Compound Angle and Other Trig Formulae.

Objective: To be able to apply compound angle formulae and other trig formulae derived from them to solve problems

Recap of previous material. Application—Orbital Motion:

The planet Zorg orbits its star in a circular orbit; its position at time t is given by

$$x(t) = r \cos\left(\frac{2\pi}{T}t\right),$$
 $y(t) = r \sin\left(\frac{2\pi}{T}t\right),$

where T is the orbital period (the length of one year on the planet), and r is the radius of the orbit. The coordinate axes are set up so that the sun is at the origin.

The planet Yarg orbits the same star with radius $\frac{r}{2}$ and period $\frac{T}{2}$, and out of phase. Its position at time t is given by

$$x(t) = \frac{r}{2}\cos\left(\frac{4\pi}{T}t + \frac{\pi}{2}\right),$$
 $y(t) = \frac{r}{2}\sin\left(\frac{4\pi}{T}t + \frac{\pi}{2}\right).$

An astronaut plans to fly from Zorg to Yarg, and wants to do so when the distance between the planets is minimum, to save fuel.

- 1. Write down an expression for Δx (the difference in x-coordinates of the two planets), and a similar expression for Δy , the difference in y-coordinates.
- 2. Hence write down an expression for the distance d between the two planets at time t. Simplify this expression.
- 3. Using the formulae

$$\cos(A)\cos(B) = \frac{1}{2}(\cos(A+B) + \cos(A-B)),$$

$$\sin(A)\sin(B) = \frac{1}{2}(\cos(A - B) - \cos(A + B)),$$

simplify your expression for the distance further.

4. The distance is a minimum (respectively maximum) precisely when the square of the distance is minimum (respectively maximum), and the square of the

distance is easier to work with. Show that, for $0 \le t < T$ the distance attains its minimum and maximum values when

$$\sin\left(\frac{2\pi}{T}t + \frac{\pi}{2}\right) = 0.$$

Note: If you haven't yet done differentiating trig functions or maximum/minimum problems, skip this part.

- 5. Solve the equation in part 4 for $0 \le t < T$.
- 6. Hence say when the astronaut should make their flight.

Practice:

Recall the **compound angle formulae:**

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

- 1. (a) Write down a formula for $\sin(2\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$. Hint: $2\theta = \theta + \theta$.
 - (b) Hence, given that $\sin(12^\circ) \approx 0.208$ and $\cos(12^\circ) \approx 0.978$, find $\sin(24^\circ)$.
- 2. (a) Write down a formula for $\cos(2\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$.
 - (b) Apply the formula $\cos^2(\theta) + \sin^2(\theta) = 1$ to eliminate $\sin(\theta)$ from this formula.
 - (c) Apply the Pythagorean formula again in a different way to your formula from part (a) to eliminate $\cos(\theta)$.

3. The half angle formulae:

- (a) Using your answer to question 2(b), express $\cos(\theta)$ in terms of $\cos(2\theta)$.
- (b) Given that $\cos(324^{\circ}) \approx 0.809$, find $\cos(162^{\circ})$.
- (c) Using your answer to question 2(c), express $\sin\left(\frac{\theta}{2}\right)$ in terms of $\cos(\theta)$.
- (d) Given that $\sin(2.8) \approx 0.335$, find $\sin(1.4)$.
- 4. Write down a formula for $\tan(2\theta)$ in terms of $\tan(\theta)$. Hence, given that $\tan(\frac{\pi}{3}) = \sqrt{3}$, find $\tan(\frac{2\pi}{3})$.
- 5. (a) Express $\sin(3\theta)$ in terms of $\sin(\theta)$, $\sin(2\theta)$, $\cos(\theta)$, and $\cos(2\theta)$. Hint: $3\theta = 2\theta + \theta$.
 - (b) Hence express $\sin(3\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$ only. Hint: use your answers to questions 1 and 2.
 - (c) Eliminate $\cos(\theta)$ to obtain an expression for $\sin(3\theta)$ in terms of $\sin(\theta)$ only.
- 6. Apply the compound angle formula for cosine to the expression

$$\cos(\alpha + \beta) + \cos(\alpha - \beta).$$

Hence write $\cos(5x)\cos(10x)$ as a sum of two cosines.

7. Apply the compound angle formula for cosine to the expression

$$\cos(\alpha - \beta) - \cos(\alpha + \beta).$$

Hence write $\sin(12\pi t)\sin(2\pi t)$ as a sum of cosines.

Theory—Sums of Sinusoids of Equal Frequency:

The compound angle formulae split a single sine or cosine into a combination of sines and cosines:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta),$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta).$$

We can use this in reverse to combine sines and cosines of the same frequency into a single sine or cosine.

Write $3\cos(7\theta) - 4\sin(7\theta)$ in the form $R\cos(7\theta + \alpha)$ for some R and α .

Hence solve $3\cos(7\theta) - 4\sin(7\theta) = \frac{1}{\sqrt{2}}$ for $0 \le \theta < \pi$.

Here we show the graphs of the functions from the last page:

Practice:

- 1. Express $\sin(3t) \sqrt{3}\cos(3t)$ in the form $R\sin(3t \alpha)$.
- 2. Solve the equation $6\cos(4x) + 8\sin(4x) = -0.5$ for $0 \le x < \frac{\pi}{2}$.
- 3. The voltage of mains electricity varies with time by the function $230\sqrt{2}\sin(100\pi t)$. A drive coil on a so-called "3-phase" electric motor receives two alternating voltages, with a time offset between them:

$$A = 230\sqrt{2}\sin(100\pi t),$$
 $B = 230\sqrt{2}\sin\left(100\pi t + \frac{2\pi}{3}\right).$

The resulting voltage on the drive coil is A - B, the difference between these two voltages. Express the resulting voltage on the drive coil as a single sine function of time; *i.e.*, write A - B in the form $R \sin(100\pi t + \alpha)$. Hence suggest why for high-power applications 3-phase motors are used instead of single phase motors (with just one mains voltage applied).

4. Sound is a pressure wave in the air; for a single pure note at frequency f and amplitude A, the pressure P_1 at a point in the air varies with time according to $P_1 = A\sin(2\pi ft)$. When two sounds are played, with pressure waves P_1 and P_2 , the overall effect on air pressure is $P_1 + P_2$.

Suppose an additional sound is played, with $P_2 = A \sin((2\pi + 1)ft)$. The overall result of these two pressure waves is that the total air pressure is $P_{\text{total}} = P_1 + P_2$. Apply the compound angle formula for sine to P_2 and hence find P_{total} . Describe the sound which results when both these sounds are played together, and hence suggest how noise-cancelling headphones work.

Key Points to Remember:

1. The **compound angle formulae** for sine and cosine are:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

2. We can decompose the product of two sines or of two cosines:

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}\left(\cos(\alpha - \beta) - \cos(\alpha + \beta)\right)$$

3. We can express a sum of sinusoids of the same frequency (and any phase and amplitude) as a single sinusoid:

$$A\sin(\omega t + \phi) + B\cos(\omega t + \psi) = R\sin(\omega t + \alpha) \text{ or } S\cos(\omega t + \beta)$$

where R and α (or S and β) are found by expanding the right-hand side with a compound angle formula and comparing coefficients of sin and of cos.

4. The sum of sinusoids of the same frequency is a sinusoid. The product of sinusoids, or the sum of sinusoids of different frequencies, is a more complicated waveform.