Relatório Sistema Massa-Mola

David Cristino (96518), Duarte Marques (96523), João Marques (96542), Rodrigo Pereira (96563)

13 e 15 de outubro de 2020

Grupo B2, Terça e Quinta-feira

Mestrado Integrado em Engenharia Física e Tecnológica Laboratório de Mecânica, Oscilações e Ondas Profs. Pedro Sebastião e António Ferraz

Resumo

Neste relatório, expõem-se e analisam-se os resultados relativos ao estudo de um sistema oscilatório, o sistema massa-mola. Nesta atividade experimental, procurou-se caracterizar este sistema, através da determinação das suas constantes físicas características, tais como a constante de Hooke da mola, K, e a frequência de ressonância, f_{ress} . Determinaram-se também os valores de outras grandezas que, não sendo intrínsecas do sistema massa-mola, se encontram relacionadas com esta atividade: o coeficiente de atrito do ar, b_{ar} , e o coeficiente de atrito eletromagnético, b_{em} . Recorreu-se a duas molas distintas – uma azul e outra vermelha – e, para cada uma, estudaram-se três regimes diferentes: equilíbrio, oscilação livre e oscilação forçada. Os valores finais obtidos foram: $K = (10.3 \pm 0.1) \ Nm^{-1}$ e $f_{ress} = (1.60 \pm 0.02)$ Hz, para a mola vermelha; $K = (6.77 \pm 0.07) \ Nm^{-1}$ e $f_{ress} = (1.30 \pm 0.02)$ Hz, para a mola azul; $b_{ar} = (5.0 \pm 1.9) \times 10^{-3} \ kg s^{-1}$ e $b_{em} = (2.6 \pm 0.8) \times 10^{-2} \ kg s^{-1}$.

I Introdução teórica

O objetivo desta atividade experimental é estudar o movimento de uma mola, de massa desprezável, suspensa na sua extremidade superior num pivô, e que tem, na sua outra extremidade, uma barra de massa m.

Sabe-se, pela Lei de Hooke, que a força restitutiva exercida pela mola na massa é proporcional ao alongamento da mola, Δl , sendo a constante de proporcionalidade denominada por K e chamada de constante elástica da mola, que depende da mesma, ou seja:

$$\vec{F}_{elástica} = -K\Delta z \vec{ez} \tag{1}$$

No equílibrio, $|F_{elástica}| = |F_{grav\'itica}|$, ou seja, $mg = K\Delta l$, pelo que se chega à fórmula a ser usada para o ajuste gráfico na primeira parte da atividade

$$\Delta l = \frac{g}{K} \Delta m \tag{2}$$

Considera-se também que a mola apenas atinge baixos valores para o módulo da velocidade, pelo que se pode assumir que que a força de atrito depende linearmente da velocidade da mesma, na forma:

$$\vec{F}_{atrito} = -b\frac{dz}{dt}\vec{ez} \tag{3}$$

Onde b é a constante de atrito.

Quer-se também estudar o caso em que é exercida uma força externa de módulo

$$|F_{ext}| = F_0 cos(w_a t) \tag{4}$$

Assim, pode-se colocar esta força nas equações, tornando-as gerais, e fazendo $F_0=0N$, quando esta não existir.

Deste modo, como trabalhado na unidade curricular de Oscilações e Ondas, pode-se considerar a origem do referencial na posição de equilíbrio do sistema e este com direção vertical e no sentido de cima para baixo.

Nestas condições, de acordo com a segunda lei de Newton, e usando os sinais de acordo com a convenção da direção descrita, obtém-se:

$$m\frac{d^2Z}{dt^2} = -KZ - b\frac{dZ}{dt} + Fext \tag{5}$$

Ou, de forma equivalente:

$$\frac{d^2Z}{dt^2} + 2\lambda \frac{dZ}{dt} + w_0^2 Z = \frac{F_0}{m} cos(w_a t) \tag{6}$$

Onde
$$\lambda = b/2m$$
 e $w_0^2 = K/m$.

