1 Wprowadzenie

Chcemy pokazać, że aby scalić dwa posortowane ciągi a_i i b_i w modelu drzew decyzyjnych trzeba wykonać 2n-1 porównań. Jedyną operacją jest porównywanie między sobą liczb i warto zawuważyć, że porównywanie liczb z tego samego ciągu nic nam nie daje, gdyż wiemy, że są posortowane, więc rozpatrujemy porównania między wyrazami ciągu a_i i b_i ,

2 Dowód

Nasz dowód oprzemy na zasadach gry z adwersarzem, gdzie adwersarz przygotuje 2n zestawów danych i pokazując, że nie jesteśmy w stanie wyeliminować więcej niż jednego zestawu jednym porównaniem udowodnimy, że potrzeba 2n-1 porównań, ponieważ gra się kończy gdy zostanie jeden zestaw.

Podstawowy zestaw, będą dwa ciągi liczb (parzystych i nieparzystych) z przedziału [1,2n]:

$$A_0 = 1, 3, 5, 7..., 2n - 1$$

$$B_0 = 2, 4, 6, 8, 10..., 2n$$

Następnie na podstawie ciągu A_0 i B_0 , będziemy tworzyli zestawy A_j i B_j poprzez zamianę a_i z b_i dla j nieparzystych (gdzie i = j/2), a dla parzystych j zamianę a_i z b_{i-1} gdzie (i = j/2). Pierwsze dwa ciągi powstałe przez takie zamiany:

$$A_1 = 2, 3, 5, 7..., 2n - 1$$

$$B_1 = 1, 4, 6, 8, 10..., 2n$$

oraz

$$A_2 = 1, 2, 5, 7..., 2n - 1$$

$$B_2 = 3, 4, 6, 8, 10..., 2n$$

Ostatni ciąg będzie postaci:

$$A_{2n-1} = 1, 3, ..., 2n - 3, 2n$$

$$A_{2n-1} = 2, 4, ..., 2n - 2, 2n - 1$$

Teraz weźmy dowolne porównanie a_i z b_j i rozważmy przypadki:

- 1 Jeśli |i-j| > 1 to dla większego i spełnione jest $a_i > b_j$, a wpp. $a_i < b_j$, wynika to z tego, że w naszych zestawach dokonujemy tylko zamiany z wyrazami ciągu, których indeks nie różni się, więcej niż 1. Więc takie porównanie nie eliminuje żadnego zestawu.
- 2 Jeśli i=j wtedy w każdym zestawie, w którym nie zmienialiśmy tych wyrazów wiemy, że $b_i>a_i$ zostały jeszcze 3 zestawy do rozpatrzenia
 - W przypadku, w którym zmieniliśmy a_i z b_{i-1} równość nadal jest spełniona, ponieważ w podstawowym ciągu $b_i > b_{i-1}$
 - W przypadku, w którym zmieniliśmy b_i z a_{i+1} równość nadal jest spełniona, ponieważ w podstawowym ciągu $a_i > a_{i-1}$

- W przypadku, w którym zmieniliśmy a_i z b_i równość nie jest spełniona, ponieważ wiem, że w podstawowym ciągu $a_i < b_i$ czyli jest to jeden zestaw, który zostanie wyeliminowany
- 3 Jeśli i = j+1 wtedy w przypadku kiedy nie nie zmienialiśmy $a_i > b_j$, lecz pozostały 3 przypadki.
 - W przypadku, w którym zmieniliśmy a_i z b_{i-1} równość nie jest spełniona, ponieważ w podstawowym ciągu $a_i > b_{i-1}$ czyli jest to jeden zestaw, który zostanie wyeliminowany.
 - W przypadku, w którym zmieniliśmy a_i z b_i równość nadal jest spełniona, ponieważ w podstawowym ciągu $b_{i+1} > b_i$
 - W przypadku, w którym zmieniliśmy b_j z a_j równość jest spełniona, ponieważ wiem, że w podstawowym ciągu $a_j>a_{j-1}$
- 4 Jeśli i = j-1 wtedy w przypadku kiedy nie nie zmienialiśmy $b_j > a_i$, lecz pozostały 4 przypadki.
 - W przypadku, w którym zmieniliśmy a_i z b_{i-1} równość jest spełniona, ponieważ w podstawowym ciągu $b_{i+1} > b_{i-1}$
 - W przypadku, w którym zmieniliśmy a_i z b_i równość nadal jest spełniona, ponieważ w podstawowym ciągu $b_{i+1} > b_i$
 - W przypadku, w którym zmieniliśmy b_j z a_j równość jest spełniona, ponieważ wiemy, że w podstawowym ciągu $a_j>a_{j-1}$
 - W przypadku, w którym zmieniliśmy b_j z a_{j+1} równość jest spełniona, ponieważ wiemy, że w podstawowym ciągu $a_{j+1}>a_{j-1}$

Czyli dla dowolnego porównania eliminujemy maksymalnie 1 zestaw z czego wynika, że aby pozostał tylko jeden trzeba wykonać przynajmniej 2n-1 zestawów.