Sum of Powers Theorem

Saksham Sethi

1 A case of the generalized form

1.1 Statement

 $2^a + 2^b$ cannot be a power of 2 when a and b are positive integers and $a \neq b$.

1.2 Proof

Without loss of generality, let b>a. Let b=a+n for a positive integer n. Then $2^a+2^b=2^a+2^{a+n}=2^a(1+2^n)$. 2^a is a power of 2, and 2^n+1 can never be a power of 2 since it's odd. So, since one of them is a power of 2 and the other isn't, in its prime factorization we will have a power of 2 multiplied by some other powers of prime numbers. Thus 2^a+2^b isn't a power of 2.

2 Extended Form

2.1 Statement

 $x^a + x^b$ cannot be a power of x when a and b are positive integers and $a \neq b$.

2.2 Proof

Without loss of generality, let b > a. Let b = a + n for a positive integer n. Then $x^a + x^b = x^a + x^{a+n} = x^a(1+x^n)$. x^a is a power of x.

Lemma: x^n+1 **is never a power of** x: Let i be a positive integer. We note that the value of $x^{i+1}-x^i$ increases as i increases. In other words, it means that the difference between consecutive powers of x increases as the powers increase. And since the difference between the first two positive powers of x is $x^2-x^2=x^2$, we know that the minimum possible value of $x^{i+1}-x^i$ is $x^2-x^2=x^2$.

We use the lemma. Since we know x^n is a power of n, by the lemma, at minimum x^n+2 can be a power of x, and there is no way for x^n+1 to be a power of x.

2 Extended Form 2

So, since one of them is a power of x and the other isn't, in its prime factorization we will have a power of x multiplied by some other powers of prime numbers. Because it has prime numbers in its factorization other than 2, $x^a + x^b$ cannot be a power of x for b > a and $a \neq b$.

And we're done.