21. Текстовые задачи Блок 1. ФИПИ

<u>I) Движение по прямой</u>

- **1.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
- **2.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 209 км. На следующий день он отправился обратно в A, увеличив скорость на 8 км/ч. По пути он сделал остановку на 8 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
- **3.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 180 км. На следующий день он отправился обратно в A, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
- **4.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 105 км. На следующий день он отправился обратно в A, увеличив скорость на 16 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
- **5.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 224 км. На следующий день он отправился обратно в A, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
- **6.** Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 112 км. На следующий день он отправился обратно в A, увеличив скорость на 9 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.

7. Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 105 км. На следующий день он отправился обратно в A, увеличив скорость на 6 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.

8. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 208 км. На следующий день он отправился обратно в А, увеличив скорость на 3 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А.

II) Движение по прямой (навстречу)

- **9.**Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 36 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 82 км, скорость первого велосипедиста равна 28 км/ч, скорость второго 10 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
- **10.** Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 56 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 182 км, скорость первого велосипедиста равна 13 км/ч, скорость второго 15 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
- **11.** Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 2 минуты, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 277 км, скорость первого велосипедиста равна 16 км/ч, скорость второго 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
- **12.** Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

13. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 28 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 286 км, скорость первого велосипедиста равна 10 км/ч, скорость второго – 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

14. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 26 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 217 км, скорость первого велосипедиста равна 21 км/ч, скорость второго – 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

III) Движение по прямой (вдогонку)

- **15.** Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью, на 10 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найдите скорость первого автомобиля.
- **16.** Два автомобиля одновременно отправляются в 800-километровый пробег. Первый едет со скоростью, на 36 км/ч большей, чем второй, и прибывает к финишу на 5 часов раньше второго. Найдите скорость первого автомобиля.
- **17.** Два автомобиля одновременно отправляются в 980-километровый пробег. Первый едет со скоростью, на 28 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость первого автомобиля.
- **18.** Два автомобиля одновременно отправляются в 420-километровый пробег. Первый едет со скоростью, на 24 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость первого автомобиля.
- **19.** Два автомобиля одновременно отправляются в 660-километровый пробег. Первый едет со скоростью, на 11 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость первого автомобиля.
- **20.** Два автомобиля одновременно отправляются в 240-километровый пробег. Первый едет со скоростью, на 20 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найдите скорость первого автомобиля.

21. Два велосипедиста одновременно отправляются в 224-километровый пробег. Первый едет со скоростью на 2 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.

- **22.** Два велосипедиста одновременно отправляются в 100-километровый пробег. Первый едет со скоростью на 15 км/ч большей, чем второй, и прибывает к финишу на 6 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
- **23.** Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 6 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
- **24.** Два велосипедиста одновременно отправляются в 209-километровый пробег. Первый едет со скоростью на 8 км/ч большей, чем второй, и прибывает к финишу на 8 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
- **25.** Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 14 км/ч большей, чем второй, и прибывает к финишу на 5 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
- **26.** Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
- **27.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 6 км/ч, а вторую половину пути проехал со скоростью 56 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 45 км/ч.
- **28.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 65 км/ч.

29. Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 11 км/ч, а вторую половину пути проехал со скоростью 66 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 40 км/ч.

- **30.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 8 км/ч, а вторую половину пути проехал со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 75 км/ч.
- **31.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 9 км/ч, а вторую половину пути проехал со скоростью 60 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 40 км/ч.
- **32.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобиля на 5 км/ч, а вторую половину пути проехал со скоростью 66 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 55 км/ч.
- **33.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 48 км/ч, а вторую половину пути проехал со скоростью на 32 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.
- **34.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 57 км/ч, а вторую половину пути проехал со скоростью на 38 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.
- **35.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 36 км/ч, а вторую половину пути проехал со скоростью на 54 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.

36. Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 70 км/ч, а вторую половину пути проехал со скоростью на 21 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.

