Subcomplete Forcing, Trees, and Generic Absoluteness

Kaethe Minden

Marlboro College

Subcomplete forcing is a class of forcing notions defined by Ronald B. Jensen. Subcomplete forcing does not add reals, but may potentially alter cofinalities to ω .

Examples of subcomplete forcing

- Countably closed forcing.
- Namba forcing, denoted by \mathbb{N} , a forcing notion consisting of subtrees $T \neq \emptyset$ of $\omega_2^{<\omega}$ ordered by inclusion, such that T is downward closed in $\omega_2^{<\omega}$ and where each node in T has ω_2 -many eventual successors in T. Each condition in \mathbb{N} has size ω_2 . Namba forcing adds a cofinal sequence $S:\omega\longrightarrow\omega_2^V$ to the extension, a cofinal branch through $\omega_2^{<\omega}$. Under CH, Namba forcing adds no new reals and is subcomplete [?, Section 3.3].
- ullet Prikry forcing, which forces a measurable cardinal to have cofinality ω while preserving cardinalities
- Generalized diagonal Prikry forcing
- Revised countable support (rcs) iterations of subcomplete forcing notions.
- Lottery sums of subcomplete forcing notions.
- ullet If $\mathbb P$ is subcomplete and $\pi:\mathbb P\longrightarrow\mathbb Q$ is a dense embedding, then $\mathbb Q$ is subcomplete.

How subcompleteness fits in with other forcing classes which preserve stationary subsets of ω_1 :

Theorem

Let T be an ω_1 -tree. If $\mathbb P$ is subcomplete then $\mathbb P$ does not add new branches to T.

Proof sketch.

Assume not. Let q be a condition forcing that \dot{b} is a new cofinal branch through \check{T} . Let θ verify the subcompleteness of $\mathbb P$ and find N, σ so that:

- $\mathbb{P} \in H_{\theta} \subseteq N$
- \bullet $\sigma: \overline{N} \cong X \prec N$ where X is countable and \overline{N} is full
- $\bullet \ \sigma(\overline{\theta}, \overline{\mathbb{P}}, \overline{T}, \overline{q}, \overline{\dot{b}}) = \theta, \mathbb{P}, T, q, \dot{b}.$

By elementarity, \overline{q} forces $\overline{\dot{b}}$ to be a new cofinal branch through $\check{\overline{T}}.$

Let $\alpha = \omega_1^{\overline{N}}$. Note that $cp(\sigma) = \alpha$.

Proof sketch continued.

The idea is to construct a generic \overline{G} for $\overline{\mathbb{P}}$ over \overline{N} , using the countability of \overline{N} to diagonalize against all branches through T as seen on level α of the tree in N.

Inductively define a decreasing, chain of conditions \overline{q}_n , where $\overline{q}_0=\overline{q}$, deciding values of $\overline{\dot{b}}$ in \overline{T} differently than the nth "branch" on level α in T.

Proof sketch continued.

Furthermore list out the (countably many) dense sets of $\overline{\mathbb{P}}$, \overrightarrow{D} , and ensure that each $\overline{q}_n \in \overline{D}_n$.

Let \overline{G} be the generic filter generated by the \overline{q}_n , let $\dot{\overline{b}} = \overline{b}$. Since \mathbb{P} is subcomplete, there is a condition $p \in \mathbb{P}$ such that whenever G is \mathbb{P} -generic with $p \in G$, we have $\sigma' \in V[G]$ such that:

- \bullet $\sigma': \overline{N} \longrightarrow N$ elementarily
- $\bullet \ \sigma'(\overline{\theta}, \overline{\mathbb{P}}, \overline{T}, \overline{q}, \dot{\overline{b}}) = \theta, \mathbb{P}, T, q, \dot{b}$
- σ' " $\overline{G} \subset G$.

