

Рисунок 3.29 – Характеристики транзистора

3.11 Режимы работы усилительных каскадов

Поскольку характеристики транзистора существенно нелинейны, то в процессе усиления входного сигнала имеют место искажения, которые называют нелинейными. Величина искажений в большой степени зависит от выбора начальной рабочей точки на линии нагрузки и от амплитуды входного сигнала. В зависимости от этого различают следующие основные режимы работы усилителя:

- режим класса A;
- режим класса *B*;
- режим класса *AB*;
- режим класса *C*;
- режим класса D.

Количественно режим работы усилителя характеризуется углом отсечки θ — половиной той части периода входного сигнала, в течение которого в выходной цепи транзистора протекает ток нагрузки. Угол отсечки выражают в градусах или радианах.

3.11.1 Режим класса *A*

Этот режим характеризуется тем, что начальная рабочая точка, определяемая смещением, находится в середине линейного участка входной характеристики, а, следовательно, и характеристики передачи по току $I_{\kappa} = f(I_{\delta})$.

Рисунок 3.30 – Усиление в режиме класса А

Амплитуда входного сигнала здесь такова, что суммарное значение $(U_{\scriptscriptstyle CM} + u_{\scriptscriptstyle BX})$ не имеет отрицательных значений, а поэтому базовый ток $i_{\scriptscriptstyle G}$, а, следовательно, и коллекторный ток $i_{\scriptscriptstyle K}$ нигде не снижаются до нуля (рисунок 3.30). Ток в выходной цепи протекает в течение всего периода, а угол отсечки θ равен 180° . Транзистор работает в активном режиме на близких к линейным участках характеристик, поэтому искажения усиливаемого сигнала здесь минимальны. Однако из-за большого значения начального коллекторного тока $I_{\kappa 0}$ КПД такого усилителя низкий (теоретически не более 25 %, а реальные значения и того ниже), поэтому такой режим применяют в маломощных каскадах предварительного усиления.

3.11.2 Режим класса В

Этот режим характеризуется тем, что начальная рабочая точка находится в начале характеристики передачи по току $I_{\kappa} = f(I_{\delta})$ (рисунок 3.31). Ток нагрузки протекает по коллекторной цепи транзистора только в течение одного полупериода входного сигнала, а в течение второго полупериода транзистор за-

крыт, так как его рабочая точка будет находиться в зоне отсечки. КПД усилителя в режиме класса B значительно выше (составляет 60...70%), чем в режиме класса A, так как начальный коллекторный ток $I_{\kappa 0}$ здесь равен нулю. Угол отсечки θ равен 90° . Однако у усилителей класса B есть и существенный недостаток — большой уровень нелинейных искажений (колоколообразные искажения), вызванных повышенной нелинейностью усиления транзистора, когда он находится вблизи режима отсечки.

Рисунок 3.31 – Усиление в режиме класса В

Для того чтобы усилить входной сигнал в течение обоих полупериодов, используют двухтактные схемы усилителей, когда в течение одного полупериода работает один транзистор, а в течение другого полупериода — второй транзистор в этом же режиме.

Рисунок 3.32 – Двухтактная схема класса *В* с симметричным источником питания

На рисунке 3.32 представлена схема двухтактного эмиттерного повторителя на транзисторах противоположного типа, но с идентичными параметрами, образующих так называемую *комплементарную пару*. Для питания коллекторной цепи используется два одинаковых источника питания $E_{\kappa 1}$ и $E_{\kappa 2}$, которые создают обратное включение коллекторных переходов. Резисторы R1 и R2 одинаковы, при $u_{\kappa x}=0$ они фиксируют потенциал баз транзисторов, равный потенциалу корпуса.

Режим класса B обычно используют преимущественно в мощных двухтактных усилителях, однако в чистом виде его применяют редко. Чаще в качестве рабочего режима используют промежуточный режим класса AB.

3.11.3 Режим класса *АВ*

Режиму усиления класса AB соответствует режим работы усилительного каскада, при котором ток в выходной цепи протекает больше половины периода изменения напряжения входного сигнала.

Этот режим используется для уменьшения нелинейных искажений усиливаемого сигнала, которые возникают из-за нелинейности начальных участков входных вольт-амперных характеристик транзисторов (рисунок 3.33).

