Sayısal Devreler

Doç. Dr. Berna Örs Yalçın

İstanbul Teknik Üniversitesi Elektrik-Elektronik Fakültesi Oda No: 2318

E-mail: siddika.ors@itu.edu.tr

Değerlendirme

- 1. Yıliçi Sınavı %35
 - □ CRN30538 için 16 Temmuz 2013 saat 13:30
 - □ CRN30734 için 17 Temmuz 2013 saat 13:30
- 5 Ödev %15
- Final Sınavı %50
 - □ CRN30538 için 06 Ağustos 2013 saat 13:30
 - □ CRN30734 için 07 Ağustos 2013 saat 09:30

Amaç ve Hedefler

- Bu dersin amacı:
 - □ Sayısal sistemleri tanımlamak
 - Sayısal tasarımın temel tasarım bloklarını tanımlamak
 - □ Temel blokların daha büyük sistemlerde nasıl kullanıldığını öğretmek
- Bu dersi başarıyla tamamlamış bir öğrenci:
 - Sayısal sistemlerin önemini anlamış olacak.
 - □ Bir sayısal devreyi tasarlayabilir hale gelecek.
 - □ Temel kombinezonsal ardışıl yapı taşlarını öğrenmiş olacak.
 - Büyük sayısal sistemlerin nasıl tasarlandığını öğrenmiş olacak.

Kaynaklar

- Ders kitabı :
 - □ Digital Design, M. Morris Mano, Michael D. Ciletti,
 - Logic and Computer Design Fundamentals, 4/E,
 M. Morris Mano and Charles Kime, Prentice Hall,
 2008.
- Ders sunumu, ödevler ve duyurular: ninova

Dersin İçeriği

- 1. Sayısal Sistemler ve Bilgi
- 2. Kombinezonsal Devreler
- 3. Kombinezonsal Devre Tasarımı
- 4. Matematik Fonksiyonlar
- 5. Ardışıl Devre Elemanları
- 6. Ardışıl Devre Tasarımı

Sayısal Sistem

Ayrık zamanlı serbest giriş ve sistem durumu bilgilerini kullanarak ayrık zamanlı çıkış bilgisini üretir.

•

Sayısal Sistemlerin Türleri

- Durum Kullanılmayan
 - □ Kombinezonsal sayısal sistem
 - Çıkış = f(Giriş)
- Durum Kullanılan Ardışıl sayısal sistem
 - □ Senkron
 - Durum belirli zamanlarda yenilenir
 - □ Asenkron
 - Durum her zaman yenilenir
 - □ Durum = f(Durum,Giriş)
 - □ Çıkış = f(Durum) veya or Çıkış = f(Durum,Giriş)

Sayısal Sistem Örneği:

Bir Sayısal sayıcı:

Girişler: İleri say, Başa dön

Çıkışlar: Ekran

Durum: O an gösterilen değer

Analog – Sayısal İşaretler

- Gerçek dünyada karşılaştığımız birçok fiziksel büyüklük (akım, gerilim, sıcaklık, ışık şiddeti vb.) değeri sürekli bir aralık içinde değişmektedir.
- Sınırlar arasındaki her türlü değeri alabilen bu tür işaretlere analog işaretler denir.
- Sayısal sistemlerde bilgi ayrık değerler alır.
- İkili sayısal işaretler belli bir anda sadece olası iki değerden birini alabilirler: 0-1, yüksek – alçak, açık – kapalı.

Zamana göre işaret örnekleri

Analog İşareti Sayısal İşarete Dönüştürme

Sayısal Sistemlerin Avantajları

- Bir sayısal sisteme aynı giriş kümesi defalarca uygulandığında hep aynı çıkış kümesi elde edilir.
 - Analog sistemler ise çevre koşullarından daha çok etkilenirler ve çıkışları değişiklik gösterebilir.
- Sayısal sistem tasarımı dayandığı matematiksel temeller açısından daha kolaydır.
- Sayısal sistemleri test etmek ve hatalardan arındırmak daha kolaydır.
- Esneklik ve programlanabilirlik

Sayısal Sistem Gerçekleme Aşamaları

Sayısal Kodlama

- Sayısal devreler yardımıyla üzerinde işlem yapılacak olan fiziksel büyüklüklere ve her türlü veriye ikili sayılar karşı düşürülür.
- Örneğin 8 basamaklı bir ikili sayı kullanarak
 28 tane (256) farklı "şey" ifade edebiliriz.
- Bir ikili değerin (örneğin 10001011) ne anlama geldiğine o değeri kullanacak olan sistem belirler. Bu değer bir sayı da olabilir, bir renk de, ...

BCD (Binary Coded Decimal) İkili Kodlanmış Onlu Sayılar

- 0-9 arasındaki rakamlara 4 bitlik bir ikili kod karşı düşürülür.
- Artıklı Kodlamadır: 4 bit ile 16 farklı kodlama yapılabilmekte, ancak bunlardan sadece 10 tanesi kullanılmaktadır.

