Trent University

COIS4470H

Winter 2018

Assignment 3: GPSS

due: March 20, 2018

Question 1:

a)

SIMULATE INTEGER &LIMIT LET &LIMIT=5000 GENERATE RVEXPO(1,5)QUEUE LINE SEIZE CHECKOUT RVEXPO(1,3)ADVANCE RELEASE CHECKOUT DEPART LINE TABULATE RES TERMINATE 1 RES TABLE M1,0,5,14 START &LIMIT

END

--Avg-Util-During-Facility Total Avail Unavl Entries Average Current Percent Seizing Preempting
Time Time Time Time Time/Xact Status Avail Xact Xact
CHECKOUT 0.607 5000 3.038 AVAIL

Queue	Maximum	Average	Total	Zero	Percent	Average	\$Average	Qtable	Current
	Contents	Contents	Entries	Entries	Zeros	Time/Unit	Time/Unit	Number	Contents
LINE	14	1.542	5006	0		7.705	7.705		6

TABLE RES

ENTRIES IN TAB 5000.00		GUMENT ST 7.7022	ANDARD DEVIA	TION SUM OF 2187	ARGUMENTS 38510.9315	NON-WEIGHTED
UPPER LIMIT	OBSERVED FREQUENCY	PERCENT OF TOTAL	CUMULATIVE PERCENTAGE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN
LIMIT	PREQUENCT	OF TOTAL	PERCENTAGE	KENAINDEK	OF MEAN	PROPERIENT
5.0000	2356.0000	47.1200	47.12	52.88	0.6492	-0.3743
10.0000	1204.0000	24.0800	71.20	28.80	1.2983	0.3183
15.0000	685.0000	13.7000	84.90	15.10	1.9475	1.0110
20.0000	423.0000	8.4600	93.36	6.64	2.5967	1.7036
25.0000	185.0000	3.7000	97.06	2.94	3.2458	2.3963
30.0000	83.0000	1.6600	98.72	1.28	3.8950	3.0889
35.0000	43.0000	0.8600	99.58	0.42	4.5442	3.7816
40.0000	9.0000	0.1800	99.76	0.24	5.1933	4.4742
45.0000	3.0000	0.0600	99.82	0.18	5.8425	5.1669
50.0000	3.0000	0.0600	99.88	0.12	6.4917	5.8595
55.0000	3.0000	0.0600	99.94	0.06	7.1408	6.5522
60.0000	3.0000	0.0600	100.00	0.00	7.7900	7.2448

b)

SIMULATE

INTEGER &LIMIT

LET &LIMIT=5000 GENERATE RVEXPO(1,4)

QUEUE LINE
SEIZE CHECKOUT
ADVANCE RVEXPO(1,3)
RELEASE CHECKOUT

DEPART LINE TABULATE RES TERMINATE 1

TERMINATE

RES TABLE M1,0,5,14

START &LIMIT

END

--Avg-Util-During--

Facility Total Avail Unavl Entries Average Current Percent Seizing Preempting
Time Time Time Time Time/Xact Status Avail Xact Xact

CHECKOUT 0.736 5000 2.990 AVAIL

Queue Maximum Total Zero Percent Average \$Average Qtable Current Average Entries Time/Unit Time/Unit Contents Entries Number Contents Zeros Contents LINE 2.741 5002 11.125 11.125 18 0

TABLE RES

UPPER OBSERVED PERCENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 5.0000 1774.0000 35.4800 35.48 64.52 0.4493 -0.5853 10.0000 1142.0000 22.8400 58.32 41.68 0.8986 -0.1077 14.9400 0.3698 15.0000 747.0000 73.26 26.74 1.3480 20.0000 476.0000 9.5200 82.78 17.22 1.7973 0.8473 25.0000 329.0000 6.5800 89.36 2.2466 1.3249 10.64 2.6959 30.0000 188.0000 3.7600 1.8024 93.12 6.88 35.0000 130,0000 2.6000 3.1452 2.2799 95.72 4.28 40.0000 110.0000 2.2000 3.5945 2.08 97.92 2.7574 45.0000 46,0000 0.9200 98.84 1.16 4.0439 3.2350 50.0000 23.0000 0.4600 99.30 0.70 4.4932 3.7125 55.0000 21.0000 0.4200 99.72 0.28 4.9425 4.1900 60.0000 8.0000 0.1600 99.88 0.12 5.3918 4.6676 OVERFLOW 6.0000 0.12 100.00 0.00

