FC

Calculus, revie

Taylor expansio

Second- an higher-orde

Ordinary differential equations

Process Automation (CHEM-E7140) 2019-2020

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

A brief review of calculus

FC

Calculus, review

Intro to ODI

Solution using

Second- an higher-ord

Functions and their derivatives

A function y = f(t) encodes the relation between two quantities, variables, y and t

Consider the rate of change of quantity y corresponding to a change in t

• It is the ratio between the differential change in y and the corresponding differential change in variable t

We conventionally call the ratio of differential changes the derivative of function f

FC

Calculus, review

Intro to ODI

Solution using Taylor expansion

Second- ar

Functions and their derivatives (cont.)

The derivative of a function f(t) is the rate of change of the function, it is a number

- \rightarrow The derivative is defined with respect to the independent variable (here, t)
- \rightarrow It can be computed at any point t of the domain of the function

We are given some function f(t), we are interested in its derivative at some point t

Derivative of function f with respect to t

$$\Rightarrow \frac{\mathrm{d}f(t)}{\mathrm{d}t}$$

The rate of change is understood as the slope of the tangent line to the function,

• ... at that specific point t

FC

Calculus, review

Intro to OI

Solution using Taylor expansion

Second- an higher-orde

Functions and their derivatives (cont.)

The value of the derivative can be approximated by using small changes in t and f(t)

Consider the small change $t \to t + \Delta t$ and the associated $f(t) \to f(t + \Delta t)$

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} \approx \frac{f(t+\Delta t) - f(t)}{\Delta t}$$

The tangent line will be approximated

- By the secant line to function
- Its slope is the approximation

Remember the equation of a line y = mx + c through two points (x_1, y_1) and (x_2, y_2)

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1 = \underbrace{\frac{y_2 - y_1}{x_2 - x_1}}_{\Delta y / \Delta x} x + \frac{y_2 - y_1}{x_2 - x_1} x_1 + y_1$$

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- an higher-ord

Functions and their derivatives (cont.)

We can improve the quality of the approximation, by letting Δt become smaller

• As $\Delta t \to 0$, the approximation will converge to the true derivative

FC

Calculus, review

Intro to ODI

Solution using Taylor expansi

Second- an higher-orde

Functions and their derivatives (cont.)

Example

Power law

Consider the function $f(t) = t^n$ (the power law) and its derivative $df(t)/dt = nt^{n-1}$

- The derivative is commonly known, but we can derive it
- By using the approximation/definition of derivative

Second- an higher-orde

Functions and their derivatives (cont.)

$$f(t) = t^n$$

By definition of derivative, we have

$$\begin{split} \frac{\mathrm{d}f(t)}{\mathrm{d}t} &\approx \frac{f(t+\Delta t)-f(t)}{\Delta t} = \frac{1}{\Delta t} \Big[\underbrace{(t+\Delta t)^n}_{\mathrm{Powers of a binomial}} - t^n \Big] \\ &= \frac{1}{\Delta t} \Big[\underbrace{t^n + nt^{n-1}(\Delta t) + \frac{n(n-1)}{2}t^{n-2}(\Delta t)^2 + \cdots - t^n}_{\mathrm{Binomial theorem}} \\ &= \frac{1}{\Delta t} \Big[\underbrace{t^n + nt^{n-1}(\Delta t) + \frac{n(n-1)}{2}t^{n-2}(\Delta t)^2 + \cdots - t^n}_{\mathrm{Binomial theorem}} \Big] \\ &= \frac{1}{\Delta t} \Big[nt^{n-1}(\Delta t) + \frac{n(n-1)}{2}t^{n-2}(\Delta t)^2 + \underbrace{\mathcal{O}((\Delta t)^3)}_{\mathrm{HO terms}} \Big] \\ &= nt^{n-1} + \frac{n(n-1)}{2}t^{n-2}(\Delta t) + \mathcal{O}((\Delta t)^2) \\ &= nt^{n-1} + \mathcal{O}(\Delta t) \\ &\approx nt^{n-1} \end{split}$$

FC

Calculus, review

Intro to ODI

Solution using Taylor expansion

Second- and higher-orde

Functions and their derivatives (cont.)

The first order derivative df(t)/dt is the ratio of two distinct quantities df(t) and dt \rightarrow The ratio can be manipulated by algebraic procedures

Thus, we can have

$$\mathrm{d}t \frac{\mathrm{d}f}{\mathrm{d}t} = \mathrm{d}f$$

And, we can have

$$\frac{\mathrm{d}f}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}z} = \frac{\mathrm{d}f}{\mathrm{d}z}$$

As an application, we get the chain law of derivation

$$\frac{\mathrm{d}f(g(t))}{\mathrm{d}t} = \underbrace{\frac{\mathrm{d}f(g(t))}{\mathrm{d}g(t)}}_{f'(g(t))} \underbrace{\frac{\mathrm{d}g(t)}{\mathrm{d}t}}_{g'(t)}$$

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- an higher-orde

Functions and their derivatives (cont.)

Example

Consider the function $f(t) = \sin(t^3)$, compute its first derivative with respect to t

FC

Calculus review

Intro to ODEs

Solution using Taylor expansion

Second- and higher-order

Ordinary differential equations

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

Second- ar higher-ord

Introduction to ODEs

Ordinary differential equations (ODEs) are probably our most useful modelling tool

 \leadsto (Together with probability)

First some motivating and yet simple examples of ordinary differential equations

Systems for which the input is identically null over time

- Non-zero initial conditions
- Force-free response
- y(t), when u(t) = 0

Systems for which the input is not identically null over time

- Zero initial conditions
- Forced response
- y(t), when $u(t) \neq 0$

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

higher-orde

Introduction to ODEs

Example

Consider the problem of modelling the number of bacteria in some bacterial colony

- We assume that each bacterium in the colony gives rise to new individuals
- We can also assume that we know the birth rate, let us denote it by $\lambda>0$

We assume that, on average, each bacterium will produce λ offsprings per unit time

- \rightarrow The size y of the colony varies in time proportionally to its size
- → (The larger the population, the larger the rate of change)

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = \lambda y(t) \qquad \text{(This identity is an ODE)}$$

We are interested in knowing the size of the population over time, y(t)

• Function y(t) is the solution to the ODE

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

Second- an higher-orde

Introduction to ODEs (cont.)

