Neural Data Analysis

URP 2024, CiCi Zheng, 07/10/24

Agenda Today

Part 1:

• Explore multivariate data in neural behavioral experiments

Part 2:

Introduce classical models for neural encoding

Some common problems in neuroscience

Stimulus, x

Neural response, y

Depending on the brain region and the input:

A common formulation

Multi-dimensional Input x

A common formulation

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Our retinal ganglion cells' receptive field, input becomes 1D

Let's discretize time for simplicity:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Our retinal ganglion cells' receptive field, input becomes 1D

• Let's discretize time for simplicity:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Our retinal ganglion cells' receptive field, input becomes 1D

Let's discretize time for simplicity:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Our retinal ganglion cells' receptive field, input becomes 1D

• Let's discretize time for simplicity:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Our retinal ganglion cells' receptive field, input becomes 1D

• Let's discretize time for simplicity:

A slightly more sophisticated model would take into the account of output being 1) discrete; 2) non negative — the Passion GLM model

$$y = f(\sum_{i} \theta_{i} x_{i})$$

Poisson GLM

Let's look at some real neural data!

