DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 COURSE INTRODUCTION

ZOOM MEETING MUTED BY DEFAULT

• By default your audio is muted upon entering the Zoom meeting.

- You may press and hold the space bar to temporarily unmute your audio in case you want to speak to the class.
- By default your video is also off.
 - You may click the Start Video button if you want to be seen by everyone.
 - You are strongly encouraged to mute your video when you are not speaking.
 - Bandwidth constraint

ZOOM MEETING THE "RAISE HAND" FUNCTION

- Anytime during the lecture, if you have a question about the subject being discussed, you may raise your hand by clicking the Raise Hand button.
- Or, you can simply *unmute* yourself and start speaking.

ZOOM MEETING PRIVATE CHAT

• If you feel shy to ask questions in front of the class, you may start a private chat with me.

• You can do so by clicking the **Chat** button (next to the **Participants** button) at the bottom of

the main view, then select me.

You can also send me a file privately.

ZOOM MEETING BREAKOUT ROOMS

• In some cases, I might randomly put you in breakout rooms for "brainstorming, discussions,

group work"

• If you and your "roommate" need some help from me, you may click the Ask for Help button.

ZOOM MEETING MORE FEATURES

• As we progress through the semester, we can explore more features of Zoom and start using those features!

ABOUT THE INSTRUCTOR

- Instructor: Dr. Tianyi Song
- Office Hours: 1:00 pm ~ 2:00pm Mondays, Tuesdays, Wednesdays, and Fridays
- Email: tsong@bgsu.edu
- Class Delivery: Remote on Zoom
 - Zoom meetings are posted the Weeks' modules

GETTING HELP FROM THE TA

- Teaching Assistant: Mr. Prabesh Pathak
- Email: ppathak@bgsu.edu
- Office Hours: 11:00 am ~ 12:00 pm Tuesdays
 - Meeting ID: 756 3092 7466 Passcode: tall 12

TEXTBOOK

- "Introduction to Algorithms," by Cormen, Leiserson, Rivest, and Stein, MIT Press, 3rd Edition, 2009, ISBN-Hardcover: 978-0-262-03384-8, ISBN-Paperback: 978-0-262-53305-8.
 - The course will cover about 1/3 of the textbook contents
 - Related textbook pages will be extracted and provided within each week's module

CLASS CANVAS SHELL

- BGSU template adopted
 - The course syllabus is accessible from Course Overview.
 - Textbook and supplemental materials are provided in Course Resources.
 - Feel free to ask/answer questions or start a discussion by clicking Course Question Board.
 - You can also contact me
 - Access weekly schedules, lecture slides, assignments from Learning Modules.

CLASS SECTION EXPLAINED

- Two sections are cross-listed as one section.
- Officially, you are still enrolled in your intended section.
- Attending the class
 - You will need to attend the sections that you enrolled in.
 - If you registered for section 1001/5001, attend the class @ 2:30 pm MWF.
 - If you registered for section 1002/5002, attend the class @ 3:30 pm MWF.

CLASS ORGANIZATION

- Course content will be organized *anti*chronologically in modules of weeks.
- Each week's module will contain
 - A class page providing
 - the links to Zoom meetings of the week
 - the corresponding lecture slides in PDF format
 - Supplemental readings extracted from the textbook
 - Assignments due by the Friday of the following week

EXPECTATIONS

- Attending your registered class sections
 - If you need to attend a different section, you must send me a notice by 12:00 pm on the day of the class.
- Taking notes
 - There will be in-class practice. The answers to those questions will not posted.
- Actively engaging in the class
 - Ask many questions.
- Active thinking

EXPECTATIONS BE COMFORTABLE WITH MATH

- Make yourself comfortable with mathematical symbols and works.
 - Determine the complexity of an algorithm
 - Analyze a given problem, and identify and define the computing requirements appropriate to its solution; and
 - Apply mathematical foundations, algorithmic principles, and computer science theory as appropriate in modeling and solving real-world problems.
 - Check out the mathematical notations posted in the Course Resources page.

ASSESSMENT ASSIGNMENTS

- Weekly assignments
 - Individual work!
 - Accessible in modules of weeks
 - There is no homework assignments for the 1st week
 - Starting from the <u>2nd week</u>, there will be weekly assignment
 - Due by I<u>I:59 pm</u> of the Friday of the following week

ASSESSMENT PROJECTS

- Two programming projects
 - Individual work!
 - Project instructions will be posted via Canvas.
 - Students have the freedom of choosing their favorite programming languages to implement the algorithms.
 - Students be given 3 weeks to complete a project.

ASSESSMENT EXAMINATIONS

- Midterm examination through Canvas
 - The scope of content is subjects covered from the first lecture through week 06.
 - Exam will be available on the Monday of the 8th week
 - Starts: 12:00 am, Monday, October 12, 2020
 - Ends: 11:59 pm, Friday, October 16, 2020
 - Two attempts allowed
 - Each attempt is limited by two and a half hours (150 minutes)
 - The final score will be the average of the two attempts

ASSESSMENT EXAMINATIONS (CONT'D)

- Final examination through Canvas
 - The exam is NOT comprehensive.
 - Subject may be built on the content taught in the first half of the semester
 - The scope of content is subjects covered from week 07 through week 15.
 - Exam will be available on the Monday of the Final week
 - Starts: I2:00 am, Monday, December 7, 2020
 - Ends: 11:59 pm, Friday, December 11, 2020
 - Two attempts allowed
 - Each attempt is limited by two and a half hours (150 minutes)
 - The final score will be the average of the two attempts

GRADING POLICY

- Your final letter grade will be determined by the overall percentage
- Based on your overall percentage you will receive
 - A if you achieve >= 89.5%
 - B if you achieve >= 79.5% and < 89.5%</p>
 - C if you achieve >= 69.5% and < 79.5%
 - D if you achieve >= 60% and < 69.5%
 - F if you achieve < 60%</p>
- The cuts for A, B, and C will be lowered by 0.5% if you do not have missing/late submission.

TOPICS OVERVIEW FOUNDATIONS

- The role of algorithms
- Reading/writing pseudocode
- Analyzing algorithms
- Growth functions
- The case of sorting algorithms

TOPICS OVERVIEW DESIGN TECHNICS

- Divide-and-Conquer
- Prune-and-search
- Dynamic programming
- Greedy strategy

TOPICS OVERVIEW ELEMENTARY GRAPH ALGORITHMS

- Data structure
- Binary search tree
- Graph traversal algorithms
- Minimum spanning tree
- Shortest-path algorithms

TOPICS OVERVIEW ADVANCED

- Polynomial time
- NP-completeness (required for graduate level)
- NP-complete problems (required for graduate level)

- Table of references
 - https://rb.gy/mq83ie

NEXT UP THE ROLE OF ALGORITHMS