ECE 1513: Introduction to Machine Learning

Lecture 3: Principle Component Analysis

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Quick Recap: ML General Recipe

We defined ML as

the set of data-driven approaches that help us understand the environment and its behavior, and generalize it!

Any learning task is accomplished by ML through three major steps

- Collect data
- Specify a model that captures the pattern
- Develop a learning algorithm

Quick Recap: Clustering

- Data
 - $\,\,\,\,\,\,\,\,$ Collection of samples $\mathbb{D} = \{ \boldsymbol{x}_n : n = 1, \dots, N \}$
- Model
- Learning algorithm
 - \downarrow It takes \mathbb{D} and returns a good clustering

Where Are We?

```
K-Means():
 1: Initiate \mu_1, \ldots, \mu_K
 2: while \mu_1, \ldots, \mu_K changing do
 3: Set \mathcal{C}_1, \dots, \mathcal{C}_K \leftarrow \text{Cluster\_Assignment}(\mu_1, \dots, \mu_K)
        Update \mu_1, \ldots, \mu_K \leftarrow \text{Centroid\_Update}(\mathcal{C}_1, \ldots, \mathcal{C}_K)
 5: end while
 6: Return \mu_1, \ldots, \mu_K
```

Quick Recap: Density Estimation

We look at the data as a stochastic process

• We sample the dataset

$$\mathbb{D} = \{ \boldsymbol{x}_n : n = 1, \dots, N \}$$

- We know (assume) some distribution for the process
 - \rightarrow Model: P_{θ} for some unknown θ
- Learning algorithm
 - \downarrow Infers a good θ by observing \mathbb{D}

Quick Recap: Maximum Likelihood

The learning algorithm is maximum likelihood

$$\boldsymbol{\theta}^{\star} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}_{\mathbb{D}} \left(\boldsymbol{\theta} \right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P_{\boldsymbol{\theta}} \left(\mathbb{D} \right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N} \right)$$

Today's Agenda: Dimensionality Reduction

In today's lecture, we study our last unsupervised learning task, i.e.,

dimensionality reduction

through the following steps

- Representing data in lower dimension
- Principle component analysis
- A look at particular applications

 - **→** *Recommendation systems*
- Wrapping up unsupervised learning

Motivation: Compression

Say we have data samples in D-dimensional space

$$\mathbb{D} = \left\{ \boldsymbol{x}_n \in \mathbb{R}^D : n = 1, \dots, N \right\}$$

? Can we represent it in lower dimension?

$$f: \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \mapsto \boldsymbol{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix}$$

Example: Image Compression

Consider a 60K pixel image

? Can we represent it with much less pixel while maintaining quality?

Representing Data in Lower Dimensions: Example I

Consider the example where all samples lie on a line

Doviously, we can represent each sample with only one scalar!

Representing Data in Lower Dimensions: Example II

Consider the example where all samples lie on a 2D plane

• We can represent each sample with a 2D vector

Representing Data in Lower Dimensions: General Form

In reality, the samples might be more spread in one direction

! We can have an approximate low-dimensional representation

Orthonormal Bases

 $\mathbf{u}_i \in \mathbb{R}^D$ form an orthonormal base if

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_D] \leadsto \begin{cases} \mathbf{u}_j^\mathsf{T} \mathbf{u}_j = 0 \\ \|\mathbf{u}_i\| = 1 \end{cases} \iff \mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I}_D$$