The solution to the ODE is a (class of) function(s) y(t) that satisfies the given identity

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = \dot{y}(t) = \lambda y(t)$$

There are many techniques that can be used to solve the ordinary differential equation

• Separate variables and integrate

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = \lambda y(t) \quad \rightsquigarrow \quad \int_{y_0}^{y} \frac{1}{y(t)} \mathrm{d}y = \int_{t_0}^{t} \lambda \mathrm{d}t$$

- \bullet Move all terms in y to one side
- 3 Integrate both sides over appropriate intervals
- **9** The intervals are set in terms of initial conditions $(t_0, y_0 = y(t = t_0))$

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansio

Second- and higher-orde

Introduction to ODEs (cont.)

We have,

$$\rightarrow \int_{y_0}^{y} \frac{1}{y(t)} dy = \int_{t_0}^{t} \lambda dt$$

$$\rightarrow \ln [y(t)]_{y_0}^{y} = \lambda [t]_{t_0}^{t}$$

$$\rightarrow \ln [y(t)] - \ln (y_0) = \lambda t - \lambda t_0$$

$$\rightarrow \ln [y(t)] = \lambda t - \lambda t_0 + \ln (y_0)$$

$$constant$$

$$\rightarrow y(t) = \underbrace{e^{(\lambda t + \text{constant})} = e^{\lambda t} e^{\text{constant}}}_{e^{(\alpha + \beta)} = e^{\alpha} e^{\beta}} = e^{\lambda t} \cdot \text{constant}$$

The bacteria population y(t) evolves in time as an exponential function (grows, $\lambda > 0$)

- The exponential grow is weighted by some constant
- To find the constant, we use initial conditions

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

Second- and higher-orde

Introduction to ODEs (cont.)

$$y(t) = e^{\lambda t} \cdot \text{constant}$$

Suppose that at time t = 0, the population size is known to be $y(t = 0) = y_0 = y(0)$

$$y_0 = \underbrace{e^{\lambda \cdot 0}}_1 \cdot \text{constant} \quad \leadsto \quad \text{constant} = y_0$$

That is, the solution to the ODE is given by $y(t) = e^{\lambda t} y_0$

Starting from some initial bacterial population size y_0 at time t_0 , the system evolution

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

Second- and higher-orde

Introduction to ODEs (cont.)

```
v0 = 10;
                                                                % Set initial condition
   lambda = 2:
                                                                % Set model parameter
 4 \text{ tMin} = 00: \text{tMax} = 01: \text{deltaT=0.1}:
                                                                % Define time range
   tRange = tMin:deltaT:tMax;
                                                                % Min, max, delta
   v_clf = Q(t) exp(lambda*t)*v0;
                                                                % Set analytical solution
   [timeR, v_num] = ode45(@(t,v) lambda*v,tRange,v0);
                                                                % Compute numerical the
                                                                % solution using ODE45
   figure(1);
                                                                % Plotting stuff
   hold on
   fplot(v clf.[tMin.tMax].'k'):
                                                                  Analytical
16 plot(timeR, y_num, '.-k');
                                                                % Numerical
   stairs(timeR.v num.'--r'):
                                                                  Numerical
  hold off
   xlabel ('Time', 'FontSize', 24)
   vlabel('N. of bacteria', 'FontSize', 24)
   xlim([tMin.tMax]):
   ylim([0, max(y_num)]);
                                                                % Could set a legend. ...
26
```

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansio

Second- ar higher-ord

Introduction to ODEs (cont.)

Example

Reconsider the problem of modelling the number of bacteria in some bacterial colony

• We assume that bacteria procreate, at rate λ_1 , and die, at rate λ_2

$$\dot{y}(t) = \lambda_1 y(t) - \lambda_2 y(t) = (\lambda_1 - \lambda_2) y(t) = \lambda y(t) \qquad (\lambda = \lambda_1 - \lambda_2)$$

The resulting ODE has not changed, we already know the solution $y(t) = (e^{\lambda t})y_0$

Suppose that at time t = 0, the population size is known to be $y(t = 0) = y_0 = y(0)$

We cannot anylonger discriminate between the effect of birth λ_1 and the effect of death λ_2 anylonger

$$\lambda = \{-2, -1, 0, 1, 2\}$$

 $y_0 = 10$

,

FC

Calculus, review

ntro to ODE

Solution using Taylor expansion

Second- and higher-order

Solution by Taylor expansion Ordinary differential equations

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansion

Second- an higher-orde

Introduction to ODEs (cont.)

Consider the ODE $\dot{y}(t) = \lambda y(t)$ and suppose that we approximate the solution y(t)

• Suppose we can express function y(t) by its Taylor series expansion

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + \cdots$$

- \leadsto This is a parametric representation of function y(t)
- \rightarrow The parameters $\{c_0, c_1, c_2, c_3, \dots\}$ are constants

We are interested in determining the actual solution y(t), from this approximation

- That is, we must determine the parameters
- (Fix the coefficients of the expansion)

In general, the Taylor series expansion of some function f(x) around some point x_0

$$f(x) = f(x_0) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0} \frac{x - x_0}{1!} + \frac{\mathrm{d}^2f}{\mathrm{d}x^2}\Big|_{x_0} \frac{(x - x_0)^2}{2!} + \frac{\mathrm{d}^3f}{\mathrm{d}x^3}\Big|_{x_0} \frac{(x - x_0)^3}{3!} + \cdots$$

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Solution by Taylor series expansion

Consider the ODE $\dot{y}(t) = \lambda y(t)$, we could compute its solution by variable separation

- \rightarrow We considered some value of λ and some initial condition y(t=0)=y(0)
- \rightarrow Then, we calculated the closed-form solution $y(t) = e^{\lambda t}y(0)$

By expressing the solution y(t) in terms of its Taylor series expansion, we have

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + \mathcal{O}(t^5)$$

Given an expression of y(t), we could also calculate its first derivative $\dot{y}(t)$

$$\Rightarrow$$
 $\dot{y}(t) = 0 + \frac{c_1}{2} + 2\frac{c_2}{2}t + 3t^2 + 4\frac{c_4}{2}t^3 + \mathcal{O}(t^4)$

FC

Calculus, review

Intro to ODI

Solution using Taylor expansion

Second- an higher-orde

Solution by Taylor series expansion (cont.)

