Package 'NonCompart'

July 15, 2021

Version 0.4.9

Date 2021-07-15
Title Noncompartmental Analysis for Pharmacokinetic Data
Description Conduct a noncompartmental analysis with industrial strength. Some features are 1) Use of CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Author Kyun-Seop Bae [aut]
Maintainer Kyun-Seop Bae <k@acr.kr></k@acr.kr>
Copyright 2016-, Kyun-Seop Bae
License GPL-3
NeedsCompilation no
LazyLoad yes
Repository CRAN
<pre>URL https://cran.r-project.org/package=NonCompart R topics documented:</pre>
NonCompart-package
AUC
BestSlope
DetSlope 5 IntAUC 6
Interpol
LinAUC
LogAUC
Slope
sNCA
tblNCA
UnitUrine
Index 17

NonCompart-package

Noncompartmental Analysis for Pharmacokinetic Data

Description

It conducts a noncompartmental analysis (NCA) with industrial strength.

Details

The main functions are

```
tblNCA to perform NCA for many subjects.

sNCA to perform NCA for one subject.
```

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

AUC

AUC

Calculate Area Under the Curve (AUC) and Area Under the first Moment Curve (AUMC) in a table format

Description

Calculate Area Under the Curve(AUC) and the first Moment Curve(AUMC) in two ways; 'linear trapezoidal method' or 'linear-up and log-down' method. Return a table of cumulative values.

Usage

```
AUC(x, y, down = "Linear")
```

Arguments

X	vector values of independent variable, usually time
у	vector values of dependent variable, usually concentration
down	either of "Linear" or "Log" to indicate the way to calculate AUC and

AUMC

Details

 $\label{linear} down="Linear" means linear trapezoidal rule with linear interpolation. down="Log" means linear-up and log-down method.$

Value

Table with two columns, AUC and AUMC; the first column values are cumulative AUCs and the second column values cumulative AUMCs.

Author(s)

```
Kyun-Seop Bae ¡k@acr.kr¿
```

References

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics - Concepts and Applications. 4th ed. pp687-689. 2011.

See Also

```
LinAUC, LogAUC
```

```
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

4 BestSlope

BestSlope	Choose the best-fit slope for the $log(y)$ and x regression by the
	criteria of adjusted R-square.

Description

It sequentially fits $(\log(y) \tilde{x})$ from the last point of x to the previous points with at least 3 points. It chooses a slope the highest adjusted R-square. If the difference is less then 1e-4, it pickes longer slope.

Usage

```
BestSlope(x, y, adm = "Extravascular", TOL=1e-4, excludeDelta = 1)
```

Arguments

vector values of x-axis, usually time
 vector values of y-axis, usually concentration
 adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode
 tolerance. See Phoneix WinNonlin 6.4 User's Guide p33 for the detail.

excludeDelta Improvement of R2ADJ larger than this value could exclude the last point.

Default value 1 is for the compatibility with other software.

Details

Choosing the best terminal slope (y in log scale) in pharmacokinetic analysis is somewhat challenging, and it could vary by analysis performer. Pheonix WinNonlin chooses a slope with highest adjusted R-squared and the longest one. The difference of adjusted R-Squared less than TOL considered to be 0. This function uses ordinary least square method (OLS). Author recommends to use excludeDelta option with about 0.3.

Value

R2	R-squared
R2ADJ	adjusted R-squared
LAMZNPT	number of points used for slope
LAMZ	negative of the slope, lambda_z
b0	intercept of the regression line
CORRXY	correlation of $log(y)$ and x
LAMZLL	earliest x for lambda_ z
LAMZUL	last x for lambda_ z
CLSTP	predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

DetSlope 5

See Also

Slope

Examples

DetSlope

Determine slope for the log(y) and x regression manually

Description

You choose a slope for terminal half-life.

Usage

