Unbounded operators and the Friedrichs extension

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

May 26, 2014

1 Introduction

In this note, by $A \subset B$, I mean that A is contained in B, and it may be that A = B; usually I write this by $A \subseteq B$, but $A \subset B$ fits with the usual notation for saying that an operator is an extension of another.

In this note, unless we say otherwise H denotes a Hilbert space over \mathbb{C} , and we do not presume H to be separable. We shall write the inner product $\langle \cdot, \cdot \rangle$ on H as conjugate linear in the second argument.

We say that T is an operator in H if there is a linear subspace $\mathscr{D}(T)$ of H such that $T: \mathscr{D}(T) \to H$ is a linear map. We call $\mathscr{D}(T)$ the domain of T and $\mathscr{R}(T) = T(\mathscr{D}(T))$ the range of T. We do not presume unless we say so that $\mathscr{D}(T)$ is dense in H, and we say that T is densely defined when this is so.

Define

$$\mathscr{G}(T) = \{(x, Tx) : x \in \mathscr{D}(T)\},\$$

called the graph of T. We say that an operator S is an extension of an operator T if $\mathscr{G}(T) \subset \mathscr{G}(S)$, and we write $T \subset S$. The set of all extensions of an operator is a partially ordered set, so it makes sense to talk about a maximal extension. In particular, if $\mathscr{D}(T) = H$ then T is maximal.

 $H \times H$ is a Hilbert space with the inner product

$$\langle (x,y),(v,w)\rangle = \langle x,v\rangle + \langle y,w\rangle.$$

We say that an operator T is closed if $\mathscr{G}(T)$ is a closed subset of $H \times H$. Thus, to say that T is a closed operator means that if x_n is a sequence in $\mathscr{D}(T)$ and $(x_n, Tx_n) \to (x, y) \in H \times H$, then $(x, y) \in \mathscr{G}(T)$, i.e. $x \in \mathscr{D}(T)$ and y = Tx. It is apparent that if $T \in \mathscr{B}(H)$ then T is closed. On the other hand, if T is closed and $\mathscr{D}(T) = H$, then the closed graph theorem tells us that $T \in \mathscr{B}(H)$.

2 Adjoints

Following Garrett, we say that an operator T' is a sub-adjoint of an operator T if

$$\langle Tv, w \rangle = \langle v, T'w \rangle, \qquad v \in \mathcal{D}(T), w \in \mathcal{D}(T').$$

Obviously, T'=0 with $\mathcal{D}(T')=\{0\}$ is a sub-adjoint of any operator. As well, if T is densely defined, then for any linear subspace V of H there is at most one sub-adjoint of T with domain V.

We define $J: H \times H \to H \times H$ by J(v, w) = (-w, v). J is unitary. We follow Garrett's proof of the following theorem.²

Theorem 1. If T is densely defined, then it has a a unique maximal sub-adjoint, denoted T^* and called the adjoint of T. T^* is closed, with

$$\mathscr{G}(T^*) = J(\mathscr{G}(T))^{\perp}.$$

Proof. Write $X = J(\mathscr{G}(T))^{\perp}$. Suppose that T' is a sub-adjoint of T. For $w \in \mathscr{D}(T')$ and $v \in \mathscr{D}(T)$,

$$\langle J(v,Tv),(w,T'w)\rangle = \langle (-Tv,v),(w,T'w)\rangle = \langle -Tv,w\rangle + \langle v,T'w\rangle = 0,$$

showing that $\mathscr{G}(T') \subset X$.

