MA 109 D2 T1 Week One Recap

Siddhant Midha

https://siddhant-midha.github.io/

November 9, 2022

Table of Contents

Welcome!

2 Preiminaries

Sequences

Again, a warm welcome to MA 109!

Again, a warm welcome to MA 109! Please note a few things,

 Material regarding the tutorials can be found at https://siddhant-midha.github.io/.

- Material regarding the tutorials can be found at https://siddhant-midha.github.io/.
- Please feel free to raise your hand, and ask a doubt anytime.

- Material regarding the tutorials can be found at https://siddhant-midha.github.io/.
- Please feel free to raise your hand, and ask a doubt anytime.
- We will be meeting 20 minutes before the allotted tutorial time for the recap every week.

- Material regarding the tutorials can be found at https://siddhant-midha.github.io/.
- Please feel free to raise your hand, and ask a doubt anytime.
- We will be meeting 20 minutes before the allotted tutorial time for the recap every week.
- The recap is **not** a substitute for the lectures.

- Material regarding the tutorials can be found at https://siddhant-midha.github.io/.
- Please feel free to raise your hand, and ask a doubt anytime.
- We will be meeting 20 minutes before the allotted tutorial time for the recap every week.
- The recap is **not** a substitute for the lectures.
- A feedback form can be found at the website. Please use this regularly.

Table of Contents

Welcome!

2 Preiminaries

Sequences

Sets

Definition (Set)

A set is an unordered collection of distinct objects.

Sets

Definition (Set)

A set is an unordered collection of distinct objects.

Some notation.

- N: The set of natural numbers.
- \bullet \mathbb{Z} : The set of real numbers.
- If a set S contains some element a, we write $a \in S$.
- To refer to all the elements in the set S, we use $\forall s \in S$.
- 'There exists s in S': $\exists s \in S$.
- \mathbb{Q} : The set of rational numbers (numbers of the form p/q for $p, q \in \mathbb{Z}$).
- \bullet \mathbb{R} : The set of real numbers.

Definition (Finite Set)

A set S is called finite if,

Definition (Finite Set)

A set S is called finite if,

1 It has no elements (denoted $S = \emptyset$). Or,

Definition (Finite Set)

A set S is called finite if,

- **1** It has no elements (denoted $S = \emptyset$). Or,
- ② There is a bijection $f: \{1, 2, \dots n\} \to S$ for some $n \in \mathbb{N}$.

6/14

Definition (Finite Set)

A set S is called finite if,

- **1** It has no elements (denoted $S = \emptyset$). Or,
- ② There is a bijection $f: \{1, 2, \dots n\} \to S$ for some $n \in \mathbb{N}$.

6/14

Definition (Finite Set)

A set S is called finite if,

- **1** It has no elements (denoted $S = \emptyset$). Or,
- **2** There is a bijection $f: \{1, 2, \dots n\} \to S$ for some $n \in \mathbb{N}$.

If a set is not finite, it is said to be infinite. This enables us to form a rigorous definition of cardinality.

Definition (Finite Set)

A set S is called finite if,

- **1** It has no elements (denoted $S = \emptyset$). Or,
- ② There is a bijection $f: \{1, 2, \dots n\} \to S$ for some $n \in \mathbb{N}$.

If a set is not finite, it is said to be infinite. This enables us to form a rigorous definition of cardinality.

Definition (Cardinality)

The cardinality of a finite set S, denoted as |S|, is defined as

- **1** |S| = 0 if $S = \emptyset$.
- |S| = n if a bijection $f: S \to \{1, 2, \dots n\}$ exists.

Definition (Finite Set)

A set S is called finite if,

- **1** It has no elements (denoted $S = \emptyset$). Or,
- ② There is a bijection $f: \{1, 2, \dots n\} \to S$ for some $n \in \mathbb{N}$.

If a set is not finite, it is said to be infinite. This enables us to form a rigorous definition of cardinality.

Definition (Cardinality)

The cardinality of a finite set S, denoted as |S|, is defined as

- **1** |S| = 0 if $S = \emptyset$.
- |S| = n if a bijection $f: S \to \{1, 2, \dots n\}$ exists.

Can we talk about cardinality of infinite sets?