AVERAGE VALUE OF OVERFLOW IS 63.2864

SIMULATE

INTEGER &LIMIT

LET &LIMIT=5000

GENERATE RVEXPO(1,3.3333)

QUEUE LINE SEIZE CHECKOUT

ADVANCE RVEXPO(1,3)
RELEASE CHECKOUT

RELEASE CHECK DEPART LINE TABULATE RES

TERMINATE 1

RES TABLE M1,0,5,14

START &LIMIT

7.861

END

--Avg-Util-During--

Facility Total Avail Unavl Entries Average Current Percent Seizing Preempting
Time Time Time Time Time/Xact Status Avail Xact Xact

3.009

CHECKOUT 0.893

Total Qtable Queue Maximum Average Zero Percent Average \$Average Current Contents Contents Entries Entries Time/Unit Time/Unit Number Contents

26.447

26.447

0

AVAIL

TABLE RES

LINE

ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 5000.0000 26.4720 23.1582 1.3236E+05 NON-WEIGHTED

5008

5000

UPPER LIMIT	OBSERVED FREQUENCY	PERCENT OF TOTAL	CUMULATIVE PERCENTAGE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN
	034 0000	46 6000	46.60	02.20	0.4000	0.0070
5.0000	831.0000	16.6200	16.62	83.38	0.1889	-0.9272
10.0000	640.0000	12.8000	29.42	70.58	0.3778	-0.7113
15.0000	507.0000	10.1400	39.56	60.44	0.5666	-0.4954
20.0000	425.0000	8.5000	48.06	51.94	0.7555	-0.2795
25.0000	434.0000	8.6800	56.74	43.26	0.9444	-0.0636
30.0000	425.0000	8.5000	65.24	34.76	1.1333	0.1523
35.0000	350.0000	7.0000	72.24	27.76	1.3222	0.3682
40.0000	261.0000	5.2200	77.46	22.54	1.5110	0.5842
45.0000	216.0000	4.3200	81.78	18.22	1.6999	0.8001
50.0000	195.0000	3.9000	85.68	14.32	1.8888	1.0160
55.0000	132.0000	2.6400	88.32	11.68	2.0777	1.2319
60.0000	135.0000	2.7000	91.02	8.98	2.2665	1.4478
OVERFLOW	449.0000	8.98	100.00	0.00		

AVERAGE VALUE OF OVERFLOW IS 80.6350

c)								
	SIMULATE INTEGER LET GENERATE QUEUE SEIZE ADVANCE RELEASE DEPART TABULATE TERMINATE	&LIMIT &LIMIT=500 RVEXPO(1,0) LINE CHECKOUT RVEXPO(1,0) CHECKOUT LINE RES 1	5.6667)					
RES TABLE	START END	M1,0,5,14 &LIMIT						
Facility Total Time CHECKOUT 0.443	Avail Unavl Time Time	Entries Avera Time/) 5000 2.		s Avail	Seizing Pree Xact X	mpting act		
•	ximum Averag tents Content 9 0.79	s Entries	Zero Entries 0	Percent Zeros	Average Time/Unit 5.389	\$Average Time/Unit 5.389	Qtable Number	Current Contents 0
TABLE RES								
ENTRIES IN TABL 5000.000		STANDARD DEVIA	TION SUM OF 3388	ARGUMENTS 26945.0559	NON-WEIGHTE	ED.		
UPPER LIMIT	OBSERVED PER FREQUENCY OF T		CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN			
10.0000 15.0000 20.0000 25.0000 30.0000	1148.0000 22. 493.0000 9. 215.0000 4. 74.0000 1. 19.0000 0.	7000 60.70 9600 83.66 8600 93.52 9000 97.82 4800 99.30 3800 99.68	39.30 16.34 6.48 2.18 0.70 0.32	0.9278 1.8556 2.7834 3.7113 4.6391 5.5669	-0.0729 0.8637 1.8002 2.7367 3.6733 4.6098			
35.0000 40.0000		2000 99.88 0400 99.92	0.12 0.08	6.4947 7.4225	5.5464 6.4829			

In the one scenario customers are arriving almost as fast as they can be processed which results in a log jam or build up of customers waiting to be serviced and this defect in the system causes a breakdown resulting in the large waiting time observed. When arrival time increases the processing, time must be decreased or more servers must be added to handle the increase.

0.04

0.02

-0.00

8.3503

9.2781

10.2060

45.0000

50.0000

55.0000

2.0000

1.0000

1.0000

0.0400

0.0200

0.0200

99.96

99.98

100.00

7.4194

8.3560

9.2925

RES TABLE	SIMULATE INTEGER LET GENERATE QUEUE SEIZE ADVANCE RELEASE DEPART TABULATE TERMINATE START END	&LIMIT &LIMIT=50 RVEXPO(1, LINE CHECKOUT RVEXPO(1, CHECKOUT LINE RES 1 M1,0,5,14 &LIMIT	10)					
Facility Total Time CHECKOUT 0.301	-Util-During Avail Unavl Time Time	Time	rage Currer /Xact Statu 3.021 AVA]		_	empting Kact		
•	ximum Average tents Contents 7 0.437	s Entries	Zero Entries 0	Percent Zeros	Average Time/Unit 4.390	\$Average Time/Unit 4.390	Qtable Number	Current Contents 0
TABLE RES								
ENTRIES IN TABLE 5000.000		STANDARD DEVI	ATION SUM C	OF ARGUMENTS 21948.1764	NON-WEIGHTE	ED		
UPPER		CENT CUMULATIVE		MULTIPLE	DEVIATION			
LIMIT	FREQUENCY OF TO	OTAL PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN			
		1800 68.18		1.1390	0.1407			
		2000 89.38		2.2781	1.2934			
15.0000		1800 96.86		3.4171	2.4460			
20.0000 25.0000		2600 99.12 5200 99.74		4.5562 5.6952	3.5987 4.7514			
30.0000		2000 99.94		6.8343	5.9040			
35.0000		99.98		7.9733	7.0567			
40.0000		100.00		9.1124	8.2093			

When the arrival rate decreases the rate at which the line builds decreases because the server can handle more transactions before the next arrival this results in a overall shorter time in the system and a shorter server utilization time.

	١
М	١
u	,

uj								
	SIMULATE INTEGER LET GENERATE QUEUE ENTER ADVANCE DEPART LEAVE TABULATE TERMINATE	&LIMIT &LIMIT=5 RVEXPO(1 LINE 1,1 RVEXPO(1 LINE 1,1 RES	, 5)					
*	STORAGE	S1,2						
*	31010102	52,2						
RES TABL	E GENERATE TERMINATE START END	M1,0,3,1 &LIMIT 1	4					
Avg-U Storage Total Time 1 0.403	til-During Avail Unavl E Time Time	ntries Avera Time/U 970 4	_		Capacity 2	Average Contents 0.806	Current Contents 2	Maximum Contents 2
Queue Maxi Conte LINE		Total Entries 971	Zero Entries 0	Percent Zeros	Average Time/Unit 4.940	\$Average Time/Unit 4.940	Qtable Number	Current Contents 3
TABLE RES								
ENTRIES IN TABLE 968.0000	MEAN ARGUMENT 4.9325	STANDARD DEVIA	TION SUM OF	F ARGUMENTS 4774.6300	NON-WEIGHTE	ED		
LIMIT FR		T CUMULATIVE L PERCENTAGE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN			
6.0000 2 9.0000 1 12.0000 15.0000 18.0000 21.0000 24.0000 27.0000	18.0000 43.181 61.0000 26.962 35.0000 13.946 66.0000 6.818 44.0000 2.272 22.0000 1.549 5.0000 0.516 1.0000 0.103	8 70.14 3 84.09 2 90.91 5 95.45 7 97.73 6 99.28 5 99.79	56.82 29.86 15.91 9.09 4.55 2.27 0.72 0.21 0.10	0.6082 1.2164 1.8246 2.4329 3.0411 3.6493 4.2575 4.8657 5.4739	-0.4213 0.2327 0.8868 1.5408 2.1949 2.8489 3.5030 4.1570 4.8111			
33.0000	1.0000 0.103	3 100.00	0.00	6.6904	6.1191			

Increasing the number of tellers reduces the chance of a log jam scenario but because of the increase to process time we find that the overall system does not work as well as when the arrival rates are higher but the system handle a lower arrival rate better than it would with one server. But we find that the utilization of each server is decreased.

