Heaps

Outline

- Heaps
- Permutations and Combinations
- Binomial Heaps
- Fibonacci Heaps

Binary Heap

A binary heap (or just heap) is an array that can be viewed as a nearly complete binary tree.

A[1]=10, A[2]=8, A[3]=2, A[4]=7, A[5]=3, A[6]=1. So A=[10,8,2,7,3,1].

Heap

- Parent(4)=2
- Parent (5)=2
- Parent (6)=3
- Indexes & Keys
 - i ->index;
 - parent(i) -> index;
 - A[i]->key
- What is the parent(i)?
- What is the left_child(i)?
- What is the right_child(i)?
- This is a max-heap, i.e. A[parent(i)]>=A[i] for all i.
- Min heap, A[parent(i)]<=A[i] for all i.</p>

Insert(H,x)

Suppose we want to insert a 5 into the heap. Insert(H,5)

Insert(H,x)

■ The next index would be 7

Insert(H,x)

- A[i]>A[parent[i], exchange
- Set i=parent(i) and repeat

Deletes the root node

Exchange i with child with largest key

Exchange i with child with largest key

Exchange i with child with largest key

Quiz 4 part 1

- A <u>Permutation</u> on a set is a ordered arrangement.
- Example S={1,2,3}. There are 6 permutations
 - -1,2,3
 - -1,3,2
 - -2,1,3
 - -2,3,1
 - -3,1,2
 - -3,2,1

- If |S|=n, then there are n! permutations of S.
- Let S={1,2,3,4}.
 - The 2-permuations of S are:
 - **■**1,2 1,3, 1,4 2,1 2,3 2,4 3,1 3,2 3,4
 - 4,1 4,2 4,3
 - ■12 total permutations 4*3

The number of r-permutations of a set with n distinct elements,

$$-nPr = n(n-1)(n-2)...(n-r+1) = n!/r!$$

How many ways can you select a first place, second place and third place winner from a group of 30 people?

$$-30$$
 P 3 = 30*29*28=24360

- How many permutation of the letters ABCDEFG contain
 - the string BCD
 - **120**
 - The string CFGA
 - **2**4
 - The strings BA and GF
 - **120**
 - The strings ABC and DE
 - **2**4
 - The strings ABC and CDE
 - **6**
 - The strings CBA and BED
 - 0

- For combinations, order does not matter.
- For S={1,2,3,4} the 3-combinations are
 - $-\{1,2,3\}$
 - $-\{1,2,4\}$
 - $-\{1,3,4\}$
 - $-\{2,3,4\}$
- So 4C3=4

■ The number of r-combinations of a set with n elements, 0<=r<=n is</p>

$$-nCr = n! / [r! (n-r)!]$$

$$-4$$
C $_3 = 4!/(3!1!) = 24/6 = 4$

How many 5-card hards are there from a deck of 52 cards?

$$-52$$
 C $5 = 2,598,960$

How many bit strings of length eight contain exactly three 1's?

$$-8$$
 C $3 = 56$

- How many bit strings of length ten contain
 - exactly four 1s?

- at most four 1s
 - 386
- at least four 1s
 - 848
- an equal number of 0s and 1s?

Quiz 4 part 2

Binomial Heaps

- A collection of binomial trees.
 - Each tree has the min heap property
- B₀ is a single node
- B_k consists of two binomial B_{k-1} linked together
- B_k has 2^k nodes
- \blacksquare The height of B_k is k.
- There are exactly (K C i)=K!/(K-i)!!! nodes at depth i, for i=0,....k
- The root has k children, called the rank.

Binomial Heap

Binomial Heaps

- A binomial heap has at most floor(lg n)+1 trees.
- For example when n=11
 - 1011 binary
 - We have a B_3 B_1 and B_0 .
 - Has B₃ has 8 nodes, B₁ has 2, and B₀ has 1
 - Each tree has the min heap property

Adding a entry, start 11 items

■ Suppose we add 3

Adding a entry, start 11 items

Suppose we add key 3

10

Join the two single nodes

■ 3 will be the root

■ Now we have two B₁'s

3 will be the root again

■ Now we have two B₁'s

3 will be the root again

19

- Worst-Case O(lg n)
- Amortized cost per insert O(1).
 - -3
 - 1 credit to create a B_0
 - Place 2 credits on B_0
 - When we merge B_i and B_i, each tree has 2 credits.
 - Find the min root (1 comparison)
 - Make the min root point to the other (1)
 - We used 2 credits to make a B_{i+1}
 - B_{i+1} has 2 credits

Running Times

Proc	Binary Heap (worst-case)	Binomial (worst-case)	Binomial (amortized)	Fibonacci (amortized)
MakeHeap	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(lg n)	O(lg n)	Θ(1)	Θ(1)
Minimum	Θ(lg n)	O(lg n)	Θ(1)	Θ(1)
Extract-Min	Θ(lg n)	O(lg n)	O(lg n)	O(lg n)
Union (Merge)	Θ(n)	O(lg n)	Θ(1) lazy O(lg n) eager	Θ(1)
Decrease Key	Θ(lg n)	Θ(lg n)	Θ(1)	Θ(1)
Delete	Θ(lg n)	Θ(lg n)	O(lg n)	O(lg n)

Fibonacci Heaps F_4

Fibonacci Heaps

- Rank of the root of F_i is i
- The size of $F_k >= \phi^k$, i.e. exponential $\phi = (1 + \operatorname{sqrt}(5))/2$
- Used for Dijkstra's shortest path and Prims MST
- Low amortized cost for Decrease-Key is why Fibonacci heaps are used for to solve many graph problems

Other Advanced Data Structures

- Binary Search Trees
 - Balanced trees (B-tree)
 - Splay trees, dynamic trees, persistent trees
 - Balance happens automatically
 - Invented by Sleator and Tarjan
 - We will discuss Search Trees later.