Additional exercises for MA505250

Exercise 1. Let X be a Banach space and $\mathcal{J}_1: X \to \mathbb{R}$, $\mathcal{J}_2: X \to \mathbb{R}$ two functionals. Prove that then

- (a) If \mathcal{J}_1 and \mathcal{J}_2 are weak l.s.c., $\alpha \geq 0$, then $\alpha \mathcal{J}_i$ and $\mathcal{J}_1 + \mathcal{J}_2$ are weak l.s.c.
- (b) If \mathcal{J}_1 is weak l.s.c. and $\varphi: \mathbb{R} \to \mathbb{R}$ is monotonically increasing and l.s.c., then $\varphi \circ \mathcal{J}_1$ is weak l.s.c.
- (c) If \mathcal{J}_1 is weak l.s.c. then for a Banach space Y and weak sequentially continuous $\Phi : \mathcal{Y} \to X$ it follows that $\mathcal{J}_1 \circ \Phi$ is weak l.s.c.
- (d) For any (non-empty) family of weak l.s.c. functionals $\mathcal{J}_i: X \to \mathbb{R}$, $i \in I$ we have that $\sup_{i \in I} \mathcal{J}_i$ is weak l.s.c.
- (e) Let $\varphi: K \to \mathbb{R}$ be l.s.c., where K is either \mathbb{R} or \mathbb{C} , and $x^* \in X^*$. Then the functional

$$L_{x^*,\varphi} = \varphi \circ \langle x^*, \cdot \rangle_{X^* \times X},$$

is weak l.s.c. in X.

Collect what you have proven (as appropriate) and show that $\varphi(\|u\|_X)$ is weak l.s.c. for any $\varphi:[0,\infty)\to\mathbb{R}$ that is monotonically increasing and l.s.c.

Exercise 2. For a given noisy image $g \in L^2(\Omega)$ and rectangular image domain $\Omega \subset \mathbb{R}^2$ we consider the following variational problem

$$u_{\alpha} = \operatorname{argmin}_{u \in L^{2}(\Omega)} \left\{ \alpha \|Du\|_{2}^{2} + \|u - g\|_{2}^{2} \right\},$$

for $\alpha > 0$. Prove that there exists a unique minimiser u_{α} to the above problem. Show further, that under the additional assumption that $L \leq g \leq R$ a.e. in Ω the minimiser u_{α} of the above problem also fulfils $L \leq u_{\alpha} \leq R$ a.e. in Ω .

Exercise 3. Let the functional $\mathcal{J}: X \to \mathbb{R}$ be convex on a real Banach space X. Prove that:

- (a) For $p \in \partial \mathcal{J}(u)$ and $q \in \partial J(u)$ we have $tp + (1-t)q \in \partial \mathcal{J}(u)$ for all $t \in [0,1]$.
- (b) Let \mathcal{J} be l.s.c. and consider a sequence $((u_n, p_n))$ in $X \times X^*$ with $p_n \in \partial \mathcal{J}(u_n)$, $u_n \to u$ and $p_n \stackrel{*}{\rightharpoonup} p$. Then $p \in \partial \mathcal{J}(u)$.
- (c) For $u \in X$ the set $\partial \mathcal{J}(u)$ is weak* sequentially closed, that is:

For
$$p_n \stackrel{*}{\rightharpoonup} p$$
, we have that $p \in \partial \mathcal{J}(u)$.

Exercise 4. Let \mathcal{U} be a Banach space and let \mathcal{V} be a Hilbert space. Let $A:\mathcal{U}\to\mathcal{V}$ be a bounded linear operator. Let $J:\mathcal{U}\to[0,\infty]$ absolute one-homogeneous and coercive. Consider the problems

$$\sup_{v:A^*v\in\partial\mathcal{J}(0)}\langle f,v\rangle = -\inf_v\langle -f,v\rangle + \iota_{\partial J(0)}(A^*v) \tag{\mathcal{P}_0}$$

and

$$\inf_{u:Au=f} \mathcal{J}(u) = \inf_{u\in\mathcal{U}} \iota_{\{f\}}(Au) + \mathcal{J}(u)$$
 (D₀)

Prove that $0 \in \operatorname{int}(\partial J(0))$ and hence deduce strong duality between (\mathcal{P}_0) and (\mathcal{D}_0) .