BMEG 802 – Advanced Biomedical Experimental Design and Analysis

Probability

Joshua G. A. Cashaback, PhD

Lecture Objectives

- Point Probabilities
 - a. axioms
 - b. definitions (complement, mutually exclusive, joint, marginal, conditional)
 - c. rules (addition, subtraction, multiplication)
- Continuous Probabilities
 - a. normal distribution (univariate and multivariate)
 - b. joint, marginal, conditional

POINT PROBABILITIES

- axioms
- definitions (complement, mutually exclusive, joint, marginal, conditional)
- rules (addition, subtraction, multiplication)

Notation

- S = sample space (all possible outcomes)
- p(A) = probability of event A
- $A \cup B =$ union of events A and B
- $A \cap B =$ intersection of events A and B
- p(B|A) = probability of B given A
- p(A') or $p(A^C)$ or $p(\bar{A}) = \text{complement probability of } p(A)$

Axioms

The probability of an event is a non-negative real number

$$P(E) \geq 0$$

 The probability that at least one of the elementary events in the entire space will occur is 1

$$P(\Omega) = 1$$
.

• Any countable sequence of disjoint sets (synonymous with mutually exclusive events) E_1, E_2, \ldots satisfies

$$P\left(\bigcup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}P(E_{i}).$$

Mutually Exclusive (Disjoint Probability)

$$p(A \cup B) = p(A) + p(B)$$

0.7 = 0.4 + 0.3

Joint Probability

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$
$$0.5 = 0.4 + 0.3 - 0.2$$

• the probability of two events occuring simultaneously

Complement Probability

H	Red	Yellow	Green	Marginal probability P(H)
Not Hit	0.198	0.09	0.14	0.428
Hit	0.002	0.01	0.56	0.572
Total	0.2	0.1	0.7	1

- Probability of a single event occurring (hit), independent of other events (light)
- e.g., probabilities of getting in an accident at an intersection irrespective of lights
- note: joint probabilities in each cell

$$p(A \cap B') = p(A) - p(A \cap B)$$

$$p(A \cap B') = p(A) - p(A \cap B)$$

The marginal p(A) or p(B) is found by summating their disjoint parts.

$$p(A) = p(A \cap B) + p(A \cap B')$$
, and similarly $p(B) = p(A \cap B) + p(A' \cap B)$

- p(accepted) = 0.3
- p(funding|accepted) = 0.43
- $p(funding \cap accepted) = p(funding | accepted) \cdot p(accepted)$
- $p(funding \cap accepted) = 0.43 \cdot 0.3 = 0.13$
- Probability that an event occurs given that another specific event has already occurred

$$p(A \cap B) = p(B|A) \cdot p(A)$$
$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

$$p(A \cap B) = p(B|A) \cdot p(A)$$

$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

$$p(A \cap B) = p(A|B) \cdot p(B) \text{ (in terms of B)}$$

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

$$p(A \cap B) = p(B|A) \cdot p(A)$$

$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

$$p(A \cap B) = p(A|B) \cdot p(B) \text{ (in terms of B)}$$

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

Conditional Probability Complements

Conditional Probability Complements

Conditional Probability Complements

$$p(A \cap B') = p(B'|A) \cdot p(A)$$

Other friendly complements:
 $p(A' \cap B) = p(B|A') \cdot p(A')$
 $p(A' \cap B') = p(B'|A') \cdot p(A')$

Probability Rules

 Rule of Subtraction: The probability that A will occur is equal to 1 minus the probability that A will NOT occur.

$$p(A) = 1 - P(A')$$

Rule of Multiplication: The probability that Events A and B both occur is equal to the
probability that Event A occurs times the probability that Event B occurs, given that A has
occurred.

$$p(A \cap B) = p(A) \cdot p(B|A)$$

 Rule of Addition: The probability that Event A or Event B occurs is equal to the probability that Event B occurs minus the probability that both Events A and B occur.

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Note: we can redefine the addition rule given that $p(A \cap B) = p(A) \cdot p(B|A)$, such that:

$$p(A \cup B) = p(A) + p(B) - p(A) \cdot p(B|A)$$

CONTINUOUS PROBABILITIES

- Identical concepts to point probabilities!
- Normal distribution (univariate and multivariate)
- joint, marginal, conditional

Normal Distribution (Univariate)

- The probability that some value of x will occur
- Think of a histogram

Normal Distribution - Probability Density Function

The red curve is the standard normal distribution

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$\mathcal{N}(\mu, \sigma)$$

Normal Distribution - Cumulative Density Function

$$\Phi(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx = \frac{1}{2} \left[1 + erf\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right]$$

See Probability and Statistics Primer

Sampling from a Normal Distribution (N = 5)

Sampling from a Normal Distribution (N = 1000)

```
norm1 <- rnorm(1000, mean=10, sd=2)
par(mar=c(5,5,5,5))
plot(norm1, main="norm1", xlab="Sample",
        ylab="X-Value", cex.lab=2.0, cex.axis=2.0, cex.main=2.0)
hist(norm1, main="norm1", xlab="X-Value", ylab="Frequency",
        cex.lab=2.0, cex.axis=2.0, cex.main=2.0)</pre>
```