Assim, para o regime livre, isto é, sem força externa aplicada no sistema, a solução da equação diferencial a ser estudada é

$$Z(t) = Z_M e^{-\lambda t} cos(\omega t + \psi) \tag{7}$$

No caso de a força externa ser como a já descrita, obtém-se

$$Z(t) = Z_M e^{-\lambda t} cos(\omega t + \psi) + Z_0 cos(\omega_a t - \alpha)$$
 (8)

Onde

$$Z_0 = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega_a^2)^2 + 4\lambda^2 \omega_a^2}}$$
 (9)

$$tan(\alpha) = \frac{2\lambda\omega_a}{\omega_0^2 - \omega_a^2} \tag{10}$$

Sabendo que $\omega_a=2\pi f_a$ obtém-se estas equações a serem usadas no ajuste gráfico:

$$\alpha = \arctan \frac{\lambda (2\pi f_a)^2}{\frac{K}{m} - (2\pi f_a)^2}$$
 (11)

$$Z_0 = \frac{F_0}{m\sqrt{(\frac{K}{m} - (2\pi f_a)^2)^2 + (2\pi f_a \lambda)^2}}$$
 (12)

Dado que, passado alguns instantes, a componente livre desta última solução decai exponencialmente, a mesma torna-se desprezável, e fica-se com

$$Z(t) \approx Z_0 cos(\omega_a t - \alpha)$$
 (13)

II Montagem

Neste trabalho experimental foi utilizado o equipamento PASCO ME-9210A (figura 1), posteriormente referido como DHMA, duas molas, um vermelha e uma azul, de constantes elásticas diferentes, bem como pequenas massas de metal (2g, 5g, 10g e 50g). Foi também utilizada uma régua graduada, dois ímanes, um telemóvel (para filmar) e um cronómetro.

Figura 1: Esquema PASCO ME-9210A

O DHMA é constituído por: A-Mola; B_1 -Parte clara da escala graduada; B_2 -Parte escura da escala graduada; C-Guia da barra; D- LED; E-Suportes adicionais; F-Barra da alumínio para amortecimento electromagnético; G-Unidade de amortecimento electromagnético; H-Parafusos de nivelamento; I-Mostrador para leitura de amplitude, período ou frequência de rotação do motor; J-Coluna de suporte; L- Ajuste do comprimento do fio; M-Fio; N-Roldanas de apoio do fio; O-Ajuste do comprimento do fio; P-Excêntrico; Q-Variador de excentricidade. (a) Alinhamento correcto da barra; (b) Alinhamento incorrecto da barra (utilizar os parafusos H para corrigir); (c) Torção da barra (rodar a patilha para corrigir).

III Procedimento

As secções I, II e III do procedimento foram realizadas para cada uma das duas molas.

I Regime de equilíbrio

Começou-se por medir a massa da escala graduada e da barra e por confirmar os valores das massas utilizadas. Em seguida, alinhou-se a barra, de forma a não bater nas paredes do guia, rodando-se os parafusos de nivelamento na base. Poderá também ser necessário rodar a patilha para corrigir a torção da barra. Por fim, moveu-se o tubo, verticalmente até a uma posição desejada, com as peças O e L (Figura 1).

Começa-se por registar a posição de equilíbrio sem massas suspensas, l_0 . Para as diferentes massas,

estando o sistema em equilíbrio, mede-se o alongamento correspondente na escala graduada. A partir da equação 2, obtém-se o valor de K. Utilizou-se $g=9.80054ms^{-2}$ (valor tabelado de g à latitude de Lisboa) e fez-se uso do método dos mínimos quadrados, através do software Fitteia.

Com o valor de K, é possível determinar a frequência de ressonância, f_{ress} , a qual será útil no estudo do regime de oscilações forçadas.

II Regime de Oscilações Livres

Analisou-se o regime de oscilações livres para duas condições de atrito distintas: havendo apenas a resistência do ar ou também um atrito adicional, provocado pela presença de dois ímanes juntos à barra metálica. Mantendo-se presente a massa do disco, 50g, começa-se por mover o sistema, na vertical, para que a luz LED aponte diretamente sobre a separação entre as zonas clara e escura do tubo. Em seguida, colocou-se uma câmara a filmar o DHMA, em modo de medição de amplitudes. Puxando o fio em M, em cerca de 3 cm, o sistema começou a oscilar. Recorrendo à equação $Z(t) = Z_M e^{-\lambda t}$, determinaram-se os coeficientes de amortecimento, λ_{ar} e λ_{em} . Utilizou-se, de novo, o método dos mínimos quadrados e a ferramenta Fitteia. Para além disso, mediu-se o período de oscilação do sistema, lido no DHMA. O valor do período deverá ser constante durante todo o movimento. Calculou-se ainda o período recorrendo a outro método: um dos elementos do grupo utilizou um cronómetro para medir o tempo de 50 períodos; cada vez que o LED pisca, terá passado 1 período.

