page - 1 - NIVEAU: 1 SM

COURS N° 7

TRIGONOMETRIE

- I. Formules de transformations $sin(a\pm b)$; $cos(a\pm b)$; $tan(a\pm b)$:
- **01.** Transformation de cos(a+b) puis sin(a+b):
 - Le plan (P) est rapporté au repère orthonormé direct (O, \vec{i}, \vec{j}) .
 - $\mathcal{C}(O,1)$ est le cercle trigonométrique lié au repère $\left(O,\vec{i},\vec{j}\right)$.
 - A et B et I trois points de (P) tel que : $\overrightarrow{OI} = \overrightarrow{i}$ et a et b abscisses curvilignes de A et B respectivement.
 - On rappel: mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OA})$ est a c.à.d. $(\overrightarrow{OI}, \overrightarrow{OA}) \equiv a \ (2\pi)$ ou encore $(\overrightarrow{OI}, \overrightarrow{OA}) = a + 2k\pi \ ; \ (k \in \mathbb{Z})$.
 - On rappel: mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OB})$ est b c.à.d. $(\overrightarrow{OI}, \overrightarrow{OB}) \equiv b \ (2\pi)$ ou encore

$$\overline{\left(\overrightarrow{OI},\overrightarrow{OB}\right)} = \mathbf{b} + 2\mathbf{k}\pi \; ; \; \left(\mathbf{k} \in \mathbb{Z}\right)$$

- \blacksquare Déterminer les cordonnés des vecteurs \overrightarrow{OA} et \overrightarrow{OB} .
- **2** Calculer: $(\overrightarrow{OB}, \overrightarrow{OA})$ en fonction de a et b.
- **3** Calculer le produit scalaire $\overrightarrow{OA.OB}$ de deux façons différentes .
- 4 On déduit la formule de cos(a-b) et cos(a+b).
- **5** On déduit la formule de sin(a+b) et sin(a-b).

02. Propriété:

Pour tous a grb de R on a :

$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$	$\cos(\mathbf{a}-\mathbf{b}) = \cos(\mathbf{a})\cos(\mathbf{b}) + \sin(\mathbf{a})\sin(\mathbf{b})$
$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$	$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$

03. Conséquences :

Le cas où a = b on obtient :

- $\sin 2a = 2\sin a \cos a$ et $\cos 2a = \cos^2 a \sin^2 a$.
- D'après $\cos^2 a + \sin^2 a = 1$ on obtient : $\cos 2a = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- $\sin^2(a) = \frac{1 \cos(2a)}{2}$ et $\cos^2(a) = \frac{1 + \cos(2a)}{2}$
- **04.** Application:
 - 1 Trouver la valeur de $\cos \frac{7\pi}{12}$. On a :

$$\cos\frac{7\pi}{12} = \cos\left(\frac{3\pi + 4\pi}{12}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \cos\frac{\pi}{4}\cos\frac{\pi}{3} - \sin\frac{\pi}{4}\sin\frac{\pi}{3} = \frac{\sqrt{2}}{2} \times \frac{1}{2} - \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}.$$

page - 2 - NIVEAU : 1 SM

COURS N° 7

TRIGONOMETRIE

 $Conclusion: \cos\frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$

2 Calculer: $\cos \frac{\pi}{8}$

Correction:

On a : $\cos 2a = 2\cos^2 a - 1$ on prend $a = \frac{\pi}{8}$ d'où $\cos \frac{\pi}{4} = 2\cos^2 \frac{\pi}{8} - 1$.

Par suite $\cos \frac{\pi}{8} = \sqrt{\frac{1 + \cos \frac{\pi}{4}}{2}}$ ou $\cos \frac{\pi}{8} = -\sqrt{\frac{1 + \cos \frac{\pi}{4}}{2}}$ mais $0 < \frac{\pi}{8} < \frac{\pi}{2}$ donc $\cos \frac{\pi}{8} > 0$.