Doğal BCD:

Sayı:	Kod:	Sayı:	Kod:	Örnek:
0:	0000	5:	0101	Sayı: 805
1:	0001	6:	0110	Kod:1000 0000 0101
2:	0010	7 :	0111	
3:	0011	8:	1000	
4:	0100	9:	1001	

- Ağırlıklı Kodlama: Bitlerin konumlarına birer ağırlık verilir.
 - Doğal ikili kodlama: Sayıların ağırlıklı kodlama ile 2 tabanında gösterilmesidir.
 - \Box (11010)₂ =1·2⁴+1·2³+0·2²+1·2¹+0·2⁰=26
 - ☐ Soldaki ilk basamağa en yüksek anlamlı bit (Most Significant Bit - MSB), sağdaki ilk basamağa en düşük anlamlı bit (Least Significant Bit - LSB) denir.
 - Hamming Uzaklığı: n uzunluğundaki iki kod sözcüğünde aynı sırada olup değerleri farklı olan bileşenlerin sayısıdır.
 - □ 011 ile 101 arasındaki uzaklık 2 dir.
 - Bitişik Kodlar: Birbirini izleyen sayılara karşı gelen kodlar arasındaki Hamming uzaklığı 1 ise o kodlama bitişiktir.
 - Çevrimli Kodlar: Kodlama bitişik ve ayrıca son kod ile ilk kod arasında da Hamming uzaklığı 1 ise kod çevrimlidir.

Çevrimli BCD Kodu:

Kod: Kod: Sayı: Sayı: 0000 5: 1110 0: 1: 0001 6: 1010 2: 0011 1000 3: 8: 0010 1100 4: 0100 0110 9:

Gray Kodu: 2ⁿ elemanlı bir küme için 2 tabanında artıksız ve çevrimli bir kodlama

Örnek: 2 –bitlik bir Gray kodu:

Sayı: Kod:

0: 00

1: 01

2: 11

3: 10

M

Sayıların Gösterilimi

- Pozitif taban, ağırlıklı sayı sistemleri
- r tabanında gösterilen bir sayı basamaklardan oluşan bir dizi ile gösterilir.

$$A_{n-1}A_{n-2} \dots A_1A_0 \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$$

burada $0 \le A_i < r$ ve taban noktasıdır.

Basamak dizisi bir kuvvet serisini ifade eder:

$$(\text{sayl})_{10} = \left(\sum_{i=0}^{i=n-1} A_i \cdot r^i\right) + \left(\sum_{j=-m}^{j=-1} A_j \cdot r^j\right)$$

$$(\text{Tamsayl parçasl}) + (\text{Kesirli parça})$$

M

İşaretsiz Sayıların Gösterilmesi

Doğal ağırlıklı ikili kodlama kullanılır.

Örnek:
$$215_{10} = (1101\ 0111)_2 = 12^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

En yüksek anlamlı bit (MSB)

En düşük anlamlı bit (LSB)

8 bit ile ifade edilebilecek en büyük işaretsiz sayı: $(1111 \ 1111)_2=255_{10}$ 8 bit ile ifade edilebilecek en küçük işaretsiz sayı: $(0000 \ 0000)_2=0_{10}$

Çok kullanılan tabanlar

İsim	Taban	Basamaklar
İkili	2	0,1
Sekizli	8	0,1,2,3,4,5,6,7
Onluk	10	0,1,2,3,4,5,6,7,8,9
Onaltılık	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Onaltılık tabanda kullanılan 6 harf 10, 11, 12, 13, 14 ve 15 i gösterir.

Farklı tabanda sayıların gösterilimi

Decimal	Binary	Octal	Hexadecimal
	· •		
(Base 10)	(Base 2)	(Base 8)	(Base 16)
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	0E
15	01111	17	0F
16	10000	20	10

Onluk tabandan diğer tabanlara dönüşüm

- 1) Tamsayı parçayı dönüştür
- 2) Kesirli parçayı dönüştür
- 3) İki sonucu bir taban noktası ile birleştir.

Dönüşüm Kuralları

- Tam sayı parçayı dönüştürme:
 - Sayıyı dönüştürülecek taban ile tekrarlı böl.
 - Kalanları ters sırada kayıt et.
 - Yeni tabanda basamaklar ters sırada kalanlardır.
- Kesirli parçayı dönüştürme:
 - Kesiri dönüştürülecek tabanla tekrarlı çarp.
 - 🗆 Tamsayı basamağını kayıt et.
 - Yeni kesirli sayının basamakları sonuçların hesaplandığı sıradaki tam sayı kısımlarıdır.