We substitute $\dot{y}(t)$ and y(t) into the given ordinary differential equation, $\dot{y}(t) = \lambda y(t)$

$$\underbrace{0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + \mathcal{O}(t^4)}_{\dot{y}(t)} = \underbrace{\frac{\lambda c_0 + \lambda c_1t + \lambda c_2t^2 + \lambda c_3t^3 + \mathcal{O}(t^4)}_{\lambda y(t)}$$

The identity is satisfied when the coefficients of the powers of t of both sides match

$$\sim$$
 (t^0) $1c_1 = \lambda c_0$ If we knew c_0 , we could calculate c_1 , given c_1 we could calculate c_2 , from c_2 we could calculate c_2 , c_2 where c_3 is c_4 and c_5 is c_6 we could calculate c_6 is c_7 in c_8 in c_9 in c_9 we could calculate c_9 in c_9 in

By the initial condition, we know that at t = 0 we have $y_0 = c_0 + \cancel{x_1} + \cancel{x_2} + \cancel{x_3} + \cdots$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-orde

Solution by Taylor series expansion (cont.)

By substituting in the Taylor series expansion of y(t), we obtain

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + \cdots$$

$$= y_0 + \lambda y_0 t + \frac{1}{2} \lambda^2 y_0 t^2 + \frac{1}{3!} \lambda^3 y_0 t^3 + \frac{1}{4!} \lambda^4 y_0 t^4 + \mathcal{O}(t^5)$$

$$= \left[\underbrace{1 + \lambda t + \frac{1}{2} \lambda^2 t^2 + \frac{1}{3!} \lambda^3 t^3 + \frac{1}{4!} \lambda^4 t^4 + \mathcal{O}(t^5)}_{} \right] y_0 = e^{\lambda t} y_0$$

Exponential function $e^{\lambda t}$

FC

Calculus review

Intro to OD

Solution using Taylor expansio

Second- an higher-orde

Solution by Taylor series expansion (cont.)

Taylor series expansion

Any smooth function $f(t + \Delta t)$ can be expanded as a Taylor series at some point t

$$f(t \pm \Delta t) = f(t) + \frac{\mathrm{d}f(t)}{\mathrm{d}t} \Delta t + \frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} \frac{(\Delta t)^2}{2!} + \frac{\mathrm{d}^3 f(t)}{\mathrm{d}t^3} \frac{(\Delta t)^3}{3!} + \dots + \frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} \frac{(\Delta t)^n}{n!} + \dots$$

If we know the function, its first derivative, its second order derivative, ... at point t, we can approximate f near that point

The more derivatives we add, the more accurate the approximation

$$\rightarrow \text{Also, } f(t) = f(t_0) + \frac{\mathrm{d}f(t_0)}{\mathrm{d}t}(t - t_0) + \frac{\mathrm{d}^2f(t_0)}{\mathrm{d}t^2} \frac{(t - t_0)^2}{2!} + \frac{\mathrm{d}^3f(t_0)}{\mathrm{d}t^3} \frac{(t - t_0)^3}{3!} + \cdots$$

FC

Calculus, review

Solution using

Second- an higher-orde

Solution by Taylor series expansion (cont.)

Example

Consider functions $f(t) = \sin(t)$ and $f(t) = \cos(t)$, compute the Taylor expansions

• Expand them about point $t_0 = 0$ (MacLaurin series expansions)

In general, we can write the expansion

$$f(t) = f(t_0) + \frac{\mathrm{d}f(t_0)}{\mathrm{d}t}(t - t_0) + \frac{\mathrm{d}^2f(t_0)}{\mathrm{d}t^2}(t - t_0)^2 + \frac{\mathrm{d}^3f(t_0)}{\mathrm{d}t^3}(t - t_0)^3 + \cdots$$

For the sine function, we have

$$\begin{split} \sin{(t)} &= \sin{(0)} + \cos{(0)}t - \frac{1}{2!}\sin{(0)}t^2 - \frac{1}{3!}\cos{(0)}t^3 + \frac{1}{4!}\sin{(0)}t^4 - \frac{1}{5!}\cos{(0)}t^5 + \cdots \\ &= \sin{(0)} + \cos{(0)}t - \frac{1}{2!}\sin{(0)}t^2 - \frac{1}{3!}\cos{(0)}t^3 + \frac{1}{4!}\sin{(0)}t^4 - \frac{1}{5!}\cos{(0)}t^5 + \cdots \\ &= t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)}t^{2k+1} \end{split}$$

FC

Calculus, revie

Intro to O

Solution using Taylor expansion

Second- ar higher-ord

Solution by Taylor series expansion (cont.)

