Assignment_25_Data_Science_Masters

February 18, 2019

1 Session 25 - Assignment Machine learning 6

Predict whether a person makes over 50K per year or not from classic adult dataset using XGBoost. Data Set Information: Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Attribute Information:

Listing of attributes: >50K, <=50K. age: continuous. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. fnlwgt: continuous. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. education-num: continuous. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Privhouse-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-infamily, Other-relative, Unmarried. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex: Female, Male. capital-gain: continuous. capital-loss: continuous. hours-per-week: continuous. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

1.0.1 Load libraries

```
In [0]: # Core Libraries - Data manipulation and analysis
    import pandas as pd
    import numpy as np
    import math
    from math import sqrt
    import matplotlib.pyplot as plt
    import seaborn as sns

# Core Libraries - Machine Learning
    import sklearn
    import xgboost as xgb
```

```
from sklearn.linear_model import LogisticRegression
        from xgboost.sklearn import XGBClassifier
        ## Importing train_test_split,cross_val_score,GridSearchCV,KFold - Validation and Opti
        from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV,
        # Importing Metrics - Performance Evaluation
        from sklearn import metrics
        # Warnings Library - Ignore warnings
        import warnings
        warnings.filterwarnings('ignore')
1.1 Load Data
In [0]: train_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adul-
        test_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adul
                        header = None)
        col_labels = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_sta'
                          'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week', 'na
        train_set.columns = col_labels
        test_set.columns = col_labels
1.2 Understand the Dataset and Data
In [3]: train_set.shape,test_set.shape
Out[3]: ((32561, 15), (16281, 15))
In [4]: train_set.columns
Out[4]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education_num',
               'marital_status', 'occupation', 'relationship', 'race', 'sex',
               'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
               'wage_class'],
              dtype='object')
In [5]: train_set.head()
Out [5]:
                        workclass fnlwgt
                                            education education_num \
           age
        0
           39
                                   77516
                        State-gov
                                            Bachelors
                                                                  13
        1
                 Self-emp-not-inc
           50
                                  83311
                                            Bachelors
                                                                  13
           38
                          Private 215646
                                                                   9
                                              HS-grad
        3
           53
                         Private 234721
                                                 11th
                                                                   7
            28
                          Private 338409
                                            Bachelors
                                                                  13
```

Importing Classifiers - Modelling

```
relationship
                 marital_status
                                          occupation
                                                                          race
                                                                                     sex
        0
                                                        Not-in-family
                  Never-married
                                        Adm-clerical
                                                                         White
                                                                                    Male
        1
            Married-civ-spouse
                                     Exec-managerial
                                                               Husband
                                                                         White
                                                                                    Male
        2
                       Divorced
                                   Handlers-cleaners
                                                        Not-in-family
                                                                         White
                                                                                    Male
        3
            Married-civ-spouse
                                   Handlers-cleaners
                                                               Husband
                                                                         Black
                                                                                    Male
        4
            Married-civ-spouse
                                      Prof-specialty
                                                                  Wife
                                                                         Black
                                                                                  Female
           capital_gain
                          capital_loss
                                         hours_per_week
                                                          native_country wage_class
        0
                    2174
                                      0
                                                           United-States
                                                                                <=50K
                                      0
                                                           United-States
                                                                                <=50K
        1
                       0
                                                      13
        2
                       0
                                      0
                                                      40
                                                           United-States
                                                                                <=50K
        3
                       0
                                      0
                                                      40
                                                           United-States
                                                                                <=50K
                       0
                                      0
        4
                                                      40
                                                                     Cuba
                                                                                <=50K
In [7]: test_set.columns
Out[7]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education_num',
                'marital_status', 'occupation', 'relationship', 'race', 'sex',
                'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
                'wage class'],
              dtype='object')
In [8]: test_set.head()
Out[8]:
           age
                  workclass
                             fnlwgt
                                          education
                                                      education_num
                                                                           marital_status
        0
            25
                    Private
                             226802
                                                11th
                                                                   7
                                                                            Never-married
        1
                              89814
            38
                    Private
                                            HS-grad
                                                                   9
                                                                       Married-civ-spouse
        2
            28
                  Local-gov
                             336951
                                         Assoc-acdm
                                                                  12
                                                                       Married-civ-spouse
        3
            44
                    Private
                             160323
                                       Some-college
                                                                  10
                                                                       Married-civ-spouse
        4
            18
                             103497
                                       Some-college
                                                                  10
                                                                            Never-married
                    occupation relationship
                                                 race
                                                                 capital_gain
                                                           sex
        0
            Machine-op-inspct
                                   Own-child
                                               Black
                                                          Male
                                                                            0
        1
              Farming-fishing
                                     Husband
                                                White
                                                          Male
                                                                            0
        2
              Protective-serv
                                                          Male
                                     Husband
                                                White
                                                                            0
        3
            Machine-op-inspct
                                     Husband
                                                Black
                                                          Male
                                                                         7688
        4
                                   Own-child
                                                White
                                                        Female
                                                                            0
                                           native_country wage_class
           capital_loss
                          hours_per_week
        0
                       0
                                       40
                                            United-States
                                                                <=50K.
        1
                       0
                                       50
                                            United-States
                                                                <=50K.
        2
                       0
                                       40
                                            United-States
                                                                 >50K.
        3
                       0
                                       40
                                            United-States
                                                                >50K.
        4
                       0
                                       30
                                            United-States
                                                                <=50K.
In [9]: train_set.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560

