DREHBUCH RENDERING

Computergrafik.Online

Betreuer: Prof. Jirka Dell'Oro-Friedl Wintersemester 2018/2019

Hochschule Furtwangen University Fakultät Digitale Medien

Version: 1.3

Letzte Änderung: 21.10.2018

Autor: Berdan Der

9.1 Einleitung/Anwendung	1
9.2 mathematische Grundlagen	2
9.3 Modell-Transformation	3
9.4 Augepunkt-Transformation	4
9.5 Projektions-Transformation	5
9.6 Window-Viewport-Transformation	6
9.7 Clipping und Culling	7
9.8 Rasterisierung	8
9.9 Verdeckungsberechnung – z-Buffer	9
9.10 Raytracing	10
9.11 Radiosity	1.
9.12 Raytracing/Radiosity - Interaktion	12
9.13 Volumengrafik	13
-	

9.1 Einleitung/Anwendung

Sprechertext	Screentext / Notizen	Regieanweisungen
090101	090101	090101/090102
Rendern heißt zu Deutsch Bildsynthese und bezeichnet den	- Rendern	-Es erscheint eine Einblendung der
Vorgang, ein Bild aus einer Szene zu generieren. Die Szene be-	(dt. Bildsynthese)	Begrifflichkeit
steht dabei aus Objekten, Kameras und Lichtquellen.	- Aus einer Szene wird	-Danach erscheint eine Szene mit
	ein Bild erzeugt	Objekt, Kamera und Licht
090102	090102	-Daraufhin wird das fertig gerenderte
Dies geschieht in mehreren Stufen, die zusammengefasst als	Prozess des Renderings	Bild angezeigt
Rendering Pipeline bezeichnet werden.	in der Rendering Pipe-	
	line	090103
090103		-Es erscheint ein Zeitraffer der die
Beim Durchlaufen eines Objektes durch eine Rendering		Modellierung bis hin zum fertig ge-
Pipeline, wird dieses mehreren unterschiedlichen Transfor-		renderten Bild zeigt
mationen unterzogen. Des Weiteren werden zum Beispiel		
Verdeckungsberechnungen und Beleuchtungsberechnungen		
aufgestellt.		
090104		090104
Das Rendering ist in der Computergrafik ein unumgängliches		-Es werden Szenen gezeigt, die auf
Thema, das zum Beispiel dafür sorgt, dass Animationsfilme		verschiedene Arten gerendert wur-
und Computerspiele einen eigenen Look bekommen. So sieht		den (comic/realistisch)
manches z. B. eher comichaft und anderes realistisch aus.		

9.2 mathematische Grundlagen

Sprechertext	Screentext / Notizen	Regieanweisungen
090201 In der Computergrafik wird ein dredimensionales Koordinatensystem mit drei aufeinander senkrecht stehenden Achsen x, y und z verwendet.	090201 dreidimensionales Koordinatensystem: x,y,z	090201 -Es erscheint ein Koordinatensystem
090202 Der Beobachter wird standardmäßig in den Ursprung gesetzt. Die positive x-Achse zeigt bezüglich des Bildschirms nach rechts. Die positive y-Achse nach oben und die positive z-Achse steht senkrecht zum Bildschirm.	090202 Beobachter ist im Ur- sprung	-Der Beobachter wird in den Ur- sprung gesetzt und die Koordinaten- achsen werden benannt
090203 Ein Punkt in einer Szene bzw. in einem dreidimensionalen Raum wird durch drei Koordinaten beschrieben - x, y und z. Eine Trasformation eines Objekts kann durch eine 3x3-Matrix beschrieben werden. Dieser Teil ist für die Rotation, Skalierung und Scherung zuständig.	090203 Trasformation durch eine 3x3-Matrix	090203 -Es erscheint ein Punkt in der Szene, dessen Koordinatenanteile definiert werden -Es erscheint eine 3x3-Matrix und es wird gezeigt wofür dieser Anteil zuständig ist
090204 Um im späteren Verlauf der Rendering Pipeline einige Dinge zu vereinfachen führt man noch einen homogenen Teil ein, der unabhängig ist. Dieses Faktor w liegt standardgemäß bei 1.	090204 homogener Teil w = 1	-Es erscheint ein homogener Teil
090205 Des Weiteren enthält die nun 4x4 große Matrix noch einen Anteil der zur Verschiebung dient.		090205 -Es erscheint ein weiterer Anteil und wird auf eine 4x4-Matrix erweitert

