PCT/JP 03/11655

日本国特許庁 JAPAN PATENT OFFICE

11.09.03

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年10月18日

` `` 0 6 NOV 2003

出願番号 Application Number:

特願2002-303950

[ST. 10/C]:

[JP2002-303950]

出 願 人 Applicant(s):

三井金属鉱業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月24日

【書類名】

特許願

【整理番号】

DP02178

【提出日】

平成14年10月18日

【あて先】

特許庁長官 殿

【国際特許分類】

C04B

【発明者】

【住所又は居所】

埼玉県上尾市原市1333-2 三井金属鉱業株式会社

総合研究所内

【氏名】

星野 和友

【発明者】

【住所又は居所】

埼玉県上尾市原市1333-2 三井金属鉱業株式会社

総合研究所内

【氏名】

梶野 仁

【発明者】

【住所又は居所】

埼玉県上尾市原市1333-2 三井金属鉱業株式会社

総合研究所内

【氏名】

打田 龍彦

【発明者】

【住所又は居所】

福岡県大牟田市浅牟田町3-1 三井金属鉱業株式会社

セラミックス事業部内

【氏名】

井筒 靖久

【発明者】

【住所又は居所】

福岡県大牟田市浅牟田町3-1 三井金属鉱業株式会社

セラミックス事業部内

【氏名】

堀内 幸士

【特許出願人】

【識別番号】 000006183

【住所又は居所】 東京都品川区大崎1丁目11番1号

【氏名又は名称】 三井金属鉱業株式会社

【代表者】 宮村 眞平

【手数料の表示】

【予納台帳番号】 003713

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電子部品焼成用治具

【特許請求の範囲】

【請求項1】 基材、該基材表面に被覆されたジルコニア層を含んで成る電子部品焼成用治具において、所定温度T1からT2への急冷温度差を経た電子部品焼成用治具の急冷曲げ試験で、強度低下が生ずる急冷温度差として表される耐熱衝撃性ΔT(=T1-T2)が400℃以上であることを特徴とする電子部品焼成用治具。

【請求項2】 基材、該基材表面に被覆されたアルミナ(酸化アルミニウム)を含んで成る中間層、及び該中間層上に被覆されたジルコニア層を含んで成ることを特徴とする電子部品焼成用治具において、耐熱衝撃性△Tが400℃以上であることを特徴とする電子部品焼成用治具。

【請求項3】 基材表面に形成されたジルコニア層の膜厚が 500μ m以下であり、かつジルコニア層の相対密度が、40%以上、80%以下であることを特徴とする請求項1に記載の電子部品焼成用治具。

【請求項4】 アルミナ中間層上に形成されたジルコニア層の総膜厚(アルミナ中間層+ジルコニア層)が 500μ m以下であり、かつジルコニア層の相対密度が、40%以上、80%以下であり、アルミナ中間層の相対密度が60%以上、90%以下であることを特徴とする請求項2に記載の電子部品焼成用治具。

【請求項5】 基材表面に被覆されたジルコニア層、基材表面に被覆されたアルミナ中間層、及びアルミナ中間層上に被覆されたジルコニア層の焼成に際して、焼結助剤として金属酸化物を用いて焼成されたことを特徴とする請求項1及び2に記載の電子部品焼成用治具。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、誘電体、積層コンデンサ、セラミックコンデンサ、圧電素子、サーミスタ等の電子部品を焼成する際に用いる、セッター、棚板、匣鉢等の電子部品焼成用治具に関する。

[0002]

【従来の技術】

電子部品焼成用治具として必要な性能は耐熱性、耐熱衝撃性(耐スポーリング性)、機械的強度の他に、焼成するセラミック電子部品と反応しないことが要求される。誘電体等の電子部品ワークが焼成用治具と接触し反応すると、融着したり、ワークの組成変動によって特性低下が生ずる等の問題点がある。

[0003]

通常これらの電子部品焼成用治具の基材として、アルミナ系材料、アルミナームライト系材料、アルミナージルコニア系材料、アルミナーマグネシア系スピネル材料、アルミナームライトーコージェライト系材料、又はこれらの組み合わせによる材料が使用されている。

