Processamento de Imagens: fundamentos

Julio C. S. Jacques Junior juliojj@gmail.com

Fronteiras do Processamento de Imagens

Fronteiras do Processamento de Imagens

Baixo nível:

- Operações primitivas (redução de ruído, aumento de contraste, etc)
- Imagem → Imagem

Nível intermediário:

- Segmentação, descrição e classificação de objetos.
- Imagem → Atributos (bordas, contornos, nível de cinza)

Alto nível:

Atribuir "sentido" à um conjunto de objetos reconhecidos

 Abrange ampla escala de hardware, software e fundamentos teóricos.

Ex: leitura automática de endereços em correspondências

Problema: ler endereço em correspondências

Resultado: sequência de caracteres alfanuméricos (nome da rua e número)

A natureza do sensor e da imagem que ele produz são determinadas pela aplicação

- satélite
- ressonância magnética
- máquina fotográfica

Melhorar a imagem de forma a aumentar as chances para o sucesso dos processos seguintes.

- realce de contraste
- diminuição de ruído
- regiões de interesse

Particiona a imagem em partes constituintes ou objetos.

9283 GKJ 9283 GKJ

Ex.:

- (a) grupo de pixels que pertencem ao fundo da imagem
- (b) grupo de pixels que pertencem aos caracteres alfanuméricos em análise

Representação: normalmente está associada ao resultado da segmentação. Forma como desejamos representar os objetos que estamos analisando

- *Contorno dos objetos* (forma externa dos objetos: perímetro, quinas, etc)
- *Região dos objetos* (propriedades internas dos objetos: textura, esqueleto, etc)

Em algumas aplicações, essas representações podem se complementar.

<u>Descrição</u>: seleção de características ou atributos que irão resultar em alguma informação quantitativa de interesse, ou será base para diferenciar uma classe de outras classes de objetos.

Ex.: buracos e concavidades são características relevantes em reconhecimento de caracteres.

Ex.: área de uma região, perímetro de um contorno, etc.

Ex.: distância média dos pontos da borda em relação ao ponto do centro, etc.

Processo que atribui um rótulo a um objeto identificado, com base em seus descritores

Ex.: "isso é a letra A"

"esses caracteres compõem o nome da rua, e aqueles outros compõem o número da casa"

Conhecimento sobre o problema a ser resolvido. Deve guiar o funcionamento de cada etapa e permitir realimentação entre elas.

Ex.: Logradouro sem número (emitir alerta ou segmentar novamente)

Estrutura do olho humano:

Iris: controla quantidade de luz que entra no olho.

Pupila: varia aproximadamente de 2mm a 8mm

Receptores de luz situados na retina:

- **Cones** (6 a 7 milhões, posicionados na região central da retina, *fóvea*). Sensíveis a cores e também a pequenos detalhes (porque cada um é conectado à sua própria fibra nervosa). Visão de luz clara ou fotópica.
- **Bastonetes** (75 a 150 milhões, distribuídos sobre a superfície da retina). Compartilham fibras nervosas, reduzindo a quantidade de detalhes discerníveis. Servem para dar uma visão geral do campo de visão, sensíveis a baixos níveis de iluminação. Visão de luz escura ou escotópica.

Fóvea: depressão circular (1,5mm de diâmetro) na retina (sensor)

Distribuição de Cones e Bastonetes na retina:

Ausência de receptores nessa área resulta no assim chamado "ponto cego"

Encontre o seu ponto cego!

Adaptação ao brilho

- A escala de níveis de intensidade luminosa aos quais o sistema visual humano pode se adaptar é enorme – na ordem de 10¹⁰
- Porém, o sistema não pode operar simultaneamente ao longo de tal escala.
- Essa grande variação é conseguida através de mudanças na sensibilidade global, fenômeno conhecido como adaptação ao brilho.
- A escala total de níveis que podem ser simultaneamente discriminados é bastante pequena, quando comparada à escala total de adaptação.

Discriminação a mudanças:

 A habilidade do olho para discriminar mudanças em brilho em qualquer nível de adaptação é também de considerável interesse

Experimento:

- Considere uma área uniformemente iluminada que seja suficientemente grande para ocupar todo campo de visão, tal como um vidro opaco que é iluminado por detrás por uma fonte de luz, cuja intensidade I pode ser variada.
- A esse campo é adicionado um incremento ΔI, na forma de um flash de curta duração, que aparece como um círculo no centro do campo uniformemente iluminado.

