MATH 2023 • Multivariable Calculus Problem Set #7 • Line Integrals, Conservative Vector Fields, Curl Operator

Do not use the Green's Theorem in any problem in this set.

1. (\bigstar) Let $\mathbf{F} = (y - x)\mathbf{i} + x\mathbf{j}$ on \mathbb{R}^2 , and C be the counter-clockwise circular path with radius 2 centered at the origin. See the figure below:

- (a) On the above figure, highlight the portion of the path C at which $\mathbf{F} \cdot \mathbf{r}' > 0$.
- (b) On the above figure, highlight (with another color) the portion of the path C at which $\mathbf{F} \cdot \mathbf{r}' < 0$.
- (c) Calculate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ from the definition. Is the result *alone* sufficient to determine whether \mathbf{F} is conservative or not?

Solution: First parametrize the path:

$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi.$$

That is, we have $x = 2\cos t$ and $y = 2\sin t$.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_0^{2\pi} ((y-x)\mathbf{i} + x\mathbf{j}) \cdot ((-2\sin t)\mathbf{i} + (2\cos t)\mathbf{j}) dt$$

$$= \int_0^{2\pi} -2(y-x)\sin t + 2x\cos t dt$$

$$= \int_0^{2\pi} -2(2\sin t - 2\cos t)\sin t + 2(2\cos t) \cdot \cos t dt$$

$$= \int_0^{2\pi} -4\sin^2 t + 4\sin t \cos t + 4\cos^2 t dt$$

Recall from single-variable calculus that $\int_0^{2\pi} \sin^2 t \, dt = \int_0^{2\pi} \cos^2 t \, dt$, so we have:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} 4\sin t \cos t \, dt = \int_0^{2\pi} 2\sin 2t \, dt = [-\cos 2t]_0^{2\pi} = 0.$$

We cannot argue whether or not **F** is conservative by just showing $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for ONE closed curve – we need $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for ALL closed curves.

(d) Calculate $\nabla \times \mathbf{F}$, i.e. the curl of \mathbf{F} . Is the result *alone* sufficient to determine whether \mathbf{F} is conservative or not?

Solution:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y - x & x & 0 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ y - x & 0 \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y - x & x \end{vmatrix} \mathbf{k}$$

$$= 0\mathbf{i} - 0\mathbf{j} + \left(\frac{\partial}{\partial x}x - \frac{\partial}{\partial y}(y - x)\right) \mathbf{k}$$

$$= 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k} = \mathbf{0}.$$

Since **F** is defined everywhere, the domain of **F** is \mathbb{R}^2 which is simply-connected. By Curl Test, we conclude that **F** is conservative.

(e) Find a potential function f such that $\mathbf{F} = \nabla f$, or show that such an f does not exist. Is the result *alone* sufficient to determine whether \mathbf{F} is conservative or not?

Solution: By inspection, it is not difficult to see that:

$$\mathbf{F} = \nabla \left(xy - \frac{x^2}{2} \right).$$

Therefore, f(x,y) can be taken to be $xy - \frac{x^2}{2}$, and so **F** is conservative (by definition).

2. (\bigstar) Let $\mathbf{F} = \frac{x}{\sqrt{x^2 + y^2}}\mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}}\mathbf{j}$, and C be the counter-clockwise square path with vertices (2, -2), (2, 2), (-2, 2) and (-2, -2). See the figure below:

Do (a)-(e) of Problem #1 with this **F** and *C* instead.

Solution: Part (c): To calculate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ from the definition, we split the path C into four segments:

From (2,2) to (-2,2):
$$\mathbf{r}_1(t) = \langle 2,2 \rangle + t(\langle -2,2 \rangle - \langle 2,2 \rangle) = \langle 2-4t,2 \rangle, \qquad 0 \leq t \leq 1.$$

$$\int_{0}^{1} \mathbf{F} \cdot \mathbf{r}'_{1}(t) dt = \int_{0}^{1} \frac{(2-4t)\mathbf{i} + 2\mathbf{j}}{\sqrt{(2-4t)^{2} + 2^{2}}} \cdot (-4\mathbf{i} + 0\mathbf{j}) dt$$

$$= \int_{0}^{1} \frac{-4(2-4t)}{\sqrt{(2-4t)^{2} + 2^{2}}} dt$$

$$= \int_{-2}^{2} \frac{u}{\sqrt{u^{2} + 4}} dt \qquad \text{(Let } u = 2 - 4t)$$

$$= 0 \qquad \text{(Odd function!)}$$

From
$$(-2,2)$$
 to $(-2,-2)$: $\mathbf{r}_2(t) = \langle -2,2-4t \rangle$, $0 \le t \le 1$.

