

Session 2.2 - Quality assessment and read preprocessing

Sarai Varona

<u>BU-ISCIII</u> <u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

> 28 Junio - 2 Julio 2021, 3ª Edición Programa Formación Continua, ISCIII

Step in the process

Raw output files format

.fastq

454

.sff

SOLID

.fasta

.qual

Nanopore

FAST5

Secuenciación de genomas bacterianos: herramientas y aplicaciones

PacBio RSII Bax.h5

fasta

FASTQ format

- Is a FASTA file with quality information
- Within HTS, FASTA contain genomes y FASTQ reads

Quality: must be 1 bit

FASTQ format

- Each base has an assigned quality score
 - Sequencing quality scores measure the probability that a base is called incorrectly
- How is it calculated?

Phred transforming

!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

- Light intensity is used to calculate the error probabilities
- Convert error probability into Phred score quality -Ewing B, Green P. (1998)

 Phred originated as an algorithmic approach that considered Sanger sequencing metrics, such as peak

resolution and shape

- Convert error probability into Phred score quality in real time on Illumina platforms
- Q scores are defined as a property that is logarithmically related to the base calling error probabilities (P)
- Phred quality range between 0-40 for Sanger and Illumina
 1.8+

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1,000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%		

 Convert Phred quality score into ASCII, a compact form, which uses only 1 byte per quality value

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

 Phred+33 (Sanger and current Illumina). 0 Phred quality correspond to decimal 33, which is the symbol!

!	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
)	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 0
	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
)	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

Phred+64 (Solexa and Illumina 1.3-1.5)

Phred 33 example

@HWI-ST731_6:1:1101:1322:1938#1@0/1
NTGACAAAGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT
+
#1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=

$$P=0.001$$
 Q=-10*log10(0.001)= 30 ASCIII 33+30 = 63 ?

FASTQ format

Illumina read header

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R the unique instrument name				
6	flowcell lane			
73	tile number within the flowcell lane			
941	'x'-coordinate of the cluster within the tile			
1973	'y'-coordinate of the cluster within the tile			
#0	index number for a multiplexed sample (0 for no indexing)			
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)			

@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH8 HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<D @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA(@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCAC IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHIHIIGGEGG#AACA@?=?BHHIIIIIHHIHIINIHIHHGIHIHGHGIGIHGEGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG CCACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############################

ASCII-coded (0-40):

- "!"#\$%" lowest quality
- "FGHI" highest quality

Sequencing quality assessment

- To asses quality, software uses Phred per-base quality score is used
- Is the **first quality control step** after sequencing. There should be one after every step of the analysis
- After quality assessment user can know how reliable are their datasets
- QC will determine the next filtering step
- Filtering decisions will impact directly in further analysis
- Many other steps also use this quality as variable in their algorithms

Sequencing quality assessment: Artifacts

HTS methods are bounded by their technical and theoretical limitations and sequencing errors cannot be completely eliminated (Hadigol M, Khiabanian H. 2018)

- Artifacts in library preparation
 - Remaining adapters
 - High rate of duplicates
 - GC regions bias
 - Polymerase error rate
 - DNA damage during breakdown
- Artifacts during secuencing
 - Low quality in sequence ends(Phasing: cluster loose sync)
 - Complication in certain regions:
 - Repetitions
 - Homopolymers
 - High CG content

Sequencing quality assessment

FastQC, fastx-toolkit, sfftools, NGSQCToolkit, etc...

Sequencing quality assessment: FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Sequencing quality assessment: fastp

Fastp report

General	
fastp version:	0.20.1 (https://github.com/OpenGene/fastp)
sequencing:	paired end (149 cycles + 149 cycles)
mean length before filtering:	116bp, 116bp
mean length after filtering:	117bp, 117bp
duplication rate:	1.704150%
Insert size peak:	95
Detected read1 adapter:	CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT
Detected read2 adapter:	CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT
Before filtering	
total reads:	1.296756 M
total bases:	151.424921 M
Q20 bases:	143.112834 M (94.510754%)
Q30 bases:	137.905419 M (91.071812%)
GC content:	40.410939%
After filtering	
total reads:	854.250000 K
total bases:	100.537720 M
Q20 bases:	99.598139 M (99.065444%)
Q30 bases:	97.968091 M (97.444115%)
GC content:	39.665634%
Filtering result	
reads passed filters:	854.250000 K (65.875924%)
reads with low quality:	352.272000 K (27.165635%)
reads with too many N:	84 (0.006478%)

FastQC: Per base sequence quality

- Overview of the range of quality values across all bases at each position in the FastQ file
- Median, inter-quartile range (25-75%), 10-90% points, mean quality

FastQC: Per sequence quality score

Number of sequences with the same mean quality

FastQC: Nucleotide related errors

- How expected nucleotide distribution deviates from expected
 - Per base sequence content
 - Per base GC content
 - Per sequence GC content
 - Per base N content

Per base sequence content

Sequence content across all bases 90 90 60 50 40 30 20

2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

FastQC: Sequence related errors

- How expected nucleotide distribution deviates from expected
 - Sequence Length Distribution Fragments
 - Sequence Duplication Levels
 - Overrepresented sequences
 - Adapter Content

FastQC: Per base sequence quality

Miseq assymetry

FastQC: Per base sequence quality

SMRT PacBio

Sequence Length Distribution

Sequence filtering

- Remove residual adapters
 - Depending on used library

Filtering parameters

- Quality filtering
 - Overall mean quality
 - Local mean quality
 - Sequence end
 - Sliding window
- Size filtering
 - Overall sequence size
 - Remaining sequence size after filtering

Sequence filtering

Example of quality filtering

Sequence filtering: stats with MultiQC

Sequence filtering: stats with MultiQC

Trimmomatic

Trimmomatic is a flexible read trimming tool for Illumina NGS data.

Questions?