DS201/DSL253: Statistical Programming

Assignment 09

24.04.2025

Instructions for Submission: You can submit your solution as a Jupyter Notebook/Matlab file with comments and discussions on the results obtained in each step.

- 1. Follow Standard Report Format: Include sections like Introduction, Data, Methodology, Results, Discussion, and Conclusion.
- 2. File Naming Convention: Adhere to the specified naming convention for each file you submit (e.g., RollNumber FirstName Asg1).
- 3. Refrain from using zip files. If necessary, submit multiple files.
- 4. Include comments in the code explaining the logic and any assumptions made.
- 5. Include References: Cite any external sources or references used in your assignment.
- 6. Code Quality: Ensure your code follows best practices, is well-organized, and avoid plagiarism as a plagiarism check will be conducted.
- 7. Be aware that late submissions are not permitted; ensure timely submission.
- 8. Coding can be done in any language.
- 1. A data analyst is investigating how different car features influence fuel efficiency measured in miles per gallon (MPG). The dataset is given below :

Vehicle	Engine Size (L)	Weight (kg)	Horsepower	MPG
1	1.6	1200	110	34
2	2.0	1300	130	30
3	2.4	1500	150	27
4	1.8	1250	115	32
5	2.2	1400	140	28
6	3.0	1600	180	22
7	2.0	1350	135	29
8	1.5	1100	105	36
9	2.5	1550	160	25
10	3.2	1650	190	20
11	1.4	1050	100	38
12	2.1	1380	138	28
13	3.5	1700	200	18
14	1.6	1150	108	35
15	2.3	1450	145	26
16	2.8	1580	170	23
17	2.6	1520	155	24
18	1.3	1020	98	39
19	3.1	1620	185	21
20	1.7	1180	112	33

Using the data provided:

- (a) Fit a multiple linear regression model to predict MPG using:
 - Engine Size
 - Weight
 - Horsepower

- (b) Write the corresponding regression equation
- (c) Report the following from the regression output:
 - Coefficients and intercept
 - p-values for each predictor
 - R-squared value
 - Also plot residual values
 - Conduct a hypothesis test for each predictor to determine whether it has a statistically significant effect on MPG.
- (d) Show the results for different levels of significance.
- (e) Identify which predictors are statistically significant and interpret the regression results.
- 2. A study was conducted to examine how the height of a child is influenced by the heights of their parents. Data were collected from 10 families, and the heights (in inches) of the father, mother, and son were recorded.

The data are presented in the table below:

Father's Height (in)	60	62	64	65	66	67	68	70	72	74
Mother's Height (in)	61	63	63	64	65	66	66	67	68	69
Son's Height (in)	63.6	65.2	66.0	65.5	66.9	67.1	67.4	68.3	70.1	70.0

- (a) Fit a multiple linear regression model to predict the son's height using the heights of the father and mother.
- (b) Interpret the regression coefficients.
- (c) Using multiple linear regression, determine whether the data supports the idea that children of unusually short or tall parents tend to be closer to the average height—that is, test for regression toward the mean by examining if the regression coefficients for father's and mother's heights are each significantly less than 1.
- (d) Also plot residual values
- (e) Comment on the implications of your results.