Output Histograms:

Question 2:

SIMULATE

INTEGER &LIMIT

LET &LIMIT=5000

GENERATE RVEXPO(1,8)

.25, FEMALE, MALE TRANSFER

FEMLINE FEMALE QUEUE

> 1,1 ENTER ADVANCE 12,3 **FEMLINE** DEPART 1,1

LEAVE

MALE MALELINE QUEUE

> ENTER 2,1 ADVANCE 7,2 DEPART MALELINE

LEAVE 2,1

TERMINATE

STORAGE \$1,1/\$2,2

&LIMIT GENERATE

TERMINATE 1 START 1

END

Queue	Maximum Contents	Average Contents	Total Entries	Zero Entries	Percent Zeros	Average Time/Unit	\$Average Time/Unit	Qtable Number	Current Contents
FEMLINE	49	21.323	463	0		230.266	230.266		48
MALELINE	3	0.200	139	0		7.190	7.190		0

TABLE RES

ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 95787.8907 NON-WEIGHTED 554.0000 172.9023 149.0437

UPPER LIMIT	OBSERVED FREQUENCY	PERCENT OF TOTAL	CUMULATIVE PERCENTAGE	CUMULATIVE REMAINDER	MULTIPLE OF MEAN	DEVIATION FROM MEAN
6.0000	30.0000	5.4152	5.42	94.58	0.0347	-1.1198
7.0000	32.0000	5.7762	11.19	88.81	0.0405	-1.1131
8.0000	38.0000	6.8592	18.05	81.95	0.0463	-1.1064
9.0000	36.0000	6.4982	24.55	75.45	0.0521	-1.0997
10.0000	5.0000	0.9025	25.45	74.55	0.0578	-1.0930
11.0000	2.0000	0.3610	25.81	74.19	0.0636	-1.0863
12.0000	1.0000	0.1805	25.99	74.01	0.0694	-1.0796
13.0000	1.0000	0.1805	26.17	73.83	0.0752	-1.0729
OVERFLOW	409.0000	73.83	100.00	0.00		

AVERAGE VALUE OF OVERFLOW IS 231.6206

Question 3:

a)

* * SERVICEA	SIMULATE INTEGER LET GENERATE QUEUE TRANSFER	R &LIMIT &LIMIT=10000 FE RVEXPO(1,5) LINE ER .6,SERVICEA,SERVICEB NF 2 2,1				ENTER 2,1 ENTER 1,1 ADVANCE RVEXPO(1,9) ADVANCE 2,0 DEPART LINE LEAVE 1,1 LEAVE 2,1 TABULATE RES TERMINATE				
	ENTER GATE SNF ENTER ADVANCE ADVANCE DEPART LEAVE LEAVE TABULATE	1,1 2 2,1 RVEXPO 2,0 LINE 1,1 2,2 RES	(1,9)	*	RES TA	STO	DRAGE IERATE	M1,0,3,1 S1,4/S2, &LIMIT		
* SERVICEB	GATE SNF ENTER	2 2,1				TER STA END		1		
_		Unavl Time	Entries 1932 2705	Average Time/Unit 12.327 12.054	Current Status AVAIL AVAIL	Percent Avail 100.0 100.0	Capacity 4 4	Average Contents 2.382 3.261	Current Contents 2 4	Maximum Contents 4 4
Queue LINE	Maximum Contents 24	Average Contents 5.288	Tot Entr 19			ercent Zeros	Average Time/Unit 27.273	\$Average Time/Unit 27.273	Qtable Number	Current Contents 9

TABLE RES

ENTRIES IN TAE 1930.00		GUMENT ST 27.3415	ANDARD DEVIA	TION SUM O	F ARGUMENTS 52769.1745	NON-WEIGHTED
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
3.0000	54.0000	2.7979	2.80	97.20	0.1097	-1.0534
6.0000	163.0000	8.4456	11.24	88.76	0.1097	-1.0534
9.0000	158.0000	8.1865	19.43	80.57	0.3292	-0.7938
12.0000	149.0000	7.7202	27.15	72.85	0.4389	-0.6639
15.0000	162.0000	8.3938	35.54	64.46	0.5486	-0.5341
18.0000	141.0000	7.3057	42.85	57.15	0.6583	-0.4043
21.0000	144.0000	7.4611	50.31	49.69	0.7681	-0.2744
24.0000	117.0000	6.0622	56.37	43.63	0.8778	-0.1446
27.0000	107.0000	5.5440	61.92	38.08	0.9875	-0.0148
30.0000	89.0000	4.6114	66.53	33.47	1.0972	0.1151
33.0000	80.0000	4.1451	70.67	29.33	1.2070	0.2449
36.0000	81.0000	4.1969	74.87	25.13	1.3167	0.3747
39.0000	62.0000	3.2124	78.08	21.92	1.4264	0.5045
OVERFLOW	423.0000	21.92	100.00	0.00		