For any $w \in H$, suppose that $(w, w_1), (w, w_2) \in X$. This means that for all $v \in \mathcal{D}(T)$, $\langle (w, w_1), (-Tv, v) \rangle = 0$ and $\langle (w, w_2), (-Tv, v) \rangle = 0$, i.e. $\langle w, -Tv \rangle + \langle w_1, v \rangle = 0$ and $\langle w, -Tv \rangle + \langle w_2, v \rangle = 0$, so $\langle w_1 - w_2, v \rangle = 0$. Because $\mathcal{D}(T)$ is dense in H, this implies that $w_1 - w_2 = 0$ (lest a sequence of things that are each 0 converge to something that is not 0). Therefore for any $w \in H$ there is at most one $w' \in H$ such that $(w, w') \in X$, and we define

$$W = \{ w \in H : \text{there is some } w' \in H \text{ such that } (w, w') \in X \}.$$

We define $T^*: W \to H$ by Tw = w', so T^* is an operator with $\mathcal{D}(T^*) = W$. It is apparent that $\mathcal{G}(T^*) = X$.

For $v\in \mathscr{D}(T)$ and $w\in \mathscr{D}(T^*)$, using $(w,T^*w)\in X$ and $(-Tv,v)\in J(\mathscr{G}(T))$ we get

$$0 = \langle (-Tv, v), (w, T^*w) \rangle = \langle -Tv, w \rangle + \langle v, T^*w \rangle,$$

showing that T^* is a sub-adjoint of T.

If T' is a sub-adjoint of T, we have shown that $\mathscr{G}(T') \subset X$ and that $\mathscr{G}(T^*) = X$, giving $T \subset T^*$. Hence T^* is the unique maximal sub-adjoint of T.

 $\mathscr{G}(T^*) = X$ is an orthogonal complement hence closed in $H \times H$, meaning that T^* is a closed operator, completing the proof.

¹Paul Garrett, *Unbounded operators, Friedrichs extension theorem*, http://www.math.umn.edu/~garrett/m/v/friedrichs.pdf

²Paul Garrett, *Unbounded operators, Friedrichs extension theorem*, http://www.math.umn.edu/~garrett/m/v/friedrichs.pdf

Using the expression in the above theorem for the graph of the adjoint as an orthogonal complement, if T_1, T_2 are densely defined and $T_1 \subset T_2$, then $T_2^* \subset T_1^*$.

Definition 2. Suppose that T is an operator in H. We say that T is self-adjoint if T is densely defined and $T = T^*$, i.e. $\mathscr{G}(T) = \mathscr{G}(T^*)$.

Theorem 3. If T is a densely defined closed operator in H, then

$$H \times H = J(\mathscr{G}(T)) \oplus \mathscr{G}(T^*) = \mathscr{G}(T) \oplus J(\mathscr{G}(T^*)).$$

Proof. Because T is densely defined we have $\mathscr{G}(T^*) = J(\mathscr{G}(T))^{\perp}$. Then taking orthogonal complements, $\overline{J(\mathscr{G}(T))} = \mathscr{G}(T^*)^{\perp}$. But T is closed and J is unitary, so $\overline{J(\mathscr{G}(T))} = J(\mathscr{G}(T))$, giving $J(\mathscr{G}(T)) = \mathscr{G}(T^*)^{\perp}$. Moreover, $\mathscr{G}(T^*)$ is a closed linear subspace of $H \times H$, so

$$H \times H = \mathscr{G}(T^*) \oplus \mathscr{G}(T^*)^{\perp} = \mathscr{G}(T^*) \oplus J(\mathscr{G}(T)).$$

Because J is unitary and $J^2 = I$,

$$H \times H = J(H \times H) = J(\mathscr{G}(T^*)) \oplus J^2(\mathscr{G}(T)) = J(\mathscr{G}(T^*)) \oplus \mathscr{G}(T).$$

We now use the above orthogonal direct sum to show that the adjoint of a densely defined closed operator is itself densely defined; then since T^* is densely defined it makes sense to talk about T^{**} , and this is equal to T. The proof follows Rudin.³

Theorem 4. If T is a densely defined closed operator in H, then $\mathcal{D}(T^*)$ is dense in H and $T^{**} = T$.