M

Örnek:

46.6875₁₀ sayısını 2 tabanına dönüştür

- 46 yı ikili tabana dönüştür
 - □ 46/2=23 kalan 0
 - □ 23/2=11 kalan 1
 - □ 11/2=5 kalan 1
 - □ 5/2=2 kalan 1
 - □ 2/2=1 kalan 0
 - □ 1/2=0 kalan 1
- 0.6875 yı ikili tabana dönüştür
 - □ 0.6875*2=1.375
 - □ 0.375*2=0.75
 - \Box 0.75*2=1.5
 - \Box 0.5*2=1
 - □ 0*2=0
- İki sonucu bir taban noktası ile birleştir
 - □ 101110.10110₂

Örnek:

46.6831₁₀ sayısını 16 tabanına dönüştür

- 46 yı 16 tabana dönüştür
 - □ 46/16=2 kalan 14
 - □ 2/16=0 kalan 2
- 0.6831 yı 16 tabana dönüştür
 - □ 0.6831*16=10.9296
 - □ 0.9296*16=14.8736
 - □ 0.8736*16=13.9776
 - □ 0.9776*16=15.6416
- Sonuçları kesir noktası ile birleştir:
 - □ 2E.AEDF₁₆

r tabanından onluk tabana dönüşüm

- Tabanın ilgili kuvveti ile basamakların çarpımını topla
- 101110.10110₂ sayısını onluk taban çevir

$$101110_{2} = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$$

$$= 32 + 8 + 4 + 2$$

$$= 46$$

$$0.1011_{2} = 1/2 + 1/8 + 1/16$$

$$= 0.5000 + 0.1250 + 0.0625$$

$$= 0.6875$$

Sekizli/onaltılı (Octal/Hex) tabandan ikili ve geriye dönüşüm

- Sekizli (onaltılı) den İkili tabana:
 - □ Her bir basamak ikili tabanda yazılır.
- İkiliden sekizli (onaltılı) tabanına:
 - □ Basamaklar taban noktasından başlanarak iki tarafa doğru üçlü (dörtlü) gruplanır.
 - Her bir grup sekizli (onaltılı) tabanına dönüştürülür.

Örnek

- Sekizli (onaltılı) den İkili tabana:
 - \square 743.056₈=111 100 011.000 101 110₂
 - \square A49.0C6₁₆=1010 0100 1001.0000 1100 0110₂
- İkiliden sekizli (onaltılı) tabanına:
 - $\Box 1 |011 |100 |011.000 |101 |110 |1_2 = 1343.0564_8$
 - $\square 1 |1010 |0100 |1001.0010 |1100 |0110 |1_2 = 1A49.2C68_{16}$

İkili taban kullanılarak sekizli den onaltılık tabanına dönüşüm

- Octal den ikili tabana dönüştür.
- Daha önce anlatıldığı gibi hez tabanına dönüştür.

м

2'nin özel kuvvetleri

- 2¹⁰ (1024) Kilo, "K" ile gösterilir.
- ²⁰ (1,048,576) Mega, "M" ile gösterilir.
- 2³⁰ (1,073, 741,824) Giga, "G" ile gösterilir.
- 2⁴⁰ (1,099,511,627,776) Tera, "T" ile gösterilir.

İşaretli Sayıların Gösterilmesi

- Pozitif ve negatif sayıları ayırt etmek için ikili sayının en yüksek anlamlı bitine bakılır.
 - □ "0" ise pozitif
 - ☐ "1" ise negatif
- 8 bit ile gösterilebilecek pozitif sayılar 0000 0000 ile 0111 1111 yani 0 ile + 127 arasında değişecektir.
- Negatif sayıların gösteriminde 2'ye tümleme yöntemi kullanılır.
 - Pozitif bir sayının 2'ye tümleyeni hesaplandığında o sayının negatif gösterilimi elde edilmiş olur.
- Bir sayının 2'ye tümleyenini elde etmek için
 - □ Sayı 1'e tümlenir, yani 0'lar 1, 1'ler 0 yapılır.
 - □ 1'e tümlenmiş sayıya 1 eklenir.

Negatif Sayılara Örnekler

8 bitlik 5_{10} sayısı 5 mod 256 olarak düşünülebilir. -5_{10} mod 256 = 256-5 mod 256=251 mod 256

Negatif Sayılara Örnekler

 $5_{10} \mod 256 = 256 - (-5) \mod 256 = 256 - 251 \mod 256$

İkili Sayıların Uzatılması

- Bazı durumlarda daha az bit ile ifade edilen bir sayıyı daha büyük bir yere yazmak ya da daha uzun bir sayı ile işleme sokmak gerekebilir.
- Bu durumda sayı uzatılır.
- İşaretsiz sayılar: Sayının başına gerektiği kadar sıfır '0' eklenir.
 - □ Örnek: 4 bitlik 3₁₀: 0011 8 bitlik 3₁₀: 0000 0011
- İşaretli sayılar: Sayının başına sayının işareti gerektiği kadar eklenir. Buna işaret uzatma denir.
 - □ Örnek: 4 bitlik 3₁₀: 0011 8 bitlik 3₁₀: 0000 0011
 - □ Örnek: 4 bitlik -7₁₀: 1001 8 bitlik -7₁₀: 1111 1001