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if $e \ge t$ for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if $e \ge t$ for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Definition (Upper Bounded and Lower Bounded)

A subset T of X is said to be

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if $e \ge t$ for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Definition (Upper Bounded and Lower Bounded)

A subset T of X is said to be

• Upper bounded (in X) if there exists $x \in X$ such that

$$t \le x \forall t \in T$$

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if $e \ge t$ for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Definition (Upper Bounded and Lower Bounded)

A subset T of X is said to be

• Upper bounded (in X) if there exists $x \in X$ such that

$$t \le x \forall t \in T$$

• Lower bounded (in X) if there exists $x \in X$ such that

$$x \le t \forall t \in T$$

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if e > t for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Definition (Upper Bounded and Lower Bounded)

A subset T of X is said to be

• Upper bounded (in X) if there exists $x \in X$ such that

$$t \le x \forall t \in T$$

• Lower bounded (in X) if there exists $x \in X$ such that

$$x \le t \forall t \in T$$

 A set which is both upper bounded and lower bounded is said to be bounded.

Let X be a set with an order. For instance, this can be \mathbb{R} , or \mathbb{Q} .

Definition (Maxima and Minima)

Let T be a subset of X. An element $e \in T$ is said to be,

- A maximum if e > t for all $t \in T$.
- A minimum if $e \le t$ for all $t \in T$.

Definition (Upper Bounded and Lower Bounded)

A subset T of X is said to be

• Upper bounded (in X) if there exists $x \in X$ such that

$$t \le x \forall t \in T$$

• Lower bounded (in X) if there exists $x \in X$ such that

$$x \le t \forall t \in T$$

 A set which is both upper bounded and lower bounded is said to be bounded.

We identify two special bounds.

We identify two special bounds.

Definition

For a subset T of X, an element $x \in X$ is said to be a Least Upper Bound (LUB) of T if,

We identify two special bounds.

Definition

For a subset T of X, an element $x \in X$ is said to be a Least Upper Bound (LUB) of T if,

x is an upper bound of T.

We identify two special bounds.

Definition

For a subset T of X, an element $x \in X$ is said to be a Least Upper Bound (LUB) of T if,

- x is an upper bound of T.
- For any upper bound y of T, we have,

We identify two special bounds.

Definition

For a subset T of X, an element $x \in X$ is said to be a Least Upper Bound (LUB) of T if,

- x is an upper bound of T.
- For any upper bound y of T, we have,

$$x \leq y$$

We identify two special bounds.

Definition

For a subset T of X, an element $x \in X$ is said to be a Least Upper Bound (LUB) of T if,

- x is **an** upper bound of T.
- For any upper bound y of T, we have,

$$x \leq y$$

Similarly, the Greatest Lower Bound (GLB) is defined. More commonly, we refer to LUB as the supremum, and the GLB as the infimum.

\mathbb{Q} and \mathbb{R}

• Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?

9/14

\mathbb{Q} and \mathbb{R}

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).

\mathbb{Q} and \mathbb{R}

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).
- Q has 'holes'.

$\mathbb Q$ and $\mathbb R$

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).
- Q has 'holes'.
- Cover up these gaps to obtain $\mathbb{R}!$

$\mathbb Q$ and $\mathbb R$

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).
- Q has 'holes'.
- Cover up these gaps to obtain $\mathbb{R}!$
- \mathbb{R} is complete: Every non-empty upper bounded (lower bounded) subset of \mathbb{R} has a supremum (infimum) in \mathbb{R} .

\mathbb{Q} and \mathbb{R}

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).
- Q has 'holes'.
- Cover up these gaps to obtain $\mathbb{R}!$
- \mathbb{R} is <u>complete</u>: Every non-empty upper bounded (lower bounded) subset of \mathbb{R} has a supremum (infimum) in \mathbb{R} .
- Q is **not** complete.

\mathbb{Q} and \mathbb{R}

- Consider, $\{\frac{1}{1},\frac{1}{1+\frac{1}{1+1}},\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}},\dots\}\cap (0,\frac{\sqrt{5}-1}{2})\subset \mathbb{Q}.$ Upper bounded? Supremum exists?
- If $X = \mathbb{Q}$, we find that not all upper bounded sets have a supremum (in \mathbb{Q}).
- Q has 'holes'.
- Cover up these gaps to obtain $\mathbb{R}!$
- \mathbb{R} is <u>complete</u>: Every non-empty upper bounded (lower bounded) subset of \mathbb{R} has a supremum (infimum) in \mathbb{R} .
- Q is **not** complete.

Table of Contents

Welcome!

