Concours National Commun —Session 2018—http://cpgemaroc.com

Correction de l'épreuve de physique II filière TSI Concours CNC session 2018

EL FILALI SAID MABCHOUR SAID CHAOUQI AZIZ

Propagation et guidage de la lumière dans des milieux matériels

Questions de cours . Généralités

I.1-

I.1.1- Dans le vide , on a : $\rho = 0$ et $\overrightarrow{j} = \overrightarrow{0}$ donc les équations de Maxwell s'écrivent :

Équations de Maxwell Dans le vide

$$\triangleright \operatorname{div} \overrightarrow{E} = \overrightarrow{\nabla} . \overrightarrow{E} = 0 \tag{M.G}$$

$$\triangleright \overrightarrow{\mathbf{rot}} \overrightarrow{E} = \overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial B}{\partial t}$$
 (M.F)

$$\triangleright \operatorname{div} \overrightarrow{B} = \overrightarrow{\nabla} . \overrightarrow{B} = 0 \tag{M.T} \equiv M.\Phi)$$

$$|\nabla \mathbf{rot}| \overrightarrow{E} = \nabla \cdot \overrightarrow{E} = 0 \qquad (M.5)$$

$$|\nabla \mathbf{rot}| \overrightarrow{E} = \overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad (M.F)$$

$$|\nabla \mathbf{div}| \overrightarrow{B} = \overrightarrow{\nabla} \cdot \overrightarrow{B} = 0 \qquad (M.T = 0)$$

$$|\nabla \mathbf{rot}| \overrightarrow{B} = \overrightarrow{\nabla} \wedge \overrightarrow{B} = \mu_o \varepsilon_o \frac{\partial \overrightarrow{E}}{\partial t} \qquad (M.A)$$

I.1.2-_L'équation d'onde de D'Alembert vérifiée par le champs électrique $\overrightarrow{E}(M,t)$ Calculons : \mathbf{rot} (M.F)

$$\overrightarrow{\mathbf{rot}} (\overrightarrow{\mathbf{rot}} \overrightarrow{E}) = -\frac{\partial \overrightarrow{\mathbf{rot}} \overrightarrow{B}}{\partial t} \Longrightarrow -\Delta \overrightarrow{E} = -\mu_o \varepsilon_o \frac{\partial^2 \overrightarrow{E}}{\partial t^2} \text{ ce qui donne}$$

$$\Delta \overrightarrow{E}(M,t) - \mu_o \varepsilon_o \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = 0$$

C'est l'équation d'onde de D'Alembert

I.1.3- La direction de propagation et la polarisation de l'onde :

On a: $E(M,t) = E_o \cos(\omega t - k_o z) \overrightarrow{u_x}$ donc:

- ightharpoonup La direction de propagation est l'axe Oz.
- ightharpoonup L'état de polarisation : rectiligne suivant l'axe Ox.
 - I.1.4- L'expression du champ magnétique :

Puisque $\overrightarrow{E}(M,t)$ est une O.E.P.P.M alors : $M.F \Longrightarrow \overrightarrow{k}_o \land \overrightarrow{E} = \omega \overrightarrow{B}$ et comme $\overrightarrow{k}_o = k_o \ \overrightarrow{u_z}$ alors:

$$\overrightarrow{B}(M,t) = \frac{E_o}{c}\cos(\omega t - k_o z) \ \overrightarrow{u_y}$$

Avec $c=\frac{1}{\sqrt{\mu_o \varepsilon_o}}$ célérité de la lumière dans le vide.

