Project#2

HAMZA ZAFAR SYED JEHANDAD KAMAL ABDUL MOIZ

Don't Get Kicked!

- Predict if a car purchased at auction is a lemon
 - There are columns34
 - The data set is split to 60% (72983)training and 40%(48707) testing.

Nature of Data

Issues with data

- Date contains many formats.
- Nominal values contain NULL Values
- Skewed data.
- Numeric data may contain outliers.

Data Treatment

- Missing Values
 - Most Frequently and mean
- DATE:
 - Convert to same format (dd-mmm-yyyy)
 - drill down/ drill up approach is used to see data more deeply i.e. year to month to day.
- NULL:
 - Replace by most frequently values
 - Check the weight of 1 in null values and values having more weight to the null are kept as null.

NULL TREATMENT

Data Treatment

Outliers:

Transformation

COLUMN	VALUE	TRANSFORMED
Transmission	Auto	A
	Manual	M
Wheel type	Alloy	A
	Null	N
	Special	S
	Cover	С
Primeunit	Yes	Υ
	No	N
	Null	NI
Aucguart	Green	G
	Red	R
	Yellow	Υ
	Null	N
topThreeName	chrysler	Ch
	Other	0
	Ford	F

After Treatment

Feature Selection

- Wheelid, Refid, buyer No, Vnzip removed...
- Backward Feature Elemination
- InfoGain
- Chisquare

Binning

- fazzy c cluster is used
- Auto Binning

File Edit View

8

8

8

8

△ 0: neuralNetwork

train P

test P

RESULT COMPARISION

NAÏVE BAYSE	CLUSTER BINNING		AUTO-BINNER			
	ROC	FMEASURE	ROC	FMEASURE		
Simple	0.696	0.318	0.693	0.317		
Bagging	0.653	0.308	0.66	0.306		
Boosting	0.694	0.315	0.693	0.317		
DECISSION TREE						
Simple	0.597	0.318	0.603	0.322		
Bagging	0.595	0.344	0.601	0.344		
Boosting	0.607	0.316	0.624	0.317		
Tree Ensembler	0.667	0.318	0.697	0.337		

For Evaluation of model train data is spilted in 2/3 as training and 1/3 for testing

ROC

NAÏVE BAYSE

DECISION TREE

SSE Neural Network

Gini

Learner	Gini
Naïve Bayse (Simple) (5bins)	0.12374(446)
Decission Tree Ensemebler (50 Models,All columns)	0.09789
Neural Network (800it,10hidenLayer,25neurons)	0.1053

Conclusion

- The Decision Tree with Ensembling Meta Node gave the best Roc and fmeasure when train data is spited in 2/3 as training and 1/3 as testing
- Naïve Bayes with Simple Learner gave the best Gini i.e.
 0.12374(It scored 446 on leaderboard)
- Neural Network gave 0.1053, and may be improved with more numbers of iterations.