Symbols

GREEK SYMBOLS

α	Coefficient of thermal expansion
α	Enrichment factor for metal in internal oxidation zone
δ	Thickness of gas phase boundary layer
δ	Deviation from stoichiometry in oxide
η_i	Electrochemical potential of component i
η_g	Viscosity of gas
γ	Surface tension, free energy per unit surface area
γ_i	Activity coefficient of component <i>i</i>
λ	Interplanar distance, jump distance
λ	$x/t^{\frac{1}{2}}$, for parametric solutions to Fick's equation
μ_i	Chemical potential of component <i>i</i>
ν	Stoichiometric coefficient in chemical reaction or compound
V_g	Kinematic viscosity of gas
ν_{i_V}	Kinetic frequency term
V_P	Poisson's ratio
ψ	Electrostatic potential
ρ	Density
σ	Mechanical stress
θ	Fraction of surface sites
ξ	Extent of reaction
ξ	Mole fraction of oxide BO in solid solution $A_{1-\xi}B_{\xi}O$
$\varepsilon_{\scriptscriptstyle C}$	Critical strain for mechanical failure of scale or scale-alloy interface
ε_{ik}	Wagner interaction coefficients for solute compounds <i>i</i> and <i>k</i>
ϵ_{OX}	Mechanical strain in oxide

SYMBOLS

A	Surface area of oxidising metal
a_i	Chemical activity of component <i>i</i>
a'_o, a''_o	Boundary values of oxygen activity at metal-scale and scale-gas
	interfaces
B_i	Mobility of species i
C_i	Concentration of component i
C', C"	Boundary values of concentration at metal-scale and scale-gas interfaces.
D	Diffusion coefficient
d	Grain boundary width
D_A	Intrinsic diffusion coefficient for species A
D_{A^*}	Tracer or self-diffusion coefficient of species A
D_{ij}	Diffusion coefficient relating flux of component <i>i</i> to concentration
,	gradient in component <i>j</i>

xxii Symbols

ñ Chemical (or inter) diffusion coefficient D_0 Diffusion coefficient for solute oxygen in alloy $D_{o,i}$ Diffusion coefficient for oxygen along an interface F Electric field E_{OX} Elastic modulus of oxide Activation energy E_A e'Free electron F The Faraday (96,500 C) f Fraction Volume fraction G Total or molar Gibbs free energy G_{OX} Shear modulus of oxide Free energy per unit volume G_{v} Volume fraction of internally precipitated oxide, BO g_{BO} Н Total or molar enthalpy h● Positive hole i|SSpecies i adsorbed (bound) to surface site ioz Internal oxidation zone Flux of component i K Chemical equilibrium constant k Rate constant k Boltzmann's constant k_c Parabolic rate constant for metal consumption, corrosion rate constant kı Linear rate constant for scale thickening $k_{\rm m}$ Gaseous mass transfer coefficient k_{ς} Surface area fraction of oxide spalled Parabolic rate constant for internal oxidation $k_{\rm p}$ Parabolic rate constant for scale thickening $k_{\rm w}$ Parabolic rate constant for scaling weight gain k_{v} Vaporisation rate $K_{\rm p}$ Equilibrium constant at fixed pressure $\dot{K_{\rm SD}}$ Solubility product $K_{\rm IC}$ Fracture toughness, critical stress intensity factor General mobility coefficient, Onsager phenomenological coefficient L_{ii} I Length of material over which gas flows I Half thickness of alloy sheet MW Molecular weight Molar concentration of component i m_i m•. m′ Number of charge units on lattice point defect species Number of moles n Ni Mole fraction of component i N_{AV} Avogadro's number $N_{M,i}$ Mole fraction of component M at scale-alloy interface Minimum mole fraction of component M required to support growth of $N_{\rm M,min}$ external MO scale $N_{\rm M}^{(\rm o)}$ Mole fraction of component M originally present in alloy $N_{\rm O}^{(\rm s)}$ Mole fraction of dissolved oxygen at alloy surface Ρ Pressure р D_A/D_B , ratio of metal self-diffusion coefficients in ternary oxide

Partial pressure of component i

 p_i

Symbols **xxiii**

P_T	Total pressure of gas mixture
Q	Activation energy
q	Charge
R	General gas constant
r_i	Rate constant for indicated gas-solid reaction
r _i S S S	Total or molar entropy
S	Spacing of periodic microstructure
S	Surface site
S_{M}^{X}	Species S located on crystal lattice site M, with effective charge X
Τ	Temperature
t	Time
t^*	Time at temperature in cyclic exposure conditions
U	Total or molar internal energy
U_i	Building unit in crystalline compound
V	Volume
V	Velocity
V_i	Molar volume of phase <i>i</i>
W	Weight
X	Scale thickness
X	Position coordinate
X_{M}	Metal surface recession
X_{ss}	Steady-state scale thickness when growth balanced by evaporation
$X_{(i)}$	Depth of internal oxidation zone
y	Position coordinate for scale-alloy interface relative to the original, unreacted surface location
y	z/z_s (or x/X), position within scale normalised to its thickness
Ž	Effective charge, valence
Z	Position coordinate in reference frame with origin at scale—alloy
	interface