

Data Sheet

CN896
North Bridge
with PCI Express and
Chrome9™ HC IGP

Revision 1.3 December 5, 2008

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2006-2008 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

CN896, VT8237S and VT8251 may only be used to identify products of VIA Technologies. Windows XP™, Windows Vista and Plug and Play™ are registered trademarks of Microsoft Corporation. PCI™ and PCI Express™ are a registered trademark of the PCI Special Interest Group. AGP™ is a trademark of the AGP Implementors Forum. VESA™ is a trademark of the Video Electronics Standards Association. All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654 Home Page: http://www.viatech.com

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	7/6/07	Initial external release	AT
1.1	10/31/07	Added Package Thermal Simulation subsection under Electrical Specification section	SY
1.2	1/22/08	Updated Absolute Maximum Ratings section	AT
		Added DC Characteristics section	
		Updated Package Thermal Simulation section	
1.21	2/5/08	Updated signals GPOUT and GPO0 in Pin Descriptions table	AT
1.22	7/11/08	Removed old OS support for Windows 9X/ME, Windows 2000 and NT4.0	AT
1.23	7/23/08	Added Windows Vista support	AT
1.3	12/5/08	Updated the legal page	LW
		Added supported CPU	
		Added Total Green package under Mechanical Specifications	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	
LIST OF TABLES	VI
PRODUCT FEATURES	1
CN896 SYSTEM OVERVIEW	5
CN896 Overview	5
System Power Management	6
3D Graphics Engine	6
2D Graphics Engine	6
MPEG VIDEO PLAYBACK	
LCD, DVI MONITOR AND TV OUTPUT DISPLAY SUPPORT	
HIGH SCREEN RESOLUTION DISPLAY SUPPORT	7
BALL DIAGRAM AND BALL LISTS	8
SIGNAL BALL LIST	12
SIGNAL DESCRIPTIONS.	
CPU Interface Signal Descriptions	
DDR SDRAM Memory Controller Signal Descriptions	
PCI Express Interface	
Ultra V-Link Signal Descriptions	
CRT and Serial Bus Signal Descriptions	
Dedicated Digital Video Port (DVP2) Interface	
PCIe-multiplexed Digital Video Port 1 (DVP1) Interface	
Clock Signal Descriptions	
Reset, Power Control, GPIO, Interrupt and Test Signal Descriptions	
Trusted Platform Module Signal Descriptions	
Reference Voltage Signal Descriptions	
Power/Ground Descriptions	
Strap Signal Descriptions	
REGISTER OVERVIEW	
Abbreviation	
Default Value Definitions	
PCI Device & Function Definitions	
PCI Express Port & Register Block Definitions	
MISCELLANEOUS I/O	
PCI Configuration Space I/O.	
REGISTER DESCRIPTIONS	
Device 0 Function 0 (D0F0): Host Controller	
Header Registers (0-3Fh)	
AGP4X/AGP8X Compensation Circuits (40-49h)	
Miscellaneous Control (4A-4Fh)	
AGP Extended Power Management Control (50–57h)	
AGP 3.0 Configuration (80–A3h)	
AGP Enhanced Control (B0–BEh)	

DEVICE 0 FUNCTION 1 (D0F1): ERROR REPORTING.	
Header Registers (0-3Fh)	
V-Link Error Report (50-5Fh)	38
Host Bus Error Report (60-6Fh)	39
AGP / PCI2 Non Standard Error Reporting (E0-FFh)	39
DEVICE 0 FUNCTION 2 (D0F2): HOST BUS CONTROL	
Header Registers (0-3Fh)	40
Host CPU Control (50-5Fh)	
Host Interface DRDY Timing Control (60-6Fh)	46
Host AGTL+ I/O Circuit (70–B3h)	
DEVICE 0 FUNCTION 3 (D0F3): DRAM BUS CONTROL	56
Header Registers (0–3Fh)	5 <i>6</i>
DRAM Rank Ending Address (40–47h)	
DRAM Rank Beginning Address (48–4Fh)	
MA Map / Command Rate (50–53h)	
Physical-to-Virtual Rank Mapping (54–57h)	
Virtual Rank Interleave Address Select / Enable (58–5Fh)	
DRAM Timing (60–64h)	
DRAM Queue / Arbitration (65–67h)	
DRAM Control (68–69h)	
Refresh Control (6A–6Bh)	
DDR SDRAM Control (6C–6Fh)	
DRAM Signal Timing Control (70–7Fh)	
Read-Only Control (7C-7Fh)	
Shadow RAM Control (80–83h)	
DRAM Above 4G Support (84-8C)	
DRAM Clocking Control (90-9F)	
UMA Registers (A0–AFh)	
GMINT and AGPCINT Registers (B0–BFh)	
DDR2 – I/O Pad Termination and Driving Control (D0–DFh)	
DRAM Driving Control (E0–EBh)	
DRAM CKG Control (EC–EFh)	
DQ / DQS CKG Output Delay Control (F0–F7h)	
DDR2 – DQ De-Skew Control (FA–FFh)	
DEVICE 0 FUNCTION 4 (D0F4): POWER MANAGEMENT CONTROL	
Header Registers (0-3Fh)	
New Power Management Control (9F-90h)	
Power Management Control (A0–AFh)	
DEVICE 0 FUNCTION 5 (D0F5): APIC AND CENTRAL TRAFFIC CONTROL	
Header Registers (0–3Fh)	
Legacy APIC Base I/O Registers (40–5Fh)	
Central Traffic - Downstream Control (60–7Fh)	
Central Traffic - Upstream Control (80-85h)	
PCIe Message Controller and Power Management (A0–F0h)	
DEVICE 0 FUNCTION 6 (D0F6): SCRATCH REGISTERS.	
Header Registers (0–3Fh)	
Scratch Registers (7F–40h)	
DEVICE 0 FUNCTION 7 (D0F7): V-LINK NORTH BRIDGE AND SOUTH BRIDGE CONTROL	
Header Registers (0–3Fh)	
V-Link Control Interface (40–6Fh)	
Host-PCI Bridge Control (70-7Fh)	
GART Operation (80-9Fh)	
V-Link North Bridge Driving Control (B4–B7h)	
V-Link South Bridge Driving Control (B4-B9h) - For 8X Capability SB	
V-Link South Bridge Driving Control (B8-B9h) - For 4X Capability SB	
DRAM Above 4G Support (E4-EF)	
DEVICE 1 FUNCTION 0 (D1F0): PCI TO PCI BRIDGE.	
Header Registers (0–3Fh)	
· · · · · · · · · · · · · · · · · · ·	

Second PCI Bus Control (40–6Fh)	117
Power Management Capability (70-77h)	
DEVICE 2 FUNCTION 0 (D2F0) – PCI EXPRESS ROOT PORT G (PCI-TO-PCI VIRTUAL BRIDGE)	
Header Registers (0-3Fh)	
PCI Express Capability Registers (40-67h)	126
PCI Power Management Capability Structure Registers (68-6Fh)	
PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)	
HyperTransport Message Signal Interrupt (MSI) Capability Registers (88-97h)	
Subsystem ID and Subsystem Vendor ID Capability Registers (98-9Fh)	
PCI Express Transaction Layer Registers (A0-A7h)	
PCI Express Data Link Layer Registers (B0-B8h)	
PCI Express Physical Layer Registers (C0-CBh)	
PCI Express Power Management Module Registers (D0-DFh)	
PCI Express Electrical PHY Registers (E0-EAh)	
PCI Express Electrical PHY Test Registers (F0-F9h)	
DEVICE 2 FUNCTION 0 (D2F0) – PCI EXPRESS ROOT PORT G EXTENDED SPACE	
PCI Express Extended Capabilities (100-13Fh)	
Virtual Channel Capability (140-14Fh).	
VC0 Resource (150-15Bh)	
VC1 Resource (15C-167h)	
Root Complex Topology Capability List Registers (180-19Bh)	
DEVICE 3 FUNCTION 0 (D3F0) – PCI EXPRESS ROOT PORT 0 (X1) (PCI-TO-PCI VIRTUAL BRIDGE)	
Header Registers (0-3Fh)	
PCI Express Capability Registers (40-63h)	
PCI Power Management Capability Structure Registers (68-6Fh)	
PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)	
HyperTransport Message Signal Interrupt (MSI) Capability Structure Registers (88-8Bh)	
Subsystem ID and Subsystem Vendor ID Capability Structure Registers (98-9Fh)	
PCI Express Transaction Layer Registers (A0-A7h)	
PCI Express Data Link Layer Registers (B0-B6h)	
PCI Express Physical Layer Registers (C0-C7h)	
PCI Express Power Management Module Registers (D0-D3h)	
PCI Express Flower Management Module Registers (D0-D3n) PCI Express Electrical PHY Registers (E0-E4h)	
PCI Express Electrical PHY Test Registers (F0-F7h)	
DEVICE 3 FUNCTION 0 (D3F0) – PCI EXPRESS ROOT PORT 1 EXTENDED SPACE	
Advanced Error Reporting Capability (100-137h)	
Virtual Channel Capability (140-14Fh)	
VCO Resource (150-15Bh)	
VC0 Resource (150-15bh)	
Root Complex Topology Capability List Registers (180-19Bh)	
PCIE ROOT COMPLEX REGISTER BLOCK FOR HOST	
VC0 Resource (010-01Bh)	
VC1 Resource (01C-027h)	
Root Complex Link Declaration Enhanced Capability (040-04Fh)	
Link Entry for PEG (050-05Fh)	
Link Entry for PEO (060-06Fh)	
Link Entry for RCRB-V (0A0-0AFh)	
Virtual Channel Port Arbitration Table for VCN (100h-13F)	
VC Arbitration Timer (200-20Fh)	
Port Arbitration Timer for VC0 (210-219h)	
Host Side Upstream Arbitration Timers (230-23Fh)	
DRAM Side Upstream Arbitration Timers (240-245h)	
PCIE ROOT COMPLEX REGISTER BLOCK FOR V-LINK	
Virtual Channel Capability (000-00Fh)	
VC0 Resource (010-01Bh)	
VC1 Resource (01C-027h)	
Root Complex Link Enhanced Capability (040-0AFh)	212

Link Entry 1 (050-05Fh)	212
Link Entry 2 (060-06Fh)	
Root Complex Internal Link Control Enhanced Capability Header (080-08Bh)	213
ELECTRICAL SPECIFICATIONS	215
ABSOLUTE MAXIMUM RATINGS	215
DC CHARACTERISTICS	216
PACKAGE THERMAL SIMULATION	217
MECHANICAL SPECIFICATIONS	218

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM	5
FIGURE 2. CN896 BALL DIAGRAM (TOP VIEW) – PCI INTERFACE ENABLED	
FIGURE 3. CN896 BALL DIAGRAM (TOP VIEW) – DISPLAY FUNCTION ENABLED ON PCI EXPRESS	
INTERFACE	
FIGURE 4. ROHS AND TOTAL GREEN MECHANICAL SPECIFICATIONS - HSBGA-951 BALL GRID A	RRAY
PACKAGE WITH HEAT SPREADER	
LIST OF TABLES	
TABLE 1. SUPPORTED CRT RESOLUTIONS	
TABLE 2. BALL LIST (LISTED BY BALL NAME) - PCI EXPRESS INTERFACE ENABLED	
TABLE 3. SIGNAL BALL LIST - DISPLAY FUNCTIONS ENABLED ON PCI EXPRESS INTERFACE (LIS	
BALL NAME)	13
TABLE 4. POWER / GROUND BALL LIST	
TABLE 5. GRAPHICS APERTURE BASE ADDRESS TABLE	
TABLE 6. AGP CAPABILITY POINTER	
TABLE 7. APERTURE SIZE	
TABLE 8. DYNAMIC DEFER SNOOP STALL TABLE	
TABLE 9. CPU WRITE REQUEST POLICY	45
TABLE 10. HOST / DRAM BANDWIDTH POLICY	
TABLE 11. RANK MA MAP TYPE TABLE	
TABLE 12. DRAM BANK ADDRESS TABLE	
TABLE 13. RANK INTERLEAVE ADDRESS TABLE	
TABLE 14. DQM SIGNAL FUNCTION	
TABLE 15. CPU-TO-SMRAM CYCLE FLOW	
TABLE 16. PHYSICAL PIN TO DRIVING GROUP MAPPING TABLE	
TABLE 17. NB V-LINK BUS ARBITRATION	
TABLE 18. INTERPRETATION ON RX46[7:6]	
TABLE 19. V-LINK DATA TRANSFER MODES	
TABLE 20. MAPPING TABLE FOR RXC3[7]	143
TABLE 21. ABSOLUTE MAXIMUM RATINGS	
TABLE 22. DC CHARACTERISTICS	216

CN896 NORTH BRIDGE

800 / 400 MHz FSB VIA C7 / C7-D / C7-M / Eden / Nano Processor Two PCI Express Ports: 16-Lane & 1-Lane Integrated Chrome9TM HC IGP & Video Controller Advanced 64-bit DDR2 / DDR SDRAM Controller 1 GB/Sec Ultra V-Link Interface

PRODUCT FEATURES

Defines Highly Integrated Solutions for Value Embedded PC Designs

- High Performance UMA North Bridge: Integrated VIA C7 North Bridge with 800 / 400 MHz FSB support, PCI Express bus controller and Chrome9™ HC IGP & Video controllers
- Advanced 64-bit SDRAM controller supporting DDR2 667 / 533 / 400 and DDR 400 / 333 SDRAM
- Combines with VIA VT8237S and VT8251 South Bridges for integrated 10/100 LAN, Serial ATA, ATA133 IDE, USB 2.0, High Definition Audio Codec and LPC
- 37.5 x 37.5mm HSBGA package (Ball Grid Array with Heat Spreader) with 951 balls and 1.00 mm ball pitch

High Performance CPU Interface

- Supports 800 / 400 MHz FSB VIA C7 / C7-D / C7-M / Eden processor
- Supports 800 MHz FSB VIA Nano processor
- Supports DBI (Dynamic Bus Inversion)
- Supports Trust configuration cycle
- Deep In-Order command Queue (IOQ)
- Integrated CPU-to-DRAM write buffers and CPU-to-DRAM read prefetch buffers
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions

Advanced High Bandwidth PCI Express Interface

- Supports PCI Express 1.1
- Supports up to two PCI Express ports
 - 1st port: a 16-Lane port for high end graphics interface
 - Configurable lane width, 16 / 8 / 4 / 2 / 1, through hand-shaking for transfer rate up to 4 GB/sec bidirectional
 - Supports two upstream virtual channels
 - 2nd port: a 1-Lane port for peripheral devices
- Supports interconnect power management
- Supports polarity reversal
- Supports Trust configuration cycle
- Supports Hot Plug
- Loop-back testing mode for easy debugging mode for PCI Express

Advanced High-Performance DDR2 / DDR SDRAM Controller

- Supports two operating modes:
 - DDR2 Mode
 - Supports DDR2 667 / 533 / 400 memory
 - Supports mixed 64 / 128 / 256 / 512 / 1024 / 2048 x 8/16 DDR2 SDRAMs
 - Supports 2 unbuffered double-sided DIMMs and up to 4 GB of physical memory
 - Supports CL 2 / 3 / 4 / 5 for DDR2 667 / 533 / 400
 - DDR Mode
 - Supports DDR 400 / 333 memory
 - Supports mixed 64 / 128 / 256 / 512 / 1024 Mb x 8/16 DDR SDRAMs
 - Supports 2 unbuffered double-sided DIMMs and up to 4 GB of physical memory
 - Supports CL 2 / 2.5 for DDR 333, CL 2.5 / 3 for DDR 400
- Programmable I/O drive capability for memory address, data and control signals
- DRAM interface pseudo-synchronous with host CPU for optimal memory performance
- Concurrent CPU, PCIe, internal graphics controller and Ultra V-Link access for minimum memory access latency
- Rank interleave and up to 16-bank page interleave (i.e., 16 pages open simultaneously) based on LRU to effectively reduce memory access latency
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- CPU Read-Around-Write capability for non-stalled operation
- Speculative DRAM read before snoop result to reduce PCI master memory read latency
- Supports Burst Read and Write operations with burst length of 4 or 8
- Optional dynamic Clock Enable (CKE) control for DRAM power reduction during normal system state (S0)
- Supports self-refresh and CAS-before-RAS DRAM refresh with staggered RAS timing

• High Bandwidth 1 GB/Sec "Ultra V-Link" Host Controller

- Supports 16-bit 66 MHz, 4x and 8x transfer modes, Ultra V-Link Host interface with 1 GB/sec total bandwidth
- Full duplex transfers with separate command / strobe for 4x and 8x mode
- Request / Data split transaction
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to minimize data wait-state, throttle transfer latency and avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead

• Advanced System Power Management Support

- ACPI 2.0 and PCI Bus Power Management 1.1 compliant
- Supports Suspend-to-DRAM (STR) and DRAM self refresh
- Supports dynamic Clock Enable (CKE) control for DRAM power reduction during normal system state (S0)
- Supports SMI, SMM and STPCLK mechanisms
- Low-leakage I/O pads

• Chrome9TM HC Integrated Graphics with 2D / 3D / Video Controllers

- Optimized Unified Memory Architecture (UMA)
- Supports 64 / 128 / 256 MB Frame Buffer Size
- Graphics engine clocks up to 250 MHz decoupled from memory clock
- Internal AGP 8x performance
- Two 128-bit internal data paths between North Bridge and graphics core for frame buffer and texture /command access
- PCI v2.2 Host Bus compliant
- AGP v3.5 compliant

2D Acceleration Features

- 128-bit 2D graphics engine
- Supports ROP3, 256 operations
- Supports 8bpp, 15/16bpp and 32bpp color depth modes
- BitBLT (Bit Block Transfer) functions, including alpha BLTs
- Color expansion, source Color Key and destination Color Key
- Bresenham line drawing / style line function
- Transparency mode
- Window clipping
- Text function

3D Acceleration Features

- DirectX 9.0 programmable graphics engine
- 1 Pixel Shader (PS 2.0)
- Internal full ARGB 10-10-10-10 format for high rendering quality
- 96-bit (4xFP24) Pixel Precision
- Pixel Shader Supports 16 Concurrent Texture Map References Per Rendering Pass
- Shadow Volume Acceleration (2-Sided Stencil)
- Unconditional Non-Power-Of-2 Textures
- MIP-Mapped Volume/Cube Maps
- Floating Point Render Target/Texture Formats
- Vertex Cache
- Color buffer with sRGB format supported and blending with color fields 1.0
- Supports various texture formats, including 16/32bpp RGB, 32bpp sRGB, YUV422, V410, compressed texture (DXTC) and depth texture
- Video Texture supported with programmable de-Gamma (up to Gamma 3.0)
- Multiple Render Target (MRT) up to 4
- Perspective Color, Fog, texture
- High Quality texture filtering with bi-linear, tri-linear, anisotropy (up to 16x by trilinear), or programmable 4x4 filter (Gaussian filter, HP filter, LP filter)
- Supports 2048x2048x32bpp

Hi Definition Video Processor Features

- Supports Chronmotion Programmable Video Engine
- Integrated 3D and Video Processing Through Pixel Shader Engine
- Bob, Weave and Medium Filter de-interlacing modes
- High Quality Video Scaling Engine Supports Input up to 1920 Pixels Wide
- Supports Microsoft VMR Through Front-End Video Scaling, Color Space Conversion and Blending

• Extensive Display Support for External Video Output

- A dedicated CRT interface
- An PCIe-multiplexed 12-bit (DVP1 port) interface to external DVI transmitter or LVDS transmitter
- A dedicated (DVP2 port) TV-Out interface to TV encoder

CRT Display

- CRT display interface with 24-bit true-color RAMDAC up to 300 MHz pixel rate with gamma correction capability
- Supports CRT resolutions up to 1920x1440

DVI Transmitter Interface

- 12-bit, 1.5V low-swing, DVO interface for connecting DVI Monitor through DVI transmitter
- 12-bit DDR and clock rate up to 165 MHz
- Built-in digital phase adjuster to fine tune signal timing between clock and data bus

TV-Out Interface

12-bit Interface to an external TV encoder for SDTV or HDTV display

LVDS Transmitter Interface

12-bit DDR interface with LVDS transmitter

DuoView+TM Capability

- Supports multi-monitor and extended desktop for Windows XP and Windows Vista
- Provides two independent display engines, each of which can display completely different information at different resolutions, pixel depths and refresh rates
- Improved display flexibility with simultaneous CRT / DVI, CRT / TV, DVI / TV and other combined operations

Full Software Support

- Microsoft DirectX 7.0, DirectX 8.0 and DirectX 9.0 compatible
- Supports OpenGL™
- Drivers for major operating systems and APIs: Windows XP, Windows Vista, Direct3D™, DirectDraw™ and DirectShow™, and OpenGL™ ICD for Windows XP and Windows Vista

Advanced Graphics Power Management Support

- Built-in reference voltage generator and monitor sense circuits
- Automatic panel power sequencing and VESA DPMS (Display Power Management Signaling) CRT power-down
- External I/O signal controlling enabling graphics accelerator into standby / suspend-off state
- Auto clock gating for each engine to achieve power saving
- I²C Serial Bus and DDC Monitor Communications for CRT Plug-and-Play configuration

CN896 SYSTEM OVERVIEW

The CN896 is a high performance, cost-effective and energy efficient UMA North Bridge with integrated Chrome9™ HC graphics / video controller used for the implementation of embedded systems based on VIA C7 processors.

Figure 1. System Block Diagram

The complete embedded chipset consists of the CN896 North Bridge and the VT8237S South Bridge. The CN896 integrates VIA's most advanced system controller with high-performance Chrome9TM HC 3D / 2D graphics and video controller, LCD panel, DVI monitor and TV-Out interfaces. The CN896 provides superior performance between the CPU, PCIe, DRAM, Ultra V-Link and internal AGP 8x graphics controller with pipelined, burst and concurrent operation. The VT8237S is a highly integrated peripheral controller which integrates Serial ATA, Ultra DMA IDE, High-Speed USB 2.0, 10/100Mb LAN controller, HDAC and system power management controllers in a single chip.

CN896 Overview

The CN896 supports VIA C7 / C7-D / C7-M / Eden / Nano processors. The CN896 implements a deep In-Order Queue to improve the system performance for multi-threaded software applications. DBI and V4 bus protocol is supported which effectively reduce overall system power consumption.

The CN896 includes a PCI Express 1.1 compliant PCI Express controller, which supports up to two high bandwidth PCIe ports. A 16-Lane port, with up to 4 GB/sec bi-directional data transfer rate, is implemented to support high-end PCI Express compliant graphics controller, and another 1-Lane port designed for PCIe peripheral devices.

The CN896 supports 64-bit memory data bus access and up to 2 double-sided DDR2 667 / 533 / 400 or DDR 400 / 333 SDRAM SODIMM for 4 GB maximum physical memory. The DRAM interface allows zero wait-state data transfer bursting between the DRAM and memory controller's data buffers. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The CN896 North Bridge interfaces to the South Bridge through a high speed (up to 1 GB/sec) 8x 66 MHz Data Transfer interconnect bus called Ultra V-Link interface. Deep pre-fetch and post-write buffers are included to allow for concurrent CPU and V-Link operation. The combined CN896 North Bridge and VT8237S South Bridge system supports enhanced PCI bus

commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as CPU write-back forward to PCI master and CPU write-back merged with PCI post-write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction mechanism is also implemented for further improvement of overall system performance.

System Power Management

For sophisticated power management, the CN896 supports dynamic CKE control to minimize DDR SDRAM power consumption during normal system state (S0). A separate suspend power plane is implemented for the memory control logic for Suspend-to-DRAM state. The CN896 graphics controller implements dynamic clock gating for inactive functions to achieve maximum power saving. The system can be switched to standby or suspend states to further reduce power consumption when idle. VESA DPMS (Display Power Management Signaling) CRT power-down is supported. Coupled with the VT823S South Bridge chip, a complete power conscious PC main board can be implemented with no external glue logic.

3D Graphics Engine

Featuring an integrated 128-bit 3D graphics engine, the CN896 North Bridge utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. The chip also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. Image quality is further enhanced with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. The advanced triangle setup engine provides realistic user experiences in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

2D Graphics Engine

The CN896 North Bridge's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. The enhanced 2D architecture with direct access frame buffer capability optimizes UMA performance and provides acceleration of all color depths.

MPEG Video Playback

The CN896 North Bridge provides the ideal architecture for high quality MPEG-2 based video applications. For MPEG playback, the integrated video accelerator offloads the CPU by performing the motion compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback.

LCD, DVI Monitor and TV Output Display Support

The CN896 provides two "Digital Video Port" interfaces (DVP1 and DVP2). Multiplexing display functions with the PCIe bus allows the system to support an external PCIe connector for future performance upgrades by adding an external graphics controller. It also allows add-in cards to be designed with a PCIe-compatible connector for implementation of the display interface logic to reduce cost in the base configuration. In value-compatible connector configurations, external upgrade capability is not normally required by the system, allowing all the PCIe pins to be used for implementation of flexible display functions.

DVP2 may be configured for support of an external TV encoder (such as the VT1622A and VT1622AM), an external HDTV encoder (such as the VT1625 and VT1625M).

DVP1 implements a 12-bit interface that is designed to drive a Flat Panel Display via an external LVDS transmitter chip (such as the VT1636) or an external DVI transmitter chip (such as VT1632A). A wide variety of LCD panels are supported including VGA, SVGA, XGA, SXGA+ and up to UXGA-resolution TFT color panels in DDR (2 pixels / clock) mode. UXGA and higher resolutions require dual-edge data transfer (DDR) mode, which is supported by the VIA VT1636 LVDS transmitter chip.

The flexible display configurations of the CN896 allow support of a LCD Panel (LVDS interface), or DVI monitor (DVI interface), TV display and CRT display at the same time. Internally the CN896 North Bridge provides two separate display engines, so if two display devices are connected, each can display completely different information at different resolutions, pixel depths and refresh rates. If more than two display devices are connected, the additional displays must have the same resolution, pixel depth and refresh rate as one of the first two. The maximum display resolutions supported for one display device are listed in the table below. If more than one display is implemented (i.e. if both display engines are functioning at the same time), then available memory bandwidth may limit the display resolutions supported on one or both displays. This will be dependent on many factors including primarily clock rates and memory speeds (contact VIA for additional information).

High Screen Resolution Display Support

Resolutions	Resolution	Pixel Depths	System Memory Frame Buffer Size				
Supported	Name	Supported	64MB	128MB	256MB		
640x480 (4:3)	VGA	8 / 16 / 32	~	~	~		
800x600 (4:3)	SVGA	8 / 16 / 32	~	~	~		
1024x768 (4:3)	XGA	8 / 16 / 32	~	~	~		
1280x1024 (5:4)	SXGA	8 / 16 / 32	~	~	~		
1400x1050 (4:3)	SXGA+	8 / 16 / 32	~	~	~		
1600x1200 (4:3)	UXGA, UXGA+	8 / 16 / 32	~	~	~		
1920x1440 (4:3)		8 / 16 / 32	~	~	~		

