S.B. Roll No.....

Duration: 3Hrs.

APPLIED MATHEMATICS-II 2nd Exam/Civil/Mech./ Electrical/ECE/IT/CSE/Auto/Mechatronics/0553/May'19 (FOR 2018 BATCH)

SECTION-A Q1. a) Choose the correct answer. 15x1=15i. $\lim_{\theta \to 0} \sin \frac{2\theta}{\theta}$ is equal to c) $\frac{1}{2}$ a) 0 b) 1 d) 2 ii. $\int_{-\pi}^{\frac{\pi}{2}} \cos x dx$ is equal to a) – 1 b) 0 c) 1 d) 2 iii. The deviation of $x^2 \log x$ is equal to a) X (1 - 2 log x) b) $\frac{(1-2 \log x)}{x}$ iv. Order of differential equation $(y''')^2 + 2y'' + 3y = x$ is c) $x(1 + 2 \log x)$ d) 4 v. The equation of the normal to the curve $y = \sin x$ at (0, 0) is a) x = 0d) x-y=0b) State True or False. vi. $\int_{-a}^{a} f(x) dx = 0 \text{ If } f(x) \text{ is odd.}$ vii. $\lim_{x \to 0} \frac{\tan 2x}{\tan 3x} = \frac{2}{3} .$ viii. $\int e^{-mx} dx = \frac{e^{-mx}}{m} .$ ix. $\frac{d}{dx} (x \sin x) = x \cos x .$ x. Every LPP admits an optimal solution. c) Fill in the blanks. xi. Derivative of x¹⁰ w.r.t x⁵ is xii. Area of the region bounded by the curve of $y = x-x^2$ between x = 0 and x = 1 is _____ xiii. Anti derivative of xsin x w.r.t x is _____ xiv. $\int_0^{\frac{\pi}{2}} \cos 2x dx$ is equal to _____ xv. If y = log x ,then $\frac{d^2x}{dy^2}$ is equal to _____ **SECTION-B** Q2. Attempt any six questions. 6x5 = 30a. If $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$ b. If $y = e^{m \sin^{-1} x}$ prove that $(1 - x^2) y^2 - xy_1 = m^2 y$. c. Find the equation of the normal to the curve $y = 6x^2 - 5x + 3$ at (1,4). d. Solve the differential equation, ydx - xdy = xydx. e. Evaluate $\int_0^{\pi} \cos^2 \frac{x}{2} dx$. f. Integrate $x^2 \cot^{-1} x$. g. Find the area of the curve $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ between x = 0 & x = a. h. Evaluate $\int \frac{dx}{1+3\sin^2 x}$ If the side of a square is increasing at the rate of 1m per min., find the rate of increase of its area, when the side of square is 5m.

SECTION-C

Q3. Attempt any three questions.

3x10=30

M.Marks:75

- i. Find the maximum and minimum or extreme values of $2x^3-15x^2+36x+10$.
- ii. Differentiate $x^{\sin x}$ w.r.t($\sin x$) x .

- iii. Minimize and Maximize z = 5x + 10y subject to the constraints $x + 2y \le 120$, $x + y \ge 60$, $x 2y \ge 0$, $x + y \ge 0$.
- iv. Differentiate $y = \cos x$ by first principle.
- v. Find the approximate area under the curve whose ordinates are given below by the method of trapezoidal rule.

1 4 4 5 2 5 1 4 1 5 1						
Х	0	1	2	3	4	5
у	0	2.5	3	4.5	5	7.5

- vi. Evaluate:
 - a. $\int \sin^{-1} x$.
 - b. $\int_1^3 \frac{\cos(\log x) dx}{x} \, .$