- **37.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 30 км/ч, а вторую половину пути проехал со скоростью на 9 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.
- **38.** Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 55 км/ч, а вторую половину пути проехал со скоростью на 6 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля.

IV) Движение по окружности (замкнутой трассе)

- **39.** Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 18 минут назад. Найдите скорость первого бегуна, если известно, что она на 10 км/ч меньше скорости второго.
- **40.** Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 2 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 9 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.
- **41.** Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 7 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 3 минуты назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.

42. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 15 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.

- **43.** Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 11 км/ч меньше скорости второго.
- **44.** Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 3 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 6 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.

V) Средняя скорость

- **45.** Первые 450 км автомобиль ехал со скоростью 90 км/ч, следующие 230 км со скоростью 115 км/ч, а последние 120 км со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **46.** Первые 200 км автомобиль ехал со скоростью 50 км/ч, следующие 320 км со скоростью 80 км/ч, а последние 140 км со скоростью 35 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **47.** Первые 140 км автомобиль ехал со скоростью 70 км/ч, следующие 195 км со скоростью 65 км/ч, а последние 225 км со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **48.** Первые 350 км автомобиль ехал со скоростью 70 км/ч, следующие 105 км со скоростью 35 км/ч, а последние 160 км со скоростью 80 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **49.** Первые 160 км автомобиль ехал со скоростью 80 км/ч, следующие 100 км со скоростью 50 км/ч, а последние 360 км со скоростью 90 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

50. Первые 105 км автомобиль ехал со скоростью 35 км/ч, следующие 120 км – со скоростью 60 км/ч, а последние 500 км – со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

- **51.** Первую половину трассы автомобиль проехал со скоростью 69 км/ч, а вторую со скоростью 111 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **52.** Первую половину трассы автомобиль проехал со скоростью 55 км/ч, а вторую со скоростью 70 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **53.** Первую половину трассы автомобиль проехал со скоростью 36 км/ч, а вторую со скоростью 99 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **54.** Первую половину трассы автомобиль проехал со скоростью 84 км/ч, а вторую со скоростью 108 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **55.** Первую половину трассы автомобиль проехал со скоростью 34 км/ч, а вторую со скоростью 51 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **56.** Первую половину трассы автомобиль проехал со скоростью 90 км/ч, а вторую со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

VI) Движение протяженных тел

- **57.** Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.
- **58.** Поезд, двигаясь равномерно со скоростью 36 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 4 км/ч навстречу поезду, за 54 секунды. Найдите длину поезда в метрах.
- **59.** Поезд, двигаясь равномерно со скоростью 151 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 5 км/ч навстречу поезду, за 15 секунд. Найдите длину поезда в метрах.
- **60.** Поезд, двигаясь равномерно со скоростью 129 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 6 км/ч навстречу поезду, за 8 секунд. Найдите длину поезда в метрах.

- **61.** Поезд, двигаясь равномерно со скоростью 57 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 36 секунд. Найдите длину поезда в метрах.
- **62.** Поезд, двигаясь равномерно со скоростью 140 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 4 км/ч навстречу поезду, за 10 секунд. Найдите длину поезда в метрах.
- **63.** Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 3 км/ч, за 39 секунд. Найдите длину поезда в метрах.
- **64.** Поезд, двигаясь равномерно со скоростью 44 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 4 км/ч, за 36 секунд. Найдите длину поезда в метрах.
- **65.** Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 12 секунд. Найдите длину поезда в метрах.
- **66.** Поезд, двигаясь равномерно со скоростью 183 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 3 км/ч, за 13 секунд. Найдите длину поезда в метрах.
- **67.** Поезд, двигаясь равномерно со скоростью 93 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 3 км/ч, за 32 секунды. Найдите длину поезда в метрах.
- **68.** Поезд, двигаясь равномерно со скоростью 86 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 6 км/ч, за 18 секунд. Найдите длину поезда в метрах.

