ECE 65: Components & Circuits Lab

Lecture 21

Characterization of transistor amplifiers & Transistor amplifier configurations

Reference notes: sections 6.1, 6.2

Sedra & Smith (7th Ed): sections 7.3

Saharnaz Baghdadchi

Course map

6. Transistor Amplifier Configurations

A typical analog circuit contains a load and a source (two-terminal networks) and several two-port networks

We divide the circuit into building blocks to simplify analysis and design

What are the amplifier parameters?

Voltage Gain of the Circuit: $A = \frac{v_o}{v_{sig}}$

Voltage Gain of the Amplifier: $A_v = \frac{v_o}{v_i}$

Open-loop Gain: $A_{vo} = \frac{v_o}{v_i} \Big|_{R_L o \infty}$

Input Resistance: $R_i = \frac{v_i}{i}$

Output Resistance of Amplifier: $R_o = -\frac{v_o}{i_o}\Big|_{v_i=0}$

Voltage Amplifier Model

Observations on the amplifier parameters

Overall Gain:

$$A = \frac{v_o}{v_{sig}} = \frac{v_i}{v_{sig}} \times \frac{v_o}{v_i} = \frac{R_i}{R_i + R_{sig}} A_v$$

$$\frac{v_i}{v_{sig}} = \frac{R_i}{R_i + R_{sig}}$$

Value of R_i is important.

$$\circ$$
 For $R_i >> R_{sig}$, $v_i pprox v_{sig}$

o For
$$R_i$$
 = R_{sig} , v_i = $0.5 \ v_{sig}$

o For
$$R_i \lt \lt R_{sig}$$
 , $v_i \approx 0$

Prefer "large" R_i

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{R_{L}}{R_{L} + R_{o}} A_{vo}$$

 A_{vo} is the maximum possible gain of the amplifier.

Value of R_o is important.

$$\circ$$
 For $R_o << R_L$, $A_v pprox A_{vo}$

$$\circ$$
 For $R_o = R_L$, $A_v = 0.5 \ A_{vo}$

o For
$$R_o >> R_L$$
, $A_v \approx 0$

Prefer "small" R_o

From an amplifier circuit to the building block representation

Cascade of amplifiers

Solving the Transistor Amplifier circuits

- Draw the Bias circuit and find the Bias point
- Find the small signal parameters (g_m, r_o, r_π)
- Draw the signal equivalent circuit
- Find the amplifiers parameters (R_i, R_o, A_{v_0})
- Use the voltage amplifier model and the calculated parameters to find the amplifier circuit gain (A).

Transistor Amplifier configurations

Common-Collector or Emitter Follower

Common-Emitter

Common-Emitter with an Emitter resistor

Common-Base

Common-Collector or Emitter Follower

The input is applied at the base and the output is taken at the emitter.

Common-Collector or Emitter Follower

Some example (Bias + Signal) circuits in Common-Collector configuration:

Common-Emitter

The input is applied at the base and the output is taken at the collector.

An emitter resistor is used for the Bias, but it is shorted in the signal circuit

Common-Emitter with an Emitter resistor

The input is applied at the base and the output is taken at the collector.

Common-Base

The input is applied at the emitter and the output is taken at the collector.

Common-Drain or Source Follower

Common-Source

Common-Source with a Source resistor

Common-Gate

Common-Drain or Source Follower

The input is applied at the gate and the output is taken at the source.

Common-Drain or Source Follower

Some example (Bias + Signal) circuits in Common-Drain configuration:

Common-Source

The input is applied at the gate and the output is taken at the drain.

A source resistor is used for the Bias, but it is shorted in the signal circuit

Common-Source with a Source resistor

The input is applied at the gate and the output is taken at the drain.

Common-gate

The input is applied at the source and the output is taken at the drain.

Lecture 21 reading quiz

Which one of the answers is correct about the configuration of the given amplifiers:

Clicker question 1.

What is the amplifier configuration for the following circuit?

- A. Common-Base
- B. Common-Emitter
- C. Common-Collector

Clicker question 2.

Draw the signal circuit and find the open loop voltage gain of the amplifier $(A_{vo} = \frac{v_o}{v_i}\Big|_{R_I \to \infty})$ for this circuit. Let $\beta = 100$, $V_T = 25 \ mV$, $V_A = 150 \ V$.

A.
$$A_{vo} = 0.67 \ V/V$$

B.
$$A_{vo} = 0.99 \ V/V$$

C.
$$A_{vo} = 0.53 \ V/V$$

D.
$$A_{vo} = 0.49 \ V/V$$

Bias circuit, Bias point and small signal parameters:

$$T_{C} = \frac{V_{T}}{I_{B}} = 581.4 \Omega \qquad r_{O} = \frac{V_{A}}{I_{C}} \approx 35 k\Omega$$

$$g_{m} = \frac{I_{C}}{V_{T}} = 0.172 A/V$$

Clicker question 2.

$$A_{v_0} = \frac{|v_0|}{|v_i|} |_{R_1} \rightarrow \infty$$

$$\frac{V_0}{V_0} + \frac{V_0}{I k a} - g_m V_{77} - \frac{V_{77}}{V_{77}} = 0$$

$$r_{\pi} = \frac{V_T}{I_B} = 581.4 \,\Omega$$
 $r_o = \frac{V_A}{I_C} \approx 35 \,k\Omega$

$$g_m = \frac{I_C}{V_T} = 0.172 \ A/V$$

small signal circuit:

$$V_{7} = V_{i} - V_{0} \qquad \Rightarrow \qquad \text{when } R_{L} \rightarrow \infty$$

$$: \qquad \frac{V_{0}}{V_{i}} = \frac{g_{m} + \frac{1}{Y_{7}} + \frac{1}{Y_{0}} + \frac{1}{1k}}{g_{m} + \frac{1}{Y_{7}} + \frac{1}{Y_{0}} + \frac{1}{1k}}$$