```
Data columns (total 15 columns):
age
                  32561 non-null int64
                  32561 non-null object
workclass
                  32561 non-null int64
fnlwgt
education
                  32561 non-null object
                  32561 non-null int64
education num
marital status
                  32561 non-null object
occupation
                  32561 non-null object
relationship
                  32561 non-null object
race
                  32561 non-null object
                  32561 non-null object
sex
                  32561 non-null int64
capital_gain
                  32561 non-null int64
capital_loss
hours_per_week
                  32561 non-null int64
native_country
                  32561 non-null object
wage_class
                  32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
In [10]: test_set.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16281 entries, 0 to 16280
Data columns (total 15 columns):
age
                  16281 non-null int64
                  16281 non-null object
workclass
fnlwgt
                  16281 non-null int64
                  16281 non-null object
education
                  16281 non-null int64
education_num
marital_status
                  16281 non-null object
occupation
                  16281 non-null object
relationship
                  16281 non-null object
race
                  16281 non-null object
                  16281 non-null object
sex
capital_gain
                  16281 non-null int64
capital_loss
                  16281 non-null int64
hours_per_week
                  16281 non-null int64
native_country
                  16281 non-null object
wage_class
                  16281 non-null object
dtypes: int64(6), object(9)
memory usage: 1.9+ MB
In [11]: train_set.get_dtype_counts()
Out[11]: int64
         object
                   9
         dtype: int64
```

```
In [12]: test_set.get_dtype_counts()
Out[12]: int64      6
            object     9
            dtype: int64
```

1.3 Clean the data

1.4 Clean Column Names

The columns don't have any nonsensical values, therefore there is no need to clean or change column names

1.5 Clean Numerical Columns

fnlwgt

1.5.1 Null values

```
In [0]: num_cols = train_set.select_dtypes(include="int64").columns.values
        # num_cols = test_set.select_dtypes(include="int64").columns.values can also be used b
In [16]: train_set[num_cols].isna().sum()
Out[16]: age
                           0
         fnlwgt
                           0
         education_num
                           0
         capital_gain
                           0
         capital_loss
                           0
         hours_per_week
                           0
         dtype: int64
In [17]: test_set[num_cols].isna().sum()
Out[17]: age
                           0
```

```
0
education_num
capital_gain
                   0
capital_loss
                   0
hours_per_week
                   0
dtype: int64
```

No null values in the numerical columns of both the train_set and test_set

1.5.2 **Zeros**

Out[0]: (0, 6)

Check if there are any rows with all row values = zero that need our consideration so that we can decide to study those rows

```
In [18]: train_set.loc[(train_set==0).all(axis=1),num_cols].shape
Out[18]: (0, 6)
In [19]: test_set.loc[(train_set==0).all(axis=1),num_cols].shape
Out[19]: (0, 6)
```

There are no rows which have all row values == 0

Check if there are any rows with any row values = zero that need our consideration so that we can decide to study those rows