VII) Движение по воде

- **69.** Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
- **70.** Баржа прошла по течению реки 32 км и, повернув обратно, прошла ещё 24 км, затратив на весь путь 4 часа. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
- **71.** Баржа прошла по течению реки 84 км и, повернув обратно, прошла ещё 66 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.

- **72.** Баржа прошла по течению реки 72 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 9 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
- **73.** Баржа прошла по течению реки 48 км и, повернув обратно, прошла ещё 42 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
- **74.** Баржа прошла по течению реки 64 км и, повернув обратно, прошла ещё 48 км, затратив на весь путь 8 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
- **75.** Расстояние между пристанями A и B равно 72 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 33 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.
- **76.** Расстояние между пристанями A и B равно 126 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.
- **77.** Расстояние между пристанями A и B равно 48 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 25 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.
- **78.** Расстояние между пристанями А и В равно 140 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 51 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.
- **79.** Расстояние между пристанями A и B равно 108 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 50 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.
- **80.** Расстояние между пристанями A и B равно 90 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 52 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

- **81.** Моторная лодка прошла против течения реки 72 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.
- **82.** Моторная лодка прошла против течения реки 77 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.
- **83.** Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.
- **84.** Моторная лодка прошла против течения реки 192 км и вернулась в пункт отправления, затратив на обратный путь на 4 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.
- **85.** Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 1 км/ч.
- **86.** Моторная лодка прошла против течения реки 297 км и вернулась в пункт отправления, затратив на обратный путь на 3 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч.
- **87.** Теплоход проходит по течению реки до пункта назначения 210 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 9 часов, а в пункт отправления теплоход возвращается через 27 часов после отплытия из него.
- **88.** Теплоход проходит по течению реки до пункта назначения 80 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 23 часа, а в пункт отправления теплоход возвращается через 35 часов после отплытия из него.
- **89.** Теплоход проходит по течению реки до пункта назначения 280 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 15 часов, а в пункт отправления теплоход возвращается через 39 часов после отплытия из него.

90. Теплоход проходит по течению реки до пункта назначения 216 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 23 часа после отплытия из него.

- **91.** Теплоход проходит по течению реки до пункта назначения 70 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 24 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 14 часов после отплытия из него.
- **92.** Теплоход проходит по течению реки до пункта назначения 132 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 25 км/ч, стоянка длится 21 час, а в пункт отправления теплоход возвращается через 32 часа после отплытия из него.
- **93.** Теплоход проходит по течению реки до пункта назначения 210 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 24 км/ч, стоянка длится 9 часов, а в пункт отправления теплоход возвращается через 27 часов после отплытия из него.
- **94.** Теплоход проходит по течению реки до пункта назначения 176 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 19 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него.
- **95.** Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 26 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
- **96.** Теплоход проходит по течению реки до пункта назначения 285 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 34 км/ч, стоянка длится 19 часов, а в пункт отправления теплоход возвращается через 36 часов после отплытия из него.

VIII) Проценты

97. Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?

- **98.** Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?
- **99.** Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?
- **100.** Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?
- **101.** Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?
- **102.** Имеются два сосуда, содержащие 22 кг и 18 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 32% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 30% кислоты. Сколько килограммов кислоты содержится во втором растворе?
- **103.** Свежие фрукты содержат 78% воды, а высушенные 22%. Сколько требуется свежих фруктов для приготовления 22 кг высушенных фруктов?
- **104.** Свежие фрукты содержат 93% воды, а высушенные 16%. Сколько требуется свежих фруктов для приготовления 21 кг высушенных фруктов?
- **105.** Свежие фрукты содержат 88% воды, а высушенные 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?
- **106.** Свежие фрукты содержат 75% воды, а высушенные 25%. Сколько требуется свежих фруктов для приготовления 45 кг высушенных фруктов?

107. Свежие фрукты содержат 95% воды, а высушенные – 22%. Сколько требуется свежих фруктов для приготовления 55 кг высушенных фруктов?

