Chapitre 3 : Codage canal / Gestion des erreurs

En pratique

Sources d'erreurs :

- le support ;
- " le débit ;
- la modulation ;
- n le type de codage;
- le rapport S/N.
- ⁿ Taux d'erreur = 10⁻⁴ à 10⁻⁷ avec en plus des phénomènes de groupement d'erreurs par paquets.
- n Erreur tolérée = 10⁻¹⁰ à 10⁻¹² dans les réseaux locaux industriels

à détection et correction

Transmission de l'information - Cours de l'EPU de Tours - DI

3

Théorème des canaux à perturbation

" Pour une source à débit d'information de R bit/s et un canal de capacité C bit/s, si R<C, il existe un code ayant des mots de longueur n, de sorte que la probabilité d'erreur de décodage p_E soit minimale"

Rq1 : un résultat inatendu !

Rq2: à p_E constant, n augmente si R

tend vers C.

Rq3: en pratique, si R<0.5 C, des

codes existent avec p_E faible.

Transmission de l'information - Cours de l'EPU de Tours - DI

Quelques Définitions

Taux d'erreur

$$T_e = \frac{Nombre\ de\ bits\ erron\'es}{Nombre\ de\ bits\ transmis}$$

 $011001001001100100101001010 \ \ \, \Rightarrow \ \ \, 011001\underline{1}0110010\underline{1}10100\underline{0}010$

$$T_e = \frac{3}{24} = 0.125$$

- Taux de codage / rendement

 - $R = \frac{k}{n} \qquad \ \ \, \text{- k taille du mot d 'information (avant codage)} \\ \text{- n taille du mot-code (après codage)}$

Transmission de l'information - Cours de l'EPU de Tours - DI

Quelques Définitions

Efficacité de la détection :

 $E = \frac{Nombre \ messages \ reconnus \ erronés}{Nombre \ messages \ erronés}$

- Taux d 'erreurs brut : t = 1 (1-p)ⁿ
- Taux d'erreurs résiduel : q = t.(1-E)

Transmission de l'information - Cours de l'EPU de Tours - DI

Méthodes de détection d'erreurs

- 3 Détection par écho / répétitions
- 3 Détection par codes linéaires
- 3 Détection par bit de parité
- **3 Détection par codes cycliques**
- 3 Détection par codes convolutifs

Transmission de l'information - Cours de l'EPU de Tours - DI

7

Méthodes de détection d'erreurs

_n Echo:

- Tout message émis est comparé à son écho et réémis si différent. Problème : il peut y avoir des erreurs dans l'écho, des compensations d'erreurs, ...
- n Codage par répétition

Transmission de l'information - Cours de l'EPU de Tours - DI

Codes détecteur et/ou correcteur

3 Codes linéaires

- Parité
- Codes groupes
 Code de Hamming
- Codes cycliques
 CRC/FCS, code BCH, RS

3 Codes convolutifs

Algorithme de Viterbi

Transmission de l'information - Cours de l'EPU de Tours - DI

9

Détection des Erreurs

Bit de parité (checksum)

- Pour une trame donnée, $t=a_1\dots a_k$ $(a_i\in\{0,1\})$, on rajoute un bit a_{k+1} tel que le nombre de 1 dans la trame soit toujours pair.
- On peut aussi transmettre la somme de tous les a_i. Une technique du *checksum* est utilisée dans les entêtes des trames IP et TCP.

Transmission de l'information - Cours de l'EPU de Tours - DI

Détection d'erreurs par bit de parité (caractère)

- 3 VRC (Vertical Redundancy Check)
 - Asynchrone
- 3 LRC (Longitudinal Redundancy Check)
 - Synchrone

transmettre	parité	transmettre	perké			perité
7	Q8		Qu .	Yes	LRC	qe .
Caractère	D#	Caractère	P#		Caractère	Pil
				······································		

Exercice à

				L	U	LRC →
bit 1	0	1	0	0	1	0
bit 2	0	0	0	0	1	1
bit 3	0	1	1	1	1	0
bit 4	1	0	1	1	1	0
bit 5	0	0	0	0	0	0
bit 6	0	0	0	0	0	0
bit 7	1	1	1	1	1	1
VRC ↓	٥	1	1	1	1	0

