

Méthode des différences finies pour l'EDP de transport 1D

Andrea Brugnoli

11 Avril 2022

UNIVERSITY OF TWENTE.

Aperçu

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Maillage et approximation des dérivées

Stabilité : analyse de Von Neumann

Applications

Pour aller plus loin : domaine borné et conditions au bord

Outline

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Pour aller plus loin : domaine borné et conditions au bord

Équation du transport 1D

L'EDP la plus simple

L'évolution d'un champ scalaire u(x,t) transporté par un fluide satisfait

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad x \in \mathbb{R}, \quad t \in (0, T].$$

Pour le flux q(u,x,t) on considère une vitesse constante pour le fluide

$$q(u, x, t) = c u(x, t), \qquad c \in \mathbb{R}.$$

Le problème est bien posé lorsque on spécifie la donnée initiale

$$u(x,0) = u_0(x).$$

Solution Analytique

Solution analytique regulière

Si $u_0 \in C^1(\mathbb{R})$ alors $u \in C^1(\mathbb{R} \times [0,T])$ et

$$u(x,t) = u_0(x - ct),$$

i.e. u constant sur γ telle que $\dot{\gamma} = (c, 1)$. Les courbes γ sont appelées caractéristiques.

Conservation de l'energie

$$\frac{d}{dt} \|u(x,t)\|_{L^2}^2 = 0 \implies \|u(x,t)\|_{L^2} = \text{Const.}$$

Exemple:
$$u_0(x) = e^{-x^2/4}, c > 0.$$

Solution Analytique

Solution analytique regulière

Si $u_0 \in C^1(\mathbb{R})$ alors $u \in C^1(\mathbb{R} \times [0,T])$ et

$$u(x,t) = u_0(x - ct),$$

i.e. u constant sur γ telle que $\dot{\gamma} = (c, 1)$. Les courbes γ sont appelées caractéristiques.

Conservation de l'energie

$$\frac{d}{dt} \|u(x,t)\|_{L^2}^2 = 0 \implies \|u(x,t)\|_{L^2} = \text{Const.}$$

Exemple:
$$u_0(x) = e^{-x^2/4}, c < 0.$$

Outline

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Maillage et approximation des dérivées

Stabilité : analyse de Von Neumann

Applications

Pour aller plus loin : domaine borné et conditions au bord

Discrétisation du domaine : le maillage

On considère un maillage rectangulaire uniforme (x_i,t_n) : cela signifie que $\Delta x=x_{i+1}-x_i$ et $\Delta t=t_{n+1}-t_n$ sont constants.

La solution discrète $u_{i,n}$ au nœud (x_i,t_n) est une approximation de la valeur exacte $u(x_i,t_n)$

$$u_{i,n} \approx u(x_i, t_n).$$

Exemple de maillage rectangulaire uniforme :

$$\Delta x = 4, \quad \Delta t = 2.$$

Approximation des dérivées : développement de Taylor

Différences finies : on remplace la dérivée par un quotient différentiel

Discrétisation en temps

Explicite

$$\frac{\partial u}{\partial t}(x_i, t_n) \approx \frac{u_{i,n+1} - u_{i,n}}{\Delta t} + O(\Delta t).$$

Implicite

$$\frac{\partial u}{\partial t}(x_i, t_n) \approx \frac{u_{i,n} - u_{i,n-1}}{\Delta t} + O(\Delta t).$$

Centrée

$$\frac{\partial u}{\partial t}(x_i, t_n) \approx \frac{u_{i,n+1} - u_{i,n-1}}{2\Delta t} + O(\Delta t^2)$$

Discrétisation en espace

Aval

$$\frac{\partial u}{\partial x}(x_i, t_n) \approx \frac{u_{i+1,n} - u_{i,n}}{\Delta x} + O(\Delta x).$$

Amont

$$\frac{\partial u}{\partial x}(x_i, t_n) \approx \frac{u_{i,n} - u_{i-1,n}}{\Delta x} + O(\Delta x).$$

Centrée

$$\frac{\partial u}{\partial t}(x_i, t_n) \approx \frac{u_{i+1,n} - u_{i-1,n}}{2\Delta x} + O(\Delta x^2)$$

Outline

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Maillage et approximation des dérivées

Stabilité : analyse de Von Neumann

Applications

Pour aller plus loin : domaine borné et conditions au bord

Quoi choisir? Analyse de Von Neumann

Intuition: Solution de l'EDP de transport pour $u_0(x) = e^{j\xi x}$ $(j = \sqrt{-1})$:

$$u(x,t) = e^{j\xi(x-ct)} = e^{j\xi x}e^{-jct}$$
, Onde plane.

