Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics January 2013

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Tuesday 29 January 2013 1.30 pm to 3.30 pm

For this paper you must have:

- a calculator
- mathematical instruments.

Examiner's Initials Pages Mark 3 4 - 5 6 - 7 8 - 9 10 - 11 12 - 13 14 - 15 16 - 17 18 - 19 20 - 21 22 - 23 TOTAL

For Examiner's Use

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1 A sketch of 2x + 3y = 12 is shown.

1 (a) Work out the coordinates of R.

Answer
$$($$
 \bigcirc , \bigcirc , \bigcirc

1 (b) Work out the coordinates of the midpoint of *RS*.

Answer (......3.,)

In triangle *PQR*, *X* is a point on *PQ*. *RX* is perpendicular to *PQ*.

Work out the ratio PX:XQ

Give your answer in its simplest	t form. $\alpha = \sqrt{2-13}$	a = 52-62	
	XQ = 5392-162		••
	²	= JT49	
		. —	

= (2:30

(2 marks)

3 Solve 5d - 3 > d + 17

4d > 20

a > 5

Answer

4 Match each statement with an equation. You will **not** use all of the equations.

One has been done for you.

A curve passing through (0, 0)

$x^{2} +$	$y^2 =$	10
-----------	---------	----

$$(x+2)^2 + (y-1)^2 = 1$$

 $(x-2)^2 + (y+1)^2 = 1$

A curve passing through (1, 0)

$$y = x^3$$

A circle centre (2, -1)

$$y = x^3 + x - 2$$

A circle passing through (3, 1)

$$y = x^2 - 2$$

23, x-2= (+1-2=0 (10)

.....

Turn over ▶

5 A parallelogram and a trapezium are shown. All lengths are in centimetres.

Not drawn accurately

The area of the parallelogram is equal to the area of the trapezium.

Work out the value of x.

$x = \dots $ cm (4 marks
-------------------	---------

6 A function f(x) is defined as

$$f(x) = 4$$

$$= x^{2}$$

$$= 12 - 4x$$

$$x < -2$$

$$-2 \leqslant x \leqslant 2$$

$$x > 2$$

6 (a) Draw the graph of y = f(x) for $-4 \le x \le 4$

(3 marks)

6 (b) Use your graph to write down **how many** solutions there are to f(x) = 3

Answer

6 (c) Solve f(x) = -10

$$\frac{2}{12-9} \times 1 = 9 + 60 = (2-9) \times 12-9 \times 12 = 10$$

Turn over ▶

The *n*th term of the sequence is $\frac{10n-2}{3}$

Work out the value of a.

$$5an - |a| = \frac{10n-2}{3}$$

15an-30=10n-2

 $5m^2 - 20p^2$ 8 (a) Factorise fully

and $5m^2 - 20p^2 = 0$ 8 (b) You are given that p = 15

Using your answer to part (a), or otherwise, work out the values of m.

Using your answer to part (a), or otherwise, work out the value
$$5m^2 - 20p^2 = 0$$

$$5m^2 = 20x \ 225$$

m2= 9×225

m2- 486 n= + 70 /

(2 marks)

9 (a) Expand (x+m)(x+n)

Answer $x + (n+n)x + m\Lambda$

(1 mark)

9 (b) $x^2 + qx + r \equiv (x + m)(x + n)$

Use your answer to part (a) to write q and r in terms of m and n.

 $q = \dots M + \Lambda$

 $r = \mathcal{M} \Lambda$

9 (c) r is an odd integer.

Use your answer to part (b) to explain why q is an even integer.

To get an odd integer, you must nuttiply together two odd numbers:

m and n ove both odd.

Two odd runber added always nake an even nurber: q yeven -

$$S = \frac{a}{1 - r}$$

Show that $r = \frac{S - a}{S}$ 10 (a)

·	
_	IA
	10a
	• (

-	90
	100

$$r = \frac{q}{10}$$
 (2 marks)

11 In the diagram, AB = BC

Prove that *ABCD* is a cyclic quadrilateral. Give reasons for any statements you make.

Isosobes Triangle - ABC = Sunsfint (1800) - other
Isosobes Trangle - ABC = Sums fint (180°) - other angles (2x) = (80-2xc. In cyclic quadratery, opposite angles add up to (80° so ABC = 180 - other side (2xc).
In cyclic quadilatery opposite angles add up to 180°
so ABC = 180 - other side (2 xc).
(3 marks)
(o marks)

Turn over ▶

$$f(x) = \sin x$$
 $180^{\circ} \le x \le 360^{\circ}$

 $g(x) = \cos x$

 $0^{\circ} \leq x \leq \theta$

Answer

= sin (2(0) = - /z)

12 (a)

Calculate the value of f(210°).

(1 mark)

12 (b) Complete this inequality for the range of f(x).

12 (c)

You are given that $0 \leqslant g(x) \leqslant 1$

Work out the value of θ .