```
DetSlope(x, y, SubTitle="", sel.1=0, sel.2=0)
```

Arguments

X	vector values of x-axis, usually time
У	vector values of y-axis, usually concentration
SubTitle	subtitle to be shown on the plot
sel.1	default index of the first element to use
sel.2	default index of the last element to use

Details

Sometimes BestSlope cannot find terminal slope satisfactorily. Then you can use this function to choose manually. It returns the same format result with BestSlope with an attribute indicating used points.

Value

R2	R-squared
R2ADJ	adjusted R-squared
LAMZNPT	number of points used for the slope
LAMZ	negative of the slope, lambda_z
b0	intercept of the regression line
CORRXY	correlation of $log(y)$ and x
LAMZLL	earliest x for lambda_ z
LAMZUL	last x for lambda $_z$
CLSTP	predicted y value at the last point, predicted concentration for the last time point

6 IntAUC

Author(s)

Kyun-Seop Bae ¡k@acr.kr;

See Also

Slope

Examples

```
DetSlope(Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
DetSlope(Indometh[Indometh$Subject==2, "time"], Indometh[Indometh$Subject==2, "conc"])
```

IntAUC

Calculate interval AUC

Description

It calculates interval AUC

Usage

```
IntAUC(x, y, t1, t2, Res, down = "Linear")
```

Arguments

X	vector values of independent variable, usually time
У	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC
Res	result from sNCA function
down	either of "Linear" or "Log" to indicate the way to calculate AUC

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates according to the down option.

Value

```
return interval AUC value (scalar)
```

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

Interpol 7

See Also

```
AUC, Interpol
```

Examples

Interpol

Interpolate y value

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
Interpol(x, y, xnew, Slope, b0, down = "Linear")
```

Arguments

Х	vector values of x-axis, usually time
У	vector values of y-axis, usually concentration
xnew	new x point to be interpolated, usually new time point
Slope	slope of regression $\log(y)$ \tilde{x}
b0	y value of just left point of xnew

down either of "Linear" or "Log" to indicate the way to interpolate

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in x vector, it just returns the given x and y vector. This function usually is called by IntAUC function Returned vector is sorted in the order of increasing x values.

Value

new x and y vector containing xnew and ynew point

Author(s)

Kyun-Seop Bae ¡k@acr.kr;

See Also

IntAUC

```
x = 10:1 + 0.1
y = -2*x + 40.2
Interpol(x, y, 1.5)
Interpol(x, y, 1.5, down="Log")
```

8 LinAUC

LinAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear trapezoidal method

Description

It calculates AUC and AUMC using the linear trapezoidal method

Usage

```
LinAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear trapezoidal method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

References

- Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis -Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LogAUC, AUC
```

LogAUC 9

LogAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear-up log-down method

Description

It calculates AUC and AUMC using the linear-up log-down method

Usage

```
LogAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear-up log-down method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LinAUC,AUC
```

```
LogAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
# Compare the last line with the above
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

Slope

Slope

Get the Slope of regression log(y) \tilde{x}

Description

It calculates the slope with linear regression of $\log(y)$ $\tilde{}$ x

Usage

```
Slope(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

With time-concentration curve, you frequently need to estimate slope in $\log(\text{concentration})$ $\tilde{}$ time. This function is usually called by BestSlope function, and you seldom need to call this function directly.

Value

R2	R-squared

R2ADJ adjusted R-squared

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

See Also

```
BestSlope
```

```
Slope(Indometh[Indometh$Subject==1, "time"], Indometh[Indometh$Subject==1, "conc"])
```

sNCA

sNCA	$Simplest\ NCA$	

Description

This is the work-horse function for NCA.

Usage

```
sNCA(x, y, dose = 0, adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", iAUC = "", down = "Linear", R2ADJ = 0.7, MW = 0, Keystring="",
    excludeDelta = 1)
```

Arguments

usually time usually concentration У dose given amount, not amount per body weight one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adadm ministration mode duration of infusion dur doseUnit unit of dose timeUnit unit of time concUnit unit of concentration interval AUCs to calculate iAUC either of "Linear" or "Log" to indicate the way to calculate AUC and down AUMC R2ADJ Minimum adjusted R-square value to determine terminal slope automatically MW molecular weight of the drug a text string to be shown at the plot in case of manual selection of terminal Keystring slope excludeDelta Improvement of R2ADJ larger than this value could exclude the last point.

