Μαθηματικά Γ' Λυκείου

Θεωρία & Συνοπτική Μεθοδολογία Μόνο για Επανάληψη.

Επισήμανση στην θεωρία:

- Σταθερές Μεταβλητές:
 - e = 2.71...
 - $\pi = 3.14...$
- Ο φυσικός λογάριθμος είναι ο λογάριθμος με βάση "e":

$$\ln \theta = \log_e \theta$$

• Βασική ιδιότητα του λογάριθμου:

$$\log_{\alpha} \theta = x \iff \alpha^x = \theta$$

• Σύνολα Αριθμών:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$

- № : Φυσικοί αριθμοί.
 - Δηλαδή {1, 2, 3, 4, 5, ...}
- \mathbb{Z} : Ακέραιοι Αριθμοί.
 - Δηλαδή $\{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$
- Q : Ρητοί αριθμοί
 - Δηλαδή όλοι οι αριθμοί που μπορούν να αναπαρασταθούν με ένα κλάσμα ακέραιων αριθμών.

$$\mathbb{Q} = \left\{ \frac{\alpha}{\beta} \mid \alpha \in \mathbb{Z}, \beta \in \mathbb{Z}^* \right\}$$

- \mathbb{R} : Πραγματικοί αριθμοί
 - Δηλαδή $\mathbb{R}=\mathbb{Q}\cup$ Άρρητοι αριθμοι
- Αξίζει να σημειωθεί πως ο αστερίσκος στα σύνολα των αριθμών συμβολίζει το παρακάτω:
 - $\mathbb{N}^* = \mathbb{N} \{0\}$
 - $\mathbb{Z}^* = \mathbb{Z} \{0\}$
 - $\mathbb{Q}^* = \mathbb{Q} \{0\}$
 - $\mathbb{R}^* = \mathbb{R} \{0\}$
- Διαστήματα:
 - $x \in (\alpha, \beta) \iff \alpha < x < \beta$
 - $x \in [\alpha, \beta) \iff \alpha \le x < \beta$
 - $x \in (\alpha, \beta] \iff \alpha < x \le \beta$
 - $x \in [\alpha, \beta] \iff \alpha < x < \beta$

- Ιδιότητες Ανισοτήτων:
 - Fia $\alpha < \beta$ me $\alpha, \beta \in \mathbb{R}$ kai éstw $\gamma \in \mathbb{R}$, is yúei:

$$\alpha < \beta \iff \alpha + \gamma < \beta + \gamma$$

$$\alpha < \beta \iff \alpha - \gamma < \beta - \gamma$$

- Γ I $\alpha \alpha < \beta \mu \epsilon \alpha, \beta \in \mathbb{R}$, έχουμε:
 - Για κάθε $\gamma > 0$:

$$\alpha < \beta \iff \alpha \cdot \gamma < \beta \cdot \gamma$$

• Για κάθε $\gamma < 0$:

$$\alpha < \beta \iff \alpha \cdot \gamma > \beta \cdot \gamma$$

- Επιτρέπεται η πρόσθεση κατά μέλη (**MONO** για την **ίδια** ανισοτική φορά). Η "αφαίρεση" μπορεί να γίνει μόνο με τα παρακάτω βήματα. Έστω $\alpha < \beta$ και $\gamma < \delta$:
 - 1. Πολλαπλασιάζω με το -1:

$$\alpha < \beta \iff -\alpha > -\beta$$

2. Προσθέτω κατά μέλη:

$$-\beta < -\alpha$$
, $\gamma < \delta \implies \gamma - \beta < \delta - \alpha$

• AV $\alpha > 0$ KOI $\beta > 0$, TÓTE:

$$\alpha < \beta \iff \alpha^{\nu} < \beta^{\nu} \quad \text{ópou } \nu \in \mathbb{N}^*$$

• Av όμως $\alpha, \beta \in \mathbb{R}^*$, τότε:

$$\alpha < \beta \iff \alpha^{2\nu+1} < \beta^{2\nu+1}$$
 όπου $\nu \in \mathbb{N}^*$

Ουσιαστικά, το $2\nu+1=$ περιττός αριθμός. Άρα θα μπορούμε να πούμε $\nu\in\{1,3,5,7,9,\ldots\}$

• Άν $\alpha, \beta \geqslant 0$ (δηλαδή α, β ομόσημα):

$$\alpha \geqslant \beta \iff \frac{1}{\alpha} \lessgtr \frac{1}{\beta}$$

Ενότητα 1

Κεφάλαιο 1.2

Ορισμός Συνάρτησης

Έστω A ένα υποσύνολο του \mathbb{R} . Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμου το A μια διαδικασία (κανόνα) f με την οποία κάθε στοιχείο $x \in A$ αντιστοιχίζεται σε έναν μόνο αριθμό y. Το y ονομάζεται τιμή της f στο x και συμβολίζεται με f(x).

