第四章: 非线性方程和方程组的求解

求实系数代数方程全部根的牛顿-下山法

一、功能

用牛顿-下山法求实系数代数方程的全部根。

二、方法说明

设实系数代数方程为

$$f(z) = a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 0$$

牛顿-下山法的迭代格式为

$$z_{i+1} = z_i - t f(z_i) / f'(z_i)$$
 t下山因子

选取适当的 t 可以保证有

$$|f(z_{i+1})|^2 < |f(z_i)|^2$$

迭代过程一直作到 $|f(z_i)|^2 < \varepsilon$ 为止。

迭代格式在鞍点或接近重根点时,可能因 $f'(z)\approx 0$ 而使 $|f(z)|^2\neq 0$ 而失败。在本子程序中采用了撒网格的方法。选取适当 的 d 与 c ,用

$$x_{i+1} = x_i + d\cos(c)$$

$$y_{i+1} = y_i + d\sin(c)$$

计算,使 $|f(z_{i+1})|^2 < |f(z_i)|^2$ 而冲过鞍点或使 $|f(z_{i+1})|^2 < \epsilon$ 而求得一个根。

每求得一个根 z^* 后,在 f(z) 中劈去因子 $(z-z^*)$,再求另一个根。这个过程一直作到求出全部根为止。

在实际计算时,每求一个根都要作变换

$$z = \sqrt[n-1]{|a_n|} z'$$

以便使当 $a_1=1$ 时, $|a_n|=1$,保证寻根在单位圆内进行。

实现此功能的子程序及功能如下:

三、子程序语句

SUBROUTINE DSRRT(A,XR,XI,N,M,L,B)

四、形参说明

A——实型一维数组,长度为 N,输入参数。按降幂排列存放代数方程中的系数 a_1 , a_2 ,…, a_n 。

XR,XI——均为实型一维数组,长度为 M=N-1,输出参数。分别返回方程 N-1个

根的实部与虚部。

N---整型变量,输入参数。方程中的项数。

M——整型变量,输入参数。方程的最高次数,即 M=N-1。

L——整型变量,输出参数。若返回 L=0,则说明最高次系数为 0,求根失败;若 L \neq 0,说明正常返回。

B——实型一维数组,长度为 N。本子程序的工作数组。

五、子程序(文件名:DSRRT.FOR)

六、例

求实系数代数方程

$$f(z) = z^6 - 5z^5 + 3z^4 + z^3 - 7z^2 + 7z - 20 = 0$$

的全部根。

PROGRAM EXAMPLES05

DIMENSION A(7),XR(6),XI(6),B(7)

DATA A/1.0,-5.0,3.0,1.0,-7.0,7.0,-20.0/

N=7

M=6

CALL DSRRT(A,XR,XI,N,M,L,B)

IF (L.NE.0) THEN

DO 10 I=1,M

10 WRITE(*,20) I,XR(I),XI(I)

END IF

20 FORMAT(1X,'X(',I2,1X,')=',E13.6,2X,'J',2X,E13.6)

END

运行结果为

```
X(1) = .433376E + 01 J .000000E + 00

X(2) = -.149622E + 00 J .119251E + 01

X(3) = -.149622E + 00 J -.119251E + 01

X(4) = -.140246E + 01 J .000000E + 00

X(5) = .118398E + 01 J .936099E + 00

X(6) = .118398E + 01 J -.936099E + 00
```

以上是方程的6个根。

```
SUBROUTINE DSRRT(A,XR,XI,N,M,L,B)
  DIMENSION A(N),XR(M),XI(M),B(N)
  IF (ABS(A(1))+1.0.EQ.1.0) THEN
    L=0
    WRITE(*,5)
    RETURN
  END IF
5 FORMAT(1X,' ERR')
  L=1
  K=M
  IS=0
  W = 1.0
  DO 10 I=1,N
10 B(I)=A(I)/A(1)
20 PP=ABS(B(K+1))
```

IF (PP.LT.1.0E-12) THEN

XR(K)=0.0

XI(K)=0.0

K=K-1

IF (K.EQ.1) THEN

XR(K)=-B(2)*W/B(1)

XI(K)=0.0

RETURN

END IF

GOTO 20

END IF

Q=PP**(1.0/K)

P=Q

W=W*P

DO 30 I=1,K

$$B(I+1)=B(I+1)/Q$$

$$Q=Q*P$$

X=0.0001

X1=X

Y = 0.2

Y1=Y

G=1.0E+37

DX=1.0

40 U=B(1)

V=0.0

DO 50 I=1,K

P=U*X1

Q=V*Y1

PQ=(U+V)*(X1+Y1)

$$U=P-Q+B(I+1)$$

$$G1=U*U+V*V$$

IF (G1.LT.G) GOTO 105

IF (IS.NE.0) GOTO 80

60 T=T/1.67

X1=X-T*DX

Y1=Y-T*DY

IF (K.GE.50) THEN

P=SQRT(X1*X1+Y1*Y1)

