Splines

Raktim Gautam Goswami (EE17BTECH11051) Abhishek Bairagi (EE17BTECH11004)

February 21, 2019

Table of contents

Finding best fit for a data

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Options that we have

Splines

Cubic splines

How to find the coefficients

Code

Problem Statement

Finding best fit for a data

Suppose we are given few points

They can be joined linearly

In a better way

Options that we have

1. nth order polynomial

2. Lagrange's coefficient polynomial

$$\sum_{k=0}^{N} [Y_k L_{n,k}(x)] \tag{1}$$

$$L_{n,k}(x) = \frac{(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_k)...(x-x_n)}{(x_k-x_0)(x_k-x_1)....(x_k-x_{k-1})(x_k-x_{k+1})....(x_k-x_n)}$$
(2)

3. Splines

Types of splines

Piecewise cubic spines

Smoothing splines

Cubic splines

Each pair of adjacent known points are assumed to be lying on a cubic curve.

At each known point, the two cubic parts from both sides are chosen such that the overall function is twice differentiabe at that point.

At the first and last given point, it is assumed that the doube derivative is zero.

Between any two given points, the cubic function is expressed as

$$S_k(x) = S_{k,0} + S_{k,1}(x - x_k) + S_{k,2}(x - x_k)^2 + S_{k,3}(x - x_k)^3$$

How to find the coefficients

On comparing we get

$$s_k(x_k) = y_k \tag{3}$$

$$s_k(x_{k+1}) = s_{k+1}(x_{k+1})$$
 (4)

$$s'_{k}(x_{k+1}) = s'_{k+1}(x_{k+1})$$
 (5)

$$s_{k}^{"}(x_{k+1}) = s_{k+1}^{"}(x_{k+1})$$
 (6)

$$\mathbf{s}_{k}^{"}(\mathbf{x}_{0})=\mathbf{0}\tag{7}$$

$$s_n''(x_n) = 0 (8)$$