HOMEWORK 5

DISCRETE PROBABILITY

Questions 1-5 involve the use of a fair coin $(\frac{1}{2}$ probability of flipping heads or tails) and a fair die $(\frac{1}{6}$ of rolling each number).

Questions 3-5 involve using both the die and the coin

1.	Using the	coin,	what is	the	proba	bility	of	flipping	heads	twice	in	a	row?
	a) $\frac{1}{8}$												

- b) $\frac{1}{2}$
- c) $\frac{1}{4}$
- d) $\frac{1}{3}$

2. Using the die, what is the probability of rolling 1 twice in a row?

- a) $\frac{1}{36}$
- b) $\frac{1}{6}$
- c) $\frac{1}{12}$
- d) $\frac{1}{2}$

3. Using both the coin and the die, what is the probability of flipping tails \underline{and} rolling 3?

- a) $\frac{1}{6}$
- b) $\frac{1}{36}$
- c) $\frac{1}{12}$
- d) $\frac{1}{4}$

4.	Using both the coin and the die,	what is the	e probability	of flipping h	eads <u>and</u> ro	olling
	an even number?					

- a) $\frac{1}{4}$
- b) $\frac{1}{12}$
- c) $\frac{1}{6}$
- d) $\frac{1}{36}$
- 5. Using both the coin and the die, what is the probability of **flipping tails** and **rolling** 1 or 2?
 - a) $\frac{1}{4}$
 - b) $\frac{1}{12}$
 - c) $\frac{1}{2}$
 - d) $\frac{1}{6}$

Questions 6-12 are in reference to the following:

Let X and Y be independent discrete random variables that can be one of the following values: $\{2,5,6,8\}$. The probability for X and Y to take each value is different. The following table shows the corresponding probability mass functions for X and Y:

v	P(X=v)	P(Y=v)
2	0.1	0.4
5	0.2	0.15
6	0.2	0.35
8	0.5	0.1

For questions 6-9, write answers as decimals rounded to 1 decimal place.

Write your answers as decimals rounded to 1 decimal place

- 6. What is the expected value of X?
- 7. What is the expected value of Y?
- 8. What is the variance of X?
- 9. What is the variance of Y?
- 10. Evaluate the probability: P(X=2 and Y=2)
 - a) 0.41
 - b) 0.01
 - c) 0.25
 - d) 0.04
- 11. Evaluate the probability: P(X=5 and Y=6)
 - a) 0.01
 - b) 0.55
 - c) 0.07
 - d) 0.275
- 12. Evaluate the probability: P(X=8 and Y=5)
 - a) 0.325
 - b) 0.65
 - c) 0.075
 - d) 0.04

Question 13-21 are in reference to the following quantum states:

- $|\alpha\rangle = a \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|\beta\rangle = b \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $|\gamma\rangle = c \begin{pmatrix} 5 \\ 3e^{i\frac{\pi}{4}} \end{pmatrix}$

13. Write the following in vector form:

- $\langle \alpha |$
 - a) $a \begin{pmatrix} 1 & 0 \end{pmatrix}$
 - b) $a(i \ 0)$
 - c) $a(0 \ 1)$
 - d) $a\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$

14. Write the following in vector form:

- $\langle \beta |$
 - a) $b \begin{pmatrix} 1 & -1 \end{pmatrix}$
 - b) b(i 1)
 - c) $b(1 \ 1)$
 - d) $b(0 \ 1)$

15. Write the following in vector form:

- $\langle \gamma |$
 - a) $c(3 \ 5e^{i\frac{\pi}{4}})$
 - b) $c (5 \ 3e^{-i\frac{\pi}{4}})$
 - c) $c (5 \ 3e^{i\frac{\pi}{4}})$
 - d) $c \left(5i \quad e^{i\frac{\pi}{4}}\right)$

One of the most important properties of a quantum state is that it is normalized. This means that for any quantum state $|\psi\rangle$, the following must be satisfied

$$\langle \psi | \psi \rangle = 1$$

Use this relation to solve questions 16-18.

- 16. Using $\langle \alpha | \alpha \rangle = 1$, determine the value of a.
 - (a) $a = \frac{1}{2}$
 - (b) $a = \frac{1}{\sqrt{2}}$
 - (c) a = 1
 - (d) a = 3
- 17. Using $\langle \beta | \beta \rangle = 1$, determine the value of b.
 - (a) b = 1
 - (b) b = 2
 - (c) $b = \frac{1}{2}$
 - (d) $b = \frac{1}{\sqrt{2}}$
- 18. Using $\langle \gamma | \gamma \rangle = 1$, determine the value of a.
 - (a) $c = \frac{1}{\sqrt{34}}$
 - (b) $c = \frac{1}{4}$
 - (c) $c = \frac{1}{\sqrt{72}}$
 - (d) $c = \frac{1}{\sqrt{2}}$
- 19. Calculate the inner product:
 - $\langle \alpha | \gamma \rangle$
 - a) $\frac{3}{\sqrt{34}}e^{i\frac{\pi}{4}}$
 - b) 2
 - c) $\frac{5}{\sqrt{34}}$
 - d) 1
- 20. Calculate the inner product:
 - $\langle \gamma | \beta \rangle$
 - a) $\frac{1}{\sqrt{68}}(5+3e^{-i\frac{\pi}{4}})$
 - b) $\frac{1}{\sqrt{68}}(5-3e^{i\frac{\pi}{4}})$
 - c) $3e^{i\frac{\pi}{4}}$
 - d) 5

21. Calculate the inner product:

- $\langle \beta | \gamma \rangle$
 - a) 5*i*
 - b) $\frac{1}{\sqrt{68}} (5 + 3e^{i\frac{\pi}{4}})$ c) $\frac{1}{\sqrt{68}} (5 i3e^{i\frac{\pi}{4}})$ d) $3e^{\frac{\pi}{4}}$