ABE 580

Process Engineering of Renewable Resources

Chapter 4
Microbial Fermentation

Fermentation

- Microbial processes that produce various products via biochemical action
- Foods, pharmaceuticals, small molecules, proteins, "biologics"
- vs Cell Culture (mammalian or plant)
- Control
 - Temperature
 - Nutrients
 - pH
 - $-\,O_{2}$

Industrially Important Microorgansims Table 4.2

Name	Organism Type	Product		
Industrial Chemicals				
Saccharomyces cerevisiae	Yeast	Ethanol (from Glucose)		
Clostridium acetobutylicum	Bacterium	Acetone and Butanol		
Aspergillus niger	Mold	Citric Acid		
Amino Acids and Flavor-Enhancing Nucleotides and Acids				
Corynebacterium glutamicum	Bacterium	L-Lysine		
Corynebacterium glutamicum	Bacterium	5'-Inosinic Acid and		
		5'-Guanylic Acid; Glutamate		
Vitamins				
Eremothecium ashbyi	Yeast	Riboflavin		
Pseudomonas denitrificans	Bacterium	Vitamin B ₁₂		
Propionibacterium	Bacterium	Vitamin B ₁₂		

Foods and Beverages				
Saccharomyces cerevisiae	Yeast	Baker's Yeast, Wine, Ale, Sake		
Saccharomyces carlsbergensis	Yeast	Lager Beer		
Candida milleri	Yeast	Sour French Bread		
Lactobacillus sanfrancisco	Bacterium	Sour Bread		
Streptococcus thermophilus	Bacterium	Yogurt		
Lactobacillus sp.	Bacterium	Yogurt		
Propionibacterium shermanii	Bacterium	Swiss Cheese		
Gluconobacter suboxidans	Bacterium	Vinegar		

Polysaccharides			
Leuconostoc mesenteroides	Bacterium	Dextran	
Xanthomonas campestris	Bacterium	Xanthan Gum	

Pharmaceuticals				
Penicillum chrysogenum	Mold	Penicillins		
Cephalosporium acremonium	Mold	Cephalosporins		
Streptomyces	Bacterium	Amphotericin B, Kanamycins,		
		Neomycins, Streptomycin, Tetracyclines		
		and Others		
Bacillus brevis	Bacterium	Gramicidin S		

Fermentation Processes Must Provide Nutrients (Table 4.1)

Monomers From	Total*	C	Н	O	N	P	S
Proteins	64.18	29.25	4.95	19.48	9.75	1.95	0.75
RNA	21.58	7.25	0.88	8.02	3.49	0.31	0.73
DNA	3.27	1.17	0.14	1.12	0.53	0.40	
Lipids	9.17	5.92	0.96	1.75	0.14	0.08	
LPS	4.03	1.89	0.33	1.63	0.08		
Peptidoglycans	2.84	1.23	0.20	1.15	0.27		
Polyamines	0.40	0.22	<u>0.05</u>		0.13		
•	105.47	46.93	7.51	33.15	14.39	2.74	0.75
Hydrolysis	<u>-10.97</u>		<u>-1.23</u>	<u>-9.74</u>			
Total	94.5	46.93	6.29	23.41	14.39	2.74	0.75

Fermentation Media

Defined media

Rich media

Defined (Minimal) Medium (Table 4.6)

Component	Amount (g/L)
Glucose Ammonium sulphate Potassium dihydrogen phosphate Magnesium sulphate 7 ₂ HO Calcium chloride 2H ₂ O Boric acid Cobalt sulphate 7H ₂ O Copper sulphate 5H ₂ O Zinc sulphate 7H ₂ O	100.0 5.19 1.53 0.55 0.13 0.01 0.001 0.004 0.010
Manganous suphate 7H ₂ O Aluminum sulphate	0.003 0.001

Defined Medium (additional precursors)

Component	Amount (g/L)
Biotin	0.002
Pantothenate (B5)	0.003
Inositol	0.000125
Thiamin	0.00625
Pyridoxine (B6)	0.125
<i>p</i> -Aminobenzoic acid	0.005
Nicotinic acid	0.00625

Rich Media

- AKA Complex media or undefined media
- Partially processed plant, animal, or microbially derived material
- Complex mixture of carbohydrates, minerals, vitamins, and biomolecules
- Laboratory media: Luria broth, trypticase soy agar, yeast extract with peptone, etc.