FC
Calculus, review

Intro to O

Solution using

Second- and higher-orde

Solution by Taylor series expansion (cont.)

$$f(t) = f(t_0) + \frac{\mathrm{d}f(t_0)}{\mathrm{d}t}(t - t_0) + \frac{\mathrm{d}^2f(t_0)}{\mathrm{d}t^2}(t - t_0)^2 + \frac{\mathrm{d}^3f(t_0)}{\mathrm{d}t^3}(t - t_0)^3 + \cdots$$

For the cosine function, we have

$$\begin{split} \cos{(t)} &= \cos{(0)} - \sin{(0)t} - \frac{1}{2!}\cos{(0)}t^2 + \frac{1}{3!}\sin{(0)}t^3 + \frac{1}{4!}\cos{(0)}t^4 - \frac{1}{5!}\sin{(0)}t^5 + \cdots \\ &= 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \cdots \\ &= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!}t^{2k} \end{split}$$

FC

Calculus, review

Intro to Ol

Solution using Taylor expansion

Second- and higher-order

Solution by Taylor series expansion (cont.)

$$\cos(t) = 1 + 0t - \frac{t^2}{2!} + 0t^3 + \frac{t^4}{4!} + 0t^5 - \frac{t^6}{6!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2n)!} t^{2n}$$

```
tRange = -2*pi:0.01:+2*pi:
                                                          # Define the t-range
   F\cos = Q(t)\cos(t):
                                                          # Define functional variable
                                                          # Ecos of t
 4
   C\cos 1 = [0 1]:
                                                          # Set coefficients of a 1st
       Tcos 1 = polyval(Ccos 1.xRange):
                                                          # order expansion. evaluation
 8
   C\cos_3 = [-1/factorial(2) \ 0 \ 1]:
                                                          # Set coefficients of a 2nd
       Tcos_3 = polyval(Ccos_3.xRange);
                                                          # order expansion, evaluation
   Ccos_5 = [1/factorial(4) \ 0 \ -1/factorial(2) \ 0 \ 1];
                                                          # Set coefficients of a 3rd
       Tcos_5 = polyval(Ccos_5,xRange);
                                                          # order expansion, evaluation
   figure(1): hold on
                                                          # Some plotting
16
17 fplot (Fcos):
                                                          # Plots function Fcos
1.8
   plot(xRange, Tcos_1):
                                                          # Plots 1st approximation
   plot(xRange, Tcos 3):
                                                          # Plots 2nd approximation
   plot(xRange, Tcos 5):
                                                          # Plots 3rd approximation
23 hold off
```

FC

Calculus, review

Solution using Taylor expansio

Second- an higher-orde

Solution by Taylor series expansion (cont.)

We can consider the Taylor series expansion of the exponential function e^t (important)

$$\Rightarrow$$
 $e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots$

We can consider the Taylor series expansion of the function $e^{\lambda t}$ (this is also important)

• By replacing t with λt , we obtain

$$\Rightarrow$$
 $e^{\lambda t} = 1 + (\lambda t) + \frac{(\lambda t)^2}{2!} + \frac{(\lambda t)^3}{3!} + \frac{(\lambda t)^4}{4!} + \cdots$

We may want to write the Taylor series expansion of function e^{it} , with $i = \sqrt{(-1)}$

$$e^{it} = 1 + it + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \cdots$$

$$= 1 + it - \frac{t^2}{2!} - i\frac{t^3}{3!} + \frac{t^4}{4!} + i\frac{t^5}{5!} + \cdots$$

$$= \underbrace{1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \cdots + i\left(\underbrace{t - \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots}\right)}_{\cos(t)}$$

$$= \cos(t) + i\sin(t)$$
Again, by replacing t with it

$$\xrightarrow{}$$

$$(\text{Euler's formula})$$

$$= \cos(t) + i\sin(t)$$

FC

Calculus, review

ntro to ODE

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems Ordinary differential equation

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Input-output representation (cont.)

Example

Two tanks (IO representation)

Consider a system consisting of two cylindric liquid tanks, same cross section $B\ [\mathrm{m}^2]$

- A main inflow to tank 1, a main outflow from tank 2
- The outflow from tank 1 is the inflow to tank 2

First liquid tank

- Inflow, rate q_1 [m³s⁻¹]
- Outflow, rate q_2 [m³s⁻¹]
- h_1 is the liquid level [m]

Second liquid tank

- Inflow, rate q_2 [m³s⁻¹]
- Outflow, rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]

FC

Calculus, review

Intro to ODE

Solution using Taylor expansio

Second- and higher-order Second- and higher-order systems (cont.)

Suppose that flow-rates q_1 and q_2 can be set to some desired value (pumps)

Also, suppose that q_3 depends linearly on the liquid level in the tank, h_2

• $q_3 = k \cdot h_2$ [m³s⁻¹], with k [m²s⁻¹] some appropriate constant

$$\underbrace{u(t) = [q_1(t), q_2(t)]'}_{\text{Two tanks}} \text{Two tanks} \qquad y(t) = d(t)$$

Inputs, q_1 and q_2 , both measurable and manipulable

→ They influence the liquid levels in the tanks

Output, $d = h_1 - h_2$, measurable, not manipulable

→ It is influenced by the inputs

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

For an incompressible fluid, by mass conservation

$$\begin{cases} \frac{\mathrm{d}V_1(t)}{\mathrm{d}t} = q_1(t) - q_2(t) \\ \frac{\mathrm{d}V_2(t)}{\mathrm{d}t} = q_2(t) - q_3(t) \end{cases} \longrightarrow \begin{cases} \dot{h}_1(t) = \frac{1}{B}q_1(t) - \frac{1}{B}q_2(t) \\ \dot{h}_2(t) = \frac{1}{B}q_2(t) - \frac{k}{B}h_2(t) \end{cases}$$

By taking the first derivative of $y(t) = h_1(t) - h_2(t)$ and rearranging, we obtained

$$\dot{y}(t) = \dot{h}_1(t) - \dot{h}_2(t) = \frac{1}{B}u_1(t) - \frac{2}{B}u_2(t) + \frac{k}{B}[h_1(t) - y(t)]$$

By taking the second derivative of y(t) and rearranging, we obtained

$$\ddot{y}(t) = \frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \frac{k}{B}\dot{h}_1(t) - \frac{k}{B}\dot{y}(t)$$

$$= \frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \underbrace{\frac{k}{B^2}u_1(t) - \frac{k}{B^2}u_2(t)}_{\frac{k}{B}\dot{h}_1(t)} - \frac{k}{B}\dot{y}(t)$$

FC

Second- and

Second- and higher-order systems (cont.)

Rearranging terms, the IO system's representation is an ordinary differential equation

$$\Rightarrow \quad \ddot{y}(t) + \frac{k}{B}\dot{y}(t) - \frac{1}{B}\dot{u}_1(t) + \frac{2}{B}\dot{u}_2(t) - \frac{k}{B^2}u_1(t) + \frac{k}{B}u_2(t) = 0$$

Suppose that the inputs are zero

$$u_1(t) = q_1(t) = 0$$

 $u_2(t) = q_2(t) = 0$

$$\longrightarrow u_2(t) = q_2(t) = 0$$

Also their derivatives are zero

$$\ddot{y}(t) + \frac{k}{B}\dot{y}(t) = +\frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \frac{k}{B^2}\dot{u}_1(t) - \frac{k}{B}\dot{u}_2(t) \quad \rightsquigarrow \quad \ddot{y}(t) + \frac{k}{B}\dot{y}(t) = 0$$

What's y(t), for some y(0) and $\dot{y}(0)$?

FC

Calculus, review

Intro to ODE

Solution using

Second- and higher-order

Homogeneous equation and modes (cont.)

Homogeneous equation

Consider the ordinary differential equation of a IO model (linear and time invariant)

$$\alpha_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + \alpha_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + \alpha_0 y(t) = \beta_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + \beta_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + \beta_0 u(t)$$

Let the RHS of be zero, define the $\frac{1}{1}$ homogenous equation associated to the model

$$\rightarrow a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{dt} + a_0 y(t) = 0$$

The solution y(t) to the homogeneous equation can be defined as the system response (the output) for an input u(t) that is null for $t \ge t_0$ and for given initial conditions

Input- or force-free response

• We may denote it as h(t)

FC

Calculus, review

Intro to ODI

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

Example

$$\ddot{y}(t) + \frac{k}{B}\dot{y}(t) = 0$$

Interest is in y(t) for some given initial conditions y(0) and $\dot{y}(0)$ (assuming u(t) = 0)

- We want to use the Taylor expansion of the solution y(t)
- For simplicity, let k/B = 1
- \rightsquigarrow We solve $\ddot{y}(t) + \dot{y}(t) = 0$

The differential equation is second-order

- \rightarrow Initial position y(t=0) = y(0)
- \rightsquigarrow Initial velocity $\dot{y}(t=0) = \dot{y}(0)$

$$\ddot{y}(t) + \dot{y}(t) = 0$$

• We assume that y(t) can be expressed using a Taylor expansion

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + \cdots$$

• We can compute the first derivative of the solution y(t), $\dot{y}(t)$

$$\dot{y}(t) = c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \cdots$$

• We compute the second derivative of the solution y(t), $\ddot{y}(t)$

$$\ddot{y}(t) = 2c_2 + 2 \cdot 3c_3t + 3 \cdot 4c_4t^2 + 4 \cdot 5c_5t^3 + \cdots$$

 $\cdots,$ we substitute function and derivatives into the system ODEs

FC

Calculus, review

Intro to OD

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + \cdots$$

After considering initial conditions y(t=0) = y(0) and $\dot{y}(t=0) = \dot{y}(0)$, we have

$$\begin{aligned} y(t=0) &= c_0 + \cot t + \cot^2 + \cot^3 + \cot^4 + \dots = y(0) \\ & \sim \qquad c_0 = y(0) \\ \dot{y}(t=0) &= c_1 + 2\cot t + 3\cot^2 + 4\cot^3 + 5\cot^4 + \dots = \dot{y}(0) \\ & \sim \qquad c_1 = \dot{y}(0) \end{aligned}$$

• Then, from the ordinary differential equation $\ddot{y}(t) + \dot{y}(t) = 0$ we have

$$\underbrace{2c_2 + 2 \cdot 3c_3t + 3 \cdot 4c_4t^2 + 4 \cdot 5c_5t^3 + \cdots}_{\ddot{y}(t)}$$

$$= \underbrace{-(c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \cdots)}_{\dot{y}(t)}$$

FC

Calculus, review

Intro to OD

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

$$\underbrace{2c_2 + 2 \cdot 3c_3t + 3 \cdot 4c_4t^2 + 4 \cdot 5c_5t^3 + \cdots}_{\ddot{y}(t)} = \underbrace{-c_1 - 2c_2t - 3c_3t^2 - 4c_4t^3 - 5c_5t^4 - \cdots}_{\dot{y}(t)}$$

By equating the coefficients to satisfy the identity and rearranging, we obtain

•
$$c_0 = y(0)$$

• $c_1 = \dot{y}(0)$
• $c_1 = \dot{y}(0)$
• $c_2 = -\frac{1}{2!}\dot{y}(0)$
• $c_3 = +\frac{1}{3!}\dot{y}(0)$
• $c_4 = -\frac{1}{4!}\dot{y}(0)$
• $c_5 = +\frac{1}{5!}\dot{y}(0)$
• $c_6 = +\frac{1}{5!}\dot{y}(0)$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + \cdots$$

Substituting the coefficients in the assumed (Taylor's) solution form, we obtain

$$y(t) = y(0) + \dot{y}(0)t - \frac{1}{2!}\dot{y}(0)t^{2} + \frac{1}{3!}\dot{y}(0)t^{3} - \frac{1}{4!}\dot{y}(0)t^{4} + \frac{1}{5!}\dot{y}(0)t^{5} - \cdots$$

$$= y(0) - \dot{y}(0)\left(\underbrace{-t + \frac{1}{2!}t^{2} - \frac{1}{3!}t^{3} - \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} - \cdots}_{-1+e^{-t}}\right)$$

$$= \underbrace{y(0) + \dot{y}(0)}_{k_{1}}\underbrace{-\dot{y}(0)}_{k_{2}}e^{-t}$$

$$= k_{1} + k_{2}e^{-t}$$

With k_1 and k_2 some constants depending on the initial conditions

$$\rightsquigarrow k_1 = y(0) + \dot{y}(0)$$

$$\rightarrow k_2 = -\dot{y}(0)$$

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Example

$$\ddot{y}(t) + \dot{y}(t) = 0$$

For simplicity, we let $\frac{2k}{B} = 1$ and obtained the system evolution by solving the ODE

$$y(t) = y(0) + \dot{y}(0) - \dot{y}(0)e^{-t}$$

```
1 y0 = ?;
2 yd0 = ?;
3
4 tMin = 0;
5 tMax = ?;
6 tRnage = [tMin, tMax]
7
8 yt = O(t) y0 + yd0 - yd0*exp(-t)
9
10 fplot(yt,tRange)
% Initial position, set me!
% Initial velocity, set me!
% Final time is zero,
% Final time, set me!
% Define the time interval
% Define the solution function
```

2019-2020 FC

Calculus review

Intro to OD

Solution using Taylor expansi

Second- and higher-order

Second- and higher-order systems (cont.)

