

HAE301E - Electronique analogique

TD/TP 2 : Régime transitoire

Exercice 1:

On considère le circuit de la figure 1 alimenté par un générateur de tension e(t)=E.u(t), où u(t) est un échelon unité. Les conditions initiales sont nulles.

Figure 1

- 1) Déterminer les équations différentielles qui régissent i₁(t) et i₂(t).
- 2) Résoudre « à la main » ces équations différentielles.
- 3) Calculer le courant i(t) débité par le générateur.
- 4) Quelles relations faut-il avoir entre L, R₁, R₂ et C pour que le courant i(t) soit indépendant du temps ?

On passe à présent sur Matlab :

- 5) Vérifier les résultats obtenus dans la question 2.
- 6) Tracer l'allure des courants $i_1(t)$, $i_2(t)$ et i(t) de 0 à 10 ms. On prendra $R_1=R_2=100~\Omega$, C=100 μ F, L=0.1 H et E=10 V.
- 7) Modifier la valeur de L pour que le courant i(t) soit indépendant du temps.

Exercice 2:

On considère le circuit de la figure 2. A t=0-, l'interrupteur est dans la position 1, le condensateur est donc initialement chargé. A t=0, on bascule l'interrupteur en position 2.

Figure 2

- 1) Etablir l'équation différentielle régissant l'évolution de la tension $u_c(t)$ aux bornes du condensateur C.
- 2) On donne E=10 V, R=100 Ω , C=10 μ F, L=0.1 H. Calculer $u_c(t)$. Calculer la pseudo-période.

On passe à présent sur Matlab, pour cela, vous commencerez un nouveau script.

- 3) Résoudre l'équation différentielle et vérifier l'expression obtenue pour $u_c(t)$.
- 4) Tracer u_c(t) de 0 à 20 ms. Déterminer graphiquement la pseudo-période.

Exercice 3:

On considère le circuit de la figure 3. Les conditions initiales sont nulles (les condensateurs sont déchargés à t=0-). Le circuit est alimenté par un générateur de tension $e(t)=E_0.u(t)$, où u(t) est un échelon unité.

On prendra : E_0 = 10V, R= 1k Ω et C=100 μ F.

- 1) Déterminer l'équation différentielle qui régissent s(t).
- 2) Résoudre « à la main » cette équation différentielle.
- 3) A l'aide Matlab, vérifier le résultat obtenu à la question précédente.
- 4) Tracer l'allure de s(t) de 0 à 3s.

Annexe 1: Exemples de l'utilisation de fonctions Matlab (version 2010-2011)

Déclaration de variables symboliques	>> syms x y
Dérivation	<pre>>> syms x y >> f = sin(x)^2 + cos(y)^2; >> diff(f, y, 2) % Dérivée seconde de f en fonction de y ans = 2*sin(y)^2 - 2*cos(y)^2</pre>
Equation différentielle	>> y = dsolve('Dy=1+y^2','y(0)=1') y =
du 1 ^{er} ordre	$\frac{y}{\tan(pi/4 + t)}$
Equation différentielle du 2 nd ordre	>> syms a b y >> y = dsolve('D2y=a^2*y','y(0)=b','Dy(0)=1') y = $\frac{e^{at}(ab+1)}{2a} + \frac{e^{-at}(ab-1)}{2a}$
Substitution des variables symboliques par des nombres (i.e. variables numériques)	>> syms a b >> subs(a + b, a, 4) ans = b + 4
Tracé d'une courbe	<pre>% x et y sont des variables numériques >> plot(x,y) % trace x et fonction de y</pre>

<u>Annexe 2: Exemples de l'utilisation de fonctions Matlab</u> (version 2016 et +)

Déclaration de variables symboliques	>> syms x y
Dérivation	<pre>>> syms x y >> f = sin(x)^2 + cos(y)^2; >> diff(f, y, 2) % Dérivée seconde de f en fonction de y ans = 2*sin(y)^2 - 2*cos(y)^2</pre>
Equation différentielle du 1 ^{er} ordre	>> syms y(t) >> eqn = diff(y,t) == 1+y^2; >> cond = y(0) == 1; >> sol=dsolve(eqn, cond) sol= tan(t + pi/4)

Equation différentielle du 2 nd ordre	>> syms y(t) a b >> eqn= diff(y,t,2) == a^2*y; >> Dy=diff(y,t); >> cond=[y(0) == b, Dy(0) == 1]; >> sol=dsolve(eqn,cond)
	$\frac{\text{sol}=}{\frac{e^{at}(ab+1)}{2a} + \frac{e^{-at}(ab-1)}{2a}}$
Substitution des variables symboliques par des nombres (i.e. variables numériques)	>> syms a b >> subs(a + b, a, 4) ans = b + 4
Tracé d'une courbe	<pre>% x et y sont des variables numériques >> plot(x,y) % trace x et fonction de y</pre>