Esame di Logica

26 Giugno 2023

Questo è un esame a libro aperto: gli studenti possono portare e usare liberamente libri, appunti, fogli stampati e così via, ma non possono usare dispositivi elettronici come tablet o cellulari (o comunicare).

1 Logica Sillogistica

- Scrivete una teoria in logica sillogistica che rappresenti le seguenti affermazioni:
 - Tutte le balene vivono nel mare;
 - Tutti i pesci vivono nell'acqua;
 - Tutti quelli che vivono nel mare vivono nell'acqua;
 - Qualche pesce vive nel mare;
 - Qualche pesce non vive nel mare;
 - Nessuna rana vive nel mare;
 - Qualche rana vive nell'acqua.
- Per ognuna di queste affermazioni, verificate se è una conseguenza della vostra teoria. Se lo è, scrivetene una dimostrazione nel sistema di deduzione visto a lezione (usando dimostrazioni dirette o indirette); se non lo è, descrivete un modello che soddisfa tutte le formule della vostra teoria ma non l'affermazione data.
 - 1. Qualche balena non è un pesce;
 - 2. Qualche pesce non è una balena;
 - 3. Nessuna rana è una balena;
 - 4. Qualche pesce non è una rana.

SOLUZIONE:

• $\mathbf{b} = \text{balena}, \mathbf{m} = \text{vive nel mare}, \mathbf{p} = \text{pesce}, \mathbf{a} = \text{vive nell'acqua}, \mathbf{r} = \text{rana}.$

• Le affermazioni sono rappresentabili come

$$A(b, m);$$

 $A(p, a);$
 $A(m, a);$
 $I(p, m);$
 $O(p, m);$
 $E(r, m);$
 $I(r, a)$

- Consideriamo le quattro affermazioni:
 - La prima $(\mathbf{O}(b,p))$ non è una consequenza della teoria. Infatti. possiamo considerare un modello con dominio $\Delta = \{1,2,3\}$ e con $\iota(b) = \{1\}, \, \iota(m) = \{1\}, \, \iota(p) = \{1,2\}, \, \iota(a) = \{1,2,3\}, \, \iota(r) = \{3\}.$ Allora tutti gli assiomi della teoria sono soddisfatti:
 - * $\iota(b) \subseteq \iota(m)$, quindi $\mathbf{A}(b,m)$ è soddisfatta;
 - * $\iota(p) \subseteq \iota(a)$, quindi $\mathbf{A}(p,a)$ è soddisfatta;
 - * $\iota(m) \subseteq \iota(a)$, quindi $\mathbf{A}(m,a)$ è soddisfatta;
 - * $\iota(p) \cap \iota(m) = \{1\} \neq \emptyset$, quindi $\mathbf{I}(p,m)$ è soddisfatta;
 - * $\iota(p)\backslash\iota(m)=\{2\}\neq\emptyset,$ quindi $\mathbf{O}(p,m)$ è soddisfatta;
 - * $\iota(r) \cap \iota(m) = \emptyset$, quindi $\mathbf{E}(r, m)$ è soddisfatta;
 - * $\iota(r) \cap \iota(a) = \{3\} \neq \emptyset$, quindi $\mathbf{I}(r,a)$ è soddisfatta

ma $\mathbf{O}(b, p)$ non è soddisfatta, perchè $\iota(b) \setminus \iota(p) = \emptyset$.

- $\mathbf{O}(p,b)$ è una conseguenza della teoria, dimostrabile per dimostrazione indiretta come segue:
 - (1) | A(b,m) Ipotesi
 - (2) O(p,m) Ipotesi
 - (3) A(p,b) Contraddizione di O(p,b)
 - $(4) \mid A(p,m) \quad PS1, da(1) e(3)$
 - e A(p,m) e O(p,m) sono in contraddizione.
- $\mathbf{E}(r,b)$ è una conseguenza della teoria, come segue dalla seguente dimostrazione diretta:
 - (1) | A(b,m) Ipotesi
 - (2) E(r,m) Ipotesi
 - (3) E(m,r) C1, da (2)
 - (4) E(b,r) PS2, da (3) e (1)
 - (5) $\mid E(r,b) \mid C1, da(4).$
- $-\mathbf{O}(p,r)$ è una conseguenza della teoria per dimostrazione diretta:
 - (1) | I(p,m) Ipotesi
 - (2) | E(r,m) Ipotesi
 - (3) $\mid E(m,r) \mid C1, da(2)$
 - (4) | O(p, r) PS4, da (3) e (1).