Рисунок 3.33 – Усиление в режиме класса АВ

При отсутствии входного сигнала в режиме покоя транзистор немного приоткрыт и через него протекает ток, составляющий 10...15% от максимального тока при заданном входном сигнале. Угол отсечки в этом случае составляет $120...130^{\circ}$.

При работе двухтактных усилительных каскадов в режиме класса *АВ* происходит перекрытие положительной и отрицательной полуволн тока плеч двухактного каскада, что приводит к компенсации нелинейных искажений, воз-

никающих за счет нелинейности начальных участков вольт-амперных характеристик транзистора.

Схема двухтактного усилительного каскада, работающего в классе AB, приведена на рисунке 3.34.

Коллекторные токи покоя $I_{\kappa 01}$ и $I_{\kappa 02}$ задаются напряжением смещения, подаваемым на базы транзисторов с сопротивлений R2 и R3, и составляют незначительную часть максимального тока в нагрузке:

$$I_{\kappa 01,02} = (0,05...0,015) \cdot I_{\kappa \max}$$
.

Рисунок 3.34 – Двустактная схема класса АВ с делителем напряжения

Рисунок 3.35 – Характеристика управления схемы, работающей в режиме АВ

Напряжения смещения транзисторов VT1 и VT2 определяются как

Вследствие этого результирующая характеристика управления двухтактной схемы класса AB принимает линейный вид (штрихпунктирная линия на рисунке 3.35).

$$U_{6901} = U_{R2}; \ U_{6902} = U_{R3}.$$

Ток делителя R1, R2, R3, R4 должен быть не менее $I_{\sigma_{\max}}$:

$$I_{\partial} = (3...5) \cdot I_{\delta \max}$$
.

Чем ближе работа усилительного каскада к классу A (чем больше угол отсечки $\frac{\pi}{2} < \theta < \pi$, тем меньше КПД, но лучше линейность усиления.

КПД каскадов при таком классе усиления выше, чем для класса A, но меньше, чем в классе B, за счет наличия малого коллекторного тока $I_{\kappa 0}$.

3.11.4 Режим класса *С*

В режиме класса C рабочая точка A располагается выше начальной точки характеристики передачи по току (рисунок 3.36).

Рисунок 3.36 – Усиление в режиме класса С

Здесь ток коллекторной цепи протекает в течение времени, которое меньше половины периода входного сигнала, поэтому угол отсечки θ < 90° . Поскольку больше половины рабочего времени транзистор закрыт (коллекторный ток равен нулю), мощность, потребляемая от источника питания, снижается, так что КПД каскада приближается к 100%.

Из-за больших нелинейных искажений режим класса C не используется в усилителях звуковой частоты, этот режим нашел применение в мощных резонансных усилителях (например, радио-передатчиках).

3.11.5 Режим класса D

Иначе этот режим называется *ключевым режимом*. В этом режиме рабочая точка может находиться только в двух возможных положениях: либо в зоне отсечки (транзистор заперт и его можно рассматривать как разомкнутый ключ), либо в зоне насыщения (транзистор полностью открыт и его можно рассматривать как замкнутый ключ). В активной зоне рабочая точка находится только в течение короткого промежутка времени, необходимого для перехода её из од-

ной зоны в другую. Поэтому при работе в ключевом режиме линия нагрузки может на среднем своем участке выходить за пределы гиперболы допустимых мощностей, при условии, что переход транзистора из закрытого состояния в открытое, и наоборот, производится достаточно быстро (рисунок 3.37).

Рисунок 3.37 – Ключевой режим работы транзистора

Как уже было показано выше, транзистор в режиме отсечки можно представить в виде разомкнутого ключа, так как практически все напряжение источника питания падает между его эмиттером и коллектором, а ток коллектора I_{κ} близок к нулю. Входное напряжение $U_{\kappa\kappa}$ приложено к эмиттерному переходу транзистора в запирающем направлении (рисугок 3.38).

В режиме насыщения во входной цепи транзистора протекает достаточно большой ток базы, при котором ток коллектора достигает максимального значения $I_{\kappa \, \text{нас} \, 2}$, близкого к $I_{\kappa \, \text{max}}$ — максимально возможному току в цепи источника питания. При этом напряжение $U_{\kappa \, 9}$ транзистора имеет минимальное значение $U_{\kappa \, 90}$, близкое к нулю, что позволяет представить транзистор в виде замкнутого ключа. Отсюда и название этого режима работы — ключевой.