Classic Base

Classic base is given by the identity matrix \mathbf{I}_D

Key Feature

Orthonormal base only rotates and does not change the norm

$$\|\mathbf{U}\boldsymbol{x}\| = \|\boldsymbol{x}\|$$

Orthonormal Bases

We can use orthonormal bases to represent a vector

Recall

In D-dimensional space, we have only D orthogonal vectors

Eigenvalues and Eigenvectors

Say we have a square matrix $\mathbf{A} \in \mathbb{R}^{D \times D}$

Eigenvalue and Eigenvector

 (λ, \mathbf{v}) is an eigenvalue and eigenvector pair if

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

Recall

We consider eigenvectors to be unit-norm, i.e., $\|\mathbf{v}\| = 1$

Eigenvalues and Eigenvectors: Visualization

Eigenvectors describe an orthonormal base

Matrix Decomposition

Let's put everything in a matrix form

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_D \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \cdots & \lambda_D \mathbf{v}_D \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_D \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_D \end{bmatrix}$$

Eigendecomposition

We can hence say that

$$A = V\Lambda V^{\mathsf{T}}$$

where ${f V}$ is an orthonormal base and ${f \Lambda}$ is diagonal matrix of eigenvalues

Key Features

We can compute determinant from eigenvalues

$$\det \mathbf{A} = \prod_{i=1}^{D} \lambda_i$$

We can compute trace from eigenvalues

$$\operatorname{tr}\{\mathbf{A}\} = \sum_{i=1}^{D} \lambda_i$$

A positive semi-definite matrix has only non-negative eigenvalues

$$\mathbf{A} \geq 0 \rightsquigarrow \lambda_i \geqslant 0$$

→ Famous example of a positive semi-definite matrix

$$A = XX^T$$

Single direction $\mathbf{u} \in \mathbb{R}^D$

$$\hat{\boldsymbol{x}}_n = z_n \mathbf{u} + \boldsymbol{\mu}$$

Of course u is a base, i.e.,

$$\|\mathbf{u}\| = 1$$

How to find z_n ?

$$z_n = \mathbf{u}^\mathsf{T} \left(\boldsymbol{x}_n - \boldsymbol{\mu} \right)$$

Two directions \mathbf{u}_1 and $\mathbf{u}_2 \in \mathbb{R}^D$

$$egin{aligned} \hat{oldsymbol{x}}_n &= z_{n,1} \mathbf{u}_1 + z_{n,2} \mathbf{u}_2 + oldsymbol{\mu} \ &= \left[\mathbf{u}_1, \mathbf{u}_2
ight] egin{bmatrix} z_{n,1} \ z_{n,2} \end{bmatrix} + oldsymbol{\mu} = \mathbf{U} oldsymbol{z}_n + oldsymbol{\mu} \end{aligned}$$

How to find z_n ?

$$z_{n,1} = \mathbf{u}_1^\mathsf{T} \left(x_n - \mu \right)$$
 $z_{n,2} = \mathbf{u}_2^\mathsf{T} \left(x_n - \mu \right)$ $x_n - \mu$ $x_n - \mu$ $x_n - \mu$

So we can write

$$egin{aligned} oldsymbol{z}_n &= egin{bmatrix} oldsymbol{z}_{n,1} \ oldsymbol{z}_{n} &= egin{bmatrix} oldsymbol{\mathbf{u}}_1^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \ oldsymbol{\mathbf{u}}_1^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \end{bmatrix} = egin{bmatrix} oldsymbol{\mathbf{u}}_1^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \ &= oldsymbol{\mathbf{u}}_1^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \ &= oldsymbol{\mathbf{U}}^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \ &= oldsymbol{\mathbf{U}}^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight) \end{aligned}$$

 \mathbf{u}_1 and \mathbf{u}_2 are bases, i.e.,

$$\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = 1 \qquad \qquad \mathbf{u}_1^\mathsf{T} \mathbf{u}_2 = 0$$

So we can say

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \begin{bmatrix} \|\mathbf{u}_1\|^2 & \mathbf{u}_1^{\mathsf{T}}\mathbf{u}_2 \\ \mathbf{u}_1^{\mathsf{T}}\mathbf{u}_2 & \|\mathbf{u}_2\|^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_2$$

Orthonormal bases!

K < D directions $\mathbf{u}_1, \dots, \mathbf{u}_K \in \mathbb{R}^D$

$$egin{aligned} \hat{oldsymbol{x}}_n &= \sum_{k=1}^K z_{n,k} \mathbf{u}_k + oldsymbol{\mu} \ &= \left[\mathbf{u}_1, \dots, \mathbf{u}_K
ight] egin{bmatrix} z_{n,1} \ dots \ z_{n,K} \end{bmatrix} + oldsymbol{\mu} \ &= \mathbf{U} oldsymbol{z}_n + oldsymbol{\mu} \end{aligned}$$

Similarly, we can find

$$\boldsymbol{z}_n = \mathbf{U}^\mathsf{T} \left(\boldsymbol{x}_n - \boldsymbol{\mu} \right)$$

We know that U contains orthonormal bases

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K] \leadsto \begin{cases} \mathbf{u}_k^\mathsf{T} \mathbf{u}_j = 0 \\ \|\mathbf{u}_k\| = 1 \end{cases} \iff \mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I}_K$$

Attention

Note that $\mathbf{U} \in \mathbb{R}^{D \times K}$ and that

$$\mathbf{U}\mathbf{U}^\mathsf{T} \neq \mathbf{I}_D$$

Latent Space ← Reconstruction

Dimensionality Reduction: Latent Variable

Dimensionality is reduced linearly via $\mathbf{U}^\mathsf{T}: \mathbb{R}^D \mapsto \mathbb{R}^K$ as

$$oldsymbol{z}_n = \mathbf{U}^\mathsf{T} \left(oldsymbol{x}_n - oldsymbol{\mu}
ight)$$

We call z_n latent variable

Higher Dimensional Recovery: Reconstruction

We reconstruct a sample $\boldsymbol{x}_n \in \mathbb{R}^D$ from its latent variable $\boldsymbol{z}_n \in \mathbb{R}^K$ as

$$\hat{\boldsymbol{x}}_n = \mathbf{U}\boldsymbol{z}_n + \boldsymbol{\mu}$$

Dimensionality Reduction as Learning Task

- Data
- Model
 - ightharpoonup Linear transform $oldsymbol{z} = \mathbf{U}^\mathsf{T} \left(oldsymbol{x} oldsymbol{\mu}
 ight)$
- Learning algorithm
 - \hookrightarrow We look for algorithm $\mathcal{A}: \mathbb{D} \mapsto \mathbf{U}^{\star}, \boldsymbol{\mu}^{\star}$
 - \downarrow U*, μ * are good ones!
- ? How can we define a good transform?
- It should not kill to much information!

Preserving Information Maximally

Say we specify ${\bf U}$ and μ and compute latent variable z of sample x: if we want the data sample back, we reconstruct from the latent space as

$$\hat{x} = \mathbf{U} \mathbf{z} + \boldsymbol{\mu}$$

The information on x_n is preserved if

$$\hat{\boldsymbol{x}} \stackrel{!}{=} \boldsymbol{x} \leftrightsquigarrow \|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2 \stackrel{!}{=} 0$$

But, we know that it's not happening perfectly; thus, we try

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2 \stackrel{!}{\approx} 0$$

- ? We cannot check it for every data sample!
- But, we can check it for samples in D!

Information Preservation \equiv Minimum Representation Error

We want U and μ to make $\|\hat{x}_n - x_n\|^2$ as small as possible for $x_n \in \mathbb{D}$: so we could try to make the average

$$\mathcal{J}(\mathbf{U}, \boldsymbol{\mu}) = \frac{1}{N} \sum_{n=1}^{N} ||\hat{\boldsymbol{x}}_n - \boldsymbol{x}_n||^2$$

is minimized \leadsto if $\mathcal{J}(\mathbf{U}, \boldsymbol{\mu}) = 0$; then, $\hat{\boldsymbol{x}}_n = \boldsymbol{x}_n$ for all n

Dimensionality Reduction via Minimum Representation Error

Optimal \mathbf{U}^{\star} and $\boldsymbol{\mu}^{\star}$ are defined as

$$\mathbf{U}^{\star}, \boldsymbol{\mu}^{\star} = \underset{\mathbf{U}, \boldsymbol{\mu}}{\operatorname{argmin}} \mathcal{J}(\mathbf{U}, \boldsymbol{\mu})$$

Optimal Bias ≡ Data Centroid

Let's start with simpler one: we want to find μ^{\star}

$$\mathcal{J} = \frac{1}{N} \sum_{n=1}^{N} ||\hat{x}_n - x_n||^2 = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{U}z_n + \boldsymbol{\mu} - x_n||^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{U}\mathbf{U}^{\mathsf{T}} (x_n - \boldsymbol{\mu}) + \boldsymbol{\mu} - x_n||^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} ||(\mathbf{U}\mathbf{U}^{\mathsf{T}} - \mathbf{I}_D) (x_n - \boldsymbol{\mu})||^2$$

Let's call $\mathbf{A} = \mathbf{U}\mathbf{U}^\mathsf{T} - \mathbf{I}_D$: we want to find $\boldsymbol{\mu}^\star$ which minimizes

$$\mathcal{J} = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{A}\boldsymbol{x}_n - \mathbf{A}\boldsymbol{\mu}\|^2$$

Optimal Bias ≡ Data Centroid

If we call $\boldsymbol{y}_n = \mathbf{A}\boldsymbol{x}_n$ and $\mathbf{a} = \mathbf{A}\boldsymbol{\mu}$; then, we look for

$$\mathbf{a}^{\star} = \underset{\mathbf{a}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{y}_{n} - \mathbf{a}\|^{2}$$

which is its centroid, i.e.,

$$\mathbf{a}^{\star} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n}$$

So, we have

$$\mathbf{A}\boldsymbol{\mu}^{\star} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{A}\boldsymbol{x}_{n} \leadsto \boldsymbol{\mu}^{\star} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}$$

Let's now have a few observations: call the error of sample n

$$\mathbf{e}_n = \hat{\boldsymbol{x}}_n - \boldsymbol{x}_n$$

We compute the inner product of \mathbf{e}_n and $\hat{x}_n - \mu^{\star}$, i.e.,

$$\phi_n = (\hat{\boldsymbol{x}}_n - \boldsymbol{\mu}^{\star})^{\mathsf{T}} \mathbf{e}_{\mathbf{n}}$$

We know that $\hat{\boldsymbol{x}}_n - \boldsymbol{\mu}^{\star} = \mathbf{U}\boldsymbol{z}_n$, so we can write

$$\phi_n = (\hat{\boldsymbol{x}}_n - \boldsymbol{\mu}^*)^\mathsf{T} \mathbf{e}_n = \boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \mathbf{e}_n$$

We can also open e_n as

$$\mathbf{e}_n = \mathbf{U} \boldsymbol{z}_n + \boldsymbol{\mu}^{\star} - \boldsymbol{x}_n$$

$$= \mathbf{U} \boldsymbol{z}_n - (\boldsymbol{x}_n - \boldsymbol{\mu}^{\star})$$

So, the inner product reads

$$\begin{aligned} \phi_n &= \boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \mathbf{e}_n \\ &= \boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \left(\mathbf{U} \boldsymbol{z}_n - (\boldsymbol{x}_n - \boldsymbol{\mu}^\star) \right) \\ &= \boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \mathbf{U} \boldsymbol{z}_n - \boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \left(\boldsymbol{x}_n - \boldsymbol{\mu}^\star \right) \end{aligned}$$

Recall that $\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{I}_K$, so we can write

$$\boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \mathbf{U} \boldsymbol{z}_n = \boldsymbol{z}_n^\mathsf{T} \boldsymbol{z}_n$$

Also we know that $\mathbf{U}^\mathsf{T}\left(oldsymbol{x}_n-oldsymbol{\mu}^\star
ight)=oldsymbol{z}_n$, so we could say

$$\boldsymbol{z}_n^\mathsf{T} \mathbf{U}^\mathsf{T} \left(\boldsymbol{x}_n - \boldsymbol{\mu}^\star \right) = \boldsymbol{z}_n^\mathsf{T} \boldsymbol{z}_n$$

This means that

$$\phi_n = \boldsymbol{z}_n^\mathsf{T} \boldsymbol{z}_n - \boldsymbol{z}_n^\mathsf{T} \boldsymbol{z}_n = 0$$

Orthogonality Principle

The error \mathbf{e}_n and unbiased estimate $\hat{x}_n - \mu^\star$ are orthogonal

We can hence write

$$\|\hat{\boldsymbol{x}}_n - \boldsymbol{\mu}^{\star}\|^2 + \|\mathbf{e}_n\|^2 = \|\boldsymbol{x}_n - \boldsymbol{\mu}^{\star}\|^2$$

We have seen that

$$\|\hat{m{x}}_n - m{\mu}^{\star}\|^2 = \|\mathbf{U}m{z}_n\|^2 = \|m{z}_n\|^2$$

and also know that $\|\boldsymbol{x}_n - \boldsymbol{\mu}^{\star}\|^2$ has nothing to do with \mathbf{U} ; thus,

$$\|\boldsymbol{z}_n\|^2 + \|\mathbf{e}_n\|^2 = \text{constant}$$

If we average over n, we conclude

$$\frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{z}_n\|^2 + \mathcal{J} = \text{constant} \leadsto \mathcal{J} = \text{constant} - \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{z}_n\|^2$$

Alternative Formulation: Maximal Representation Variance

Dimensionality Reduction via Minimum Representation Error

Optimal \mathbf{U}^{\star} is given by

$$\mathbf{U}^{\star} = \operatorname*{argmin}_{\mathbf{U}} \mathcal{J}$$

Dimensionality Reduction via Maximal Representation Variance

Optimal U^* is given by

$$\mathbf{U}^{\star} = \underset{\mathbf{U}}{\operatorname{argmax}} \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{z}_{n}\|^{2}$$

Notion of Correlation in Data

? Why do we call it variance?

We know that $\mathbf{U}^\mathsf{T}\left(oldsymbol{x}_n-oldsymbol{\mu}^\star
ight)=oldsymbol{z}_n$, so can say

$$\|\boldsymbol{z}_n\|^2 = \|\mathbf{U}^\mathsf{T} \boldsymbol{x}_n - \mathbf{U}^\mathsf{T} \boldsymbol{\mu}^\star\|^2 = \|\mathbf{U}^\mathsf{T} \boldsymbol{x}_n - \frac{1}{N} \sum_{n=1}^N \mathbf{U}^\mathsf{T} \boldsymbol{x}_n\|^2$$

$$= \|\mathbf{U}^\mathsf{T} \boldsymbol{x}_n - \operatorname{avg}\left(\mathbf{U}^\mathsf{T} \mathbb{D}\right)\|^2$$

Therefore, we could say

$$rac{1}{N}\sum_{n=1}^{N}\lVert oldsymbol{z}_{n}
Vert^{2}= ext{var}\left(\mathbf{U}^{\mathsf{T}}\mathbb{D}
ight)$$

= variance in the latent space

Notion of Variance in Data

? How can we maximize the variance?

Say
$$K=1$$
, i.e., $\mathbf{U}=\mathbf{u} \leadsto z_n=\mathbf{u}^\mathsf{T}\left(\boldsymbol{x}_n-\boldsymbol{\mu}^\star\right)$

$$\frac{1}{N} \sum_{n=1}^{N} |z_n|^2 = \frac{1}{N} \sum_{n=1}^{N} |\mathbf{u}^\mathsf{T} (\boldsymbol{x}_n - \boldsymbol{\mu}^*)|^2$$
$$= \frac{1}{N} ||\mathbf{u}^\mathsf{T} \tilde{\mathbf{X}}||^2$$

where we define

$$\tilde{\mathbf{X}} = [\boldsymbol{x}_1 - \boldsymbol{\mu}^{\star}, \dots, \boldsymbol{x}_N - \boldsymbol{\mu}^{\star}] \in \mathbb{R}^{D \times N}$$

Sample Covariance

The sample covariance of the dataset is given by

$$\mathbf{\Sigma} = \frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\mathsf{T}$$

In case of K=1, we can write the variance as

$$\frac{1}{N} \sum_{n=1}^{N} |z_n|^2 = \frac{1}{N} \mathbf{u}^\mathsf{T} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\mathsf{T} \mathbf{u}$$
$$= \mathbf{u}^\mathsf{T} \mathbf{\Sigma} \mathbf{u}$$

Let's compute sample covariance for the line example

$$\tilde{\mathbf{X}} = \begin{bmatrix} -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 20 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

The large eigenvalue shows us where the data spans more

This applies to any dataset

It can tell us right direction for dimensionality reduction!

Optimal Transform \equiv Principle Components of Covariance

 Σ is positive semi-definite: we thus have

$$\Sigma = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_D \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_D \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^\mathsf{T} \\ \vdots \\ \mathbf{v}_D^\mathsf{T} \end{bmatrix}$$

with $\lambda_1, \ldots, \lambda_D \geqslant 0$. Let's replace in the variance expression

$$\frac{1}{N} \sum_{n=1}^{N} |z_n|^2 = \mathbf{u}^\mathsf{T} \mathbf{\Sigma} \mathbf{u}$$

$$= \mathbf{u}^\mathsf{T} \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_D \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_D \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^\mathsf{T} \\ \vdots \\ \mathbf{v}_D^\mathsf{T} \end{bmatrix} \mathbf{u}$$

$$= \sum_{i=1}^{D} \lambda_i (\mathbf{u}^\mathsf{T} \mathbf{v}_i)^2$$

Optimal Transform = Principle Components of Covariance

We want to find optimal **u**: it should maximize the following term

$$\frac{1}{N} \sum_{n=1}^{N} |z_n|^2 = \sum_{i=1}^{D} \lambda_i \left(\mathbf{u}^\mathsf{T} \mathbf{v}_i \right)^2$$

• \mathbf{v}_i 's are bases; thus, we always have

$$\left(\mathbf{u}^\mathsf{T}\mathbf{v}_i\right)^2 \leqslant 1$$

• $[\mathbf{v}_1 \cdots \mathbf{v}_D]$ is an orthonormal matrix; thus,

$$\|\mathbf{u}^{\mathsf{T}}[\mathbf{v}_1 \cdots \mathbf{v}_D]\| = \sum_{i=1}^{D} (\mathbf{u}^{\mathsf{T}} \mathbf{v}_i)^2 = 1$$

Optimal Transform = Principle Components of Covariance

We want to find optimal **u**: its should be set to

$$\mathbf{u} = \mathbf{v}_{\max}$$

where ${f v}_{
m max}$ corresponds to the maximum eigenvalue $\lambda_{
m max}$

$$\frac{1}{N} \sum_{n=1}^{N} |z_n|^2 = \lambda_{\text{max}}$$

Optimal Transform \equiv Principle Components of Covariance

Say
$$K=2$$
, i.e., $\mathbf{U}=\left[\mathbf{u}_{1},\mathbf{u}_{2}\right] \leadsto z_{n,1},z_{n,2}$

$$\frac{1}{N} \sum_{n=1}^{N} ||\mathbf{z}_n||^2 = \frac{1}{N} \sum_{n=1}^{N} |z_{n,1}|^2 + \frac{1}{N} \sum_{n=1}^{N} |z_{n,2}|^2$$
$$= \mathbf{u}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{u}_1 + \mathbf{u}_2^\mathsf{T} \mathbf{\Sigma} \mathbf{u}_2$$

With same lines of derivations, we could say

- ullet Optimal \mathbf{u}_1 is \mathbf{v}_{\max_1} corresponding to the largest eigenvalue
- ullet Optimal ${f u}_2$ is ${f v}_{{
 m max}_2}$ corresponding to the second largest eigenvalue

Principle Component Analysis: General Algorithm

PCA():

1: Set μ to the centroid of dataset

$$\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n$$

2: Construct the sample covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\mathsf{T}$$

- 3: Decompose Σ in terms of its eigenvalues an eigenvectors as $\Sigma = V\Lambda V^T$
- 4: Find the K largest eigenvalues and set $\mathbf{u}_k = \mathbf{v}_{\text{max}_k}$
- 5: Set the projection matrix to

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

Formulating the Problem

We can look at an image as a data sample

This is a 300×200 image

we can look at it as a 60000-dimensional sample $oldsymbol{x}_n$

Formulating the Problem

- **?** How many samples then we need?
- lacksquare Obviously large enough to build sample covariance $oldsymbol{\Sigma}$

Recall that the sample covariance is of the size $\Sigma \in \mathbb{R}^{D \times D}$

? This would be a huge matrix to decompose!

We can alternatively look at the image as

 $\mathbf{X} \in \mathbb{R}^{300 \times 200}$ and treat each column as a single 300-dimensional sample

So, the image itself is a dataset!

$$\mathbf{X} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_{200}]$$

- ? How well we can compress?
- Let's look at the case with K=0!

- ? How well we can compress?
- Let's look at the case with K = 10!

- ? How well we can compress?
- Let's look at the case with K=20!

- ? How well we can compress?
- Let's look at the case with K = 30!

- ? How well we can compress?
- Let's look at the case with K=40!

- ? How well we can compress?
- Let's look at the case with K = 50!

Sounds to be good enough!

Sample Example: Face Recognition

One classic application of PCA is face recognition

- We compress high-dimensional images via PCA to latent space
- We use the latent representations to compare two pictures
- ullet If we choose K properly then we could have right latent representation

Formulating the Problem

? How to find missing rating?

Formulating the Problem as PCA

? How to find missing rating?

We can look at it as a completion problem

rating user
$$n = x_n = \begin{bmatrix} \text{movie } 1 \\ \vdots \\ \text{movie } D \end{bmatrix} = \sum_{k=1}^K z_{n,k} \mathbf{u}_k$$

- There are K eigenratings!
- ullet Each user is almost perfectly by its latent representation $oldsymbol{z}_n$

It sounds like PCA!

Sample Example: Recommendation System

This approach is used in many recommendation systems

- Our ratings in online shops are used to find the eigenratings
- Eigenratings approximate our true ratings from latent space
- The shop will the decide what to advertise

In 2009, this idea won the \$ 1M Netflix Prize

Sensitivity to Scaling

PCA is sensitive to scaling

• We typically normalize the data before applying PCA

PCA is Linear!

PCA cannot capture nonlinear patterns

Extending PCA to nonlinear patterns gave birth to Autoencoders

Further Read

- Bishop
- ESL
 - → Chapter 14: Section 14.1
- Goodfellow

 - → Chapter 5: Section 5.8.1
- MacKay

PCA

Principle Components

Review on Linear Algebra

PCA

Latent Space Design

Where are We?

We studied three major unsupervised learning tasks

- Clustering
 - → Data
- Distribution Learning
 - □ Data
 - → Model: a distribution with unknowns
- Dimensionality Reduction
 - □ Data

Next Stop

We next look at supervised learning

- Linear regression
- Linear classification
- Support vector machines
- Neural networks