OFFICE OF MUNICIPAL EXECUTIVE SHANKHARAPUR MUNICIPALITY

Kathmandu District, Bagmati Province, Nepal

Owner/Client	Mr Padam Bahadur Basnet
Building type	Residential Class 'B'
Location	Shankharapur-09, Shankharapur Municipality
Plot Area	0-3-3-2
Plot No.	674

Structural Analysis and Design Report RCC Residential Building Class "B" USING NBC 105:2020

Submitted by:

Sanam Tajale

BE Civil (NEC REG. 15913 Civil"A")

2024

DECLARATION OF REPORT

The massive data inputs, design analysis, calculations and outputs of the result are computer aided by the Structural and Earthquake Engineering software called ETABS, which is a special purpose computer program developed specifically for building structures by Computers and Structures Inc., Berkeley, CA. It provides the Structural Engineers with all the tools necessary to create, modify, analyse, design, and optimize the structural elements in a building model.

During the design, it is assumed that the client will completely follow the architectural as well as the structural design. If not, the designer would not be responsible for the occurrence of unwanted issues. It is also assumed that the construction will be supervised by a professional engineer.

Er. Sanam Tajale BE Civil (NEC REG. 15913 Civil"A") 2024

TABLE OF CONTENTS

CHAP	TER 1: INTRODUCTION4	•
1.1	BUILDING DESCRIPTIONS	
1.2	ANALYSIS TECHNOLOGY AND METHODOLOGY5	
1.3	NEED FOR STRUCTURAL ANALYSIS	
1.4	IDEALIZATION AND ASSUMPTIONS IN ANALYSIS AND DESIGN 6)
1.5	DESIGN LOAD6)
1.6	LOAD ASSESSMENT	,
	1.6.1 ESTIMATION OF LOADS	,
	1.6.2 LOAD COMBINATIONS	١
	1.6.3 LOADING ON STRUCTURAL MODEL	١
	1.6.4 BASESHEAR (AS PER NBC 105:2020)	
	1.6.5 CALCULATION OF SEISMIC COEFFICENTS & BASE SHEAR 12	,
СНАР	TER 2: ANALYSIS AND DESIGN14	ļ
2.1	INTRODUCTION14	
	2.1.1 POSITIONING AND ORIENTATION OF COLUMNS	ļ
	2.1.2 POSITIONING OF BEAMS	
	2.1.3 SPANNING OF SLABS	5
2.2	ANALYSIS AND DESIGN RESULTS	7
	2.1.1 BENDING MOMENT	
DIA	GRAM	,
	2.1.2 SHEAR FORCE DIAGRAM19	1
	2.1.3 POST ANALYSIS CHECK AFTER STATIC ANALYSIS19	
2.3	REINFORCEMENT DETAILS	,
2.4	ETABS GENERATED REPORT	,
CHAP	TER 3: MANUAL CALCULATION BY EXCEL SHEETS	33
CHAP	TER 4 DESIGN SUMMARY OF DIFFERENT STRUCTURAL MEMBERS3	3
CHAP	TER 5: RESULT AND CONCLUTION	3
BIBLI	OGRAPHY	

CHAPTER 1

INTRODUCTION

1.1.BUILDING DESCRIPTIONS

This document presents the overall methodology and the key results of the structural design of structural components of RC moment resisting frame system.

The parameters followed for the structural analysis and design is as follows.

Technical Information			
Structural System	Special Moment Resisting RCC Frame		
Level of Design	Professionally Engineered Building		
Plinth area	868.28 Sq ft.		
No. of Stories	Three Story		
Story Height	2.8448 m (9'-4")		
Floor Thickness	125 mm (5")		
Parapet wall height	1 m (3'-3")		
Earthquake Zone (City)	Kathmandu		
Seismic Zone Factor	0.35		
Importance factor	1		
Ductility factor, Ru	4 (SMRF)		
Overstrength Factor, Ωu	1.5		
Building Shape (Column Layout)	Regular in Plan (Rectangular)		
Building Dimensions (C/C)	Refer Architectural Drawing		
No. of bays	Refer Architectural Drawing		
Lateral load resistant elements	350 mm x 350 mm (14"X14") Column Section		
	Beams 230 mm x 350 mm (9"X14") with slab		
Grade of concrete used	M20 for Column and M20 for Beam and Slab		
Type of Foundation	Isolated Foundation, Eccentric Footing		
Soil Bearing Capacity	120 KN/m ² at foundation level		
Soil Profile Type	Type D (Very Soft Soil Sites)		
Wall Material	Brick Masonry		

1.2.ANALYSIS TECHNOLOGY AND METHODOLOGY

After completion of Architectural design, the layout of columns and beams are done without affecting the Architectural functions of building so far. Structure is modelled using finite element method. A three-dimensional beam element having 12 DOF with 6 DOFs at each node were used for modelling beams and columns in the building, while 24 DOFs shell element with 6 DOFs at each node were used to model slab wall.

The structure is analysed by the linear elastic theory to calculate internal actions produced by anticipated design loads. The analysis is carried out using state of art three dimensional structural analysis programs ETABS v2020. The design loads considered as per the relevant codes of practice comprise dead load due to permanent structures, live load due to occupancy of the structure and seismic load due to anticipated earthquake possible at the proposed location. A number of load combinations are considered to obtain the maximum values of design stresses.

Software Used:

• ETABS ULTIMATE v2020

For structural modelling of the present building, ETABS software was used. ETABS is a special purpose finite element analysis and design program developed specifically for building systems. With ETABS, models are defined logically floor-by-floor, column-by-column, bay-by-bay and wall-by-wall and not as a stream of non-descript nodes and elements as in general purpose programs. The software has very powerful numerical methods, design procedures and international design codes, all working from a single comprehensive database. At its core, it utilizes the same analysis engine as used by SAP2000. Among others, ETABS can do model generation, seismic and wind load generation, finite element-based linear and non-linear static and dynamic analysis, concrete frame design (column and beam) and shear wall design.

• AUTOCAD V2017

Based on the final results, the design has been performed and drawings were prepared using AutoCAD v2017.

1.3. NEED FOR STRUCTURAL ANALYSIS

The building to be designed is not within the municipality guidelines (M.R.T) for the normal building. So, for the safety consideration, the building is structurally designed. Structural Analysis is required due to one of the following reasons

- Any of the slab area is greater than 144 Sft.
- Building area is attached to other's property line.
- Wall on cantilever portion.
- Building greater than 3 storey.
- Proposed Building is to be constructed on the sloppy terrain.
- Proposed Building is State of Art Design.

For this project, slab area is greater than 144 Sft., Span of Critical Beam is greater than permissible & one side of building is attached to other's property line. Hence, structural analysis is essential.

1.4.IDEALIZATION AND ASSUMPTIONS IN ANALYSIS AND DESIGN

Various assumptions have been made in analysis and design of the structures, for consideration of safety and simplicity, namely:

- Tensile strength of concrete is ignored.
- Shrinkage and temperature strength are negligible.
- Adhesion between concrete and steel is adequate to develop full strength.
- Seismic and wind load don't occur simultaneously so proposed building is designed for earthquake only.
- Centerlines of beams, columns and shear walls are concurrent everywhere.

Further assumptions in analysis and design that are not included here if are considered, then they are explained at the assumed section itself.

Earthquakes of magnitude < 5.0 are not expected to cause structural damage Earthquakes > 5.0 are potentially very damaging Threshold Magnitude: Normally 5 Richter Scale

1.5.MODELING OF STRUCTURAL SYSTEM

Complete, three-dimensional elastic models are created, representing the structure's spatial distribution of the mass and stiffness to an extent that is adequate for the calculation of the significant features of the building's elastic response.