Conclusion: $\cos \frac{\pi}{8} = \sqrt{\frac{1 + \cos \frac{\pi}{4}}{2}} = \sqrt{\frac{2 + \sqrt{2}}{2}}$

05. Transformation de : tan(a+b)

- a et b de $\mathbb R$ tel que : $a \neq \frac{\pi}{2} + k\pi$ et $a + b \neq \frac{\pi}{2} + k\pi$ et $a b \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb Z$.
 - 1 Déterminer tan(a+b) en fonction de sina; cosb; cosa et sinb.
 - 2 Déterminer tan(a+b) en fonction de tana et tanb (on peut factoriser par $\frac{1}{\cos a \times \cos b}$
 - 3 On déduit : tan(a-b) et tan(2a)

06. Propriété:

a et b de $\mathbb R$ tel que : $a \neq \frac{\pi}{2} + k\pi$ et $a + b \neq \frac{\pi}{2} + k\pi$ et $a - b \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb Z$. on a :

 $\frac{\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \times \tan b} \text{ et } \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \times \tan b} \text{ et } \tan(2a) = \frac{2\tan a}{1 - \tan^2 a}.$

II. Formules de transformations des sommes à des produit et les produits à des sommes :

Ol. Activité:

D'après les formules $\cos(a\pm b)$ et $\sin(a\pm b)$.

- I Simplifier: $\cos(a+b)+\cos(a-b)$ et $\cos(a+b)-\cos(a-b)$ et $\sin(a+b)+\sin(a-b)$ et $\sin(a+b)-\sin(a-b)$.
- 2 On déduit les formules de transformations de : $\cos a \times \cos b$ et $\sin a \times \sin b$ et $\sin a \times \cos b$.
- 3 On pose: a + b = x et a b = y écrire a et b en fonction de x et y.
- 4 On déduit les formules de : $\cos x + \cos y$ et $\cos x \cos y$ et $\sin x + \sin y$ et $\sin x \sin y$ en fonction de $\sin \frac{x-y}{2}$; $\cos \frac{x+y}{2}$; $\cos \frac{x-y}{2}$ et $\sin \frac{x+y}{2}$.
- 5 On déduit les formules de transformations obtenues.

page - 3 - NIVEAU : 1 SM

COURS N° 7

TRIGONOMETRIE

02.

Propriété:

a et b de R on a:

Transformations des sommes à des produits	Transformations des produits à des sommes
$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$	$\cos \mathbf{a} \times \cos \mathbf{b} = \frac{1}{2} \left[\cos \left(\mathbf{a} + \mathbf{b} \right) + \cos \left(\mathbf{a} - \mathbf{b} \right) \right]$
$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$	$\sin a \times \sin b = -\frac{1}{2} \left[\cos (a+b) - \cos (a-b) \right]$
$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$	$\sin a \times \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$
$\sin \mathbf{a} - \sin \mathbf{b} = -2\cos\left(\frac{\mathbf{a} + \mathbf{b}}{2}\right)\sin\left(\frac{\mathbf{a} - \mathbf{b}}{2}\right)$	

03. Exemple :

1 Trouver la valeur de chaque expressions : $\cos \frac{\pi}{12} + \cos \frac{5\pi}{12}$ et $\cos \frac{\pi}{12} \times \cos \frac{5\pi}{12}$.

On a:
$$\cos \frac{5\pi}{12} + \cos \frac{\pi}{12} = 2\cos \left(\frac{\frac{5\pi}{12} + \frac{\pi}{12}}{2}\right) \times \cos \left(\frac{\frac{5\pi}{12} - \frac{\pi}{12}}{2}\right) = 2\cos \frac{\pi}{4} \times \cos \frac{\pi}{6} = 2\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$$

Conclusion: $\cos\frac{\pi}{12} + \cos\frac{5\pi}{12} = \frac{\sqrt{6}}{2}$.

III. D'autres formules de transformations :

 $\underline{\mathbf{A}}_{\bullet}$ Transformation de : $\mathbf{a} \cos \mathbf{x} + \mathbf{b} \sin \mathbf{x}$:

01. Activité:

a et b de \mathbb{R}^* , on considère l'expression suivante $\mathbf{A} = \mathbf{a} \cos \mathbf{x} + \mathbf{b} \sin \mathbf{x}$.