AVERAGE VALUE OF OVERFLOW IS 62.3047

B) The best result I obtained will be shown below explanation will be found below results

	REALLOCATE SIMULATE	COM, 32720	SERV	ICEB	GATE SNF	2
	INTEGER	&LIMIT			ENTER	2,1
	LET	&LIMIT=10000			ENTER	1,1
*					ADVANCE	RVEXPO(1,9)
	GENERATE	RVEXPO(1,5)			ADVANCE	2,0
	QUEUE	LINE			DEPART	LINE
	GATE SNF	1				
	TRANSFER	.6,SERVICEA,SERVICEB			LEAVE	1,1
*					LEAVE	2,1
SERVICEA	GATE SNF	2			TABULATE	RES
	ENTER	2,1			TERMINATE	
	ENTER		*			
	GATE SNF	2	RES	TABLI	E	M1,0,3,15
	ENTER	2,1	*	IADLI	L	MI,0,0,10
	ADVANCE	NVLAFU(1,5)	-			
	ADVANCE DEPART	2,0 LINE			STORAGE	S1,5/S2,8
	LEAVE					
	LEAVE	1,1 2,2	*			
	TABULATE	RES			GENERATE	&LIMIT
	TERMINATE	ILLS			TERMINATE	1
*	TERMINATE					_
SERVICEB	GATE SNF	2			START	1
DERVICED	GATE SIN	-			END	

	Total Time 0.452 0.394	Avail Time	Unavl Er Time	2002 11	rage Current /Unit Status 1.287 AVAIL 1.192 AVAIL	Avail 100.0	Capacity 5 8	Average Contents 2.260 3.153	Current Contents 2 3	Maximum Contents 5 8
Queue		kimum	Average	Total	Zero	Percent	Average	\$Average	Qtable	Current
	Cont	tents	Contents	Entries	Entries	Zeros	Time/Unit	Time/Unit	Number	Contents
LINE		10	2.326	2002	0		11.618	11.618		2
TABLE	RES									
ENTRIES I	N TABLE	MEAN	ARGUMENT S	TANDARD DEVIA	ATION SUM OF	ARGUMENTS				
20	00.000	9	11.6248	9.	.4667	23249.5958	NON-WEIGHTE	ED		
UP	PER	OBSERVE	D PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION			
	MIT F	REQUENC	Y OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN			
3.0	000	184.000	9.2000	9.20	90.80	0.2581	-0.9111			
6.0	000	488.000	0 24.4000	33.60	66.40	0.5161	-0.5942			
	000	350.000			48.90	0.7742	-0.2773			
12.0		271.000			35.35	1.0323	0.0396			
15.0		215.000			24.60	1.2903	0.3565			
18.0		114.000			18.90	1.5484	0.6734			
21.0		103.000			13.75	1.8065	0.9903			
24.0		74.000			10.05	2.0646	1.3072			
27.0		45.000			7.80	2.3226	1.6241			
30.0		43.000			5.65	2.5807	1.9410			
33.0		36.000			3.85	2.8388	2.2579			
36.0		20.000			2.85	3.0968	2.5748			
39.0		14.000			2.15	3.3549	2.8917			
OVERF	LOW	43.000	0 2.15	100.00	0.00					

Results:

AVERAGE VALUE OF OVERFLOW IS

47.4221

hoists	cumulative at 15	hoist util	mechanics util	Avg Line	average wait time
3	53.06	0.735	0.613	3.503	17.972
4	72.3	0.553	0.443	2.497	12.575
5	75.4	0.452	0.394	2.326	11.618
6	76.34	0.373	0.312	2.25	11.241
7	76.48	0.321	0.262	2.254	11.199
8	76.77	0.281	0.241	2.246	11.166

The simulation was ran with (hoist, mechanics) (3,5),(4,7),(5,8),(6,10),(7,12),(8,13)

The simulation does not clear at the end of each day because after talks with people familiar with mechanic shops they stated that there is normally an influx of people at the beginning of the day, because of this I decided that whatever amount was in the queue at the end of the day could just be immediately in the queue at the beginning of the next day. I found that because there is a percentage of jobs that require two mechanics if you have (1+percentage)*hoist = mechanics, you will have the optimal system.