Realizou-se todo este procedimento para ambas as situações de atrito. Para a situação de atrito eletromagnético, colocaram-se os ímanes a distâncias de cerca de 6mm da face correspondente da barra, e de forma a que entre eles houvesse uma força atrativa, pois, desta forma, o campo magnético é mais forte e, consequentemente, a força de atrito mais intensa. Se necessário, as distâncias podem ser ajustadas com as peças rotatórias em G.

III Regime de Oscilação Forçada

Neste regime, impõe-se sobre o sistema uma força externa com frequência f_a , variável no DHMA. Foram consideradas, de novo, ambas as situações de atrito. Começou-se por variar a excentricidade, com a peça Q (Fig. 1), para 0.1 mm. Este foi o valor aconselhado, tendo em conta trabalhos anteriores. Mesmo assim, confirmou-se que, com este valor, o disco nunca chocou com a unidade de amortecimento eletromagnético. Com a barra alinhada e o LED a apontar para o local entre as zonas clara e escura, registam-se os valores das amplitudes, A, e das diferenças de fase, α , em função

da frequência f_a imposta. Todos estes valores são lidos no DHMA, sendo necessário esperar que os valores estabilizem, antes de os registar. Tendo determinado anteriormente a frequência de ressonância, fizeram-se as medições para valores de f_a em torno do valor de f_{ress} , de forma a obter variações consideráveis nas variáveis dependentes. É de apontar que, devido ao mau funcionamento do mostrador digital, muitas vezes não era apresentado o valor da fase, o que inviabilizou o estudo da mesma.

Usando as equações 11 e 12, é possível obter novos valores para os coeficientes de amortecimento e para a constante de elasticidade. Utilizou-se o método dos mínimos quadrados e a ferramenta Fitteia.

IV Incertezas Experimentais

Para o regime livre, tem-se que $\delta T_{cron} = \frac{(\delta(50T))}{50}$ (s), sendo $\delta(50T)$ (s) a incerteza estimada tendo em conta o tempo de reação humano, determinado com recurso à aplicação Human Benchmark. Além disto, δT_{DHMA} (s) foi estimada como sendo 0.005s, devido à flutuação do valor indicado no DHMA.

As fórmulas das incertezas dos valores finais são $\delta b = 2m\delta\lambda + 2\lambda\delta m \ (kgs^{-1})$ e $\delta f_{ress} = \frac{\delta K}{4\pi\sqrt{Km}} + \frac{\sqrt{K\delta m}}{4\pi m^{3/2}} \ (Hz)$.

IV Exposição dos resultados

Nesta secção serão apresentados os resultados alcançados para ambas as molas, contudo apenas se expõem os gráficos correspondentes à mola vermelha, ficando os restantes gráficos em anexo. Os dados utilizados na construção dos gráficos estão expostos em tabelas no anexo.

I Regime de Equilíbrio

Figura 2: Ajuste gráfico para os dados experimentais do regime de equilíbrio (mola vermelha)

Deste ajuste, obteve-se $K=(10.2\pm0.1)Nm^{-1}$, com uma incerteza relativa percentual de 1.0%. Tendo em conta o valor de $\chi^2=5.0426$ obtido e que existem 15 pontos experimentais, pode afirmar-se que os dados estão bem correlacionados.

Para a mola azul, obteve-se $K=(6.70\pm0.04)Nm^{-1}$, com uma incerteza relativa percentual de 0.6%. Havendo 15 pontos experimentais e sendo $\chi^2=3.90088<15$, conclui-se que a relação linear entre os dados é bastante satisfatória.

II Regime de Oscilação Lirve

Para o regime com atrito do ar, obteve-se $T_{cron}=(0.622\pm0.018)s$, de incerteza relativa 2.9%, e $T_{DHMA}=(0.615\pm0.005)s$, de incerteza relativa 0.8%. Logo, temse que $T=(0.618\pm0.012)s$ e a sua incerteza relativa é 1.9%.

