Supervised Learning: Regression, Part II

Daniela Witten & Noah Simon

July 19–21, 2017 Summer Institute for Statistics of Big Data University of Washington

Linear Models in High Dimensions

► When *p* is large, least squares regression will lead to very low training error but terrible test error.

Linear Models in High Dimensions

- ► When *p* is large, least squares regression will lead to very low training error but terrible test error.
- ▶ We will now see some approaches for fitting linear models in high dimensions, $p \gg n$.
- ▶ These approaches also work well when $p \approx n$ or n > p.

Motivating example

► We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.

- ► We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:

- ► We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
 - ▶ the expression levels of genes measured using a microarray.

- ► We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
 - ▶ the expression levels of genes measured using a microarray.
 - ▶ protein levels.

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
 - ▶ the expression levels of genes measured using a microarray.
 - ► protein levels.
 - ▶ mutations in genes potentially implicated in breast cancer.

- ▶ We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
 - ▶ the expression levels of genes measured using a microarray.
 - protein levels.
 - mutations in genes potentially implicated in breast cancer.
- ► How can we develop a model with low test error in this setting?

Remember

- ► We have *n* training observations.
- Our goal is to get a model that will perform well on future test observations.
- ▶ We'll incur some bias in order to reduce variance.

Forward Stepwise Regression
Ridge Regression
Lasso Regression
Principal Components Regression

Variable Pre-Selection

The simplest approach for fitting a model in high dimensions:

- 1. Choose a small set of variables, say the q variables that are most correlated with the response, where q < n and q < p.
- 2. Use least squares to fit a model predicting *y* using only these *q* variables.

This approach is simple and straightforward.

Forward Stepwise Regression Ridge Regression Lasso Regression Principal Components Regression

