IL PRINCIPIO DI INDETERMINAZIONE DAL PUNTO DI VISTA DELLA TEORIA DEI CODICI

Martino Borello

Université Paris 8 - LAGA

Seminario congiunto UMI Gruppo Crittografia e Codici 02/03/2022

OUTLINE

- PRELIMINARIES
- 2 Asymptotic performance of G-codes
- 3 The classical uncertainty principle
- 4 Uncertainty principle and cyclic codes
- \bullet Uncertainty principle and G-codes
- 6 CONCLUSION AND OUTLOOK
- REFERENCES

Preliminaries

K finite field of cardinality q.

Basic definitions

- A g-ary linear code C of length n is a subspace of K^n .
- For $c = (c_1, \ldots, c_n) \in \mathcal{C}$ (codeword), the (Hamming) support of c is

$$\operatorname{supp}(c) = \{i \in \{1, \dots, n\} \mid c_i \neq 0\}$$

and wt(c) = #supp(c) (weight).

PARAMETERS

Parameters: $[n, k, d]_a$.

• $d = d(C) = \min_{c \in C} \operatorname{wt}(c)$ (minimum distance).

• R = k/n (information rate).

PRELIMINARIES

 $G \neq \{1_G\}$ finite group.

DEFINITION

A G-code (or a group code) over K is a right ideal in the group algebra

$$KG = \left\{ a = \sum_{g \in G} a_g g \mid a_g \in K \right\}.$$

DEFINITION

- $G = C_m$ (cyclic group of order m) \Rightarrow cyclic code.
- $G = D_{2m}$ (dihedral group of order 2m) \Rightarrow **dihedral code**.
- $G = C_m \times C_r$ (metacylic group of order rm) \Rightarrow metacyclic code.

PRELIMINARIES

REMARK

If #G = n, fix an ordering $G = \{g_1, \dots, g_n\}$, then

$$\varphi: KG \xrightarrow{\sim} K^n$$

$$\sum_{i=1}^n a_i g_i \mapsto (a_1, \dots, a_n).$$

The isomorphism is not canonical!

Different orderings yield permutation equivalent codes.

Via φ :

G-codes \leadsto Linear codes.

Hamming metric in KG \Longleftrightarrow Hamming metric in K^n .

Inner product in KG \Longleftrightarrow Inner product in K^n .

Action of G \Longrightarrow Permutation automorphism (regular) subgroup.

PRELIMINARIES

EXAMPLES

- The self-dual [24, 12, 8] **Golay code** is a S_4 -code (Bernhardt, Landrock and Manz 1990) and a D_{24} -code (McLoughlin and Hurley 2008).
- The self-dual [48, 24, 12] **extended quadratic residue code** is a D_{48} -code.
- The self-dual [72, 36, 16] code (if it exists!) is not a group code, since $\#\mathrm{PAut}(\mathcal{C}) \leqslant 5$ (B., Willems and many others).
- The $[12,6,6]_3$ Golay code $\mathcal G$ is not a group code, even if $\#\mathrm{PAut}(\mathcal G)=660.$
- The **Reed-Muller codes** $\mathcal{RM}_p(r,m) = J^{m(p-1)-r}$ (p prime), with J Jacobson radical (intersection of maximal ideals) of KG, where G is elementary abelian of rank m (Berman 1967 and Charpin 1988).

ASYMPTOTIC PERFORMANCE OF G-CODES

DEFINITION

A family of codes \mathcal{F} is called **asymptotically good** if it exists an infinite set $\{C_n\}_{n\in\mathcal{I}}\subseteq\mathcal{F}$ of $[n,k_n,d_n]_q$ codes such that

$$R = \liminf_{n \to \infty} k_n/n > 0 \ \ (\text{asymptotic rate}),$$

 $\delta = \liminf_{n \to \infty} d_n/n > 0$ (asymptotic relative minimum distance).

OPEN PROBLEM (Assmus, Mattson, Turyn - 1966) Is the family of cyclic codes asymptotically good?

ASYMPTOTIC PERFORMANCE OF G-CODES

THEOREM (LIN, WELDON - 1967)

Long (particular) BCH codes are bad.

THEOREM (BERMAN - 1967)

Cyclic codes are bad if only finitely many primes are involved in the lengths of the codes.

THEOREM (BABAI, SHPILKA, STEFANKOVIC - 2005)

- There are no good cyclic LDPC (low density parity check) codes.
- There are no good cyclic locally testable codes.