ETABS integrated software is used as analysis tool. The elastic models are used for gravity and DBE level earthquake analysis. Nominal material properties are used in modeling of structural components.

1.6. ANALYSIS PROCEDURES

Analysis procedures used for code-based design are presented in the following sections.

Load cases	Analysis type
Static Analysis	Linear Static Analysis
Dynamic Analysis	None

COMPONENT AND MEMBER DESIGN

The structural components are designed to satisfy the strength and ductility requirements. Strength capacity for different types of actions considered in the design is summarized in the table below.

Structural System	Component	Design Approach/Consideration	Code References
Special moment resisting frame system	Reinforced Concrete (Beams, Slab, Columns)	Axial compression, Shear and flexural	IS 456:2000
	Footings	Bearing capacity of soil	IS 456:2000

1.7. PRELIMINARY DESIGN

Column (Dimensional Limit) NBC 105:2020 (Clause 4.2.1)

Provide Column Size of 14"X14".

Rebar dia.	numbers	area	no.s X area
20mm	0	314.16 mm2	0
16mm	4	201.06 mm2	804.24772
12mm	4	113.10 mm2	452.38934
10mm	0	78.54 mm2	0
8mm	0	50.27 mm2	0

1256.6371

PRELIMINARY DESIGN OF BEAM			
Beam(Dimensional Limit) NBC 105:2020			
width of beam=	9"		
=	228.60 mm		
Depth of beam=	14"		
=	431.80 mm		
clear span			
ft	inches		
13	3		
=	4038.40 mm		
effective span=	4388.40 mm		
Clause 4.1.1 (a)			
width to depth ratio >	0.3		
width to depth ratio=	0.64		
	OK		
Clause 4.1.1 (b)			
min. width of beam=	200 mm		
Clause 4.1.1 (c)			
Depth of beam<	1/4 th of clear span		
1/4 th of clear span=	1/4 *4038.40		
=	1009.6 mm		
	OK		
Provide Beam Size of 9"X14".			

1.8. DESIGN LOAD

The buildings and structures are subjected to number of loads, forces and effects during their service life such as those listed in IS: 456-17, IS: 875-8.1 / NBC. The following loads usually determine the size of structural element:

- Dead load (DL)
- Imposed load (IL)
- Wind load (WL)
- Earthquake load (EL)

The following are the cause which generally causes internally-equilibrated stresses forming cracks in structure, but not collapse.

- Foundation movement,
- Axial elastic shortening,
- Shrinkage,
- Temperature changes, etc.

• EFFECTIVE STIFNESS OF DIFFERENT STRUCTURAL ELEMENTS

The deflections shall be obtained by using the effective stiffness properties of the components as given in 3.1.

S No.	Component	Flexural Stiffness	Shear Stiffness
1	Beam	0.35 Ec Ig	0.40 Ec Aw
2	Columns	0.70 Ec Ig	0.40 Ec Aw
3	Wall—cracked	0.50 Ec Ig	0.40 Ec Aw
4	Wall—uncracked	0.80 Ec Ig	0.40 Ec Aw

1.9.LOAD ASSESSMENT

The proposed building is a RCC framed structure, located in the Kathmandu. Thus, wind loads, snow loads, and other special types of loads described by IS: 875 (part 5):1987 can be taken as negligible as compared to the dead, live and seismic loads.

a. Dead Loads:

According to the IS 875:1987(Part I), the dead load in a building shall comprise the weights of all walls, partitions, beam, column, floors and roofs and shall include the weights of all other permanent features in the building.

b. Live Loads:

It means the load assumed or known resulting from the occupancy or use of a building and includes the load on balustrades and loads from movable goods, machinery and plant that are not an integral part of the building. These are to be chosen from codes as IS:875: 1987(Part-2) for various occupancies where required. These codes permit certain modifications in the load intensities where large contributory areas are involved, or when the building consists of many stories.

c. Eccentricity of vertical loads:

When transferring the loads from parapets, partition walls, cladding walls and façade walls etc., to the supporting beams or columns, the eccentricity with these loads should be properly considered in the case of rigid frames of reinforce concrete. Such eccentricities will produce externally-applied joint moments similar to these arising from projecting cantilevers and these should be included in frame design.

d. Seismic Loads:

These are the load resulting from the vibration of the ground underneath the super-structure during an earthquake. The earthquake is an unpredictable natural phenomenon. Nobody knows the exact timing and magnitude of such loads. Seismic loads are to be determined essentially to produce an earthquake resistant design.

Since the probable maximum earthquake occurrence is not frequent, designing building for such earthquake isn't practical as well as economically prudent. Instead, reliance is placed on kinetic dissipation in the structure through plastic deformation of elements and joints and the design forces are reduced accordingly. Thus, the philosophy of seismic design is to obtain a no-collapse structure rather than no-damage structure.

Seismic Design Criteria

Earthquake	Desired Behaviour	Controlling Parameter
Minor	No damage to non-structural components.	Controlling deflection by providing stiffness.
Moderate	_	Avoid yielding of members or permanent damage by providing strength.
Severe Catastrophic	No collapse of system which could cause loss of life.	Allow structure to enter into in-elastic range and absorb energy by providing ductility.

1.9.1. ESTIMATION OF LOADS

It is most important step in structural design. Proper recording of them required for confusion free analysis.

DEAD LOADS

Dead loads are assumed to be produced by slab, beams, columns, walls, parapet walls, staircase, plasters and mortars, floor finish. The weight of building materials are taken as per IS 875(Part 1)-1987).

• Specific weight of materials [Ref: IS: 875(Part 1)-1987)]

Materials	Unit Weight	Unit	
RCC	25.00	(KN/m3)	
Brick Masonry	19.20	(KN/m3)	
Floor Finish (Cement Punning)	0.91	(KN/m2)	
AAC Block (Wet Weight)	10.00	(KN/m3)	

FLOOR FINISHING

Materials	Unit Weight (KN/m3)	Thickness (mm)	UDL (KN/m2)
Marble	26.70	20.00	0.53
Screed	22.00	25.00	0.55
Plaster	20.40	12.50	0.26
Total			1.34
Materials	Unit Weight (KN/m3)	Thickness (mm)	UDL (KN/m2)
Screed	22.00	25.00	0.55
Plaster	20.40	12.50	0.26
Punning	20.00	5.00	0.10
Total			0.91

WALL LOAD CALCULATION

WALL LOAD CALCULATION

Full brick wall thickness= 0.23m Half brick wall thickness= 0.115m

Floor to floor height= 2.845m Beam depth= 0.356m

Slab thickness= 0.127m

Height of wall resting on

beam= 2.845-0.356

2.489m

Height of wall resting on

slab= 2.845-0.127

2.718m

Unit weight of brick

19.2KN/m³

36

masonry= Parapet wall height= 1.00m IS: 875 (Part 1)-1987, Table-1 Item no.

					Parapet wall
	WL (without opening)		25%		load
Wall	Unit: KN/m		opening		Unit:KN/m
	9"	4.5"	9"	4.5"	4.5"
Resting on		=0.115*2.489*19.	=0.75*10.99	=0.75*5.5	=1*0.115*19.
beam	=0.23*2.489*19.2	2	6	3	2
	=10.99	=5.5	=8.243	=4.125	2.208
	≈11	≈5.5	≈8.5	≈4.5	≈2.5
Resting on		=0.115*2.718*19.			
slab	=0.23*2.718*19.2	2	=0.75*12	=0.75*6	
	=12.00	=6.00	=9.00	=4.50	
	≈12	≈6	≈9	≈4.5	

AREA LOAD CALCULATION

(i) Floor Finish

Thickness of screeding= 50mm Unit weight of IS: 875 (Part 1)-1987, Table-1 Item no. screeding/plaster= 20 KN/m³ 42 Unit weight of flooring= $0.22~KN/m^3$ IS: 875 (Part 1)-1987, Table-2 Item no. 7 Thickness of plaster on 12.50mm ceiling= Flooring= 10.00mm Area considered= 1 m^2 Floor Finish load (screeding) = 20*(50/1000)1.00 (ceiling plaster)= 20*(12.5/1000) 0.25 (flooring)= 0.22*(10/1000)= 0.0022**Total Floor Finish load=** 1.25 KN/m² (ii) Water Tank Load slab length= 3.556 m slab bredth= 4.267 m slab area= 3.556*4.267 $= 15.173 \text{ m}^2$ Water tank capacity= 2000 Ltr. 20 KN Water tank load= 20/15.886 1.318 KN/m² ≈1.5

(iii) Waist slab (due to steps)

Riser (R)= 0.178 mTread (T)= 0.254 mWidth of stair = 1.067 m

IS: 875 (Part 1)-1987, Table-1 Item no.

