BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-352428

(43) Date of publication of application: 06.12.2002

(51)Int.Cl.

G11B 7/0045

B41M 5/26

G11B 7/007

G11B 7/24

(21)Application number : 2002-095100

(71)Applicant: TDK CORP

(22)Date of filing:

29.03.2002

(72)Inventor: DOI TAKASHI

TSUKAMOTO SHUJI

ARIOKA HIROYUKI OTSUKI SHIRO

(30)Priority

Priority number: 2001 279753

Priority date : 30.03.2001

Priority country: US

(54) OPTICAL RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an optical recording medium which can realize a multi-level recording with five or more levels, in which an error rate is decreased.

SOLUTION: In the optical recording medium 10, information can be recorded by forming a recording mark on a recording layer 12 covering a groove 16 of a light transmitting substrate 14. In the recording layer 16, imaginary recording cells 40, which make an optional unit length of the irradiation advancing direction S along the groove 16 and an optional unit width in the direction perpendicular to this, are consecutively prescribed along the advancing direction S. The groove width W is set so as to be $0.20 \times (\lambda/NA) < W < 0.50 \times (\lambda/NA)$, where the wavelength of the irradiation laser beam is λ , and the aperture of an objective lens in a laser beam irradiation optical system is NA. It is made that information can be recorded with the multi-level recording by the irradiation of the laser beam, in which five or more levels for the irradiation time are set.

LEGAL STATUS

[Date of request for examination]

05.04.2002

[Date of sending the examiner's decision of

21.02.2006

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-352428 (P2002-352428A)

(43)公開日 平成14年12月6日(2002.12.6)

(51) Int.Cl. ⁷		識別記号		FI			テーマコード(参考)				
G11B	7/0045			G 1	1 B	7/0045		A	A 2	2H111	l
B41M	5/26					7/007			ξ	5 D O 2 9	9
G11B	7/007					7/24		516	Ę	D 0 9 0)
	7/24	5 1 6						5 2 2 I			
		5 2 2						5611	J		
			家情查審	有	請求	項の数5	OL	(全 11]	貳)	最終頁に	に続く
(21)出願番号		特顧2002-95100(P2002-95100)		(71)	出願人	000003	067				
						ティー	ディー	ケイ株式会	社		
(22)出願日		平成14年3月29日(2002.3.29)				東京都	中央区	日本橋17	目13	番1号	
				(72)	発明者	f 洞井	髙志				
(31)優先権主張番号		60/279753	30/279753			東京都	中央区	日本橋一丁	目13	番1号	ティ
(32)優先日		平成13年3月30日(2001.	成13年3月30日(2001.3.30)			ーディ	ーケイ	株式会社内	Ā		
(33)優先権主張国		米国(US)		(72)	発明者	塚本	修司				
						東京都	中央区	日本橋一丁	目13	番1号	ティ
						ーディ	ーケイ	朱式会社内	4		
		,		(74)代		100076	100076129				
						弁理士	松山	圭佑	(外2	名)	
										最終頁法	を続く

(54) 【発明の名称】 光記録媒体

(57)【要約】

【課題】 エラー率を低減させた上で5段階以上のマル チレベル記録を実現可能な光記録媒体を得る。

【解決手段】 光透過性基板14のグルーブ16を覆う 記録層12に記録マークが形成されて情報が記録され得 る光記録媒体10であって、前記記録層16において、 グルーブ16に沿った照射進行方向Sの任意の単位長さ 及びこれと直交する方向の任意の単位幅となる仮想記録 セル40が前記進行方向Sに沿って連続的に規定される と共に、照射するレーザービームの波長を入、レーザー ビームの照射光学系における対物レンズの開口数をNA とした場合に、グルーブの幅WがO.20×(λ/N A) <W<0.50×(λ/NA)となるように設定さ れ、照射時間を5段階以上に設定してレーザービームが 照射されることで情報をマルチレベル記録可能とした。

【特許請求の範囲】

【請求項1】所定のグルーブを有する光透過性基板における、少なくとも前記グルーブを覆って記録層が形成され、レーザービームの照射によって少なくとも前記録層に記録マークが形成されて情報が記録され得る光記録媒体であって、

前記記録層において、前記グルーブに沿った記録再生のためのレーザー照射進行方向の任意の単位長さ及びこれと直交する方向の任意の単位幅となる仮想記録セルが該進行方向に沿って連続的に規定されると共に、

前記レーザービームの波長を λ 、前記レーザービームの 照射光学系における対物レンズの開口数をNAとした場合に、前記グルーブの幅Wが0. $20 \times (\lambda/NA) < W < 0$. $50 \times (\lambda/NA)$ となるように設定され、

照射時間又は照射パワーの少なくとも一方を5段階以上に設定して前記レーザービームが照射されることで前記 仮想記録セルに5種類以上の大きさの異なる記録マーク が形成可能とされて、該仮想記録セルに対する前記記録 マークの面積比に基づいて光反射率を変調して情報をマルチレベル記録可能とされたことを特徴とする光記録媒体。

