

Eötvös Loránd Tudományegyetem

Informatikai Kar

Térinformatikai és távérzékelési alkalmazások fejlesztése

Pontfelhő vizualizáció

Nagy Richárd Tibor, Budapest, 2020

Tartalomjegyzék

Tartalomjegyzék	1
Bevezetés	2
Felhasználói dokumentáció	3
Rendszerkövetelmények	3
Telepítés	3
Indítás	4
Főmenü	4
Kamera	4
Fejlesztői dokumentáció	4
Elemzés - pontfelhők megjelenítése Unity-ben	4
Fejlesztői környezet	5
Felhasználói esetek diagramja	6
Felhasználói esetek leírása	6
A komponensek diagramja	7
Modell	7
Perzisztencia	7
Nézet	8
Skálázhatóság	9

Bevezetés

A feladat egy olyan grafikus felületű alkalmazás megvalósítása, amely lehetővé teszi LiDAR (Light Detection and Ranging) pontfelhők interaktív 3 dimenziós vizualizációját. A felületnek támogatnia kell a szokásos megjelenítési funkciókat, úgy mint a navigálás, nagyítás, forgatás, metaadatok tematikus megjelenítése.

Felhasználói dokumentáció

Rendszerkövetelmények

Operating system	Windows	macOS	Linux
Operating system version	Windows 7 (SP1+) and Windows 10	Sierra 10.12+	Ubuntu 16.04 and Ubuntu 18.04
CPU	x86, x64 architectu re with SSE2 instruction set support.	x64 architectu re with SSE2.	x64 architectur e with SSE2 instruction set support.
Graphics API	DX10, DX11, DX12 capable.	Metal capable Intel and AMD GPUs	OpenGL 3.2+, Vulkan capable.
Additional requirements	Hardware vendor officially supported drivers.	Apple officially supported drivers.	Gnome desktop environme nt running on top of X11 windowing system

Telepítés

A program külön telepítést nem igényel.

Indítás

A projekt betöltésével a Unity környezetbe, vagy lefordított verzió esetén a .exe fájl futtatásával.

Főmenü

A főmenüben kiválasztható a betöltésre szánt .laz állomány, valamit színezési módot is válaszhatunk.

Kamera

Fejlesztői dokumentáció

Elemzés - pontfelhők megjelenítése Unity-ben

Minden pont egy Unity GameObject

https://docs.unity3d.com/ScriptReference/GameObject.html

A legkevésbé optimális módszer, jelentős valós idejű optimalizációra lenne szükség. (Pl.: távoli pontok elrejtése, nyolcadoló fával)

Minden pont egy particle a Unity ParticleSystem-ben

https://docs.unity3d.com/ScriptReference/ParticleSystem.html

Az alapoktól kezdve nagy mennyiségű elemek megjelenítésére lett optimalizálva, azonban az egyes ParticleEmitter-ek limitáltak.

Unity DOTs

https://unity.com/dots

OOP helyet Data Oriented Programming. Pl.: egy pont objektumokból álló lista helyett tároljunk 3 tömböt, az x, y, és z koordinátákkal. A memória olvasási overhead így drasztikusan csökkenthető.

Mesh generálás

A beolvasott pontfelhőkből egy mesh-t generálunk. Ha lehetséges, ezzel a módszerrel lenne a leglassabb a betöltés, viszont maga a megjelenítés így lenne a legkisebb költségű.

Választott módszer

A legjobb módszernek a Unity DOTs és a Unity ParticleSystem ötvözete bizonyult.

Fejlesztői környezet

A szoftver fejlesztése során az alábbi programokat használtam fel:

- Unity 2019.3
- Visual Studio 2019
- GitKraken
- GitHub

Felhasználói esetek diagramja

Felhasználói esetek leírása

Felhaszn álói eset	Leírás		
	Giv	A fäjlkezelőben van	
	en:		
Indítás	Wh	Dálzattint a fixtathatá államányma	
Inditas	en:	Rákattint a futtatható állományra	
	Th	Elindul a program	
	en:		
Kilépés	Giv	Fut a program	
	en:		
	Wh	Rákattint a kilépés gombra	
	en:		
	Th	A programleáll	
	en:		
Betöltés	Giv	A főmenüben van	
	en:		
	Wh	Rákattint a betöltés gombra	
	en:		
	Th	Megjelenik a fájl választó menü	
	en:		

Betöltés	Giv	A fájl választó menüben van	
	en:	3	
	Wh	Rákattint egy megfelelő fájlra	
	en:	ranatini egy megierere rajna	
	Th	A pontfelhő betöltődik	
	en:	71 pointeino octonodik	
Navigáci	Giv	A pontfelhő betöltődött	
	en:	11 pointemo octonodon	
	Wh	Használja a navigációs inputokat	
ó	en:	Trasznarja a navigacios inputokat	
	Th	A kamera elmozdul	
	en:	A kamera emiozuar	
	Giv	A pontfelhő betöltődött	
Metaadat	en:	A politicino octoliodoti	
ok	Wh	Változtat a mataadat anajákon	
megjelení	en:	Változtat a metaadat opciókon	
tése	Th	A magialanő matandatak magyáltaznak	
	en:	A megjelenő metaadatok megváltoznak	

A komponensek diagramja

Modell

A modell a Unity DOTs keretrendszerre épül. A pontok entitásként (Entity) vannak számon tartva, amik a következő komponensekkel rendelkeznek: PointPosition és PointColor.

Perzisztencia

A bináris LAS fájlok beolvasását az integrált laszip.net könyvtár végzi. (https://github.com/shintadono/laszip.net)

Nézet

A megjelenítést a videokártya végzi, a Unity ParticleSystem rendszer felhasználásával. Az egyek pontok shader grafikonja a következő:

Skálázhatóság

Méréseim alapján egy 1 GB memóriával rendelkező videokártyán egyszerre 10 millió pont jeleníthető meg stabilan. Volt lehetőségem egy 2 GB-os videókártyán is tesztelni a programot, ott a 20 millió pont sem okozott akadályt. Emiatt úgy vélem a program lineárisan skálázható.