():

menghitung determinan matriks

Fungsi Dasar

- np.array(): Membuat array NumPy dari data yang diberikan.
- np.zeros(): Membuat array NumPy dengan nilai 0.
- np.ones(): Membuat array NumPy dengan nilai 1
- np.empty(): Membuat array NumPy dengan nilai acak.
- np.full(): Membuat array NumPy dengan nilai yang sama.
- np.eye(): Membuat array NumPy dengan nilai 1 di diagonal.
- np.identity(): Membuat array NumPy dengan nilai 1 di diagonal.

Operasi Aritmatika

- np.add(): Menambahkan dua array NumPy.
- np.subtract(): Mengurangi dua array NumPy.
- np.multiply(): Mengalikan dua array NumPy.
- np.divide(): Membagi dua array NumPy.
- np.mod(): Menghitung sisa dari pembagian dua array NumPy.
- np.power(): Menghitung pangkat dari dua array NumPy.
- np.sqrt(): Menghitung akar kuadrat dari array NumPy.

Operasi Statistik

- np.mean(): Menghitung rata-rata dari array NumPy.
- np.median(): Menghitung median dari array NumPy.
- np.std(): Menghitung standar deviasi dari array NumPy.
- np.var(): Menghitung variansi dari array NumPy.
- np.min(): Menghitung nilai minimum dari array NumPy.
- np.max(): Menghitung nilai maksimum dari array NumPy.
- np.ptp(): Menghitung rentang nilai dari array NumPy.

Operasi Array

- np.reshape(): Mengubah bentuk array NumPy.
- np.transpose(): Mengubah orientasi array NumPy.
- np.concatenate(): Menggabungkan dua atau lebih array NumPy.
- np.split(): Memisahkan array NumPy menjadi beberapa bagian.
- np.array_split(): Memisahkan array NumPy menjadi beberapa bagian dengan ukuran yang sama.
- np.hsplit(): Memisahkan array NumPy menjadi beberapa bagian secara horizontal.
- np.vsplit(): Memisahkan array NumPy menjadi beberapa bagian secara vertikal.

Fungsi Matematika

np.sin(): Menghitung sinus dari nilai dalam array NumPy.

np.cos(): Menghitung kosinus dari nilai dalam array NumPy.

np.tan(): Menghitung tangen dari nilai dalam array NumPy.

np.exp(): Menghitung eksponen dari nilai dalam array NumPy.

np.log(): Menghitung logaritma dari nilai dalam array NumPy.

np.sqrt(): Menghitung akar kuadrat dari nilai dalam array NumPy.

Fungsi Random

np.random.rand(): Mengembalikan array NumPy dengan nilai acak antara 0 dan 1.

np.random.randn(): Mengembalikan array NumPy dengan nilai acak dari distribusi normal.

np.random.randint(): Mengembalikan array NumPy dengan nilai acak dari rentang integer.

np.random.choice(): Mengembalikan array NumPy dengan nilai acak dari daftar nilai.

Fungsi Lainnya

- np.where(): Mengembalikan nilai berdasarkan kondisi yang diberikan.
- np.all(): Mengembalikan True jika semua nilai dalam array NumPy adalah True.
- np.any(): Mengembalikan True jika ada nilai dalam array NumPy yang adalah True.
- np.sort(): Mengurutkan nilai dalam array NumPy.
- np.argsort(): Mengembalikan indeks nilai yang diurutkan dalam array NumPy.
- np.searchsorted(): Mengembalikan indeks nilai yang dicari dalam array NumPy yang diurutkan.
- np.unique(): Mengembalikan nilai unik dalam array NumPy.
- np.copy(): Mengembalikan

Thank You

- Ledy Elsera Astrianty
- ledyelsera@gmail.com

Universitas Teknologi Yogyakarta Sains Data