Table 1. Supported CRT Resolutions

BALL DIAGRAM AND BALL LISTS

Figure 2. CN896 Ball Diagram (Top View) - PCI Interface Enabled

Signal Ball List

Table 2. Ball List (Listed by Ball Name) - PCI Express Interface Enabled

Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name
AC35	BUSY#	W32	HA29#	B23	HD48#	AN32	MA09	AT16	MD41	AF06	PEXCLK-	R01	PEXTX07-
F22	CPURST#	V31	HA30#	B25	HD49#	AN29	MA10	AN16	MD42	AG06	PEXCLK+	P01	PEXTX07+
AB32	CPUSLPIN#	W31	HA31#	E23	HD50#	AR32	MA11	AN15	MD43	H05	PEXCOMP0	U01	PEXTX08-
E14	CRTAB	L35	HADS#	B27	HD51#	AT33	MA12	AM17	MD44	AD07	PEXCOMP1	T01	PEXTX08+
D14	CRTAG	T35	HADSTB0N#	B28	HD52#	AR25	MA13	AP17	MD45	AH01	PEXCOMP2	V04	PEXTX09-
C14	CRTAR	R35	HADSTB0P#	A28	HD53#	AR28	MBA0	AM16	MD46	B05	PEXDET	U04	PEXTX09+
E12	CRTHSYNC	W33	HADSTB1#	B24	HD54#	AP29	MBA1	AM15	MD47	AC36	PEXHPSCI#	W01	PEXTX10-
C13	CRTRSET	K35	HBNR#	B26	HD55#	AP33	MBA2	AN22	MD48	B06	PEXINTR#	V01	PEXTX10+
G13	CRTSPCLK	J32	HBPRI#	A26	HD56#	AT34	MCKE0	AN21	MD49	AC33	PEXPMESCI#	Y04	PEXTX11-
E13	CRTSPD	M34	HBREQ0#	C23	HD57#	AP34	MCKE1	AP19	MD50	G05	PEXREXT0	W04	PEXTX11+
F12	CRTVSYNC	AC30	HCLK-	C22	HD58#	AR34	MCKE2	AT18	MD51	AD06	PEXREXT1	AA01	PEXTX12-
G12	DISPCLKI	AC29	HCLK+	A23	HD59#	AN34	MCKE3	AT21	MD52	AH02	PEXREXT2	Y01	PEXTX12+
H12	DISPCLKO	B35	HD00#	G23	HD60#	AB34	MCLKI	AR21	MD53	D02	PEXRX00-	AC01	PEXTX13-
B09	DVP2CLK	A36	HD01#	A24	HD61#	AB36	MCLKO-	AT19	MD54	E03	PEXRX00+	AB01	PEXTX13+
H11	DVP2D00	C33	HD02#	B22	HD62#	AB35	MCLKO+	AR19	MD55	G03	PEXRX01-	AD04	PEXTX14-
D10	DVP2D01	C32	HD03#	E22	HD63#	AT27	MCS0#	AR14	MD56	F03	PEXRX01+	AC04	PEXTX14+
C11	DVP2D02	E31	HD04#	C31	HDBI0#	AP27	MCS1#	AM14	MD57	J03	PEXRX02-	AE01	PEXTX15-
C10	DVP2D03	B34	HD05#	E35	HDBI1#	AT24	MCS2#	AP13	MD58	H03	PEXRX02+	AD01	PEXTX15+
E10	DVP2D04	B33	HD06#	G27	HDBI2#	AP26	MCS3#	AR11	MD59	L03	PEXRX03-	AF01	PEXTX16-
G10	DVP2D05	A34	HD07#	D22	HDBI3#	AF35	MD00	AP14	MD60	K03	PEXRX03+	AG01	PEXTX16+
F11	DVP2D06	D30	HD08#	K32	HDBSY#	AG34	MD01	AN14	MD61	L06	PEXRX04-	AC34	PEXWAKE#
C09	DVP2D07	A30	HD09#	J33	HDEFER#	AJ36	MD02	AT12	MD62	K06	PEXRX04+	AD34	PWROK
E08	DVP2D08	B31	HD10#	L31	HDPWR#	AK35	MD03	AP12	MD63	N03	PEXRX05-	AD36	RESET#
B07	DVP2D09	B30	HD11#	K33	HDRDY#	AF34	MD04	AH36	MDQM0#	M03	PEXRX05+	AD35	SUSST#
F09	DVP2D10	E30	HD12#	B32	HDSTB0N#	AG35	MD05	AF30	MDQM1#	N06	PEXRX06-	D07	TCSEN#
C07	DVP2D11	C29	HD13#	A32	HDSTB0P#	AJ34	MD06	AN36	MDQM2#	M06	PEXRX06+	AE36	TESTEN
D09	DVP2DE	B29	HD14#	C34	HDSTB1N#	AK34	MD07	AN23	MDQM3#	R03	PEXRX07-	AN04	VBE#
A09	DVP2DET	C30	HD15#	C35	HDSTB1P#	AG32	MD08	AN20	MDQM4#	P03	PEXRX07+	AL04	VCLK
E11	DVP2HS	D36	HD16#	E26	HDSTB2N#	AF32	MD09	AT15	MDQM5#	U03	PEXRX08-	AP01	VD00
B10	DVP2VS	F36	HD17#	G26	HDSTB2P#	AH30	MD10	AP21	MDQM6#	T03	PEXRX08+	AN03	VD01
C08	DVPSPCLK	G36	HD18#	C25	HDSTB3N#	AJ31	MD11	AT13	MDQM7#	U06	PEXRX09-	AT03	VD02
A07	DVPSPD	H34	HD19#	C24	HDSTB3P#	AF31	MD12	AH35	MDQS0-	T06	PEXRX09+	AR04	VD03
B08	GPO0	H35	HD20#	H22	HGTLCOMPN	AH32	MD13	AJ35	MDQS0+	W03	PEXRX10-	AN02	VD04
A06	GPOUT	F35	HD21#	G22	HGTLCOMPP	AH31	MD14	AH34	MDQS1-	V03	PEXRX10+	AN01	VD05
M33	HA03#	G35	HD22#	U30	HGTLVREF0	AJ32	MD15	AH33	MDQS1+	V06	PEXRX11-	AP05	VD06
N34	HA04#	C36	HD23#	J25	HGTLVREF1	AK33	MD16	AP36	MDQS2-	W06	PEXRX11+	AN05	VD07
R33	HA05#	D35	HD24#	L36	HHIT#	AL36	MD17	AR36	MDQS2+	AA03	PEXRX12-	AM01	VD08
T33	HA06#	F34	HD25#	L34	HHITM#	AP35	MD18	AP23	MDQS3-	Y03	PEXRX12+	AM03	VD09
R34	HA07#	F33	HD26#	J34	HLOCK#	AL34	MD19	AR22	MDQS3+	AB06	PEXRX13-	AT05	VD10
P36	HA08#	G34	HD27#	T32	HREQ0#	AL35	MD20	AN18	MDQS4-	AA06	PEXRX13+	AM06	VD11
P34	HA09#	G33	HD28#	T31	HREQ1#	AM35	MD21	AP18	MDQS4+	AC03	PEXRX14-	AL02	VD12
N35	HA10#	E33	HD29#	R32	HREQ2#	AT36	MD22	AR15	MDQS5-	AB03	PEXRX14+	AL01	VD13
R36	HA11#	H32	HD30#	M32	HREQ3#	AM34	MD23	AP15	MDQS5+	AE03	PEXRX15-	AN06	VD14
U36	HA12#	G32	HD31#	M31	HREQ4#	AK24	MD24	AR20	MDQS6-	AD03	PEXRX15+	AT06	VD15
U34	HA13#	E28	HD32#	J35	HRS0#	AL23	MD25	AP20	MDQS6+	AE04	PEXRX16-	AP04	VDNCMD
U35	HA14#	E29	HD33#	N36	HRS1#	AM24	MD26	AR13	MDQS7-	AF04	PEXRX16+	AT01	VDNSTB-
T30	HA15#	D28	HD34#	J36	HRS2#	AJ22	MD27	AR12	MDQS7+	C01	PEXTX00-	AR01	VDNSTB+
U32	HA16#	D27	HD35#	M35	HTRDY#	AK23	MD28	AM33	MEMCOMP	B01	PEXTX00+	AL05	VLCOMPN
W35	HA17#	C28	HD36#	H13	INTA#	AN24	MD29	AF36	MEMDET	E01	PEXTX01-	AM05	VLCOMPP
V32	HA18#	H28	HD37#	A11	LVDSENVBLD	AM23	MD30	AG29	MEMVREF0	D01	PEXTX01+	AL06	VLVREF
V36	HA19#	G28	HD38#	B11	LVDSENVDD	AM22	MD31	AJ18		J01	PEXTX02-	AM04	VPAR
V34	HA20#	F28	HD39#	AT29	MA00	AK20	MD32	AT26	MODT0	H01	PEXTX02+	AR05	VUPCMD
W36	HA21#	E27	HD40#	AR30	MA01	AK19	MD33	AP25	MODT1	L01	PEXTX03-	AR03	VUPSTB-
W34	HA22#	D26	HD41#	AR29	MA02	AM19	MD34	AR24	MODT2	K01	PEXTX03+	AT02	VUPSTB+
AA36	HA23#	D25	HD42#	AT30	MA03	AR18	MD35	AN25	MODT3	M04	PEXTX04-	D12	XIN
V33	HA24#	E25	HD43#	AN30	MA04	AL20	MD36	AR27	MSCAS#	L04	PEXTX04+		
AA34	HA25#	F25	HD44#	AP31	MA05	AM20	MD37	AN28		N01	PEXTX05-		
Y35	HA26#	G25	HD45#	AR31	MA06	AL18	MD38	AP28	MSWE#	M01	PEXTX05+		
Y33	HA27#	H26	HD46#	AT32	MA07	AM18	MD39	A05	NC	P04	PEXTX06-		
AA32	HA28#	H25	HD47#	AP32	MA08	AR17	MD40	C06	NC	N04	PEXTX06+		

Table 3. Signal Ball List - Display Functions Enabled on PCI Express Interface (Listed by Ball Name)

it i			st - Dispiay r					TI T	ce (Listeu b)		Name)	D 11 //	D II N
	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name
	BUSY#	U36	HA12#	G32	HD31#	M31	HREQ4#	AK24	MD24	AR20	MDQS6-	U01	NC
F22	CPURST#	U34	HA13#	E28	HD32#	J35	HRS0#	AL23	MD25	AP20	MDQS6+	U04	NC
AB32	CPUSLPIN#	U35	HA14#	E29	HD33#	N36	HRS1#	AM24	MD26	AR13	MDQS7-	V01	NC
E14	CRTAB	T30	HA15#	D28	HD34#	J36	HRS2#	AJ22	MD27	AR12	MDQS7+	V04	NC
D14	CRTAG	U32	HA16#	D27	HD35#	M35	HTRDY#	AK23	MD28	AM33	MEMCOMP	W01	NC
C14	CRTAR	W35	HA17#	C28	HD36#	H13	INTA#	AN24	MD29	AF36	MEMDET	W04	NC
E12	CRTHSYNC	V32	HA18#	H28	HD37#	A11	LVDSENVBLD	AM23	MD30	AG29	MEMVREF0	Y01	NC
C13	CRTRSET	V36	HA19#	G28	HD38#	B11	LVDSENVDD	AM22	MD31	AJ18	MEMVREF1	Y04	NC
E13	CRTSPD	V34	HA20#	F28	HD39#	AT29	MA00	AK20	MD32	AT26	MODT0	AF06	PEXCLK-
G13	CRTSPDCLK	W36	HA21#	E27	HD40#	AR30	MA01	AK19	MD33	AP25	MODT1	AG06	PEXCLK+
F12	CRTVSYNC	W34	HA22#	D26	HD41#	AR29	MA02	AM19	MD34	AR24	MODT2	H05	PEXCOMP0
G12	DISPCLKI	AA36	HA23#	D25	HD42#	AT30	MA03	AR18	MD35	AN25	MODT3	AD07	PEXCOMP1
H12	DISPCLKO	V33	HA24#	E25	HD43#	AN30	MA04	AL20	MD36	AR27	MSCAS#	AH01	PEXCOMP2
W06	DVP1CLK	AA34	HA25#	F25	HD44#	AP31	MA05	AM20	MD37	AN28	MSRAS#	B05	PEXDET
AB03	DVP1D00	Y35	HA26#	G25	HD45#	AR31	MA06	AL18	MD38	AP28	MSWE#	AC36	PEXHPSCI#
AB06	DVP1D01	Y33	HA27#	H26	HD46#	AT32	MA07	AM18	MD39	K03	NC	B06	PEXINTR#
AA06	DVP1D02	AA32	HA28#	H25	HD47#	AP32	MA08	AR17	MD40	N06	NC	AC33	PEXPMESCI#
AA03	DVP1D03	W32	HA29#	B23	HD48#	AN32	MA09	AT16	MD41	M06	NC	G05	PEXREXT0
Y03		V31	HA30#	B25	HD49#	AN29	MA10	AN16	MD42	N03	NC	AD06	PEXREXT1
V06	DVP1D05	W31	HA31#	E23	HD50#	AR32	MA11	AN15	MD43	M03	NC	AH02	PEXREXT2
W03		L35	HADS#	B27	HD51#	AT33	MA12	AM17	MD44	L06	NC	AC34	PEXWAKE#
II I													PWROK
V03	DVP1D07	T35	HADSTB0N#	B28	HD52#	AR25	MA13	AP17	MD45	K06	NC	AD34	
U06		R35	HADSTB0P#	A28	HD53#	AR28	MBA0	AM16	MD46	J03	NC	AD36	RESET#
T06		W33	HADSTB1#	B24	HD54#	AP29	MBA1	AM15	MD47	H03	NC	AD35	SUSST#
U03		K35	HBNR#	B26	HD55#	AP33	MBA2	AN22	MD48	G03	NC	D07	TCSEN#
T03	DVP1D11	J32	HBPRI#	A26	HD56#	AT34	MCKE0	AN21	MD49	F03	NC	AE36	TESTEN
AC03		M34	HBREQ0#	C23	HD57#	AP34	MCKE1	AP19	MD50	D02	NC	AN04	VBE#
AD03		AC30	HCLK-	C22	HD58#	AR34	MCKE2	AT18	MD51	E03	NC	AL04	VCLK
AE03	DVP1VS	AC29	HCLK+	A23	HD59#	AN34	MCKE3	AT21	MD52	P03	NC	AP01	VD00
B09	DVP2CLK	B35	HD00#	G23	HD60#	AB34	MCLKI	AR21	MD53	R03	NC	AN03	VD01
H11	DVP2D00	A36	HD01#	A24	HD61#	AB36	MCLKO-	AT19	MD54	A05	NC	AT03	VD02
D10	DVP2D01	C33	HD02#	B22	HD62#	AB35	MCLKO+	AR19	MD55	AA01	NC	AR04	VD03
C11	DVP2D02	C32	HD03#	E22	HD63#	AT27	MCS0#	AR14	MD56	AB31	NC	AN02	VD04
C10	DVP2D03	E31	HD04#	C31	HDBI0#	AP27	MCS1#	AM14	MD57	AC01	NC	AN01	VD05
E10	DVP2D04	B34	HD05#	E35	HDBI1#	AT24	MCS2#	AP13	MD58	AC04	NC	AP05	VD06
G10	DVP2D05	B33	HD06#	G27	HDBI2#	AP26	MCS3#	AR11	MD59	AD01	NC	AN05	VD07
F11		A34	HD07#	D22	HDBI3#	AF35	MD00	AP14	MD60	AD04	NC	AM01	VD08
C09		D30	HD08#	K32	HDBSY#	AG34	MD01	AN14	MD61	AE01	NC	AM03	VD09
E08		A30	HD09#	J33	HDEFER#	AJ36	MD02	AT12	MD62	AE04	NC	AT05	VD10
B07		B31	HD10#	L31	HDPWR#	AK35	MD03	AP12	MD63	AF01	NC	AM06	VD11
F09		B30	HD11#	K33	HDRDY#	AF34	MD04	AH36	MDQM0#	AF04	NC	AL02	VD12
C07		E30	HD12#	B32	HDSTB0N#	AG35	MD05	AF30	MDQM1#	AG01	NC	AL01	VD13
D09	DVP2DE	C29	HD12# HD13#	A32	HDSTB0N# HDSTB0P#	AJ34	MD05 MD06	AN36	-	B01	NC NC	AN06	VD13 VD14
		B29	HD13# HD14#	C34	HDSTB0F# HDSTB1N#	AK34	MD07	AN23	MDQM2# MDQM3#	C01	NC NC	AT06	VD14 VD15
A09	DVP2HS	C30	HD14# HD15#	C34 C35	HDSTB1N# HDSTB1P#	AG32	MD07 MD08	AN20		D01	NC NC	A106 AP04	VD15 VDNCMD
E11									`				
B10		D36	HD16#	E26	HDSTB2N#	AF32	MD09	AT15	-	E01	NC NC	AT01	VDNSTB-
II I		F36	HD17#	G26	HDSTB2P#	AH30	MD10	AP21	-	H01	NC	AR01	VDNSTB+
		G36		C25	HDSTB3N#	AJ31	MD11	AT13		J01	NC	AL05	VLCOMPN
		H34	HD19#	C24	HDSTB3P#	AF31	MD12	AH35		K01	NC	AM05	VLCOMPP
B08		H35	HD20#	H22	HGTLCOMPN	AH32	MD13	AJ35	_	L01	NC	AL06	VLVREF
A06		F35	HD21#	G22	HGTLCOMPP	AH31	MD14	AH34	-	L03	NC	AM04	VPAR
		G35	HD22#	U30	HGTLVREF0	AJ32	MD15	AH33	_	L04	NC	AR05	VUPCMD
N34		C36	HD23#	J25	HGTLVREF1	AK33	MD16	AP36	-	M01	NC	AR03	VUPSTB-
R33	HA05#	D35	HD24#	L36	HHIT#	AL36	MD17	AR36	MDQS2+	M04	NC	AT02	VUPSTB+
T33	HA06#	F34	HD25#	L34	HHITM#	AP35	MD18	AP23	MDQS3-	N01	NC	D12	XIN
R34	HA07#	F33	HD26#	J34	HLOCK#	AL34	MD19	AR22	MDQS3+	N04	NC		
P36	HA08#	G34	HD27#	T32	HREQ0#	AL35	MD20	AN18	MDQS4-	P01	NC		
P34	HA09#	G33	HD28#	T31	HREQ1#	AM35	MD21	AP18	MDQS4+	P04	NC		
N35	HA10#	E33	HD29#	R32	HREQ2#	AT36	MD22	AR15	MDQS5-	R01	NC		
R36		H32	HD30#	M32	HREQ3#	AM34	MD23	AP15	MDQS5+	T01	NC		
					ν.		_	ـــــــال	~		-	l	

Table 4. Power / Ground Ball List

Ball Name	Ball Numbers
VTT	A17, A18, A19, A20, A21, B17, B18, B19, B20, B21, C17, C18, C19, C20, C21, D17, D18, D19, D20, D21, E17, E18, E19, E20, E21, F17, F18, F19, F20, F21, G17, G18, G19, G20, G21, M17, M18, M19, N18, N19, N20, N21, N22, N23, N24, P24, R24, T24, U24, V24, W24, Y24
VCCMEM	AA24, AB24, AC24, AD16, AD17, AD18, AD19, AD20, AD21, AD22, AD23, AD24, AJ26, AJ28, AK25, AK27, AK29, AL26, AL28, AL30, AM25, AM27, AM29, AM31, AN26, AN27, AN31, AN33, AP30, AR26, AR33, AT25, AT28, AT31, AT35
VCC15	AA12, AB12, AB25, AC12, AC25, AD12, AE14, AE16, AE18, AE20, AE21, AE22, AJ10, AJ11, AJ12, AJ13, AJ14, AK09, AK10, AK11, AK12, AK13, AK15, AL08, AL09, AL10, AL11, AL12, AL14, AM07, AM08, AM09, AM10, AM11, AM12, AM13, AN07, AN08, AN09, AN10, AN11, AP07, AP08, AP09, AP10, AP11, AR07, AR08, AR09, AR10, AT07, AT08, AT09, AT10, M12, M13, M14, M15, M16, M20, M21, M22, M23, M24, N12, N25, P12, P25, R12, T12, T25, U12, U25, V12, W12, W25, Y12, Y25
VCC15VL	AD13, AD14, AD15
VCC33PEX	AA13, AB13, AC13, AJ01, AJ02, AJ03, AJ04, AJ05, AJ06, AJ07, AK01, AK02, AK03, AK04, AK05, AK06, AK07, N13, N14, P13, R13, T13, U13, V13, W13, Y13
VCC33GFX	N15, N16, N17
VSUS15	AD31
VSUS15PEX	AF07
GND	A01, A02, A03, A08, A10, A22, A25, A27, A29, A31, A33, A35, AA02, AA04, AA05, AA07, AA14, AA15, AA16, AA17, AA18, AA19, AA20, AA21, AA22, AA23, AA31, AA33, AA35, AB02, AB04, AB05, AB07, AB14, AB15, AB16, AB17, AB18, AB19, AB20, AB21, AB22, AB23, AC02, AC05, AC06, AC07, AC14, AC15, AC16, AC17, AC18, AC19, AC20, AC21, AC22, AC23, AD02, AD05, AD32, AE02, AE05, AE32, AE34, AF02, AF05, AF05, AG02, AG03, AG04, AG05, AG30, AG31, AG33, AG36, AJ19, AJ20, AJ23, AJ33, AK17, AK18, AK22, AK32, AK36, AL03, AL07, AL15, AL16, AL17, AL19, AL22, AL24, AL33, AM02, AM36, AN12, AN13, AN17, AN19, AN35, AP02, AP03, AP06, AP16, AP22, AP24, AR02, AR06, AR16, AR23, AR35, AT04, AT11, AT14, AT17, AT20, AT22, AT23, B02, B03, B04, B36, C02, C03, C04, C05, C12, C26, C27, D03, D04, D05, D06, D08, D11, D13, D23, D24, D29, D31, D32, D34, E02, E04, E05, E06, E07, E09, E34, E36, F01, F02, F04, F05, F06, F07, F10, F13, F14, F23, F24, F26, F27, F29, F30, F32, G01, G02, G04, G07, G11, G29, H02, H04, H07, H23, H24, H27, H31, H33, H36, J02, J04, J05, J06, J07, K02, K04, K05, K07, K31, K34, K36, L02, L05, L07, L32, L33, M02, M05, M07, M36, N02, N05, N07, P02, P05, P06, P07, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P33, P35, R02, R04, R05, R06, R07, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R30, R31, T02, T04, T05, T07, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T34, T36, U02, U05, U07, U14, U15, U16, U17, U18, U19, U20, U21, U22, U23, U31, U33, V02, V05, V07, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V30, V35, W02, W05, W07, W14, W15, W16, W17, W18, W19, W20, W21, W22, W23, Y02, Y05, Y06, Y07, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y21, Y22, Y23, Y30, Y32, Y34, Y36
VCCA33HCK	AC31
GNDAHCK	AC32
VCCA33MCK	AD30
GNDAMCK	AD29
VCCA33PLL[3:1]	A14, A15, A16
GNDAPLL	B14, B15, B16
VCCA33DA[2:1]	A12, A13
GNDADAC	B12, B13
GNDAPEX[2:0]	AH04, AE07, H06
GNDAPEXCK	AH06
VCCA33PEX[2:0]	AH03, AE06, G06
VCCA33PEXCK	AH05

Signal Descriptions

CPU Interface Signal Descriptions

	CPU Interface							
Signal Name	Ball #	I/O	Signal Description	Power Plane				
HA[31:03]#	(see ball lists)	Ю	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the North Bridge during cache snooping operations.	VTT				
HADSTB0N# HADSTB0P# HADSTB1#	T35 R35 W33	Ю	Host Address Strobe. HADSTB0P# / HADSTB0N# are negative-edge going data strobes used to latch HA[30, 16:03]# and HREQ[2:0] on even and odd data beat transfers respectively.	VTT				
HD[63:00]#	(see ball lists)	Ю	Host CPU Data. These signals are connected to the CPU data bus.	VTT				
HDBI[3:0]#	D22, G27, E35, C31	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data pin group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.	VTT				
HDSTB[3:0]P# HDSTB[3:0]N#	C24, G26, C35, A32 C25, E26, C34, B32	Ю	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDSTB3P# / HDSTB3N# are the strobes for HD[63:48]# & HDBI3#; HDSTB2P# / HDSTB2N# are the strobes for HD[47:32]# & HDBI2#; HDSTB1P# / HDSTB1N# are the strobes for HD[31:16]# & HDBI1#; and HDSTB0P# / HDSTB0N# are the strobes for HD[15:0]# & HDBI0#.	VTT				
HADS#	L35	Ю	Address Strobe . The CPU asserts HADS# in T1 of the CPU bus cycle.	VTT				
HDBSY#	K32	Ю	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.	VTT				
HDRDY#	K33	Ю	Data Ready . Asserted for each cycle that data is transferred.	VTT				
ННІТ#	L36	IO	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HHITM# by the target to extend the snoop window.	VTT				
HHITM#	L34	Ю	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.	VTT				
HLOCK#	J34	Ю	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.	VTT				
HREQ[4:0]#	M31, M32, R32, T31, T32	Ю	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.	VTT				
HTRDY#	M35	О	Host Target Ready. Indicates that the target of the processor transaction is able to enter the data transfer phase.	VTT				

Note: Clocking of the CPU interface is performed with HCLK+ and HCLK- (see clock signal description group).

Note: Internal pullup resistors are provided on all AGTL+ interface signals. If the CPU does not have internal pullups, these

North Bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specs (see VD3 strap).

Note: I/O pads for the above signals are powered by VTT. Input voltage levels are referenced to GTLVREF.

	CPU Interface (continued)									
Signal Name	Ball #	I/O	Signal Descr	ription			Power Plane			
HRS[2:0]#	J36, N36, J35	О				e per the table below:	VTT			
				Response type		Response type				
			000	Idle State	100	Hard Failure				
			001	Retry Response	101	Normal Without Data				
			010	Defer Response	110	Implicit Writeback				
			011	Reserved	111	Normal With Data				
HDPWR#	L31	O				e power on the mobile	VTT			
			CPU data bu	s input buffer. Conn	ect to mobile C	PU if used.				
HBREQ0#	M34	IO	Bus Request	us Request 0. Bus request output to CPU.						
HBPRI#	J32	O				s signal will always be	VTT			
			the next bus	s owner. This sign	nal has priority	over symmetric bus				
			requests and	causes the current	symmetric own	er to stop issuing new				
			transactions	unless the HLOCK#	signal is assert	ed. The CN896 drives				
			this signal to	gain control of the p	rocessor bus.					
HBNR#	K35	IO				ent request bus owner	VTT			
			from issuing	new requests. This	signal is used	to dynamically control				
			the processor	r bus pipeline depth.						
HDEFER#	J33	O	Defer. The	CN896 uses a dynam	nic deferring po	licy to optimize system	VTT			
			performance	. The CN896 also u	ses the HDEFE	R# signal to indicate a				
			processor ret	ry response.		•				
CPURST#	F22	О	CPU Reset.	Reset output to CPI	U. External pul	lup and filter capacitor	VTT			
			to ground							
			recommenda	tions.						

Note: I/O pads for the above signals are powered by VTT. Input voltage levels are referenced to GTLVREF.

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

DDR SDRAM Memory Controller Signal Descriptions

			DRAM Interface	
Signal Name	Ball #	I/O	Signal Description	Power Plane
MD[63:00]	(see ball lists)	Ю	Memory Data. These signals are connected to the DRAM data bus.	VCCMEM
MA[13:00]	(see ball lists)	О	Memory Address. DRAM address lines.	VCCMEM
HSRAS#, HSCAS#,	AN28, AR27,	О	Row Address, Column Address and Write Enable	VCCMEM
HSWE#	AP28		Command Indicator Set.	
MBA[0:2]	AR28, AP29,	О	Bank Address: defines which bank will receive an	VCCMEM
	AP33		ACTIVE, READ, WRITE, or PRECHARGE command.	
MCS[3:0]#	AP26, AT24,	О	Chip Select. Chip select of each bank.	VCCMEM
	AP27, AT27			
MDQM[7:0]#	AT13, AP21,	О	DDR Data Mask. Data mask of each byte lane.	VCCMEM
	AT15, AN20,			
	AN23, AN36,			
	AF30, AH36			
MDQS[7:0]+/-	(see ball lists)	IO	DDR Data Strobe. Data strobe of each byte.	VCCMEM
MCKE[3:0]	AN34, AR34,	О	Clock Enables. Clock enables for each DRAM bank for	VCCMEM
	AP34, AT34		powering down the SDRAM or clock control for reducing	
			power usage and for reducing heat / temperature in high-	
			speed memory systems.	
MEMDET	AF36 I Memory Detect: Strap low for DDR.			
MODT[3:0]	AN25, AR24,	О	On Die Termination. Enables termination resistance	VCCMEM
	AP25, AT26		internal to the DDR2 SDRAM	

Note: I/O pads for all SDRAM signals are powered by VCCMEM. MD / MDQS input voltage levels are referenced to MEMVREF.

PCI Express Interface

PCI Express (PCIe) Port G						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
PEXRX[15:00]+/-	(see ball lists)	I	PCI Express Port G Differential Receive Data [15:00]. These signals are multiplexed with Digital Video Port signals.			
PEXTX[15:00]+/-	(see ball lists)	О	PCI Express Port G Differential Transmit Data [15:00].	VCC33PEX		

PCI Express (PCIe) Port 0						
Signal Name Ball # I/O Signal Description Power Plan						
PEXRX16+/-	AF04, AE04	I	PCI Express Port 0 Differential Receive Data 0.	VCC33PEX		
PEXTX16+/-	AG01, AF01	О	PCI Express Port 0 Differential Transmit Data 0.	VCC33PEX		

Ultra V-Link Signal Descriptions

Ultra V-Link Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
VD[15:00]	(see ball list)	IO	V-Link Data Bus. Used to transfer data between the North Bridge and the South Bridge.	VCC15VL		
VPAR	AM04	IO	Parity.	VCC15VL		
VBE#	AN04	IO	V-Link Byte Enable.	VCC15VL		
VUPCMD	AR05	Ι	V-Link Command from Client (South Bridge) to Host (North Bridge).	VCC15VL		
VUPSTB+	AT02	I	V-Link Strobe from Client to Host.	VCC15VL		
VUPSTB-	AR03	I	V-Link Complement Strobe from Client to Host.	VCC15VL		
VDNCMD	AP04	О	V-Link Command from Host (North Bridge) to Client (South Bridge).	VCC15VL		
VDNSTB+	AR01	О	V-Link Strobe from Host to Client.	VCC15VL		
VDNSTB-	AT01	О	V-Link Complement Strobe from Host to Client.	VCC15VL		

CRT and Serial Bus Signal Descriptions

CRT Interface						
Signal Name Ball # I/O Signal Description						
CRTAR	C14	AO	Analog Red. Analog red output to the CRT monitor.	VCC33DAC		
CRTAB	E14	AO	Analog Blue. Analog blue output to the CRT monitor.	VCC33DAC		
CRTAG	D14	AO	Analog Green. Analog green output to the CRT monitor.	VCC33DAC		
CRTHSYNC	E12	О	Horizontal Sync. Output to CRT.	VCC33GFX		
CRTVSYNC	F12	О	Vertical Sync. Output to CRT.	VCC33GFX		
CRTRSET	C13	AI	Reference Resistor. Tie to GND through an external	VCC33GFX		
			80.6Ω 1% resistor to control the RAMDAC full-scale current value.			

	SMB / I2C Interface						
Signal Name	Signal Name Ball # I/O Signal Description						
CRTSPCLK	G13	IO	Serial Port (SMB / I2C) Clock and Data. The SPCLKn pins are the	VCC33GFX			
CRTSPD	E13		clocks for serial data transfer. The SPDn pins are the data signals used for serial data transfer.				
DVPSPCLK	C08						
DVPSPD	A07						

Dedicated Digital Video Port (DVP2) Interface

	TV-Out Interface					
Signal Name	Ball #	I/O Signal Description Po				
DVP2D[11:00]	(see ball lists)	О	TV encoder Data Output	VCC33GFX		
DVP2HS	E11	О	TV encoder Horizontal Sync.	VCC33GFX		
DVP2VS	B10	О	TV encoder Vertical Sync.	VCC33GFX		
DVP2CLK	B09	О	TV encoder Clock.	VCC33GFX		
TVCLKR/DVP 2DET	A09	Ι	TV encoder clock return.	VCC33GFX		
DVP2DE	D09	О	TV encoder Data Enable.	VCC33GFX		

Flat Panel Power Control						
Signal Name	Signal Name Ball # I/O Signal Description Power I		Power Plane			
LVDSENVDD	B11	О	Enable Panel VDD Power.	VCC33GFX		
LVDSENVBLD	A11	О	Enable Panel Back Light.	VCC33GFX		

PCIe-multiplexed Digital Video Port 1 (DVP1) Interface

The DVP1 Digital Video Port is supported through multiplexing with PCIe signals. It can be configured as either a LVDS transmitter or a DVI Transmitter interface port.