Q=EXP(85.0/K)

IF (P.GE.Q) GOTO 60

END IF

IF (T.GE.1.0E-03) GOTO 40

```
IF (G.LE.1.0E-18) GOTO 90
```

65 IS=1

DD = SQRT(DX*DX+DY*DY)

IF (DD.GT.1.0) DD=1.0

DC=6.28/(K+4.5)

70 C=0.0

80 C=C+DC

DX=DD*COS(C)

DY=DD*SIN(C)

X1=X+DX

Y1=Y+DY

IF (C.LE.6.29) GOTO 40

DD=DD/1.67

IF (DD.GT.1.0E-07) GOTO 70

90 IF (ABS(Y).LE.1.0E-06) THEN

P=-X

Y = 0.0

Q = 0.0

ELSE

P=-2.0*X

Q = X * X + Y * Y

XR(K)=X*W

XI(K)=-Y*W

K=K-1

END IF

DO 100 I=1,K

B(I+1)=B(I+1)-B(I)*P

B(I+2)=B(I+2)-B(I)*Q

100 CONTINUE

XR(K)=X*W

XI(K)=Y*W

K=K-1

IF (K.EQ.1) THEN

XR(K)=-B(2)*W/B(1)

XI(K)=0.0

RETURN

END IF

GOTO 20

105 G=G1

X=X1

Y=Y1

IS=0

IF (G.LE.1.0E-22) GOTO 90

U1=K*B(1)

V1=0.0

$$P=U1*X$$

$$Q=V1*Y$$

$$PQ=(U1+V1)*(X+Y)$$

$$U1=P-Q+(K-I+1)*B(I)$$

$$P=U1*U1+V1*V1$$

IF (P.LE.1.0E-20) GOTO 65

$$DX = (U*U1+V*V1)/P$$

$$DY = (U1*V-V1*U)/P$$

T=1.0+4.0/K

GOTO 60

END

求非线性方程组一组实根的拟牛顿法

一、功能

用拟牛顿法求非线性方程组

$$f_i(x_1, x_2, \dots, x_n) = 0, i = 1, 2, \dots, n$$

的一组实数解。

二、方法说明

设非线性方程组为

$$f_i(X) = 0, i = 1, 2, \dots, n$$

其中 $X = (x_1, x_2, \dots, x_n)^T$ 。并设 $X^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})^T$ 为第 k 次迭代近似值,由牛顿法可计算第 k+1 次迭代值。即

$$X^{(k+1)} = X^{(k)} - F(X^{(k)})^{-1} f(X^{(k)})$$

其中

$$f(X^{(k)}) = (f_1^{(k)}, f_2^{(k)}, \dots, f_n^{(k)})^T$$

 $f_i^{(k)} = f_i(X^{(k)}), i = 1, 2, \dots, n$

F(X)为雅可比矩阵,即

$$F(X) = \begin{bmatrix} \frac{\partial f_1(X)}{\partial x_1} & \frac{\partial f_1(X)}{\partial x_2} & \cdots & \frac{\partial f_1(X)}{\partial x_n} \\ \frac{\partial f_2(X)}{\partial x_1} & \frac{\partial f_2(X)}{\partial x_2} & \cdots & \frac{\partial f_2(X)}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n(X)}{\partial x_1} & \frac{\partial f_n(X)}{\partial x_2} & \cdots & \frac{\partial f_n(X)}{\partial x_n} \end{bmatrix}$$

令

$$\delta^{(k)} = F(X^{(k)})^{-1} f(X^{(k)})$$

其中

$$\delta^{(k)} = (\delta_1^{(k)}, \delta_2^{(k)}, \cdots, \delta_n^{(k)})^T$$

则有

$$\underbrace{F(X^{(k)})\delta^{(k)}}_{X^{(k+1)}} = \underbrace{F(X^{(k)})}_{Y^{(k)}} - \underbrace{\delta^{(k)}}_{O(k)}$$

若在雅可比矩阵中用差商代替偏导数,即

$$\frac{\partial f_i(X^{(k)})}{\partial x_j} \approx \frac{f_i(X_j^{(k)}) - f_i(X^{(k)})}{h}$$

其中 h 足够小,且

$$f_i(X_j^{(k)}) = f_i(x_1^{(k)}, \dots, x_{j-1}^{(k)}, x_j^{(k)} + h, x_{j+1}^{(k)}, \dots, x_n^{(k)})$$

则有

$$\sum_{j=1}^{n} f_i(X_j^{(k)}) z_j^{(k)} = f_i(X^{(k)}), i = 1, 2, \dots, n$$

其中

$$z_{j}^{(k)} = \frac{\delta_{j}^{(k)}}{h + \sum_{s=1}^{n} \delta_{s}^{(k)}}, j = 1, 2, \dots, n$$

取初值
$$X = (x_1, x_2, \dots, x_n)^T$$
, $h > 0$, $0 < t < 1$.