İkili Matematik

- Elde ile bir bit uzunluklu toplama
- Birden fazla bit uzunluklu toplama
- Borç ile bir bit uzunluklu çıkartma
- Birden fazla bit uzunluklu çıkartma
- Çarpma

Elde ile bir bit uzunluklu toplama

Z

Toplanacak iki basamak (X,Y), elde girişi (Z) kullanılarak toplama yapıldığında aşağıdaki toplam (S) ve elde çıkışı (C) elde edilir: 0

Elde girişi (Z) 0 ise:

0

Elde girişi (Z) 1 ise:

0

10

İşaretsiz sayıların toplanması

- Not: En düşük anlamlı basamağın elde girişi her zaman '0' dır.
- n-bitlik iki sayı toplandığında sonuç n+1bitliktir.

İşaretli sayıların toplanması

İşaretli sayıların toplanması

- •Taşma oluşmuştur. 4-bit ile gösterilebilen en büyük pozitif sayı +7 dir. Daha büyük sayılar 4-bit ile gösterilemez.
- •4-bit ile gösterilebilen mutlak değeri en büyük negatif sayı -8 dir. Mutlak değeri daha büyük olan negatif sayılar 4-bit ile gösterilemez.
- Sayıların hangi bit uzunluğu ile gösterileceğine yapılacak işlemlere ve bu işlemler sonucunda ortaya çıkması olası olan sonuçların sınırlarına göre karar verilmelidir.

Borç ile bir bit uzunluklu çıkartma

Çıkarma işlemi yapılacak iki basamak (X,Y), borç girişi
 (Z) kullanılarak çıkarma yapıldığında aşağıdaki fark (S)
 ve borç çıkışı (B) elde edilir:

1 2 1 3 3 1 1 1 3 1 () 2 1 2 1 2 1 3 1				
■ Borç girişi (Z) 0 ise: Z	0	0	0	0
${f X}$	0	0	1	1
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>
BS Z	$\begin{array}{c} 0 \ 0 \\ 1 \end{array}$	1 1 1	$\begin{array}{c} 0\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \ 0 \\ 1 \end{array}$
Borç girişi (Z) 1 ise: X	0	0	1	1
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>
BS	11	10	0 0	11

İşaretsiz sayılar ile çıkartma

Borç	00000		00110	
X	10110	22	10110	22
Υ	<u>- 10010</u>	<u>-18</u>	<u>- 10011</u>	<u>-19</u>
Fark	00100	4	00011	3

Not: En düşük anlamlı basamağın borç girişi her zaman '0' dır. Eğer Y>X ise X ve Y yer değiştirilir ve sonucun başına – işareti eklenir.

- •Taşma oluşmuştur. 4-bit ile gösterilebilen en büyük pozitif sayı +7 dir. Daha büyük sayılar 4-bit ile gösterilemez.
- •4-bit ile gösterilebilen mutlak değeri en büyük negatif sayı -8 dir. Mutlak değeri daha büyük olan negatif sayılar 4-bit ile gösterilemez.

İkili Çarpma

İkili çarpım tablosu:

$$0 * 0 = 0 | 1 * 0 = 0 | 0 * 1 = 0 | 1 * 1 = 1$$

Çarpmayı birden çok bit uzunluklu sayılar ile yapma:

Çarpılan	1011
Çarpan	<u>x 101</u>
Ara çarpım	1011
_	0000 -
	<u> 1011</u>
Carpim	110111

45

İkili Lojik ve Kapılar

- ■İkili değişkenler iki değerden birini alırlar
- Lojik işlemler ikili değerler ve ikili değişkenler üzerinde çalışır
- ■Temel lojik işlemler VE, VEYA ve TÜMLEME dir
- Lojik kapılar lojik işlemleri gerçeklerler
- Boole Cebri: lojik fonksiyonları tanımlamak ve birbirine dönüştürmek için kullanılan matematik sistemidir
- Biz sayısal sistemlerin analizi ve tasarımının temelini oluşturan Boole cebrini inceleyeceğiz

İkili Değişkenler

- İkili değişkenlere farklı isimler verilebilir
 - □ Doğru/Yanlış
 - □ Açık/Kapalı
 - □ Evet/Hayır
 - 1/0
- Biz bu iki değeri göstermek için 1 ve 0'ı kullanacağız.

