Math 217 – Midterm 2 Solutions

Student ID Number:	Section:
Student ID Number.	DCC01011

Question:	1	2	3	4	5	6	7	8	Total
Points:	12	20	14	10	12	12	10	10	100
Score:									

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) The function $T:V\to W$ from the vector space V to the vector space W is an isomorphism

Solution: The function $T:V\to W$ is an *isomorphism* if T is a bijective linear transformation.

Solution: The function $T:V\to W$ is an isomorphism if T is an invertible linear transformation.

(b) The dimension of the subspace V of \mathbb{R}^n

Solution: The *dimension* of the subspace V of \mathbb{R}^n is the number of vectors in any basis of V.

(c) The orthogonal projection of the vector \vec{x} in \mathbb{R}^n onto the subspace W of \mathbb{R}^n

Solution: The *orthogonal projection* of \vec{x} onto W is the unique vector $\vec{w} \in W$ such that $\vec{x} - \vec{w} \in W^{\perp}$.

(d) The list of vectors $(\vec{u}_1, \dots, \vec{u}_k)$ in \mathbb{R}^n is orthonormal

Solution: The list of vectors $(\vec{u}_1, \dots, \vec{u}_k)$ in \mathbb{R}^n is *orthonormal* if for all integers $1 \leq i, j \leq n$ we have $\vec{u}_i \cdot \vec{u}_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$

- 2. State whether each statement is True or False and provide a short proof of your claim.
 - (a) (4 points) For all vector spaces V and W and linear transformations $T: V \to W$, if dim $V = \dim W$ then T is an isomorphism.

Solution: FALSE. For instance, let $V=W=\mathbb{R}^2$, and let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the zero map. Then T is not bijective, so T is not an isomorphism, but $\dim V=\dim W=2$.

(b) (4 points) For every square matrix A, we have dim ker $A = \dim \ker A^{\top}$.

Solution: TRUE. Let $n \in \mathbb{N}$ and let A be an $n \times n$ matrix. By a theorem from class (or the text) we know $\ker(A^{\top}) = (\operatorname{im} A)^{\perp}$, so

$$\dim \ker A^{\top} = \dim (\operatorname{im} A)^{\perp} = n - \dim \operatorname{im} A = \dim \ker A,$$

where the last equality above follows from Rank-Nullity and the second-last follows from the fact that for any subspace V of \mathbb{R}^n we have $\dim V + \dim V^{\perp} = n$.

(c) (4 points) For every $m \times n$ matrix A, if either $A^{\top}A$ or AA^{\top} is an identity matrix then A is orthogonal.

Solution: FALSE. For instance, if $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ then $AA^{\top} = I_2$ but A is not orthogonal because A is not even square, and orthogonal matrices must be square.

(Problem 2, Continued).

(d) (4 points) For every vector $\vec{x} \in \mathbb{R}^n$ and subspace V of \mathbb{R}^n , $\|\operatorname{proj}_V(\vec{x})\| \leq \|\vec{x}\|$.

Solution: TRUE. Let $\vec{x} \in \mathbb{R}^n$, and write $\vec{x}^{\parallel} = \operatorname{proj}_V(\vec{x})$ and $\vec{x}^{\perp} = \operatorname{proj}_{V^{\perp}}(\vec{x})$. Then $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$ and $\vec{x}^{\parallel} \cdot \vec{x}^{\perp} = 0$, so by the Pythagorean Theorem we have

$$\|\vec{x}\|^2 = \|\vec{x}^{\parallel}\|^2 + \|\vec{x}^{\perp}\|^2,$$

which implies $\|\vec{x}\|^2 \ge \|\vec{x}^{\parallel}\|^2$ since $\|\vec{x}^{\perp}\|^2 \ge 0$, and therefore $\|\vec{x}\| \ge \|\vec{x}^{\parallel}\|$ after taking a square root.

(e) (4 points) Let A be an $m \times n$ matrix. If the linear system $A\vec{x} = \vec{b}_0$ has a unique solution for some vector $\vec{b}_0 \in \mathbb{R}^m$, then the linear system $A\vec{x} = \vec{b}$ has a unique least-squares solution for every vector $\vec{b} \in \mathbb{R}^m$.

Solution: TRUE. Suppose the linear system $A\vec{x} = \vec{b}_0$ has a unique solution. Then $\ker A = \{\vec{0}\}$, which implies $\ker(A^{\top}A) = \{\vec{0}\}$, so $A^{\top}A$ is invertible. It follows that for every $\vec{b} \in \mathbb{R}^m$, the vector $(A^{\top}A)^{-1}A^{\top}\vec{b}$ is the unique least-squares solution of the linear system $A\vec{x} = \vec{b}$.