Approach 2:

									2720	CATE COM,3: TE	REALLOC SIMULAT	
									T T=2240		INTEGER LET	
									0(1,5)	TE RVEXPO	GENERAT	*
										LINE NF 1	QUEUE GATE SN	
										NF 3	GATE SN	
										3,1 1,1	ENTER ENTER	
					3	ATE SNF				E 1,0 3,1	ADVANCE LEAVE	
					3,1	NTER		/ICEB	RVICEA, SERV		TRANSFE	
					1,0	DVANCE				NF 2	GATE SN	* SERVICEA
					3,1 1,1	EAVE EAVE				2,1 NF 2	ENTER GATE SN	
					LINE	EPART				2,1	ENTER	
					RES	ABULATE			0(1,9)	E RVEXPO 2,2	ADVANCE LEAVE	
						ERMINATE				NF 3	GATE SN	
								*			ADVANCE	
				3,15	M1,0,		S TABLE	RE		3,1	LEAVE	
								*		LINE	DEPART	
				52,6/53,2	S1,5/	TORAGE	9			TE RES	TABULAT	
								*		ATE	TERMINA	*
				Т	&LIMI	ENERATE	(SERVICEB
					1	ERMINATE			0(1,9)		ADVANCE	
					1	TART	9					
						ND	I			3,1	ENTER	
									ing	-Util-Duri	Avg-	
	Maxim	Current	Average	Capacity	Percent	Current	Average	Entries	Jnavl	Avail (Total	Storage
its 5	Conten	Contents 2		5				412	lime	lime		1
6		3	2.405	6	100.0	AVAIL	9.420	572			0.401	2
2		Ø	0.367	2	100.0	AVAIL	1.000	822			0.183	3
nt	Curre	Qtable	\$Average	Average	rcent	Zero Po	al	Tot	Average	cimum	Max	Queue
ts 2	Conten	Number	Time/Unit	Time/Unit	eros			Enti	Contents	tents	Cont	LTNE
2			12.955	12.955		V	+12	-	2.303	11		LINE
											RES	TARLE
					RGUMENTS	SUM OF A	DEVIATION	STANDARI	ARGUMENT	E MEAN A		ENTRIES I
			ED	NON-WEIGHTE	328.4824	!	11.3775		12.9963)	10.0000	4
				DEVIATION	MULTIPLE		ATIVE CUM			OBSERVED		
				FROM MEAN	OF MEAN	MINDEK	INTAGE NE	AL PERCI	0F 101	-KEQUENCT		
				-0.8786 -0.6149	0.2308	89.02 66.10	10.98		10.97	45.0000	000	
				-0.3512	0.6925	50.73	49.27		15.36	63.0000	000	
				-0.0876	0.9233	40.98	59.02		9.75	40.0000		12.0
				0.1761 0.4398	1.1542 1.3850	32.20 23.41	67.80 76.59		8.78 8.78	36.0000 36.0000		15.0 18.0
				0.7035	1.6158	17.56	82.44	37	5.85	24.0000	000	21.0
					1.8467	14.15	85.85	.46	3.41	14 0000	000	24.0
				0.9671 1.2308		10.49	89.51	85	3 65	14.0000		27 a
				0.9671 1.2308 1.4945	2.0775	10.49 7.80	89.51 92.20		3.65 2.68	15.0000 11.0000	000	27.0 30.0
				1.2308 1.4945 1.7582	2.0775 2.3083 2.5392	7.80 5.61	92.20 94.39	329 951	2.68 2.19	15.0000 11.0000 9.0000	000 000 000	30.0 33.0
				1.2308 1.4945	2.0775 2.3083	7.80	92.20	329 951 .95	2.68	15.0000 11.0000	000 000 000 000	30.0
e	Conter	Contents 2 3 0	Average Contents 2.160 2.405 0.367 \$Average Time/Unit 12.955	S2,6/S3,2 T Capacity 5 6 2 Average Time/Unit 12.955 NON-WEIGHTE DEVIATION FROM MEAN	M1,0, S1,5/ &LIMI 1 1 Percent Avail 100.0 100.0 100.0 Prcent Percent Percent Avail MULTIPLE OF MEAN	TORAGE ENERATE ERMINATE TART ND Current Status AVAIL	Average Time/Unit 11.743 9.420 1.000 cal ries En 112 DEVIATION 11.3775 ATIVE CUM	* Entries 412 572 822 Tot Entri STANDARI AL PERCE	Average Contents 2.383 ARGUMENT 12.9963 PERCE OF TOT	3,1 1,0 3,1 1,1 LINE TE RES ATE NF 2 2,1 E RVEXP(2,1 NF 3 3,1 -Util-Dur: Avail U Time Cimum tents 11 OBSERVED OBSERVED FREQUENCY	ENTER ADVANCE LEAVE LEAVE DEPART TABULAT TERMINA GATE SN ENTER AVG- Total Time 0.432 0.401 0.183 Max Cont RES N TABLE 10.0000 PER MIT F	Storage 1 2 3 Queue LINE TABLE ENTRIES I 4 UP LI . 3.0

