Report No: CCISE180107701

FCC/IC REPORT

Applicant: Lightwave Technology

Address of Applicant: 400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6

Equipment Under Test (EUT)

Product Name: Connected, CarLink

Model No.: RX3200, CL3200

FCC ID: 2ABSL3200

Canada IC: 11732A-LWRTX3200

FCC CFR Title 47 Part 15 Subpart C Section 15.247

Applicable standards: RSS-Gen Issue 4, November 2014

RSS-247 Issue 2, February 2017

Date of sample receipt: 19 Jan., 2018

Date of Test: 22 Jan., 27 to Feb., 2018

Date of report issued: 28 Feb., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Feb., 2018	Original

Tested by: 28 Feb., 2018

Test Engineer

Reviewed by: 28 Feb., 2018

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	15
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	00.000.000	
	6.7.2	Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
8	FUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Took Home	S	Danul4	
Test Items	FCC	IC	Result
Antenna Requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	RSS-GEN Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(3)	RSS-247 Section 5.4 (d)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	RSS-247 Section 5.2 (a)	Pass
Power Spectral Density	15.247 (e)	RSS-247 Section 5.2 (b)	Pass
Band Edge	15.247(d)	RSS-GEN Section 8.10 RSS-247 Section 5.5	Pass
Conducted and Radiated Spurious Emission	15.205 & 15.209	RSS-GEN Section 6.13 RSS-247 Section 5.5	Pass

ass. The EOT complies with the essential requirements in the standard.

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Lightwave Technology
Address:	400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6
Manufacturer/ Factory:	DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO., LTD
Address:	NO.10, LUYI 2 ROAD, TANGXIA TOWN, DONGGUAN CITY, GUANGDONG PROVINCE CHINA

5.2 General Description of E.U.T.

Product Name:	Connected, CarLink
Model No.:	RX3200, CL3200
Operation Frequency:	911.85 MHz
Channel numbers:	1
Modulation technology:	CSS
Antenna Type:	Internal Antenna
Antenna gain:	911.85MHz: 0.5dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 130mAh
Remark:	The No.: Rx3200, CL3200, Advanced were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being product name, model name and shell, for different customer

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1801077

Report No: CCISE180107701

5.8 Test Instruments list

Radia	Radiated Emission:					
Item	Tost Equipment	Manufacturer	Model No.	Inventory	Cal. Date	Cal. Due date
item	Test Equipment	Manufacturer	woder No.	No.	(mm-dd-yy)	(mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2020
•	DiCanil on Antonna	COLIMAD ZDEOK	VIII D0400	CCICOOOF	02-25-2017	02-24-2018
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-20-2018	02-19-2019
		0011144575504	DDI IA GAGOD	00100000	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-20-2018	02-19-2019
	Pre-amplifier			0010000	02-25-2017	02-24-2018
4	(10kHz-1.3GHz)	HP	8447D	CCIS0003	02-20-2018	02-19-2019
	Pre-amplifier	Compliance Direction			02-25-2017	02-24-2018
5	(1GHz-18GHz)	Systems Inc.	PAP-1G18	CCIS0011	02-20-2018	02-19-2019
_	Pre-amplifier		AFS33-18002		02-25-2017	02-24-2018
6	(18-26GHz)	Rohde & Schwarz	650-30-8P-44	GTS218	02-20-2018	02-19-2019
_					02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-20-2018	02-19-2019
	Spectrum analyzer	5		0010000	02-25-2017	02-24-2018
8	9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-20-2018	02-19-2019
					02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-20-2018	02-19-2019
	Loop antenna		RF300		02-25-2017	02-24-2018
10		Laplace instrument		EMC0701	02-20-2018	02-19-2019
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date	
iteiii	rest Equipment	Manufacturei	Model No.	inventory No.	(mm-dd-yy)	(mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020	
	ENUT (D	D 1 1 0 0 1	F00!	00100000	02-25-2017	02-24-2018	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-20-2018	02-19-2019	
	1.101	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018	
3	LISN				02-20-2018	02-19-2019	
4	LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
_	0	al Cable CCIS N/A	N1/A	CCIS0086	02-25-2017	02-24-2018	
5	Coaxial Cable		N/A		02-20-2018	02-19-2019	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Power Sensor	D.A.R.E	RPR3006W	17100015SNO27	11-10-2017	11-09-2018	
8	Power Sensor	D.A.R.E	RPR3006W	17100015SNO28	11-10-2017	11-09-2018	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

6.2 Conducted Emission

	F00 P + 45 0 Q + ii + 45	007		
Test Requirement:	FCC Part 15 C Section 15.207 RSS-GEN Section 8.8			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit	(dBuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	LISN 40cm AUX Equipment E.U		— AC power	
	Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio			
	Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for det	ails		
Test Instruments: Test mode:				

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

: RX3200 Model Test Mode : TX mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 .5°C Huni:57% Atmos:101KPa

