Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto

Sommersemester 2015 10. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Gruppenübung

Aufgabe G1 (Quiz)

Wahr oder falsch?

(a) Logische Äquivalenz aussagenlogischer Formeln ist eine Äquivalenzrelation.

Lösung: Richtig. Reflexivität, Symmetrie und Transitivität sind einfach nachzuprüfen.

(b) Die Folgerungsbeziehung ist eine Ordnungsrelation.

Lösung: Falsch. Die Folgerungsbeziehung ist zwar reflexiv und transitiv aber nicht antisymmetrisch (aus $\varphi \models \psi$ und $\psi \models \varphi$ folgt nur, dass $\varphi \equiv \psi$ aber nicht $\varphi = \psi$) und total (für unterschiedliche $p, q \in \mathcal{V}$ gilt weder $p \models q$ noch $q \models p$).

(c) Die Anzahl der n-stelligen booleschen Funktionen ist gleich dem Index von \equiv auf AL_n .

Lösung: Richtig. Vergleiche mit der Bemerkung nach Satz 3.2.

(d) Wenn jede Formel einer Menge von aussagenlogischen Formeln $\Phi \subseteq AL$ erfüllbar ist, dann ist auch Φ erfüllbar.

Lösung: *Falsch.* Die Aussage gilt z.B. nicht für $\Phi = \{p, \neg p\}$. Ist Φ aber abgeschlossen unter Konjunktion, d.h., aus $\varphi, \psi \in \Phi$ folgt $\varphi \land \psi \in \Phi$, dann gilt die Aussage (Warum?).

Aufgabe G2 (Exklusiv-Oder, Sheffer-Operator, Peirce-Operator)

Wir führen drei logische Junktoren ein:

- $p \oplus q := (p \lor q) \land \neg (p \land q)$ (exklusives Oder, XOR, Addition modulo 2, entweder-oder),
- $p \mid q := \neg(p \land q)$ (Sheffer-Strich, NAND),
- $p \downarrow q := \neg (p \lor q)$ (Peirce-Pfeil, NOR, weder-noch).

Beweisen Sie, dass $\{\}\}$ und $\{\downarrow\}$ vollständige Junktorensysteme sind, $\{1,0,\oplus\}$ aber nicht.

Lösung: Um zu zeigen, dass {|} ein vollstandiges Junktorensystem ist, genügt es, \neg und \land mit | auszudrücken (vgl. Abschnitt 3.3 im Skript). Es gilt $\neg p \equiv p \mid p$ und $p \land q \equiv \neg(p \mid q) \equiv (p \mid q) \mid (p \mid q)$. Ähnlich können wir \neg und \lor mit \downarrow ausdrücken: $\neg p \equiv p \downarrow p$ und $p \lor q \equiv \neg(p \downarrow q) \equiv (p \downarrow q) \downarrow (p \downarrow q)$.

Für $\{0,1,\oplus\}$ kann man systematisch alle zweistelligen boolesche Funktionen aufschreiben, die sich mit 0,1 und \oplus generieren lassen und sieht dann, dass z.B. die von \land dargestellte boolesche Funktion nicht darstellbar ist.

Wir zeigen eine stärkere Aussage, nämlich dass für jedes $\varphi \in \operatorname{AL}_n$ mit $n \geq 2$, welches nur die Aussagenvariablen \mathcal{V}_n , die logischen Konstanten 0 und 1 und den logischen Junktor \oplus benutzt, die Menge $|f_{\varphi}^{-1}(1)|$ geradzahlig viele Elemente hat. Wir beweisen dies per struktureller Induktion. Ist $\varphi = p$ mit $p \in \mathcal{V}_n$, dann ist $|f_{\varphi}^{-1}(1)| = 2^{n-1}$. Ist $\varphi = 0$ oder $\varphi = 1$, dann ist $|f_{\varphi}^{-1}(1)|$ gleich 0 oder 2^n . Nun seien $\varphi, \psi \in \operatorname{AL}_n$ mit obiger Eigenschaft gegeben. Es gilt $f_{\varphi \oplus \psi}^{-1}(1) = f_{\varphi}^{-1}(1) \Delta f_{\psi}^{-1}(1)$, wobei $A \Delta B = (A \setminus (A \cap B)) \cup (B \setminus (A \cap B))$

die symmetrische Differenz zweier Mengen ist. Es reicht nun zu zeigen, dass die symmetrische Differenz zweier geradzahliger Mengen A, B wieder geradzahlig ist. Dafür formen wie $|A \triangle B|$ um

$$|A \triangle B| = |A \setminus (A \cap B)| + |B \setminus (A \cap B)|$$

= |A| - |A \cap B| + |B| - |A \cap B| = |A| + |B| - 2|A \cap B|.

