QUÈ HEM FET FINS ARA?

El darrer dia vam continuar amb el tema de les congruències definint formalment les operacions, les seves propietats, etc.

CLASSE D'AVUI 14/12/2020

Avui continuem amb el tema de les congruències, resolent equacions, trobant inversos i finalment començant els sistemes d'equacions.

Tenim un segon bloc de propietats de les congruències que parlen fonamentalment de com simpolifiar expressions a l'hora de fer càlculs o fer equacions:

PROP.:

- **1**. Si $a \equiv b \pmod{m}$ i $d \mid m$ llavors $a \equiv b \pmod{d}$.
- **2**. Si $k \neq 0$ llavors: $ka \equiv kb \pmod{km} \Leftrightarrow a \equiv b \pmod{m}$.
- **3**. Si mcd(k,m) = 1 llavors: $ka \equiv kb \pmod{m} \Leftrightarrow a \equiv b \pmod{m}$

DEM.:

- **1**. Si $a \equiv b \pmod{m}$ i $d \mid m$ llavors a b = km, m = k'd per certs enters k, k', per tant $a b = kk'd \Rightarrow a \equiv b \pmod{d}$.
- **2**. Si $k \neq 0$ i tenim $ka \equiv kb \pmod{km} \Leftrightarrow ka kb = k'km$ per cert $k' \Leftrightarrow ka kb = k'km$ per cert $k' \Leftrightarrow a b = k'm$ per cert $k' \Leftrightarrow a \equiv b \pmod{m}$.
- **3**. Si mcd(k,m) = 1 i tenim $ka \equiv kb \pmod{m}$ o sigui ka kb = k'm per cert $k' \Leftrightarrow k(a-b) = k'm$ per cert k', aleshores k|k' (pel Lema de Gauss) i per tant k' = kk'' per cert $k'' \Rightarrow k(a-b) = kk''m \Rightarrow a-b = k''m \Leftrightarrow a \equiv b \pmod{m}$

La implicació cap a l'altre cantó és trivial $a \equiv b \pmod{m} \Rightarrow ka \equiv kb \pmod{m}$.

Veiem com s'utilitzen aquest resultats per resoldre equacions:

EX.: Resoleu les congruències indicant quina de les propietats anteriors utilitzeu:

- **a)** $5x \equiv 10 \pmod{9}$
- **b**) $3x \equiv 6 \pmod{9}$
- **c)** $15x \equiv 30 \pmod{9}$
- **d**) $8x \equiv 28 \pmod{6}$
- a) $5x \equiv 10 \pmod{9} \Leftrightarrow x \equiv 2 \pmod{9} \Leftrightarrow x = 2 + 9t$ per tot enter t
- a') $5x \equiv 4 \pmod{9} \Leftrightarrow 5x \equiv -5 \pmod{9} \Leftrightarrow_{3} x \equiv -1 \pmod{9} \Leftrightarrow_{3} x \equiv 8 \pmod{9}$
- **b**) $3x \equiv 6 \pmod{9} \Leftrightarrow_{2} x \equiv 2 \pmod{3}$
- c) $15x \equiv 30 \pmod{9} \Leftrightarrow_{2} 5x \equiv 10 \pmod{3} \Leftrightarrow_{3} x \equiv 2 \pmod{3}$
- **d)** $8x \equiv 28 \pmod{6} \Leftrightarrow_{2} 4x \equiv 14 \pmod{3} \Leftrightarrow x \equiv 2 \pmod{3}$

Observeu que de vegades val la pena simplificar (reduir mòdul 6 o 3) però de

vegades no. Per exemple si es redueix a l'inici aquesta equació obtenim $2x \equiv 4 \pmod{6} \Leftrightarrow x \equiv 2 \pmod{3}$; però per exemple $2x \equiv 7 \pmod{3} \Leftrightarrow 2x \equiv 1 \pmod{3}$ no facilitaria els càlculs. Ara podeu repassar les cinc congruències a veure si fent simplificacions a l'inici es fan més fàcilment.

EX.: (1) Demostreu que per a tot $n \ge 0$, $2^4 \cdot 7^{n+1} + (6 \cdot 9^n)^2$ és múltiple de 148 usant congruències.

És a dir, ens demanen demostrar que $2^4 \cdot 7^{n+1} + (6 \cdot 9^n)^2 \equiv ??? 0 \mod 148$. Podem veure que hi ha factors comuns a tot arreu:

$$4(2^2 \cdot 7^{n+1} + 3^2 9^{2n}) \equiv ??? 0 \mod 2^2 37 \Leftrightarrow 2^2 \cdot 7^{n+1} + 3^2 9^{2n} \equiv ??? 0 \mod 37$$

També podem simplificar: $9^2 \mod 37 = 81 \mod 37 = 7$ i llavors ens queda un càlcul molt simple:

$$2^2 \cdot 7^{n+1} + 3^2 9^{2n} \equiv 2^2 \cdot 7^{n+1} + 3^2 7^n = 7^n (2^2 \cdot 7^1 + 3^2) = 7^n (37) \equiv 0 \mod 37$$

Just el que es volia demostrar.