Figura 3: Ajuste gráfico para os dados experimentais do regime de equilíbrio com apenas atrito do ar (mola vermelha).

Sendo $\chi^2=25.5312$ e havendo 35 pontos experimentais, pode afirmar-se que o ajuste é bom, ou seja, que o modelo teórico se ajusta bem ao conjunto de dados.

Os parâmetros obtidos foram $A_0=(2.61\pm0.03)\times 10^{-2}m$, de incerteza relativa percentual 1.1%, e $\lambda_{ar}=(7.5\pm0.2)\times 10^{-3}s^{-1}$, de incerteza relativa percentual 2.7%.

No caso da mola azul, obteve-se os seguintes resultados para o regime de equilíbrio com apenas atrito do ar: $A_0 = (1.19 \pm 0.02) \times 10^{-1} m$, de incerteza relativa percentual 1.7%, e $\lambda_{ar} = (3.0 \pm 0.1) \times 10^{-2} s^{-1}$, de incerteza relativa percentual 3.3%. Chegou-se a $T_{DHMA} = (0.775 \pm 0.005) s$, de incerteza relativa 0.6%.

Ora, sendo $\chi^2 = 35.8526$ e havendo 61 medidas, poder-se-ia concluir que o ajuste é bom. Mesmo assim, nota-se uma clara discrepância entre a curva e o conjunto de pontos, sobretudo no trecho final (Fig. 8.

Assim, conclui-se que este ajuste não é ideal. Isto será discutido na próxima secção do presente relatório.

Para o regime de oscilação livre com atrito eletromagnético, chegou-se a $T_{cron}=(0.622\pm0.018)s$ e $T_{DHMA}=(0.615\pm0.005)s$. As incertezas relativas percentuais são, respetivamente, 2.9% e 0.8%. Assim, $T=(0.618\pm0.012)s$, de incerteza relativa 1.9%. Chegaram-se, por isso, aos mesmos valores dos períodos medidos no regime sem atrito eletromagnético. Isto será mencionado na discussão de resultados.

Figura 4: Ajuste gráfico para os dados experimentais do regime de equilíbrio com atrito eletromagnético (mola vermelha).

De novo, obteve-se um bom ajuste, pois $\chi^2=11.8021$ e há 26 dados experimentais. Os parâmetros obtidos foram $A_0=(5.07\pm0.06)\times10^{-2}m$, de incerteza relativa percentual 1.2%, e $\lambda_{em}=(1.64\pm0.02)\times10^{-1}s^{-1}$, de incerteza relativa percentual 1.2%.

Para a mola azul, mas segundo o regime de equilíbrio com atrito eletromagnético, os resultados são os seguintes: $A_0 = (5.2 \pm 0.3) \times 10^{-2} m$, de incerteza relativa percentual 5.8%, e $\lambda_{em} = (1.6 \pm 0.1) \times 10^{-1} s^{-1}$, de incerteza relativa percentual 6.2%. O ajuste é bom, pois têm-se 22 pontos experimentais e $\chi^2 = 1.71273 < 22$. Mediu-se $T_{DHMA} = (0.775 \pm 0.005)s$ – a incerteza relativa é 0.6%

III Regime de Oscilação Forçada

Figura 5: Ajuste gráfico para os dados do regime de oscilação forçada com apenas atrito do ar (mola vermelha).

Para o regime com atrito do ar, e para este gráfico de amplitude, A, em função da frequência, f_a , os valores dos parâmetros obtidos são: $F_0=(9.7\pm0.2)\times10^{-3}N,$ de incerteza relativa 2.1%; $K=(10.4\pm0.2)Nm^{-1},$ tendo este incerteza relativa 1.9%; $\lambda_{ar}=(2.3\pm0.4)\times10^{-2}s^{-1},$ de incerteza relativa 17.4%. Ora, para esta situação, verificou-se que, tendo-se apenas 10 pontos experimentais, $\chi^2=41.6452,$ um valor relativamente mais elevado. Logo, o ajuste obtido não foi ideal. Isto será justificado na discussão de resultados.

