# 6.6 Sequence Alignment



# Programmazione dinamica: caratteristiche

- 1. La soluzione al problema originale si può ottenere da soluzioni a sottoproblemi
- 2. Esiste una relazione di ricorrenza per la funzione che dà il valore ottimo ad un sottoproblema
- 3. Le soluzioni ai sottoproblemi sono calcolate una sola volta e via via memorizzate in una tabella

# Due implementazioni possibili:

- Con annotazione (memoized) o top-down
- Iterativa o bottom-up

# Dynamic Programming Summary

# Recipe.

Characterize structure of problem.

Recursively define value of optimal solution.

Compute value of optimal solution.

Construct optimal solution from computed information.

# Dynamic programming techniques.

Binary choice: weighted interval scheduling, sequence alignment

Multi-way choice: segmented least squares, esempio "canoa"

Adding a new variable: knapsack.

Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

# E' capitato anche a voi?

Di digitare sul computer una parola in maniera sbagliata (per esempio usando un dizionario sul Web):

#### **AGORITNI**

E sentirsi chiedere:

«Forse cercavi ALGORITMI?»

Come fanno a capirlo? Sanno veramente cosa abbiamo in mente?

Non trovando AGORITNI sul vocabolario ha cercato una parola «simile», «vicina» presente nel vocabolario.

# String Similarity

How similar are two strings?

ocurrance occurrence





#### Edit Distance

# Applications.

Basis for Unix diff

Spam filter

Speech recognition

Computational biology (sequenze di simboli nel DNA rappresentano proprietà degli organismi)

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty  $\delta$ ; mismatch penalty  $\alpha_{pq}$  (you may assume  $\alpha_{pp}$  =0). Cost = sum of gap and mismatch penalties.

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$$

$$2\delta + \alpha_{CA}$$

#### Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty  $\delta$ ; mismatch penalty  $\alpha_{pq}$  (you may assume  $\alpha_{pp}$  =0). Cost = sum of gap and mismatch penalties.

# Esempio:

$$\delta = 3$$

 $\alpha_{AT} = \alpha_{CG} = 3$ ; gli altri mismatch penalità =1 (tranne  $\alpha_{pp} = 0$ ).

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA} = 5$$

$$2\delta + \alpha_{CA} = 7$$

# Sequence Alignment

Goal: Given two strings  $X = x_1 x_2 ... x_m$  and  $Y = y_1 y_2 ... y_n$  find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs  $x_i$ - $y_j$  such that each item occurs in at most one pair and no crossings.

Def. The pair  $x_i-y_j$  and  $x_{i'}-y_{j'}$  cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched } j: y_j \text{ unmatched}}_{\text{gap}} \delta$$

Ex: CTACCG VS TACATG.

Sol: 
$$M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$$



 $X_1$   $X_2$   $X_3$   $X_4$   $X_5$ 

#### Come risolverlo?

Ricerca esaustiva: proviamo tutti gli allineamenti possibili?

Proviamo con l'approccio della programmazione dinamica.

Cominciamo dal basso e poi guardiamo una soluzione ottimale.

#### Cominciamo «dal basso»

costo mismatch =4, costo gap = 2

Y = AGORITNI

A

A

A -

-

Α

 $min \{ 0, 2+2, 2+2 \} = 0$ 

A

- A

A -

A - -

- A -

 $\min \{ 2+4, 0+2, 2+2+2, 2+2+2, 2+2+2 \} = 2$ 

- - A

Altre possibilità? Come classifico le varie possibilità?

#### Continuiamo «dal basso»

X = ALGORITMI

Y = AGORITNI

A

A

A -

- A

A

A

- A

A

3 casi:

1. G corrisponde a A

2. G corrisponde a spazio

3. A corrisponde a spazio

A AG - A

G

G corrisponde a A

A -

G

A - -

- A - G

G corrisponde a uno spazio

- -

A G -

G corrisponde a un carattere a sinistra di A e A corrisponde a uno spazio

#### Continuiamo «dal basso»

 $X = X_1 X_2 ... X_m e Y = y_1 y_2 ... y_n$ 



3 casi:

- 1.  $y_n$  corrisponde a  $x_m$ 2.  $y_n$  corrisponde a spazio
- $x_m$  corrisponde a spazio







Posso esprimere il costo minimo per allineare X con Y rispetto a costi minimi per allineare stringhe più corte?