【請求項2】請求項1において、

前記グルーブの幅Wが O. $25 \times (\lambda / NA) < W < O$. $45 \times (\lambda / NA)$ となるように設定されていることを特徴とする光記録媒体。

【請求項3】請求項1又は2において、

前記グルーブが互いに略平行状態で複数形成されており、隣接する前記グルーブ間のピッチPが、 $0.65 \times (\lambda/NA) < P$ に設定され、好ましくは $0.7 \times (\lambda/NA) < P < 1.2 \times (\lambda/NA)$ に設定されていることを特徴とする光記録媒体。

【請求項4】請求項1、2又は3において、

前記記録層が有機色素を含んで構成されていることを特 徴とする光記録媒体。

【請求項5】請求項1乃至4のいずれかにおいて、 前記記録層がシアニン系色素を含んで構成されていることを特徴とする光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記録に供するデータに応じて、記録層に複数種類の記録マークが形成されて情報がマルチレベル記録される光記録媒体に関する。

[0002]

【従来の技術】従来の光記録媒体のような、再生信号の 長さ(反射信号変調部の長さ)を多段階に変えることに よってデータを記録する方法に対して、再生信号の深さ (反射信号の変調度)を多段階に切り換えることによ り、同じ長さの各信号に複数のデータを記録する方法に 関する研究が数多くなされている。

【〇〇〇3】この光記録方法によれば、単にピットの有

無による2値のデータを記録した場合と比較して、深さ方向に複数のデータを記録できるため、一定の長さに割り当てられる信号の量を増やすことができ、従って、線記録密度を向上させることが可能となる。現在、その記録媒体として、ホログラフを利用したものや記録層を多層としたものが提案されている。

【0004】なお、ここでは反射信号の変調度が互いに 異なる複数種類の記録データを記録することをマルチレ ベル記録と呼ぶ。

[0005]

【発明が解決しようとする課題】一方、これらのマルチレベル記録に関する光記録方法は、記録時のレーザービームのパワーが大きくなるにつれ、即ち形成する反射信号の深さが深くなるに従い、再生時の信号品質が劣化するという問題があった。この理由は現時点においても明らかにされていない。

【 O O O 6 】例えば、従来の手法を利用して記録媒体の記録情報量の高密度化のために記録マークを短くし、その中で、レーザービームのパワーを多段に切り換えてマルチレベル記録した場合には、その信号品質の劣化が顕著になった。つまり、マルチレベル記録を採用しようとすれば記録マークの高密度化が困難になり、相容れない状況に陥るという問題点を有していた。

【 O O O 7 】 又、従来のレーザービームのパワーを段階的に切り換えてマルチレベル記録する光記録方法の思想では、記録マーク長は、記録時の集光ビーム(ビームウエスト)の直径よりも大きいものが前提となっている。つまり、記録マーク自体の光反射率を多段階に変調させ、その反射率を直接読み取ることでマルチレベル記録を実現しようとしている。

【0008】一般に集光ビームの直径は、 $K\lambda/NA$ (K: 定数、 λ : レーザー波長、NA: レンズの閉口数)であらわされる。CDで利用されるピックアップでは、 $\lambda=780$ nm、NA=0. 45が一般的であり集光ビームの直径は約1. 6μ mとなる。この場合、記録マーク長が1. 6μ m近傍になると上記の信号劣化の問題が顕在化し、5段階以上のマルチレベル記録は困難であった。

【0009】以上の問題は、レーザービームのパワー設定、記録媒体の特性等のあらゆる要素が複雑に絡み合った結果であると考えるが、本発明者の知る限りその原因は現在明らかにされておらず、高密度のマルチレベル記録はその記録方法を含めて達成されていないのが実情である。

【0010】本発明は、上記の問題に鑑みてなされたものであり、新たなマルチレベル記録方法を提案し、高密度のマルチレベル記録を達成することを目的としている。

[0011]

【課題を解決するための手段】本発明者は、光記録媒体

について鋭意研究を重ね、これに多段階記録する記録方法を見いだし、この記録方法によって、光記録媒体に、 5段階以上の高密度のマルチレベル記録を行うことが可能であることを確認した。