Unit weight of concrete= 25 KN/m³ nit weight of concrete

Load on Waist slab=

= $(0.178*0.254*25)/\{2*sqrt(0.178^2+0.254^2)\}$

22

= 1.822 KN/m²

LIVE LOADS

Select live load intensity occupancy-wise as applicable for slabs and beams from the code. The reduction of live load intensities for the number of storey in the columns and that for calculating earthquake loads may be considered in the calculations later.

Live Load	UDL (KN/m2)
Bed rooms, Sitting rooms and Kitchen	2.00
Storage and General Store	4.00
Lobby/Corridor/Staircase	3.00
Balconies	3.50
Accessible Roof / Inaccessible Roof	1.50 / 0.75

1.9.2. LOAD COMBINATIONS

The load combinations are based on NBC 105: 2020. The following load combinations are specified for parallel system.

1.2DL + 1.5LL Where,
$$\lambda = 0.6$$
 for storage facilities DL + λ LL + E = 0.3 for other usage

Name	Type	Is Auto	Load Name
Comb1 (1.2DL + 1.5LL)	Linear Add	No	Comb1 (1.2DL + 1.5LL)
Comb2 (DL + λLL +EQxult)	Linear Add	No	Comb2 (DL + λ LL +EQxult)
Comb3 (DL + λLL -EQxult)	Linear Add	No	Comb3 (DL + λ LL -EQxult)
Comb4 (DL + λLL +EQyult)	Linear Add	No	Comb4 (DL + λ LL +EQyult)
Comb5 (DL + λLL -EQyult)	Linear Add	No	Comb5 (DL + λ LL -EQyult)
Comb6 (1.5DL+1.5LL)	Linear Add	No	Comb6 (1.5DL+1.5LL)
Comb7 (DL + λ LL +RSx)	Linear Add	No	Comb7 (DL + λ LL +RSx)
Comb8 (DL + λLL +RSy)	Linear Add	No	Comb8 (DL + λ LL +RSy)
Comb9 (DL + LL)	Linear Add	No	Comb9 (DL +LL)

1.9.3. LOADING ON STRUCTURAL MODEL:

The following considerations are made during the loading on the structural model:

- The loads distributed over the area are imposed on area element and that distributed over length are imposed on line element whenever possible.
- Where such loading is not applicable, equivalent conversion to different loading distribution is carried to load the model near the real case as far as possible.
- The imposed loading of infill walls are considered(as per architectural drwg.) as equivalent UDL with 25% to 30% deductions for openings, but the actual modelling of infill walls as equivalent Struts are not performed. Hence the stiffness of infill walls is not considered.
- The Plinth Tie Beams are designed as purely tie members for lateral loads only, not designed as flexural members as floor beams.

- Modelling of stair case is performed
- Seismic loads are considered acting in the horizontal direction (along either of the two principal directions) and not along the vertical direction, since it is not considered to be significant.
- Floor diaphragms are assumed to be rigid.
- Centre-line dimensions are assumed for analysis and design. Preliminary sizes of structural components are assumed as per Architectural Drawing.
- For analysis purpose, the beams are assumed to be rectangular so as to distribute slightly larger moment in columns. In practice a beam that fulfils requirement of flanged section in design, behaves in between a rectangular and a flanged section for moment distribution.

Fig: Live load imposed on structure

1.9.4. BASE SHEAR (AS PER NBC 105:2002)

Base Shear $(V_B) = W^* C (T)$

W = Seismic Weight

 $C_h(T)$ = Spectral Shape Factor as per Cl. 4.1.2

The Elastic site spectra for horizontal loading shall be as given by equation 4.1(1).

$$C(T) = C_h(T) Z I \dots 4.1(1)$$

Where,

 $C_h(T)$ = Spectral Shape factor as per Cl. 4.1.2

Z = Seismic Zoning factor as per Cl. 4.1.4

I = Importance factor as per Cl. 4.1.5

Figure 4-2 Spectral Shape Factor, Ch(T) for Modal Response Spectrum Method, Nonlinear Time History Analysis, Vertical Loading and Parts and Components

$$C_h(T) = \begin{cases} 1 + (\alpha - 1) \times \frac{\tau}{\tau_a} & \text{if } T < T_a \\ \alpha & \text{if } T_a \le T \le T_c \\ \alpha \left[K + (1 - K) \left(\frac{\tau_c}{\tau} \right)^2 \right] \left(\frac{\tau_c}{\tau} \right)^2 & \text{if } T_c \le T \le 6 \end{cases} \dots 4.1(2)$$

Where,

α - peak spectral acceleration normalized by PGA

 T_{a} and T_{c} - the lower and upper periods of the flat part of the spectrum

K - Coefficient that controls the descending branch of the spectrum

1.9.4. CALCULATION OF SEISMIC COEFFICENTS & BASE SHEAR AS PER NBC 105: 2020

Base Shear Coefficient Calculat	Kathmandu		
Residential Building			
Zone Factor	Z=	0.35	Clause 4.1.4
Importance Factor	I=	1	Clause 4.1.5
	Soil type:	D	Clause 4.1.3.4
Height of Building	H=	8.534 m	
For Moment Resisting Concrete Frame	K _t =	0.075	Clause 5.1.2
Time Period	T= 1.25*K _t *H ^{0.75}	0.468 sec	Clause 5.1.2 & 5.1.3
	Ta=	0	Table 4-1
For Equivalent Static Method	Tc=	2	Table 4-1
Tor Equivalent Static Method	α=	2.25	Table 4-1
	K=	0.8	Table 4-1
Spectral Shape Factor	Ch(T)	2.25	Clause 4.1.2
Elastic Site Spectra	C(T)=Ch(T)*Z*I	0.7875	Clause 4.1.1
Elastic Site Spectra for serviceability limit state	Cs(T)=0.2*C(T)	0.1575	Clause 4.2
Horizontal Base Shear Coefficient			
Moment Resisting Frame Systems	(i) For SLS		Clause 5.4.2
- Joseph	Ru=	4	Table 5-2
(Reinforced Concrete Moment	Ωu=	1.5	Table 5-2
Resisting Frame)	Ωs=	1.25	Table 5-2
The stating Trume,	Cd(T1)= Cs(T1)/Ωs	0.1260	Clause 6.1.2
	(ii) For ULS		Clause 5.4.1
	Ru=	4	Table 5-2
	Ωu=	1.5	Table 5-2
	Ωs=	1.25	Table 5-2
	$Cd(T1) = C(T1)/(Ru*\Omega u)$	0.1313	Clause 6.1.1

Building Height exponent	k=	1.00	Clause 6.3
Accidental Eccentricity	e=	0.1	Clause 5.7
Allowable story drift			
	(i) For ULS: 0.025/Ru	0.00625	Clause
	(I) FOI OLS. 0.023/NU	0.00023	8.1.3.1
	(ii) For SLS	0.006	Clause
	(11) 1 31 313	0.000	8.1.3.1
Allowable story displacement			
	(i) For ULS: 0.025*(H/Ru)	53.3400	Clause
	(1) 1 01 0L3. 0.023 (11/Ku)	mm	5.6.1.1
	(ii) For SLS: 0.006*(H/Rs)	51.2064	Clause
	(11) 1 01 323. 0.000 (11) 1(3)	mm	5.6.1.2

CHAPTER 2

ANALYSIS AND DESIGN

2.1. INTRODUCTION

This chapter presents the finite element modelling, analysis and design procedures used in the codebased design.

