

Design Under Uncertainty: Methods

ME 615 Spring 2020

Dr. Chris Hoyle
MIME

Normal Random Variables

- The FOSM and upcoming FORM algorithm assume normal variables but note:
 - The FOSM takes as input the mean and variance of input variables and outputs mean and variance of response.
 - We don't have to assume that the variables and responses are normal, but normal is the only distribution fully defined by just mean and variance.
 - For taking a probability, we assumed a normal distribution in FOSM but we don't have to assume that for the SOTM method.

FOSM Improvement: SOTM Algorith College of Engineering

What if we use a second order Taylor series approximation?

$$g_{\mu} = g(\mu) \qquad g_{,i} = \frac{\partial g(\mu)}{\partial x_{i}} \qquad g_{,ij} = \frac{\partial^{2} g(\mu)}{\partial x_{i} \partial x_{j}} \qquad \mu_{i,k} = \int_{-\infty}^{\infty} (x_{i} - \mu_{i})^{k} f_{X}(x_{i}) dx_{i}$$

Mean:

$$\mu_g \approx g_{\mu} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n g_{,ij} \ \mu_{ij}$$
FOSM SOTM

Variance:

$$\sigma_g^2 \approx \underbrace{\sum_{i=1}^n g_{,i}^2 \ \mu_{i,2}}_{\text{FOSM}} + \underbrace{g_{\mu}^2 - \mu_g^2 + g_{\mu} \sum_{i=1}^n g_{,ii} \ \mu_{i,2}}_{\text{SOTM}} + \underbrace{\sum_{i=1}^n g_{,i} \ g_{,ii} \ \mu_{i,3}}_{\text{SOTM}}$$

Skewness:

$$\mu_{g,3} \approx \sum_{i=1}^{n} g_{,i}^{3} \mu_{i,3}$$
 first order approach
$$+g_{\mu}^{3} + \frac{3}{2} g_{\mu}^{2} \sum_{i=1}^{n} g_{,ii} \mu_{i,2} + 3g_{\mu} \sum_{i=1}^{n} g_{,i}^{2} \mu_{i,2}$$
 SOTM
$$+3g_{\mu} \sum_{i=1}^{n} g_{,i} g_{,ii} \mu_{i,3} - 3 \mu_{g} \sigma_{g}^{2} - \mu_{g}^{3}$$

New Reliability Index

$$\beta_{3M} = \frac{1}{3}\beta_{2M} \left[2 + exp\left(\frac{1}{2}\mu_{g,3}\left(\beta_{2M} - \frac{1}{\beta_{2M}}\right)\right) \right]$$
 "Old" Reliability Index

3 Moment Index

Issues:

- Requires 2nd derivatives (More function evals)
- Expansion still at mean value

Objectives and Requirements

Objectives

Requirements

Look at entire distribution **s.t.** $x \in X$

Considering the effect of variations without eliminating the causes

Satisfy
$$R = P\{g(\mathbf{x}, \mathbf{p}) \ge c\} \ge R_0$$
Limit State

To assure proper levels of "safety" for the system designed

Most Probable Point Methods (MPP) Oregon State University College of Engineering

- Rather than taking the derivative for the Taylor series approximation at the mean point, take the derivative in the area of interest.
 - This corresponds to the limit state function
- Therefore, the MPP methods can be viewed as a Taylor series approximation for constraints
- There are two standard formulations for calculating reliability using the MPP methods
 - First Order Reliability Method (FORM): Linear approximation of the limit state.
 - Second Order Reliability Method (SORM): Quadratic approximation of the limit state.

Design Space vs. Criterion Space

Criterion Space (f)

Design Space (x)

Comparison Design vs. Criterion Space Oregon State University College of Engineering

First Order Reliability Method

What exactly does the approximation look like?

The Most Probable Point (MPP) concept Oregon State University College of Engineering

<u>MPP</u> is the point in the \mathbf{u} space that has the highest probability density function value on the limit state $g(\mathbf{u})=0$ curve and highest contribution to the integral of reliability.