Justification (analyse de Fourier) : la transformé de Fourier de $u(x,\cdot)$ est

$$\widehat{u}(\xi,\cdot) = \mathcal{F}\{u\}(\xi,\cdot) = \int_{-\infty}^{+\infty} u(x,\cdot)e^{-j\xi x} dx, \qquad \xi \in \mathbb{R}.$$

La transformé de la dérivée est donnée par

$$\mathcal{F}\{\partial_x u\}(\xi,\cdot) = j\xi \widehat{u}(\xi,\cdot).$$

EDP du transport : $\partial_t \widehat{u}(\xi, t) = -cj\xi \widehat{u}(\xi, t)$ (Eq. algébrique in \mathbb{C}).

Analyse de von Neumann

On considère alors l'évolution en temps discret du mode

$$u_{i,n} = \psi_n e^{j\xi i\Delta x}, \quad \psi_n \in \mathbb{C}.$$

Rappel : stabilité des systèmes dynamiques discrets

Stabilité en temps discret (cas complexe)

Le système discret temps invariant

$$\psi_{n+1} = A\psi_n, \qquad \psi_n \in \mathbb{C}, \ A \in \mathbb{C},
\psi_0 = \overline{\psi},$$

est stable si |A| < 1 et stable au sens de

Lyapunov si |A| = 1.

Outline

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Maillage et approximation des dérivées Stabilité : analyse de Von Neumann

Applications

Pour aller plus loin : domaine borné et conditions au borc

Les schémas que on va analyser

- 1. Explicite en temps, aval en espace.
- 2. Explicite en temps, amont en espace.
- 3. Explicite en temps, centré en espace.
- 4. Implicite en temps, amont en espace.

Cas 1 : Schéma explicite en temps et aval en espace

Schéma résultant : $u_{i,n+1} = u_{i,n} - \sigma(u_{i+1,n} - u_{i,n}), \qquad \sigma = c/c_{\text{num}}.$ $c_{\text{num}} = \Delta x/\Delta t$ est la **vitesse numérique**.

L'hypothèse du Von Neumann $u_{i,n} = \psi_n e^{j\xi i\Delta x}$ donne

$$\psi_{n+1} = A(\xi)\psi_n, \qquad A(\xi) = 1 + \sigma(1 - e^{j\xi\Delta x}),$$
 Coefficient d'amplification.

Le critère de stabilité est respecté si $\forall \xi$ on a

$$|A(\xi)|^2 = 1 + 2\sigma(\sigma + 1)(1 - \cos(\xi \Delta x)) \le 1$$

Conditions de stabilité

Stable si $-1 \le \sigma \le 0$

$$c<0, \qquad \text{Discrétisation aval ne peut pas traiter vitesse positive}, \\ c_{\text{num}}>|c|, \qquad \qquad \text{Condition CFL (Courant, Friedrichs et Lewy 1928)}.$$

Si
$$\sigma = -1 \implies |A(\xi)| = 1$$
 (pas de viscosité numérique)
Si $-1 < \sigma < 0 \implies |A(\xi)| < 1$ (viscosité numérique)

Cas stable sans viscosité numérique.

Cas stable avec viscosité numérique.

Instable : CFL non respectée.

