Predicting home prices with linear, lasso, ridge and random forest regression

Client summary

A first capstone project for Springboard's data science bootcamp

Mike Pierovich 2/26/2020

Problem

What's the home going go sell for?

And why?

Data

Sales price

- \$160,000 median
- Outliers

- 300 sales/year
- 25 sales/month

- Seasonal
- Prices flat

Home features

Of 54 non-categorical

- 24 with Pearson's r > 30%
- 10 with cross correlation < 50%

Of 25 categorical

• 2 with Pearson's r > 30%

Selected 12

Models

Build, tune and compare

Linear - baseline Linear - normalized Linear - baseline Linear - normalized Lasso Linear - normalized Ridge Random forest - baseline - all Random forest - baseline - all Random forest - tuned - all Random forest - tuned - all Random forest - tuned - high Random forest - tuned - all Random forest - tuned - high+med Random forest - tuned - all Random forest - tuned - high+med+low Random forest - tuned - high+med+low Linear - normalized

Best performance

Linear - normalized

RMSE: .15MAE: .11R2: .86

Recommendations

Launch

- Minimum viable product around
- Predicted price
- Prediction interval
- For a specific property in Ames, Iowa and
- For all properties in Ames, Iowa.

Improve

- Data
 - Location
 - o Time
 - Features
- Model
 - Regression
 - Other models