Рисунок 3.38 – Схема ключевого режима работы транзистора

В режиме насыщения напряжение на коллекторном переходе $U_{\delta\kappa}$ может быть определено:

$$U_{\tilde{\rho}\kappa} = -E_{\kappa} + I_{\kappa} \cdot R_{\kappa} + U_{\tilde{\rho}_{2}}. \tag{3.54}$$

В обычном режиме напряжение $U_{_{\delta\kappa}}$ смещает коллекторный переход в обратном направлении, т. е. $U_{_{\delta\kappa}} < 0$.

Учитывая то, что в режиме насыщения $U_{_{\it б\kappa}}\approx 0$, третьим слагаемым в выражении (3.32) можно пренебречь. Тогда при достаточно большом базовом токе $I_{_{\it б}}$, ток коллектора $I_{_{\it K}}=\beta\cdot I_{_{\it б}}$, где β — коэффициент передачи по току, может достичь величины, при которой

$$I_{\nu} \cdot R_{\nu} \ge E_{\nu} \,. \tag{3.55}$$

При выполнении этого условия знак $U_{\delta\kappa}$ в выражении (3.54) изменится на противоположный: $U_{\delta\kappa}>0$, т. е. коллекторный переход будет смещен в прямом направлении, так же как и эмиттерный. Минимальное значение базового тока, при котором выполняется условие (3.55), называется *током насыщения* $I_{\delta\kappa}$. Выражение (3.55) называют *критерием насыщения* транзистора. Чем больше базовый ток значения $I_{\delta\kappa}$, тем глубже насыщение транзистора, тем больше заряд инжектированных из эмиттера носителей накапливается в базе. Относительное значение этого превышения называется *степенью насыщения* N транзистора:

Рисунок 3.39 – Переходный процесс переключения транзистора

Рассмотрим переходный процесс переключения транзистора. Пусть на вход транзистора подан сигнал (рисунок 3.39). На интервале $0...t_1$ эмиттерный переход смещен в прямом направлении и по нему протекает базовый ток I_{δ} . При этом ток в коллекторной цепи начнет протекать с задержкой на время t_3 , которое требуется инжектируемым в базу носителям для прохождения расстояния, равного ширине базовой области.

Затем коллекторный ток нарастает постепенно в течение времени $t_{\phi 1}$, что связано с процессом накопления носителей в базе. После окончания входного импульса в точке t_1 входной сигнал меняет полярность; эмиттерный переход смещается в обратном направлении и инжекция носителей в базу прекращается. Но поскольку в базе был накоплен некоторый заряд носителей, то ток коллектора еще в течение времени t_p будет поддерживаться, а затем снижаться до нуля в течение времени $t_{\phi 2}$. Время t_p называют временем рассасывания неосновных носителей в зоне базы. Таким образом, импульс коллекторного тока существенно отличается от входного импульса в первую очередь тем, что имеет заметные фронты нарастания и спадания.

Фронт спадания коллекторного тока в основном определяется степенью насыщения транзистора. Поэтому с целью избегания глубокого насыщения в цепь базы обычно вводят ограничительное сопротивление $R_{\scriptscriptstyle 6}$ (рисунок 3.38). А с целью уменьшения времени включения $t_{\scriptscriptstyle \phi 1}$ это ограничительное сопротивление шунтируют конденсатором $C_{\scriptscriptstyle \phi}$, который в первый момент времени шунтирует сопротивление $R_{\scriptscriptstyle 6}$ и поэтому обеспечивает быстрое нарастание базового, а следовательно, и коллекторного тока $I_{\scriptscriptstyle \kappa}$. Затем, когда он зарядится от источника входного сигнала, ток базы потечет уже через ограничительное сопротивление $R_{\scriptscriptstyle 6}$ и будет ограничен рост тока $I_{\scriptscriptstyle 6}$ и, следовательно, степень насыщения транзистора. Конденсатор $C_{\scriptscriptstyle \phi}$ поэтому называют форсирующим (ускоряющий процесс включения транзистора).

Рассмотрим диаграмму, отражающую величину потерь в транзисторе, работающем в ключевом режиме. На рисунке 3.40, а представлена форма входного импульса (ток базы I_{δ}). На рисунке 3.40, б упрощенно изображена форма импульса коллекторного тока I_{κ} .

