Candidate's Name:				
School:	Signature:			
535/1				
PHYSICS				
Paper 1				
July/Aug. 2020				
2 ¼ hours				

AITEL JOINT MOCK EXAMINATIONS

Uganda Certificate of Education PHYSICS

Paper 1

2 hours 15 minutes

INSTUCTIONS TO CANDIDATES

Write your name, signature and random number clearly in the space above.

Section A contains 40 objective type questions. You are required to write the correct answers A, B, C or D against each question in the box on the right hand side of each page.

Section \mathbf{B} contains 10 structured questions. Answers are to be written in the spaces provided on the question paper.

Mathematics tables and non-programmable calculators may be used.

You may find the following constants useful:

Acceleration due to gravity $g = 10 \text{ m s}^{-2}$

Specific heat capacity of water = $4200 J kg^{-1} K^{-1}$ Density of pure water = $1000 kg m^{-3}$ Specific heat capacity of copper = $400 J kg^{-1} K^{-1}$

Speed of light = $3.0 \times 10^8 \,\mathrm{m \ s^{-1}}$

FOR EXERMINER'S USE ONLY

41	42	43	44	45	46	47	48	49	50	MSQ	Total

SECTION A

1.	Wate	r waves change direction w	when they move from shallow water to dee	ep
	water	. What is the name of this	effect?	
	A	diffraction	C. reflection	
	В	dispersion	D. refraction	
2.	Figur	e 1 shows a ray of light en	tering a block of glass.	
			ray of light 2 air glass 3	
		Fig 1		
	Whic	h numbered angles are the Angle of incidence	angles of incidence and refraction? Angle of refraction	
	A	1	3	
	В	1	4	
	C	2	3	
	D	2	4	
	How	h type of wave cannot trav A. Infra-red radiation B. Microwaves can a permanent magnet be cool the magnet for a longer	C. Sound waves D. X-rays e demagnetized?	
			Γ	

	C. leave the magnet in a coil
	D. pass a small current through the magnet
5.	An electromagnet is used to separate magnetic metals from non- magnetic
	metals. Why is steel unsuitable as the core of the electromagnet?
	A. It is a good conductor of electricity
	B. It forms a permanent magnet
	C. It has a high density
	D. It has a high thermal density.
6.	A polythene rod repels an inflated balloon hanging from a nylon thread. What
	charges must the rod and the balloon carry?
	A. The rod and the balloon carry opposite charges
	B. The rod and the balloon carry like charges.
	C. The rod is charged but the balloon is not
	D. The balloon is charged but rod is not
7.	Which statement is correct?
	A. A fuse is included in a circuit to prevent current becoming too high.
	B. A fuse should be connected to the neutral wire in a plug.
	C. An electric circuit will only work if it includes a fuse
	D. An earth wire is needed to prevent the fuse blowing
8.	The equation shows the decay of the nuclide X
	$\stackrel{226}{88}x \longrightarrow {}_{Q}^{p}Y + {}_{2}^{4}He$
	What are the values of P and Q respectively?
	A. 230, 90 C. 222, 90
	B. 230, 86 D. 222, 86

B. hit the magnet repeatedly with a hammer

- 9. A plane mirror is on a wall. Which is a correct description of the image formed by the mirror?
 - A. It is up right and smaller than the object
 - B. It is up right and the same size as the object
 - C. Upside down and smaller than the object
 - D. Upside down and the same size as the objects
- 10. A straight wire carrying a current produces a magnetic field. Which diagram shows the correct shape of the field?

11. A student carries out an experiment to see the effect of a magnetic field on a wire carrying a current. The wire moves upwards as shown in figure 2.

Fig 2

What should the student do to make the wire move downwards?

- A. Change the direction of the current
- B. Move the poles of the magnet closer together
- C. Send a smaller current through the wire
- D. Use a stronger magnet
- 12. A beam of cathode rays passes through an electric field between two parallel plates

Fig. 3

In which direction is the beam deflected

- A. Into the page
- B. Out of the page

- C. Towards the bottom of the page
- D. Towards the top of the page
- 13. Which line correctly describes α -particles

	Electric	Penetrates 1cm of
	charge	aluminum
A	Negative	Yes
В	Negative	No
С	Positive	Yes
D	Positive	no

14.A small amount of a rad	ioactive isotope co	ontains 72 billion u	nstable nuclei.				
The half-life of the isotope is 4 hours. How many unstable nuclei wound							
remain after 12 hours?							
A. 6 billion		C. 18 billion					
B. 9 billion		D. 19 billion					
15. A spring is stretched by	hanging a piece o	f metal from it. Wh	nat is the name				
given to the force that st	retches the spring?	•					
A. Friction B Ma	ss C	Pressure	D weight				
16. To mark the lower fixed	l point of a Celsius	s scale on a thermor	meter; the				
thermometer should be p	placed in						
A. pure alcohol.	B. pure distilled	water.					
C. pure melting ice.	D. pure mercury	7.					
17. A beaker of water is hea	ated at its base.						
Why does the water at the	ne base rise?						
A. It contracts and become	mes less dense.						
B. It contract and become	nes more dense.						
C. It expands and becon	nes less dense.						
D. It expands and becon	nes more dense.						

