15. Approximate Counting

Decision Problem in NP - π is in NP if for any YES instance I, \exists a proof that I is a YES instance that can be verified in polytime.

Counting Problem - We define a counting problem for a decision problem π in NP, where given an instance I of π , we have to produce an output the number of solutions for the instance.

Polynomial Approximation Scheme

A deterministic algorithm A for a counting problem P such that it takes an instance I as input, and $\epsilon \in \mathbb{R}_{>0}$, and in polynomial time wrt n=|I| produces an output A(I) such that

$$(1-\epsilon)\#(I) \leq A(I) \leq (1+\epsilon)\#(I)$$

A fully polynomial approximation scheme (FPAS) is a PAS such that it runs in time $\operatorname{poly}(n,\frac{1}{\epsilon})$

Polynomial Randomized Approximation Scheme

A randomized algorithm A for a counting problem P that takes instance I as input, and $\epsilon \in \mathbb{R}_{>0}$, in time $\operatorname{poly}(n)$ produces A(I) such that

$$\mathbb{P}[(1-\epsilon)\#(I) \leq A(I) \leq (1+\epsilon)\#(I)] \geq rac{3}{4}$$

A fully polynomial randomized approximation scheme (FPRAS) is a PRAS such that it runs in time $\mathrm{poly}(n,\frac{1}{\epsilon})$

An (ϵ, δ) – FPRAS for a counting problem is an FPRAS that takes as input an instance I and computes an ϵ -approximation to #(I) with probability $\geq 1-\delta$ in time $\operatorname{poly}(n, \frac{1}{e}, \frac{1}{\delta})$

Abstract Problem

We have U a finite set of known size, and a function $f:U\to\{0,1\}$, using which we define $G=\{u\in U|f(u)=1\}$. We have to estimate |G|.

Attempt 1

Sample u_1,u_2,\ldots,u_N from U independently. For all $i\in[N]$

$$Y_i = egin{cases} 1 & ext{if } f(u_i) = 1 \ 0 & ext{otherwise} \end{cases}$$

And we define Z as a random variable such that

$$Z = |U| \cdot \sum_{i=1}^N rac{Y_i}{N}$$

Essentially, Z is an estimation of G.

$$egin{aligned} \mathbb{E}[Z] &= \mathbb{E}\left[\sum Y_i
ight] \cdot rac{|U|}{N} \ &= \sum_{i=1}^N \mathbb{E}[Y_i] \cdot rac{|U|}{N} \ &= rac{|U|}{N} \sum_{i=1}^N \mathbb{P}[Y_i = 1] \ &= rac{|U|}{N} \cdot N \cdot rac{|G|}{|U|} = |G| \end{aligned}$$

Estimator Theorem

Let $ho=rac{|G|}{|U|}$, then the Monte Carlo method yields an $\epsilon-$ approximation to |G| with probability $\geq 1-\delta$ provided

$$N \geq rac{4}{\epsilon^2
ho} {\ln rac{2}{\delta}}$$

Let $Y = \sum\limits_{i=1}^{N} Y_i.$ This allows us to rewrite $Z = \frac{|U| \cdot Y}{N}$

Computing probability it's an ϵ -approximation,

$$egin{aligned} \mathbb{P}[(1-\epsilon)|G| &\leq Z \leq (1+\epsilon)|G|] = \mathbb{P}[(1-\epsilon)N
ho \leq Y \leq (1+\epsilon)N
ho] \ &\geq 1 - \mathbb{P}[Y > (1+\epsilon)N
ho] - \mathbb{P}[Y < (1-\epsilon)N
ho] \ &= 1 - 2 \cdot e^{-N
ho rac{\epsilon^2}{4}} \ &\geq 1 - \delta \end{aligned}$$

Hence,

$$egin{aligned} \delta &\geq 2 \cdot e^{-N
ho rac{\epsilon^2}{4}} \ \Longrightarrow rac{\delta}{2} &\geq e^{-N
ho rac{\epsilon^2}{4}} \ \Longrightarrow rac{\delta}{2} &\geq e^{-N
ho rac{\epsilon^2}{4}} \ \Longrightarrow rac{N
ho \epsilon^2}{4} &\geq \ln rac{2}{\delta} \ \Longrightarrow N &\geq rac{4}{\epsilon^2
ho} \ln rac{2}{\delta} \end{aligned}$$

However, N is dependent on $\rho = \frac{|G|}{|U|}$, hence N can be exponential if ρ is exponentially small. Next, we look at an example of how we can reduce the universal set size to get a better ρ .