- **108.** Свежие фрукты содержат 80% воды, а высушенные 28%. Сколько требуется свежих фруктов для приготовления 80 кг высушенных фруктов?
- **109.** Свежие фрукты содержат 79% воды, а высушенные 16%. Сколько сухих фруктов получится из 288 кг свежих фруктов?
- **110.** Свежие фрукты содержат 72% воды, а высушенные 26%. Сколько сухих фруктов получится из 222 кг свежих фруктов?
- **111.** Свежие фрукты содержат 86% воды, а высушенные 23%. Сколько сухих фруктов получится из 396 кг свежих фруктов?
- **112.** Свежие фрукты содержат 84% воды, а высушенные 16%. Сколько сухих фруктов получится из 231 кг свежих фруктов?
- **113.** Свежие фрукты содержат 81% воды, а высушенные 16%. Сколько сухих фруктов получится из 420 кг свежих фруктов?
- **114.** Свежие фрукты содержат 88% воды, а высушенные 30%. Сколько сухих фруктов получится из 350 кг свежих фруктов?

IX) Работа

- **115.** Первый рабочий за час делает на 13 деталей больше, чем второй, и выполняет заказ, состоящий из 208 деталей, на 8 часов быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
- **116.** Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
- **117.** Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
- **118.** Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

- **119.** Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 112 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **120.** Первый рабочий за час делает на 6 деталей больше, чем второй, и выполняет заказ, состоящий из 140 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **121.** Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 260 литров она заполняет на 6 минут быстрее, чем первая труба?
- **122.** Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты быстрее, чем первая труба?
- **123.** Первая труба пропускает на 13 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 208 литров она заполняет на 8 минут быстрее, чем первая труба?
- **124.** Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты дольше, чем вторая труба?
- **125.** Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минут дольше, чем вторая труба?
- **126.** Первая труба пропускает на 6 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 140 литров она заполняет на 3 минуты дольше, чем вторая труба?

21. Текстовые задачи Блок 2. ФИПИ. Расширенная версия

<u>I)</u> Движение по прямой

- **1.**Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 7 км. Турист прошёл путь из А в В за 2 часа, из которых спуск занял 1 час. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 3 км/ч?
- **2.**Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 10 км. Турист прошёл путь из А в В за 4 часа, из которых спуск занял 2 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 1 км/ч?
- **3.**Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 22 км. Турист прошёл путь из А в В за 8 часов, из которых спуск занял 3 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 2 км/ч?
- **4.**Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 16 км. Турист прошёл путь из А в В за 7 часов, из которых спуск занял 2 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 1 км/ч?
- **5.**Из пункта А в пункт В, расстояние между которыми 34 км, выехал велосипедист. Одновременно с ним из В в А вышел пешеход. Велосипедист ехал со скоростью, на 8 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 24 км от пункта А.
- **6.**Из пункта А в пункт В, расстояние между которыми 13 км, выехал велосипедист. Одновременно с ним из В в А вышел пешеход. Велосипедист ехал со скоростью, на 11 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 5 км от пункта А.
- **7.**Из городов A и B навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 56 минут раньше, чем велосипедист приехал в A, а встретились они через 21 минуту после выезда. Сколько часов затратил на путь из B в A велосипедист?
- **8.**Из городов A и B навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 40 минут раньше, чем велосипедист приехал в A, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

9.Из городов A и B навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 48 минут раньше, чем велосипедист приехал в A, а встретились они через 18 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

