Midterm self-evaluation

Thu 23 Apr 2020

Solutions

Question 1 (1 point).

Explain why the following statement is meaningless: "The running time of algorithm A is at least $O(n^2)$ ".

Let T(n) be the running time of algorithm A. The statement "T(n) is at least $O(n^2)$ " means $T(n) \geq f(n)$ for some function $f(n) = O(n^2)$, so it does not tell us anything about the upper bound of T(n). At the same time, $f(n) = O(n^2)$ means that f(n) could be any fuction asymptotically smaller than n^2 , for example f(n) = n. In other words, we can not conclude anything about the lower bound of T(n) either.

Question 2 (2 points).

Is
$$2^{n+1} = O(2^n)$$
? Why yes/no?
Is $2^{2n} = O(2^n)$? Why yes/no?

Yes, because $2^{n+1} = 2 \times 2^n$. So we can choose $c \ge 0$ and $n_0 = 0$ s.t. $0 \le 2^{n+1} \le c \times 2^n$ for all $n \ge n_0$.

No, because $2^{2n} = 2^n \times 2^n = 4^n$. Therefore we can not find any c, n_0 s.t. $0 \le 4^n \le c \times 2^n$ for all $n \ge n_0$.

Question 3 (4 points).

Using the substitution method, show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

Since we need to prove that is $T(n) = O(n^2)$ let us guess $T(n) \le cn^2$.

Applying the substitution method, we get:

$$T(n) \le c(n-1)^2 + n$$

$$= cn^2 - 2cn + c + n$$

$$= cn^2 + n(1-2c) + c$$

$$< cn^2$$

Question 4 (6 points).

Consider the recursion tree for $T(n) = 3T(\lfloor n/2 \rfloor) + n$.

- What is the subproblem size for a node at depth i?
- How many levels are in the tree?
- How many leaves are in the tree?
- What is the total cost over all nodes at depth i (excluding the leaf level)?
- Using your answers to the previous points, provide an asymptotic upper bound for the recursion.

Answers:

- \bullet $\frac{n}{2^i}$
- $\lg n$
- $3^{\lg n} = n^{\lg 3}$
- For $i = 0 \dots \lg n 1$, the cost is $3^i \frac{n}{2^i} = \left(\frac{3}{2}\right)^i n$

•

$$T(n) = \sum_{i=0}^{\lg n-1} \left(\frac{3}{2}\right)^i n + \Theta(n^{\lg 3}) = n \sum_{i=0}^{\lg n-1} \left(\frac{3}{2}\right)^i + \Theta(n^{\lg 3})$$
$$= 2n \left(\left(\frac{3}{2}\right)^{\lg n} - 1\right) + \Theta(n^{\lg 3}) = 2(n^{\lg 3} - n) + \Theta(n^{\lg 3})$$
$$= O(n^{\lg 3})$$

Question 5 (3 points).

Is an array that is in sorted order a min-heap?

Is the array with values (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) a max-heap?

Yes, because for any index i we have that LEFT(i) and RIGHT(i) are larger and the elements indexed by them are $\geq A[i]$.

No, because in this array PARENT(7) = 6, which violates the max-heap property.

Question 6 (3 points).

Illustrate the operation of MAX-HEAP-INSERT (A, 10) on the heap $A = \langle 15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1 \rangle$.

Question 7 (3 points).

Illustrate the result of each operation in the sequence $\mathrm{ENQUEUE}(Q,4)$, $\mathrm{ENQUEUE}(Q,1)$, $\mathrm{ENQUEUE}(Q,3)$, $\mathrm{DEQUEUE}(Q)$, $\mathrm{ENQUEUE}(Q,8)$, and $\mathrm{DEQUEUE}(Q)$ on an initially empty queue Q stored in array Q[1..6].

ENQUEUE(Q, 4)4 ENQUEUE(Q, 1)4 1 ENQUEUE(Q, 3)1 3 3 DEQUEUE(Q)1 3 ENQUEUE(Q, 8)1 8 DEQUEUE(Q)3 8

Question 8 (2 points).

Write an O(n)-time recursive procedure that, given an n-node binary tree, prints out the key of each node in the tree.

```
PRINT-BINARY-TREE(T)

x = T.root

if x != NIL

PRINT-BINARY-TREE(x.left)

print x.key

PRINT-BINARY-TREE(x.right)
```

Question 9 (2 points).

For the directed graph in the figure, specify for each node the d and π values that result from running breadth-first search using vertex 3 as the source.

vertex	1	2	3	4	:	5	6	vertex	1	2		3	4	5)	6
\overline{d}	∞	∞	0	\propto)	∞	∞	$\frac{d}{\pi}$	∞	\propto	o ()	∞	1		1
π	NIL	NIL	NIL	NI	L	NIL	NIL	π	NIL	NI	L N	IL	NI	L 3	3	3
	1								1							
vertex	l							vertex	1	2	3	4	5	6		
\overline{d}	∞	∞	0	2	1	1		d								
$\frac{d}{\pi}$	NIL	NIL	NIL	5	3	3		π	NIL	4	NIL	5	3	3		

Vertex 1 is not reachable from vertex 3.

Question 10 (6 points).

Run Dijkstra's algorithm on the directed graph below.

- ullet Do it twice, with two different sources: first s, and then z.
- For each iteration of the while loop, show the d and π values for each node.

From source s:

	s	t	\boldsymbol{x}	y	z	
	0	3	∞	5	∞	
d values:	0	3	9	5	∞	
a varues:	0	3	9	5	11	
	0	3	9	5	11	
	0	3	9	5	11	

From source z: