Concrete Compressive Strength Prediction

Problem Statement:

• The objective is to predict the concrete compressive strength of concrete block.

• Prediction results tells the optimal way to get the maximum compressive strength for a unit block of concrete using the ingredients.

Data:

- Dataset is taken from <u>UCI Machine Learning Repository</u>.
- It's a Supervised Regression problem.
- Shape of the data (rows, columns): (1030, 9)
- 8 Quantitative input variable, and 1 Quantitative output variable
- Input Features: Cement, Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate, and Age.
- Target Feature: Concrete Compressive Strength.

Process:

- In Jupyter Notebook
 - Explored the data.
 - Tried and tested all the methods.
 - Streamlined the process and used the results in modular coding.
- Modular Coding
 - Complete End to End Project is made with all the Exception and Logging included.
 - Also Streamlit app is created for prediction and deployed it.

Project Row.

Outlier Detection:

• First, we check the distribution, Q-Q plot and Box plot for every feature. depending on the distribution, we proceed further.

- Three methods to cap the outliers.
 - Gaussian (Z-Score)
 - IQR
 - Percentile (Winsorization)

- Depending on the distribution for every feature, we perform capping and check the results.
- For detailed analysis, check the Jupyter notebook <u>here.</u>

Results:

Using IQR method for outlier detection
The feature Water contains 1.493% of outliers.
The lower_limit for Water is 127.1499999999998
The upper_limit for Water is 232.35000000000002

Variable Transformation:

- Almost all the features are skewed, as some ML models assume normality, we need to transform the distribution.
- Some popular transformation techniques are:
 - Logarithmic Transformation
 - Logarithmic Transformation plus constant
 - Exponential
 - Reciprocal
 - Box-Cox
 - Yeo-Johnson

- Performed all the transformation techniques on every feature and check the skewness of the distribution.
- Skewness ranges from (-inf to +inf), but for all practical purposes it ranges from (-3 to +3).

For Age:

	Transformation Name	Skewness
5	Yeo-Johnson	-0.046405
6	Box-Cox	-0.061648
1	log_with_constant	-0.331182
3	square_root	0.499612
0	Original	1.178188
4	Power_Transformation	1.562422
2	Reciprocal	1.688860

Age:

After Applying Yeo-Johnson:

Scaling:

- As some ML models are sensitive towards scale of the variable, scaling the features to same scale is must.
- There are many scaling methods:
 - MinMaxScaler
 - StandardScaler
 - AbsMaxScaler

Model Building:

- Performed 7 Machine learning algorithms on the data.
 - Linear Regression
 - Lasso Regression
 - Ridge Regression
 - Support Vector Regressor (SVR)
 - Decision Tree Regressor
 - Random Forest Regressor
 - XGBoost Regressor

Model Evaluation Metrics:

- R2 Score
 - No units, as it's ratio
 - Ranges from 0 to 1
 - 1 Perfect Fit
 - 0 Not a fit
 - Closer to 1, better is the model at prediction.
- Root Mean Squared Error
 - Closer to zero, better is the model.
 - Units are same as target feature unit.

Results for all the 7 ML Models:

	Algorithm	RMSE	train_R2	test_R2	diff_R2
1	Linear Regression	7.127761	0.814293	0.792959	0.021335
2	Ridge	7.133896	0.813659	0.792602	0.021057
3	Lasso	10.171401	0.583986	0.578389	0.005597
4	Decision Tree	6.322161	0.995233	0.837115	0.158118
5	SVR	7.957428	0.778819	0.741955	0.036864
6	Random Forest	4.746714	0.981075	0.908180	0.072895
7	XGBoost	4.173695	0.994830	0.929011	0.065819

	Algorithm	RMSE	train_R2	test_R2	diff_R2
7	XGBoost	4.173695	0.994830	0.929011	0.065819
6	Random Forest	4.746714	0.981075	0.908180	0.072895
4	Decision Tree	6.322161	0.995233	0.837115	0.158118
1	Linear Regression	7.127761	0.814293	0.792959	0.021335
2	Ridge	7.133896	0.813659	0.792602	0.021057
5	SVR	7.957428	0.778819	0.741955	0.036864
3	Lasso	10.171401	0.583986	0.578389	0.005597

- Clearly, XGBoost and Random Forest performs better of all.
- Decision Tree is overfitting.

Hyperparameter Tuning:

Hyperparameter tuning is performed on XGBoost and Random Forest.

Random Forest:

```
param_grid = {
    "n_estimators":np.linspace(100, 1000,10, dtype=int),
    'max_depth':np.linspace(2,30,15),
    'criterion':['mse', 'mae']
}
```

Best Parameters:

```
grid.best_params_
{'criterion': 'mse', 'max_depth': 20.0, 'n_estimators': 100}
```

XGBoost:

```
param_grid = {
    "n_estimators": np.linspace(100, 1000, 10, dtype=int),
    'max_depth': np.linspace(2, 30, 15, dtype=int),
    'learning_rate': np.linspace(0.1, 1.0, 10)
}
```

Best Parameters:

```
# best paramters
grid.best_params_

{'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 1000}
```

Results:

	Algorithm	RMSE	train_R2	test_R2	diff_R2
9	XGBoost_hp	4.009815	0.974111	0.934476	0.039635
7	XGBoost	4.173695	0.994830	0.929011	0.065819
6	Random Forest	4.746714	0.981075	0.908180	0.072895
8	Random_Forest_hp	4.860422	0.981592	0.903728	0.077864
4	Decision Tree	6.322161	0.995233	0.837115	0.158118
1	Linear Regression	7.127761	0.814293	0.792959	0.021335
2	Ridge	7.133896	0.813659	0.792602	0.021057
5	SVR	7.957428	0.778819	0.741955	0.036864
3	Lasso	10.171401	0.583986	0.578389	0.005597

R Squared Score:

RMSE:

Modular Coding:

Project File Structure:

Streamlit App:

Concrete Compressive Strength Prediction

Further Improvements:

- Only MinMaxScaler is applied, we can apply other scaling methods and check whether is there any significant change.
- Only Single Prediction Pipeline is created, Batch Prediction can be added and also, retraining the model can be added.
- Feature Selection can be performed, retrain the model and check the results.