Для простоты будем считать, что ток базы I_{δ} нарастает в течение фронта $t_{\phi 1}$ линейно до величины $I_{\kappa\, {\rm max}}$ и в течение фронта $t_{\phi 2}$ спадает до величины обратного тока коллекторного перехода $I_{\kappa 0}$. На рисунке 3.41, в показано измене-

ние напряжения на коллекторе U_{κ} от максимального значения, приближенно равного E_{κ} , до минимального значения $U_{\kappa 0}$.

Рисунок 3.40 – Мощность, выделяемая на транзисторе при ключевом режиме работы

На рисунке 3.40, г представлена мощность P , рассеиваемая на транзисторе:

$$P = \frac{1}{T} \int_{0}^{t_{\phi 1}} u_{\kappa 9} i_{\kappa} dt + \frac{1}{T} \int_{t_{\phi 1}}^{t_{u}} U_{\kappa 0} I_{\kappa \max} dt + \frac{1}{T} \int_{t_{u}}^{t_{\phi 2}} u_{\kappa 9} i_{\kappa} dt + \frac{1}{T} \int_{t_{\phi 2}}^{t_{n}} E_{\kappa} I_{\kappa 0} dt.$$
(3.57)

где T – период следования импульсов;

 $t_{_{\phi 1}}$ и $\,t_{_{\phi 2}}$ — длительность фронта нарастания и спадания тока;

 $u_{_{\kappa_{3}}}$ и $i_{_{\kappa}}$ — мгновенное значение тока и напряжения в течение фронтов нарастания и спадания,

 t_u — длительность импульса коллекторного тока;

 $t_{\scriptscriptstyle n}$ – длительность паузы между импульсами.

Из выражения (3.57) следует, что второе слагаемое, несмотря на большую величину $I_{\kappa\, \rm max}$, исчезающе мало, так как $U_{\kappa 0} \approx 0$. То же можно сказать и о четвертом слагаемом, которое очень мало из-за того, что $I_{\kappa 0} \approx 0$. Таким образом

получается, что мощность, рассеиваемая на транзисторе, работающем в ключевом режиме, а следовательно и нагрев транзистора, в основном определяется длительностью фронтов $t_{\phi 1}$ и $t_{\phi 2}$ и частотой следования импульсов $f=\frac{1}{T}$. Потери мощности на транзисторе, обусловленные указанными причинами, называются динамическими потерями или потерями на переключение. С целью снижения этих потерь следует уменьшать длительностью фронтов нарастания и спадания тока транзистора. Для этого служат так называемые форсирующие цели, которые принудительно ускоряют процесс нарастания и спадания тока.

В ключевом режиме КПД оказывается очень высоким, близким к 100 %. Этот режим преимущественно используется в силовых транзисторах, работающих в схемах бесконтактных прерывателей постоянного и переменного тока.

Выводы:

- 1. КПД усилительного каскада определяется режимом работы транзистора и связан с углом отсечки.
- 2. Различают режимы работы транзистора с отсечкой выходного тока (AB, B, C, D) и без отсечки (A), когда выходной ток протекает в течение всего периода входного сигнала.
- 3. Усилительный каскад, работающий с отсечкой выходного тока, имеет наибольший КПД.

3.12 Влияние температуры на работу усилительных каскадов

Транзисторы, установленные в электронной аппаратуре, во время работы подвергаются нагреванию как за счет собственного тепла, выделяющегося при протекании по ним тока, так и за счет внешних источников тепла, например, расположенных рядом нагревающихся деталей. Как уже указывалось выше, изменение температуры оказывает значительное влияние на работу полупроводниковых приборов. В этом отношении не составляют исключения и транзисторы. В качестве иллюстрации этого приведем пример изменения под действием температуры входных и выходных статических характеристик транзистора, включенного по схеме с общим эмиттером (рисунок 3.41).

Расчеты показывают, что при таком значительном изменении характеристик, а с ними и параметров, работа усилительного каскада в условиях меняющейся температуры может стать совершенно неудовлетворительной. Для устранения этого недостатка в схемы усилителей вводится температурная стабилизация. В первую очередь это касается стабилизации положения начальной рабочей точки. Наибольшее распространение для этой цели получили две схемы стабилизации: эмиттерная стабилизация и коллекторная стабилизация.