Proof. Suppose that $z \in \mathcal{D}(T^*)^{\perp}$. For all $y \in \mathcal{D}(T^*)$, $\langle z, y \rangle = 0$, which can be written as $\langle (0, z), (-T^*y, y) \rangle = 0$, which means that $(0, z) \in (J(\mathcal{G}(T^*))^{\perp})$. But by Theorem 3, $(J(\mathcal{G}(T^*))^{\perp} = \mathcal{G}(T)$, so $(0, z) \in \mathcal{G}(T)$. That is, T(0) = z, hence z = 0. Therefore $\mathcal{D}(T^*)^{\perp} = \{0\}$, which implies that $\mathcal{D}(T^*)$ is dense in H.

Because T^* is densely defined, we can apply Theorem 3 to get

$$H \times H = J(\mathscr{G}(T^*)) \oplus \mathscr{G}(T^{**}).$$

But we also have

$$H \times H = \mathscr{G}(T) \oplus J(\mathscr{G}(T^*)).$$

Therefore
$$\mathscr{G}(T^{**}) = \mathscr{G}(T)$$
.

³Walter Rudin, Functional Analysis, second ed., p. 354, Theorem 13.12.

3 Symmetric operators

We say that an operator T in H is symmetric if

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \qquad x, y \in \mathscr{D}(T).$$

Theorem 5. Suppose that T is a densely defined operator in H. Then T is symmetric if and only if $T \subset T^*$.

Proof. Suppose that T is symmetric. For $v, w \in \mathcal{D}(T)$,

$$\langle (-Tv, v), (w, Tw) \rangle = \langle -Tv, w \rangle + \langle v, Tw \rangle = 0,$$

showing by Theorem 1 that $(w,Tw)\in \mathscr{G}(T^*)$. Therefore $\mathscr{G}(T)\subset \mathscr{G}(T^*)$, i.e. $T\subset T^*$.

Suppose that $T\subset T^*$. For $x,y\in \mathscr{D}(T),$ the fact that $T\subset T^*$ gives $Tx=T^*x,$ so

$$\langle x, Ty \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle,$$

showing that T is symmetric.

Lemma 6. If T is a symmetric operator in H and $\lambda \in \mathbb{C}$ is an eigenvalue of T, then $\lambda \in \mathbb{R}$.

Proof. Let $v \in \mathcal{D}(T)$, $v \neq 0$ and $Tv = \lambda v$. T being symmetric gives $\langle Tv, v \rangle = \langle v, Tv \rangle$, hence $\langle \lambda v, v \rangle = \langle v, \lambda v \rangle$ and thus $\lambda \|v\| = \overline{\lambda} \|v\|$, and $\|v\| \neq 0$ so $\lambda = \overline{\lambda}$, meaning $\lambda \in \mathbb{R}$.

Definition 7. An operator T in H is called positive if it is symmetric and if

$$\langle Tv, v \rangle \ge 0, \qquad v \in \mathscr{D}(T);$$

we stipulate that T is symmetric so that the left-hand side of the above inequality is real.

4 The Hellinger-Toeplitz theorem

The Hellinger-Toeplitz theorem is the statement that if an operator in a Hilbert space is defined everywhere and is symmetric, then it is in fact bounded. Our proofs follows Rudin^4

Theorem 8 (Hellinger-Toeplitz theorem). If T is a symmetric operator in H with $\mathcal{D}(T) = H$, then $T \in \mathcal{B}(H)$.

Proof. Because $\mathscr{D}(T)=H$, of course T is densely defined, so because T is symmetric, by Theorem 5 we have $T\subset T^*$; it makes sense to talk about T^* because T is densely defined. $T\subset T^*$ and $\mathscr{D}(T)=H$ together imply $T=T^*$. But from Theorem 1, $\mathscr{G}(T^*)$ is closed, and hence $\mathscr{G}(T)$ is closed too. Then, because $\mathscr{D}(T)=H$ and $\mathscr{G}(T)$ is closed, the closed graph theorem tells us that T is continuous.

