26TH November 2024

Luca Danese - 1. danese 10 compus unimuib it

EXERCISE 1

1.1)

Among n = 15 poisoned lab rats, data about survival time (Y) and antidote/treatment (T) were collected. The researchers consider three kind of treatment: A, B and C, where

Group	n_{j}	\bar{y}_j	s_{j}
A (j = 1)	4	0.347	0.2055
B $(j = 2)$	3	3.067	0.4618
C(j = 3)	8	1.764	0.5007

Compute the total deviance (total sum of squares - SST) and explain its components.

Perform a statistical test to evaluate if the means (of each group) are homogeneous. Specify the system of hypothesis, the test statistic and the p-value.

$$\frac{3}{2} \frac{n_{j}}{\sum_{j=1}^{2} (y_{i} - \overline{y})^{2}} = \frac{3}{2} (n_{j} - \underline{1}) S_{j}^{2} + \frac{3}{2} n_{j} (\overline{y}_{j} - \overline{y})^{2}$$

$$j_{z_{1}} j_{z_{2}} j_{z_{3}} n_{z_{4}} (\overline{y}_{j} - \overline{y})^{2}$$

TOTAL SUN OF SQUARES WITHIN GROUP VARIABILITY

BETWEEN GROUP VARIABILITY

$$\frac{1}{y} = \frac{4 \cdot 0.347 + 3 \cdot 3.067 + 8 \cdot 1.764}{15} = 1.646733$$

$$\frac{3}{2}(n_{5}-1)S_{5}^{2}=(4-1)0.205S^{2}+(3-1)\cdot0.4618^{2}+(8-1)\cdot0.5\infty7^{2}=2.30813$$

$$= \frac{1}{2} \ln_3 \left(\frac{1}{9} - \frac{1}{9} \right)^2 - 4 \left(0.347 - 1.646733 \right)^2 + 3 \left(3.67 - 1.646733 \right)^2 + 8 \left(1.769 - 1.646733 \right)^2$$

$$\begin{cases} H_0: \mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}_3 \\ H_1: \mathcal{F}_1 \text{ s.t. } \mathcal{M}_1 \neq \mathcal{M}_1 \text{ } (i \neq j, i, j \in \{1, 2, 3\}) \end{cases}$$

$$\frac{1}{T} = \frac{SSR}{SSE} / (S-1) \quad H_0 \quad F_{S-1}, n-5$$

$$\frac{12.92}{2.308/12} = \frac{12.92}{2.308/12}$$

$$d = P(F_{2,12} > 33.59) \approx 0 => we resect the$$

	1 11.0424
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$f_{2,9;p}$ 1.0162 1.3804 1.9349 2.3597 3.0065 4.2565 6.234 8.0215	1.1 40 0400
$f_{2,9;p}$ 1.0162 1.3804 1.9349 2.3597 3.0065 4.2565 6.234 8.0215	14 13.6136
$f_{s,s,0} = 0.7797 + 1.1048 + 1.8890 + 2.4319 + 3.285 + 4.0646 + 7.6384 + 10.044$	5 10.1067
$f_{1,10;p}$ 0.7727 1.1948 1.8829 2.4312 3.285 4.9646 7.6384 10.044	43 12.8265
$f_{2,10;p}$ 1.0056 1.3613 1.8986 2.3072 2.9245 4.1028 5.9336 7.5594	4 9.427
$f_{1,11;p}$ 0.7666 1.183 1.8589 2.3949 3.2252 4.8443 7.388 9.646	12.2263
$ f_{2,11;p}$ 0.997 1.3459 1.8697 2.2654 2.8595 3.9823 5.7012 7.2057	8.9122
$f_{1,12;p}$ 0.7614 1.1733 1.8393 2.3653 3.1765 4.7472 7.1878 9.3302	2 11.7542
$f_{2,12;p}$ 0.99 1.3333 1.846 2.2313 2.8068 3.8853 5.5163 6.9266	6 8.5096
$f_{1,13;p}$ 0.7572 1.1653 1.823 2.3407 3.1362 4.6672 7.0241 9.0738	8 11.3735
$f_{2,13;p}$ 0.984 1.3227 1.8262 2.203 2.7632 3.8056 5.3657 6.701	8.1865
$f_{1,14;p}$ 0.7535 1.1584 1.8091 2.3198 3.1022 4.6001 6.888 8.8616	6 11.0603
$f_{2,14;p} = 0.979 = 1.3137 = 1.8095 = 2.1791 = 2.7265 = 3.7389 = 5.2408 = 6.5149$	9 - 7.9216
$f_{1,15;p}$ 0.7504 1.1525 1.7972 2.302 3.0732 4.5431 6.7729 8.6831	1 10.798
$f_{2,15;p}$ 0.9746 1.306 1.7952 2.1586 2.6952 3.6823 5.1354 6.3589	9 - 7.7008
$f_{1,16;p}$ 0.7476 1.1473 1.7869 2.2865 3.0481 4.494 6.6744 8.531	10.5755
$f_{2,16;p}$ 0.9708 1.2993 1.7828 2.1409 2.6682 3.6337 5.0455 6.2262	2 - 7.5138
$- f_{1,17;p} = 0.7453 - 1.1428 - 1.7779 - 2.273 - 3.0262 - 4.4513 - 6.5892 - 8.3997$	7 10.3842
$ f_{2,17;p}$ 0.9675 1.2934 1.7719 2.1255 2.6446 3.5915 4.9678 6.1121	1 - 7.3536
$f_{1,18;p}$ 0.7431 1.1389 1.7699 2.2611 3.007 4.4139 6.5146 8.2854	4 10.2181
$\underline{f_{2,18;p}}$ 0.9646 1.2882 1.7623 2.1119 2.6239 3.5546 4.9001 6.0129	9 7.2148