2 Logica Proposizionale

- Scrivete una teoria di logica proposizionale che descriva il seguente scenario:
 - Se sono in vacanza, vado al mare o vado in montagna;
 - Se non è estate, non vado al mare;
 - Non è vero che vado sia al mare che in montagna.
- Usando una tabella di verità, trovate tutti gli assegnamenti di valori di verità che soddisfano la teoria;
- Per ognuna delle seguenti affermazioni, verificate se è una conseguenza della vostra teoria oppure no, usando le tavole di verità:
 - Se sono in vacanza e non è estate, vado in montagna.
 - Se è estate, vado al mare.
- Verificate se la teoria ha "Se sono in vacanza, è estate o vado in montagna" come conseguenza logica oppure no usando il metodo dei tableau (potete chiudere un ramo non appena trovate due letterali in contraddizione, senza espandere gli altri).

SOLUZIONE:

 $\bullet~V=$ sono in vacanza, A=vado al mare, O=vado in montagna, E=è estate. La teoria è

$$V \to A \lor O;$$

 $\neg E \to \neg A;$
 $\neg (A \land O).$

• La tabella di verità è:

V	A	O	E	$A \lor O$	$V \to A \vee O$	$\neg E \to \neg A$	$A \wedge O$	$\neg(A \land O)$
0	0	0	0	0	1	1	0	1
0	0	0	1	0	1	1	0	1
0	0	1	0	1	1	1	0	1
0	0	1	1	1	1	1	0	1
0	1	0	0	1	1	0	0	1
0	1	0	1	1	1	1	0	1
0	1	1	0	1	1	0	1	0
0	1	1	1	1	1	1	1	0
1	0	0	0	0	0	1	0	1
1	0	0	1	0	0	1	0	1
1	0	1	0	1	1	1	0	1
1	0	1	1	1	1	1	0	1
1	1	0	0	1	1	0	0	1
1	1	0	1	1	1	1	0	1
1	1	1	0	1	1	0	1	0
1	1	1	1	1	1	1	1	0

E quindi gli assegnamenti che soddisfano la teoria sono quelli che assegnano a V, A, O e E i valori (0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), (0,1,0,1), (1,0,1,0), (1,0,1,1), o (1,1,0,1).

• Le affermazioni da verificare sono $(V \wedge \neg E) \to O$ e $E \to A$.

V	A	O	E	$V \wedge \neg E$	$(V \land \neg E) \to O$	$E \to A$
0	0	0	0	0	1	1
0	0	0	1	0	1	0
0	0	1	0	0	1	1
0	0	1	1	0	1	0
0	1	0	1	0	1	1
1	0	1	0	1	1	1
1	0	1	1	0	1	0
1	1	0	1	0	1	1

Quindi la prima è una conseguenza della teoria, ma la seconda non lo è.

• L'affermazione che stiamo cercando di verificare essere una conseguenza è $V \to E \vee O$. Quindi:

Il tableaux è chiuso, e quindi $V \to E \vee O$ è conseguenza della teoria.

3 Logica dei Predicati

- Scrivete una teoria in logica dei predicati che rappresenti le seguenti affermazioni:
 - Ogni gatto teme qualche cane;
 - Qualche cane non teme nessun gatto;
 - Fido è un cane che teme tutti i gatti che non lo temono;
 - Fuffi è un gatto che teme Fido.
- Esiste una struttura che soddisfa la teoria descritta sopra e contiene soltanto un gatto? Se no, spiegate perchè non può esistere; se sì, presentatela.
- Esiste una struttura che soddisfa la teoria descritta sopra e contiene soltanto un cane? Se no, spiegate perchè non può esistere; se sì, presentatela.

SOLUZIONE:

• $G \in C$ sono predicati unari ("gatto" e "cane"), T è un predicato binario ("teme"), fido e fuffi sono costanti. La teoria è quindi

```
\begin{split} &- \forall x (G(x) \rightarrow \exists y (C(y) \land T(x,y))); \\ &- \exists y (C(y) \land \forall x (G(x) \rightarrow \neg T(y,x))); \\ &- C(\mathtt{fido}) \land \forall x (G(x) \land \neg T(x,\mathtt{fido}) \rightarrow T(\mathtt{fido},x)); \\ &- G(\mathtt{fuffi}) \land T(\mathtt{fuffi},\mathtt{fido}). \end{split}
```

- Esiste una struttura che soddisfa la teoria e contiene solo un gatto. Il suo dominio è $\{1,2\}$, dove $I(G)=\{1\}$, $I(C)=\{2\}$, $I(T)=\{(1,2)\}$, $I(\mathfrak{fuffi})=1$ e $I(\mathfrak{fido})=2$.
- La struttura sopra descritta contiene anche solo un cane.