# РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

дисциплина: Архитектура вычислительных систем

Студент: Чистякова Дарья Владимировна

Группа: НБИбд-03-22

МОСКВА

2022 г.

### Цель работы:

Освоить арифметические инструкции языка ассемблера NASM.

## Ход работы:

1) Создаем каталог для программ лабораторной работы № 7, переходим в него и создаем файл lab7-1.asm. (Рис. 1)

```
dvchistyakova@dk3n31 ~ $ mkdir ~/work/arch-pc/lab07
dvchistyakova@dk3n31 ~ $ cd ~/work/arch-pc/lab07
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ touch lab7-1.asm
```

Рис. 1. Создание каталога с файлом

2) Рассмотрим примеры программ вывода символьных и численных значений. Программы будут выводить значения записанные в регистр eax. (Рис. 2) Создаем исполняемый файл и запускаем его. (Рис. 3)



Рис. 2. Текст программы

```
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ./lab7-1
j
```

Рис. 3. Запуск файла

3) Далее изменяем текст программы и вместо символов, записываем в регистры числа. Исправляем текст программы. Создаем исполняемый файл и запускаем его. (Рис. 4)

```
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ./lab7-1
```

Рис. 4. Запуск файла

Этот символ не отображается при выводе на экран.

4) Создаем файл lab7-2.asm в каталоге ~/work/arch-pc/lab07 и вводим в него текст программы. (Рис. 5)

Создаем исполняемый файл и запускаем его. (Рис. 6)

```
SICTION
SICTIO
SICTION
SICTION
SICTION
SICTION
SICTION
SICTION
SICTION
SICTION
```

Рис. 5. Текст программы

```
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ./lab7-2
10
```

Рис. 6. Запуск файла

5) Аналогично предыдущему примеру изменяем символы на числа.

Создаем исполняемый файл и запускаем его. (Рис. 7)

```
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ./lab7-2
```

Рис. 7. Запуск файла

6) Создаем файл lab7-3.asm в каталоге ~/work/arch-pc/lab07 и вводим в него текст программы. (Рис. 8)

Создаем исполняемый файл и запускаем его. (Рис. 9)

Изменяем текст программы для вычисления выражения f(x)=(4\*6+2)/5.

Создаем исполняемый файл и проверяем его работу. (Рис. 10)

```
Результат: ',0
        'Остаток от деления: ',0
       .text
      _start
    -- Вычисление выражения
mov eax,5 ; E
             4X=5
mov ebx,2; EBX=2
mul ebx ;
add eax,3 ; EA
                   (+3
хог edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
             К=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
```

Рис. 8. Текст программы

```
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ nasm -f elf lab7-3.asm
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-3 lab7-3.o
dvchistyakova@dk3n31 ~/work/arch-pc/lab07 $ ./lab7-3
Результат: 4
Остаток от деления: 1
```

Рис. 9. Запуск файла

```
Результат: 5
Остаток от деления: 1
```

Рис. 10. Запуск файла

7) Создаем файл variant.asm в каталоге ~/work/arch-pc/lab07 и вводим в него текст программы. (Рис. 11)

Создаем исполняемый файл и запускаем его.

```
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите No студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x; вызов подпрограммы преобразования
call atoi; ASCII кода в число, `eax=x`
```

Рис. 11. Текст программы

Программа вывела 4 вариант.

1. Какие строки листинга 7.4 отвечают за вывод на экран сообщения 'Ваш вариант:'? mov eax,rem

call sprint

2. Для чего используется следующие инструкции nasm?

то есх,х – запись входной переменной в регистр есх;

mov edx,80 – запись переменной в регистр edx;

call spread – вызов процедуры чтения данных.

3. Для чего используется инструкция "call atoi"?

Для вызова подпрограммы преобразования ASCII кода в число, 'eax=x'.

4. Какие строки листинга 7.4 отвечают за вычисления варианта?

xor edx,edx

mov ebx,20

div ebx

inc edx.

- 5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"? В регистр ebx.
- 6. Для чего используется инструкция "inc edx"?

Для увелечения на 1.

call iprintLF.

7. Какие строки листинга 7.4 отвечают за вывод на экран результата вычислений? mov eax,rem call sprint mov eax,edx

#### Задание для самостоятельной работы.

1) Напишем программу вычисления выражения 4/3(x-1) + 5 (Вариант 4). (Рис. 12)

Получаем исполняемый файл и проверяем его работу для значений  $x_1 = 4$  и  $x_2 = 10$  (Вариант 4). (Рис. 13)

```
%include 'in_out.asm'
         .data
         'Введите х: ',0
        'Ответ: ',0
         .bss
        80
        _start
mov eax, msg
call sprint
mov ecx, x
mov edx, 80
call sread
mov eax, x
call atoi
xor edx,edx
sub eax,1
mov ebx,4
mul ebx
mov ecx,3
div ecx
add eax,5
mov edi,eax
mov eax, rem
call sprint
mov eax,edi
call iprintLF
call quit
```

Рис. 12. Текст программы

```
dvchistyakova@nbibd-03-22:~/work/arch-pc/lab07$ nasm -f elf lab7-sr.asm
dvchistyakova@nbibd-03-22:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-sr lab7-sr.o
dvchistyakova@nbibd-03-22:~/work/arch-pc/lab07$ ./lab7-sr
Введите х: 4
Ответ: 9
dvchistyakova@nbibd-03-22:~/work/arch-pc/lab07$ ./lab7-sr
Введите х: 10
Ответ: 17
```

## Вывод:

В ходе выполнения данной лабороторной работы я освоила арифметические инструкции языка ассемблера NASM.