

Sampling error over many generations

Long-term effects of drift

- Start with a variable population, 2 alleles
 - p(A) = 0.5, q(a) = 0.5 as an example

- After many, many generations,
 - p(A) = 0 or 1

Figure 7.15 Evolutionary Analysis, 4/e © 2007 Pearson Prentice Hall, Inc.

Long-term effects of drift

- What if you start with a variable population, and 2 alleles?
 - p(A) = 0.6, q(a) = 0.4

Analogy: Blindfolded man walking aimlessly

Analogy: Blindfolded man walking aimlessly

Analogy: Blindfolded man walking aimlessly

Probability of "long-term" outcome is predictable

- In one generation, roughly equally likely for allele to go up or down in frequency
 - p(A) may go up or down
- BUT long-term "loss" or "fixation" of allele is more predictable
 - If p(A)=0.5, equally likely
 - If p(A)<0.5, more likely that allele to be lost
 - If p(A)>0.5, more likely that allele to be fixed

Probability of "long-term" outcome is predictable

- In one generation, roughly equally likely for allele to go up or down in frequency
 - p(A) may go up or down
- BUT long-term "loss" or "fixation" of allele is more predictable
 - If p(A)=0.5, equally likely
 - If p(A)<0.5, more likely that allele to be lost
 - If p(A)>0.5, more likely that allele to be fixed
- Probability of eventual fixation of A equals p(A)!

4 sample runs of AlleleA1

p(A)=0.75, Population size = 100

Species vs. populations

Examples so far looked at what happened in one population

What happens if look at whole species, which includes some

"isolated" populations?

Thought question...

If all 4 populations of Galapagos land snail started with p(A) = 0.75,

- 1) What would the allele frequencies be in the populations many years later?
- 2) What would the AVERAGE p(A) across all populations be many years later?

4 sample runs of AlleleA1

p(A)=0.75, Population size = 100

Points to remember

- Drift eventually leads to allele fixation or loss in every population
- Starting allele frequency (p(A)) is long-term probability of allele's fixation
 - (1-p(A)) is long-term probability of allele's loss
- If have species with many isolated populations, then individual populations have fixation/ loss, but overall species retains variation with same p(A)

Can genetic drift make "bad" alleles spread (or even be fixed)?

Interaction of genetic drift & natural selection

- •If the population size is small (i.e., drift is strong), genetic drift can sometimes counteract weak selection to spread or fix "bad" allele
 - Won't always counteract selection, because drift is random in direction in each generation
 - May push in the same direction, too

Selection vs Drift

Selection vs Drift

6 simulations:

strong drift, weak selection

p(A)=0.5, w(AA)=0.98, w(Aa & aa)=1.0, N=100

6 simulations:

weak drift, weak selection

p(A)=0.5, w(AA)=0.98, w(Aa & aa)=1.0, N=1000

"Founder effects"

- Strong genetic drift when a new population is established by a very small number of individuals from a larger population
 - Often associated with colonizing islands
 - Sometimes causes spread (or fixation) of even detrimental alleles since drift is strong

Diseases or traits common in certain human populations from founder effects

Polydactyly in Amish

Tay-Sachs disease in Ashkenazi Jews

Huntington's disease in Mauritius

Red hair among Irish

More points to remember

- In small populations, genetic drift can sometimes overpower weak selection
 - Might spread or fix "bad" alleles

Founder effects
– special case of genetic drift

Image Credits, Unit 13-2

- Blindfolded kid cartoon, © Lorelyn Medina, all rights reserved, www.photoxpress.com
- Galapagos map, © 2011 Matthew Stevens, CC by-SA 3.0, en.wikipedia.org
- Galapagos land snail, © Christine Parent, all rights reserved, www.arkive.org
- Polydactyly, © 2008 Patou Tantbirojn, CC by 2.0, en.wikipedia.org
- Redheaded man, © 2008 Schwingy, CC by-SA 3.0, en.wikipedia.org
- Mauritius map, © 2009 Eric Gaba, CC by-SA 3.0, en.wikipedia.org