【OO12】即ち、以下の本発明により上記目的が達成可能となる。

【0013】(1)所定のグルーブを有する光透過性基 板における、少なくとも前記グルーブを覆って記録層が 形成され、レーザービームの照射によって少なくとも前 記録層に記録マークが形成されて情報が記録され得る光 記録媒体であって、前記記録層において、前記グルーブ に沿った記録再生のためのレーザー照射進行方向の任意 の単位長さ及びこれと直交する方向の任意の単位幅とな る仮想記録セルが該進行方向に沿って連続的に規定され ると共に、前記レーザービームの波長を入(nm)、前 記レーザービームの照射光学系における対物レンズの開 口数をNAとした場合に、前記グルーブの幅W(nm) がO. 20× (λ/NA) <W<O. 50× (λ/N A)となるように設定され、照射時間又は照射パワーの 少なくとも一方を5段階以上に設定して前記レーザービ ームが照射されることで前記仮想記録セルに5種類以上 の大きさの異なる記録マークが形成可能とされて、該仮 想記録セルに対する前記記録マークの面積比に基づいて 光反射率を変調して情報をマルチレベル記録可能とされ たことを特徴とする光記録媒体。

【OO14】 (2) 上記 (1) において、前記グルーブの幅Wが、 $O.25 \times (\lambda/NA) < W < O.45 \times (\lambda/NA)$ 、好ましくは $O.32(\lambda/NA) < W < O.45 \times (\lambda/NA)$ となるように設定されていることを特徴とする光記録媒体。

【 OO15】 (3) 上記(1) 又は(2) において、前記グルーブが互いに略平行状態で複数形成されており、隣接する前記グルーブ間のピッチ P (nm) が、O.6 $S \times (\lambda / NA) < P$ に設定され、好ましくは $O.7 \times (\lambda / NA) < P < 1.2 \times (\lambda / NA)$ に設定されていることを特徴とする光記録媒体。

【 O O 1 6 】 (4) 上記(1)、(2) 又は(3) において、前記記録層が有機色素を含んで構成されていることを特徴とする光記録媒体。

【0017】(5)上記(1)乃至(4)のいずれかにおいて、前記記録層がシアニン系色素を含んで構成されていることを特徴とする光記録媒体。

【0018】本発明者は、仮想記録セルに対する記録マークの占有比率という新たな変調手法によって、マルチレベル記録が行うことが可能であることを発見した。この結果、飛躍的に記録密度を高めることが出来る。

【0019】しかし、単に照射時間又は照射パワーを変調させることによって記録マークを形成するのみでは、その記録マークを確実に読み取ることが出来ない場合があることが判明した。

【〇〇20】その理由の1つとして、仮想記録セルにおいて高精度で多段階の光反射率を設定しなければならないマルチレベル記録は、特に光記録媒体の構造の影響を受けやすいことが考えられた。具体的には、本発明のように多段階の記録マークを形成する場合、レーザームスポットよりもグルーブ幅を狭く設定することができる一方で、グルーブの幅Wが〇・20×(入/NA)以下になると仮想記録セルにおける各段階の光反射率の誤差が突如増大してしまうことが本発明者による射率の誤差が突如増大してしまうことが本発明者による射率の検討により明らかとなった。これは、グルーブ幅とれるによりでであれている大きさに成長出来ないことによって変調度が低下するのが理由の一つと推察される。

【 O O 2 1 】更に、理由は明らかとはなっていないが、グルーブ幅が狭くなるに従って、予定している同じ反射率レベルの複数の仮想記録セルの間で、実際の反射率レベルがばらつく(つまり繰り返し再現性が低下する)という現象が発生し、信号品質が著しく低下する(エラー値が悪化する)ことも明らかになった。

【 O O 2 2 】又反対に、トラックピッチをそのままにしてグルーブ幅が O . 5 O × (入 / N A)以上になると、隣接するグルーブにおける記録マークの影響を受けてクロストーク(隣接するグルーブの記録マークを本来読み込むべき記録マークと同時に読み込んでしまう現象)が生じやすい。これを防止するにはグルーブ間距離(以下トラックピッチという)を広くする必要があるが、不必要にトラックピッチを増大させると記録密度が低下してしまう。

【0023】更に、理由は明らかとはなっていないが、 仮想記録セルを低い反射率レベルにするために相対的に 大きい記録マークを形成した場合、その反射率のばらつ きが大きくなることも明らかになっている。これによっ て、やはりエラー値が悪化するなどの信号品質の悪化に つながってしまう。

【0024】即ち、現状の2値記録の方法のように、記録層の種類等に応じてグルーブ幅を設定するだけではなく、マルチレベル記録を行うためにはそのために適するグルーブ幅を設定する必要があり、このようなグルーブ幅の設定を怠ると、マルチレベル特有の信号品質劣化を導く結果となってしまう。

【0025】この傾向は、現在解析中であるが記録時の線速度にも依存し、記録線速度によってグルーブ幅を選択する必要があるが、高速(例えばCD-R等の基準線速度1.2m/sに対して8倍以上20倍程度まで)になるほど適用できるグルーブ範囲(マージン)が狭くなる傾向があるため、ある程度の高速記録を前提として設計すれば、低速記録の範囲もカバーできると考えられ