Random Var. Normal Random Var.
$$X=[D,P]$$

$$X=\{X_1,\dots,X_n\}, g(X)=0$$

$$g(\mathbf{u})=0$$

$$\mathbf{X}=\{X_1,\dots,X_n\}, g(X)=0$$

- How do you convert from X space to U space?
 - For Normal variables:

•
$$u_i = \frac{x_i - \mu_{x_i}}{\sigma_{x_i}}$$
 and $x_i = \mu_{x_i} + u_i \sigma_{x_i}$

How do we calculate Reliability (Probability of Success)?

Reliability
$$\begin{cases} \beta = \min_{\mathbf{u}} |\mathbf{u}| \\ \operatorname{Prob}\{g(\mathbf{X}, \mathbf{P}) \ge 0\} \approx \Phi(\beta) \end{cases} \quad \begin{cases} s.t. \quad g(\mathbf{u}) = 0 \end{cases}$$

- How do we actually find β ?
 - Next slides

First Order Reliability Method Algorithm

- FORM (First Order Reliability Method)
 - Taylor series expansion at most probable point (MPP)
 - MPP: closest point on g(u)=0 to the origin of u space
 - Transform variables x into standard normal variable u space
 - Find MPP
 - Reliability index β : shortest distance from origin to $g(u)=0 \rightarrow$ invariant
 - Linear approximation and probability calculation
 - MPP search

 Minimize $\mathbf{u}^{T}\mathbf{u}$ Subject to $G(\mathbf{u}) = 0$
 - Probability of failure calculation

$$P_f = \Phi(-\beta) = \Phi\left(-\left(\mathbf{u}^{\mathsf{T}}\mathbf{u}\right)^{1/2}\right)$$

QP subproblem:

Min:
$$f(x) = \nabla f^T d + \frac{1}{2} d^T d$$
 or $f_k + \nabla f^T d + d^T d$
S.t.
$$\nabla G(x^k) d_k + G(x^k) = 0$$

First Order Reliability Method

- MPP search
 - Specialized Iterative algorithm: Hasofer-Lind algorithm
- Hasofer-Lind algorithm
 - 1. Transform x, g(x) into u, g(u) (u: standard normal variable)

$$u_i = \frac{x_i - \mu_{x_i}}{\sigma_x}, \quad G(x(u))$$

 $u_i = \frac{x_i - \mu_{x_i}}{\sigma_{x_i}}, \quad G(x(u))$ 2. Find MPP with the following formula (usually \mathbf{u}_0 is set to mean point=(**0**))

$$\mathbf{u}_{k+1} = \frac{\nabla g\left(\mathbf{u}_{k}\right)^{T} \mathbf{u}_{k} - g\left(\mathbf{u}_{k}\right)}{\nabla g\left(\mathbf{u}_{k}\right)^{T} \nabla g\left(\mathbf{u}_{k}\right)} \nabla g\left(\mathbf{u}_{k}\right)$$

- 3. Iterate until \mathbf{u}_k converges, i.e. the difference between \mathbf{u}_{k+1} and \mathbf{u}_k is small.
- 4. Calculate probability of failure

$$p_f = \Phi(-\beta) = \Phi(-(\mathbf{u}^{\mathsf{T}}\mathbf{u})^{1/2})$$

First Order Reliability Method

How to calculate β at the MPP?

$$-eta = \sqrt{\mathbf{u}^T \mathbf{u}} = -\frac{\nabla g^{*T} \mathbf{u}^*}{\sqrt{\nabla g^{*T} \nabla g^*}} = \frac{\mu_g}{\sigma_g}$$

- where * indicates the quantity is calculated at the MPP
- In this equation, we can define the sensitivity α as:

$$-\alpha = -\frac{\nabla g^*}{\sqrt{\nabla g^{*T}\nabla g^*}}$$

- Sensitivity refers to the sensitivity of the reliability index β to each random variable.
 - Could be helpful in deciding where to reduce uncertainty if we can.

