Rapport Code GenMat

Makefile

Le makefile qui permet de compiler notre programme GenMat est le suivant:

Figure 1: Makefile

Afin d'optimiser notre programme GenMat nous faisons appelle à MAQAO qui analysera notre binaire et générera un rapport contenant une vue globale de notre programme et les suggestions qui permettront d'améliorer les performances de notre programme.

MAQAO

Après l'exécution de MAQAO, les fichier HTML suivants sont générés:

Figure 2: Fichier HTML générés par MAQAO

Global Metrics

Pour commencer notre analyse nous étudierons la page d'accueil du rapport généré par MAQAO.

Global Metrics		?
Total Time (s)		33.86
Profiled Time (s)		33.86
Time in analyzed loops (%)		7.91
Time in analyzed innermost loops (%)		7.91
Time in user code (%)		8.16
Compilation Options		GenMat : -O2, -O3 or -Ofast is missingmarch= (target) is missingfunroll-loops is missing.
Perfect Flow Complexity		1.00
Array Access Efficiency (%)		75.0
Perfect OpenMP + MPI + Pthread		1.00
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution		1.00
	Potential Speedup	1.02
No Scalar Integer	Nb Loops to get 80%	4
FP Vectorised	Potential Speedup	1.00
	Nb Loops to get 80%	1
Fully Vectorised	Potential Speedup	1.08
	Nb Loops to get 80%	4
FP Arithmetic Only	Potential Speedup	1.04
	Nb Loops to get 80%	4

Figure 3: Global Metrics

En observant le rapport Global Metrics de notre binaire analysé par MAQAO, nous constatons que celui ci a été compiler sans flags d'optimisation ni de flags de spécification d'architecture. Nous pouvons également remarquer que les accès mémoire sont efficaces à 75%. A cette étape, nous allons prendre en compte la suggestion des flags -O2,-O3 ou -Ofast, -march=(target),-funroll-loops, pour le prochain binaire à produire.

Experiment Summary

Experiment Summary nous donne les informations liées à la machine d'exécution, ainsi que les flags ajoutés par le compilateur.

Figure 4: Experiment Summary

Application

Application donne les détails sur la manière dont le temps a été reparti entre les différentes catégories (Binary, System, memory, ...).

Figure 5: Application

Loops

La rubrique Loops nous donne des indications sur les boucle de notre programme, leurs temps d'exécution, couverture, vectorisation, ...

Figure 6: Loops

Rapport CQA

Pour générer le rapport CQA il suffit de cliquer sur l'une des boucles dans la rubrique Loops:

Figure 7: Rapport CQA

le rapport CQA indique les boucles chaudes c'est a dire les boucles qui doivent être optimiser dans notre cas la couverture (coverage) de nos boucles est bonne.

Gain

Dans cette rubrique MAQAO fait une estimations du gain de temps si nous vectorisons nos boucles et si nous changeons la structure de Arrays of Structure (AoS) à Structure of Arrays (SoA).

Figure 8: Gain

Optimisation

Makefile

Pour l'optimisation de notre programme nous prenons en compte les suggestions de MAQAO, en ajoutant les flags d'optimisation dans notre makefile:

Figure 9: Makefile modifié

Global Metrics

	29.97	
	29.97	
	5.91	
Time in analyzed innermost loops (%)		
	6.13	
	OK	
Perfect Flow Complexity		
Array Access Efficiency (%)		
Perfect OpenMP + MPI + Pthread		
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution		
Potential Speedup	1.00	
Nb Loops to get 80%	1	
Potential Speedup	1.00	
Nb Loops to get 80%	1	
Potential Speedup	1.06	
Nb Loops to get 80%	3	
Potential Speedup	1.00	
Nb Loops to get 80%	1	
	Perfect Load Distribution Potential Speedup Nb Loops to get 80% Potential Speedup	

Figure 10: Global Metrics 2