Vor Convolutional Neural Networks ...

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

ConvNets in blau

Warum ConvNets?

- Bilder und Buchstaben sind translationsinvariant
- Bilder können in lokale Muster runtergebrochen werden
- Dense Layers müssen lokale Muster überall neu lernen

ConvNets sind aus lokalen, verschiebbaren Filtern aufgebaut.

ConvNets sind aus lokalen, verschiebbaren Filtern aufgebaut

 3x3 Patches von Gewichten heißen kernel oder filter

Ouput eines kernels ist eine feature map

 Am Rand kann man zero padding verwenden oder kein Padding

Convolution

Input und Output eines Convolutional-Layers

Hierarchie lokaler Muster

ConvNets sind aus lokalen, verschiebbaren Filtern aufgebaut complex layer terminology | Simple layer term

Convolutional Layers bestehen aus 3 Teilen:

- 1. Convolution
- 2. Detector (Aktivierungsfunktion)
- 3. Pooling Stage

Convolution + Pooling

Stride und Max-Pooling

Stride, Max-Pooling und Padding

Convolutional Networks: Big Picture

- Jeder kernel/filter erzeugt eine feature map
- Outputs bilden Inputs der nächsten Layer

Convolutional Netzwerk zur Klassifikation

Convolutional Nets in der Praxis

- Bilddaten einlesen und reskalieren
- Selber trainieren
- Features verwenden
- Fine tuning