$$\int_0^1 \mathbf{F} \cdot \mathbf{r}_2'(t) dt = \int_0^1 \frac{-2\mathbf{i} + (2 - 4t)\mathbf{j}}{\sqrt{2^2 + (2 - 4t)^2}} \cdot (0\mathbf{i} - 4\mathbf{j}) dt$$
$$= \int_0^1 \frac{-4(2 - 4t)}{\sqrt{2^2 + (2 - 4t)^2}} dt$$
$$= 0$$

Note the integral is the same as the previous one.

From
$$(-2, -2)$$
 to $(2, -2)$: $\mathbf{r}_3(t) = \langle -2 + 4t, -2 \rangle$, $0 \le t \le 1$.

$$\int_0^1 \mathbf{F} \cdot \mathbf{r}_3'(t) dt = \int_0^1 \frac{(-2+4t)\mathbf{i} - 2\mathbf{j}}{\sqrt{(-2+4t)^2 + 2^2}} \cdot (4\mathbf{i} + 0\mathbf{j}) dt$$

$$= \int_0^1 \frac{4(-2+4t)}{\sqrt{(-2+4t)^2 + 2^2}} dt$$

$$= \int_0^1 \frac{-4(2-4t)}{\sqrt{2^2 + (2-4t)^2}} dt$$

$$= 0$$

From (2, -2) to (2, 2): $\mathbf{r}_4(t) = \langle 2, -2 + 4t \rangle$, $0 \le t \le 1$.

$$\int_0^1 \mathbf{F} \cdot \mathbf{r}_4'(t) dt = \int_0^1 \frac{2\mathbf{i} + (-2 + 4t)\mathbf{j}}{\sqrt{2^2 + (-2 + 4t)^2}} \cdot (0\mathbf{i} + 4\mathbf{j}) dt$$
$$= \int_0^1 \frac{4(-2 + 4t)}{\sqrt{2^2 + (-2 + 4t)^2}} dt$$
$$= 0$$

Finally, adding up the above line segments, we get:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 + 0 + 0 + 0 = 0.$$

Note that we can't use this result alone to argue if **F** is conservative, as we have just shown that $\oint_C \mathbf{F} \cdot d\mathbf{r}$ for ONE closed curve *C* (but not for ALL closed curves *C*).

For Part (d):

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} & 0 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{y}{\sqrt{x^2 + y^2}} & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ \frac{x}{\sqrt{x^2 + y^2}} & 0 \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{vmatrix} \mathbf{k}$$

$$= 0\mathbf{i} - 0\mathbf{j} + \left(\frac{\partial}{\partial x} \frac{y}{\sqrt{x^2 + y^2}} - \frac{\partial}{\partial y} \frac{x}{\sqrt{x^2 + y^2}} \right) \mathbf{k}$$

$$= \left\{ \left(-\frac{y}{2} (x^2 + y^2)^{-3/2} \cdot 2x \right) - \left(-\frac{x}{2} (x^2 + y^2)^{-3/2} \cdot 2y \right) \right\} \mathbf{k}$$

$$= 0\mathbf{k} = \mathbf{0}$$

Although $\nabla \times F = 0$, the domain of F is $\mathbb{R}^2 \setminus \{(0,0)\}$ which is NOT simply-connected. The Curl Test cannot be used here, and so this result alone cannot conclude on whether F is conservative.

For Part (e): We can verify that:

$$\mathbf{F}(x,y) = \nabla \left(\sqrt{x^2 + y^2} \right).$$

Therefore, one can take the potential function $f(x,y) = \sqrt{x^2 + y^2}$, and so **F** is conservative from definition.

- 3. (\bigstar) Let C be the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = y.
 - (a) Sketch the cylinder, the plane and the curve *C* in the same diagram.

(b) Let $\mathbf{F} = y\mathbf{i} + z\mathbf{j} - x\mathbf{k}$. Calculate the line integral $\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ where Γ is a portion of *C* from (-1,0,0) to (1,0,0). There are two possible such Γ's. Do both. Is the result *alone* sufficient to determine whether **F** is conservative or not?