Os valores obtidos para a mola azul são $F_0 = (1.06 \pm 0.01) \times 10^{-2} N$, de incerteza relativa 0.9%, $K = (6.80 \pm 0.01) Nm^{-1}$, cuja incerteza relativa é 0.1% e $\lambda_{ar} = (3.8 \pm 0.2) \times 10^{-2} s^{-1}$, de incerteza relativa 5.3%. O ajuste é bom, pois $\chi^2 = 7.54426$ e há 11 pontos experimentais.

Figura 6: Ajuste gráfico para os dados do regime de oscilação forçada com atrito eletromagnético (mola vermelha).

Em oposição, neste caso, tem-se que $\chi^2 = 12.836$, para um total de 13 pontos experimentais. Logo, a equação utilizada produziu um bom ajuste gráfico.

Os parâmetros obtidos foram $F_0 = (1.64 \pm 0.06) \times 10^{-2}N$, $K = (10.4 \pm 0.1)Nm^{-1}$ e $\lambda_{em} = (3.7 \pm 0.6) \times 10^{-2}s^{-1}$. As incertezas relativas percentuais são de, respetivamente, 3.6%, 1.0% e 16.2%.

Para a mola azul obteve-se $F_0=(1.14\pm0.06)\times 10^{-2}N$, de incerteza relativa 5.3%, $K=(6.81\pm0.01)Nm^{-1}$, de incerteza relativa 0.1% e $\lambda_{em}=(1.4\pm0.1)\times 10^{-1}s^{-1}$, de incerteza relativa 7.1%. O modelo teórico ajustou-se bem ao conjunto de dados, pois, havendo 13 pontos experimentais, obteve-se $\chi^2=2.85316$

IV Valores finais

Grandeza	Valor médio	Inc. rel.(%)
$K(Nm^{-1})$	10.3 ± 0.1	1.0
T(s)	0.618 ± 0.012	1.9
$\lambda_{ar}(s^{-1})$	$(1.5 \pm 0.8) \times 10^{-2}$	53.3
$\lambda_{em}(s^{-1})$	$(1.0 \pm 0.6) \times 10^{-1}$	60.0

Tabela 1: Valores médios, mola vermelha

A partir destes valores, pode-se calcular a frequência de ressonância, f_{ress} , o coeficiente de atrito do ar, b_{ar} , e o coeficiente de atrito eletromagnético, b_{em} .

Nos regimes livre e forçado, a massa total suspensa é $m = m_{disco} + m_{escala+barra}$, com $m_{disco} = (0.050 \pm 0.001)kg$ e $m_{escala+barra} = (0.052 \pm 0.001)kg$, logo $m = (0.102 \pm 0.002)kg$. De acordo com as equações 11 e 12, conclui-se que $f_{ress} = (1.60 \pm 0.02)Hz$, sendo a respetiva incerteza relativa 0.6%. Este valor havia já sido estimado, tendo-se recorrido ao valor de K obtido no regime livre, de forma a saber em torno de que valor f_a se deveriam obter os dados para o regime forçado.

Recorrendo à equação $b=2\lambda m$ (e à respetiva fórmula de incerteza), chega-se a $b_{ar}=(3.1\pm1.7)\times10^{-3}kgs^{-1}$ e $b_{em}=(2.0\pm1.2)\times10^{-2}kgs^{-1}$, cujas incertezas relativas percentuais são 54.8% e 60.0%, respetivamente.

Grandeza	Valor médio	Inc. rel.($\%$)
$K(Nm^{-1})$	6.77 ± 0.07	1.0
T(s)	0.775 ± 0.005	0.6
$\lambda_{ar}(s^{-1})$	$(3.4 \pm 0.4) \times 10^{-2}$	11.8
$\lambda_{em}(s^{-1})$	$(1.5 \pm 0.1) \times 10^{-1}$	6.7

Tabela 2: Valores médios, mola azul

Sendo ainda $m=(0.102\pm0.002)kg$, conclui-se que $f_{ress}=(1.30\pm0.02)Hz$, sendo a respetiva incerteza

relativa 1.5%. Este valor já tinha sido estimado no decorrer do trabalho, tendo-se recorrido ao valor de K obtido no regime livre.

