Force Capacitive Sensor

Made by: Ann Ezzat, Anthony Rezkalla, Joseph Maher, Paula Magdy, Salma Essam, Somaya Mansour

OBJECTIVE

Converting physical applied forces into measurable changes in capacitance.

METHODOLOGY

The application of force leads to a alteration in the distance between the two electrodes, resulting in a change of capacitance. This change is then transmitted to a linearization circuit and the measurements are observed on an oscilloscope and quantified. $C = \varepsilon_0 \varepsilon_r \frac{A}{d}$

ANALYTICAL WORK

Mechanical Model:

$$T=rac{1}{2}m\dot{x}^2$$
 $V=rac{1}{2}kx^2$ $D=rac{1}{2}b\dot{x}^2$ $m\ddot{x}+b\dot{x}+kx=f(t)$

Electrical Model:

$$V = \frac{1}{2} \frac{1}{C} q^2 = \frac{1}{2} \left[C1 + Cmeasuresd \right] V_c^2$$

$$D = \frac{1}{2}R\dot{q}^2 = \frac{1}{2}R\left[C1 + Cmeasuresd^2\right]\dot{V_c}^2$$

 $R\left[C1 + Cmeasuresd^2\right]\dot{V}_c + \left[C1 + Cmeasuresd\right]V_c = f(t)$

EXPERIMENTAL WORK

Hesteresis = 7.73%

RESULTS and CONCLUSIONS

 $\delta = 0.038$

Maximum Overshoot = 0.887

Resonance Frequency = 72.9 Hz

