Методы аугментации аудиоданных

Лукьянов Павел Александрович

Научный руководитель: д.ф-м.н., профессор Дьяконов Александр Геннадьевич

Москва, 2022

Аугментация аудиоданных

Рис.: FreqMasking

SwapVerticalStripes

T — параметр метода.

В результате применения аугментации:

- $t \sim U\{0, T\}, t_1 \sim U\{t, \mathsf{TimeSize} 1 t\}, t_2 \sim U\{t, \mathsf{TimeSize} 1 t\}, |t_1 t_2| \ge t.$

Рис.: SwapVerticalStripes

SwapNeighboringStripes

T — параметр метода.

В результате применения аугментации:

- **1** $t \sim U\{0, T\}, t_0 \sim U\{t, \text{TimeSize} 1 t\}.$
- ② $S[:; t_0: t_0+t-1] \leftrightarrow S[:; t_0-t: t_0-1].$

Рис.: SwapNeighboringStripes

SwapSeveralStripes

T, N — параметры метода, $n \sim U\{0, N\}$. В результате применения аугментации (процедура повторяется n раз):

- $\textbf{1} \quad T_0 = \lfloor \frac{T}{n} \rfloor, \ t \sim U\{0, T_0\}, t_1 \sim U\{t, \mathsf{TimeSize} 1 t\}, \\ t_2 \sim U\{t, \mathsf{TimeSize} 1 t\}, |t_1 t_2| \geq t.$
- ② $S[:; t_1: t_1+t-1] \leftrightarrow S[:; t_2: t_2+t-1].$

Рис.: SwapSeveralStripes

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	81.98 ± 2.34	82.23 ± 2.4
SwapVerticalStripes	83.2 ± 1.3	83.65 ± 1.07
SwapNeighboringStripes	81.62 ± 0.69	83.4 ± 1.71
SwapSeveralStripes	83.55 ± 0.49	84.42 ± 1.92

Таблица: Результаты экспериментов (Heartbeat Sounds) с предлагаемыми методами аугментации SwapVerticalStripes, SwapNeighboringStripes, SwapSeveralStripes. Метрика качества — процент верно классифицированных объектов.

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	0.66 ± 0.034	0.692 ± 0.04
SwapVerticalStripes	0.699 ± 0.029	0.681 ± 0.038
SwapNeighboringStripes	0.69 ± 0.029	0.7 ± 0.027
SwapSeveralStripes	0.687 ± 0.026	0.709 ± 0.029

Таблица: Результаты экспериментов (Heartbeat Sounds) с предлагаемыми методами аугментации SwapVerticalStripes, SwapNeighboringStripes, SwapSeveralStripes. Метрика качества — сбалансированная точность.

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	74.3 ± 3.03	73.0 ± 3.24
SwapVerticalStripes	76.6 ± 2.67	75.6 ± 3.68
SwapNeighboringStripes	$\textbf{75.6}\pm\textbf{2.75}$	71.4 ± 4.91
SwapSeveralStripes	$\textbf{75.4}\pm\textbf{2.18}$	72.7 ± 3.4

Таблица: Результаты экспериментов (GTZAN) с предлагаемыми методами аугментации SwapVerticalStripes, SwapNeighboringStripes, SwapSeveralStripes. Метрика качества — процент верно классифицированных объектов.

Алгоритм применения методов аугментации

Algorithm 1 Предлагаемый алгоритм

```
Augmentations = \{Augment_1, Augment_2, ..., Augment_n\} -
заданный набор аугментаций,
Augment — случайно выбранная аугментация
                                                      И3
Augmentations,
(X_{val}, y_{val}) — валидационный датасет,
(X_{train}, y_{train}) — обучающая выборка,
f — метрика качества,
M — число эпох обучения нейронной сети.
Цикл от i = 1 до M выполнять
   train-шаг с применением Augment,
   вычисление F_i = f(Augment_i(X_{val}), y_{val}), i = 1, n,
   Augment = Augment_k, где k = argmin_k(F_k).
Конец цикла
```

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	81.98 ± 2.34	82.23 ± 2.4
RandAugment	83.1 ± 0.92	84.57 ± 1.3
Предлагаемый алгоритм	86.65 ± 0.67	86.75 ± 0.76

Таблица: Результаты экспериментов (Heartbeat Sounds) с предлагаемым алгоритмом применения методов аугментации. Метрика качества — процент верно классифицированных объектов.

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	0.66 ± 0.034	0.692 ± 0.04
RandAugment	0.713 ± 0.031	0.677 ± 0.036
Предлагаемый алгоритм	0.762 ± 0.023	0.753 ± 0.02

Таблица: Результаты экспериментов (Heartbeat Sounds) с предлагаемым алгоритмом применения методов аугментации. Метрика качества — сбалансированная точность.

Метод аугментации	resnet18	resnet50
Аугментация отсутствует	74.3 ± 3.03	73.0 ± 3.24
RandAugment	75.0 ± 2.61	74.9 ± 2.63
Предлагаемый алгоритм	$\textbf{76.8}\pm\textbf{1.75}$	72.2 ± 2.8

Таблица: Результаты экспериментов (GTZAN) с предлагаемым алгоритмом применения методов аугментации. Метрика качества — процент верно классифицированных объектов.

Заключение

В процессе выполнения работы получены следующие результаты:

- предложен и реализован метод аугментации аудиоданных SwapVerticalStripes, основанный на перестановке вертикальных полос в мел-спектрограмме, а также его модификации SwapNeighboringStripes, SwapSeveralStripes,
- проведены вычислительные эксперименты, показывающие возможную применимость предложенного метода SwapVerticalStripes и его модификаций в задаче аудиоклассификации,

Заключение

- предложен и реализован алгоритм применения методов аугментации аудиоданных с выбором конкретного метода аугментации после каждой эпохи обучения,
- проведены вычислительные эксперименты, показывающие существенное преимущество предложенного алгоритма над алгоритмом RandAugment в задаче аудиоклассификации Heartbeat Sounds Classification.

По результатам работы сделан доклад на международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2022».