1.2)

Specify an appropriate linear regression model. Given the previous data, find the estimates for each coefficient and interpret them.

$$y = x \beta + \epsilon$$
 where 1000 1

$$y_i \sim N(\beta_i, \sigma^2)$$
 $i = 1, \dots, 4$ (group A)

$$y_i \sim N \left(\beta_i + \beta_3, \sigma^2 \right) i = 8,..., 15 \left(\text{group } c \right)$$

$$E[Y_{iA}] = B,$$
 $B_{i} = E[Y_{iA}] = \overline{y},$

$$\mathbb{E}\left[Y_{iB}\right] = \beta_1 + \beta_2 = \beta_2 = \mathbb{E}\left[Y_{iB}\right] - \mathbb{E}\left[Y_{iA}\right] = \overline{y}_2 - \overline{y}_1$$

$$\mathbb{E}[Y_{ic}] = \beta_1 + \beta_3$$
 $\beta_3 = \mathbb{E}[Y_{ic}] - \mathbb{E}[Y_{ik}] = \overline{y}_3 - \overline{y}_1$

$$\beta_1 = \overline{y}_1 = 0.347$$
 $\beta_2 = \overline{y}_2 - \overline{y}_1 = 2.72$ $\beta_3 = \overline{y}_3 - \overline{y}_1 = 1.417$

$$=>$$
 $y_1 = 0.347 + 2.72 \times_{12} + 1.417 \times_{13}$

where

$$X_{iz} = \begin{cases} 1 & \text{if in grap B} \\ 0 & \text{otherwise} \end{cases}$$
 $\begin{cases} 1 & \text{if in grap C} \\ 0 & \text{otherwise} \end{cases}$

- \cdot β , = 0.347 => The average survival time in group A is equal to 0.347
- · B = 2.72 => The average increase in survival time when moving from group A to group B is 2.72
- $\beta_3 = 1.417 \Rightarrow$ The average increase in survival time when moving from group a to group c is 1.417

1.3)

Propose an alternative test for ex. \$\mathbb{L}\$1 specifying the system of hypothesis. Then, compute R^2 of our model.

The:
$$\beta_z = \beta_3 = 0$$

H₁: at least one $\beta_5 \neq 0$

$$\tilde{\sigma}^2$$
: eshimated variance in Ho = $4/n \ \overline{Z} (\gamma_i - \overline{\gamma})^2 = \frac{SST}{n} = 15.23/15 = 1.015$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

= 33.57 = fob>

EXERCISE 2

Lab Precise got some measurements to see whether the tar contents (in milligrams) for three different brands of cigarettes are different. The measurements are showed in the following table.

Sample	Brand A	Brand B	Brand C
1	10.21	11.32	11.60
2	10.25	11.20	11.90
3	10.24	11.40	11.80
4	9.80	10.50	12.30
5	9.77	10.68	12.20
6	9.73	10.90	12.20

Write the equation of the linear regression model. Find and interpret the estimates of regression coefficients.

2.1)

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i \quad \epsilon_i \approx 0 \quad (0, \sigma^2) \quad i = 1, ..., 18$$

$$\beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$
 $\varepsilon_i \approx 0$ 0 $0, \sigma^2$ $i = 1, ..., 18$

$$\begin{cases} 1 & \text{if brond} = {}^{u}\beta^{u} \\ x_{i2} = 0 & \text{otherwise} \end{cases}$$

$$\begin{cases} 1 & \text{otherwise} \end{cases}$$

$$y_1 = 10$$
 $y_2 = y$ $y_3 = 12$

- · The overage to content in group A is equal to 10
- . The overage increase from group A to group B is equal to a
- The overage increase from group A to group c is equal to 2

Complete the following table.

