y + a(x) - y = b(x) | . e Loi du produit 1. $y' + 2y = x^2 (E_1)$ 1.) $y' + 2 \cdot y = x^2$ | $e^{A(x)} = 2x$ | $y \cdot e^{A(x)} = \int b(x) \cdot e^{A(x)} dx$ $y \cdot e^{2x} = \int_{x}^{2} e^{2x} dx = x^{2} \cdot \frac{1}{2} \cdot e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = x^{2} \cdot \frac{1}{2} \cdot e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = x^{2} \cdot \frac{1}{2} \cdot e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = x^{2} \cdot \frac{1}{2} \cdot e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $\int_{x}^{2} e^{2x} dx = \int_{x}^{2} e^{2x} dx$ $y \cdot e^{2\tau} = \frac{1}{2} x \cdot e^{2x} - \frac{x e^{2x}}{2} + \frac{e^{2x}}{4} + C$ $y(x) = \frac{x^{2}}{2} - \frac{x}{2} + \frac{t}{4} + C \cdot e^{-2x}$ https://us04web.zoom.us/j/79017263263?pwd=0 -6PP2yjyL4o6z3v

miro

Vérification:

Exercice 1

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

- 1. $y' + 2y = x^2 (E_1)$
- 2. $y' + y = 2\sin x (E_2)$
- 3. $y' y = (x+1)e^x (E_3)$
- 4. $y' + y = x e^x + \cos x (E_4)$

$$= -\frac{1}{2} + \times^2 + \times^2 = \chi^2$$

Exercice 1

Résoudre sur R les équations différentielles suivantes :

2) Une approche pour la solution:

$$y(x) = A \cdot \sin x + B \cdot \cos x$$

 $y'(x) = A \cdot \cos x - B \sin x$

y dans (x):

$$A - B \cdot \sum_{i=1}^{n} A + D \cdot \sum_{i=1}^{n} A + D \cdot \sum_{i=1}^{n} A = A$$

$$A - B \cdot \sum_{i=1}^{n} A = A$$

$$A = A$$

$$A = A$$

Von Edwin Jeanson an alle 10:01 AM j´éspère que je n´ai rien oublié