Der letzte Ausdruck ist durch 2 teilbar, da |A| und |B| dies nach Vorrausetzung sind und $2|A \cap B|$ es offensichtlich auch ist. Also ist auch $|A \triangle B|$ durch 2 teilbar.

Aufgabe G3 (AL-Kompaktheit)

- (a) Beweisen Sie den Kompaktheitssatz für AL(V) mit abzählbarer Variablenmenge V direkt als Anwendung von Königs Lemma.
- (b) Beweisen Sie Königs Lemma als direkte Anwendung des AL-Kompaktheitssatzes. Dazu beschreibt man die möglichen Auswahlen von Knoten längs eines unendlichen Pfades im vorgelegten Baum so durch eine unendliche Menge von AL-Bedingungen, dass jede endliche Teilmenge erfüllbar ist und aus der Erfüllbarkeit der gesamten Menge die Existenz eines unendlichen Pfades folgt.

Hinweis: Nehmen sie eine boolesche Variable für jede Entscheidung, einen Knoten aufzunehmen oder nicht; und geeignete Bedingungen, die Sackgassen verbieten.

Lösung:

(a) Sei $\Phi \subseteq AL(\mathcal{V})$, so dass jede endliche Teilmenge von Φ erfüllbar ist. Da $AL(\mathcal{V})$ abzählbar ist, ist auch Φ abzählbar und wir können die Elemente von Φ nummerieren als $\Phi = \{\varphi_1, \varphi_2, \ldots\}$. Wir setzen $\Phi_n = \{\varphi_i : 1 \le i \le n\}$ und $\mathcal{V}_n = \text{var}(\Phi_n)$, wobei $\text{var}(\Phi)$ die Menge der Variablen beschreibt, die in Φ vorkommen. Wir nehmen an, dass $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$, da die Belegung einer Variable, die nicht in Φ vorkommt, unerheblich für die Erfüllbarkeit von Φ ist.

Nun definieren wir einen Baum $\mathcal{T}=(V,E,\lambda)$ wie folgt. V enthält alle Tupel der Form (\mathfrak{I},n) , wobei \mathfrak{I} eine erfüllende \mathcal{V}_n -Belegung von Φ_n ist. Die Kantenrelation E verbindet einen Knoten der Form (\mathfrak{I},n) mit einem Knoten der Form $(\mathfrak{I},n+1)$, wenn \mathfrak{I} die Einschränkung von \mathfrak{I}' auf \mathcal{V}_n ist. Schlussendlich setzen wir $\lambda=(0,\mathfrak{I}_0)$, wobei \mathfrak{I}_0 die leere Belegung ist.

 \mathcal{T} ist ein Baum (Warum? Stichwort: Induktion). Des Weiteren ist \mathcal{T} endlich verzweigt, da es für jedes $n \in \mathbb{N}$ nur endlich viele Belegungen auf \mathcal{V}_{n+1} gibt, und unendlich, da es nach Voraussetzung für jedes $n \in \mathbb{N}$ ein $(\mathfrak{I},n) \in \mathcal{T}$ gibt. Nach Königs Lemma hat \mathcal{T} einen unendlich langen Pfad $(\mathfrak{I}_n,n)_{n\in\mathbb{N}}$. Aus diesem Pfad konstruieren wir eine erfüllende Belegung \mathfrak{I} von Φ gemäß $\mathfrak{I}(p) = \mathfrak{I}_n(p)$ für $p \in \mathcal{V}_n$. Diese Belegung ist wohldefiniert (Warum? Stichwort: Induktion) und die Einschränkung von \mathfrak{I} auf \mathcal{V}_n ist gleich \mathfrak{I}_n . Demnach gilt $\mathfrak{I} \models \Phi_n$, also auch $\mathfrak{I} \models \varphi_n$, also erfüllt \mathfrak{I} die Formelmenge Φ .

(b) Vergleiche Lemma 4.4 im Skript.

