WHAT IS CLAIMED IS:

1	1. A dual current-perpendicular-to-plane (CPP) GMR sensor, comprising:
2	a first magnetic shield formed of an electrically conductive and magnetically
3	shielding material;
4	a second magnetic shield formed of an electrically conductive and magnetically
5	shielding material, the first and the second magnetic shields disposed to define a read gap
6	therebetween;
7	a spin valve structure disposed between the first and second magnetic shields, the
8	spin valve structure including a dual spin valve arrangement, the dual spin valve
9	arrangement having a top and bottom spin self-pinned layer and a free ferromagnetic
10	layers disposed therebetween; and
11	a biasing layer disposed proximate the top self-pinned layer in a passive region
12	for pinning the top self-pinned layer.
•	
1	2. The dual CPP GMR sensor of claim 1 further comprising:
2	a hard bias layer disposed proximate the bottom self-pinned layer in a passive
3	region for biasing the bottom self-pinned layer;
4	a first metal oxide layer disposed between the biasing layer and the hard bias layer
5	for providing an insulation layer to the hard bias layer; and
6	a second metal oxide layer formed above the biasing layer.

The dual CPP GMR sensor of claim 2 further comprising a second metal 1 3. 2 oxide layer formed above the biasing layer. 1 4. The dual CPP GMR sensor of claim 3, wherein the metal oxide layers further comprises NiO. 2 5. 1 The dual CPP GMR sensor of claim 3 further comprises a ferromagnetic 2 layer disposed over the second metal oxide layer and the self-pinned layer, wherein the 3 second metal oxide layer removes exchange coupling to the hard bias layer. 1 6. The dual CPP GMR sensor of claim 5 further comprising a Ta layer 2 formed between the ferromagnetic layer and the second shield. 1 7. The dual CPP GMR sensor of claim 6, wherein the ferromagnetic layer comprises NiFe. 2 1 8. The dual CPP GMR sensor of claim 1 further comprising a first and second metal oxide layer formed under and above the biasing layer. 2 1 9. The dual CPP GMR sensor of claim 8, wherein the metal oxide layers 2 further comprises NiO.

10. 1 The dual CPP GMR sensor of claim 9 further comprises a ferromagnetic 2 layer disposed below the second shield and over the second metal oxide layer and the 3 self-pinned layer, wherein the second metal oxide layer removes exchange coupling to the hard bias layer. 4 1 11. The dual CPP GMR sensor of claim 10 further comprising a Ta layer 2 formed between the ferromagnetic layer and the second shield. 1 12. The dual CPP GMR sensor of claim 10, wherein the ferromagnetic layer comprises NiFe. 2 1 13. The dual CPP GMR sensor of claim 1, wherein the first and second shields 2 function as electrodes for supplying current to the spin valve structure. 1 14. The dual CPP GMR sensor of claim 1, wherein the biasing layer 2 comprises a layer of alpha-Fe₂O₃, the layer of alpha-Fe₂O₃ pinning the top self-pinned 3 layer. 15. 1 The dual CPP GMR sensor of claim 1, wherein the layer of alpha-Fe₂O₃ pins the top portion of the top self-pinned layer by providing higher coercivity (H_C) to the 2 3 top self-pinned layer.

1	16. A magnetic storage system, comprising:
2	a magnetic storage medium having a plurality of tracks for recording of data; and
3	a dual CPP GMR sensor maintained in a closely spaced position relative to the
4	magnetic storage medium during relative motion between the magnetic transducer and
5	the magnetic storage medium, the dual CPP GMR sensor further comprising:
6	a first magnetic shield formed of an electrically conductive and
7	magnetically shielding material;
8	a second magnetic shield formed of an electrically conductive and
9	magnetically shielding material, the first and the second magnetic shields disposed to
10	define a read gap therebetween;
11	a spin valve structure disposed between the first and second magnetic
12	shields, the spin valve structure including a dual spin valve arrangement, the dual spin
13	valve arrangement having a top and bottom spin self-pinned layer and a free
14	ferromagnetic layers disposed therebetween; and
15	a biasing layer disposed proximate the top self-pinned layer in a passive
16	region for pinning the top self-pinned layer.