【0026】以上のことは、5段階以上に光反射率を変

調して情報を記録する場合においては、(それ以下の段数の場合と比較して)特に顕著であり有用であることが確認できている。

【 O O 2 7 】なお、上記本発明は次のような構成を付加 してもよい。

【0028】前記記録層に沿って、レーザービームガイド用のグルーブが設けられ、前記仮想記録セルは前記グルーブ内に設定され、且つ、前記単位幅は前記グルーブの幅に略等しくされたことを特徴とする光記録媒体。

【0029】前記仮想記録セルに、マルチレベル記録媒体であることを示す特定情報が記録されていることを特徴とする光記録媒体。

【0030】前記記録層に沿って、レーザービームガイド用のグルーブが設けられ、このグルーブが、一部で途切れていることを特徴とする光記録媒体。

【0031】なお、ここで言うグルーブ幅は、グルーブとグルーブの間に挟まれるランドの最高点と、グルーブ底部の最低点から得られる最大グルーブ深さを、ほぼ均等に2分した位置でのグルーブの幅を意味しており、一般的には半値幅と呼ばれる値である。このように定義したのは、グルーブ(或いはランド)の断面形状が台形となっている場合を考慮したためである。

【発明の実施の形態】以下本発明の実施の形態の例を図面を参照して詳細に説明する。

【0033】本発明の実施の形態の例に係る光記録媒体(ディスク)10は、記録層12に色素材料を用いたCD-Rである。CD-Rの場合は、例えば透明基材からなる基板14と、この基板14の一方の面(図1において上面)に形成されたレーザービームガイド用のグルーブ16を覆って塗布された色素からなる前記記録層12と、この記録層12の上側にスパッタリング等によって形成された金あるいは銀等の反射膜18と、この反射膜18の外側を覆う保護層20とを含んで形成されている。

【0034】前記記録層12に用いられる色素は、シアニン系色素及びその誘導体、ベンゼンチオール金属錯体、アゾ色素等の有機色素であり、相変化材料の場合はGeSbTe系、AgInSbTe系などが一般的である。有機色素としては、下記の一般式[化1]であらわされるシアニン系色素を主として用いる事が好ましい。又これらの具体例としては、例えば下記の[化2][化3][化4]等があげられる。

[0035] 【化1】

[0032]

$$Z_1$$
 CH_3
 C

(式中、 Z,およびZ,は、それぞれ総合ベンゼン環または 総合ナフタレン環を表し、 R,はおよびR,はは、それぞれ アルキル基を表す。 nは0、1または2である。)

[0036] [化2]

【0037】 【化3】

[0038]

【0039】前記光記録媒体10へのマルチレベル記録は、図2に示される光記録装置30によって実行される。

【0040】この光記録装置30はCD-R/RWレコーダであり、スピンドルサーボ31を介してスピンドルモータ32により光記録媒体(ディスク)10を線速度一定の条件で回転駆動させ、レーザー36からのレーザービームによって光記録媒体(ディスク)10に情報をが記録するものである。

【0041】レーザードライバ38は、記録すべき情報

に応じて、図1に示される仮想記録セル(詳細後述) 4 0の一つ当りのレーザービームの照射時間、例えば前記 レーザー36に入力するレーザーパルス数を制御するよ うになっている。

【0042】図2の符号42は、対物レンズ42A及びハーフミラー42Bを含む照射光学系である。対物レンズ42Aはレーザービームがディスク10の記録層12に集光するようにフォーカストラッキングサーボ44により制御される。又、対物レンズ42Aとハーフミラー42Bとは、送りサーボ46によって、ディスク10の回転に同期してその内周側から外周側に所定速度で移動制御される。

【 0 0 4 3 】前記スピンドルサーボ3 1 、フォーカストラッキングサーボ4 4 、送りサーボ4 6 は、制御装置5 0 により制御される。記録層1 2 に記録すべきデータ (情報) はこの制御装置5 0 に入力される。

【0044】図3に具体的に示されるように、レーザードライバ38は、セル時間設定部60、記録照射時間設定部62、及び、配分処理部64を備える。

【 O O 4 5 】セル時間設定部 6 O は、所定のセル時間 T を連続的に規定する(T 1、T 2、T 3、T 4、T 5、T 6、・・・)。この結果、例えばレーザー36に対する光記録媒体 1 O の移動速度(線速度)を v とした場合、この光記録媒体 1 O 上に長さ H が「v×T」となる仮想記録セル4 O が連続的に規定される。

【 O O 4 6 】記録照射時間設定部 6 2 は、上記セル時間 T 以内において 5 段階以上(ここでは t A ~ t G の 7 段階)の照射時間 t A、…、 t G を規定する。この場合、 照射時間 t A、…、 t Gをメモリに予め記録しておき、 それを読み出すことで規定しても良く、又光記録媒体 1 Oに書き込まれている記録照射時間情報を読み取ることで規定するようにしても良い。