- 1 Factoriser l'expression A en fonction de $\sqrt{a^2 + b^2}$.
- 2 Trouver une écriture de A sous la forme de $\sqrt{a^2+b^2}\times \sin\left(x+\alpha\right)$ ou $\sqrt{a^2+b^2}\times \cos\left(x-\alpha\right)$ avec α de $\mathbb R$ (on remarque que $\cos^2\alpha+\sin^2\alpha=1$).
- **3** Donner les deux transformations obtenues .

02. Propriété:

a et b de \mathbb{R}^* ; on a:

•
$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \times \sin(x + \alpha)$$
; (avec $\sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}$).

•
$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \times \cos(x - \alpha)$$
; (avec $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$).

03. Exemple:

page - 4 - NIVEAU: 1 SM

COURS N° 7 TRIGONOMETRIE

1 Trouver une transformation de $\sqrt{3} \sin 2x + \cos 2x$.

On a:
$$\sqrt{3}\sin 2x + \cos 2x = 2\left(\frac{\sqrt{3}}{2}\sin 2x + \frac{1}{2}\cos 2x\right) = 2\left(\cos \frac{\pi}{6}\sin 2x + \sin \frac{\pi}{6}\cos 2x\right) = 2\sin\left(2x + \frac{\pi}{6}\right)$$

B. Transformations de : $\cos x$; $\tan x$ et $\sin x$ en fonction de $t = \tan \frac{x}{2}$.

01. Activité:

On pose: $x \neq \pi + 2k\pi$ et $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

- 1 On rappel que : $\sin 2a = 2\sin a \cos a$ et $\cos 2a = \cos^2 a \sin^2 a$ écrire ses deux formules avec
- 2 On pose: $t = \tan \frac{x}{2}$ trouver $\cos x$; $\sin x$ et $\tan x$ en fonction de t (on peut diviser le numérateur et le dénominateur par $\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) = 1$

Correction pour sin x:

On a:
$$\sin x = 2\sin \frac{x}{2}\cos \frac{x}{2} = 2\frac{\sin \frac{x}{2}\cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = 2\frac{\frac{\sin \frac{x}{2}\cos \frac{x}{2}}{\cos^2 \frac{x}{2}}}{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}} = 2\frac{\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}}{1 + \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}} = 2\frac{\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = 2\frac{t}{1 + t^2}$$

02. Propriété:

On pose: $t = \tan \frac{x}{2}$ avec $x \neq \pi + 2k\pi$ et $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

On a : $\cos x = \frac{1-t^2}{1+t^2}$ et $\sin x = \frac{2t}{1+t^2}$ et $\tan x = \frac{2t}{1-t^2}$

03. Exemple:

Calculer: $\tan \frac{\pi}{2}$.

Correction:

On a: $\sin a = \frac{2t}{1+t^2}$ avec $t = \tan \frac{a}{2}$ et on prend $a = \frac{\pi}{4}$.

D'où: $\sin \frac{\pi}{4} = \frac{2t}{1+t^2} \Leftrightarrow \frac{\sqrt{2}}{2} = \frac{2t}{1+t^2} \Leftrightarrow t^2 - 2\sqrt{2}t + 1 = 0$

Donc $\Delta' = 1$ par suite on a deux solutions : $t_1 = -1 + \sqrt{2}$ et $t_2 = 1 + \sqrt{2}$

On a : $0 < \frac{\pi}{8} < \frac{\pi}{4}$ donc $\tan 0 < \tan \frac{\pi}{8} < \tan \frac{\pi}{4}$ d'où : $0 < \tan \frac{\pi}{8} < 1$ la solution acceptée est $t_1 = -1 + \sqrt{2}$.

page - 5 - NIVEAU: 1 SM

COURS N° 7

TRIGONOMETRIE

Conclusion: $\tan \frac{\pi}{8} = -1 + \sqrt{2}$.

