Table of contents

S.No.	Content	Page.No.
1	Abstract	
2	Introdution	
3	Literature Survey	
4	References	

Abstract

Agriculture is the main aspect of country development. Many people lead their life from agriculture field, which gives fully related to agricultural products.

Plant disease, especially on leaves, is one of the major factors of reductions in both quality and quantity of the food crops.

In agricultural aspects, if the plant is affected by leaf disease then it reduces the growth of the agricultural level.

Cont...

Finding the leaf disease is an important role of agriculture preservation.

After pre-processing using a median filter, segmentation is done by Guided Active Contour method and finally, the leaf disease is identified by using Support Vector Machine.

The disease-based similarity measure is used for fertilizer recommendation.

Introduction

From ancient period, agriculture is considered as the main and the foremost culture practiced in India.

Ancient people cultivate the crops in their own land and so they have been accommodated to their needs. Since the invention of new innovative technologies and techniques in the agriculture field is slowly degrading.

Due to these, abundant invention people are been concentrated on cultivating artificial products that is hybrid products where there leads to an unhealthy life.

SI No	Author & Year of publication	Journal	Title of the paper	Algorithm	Advantage	Limitation
1	Mayuri Pawar, Geetha Chillarge, 2018	IEEE	Soil toxicity prediction and recommendation system using data mining in precision agriculture.	The system can help farmers by making them aware about soil conditions. Farmers can maximize crops yield by knowing proportion of nutrients present in the soil.	Thus the system recommen ds the farmer about the crop, fertility of soil, level of toxicity and water supply	This system can not be utilized effectively by the soil testing laboratorie s.

2	K.Saranya	IEEE	Agricult	The major	This system	The First and
	, Deena		ure	problem that a	which recommen	foremost limitation
	Dhayalan,		Based	farmer faces is	ds the most	in Image
	R.Prasanth		Recom	the disease and	suitable crop by	classification is
	,M.		mendati	pest that affect	considering	gathering the proper
	Sathish,		on	the plant. which	parameters like	quality data as the
	2022		System	are aware only in	weather and soil	Image background
			with	later stages. For	based on live	may contain
			Image	that to predict the	location.	elements that may
			Processi	disease and		present in multiple
			ng.	suggest		samples
			1 2000	pesticides.		230
3	Oviya	IEEE	Improve	If the plant is	The result will	Images were taken
3	Oviya kumari,	IEEE	Improve d Plant	If the plant is unhealthy then	The result will further be	Images were taken in various weather
3		IEEE		•	SEASON OF SEASON SEASON SEASON SEASON	
3	kumari,	IEEE	d Plant	unhealthy then	further be	in various weather
3	kumari, HJ	IEEE	d Plant Disease	unhealthy then the cause of the	further be accompanied by	in various weather conditions, at
3	kumari, HJ Bharath,	IEEE	d Plant Disease Detectio	unhealthy then the cause of the disease is also	further be accompanied by recommending	in various weather conditions, at different angles, and
3	kumari, HJ Bharath, Jaisal	IEEE	d Plant Disease Detectio n	unhealthy then the cause of the disease is also identified via	further be accompanied by recommending the required	in various weather conditions, at different angles, and daylight hours with
3	kumari, HJ Bharath, Jaisal Srivastava,	IEEE	d Plant Disease Detectio n Techniq	unhealthy then the cause of the disease is also identified via taking two inputs	further be accompanied by recommending the required fertilizer or	in various weather conditions, at different angles, and daylight hours with an inconsistent
3	kumari, HJ Bharath, Jaisal Srivastava, JY	IEEE	d Plant Disease Detectio n Techniq ue	unhealthy then the cause of the disease is also identified via taking two inputs such as plant	further be accompanied by recommending the required fertilizer or pesticide to	in various weather conditions, at different angles, and daylight hours with an inconsistent background
3	kumari, HJ Bharath, Jaisal Srivastava, JY manvith,	IEEE	d Plant Disease Detectio n Techniq ue Using	unhealthy then the cause of the disease is also identified via taking two inputs such as plant leaves and soil	further be accompanied by recommending the required fertilizer or pesticide to tackle the	in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical
3	kumari, HJ Bharath, Jaisal Srivastava, JY manvith, Anusha	IEEE	d Plant Disease Detectio n Techniq ue Using	unhealthy then the cause of the disease is also identified via taking two inputs such as plant leaves and soil sample from	further be accompanied by recommending the required fertilizer or pesticide to tackle the problem and	in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical

4	V.Suma , R.Amog Shetty, Sunku Rohan, 2019	IEEE	CNN based leaf disease identification and remedy recommendat ion system.	The devices are smart enough to recognize and detect plant diseases. Recognizing illness can prompt faster treatment in order to lessen the negative impacts on harvest.	It is focus upon plant disease detection using image processing approach. This work utilizes an open dataset of 5000 pictures of unhealthy and solid plants.	Time manage -ment is an issue in this method.
5	Dr.P. Pandi Selvi, P.Poornim a, 2021	IEEE	Soil Based Fertilizer Recommend ati-on System for Crop Disease Prediction System	The soil type, fertilizer recommendation, diseases in plants and leaves. All these features need to be considered.	It is one of the major factors that reduce the yield in both quality and quantity of the food crops. Finding the leaf disease is an important role to preserve agriculture	Does not work for diverse varieties of crops cultivated

6	Ji-chun Zhao and Jian Jianxin Guo , 2018	IEEE	Big Data Analysis Technology Application in Agricultura l Intelligence Decision System	The knowledge acquisition system obtains knowledge for the decision system and establishes an effective knowledge base to solve the problem. The paper uses various Hadoop modules for the purpose of feature extraction.	It considers various modules like users, knowledge engineer, domain expert, manmachine interface, inference engine and knowledge base.	The data was just presente d for wheat crop and other crops were not consider ed.
7	Miftahul Jannat Mokarra ma ,2017	IEEE	RSF: A recommend ation System for Farmers	A recommendation system for famers which considers a location detection module, data analysis and storage module, crop growing database, physiographic database.	The similar location detection module identifies the locations which are similar to the user's locations and checks the similar crops that are planted in those locations.	The system does not get user feedbac k to improve the process.

	T					
8	S.Pudum alar , E.Raman ujam , 2016	IEEE	Crop Recommend ation System for Precision Agriculture	The methods used are Random Trees, KNN, CHAID and Naïve Bayes for ensemble so that even if one method predicts incorrectly, the other models are likely to make correct predictions.	Authors uses an ensemble technique called majority Voting Technique which combines the power of multiple models to achieve greater prediction accuracy	The accuracy obtained is 88% using the ensemble model.
9	Yogesh Gandge,S andhya, 2017	IEEE	A Study on Various Data Mining Techniques for Crop Yield Prediction	Decision tree using ID3 algorithm was considered for soybean crop and the recommendations were generated.	It was observed that Multiple Linear Regression gave an accuracy of 90-95% for rice yield.	The algorithm needs to be increased efficiency to provide more accurate accuracy

10	Sambhav Bhansali,	IEEE	Crop Prediction	Basis on the region of	The user can upload the	The First and foremost
	Punit		and Disease	farming to	image of the	limitation in
	Shah,		Detection	recommend the	affected	Image
	Jinay		System.	fertilizer and its	plant/crop and	classification
	Shah,			uses to boost	the system	is gathering
	2022			the yield	will figure out	the proper
				productivity for	the type of	quality data
				farmers.	disease. And	as the Image
				Sometimes due	this disease	background
				to unwanted	detection will	may contain
				excess of	suggest that	elements that
				rainfall or the	how	may disturb
				pest attack can	plant/crop can	the training
				cause disease	be cure	process,
				to crops.		especially if
						those
						elements are
						present in
						multiple
						samples

Reference

2020, International Conference for Emerging Technology (INCET) "Machine learning Implementation in IoT based Intelligent System for Agriculture", Bhanu K N, Jasmine H, Mahadevaswamy H S.

2019 10th International Conference on Computing, Communication and Networking Technologies, "Low-cost iot+ml design for smart farming with multiple applications", Fahad Kamraan Syed, Agniswar Paul, Ajay Kumar, Jaideep Cherukuri.

2018 International Conference On Advances in Communication and Computing Technology (ICACCT) "Plant disease detector", Jagadish Kashinath Kamble.