UNIVERZITET U BIHAĆU TEHNIČKI FAKULTET BIHAĆ

RAČUNARSKO VOĐENJE PROCESA

Auditorne/Laboratorijske vježbe

Zadaci sa senzorima, sistemima upravljanjima (Vježba 8)

mr. Amel Toroman, dipl.ing.el. Viši asistent

Ak. 2022/2023

P1 PRIMJER 1: Dinamički sistem zadan je prijenosnom funkcijom:

$$G(s) = \frac{6}{S^3 + 7S^2 + 14S + 8}$$

Opisati zadani sistem faznim varijablama stanja koje su definirane kao: $x_1 = \ddot{y}$ $x_2 = \dot{y}$ $x_3 = y$ gdje y predstavlja izlaz sistema.

Nacrtati pripadajući blok dijagram. Generirati i nacrtati vremenske odzive varijabli stanja pomoću *Simulinka* i *Matlab* naredbe *lsim*.

Na ulaz dovesti step funkciju.

$$G = \frac{6}{s^3 + 7s^2 + 14s + 8} = \frac{Y(s)}{U(s)} \implies$$

$$s^3Y + 7s^2Y + 14sY + 8Y = 6U \implies$$

$$y''' + 7y'' + 14y' + 8y = 6U$$

$$y''' = -7y'' - 14y' - 8y + 6U$$

Zadano je:

$$x_1 = \ddot{y} \Rightarrow \dot{x}_1 = \ddot{y}$$

$$x_2 = \dot{y} \Rightarrow \dot{x}_2 = \ddot{y} = x_1 \quad \text{tj. } \dot{x}_2 = x_1$$

$$x_3 = y \Rightarrow \dot{x}_3 = \dot{y} = x_2 \quad \text{tj. } \dot{x}_3 = x_2$$

Uvrštavanjem prethodnih izraza u gornju jednačinu dobija se:

$$\dot{x}_1 = -7x_1 - 14x_2 - 8x_3 + 6u$$

Napišemo li jednačine \dot{x}_1 , \dot{x}_2 i \dot{x}_3 u matričnom obliku, dobit ćemo sistem opisan varijablama stanja:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -7 & -14 & -8 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = x_3 \Rightarrow y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Slika 1: *Matlab/Simulink model a)*

Tabela 1: Podešavanje blokova

Naziv bloka	Podešavanje	Vrijednost
Step	Step time:	0
Step	Initial value:	0
Step	Final value:	1
Step	Sample time:	0

Slika 2: Rezultat simulacije

Vremenski odzivi sistema (naredba *lsim()*):

```
% [y,x]=lsim(A,B,C,D,u,t,x0)
% pri cemu su:
% y: izlaz
% x: matrica varijabli stanja x=[x1 x2 x3]
% A: matrica objekta
% B: upravljacki vektor
% C: izlazni vektor
% D: vektor prijelaza
% u: ulazna funkcija
% t: definirano vrijeme
% x0: pocetni uvjeti
A=[-7 -14 -8; 1 0 0; 0 1 0];
B=[6; 0; 0];
C=[0 \ 0 \ 1];
D=[0];
t=0:0.01:10;
u=ones(1,length(t))
                         % ulazna funkcija je step
x0=[0; 0; 0]
[y,x]=lsim(A,B,C,D,u,t,x0)
subplot(311); plot(t,x(:,1)); title ('x1(t)'); grid on;
subplot(312); plot(t,x(:,2)); title('x2(t)'); grid on;
subplot(313); plot(t,x(:,3)); title ('x2(t)'); grid on;
                                        x1(t)
           1
           0
                        2
                  1
                              3
                                    4
                                          5
                                               6
                                                     7
                                                           8
                                                                 9
                                                                      10
                                        x2(t)
          0.4
          0.2
           0
                        2
                              3
                                    4
                                          5
                                                     7
                                                           8
                                                                 9
                                                                      10
                                        x3(t)
           1
          0.5
           0
                        2
                              3
                                    4
                                          5
                                               6
                                                     7
                                                                      10
             0
```

Slika 3: Rezultat funkcije

P2 PRIMJER 2: Dinamički sistem zadan je prijenosnom funkcijom:

$$G(s) = \frac{6s+14}{s^3+2s^2+5s+9}$$

Opisati zadani sistem faznim varijablama stanja koje su definirane kao: $x_1 = \ddot{y}$ $x_2 = \dot{y}$ $x_3 = y$ gdje y predstavlja izlaz sistema.

Nacrtati pripadajući blok dijagram. Generirati i nacrtati vremenske odzive varijabli stanja pomoću *Simulinka* i *Matlab* naredbe *lsim*.

Na ulaz dovesti step funkciju.

