Assignment-2

S. RITHVIK REDDY-cs20btech11049

Download all python codes from here

NA

and latex-tikz codes from

https://github.com/rithvikreddy6300/ Assignment-2/blob/main/Assignment-2. tex

Gate Problem-77

If a random variable X assumes only positive integral values, with the probability

$$P(X = x) = \frac{2}{3} \left(\frac{1}{3}\right)^{x-1}, x = 1, 2, 3, \dots$$

(A)
$$\frac{2}{9}$$
 (C)

(B)
$$\frac{2}{3}$$
 (D) $\frac{3}{2}$ Then E(X) is ?

SOLUTION

Given that $P(X=x)=\frac{2}{3}\left(\frac{1}{3}\right)^{x-1}, x=1,2,3,\dots$

The expectation value of X represented by E(X) is given by

$$E(X) = \sum_{i=1}^{\infty} Pr(x=i) \times i$$

Let S=E(X),

$$\implies E(X) = S = \sum_{i=1}^{\infty} Pr(x=i) \times i$$
 (1)

$$\implies S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{2}$$

$$\implies S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{3}$$

Multiplying (2) with $\frac{1}{3}$ on both sides gives

$$\frac{1}{3}S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^i \times i \tag{4}$$

In (3) $\sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^i \times i$ can be written as $\sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$

$$\implies \frac{1}{3}S = \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$$

(5)

(3)-(5) gives :
$$\frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i - (i-1))$$

$$\implies \frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \tag{7}$$

$$\implies S = 1 + \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^i \tag{8}$$

$$\implies S = 1 + \frac{1/3}{1 - \frac{1}{3}} \tag{9}$$

$$\implies S = \frac{3}{2} \tag{10}$$

From (10) we can say that the expectation value of X given by $E(X)=S=\frac{3}{2}$ (Option D).

Comment: There is no simulation or graph possible for this question as the probability P(X) is fixed and the sample space is a countable infinite set.