18. The circuit in figure 4, the reading of ammeter 1 is 2 A.

Fig. 4

What is the reading on ammeter 2?

A. 0A B. 1A C. 2A D. 4A

19. Which particles are emitted during thermionic emission?

A electrons B ions

C neutrons D protons

20. A vertical stick is dipped up and down in water at P. In two seconds, three waves crests are produced on the surface of the water.

Fig. 5

Which of the statements below is true?

A. Distance X is the amplitude of the waves.
B. Distance Y is the wavelength of the waves
C. Each circle represents a wave-front.
D. The frequency of the waves is 3Hz.

21. A car starts from rest and accelerates uniformly at 2 m s⁻². Find the distance it covers in 6 s.

A.12 m B. 36 m C. 72 m D. 108 m

22. A fo	orce of 50 N moves	an object throu	gh a distan	ce of 200 m	in 40 s. Fi	ind the
pow	er used.					
A.	100 W	B.	160 W		ſ	
C.	200 W	D	. 250 W		ļ	
23. A n	otch on a material sp	oreads more rap	pidly when	the material	l is	
A.	In tension	B.	in compre	ession		
C.	pre-stressed	D.	Reinforce	ed		
	ody of mass 0.4 kg f the kinetic energy v 2 joules 20 joules	_	_	he ground. 4 joules	ground.	
	ich of the following Images are virtual f		-		s?	
B.	Images are diminish	ned for all real	object posi	tions	ı	
C.	The image is alway	s between the o	optical Cen	tre and foca	al point	
D.	They are used as re-	ar-view mirrors	s in vehicle	es		
26. Fig	. 6 8 N and 8		et P as show	vn in the fig	ure 3 abov	e.
The	resultant force on th	e object is				
A.	1.33 N	B. 2 N	C. 10 N	D.	14 N	
27. A b	ody starting from re	st is uniformly	accelerated	d to a velocit	ty of 40 m	s ⁻¹ in
5 sec	conds. Calculate the	distance travel	led in this t	time interval	l.	
A.	8 m B.	14 m	C. 100 m	D.	200 m	
prod	28. Which one of the following is not a factor on which the frequency of waves produced in strings depends? A. Length of the string					
		8				

- B. Nature of material from which the string is made
- C. Tension in the string
- D. Wave length in the wave
- 29. The graph in figure 7 below shows the variation of efficiency of a block and tackle system with load.

The graph tends towards 100% efficient as the load increases since

A. mechanical advantage is directly proportional to the applied force.

- B. mechanical advantage is never equal to velocity ratio.
- C. energy is wasted in overcoming friction.

D. The weight of the string and moving pulley becomes negligible small as the load increases

30. A body weighs 80 N in air and 60 N when fully immersed in a liquid. Find the volume of liquid displaced by the body if density of the liquid is 800 kg m⁻³

A.
$$40 \text{ m}^3$$

B.
$$20 \text{ m}^3$$

C. 0.25 m^3

D.
$$0.0025 \text{ m}^3$$

31. A certain F.M. radio station operates at a frequency 108 x 10⁶Hz. Calculate wave length of the radio waves.

A.	2.96 x 10 ⁻⁶ m	B. 2.	.78 m	
C	0.36 m	D. 3	3.37 x 10 ⁵ m	
32. An	object is placed 15 cm in front of a	convex	t lens of focal length 10 cm.	The
pos	ition of the image from the lens is			
A.	6 cm	B. 30) cm	
C.	25 cm	D. 2	20 cm	
33. WI	hen a capillary tube is dipped into m	nercury;		
A.	Cohesion between the mercury mole	ecules is	s greater than the adhesion o	f the
	molecules for glass so the liquid rise	es in the	e tube	
B.	Cohesion between the mercury mol	lecules i	is greater than the adhesion of	of
	the molecules for glass so there is ca	apillary	depression	
C.	Adhesion force between the liquid a	and glass	s is greater hence capillary	rise
D.	Adhesion force between the liquid a	and glass	s is greater hence capillary_	
	depression			
34. Ch	oose the odd statement with respect	to actio	on of the lightning conductor	:
A.	A charged cloud near a lightning co	nductor	induces charges in the	
	conductor			
B.	The similar charge to one on the clo	oud is rep	pelled to the ground	
C.	The sharp end of the lightening con-	ductor s	serves to pierce the cloud	
D.	Point action occurs at the sharp owi	ng to the	e high charge density at the	poin
35. An	S1 student made a record 1.34 cm	in a less	son on measurements. If take	en
cor	rectly, which instrument did the stud	dent use	e to take the measurement?	
	Metre tape	В.		
C.	Vernier calipers	Г	D. tape measure	

