MODEL QUESTION PAPER: 2024-25

Course Code: BMANT553

VIDYAVARDHAKA COLLEGE OF ENGINEERING Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belagavi Gokulam, 3rd Stage, Mysuru 570 002

Fifth Semester B.E. Examinations COURSE NAME: NUMBER THEORY AND CRYPTOGRAPHY

Duration: 3-hour Max. Mark: 100

INSTRUCTION TO STUDENTS

1) Answer One Full question from each module

Q. No.	Module-I	Marks	BL	CO/PO
1. (a)	Use Euclidean algorithm to obtain integers x and y satisfying: gcd1278, 1054=1278x+1054y	6	L3	2/1
1. (b)	Determine all integer solutions of the following linear congruences: i. $5x \equiv 2 \pmod{26}$ ii. $6x \equiv 15 \pmod{21}$	7	L3	2/1
1. (c)	Use Chinese remainder theorem to solve the simultaneous congruence: $x \equiv 5 \mod 10$ $x \equiv 7 \mod 23$ $x \equiv 9 \mod 29$	7	L3	2/1
	Module-II Module-II			
2.(a)	State and prove Euler's theorem/Fermat theorem.	6	L2	1/1
2.(b)	Find the last two digits of 92557	7	L3	2/1
2.(c)	Prove that F7={0,1,2,3,4,5,6} is a finite field with respect to the binary operations addition and multiplication modulo 7.	7	L4	3/2
	Module-III			
3.(a)	Let the integer a have order k modulo n. Then prove that ah≡1(mod n) if and only if k h.	6	L2	1/1
3.(b)	Show that if n has a primitive root then it has precisely $\phi(\phi(n))$ number of primitive roots.	7	L3	2/1
3.(c)	Use the theory of indices to solve the congruence 7x5≡3 (mod 17) by taking 3 is a primitive root of 17.	7	L3	2/1
	(OR)			
4.(a)	Write the definition of Legendre symbol and evaluate 367588.	6	L2	1/1
4.(b)	State and prove Euler's criterion for quadratic residues.	7	L3	2/1

MODEL QUESTION PAPER: 2024-25

Course Code: BMANT553

4.(c)	Solve the following quadratic congruence x2+7x+10≡0(mod11)	7	L3	2/1
	Module-IV			
5.(a)	Decipher HPCCXAQ if the encipherment function is Ex≡(5x+8)(mod 26).	6	L3	2/1
5.(b)	Use Miller-Robin's primality test to show that 561 is a composite number.	7	L4	3/2
5.(c)	Use a Hill cipher with key 37517 to encrypt the following message. "Agnes Driscoll worked for NSA".	7	L4	3/2
	(OR)			
6.(a)	Question on Elgamal/Diffie Hellman crypto system	6	L3	2/1
6.(b)	Encode "BEAT" using RSA algorithm with the key {N=3021,e=17} and p=53, q=57.	7	L4	3/2
6.(c)	Evaluate log312 in Z29* using Shank's baby step-Giant step method.	7	L4	3/2
	Module- V			
7.(a)	The cubic curve y2=x3+17 has the following points say Q1=-2,3 Q2=2,5, compute the points Q3=-Q1+2Q2 and Q4=3Q1-Q2.	10	L3	2/1
7.(b)	Explain Elliptic curve Diffie Hellman key exchange with an example. Or Problem of this kind Alice and Bob wish to securely establish a shared secret using the Elliptic Curve Diffie-Hellman (ECDH) protocol. The elliptic curve is defined as: y2=x3+2x+3(mod17) The generator point G=(5,1) is given, and the order of G is n=7. If Alice secret key dA =2, and Bob secret is key dB=3, , what are the public keys they exchanged between them?	10	L3	2/1