```
In [20]: train_set.loc[(train_set==0).any(axis=1),num_cols].shape
Out[20]: (32561, 6)
In [21]: train_set.loc[(train_set==0).any(axis=1),num_cols].head()
Out[21]:
            age fnlwgt
                         education_num capital_gain capital_loss hours_per_week
         0
            39
                 77516
                                                2174
                                    13
                                                                                 40
         1
            50 83311
                                    13
                                                   0
                                                                 0
                                                                                 13
            38 215646
                                     9
                                                   0
                                                                 0
                                                                                 40
         3
            53 234721
                                     7
                                                   0
                                                                 0
                                                                                 40
             28 338409
                                    13
                                                   0
                                                                 0
                                                                                 40
In [0]: train_set.loc[(train_set.drop(["capital_gain", "capital_loss"],axis=1)==0).any(axis=1)
Out[0]: (0, 6)
In [0]: test_set.loc[(train_set==0).any(axis=1),num_cols].shape
Out[0]: (16281, 6)
In [0]: test_set.loc[(test_set.drop(["capital_gain", "capital_loss"],axis=1)==0).any(axis=1),n
```

There are no rows which have any row values == 0, except in captital_gain, capital_loss columns(where 0 is a valid value)

1.5.3 Nonsensical values

1.6 Clean Categorical Columns

1.6.1 Null values

```
In [0]: cat_cols = train_set.select_dtypes(include="object").columns.values
        cat_cols
Out[0]: array(['workclass', 'education', 'marital_status', 'occupation',
               'relationship', 'race', 'sex', 'native_country', 'wage_class'],
              dtype=object)
In [0]: train_set[cat_cols].isna().sum()
Out[0]: workclass
                          0
        education
                          0
        marital_status
        occupation
        relationship
                          0
        race
                          0
                          0
        sex
        native_country
                          0
        wage class
                          0
        dtype: int64
In [0]: test_set[cat_cols].isna().sum()
Out[0]: workclass
                          0
        education
                          0
        marital_status
        occupation
                          0
        relationship
                          0
        race
                          0
        sex
        native_country
                          0
        wage_class
        dtype: int64
1.6.2 Empty Values
In [0]: train_set.loc[(train_set=="").any(axis=1),cat_cols].shape
Out[0]: (0, 9)
In [0]: test_set.loc[(train_set=="").any(axis=1),cat_cols].shape
Out[0]: (0, 9)
```

There are no empty strings in any of the rows

1.6.3 Nonsensical values

```
In [0]: train_set[cat_cols].nunique()
Out[0]: workclass
                          9
       education
                         16
       marital status
                          7
       occupation
                         15
       relationship
                          6
                          5
       race
                          2
       sex
       native_country
                         42
       wage_class
                          2
       dtype: int64
In [0]: for col in cat_cols:
           print(train_set[col].unique(),"\n")
[' State-gov' ' Self-emp-not-inc' ' Private' ' Federal-gov' ' Local-gov'
 ' ?' ' Self-emp-inc' ' Without-pay' ' Never-worked']
['Bachelors' 'HS-grad' '11th' 'Masters' '9th' 'Some-college'
 ' Assoc-acdm' ' Assoc-voc' ' 7th-8th' ' Doctorate' ' Prof-school'
 '5th-6th' '10th' '1st-4th' 'Preschool' '12th']
[' Never-married' ' Married-civ-spouse' ' Divorced'
 ' Married-spouse-absent' ' Separated' ' Married-AF-spouse' ' Widowed']
[' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
 'Farming-fishing' 'Machine-op-inspct' 'Tech-support' '?'
 ' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
[' Not-in-family' ' Husband' ' Wife' ' Own-child' ' Unmarried'
' Other-relative']
['White' Black' Asian-Pac-Islander' Amer-Indian-Eskimo' Other']
[' Male' ' Female']
['United-States' 'Cuba' 'Jamaica' 'India' '?' 'Mexico' 'South'
 ' Puerto-Rico' ' Honduras' ' England' ' Canada' ' Germany' ' Iran'
 ' Philippines' ' Italy' ' Poland' ' Columbia' ' Cambodia' ' Thailand'
 ' Ecuador' ' Laos' ' Taiwan' ' Haiti' ' Portugal' ' Dominican-Republic'
 'El-Salvador' 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia'
 'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
 'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary'
 ' Holand-Netherlands'
```

```
[' <=50K' ' >50K']
```

The columns workclass, occupation and native_country have rows that have garbage values which need to be imputed or dropped in the train_set