Solution: We need to first parametrize the path Γ . There are two such possible paths, namely the counter-clockwise path and clockwise path (when looking from the top).

For the counter-clockwise path, the curve lies on the cylinder $x^2 + y^2 = 1$ and therefore projects down to the unit circle centered at the origin on the xy-plane. This unit circle is parametrized by $x = \cos t$ and $y = \sin t$. Therefore, the red path also has x and y coordinates given by $x = \cos t$ and $y = \sin t$. Furthermore, the red path lies on the plane z = y, and so we have $z = \sin t$. To sum up, the parametric equation for the red path is:

$$\mathbf{r}_1(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin t)\mathbf{k}, \quad \pi \le t \le 2\pi.$$

The bounds for t are chosen so that $\mathbf{r}_1(\pi) = \langle -1, 0, 0 \rangle$ and $\mathbf{r}_1(2\pi) = \langle 1, 0, 0 \rangle$, which are the coordinates of the starting and ending points of the red path.

$$\int_{\text{red path}} \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{\pi}^{2\pi} (y\mathbf{i} + z\mathbf{j} - x\mathbf{k}) \cdot \mathbf{r}'_{1}(t) dt$$

$$= \int_{\pi}^{2\pi} ((\sin t)\mathbf{i} + (\sin t)\mathbf{j} - (\cos t)\mathbf{k}) \cdot ((-\sin t)\mathbf{i} + (\cos t)\mathbf{j} + (\cos t)\mathbf{k}) dt$$

$$= \int_{\pi}^{2\pi} (-\sin^{2} t + \sin t \cos t - \cos^{2} t) dt = \int_{\pi}^{2\pi} (-1 + \sin t \cos t) dt$$

$$= \left[-t - \frac{1}{2} \cos^{2} t \right]_{\pi}^{2\pi} = -\pi$$

For the clockwise path, we can parametrize it by replacing all t's in $\mathbf{r}_1(t)$ by -t, i.e.:

$$\mathbf{r}_2(t) = (\cos(-t))\mathbf{i} + (\sin(-t))\mathbf{j} + (\sin(-t))\mathbf{k}$$
$$= (\cos t)\mathbf{i} - (\sin t)\mathbf{j} - (\sin t)\mathbf{k}$$

In order to give starting point (-1,0,0) and ending point (1,0,0), we can set the bounds for t to be $\pi \le 2\pi$, then $\mathbf{r}_2(\pi) = \langle -1,0,0 \rangle$ and $\mathbf{r}_2(2\pi) = \langle 1,0,0 \rangle$.

$$\begin{split} &\int_{\text{green path}} \mathbf{F} \cdot d\mathbf{r} \\ &= \int_{\pi}^{2\pi} \left((-\sin t)\mathbf{i} + (-\sin t)\mathbf{j} - (\cos t)\mathbf{k} \right) \cdot \left((-\sin t)\mathbf{i} + (-\cos t)\mathbf{j} + (-\cos t)\mathbf{k} \right) dt \\ &= \int_{\pi}^{2\pi} \left(1 + \sin t \cos t \right) dt = \left[t - \frac{1}{2}\cos^2 t \right]_{\pi}^{2\pi} = \pi \end{split}$$

Since we can find two different paths with the same starting and ending points so that the line integral of **F** over them are not equal, we conclude that **F** is not conservative.

(c) Find a potential function f such that $\mathbf{F} = \nabla f$, or show that such an f does not exist. Is the result *alone* sufficient to determine whether \mathbf{F} is conservative or not?

Solution: Set up:

$$\frac{\partial f}{\partial x} = y$$
$$\frac{\partial f}{\partial y} = z$$
$$\frac{\partial f}{\partial z} = -x$$

Integrating the first equation gives:

$$f(x,y,z) = xy + g(y,z)$$

Then:

$$\frac{\partial f}{\partial y} = x + \frac{\partial g}{\partial y}(y, z)$$

Combining with the second equation, we get:

$$z = x + \frac{\partial g}{\partial y}(y, z) \Longrightarrow z - \frac{\partial g}{\partial y}(y, z) = x.$$

Now that the RHS is a function of x while the LHS is a function of y and z. It is a contradiction. Therefore, such an f does not exist and so F is not conservative by definition.

Alternatively, we can also check that:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & -x \end{vmatrix} = -\mathbf{i} + \mathbf{j} - \mathbf{k} \neq \mathbf{0}$$

Conservative vector field must have zero curl. Now that curl of **F** is non-zero, the vector field **F** is not conservative.