【0047】配分処理部64は、制御装置50に格納されている原情報を変調して、マルチレベル記録用のビット系列を設定して各セル時間Tに割り当てる。このマルチレベル用のビット系列とは、ここでは7段階(A、B、C、D、E、F、G)の記録マークが存在するので、例えば【B、E、D、C、G、G、・・・】等となる。この各数値は、各記録セル40に形成する記録マークのレベルを意味している。従って、上記ビット系列の各レベルに対応するようにして、上記照射時間 t A~t Gが各セル時間T1、T2・・・に割り当てられる。

【0048】光記録媒体10には図1に示されるように、前記グルーブ16内において、ディスク34の円周方向Sに連続的に仮想記録セル40が規定される。各仮想記録セル40の円周方向Sの単位長さはH(=v×T)であり、ビーム径(ビームウエストの直径)Dより短い長さに設定される(図4参照)。なお、隣接グルーブ16の間にはランド17が形成されている。

【0049】仮想記録セル40における、上記単位長さ

H(=v×T)と直交する方向である単位幅は上記グルーブ16の幅Wと略一致させている。

【0050】上記レーザー36におけるレーザービームの波長を λ 、照射光学系42における対物レンズ42Aの開口数をNAとした場合に、前記グルーブ16の幅Wが、0.20×(λ /NA) <W<0.50×(λ /NA) となるように設定されている。例えば、本実施形態においては λ =785 (nm)、NA=0.5であるので、グルーブ幅Wは0.31<W<0.79 (μ m)の範囲内に設定される。なお、好ましくはグルーブの幅Wを0.25×(λ /NA) <W<0.45 (λ /NA)となるように設定し、上記条件であれば0.39<W<0.71 (μ m)の範囲内に設定される。

【0051】更に、好ましいグルーブ深さとしては70 m~300 nm、より好ましくは100~250 nm程度である。ここでいうグルーブ深さは、グルーブの最も深い場所とランドの最も高い場所での垂直方向の高さ差(深さ)である。

【0052】又本実施形態では、隣接するグルーブ16との間隔(トラックピッチ)Pが0.65×(λ /NA)<Pに設定され、好ましくは0.7×(λ /NA)<P<1.2×(λ /NA)に設定されている。各仮想記録セル40毎にレーザービームを照射して、模式的に例示された記録マーク48A~48Gを、記録すべき情報に応じて形成する。

【0053】具体的には以下のステップを含むようにして記録マーク48A~48Gを形成する。

【0054】実情報を光記録媒体10に記録する際には、セル時間Tを設定することで既に述べたように仮想記録セル40を連続的に規定し、この仮想記録セル40に対するレーザービームの照射時間 t A~ t Gを設定する。

【0055】その結果、図5のタイムチャートに示されるように、原情報を変調して得られたビット列 {B、E、D、C、G、G、・・・}に対応して各セル時間 T 1、T2、T3・・・に照射時間 {tB、tE、tD、tC、tG、tG、・・・}が割り当てられる。なおここでは各セル時間 T の先頭から照射時間 t を設定する場合(つまり先端基準)を示しているが、各セル時間 T の中央に照射時間を設定する場合(中間基準)や、各セル時間 T の後ろ側を基準として照射時間を設定する場合(後端基準)もあり得る。

【0056】このタイムチャートに従って、照射時間 t においてはレーザービームを照射して実際に記録マーク48A~48Gを形成すれば、各記録セル40を望み通りの光反射率に設定することが出来る。

【0057】なお、この記録マーク48A~48Gはレーザービームのビームスポットの全体ではなく中心部に 形成される(レーザービームは円形であるが、ディスク 10を回転させながらレーザービームを照射するので、 記録マークは照射時間の長さに応じて長円形となる)。

【0058】何故なら、フォーカシングされたレーザービームは、一般にガウシアン分布をなすが、記録層12においては、レーザービームの照射エネルギーがある閾値を超えた部分のみで記録が行われるので、中心から順に外側に広がるようにして記録マーク48A~48Gが形成されるからである。これにより、例えば図4に示されるように、仮想記録セル40に対して占有率の異なる7段階の記録マーク48A~48Gが形成可能となる。

【0059】この場合、記録マーク48A~48Gの各大きさは、仮想記録セル40に読み出しレーザービームを照射した時の反射光の光反射率が7段階になるように設定する。前記光反射率は、記録マークが小さいほど大きくなり、記録マークが形成されていない仮想記録セルでは最大反射率、最大の記録マーク48Gが形成されている仮想記録セルでは最小反射率となる。更に詳細には、前記光反射率は、各記録マーク48A~48Gの光透過率をも含めて、仮想記録セル40に対する占有率で決定されると考えられる。

【0060】なお、記録マーク48A~48G自体の光透過率は、記録層12を構成する材料がレーザービームの照射によって分解変質し、その屈折率が変化する場合や、記録層12の厚さ方向の変化量によって異なる。形成された記録マーク部分の光透過率がゼロであれば、これを考慮しなくてもよく、上記占有率のみに従う。