36. Water is preferred to alcohol as a coolant in the cooling fins because

A. w	ater has a higl	her specific heat cap	oacity	than alcohol.				
B. w	ater moves at	a higher speed in th	e coc	olant than alcohol.				
C. w	C. water is a better conductor of heat than alcohol.							
D. w	D. water is more viscous than alcohol.							
37. A stu	udent of mass	40 kg runs up a stai	ir cas	e of 8 steps, each 13	cm h	nigh.		
Find	the work done	e by the student.						
A. 41	1.6 J	B. 416 J	C.	4160 J	D.	4610 J		
38. The p	ower develop	oed when one joule	of wo	ork is done in one sec	cond	is known		
as,								
A. a	watt		B.	a joule second				
C	a newton		D	newton second				
mech	anical equilib	rium?		itions for a body to s				
direc	tion.							
(ii). T	The clockwise	forces are equal to	antic	lockwise forces.				
(iii)	The sum of m	oments about a cho	sen p	oint is zero.				
(iv)	The body rota	ates in one direction	l .					
A. (i)) and (iv) only	7		B. (ii) and (iii) on	ly			
C (i), (ii) and (iii) only		D. (i) and (iii) on	ıly			
40.Figur	e 8 shows a u	niform meter rule p	ivote	d at its center. A mas	ss of	200 g is		

mass, m_1 is hang at the 70 cm-mark.

hanging at the 5 cm-mark and the meter rule balances horizontally when a

Fig. 8		
Calculate the value of m_1		
A. 14.3 g	B. 45.0 g	
C. 143 g	D. 450 g	
SECTION B: (40) MARKS)	
41.(a) Distinguish between tensile stress a	nd tensile strain	
(b) A piece of wire 1.0 m long and of c acted upon by a tensile force of 50 N wire.		ess on the (02 marks)
42.(a) What is volume?		(01 mark)

(b) A tin of volume 30 cm ³ has a mass of 94.8 g when full of sucrose and 62.8 g when half filled with the same solution. Find the density of sucrose.
$(1\frac{1}{2} marks)$
(c)The graph in figure 9 shows how mass of sand varies with volume. Use it to
find density of sand. $(1\frac{1}{2}marks)$
150 — — — — — — — — — — — — — — — — — — —
Fig. 9
43.(a) Give two physical properties used in the measurement of temperature.
(01mark)

(b) (i) State the equation of state of an ideal gas. (01mark)
(ii) The pressure of a fixed mass of gas is 760 mm Hg at a temperature 47°C. Its pressure is lowered to 190 mm Hg while the volume is kept constant. What is the new temperature of the gas? (02 marks)
44. (a) Sketch the electric field pattern for two positively charged point charges near each other. (01mark)
(b) A gold leaf electroscope carrying a positive charge has a diverging gold leaf. When its metal cap is touched,

	(i) State what is observed.	(01mark)
	(ii) Explain the observation in b(i) above	(02mark)
		•••••
		•••••
		•••••
45	. (a) State the principle on which a hydraulic press works	(01 mark)
	(b) A hydraulic press in which piston A carries a load L and an effort E is	
	applied on piston B. If the area of cross section of piston A is 90	
	of piston B is 3 cm^2 . Calculate the load L supported when an eff	
	is applied.	(03 marks)

 46. (a	state Ohm's law.	(01 mark)
 (b))	
	Fig. 10	bulb
(i)		
(ii)	Explain your observation in b (i) above	(02marks)

. (a) What are complementary colours? (01mark)
(b) What will be the appearance of a yellow dress in a room lit with a blue
bulb? (01mark)
(c) A lens forms an image at 60 cm in front of the lens of an object 5 cm tall. If
the height of the image is 20 mm, find the distance of the object from the
lens. (02marks)

	•••••		
48.	(a) Wha	at is a sound wave ?	(01mark)
	(b) (i) V	Write down one similarity between light waves and sou n	nd waves
			(01mark)
		w a wave of a sound note in an open tube producing a fur quency. On the diagram, name anodes and antinodes	(02marks)
49.		at is meant by the following terms	(0.7
	(i) 	Wavelength of a longitudinal wave.	(01mark)
	(ii)	Frequency of a wave.	(01mark)

	•••••			
(b) Sketch a displacement time graph of a wave of amplitude	(b) Sketch a displacement time graph of a wave of amplitude 0.5 cm and			
frequency 4 Hz over a time interval of 1.25 seconds.	(2 marks)			
50.(a) State Newton's first law of motion	(01mark)			
(b) (i) What causes uniform acceleration for a body falling f	reely. (01marks)			
	••••••			
	• • • • • • • • • • • • • • • • • • • •			

(ii) A plane moving horizontally at 40 m s ⁻¹ at a height of 200	m above the		
ground releases a 50 kg bag of rice when above the target point. H			
from the target does the bag drop on the ground?	(02 marks)		

END