Industrial undefined media

- Carbon source
 - Molasses
 - Malt extract
 - Whey
 - Dextrose
 - Starch
- Lipids (rarely used)
 - Soy oil
 - Fish oil

- Nitrogen source
 - Urea
 - Diammonium Phosphate (DAP)
 - Corn steep liquor
 - Yeast extract
 - Soy meal
- Vitamins and minerals
 - Corn steep liquor
 - Yeast extract
 - Specialty products (too numerous to list

Rich Media Components

Components	Yeast	Blackstrap	Corn Steep
	Extract	Molasses	Liquor
Overall (%)			
Carbohydrate	39.5	54.0	5.8
Lipid	1.5	0.4	1.0
Ash	7.0	9.0	8.8
Vitamins (mg/kg)			
Biotin			0.9
Choline	4,840	660	
Niacin	498	47	
Pantothenic Acid	121	43	
Pyridoxine	50	44.	19.4
Riboflavin	35	4.4	
Thiamine	75	0.9	0.88
Amino Acids (%)			
Arg	2.2		0.4
Cys	0.6		0.5
Gly	3.4	0.10	1.1
His	1.3		0.3
Ile	2.7		0.9
Leu	3.3	0.01	0.1
Lys	3.4	0.01	0.2
Met	1.0		0.5
Phe	1.8		0.3

1 L Fermenter

40 L Laboratory Fermenter

300 L Fermenter

20,000 L Fermenter

Modeling

- How is the model to be used?
- What level of detail is required?
- How accurate must your model be (error)?
- Does you model need to be predictive or just descriptive?
- How robust does your model need to be?

Modeling Fermentation

- Growth of cells
 - unstructured, unsegregated model

- Unstructured
 - Mechanism (biochemical reactions) not specified
- Unsegregated
 - Parameters are lumped

Phases of Fermentation

Cell Growth

Cells reproduce through <u>binary division</u>

Modeling Cell Division

- How much time passes between cellular divisions?
- Doubling time, t_d

$$G = 2^{t_{d}}$$
 $G = number of generations$
 $t = time that has passed$
 $t_{d} = doubling time$

Modeling Binary Division

$$X = X_o 2^{t_{d}}$$

$$\mu = \ln 2 \cdot \mu_d = \frac{\ln 2}{t_d}$$

$$\chi = X_o e^{\mu t}$$

$$\ln(X) = \ln \left(X_o e^{\mu t} \right)$$

$$\ln X = \mu t + \ln(X_o)$$

$$X = X_o 2^{\mu_d t}$$

$$\frac{1}{x} dX = \mu dt + 0$$

$$\frac{1}{x} dX = \mu dt + 0$$

$$\frac{1}{x} dX = \mu dt + 0$$

Plot In(X/Xo) vs t

Monod Equation

$$r_X = \frac{dX}{dt} = \mu \cdot X$$

Where X = cell concentration (g/L) $\mu = specific growth rate$

$$X_{t} = X_{0} \cdot e^{\mu \cdot t}$$

Research
On the
Growth of
Bacterial
Cultures

SERIE A. Nº 1960 Nº D'ORDRE : 2847 THÈSES 1941 (65) A LA FACULTÉ DES SCIENCES DE L'UNIVERSITÉ DE PARIS POUR OBTENIR LE GRADE DE DOCTEUR ÉS SCIENCES NATURELLES PAR Jacques MONOD Licencié ès Sciences Assistant à la Faculté des Sciences de l'Université de Paris 1. THÈSE. — Recherches sur la Croissance des Cultures bactériennes. 2º THÈSE. - PROPOSITIONS DONNÉES PAR LA FACULTÉ. Soutenues le 17 décembre 1941, devant la Commission d'examen. MM. PÉREZ, Président Examinateurs. BIBLIOTHEQUE L'UNIVERSITE BESANCON HERMANN & CI, ÉDITEURS 6, rue de la Sorbonne 1941

Assumptions

- Homogeneous
- Exponential growth
 - Cells grow as quickly as possible
- Balanced growth
 - All cells are equal metabolically/physiologically
 - All cells divide at same rate: "synchronization of cell division" – Campbell 1957
 - Because all cells are the same, we can assume that the mass of each cell is the same
 - -X = # cells/L becomes X = g cells/L