2.1.1. POSITIONING AND ORIENTATION OF COLUMNS:

Following are some of the building principles, which help in deciding the columns positions.

- Columns should preferably be located at (or) near the corners of a building, and at the intersection of beams/walls.
- Select the position of columns so as to reduce bending moments in beams.
- Avoid larger Centre-to-Centre distance between columns.

2.1.2. POSITIONING OF BEAMS:

- Beams shall normally be provided under the walls or below a heavy concentrated load to avoid punching and shear failures in slab.
- Avoid larger spacing of beams from deflection and cracking criteria. (The deflection varies directly with the cube of the span and inversely with the cube of the depth i.e. L³/D³. Consequently, increase in span L which results in greater deflection for larger span.)

2.1.3. SPANNING OF SLABS:

• This is decided by supporting arrangements. When the supports are only on opposite edges or only in one direction, then the slab acts as a one-way slab. When the rectangular slab is supported along its four edges it acts as a one-way slab when L_y/L_x<2. The two-way slab action of slab not only depends on the aspect ratio but also on the ratio of reinforcement on the directions. In one-way slab, main steel is provided along with short span only and the load is transferred to two opposite supports. The steel along the long span just acts as the distribution steel and is not designed for transferring the load but to distribute the load and to resist shrinkage and temperature stresses. A slab is made to act as a one-way slab spanning the short span by providing main steel along the short span and only distribution steel along the span.

2.2.ANALYSIS AND DESIGN RESULTS

INTRODUCTION

This chapter presents the analysis and design results of the residential building. The structural components were analysed using both- static and dynamic method. In static analysis, linear static method was adopted whereas for dynamic, Response Spectrum method using Model analysis.

2.2.1. BENDING MOMENT DIAGRAM

As loads were applied obviously the beam and column show their bending nature. After analysing we have to observe the BMD of every beam and columns. We have to check balanced section, underreinforced and over-reinforced section. This is very important task before designing frames structure. The bending moment diagram is very much essential to design the sections for stability of structures. To get the area of steel, bending moment is essential and without bending moment diagram the design of any structure is not possible.

Fig: Moment Diagram 3D View (1.2DL+1.5LL)

This Bending Moment diagram is used to calculate the area of steel by using formula given below,

$$Ast = \frac{0.5fckbd}{fy} (1 - \sqrt{\left(1 - \frac{4.6Mu}{fckbd^2}\right)})$$

Where,

M_u= Bending Moment Obtained from ETABS

F_{ck}=Characteristics Strength of Concrete

F_y= Grade of Steel Used

b= width of section

d= effective depth of section

SHEAR FORCE DIAGRAM

Fig: SFD 3D View (1.2DL+1.5LL)

Shear force diagram is used to calculate or design of stirrups. We noticed that always shear force diagram is maximum at support and less when it moves towards the centre as in figure. Hence the spacing of stirrups at the supports was closely spaced where at the middle it is largely spaced.

AXIAL FORCE DIAGRAM

Fig: Axial Force View (1.2 DL+1.5LL)

2.2.3.POST ANALYSIS CHECK AFTER STATIC ANALYSIS OF STRUCTURE

The following are the parameters to check after analysis of model from ETABS.

- 1. Check For Inter Storey Drift (As per Clause 5.6.3 NBC 105:2020)
- 2. Maximum Permissible Storey Displacement in both principal directions.
- 3. Model Participation Factor
- 4. Check for Torsional Irregularities (As per Clause 5.5.2.1 NBC 105:2020)
- 5. Center of Mass and Center of Rigidity
- 6. Support reaction for foundation design
- 7. Deformed shape of structure
- 8. Verification of all members passed.
- 9. Beam Column Capacity Check

2.2.3.1. CHECK FOR INTER STOREY DRIFT (AS PER CLAUSE 5.6.3 NBC 105:2020)

The ratio of the inter-story deflection to the corresponding story height shall not exceed:

- 0.025 at ultimate limit state
- 0.006 at serviceability limit state

Story Drift along X-Direction and YDirection (EQ)x & (EQY): Serviceability limit state

Story	Output Case	Step Number	Direction	Drift	Remark
Top Floor	EQx SLS	1	Χ	0.003573	Safe in Drift
Top Floor	EQx SLS	1	Υ	0.000326	Safe in Drift
Top Floor	EQx SLS	2	Χ	0.002985	Safe in Drift
Top Floor	EQx SLS	3	Χ	0.00416	Safe in Drift
Top Floor	EQx SLS	3	Υ	0.00074	Safe in Drift
Top Floor	EQy SLS	1	Χ	0.001164	Safe in Drift
Top Floor	EQy SLS	1	Υ	0.002646	Safe in Drift
Top Floor	EQy SLS	2	Χ	0.001691	Safe in Drift
Top Floor	EQy SLS	2	Υ	0.002275	Safe in Drift
Top Floor	EQy SLS	3	Χ	0.000638	Safe in Drift
Top Floor	EQy SLS	3	Υ	0.003017	Safe in Drift
Second Floor	EQx SLS	1	Χ	0.002092	Safe in Drift
Second Floor	EQx SLS	1	Υ	0.000525	Safe in Drift
Second Floor	EQx SLS	2	Χ	0.001688	Safe in Drift
Second Floor	EQx SLS	3	Χ	0.002495	Safe in Drift
Second Floor	EQx SLS	3	Υ	0.000853	Safe in Drift
Second Floor	EQy SLS	1	Χ	0.00082	Safe in Drift
Second Floor	EQy SLS	1	Υ	0.002397	Safe in Drift
Second Floor	EQy SLS	2	Χ	0.001182	Safe in Drift
Second Floor	EQy SLS	2	Υ	0.002691	Safe in Drift
Second Floor	EQy SLS	3	Χ	0.000459	Safe in Drift
Second Floor	EQy SLS	3	Υ	0.002102	Safe in Drift
First Floor	EQx SLS	1	Χ	0.001635	Safe in Drift
First Floor	EQx SLS	1	Υ	0.000398	Safe in Drift
First Floor	EQx SLS	2	Χ	0.00133	Safe in Drift
First Floor	EQx SLS	3	Χ	0.001941	Safe in Drift
First Floor	EQx SLS	3	Υ	0.000627	Safe in Drift
First Floor	EQy SLS	1	Χ	0.000545	Safe in Drift
First Floor	EQy SLS	1	Υ	0.001836	Safe in Drift
First Floor	EQy SLS	2	Χ	0.000819	Safe in Drift
First Floor	EQy SLS	2	Υ	0.002041	Safe in Drift
First Floor	EQy SLS	3	Υ	0.001631	Safe in Drift