9.3 Modell Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
090301	090301	090301
Ein Objekt, dass sich in einem dreidimensionalen Raum auf-	lokales Koordinatensy-	-Es erscheint ein Koordinatensystem
hält, wird normalerweis durch ihr lokales Koordinatensytem	tem = Objektkoordinaten	mit einem Objekt
definiert. Dabei handelt es sich um die Objektkoordinaten,	globales Koordinatensys-	-Auf dem Objekt erscheint ein Ob-
jedoch müssen sie in ein globales Koordinatensystem überführt werden.	tem = Weltkoordinaten	jektkoordinatensystem
090302	090302	
Daher müssen Objekte durch eine Modell-Transformation an	lok. KS -> glob. KS durch	
die richtige Stelle im Raum gebracht werden.	Modell-Transformation	
	090303	
090303	Verschiebung (Transla-	090303
Dies wir durch Translationen, Rotationen und Skalierungen	tion)	-Das Objekt wird verschiedenen
erreicht.	Drehung (Rotation) Ver-	Transformationen unterzogen
000204	größerung bzw. Verkleine-	000204
090304	rung (Skalierung)	090304
Eine vereinfachte Denkweise ist es, dass die lokalen Koordinatensysteme mit den Objekten gekoppelt sind. Nun werden		-Auf dem Objekt erscheint wieder ein Objektkoordinatensystem
nicht die Objekte im Koordinatensysteme verschoben, sondern		-das Objekt wird mitsamt Koordina-
das Objekt mitsamt dem Koordinatensystem.		tensystem verschoben
		tens, stem versenoven

9.4 Augenpunkt-Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
090401	090401	090401
Bei der Augenpunkt-Transformation, die auf Englisch Viewing	Augenpunkt-Transfor-	-Es erscheint eine Einblendung der
Transformation genannt wird, ändert man die Position und	mation = (engl.) View-	Begrifflichkeit
die Blickrichtung des Augenpunktes bzw. der Kamera, sodass sie auf die Objekte gerichtet ist, die später als Bild generiert	ing Transformation	-Es erscheint ein Koordinatensyster mit Kamer und Objekt
werden sollen.	Veränderung der Posi-	-Daraufhin wird die Kamera auf da
	tion und Blickrichtung	Objekt gerichtet
090402	der Kamera	090402
Am Anfang befindet sich die Kamera normalerweise im		-Es erscheint ein Koordinatensyster
Ursprung 0,0,0. Die Blickrichtung entspricht der negativen z-Achse.		mit einer Kamera im Ursprung und einer negativen z-Achse
090403		090403
Liegen zum Beispiel sowohl das Objekt als auch die Kamera im Koordinatenursprung, so muss entweder die Kamera		-Ein Koordinatensystem mit Objek und Kamer wird gezeigt, wobei Ka-
entlang der positiven z-Achse oder das Objekt entlang der		mera und Objekt aufeinander liege
negativen z-Achse verschoben werden. Zweiteres wäre eine		-Als erstes wird dieKamera verscho
Modell-Transformation.		ben
		090403/090404
090404	090404	-Zuletzt wird das Objekt verstezt.
Somit macht es für den Betrachter keinen Unterschied, da	Modell-Transforma-	
beide Transformationen zueinander äquivalent sind.	tion äquivalent zu	
	Augenpunkt-Transfor-	

