Mecánica Clásica Tarea # 12

Favio Vázquez*

Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México.

Problema 1

Demuestre que entre los paréntesis de Poisson y los de Lagrange existe la relación de inversión

$$\sum_{\alpha=1}^{2n} [u_{\alpha}, u_{\beta}] \{u_{\alpha}, u_{\gamma}\} = \delta_{\beta\gamma},$$

donde $u_{\alpha}(q^1,\ldots,q^n,p_1,\ldots,p_n), \ \alpha=1,\ldots,2n \ \mathrm{y} \ (q,p)$ es un sistema canónico de coordenadas.

Solución:

Para demostrar esto utilizaremos la definición de cada uno de los paréntesis y las sustituiremos directamente. El paréntesis de Lagrange para las coordenadas canónicas (q, p) y aplicados al problema en cuestión se escribe como

$$[u_{\alpha}, u_{\beta}] = \sum_{i}^{n} \left(\frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial p_{i}}{\partial u_{\beta}} - \frac{\partial q^{i}}{\partial u_{\beta}} \frac{\partial p_{i}}{\partial u_{\alpha}} \right), \tag{1.1}$$

y el paréntesis de Poisson se escribe como

$$\{u_{\alpha}, u_{\gamma}\} = \sum_{i}^{n} \left(\frac{\partial u_{\alpha}}{\partial q^{i}} \frac{\partial u_{\gamma}}{\partial p_{j}} - \frac{\partial u_{\alpha}}{\partial p_{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} \right). \tag{1.2}$$

Tenemos entonces que

$$\begin{split} \sum_{\alpha=1}^{2n} [u_{\alpha}, u_{\beta}] \{u_{\alpha}, u_{\gamma}\} &= \sum_{\alpha=1}^{2n} \left[\sum_{i}^{n} \left(\frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial p_{i}}{\partial u_{\beta}} - \frac{\partial q^{i}}{\partial u_{\beta}} \frac{\partial p_{i}}{\partial u_{\alpha}} \right) \right] \left[\sum_{j}^{n} \left(\frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial p_{j}} - \frac{\partial u_{\alpha}}{\partial p_{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} \right) \right] \\ &= \sum_{\alpha=1}^{2n} \sum_{i}^{n} \sum_{j}^{n} \left(\frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial p_{i}}{\partial u_{\beta}} - \frac{\partial q^{i}}{\partial u_{\beta}} \frac{\partial p_{i}}{\partial u_{\alpha}} \right) \left(\frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial p_{j}} - \frac{\partial u_{\alpha}}{\partial p_{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} \right) \\ &= \sum_{\alpha=1}^{2n} \sum_{i}^{n} \sum_{j}^{n} \left[\frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial p_{i}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial p_{j}} - \frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial p_{i}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial u_{\beta}} \frac{\partial u_{\gamma}}{\partial p_{j}} - \frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial u_{\gamma}}{\partial p_{j}} \frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} - \frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial u_{\alpha}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} - \frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial u_{\alpha}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial u_{\beta}} \frac{\partial u_{\alpha}}{\partial q^{j}} \frac{\partial u_{\gamma}}{\partial q^{j}} - \frac{\partial q^{i}}{\partial u_{\alpha}} \frac{\partial u_{\alpha}}{\partial q^{j}} \right]. \end{split}$$

Ahora evaluando estos términos vemos que

 $^{{\}rm ^*Correo:\ favio.vazquezp@gmail.com}$

$$\sum_{\alpha=1}^{2n} \frac{\partial q^i}{\partial u_\alpha} \frac{\partial u_\alpha}{\partial q^j} = \delta^i_j, \tag{1.3}$$

$$\sum_{\alpha=1}^{2n} \frac{\partial q^i}{\partial u_\alpha} \frac{\partial u_\alpha}{\partial p_j} = 0, \tag{1.4}$$

$$\sum_{\alpha=1}^{2n} \frac{\partial p_i}{\partial u_\alpha} \frac{\partial u_\alpha}{\partial q^j} = 0, \tag{1.5}$$

$$\sum_{\alpha=1}^{2n} \frac{\partial p_i}{\partial u_\alpha} \frac{\partial u_\alpha}{\partial p_j j} = \delta_j^i. \tag{1.6}$$

Donde δ_i^i es la delta de Kronecker. Entonces tenemos que

$$\sum_{\alpha=1}^{2n} [u_{\alpha}, u_{\beta}] \{u_{\alpha}, u_{\gamma}\} = \sum_{i}^{n} \sum_{j}^{n} \left(\frac{\partial p_{i}}{\partial u_{\beta}} \frac{\partial u_{\gamma}}{\partial p_{j}} \delta_{j}^{i} + \frac{\partial q^{i}}{\partial u_{\beta}} \frac{\partial u_{\gamma}}{\partial q^{j}} \delta_{j}^{i} \right)
= \sum_{i}^{n} \left(\frac{\partial p_{i}}{\partial u_{\beta}} \frac{\partial u_{\gamma}}{\partial p_{i}} + \frac{\partial q^{i}}{\partial u_{\beta}} \frac{\partial u_{\gamma}}{\partial q^{i}} \right).$$
(1.7)

Haciendo ahora la sumatoria en i vemos que esta expresión debe ser igual a la delta de Kronecker para β y γ , por lo tanto

$$\sum_{\alpha=1}^{2n} [u_{\alpha}, u_{\beta}] \{u_{\alpha}, u_{\gamma}\} = \delta_{\beta\gamma}.$$
(1.8)

Que era lo que se pidió demostrar, con lo cual vemos que los paréntesis de Poisson y los paréntesis de Lagrange forman matrices inversas la una para la otra.