T				
Transmiss	0001001	0	10100	
		1	_	

0001001	0	1010001	1	0011001	1	0011001	1	1111100	1	0100001	0
Н		E		L		L		0		LRC	

Codes linéaires

• Notations :

• Mot-code : v

$$v = [a_1 \ a_2 \ ... \ a_k \ a_{k+1} \ a_{k+2} \ ... \ a_n] = [i \ c]$$

- [c]: m symboles de contrôle
- [i]: k = n m symboles d'information
- Mot-erreur : ε

$$\varepsilon = [\varepsilon_1 \ \varepsilon_2 \dots \varepsilon_n]$$

$$\varepsilon = [\varepsilon_1 \ \varepsilon_2 \dots \varepsilon_n]$$
 $v_i = v_i' + \varepsilon \iff v_i' = v_i + \varepsilon$

$$\varepsilon_i = \begin{bmatrix} 1 & \text{si erreur à la ième position} \\ 0 & \text{sinon} \end{bmatrix}$$

Transmission de l'information - Cours de l'EPU de Tours - DI

Propriétés des codes linéaires

Les symboles de contrôle sont obtenus par une combinaison linéaire des symboles d'information

• Code bloc linéaire

Symboles binaires et addition modulo 2.

• Code systématique

Les symboles d'information et de contrôle sont séparés.

Transmission de l'information - Cours de l'EPU de Tours - DI

13

Codage et matrice génératrice

Soit
$$G_{(k,n)}$$
 la matrice génératrice, $[G] = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{k1} & g_{k2} & \cdots & g_{kn} \end{bmatrix}$

$$v = i.G$$

Transmission de l'information - Cours de l'EPU de Tours - DI

Décodage et matrice de contrôle

$$\mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$$

$$\begin{aligned} \mathbf{v} &= [\mathbf{a}_1 \quad \mathbf{a}_2 \quad ... \quad \mathbf{a}_n] \\ \text{Soit } \mathbf{H}_{(\mathsf{m},\mathsf{n})} \text{ la matrice de contrôle, } [\mathbf{H}] &= \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} & ... & \mathbf{h}_{1n} \\ \mathbf{h}_{21} & \mathbf{h}_{22} & ... & \mathbf{h}_{2n} \\ ... & ... & ... \\ \mathbf{h}_{m1} & \mathbf{h}_{m2} & ... & \mathbf{h}_{mn} \end{bmatrix}$$

Soit z le syndrome (ou correcteur),
$$z = H.v'^{T} = \begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix}$$

Si z=[0] pas d'erreur, sinon erreur et + / - correction

Transmission de l'information - Cours de l'EPU de Tours - DI

Codage et matrice génératrice

Les matrices H et G sont liées par : $G.H^t = 0$ et peuvent se mettrent sous la forme systématique :

$$G = \begin{bmatrix} & & : & & \\ & I_k & : & A_{k,m} & & \\ & : & & : & \end{bmatrix} \quad H = \begin{bmatrix} & & : & & \\ & A^t{}_{k,m} & : & I_m & \\ & & : & & \end{bmatrix}$$

Transmission de l'information - Cours de l'EPU de Tours - DI

Tableau standard

Bloc données utiles	00	10	01	11
Mots de code	0000	1011	0101	1110
Classe 1	1000	0011	1101	0110
Classe 2	0100	1111	0001	1010
Classe 3	0010	1001	0111	1100

Classe : ensemble $C(Z) = \{Z + X, \forall X \in Code\}$

Représentant de classe : mot de poids le plus faible

Transmission de l'information - Cours de l'EPU de Tours - DI

17

Codage et matrice

- •k vecteurs constituant une base du code C sont utilisés pour former les lignes d'une matrice G de taille $k \times n$.
- •Tout mot de code est une combinaison linéaire des lignes de G.
- •La correspondance entre G et H n'est pas unique.
- •La correspondance entre mots d'information et mots de code n'est pas unique.
- •G et G', les matrices génératrices de deux codes équivalents sont reliées par :
 - des permutation des colonnes
 - des combinaisons linéaires sur les lignes.