Lojik İşlemler

- Temel üç lojik işlem:

 - □ VEYA
- VE (·) ile gösterilir
- VEYA (+) ile gösterilir
- TÜMLEME değişkenin üzerinde bir çizgi(), değişkenden sonra (') veya değişkenden önce (~) ile gösterilir

М

Gösterilim Örnekleri

■ Örnekler:

- $\Box Y = A \cdot B \implies "Y A ve B dir"$
- $\Box z = x + y \Rightarrow$ "z x veya y dir"
- $\square X = \overline{A} \implies "X A'nın tersidir"$

Not:

1 + 1 = 2 ("bir artı bir ikidir) 1 + 1 = 1 ("1 veya 1 1'e eşittir") ifadeleri birbirine eşit değildir.

İşlem Tanımları

• Işlemler '0' ve '1' değerleri üzerinden tanımlanırlar.

VE

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

VEYA

$$0 + 0 = 0$$

$$0 + 1 = 1$$
 $\overline{1} = 0$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

TÜMLEME

$$\bar{0} = 1$$

$$\bar{1} = 0$$

Doğruluk Tabloları

- Doğruluk Tablosu bir fonksiyonun çıkış değerini bu fonksiyonun bütün mümkün olan giriş değerleri için gösteren tablo
- Örnek: Temel işlemlerin doğruluk tabloları

VE			
X	Y	$Z = X \cdot Y$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

VEYA			
X	Y	Z = X+Y	
0	0	0	
0	7	1	
1	0	1	
1	1	1	

TÜMLEME			
X	$Z = \overline{X}$		
0	1		
1	0		

100

Boole Cebri

- B={0,1} kümesi üzerinde tanımlı
- İkili İşlemler : VE, VEYA (⋅, +)
- Birli İşlem: TÜMLEME (—)

Aksiyomlar

a, b, c ∈ B olmak üzere

1. Kapalılık: a + b = c

2. Değişme: a + b = b + a

3. Dağılma: a+(b · c)=(a+b) · (a+c)

4. Birleşme: a+(b+c)=(a+b)+c

5. Etkisiz eleman: a+0=a

6. Tümleme: a+a'=1

 $a \cdot b = c$

 $a \cdot b = b \cdot a$

 $a \cdot (b+c)=a \cdot b+a \cdot c$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

a · 1=a

a ⋅ a ′=0

Boole İşlemlerinin Sırası

- 1. Parantez
- 2. TÜMLEME
- 3. VE
- 4. VEYA

- Sonuç: VEYA ifadelerinin etrafında parantez vardır.
- •Örnek: F = A(B + C)(C + D)

Özellikler ve Teoremler

 Burada gösterilen tüm özellikler ve teoremler Boole cebrinin aksiyomları kullanılarak ispat edilebilir.

- 1. Yutma: a+1=1 $a \cdot 0=0$
- 2. Dönüşme: (a')'=a
- 3. Sabit kuvvet: a+a+...+a=a a · a · ... · a=a
- 4. Soğurma: $a+a \cdot b=a$ $a \cdot (a+b)=a$
- 5. De Morgan Teoremi: $(a+b)'=a' \cdot b'$ $(a \cdot b)'=a'+b'$
- 6. Genel De Morgan Teoremi: $f'(X1,X2,...,Xn,0,1,+,\cdot) \Leftrightarrow f(X1',X2',...,Xn',1,0,\cdot,+)$

Örnek1: Boole Teoremlerinin İspatı

■ A + A·B = A (Yutma)

ispat adımları
A + A·B
$$= A \cdot 1 + A \cdot B$$

$$= A \cdot 1 + A \cdot B$$

$$= A \cdot (1 + B)$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A \cdot 1$$

- İspatları yapmamızın sebebi:
 - Boole cebrinin aksiyom ve teoremlerini kullanmayı öğrenmek
 - Boole fonksiyonlarıyla işlem yapmak için doğru aksiyom ve teoremi seçmeyi öğrenmek

Örnek2: Boole Teoremlerinin İspatı

■ AB + A'C + BC = AB + A'C (Consensus Theorem)

İspat adımları

$$AB + A'C + BC$$

$$=AB + A'C + 1 \cdot BC$$

$$=AB +A'C + (A + A') \cdot BC$$

$$=AB +A'C + ABC + A'BC$$

$$=AB+A'(C+BC)$$

$$=AB+A'C$$

Aksiyomlar

$$1. X = X$$

$$X + X' = 1$$

$$X(Y + Z) = XY + XZ$$

$$X + Y = Y + X$$

$$X(Y + Z) = XY + XZ$$

Örnek3: Boole Teoremlerinin İspatı

•
$$(\overline{X} + \overline{Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$

ispat adımları Aksiyomlar
 $(\overline{X} + \overline{Y})Z + X\overline{Y}$

$$= X'Y'Z+XY'$$

$$= (X'Z+X)Y'$$

$$= (X'+X) (Z+X)Y'$$

$$= (Z+X)Y'$$

De Morgan Teoremi

Dağılma

Dağılma

Tümleme

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x}z$$

Giriş sayısı=n olmak üzere

2^{2ⁿ} farklı n değişkenli Boole fonksiyonu tanımlanabilir.