mation

9.5 Projektions Transformation_

	I a	I
Sprechertext	Screentext / Notizen	Regieanweisungen
090501	090501	090501
Nach der Modell- und der Viewing Transformation befinden sich alle Eckpunkte, welche auch Vertices genannt werden, an de gewünschten Position.	Eckpunkt = Vertice	Es erscheint eine Kurze Animation zu den vorherigen Transformatio- nen
090502	090502	090502
Um aber ein zweidimensionales Abbild der dreidimensionalen Szene zu erhalten, muss eine Projektions-Transformation vollzogen werden.	Projektions-Transfor- mation = KS transfor- mieren	Ein dreidimensionales Koordinatensystem wird in ein zweidimensionales umgewandelt
090503		090503
Um einen dreidimensionalen Punkt auf einer zweidimensionalen Fläche abbilden zu können, müsste die z-Dimension wegfallen. Des Weiteren muss die x-y-Ebene transformiert werden.		Es erscheint wieder ein dreidi- mensionsales KS bei welchem die z-Achse verschwindet und die übrigen umgewandelt werden
090504	090504	090504
Da man jedoch später die z-Werte noch braucht, bleiben diese erhalten und nur die x-y-Ebene wird transformiert.	Vorgehensweise: z-Werte erhalten und x-y-Ebene transformie-	die z-Achse erscheint wieder
000505	ren	
090505	090505	
In der Praxis sind besonders zwei Projektions-Transformationen von großer Bedeutung: die orthograpgische und die perspektivi-	orthograpgische und die perspektivische	
sche.	Projektions Transfor-	
	mation	

$9.6\ Window-Viewport-Transformation$

ormation		
Sprechertext	Screentext / Notizen	Regieanweisungen
090601	090601	090601
Ein Viewport ist ein Ausschnitt einer Szene, der später als Bild	Viewport = Ausschnitt	-Es erscheint ein dreidimensiona-
dargestellt werden soll. Er entspricht dem sichtbaren Bereich	der Szene, der als Bild	les KS mit einem Objekt, das von
einer Szene.	generiert werden soll	der Projektionsfläche eingefangen wird
090602		-Daraufhin erscheint eine Bild des
Da Objekte durch Weltkoordinaten definiert werden und diese in einem Viewport dargestellt werden sollen müssen die Weltkoor-		Viewports
dinaten auf Bildschirmkoordinaten umgerechnet werden. Diese		090602
werden auch Window-Koordinaten genannt.		-Das erste Bild wird wieder gezeigt
090603	090603	
Die Umwandlung der Koordinaten wird durch eine Win-	Window-Viewport-	
dow-Viewport-Transformation erreicht.	Transformation =	
	Umwandlung Weltko-	
090604	ordinaten in Window-	090604
Als erstes wird der Viewport durch eine Translation in den	Koordinaten	Der Viewport wird in den Ur-
Koordinatenursprung verschoben.		sprung verlegt 090605
090605		Die Größe des Viewports wird nun
Daraufhin wird der Viewport im Ursprung auf die Größe des		angepasst
Bildschirmsfensters angepasst.		090606
21402111110121041041041041041041041041041041041041041		Der Viewport wird wieder an der
090606		richtigen Stelle positioniert
Als letztes wird der Viewport an die richtige Stelle auf dem		
Bildschirm positioniert.		

9.7 Clipping und Culling

Sprechertext	Screentext / Notizen	Regieanweisungen
090701	090701	090701-090704
Beim Clipping und Culling geht es darum Flächen, die vom sichtbaren Volumen nicht mehr eingefangen werden können aus der Szene zu entfernen. 090702 Das Clipping wird immer eingesetzt, ohne dass ein Culling Algorithmus aktiv war. 090703 Nach der Projektionstransformation wird überprüft, ob alle	Clipping bzw Culling dient dazu Geometrien außerhalb des sichtba- ren Volumens wegzu- schneiden	-es erscheint nach und nach ein Sichtfenster mit Objekten, bei dem Objekte die gänzlich außerhalb liegen komplett entfernt werden und Objek- te die teilweise im Sichtfenster liegen nur teilweise beschnitten werden
Primitive vollständig im sichtbarem Bereich liegen. 090704 Elemente die gänzlich außerhalb des Sichtfensters liegen werden komplett entfernt.		
090705 Für jede Kante des Sichtfensters wird geprüft, ob sich der Vertex eines Objekts inner- oder außerhalb der Kante befindet. Punkte die innerhalb der Granze liegen werden in ihrer Geometrie belassen, Punkte außerhalb entfernt. An der Grenze des Sichtfensters werden neue Vertices kreirt. Dieses Verfahren wird auch Sutherland Hodgeman Clipping genannt.		090705 -Es erscheint ein Objekt mit Vertices und eine kante des Sichtfensters -Daraufhin werden neue Vertices berechnet und der überstehende Teil wird abgeschnitten
090706 Durch das Backface-Culling werden die Polygone aus der Szene entfernt, die vom Betrachter abgewandt sind. 090707 Zur Ermittlung, ob eine Fläche sichtbar oder nicht sichtbar ist wird mit Hilfe eines Normalenvektors entschieden. 090708		090706 -Es erscheint ein Objekt mit Vorder- und Hinteransicht. Auf das Objekt ist eine Kamera gerichtet und der hintere wird entfernt 090707-090708 -Es erscheint ein Objekt auf dem

