

"If it weren't for nuclear experiments and theory we would not even know there is an r-process"

Nuclear Physics Connects Observations and Models

Nuclear Physics:

- What elements are created in NS mergers?
- What are the contributions from different ejecta components to each element?
- What elements are not created in NS mergers and require other sources?
- What information do observations provide about the physical conditions at the nucleosynthesis site?

R-process nuclear physics needs [1]

R-process nuclear physics needs [2]

R-process nuclear physics needs [3]

Neutron production

- EOS
- Neutrino physics

"But there are 1000s of nuclei involved

- which ones do we need to measure?"

$$F = 100 \sum_{A} |X(A) - X_b(A)|$$

Future:

- F definition?
 Broader observables
- Correlations
- Broader models

Surman Mumpower Aprahamian

Experiments have reached the r-process New Generation of Facilities Cover Much of the R-process

A New Generation of Facilities Will Transform Rare Isotope Science – Including Astrophysics

FRIB Project Summary

- FRIB will be a \$730 million national user facility funded by the Department of Energy Office of Science (DOE-SC), Michigan State University, and the State of Michigan
- FRIB Project completion date is June 2022, managing to an early completion in fiscal year 2021

 FRIB will serve as a national user facility for world-class rare isotope research, (~1400 scientists currently engaged) and builds on more than 50 years of nuclear science expertise developed at MSU

FRIB Provides Fast, Stopped, and Reaccelerated Beams

FRIB fast, stopped, and reaccelerated rare isotope beams are needed for r-process studies

β-decay half-lives

How to measure beta-decay half-lives and branchings for beta-delayed neutron emission?

Recent Results from RIKEN

→ Starting to reach important half-lives for synthesis of rare earth elements

Beta-delayed neutron emission experiments

Estrade, Montes, Dillmann (CMU, MSU, TRIUMF)

- BRIKEN neutron detector installed at RIKEN
- 148 ³ He-filled neutron counters from Germany, Japan, Spain, USA and 2 HPGe clovers (Oak Ridge)
- Implantation detector AIDA (Edinburg, Daresbury)

- First experimental campaign 2016/2017. Second campaign in 2018
- So far, 268 isotopes studied
- Expected 45 new T_{1/2} (+16 depending on statistics)
- Expected 165 new Pn (+19 depending on statistics)

Nuclear Masses

- → Need at least 100 keV
- → 1:1,000,000 precision !!!!

Typical mass model performance for known masses not used to fit: ~600-800 keV

→ Need Experiment

Mass Measurements

Spectrometers

Example Impact of Mass Measurement

How could one measure the Alpha + 75 Ge \rightarrow 78 As + n Reaction rate?

HABANERO Neutron Detector

Heavy ion Accelerated Beam induced (Alpha, Neutron) Emission Ratio Observer

(α,n) Experiements at NSCL ReA3

Neutron Capture Rates

Liddick et al. 2016

Monte-Carlo variations of (n,γ) rates within a factor 100 - 10 - 2 (light – darker – dark bands)

Estimated uncertainties in theoretically predicted neutron capture rates

→ Need experimental constraints

How can we measure neutron capture On unstable rare isotopes?

Advanced Ideas

Reifarth et al. 2015, 2018 https://arxiv.org/abs/1803.08678

Reactor as Neutron Target

Schottky pick-up particle detection reactor core fuel rods

Spallation Source as Target

In the Meantime ... Recent Approaches

β -Oslo technique results

Liddick, Spyrou, et al. 2016

SuN γ -ray detector at NSCL

Exciting Times for Nuclear Astrophysics

Gravitational Waves and Followup

Stellar Spectroscopy

New Experimental Results and Developments

Advances in Computational Models

The Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements – jinaweb.org

- Collaborative network:
 - Origin of the elements
 - Neutron stars
- Website: jinaweb.org
- Schools, Workshops, Conferences, online courses coming
- 65 Senior Investigators, 24 Institutions,
 9 Countries

JINA-CEE Virtual Journal On jinaweb.org

JINA-CEE Virtual Journal

- Each week listing of nuclear astrophysics publications selected from ~20 journals
- Key word searchable

Brian D. Metrger

http://arxiv.ors/abs/1710.05931

JINA-CEE Virtual Journal On jinaweb.org

Summary

- Nuclear physics is essential for
 - Interpreting observations of neutron star mergers
 - To understand NS merger contributions to the origin of the elements
- Experimental data are needed
 - For reliable merger nucleosynthesis models
 - To develop nuclear theory to predict the broad range of nuclear physics needed
- Obtaining data for r-process nuclei is extremely challenging and has been a long term goal of the community
 - This is now within reach with a new generation of rare isotope facilities
 - Facilities and experimental techniques are under development to obtain broad range of nuclear physics information needed
- Communication across astronomy, astrophysics, gravitational physics, computational physics, nuclear physics is critical
 - Centers like JINA-CEE are building the necessary connections across field boundaries

Time-of-Flight Mass Measurements at NSCL

Originally developed at NSCL by A. Estrade, M. Matos, M. Famiano, H. Schatz

- BRIKEN neutron detector installed at RIKEN
- 148 ³He-filled neutron counters from Germany, Japan, Spain, USA and 2 HPGe clovers (Oak Ridge)
- Implantation detector AIDA (Edinburg, Daresbury)

- First experimental campaign 2016/2017. Second campaign in 2018
- So far, 268 isotopes studied
- Expected 45 new T_{1/2} (+16 depending on statistics)
- Expected 165 new P_n (+19 depending on statistics)