X	y	Z	F1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Boole Fonksiyonlarının İndirgenmesi

Amaç en az sayıda değişken bırakmak.

$$= AB + ABCD + A'CD + A'CD' + A'BD$$

$$= AB + AB(CD) + A'C(D+D') + A'BD$$

$$= AB + A'C + A'BD = B(A + A'D) + A'C$$

$$= B(A + D) + A'C$$

5 değişken

Kanonik Gösterilimler

- Kanonik gösterilimler nelerdir?
- Çarpım terimleri (Minterms) ve toplam terimleri (Maxterms)
- Çarpım terimleri ve toplam terimlerin indis ile gösterilimi
- Çarpımlar toplamı gösterilim
- Toplamlar çarpımı gösterilim
- Fonksiyonların tümlemelerinin gösterilimi
- Gösterilimler arası dönüşümler

Kanonik Gösterilimler

- Boole fonksiyonları aşağıdaki kolaylıkları sağlayacak bir gösterilimle tanımlanır:
 - □ Eşitliğin karşılaştırılması
 - Doğruluk tablosu ile birebir olma
- Çok kullanılan kanonik gösterilimler:
 - □ Çarpımlar toplamı
 - □ Toplamlar çarpımı

Çarpım terimleri

- Çarpım terimleri bütün değişkenlerin veya tümleyenlerinin göründüğü VE terimleridir.
- n değişkenli bir Boole fonksiyonunun 2ⁿ çarpım terimi vardır.
- Örnek: İki değişkenli bir Boole fonksiyonunun çarpım terimleri 2 x 2 = 4 tanedir:

$$\frac{XY}{XY}$$

$$\frac{XY}{XY}$$

Toplam terimleri

- Toplam terimleri bütün değişkenlerin veya tümleyenlerinin göründüğü VEYA terimleridir.
- n değişkenli bir Boole fonksiyonunun 2ⁿ toplam terimi vardır.
- Örnek: İki değişkenli bir Boole fonksiyonunun çarpım terimleri 2 x 2 = 4 tanedir:

$$X + Y$$

$$X + \overline{Y}$$

$$\overline{X} + Y$$

$$\overline{X} + \overline{Y}$$

Çarpım ve Toplam Terimleri

 Örnek: İki değişkenli çarpım ve toplam terimleri

İndis	Çarpım Terimi	Toplam Terimi
0	$\overline{x}\overline{y}$	x + y
1	x y	x + y
2	x y	x + y
3	ху	$\overline{x} + \overline{y}$

İndis hangi değişkeninin kendisinin hangi değişkenin tümleyeninin yer aldığını gösterir.

Normal Sıralama

- Çarpım ve toplam terimlerine bir sıra numarası karşılık düşer.
- Bu sıra numarası bir ikili sayı ile gösterilir.
- İkili sayının bitleri değişkenlerin kendisinin veya tümleyenin terim içinde yer alacağını gösterir.
- Çarpım ve toplam terimlerinin içinde değişkenler hep aynı sırada yer alırlar
- Örnek: a, b, c değişkenleri için:
 - \square Toplam terimleri: (a + b + c), (a + b + c)
 - □ Terimler: (b + a + c), a c b ve (c + b + a) normal sıralamada değiller.
 - □ Çarpım terimleri: a b c, a b c, a b c
 - □ Terimler : (a + c), b c ve (a + b) bütün değişkenleri içermiyorlar.

İndisin Kullanılma Sebebi

- İkili sayı ile gösterilen indis çarpım veya toplam terimindeki değişkenlerin kendisinin mi yoksa tümleyeninin mi kullanılacağını gösterir.
- Çarpım terimleri için:
 - "1" değişkenin kendisinin
 - "0" değişkenin tümleyeninin yer aldığını gösterir.
- Toplam terimleri için:
 - □ "0" değişkenin kendisinin
 - □ "1" değişkenin tümleyeninin yer aldığını gösterir.

100

Üç değişken için indis örneği

- Değişkenler X, Y ve Z.
- Normal sıralama X, Y, Z.
- İndis 0₁₀=(000)₂ ise çarpım teriminde bütün değişkenlerin tümleyeni görülür, toplam teriminde bütün değişkenlerin kendileri görülür.
- Çarpım terimi 0, m_0 ile adlandırılır $\overline{X}\overline{Y}\overline{Z}$.
- Toplam terimi 0, M_0 ile adlandırılır (X + Y + Z).
- Çarpım terimi 6 ?
- Toplam terimi 6 ?