Story Drift along X-Direction and YDirection (EQ)x & (EQY): Ultimate limit state

Story	Output Case	Step Number	Direction	Drift	Remark
Top Floor	EQx ULS	1	Χ	0.003723	Safe in Drift
Top Floor	EQx ULS	1	Υ	0.00034	Safe in Drift
Top Floor	EQx ULS	2	Х	0.003111	Safe in Drift
Top Floor	EQx ULS	3	Χ	0.004335	Safe in Drift
Top Floor	EQx ULS	3	Υ	0.000771	Safe in Drift
Top Floor	EQy ULS	1	Χ	0.001213	Safe in Drift
Top Floor	EQy ULS	1	Υ	0.002758	Safe in Drift
Top Floor	EQy ULS	2	X	0.001762	Safe in Drift
Top Floor	EQy ULS	2	Υ	0.002371	Safe in Drift
Top Floor	EQy ULS	3	Χ	0.000665	Safe in Drift
Top Floor	EQy ULS	3	Υ	0.003144	Safe in Drift
Second Floor	EQx ULS	1	Χ	0.00218	Safe in Drift
Second Floor	EQx ULS	1	Υ	0.000547	Safe in Drift
Second Floor	EQx ULS	2	Χ	0.001759	Safe in Drift
Second Floor	EQx ULS	3	Х	0.0026	Safe in Drift
Second Floor	EQx ULS	3	Υ	0.000889	Safe in Drift
Second Floor	EQy ULS	1	Χ	0.000855	Safe in Drift
Second Floor	EQy ULS	1	Υ	0.002497	Safe in Drift
Second Floor	EQy ULS	2	Χ	0.001232	Safe in Drift
Second Floor	EQy ULS	2	Υ	0.002804	Safe in Drift
Second Floor	EQy ULS	3	Χ	0.000478	Safe in Drift
Second Floor	EQy ULS	3	Υ	0.002191	Safe in Drift
First Floor	EQx ULS	1	Χ	0.001704	Safe in Drift
First Floor	EQx ULS	1	Υ	0.000415	Safe in Drift
First Floor	EQx ULS	2	Х	0.001386	Safe in Drift
First Floor	EQx ULS	3	Х	0.002023	Safe in Drift
First Floor	EQx ULS	3	Υ	0.000653	Safe in Drift
First Floor	EQy ULS	1	Χ	0.000568	Safe in Drift
First Floor	EQy ULS	1	Υ	0.001913	Safe in Drift
First Floor	EQy ULS	2	Х	0.000854	Safe in Drift
First Floor	EQy ULS	2	Υ	0.002127	Safe in Drift
First Floor	EQy ULS	3	Υ	0.001699	Safe in Drift

Fig: Maximum Story Drift Along (EQx)service

Fig: Maximum Story Drift Along (EQy)service

Fig: Maximum Story Drift Along (EQx)ultimate

Fig: Maximum Story Drift Along (EQy)ultimate

It is found that story drift ratio for all stories are within permissible limit 0.00625 for ULS & 0.006 for SLS. (OK)

2.2.3.2. MAXIMUM PERMISSIBLE STOREY DISPLACEMENT IN BOTH PRINCIPAL DIRECTIONS

Fig-Maximum Storey Displacement in Eqx and Eqy in Service and Eqx and Eqy in Ultimate

Calculation of Maximum Permissible Displacement

Calculation of Maximum Permissible Displacement

Height of Building	Maximum Permissible Displacement	Obtained Result for Eqx	Obtained Result for Eqy
8.534 m	53.3400 mm (As per NBC 205:2020) ULS	15.33 mm	17.11 mm
8.534 m	51.2064 mm (As per NBC 205:2020) SLS	14.71 mm	16.42 mm

Calculation of Maximum Permissible Displacement as per IS Code and NBC Code

1. Height of Building (H)

8.534 m

2. Maximum Permissible Displacement (ULS)

(As Per NBC 205:2020)

$$= (0.025*H)/R_u$$

Ru=4

Maximum Permissible Displacement =

53.3400 mm in both

3. Maximum Permissible Displacement (SLS)

(As Per NBC 205:2020)

$$= (0.006*H)/R_s$$

Rs = 1

Maximum Permissible Displacement = 51.2064

mm in both

Hence, Analysis is Okay

2.2.3.3. Model Participation Factor

As per Cl. 7.3, NBC 105:2020,

- A sufficient number of modes shall be included in the analysis to include at least 90% of the total seismic mass in the direction under consideration.
- All modes that are not part of the horizontal load resisting systems shall be ignored in modal combination.
- The modal combination shall be carried out only for modes with natural frequency less than 33 Hz; the effect of modes with natural frequencies more than 33 Hz shall be included by the missing mass correction procedure following established principles of structural dynamics.

TABLE:	TABLE: Modal Participating Mass Ratios								
Case	Mode	Period	UX	UY	SumUX	SumUY	RZ	SumRZ	
		sec							
Modal	1	0.573	0.1612	0.4296	0.1612	0.4296	0.2681	0.2681	
Modal	2	0.472	0.4914	0.316	0.6526	0.7457	0.0264	0.2945	
Modal	3	0.424	0.1696	0.1032	0.8222	0.8489	0.5472	0.8417	
Modal	4	0.187	0.0485	0.0528	0.8707	0.9017	0.0167	0.8584	
Modal	5	0.177	0.0732	0.049	0.944	0.9508	0.0009	0.8594	
Modal	6	0.164	0.0082	0.0147	0.9522	0.9654	0.1036	0.963	
Modal	7	0.113	0.0137	0.0135	0.9659	0.979	0.0082	0.9712	
Modal	8	0.105	0.0236	0.0191	0.9894	0.9981	0.0006	0.9719	
Modal	9	0.097	0.0106	0.0019	1	1	0.0281	1	
Modal	10	0.006	0	0	1	1	0	1	
Modal	11	0.006	0	0	1	1	0	1	
Modal	12	0.006	0	0	1	1	0	1	

Result:

• Almost 100 % in of mass has been participated in 12th mode In X and Y directions respectively. (Okay)

TABLE: Modal Periods and Frequencies

TABLE: Modal Periods And Frequencies							
Case	Mode	Period	Frequency	CircFreq	Eigenvalue		
		sec	cyc/sec	rad/sec	rad²/sec²		
Modal	1	0.573	1.745	10.9629	120.1848		
Modal	2	0.472	2.12	13.3174	177.352		
Modal	3	0.424	2.359	14.8208	219.6556		
Modal	4	0.187	5.334	33.5143	1123.21		
Modal	5	0.177	5.637	35.4174	1254.3915		
Modal	6	0.164	6.102	38.3424	1470.1363		
Modal	7	0.113	8.813	55.3764	3066.5472		
Modal	8	0.105	9.509	59.7498	3570.0356		
Modal	9	0.097	10.26	64.4635	4155.5435		
Modal	10	0.006	155.299	975.7693	952125.7578		
Modal	11	0.006	177.811	1117.2189	1248178.003		
Modal	12	0.006	178.379	1120.7862	1256161.686		

2.2.3.4. Center of Mass and Center of Rigidity

TABLE: Centers Of Mass And Rigidity									
Story	Diaphragm	Mass X	Mass Y	хсм	YCM	Cum Mass X	Cum Mass Y	XCCM	YCCM
		kg	kg	m	m	kg	kg	m	m
First Floor	D2	82986.0	82986.0	4.0	4.4	82986.0	82986.0	4.0	4.4
Second									
Floor	D3	79664.7	79664.7	4.3	4.5	79664.7	79664.7	4.3	4.5
Top Floor	D4	29222.7	29222.7	4.4	4.7	29222.7	29222.7	4.4	4.7

Criteria : Difference between CCM and CR should not exceed 10% of building width. (NBC 105:2020 CL.5.2)

Eccentricity of Building Lies in the Permissible Limit of 10 %. Hence oK

2.2.3.5. DEFORMED SHAPE OF BUILDING

Fig.- Plan View of deformed shaped of building in EQx and EQy direction in Service State.

