Devoir à la maison n° 5

À rendre le 5 novembre

I. Complexes et géométrie

Ce sont trois questions indépendantes. Dans chacune d'elles, le plan complexe est rapporté à un repère orthonormal direct $\mathcal{R} = (O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

- 1) Soit ABCD un quadrilatère quelconque. On construit quatre points M, N, P, Q de façon que les triangles AMB, BNC, CPD et DQA soient rectangles isocèles directs (les angles droits étant en M, N, P, Q respectivement). Exprimer les affixes m, n, p, q des points M, N, P, Q en fonction des affixes a, b, c, d des points A, B, C, D. En déduire que les segments [MP] et [NQ] sont perpendiculaires et de même longueur. Faire un schéma.
- 2) Soient A, B, C, D quatre points distincts du plan, d'affixes a, b, c, d. On suppose que

$$a+ib=c+id$$
 et $a+c=b+d$.

Montrer que le quadrilatère ABCD est un carré (penser aux propriétés des diagonales [AC] et [BD]). Étudier la réciproque.

3) Soient a, b, c trois nombres complexes distincts, affixes des sommets A, B, C d'un triangle. Soit z un nombre complexe. On pose

$$f(z) = \frac{z-a}{b-c}$$
; $g(z) = \frac{z-b}{c-a}$; $h(z) = \frac{z-c}{a-b}$.

Montrer que, si deux des trois expressions ci-dessus est imaginaire pure, alors la troisième l'est aussi. Interprétation géométrique?

II. Calculs

Pour chacune de ces questions, on détaillera tous les calculs menés, notamment en explicitant les théorèmes utilisés et en vérifiant consciencieusement leurs hypothèses.

- 1) Déterminer une primitive de $x \mapsto (x^2 + 2x) \ln(x)$.
- 2) En procédant par changement de variable, calculer $\int_{\sqrt{3}}^{2\sqrt{2}} \frac{dx}{x\sqrt{1+x^2}}$.

 Indication: on pourre déterminer $a, b \in \mathbb{R}$ tels que pour tout $x \notin \{-1\}$

Indication : on pourra déterminer $a, b \in \mathbb{R}$ tels que, pour tout $x \notin \{-1, 1\}$,

$$\frac{1}{x^2 - 1} = \frac{a}{x - 1} + \frac{b}{x + 1}.$$

- 3) Résoudre le problème de Cauchy : $y' + y \tan(x) = \sin(2x)$; y(0) = 2.
- 4) Résoudre le problème de Cauchy : $y'' 3y' + 2y = xe^x 1$; y(0) = 1 et y'(0) = -1.

— FIN —