【 O O 6 1 】上記実施形態の光記録媒体 1 O によれば、 照射時間を制御することで 5 段階以上のマルチレベル記 録が達成可能となっている。

【0062】特に、グルーブ幅W及びトラックピッチPが所定の範囲内に設定されているので、記録マーク48A~48Gを精度良く且つ高密度で形成することが出来る。これは、各レベルの目標光反射率に対する実際の光反射率の誤差が低減されることを意味する。

【0063】図6に、本発明者によってなされた解析結果を示す。具体的には、グルーブ幅WをQ×(λ /NA)で定義し、Qの値を異ならせた光記録媒体、即ちグルーブ幅Wを異ならせた複数の光記録媒体を用意して、各記録媒体に対してマルチレベル記録を実施し、この時の仮想記録セルの光反射率のばらつきによって生じるSDR値を解析した。

【OO64】ここで言うSDR(Sigma to Dynamic Range)値とは、マルチレベルの各段における反射率とダイナミックレンジ(最大反射率と最小反射率の差)から求められる、各段における信号のばらつきのことである。具体的には、反射率の標準偏差σを、ダイナミックレンジで正規化(normalize)した値であり、このばらつきが小さければ、良好の信号の記録再生を行うことができるということは言うまでもない。本発明者らの実験によると、このSDR値は5%以下であれば好ましく、3%以下であれば更に好ましい。ここでは2%以下を目

標とした。

【0065】この結果からも明らかなように、グルーブ 幅WがQ=0.20以下になるとSDRが増大した。こ の理由としては、グルーブ幅Wが狭すぎることによって 記録マーク48A~48Gが十分に形成されていなかっ たり、或いは、同一反射率レベルの仮想記録セル同士に おいて実際の反射率レベルがばらついていたり等の現象 によって信号品質が著しく低下し、仮想記録セル40に 対する記録マーク48A~48Gの占有率で主に決定さ れる光反射率に影響を及ぼしていると推察される。

【0066】逆にグルーブ幅Wが広いと、低反射率レベルの記録マーク(大きい記録マーク)が形成される仮想記録セル40の反射率のばらつきが大きくなり、信号品質の悪化につながってしまう。

【0067】更に、トラックピッチPを例えば 1.0μ mに設定した状態で、上記Qの値を0.50に設定した光記録媒体にマルチレベル記録した状況を模式的に図7に示す。このようにすると、グルーブ幅Wは十分に確保されていることから、望み通り或いはそれ以上の大きさ記録マーク $48A\sim48$ Gが形成されている可能性が高い。しかし、相対的に考えればランド幅しが狭くなることから、隣接するグルーブ16 に読み取り時のレーザービームスポットDがまたがってしまい、その隣接するグルーブ16 内の記録マーク $48A\sim48$ Gを同時に読み取る可能性が高く、所望の光反射率を得ることが難しくなる。

【0068】即ち、現状の2値記録方法のように、記録層の種類等に応じてグルーブ幅を設定するだけではなく、マルチレベル記録を行うためには、そのために適するグルーブ幅Wを設定する必要があり、このようなグルーブ幅Wの設定を怠ると、マルチレベル特有の信号品質劣化を導く結果となってしまうが、本実施形態のごとくきちんと設定すれば望み通りの光反射率を得ることができる。

【0069】又、以上のようにして光反射率の誤差(ずれ)が抑制されると、レベル段階幅を小さくして総合レベル数(ここではA~Gの7段)を増加させることが出来、光記録媒体の記録密度をより高めることが出来るようになる。

【0070】又、本実施の形態の例では、主として光記録媒体10における記録層12が有機色素材料で構成されてCDーRとして機能する場合について説明したが、記録層として相変化記録層が採用されたCD-RWタイプの光記録媒体を用いても良く、又、CD-R/RW以外の光記録媒体であっても構わない。

【0071】又、本実施の形態の例では図4に示したように、読み取りレーザーの集光ビームの直径D以下の長さ或いは幅の記録マーク(ここでは総ての記録マーク48A~48G)を形成したとしても十分にデータ読み取りが可能となっていることから、従来と比較して飛躍的

に単位面積当たりの記録密度を高められている。

【0072】なお、本実施の形態の例では総ての記録マークを集光ビームの直径D以下にする場合を示したが、本発明ではそれに限定されず、記録マークの一部だけが直径D以下となる場合や、又総ての記録マークが集光ビーム直径D以上となる場合も含んでいる。

【0073】又、上記光記録装置30では、レーザードライバ38を用いてレーザービームの照射時間を設定する場合を示したが、照射パワーによって異なる大きさの記録マークを形成しても良い。本発明は結果的にレーザービームの照射が制御できれば十分であり、例えばビーム光の透過具合を変調可能なシャッターを用いてレーザービームの照射時間又は照射パワーを制御してもよい。【0074】上記実施の形態の例において、記録層12はシアニン等の有機色素を用いたものであるが、本発明はこれに限定されるものでなく上記以外の有機色素あるいは無機材料であってもよく、又その他の材料を適宜用いても構わない。但し、上記のような有機色素を用いた場合は、レーザービームの5段階以上の照射時間に対応