Problema 2

Demuestre por tres vías distintas que las transformaciones

$$q^{1} = \frac{\sqrt{2P_{1}} \operatorname{sen} Q^{1} + P_{2}}{\sqrt{m\omega}}$$

$$q^{2} = \frac{\sqrt{2P_{1}} \operatorname{cos} Q^{1} + Q^{2}}{\sqrt{m\omega}}$$

$$p_{1} = \frac{\sqrt{m\omega}(\sqrt{2P_{1}} \operatorname{cos} Q^{1} - Q^{2})}{2}$$

$$p_{2} = \frac{\sqrt{m\omega}(\sqrt{2P_{1}} \operatorname{sen} Q^{1} - P_{2})}{2}$$

у

$$q^{1} = Q^{1} \cos \lambda + \frac{P_{2} \sin \lambda}{m\omega}$$

$$q^{2} = Q^{2} \cos \lambda + \frac{P_{1} \sin \lambda}{m\omega}$$

$$p_{1} = -m\omega Q^{2} \sin \lambda + P_{1} \cos \lambda$$

$$p_{2} = -m\omega Q^{1} \sin \lambda + P_{2} \cos \lambda$$

son canónicas.

Solución:

Comencemos con las primeras transformaciones canónicas. La primera prueba que haremos es con los paréntesis de Poisson, que debe cumplirse que

$$\{q^{1}, q^{2}\} = 0,
 \{q^{1}, p_{2}\} = 0,
 \{q^{1}, p_{1}\} = 1,
 \{p_{1}, p_{2}\} = 0,
 \{q^{2}, p_{1}\} = 0,
 \{p_{2}, q^{2}\} = 1.$$

$$(2.1)$$

Todas las demás se obtienen intercambiando las variables y usando la anti-simetría de los paréntesis de Poisson. Comencemos con las pruebas,

$$\{q^{1}, q^{2}\} = \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial q^{2}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial q^{2}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial q^{2}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial q^{2}}{\partial Q^{2}}$$

$$= \left(\frac{\sqrt{2P_{1}}\cos Q^{1}}{\sqrt{m\omega}}\right) \left(\frac{\cos Q^{1}}{\sqrt{2P_{1}}\sqrt{m\omega}}\right)$$

$$- \left(\frac{\sin Q^{1}}{\sqrt{2P_{1}}\sqrt{m\omega}}\right) \left(-\frac{\sqrt{2P_{1}}\sin Q^{1}}{\sqrt{m\omega}}\right) - \left(\frac{1}{\sqrt{m\omega}}\right) \left(\frac{1}{\sqrt{m\omega}}\right)$$

$$= \frac{\cos^{2} Q^{1}}{m\omega} + \frac{\sin^{2} Q^{1}}{m\omega} - \frac{1}{m\omega}$$

$$= \frac{\cos^{2} Q^{1} + \sin^{2} Q^{1}}{m\omega} - \frac{1}{m\omega},$$

$$\therefore \{q^{1}, q^{2}\} = \frac{1}{m\omega} - \frac{1}{m\omega} = 0. \tag{2.2}$$

$$\{q^{1}, p_{2}\} = \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial p_{2}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial p_{2}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial p_{2}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial p_{2}}{\partial Q^{2}}$$

$$= \left(\frac{\sqrt{2P_{1}} \cos Q^{1}}{\sqrt{m\omega}}\right) \left(\frac{\sqrt{m\omega} \sin Q^{1}}{2\sqrt{2P_{1}}}\right) - \left(\frac{\sin Q^{1}}{\sqrt{2}\sqrt{P_{1}}\sqrt{m\omega}}\right) \left(\frac{\sqrt{P_{1}}\sqrt{m\omega} \cos Q^{1}}{\sqrt{2}}\right)$$

$$\therefore \{q^{1}, p_{2}\} = \frac{\cos Q^{1} \sin Q^{1}}{2} - \frac{\cos Q^{1} \sin Q^{1}}{2} = 0$$

$$(2.3)$$

$$\begin{aligned}
\{q^{1}, p_{1}\} &= \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial p_{1}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial p_{1}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial p_{1}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial p_{1}}{\partial Q^{2}} \\
&= \left(\frac{\sqrt{2P_{1}} \cos Q^{1}}{\sqrt{m\omega}}\right) \left(\frac{\sqrt{m\omega} \cos Q^{1}}{2\sqrt{2P_{1}}}\right) \\
&- \left(\frac{\sin Q^{1}}{\sqrt{2\sqrt{P_{1}}\sqrt{m\omega}}}\right) \left(\frac{\sqrt{P_{1}}\sqrt{m\omega} \sin Q^{1}}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{m\omega}}\right) \left(-\frac{\sqrt{m\omega}}{2}\right) \\
&= \frac{\cos^{2} Q^{1}}{2} + \frac{\sin^{2} Q^{1}}{2} + \frac{1}{2} \\
&= \frac{\cos^{2} Q^{1} + \sin^{2} Q^{1}}{2} + \frac{1}{2} \\
&\therefore \{q^{1}, p_{1}\} = \frac{1}{2} + \frac{1}{2} = 1.
\end{aligned} \tag{2.4}$$