Details

This replaced previous IndiNCA. Author recommends to use excludeDelta option with about 0.3.

Default value 1 is for the compatibility with other software.

Value

CMAX	maximum concentration, Cmax
CMAXD	dose normalized Cmax, CMAX / Dose, Cmax / Dose
TMAX	time of maximum concentration, Tmax
TLAG	time to observe the first non-zero concentration, for extravascular administration only

sNCA

CLST last positive concentration observed, Clast

CLSTP last positive concentration predicted, Clast_pred

TLST time of last positive concentration, Tlast

LAMZHL half-life by lambda z, ln(2)/LAMZ

LAMZ lambda_z negative of the best-fit terminal slope

 $\begin{array}{ll} \mathsf{LAMZLL} & \text{earliest time for LAMZ} \\ \mathsf{LAMZUL} & \text{last time for LAMZ} \end{array}$

LAMZNPT number of points for LAMZ

CORRXY correlation of log(concentration) and time

R2 R-squared

R2ADJ R-squared adjusted

C0 back extrapolated concentration at time 0, for intravascular bolus admin-

istration only

AUCLST AUC from 0 to TLST

AUCALL AUC using all the given points, including trailing zero concentrations

AUCIFO AUC infinity observed

AUCIFOD AUCIFO / Dose

AUCIFP AUC infinity predicted using CLSTP instead of CLST

AUCIFPD AUCIFP / Dose

AUCPEO AUC % extrapolation observed AUCPEP AUC % extrapolated for AUCIFP

AUCPBEO AUC % back extrapolation observed, for bolus IV administration only
AUCPBEP AUC % back extrapolation predicted with AUCIFP, for bolus IV admin-

istration only

AUMCLST AUMC to the TLST

AUMCIFO AUMC infinity observed using CLST

AUMCIFP AUMC infinity determined by CLSTP

AUMCPEO AUMC % extrapolated observed AUMCPEP AUMC % extrapolated predicted

MRTIVLST mean residence time (MRT) to TLST, for intravascular administration mean residence time (MRT) infinity using CLST, for intravascular administration

istration

MRTIVIFP mean residence time (MRT) infinity using CLSTP, for intravascular ad-

ministration

MRTEVLST mean residence time (MRT) to TLST, for extravascular administration mean residence time (MRT) infinity using CLST, for extravascular ad-

ministration

MRTEVIFP mean residence time (MRT) infinity using CLSTP, for extravascular ad-

ministration

VZO volume of distribution determined by LAMZ and AUCIFO, for intravas-

cular administration

sNCA 13

VZP	volume of distribution determined by LAMZ and AUCIFP, for intravascular administration $$
VZFO	VZO for extravascular administration, VZO/F, F is bioavailability
VZFP	VZP for extravascular administration, VZP/F, F is bioavailability
CLO	clearance using AUCIFO, for intravascular administration
CLP	clearance using AUCIFP, for intravascular administration
CLFO	CLO for extravascular administration, CLO/F, F is bioavailability
CLFP	CLP for extravascular administration, CLP/F, F is bioavailability
VSS0	volume of distribution at steady state using CLST, for intravascular administration only $$
VSSP	volume of distribution at steady state using CLSTP, for intravascular administration only

Author(s)

Kyun-Seop Bae ¡k@acr.kr;

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

See Also

help, tblNCA

```
# For one subject
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h")
sNCA(x, y, dose=320, concUnit="mg/L")
iAUC = data.frame(Name=c("AUC[0-12h]", "AUC[0-24h]"), Start=c(0,0), End=c(12,24))
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
MW = 180.164 # Molecular weight of theophylline
{\tt sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h")}\\
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h", MW=MW)\\ sNCA(x, y, dose=320/MW, doseUnit="mmol", concUnit="mg/L", timeUnit="h", MW=MW)\\
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=as.numeric(NA), doseUnit="mmol", concUnit="mmol/L", timeUnit="h", and the concurrence of the concurrence o
               MW=MW)
sNCA(x, y, dose=320, concUnit="mg/L", timeUnit="hr")
sNCA(x*60, y, dose=320, concUnit="mg/L", timeUnit="min")
```