2.2.3.6. SUPPORT REACTION

The reactions at the support of column for load combination of (DL+LL) are as follows:

We find the area of footing using formula,

Area of footing =
$$\frac{1.1P}{SBC}$$

Where, P = Unfactored load, SBC=Soil bearing capacity

Note: Depth of the footing should be calculated depending upon the size of footing. It should be carried out in fact manually or by Rankine's formula, i.e.,

Minimum depth of foundation formula =
$$\frac{Qo}{w} \left(\frac{1-\sin\varphi}{1+\sin\varphi} \right)^2$$

 φ =Angle of repose of soil = 30 degree

 Q_O = Gross bearing capacity of soil = 150 KN/m2

w = Density of soil = 20 KN/m2

Note: We can neglect Earthquake load for design of footing if base shear coefficient is below 25% (i.e. total value of base shear is less than 25% of that of seismic wt. of the building)

2.2.3.7. VERIFICATION OF ALL MEMBER PASS

All the Sectional Member is passed for the design

2.2.3.8. BEAM COLUMN CAPACITY CHECK

DESIGN PART

User Coefficient Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQx ULS using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C C = 0.1313

Base Shear, V = CW

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
X	0	0	2854.6116	374.8105
X + Ecc. Y	0	0	2854.6116	374.8105
X - Ecc. Y	0	0	2854.6116	374.8105

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
Top Floor	8.5344	127.3465	0
Second Floor	5.6896	162.5954	0
First Floor	2.8448	84.8685	0
Plinth Level	0	0	0

User Coefficient Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQx SLS using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C C = 0.126

Base Shear, V V = CW

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
X	0	0	2854.6116	359.6811
X + Ecc. Y	0	0	2854.6116	359.6811
X - Ecc. Y	0	0	2854.6116	359.6811

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
Top Floor	8.5344	122.2061	0
Second Floor	5.6896	156.0322	0
First Floor	2.8448	81.4428	0
Plinth Level	0	0	0

User Coefficient Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQy ULS using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C C = 0.1313

Base Shear, V V = CW

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Y	0	0	2854.6116	374.8105
Y + Ecc. X	0	0	2854.6116	374.8105
Y - Ecc. X	0	0	2854.6116	374.8105

Story	Elevation	Elevation X-Dir	
	m	kN	kN
Top Floor	8.5344	0	127.3465
Second Floor	5.6896	0	162.5954
First Floor	2.8448	0	84.8685
Plinth Level	0	0	0

User Coefficient Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQy SLS using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C

C = 0.126

Base Shear, V

V = CW

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Y	0	0	2854.6116	359.6811
Y + Ecc. X	0	0	2854.6116	359.6811
Y - Ecc. X	0	0	2854.6116	359.6811

Applied Story Forces

Lateral Load to Stories - Y

		T	ı
Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
Top Floor	8.5344	0	122.2061
Second Floor	5.6896	0	156.0322
First Floor	2.8448	0	81.4428
Plinth Level	0	0	0

DESIGN OF COLUMN

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Column Section Design (Envelope)

Column Element Details (Envelope)

Level	Element	Unique Name	Section ID	Length (mm)	LLRF	Туре
First Floor	C7	25	Column 14"*14"	2844.8	0.772	Ductile Frame

Section Properties

b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)
355.6	355.6	58	30

Material Properties

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
22360.68	20	1	500	500

Design Code Parameters

Хc	γs
1.5	1.15

Longitudinal Reinforcement Design for P_u - M_{u2} - M_{u3} Interaction

Column End	Rebar Area mm²	Rebar %
Тор	1012	0.8
Bottom	1067	0.84

Design Axial Force & Biaxial Moment for Pu - Mu2 - Mu3 Interaction

Column End	Design P _u kN	Design M _{u2} kN-m	Design Mu3 kN-m	Station Loc mm	Controlling Combo
Top	279.7274	-46.4674	-17.8792	2490.3	DL+yLL+EQx
Bottom	221.9078	67.5882	15.1424	0	DL+yLL+EQy

Shear Reinforcement for Major Shear, V_{u2}

Column End	Rebar A _{sv} /s mm²/m	Design V _{u2} kN	Station Loc mm	Controlling Combo
Тор	394.16	6.1531	2490.3	DL+LL
Bottom	394.16	6.1531	0	DL+LL

Shear Reinforcement for Minor Shear, Vu3

Column End	Rebar A _{sv} /s mm²/m	Design V _{u3} kN	Station Loc mm	Controlling Combo
Top	394.16	4.8293	2490.3	DL+LL
Bottom	394.16	4.8293	0	DL+LL

Joint Shear Check/Design

	Joint Shear Ratio	Shear V _{u,Tot} kN	Shear V₀ kN	Joint Area mm²	Controllin g Combo
Minor(V _{u3)}	0.356	201.4609	565.5077	126451	DL+yLL+EQ x

Beam/Column Capacity Ratios

	1.4(B/C) Ratio	Column/B eam Ratio	SumBeam Cap Moments kN-m	ар	Controllin
Minor ₂₂	0.628	2.228	53.9994	147.903	DL+yLL+EQ y

DESIGN OF BEAM

ETABS Concrete Frame Design

IS 456:2000 Beam Section Design (Envelope)

Beam Element Details

Level	Element	Unique Name	Section ID	Length (mm)	LLRF
First Floor	B14	14	Main Beam 9"*14"	3835.4	1

Section Properties

b (mm)	h (mm)	b _f (mm)	d _s (mm)	d _{ct} (mm)	d _{cb} (mm)
228.6	355.6	228.6	0	40	40

Material Properties

Ec (MPa) fck (MPa)		Lt.Wt Factor (Unitless)	f _y (MPa)	fys (MPa)
22360.68	20	1	500	500

Design Code Parameters

Уc	γs
1.5	1.15

Flexural Reinforcement for Major Axis Moment, Mu₃

	End-I Rebar Area mm²	End-I Rebar %	Middle Rebar Area mm²	Middle Rebar %	End-J Rebar Area mm²	End-J Rebar %
Top (+2 Axis)	209	0.26	155	0.19	216	0.27
Bot (-2 Axis)	155	0.19	155	0.19	155	0.19

Flexural Design Moment, Mu3 and Axial Force, Pu

	Station Loc mm	Design M _u kN-m	Design P _u kN	Combo Name
Top (+2 Axis) End-I	177.8	-26.595	0	DL+yLL-EQx
Top (+2 Axis) Middle	2397.1	0	0	DL+yLL-EQy
Top (+2 Axis) End-J	3657.6	-27.3428	0	DL+yLL+EQx
Bot (-2 Axis) End-I	958.9	6.5533	0	DL+LL
Bot (-2 Axis) Middle	2397.1	7.3179	0	DL+LL
Bot (-2 Axis) End-J	3657.6	0	0	DL+LL

Shear Reinforcement for Major Shear, Vu2

End-I	Middle	End-J	
Rebar A _{sv} /s mm²/m	Rebar A _{sv} /s mm²/m	Rebar A _{sv} /s mm²/m	
894.17	347.35	941.08	

Design Shear Force for Major Shear, Vu2

End-I Design V _u kN	End-I Station Loc mm	Middle Design V _u kN	Middle Station Loc mm	End-J Design V _u kN	End-J Station Loc mm
35.1304	177.8	0.0236	2397.1	36.0568	3657.6
DL+yLL+EQy		DL+yLL-EQy		DL+yLL+EQy	

Torsion Reinforcement

Shear Rebar A_{svt} /s mm²/m

Design Torsion Force

Design T _u kN-m	Station Loc mm	Design T _u kN-m	Station Loc mm		
10.1618	3657.6	10.1618	3657.6		
DL+yLL+EQy		DL+yLL+EQy			

2.3.2. Percentage of steel in frames (Beam and Column)

Maximum percentage of reinforcement varies from member to member in RCC structure. In Indian practice i.e. (As per IS-456):

In beam:

- 1. Max. Area of tension reinforcement shall not exceed 0.04bd (Cl. 26.5.1.1)
- 2. Max. Area of compression enforcement shall not exceed 0.04bd (Cl. 26.5.1.2)