$$\begin{aligned} \{p_1, p_2\} &= \frac{\partial p_1}{\partial Q^1} \frac{\partial p_2}{\partial P_1} - \frac{\partial p_1}{\partial P_1} \frac{\partial p_2}{\partial Q^1} + \frac{\partial p_1}{\partial Q^2} \frac{\partial p_2}{\partial P_2} - \frac{\partial p_1}{\partial P_2} \frac{\partial p_2}{\partial Q^2} \\ &= \left(-\frac{\sqrt{P_1} \sqrt{m\omega} \operatorname{sen} Q^1}{\sqrt{2}} \right) \left(\frac{\sqrt{m\omega} \operatorname{sen} Q^1}{2\sqrt{2}\sqrt{P_1}} \right) - \left(\frac{\sqrt{m\omega} \operatorname{cos} Q^1}{2\sqrt{2}\sqrt{P_1}} \right) \left(\frac{\sqrt{P_1} \sqrt{m\omega} \operatorname{cos} Q^1}{\sqrt{2}} \right) \\ &- \left(-\frac{\sqrt{m\omega}}{2} \right) \left(-\frac{\sqrt{m\omega}}{2} \right) \\ &= -\frac{m\omega \operatorname{sen}^2 Q^1}{4} - \frac{m\omega \operatorname{cos}^2 Q^1}{4} + \frac{m\omega}{4} \\ &= -\frac{m\omega}{4} (\operatorname{sen}^2 Q^1 + \operatorname{cos}^2 Q^1) + \frac{m\omega}{4}, \end{aligned}$$

$$\therefore \{p_1, p_2\} = -\frac{m\omega}{4} + \frac{m\omega}{4} = 0. \tag{2.5}$$

$$\{q^{2}, p_{1}\} = \frac{\partial q^{2}}{\partial Q^{1}} \frac{\partial p_{1}}{\partial P_{1}} - \frac{\partial q^{2}}{\partial P_{1}} \frac{\partial p_{1}}{\partial Q^{1}} + \frac{\partial q^{2}}{\partial Q^{2}} \frac{\partial p_{1}}{\partial P_{2}} - \frac{\partial q^{2}}{\partial P_{2}} \frac{\partial p_{1}}{\partial Q^{2}}$$

$$= \left(-\frac{\sqrt{2P_{1}} \operatorname{sen} Q^{1}}{\sqrt{m\omega}}\right) \left(\frac{\sqrt{m\omega} \operatorname{cos} Q^{1}}{2\sqrt{2P_{1}}}\right) - \left(\frac{\operatorname{cos} Q^{1}}{\sqrt{2}\sqrt{P_{1}}\sqrt{m\omega}}\right) \left(-\frac{\sqrt{P_{1}}\sqrt{m\omega} \operatorname{sen} Q^{1}}{\sqrt{2}}\right)$$

$$\therefore \{q^{2}, p_{1}\} = -\frac{\operatorname{sen} Q^{1} \operatorname{cos} Q^{1}}{2} + \frac{\operatorname{sen} Q^{1} \operatorname{cos} Q^{1}}{2} = 0$$

$$(2.6)$$

$$\begin{split} \{q^2,p_2\} &= \frac{\partial q^2}{\partial Q^1} \frac{\partial p_2}{\partial P_1} - \frac{\partial q^2}{\partial P_1} \frac{\partial p_2}{\partial Q^1} + \frac{\partial q^2}{\partial Q^2} \frac{\partial p_2}{\partial P_2} - \frac{\partial q^2}{\partial P_2} \frac{\partial p_2}{\partial Q^2} \\ &= \left(-\frac{\sqrt{2P_1} \operatorname{sen} Q^1}{\sqrt{m\omega}} \right) \left(\frac{\sqrt{m\omega} \operatorname{sen} Q^1}{2\sqrt{2P_1}} \right) - \left(\frac{\cos Q^1}{\sqrt{2}\sqrt{P_1}\sqrt{m\omega}} \right) \left(\frac{\sqrt{P_1}\sqrt{m\omega} \cos Q^1}{\sqrt{2}} \right) \\ &+ \left(\frac{1}{\sqrt{m\omega}} \right) \left(-\frac{\sqrt{m\omega}}{2} \right) \\ &= -\frac{\operatorname{sen}^2 Q^1}{2} - \frac{\cos^2 Q^1}{2} - \frac{1}{2} \\ &= -\frac{1}{2} ((\operatorname{sen}^2 Q^1 + \cos^2 Q^1)) - \frac{1}{2}, \end{split}$$

$${p_2, q^2} = -{q^2, p_2} = \frac{1}{2} + \frac{1}{2} = 1.$$
 (2.7)

Probemos ahora con los paréntesis de Lagrange, que se debe cumplir que

$$[q^{1}, q^{2}] = 0,$$

$$[q^{1}, p_{2}] = 0,$$

$$[q^{1}, p_{1}] = 1,$$

$$[p_{1}, p_{2}] = 0,$$

$$[q^{2}, p_{1}] = 0,$$

$$[p_{2}, q^{2}] = 1.$$

$$(2.8)$$

Pero la prueba para los paréntesis de Lagrange es trivial al saber que

$$\sum_{k}^{2n} \{q^k, p_i\}[q^k, p_j] = \delta_{ij}, \tag{2.9}$$

que fue el resultado al cual se llegó en el problema anterior. Con lo cual tenemos que, utilizando los resultados que hemos obtenidos arriba

$$[q^{1}, q^{2}] = \{q^{1}, q^{2}\} = 0,$$

$$[q^{1}, p_{2}] = \{q^{1}, p_{2}\} = 0,$$

$$[q^{1}, p_{1}] = \{q^{1}, p_{1}\} = 1,$$

$$[p_{1}, p_{2}] = \{p_{1}, p_{2}\} = 0,$$

$$[q^{2}, p_{1}] = \{q^{2}, p_{1}\} = 0,$$

$$[p_{2}, q^{2}] = \{p_{2}, q^{2}\} = 1.$$

$$(2.10)$$

La última prueba será demostrar que la transformación canónica deja invariante a la forma simpléctica. Para hacer esto debido a la forma complicada de las ecuaciones haremos el cálculo más general, de donde debe cumplirse que

$$dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = dP_1 \wedge dQ^1 + dP_2 \wedge dQ^2.$$
 (2.11)