Aufgabe G4 (Endlichkeitssatz für Parkettierungen)

Ein Parkettierungs-System $\mathcal{D}=(D,H,V)$ ist gegeben durch eine endliche Menge D von Kacheltypen und zwei Relationen $H,V\subseteq D\times D$, die beschreiben, wann zwei Kacheltypen horizontal bzw. vertikal nebeneinanderpassen, d.h. $(d,e)\in H$ gdw. e rechts neben d passt und $(d,e)\in V$ gdw. e über d passt. Eine gegebene Teilmenge von $\mathbb{Z}\times\mathbb{Z}$ besitzt eine Pakettierung, wenn sie korrekt mit Kacheln belegt werden kann, d.h. benachbarte Kacheln passen in ihrem Typ gemäß H und V zusammen. (Wir gehen davon aus, dass wir unbegrenzt viele Kacheln jedes Typs haben)

Weisen Sie nach, dass für ein endliches Parkettierungs-System $\mathcal{D} = (D, H, V)$ stets äquivalent sind:

- (a) Es existiert eine Parkettierung auf $\mathbb{Z} \times \mathbb{Z}$.
- (b) Es existiert eine Parkettierung auf $\mathbb{N} \times \mathbb{N}$.
- (c) Es existieren Parkettierungen auf $(n \times n)$ -Quadraten für beliebig große $n \in \mathbb{N}$.

Hinweis: Benutzen Sie AL-Variablen p_{dij} für $d \in D, i, j \in \mathbb{Z}$, die besagen dass in Position (i, j) eine Kachel vom Typ d liegt. Die Bedingungen an \mathcal{D} -Parkettierungen lassen sich dann in geeigneter Weise als AL-Formelmengen beschreiben.

Lösung: Die Implikationen (a) \Longrightarrow (b) \Longrightarrow (c) sind klar. Es bleibt nur die Implikation (c) \Longrightarrow (a) zu beweisen. Zuerst geben wir eine Konstruktion einer Formelmenge $\Phi(S)$ an, die für gegebenes $S \subseteq \mathbb{Z} \times \mathbb{Z}$ genau dann erfüllbar ist, wenn es eine Parkettierung von S gibt. Dafür definieren wir den horizontalen Nachbarn $h(k,\ell) = (k+1,\ell)$ und vertikalen Nachbarn $v(k,\ell) = (k,\ell+1)$ eines Elements $(k,\ell) \in \mathbb{Z} \times \mathbb{Z}$ und benutzen die Schreibweise p_{ds} für $p_{dk\ell}$, wobei $s = (k,\ell) \in \mathbb{Z} \times \mathbb{Z}$. Nun können wir $\Phi(S)$ definieren als

$$\Phi(S) := \bigwedge_{s \in S} \bigvee_{d \in D} p_{ds}$$
 (Auf jedem Feld liegt eine Kachel)
$$\wedge \bigwedge_{s \in S, d \neq d' \in D} p_{ds} \to \neg p_{d's}$$
 (Auf jedem Feld liegt höchstens eine Kachel)
$$\wedge \bigwedge_{d \in D, s, h(s) \in S} p_{ds} \to \bigvee_{(d,d') \in H} p_{d'h(s)}$$
 (Zwei horizontal benachbarte Kacheln passen nebeneinander)
$$\wedge \bigwedge_{d \in D, s, \nu(s) \in S} p_{ds} \to \bigvee_{(d,d') \in V} p_{d'\nu(s)}.$$
 (Zwei vertikal benachbarte Kacheln passen nebeneinander)

Man überprüfe, dass man von einer Parkettierung von S eine erfüllende Belegung von $\Phi(S)$ erhält und andersherum.

Nehmen wir nun an, dass \mathcal{D} die Eigenschaft aus (c) habe, dann müssen wir zeigen, dass $\Phi(\mathbb{Z} \times \mathbb{Z})$ erfüllbar ist. Ist nun $\Phi_0 \subseteq \Phi(\mathbb{Z} \times \mathbb{Z})$ eine endliche Teilmenge, dann gibt es ein Quadrat $S = \{n, \ldots, -n\} \times \{n, \ldots, -n\}$, so dass $\Phi_0 \subseteq \Phi(S)$ (Warum?). Nach Voraussetzung ist $\Phi(S)$ erfüllbar und damit auch Φ_0 . Also haben wir gezeigt, dass jede endliche Teilmenge von $\Phi(\mathbb{Z} \times \mathbb{Z})$ erfüllbar ist. Nach dem Kompaktheitssatz ist dann auch $\Phi(\mathbb{Z} \times \mathbb{Z})$ erfüllbar und somit existiert eine Parkettierung von $\mathbb{Z} \times \mathbb{Z}$.