3. Let \mathcal{P}_2 be the vector space of polynomial functions in the variable t of degree at most 2, and let $\mathcal{E} = (1, t, t^2)$ and

$$\mathcal{B} = (p_1, p_2, p_3) = (1 + 2t^2, -1 + t - 2t^2, 2 - 2t + 5t^2),$$

so that \mathcal{E} and \mathcal{B} are ordered bases of \mathcal{P}_2 . (You may assume without proof that \mathcal{E} and \mathcal{B} are bases of \mathcal{P}_2 .) No justification is required for any part of this problem.

(a) (4 points) Find the coordinate vectors $[p_2]_{\mathcal{E}}$ and $[p_2]_{\mathcal{B}}$.

Solution:
$$[p_2]_{\mathcal{E}} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$$
 and $[p_2]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

(b) (4 points) Find the coordinate vectors $[t^2]_{\mathcal{E}}$ and $[t^2]_{\mathcal{B}}$.

Solution:
$$[t^2]_{\mathcal{E}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $[t^2]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.

(c) (3 points) Find the change-of-coordinates matrix $S_{\mathcal{B}\to\mathcal{E}}$.

Solution:
$$S_{\mathcal{B}\to\mathcal{E}} = \begin{bmatrix} | & | & | \\ [p_1]_{\mathcal{E}} & [p_2]_{\mathcal{E}} & [p_3]_{\mathcal{E}} \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 2 & -2 & 5 \end{bmatrix}.$$

(d) (3 points) Find the change-of-coordinates matrix $S_{\mathcal{E}\to\mathcal{B}}$. (You may leave your answer unsimplified.)

Solution:
$$S_{\mathcal{E}\to\mathcal{B}} = S_{\mathcal{B}\to\mathcal{E}}^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 2 & -2 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ -4 & 1 & 2 \\ -2 & 0 & 1 \end{bmatrix}.$$

- 4. Let $P \in \mathbb{R}^{3\times 3}$, and let $F_P : \mathbb{R}^{3\times 4} \to \mathbb{R}^{3\times 4}$ be the linear transformation defined by the rule $F_P(A) = PA$ for all $A \in \mathbb{R}^{3\times 4}$. Let \mathcal{B} and \mathcal{C} be ordered bases of $\mathbb{R}^{3\times 4}$.
 - (a) (6 points) No justification is required in (i) (iii) below.
 - (i) Let $[F_P]_{\mathcal{B}}$ be the \mathcal{B} -matrix of F_P . If $[F_P]_{\mathcal{B}} \in \mathbb{R}^{\ell \times m}$, what are the values of ℓ and m?
 - (ii) Let $A \in \mathbb{R}^{3\times 4}$, and let $[F_P(A)]_{\mathcal{B}}$ be the \mathcal{B} -coordinate vector of $F_P(A)$. If $[F_P(A)]_{\mathcal{B}} \in \mathbb{R}^{j\times k}$, what are the values of j and k?
 - (iii) Let $S_{\mathcal{B}\to\mathcal{C}}$ be the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} . If $S_{\mathcal{B}\to\mathcal{C}} \in \mathbb{R}^{q\times r}$, what are the values of q and r?

Solution:

- (i) $\ell = m = 12$.
- (ii) j = 12 and k = 1.
- (iii) q = r = 12.
- (b) (4 points) Prove that if the matrix P is invertible, then F_P is an isomorphism.

Solution: Suppose P is invertible, and define the linear map $T: \mathbb{R}^{3\times 4} \to \mathbb{R}^{3\times 4}$ by $T(A) = P^{-1}A$ for all $A \in \mathbb{R}^{3\times 4}$. Then for all $A \in \mathbb{R}^{3\times 4}$ we have

$$T(F_P(A)) = P^{-1}(PA) = (P^{-1}P)A = I_3A = A$$

and

$$F_P(T(A)) = P(P^{-1}A) = (PP^{-1})A = I_3A = A,$$

so T is an inverse of F_P . Thus F_P is an invertible linear transformation, that is, F_P is an isomorphism.