- (1) 计算 $f_i(X) \Rightarrow B(i), i = 1, 2, \dots, n$ 。
- (2) 若 $\max_{1 \le i \le n} |B(i)| < \varepsilon$,则方程组的一组实数解即为 $X = (x_1, x_2, \dots, x_n)^T$

计算过程结束。

(3) 计算

$$f_i(X_j) \Rightarrow A(i,j), i,j = 1,2,\cdots,n$$

其中 $X_j = (x_1, x_2, \dots, x_{j-1}, x_j + h, x_{j+1}, \dots, x_n)^T$ 。

(4) 解方程组

$$AZ = B$$

其中 $Z = (z_1, z_2, \cdots, z_n)^T$ 。且计算

$$\beta = 1 - \sum_{j=1}^{n} z_j$$

(5) 计算

$$x_i - hz_i/\beta \Rightarrow x_i, i = 1, 2, \dots, n$$

(6) $t * h \Rightarrow h$,转(1)。

以上过程一直作到满足精度要求为止。

在使用本方法时,可能会遇到下列几种失败的情形:

迭代次数太多,可能不收敛;

线性方程组 AZ = B 奇异;

$$eta=0$$
,即 $\sum_{j=1}^n z_j=1$ 。

在这种情况下,可以采取以下措施再试一试:

放宽精度要求 ε;

适当改变t与h的初值;

改变 X 的初值;

改变方程组的顺序等。

三、子程序语句

SUBROUTINE DNETN(N,X,Y,EPS,FS,T,H,A,B,L,JS)

四、形参说明

- N---整型变量,输入参数。方程个数。
- X——双精度实型一维数组,长度为 N,输入兼输出参数。调用时存放初值;返回方程组的一组实数解。
- Y——双精度实型一维数组,长度为 N。本子程序的工作数组,用于存放方程组的左端函数值。
 - EPS——实型变量,输入参数。控制精度要求。
- FS——子程序名,输入参数。用于计算 N 个方程中的左端函数值 $f_i(x_1,x_2,\cdots,x_n)(i=1,2,\cdots,N)$ 。在主程序中必须用外部语句对相应的实参进行说明。该子程序由用户自编,其语句形式为

SUBROUTINE FS(X,Y,N)

其中:X 为双精度实型一维数组,长度为 N,存放 N 个自变量 x_1,x_2,\cdots,x_n ;Y 为双精度实型一维数组,长度为 N,返回 N 个方程的左端函数值 $f_i(x_1,x_2,\cdots,x_n)$ ($i=1,2,\cdots,N$)。

- T——双精度实型变量,输入参数。控制 H 大小的变量,要求 0<T<1。
- H——双精度实型变量,输入参数。增量初值,在本子程序工作时将逐步变小。
- A——双精度实型二维数组,体积为 N×N。本子程序的工作数组。
- B——双精度实型一维数组,长度为 N。本子程序的工作数组。
- L——整型变量,输出参数。若返回 L>0,说明正常返回;若 L=0,说明迭代了 100 次还未满足精度要求,工作失败;若 L=-1,说明线性方程组 AZ=B 奇异,工作失败;若 L

$$=-2$$
,说明 $\beta=0$,即 $\sum_{j=1}^{n} z_{j}=1$,工作失败。
JS——整型一维数组,长度为 N。本子程序的工作数组。

例

设非线性方程组为

$$\begin{cases} f_1 = x_1^2 + x_2^2 + x_3^2 - 1.0 = 0 \\ f_2 = 2x_1^2 + x_2^2 - 4x_3 = 0 \\ f_3 = 3x_1^2 - 4x_2 + x_3^2 = 0 \end{cases}$$

取初值 $(1.0,1.0,1.0)^T$, T=0.1, H=0.1, $\varepsilon=10^{-7}$, 求一组实数解。 主程序及计算各方程左端函数值的子程序(文件名:DNETNO.FOR)为