I.1.5- L'expression du vecteur de Poynting $\overrightarrow{\Pi}$:

$$\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_o} \Longrightarrow \overrightarrow{\Pi} = c\varepsilon_o E_o^2 \cos^2(\omega t - k_o z) \ \overrightarrow{u_z}$$

▶ La valeur moyenne $\langle \overrightarrow{\Pi} \rangle$:

Comme $<\cos^2 x>=1/2$ alors :

$$\langle \overrightarrow{\Pi} \rangle = \frac{1}{2} c \varepsilon_o E_o^2 \overrightarrow{u_z}$$

 ${f I.1.6}$ - La puissance surfacique moyenne : Comme la puissance moyenne surfacique ce n'est autre que la valeur absolue de la valeur moyenne du vecteur de Poynting alors :

$$\varphi = || < \overrightarrow{\Pi} > || = \frac{1}{2} c \varepsilon_o E_o^2$$

- I.2- Milieu diélectrique linéaire, homogène et isotrope.
- I.2.1- L'équation d'onde de D'Alembert vérifiée par le champs électrique : Il suffit de remplacer ε_o par $\underline{\varepsilon}$ dans l'équation précédente :

$$\Delta \overrightarrow{\underline{E}}(M,t) - \mu_o \underline{\varepsilon} \frac{\partial^2 \overrightarrow{\underline{E}}}{\partial t^2} = 0$$

I.2.2- La relation de dispersion :

On a:

Il en résulte que (d'après l'équation de D'Alembert) :

$$\underline{n}^2 = \mu_o c\underline{\varepsilon} \Longrightarrow \underline{n} = \sqrt{\frac{\underline{\varepsilon}}{\varepsilon_o}}$$

I.2.3- L'expression réelle du champ électrique :

$$\overrightarrow{E}(M,t) = \Re(\overrightarrow{E}(M,t)) \Longrightarrow \overrightarrow{E}(M,t) = E_o e^{-n_i \frac{\omega}{c} z} \cos(\omega t - n_r \frac{\omega}{c} z) \overrightarrow{u_x}$$

I.2.4- L'expression réelle du champ magnétique :

Puisque : $\overrightarrow{E}(M,t)$ est une O.E.P.P.M alors on pose :

$$\overrightarrow{\underline{k}} = \underline{n}\frac{\omega}{c} \; \overrightarrow{u_z}$$

Par conséquent :

$$\overrightarrow{rot} \ \overrightarrow{\underline{E}} = -\frac{\partial \overrightarrow{\underline{B}}}{\partial t} \Longrightarrow \overrightarrow{\underline{k}} \wedge \overrightarrow{\underline{E}} = \omega \overrightarrow{\underline{B}}$$

Il en résulte que

$$\underline{\overrightarrow{B}}(M,t) = \frac{n}{c}\underline{E}\ \overrightarrow{u_y} = \frac{n_r - in_i}{c}E_oe^{i(\frac{\omega}{c}t - \underline{k}z)}\ \overrightarrow{u_y}$$

Comme $\overrightarrow{B}(M,t) = \Re(\overrightarrow{\underline{B}}(M,t))$ alors on trouve :

$$\overrightarrow{B}(M,t) = \frac{E_o}{c} e^{-n_i \frac{\omega}{c} z} \left[n_r \cos(\omega t - n_r \frac{\omega}{c} z) + n_i \cos(\omega t - n_r \frac{\omega}{c} z) \right] \overrightarrow{u_y} = \frac{|\underline{n}| E_o}{c} e^{-n_i \frac{\omega}{c} z} \cos(\omega t - n_r \frac{\omega}{c} z - \alpha) \overrightarrow{u_y}$$

Avec

$$\tan \alpha = \frac{n_i}{n_r}$$

I.2.5- L'expression de la vitesse de phase :

On a : $\varphi = \omega t - n_r \frac{\omega}{c} z \Longrightarrow \omega \Delta t - n_r \frac{\omega}{c} \Delta z$ Ce qui donne :

$$V_{\varphi} = \frac{\Delta z}{\Delta t} \Longrightarrow V_{\varphi} = \frac{c}{n_r}$$

I.2.6- L'onde est plane puisqu'elle dépend d'une seule variable de l'espace (z), et T.E.M puisque \overrightarrow{E} , \overrightarrow{B} et \overrightarrow{k} sont orthogonaux (trièdre direct).