EX.: (10) Demostreu que no hi ha cap enter n tal que 7n + 2 sigui un cub.

Volem veure que no té solució l'equació $x^3 = 7n + 2 \equiv 2 \mod 7$. Si existís un enter x tal que $\bar{x}^3 = \bar{2}$ a \mathbb{Z}_7 llavors aquest x seria una arrel cúbica de 2. Però si observem els cubs en \mathbb{Z}_7 veurem que és impossible:

x	$x^3 \mod 7$
0	0
1	1
2	1
3	6
4	-6
5	-1
6	-1

Per tant no tindrà mai solució perquè els cubs a \mathbb{Z}_7 no donen mai $\bar{2}$.

EX.: (11) Quina xifra s'ha de posar en el lloc de z perquè el nombre 9z86 en dividir-lo per 11 tingui residu 5?

Ens demanen trobar z tal que

$$9z86 \equiv 5 \mod 11 \Leftrightarrow 6+8 \cdot 10 + z \cdot 10^2 + 9 \cdot 10^3 \equiv 5 \mod 11 \Leftrightarrow \Leftrightarrow 6+8 \cdot (-1) + z \cdot 1 + 9 \cdot (-1) \equiv 5 \mod 11 \Leftrightarrow z \equiv 5 \mod 11 \Leftrightarrow z = 5 + 11t \text{ per } t \text{ enter}$$

Per t = 0 ens dona z = 5 l'única solució (els altres valors de t no dona un resultat entre 0 i 9).

EX.: (12) Demostreu el criteri de divisibilitat següent: *n* és múltiple de 4 sii el nombre

format pels dos últims dígits de n és múltiple de 4.

```
n = a_k a_{k-1} \dots a_1 a_{0(10} és múltiple de 4 \Leftrightarrow a_0 + a_1 10 + a_2 10^2 + \dots + a_{k-1} 10^{k-1} + a_k 10^k \equiv 0 \operatorname{mod} 4 \Leftrightarrow a_0 + a_1 10 + a_2 0 + \dots + a_{k-1} 0 + a_k 0 \equiv 0 \operatorname{mod} 4 \Leftrightarrow a_0 + a_1 10 \equiv 0 \operatorname{mod} 4 \Leftrightarrow a_1 a_{0(10} és múltiple de 4
```

És molt més usual la formulació equivalent següent:

$$n = a_k a_{k-1} \dots a_1 a_{0(10}$$
 és múltiple de $4 \Leftrightarrow a_0 + 2a_1 \equiv 0 \mod 4$

EX.: Tenim una ALU que utilitza nombres de k xifres escrits en hexadecimal emmagatzemats en els seus registres. Demostreu el criteri de divisibilitat següent pels nombres que utilitza aquesta màquina: n és múltiple de 17 sii la suma de les xifres en possició parella menys les de posició senar dona múltiple de 17.

Seguint el mateix raonament que a l'exercici anterior:

n és múltiple de 17
$$\Leftrightarrow a_0 + a_1 16 + a_2 16^2 + ... + a_{k-1} 16^{k-1} + a_k 16^k \equiv 0 \mod 17 \Leftrightarrow a_0 + a_1(-1) + a_2 + ... + a_{n-1}(-1)^{n-1} + a_n(-1)^n \equiv 0 \mod 17$$

Quan hem mirat les propietats que complia la suma i el producte hem trobat a faltar de vegades l'existència d'invers per la multiplicació (per exemple ho vam veure a la taula de la multiplicació a \mathbb{Z}_4 que uns elements en tenien i uns altres no). Mirem un exemple abans d'examinar què passa en general:

EX.: A \mathbb{Z}_{452} determine els inversos (si existeixen) de $a = \overline{2}$ i de $a = \overline{201}$.

Fins ara havíem trobat l'invers mirant la taula de la multiplicació com a l'exemple de \mathbb{Z}_4 però a \mathbb{Z}_{452} no és factible.

• Pel cas de trobar l'invers de $a=\overline{2}$ cal resoldre l'equació en la qual busquem $x\in\mathbb{Z}$:

```
2x \equiv 1 \mod 452 \Leftrightarrow \text{existeix } y \text{ tal que } 2x - 1 = 452y
```

per tant és equivalent a resoldre l'equació diofàntica 2x - 452y = 1. Ara podem aplicar tot el que sabem d'aquestes equacions i veiem que no té cap solució ja que mcd(2,452) = 2 que no divideix a 1. Per tant no té invers.