Transmission de l'information - Cours de l'EPU de Tours - DI

Exemple k=2, m=1, n=3
$$[G_1] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad [H] = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \quad [G_2] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

Transmission de l'information - Cours de l'EPU de Tours - DI

Hamming et correction des erreurs

Distance de Hamming

$$D(v_i, v_j) = (a_{i1} \oplus a_{j1}) + (a_{i2} \oplus a_{j2}) + \dots + (a_{in} \oplus a_{jn})$$

~ Le nombre de coordonnées par lesquels les 2 mots diffèrent

Correction directe:

- C'est le récepteur qui corrige à Il faut donc un code très redondant.
- Ce mécanisme est très coûteux mais aussi très efficace. On parle alors de code auto-correcteur.
- Utilisation : Retrouver le code exact à partir d'un code erroné consiste à retrouver le plus proche voisin au sens de d_H.

Transmission de l'information - Cours de l'EPU de Tours - DI

Hamming et correction des erreurs

- _n Exemple : code $d_H = 2$, sur des mots de 4 bits
- Les codes autorisés sont :

0000	(1)
0011	(3)
0101	(1)
0110	(2)
1001	(3)
1010	(3)
1100	(1)
1111	(3)

- Par exemple, soit le message suivant : 0 1 0 0. Ce n'est pas un code valide.
- Pour pouvoir corriger en plus de détecter, il faut un code de d_H > ou égale à 3 pour lequel les seuls mots autorisés sont :

0	0	0	0	(1)
1	1	1	1	(3)

Transmission de l'information - Cours de l'EPU de Tours - DI

24

Illustration spatiale

Un mot = un vecteur dans un espace à n dimensions !
 w=[a₁ a₂ ... a_n]

 $W = ensemble des N = 2^n mots$

 $V = ensemble \ des \ S = 2^k \ mots \ ayant \ un \ sens \ (mot-code)$

Hamming et correction

 $v_i \rightarrow \text{Région } W_i \text{ dépendantes de d}_H \text{ et disjointes}$ => Détection et correction ä si W_i grand

- n Théorème de Hamming:
- Si on veut:
 - n détecter p erreurs isolées alors il faut d_H ≥ p+1.
 - $_{\scriptscriptstyle \rm h}$ corriger q erreurs isolées alors il faut $d_{\scriptscriptstyle H} \ge 2q+1$.

Transmission de l'information - Cours de l'EPU de Tours - DI

Poids de Hamming et distance min.

Le poids de Hamming w(c) d'un mot de code c est égal au nombre de composantes non nulles de c.

Le poids minimal w^* d'un code C est le minimum des poids w(c) des mots de code c non nuls.

La distance minimale d_{\min} d'un code linéaire est égale à son poids minimal w^*

Transmission de l'information - Cours de l'EPU de Tours - DI

25

Code de Hamming : Principe

- Chaque bit est vérifié par un sous-ensemble distinct des bits de validation
- Une erreur sur un bit provoque une erreur de parité pour chaque bit de validation du sous-ensemble correspondant
- _n H doit vérifier:
 - n Chaque colonne est la représentation binaire des nombres 1 à n.
 - $n = 2^m 1$ et $k = n m = 2^m 1 m$

Transmission de l'information - Cours de l'EPU de Tours - DI

Code de Hamming: Principe

Auto-correction:

- le syndrome du mot reçu est identique à la colonne de la matrice de contrôle correspondant au bit à corriger.
- n si l'on trie les colonnes de H suivant leur poids binaire croissant et que les poids de ses colonnes couvrent l'intervalle [1, 2^m-1] alors la valeur binaire du syndrome est égale au numéro de bit erroné.