Higher-order systems

Consider the general linear time-invariant system and homogeneous (with no inputs)

$$\alpha_n \frac{\mathrm{d}^n y}{\mathrm{d}t^n} + \alpha_{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \dots + \alpha_2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \alpha_1 \frac{\mathrm{d}y}{\mathrm{d}t} + \alpha_0 y = 0$$

Or, equivalently

$$\alpha_n y^{(n)} + \alpha_{n-1} y^{(n-1)} + \dots + \alpha_1 \ddot{y} + \alpha_0 y = 0$$

We consider an alternative to assuming that the solution is written as Taylor expansion

Instead of using Taylor expansions, we assume that the solution is given by $y(t) = e^{\lambda t}$

- (Which is not very different, in practice)¹
- ¹From $y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + \cdots$ to $y(t) = e^{\lambda t} = 1 + \lambda t + \frac{(\lambda t)^2}{t} + \frac{(\lambda t)^3}{t} + \cdots$

FC

Calculus, review

Intro to ODE:

Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

If we set the solution to be $y(t) = e^{\lambda t}$, then we can easily compute its derivatives

These functions can be substituted into homogeneous linear time-invariant ODEs

$$\alpha_n y^{(n)} + \alpha_{n-1} y^{(n-1)} + \dots + \alpha_1 \dot{y} + \alpha_0 y = 0$$

By substituting the assumed solution and derivatives into the differential equation

$$\Rightarrow \left[\alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0 \right] e^{\lambda t} = 0$$

The identity is verified for all n values of λ that solve the characteristic equation

$$\alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0 = 0$$
Characteristic polynomial
Characteristic equation

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

$$\alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0 = 0$$

The characteristic equation has n solutions, or roots, collected in set $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$

- They can be real and/or complex (and associated complex-conjugate) numbers
- They can be positive and/or negative, distinct and repeated (multiplicity)

$$\alpha_n y^{(n)} + \alpha_{n-1} y^{(n-1)} + \dots + \alpha_1 \dot{y} + \alpha_0 y = 0$$

For distinct (real and complex) roots, the ODE solution has the simple form

$$\Rightarrow$$
 $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_n e^{\lambda_n t}$

The solution is a sum of exponential functions, each weighted by coefficients

• The coefficients are determined from the n initial conditions

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Example

$$\ddot{y}(t) + \frac{k}{B}\dot{y}(t) = 0$$

For simplicity, let $\frac{2k}{B}=1$ and obtained the system evolution from $\ddot{y}(t)+\dot{y}(t)=0$

$$y(t) = y(0) + \dot{y}(0) - \dot{y}(0)e^{-t}$$

Start by assuming a solution $y(t) = e^{\lambda t}$ and computing its derivatives $\dot{y}(t)$ and $\ddot{y}(t)$

- \leadsto Substitute then in the original system ODE
- → Compute the characteristic equation
- → Solve the characteristic equation

FC

Calculus, review

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Definition

Characteristic polynomial

Consider the homogeneous part of a linear time-invariant differential equation

$$\alpha_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + \alpha_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = 0$$

The characteristic polynomial is a *n*-order polynomial in the variable λ whose coefficients correspond to the coefficients $\{\alpha_0, \alpha_1, \dots, \alpha_n\}$ of the homogeneous equation

$$\rightarrow$$
 $P(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_1 \lambda + \alpha_0 = \sum_{i=0}^n \alpha_i \lambda^i$

Any polynomial of order n with real coefficients has n real or complex-conjugate roots

• The roots are solutions of the characteristic equation

$$P(\lambda) = \sum_{i=0}^{n} \alpha_i \lambda^i = 0$$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

In general, there are $r \leq n$ distinct roots p_i , each with multiplicity ν_i

$$\rightsquigarrow$$
 If $i \neq j$, then $p_i \neq p_j$

$$\rightsquigarrow \sum_{i=1}^r \nu_i = n$$

Consider the particular case in which all roots have multiplicity equal one

$$\leadsto \quad \overbrace{p_1 \quad p_2 \quad \cdots \quad p_{n-1} \quad p_n}^n$$

$$\rightsquigarrow$$
 If $i \neq j$, then $p_i \neq p_j$

$$\rightarrow \nu_i = 1$$
, for every i

FC

Calculus, review

Intro to ODEs

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

Definitio

Modes

Let p be a root with multiplicity ν of the characteristic polynomial

The modes associated to that root are the ν functions of time

$$\Rightarrow e^{pt}, te^{pt}, t^2 e^{pt}, \cdots, t^{\nu-1} e^{pt}$$

A system with a n-order characteristic polynomial has n modes

FC

Calculus review

Intro to O

Solution using Taylor expansion

Second- and higher-order

FC

Calculus, review

Intro to Ol

Solution using Taylor expansion

Second- and higher-order Let p = -1 and $\nu = 4$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Modes are functions of time, their linear combinations are a family of functions of time

• The family is parameterised by the coefficients of the combination

Definition

Linear combinations of modes

A linear combination of the n modes is a function h(t) is a weighted sum of the modes

Each node is weighted by some coefficient

Each root p_i with multiplicity ν_i is associated to a combination of ν_i terms

$$A_{i,0}e^{p_it} + A_{i,1}te^{p_it} + \dots + A_{i,\nu_i-1}t^{\nu_i-1}e^{p_it} = \underbrace{\sum_{k=0}^{\nu_i-1} A_{i,k}t^k e^{p_it}}_{\text{root } p_i}$$