 $^{^4 \}mbox{Walter Rudin}, \it Functional Analysis, second ed., p. 353, Theorem 13.11.$

5 Friedrichs extension

The proof of the following theorem expands on Garrett.⁵

Theorem 9 (Friedrichs extension). If T is densely defined and positive, then there is an operator in H that is self-adjoint and positive and whose restriction to $\mathcal{D}(T)$ is equal to T.

Proof. Define

$$\langle v, w \rangle_1 = \langle v, w \rangle + \langle Tv, w \rangle, \qquad v, w \in \mathcal{D}(T).$$

It is apparent that $\langle \cdot, \cdot \rangle_1$ is a Hermitian form on the vector space $\mathcal{D}(T)$, conjugate linear in the second argument. Moreover, for $v \in \mathcal{D}(T)$,

$$\langle v, v \rangle_1 = \langle v, v \rangle + \langle Tv, v \rangle \ge 0$$

because T is positive. Therefore $\langle \cdot, \cdot \rangle_1$ is an inner product on $\mathcal{D}(T)$.

Let K be the completion of $\mathscr{D}(T)$ with respect to the inner product $\langle \cdot, \cdot \rangle_1$. That is, K is a Hilbert space, and there is a one-to-one linear map $k: \mathscr{D}(T) \to K$ such that $\langle kv, kw \rangle_K = \langle v, w \rangle_1$ for all $v, w \in \mathscr{D}(T)$, and $k(\mathscr{D}(T))$ is dense in K. k is an isometry, so it makes sense to define $j: k(\mathscr{D}(T)) \to H$ by j(k(x)) = x, and j is itself an isometry. Because $k(\mathscr{D}(T))$ is dense in K and j is a bounded linear map, there is a unique bounded linear map $\hat{j}: K \to H$ whose restriction to $k(\mathscr{D}(T))$ is equal to j, and $\|\hat{j}\| = \|j\| \le 1$. Suppose that $\hat{j}(\phi) = 0$ for some $\phi \in K$. As $k(\mathscr{D}(T))$ is dense in K, there is a sequence $v_n \in \mathscr{D}(T)$ such that $\|kv_n - \phi\|_K \to 0$, and as

$$||v_n|| \le ||v_n||_1 = ||\hat{j}(kv_n)||_1 = ||\hat{j}(kv_n)||_1 = ||\hat{j}(kv_n - \phi)||_1 \le ||kv_n - \phi||_K$$

this means that $||v_n|| \to 0$. Then,

$$\begin{split} \|\phi\|_K^2 &= \langle \phi, \phi \rangle_K \\ &= \lim_{n \to \infty} \langle \phi, k v_n \rangle_K \\ &= \lim_{m \to \infty} \lim_{n \to \infty} \langle k v_m, k v_n \rangle_K \\ &= \lim_{m \to \infty} \lim_{n \to \infty} \langle v_m, v_n \rangle_1 \\ &= \lim_{m \to \infty} \lim_{n \to \infty} (\langle v_m, v_n \rangle + \langle T v_m, v_n \rangle) \\ &\leq \lim_{m \to \infty} \lim_{n \to \infty} (\|v_m\| \|v_n\| + \|T v_m\| \|v_n\|) \\ &= \lim_{m \to \infty} \sup_{n \to \infty} 0 \\ &= 0; \end{split}$$

this uses $||v_n|| \to 0$, and does not presume that T is bounded. Hence $||\phi||_K = 0$, so $\phi = 0$. This shows

$$\hat{j}: K \to H$$
 is one-to-one.

 $^{^5} Paul \; Garrett, \; Unbounded \; operators, \; Friedrichs \; extension \; theorem, \\ http://www.math.umn.edu/~garrett/m/v/friedrichs.pdf$