In column:

The CSA of longitudinal r/f shall not be less than 0.8% no more than 6% of gross cross sectional area of the column (Cl. 26.5.3

2.3. REINFORCEMENT DETAILS

2.3.1. Longitudinal Reinforcement Details (Area of steel in mm² for design of Column Rebar)

1	7				Ž		-	Ĭ	7		(10)		<i>y</i>
					0.755	10000	155		155	155	155		Top Floor
					155	155	155		155	155	155		
				1098			4070	6/01				1012	
	155 155	155 155	155 155			2000	155 155		155 155	155 155	174 155		Second Floo
1153				1012			5.00	7101				1012	
	200	155	183		176	155	166		160	155	186		First Floor
	155	155	155		155	155	155		155	155	155		
012				012			5	710				012	RefPl 1

Reinforcement detail in Etabs in Grid A

			Į))			1		J	_	1
	155	155	155		155	155	155	155	155	155		Top Floor
	155	155	155		155	155	155	155	155	155		
1012				1057			1053				1082	
	235 155	155 155	191 155	7.5			155 155	173 155	155 155	196 155	13	Second Floo
1012				1012			1012				1012	
	260	155	222		174	155	171	195	155	228	32 =	First Floor
	155	155	155		155	155	155	155	155	155		
1012	Z 1			1012			1012				1012	RefPl 1

Reinforcement detail in Etabs in Grid B-B

Reinforcement detail in Etabs in Grid C-C

2.3.2. Longitudinal Reinforcement Details (Area of steel in mm² for design of Beam Rebar)

Reinforcement detail of First Floor

Reinforcement detail of Second floor

Reinforcement Detail of Top floor beam

ANEX

DESIGN PART

COLUMN REINFORCEMENT

S.N.	GRID		SIZ	E		Reinforceme	ent	
		Column ID	b (inch)	D (inch)	For Ground Floor	For 1st Floor	For 2nd Floor	Lateral ties
1	A1	C1	14	14	8-Ф16	8-Ф16		8 mm Φ@, 4" c/c
2	A2	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
3	A3	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
4	A4	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
5	B1	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
6	B2	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
7	В3	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
8	B4	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
9	C1	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
10	C2	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
11	C3	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c
12	C4	C2	14	14	8-Ф16	8-Ф16	4-Ф12+4-Ф16	8 mm Φ@ 4" c/c

ANALYSIS & DESIGN OF FOUNDATION SYSTEM USING CSI SAFE

CSI SAFE BASIC PARAMETER (SUPPORT CONDITIONS):

Soil Subgrade Modulus= Soil Bearing Capacity x FOS x 1/Permissible Settlement

Permissible Settlement = 25 mm.

Soil Bearing Capacity = 120 KN/m² (Assumed)

Factor of Safety = 3

Soil Subgrade Modulus = 14,400 (compression only)

MAXIMUM SETTLEMENT OF FOUNDATION AS PER SOIL TYPE:

The maximum permissible settlement as per IS-1904 (1966) for isolated foundations is 40mm on sandy soil and 65mm in clayey soils.

The permissible settlement for the raft foundation on clay soil is 65-100 mm and for sandy soil, it is 65 mm. Differential settlements:

Foundation on Clay soil = 40 mm.

Foundation on Sandy soil = 25 mm.

Dimension of Footing

Length of Footing = As per plan

Width of Footing = As per Plan

Depth of Footing = 600 mm (24)

Strap Beam Layout Detail

Loading Value in footing (Column Rxn)

ANALYSIS RESULTS:

1. SETTLEMENT ANALYSIS

(Settlement Values as per CSI SAFE Analysis)
Maximum Permissible Settlement =25 mm (OK Safe)

2. BEARING CAPACITY

(S.B.C. Values as per SAFE Analysis)
Maximum Permissible S.B.C. = 120 kN/m² (OK Safe).

Check for Punching Shear

Punching shear value are less than 1 so safe in punching.

Hence Safe

Footing Reinforcement Details

Reinforcement Provided according to Strip force in X and Y Direction

 $12mm\Phi$ @ 150 mm c/c (Bottom Bar)

Strap Beam Reinforcement Details

					FOUNDATION	DETAIL				
Unique Name	Load Case	Service load	Siz	e of footing	Area of Reinforcement	D(in)	Size of strap beam	Area of Reinforcement	Remark	
IVAIIIC	Case	kN	(ft)	B1,B2,B3(ft)			in			
A1	DL+LL	141.6	5	5	12mmØ 6"c/c	24			Isolated footing	
A2	DL+LL	250.0	5.5	5.5	12mmØ 6"c/c	24			Isolated footing	
А3	DL+LL	259.3	5	5	12mmØ 6"c/c	24	14X24	Top=5-16mmØ Bottom=3-	Stran footing	
A4	DL+LL	177.2	5	5	12mmØ 6"c/c	24	14/24	16mmØ	Strap footing	
B1	DL+LL	294.4	6	6	12mmØ 6"c/c	24			Isolated footing	
B2	DL+LL	380.7	6	6	12mmØ 6"c/c	24			Isolated footing	
В3	DL+LL	351.0	6	6	12mmØ 6"c/c	24	14X24	Top=5-16mmØ Bottom=3-	Cturan factions	
B4	DL+LL	316.4	7	7	12mmØ 6"c/c	24	14824	16mmØ	Strap footing	
B1	DL+LL	294.4	6	6	12mmØ 6"c/c	24	1.4.7.2.4	Top=5-16mmØ Bottom=3-	Ctuan facting	
C1	DL+LL	225.7	6	6	12mmØ 6"c/c	24	14X24	16mmØ	Strap footing	
B2	DL+LL	380.7	6	6	12mmØ 6"c/c	24	1.4.7.2.4	Top=5-16mmØ Bottom=3-	Ctuan facting	
C2	DL+LL	284.3	6.5	6.5	12mmØ 6"c/c	24	14X24	16mmØ	Strap footing	
В3	DL+LL	351.0	6	6	12mmØ 6"c/c	24	1.4.7.2.4	Top=5-16mmØ Bottom=3-	Ctuan facting	
C3	DL+LL	270.5	6	6	12mmØ 6"c/c	24	14X24	16mmØ	Strap footing	
C3	DL+LL	270.5	6	6	12mmØ 6"c/c	24	1.4.7.2.4	Top=5-16mmØ Bottom=3-	Chuan faatin -	
C4	DL+LL	258.7	6	6	12mmØ 6"c/c	24	14X24	16mmØ	Strap footing	

Beam Design

BEAM REINFORCEMENT SCHEDULE

CONCRETE GRADE: M20 REBAR GRADE: Fe500

Floor	Size	Main Rein	forcement	Stirrups			
	(B*D)	Тор	Bottom	End	Middle		
Plinth Level	9*12	3-12Ф	3-12Ф	8 Ф@4" с/с	8 Ф@6" с/с		
First Floor Level	9*14	2-16Ф+1-12Ф	2-16Ф+1-12Ф	8 Ф@4" с/с	8 Ф@6" с/с		
Second Floor Level	9*14	2-16Ф+1-12Ф	2-16Ф+1-12Ф	8 Ф@4" с/с	8 Ф@6" с/с		
Top Floor level	9*14	3-12Ф	3-12Ф	8 Ф@4" с/с	8 Ф@6" с/с		
Secondary Beam	9*12	3-12Ф	3-12Ф	8 Ф@4" с/с	8 Ф@6" с/с		

Slab Design

Depth of Slab=125mm: 5"

Slab	Top Bar	Bottom Bar	Distribution Bar		
First Floor	8 mm Φ 6" c/c	8 mm Φ 6" c/c	8 mm Φ 6" c/c		
Second Floor	8 mm Φ 6" c/c	8 mm Φ 6" c/c	8 mm Φ 6" c/c		
Top Floor	8 mm Φ 6" c/c	8 mm Φ 6" c/c	8 mm Φ 6" c/c		

Staircase Reinforcement

Depth of Staircase = 125mm : 5" Depth

Staircase	Main Bar	Distribution Bar			
First Floor	12 mm Φ 5" c/c	8 mm Φ 6" c/c			
Second Floor	12 mm Φ 5" c/c	8 mm Φ 6" c/c			
Top Floor	12 mm Φ 5" c/c	8 mm Φ 6" c/c			

Column and Footing Reinforcement as per the table mentioned above.

