Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Data Collection and Processing

loading the csv data to a Pandas DataFrame
heart_data = pd.read_csv('/content/heart_disease_data.csv')

print first 5 rows of the dataset
heart_data.head()
print last 5 rows of the dataset
heart_data.tail()

₽		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

Values

Distributions

2-d distributions

number of rows and columns in the dataset
heart_data.shape

(303, 14)

getting some info about the data heart_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
Column Non-Null Count Dtype
--- --- 0 age 303 non-null int64

```
1
     sex
              303 non-null
                              int64
2
     ср
               303 non-null
                              int64
3
    trestbps 303 non-null
                              int64
4
     chol
              303 non-null
                              int64
5
              303 non-null
                              int64
     fbs
6
    restecg
              303 non-null
                              int64
                              int64
7
    thalach
              303 non-null
    exang
oldpeak
8
              303 non-null
                              int64
                              float64
              303 non-null
10 slope
              303 non-null
                              int64
              303 non-null
                              int64
11 ca
12 thal
              303 non-null
                              int64
13 target
              303 non-null
                              int64
dtypes: float64(1), int64(13)
```

checking for missing values
heart_data.isnull().sum()

memory usage: 33.3 KB

age 0 sex 0 0 ср trestbps 0 chol 0 fbs 0 restecg thalach 0 exang 0 oldpeak slope 0 ca thal 0 target 0 dtype: int64

statistical measures about the data
heart_data.describe()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	ı
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	5
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	1
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	1
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	1
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	1
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	1
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1
									-1

Values

checking the distribution of Target Variable
heart_data['target'].value_counts()

1 165 0 138

Name: target, dtype: int64

1 --> Defective Heart

0 --> Healthy Heart

Splitting the Features and Target

index

X = heart_data.drop(columns='target', axis=1)

Y = heart_data['target']

std -

print(X)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
0	63	1	3	145	233	1	0	150	0	2.3	
1	37	1	2	130	250	0	1	187	0	3.5	
2	41	0	1	130	204	0	0	172	0	1.4	
3	56	1	1	120	236	0	1	178	0	0.8	
4	57	0	0	120	354	0	1	163	1	0.6	
298	57	0	0	140	241	0	1	123	1	0.2	
299	45	1	3	110	264	0	1	132	0	1.2	
300	68	1	0	144	193	1	1	141	0	3.4	
301	57	1	0	130	131	0	1	115	1	1.2	
302	57	0	1	130	236	0	0	174	0	0.0	

	slope	ca	thal
0	0	0	1
1	0	0	2
2	2	0	2
3	2	0	2
4	2	0	2
• •		• •	
298	1	0	3
299	1	0	3
300	1	2	3
301	1	1	3
302	1	1	2

[303 rows x 13 columns]

print(Y)

```
0 1
1 1
2 1
3 1
4 1
...
298 0
299 0
300 0
301 0
302 0
Name: target, Length: 303, dtype: int64
```

Splitting the Data into Training data & Test Data

Model Training

Logistic Regression

Model Evaluation

Accuracy Score

input_data_as_numpy_array= np.asarray(input_data)

```
# reshape the numpy array as we are predicting for only on instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0]== 0):
    print('The Person does not have a Heart Disease')
else:
    print('The Person has Heart Disease')

[0]
    The Person does not have a Heart Disease
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LogisticRegression warnings.warn(
```

• ×