Tem-se que $b_{ar} = (6.9 \pm 1.0) \times 10^{-3} kg s^{-1}$ e $b_{em} = (3.1 \pm 0.3) \times 10^{-2} kg s^{-1}$, cujas incertezas relativas percentuais são 14.5% e 9.7%, respetivamente.

Fazendo a média dos valores dos coeficientes de atrito, obtém-se $b_{ar}=(5.0\pm1.9)\times10^{-3}kgs^{-1}$, de incerteza relativa percentual 38.0%, e $b_{em}=(2.6\pm0.8)\times10^{-2}kgs^{-1}$, de incerteza relativa percentual 30.8%.

V Análise de dados e conclusão

Deve apontar-se que a balança digital utilizada tinha uma precisão bastante baixa, de apenas 1g. Terão existido erros na leitura da escala graduada, escala esta cujas marcas eram bastante grossas e que tinha uma menor divisão de 2mm. Se se utilizar uma escala de maior precisão e com traços mais finos, poderão ser obtidas medidas mais precisas. Porém, crê-se que estes erros não tenham afetado consideravelmente os resultados, pois as incertezas relativas dos valores médios de K foram de apenas 1%.

A medição do período com o DHMA apresenta uma incerteza relativa percentual de 0.8%, inferior à do período medido com o cronómetro (2.9%). Isto era esperado, tendo em conta o valor do tempo de reação humano (cerca de 0.925s) face à precisão do DHMA (1ms). Por esta razão, escolheu-se não medir o período do movimento da mola azul com o cronómetro. Ainda neste regime, acredita-se que a incerteza dada aos valores do tempo é relativamente grosseira. A escala do tempo do vídeo tinha uma precisão bastante baixa – 1 segundo. Em certos casos, havia mais do que um valor de amplitude para o mesmo segundo, tendo-se distanciado os dois valores de, aproximadamente, 1 período. Poderia ter sido utilizado um cronómetro, de maior precisão, mas decidiu-se não o fazer devido à rápida mudanca nos valores do mostrador digital. Outra alternativa teria sido diminuir a velocidade de reprodução do vídeo, numa plataforma digital que tivesse uma escala de tempo de maior precisão. Para o regime livre da mola azul, é aparente uma discrepância entre a linha de ajuste e os pontos do gráfico, sobretudo nos trechos finais e sobretudo na situação sem atrito eletromagnético (Fig. 8). Pensa-se que tal se terá devido à ligeira perturbação horizontal que se verificou no sistema suspenso, nos instantes iniciais. É aconselhável, nesta situação, procurar reduzir ao máximo estas perturbações, tentando, eventualmente, realizar vários ensaios. Finalmente, o atrito entre o fio e as roldanas poderá ter sido uma fonte de erro sistemático.

Mesmo tendo tudo isto em conta, os valores das incertezas relativas foram superiores para o regime forçado: 17.4% e 16.2% para os valores de λ_{ar} e λ_{em} da mola vermelha, respetivamente, e 5.3% e 7.1% para a mola azul. A incerteza dada aos valores da amplitude, nos regimes de oscilação forçada, foi sempre estimada tendo em conta a flutuação que se verificava nos valores do mostrador digital. Nomeadamente próximo das frequências de ressonância, a flutuação era considerável. Uma vez que, no modelo teórico, é utilizada uma aproximação no regime forçado na qual se descarta a solução homogénea da equação do movimento, é necessário que o sistema atinja o regime estacionário. Quando f_a se aproxima de f_{ress} , o sistema fica bastante mais sensível a qualquer perturbação. As interferências externas impedem o sistema de entrar em regime estacionário "puro", para além do facto de que, para se atingir este estado, teria de se esperar demasiado tempo, o que inviabilizaria a conclusão da atividade. Outro erro aleatório aparente foi o mau funcionamento do DHMA. Aliás, nem foi possível realizar gráficos relativos à fase, porque o mostrador digital mostrava poucos ou nenhuns valores desta variável. Além disso, notou-se alguma flutuação nos valores de f_a que se selecionavam. Assim, será aconselhável substituir o aparelho por outro mais funcional. Por sua vez, os ímanes estavam visivelmente danificados, comprometendo, assim, a direção da força magnética aplicada e provocando movimento da barra em direções indesejadas.

