计算机网络_p0

绪论

- 计算机网络的分层模型
 - 计网面临的问题
 - 计算机分布在不同物理位置
 - 计算机使用的操作系统不统一
 - 需在不同媒介上讲行信息传输
 - 解决办法: 分层
 - 分层的优点
 - 各层之间相互独立
 - 灵活性好,任何层都可以变化,只要层间接口不变
 - 结构上可分割
 - 易于实现和维护
 - 有利于标准化
- 计算机网络体系结构的基本原理
 - 计算机网络体系结构的基本概念
 - 定义
 - 计算机网络的分层体系结构及其各层的协议的集合
 - 作用
 - 复杂网络的抽象结构
 - 基于该结构实现网络的结构化设计
 - 界定每层功能、接口模式、数据结构
 - 作为现实依据
 - 计算机网络协议基本概念
 - 定义
 - 为进行网络中的数据交换二建立的规则、标准或约定。
 - 三要素
 - 语法:数据与控制信息的结构或格式
 - 语义:需要发出何种控制信息,完成何种动作,做出何种响应
 - 同步: 事件的实现顺序
 - 协议的表现形式
 - 形式化描述
 - 程序代码
 - 结构的基本原理

• 与每个层次相关的基本概念

• 实体:层中任何可发送或接受信息的软件进程或硬件设备(某一层中)

• 协议:两个对等实体间进行通信所遵循的规则集合(通信双方的同层之间)

• 服务:下层向上层提供的支持(服务)(功能)(同一系统,相邻两层,下对上)

• 接口:上下层间交换信息的方式(同一系统,相邻两层)

- 两大基本关系
 - 服务与接口的关系
 - 服务与协议的关系
- 与服务有关的概念
 - 服务类别
 - 面向连接的服务
 - 无连接的服务
 - 服务的实现
 - 服务原语
- 面向连接的服务
 - 链路建立
 - 数据传输
 - 连接释放
 - (需要两个对等实体都是活动的)
- 面向无连接的服务

- 数据传输
- (接收对等实体不需要是活动的)
- 无连接服务的三种类型
 - 数据报:特点是不需要接收端做任何回应,是一种不可靠的服务
 - 证实交付,又称可靠的数据报,对每一个报文产生一个证实给发方用户,这个证实不是来自接收端的用户而是来自提供服务的层。
 - 请求回答: 收端用户每收到一个报文, 就向发端用户发送一个应答报文

• 服务原语

服务用户(N+1实体)与服务提供者(N实体)之间进行交互时,所交换的必要信息,用以通知实体采取某种行动

原语	含义
请求 Request(发送方) 源(N+1)实体 → 源(N)实体	实体希望得到某种服务
指示 Indication(接受方) 目的(N)实体 → 目的(N+1)实体	实体被通知某个事件发生
响应 Response(接受方) 目的(N+1)实体→ 目的(N)实体	实体对某个事件做出反应
确认 Confirm(发送方) 源(N)实体 → 源(N+1)实体	前一请求被对方接受的证实。

- 接口与服务的关系
 - 服务访问点SAP:

SAP (Service Access Point)

- 在同一系统中相邻两层的实体进行交互(即交换信息)的地方,通常称为服务访问点
- SAP是一个抽象的概念,他实际上就是一个逻辑接口

相关名词

ICI:接口控制信息 PDU:协议书据单元 IDU:接口数据单元

SDU:服务数据单元

PCI:协议控制信息

- 服务提供者和服务用户
 - N层向N+1层提供服务, N层实体称为服务提供者;
 - N+1层实体为服务用户
- 服务访问点(SAP):接口上相邻两层实体交换信息之处
- 接口数据单元 (IDU) : 相邻两层实体之间交换的信息单元
- 接口控制信息 (ICI) : 相邻两实体之间交换信息时的控制信息
- 服务数据单元 (SDU): 层与层之间交换的数据单元
- 协议数据单元 (PDU): 对等实体之间交换的信息单元
- 协议控制信息 (PCI): 对等实体之间交换信息时的控制信息

• 服务和协议的关系

- 服务
 - 每层向上层提供的一组原语
 - 定义两层间的接口

- 协议
 - 对等实体间的通信规则
 - 实体利用协议实现服务
- 协议栈
 - 同一系统内各层协议的集合
- OSI模型
 - 七层
 - 应用层:与用户应用进程的接口
 - 作为用户应用程序与网络间的接口
 - 使用户的应用程序能够与网络进行交互
 - 表示层:数据格式的转换
 - 功能
 - 对数据编码格式进行转换
 - 数据压缩与恢复
 - 建立数据交换格式
 - 数据的安全与保密
 - 其他特殊服务
 - 数据编码
 - 会话层:会话管理与数据传输同步
 - 主要功能
 - 允许用户在设备之间建立、维持和终止会话
 - 管理会话
 - 使用远程地址连接
 - 传输层: 端到端可靠的数据传输
 - 目的: 为进程通信提供支持
 - 功能
 - 分割和重组报文
 - 提供可靠的端到端的服务
 - 传输层的流量控制
 - 提供面向连接的和无连接数据的运输服务
 - 传输单位: 报文段
 - 网络层: 分组传送, 路由选择, 流量控制
 - 目的: 节点间通信
 - 功能
 - 寻址
 - 路由选择

