MULTIVARIATE ANALYSIS

1. The following table shows for each of 18 cinchona plants the yield of dry bark (in oz.), the height (in inches) and the girth (in inches) at a height of 6" from the ground. Fit a multiple linear regression model to the data. Also calculate the multiple correlation coefficient and the partial correlation coefficients.

Plant no.	Yield of dry bark (oz.)	Height (in.)	Girth at a height of 6"
1	19	8	4
2	51	15	5
3	30	11	3
4	42	21	3
5	25	7	2
6	18	5	1
7	44	10	4
8	56	13	6
9	38	12	3
10	32	13	4
11	25	5	2
12	10	6	3
13	20	4	4
14	27	8	4
15	13	7	3
16	49	12	5
17	27	6	3
18	55	16	7

2. The following constraints are obtained from measurements on length in mm. (x_1) , volume in c.c. (x_2) and weight in gm. (x_3) of 300 eggs:

$$\bar{x}_1 = 55.95$$
 $s_1 = 2.26$ $r_{12} = 0.578$ $\bar{x}_2 = 51.48$ $s_2 = 4.39$ $r_{13} = 0.581$ $\bar{x}_3 = 56.03$ $s_3 = 4.41$ $r_{23} = 0.974$

- (a) Obtain the linear regression equation of egg-weight on egg-length and egg-volume. Hence estimate the weight of an egg whose length is 58.0 mm. and volume is 52.5 c.c.
- (b) Give a measure of the usefulness of the above regression equation as a predicting formula.
- (c) Compute the partial correlation coefficient of weight and volume, eliminating the effect of length.
- 3. Three important measurements from which the crenial capacity (C) of humans may be predicted are the glabella-occipital length (L), the maximum parietal breadth (B) and the basis-bregmatic height (H). Since the magnitude to be estimated is a volume, it is thought proper to use a regression formula of the type,

$$C = \alpha L^{b_2} B^{b_3} H^{b_4}$$
.

which takes the linear form

$$x_1 = a + b_2 x_2 + b_3 x_3 + b_4 x_4.$$

Using the measurements on 86 male skulls, one finds the mean vector

and the matrix of corrected sums of squares and sums of products

$$\begin{pmatrix} 0.12692 & 0.03030 & 0.04410 & 0.030629 \\ \dots & 0.01875 & 0.00848 & 0.00684 \\ \dots & \dots & 0.02904 & 0.00878 \\ \dots & \dots & \dots & 0.02886 \end{pmatrix}$$

for $x_1, x_2, x_3 \text{ and } x_4$.

Get the multiple regression equation of x_1 on x_2 , x_3 and x_4 . Obtain the multiple correlation coefficient $r_{1.234}$ and comment. Decide on the basis of the partial correlation coefficients, if any one of the independent variables may be omitted.

4. Suppose $X = (X_1, X_2, X_3, X_4)'$ has a multivariate normal distribution with mean vector $\boldsymbol{\mu} = (2, 4, -1, 3)'$ and dispersion matrix

$$\Sigma = \begin{pmatrix} 4 & -1 & \frac{1}{2} & -\frac{1}{2} \\ & 3 & 1 & -1 \\ & & 6 & 1 \\ & & & 4 \end{pmatrix}.$$

Find

- (i) the conditional distribution of $X_1|X_2,X_3,X_4$
- (ii) a linear combination of X_2, X_3, X_4 having maximum correlation with X_1 . Also determine the correlation.
- (iii) A 2×2 matrix C such that the random vectors $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ and $\begin{pmatrix} X_3 \\ X_4 \end{pmatrix} C \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ are independently distributed.
- (iv) the conditional correlation between X_1 and X_2 given X_3 and X_4 .
- (v) $\rho_{12.34}$. Is it same with the correlation as found in (iv)?

5. Suppose
$$\underline{\mathbf{X}} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim N_3(\underline{\boldsymbol{\mu}}, \boldsymbol{\Sigma}) \text{ where } \underline{\boldsymbol{\mu}} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Find the joint distribution of $Y_1 = X_1 + X_2 + X_3$ and $Y_2 = X_1 - X_2$.

6. Consider the density of a multivariate normal distribution:

$$\frac{\sqrt{|A|}}{(2\pi)^{p/2}} \cdot exp\left\{-\frac{1}{2}(\underline{x}-\underline{b})'A(\underline{x}-\underline{b})\right\}$$

Let
$$b = 0$$
 and $A = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix}$.

Find the dispersion matrix.

7. The electric power consumed each month by a chemical plant (y) is thought to be related to the average ambient temperature (x_1) , the number of days in the month (x_2) , the average product purity (x_3) and the tons of product produced (x_4) . The observed correlation matrix based on a sample of size 12 is

$$R = \begin{pmatrix} 1 & 0.8025 & 0.8270 & 0.0929 & -0.1327 \\ & 1 & 0.6605 & -0.2876 & -0.0236 \\ & & 1 & 0.1127 & -0.0253 \\ & & & 1 & 0.0789 \\ & & & & 1 \end{pmatrix}$$

- (a) Test whether the partial correlation between y and x_1 , eliminating the effects of x_2 , x_3 , x_4 is significant.
- (b) Test the hypothesis that the electric power consumed is independent of the average product purity and the tons of product produced.

3