```
In [0]: test_set['workclass'].unique()
Out[0]: array([' Private', ' Local-gov', ' ?', ' Self-emp-not-inc',
               'Federal-gov', 'State-gov', 'Self-emp-inc', 'Without-pay',
               ' Never-worked'], dtype=object)
In [0]: for col in cat_cols:
           print(test_set[col].unique(),"\n")
[' Private' ' Local-gov' ' ?' ' Self-emp-not-inc' ' Federal-gov'
'State-gov' 'Self-emp-inc' 'Without-pay' 'Never-worked']
[' 11th' ' HS-grad' ' Assoc-acdm' ' Some-college' ' 10th' ' Prof-school'
 ' 7th-8th' ' Bachelors' ' Masters' ' Doctorate' ' 5th-6th' ' Assoc-voc'
 ' 9th' ' 12th' ' 1st-4th' ' Preschool']
[' Never-married' ' Married-civ-spouse' ' Widowed' ' Divorced'
 ' Separated' ' Married-spouse-absent' ' Married-AF-spouse']
[' Machine-op-inspct' ' Farming-fishing' ' Protective-serv' ' ?'
 ' Other-service' ' Prof-specialty' ' Craft-repair' ' Adm-clerical'
 ' Exec-managerial' ' Tech-support' ' Sales' ' Priv-house-serv'
 ' Transport-moving' ' Handlers-cleaners' ' Armed-Forces']
['Own-child' 'Husband' 'Not-in-family' 'Unmarried' 'Wife'
' Other-relative']
['Black' 'White' 'Asian-Pac-Islander' 'Other' 'Amer-Indian-Eskimo']
[' Male' ' Female']
[' United-States' ' ?' ' Peru' ' Guatemala' ' Mexico'
 'Dominican-Republic' 'Ireland' 'Germany' 'Philippines' 'Thailand'
 ' Haiti' ' El-Salvador' ' Puerto-Rico' ' Vietnam' ' South' ' Columbia'
 ' Japan' ' India' ' Cambodia' ' Poland' ' Laos' ' England' ' Cuba'
 ' Taiwan' ' Italy' ' Canada' ' Portugal' ' China' ' Nicaragua'
 ' Honduras' ' Iran' ' Scotland' ' Jamaica' ' Ecuador' ' Yugoslavia'
 ' Hungary' ' Hong' ' Greece' ' Trinadad&Tobago'
 ' Outlying-US(Guam-USVI-etc)' ' France']
[' <=50K.' ' >50K.']
```

The columns workclass, occupation and native_country have rows that have garbage values which need to be imputed or dropped in the test_set

```
In [0]: plt.figure(figsize=(20,10))
        plt.subplot(2,2,1)
        plt.title("Workclass Count Distribution")
        train_set['workclass'].value_counts().plot.bar()

        plt.subplot(2,2,2)
        plt.title("Occupation Count Distribution")
        train_set['occupation'].value_counts().plot.bar()
```

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x2262fd9cf98>

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x2262fb0aef0>

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x22630b18048>

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x2263074a5f8>

In [0]: train_set[train_set.workclass.str.contains("\?")].head()

```
age workclass
Out [0]:
                              fnlwgt
                                            education
                                                       education_num
        27
               54
                              180211
                                        Some-college
                                                                    10
                              293936
        61
               32
                                              7th-8th
                                                                     4
        69
               25
                           ?
                              200681
                                        Some-college
                                                                    10
                           ?
        77
                              212759
                                                                     6
               67
                                                 10th
        106
                              304873
                                                 10th
                                                                     6
               17
                       marital_status occupation
                                                      relationship
                                                                                       race
        27
                  Married-civ-spouse
                                                            Husband
                                                                       Asian-Pac-Islander
        61
               Married-spouse-absent
                                                 ?
                                                     Not-in-family
                                                                                      White
                                                 ?
        69
                                                          Own-child
                        Never-married
                                                                                      White
        77
                  Married-civ-spouse
                                                 ?
                                                            Husband
                                                                                     White
                                                          Own-child
        106
                        Never-married
                                                                                      White
                  sex
                        capital_gain
                                       capital_loss
                                                      hours_per_week
                                                                        native_country
        27
                 Male
                                    0
                                                                                  South
        61
                 Male
                                    0
                                                   0
                                                                    40
        69
                                    0
                                                   0
                                                                    40
                 Male
                                                                         United-States
        77
                 Male
                                    0
                                                   0
                                                                     2
                                                                         United-States
        106
               Female
                               34095
                                                   0
                                                                    32
                                                                         United-States
             wage_class
        27
                   >50K
        61
                  <=50K
        69
                  <=50K
        77
                  <=50K
        106
                  <=50K
In [0]: test_set[test_set.workclass.str.contains("\?")].head()
             age workclass
Out [0]:
                             fnlwgt
                                           education
                                                      education_num
                                                                             marital_status
        4
              18
                             103497
                                       Some-college
                                                                   10
                                                                              Never-married
        6
              29
                          ?
                             227026
                                             HS-grad
                                                                    9
                                                                              Never-married
              58
                          ?
                             299831
                                                                    9
        13
                                             HS-grad
                                                                        Married-civ-spouse
                                                                    4
        22
              72
                          ?
                             132015
                                             7th-8th
                                                                                   Divorced
        35
              65
                             191846
                                                                    9
                                             HS-grad
                                                                        Married-civ-spouse
                           relationship
                                                             capital_gain
                                                                             capital_loss
            occupation
                                            race
                              Own-child
                                            White
                                                    Female
        4
                                                                                         0
                     ?
                                            Black
                                                                         0
        6
                              Unmarried
                                                      Male
                                                                                         0
        13
                     ?
                                 Husband
                                            White
                                                      Male
                                                                         0
                                                                                         0
        22
                      ?
                          Not-in-family
                                            White
                                                    Female
                                                                         0
                                                                                         0
        35
                      ?
                                Husband
                                            White
                                                      Male
                                                                         0
                                                                                         0
            hours_per_week
                              native_country wage_class
        4
                          30
                               United-States
                                                   <=50K.
        6
                                                   <=50K.
                          40
                               United-States
        13
                          35
                               United-States
                                                   <=50K.
```

