Devoir surveillé n°07

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Soit $(\sigma, \sigma') \in B_n^2$. Alors pour tout $(i, j) \in [1, n]^2$,

$$[\omega(\sigma)\omega(\sigma')]_{i,j} = \sum_{k=1}^{n} [\omega(\sigma)]_{i,k} [\omega(\sigma')]_{k,j} = \sum_{k=1}^{n} \delta_{i,\sigma(k)} \delta_{k,\sigma'(j)} = \delta_{i,\sigma(\sigma'(j))} = [\omega(\sigma \circ \sigma')]_{i,j}$$

Ainsi $\omega(\sigma)\omega(\sigma') = \omega(\sigma \circ \sigma')$.

2 Soit $\sigma \in B_n$. Alors pour tout $(i, j) \in [1, n]^2$,

$$[\omega(\sigma)^{\mathsf{T}}]_{i,j} = [\omega(\sigma)]_{j,i} = \delta_{j,\sigma(i)} = \delta_{i,\sigma^{-1}(j)} = [\omega(\sigma^{-1})]_{i,j}$$

Par conséquent, $\omega(\sigma)^{\mathsf{T}} = \omega(\sigma^{-1})$ et, d'après la question précédente,

$$\omega(\sigma)^{\top}\omega(\sigma) = \omega(\sigma^{-1})\omega(\sigma) = \omega(\sigma^{-1}\circ\sigma) = \omega(\mathrm{Id}_{\llbracket 1,n\rrbracket}) = \mathrm{I}_n$$

Finalement, $\omega(\sigma) \in \mathcal{O}_n(\mathbb{R})$ et donc $\omega(B_n) \subset \mathcal{O}_n(\mathbb{R})$.

3 Posons D = diag (d_1, \dots, d_n) , D_{σ} = diag $(d_{\sigma}(1), \dots, d_{\sigma}(n))$ et $\Omega = \omega(\sigma)$. Pour tout $(i, j) \in [[1, n]]^2$,

$$[\mathrm{D}\Omega]_{i,j} = \sum_{k=1}^n \mathrm{D}_{i,k}\Omega_{k,j} = d_i\delta_{i,\sigma(j)}$$

et

$$[\Omega \mathbf{D}_{\sigma}]_{i,j} = \sum_{k=1}^n \Omega_{i,k} \mathbf{D}_{k,j} = \delta_{i,\sigma(j)} d_{\sigma(j)}$$

Or il est clair que $d_i \delta_{i,\sigma(j)} = \delta_{i,\sigma(j)} d_{\sigma(j)}$ donc $D\Omega = \Omega D_{\sigma}$.

4 Posons D = diag $(d_1, ..., d_n)$ et D' = diag $(d'_1, ..., d'_n)$. D'après les questions suivantes :

$$\exists \mathbf{M} \in \omega(\mathbf{B}_n), \ \mathbf{D}' = \mathbf{M}^\mathsf{T} \mathbf{D} \mathbf{M}$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \mathbf{D}' = \omega(\sigma)^\mathsf{T} \mathbf{D} \omega(\sigma)$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \omega(\sigma) \mathbf{D}' = \omega(\sigma) \omega(\sigma)^\mathsf{T} \mathbf{D} \omega(\sigma)$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \omega(\sigma) \mathbf{D}' = \mathbf{D} \omega(\sigma)$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \omega(\sigma) \operatorname{diag}(d_1', \dots, d_n') = \operatorname{diag}(d_1, \dots, d_n) \omega(\sigma)$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \omega(\sigma) \operatorname{diag}(d_1', \dots, d_n') = \omega(\sigma) \operatorname{diag}(d_{\sigma(1)}, \dots, d_{\sigma(n)})$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \operatorname{diag}(d_1', \dots, d_n') = \operatorname{diag}(d_{\sigma(1)}, \dots, d_{\sigma(n)})$$

$$\iff \exists \sigma \in \mathbf{B}_n, \ \forall i \in [\![1, n]\!], \ d_i' = d_{\sigma(i)}$$

En voyant d et d' comme des applications de $[\![1,n]\!]$ dans \mathbb{R} , cette dernière condition équivaut à l'existence de $\sigma \in B_n$ tel que $d' = d \circ \sigma$.

Supposons qu'il existe $\sigma \in B_n$ tel que $d' = d \circ \sigma$. Alors $\operatorname{Im}(d') = \operatorname{Im}(d)$ puisque σ est surjective. Ceci signifie que D et D' ont le même ensemble de coefficients diagonaux. Soit $y \in \operatorname{Im}(d) = \operatorname{Im}(d')$. Alors $(d')^{-1}(\{y\}) = \sigma^{-1}(d^{-1}(y))$ puis $\operatorname{card}(d')^{-1}(\{y\}) = \operatorname{card} d^{-1}(\{y\})$ car σ est bijective. Ceci signifie que les coefficients diagonaux ont le même nombre d'occurrences dans D et D'.