OPEN PROBLEM (ASSMUS, MATTSON, TURYN - 1966)

Is the family of cyclic codes asymptotically good? Maybe not!

ASYMPTOTIC PERFORMANCE OF G-CODES

Theorem (Bazzi, Mitter - 2006, Solé et al. - 2016)

Binary dihedral codes are asymptotically good.

THEOREM (B., WILLEMS - 2020)

 $C_p \times C_q$ -codes over K are asymptotically good.

THEOREM (B., MOREE, SOLÉ - 2020)

Assuming Artin's conjecture for primitive roots in arithmetic progression (true under GRH), metacyclic codes are aymptotically good.

OPEN PROBLEM (ASSMUS, MATTSON, TURYN - 1966)

Is the family of cyclic codes asymptotically good? Maybe yes!

G finite abelian group and $f: G \to \mathbb{C}$.

DEFINITION

The **dual group** of G is

$$\hat{G} = \{\text{homomorphisms } \chi : G \to \mathbb{S}^1\} \cong G$$

where $\mathbb{S}^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}.$

DEFINITION

The **Fourier transform** of f is $\hat{f}:\hat{G}\to\mathbb{C}$ defined by

$$\hat{f}(\chi) = \frac{1}{\#G} \sum_{g \in G} f(g) \overline{\chi(g)}$$

$$\operatorname{supp}(f) = \{g \in G \mid f(g) \neq 0\}.$$

THEOREM (DONOHO, STARK - 1989)

Every $f: G \to \mathbb{C}$, $f \neq 0$, satisfies

$$\#\operatorname{supp}(f) \cdot \#\operatorname{supp}(\hat{f}) \geqslant \#G.$$

(Uncertainty Principle)

Stronger version for $G = C_p$, observed first by Meshulam.

THEOREM (GOLDSTEIN, GURALNICK, ISAAC / TAO - 2005)

Every $f: C_p \to \mathbb{C}$, $f \neq 0$, satisfies

$$\#\operatorname{supp}(f) + \#\operatorname{supp}(\hat{f}) \geqslant p + 1.$$

(Uncertainty Principle for simple cyclic group)

- $f: G \to \mathbb{C} \longleftrightarrow \sum_{g \in G} f(g)g \in \mathbb{C}G$
- $\mathbb{C}C_p = \mathbb{C}[x]/(x^p-1)$ and $f = a_0 + a_1x + \ldots + a_{p-1}x^{p-1}$.
- $\hat{C}_p \cong \mu_p(\mathbb{C}) = \{\zeta \in \mathbb{C} \mid \zeta^p = 1\}$ by $\chi \mapsto \chi(1)$ and

$$\hat{f}(\zeta) = \frac{1}{p}(a_0 + a_1\zeta^{-1} + \ldots + a_{p-1}\zeta^{-(p-1)})$$

• Let $\mathcal{I}_f = (f)$ in $\mathbb{C}[x]/(x^p-1)$, with $f|x^p-1$. Then

$$\dim \mathcal{I}_f = p - \deg(f) = p - \#zeros(f) = \#supp(\hat{f}).$$

THEOREM (Uncertainty Principle reformulated)

Every $f \in \mathbb{C}[x]/(x^p-1)$, $f \neq 0$, satisfies

$$\operatorname{wt}(f) + \dim \mathcal{I}_f \geqslant p + 1.$$

COROLLARY (EVRA, KOWALSKI, LUBOTZKY - 2017)

Cyclic codes over \mathbb{C} are asymptotically good.

PROOF

Let ζ_p is a primitive p-th root of unity and

$$f = \prod_{i=1}^{\frac{p-1}{2}} (x - \zeta_p^i).$$

Then $\dim \mathcal{I}_f = p - \deg(f) = \frac{p+1}{2}$ and for $h \in \mathcal{I}_f$, $h \neq 0$,

$$\operatorname{wt}(h) \geqslant p+1-\dim \mathcal{I}_h \geqslant p+1-\dim \mathcal{I}_f = \frac{p+1}{2}.$$

So \mathcal{I}_f is a $[p,\frac{p+1}{2},\frac{p+1}{2}]_{\mathbb{C}}$ cyclic code.

Uncertainty principle and cyclic codes

What about finite fields?

DEFINITION

$$\mu(K, n) = \min\{d(\mathcal{I}_f) + \dim \mathcal{I}_f \mid f \in K[x]/(x^n - 1)\}.$$

- $\mu(\mathbb{C}, p) = p + 1$ for all prime p.
- $\mu(K, n) \leq n + 1$ (Singleton bound).
- $\mu(K, p) = p + 1$ if q is primitive modulo p, i.e. $\operatorname{ord}_{p}(q) = p 1$.