With approach two I ran out of memory much faster we also can observe that the utilization of mechanics serving cars stays about the same but the number of mechanics in that facility has gone down by two meaning that the efficiency of the mechanics job has increased but the overall performance of the system has gone down

(I have over 1tb of memory available why can't I use it lol?)

Approach 3: someone other than mechanic raises and lowers hoist

START

FND

		Avg-	Util-Du	ring								
	Storage	Total	Avail	Unavl	Entries	Average	Current	Percent	Capacity	Average	Current	Maximum
1		Time	Time	Time		Time/Unit	Status	Avail		Contents	Contents	Contents
	1	0.583			3594	11.687	AVAIL	100.0	4	2.334	4	4
	2	0.518			5013	9.298	AVAIL	100.0	5	2.590	5	5
	Queue LINE	Max Cont	imum ents 15	Average Contents 2.721	Enti		Zero F tries 0	Percent Zeros	Average Time/Unit 13.626	\$Average Time/Unit 13.626	Qtable Number	Current Contents 4

TABLE RES

ENTRIES IN TAB	LE MEAN AF	RGUMENT ST	ANDARD DEVIA	TION SUM O	F ARGUMENTS	
3590.00	100 1	13.6337	10.	3824	48944.9228	NON-WEIGHTED
UPPER	OBSERVED	PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMIT	FREQUENCY	OF TOTAL	PERCENTAGE	REMAINDER	OF MEAN	FROM MEAN
3.0000	254.0000	7.0752	7.08	92.92	0.2200	-1.0242
6.0000	670.0000	18.6630	25.74	74.26	0.4401	-0.7353
9.0000	578.0000	16.1003	41.84	58.16	0.6601	-0.4463
12.0000	489.0000	13.6212	55.46	44.54	0.8802	-0.1574
15.0000	382.0000	10.6407	66.10	33.90	1.1002	0.1316
18.0000	260.0000	7.2423	73.34	26.66	1.3203	0.4206
21.0000	244.0000	6.7967	80.14	19.86	1.5403	0.7095
24.0000	180.0000	5.0139	85.15	14.85	1.7603	0.9985
27.0000	137.0000	3.8162	88.97	11.03	1.9804	1.2874
30.0000	117.0000	3.2591	92.23	7.77	2.2004	1.5764
33.0000	81.0000	2.2563	94.48	5.52	2.4205	1.8653
36.0000	55.0000	1.5320	96.02	3.98	2.6405	2.1543
39.0000	35.0000	0.9749	96.99	3.01	2.8606	2.4432
OVERFLOW	108.0000	3.01	100.00	0.00		