IV. Rappel sur les équations trigonométriques :

A. Equation de la forme : $x \in \mathbb{R} / \cos x = a$

01. Propriété:

a est un nombre réel donné ensemble de solutions de l'équation $\mathbb{R}/\cos x = a$ est :

- Si $a \in]-\infty, -1$ alors $S = \emptyset$ (pas de solution)
- Si $a \in [-1,1]$ on cherche α tel que $a = \cos \alpha$ d'où:

$$\cos x = a \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \begin{cases} x = \alpha + 2k\pi \\ x = -\alpha + 2k\pi \end{cases}; \ k \in \mathbb{Z}.$$

Par suite ensemble de solutions de l'équation est :

$$S = \left\{ \alpha + 2k\pi \right\} - \alpha + 2k\pi / k \in \mathbb{Z} .$$

02. Cas particuliers:

- a=1 on $a: S = \{2k\pi/k \in \mathbb{Z}\}$. a=-1 on $a: S = \{\pi + 2k\pi/k \in \mathbb{Z}\}$.
- $\mathbf{a} = \mathbf{0}$ on $\mathbf{a} : \mathbf{S} = \left\{ \frac{\pi}{2} + \mathbf{k}\pi / \mathbf{k} \in \mathbb{Z} \right\}$

03. Exemple:

Résoudre l'équation : (E): $x \in \mathbb{R} / \cos x = \frac{1}{2}$.

On a: $\cos x = \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{\pi}{3} \Leftrightarrow \begin{cases} x = -\frac{\pi}{3} + 2k\pi \\ x = -\frac{\pi}{3} + 2k\pi \end{cases}$; $k \in \mathbb{Z}$.

Conclusion: l'ensemble de solutions de l'équation (E) est: $S = \left\{ \frac{\pi}{3} + 2k\pi , -\frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$.

B. Equation de la forme : $x \in \mathbb{R} / \sin x = a$

Ol. Propriété:

a est un nombre réel donné ensemble de solutions de l'équation $\mathbb{R}/\sin x = a$ est :

- Si $a \in]-\infty, -1 \cup]1, +\infty[$ alors $S = \emptyset$ (pas de solution).
- Si $a \in [-1,1]$ on cherche α tel que $a = \sin \alpha$ d'où:

$$\sin x = a \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \begin{cases} x = \alpha + 2k\pi \\ x = \pi - \alpha + 2k\pi \end{cases} ; k \in \mathbb{Z}.$$

Par suite ensemble de solutions de l'équation est : $S = \{\alpha + 2k\pi, \pi - \alpha + 2k\pi / k \in \mathbb{Z}\}$.

page - 6 - NIVEAU: 1 SM

COURS N° 7

TRIGONOMETRIE

02. Cas particuliers:

$$a = 1 \ \, \text{on a} : \, S = \left\{\frac{\pi}{2} + 2k\pi \, / \, k \in \mathbb{Z}\right\} \, . \quad a = -1 \ \, \text{on a} : \, S = \left\{-\frac{\pi}{2} + 2k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \ \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k \in \mathbb{Z}\right\} . \, a = 0 \, \, \text{on a} : \, S = \left\{k\pi \, / \, k$$

Q3. Exemple: Résoudre l'équation: (E): $x \in \mathbb{R} / \sin x = \frac{1}{2}$.

On a:
$$\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{6} \Leftrightarrow \begin{cases} x = -\frac{\pi}{6} + 2k\pi \\ x = \pi - \frac{\pi}{6} + 2k\pi = \frac{5\pi}{6} + 2k\pi \end{cases}$$
; $k \in \mathbb{Z}$.

Conclusion: l'ensemble de solutions de l'équation (E) est: $S = \left\{ \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi/k \in \mathbb{Z} \right\}$.

 $\underline{\underline{C}} \cdot \text{Equation de la forme} : x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} : \tan x = a$

01. Propriété :

a est un nombre réel donné pour résoudre

l'équation (E): $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$: $\tan x = a$:

- on cherche α tel que $a = \tan \alpha$ d'où:
 - $\tan x = a \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ; k \in \mathbb{Z}.$
- Par suite ensemble de solutions de l'équation est : $S = \{\alpha + k\pi / k \in \mathbb{Z}\}$.