2 Preiminaries

Sequences

Definition (Sequences)

A sequence in a set X is a function $f : \mathbb{N} \to X$.

Definition (Sequences)

A sequence in a set X is a function $f : \mathbb{N} \to X$.

• Notation: We denote, $a_n \equiv f(n)$. We denote the entire sequence by $\{a_n\}_n$.

Definition (Sequences)

A sequence in a set X is a function $f: \mathbb{N} \to X$.

- Notation: We denote, $a_n \equiv f(n)$. We denote the entire sequence by $\{a_n\}_n$.
- Examples. Consider,

Definition (Sequences)

A sequence in a set X is a function $f: \mathbb{N} \to X$.

- Notation: We denote, $a_n \equiv f(n)$. We denote the entire sequence by $\{a_n\}_n$.
- Examples. Consider,
 - **1** $a_n := \frac{1}{n}$

Definition (Sequences)

A sequence in a set X is a function $f: \mathbb{N} \to X$.

- Notation: We denote, $a_n \equiv f(n)$. We denote the entire sequence by $\{a_n\}_n$.
- Examples. Consider,

 - 1 $a_n := \frac{1}{n}$ 2 $b_n := (-1)^n$.

Definition (Sequences)

A sequence in a set X is a function $f : \mathbb{N} \to X$.

- Notation: We denote, $a_n \equiv f(n)$. We denote the entire sequence by $\{a_n\}_n$.
- Examples. Consider,
 - **1** $a_n := \frac{1}{n}$
 - $b_n := (-1)^n$.
 - \circ $c_n := \sin n$.

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$,

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon>0$, there exists $N_0\in\mathbb{N}$

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that,

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that,

$$|a_n - L| < \epsilon$$
 whenever $n > N_0$

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that,

$$|a_n - L| < \epsilon$$
 whenever $n > N_0$

A sequence which does not converge is said to diverge, or be non-convergent.

Proposition

Proposition

Let a_n and b_n be real convergent sequences.

1 The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.

Proposition

- The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).

Proposition

- The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- **5** $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.

Proposition

- 1 The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- $oldsymbol{0}$ $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- **1** If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **3** Sandwich Property: If $a_0 = b_0$ and there is a sequence f_n such that

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **Sandwich Property**: If $a_0 = b_0$ and there is a sequence f_n such that

$$a_n \leq f_n \leq b_n \ \forall n$$

Proposition

Let a_n and b_n be real convergent sequences.

- ① The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **Sandwich Property**: If $a_0 = b_0$ and there is a sequence f_n such that

$$a_n \leq f_n \leq b_n \ \forall n$$

then f_n converges, and the limit is $f_0 = a_0 = b_0$.

We use monotonic and eventually monotonic synonymously.

Definition (Monotone sequence)

A sequence a_n is said to be monotonically increasing (decreasing) if there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_{n+1} \ge a_n$ ($a_{n+1} \le a_n$).

We use monotonic and eventually monotonic synonymously.

Definition (Monotone sequence)

A sequence a_n is said to be monotonically increasing (decreasing) if there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_{n+1} \ge a_n$ $(a_{n+1} \le a_n)$.

If we replace \geq by > in the definition above, we get strict monotonicity.

We use monotonic and eventually monotonic synonymously.

Definition (Monotone sequence)

A sequence a_n is said to be monotonically increasing (decreasing) if there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_{n+1} \ge a_n$ $(a_{n+1} \le a_n)$.

If we replace \geq by > in the definition above, we get strict monotonicity.

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;(\inf\{a_n\})$$

We use monotonic and eventually monotonic synonymously.

Definition (Monotone sequence)

A sequence a_n is said to be monotonically increasing (decreasing) if there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_{n+1} \ge a_n$ $(a_{n+1} \le a_n)$.

If we replace \geq by > in the definition above, we get strict monotonicity.

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

Where we know that the supremum exists due to the completeness of \mathbb{R} . Does the converse of the MCT hold?

We use monotonic and eventually monotonic synonymously.

Definition (Monotone sequence)

A sequence a_n is said to be monotonically increasing (decreasing) if there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_{n+1} \ge a_n$ $(a_{n+1} \le a_n)$.

If we replace \geq by > in the definition above, we get strict monotonicity.

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

Where we know that the supremum exists due to the completeness of \mathbb{R} . Does the converse of the MCT hold? No. Take $a_n := (-1)^n/n$.