If Po(A) niR is non-empty, then the following assertions are true:

- (a) $P_{\sigma}(A) \cap i\mathbb{R}$ is a (additive) subgroup of $i\mathbb{R}$.
- (b) The eigenspaces corresponding to $\lambda \in P_{\sigma}(A) \cap i\mathbb{R}$ are onedimensional.
- (c) If $Ah = i\alpha h$ ($h \neq 0$, $\alpha \in \mathbb{R}$) then |h| is a quasi-interior point and the following holds:
- (3.13) $S_h(D(A)) = D(A)$ and $S_h^{-1} \circ A \circ S_h = (A + i\alpha)$.
- 0 is the only eigenvalue of A admitting a positive (d) eigenvector.

One can apply the theorem in order to prove that the rotation semigroup on [(cf. A-I,2.5) is the only positive periodic semigroup which is irreducible.

Corollary 3.9. Let $(T(t))_{t\geq 0}$ be a positive irreducible semigroup on a Banach lattice E which is periodic of period τ .

Assume that $\dim E > 1$. Then there exist

continuous lattice homomorphisms $i:C(\Gamma) \rightarrow E$ and $j:E \rightarrow L^{1}(\Gamma)$, both injective with dense range, such that the diagramm commutes for canonical inclusion of $C(\Gamma)$ in $L^1(\Gamma)$.

$$C(\Gamma) \xrightarrow{\underline{i}} E \xrightarrow{\underline{j}} L^{1}(\Gamma)$$

$$R_{\tau}(t) \downarrow \qquad \qquad \uparrow T(t) \qquad R_{\tau}(t)$$

$$C(\Gamma) \xrightarrow{\underline{i}} E \xrightarrow{\underline{j}} L^{1}(\Gamma)$$

 $i\alpha Z$ with $\alpha := \frac{2\pi}{n\tau}$ for suitable $n \in \mathbb{N}$. We fix $h \in \ker(i\alpha - A)$, $h \neq 0$. Then $|h| \in \text{ker } A$ and there exists $\phi \in \text{ker } A'$ such that $<\left|h\right|,\phi>$ = 1 . According to the Kakutani-Krein Theorem we identify $E_{|h|}$ with C(K) . Then h is a unimodular function onto Γ (use the argument given in the proof of B-III, Thm.3.6(c)). We define $i : C(\Gamma) \to E$ by $i(f) := f \circ h \in C(K) \cong E_h \subset E$, then iinjective. For the monomials $e_n(z) := z^n$ ($n \in \mathbb{Z}$) we have $i(e_n) = h^{[n]} \quad \text{thus} \quad i \quad \text{has dense image in } E \quad \text{(by A-III,Thm.5.4).}$ Moreover, $2\pi \cdot \delta_{n0} = \langle h^{[n]}, \phi \rangle = \langle i(e_n), \phi \rangle = \int_0^{2\pi} e_n(e^{it}) \, dt \quad \text{for all } n \in T \text{, hence } \int_0^{2\pi} f(e^{it}) \, dt = \langle i(f), \phi \rangle \quad \text{for all } f \in C(\Gamma) \text{. It follows that } (E, \phi) \cong L^1(\Gamma) \quad \text{and we define } j \quad \text{to be the canonical } j \in C(\Gamma)$ mapping from E into $(E,\phi)\cong L^1(\Gamma)$ (see C-I,Sec.4) . Then j has dense image and is injective since ϕ is strictly positive (cf. Prop.3.5(b)). One easily verifies that the diagramm commutes.

Proof. By Thm.3.8 and A-III, Thm.5.4 we have $R\sigma(A) = P\sigma(A) = \sigma(A) =$