International Rectifier

Co-packaged HEXFET® Power MOSFET and Schottky Diode

- Ideal For Buck Regulator Applications
- P-Channel HEXFET®
- Low V_F Schottky Rectifier
- SO-8 Footprint
- Lead-Free

Description

The **FETKY**TM family of Co-packaged HEXFETs and Schottky diodes offer the designer an innovative board space saving solution for switching regulator and power management applications. HEXFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics. The SO-8 package is designed for vapor phase, infrared or wave soldering techniques.

IRF7342D2PbF

 $\textbf{FETKY}^{^{\text{TM}}} \textbf{MOSFET \& Schottky Diode}$

$$V_{DSS} = -55V$$
 $R_{DS(on)} = 105m\Omega$
Schottky Vf = 0.61V

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

	Parameter	Maximum	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.4	Α
I _D @ T _A = 70°C	Continuous Drain Current, VGS @ -10V	-2.7	
I _{DM}	Pulsed Drain Current ①	-27	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C	Power Dissipation	1.3	
	Linear Derating Factor	16	mW/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt 2	-5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to +150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead, MOSFET		20	
$R_{\theta JA}$	Junction-to-Ambient ④, MOSFET		62.5	°C/W
$R_{\theta JA}$	Junction-to-Ambient ④, SCHOTTKY		62.5	

Notes:

- ① Repetitive rating pulse width limited by max. junction temperature (see fig. 11)
- ② $I_{SD} \le -3.4A$, $di/dt \le -150A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C
- $\center{3}$ Pulse width $\le 400 \mu s duty \ cycle <math>\le 2\%$
- 4 Surface mounted on 1 inch square copper board, $t \le 10$ sec.

International IOR Rectifier

$IRF7342D2PbF \\ \mbox{Electrical Characteristics @ $T_J = 25^{\circ}$C (unless otherwise specified)}$

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.054		V/°C	Reference to 25°C, I _D = -1mA
Book)	Static Drain-to-Source On-Resistance		95	105	0	V _{GS} = -10V, I _D = -3.4A ③
R _{DS(on)}	State Brain to Course Off Resistance		150	170	mΩ	$V_{GS} = -4.5V, I_D = -2.7A$ ③
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9fs	Forward Transconductance	3.3			S	V _{DS} = -10V, I _D = -3.1A
L	Drain to Source Leakage Current			-2.0		V _{DS} = -44V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -44V, V_{GS} = 0V, T_J = 70^{\circ}C$
loos	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	'''^	V _{GS} = 20V
Qg	Total Gate Charge		26	38		$I_D = -3.1A$
Q _{gs}	Gate-to-Source Charge		3.0	4.5	nC	$V_{DS} = -44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		8.4	13		V _{GS} = -10V, See Fig. 6 & 14 ③
t _{d(on)}	Turn-On Delay Time		14	22		V _{DD} = -28V
t _r	Rise Time		10	15	ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		43	64	113	$R_G = 6.0\Omega$
t _f	Fall Time		22	32		$V_{GS} = -10V$, ③
C _{iss}	Input Capacitance		690			V _{GS} = 0V
Coss	Output Capacitance		210		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		86			f = 1.0MHz, See Fig. 5

MOSFET Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current(Body Diode)			-2.0	_	
I _{SM}	Pulsed Source Current (Body Diode)			-27	A	
V_{SD}	Body Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.0A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time (Body Diode)		54	80	ns	$T_J = 25^{\circ}C, I_F = -2.0A$
Q _{rr}	Reverse Recovery Charge		85	130	nC	di/dt = 100A/µs ③

Schottky Diode Maximum Ratings

	<i>,</i>						
	Parameter	Max.	Units	Conditions			
If (av)	Max. Average Forward Current	3.0	Α	50% Duty Cycle. Rectangular Wave, T _A = 57°C			
				See Fig. 21			
I _{SM}	Max. peak one cycle Non-repetitive	490	Α	5µs sine or 3µs Rect. pulse	Following any rated		
	Surge current	70		10ms sine or 6ms Rect. pulse	load condition &		
					with Vrrm applied		

Schottky Diode Electrical Specifications

	Parameter	Max.	Units	Conditions	
Vfm	Max. Forward Voltage Drop	0.61		If = 3.0A, Tj = 25°C	
		0.76	V	If = 6.0A, Tj = 25°C	
		0.53	7 V	If = 3.0A, Tj =	125°C
		0.65]	If = 6.0A, Tj =	: 125°C
Vrrm	Max. Working Peak Reverse Voltage	60	V		
Irm	Max. Reverse Leakage Current	2.0	mA	Vr = 60V	Tj = 25°C
		30	Ī		Tj = 125°C
Ct	Max. Junction Capacitance	145	pF	Vr = 5Vdc (100kHz to 1 MHz) 25°C	

Power Mosfet Characteristics

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics www.irf.com

Fig 4. Normalized On-Resistance Vs. Temperature

International Rectifier

Power Mosfet Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

Power Mosfet Characteristics

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Power Mosfet Characteristics

0.35 RDS (on) , Drain-to-Source On Resistance (2) 0.30 VGS = -4.5V0.25 0.20 0.15 VGS = -10V 0.10 0.05 0.0 4.0 8.0 12.0 16.0 -I_D , Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14b. Gate Charge Test Circuit www.irf.com

Power Mosfet Characteristics

Fig 15. Typical Vgs(th) Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Schottky Diode Characteristics

Fig. 17 - Maximum Forward Voltage Drop Characteristics

Fig. 18 - Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 19 - Typical Junction Capacitance Vs. Reverse Voltage

Schottky Diode Characteristics

Fig 20. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig.21 - Maximum Allowable Ambient Temp. Vs. Forward Current

 $\begin{aligned} &\textbf{Note (4)} \, \text{Formula used:} \, \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \, \textbf{x} \, \textbf{R}_{\text{thJA}}; \\ &\textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \, \textbf{x} \, \textbf{V}_{\text{FM}} \, \textcircled{0} \, (\textbf{I}_{\text{F(AV)}} / \textbf{D}) \, ; \\ &\textbf{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \, \textbf{x} \, \textbf{I}_{\text{R}} \, (\textbf{1} - \textbf{D}); \, \textbf{I}_{\text{R}} \, \textcircled{0} \, \textbf{V}_{\text{R1}} = \textbf{80\% rated} \, \textbf{V}_{\text{R}} \\ &\textbf{www.irf.com} \end{aligned}$

SO-8 (Fetky) Package Outline

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

- DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 (Fetky) Part Marking Information

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04