Κβαντική Πληροφορία και Επεξεργασία

Τσιτλακίδης Θεόδωρος 4409

ΠΜΣ Υπολογιστικής Φυσικής

Ιούνιος 2021

Configurational Entropy

Θεωρούμε τις τετραγωνικά ολοκληρώσιμες συναρτήσεις, f(x) και τις μεατσχηματισόμενες κατά Fourie F(k). Έχοντας υπόψιν το θέωρημα του Plancherel, ορίζουμε το modal fraction f(k):

$$f(k) = \frac{|F(k)|^2}{\int |F(k)|^2 d^d k}$$

όπου η ολοκλήρωση γίνεται σε όλα τα k για τα οποία η F(k) είναι ορισμένη.

Σε αναλογία με την πληροφοριακή εντροπία Shannon, ορίζουμε την Configurational Entropy:

$$S_c[f] = -\int \tilde{f}(k) ln(\tilde{f}(k)) d^dk$$

με
$$\tilde{f}(k) = f(k)/f(k_{max})$$
.

Εξίσωση Lane-Emden

Ξεκινάμε λύνοντας τις εξισώσεις υδροστατικής ισορροπίας, προκειμένου να βγάλουμε την πολυτροπική συμπεριφορά του λευκού νάνου. Εισάγεται καινούργιος φορμαλισμός, από $\rho(r), r$ στις αδιάστατες $\theta(\xi), \xi$ και η εξίσωση γίνεται η Lane-Emden:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \xi^2 \frac{d\theta}{d\xi} + \theta^{1/\gamma - 1} = 0$$

με συνοριακές συνθήκες $\theta(0)=1$ και $\theta'(0)=0$. Λύνουμε την εξίσωση με χρήση της $solve_ivp$ και μέθοδο RK45, με βήμα 10^{-3} , για διάφορες τιμές του γάμμα. Η συμπεριφορά της λύσης για τα διάφορα γ, φαίνεται στο ακούλοθο διάγραμμα:

Λύσεις Lane-Emden

Figure: Λύση της Lane-Emden για γ =1.2, 1.3, ..., 1.9

Μετασχηματισμός Fourier

Γνωρίζοντας πλέον τη συμπεριφορά της $\theta(\xi)$, εκφράζουμε το modal fraction συναρτήσει των αδιάστατων μεταβλητών (θ,ξ) :

$$\tilde{f}(k) = \frac{h(\kappa)}{h(\kappa_{min})} = \frac{h(ak)}{h(\frac{\alpha\pi}{R})}$$

με

$$h(\kappa) = (\frac{4\pi\rho_0\alpha^3}{\kappa} \int_0^{\xi_R} \theta^{1/(\gamma-1)}(\xi) \sin(\kappa\xi)\xi d\xi)^2$$

όπου $\kappa_{min}=\pi/\xi_R$ και $\xi_R=R/lpha$

Έτσι η Configurational Entropy γίνεται:

$$S = -4\pi\alpha^{-3} \int_{\kappa_{min}}^{\infty} \tilde{f}(\kappa) \log(\tilde{f}(\kappa)) \kappa^{2} d\kappa$$

Συνεπώς, με όλα αυτά κατά νου, γράφουμε κώδικα, ο οποίος λύνει την Lane-Emden και υπολογίζει όλες τις άνωθεν ποσότητες για πολλές τιμές του γ.

Τα αποτελέσματα φάινονται στα παρακάτω διαγράμματα, και συμφωνούν με το Review.

Συμπεριφορά Modal Fraction

Figure: Κανονικοποιημένο Modal Fraction για τιμές γ=1.2, 1.4, 1.7

Συμπεριφορά CE και Μάζας

Figure: CE επί ρ_0^{-1} και M, συναρτήσει του γ.Πολλαπλασιάζουμε με 200 την μάζα για rescailing.

Συμπεριφορά CE για διάφορα kmin

Figure: CE για cutoff του k_{min} , με α=0.95, 1.00, 1.05 (που αντιστοιχούν σε διαφορετικά γ).