

——— Europe 2023 ——

Archetypes for Reliable Systems

Steve McGhee Ameer Abbas Reliability Advocate
Product Manager

Google Google

Who are we?

Steve McGhee

Reliability Advocate Google

Ameer Abbas

Product Manager Google

Ag	en	da
----	----	----

- **01** Reliability Terms
- **O2** Application Archetypes
- 03 SLO Math
- **04** Reliable Architectures

Can you build 99.99 services

on

99.9 infrastructure?

Pyramids of Reliability

software inherits reliability from base

software improves availability

Application Archetypes

Archetypes to Reliability

Archetype - Abstract model

Replication, redundancy, RTO/RPO, DR, cost

- Architecture Products and Service design
 K8s, Mesh, CICD, DBs, Storage and backup
- App/Service & Footprint always changing
- SLOs expectations, guardrails

Platforms and Applications

Platform

Product (Internal)

Applications

Product (External)

5 Application Archetypes

5 Application Archetypes

bit.ly/cloudarchetypes

Anna Berenberg, Brad Calder

ACM Computing Surveys, vol. 55 (2022), pp. 1-48

Archetype 5.2: Global Anycast with regional isolated stacks and global database deployment model

Active Passive Zones

- Deploy all services of app to two zones in one region
- Data in SQL with a <u>read replica</u>
- L4 LB with one backend group
- **Survives zone** failure. Does not survive region failure.
- Fail-Ops: Change LB backend, <u>promote</u> read replica
- Cost: 2x serving + 2x data (1 replica)
- **Complexity**: Low
- App Refactoring: None (lift and shift)
- Type: COTS, licensing

Archetype 3.1

Multi Zonal

- **Deploy** all services of app to all three zones in one region
- Data: Use HA SQL
- Use Global LB or Reg LB with 3 backend groups
- Survives zone failure. Does not survive region failure.
- Fail-Ops: Initiate DB failover
- Cost: 1.5x serving + 2x data (HA SQL)
- Complexity: Medium
- **App Refactoring**: Low (multi instance)
- **Type**: Web services

Archetype 3.2

Active Passive Region

- **Deploy** all services of app to all three zones in each of two regions
- Data: SQL with cross-region replication
- **DNS** points at one LB (until disaster)
- Survives zone and region failures
- **Fail-Ops**: No action for zone failure.
 - Update DNS to point at standby LB
 - Cross region DR failover process for DB
- Cost: 3x serving + 2x data (HA SQL)
- Complexity: Medium
- **App Refactoring**: Medium (multi instance, multi regional data)
- Type: HA web services

Archetype 4.3

Isolated Regions

- **Deploy** all services of app to all three zones in each of two regions
- Data: Spanner or CockroachDB
- **DNS** points at two Regional LBs
- **Survives zone and region** failures. No impact for ½ consumers. Possible manual failover
- Fail-Ops: No action for zone failure. Optional regional failover like Arch 3.2
- Cost: 1.5 cost per region for zone failure
- Complexity: Medium/High
- App Refactoring: Medium (multi instance, multi regional data)
- **Type:** Regulated HA services

Archetype 5.2

Global

- Deploy all services of app to all three zones in each of two or more regions
- Data: Spanner or CockroachDB
- Global LB points at regional backend groups
- Survives zone and region failures
- Fail-Ops: None
- Cost: N+m cost modelling. Global DBs are more expensive
- **Complexity**: High
- App Refactoring: High (multi instance, global DBs)
- Type: Global consumer services

How to use Archetypes?

Services can be deployed to a single archetype

> Service Α

How to use Archetypes?

01

Services can be deployed to a single archetype

02

Application can use

services across

multiple archetypes

How to use Archetypes?

01

Services can be deployed to a single archetype

02

Application can use services across multiple archetypes

03

Applications should be designed for graceful degradation

Service A

SLOs and SLIs

SLI

Quantitative measure of some aspect of the level of service

aka

latency, throughput, availability

SLI

SLO

Quantitative measure of some aspect of the level of service

aka

latency, throughput, availability

a target value or range of values for a service level that is measured by an SLI

aka

99% of Get RPC calls will complete in less than 100 ms

SLOs in one slide

A ratio-rate of good/total, measured over a time duration.

If too much non-good, for too long, tell a human.

SLI is the squiggly line

SLO is the straight one

Area is time exceeding SLO

Intersection (or serial)

0.999 x 0.999 x 0.999 x 0.999

99.6% SLO

Union (aka parallel)

1 - (0.001) 4

99.99999999% SLO

or 11 nines

Building Reliable Platforms on Kubernetes

Archetype 2.1 Single zonal GKE cluster with Cloud SQL

Archetype 2.1 Single zonal GKE cluster with Cloud SQL

0.9999 x 0.995 x 0.9995

99.44% SLO

Archetype 2.2 Active Passive Zones

- Deploy all services of app to two zones in one region
- Data in Cloud SQL with a read replica
- L4 LB with one backend group
- Survives zone failure. Does not survive region failure
- Fail-Ops: Change LB backend, <u>promote</u> read replica
- Cost: 2x serving + 2x data (1 replica)
- Complexity: Low
- App Refactoring: None (lift and shift)

Archetype 2.2 Active Passive Zone with Cloud SQL HA

0.9999 x 0.999975 x 0.99999975

99.98% SLO

Archetype 3.1 Multi Zonal

- Deploy all services of app to all three zones in one region
- Data: Use <u>HA</u> Cloud SQL
- Use GLB or RLB with 3 backend groups
- Survives zone failure. Does not survive region failure
- Fail-Ops: Initiate DB failover (testable)
- Cost: 1.5x serving + 2x data (SQL HA)
- Complexity: Medium
- App Refactoring: Low (multi instance)

Archetype 3.1 Multi Zonal with Cloud SQL HA

0.9999 x 0.999999875 x 0.99999975

99.99% SLO

- Deploy all services of app to all three zones in each of two regions
- Data: Cloud SQL with <u>cross-region replication</u>
- Cloud DNS points at one LB (until disaster)
- Survives zone and region failures
- Fail-Ops: No action for zone failure
 - Update DNS to point at standby LB
 - Cross region DR failover process for DB
- Cost: 2x serving + 2x data (SQL HA)
- Complexity: Medium
- App Refactoring: Medium (multi instance, multi regional data)

Archetype 3.2 Active Passive Regions with Cloud SQL HA

~1 x 0.99999999 x ~1 x ~1

99.99999% SLO

- Deploy all services of app to all three zones in each of two regions
- Data: Spanner or CockroachDE
- Cloud DNS points at two Regional LBs
- Survives zone and region failures. No impact for ½ consumers. Possible manual failover
- Fail-Ops: No action for zone failure. Optional regional failover like Arch 3.2
- Cost: 1+1/3 cost for zone failure. Scale-up required if optional regional failover expected
- Complexity: Medium/High
- App Refactoring: Medium (multi instance, multi regional data)

Archetype 4.3 Isolated Regions with Cloud Spanner

~1 x 0.99999999 x ~1 x 0.99999999

99.999998% SLO

Archetype 5.2 Global

CloudNativeCon

Archetype 5.2 Global with Cloud Spanner (Multi regional)

0.9999 x 1 x 0.99999

99.99% SLO

Application with Services using multiple Archetypes

Start with Archetypes

Conclusions

 Compose Services into Applications that can degrade gracefully

Develop resilient teams
 robust platforms
 reliable products

Please scan the QR Code above to leave feedback on this session

CloudNative

Thank you