Pri uvođenju varijabli stanja u sistem koji u brojniku prijenosne funkcije ima polinom različit od 1 primjenimo pomoćnu varijablu Z na način:

$$G = \frac{6s + 14}{s^3 + 2s^2 + 5s + 9} = \frac{Y(s)}{Z(s)} + \frac{Z(s)}{U(s)} \Rightarrow$$

$$\frac{1}{s^3 + 2s^2 + 5s + 9} = \frac{Z(s)}{U(s)}, \quad 6s + 14 = \frac{Y(s)}{Z(s)} \Rightarrow$$

$$z''' + 2z'' + 5z' + 9z = u \Rightarrow z''' = -2z'' - 5z' - 9z + u$$
$$y = 6z' + 14z$$

Uvodimo varijable stanja na način:

$$x_1 = \ddot{z} \Rightarrow \dot{x}_1 = \dddot{z}$$

 $x_2 = \dot{z} \Rightarrow \dot{x}_2 = \ddot{z} = x_1 \quad \text{tj. } \dot{x}_2 = x_1$
 $x_3 = z \Rightarrow \dot{x}_3 = \dot{z} = x_2 \quad \text{tj. } \dot{x}_3 = x_2$

Uvrštavanjem prethodnih izraza u gornju jednačinu dobija se:

$$\dot{x}_1 = -2x_1 - 5x_2 - 9x_3 + u$$

Napišemo li jednačine \dot{x}_1 , \dot{x}_2 i \dot{x}_3 u matričnom obliku, dobit ćemo sistem opisan varijablama stanja:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & -5 & -9 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = 6x_2 + 14x_3 \Rightarrow y = \begin{bmatrix} 0 & 6 & 14 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Slika 4: Matlab/Simulink model

Tabela 2: Podešavanje blokova

Naziv bloka	Podešavanje	Vrijednost
Step	Step time:	0
Step	Initial value:	0
Step	Final value:	1
Step	Sample time:	0

Slika 5: Rezultat simulacije

Vremenski odzivi sistema (naredba *lsim()*):

```
% [y,x]=lsim(A,B,C,D,u,t,x0)
% pri cemu su:
% y: izlaz
% x: matrica varijabli stanja x=[x1 x2 x3]
% A: matrica objekta
% B: upravljacki vektor
% C: izlazni vektor
% D: vektor prijelaza
% u: ulazna funkcija
% t: definirano vrijeme
% x0: pocetni uvjeti
A=[-2 -5 -9; 1 0 0; 0 1 0];
B=[1; 0; 0];
C=[0 6 14];
D=[0];
t=0:0.01:10;
u=ones(1,length(t))
                        % ulazna funkcija je step
x0=[0; 0; 0]
[y,x]=lsim(A,B,C,D,u,t,x0)
subplot(311); plot(t,x(:,1)); title ('x1(t)'); grid on;
subplot(312); plot(t,x(:,2)); title('x2(t)'); grid on;
subplot(313); plot(t,x(:,3)); title ('x2(t)'); grid on;
                                        x1(t)
          0.5
           0
         -0.5
                        2
                              3
                                    4
                                          5
                                                           8
                                                                 9
                                                                       10
                                        x2(t)
          0.2
           0
         -0.2
                        2
                  1
                              3
                                    4
                                                6
                                                     7
                                          5
                                                           8
                                                                 9
                                                                       10
                                        x3(t)
          0.2
          0.1
           0
                        2
                                    4
                                          5
                                                6
             0
                              3
                                                                       10
                               Slika 6: Rezultat funkcije
```

PRIMJER 3: Na analogni ulaz (1), akvizicione kartice MCC prikazane na *Slici 7*, koja je adresirana kao kartica #2 dovodi se pad napona sa otpornika *R*_{ntc}. Potrebno je registrirati promjenu snage na otporniku *R*_{ntc} u trajanju od 2 minute. U Matlabu izvršiti akviziciju vrijednosti veličine ili veličina neophodnih za registraciju ove snage i prikazati promjenu snage graficki. Frekvencija uzorkovanja je 50 Hz. Nacrtati potrebnu šemu spajanja.

Slika 7: Akviziociona kartica

Tabela 3: Raspored pinova

Pin	Naziv signala	Pin	Naziv signala
1	CH0 IN HI	21	Port A0
2	CH0 IN LO	22	Port A1
3	AGND	23	Port A2
4	CH1 IN HI	24	Port A3
5	CH1 IN LO	25	Port A4
6	AGND	26	Port A5
7	CH2 IN HI	27	Port A6
8	CH2 IN LO	28	Port A7
9	AGND	29	GND
10	CH3 IN HI	30	PC +5V
11	CH3 IN LO	31	GND
12	AGND	32	Port B0
13	D/A OUT 0	33	Port B1
14	D/A OUT 1	34	Port B2
15	AGND	35	Port B3
16	CAL	36	Port B4
17	GND	37	Port B5
18	TRIG IN	38	Port B6
19	SYNC	39	Port B7
20	CTR	40	GND

$$P = I^{2} \cdot R$$

$$I = \frac{U}{R}$$

$$P = I^{2} \cdot R = \frac{U^{2}}{R^{2}} \cdot R = \frac{U^{2}}{R}$$

```
ai=analoginput('mcc',2);
addchannel(ai,1);

set(ai ,'SampleRate' ,50);
set(ai ,'SamplesPerTrigger', 50*60*2);

start(ai)
[napon,vrijeme]=getdata(ai);
Rntc=2000/(1-10./napon);
snaga=napon.*(napon./Rntc);
plot(vrijeme,snaga);
```