Example of DNF Counting

DNFs are the opposite of CNF, OR of ANDS

$$F = T_1 ee T_2 ee \cdots ee T_m, T_i = L_1 \wedge L_2 \wedge \cdots \wedge L_k$$

The universe is $U = \{T, F\}^n$

We need to find the number of satisfying solutions to F

$$G = \{u \in U | F(u) = T\}$$

To count this, we make use of *biased sampling*, which is essentially reducing our universe so that we can get a more accurate estimation with lesser trials.

We define H_i as the subset of assignments that satisfy term T_i , hence we have H_1, H_2, \ldots, H_m

We know

 $|H_i|=2^{n-r_i}$, as there is exactly one assignment of the r_i literals in term T_i to make it satisfy, and all other $n-r_i$ literals can take any value.

$$\left| H = igcup_{i=1}^m H_i
ight|$$

is the count we want, instead, we first work with a multiset union of these.

Definition of the Universal Set

$$U=H_1\uplus H_2\uplus\cdots\uplus H_m$$

$$|U|=\sum_{i=1}^m|H_i|\geq |H|$$

To make things easier, we define U as

$$U=\{(v,i)|v\in H_i\}$$

To distinguish between duplicates and where they came from.

Coverage Set

$$\operatorname{cov}(v) = \{i | (v, i) \in U\}$$

This essentially captures all the terms that would be satisfied by this assignment. A trivial bound on this is $|\text{cov}(v)| \leq m$ as an assignment can't satisfy more terms than those that exist.

$$|U| = \sum_{v \in H} | ext{cov}(v)|$$

Function to define G in terms of U

 $f:U o\{0,1\}$

$$f((v,i)) = egin{cases} 1 & ext{if } i = \min\{j | (v,j) \in U\} \ 0 & ext{otherwise} \end{cases}$$

$$G = \{(v, j) | f((v, j)) = 1\}$$

By defining in terms of this, we essentially just take the minimum index occurrence of an assignment in case of duplicates, hence avoiding duplicates in G.

We can see that |G| = |H|

Lemma -

$$\rho = \frac{|G|}{|U|} \geq \frac{1}{m}$$

Proof -

$$egin{aligned} |U| &= \sum_{v \in H} | ext{cov}(v)| \ &\leq \sum_{v \in H} m \ &= m|H| \ &= m|G| \end{aligned}$$

Hence, we've modified U such that the ratio has a much tighter bound in this specific counting problem.

Using the Estimator theorem, we can say that if $\rho \geq \frac{1}{m}$, then the monte carlo method yields an ϵ -approximation to |G| with probability $\geq 1-\delta$, provided

$$N \geq rac{4m}{\epsilon^2} {\ln rac{2}{\delta}}$$

Randomized algorithm for DNF

We still need to ensure that the queries u_1, u_2, \dots, u_n are still randomly sampled from U_i . The algorithm to do this is given as follows.

- 1. Sample $i \in [m]$ with probability $rac{|H_i|}{|U|}$
- 2. Sample from $|H_i|$ uniformly. Fix the r_i bits that are there in the term, and for the rest of the bits you can just flip a coin to decide each of their values.

$$egin{aligned} \mathbb{P}[(v,i) ext{ is sampled}] &= \mathbb{P}[i ext{ is sampled}] \cdot \mathbb{P}[v ext{ is sampled from } H_i | i ext{ is sampled}] \ &= rac{|H_i|}{|U|} \cdot rac{1}{|H_i|} = rac{1}{|U|} \end{aligned}$$

Hence, every element in U is sampled with uniform probability.