Test Engineer: YT Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
0.154	22.65	0.71	10.78	34.14	55.78	-21.64	Average
0.166	44.45	0.71	10.77	55.93	65.16	-9.23	QP
0.186	43.40	0.73	10.76	54.89	64.20	-9.31	QP
0.186	25.19	0.73	10.76	36.68	54.20	-17.52	Average
0.377	35.70	0.75	10.72	47.17	58.34	-11.17	QP
0.402	21.93	0.75	10.72	33.40	47.81	-14.41	Average
0.502	29.65	0.76	10.76	41.17	46.00	-4.83	Average
0.513	41.15	0.76	10.76	52.67	56.00	-3.33	QP
0.654	23.29	0.77	10.77	34.83	46.00	-11.17	Average
2.474	33.37	0.78	10.94	45.09	56.00	-10.91	QP
14.138	36.62	0.70	10.91	48.23	60.00	-11.77	QP
14.288	27.52	0.70	10.90	39.12	50.00	-10.88	Average
	Freq 0.154 0.166 0.186 0.186 0.377 0.402 0.502 0.502 0.513 0.654 2.474 14.138	Read Freq Level MHz dBuV 0.154 22.65 0.166 44.45 0.186 25.19 0.377 35.70 0.402 21.93 0.502 29.65 0.513 41.15 0.654 23.29 2.474 33.37 14.138 36.62	Read LISN Level Factor MHz dBuV dB 0.154 22.65 0.71 0.166 44.45 0.71 0.186 43.40 0.73 0.186 25.19 0.73 0.377 35.70 0.75 0.402 21.93 0.75 0.402 21.93 0.75 0.502 29.65 0.76 0.513 41.15 0.76 0.654 23.29 0.77 2.474 33.37 0.78 14.138 36.62 0.70	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dBuV	Read LISN Cable Limit Freq Level Factor Loss Level Line	Read LISN Cable Limit Over Limit Limit

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) RSS-247 section 5.4(d)		
Test Method:	ANSI C63.10:2013 and 558074		
Limit:	30dBm		
Test setup:	EUT Temperature Chamber		
Test procedure:	 Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s. Connect the power sensor to the transmit port, sample the transmit signal and store the raw data, every channel 25 bursts. Use these stored samples in all following steps. Find the start and stop times of each burst in the stored measurement samples. Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst. The highest of all P_{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations. Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. The RF Output Power (P) shall be calculated using the formula below: P = A + G 		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test Frequency	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
911.85 MHz	20.40	30.00	Pass

6.4 Occupy Bandwidth

Test Requirement: Test Method:	FCC Part15 C Section 15.247 (a)(2) RSS-247 section 5.2(a) ANSI C63.10:2013 and 558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

iododi omoni Batai								
Test Frequency	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result					
911.85 MHz	0.740	>500	Pass					
Test Frequency	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result					
911.85 MHz	0.764	N/A	N/A					

Test plot as follows:

Date: 30.JAN.2018 05:55:22

Date: 30.JAN.2018 05:56:02

6.5 Power Spectral Density

Test Requirement: Test Method:	FCC Part15 C Section 15.247 (e) RSS-247 section 5.2(b) ANSI C63.10:2013 and 558074				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test Frequency	Power Spectral Density (dBm)	Limit(dBm)	Result
911.85 MHz	6.82	8.00	Pass

Test plots as follow:

Date: 30.JAN.2018 06:07:13

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) RSS-247 section 5.5			
Test Method:	ANSI C63.10:2013 and 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer			
	Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

Date: 30.JAN.2018 06:01:03

6.6.2 Radiated Emission Method

0.0.2 Radiated Ellission	- Inctitiou						
Test Requirement:	FCC Part15 C Section 15.209 and 15.205 RSS-GEN section 8.10						
Test Method:	ANSI C63.10: 201	3and 5580	74				
			77 -				
Test Frequency Range:	960MHz to 1.2400						
Test site:	Measurement Dist	ance: 3m					
Receiver setup:	Frequency	Detecto		RBW	VBW	Remark	
	960MHz-1GHz	Quasi-pe		120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz	Peak Value	
	710070 10112	RMS	_	1MHz	3MHz	Average Value	
Limit:	Frequenc		Lin	nit (dBuV/m	@3m)	Remark	
	960MHz-10	Hz		54.00		Quasi-peak Value	
	Above 1GI	-l ₂		54.00		Average Value	
				74.00		Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or 						
Test setup:	Below 1GHz EUT Turr Table Ground 1	0.8m	m Im		11	Search Antenna RF Test tecciver	

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL

EUT : Connected
Model : RX3200
Test mode : TX mode
Power Rating : DC 3.7V

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

EUT : Connected Model : RX3200 Test mode : TX mode Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

Remark

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m dB dBuV/m dBuV/m MHz 989.564 11.26 21.67 4.41 0.00 37.34 54.00 -16.66 QP 1