			LV	DS Transmitter	
Signal Name	PCIe Name	Ball #	I/O	Signal Description	Power Plane
DVP1D00	PEXRX14+	AB03	О	Data.	VCC33PEX
DVP1D01	PEXRX13-	AB06			
DVP1D02	PEXRX13+	AA06			
DVP1D03	PEXRX12-	AA03			
DVP1D04	PEXRX12+	Y03			
DVP1D05	PEXRX11-	V06			
DVP1D06	PEXRX10-	W03			
DVP1D07	PEXRX10+	V03			
DVP1D08	PEXRX09-	U06			
DVP1D09	PEXRX09+	T06			
DVP1D10	PEXRX08-	U03			
DVP1D11	PEXRX08+	T03			
DVP1VS	PEXRX15-	AE03	О	Vertical Sync.	VCC33PEX
DVP1HS	PEXRX15+	AD03	О	Horizontal Sync.	VCC33PEX
DVP1DE	PEXRX14-	AC03	О	Data Enable.	VCC33PEX
DVP1CLK	PEXRX11+	W06	О	Clock Out. Output to TV Encoder. Internal pull down.	VCC33PEX

DVI Transmitter						
Signal Name	PCIe Name	Ball #	I/O	Signal Description	Power Plane	
DVP1D0	PEXRX14+	AB03	O	Data.	VCC33PEX	
DVP1D1	PEXRX13-	AB06				
DVP1D2	PEXRX13+	AA06				
DVP1D3	PEXRX12-	AA03				
DVP1D4	PEXRX12+	Y03				
DVP1D5	PEXRX11-	V06				
DVP1D6	PEXRX10-	W03				
DVP1D7	PEXRX10+	V03				
DVP1D8	PEXRX9-	U06				
DVP1D9	PEXRX9+	T06				
DVP1D10	PEXRX8-	U03				
DVP1D11	PEXRX8+	T03				
DVP1VS	PEXRX15-	AE03	О	Vertical Sync.	VCC33PEX	
DVP1HS	PEXRX15+	AD03	О	Horizontal Sync.	VCC33PEX	
DVP1DE	PEXRX14-	AC03	O	Data Enable.	VCC33PEX	
DVP1DET	NC	L03	I	Display Detect.	VCC33GFX	
DVP1CLK	PEXRX11+	W06	О	Clock Out.	VCC33PEX	

Clock Signal Descriptions

	Clock						
Signal Name	Ball #	I/O	Signal Description	Power Plane			
VCLK	AL04	I	V-Link Clock. This signal receives the 66 MHz clock used to generate the internal clocks required by V-Link interface between the North Bridge and South Bridge.	VCC15VL			
HCLK+	AC29	I	Host Clock. This signal receives the host CPU clock (100 / 133 / 166 / 200 MHz). This clock is used by all CN896 logic that is in the host CPU domain.	VTT			
HCLK-	AC30	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.	VTT			
PEXCLK+ PEXCLK-	AG06 AF06	I	PCI Express Differential Clock. These signals receive the 100 MHz clock used by the internal PCI Express logic. Multiplied up to 2.5 GHz onchip for use by the integrated PCI Express PHY to transmit / receive data.	VCCA33PEX			
MCLKO+	AB35	О	Memory (SDRAM) Clock. Output from internal clock generator to external memory interface clock buffer (if required for fanout)	VCCMEM			
MCLKO-	AB36	О	Memory (SDRAM) Clock Complement.	VCCMEM			
MCLKI	AB34	I	Memory (SDRAM) Clock Feedback. Input from MCLKO.	VCCMEM			
DISPCLKI	G12	I	Dot Clock (Pixel Clock) In. Used for external EMI reduction circuit if used. Connect to GND if external EMI reduction circuit not implemented.	VCC33GFX			
DISPCLKO	H12	О	Dot Clock (Pixel Clock) Out. Used for external EMI reduction circuit if used. NC if external EMI reduction circuit not implemented.	VCC33GFX			

Reset, Power Control, GPIO, Interrupt and Test Signal Descriptions

]	Resets,	Power Control, General Purpose I/O, Interrupts and Test	
Signal Name	Ball #	I/O	Signal Description	Power Plane
XIN	D12	Ι	Reference Frequency Input. External 14.31818 MHz clock source. All internal graphics controller clocks are synthesized on chip using this frequency as a reference.	VCC33GFX
PWROK	AD34	I	Power OK. Connect to South Bridge and Power Good circuitry.	VSUS15
SUSST#	AD35	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pull-up to disable.	VSUS15
RESET#	AD36	I	Reset. Input from the South Bridge chip. When asserted, this signal resets the CN896 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options	VCCMEM
CPUSLPIN#	AB32	I	Input from SLP# of South Bridge chip. This signal is used to inform North Bridge when the processor is in C3/C4 state.	VTT
BUSY#	AC35	О	Busy. Indicates that master cycles are pending in the chip. Used by the power management system to avoid changing the system power state while a master cycle is in progress.	VCCMEM
GPOUT	A06	О	Reserved for display.	VCC33GFX
GPO0	B08	О	Reserved for display.	VCC33GFX
PEXWAKE#	AC34	OD	PCI Express Wake. Indicates that a system wake event has occurred on the PCI Express bus. Used to waken the chip from deep sleep mode (S3 / S4 / S5 states). Wire-OR with other system WAKE# signals (including PEWAKE# on the PCI Express bus connector) and connect to the South Bridge PME input.	VSUS15
PEXPMESCI#	AC33	OD	PCI Express PME SCI. System Control Interrupt to indicate Power Management Event. Connect to South Bridge SCI input (GPIO pin).	VSUS15
PEXHPSCI#	AC36	OD	PCI Express Hot-Plug SCI. System Control Interrupt to indicate Hot Plug occurred. Connect to South Bridge SCI input (GPIO pin).	VSUS15
PEXINTR#	B06	OD	PCI Express Interrupt. Connect to South Bridge interrupt input to indicate that an interrupt condition was detected on PCI Express bus or the internal APIC.	VCC33PEX
INTA#	H13	О	Interrupt. PCI interrupt output (handled by the interrupt controller in the South Bridge)	VCC33GFX
TESTEN	AE36	I	Test Enable. This signal is used for testing. Pull down for normal operation.	VCCMEM
PEXDET	B05	Ι	PCI Express Detect. Used to determine the presence of an external PCI Express device.	VCC33GFX

Trusted Platform Module Signal Descriptions

Trusted Platform Module (TPM)					
Signal Name	Signal Name Ball # I/O Signal Description Power Plane				
TCSEN#	D07	I	Trusted Configuration Space Enable.	VCC33	

Compensation Signal Descriptions

Compensation					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
VLCOMPP	AM05	AI	V-Link P Compensation.	VCC15VL	
VLCOMPN	AL05	ΑI	V-Link N Compensation.	VCC15VL	
HGTLCOMPP	G22	AI	AGTL P Compensation.	VTT	
HGTLCOMPN	H22	AI	AGTL N Compensation.	VTT	
MEMCOMP	AM33	ΑI	DRAM Compensation. Memory interface IO buffer calibration.	VCCMEM	
PEXCOMP0	H05	AI	PCI Express Port G Compensation 0.	VCC33PEX	
PEXREXT0	G05	ΑI	PCI Express Port G External Resistor 0.	VCC33PEX	
PEXCOMP1	AD07	AI	PCI Express Port G Compensation 1.	VCC33PEX	
PEXREXT1	AD06	AI	PCI Express Port G External Resistor 1.	VCC33PEX	
PEXCOMP2	AH01	ΑI	PCI Express Port 0 Compensation.	VCC33PEX	
PEXREXT2	AH02	AI	PCI Express Port 0 External Resistor.	VCC33PEX	

Reference Voltage Signal Descriptions

	Reference Voltages							
Signal Name Ball # I/O Signal Description Power P								
HGTLVREF[1:0]	J25, U30	Р	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See Design Guide.	VTT				
MEMVREF[1:0]	AJ18, AG29	P	Memory Voltage Reference. ½ VCCMEM ±2% typically derived using a resistive voltage divider. See Design Guide.	VCCMEM				
VLVREF	AL06	P	V-Link Voltage Reference. 0.45V ±2% derived using a resistive voltage divider. See Design Guide.	VCC15VL				

Power/Ground Descriptions

	Analog Power / Ground							
Signal Name	Ball #	I/O	Signal Description					
VCCA33HCK	AC31	P	Power for Host CPU Clock PLL (3.3V ±5%).					
GNDAHCK	AC32	P	Ground for Host CPU Clock PLL. Connect to main ground plane.					
VCCA33MCK	AD30	P	Power for Memory Clock PLL (3.3V ±5%)					
GNDAMCK	AD29	P	Ground for Memory Clock PLL. Connect to main ground plane.					
VCCA33PLL[3:1]	A14, A15, A16	P	Power for Graphics Controller PLL (3.3V ±5%).					
GNDAPLL	B14, B15, B16	P	Ground for Graphics Controller PLL. Connect to main ground plane.					
VCCA33DAC[2:1]	A12, A13	P	Power for DAC. $(3.3V \pm 5\%)$					
GNDADAC	B12, B13	P	Ground for DAC. Connect to main ground plane.					
GNDAPEX[2:0]	AH04, AE07, H06	P	Ground for PCI Express Ports.					
GNDAPEXCK	AH06	P	Ground for PCI Express Clock.					
VCCA33PEX[2:0]	AH03, AE06, G06	P	Power for PCI Express Port.					
VCCA33PEXCK	AH05	P	Power for PCI Express Clock.					

	Digital Power / Ground							
Signal Name	Ball #	I/O	Signal Description					
VTT	(see ball lists)	P	Power for CPU I/O Interface Logic. Voltage is CPU dependent. See Design Guide for details.					
VCCMEM	(see ball lists)	P	Power for Memory I/O Interface Logic. 2.5V±5%. (DDR) / 1.8V±5%. (DDR2)					
VCC15VL	AD13, AD14, AD15	P	Power for V-Link I/O Interface Logic. 1.5V ±5%					
VCC33PEX	(see ball lists)	P	Power for PCIe I/O Interface Logic. 3.3V ±5%					
VCC33GFX	N15, N16, N17	P	Power for Graphics Display I/O Logic. 3.3V ±5%					
VCC15	(see ball lists)	P	Core Power. 1.6V ±5%					
VSUS15	AD31	P	Suspend Power. 1.5V ±5%					
VSUS15PEX	AF07	P	PCI Express Suspend Power. 1.5V ±5%					
GND	(see ball lists)	P	Digital Ground. Connect to main ground plane.					

Strap Signal Descriptions

Strap Signals (External pullup / pulldown straps are required to select "H" / "L")							
Signal	Actual Strap Pin	Function	Description				
DVP2D[03:00]		Panel Type	Reserved for customer definition Pull down if not used				
DVP2D04		Port Muxing	L: Dual 12-Bit DVI Interface H: One 24-Bit Panel Interface				
DVP2D05		DVP2 Configuration	L: DVI Interface H: TV Encoder				
DVP2D06		DVP2 Enable	L: Disable H: Enable				
DVP2D07		GFX Clock Select (VCLK/LCDCK/ECK)	L: Refer Internal PLL H: From External				
DVP2D10		CPUCK/MCK Select	L: From NB H: From External				
DVP2D[08,09,11]		-reserved-	Must pull down (Except DVP2D11)				
VD07	PDCS3#	V-Link Reference Voltage Select (4x)	L: 0.75V H: 0.9V				
VD06	PDA2	V4 Capability	L: Disable H: Enable				
VD05	PDA1	V4-Lite Capability	L: Disable H: Enable				
VD04	PDA0	V-Link Compensation	L: Auto Compensation H: Manual Setting				
VD03	GPIOD	AGTL+ Pullups	L: Enable internal AGTL+ Pullups H: Disable internal AGTL+ Pullups				
VD02	GPIOB	IOQ Depth	L: 12-level deep H: 1-level deep				
VD[01:00]	GPIOA, GPIOC	FSB Frequency	LL: 100 MHz LH: 133 MHz HL: 200 MHz HH: Auto Mode (166 MHz can be obtained in this mode)				

Note:

VD[07:00] are sampled during system initialization; the actual signals are located on the South Bridge chip.

REGISTER OVERVIEW

In the register descriptions, column "Default" indicates the power-on default value of register bit(s), while column "Attribute" indicates access type of register bit.

Abbreviation

Read / Write Attributes: read / write attributes may be used together to specify combined attributes

RO: Read Only.
RZ: Read as Zero.
R1: Read as 1.

WO: Write Only. (register value cannot be read by the software)

IW: Ignore Write.

MW: Must Write back what is read.

XW: Backdoor Write. RW: Read / Write.

RW1: Write Once then Read Only after that. **RW1C:** Read / Write of "1" clears bit to zero.

RsvdP: Reserved. Must do a read-modify-write to preserve the bit values.

RsvdZ: Reserved. Must write 0's. **RSM**: Bits are in resume-well.

Sticky Attributes: adding a "S" in tail to indicate a sticky register, which means that register will not be set or altered by hot reset. **Ex. RWS**: Sticky-Read/Write. **ROS**: Sticky-Read Only. **RW1CS**: Sticky-Write-1-to-Clear.

Default Value Definitions

Dip: means the default value is set by dip switch or strapping. **HwInit:** Hardware initialized; bit default value is set by hardware.

PCI Device & Function Definitions

To specifically identify a PCI function, the following abbreviations will be applied in subsequent sections.

D0F0: Device 0, Function 0 – Host Control

D0F1: Device 0, Function 1 – Error Reporting

D0F2: Device 0, Function 2 – Host Bus Control

D0F3: Device 0, Function 3 – DRAM Bus Control

D0F4: Device 0, Function 4 – Power Management Control

D0F5: Device 0, Function 5 – APIC and Central Traffic Control

D0F6: Device 0, Function 6 – Scratch Registers

D0F7: Device 0, Function 7 – V-Link Control

D1F0: Device 1, Function 0 – PCI-to-PCI Bridge – PCI2

D2F0: Device 2, Function 0 – PCI-to-PCI Bridge – PCI Express Root Port G

D3F0: Device 3, Function 0 – PCI-to-PCI Bridge – PCI Express Root Port 0

PCI Express Port & Register Block Definitions

PEG: PCI Express Port G **PE0:** PCI Express Port 0

RCRB: PCI Express Root Complex Register Block

Default Value: 0000 0000h

Default Value: 0000 0000h

Miscellaneous I/O

I/O Port Address: 22h

PCI Arbiter Disable

Default Value: 00h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RW	0	PCI Arbiter Control
			0: Enable PCI1 Bus Arbiter (arbiter will respond to REQ# assertion)
			1: Disable PCI1 Bus Arbiter (arbiter will not respond to PCI-1 REQ# and PREQ# assertion)

PCI Configuration Space I/O

All north bridge's PCI space registers are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

I/O Port Address: CFB-CF8h

PCI Configuration Address

Bit	Attribute	Default	Description
31	RW	0	Configuration Space Enable
			0: Disabled
			1: Convert configuration data port writes to configuration cycles on the PCI bus
30:24	RO	0	Reserved (always reads 0)
23:16	RW	0	PCI Bus Number
			Used to choose a specific PCI bus in the system
15:11	RW	0	Device Number
			Used to choose a specific device in the system
10:8	RW	0	Function Number
			Used to choose a specific function if the selected device supports multiple functions
7:2	RW	0	Register Number (also called the "Offset")
			Used to select a specific DWORD in the configuration space
1:0	RW	0	Fixed (always reads 0)

I/O Port Address: CFF-CFCh

PCI Configuration Data

ſ				
	Bit	Attribute	Default	Description
	31.0	RW	0	PCI Configuration Data

Note: Refer to PCI Bus Specification Version 2.3 for further details on operation of the above configuration registers.

REGISTER DESCRIPTIONS

Device 0 Function 0 (D0F0): Host Controller

Device 0 Function 0, a host controller, is connected to the PCI bus through AD11 as the IDSEL.

All registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through I/O registers CF8 / CFC with bus number 0, device number 0 and function number 0.

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F0)

Vendor ID Default Value: 1106h

L	Bit	Attribute	Default	Description
I	15:0	RO	1106h	VIA Technologies ID Code

Offset Address: 3-2h (D0F0)

Device ID Default Value: 0364h

Bit	Attribute	Default	Description
15:0	RO	0364h	Device ID

Offset Address: 5-4h (D0F0)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:10	RO	0	Reserved
9	RO	0	Fast Back-to-Back Cycle Enable
			Hardwired to 0. (Disable)
8	RO	0	SERR# Enable
			Hardwired to 0 (Not supported)
7	RO	0	Address / Data Stepping
			Hardwired to 0 (Not supported)
6	RO/RW	0	Parity Checking
			0: Ignore parity errors
			1: Perform parity check and take normal action on detected parity errors
			When D0F7 $RxA0[1] = 0$, D0F0 $Rx04[6]$ is RO .
		_	When D0F7 RxA0[1] = 1, D0F0 Rx04[6] is RW.
5	RO	0	VGA Palette Snooping
	200	0	Hardwired to 0 (Not implemented)
4	RO	0	Memory Write and Invalidate
2	D.O.	0	Hardwired to 0 (Not supported)
3	RO	0	Respond To Special Cycle
	D.O.	11	Hardwired to 0 (Does not monitor special cycles)
2	RO	1b	PCI Master Function
	D.O.	11	Hardwired to 1 (May behave as a bus master)
1	RO	1b	Memory Space Access
	D.O.	0	Hardwired to 1 (Responds to memory space access)
0	RO	0	I/O Space Access
			Hardwired to 0 (Does not respond to I/O space)

Offset Address: 7-6h (D0F0)

PCI Status Default Value: 0210h

Bit	Attribute	Default	Description						
15	RW1C	0	Detect Parity Error						
			0: No parity error detected						
			1: Error detected in either address or data phase						
14	RO	0	Signaled System Error (SERR#)						
13	RO/RW1C	0	Set when terminated with Master-Abort, except special cycle						
			0: No abort received 1: Transaction aborted by the master						
12	RW1C	0	Set when received a Target-Abort						
			0: No abort received 1: Transaction aborted by the target						
11	RO	0	Set when signaled a Target-Abort						
			NB never signals Target Abort						
10:9	RO	01b	DEVSEL# Timing						
			00: Fast 01: Medium						
			10: Slow 11: Reserved						
8	RW1C	0	Set when set or observed SERR# and Parity Error						
			(See D0F0 Rx4[6] for details)						
			0: Disable 1: Enable						
7	RO	0	Capable of Accepting fast back-to-back as a target						
			Hardwired to 0 (Not implemented)						
6	RO	0	User Definable Features						
			Hardwired to 0						
5	RO	0	66 MHz Capable						
			Hardwired to 0 (Not implemented)						
4	RO	1b	Support New Capability List						
3:0	RO	0	Reserved						

Offset Address: 8h (D0F0)

Revision ID Default Value: 00h

I	Bit	Attribute	Default	Description
	':0	RO	0	Revision Code

Offset Address: 0B-9h (D0F0)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F0)

Cache Line Size Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Cache Line Size

Offset Address: 0Dh (D0F0)

PCI Master Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:3	RW	0	PCI Bus Time Slice for CPU as a Master (in unit of PCI clocks)
2:0	RO	0	Reserved D0F0 Rx0D[2:1] is programmable; however, it's read as 0

Offset Address: 0Eh (D0F0)

Header Type Default Value: 00 or 80h

Bit	Attribute	Default	Description			
7:0	RO	00 or 80h	Header Type It could be 80h when D0F0 Rx4F[0] = 1			

Default Value: 0000 0008h

Offset Address: 0Fh (D0F0)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	BIST Support Hardwired to 0 (Not supported)
6:0	RO	0	Reserved

Offset Address: 13-10h (D0F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description
31:22	RW	0	Programmable Base Address
			These bits behave as if hardwired to 0 if D0F0 Rx94[11:0] is set to 0.
			See the following Graphics Aperture Base Address Table for details.
			(Note: this range is defined as prefetchable)
21:4	RO	0	Reserved
			Hardwired to 0
3	RO	1b	Prefetchable
2:1	RO	0	Type
			Indicate that the address range is in the 32-bit address space
0	RO	0	Memory Space
			Indicates that the address range is in the memory address space.

Table 5. Graphics Aperture Base Address Table

Aperture Base Rx10[31:22]	31	30	29	28			27	26	25	24	23	22	Amantuna Siga
Aperture Size Rx94[11:0]	11	10	9	8	7	6	5	4	3	2	1	0	Aperture Size
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	4M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	0	8M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	0	0	16M
	RW	RW	RW	RW	0	0	RW	RW	RW	0	0	0	32M
	RW	RW	RW	RW	0	0	RW	RW	0	0	0	0	64M
	RW	RW	RW	RW	0	0	RW	0	0	0	0	0	128M
	RW	RW	RW	RW	0	0	0	0	0	0	0	0	256M
	RW	RW	RW	0	0	0	0	0	0	0	0	0	512M
	RW	RW	0	0	0	0	0	0	0	0	0	0	1G
	RW	0	0	0	0	0	0	0	0	0	0	0	2G -Max Size
	0	0	0	0	0	0	0	0	0	0	0	0	4G

Offset Address: 2D-2Ch (D0F0)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F0)

Subsystem ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Offset Address: 33-30h (D0F0) - Reserved

Default Value: 80h

Default Value: 63h

Default Value: 00h

Offset Address: 34h (D0F0)

Capability Pointer Default Value: 80h

Bit	Attribute	Default	Description
7:0	RO	80h	AGP Capability List Pointer An offset address from the start of the configuration space See the following Rx34 Capability Pointer Table for details.

Table 6. AGP Capability Pointer

RX34	RX81	RX51	·
80	51	NULL	RX34 -> RX81 AGP/AGP8X -> RX51 PMU -> NULL

Offset Address: 3F-35h (D0F0) - Reserved

AGP4X/AGP8X Compensation Circuits (40-49h)

Offset Address: 40h (D0F0)

AGP Pad Compensation Control / Status

Bit	Attribute	Default	Description	
7	RW	1b	AGP4X Strobe's Reference Voltage	
			0: Strobe signals do not use AGPVREF as input reference voltage (i.e. STB VREF is STB# and vise versa).	
			1: Strobe signals use AGPVREF as input reference voltage.	
			(Note: This bit is valid only in 4x and 8x mode. Otherwise always use AGPVERF as strobe signals)	
6	RW	0	GP4X Strobe and GD Pad Driving Strength Control	
			0: Driving strength is set to compensation circuit defaults	
			Driving strength is controlled by Rx41[7:0]	
5:3	RO	0	AGP Compensation Circuit N Control Output	
2:0	RO	0	AGP Compensation Circuit P Control Output	

Offset Address: 41h (D0F0)

AGP Driving Strength Control

Bit	Attribute	Default	Description
7:4	RW	6h	AGP Output Buffer Driving Strength N Control
3:0	RW	3h	AGP Output Buffer Driving Strength P Control

Offset Address: 49-42h (D0F0) – Reserved

Miscellaneous Control (4A-4Fh)

Offset Address: 4C-4Ah (D0F0) - Reserved

Offset Address: 4Dh (D0F0)

AGP Capability Header Control

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RW	0	Enable AGP Header Status Register Write
			0: Disable (Status registers in the AGP header cannot be modified)
			1: Enable (Status registers in the AGP header can be modified)

Offset Address: 4Eh (D0F0) - Reserved

Offset Address: 4Fh (D0F0)

Multiple Function Control Default Value: 00h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RW	0	Multi-Function Support
			0: Disable. Functions 1, 2, 3, 4, 7 cannot be accessed, and the value returned will be FFFF FFFFh when accessed
			1: Enable. This bit's setting will be reflected on D0F0 Rx0E[7]

AGP Extended Power Management Control (50-57h)

Offset Address: 50h (D0F0)

Capability ID Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Capability ID

Offset Address: 51h (D0F0)

Next Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Next Pointer

Offset Address: 52h (D0F0)

Power Management Capabilities Default Value: 02h

Bit	Attribute	Default	Description
7:0	RO	02h	Power Management Capabilities

Offset Address: 53h (D0F0)

Power Management Capabilities Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Capabilities

Offset Address: 54h (D0F0)

Power Management Control / Status Default Value: 0nh

Bit	Attribute	Default		Description	
7:2	RO	0	Reserved		
1:0	RW	n	Power State		
			00: D0	11: D3 Hot	

Offset Address: 55h (D0F0)

Power Management Status Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Status

Offset Address: 56h (D0F0)

PCI to PCI Bridge Support Extensions Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	PCI to PCI Bridge Support Extensions

Offset Address: 57h (D0F0)

Power Management Data Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Data

Offset Address: 7F-58h (D0F0) – Reserved

AGP 3.0 Configuration (80-A3h)

Offset Address: CAPPTR (D0F0 83-80h)

Capability Pointer Default Value: 0035 5002h

Bit	Attribute	Default	Description
31:24	RZ	0	Always Return 0 (write no effect)
23:20	R-IW	3h	Major Revision
19:16	R-IW	0h	Minor Revision
		5h	The value of D0F0 Rx80[19:16] is determined by Rx4D[3] to define either 0000b or 0101b.
15:8	R-IW	50h	Pointer to Next Item
7:0	R-IW	02h	Capability ID

Offset Address: CAPPTR + 04h (D0F0 87-84h)

AGP Status Default Value: 0700 020nh

Bit	Attribute	Default	Description						
31:24	R-XW	07h	Max # of AGP Command Requests						
23-18	RZ-XW	0	Reserved						
17	RZ-XW	0	Isochronous Transaction						
			Isochronous transaction is not supported						
			1: Supports Isochronous transaction						
16	RZ-XW	0	Reserved (for future 64-bit AGP)						
15:13	RZ-XW	0	Optimum Asynchronous Request Size						
			ggested setting is 010b or $2^{\hat{A}}(2+4) = 64$ bytes for 8QW access						
12:10	RZ-XW	000b	Calibrating Cycle						
			000: 4ms 001: 16ms						
			010: 64ms 011: 256ms						
			Valid when bit 3 is 1.						
9	R1-XW	1b	Reserved						
8	RZ-XW	0	Coherent Support						
			Not implemented						
7	R-XW	0	64-bit GART Entries						
			Support 32-bit GART entry only						
6	R-XW	0	Host GART Translation						
			0: Support host GART translation						
			1: Does not support host GART translation						
5	R-XW	0	Over 4GB Support – not implemented						
4	R-XW	0	Reserved						
3	R-XW	0	AGP 3.0 Detected						
			0: AGP 2.0 Mode 1: AGP 3.0 Mode						
2:0	R-XW	011b	If bit 3 is 1, the default value is 011: supports 4X and 8X data transfer rate.						
		111b	If bit 3 is 0, the default value is 111: supports 1X, 2X and 4X data transfer rate.						

Offset Address: CAPPTR + 08h (D0F0 8B-88h)

AGP Command Default Value: 0000 0000h

Bit	Attribute	Default		Description				
31:24	RZ-IW	0	Max # of AGP Command Requests					
23:17	RZ-IW	0	Reserved					
16	RZ-MW	0	Reserved					
15:13	RZ-IW	0	Reserved for Master Devices					
12:10	RW	0	Calibrating Cycle					
			Set if D0F0 Rx84[3] is 1.					
			000: 4 ms	001: 16 ms				
			010: 64 ms	011: 256 ms				
9	RW	0	SBA Enable					
			0: Disable	1: Enable				
8	RW	0	AGP Enable					
			0: Disable	1: Enable				
7	RW	0	64-Bit GART					
			Not supported					
6	RZ-MW	0	Reserved					
5	RW	0	Over 4G Support					
			0: Disable	1: Enable				
4	RW	0	Fast Write Enable					
			0: Disable	1: Enable				
3	RZ-MW	0	Reserved					
2:0	RW	0	AGP Data Transfer Rate					
			If D0F0 Rx84[3] = 1					
			001: 4X data transfer rate	010: 8X data transfer rate				
			If D0F0 Rx84[3] = 0					
			001: 1X data transfer rate	010: 2X data transfer rate				
			100: 4X data transfer rate					

Offset Address: CAPPTR + 0Ch: (D0F0 8F-8Ch)

AGP Isochronous Status Default Value: 0000 0000h

This register can only be accessed if D0F0 Rx86[2] is set. Otherwise, all registers are RZ.

Bit	Attribute	Default	Description					
31:24	RZ-IW	0	Reserved					
23:16	R-IW	0	Maximum Bandwidth (in unit of 32 byte					
			Shared by both asynchronous and isochron	ous transactions				
15:8	R-IW	0	Maximum Number of Isochronous Tran	sactions in a Single Isochronous Period				
7:6	R-IW	00b	Isochronous Payload Size Supported					
			00: 32,64,128,256 bytes	01: 64,128,256 bytes				
			10: 128,256 bytes	11: 256 bytes				
5:3	R-IW	0	Isochronous Data Transfer Maximum L	atency (in unit of 1 us)				
2	RZ-IW	0	Reserved					
1:0	RW1C	00b	Isochronous Error Code 00: No error 01: Isoch Request Overflow 1x: Reserved					

Offset Address: CAPPTR + 10h (D0F0 93-90h)

AGP Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:10	RZ	0	Reserved
9	RW	0	Disable Calibration Cycle
8	RW	0	Enable AGP Aperture (Enable CPU/PMSTR GART Access)
			This register controls the reading of D0F0 Rx13-10.
7	RW	0	GTLB Enable
			When set to 0, GART TLB entries are invalidated.
			All AGP aperture accesses need to fetch translation table first.
			It can write to 0, but will return to 1 automatically after a few GCLKs.
6:0	RZ	0	Reserved

Offset Address: CAPPTR + 14h (D0F0 97-94h)

AGP Aperture Size Default Value: 0001 0F00h

Bit	Attribute	Default	Description
31:28	RW	0	Aperture Page Size Select
			The page size is determined by the formula: 2^[n+12]
			Default 0000b, only 4KB is supported.
27	RZ	0	Reserved
26:16	R-IW	01h	Page Size Supported
			If bit N is 1, which indicates support of page size of (2^(N+12)).
			Currently only 4K page size is supported.
15:12	RZ	0	Reserved
11:0	RW	F00h	Aperture Size – Default size is 256MB
			Refer to Aperture Size table for detailed setting (Maximum aperture size: 2GB)
			D0F0 Rx97-94[n] =0 forces APBASE[22+n] to 0 when 0 <= n <= 5
			D0F0 Rx97-94[n] =0 forces APBASE[22+n-2] to 0 when $8 \le n \le 11$
			D0F0 Rx97-94[n] =1 allows APBASE[22+n] to be Read/Write-able.
			Bit 11 is hardwired to 1 and bit [7:6] are hardwired to 00.
			Support maximum 2G Aperture size
			When D0F0 Rx84[3] is 0, it only supports 4MB ~ 256MB.

Table 7. Aperture Size

Tubic // Tipercure Size											
11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	1	1	1	1	1
1	1	1	1	0	0	1	1	1	1	1	0
1	1	1	1	0	0	1	1	1	1	0	0
1	1	1	1	0	0	1	1	1	0	0	0
1	1	1	1	0	0	1	1	0	0	0	0
1	1	1	1	0	0	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
	11 1 1 1 1 1 1 1 1 1 1	11 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 10 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	11 10 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0	11 10 9 8 7 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0	11 10 9 8 7 6 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0	11 10 9 8 7 6 5 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0	11 10 9 8 7 6 5 4 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	11 10 9 8 7 6 5 4 3 1 1 1 1 1 0 0 1 0 0 1 1 0	11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0	11 10 9 8 7 6 5 4 3 2 1 1 0

Offset Address: CAPPTR + 18h (D0F0 9B-98h)

AGP GART Table Pointer Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:12	RW	0	GART Table Base Address [31:12]
11:0	RZ	0	Reserved

Offset Address: CAPPTR + 1Ch (D0F0 9F-9Ch)

AGP GART Table Pointer High

Bit	Attribute	Default	Description
31:0	RW	0	Base Address [63:32] Since OVER4G is not supported, OS should program this register to zero. This register is ignored.

Offset Address: CAPPTR + 20h (D0F0 A3-A0h)

AGP Isochronous Command Default Value: 0000 0000h

This register is not accessible since the ISOCH bit is cleared. Read will be return all zeros, write has no effect.