DEFINITION (EVRA, KOWALSKI, LUBOTZKY - 2017)

K satisfies the (strong) Uncertainty Principle if for all prime p

$$\mu(K, p) = p + 1.$$

Uncertainty principle and cyclic codes

THEOREM (B., SOLÉ - 2020)

Assume MDS conjecture. If q is not primitive modulo p and p > q + 2, then

$$\mu(K, p)$$

PROOF

• q is not primitive modulo $p \Rightarrow$ it exists $f|x^p - 1$ such that

$$1 < \deg(f) < p - 1$$
, i.e. $1 < \dim \mathcal{I}_f < p - 1$.

- By contradiction, $d(\mathcal{I}_f) + \dim \mathcal{I}_f \geqslant \mu(K, p) \geqslant p + 1$ $\Rightarrow \mathcal{I}_f$ is MDS of length p, non-trivial.
- MDS conjecture $\Rightarrow p \leqslant q + 2$.

Something similar is true without MDS conjecture (e.g. nontrivial MDS codes have length at most 2q - 2). So, the (strong) UP is not true for any K.

Uncertainty Principle and Cyclic codes

DEFINITION (Weak Uncertainty Principle)

Let $0 < \varepsilon < \lambda \leqslant 1$. K satisfies the (ε, λ) -Uncertainty Principle if there exists an infinite set of primes $\mathcal P$ such that for all $p \in \mathcal P$,

- $\mu(K, p) > \lambda p$
- $\operatorname{ord}_p(q) < \varepsilon p$.

THEOREM (EVRA, KOWALSKI, LUBOTZKY - 2017)

If K satisfies the (ε,λ) -Uncertainty Principle, then cyclic codes over K are asymptotically good.

Idea:

- $\mu(K, p) > \lambda p \Rightarrow$ we can find ideals with large distance.
- $\operatorname{ord}_p(q) < \varepsilon p \Rightarrow \text{we can find ideals with large dimension.}$

Uncertainty principle and cyclic codes

Proposition (B., Solé - 2020)

If K satisfies the (ε,λ) -Uncertainty Principle, then $\lambda<\frac{q-1}{q}$.

Proof

- There exists a sequence of cyclic codes of length $p \in \mathcal{P}$, asymptotic rate R and asymptotic relative distance δ .
- $p\delta + pR \geqslant \mu(K, p) > \lambda p$.
- $\lambda < \min\{\delta + \alpha_q(\delta)\}$, where $\alpha_q(\delta)$ is the largest possible rate of a code of relative distance δ .
- Asymptotic Plotkin bound $\Rightarrow \min\{\delta + \alpha_q(\delta)\} = \frac{q-1}{q}$.

Does it exist any K satisfying the Weak Uncertainty Principle for some ε, λ ?

UNCERTAINTY PRINCIPLE AND CYCLIC CODES

Generalization of Donoho-Stark:

Proposition (B., Solé - 2020)

For $f \neq 0$,

$$\operatorname{wt}(f) \cdot \operatorname{wt}(\hat{f}) \geq n.$$

(Naive Uncertainty Principle)

Proof: BCH bound.

COROLLARY

Let $\mathcal{I}_f = (f)$, with $f \neq 0$. Then

$$d(\mathcal{I}_f) \cdot \dim \mathcal{I}_f \geqslant n$$
.

Uncertainty principle and cyclic codes

THEOREM (B., SOLÉ - 2020)

For every real number $0 < \alpha < 1/2$, there are sequences of cyclic codes of asymptotic rate R with minimum distance $\Omega(n^{\alpha})$.

Proof

- $n = q^p 1$, with p prime.
- $x^n 1 = \prod_{a \neq 0} (x a) \prod_{i=1}^s f_i$, with f_i irreducible of degree p.
- $g_I = \prod_{i \in I} f_i$, with #I = [s(1-R)].
- $\mathcal{I}_{g_I} = (g_I)$ has asymptotic rate R.
- Calculate $\Lambda_n \geqslant \#\{\text{codes containing a codewords of weight at most } n^{\alpha}\}$ (using naive UP).
- Prove that asymptotically $\Lambda_n \cdot \#B_0(n^\alpha) \leq \#\{\text{possible } g_l\}$.

REMARK

The square-root bound is a similar result for QR codes (only for $R \leq 1/2$).

Uncertainty principle and G-codes

What about general *G*-codes?