Réciproquement, supposons que D et D' aient le même ensemble de coefficients diagonaux, chacun ayant le même nombre d'occurrences dans D et D'.

1

5 C'est une simple conséquence du théorème spectral.

Notons $\{s_1, \dots, s_n\} = \{\lambda_1, \dots, \lambda_p\}$ où les λ_i sont deux à deux distincts. D'après le théorème sur les polynômes interpolateurs de Lagrange, il existe $P \in \mathbb{R}[X]$ tel que $P(\lambda_j) = f(\lambda_j)$ pour tout $j \in [1, p]$. Or pour tout $i \in [1, n]$, il existe $j \in [1, p]$ tel que $s_i = \lambda_j$ donc $P(s_i) = f(s_i)$ pour tout $i \in [1, n]$.

7 Pour simplifier, posons D = diag $(s_1, ..., s_n)$ et D' = diag $(s'_1, ..., s'_n)$. On prouve aisément par récurrence que S^k = $\Omega^T D^k \Omega$ pour tout $k \in \mathbb{N}$, puis par linéarité de X $\in \mathcal{M}_n(\mathbb{R}) \mapsto \Omega^T X\Omega$, $P(S) = \Omega^T P(D)\Omega$. De même, $P(S) = (\Omega')^T P(D')\Omega'$. Comme D est diagonale,

$$P(D) = diag(P(s_1), \dots, P(s_n)) = diag(f(s_1), \dots, f(s_n))$$

Or $Sp(S) = \{s_1, \dots, s_n\} = \{s'_1, \dots, s'_n\}$ donc on on également $P(s'_i) = f(s'_i)$ pour tout $i \in [1, n]$ puis

$$P(D') = diag(P(s'_1), ..., P(s'_n)) = diag(f(s'_1), ..., f(s'_n))$$

Finalement,

$$P(S) = (\Omega')^{\mathsf{T}} \operatorname{diag}((f(s_i'))_{1 \le i \le n}) \Omega' = \Omega^{\mathsf{T}} \operatorname{diag}((f(s_i))_{1 \le i \le n}) \Omega$$

Comme diag $(f(s_1), \dots, f(s_n))$ est diagonale et donc symétrique, on montre sans peine que Ω^T diag $((f(s_i))_{1 \le i \le n})\Omega \in \mathcal{S}_n(\mathbb{R})$.

Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $(\varphi, \psi) \in (\mathbb{R}^I)^2$. Soit $S \in \mathcal{S}_n(I)$. Il existe $\Omega \in \mathcal{O}_n(\mathbb{R})$ et $(s_1, \dots, s_n) \in I^n$ tels que $S = \Omega^T \operatorname{diag}(s_1, \dots, s_n)\Omega$. Par définition,

$$\begin{split} u(\lambda \varphi + \mu \psi)(S) &= \Omega^{\top} \operatorname{diag}(((\lambda \varphi + \mu \psi)(s_{i}))_{1 \leq i \leq n}) \Omega \\ &= \Omega^{\top} \left(\lambda \operatorname{diag}((\varphi(s_{i}))_{1 \leq i \leq n}) + \mu \operatorname{diag}((\psi(s_{i}))_{1 \leq i \leq n}) \right) \Omega \\ &= \lambda \Omega^{\top} \left(\operatorname{diag}((\varphi(s_{i}))_{1 \leq i \leq n}) \right) \Omega + \mu \Omega^{\top} \left(\operatorname{diag}((\psi(s_{i}))_{1 \leq i \leq n}) \right) \Omega \\ &= \lambda u(\varphi)(S) + \mu u(\psi)(S) \end{split}$$

Ainsi u est linéaire. Puisque tr est également linéaire, $v = \text{tr} \circ u$ est aussi linéaire.

Soit $x \in I$. En prenant $\Omega = I_n$ et $s_1 = \cdots = s_n = x$, on obtient

$$u(\varphi)(xI_n) = \varphi(x)I_n$$

Soit $\varphi \in \text{Ker } u$. D'après la question précédente, $u(\varphi)(xI_n) = \varphi(x)I_n = 0$ pour tout $x \in I$. Ainsi φ est nulle sur I. Par conséquent, $Keru = \{0\}$ et u est injective.