İndis Örnekleri – Dört Değişken

İndis	İkili	Çarpım	Toplam
i	Sayı	\mathbf{m}_{i}	M_{i}
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+c+\overline{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	$a\bar{b}c\bar{d}$	$\bar{a}+b+\bar{c}+d$
13	1101	abcd	?
15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Çarpım ve Toplam Terimlerinin İlişkisi

■ DeMorganTeoremi $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}} \text{ ve } \overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

■ İki değişkenli örnek:

$$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$$
 ve $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Yani $M_2 m_2$ nin tümleyenidir. m_2 de M_2 nin tümleyenidir.

$$M_i = \overline{M}_i$$
 $m_i = \overline{M}_i$

re.

Çarpımlar Toplamı Gösterilim

■ Örnek: $F_1(x,y,z) = m_1 + m_4 + m_7$

 $\blacksquare F_1 = \overline{X} \overline{y} z + x \overline{y} \overline{z} + x y z$

хух	index	m_1	+	m_4	+	m_7	$= F_1$
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	=0
011	3	0	+	0	+	0	=0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	=0
110	6	0	+	0	+	0	=0
1 1 1	7	0	+	0	+	1	= 1

Çarpımlar Toplamı Örneği

- \blacksquare F(A, B, C, D, E) = $m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) = A'B'C'DE'+A'BC'D'E+AB'C'D'E+AB'CDE

Toplamlar Çarpımı Örneği

■ Örnek:

Toplamlar Çarpımı Örneği

- $F(A,B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$
- F(A,B,C,D)= (A+B+C'+D')(A'+B+C+D)(A'+B+C'+D')(A'+B'+C'+D)

Çarpımlar Toplamı Gösterilim

- Her Boole fonksiyonu çarpımlar toplamı ile gösterilebilir.
 - □ Kullanılan çarpım terimleri doğruluk tablosundaki 1"lere karşılık düşer.
 - □ Çarpımlar toplamı şeklinde gösterilmemiş Boole fonksiyonlarında bütün terimleri değişkenlerin hepsi görülecek şekilde genişletmek gerekir. Bu eksik olan terim v ise terimi ($v + \overline{v}$) ile çarpılarak yapılır.
- Örnek: $f = x + \overline{x}$ \overline{y} fonksiyonunun çarpımlar toplamı gösterilimini bulunuz.
 - \Box Terimleri genişlet $f = x(y + \overline{y}) + \overline{x} \overline{y}$
 - □ Terimleri dağıt: $f = xy + x\overline{y} + \overline{x}\overline{y}$
 - □ Çarpımlar toplamı şeklinde göster: f = m₃ + m₂ + m₀

Çarpımlar Toplamı Gösterilim Örneği

- \blacksquare Örnek: F = A + B C
- Üç değişken var: A, B, C
- Terimler eksik değişkenler ile genişletilir:

$$F = A(B + B')(C + C') + (A + A') B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= ABC + ABC' + AB'C + AB'C' + A'B'C$$

$$= m_7 + m_6 + m_5 + m_4 + m_1$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

100

Çarpımlar Toplamının Kısa Gösterilimi

- Önceki örnekte $F = A + \overline{B}C$ ile başladık.
- $F = m_1 + m_4 + m_5 + m_6 + m_7$ bulduk.
- Bu kısa olarak aşağıdaki gibi gösterilebilir:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Toplamlar Çarpımı Gösterilimi

- Her Boole fonksiyonu toplamlar çarpımı ile gösterilebilir.
 - Kullanılan toplam terimleri doğruluk tablosundaki 0"lara karşılık düşer.
 - □ Toplamlar çarpımı şeklinde gösterilmemiş Boole fonksiyonlarında bütün terimleri değişkenlerin hepsi görülecek şekilde genişletmek gerekir. Bu eksik olan terim v ise terimi ($\mathbf{v} \cdot \mathbf{\overline{v}}$) ile toplanarak yapılır.
- Örnek: $f(x, y, z) = x + \overline{x} \overline{y}$ fonksiyonunun toplamlar çarpımı ifadesini bulunuz.
 - Dağılma özelliğini kullan $x + \overline{x} \ \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$
 - Eksik olan değişken z'yi ekle $x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$
 - □ Toplamlar çarpımı olarak göster:

$$f = M_2 \cdot M_3$$

Toplamlar Çarpımı Örneği

 Aşağıdaki fonksiyonun toplamlar çarpımı gösterilimini bulunuz.