Slab Design As Per IS456: 2000

Load Calculation

Material	Thickness(m)	Unit Wt(KN/m³)	Load(KN)
Marble	0.02	26.7	0.534
Screed	0.025	22	0.55
Slab	0.125	25	3.125
Plaster	0.0125	20.4	0.255
Partition			1
Live			2
		Total	7.464
Load Factor			1.5
Factored Load			11.196

<u>Status</u>

Limiting Reinforcement	ОК
Deflection	ОК
Limiting Moment	ОК
Min. Area of Reinforcement	ОК

Two adjacent edge Discontinuous

	Short Span Length	Long Span Length	Ly/Lx	Basic L/d	Modification	Permissible	Short Span Moment Coefficient(\alpha x)		Long Span Moment(αy)	
Panel Type	Lx(mm)	Ly (mm)		ratio	Factor	L/d	Negative	Positive	Negative	Positive
Two adjacent edge										
Discontinuous	3734	4394	1.177	23	1.4	32.2	0.058	0.044	0.047	0.035
						Moment	9.11	6.84	7.34	5.46

$f_{\mathcal{Y}}$		f ck	b	D	cover	half	d	M_u	Ast req	pŧreq	
N/m	m²	N/mm²	mm	mm	mm	of bar mm	mm	kNm	mm²	%	
500)	20	1000	125	15	4	106	9.11	207.91	0.20	
		·									

		Provide	Bar				Actual	
Bar Ф	Spacing	Spacing	Provided	pt Provided	fs	MF	L/d	Remark
8	241.8	150	8	0.364	<i>156</i>	2.00	46.0	

Limiting Moment of Resistance Values, (KNm)

f _y	f _{ck}	M _{lim}
N/mm²	N/mm²	KNm
50	0 20	29.88776

<u>Limiting Tensile Reinforcement in Reactangular Sections</u>

f _y N/mm²	f _{ck} N/mm²	X _m /d	P lim %
500	20	0.46	0.76

Minimum Tension Reinforcement

b	d	f _y	A ₀
mm	mm	N/mm²	mm²
1000	106	500	180.2

Staircase design

16.44	
11.00083816 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11.00083816
A KN/M	6.20047242
0.15 1.75	0.53 0.225
INPUT	В
Conrete grade 20	steel grade 500
No of steps 7 no 1	LL 3
width of stepin mm 250 mm	main bar 12
total projected length(L2) 1750 mm	flight width 1.0667
height of Riser 175 mm	finish thck 0.03
landing A Projected mid span	LANDING B
(L1)(m) 0.305 Length I2(m) 1.75 ((L3)(m) 1.067
Effective landing width = 0.15 m	0.53
let thickness of waist slab 125 mm	
Dead load of flight	
step section 0.022 m ²	hypotenuse of step
inclined slab 0.038 m ²	305.16 mm
finish 0.01275 m ²	
total area 0.073 m ²	
density of concrete 25.00 KN/m3	
DI of step section 1m in width 250 mm in plan length	h
,	1.82 KN/m
DL per m2 in plan 7.28 I	KN/m2 note
	KN/m2
Total Load 10.28	
Factored Load 15.42	KN/m2 KN/m
Taking 1.066747943 WIDTH OF SLAB, LOAD=	16 KN/m
	1066.74794
Landing A	
Self weight of slab 3.125 KN/m2	
finish 0.75 KN/m2	
LL 3 KN/m2	
Toal Load 6.875 KN/m2	
Factored load 10.3125 KN/m2	
Taking 1.066747943 11.00083816 KN/m	

same as I	anding	Α
-----------	--------	---

Enter Landing width of Flight 2

1.066747943 m

In a distance equal to 150 mm from the wall and a distance equal to 75 mm inside the wall only dead load will be considered.

Hence

Total factored load

6.200472417 KN/m

Design of stair flight

REACTION AT SU	PPORT B			fe	k	
	R_{B}	16.23	KN		415	0.138
	R_{A}	25.96	KN		500	0.133
concrete grade		20			500	0.133

LET point of zero SF occurs at distance x from A

X 1.63 m from A

1.48

MAX BM 21.76 KN/M

ok

Effective depth of slab is given as BM=0.133Fcbd2 Fe Xm

d=	87.562	mm	250	0.53
ADOPT EFF. DEPTH =	104	MM	415	0.48
O.DEPTH =	125	MM	500	0.46

Area of tension

BM=0.87sigma y At (d-0.42Xm)

From table on right

we get Xm = 0.46 d

required

 Required At=
 596.05
 mm2
 spacing
 189.75
 mm

 USE
 6
 nos 12 bars eq spaced in
 1.066747943
 m width

 provide
 12mm
 spacing
 125
 c/c
 ok

provide 12mm spacing 125 c/c
provided (At) 904.32 mm²

check for shear:

Tv= Vu/bd 0.234 N/MM2

% of steel= 0.815 %

Shear strength of M20 concrete

% Steel , Tc

0.815 0.576 IS 456-pg 73

shear strength of slab for M 20 Tc'= kTc IS 456-pg 72 k 1.3 FOR K THF Tc'= 0.720 > Tv ok MANUALLY

Check for development length

from point C as shown in fig development length of 12mm should be available in either direction to top as well as bottom bars

	M.O.R (M1)=	33.00734721	KNM	
	V	16.23104234		bond stress forM20
let Lo =0	Ld<=	1.3M1/V+Lo		1.3
	Ld=	0.680	m	
	1.3M1/V+Lo=	2.64	m	ok

Temperature reinforcement

provide .12%	1.5	cm2/m	
8	78.5	mm2	
req bar no	2.23	no	
hence r spacing		448.06	mm
provide	8	mm bars	@150mmc/c

Design of landing slab A

Effective span	2.88	m
Width=	1.07	
Factored load per m2	10.3125	KN/M2
Total load=	31.70	KN
Reaction from one flight	23.58	KN
Reaction from two flights	47.17	
Maximum BM	28.41	KNM
Maximum SF	39.43	KN
Effective Depth	104.mm	

BM=0.87sigma y At (d-0.42Xm)

AREA OF TENSION=

BM=0.87sigma y At (d-0.42Xm)

	DIVI 0.07516111	a y / 10 (0	2 0. 12/1111)			
					Fe	Xm
From table on ri	ght				250	0.53
we get	Xm =		0.46	d	415	0.48
					500	0.46
At=		778.37	mm2	(required)		
use		12.00	mm dia			
USE		12	Nos 12mm ba	rs eq spaced in	1.07	m width
	provided		(At)	1356.48	mm²	
p.spacing		125	mm	c/c		
			/ <u>12@</u>	125mm c/c		
		1.07	/	<u>12@</u>	125mm c/c	
104.mm	00000	000	00000			
104.11111						
		12	Nos,	125mm	c/c	

Check for deflection

a=	26
beta=	1
delta=	1
lamda=	1

For U

Fs= .58*Fy*Astreq/Ast prov

191.1426063

Pt Ast prov/(b*D)*100 0.678 %

U= 1.3 from graph

permissible deflection= 33.8 provided deflection= 19.49 **ok**