5. Let (\vec{a}_1, \vec{a}_2) be a linearly independent pair of vectors in \mathbb{R}^3 , and suppose the 3×2 matrix $A = [\vec{a}_1 \ \vec{a}_2]$ has QR-factorization

$$A = \begin{bmatrix} | & | \\ \vec{a}_1 & \vec{a}_2 \\ | & | \end{bmatrix} = \underbrace{\begin{bmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{bmatrix}}_{O} \underbrace{\begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}}_{R} \in \mathbb{R}^{3 \times 2}.$$

(Throughout this problem, your answers should not include any variables.)

(a) (4 points) Find $\|\vec{a}_1\|$ and $\vec{a}_1 \cdot \vec{a}_2$.

Solution: Recall that $R = \begin{bmatrix} \vec{a}_1 \cdot \vec{u}_1 & \vec{a}_2 \cdot \vec{u}_1 \\ \vec{a}_1 \cdot \vec{u}_2 & \vec{a}_2 \cdot \vec{u}_2 \end{bmatrix}$ and $\vec{a}_1 = ||\vec{a}_1||\vec{u}_1$. Thus

$$\|\vec{a}_1\| = \frac{\vec{a}_1 \cdot \vec{a}_1}{\|\vec{a}_1\|} = \vec{a}_1 \cdot \vec{u}_1 = 2$$

and $\vec{a}_1 \cdot \vec{a}_2 = (\|\vec{a}_1\|\vec{u}_1) \cdot \vec{a}_2 = 2(\vec{u}_1 \cdot \vec{a}_2) = 6.$

(b) (4 points) Find a basis of the kernel of the 3×3 matrix $M = \begin{bmatrix} | & | & | \\ \vec{a}_2 & \vec{u}_1 & \vec{u}_2 \\ | & | & | \end{bmatrix}$.

Solution: First, note that since (\vec{u}_1, \vec{u}_2) is orthonormal, and therefore linearly independent, rank $(M) \geq 2$. Then since $\vec{a}_2 = (\vec{a}_2 \cdot \vec{u}_1) \vec{u}_1 + (\vec{a}_2 \cdot \vec{u}_2) \vec{u}_2 = 3\vec{u}_1 + 4\vec{u}_2$,

we see that $\operatorname{rank}(M) = 2$, so dim $\ker M = 1$, and $\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$ is a basis of $\ker M$.

(c) (4 points) Find $\begin{bmatrix} - & \vec{u}_1^\top & - \\ - & \vec{a}_2^\top & - \end{bmatrix} \begin{bmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{bmatrix}.$

Solution: Using the fact that (\vec{u}_1, \vec{u}_2) is orthonormal and $R = \begin{bmatrix} \vec{a}_1 \cdot \vec{u}_1 & \vec{a}_2 \cdot \vec{u}_1 \\ \vec{a}_1 \cdot \vec{u}_2 & \vec{a}_2 \cdot \vec{u}_2 \end{bmatrix}$,

we have
$$\begin{bmatrix} - & \vec{u}_1^\top & - \\ - & \vec{a}_2^\top & - \end{bmatrix} \begin{vmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{vmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_1 \cdot \vec{u}_2 \\ \vec{a}_2 \cdot \vec{u}_1 & \vec{a}_2 \cdot \vec{u}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}.$$

- 6. Let V be the subspace of \mathbb{R}^3 defined by the equation $x_1 x_2 4x_3 = 0$.
 - (a) (5 points) Find an orthonormal basis (\vec{u}_1, \vec{u}_2) of V and an orthonormal basis (\vec{u}_3) of V^{\perp} .

Solution: First, note that
$$\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$ is a basis of V and $\begin{pmatrix} \begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}$ is a basis of V^{\perp} . Applying Gram-Schmidt to these yields the orthonormal basis $(\vec{u}_1, \vec{u}_2) = \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ of V , and the orthonormal basis $(\vec{u}_3) = \begin{pmatrix} \frac{1}{\sqrt{18}} \begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}$ of V^{\perp} .

(b) (3 points) Find the orthogonal projection of \vec{e}_3 onto V; that is, find $\text{proj}_V(\vec{e}_3)$.