I.2.7- L'expression de la puissance surfacique moyenne :

On a:

$$\varphi = || < \overrightarrow{\Pi} > ||$$

Et comme : $\overrightarrow{E}(M,t) = E_o e^{-n_i \frac{\omega}{c} z} \cos(\omega t - n_r \frac{\omega}{c} z) \overrightarrow{u_x}$ et $\overrightarrow{B}(M,t) = \frac{nE_o}{c} e^{-n_i \frac{\omega}{c} z} \cos(\omega t - n_r \frac{\omega}{c} z - \alpha) \overrightarrow{u_y}$ alors

 $\overrightarrow{\Pi} = \varepsilon_o c n E_o^2 e^{-2n_i \frac{\omega}{c} z} \cos(\omega t - n_r \frac{\omega}{c} z) \cos(\omega t - n_r \frac{\omega}{c} z - \alpha) \overrightarrow{u_z}$

Et puisque $\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b))$ alors :

$$\overrightarrow{\Pi} = \frac{\varepsilon_o c n E_o^2}{2} e^{-2n_i \frac{\omega}{c} z} \left(\cos[2(\omega t - n_r \frac{\omega}{c} z) - \alpha] + \cos \alpha \right) \overrightarrow{u_z}$$

Il en résulte que :

$$\varphi = \frac{1}{2} \varepsilon_o cn E_o^2 \cos \alpha e^{-2n_i \frac{\omega}{c} z} = \varphi_o e^{-z/h}$$

Avec :
$$\varphi_o = \frac{1}{2} \varepsilon_o cn \cos \alpha E_o^2$$
 et $h = \frac{c}{2n_i \omega}$

Commentaire

La puissance surfacique moyenne est une fonction décroissante de z : L'onde se propage en s'atténuant.

I.2.8- Cas de l'eau :

On a :
$$\varphi(z=0)=\varphi_o$$
 et $\varphi(z=H)=\varphi_o e^{-H/h}$.
Comme $\frac{\varphi_o}{\varphi(H)}=10\Longrightarrow h=\frac{H}{\ln 10}=\frac{c}{2n_i\omega}$ ce qui donne :

$$n_i = \frac{\lambda \ln 10}{4\pi H} \xrightarrow{\text{A.N}} n_i = 7,64.10^{-9}$$

Pour l'eau $n_r \simeq 1,33 \gg n_i$ d'où :

$$\underline{n(eau)} = n_r (\in \mathbb{R})$$

I.2.9- En optique , un milieu parfaitement transparent s'il n'y a pas d'interaction avec l'onde avec le milieu : Pas d'absorption de la lumière

II. Optimisation d'un trajet . Marche de rayons lumineux

II.1- L'ordre de grandeur :

On rappelle que:

Couleur	$\lambda(\text{nm})$
Violet	380-450
Bleu	450-490
Vert	490-570
Jaune	570-585
Orange	585-620
Rouge	620-670

- II.2- L'approximation de l'optique géométrique consiste à tendre la longueur d'onde λ vers 0 afin de négliger le phénomène de diffraction; autrement dit λ est très négligeable devant toutes distances caractéristiques du système optique.
 - II.3- Dans un milieu homogène, la lumière se propage en ligne droite.
- II.4- Le contenu physique du principe de retour inverse de la lumière : le trajet emprunté par la lumière pour aller d'un point A vers un point B ne dépend pas du sens de propagation.
 - II.5- Trajet suivi par un rayon lumineux rencontrant un dioptre

II.5.1- L'expression de la durée du trajet τ_{AIB}

$$\tau_{AIB} = \frac{1}{V_1} (AI + IB) \Longrightarrow \tau_{AIB} = \frac{1}{V_1} \left(\sqrt{(x_I - x_A)^2 + y_A^2} + \sqrt{(x_B - x_I)^2 + y_B^2} \right)$$

II.5.2- La condition sur x_I pour que la durée soit minimale.

 au_{AIB} est minimale si $\dfrac{d au_{AIB}}{dx_I}=0$ ce qui donne après dérivation :

$$\frac{x_I - x_A}{AI} = \frac{x_B - x_I}{IB} \tag{E1}$$

II.5.3- La loi géométrique :