FORM: Non Normal Variables

- When x follows a non-normal distribution
 - Rackwitz-Fiessler transformation (Rackwitz & Fiessler 1978)
 - > Transform non-normal distribution into equivalent normal distribution

$$u_i = \Phi^{-1}[F_{x_i}(x_i)]$$

- \triangleright Matlab example: u_i =norminv(betacdf (\mathbf{X} ,a,b), 0 , 1)
- The mean and standard deviation of the equivalent Normal Distribution is:

$$\mu_{x}^{N} = x^{*} - \sigma_{x}^{N} \Phi^{-1} \left(F_{X}(x^{*}) \right)$$

$$\sigma_{x}^{N} = \Phi \left(\Phi^{-1} \left(F_{X}(x^{*}) \right) \right)$$

$$f_{X}(x^{*})$$
PDF Inverse CDF Original CDF e.g. norminv e.g. betacdf

ISSUES WITH NOrmal Transformation Oregon State University College of Engineering

Becomes erroneous when x has large skewness.

- When there are correlated variables (Hohenbichler & Rackwitz 1981)
 - Diagonalize covariance matrix
 - Rosenblatt transformation

Second Order Reliability Method

- Second order approximation at MPP
 - Curvature fitting (Hessian calculation required)
 - Point fitting (2n+1 g evaluation for curvature approximation)
 - Breitung's asymptotic formula for probability

$$P_f = \Phi(-\beta) \prod_{i=1}^{n-1} (1 + \beta \kappa_i)^{-1/2} \kappa_i : \text{curvature}$$

 \rightarrow Accurate for large β

correction

$$g(u) = g(u^*) + \sum_{i=1}^n \frac{\partial g}{\partial u_i} \Big|_{u^*} (u_i - u_i^*)$$

$$+ \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 g}{\partial u_i \partial u_j} \Big|_{u^*} (u_i - u_i^*) (u_j - u_j^*)$$

$$= (\mathbf{u} - \mathbf{u}^*)^{\mathbf{T}} \mathbf{H} (\mathbf{u} - \mathbf{u}^*) + \nabla \mathbf{g} (\mathbf{u}^*)^{\mathbf{T}} (\mathbf{u} - \mathbf{u}^*)$$

$$\kappa_i$$

Concepts in Reliability-based Design Oregon State University College of Engineering

 The problem of determining if constraints are satisfied at a certain reliability level is generally known as reliability-based design.

Requirements

Two Ways to Look at the Problem

Reliability Index Approach (RIA)

- This is the problem of finding the reliability level (i.e. the probability of success) for a specific design.
- This has been our approach for all methods studied.
- Can be expensive and MPP can have problems converging if the reliability is very high.

Performance Measure Approach (PMA)

- This is the problem of finding the constraint violation for a specific reliability value.
- Better suited to design optimization and more stable.
- A probability is not calculated in this approach.

Differences with Optimization Framework College of Engineering

- During optimization, gradient (sensitivity) needs to be calculated at each iteration
 - For RIA, gradient of reliability index w.r.t. design variable (DV)

$$\beta_{t_i} - \beta_{s_i} \leq 0$$

For PMA, gradient of performance function w.r.t. DV

$$G_{p_i} \leq 0$$

• The PMA method is more consistent with the theory we developed in ME 517.

Inverse Reliability Method Algorithm

- Inverse FORM (First Order Reliability Method)
 - Instead of searching on the g(u) = 0 line for the point closest to the origin (i.e. min $\mathbf{u}^{\mathsf{T}}\mathbf{u}$), we will look for the minimum value of the g(u) function for a given beta value

Minimize
$$\mathbf{u}^{\mathrm{T}}\mathbf{u}$$

Subject to $G(\mathbf{u}) = 0$

$$\begin{cases} \min_{\mathbf{u}} g(\mathbf{u}) \\ \text{subject to } \|\mathbf{u}\| = \beta \end{cases}$$

– Now Beta is known:

$$\beta = -\Phi^{-1}(P_f)$$

Inverse Reliability Method

How to calculate β at the MPP?

$$-\beta = \sqrt{\mathbf{u}^T \mathbf{u}} = -\frac{\nabla g^{*T} \mathbf{u}^*}{\sqrt{\nabla g^{*T} \nabla g^*}} = \frac{\mu_g}{\sigma_g}$$

- where * indicates the quantity is calculated at the MPP
- In this equation, we can define the sensitivity α as:

$$-\alpha = \frac{\nabla g^*}{\sqrt{\nabla g^{*T} \nabla g^*}}$$

- Sensitivity refers to the sensitivity of the reliability index b to each random variable.
 - Could be helpful in deciding where to reduce uncertainty if we can.