4. (\bigstar) Determine whether or not each of the following vector fields is conservative or not. If so, find its potential function f such that $\mathbf{F} = \nabla f$.

(a)
$$\mathbf{F} = (e^{-y} - ze^{-x})\mathbf{i} + (e^{-z} - xe^{-y})\mathbf{j} + (e^{-x} - ye^{-z})\mathbf{k}$$

Solution: Set up:

$$\frac{\partial f}{\partial x} = e^{-y} - ze^{-x}$$
$$\frac{\partial f}{\partial y} = e^{-z} - xe^{-y}$$
$$\frac{\partial f}{\partial z} = e^{-x} - ye^{-z}$$

By integrating the first equation, we get:

 $f(x,y,z) = xe^{-y} + ze^{-x} + g(y,z)$ where g(y,z) is an arbitrary function

Then, by differentiation we get $\frac{\partial f}{\partial y} = -xe^{-y} + \frac{\partial g}{\partial y}$, and combined with the second equation, we must have:

$$\frac{\partial g}{\partial y} = e^{-z}.$$

Integrating this, we get $g(y,z) = ye^{-z} + h(z)$ for some arbitrary function h(z), and so

$$f(x,y,z) = xe^{-y} + ze^{-x} + ye^{-z} + h(z).$$

Again by differentiating, we get: $\frac{\partial f}{\partial z} = e^{-x} - ye^{-z} + h'(z)$. Combine with the third equation, we get h'(z) = 0 and so h is a constant.

It can be easily verified that $\nabla (xe^{-y} + ze^{-x} + ye^{-z} + C) = \mathbf{F}$, so \mathbf{F} is conservative with potential function $f(x, y, z) = xe^{-y} + ze^{-x} + ye^{-z} + C$.

(b)
$$\mathbf{F} = (x^2 - xy)\mathbf{i} + (y^2 - xy)\mathbf{j}$$

Solution: Set up:

$$\frac{\partial f}{\partial x} = x^2 - xy$$
$$\frac{\partial f}{\partial y} = y^2 - xy$$

Integrating the first equation we get:

$$f(x,y) = \frac{x^3}{3} - \frac{x^2y}{2} + g(y)$$

By differentiation, we get $\frac{\partial f}{\partial y} = -\frac{x^2}{2} + g'(y)$. Combining with the second equation, we must have

$$y^2 - xy = -\frac{x^2}{2} + g'(y).$$

However, that would imply

$$\frac{x^2}{2} = g'(y) - y^2 + xy.$$

LHS is a function of x only, while RHS depends on both x and y. Therefore, such a function f cannot exist and therefore \mathbf{F} is not conservative.

Alternatively, one can show **F** is not conservative by showing:

$$\nabla \times \mathbf{F} = (x - y)\mathbf{k}$$
.

Therefore, $\nabla \times \mathbf{F}$ is non-zero, and so \mathbf{F} is not conservative.

$$\mathbf{F}(x,y,z) = Ax \ln z \,\mathbf{i} + By^2 z \,\mathbf{j} + \left(\frac{x^2}{z} + y^3\right) \mathbf{k},$$

where the domain of **F** is the upper-half space $\{(x, y, z) : z > 0\}$.

MATH 2023

For each such pair of *A* and *B*, find the potential function *f* for the vector field.

Solution: Note that the domain of **F** is the upper-half space, which *is* simply-connected! Therefore, we have:

F is conservative
$$\iff \nabla \times \mathbf{F} = \mathbf{0}$$

By straight-forward computations (omitted here), we get:

$$\nabla \times \mathbf{F} = (3 - B)y^2 \mathbf{i} + \frac{(A - 2)x}{z} \mathbf{j} + 0\mathbf{k}$$

Therefore, **F** is conservative if and only if A = 2 and B = 3.

