Assignment - 05

	Price
	110
	105
1	115
	120
51	[10
	130
	130
	100
	105

- * Person the mentioned techniques:
- Normalization divide to chack
 - Standardization (Symme 101)
 - Log Transformation
- 1 DOLL 211 20 Robust Scalerz

116.11

Maximum Absolute Scalere

Moremalization:	X	x; - min (max(x) - m			
Hetre, $min(x) = 100$ max(x) = 150	· max	x(x)-min(x) = 15		911
After scaling= (using Northa		e sale	ed phice	will be:
price	Price_scaled	(8	. 9	11.917	120
110	0.1	YE IL	0 -		. 611
115	6.3	61 . 63.	4		. 081
120	0.4	11 64	7:		-31
130	0.6	181 11.			001
150	1				

Standarcdization:

Standard Deviation:
$$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}}$$

Now, mean of the sample =
$$\frac{110+105+115+120+110+130+150+100+105}{9}$$
$$= 116.11$$

go tomogy to

Table for calculations: () in 1

		When G	dyna	hv in the	
price (xi)	mean (H)	xi-m	(x1-4)2	S.D	price_scaled
170		-6.11	37.33	1. 681	-0.42
105	mind pol	ः⊱-ाग¦म्प्(123.43	4 price) w	-0.76
115		-1.11	1.23		-0.08
120	116.11	3.89	15.13	anis) "	0.26
110		-6.11	37.33	14.68	-0.42
130		13.89	192.93	. 3	0.95
150		33.89	1148-53		2.31
100		-16.11	259.53		-1.02
105		-11.11	123.43	0.0	-0.76

1 Log Transformation:

To avoid value zero or close-to-zero value in the logarithm function, let's add 1 to every value of the feature and then calculate loge (1+x) which agethe scaled values of the price column.

T		
price	<u>1</u> +x	price_scaled loge (1+x)
110	111	4.71
105	106	4.66
115	116	4.75
120	<u>1</u> 21	4.80
110	7.7.1	4.71
130	131	4.88
150	<u>1</u> 50	5.02
100	101	4.62
105	106	4.66

Robust Scalerc:

Given the prices are: 110, 105, 115, 120, 110, 130, 150, 100, 105

2 John and a fill the

Now, & Sort the values in ascending orders, we get,

100, 105, 105, 110, 110, 115, 120, 130, 150

From here,

the first quantile, 9, = the value below which 25% of the data falls

= 105

The second quantile (also the median), q = The middle value of the data set = 110

The third quantile, 93 = The value below which 75% of the dota falls = 120

Now, the interquardile difference, IBR = 93-91
= 120-105
= 15

Formula:

$$x_{\text{scale}} = \frac{x_1 - q_2}{IgR}$$

Now, calculating the scaled price and placing them into a table:

price (2;)	Pa x; - 92	price_scaled
L10	0	O
105	-5	-0.33
115	5	0.33
120	10	0.61
110	0	0
130	20	1.33
L50	40	2.67
100	-10	-0.67
105	-5	-0.33

12 Max Absolute Scalere:

$$x_{\text{scale}} = \frac{x}{\text{max}(x)}$$

table forc calculations:

		1 50
price (x)	max(x)	Price_scaled
110	28.	0.73
105	x5 X).	0.7
115		0.7
120	100	0.80
110	150	0.73
130	F.6.7	0.87
150	\$8.6	. 1
100		0.67
105		0.7