B103040021 謝鎧駿 HW1 Report

一、設計概念

- 1. Structure:透過助教在 HW 敘述給的邏輯電路圖去設計 Full adder,再將上 課所學的 For 迴圈使用上,變成 32bit 的 adder。
- 2. Dataflow: 這就比較直覺,直接用+的加起來,但要考慮到 carry out。
- 3. Behavior:用 always 去寫,學到小括號內放*,代表任一 input 改變,就會去計算,而算是跟 dataflow 一樣。
- 4. DFF:用助教在 HW 敘述給的 RTL code 去設計 1bit 的 DFF,再用 for 迴圈呼叫 1bit 的 DFF 去兜成 32bit 的 DFF。
- 5. Store in reg:都是先呼叫原本的 adder 後再透過 DFF 去儲存在 register。

二、RTL 波型

三、Gate-level 波型

四、Area/Delay/between 比較數據

		Area (um²)			Delay	Power (W)		
		CL	SL	Total	(ns)	dynami	leakage	total
						c		
adder_structure	delay	92.48256	0	92.48256	0.47328	118.43	88.014	206.45
		2		2	7	76	4	2
	area	48.10752	0	48.10752	0.76627	36.208	33.745	69.953
		1		1		6	3	9
	betwe	67.13280	0	67.13280	0.61977	59.788	50.920	110.70
	en	2		2	85	2	1	83
adder_structure_	delay	88.02432	30.7929	118.8172	0.49272	294.45	105.38	399.84
reg		2	6	83	7	81	92	73

1		1	ı	T	1	T	•	•
	area	48.41856 1	30.7929 60	79.21152 1	0.76666 5	158.46 72	56.329 5	214.79 22
	betwe en	69.25824 2	30.7929 60	100.0512 02	0.62969 6	208.66 94	78.343 1	287.012 5
adder_dataflow adder_dataflow_ reg	delay	105.9091 22	0	105.9091 22	0.08634 6	577.57 65	95.292 1	672.86 86
	area	33.48864 1	0	33.48864 1	0.89014 3	23.168 4	17.764 5	40.932 9
	betwe en	52.25472 1	0	52.25472 1	0.48824 45	53.910 2	32.334 5	86.244 7
	delay	114.3590 42	30.7929 60	145.1520 02	0.10561 2	1.3873	133.37 70	134.76 43
	area	36.02880 1	30.7929 6	66.82176 1	0.88555 2	129.10 30	45.583 6	174.68 66
	betwe en	51.99552 1	30.7929 60	82.78848 1	0.49907 6	240.43 95	57.239	297.67 85
adder_behavior	delay	105.9091 22	0	105.9091 22	0.08634 6	577.57 65	95.292 1	672.86 86
	area	33.48864 1	0	33.48864 1	0.89014 3	23.168 4	17.764 5	40.932 9
	betwe en	52.25472 1	0	52.25472 1	0.48824 45	53.910 2	32.334 5	86.244 7
adder_behavior_ reg	delay	114.3590 42	30.7929 60	145.1520 02	0.10561 2	1.3873	133.37 70	134.76 43
	area	36.02880 1	30.7929 6	66.82176 1	0.88555 2	129.10 30	45.583 6	174.68 66
	betwe en	51.99552 1	30.7929 60	82.78848 1	0.49907 6	240.43 95	57.239	297.67 85

五、觀察三種 modeling 的數據與波型是否相同,解釋你認為的原因:

- 1. 首先,我發現我 adder_dataflow 與 adder_behavior 的數據完全相同,我認為是因為 dataflow 與 behavior 的寫法差不了太多,並且算式都只有一行,所以得出的所有數據都相同。
- 2. 最小 Area 跟預料的一樣是 dataflow 跟 behavior,我想是因為算式只有一條,且不須透過 Full adder 就能計算,省了很多資源。
- 3. 最小 Delay 也沒意外是 dataflow 跟 behavior,我的想法跟上面一樣,因為算式只有一條,且不須透過 Full adder 就能計算,省了很

多資源。而 dataflow_reg 與 behavior_reg 因為多了一個 DFF,因此 會慢一點。

- 4. 如果只看 fully combinational logic designs,因為 structure 是透過 full adder 相加起來,所以通過很多 Gate,因此數據是最差的。
- 5. 而加上 DFF 後,才會有 sequential area ,我想是因為多了儲存的 register。
- 6. 波行的部分,在RTL與Gate-level長的一樣,我想是因為輸出結果想同,這也代表著驗證都正確。

六、心得

這次的作業感覺是為了使我們對所有工具熟悉一下,其實 RTL code 部分不會到很難,testbench 部分就比較需要思考,而如何去執行 logic synthesis 以及 pre/post simulation,都是我們比較不熟悉的,透過這次的作業,我認為已經對如何操作這些工具有一些心得了。

在 Testbench 的部分我遇到最多問題,一開始是完全不知道如何下手, 甚至宣告 output 都不太會,不知道需不需要宣告 signed 等等,而我是透 過不斷的 trial and error 得出最終的解答。