Usaremos las diferenciales para validar que se cumple esta igualdad.

$$\begin{split} &\gamma = dp_1 \wedge dq^1 + dp_2 \wedge dq^2 \\ &= \left(\frac{\partial p_1}{\partial Q^1} dQ^1 + \frac{\partial p_1}{\partial P_1} dP_1 + \frac{\partial p_1}{\partial Q^2} dQ^2 + \frac{\partial p_1}{\partial P_2} dP_2\right) \wedge \left(\frac{\partial q^1}{\partial Q^1} dQ^1 + \frac{\partial q^1}{\partial P_1} dP_1 + \frac{\partial q^1}{\partial Q^2} dQ^2 + \frac{\partial q^1}{\partial P_2} dP_2\right) \\ &+ \left(\frac{\partial p_2}{\partial Q^1} dQ^1 + \frac{\partial p_2}{\partial P_1} dP_1 + \frac{\partial p_2}{\partial Q^2} dQ^2 + \frac{\partial p_2}{\partial P_2} dP_2\right) \wedge \left(\frac{\partial q^2}{\partial Q^1} dQ^1 + \frac{\partial q^2}{\partial P_1} dP_1 + \frac{\partial q^2}{\partial Q^2} dQ^2 + \frac{\partial q^2}{\partial P_2} dP_2\right) \\ &= \frac{\partial p_1}{\partial Q^1} \frac{\partial q^1}{\partial Q^1} dQ^1 \wedge dQ^1 + \frac{\partial p_1}{\partial Q^1} \frac{\partial q^1}{\partial P_1} dQ^1 \wedge dP_1 + \frac{\partial p_1}{\partial Q^2} \frac{\partial q^2}{\partial Q^2} dQ^1 \wedge dQ^2 + \frac{\partial p_1}{\partial Q^1} \frac{\partial q^1}{\partial P_2} dQ^1 \wedge dP_2 \\ &+ \frac{\partial p_1}{\partial P_1} \frac{\partial q^1}{\partial Q^1} dP_1 \wedge dQ^1 + \frac{\partial p_1}{\partial P_1} \frac{\partial q^1}{\partial P_1} dP_1 \wedge dP_1 + \frac{\partial p_1}{\partial P_1} \frac{\partial q^2}{\partial Q^2} dP_1 \wedge dQ^2 + \frac{\partial p_1}{\partial P_1} \frac{\partial q^1}{\partial P_2} dP_1 \wedge dP_2 \\ &+ \frac{\partial p_1}{\partial Q^2} \frac{\partial q^1}{\partial Q^1} dQ^2 \wedge dQ^1 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial P_1} dQ^2 \wedge dP_1 + \frac{\partial p_1}{\partial Q^2} \frac{\partial q^2}{\partial Q^2} dQ^2 \wedge dQ^2 + \frac{\partial p_1}{\partial P_1} \frac{\partial q^1}{\partial P_2} dP_1 \wedge dP_2 \\ &+ \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial Q^1} dQ^2 \wedge dQ^1 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial P_1} dQ^2 \wedge dP_1 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^2}{\partial Q^2} dQ^2 \wedge dQ^2 + \frac{\partial p_1}{\partial P_1} \frac{\partial q^1}{\partial P_2} dQ^2 \wedge dP_2 \\ &+ \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial Q^1} dQ^2 \wedge dQ^1 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial P_1} dP_2 \wedge dP_1 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^2}{\partial Q^2} dQ^2 \wedge dQ^2 + \frac{\partial p_1}{\partial P_2} \frac{\partial q^1}{\partial P_2} dP_2 \wedge dP_2 \\ &+ \frac{\partial p_2}{\partial Q^2} \frac{\partial q^2}{\partial Q^1} dQ^1 \wedge dQ^1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial P_1} dQ^1 \wedge dP_1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial Q^2} dQ^1 \wedge dQ^2 + \frac{\partial p_2}{\partial P_1} \frac{\partial q^2}{\partial P_2} dQ^1 \wedge dP_2 \\ &+ \frac{\partial p_2}{\partial P_1} \frac{\partial q^2}{\partial Q^1} dP_1 \wedge dQ^1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial P_1} dP_1 \wedge dP_1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial Q^2} dP_1 \wedge dQ^2 + \frac{\partial p_2}{\partial P_1} \frac{\partial q^2}{\partial P_1} dP_1 \wedge dP_2 \\ &+ \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial Q^1} dQ^1 \wedge dQ^1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial P_1} dQ^1 \wedge dP_1 + \frac{\partial p_2}{\partial Q^2} \frac{\partial q^2}{\partial Q^2} dP_1 \wedge dQ^2 + \frac{\partial p_2}{\partial P_1} \frac{\partial q^2}{\partial P_1} dP_1 \wedge dP_2 \\ &+ \frac{\partial p_2}{\partial Q^2} \frac{\partial q^2}{\partial Q^1} dQ^2 \wedge dQ^1 + \frac{\partial p_2}{\partial P_2} \frac{\partial q^2}{\partial P_1} dQ^2 \wedge dP_1 + \frac{\partial p_2}{\partial Q^2} \frac{\partial q^2}{\partial Q$$