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Connected Model : RX3200 Test mode : TX mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT Remark :

marr									
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	1170.284								
2	1170, 284	37.24	23.70	0.00	41.11	22.26	54.00	-31.74	Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Connected : RX3200 Model Test mode : TX mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

1 2

Freq				a Cable Preamp Limi : Loss Factor Level Lin			Over Limit	Remark	
	MHz	—dBu∇	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	ā	
	1160.257 1160.257								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

T (D :)	500 D (45 0 0); 45 0 (7 ())					
Test Requirement:	FCC Part15 C Section 15.247 (d)					
	RSS-247 section 5.5					
Test Method:	ANSI C63.10:2013 and 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 30.JAN.2018 05:54:12

30MHz~10GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 RSS-Gen section 6.13							
Test Method:	ANSI C63.10:20	ANSI C63.10:2013						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
,	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH	lz	46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz	-						
				f t - t' -				
Test Procedure:	54.0 Average Value							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15.247 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : Connected Model : RX3200 Test mode : TX mode Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT Remark :

emark									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	51.843	29.93	14.08	1.27	29.81	15.47	40.00	-24.53	QP
2	105.642	30.41	12.12	2.00	29.49	15.04	43.50	-28.46	QP
3	152.130	35.16	8.52	2.53	29.20	17.01	43.50	-26.49	QP
4	214.514	36.13	11.30	2.85	28.74	21.54	43.50	-21.96	QP
5 6	351.708	35.62	14.77	3.10	28.57	24.92	46.00	-21.08	QP
6	640.611	32.32	18.54	3.88	28.81	25.93	46.00	-20.07	QP

Vertical:

Site : 3m chamber

Condition : FCC PART 15.247 3m VULB9163(30M2G) VERTICAL

EUT : Connected Test mode: TX mode
Power Rating: DC 3.7V
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: YT
Remarb Model : RX3200

Remark

	0.50								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	₫₿	dB	dBuV/m	dBu√/m	dB	
1	73.617	40.81	9.52	1.61	29.69	22.25	40.00	-17.75	QP
2	79.521	46.26	8.50	1.65	29.64	26.77	40.00	-13.23	QP
3	116.132	43.58	10.98	2.12	29.42	27.26	43.50	-16.24	QP
4	126.772	42.78	9.28	2.25	29.35	24.96	43.50	-18.54	QP
5	218.309	38.76	11.30	2.85	28.72	24.19	46.00	-21.81	QP
6	365.539	38.02	14.58	3.09	28.63	27.06	46.00	-18.94	QP

Above 1GHz

				Peak value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
1830.00	65.32	23.17	4.15	41.27	51.37	74.00	-22.63	Vertical			
2745.00	62.15	24.67	5.08	41.72	50.18	74.00	-23.82	Vertical			
3660.00	53.25	29.33	5.95	41.62	46.91	74.00	-27.09	Vertical			
4575.00	46.25	34.89	6.87	42.12	45.89	74.00	-28.11	Vertical			
5490.00	45.14	34.66	7.55	41.89	45.46	74.00	-28.54	Vertical			
6405.00	47.69	35.91	8.24	41.92	49.92	74.00	-24.08	Vertical			
1830.00	64.02	23.17	4.15	41.27	50.07	74.00	-23.93	Horizontal			
2745.00	63.46	24.67	5.08	41.72	51.49	74.00	-22.51	Horizontal			
3660.00	54.51	29.33	5.95	41.62	48.17	74.00	-25.83	Horizontal			
4575.00	47.35	34.89	6.87	42.12	46.99	74.00	-27.01	Horizontal			
5490.00	47.15	34.66	7.55	41.89	47.47	74.00	-26.53	Horizontal			
6405.00	48.41	35.91	8.24	41.92	50.64	74.00	-23.36	Horizontal			
Average value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
1830.00	59.62	23.17	4.15	41.27	45.67	54.00	-8.33	Vertical			
2745.00	58.15	24.67	5.08	41.72	46.18	54.00	-7.82	Vertical			
3660.00	49.62	29.33	5.95	41.62	43.28	54.00	-10.72	Vertical			
4575.00	45.25	34.89	6.87	42.12	44.89	54.00	-9.11	Vertical			
5490.00	45.26	34.66	7.55	41.89	45.58	54.00	-8.42	Vertical			
6405.00	46.39	35.91	8.24	41.92	48.62	54.00	-5.38	Vertical			
1830.00	60.57	23.17	4.15	41.27	46.62	54.00	-7.38	Horizontal			
2745.00	60.02	24.67	5.08	41.72	48.05	54.00	-5.95	Horizontal			
3660.00	50.47	29.33	5.95	41.62	44.13	54.00	-9.87	Horizontal			
4575.00	44.62	34.89	6.87	42.12	44.26	54.00	-9.74	Horizontal			
5490.00	46.19	34.66	7.55	41.89	46.51	54.00	-7.49	Horizontal			
6405.00	45.79	35.91	8.24	41.92	48.02	54.00	-5.98	Horizontal			

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.