TРЯП 5

Ковалев Алексей

1. Уберем из автомата недостижимые состояния 5 и T.

Процесс минимизации автоамата:

	I		II	
	1	4	2	3
a	Ι	Ι	Ι	I
b	II	II	II	II

Минимальный пДКА, эквивалентный данному:

2. КМП-автомат для слова w=baabbabaa в виде ДКА:

Покажем, как этот автомат прочитает слово t=baaabaabbabaabb.

состояние	необработанная часть входа
arepsilon	baaabaabbabaabb
$\overline{}$	aaabaabbabaabb
$\overline{}$ ba	aabaabbabaabb
\overline{baa}	abaabbabaabb
arepsilon	baabbabaabb
\overline{b}	aabbabaabb
$\overline{}$ ba	abbabaabb
\overline{baa}	bbabaabb
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	babaabb
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	abaabb
baabba	baabb
$\overline{baabbab}$	aabb
baabbaba	abb
$\overline{baabbabaa}$	bb
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	b
baabb	arepsilon

Таблица 1: Прочтение слова t КМП-автоматом в виде ДКА

КМП-автомат для слова w = baabbabaa в виде автомата с сслыками-исключениями (ссылки-исключения изображены крысным, ребра — ченым):

Покажем, как этот автомат прочитает слово t=baaabaabbabaabb.

состояние	необработанная часть входа
arepsilon	baaabaabbabaabb
b	aaabaabbabaabb
\overline{ba}	aabaabbabaabb
baa	abaabbabaabb
arepsilon	abaabbabaabb
arepsilon	baabbabaabb
b	aabbabaabb
ba	abbabaabb
baa	bbabaabb
\overline{baab}	babaabb
baabb	abaabb
baabba	baabb
baabbab	aabb
baabbaba	abb
$\overline{baabbabaa}$	bb
baa	bb
\overline{baab}	b
baabb	ε

Таблица 2: Прочтение слова t КМП-автоматом с ссылками-исключениями

3. Автомат Ахо-Корасик с ссылками-исключениями для $S = \{aab, aca, bab, a, ccb\}$ (ссылки-исключения изображены крысным, ребра — ченымб в вершинах записано, сколько слов из S заканчиваются в этой вершине):

Покажем, как этот автомат прочитает слово t = babacaab.

состояние	необработанная часть входа	количество вхождений
arepsilon	babacaab	0
\overline{b}	abacaab	0
ba	bacaab	1
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	acaab	2
$\overline{}$	acaab	2
$\overline{}$	caab	3
\overline{a}	caab	3
ac	aab	3
aca	ab	5
\overline{a}	ab	5
$\overline{}$	b	6
$\overline{}$	ε	7

Суммарное число вхождений слов из S в t равно 7.

4. Докажем сначала, что КМП-автомат для слова w принимает язык $L_0 = L(\Sigma^*w)$. Покажем, что выполнен следйющий инвариант: оказавшись в состоянии i, автомат прочитал слово uw[0,i], где $u \in \Sigma^*$. Доказательство проведем по индукции. База: i=0 очевидно. Переход: пусть мы дошли до состояния i, прочитав к данному моменту слово вида uw[0,i], где $u \in \Sigma^*$. Далее мы либо перейдем в состояние i+1, прочитав uw[0,i+1], либо перейдем в состояние j < i, для которого верно предположение индукции.

Пусть автомат принимает язык L_1 . Тогда $L_1 \subset L_0$, так как любое прочитаное слово представимо в виде uw, где $u \in \Sigma^*$. В то же время $L_0 \subset L_1$, так как автомат полный, то есть из каждого состояния есть переход по каждой букве, значит любое слово вида uw, где $u \in \Sigma^*$, принимается автоматом. То есть $L_1 = L_0 = L(\Sigma^*w)$.

Теперь покажем минимальность КМП-автомата. Пусть |w|=n. Тогда КМП-автомат содержит n+1 состояний. Предположим обратное, то есть пусть существует автомат с k, k < n+1 состояниями, который принимает тот же язык. Если в автомате k состояний, то существует слово $u \in \Sigma^*$, такое что |u| = k-1, которое принимается автоматом. Но в языке $L(\Sigma^*w)$ любое слово имеет длину хотя бы n, так как заканчивается на w. Значит в минимальном пДКА, принимающем этот язык хотя бы n+1 состояние. В КМП-автомате n+1 состояние, значит он минимален.