Adaptação ao brilho e discriminação:

- Se Δ*I* não for suficiente brilhante a pessoa diz "não percebi".
- Assim que Δ*I* se torna forte, poderá haver uma resposta "sim"
- Finalmente, quando ΔI for suficientemente forte, a pessoa responderá sempre "sim", indicando uma mudança percebida.
- Razão de Weber = ΔI/I
 - Valor pequeno → pequena mudança percentual em intensidade é discriminável (boa discriminação ao brilho → altos níveis de iluminação do fundo → desempenhada pela atividade dos cones)
 - Valor grande → grande mudança percentual é requisitada (baixos níveis de iluminação do fundo → bastonetes)

- O brilho percebido não é uma função simples de intensidade
 - O sistema visual tende a subestimar ou superestimar a intensidade próxima aos contornos entre regiões

Padrão *banda de Mach* (Ernest Mach, 1865)

Padrão percebido: lista mais escura e outra lista mais clara

- O brilho percebido não é uma função simples de intensidade
 - Fenômeno chamado contraste simultâneo: brilho percebido em uma região não depende simplesmente de sua intensidade

Ilusões de óptica

Ilusões de óptica

Memória subjetiva

Imagem digital

Modelo simples de imagem

Processamento de imagens digitais

- Função bidimensional f(x,y)
 - x, y e valor de intensidade (nível de cinza) finitos.

localização particular e valor:

- picture elements,
- image elements,
- pels, ou pixel.

Processamento de imagens digitais

Escala de intensidade: [0, ..., 255]

Preto: valores baixos (0)

Cinza: valores intermediários

Branco: valores altos (255)

Imagem ditigal

- Discretização
 - Amostragem: coordenadas espaciais (resolução)
 - Quantização: níveis de cinza (brilho)

Amostragem

Digitalização das coordenadas espaciais

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

320 x 240 160 x120

80 x60

Amostragem

• Efeitos da redução da resolução espacial

160 x120

80 x60

Quantização

• Digitalização da amplitude (níveis de cinza)

Relacionamentos básico entre pixels

- Vizinhança
- Conectividade
- Rotulação de componentes conexos
- Operações Lógico-aritméticas

Vizinhança

 Um pixel p nas coordenadas (x,y) possui 4 vizinhos horizontais e verticais, N₄(p):

$$(x+1,y),(x-1,y),(x,y+1),(x,y-1)$$

Os quatro vizinhos diagonais possuem coordenadas
N_D(p):

$$(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1)$$

• A vizinhança-de-8 de p, $N_8(p) = N_4(p) \cup N_D(p)$

Conectividade

 Estabelece uma relação de adjacência entre pixels e seus níveis de cinza devem satisfazer um certo critério de similaridade.

Conectados $N_4(p)$

Conectados $N_D(p)$

Conectados $N_8(p)$

Rotulação de componentes conexos

 Se p e q forem pixels de um subconjunto S de uma imagem, então p está conectado a q em S se existir um caminho de p a q consistindo inteiramente de pixels de S.

Rotulação de componentes conexos

- Exemplo de aplicação:
 - Remover objetos com área maior que T

Imagem de entrada

Resultado da segmentação

Rotulação dos componentes conexos

Imagem processada

Rotulação de componentes conexos

- Exemplo de aplicação:
 - Análise de forma

Imagem de entrada

Blob (processado)

Maior eixo (horizontal)

Extração do contorno

Projeções, vertical e horizontal

Operações lógicoaritméticas

- Lógicas (aplicadas à imagens binárias):
 - E: p E q
 - OU: p OU q
 - COMPLEMENTO: NÃO q

Operações lógicoaritméticas

• Aritméticas:

Adição: p + q

Subtração: p – q

Multiplicação: p * q

Divisão: p/q

Ex.: suavização através de um filtro da média

$$g(x, y) = \frac{1}{mn} \sum_{(r, c) \in S_{xy}} f(r, c)$$

Medidas de distâncias

 Considere os pixels p, q e z, com coordenadas (x,y), (s,t) e (v,w), respectivamente. D é uma medida de distância se:

(a)
$$D(p,q) \ge 0$$
 $(D(p,q) = 0$ iff $p = q)$,

(b)
$$D(p, q) = D(q, p)$$
, and

(c)
$$D(p, z) \leq D(p, q) + D(q, z)$$
.

Distância Euclidiana entre p e q:

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$$

Distância D₄ ("quarteirão") entre p e q:

$$D_4(p,q) = |x - s| + |y - t|$$

- Distância D_8 ("xadrez") entre p e q:

$$D_8(p,q) = \max(|x - s|, |y - t|)$$