Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea-examen Teoremas de Sylow

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

27 de Mayo 2020

Ejercicio 1. (25 puntos)

Sea H un subgrupo normal de G. Si ambos H y G/H son p-grupos, entonces G es un p-grupo.

Demostración. Sea $g \in G$ y sea $gH \in G/H$. Como G/H por hipótesis es un p-grupo entonces $gH = p^n$ para algún g = 0. Por tanto gH = 0 y así $g^{p^n} \in H$.

Como H es un p-grupo, para algún m > 0 se tiene que $\left(g^{p^n}\right)^{p^m} = g^{p^{n+m}} = 1$, y así se concluye que G es un p-grupo.

Ejercicio 2. (25 puntos)

Demuestre que cualquier grupo de orden 200 contiene un subgrupo de Sylow normal.

Demostración. Sea $|G| = 200 = 2^3 \cdot 5^2$. Por el terorema de Sylow² consideremos r_p el número de de p-subgrupos de Sylow. Entonces $r_5 = 1$. Por tanto hay un único 5-subgrupo de Sylow P. Como cualquier conjugado de P es también un conjugado de P es también un 5-subgrupo de Sylow, se concluye que $qPq^{-1} = P$ para toda $q \in G$ y así $P \triangleleft G$. \square

Ejercicio 3. (25 puntos)

Si P es un p-subgrupo de Sylow normal de un grupo finito G y $f:G\to G$ es un morfismo de grupos, entonces f(P)< P.

Demostración. Notemos que $P \leq G$ y como la imagen de homomorfismos de un grupo también es un grupo, entonces $f(P) \leq G$. Sea $y \in f(P)$. Entonces existe $x \in P$ tal que f(x) = y. Como P es un p-subgrupo entonces $|x| = p^i$ para alguna i. Entonces se tiene que $y^{p^i} = f(x)^{p^i} = f(x^{p^i}) = f(1) = 1$. Entonces |y| divide a p^i y así $|y| = p^j$ para algún $j \leq i$. Como la y fue arbitraria f(P) es un p-subgrupo de G. Por el teorema de Sylow³ entonces existe $x \in G$ tal que $f(P) \leq xPx^{-1} = P$.

Ejercicio 4. (25 puntos)

Si Q es un p-subgrupo normal de un grupo finito G, entonces $Q \leq P$ para cualquier p-subgrupo de Sylow P.

Demostración. Por Sylow Q está contenido en un p-subgrupo de Sylow H de G. Por el teorema de Sylow, $P = xHx^{-1}$ para alguna $x \in G$. Así $Q = xQx^{-1} \le xHx^{-1} = P$.

¹ Corolario 4.3 Un grupo finito G es un p-grupo si y solo si |G| es una potencia de p.

² Teorema 4.12 (Sylow) (ii) Si hay r p-subgrupos de Sylow, entonces $r \mid |G|$ y $r \equiv 1 \mod p$.

³ Teorema 4.12 (Sylow) (i) Si P es un p-subgrupo de Sylow de un subgrupo finito G, entonces todos los p-subgrupos de G son conjugados de P.