

National University of Sciences & Technology (NUST) School of Electrical Engineering and Computer Science (SEECS) Department of Electrical Engineering

Applied Physics				
Course Code:	PHY-101	Semester:	1 st	
Credit Hours:	3+1	Prerequisite Codes:		
Instructor:	Muhammad Nadeem	Class:	BEE	
Office:	051-90852357	Telephone:	*******	
Lecture Days:	Monday-Wednesday	E-mail:	Muhammad.nadeem@seecs.edu.pk	
Class Room:	CR-12	Consulting Hours:	Monday/Thursday (0900-1200)	
Lab Engineer:		Lab Engineer Email:		
Knowledge Group:	Applied Physics	Updates on LMS:	Before every lecture	

Course Description:

The course comprises the topics of Physics, which are directly related to Engineering and Technology. These include Motion, Friction, Moment of inertia, Oscillations, waves and propagation, Electric Charge & Coulomb's Law, Electric Field, Electric Potential, Capacitors & Dielectric, Current & Resistance, AC and DC, Magnetic fields, Ampere's Law and Faraday's law. For understanding of wave theory, Maxwell equations and Traveling waves are also included.

Course Objectives:

The course aims to give students both a theoretical and a practical foundation for engineering courses, like; Engineering Mechanics, Electromagnetic Field Theory, Systems and Signals, Control Systems, Transmission Lines and Antennas& Microwave Devices. The course gives the students a sound knowledge of Physics with its applications to problems of practical nature. After studying this course the students will be able to apply Physics as a strong tool to understand and develop the problems which they come across in Engineering/Technology.

Books: Text Book: 1. Physics By Halliday, Resnick & Walker (7th Edition) 2. University Physics by Sears &Zemansky (4th Edition) Reference Books: 1. Physics for Scientists & Engineers by Serway Jewett (6th Edition)

Topics to be Covered:				
1.	Waves and Oscillations			
2.	Charge, Coulomb's law and Electric field	ge, Coulomb's law and Electric field		
3.	Gauss' law	ıss' law		
4.	Electric potential			
5.	Electric current and Magnetic field			
6.	Ampere's law			
7.	Faraday's law			
8.	Alternating current and electromagnetic waves			
9.	Nature and propagation of light			
Lecture Breakdown:				
Week	No. Topics	Sections	Remarks	

National University of Sciences & Technology (NUST) School of Electrical Engineering and Computer Science (SEECS) Department of Electrical Engineering

1	Lastrona de lastra de está as ta constan and analysis lastrona
1	Lecture 1: Introduction to vector and scalar algebra
	Lecture 2: Force and linear motion
	Lecture 3: Work and Energy
2	Lecture 4: Motion in 2-D
	Lecture 5: Forces and Friction
	Lecture 6: Rotation and moment of inertia
	Lab 01
3	Lecture 7: Simple harmonic motion
	Lecture 8: SHM and energy
	Lecture 9: Damped and forced oscillations
	Lab 02
4	Lecture 10: Oscillations and wave propagation
	Lecture 11: Energy and power carried by waves
	Lecture 12 Reflection, interference and diffraction
	Lab 03
5	Lecture 13: Charge and Coulomb's law
	Lecture 14: Electric field and superposition principle
	Lecture 15: Electric dipoles
	Lab 04
6	OHT-1
7	Lecture 16: Electric flux
	Lecture 17: Gauss' law and different symmetries
	Lecture 18: Contd.
	Lab 05
8	Lecture 19: Electric potential (point charges and dipole)
	Lecture 20: Electric potential from electric field and vice versa
	Lecture 21: Conductors and equipotential surfaces
	Lab 06
9	Lecture 22: Magnetic force on a moving charges
	Lecture 23: Magnetic force on a current carrying wires
	Lecture 24: Torque on current loop and magnetic dipoles
	Lab 07
10	Lecture 25: Ampere's law and magnetic field due to long wires
	Lecture 26: Contd.
	Lecture 27: Magnetic field due to solenoid and torroid
	Lab 08
11	Lecture 28: Faradays Law of induction, Lenz's law
	Lecture 29: Motional EMF, Generators and Motors
	Lecture 30: Induced Electric field
	Lab 09
12	OHT-2
13	Lecture 34: Capacitance, Energy Stored in an Electrical Field
	Lecture 35: Inductance, Energy Stored in magnetic field
	Lecture 36: Alternating current and LC circuit
	Lab 10

National University of Sciences & Technology (NUST) School of Electrical Engineering and Computer Science (SEECS) Department of Electrical Engineering

14	Lecture 37: RLC circuit
	Lecture 38: Electromagnetic oscillation
	Lecture 39: Power in a AC circuit, Transformer
	Lab 11
15	Lecture 40: Generating an EMW
	Lecture 41: Maxwell's equations (integral forms)
	Lecture 42: Introduction to vector calculus
	Lab 12
16	Lecture 43: Maxwell's equations (differential forms)
	Lecture 44: Traveling Waves, Radiation pressure
	Lecture 45: Energy Transport and the Poynting Vectors,
17	Lecture 43: Nature of light Speed, Reflection, Refraction
	Lecture 44: Diffraction & Polarization
	Lecture 45: Revision
18	Week 18: ESE

Lab Experiments:	
Lab 01:	Introduction to Lab
Lab 02:	<u>Understanding Errors</u>
Lab 03:	Mini-launcher (Exp. 1,2,3)
Lab04:	Mini-launcher (Exp. 4,6)
Lab 05:	PAScar with Mass (Exp. 1,2,3)
Lab 06:	PAScar with Mass (Exp. 4,6)
Lab 07:	Compound Pendulum
Lab 08:	Heat Engine/Gas Laws (Exp.1,2,3)
Lab 09:	Ripple Tank
Lab 10:	<u>Faraday's Law</u>
Lab 11:	DC Electronics
Lab 12:	DC Electronics

Tools / Software Requirement:

C. dia Dalia		
Grading Policy:		
Quiz Policy:	The quizzes will be unannounced and normally last for ten minutes. The question framed is to test the concepts involved in last few lectures. Number of quizzes that will be used for evaluation is at the instructor's discretion.	
Assignment Policy:	In order to develop comprehensive understanding of the subject, assignments will be given. Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The questions in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.	
Lab Conduct:	The labs will be conducted for three hours every week. A lab handout will be given in advance	
	for study and analysis The lab handouts will also be placed on LMS. The students are to	
	submit their results by giving a lab report at the end of lab for evaluation. One lab report per	
	group will be required. However, students will also be evaluated by oral viva during the lab.	
Plagiarism:	SEECS maintains a zero tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.	