CS340 – Advanced Data Structures and Algorithm Design – Fall 2020 Assignment 7 – November 16, 2020

Dr. Sandra Zilles, Department of Computer Science, University of Regina

answer key

Problem 1. (4+4 marks) [The students need to give the correct table only for either (a) or (b). For the other part, it is enough if they give the solution. Subtract 1 mark for each mistake.]

(a)

	initially			after step 1			after step 2		
vertex	known	distance	previous	known	distance	previous	known	distance	previous
A		0	-	true	0	-	true	0	_
В		∞	_		5	A		5	A
С		∞	_		3	A	true	3	A
D		∞	_		∞	_		10	С
E		∞	_		∞	_		10	С
F		∞	_		∞	_		∞	_
G		∞	_		∞	_		∞	_

	after step 3			after step 4			after step 5		
vertex	known	distance	previous	known	distance	previous	known	distance	previous
A	true	0	_	true	0	_	true	0	_
В	true	5	A	true	5	A	true	5	A
С	true	3	A	true	3	A	true	3	A
D		10	С		10	С		9	E
E		8	В		7	G	true	7	G
F		∞	_		∞	_		8	Е
G		6	В	true	6	В	true	6	В

		after step	6	after step 7			
vertex	known	distance	previous	known	distance	previous	
A	true	0	-	true	0	_	
В	true	5	A	true	5	A	
С	true	3	A	true	3	A	
D		9	E	true	9	E	
E	true	7	G	true	7	G	
F	true	8	E	true	8	E	
G	true	6	В	true	6	В	

results: shortest path to ...

A is [A], length 0

B is [A,B], length 5

C is [A,C], length 3

D is [A,B,E,D], length 9

E is [A,B,G,E], length 7

F is [A,B,G,E,F], length 8

G is [A,B,G], length 6.

(b)

	initially			after step 1			after step 2		
vertex	dequeued	distance	previous	dequeued	distance	previous	dequeued	distance	previous
A		∞	_		∞	_		∞	_
В		0	_	yes	0	_	yes	0	_
С		∞	_		1	В	yes	1	В
D		∞	_		∞	_		2	C
E		∞	_		1	В		1	В
F		∞	_		∞	_		∞	_
G		∞	_		1	В		1	В
queue:	В		$_{\mathrm{C,E,G}}$			E,G,D			

	after step 3			after step 4			after step 5		
vertex	dequeued	distance	previous	dequeued	distance	previous	dequeued	distance	previous
A		∞	_		∞	_		3	D
В	yes	0	-	yes	0	_	yes	0	_
С	yes	1	В	yes	1	В	yes	1	В
D		2	С		2	С	yes	2	С
Е	yes	1	В	yes	1	В	yes	1	В
F		2	Е		2	Е		2	Е
G		2	В	yes	2	В	yes	2	В
queue:	G,D,F			D,F			F,A		

	8	after step 6		after step 7			
vertex	dequeued	distance	previous	dequeued	distance	previous	
A		3	D	yes	3	D	
В	yes	0	-	yes	0	_	
С	yes	1	В	yes	1	В	
D	yes	2	С	yes	2	С	
E	yes	1	В	yes	1	В	
F	yes	2	E	yes	2	E	
G	yes	2	В	yes	2	В	
queue:		A			empty		

results: shortest path to \dots

- A is [B,C,D,A], length 3 B is [B], length 0 C is [B,C], length 1

- D is [B,C,D], length 2
- E is [B,E], length 1 F is [B,E,F], length 2
- G is [B,G], length 1.

ASSIGNMENT 7 this graph has no cycle. A 3 (B) (2). 2/-2 Dijkstra's alg. for source A will first set A as known with distance O. Then C will be marked with abstance 2 and previous vertex A; B marked with distance 3 and previous vertex A. Since Dijkstra picks greedily, wext it will set C known with distance 2. C will not be updated again, since it is known. But there is a shorter path to C than CA, C], namely LA, B, C], which has length 1. L2 marks for example, 2 marks for explanations (3) Since a shortest path contains at most IVI-2 many edges, each with weight in 11, 2, ky, the set of total possible lengths of shortest paths 13 20,1,2, ..., K. (IVI-2) y v 2003. use an array of buckets numbered 0, 1, 2, -, k. (IVI-2), k. (IVI-2)+1, used for storing vertices whose distance equals the bucket mumber (k(11-2)+1) means 00). Bucket(v) = k-(1V1-2) +1) algorithm: (a) mitially, place all vertices in brucket k. CIVI-2)+1, OCIVI) except for vertex s in bucket O. (Bucket(s)=0) (ii) current Bucket = 0; O(E-W) (ii) while current Bucket empty and current Bucket < k-(N1-2)+1 in total over 2 Current Bucket ++3 (iv) for each vin current Bucket { for each w∈ V with cyw) ∈ E and Bucket(w) > current Bucket+c(cyw) OCIET-) Bucket(w) = current Bucket + ccyw); total W- previous = V; ower there current Bucket ++: goto (iii); [3 marks for algorithm]
[1 mark for numing the explanation]