Si n=1, alors en identifiant $\mathcal{M}_1(\mathbb{R})$ à \mathbb{R} , alors l'ensemble des applications de $\mathcal{S}_n(I)$ dans $\mathcal{S}_n(\mathbb{R})$ est tout simplement \mathbb{R}^I et la question précédente montre alors que $u(\varphi)=\varphi$ pour tout $\varphi\in\mathbb{R}^I$. Par conséquent, $u=\mathrm{Id}_{\mathbb{R}^I}$ est surjective. Si $n\geq 2$, on peut choisir une application constante Φ de $\mathcal{S}_n(I)$ dans $\mathcal{S}_n(\mathbb{R})\setminus\mathbb{R}I_n$. Supposons que cette application Φ admette un antécédent φ par u. Alors pour tout $x\in I$, on aurait $\Phi(xI_n)=u(\varphi)(xI_n)=\varphi(x)I_n$, ce qui contredirait la définition de Φ . Ainsi u n'est pas surjective.

10 Puisque f est polynomiale, il existe $P \in \mathbb{R}[X]$ tel que f(x) = P(x) pour tout $x \in \mathbb{R}$. Soit $S \in \mathcal{S}_n(I)$. Il existe donc $\Omega \in \mathcal{O}_n(\mathbb{R})$ et $(s_1, \dots, s_n) \in I^n$ tels que

$$S = \Omega^{T} \operatorname{diag}(s_{1}, \dots, s_{n})\Omega$$

Par définition

$$f(S) = \Omega^{\mathsf{T}} \operatorname{diag}(f(s_1), \dots, f(s_n))\Omega = \Omega^{\mathsf{T}} \operatorname{diag}(P(s_1), \dots, P(s_n))\Omega$$

Posons D = diag $(s_1, ..., s_n)$. Comme D est diagonale, $P(D) = diag(P(s_1), ..., P(s_n))$ puis

$$P(S) = P(\Omega^{T}D\Omega) = \Omega^{T}P(D)\Omega = f(S)$$

Réciproquement, supposons qu'il existe $P \in \mathbb{R}[X]$ tel que pour tout $S \in \mathcal{S}_n(I)$, u(f)(S) = P(S). Notamment, pour tout $x \in \mathbb{R}$, $u(f)(xI_n) = P(xI_n)$ ou encore $f(x)I_n = P(x)I_n$. On en déduit que f(x) = P(x) pour tout $x \in \mathbb{R}$ et donc que f est polynomiale.

I1 Supposons que $(\varphi_k)_{k\in\mathbb{N}}\in(\mathbb{R}^{\mathbb{I}})^{\mathbb{N}}$ converge simplement vers $\varphi\in\mathbb{R}^{\mathbb{I}}$ sur I. Soit $S\in\mathcal{S}_n(I)$. A nouveau, il existe $\Omega\in\mathcal{O}_n(\mathbb{R})$ et $(s_1,\ldots,s_n)\in I^n$ tels que $S=\Omega^{\mathbb{T}}$ diag $(s_1,\ldots,s_n)\Omega$. Alors, pour tout $k\in\mathbb{N}$, $u(\varphi_k)(S)=\Omega^{\mathbb{T}}$ diag $(\varphi_k(s_1),\ldots,\varphi_k(s_n))\Omega$. Comme $(\varphi_k)_{k\in\mathbb{N}}$ converge simplement vers φ sur I, $\lim_{k\to+\infty}\varphi_k(s_i)=\varphi(s_i)$ pour tout $i\in[1,n]$. On en déduit que

$$\lim_{k \to +\infty} \operatorname{diag}(\varphi_k(s_1), \dots, \varphi_k(s_n)) = \operatorname{diag}(\varphi(s_1), \dots, \varphi(s_n))$$

Enfin, l'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \Omega^T M\Omega$ est linéaire et $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc cette application est continue. On en déduit par caractérisation séquentielle de la continuité que

$$\lim_{k \to +\infty} u(\varphi_k)(S) = \lim_{k \to +\infty} \Omega^{\mathsf{T}} \operatorname{diag}(\varphi_k(s_1), \dots, \varphi_k(s_n)) \Omega = \Omega^{\mathsf{T}} \operatorname{diag}(\varphi(s_1), \dots, \varphi(s_n)) \Omega = u(\varphi)(S)$$

Autrement dit, $(u(\varphi_k))_{k\in\mathbb{N}}$ converge simplement vers $u(\varphi)$ sur $\mathcal{S}_n(I)$. Comme tr est linéaire et que $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, tr est continue sur $\mathcal{M}_n(\mathbb{R})$ de sorte que

$$\lim_{k\to +\infty} v(\varphi_k)(\mathbf{S}) = \lim_{k\to +\infty} \operatorname{tr}(u(\varphi_k)(\mathbf{S})) = \operatorname{tr}(u(\varphi(\mathbf{S}))) = v(\varphi)(\mathbf{S})$$

A nouveau, $(v(\varphi_k))_{k\in\mathbb{N}}$ converge simplement vers $v(\varphi)$ sur $S_n(I)$.