Συμβολικά τον παραπάνω ορισμό τον γράφουμε:

$$f \colon A \to \mathbb{R}$$

 $x \xrightarrow{f} y = f(x)$

- x: ανεξάρτητη μεταβλητή
 y: εξαρτημένη μεταβλητή
- Το πεδίο ορισμού της συνάρτησης ορίζεται και ως $A=D_f$
- Το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα $x \in A$, λέγεται σύνολο τιμών της f και συμβολίζεται με f(A) (ή $f(D_f)$). Είναι δηλαδή:

$$f(A) = \{y \mid y = f(x)$$
για κάποιο $x \in A\}$

(Ο λόγος που λέει για κάποιο και όχι για κάθε είναι γιατί τότε θα εννοούσε ότι το ίδιο y είναι αποτέλεσμα της f για όλα τα x στο A. Δηλαδή πως η f είναι σταθερή (f(x) = y για κάθε $x \in A$). Αυτό προφανώς δεν ισχύει για τις περισσότερες συναρτήσεις.)

Δεν είναι συνάρτηση.

Είναι συνάρτηση.

Συνάρτηση	Περιορισμός
$f(x) = \frac{P(x)}{Q(x)}$	$Q(x) \neq 0$
$f(x) = \sqrt[\nu]{P(x)}, \nu \in \mathbb{N}^* - 1$	$P(x) \ge 0$
$f(x) = \ln(P(x))$	P(x) > 0
$f(x) = \varepsilon \varphi(P(x))$	$P(x) \neq \kappa \pi + \frac{\pi}{2}, \kappa \in \mathbb{Z}$
$f(x) = \sigma\varphi(P(x))$	$P(x) \neq \kappa \pi, \kappa \in \mathbb{Z}$
$f(x) = (P(x))^{Q(x)}$	P(x)>0 ή ($P(x)=0$ και $Q(x)>0$) ή
	$(P(x) < 0 \text{ Kal } Q(x) \in \mathbb{Z})$

Ορισμός Γραφικής Παράστασης Συνάρτησης

Έστω f μια συνάρτηση με πεδίο ορισμου A και Oxy ενα συστημα συντενταγμένων στο επίπεδο. Το σύνολο των σημείων $M(x,y), x \in A$, λέγεται **γραφική παράσταση** της f και συμβολίζεται με C_f .

Από τον ορισμό της συνάρτησης και της γραφικής παράστασης, μπορούμε να αναπαραστήσουμε ποια είναι η συνάρτηση και ποια όχι. (Ο κυκλος δεν είναι συνάρτηση, καθώς τουλάχιστον ένα x αντιστοιχεί σε παραπάνω απο ένα y)

Έτσι από την γραφική παράσταση της C_f μπορούμε να συμπαιράνουμε:

- 1. Το πεδίο ορισμού της f είναι το σύνολο A των τετμημένων των σημείων της C_f .
- 2. Το σύνολο τιμών της f είναι το σύνολο f(A) των τεταγμένων των σημείων της C_f .
- 3. Η τιμή της f στο $x_0 \in A$ είναι η τεταγμένη του σημείου τομής της ευθείας $x=x_0$ και της C_f .

Κάποιες βασικές συναρτήσεις είναι:

Η πολυωνυμική συνάρτηση $f(x) = \alpha x + \beta$

Η πολυωνυμική συνάρτηση $f(x)=\alpha x^2, \alpha \neq 0$

Η πολυωνυμική συνάρτηση $f(x)=\alpha x^3, \alpha \neq 0$

Η ρητή συνάρτηση $f(x)=rac{lpha}{x}, lpha
eq 0$ και $D_f=\mathbb{R}^*$

Η συνάρτηση $f(x)=\sqrt{x}, \alpha \neq 0$ και $D_f=[0,+\infty)$

Η τριγωνομετρική συναρτήσεις: $f(x) = \eta \mu x, f(x) = \sigma v \nu x, f(x) = \varepsilon \varphi x$

Τέλος, γνωρίζοντας την γραφική παράσταση μιας συνάρτησης (δηλαδή την C_f), μπορούμαι εύκολα να υπολογίσουμε την γραφική παράσταση μιας συνάρτησης σε αυτές τις περιπτώσεις, έστω υπάρχει f(x):

- 1. -f(x)
- 2. |f(x)|
- 3. f(-x) (εφόσον $-x \in D_f$)
- 4. f(|x|) (εφόσον $|x| \in D_f$)

Άρα έστω η παρακάτω γραφική παράσταση συνάρτησης, C_f :

6

Μπορούμαι να σχεδιάσουμε τις παρακάτω συναρτήσεις:

ΠΡΟΣΟΧΗ!!! Αν υποθέσουμε ότι το πεδίο ορισμού της συνάρτησης είναι αυτό που δόθηκε στο C_f , τότε: Οι δύο τελευταίες γραφικές παραστάσεις ((3),(4)) **δεν** αναπαριστώνται στο πεδίο ορισμού που έχει δοθεί για το C_f .