Cas 2 : Schéma explicite en temps et amont en espace

Schéma résultant : $u_{i,n+1} = u_{i,n} - \sigma(u_{i,n} - u_{i-1,n})$. Dans ce cas le coefficient d'amplification est donné par

$$A(\xi) = 1 - \sigma(1 - e^{-j\xi\Delta x})$$

Le critère de stabilité est respecté si $\forall \xi$ on a

$$|A(\xi)|^2 = 1 - 2\sigma(1 - \sigma)(1 - \cos(\xi \Delta x)) \le 1.$$

Conditions de stabilité

Stable si $0 \le \sigma \le 1$

c>0, Discrétisation amont ne peut pas traiter vitesse negative, $c_{\mathrm{num}}>|c|,$ Condition CFI

Cas 3 : Schéma explicite en temps et centré en espace

Schéma résultant : $u_{i,n+1} = u_{i,n} - \sigma/2(u_{i+1,n} - u_{i-1,n})$

Dans ce cas le coefficient d'amplification est donné par

$$A(\xi) = 1 - j\sigma \sin(\xi \Delta x).$$

On remarque que

$$|A(\xi)| > 1, \quad \forall \sigma \neq 0!$$

Ce schéma est toujours instable!

Cas 4 : Schéma implicite en temps et amont en espace

Schéma résultant : $(1+\sigma)u_{i,n+1}-\sigma u_{i-1,n+1}=u_{i,n}$

Dans ce cas le coefficient d'amplification est donné par

$$A(\xi) = \frac{1}{1 + \sigma - \sigma e^{-j\xi \Delta x}}$$

Du fait que $|A(\xi)|^2 \le 1 \iff |\frac{1}{A(\xi)}|^2 \ge 1$:

$$1 + \sigma - \sigma e^{-j\xi\Delta x} \ge 1, \quad \forall \sigma > 0.$$

Si $\sigma > 0$ (i.e. c > 0.) ce schéma est toujours stable! Plus de CFL.

Récapitulatif

Cas	Stabilité
Explicite en temps, aval espace	Conditionnellement Stable : $c < 0$, $c_{\text{num}} > c $.
Explicite en temps, amont espace	Conditionnellement Stable : $c > 0$, $c_{\text{num}} > c $.
Explicite en temps, centré espace	Instable $orall c_{num}.$
Implicite en temps, amont espace	Stable si $c>0$ (no CFL).

Outline

Équation du transport 1D : le cas continu

Discrétisation par différence finies

Pour aller plus loin : domaine borné et conditions au bord

Domaine borné en espace

On considère le transport du champ u(x,t) dans un domaine spatial borné

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0, \quad c > 0, \quad x \in [0, L], \quad t \in (0, T].$$

Le problème est bien posé lorsque on spécifie

$$u(x,0)=u_0(x),$$
 Donnée initiale, $u(0,t)=f(t),$ Condition au bord.

Solution analytique

Si
$$f, u_0 \in C^1$$
, et $f(0) = u_0(0), f'(0) = -cu_0'(0)$ alors $u \in C^1([0, L] \times [0, T])$

$$u(x,t) = \begin{cases} u_0(x-ct), & x \geq ct \\ f(t-x/c), & x \leq ct, \end{cases} \text{ i.e. } u \text{ constant sur } \gamma \text{ telle que } \dot{\gamma} = (c,1).$$

Compatibilité de données

Interaction entre les données

$$u(x,t) = \begin{cases} u_0(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

f et u_0 interagissent seulement sur x=ct.

Exemples

$$c = 2, \quad L = 20, \quad T = 10.$$

$$u_0(x) = e^{-x^2/4},$$

 $f(t) = 1,$

Compatibilité de données

Interaction entre les données

$$u(x,t) = \begin{cases} u_0(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

f et u_0 interagissent seulement sur x=ct.

Exemples

$$c = 2$$
, $L = 20$, $T = 10$.
$$u_0(x) = e^{-x^2/4},$$

$$f(t) = e^{-t^2},$$

Compatibilité de données

Interaction entre les données

$$u(x,t) = \begin{cases} u_0(x-ct), & x \ge ct \\ f(t-x/c), & x \le ct, \end{cases}$$

f et u_0 interagissent seulement sur x=ct.

Exemples

$$c = 2$$
, $L = 20$, $T = 10$.
 $u_0(x) = e^{-x^2/4}$,
 $f(t) = \cos^2(t)$,

Bibliographie

OLVER, Peter J. Introduction to partial differential equations. Springer, 2014.

TREFETHEN, Lloyd N. Finite difference and spectral methods for ordinary and partial differential equations. 1996.