Confusion Matrix & Performance Measurement Metrics

Dataset Modeling and result evaluations

х	у	z	
a	5	yes	
С	6	no	
е	13	no	
a	2	no	
d	29	yes	
d	11	no	
a	9	yes	
b	99	yes	
С	10	yes	No
а	1	no	No
d	13	yes	Yes
е	71	no	Yes

Confusion Matrix

• A confusion matrix for a two classes (+, -) is shown below.

		C1	C2			+	-
	C1	Truepositive	False negative		+	++	+-
Т1	C2	_	True negative	riv whic	-	-+	

- There are rotar quadrants in the confusion matrix, which are symbolized as below.
 - True Positive (TP: f_{++}): The number of instances that were positive (+) and correctly classified as positive (+).
 - False Negative (FN: f₊₋): The number of instances that were positive (+) and incorrectly classified as negative (-).
 - False Positive (FP: f₋₊): The number of instances that were negative (-) and incorrectly classified as (+).
 - True Negative (TN: f--): The number of instances that were negative (-) and correctly classified as (-).

Confusion Matrix

Note:

- $N_p = \text{TP}(f_{++}) + \text{FN}(f_{+-})$ = is the total number of positive instances.
- $N_n = FP(f_{-+}) + Tn(f_{--})$ = is the total number of negative instances.
- $N = N_p + N_n$ = is the total number of instances.
- (TP + TN) denotes the number of correct classification
- (FP + FN) denotes the number of errors in classification.
- For a perfect classifier, FP = FN = 0

Confusion Matrix Example

• For example,

Class	+	-
+	52 (TP)	18 (FN)
-	21 (FP)	123 (TN)

Calculate the performance evaluation metrics

Accuracy

• It is defined as the fraction of the number of examples that are correctly classified by the classifier to the total number of instances.

Accuracy=
$$\frac{TP+TN}{TP+FP+FN+TN}$$

- We now define a number of metrics for the measurement of a classifier.
 - In our discussion, we shall make the assumptions that there are only two classes: + (positive) and (negative)
- True Positive Rate (TPR): It is defined as the fraction of the positive examples predicted correctly by the classifier.

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = \frac{f_{++}}{f_{++} + f_{+-}}$$

- This metrics is also known as **Recall**, **Sensitivity** or **Hit rate**.
- False Positive Rate (FPR): It is defined as the fraction of negative examples classified as positive class by the classifier.

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = \frac{f_{-+}}{f_{-+} + f_{--}}$$

• False Negative Rate (FNR): It is defined as the fraction of positive examples classified as a negative class by the classifier.

$$FNR = \frac{FN}{P} = \frac{FN}{TP + FN} = \frac{f_{+-}}{f_{++} + f_{+-}}$$

• True Negative Rate (TNR): It is defined as the fraction of negative examples classified correctly by the classifier

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = \frac{f_{--}}{f_{--} + f_{--}}$$

• This metric is also known as **Specificity**.

• Both, Precision and Recall are defined by $Precision = \frac{TP}{TP + FP}$ $Recall = \frac{TP}{TP + FN}$

$$Recall = \frac{TP^{\top TP}}{TP + FN}$$

- $\mathbf{F_1}$ Score ($\mathbf{F_1}$): Recall (r) and Precision (p) are two widely used metrics employed in analysis..
 - It is defined in terms of (r or Recall) and (p or Precision) as follows.

$$F_1Score = \frac{2*Recall . Precision}{Recall + Precision} = \frac{2TP}{2TP + FP + FN}$$

Note

- F₁ represents the harmonic mean between recall and precision
- High value of F₁ score ensures that both Precision and Recall are reasonably high.

- Based on the various performance metrics, we can characterize a classifier.
- We do it in terms of TPR, FPR, Precision and Recall and Accuracy

Case 1: Perfect Classifier

When every instance is correctly classified, it is called the perfect classifier. In this case, TP = P, TN = N and CM is

$$TPR = TP/(TP+FN) = \frac{P}{P} = 1$$

$$FPR = \frac{0}{N} = 0$$

$$Precision = \frac{P}{P} = 1$$

$$F_1 Score = \frac{2 \times 1}{1+1} = 1$$

$$Accuracy = \frac{P+N}{P+N} = 1$$

		Predicted Class	
_		+	-
Actual	+	Р	0
Act	1	0	N

• Case 2: Worst Classifier

When every instance is wrongly classified, it is called the worst classifier. In this case, TP = 0, TN = 0 and the CM is

$TPR = \frac{0}{P} = 0$
$FPR = \frac{N}{N} = 1$
$Precision = \frac{0}{N} = 0$
F_1 Score = Not applicable
as $Recall + Precision = 0$
$Accuracy = \frac{0}{P+N} = 0$

		Predicted Class	
		+	-
ual ss	+	0	P
Actual	-	N	0

• Case 3: Ultra-Liberal Classifier

The classifier always predicts the + class correctly. Here, the False Negative (FN) and True Negative (TN) are zero. The CM is

$TPR = \frac{P}{P} = 1$
$FPR = \frac{N}{N} = 1$
$Precision = \frac{P}{P+N}$
$F_1 Score = \frac{2P}{2P+N}$
$Accuracy = \frac{P}{P+N} = 0$

		Predicted Class	
		+	-
ual ISS	+	Р	0
Actual	-	N	0

• Case 4: Ultra-Conservative Classifier

This classifier always predicts the - class correctly. Here, the False Negative (FN) and True Negative (TN) are zero. The CM is

$$TPR = \frac{0}{P} = 0$$
 $FPR = \frac{0}{N} = 0$
 $Precision = \text{Not applicable}$
 $(as\ TP + FP = 0)$
 $F_1\ Score = \text{Not applicable}$
 $Accuracy = \frac{N}{P+N} = 0$

		Predicted Class	
		+	-
Actual class	+	0	р
Act	-	0	N