- **10.** Из городов A и B навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 39 минут раньше, чем велосипедист приехал в A, а встретились они через 26 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
- **11.** Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,5 км от места отправления. Один идёт со скоростью 3,6 км/ч, а другой со скоростью 4,8 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
- **12.** Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,4 км от места отправления. Один идёт со скоростью 3,1 км/ч, а другой со скоростью 3,7 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
- **13.** Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 1,5 км от места отправления. Один идёт со скоростью 2,4 км/ч, а другой со скоростью 5,6 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
- **14.** Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 2,5 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой со скоростью 4,8 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
- **15.** Расстояние между городами A и B равно 120 км. Из города A в город B выехал автомобиль, а через 90 минут следом за ним со скоростью 100 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе C и повернул обратно. Когда он проехал половину пути из C в A, автомобиль прибыл в B. Найдите расстояние от A до C.
- **16.** Расстояние между городами A и B равно 100 км. Из города A в город B выехал автомобиль, а через 75 минут следом за ним со скоростью 64 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе C и повернул обратно. Когда он проехал половину пути из C в A, автомобиль прибыл в B. Найдите расстояние от A до C.

17. Расстояние между городами A и B равно 140 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 50 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе C и повернул обратно. Когда он проехал половину пути из C в A, автомобиль прибыл в B. Найдите расстояние от A до C.

- **18.** Расстояние между городами A и B равно 130 км. Из города A в город B выехал автомобиль, а через 15 минут следом за ним со скоростью 45 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе C и повернул обратно. Когда он проехал половину пути из C в A, автомобиль прибыл в B. Найдите расстояние от A до C.
- **19.** Первый велосипедист выехал из посёлка по шоссе со скоростью 18 км/ч. Через час после него со скоростью 16 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 4 часа после этого догнал первого.
- **20.** Первый велосипедист выехал из посёлка по шоссе со скоростью 12 км/ч. Через час после него со скоростью 10 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа после этого догнал первого.
- **21.** Первый велосипедист выехал из посёлка по шоссе со скоростью 24 км/ч. Через час после него со скоростью 21 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого.
- **22.** Первый велосипедист выехал из посёлка по шоссе со скоростью 20 км/ч. Через час после него со скоростью 16 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 8 часов после этого догнал первого.
- **23.** По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 110 км/ч и 70 км/ч. Длина товарного поезда равна 1800 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам.

- **24.** По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 50 км/ч и 40 км/ч. Длина товарного поезда равна 1350 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 9 минутам.
- **25.** По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 70 км/ч и 50 км/ч. Длина товарного поезда равна 700 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам.
- **26.** По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 100 км/ч и 90 км/ч. Длина товарного поезда равна 800 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 6 минутам.

II) Средняя скорость

- **27.** Первые 2 часа автомобиль ехал со скоростью 70 км/ч, следующие 3 часа со скоростью 60 км/ч, а последние 5 часов со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **28.** Первые 5 часов автомобиль ехал со скоростью 60 км/ч, следующие 3 часа со скоростью 100 км/ч, а последние 4 часа со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **29.** Первые 2 часа автомобиль ехал со скоростью 45 км/ч, следующие 4 часа со скоростью 100 км/ч, а последние 2 часа со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
- **30.** Первые 3 часа автомобиль ехал со скоростью 110 км/ч, следующие 3 часа со скоростью 35 км/ч, а последние 3 часа со скоростью 50 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

III) Движение по воде

31. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 2 часа, вернулись обратно через б часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки б км/ч?

32. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч?

- **33.** Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 7 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 5 км/ч?
- **34.** Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 5 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 8 км/ч?
- **35.** Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?
- **36.** Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 7 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 1 км/ч, а собственная скорость лодки 5 км/ч?
- **37.** Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 4 км/ч, а собственная скорость лодки 6 км/ч?
- **38.** Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через б часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?

39. Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 мин и вернулся обратно через $5\frac{1}{3}$ часа после начала поездки. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.