On a :
$$\sin i = \frac{x_I - x_A}{AI}$$
 et $\sin r = \frac{x_B - x_I}{IB}$ D'après l'équation (E1) on obtient(On utilise les angles non orientés) :

$$\sin i = \sin r \Longrightarrow i = r$$

C'est la deuxième loi de Descartes-Snell pour la réflexion

II.5.4- L'expression de la durée du trajet τ_{AJC}

$$\tau_{AJC} = \frac{AJ}{V_1} + \frac{JB}{V_2} \Longrightarrow \tau_{AJC} = \frac{\sqrt{(x_J - x_A)^2 + y_A^2}}{V_1} + \frac{\sqrt{(x_C - x_I)^2 + y_C^2}}{V_2}$$

II.5.5- La condition sur x_I pour que la durée soit minimale.

 au_{AJC} est minimale si $\dfrac{d au_{AJC}}{dx_J}=0$ ce qui donne après dérivation :

$$\frac{x_J - x_A}{V_1 A I} = \frac{x_C - x_I}{V_2 J C} \tag{E2}$$

II.5.6- La loi géométrique :

On a : $\sin i_1=\frac{x_J-x_A}{AJ}$ et $\sin i_2=\frac{x_C-x_J}{JC}$ D'après l'équation (E2) on obtient(On rappelle que n=c/V) :

$$\frac{\sin i_1}{V_1} = \frac{\sin i_2}{V_2} \Longrightarrow n_1 \sin i_1 = n_2 \sin i_2$$

C'est la deuxième loi de Descartes-Snell pour la réfraction

II.6- Les phénomènes :

▶ Réfraction limite ($n_2 > n_1 \Longrightarrow V_2 < V_1$):

Sachant que:

$$\frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} > 1 \Longrightarrow i_1 > i_2$$

Lorsque $i_1 \to \pi/2$ alors $i_2 \to \ell = \arcsin \frac{n_1}{n_2}$

▶ Réflexion totale ($n_1 > n_2 \Longrightarrow V_1 < V_2$):

Sachant que:

$$\frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} < 1 \Longrightarrow i_1 < i_2$$

Lorsque $i_2 \to \pi/2$ alors $i_1 \to \ell = \arcsin \frac{n_2}{n_1}$

Si $i_1 > \ell$ alors pas de rayon réfracté , toute la lumière incidente se réfléchi : c'est la réflexion totale.

II.7- La couleur la plus déviée.

On a: la loi de Cauchy:

$$n = a + \frac{b}{\lambda^2}$$

Et puisque $\lambda(R) > \lambda(V) \Longrightarrow n(R) < n(V)$ et par conséquent $\frac{n(V)}{n(R)} > 1$.

D'après la loi de Descartes-Snell:

$$\frac{\sin i_2(R)}{\sin i_2(V)} = \frac{n(V)}{n(R)} > 1 \Longrightarrow i_2(R) > i_2(V)$$

Il en résulte que le violet est le plus dévié. (On rappelle que $D=i_1-i_2$)

III. Guidage de la lumière par les fibres optiques

III.1- Fibre optique à saut d'indice

III.1.1- La réflexion totale.

III.1.2- Pour avoir réflexion totale il faut que :

- $ightharpoonup n_1 > n_2$: Le milieu (1) est plus réfringeant que le milieu (2).
- ▶ L'angle d'incidence supérieur à l'angle limite ($\arcsin \frac{n_2}{n_1}$).
- ightharpoonup La condition sur l'angle θ_o

La loi de Descartes-Snell en O donne :

$$\sin \theta_o = n_1 \sin \left(\frac{\pi}{2} - i\right) \Longrightarrow \sin \theta_o = n_1 \cos i$$

Et comme $i\geqslant \ell=\arcsin(\frac{n_2}{n_1})$ alors :

$$\sin \theta_o \leqslant n_1 \cos(\arcsin(\frac{n_2}{n_1}))$$

III.1.3- La valeur maximale $\theta_{o,a}$:

$$\sin \theta_{o,a} = n_1 \cos(\arcsin(\frac{n_2}{n_1})) \xrightarrow{A.N} \theta_{o,a} = 12^o 15'$$