[0.004]

またワークとの反応を防止するために、表面層にジルコニア(酸化ジルコニウム)を被覆する方法が採用されている。ジルコニアは基材との反応性は低いが、該基材との熱膨張係数の差が大きいため急熱、急冷が繰り返されるような熱衝撃が加わる使用環境下では、治具を構成する基材が熱衝撃で破損したり、亀裂が発生して使用できなくなる。また熱衝撃が加わると、基材とジルコニア表面層の間に大きな熱応力が発生し、基材又はジルコニア表面層が破壊されたり、亀裂が発生したり、表面層が基材から剥離するといった問題が生ずる。

[0005]

また基材と表面層の中間にアルミナ等の中間層を入れて層間の結合強度を高め、 熱応力を緩和した2層構造の被覆が提案されている(特許文献1,2参照)。しか し、前記の2層被覆構造でも耐熱衝撃性は十分ではない。

[0006]

【特許文献1】

特開2001-213666号公報

【特許文献2】

特開2001-322875号公報

[0007]

【発明が解決しようとする課題】

電子部品焼成用治具の基材表面にジルコニア層を形成する方法として、塗布法、ディップコート法、スプレーコーティング法等がある。これらの方法は比較的 安価で工業用生産に適するが、形成されたジルコニア層の耐剥離性や耐摩耗性が 十分ではない場合がある。

[0008]

本発明はこのような安価な厚膜形成法である塗布法、ディップコート法、スプレーコーティング法等を用いた場合であっても、耐熱衝撃性に優れた電子部品焼成用治具を提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明は、基材、該基材表面に被覆されたジルコニア層を含んで成る電子部品焼成用治具において、所定温度T1からT2への急冷温度差を経た電子部品焼成用治具の急冷曲げ試験で、強度低下が生ずる急冷温度差として表される耐熱衝撃性 ΔT (=T1-T2) が 400 \mathbb{C} 以上であることを特徴とする電子部品焼成用治具である。

[0010]

また、基材、該基材表面に被覆されたアルミナ(酸化アルミニウム)を含んで成る中間層、及び該中間層上に被覆されたジルコニア層を含んで成ることを特徴とする電子部品焼成用治具において、耐熱衝撃性△Tが400℃以上であることを特徴とする電子部品焼成用治具である。

[0011]

また、基材表面に形成されたジルコニア層の膜厚が 500μ m以下であり、かつジルコニア層の相対密度が、40%以上、80%以下であることを特徴とする前記記載の電子部品焼成用治具である。

[0012]

また、アルミナ中間層上に形成されたジルコニア層の総膜厚(アルミナ中間層 +ジルコニア層)が 500μ m以下であり、かつジルコニア層の相対密度が、 40%以上、 80%以下であり、アルミナ中間層の相対密度が 60%以上、 90%

以下であることを特徴とする前記記載の電子部品焼成用治具である。

[0013]

また、基材表面に被覆されたジルコニア層、基材表面に被覆されたアルミナ中間層、及びアルミナ中間層上に被覆されたジルコニア層の焼成に際して、焼結助剤として金属酸化物を用いて焼成されたことを特徴とする前記記載の電子部品焼成用治具である。

[0014]

本発明は、急熱、急冷が繰り返されるような耐熱衝撃性を必要とする使用環境下で長時間の使用に耐える耐久性に優れた電子部品焼成用治具を提供することにある。この目的を達成するために、本発明の電子部品焼成用治具の耐熱衝撃性 Δ T は 400 C以上である。 Δ T は電子部品焼成用治具を所定温度 Δ T 1 から Δ T 2 へ急冷した場合の急冷曲げ試験で、強度低下が生ずる急冷温度差として表される耐熱衝撃性 Δ T (Δ T 1 Δ T 2) で定義される。例えば T 1 Δ T 2 Δ C (水水中)とすれば耐熱衝撃性 Δ T Δ

[0015]