- **40.** Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 час 40 минут и вернулась обратно. Всё путешествие заняло $6\frac{2}{3}$ ч. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч.
- **41.** Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 16 км, сделал стоянку на 40 мин и вернулся обратно через $3\frac{2}{3}$ часа после начала поездки. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 12 км/ч.
- **42.** Расстояние между двумя пристанями по реке равно 80 км. Катер прошёл от одной пристани до другой, сделал стоянку на 1 час 20 минут и вернулся обратно. Всё путешествие заняло $10\frac{1}{3}$ ч. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 18 км/ч.
- **43.** От пристани А к пристани В, расстояние между которыми равно 280 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью, на 8 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно.
- **44.** От пристани А к пристани В, расстояние между которыми равно 238 км, отправился с постоянной скоростью первый теплоход, а через 7 часов после этого следом за ним, со скоростью, на 17 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно.
- **45.** От пристани А к пристани В, расстояние между которыми равно 154 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним со скоростью на 3 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно.

46. От пристани А к пристани В, расстояние между которыми равно 162 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним, со скоростью, на 9 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно.

IV) Сплавы Проценты

- **47.** Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?
- **48.** Имеется два сплава с разным содержанием меди: в первом содержится 70%, а во втором 40% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 50% меди?
- **49.** Имеется два сплава с разным содержанием золота: в первом содержится 50%, а во втором 80% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% золота?
- **50.** Имеется два сплава с разным содержанием золота: в первом содержится 60%, а во втором 35% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 40% золота?
- **51.** При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?
- **52.** При смешивании первого раствора кислоты, концентрация которого 30%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 45% кислоты. В каком отношении были взяты первый и второй растворы?
- **53.** При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 48%, получился раствор с концентрацией 42%. В каком отношении были взяты первый и второй растворы?

54. При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 65%, получили раствор, содержащий 60% соли. В каком отношении были взяты первый и второй растворы?

V) Совместная работа

- **55.** Три бригады изготовили вместе 266 деталей. Известно, что вторая бригада изготовила деталей в 4 раза больше, чем первая и на 5 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
- **56.** Три бригады изготовили вместе 327 деталей. Известно, что вторая бригада изготовила деталей в 5 раз больше, чем первая и на 19 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
- **57.** Три бригады изготовили вместе 182 детали. Известно, что вторая бригада изготовила деталей в 5 раз больше, чем первая и на 17 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
- **58.** Три бригады изготовили вместе 114 деталей. Известно, что вторая бригада изготовила деталей в 3 раза больше, чем первая и на 16 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
- **59.** Игорь и Паша красят забор за 5 часов. Паша и Володя красят этот же забор за 6 часов, а Володя и Игорь за 20 часов. За сколько минут мальчики покрасят забор, работая втроём?
- **60.** Игорь и Паша красят забор за 8 часов. Паша и Володя красят этот же забор за 9 часов, а Володя и Игорь за 24 часа. За сколько минут мальчики покрасят забор, работая втроём?
- **61.** Игорь и Паша красят забор за 18 часов. Паша и Володя красят этот же забор за 20 часов, а Володя и Игорь за 30 часов. За сколько минут мальчики покрасят забор, работая втроём?
- **62.** Игорь и Паша красят забор за 20 часов. Паша и Володя красят этот же забор за 21 час, а Володя и Игорь за 28 часов. За сколько минут мальчики покрасят забор, работая втроём?

- **63.** Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **64.** Первый рабочий за час делает на 16 деталей больше, чем второй, и выполняет заказ, состоящий из 105 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **65.** Первый рабочий за час делает на 9 деталей больше, чем второй, и заканчивает работу над заказом, состоящим из 112 деталей, на 4 часа раньше, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **66.** Первый рабочий за час делает на 5 деталей больше, чем второй, и заканчивает работу над заказом, состоящим из 180 деталей, на 3 часа раньше, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
- **67.** Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты быстрее, чем первая труба?
- **68.** Первая труба пропускает на 6 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 140 литров она заполняет на 3 минуты дольше, чем вторая труба?
- **69.** Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты быстрее, чем первая труба?
- **70.** Первая труба пропускает на 13 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 208 литров она заполняет на 8 минут дольше, чем вторая труба?