Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Retake the assignment in 23h

Go to next item

1. In logistic regression given ${\bf x}$ and parameters $w\in\mathbb{R}^{n_x}$, $b\in\mathbb{R}$. Which of the following best expresses what we want \hat{y} to tell us?

1/1 point

- $\bigcirc \sigma(W \mathbf{x})$
- \bigcirc $P(y=1|\mathbf{x})$
- $\bigcirc \ P(y=\hat{y}|\mathbf{x})$
- $\int \sigma(W \mathbf{x} + b)$

⊘ Correct

Yes. We want the output \hat{y} to tell us the probability that y=1 given x.

2. Which of these is the "Logistic Loss"?

1/1 point

1/1 point

- $\bigcirc \ \, \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)}-\hat{y}^{(i)})$
- $\bigcirc \quad \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})_{)}$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid^2$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|$

⊘ Correct

Correct, this is the logistic loss you've seen in lecture!

3. Consider the Numpy array x:

x = np.array([[[1],[2]],[[3],[4]])

What is the shape of x?

- (4,)
- (2,2,1)
- (1, 2, 2)
- (2, 2)

Expand

✓ Correct

Yes. This array has two rows and in each row it has 2 arrays of 1x1.

4. Consider the following random arrays a and b, and c:

 $a = np.random.randn(3,3) \, \# \, a.shape = (3,3)$

1/1 point

 $b = np.random.randn(2,1) \, \# \, b.shape = (2,1)$ c = a + bWhat will be the shape of c? c.shape = (2, 3, 3) The computation cannot happen because it is not possible to broadcast more than one dimension c.shape = (2, 1) c.shape = (3,3) Expand ✓ Correct Yes. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other. **5.** Consider the two following random arrays a and b: 1/1 point a = np.random.randn(1, 3) # a.shape = (1, 3) $b = np.random.randn(3,3) \, \# \, b.shape = (3,3)$ c=a*bWhat will be the shape of c? The computation cannot happen because it is not possible to broadcast more than one c.shape = (3, 3) c.shape = (1, 3) The computation cannot happen because the sizes don't match. Expand Yes. Broadcasting allows row a to be multiplied element-wise with each row of b to from c. 1/1 point Suppose you have n_x input features per example. If we decide to use row vectors \mathbf{x}_j for the features and \mathbf{x}_2 What is the dimension of X? \bigcirc (m, n_x) \bigcap (n_x, m) \bigcap (n_x, n_x) \bigcirc $(1, n_x)$

Yes. Each \mathbf{x}_j has dimension $1 imes n_x, X$ is built stacking all rows together into a $m imes n_x$ array.

6.

∠⁷ Expand

✓ Correct

۲.	Recall that $mp.aoo(a, o)$ performs a matrix multiplication on a and o , whereas $a * o$ performs an element-wise multiplication.	1/1 point
	Consider the two following random arrays a and b :	
	a=np.random.randn(12288,150)	
	# a.shape = (12288,150)	
	b = np.random.randn(150, 45)	
	#b.shape = (150, 45)	
	c=np.dot(a,b)	
	What is the shape of c ?	
	c.shape = (12288, 150)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (12288, 45)	
	c.shape = (150,150)	
	2	
	∠ ⁷ Expand	
	⊘ Correct	
	Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b"	
8.	Consider the following code snippet:	1/1 point
	a.shape=(4,3)	
	$b.shape=\left(4,1 ight)$	
	for i in range(3):	
	for j in range(4):	
	c[i][j] = a[j][i] + b[j]	
	How do you vectorize this?	
	○ c = a.T + b	
	○ c = a + b.T	
	○ c = a + b	
	∠ ⁷ Expand	
	⟨ Correct	
	Yes. a[j][i] being used for a[i][j] indicates we are using a.T, and the element in the row j is used in the	
	column j thus we are using b.T.	
9.	Consider the following code:	1/1 point
	a=np.random.randn(3,3)	
	b = np.random.randn(3,1)	
	c = a * b	
	What will be c ? (If you're not sure, feel free to run this in python to find out).	
	It will lead to an error since you cannot use "*" to operate on these two matrices. You need	

to instead use np.dot(a,b)

- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- $\ \ \, \bigcirc$ This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)

⊘ Correct

10. Consider the following computation graph.

1/1 point

What is the output J?

①
$$J = (a-1)*(b+c)$$

$$\bigcirc \quad J = (b-1)*(c+a)$$

$$\bigcirc \quad J = a*b+b*c+a*c$$

$$\bigcirc \quad J = (c-1)*(b+a)$$

$$\odot$$
 Correct Yes. $J=u+v-w=a*b+a*c-(b+c)=a*(b+c)-(b+c)=(a-1)*(b+c).$