문제 1 - 승진 시험

- → 과목 별 성적을 담은 리스트 3개가 주어집니다. (score_0, score_1, score_2)
- → 모든 리스트는 동일한 응시자들에 대해, 응시번호 기준으로 정렬되어 있습니다.

목표: 최종 승진에 성공한 응시자 수를 출력하세요.

孠

F

- → 세 과목에 대한 합격 기준 점수를 입력받으세요.
- → 입력 받은 합격 기준 점수는 score_0, score_1, score_2 순서로 적용됩니다.
- → 한 과목이라도 합격 기준 점수 미만인 응시자는 실격입니다.
- → 최종 승진에 성공한 응시자 수를 출력하세요.

```
score_0 = [82, 54, 2, 86, 76, 85, 33, 60, 57, 35]
score_1 = [72, 47, 66, 61, 98, 78, 47, 52, 83, 98]
score_2 = [20, 52, 59, 67, 74, 81, 47, 56, 89, 98]
```

주어지는 데이터 예시 (문제와 무관)

```
프로세스가 시작되었습니다.(입력값을 직접 입력해 주세요) > 75
75
60
2
프로세스가 종료되었습니다.
```

입출력 예시 (정답과 무관)

문제 2 - 축하 파티 음료수 돌리기

→ 파티 참석자들과 사람들이 좋아하는 음료수가 딕셔너리로 주어집니다.

목표: 아래 조건에 따라 사람에 맞는 음료수를 출력하세요.

- → 음료를 주문한 참석자들의 이름을 '종료'가 입력되기 전까지 반복해서 입력받습니다.
- → '**종료'**를 입력받으면 참석자들을 위한 음료수 이름과 잔수를 출력합니다.
- → 음료는 먼저 주문이 입력된 순서대로 출력합니다.
 - 아래 예시에서는 '강민'이 좋아하는 음료가 '홍진호'가 좋아하는 음료보다 먼저 출력됩니다.
- → 주문되지 않은 음료는 출력하지 않습니다.
- → 딕셔너리에 존재하지 않는 사람이 입력될 경우, 음료 잔 수 대신 "취향을 모르는 사람 x명" 을 제일 마지막에 출력합니다. 존재하지 않는 사람이 입력된 적 없다면, 출력하지 않습니다.

프로세스가 시작되었습니다.(입력값을 직접 입력해 주세요)
> 강민
홍진호
홍진호
임요한
민이름없음
종료
콜라 1 잔
카라멜마끼아또 3 잔
취향을 모르는 사람 1 명
프로세스가 종료되었습니다.

입출력 예시

F

문제 3 - 간식비 정산

→ 일차원 형태의 Numpy array 하나가 데이터로 주어집니다.

목표: 입력받은 요일에 사용한 총 간식비 합을 출력하세요.

- → 신입사원이 연간 부서 간식비를 정산하여 회계팀에 보고하고자 합니다.
- → 그런데 모든 간식비 내역이 1차원 배열로 저장되어 있어, 요일 별 분석이 어렵습니다.
- → 지출 내역은 1주차 월요일부터 시작하여 일자 순으로 있습니다.
- → 주말 근무는 없어 간식비 지출도 없습니다. 따라서, 지출 내역은 월요일~금요일 반복입니다.
- → 요일 (월, 화, 수, 목, 금) 중 하나를 입력 받아, 해당 요일에 사용한 간식비 합을 출력하세요.

F

1주차 윌	1주차 화	1주차 수	1주차 목	1주차 금	2주차 월	2주차 화	2주차 수	***
20000	17000	15000	22000	12000	10000	8000	15000	2999

주어지는 데이터 예시 (문제와 무관)

실제 데이터는 주차 및 요일 ("1주차 월" 등)이 표시되지 않습니다.

프로세스가 시작되었습니다.(입력값을 직접 입력해 주세요) > 화 670900 프로세스가 종료되었습니다.