There is a total of r distinct roots, i = 1, ..., r

FC

Calculus, review

Intro to OI

Solution using Taylor expansio

Second- and higher-order Second- and higher-order systems (cont.)

$$A_{i,0}e^{p_it} + A_{i,1}te^{p_it} + \dots + A_{i,\nu_i-1}t^{\nu_i-1}e^{p_it} = \underbrace{\sum_{k=0}^{\nu_i-1} A_{i,k}t^k e^{p_it}}_{\text{root } p_i}$$

As there are r distinct roots, i = 1, ..., r, the complete linear combination of modes

$$h(t) = \underbrace{\sum_{k=0}^{\nu_1 - 1} A_{1,k} t^k e^{p_1 t}}_{\text{root } p_1} + \underbrace{\sum_{k=0}^{\nu_2 - 1} A_{2,k} t^k e^{p_2 t}}_{\text{root } p_2} + \dots + \underbrace{\sum_{k=0}^{\nu_r - 1} A_{r,k} t^k e^{p_r t}}_{\text{root } p_r}$$

$$\Rightarrow = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

Consider the case in which all roots (n) have multiplicity equal to one

$$\rightarrow$$
 $h(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + \dots + A_n e^{p_n t} = \sum_{i=1}^{n} A_i e^{p_i t}$

(We have omitted the second subscript of coefficients A)

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

Example

Consider the following homogenous differential equation

$$3\frac{d^4y(t)}{dt^4} + 21\frac{d^3y(t)}{dt^3} + 45\frac{d^2y(t)}{dt^2} + 39\frac{dy(t)}{dt} + 12y(t) = 0$$

The associated characteristic polynomial

$$P(\lambda) = 3\lambda^4 + 21\lambda^3 + 45\lambda^2 + 39\lambda + 12 = 3(\lambda + 1)^3(\lambda + 4)$$

The characteristic equation has four roots, the system has four modes

$$p_1 = -1, \quad (\nu_1 = 3) \quad \leadsto \quad \begin{cases} e^{-t} \\ te^{-t} \\ t^2 e^{-t} \end{cases}$$
 $p_2 = -4, \quad (\nu_2 = 1) \quad \leadsto \quad \begin{cases} e^{-4t} \\ e^{-4t} \end{cases}$

The family of functions h(t) is given as a linear combination of the modes

$$h(t) = \underbrace{A_{1,0}e^{-t} + A_{1,1}te^{-t} + A_{1,2}t^{2}e^{-t}}_{\text{root } p_{1}} + \underbrace{A_{2}e^{-4t}}_{\text{root } p_{2}}$$

FC

Calculus review

Intro to ODI

Solution using Taylor expansion

Second- and higher-order

FC

Calculus, review

Intro to ODE

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

The modes from the characteristic polynomial, the mixing coefficients are parameters

$$h(t) = \sum_{i=1}^r \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

The coefficients determine the force-free evolution, from every possible initial condition

Theorem

Solution of the homogeneous equation

Consider the homogeneous equation

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = 0$$

A real function h(t) is the solution of a homogeneous linear time-invariant differential equation if and only if it can be written as a linear combination of its modes

$$\rightarrow h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Complex and conjugate roots

A characteristic polynomial P(s) with complex roots will have complex signal modes

$$h(t) = \sum_{i=1}^r \sum_{k=0}^{\nu_i-1} A_{i,k} t^k e^{p_i t} \quad \text{(Yet, their combination must be a real function)}$$

Let P(s) be a characteristic polynomial with roots $p_i = \alpha_i + j\omega_i$ of multiplicity ν_i

• Let $p_i' = \alpha_i - j\omega_i$ with multiplicity $\nu_i' = \nu_i$ be the conjugate complex root

The contribution of each (p_i, p'_i) to the linear combination can be re-written

$$\sum_{k=0}^{\nu_i-1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k}) \quad \text{(Coefficients } M_{i,k} \text{ and } \phi_{i,k})$$

Or, equivalently

$$\sum_{k=0}^{\nu_i-1} \left[B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t) \right] \quad \text{(Coefficients } B_{i,k} \text{ and } C_{i,k})$$

FC

Calculus, review

Intro to ODI

Solution using Taylor expansio

Second- and higher-order

Second- and higher-order systems (cont.)

The solution equations

$$\begin{split} h(t) &= \sum_{i=1}^{R} \sum_{k=0}^{\nu_{i}-1} A_{i,k} t^{k} e^{p_{i}t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_{i}-1} M_{i,k} t^{k} e^{\alpha_{i}t} \cos(\omega_{i}t + \phi_{i,k}) \\ \Big(&\leadsto \sum_{i=1}^{R} A_{i} e^{p_{i}t} + \sum_{i=R+1}^{R+S} M_{i} e^{\alpha_{i}t} \cos(\omega_{i}t + \phi_{i}) \Big) \end{split}$$

The solution equations

$$\begin{split} h(t) &= \sum_{i=1}^{R} \sum_{k=0}^{\nu_{i}-1} A_{i,k} t^{k} e^{p_{i}t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_{i}-1} \left[B_{i,k} t^{k} e^{\alpha_{i}t} \cos(\omega_{i}t) + C_{i,k} t^{k} e^{\alpha_{i}t} \sin(\omega_{i}t) \right] \\ & \left(\leadsto \sum_{i=1}^{R} A_{i} e^{p_{i}t} + \sum_{i=R+1}^{R+S} \left[B_{i} e^{\alpha_{i}t} \cos(\omega_{i}t) + C_{i} e^{\alpha_{i}t} \sin(\omega_{i}t) \right] \right) \end{split}$$

They provide the parametric structure of the linear combination and are all equivalent

Second- and higher-order systems (cont.)

FC

Intro to ODE

Solution using Taylor expansion

Second- and higher-order

FC

Calculus, review

Intro to ODI

Solution using Taylor expansion

Second- and higher-order Second- and higher-order systems (cont.)