- Μετατόπιση Συνάρτησης

Επιπλέον, η οριζόντια και η κατακόρυφη μετατόπιση γίνεται ως εξής: Έστω $f:A\to\mathbb{R}$, και η γραφική παράσταση της C_f . Επίσης έστω $\alpha\in\mathbb{R}$.

ΠΡΟΣΟΧΗ!!! Για να ισχύοουν τα δύο τελευταία παραδείγματα πρέπει $x+\alpha\in A$, όπου A είναι το πεδίο ορισμού της συνάρτησης f.

- Άρτιες και περιττές συναρτήσεις

Μια συνάρτηση $f:A\to\mathbb{R}$ λέγεται άρτια όταν ισχύει

$$f(-x) = f(x)$$
 για κάθε $x, -x \in A$.

Μια συνάρτηση $f:A\to\mathbb{R}$ λέγεται περιττή όταν ισχύει

$$f(-x) = -f(x)$$
 για κάθε $x, -x \in A$.

Παρατηρήσεις:

• Για να έχει νόημα να εξετάσουμε αν μια συνάρτηση είναι άρτια ή περιττή, το πεδίο ορισμού A πρέπει να είναι **συμμετρικό** ως προς το 0, δηλαδή:

$$x \in A \implies -x \in A.$$

- Γραφικά:
 - Μια άρτια συνάρτηση έχει **άξονα συμμετρίας τον άξονα** y.
 - Μια περιττή συνάρτηση έχει **κέντρο συμμετρίας την αρχή** O(0,0).
- Παραδείγματα:

$$f(x) = x^2$$
 (άρτια), $g(x) = x^3$ (περιττή).

• Καμία συνάρτηση δεν μπορεί να είναι ταυτόχρονα άρτια και περιττή, εκτός από τη μηδενική f(x)=0.

Γραφικές Παραστάσεις:

- Ισότητα Συναρτήσεων

Ορισμός Ισότητας Συνάρτησης (σελ.23)

Δύο συναρτήσεις $f:A\to\mathbb{R}$ και $g:B\to\mathbb{R}$ λέγονται ίσες όταν ισχύουν τα εξής:

- 1. Τα πεδία ορισμού τους είναι ίσα: A = B
- 2. και για κάθε $x \in A$ έχουμε f(x) = g(x)

Παρατηρήσεις:

- Αν τα πεδία ορισμού διαφέρουν, τότε οι συναρτήσεις δεν θεωρούνται ίσες, ακόμη κι αν έχουν ίδιους τύπους τύπου (π.χ. $f(x)=x^2$ με $A=\mathbb{R}$ και $g(x)=x^2$ με $B=[0,+\infty)$ δεν είναι ίσες).
- Για να αποδείξουμε ότι δύο συναρτήσεις είναι ίσες, αρκεί να δείξουμε ότι έχουν κοινό πεδίο ορισμού και ίδιες τιμές για κάθε x (δηλάδή αρκεί να δείξουμε ότι έχουν και τον ίδιο τύπο).

Πράξεις Συναρτήσεων

Έστω δύο συναρτήσεις $f:A\to\mathbb{R}$ και $g:B\to\mathbb{R}$. Ορίζουμε τις παρακάτω πράξεις για $x\in A\cap B$:

• Άθροισμα:

$$(f+q)(x) = f(x) + q(x)$$

• Διαφορά:

$$(f-g)(x) = f(x) - g(x)$$

• Γινόμενο:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

• Λόγος (πηλίκο):

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad \text{ yid } x \in A \cap B \text{ kai } g(x) \neq 0$$

Παρατηρήσεις:

- Το πεδίο ορισμού κάθε πράξης είναι τομή των πεδίων ορισμού $A \cap B$, με επιπλέον περιορισμούς όπου χρειάζεται (π.χ. στο πηλίκο: $g(x) \neq 0$).
- Οι πράξεις συναρτήσεων κληρονομούν ιδιότητες από τις πράξεις αριθμών:
 - (f+g)(x)=(g+f)(x) (αντιμεταθετική ιδιότητα),
 - $(f \cdot g)(x) = (g \cdot f)(x)$,
 - ullet (f+(g+h))(x)=((f+g)+h)(x) (προσεταιριστική ιδιότητα),
 - $(f \cdot (g+h))(x) = f \cdot g(x) + f \cdot h(x)$ (διανεμητική ιδιότητα).

Παράδειγμα: Αν $f(x)=x^2$ και g(x)=x+1, τότε:

$$(f+g)(x) = x^2 + (x+1) = x^2 + x + 1,$$

 $(f \cdot g)(x) = x^2(x+1) = x^3 + x^2.$

9