Transmission de l'information - Cours de l'EPU de Tours - DI

27

Hamming et correction des erreurs

- On veut détecter et corriger toutes les erreurs de 1 bits
 - Dans un mot code de n = m + k bits
 - n Avec k bits de données
 - n Avec m bits de validation
- ⁿ Chaque 2^k mot code est à distance d = 1 de n mots invalides
- Pour chaque mot valide, on a donc besoin de n+1 mots (n inutilisés + 1 mot code)
 - On veut trouver m tel que $(n+1)2^k \le 2^n$, sachant que n = m + k
 - Limite théorique : le plus petit m tel que $(m+k+1) \le 2^m$

Transmission de l'information - Cours de l'EPU de Tours - DI

Explications

Pour la correction d'une erreur

Si on a:

or or a:

$$[H] = [h_1 \quad h_2 \quad \dots \quad h_n] = \begin{bmatrix} 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \dots \\ 0 & 1 & 1 & \dots \\ 1 & 0 & 1 & \dots \end{bmatrix}$$
 avec $h_i = bin(i)$

3 Mot-erreur : $\varepsilon = [\dots \alpha_i \dots]$

$$v'_j = v_j + \varepsilon \Leftrightarrow z = H.v'_j = H.\varepsilon^T \Leftrightarrow z = h_i$$

L'erreur est à la position dec(h_i)

Transmission de l'information - Cours de l'EPU de Tours - DI

$$\mathbf{H} = \begin{vmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$\underbrace{Valeurs\ d\acute{e}cimales}: \ 7\ 6\ 5\ 3\ 4\ 2\ I$$

$$La\ matrice\ g\acute{e}n\acute{e}ratrice\ \mathbf{G}\ s\acute{e}crit\ (\mathbf{GH^T} = \mathbf{0}): \mathbf{G} = \begin{vmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{vmatrix}$$

$$\underbrace{Entr\acute{e}\ du\ codeur}_{m_1}$$

$$\underbrace{m_0}_{m_1}$$

$$m_2$$

$$m_3$$

$$\underbrace{m_0}_{m_1}$$

$$m_2$$

$$m_3$$

$$\underbrace{c_4}_{c_5}$$

$$c_6$$

$$Transmission\ de\ l'\ information\ -\ Cours\ de\ l'\ EPU\ de\ Tours\ -\ Dl}$$

$$31$$

Exercice sur le codage de Hamming

Transmission de l'information - Cours de l'EPU de Tours - DI

Codes polynomiaux

- Définition : Un code polynômial est un code linéaire systématique dont chacun des mots du code est un multiple du polynôme générateur (noté g(x)).
- Le degré du polynôme générateur définit la longueur du champ de contrôle d'erreur.

Transmission de l'information - Cours de l'EPU de Tours - DI

35

Codes polynomiaux

- Tout vecteur peut être présenté sous une forme polynômiale
- Les opérations (+, X, /) sont binaires : 1.x + 1.x = 0.x!
- Soit t= a₀ a_{n-1} ... a₀. On peut lui associer un polynôme de degré n-1
- n par: $P(x) = a_{n-1}x^{n-1} + ... + a_2x^2 + a_1x + a_0$
- Exemple : le mot 1001101 est associé à $P(x) = x^6 + x^3 + x^2 + 1$

Transmission de l'information - Cours de l'EPU de Tours - DI

Codage / Décodage

Division / Multiplication (en binaires)

$$a(x) = x^3 + x^2 + x$$
 et $b(x) = x^3 + x + 1 \rightarrow c(x) = x^6 + x^5 + x$

$$c(x) = a(x) \times b(x)$$

[1110]<[1011]=[1100010]

• Codage par division

$$v(x) = c(x) + x^{m}.i(x)$$

Systématique!

$$c(x) = Reste\left(\frac{x^m i(x)}{g(x)}\right)$$

• Décodage par division

Si z(x)=0 => Transmission OK

Sinon => Détection ou correction

$$z(x) = Reste\left(\frac{v'(x)}{g(x)}\right)$$

Transmission de l'information - Cours de l'EPU de Tours - DI

27

Codage / décodage

- $_{\scriptscriptstyle \rm n}$ Soit une clef G(x), polynôme de degré v. On pose :
- $x^{\vee} P(x) = Q(x) G(x) + R(x)$
- n où Q(x) et R(x) sont deux polynômes de degré au plus égal à, respectivement, n-1 pour Q et v pour R.
- on travaille en binaire **donc** $x^{v} P(x) + R(x) = Q(x) G(x) = Y(x)$