Inverse Reliability Method

We can solve for u in this equation

$$-\beta = \sqrt{\mathbf{u}^T \mathbf{u}} = -\frac{\nabla g^{*T} \mathbf{u}^*}{\sqrt{\nabla g^{*T} \nabla g^*}} = \frac{\mu_g}{\sigma_g}$$

- where * indicates the quantity is calculated at the MPP
- And we get the following update equation:

$$-\mathbf{u} = -\alpha\beta$$

We can create an algorithm similar to the form algorithm.

Inverse FORM Algorithm

FORM Method Simplification

Remember the FORM update equation:

$$\mathbf{u}_{k+1} = \frac{\nabla g\left(\mathbf{u}_{k}\right)^{T} \mathbf{u}_{k} - g\left(\mathbf{u}_{k}\right)}{\nabla g\left(\mathbf{u}_{k}\right)^{T} \nabla g\left(\mathbf{u}_{k}\right)} \nabla g\left(\mathbf{u}_{k}\right)$$

And recall:

•
$$\beta = \sqrt{\mathbf{u}^T \mathbf{u}} = -\frac{\nabla g^{*T} \mathbf{u}^*}{\sqrt{\nabla g^{*T} \nabla g^*}} = \frac{\mu_g}{\sigma_g}$$

•
$$\alpha = \frac{\nabla g^*}{\sqrt{\nabla g^{*T} \nabla g^*}}$$

We can rewrite the FORM update equation:

$$\mathbf{u}^{k+1} = -\mathbf{a}^{k} \left\{ \boldsymbol{\beta}^{k} + \frac{g(\mathbf{u}^{k})}{\left\| \nabla g(\mathbf{u}^{k}) \right\|} \right\}$$

Comparison FORM and INV FORM

FORM update equation:

$$\mathbf{u}^{k+1} = -\mathbf{a}^{k} \left\{ \boldsymbol{\beta}^{k} + \frac{g(\mathbf{u}^{k})}{\left\| \nabla g(\mathbf{u}^{k}) \right\|} \right\}$$

Inverse FORM update equation:

$$\mathbf{u}^{k+1} = -\beta \mathbf{a}^k$$

Comparison FORM and INV FORM

FORM

Iteration	β	g	∇g	(U_x,U_y)
0	0	0.67076	(-0.37268, -0.046585)	(1.7722, 0.22152)
1	1.7859	-0.015931	(-0.38984, -0.036775)	(1.7375, 0.16391)
2	1.7453	-0.00032102	(-0.38986, -0.036758)	(1.7367, 0.16375)
3	1.7444	-2.6004e-009	(-0.38986, -0.036761)	(1.7367, 0.16376)

INVERSE FORM

Iteration	g	∇g	(U_x,U_y)
0	0.67076	(-0.37268, -0.046585)	(3.0664, 0.3833)
1	-0.53073	(-0.39663, -0.03191)	(3.0803, 0.24781)
2	-0.53196	(-0.39718, -0.031483)	(3.0806, 0.24418)
3	-0.53196	(-0.39719, -0.031472)	(3.0806, 0.24409)

Most Probable Point-Based Methods

Characteristics of the MPP Method:

- Scales linearly with the number of inputs, x. (FORM)
- Gradients can be approximated with Finite Difference estimations for blackbox system models, such as Modelica models.
- The search algorithm is very efficient.
- Displays invariance to the form of the performance equation.

Limitations of the MPP Method:

- Requires that all input variables to be independent normal and that the output distribution is normal (Rackwitz-Fiessler transformation needed for non-normal inputs)
- Calculates first 2 moments
- Linear approximation of performance at the MPP (FORM).
- Does require a search algorithm.
- Search algorithm has trouble when β is large.

Where we are at...

Monte Carlo Simulation

- Able to recover the full distribution of the model response(s).
- Requires many model simulations

Mean Value First Order Second Moment (i.e. Taylor series)

- Linearizes the model around the mean value of the inputs—very fast
- Poor approximation in the tail regions

Most Probable Point method (i.e. FORM)

- Linearizes at the limit state-better approximation for reliability.
- Requires a search algorithm, no information on the response distribution

Where we are going—

Numerical Quadrature based methods—approximate the actual multidimensional integral:

Ω