Advanced Discretization Techniques Homework 6

Bruno Degli Esposti, Xingyu Xu

November 26th - December 3rd, 2019

Exercise 13: Instability of $(\mathcal{P}_1)^2$ - (\mathcal{P}_1) for Stokes

a) One way to construct such a function $p_h \in S_0^1$ is as follows:

For any $T \in \mathcal{T}_h$, it's clear from the picture that the values of p_h at the three vertices a_1, a_2, a_3 of T are always a permutation of $\{0, 1, -1\}$. Without loss of generality, we can assume that $p_h(a_1) = 0, p_h(a_2) = 1, p_h(a_3) = -1$. Since p_h is an affine function when restricted to T, we get that

$$p_h(\lambda a_i + (1 - \lambda)a_i) = \lambda p_h(a_i) + (1 - \lambda)p_h(a_i)$$

holds for all $i, j \in \{1, 2, 3\}$ and all $\lambda \in [0, 1]$. Then, by the midpoint rule (which is exact for affine functions), it follows that

$$\begin{split} \int_T p_h(x) \, dx &= \frac{|T|}{3} \left(p_h \left(\frac{1}{2} a_1 + \frac{1}{2} a_2 \right) + p_h \left(\frac{1}{2} a_2 + \frac{1}{2} a_3 \right) + p_h \left(\frac{1}{2} a_3 + \frac{1}{2} a_1 \right) \right) \\ &= \frac{|T|}{3} \left(\frac{1}{2} p_h(a_1) + \frac{1}{2} p_h(a_2) + \frac{1}{2} p_h(a_2) + \frac{1}{2} p_h(a_3) + \frac{1}{2} p_h(a_3) + \frac{1}{2} p_h(a_1) \right) \\ &= \frac{|T|}{3} \left(\frac{0}{2} + \frac{1}{2} + \frac{1}{2} + \frac{-1}{2} + \frac{-1}{2} + \frac{0}{2} \right) = \frac{|T|}{3} \left(\frac{2-2}{2} \right) = 0. \end{split}$$

This proves that $p_h \in L^2_0$ (the integral over Ω can be split as the sum of the integrals over $T \in \mathcal{T}_h$, and square-integrability comes from the fact

that $\bar{\Omega}$ is a compact set). By construction, $p_h \in S_0^1$. Hence, $p_h \in X_h$, as requested.

b) For the Stokes problem, we have that $b_h: M_h \times X_h \to \mathbb{R}$ is defined as

$$b_h(\mathbf{v}_h, p_h) = -\int_{\Omega} p_h \operatorname{div}(\mathbf{v}_h) dx$$
.

As usual, we then define the operator $B_h: M_h \to X_h^*$ so that

$$b_h(\mathbf{v}_h, p_h) = \langle B_h \mathbf{v}_h, p_h \rangle = \langle \mathbf{v}_h, B_h^T p_h \rangle.$$

As explained in Knabner-Angermann (8.42, p. 399,400), $\ker(B_h^T) \neq \{0\}$ is enough to ensure that the inf-sup conditions do not hold. We will now prove that $p_h \in \ker(B_h^T)$ using the fact that all functions in $(\mathcal{P}_1)^2$ have elementwise constant divergence (that's what we get when we derive a polynomial of degree at most 1). For any $\mathbf{v}_h \in M_h$,

$$\begin{aligned} \left\langle \mathbf{v}_h, B_h^T p_h \right\rangle &= -\int_{\Omega} p_h \operatorname{div}(\mathbf{v}_h) \, dx \\ &= -\sum_{T \in \mathcal{T}_h} \int_{T} p_h \operatorname{div}(\mathbf{v}_h) \, dx \\ &= -\sum_{T \in \mathcal{T}_h} \operatorname{div}(\mathbf{v}_h) \big|_{T} \int_{T} p_h \, dx \stackrel{a)}{=} -\sum_{T \in \mathcal{T}_h} \operatorname{div}(\mathbf{v}_h) \big|_{T} \, 0 \, dx = 0. \end{aligned}$$

This implies that $B_h^T p_h = 0$ and $p_h \in \ker(B_h^T)$, as required. \square

Exercise 14: A stable element - Fortin's trick

a) The subspace $S_{0,0}^1$ of $H_0^1(\Omega)$ is still a Hilbert space with respect to the same scalar product, because it's finite dimensional. The bilinear form a_h is equal to said scalar product, so it's continuous by Cauchy-Schwarz's inequality, and coercive by definition $(\alpha = 1)$. The inclusion $S_{0,0}^1 \subset H_0^1(\Omega)$ induces the opposite inclusion for the dual spaces, so v (as an element of $(H_0^1(\Omega))^*$, by Riesz's isometry) is also an element of $(S_{0,0}^1)^*$. Then, by Lax-Milgram's lemma,

$$\exists ! \ \pi_h^0 v \in S_{0,0}^1 \ \text{ such that } \ a_h(\pi_h^0 v, w_h) = \langle v, w_h \rangle_1 \ \text{ for all } w_h \in S_{0,0}^1$$

and we get the stability estimate

$$\left\|\pi_h^0 v\right\|_1 \leq \frac{\|v\|_{(S_{0,0}^1)^*}}{\alpha} \leq \frac{\|v\|_{(H_0^1(\Omega))^*}}{\alpha} = \frac{\|v\|_1}{\alpha} = \|v\|_1 \,.$$