```
35
                         40
                              United-States
                                                 <=50K.
In [0]: (train_set.loc[(train_set==" ?").any(axis=1),cat_cols].shape[0]/train_set.shape[0])*10
Out[0]: 7.367709836921471
In [0]: (test_set.loc[(test_set==" ?").any(axis=1),cat_cols].shape[0]/test_set.shape[0])*100
Out[0]: 7.499539340335361
   If we drop the rows containing? values, we incur a data loss of approximately 7.5% data loss
in the train_set and the test_set. Therefore we choose to drop it
In [0]: train_set.drop(train_set.loc[(train_set==" ?").any(axis=1)].index, inplace= True)
        train_set.shape[0]
Out[0]: 30162
In [0]: test_set.drop(test_set.loc[(test_set==" ?").any(axis=1)].index, inplace= True)
        test_set.shape[0]
Out[0]: 15060
In [0]: test_set.loc[(test_set=" ?").any(axis=1),cat_cols].shape[0]/test_set.shape[0]
```

<=50K.

2 Get Basic Statistical Information

```
In [0]: train_set.describe()
```

Out[0]: 0.0

22

6

United-States

Out[0]:		age	fnlwgt	education_num	capital_gain	capital_loss	\
	count	30162.000000	3.016200e+04	30162.000000	30162.000000	30162.000000	
	mean	38.437902	1.897938e+05	10.121312	1092.007858	88.372489	
	std	13.134665	1.056530e+05	2.549995	7406.346497	404.298370	
	min	17.000000	1.376900e+04	1.000000	0.000000	0.000000	
	25%	28.000000	1.176272e+05	9.000000	0.000000	0.000000	
	50%	37.000000	1.784250e+05	10.000000	0.000000	0.000000	
	75%	47.000000	2.376285e+05	13.000000	0.000000	0.000000	
	max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	
		hours_per_wee	k				

```
30162.000000
count
            40.931238
mean
            11.979984
std
min
             1.000000
25%
            40.000000
50%
            40.000000
75%
            45.000000
            99.000000
max
```

In [0]: train_set.describe(include='object') Out [0]: workclass education occupation relationship marital_status 30162 30162 30162 30162 30162 count 7 7 14 6 unique 16 Prof-specialty top Private HS-grad Married-civ-spouse Husband freq 22286 9840 14065 4038 12463 race sex native_country wage_class count 30162 30162 30162 30162 unique 5 2 41 2 <=50K United-States top White Male freq 25933 20380 27504 22654 In [0]: test_set.describe() Out [0]: fnlwgt education_num capital_gain capital_loss age 15060.000000 1.506000e+04 15060.000000 15060.000000 15060.000000 count 38.768327 1.896164e+05 10.112749 1120.301594 89.041899 mean 1.056150e+05 7703.181842 406.283245 std 13.380676 2.558727 17.000000 1.349200e+04 0.000000 min 1.000000 0.000000 25% 28.000000 1.166550e+05 9.000000 0.000000 0.00000 50% 37.000000 1.779550e+05 10.000000 0.000000 0.00000 75% 48.000000 2.385888e+05 13.000000 0.000000 0.00000 90.000000 1.490400e+06 16.000000 99999.000000 max 3770.000000 hours_per_week 15060.000000 count mean 40.951594 std 12.062831 1.000000 min 25% 40.000000 50% 40.000000 75% 45.000000 max99.000000 In [0]: test_set.describe(include='object') Out [0]: workclass education occupation marital_status 15060 15060 15060 count 15060 7 unique 16 14 top Private HS-grad Married-civ-spouse Exec-managerial 6990 1992 freq 11021 4943 native_country wage_class relationship race sex count 15060 15060 15060 15060 15060 5 2 40 2 unique Husband White Male United-States <=50K. top

13788

11360

10147

6203

freq

12970