• I pel segon cas: per trobar l'invers de $a=\overline{201}$ cal resoldre l'equació en la qual busquem $x\in\mathbb{Z}$:

$$201x \equiv 1 \mod 452 \Leftrightarrow \text{existeix } y \text{ tal que } 201x - 1 = 452y$$

per tant és equivalent a resoldre l'equació diofàntica 201x-452y=1. Per tant haurem de trobar el mcd(201,452) i veure si divideix a 1 o no; si divideix haurem de resoldre l'equació i trobar x (la y no ens interessa), per tant en aquest cas caldrà completar la taula de l'algorisme d'Euclides extés:

1	0	1	-2	9
0	1	0	1	-4
	0	2	4	50
201	452	201	50	1
201	50	1	0	

Ara amb una identitat de Bézout obtenim una solució:

$$9 \cdot 201 - 4 \cdot 452 = 1 \Rightarrow \overline{9} \cdot \overline{201} = \overline{1} \Rightarrow \overline{201}^{-1} = \overline{9}$$

S'observa que només cal fer una de les files de l'algorisme extés perquè només s'utilitza un coeficient:

1	0	1	-2	9
	0	2	4	50
201	452	201	50	1
201	50	1	0	

Amb aquest exemple tan simple es veu quin pot ser el resultat per esbrinar si un nombre té invers i a més justifiquem que amb una identitat de Bezout podem trobar l'invers (és com es fa a la pràctica) a més d'un altre resultat interessant:

PROP.: Sigui $\overline{a} \in \mathbb{Z}_m$, aleshores:

- **a**) \bar{a} té invers a $\mathbb{Z}_m \Leftrightarrow mcd(a,m) = 1$
- **b**) Si $mcd(a,m) \neq 1$ llavors existeix un $\bar{x} \neq \bar{0}$ tal que $\bar{a} \cdot \bar{x} = \bar{0}$

DEM.:

a)

 \Leftarrow : Si té invers tenim que existeix un \bar{x} tal que \bar{a} .

$$\bar{x} = \bar{1} \Leftrightarrow ax \equiv 1 \mod m \Leftrightarrow ax - 1 = km \Leftrightarrow ax - km = 1$$

$$si\ d = mcd(a,m)$$
 llavors $d|a,d|m \Rightarrow d|ax - km = 1 \Rightarrow d|1 \Leftrightarrow d = 1 \Leftrightarrow mcd(a,m) = 1$

- \Rightarrow : Agafem una identitat de Bézout: $xa + ym = 1 \Rightarrow \bar{x}\bar{a} + \bar{y}\bar{0} = \bar{1} \Rightarrow \bar{x}\bar{a} = \bar{1} \Rightarrow \bar{a}^{-1} = \bar{x}$ que dona la recepta que hem dit abans: a partir d'una identitat de Bézout es troba l'invers.
 - **b)** Si $mcd(a,m) = d \neq 1$ llavors $d|m,d|a \Rightarrow m = kd, a = k'd$ i d'aquí es veu que:

$$\overline{a} \cdot \overline{k} = \overline{k'} \overline{d \cdot k} = \overline{k'} \overline{m} = \overline{0}$$

i k no és zero ja que 0 < k < m.

EX.: A \mathbb{Z}_{10} digueu quins nombres tenen invers, quin és l'invers i pels que no en tenen determineu un element $\bar{x} \neq \bar{0}$ tal que multiplicat per aquest element doni $\bar{0}$.

x	\bar{x}^{-1}	$\bar{y} \neq \bar{0}$ tal que $\bar{y}\bar{x} = \bar{0}$
1	1	
2		5
3	7	
4		5
5		2
6		5
7	3	
8		5
9	9	

Per tant el que està clar és que només en el cas que m sigui un nombre primer tots els elements tindran invers (llevat del $\overline{0}$). I en aquest cas podrem afirmar l'existència d'invers per tot element no nul. Quan en un anell tenim invers per tots els elements no nuls (com li passa a \mathbb{R} , \mathbb{C} , etc.; però no li passa a \mathbb{Z} ni al conjunt dels polinomis a coeficients reals) es diu que és un cos. Per tant podem afirmar:

PROP.: \mathbb{Z}_m és un cos $\Leftrightarrow m$ és un nombre primer.

DEM.: \mathbb{Z}_m és un cos \Leftrightarrow tot $\overline{a} \in \mathbb{Z}_m$ no nul té invers \Leftrightarrow \Leftrightarrow per a tot a = 1, 2, 3, ..., m - 1 tenim $mcd(a, m) = 1 \Leftrightarrow m$ és un nombre primer

Practiquem l'aritmètica en aquests anells i cossos:

EX.: A \mathbb{Z}_9 resoleu les dues equacions següents: $\overline{2}\overline{x} = \overline{2}$, $\overline{3}\overline{x} = \overline{3}$.

