Feasibility of developing a stock assessment model for Main Hawaiian Islands Yellowfin Tuna Fishery

Part Deux

John Sibert, Retirement-failure Consulting

sibert@hawaii.edu

Combined HDAR and NOAA Catch Time Series

No Recreational Data

Feasibility questions

- 1. Can we contrive a simple model of the MHI YFT population and fishery?
- 2. Can model parameters be estimated from the data?
- 3. Are biomass estimates plausible?
- 4. Can model results be used in alphabet soup?

Principle model assumptions

- 1. The dynamics of the population of YFT in the MHI follows a state-space surplus production (Schaefer) model.
- 2. Fishing mortality exerted by each gear is represented by distinct random walks with common variance.
- 3. Predicted catch by gear is the product of estimated fishing mortality for each gear and average predicted biomass during a year.
- 4. Optional use of MFCL biomass estimate as index of abundance so that local abundance is approximately proportional to the index biomass.

WCPFC Stock Assessments

MFCL Region 2

MFCL Region 4

Estimabilty

Index		None		MFCL 2	
Parameterization		$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$
Designation		A	В	C	D
n	Estimated Parameters	4	5	5	6
$ G _{max}$	Gradient at Minimum	0.0016409	33.1289	3.51082e-05	3.77653
$-\log L$	Likelihood	-237.238	-237.968	-247.175	-243.343
B_1	Initial Biomass		1184.2		2802.3
d	$K = dB_1$		9.6674		2.6348
\widetilde{Y}	MSY	1147.5	(1199.3)	1288.7	(1032.6)
$F_{\widetilde{Y}}$	F at MSY	0.82239	(0.20952)	0.1668	(0.2797)
r	Growth Rate	(1.6448)	0.41904	(0.3336)	0.5594
K	Equilibrium Biomass	(2790.8)	(11448)	(15452)	(7383.5)
σ_P	Process Error	0.37416	0.36757	0.2743	0.2649
σ_Y	Observation Error	0.41693	0.43062	0.46924	0.47614
Q	Index Proportionality			0.04321	0.016535

Estimated Biomass Trends

Production

Alternate forcing: MFCL Region 4

Conclusions

- 1. Yellowfin catch data from fleets operating in the Main Hawaiian Islands waters are sufficiently informative to estimate **relative** biomass trends.
- 2. An index of abundance is required to estimate **absolute** biomass; absolute estimates are sensitive to the choice of index population.
- 3. Representing trends in fishing mortality as a random walk is a convenient and effective approach to accounting for the removal of biomass from the fish population.
- 4. Estimates of MSY and F_{msy} are possible, but should not be used for setting ACLs without further analysis.
- 5. The prior on r is difficult to assign and probably not required.

Next Steps?

- 1. Re-evaluate data: Complete (recreational catch)? Accurate (yellowfin or bigeye)? Stratified appropriately (quarterly or annual; gear types)?
- 2. Technical review of model, including statistical assumptions and computing methods.
- 3. Review previous work on Hawaiian yellowfin fisheries
- 4. Review previous uses of production models in tuna fisheries (to improve r prior).
- 5. Run simulations to evaluate sensitivity of estimates to different levels of process and observation error.
- 6. Test alternative biomass indices, e.g. MHI-specific SEAPODYM estimates.
- 7. Compare results to Catch-MSY analysis.
- 8. Work within WCPFC assessment process to improve applicability of WCPFC stock assessments to local requirements.

Thanks for your attention

Technical features

- 1. Fishing mortality and biomass are random effects.
- 2. All process errors (population growth, fishing mortality random walk, biomass index proportionality) are assumed to be equal to a single estimated error (σ_P) .
- 3. Zero-inflated log-normal catch likelihood with estimated observation error (σ_Y) .
- 4. Two alternate logistic model parameterizations:

a)
$$K = \frac{4\widetilde{Y}}{r}$$
; $r = 2F_{\widetilde{Y}}$

- b) $K = d \cdot B_1$
- 5. Optional log-normal prior on r with $\tilde{r} = 0.486$ and $\sigma_r = 0.8$.
- 6. Analytic solution to Schaefer ODE for stable propagation through time.

Models implemented in ADMB and TMB; all computer code, data files, and draft reports can be found at Github: https://github.com/johnrsibert/XSSA.git.

Alternative Schaefer Parameterizations

$$\frac{dN}{dt} = rN(1 - \frac{N}{K}) - FN$$

- $r = 2F_{\widetilde{Y}}; \quad K = \frac{4\widetilde{Y}}{r}.$
- Partial non-dimensional: $K = d \cdot B_1$.
- K as random walk $\log K_t = \log K_{t-1} + \xi_t$; $\xi_t \sim N(0, \sigma_K^2)$?
- $K_t = Q \cdot I_t$?
- Fully non-dimensional ... ?

Catch Predictions

Omitting r prior

Index	No	one	MFCL 2		
Parameterization	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$	
Designation	A	В	C	D	
n	4	5	5	6	
$-\log L$	-284.898	-236.212	-246.302	-242.176	
$ G _{max}$	2.45563	151.693	1.24795e-05	39.9125	
B_1		1540.2			
$\mid d$		12.567			
\widetilde{Y}		1274.9	1579.3		
$F_{\widetilde{Y}}$		0.13174	0.1293		
$\mid r \mid$		0.26347	0.25859		
K		19355	24430	_	
σ_P		0.35682	0.27044		
σ_Y		0.43481	0.47162	_	
Q			0.073752		

Posteriors — Estimated Parameters

Posteriors — Functions of Parameters