So there is a lift $\sigma^*: \overline{N}[\overline{G}] \longrightarrow N[G]$ elementary, a lift of σ' , with $\sigma^*(\overline{b}) = \sigma'(\overline{\dot{b}})^G = \dot{b}^G = b$, and $\sigma^*(\overline{T}) = \sigma'(\overline{T})^G = T$. Now we have $N[G] \models q \in G$, so b is a cofinal branch through T.

Proof sketch continued.

Since α is the critical point of the embedding, in N[G], $b \upharpoonright \alpha = \overline{b}$. However, \overline{b} was constructed so as to not be equal to any branch restricted to level α , the ones we listed out initially, a contradiction.

Corollary

Subcomplete forcing preserves Aronszajn trees.

Corollary

If an ω_1 -tree is not Kurepa, it cannot become Kurepa in a subcomplete forcing extension.

Moreover, subcomplete forcing does not add branches to potentially "wider" trees with levels of size less than c

Theorem

Subcomplete forcing cannot add branches to $(\omega_1, < 2^{\omega})$ -trees.

Suslin tree preservation

Theorem (Jensen)

Subcomplete forcing preserves the property of being Suslin of ω_1 -trees.

This proof of the above is necessarily different from the proof that subcomplete forcing doesn't add branches to ω_1 -trees, as it is possible for maximal antichains to be added by subcomplete forcing.

Proposition

If T is a non-Suslin ω_1 -tree, then $\mathcal{A}dd(\omega_1,1)$ adds a new maximal antichain to T.

Proof.

Let $A = \{a_{\alpha} \mid \alpha < \omega_1\}$ be a maximal antichain in T. Let $G \subseteq \omega_1$ be $\mathcal{A}dd(\omega_1,1)$ -generic. Let $A' = \{a_{\alpha} \mid \alpha \notin G\} \cup \{t \in T \mid \exists \alpha \in G \mid t \in \mathsf{succ}_{\mathcal{T}}(a_{\alpha})\}$. Then A' is a maximal antichain in T and $A' \notin V$ since $G = \{\alpha < \omega_1 \mid a_{\alpha} \notin A'\}$.

Corollary

Nontrivial ccc forcings are not subcomplete.

Proof sketch.

If $\mathbb P$ is subcomplete and ccc then $\mathbb P$ is countably distributive (since it can't add a real), and cccKaethe Minden

Subcomplete Forcing, Trees, and Generic Absoluteness

9 / 14

The unique branch property of Suslin trees

Definition

A normal ω_1 -tree $\mathcal T$ has the **unique branch property** (ubp) so long as $\mathbb I \Vdash_{\mathcal T} \text{``T}$ has exactly one new cofinal branch." That is, after forcing with the tree, $\mathcal T$ has has exactly one cofinal branch which was not in the ground model.

Theorem

If T is a Suslin tree and \mathbb{P} is subcomplete, then $[T]^{V^{\mathbb{P}\times T}}=[T]^{V^T}$. In other words, subcomplete forcing doesn't add to the collection of T-generic branches.

Corollary

Subcomplete forcing preserves the unique branch property of Suslin trees.

Proof of Theorem.

Suppose not. Let \ddot{b} be a \mathbb{P} -name for a \check{T} -name for a new branch through T and suppose we have $p \in \mathbb{P}$, $t \in T$ satisfying that whenever $G \times b \subseteq \mathbb{P} \times T$ is generic with $\langle p, t \rangle \in G \times b$ we have that $(\ddot{b}^G)^b \in [T]^{V[G][b]} \setminus [T]^{V[b]}$.

Subcomplete forcing doesn't add generic branches to Suslin trees

Proof of Theorem continued.

Let θ verify the subcompleteness of \mathbb{P} , and let's get ourselves into the standard setup:

- $\mathbb{P} \in H_{\theta} \subseteq N \models \mathsf{ZFC}^-$
- ullet $\sigma:\overline{N}\cong X\prec N$ where X is countable and \overline{N} is full
- $\bullet \ \sigma(\overline{\theta}, \overline{\mathbb{P}}, \overline{T}, \overline{\rho}, \overline{\ddot{b}}, \overline{t}) = \theta, \mathbb{P}, T, \rho, \ddot{b}, t.$

Let $\alpha = \omega_1^{\overline{N}}$, the critical point of σ . We have $\overline{T} = T \upharpoonright \alpha$ as usual.

Enumerate with \overline{D} the dense sets of $\overline{\mathbb{P}}$ in \overline{N} . Again the idea is to carefully construct a generic $\overline{G} \subseteq \overline{\mathbb{P}}$ over \overline{N} by diagonalizing against branches \overrightarrow{b} on level α of T. We may ensure that $\overline{t} \in b_0$. We construct a $\leq_{\overline{\mathbb{P}}}$ -sequence $\langle \overline{p}_n \mid n < \omega \rangle$ satisfying, for each n:

- **②** In \overline{N} , $\overline{p}_n \Vdash_{\overline{P}} \left(\check{\underline{t'}} \Vdash_{\overleftarrow{T}} \ddot{\overline{b}}(\check{\gamma}) \neq (b_n\check{(\gamma)}) \right)$, for some $\gamma < \alpha$ and $\overline{t'} \in b_0$, $\sigma(\overline{t'}) = t' \geq_T t$. In other words, \overline{p}_n forces that the canonical name for $\overline{t'}$ forces the value of the generic branch to be different from the *n*th "branch" in our list in N.

If we can satisfy these two conditions, then we are done.

Subcomplete forcing doesn't add generic branches to Suslin trees

Proof of Theorem continued.

Suppose \overline{p}_m have been defined for m < n. To get \overline{p}_n , choose \overline{q}_n below each \overline{p}_m for all m < n, satisfying $\overline{q}_n \in \overline{D}_n$.

As \overline{T} is Suslin in \overline{N} and cofinal branches are generic for Suslin trees, we have that $\overline{N}[b_0]$ is a generic extension. Let \overline{G}^0 , \overline{G}^1 be mutually $\overline{\mathbb{P}}$ -generic over $\overline{N}[b_0]$ so that \overline{p} , $\overline{q}_n \in \overline{G}^0 \cap \overline{G}^1$. For

$$i=0,1$$
 let $\overline{c}^i=(\overline{b}^{G^i})^{b_0}$

Since $\overline{p} \in \overline{G}^0$, \overline{G}^1 and $\overline{t} \in b_0$, both of the \overline{c}^i are cofinal branches through \overline{T} . It follows from the mutual genericity of \overline{G}^0 and \overline{G}^1 that $\overline{c}^0 \neq \overline{c}^1$; otherwise, suppose that $\overline{c} = \overline{c}^0 = \overline{c}^1$. Then we'd have

$$\overline{c} \in \overline{N}[\overline{G}^0][b_0] \cap \overline{N}[\overline{G}^1][b_0] = \overline{N}[b_0][\overline{G}^0] \cap \overline{N}[b_0][\overline{G}^1] = \overline{N}[b_0]$$

so $\overline{c} \in [\overline{T}]^{V[b_0]}$, a contradiction.

So let $\overline{c} \in \{\overline{c}^0, \overline{c}^1\}$ be such that $\overline{c} \neq b_n$. Thus we may choose $\gamma < \alpha$ so that the value of \overline{c} on level α is not the same as $b_n(\gamma)$. Then this holds in some $\overline{N}[\overline{G}^i][b_0]$, and we can obtain a condition $\overline{p}_n \leq \overline{q}_n$ forcing this.

Suslin off the generic branch

Definition

A Suslin tree T is **Suslin off the generic branch** so long as after forcing with T to add a generic branch b, for any node t not in b, the tree T_t remains Suslin.

Theorem

If T is a Suslin tree which is also Suslin off the generic branch, then T is still Suslin off the generic branch after subcomplete forcing.