13 (a)	Show that	$\frac{4}{x} + \frac{2}{x-1}$	simplifies to	$\frac{6x-4}{x(x-1)}$	
		' 1/ 0 -	<u>~</u>)		
) (x-1)	_		
	= 9x	-9 +2sc			
	><	(z -1)			
	= 650	7			
	2(()	c -(\			

13 (b) Hence, or otherwise, solve
$$\frac{4}{x} + \frac{2}{x-1} = 3$$

$$\chi\left(\lambda^{-1}\right) = \lambda^{-1}$$

Give your solutions to 3 significant figures.

-ير)	- 1,5)2	=	<u>2.75</u> 3	- 11
٠٠٠٠٠٠	-(,5 =	ť	(<u>17</u>	_

= 3 (sc-1.5)2 - 6.75+9 = 3 (su-1.5)2-2.75

Sez (5 ± 53)

(5 marks)

The value of x is 50% more than the value of t. The value of y is 10% less than the value of w.

x = y

Work out $\frac{t}{w}$

Give your answer as a decimal.

 $\begin{pmatrix} 10w = 4 \end{pmatrix} O 9w \lambda$

= 1.5

 $\frac{t}{w} = \dots$ (4 marks)

15 Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Rotate 90° Auti-(Cortise about (0,0)

(3 marks)

16
$$y = (x^3 - 1)^2 + (\sqrt{x})^8$$

$$= (x^3 - 1)(x^3 - 1)$$
Work out $\frac{dy}{dx}$.
$$= (x^3 - 1)(x^3 - 1)$$

$$= (x^3 - 1)(x^3 - 1)$$

$$y = x^{6} - 2x^{3} + 1 + (x^{\frac{1}{2}})^{8}$$

$$= x^{6} + x^{6} - 2x^{3} + 1$$

$$\frac{dy}{dx} = \dots$$

(5 marks)

Turn over for the next question

- 17 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ represents a reflection in the *y*-axis.
 - $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ represents a reflection in the line y = x

Work out the matrix that represents a reflection in the y-axis followed by a reflection in the line y=x

$$Z = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$Z = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

(2 marks)

Express $1 - \tan \theta \sin \theta \cos \theta$ $= 1 - \frac{\sin \theta}{\cos x} \sin \theta \cos \theta$

in terms of $\cos\theta$.

tan 8 = Sin 0

= 1- \frac{\sin^20}{\cos6} \cos6

= (- sin 2)

= (- xn 0

Answor

19

A cubic function f(x) has domain $-4 \le x \le 4$

The curve y = f(x)

- has a minimum point at (-2, 0)
- has a maximum point at (1, 4)
- meets the x-axis at (4, 0).

Sketch the graph of y = f(x) on these axes. Label any points where the graph meets the *x*-axis.

Turn over ▶

The area of this triangle is $18 \, \text{cm}^2$. 20

Work out y.

4x (8= 2w²

..... cm (5 marks)

21	Work out the equation of the normal to the curve $y = x^2 + 4x + 5$ at the point
	where $x = \sqrt{3}$ $dy = 2x + 4$ $m = -6 + 4 = -2$
	drx regin = (z)
	y=9-12t5 = 0 y=m)c+(
	$y=M)(+)$ $2=\frac{-3}{2}+C$
	L= 3.5
	Answer $y = \frac{3c}{7} + 3c$ (5 marks)
22	$f(x) = x^3 + ax^2 + bx + 24$ for all values of x . Two of the factors of $f(x)$ are $(x-2)$ and $(x+3)$. Work out the values of a and b .
	f(2) = 8+ 9a+2b+29:09a+2b=-32 9a+2b=32
	F(-3)=27+9a-3b+24=1899a-3b=3 $2b=32-9x3.9$
	+ @18a-6b=6 b=9.2
	30a = 107
	u = 3.9
	C (/ NC (
	514NS!
	777
	7 / /
	a = $b = $ (5 marks)

The diagram shows a cuboid *ABCDPQRS* and a pyramid *PQRSV*. *V* is directly above the centre, *X*, of *ABCD*.

The total height, VX, is 5 metres.

23 (a)	Work out the angle between the line $\it VA$ and the plane $\it ABCD$.				
	Answer degrees (4 marks)				
23 (b)	Work out the angle between the planes VQR and $PQRS$.				
	710				
	Answer degrees (2 marks)				

Turn over ▶

24	Solve	$3\cos^2\theta-1=0$	for	0° ≤ θ ≤ 180°
	$0 = 3(\sin^2\theta - 1) - 1$		(oz = 13	
	= 3 5%	,`0-9	COS	0=t51/3
				54.7, 125.2

??

25 Here are two number machines.

b+2=3(a+2)-t

b= 3(a+2)-k-2

t(a-9)=3(a+2)-k-2

ka - 9k = 3a + 6 - k - 2

ka-3a=6-k+9k-2

a(K-3)=3K+9

END OF QUESTIONS