```
In [0]: train_set.corr()
Out[0]:
                                                                             capital_loss
                                      fnlwgt
                                              education_num
                                                              capital_gain
                              age
                         1.000000 -0.076511
        age
                                                    0.043526
                                                                  0.080154
                                                                                 0.060165
        fnlwgt
                        -0.076511
                                    1.000000
                                                   -0.044992
                                                                  0.000422
                                                                                -0.009750
        education_num
                         0.043526 -0.044992
                                                    1.000000
                                                                  0.124416
                                                                                 0.079646
        capital_gain
                         0.080154 0.000422
                                                    0.124416
                                                                  1.000000
                                                                                -0.032229
        capital_loss
                         0.060165 -0.009750
                                                    0.079646
                                                                 -0.032229
                                                                                 1.000000
        hours_per_week
                         0.101599 -0.022886
                                                                  0.080432
                                                                                 0.052417
                                                    0.152522
                         hours_per_week
        age
                               0.101599
        fnlwgt
                              -0.022886
        education_num
                               0.152522
        capital_gain
                               0.080432
                               0.052417
        capital_loss
        hours_per_week
                               1.000000
In [0]: test_set.corr()
Out[0]:
                                              education_num
                                                              capital_gain
                                                                             capital_loss
                              age
                                      fnlwgt
        age
                         1.000000 -0.074375
                                                    0.026123
                                                                  0.078760
                                                                                 0.057745
        fnlwgt
                        -0.074375 1.000000
                                                   -0.036010
                                                                 -0.012839
                                                                                 0.006421
        education_num
                         0.026123 -0.036010
                                                    1.000000
                                                                  0.131750
                                                                                 0.085817
        capital_gain
                                                    0.131750
                         0.078760 -0.012839
                                                                  1.000000
                                                                                -0.031876
        capital loss
                         0.057745 0.006421
                                                    0.085817
                                                                 -0.031876
                                                                                 1.000000
        hours_per_week
                         0.102758 -0.010306
                                                    0.133691
                                                                  0.090501
                                                                                 0.057712
                         hours_per_week
                               0.102758
        age
        fnlwgt
                              -0.010306
                               0.133691
        education_num
        capital_gain
                               0.090501
        capital_loss
                               0.057712
        hours_per_week
                                1.000000
```

3 Explore Data

3.1 Uni-variate

3.1.1 Categorical Columns

```
In [0]: for i, col in enumerate(cat_cols):
    if(col!='native_country'):
        plt.figure(i,figsize = (20,5))
        sns.countplot(y=col, data=train_set,)
    else:
        plt.figure(i,figsize = (20,10))
        sns.countplot(y=col, data=train_set)
```



```
In [0]: for i, col in enumerate(cat_cols):
    if(col!='native_country'):
        plt.figure(i,figsize = (20,5))
        sns.countplot(y=col, data=test_set)
    else:
        plt.figure(i,figsize = (20,10))
        sns.countplot(y=col, data=test_set)
```


3.2 Bi-variate

In [0]: sns.pairplot(train_set[num_cols],kind ='reg',diag_kind='kde')

Out[0]: <seaborn.axisgrid.PairGrid at 0x226308c5ba8>

In [0]: sns.pairplot(test_set[num_cols],kind ='reg',diag_kind='kde')

Out[0]: <seaborn.axisgrid.PairGrid at 0x22631fb0208>

None of the numerical columns are strongly correlated with each other, either in train_set or test_set. However, it is interesting to note that education is more correlated with capital_gain than capital_loss

3.3 Multi-variate

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x226375b8be0>

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x22637cd01d0>

4 Engineer Features

4.1 Encode Categorical Columns

5 Generate Input Vector X and Output Y, and Split the Data for Training and Testing

6 Fit the Base Models and Collect the Metrics

6.1 Logistic Regression