Sources of variation	D.o.f.	Deviance
Total	17-	13.37
Regression	2	12
Residual	15	1.37

Perform the statistical test to evaluate if the means (of each group) are homogeneous.

$$SSR = \frac{3}{5} n_{3} (\overline{y}_{3} - \overline{y})^{2} = ... = 42$$

$$SSE = \frac{3}{2} \frac{n_{3}}{2} (y_{ij} - \hat{y}_{j})^{2} = ... = 1.37$$

$$Dof(SST) = n-1 = 17$$
 $Dof(SSE) = n-5 = 15$ $Dof(SSR) = 5-1 = 2$

$$\begin{cases} H_0: \ \mu_{4} = \mu_{\beta} = \mu_{c} \\ H_i: \ \exists_{j} \ s.+. \ \mu_{j} = \mu_{i} \ (i \neq j, \ i, j \in \{1,2,3\}) \end{cases}$$

$$d^{obs} = P(F_{2,15} > 65.464407) \approx 0 \Rightarrow \text{ we rezert the null hypothesis}$$

_	0.6	0.7	0.8	0.85	0.9	0.95	0.98	0.99	0.995	-		
$f_{1,8;p}$	0.7901	1.228	1.9511	2.5352	3.4579	5.3177	8.3895	11.2586	14.6882	-		
$f_{2,8;p}$	1.0297	1.4048	1.9814	2.4274	3.1131	4.459	6.6366	8.6491	11.0424			
$f_{1,9;p}$	0.7804	1.2094	1.9128	2.4766	3.3603	5.1174	7.9605	10.5614	13.6136			
$f_{2,9;p}$	1.0162	1.3804	1.9349	2.3597	3.0065	4.2565	6.234	8.0215	10.1067			
$f_{1,10;p}$	0.7727	1.1948	1.8829	2.4312	3.285	4.9646	7.6384	10.0443	12.8265			
$f_{2,10;p}$	1.0056	1.3613	1.8986	2.3072	2.9245	4.1028	5.9336	7.5594	9.427			
$f_{1,11;p}$	0.7666	1.183	1.8589	2.3949	3.2252	4.8443	7.388	9.646	12.2263			
$- f_{2,11;p}$	0.997	1.3459	1.8697	2.2654	2.8595	3.9823	5.7012	7.2057	8.9122			
	0.7614	1.1733	1.8393	2.3653	3.1765	4.7472	7.1878	9.3302	11.7542			
$f_{2,12;p}$	0.99	1.3333	1.846	2.2313	2.8068	3.8853	5.5163	6.9266	8.5096			
$f_{1,13;p}$	0.7572	1.1653	1.823	2.3407	3.1362	4.6672	7.0241	9.0738	11.3735			
$f_{2,13;p}$	0.984	1.3227	1.8262	2.203	2.7632	3.8056	5.3657	6.701	8.1865			
$f_{1,14;p}$	0.7535	1.1584	1.8091	2.3198	3.1022	4.6001	6.888	8.8616	11.0603			
$f_{2,14;p}$	0.979	1.3137	1.8095	2.1791	2.7265	3.7389	5.2408	6.5149	7.9216			
$f_{1,15;p}$	0.7504	1.1525	1.7972	2.302	3.0732	4.5431	6.7729	8.6831	10.798			
$f_{2,15;p}$	0.9746	1.306	1.7952	2.1586	2.6952	3.6823	5.1354	6.3589	7.7008			
$f_{1,16;p}$	0.7476	1.1473	1.7869	2.2865	3.0481	4.494	6.6744	8.531	10.5755			
$f_{2,16;p}$	0.9708	1.2993	1.7828	2.1409	2.6682	3.6337	5.0455	6.2262	7.5138			
$f_{1,17;p}$	0.7453	1.1428	1.7779	2.273	3.0262	4.4513	6.5892	8.3997	10.3842			
$- f_{2,17;p}$	0.9675	1.2934	1.7719	2.1255	2.6446	3.5915	4.9678	6.1121	7.3536			
$- f_{1,18;p}$	0.7431	1.1389	1.7699	2.2611	3.007	4.4139	6.5146	8.2854	10.2181		++++	
$f_{2,18;p}$	0.9646	1.2882	1.7623	2.1119	2.6239	3.5546	4.9001	6.0129	7.2148	-		