DEFINITION

Let $\emptyset \neq S \subseteq G$. A sequence g_1, \ldots, g_t in G has **right** S-**rank** t if

$$Sg_i = \{sg_i \mid s \in S\} \nsubseteq \bigcup_{j < i} Sg_i \quad \forall i \in \{2, \dots, t\}.$$

For any $f \in KG$,

- $T_f: KG \to KG$ the map $v \mapsto fv$.
- $\mathcal{I}_f = \operatorname{Im}(T_f)$.

LEMMA

Let $0 \neq f \in KG$ and $S = \operatorname{supp}(f)$. If \exists a sequence in G with right S-rank $t \Rightarrow$

$$\dim \mathcal{I}_f = \operatorname{rank}_K(T_f) \geqslant t.$$

Uncertainty principle and G-codes

Generalization of Meshulam - 1992.

THEOREM (B., WILLEMS, ZINI - 2022)

For any $0 \neq f \in KG$,

$$|\operatorname{supp}(f)| \cdot \operatorname{rank}_{K}(T_{f}) \geqslant |G|.$$

COROLLARY

For any nonzero G-code C,

$$d(\mathcal{C}) \cdot \dim \mathcal{C} \geqslant |\mathcal{G}|. \tag{1}$$

In particular,

$$2\sqrt{|G|} \leqslant d(C) + \dim C \leqslant |G| + 1.$$

UNCERTAINTY PRINCIPLE AND G-CODES

EXAMPLES

• Let \mathcal{C} be the self-dual [24, 12, 8] Golay code, which is an S_4 -code:

$$d(\mathcal{C}) \cdot \dim \mathcal{C} = 8 \cdot 12 = 96 > |G|.$$

• Let $C = \mathcal{RM}(r, m)$, which is a G-code, for G an elementary abelian 2-group of rank m:

$$d(\mathcal{C}) \cdot \dim \mathcal{C} = 2^{m-r} \cdot \sum_{i=0}^{r} \binom{m}{i} \geqslant 2^{m-r} \cdot \sum_{i=0}^{r} \binom{r}{i} = 2^{m} = |G|.$$

THEOREM (B., WILLEMS, ZINI - 2022)

A G-code $\mathcal C$ satisfies $d(\mathcal C) \cdot \dim \mathcal C = |G| \Leftrightarrow \exists H \leqslant G \text{ and } c \in KH \text{ s.t. } |H| = d(\mathcal C),$ cKH has dimension 1 and $\mathcal C = cKG$.

CONCLUSION AND OUTLOOK

CONCLUSION

- We presented arguments for and against the existence of asymptotically good families of cyclic codes.
- We presented different versions of the **uncertainty principle** and the relation with the problem above.
- "Almost good" cyclic codes of any asymptotic rate.
- Algebraic structure of the zeros of a cyclic code ⇒ BCH bound.
- Algebraic structure of the zeros of a G-code, with G abelian and KG semisimple ⇒ Shift bound (Feng, Hollmann, Xiang - 2019)

OUTLOOK

- How to define "zeros" of C in relation to the submodules of C, and hence to dim C for general G-codes?
- Can we get **bounds better than** (1) for some families of *G*-codes?
- Other asymptotically good or "almost good" families of G-codes as before?

REFERENCES

- M. Borello, W. Willems, G. Zini. *On ideals in group algebras: an uncertainty principle and the Schur product*, arXiv: 2202.12621, **2022**.
- D.L. Donoho, P.B. Stark. *Uncertainty principles, and signal recovery*. SIAM J. Appl. Math. 49, 906–931, **1989**.
- S. Evra, E. Kowalski, A. Lubotzky. *Good cyclic codes and the uncertainty principle*. L'Enseignement Mathématique, 63, 305–332 **2017**.
- T. Tao. An uncertainty principle for cyclic groups of prime order. Mathematical Research Letters 12, 121–127 **2005**.

REFERENCES

- M. Borello, W. Willems, G. Zini. *On ideals in group algebras: an uncertainty principle and the Schur product*, arXiv: 2202.12621, **2022**.
- D.L. Donoho, P.B. Stark. *Uncertainty principles, and signal recovery*. SIAM J. Appl. Math. 49, 906–931, **1989**.
- S. Evra, E. Kowalski, A. Lubotzky. *Good cyclic codes and the uncertainty principle*. L'Enseignement Mathématique, 63, 305–332 **2017**.
- T. Tao. An uncertainty principle for cyclic groups of prime order. Mathematical Research Letters 12, 121–127 **2005**.

Thank you very much for the attention!