Solution:
$$\operatorname{proj}_{V}(\vec{e}_{3}) = (\vec{e}_{3} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{e}_{3} \cdot \vec{u}_{2}) \cdot \vec{u}_{2} = \begin{bmatrix} 2/9 \\ -2/9 \\ 1/9 \end{bmatrix}.$$

Solution:
$$\operatorname{proj}_{V}(\vec{e}_{3}) = \vec{e}_{3} - (\vec{e}_{3} \cdot \vec{u}_{3})\vec{u}_{3} = \begin{bmatrix} 2/9 \\ -2/9 \\ 1/9 \end{bmatrix}.$$

(c) (4 points) Let $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ be the vectors you found in part (a), and let $A = [\vec{u}_1 \ \vec{u}_2]$ be the matrix whose columns are \vec{u}_1 and \vec{u}_2 . Find a least-squares solution of the linear system $A\vec{x} = \vec{b}$, where $\vec{b} = 6\vec{u}_1 - 2\vec{u}_2 + 5\vec{u}_3$.

Solution: The least-squares solutions of $A\vec{x} = \vec{b}$ are the solutions of the normal equation $A^{\top}A\vec{x} = A^{\top}\vec{b}$. Since the columns of A are orthonormal, $A^{\top}A = I_2$, so the unique least-squares solution of $A\vec{x} = \vec{b}$ is

$$\vec{x}^* = A^\top \vec{b} = \begin{bmatrix} - & \vec{u}_1^\top & - \\ - & \vec{u}_2^\top & - \end{bmatrix} \vec{b} = \begin{bmatrix} \vec{u}_1 \cdot \vec{b} \\ \vec{u}_2 \cdot \vec{b} \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}.$$

Solution: The least-squares solutions of $A\vec{x} = \vec{b}$ are the solutions of the consistent linear system $A\vec{x} = \text{proj}_V(\vec{b})$. Since $\text{proj}_V(\vec{b}) = 6\vec{u}_1 - 2\vec{u}_2$, the least-squares solutions of $A\vec{x} = \vec{b}$ are the solutions of the consistent linear system $A\vec{x} = 6\vec{u}_1 - 2\vec{u}_2$, which has unique solution $\begin{bmatrix} 6 \\ -2 \end{bmatrix}$.

- 7. Let V and W be a pair of 2-dimensional subspaces of \mathbb{R}^3 , and let $P: \mathbb{R}^3 \to \mathbb{R}^3$ and $Q: \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection maps onto V and W, respectively.
 - (a) (6 points) Prove that there is an ordered basis $\mathcal B$ of $\mathbb R^3$ such that the $\mathcal B$ -matrix of P is

$$[P]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution: Let (\vec{b}_1, \vec{b}_2) be an ordered basis of V, let (\vec{b}_3) be a basis of V^{\perp} , and let $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$. Given arbitrary $\vec{x} \in \mathbb{R}^3$, we have $\vec{x} = \operatorname{proj}_V(\vec{x}) + \operatorname{proj}_{V^{\perp}}(\vec{x})$. Since $\operatorname{proj}_V(\vec{x}) \in \operatorname{Span}(\vec{b}_1, \vec{b}_2)$ and $\operatorname{proj}_{V^{\perp}}(\vec{x}) \in \operatorname{Span}(\vec{b}_3)$, we see that $\vec{x} \in \operatorname{Span}(\mathcal{B})$. Since $\dim \mathbb{R}^3 = 3 = |\mathcal{B}|$, it follows that \mathcal{B} is a basis of \mathbb{R}^3 .

Now, since $\vec{b}_1 \in V$ we have

$$P(\vec{b}_1) = \vec{b}_1 = 1\vec{b}_1 + 0\vec{b}_2 + 0\vec{b}_3,$$

and therefore $[P(\vec{b}_1)]_{\mathcal{B}} = \vec{e}_1$. Similarly, $P(\vec{b}_2) = \vec{b}_2$, so $[P(\vec{b}_2)]_{\mathcal{B}} = \vec{e}_2$. Finally, since $\vec{b}_3 \in V^{\perp}$ we have $P(\vec{b}_3) = \vec{0}$, so $[P(\vec{b}_3)]_{\mathcal{B}} = \vec{0}$. We conclude that

$$[P]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

as desired.

(b) (4 points) Prove that the standard matrices of P and Q are similar to each other.

