Friday's class

- I have an all-day academic meeting
- Prof. Jason Harlow will step in (please be nice!)
- TeamUp will start 2 hours early
 - -I hear there's a climate strike during class, feel free to finish TeamUp early and go to the strike

Summary General Principles

The instantaneous velocity

$$\vec{v} = d\vec{r}/dt$$

is a vector tangent to the trajectory.

The instantaneous acceleration is

$$\vec{a} = d\vec{v}/dt$$

 \vec{a}_{\parallel} , the component of \vec{a} parallel to \vec{v} , is responsible for change of speed. \vec{a}_{\perp} , the component of \vec{a} perpendicular to \vec{v} , is responsible for change of direction.

© 2022 Pearson Education, Inc.

1 rotation = 271 radians (360°)

MODEL 4.2

Uniform circular motion

For motion with constant angular velocity ω .

- Applies to a particle moving along a circular trajectory at constant speed or to points on a solid object rotating at a steady rate.
- Mathematically:
 - The tangential velocity is $v_t = \omega r$.
 - The centripetal acceleration is v_t^2/r or $\omega^2 r$.
 - ω and v_t are positive for ccw rotation, negative for cw rotation.
- Limitations: Model fails if rotation isn't steady.

The velocity is tangent to the circle. The acceleration points to the center.

Exercise 20

q = dw $w = d\theta$

MODEL 4.3

Constant angular acceleration

For motion with constant angular acceleration α .

Applies to particles with circular trajectories and to rotating solid objects.

- Mathematically: The graphs and equations for this circular/rotational motion are analogous to linear motion with constant acceleration.
 - Analogs: $s \to \theta \ v_s \to \omega \ a_s \to \alpha$

Rotational kinematics Linear kinematics

$$\omega_{f} = \omega_{i} + \alpha \Delta t$$

$$\theta_{f} = \theta_{i} + \omega_{i} \Delta t + \frac{1}{2}\alpha(\Delta t)^{2} \times C$$

$$v_{fs} = v_{is} + a_{s} \Delta t$$

$$v_{fs} = s_{i} + v_{is} \Delta t + \frac{1}{2}a_{s}(\Delta t)^{2}$$

$$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha \Delta \theta$$

$$v_{fs}^{2} = v_{is}^{2} + 2a_{s} \Delta s$$

© 2022 Pearson Education, Inc.

Team Up Questions

$$a = a_r = \frac{v^2}{r} = v^2 r$$

$$\alpha = 7.5$$

$$\omega_f = 5.6$$

A wheel starts from rest and speeds up with constant angular acceleration. What is the acceleration as a function of time for an object on the rim of the wheel?

$$\dot{q} = o_{\perp} + a_{\parallel} = o_{r} + a_{+}$$

$$a_{t} = \lambda r$$

$$a_{r} = \omega^{2} r = (\lambda t)^{2} r$$

$$= \int ((\lambda t)^{2}r)^{2} + (\lambda r)^{2}$$

$$\omega(t) = \omega_{t}^{2} + \alpha t$$

$$tan \phi = \frac{a_{t}}{a_{r}}$$

What's the best angle (to get the farthest distance) to throw a rock if you're at the bottom of a hill of constant slope?

