

Chapter 11

CLOCKED
SEQUENTIAL CIRCUITS

Counters

- Registers withpredeterminedsequence of states
- The number of states are determined by the number of flipflops used and the way in which these flip-flops are connected.

Registers

- A group of binary storage cells suitable for holding binary information
- Consists of a group of flip-flops that may have combinational gates which perform certain data processing task

Counters In a digital

- In a digital circuit, counters are used to do three main functions:
 - Timing
 - Sequencing
 - Counting
- Counters are generally made up of flipflops and logic gates.
- Main types of flip-flop used: JK FF and T
 FF

Classification of Counters

- Asynchronous
 - Counters in which the flip-flops within the counter do not change states at exactly the same time because they do not have a common clock pulse
 - Flip-flops are never simultaneously triggered
- Synchronous
 - All the flip-flops within the counter are clocked at the same time by a common clock pulse.

Asynchronous Counters

Example: 2-bit asynchronous counter

Ripple Counter

- Asynchronous counters are commonly referred to as ripple counters for the following reason:
 - The effect of the clock pulse is first "felt" by the first flip-flop.
 - This effect cannot get to the next flip-flop because of the propagation delay through the first FF.

Ripple Counter

Ripple Counter

Types of Synchronous Counters

 Binary counter — an n-bit binary counter that counts from 0 to (2ⁿ-1) and back to 0 again.

Example: 3-bit counter with Gray code sequence

- Define the problem:
 - Design a counter
 whose outputs
 progress in the
 sequence defined
 by the following
 table:

3-bit Gray code sequence

А	В	С
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Example: State Diagram

3-bit Gray code sequence

Α	В	С
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Pre	Present State		Ne	xt St	ate
Α	В	С	Α	В	С
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0			
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1			

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

Example

- Number of FFs: 3
- Type of FFs: JK

Present State		Ne	xt St	ate	
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

Pre	sent S	State	Ne	xt St	ate	Input functions			ns		
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1						
0	0	1	0	1	1						
0	1	0	1	1	0						
0	1	1	0	1	0						
1	0	0	0	0	0						
1	0	1	1	0	0						
1	1	0	1	1	1						
1	1	1	1	0	1						

Pre	sent S	State	Ne	xt St	ate	Input functions				ns	
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1						
0	0	1	0	1	1						
0	1	0	1	1	0						
0	1	1	0	1	0						
1	0	0	0	0	0						
1	0	1	1	0	0						
1	1	0	1	1	1						
1	1	1	1	0	1						

Pre	sent S	State	Ne	xt St	ate	Input functions				ns	
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	Χ				
0	0	1	0	1	1	0	X				
0	1	0	1	1	0						
0	1	1	0	1	0						
1	0	0	0	0	0						
1	0	1	1	0	0						
1	1	0	1	1	1						
1	1	1	1	0	1						

Pre	sent S	State	Ne	xt St	ate		In	put fւ	ınctio	ns	
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	Χ				
0	0	1	0	1	1	0	Χ				
0	1	0	1	1	0	1	Χ				
0	1	1	0	1	0	0	Χ				
1	0	0	0	0	0						
1	0	1	1	0	0						
1	1	0	1	1	1						
1	1	1	1	0	1						

Pre	sent S	State	Ne	xt St	ate		In	put fւ	ınctio	ns	
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	Χ				
0	0	1	0	1	1	0	Χ				
0	1	0	1	1	0	1	Χ				
0	1	1	0	1	0	0	Χ				
1	0	0	0	0	0	X	1				
1	0	1	1	0	0	X	0				
1	1	0	1	1	1	X	0				
1	1	1	1	0	1	Х	0				

Pre	sent S	State	Ne	xt St	ate		In	Input functions			
А	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	Χ	0	Χ	1	X
0	0	1	0	1	1	0	X	1	Χ	Χ	0
0	1	0	1	1	0	1	Χ	Χ	0	0	X
0	1	1	0	1	0	0	X	X	0	Χ	1
1	0	0	0	0	0	X	1	0	Χ	0	X
1	0	1	1	0	0	X	0	0	Χ	X	1
1	1	0	1	1	1	X	0	Χ	0	1	X
1	1	1	1	0	1	X	0	X	1	Χ	0

Simplify the expressions

$$JC = A'B' + AB$$

Simplify the expressions

$$KA = B'C'$$

$$KB = AC$$

$$KC = AB' + A'B$$

Example: Logic Diagram

$$JA = BC'$$

$$KA = B'C'$$

$$JB = A'C$$

$$KB = AC$$

$$JC = A \odot B$$

$$KC = A \oplus B$$

Example: 3-bit counter

State diagram

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Pre	sent S	tate	Ne	ext Sta	ite
Α	В	С	Α	В	С
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Pre	sent S	tate	Ne	ext Sta	ite
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Types of Synchronous Counters

- Binary counter an n-bit binary counter that counts from 0 to (2ⁿ-1) and back to 0 again.
- Modulo-N counter counter that goes through a repeated sequence of N states. (N <= 2ⁿ)
 - The maximum possible number of states (maximum modulus) of a counter is 2ⁿ, where n is the number of flip-flops in the counter.

State diagram

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1

State table

Pre	sent S	tate	Ne	ext Sta	ite
Α	В	С	Α	В	С
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

State table

Pre	sent S	tate	Ne	ext Sta	ite
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0			
1	1	1			

State table

Present State			Next State			
А	В	С	Α	В	С	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	Х	Χ	Х	
1	1	1	Χ	Χ	Χ	

Decade Counter

- a counter with ten states in their sequence
- recycle transition
 of the counter from
 its final state back
 to its original state

Clock Pulse	03	Q2	Q1	QO	
0	0	0	0	0	4
1	0	0	0	1	236
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
- 5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	-

- Binary counter an n-bit binary counter that counts from 0 to (2^n-1) and back to 0 again.
- Modulo-N counter counter that goes through a repeated sequence of N states. (N \leq 2ⁿ)
 - The maximum possible number of states
 (maximum modulus) of a counter is 2ⁿ, where n is
 the number of flip-flops in the counter.
- Up/down counter The counter counts up or down according to the value of an additional input.