Faculdade de Tecnologia SENAI

FIESCESENAI

CLP

Controladores Lógicos Programáveis I

Linguagens Programação

Professor: Caio Felipe Maba

Programa:

Programa:

É a Lógica existente entre os pontos de entrada e saída e que executa as funções desejadas de acordo com o estado das mesmas.

Sistemas de Programação

NORMA IEC-61131

Em 1992, o IEC publicou a norma IEC 61131, a qual estabelece padrões para Controladores Programáveis (CLP). A norma 61131 é dividida em 5 partes:

- 61131-1 Informações gerais
- 61131-2 Requisitos de hardware
- 61131-3 Linguagens de programação
- 61131-4 Guia de orientação ao usuário
- 61131-5 Comunicação

Outras três partes estão em fase de elaboração:

- 61131-6 Comunicação via Fieldbus
- 61131-7 Programação utilizando Lógica Fuzzy
- 61131-8 Guia para implementação das linguagens

FIESC SENAI

PLC Open (www.plcopen.org)

PLC Open é uma associação independente que promove uma padronização na implementação da norma IEC 61131-3

- Atuação
 - Divulgação da norma
 - Definição de interfaces comuns
 - Certificação de produtos
- Testes de compatibilidade
 - Base level
 - Portability level
 - Full compliance
- Recomendações sobre utilização da norma

NORMA IEC 61131-3

■ IEC 61131-3 é o primeiro esforço real para a padronização das linguagens de programação para a automação industrial. Como este é um apelo mundial, esta é uma norma independente de qualquer empresa.

A importância da IEC61131-3

- IEC 61131-3 é a mais importante linguagem de automação industrial.
- 80% de todos os CLP a suportam, todos os novos desenvolvimentos são baseadas nela.
- Dependendo do pais, algumas linguagem são mais populares.

FIESC SENAI

NORMA IEC 61131-3

A IEC-61131-3 estabelece um padrão global para a programação de Controladores Lógicos Programáveis, estabelece um interface padrão permitindo que pessoas com diferentes habilidades e formações criem programas que serão inseridos dentro dos CLPs.

A IEC-61131-3 é o único padrão global para programação de controle industrial que consiste definição das linguagens de programação.

NORMA IEC-61131

Comentários

A norma IEC 61131-3 sugere a utilização de comentários em cada linha de programação em que a sua interpretação não for óbvia.

NORMA IEC-61131 UNIDADES ORGANIZACIONAIS DE PROGRAMAS

Um programa de CLP divide-se em unidades individuais, chamadas de Unidades Organizacionais de Programas (POU – Program Organization Units) que podem ser dos seguintes tipos:

- Programas;
- Blocos de funções;
- Funções.

NORMA IEC-61131 ENTRADAS SAÍDAS E MEMÓRIA

Entre os elementos importantes de um CLP destacam-se as entradas, as saídas e a memória.

Somente através das entradas que o CLP recebe informações do mundo externo. De forma similar só pode controlar algum dispositivo se este estiver conectado em uma de suas saídas. Essas variáveis (entradas e saídas) tem uma posição em um mapa de memória do CLP. Que é indentificada por letras e números. Ex 10.0 - Q0.0 - M0.0.

Mapa de posições de memória de um CLP- endereço

PRIMEIRA LETRA	INGLÊS	PORTUGUÊS
I	Input	Entrada
Q	Output	Saída
M	Memory	Memória
V	Memory	Memória

Mapa de posições de memória de um CLP – tipo de dado

SEGUNDA LETRA	TIPO DE DADO
X	BIT
В	BYTE (8 BITS)
W	WORD (16 BITS)
D	DOUBLE WORD (32 BITS)
L	LONG WORD (64 BITS)

TIPO DE DADO Especificado pela IEC 61131-3

PALAVRA CHAVE	TIPO DE DADO	FAIXA DE VALORES
BOOL	Boolean	0 ou 1
SINT	Short Integer	0 a 255
INT	Integer	+ 32767
DINT	Double Integer	-2147483648 a + 2147483647
UINT	UnsingnedInteger	0 a 65535
REAL	Floating Point	$\pm 2.9 \cdot 10^{-39} \text{ a } \pm 3.4 \cdot 10^{+38}$
TIME	Tempo de Duração	Depende do CLP
STRING	String	Depende do CLP
BYTE	8 bits	0 a 255
WORD	16 bits	-32768 a + 32767

TIPO DE DADO Especificado pela IEC 61131-3

TIPO DE DADO	EXEMPLO
INT (INTEIRO)	12, -8, 123, 751
FLOATING POINT (Ponto Flutuante)	(12,5), (-8,123), (0,1234)
Número Binário	2#1101_0011
Número hexadecimal	16#D3

Endereçamento Simbólico

- Utilizar letras maiúsculas ou minúsculas, dígitos de 0 a 9 e o símbolo sublinhado "___";
- O símbolo deve começar com letra ou sublinhado;
- Não é permitido espaços em branco;
- As letras maiúsculas e minúsculas tem o mesmo significado;
- Os identificadores não podem ter os mesmos nomes das "palavras chaves" prevista na norma.

