Carlingford High School

Year 9 (5.3) Mathematics

Term 3 Exam 2018

Print your Name:		
Circle your class:		
9MA31 (Ms Hooper, Ms Gamble)	9MA32 (Mr Gong)	9MA33 (Ms Bennett)

- Time allowed: 50 minutes
- Approved calculators may be used
- Show all necessary working
- Marks may be deducted for untidy setting out
- Marks for questions are indicated

TOPICS	Marks	
Algebraic Techniques	/20	
Geometry	/28	
Surds	/18	
TOTAL	/66	%

Algebraic Techniques

- 1. Fully factorise the following
 - **a).** $x^3 x$

- 3. Fully simplify $\frac{3x^2 75}{3x^2 30x + 75}$
- [2]

b). 3ab - 6a + bp - 2p

[2]

[2]

- c). $a(x-y)-2b(x-y)+3ab-6b^2$
- [2] 4. Fully simplify the following
 - **a).** $\frac{x}{2x+6} + \frac{5}{x^2-9}$

[2]

- Fully factorise the following **a).** $x^2 + 6x 27$

[2]

[2]

b). $a^2 - 3a - 18$

b). $\frac{3x-6}{x+3} \times \frac{3x+9}{5x-10}$

[2]

c). $1 - 2x - 24x^2$

- [2]
- c). $\frac{y}{y^2+y} \div \frac{4}{5y+5}$

[2]

	Geometry				
1.	What is a regular polygon?	[1]	5.	How many sides does a dodecagon have ?	[1]
2,	Name the quadrilateral(s) whose diagonals are equal and intersect at right angles.	[1]	6.	Name this polygon.	[1]
3.	Find the value of each pronumeral in the diagram below, giving reasons. a). 140°	[2]	7.	Find the interior angle sum of a decagon.	[2]
	b). 108° 71°/ 85° m°	[2]	8.	Find the value of x . x° y° y° y° y° y° y° y° y° y°	[2]
4.	Find the size of $\angle PQR$, giving reasons. $R \longrightarrow 80^{\circ}$ W	[2]	9.	For a regular octagon, find the size of: a). each exterior angle	[1]
	$P \xrightarrow{Q} V$			b). each interior angle.	[1]

Geometry continued

10. Find the value of x^0 and k in the pair of congruent triangles.

k cm

12. $\triangle LPR \parallel \triangle LMN$. Find the value of *a* correct to 2 decimal places.

[2]

[3]

11. If $\angle EDF = \angle DEG$ and FD = GE, prove that $\triangle EDF = \triangle DEG$.

13. Given the diagram

[3]

a). Prove $\triangle KNP \parallel \mid \triangle KMT$.

b). Hence find the value of w. [2]

Surds

- Circle the surds from this list of square roots: $\sqrt{289}$, $\sqrt{101}$, $\sqrt{121}$,
- Expand and simplify this expression [1]

2. Simplify $\left(-6\sqrt{3}\right)^2 =$

- [1]
- $\left(\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{7}+3\sqrt{5}\right)$ [2]

3. Simplify $\frac{\sqrt{288}}{6}$ =

[2]

[2]

Simplify $\sqrt{18} - \sqrt{27} + \sqrt{8}$

Rationalise the denominator of $\frac{\sqrt{5}}{2\sqrt{7}}$

- Simplify each expression.
 - **a).** $6\sqrt{27} \times 4\sqrt{6} =$

- Rationalise the denominator of [2]
 - $\frac{\sqrt{2}-1}{3+\sqrt{2}}$

[2]

[2]

b). $\sqrt{54} \div \sqrt{3} =$

[2]

[2]