► L'ouverture numérique :

$$O.N = \sin \theta_{o,a} = \sqrt{n_1^2 - n_2^2} = 0,212$$

III.1.4- Le temps de parcours $\tau(\theta_o)$

D'après la symétrie ,la distance parcourue par le rayon lumineux dans la fibre ce n'est autre que la distance OS=D Comme $\cos\alpha=\frac{L}{D}$ et puisque $D=V\tau\Longrightarrow D=\frac{c}{n_1}\tau$ D.S en O donne :

$$\sin \theta_o = n_1 \sin \alpha \Longrightarrow \sin \theta_o = n_1 \sqrt{1 - \left(\frac{n_1 L}{c\tau}\right)^2}$$

Ce qui donne:

$$\tau = \frac{n_1 L}{c} \frac{1}{\sqrt{1 - \frac{\sin^2 \theta_o}{n_1^2}}}$$

III.1.5- Pour la durée :

ightharpoonup minimale correspond à $\theta_o = 0$

$$\tau_m = \frac{n_1 L}{c}$$

ightharpoonup maximale correspond à $heta_o = heta_{o,a}$

$$\tau_m = 1,01 \frac{n_1 L}{c} = 1,01 \tau_m$$

Il en résulte que

$$\tau = \tau_M - \tau_m \Longrightarrow \tau = 0,01 \frac{n_1 L}{c}$$

III.1.6- L'expression de la fréquence maximale pour ne pas avoir de recouvrement , il faut que :

$$T > \tau \Longrightarrow f < \frac{1}{\tau} = f_{max} \Longrightarrow f_{max} = \frac{100c}{n_1 L}$$

III.1.7- Le débit ce n'est autre que la valeur de f_{max}

$$D = f_{max} = \frac{100c}{n_1 L}$$

III.1.8- L'expression du rayon de courbure minimale :

Pour que le rayon lumineux reste guider , il faut que $i\geqslant \ell=\arcsin\frac{n_2}{n_1}$

Or $\sin i = \frac{R-a}{R+a}$ ce qui donne :

$$R \geqslant D_{\min} = a \frac{n_1 - n_2}{n_1 + n_2} = 200a$$

III.1.9- L'expression de l'attenuation de la fibre.

On a:

$$dP = -\frac{1}{\delta}P(z)dz \Longrightarrow P_s(z) = P_e e^{-z/\delta}$$

Or : $\log \frac{P_s}{P_e} = \frac{\ln(P_s/P_e)}{\ln 10}$ donc :

$$G_{dB} = -\frac{L}{2,3\delta} = -0,435\frac{L}{\delta}$$

- III.1.10- Les longueurs d'onde les moins atténuées correspondent aux minimum de la courbe, soient 1,2;1,3 et 1,6 μm .
- III.1.11- La radiation la moins atténuée est celle qui correspond au minimum absolu soit 1,6 μm : l'infra rouge
 - III.1.12- Le pourcentage de la fraction de puissance perdue par km :

On a :
$$\frac{\Delta P}{P_e} = \frac{P_e - P_s}{P_e} \Longrightarrow \frac{\Delta P}{P_e} = 1 - \frac{P_s}{P_e}$$
Or : $\gamma = -\frac{10}{L} \log \frac{P_s}{P_e} \Longrightarrow -\frac{\gamma L}{10} = \log \frac{P_s}{P_e}$

Par conséquent :

$$\frac{P_s}{P_s} = 10^{-\gamma L/10}$$

Il en résulte que :

$$\frac{\Delta P}{P_e} = 1 - 10^{-\gamma L/10} \xrightarrow{\qquad \qquad } \frac{\Delta P}{P_e} = 4,5\%$$

- III.1.13- L'origine du pic observé est le phénomène de l'absorption.
- III.2- Application: Principe d'un capteur de niveau de l'eau
 On envoie un rayon lumineux à travers la première fibre avec une incidence nulle au point I:
 - ▶ Le niveau de l'eau n'atteint pas le point I.