Memória Auxiliar

- As memórias auxiliares servem para o armazenamento temporário de dados.
- A memória auxiliar não está associada a nenhuma saída física, somente a posição de memória.
- O endereçamento de memórias é diferente em diferentes modelos de CLPs.
- Cada instrução indica uma localização na memória do CLP onde ela está armazenada.

MAPA DE MEMÓRIA CLP

ID0					
	IW0		IW2		
IB0	IB1	IB2	IB3		

			IB	0							IB	1	1		
10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.7

Linguagens de Programação

Podemos classificar as diversas linguagens de programação em dois grupos:

<u>Linguagens de baixo nível</u>: A linguagem Assembly é considerada de baixo nível.

A linguagem de baixo nível requer que o usuário tenha conhecimento da arquitetura do microprocessador.

<u>Linguagens de Alto Nível:</u> A linguagem passa ser de alto nível a medida que essa se aproxima da linguagem corrente utilizada na comunicação de pessoas

Linguagens de Programação

Um ítem fundamental para a utilização de um CLP é a escolha da linguagem a ser utilizada, que depende de diversos fatores:

- Disponibilidade da linguagem no CLP;
- Grau de conhecimento do programador;
- Solução a ser implementada;
- Nível de discrição do problema;
- Estrutura do sistema de controle

Linguagens de Programação

Os CLPs utilizam linguagens de alto nível para a sua programação a norma IEC 61131-3 definiu 5 linguagens de programação:

- Diagrama de blocos e funções; (FDB)
- Linguagem Ladder;(LD)
- Sequenciamento gráfico de funções; (SFC)
- Lista de Instruções;(IL)
- Texto estruturado.(ST)

As linguagens ST e IL são linguagens textuais (escritas) e as linguagens FBD, LD, SFC são gráficas (simbólicas).

Linguagens de Programação IEC 61131-3

Linguagens

CLP

Linguagens Programação

Lembretes

Professor: Caio Felipe Maba

Lembretes para programação

- Sempre que possível utilizar senhas
- Sempre anotar as senhas
- Realizar tantos comentários quanto possíveis
- Observar que o programa raramente funciona na primeira tentativa
- Guardar programas de exemplo
- Salvar cópias de backup
- Organizar programa por funções

CLP

Linguagens Programação

Blocos Funcionais (FBD)

Professor: Caio Felipe Maba

DIAGRAMA DE BLOCOS DE FUNÇÕES

A linguagem gráfica de programação mais popular na Europa. Os elementos são expressos e blocos interligados, semelhantes aos utilizados em eletrônica digital. Essa linguagem permite como as outras um desenvolvimento hierárquico e modular do software, uma vez que podem ser construídos blocos de funções mais complexos a partir de outros menores e mais simples.

Características

- Baseada nos diagramas de circuitos (Diagrama Lógico)
- Adequada para controle discreto, sequencial, regulatório, etc.
- Representação de fácil interpretação
- Blocos expansíveis em função do nº de parâmetros de entrada
- São disparados por parâmetros externos, enquanto os algoritmos internos permanecem escondidos (= OOP)
- Blocos encapsulam o algoritmo, destacando o fluxo de informações e o processamento de sinais

Bloco = Função ou Bloco de Função

Α	X
0	1
1	0

(a)

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	X		
0	0	0		
0	1	1		
1	0	1		
1	1	1		
(e)				

FBD - Function Block Diagram

Sequência de resolução

Programa 1:

Utilizando a tabela verdade realize o programa em blocos funcionais:

- 11	12	Q1
0	0	0
0	1	1
1	0	0
1	1	0

Programa 1:

Utilizando a tabela verdade realize o programa em blocos funcionais:

l1	I2	Q1
0	0	0
0	1	1
1	0	0
1	1	0

Programa 2:

Utilizando programação por blocos funcionais efetue um programa que:

- Para Ligar a saída Q1 uma das entradas 1, 2 ou 3 deverá ser acionada.
- Para a ligar a saída Q1 obrigatoriamente a entrada 4 deverá estar energizada.
- A saída Q2 trabalha sempre ao inverso da saída Q1.

