Einführung in die Anwendungsorientierte Informatik (Köthe)

Robin Heinemann

October 25, 2016

Contents

1	Klausur 09.02.2016					
2	Was ist Informatik?					
	2.1	Teilgebiete	2			
		2.1.1 theoretische Informatik (ITH)	2			
		2.1.2 technische Informatik (ITE)	2			
		2.1.3 praktische Informatik	2			
		2.1.4 angewante Informatik	3			
3	Wie unterscheidet sich Informatik von anderen Disziplinen?					
	3.1	Mathematik	3			
4	Info	Informatik				
	4.1	Algorithmus	4			
	4.2	Daten	4			
		4.2.1 Beispiele für Symbole	4			
	4.3 Einfachster Computer		5			
		4.3.1 TODO Graphische Darstellung	5			
		4.3.2 TODO Darstellung durch Übergangstabellen	5			
		4.3.3 Beispiel 2:	6			

1 Klausur 09.02.2016

2 Was ist Informatik?

[&]quot;Kunst" Aufgaben mit Computerprogrammen zu lösen.

2.1 Teilgebiete

2.1.1 theoretische Informatik (ITH)

- Berechenbarkeit: Welche Probleme kann man mit Informatik lösen und welche prinzipiell nicht?
- Komplexität: Welche Probleme kann man effizient lösen?
- Korrektheit: Wie beweist man, dass das Ergebnis richtig ist? Echtzeit: Dass das richtige Ergebnis rechtzeitig vorliegt.
- verteilte Systeme: Wie sichert man, dass verteilte Systeme korrekt kommunizieren?

2.1.2 technische Informatik (ITE)

- Auf welcher Hardware kann man Programme ausführen, wie baut man dies Hardware?
- CPU, GPU, RAM, HD, Display, Printer, Networks

2.1.3 praktische Informatik

- Wie entwickelt man Software?
- Programmiersprachen und Compiler: Wie kommuniziert der Programmierer mit der Hardware?
 IPI,
- Algorithmen und Datenstrukturen: Wie baut man komplexe Programme aus einfachen Grundbausteinen?
- Softwaretechnik: Wie organisiert man sehr große Projekte? ISW
- Kernanwendung der Informatik: Betriebsysteme, Netzwerke, Parallelisierung IBN
 - Datenbanksysteme IDB1
 - Graphik, Graphische Benutzerschnittstellen ICG1
 - Bild- und Datenanalyse
 - maschinelles Lernen
 - künstliche Intelligenz

2.1.4 angewante Informatik

- Wie löst man Probleme aus einem anderem Gebiet mit Programmen?
- Informationstechnik
 - Buchhandlung, e-commerce, Logistik
- Web programming
- scientific computing für Physik, Biologie
- Medizininformatik
 - bildgebende Verfahren
 - digitale Patientenakte
- computer linguistik
 - Sprachverstehen, automatische Übersetzung
- Unterhaltung: Spiele, special effect im Film

3 Wie unterscheidet sich Informatik von anderen Disziplinen?

3.1 Mathematik

Am Beispiel der Definition $a \leq b: \exists c \geq 0: a+c=b$ Informatik: Lösungsverfahren: $a-b \leq 0$, das kann man leicht ausrechen, wenn man subtrahieren und mit 0 vergleichen kann. Quadratwurzel: $y=\sqrt{x} \Leftrightarrow y \geq 0 \land y^2=x (\Rightarrow x>0)$ Informatik: Algorithmus aus der Antike: $y=\frac{x}{y}$ iteratives Verfahren:

Initial Guess
$$y^{(0)}=1$$
 schrittweise Verbesserung $y^{(t+1)}=\frac{y^{(t)}+\frac{x}{y^{(t)}}}{2}$

4 Informatik

Lösugswege, genauer Algorithmen

4.1 Algorithmus

schematische Vorgehensweise mit der jedes Problem einer bestimmten Klasse mit endliche vielen elementaren Schritten / Operationen gelöst werden kann

- schematisch: man kann den Algorithmus ausführen, ohne ihn zu verstehen (⇒ Computer)
- alle Probleme einer Klasse: zum Beispiel: die Wurzel aus jeder beliebigen nicht-negativen Zahl, und nicht nur $\sqrt{11}$
- endliche viele Schritte: man kommt nach endlicher Zeit zur Lösung
- elementare Schrite / Operationen: führen die Lösung auf Operationen oder Teilprobleme zurück, die wir schon gelöst haben

4.2 Daten

Daten sind Symbole,

- die Entitäten und Eigenschaften der realen Welt im Computer representieren.
- die interne Zwischenergebnisse eines Algorithmus aufbewahren
- \Rightarrow Algorithmen transformieren nach bestimmten Regel
n die Eingangsdaten (gegebene Symbole) in Ausgangsdaten (Symbole für das Ergebniss). Die Bedeutung / Interpretation der Symbole ist dem Algorithmus egal
 \triangleq "schematisch"

4.2.1 Beispiele für Symbole

- Zahlen
- Buchstaben
- Icons
- Verkehrszeichen

aber: heutige Computer verstehen nur Binärzahlen \Rightarrow alles andere muss man übersetzen Eingansdaten: "Ereignisse":

• Symbol von Festplatte lesen oder per Netzwerk empfangen

- Benutzerinteraktion (Taste, Maus, ...)
- Sensor übermittelt Meßergebnis, Stoppuhr läuft ab

Ausgangsdaten: "Aktionen":

- Symbole auf Festplatte schreiben, per Netzwerk senden
- Benutzeranzeige (Display, Drucker, Ton)
- Stoppuhr starten
- Roboteraktion ausführen (zum Beispiel Bremsassistent)

Interne Daten:

- Symbole im Hauptspeicher oder auf Festplatte
- Stoppuhr starten / Timeout

4.3 Einfachster Computer

endliche Automaten (endliche Zustandsautomaten)

- befinden sich zu jedem Zeitpunkt in einem bestimmten Zustand aus einer vordefinierten endlichen Zustandsmenge
- äußere Ereignisse können Zustandsänderungen bewirken und Aktionen auslösen

4.3.1 TODO Graphische Darstellung

graphische Darstellung: Zustände = Kreise, Zustandsübergänge: Pfeile

4.3.2 TODO Darstellung durch Übergangstabellen

Zeilen: Zustände, Spalten: Ereignisse, Felder: Aktion und Folgezustände

Zustände \ Ereignisse	Knopf drücken	Timeout
aus	\Rightarrow {halb}	
{4 LEDs an}	%	$(\Rightarrow \{aus\}, \{nichts\})$
halb	$(\Rightarrow \{\text{voll}\}, \{\text{8 LEDs an}\})$	%
voll	$(\Rightarrow \{blinken an\}, \{Timer starten\})$	%
blinken an	$(\Rightarrow \{aus\}, \{Alle LEDs aus, Timer stoppen\})$	(⇒{blinken aus},{alle LEDs au
blinken aus	$(\Rightarrow \{aus\}, \{Alle LEDs aus, Timer stoppen\})$	$(\Rightarrow \{\text{blinken an}\}, \{\text{alle LEDs an}\})$

Variante: Timer läuft immer (Signal alle 0.3s) \Rightarrow Timout ignorieren im Zustand "aus", "halb", "voll"

4.3.3 Beispiel 2: