Série d'exercices

Exercice 1

1 Équilibrer les équations chimiques suivantes :

•
$$Cu^{2+} + HO^{-} \rightarrow Cu(HO)_{2}$$

•
$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$$

$$\blacksquare H_2O_2 \longrightarrow O_2 + H_2O$$

$$\blacksquare H_2S + O_2 \longrightarrow SO_2 + S + H_2O$$

•
$$MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$$

•
$$CaCO_3 + H_2O \rightarrow HO^- + Ca^{2+} + CO_2$$

$$\bullet \quad \mathbf{O}_2 + \mathbf{H}_2 \longrightarrow \mathbf{H}_2 \mathbf{O}$$

•
$$KI + Cl_2 \rightarrow I_2 + KCl$$

•
$$AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + Ag$$

•
$$Cl^- + H_2O \rightarrow Cl_2 + H_2 + HO^-$$

$$\blacksquare NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$$

■
$$NaI + Pb(NO_3)_2 \rightarrow NaNO_3 + PbI_2$$

Exercice 2

La combustion complète du propane C_3H_8 dans l'oxygène de l'air conduit à la formation du dioxyde de carbone CO_2 et de l'eau H_2O .

On brule une masse m = 7.8g du propane dans l'air.

- 1 Déterminer les noms et les formules chimiques des réactifs et des produits de cette réaction.
- 2 Calculer la quantité de matière initiale du propane.
- 3 Construire le tableau d'avancement associé à la réaction étudiée.
- 4 Déterminer le réactif limitant et l'avancement maximal de cette réaction.
- 6 Déterminer la composition du système à l'état final.
- 6 Calculer le volume du dioxyde de carbone à l'état final

Données:

- Le volume molaire dans les conditions expérimentales : $V_m = 24L. mol^{-1}$
- Les masses molaires : $M(C) = 12g.mol^{-1}$; $M(O) = 16g.mol^{-1}$; $M(H) = 1g.mol^{-1}$

Exercice 3

On verse une solution concentrée d'hydroxyde de sodium $(Na^+ + HO^-)$ dans un bécher contenant un volume V = 20mL d'une solution de sulfate de suivre II $(Cu^{2+} + SO_4^{2-})$ de concentration C. Après quelques secondes il se forme un précipité bleu appelé l'hydroxyde de cuivre sa formule chimique est : $Cu(HO)_2$

- 1 Déterminer les réactifs et les produits cette transformation.
- 2 Écrire l'équation de la réaction qui se produit dans le bécher.
- 3 Construire le tableau d'avancement associé à cette réaction.
- **4** Après séchage du précipité obtenu, on le pèse et on trouve : m = 290mg
 - a -Calculer la quantité de matière de l'hydroxyde de cuivre $Cu(HO)_2$ à l'état final.
 - b Calculer la valeur de l'avancement maximal de cette réaction.(l'hydroxyde de sodium est utilisé en excès).
 - c Calculer la quantité de matière initiale des ions Cu^{2+} dans le bécher et déduire la valeur de la concentration C . Données :
- Les masses molaires : $M(Cu) = 63, 5g. mol^{-1}; M(O) = 16g. mol^{-1}; M(H) = 1g. mol^{-1}$

Série d'exercices

Exercice 4

On mélange, dans un bécher une solution contenant une quantité de matière n_1 de diiode l_2 avec une autre solution contenant une quantité de matière n_2 de thiosulfate de sodium

 $(2Na^{+} + S_{2}O_{3}^{2})$. Au cours du temps il se forme les ions d'iodure I^{-} et les ions tétrathionate de formule chimique $S_{4}O_{6}^{2}$.

- Déterminer les réactifs et des produits de cette réaction.
- 2 Écrire l'équation de cette réaction.
- 3 Construire le tableau d'avancement associé à la réaction en fonction de n_1 , n_2 , x et x_{max} .
- 4 La courbe ci-contre représente l'évolution des quantités de matière des espèces chimiques constituant le système chimique en fonction de l'avancement x de la réaction. En exploitant la courbe déterminer :
 - a Les quantités de matière initiales des réactifs
 - **b** L'avancement maximal de cette réaction.
 - c Le réactif limitant de cette réaction.
 - **d** Le bilan de la quantité de matière à l'état final.

Exercice 5

On réalise la combustion complète d'une masse m=23,2g d'un composé organique gazeux de formule chimique C_nH_{2n+2} dans une quantité suffisante de dioxygène O_2 . Cette combustion produit un volume m=38,4L du dioxyde de carbone CO_2 .

- Écrire l'équation de la réaction qui se produit lors de cette de combustion.
- 2 Construire le tableau d'avancement associé à cette réaction.
- 3 Quel est le réactif limitant de cette réaction de combustion ?
- ${f @}$ Calculer la quantité de matière du dioxyde de carbone ${m CO_2}$ formé.
- 6 Déterminer la valeur de l'avancement maximale de cette réaction.
- 6 Calculer la quantité la quantité de matière initiale du composé organique.
- O Calculer la quantité de matière du dioxygène consommée lors de cette combustion.
- 8 Calculer la masse molaire du composé organique.
- Déterminer la formule chimique de ce composé et quel est son nom ?

Données:

- Les masses molaires : $M(Cu) = 63, 5g.mol^{-1}; M(O) = 16g.mol^{-1}; M(H) = 1g.mol^{-1}$
- Le volume molaire dans les conditions de l'expérience : $V_m = 26,02L$