Slika 8: Shema spajanja

P4 PRIMJER 4: Na analogni ulaz (1), akvizicione kartice MCC, koja je adresirana kao kartica #2 dovodi se pad napona sa otpornika R_{ntc}. Potrebno je registrovati promjenu snage na ovom otporniku u *vremenskom trajanju* od *4 minute*. Sempliranje treba da se odvija sa *frekvencijom od 5 Hz*. Također potrebno je nacrtati šemu povezivanja sa akvizicijskom karticom MCC.

Slika 9: Akviziociona kartica

Tabela 4: Raspored pinova

Pin	Naziv signala	Pin	Naziv signala
1	CH0 IN HI	21	Port A0
2	CH0 IN LO	22	Port A1
3	AGND	23	Port A2
4	CH1 IN HI	24	Port A3
5	CH1 IN LO	25	Port A4
6	AGND	26	Port A5
7	CH2 IN HI	27	Port A6
8	CH2 IN LO	28	Port A7
9	AGND	29	GND
10	CH3 IN HI	30	PC +5V
11	CH3 IN LO	31	GND
12	AGND	32	Port B0
13	D/A OUT 0	33	Port B1
14	D/A OUT 1	34	Port B2
15	AGND	35	Port B3
16	CAL	36	Port B4
17	GND	37	Port B5
18	TRIG IN	38	Port B6
19	SYNC	39	Port B7
20	CTR	40	GND

$$P = I^{2} \cdot R$$

$$I = \frac{U}{R}$$

$$P = I^{2} \cdot R = \frac{U^{2}}{R^{2}} \cdot R = \frac{U^{2}}{R}$$

```
ai=analoginput('mcc',2)
addchannel(ai,1)
set(ai,'SampleRate',5)
set(ai,'SamplesPerTrigger',5*4*60)
start(ai)
[VRntc,t]=getdata(ai);
Rntc = 2000*(VRntc./(10 - VRntc));
P= (VRntc)^2 /Rntc;
plot(t,T);
xlabel('Vrijeme');
ylabel('Snaga na NTC otporniku ');
grid on
```


Slika 10: Shema spajanja

PRIMJER 5: Na analogni ulaz (#2), akvizicione kartice MCC, koja je adresirana kao katica #2 dovodi se pad napona sa otpornika R_{ntc}. Temperature se mijenja po formulu:

$$T = 4 \cdot (R_{ntc})^2 + 12$$

Potrebno je registrovati *promjenu temperature* i *snage na ovom otporniku* u *vremenskom trajanju od 3.5 minute*. Uzorkovanje treba da se odvija sa *frekvencijom od 2 Hz*. Potrebno je po završetku akvizicije, na odvojenim graficima prikazati promjenu temperature i snage. Također potrebno je nacrtati šemu povezivanja sa akvizicijskom karticom MCC.

Slika 11: Akviziociona kartica

Tabela 5: Raspored pinova

Pin	Naziv signala	Pin	Naziv signala
1	CH0 IN HI	21	Port A0
2	CH0 IN LO	22	Port A1
3	AGND	23	Port A2
4	CH1 IN HI	24	Port A3
5	CH1 IN LO	25	Port A4
6	AGND	26	Port A5
7	CH2 IN HI	27	Port A6
8	CH2 IN LO	28	Port A7
9	AGND	29	GND
10	CH3 IN HI	30	PC +5V
11	CH3 IN LO	31	GND
12	AGND	32	Port B0
13	D/A OUT 0	33	Port B1
14	D/A OUT 1	34	Port B2
15	AGND	35	Port B3
16	CAL	36	Port B4
17	GND	37	Port B5
18	TRIG IN	38	Port B6
19	SYNC	39	Port B7
20	CTR	40	GND

Izaz za određivanje otpornosti senzora:

$$I = \frac{(10 - U_{Rsen})}{1000}$$
 $R_{sen} = \frac{U_{Rsen}}{I} = \frac{(1000 \cdot U_{Rsen})}{(10 - U_{Rsen})}$

```
ai=analoginput('mcc',2)
addchannel(ai,2)
set(ai,'SampleRate',2)
set(ai,'SamplesPerTrigger',2*210)
start(ai)
[URsen,t]=getdata(ai);
Rsen= (1000* URsen)./(10- URsen);
T=4*(Rsen).*(Rsen)+12;
Prntc= (URsen .* URsen)./Rsen
subtitle(2,1,1)
plot(t, T);
xlabel('Vrijeme');
ylabel('Temperatura ');
title('Temperatura');
grid on;
subtitle(2,1,2)
plot(t,Prntc);
xlabel('Vrijeme');
ylabel('Snaga na otporniku');
title('Snaga');
grid on;
```


Slika 12: Shema spajanja