Foi notável uma clara discrepância entre os valores dos coeficientes de atrito obtidos com a mola vermelha e os obtidos com a mola azul. Tal poder-se-á dever ao facto de a mola vermelha se encontrar visivelmente mais desgastada; os valores de b_{ar} e b_{em} apresentam incertezas extremamente elevadas - 54.8% e 60.0%, respetivamente. Assim, ao realizar a atividade, será mais fiável utilizar a mola azul.

Em suma, foram cumpridos alguns dos objetivos propostos, tendo-se determinado os valores da constante K e dos coeficientes de atrito. Foi também possível concluir que o período de oscilação não depende do atrito, mas apenas da constante da mola: o efeito do atrito resume-se à diminuição exponencial da amplitude de oscilação. Por fim, foi possível verificar o aumento progressivo da amplitude de oscilação aquando da aproximação à frequência de ressonância. Todavia, não foi possível obter gráficos da fase em função da frequência do motor, devido ao mau funcionamento do DHMA. Além disso, a concordância entre os valores dos coeficientes de atrito ficou aquém do desejado, muito provavelmente devido ao desgaste da mola vermelha, e tendo em conta que se fizeram medições

em dias diferentes. Não foi possível ter acesso a valores tabelados das grandezas determinadas, pelo que não foi possível quantificar a exatidão dos resultados obtidos.

Referências

[1] Sebastião P., Sistema Massa-Mola (T1), Guia dos Trabalhos Experimentais, Departamento de Física (IST), Lisboa, 2020.

VI Anexos

I Tabelas de Resultados

$\Delta m \pm 0.001 \text{ (kg)}$	$\Delta l \pm 0.002 \; (m)$
0.050	0.050
0.055	0.054
0.060	0.059
0.065	0.064
0.070	0.068
0.075	0.074
0.077	0.076
0.100	0.096
0.105	0.099
0.107	0.103
0.110	0.106
0.115	0.110
0.120	0.115
0.125	0.120

Tabela 3: Regime de equilíbrio da mola vermelha

$\Delta m \pm 0.001 \text{ (kg)}$	$\Delta l \pm 0.002 \text{ (m)}$
0.050	0.073
0.052	0.077
0.055	0.081
0.057	0.084
0.060	0.088
0.062	0.091
0.065	0.096
0.067	0.099
0.070	0.101
0.072	0.106
0.075	0.110
0.077	0.112
0.080	0.114
0.085	0.124

Tabela 4: Regime de equilíbrio da mola azul

$t \pm 0.6 \; (s)$	$A \pm 0.001 \; (m)$
0.0	0.024
0.6	0.027
1.0	0.028
1.6	0.027
3.0	0.026
3.6	0.025
4.0	0.026
6.0	0.025
6.6	0.026
8.0	0.025
10.0	0.024
11.0	0.023
11.6	0.024
13.0	0.023
14.0	0.024
18.0	0.023
20.0	0.022
27.0	0.020
41.0	0.019
43.0	0.018
56.0	0.017
58.0	0.016
70.0	0.014
71.0	0.016
75.0	0.015
77.0	0.014
98.0	0.013
99.0	0.012
121.0	0.011
127.0	0.010
156.0	0.009
167.0	0.008
192.0	0.007
194.0	0.006
250.0	0.005

Tabela 5: Regime de oscilação livre com apenas atrito do ar (mola vermelha)

$t \pm 0.6 \text{ (s)}$	$A \pm 0.001 \; (m)$
0.0	0.052
1.0	0.042
1.6	0.039
2.0	0.035
3.0	0.031
3.6	0.029
4.0	0.027
4.6	0.024
5.0	0.022
5.6	0.020
6.0	0.018
6.6	0.017
7.0	0.015
8.0	0.014
8.6	0.013
9.0	0.011
10.0	0.010
11.0	0.009
12.0	0.008
12.6	0.007
13.0	0.006
14.0	0.005
16.0	0.004
17.0	0.003
21.0	0.002
22.0	0.001

Tabela 6: Regime de oscilação livre com atrito eletromagnético (mola vermelha)