Supposons maintenant que $(\varphi_k)_{k\in\mathbb{N}}$ converge uniformément vers φ sur I. Munissons par exemple $\mathcal{M}_n(\mathbb{R})$ de la norme euclidienne notée $\|\cdot\|$. Remarquons que si $\Omega\in\mathcal{O}_n(\mathbb{R})$, alors

$$\forall \mathbf{M} \in \mathcal{M}_n(\mathbb{R}), \ \|\Omega^{\mathsf{T}} \mathbf{M} \Omega\|^2 = \operatorname{tr}((\Omega^{\mathsf{T}} \mathbf{M} \Omega)^{\mathsf{T}}(\Omega^{\mathsf{T}} \mathbf{M} \Omega))$$

$$= \operatorname{tr}(\Omega^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \Omega \Omega^{\mathsf{T}} \mathbf{M} \Omega)$$

$$= \operatorname{tr}(\Omega^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{M} \Omega)$$

$$= \operatorname{tr}(\Omega \Omega^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{M})$$

$$= \operatorname{tr}(\mathbf{M}^{\mathsf{T}} \mathbf{M}) = \|\mathbf{M}\|^2$$

Soit $S \in \mathcal{S}_n(I)$. Avec les mêmes notations que précédemment et la remarque ci-dessus,

$$\forall k \in \mathbb{N}, \ \|u(\varphi_k)(S) - u(\varphi)(S)\|^2 = \|\operatorname{diag}(\varphi_k(s_1) - \varphi(s_1), \dots, \varphi_k(s_n) - \varphi(s_n))\|^2 = \sum_{i=1}^n (\varphi_k(s_i) - \varphi(s_i)^2 \le n \|\varphi_k - \varphi\|_{\infty}^2$$

ou encore

$$\forall k \in \mathbb{N}, \ \|u(\varphi_k)(S) - u(\varphi)(S)\| \le \sqrt{n} \|\varphi_k - \varphi\|_{\infty}$$

Ce majorant est indépendant de S et tend vers 0 lorsque n tend vers $+\infty$ donc $(u(\varphi_k))$ converge uniformément vers $u(\varphi)$. Comme tr est linéaire et que $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, on peut noter C la norme subordonnée de tr à la norme euclidienne (et à la valeur absolue). Ainsi

$$\forall k \in \mathbb{N}, \ \forall S \in \mathcal{S}_n(I), \ |v(\varphi_k)(S) - v(\varphi)(S)| \le C||u(\varphi_k)(S) - u(\varphi)(S)|| \le C\sqrt{n}||\varphi_k - \varphi||_{\infty}$$

On conclut comme précédemment que $(v(\varphi_k))_{k\in\mathbb{N}}$ converge uniformément vers $v(\varphi)$ sur $S_n(I)$.

Comme S est symétrique réelle, il existe une base orthonormée (X_1, \dots, X_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de S. Notons $\lambda_1, \dots, \lambda_n$ les valeus propres associés. Sans perte de généralité, on peut supposer $\lambda_1 \leq \dots \leq \lambda_n$. Soit alors $X \in \Sigma$. Il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ telle que $X = \sum_{i=1}^n \alpha_i X_i$. Comme (X_1, \dots, X_n) est orthonormée

$$X^{\mathsf{T}}X = \sum_{i=1}^{n} \alpha_i^2 = 1$$

De plus,

$$X^{\mathsf{T}}SX = \sum_{i=1}^{n} \alpha_i^2 \lambda_i$$

donc, comme $\sum_{i=1}^{n} \alpha_i^2 = 1$ et $\lambda_1 \leq \cdots \leq \lambda_n$,

$$\lambda_1 \le \sum_{i=1}^n \alpha_i^2 \le \lambda_n$$

i.e.

$$\lambda_1 \leq X^\mathsf{T} S X \leq \lambda_n$$

De plus, $X_1 \in \Sigma$ et $X_1^T X_1 = \lambda_1$ de même que $X_n \in \Sigma$ et $X_n^T S X_n = \lambda_n$ donc

$$\min(\operatorname{Sp}(S)) = \lambda_1 = \min_{X \in \Sigma} X^T S X$$
 et $\max(\operatorname{Sp}(S)) = \lambda_n = \max_{X \in \Sigma} X^T S X$