Variable Pre-Selection in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta <- c(rep(1,10),rep(0,90))
ytr <- xtr%*%beta + rnorm(100)
cors <- cor(xtr,ytr)
whichers <- which(abs(cors)>.2)
mod <- lm(ytr~xtr[,whichers])
print(summary(mod))</pre>
```

Forward Stepwise Regression Ridge Regression Lasso Regression Principal Components Regression

How Many Variable to Use?

► We need a way to choose *q*, the number of variables used in the regression model.

Forward Stepwise Regression Ridge Regression Lasso Regression Principal Components Regression

How Many Variable to Use?

- ► We need a way to choose *q*, the number of variables used in the regression model.
- ▶ We want *q* that minimizes the test error.

Forward Stepwise Regression
Ridge Regression
Lasso Regression
Principal Components Regression

How Many Variable to Use?

- ► We need a way to choose *q*, the number of variables used in the regression model.
- ▶ We want *q* that minimizes the test error.
- ► For a range of values of *q*, we can perform the validation set approach, leave-one-out cross-validation, or *K*-fold cross-validation in order to estimate the test error.

Forward Stepwise Regression
Ridge Regression
Lasso Regression
Principal Components Regression

How Many Variable to Use?

- ► We need a way to choose *q*, the number of variables used in the regression model.
- ▶ We want *q* that minimizes the test error.
- ► For a range of values of *q*, we can perform the validation set approach, leave-one-out cross-validation, or *K*-fold cross-validation in order to estimate the test error.
- ► Then choose the value of *q* for which the estimated test error is smallest.

Forward Stepwise Regression
Ridge Regression
Lasso Regression
Principal Components Regression

Estimating the Test Error For a Given q

This is the right way to estimate the test error using the validation set approach:

- 1. Split the observations into a training set and a validation set.
- 2. Using the training set only:
 - a. Identify the q variables most associated with the response.
 - b. Use least squares to fit a model predicting *y* using those *q* variables.
 - c. Let $\hat{\beta}_1, \dots, \hat{\beta}_q$ denote the resulting coefficient estimates.
- 3. Use $\hat{\beta}_1, \dots, \hat{\beta}_q$ obtained on training set to predict response on validation set, and compute the validation set MSE.

Forward Stepwise Regression
Ridge Regression
Lasso Regression
Principal Components Regression

Estimating the Test Error For a Given q

This is the wrong way to estimate the test error using the validation set approach:

- 1. Identify the *q* variables most associated with the response on the full data set.
- 2. Split the observations into a training set and a validation set.
- 3. Using the training set only:
 - a. Use least squares to fit a model predicting y using those q variables.
 - b. Let $\hat{\beta}_1, \dots, \hat{\beta}_q$ denote the resulting coefficient estimates.
- 4. Use $\hat{\beta}_1, \dots, \hat{\beta}_q$ obtained on training set to predict response on validation set, and compute the validation set MSE.

Variable Pre-Selection Forward Stepwise Regression Ridge Regression

Lasso Regression Principal Components Regression

Frequently Asked Questions

▶ **Q:** Does it really matter how you estimate the test error?

A: Yes.

Forward Stepwise Regression Ridge Regression Lasso Regression Principal Components Regression

Frequently Asked Questions

▶ **Q:** Does it really matter how you estimate the test error?

A: Yes.

▶ **Q:** Would anyone make such a silly mistake?

A: Yes.

A Better Approach

► The variable pre-selection approach is simple and easy to implement — all you need is a way to calculate correlations, and software to fit a linear model using least squares.

A Better Approach

- ► The variable pre-selection approach is simple and easy to implement all you need is a way to calculate correlations, and software to fit a linear model using least squares.
- ▶ But it might not work well: just because a bunch of variables are correlated with the response doesn't mean that when used together in a linear model, they will predict the response well.

A Better Approach

- ► The variable pre-selection approach is simple and easy to implement all you need is a way to calculate correlations, and software to fit a linear model using least squares.
- ▶ But it might not work well: just because a bunch of variables are correlated with the response doesn't mean that when used together in a linear model, they will predict the response well.
- ▶ What we really want to do: pick the *q* variables that best predict the response.

Best Subset Selection

► We would like to consider all possible models using a subset of the *p* predictors.

- ► We would like to consider all possible models using a subset of the *p* predictors.
- ▶ In other words, we'd like to consider all 2^p possible models.

- ► We would like to consider all possible models using a subset of the *p* predictors.
- ▶ In other words, we'd like to consider all 2^p possible models.
- ► This is called best subset selection.

- We would like to consider all possible models using a subset of the p predictors.
- ▶ In other words, we'd like to consider all 2^p possible models.
- ► This is called best subset selection.
- ▶ Unfortunately, this is computationally intractable:
 - ▶ When p = 3, $2^p = 8$.
 - ▶ When p = 6, $2^p = 64$.
 - When p=250, there are $2^{250}\approx 10^{80}$ possible models. According to www.universetoday.com, this is around the number of atoms in the known universe.
 - ▶ Not feasible to consider so many models!

- We would like to consider all possible models using a subset of the p predictors.
- ▶ In other words, we'd like to consider all 2^p possible models.
- ► This is called best subset selection.
- Unfortunately, this is computationally intractable:
 - ▶ When p = 3, $2^p = 8$.
 - ▶ When p = 6, $2^p = 64$.
 - When p = 250, there are $2^{250} \approx 10^{80}$ possible models. According to www.universetoday.com, this is around the number of atoms in the known universe.
 - ▶ Not feasible to consider so many models!
- ► Need an efficient way to sift through all of these models: forward stepwise regression.

Forward Stepwise Regression

- Use least squares to fit p univariate regression models, and select the predictor corresponding to the best model (according to e.g. training set MSE).
- 2. Use least squares to fit p-1 models containing that one predictor, and each of the p-1 other predictors. Select the predictors in the best two-variable model.
- 3. Now use least squares to fit p-2 models containing those two predictors, and each of the p-2 other predictors. Select the predictors in the best three-variable model.
- 4. And so on....

This gives us a nested set of models, containing the predictors

$$\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \mathcal{M}_3 \subseteq \dots$$

Forward Stepwise Regression With p = 10

Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta <- c(rep(1,10),rep(0,90))
ytr <- xtr%*%beta + rnorm(100)
library(leaps)
out <- regsubsets(xtr,ytr,nvmax=30,method="forward")
print(summary(out))
print(coef(out,1:10))</pre>
```

Which Value of *q* is Best?