[() () ()	4 + 0.005 ()
$t \pm 0.8 \text{ (s)}$	$A \pm 0.005 \text{ (m)}$
0.0	0.118
1.0	0.111
2.0	0.109
2.8	0.107
3.0	0.105
4.0	0.102
5.0	0.100
6.0	0.098
7.0	0.096
7.8	0.093
9.0	0.091
10.0	0.087
11.0	0.085
12.0	0.083
13.0	0.081
14.0	0.079
15.0	0.075
16.0	0.074
17.0	0.073
18.0	0.071
19.0	0.069
20.0	0.067
21.0	0.066
22.0	0.063
23.0	0.062
24.0	0.061
25.0	0.058
27.0	0.056
28.0	0.054
29.0	0.052
31.0	0.049

$t \pm 0.8 \; (s)$	$A \pm 0.005 \text{ (m)}$
33.0	0.047
34.0	0.045
36.0	0.042
37.0	0.041
38.0	0.040
40.0	0.038
41.0	0.037
42.0	0.035
43.0	0.034
44.0	0.033
45.0	0.030
47.0	0.029
47.8	0.028
49.0	0.027
50.0	0.026
51.0	0.025
52.0	0.022
55.0	0.021
56.0	0.019
57.0	0.018
59.0	0.015
60.0	0.014
62.0	0.012
65.0	0.010
66.0	0.009
67.0	0.008
68.0	0.006
70.0	0.004
72.0	0.003
73.0	0.002

Tabela 7: Regime de oscilação livre com apenas atrito do ar (mola azul)

$t \pm 0.8 \; (s)$	$A \pm 0.005 \; (m)$
0.0	0.052
0.8	0.047
1.0	0.042
2.0	0.038
3.0	0.034
3.8	0.030
4.0	0.028
5.0	0.025
6.0	0.022
7.0	0.019
7.8	0.017
8.0	0.015
9.0	0.013
9.8	0.011
10.0	0.010
12.0	0.007
13.0	0.006
13.8	0.005
14.0	0.004
15.0	0.003
16.0	0.002
17.0	0.001

Tabela 8: Regime de oscilação livre com atrito eletromagnético (mola azul)

$f_a \pm 0.01 \; ({\rm Hz})$	$A \pm 0.001 \text{ (m)}$
1.41	0.003
1.46	0.005
1.51	0.007
1.54	0.011
1.56	0.015
1.58	0.023
1.59	0.046
1.60	0.093
1.62	0.056
1.65	0.020

Tabela 9: Regime de oscilação forçada com apenas atrito do ar (mola vermelha)

$f_a \pm 0.01 \; ({\rm Hz})$	$A \pm 0.001 \text{ (m)}$
1.45	0.008
1.49	0.013
1.53	0.020
1.56	0.030
1.58	0.039
1.59	0.065
1.60	0.121
1.62	0.100
1.63	0.052
1.65	0.036
1.69	0.016
1.73	0.011
1.77	0.007

Tabela 10: Regime de oscilação forçada com atrito eletromagnético (mola vermelha)

$f_a \pm 0.01 \; (Hz)$	$A \pm 0.001 \text{ (m)}$
1.10	0.006
1.15	0.009
1.20	0.013
1.25	0.022
1.28	0.048
1.30	0.166
1.31	0.079
1.34	0.030
1.37	0.017
1.40	0.010
1.43	0.008

Tabela 11: Regime de oscilação forçada com apenas atrito do ar (mola azul)

$f_a \pm 0.01 \; (Hz)$	$A \pm 0.001 \text{ (m)}$
1.15	0.008
1.20	0.011
1.25	0.021
1.27	0.029
1.29	0.044
1.30	0.052
1.31	0.044
1.32	0.038
1.35	0.019
1.37	0.015
1.39	0.011
1.42	0.009
1.45	0.007

Tabela 12: Regime de oscilação forçada com atrito eletromagnético (mola azul)

II Gráficos para a mola azul

Figura 7: Ajuste gráfico para os dados do regime de equilíbrio (mola azul)

Figura 8: Ajuste gráfico para os dados do regime de equilíbrio com apenas atrito do ar (mola azul)

Figura 9: Ajuste gráfico para os dados do regime de equilíbrio com atrito eletromagnético (mola azul)

Figura 10: Ajuste gráfico para os dados do regime de oscilação forçada com apenas atrito do ar (mola azul)

Figura 11: Ajuste gráfico para os dados do regime de oscilação forçada com atrito eletromagnético (mola azul)