13 Soient $(S_1, S_2) \in S_n(I)^2$ et $t \in [0, 1]$. Tout d'abord, $S = (1 - t)S_1 + tS_2 \in S_n(\mathbb{R})$. Alors pour tout $X \in \Sigma$

$$X^{\mathsf{T}}SX = (1-t)X^{\mathsf{T}}S_{1}X + (1-t)X^{\mathsf{T}}S_{2}X$$

donc, d'après la question précédente

$$(1-t) \min \text{Sp}(S_1) + t \in \text{Sp}(S_2) \le X^{\mathsf{T}} SX \le (1-t) \max \text{Sp}(S_1) + t \max \text{Sp}(S_2)$$

puis, toujours d'après la question précédente, en notant $m = (1 - t) \min \operatorname{Sp}(S_1) + t \in \operatorname{Sp}(S_2)$ et $M = (1 - t) \max \operatorname{Sp}(S_1) + t \max \operatorname{Sp}(S_2)$;

$$Sp(S) \subset [m, M]$$

Comme $(S_1, S_2) \in \mathcal{S}_n(I)^2$, $(\min Sp(S_1), \max Sp(S_1), \min Sp(S_2), \max Sp(S_2)) \in I^4$ puis, comme I est un intervalle donc convexe, $(m, M) \in I^2$ puis $Sp(S) \subset [m, M] \subset I$. Ainsi $S \in \mathcal{S}_n(I)$ est convexe.

Vérifions maintenant que ρ est une norme sur $\mathcal{S}_n(\mathbb{R})$. Tout d'abord, ρ est bien positive par définition.

Homogénéité. Soit $M \in \mathcal{S}_n(\mathbb{R})$ et $t \in \mathbb{R}$. On montre aisément que Sp(tM) = t Sp(M). Ainsi

$$\rho(tM) = \max\{|\lambda|, \ \lambda \in Sp(tM)\} = \max\{|\lambda t|, \ \lambda \in Sp(M)\} = |t| \max\{|\lambda|, \lambda \in Sp(M)\} = |t|\rho(M)$$

Séparation. Soit $M \in \mathcal{S}_n(\mathbb{R})$ tel que $\rho(M) = 0$. Alors $Sp(M) = \{0\}$ et M est diagonalisable donc M est semblable à la matrice nulle puis M = 0.

Inégalité triangulaire. Soit $(S_1, S_2) \in \mathcal{S}_n(\mathbb{R})^2$. Pour tout $X \in \Sigma$,

$$|X^{\mathsf{T}}(S_1 + S_2)X| \le |X^{\mathsf{T}}S_1X| + |X^{\mathsf{T}}S_2X| \le \rho(S_1) + \rho(S_2)$$

D'après la question précédente,

$$Sp(S_1 + S_2) \subset [-\rho(S_1) - \rho(S_2), \rho(S_1) + \rho(S_2)]$$

puis $\rho(S_1 + S_2) \le \rho(S_1) + \rho(S_2)$.

Remarquons déjà que χ est en fait à valeurs dans $\mathbb{R}_n[X]$. De plus, chaque coefficient de $\chi(M)$ est polynomial en les coefficients de M. Les applications coordonnées de χ dans la base canonique de $\mathbb{R}_n[X]$ sont donc continues de sorte que χ est elle-même continue.

Comme la suite (M_k) converge, elle est bornée. Ceci signifie que la suite $(\rho(M_k))_{k\in\mathbb{N}}$ est elle-même bornée. Par définition de ρ , la suite $(\Lambda_k)_{k\in\mathbb{N}}$ est donc aussi bornée. Comme elle est à valeurs dans l'espace vectoriel de dimension finie \mathbb{R}^n , elle est à valeurs dans un compact et elle admet alors une valeur d'adhérence que nous noterons Λ . Il existe donc une application $\alpha: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\Lambda_{\alpha(k)} \xrightarrow[k \to +\infty]{} \Lambda$. Par définition de Sp_{\uparrow} ,

$$\forall k \in \mathbb{N}, \ \Lambda_{\alpha(k),1} \leq \cdots \leq \Lambda_{\alpha(k),n}$$

puis, par passage à la limite,

$$\Lambda_1 \leq \cdots \leq \Lambda_n$$

donc Λ est croissante.