D. Equation de la forme : $x \in \mathbb{R}$: $a \cos x + b \cos x = c$.

01. Activité:

- **1** Résoudre l'équation suivante de deux façons différentes : (E) : $x \in \mathbb{R}$: $\cos x + \sqrt{3}\cos x = 1$.
- **02.** Propriété :

Pour résoudre l'équation suivante $(E): x \in \mathbb{R}: a\cos x + b\cos x = c$ on suit les étapes suivantes : 1^{ere} étape :

- On écrit l'équation sous la forme suivante (E) $\Leftrightarrow \sqrt{a^2 + b^2} \left[\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right] = c$.
- Puis on l'écrit (E) $\Leftrightarrow \sqrt{a^2 + b^2} \left[\cos \alpha \cos x + \sin \alpha \sin x \right] = c \left[\cot \sqrt{a^2 + b^2} \left[\sin \alpha \cos x + \cos \alpha \sin x \right] = c \right]$
- Puis on l'écrit (E) \Leftrightarrow \Leftrightarrow $\cos(x-\alpha) = \frac{c}{\sqrt{a^2+b^2}}$ (ou $\sin(x+\alpha) = \frac{c}{\sqrt{a^2+b^2}}$).

 2ième étape :
- Au lieu de résoudre l'équation $(E): x \in \mathbb{R}: a\cos x + b\cos x = c$ on résoudre l'équation :

$$\cos(x-\alpha) = \frac{c}{\sqrt{a^2+b^2}} \left(\text{ ou } \sin(x+\alpha) = \frac{c}{\sqrt{a^2+b^2}} \right)$$

page - 7 - NIVEAU: 1 SM

COURS N° 7

TRIGONOMETRIE

3ième étape:

Ensemble de solution de l'équation est lié à la valeur de $\frac{c}{\sqrt{a^2+b^2}}$.

- Si $\frac{c}{\sqrt{a^2+b^2}} \in [-1,1]$ l'équation n'a pas de solution; $S = \emptyset$.
- Si $\frac{c}{\sqrt{a^2+b^2}} \in [-1,1]$ on cherche β tel que $\cos \beta = \frac{c}{\sqrt{a^2+b^2}}$ (ou $\sin \beta = \frac{c}{\sqrt{a^2+b^2}}$) d'où $(E) \Leftrightarrow \cos(x-\alpha) = \cos \beta$ (ou $\sin(x+\alpha) = \sin \beta$).

03. Exemple :

Résoudre l'équation : (E) : $x \in \mathbb{R}$: $\cos 3x + \cos 3x = 1$. on a :

$$\cos 3x + \cos 3x = 1 \Leftrightarrow \sqrt{2} \left[\frac{\sqrt{2}}{2} \cos 3x + \frac{\sqrt{2}}{2} \sin 3x \right] = 1$$

$$\Leftrightarrow \sqrt{2} \left[\cos \frac{\pi}{4} \cos 3x + \sin \frac{\pi}{4} \sin 3x \right] = 1$$

$$\Leftrightarrow \sqrt{2} \cos \left(\frac{\pi}{4} - 3x \right) = 1$$

$$\Leftrightarrow \cos \left(\frac{\pi}{4} - 3x \right) = \frac{\sqrt{2}}{2} \Leftrightarrow \cos \left(\frac{\pi}{4} - 3x \right) = \cos \frac{\pi}{4}$$

$$\Leftrightarrow \begin{cases} \frac{\pi}{4} - 3x = \frac{\pi}{4} + 2k\pi \\ \frac{\pi}{4} - 3x = -\frac{\pi}{4} + 2k\pi \end{cases} ; k \in \mathbb{Z}$$

$$\Leftrightarrow \begin{cases} x = -\frac{2k\pi}{3} \\ x = \frac{\pi}{6} - \frac{2k\pi}{3} \end{cases} ; k \in \mathbb{Z}$$

Conclusion : l'ensemble de solutions de l'équation (E) est : $S = \left\{ \frac{\pi}{6} - \frac{2k\pi}{3}, -\frac{2k\pi}{3} / k \in \mathbb{Z} \right\}$.