Bit	Attribute	Default	Description			
31:8	RZ-IW	0	Reserved			
7:6	RW	0	Isochronous Payload Size			
			Default is D0F0 Rx CAPPTR + 0C [7:6](Rx8C)			
5:0	RZ-IW	0	Reserved			

Default Value: 0000 0000h

Offset Address: AF-A4h (D0F0) – Reserved

AGP Enhanced Control (B0-BEh)

Offset Address: B8-B0h (D0F0) - Reserved

Offset Address: B9h (D0F0)

AGP Mixed Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	FIFO Depth Control 0: Normal FIFO Depth - 64 QW, isochronous FIFO Depth - 32 QW 1: Normal FIFO Depth - 96 QW, isochronous FIFO Depth - 0 QW
6:0	RO	0	Reserved

Offset Address: BB-BAh (D0F0) - Reserved

Offset Address: BCh (D0F0)

AGP Control Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6	RW	0	AGP Read Synchronization
			0: Disable 1: Enable
5	RW	0	AGP Read Snoop DRAM Post-Write Buffer
			0: Disable 1: Enable
4:2	RO	0	Reserved
1	RW	0	GGNT Parking Policy
			0: Non-parking GGNT; GGNT is de-asserted after GFRAME or PIPE assertion.
			1: Parking GGNT; after the assertion of GFRAME or PIPE, GGNT is kept asserted till GREQ de-asserted or timeout.
0	RO	0	Reserved

Offset Address: BDh (D0F0) - Reserved

Offset Address: BEh (D0F0)

AGP Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RW	0	CPU GART Read and AGP GART Write Coherency Enable
			0: Disable
			1: Enable

Offset Address: FF-BFh (D0F0) - Reserved

Device 0 Function 1 (D0F1): Error Reporting

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F1)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F1)

Device ID Default Value: 1364h

Bit	Attribute	Default	Description
15:0	RO	1364h	Device ID

Offset Address: 5-4h (D0F1)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F1)

PCI Status Default Value: 0200h

Bit	Attribute	Default	Description
15:0	RO	0200h	PCI Status

Offset Address: 8h (D0F1)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F1)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F1) - Reserved

Offset Address: 0Dh (D0F1)

Latency Timer Default Value: 00h

В	Bit	Attribute	Default	Description
7	7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F1)

Header Type Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Header Type

Offset Address: 0Fh (D0F1)

BIST Default Value: 00h

	Bit	Attribute	Default	Description
I	7:0	RO	0	BIST

Offset Address: 13-10h (D0F1) - Reserved

Offset Address: 2D-2C (D0F1)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2E (D0F1)

Subsystem ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Offset Address: 33-30 (D0F1) – Reserved

Offset Address: 34 (D0F1)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer - Byte offset into configuration space to capability list

Offset Address: 3F-35 (D0F1) - Reserved

Offset Address: 4F-40h (D0F1) – Reserved

V-Link Error Report (50-5Fh)

Offset Address: 57-50h (D0F1) - Reserved

Offset Address: 58h (D0F1)

V-Link Error Command Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Parity Error / SERR Report Through NMI
			0: Disable 1: Enable
6	RW	0	Parity Error / SERR Report Through V-Link to SB
			0: Disable 1: Enable
5:0	RO	0	Reserved

Offset Address: 5F-59h (D0F1) – Reserved

Host Bus Error Report (60-6Fh)

Offset Address: 67-60h (D0F1) - Reserved

Offset Address: 68h (D0F1)

Host Parity Command Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Host Address Parity Generation	and Check (AP[1:0]#)	
			0: Disable	1: Enable	
6	RO	0	Reserved		
5	RW	0	Host Response Parity Generation	(RSP#)	
			0: Disable	1: Enable	
4	RO	0	Reserved		
3	RW	0	Parity Test Mode		
			0: Disable (normal mode)	1: Enable (invert the parity bit)	
2:0	RO	0	Reserved	•	

Offset Address: 6F-69h (D0F1) - Reserved

Offset Address: DF-70h (D0F1) – Reserved

AGP / PCI2 Non Standard Error Reporting (E0-FFh)

Offset Address: E0h (D0F1) - Reserved

Offset Address: E1h (D0F1)

AGP / PCI2 Error Status Default Value: 00h

Bit	Attribute	Default	Description
7:2	RO	0	Reserved
1:0	RO	0	Isochronous Error Code (see D0F0 Rx8C[1:0])

Offset Address: E7-E2h (D0F1) - Reserved

Offset Address: E8h (D0F1)

AGP / PCI2 Error Report Control Default Value: 00h

Bit	Attribute	Default	Description
7:5	RO	0	Reserved
4	RW	0	Parity Error Report for AGP Data Parity Error
			0: Disable 1: Enable
3:0	RO	0	Reserved

Offset Address: FF-E9h (D0F1) - Reserved

Device 0 Function 2 (D0F2): Host Bus Control

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F2)

Vendor ID Default Value: 1106h

	Bit	Attribute	Default	Description
I	15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F2)

Device ID Default Value: 2364h

Bit	Attribute	Default	Description
15:0	RO	2364h	Device ID

Offset Address: 5-4h (D0F2)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F2)

PCI Status Default Value: 0200h

Bit	Attribute	Default	Description
15:0	RO	0200h	PCI Status

Offset Address: 8h (D0F2)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F2)

Class Code Default Value: 06 0000h

ĺ	Bit	Attribute	Default	Description
ı	23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F2)

Cache Line Size Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Cache Line Size

Offset Address: 0Dh (D0F2)

Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F2)

Header Type Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Header Type

Offset Address: 0Fh (D0F2)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F2) - Reserved

Offset Address: 2D-2Ch (D0F2)

Subsystem Vendor ID Default Value: 0000h

	Bit	Attribute	Default	Description	
ı	15:0	RW1	0	Subsystem Vendor ID	

Offset Address: 2F-2Eh (D0F2)

Subsystem ID Default Value: 0000h

ĺ	Bit	Attribute	Default	Description
I	15:0	RW1	0	Subsystem ID

Offset Address: 33-30h (D0F2) – Reserved

Offset Address: 34h (D0F2)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer - Byte offset into configuration space to capability list

Offset Address: 4F-35h (D0F2) – Reserved

Host CPU Control (50-5Fh)

Offset Address: 50h (D0F2)

Request Phase Control Default Value: 00h

Bit	Attribute	Default	Description
7	RO	dip	IOQ (In-Order Queue) Depth
			0: 1-level 1: 12-level
			Default sets from the inverse of the VD2 signal during system initialization.
			For strap pin information, check the Strap Pin table for details.
6	RO	dip	Dual CPU
		-	0: Single CPU 1: Dual CPU
			Default value is set by strapping VD7.
5	RO	0	Reserved
			Must set to zero.
4:0	RW	0	Dynamic Defer Snoop Stall Count
			Value for the Defer Snoop Stall Counter. The timer starts counting at the beginning of the snoop phase of C2P
			cycle; it increases one for every 2 HCLKs. If the C2P cycle is pending when the timer expired, and there are
			pending ADS, a Defer/Retry response will be replied to the host.
			For medium decoding PCI slave device; the optimal value for bit0-4 is 8.

Table 8. Dynamic Defer Snoop Stall Table

Timer Expired	New Pending ADS	PCI Completion	Action
No	-	No	Snoop stall till PCI complete
No	-	Yes	Normal Data Response
Yes	No	No	Snoop stall till either arrival of new pending ADS or PCI complete
Yes	No	Yes	Normal Data Response
Yes	Yes	No	Defer/Retry Response
Yes	Yes	Yes	Normal Data Response

Offset Address: 51h (D0F2) CPU Interface Control 1

PU Interface Control 1 Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Fast Ready for CPU Memory Read Cycle		
			0: Disable, wait until all 8QWs are received before DRDY assertion		
			1: Enable, DRDY assertion timing is set up through Rx60-67		
6	RW	0	Read Around Write		
			0: Disable 1: Enable		
5	RW	0	Host Controller DRAM Request Queue Control (DRQCTL)		
			0: Disable pipelined DRQCTL		
			1: Enable pipelined DRQCTL		
4	RW	0	CPU to PCI Read Defer		
			0: Disable 1: Enable		
3	RW	0	2 Defer/ Retry Entries		
			0: Disable 1: Enable		
2	RW	0	2 Defer / Retry Entries Sharing		
): One entry for each processor		
			1: Each entry is shared by the two processors		
1	RW	0	PCI Master Pipeline Access		
			0: Disable 1: Enable		
0	RO	0	Reserved		

Offset Address: 52h (D0F2)

CPU Interface Control 2 Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	CPU Read / Write DRAM 0WS for Back-to-Back Pipeline Access		
			0: Disable 1: Enable		
6	RW	0	HREQ (Host Continuous DRAM Ownership) / HPRI (Host High Priority DRAM Request) Assertion to		
			DRAM Controller		
			0: Disable		
			1: Enable assertion of HREQ / HPRI to DRAM controller for efficient memory utilization / faster memory data		
			access.		
5	RO	0	AGTL+ Pullup Enable		
			0: Disable 1: Enable		
			Default sets from the inverse of the VD3 signal during system initialization.		
			For strap pin information, check the Strap Pin table for details.		
4	RO	0	Reserved		
3	RW	0	Write Retire Policy After 2 Writes		
			0: Disable 1: Enable		
2	RW	0	2 Level Defer Queue With Lock Cycle		
			0: Disable 1: Enable		
1	RW	0	Consecutive Speculative Read		
			0: Disable 1: Enable		
0	RW	0	Speculative Read		
			0. Disable 1: Enable		

Offset Address: 53h (D0F2)

Arbitration Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	Host Occupancy Timer (in unit of 4 HCLKs)
			Host Occupancy timer guarantees a time slot of Rx53[7:4]* 4 HCLK for pipelined CPU's ADS.
3:0	RW	0	Master Occupancy Timer (in unit of 4 HCLKs)
			Master Occupancy timer guarantees a time slot of Rx53[3:0]*4 HCLK for pending master requests.

Offset Address: 54h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description			
7:5	RO	000b	CPU FSB Frequency (Powell)			
			000: 100MHz	001: 133MHz		
			010: 166MHz	011: 200MHz		
			100: Reserved	101: Reserved		
4	RW	0	Burst 8QW Host to Memory Access			
			0: Disable	1: Enable		
			This bit must be set to 1 in 128-bit DRAM	This bit must be set to 1 in 128-bit DRAM mode.		
3	RW	0	Host-Memory DRDY Assertion Adjustment			
			0: Normal mode, no adjustment	1: Special mode (1T earlier)		
			This bit's setting should follow Rx60~Rx67 settings. Check Rx55[1] for details of DRDY assertion adjustment.			
2	RW	0	PCI Master 8QW Memory Access			
			0: Disable	1: Enable		
1	RW	0	Memory-to-Host Conversion Circuit			
			0: Sync 1T in certain clock phases	1: Transparent mode		
0	RO	0	Reserved			

Offset Address: 55h (D0F2)

Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Warm CPU Reset (CPURST#) Trigger
			Write 0 → 1 transition will trigger warm CPURST#
			Firmware will have to reset this bit to "0" before trigger another CPURST#.
6	RO	0	Reserved
5	RW	0	Early Read Data Ready Signal for Host Interface DRDY table
			0: 2T early 1: 3T early
4:3	RO	0	Reserved
2	RW	0	Medium Threshold for Write Policy
			0: Disable medium threshold
			1: Add a medium threshold, defined by Rx56, in Write Queue to enable earlier memory write.
			See Rx56[7:4] for details.
1	RW	0	Host-Memory DRDY Assertion 2T Adjustment
			0: 2T early 1: 2T late
0	RO	0	Reserved

Offset Address: 56h (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default	Description		
7:4	RW	0	Medium Threshold for Write Policy		
3	RO	0	Reserved		
2	RW	0	TL Request 1T Pipeline		
			0: Disable	1: Enable	
1	RO	dip	V4-Lite Capability		
			0: Disable	1: Enable	
			Default value is set by strapping VD[5].		
0	RO	dip	V4 Capability		
			0: Disable	1: Enable	
			Default value is set by strapping VD[6].		

Offset Address: 57h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description
7:5	RO	000b	DRAM Bus Frequency
			000: 100MHz 001: 133MHz 010: 166MHz
			011: 200MHz 100: 266MHz 101: 333MHz
4	RW	0	Enable Fast TRDY Feature of V4 Protocol
			0: Disable 1: Enable
			You can only turn on this bit in V4 mode (excluding V4-lite), enable fast TRDY feature of V4 protocol. Suggest
			set to 1.
3	RW	0	Insert Wait State for First Write Data
			0: Disable 1: Enable
			You can only turn on this when bit $4 = 1$. When CPU operates on very low speed, it may insert wait state for 1st
			write data, chipset needs to turn on this bit to support this case.
2	RW	0	DPWR# Assertion Policy
			0: Always assert DPWR# (no gating)
			1: Dynamic DPWR# assertion (Dynamic gating)
1	RW	0	DPWR# Assertion Control (Activate if bit 2 is enabled)
			0: Assert DPWR# for both read / write cycles
			1: Assert DPWR# for read / APIC write cycles
0	RW	0	Enable Sync. DADS Mode
			0: Disable 1: Enable
			In Host / Memory Asynchronous mode, set this bit to 1.
			Keep this bit at 0 in synchronous mode for better performance.

Offset Address: 58h (D0F2) - Reserved

Offset Address: 59h (D0F2)

CPU Miscellaneous Control

Default Value: 40h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6	RO	1b	Reserved
5	RW	0	Sync. Host Memory Request with Memory Clock (for Dynamic CKE)
			0: Disable (when the host clock rate is the same as the memory clock rate)
			1: Enable (when the host clock rate is not the same as the memory clock rate)
4:3	RW	00	P6IF Has High Priority Request
			0 X : Dynamic
			1 0 : P6IF does not have high priority request
			1 1 : P6IF always have high priority request
2	RO	0	Automatic DRDY Table Adjustment for CPU Cycle and Master Cycle.
1	RO	0	Reserved
0	RW	0	Lowest-Priority IPI (Inter-Processor Interrupt) Support
			0: Disable 1: Enable

Offset Address: 5Ch (D0F2)

CPU Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description
7:5	RO	0	Reserved
4	RW	0	Enable Patching D11 from Reserved to Set When Logic Mode APIC
3	RW	0	APIC Redirection Hint Information Obtained From
			0: Address filed 1: Data field
2	RW	0	APIC Destination Mode Information Obtained From
			0: Address field 1: Data field
1	RW	0	APIC Cluster Mode Support
			0: Disable 1: Enable
0	RW	0	Redirect Lowest Priority APIC Requests to CPU0 (i.e. CPU0 is treated as the lowest priority processor)
			0: Disable 1: Enable

Offset Address: 5Dh (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	Write Request High Threshold
3:0	RW	0	Write Request Low Threshold

Table 9. CPU Write Request Policy

]	Rx51[6]	Rx52[3]	Rx5D[7:4]	Rx5D[3:0]	Write Policy
1	1	0	X	X	Will not handle write request until FIFO is full
1	1	1	4	2	Will start processing write request when write request count reaches Rx5D[7:4],
					and stop processing write request when write request count drops to Rx5D[3:0].

Offset Address: 5Eh (D0F2)

Bandwidth Timers Default Value: 00h

Bit	Attribute	Default	Description		
7:4	RW	0	Host Bandwidth Timer		
3:0	RW	0	DRAM Bandwidth Timer		

Offset Address: 5Fh (D0F2)

CPU Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description		
7	RO	0	Reserved		
6	RW	0	Reorder Retry Queue Enable		
			0: Retried CPÚ transaction always complete in order		
			1: Allow second entry of retried (IOW/MEMW) transaction to complete before first queued entry		
5:4	RW	00b	Warm CPU Reset (CPURST#) Duration Control		
			00: 512us 01: 1024us		
			10: 1523us 11: 2048us		
3	RW	0	Pipeline APIC / Master Transaction		
			0: APIC requests will not be pipelined with master requests.		
			1: APIC requests can be pipelined with normal master requests.		
			This bit must be set to 0.		
2	RW	0	Host Bandwidth Restriction		
			0: Disable 1: Enable		
			Host Bandwidth Timer is set up by Rx5E[7:4].		
1	RW	0	DRAM Bandwidth Restriction		
			0: Disable 1: Enable		
			DRAM Bandwidth Timer is set up by Rx5E[3:0].		
0	RW	0	Enable Relaxed DBSY# CPU Timing Workaround		
			0: Workaround disabled 1: Workaround enabled		

Table 10. Host / DRAM Bandwidth Policy

Rx5F[2]	Rx5F[1]	Host / DRAM Bandwidth Setting Policy
0	0	Disable the new DRAM/Host Bandwidth Arbiter
0	1	Use the DRAM Bandwidth Timer only
1	0	Use the HOST Bandwidth Timer only
1	1	Dynamically toggles between the Host and Dram bandwidth timers. Both timers, Rx5E[7:4] and
		Rx5E[3:0] are used by the arbitration logic.

Host Interface DRDY Timing Control (60-6Fh)

Offset Address: 60h (D0F2)

Line DRDY Timing Control 1 Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	0	Read Line Phase 4 Wait State		
5:4	RW	0	Read Line Phase 3 Wait State		
3:2	RW	0	Read Line Phase 2 Wait State		
1:0	RW	0	Read Line Phase 1 Wait State		

Offset Address: 61h (D0F2)

Line DRDY Timing Control 2 Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	0	Read Line Phase 8 Wait State
5:4	RW	0	Read Line Phase 7 Wait State
3:2	RW	0	Read Line Phase 6 Wait State
1:0	RW	0	Read Line Phase 5 Wait State

Offset Address: 62h (D0F2)

Line DRDY Timing Control 3 Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:2	RW	0	Read Line Phase 10 Wait State
1:0	RW	0	Read Line Phase 9 Wait State

Default Value: 00h

Offset Address: 63h (D0F2) QW DRDY Timing Control 1

Bit	Attribute	Default	Description
7:6	RW	0	Read QW Phase 4 Wait State
5:4	RW	0	Read QW Phase 3 Wait State
3:2	RW	0	Read QW Phase 2 Wait State
1:0	RW	0	Read QW Phase 1 Wait State

Offset Address: 64h (D0F2)

QW DRDY Timing Control 2

Bit	Attribute	Default	Description
7:6	RW	0	Read QW Phase 8 Wait State
5:4	RW	0	Read QW Phase 7 Wait State
3:2	RW	0	Read QW Phase 6 Wait State
1:0	RW	0	Read QW Phase 5 Wait State

Offset Address: 65h (D0F2) QW DRDY Timing Control 3

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:2	RW	0	Read QW Phase 10 Wait State
1:0	RW	0	Read QW Phase 9 Wait State

Offset Address: 66h (D0F2)

Read Line Burst DRDY Timing Control 1

Bit	Attribute	Default	Description
7	RW	0	Phase 8 Wait State
6	RW	0	Phase 7 Wait State
5	RW	0	Phase 6 Wait State
4	RW	0	Phase 5 Wait State
3	RW	0	Phase 4 Wait State
2	RW	0	Phase 3 Wait State
1	RW	0	Phase 2 Wait State
0	RW	0	Phase 1 Wait State

Offset Address: 67h (D0F2)

Read Line Burst DRDY Timing Control 2

Bit	Attribute	Default	Description
7	RW	0	Turn Off Unused Host Interface IO Pads in V4 Mode
			0: Disable 1: Enable
			When enabled, it will turn off unused pads (HA31, HA29~HA17, HREQ4~HREQ3) in V4 Mode.
			"Turn off IO pads" means that both input enable and output enable signals are de-asserted.
			When V4-Lite mode is on, pads HD63~HD32 are also turned off.
6	RW	0	Trigger Method for Host IO Pads Activation
			0: Use BREQ0 to control (activate and inactivate) host IO pads.
			1: Use ADS1 to control (activate and inactivate) host IO pads.
5	RW	0	Phase 10 Wait State
4	RW	0	Phase 9 Wait State
3:0	RO	0	Reserved

Offset Address: 68h (D0F2)

APIC CPU Priority 0 Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Priority of CPU ID#0

Offset Address: 69h (D0F2)

APIC CPU Priority 1 Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Priority of CPU ID#1

Offset Address: 6Ah (D0F2)

APIC CPU Priority 2 Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Priority of CPU ID#2

Offset Address: 6Bh (D0F2)

APIC CPU Priority 3 Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Priority of CPU ID#3

Offset Address: 6Ch (D0F2)

APIC CPU Priority 4 Default Value: 00h

ı	Bit	Attribute	Default	Description
	7:0	RO	0	Priority of CPU ID#4

Offset Address: 6Dh (D0F2)

APIC CPU Priority 5 Default Value: 00h

Bit	Attribute	Default	Description		
7:0	RO	0	Priority of CPU ID#5		

Offset Address: 6Eh (D0F2)

APIC CPU Priority 6 Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Priority of CPU ID#6

Offset Address: 6Fh (D0F2)

APIC CPU Priority 7 Default Value: 00h

	Bit	Attribute	Default	Description	
Γ	7:0	RO	0	Priority of CPU ID#7	

Default Value: 00h

Host AGTL+ I/O Circuit (70-B3h)

Offset Address: 70h (D0F2)

Host Address Pad (4X) Pullup Driving

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	dip	4X Address Strobe Pad Pullup Driving – (HADSTB0N#, HADSTB0P#)
3	RO	0	Reserved
2:0	RW	dip	4X Address Pad Pullup Driving – (HA[31:3], HREQ[4:0])

Offset Address: 71h (D0F2)

Host Address Pad (4X) Pulldown Driving

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	dip	4X Address Strobe Pad Pulldown Driving – (HADSTB0N#, HADSTB0P#)
3	RO	0	Reserved
2:0	RW	dip	4X Address Pad Pulldown Driving – (HA[31:3], HREQ[4:0])

Offset Address: 72h (D0F2)

Host Data Pad (4x) Pullup Driving

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	dip	4X Data Strobe Pad Pulldup Driving – (HDSTB[3:0]N#, HDSTB[3:0]P#)
3	RO	0	Reserved
2:0	RW	dip	4X Data Pad Pullup Driving – (D[63:0], DBI[3:0])

Offset Address: 73h (D0F2)

Host Data (4x) Pulldown Driving

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	dip	4X Data Strobe Pad Pulldown Driving – (HDSTB[3:0]N#, HDSTB[3:0]P#)
3	RO	0	Reserved
2:0	RW	dip	4X Data Pad Pulldown Driving – (D[63:0], DBI[3:0])

Offset Address: 74h (D0F2)

Memory Interface Timing Control

Bit	Attribute	Default	Description		
7	RW	0	Control Non-posted Write Cycle Defer or Retry on Host Bus		
			0 :Defer	1: Retry	
6	RW	0	Control if CPU's Special Cyc	ele is Non-posted or Posted on Host Bus	
			0 : Posted	1: Non-posted	
5	RW	0	HD[63:48], HD[31:16], DBI[3	3,1] Output Stagger Delay (1 ns)	
			0: No delay	1: 1 ns delay	
4	RW	0	HA[31:17] Output Stagger D	elay	
			0: No delay	1: 1 ns delay	
3:2	RW	00b	HDSTB[3:0]N#, HDSTB[3:0	P# Extra Output Delay	
			00: No delay	01: 150 ps	
			10: 300 ps	11: 450 ps	
1:0	RW	00b	HADSTB0P#, HADSTB0N# Extra Output Delay		
			00: No delay	01: 150 ps	
			10: 300 ps	11: 450 ps	

Offset Address: 75h (D0F2)

AGTL+ I/O Circuit Default Value: 00h

Bit	Attribute	Default	Description			
7:6	RO	00b	Reserved			
5	RW	0	AGTL+ Slew Rate			
			0: Disable	1: Enable		
4:3	RO	0	Reserved			
2	RW	0	AGTL+ TR Function	(always pullup) for STROBE		
			0: Disable	1: Enable		
1	RW	0	AGTL+ TR Function	(always pullup) for DATA		
			0: Disable	1: Enable		
0	RW	0	AGTL+ Dynamic Compensation			
			0: Disable	1: Enable		

Offset Address: 76h (D0F2)

AGTL+ Compensation Status Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Auto-compensation Driving		
			1: Enable Auto mode		
6:4	RO	0	AGTL+ Compensation Result		
3	RW	0	AGTL+ POS Function		
			1: Power-down AGTL+ input when idle		
2	RO	0	Reserved		
1	RW	0	Disable DBI Function		
			D: Enable DBI		
			: Disable DBI (DBI always high including DBI double-check)		
0	RW	0	DBI Functional Mode		
			0: Minimize data change count (through data comparison with previous data)		
			1: Minimize AGTL+ pulldown count		

Offset Address: 77h (D0F2)

AGTL+ Auto Compensation Offset

Bit	Attribute	Default	Description
7:4	RW	0	Address IO Pad Driving Offset to AGTL+ Compensation Result (Rx76[6:4])
3:0	RW	0	Data IO Pad Driving Offset to AGTL+ Compensation Result (Rx76[6:4])
			Note: The actual driving to GTL pad is Rx76[6:4] + bit 7-4 or Rx76[6:4]+ bit 3-0. Bit 7-4/bit 3-0 can be either positive or negative offset; negative offset is represented in 2's complement, so the driving offset value ranges from –8 to +7.

Offset Address: 78h (D0F2)

Host FSB CKG Control 1 Default Value: 55h

Bit	Attribute	Default	Description			
7:6	RW	01b	CKG Falling-Time Control	CKG Falling-Time Control for Host Interface (S port)		
			00: Default timing	01: Delay by 100 ps		
			10: Delay by 200 ps	11: Delay by 300 ps		
5:4	RW	01b	CKG Rising-Time Control f	for Host Interface (S port)		
			00: Default timing	01: Delay by 100 ps		
			10: Delay by 200 ps	11: Delay by 300 ps		
3:2	RW	01b	CKG Falling-Time Control	for Host Interface		
			00: Default timing	01: Delay by 100 ps		
			10: Delay by 200 ps	11: Delay by 300 ps		
1:0	RW	01b	CKG Rising-Time Control for Host Interface			
			00: Default timing	01: Delay by 100 ps		
			10: Delay by 200 ps	11: Delay by 300 ps		

Default Value: 00h

Default Value: 55h

Default Value: 24h

Offset Address: 79h (D0F2)

Address CKG Rising / Falling Time Control 1

Bit	Attribute	Default	Description	
7:6	RW	01b	Output Address Delay Register of Group 0	
			00: Td –300 ps 01: Td –150 ps	
			10: Td 11: Td + 0.150 ps	
			Delay (Td) = 650 ps (min), 750 ps (typ), 850 ps (max) from CK to CKO0~CKO18, respectively	
5:4	RW	01b	Output Address Clock Delay Register of Group 0	
			00: Td –300 ps 01: Td –150 ps	
			10: Td 11: Td + 150 ps	
			Delay (Td) = 650 ps (min), 750 ps (typ), 850 ps (max) from CK to CKO0~CKO18, respectively	
3:2	RW	01b	Output Address Delay Register of Group 1	
			00: Td –300 ps 01: Td –150 ps	
			10: Td 11: Td + 150 ps	
			Delay (Td) = 650 ps (min), 750 ps (typ), 850 ps (max) from CK to CKO0~CKO18, respectively	
1:0	RW	01b	Output Address Clock Delay Register of Group 1	
			00: Td –300 ps 01: Td –150 ps	
			10: Td 11: Td + 150 ps	
			Delay (Td) = 650 ps (min), 750 ps (typ), 850 ps (max) from CK to CKO0~CKO18, respectively	

Offset Address: 7Ah (D0F2)

Input Address Strobe Delay Control

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5:3	RW	100b	Input Address Strobe Delay for Group 0
			The three bits finetune HASTB0 input delay with respect to address group0 data.
			Value 100b should let HASTB0 balance with address group0 data.
			Value larger than 100 will early HASTB0 about 100ps per scale.
			Value smaller than 100 will delay HASTB0 about 100ps per scale.
			000 - delay(data) = delay(strobe) - 400 ps
			001 - delay(data) = delay(strobe) - 300 ps
			010 - delay(data) = delay(strobe) - 200 ps
			011 - delay(data) = delay(strobe) - 100 ps
			100 - delay(data) = delay(strobe)
			101 - delay(data) = delay(strobe) + 100 ps
			110 - delay(data) = delay(strobe) + 200 ps
			111 - delay(data) = delay(strobe) + 300 ps
2:0	RW	100b	Input Address Strobe Delay for Group 1
			The three bits finetune HASTB1 input delay with respect to address group1 data.
			Value 100b should let HASTB1 balance with address group1 data.
			Value larger than 100 will early HASTB1 about 100ps per scale.
			Value smaller than 100 will delay HASTB1 about 100ps per scale
			000 - delay(data) = delay(strobe) - 400 ps
			001 - delay(data) = delay(strobe) - 300 ps
			010 - delay(data) = delay(strobe) - 200 ps
			011 - delay(data) = delay(strobe) - 100 ps
			100 - delay(data) = delay(strobe)
			101 - delay(data) = delay(strobe) + 100 ps
			110 - delay(data) = delay(strobe) + 200 ps
		1	111 - delay(data) = delay(strobe) + 300 ps

Default Value: 55h

Default Value: 55h

Default Value: 90h

Offset Address: 7Bh (D0F2)

Address CKG Rising / Falling Time Control 2

Bit	Attribute	Default		Description	
7:6	RW	01b	Group 0 Address CKG I	Falling-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	01b	Group 0 Address CKG I	Rising-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	01b	Group 1 Address CKG I	Falling-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	01b	Group 1 Address CKG I	Rising-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Ch (D0F2)

Address CKG Clock Rising / **Falling Time Control**

Bit	Attribute	Default		Description	
7:6	RW	01b	Group 0 Address Clock CKG Falling-Time Control		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	01b	Group 0 Address Clock	CKG Rising-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	01b	Group 1 Address CKG I	Falling-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	01b	Group 1 Address CKG I	Rising-Time Control	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Dh (D0F2)

Host Data Receiving Strobe Delay Control

Bit	Attribute	Default	Description
7:5	RW	100b	Control Relative Delay between Data/Strobe Input Delay for HD[15:0]
			000 - delay(data) = delay(strobe) - 200 ps
			001 - delay(data) = delay(strobe) - 150 ps
			010 - delay(data) = delay(strobe) - 100 ps
			011 - delay(data) = delay(strobe) - 50 ps
			100 - delay(data) = delay(strobe)
			101 - delay(data) = delay(strobe) + 50 ps
			110 - delay(data) = delay(strobe) + 100 ps
			111 - delay(data) = delay(strobe) + 150 ps
4:2	RW	100b	Control Relative Delay between Data/Strobe Input Delay for HD[31:16]
			000 - delay(data) = delay(strobe) - 200 ps
			001 - delay(data) = delay(strobe) - 150 ps
			010 - delay(data) = delay(strobe) - 100 ps
			011 – delay(data) = delay(strobe) – 50 ps
			100 - delay(data) = delay(strobe)
			101 - delay(data) = delay(strobe) + 50 ps
			110 - delay(data) = delay(strobe) + 100 ps
			111 – delay(data) = delay(strobe) + 150 ps
1	RO	0	Reserved
0	RW	0	BREQ Parking Control
			0: BREQ0 always assert, better performance
			1: BREQ0 CPU will dynamic assert / deassert BREQ0 signal

Offset Address: 7F-7Eh (D0F2) – Reserved

Default Value: 24h

Offset Address: 80h (D0F2)

Host Data Receiving Strobe Delay Control

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5:3	RW	100b	Control Relative Delay between Data/Strobe Input Delay for HD[47:32]
			000 – delay(data) = delay(strobe) – 200 ps
			001 - delay(data) = delay(strobe) - 150 ps
			010 – delay(data) = delay(strobe) – 100 ps
			011 - delay(data) = delay(strobe) - 50 ps
			100 – delay(data) = delay(strobe)
			101 – delay(data) = delay(strobe) + 50 ps
			110 – delay(data) = delay(strobe) + 100 ps
			111 – delay(data) = delay(strobe) + 150 ps
2:0	RW	100b	Control Relative Delay between Data/Strobe Input Delay for HD[63:48]
			000 - delay(data) = delay(strobe) - 200 ps
			001 - delay(data) = delay(strobe) - 150 ps
			010 - delay(data) = delay(strobe) - 100 ps
			011 – delay(data) = delay(strobe) – 50 ps
			100 – delay(data) = delay(strobe)
			101 – delay(data) = delay(strobe) + 50 ps
			110 – delay(data) = delay(strobe) + 100 ps
			111 – delay(data) = delay(strobe) + 150 ps

Offset Address: 81h (D0F2)

Host FSB CKG Control 2 Default Value: 55h

Bit	Attribute	Default		Description	
7:6	RW	01b	CKG Falling-Time Control	CKG Falling-Time Control for Host Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	01b	CKG Rising-Time Control f	or Host Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	01b	CKG Falling-Time Control	for Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	01b	CKG Rising-Time Control f	or Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 82h (D0F2)

Host FSB CKG Control 3 Default Value: 55h

Bit	Attribute	Default		Description	
7:6	RW	01b	CKG Falling-Time Control for Host Interface (S port)		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	01b	CKG Rising-Time Control f	or Host Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	01b	CKG Rising-Time Control f	or Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	01b	CKG Rising-Time Control f	or Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Default Value: 00h

Offset Address: 83h (D0F2)

Host FSB CKG Control 4 Default Value: 55h

Bit	Attribute	Default		Description	
7:6	RW	01b	CKG Falling-Time Control	for Host Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	01b	CKG Rising-Time Control f	For Host Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	01b	CKG Rising-Time Control f	For Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	01b	CKG Rising-Time Control f	For Host Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 8F-84h (D0F2) – Reserved

Offset Address: 90h (D0F2)

Early CPU-to-DRAMC Read Data Ready Control

Bit	Attribute	Default	Description		
7:2	RO	0	Reserved		
1:0	RW	00b	Early CPU-to-DRAMC Read Dat	a Ready Control	
			00: 2T Early Read Ready	01: 3T Early Read Ready	
			10: 4T Early Read Ready	11: 5T Early Read Ready	

Offset Address: AF-91h (D0F2) - Reserved

Offset Address: B0h (D0F2)

Timing Control Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Reorder function of CPU to DRAM read in DBX to optimize 266/333 DBX timing	
			0: Disable 1: Enable	
			In DCLK333, it should be set to 0. In other cases, it can be toggled.	
6	RW	0	Optimize conversion time for 200/333 and 266/333	
			0: Disable 1: Enable	
			In normal case, it should be set to 0 as the timing can be met.	
5:0	RO	0	Reserved	

Offset Address: B1h (D0F2) - Reserved

Offset Address: B2h (D0F2)

New Feature Default Value: 0nh

Bit	Attribute	Default	Description	
7	RW	0	Retry Brant Trace Message after First Lock	
			0: Disable 1: Enable	
6:4	RO	0	Reserved	
3:1	RO	n	GTL Compensation Result	
0	RO	0	Reserved	

Offset Address: B3h (D0F2)

Pad Control Default Value: 00h

Bit	Attribute	Default		Description
7:4	RO	0h	Reserved	
3:2	RW	00b	Bdgtl2xd Program Delay	
			00: 0 ps	01: 100 ps
			10: 200 ps	11: 300 ps
1:0	RW	00b	Bdgtl4xd Program Delay	
			00: 0 ps	01: 100 ps
			10: 200 ps	11: 300 ps

Offset Address: FF-B4h (D0F2) - Reserved

Device 0 Function 3 (D0F3): DRAM Bus Control

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F3)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F3)

Device ID Default Value: 3364h

Bit	Attribute	Default	Description
15:0	RO	3364h	Device ID

Offset Address: 5-4h (D0F3)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F3)

PCI Status Default Value: 0200h

Bit	Attribute	Default	Description
15:0	RO	0200h	PCI Status

Offset Address: 8h (D0F3)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F3)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F3) - Reserved

Offset Address: 0Dh (D0F3)

Latency Timer Default Value: 00h

ı	Bit	Attribute	Default	Description
I	7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F3)

Header Type Default Value: 00h

	Bit	Attribute	Default	Description
Ī	7:0	RO	0	Header Type

Offset Address: 0Fh (D0F3)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F3) – Reserved

Offset Address: 2D-2Ch (D0F3)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F3)

Subsystem ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Offset Address: 33-30h (D0F3) - Reserved

Offset Address: 34h (D0F3)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer

Offset Address: 3F-35h (D0F3) - Reserved

DRAM Rank Ending Address (40-47h)

Offset Address: 40h (D0F3)

DRAM Rank 0 Ending Address Default Value: 01h

Bit	Attribute	Default	Description
7:0	RW	01h	Virtual Rank 0 Ending Address (HA[33:26])

Offset Address: 41h (D0F3)

DRAM Rank 1 Ending Address

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 1 Ending Address (HA[33:26])

Offset Address: 42h (D0F3)

DRAM Rank 2 Ending Address Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 2 Ending Address (HA[33:26])

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: 43h (D0F3)

DRAM Rank 3 Ending Address Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 3 Ending Address (HA[33:26])

Offset Address: 47-44h (D0F3) – Reserved

DRAM Rank Beginning Address (48–4Fh)

Offset Address: 48h (D0F3)

DRAM Rank 0 Beginning Address

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 0 Beginning Address (HA[33:26])

Offset Address: 49h (D0F3)

DRAM Rank 1 Beginning Address

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 1 Beginning Address (HA[33:26])

Offset Address: 4Ah (D0F3)

DRAM Rank 2 Beginning Address

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 2 Beginning Address (HA[33:26])

Offset Address: 4Bh (D0F3)

DRAM Rank 3 Beginning Address

Bit	Attribute	Default	Description
7:0	RW	0	Virtual Rank 3 Beginning Address (HA[33:26])

Offset Address: 4F-4Ch (D0F3) - Reserved

MA Map / Command Rate (50-53h)

Offset Address: 51-50h (D0F3)

DRAM MA Map Type Default Value: 2222h

Bit	Attribute	Default	Description			
15:13	RO	001b	Reserved (Do not program)			
12	RO	0	Reserved			
11:9	RO	001b	Reserved (Do not program)			
8	RO	0	Reserved			
7:5	RW	001b	Rank 0/1 MA Map Type			
4	RW	0	Rank 0/1 1T Command Rate			
			0: Disable (2T command) 1: 1T command			
3:1	RW	001b	Rank 2/3 MA Map Type			
0	RW	0	Rank 2/3 1T Command Rate			
			0: Disable (2T command) 1: 1T command			

Table 11. Rank MA Map Type Table

Rank MA Map Type	0	1	2	3	4	5	6	7
Bank Address Bits	2	2	2	2		3	3	3
Row Address Bits	13-12	14-12	15-12	15-13	Rsvd	15-12	15-12	15-13
Column Address Bits	9	10	11	12	Ksvu	10	11	12
DRAM Size (Byte)	128M-64M	512M-128M	2G-256M	4G-1G		2G-256M	4G-512M	8G-2G

Offset Address: 52h (D0F3)

Bank Interleave Address Select Default Value: 11h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	001b	BA0 Address Select
3	RO	0	Reserved
2:0	RW	001b	BA1 Address Select

Note: Refer to Bank Interleave Address Table below.

Offset Address: 53h (D0F3)

Bank / Rank Interleave Address Select

Bit	Attribute	Default	Description	
7	RW	0	BA2 Support (turn on if any 8BK-device exists)	
6:4	RW	001b	BA2 Address Select	
3:2	RW	00	Rank Interleave Address Bit 1 (RA1) Select	
1:0	RW	00	Rank Interleave Address Bit 0 (RA0) Select	

Table 12. DRAM Bank Address Table

Bank[n] Address Select where x=0, 1, 2	0	1	2	3	4	5	6	7
BA2 Rx53[6:4]	A14	A15	A18	A19	rsvd	rsvd	rsvd	rsvd
BA1 Rx52[2:0]	A12	A14	A16	A18	A20	rsvd	rsvd	rsvd
BA0 Rx52[6:4]	rsvd	A13	A15	A17	A19	rsvd	rsvd	rsvd

Default Value: 10h

Default Value: 81h

Default Value: 23h

Table 13. Rank Interleave Address Table

Rank Interleave[n] Address Select where x=0, 1	0	1	2	3
Rank Interleave Address Bit 1 Rx53[3:2]	A14	A16	A18	A20
Rank Interleave Address Bit 0 Rx53[1:0]	A15	A17	A19	A21

Notes. 1. Rank Interleave Address Bit 2 is fixed at A6.

- 2. BA2, BA1, BA0, INLV1, INLV0 should select 5 different address bits for Rx53[7] =1
- 3. BA1, BA0, INLV1, INLV0 should select 4 different address bits for Rx53[7] =0

Physical-to-Virtual Rank Mapping (54–57h)

Offset Address: 54h (D0F3)

Physical-to-Virtual Rank Mapping 1

Bit	Attribute	Default		Description	
7	RW	1b	Enable Physical Rank 0		
			0: Disable	1: Enable	
6:4	RW	0	Virtual Rank Number of Pl	ysical Rank 0	
3	RW	0	Enable Physical Rank 1		
			0: Disable	1: Enable	
2:0	RW	001b	Virtual Rank Number of Pl	ysical Rank 1	

Offset Address: 55h (D0F3)

Physical-to-Virtual Rank Mapping 2

Bit	Attribute	Default	Description	
7	RW	0	Enable Physical Rank 2	
			0: Disable 1: Enable	
6:4	RW	010b	Virtual Rank Number of Physical Rank 2	
3	RW	0	Enable Physical Rank 3	
			0: Disable 1: Enable	
2:0	RW	011b	Virtual Rank Number of Physical Rank 3	

Offset Address: 57-56h (D0F3) – Reserved

Virtual Rank Interleave Address Select / Enable (58–5Fh)

Offset Address: 58h (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 0 Default Value: 00h

Bit	Attribute	Default	Description	
7	RO	0	Reserved	
6:4	RW	000b	Rank #0 Interleave Address Select (RINLV0AS[2:0])	
			This 3-bits field determines the Rank Interleave Address of Rank #0.	
			If RINLV0ASn is 1 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit of Rank 0 is 1, and vice	
			versa.	
3	RO	0	Reserved	
2:0	RW	000b	Rank #0 Interleave Address Enable (RINLV0AEN[2:0])	
			0: Mask 1: Enable	
			This 3-bits field determines if the Rank Interleave Address of Rank #0 to be masked (used) or not.	
			If RINLV0AENn is 0 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit will be masked	
			(ignored), and vice versa.	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: 59h (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 1

Bit	Attribute	Default	Description	
7	RO	0	Reserved	
6:4	RW	0	Rank #1 Interleave Address Select See the description on Rank 0 (Rx58).	
3	RO	0	Reserved	
2:0	RW	0	Rank #1 Interleave Address Enable See the description on Rank 0 (Rx58).	

Offset Address: 5Ah (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 2

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	0	Rank #2 Interleave Address Select
			See the description on Rank 0 (Rx58).
3	RO	0	Reserved
2:0	RW	0	Rank #2 Interleave Address Enable
			See the description on Rank 0 (Rx58).

Offset Address: 5Bh (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 3

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	0	Rank #3 Interleave Address Select See the description on Rank 0 (Rx58).
3	RO	0	Reserved
2:0	RW	0	Rank #3 Interleave Address Enable See the description on Rank 0 (Rx58).

Offset Address: 5F-5Ch (D0F3)- Reserved

Default Value: 00h

Default Value: 04h

Following is an example, which shows a possible register settings for a system with 2 double-sided DIMM installed.

(1) Rx53[3:2] = 2 and Rx53[1:0] = 2 select A6, A18, A19 as the Rank Interleave Address for the system.

(2) If the settings on the Rank Interleave Address Selection of Rank 0, 1, 2, 3 (Rx58-5B[6:4]) are

Rx58[6:4] = 001b

Rx59[6:4] = 000b

Rx5A[6:4] = 010b

Rx5B[6:4] = 011b

And if the Rank Interleave Address Enable of Rank 0, 1, 2, 3 (Rx58-5B[2:0]) are

Rx58[2:0] = 011b

Rx59[2:0] = 011b

Rx5A[2:0] = 011b

Rx5B[2:0] = 011b

With the above register settings, Rank Interleave Address 2, A6, is ignored for the system, and the four ranks of the system are decided by A18 and A19 as shown in the following table.

A18	A19	Selected Rank
0	0	Rank#1
0	1	Rank#0
1	0	Rank#2
1	1	Rank#3

DRAM Timing (60–64h)

Offset Address: 60h (D0F3)

DRAM Pipeline Turn-Around Setting

Bit	Attribute	Default	Description		
7	RW	0	0ws Back-to-Back Wr	ite to Different DDR Rank	
			0: Disable	1: Enable	
6	RW	0	Fast Read-to-Read Tu	rn Around	
			0: Disable		
			1: Enable (DQS post-ar	mble overlap with preamble)	
5	RW	0	Fast Read-to-Write Tu	urn Around	
			0: Disable	1: Enable	
4	RW	0	Fast Write-to-Read Tu	urn Around	
			0: Disable	1: Enable	
3:2	RO	0	Reserved		
1	RW	0	0ws DRAM Channel S	Switching Between Read Cycles	
			0: Disable	1: Enable	
0	RW	0	0ws DRAM Channel S	0ws DRAM Channel Switching Between Write Cycles	
			0: Disable	1: Enable	

Offset Address: 61h (D0F3)

DRAM Timing for All Ranks

Bit	Attribute	Default		Description
7:6	RW	00	Active-to-Active Period (tRRD)	
			00: 2T	01: 3T
			10: 4T	11: 5T
5:0	RW	04h	Refresh-to-Active or Refersh-to-Refre	sh (tRFC)
			00: 8T	01h: 9T
				0nh: (8+n)T
			3eh: 70T	3f.h: 71T

Default Value: 20h

Offset Address: 62h (D0F3)

DRAM Timing for All Ranks

Default Value: 21h

Bit	Attribute	Default	Description		
7:4	RW	0010b	Active-to-Prec	harge (tRAS)	
			0000: 5T		0001: 6T
					0nh: (5+n)T
			1110: 19T		1111: 20T
3	RW	0	Enable DDR2	8-Bank Device Timi	ing Constraint (tRRD and tRP).
2:0	RW	001b	CAS Latency		
				<u>DDR</u>	DDR2
			000	1.5	2
			001	2	3
			010	2.5	4
			011	3	5
			1xx	reserved	6

Offset Address: 63h (D0F3)

DRAM Timer for All Ranks

Bit	Attribute	Default	Description		
7:5	RW	001b	Write Recovery Time (tWR)		
			000: 2T 001: 3T		
			010: 4T 011: 5T		
			100: 6T		
4	RO	0	Reserved		
3	RW	0	Read-to-Precharge Delay (tRTP)		
			0: 2T 1: 3T		
2	RO	0	Reserved		
1:0	RW	00b	Write to Read Command Delay (tWTR)		
			<u>DDR</u> <u>DDR2</u>		
			$00 quad \overline{1T} quad \overline{2T}$		
			01 2T 3T		
			10 3T 4T		
			11 4T 5T		

Offset Address: 64h (D0F3)

DRAM Timer for All Ranks

Default Value: 22h

Bit	Attribute	Default	Des	cription	
7:5	RW	001b	Active to Read or Write Delay (tRCD)		
			000: 2T 001: 3T		
			010: 4T 011: 5T		
			100: 6T		
4	RW	0	CKE Minimum Pulse Width		
			0: 2T 1: 3T		
			This function is valid when D0F4 $RxA1[6] = 1$		
3:1	RW	001b	Precharge Period (tPR)		
			000: 2T 001: 3T		
			010: 4T 011: 5T		
			100: 6T		
0	RW	0	Exit Precharge/Active Power Down to Any Command Delay		
			0: 1T 1: 2T		
			This function is valid when D0F4 $RxA1[6] = 1$		

DRAM Queue / Arbitration (65-67h)

Offset Address: 65h (D0F3)

DRAM Arbitration Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	AGP Timer (in unit of 4 DCLKS)
			DRAMC time slot allocated for AGP device.
3:0	RW	0	Host Timer (in unit of 4 DCLKS)
			DRAMC time slot allocated for Host.

Offset Address: 66h (D0F3)

DRAM Queue / Arbitration Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	DRAMC Queue Size Greater Than 2		
			0: No	1: Yes	
6	RW	0	DRAMC Queue Size Not Equal To 4		
			0: No	1: Yes	
			To setup DRAMC queue size of 2, set Rx66[7:6] to 2'b00; sets Rx66[7:6] to 2'b11 for queue size of 3; sets Rx[7:6] to 2'b10 for queue size of 4.		
5:4	RW	00b	Arbitration Parking Policy		
			00: Park at the last bus owner	01: Park at CPU	
			10: Park at AGP	11: Park at VGA	
3:0	RW	0	Priority Promotion Timer (in unit of 4 DCLKs)		
			A DRAM request is promoted to become a high priority request when it is pending over PTIM*4 DRAM cycles.		

Offset Address: 67h (D0F3)

DIMM Command / Address Selection Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RO	0	Reserved	
3:2	RW	0	DIMM 1 Command / Address Selection	
			00: SCMD/MA Bus A;	01: SCMD/MA Bus B
			10: Reserved	11: Reserved
1:0	RW	0	DIMM 0 Command / Address Selection	

DRAM Control (68-69h)

Offset Address: 68h (D0F3)

DDR Page Control 1 Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RW	0	DRAM Expired Page Threshold	
			Close expired pages with precharge-all command when the number of expired pages exceeds the value.	
3:0	RW	0	Page Register Life Timer (in unit of 16 DCLKs)	
			When timer expired, the expired page will be closed.	

Offset Address: 69h (D0F3)

DDR Page Control 2 Default Value: 82h

Bit	Attribute	Default		Description	
7:6	RW	10b	Bank Interleave		
			00: No interleave	01: 2-bank	
			10: 4-bank	11: 8-bank	
5	RW	0	Enable Bank Address Scra	mble	
4	RW	0	Auto-Precharge for TLB R	Read and CPU Write-Back	
			0: Disable	1: Enable	
3	RW	0	Option of Dynamic page-cl	lock	
			0: Dynamic Page Clock		
			1: Dynamic DRAM Clock		
2	RW	0	Reserved		
1	RW	1b	Keep Page Active When C	ross Bank	
			0: Disable	1: Enable	
0	RW	0	Multiple Page Mode		
			0: Disable	1: Enable	

Refresh Control (6A-6Bh)

Offset Address: 6Ah (D0F3)

Refresh Counter Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Refresh Counter (in unit of 16 DRAM CLKs)
			When set to 00, DRAM refresh is disabled

Offset Address: 6Bh (D0F3)

DRAM Miscellaneous Control Default Value: 10h

Bit	Attribute	Default	Description	
7	RW	0	DQS Input DLL Adjustment	
			0: Disable 1: Enable	
6	RW	0	DQS Output DLL Adjustment	
			0: Disable 1: Enable	
5	RW	0	Burst Refresh	
			0: Disable 1: Enable	
4	RW	1b	DLL Manual Reset	
			0: Disable 1: Enable	
3	RW	0	Enable Memory Size Detection, MA 32/16 33/17 Swap	
			0: Disable 1: Enable	
2:0	RW	000b	SDRAM Operation Mode Select	
			000: Normal SDRAM Mode	
			001: NOP Command Enable	
			010: All-Banks-Precharge Command Enable.	
			011: MRS to SCMD	
			100: CBR, CAS-before-RAS refresh, Cycle Enable	
			101: Reserved	
			11x: Reserved	

DDR SDRAM Control (6C-6Fh)

Offset Address: 6Ch (D0F3)

DRAM Type Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	DDR2 DRAM Support	
			0: Disable DDR2 1: Enable DDR2	
6	RO	0	Memory Type Detected (through pin: MEMDET)	
			0: DDR 1: DDR2	
5	RO	0	Reserved	
4	RW	0	Disable DQM Signals	
			0: Enable 1: Disable	
3	RW	0	SDRAM Effective Burst Length	
			For 64-bit mode ranks, SDRAM MRS	
			0: BL4 1: BL8	
2:0	RO	0	Reserved	

Offset Address: 6Dh (D0F3)

DQ Channel Select Default Value: C0h

Bit	Attribute	Default		Description
7	RO	1b	Reserved (Do not program)	
6	RO	1b	Reserved (Do not program)	
5	RW	0	DQ Channel Select for DIMM#1	
			0: Channel A	1: Channel B
4	RW	0	DQ Channel Select for DIMM#0	
			0: Channel A	1: Channel B
3:0	RW	0	Reserved	

Note: If ODT is not supported, the registers can be programmed, i.e. the function of MD/CS mapping can work.

Offset Address: 6Eh (D0F3)

DRAM Control Default Value: 08h

Bit	Attribute	Default	Description
7	RW	0	MPD Disable
			0: Enable 1: Disable
6:5	RO	0	Reserved
4	RW	0	Non-Page Mode Support
			0: Disable 1: Enable
3	RW	1b	Enable 1 Pipeline Stage on DRAM Command Path
			0: Disable
			1: Enable 1 pipeline stage on DRAM command (CS/SCMD/MA) path.
2:0	RO	0	Reserved

Table 14. DQM Signal Function

DRAM Configuration	DQM Pin Function	Rx6C[4]	Rx6E[7]
DDR w/o ECC x8	Data Mask	0	1

Offset Address: 6Fh (D0F3)

Miscellaneous Control Default Value: 42h

Bit	Attribute	Default	Description
7	RW	0	Non-ONBD Protection for GART Table Fetching
			0: Disable 1: Enable
6	RW	1b	DRAM-Side-Input-Pointer Non-Return-Zero Mode
			0: Disable 1: Enable
			Enable to avoid overwrite data
5	RW	0	Disallow the 2nd Cycle of a 2T Command Overlapped with Command of Different Type on a Different
			MA/SCMD Bus
			0: Allow 1: Not allow
4	RW	0	Read-Modify-Write (RMW) Option
			When enabled, RMW is processed in relaxed mode.
3	RW	0	Applying Same-Channel IO Turn-Around Constraints between Different Channels
2	RW	0	Exclusive SCMD Buses
			When enabled, the two SCMD buses are exclusive, do not have commands in the same cycle.
1	RW	1b	Compact Refresh Mode
			Skip CS for non-existing rank while refresh
			0: Disable 1: Enable
0	RW	0	GART Table Access Option
			When enabled, GART Table accessing is in relaxed mode.
			Set this bit to 1 in DDR400 mode.

DRAM Signal Timing Control (70–7Fh)

Offset Address: 70h (D0F3)
DQS Output Delay Control

Bit	Attribute	Default	Description
7:0	RW	0	DQS Output Delay

Offset Address: 71h (D0F3)

MD Output Delay Control Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	MD Output Delay

Offset Address: 73-72h (D0F3) - Reserved

Offset Address: 74h (D0F3)

DQS Output Clock Phase Control Default Value: 00h

Bit	Attribute	Default	Description
7:3	RO	0	Reserved
2:0	RW	0	Initial Phase of Internal Clocks for DQS Output
			Each steps increase a phase of 1/8 T

Offset Address: 75h (D0F3)

DQ Output Clock Phase Control Default Value: 00h

Bit	Attribute	Default	Description
7:3	RO	0	Reserved
2:0	RW	0	Initial Phase of Internal Clocks for DQ Output
			Each steps increase a phase of 1/8 T

Offset Address: 76h (D0F3)

Write Data Phase Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	1 More Pipeline Stage on Write Data Path	
			Will provide safer timing margin.	
6	RW	0	1 More Pipeline Stage on Write Data Path	
			Will provide safer timing margin for DDR2-667 and above.	
5	RW	0	DQ/DQS Output Clocks Bypass Delay Component	
			(i.e. when enabled, Rx70-73 becomes functionless	
4	RO	0	Reserved	
3:2	RW	00b	Advance Write Phase Signals to Make Room for the Long Bus Delay	
			The 2 bits must be used with bit [1:0]	
			00: Normal mode 01: Advance 1 cycle	
			10: Advance 2 cycle 11: Forbidden	
1:0	RW	0	Write MD/DQS/CAS Output Timing Range Control	
			Each increased step delays the output range by 1/4 T.	

Offset Address: 77h (D0F3)
DQS Input Delay Calibration

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Manual DQS Input Delay Setting
			0:Auto 1: Manual
6	RO	0	Reserved
5:0	RO/RW	0	DDR DQS Input Delay This is the base delay value of DQS input signal in unsigned binary format. The reading value depends on Rx77[7]. If Rx77[7] = 0 (auto mode), DLL calibration result is returned when read. When Rx77[7] = 0, RO When Rx77[7] = 1, RW

Offset Address: 78h (D0F3)

DQS Input Capture Range Control

Default Value: 80h

Bit	Attribute	Default	Description	
7	RW	1b	Manual DQS Input Capture Range Setting	
			0: Auto 1: 1	Manual
6	RW	0	Enable DQS Input Capture Range Detection	1
5:0	RW	00h	1 0 0	at 1st DQS rising edge Reserved

Offset Address: 79h (D0F3) – Reserved

Offset Address: 7Ah (D0F3)

DQS Input Capture Range Control

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3	RW	0	Select DQS Input Pin as Input Capture Range Detection Signal 0: DQSA0 1: DQSA4
2:0	RW	0	DQS Input Capture Range Offset Value 1/8T per step, 2's complement

Offset Address: 7Bh (D0F3)

Read Data Phase Control Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	000b	MD Input Data Push Timing Control
			000: Start moving data into internal buffer 1T after the 1st DRAM strobe
			001: 1.5T
			010: 2T 011: 2.5T
			100: 3 101: 3.5T
			110: 4T 111: 4.5T
3:1	RO	0	Reserved
0	RW	0	Extend DQS Input Capture Range 1/2T Earlier

Read-Only Control (7C-7Fh)

Offset Address: 7Ch (D0F3)

DQS Input Delay Offset Control Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:0	RW	0	DQS Input Delay Offset (In two's complement)
			This is the offset values (in 2's complement format) from the base delay value (Rx77[5:0]) DIMM.

Offset Address: 7F-7Dh (D0F3) – Reserved

Shadow RAM Control (80-83h)

Offset Address: 80h (D0F3)

Page-C ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	00b	CC000-CFFFFh Memory Space Access Control	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
5:4	RW	0	C8000-CBFFFh Memory Space Access Control	
3:2	RW	0	C4000-C7FFFh Memory Space Access Control	
1:0	RW	0	C0000-C3FFFh Memory Space	e Access Control

Default Value: 00h

Offset Address: 81h (D0F3)

Page-D ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00b	DC000-DFFFFh Memory Space Access Control		
			00: Read / Write Disable	01: Write Enable	
			10: Read Enable	11: Read / Write Enable	
5:4	RW	0	D8000-DBFFFh Memory Space Access Control		
3:2	RW	0	D4000-D7FFFh Memory Space Access Control		
1:0	RW	0	D0000-D3FFFh Memory Space	Access Control	

Offset Address: 82h (D0F3)

Page-E ROM Shadow Control

Bit	Attribute	Default	Description	
7:6	RW	00b	EC000-EFFFFh Memory Space Access Control	
			00: Read / Write Disable 01: Write Enable	
			10: Read Enable 11: Read / Write Enable	
5:4	RW	0	E8000-EBFFFh Memory Space Access Control	
3:2	RW	0	E4000-E7FFFh Memory Space Access Control	
1:0	RW	0	E0000-E3FFFh Memory Space Access Control	

Offset Address: 83h (D0F3)

Page-F ROM, Memory Hole and SMI Decoding

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5:4	RW	00b	F0000-FFFFFh Memory Space Access Control
			00: Read / Write Disable 01: Write Enable
			10: Read Enable 11: Read / Write Enable
3:2	RW	00b	Memory Hole
			00: None 01: 512K – 640K
			10: 15M – 16M (1M) 11: 14M – 16M (2M)
1	RW	0	Disable Data Access on SMRAM (Page A, B) in SM Mode
			0: In SM mode, page A,B CPU Data R/W cycles are forwarded to the memory controller.
			1: In SM mode, page A,B CPU Data R/W cycles are forwarded to the PCI bus
			Notes:
			1. This bit is effective when Rx83[0] is set to 0.
			2. SMRAM page A,B Code R/W cycles are always forwarded to the memory controller in SM mode.
0	RW	0	Enable Page A, B DRAM Access In Normal Mode
			0: Page A, B CPU R/W cycles could be forwarded to memory controller or PCI bus depends on the setting of
			RABKDOFF (bit 1), the CPU operating mode (Normal or SM mode) as well as the type (Code or Data) of the
			CPU cycle.
			1: Page A, B CPU R/W cycles (Code and Data) are always (in either Normal or SM mode) forwarded to the
			memory controller.
			Check the following table for details.

Table 15. CPU-to-SMRAM Cycle Flow

Rx83[1]	Rx83[0]	CPU MODE	Target of CODE Acces Cycle	Target of DATA Access Cycle
X	0	Normal	PCI	PCI
0	0	SMM	DRAM	DRAM
1	0	SMM	DRAM	PCI
X	1	Normal / SMM	DRAM	DRAM

DRAM Above 4G Support (84-8C)

Offset Address: 84h (D0F3)

Low Top Address - Low Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	Low Top Address - A[23:20]
3:0	RO	0	Reserved

Offset Address: 85h (D0F3)

Low Top Address - High Default Value: FFh

Bit	Attribute	Default	Description
7:0	RW	FFh	Low Top Address – A[31:24]

Offset Address: 86h (D0F3)

SMM and APIC Decoding Default Value: 01h

Bit	Attribute	Default	Description	
7:6	RW	00b	Top SM Memory Size	
			00: 1M 01: 2M	
			10: 4M 11: 8M	
5	RW	0	APIC Lowest Interrupt Arbitration	
			0: Disable 1: Enable	
4	RW	0	IO APIC Decoding	
			0: Cycles accessing FECx_xxxxh are passed to PCI1	
			1: Cycles accessing FEC7 FFFFh - FEC0 0000h are passed to PCI1; cycles accessing FECF FFFFh -	
			FEC8_0000h access cycles are passed to PCI2.	
3	RW	0	MSI Support (Processor Message Enable)	
			0: Cycles accessing FEEx_xxxxh from masters are passed to PCI1 (PCIC will not claim)	
			1: Cycles accessing FEEx xxxxh from masters are passed to the Host side for snooping	
2	RW	0	Top 1MB SM Memory Enable	
			0: Disable 1: Enable	
1	RO	0	Reserved	
0	RW	1b	Compatible SMM Enable	
			0: Disable 1: Enable	

Offset Address: 89-88h (D0F3)

Misc. DRAM Address Setting

Default Value:0000h

Bit	Attribute	Default	Description
15:11	RO	0	Reserved
10:0	RO	0	The Address Next to the Last Valid DRAM Address

Offset Address: 8Ch (D0F3)

DQS Output Control Default Value: 00h

Bit	Attribute	Default	Description
7:2	RO	0	Reserved
1	RW	0	MD/DQS Earlier Output Enable
			DQ Output Enable (MDOE) 1/2T earlier
			DQS Output Enable (DQSOE) 1/2T earlier if bit 0
0	RW	0	DQS Earlier Output Enable
			DQSOE 1/4T earlier if bit 1 =1

Offset Address: 8F-8Dh (D0F3) – Reserved

DRAM Clocking Control (90-9F)

Offset Address: 90h (D0F3)

DRAM Clock Operation Mode and Frequency

Bit	Attribute	Default	Description	
7	RW	0	DCLK Switch to Non-Feedback Mode	
			0: Feedback mode 1: Non-feedback mode (feed-forward mode).	
			There is no need to feed DCLKO back through MCLKIN port.	
6:3	RO	0	Reserved	
2:0	RW	000b	DRAM Operating Frequency	
			000: 100MHz 001: 133MHz	
			010: 166MHz 011: 200MHz	
			100: 266MHz 101: 333MHz	
			110: Reserved 111: Reserved	

Offset Address: 91h (D0F3)

DCLK (MCLK) Phase Control Default Value: 00h

Bit	Attribute	Default	Description	
7:3	RO	0	Reserved	
2:0	RW	0	DCLKOA Phase Select	
			Each step increases 1/8T	

Offset Address: 92h (D0F3)

CS/CKE Clock Phase Control

Default Value: 30h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RO	011b	Reserved (Do not program)
3	RO	0	Reserved
2:0	RW	0	Sampling Clock Phase Select for CS/CKE
			Each step increases a phase of 1/8 T

Offset Address: 93h (D0F3)

SCMD/MA Clock Phase Control Default Value: 00h

Bit	Attribute	Default	Description
7:3	RO	0	Reserved
2:0	RW	0	Sampling Clock Phase Select for SCMD/MA
			Each step increases a phase of 1/8 T

Offset Address: 94h (D0F3)

DCLKO Feedback Mode Output Control Default Value: 01h

Bit	Attribute	Default	Description	
7	RO	0	Reserved	
6:4	RW	0	DCLKO Feedback Mode Output Control	
			For Rx90[7] = 0 mode, if DCLKOA is fed back to DCLKIA, each increased step delays DCLKOB; if DCLKOB is	
			fed back to DCLKIA, each increased step makes DCLKOA earlier (1/8T per step).	
3	RO	0	Reserved	
2:0	RW	001b	DCLKO Feedback Mode Output Control	
			For Rx90[7] = 0 mode, if DCLKOA is fed back to DCLKIA, each increased step makes DCLKOB earlier; if	
			DCLKOB is fed back to DCLKIA, each increased step delays DCLKOA (1/8T per step).	

Offset Address: 97-95h (D0F3) – Reserved

Offset Address: 98h (D0F3)

DRAMC Pipeline Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Pipelining Stage on Request Page Decoding	
			Improves DRAMC internal timing for DDR2-667 and above, but increase latency.	
6	RW	0	2T Page Close Rate	
			Improves DRAMC internal timing for DDR2-667 and above when D0F3 Rx68[3:0]!= 0.	
5	RW	0	2T Command Scheduling	
			Improves DRAMC internal timing for DDR2-667 and above when Rx50 = 1, but may affect performance.	
4	RO	0	Reserved	
3	RW	0	2T Command Scheduling for Non-Valid Request Queue	
			Improves DRAMC internal timing for DDR2-667 and above, but may affect performance.	
2:0	RO	0	Reserved	

Offset Address: 9Ch (D0F3)

ODT Lookup Table Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	00b	Rank 3 ODT Signal Selection	
			00:ODTA0 01: OD7	TA1
			10:ODTA2 11: ODT	TA3
5:4	RW	0	Rank 2 ODT Signal Selection	
3:2	RW	0	Rank 1 ODT Signal Selection	
1:0	RW	0	Rank 0 ODT Signal Selection	

Offset Address: 9Dh (D0F3) - Reserved

Offset Address: 9Eh (D0F3)

SDRAM ODT Control Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	DDR2 SDRAM ODT Control	
			0: Disable 1: Enable	
6	RW	0	2T Write Command when Rx50 (Rank 1T Command) =1	
			0: Disable 1: Enable	
5:4	RW	00b	Add MD Bus Turn Around Wait State for DDR2 ODT	
			00: Disable 01: 1T wait state	
			10: 2T wait state 11: 3T wait state	
3:1	RO	0	Reserved	
0	RW	0	Differential DQS Input	
			0: Disable 1: Enable	

Offset Address: 9Fh (D0F3) SDRAM ODT Control

DRAM ODT Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00b	DDR2 SDRAM ODT W	rite Cycle Late Extension	
			00: Disable	01: 1T extension	
			10: 2T extension	11: 3T extension	
5:4	RW	00b	DDR2 SDRAM ODT R	ead Cycle Late Extension	
			00: Disable	01: 1T extension	
			10: 2T extension	11: 3T extension	
3:2	RO	0	Reserved		
1:0	RW	00b	DDR2 SDRAM ODT E	arly Extension	
			00: Disable	01: 1T extension	
			10: 2T extension	11: 3T extension	

UMA Registers (A0–AFh)

Offset Address: A1-A0h (D0F3)

CPU Direct Access Frame Buffer Control

Default Value: 00h

Bit	Attribute	Default	Description		
15	RW	0	VGA Enable		
			0: Disable	1: Enable	
14:12	RW	000b	Frame Buffer Size Se	lection	
			100: 64M	101: 128M	
			110: 256M	Others: Reserved	
11:1	RW	0	A[31:21]		
0	RW	0	CPU Direct Access F	rame Buffer Enable	
			0: Disable	1: Enable	

Offset Address: A2h (D0F3)

VGA Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	VGA High Priority Timer (unit of 16 DCLK)
3:0	RW	0	VGA Timer (unit of 16 DCLK)

Offset Address: A3h (D0F3) - Reserved

Offset Address: A5-A4h (D0F3)

GFX Misc. Default Value: 00h

Bit	Attribute	Default		Description
15:14	RO	0	Reserved	
13	RW	0	Reset Internal GFX by B	BIOS
			0: Not reset	1: Reset
12	RO	0	Reserved	
11:10	RW	00b	Fine Tune GFX PCICLE	ζ
			00: Default	01: Delay 100 ps
			10: Early 150 ps	11: Early 300 ps
9:8	RW	00b	Fine Tune GFX MCK	· ·
			00: Default	01: Delay 100 ps
			10: Early 150 ps	11: Early 300 ps
7:5	RO	0	Reserved	
4	RW	0	GRLD Delay 1 Cycle (Gl	FX Low Priority Read Data 1T Delay)
			0: No delay	1: Delay 1T
3	RW	0	Turn Off LANE8~15 PC	TE_16LANE_nopad to Save Power Consumption
			0: Turn on	1: Turn off
2	RW	0	Turn Off LANE0~7 PCI	E_16LANE_nopad to Save Power Consumption
			0: Turn on	1: Turn off
1	RO	0	Reserved	
0	RW	0	GFX Data Delay to Sync	with Clock
			0: No sync	1: Sync with clock

Offset Address: AF-A6h (D0F3) - Reserved

GMINT and AGPCINT Registers (B0-BFh)

Offset Address: B1-B0h (D0F3)

GMINT Misc. Default Value: 0000h

Bit	Attribute	Default	Description
15:12	RW	0	Switching Timer from High Channel to Low Channel (in unit of 16 DCLK)
11:8	RW	0	Switching Timer from Low Channel to High Channel (in unit of 16 DCLK)
7	RW	0	Disable Synced Registers for GFX Request-Related Signals to GMINT
			0: Sync 1T 1: Bypass sync logic
6	RW	0	Allow GMINT Low Channel Issue 8QW Request
			(Coordinate with D0F2 Rx54[4].)
5	RW	0	Allow GMINT High Channel Issue 8QW Request
			(Coordinate with D0F2 Rx54[4].)
4	RO	0	Power-Management of GMINT Read Cycle
3	RW	0	Improve GMINT Arbitration Performance
			0: Disable
			1: Enable arbitration policy of priority agent bus request/symmetric bus agent request
2:0	RW	0	Frame Buffer Rank

Offset Address: B2h (D0F3)

AGPCINT Misc.

Default Value: A0h

Bit	Attribute	Default	Description
7	RW	1b	AGPCINT to GFX Interface Power Management Enable
			0: Disable I: Enable
6	RW	0	GADS from AGPC Will Be Strict Priority
			0: Disable 1: Enable (Cooperate with RxB2[5])
5	RW	1b	RAGPPRI Enable
			0: Disable
			1: Enable (When GRPI wants to come from GADSH, this bit should be de-asserted)
4	RW	0	MGFIFO Level Control
			0: No limitation on the number of levels
			1: 14 levels
4	RO	0	Reserved
3	RW	0	Allow AGPCINT Issue 8QW Request
			(Coordinate with D0F2 Rx54[4])
2	RW	0	GFX AGP Read Data Sync 1T
1	RW	0	AGPCINT Pipe Mode Disable
			0: Enable 1: Disable
0	RO	0	Reserved

Offset Address: BF-B3h (D0F3) – Reserved

DDR2 - I/O Pad Termination and Driving Control (D0-DFh)

Offset Address: D0h (D0F3)

DQ / DQS Termination Strength Manual Control

Bit	Attribute	Default	Description
7:4	RW	0	DQ/DQS Pull-up Termination Strength Manual Setting
3:0	RW	0	DQ/DQS Pull-down Termination Strength Manual Setting

Offset Address: D1h (D0F3)

DQ / DQS Termination Strength Status

Bit	Attribute	Default	Description
7:4	RO	0	DQ/DQS Pull-up Termination Strength Auto-comp Value
3:0	RO	0	DQ/DQS Pull-down Termination Strength Auto-comp Value

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: D2h (D0F3)

DQ Driving Strength Status Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	DQ Pull-up Driving Strength Auto-comp Value
3:0	RO	0	DQ Pull-down Driving Strength Auto-comp Value

Offset Address: D3h (D0F3)

Compensation Control Default Value: 00h

Bit	Attribute	Default	Description
7:2	RO	0	Reserved
1	RW	0	Disable DDR Compensation Auto Mode
			0: Enable Auto Mode 1: Disable Auto Mode
			If DDR Compensation and DDR Auto Compensation are both enabled, the ODT settings for all DRAM pads are
			from auto-comp circuit (RxD1); otherwise, if Auto Compensation is disabled, the ODT settings are from manual
			setting (RxD0).
0	RW	0	Enable DDR Compensation
			0: Disable 1: Enable
			Disable DDR Compensation provides a power saving mode, however, the values of RxD1 and RxD2 should be
			ignored.

Note: The DQ driving bits of RxD2 is the result of the auto-comp circuit; however, there is no "auto-mode" for the DQ/DQB driving control since it depends on the actual number of ranks in the DRAM data channel

Offset Address: D4h (D0F3)

ODT Pullup / Pulldown Control

Bit	Attribute	Default	Description		
7	RW	0	Enable NB Pad ODT		
			1: Enable ODT when read	ling data	
			0: Disable ODT unless Rx	(D4[3:0]) is not equal to 0	
6	RW	0	Enable DDR Pad Static	Termination	
			1: Enable	0: Disable	
5	RW	0	Enable MCLKI ODT		
			1: Enable	0: Disable	
4	RO	0	Reserved		
3	RW	0	ODT Pullup Enable		
2	RO	0	Reserved		
1	RW	0	Pulldown Enable		
0	RO	0	Reserved		

Offset Address: D5h (D0F3)

DQ / DQS Burst Function and ODT Range Select

Bit	Attribute	Default	Description
7	RW	0	DQ Burst Function
			1: Enable 0: Disable
6	RO	0	Reserved
5	RW	0	DQS Burst Function
4	RO	0	Reserved
3	RW	0	DQ ODT Range Select
			1: 75 ohm 0: 150 ohm
2	RO	0	Reserved
1	RW	0	DQS ODT Range Select
0	RO	0	Reserved

Default Value: 00h

Offset Address: D6h (D0F3)

DCLK / SCMD / CS Driving Select

Bit	Attribute	Default	Description	
7	RW	1b	DCLKOA Driving Select	
			0: Weak driving for DDR or DDR2 without series resistance on MB	
			1: Strong driving for DDR2 with series resistance on MB	
6	RO	0	Reserved	
5	RW	0	SCMD/MA Driving Select	
4	RO	0	Reserved	
3	RW	0	CKE/CS Driving Select	
2:0	RO	0	Reserved	

Offset Address: D7h (D0F3)

SCMD/MA Burst Function Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	SCMD/MA Burst Function Enable	
6:1	RO	0	Reserved	
0	RW	0	DCLKI ODT Range Select	

Offset Address: D8h (D0F3)

DCLKI Termination Strength

Bit	Attribute	Default	Description	
7:4	RW	0	DCLKI Pull-up Termination Strength	
3:0	RW	0	DCLKI Pull-down Termination Strength	

DRAM Driving Control (E0-EBh)

Table 16. Physical Pin to Driving Group Mapping Table

	Table 10: Thysical I in to Diffing Group Mapping Table						
Physical Pins	DCLK	CKE	CS	MA	DQ	DQS	MPD/DQM
Driving Group	DCLK	CS	CS	MA	DO	DOS	DO

Offset Address: E0h (D0F3)

DRAM Driving Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	PMOS Driving
3:0	RW	0	NMOS Driving

Offset Address: E1h (D0F3) – Reserved

Offset Address: E2h (D0F3)

DRAM Driving - Group DQ (MD, MPD, DQS, DQM)

Bit	Attribute	Default	Description
7:4	RW	0	PMOS Driving
3:0	RW	0	NMOS Driving

Offset Address: E3h (D0F3) - Reserved

Default Value: 00h

Offset Address: E4h (D0F3)

DRAM Driving – Group CS (CS, DQM, MPD)

Bit	Attribute	Default	Description
7:4	RW	0	PMOS Driving
3:0	RW	0	NMOS Driving

Offset Address: E5h (D0F3) - Reserved

Offset Address: E6h (D0F3)

DRAM Driving – Group DCLK Default Value: 88h

Bit	Attribute	Default	Description
7:4	RW	1000b	PMOS Driving
3:0	RW	1000b	NMOS Driving

Offset Address: E7h (D0F3) – Reserved

Offset Address: E8h (D0F3)

DRAM Driving – Group SCMD/MA Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	PMOS Driving
3:0	RW	0	NMOS Driving

Offset Address: EB-E9h (D0F3) - Reserved

DRAM CKG Control (EC-EFh)

Offset Address: ECh (D0F3)

DQS / DQ CKG Output Duty Cycle Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	00b	DQS CKG Falling Edge Control	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
5:4	RW	00b	DQS CKG Rising Edge Control	
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps
3:2	RW	00b	DQ CKG Falling Edge Control	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
1:0	RW	00b	DQ CKG Rising Edge Control	* * .
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps

Offset Address: ED (D0F3) - Reserved

Offset Address: EEh (D0F3)

DCLK Output Duty Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	00b	Duty Control for DCLK	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
5:4	RW	00b	Duty Control for DCLK	
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps
3:0	RO	0	Reserved	

Offset Address: EFh (D0F3)

DQ CKG Input Delay Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RO	0	Reserved	
5:4	RW	00b	Delay Control for MDA	
			00: -150 ps	01: 0 ps
			10: 150 ps	11: 300 ps
3:0	RO	0	Reserved	

DQ / DQS CKG Output Delay Control (F0-F7h)

Offset Address: F0-F3h (D0F3)

DQ/DQS CKG Output Delay Control

Default Value: 00h

Bit	Attribute	Default	Description
31	RO	0	Reserved
30:28	RW	000b	DQ/DQS Delay Control for Group A7
			000: Default 001: Delay 60 ps
			010: Delay 120 ps 011: Delay 180 ps
			100: Delay 240 ps 101: Delay 300 ps
			110: Delay 360 ps 111: Delay 420 ps
27	RO	0	Reserved
26:24	RW	0	DQ/DQS Delay Control for Group A6
23	RO	0	Reserved
22:20	RW	0	DQ/DQS Delay Control for Group A5
19	RO	0	Reserved
18:16	RW	0	DQ/DQS Delay Control for Group A4
15	RO	0	Reserved
14:12	RW	0	DQ/DQS Delay Control for Group A3
11	RO	0	Reserved
10:8	RW	0	DQ/DQS Delay Control for Group A2
7	RO	0	Reserved
6:4	RW	0	DQ/DQS Delay Control for Group A1
3	RO	0	Reserved
2:0	RW	0	DQ/DQS Delay Control for Group A0

Offset Address: F9-F4 (D0F3) - Reserved

DDR2 – DQ De-Skew Control (FA-FFh)

Offset Address: FAh (D0F3)

DQ De-Skew Function Control Default Value: 00h

Bit	Attribute	Default		Description
7	RW	0	Enable DQ Input De-Skew Circuit	
			0: Disable	1: Enable
6	RW	0	Manual DQ Output Delay Setting	
			0: Auto	1: Manual
5	RW	0	Manual DQ Input Delay Setting	
			0: Auto	1: Manual
4	RW	0	Manual Setting for RX / TX Select	
			0: RX	1: TX
3	RW	0	Manual Setting DQ Channel Select	
			0: Channel A	1: Channel B
2:0	RW	000b	Manual Setting DQ Group Select	
			000: DQ[7:0]	001: DQ[15:8]
			110: DQ[55:48]	111: DQ[63:56]

Offset Address: FBh (D0F3)

DQS Delay Control

Bit	Attribute	Default	Description	
7	W/R0	0	Bypass DQ / DQS Delay in O	CKG
			0: Disable	1: Enable
6:4	W/R0	011b	EPLL Feed-Back Clock Tre	e Delay Control
			Each bit for 60ps	·
			000: No delay	001: Delay 60ps
			010: Delay 120ps	011: Delay 180ps .i: Delay i*60 ps
3:0	RW	0	DQS Delay Setting	
			Use with FA[4:0] to set DQS	input / output delay value (binary, 25ps/step) to a DQS bit. The reading value
			depends on RxFA[6:4]. If Rxl	FA[5]=0 (auto mode), PD compensation result is returned when read.

Offset Address: FC-FFh (D0F3)

DQ Delay Setting Default Value: 00h

Bit	Attribute	Default	Description
31:0	RW	0	DQ Delay Setting Use with FA[4:0] to set DQ input / output delay value (binary, 25ps/step) to a DQ group. The reading value depends on RxFA[6:4]. If RxFA[5]=0 (auto mode), PD compensation result is returned when read.

Note: DQ de-skew function operating procedure

- 1. Set DRAM in low-speed mode; prepare training data in DRAM
- 2. Set RxFA[5]=0 (auto mode), set RxFA[7]=1 (PD enable)
- 3. Read training data from DRAM
- 4. Set RxFA[7]=0 (PD disable)
- 5. Configuration read RxFB[3:0], RxFC-FF for each DQ group
- 6. Set RxFA[4]=0, configuration write RxFB[3:0], RxFC-FF for each DQ group
- 7. Set RxFA[4]=1, configuration write RxFB[3:0], RxFC-FF for each DQ group
- 8. Set RxFA[6]=1 (manual mode)

Device 0 Function 4 (D0F4): Power Management Control

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F4)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F4)

Device ID Default Value: 4364h

Bit	Attribute	Default	Description
15:0	RO	4364h	Device ID

Offset Address: 5-4h (D0F4)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F4)

PCI Status Default Value: 0020h

Bit	Attribute	Default	Description
15:0	RO	0020h	PCI Status

Offset Address: 8h (D0F4)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F4)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F4) - Reserved

Offset Address: 0Dh (D0F4)

Latency Timer Default Value: 00h

	Bit	Attribute	Default	Description
I	7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F4)

Header Type Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Header Type

Offset Address: 0Fh (D0F4)

BIST Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F4) - Reserved

Offset Address: 2D-2C (D0F4)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2E (D0F4)

Subsystem ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Offset Address: 33-30 (D0F4) – Reserved

Offset Address: 34 (D0F4)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer – byte offset into configuration space to capability list

Offset Address: 8F-35 (D0F4) - Reserved

New Power Management Control (9F-90h)

Offset Address: 90h (D0F4)
New Power Management Mode

New Power Management Mode Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Dynamic Clock Enable of PXPTRF	
			0: Disable	1: Enable
6	RW	0	Dynamic Clock Enable of CCLK	
			0: Disable	1: Enable
5	RW	0	Dynamic Clock Enable of GCLK	
			0: Disable	1: Enable
4	RW	0	Dynamic Clock Enable of ECLK	
			0: Disable	1: Enable
3	RW	0	Dynamic Clock Enable of DCLK	
			0: Disable	1: Enable
2:0	RO	0	Reserved	

Offset Address: 9F-91h (D0F4) - Reserved

Power Management Control (A0-AFh)

Offset Address: A0h (D0F4)

Power Management Mode Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Dynamic Power Management
			0: Disable 1: Enable
6	RW	0	Power Management during HALT / SHUTDOWN
			0: Disable 1: Enable
5	RW	0	Power Management during STPCLK
			0: Disable 1: Enable
4	RW	0	Power Management during SUSSTAT
			0: Disable 1: Enable
3:0	RO	0	Reserved

Offset Address: A1h (D0F4)

DRAM Power Management Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Enable DRAM Self-Refresh During Power-Management Mode
			0: Disable 1: Enable
6	RW	0	Dynamic CKE When DRAM Idle
			0. Disable 1: Enable
			Note: Before entering STR Mode, please turn off this bit.
5	RW	0	Dynamic DRAM I/O Pad Power-Down (i.e. float)
			0: Disable 1: Enable
4:0	RO	0	Reserved

Note: The DRAM power management mode is defined as HALT / SHUTDOWN, STPCLK and SUSSTAT triggered

Offset Address: A2h (D0F4)

Dynamic Clock Stop Control Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Host Interface Power Management	
			0: Disable 1: Enable	
6	RW	0	DRAM Interface Power Management	
			0: Disable 1: Enable	
5	RW	0	V-Link Interface Power Management	
			0: Disable 1: Enable	
4	RW	0	AGP Interface Power Management	
			0: Disable 1: Enable	
3	RW	0	PCI2 Interface Power Management	
			0: Disable 1: Enable	
2	RW	0	Graphics Interface (GMINT) Power Management	
			0: Disable 1: Enable	
1	RW	0	VKCFG Interface Power Management	
			0: Disable 1: Enable	
0	RW	0	Host Fast Power-Management (DADS Fast Timing)	
			0: Disable 1: Enable	

Offset Address: A3h (D0F4)

P6IF Dynamic Clock Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Using BREQ to Predict CPU Transaction and Do More Aggressive Dynamic Clock
			This clock basically replaces nearly all free-running clock inside P6IF.
			0: Disable 1: Enable
6	RW	0	Wait up RRDY Clock for DRAM Controller
			0: Disable 1: Enable
5	RW	0	Enable Host C2P Clock Gating
			0: Disable 1: Enable
4	RW	0	Enable Dynamic Clock Gating for C2P1 Transaction Inside P6IF
			0: Disable 1: Enable
3	RW	0	Enable Dynamic Clock Gating for C2P2 Transaction Inside P6IF
			0: Disable 1: Enable
2	RW	0	Enable Host P2C Clock Gating
			0: Disable 1: Enable
1	RW	0	Turn off Register Initialization Logic after Chip Power-On Completed
			0: Disable 1: Enable
0	RW	0	Enable Dynamic Gating Clock Phase Signal
			Reserved
			0: Disable 1: Enable

Offset Address: A4h (D0F4) DRAM Dynamic Clock Contr

DRAM Dynamic Clock Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Enable DRAMC Read Clock Gating
			0: Disable 1: Enable
6	RW	0	Enable DRAMC Write Clock Gating
			0: Disable 1: Enable
5	RW	0	Enable DRAMC Page Table Clock Gating
			0: Disable 1: Enable
4	RW	0	Enable DRAMC GART TLB Clock Gating
			0: Disable 1: Enable
3	RW	0	Enable Latch Queue Write-Enable Dynamic Clock Gating Inside P6IF, Including IOQ, PWQ and PAQ
			0: Disable 1: Enable
2	RW	0	Enable DIO and PAD Related Dynamic Clock Gating, Including 2X in/out CCLK and 1X Clock for PAD
			0: Disable 1: Enable
1	RW	0	Enable Dynamic MA/SCMD Clock on MA/SCMD Pads
			0: Disable 1: Enable
0	RW	0	Enable DBX CMFIFO PUSH Dynamic Clock
			0: Disable 1: Enable

Offset Address: A5h (D0F4) V-Link Dynamic Clock Control

V-Link Dynamic Clock Control Default Value: 00h

Bit	Attribute	Default		Description
7	RO	0	Reserved	
6	RW	0	Enable PCIC P2C Clock Gating	
			0: Disable	1: Enable
5	RW	0	Enable PCIC P2P Clock Gating	
			0: Disable	1: Enable
4	RW	0	Enable PCIC C2P Clock Gating	
			0: Disable	1: Enable
3:0	RO	0	Reserved	

Offset Address: A6h (D0F4)

GMINT Dynamic Clock Control Default Value: 00h

Bit	Attribute	Default		Description
7	RW	0	Enable GMINT Dynar	nic Clock
			0: Disable	1: Enable
6	RW	0	Enable GMINT Read	Clock Gating
			0: Disable	1: Enable
5	RW	0	Enable GMINT Write	Clock Gating
			0: Disable	1: Enable
4	RW	0	Power down the AGP	Pads' Input Differential Comparator when Idle
			0: Disable	1: Enable
3	RW	0	Enable NVC Dynamic	Clock
			0: Disable	1: Enable
2	RW	0	Enable AGPCINT Dyr	namic Clock
			0: Disable	1: Enable
1	RW	0	Enable GPCI Dynamic	c Clock
			0: Disable	1: Enable
0	RW	0	Enable DBX Dynamic	Clock
			0: Disable	1: Enable

Offset Address: A7h (D0F4)

Enable System Memory Self-Refresh with Frame Buffer Being Pre-Charged

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3	RW	0	Enable System Memory Self-Refresh with Frame Buffer Being Pre-Charged
			0: Disable 1: Enable
2:0	RO	0	Reserved

Offset Address: A8h (D0F4)

COT PMU Control Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Enable C0 Throttling State		
			0: Disable	1: Enable	
6	RW	0	Enable DIMM Self-Refresh in Co	OT State with GFX in D3 State	
			0: Disable	1: Enable	
5	RW	0	Enable DIMM Self-Refresh in C0T State with GFX in Vertical Blanking		
			0: Disable	1: Enable	
4	RW	0	Enable Non-Page Mode in C0T		
			0: Disable	1: Enable	
3	RW	0	Enable DRAM Throttle in C0T		
			0: Disable	1: Enable	
2	RW	0	Disable PLL in C0T State with G	FX_ENGC3ST GFX_VBLANK	
1	RW	0	Disable PLL in C0T State When	Internal GFX Enters D3 State	
0	RO	0	Reserved		

Offset Address: A9h (D0F4)

C1 PMU Control Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Enable C1 Throttling State		
			0: Disable 1: Enable		
6	RW	0	Enable DIMM Self-Refresh in C1 State with GFX in D3 State		
			0: Disable 1: Enable		
5	RW	0	Enable DIMM Self-Refresh in C1 State with GFX in Vertical Blanking		
			0: Disable 1: Enable		
4	RW	0	Enable Non-Page Mode in C1		
			0: Disable 1: Enable		
3	RW	0	Enable DRAM Throttle in C1		
			0: Disable 1: Enable		
2	RW	0	Disable PLL in C1 State with GFX_ENGC3ST GFX_VBLANK		
1	RW	0	Disable PLL in C1 State When Internal GFX Enters D3 State		
0	RO	0	Reserved		

Offset Address: AAh (D0F4)

C2 PMU Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Enable C2 Throttling State	
			0: Disable 1: Enable	
6	RW	0	Enable DIMM Self-Refresh in C2 State with GFX in D3 State	
			0: Disable 1: Enable	
5	RW	0	Enable DIMM Self-Refresh in C2 State with GFX in Vertical Blanking	
			0: Disable 1: Enable	
4	RW	0	Enable Non-Page Mode in C2	
			0: Disable 1: Enable	
3	RW	0	Enable DRAM Throttle in C2	
			0: Disable 1: Enable	
2	RW	0	Disable PLL in C2 State with GFX_ENGC3ST GFX_VBLANK	
1	RW	0	Disable PLL in C2 State When Internal GFX Enters D3 State	
0	RO	0	Reserved	

Offset Address: ABh (D0F4)

C3 PMU Control

Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Enable C3 Throttling State		
			0: Disable 1: Enable	;	
6	RW	0	Enable DIMM Self-Refresh in C3 State with GFX	in D3 State	
			0: Disable 1: Enable	;	
5	RW	0	Enable DIMM Self-Refresh in C3 State with GFX in Vertical Blanking		
			0: Disable 1: Enable	;	
4	RW	0	Enable Non-Page Mode in C3		
			0: Disable 1: Enable		
3	RW	0	Enable DRAM Throttle in C3		
			0: Disable 1: Enable	;	
2	RW	0	Disable PLL in C3 State with GFX_ENGC3ST G	GFX_VBLANK	
1	RW	0	Disable PLL in C3 State When Internal GFX Ente	ers D3 State	
0	RO	0	Reserved		

Offset Address: ACh (D0F4)

C3D PMU Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Enable C3D Throttling State	
			0: Disable	1: Enable
6	RW	0	Enable DIMM Self-Refresh in C	3D State with GFX in D3 State
			0: Disable	1: Enable
5	RW	0	Enable DIMM Self-Refresh in C	3D State with GFX in Vertical Blanking
			0: Disable	1: Enable
4	RW	0	Enable Non-Page Mode in C3D	
			0: Disable	1: Enable
3	RW	0	Enable DRAM Throttle in C3D	
			0: Disable	1: Enable
2	RW	0	Disable PLL in C3D State with C	GFX_ENGC3ST GFX_VBLANK
1	RW	0	Disable PLL in C3D State When	Internal GFX Enters D3 State
0	RO	0	Reserved	

Offset Address: AE-ADh (D0F4)

ACPI I/O Base Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW	0	ACPI I/O Base P6IF knows LVL2 (RxAE-AD + 14h) register is read

Offset Address: AFh (D0F4)

New PMU Feature Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	New V-Link Reconnecting Protocol
6:4	RO	0	Reserved
3	RW	0	Reduce GFX Lower Bound for Accumulating More Frame-Buffer Requests
			0: Disable 1: Ēnable
2:0	RO	0	Reserved

Offset Address: B1-B0h (D0F4) - Reserved

Offset Address: B2h (D0F4)

MA/SCMD Pad Toggle Reduction Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Enable MA/SCMD Toggle Reduction, i.e. MA/SCMD Not Switch If Not Accessed
			0: Disable 1: Enable
6:0	RO	0	Reserved

Offset Address: B3h (D0F4) - Reserved

Offset Address: B4h (D0F4)

Host Pad Dynamic Control Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	When turned on, it will dynamic enable input differential buffer for HD pad.	
			0: Disable 1: Enable	
6	RW	0	When turned on, it will use BREQ to dynamic enable input differential buffer for HA and HREQ pad.	
			Refer to D0F2 Rx7D[0] and D0F2 Rx67[6].	
			0: Disable 1: Enable	
5	RW	0	Enable Report PMU Status to I/O Port D0F4 RxB5[7:0]	
			Set to 0 in normal mode.	
			0: Disable 1: Enable	
4:0	RO	0	Reserved	

Offset Address: B5h (D0F4)

PMU Debug Base Default Value: 00h

	Bit	Attribute	Default	Description	
I	7:0	RW	0	Define I/O Address Where the Debug Card Located	

Offset Address: B7-B6h (D0F4) - Reserved

Offset Address: B8h (D0F4)

Dynamic Clock Stop for New Modules Default Value: 00h

Bit	Attribute	Default		Description
7	RW	0	Enable Dynamic Clock S	TOP for PEG Port for PHY
			0: Disable	1: Enable
6	RW	0	Enable Dynamic Clock S	TOP for PE0 Port for PHY
			0: Disable	1: Enable
5	RW	0	Enable Dynamic Clock S	TOP for PXPTRF (Central Traffic Controller)
			0: Disable	1: Enable
4	RW	0	Enable Dynamic Clock S	TOP for PEG Port
			0: Disable	1: Enable
3:1	RO	0	Reserved	
0	RW	0	Enable Dynamic Clock S	TOP for PE0 Port
			0: Disable	1: Enable

Offset Address: BA-B9h (D0F4)

System Power Management Default Value: 0400h

Bit	Attribute	Default	Description
15	RW	0	C2 Gate Free Running Clock
			0: Disable 1: Enable
14	RW	0	C3 Gate Free Running Clock
			0: Disable 1: Enable
13	RO	0	Reserved
12	RW	0	C3 When GFX Has Entered D3 Status Disable PLL
			0: Disable 1: Enable
11:8	RW	4h	PLL STABLE Counter
7:0	RW	0	PLL STABLE Counter (Unit: 15ns)

Offset Address: CF-BBh (D0F4) - Reserved

Device 0 Function 5 (D0F5): APIC and Central Traffic Control

Header Registers (0–3Fh)

Offset Address: 1-0h (D0F5)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F5)

Device ID Default Value: 5364h

Bit	Attribute	Default	Description
15:0	RO	5364h	Device ID

Offset Address: 5-4h (D0F5)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F5)

PCI Status Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0	PCI Status

Offset Address: 8h (D0F5)

Revision ID Default Value: 00h

]	Bit	Attribute	Default	Description
	7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F5)

Class Code Default Value: 08 0020h

Bit	Attribute	Default	Description
23:0	RO	080020h	Class Code

Offset Address: 0Ch (D0F5) - Reserved

Offset Address: 0Dh (D0F5)

Latency Timer Default Value: 00h

	Bit	Attribute	Default	Description
I	7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F5)

Header Type Default Value: 80h

Bit	Attribute	Default	Description
7:0	RO	80h	Header Type

Offset Address: 0Fh (D0F5)

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F5) - Reserved

Offset Address: 2D-2C (D0F5)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2E (D0F5)

Subsystem ID Default Value: 0000h

	Bit	Attribute	Default	Description
I	15:0	RW1	0	Subsystem ID

Offset Address: 33-30 (D0F5) - Reserved

Offset Address: 34 (D0F5)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer

Offset Address: 3F-35 (D0F5) - Reserved

Legacy APIC Base I/O Registers (40-5Fh)

Offset Address: 40h (D0F5)

APIC Legacy Configuration Default Value: 4Ch

Bit	Attribute	Default	Description	
7	RW	0	Legacy APIC	
			0: Disable	
			1: Enable. Range FECxyz00 to FECxyzFF, where x,y,z are defined in Rx40[3:0] and Rx41[7:0].	
6	RO	1b	Reserved (Do Not Program)	
5	RW	0	Issues MSI Cycle for the Interrupt Deassertions	
			0: Disable. There will be no corresponding MSI cycle for IRQ deassertion.	
			1: Enable. IRQ assertion and de-assertion will both issue MSI cycle out.	
4	RO	0	Reserved	
3:0	RW	Ch	APIC Legacy Address Range - x	

Offset Address: 41h (D0F5)

APIC Legacy Address Range – y / z

Bit	Attribute	Default	Description
7:4	RW	0	APIC Legacy Address Range - y
3:0	RW	0	APIC Legacy Address Range - z

Default Value: 00h

Offset Address: 42h (D0F5)

APIC Interrupt Control Default Value: 03h

Bit	Attribute	Default		Description		
7:4	RO	0	Reserved			
3	RW	0	Disable INTx Transparent Mode			
			0: Enable Transparent mode	1: Disable Transparent mode		
2	RW	0	APIC Nonshare Mode Enable			
1	RW	1b	Interrupt Disable Function of the A	PIC Module		
			0: Disable	1: Enable		
0	RW	1b	Boot Interrupt Function			
			0: Disable	1: Enable		

Offset Address: 43h (D0F5) - Reserved

Offset Address: 44h (D0F5)

Miscellaneous Control Default Value: 02h

Bit	Attribute	Default	Description		
7	RW	0	PCIe Upstream Cycle Reduces 1T		
			0: PCIe upstream cycle does not reduce 1T.		
			1: PCIe upstream cycle reduces 1T.		
6:5	RO	0	Reserved		
4	RW	0	Hot-Plug Toggle		
			0: PEHPSCI cannot be toggled when PCIe card is plugged in.		
			1: PEHPSCI can be toggled when PCIe card is plugged in.		
3	RW	0	Upstream MSI Cycle Flushes the Upstream VCI Write		
			0: Disable 1: Enable		
2	RW	0	Reserved		
1	RW	1b	DV1 Enable		
			0: Disable 1: Enable		
0	RW	0	APIC Data Voltage for CPU Voltage Select		
			0: 2.5V 1: 1.5V		

Offset Address: 5F-45h (D0F5) – Reserved

Central Traffic - Downstream Control (60-7Fh)

Offset Address: 60h (D0F5)

Extended CFG Address Support Default Value: 20h

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5	RW	1b	Convert Device2 CF8 Cycles to Device1 while Passing it to the SB (in PCIe Mode)
			0: CF8 access cycles are passed to the SB normally.
			1: CF8 with data[15:11]=00010 will be changed to data[15:11]=00001.
4	RW	0	CF8 Byte Write Enable
			0: Only supports CF8 write with all BE active.
			1: Allow CF8 write with partial BE active.
3	RW	0	For Device 2 and Device 3, Configuration Cycles to the Secondary Bus behind the P2P Bridge
			0: Configuration cycles for all the devices will be passed through.
			1: Only configuration cycles for device 0 will be passed to the secondary bus, configuration cycles for device 1 and
			above will be passed to SB.
2	RO	0	Reserved
1:0	RW	00b	Extended CFG Mode
			00: Extended CFG mode is off
			01: Reserved
			10: Capability header for extended configuration address support
			11: Memory mapped extended CFG address supported (Rx61[7:0] should also be programmed.)

Offset Address: 61h (D0F5)

Memory Mapped Extended CFG Address

Bit	Attribute	Default	Description
7:0	RW	0	Extended Configuration Address - A[35:28] 00h: No extended configuration address.
			Else: Extended configuration address A[35:28] from host side.

Offset Address: 63-62h (D0F5) - Reserved

Offset Address: 64h (D0F5)

Miscellaneous Default Value: 33h

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5	RW	1b	Upstream MSI Cycles Force Flush of the Queued P2C Write Data 0: Disable 1: Enable Note: Upstream MSI cycles include FEEx xxxx from the internal APIC and cycles with address as programmed
			in D2, D3F0 Rx74-7B
4	RW	1b	Downstream C2P Forces Flush of the Upstream P2C Write to the Host Side before Return LRDY to the Host Side 0: Disable 1: Enable Note: C2P Downstream cycles include MEMR, IOR and IOW
3:2	RO	0	Reserved
1	RW	1b	Downstream Write Request Timing 0: Waits for the write data to issue downstream request. 1: Issues downstream request once request from the host is received
0	RW	1b	Traffic Controller Downstream Cycles Are Processed in Order 0: Disable. Downstream post write transaction will not be issued out until the data phase of the previous read transaction is finished. 1: Enable. Downstream post write transaction can be issued out before the completion of the data phase of the previous read transaction.

Offset Address: 65h (D0F5) – Reserved

Offset Address: 66h (D0F5)

Miscellaneous Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Trusted Configuration Space Base Address

Offset Address: 67h (D0F5) - Reserved

Offset Address: 6B-68h (D0F5)

Memory Mapped Extended RCRB-H Base Address

Bit	Attribute	Default	Description
31:24	RO	0	Reserved
23:0	RW	0	RCRB-H Base Address

Offset Address: 6F-6Ch (D0F5)

Memory Mapped Extended RCRB-V Base Address Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	0	Reserved
23:0	RW	0	RCRB-V Base Address

Offset Address: 7F-70h (D0F5) - Reserved

Default Value: 0000 0000h

Central Traffic - Upstream Control (80-85h)

Offset Address: 80h (D0F5)

Central Traffic-Upstream Control Default Value: 95h

Bit	Attribute	Default	Description
7	RO	1b	PCI Express Graphic Device Support
			0: AGP interface supported
			1: PCI Express (PEG Port) interface supported
6	RW	0	VC1 Upstream Path
			0: VC1 requests are forwarded to the host side (snoop).
			1: VC1 requests are forwarded to the DRAMC side.
5	RW	0	CPU-to-DRAM Post Write FIFO Snoop Policy for Upstream Request to DRAMC
			0: Upstream requests are sent to DRAMC directly.
			1: Upstream requests to DRAMC have to wait for the snoop result.
4	RW	1b	AGP Upstream Path
			0: AGP requests are forwarded to the host side (snoop)
			1: AGP requests are forwarded to the DRAMC side (non snoop)
3	RW	0	Upstream Request 1T Earlier
			0: Normal latency for upstream request.
			1: Reduced 1T latency for upstream request.
2	RW	1b	Host Side Upstream Write
			Transaction end with 1T earlier notice.
			0: Disable 1: Enable
1	RW	0	Host Side Upstream Read Data Returning Path
			0: 2 levels of synchronous FIFO 1: 1 level synchronous FIFO
0	RW	1b	Host Side Upstream Write, Data Return with a 1T Notice
			0: Disable 1: Enable

Offset Address: 81h (D0F5)

PCIe Upstream/Downstream Control

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5	RW	0	Downstream to PCIe Initial Write Ready Asserted 1T Earlier
			0: Disable 1: Enable
4:0	RO	0	Reserved

Offset Address: 82h (D0F5)

Central Traffic Control

Default Value: 00h

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5	RW	0	PCIe VC1 Read/Write Ordering Rule
			0: Obey PCIe VC1 read/write ordering rule
			1: PCIe VC1 read cycle can pass VC1 write cycle
4	RW	0	PCIe VC1 Command Rate
			0: PCIe VC1 read/write 2T command rate
			1: PCIe VC1 read 2T command rate, but write 1T command rate
3	RW	0	AGP Read/Write Ordering Rule
			0: Obey AGP read/write ordering rule
			1: AGP read cycle can pass AGP write cycle
2	RW	0	AGP Read/Write Command Rate
			0: AGP read/write 2T command rate
			1: AGP read 2T command rate, but, write 1T command rate
1	RW	0	Fair Arbitration Latency for the Host Side Arbitration Unit at RCRB-H Rx230-23D
			0: 2T 1: 1T
0	RW	0	Port Arbitration Latency for the Port Arbitration Unit at RCRB-H 210-219
			0: 2T 1: 1T

Offset Address: 9F-83h (D0F5) - Reserved

PCIe Message Controller and Power Management (A0-F0h)

Offset Address: A0h (D0F5)

PCIe PMU Control and Status Default Value: 00h

Bit	Attribute	Default	Description
7	RWS	0	PEWAKE# Activation Control
			0: PEWAKE# function is disabled
			1: PEWAKE# function is enabled
6	RW	0	PEPMESCI# (System Control Interrupt) Activation Control
			0: PEPMESCI function is disabled
			1: PEPMESCI function is enabled
5	RW	0	PEHPSCI# (System Control Interrupt) Activation Control
			0: PEHPSCI# function is disabled
			1: PEHPSCI# function is enabled
4	RW1C	0	PEG L2L3 PME Acknowledge Status
			0: Disable
			1: 1 indicates that upon RxF0[7] is set to 1. PEG goes to L2L3 ready state and PME_TO_ACK message has
			returned from the device at PEG.
3:1	RO	0	Reserved
0	RW1C	0	PE0 L2L3 PME Acknowledge Status
			0: Disable
			1: 1 indicates that upon RxF0[7] is set to 1. PE0 goes to L2L3 ready state and PME_TO_ACK message has
			returned from the device at PE0.

Offset Address: A1h (D0F5)

PCIe PMU Status Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	PM PME Message Status
			0: No PM_PME message
			1: At least one PM_PME message was received at the PCIe ports.
			Note: Wake up the system through either PEWAKE# or PEPMESCI# depends on the settings on RxA0[7:6].
6	RO	0	Reserved
5	RO	0	Hot Plug Event Status
			0: No Hot Plug event
			1: At least one Hot Plug event was received at the PCIe ports.
			N. This will be added a priving of the control of t
			Note: This event is triggered by RxA0[5] for PEHPSCI# activation control.)
4:0	RO	0	Reserved

Offset Address: A2h (D0F5)

PMU Downstream Address [15:8] Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	Downstream Address Bits [15:8]
			This register is used for monitoring S3/S4/S5 downstream command. Refers to RxA3[7] for address [7].

Offset Address: A3h (D0F5)

PMU Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Downstream Address Bit [7]
			This bit is used for monitoring S3/S4/S5 downstream command. Refers to RxA2 for address [15:8].
6:3	RO	0	Reserved
2	RW	0	ARBDIS Signal Control
			0: Disable the ARBDIS signal
			1: Enable the ARBDIS signal
1	RW	0	AGPBSY Signal Control
			0: Disable the AGPBSY
			1: Enable the AGPBSY
0	RW	0	Monitor S3/S4/S5 Command
			0: Disable 1: Enable
			When enabled, the controller will monitor S3/S4/S5 commands (e.g. IOW 4005, 24h or 28h) in the following procedure: 1. The controller receives the STPGNT cycles from the CPU 2. The controller triggers MSGC to issue PME_TURNOFF message to PCIe devices (Dev2, Dev3) 3. The controller waits for the acknowledge from all the devices to issue the STPGNT cycle received in step 1 to SB.

Offset Address: EF-A4h (D0F5) – Reserved

Offset Address: F0h (D0F5)

PMU Control Default Value: 62h

Bit	Attribute	Default	Description
7	RW	0	PCIe Device Power Management Control
			0: Disable 1: Enable
			Programmed this bit to 1 will trigger a PME_TURNOFF message to be sent to PEG and PE0, where devices are
			activated. This bit has to be programmed to 0 before it can be programmed to 1 again.
6	RW	1b	Device 0 Function 6 Exists or Not
5	RW	1b	Device 2 Exists or Not
4	RW	0	Device 3 Function 3 Exists or Not
3	RW	0	Device 3 Function 2 Exists or Not
2	RW	0	Device 3 Function 1 Exists or Not
1	RW	1b	Device 3 Function 0 Exists or Not
0	RW	0	Reserved

Offset Address: FF-F1h (D0F5) – Reserved

Device 0 Function 6 (D0F6): Scratch Registers

Header Registers (0–3Fh)

Offset Address: 1-0h (D0F6)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F6)

Device ID Default Value: 6364h

Bit	Attribute	Default	Description
15:0	RO	6364h	Device ID

Offset Address: 5-4h (D0F6)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F6)

PCI Status Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0000h	PCI Status

Offset Address: 8h (D0F6)

Revision ID Default Value: 00h

	Bit	Attribute	Default	Description
I	7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F6)

Class Code Default Value: 06 000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F6)- Reserved

Offset Address: 0Dh (D0F6)

Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F6)

Header Type Default Value: 80h

	Bit	Attribute	Default	Description
I	7:0	RO	80h	Header Type

Offset Address: 0Fh (D0F6)

BIST Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F6) - Reserved

Offset Address: 2D-2Ch (D0F6)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F6)

Subsystem ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Offset Address: 33-30h (D0F6) - Reserved

Offset Address: 34h (D0F6)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer

Offset Address: 3F-35h (D0F6) - Reserved

Scratch Registers (7F-40h)

Offset Address: 4F-40h (D0F6)

BIOS Scratch Register 1 Default Value: 0h

Bit	Attribute	Default	Description
127:0	RW	0	BIOS Scratch Register

Offset Address: 5F-50h (D0F6)

BIOS Scratch Register 2 Default Value: 0h

Bit	Attribute	Default	Description
127:0	RW	0	BIOS Scratch Register

Offset Address: 6F-60h (D0F6)

BIOS Scratch Register 3 Default Value: 0h

Bit	Attribute	Default	Description
127:0	RW	0	BIOS Scratch Register

Offset Address: 7F-70h (D0F6)

BIOS Scratch Register 4 Default Value: 0h

Bit	Attribute	Default	Description
127:0	RW	0	BIOS Scratch Register

Offset Address: BF-80h (D0F6) – Reserved

Hash Data Control Registers (C0-FFh) - Reserved

Device 0 Function 7 (D0F7): V-Link North Bridge and South Bridge Control

Header Registers (0–3Fh)

Offset Address: 1-0h (D0F7)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D0F7)

Device ID Default Value: 7364h

	Bit	Attribute	Default	Description
Г	15:0	RO	7364h	Device ID

Offset Address: 5-4h (D0F7)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:0	RO	0006h	PCI Command

Offset Address: 7-6h (D0F7)

PCI Status Default Value: 0200h

Bit	Attribute	Default	Description
15:0	RO	0200h	PCI Status

Offset Address: 8h (D0F7)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-9h (D0F7)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
15:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F7) - Reserved

Offset Address: 0Dh (D0F7)

Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Latency Timer

Offset Address: 0Eh (D0F7)

Header Type Default Value: 80h

Bit	Attribute	Default	Description
7:0	RO	80h	Header Type

Offset Address: 0Fh (D0F7)

BIST Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST

Offset Address: 13-10h (D0F7) – Reserved

Offset Address: 2D-2Ch (D0F7)

Subsystem Vendor ID Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F7)

Subsystem ID Default Value: 0000h

	Bit	Attribute	Default	Description
Ī	15:0	RW1	0	Subsystem ID

Offset Address: 33-30h (D0F7)

Reserved Default Value: 0000 0000h

	Bit	Attribute	Default	Description
ı	31:0	RO	0	Reserved

Offset Address: 34h (D0F7)

Capability Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Capability Pointer – byte offset into configuration space to capability list

Offset Address: 3F-35h (D0F7) – Reserved

V-Link Control Interface (40-6Fh)

Offset Address: 40h (D0F7)

V-Link Specification ID Default Value: 70h

Bit	Attribute	Default	Description
7:0	RO	70h	Revision ID

Default Value: 88h

Offset Address: 41h (D0F7)

NB V-Link Capability Default Value: 19h

Bit	Attribute	Default	Description		
7	RW	0	PEPMESCI, PEHPSCI and BUSY Speci-	al Command Translated to SB Support	
			0: Not supported	1: Supported	
6	RW	0	Downstream DAC Cycle Supported		
			0: Disable	1: Enable	
5	RO	0	Reserved		
4	RO	1b	8-Bit Width		
			0: Not supported	1: Supported	
3	RO	1b	4X Rate		
			0: Not supported	1: Supported	
2	RO	0	2X Rate		
			0: Not supported	1: Supported	
1	RO	0	Reserved		
0	RO	1b	8X Rate		
			0: Not supported	1: Supported	

Offset Address: 42h (D0F7)

NB Downlink (C2P) Configuration

Bit	Attribute	Default	Description		
7:4	RW	1000b	C2P, DNCMD, Maximum Pending Request Depth		
			Maximum # of pending DNCMD, C2P, requests.		
			0000: 1 level 0001: 1 levels 0010: 2 levels		
			0011: 3levels 1000: 8 levels		
3:0	RW	1000b	C2P Maximum Write Buffer Size (from 1 to 16 DW)		
			0000: 1 DW 0010: 2 DW 0011: 3 DW		
			0100: 4 DW 1000: 9 DW 1111: 16 DW		

Offset Address: 43h (D0F7)

NB Uplink (P2C) Status 1 Default Value: 88h

Bit	Attribute	Default	Description	
7:4	RO	8h	P2C, UPCMD, Maximum Pending Request Depth	
			0: 16 levels 1: 1 level	
			n: n levels, where $0 < n \le 0$ Fh	
3	RW	1b	P2P Cycle Control	
			0: P2P cycle using P2C cmd will not be discarded.	
			1: P2P cycle using P2C cmd from SB is discarded.	
2:0	RO	0	Reserved	

Offset Address: 44h (D0F7)

NB Uplink (P2C) Status 2 Default Value: 82h

Bit	Attribute	Default	Description	
7:4	RO	1000b	P2C Write Buffer Size (max # of lines)	
			0000: 16 lines (64 QW)	0001: 1 line (4 QW)
			1000: 8 lines (32 QW)	1111: 15 lines (60 QW)
3:0	RO	2h	P2P Write Buffer Size (max # of lines)	
			0000: 0 line (0 QW)	0001: 1 line (4 QW)
			0010: 2 lines (8 QW)	Others: Reserved

Offset Address: 45h (D0F7) NB V-Link Arbiter Timer

B V-Link Arbiter Timer Default Value: 44h

Bit	Attribute	Default	Description		
7:4	RW	0100b	V-Link Arbiter Timer for Normal Priority Request from SB		
			0000: 0 VCLK 0001: 1*4 VCLK 0010: 2*4 VCLK		
			0011: 3*4 VCLK 0100: 4*4 VCLK 1000: 8*4 VCLK		
			1001: 16*4 VCLK 1010: 32*4 VCLK 1011: 64*4 VCLK		
			11xx: NB holds the bus as long as there is pending downstream request		
3:0	RW	0100b	V-Link Arbiter Timer for High Priority Request from SB		
			0000: 0 VCLK 0001: 1*2 VCLK 0010: 2*2 VCLK		
			0011: 3*2 VCLK		
			1001: 16*2 VCLK 1010: 32*2 VCLK 1011: 64*2 VCLK		
			11xx: NB holds the bus as long as there is pending downstream request		
			Note: See "NB V-Link Bus Arbitration" table for more details.		

Table 17. NB V-Link Bus Arbitration

Rx45[7:4]	Rx45[3:0]	SB	NB
		Request Priority	When to Relinquish the Occupied V-Link Bus
0000	XXXX	Normal / High	Immediately
0001,0010,	0000	High	Immediately
0001,0010,	0001,0010,	High	Wait for either Normal or High timer expired
0001,0010,	00xx	Normal	Wait for Normal timer expired
0001,0010,	11xx	Normal / High	Wait for Normal timer expired
11xx	0000	High	Immediately
11xx	0000	Normal	Wait until no more pending downstream request
11xx	0001,0010,	High	Wait for High timer expired
11xx	0001,0010,	Normal	Wait until no more pending downstream request
11xx	11xx	Normal / High	Wait until no more pending downstream request

Offset Address: 46h (D0F7)

NB V-Link Miscellaneous Control

Bit	Attribute	Default	Description
7	RW	0	Downstream Read Data Return High Priority
			0: High priority down command disable
			1: High priority down command enable
6	RW	0	C2P High Priority
			0: C2P cycle treat as normal priority
			1: C2P cycle treat as high priority
			Note: To enable this function, bit 7 must be set to 1.
5:4	RW	00b	Options of Combining Multiple STPGNT Cycles into a V-Link Command
			00: Compatible mode: a V-Link command per STPGNT cycle
			01: Combines 2 STPGNT cycles into a V-Link command
			10: Combines 3 STPGNT cycles into a V-Link command
			11: Combines 4 STPGNT cycles into a V-Link command
3:2	RW	00b	V-Link Master Read/Write Access Ordering Rules
			00: High Priority Read allows to pass Normal Read (but not pass Write)
			01: Read (High/Normal) allows to pass Write (High Priority R>Normal Priority R>Write)
			1x: Read / Write are executed in order
1	RW	0	Read Around Write
			0: Read always pass Write, if bit 3 is 0.
			1: Allows up to 8 Read-Around-Write cycles before flushing the pending write, if bit 3 is 0.
			Read Around Write is disabled if bit 3 is set to 1.
0	RW	0	Generate the Snoop Results to SB
			1: Always generates compare result to SB
			0: Disable passing compare result to SB when the P2CR cycle is still in NB in order to reduce the traffic on V
			Link and avoid unnecessary condition

Default Value: 00h

Table 18. Interpretation on Rx46[7:6]

There for the presention on the following						
Rx46[7]	Rx46[6]	P2CHR	C2P			
0	0	Normal	Normal			
1	0	Priority	Normal			
1	1	Priority	Priority			
0	1	Illegal	Illegal			

Offset Address: 47h (D0F7)

NB V-Link Control Default Value: 00h

Bit	Attribute	Default	Description
7	7 RW 0		Upstream High-Priority Write Request Stream
			0: No high-priority write request stream.
			1: Enable support of high-priority write request stream.
			When V-Link is not operated at 8X (and above), the high-priority write request is always disabled no matter what the setting of this bit is.
6	RW	0	Upstream High-Priority Read Request Stream
			0: No high-priority read request stream.
			1: Enable high-priority read request stream.
5	RW	0	C2P Read L1RDY Return Priority
			0: V-Link decodes C2P Read ACK command right when it's received.
			1: C2P Read ACK command will be handled till pending P2C write cycles are all flushed.
4	RW	0	CF8h Configuration Cycle Address Bit[27:24] Usage
			0: Normal PCI usage
			1: Address bit[27:24] are used as extended register address bit[11:8]
3	RW	0	Dynamic STOP on Down Strobe
			0: Disable 1: Enable
2	RW	0	Auto-Disconnect
			0: Disable 1: Enable
1	RW	0	V-Link Disconnect Sequence for STPGNT Cycle
			0: Disable 1: Enable
0	RW	0	V-Link Disconnect Sequence for HALT Cycle
			0: Disable 1: Enable

Offset Address: 48h (D0F7)

V-Link Configuration – NB / SB

This register is used to configure V-Link bus controller on both North and South bridge chips.

Bit	Attribute	Default	Description		
7	RW	0	Parity Check		
			0: Disable	1: Enable	
6:5	RO	0	Reserved		
4	RW	1b	8-Bit Width		
			0: Disable	1: Enable	
3	RW	1b	4X Rate		
			0: Disable	1: Enable	
2	RO	0	Reserved		
1	RW	0	V-Link Split Bus		
			0: Disable	1: Enable	
0	RW	0	8X Rate		
			0: Disable	1: Enable	

Table 19. V-Link Data Transfer Modes

Mode	Speed (Multiples of 66MHz Cycle)	Data Size	Duplex	D0F7 Rx48[0] – 8X	D0F7 Rx48[5]	D0F7 Rx48[1] – Split Bus
0	4X	8-bit	Half Duplex	0	0	0
1	8X	4-bit	Full Duplex	1	0	1
2	8X	8-bit	Half Duplex	1	0	0
3	4X	16-bit	Half Duplex	0	1	0
4	8X	16-bit	Full Duplex	1	1	1

Default Value: 18h

Default Value: 88h

Offset Address: 49h (D0F7)

SB V-Link Capability Default Value: 19h

Bit	Attribute	Default	Description	
7:6	RO	0	Reserved	
5	RO	0	16-bit Bus Width Support	
			0: Disable	1: Enable
4	RO	1b	8-bit Width Support	
			0: Disable	1: Enable
3	RO	1b	4X Rate Support	
			0: Disable	1: Enable
2	RO	0	2X Rate Support	
			0: Disable	1: Enable
1	RO	0	Reserved	
0	RO	1b	8X Rate Support	
			0: Disable	1: Enable

Offset Address: 4Ah (D0F7)

SB Downlink (C2P) Status

Bit	Attribute	Default	Description				
7:4	RO	1000b	C2P Request Depth (max # of DNCMD (C2P) requests)				
			0000: Depth of 1	0000: Depth of 1 0001: Depth of 2 0010: Depth of 3			
			1000: Depth of 9 1111: Depth of 16				
3:0	RO	1000b	C2P Write Buffer Size (max # of DW, depth from 1 to 16)				
			0000: Depth of 1	0001: Depth of 2	0010: Depth of 3		
			1000: Depth of 9		1111: Depth of 16		

Offset Address: 4Bh (D0F7)

SB Uplink (P2C) Command 1 Default Value: 80h

Bit	Attribute	Default	Description
7:4	RO	8h	P2C Request Depth (max # of outstanding UPCMD (P2C) requests)
3:0	RO	0	Reserved

Offset Address: 4Ch (D0F7)

SB Uplink (P2C) Command 2 Default Value: 82h

Bit	Attribute	Default	Description	
7:4	RO	8h	P2C Write Buffer Size (max # of lines)	
3:0	RO	2h	P2P Write Buffer Size (max # of lines)	

Offset Address: 4Dh (D0F7)

SB V-Link Bus Timer Default Value: 44h

Bit	Attribute	Default	Description			
7:4	RO	0100b	Timer for Normal Priority Request from NB			
			0000: Immediately 0001: 1*4 VCLK 0010: 2*4 VCLK			
			0011: 3*4 VCLK			
			1001: 16*4 VCLK 1010: 32*4 VCLK 1011: 64*4 VCLK			
			11xx: Own the bus as long as there is request			
3:0	RO	0100b	Timer for High Priority Request from NB			
			0000: Immediately 0001: 1*2 VCLK 0010: 2*2 VCLK			
			0011: 3*2 VCLK			
			1001: 16*2 VCLK 1010: 32*2 VCLK 1011: 64*2 VCLK			
			11xx: Own the bus as long as there is request			
			Note: See "NB V-Link Bus Arbitration" table for more details.			

