Devoir 3

À remettre le jeudi 23 avril 2020

Consignes pour la rédaction :

- Le manque de soin et de propreté sera pénalisé.
- Les solutions peuvent être cherchées en groupe mais chaque étudiant.e doit rédiger sa propre solution et rendre un travail individuel.
- Les justifications et les démarches appropriées doivent apparaître dans votre copie. Si ce n'est pas le cas, des points seront enlevés même en cas de réponse juste.

Consignes pour la remise :

- Le devoir est à remettre le **jeudi 23 avril par mail avant 23 :59**. Aucun devoir ne sera accepté passé cette date sauf si une demande a été faite à l'avance et approuvée.
- Vous devez envoyer votre devoir par mail à hubert.pauline@uqam.ca.
- Votre mail doit contenir un unique fichier en format pdf ayant pour nom CODE PERMANENT.pdf.
- Indiquez comme objet de votre mail MATO600 Devoir 3 CODE PERMANENT.
- Il est de votre responsabilité de vous assurer d'envoyer un fichier lisible et de bonne qualité (luminosité, netteté, contraste) en particulier si vous le rédigez à la main et le prenez en photo.
- Pour vous assurez que j'ai bien reçu votre mail, vous pouvez l'envoyer avec un accusé de réception.
 - Le respect de ses consignes par tous me fera gagner un temps précieux lors de la correction. Merci et bonne rédaction. -

Exercice 1: Fibomatrice

5 points

Calculer le déterminant de M.

$$M = \begin{pmatrix} 1 & 1 & 2 & 3 & 5 & 8 \\ 1 & 2 & 3 & 5 & 8 & 13 \\ 2 & 3 & 5 & 8 & 13 & 21 \\ 3 & 5 & 8 & 13 & 21 & 34 \\ 5 & 8 & 13 & 21 & 34 & 55 \\ 8 & 13 & 21 & 34 & 55 & 89 \end{pmatrix}.$$

(Indication : Il est possible d'effectuer le calcul très rapidement et en très peu d'étapes.)

Exercice 2: Deltaminants

10 points

On donne les déterminants suivants

$$\Delta_2 = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} \qquad \Delta_3 = \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} \qquad \Delta_4 = \begin{vmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{vmatrix}$$

et pour tout
$$n \ge 5$$
, $\Delta_n = \begin{vmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \end{vmatrix}$

(a) Calculer
$$\Delta_2$$
, Δ_3 et Δ_4 . (5)

(b) Montrer que pour tout
$$n \ge 4$$
, $\Delta_n = 2\Delta_{n-1} - \Delta_{n-2}$. (5)

Exercice 3 : Règle de Cramer

20 points

Résoudre les systèmes d'équations linéaires suivants en utilisant la règle de Cramer.

(a)
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -2 & -1 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -9 \\ -2 \\ -4 \end{pmatrix}$$
. (10)

(b)
$$\begin{pmatrix} 0 & -1 & 3 \\ 1 & 4 & -2 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
 (10)

Exercice 4: Matrices inverses

20 points

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -2 & -1 \\ 1 & 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 7 \\ 2 & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 2 \\ 8 & -3 & 1 \\ -12 & 6 & 6 \end{pmatrix}$$

- (a) Déterminer si les matrices ci-dessus sont inversibles et si oui donner leur inverse en utilisant la matrice adjointe. (12)
- (b) Pour les matrices B et C, vérifier votre réponse à la question précédente en utilisant Gauss-Jordan. (8)

Exercice 5 : Géométrie et sous-espace vectoriels

40 points

Dans un repère orthonormé d'origine O, on considère les points

$$A = (1, 2, 5), \quad B = (-1, 6, 4), \quad C = (7, -10, 8)$$

 $D = (m, 3, 4), \quad E = (9, p, -3) \quad \text{et} \quad F = (3, -2, 6)$

où m et p sont des réels.

- (a) Donner l'ensemble des valeurs de m pour lesquelles $\|\overrightarrow{OD}\| = \sqrt{26}$. (2)
- (b) À partir de maintenant, on considère m = -1. Trouver p tel que les vecteurs \overrightarrow{OD} et \overrightarrow{OE} soient orthogonaux. (2)
- (c) Déterminer une équation cartésienne du plan \mathcal{P}_{ABD} défini par les points A, B et D. (5)
- (d) Déterminer une équation vectorielle du plan \mathcal{P}_{ABO} défini par les points A, B et O. (3) (Indication: utiliser le point O pour donner l'équation.)
- (e) À partir de maintenant, on considère p = 7. Calculer le produit vectoriel $\overrightarrow{AC} \wedge \overrightarrow{AE}$ et justifier que le vecteur $\overrightarrow{n} = (9, 8, 14)$ est un vecteur normal au plan \mathcal{P}_{ACE} défini par les points A, C et E.
- (f) Donner les équations paramétriques de la droite \mathcal{D}_{BC} définie par les points B et C et montrer que F appartient à \mathcal{D}_{BC} .
- (g) Donner une équation vectorielle de la droite \mathcal{D} d'intersection des plans \mathcal{P}_{ABD} et \mathcal{P}_{ACE} .
- (h) Le plan \mathcal{P} de vecteur normal $\vec{n'} = (18, 16, 28)$ est-il parallèle ou sécant à \mathcal{P}_{ABD} ? (4) Est-il parallèle ou sécant à \mathcal{P}_{ACE} ? (Justifier)
- (i) Montrer que le plan \mathcal{P}_{ABO} est un sous-espace vectoriel de \mathbb{R}^3 . (6)
- (j) Donner une base du sous-espace vectoriel défini par le plan \mathcal{P}_{ABO} . (5)

Exercice 6: Matrices et espaces vectoriels

10 points

On note \mathcal{M}_2 l'espace vectoriel des matrices carrées d'ordre 2.

$$\mathcal{M}_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \right\}$$

Déterminer sa dimension.

Exercice 7: Sous-espaces vectoriels

20 points

Déterminer si chacun des sous-ensembles suivants est un sous-espace vectoriel.

(a)
$$H_1 = \{(x, -x^2); x \in \mathbb{R}\}\$$

(b)
$$H_2 = \{(a, b - a, 2b); a, b \in \mathbb{R}\}\$$
 (5)

(c)
$$H_3 = \{(x, y, z, t) \in \mathbb{R}^4 \text{ tels que } x = 0 \text{ et } y = z + t\}$$
 (5)

(d)
$$H_4 = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y \ge z\}$$
 (5)

Exercice 8 : Bases 25 points

- (a) Pour chacun des sous-espaces vectoriels de l'exercice 7, déterminer une base et donner leur dimension. (10)
- (b) L'ensemble \mathcal{B}_1 formé des vecteurs { (1,2,3), (1,1,0), (0,0,1) } est-il une base de \mathbb{R}^3 ? (5) (Justifier.)
- (c) L'ensemble \mathcal{B}_2 formé des vecteurs { (1,2,3), (1,2,0), (0,0,1) } est-il une base de \mathbb{R}^3 ? (5) (Justifier.)
- (d) On admet que l'ensemble $H = \{(x + y, 0); x, y \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 . Donner une base de H et sa dimension. (5)