For this pair of *A* and *B*, we solve the equation $\mathbf{F} = \nabla f$ for f:

$$\frac{\partial f}{\partial x} = 2x \ln z$$
$$\frac{\partial f}{\partial y} = 3y^2 z$$
$$\frac{\partial f}{\partial z} = \frac{x^2}{z} + y^3$$

Integrating the first equation, we get:

$$f(x,y,z) = x^2 \ln z + g(y,z).$$

Then, we have $\frac{\partial f}{\partial z} = \frac{x^2}{z} + \frac{\partial g}{\partial z}$, and by comparison with the third equation, we get $\frac{\partial g}{\partial z} = y^3$, and so $g(y,z) = y^3z + h(y)$. Substitute back into f, it comes down to solving h:

$$f(x,y,z) = x^2 \ln z + y^3 z + h(y)$$

By considering $\frac{\partial f}{\partial y} = 3y^2z + h'(y)$ and the second equation, we conclude h'(y) = 0 and so h(y) = C. The potential function for the vector field is: $f(x,y,z) = x^2 \ln z + y^3z + C$ where C is any real constant.

6. $(\bigstar \bigstar)$ Consider the path C:

$$\mathbf{r}(t) = (\cos^{2M} t) \mathbf{i} + (\sin^N t) \mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi.$$

Here M is the age of the Earth, and N is the age of the Universe. Assume both M and N are positive finite integers.

Evaluate the line integral:

$$\int_C (e^{-y} - ze^{-x}) dx + (e^{-z} - xe^{-y}) dy + (e^{-x} - ye^{-z}) dz$$

Solution: The vector field represented by this line integral is:

$$\mathbf{F} = (e^{-y} - ze^{-x})\mathbf{i} + (e^{-z} - xe^{-y})\mathbf{j} + (e^{-x} - ye^{-z})\mathbf{k}$$

It appeared in Problem #4(a) in which we showed it is conservative with a potential function $f(x,y,z) = xe^{-y} + ze^{-x} + ye^{-z}$. Therefore, to compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, we simply need to find the starting and ending points of the path C:

$$\mathbf{r}(0) = \mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = \langle 1, 0, 0 \rangle$$

 $\mathbf{r}(\pi) = \mathbf{i} + 0\mathbf{j} + \pi\mathbf{k} = \langle 1, 0, \pi \rangle$

By Fundamental Theorem of Line Integrals, we get:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1,0,\pi) - f(1,0,0) = (e^{0} + \pi e^{-1} + 0) - (e^{0} + 0 + 0) = \pi e^{-1}$$

Alternatively, given that **F** is a conservative vector field, one can calculate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ by choosing an easier path joining the same endpoints as *C*. Clearly, a straight-line path *L* is an easier path.

From above, the starting and ending points of C are (1,0,0) and $(1,0,\pi)$ respectively. The straight-line L can be parametrized by:

$$\mathbf{r}_L(t) = \langle 1, 0, 0 \rangle + t(\langle 1, 0, \pi \rangle - \langle 1, 0, 0 \rangle) = \langle 1, 0, t\pi \rangle, \qquad 0 \le t \le 1.$$

$$\int_{L} \mathbf{F} \cdot d\mathbf{r} = \int_{L} \mathbf{F} \cdot \mathbf{r}'_{L}(t) dt
= \int_{0}^{1} \left((e^{-y} - ze^{-x}) \mathbf{i} + (e^{-z} - xe^{-y}) \mathbf{j} + (e^{-x} - ye^{-z}) \mathbf{k} \right) \cdot \mathbf{r}'_{L}(t) dt
= \int_{0}^{1} \left((e^{-y} - ze^{-x}) \mathbf{i} + (e^{-z} - xe^{-y}) \mathbf{j} + (e^{-x} - ye^{-z}) \mathbf{k} \right) \cdot (1\mathbf{i} + 0\mathbf{j} + \pi \mathbf{k}) dt
= \int_{0}^{1} \pi (e^{-x} - ye^{-z}) dt = \int_{0}^{1} \pi (e^{-1} - 0) dt = \pi e^{-1}$$

Note that along the straight-line *L*, we have x = 1, y = 0 and $z = t\pi$.

Finally, since **F** is conservative by Problem #4(a), we have $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_L \mathbf{F} \cdot d\mathbf{r} = \pi e^{-1}$.

7. ($\bigstar \star$) Given a conservative vector field **F** in \mathbb{R}^3 , the potential *energy* of **F** is a scalar-valued function V(x,y,z) such that $\mathbf{F} = -\nabla V$. Suppose $\mathbf{r}(t)$ is the path of a particle with mass m traveling in accordance to the Newton's Second Law $\mathbf{F}(\mathbf{r}(t)) = m\mathbf{r}''(t)$. Then its kinetic energy is defined to be:

$$KE = \frac{1}{2}m \left| \mathbf{r}'(t) \right|^2.$$

The total (kinetic + potential) energy of the particle at time t is therefore given by:

$$E(t) := \frac{1}{2}m \left| \mathbf{r}'(t) \right|^2 + V(\mathbf{r}(t)).$$

Show that the total energy is conserved, i.e. E'(t) = 0 for all time t.