This is exactly what we wanted to prove

- **b)** By equation (A) we get that $a_h(w_h, \pi_h^0 v v) = 0$, and by equation (B) we get that $a_h(u, \pi_h^0 v v) = (f, \pi_h^0 v v)_0$. Since we have assumed here that $f = \pi_h^0 v v$, it is now clear by linearity that $a_h(u w_h, \pi_h^0 v v) = \|\pi_h^0 v v\|_0^2$
- c) Since $\Omega \subset \mathbb{R}^2$, H^2 -regularity of u is enough for $I_h u$ to be well-defined (I_h is the Lagrange interpolation operator), with an interpolation error estimate

of $||u - I_h u||_1 \le C_I h ||u||_2$. If we now choose $w_h = I_h u$ in the result of point b), we get that

$$\begin{aligned} \left\| \pi_h^0 v - v \right\|_0^2 &= a_h (u - I_h u, \pi_h^0 v - v) = \left\langle u - I_h u, \pi_h^0 v - v \right\rangle_1 \\ &\leq \left\| u - I_h u \right\|_1 \left\| \pi_h^0 v - v \right\|_1 \leq C_I h \left\| u \right\|_2 \left\| \pi_h^0 v - v \right\|_1 \\ &\leq C_I C h \left\| f \right\|_0 \left\| \pi_h^0 v - v \right\|_1 = C_I C h \left\| \pi_h^0 v - v \right\|_0 \left\| \pi_h^0 v - v \right\|_1. \end{aligned}$$

All that's left to do now is to divide by $\|\pi_h^0 v - v\|_0$.

d) By the triangle inequality and the results of points a) and c), we get that

$$\left\|\pi_h^0 v - v\right\|_0 \leq C h \left\|\pi_h^0 v - v\right\|_1 \leq C h \left\|\pi_h^0 v\right\|_1 + C h \left\|v\right\|_1 \leq 2 C h \left\|v\right\|_1.$$

e) By the definition of B_3 , we need to find a constant C_T for each $T \in \mathcal{T}_h$ such that

$$\int_{T} v \, dx = \int_{T} \pi_{h}^{1} v \, dx = \int_{T} C_{T} \varphi_{T,1} \varphi_{T,2} \varphi_{T,3} \, dx.$$

Solving for C_T gives

$$C_T = \left(\int_T v \, dx\right) \left(\int_T \varphi_{T,1} \varphi_{T,2} \varphi_{T,3} \, dx\right)^{-1}.$$

First of all, we need to make sure that we are not dividing by 0. Let \hat{T} be the reference element in \mathbb{R}^2 . Then, by the change of variables formula,

$$\int_{T} \varphi_{T,1}(\mathbf{x}) \varphi_{T,2}(\mathbf{x}) \varphi_{T,3}(\mathbf{x}) d\mathbf{x} = \int_{\hat{T}} xy(1-x-y) 2 |T| dx dy$$
$$= 2 |T| \int_{0}^{1} \int_{0}^{1-x} xy(1-x-y) dy dx = \frac{2|T|}{120} = \frac{|T|}{60} \neq 0.$$

Next, in order to conclude that π_h^1 is well-defined, we need to prove that a function $\pi_h^1 v$ defined on every element T as

$$\frac{60}{|T|} \left(\int_T v \, dx \right) \varphi_{T,1} \varphi_{T,2} \varphi_{T,3}$$

belongs to $H_0^1(\Omega)$. This means that we can't have discontinuities on any edge of the triangulation. For any edge e, let T_1 and T_2 be the two elements in \mathcal{T}_h such that $e = \partial T_1 \cap \partial T_2$. Let a_i, a_j be the vertices in T_1, T_2 opposite to e (i and j are in local numbering notation). Then, for each $x \in e$,

$$\frac{60}{|T_1|} \left(\int_{T_1} v \, dx \right) \varphi_{T_1,1}(x) \varphi_{T_1,2}(x) \varphi_{T_1,3}(x) = 0$$

$$\frac{60}{|T_2|} \left(\int_{T_2} v \, dx \right) \varphi_{T_2,1}(x) \varphi_{T_2,2}(x) \varphi_{T_2,3}(x) = 0,$$

because $\varphi_{T_1,i}(x) = 0 = \varphi_{T_2,j}(x)$. Hence, $\pi_h^1 v$ vanishes on the boundary of every element. This not only ensures continuity (so that $\pi_h^1 v \in H^1(\Omega)$), but also that $\pi_h^1 v$ has 0 trace on $\partial\Omega$, as required.