Remarquons déjà que $(M_{\alpha(k)})_{k \in \mathbb{N}}$ converge vers M en tant que suite extraite de la suite $(M_k)_{k \in \mathbb{N}}$. Notons à nouveau Λ la limite de la suite $(\Lambda_{\alpha(k)})$. Pour tout $k \in \mathbb{N}$,

$$\chi(\mathbf{M}_{\alpha(k)}) = \prod_{i=1}^{n} (\mathbf{X} - \Lambda_{\alpha(k),i})$$

L'application $(P_1, ..., P_n) \in \mathbb{R}_1[X] \mapsto \prod_{i=1}^n P_i$ est multilinéaire et $\mathbb{R}_1[X]$ est de dimension finie donc cette application est continue. Comme χ est également continue, on obtient par passage à la limite

$$\chi(M) = \prod_{i=1}^{n} (X - \Lambda_i)$$

Notamment, $\Lambda_1, \dots, \Lambda_n$ sont les valeurs propres de M comptées avec multiplicité. On prouve comme à la question précédente que Λ est croissante, ce qui signifie que $\Lambda = \operatorname{Sp}_{\uparrow}(M)$.

17 On a montré précédemment que la suite $(\Lambda_k)_{k\in\mathbb{N}}$ était à valeurs dans un compact de \mathbb{R}^n . La question précédente montre que cette suite admet $\operatorname{Sp}_{\uparrow}(M)$ comme unique valeur d'adhérence. On en déduit que $(\Lambda_k)_{k\in\mathbb{N}}$ converge vers $\operatorname{Sp}_{\uparrow}(M)$. Autrement dit, $\operatorname{Sp}_{\uparrow}(M_k) \underset{k \to +\infty}{\longrightarrow} \operatorname{Sp}_{\uparrow}(M)$. Ainsi $\operatorname{Sp}_{\uparrow}$ est continue par caractérisation séquentielle de la continuité.

18 On munit $\mathcal{M}_n(\mathbb{R})$ de la norme euclidienne définie par $\|M\|^2 = \operatorname{tr}(M^T M)$ pour tout $M \in \mathcal{M}_n(\mathbb{R})$. Alors

$$\forall \Omega \in \mathcal{O}_n(\mathbb{R}), \ \|\Omega\|^2 = \operatorname{tr}(\Omega^{\mathsf{T}}\Omega) = \operatorname{tr}(\mathrm{I}_n) = n$$

donc $\mathcal{O}_n(\mathbb{R})$ est bornée.

L'application $f: M \in \mathcal{M}_n(\mathbb{R}) \mapsto (M^T, M)$ est linéaire et $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc f est continue. L'application $g: (A, B) \in \mathcal{M}_n(\mathbb{R})^2 \mapsto AB$ est bilinéaire et $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc g est continue. Ainsi $h = g \circ f$ est continue. De plus, $h(M) = M^TM$ pour tout $M \in \mathcal{M}_n(\mathbb{R})$ donc $\mathcal{O}_n(\mathbb{R}) = h^{-1}(\{I_n\})$. Finalement, $\mathcal{O}_n(\mathbb{R})$ est fermé comme image réciproque d'un fermé par une application continue.

Ainsi $\mathcal{O}_n(\mathbb{R})$ est une partie bornée et fermée de $\mathcal{M}_n(\mathbb{R})$, qui est de dimension finie, donc $\mathcal{O}_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

Soit $\varphi \in \mathcal{C}^0(I, \mathbb{R})$. On considère à nouveau une suite $(M_k)_{k \in \mathbb{N}}$ à valeurs dans $\mathcal{S}_n(\mathbb{R})$ et convergeant vers une matrice M. Il existe alors une suite $(\Omega_k)_{k \in \mathbb{N}}$ à valeurs dans $\mathcal{O}_n(\mathbb{R})$ telle que

$$\forall k \in \mathbb{N}, \ \mathbf{M}_k = \mathbf{\Omega}_k^{\mathsf{T}} \operatorname{diag}(\Lambda_k) \mathbf{\Omega}_k$$

en notant à nouveau $\Lambda_k = \operatorname{Sp}_{\uparrow}(M_k)$ pour tout $k \in \mathbb{N}$. Alors

$$\forall k \in \mathbb{N}, \ u(\varphi)(\mathbf{M}_k) = \Omega_k^{\mathsf{T}} \operatorname{diag}(\varphi(\Lambda_k))\Omega_k$$

Remarque. On note $\varphi(x_1, \dots, x_n) = (\varphi(x_1), \dots, \varphi(x_n))$ pour $(x_1, \dots, x_n) \in \mathbb{R}^n$.