Agrupando términos y utilizando la propiedad de antisimetría del producto exterior,

$$\gamma = dQ^{1} \wedge dQ^{1} \left(\frac{\partial p_{1}}{\partial Q^{1}} \frac{\partial q^{1}}{\partial Q^{1}} + \frac{\partial p_{2}}{\partial Q^{1}} \frac{\partial q^{2}}{\partial Q^{1}} \right) + dQ^{1} \wedge dQ^{2} \left(-\frac{\partial p_{1}}{\partial Q^{2}} \frac{\partial q^{1}}{\partial Q^{1}} + \frac{\partial p_{2}}{\partial Q^{2}} \frac{\partial q^{2}}{\partial Q^{2}} \right)$$

$$+ dP_{1} \wedge dQ^{1} \left(-\frac{\partial p_{1}}{\partial Q^{1}} \frac{\partial q^{1}}{\partial P_{1}} + \frac{\partial p_{1}}{\partial P_{1}} \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial p_{2}}{\partial Q^{1}} \frac{\partial q^{2}}{\partial P_{1}} + \frac{\partial p_{2}}{\partial P_{1}} \frac{\partial q^{2}}{\partial Q^{1}} \right)$$

$$+ dQ^{2} \wedge dP^{1} \left(\frac{\partial p_{1}}{\partial Q^{2}} \frac{\partial q^{1}}{\partial P_{1}} + \frac{\partial p_{2}}{\partial P_{1}} \frac{\partial q^{2}}{\partial Q^{2}} \right) + dP_{1} \wedge dP_{1} \left(\frac{\partial p_{1}}{\partial Q^{1}} \frac{\partial q^{1}}{\partial P_{1}} + \frac{\partial p_{2}}{\partial Q^{1}} \frac{\partial q^{2}}{\partial Q^{1}} \right)$$

$$+ dP_{1} \wedge dP_{2} \left(\frac{\partial p_{1}}{\partial Q^{1}} \frac{\partial q^{1}}{\partial P_{2}} + \frac{\partial p_{2}}{\partial P_{2}} \frac{\partial q^{2}}{\partial Q^{2}} \right) + dP_{2} \wedge dQ^{2} \left(-\frac{\partial p_{1}}{\partial Q^{2}} \frac{\partial q^{1}}{\partial P_{2}} + \frac{\partial p_{2}}{\partial P_{2}} \frac{\partial q^{2}}{\partial Q^{2}} \right) .$$

Las cancelaciones e igualaciones a 1 las hemos hecho utilizando todas las derivadas que obtuvimos anteriormente, con lo cual tenemos que

$$\gamma = dP_1 \wedge dQ^1 + dP_2 \wedge dQ^2, \tag{2.12}$$

y por lo tanto hemos encontrado la relación que esperábamos,

$$\left(dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = dP_1 \wedge dQ^1 + dP_2 \wedge dQ^2.\right)$$
 (2.13)

Para las segundas transformaciones canónicas, comencemos igual la prueba utilizando los paréntesis de Poisson, que recordamos que debe cumplirse que

$$\{q^{1}, q^{2}\} = 0,
 \{q^{1}, p_{2}\} = 0,
 \{q^{1}, p_{1}\} = 1,
 \{p_{1}, p_{2}\} = 0,
 \{q^{2}, p_{1}\} = 0,
 \{q^{2}, p_{2}\} = 1.$$

$$(2.14)$$

Entonces,

$$\{q^{1}, q^{2}\} = \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial q^{2}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial q^{2}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial q^{2}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial q^{2}}{\partial Q^{2}}$$

$$= (\cos \lambda) \left(\frac{\sin \lambda}{m\omega}\right) - \left(\frac{\sin \lambda}{m\omega}\right) (\cos \lambda)$$

$$\therefore \{q^{1}, q^{2}\} = \frac{\cos \lambda \sin \lambda}{m\omega} - \frac{\cos \lambda \sin \lambda}{m\omega} = 0. \tag{2.15}$$

$$\{q^{1}, p_{2}\} = \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial p_{2}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial p_{2}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial p_{2}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial p_{2}}{\partial Q^{2}}$$

$$\therefore \{q^{1}, p_{2}\} = 0.$$

$$(2.16)$$

$$\{q^{1}, p_{1}\} = \frac{\partial q^{1}}{\partial Q^{1}} \frac{\partial p_{1}}{\partial P_{1}} - \frac{\partial q^{1}}{\partial P_{1}} \frac{\partial p_{1}}{\partial Q^{1}} + \frac{\partial q^{1}}{\partial Q^{2}} \frac{\partial p_{1}}{\partial P_{2}} - \frac{\partial q^{1}}{\partial P_{2}} \frac{\partial p_{1}}{\partial Q^{2}}$$

$$= (\cos \lambda)(\cos \lambda) - \left(\frac{\sin \lambda}{m\omega}\right) (-m\omega \sin \lambda)$$

$$\therefore \{q^{1}, p_{1}\} = \cos^{2} \lambda + \sin^{2} \lambda = 1. \tag{2.17}$$

$$\begin{aligned} \{p_1, p_2\} &= \frac{\partial p_1}{\partial Q^1} \frac{\partial p_2}{\partial P_1} - \frac{\partial p_1}{\partial P_1} \frac{\partial p_2}{\partial Q^1} + \frac{\partial p_1}{\partial Q^2} \frac{\partial p_2}{\partial P_2} - \frac{\partial p_1}{\partial P_2} \frac{\partial p_2}{\partial Q^2} \\ &= -(\cos \lambda)(-m\omega \sin \lambda) + (-m\omega \sin \lambda)(\cos \lambda) \end{aligned}$$

$$\therefore \{p_1, p_2\} = m\omega \cos \lambda \sin \lambda - m\omega \cos \lambda \sin \lambda = 0.$$
 (2.18)