#### Continuiamo «dal basso»

costo mismatch =4, costo gap = 2

$$min \{ 0, 2+2, 2+2 \} = 0$$

$$\min \{ 2+4, 0+2, 2+2+2, 2+2+2, 2+2+2 \} = 2 =$$

### Sotto-problemi

Il problema di allineare due stringhe di lunghezza m ed n si riconduce al problema di allineare due stringhe, di cui almeno una è più corta.

In generale, il sotto-problema che ci troveremo a dover risolvere è quello di allineare due prefissi delle stringhe di partenza, di lunghezza qualsiasi:

$$X_1 X_2 \dots X_i$$
  
 $Y_1 Y_2 \dots Y_j$ 

Il generico sotto-problema sarà definito dagli indici i e j.

I casi base si avranno quando una (almeno) delle due stringhe è vuota; in tal caso per i simboli dell'altra stringa si potranno avere solo gap

#### Soluzione ottimale OPT

Consideriamo un allineamento ottimale OPT delle stringhe

$$x_1 x_2 \dots x_m$$
 e  $y_1 y_2 \dots y_n$ 

Guardiamo l'allineamento in OPT degli ultimi caratteri  $x_m$  e  $y_n$ .

Sono possibili 2 casi:  $x_m$  e  $y_n$  sono in corrispondenza oppure no; nel secondo caso almeno uno dei 2 è in corrispondenza di uno spazio vuoto (altrimenti crossing).

CASO 1: 
$$x_m$$
 e  $y_n$  sono in corrispondenza:  $x_1 x_2 ... x_{m-1} x_m$   
 $y_1 y_2 ... y_{n-1} y_n$ 

Caso 2a:  $x_m$  non corrisponde a nessun carattere:

$$X_1 X_2 \dots X_{m-1} X_m$$
  
 $Y_1 Y_2 \dots Y_n$ 

Caso 2b:  $y_n$  non corrisponde a nessun carattere:

$$x_1 x_2 \dots x_m$$
 -  $y_1 y_2 \dots y_{n-1} y_n$ 

# Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings  $x_1 x_2 ... x_i$  and  $y_1 y_2 ... y_i$ .

Case 1: OPT matches  $x_i-y_i$ . pay mismatch for  $x_i-y_i$  + min cost of aligning two strings  $x_1 x_2 \dots x_{i-1}$  and  $y_1 y_2 \dots y_{j-1}$ 

Case 2a: OPT leaves  $x_i$  unmatched.

pay gap for  $x_i$  and min cost of aligning  $x_1 x_2 \dots x_{i-1}$  and  $y_1 y_2 \dots y_j$ 

Case 2b: OPT leaves y unmatched.

pay gap for  $y_j$  and min cost of aligning  $x_1 x_2 \dots x_i$  and  $y_1 y_2 \dots y_{i-1}$ 

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i,y_j} + OPT(i-1,j-1) \\ \delta + OPT(i-1,j) & \text{otherwise} \\ \delta + OPT(i,j-1) \\ i\delta & \text{if } j = 0 \end{cases}$$

### Implementazione con algoritmo iterativo

Uso una tabella M per contenere OPT(i,j) per i=0,1,...m, j=0,1,...,n. Comincio con l'inserire i valori dei casi base, i=0 e j=0, una riga e una colonna.



Scorro tutte le altre celle della tabella in modo che quando devo riempire la cella M[i,j], i valori necessari al calcolo siano già inseriti nelle corrispondenti celle. I valori necessari sono M[i-1,j-1], M[i,j-1] e M[i-1,j]. Posso scorrere per righe da 1 a m e per colonne da 1 a n.

La soluzione al problema di allineare X e Y sarà in M[m,n], che restituisco alla fine.

# Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for j = 0 to n
     M[0,i] = i\delta
   for i = 0 to m
     M[i,0] = i\delta
   for i = 1 to m
       for j = 1 to n
           M[i,j] = min(\alpha[x_{i,}y_{i}] + M[i-1,j-1],
                            \delta + M[i-1,j],
                             \delta + M[i,j-1]
   return M[m, n]
}
```

Analysis.  $\Theta(mn)$  time and space.

# Esempio

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \\ min \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \\ \delta + OPT(i-1,j) \\ \\ \delta + OPT(i,j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

 $= \min \{ 3 + 5, 2 + 5, 2 + 4 \} = 6$ 

Esempio: X = mean, Y= name

$$\delta$$
 = 2

costo mismatch fra vocali differenti=1 costo mismatch fra consonanti differenti=1 costo mismatch fra vocale e consonante=3

for the problem of aligning

the words *mean* to *name*.

#### Ricostruzione dell'allineamento

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \min \begin{cases} \alpha_{x_i y_j} + OPT(i-1,j-1) \\ \delta + OPT(i-1,j) \\ \delta + OPT(i,j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

Esempio: 
$$X = mean$$
,  $Y = name$   
 $\delta = 2$   
costo mismatch fra vocali differenti=1  
costo mismatch fra consonanti differenti=1

costo mismatch fra vocale e consonante=3

La freccia nella casella (i,j) proviene dalla casella usata per ottenere il minimo

$$M[4,4] =$$
= min{ $\alpha_{ne}+M[3,3], \delta + M[3,4], \delta + M[4,3]$ } =
= min { 3+ 5, 2+5, 2+4} = 6

Inserisco freccia da  $M[4,3] \rightarrow M[4,4]$ 

Per ricostruire l'allineamento seguiamo il percorso all'indietro nella matrice



**Figure 6.18** The OPT values for the problem of aligning the words *mean* to *name*.

#### Ricostruzione soluzione ottimale

Per ricostruire un allineamento ottimale seguiamo il percorso all'indietro nella matrice



**Figure 6.18** The OPT values for the problem of aligning the words *mean* to *name*.



M[4,4]= min{
$$\alpha_{n e}$$
 + M[3,3],  $\delta$  + M[3,4],  $\delta$ +M[4,3]}= = min { 3+ 5, 2+5, **2+4**} = **6**

# Appello 22 febbraio 2016

3)

Si considerino le stringhe

$$X = x_1 x_2 x_3 x_4 x_5 = \text{mamma e } Y = y_1 y_2 y_3 = \text{mia.}$$

Se il costo di un gap è 5, il costo di un mismatch fra due vocali differenti è 3, fra due consonanti differenti è 4 e fra vocale e consonante è 7, allora il costo dell'allineamento  $x_1-y_1$ ,  $x_3-y_2$ ,  $x_5-y_3$  è:

- A. 7
- B. 14
- C. 17
- D. Nessuna delle risposte precedenti

# Esercizio

Si considerino le stringhe

$$X = x_1 x_2 x_3 x_4 x_5 = \text{mamma e } Y = y_1 y_2 y_3 = \text{mia.}$$

Si supponga che il costo di un *gap* sia 5, il costo di un *mismatch* fra due vocali differenti sia 3, fra due consonanti differenti è 4 e fra vocale e consonante è 7.

Calcolare il costo minimo di un allineamento delle stringhe X e Y, applicando l'algoritmo studiato.

# Appello 24 gennaio 2017

# Quesito 1 (24 punti)

Si consideri la seguente funzione c(i,j) definita per  $1 \le i,j \le n$  da:

```
\begin{array}{lll} c(1,j)=1 \text{ per ogni } 1 \leq j \leq n, & c(i,1)=3 \text{ per ogni } 2 \leq i \leq n, \\ c(2,j)=2 \text{ per ogni } 2 \leq j \leq n, & c(i,2)=4 \text{ per ogni } 3 \leq i \leq n, \\ c(i,j)=\max \left\{ \left. 3 \times c(i-2,j), \, c(i,j-1)-2 \right\} \right. & \text{per ogni } 3 \leq i, \, j \leq n. \end{array}
```

- a) Disegnare la matrice c per n=4
- Scrivere lo pseudocodice di un algoritmo ricorsivo per il calcolo di c(n,n) e indicarne la complessità di tempo (non è necessaria una analisi dettagliata).
- Scrivere lo pseudocodice di un algoritmo di programmazione dinamica per il calcolo di c(n,n) ed analizzarne la complessità. E' necessario giustificare la risposta.

# Prima prova intercorso 2017/18

#### Quesito 3 (16 punti)

Si consideri il problema dello scheduling di intervalli pesato.

Ricostruire uno *scheduling* ottimale per il problema dato su un insieme di intervalli  $S=\{1, 2, ..., 6\}$  ordinato secondo il tempo di fine crescente degli intervalli (cioè  $f_1 \le f_2 \le ... \le f_6$ ), sapendo che i pesi degli intervalli sono rispettivamente  $w_1 = 12$ ,  $w_2 = 2$ ,  $w_3 = 8$ ,  $w_4 = 9$ ,  $w_5 = 3$ ,  $w_6 = 10$ , che i valori della funzione p sono p(1)=0, p(2)=0, p(3)=2, p(4)=0, p(5)=1, p(6)=4 e l'array M calcolato dall'algoritmo di programmazione dinamica studiato è M[0...6] = [0, 12, 12, 20, 20, 20, 30]. E' necessario giustificare la risposta.

Si noti che non occorre conoscere i valori dei tempi di inizio e di fine degli intervalli per ricostruire la soluzione.