

aws

Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus

Tianhang Zhang¹, Lin Qiu², Qipeng Guo², Cheng Deng¹, Yue Zhang³, Zheng Zhang², Chenghu Zhou⁴, Xinbing Wang¹, Luoyi Fu¹ ¹Shanghai Jiaotong University ²Amazon AWS AI ³Westlake University ⁴IGSNRR, Chinese Academy of Sciences

{zhangtianhang, davendw, xwang8, yiluofu}@sjtu.edu.cn {quln, gqipeng, zhaz}@amazon.com zhangyue@westlake.edu.cn

Introduction

Task: Finding hallucinations in LLM generated text

- Hallucinations can undermine the reliability and trustworthiness of LLMs, especially in scenarios where accuracy and veracity are essential.
- We focus on hallucinations that conflict with knowledge in the real world.

Problems of Existing Uncertainty-Based Methods

- Given a model response, calculate the generation probability of each token. If the text is from a black-box LLM, we can use a proxy model for estimation.
- However, such method may introduce noise when calculating sentence-level hallucination scores.
- The probability may exhibit "overconfidence".
- The probability sometimes demonstrate "underconfidence"

Our Method: Focus

Keyword Selection: The keywords that express salient information will be extracted for calculation

keyword selection Mackenzie Caquatto is an American former artistic gymnast, who competed at the 2012 Summer Olympics in London. Caquatto was born in 1992, and began gymnastics at the age of three. She competed on the uneven bars and balance beam at the 2012 Summer Olympics.

The keywords are the named entities and nouns recognized by Spacy.

Penalty Transmission: The uncertainties of previous tokens will be transmitted to the subsequent ones

penalty transmission Mackenzie Caquatto is an American former artistic gymnast, who competed at the 2012 Summer Olympics in London. Caquatto was born in 1992, and began gymnastics at the age of three. She competed on the uneven bars and balance beam at the 2012 Summer Olympics.

❖ The attention weight is the max-pooling results for all the layers and attention heads.

Probability Correction: The token generation probability will be adjusted according to the token properties

- The predicted token probability is conditioned on its entity type (if any) and adjusted by its inverse document frequency (IDF).
- The token frequency is estimated using the sampled RedPajama dataset.

Experiments

Hallucination Detection in Large Language Model

Wikibio-GPT3

Method	Sentence-level Metrics NonFact NonFact* Factual		Passage-level Metrics Pearson Spearman					
GPT-3 Uncertainties								
Avg(-log p)	83.21	38.89	53.97	57.04	53.93			
$Avg(\mathcal{H})$	80.73	37.09	52.07	55.52	50.87			
Max(-log p)	87.51	35.88	50.46	57.83	55.69			
$Max(\mathcal{H})$	85.75	32.43	50.27	52.48	49.55			
SelfCheckGPT								
BERTScore	81.96	45.96	44.23	58.18	55.90			
QA	84.26	40.06	48.14	61.07	59.29			
Unigram (max)	85.63	41.04	58.47	64.71	64.91			
Combination	87.33	44.37	61.83	69.05	67.77			
Ours								
$LLaMA-7B_{focus}$	84.26	40.20	57.04	64.47	54.73			
$LLaMA-13B_{focus}$	87.90	43.84	62.46	70.62	63.03			
$LLaMA-30B_{focus}$	89.79	48.80	65.69	77.15	73.24			
LLaMA-65B $_{focus}$	89.94	48.69	64.90	76.80	73.01			

Method	NoFac NoFac*	Fact Pear. Spear.
avg(h)	82.07 41.47	47.22 51.03 37.29
+keyword	83.01 41.57	45.82 56.07 44.77
+penalty	86.68 45.27	54.93 59.08 55.84
+entity type	88.89 46.92	65.12 76.82 71.49
+token idf	89.79 48.80	65.69 77.15 73.24

LLaMA-30b

- Our proposed method achieves SOTA performance on the WikiBio-GPT-3 dataset across various models with different scales.
- Our method show effectiveness across 22 different proxy models such as OPT, GPT-J and Falcon.

Hallucination Detection in Small Language Models

XSumFaith

	71001		
Method	NonFact	Fact	Balanced-Acc
avg(h)	92.79	11.75	57.65
+keyword	92.65	14.19	56.24
+penalty	92.34	14.97	57.77
+entity type	94.98	18.46	64.77
+token idf	95.13	18.86	64.81

FRANK

Method	NonFact	t Fact B	Salanced-Acc
avg(-logp)	89.82	79.00	78.79
+penalty	89.87	78.37	79.46
+entity type	90.44	79.78	80.31
+token idf	90.12	80.00	80.70

Our method also shows effectiveness in detecting hallucinations within summaries generated by small language models.