Objective: \$968, 469, 197, 549; without intervention: \$1,007, 328, 037, 868 (Desired optimality gap: 80%; actual: 77%. Lower Bound: \$222,368,000,000. Time to solve: 45s)

 $C' = \$10,000, C^D = \$10,000,000$ One Period=7 days (costs scaled by 1,000,000 during optimization) Solved using solve_and_process_vaccination_T_vax_20_S0_antivax_factor_0.4_KV_0.05

Movement

A: $\$[5000,10000] \cdot 10^2$

B: $\$[10000,20000]\cdot10^2$

C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$

B: $\$[0, 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

4. Restaurants

A: $\$[5000,10000]\cdot10^2$ B: $\$[10000, 20000] \cdot 10^2$

C: $\$[10 , 14] \cdot 10^2$

A: $\{[2500, 5000, 10000] \cdot 10^2\}$

B: \$[5000 ,10000,20000] 10² C: $\$[8 , 10 , 14] \cdot 10^2$ P: [.99 ,.95 ,.93]

3

\$9.6e+ \$2e+10 \$3e+10 \$3e+08 \$2.4e+ \$3.2e+(\$9.3e+(\$1.8e+) \$2.7e+1 0.925 0.626 0.536

3

2

\$5.7e+10 \$3.7e+09 \$5.3e+10 0.509

1 1 1 1

\$2e+10 \$1.4e+ \$1e+10 \$7.9e+(\$3.2e+ \$2e+09 \$7.2e+ \$3e+08 \$1.7e+ \$1.2e+ \$9.3e+ \$7.6e+(0.536 0.677 0.856 0.925

\$4.3e+08 \$0.0 \$4.3e+08 1.000

P: [.95 ,.93]

6. Mega Events

7. Border Control A: $\$[5000,10000] \cdot 10^2$

A: $\$[0] 10^2$

B: \$[0] 10^2

C: \$[10]·10² P: [.93]

B: $\$[10000,20000] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE

5. Masking