ENGG104 Tutorial 4 extra Problems (revision)

Name Student Number	_
TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A Megohmmeter is an instrument for measuring very high resistance levels.	1)
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.	
$\begin{array}{c} 90 \ \Omega \\ \hline \\ 100 \ V \\ \hline \end{array}$ $\begin{array}{c} 15 \ \Omega \\ \hline \\ 20 \ \Omega \\ \hline \end{array}$ $\begin{array}{c} 5 \ \Omega \\ \hline \\ 5 \ \Omega \\ \hline \end{array}$ V_{X} Figure 7.5	
2) See Figure 7.5. Calculate V_X .	
3) See Figure 7.5. Calculate the current through the 20 Ω resistor.	
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.	
4) See Figure 7.5. What is the voltage dropped across the 90 Ω resistor? A) 90.0 V B) 18.2 V C) 81.8 V D) 100.0 V	4)
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.	

5) See Figure 7.7. Determine the current flowing through the 5 ohm resistor.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 7) See Figure 7.5. What is the value of RT?
 - Α) 120 Ω
- Β) 145 Ω
- C) 100Ω
- D) 110 Ω

- 8) See Figure 7.6. What is the power dissipated across the 10 ohm resistor?
 - A) 22.5 watts
- B) 225 watts
- C) 2.25 watts
- D) 0.225 watts

- 9) See Figure 7.1. What is the total resistance RT?
 - A) 6.4Ω
- Β) 4.8 Ω
- C) 2.4 Ω
- D) 3.2 Ω

10) See Figure 8.1. What is IL?

A) 297.0 mA

B) 2.97 mA

C) 2.97 A

D) 29.7 mA

10)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

11) See Figure 8.1. How much power is produced by the current source?

11) ____

12) The method of Nodal Analysis involves the use of what law?

12)

TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false.

13) An ideal current source has a 0Ω resistance in parallel with it.

13) _____

14) Source conversions are equivalent only at their external terminals.

14) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Figure 8.7

15) See Figure 8.7. Use nodal analysis to solve for voltages V₁ and V₂.

15)

Figure 8.5

16) See Figure 8.5. Compute the voltages across the 3 Ω , 7 Ω , and 10 Ω resistors. Use Nodal analysis

16) _____