Comme l'angle limite pour le dioptre prisme/air est :

$$\ell = \arcsin \frac{1}{n} \xrightarrow{A.N} \ell = 41^{\circ}$$

Et puisque le prisme est rectangle isocèle alors l'angle d'incidence vaut $45^o > \ell$ donc on a une réflexion totale; et le rayon lumineux sera reçu par la deuxième fibre.

$$\ell = \arcsin \frac{1,33}{1,52} \xrightarrow{A.N} \ell = 61^{\circ}$$

par la deuxième fibre.

Conclusion

- ▶ Rayon lumineux reçu par la deuxième fibre : le niveau de l'eau n'atteint pas le point
- ▶ Rayon lumineux non reçu par la deuxième fibre : le niveau de l'eau dépasse le point

III.3- Fibre optique à gradient d'indice

On décompose la fibre en tranche d'épaisseur dr et on applique la loi de Descartes-Snell pour la réfraction.

Puisque r varie d'une façon continu alors le rayon lumineux se propage en s'incurvant, et puisque le rayon lumineux n'atteint pas la frontière; donc met moins de temps ce qui augmente la fréquence, d'où la bande passante.

III.3.1- On applique la loi de Descartes-Snell pour la réfraction :

$$n(r)\sin i(r) = n(r+dr)\sin i(r+dr)$$

Et puisque sur la tranche d'épaisseur dr on a n(r)=cte et i(r)=Cte alors

$$n(r)\sin i(r) = cte$$

En O :
$$n(r=0)=n_1$$
 et $i(r=0)=\frac{\pi}{2}-\theta_1$ d'où :

$$n(r)\sin i(r) = n_1\cos\theta_1$$

III.3.2- Montrons l'équation différentielle :

$$\tan i = \frac{dz}{dr} \implies \left(\frac{dr}{dz}\right)^2 = \frac{\cos^2 i}{\sin^2 i}$$

$$\implies \left(\frac{dr}{dz}\right)^2 = \frac{1 - \sin^2 i}{\sin^2 i}$$

$$\implies \left(\frac{dr}{dz}\right)^2 = \frac{1 - \left(\frac{n_1 \cos \theta_1}{n}\right)^2}{\frac{(n_1 \cos \theta_1)^2}{n}}$$

Ce qui donne l'équation :

$$\left(\frac{dr}{dz}\right)^2 = \frac{n^2(r) - (n_1 \cos \theta_1)^2}{(n_1 \cos \theta_1)^2}$$

III.3.3- la distance radiale maximum : Elle est solution de $\frac{dr}{dz}=0$:

$$\frac{dr}{dz} = 0 \implies n^2(r) = (n_1 \cos \theta_1)^2$$

$$\implies n_1^2(1 - \alpha r_M^2) = (n_1 \cos \theta_1)^2$$

$$\implies 1 - \alpha r_M^2 = \cos^2 \theta_1$$

$$\implies r_M^2 = \frac{1}{\alpha} \sin^2 \theta_1$$

Il en résulte que :

$$r_M = \frac{1}{\sqrt{\alpha}} \sin \theta_1 \Longrightarrow r_M = \frac{n_1 a}{\sqrt{n_1^2 - n_2^2}} \sin \theta_1$$

► La condition demandée :

$$r_M \leqslant a \Longrightarrow \sin \theta_1 \leqslant \frac{\sqrt{n_1^2 - n_2^2}}{n_1} = \frac{O.N}{n_1} \xrightarrow{A.N} \theta_1 \leqslant 24, 5^o$$