Kamera, hat es zur Folge, dass der Betrachter die Vorderseite

sieht. Ist der Normalenvektor n abgewandt handelt es sich um

werden entfernt.

die von der Kamera abgewandt sind

9.8 Rasterisierung

Text einblenden

Sprechertext	Screentext / Notizen	Regieanweisungen
090801		090801
Alle Ausgabegeräte haben eine feste Auflösung mit einem festen Raster.		Es erscheint ein Raster
090802	090802	090802
Dieses basiert auf Pixeln. Da Pixel keine Punkte sondern Flächen	Fragemnt = Raster-	Im Raster leuchtet eine Fläche auf,
sind, müssen alle Objekte innerhalb des Renderings einer	fläche	die ein Pixel darstellt. Anhand
Rasterisierung unterzogen werden. Hierbei werden die endgülti-	Rasterisierung = Inter-	dessen wird der Begriff Fragment
gen Farbwerte durch Interpolation der Farbwerte zwischen den	polation der Farbwerte	eingeführt
Vertices berechnet. Zur besseren Unterscheidbarkeit werden die	zwischen den Vertices	
Flächen in diesem Schritt auch Fragmente genannt.	eines Polygons	
		090803
090803	090803	Es wird eine Linie bzw ein anderes
Bei einer Rasterisierung werden die Objekte auf dem Raster dar-	Rasterisierung = Annä-	beliebiges Objekt eingeblendet,
gestellt, indem man sie den Flächen annähert.	herung der Punkte an	welches den Flächen angenähert
	Flächen	wird.
090804	090804	090804
Falls ein Raster eine niedrige Auflösung hat, jedoch ein	Aliasing = Unterabtas-	Da das zuletzt gerasterte Objekt

Kanten ein Problem.

komplexeres Objekt darstellen soll, kann es dazu kommen, dass

das Endergebnis Stufen aufweist. Hier spricht man von einer Unterabtastung bzw. dem Aliasing. Dies ist häufig bei schrägen

tung

unterabgetastet wurde, wird hier

der Begriff Aliasing eingeführt

und das Objekt wird auf einem

feinerem Raster erneut gerastert.

9.9 Verdeckungsberechnung/z-Buffer

5	5	5	5	5	5	5	00
5	5	5	5	5	5	∞	00
5	5	5	5	5	∞	∞	∞
5	5	5	5	∞	∞	∞	∞
4	5	5	7	00	00	∞	∞
3	4	5	6	7	∞	∞	00
2	3	4	5	6	7	00	00
∞	00	∞	00	00	00	00	00

Sprechertext

Bei der Verdeckung geht die menschliche Wahrnehmung davon aus, dass ein Objekt A, das ein Objekt B verdeckt näher am Betrachter liegen muss. Wird dies jedoch nicht korrekt dartgestellt ist der Beobachter irritiert und das Bild wirkt unrealistisch.

090902

Um dies korrekt darzustellen wird der z-Buffer-Algorithmus gebraucht.

090903

Die Grundidee des z-Buffer-Algorithmuses ist es für jeden Pixel die Tiefeninformation bzw. den z-Wert zu speichern.

090904

Es muss geprüft werden ob ein Pixel näher an der Kamewra liegt als ein vorher berechneter. Dazu muss der z-Wert kleiner sein.

090905

Falls ja, werden Farbwerte und z-Buffer für den Pixel überschrieben, andernfalls werden die alten Werte beibehalten.