Comme $\operatorname{Sp}_{\uparrow}$ est continue, (Λ_k) converge vers $\Lambda = \operatorname{Sp}_{\uparrow}(M)$ puis, comme φ est continue, $(\varphi(\Lambda_k))$ converge vers $\varphi(\Lambda)$. La suite $(\Omega_k)_{k\in\mathbb{N}}$ est à valeurs dans le compact $\mathcal{O}_n(\mathbb{R})$ donc on peut en extraire une suite $(\Omega_{\alpha(k)})_{k\in\mathbb{N}}$ convergeant vers $\Omega \in \mathcal{O}_n(\mathbb{R})$. En passant à la limite dans la relation suivante

$$\forall k \in \mathbb{N}, \ \mathbf{M}_{\alpha(k)} = \mathbf{\Omega}_{\alpha(k)}^{\mathsf{T}} \operatorname{diag}(\Lambda_{\alpha(k)}) \mathbf{\Omega}_{\alpha(k)}$$

on obtient

$$M = \Omega^{\mathsf{T}} \operatorname{diag}(\Lambda)\Omega$$

et en passant à la limite dans la relation suivante :

$$\forall k \in \mathbb{N}, \ u(\varphi)(\mathbf{M}_{\alpha(k)}) = \Omega_{\alpha(k)}^{\mathsf{T}} \operatorname{diag}(\varphi(\Lambda_{\alpha(k)}))\Omega_{\alpha(k)}$$

on obtient

$$\lim_{k \to +\infty} u(\varphi)(\mathbf{M}_{\alpha(k)}) = \Omega^{\mathsf{T}} \operatorname{diag}(\varphi(\Lambda)))\Omega = u(\varphi)(\mathbf{M})$$

Ainsi, si $(u(\varphi)(M_k))_{k\in\mathbb{N}}$ converge, elle converge vers $u(\varphi)(M)$.

Soit S une valeur d'adhérence de la suite $(u(\varphi)(M_k))_{k\in\mathbb{N}}$. Il existe donc une suite extraite $(u(\varphi)(M_{\beta(k)}))_{k\in\mathbb{N}}$ convergeant vers S. En appliquant ce qui précède à la suite $(M_{\beta(k)})_{k\in\mathbb{N}}$ au lieu de la suite $(M_k)_{k\in\mathbb{N}}$, on prouve que $S=u(\varphi)(M)$. Ainsi $u(\varphi)(M)$ est l'unique valeur d'adhérence de la suite $(u(\varphi)(M_k))_{k\in\mathbb{N}}$.

Comme précédemment, la suite (Λ_k) est à valeurs dans un compact. Comme φ est continue, l'application $(x_1, \dots, x_n) \in \mathbb{R}^n \mapsto (\varphi(x_1), \dots, \varphi(x_n))$ est également continue. L'image d'un compact par une application continue est un compact donc $(\varphi(\Lambda_k))_{k \in \mathbb{N}}$ est également à valeurs dans un compact. Par définition de ρ , la suite $(u(\varphi)(M_k))$ est donc également à valeurs dans un compact. Comme $u(\varphi)(M)$ est son unique valeur d'adhérence, elle converge vers $u(\varphi)(M)$. Par caractérisation séquentielle de la continuité, $u(\varphi)$ est continue.

Enfin, on a déjà vu que la trace était continue sur $S_n(\mathbb{R})$ donc $v(\varphi)$ est également continue par composition.

20 Soient U ∈ \mathcal{U}_S et $k \in \llbracket 1, n \rrbracket$. Il existe donc $\Omega \in \mathcal{O}_n(\mathbb{R})$ telle que U = $\Omega^T S \Omega$. En notant (E₁, ..., E_n) la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, [U]_{k,k} = E_k^TUE_k = (Ω E_k)^TS(Ω E_k). Or Ω E_k ∈ Σ donc, d'après la question **12**, min Sp(S) ≤ [U]_{k,k} ≤ max Sp(S). Comme S ∈ S_n (I), (min Sp(S), max Sp(S)) ∈ I² puis, comme I est un intervalle, [U]_{k,k} ∈ I. Comme S ∈ S_n (I), il existe ($\lambda_1, ..., \lambda_n$) ∈ Iⁿ tel que S est orthosemblable à diag($\lambda_1, ..., \lambda_n$). Par conséquent, U est également orthosemblable à diag($\lambda_1, ..., \lambda_n$) i.e. il existe W ∈ \mathcal{O}_n (ℝ) telle que U = W^T diag($\lambda_1, ..., \lambda_n$)W. Ainsi

$$\forall k \in [[1, n]], [U]_{k,k} = \sum_{\ell=1}^{n} [W]_{\ell,k}^2 \lambda_{\ell}$$