```
In [0]: log_res = LogisticRegression()
        model_lr = log_res.fit(x_train, y_train)
       y_test_pred = model_lr.predict(x_test)
       y_test_pred_prob = model_lr.predict_proba(x_test)
       model_lr.score(x_test,y_test)
Out[0]: 0.7847941567065073
In [0]: # Generate model evaluation metrics for the Logistic Regression
       print("Performance metrics of the model for the Logistic Regression")
        print("-"*100)
       print("Accuracy: ", metrics.accuracy_score(y_test, y_test_pred))
        print("Precision Score: ",metrics.precision_score(y_test, y_test_pred))
        print("Recall Score: ",metrics.recall_score(y_test, y_test_pred))
        print("AUROC Score: ",metrics.roc_auc_score(y_test, y_test_pred_prob[:,1]))
        print()
        print("Confusion Matrix: \n ",metrics.confusion_matrix(y_test, y_test_pred))
       print("Classification Report:\n ",metrics.classification_report(y_test, y_test_pred))
```

Performance metrics of the model for the Logistic Regression

Accuracy: 0.7847941567065073

Precision Score: 0.6284275321768327 Recall Score: 0.3035135135135135 AUROC Score: 0.7567870551008756

Confusion Matrix: [[10696 664]

[2577 1123]]

Classification Report:

	precision	recall	f1-score	support
0	0.81	0.94	0.87	11360
1	0.63	0.30	0.41	3700
avg / total	0.76	0.78	0.76	15060

6.2 XGBoost Base Model

```
In [0]: params = {'learning_rate': 0.1, 'n_estimators': 1000, 'seed':0, 'subsample': 0.8, 'cole
                     'objective': 'binary:logistic'}
        XGB_base = XGBClassifier(**params)
       XGB_base.fit(x_train, y_train)
        y_test_pred = XGB_base.predict(x_test)
       y_test_pred_prob = XGB_base.predict_proba(x_test)
       XGB_base.score(x_test,y_test)
Out[0]: 0.8663346613545817
In [0]: # Generate model evaluation metrics for the XGBOOST- Base Model
        print("Performance metrics of the model for the XGBOOST- Base Model")
       print("-"*100)
       print("Accuracy: ", metrics.accuracy_score(y_test, y_test_pred))
       print("Precision Score: ",metrics.precision_score(y_test, y_test_pred))
        print("Recall Score: ",metrics.recall_score(y_test, y_test_pred))
       print("AUROC Score: ",metrics.roc_auc_score(y_test, y_test_pred_prob[:,1]))
       print("Confusion Matrix: \n ",metrics.confusion_matrix(y_test, y_test_pred))
       print()
        print("Classification Report:\n ",metrics.classification_report(y_test, y_test_pred))
```

Performance metrics of the model for the XGBOOST- Base Model

Accuracy: 0.8663346613545817

Precision Score: 0.8172245204964272 Recall Score: 0.5872972972973 AUROC Score: 0.9248164969547013

Confusion Matrix: [[10874 486] [1527 2173]]

Classification Report:

	precision	recall	f1-score	support
0	0.88	0.96	0.92	11360
1	0.82	0.59	0.68	3700
avg / total	0.86	0.87	0.86	15060

7 Select Features

In [0]: xgb.plot_importance(XGB_base)

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x226385bd518>


```
In [0]: importance = pd.DataFrame.from_dict({'cols':x_train.columns, 'importance': XGB_base.fet
    importance = importance.sort_values(by='importance', ascending=False)
    plt.figure(figsize=(10,10))
    sns.barplot(importance.cols, importance.importance)
    plt.xticks(rotation=90)
```