Summary of Sampled Data

```
summary(norm1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.780 8.822 10.073 10.056 11.351 16.888

boxplot(norm1)
```


Fit the Data

```
install.packages("fitdistrplus")
library(fitdistrplus)
## Loading required package: MASS
## Loading required package: survival
FIT <- fitdist(norm1, "norm")</pre>
FIT
## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters:
## estimate Std. Error
## mean 10.056243 0.06278478
## sd 1.985429 0.04439549
```

Fit the Data

plot(FIT)

Q-Q (Quantile-Quantile) compares quantiles (divide data into n parts), P-P(Probability-Probability) compares CDF. Both test 'normality'

Testing Normality - QQ plot

```
library("car")

## Loading required package: carData

qqnorm(norm1)

qqline(norm1)
```


Testing Normality - Shapiro-Wilk Test (Univariate)

```
library("car")
shapiro.test(norm1)
##
##
    Shapiro-Wilk normality test
##
## data: norm1
## W = 0.99921, p-value = 0.9586
p-value > 0.05 = normally distributed (we'll get more into p-values next class)
```

Testing Normality - Beta Distribution

```
beta0 <- rbeta(5000, 1, 9)
p = seq(0,1, length=100)
plot(p, dbeta(p, 1, 9), ylab="density", type ="1", col=4)
hist(beta0)
qqnorm(beta0)
qqline(beta0)</pre>
```


Testing Normality - Beta Distribution

```
##
## Shapiro-Wilk normality test
##
## data: beta0
## W = 0.86643, p-value < 2.2e-16</pre>
```

Normal Distribution (Multivariate)

Many sample points from a multivariate normal distribution with $\mu=\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right]$ and $\mathbf{\Sigma}=\left[\begin{smallmatrix} 1 & 3/5 \\ 3/5 & 2 \end{smallmatrix} \right]$, shown along with the 3-sigma ellipse, the two marginal distributions, and the two 1-d histograms.

e.g., X = height, Y = weight

Normal Distribution (Bivariate PDF)

$$f_{\mathbf{X}}(x_1, \dots, x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k \mid \mathbf{\Sigma}\mid}}$$
 (bivariate, $k = 2$)
$$\boldsymbol{\mu} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \quad \mathbf{\Sigma} = \begin{pmatrix} \sigma_X^2 & r\sigma_X\sigma_Y \\ r\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}.$$

OR

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2r\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$$

r =correlation between X and Y

 Σ is positive definite

Normal Distribution (Bivariate PDF)

Normal Distribution (Bivariate CDF)

Sample from a Bivariate Normal

install.packages("MASS")

```
library("MASS")
my_n1 <- 1000
my_mu1 <- c(0, 0)
my_Sigma1 <- matrix(c(1, 0.6, 0.6, 2), ncol = 2)
binorm <- mvrnorm(n = my_n1, mu = my_mu1, Sigma = my_Sigma1)
plot(binorm)</pre>
```


Confidence Ellipse

```
install.packages("car")
library(car)
dataEllipse(binorm[,1], binorm[,2], levels=c(0.5, 0.975))
```


Eigendecomposition on Covariance Matrix

Square root of eigenvalues = principle axes

Joint Probability

Many sample points from a multivariate normal distribution with $\mu=\left[egin{array}{c} 0 \\ 0 \end{array}
ight]$ and $\Sigma=\left[egin{array}{c} 1 & 3/5 \\ 3/5 & 2 \end{array}
ight]$, shown along with the 3-sigma

ellipse, the two marginal distributions, and the two 1-d histograms.

- The bivariate normal distribution IS an example of a Joint Distribution
 - $p(X \cap Y)$
- We have already defined its PDF and CDF
- e.g., what is the probability you are x cm tall and weigh y kg?

- Represented as the univariate normal distributions on the 'walls'
- Simply drop terms from the mean vector and covariance matrix related to the variable you want to marginalize out
- $p(X) = \mathcal{N}(\mu_X, \sigma_X^2)$ and $p(Y) = \mathcal{N}(\mu_Y, \sigma_Y^2)$
- e.g., what is the probability you weigh y kg?

Many sample points from a multivariate normal distribution with $\mu=\left[egin{array}{c} 0 \\ 0 \end{array}
ight]$ and $\Sigma=\left[egin{array}{c} 1 & 3/5 \\ 3/5 & 2 \end{array} \right]$, shown along with the 3-sigma ellipse, the two marginal distributions, and the two 1-d histograms.

$$p(X \mid Y = y) = \mathcal{N}\left(\mu_X + \frac{\sigma_X}{\sigma_Y}r(y - \mu_Y), (1 - r^2)\sigma_X^2\right).$$

- e.g., probability that you are x cm tall given you weigh y kg
- $(1-r^2)\sigma_X^2$ is the variance, so take square root to find SD