5. Функции

Основные понятия

Обратное отношение к отношению R между множествами A и B обозначается как R^{-1} ; оно является отношением между множествами B и A и состоит из пар: $R^{-1} = \{(b,a) \mid (a,b) \in R\}$.

Пусть R — отношение между множествами A и B и S — отношение между множеством B и третьим множеством C. **Композицией** отношений R и S называется отношение между A и C, которое определяется условием:

$$S \circ R = \{(a,c) \mid a \in A, c \in C \text{ и } a R b, b S c$$
 для некоторого $b \in B\}$

Пусть M и N – логические матрицы отношений R и S соответственно. **Логическим** или **булевым произведением матриц** MN называется логическая матрица композиции $S \circ R$.

 Φ ункцией, определенной на множестве A со значениями в B, называется отношение f между A и B при котором каждому элементу множества A ставится в соответствие единственный элемент из B.

Запись $f: A \longrightarrow B$ обозначает функцию из множества A в множество B. Множество A при этом называют областью определения f, а B – областью значений функции f. Мы пишем y = f(x), чтобы подчеркнуть, что $y \in B$ – значение функции f, принимаемое на аргументе x. Тот же y еще называют образом x при отображении f.

Множеством значений функции f называют подмножество в B: $f(A) = \{f(x) \mid x \in A\}$ (не путайте с областью значений).

Функция $f: A \longrightarrow B$ называется **инъективной**, если $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ для всех $a_1, a_2 \in A$.

Функция $f: A \longrightarrow B$ называется **сюръективной**, если ее множество значений совпадает с областью значений. Иначе говоря, если для каждого $b \in B$ найдется такой $a \in A$, что f(a) = b.

Функцию, которая как инъективна, так и сюръективна, называют **биекцией** или **биективной**.

Если обратное отношение к функции f снова функция, то мы называем f обратимой. Функция $f:A\longrightarrow B$ обратима тогда и только тогда, когда она биективна. Обратную функцию к f мы обозначаем символом $f^{-1}:B\longleftrightarrow A$. Если f(a)=b, то $f^{-1}(b)=a$.

Демонстрационные задачи

- **1.** Функция $f:A \longrightarrow B$ задана формулой: $f(x)=1+\frac{2}{x}$, где A обозначает множество вещественных чисел, отличных от 0, а B множество вещественных чисел без 1. Покажите, что f биективна и найдите обратную к ней функцию.
- **2.** Пусть $f:A\longrightarrow B$ и $g:B\longrightarrow C$ функции. Докажите, что
 - а) если f и g инъективны, то $g \circ f$ тоже инъективна;
 - б) если f и g сюръективны, то $g \circ f$ тоже сюръектива;
 - в) если f и g обратимые функции, то $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$;