LC03 : Structure spatiale des molécules

Louis Heitz et Vincent Brémaud

Sommaire

Extrait du bulletin officiel Bibliographie		3
Ι	Centres stéréogènesI.1 Carbone asymétriqueI.2 Double liaison carbone-carboneI.3 Classification	4
II	Propriétés physico-chimiques II.1 Enantiomères	5 5
Co	onclusion	5
\mathbf{A}	Commentaires et questions	6
В	Liste matériel	6

Le code couleur utilisé dans ce document est le suivant :

- → Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- A Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables
- * Pour les manipulations

Extrait du bulletin officiel

Extrait programme terminale STL

Bibliographie

Introduction

Niveau : Lycée

PR: Représentation de Cram,

On a déjà vu la structure développée d'une molécule, mais ça ne suffit pas à caractériser totalement sa structure! Par exemple la psuedoephrine (commercial : actifed) n'est utilisé que sous une forme particulière, l'autre étant toxique. Il faut donc en plus tenir compte de sa configuration spatiale et se donner des outils pour les classer.

☼ Deux modèles moléculaires, montrer qu'on n'a pas les mêmes molécules mais pourtant mêmes atomes, carbone asymétrique, éventuellement faire 2 fois la même et montrer que ça peut interagir. Vuibert PCSI tout en un pour l'exemple

I Centres stéréogènes

On a vu que pour une même formule développée, il y a plusieurs configurations dans l'espace possible. Comment les déterminer de façon absolue ? Comment dire si deux molécules ont la même configuation dans l'espace ? On va se donner une convention, qu'on va appliquer dans deux cas.

I.1 Carbone asymétrique

Il s'agit alors de se donner une convention pour classer les molécules. Vous savez déjà comment on représente dans l'espace avec Cram.

∆ Diapo représentation de Cram.

On utilise la convention dite CIP (Cahn, Ingold, Prelog) pour déterminer la configuration absolue d'un atome de carbone asymétrique.

Prenons l'exempe de l'Alaine:

△ Diapo méthode Alanine

I.2 Double liaison carbone-carbone

On comprend bien qu'autour d'une liaison doubles, les atomes ne peuvent tourner : il y a là un centre d'asymétrie. Appliquons la règle qu'on avait vue avant !

Exemple: fumarique/maléique.

<u>Transition</u>: Bien... Mais serait-il possible de faire un classement un peu général des différents stéréoisomères?.. oui!

Une fois qu'on a déterminé la configuration asbolue, on peut classer les différentes molécules selon qu'elles ont la même configuration spatiale ou non.

I.3 Classification

Définitions : on distingue :

- Les stéréoisomères : même formule semi-développée, mais pas la même structure spatiale
 - Isomères de configuration
 - * Enantiomères : image l'un de l'autre dans un miroir plan. On dit que les molécules sont chirales.
 - * Diastéréoisomères : le reste

Remarque : Il y a aussi les stéréoisomères de conformation, dont on ne va parler dans cette leçon. Exemples : 1 C*: énantiomères, double C* : faut voir, double liaison = dia.

Transition: OK... Mais quelle incidence sur les propriétés physico-chimiques?

II Propriétés physico-chimiques

II.1 Enantiomères

Dans un milieu achiral (pas de chiralité), deux énantiomères ont les mêmes propriétés : température de fusion, pKa...

MAIS les milieux biologiques sont chiraux -> importance capitale! Retour sur ce dont on a parlé en debut de leçon.

Alors, comment les distinguer si ils ont les mêmes propriétés physico-chimiques? MAIS on peut quand même les distinguer à l'aide de leur pouvoir rotatoire! Deux énantiomères ont un pouvoir rotatoire opposé.

△ Diapo pouvoir rotatoire, déviation plan de polarisation

☼ Détermination du pouvoir rotatoire du saccharose ou acide tartrique, loi de Biot Transition : Quid des diastéréo ?

II.2 Diastéréoisomères

A priori deux diastéréo n'ont pas les mêmes propriétés physico-chimiques. Exemple : $Z/E \triangle$ diapo détermination si Z ou E

☆ Point de fusion fumarique/maléique

chimiquement: pKa différent, pka plus faible pour diastéréoisomère Z car moins stable.

Conclusion

On sait voir si on a des énantio ou pas, comment faire pour les éliminer si il y en a des nocifs ? -> Séparation des énantiomères. + conformation, cyclohexane!

A Commentaires et questions

B Liste matériel

☆ Manips :