Intro. to Sequence Modelling

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

Given an image of a ball, can you predict where it will go next? Previous positions

Other sequential data

Sequences in Applications

Perceptron

Simple Neural Networks

Simple Neural Networks

$$x_t \in \mathbb{R}^m$$

$$\widehat{y}_t \in \mathbb{R}^n$$

Handling Multiple Timesteps

Adding Context

Recurrent Neurons

Recurrent Neural Networks (RNN)

Apply a **recurrence relation** at every time step to process a sequence:

$$h_t = f_W(x_t, h_{t-1})$$
cell state function input old state with weights w

Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

```
my rnn = RNN()
                                                              output vector
hidden_state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)
                                                                          recurrent cell
next_word_prediction = prediction
# >>> "networks!"
                                                              input vector
                                                                               x_t
```



```
class MyRNNCell (tf.keras.layers.Layer):
  def __init__ (self, rnn_units, input_dim, output_dim):
    super(MyRNNCell, self) __init__()
                                                                       output vector
    self.W_xh = self.add_weight([rnn_units, input_dim])
    self.W hh = self.add weight([rnn units, rnn units])
    self.W hy = self.add weight([output dim, rnn units])
    self.h = tf.zeros([rnn units, 1])
                                                                                      RNN
  def call(self, x):
                                                                                     recurrent cell
    self.h = tf.math.tanh( self.W hh * self.h + self.W xh * x )
    output = self.W hy * self.h
                                                                        input vector
                                                                                          x_t
    return output, self h
```


Design Factors

To model sequences, we need to:

- Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

Next Word Prediction – GPT Task

"This morning I took my cat for a walk."

given these words

predict the

next word

Representing Language to a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

Next Word Prediction – GPT Task

Neural networks cannot interpret words

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

I. Vocabulary:Corpus of words

2. Indexing: Word to index

Embedding: Index to fixed-sized vector

Variable Length

The food was great

VS.

We visited a restaurant for <u>lunch</u>

VS.

We were hungry but cleaned the house before eating

Long-term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Word Order

The food was good, not bad at all.

VS.

The food was bad, not good at all.

RNN

To model sequences, we need to:

- Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

Gradient Backprop.

Backpropagation algorithm:

- Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

Time Backprop.

Exploding Gradient

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Vanishing Gradient

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:
exploding gradients

Gradient clipping to
scale big gradients

Many values < 1:

vanishing gradients

Activation function

Weight initialization

Network architecture

LSTM

Idea: use gates to selectively add or remove information within each recurrent unit with

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long-term Dependencies

Gated LSTM cells control information flow:

1) Forget 2) Store 3) Update 4) Output

LSTM cells are able to track information throughout many timesteps

tf keras layers LSTM(num_units)

LSTM

- Maintain a cell state
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with partially uninterrupted gradient flow

Sentiment Analysis

Input: sequence of words

Output: probability of having positive sentiment

loss = tf nn softmax_cross_entropy_with_logits(y, predicted)

Challenges with RNN Models

Limitations of RNNs

- Tencoding bottleneck
- Slow, no parallelization
- Not long memory

Attention is all you need!