Universidade Federal de Pernambuco Cálculo Numérico

- 1. Converta para base decimal o número $(101,1)_2$.
- 2. Converta para a base binária o número $(5,5)_{10}$.
- 3. Qual o maior inteiro que pode ser representado em base binário com n algarismos?
- 4. Considere a seguinte rotina:

```
x=1.0 while x+1>x: x=x+1
```

Explique se esta rotina finaliza em tempo finito.

- 5. Considere a equação $\sqrt{x} = cos(x)$. Use o método da bisseção com intervalo inicial [a, b] = [0,1] e $x^{(1)} = (a+b)/2$ para calcular a aproximação $x^{(4)}$ da solução desta equação.
- 6. Mostre que a equação $xe^x=10$ é equivalente às equações $x=\ln\left(\frac{10}{x}\right)$ e $x=10e^{-x}$. Utilize o método iterativo linear com $x^{(1)}=1$ para verificar se estas sequências são convergentes.
- 7. Encontre a raiz positiva da função $f(x) = \cos(x) x^2$ pelo método de Newton. Realize a iteração até obter estabilidade no quinto dígito significativo.
- 8. O método de Newton pode ser interpretado como um método do ponto fixo com $g(x) = x \frac{f(x)}{f'(x)}$. Mostre que $g'(x^*) = 0$ (condição para que o método iterativo linear tenha convergência quadrática).
- 9. Qual as vantagens e desvantagens do método de Newton quando comparado ao método da bisseção.