$$\{q^2, p_1\} = \frac{\partial q^2}{\partial \mathcal{O}^1} \frac{\partial p_1}{\partial P_1} - \frac{\partial q^2}{\partial P_1} \frac{\partial p_1}{\partial Q^1} + \frac{\partial q^2}{\partial \mathcal{O}^2} \frac{\partial p_1}{\partial P_2} - \frac{\partial q^2}{\partial P_2} \frac{\partial p_1}{\partial Q^2} \frac{\partial p_2}{\partial Q^2}$$

$$\therefore \{q^2, p_1\} = 0. \tag{2.19}$$

$$\{q^{2}, p_{2}\} = \frac{\partial q^{2}}{\partial Q^{1}} \frac{\partial p_{2}}{\partial P_{1}} - \frac{\partial q^{2}}{\partial P_{1}} \frac{\partial p_{2}}{\partial Q^{1}} + \frac{\partial q^{2}}{\partial Q^{2}} \frac{\partial p_{2}}{\partial P_{2}} - \frac{\partial q^{2}}{\partial P_{2}} \frac{\partial p_{2}}{\partial Q^{2}}$$

$$= -\left(\frac{\operatorname{sen}\lambda}{m\omega}\right) (-m\omega \operatorname{sen}\lambda) + (\cos\lambda)(\cos\lambda)$$

$$\therefore = \{q^{2}, p_{2}\} = \operatorname{sen}^{2}\lambda + \cos^{2}\lambda = 1. \tag{2.20}$$

Probemos ahora con los paréntesis de Lagrange, que se debe cumplir que

$$[q^{1}, q^{2}] = 0,$$

$$[q^{1}, p_{2}] = 0,$$

$$[q^{1}, p_{1}] = 1,$$

$$[p_{1}, p_{2}] = 0,$$

$$[q^{2}, p_{1}] = 0,$$

$$[q^{2}, p_{2}] = 1.$$

$$(2.21)$$

De nuevo, la prueba con los paréntesis de Lagrange es trivial al saber que

$$\sum_{k}^{2n} \{q^k, p_i\}[q^k, p_j] = \delta_{ij}, \qquad (2.22)$$

que fue el resultado al cual se llegó en el problema anterior. Con lo cual tenemos que, utilizando los resultados que hemos obtenidos arriba

$$[q^{1}, q^{2}] = \{q^{1}, q^{2}\} = 0,$$

$$[q^{1}, p_{2}] = \{q^{1}, p_{2}\} = 0,$$

$$[q^{1}, p_{1}] = \{q^{1}, p_{1}\} = 1,$$

$$[p_{1}, p_{2}] = \{p_{1}, p_{2}\} = 0,$$

$$[q^{2}, p_{1}] = \{q^{2}, p_{1}\} = 0,$$

$$[q^{2}, p_{2}] = \{q^{2}, p_{2}\} = 1.$$

$$(2.23)$$

La última prueba será demostrar que la transformación canónica deja invariante a la forma simpléctica. Para hacer esto calculemos las diferenciales,

$$dq^{1} = \cos \lambda dQ^{1} + \frac{\sin \lambda}{m\omega} dP_{2}, \qquad (2.24)$$

$$dq^2 = \cos \lambda dQ^2 + \frac{\sin \lambda}{m\omega} dP_1, \qquad (2.25)$$

$$dp_1 = -m\omega \operatorname{sen} \lambda dQ^2 + \cos \lambda dP_1, \qquad (2.26)$$

$$dp_2 = -m\omega \operatorname{sen} \lambda dQ^1 + \cos \lambda dP_2. \tag{2.27}$$

Hagamos ahora los siguientes productos exteriores,

$$dp_{1} \wedge dq^{1} = (-m\omega \operatorname{sen} \lambda dQ^{2} + \cos \lambda dP_{1}) \wedge \left(\cos \lambda dQ^{1} + \frac{\operatorname{sen} \lambda}{m\omega} dP_{2}\right)$$

$$= -m\omega \operatorname{sen} \lambda \cos \lambda dQ^{2} \wedge dQ^{1} - m\omega \operatorname{sen} \lambda \frac{\operatorname{sen} \lambda}{m\omega} dQ^{2} \wedge dP_{2}$$

$$+ \cos \lambda \cos \lambda dP_{1} \wedge dQ^{1} + \cos \lambda \frac{\operatorname{sen} \lambda}{m\omega} dP_{1} \wedge dP_{2}$$

$$= -m\omega \operatorname{sen} \lambda \cos \lambda dQ^{2} \wedge dQ^{1} - \operatorname{sen}^{2} \lambda dQ^{2} \wedge dP_{2}$$

$$+ \cos^{2} \lambda dP_{1} \wedge dQ^{1} + \frac{1}{m\omega} \cos \lambda \operatorname{sen} \lambda dP_{1} \wedge dP_{2}.$$

$$(2.28)$$

$$dp_{2} \wedge dq^{2} = (-m\omega \operatorname{sen} \lambda dQ^{1} + \cos \lambda dP_{2}) \wedge \left(\cos \lambda dQ^{2} + \frac{\operatorname{sen} \lambda}{m\omega} dP_{1}\right)$$

$$= -m\omega \operatorname{sen} \lambda \cos \lambda dQ^{1} \wedge dQ^{2} - m\omega \operatorname{sen} \lambda \frac{\operatorname{sen} \lambda}{m\omega} dQ^{1} \wedge dP_{1}$$

$$+ \cos \lambda \cos \lambda dP_{2} \wedge dQ^{2} + \cos \lambda \frac{\operatorname{sen} \lambda}{m\omega} dP_{2} \wedge dP_{1}$$

$$= -m\omega \operatorname{sen} \lambda \cos \lambda dQ^{1} \wedge dQ^{2} - \operatorname{sen}^{2} \lambda dQ^{1} \wedge dP_{1}$$