[Hint: the only fact you need to know about Physics is the Newton's Second Law given above. It is purely a math problem.]

Solution: The key idea is to write $|\mathbf{r}'(t)|^2$ as $\mathbf{r}'(t) \cdot \mathbf{r}'(t)$. Also, it's essential to observe that along the path, the potential energy V is first of all a function of x, y and z, and (x,y,z) are functions of t. Therefore, one can use the chain rule to find $\frac{dV}{dt}$.

$$\frac{dE}{dt} = \frac{d}{dt} \left(\frac{1}{2} m \mathbf{r}'(t) \cdot \mathbf{r}'(t) \right) + \frac{dV}{dt}$$

$$= \frac{1}{2} m \underbrace{\left(\mathbf{r}''(t) \cdot \mathbf{r}'(t) + \mathbf{r}'(t) \cdot \mathbf{r}''(t) \right)}_{\text{product rule}} + \underbrace{\left(\frac{\partial V}{\partial x} \frac{dx}{dt} + \frac{\partial V}{\partial y} \frac{dy}{dt} + \frac{\partial V}{\partial z} \frac{dz}{dt} \right)}_{\text{chain rule}}$$

$$= m \mathbf{r}''(t) \cdot \mathbf{r}'(t) + \underbrace{\left(\frac{\partial V}{\partial x} \mathbf{i} + \frac{\partial V}{\partial y} \mathbf{j} + \frac{\partial V}{\partial z} \mathbf{k} \right) \cdot \left(\frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k} \right)}_{\text{a good trick to learn}}$$

$$= \mathbf{F} \cdot \mathbf{r}'(t) + \nabla V \cdot \mathbf{r}'(t)$$

$$= -\nabla V \cdot \mathbf{r}'(t) + \nabla V \cdot \mathbf{r}'(t)$$

$$= 0.$$

- 8. $(\bigstar \bigstar)$ Denote $\mathbf{e}_{\rho} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}$ and $\mathbf{e}_r = \frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$, which are the unit radial vector fields in \mathbb{R}^3 and \mathbb{R}^2 respectively.
 - (a) Show that if $\mathbf{F}(x,y,z) = f(\rho)\mathbf{e}_{\rho}$ where f is a function depending only on $\rho = \sqrt{x^2 + y^2 + z^2}$, then $\nabla \times \mathbf{F} = \mathbf{0}$ on the domain of \mathbf{F} . Is this result alone sufficient to claim that \mathbf{F} is conservative?

Solution: Using $\rho^2 = x^2 + y^2 + z^2$, one can differentiate both sides by x, y and z individually and show:

$$\frac{\partial \rho}{\partial x} = \frac{x}{\rho}, \quad \frac{\partial \rho}{\partial y} = \frac{y}{\rho}, \quad \frac{\partial \rho}{\partial z} = \frac{z}{\rho}.$$

Now consider the vector field $\mathbf{F} = f(\rho)\mathbf{e}_{\rho}$ whose components are given by:

$$\mathbf{F} = f(\rho) \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\rho} = \frac{f(\rho)}{\rho} x\mathbf{i} + \frac{f(\rho)}{\rho} y\mathbf{j} + \frac{f(\rho)}{\rho} z\mathbf{k}$$

Then,

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{f(\rho)}{\rho} x & \frac{f(\rho)}{\rho} y & \frac{f(\rho)}{\rho} z \end{vmatrix}$$

We are going to compute the i-component as an example (the j- and k-components

are similar). The **i**-component is given by:

$$\begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{f(\rho)}{\rho} y & \frac{f(\rho)}{\rho} z \end{vmatrix} \mathbf{i} = \left\{ \frac{\partial}{\partial y} \left(\frac{f(\rho)}{\rho} z \right) - \frac{\partial}{\partial z} \left(\frac{f(\rho)}{\rho} y \right) \right\} \mathbf{i}$$

$$= \left\{ \frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \frac{\partial \rho}{\partial y} \cdot z - \frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \frac{\partial \rho}{\partial z} \cdot y \right\} \mathbf{i}.$$

