Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	11 th October 2022
Team ID	PNT2022TMID33244
Project Name	Project – Smart waste management system for metropolitan cities.
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Expensive bins	As we are making up bins with sensors and other costly
		devices , this is somewhat expensive architecture to
		built. And so this requires more security settings as it
		requires more cost if we need to rebuilt it.
FR-2	Implementing proper	All bins can be seen on the map, and you can visit them
	monitoring system	at any time via the Street View feature from Google.
		Bins are visible on the map as green, orange or red
		circles. You can see bin details in the Dashboard –
		capacity, waste type, last measurement, GPS location
		and collection schedule or pick recognition.
FR-3	Planning waste collection	As well as planning is important where we need to set
	routes	locations to particularize routes where bins are
		collected once it got filled. So, clear mapping of routes
		where the bin collecting truck need to travel. If we all
		set with clear plan, there is no need of wasting time and
		fuel by searching locations.
FR-4	Separation of different kind of	Separation of different kind of wastes involves people
	wastes	responsibility too and so, proper education need to be
		provided. And bins should be implemented accordingly
		in each locations. And especially medical wastes should
		be disposed in a proper manner.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The current state of technology in the field of smart
		waste management involves the use of sensors that
		measure the fill level of the trash bin. Measured data
		is sent to the Cloud for further processing and
		analysis. By exploiting this data, trash collection can
		be planned as well as truck routes can be optimized.
		IoT device verifies that usability is a special and
		important perspective to analyse user requirements,
		which can further improve the design quality

	1	
NFR-2	Security	Security ensures the level of assurance in data
		collection, processing and conveying. As this is
		totally depend upon cloud service we need to make
		security more particular without channel crash.
NFR-3	Reliability	Smart waste management is also about creating
		better working conditions for waste collectors.
		Instead of driving the same collection routes and
		servicing empty bins, waste collectors can spend
		their time more efficiently, taking care of bins that
		need servicing. This system is more reliable at any
		cost by taking care of garbage bins and monitoring
		bin activity.
NFR-4	Performance	The Smart Sensors use ultrasound technology to
		measure the fill levels (along with other data) in bins
		several times a day. Using a variety of IoT networks (
		(NB IoT, GPRS), the sensors send the data to
		Sensor's Smart Waste Management Software
		System, a powerful cloud-based platform, for data-
		driven daily operations, available also as a waste
		management app.
		Customers are provided with required data-driven
		and decision making prototypes which would help
		uses to monitor its performance and encounter their
		quires.
NFR-5	Availability	Availability refers to already available solutions and
		the new renovative technology that we include in
		the system which we are building new now.
		This system have much available solutions for users
		and this made users to operate easily where we
		have used sensors, GPS detectors, and so on.
NFR-6	Scalability	We have to customize the number of bins in the
		town/city which we are going to monitor 24/7 a
		week and collect data. So, we need to measure the
		total bins and avail services to all bins in an proper
		rotational shifts.