$$+ \cos^{2} \lambda dP_{2} \wedge dQ^{2} + \frac{1}{m\omega} \cos \lambda \operatorname{sen} \lambda dP_{2} \wedge dP_{1}.$$

$$(2.29)$$

Entonces si la transformación es canónica debe cumplirse que

$$dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = dP_1 \wedge dQ^1 + dP_2 \wedge dQ^2, \tag{2.30}$$

sumemos entonces (2.28) con (2.29) a ver si se cumple esta igualdad,

$$dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = -m\omega \operatorname{sen} \lambda \cos \lambda dQ^2 \wedge dQ^1 - \operatorname{sen}^2 \lambda dQ^2 \wedge dP_2$$
$$+ \cos^2 \lambda dP_1 \wedge dQ^1 + \frac{1}{m\omega} \cos \lambda \operatorname{sen} \lambda dP_1 \wedge dP_2$$
$$- m\omega \operatorname{sen} \lambda \cos \lambda dQ^1 \wedge dQ^2 - \operatorname{sen}^2 \lambda dQ^1 \wedge dP_1$$
$$+ \cos^2 \lambda dP_2 \wedge dQ^2 + \frac{1}{m\omega} \cos \lambda \operatorname{sen} \lambda dP_2 \wedge dP_1.$$

Si usamos la propiedad anti-simétrica del producto exterior la ecuación anterior puede escribirse como

$$dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = -m\omega \operatorname{sen} \Delta \operatorname{cos} \lambda dQ^2 \wedge dQ^1 + \operatorname{sen}^2 \lambda dP_2 \wedge dQ^2 + \cos^2 \lambda dP_1 \wedge dQ^1 + \frac{1}{m\omega} \cos \Delta \operatorname{sen} \lambda dP_1 \wedge dP_2 + m\omega \operatorname{sen} \Delta \operatorname{cos} \lambda dQ^2 \wedge dQ^1 + \operatorname{sen}^2 \lambda dP_1 \wedge dQ^1 + \cos^2 \lambda dP_2 \wedge dQ^2 - \frac{1}{m\omega} \cos \Delta \operatorname{sen} \lambda dP_1 \wedge dP_2.$$

$$dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = (\operatorname{sen}^2 \lambda + \cos^2 \lambda) dP_1 \wedge dQ^1 + (\operatorname{sen}^2 \lambda + \cos^2 \lambda) dP_2 \wedge dQ^2 \quad (2.31)$$

$$\therefore dp_1 \wedge dq^1 + dp_2 \wedge dq^2 = dP_1 \wedge dQ^1 + dP_2 \wedge dQ^2.$$
(2.32)

Problema 3

Considere la función $F(q, p) = pq - \frac{1}{2m}p^2t$ encuentre TODAS las transformaciones canónicas generadas por esta función.

Solución:

Para dar solución a este problema consideremos una transformación de coordenadas en el espacio extendido (dependiente del tiempo)

$$\begin{aligned} Q &= Q(q, p, t) \\ P &= P(q, p, t) \\ T &= T(q, p, t) = t. \end{aligned}$$

y su inversa

$$q = q(Q, P, T)$$

$$p = p(Q, P, T)$$

$$t = y(Q, P, T) = t.$$

que será canónica si al ser (q,p,t) un sistema de coordenadas canónicas, (Q,P,T) también lo es. Véase que el tiempo no se transforma T=t, lo cual indica que las coordenadas (Q,P) son coordenadas canónicas para todo valor del tiempo. Recordemos que para las transformaciones canónicas dependientes del tiempo tenemos que la uno forma diferencial para las coordenadas (q,p) se expresa como (para una dimensión)

$$\omega = pdq - Hdt, \tag{3.1}$$

donde H(q,p,t) es la función hamiltoniana, y para las coordenadas (Q,P,T)

$$\Omega = PdQ - H'dt \tag{3.2}$$

donde H'(q, p, t) es la nueva hamiltoniana. Ahora si la transformación es canónica debe cumplirse que las diferenciales de ω y Ω sean iguales, lo que quiere decir que la diferencia entre ω y Ω debe ser la diferencial de una función el espacio de fase, que es la que nos da el problema. Tenemos entonces que

$$pdq - Hdt - PdQ + H'dt = dF, (3.3)$$

diferenciando con respecto la tiempo tenemos

$$p\dot{q} - H - P\dot{Q} + H' = \dot{F} \tag{3.4}$$

pero Q=Q(q,f,t) y F=F(q,p,t) por lo tanto

$$p\dot{q} - H - P\left(\frac{\partial Q}{\partial q}\dot{q} + \frac{\partial Q}{\partial p}\dot{p} + \frac{\partial Q}{\partial t}\right) + H' = \frac{\partial F}{\partial q}\dot{q} + \frac{\partial F}{\partial p}\dot{p} + \frac{\partial F}{\partial t},\tag{3.5}$$

Para que esta igualdad se mantenga, deben ser iguales los coeficientes de \dot{q} y \dot{p} , entonces para \dot{q}

$$p - \frac{\partial Q}{\partial q}P = \frac{\partial F}{\partial q} = p, \tag{3.6}$$

de esta expresión vemos que

$$\frac{\partial Q}{\partial q} = 0 \quad \text{\'o} \quad P = 0, \tag{3.7}$$

ahora para \dot{p}

$$-\frac{\partial Q}{\partial p}P = \frac{\partial F}{\partial p} = q - \frac{pt}{m},\tag{3.8}$$

de donde vemos claramente que $P \neq 0$, por lo tanto de (3.7) vemos que obligatoriamente $\partial Q/\partial q = 0$, entonces necesariamente Q es solo una función de (p,t). Entonces de lo que acabamos de probar tenemos que

$$Q = \xi(p, t), \tag{3.9}$$

con $\xi(p,t)$ arbitraria y de (3.8) vemos que

$$P = \frac{pt/m - q}{\partial \xi/\partial p}.$$
(3.10)