- $\bar{2}\bar{x} = \bar{2} \Leftrightarrow \bar{x} = \bar{1} \Leftrightarrow x = 1 + 9t$ ja que existeix l'invers per ser mcd(2,9) = 1; a \mathbb{Z}_9 la solucio sortiria: $\bar{x} = \bar{1}$
- $\bar{3}\bar{x} = \bar{3} \Leftrightarrow 3x \equiv 3 \cdot 1 \mod 3 \cdot 3 \Leftrightarrow x \equiv 1 \mod 3 \Leftrightarrow x = 1 + 3t$ que a \mathbb{Z}_9 sortiria: $\bar{x} = \bar{1}, \bar{4}, \bar{7}$.

EX.: (25) Resoleu l'equació
$$\overline{5}\overline{x} - \overline{3} = \overline{29}$$
 a \mathbb{Z}_{13} . $\overline{5}\overline{x} - \overline{3} = \overline{3} \Leftrightarrow \overline{5}\overline{x} = \overline{6} \Leftrightarrow \overline{5}\overline{x} = \overline{6} \Leftrightarrow \overline{5} = \overline{8} \cdot \overline{6} \Leftrightarrow \overline{x} = \overline{9}$

EX.: (27) Resoleu les congruències següents:

- a) $3x \equiv 5 \pmod{10}$.
- b) $2x \equiv 4 \pmod{10}$.
- c) $6x \equiv 4 \pmod{10}$.
- d) $2x \equiv 7 \pmod{10}$.
- a) $3x \equiv 5 \pmod{10}$, com que l'invers de 3 modul 10 és 7 tenim:
- $7 \cdot 3x \equiv 7 \cdot 5 \pmod{10} \Leftrightarrow x \equiv 5 \pmod{10}$
- b) $2x \equiv 4 \pmod{10}$, com que l'invers de 2 modul 10 no existeix utilitzem la propietat explicada per simplificar: $2x \equiv 4 \pmod{10} \Leftrightarrow x \equiv 2 \pmod{5}$
 - c) $6x \equiv 4 \pmod{10}$, com a l'anterior:
- $6x \equiv 4 \pmod{10} \Leftrightarrow 3x \equiv 2 \pmod{5} \Leftrightarrow 2 \cdot 3x \equiv 2 \cdot 2 \pmod{5} \Leftrightarrow x \equiv 4 \pmod{5}$
 - d) $2x \equiv 7 \pmod{10}$, com que 2 no té invers i no podem fer servir cap de les propietats

de simplificació anteriors multiplicarem pel nombre 5 que verifica que $2 \cdot 5 \equiv 0 \mod 10$:

$$2x \equiv 7 \pmod{10} \Rightarrow 5 \cdot 2x \equiv 5 \cdot 7 \pmod{10} \Leftrightarrow 0x \equiv 5 \pmod{10}$$

expressió que no la satisfà cap valor de x, per tant l'equació no té solució. Un latra manera de fer-la seria passar a l'equació diofànti que surt: $2x - 7 = 10y \Leftrightarrow 2x - 10y = 7$ que no té cap solució.

EX.: Resoleu el sistema

$$x \equiv 0 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 4 \pmod{10}$$

de la manera següent: en primer lloc resoleu el sistema de les dues primeres equacions expressant en forma d'equació diofàntica; a continuació resoleu el sistema que queda amb la solució trobada i la darrera equació de la mateixa manera (treballant l'equació diofàntica que s'obté).

Resolem primer el sistema determinat per les dues primeres equacions:

Aquesta equació diofàntica té solució ja que mcd(2,3) = 1|2. La identitat de Bézout per 2 i 3 és molt fàcil: $-1 \cdot 2 + 1 \cdot 3 = 1 \Rightarrow -2 \cdot 2 + 2 \cdot 3 = 2 \Rightarrow (-2) \cdot 2 - (-2) \cdot 3 = 2$

Per tant les solucions de l'equació són a = -2 + 3t, b = -2 + 2t i d'aquí la x = 0 + 2a = -4 + 6t o sigui $x = -4 \pmod{6}$. Observem que no hem fet servir per res el resultat obtingut de la b.

I ara fem el mateix amb aquesta congruència i la tercera i darrera del sistema:

Aquesta equació diofàntica té solució ja que mcd(3,5) = 1|4. La identitat de Bézout per 3 i 5 és també molt fàcil: $2 \cdot 3 + (-1) \cdot 5 = 1 \Rightarrow 8 \cdot 3 + (-4) \cdot 5 = 4 \Rightarrow 8 \cdot 3 - 4 \cdot 5 = 4$

Per tant les solucions de l'equació són a = 8 + 5t, b = 4 + 3t i d'aquí la x = -4 + 6a = -4 + 6(8 + 5t) = 44 + 30t o sigui $x = 14 \pmod{30}$.