14 tblNCA

tblNCA	$Table\ output\ NCA$
--------	----------------------

Description

Do multiple NCA and returns a result table. See sNCA for more detail i.e. iAUC

Usage

```
tblNCA(concData, key = "Subject", colTime = "Time", colConc = "conc", dose = 0,
    adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", down = "Linear", R2ADJ = 0, MW = 0, iAUC="",
    excludeDelta = 1)
```

Arguments

concData concentration data table

key column names of concData to be shown in the output table

colTime column name for time

colConc column name for concentration

dose administered dose

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug ad-

ministration mode

dur duration of infusion

doseUnit unit of dose
timeUnit unit of time

concUnit unit of concentration

down method to calculate AUC, "Linear" or "Log"

R2ADJ Lowest threshold of adjusted R-square value to do manual slope determi-

nation

MW molecular weight of drug iAUC data.frame for interval AUC

excludeDelta Improvement of R2ADJ larger than this value could exclude the last point.

Default value 1 is for the compatibility with other software.

Details

Tabular output of NCA with many subjects. Author recommends to use excludeDelta option with about 0.3.

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

Unit 15

See Also

```
help, sNCA
```

Examples

Unit

Display CDISC standard units and multiplied factor of NCA results

Description

It displays CDISC PP output units and multiplication factor for them.

Usage

```
Unit(code = "", timeUnit = "h", concUnit = "ng/mL", doseUnit = "mg", MW = 0)
```

Arguments

code vector of PPTESTCD

timeUnit unit of time

concUnit unit of concentration

doseUnit unit of dose

MW molecular weight of drug

Value

row names PPTESTCD

Unit unit

Factor internal mulitplication factor

Author(s)

Kyun-Seop Bae ¡k@acr.kr¿

```
Unit(concUnit="ug/L", doseUnit="mg")
Unit(concUnit="ng/L", doseUnit="mg")
Unit(concUnit="umol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="mmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/ML", doseUnit="mg", MW=500)
```

16 UnitUrine

```
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ug/L", doseUnit="mol", MW=500)
Unit(concUnit="ng/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg")
Unit(concUnit="ug/L", doseUnit="mmol")
```

UnitUrine

Returns a conversion factor for the amount calculation from urine concentration and volume

Description

You can get a conversion factor for the multiplication: conc * vol * factor = amount in the given unit.

Usage

```
UnitUrine(conU = "ng/mL", volU = "mL", amtU = "mg", MW = 0)
```

Arguments

conU concentration unit
volU volume unit
amtU amount unit
MW molecular weight

Value

Factor conversion factor for multiplication with the unit in name

Author(s)

Kyun-Seop Bae ¡k@acr.kr;

```
UnitUrine()
UnitUrine("ng/mL", "mL", "mg")
UnitUrine("ug/L", "mL", "mg")
UnitUrine("ug/L", "L", "mg")

UnitUrine("ng/mL", "mL", "g")

UnitUrine("ng/mL", "mL", "mol", MW=500)
UnitUrine("ng/mL", "mL", "mmol", MW=500)
UnitUrine("ng/mL", "mL", "umol", MW=500)
```

Index

```
* AUC
    AUC, 3
    IntAUC, 6
    LinAUC, 8
    LogAUC, 9
* \ \mathbf{Output} \ \mathbf{Form}
    sNCA, 11
    tblNCA, 14
* interpolation
    Interpol, 7
*\ \mathbf{interval}\ \mathbf{AUC}
    IntAUC, 6
    Interpol, 7
* partial AUC
    IntAUC, 6
    Interpol, 7
* slope
    BestSlope, 4
    DetSlope, 5
    Slope, 10
AUC, 3, 7-9
BestSlope, 4, 10
DetSlope, 5
help, 13, 15
IntAUC, 6, 7
Interpol, 7, 7
LinAUC, 3, 8, 9
LogAUC, 3, 8, 9
NonCompart (NonCompart-package), 2
NonCompart-package, 2
Slope, 5, 6, 10
sNCA, 11, 14, 15
tblNCA, 13, 14
Unit, 15
UnitUrine, 16
```