Consider the general linear time-invariant n-order system and homogeneous (no inputs)

$$\frac{\alpha_n}{\mathrm{d}t^n} + \frac{\mathrm{d}^n y}{\mathrm{d}t^{n-1}} + \frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \dots + \frac{\alpha_2}{\mathrm{d}t^2} + \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \alpha_1 \frac{\mathrm{d}y}{\mathrm{d}t} + \alpha_0 y = 0$$

Or, equivalently

$$\alpha_n y^{(n)} + \alpha_{n-1} y^{(n-1)} + \dots + \alpha_1 \ddot{y} + \alpha_0 y = 0$$

We can convert the n-order equation into a set of n first order equations, and solve it

As a preprocessing step, we start by dividing all the coefficients by α_n

$$y^{(n)}(t) + \underbrace{\mathbf{a_{n-1}}}_{\alpha_{n-1}/\alpha_n} y^{(n-1)}(t) + \dots + \underbrace{\mathbf{a_2}}_{\alpha_2/\alpha_n} \ddot{y}(t) + \underbrace{\mathbf{a_1}}_{\alpha_1/\alpha_n} \dot{y}(t) + \underbrace{\mathbf{a_0}y}_{\alpha_0/\alpha_n} = 0$$

CHEM-E7140 2019-2020 FC

Calculus, review

Intro to ODE

Solution using Faylor expansic

Second- and higher-order

Second- and higher-order systems (cont.)

$$y^{(n)}(t) + \mathbf{a_{n-1}}y^{(n-1)}(t) + \dots + \mathbf{a_2}\ddot{y}(t) + \mathbf{a_1}\dot{y}(t) + \mathbf{a_0}y = 0$$

Firstly, we introduce a set of n new variables $x(t) = [x_1(t), x_2(t), \dots, x_n(t)]'$

$$x_1(t) = y(t)$$

$$x_2(t) = \dot{y}(t)$$

$$x_3(t) = \ddot{y}(t)$$

$$\cdots = \cdots$$

$$x_{n-1}(t) = y^{(n-2)}(t)$$

$$x_n(t) = y^{(n-1)}(t)$$

Then, we introduce their first-order derivatives $\dot{x}(t) = [\dot{x}_1(t), \dot{x}_2(t), \dots, \dot{x}_n(t)]'$

$$\dot{x}_1(t) = \dot{y}(t) = x_2(t)
\dot{x}_2(t) = \ddot{y}(t) = x_3(t)
\dot{x}_3(t) = \dddot{y}(t) = x_4(t)
\dots = \dots
\dot{x}_{n-1}(t) = y^{(n-1)}(t) = x_n(t)
\dot{x}_n(t) = y^{(n)}(t) = -a_{n-1}x_n(t) - a_{n-1}x_{n-1}(t) - \dots - a_2x_3(t) - a_1x_2(t) - a_0x_1(t)$$

FC

Calculus, review

Intro to OD

Solution using Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

That is,

$$\dot{x}_1 = 0x_1 + 1x_2 + 0x_3 + 0x_4 + \dots + 0x_n
\dot{x}_2 = 0x_1 + 0x_2 + 1x_3 + 0x_4 + \dots + 0x_n
\dot{x}_3 = 0x_1 + 0x_2 + 0x_3 + 1x_4 + \dots + 0x_n
\dots = \dots
\dot{x}_{n-1} = 0x_1 + 0x_2 + 0x_3 + 0x_4 + \dots + 1x_n
\dot{x}_n = -a_0x_1 - a_1x_2 - a_2x_3 - a_3x_4 - \dots - a_{n-1}x_n$$

We can write a $\dot{x}(t)$ as a matrix-vector multiplication Ax(t), a system of equations

$$\underbrace{ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \\ \vdots \\ \dot{x_{n-1}} \\ \dot{x_n} \end{bmatrix}}_{\dot{x}(t)} = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}}_{x(t)}$$

Second- and higher-order

Second- and higher-order systems (cont.)

Example

Consider a linear and time-invariant homogeneous system $\ddot{y} + a_2\ddot{y} + a_1\dot{y} + a_0y = 0$

• The system in IO representation is a third-order ODE

We are interested in formulating the system as a matrix system of 3 first-order ODEs

We introduce 3 variables $x = [x_1, x_2, x_3]'$ and compute their derivatives $\dot{x} = [\dot{x_1}, \dot{x_2}, \dot{x_3}]'$

$$\begin{array}{lll} x_1(t) = y(t) & & \dot{x_1}(t) = \dot{y}(t) = x_2(t) \\ x_2(t) = \dot{y}(t) & & \dot{x_2}(t) = \ddot{y}(t) = x_3(t) \\ x_3(t) = \ddot{y}(t) & & \dot{x_3}(t) = \dddot{y}(t) = -a_2x_3(t) - a_1x_2(t) - a_0x_1(t) \end{array}$$

In matrix form, we can write

FC

Calculus, review

Intro to ODI

Solution using
Taylor expansion

Second- and higher-order

Second- and higher-order systems (cont.)

Example

Consider the following linear and time-invariant homogeneous system

$$3\frac{d^4y(t)}{dt^4} + 21\frac{d^3y(t)}{dt^3} + 45\frac{d^2y(t)}{dt^2} + 39\frac{dy(t)}{dt} + 12y(t) = 0$$

The system in IO representation is a forth-order ODE

 \leadsto A system of 4 first-order ODEs

We first divide by the leading coefficient $(a_4 = 3)$

$$\frac{\mathrm{d}^4 y(t)}{\mathrm{d}t^4} + \underbrace{7}_{a_3} \frac{\mathrm{d}^3 y(t)}{\mathrm{d}t^3} + \underbrace{15}_{a_2} \frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + \underbrace{13}_{a_1} \frac{\mathrm{d}y(t)}{\mathrm{d}t} + \underbrace{4}_{a_0} y(t) = 0$$

By using the general expression derived earlier,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & -13 & -15 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$