AVERAGE VALUE OF OVERFLOW IS 47.5113

Student GPSS/H Release 3.60 (CT114) 22 Mar 2018 21:20:22 File: Jiffy_Lube4.gps

Line#	Stmt#	If Do	Block#	*Loc	Operation	A,B,C,D,E,F,G	Comments
1	1				REALLOCATE	COM,32720	
2	2				SIMULATE	•	
3	3				INTEGER	&LIMIT	
4	4				LET	&LIMIT=600	
5	5				INTEGER	&I	
6	6			*			
7	7		1		GENERATE	RVEXPO(1,5)	
8	8		2		QUEUE	LINE	
9	9		3		GATE SNF	1	
10	10		4		TRANSFER	.6,SERVICEA,SERVI	CEB
11	11			*			
12	12		5	SERVICE		2	
13	13		6		ENTER	2,1	
14	14		7		ENTER	1,1	
15	15		8		GATE SNF	2	
16	16		9		ENTER	2,1	
17	17		10		ADVANCE	RVEXPO(1,9)	
18	18		11		ADVANCE	2,0	
19	19		12		DEPART	LINE	
20	20		13		LEAVE	1,1	
21 22	21 22		14		LEAVE	2,2 RES	
23	23		15 16		TABULATE TERMINATE	KES	
24	24		10	*	TERMINATE		
25	25		17	SERVICE	B GATE SNF	2	
26	26		18	SLIVICE	ENTER	2,1	
27	27		19		ENTER	1,1	
28	28		20		ADVANCE	RVEXPO(1,9)	
29	29		21		ADVANCE	2,0	
30	30		22		DEPART	LINE	
31	31		23		LEAVE	1,1	
32	32		24		LEAVE	2,1	
33	33		25		TABULATE	RÉS	
34	34		26		TERMINATE		
35	35			*			
36	36			RES TA	BLE	M1,0,3,15	
37	37			*			
38	38				STORAGE	S1,5/S2,8	
39	39						
40	40			*			
41	41	1			DO &I=1,30	,1	
42	42	1	27		GENERATE	&LIMIT	
43	43	1	28		TERMINATE	1	
44	44	1			START	1	
45	45	1			CLEAR		
46	46				ENDDO		
47	47				FND		

	_	Util-Du Avail Time	_	Time, 107 10	'Unit Sta).528 AV	rent Percent atus Avail VAIL 100.0 VAIL 100.0	Capacity 5 8	Average Contents 1.878 2.748	
Queue LINE		rimum ents 7	Average Contents 1.910	Total Entries 107	Zero Entries 0	Percent Zeros	Average Time/Unit 10.708	\$Average Time/Unit 10.708	
TABLE	RES								
ENTRIES I	N TABLE 07.0000		ARGUMENT S	TANDARD DEVIA	ATION SUM 2933	OF ARGUMENTS 1145.7025	NON-WEIGHT	ED	
		OBSERVE REQUENC			CUMULATIV REMAINDE		DEVIATION FROM MEAN		
3.0 6.0		13.000 27.000			87.8 62.6		-0.8294 -0.5065		
9.0 12.0	000	22.000	0 20.5607		42.6	0.8405	-0.1837 0.1391		
15.0 18.0	000	9.000	0 4.6729	84.11	20.5 15.8	1.6811	0.4619 0.7847		
21.0 24.0 27.0	000	5.000 3.000 2.000	0 2.8037	91.59	11.2 8.4 6.5	1 2.2414	1.1075 1.4303 1.7531		
30.0 33.0	000	1.000 4.000	0.9346	94.39	5.6	2.8018	2.0760 2.3988		
OVERF	LOW	2.000	0 1.87	100.00	0.6	00			

Clearing the queue at the end of the day decreased both servers utilization and decreased the average length of the line and increased the cumulative percentage of jobs under 15 min. this would correspond to a policy that 15 min before the end of each day new customers are rejected and not given priority on the following business day

Current

Contents

Otable

Number

0

Maximum

Contents

Current

Contents

8

- 1) Use maximum memory
- 2) Start simulation

AVERAGE VALUE OF OVERFLOW IS

- 3) Declare variable
- 4) Assign variable (time limit one day in minutes)

50.3037

- 5) Declare loop counter
- 6) *
- 7) Generate arrival
- 8) Place in lane
- 9) Wait for available hoist
- 10) Transfer to service block to process for job type
- 11) *
- 12) SERVICE A wait for available mechanic
- 13) Select a mechanic
- 14) Select a hoist
- 15) Wait for a second available mechanic (first one could have already started work)
- 16) Select second mechanic
- 17) Advance job time length

- 18) Advance hoist raises and lower time (can be done at once here)
- 19) Leave line
- 20) Leave hoist
- 21) Leave both mechanics
- 22) Jump to RES and store results (checkout)
- 23) End transaction
- 24) *
- 25) SERVICEB wait for a mechanic
- 26) Select a mechanic
- 27) Select a hoist
- 28) Advance job time
- 29) Advance hoist raise lower time
- 30) Leave line
- 31) Leave hoist
- 32) Leave mechanic
- 33) Jump to RES and store results (checkout)
- 34) End transaction
- 35) *
- 36) RES make a table (histogram with SNA M1, start, bin width, number of bins)
- 37) *
- 38) Define queuing facilities
- 39)
- 40) *
- 41) Start do loop (30 days)
- 42) Get limit
- 43) Decrement limit
- 44) Start a new round
- 45) Clear all variables
- 46) End do loop
- 47) End sim