して、確実に記録マークの大きさを変化させて記録する

ことができ、極めて高い精度で各記録マークを読み取る

ことができた。

【0075】更に又、上記光記録装置30によって記録マークを形成する際に記録層12上に設定される仮想記録セル40のサイズは、実施の形態の例に限定されるものではない。ここでは仮想記録セル40の幅はグルーブ幅Wとほぼ一致させた場合を示したが、例えば、レーザービームのビームウエスト径を更に小さく絞ることができれば、グルーブ16の幅W以下でも構わない。長さ日についても同様である。その一方で、8段階等の更なりといても同様である。その一方で、8段階等の更なりといても横つの大きさをレーザービームウエスト以上に設定しても構わない。その場合、ある一部の記録マークは、ビームウエスト以上の大きさにすることができる。

【0076】又、前記レーザービームは、記録層12の位置で円形とされているが、これは、図8に示されるように、例えば対物レンズ42Aに対してビーム整形プリズム42Cや、アパーチャを加えることによって、ビーム形状が、記録媒体10の送り方向に短く、これと直交方向に長い長円形状あるいは線状となるようにしてもよい。この場合は、記録マーク49が短くなるので仮想記録セルを更に短くすることができる。即ち記録密度を向上させることができる。

【0077】更に、この光記録媒体10では、図1において符号52で示されるように、あらかじめ、信号変調の段数に合わせた数の反射率の異なる複数のピットを有するようにしてもよく、又は当該光記録媒体の一部分にあらかじめ本発明の光記録方法によるマルチレベル記録を行っても良い。これらの複数のピット52及び/又はマルチレベル記録済み部分の記録マーク54には、当該

記録媒体を個別に識別する情報、マルチレベル記録用光 記録媒体であることを識別する情報、当該記録媒体を記 録再生するためのレーザービームの照射時間を決定する ための情報、グルーブの幅Wに関する情報等の特定情報 を記録しておいてもよい。その特定情報は、当該光記録 媒体の再生及び/又は記録時に読み込むことによって、 マルチレベル記録用光記録媒体であることを確実に識別 したり、さらにそれらを個別に識別したりすることがで き、より確実なマルチレベル記録・再生を行うことがで きる。

【0078】通常、CD-R/RWやDVD-R/RW 用の媒体は、記録グルーブを蛇行(ウォブル)させることで信号を入れてある。この信号はアドレス信号と呼ばれ、記録装置はこの信号を読むことで記録ヘッドを決められた位置へ移動することが可能になる。

【0079】例えばCD-R/RWの場合、このアドレス信号には、位置を時間に置き換えた分・秒のタイムコードが記録されている。記録装置は、このタイムコードを読み取って、ヘッドをリードイン部分に移動し、各種データを読み込むことが可能になる。

【0080】この発明のマルチレベル光記録媒体は、CD-R/RWに適用されるような記録装置で使用(記録・再生)する場合、ウォブルによるアドレス信号を採用することが出来る。ただし、通常のCD-R/RWのタイムコードと異なる、番地コードなどの信号方式を採用する。通常の記録装置では、CD-R/RWと異なるアドレス信号を読めず、ヘッドを所定位置に移動することが出来ない(この場合、マルチレベル記録光媒体は記録装置から排出される)。

【 O O 8 1 】 一方、マルチレベル記録に対応した記録装置は、この特殊なアドレスを認識可能に設定しておけば、ヘッドをリードイン部分に移動して信号を読み出すことが可能となる。

【0082】つまり、マルチレベル光記録媒体では、通常と異なるアドレスを採用することによって、他の光記録媒体との区別を可能にしてある。

【0083】上記ウォブルを利用する記録は、例えば図9に示されるように、光記録媒体10のリードインエリア102におけるグループ104A~104Cのウォブルを変調することにより行う。

【0084】具体的には、図10に示されるように、ウォブルの振幅Wbを変えることなく、各グルーブ104A、104B、104Cのウォブル周期 T_A 、 T_B 、 T_C を変える。例えば、図9に示されるユーザーエリア106におけるグルーブ16のウォブル周期 T_0 を基本周期とし、これより長いウォブル周期 T_B は「1」、短いウォブル周期 T_A 、 T_C は「0」を示す2値信号にのせて、上記各種情報を記録しておく。従って、例えば、ウォブル周期が上記のように、光記録媒体の内周側から