For $h \in H$, define $\lambda_h : K \to \mathbb{C}$ by

$$\lambda_h \phi = \langle \hat{j}\phi, h \rangle, \qquad \phi \in K,$$

which satisfies

$$|\lambda_h \phi| \le ||\hat{j}\phi|| ||h|| \le ||\phi||_K ||h||, \qquad \phi \in K,$$

and hence $\|\lambda_h\| \le \|h\|$, so by the Riesz representation theorem there is a unique $Ch \in K$ satisfying $\|Ch\|_1 = \|\lambda_h\| \le \|h\|$ and

$$\lambda_h \phi = \langle \phi, Ch \rangle_K, \qquad \phi \in K.$$

For $h_1, h_2 \in H$, $\alpha \in \mathbb{C}$, and $\phi \in K$,

$$\begin{split} \langle \phi, C(\alpha h_1 + h_2) \rangle_K &= \lambda_{\alpha h_1 + h_2} \phi \\ &= \langle \hat{j} \phi, \alpha h_1 + h_2 \rangle \\ &= \overline{\alpha} \langle \hat{j} \phi, h_1 \rangle + \langle \hat{j} \phi, h_2 \rangle \\ &= \overline{\alpha} \lambda_{h_1} \phi + \lambda_{h_2} \phi \\ &= \overline{\alpha} \langle \phi, Ch_1 \rangle_K + \langle \phi, Ch_2 \rangle_K \\ &= \langle \phi, \alpha Ch_1 + Ch_2 \rangle_K. \end{split}$$

This being true for all $\phi \in K$ implies that $C(\alpha h_1 + h_2) = \alpha C h_1 + C h_2$. Thus, $C: H \to K$ is linear, and $\|C\| \le 1$. Define $B: H \to H$ by

$$B = \hat{j} \circ C$$

which satisfies $||B|| \le ||\hat{j}|| ||C|| \le 1$, so $B \in \mathcal{B}(H)$. For $v, w \in H$,

$$\begin{array}{rcl} \langle Bv,w\rangle & = & \langle \hat{j}(Cv),w\rangle \\ & = & \lambda_w(Cv) \\ & = & \underline{\langle Cv,Cw\rangle_K} \\ & = & \overline{\langle Cw,Cv\rangle_K} \\ & = & \overline{\lambda_v(Cw)} \\ & = & \overline{\langle \hat{j}(Cw),v\rangle} \\ & = & \overline{\langle Bw,v\rangle} \\ & = & \langle v,Bw\rangle, \end{array}$$

so B is self-adjoint. Moreover, for $v \in H$,

$$\langle Bv, v \rangle = \langle \hat{j}(Cv), v \rangle = \lambda_v(Cv) = \langle Cv, Cv \rangle_K > 0.$$

Therefore, B is a positive operator. As well, if Bv = 0 then $(\hat{j} \circ C)(v) = 0$, and as \hat{j} is one-to-one this means that Cv = 0, and hence for all $\phi \in K$,

$$0 = \langle \phi, Cv \rangle_K = \lambda_v \phi = \langle \hat{j}\phi, v \rangle.$$

But $\mathscr{D}(T) \subset \hat{j}(K)$, so the above holding for all $\phi \in K$ means in particular that $\langle w, v \rangle = 0$ for all $w \in \mathscr{D}(T)$. As $\mathscr{D}(T)$ is dense in H, this implies that v = 0. This shows that B is one-to-one. Finally, suppose that $\phi \in C(H)^{\perp}$, so for all $h \in H$,

$$0 = \langle \phi, Ch \rangle_K = \lambda_h \phi = \langle \hat{j}\phi, h \rangle.$$

Because this holds for all $h \in H$, we have $\hat{j}\phi = 0$, and \hat{j} is one-to-one so $\phi = 0$. This shows that C(H) is dense in K. Then, as $\hat{j}: K \to \hat{j}(K)$ is a bijection, we have B(H) is dense in $\hat{j}(K)$. But $\mathcal{D}(T) \subset \hat{j}(K)$ and $\mathcal{D}(T)$ is dense in H, so B(H) is dense in H.