このような耐熱衝撃性を達成するために、本発明では基材表面に被覆されるジルコニア層、及び(アルミナ中間層+ジルコニア層)の膜厚は 500μ m以下であり、それぞれの被覆層の相対密度は40%以上、90%以下である。

また基材表面に被覆されたジルコニア層、基材表面に被覆されたアルミナ中間層、及びアルミナ中間層上に被覆されたジルコニア層の焼成に際して、金属酸化物のような焼結助剤を用いて焼結することができる。

[0016]

以下、本発明を詳細に説明する。

本発明の電子部品焼成用治具の耐熱衝撃性△Tは400℃以上である。△Tが400℃以下では、電子部品焼成時の連続焼成炉において、急熱、急冷が繰り返された際に治具が破損したり、亀裂の進展が起こり安定した操業ができず、また

治具の寿命が著しく短くなる。このような電子部品焼成用治具の耐熱衝撃性は少なくとも Δ T = 4 0 0 ℃以上を満足する必要がある。

[0017]

このような観点から、基材単独の耐熱衝撃性△Tも400℃以上が望ましい。 基材単独の耐熱衝撃性が400℃以下では急熱、急冷が繰り返される使用環境に おいて基材の強度が低下したり、基材の破壊や破損が生じやすくなる。△T=4 00℃以上を達成するために、基材としては、アルミナ系材料、アルミナームラ イト系材料、アルミナージルコニア系材料、アルミナーマグネシア系スピネル材料、アルミナームライトーコージェライト系材料、又はこれらの組み合わせによ る材料等が使用できる。

[0018]

また基材の耐熱衝撃性を損なわないような(基材+膜)の構造すなわち、ジルコニア層、又は(アルミナ中間層+ジルコニア層)の膜厚はいずれの場合も500μm以下が好ましく、より好ましくは、ジルコニア単層では300μm以下、アルミナ中間層+ジルコニア層では400μm以下である。ジルコニア層、アルミナ中間層とのジルコニア層の相対密度はそれぞれ40~80%が好ましく、アルミナ中間層の相対密度は60~90%が好ましい。被覆層の相対密度が40%以下では熱サイクルによる粒子のぼろつきや脱落が著しくなり、焼成する電子部品に有害であり、また治具の寿命も短くなる。膜厚が500μmを越えると、急熱、急冷において基材と被覆層の間の熱応力を緩和できず、剥離が生じたり、膜に亀裂が発生する。また被覆層の相対密度が90%以上の緻密質では、基材と被覆層の熱膨張係数の差に起因する熱応力を緩和できず、基材の破損、被覆層の剥離が生じやすい。

[0019]

例えば、ジルコニア層又は(アルミナ中間層+ジルコニア層)の膜厚が500 μm以上でかつ相対密度が90%を越えるような場合には、基材/表面層、基材 /中間層/表面層の間の剥離強度は強いが、これが熱応力を緩和できず、急熱、 急冷により被覆層を起点とした亀裂が発生し、亀裂が基材へ伝播し、基材そのも のの耐熱衝撃性を著しく低下させる原因となる。

[0020]

ジルコニア層に用いるジルコニア粒子はY203、Ca0等で安定化及び部分 安定化したジルコニア及び未安定化ジルコニアを用いることができる。

[0021]

このようなジルコニア層を形成するために、例えば#100の粗粒ジルコニアと平均粒径 1μ の微粒ジルコニアを適当な比率で混合して表面層を作製できる。またアルミナ中間層も同様であるが、例えば比較的粒度分布の広い平均粒径 $30\sim50\mu$ mのアルミナ粒子を用いることができる。このようにして被覆層の相対密度を90%以下に適宜調整できる。

[0022]

またジルコニア層又はアルミナ中間層に焼結助剤として金属酸化物を添加して焼成することができる。焼結助剤としてはアルミナ、Y2O3等の希土類酸化物、CaO等のアルカリ土類酸化物、TiO2等の遷移金属酸化物等を1種類以上選択できる。また焼結を促進するために液相を形成する焼結助剤を選択しても良い。焼結助剤の粒径は通常 $0.1\sim100\mu$ mである。このような焼結助剤の添加により、耐熱衝撃性を改善し、被覆層の剥離が防止される。焼結助剤の添加量はは0.5重量%から25重量%程度である。