「0」、「1」、「0」のときに、この光記録媒体10

がマルチレベル記録用であることを示すようにする。 【0085】又、上記のような予め決められた情報を、 記録開始位置情報として、これに基づき、ユーザーエリ ア106の所定位置から記録開始となるようにしてお く。これは、仮想記録セル40の開始位置の情報にもな

【 O O 8 6 】又、上記各種情報の他の記録方法の例として、図 1 1 に示されるように、上記の各種情報を、各グルーブ 1 6 の間のランド 1 7 に形成されたランドプレピット 1 7 A に載せて、例えば、ランドプレピット間の周期が短い場合は「1」、長い場合は「0」として 2 値記録する。

【0087】更に他の例として、図12あるいは図1に符号56(グループ中断部)で示されるように、グルーブ16を途切れさせて、途切れたグルーブの長さ、例えば短い場合は「1」、長い場合は、「0」を示すようにする。

【0088】上記図9、11、12に示された情報記録手段による情報は、従来の2値記録型の再生装置によっても読み取ることができるようにすることによって、このマルチレベル光記録媒体を、誤って2値記録型の再生及び/又は記録装置に装填しても、これが、マルチレベル型であることが容易に判明する。

【0089】更に、上記の各種情報は、例えば、図13に示されるように、リードインエリア102に予めマルチレベル記録しておくことができる。この場合、図13において、最初の5個の仮想記録セル401~405の記録マークにより、マルチレベル記録媒体であること及びマルチレベル記録の段数、次の5個の仮想記録セル406~410の記録マークにより記録又は再生のための推奨レーザーパワーをそれぞれ記録しておくこと等が可能である。これらの方法は単独で、あるいは組み合わせて利用することも可能である。

[0090]

【発明の効果】本発明に係る光記録媒体によれば、記録に供するデータに応じてマルチレベルに記録することが出来、更にその記録マークからの読み取り信号の特性を良好にすることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の例に係る光記録媒体の要 部を示す一部断面とした斜視図

【図2】同光記録媒体にレーザービームを用いて情報を 記録するための光記録装置を示すブロック図

【図3】同光記録装置に含まれるレーザードライバの構成を示すブロック図

【図4】同光記録装置により記録層に記録マークを形成する際の、該記録マークと仮想記録セル及びその光反射率との関係を示す模式図

【図5】同光記録装置により記録層に記録マークを形成する際の、レーザービーム照射のタイミングチャートの 生成過程を示す線図。

【図6】グルーブ幅の異なる光記録媒体に対してマルチレベル記録した際のSDR値の変化を示す線図

【図7】グルーブ幅が広過ぎる光記録媒体においてマルチレベル記録した状態を示す斜視図

【図8】仮想記録セルを照射するレーザービームを他の 形状とする場合を示す略示斜視図

【図9】本発明の光記録媒体における予め各種情報を記録したウォブルを拡大して示す模式図

【図10】同ウォブルのウォブル周期と2値信号との関係を示す線図

【図11】本発明の光記録媒体における各種情報を記録したランドプレビットと2値信号との関係を示す模式図【図12】本発明の光記録媒体における各種情報を記録して途切れたグルーブの長さと2値信号との関係を示す模式図

【図13】本発明の光記録媒体における各種情報を記録 した仮想記録セルと記録マークを示す模式図

【符号の説明】

10…光記録媒体

12…記録層

1 4…基板

16、104A~104C…グルーブ

17…ランド

17A…ランドプレピット

18…反射膜

20…保護層

30…光記録装置

32…スピンドル

36…レーザー

38…レーザードライバ

40、401~410…仮想記録セル

42…照射光学系

42A…対物レンズ

42B…ハーフミラー

42C…ビーム整形プリズム

44…フォーカスサーボ回路

46…送りサーボ回路

48A~48G、49、54…記録マーク

52…ピット

56…グルーブ中断部

60…セル時間設定部

62…照射時間設定部

6 4 …配分処理部

ロードーム

【図13】

【手続補正書】

【提出日】平成14年7月19日(2002.7.1 9)

【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0015 【補正方法】変更 【補正内容】

【0015】(3)上記(1)又は(2)において、前 記グルーブが互いに略平行状態で複数形成されており、 隣接する前記グルーブ間のピッチPが、O. $6.5 \times (\lambda)$ /NA) < Pに設定され、好ましくは0. 7× (λ/N A) < P < 1. 2 × (λ/NA) に設定されていること を特徴とする光記録媒体。

フロントページの続き

(51) Int. Ct. 7

識別記号

G11B 7/24

561

FΙ B 4 1 M 5/26 テーマコード(参考)

(72)発明者 有岡 博之

東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内

(72) 発明者 大槻 史朗

東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内

Fターム(参考) 2H111 EA03 EA22 FB43

5D029 JA04 JB11 JB16 JB45 JB47

JC02 WB11 WB14 WC05 WC06

WD10 WD11

5D090 AA01 BB04 CC01 CC12 CC14

DD01 FF13 GG01 GG07 KK04

KK05