

Art of Problem Solving 2017 Japan MO Finals

Japan MO Finals 2017

1	Let a, b, c be positive integers. Prove that $lcm(a, b) \neq lcm(a + c, b + c)$.
2	Let N be a positive integer. There are positive integers a_1, a_2, \dots, a_N and all of them are not multiples of 2^{N+1} . For each integer $n \geq N+1$, set a_n as below:
	If the remainder of a_k divided by 2^n is the smallest of the remainder of a_1, \dots, a_{n-1} divided by 2^n , set $a_n = 2a_k$. If there are several integers k which satisfy the above condition, put the biggest one.
	Prove the existence of a positive integer M which satisfies $a_n = a_M$ for $n \geq M$.
3	Let ABC be an acute-angled triangle with the circumcenter O . Let D, E and F be the feet of the altitudes from A, B and C , respectively, and let M be the midpoint of BC . AD and EF meet at X , AO and BC meet at Y , and let Z be the midpoint of XY . Prove that A, Z, M are collinear.
4	Let $n \geq 3$ be an integer. There are n people, and a meeting which at least 3 people attend is held everyday. Each attendant shake hands with the rest attendants at every meeting. After the n th meeting, every pair of the n people shook hands exactly once. Prove that every meeting was attended by the same number of attendants.
5	Let $x_1, x_2, \dots, x_{1000}$ be integers, and $\sum_{i=1}^{1000} x_i^k$ are all multiples of 2017 for any positive integers $k \leq 672$. Prove that $x_1, x_2, \dots, x_{1000}$ are all multiples of 2017. Note: 2017 is a prime number.

www.artofproblemsolving.com/community/c491862

Contributors: maple116