III.3.4- montrons l'équation différentielle :

$$\left(\frac{dr}{dz}\right)^2 = \frac{n^2(r) - (n_1 \cos \theta_1)^2}{(n_1 \cos \theta_1)^2} \implies \left(\frac{dr}{dz}\right)^2 = \frac{n_1^2(1 - \cos^2 \theta_1) - \alpha n_1^2 r^2}{(n_1 \cos \theta_1)^2}$$

$$\implies \left(\frac{dr}{dz}\right)^2 = \frac{n_1^2 \sin^2 \theta_1 - \alpha n_1^2 r^2}{(n_1 \cos \theta_1)^2}$$

$$\implies \left(\frac{dr}{dz}\right)^2 = \tan^2 \theta_1 \left(1 - \frac{\alpha r^2}{\sin^2 \theta_1}\right)$$

Or $r_M^2 = \frac{\sin^2 \theta_1}{\alpha}$ donc :

$$\left(\frac{dr}{dz}\right)^2 = \tan^2\theta_1 \left(1 - \left(\frac{r}{r_M}\right)^2\right)$$

III.3.5- L'expression de r(z):

$$\frac{dr}{dz} = \tan \theta_1 \sqrt{1 - (\frac{r}{r_M})^2} \implies \frac{r_M dr}{r_M \sqrt{1 - (\frac{r}{r_M})^2}} = \tan \theta_1 dz$$

$$\implies \arccos \frac{r}{r_M} = -\frac{\tan \theta_1}{r_M} (z - z_o)$$

$$\implies \frac{r}{r_M} = \cos \left[\frac{\tan \theta_1}{r_M} (z - z_o) \right]$$

Il en résulte que :

$$r = r_M \cos\left[\frac{\tan \theta_1}{r_M}(z - z_o)\right]$$

Donc:

$$\Omega = \frac{\tan \theta_1}{r_M} = \frac{2\pi}{\lambda} \Longrightarrow \lambda = \frac{2\pi r_M}{\tan \theta_1}$$

On remplace r_M par son expression et on applique la loi de D.S :

$$\sin \theta_o = n_1 \sin(\frac{\pi}{2} - \theta_1) \Longrightarrow \cos \theta_1 = \frac{\sin \theta_o}{n_1}$$

Il en résulte que :

$$\lambda = \frac{2\pi a \sin \theta_o}{\sqrt{n_1^2 - n_2^2}}$$

Concours National Commun —Session 2018—http://cpgemaroc.com

IV. Modes d'une fibre : Aspect ondulatoire de la transmission par fibre optique

IV.1- La différence de marche optique :

$$\delta = (AD) - (BC) \Longrightarrow \delta = n_1[AH_1 + H_1H_2 + H_2D - BC]$$

IV.2- La nouvelle expression de la différence de marche :

$$\delta = n_1 [H_1 H_2 - H_1' H_2']$$

IV.3- Montrons que $\delta = 4a \sin \theta_o$ (erreur de l'énoncé 4 au lieu de 2)

On a:

$$\delta = n_1[H_1H_2 - H_1'H_2'] \Longrightarrow \delta = 2n_1K_1H_1' \qquad (H_1H_2 = K_1K_2)$$

Or:

$$K_1H_1' = 2a\sin\theta$$

D'où $\delta = 4an_1\sin\theta$ et puisque $\sin\theta_o = n_1\sin\theta$ alors :

$$\delta = 4a\sin\theta_o$$

IV.4- $\delta=m\lambda$ avec m entier suppose que les deux ondes s'interfèrent et puisque $\delta=m\lambda\Longrightarrow \varphi=0$: interférences constructives.

IV.5- La condition sur l'entier m

On a:

$$O.N = \sin \theta_o = \sqrt{n_1^2 - n_2^2} = \frac{m\lambda}{4a}$$

Il en résulte que

$$m = \frac{4a}{\lambda} \sqrt{n_1^2 - n_2^2} \ (\in \mathbb{N})$$

IV.6- Application numérique :

$$m = [1, 31] \Longrightarrow m = 1$$

IV.7- En tenant compte du déphasage supplémentaire du à la réflexion (π) et puisque les deux rayons lumineux subissent des réflexions alors l'expression de la différence de marche sera : $\delta = 4a\sin\theta_o + \pi - \pi$ et par conséquent l'expression de δ reste inchangé. (même situation avec l'interféromètre de Michelson)