[0023]

【発明の実施の形態】

本発明の電子部品焼成用治具の製造に関する実施例を記載するが、該実施例は 本発明を限定するものではない。

[0024]

(実施例1)

基材として、シリカ成分が約10重量%のアルミナームライト基材を使用した。基材のみの耐熱衝撃性は約700℃であった。ジルコニア表面層として、#100メッシュのイットリア(Y203)安定化ジルコニアを70重量%、平均粒径が 3μ mのイットリア安定化ジルコニアを30重量%秤量し、これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとした。このスラリーを前記の基材表面にスプレーコートした。このスプレ

ーコートした基材を100℃で乾燥後、1500℃で2時間保持し、ジルコニア層を焼成して電子部品焼成用治具とした。焼成後に得られたジルコニア層の厚さは約 150μ mであった。

[0025]

ジルコニア層の相対密度は表面層の面積、膜厚、基材、及び基材+表面層の重量から計算した結果、約60%であった。耐熱衝撃性△Tは基材から曲げ試験片を切り出し、所定温度で30分保持した後、水中に急冷し、急冷後の3点曲げ試験を実施し、得られた強度と温度差の関係から耐熱衝撃性△Tを求めた。結果を表1に示す。表1に示されたように、耐熱衝撃性は620℃であり、表面層の剥離や亀裂は見られなかった。ただし、中間層の相対密度は、予め基材表面に中間層のみをコートして焼成した場合について、実施例1と同様の方法で中間層の相対密度を計算し、得られた相対密度を用いて(中間層+ジルコニア層)の相対密度を計算した。

[0026]

【表1】

	表面形	表面歷	装面層の	1 45 86	1 	I as no we		
		の歴史	祖対密度		中間周の際原			耐熱衝擊性
L		(µm)	(%)	-	(μm)	(%)	ì	ΔT(℃)
奥		150	60	無し	142117	1/0/	アル	(刺離、血製)
統		1	ł		1	1	ナーム	
6		1		1	l	i	ライト	製品、
Ľ	焼結助剤 無し	'						北田田し
実		200	60	有り	100	70	アルミ	1 7000
施		1	i	1	""	1	7-4	
69	1	i	1	焼結	l	1	5/h	4.82無し
2	煌結助剤	1		助劑	ĺ	ł	- "	-Carrett
-	無し Y2O3安			無し		1	l	1
実統	定化及び		65	無し			アルミ	460°C
99	来安定化	1		i			ナ.~ ジ	
3	ZrO2	1 .		İ		l	ルコニ	色製無し
1	烧结助部	1			l		7	[
1	有り			1 .			l	1
実	Y203	150	65	有り	80	74	アルミ	-
施	安定化	1 1		"	-	1''	ナージ	1
(51)	ZrO2	1 1		焼結			ルコニ	
4	鏡結助剤			助剤		l	"	北数型し
<u> </u>	有り			有り			1	1 1
压	Y203	150	60					
1	安定化	ן יפין	60	貫し			アルミ	260°C
(FR	ZrO2	i i					ナ	1
li	旋結助剤	1 1	i	i 1				1
L	無し	1		l j				1 1
肚	Y203	200	92					
較	安定化			İ	- 1		アルミナージ	380°C
例	ZrO2	j			l		ルコニ	
2	焼結助剤		1	<u> </u>	1		7	
4	無し				1	_	-	j
比較	Y2O3 安定化	400	60	有り	400	96	アルミ	36000
Ø	ZrO2	Ī	ł		- 1	- 1	ナージ	表面層の剣
3	焼結助剤	ļ	- 1	挽 結	- 1		ルコニ	離、电裂が見
	有り	1		助剤し	- 1		7	SAL
H:	Y2O3	300	25	200				
E2	安定化	300	-5		1		アルミ	
(PA	ZrO2	l	l	l	- 1	1	ナーム	脱粒が答しく
4	烧結助剤	- [ľ		- 1	i	ライト	生じた
	無し	- 1	ł	- 1	į		ľ	1

