Assignment1

(b)
$$[0]_{\equiv} = \{0, 1\}$$
 $[1]_{\equiv} = [0]_R$, $[2]_{\equiv} = \{2\}$,因为 $A/_{\equiv} = [0]_{\equiv} \cup [1]_{\equiv} \cup [2]_{\equiv}$, 所以 $A/_{\equiv} = \{\{0, 1\}, \{2\}\}$.

Please use the knowledge about **set theory** to solve the following problems.

- 1. $[1 \text{ pts}] |\{\emptyset\}| = \underline{1}$.
- [2 pts] Which of the following statement is **NOT** true? (Multiple choice, there may be more than one correct answer)
 - A. If \mathbb{N} is the set of Natural Numbers, then the size of \mathbb{N} is ∞ .
 - B. A power set is a set of sets.
 - C. For a finite set, the size of its power set is greater than its size.
 - D. If $S P = \emptyset$, then S = P (Both S and P are sets).
 - E. The elements of a set can be the set
- 3. [2 pts] Let $A = \{0, 2, 4\}$, $B = \{1, 3, 5\}$, $C = \{3, 4, 5\}$. Find
 - a) $A \cup (B C) \{0, 1, 2, 4\}$
 - b) $A \times (B C)$ {(0,1), (2,1), (4,1)} Less Than Relation RLT5
 - c) $|\{P(A) P(C)\}|$ 6

$$N 5 = \{0,1,2,3,4\}$$

- d) $P(A) \cap P(B-C)$ {Ø}
- RLT5: N 5 \rightarrow N 5 = df { (0,1),(0,2),(0,3),(0,4), (1,2), (1,3),(1,4), (2,3),(2,4), (3,4)}
- 4. [2 pts] We use R_{LT5} to note the "Less Than" Relation on natural numbers smaller than 5.
 - (1) Please define R_{LT5} as the set of ordered pairs mathematically.

Example: Addition Relation on natural numbers smaller than 2 is

AddR₂:
$$N_2 \rightarrow N_2 =_{df} \{(0,0), (0,1), (1,0), (1,1)\}$$

- (2) R_{LT5} is <u>dfg</u>h.
 - a. Universal b. Identity c. Reflexive d. Irreflexive
 - e. Symmetric f. Antisymmetric g. Connected h. Transitive
- 5. [2pt] Let $P = \{0, 1, 2\}$. $R = \{(0,0), (0,1), (1,0), (1,1), (2,2)\}$ is a relation on P.
 - (a) (True or False) R is an equivalence relation. true
 - (b) If (a) is true, find the equivalence class $[0]^{\equiv}$ and the quotient set of P defined by R. If (a) is not true, find a counterexample. see above before q1