Here we have used the chain rule on $\frac{\partial}{\partial y} \left(\frac{f(\rho)}{\rho} \right)$ and $\frac{\partial}{\partial z} \left(\frac{f(\rho)}{\rho} \right)$, as $\frac{f(\rho)}{\rho}$ is a function of ρ , and ρ is a function of (x,y,z). Note that:

$$\begin{split} &\frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \frac{\partial \rho}{\partial y} \cdot z - \frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \frac{\partial \rho}{\partial z} \cdot y \\ &= \frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \cdot \frac{y}{\rho} \cdot z - \frac{d}{d\rho} \left(\frac{f(\rho)}{\rho} \right) \cdot \frac{z}{\rho} \cdot y \\ &= 0 \end{split}$$

Therefore, the i-component is zero. Similarly one can also show that the j- and k-components are zero.

Assuming f is C^1 – it should have been stated in the problem, the domain of \mathbf{F} is $\mathbb{R}^3 \setminus \{(0,0,0)\}$ since \mathbf{e}_ρ is undefined only at the origin. Therefore, the domain of \mathbf{F} is simply-connected, and now that we showed $\nabla \times \mathbf{F} = \mathbf{0}$. By curl test, we conclude that \mathbf{F} is conservative.

(b) Show that if $\mathbf{G}(x,y) = g(r)\mathbf{e}_r$ where g is a function depending only on $r = \sqrt{x^2 + y^2}$, then $\nabla \times \mathbf{G} = \mathbf{0}$ on the domain of \mathbf{G} . Is this result alone sufficient to claim that \mathbf{G} is conservative?

Solution: The way to show $\nabla \times G = 0$ is very similar to part (a). Here we need to know:

$$\frac{\partial r}{\partial x} = \frac{x}{r}$$
, $\frac{\partial r}{\partial y} = \frac{y}{r}$, and $\mathbf{G} = \frac{g(r)}{r}(x\mathbf{i} + y\mathbf{j})$

One can then calculate the curl of **G** using the chain rule.

However, this result alone cannot conclude whether **G** is conservative. Since \mathbf{e}_r is undefined at (0,0) but $\mathbb{R}^2 \setminus \{(0,0)\}$ is NOT simply-connected. The curl test does not apply here.

9. (\bigstar) Regard each English letter as a solid region in \mathbb{R}^2 . Which capital letters are simply-connected? Which small letters are simply-connected?

Solution:

Simply-connected capital letters: C E F G H I J K L M N S T U V W X Y Z Simply-connected small letters: c f h k l m n r s t u v w x y z

Note that the small i and j are not connected, and hence not simply-connected.

- 10. (\bigstar) The notation $\mathbb{R}^3 \setminus X$ means the *xyz*-space \mathbb{R}^3 with the set *X* removed. Determine whether $\mathbb{R}^3 \setminus X$ is simply-connected when *X* is each of the following:
 - (a) *X* is the origin
 - (b) X is the entire y-axis
 - (c) X is the positive y-axis
 - (d) *X* is the solid sphere $x^2 + y^2 + z^2 \le 1$
 - (e) *X* is the surface sphere $x^2 + y^2 + z^2 = 1$
 - (f) *X* is the solid cylinder $x^2 + y^2 \le 1$
 - (g) X is the solid half-cylinder $x^2 + y^2 \le 1$ and $z \ge 0$.
 - (h) *X* is the surface cylinder $x^2 + y^2 = 1$
 - (i) *X* is the surface half-cylinder $x^2 + y^2 = 1$ and $z \ge 0$
 - (j) *X* is a solid torus
 - (k) *X* is a surface torus
 - (l) *X* is a simple closed curve

Give an example of a proper subset X of \mathbb{R}^3 such that both X and $\mathbb{R}^3 \setminus X$ are simply-connected. [Note: "proper" means X cannot be empty, and cannot be the whole \mathbb{R}^3 .]

Solution: $\mathbb{R}^3 \setminus X$ is simply-connected for those X's in: (a)(c)(d)(g)(i), whereas $\mathbb{R}^3 \setminus X$ is not simply-connected for those X's in: (b)(e)(f)(h)(j)(k)(l).

Here is one of many examples of X so that both X and $\mathbb{R}^3 \setminus X$ are both simply-connected: When X is the upper-half space $\{(x,y,z): z>0\}$. Then $\mathbb{R}^3 \setminus X$ is the lower-half space.