[0027]

(実施例2)

中間層として平均粒径 30μ mのアルミナ粒子を用い、このスラリーを基材表面にスプレーコートし100℃で乾燥した。次いで実施例 1 と同様にジルコニア層をアルミナ中間層上にスプレーコートし、乾燥、焼成して中間層+表面層から成る電子部品焼成用治具とした。また実施例 1 と同様にして耐熱衝撃性 Δ T を評価した。その結果を表 1 に示す。耐熱衝撃性は 700℃であり、表面層の剥離や亀裂は見られなかった。

[0028]

(実施例3)

基材として、CaO安定化ジルコニア成分が約10重量%のアルミナージルコニア基材を使用した。基材のみの耐熱衝撃性は約560℃であった。ジルコニア層として、#100メッシュのイットリア安定化ジルコニアを70重量%、平均粒径が 3μ mのイットリア安定化ジルコニアを27重量%、及び焼結助剤としてTiO2を3重量%秤量し、これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、実施例1と同様にジルコニア層を焼成して電子部品焼成用治具とした。評価結果を表1に示す。耐熱衝撃性は460℃であり、表面層の剥離や亀裂は見られなかった。

[0029]

(実施例4)

[0030]

(比較例1)

基材として耐熱衝撃性が約380℃のアルミナ基材を用いたこと以外、実施例 1と同様にして、電子部品焼成用治具を作製した。結果を表1に示す。表1に示 されたように、耐熱衝撃性は260℃であった。

[0031]

(比較例2)

ジルコニア層として平均粒径が $3 \mu m$ のイットリア安定化ジルコニアを 100 重量%用いたこと以外、実施例 1 と同様にして、電子部品焼成用治具を作製した

ページ: 10/E

。結果を表1に示す。耐熱衝撃性は380℃であった。

[0032]

(比較例3)

耐熱衝撃性が約560 \mathbb{C} のアルミナージルコニア基材を用い、中間層として平均粒径が 1μ mのアルミナ粒子を用いてスプレーコートにより中間層を形成し、 $100\mathbb{C}$ で乾燥した。比較例1と同様に中間層上にジルコニア層を形成し、中間層+表面層から成る電子部品焼成用治具を作製した。結果を表1に示す。 $360\mathbb{C}$ の温度差を与えたところ、表面層の剥離、4

[0033]

(比較例4)

耐熱衝撃性が約700 \mathbb{C} のアルミナームライト基材を用い、中間層として平均粒径が 1μ mのアルミナ粒子を用いてスプレーコートにより中間層を形成し、100 \mathbb{C} で乾燥した。比較例1 と同様に中間層上にジルコニア層を形成し、中間層+表面層から成る電子部品焼成用治具を作製した。結果を表1 に示す。200 \mathbb{C} の温度差を与えたところ、脱粒が著しく生じた。

[0034]

【発明の効果】

本発明のジルコニア層は安価な厚膜形成法である塗布法、ディップコート法、 スプレーコーティング法等を用いた場合であっても、ジルコニア層の耐熱衝撃性 に優れた電子部品焼成用治具を提供することを目的とする。

【図面の簡単な説明】

【図1】耐熱衝撃性評価の例である。

【書類名】図面

【図1】

【書類名】 要約書

【要約】

【課題】 安価な厚膜形成法によるものであって、ジルコニア層の耐熱衝撃性に 優れた電子部品焼成用治具を提供する。

【解決手段】基材、該基材表面に被覆されたジルコニア層を含んで成る電子部品焼成用治具において、所定温度T1からT2への急冷温度差を経た電子部品焼成用治具の急冷曲げ試験で、強度低下が生ずる急冷温度差として表される耐熱衝撃性 ΔT (=T1-T2) が 400 C以上であることを特徴とする電子部品焼成用治具である。

【選択図】 なし

特願2002-303950

出願人履歴情報

識別番号

[000006183]

1. 変更年月日 [変更理由]

1999年 1月12日

6年田」

住所変更

住 所氏 名

東京都品川区大崎1丁目11番1号

三井金属鉱業株式会社