Transmission de l'information - Cours de l'EPU de Tours - DI

Codage / décodage

- 1. l'émetteur transmet les mots associés aux polynômes P(x) et R(x) (généralement par simple concaténation).
- 2. Le décodeur peut fabriquer Y(x) et la division puisque G est normalisé (donc v et G sont connus).
- 3. Si le reste est non nul (*i.e.* $Y(x) \neq G(x)$ Q(x)) alors il y a au moins une erreur.
- n On utilise pas n'importe quel polynôme générateur. Il est le plus souvent normalisé pour un protocole donné.
- $_{\rm n}$ Pour v = 16, le CCITT préconise dans l'avis V24, le polynôme :

$$G(x) = x^{16} + x^{12} + x^5 + 1$$

n L'implémentation Hardware de cet algorithme est facile.

Transmission de l'information - Cours de l'EPU de Tours - DI

39

Diviseur électronique

 $g(x) = g_0 + g_1 \cdot x + g_2 \cdot x^2 + ... + g_{n-k} \cdot x^{n-k}$

- La multiplication est réalisée par un ET logique, l'addition par un OU exclusif, plus des registres à décalage.
- n Procédé:
 - _n (i) les registres ri sont mis à zéros
 - n (ii) les bits du mot à diviser sont insérés en entrée (k étapes), bits de poids fort en tête.
 - n (iii) les registres ri contiennent alors le reste, qu'on extrait (n-k étapes).
- $_{\rm n}$ $\,$ De nombreuses optimisations sont possibles :
 - n Lorsque gi=0 on supprime simplement la connexion et la porte ET!
 - phase spécifique d'initialisation, etc.

Codes cycliques

Code cyclique = linéaire + propriété de permutation circulaire

Définition :

- toute permutation de tout mot code donne un autre mot code
- les polynômes associés aux mots codes sont tous multiples d'un générateur g(x) diviseur de (1+xn)
- Exemple:
 - Un code cyclique (1, 2) possède les mots de code suivants : {01, 10} ou {00, 11}, mais pas {01,11}.
 - Un code cyclique (1, 3) possède les mots de code suivants : {000, 111}.

Transmission de l'information - Cours de l'EPU de Tours - DI

Codes cycliques

- g(x) définit le codeur (n,k)
- g(x) est de degré m=n-k
- II vérifie : $1+x^n = g(x) \times p(x)$

$$g(x) = 1 + g_1 \cdot x + g_2 \cdot x^2 + \dots + g_{n-k} \cdot x^{n-k}$$

Exemple: code cyclique (n=7, k=4):

$$1+x^7 = (1+x)\times(1+x^2+x^3)\times(1+x+x^3)$$

g(x) est de degré 3 soit :

$$g(x) = (1+x^2+x^3)$$
 ou $g(x) = (1+x+x^3)$

Transmission de l'information - Cours de l'EPU de Tours - DI

Bilan sur les codes cycliques

- La théorie des codes cycliques permet de montrer que ce type de code permet de détecter jusqu 'à k erreurs pour G(x) de degré k
- Pour CRC 16 :
 - 1) toutes les erreurs simples, doubles et triples
 - 2) toutes les salves d'erreurs de longueur impaire ou de moins de 17 bits
 - 3) 99,998% des salves d erreurs de plus de 16 bits.
- n On peut ainsi obtenir un taux d'erreur résiduel de 10⁻¹⁰.

Transmission de l'information - Cours de l'EPU de Tours - DI

40

Code cycliques BCH et RS

- ⁿ Ce sont une extension des codes cycliques, ils sont non pas construit sur un alphabet binaire mais un alphabet composé d'un grand ensemble de symboles.
- Les codes BCH (Bose-Chaudhuri-Hocquenghem) sont ceux qui ont la plus grande capacité de correction d'erreurs indépendantes pour une redondance et une longueur données.
- Les codes RS (Reed-Solomon) sont des codes correcteurs très puissants. Ils peuvent être présentés comme des codes BCH dans lequel chaque bit des mots du code est remplacé par un entier.