Para verificar que esta transformación es canónica entonces debe cumplirse que $\{Q, P\} = 1$,

$$\{Q, P\} = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q} = \left(\frac{\partial \xi}{\partial p}\right) \left(-\frac{1}{\frac{\xi}{\partial p}}\right) = -\frac{\partial \xi}{\partial p} \frac{\partial p}{\partial \xi} = -1. \tag{3.11}$$

Lo cual finaliza el problema. Claramente tenemos una gran cantidad de transformaciones canónicas que puede generar esta función generadora debido a que $\xi(p,t)$ es arbitraria.

Problema 4

Encuentre las funciones generadoras para las transformaciones canónicas del problema 2. Solución:

Problema 5

Considere una de las regiones acotadas (aquellas donde las trayectorias son regulares y acotadas) del espacio de fase de un péndulo simple, ¿será posible encontrar una transformación canónica de coordenadas de tal forma que, en las nuevas coordenadas, tengamos una coordenada ignorable?, note que esto es similar al caso del oscilador armónico que estudiamos como ejemplo. En caso de una respuesta afirmativa calcule esta transformación (puede dejar algunas integrales indicadas) ¿Será posible esto en las tres regiones acotadas? ¿Será posible esto de manera global?, esto es, una sola transformación para todo el espacio de fase (excepto por algunos puntos o lineas).

Solución:

Problema 6

Al hacer una transformación de punto dependiente del tiempo la hamiltoniana debe cambiarse por medio de

$$H' = H + \sum_{j} p_{j} \frac{\partial q^{j}}{\partial t},$$

ver fórmula (189) de las notas.

Al aplicar una transformación canónica de coordenadas dependiente del tiempo la hamiltoniana debe cambiar por

$$H' = H + \frac{\partial F}{\partial t}$$

donde F es la función generadora de la transformación.

Encuentre la relación entre estos dos resultados. Así mimos encuentre la relación entre la fórmula para la integral de movimiento ante una simetría que se vio en el contexto de la formulación lagrangiana y los generadores infinitesimales del grupo de dicha simetría.

Solución:

Recordemos un poco de donde salen estas ecuaciones. La primera,

$$H' = H + \sum_{i} p_{j} \frac{\partial q^{j}}{\partial t}, \tag{6.1}$$

surge de una transformación de punto, definidas como aquella en la cual se propone un cambio de coordenadas de la variedad de configuración, i.e.

$$Q^i = Q^i(q, t), (6.2)$$

y los impulsos se generan utilizando la definición

$$P_i = \frac{\partial L}{\partial \dot{Q}^i}. (6.3)$$

Veíamos que este tipo de transformaciones de coordenadas son canónicas, es decir, que hacen que las ecuaciones de movimiento conserven la forma hamiltoniana, pero la función hamiltoniana debe modificarse de acuerdo a (6.1). Por otra parte, vimos que al aplicar una transformación canónica de coordenadas dependiente del tiempo, también se mantendrá la forma hamiltoniana de las ecuaciones ya que por definición esto es lo que hacen las transformaciones canónicas, y también en este caso debíamos cambiar la función hamiltoniana para que se mantuviera esto de acuerdo a

$$H' = H + \frac{\partial F}{\partial t}. ag{6.4}$$

Podemos entonces ahora ver que las transformaciones de punto como las hemos planteado son solo un ejemplo de las transformaciones canónicas de coordenadas dependientes del tiempo. Veamos ahora como están relacionadas estas dos ecuaciones. Para ver esto, supongamos que las H' de (6.1) y (6.4) son iguales, lo cual es plausible ya que ambas dejan invariantes a las ecuaciones de Hamilton y a la forma simpléctica, y pensemos que tenemos ambas ecuaciones y queremos ver entonces que relación tiene la F con el segundo término

de la derecha de la ecuación (6.1), que son las que sobreviven al hacer la igualdad, es decir que tenemos

$$\sum_{j} p_{j} \frac{\partial q^{j}}{\partial t} = \frac{\partial F}{\partial t}.$$
(6.5)

Sino queda claro lo que hacemos, sencillamente estamos viendo qué función generadora produce las transformaciones de punto, la cual vimos que era una transformación de coordenadas canónica. Vemos ahora que

$$F = \sum_{j} \int p_{j} \frac{\partial q^{j}}{\partial t} dt, \tag{6.6}$$

pero

$$\frac{d}{dt}(p_j q^j) = q^j \frac{\partial p_j}{\partial t} + p_j \frac{\partial q^j}{\partial t}, \tag{6.7}$$

entonces

$$F = \sum_{j} \int \left(\frac{d}{dt} (p_j q^j) - q^j \frac{\partial p_j}{\partial t} \right) dt$$
 (6.8)

$$\therefore F = \sum_{j} \left[p_{j} q^{j} - \int q^{j} \frac{\partial p_{j}}{\partial t} dt \right]. \tag{6.9}$$

La cual entonces sería la función generadora de una transformación de punto.

Problema 7

Cuando la hamiltoniana no depende explícitamente del tiempo las fórmulas para el campo vectorial hamiltoniano $\gamma[\bullet, V_H] = dH$, en el espacio de fase, y $\Gamma[V_H, \bullet] = 0$ en el espacio de fase extendido, son equivalentes. Demuestre esto de manera global, esto es, sin utilizar coordenadas.

Solución: