

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 15 – Projeto de Controlador em Atraso de Fase pela Resposta em Frequência

Prof. Tarcísio Pizziolo

15. Projeto de Controladores em Atraso de Fase

15.1 Características

Seja uma Função de Transferência dada por G_c(s):

$$G_{c}(s) = K_{c}\beta \frac{(Ts+1)}{(\beta Ts+1)} = K_{c} \frac{(s+\frac{1}{T})}{(s+\frac{1}{\beta T})}$$
 $(\beta > 1)$

Esta Função de Transferência possui um Ganho K_c , um zero em s = -1/T e um polo em $s = -1/(\beta T)$.

- •Como β > 1, o polo estará sempre à direita do zero no plano s caracterizando um controlador em Atraso de Fase.
- •A frequência de cruzamento de ganho w_g será o ponto onde o módulo de $G_c(s)$ seja mínimo e a fase seja praticamente zero.

15.1 Características

O Gráfico Polar (Nyquist) de G_c(s) é dado a seguir:

$$G_{c}(s) = K_{c}\beta \frac{(Ts+1)}{(\beta Ts+1)} = K_{c} \frac{(s+\frac{1}{T})}{(s+\frac{1}{\beta T})} \Rightarrow G_{c}(jw) = K_{c}\beta \frac{(1+jwT)}{(1+jw\beta T)} \qquad (\beta > 1)$$

Diagrama polar de um compensador por atraso de fase $K_c\beta(j\omega T + 1)/(j\omega\beta T + 1)$.

15.1 Características

O Diagrama de Bode para $G_c(s)$ com $K_c = 1$; T = 1 e $\beta = 10$ é dado por:

Filtro Passa-Baixas

As frequências de canto são:

$$w_1 = \frac{1}{T}$$
 e $w_2 = \frac{w_1}{\beta} = \frac{1}{\beta T} = \frac{0.1}{T} (\beta = 10)$

A principal função de um Controlador por Atraso de Fase é produzir atenuação na faixa de altas frequências para fornecer ao sistema uma margem de fase suficiente.

Procedimentos:

1. Suponha o seguinte Controlador em Avanço de Fase:

$$G_{c}(s) = K_{c}\beta \frac{\left(Ts+1\right)}{(\beta Ts+1)} = K_{c} \frac{\left(s+\frac{1}{T}\right)}{\left(s+\frac{1}{\beta T}\right)}$$
 $(\beta > 1)$

2. Defina $K_c\beta = K$, então: $G_c(s) = K \frac{\left(Ts + 1\right)}{(\beta Ts + 1)}$

$$G_{\mathbf{c}}(s) = K \frac{(Ts+1)}{(\beta Ts+1)}$$

A Função de Transferência de malha aberta do sistema compensado será:

$$G_{c}(s)G(s) = [K\frac{(Ts+1)}{(\beta Ts+1)}]G(s) = [\frac{(Ts+1)}{(\beta Ts+1)}]KG(s) = [\frac{(Ts+1)}{(\beta Ts+1)}]G_{1}(s)$$

Onde $G_1(s) = KG(s)$

Plotar o Diagrama de Bode para G₁(s).

- 3. Determine o ganho K a fim de satisfazer o requisito da Constante de Erro Estático dado.
- **4.** Se o sistema não compensado $G_1(jw) = KG(jw)$, com ganho ajustado, não satisfizer as especificações de Margem de Ganho e de Fase, determine o **Ponto de Frequência** onde o ângulo de fase da Função de Transferência de malha aberta seja **-180° mais a Margem de Fase requerida**. A Margem de Fase requerida é a Margem de Fase especificada mais **5°** a **12°**.
- 5. Selecione a nova Frequência de Cruzamento de Ganho w_g neste ponto de frequência determinado no item 4.
- **6.** Para evitar efeitos nocivos do atraso de fase do controlador, o **polo** e o **zero** devem ficar localizados abaixo da nova frequência de cruzamento de ganho. Portanto deve-se escolher a frequência de canto $\mathbf{w}_1 = 1/T$, **como o zero, uma década abaixo** da nova Frequência de Cruzamento de Ganho (**ou próximo!**).

7. Os controladores em atraso de fase destinam-se a fazer com que a resposta em frequência do sistema apresente atenuação em altas frequências sem alterar o ganho nas baixas frequências. O controlador em atraso deve conter um zero em uma frequência \mathbf{w}_1 e um polo em uma frequência \mathbf{w}_2 com $\mathbf{w}_1 > \mathbf{w}_2$.

$$\mathbf{w_1} = \frac{1}{\mathbf{T}} \quad \mathbf{e} \quad \mathbf{w_2} = \frac{1}{\beta \mathbf{T}} \quad ; \quad \beta = \frac{\mathbf{w_1}}{\mathbf{w_2}}$$

Determine o valor da atenuação necessária A_c para baixar a curva de módulo a 0 dB na nova frequência de cruzamento de ganho. Sabendo-se que o ganho do controlador em dB é dado por: $A_c(dB) = 20 \log_{10} \left[\lim_{w \to 0} \frac{G_C(jw)}{K} \right] - (-20 \log_{10} \left[\lim_{w \to \infty} \frac{G_C(jw)}{K} \right]) \Rightarrow$

$$\Rightarrow A_{c}(dB) = 20 \log_{10} \left[\lim_{w \to 0} \left| \frac{(jwT + 1)}{(jw\beta T + 1)} \right| \right] + 20 \log_{10} \left[\lim_{w \to \infty} \left| \frac{(jwT + 1)}{(jw\beta T + 1)} \right| \right] \Rightarrow$$

$$\Rightarrow A_{c}(dB) = 20 \log_{10} \left[\lim_{w \to 0} \left(\frac{\sqrt{(wT)^{2} + 1)}}{\sqrt{(w\beta T)^{2} + 1)}} \right) \right] + 20 \log_{10} \left[\lim_{w \to \infty} \left(\frac{\sqrt{(wT)^{2} + 1)}}{\sqrt{(w\beta T)^{2} + 1)}} \right) \right] \Rightarrow$$

$$\Rightarrow A_c(dB) = 20 \log_{10}(1) + 20 \log_{10}\left[\lim_{w \to \infty} \left(\frac{\sqrt{\frac{d}{dw}[(wT)^2 + 1)]}}{\sqrt{\frac{d}{dw}[(w\beta T)^2 + 1)]}}\right] \Rightarrow$$

$$\Rightarrow A_c(dB) = 0 + 20 \log_{10}\left[\lim_{w \to \infty} \left(\frac{\sqrt{2(wT)T}}{\sqrt{2(w\beta T)\beta T}}\right)\right] = 20 \log_{10}\left[\lim_{w \to \infty} \left(\frac{1}{\beta}\right)\right] \Rightarrow$$

$$\Rightarrow A_c(dB) = -20 \log_{10}(\beta)$$
Como $\beta = w_1/w_2$:

$$A_{c}(dB) = -20\log_{10}(\beta) = -20\log_{10}\left(\frac{w_{1}}{w_{2}}\right) = -20[\log_{10}(w_{1}) - \log_{10}(w_{2})]$$

8. Utilizando o valor de K calculado no item 2 e o de B determinado no item 7 calcule a constante K_c.

$$K_C = \frac{K}{\beta}$$

9. Verifique a margem de ganho para se certificar que é satisfatória. Se não for, repita o processo de até que um resultado satisfatório seja obtido.

Exemplo 1 – Para o sistema dado, projetar um controlador em atraso de fase de modo que K_v (constante de erro estático de velocidade) seja 5 s⁻¹, a margem de fase seja pelo menos 40° e a margem de ganho seja pelo menos 10 dB (Adicionar 12º no controlador).

Sistema de controle.

$$\frac{1}{s(s+1)(0,5s+1)}$$

$$G(s)H(s) = \frac{1}{s(s+1)(0,5s+1)}$$

$$G_C(s) = K_C\beta \frac{(Ts+1)}{(\beta Ts+1)} = K_c \frac{\left(s + \frac{1}{T}\right)}{\left(s + \frac{1}{\beta T}\right)}$$
Definindo:
$$G_1(s) = KG(s) = \frac{K}{s(s+1)(0,5s+1)};$$
onde:
$$K = K_C\beta$$

Ajuste do ganho K para $K_v = 5 s^{-1}$.

$$\begin{split} K_{V} &= \underset{s \to 0}{\text{lim}} [sG_{c}(s)G(s)] = \underset{s \to 0}{\text{lim}} [s[K\frac{(Ts+1)}{(\beta Ts+1)}]G(s)]; \quad G_{1}(s) = KG(s); \\ \text{Então}: K_{V} &= \underset{s \to 0}{\text{lim}} [s[\frac{(Ts+1)}{(\beta Ts+1)}]G_{1}(s)] = \underset{s \to 0}{\text{lim}} [\frac{s(Ts+1)}{(\beta Ts+1)}\frac{K}{s(s+1)(0.5s+1)}] \Rightarrow \\ \Rightarrow K_{V} &= K \Rightarrow K = 5 \end{split}$$

$$G_1(jw) = \frac{5}{jw(jw+1)(0,5jw+1)}$$

Diagramas de Bode de G_1 (função de transferência de malha aberta com o ganho ajustado, mas não compensado), G_c (compensador) e G_cG (função de transferência de malha aberta compensada).

- Para $\gamma = (40^\circ + 12^\circ) = 52^\circ$, a nova frequência de cruzamento de ganho será 0,5 rd/s, escolhese então, $w_g = 0.5$ rd/s. Em $w_g = 0.5$ rd/s o $G_c(jw)$ deve contribuir com um Ganho $A_n = -20$ dB. $-\gamma = 40^\circ$ em $G_c(jw)G(jw)$ ocorrerá na frequência de 0,6 rd/s.

O controlador deverá levar a curva de fase para pelo menos y = 40°.

Ao aplicar o controlador, a frequência de cruzamento de ganho desloca-se para esquerda, então deve-se adicionar de 5° a 12° para manter a margem de fase sem alteração significativa.

Dessa forma o controlador deverá levar a Margem de Fase para $\gamma = 40^\circ + 12^\circ = 52^\circ$. Então: $-180^\circ + \gamma = -180^\circ + 40^\circ + 12^\circ = -180^\circ + 52^\circ = -128^\circ$

Assim escolhe-se a nova frequência de cruzamento de ganho em: $w_{\alpha} = 0.5 \text{ rd/s}.$

Para evitar constantes de tempo muito altas no controlador em atraso de fase seleciona-se uma frequência de canto $w_1 = 1/T$ próxima a uma década abaixo da nova frequência de cruzamento de ganho, então $w_1 = 0,1$ rd/s, a qual será o zero!.

Como esta frequência não está muito abaixo da **nova frequência de cruzamento de ganho**, a alteração da curva de ângulo pode ser significativa. Por esse motivo deve-se adicionar 12°

O valor da atenuação necessária no módulo em w_m em decorrência da inclusão do termo do controlador $G_c(jw)/K=(Ts+1)/(\beta Ts+1)$ é dada pelo gráfico. $A_n=-20~dB$

O controlador tem que contribuir com -20 dB para alterar a frequência de cruzamento de ganho para o desejado.

Então:
$$-20 = -20.\log_{10}(\beta) \Rightarrow \beta = 10$$

A nova frequência de cruzamento de ganho (desejada) será:

$$w_g = 0.5 \text{ rd/s}$$

Para determinar o zero e o polo do controlador aplicamos:

zero:
$$w_1 = \frac{1}{T} = 0,1 \text{ rd/s}$$

polo:
$$W_2 = \frac{1}{\beta T} \Rightarrow W_2 = \frac{0.1}{10} \Rightarrow W_2 = 0.01 \text{ rd/s}$$

O controlador por atraso de fase determinado é:

$$G_c(s) = K_c \frac{(s+0,1)}{(s+0,01)}$$

O valor de K_c será dado por: $K_c = K / \beta = 5 / 10 = 0,5$

A Função de Transferência do controlador será:

$$G_c(s) = 0.5 \frac{(s+0.1)}{(s+0.01)}$$

A Função de Transferência de malha aberta com o controlador será:

$$G_c(s)G(s) = 0.5 \frac{(s+0.1)}{(s+0.01)} \frac{5}{s(s+1)(0.5s+1)}$$

Respostas do Sistema s/ o Controlador e c/ o Controlador

Sistema compensado.

Função de Transferência em malha fechada sem o controlador:

$$\frac{C(s)}{R(s)} = \frac{1}{0.5s^3 + 1.5s^2 + s + 1}$$

Função de Transferência em malha fechada com o controlador:

$$\frac{C(s)}{R(s)} = \frac{50s + 5}{50s^4 + 150.5s^3 + 101.5s^2 + 51s + 5}$$

Respostas ao Degrau Unitário do Sistema s/ o Controlador e c/ o Controlador

Respostas à Rampa Unitária do Sistema s/ o Controlador e c/ o Controlador

Exemplo 2: Projetar um controlador em atraso de fase de modo que mantenham-se a constante de erro estático de posição (K_p) e margem de ganho do sistema (K_g) . A margem de fase deverá ser de pelo menos $\gamma = 60^\circ$. (Adicionar 5° à contribuição angular do controlador).

Sistema de malha fechada.

$$\begin{array}{c|c}
R(s) & \hline
G_c(s) & \hline
\hline
(s+1)(10s+1) & \hline
\end{array}$$

$$G(s)H(s) = \frac{10}{(s+1)(s+0,1)}$$
Definindo: $G_C(s) = K_C \beta \frac{(Ts+1)}{(\beta Ts+1)} = K_c \frac{\left(s+\frac{1}{T}\right)}{\left(s+\frac{1}{\beta T}\right)}$ onde: $K = K_c \beta$
Ajuste do ganho K para $K_p = 100 \text{ s}^{-1}$.

$$K_{p_{atual}} = 100; \text{ ent} \tilde{a}o: K_{p} = \lim_{s \to 0} [G_{c}(s)G(s)] = \lim_{s \to 0} \{ [K \frac{(Ts+1)}{(\beta Ts+1)}]G(s) \}; \quad G_{1}(s) = KG(s);$$

$$\Rightarrow K_{p} = \lim_{s \to 0} \{ [\frac{(Ts+1)}{(\beta Ts+1)}] G_{1}(s) \} = \lim_{s \to 0} [\frac{(Ts+1)}{(\beta Ts+1)} \cdot \frac{100K}{(s+1)(10s+1)}] \Rightarrow$$

$$\Rightarrow K_p = 100K \Rightarrow K = 1$$

$$G_1(jw) = KG(jw) = \frac{100}{(1+jw)(1+\frac{jw}{0.1})}$$

- Para $y = (60^\circ + 5^\circ) = 65^\circ$ em $G_1(jw)$ ocorre na frequência de 0,7 rd/s.
- A nova frequência de cruzamento de ganho pode ser escolhida $w_g = 0.7 \text{ rd/s}$. Escolhe-se para $A_n = -20 \text{ dB}$.

O controlador deverá levar a curva de fase para pelo menos $\gamma = 60^{\circ}$.

Ao aplicar o controlador, a frequência de cruzamento de ganho desloca-se para esquerda, então deve-se adicionar de 5° a 12° para manter a margem de fase sem alteração significativa.

Dessa forma o controlador deverá levar a Margem de Fase para $\gamma = 60^{\circ} + 5^{\circ} = 65^{\circ}$. Então: $-180^{\circ} + \gamma = -180^{\circ} + 60^{\circ} + 5^{\circ} = -180^{\circ} + 65^{\circ} = -115^{\circ}$

Assim escolhe-se a nova frequência de cruzamento de ganho em:

 $w_g = 0.7 \text{ rd/s}$.

Para evitar constantes de tempo muito altas no controlador em atraso de fase

seleciona-se uma frequência de canto $w_1 = 1/T$ uma década abaixo da nova frequência de cruzamento de ganho, então $w_1 = 0.07$ rd/s, a qual será o zero!

Como esta frequência não está muito abaixo da **nova frequência de cruzamento de ganho**, a alteração da curva de ângulo pode ser significativa. Por esse motivo deve-se adicionar **5**°.

O valor da atenuação necessária no módulo em $\mathbf{w_m}$ em decorrência da inclusão do termo do controlador $\mathbf{G_c(jw)/K} = (Ts+1)/(\beta Ts+1)$ é dada pelo gráfico.

O controlador tem que contribuir com -20 dB para alterar a frequência de cruzamento de ganho para o desejado. Daí:

$$A_n = -20 \text{ dB}$$

Então: $-20 = -20 \cdot \log_{10}(\beta) \Rightarrow \beta = 10$

A nova frequência de cruzamento de ganho (desejada) será:

$$w_g = 0.7 \text{ rd/s}$$

Para determinar o zero e o polo do controlador aplicamos:

zero:
$$w_1 = \frac{1}{T} = 0.07$$
 rd/s

polo:
$$w_2 = \frac{1}{\beta T} = 0.007$$
 rd/s

O controlador por atraso de fase determinado é:

$$G_c(s) = K_c \frac{(s+0.07)}{(s+0.007)}$$

O valor de K_C será dado por: $K_C = K / \beta = 1 / 10 = 0,1$

A Função de Transferência do controlador será:

$$G_{C}(s) = 0.1 \frac{(s+0.07)}{(s+0.007)} = \frac{(100s+7)}{(1000s+7)}$$

A Função de Transferência de malha aberta com o controlador será:

$$G_c(s)G(s) = \frac{(100s+7)}{(1000s+7)} \frac{100}{(s+1)(10s+1)} = \frac{100(s+7)}{(1000s+7)(s+1)(10s+1)}$$

Respostas do Sistema s/ o Controlador e c/ o Controlador

Sistema compensado.

Função de Transferência em malha fechada sem controlador:

$$F(s) = \frac{100}{(s+1)(10s+1)+100} \Rightarrow F(s) = \frac{100}{(10s^2+11s+101)}$$

Função de Transferência em malha fechada com o controlador:

$$F(s) = \frac{(100s + 700)}{(10000s^3 + 11070s^2 + 1177s + 707)}$$

MatLab

```
>>n_G=[100]; % Numerador de G(s)
>>d_G=[10 11 1]; % Denominador de G(s)
>>[nG,dG]=cloop(n_G,d_G,-1); % Determinação da MF com G(s)
>>n_GcG=[100 700]; % Numerador de Gc(s)G(s)
>>d_GcG=[10000 11070 1077 7]; % Denominador de Gc(s)G(s)
>>[nGcG,dGcG]=cloop(n_GcG,d_GcG,-1); % Determinação da MF com Gc(s)G(s)
>>t=0:0.1:100; % Vetor do tempo em segundos
>>[c1,x1,t]=step(nG,dG,t); % Resposta ao Degrau Unitário de G(s) em MF
>>[c2,x2,t]=step(nGcG,dGcG,t); % Resposta ao Degrau Unitário de Gc(s)G(s) em MF
>>plot(t,c1,'b',t,c2,'k'); % Gráfico de Resposta ao Degrau Unitário
>>title('Resposta à entrada Degrau Unitário de G(s) e de Gc(s)G(s)'); % Título
>>xlabel('Tempo (s)'); % Eixo do tempo em segundos
>>ylabel('Saída C(s)'); % Eixo da resposta
>>text(18,1.42,'Sistema sem Gc(s)'); % Identificação da resposta sem o controlador
>>text(1.4,1.2,'Sistema com Gc(s)'); % Identificação da resposta com o controlador
>>grid % hachuras
```

Respostas ao Degrau Unitário do Sistema s/ o Controlador e c/ o Controlador

Mantendo-se o mesmo K_p o e_{ss} permanece em 0,99% mas o controlador em atraso melhora o estado permanente fazendo com que o sistema atinja este erro em 10 segundos, o que ocorre bem mais rápido que a resposta do sistema sem o controlador!