Comme $W \in \mathcal{O}_n(\mathbb{R}), \sum_{\ell=1}^n [W]_{\ell,k}^2 = 1$ pour tout $k \in [1,n]$. Par convexité de f sur I,

$$\forall k \in [1, n], \ f([U]_{k,k}) \le \sum_{\ell=1}^{n} [W]_{\ell,k}^2 f(\lambda_{\ell})$$

puis

$$\sum_{k=1}^n f([\mathbf{U}]_{k,k}) \leq \sum_{k=1}^n \sum_{\ell=1}^n [\mathbf{W}]_{\ell,k}^2 f(\lambda_\ell) = \sum_{\ell=1}^n \left(\sum_{k=1}^n [\mathbf{W}]_{\ell,k}^2\right) f(\lambda_\ell)$$

A nouveau, comme $W \in \mathcal{O}_n(\mathbb{R}), \; \sum_{k=1}^n [W]_{\ell,k}^2 = 1 \text{ pour tout } \ell \in [\![1,n]\!].$ Ainsi

$$\sum_{k=1}^{n} f([\mathbf{U}]_{k,k}) \le \sum_{\ell=1}^{n} f(\lambda_{\ell}) = \upsilon(f)(\mathbf{S})$$

Par ailleurs, D = diag $(\lambda_1, \dots, \lambda_n) \in \mathcal{U}_S$ et

$$\sum_{k=1}^n f([\mathbf{D}]_{k,k}) = \sum_{k=1}^n f(\lambda_k) = \upsilon(f)(\mathbf{S})$$

Ainsi

$$\max \left\{ \sum_{k=1}^{n} f([\mathbf{U}]_{k,k}), \ \mathbf{U} \in \mathcal{U}_{\mathbf{S}} \right\} = v(f)(\mathbf{S})$$

Soient $(A, B) \in \mathcal{S}_n(I)^2$ et $t \in [0, 1]$. Posons alors S = (1 - t)A + tB. Soit $U \in \mathcal{U}_S$. Il existe donc $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que

$$\mathbf{U} = \mathbf{\Omega}^{\mathsf{T}} \mathbf{S} \mathbf{\Omega} = (1 - t) \mathbf{\Omega}^{\mathsf{T}} \mathbf{A} \mathbf{\Omega} + t \mathbf{\Omega}^{\mathsf{T}} \mathbf{B} \mathbf{\Omega} = (1 - t) \mathbf{C} + t \mathbf{D}$$

en posant $C = \Omega^T A \Omega \in \mathcal{U}_A$ et $D = \Omega^T B \Omega \in \mathcal{U}_B$. Pour tout $k \in [1, n]$,

$$[U]_{k,k} = (1-t)[C]_{k,k} + t[D]_{k,k}$$

puis, par convexité de f

$$f([U]_{k,k}) \le (1-t)f([C]_{k,k}) + tf([D]_{k,k})$$

et enfin

$$\sum_{k=1}^{n} f([\mathbf{U}]_{k,k}) \le (1-t) \sum_{k=1}^{n} f([\mathbf{C}]_{k,k}) + t \sum_{k=1}^{n} f([\mathbf{D}]_{k,k})$$

Mais, puisque $C \in \mathcal{U}_A$ et $D \in \mathcal{U}_B$, on obtient d'après la question précédente :

$$\sum_{k=1}^{n} f([\mathbf{U}]_{k,k}) \le (1-t)v(f)(\mathbf{A}) + tv(f)(\mathbf{B})$$

Ceci étant vrai pour tout $U \in \mathcal{U}_S$, on a encore d'après la question précédente,

$$v(f)(S) \le (1-t)v(f)(A) + tv(f)(B)$$

c'est-à-dire

$$v(f)((1-t)A + tB) \le (1-t)v(f)(A) + tv(f)(B)$$

Supposons f convexe sur I. D'après la question précédente, v(f) est convexe sur $\mathcal{S}_n(I)$. Réciproquement, supposons v(f) convexe sur $\mathcal{S}_n(I)$. Soient alors $(a,b) \in I^2$ et $t \in [0,1]$. Alors

$$\upsilon(f)((1-t)a\mathrm{I}_n+tb\mathrm{I}_n)\leq (1-t)\upsilon(f)(a\mathrm{I}_n)+t\upsilon(f)(b\mathrm{I}_n)$$

ou encore

$$\upsilon(f)(((1-t)a+tb)\mathrm{I}_n) \leq (1-t)\upsilon(f)(a\mathrm{I}_n) + t\upsilon(f)(b\mathrm{I}_n)$$

Or d'après la question 8,

$$\forall x \in I, \ u(f)(xI_n) = f(x)I_n$$

donc

$$\forall x \in I, \ v(f)(xI_n) = tr(f(x)I_n) = nf(x)$$

On en déduit que

$$nf((1-t)a+tb) \le n(1-t)f(a) + ntf(b)$$

puis

$$f((1-t)a + tb) \le (1-t)f(a) + tf(b)$$

Ceci signifie que f est convexe sur I.