

Regularization with Dropout and Batch Normalization

Antonio Rueda-Toicen

Learning goals

- Use dropout and batch normalization during the training process as regularization techniques
- Understand the behavior of batch normalization and dropout during training and inference with model.train() and model.eval()

Overfitting vs underfitting - training vs validation

Impact of Regularization on Model Training

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Visualizing dropout


```
nn.Sequential(
    nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
    nn.ReLU(),
    nn.Dropout(p=0.5) # Dropout after ReLU
)
```

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

m corresponds to the batch size that we have defined in our DataLoader

Regularization in batch normalization

$$egin{pmatrix} egin{pmatrix} x' \ y' \end{pmatrix} \ = \ \underbrace{egin{pmatrix} rac{\gamma_x}{\sqrt{\sigma_x^2 + arepsilon}} & 0 \ 0 & rac{\gamma_y}{\sqrt{\sigma_y^2 + arepsilon}} \end{pmatrix} egin{pmatrix} x - \mu_x \ y - \mu_y \end{pmatrix} \ + \ \underbrace{egin{pmatrix} eta_x - rac{\gamma_x \, \mu_x}{\sqrt{\sigma_x^2 + arepsilon}} \ eta_y - rac{\gamma_y \, \mu_y}{\sqrt{\sigma_y^2 + arepsilon}} \end{pmatrix}}_{ ext{the "shift" vector}}$$

Visualizing batch normalization

Visualizing batch normalization

Dropout during model.train() and model.eval()

Eval Mode

model.train()

model.eval()

Dropout makes inference output non-deterministic

input

model.train()

orange: 0.9979 orange: 0.9703

lemon: 0.0014 lemon: 0.0151

croquet ball: 0.0002 Granny Smith: 0.0104

Granny Smith: 0.0001 pomegranate: 0.0019

banana: 0.0001 spaghetti squash: 0.0007

Evaluation on a pretrained VGG-16 network

BatchNorm during model.eval()

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance
$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize
$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Effect of BatchNorm in a pretrained resnet18

input

model.eval()

model.train()

orange: 0.9701

lemon: 0.0286

Granny Smith: 0.0004 hook: 0.0061

banana: 0.0003

pomegranate: 0.0001 ladle: 0.0051

bucket: 0.0086

plunger: 0.0065

waste container: 0.005

batch size = 1

Batch statistics affect the probability outputs

Do your own experiments

Summary

Both dropout and batch normalization function as data augmentation

They work on activations (e.g. convolution outputs) instead of input images

Dropout and batch normalization need to be controlled during inference

- model.eval() disables dropout producing deterministic output
- Batch normalization is still applied after model.eval(), however it uses then the mean and the standard deviation of the whole training set, instead of just the batch

Dropout and batch normalization may act against each other

 Both provide regularization effects, combining them might require careful tuning of their settings

SPONSORED BY THE

Further reading and references

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

https://arxiv.org/pdf/1502.03167

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

https://jmlr.org/papers/v15/srivastava14a.html

Where to use model.eval()? (PyTorch forum discussion)

https://discuss.pytorch.org/t/where-to-use-model-eval/89200/2

SPONSORED BY THE