House Price Prediction

(1) Import Python Libraries

```
In [2]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import sklearn.datasets
          from sklearn.model_selection import train_test_split
          from xgboost import XGBRegressor
          from sklearn import metrics
```

(2) Loading the Data Set

In [6]: house_price_dataset = sklearn.datasets.fetch_california_housing()
print(house_price_dataset)

```
{'data': array([[
                     8.3252
                                    41.
                                                      6.98412698, ...,
                                                                           2.5555
5556,
          37.88
                      , -122.23
                                       ],
       Γ
           8.3014
                           21.
                                            6.23813708, ...,
                                                                 2.10984183,
                      , -122.22
          37.86
                                       ],
           7.2574
                                            8.28813559, ...,
                           52.
                                                                2.80225989,
          37.85
                        -122.24
                                       ],
           1.7
                           17.
                                            5.20554273, ...,
                                                                 2.3256351 ,
                      , -121.22
          39.43
                                       ],
                                            5.32951289, ...,
           1.8672
                                                                 2.12320917,
                           18.
                      , -121.32
          39.43
                                       ],
           2.3886
                                            5.25471698, ...,
                           16.
                                                                 2.61698113,
                      , -121.24
          39.37
                                       ]]), 'target': array([4.526, 3.585, 3.52
1, ..., 0.923, 0.847, 0.894]), 'frame': None, 'target_names': ['MedHouseVa l'], 'feature_names': ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Popul ation', 'AveOccup', 'Latitude', 'Longitude'], 'DESCR': '.. _california_housi
ng dataset:\n\nCalifornia Housing dataset\n-----\n\n**D
ata Set Characteristics:**\n\n :Number of Instances: 20640\n\n
                                                                         :Number
of Attributes: 8 numeric, predictive attributes and the target\n\n
                                                                           :Attri
bute Information:\n
                             - MedInc
                                              median income in block\n
HouseAge
               median house age in block\n

    AveRooms

                                                                      average num
ber of rooms\n

    AveBedrms

                                         average number of bedrooms\n
Population
               block population\n

    AveOccup

                                                            average house occupa
ncy\n
              - Latitude
                               house block latitude\n
                                                                - Longitude
                              :Missing Attribute Values: None\n\nThis dataset
ouse block longitude\n\n
was obtained from the StatLib repository.\nhttp://lib.stat.cmu.edu/datasets/
\n\nThe target variable is the median house value for California district
s.\n\nThis dataset was derived from the 1990 U.S. census, using one row per
census\nblock group. A block group is the smallest geographical unit for whi
ch the U.S.\nCensus Bureau publishes sample data (a block group typically ha
s a population\nof 600 to 3,000 people).\n\nIt can be downloaded/loaded usin
g the\n:func:`sklearn.datasets.fetch_california_housing` function.\n\n.. top
ic:: References\n\n - Pace, R. Kelley and Ronald Barry, Sparse Spatial Au
                       Statistics and Probability Letters, 33 (1997) 291-297
toregressions,\n
\n'}
```

In [7]: house_price_dataframe = pd.DataFrame(house_price_dataset.data, columns = hou
house_price_dataframe.head()

Out[7]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85

In [8]: house_price_dataframe['price'] = house_price_dataset.target
house_price_dataframe.head()

\sim		_	Γ	١,	
()	H.	т.	א ו	SI	•
_	٠.	٠.	ᆫ	′ 」	•

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85

→

(3) Exploring the Data Set

In [9]: house_price_dataframe.shape

Out[9]: (20640, 9)

In [10]: house_price_dataframe.isnull().sum()

Out[10]: MedInc 0 HouseAge 0 **AveRooms** 0 AveBedrms Population 0 Ave0ccup 0 Latitude 0 Longitude 0 price 0

dtype: int64

In [11]: house_price_dataframe.describe()

Out[11]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Li
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	2064
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070655	3
std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386050	
min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692308	3
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429741	3
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818116	3
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3.282261	3
max	15.000100	52.000000	141.909091	34.066667	35682.000000	1243.333333	4

 $local host: 8888/notebooks/IITG/portfolio_finance/house_price/House\ Price\ Prediction.ipynb$

(4) Finding Correlations in the Data Set

```
In [12]:
              correlation = house_price_dataframe.corr()
In [13]:
              plt.figure(figsize=(10,10))
              sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, anno
Out[13]: <AxesSubplot:>
                                                                                                              1.00
                                                                                                             - 0.75
                                    -0.1
                                                     -0.1
                                                                             -0.1
                                                                                      -0.0
                 MedInc
                                                            -0.3
                           -0.1
                                            -0.2
                                                    -0.1
                                                                                      -0.1
              HouseAge
                                                                                                             - 0.50
                                    -0.2
                                                             -0.1
                                                                     -0.0
                                                                                      -0.0
              AveRooms
                                                                                                             - 0.25
              AveBedrms
                           -0.1
                                    -0.1
                                                             -0.1
                                                                     -0.0
                                                                                              -0.0
              Population
                                    -0.3
                                            -0.1
                                                     -0.1
                                                                              -0.1
                                                                                              -0.0
                                                                                                             - 0.00
                                            -0.0
                                                     -0.0
                                                                                              -0.0
               AveOccup
                                                                                                             -0.25
                           -0.1
                                                             -0.1
                                                                                      -0.9
                                                                                              -0.1
                Latitude
                           -0.0
                                    -0.1
                                            -0.0
                                                                                              -0.0
               Longitude
                                                                             -0.9
                                                                                                             -0.50
                   price
                                                    -0.0
                                                             -0.0
                                                                     -0.0
                                                                             -0.1
                                                                                      -0.0
                                                                                                             - -0.75
                                            AveRooms
                                                    AveBedrms
                                                             Population
In [14]:
              print(correlation['price'])
            MedInc
                               0.688075
            HouseAge
                               0.105623
            AveRooms
                               0.151948
            AveBedrms
                              -0.046701
            Population
                              -0.024650
            Ave0ccup
                              -0.023737
            Latitude
                              -0.144160
                              -0.045967
            Longitude
            price
                               1.000000
```

Name: price, dtype: float64

(5) Building the Model

Split the Data

Create and Fit the Model

(6) Evaluating the Model

R-squared Error

```
In [20]: score_1 = metrics.r2_score(Y_train, training_data_prediction)
print("R squared error : ", score_1)
```

R squared error : 0.9451221492760822

```
In [21]: score_1 = metrics.r2_score(Y_test, test_data_prediction)
print("R squared error : ", score_1)
```

R squared error : 0.8412904408180302

Mean Absolute Error

```
In [22]: score_2 = metrics.mean_absolute_error(Y_train, training_data_prediction)
print('Mean Absolute Error : ', score_2)
```

Mean Absolute Error: 0.1919170860794262

```
In [23]: score_2 = metrics.mean_absolute_error(Y_test, test_data_prediction)
print('Mean Absolute Error : ', score_2)
```

Mean Absolute Error: 0.30753655785801337

(7) Visualizing the Model

```
In [26]: plt.scatter(Y_train, training_data_prediction)
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices")
    plt.title("Actual Price vs Preicted Price")
    plt.show()
```



```
In [27]: plt.scatter(Y_test, test_data_prediction)
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices")
    plt.title("Actual Price vs Preicted Price")
    plt.show()
```