需要,主程序 EXAMPLES04, 子程序: FS, DNETN, AGAUS

PROGRAM EXAMPLES04

```
EXTERNAL FS
   DIMENSION X(3),Y(3),A(3,3),B(3),JS(3)
   DOUBLE PRECISION X,Y,A,B,T,H
   DATA X/1.0,1.0,1.0/
   EPS=1.0E-07
  T=0.1
   H=0.1
  CALL DNETN(3,X,Y,EPS,FS,T,H,A,B,L,JS)
  WRITE(*,30) L
   DO 10 I=1,3
10 WRITE(*,20) I,X(I)
20 FORMAT(1X,'X(',I2,' )=',D15.6)
30 FORMAT(1X,'L=',I4)
   END
```

SUBROUTINE FS(X,Y,N)

DIMENSION X(N),Y(N)

DOUBLE PRECISION X,Y

Y(1)=X(1)*X(1)+X(2)*X(2)+X(3)*X(3)-1.0

Y(2)=2.0*X(1)*X(1)+X(2)*X(2)-4.0*X(3)

Y(3)=3.0*X(1)*X(1)-4.0*X(2)+X(3)*X(3)

RETURN

END

运行结果

L=95

X(1) = 0.785

X(2) = 0.49

X(3) = 0.369

L=95 说明迭代了 100-95=5 次就满足精度要求了。

```
SUBROUTINE DNETN(N,X,Y,EPS,FS,T,H,A,B,L,JS)
  DIMENSION X(N), Y(N), A(N,N), B(N), JS(N)
  DOUBLE PRECISION X,Y,A,B,T,H,AM,Z,BETA,D
  L=100
10 \text{ CALL FS}(X,B,N)
  AM = 0.0
  DO 20 I=1,N
    IF (ABS(B(I)).GT.AM) AM = ABS(B(I))
20 CONTINUE
  IF (AM.LT.EPS) RETURN
  L=L-1
  IF (L.EQ.0) THEN
    WRITE(*,100)
    RETURN
  END IF
```

```
FORMAT(1X,' FAIL')
100
  DO 40 J=1,N
    Z=X(J)
    X(J)=X(J)+H
    CALL FS(X,Y,N)
    DO 30 I=1,N
    A(I,J)=Y(I)
30
    X(J)=Z
40 CONTINUE
  CALL\ AGAUS(A,B,N,Y,K,JS)
  IF (K.EQ.0) THEN
    L=-1
    RETURN
  END IF
```

BETA=1.0

```
DO 50 I=1,N
```

50 BETA=BETA-Y(I)

IF (ABS(BETA)+1.0.EQ.1.0) THEN

L=-2

WRITE(*,100)

RETURN

END IF

D=H/BETA

DO 60 I=1,N

60 X(I)=X(I)-D*Y(I)

H=T*H

GOTO 10

END

```
!全选主元高斯消去法。
SUBROUTINE AGAUS(A,B,N,X,L,JS)
  DIMENSION A(N,N),X(N),B(N),JS(N)
  DOUBLE PRECISION A,B,X,T
  L=1
  DO 50 K=1,N-1
    D=0.0
    DO 210 I=K,N
    DO 210 J=K,N
      IF (ABS(A(I,J)).GT.D) THEN
        D=ABS(A(I,J))
        JS(K)=J
        IS=I
      END IF
210
       CONTINUE
    IF (D+1.0.EQ.1.0) THEN
```

L=0

ELSE

IF (JS(K).NE.K) THEN

DO 220 I=1,N

T=A(I,K)

A(I,K)=A(I,JS(K))

A(I,JS(K))=T

220 CONTINUE

END IF

IF (IS.NE.K) THEN

DO 230 J=K,N

T=A(K,J)

A(K,J)=A(IS,J)

A(IS,J)=T

230 CONTINUE

T=B(K)

B(K)=B(IS)

B(IS)=T

END IF

END IF

IF (L.EQ.0) THEN

WRITE(*,100)

RETURN

END IF

DO 10 J=K+1,N

A(K,J)=A(K,J)/A(K,K)

10 CONTINUE

B(K)=B(K)/A(K,K)

DO 30 I=K+1,N

DO 20 J=K+1,N

$$A(I,J)=A(I,J)-A(I,K)*A(K,J)$$

$$CONTINUE$$

$$B(I)=B(I)-A(I,K)*B(K)$$

50 CONTINUE

20

IF (ABS(A(N,N))+1.0.EQ.1.0) THEN

L=0

WRITE(*,100)

RETURN

END IF

X(N)=B(N)/A(N,N)

DO 70 I=N-1,1,-1

T=0.0

DO 60 J=I+1,N

T = T + A(I,J) * X(J)

```
60 CONTINUE
```

$$X(I)=B(I)-T$$

100 FORMAT(1X,' FAIL ')

JS(N)=N

DO 150 K=N,1,-1

IF (JS(K).NE.K) THEN

T=X(K)

X(K)=X(JS(K))

X(JS(K))=T

END IF

150 CONTINUE

RETURN

END