- 拥塞控制
- 数据单位: 分组(包)
- 数据链路层:相邻结点间无差错地传送帧
 - 无差错地传送以帧为单位的数据,具体为:
 - 数据链路的建立、维护与释放链路的管理工作
 - 将传输数据增加的同步信息、检验信息及地址信息封装成数据帧
 - 数据帧传输顺序的控制
 - 差错检测与控制
 - 数据流量控制
- 物理层: 在物理媒体上透明传输位流
 - 二进制在线路上的表示和传输二进制"位"信号,即"透明"地传送比特流,数据单位时比特
 - 指定传输方式的要求
 - 当建立、维护与其他设备的物理连接时,提供需要的机械、电气、 功能特性和规程特性
- TCP/IP结构
 - 应用层
 - DNS、TELNET、SMTP、FTP、HTTP
 - 传输层
 - 与OSI运输层功能相同
 - TCP和UDP
 - 互联网层
 - 与OSI网络层功能相似
 - 无连接服务, IP为主要协议
 - 其他协议: ARP、RARP、ICMP
 - 主机与接口层
 - 负责IP分组的收发
 - 发送:接收IP分组,并通过特定网络传输
 - 接收: 从网络上接收帧, 抽出IP分组, 交给上层
 - 五层协议体系结构
 - OSI的不足
 - 在TCP/IP后出现
 - 层次复杂,效率低下
 - 忽略了高效的无连接服务(网络层提供两类服务,传输层只提供连接服务)

- 实现糟糕;表示层和会话层没有实现
- 模型由通信专家制定,不适合计算机和软件工作方式。
- TCP/IP的不足
 - 没有明确的规范和时限
 - 网络层只定义网络层和数据链路层的接口; 而非层的概念
 - 不区分物理层和数据链路层
- OSI概念模型好而协议实现差; TCP/IP协议好而模型差
- 五层
- OSI和TCP/IP比较
 - TCP/IP一开始就考虑到多种异构网的互连问题
 - TCP/IP一开始就对面向连接服务和无连接服务并重,而OSI开始只强调面向对象连接这一种服务
 - TCP/IP较早就有较好的网络管理功能
 - TCP/IP对服务、协议和接口等概念没有很清楚区分开
 - TCP/IP通用性差,很难用它来描述其他的协议栈。
- 第二章 (非常不全, 详见p1)
 - 通信基础
 - 物理层——解决如何在连接各种计算机的传输媒体上传输数据比特流,而不是指 具体的传输媒体(第零层-传输媒体)

- 两个公式lim
- 看图说话
- 传输介质
- 物理层设备
- 点到点/点到多点传输
 - 点到点的直接连接与分支连接

- 通信约束
 - 物理线路不能100%可靠
 - 如何在物理链路上提供可靠传输?

- 物理通信需要解决的问题
 - 0,1如何从一段传输到另一端?
 - 电信号、光信号
 - 数据如何转换成信号?
 - 模拟信号: 电流信号
 - 数字数据→模拟信号
 - 调制、数字调制、调制解调器
 - 数字信号: 脉冲信号
 - 数字数据→数字信号
 - 数字信号编码。曼彻斯特编码
 - 如何解决工程问题?
 - 物理层
 - 机械特性
 - 定义物理连接的特性,规定物理连接时所采用的规格、接口形状、引线数目、引脚数量和排列情况
 - 电气特性
 - 规定传输二进制位时,线路上信号的电压范围、抗住匹配、传输 速率和距离限制等
 - 功能特性
 - 指明某条线上出现某一电平表示何种意义,接口部件的信号线的 用途
 - 规程特性
 - 定义各条物理线路的工作规程和时序关系
 - 介质与设备
 - 电通信: 双绞线、同轴电缆、网卡、调制解调器
 - 光通信: 光纤、光线转发器 (光电转换)
- 通信约束:接收端收到某个信号后,其不能仅依靠该信号本身来判断是否出了 差错?(这就是数据链路层的功能)
 - 附加冗余信息或冗余信号让接收端可以检查出差错
 - 反馈重传解决可靠通信
- 数据链路层相关协议
 - 差错与流控协议(滑动窗口协议)
 - 停止-等待协议
 - 连续ARQ协议
 - 选择重传ARQ协议
 - 实际的协议
 - BSC: 面向字符

- HDLC: 面向规程
- 设备端到端传输
- 进程间 (端到端) 传输
- 重点协议
- TCP

•

以上内容整理于 幕布文档