Assumptions

Substrate controlled

Saturated vs limited growth

Substrate concentration (S)

Monod Equation

$$r_X = \frac{dX}{dt} = \mu \cdot X$$

Growth rate not constant

Subject to <u>constraints</u>
Substrate limited

$$\mu = \frac{\mu_{\text{max}} \cdot S}{K_S + S}$$

S = substrate (g/L)

$$\mu_{max}$$
 = maximum growth rate
 K_s = Monod constant
(S where $\mu = \frac{1}{2} \mu_{max}$)

Coupling Cell Growth to Substrate Use

Yield coefficient

$$Y_{X/S} = \frac{\Delta X}{\Delta S} = \frac{dX}{dS}$$

"yield of cells (X) per utilized substrate (S)"
Units = g (cells) / g (substrate)

$$Y_{X/S} \frac{dS}{dt} = \frac{dX}{dS} \frac{dS}{dt} = \frac{dX}{dt}$$

$$\frac{dS}{dt} = \frac{1}{Y_{X/S}} \frac{dX}{dt} = Y_{S/X} \frac{dX}{dt}$$

Modeling Product Formation

- How is product formed (biochemistry)?
- How is product formation related to cell growth?
- How is product formation related to substrate consumption?
- Are there any other factors that affect product formation?

Metabolic Context

Metabolism: The sum total of cellular processes resulting in cell maintenance & growth.

Fermentation Classification

- Aerobic vs Anaerobic vs Microaerobic
 - Is oxygen required?
 - Is oxygen <u>necessary</u>

- Fermentation Type
 - Relationship between cell growth, substrate utiliztation, and product formation
 - Related to metabolic pathway responsible for product

Oxidative metabolism

Non-oxidative metabolism

$$C_{C_s}H_{H_s}O_{O_s} + \mathbf{0}O_2 \rightarrow$$

$$C_{C_s}H_{H_s}O_{O_s} \rightarrow$$

$$Y_{X/S}C_{C_x}H_{H_x}O_{O_x}$$

$$Y_{X/S}C_{C_x}H_{H_x}O_{O_x} + Y_{P/S}C_{C_p}H_{H_p}O_{O_p}$$

$$\mathbf{w}H_2O + \mathbf{c}CO_2$$

$$\mathbf{w}H_2O + \mathbf{c}CO_2$$

ATP synthesis: Respiration, 36 ATP/glucose

Substrate-level phosphorylation,

1 to 4 ATP/glucose

Cell yield, $Y_{X/S}$: ~ 0.5

 ~ 0.1

Product yield, $Y_{P/S}$: ~ 0

0.5 to 0.9 common

O₂ transport:

Major design, scale-up issue Not needed, easily prevented

Fate of feedstock

energy/reducing power: Heat, cells

> 90% typically in organic products

Heat production: ~ 0.5 x Feedstock heating value $\sim 10\%$ feedstock heating value

Oxidative and non-oxidative metabolism can be combined, but not without decreasing product yield.

Converting a large fraction of the feedstock mass & energy to organic products requires that most or all metabolism proceed non-oxidatively.

Time

Ethanol Fermentation Schematic

Lactic Acid Fermentation Schematic

Anaerobic metabolism of pyruvate by different organisms.

*=Reactions that oxidize NADH₂ → NAD+

Organism Clostridia

Enteric bacteria

Yeast

Homofermentative lactobacilli

Major Products

Butyric, acetic acids, butanol, ethanol, acetone, CO2, H2. Acetic acid, ethanol, CO2, H2 (or formic acid), lactic acid, succinic acid, 2,3-butylene glycol.

Ethanol, CO2.

Lactic acid.

Fermentation Types

- Type I
 - Product directly from central metabolism
 - Cell growth coupled to product formation
 - Ethanol, lactic acid, acetone
- Type II
 - Product not <u>directly</u> from central metabolism
 - Secondary or intermediate
 - Citric acid, glutamate, lysine
- Type III
 - Product <u>not</u> byproduct or intermediate of central metabolism
 - Product formation not related to cell growth
 - Antibiotics, antibodies, recombinant proteins