090901

Regieanweisungen

-Es erscheint ein Bild, bei welchem sich Objekte überschneiden -Daraufhin erscheint das gleicheBild nur mit falscher Verdeckungsberechnung

09093

090905

090902

z-Buffer-Algorithmus speichert für jeden Pixel z-Wert

Ie kleiner der z-Wert

eines Pixels, desto näher ist er am Betrachter

Verdeckungsberechnung durch z-Buf-

fer-Algorithmus

Screentext / Notizen

090903-090905

Es wird ein Raster dargestellt. Alle Objekte werden auf dem Raster abgebildet.

Falls der aktuell gerasterte Punkt näher am Betrachter liegt als der davor gerasterte Punkt, wird dieser durch das aktuelle ersetzt.

Dabei wird die Distanz zum Betrachter eingetragen.
Anhand dieser weiß an, welche Objekte wie überschnitten und überlagert sind und wie die Objekte dartgestellt werden müssen.

∞	∞	00	∞	∞	∞	∞	00
∞	00						
œ	∞	00	∞	∞	∞	∞	00
∞	00						
00	∞	∞	00	00	∞	00	00
∞	∞	∞	∞	00	∞	∞	00
∞	∞	00	00	∞	00	00	00
∞	∞	00	∞	∞	00	00	00

5	5	5	5	5	5	5
5	5	5	5	5	5	Г
5	5	5	5	5	Г	
5	5	5	5			
5	5	5	П			
5	5					
5						

5	5	5	5	5	5	5	∞
5	5	5	5	5	5	00	∞
5	5	5	5	5	∞	00	∞
5	5	5	5	∞	∞	∞	∞
5	5	5	00	00	∞	00	∞
5	5	00	∞	00	∞	00	00
5	00	00	∞	00	∞	00	00
00	∞	∞	∞	00	∞	∞	∞

7					
6	7				
5	6	7			
4	5	6	7		
3	4	5	6	7	
2	3	4	5	6	7

5	5	5	5	5	5	5	00
5	5	5	5	5	5	00	00
5	5	5	5	5	∞	œ	œ
5	5	5	5	00	00	00	00
4	5	5	7	00	00	00	00
3	4	5	6	7	00	00	00
2	3	4	5	6	7	00	00
00	00	00	00	00	00	00	00

9.10 Raytracing

Sprechertext	Screentext / Notizen	Regieanweisungen
091001 Beim realistischen Rendern liegt das Hauptaugenmerk auf der Korrektheit der Darstellung des gerenderten Bildes. Die Bildqualität und die physikalische Korrektheit spielen eine besondere Rolle, wobe man höhere Rechenzeiten in Kauf nehmen muss.		091001 Es wird ein Bild von eien Szene gezeigt, welches den Raytracing-Algorithmus verwendet.
091002 Raytracing – zu Deutsch "Strahlen verfolgen" – ist in erster Linie ein Algorithmus zu Verdeckungsberechnung.	091002 Raytracing (dt. Strahlen verfolgen")	
091003 Diese basiert auf dem Aussenden von Strahlen vom Betrachter- blickpunkt aus.	091003 Aussendung von Strah- len vom Betrachter aus	091003 Es wird ein Auge eingeblendet
091004 Da das Bild an einem Monitor ausgegeben wird, der über ein Raster verfügt, betrachtet man für jedes Rasterelement nur einen Strahl. Dabei prüft man, ob sich ein Objekt mit dem Strahl schneidet.	091004 Für jedes Rasterelement ein Strahl	091004 Es erscheint ein Raster. Es schießen Strahlen aus dem Auge durch jedes Rasterelement. Daraufhin wird geprüft, ob der Strahl ein Objekt trifft.
091005 Für jeden Schnittpunkt werden darufhin Farbbeiträge berechnet.	091005 Farben für jeden Schnittpunkt berech- nen	,