- ► This procedure traces out a set of models, containing between 1 and *p* variables.
- ▶ The qth model contains q variables, given by the set \mathcal{M}_q .
- ▶ **Q**: Which value of *q* is best?

Which Value of q is Best?

- ► This procedure traces out a set of models, containing between 1 and *p* variables.
- ▶ The qth model contains q variables, given by the set \mathcal{M}_q .
- ▶ Q: Which value of q is best?A: The one that minimizes the test error!
- ► We can select the value of *q* using cross-validation or the validation set approach.

Drawback of Forward Stepwise Selection

► Forward stepwise selection isn't guaranteed to give you the best model containing *q* variables.

Drawback of Forward Stepwise Selection

- ► Forward stepwise selection isn't guaranteed to give you the best model containing *q* variables.
- ► To get the best model with q variables, you'd need to consider every possible one; computationally intractable.

Drawback of Forward Stepwise Selection

- ► Forward stepwise selection isn't guaranteed to give you the best model containing *q* variables.
- ► To get the best model with q variables, you'd need to consider every possible one; computationally intractable.
- ▶ For instance, suppose that the best model with one variable is

$$y = \beta_3 X_3 + \epsilon$$

and the best model with two variables is

$$y = \beta_4 X_4 + \beta_8 X_8 + \epsilon.$$

Then forward stepwise selection will not identify the best two-variable model.

Drawback of Forward Stepwise Selection

- ► Forward stepwise selection isn't guaranteed to give you the best model containing *q* variables.
- ► To get the best model with q variables, you'd need to consider every possible one; computationally intractable.
- ▶ For instance, suppose that the best model with one variable is

$$y = \beta_3 X_3 + \epsilon$$

and the best model with two variables is

$$y = \beta_4 X_4 + \beta_8 X_8 + \epsilon.$$

Then forward stepwise selection will not identify the best two-variable model.

▶ **Q:** Does this really happen in practice?

A: Yes.

How To Do Forward Stepwise?

Wrong: Split the data into a training set and a validation set. Perform forward stepwise on the training set, and identify the model with best performance on the validation set. Then, refit the model (using those q variables) on the full data set.

How To Do Forward Stepwise?

Wrong: Split the data into a training set and a validation set. Perform forward stepwise on the training set, and identify the model with best performance on the validation set. Then, refit the model (using those q variables) on the full data set.

Right: Split the data into a training set and a validation set. Perform forward stepwise on the training set, and identify the value of *q* corresponding to the best-performing model on the validation set. Then, perform forward stepwise selection in order to obtain a *q*-variable model on the full data set.

How To Do Forward Stepwise?

Wrong: Split the data into a training set and a validation set. Perform forward stepwise on the training set, and identify the model with best performance on the validation set. Then, refit the model (using those q variables) on the full data set.

Right: Split the data into a training set and a validation set. Perform forward stepwise on the training set, and identify the value of *q* corresponding to the best-performing model on the validation set. Then, perform forward stepwise selection in order to obtain a *q*-variable model on the full data set.

Bottom Line: We estimate the test error in order to choose the correct level of **model complexity**. Then we refit the model on the full data set.

Let's Try It Out in R!

Chapter 6 R Lab, Part 1 www.statlearning.com

Ridge Regression and the Lasso

► Forward stepwise selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.

Ridge Regression and the Lasso

- ► Forward stepwise selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.
- Ridge regression and the lasso instead control model complexity by using an alternative to least squares, by shrinking the regression coefficients.

Ridge Regression and the Lasso

- ► Forward stepwise selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.
- Ridge regression and the lasso instead control model complexity by using an alternative to least squares, by shrinking the regression coefficients.
- ► This is known as regularization or penalization.

Ridge Regression and the Lasso

- ► Forward stepwise selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.
- Ridge regression and the lasso instead control model complexity by using an alternative to least squares, by shrinking the regression coefficients.
- ► This is known as regularization or penalization.
- ▶ Hot area in statistical machine learning today.

Crazy Coefficients

▶ When p > n, some of the variables are highly correlated.