Solution: Let $\mathcal{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ be the standard basis of \mathbb{R}^3 . Using part (a), fix ordered bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 such that

$$[P]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = [Q]_{\mathcal{C}}.$$

Then

$$[P]_{\mathcal{E}} = S_{\mathcal{B} \to \mathcal{E}}[P]_{\mathcal{B}} S_{\mathcal{E} \to \mathcal{B}}$$

$$= S_{\mathcal{B} \to \mathcal{E}}[Q]_{\mathcal{C}} S_{\mathcal{E} \to \mathcal{B}}$$

$$= S_{\mathcal{B} \to \mathcal{E}}(S_{\mathcal{E} \to \mathcal{C}}[Q]_{\mathcal{E}} S_{\mathcal{C} \to \mathcal{E}}) S_{\mathcal{E} \to \mathcal{B}}$$

$$= (S_{\mathcal{B} \to \mathcal{E}} S_{\mathcal{E} \to \mathcal{C}})[Q]_{\mathcal{E}}(S_{\mathcal{B} \to \mathcal{E}} S_{\mathcal{E} \to \mathcal{C}})^{-1},$$

which shows that $[P]_{\mathcal{E}}$ and $[Q]_{\mathcal{E}}$ are similar.

- 8. Let $n \in \mathbb{N}$, let V be an n-dimensional vector space, and let $A \in \mathbb{R}^{n \times n}$ be an $n \times n$ matrix.
 - (a) (6 points) Prove that for every ordered basis \mathcal{B} of V there exists a linear transformation $T: V \to V$ such that $[T]_{\mathcal{B}} = A$, where $[T]_{\mathcal{B}}$ is the \mathcal{B} -matrix of T.

Solution: Assume the hypotheses, and let \mathcal{B} be an ordered basis of V. Let $L_{\mathcal{B}}: V \to \mathbb{R}^n$ be the \mathcal{B} -coordinate isomorphism defined by $L_{\mathcal{B}}(\vec{v}) = [\vec{v}]_{\mathcal{B}}$ for each $\vec{v} \in V$. Let $T: V \to V$ be the linear transformation defined by

$$T(\vec{v}) = L_{\mathcal{B}}^{-1}(A[\vec{v}]_{\mathcal{B}})$$
 for all $\vec{v} \in V$.

In other words, $T = L_{\mathcal{B}}^{-1} \circ T_A \circ L_{\mathcal{B}}$, where $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is the linear map induced by A, defined by $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. We claim that $[T]_{\mathcal{B}} = A$. There are several ways to show this, and any of the following would be sufficient:

• Using our definition of $[T]_{\mathcal{B}}$ as the standard matrix of $L_{\mathcal{B}} \circ T \circ L_{\mathcal{B}}^{-1}$, we have

$$[T]_{\mathcal{B}} = [L_{\mathcal{B}} \circ T \circ L_{\mathcal{B}}^{-1}]_{\mathcal{E}} = [L_{\mathcal{B}} \circ L_{\mathcal{B}}^{-1} \circ T_{A} \circ L_{\mathcal{B}} \circ L_{\mathcal{B}}^{-1}]_{\mathcal{E}} = [T_{A}]_{\mathcal{E}} = A.$$

• Writing $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$, for each $1 \leq i \leq n$ we have

$$[T(\vec{b}_i)]_{\mathcal{B}} = L_{\mathcal{B}}(T(\vec{b}_i)) = T_A(L_{\mathcal{B}}(\vec{b}_i)) = A[\vec{b}_i]_{\mathcal{B}} = A\vec{e}_i,$$

so
$$[T]_{\mathcal{B}} = A$$
 by the formula $[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | & | \\ [T(\vec{b}_1)]_{\mathcal{B}} & \cdots & [T(\vec{b}_n)]_{\mathcal{B}} \end{bmatrix}$.

• For all $\vec{v} \in V$ we have

$$[T(\vec{v})]_{\mathcal{B}} = L_{\mathcal{B}}(T(\vec{v})) = T_{A}(L_{\mathcal{B}}(\vec{v})) = A[\vec{v}]_{\mathcal{B}}.$$

Since $[T]_{\mathcal{B}}$ is the unique matrix satisfying $[T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T(\vec{v})]_{\mathcal{B}}$ for all $\vec{v} \in V$, it follows that $A = [T]_{\mathcal{B}}$.

(b) (4 points) Must it be true that for every linear transformation $T: V \to V$ there exists an ordered basis \mathcal{B} of V such that $[T]_{\mathcal{B}} = A$? Clearly state yes or no, and prove your claim.

Solution: No, this is false! For instance, if A is the $n \times n$ zero matrix and T is the identity map on V, then for every ordered basis \mathcal{B} of V we have $[T]_{\mathcal{B}} = I_n \neq A$. In fact, the statement is false for every matrix A, since if A is nonzero we could take T to be the zero map on V, in which case $[T]_{\mathcal{B}} = 0_{n \times n} \neq A$ for any ordered basis \mathcal{B} of V.