We define $\mathscr{D}(A) = B(H)$, and define $A : \mathscr{D}(A) \to H$ by $Av = B^{-1}v$, which makes sense because B is one-to-one. We have just shown that B(H) is dense in H, so A is a densely defined operator in H. As well, $A : \mathscr{D}(A) \to H$ is onto, because $B \in \mathscr{B}(H)$. A is symmetric: for $v, w \in \mathscr{D}(A) = B(H)$, there are $x, y \in H$ with Bx = v and By = w, and using the fact that B is self-adjoint,

$$\langle Av, w \rangle = \langle A(Bx), By \rangle = \langle x, By \rangle = \langle Bx, y \rangle = \langle v, Aw \rangle.$$

Moreover, A is positive: for $v \in \mathcal{D}(A)$ there is some $x \in H$ with Bx = v, and the fact that B is positive gives

$$\langle Av, v \rangle = \langle A(Bx), Bx \rangle = \langle x, Bx \rangle > 0.$$

In this paragraph we show that A is self-adjoint; because A is densely defined it indeed has an adjoint A^* . Define $U: H \times H \to H \times H$ by U(v, w) = (w, v), which is unitary. It is apparent that

$$\mathscr{G}(A) = U(\mathscr{G}(B)).$$

For any linear subspace X of $H \times H$,

$$(UX)^{\perp} = U(X^{\perp}).$$

Then using $J \circ U = -U \circ J$ and Theorem 1 we obtain (since -X = X when X is a vector space)

$$\begin{split} \mathscr{G}(A^*) &= J(\mathscr{G}(A))^{\perp} \\ &= J(U(\mathscr{G}(B)))^{\perp} \\ &= U(J(\mathscr{G}(B)))^{\perp} \\ &= U(J(\mathscr{G}(B))^{\perp}) \\ &= U(\mathscr{G}(B^*)) \\ &= U(\mathscr{G}(B)) \\ &= \mathscr{G}(A). \end{split}$$

Thus A is self-adjoint.

Define $S: \mathcal{D}(T) \to H$ by $S = \mathrm{id}_H + T$. For $v, w \in \mathcal{D}(T)$,

$$\langle v, Sw \rangle = \langle \hat{j}(kv), Sw \rangle = \lambda_{Sw}(kv) = \langle kv, C(Sw) \rangle_K =$$

and also

$$\langle v, Sw \rangle = \langle v, w \rangle + \langle v, Tw \rangle = \langle v, w \rangle + \langle Tv, w \rangle = \langle v, w \rangle_1 = \langle kv, kw \rangle_K.$$

Because $k(\mathcal{D}(T))$ is dense in K, it follows that, for all $w \in \mathcal{D}(T)$, C(Sw) = kw, or $\hat{j}(C(Sw)) = \hat{j}(kw)$, i.e., B(Sw) = w. This shows that $w \in B(H) = \mathcal{D}(T)$, so

$$\mathscr{D}(T) \subset \mathscr{D}(A)$$
,

and we can apply A to B(Sw) = w and get Sw = Aw. Therefore,

$$S \subset A$$
.

Define $\mathcal{D}(F) = \mathcal{D}(A)$ and $F = A - \mathrm{id}_H$. We verify that F is self-adjoint:

=

For $v \in \mathcal{D}(A) = B(H)$, there is some $x \in H$ with Bx = v, and

$$\langle v, Av \rangle = \langle Bx, B^{-1}Bx \rangle = \langle Bx, x \rangle = \langle \hat{j}(Cx), x \rangle = \lambda_x(Cx) = \langle Cx, Cx \rangle_K,$$

but $||v|| = ||Bx|| = ||\hat{j}(Cx)|| \le ||Cx||_K$. This shows that

$$\langle v, Av - v \rangle \ge 0, \qquad v \in \mathscr{D}(A),$$

or

$$\langle v, Fv \rangle \ge 0.$$

Therefore, F is positive. For $v \in \mathcal{D}(T)$, which is contained in $\mathcal{D}(F)$, using the fact that $S \subset A$,

$$Fv = Av - v = Sv - v = v + Tv - v = Tv.$$

Therefore,

$$T \subset F$$
.

We have established that T is self-adjoint and positive, and thus F is the operator we wish to obtain. \Box