Transmission de l'information - Cours de l'EPU de Tours - DI

Exemple de polynômes générateurs

ATM

$$x^{8} + x^{2} + x + 1$$
 => Cellule ATM $x^{10} + x^{9} + x^{5} + x^{4} + x + 1$ => Couche AAL type 3/4

CCITT N41 => X25 (HDLC)
$$x^{16} + x^{12} + x^5 + I$$

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + 1$$

k peut varier de 200 à 3000 bits

Transmission de l'information - Cours de l'EPU de Tours - DI

45

Codes continus / convolutifs

Généralités

=> Les symboles d'information sont traités en flux continu

Rque :Blocs de n_0 symboles, mais dont les m_0 contrôleurs ne dépendent pas que des k_0 symboles d'information !

Taux d'émission ou rendement : $R = \frac{k_0}{n_0}$

Transmission de l'information - Cours de l'EPU de Tours - DI

Codes convolutifs systématiques

$$\begin{aligned} \text{Mot-code}: V = & \left[X_1 Y_1 X_2 Y_2 X_j Y_j_1 \right] \\ \text{avec} \quad & X_j = & \left[X_j^1 X_j^{k_0} \right] \text{ Information} \\ & Y_j = & \left[Y_j^1 Y_j^{m_0} \right] \end{aligned} \quad \text{Contrôle}$$

• Codes convolutifs non systématiques

• Contrôle et information sont mélangés

Mot-code :
$$V = [U_1 U_2 U_j]$$

Transmission de l'information - Cours de l'EPU de Tours - DI

47

Exemple : m=4, k₀=1, m₀=1, n₀=2

Transmission de l'information - Cours de l'EPU de Tours - DI

Conclusion sur le codage de canal

Indispensable

Théories mathématiques complexes Π des solutions concrètes

- Reed-Salomon (1984): BCH
- Turbo-Codes (1993): Code convolutif

Recherche de codeurs conjoint source / canal

- complexité --
- robustesse ++
- flexibilité ++

Transmission de l'information - Cours de l'EPU de Tours - DI

53

Conclusion sur le codage de canal

Bilan sur la correction des Erreurs :

- Pour les codes cycliques (de taille de clef = v) on peut détecter les paquets d'erreurs de taille $\leq v$ ou corriger les paquets de taille $\leq v$.
- La performance de ces codes est cependant contrebalancée par un coût important en longueur de code ce qui explique qu'ils sont très peu utilisés dans les réseaux locaux industriels.

==> Correction par retransmission

Transmission de l'information - Cours de l'EPU de Tours - DI

Correction par retransmission

- _n Quand?
 - n Correction de l'erreurs impossible
- n Types de retransmission :
 - n send and wait
 - n envoi avec arrêt et attente d'ACK ou NACK ou echo ou time-out
 - Nécessité d'identification des messages

Transmission de l'information - Cours de l'EPU de Tours - DI

55

Correction par retransmission

n Rendement très faible

Transmission de l'information - Cours de l'EPU de Tours - DI

Correction par retransmission

 $\begin{array}{ll} Utilisation: & U = \underline{\frac{Tx}{Tt}} & Tt = Tx + Ty + 2Tp + 2Ta \\ \end{array}$

Exemple: Ligne satellite à 56kbps et trames de 1000 bits. Le satellite est stationné à 33.000km sur la terre et la vitesse de propagation $3 \cdot 10^8$ m/sec. L'utilisation $U = \frac{T_r}{T_t}$ est de 3.4% seulement en utilisant un protocole 'envoyer et attendre' pour envoyer la trame et renvoyer l'acquittement.

Transmission de l'information - Cours de l'EPU de Tours - DI

57

Correction par retransmission

- n Transmission continue : pas d'attente de l'ACK
 - n renvoi total a partir de l'erreur
 - n fenêtre d'anticipation
 - n Rendement moyen
- n Retransmission sélective :
 - n Mise en œuvre complexe
 - _n bon rendement
 - _n Satellites, TCP

==> Voir cours de Réseaux

Transmission de l'information - Cours de l'EPU de Tours - DI