f) By Jensen's inequality and the change of variables formula we get that

$$\begin{split} \left\| \pi_h^1 v \right\|_{0,T}^2 &= 60^2 \left(\frac{1}{|T|} \int_T v \, dx \right)^2 \int_T \left(\varphi_{T,1}(x) \varphi_{T,2}(x) \varphi_{T,3}(x) \right)^2 dx \\ &\leq \frac{60^2}{|T|} \left(\int_T v^2 \, dx \right) \int_T \left(\varphi_{T,1}(x) \varphi_{T,2}(x) \varphi_{T,3}(x) \right)^2 dx \\ &= \frac{60^2}{|T|} \left(\int_T v^2 \, dx \right) 2 |T| \int_{\hat{T}} \left(\varphi_{T,1}(\hat{x}) \varphi_{T,2}(\hat{x}) \varphi_{T,3}(\hat{x}) \right)^2 d\hat{x} \\ &= \frac{60^2}{|T|} \left(\int_T v^2 \, dx \right) \frac{2 |T|}{5040} = \frac{10}{7} \left\| v \right\|_{0,T}^2 = C \left\| v \right\|_{0,T}^2. \end{split}$$

The rest of the proof is straightforward:

$$\left\| \pi_h^1 v \right\|_0^2 = \sum_{T \in \mathcal{T}_h} \left\| \pi_h^1 v \right\|_{0,T}^2 \le \sum_{T \in \mathcal{T}_h} C \left\| v \right\|_{0,T}^2 = C \sum_{T \in \mathcal{T}_h} \left\| v \right\|_{0,T}^2 = C \left\| v \right\|_0^2$$

and then we take the square root on both sides.

g) We begin with integration by parts:

$$b(v - \Pi_h v, q_h) = -\int_{\Omega} q_h \operatorname{div}(v - \pi_h^0 v - \pi_h^1 (v - \pi_h^0 v)) dx$$
$$= -\int_{\partial \Omega} q_h (v - \pi_h^0 v - \pi_h^1 (v - \pi_h^0 v)) \cdot n d\sigma$$
$$+ \int_{\Omega} \nabla q_h \cdot (v - \pi_h^0 v - \pi_h^1 (v - \pi_h^0 v)) dx.$$

The boundary term vanishes, because the functions v, $\pi_h^0 v$ and $\pi_h^1 (v - \pi_h^0 v)$ are all in $H_0^1(\Omega)^2$. As for the other term, we will use point e) and the fact that ∇q_h is elementwise constant (it's the gradient of a polynomial of degree at most 1) to show that it vanishes, too:

$$\int_{\Omega} \nabla q_h \cdot (v - \pi_h^0 v - \pi_h^1 (v - \pi_h^0 v)) \, dx = \sum_{T \in \mathcal{T}_h} \int_{T} \nabla q_h \cdot (v - \pi_h^0 v - \pi_h^1 (v - \pi_h^0 v)) \, dx$$

$$= \sum_{T \in \mathcal{T}_h} \nabla q_h \cdot \int_{T} (v - \pi_h^0 v) - \pi_h^1 (v - \pi_h^0 v) \, dx \stackrel{e}{=} \sum_{T \in \mathcal{T}_h} \nabla q_h \cdot (0, 0)^T \, dx = 0.$$

h) By Lemma 4.5.3 in Brenner and Scott's *The Mathematical Theory of FEM*, the following global inverse estimate holds:

$$\|\pi_h^1(v - \pi_h^0 v)\|_1 \le C_{\text{inv}} h^{-1} \|\pi_h^1(v - \pi_h^0 v)\|_0$$
.

Now we can combine all the results from the previous points to get that

$$\begin{split} \|\Pi_h v\|_1 &= \left\|\pi_h^0 v + \pi_h^1 (v - \pi_h^0 v)\right\|_1 \leq \left\|\pi_h^0 v\right\|_1 + \left\|\pi_h^1 (v - \pi_h^0 v)\right\|_1 \\ &\stackrel{a)}{\leq} \|v\|_1 + \left\|\pi_h^1 (v - \pi_h^0 v)\right\|_1 \leq \|v\|_1 + C_{\mathrm{inv}} h^{-1} \left\|\pi_h^1 (v - \pi_h^0 v)\right\|_0 \\ &\stackrel{f)}{\leq} \|v\|_1 + C_{\mathrm{inv}} h^{-1} C_{\mathrm{f}} \left\|v - \pi_h^0 v\right\|_0 \stackrel{d)}{\leq} \|v\|_1 + C_{\mathrm{inv}} h^{-1} C_{\mathrm{f}} C_{\mathrm{d}} h \|v\|_1 \\ &= (1 + C_{\mathrm{inv}} C_{\mathrm{f}} C_{\mathrm{d}}) \|v\|_1 = C \|v\|_1 \,. \quad \Box \end{split}$$