```
XGB_feat_rem1.fit(x_train[imp_cols], y_train)
        y_test_pred = XGB_feat_rem1.predict(x_test[imp_cols])
        y_test_pred_prob = XGB_feat_rem1.predict_proba(x_test[imp_cols])
        XGB_feat_rem1.score(x_test[imp_cols],y_test)
Out[0]: 0.8667994687915007
In [0]: # Generate model evaluation metrics for the XGBOOST- Feature Importance Threshold = 0.
        print("Performance metrics of the model for the XGBOOST- Feature Importance Threshold:
       print("-"*100)
        print("Accuracy: ", metrics.accuracy_score(y_test, y_test_pred))
       print("Precision Score: ",metrics.precision_score(y_test, y_test_pred))
        print("Recall Score: ",metrics.recall_score(y_test, y_test_pred))
        print("AUROC Score: ",metrics.roc_auc_score(y_test, y_test_pred_prob[:,1]))
       print("Confusion Matrix: \n ",metrics.confusion_matrix(y_test, y_test_pred))
       print()
        print("Classification Report:\n ",metrics.classification_report(y_test, y_test_pred))
Performance metrics of the model for the XGBOOST- Feature Importance Threshold = 0.03
Accuracy: 0.8667994687915007
Precision Score: 0.8245210727969349
Recall Score: 0.5816216216216217
AUROC Score: 0.9254073681956604
Confusion Matrix:
  [[10902
           458]
 [ 1548 2152]]
Classification Report:
               precision
                           recall f1-score
                                               support
          0
                  0.88
                           0.96
                                      0.92
                                               11360
                  0.82
                           0.58
                                      0.68
                                                3700
avg / total
                  0.86
                            0.87
                                      0.86
                                               15060
```

Our base model with all the features performs better than the model for which features were removed with a feature importance threshold of 0.03. So we stick with the model with all the features

8 Validate Model

We have good CV mean and Std deviation score for XGB_base, however, we still need to optimize the hyper-parameters.

9 Optimize or Tune Model for better Performance

```
In [0]: XGBClassifier()
Out[0]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
               colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
               max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
               n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
               reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
               silent=True, subsample=1)
In [0]: param_grid = {
                      'colsample_bylevel':[0.8],
                      'colsample_bytree':[0.8],
                      'learning_rate': [0.1, 0,2, 0.3],
                      'max depth': [2, 4, 7],
                      'min_child_weight':[1, 3],
                      'n_estimators':[200],
                      'n_jobs':[-1],
                      'objective':['binary:logistic'],
                      'random_state':[100],
                      'reg_alpha': [0.1, 1, 10],
                      'scale_pos_weight':[1],
                      'silent':[True]}
        XGB_grid = GridSearchCV(XGBClassifier(), param_grid=param_grid,cv = 5, verbose=1)
In [0]: XGB_grid.fit(x_train, y_train)
Fitting 5 folds for each of 72 candidates, totalling 360 fits
```

```
Out[0]: GridSearchCV(cv=5, error_score='raise',
               estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
               colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
               max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
               n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
               reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
               silent=True, subsample=1),
               fit_params=None, iid=True, n_jobs=1,
               param_grid={'colsample_bylevel': [0.8], 'colsample_bytree': [0.8], 'learning_ra'
               pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
               scoring=None, verbose=1)
In [0]: XGB_grid.best_params_
Out[0]: {'colsample_bylevel': 0.8,
         'colsample_bytree': 0.8,
         'learning_rate': 0.1,
         'max_depth': 7,
         'min_child_weight': 3,
         'n_estimators': 200,
         'n_jobs': -1,
         'objective': 'binary:logistic',
         'random_state': 100,
         'reg_alpha': 0.1,
         'scale_pos_weight': 1,
         'silent': True}
In [0]: model = XGB_grid.best_estimator_
       model.fit(x_train, y_train)
        y_test_pred = model.predict(x_test)
In [0]: model.score(x_test, y_test)
Out[0]: 0.8686586985391767
In [0]: # Generate model evaluation metrics for the XGBOOST - Hyperparameter tuned
       print("Performance metrics of the model for the XGBOOST - Hyperparameter tuned")
        print("-"*100)
       print("Accuracy: ", metrics.accuracy_score(y_test, y_test_pred))
        print("Precision Score: ",metrics.precision_score(y_test, y_test_pred))
       print("Recall Score: ",metrics.recall_score(y_test, y_test_pred))
        print("AUROC Score: ",metrics.roc_auc_score(y_test, y_test_pred_prob[:,1]))
        print()
       print("Confusion Matrix: \n ",metrics.confusion_matrix(y_test, y_test_pred))
        print()
        print("Classification Report:\n ",metrics.classification_report(y_test, y_test_pred))
```

[Parallel(n_jobs=1)]: Done 360 out of 360 | elapsed: 11.8min finished

Accuracy: 0.8686586985391767

Precision Score: 0.7910750507099391 Recall Score: 0.6324324324324324 AUROC Score: 0.9254073681956604

Confusion Matrix: [[10742 618] [1360 2340]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.89 0.79	0.95 0.63	0.92 0.70	11360 3700
avg / total	0.86	0.87	0.86	15060

10 Choose the model for deployment

We chose the hyperparameter tuned model because it has the better accuracy score as all other average metrics(from classification report) are the same.

```
In [0]: model
```