2022

COMPUTER SCIENCE — HONOURS

Paper: CC-14

(Theory of Computation)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

2×5

- When is a string y said to be accepted by a finite automaton M?
 - (b) Prove that if δ is a transition function such that $\delta(q, w) = \delta(q, x)$, then $\delta(q, wy) = \delta(q, xy)$.
- (c) Draw a transition diagram for a DFA M that accepts the string 101101 over $\Sigma = \{0, 1\}$.
- (d) Define Push-down Automata.
- (e) Give a context-free grammar of palindrome.
- (f) What is Context Sensitive Grammar?
- Draw the transition diagram of a FA which accepts the strings having any number of a's (possibly ϵ) followed by any number of b's (possibly ϵ) in $\Sigma = \{a, b\}$. Write the regular expression also.
- (h) State one similarity and one dissimilarity between a Turing machine and a General purpose computer.
- (a) Convert the following Mealy machine M to an equivalent Moore machine. Show the steps clearly.

Present State	Next State			
	a = 0		a = 1	
	State	Output	State	Output
$\rightarrow q_1$	q_1	1	$q_2^{}$	0
q_2	$q_4^{}$	1	q_4	1
q_3^-	$q_2^{}$	1	q_3	1
$q_{_{4}}$	q_3	0	q_1	1

(b) Find the language generated by the following grammar: $S \rightarrow 0A|1S|0|1$, $A \rightarrow 1A|1S|1$

- (a) Why is a NDFA called so? Draw the transition diagram of a NDFA that accepts all strings whose second last symbol is b where $\Sigma = \{a, b\}$.
- (b) Construct a DFA from the NDFA constructed in the previous part [i.e. 3(a)].

(1+4)+5

(a) Construct a grammar that accepts the following set.

$$\left\{0^n 1^m 0^n \middle| m, n \ge 1\right\}$$

- (b) Write down the steps to convert a non-deterministic finite automata into equivalent deterministic finite automata.
- (a) Find the language generated by the grammar $S \to AB$, $A \to A1|0$, $B \to 2B|3$. Can the above language be generated by a grammar of higher type?
 - (b) Design a Turing machine over $\{1, b\}$ which can compute concatenation function over $\Sigma = \{1\}$. If a pair of words (w_1, w_2) is the input, the output has to be w_1w_2 .
 - (a) Write the regular expressions (over $\Sigma = \{a, b\}$), for the case when no two a's or no two b's appear together.
 - (b) Use Arden's method to find the regular expression from the following DFA. Show the steps.

5+5

(a) Prove the following identity:

$$(a*ab + ba)*a* = (a + ab + ba)*$$

- (b) In a context free grammar what is a null production? Give an example.
- (c) When is a variable A in a context free grammar said to be nullable?

6+(2+1)+1

- 8. (a) Let $G = (\{A, B, S\}, \{0, 1\}, P, S\}$, where P consists of $S \rightarrow 0AB$, $A0 \rightarrow S0B$, $A1 \rightarrow SB1$, $B \rightarrow SA$, $B \rightarrow 01$. Find the language generated.
 - (b) State the significance of the Halting problem in Turing machine.
 - (c) Design a Turing machine to recognize all strings containing even number of 1's.

5+2+3