$$f(A, B, C) = A \overline{C} + B C + \overline{A} \overline{B}$$

$$f = (AC' + BC + A') (AC' + BC + B')$$

$$f = ((AC' + B)(AC' + C) + A')((AC' + B)(AC' + C) + B')$$

$$f = ((A + B)(C' + B)(A + C)(C' + C) + A')((A + B)(C' + B)(A + C)(C' + C) + B')$$

$$f = ((A + B)(C' + B)(A + C) + A') ((A + B)(C' + B)(A + C) + B')$$

$$f = (A + B + A')(C' + B + A')(A + C + A')(A + B + B')(C' + B + B')(A + C + B')$$

$$f = (A' + B + C')(A + B' + C)$$

$$f = M_5 \cdot M_2$$

Fonksiyonların Tümleyenleri

- Çarpımlar toplamı ile gösterilen bir fonksiyonun tümleyeni çarpımlar toplamında görünmeyen terimler kullanılarak ifade edilir.
- Ya da aynı indislere sahip toplamlar çarpımı ifade ile gösterilir.
- Örnek: $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$ $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$ $\overline{F}(x, y, z) = \Pi_M(1, 3, 5, 7)$

Boole Fonksiyonlarının Anahtar Devreleri İle Gerçeklenmesi

- Anahtarları Kullanarak
 - □ Girişler için:
 - lojik 1 <u>anahtar kapalı</u>
 - lojik 0 <u>anahtar açık</u>
 - □ Çıkışlar için:
 - lojik 1 <u>ışık açık</u>
 - lojik 0 ışık kapalı
 - □ TÜMLEME
 - lojik 1 <u>anahtar açık</u>
 - lojik 0 <u>anahtar kapalı</u>

Paralel Anahtarlar \Rightarrow VEYA

Normalde kapalı anahtar ⇒ TÜMLEME

Boole Fonksiyonlarının Anahtar Devreleri İle Gerçeklenmesi

- Işık (E = 1) ise açıktır. (E = 0) ise kapalıdır.
 - ☐ Yol fonksiyonlarının toplamı:
 - f(A, B, C, D) = ABC'+AD
 - Kesitleme fonksiyonlarının çarpımı:
 - f(A, B, C, D) = A (B+D) (C'+D)

Örnek: f_{AB}=?

$$\begin{split} f_{AB} &= \Sigma_{m}(10,11,13,15) \\ f_{AB} &= \Pi_{M}(0,1,2,3,4,5,6,7,8,9,12,14) \end{split}$$

x ₁	X ₂	X ₃	X ₄	f _{AB}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Örnek: f_{AB}=?

Yol Fonksiyonlarının Toplamı:

Kesitleme Fonksiyonlarının Çarpımı:

$$f_{AB} = x_1(x_2 + x_3 + x_1')(x_2 + x_3 + x_2' + x_1 + x_2)(x_4 + x_2' + x_1')(x_4 + x_1 + x_2)$$

= $x_1(x_2 + x_3 + x_1')(x_4 + x_2' + x_1')(x_4 + x_1 + x_2)$

Lojik Kapılar

- İlk bilgisayarlarda anahtarlar röleler tarafından kontrol edilen elektromanyetik alanlar yardımı ile açılıp kapanıyordu. Anahtarlar da akım yollarını açıp – kapamada kullanılıyorlardı.
- Daha sonra vakum tüpleri akım yollarını açıp kapamada rölelerin yerini aldılar.
- Günümüzde tranzistörler elektronik anahtarlar olarak kullanılmaktadır.

Lojik Kapılar ve sembolleri

- Lojik kapıların özel sembolleri vardır.
- Davranış biçimleri aşağıdaki gibidir.

10

Kapı Gecikmesi

- Fiziksel kapılarda bir veya birden fazla giriş değiştiğinde çıkış hemen değişmez.
- Girişlerden herhangi birindeki değişimden sonra çıkıştaki değişime kadar geçen süreye kapı gecikmesi denir ve t_K ile gösterilir.

Lojik Diyagramlar ve İfadeler

Doğruluk Tablosu

Dograluk Tabiosu			
XYZ	$F = X + \overline{Y} \cdot Z$		
000	0		
0 0 1	1		
010	0		
011	0		
100	1		
101	1		
110	1		
111	1		

Fonksiyon

$$F = X + \overline{Y} Z$$

Lojik Diyagram

- Boole fonksiyonları, doğruluk tabloları ve lojik diyagramlar aynı fonksiyonu gösterir.
- Her fonksiyonun doğruluk tablosu tektir. Ancak Boole fonksiyonu ve lojik diyagramı tek değildir. Bu gerçeklemede esneklik sağlar.

Çarpımlar Toplamı Gösteriliminin İndirgenmesi

- Örnek: $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Çarpımlar toplamı ifade:
 F = A'B'C + AB'C' + ABC' + ABC'
- İndirgeme:

$$F = A'B'C + A (B'C' + B'C + BC' + BC)$$

$$= A'B'C + A (B' + B)(C' + C)$$

$$= A'B'C + A 1 1$$

$$= B'C + A$$

İndirgenmiş ifade 3 değişken içerir.

Çarpımlar Toplamı İfadenin VE/VEYA İki Seviyeli Gerçeklemesi

F'in iki ayrı gerçeklemesi

F Fonksiyonunun 4 farklı gerçeklemesi