Crazy Coefficients

- ▶ When p > n, some of the variables are highly correlated.
- ► Why does correlation matter?
 - ▶ Suppose that X_1 and X_2 are highly correlated with each other... assume $X_1 = X_2$ for the sake of argument.
 - And suppose that the least squares model is

$$\hat{y} = X_1 - 2X_2 + 3X_3.$$

► Then this is also a least squares model:

$$\hat{y} = 10000001X_1 - 100000002X_2 + 3X_3.$$

Crazy Coefficients

- ▶ When p > n, some of the variables are highly correlated.
- ► Why does correlation matter?
 - ▶ Suppose that X_1 and X_2 are highly correlated with each other... assume $X_1 = X_2$ for the sake of argument.
 - And suppose that the least squares model is

$$\hat{y} = X_1 - 2X_2 + 3X_3.$$

► Then this is also a least squares model:

$$\hat{y} = 10000001X_1 - 100000002X_2 + 3X_3.$$

- ▶ Bottom Line: When there are too many variables, the least squares coefficients can get crazy!
- ► This craziness is directly responsible for poor test error.
- ▶ It amounts to too much model complexity.

A Solution: Don't Let the Coefficients Get Too Crazy

► Recall that least squares involves finding β that minimizes $\|\mathbf{y} - \mathbf{X}\beta\|^2$.

A Solution: Don't Let the Coefficients Get Too Crazy

ightharpoonup Recall that least squares involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
.

 \blacktriangleright Ridge regression involves finding β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_i \beta_j^2.$$

A Solution: Don't Let the Coefficients Get Too Crazy

ightharpoonup Recall that least squares involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
.

 \blacktriangleright Ridge regression involves finding β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_i \beta_j^2.$$

ightharpoonup Equivalently, find eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{i=1}^p \beta_j^2 \le s.$$

Ridge Regression

► Ridge regression coefficient estimates minimize

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_j \beta_j^2.$$

- Here λ is a nonnegative tuning parameter that shrinks the coefficient estimates.
- ▶ When $\lambda = 0$, then ridge regression is just the same as least squares.
- ► As λ increases, then $\sum_{j=1}^{p} (\hat{\beta}_{\lambda,j}^{R})^2$ decreases i.e. coefficients become shrunken towards zero.
- When $\lambda = \infty$, $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = 0$.

Ridge Regression As λ Varies

Ridge Regression In Practice

- ▶ Perform ridge regression for a very fine grid of λ values.
- Use cross-validation or the validation set approach to select the optimal value of λ – that is, the best level of model complexity.
- ▶ Perform ridge on the full data set, using that value of λ .

Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta \leftarrow c(rep(1,10), rep(0,90))
ytr <- xtr%*%beta + rnorm(100)
library(glmnet)
cv.out <- cv.glmnet(xtr,ytr,alpha=0,nfolds=5)</pre>
print(cv.out$cvm)
plot(cv.out)
cat("CV Errors", cv.out$cvm,fill=TRUE)
cat("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat("Number of Zero Coefficients",
sum(abs(coef(cv.out))<1e-8),fill=TRUE)</pre>
```

R Output

Drawbacks of Ridge

Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ.

- Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ.
- ► But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ .
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.

- Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ.
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.

- Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ.
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.
- ► In other words, the resulting model is sparse. We say that the lasso performs feature selection.

- Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter λ.
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.
- ► In other words, the resulting model is sparse. We say that the lasso performs feature selection.
- ► The lasso is a very active area of research interest in the statistical community!

The Lasso

▶ The lasso involves finding β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_j |\beta_j|.$$

The Lasso

▶ The lasso involves finding β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i} |\beta_{i}|.$$

ightharpoonup Equivalently, find eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{j=1}^p |\beta_j| \le s.$$

The Lasso

▶ The lasso involves finding β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i} |\beta_i|.$$

 \blacktriangleright Equivalently, find β that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{j=1}^p |\beta_j| \le s.$$

▶ So lasso is just like ridge, except that β_j^2 has been replaced with $|\beta_i|$.

The Lasso

► Lasso is a lot like ridge:

- ► Lasso is a lot like ridge:
 - λ is a nonnegative tuning parameter that controls model complexity.

- ► Lasso is a lot like ridge:
 - λ is a nonnegative tuning parameter that controls model complexity.
 - ▶ When $\lambda = 0$, we get least squares.

- ► Lasso is a lot like ridge:
 - λ is a nonnegative tuning parameter that controls model complexity.
 - ▶ When $\lambda = 0$, we get least squares.
 - ▶ When λ is very large, we get $\hat{\beta}_{\lambda}^{L} = 0$.

- ► Lasso is a lot like ridge:
 - λ is a nonnegative tuning parameter that controls model complexity.
 - ▶ When $\lambda = 0$, we get least squares.
 - ▶ When λ is very large, we get $\hat{\beta}_{\lambda}^{L} = 0$.
- ▶ But unlike ridge, lasso will give some coefficients exactly equal to zero for intermediate values of λ !

Lasso As λ Varies

Lasso In Practice

- ▶ Perform lasso for a very fine grid of λ values.
- ► Use cross-validation or the validation set approach to select the optimal value of \(\lambda\) – that is, the best level of model complexity.
- ▶ Perform the lasso on the full data set, using that value of λ .

Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta \leftarrow c(rep(1,10), rep(0,90))
vtr <- xtr%*%beta + rnorm(100)</pre>
library(glmnet)
cv.out <- cv.glmnet(xtr,ytr,alpha=1,nfolds=5)</pre>
print(cv.out$cvm)
plot(cv.out)
cat("CV Errors", cv.out$cvm,fill=TRUE)
cat("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat("Number of Zero Coefficients", sum(abs(coef(cv.out))<1e-8),
fill=TRUE)
```

R Output

Ridge and Lasso: A Geometric Interpretation

Let's Try It Out in R!

Chapter 6 R Lab, Part 2 www.statlearning.com

Review

- ► So far we have seen two approaches that select subsets of the features and fit a least squares model:
 - ► Variable Pre-Selection
 - ► Forward Stepwise Selection

Review

- ► So far we have seen two approaches that select subsets of the features and fit a least squares model:
 - ▶ Variable Pre-Selection
 - ► Forward Stepwise Selection
- ► And we have seen two approaches that fit a shrunken model instead of using least squares:
 - Ridge regression
 - ► Lasso

Review

- ► So far we have seen two approaches that select subsets of the features and fit a least squares model:
 - ▶ Variable Pre-Selection
 - Forward Stepwise Selection
- ► And we have seen two approaches that fit a shrunken model instead of using least squares:
 - ► Ridge regression
 - ▶ Lasso
- ► Now we see one final approach, principal components regression, that first finds a low-dimensional subspace of the data and then fits a model on that low-dimensional subspace, using least squares.

Principal Components Regression

- ▶ Our data consist of *n* observations in a *p*-dimensional space.
- ► However, not all of those p dimensions are equally useful, especially when $p \gg n$.
- ► Many are either completely redundant (correlated features) or uninformative (noise features).
- ► Can we find a low-dimensional representation of the variables that captures most of the variability in the data?
- ► This is a dimension reduction approach.

PCR

► Let $Z_1, Z_2, ..., Z_M$ represent M < p linear combinations of the p predictors:

$$Z_m = \sum_{j=1}^p \phi_{mj} X_j.$$

▶ Use least squares to fit the model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m Z_{im} + \epsilon_i, \quad i = 1, \dots, n.$$

- ▶ In other words, we perform least squares using M new predictors, Z_1, \ldots, Z_M .
- $ightharpoonup Z_1, \ldots, Z_M$ chosen to be the principal components of the data.

Principal Components, Conceptually

- ► PCs are the linear combinations of the variables that contain as much as possible of the variability in the features.
- ▶ Will be discussed further in SISBID Module 5 Unsupervised Learning.

