Supplementary Information: Differential charge boost in hysteretic ferroelectric-dielectric heterostructure capacitors at the steady state

Nujhat Tasneem,^{1, a)} Prasanna Venkatesan Ravindran,¹ Zheng Wang,¹ Jorge Gomez,² Jae Hur,¹ Shimeng Yu,¹ Suman Datta,² and Asif Islam Khan^{1, 3}

¹⁾School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

²⁾School of Electrical and Computer Engineering, University of Notre Dame, Notre Dame, In 46556, USA

³⁾School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

^{a)}N. Tasneem and P. V. Ravindran contributed equally to this work; ntasneem3@ece.gatech.edu

I. EXPERIMENTAL DETAILS

FIG. S1. (a) Schematic of the experimental setup of the pulse measurement. $V_{in}(t)$ and $V_{FE+DE}(t)$ waveforms are captured by an oscilloscope.

A resistor R=1 $k\Omega$ in series with the device under test (DUT) was connected to a pulse generator shown in fig S1. An oscilloscope was used to measure voltages across the pulse generator and the DUT.

The electrical measurements were done using a Cascade Microtech Summit 1200K semiautomated probe station. The pulse measurements on the MIFM heterostructure were performed using a Keysight 81150A Pulse Function Arbitrary Noise Generator and a Keysight DSOS104A Oscilloscope. An FE tester aixACCT TF-3000 ferroelectric parameter analyzer at 1 kHz was used to measure the polarization versus electric field curves (black dotted curves in Fig. 2(b)). The dielectric constant of HfO₂ was extracted from the capacitance versus electric field curves measured by a Keysight E4990A impedance analyzer (Supplementary Fig. S3).

II. TIME PLOTS FOR MFM CAPACITOR

FIG. S2. (a) The source voltage V_{in} , FE voltage V_{FE} , the current through R, the charge supplied by the source, Q plotted as a function of time for $V_{prog} = -4.4$ V and subsequent measurement pulses of +4.2V. The program pulse is applied before every measurement. The first measurement pulse captures Q_{SW} and Q_{DE} while the second captures only Q_{DE} . (b) Q - V curve and P - V curve for 10 nm $Hf_{0.5}Zr_{0.5}O_2$ measured using the modified PUND method.

Both charge, Q_C and polarization, $P_C(=Q_C/\text{Area})$ of the capacitor) are plotted as functions of maximum voltage $V_{max}(=V_{FE})$ across the MFM capacitor, shown in Fig. 2(b). It should be noted here that the P-V loops of the MFM capacitor does not show a negative slope because the NC characteristic is not stable in a simple ferroelectric capacitor.

III. DIELECTRIC CONSTANT OF HfO2 CAPACITOR

FIG. S3. Dielectric constant ϵ_r vs Voltage (V) of 10nm HfO₂. Hafnia's dilectric constant is approximately 20.

The dielectric constant of HfO₂ was extracted from the capacitance versus electric field curves measured by a Keysight E4990A impedance analyzer with a small-signal amplitude of 50 mV and a frequency of 100 kHz. From the figure, the dielectric constant of HfO₂ is \sim 20 which is used to extract $P_C - V_{FE}$ loop from the $P_C - V_{FE+DE}$ data.

IV. P_C VS V_{FE} LOOP EXTRACTED FROM FIG 2B

FIG. S4. $P_C - V_{FE}$ curve extracted from the $P_C - V_{FE+DE}$ curve obtained from the modified PUND method.

Under the assumption that the capacitance of HfO_2 is constant and the negative capacitance phenomenon is stabilized in an FE-DE capacitor, we extracted voltage across the ferroelectric layer V_{FE} and plotted the $P - V_{FE}$ characteristics.

V. PLOTS FOR 1.5 μ S.

FIG. S5. (a) P-V curve from modified PUND method (green cruve) for 10 nm $Hf_{0.5}Zr_{0.5}O_2$ with 5 nm HfO_2 for pulse width=1.5 μ s. (b) Differential NC based capacitance enhancement is shown using modified PUND method.

The modified PUND method was also applied on the DUT with pulse width = 1.5 μ s and Fig. S5(a) shows the resulting P_C vs V_{FE+DE} plot. The P_C vs V_{FE+DE} curves are shown is Fig. S5(b) demonstrating the capacitance enhancement due to negative capacitance of the ferroelectric layer.

VI. SIMULATION MODEL

FIG. S6. (a) SPICE circuit model of the FE-DE interaction for a single domain, (b) SPICE implementation of dynamics of charge switching based on positive feedback-loop.