입출력 예시 (정답과 무관)

문제 4-1 - 소비 습관 1

→ [일시, 카테고리, 입금, 출금, 잔고] 열을 가진 입출금 통장 데이터가 주어집니다.

목표: 카테고리 별 소비 내역을 특정 기준으로 출력하세요.

- → 카테고리를 입력받고, 해당 카테고리의 출금액을 시끌즈 자료형으로 내림차순으로 정렬하여 변수 out에 지정하세요. (채점코드를 통해 나온 출력으로 채점됩니다.)
- → 출금이 0으로 표기된 내역은(입금 내역) 제거합니다.
- → 잘못된 입력(없는 카테고리 등)은 들어오지 않습니다.

F

채점을 위한 코드입니다. out이 Series가 되도록 형식을 맞춰주세요. print((out.iloc[0]),(out.iloc[-1]))

- 채점하기 위한 코드입니다. out 변수를 Series가 되도록 해주세요.

> 교통비 25745 **5000**

- 입(교통비)출력(25745 5000) 예시입니다. 정답과는 무관합니다.

문제 4-2 - 소비 습관 2

→ [일시, 카테고리, 입금, 출금, 잔고] 열을 가진 입출금 통장 데이터가 주어집니다.

목표: 카테고리 별 총 출금 내역을 특정 기준으로 출력하세요.

- → 출금 및 카테고리 열을 제외한 나머지 열을 제거하세요.
- → 카테고리 별 총 출금량을 계산하여, 출금량이 많은 카테고리부터 순서대로 정렬하세요
- → 총 출금량이 0인 카테고리 또한 제거합니다 등
- → 결과물을 out 변수에 저장하세요. (채점코드를 통해 나온 출력으로 채점됩니다.)

print(np.array(out.values).flatten()) =

- 출력을 채점하기 위한 코드입니다. out 변수가 데이터프레임이 되도록 해주세요.

[123125 134454 3544 234]

채점 코드의 출력 예시입니다. 정답과는 무관합니다.

문제 5 – 지하철 출퇴근과 탄력근무

아래를 참고하여 소문제 2문제를 해결하세요.

- → <mark>노선 혼잡도</mark> = 어떤 시간대, 노선 내 모든 지하철역의 승차자 수와 하차자 수의 합
- → 문제 5번에는 1호선 각 역들의 시간대별 승/하차 인원 수를 담은 데이터 프레임이 주어집니다.
- → 컬럼 제목에서 시간을 int로 추출하는 함수가 주어집니다.
 - → slice_col_name 함수에 인자로 컬럼 제목을 넣으면, 제목에 포함된 시간을 정수로 반환합니다. slice_col_name("04시 승차인원") -> 4 가 반환됩니다.
- → 모든 소문제의 예시는 정답과 무관합니다.
- → 당신은 탄력근무제를 시행하는 회사로 지하철을 이용해 통근합니다.
- → 탄력근무가 가능한 시간대 내에서, 일일 근무 시간을 채워야 합니다.
- → 보통의 출퇴근 시간대에는 지하철이 너무 붐벼서, 한적한 출퇴근 시간대를 찾고 싶습니다.
- → 시간대별 지하철 승/하차자수 데이터를 이용해 최적의 출퇴근 시간을 찾고자 합니다.

사용월	호선명	지하철역	04시 승차인원	04시 하차인원	05시 승차인원	05시 하차인원	06시 승차인원	***
202208	1호선	동대문	561	16	9859	1842	8375	
202208	1호선	동묘앞	145	1	2799	1039	3456	
202208	1호선	서울역	573	19	8638	8274	12332	
202208	1호선	시청	39	0	2005	4665	3404	
w								500

주어지는 데이터 프레임 예시 (실제 데이터와 무관)

문제 5-1 – 지하철 출퇴근과 탄력근무

- → 노선 혼잡도 = 어떤 시간대, 모든 지하철역의 승차자 수와 하차자 수의 합
- → 문제 5번에는 1호선 각 역들의 시간대별 승/하차 인원 수를 담은 데이터 프레임이 주어집니다.

목표: 일정 기준내에서, 노선 혼잡도가 가장 적은 시간에 출근하세요.

→ 출근을 시작할 수 있는 시간 범위 a, b 가 입력으로 주어집니다.

$$4 \le a \le b \le 23$$

- → a와 같거나 큰 시간이며, b와 같거나 작은 시간대에만 출근할 수 있습니다.
- → 출근 가능 시간 중 노선 혼잡도가 가장 적은 시간대를 출력하세요.

7시부터 9시까지 3개 시간대 중 노선 혼잡도가 가장 작은 시간대 출력

예시에 대한 설명

문제 5 – 지하철 출퇴근과 탄력근무

아래를 참고하여 소문제 2문제를 해결하세요.

- → <mark>노선 혼잡도</mark> = 어떤 시간대, 노선 내 모든 지하철역의 승차자 수와 하차자 수의 합
- → 문제 5번에는 1호선 각 역들의 시간대별 승/하차 인원 수를 담은 데이터 프레임이 주어집니다.
- → 컬럼 제목에서 시간을 int로 추출하는 함수가 주어집니다.
 - → slice_col_name 함수에 인자로 컬럼 제목을 넣으면, 제목에 포함된 시간을 정수로 반환합니다. slice_col_name("04시 승차인원") -> 4 가 반환됩니다.
- → 모든 소문제의 예시는 정답과 무관합니다.
- → 당신은 탄력근무제를 시행하는 회사로 지하철을 이용해 통근합니다.
- → 탄력근무가 가능한 시간대 내에서, 일일 근무 시간을 채워야 합니다.
- → 보통의 출퇴근 시간대에는 지하철이 너무 붐벼서, 한적한 출퇴근 시간대를 찾고 싶습니다.
- → 시간대별 지하철 승/하차자수 데이터를 이용해 최적의 출퇴근 시간을 찾고자 합니다.

사용월	호선명	지하철역	04시 승차인원	04시 하차인원	05시 승차인원	05시 하차인원	06시 승차인원	•••
202208	1호선	동대문	561	16	9859	1842	8375	
202208	1호선	동묘앞	145	1	2799	1039	3456	
202208	1호선	서울역	573	19	8638	8274	12332	
202208	1호선	시청	39	0	2005	4665	3404	
we						,		555

주어지는 데이터 프레임 예시 (실제 데이터와 무관)

문제 5-2 – 지하철 출퇴근과 탄력근무

- → 노선 혼잡도 = 어떤 시간대, 모든 지하철역의 승차자 수와 하차자 수의 합
- → 문제 5번에는 1호선 각 역들의 시간대별 승/하차 인원 수를 담은 데이터프레임이 주어집니다.

목표: 일정 기준내에서, 노선 혼잡도가 가장 적은 시간에 출근&퇴근 하세요.

→ 출근을 시작할 수 있는 시간 a, 퇴근할 수 있는 시간 b, 오늘의 근무시간 c를 입력 받습니다.

$$4 \le a \le b \le 23$$
, $0 < c < b - a - 1$

- → a 부터 출근이 가능하며, b 까지 퇴근해야 합니다. (a, b를 포함합니다.)
- → 출퇴근 이동시간은 1시간으로, 출근 1시간 후부터 퇴근시간까지 근무해야 합니다.
- → 예시: 5시에 출근하여 3시간 근무한다면, 근무 시작 시간은 6시, 퇴근 시간은 9시가 됩니다.
- → 출근 시간과 퇴근 시간의 노선혼잡도의 합이 가장 적은 시간대에서의 **출근 시간, 근무 시작 시간, 퇴근 시간** 을 출력하세요.

두 시간대의 합이 최소인 경우의 출근 시간, 근무 시작 시간, 퇴근 시간 출력

예시에 대한 설명