PCR

Our final model is linear in the original predictors:

$$y_{i} = \theta_{0} + \sum_{m=1}^{M} \theta_{m} Z_{im} + \epsilon_{i}$$

$$= \theta_{0} + \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{mj} X_{ij} + \epsilon_{i}$$

$$= \theta_{0} + \sum_{j=1}^{p} \left(\sum_{m=1}^{M} \theta_{m} \phi_{mj} \right) X_{ij} + \epsilon_{i}$$

More on PCR

► PCR doesn't yield feature selection — all of the original predictors are involved in the final model.

- ► PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.

- ► PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.
- ► Choose *M* by cross-validation or validation set approach.

- PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.
- ► Choose *M* by cross-validation or validation set approach.
- ▶ With M = p, we just get least squares regression: no dimension reduction occurs!

- ► PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.
- ► Choose *M* by cross-validation or validation set approach.
- ▶ With M = p, we just get least squares regression: no dimension reduction occurs!
- ► Turns out that PCR is closely related to ridge regression.

- ► PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.
- ► Choose *M* by cross-validation or validation set approach.
- ▶ With M = p, we just get least squares regression: no dimension reduction occurs!
- ► Turns out that PCR is closely related to ridge regression.
- ► Shortcoming of PCR: the first *M* principal components are guaranteed to explain a lot of the variation in the features, but that doesn't mean that they are predictive of the response!

- ► PCR doesn't yield feature selection all of the original predictors are involved in the final model.
- ▶ But when *M* is small, then PCR can avoid overfitting and can give good results.
- ► Choose *M* by cross-validation or validation set approach.
- ▶ With M = p, we just get least squares regression: no dimension reduction occurs!
- ► Turns out that PCR is closely related to ridge regression.
- ► Shortcoming of PCR: the first *M* principal components are guaranteed to explain a lot of the variation in the features, but that doesn't mean that they are predictive of the response!
- ► In SISBID Module 5, will see how principal components can be used for unsupervised learning.

Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta <- c(rep(1,10),rep(0,90))
ytr <- xtr%*%beta + rnorm(100)
library(pls)
out <- pcr(ytr~xtr,scale=TRUE,validation="CV")
summary(out)
validationplot(out,val.type="MSEP")</pre>
```

Let's Try It Out in R!

Chapter 6 R Lab, Part 3 www.statlearning.com

Pros/Cons of Each Approach

Approach	Simplicity?*	Sparsity?**	Predictions?***
Pre-Selection	Good	Yes	So-So
Forward Stepwise	Good	Yes	So-So
Ridge	Medium	No	Great
Lasso	Bad	Yes	Great
PCR	Medium	No	Great

^{*} How simple is this model-fitting procedure? If you were stranded on a desert island with pretty limited statistical software, could you fit this model?

^{**} Does this approach perform feature selection, i.e. is the resulting model sparse?

^{***} How good are the predictions resulting from this model?

No "Best" Approach

▶ There is no "best" approach to regression in high dimensions.

No "Best" Approach

- ▶ There is no "best" approach to regression in high dimensions.
- ► Some approaches will work better than others. For instance:
 - ► Lasso will work well if it's really true that just a few features are associated with the response.
 - ► Ridge will do better if all of the features are associated with the response.

No "Best" Approach

- ► There is no "best" approach to regression in high dimensions.
- ► Some approaches will work better than others. For instance:
 - ► Lasso will work well if it's really true that just a few features are associated with the response.
 - ► Ridge will do better if all of the features are associated with the response.
- ► If somebody tells you that one approach is "best"... then they are mistaken. Politely contradict them.
- ► While no approach is "best", some approaches are wrong (e.g.: there is a wrong way to do cross-validation)!

Predicting Age Using DNA Methylation Data

- ► Comparison on 6 data sets
- ► SPC: Like principal components regression, but using a subset of features most associated with response. Between 1 and 3 principal components were used.
- ► Elastic Net: A hybrid between ridge and lasso.
- ► SVM: We'll see it next lecture in the classification context.
- ► Citation: Zhuang et al., BMC Bioinformatics, 2012

Didn't I Tell You? No Best Method!

High C-index indicates a low test error.

Bottom Line

Much more important than what model you fit is how you fit it.

- ▶ Was cross-validation performed properly?
- ► Did you select a model (or level of model complexity) based on an estimate of test error?