Module 3 Coefficient de variation Cote z Quantiles

Élaboré par Afef Ben Zine El Abidine

Formule du coefficient de variation

Le coefficient de variation est une mesure de dispersion relative des données; on le calcule ainsi:

Coefficient de variation

$$CV = \frac{\text{écart type}}{\text{moyenne}} \times 100 \% = \frac{\sigma}{\mu} \times 100 \%$$

Plus le coefficient de variation est faible, plus les données sont homogènes.

Si CV < 15%, on dit qu'il y a une bonne homogénéité des données.

NOTE

Si l'on travaille avec un échantillon, on remplace σ par s et μ par \bar{x} dans la formule.

Exemple pour illustrer le coefficient de variation (CV):

Salaires, 1930: 30 \$ 37 \$ 44 \$ 50 \$ 55 \$ 60 \$

Moyenne: 46 \$

Écart type: 10,30 \$

Supposons qu'en 2012, le salaire moyen de six couturières (bien entendu, ce ne sont plus celles de 1930!) était de 356 \$ par semaine, avec un écart type de 10,30 \$. Voici la distribution des salaires des couturières:

Salaires, 2012: 340 \$ 347 \$ 354 \$ 360 \$ 365 \$ 370 \$

Moyenne: 356 \$

Écart type: 10,30 \$

Comment peut-on interpréter ces données? Est-ce que les salaires en 2012 sont plus homogènes qu'en 1930?

Le coefficient de variation (= écart type/moyenne)

Voici le coefficient de variation des salaires des couturières:

En 1930:
$$CV = \frac{10,30 \text{ }\$}{46 \text{ }\$} \times 100 \% = 22,4 \%$$

En 2012: CV =
$$\frac{10,30 \text{ }\$}{356 \text{ }\$} \times 100 \text{ }\% = 2,9 \text{ }\%$$

Le CV est exprimé en pourcentage.

Interprétation

Les coefficients de variation indiquent qu'en 1930, il y avait beaucoup plus de disparité entre les salaires qu'en 2012.

En 2012, la distribution des salaires est homogène, car le CV<15%.

La cote z : permet de déterminer la position de la note de chaque étudiant par rapport aux autres notes du groupe

Calculer CV et cote z en se basant sur exemple p. 83

Répartition des propriétaires d'une PME selon leur âge au démarrage de l'entreprise, Québec, 2013

Åge au démarrage de l'entreprise	Pourcentage de propriétaires		
Moins de 25 ans	16,4 %		
[25 ans; 35 ans[35,1 %		
[35 ans; 45 ans[28,8 %		
[45 ans; 55 ans[16,2 %		
55 ans et plus	3,5 %		
Total	100,0 %		

Source: Fondation de l'entrepreneurship. Indice entrepreneurial québécois 2013. Les entrepreneurs du Québec font-ils preuve d'audace?

Mesures de position : les quantiles

Les **quantiles** sont des valeurs qui partagent une distribution en un certain nombre de parties égales. Les plus utilisés sont :

- les quartiles (Q₁, Q₂, Q₃), qui partagent une distribution en quatre parties comprenant 25 % des données;
- les quintiles (V₁, V₂, V₃, V₄), qui partagent une distribution en cinq parties comprenant 20 % des données;
- les déciles (D₁, D₂, ..., D₉), qui partagent une distribution en dix parties comprenant 10 % des données;
- les centiles (C₁, C₂, ..., C₉₉), qui partagent une distribution en cent parties comprenant 1 % des données.

Calcul des quartiles: Q1, Q2 et Q3

- Le premier quartile Q1 est déterminé tel que 25% des données sont situées avant Q1 (inférieur ou égal à Q1)
- oLe deuxième quartile Q2= Me
- Le troisième quartile Q3 est déterminé tel que 75% des données sont situées avant Q3 (inférieur ou égal à Q3)

Remarque : le calcul des quartiles se fait de la même manière que la médiane. Il faut procéder par le calcul du pourcentage cumulé croissant.

Exemple de calcul de Q1 (manuel, p. 56)

Répartition des arbres selon l'âge

Åge (en ans)	Pourcentage	
[0; 10[8 % 28 % 32 % 20 % 12 %	
[10; 20[
[20; 30[
[30; 40[
[40; 50[
Total	100 %	

Esquisse de l'histogramme

• Surface:
$$25 \% = 8 \% + S$$

$$S = 25 \% - 8 \%$$

$$S = 17 \%$$

•
$$Q_1: 10 + B$$

$$\rightarrow$$
 10 ans \rightarrow **B** ans

D'où **B** =
$$\frac{17 \times 10}{28}$$
 = 6,1 and

$$Q_1 = 10 + 6,1 = 16,1$$
 ans

Q1 appartient à la classe [10;20] (car on atteint les 25% des observations) Si Q1= 16,1 ans

On estime que 25% des arbres ont moins de 16,1 ans.

EXERCICE 6, p. 59: Calculer Q1 et Q3.

Répartition des bénéficiaires du Programme de prêts et bourses de la formation technique selon le montant d'aide attribué, 2011-2012

Montant attribué	Pourcentage		
Moins de 2 000 \$	26,3 %		
[2 000 \$; 4 000 \$[20,1 %		
[4 000 \$; 6 000 \$[17,7 %		
[6 000 \$; 8 000 \$[16,3 %		
[8 000 \$; 10 000 \$[9,7 %		
10 000 \$ et plus	9,9 %		
Total	100,0 %		

Prêt + bourse.

Source: Ministère de l'Enseignement supérieur. Statistiques. Rapport 2011-2012, 2014.

Calcul de Q1 et Q3 exercice 6 p. 59.

Répartition des bénéficiares du Programme de prêts et bourses de la formation technique selon le montant		
Montant		Pourcentage
attribué	Pourcentage	cumulé
[0; 2000]	26,30%	26,3%
[2000; 4000]	20,10%	46,4%
[4000; 6000]	17,70%	64,1%
[6000; 8000]	16,30%	80,4%
[8000; 10 000]	9,70%	90,1%
[10 000; 12 00	9,90%	100,0%

Détermination du 1er Quartile:

Q1 appartient à la classe [0; 2000] (car on a atteint le pourcentage cumulé de 25%)

26,3%......2000 25%.....X

 $x = \frac{25\% \times 2000}{26,3\%} = 1901\$$

Interprétation:

On peut estimer que 25% des bénéficaires de la formation technique ont reçu moins de 1901\$ du Programme des prêts et bourses en 2011-2012.

Détermination du 3e Quartile:

Q3 appartient à la classe [6000; 8000] (car on a atteintle pourcentage cumulé de 75%)

26,3%+ 20,1% + 17,7% + S = 75%

S= 10,9%

16,3%......2000 10,9%.....X

$$x = \frac{10.9\% \times 2000}{16.3\%} = 1337,4$$
\$

Interprétation:

On peut estimer que 75% des bénéficaires de la formation technique ont reçu moins de 7337,4\$ du Programme des prêts et bourses en 2011-2012.

La méthode de l'interpolation linéaire permet de retrouver le même résultat. Il s'agit de résoudre l'égalité suivante:

Travail à faire

• Exercices 1.5: <mark>5, 9 et 10, p. 79-80</mark>.