Recall in Lec 1 the example of calculating final score $(0\sim100)$ under supervised learning.

The type of supervised learning used was called regression. Ex.

Given the training data below, what would the score be (x) if the student studied n hours (x)?

X (hours)	y (900re)		
(0	90		
9	80	training data	-> Regression Model
3	50		7
2	30		/ y = ?
	•		χ=η

Let us look at a simplified example:

X	Y				
1		This is clearly	$y = \chi$	pattern	(linear)
2	1				·
3	3				

i. Our injitial hypothesis for predicting the y-value given an X-value would be to use/find a line of best fit (This is called linear regression)

... Set Hypothesis $H(\pi) = WX + b$ and find W and b values

But how do we find good values for w and b when we have a less simple data set?

A: use a cost/loss function.

Cost function example: H(x) - y

Note that H(x)-y can be positive or negative at different points. Which means large positive disparities might cancel out large negative disparities when summed.

... New Cost function Idea, (H(x)-y)2

2 Benefits to squaring:

- 1. Removes negatives (no cancellation of opposite sign cost)
- 2. Large disparities become larger and smaller

ones become smaller. i.e. $|0^2 = |00|$, $0.1^2 = 0.01$

A more formal calculation would look like:
$$\frac{(H(x_1)-y_1)^2+(H(x_2)-y_1)^2+(H(x_3)-y_3)^2}{3}$$

This gets the average of the disparities squared.

$$V$$
: $Cost = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$ where m is the number of data points

Since H(x) = Wx + b, we can express cost as a function of W and b. $cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$

The ultimate goal is to minimize this cost, and the process of finding ward be valued that minimize the cost is "learning"

节分号王: Minimize cost (W,b)