9.11 Radiosity

Sprechertext	Screentext / Notizen	Regieanweisungen
091101	091101	091101
Radiosity heißt zu Deutsch Ausstrahlung. Hierbei handelt es sich um ein globales Beleuchtungsmodell, das heißt, dass sowohl das Licht, das von der Lichtquelle ausgeht, als auch das, welches von Oberflächen reflektiert wird, in die Berechnung einfliest. 091102	-radiosity = (dt.) Aus- strahlung -Objekte reflektieren Licht und werden zu auch zu Lichtquellen	-Es erscheint ein Bild bei dem der begriff erklärt wird
Radiosity beschränkt sich dabei auf Objekte mit ideal diffusen Oberflächen.		Es erscheint ein Objekt
091103	091103	091103-091105
Bei diesem Beleuchtungsmodell, werden keine Strahlen wie beim Raytracing verfolgt, sondern es indet ein strahlenaustausch zwischen Oberflächenstücken, den sogenannten Patches, statt. 091104 Von jeder Fläche geht ein konstanter Lichtstrom aus, der sich aus emittierten Lichtstrom, falls es sich um eine Lichtquelle handelt, und reflektierten Lichtstrom zusammensetzt. 091105 Radiosity hat gegenüber Raytracing den Vorteil, das diesen Verfahren blickwinkelunabhängig ist. Dafür ist es aber sehr rechenaufwändig.	Oberflächenstück = Patch	Es erscheint eine Lichtquelle. Diese strahlt Strahlen aus. Objekte die von den Strahlen getroffen werden reflektieren und fangen an selbst zu einer Lichtquelle zweiter Ordung zu werden. Darufhin erscheinen an den Objekten Begriffe, die zeigen, um welche Art von Licht es sich handelt
091106 Das Radiosity Verfahren ist bestens für Innenraumszenen mit gedämpften Licht geeignet, da sanfte Beleuchtungsübergänge möglich sind.	091106 blickpunktunabhängig	091106 Es erscheint eine fertig gerenderte Szene auf Basis des Radiosity-Algo- rithmus'

9.12 Radiosity – Interaktion

- Shading
- Raytracing
- Radiosity

Anweisungen

091201

Wähle mittels der Radio Button zwischen Raytracing und Radiosity aus. Betrachte die Änderungen.

9.13 Volumengrafik

Text einblenden

Sprechertext	Screentext / Notizen	Regieanweisungen
091301	091301	091301
Volumengrafiken sind in der Lage transparente Objekte und	Volumengrafik = trans-	Es wird ein Voxelgitter eingeble-
Objekte ohne scharfe Abgrenzungen, wie z. B. Wolken, zu model-	parente Objekte	det und anhanddessen ein Voxel
lieren. Diese bestehen aus Voxeln. Voxel bezeichnet einen Gitter-		gezeigt
punkt in einem dreidimensionalen Gitter. Dies entspricht einem	Voxel = Gitterpunkt in	
Pixel in einem 2D-Bild, einer Rastergrafik.	einem dreidimensiona-	
	len Gitter.	
091302		
Die Volumengrafik basiert auf dem Strahlentransport, der		
beschreibt, wie sich Licht auf dem Weg durch ein Volumen ver-		
hält.		
091303		
Beim Rendern einer Volumengrafik unterscheidet man vier	091303	091303
Schritte:	vier Render Schritte:	Die vier Schritte werden erklärt:
	1. Klassifikation	1) Es werden Eigenschaften ver-
1. der Klassifikation: Hier werden den Voxeln Materialeigen-	2. Interpolation	schiedener Transparenzstufen
schaften gegeben	3. Shading	gezeigt
2. der Interpolation: Hier werden die	4. Composition	2) Voxel werden am Lichtstrahl
Materialeigenschaften an Punkten zwischen den Voxeln aus den		interpoliert
umgebenden Voxeln angenähert.		3) Die Voxelflächen erhalten Nor-
3. dem Shading: Beim Shading wird bestimmt, wie viel Licht von		malen und eine Beleuchtung
einem Voxel aus in Richtung des Betrachters reflektiert wird und		4) Die unterchsiedlichen Lichtstu-
welche Farbe es hat.		fen einer Linie werden miteinan-
4. der Composition: Beim Compositing werden die Lichtbeiträge		der verrechnet
von Voxeln, in einer Reihe liegen, miteinander verrechnet, um		
einen endgültigen Bildpunkt zu erhalten.		Zum Schluss wird eine Volumen-
		grafik eingeblendet, die sich dreht.