1	17. The magnetic storage system of claim 16, wherein the CPP GMR sensor
2	further comprises:
3	a hard bias layer disposed proximate the bottom self-pinned layer in a passive
4	region for biasing the bottom self-pinned layer;
5	a first metal oxide layer disposed between the biasing layer and the hard bias layer
6	for providing an insulation layer to the hard bias layer; and
7	a second metal oxide layer formed above the biasing layer.
1	18. The magnetic storage system of claim 17, wherein the CPP GMR sensor
2	further comprises a second metal oxide layer formed above the biasing layer.
1	19. The magnetic storage system of claim 18, wherein the metal oxide layers
2	further comprises NiO.
1	20. The magnetic storage system of claim 18, wherein the CPP GMR sensor
2	further comprises a ferromagnetic layer disposed over the second metal oxide layer and
3	the self-pinned layer, wherein the second metal oxide layer removes exchange coupling
4	to the hard bias layer.
1	
1	21. The magnetic storage system of claim 20, wherein the CPP GMR sensor
2	further comprises a Ta layer formed between the ferromagnetic layer and the second
3	shield.

2 comprises NiFe. 23. The magnetic storage system of claim 16, wherein the CPP GMR sensor 1 further comprises a first and second metal oxide layer formed under and above the 2 3 biasing layer. 24. The magnetic storage system of claim 23, wherein the metal oxide layers 1 2 further comprises NiO. 25. The magnetic storage system of claim 24, wherein the CPP GMR sensor 1 2 further comprises further comprises a ferromagnetic layer disposed below the second shield and over the second metal oxide layer and the self-pinned layer, wherein the 3 second metal oxide layer removes exchange coupling to the hard bias layer. 4 1 26. The magnetic storage system of claim 25, wherein the CPP GMR sensor 2 further comprises a Ta layer formed between the ferromagnetic layer and the second 3 shield. 27. The magnetic storage system of claim 25, wherein the ferromagnetic layer 1 2 comprises NiFe. 28. The magnetic storage system of claim 16, wherein the first and second 1 2 shields function as electrodes for supplying current to the spin valve structure.

The magnetic storage system of claim 21, wherein the ferromagnetic layer

22.

1

1	29. The magnetic storage system of claim 16, wherein the biasing layer
2	comprises a layer of alpha-Fe ₂ O ₃ , the layer of alpha-Fe ₂ O ₃ pinning the top self-pinned
3	layer.
1	30. The magnetic storage system of claim 16, wherein the layer of
2	alpha-Fe ₂ O ₃ pins the top portion of the top self-pinned layer by providing higher
3	coercivity (H _C) to the top self-pinned layer.
1	31. A method for providing a dual current-perpendicular-to-plane (CPP) GMF
2	sensor with improved top pinning, comprising:
3	forming a first magnetic shield of an electrically conductive and magnetically
4	shielding material;
5	forming a second magnetic shield of an electrically conductive and magnetically
6	shielding material, the first and the second magnetic shields disposed to define a read gap
7	therebetween;
8	forming a spin valve structure between the first and second magnetic shields, the
9	spin valve structure including a dual spin valve arrangement, the dual spin valve
10	arrangement having a top and bottom spin self-pinned layer and a free ferromagnetic
11	layers disposed therebetween; and
12	forming a biasing layer disposed proximate the top self-pinned layer in a passive
13	region for pinning the top self-pinned layer.

1	32. The method of claim 31 further comprising:
2	forming a hard bias layer proximate the bottom self-pinned layer in a passive
3	region for biasing the bottom self-pinned layer;
4	forming a first metal oxide layer between the biasing layer and the hard bias layer
5	for providing an insulation layer to the hard bias layer; and
6	forming a second metal oxide layer above the biasing layer.
1	33. The method of claim 2 further comprising forming a second metal oxide
2	layer above the biasing layer.
1	34. The method of claim 3 further comprises forming a ferromagnetic layer
2	over the second metal oxide layer and the self-pinned layer, wherein the second metal
3	oxide layer removes exchange coupling to the hard bias layer.
	•
1	35. The method of claim 5 further comprising forming a Ta layer between the
2	ferromagnetic layer and the second shield.