Programa 3:

Utilizando paralelo:

programação blocos por funcionais efetue um programa que realize a função de um interruptor

PORTA OU EXCLUSIVO (XOR) C=A⊕B

Blocos Funcionais (Partida Direta GF)

Programa 4:

• Elabore um programa de CLP que controle realize a função do sistema de comando de uma partida direta.

- Variáveis:
- 11 Liga (NA)
- I2 Desliga (NF)
- Q1 Contator de potência

Blocos Funcionais (Partida Direta GF)

Blocos Funcionais (Blocos Especiais)

Bloco Reset Set

Bloco utilizado para criar uma situação de memória

Blocos Funcionais (Partida Direta)

Programa 5:

- Elabore um programa de CLP que controle realize a função do sistema de comando de uma partida direta.
 Utilizando Bloco especial RS
- Variáveis:
- 11 Liga (NA)
- 12 Desliga (NF)
- Q1 Contator de potência

Blocos Funcionais (Partida Direta RS)

Blocos Funcionais (Blocos Especiais)

Bloco Temporizador

- Bloco utilizado para contar tempo em uma derminada lógica
- Temporizador de ligação Ton
- Temporizador de desligamento Toff

Programa 6 Pisca Alerta

Na aplicação de saída de veículos de um estacionamento, elabore um programa de CLP, que gere o sinal de pisca alerta nas saídas Q1 e Q2, com razão cíclica de 1s

Ao momento em que o carro passa pelo sensor óptico ligado na entrada 11 o sistema começa a sinalização de alerta, a qual permanece nesta função por até 20 segundo após a passagem do veículo.

Programa 7 Controle Bimanual

Elabore um programa de CLP capaz de efetuar o controle de uma prensa que é avançada quando dois botões forem acionados exatamente ao mesmo tempo.

No entanto, se o operador apertar qualquer um dos dois botões e demorar mais que 1 segundo para apertar o outro botão, a prensa não atua.

O retorno da prensa acontece assim que qualquer botão seja desacionado.

Blocos Funcionais (Partida)

Programa 8 Partida Estrela Triangulo

Elabore um programa de CLP capaz de efetuar o comando de uma partida estrela triângulo

Blocos Funcionais (Contador)

Programa 9: Contator de público

- Elabore um sistema que realize a contagem de pessoas dentro de um estabelecimento.
- Sensor I1 posicionado na entrada de pessoas
- Sensor 12 posicionado na saída de pessoas
- Saída Q1, trava da catraca de entrada, a qual limita a quantidade máxima de 20 pessoas no estabelecimento ao mesmo tempo.

Blocos Funcionais (Sequência)

Programa 10: Filtro Manga

Elabore um programa que efetue o processo de limpeza do sistema de um filtro manga

- A cada 20 segundos faça dois ciclos de limpeza nos quatro bicos, instalados em Q1 Q2 Q3 e Q4.
- O ciclo de limpeza liga um bico de cada vez e o mantém ligado por 2 segundos.
- O sistema é ligado a partir de um pulso na entrada 12.
- O sistema é desligado a partir de um pulso na entrada
 11

Blocos Funcionais (Sequência)

Programa 11

 Elabore um programa que controle a separação de peças entre metálicas e plásticas nas rampas respectivas. Uma peça é colocada manualmente na posição de entrada. Em seguida, o botão de start deve ser acionado e a esteira ligada. Ao passar pelo sensor indutivo, a peça metálica é detectada. O batente expulsador deve ser acionado no exato instante que a peça metálica sair do alcance do sensor indutivo. Se a peça não for metálica, deve seguir adiante até a rampa das plásticas. Os sensores óticos desligam o sistema.

Blocos Funcionais (Contador)

Programa (A):

 Utilizando-se dos recursos de contagem do CLP, elabore um programa capaz de acionar uma lâmpada sinalizadora sempre que o número de pulsos recebidos na entrada do contador for múltiplo de 3. Assim, no recebimento do terceiro pulso a lâmpada acende, desligando-se no quarto; novamente acende no sexto e desliga no sétimo, assim sucessivamente.

Blocos Funcionais (Motor Passo)

Programa (B):

- Monte um sistema e programe a CLP para realizar a correta sequência de acionamento de um motor de passo.
- Sentido horário e antihorário
- Quantidade de pulsos em 11 equivalente a quantidade de voltas do motor
- Botão 12 liga o sistema
- Botã I3 desliga o sistema

FIESCESENAI

FIESC - CIESC - SESI - SENAI - IEL

sc.senai.br | 48 3231 4100 | 48 3231 4211 Rodovia Admar Gonzaga, 2765 Itacorubi 88034-001 Florianópolis, SC