Offset Address: 4Eh (D0F7)

CCA Master High Priority Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	1394 High Priority
6	RO	0	NIC High Priority
5	RO	0	Reserved
4	RO	0	USB High Priority
3	RO	0	Reserved
2	RO	0	IDE High Priority
1	RO	0	AC97-ISA High Priority
0	RO	0	PCI1 High Priority

Offset Address: 4Fh (D0F7)

SB V-Link Misc, Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RO	0	Upstream Command High Priority	
			0: High priority up command disable	
			1: High priority up command enable	
6:4	RO	0	Reserved	
3	RO	0	Enable Dynamic STOP of Up Strobe	
2:1	RO	0	Reserved	
0	RO	0	C2P Cycle Wait for P2C Write Flush, Except C2P Post-Write	

Procedure to Enable / Disable V-Link-8X Mode:

- 1. BIOS sets Rx48[0] to 1.
- 2. Hardware will automatically enter a disconnect sequence, and then both NB/SB will start V-Link 8X mode. Then normal operation is then resumed.
- 3. To return to V-Link 4X mode, BIOS sets Rx48[0] to 0.
- 4. Step 2 is then repeated.

Offset Address: 56-50h (D0F7) - Reserved

Offset Address: 57h (D0F7)

Last Bank Ending Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Last Bank Ending Programmed to SB.

Offset Address: 60-58h (D0F7) – Reserved

Default Value: 00h

Offset Address: 61h (D0F7)

C-ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00b	CC000-CFFFF		
			00: Read/write disable	01: Write enable	
			10: Read enable	11: Read/write enable	
5:4	RW	0	C8000-CBFFFF		
3:2	RW	0	C4000-C7FFFF		
1:0	RW	0	C0000-C3FFFF		

Offset Address: 62h (D0F7)

D-ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	0	DC000-DFFFF
5:4	RW	0	D8000-DBFFF
3:2	RW	0	D4000-D7FFF
1:0	RW	0	D0000-D3FFF

Offset Address: 63h (D0F7)

F-ROM, Memory Hole and SMI Decoding

Bit	Attribute	Default	Description		
7:6	RO	0	Reserved		
5:4	RW	0	F0000-FFFFF		
3:2	RW	00b	Memory Hole		
			00: None	01: 512K - 640K	
			10: 15M – 16M (1M)	11: 14M – 16M (2M)	
1	RW	0	Disable A,BK Direct Access SMRAM	M Direct Access	
0	RW	0	Enable A,BK DRAM Access		

Offset Address: 64h (D0F7)

E-ROM Shadow Control

Bit	Attribute	Default	Description		
7:6	RW	0	EC000-EFFFF		
5:4	RW	0	E8000-EBFFF		
3:2	RW	0	E4000-E7FFF		
1:0	RW	0	E0000-E3FFF		

Rx63[1]	Rx63[0]	CPUMODE	CODE	DATA
0	0	Norm	PCI	PCI
0	0	SMM	DRAM	DRAM
0	1	Norm	DRAM	DRAM
0	1	SMM	DRAM	DRAM
1	0	Norm	PCI	PCI
1	0	SMM	DRAM	PCI
1	1	Norm	DRAM	DRAM
1	1	SMM	DRAM	DRAM

Offset Address: 6F-65h (D0F7) – Reserved

Host-PCI Bridge Control (70-7Fh)

Offset Address: 70h (D0F7)

PCI Buffer Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	CPU to PCI Post-Write Enable (both SB/NB)
			0: Disable 1: Enable
6	RO	0	Reserved
5:4	RW	00b	PCI Master to DRAM Prefetch Control
			00: Always prefetch
			10: Prefetch only for enhanced command
			x1: Prefetch disable
3	RO	0	Reserved
2	RW	0	PCI Master Read Buffering
1	RW	0	Delayed Transaction Enable
0	RO	0	Reserved

Offset Address: 71h (D0F7)

CPU to PCI Flow Control

Default Value: 48h

Bit	Attribute	Default	Description
7	W1C	0	Retry Status
			0: No retry occurred
			1: Retry occurred (write 1 to clear)
6	RW	1b	Retry Timeout Action
			0: Retry forever (record status only)
			1: Flush buffer or return FFFFFFFF for read
5:4	RW	00b	Retry Count and Retry Backoff
			00: Retry 2 times, boff CPU 01: Retry 16 times
			10: Retry 4 times 11: Retry 64 times
3	RW	1b	PCI Burst Enable
2	RO	0	Reserved
1	RW	0	Compatible TYPE#1 Configuration Cycle AD31
0	RW	0	IDSEL Control
			0: AD11, AD12 1: AD30, AD31

Offset Address: 72h (D0F7) – Reserved

Offset Address: 73h (D0F7)

PCI Master Control #1 Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Read Buffering Scheme
			0: Use old PCI master read buffering scheme
			1: Use new PCI master read buffering scheme
6	RW	0	PCI master 1-Wait-State Write
			0: OWS 1: 1WS
5	RW	0	PCI Master 1-Wait-State Read
4	RW	0	WSC# enable
3:1	RO	0	Reserved
0	RW	0	PCI Master Broken Timer Enable
			0: Disable
			1: Enabled. Force into arbitration when there is no FRAME# 16 PCICLK after GNT

Offset Address: 74h (D0F7) – Reserved

Offset Address: 75h (D0F7)

PCI Arbitration 1 Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Arbitration Mode
			0: REQ-based (arbitrate at end of REQ#)
			1: Frame-based (arbitrate at FRAME# asserts)
6:4	RW	0	CPU Latency MLT2, MLT1, MLT0
3	RO	0	Reserved
2:0	RW	000b	PCI Master Bus Time-Out
			000: Disable 001: 1 x 16 PCLK 010: 2 x 16 PCLKs
			011: 3 x 16 PCLKs 111: 7 x 16 PCLKs

Offset Address: 76h (D0F7)

PCI Arbitration 2 Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	SB I/O Port 22 Enable
			0: CPU access to I/O address 22h is passed on to the PCI bus
			1: CPU access to I/O address 0022h is processed internally I/O
6	RO	0	Reserved
5:4	RW	00b	Master Priority Rotation Control
			00: Disable
			01: Grant to CPU after every PCI master grant
			10: Grant to CPU after every 2 PCI master grant
			11: Grant to CPU after every 3 PCI master grant
3:2	RW	00b	Select REQ[n] as RQ4
			00: REQ4 01: REQ0
			10: REQ1 11: REQ2
1	RO	0	Reserved
0	RW	0	Enable RQ4 as High Priority Master
			0: Disable 1: Enable

Offset Address: 7F-77h (D0F7) – Reserved

GART Operation (80-9Fh)

Offset Address: 83-80h (D0F7) – Reserved

Offset Address: 84h (D0F7)

Graphic Aperture Size Default Value: 00h

В	it	Attribute	Default	Description
7:	:0	RW	0	Graphic Aperture Size In AGP20 mode, bit [7:0]: 0000 0000: 256M
				Note: Please set D17F7 Rx77[1]=1 and D17F7 Rx77[2]=0 to enable this function.

Offset Address: 87-85h (D0F7) - Reserved

Offset Address: 88h (D0F7)

Graphic Aperture Translation Look-Aside Table Base

Bit	Attribute	Default	Description
7:2	RO	0	Reserved
1	RW	0	Enable GART Window Access
0	RO	0	Reserved

Offset Address: 9F-89h (D0F7) – Reserved

V-Link Related Registers for North Bridges (A0-B7h)

Offset Address: A0h (D0F7)

NVC Configure Default Value: 00h

Bit	Attribute	Default	Description
7:2	RO	0	Reserved
1	RW	0	Data Source of Some of the Configuration Read to D0F0 or D0F7
			0: Configuration read cycles to D0F0 or D0F7, some of the data will return from SB (like Rx05-06, Rx70-7F).
			1: Data of configuration read cycles to D0Fx will always return from NB.
0	RW	0	While returning the P2C read ACK to SB, the NVC can start to issue the next read request to reduce the
			P2C read latency
			0: Disable 1: Enable

Offset Address: AF-A1h (D0F7) - Reserved

Offset Address: B0h (D0F7)

V-Link CKG Control

Default Value: A0h

Bit	Attribute	Default	Description
7	RW	0	Rising-Time Control for V-Link #1 (R-Port)
6	RW	0	Rising-Time Control for V-Link #0 (R-Port)
5	RW	0	Falling-Time Control for V-Link #1 (R-Port)
4	RW	0	Falling-Time Control for V-Link #0 (R-Port)
3	RW	1b	Rising-Time Control for V-Link #1 (S-Port)
2	RW	0	Rising-Time Control for V-Link #0 (S-Port)
1	RW	1b	Falling-Time Control for V-Link #1 (S-Port)
0	RW	0	Falling-Time Control for V-Link #0 (S-Port)

Offset Address: B1h (D0F7)

V- Link CKG Control Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3	RW	0	Rising-Time Control for V-Link #1 (D-Port)
2	RW	0	Rising-Time Control for V-Link #0 (D-Port)
1	RW	0	Falling-Time Control for V-Link #1 (D-Port)
0	RW	0	Falling-Time Control for V-Link #0 (D-Port)

Offset Address: B2h (D0F7) – Reserved

Default Value: 00h

Default Value: 00h

Default Value: 88h

Offset Address: B3h (D0F7)

V-Link Auto Compensation Termination Resistor Status

Bit	Attribute	Default	Description
7:6	RO	0	Reserved
5	RO	0	P Pull Down Driving Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation.
4	RO	0	N Pull Down Driving Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation.
3	RO	0	Reserved
2:0	RO	000b	NB V-Link Autocomp Termination Resistor Value
			000: Largest resistor 111: Smallest resistor

V-Link North Bridge Driving Control (B4–B7h)

Offset Address: B4h (D0F7)

NB V-Link Compensation Control

Bit	Attribute	Default	Description
7:5	RO	0	V-Link Auto-Compensation PMOS Output Value
4	RO	0	Reference Voltage of the VKCOMP in 4X V-Link Mode 0: VREF4X=0.75V 1: VREF4X=0.9V
3:1	RO	0	V-Link Auto-Compensation NMOS Output Value
0	RO	0	Compensation Option 0: Use Auto Compensation (value is kept in bits [7:6]) 1: Use Manual setting (use the values of RxB5 and RxB6)

Offset Address: B5h (D0F7)

NB V-Link Manual Driving Control - Strobe

Bit	Attribute	Default	Description	
7:5	RW	0	Manual Setting - NB V-Link Strobe Pullup (PMOS)	
4	RO	0	served	
3:1	RW	0	nnual Setting - NB V-Link Strobe Pulldown (NMOS)	
0	RO	0	Reserved	

Offset Address: B6h (D0F7)

NB V-Link Manual Driving Control - Data

Bit	Attribute	Default	Description	
7:5	RW	100b	anual Setting - NB V-Link Data Pullup (PMOS)	
4	RO	0	eserved	
3:1	RW	100b	nual Setting - NB V-Link Data Pulldown (NMOS)	
0	RO	0	Reserved	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: B7h (D0F7)

NB V-Link Receiving Strobe Delay

Bit	Attribute	Default	Description		
7:5	RW	000b	V-Link Manual Termination Resistor Value		
			000: Largest resistor 111: Smallest resistor		
4:3	RO	0	Reserved		
2:0	RW	0	NB V-Link Receiving Strobe Delay		
			Control relative delay between data/strobe input delay.		
			000: Delay(data) = delay(strobe) + 4*step		
			001: Delay(data) = delay(strobe) + 3*step		
			010: Delay(data) = delay(strobe) + 2*step		
			011: Delay(data) = delay(strobe) + 1*step		
			100: Delay(data) = delay(strobe)		
			101: Delay(data) + 1*step = delay(strobe)		
			110: Delay(data) + 2*step = delay(strobe)		
			111: Delay(data) + 3*step = delay(strobe)		
			Each "step" is 100ps for ff-ss case of process.		

V-Link South Bridge Driving Control (B8-B9h) - For 8X Capability SB

Offset Address: B8h (D0F7)

SB V-Link Compensation Control

Bit	Attribute	Default	Description	
7:5	RO	0	V-Link Auto-Compensation PMOS Output Value	
4:1	RO	0	Reserved	
0	RW	0	Compensation Selection	
			0: Auto-compensation (value is kept in bits [7:5] and [3:1])	
			1: Manual setting (through RxB9-BB)	

Offset Address: B9h (D0F7)

SB V-Link Driving Control – Strobe

Bit	Attribute	Default	Description	
7:5	RW	0	SB V-Link Strobe Pullup Manual Setting - PMOS	
4	RO	0	served	
3:1	RW	0	SB V-Link Strobe Pulldown Manual Setting - NMOS	
0	RO	0	Reserved	

V-Link South Bridge Driving Control (B8-B9h) - For 4X Capability SB

Offset Address: B8h (D0F7)

SB V-Link Compensation Control

Bit	Attribute	Default	Description	
7:6	RO	0	V-Link Auto-Compensation Output Value	
5	RW	0	Pull-up Compensation Selection	
			0: Auto compensation (values in RxB8[7:6])	
			1: Manual setting (use the values in RxB8[3:2])	
4	RW	0	ull-down Compensation Selection	
			Auto compensation (values in RxB8[7:6])	
			Manual setting (use the values in RxB8[1:0])	
3:2	RW	0	Pull-up Compensation Manual Setting	
1:0	RW	0	Pull-down Compensation Manual Setting	

Offset Address: B9h (D0F7)

SB V-Link Driving Control – Strobe

Bit	Attribute	Default	Description	
7:5	RW	0	SB V-Link Strobe Pullup Manual Setting	
4	RO	0	served	
3:1	RW	0	SB V-Link Strobe Pulldown Manual Setting	
0	RO	0	Reserved	

Offset Address: E3-BAh (D0F7) - Reserved

DRAM Above 4G Support (E4-EF)

Offset Address: E4h (D0F7)

Low Top Address - Low Default Value: 00h

Bit	Attribute	Default		Description			
7:4	RW	0	Low Top Addres	Low Top Address - Low			
3:0	RW	0	DRAM Granula	DRAM Granularity - (Powell)			
				Total DRAM			
			RMEMUNIT	Less than	Granularity		
			0	4G	16M		
			1	8G	32M		
			2	16G	64M		
			3	32G	128M		
			4	64G	256M		
			RANK Ending Address Formula:				
				RENDxA << RME	MUNIT		

Offset Address: E5h (D0F7)

Low Top Address - High Default Value: FFh

Bit	Attribute	Default	Description	
7:0	RW	FFh	Low Top Address - High	

Offset Address: E6h (D0F7)

SMM and APIC Decoding Default Value: 01h

Bit	Attribute	Default	Description		
7:6	RO	0	Reserved		
5	RW	0	APIC Lowest Interrupt Arbitration		
			0: Disable 1: Enable		
4	RW	0	I/O APIC Decoding		
): Access to FECx xxxx will go to PCII		
			1: Access to FEC7_FFFF - FEC0_0000 go to PCI1; access to FECF_FFFF - FEC8_0000 go to PCI2.		
3	RW	0	MSI Support (Processor Message Enable)		
			0: Cycles accessing FEEx_xxxx from masters are passed to PCI1 (PCIC will not claim)		
			1: Cycles accessing FEEx_xxxx from masters are passed to the Host side for snooping		
2	RW	0	Top SMM Enable		
			0: Disable 1: Enable		
1	RW	0	High SMM Enable		
0	RW	1b	Compatible SMM Enable		
			0: Disable 1: Enable		

Offset Address: FF-E7h (D0F7) – Reserved

Device 1 Function 0 (D1F0): PCI to PCI Bridge

This configuration is provided to facilitate the configuration of the second PCI bus (AGP) without requiring new enumeration code. This function is represented as device number 1, function 0.

Header Registers (0-3Fh)

Offset Address: 1-0h (D1F0)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D1F0)

Device ID Default Value: B198h

I	Bit	Attribute	Default	Description
I	15:0	RO	B198h	Device ID

Offset Address: 5-4h (D1F0)

PCI Command Default Value: 0007h

Bit	Attribute	Default	Description
15:10	RO	0	Reserved
9	RO	0	Fast Back-to-Back Cycle Enable
			Hardwired to 0.
8	RO	0	SERR# Enable
			Hardwired to 0.
7	RO	0	Address / Data Stepping
			Hardwired to 0.
6	RW	0	Parity Checking
			0: Ignore parity errors
			1: Perform parity check and take normal action on detected parity errors
5	RO	0	VGA Palette Snooping
			Hardwired to 0.
4	RO	0	Memory Write and Invalidate
3	RO	0	Respond to Special Cycle
			Hardwired to 0.
2	RW	1b	Bus Master
			0: Never behaves as a bus master
			1: Enable to operate as a bus master on the secondary interface
1	RW	1b	Memory Space Access
			0: Does not respond to memory space access
			1: Responds to memory space access
0	RW	1b	I/O Space Access
			0: Does not respond to I/O space access
			1: Responds to I/O space access

Offset Address: 7-6h (D1F0)

PCI Status Default Value: 0230h

Bit	Attribute	Default	Description
15	RO	0	Parity Error Detected
			Reserved
14	RO	0	SERR# Detected
			Reserved
13	RO	0	Set When Terminated with Master-Abort, Except Special Cycle
			0: No abort received
			1: Transaction aborted by the master
12	RO	0	Set When Received a Target-Abort
			0: No abort received
			1: Transaction aborted by the target
11	RO	0	Set When Signaled a Target-Abort
			NB never signals Target Abort
10:9	RO	01b	DEVSEL# Timing
			00: Fast 01: Medium
			10: Slow 11: Reserved
8	RO	0	Set When Set or Observed SERR# and Parity Error
			Reserved
7	RO	0	Capable of Accepting Fast Back-to-Back as a Target
			Reserved
6	RO	0	User Definable Features
5	RO	1b	66 MHz Capable
4	RO	1b	Support New Capability List
3:0	RO	0	Reserved

Offset Address: 08h (D1F0)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision ID

Offset Address: 0B-09h (D1F0)

Class Code Default Value: 06 0400h

	Bit	Attribute	Default	Description
Γ	23:0	RO	060400h	Class Code

Offset Address: 0Ch (D1F0) - Reserved

Offset Address: 0Dh (D1F0)

Latency Timer Default Value: 00h

	Bit	Attribute	Default	Description
Ī	7:0	RO	0	Latency Timer Reserved

Offset Address: 0Eh (D1F0)

Header Type Default Value: 01h

l	Bit	Attribute	Default	Description
	7:0	RO	01h	Header Type It adheres to the PCI-PCI Bridge Configuration

Offset Address: 0Fh (D1F0)

Built-In Self Test (BIST)

Default Value: 00h

	Bit	Attribute	Default	Description
Г	7:0	RO	0	Built In Self Test (BIST)

Default Value: 0000 0000h

Offset Address: 13-10h (D1F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description
31:4	RO	0	Reserved
3	RO	0	Prefetchable
2:1	RO	0	Type
			Indicates that the address range is in the 32-bit address space.
0	RO	0	Memory Space

Offset Address: 17-14h (D1F0) - Reserved

Offset Address: 18h (D1F0)

Primary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	Primary Bus Number

Offset Address: 19h (D1F0)

Secondary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Secondary Bus Number
			Secondary Bus Number is used when converting Type#1 configuration cycles to TYPE#0 configuration cycles.

Offset Address: 1Ah (D1F0)

Subordinate Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Subordinate Bus Number
			PCI2 uses Subordinate Bus Number to decide if Type#1 command is passed to the PCI2 Bus.

Offset Address: 1Bh (D1F0)

Secondary Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Secondary Latency Timer Reserved

Offset Address: 1Ch (D1F0)

I/O Base Default Value: F0h

Bit	Attribute	Default	Description
7:4	RW	Fh	I/O Address Bit[15:12] – Inclusive
3:0	RO	0	I/O Addressing Capability

Offset Address: 1Dh (D1F0)

I/O Limit Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	I/O Address Bit[15:12] – Inclusive
3:0	RO	0	I/O Addressing Capability

Offset Address: 1F-1Eh (D1F0)

Secondary Status Default Value: 0000h

Bit	Attribute	Default	Description	
15:0	RO	0	Secondary Status	
			If D1F0 $Rx44[4] = 0$: Read this register has 0 returned.	
			If D1F0 Rx44[4] = 1: Read this register has contents of Rx7-6 returned.	

Offset Address: 21-20h (D1F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Memory Address Bit[31:20] – Inclusive (address [19:0] is not decoded)
3:0	RO	0	Reserved

Offset Address: 23-22h (D1F0)

Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit[31:20] – Inclusive (address [19:0] is not decoded)
3:0	RO	0	Reserved

Offset Address: 25-24h (D1F0)

Prefetchable Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Memory Address Bit[31:20]
3:0	RO	0	Reserved

Offset Address: 27-26h (D1F0)

Prefetchable Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit[31:20]
3:0	RO	0	Reserved

Offset Address: 33-28h (D1F0) - Reserved

Offset Address: 34h (D1F0)

Capability Pointer Default Value: 70h or 80h

Bit	Attribute	Default	Description	
7:0	RO	70h	AGP Capability List Pointer	
		or	70h, if Rx48[0] is 0.	
		80h	80h, if Rx48[0] is 1.	

Offset Address: 3D-35h (D1F0) – Reserved

Offset Address: 3F-3Eh (D1F0)

PCI-to-PCI Bridge Control Default Value: 0000h

Bit	Attribute	Default	Description			
15:12	RO	0	Reserved			
11	RW	0	Enable Discard Timer SERR#			
			0: Disable 1: Enable			
10	RO	0	Reserved			
9	RW	0	Enable Secondary Discard Timer			
			0: Disable 1: Enable			
8	RW	0	Enable Primary Discard Timer			
			0: Disable 1: Enable			
7	RO	0	Reserved			
6	RW	0	Secondary Bus Reset			
5	RO	0	Reserved			
4	RW	0	Base VGA 16 Bits Decode			
			0: All VGA alias range will be forwarded.			
			1: Only forward base VGA range (Alias range will not be forwarded).			
3	RW	0	Enable VGA Compatible I/O and Memory Address Range			
			0: Do not forward VGA compatible memory and I/O cycles to PCI2.			
			1: Forward VGA compatible memory and I/O cycles to PCI2.			
2	RW	0	Block ISA I/O Cycles			
			0: Forward all I/O cycles with address in the range defined by the I/O Base and I/O Limit to PCI2.			
			1: Do not forward ISA I/O cycles with address in the top 768 bytes of each 1Kbyte block.			
1	RW	0	Forward Lower Side PCI SERR# to Upper Side			
			Status is reported on Rx7[6].			
0	RW	0	Enable Parity Error Response			

Second PCI Bus Control (40-6Fh)

Offset Address: 40h (D1F0)

CPU to PCI Flow Control 1 Default Value: 00h

Bit	Attribute	Default	Description			
7	RW	0	CPU to PCI Post-Write 0: Disable 1: Enable C2P posted cycle could be delayed by PCI master cycles (i.e. PCI master access is allowed even if C2P buffer is not flushed).			
6	RW	0	CPU to PCI 1-Wait State Burst Write 0: Disable 1: Enable			
5:4	RW	0	Read Prefetch Control x0: Always prefetch x1: Disable prefetch			
3	RO	0	Reserved			
2	RW	0	MDA Resource Location (Note: The setting on this register bit overwrites the settings on the IO/Memory's Base and Limit of the other devices.) 0: AGP/PC12; forward MDA access cycles to AGP/PC12. 1: PC11; forward MDA access cycles to PC11. MDA Resources include: Memory: B0000h-B7FFFFh, I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh.			
	DIII	0	Check the following table for the function of register bits: D1F0 Rx3E[3] and D1F0 Rx40[2].			
1	RW	0	PCI2 Master Read Caching 0: Disable 1: Enable			
0	RW	0	PCI2 Delay Transaction 0: Disable 1: Enable			

Address	Rx3E[3]	Rx40[2]	Cycle Destination
Memory: AFFFFh-A0000h	0	-	PCI1
	1	-	PCI2
Memory: MDA (BFFFFh-B0000h)	1	0	PCI2
	1	1	PCI1
	0	-	PCI1
IO:[3BBh,3B0h] except MDA	0	-	PCI1
	1	-	PCI2
IO: MDA	1	0	PCI2
	0	-	PCI1
	1	1	PCI1
IO: [3DFh,3C0h]	1	-	PCI2
	0	-	PCI1

Notes

- 1. If Rx3E[2] is set to 1, NB will not forward cycles to AGP if A[9:0] is in the range of 3ffh-100h even if address are within the range defined by the Rx1C[7:4] and Rx1D[7:4].
- 2. If both Rx3E[3] and Rx40[2] are set to 1, VGA is on PCI2 and MDA is put on PCI1. VGA palette snooping is not supported in PCI2.

Offset Address: 41h (D1F0)

CPU to PCI Flow Control 2 Default Value: 08h

Bit	Attribute	Default	Description			
7	RO	0	Retry Status			
			0: No retry occurred			
			1: Retry occurred (write 1 to clear)			
6	RW	0	Action When Retry Timeout			
			0: No action taken except recording status			
			1: Flush buffer (write) or return FFFF FFFFh (read)			
5:4	RW	00b	Retry Count			
			00: Retry 2 times, back off CPU			
			01: Retry 4 times, back off CPU			
			10: Retry 16 times, back off CPU			
			11: Retry 64 times, back off CPU			
3	RW	1b	C2P Burst Timeout Enable			
			0: Disable 1: Enable			
2	RO	0	Reserved			
1	RW	0	Invalidate PCI1/PCI2 Read Buffer Data (read caching data) when C2P Cycle Arrived			
			0: Disable 1: Enable			
0	RO	0	Reserved			

Offset Address: 42h (D1F0)

PCI Master Control Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	When AGPC gets read data returned, it may signal PCI2 to do delay transaction or do disconnect to the current	
			PCI master cycles, so that the AGP master's performance won't be blocked by the PCI master cycles.	
6	RW	0	PCI Master 1-Wait State Write	
			0: Disable 1: Enable	
5	RW	0	PCI Master 1-Wait State Read	
			0: Disable 1: Enable	
4	RW	0	Break Consecutive PCI Master Access	
			0: Disable 1: Enable	
3	RO	0	Reserved	
2	RW	0	PCI2 Claims the I/O R/W and Memory Read Cycles	
			0: Disable 1: Enable	
1	RW	0	PCI2 Claims the Local APIC FEEx xxxx Cycles	
			0: Disable 1: Enable	
0	RO	0	Reserved	

Offset Address: 43h (D1F0)

PCI2 Timer Default Value: 22h

Bit	Attribute	Default		Description
7:4	RW	2h	Host to PCI2 Time Slot	
			0: Disable (no timer)	1: 16 GCLKs
			2: 32 GCLKs	 Fh: 128 GCLKs
3:0	RW	2h	PCI2 Master Time Slot	
			0: Disable (no timer)	1: 16 GCLKs
			2: 32 GCLKs	 Fh: 128 GCLKs

Offset Address: 44h (D1F0)

PCI2 Miscellaneous Control Default Value: 20h

Bit	Attribute	Default	Description		
7	RW	0	Revision ID Write Enable		
			0: Disable		
			1: Rx8 can be revised; read from Rx8 will receive the revised value.		
6	RO	0	Reserved		
5	RW	1b	Power Management Capability Support		
			0: Read Rx34 as 00h. 1: Read Rx34 as 80h.		
			Rx1F-1E reflect the status in Rx7-6.		
4	RW	0	Rx1F-Rx1E Read Returned Value		
			0: Rx1F-1E always read as 0		
			1: Rx1F-1E read will receive the values in Rx7-6		
3:0	RW	0	Reserved		

Offset Address: 45h (D1F0) - Reserved

Offset Address: 46h (D1F0)

PCI-to-PCI Bridge Device ID (Low Byte)

Bit	Attribute	Default	Description	
7:0	RW	0	Device ID for P2P Bridge Low Byte (IDI7:01)	

Offset Address: 47h (D1F0)

PCI-to-PCI Bridge Device ID (High Byte)

	Bit	Attribute	Default	Description	
Г	7:0	RW	0	Device ID for P2P Bridge High Byte (ID[15:8])	

Offset Address: 48h (D1F0)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description	
7:1	RO	0	Reserved	
0	RW	0	Report AGP Capability in Device 1 instead of Device 0	
			0 : Disable 1: Enable	
			Note:D1F0 Rx13-10 will be programmable and fed.	
			Rx80 AGP capability header will be added in the capability list directly by Rx34 of Device 1.	

Offset Address: 6F-49h (D1F0) - Reserved

Default Value: 00h

Default Value: 00h

Power Management Capability (70-77h)

Offset Address: 70h (D1F0)

Capability ID Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Capability ID

Offset Address: 71h (D1F0)

Next Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Next Pointer: NULL

Offset Address: 72h (D1F0)

Power Management Capabilities 1 Default Value: 02h

Bit	Attribute	Default	Description	
7:0	RO	02h	Power Management Capabilities	

Offset Address: 73h (D1F0)

Power Management Capabilities 2 Default Value: 00h

Bit	Attribute	Default	Description	
7:0	RO	0	Power Management Capabilities	

Offset Address: 74h (D1F0)

Power Management Control / Status

Bit	Attribute	Default		Description
7:2	RO	0	Reserved	
1:0	RW	00b	Power State	
			00· D0	11: D3 hot

Offset Address: 75h (D1F0)

Power Management Status Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Status

Offset Address: 76h (D1F0)

PCI to PCI Bridge Support Extensions

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	PCI to PCI Bridge Support Extensions

Offset Address: 77h (D1F0)

Power Management Data Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Data

Offset Address: 7F-78h (D1F0) - Reserved

<u>Device 2 Function 0 (D2F0) – PCI Express Root Port G (PCI-to-PCI Virtual Bridge)</u>

Device 2 Function 0, a 16-Lane PCI Express Root Port, is connected to the PCI bus through AD13 as the IDSEL. All registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through I/O registers CF8 / CFC with bus number 0, device number 2 and function number 0.

Header Registers (0-3Fh)

Offset Address: 1-0h (D2F0)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D2F0)

Device ID Default Value: A364h

Bit	Attribute	Default	Description
15:0	RO	A364h	Device ID

Offset Address: 5-4h (D2F0)

Command Register Default Value: 0000h

Bit	Attribute	Default	Description
15:11	RO	0	Reserved
10	RW	0	Interrupt Disable
			Set when the device is prevented from generating INTx messages.
9	RO	0	Reserved
8	RW	0	SERR# Enable
			0: Disable error report
			1: Enable reporting of non-fatal and fatal errors
7	RO	0	Reserved
6	RW	0	Parity Error Response
			0: Ignore parity errors & continue
			1: Take normal action on detected parity errors
5:3	RO	0	Reserved
2	RW	0	Bus Master Enable
			0: Disable 1: Enable
			Controls the ability to forward Memory and I/O Read/Write requests in the upstream direction. Disabling this bit disables MSI messages.
1	RW	0	Memory Space
1	IX VV	U	0: Ignore downstream memory transactions; memory cycles with address falling in the claimed range will be
			forwarded to the SB
			1: Enable downstream memory cycle to this port if its address falling in the claimed range of this device.
0	RW	0	I/O Space
	IX VV	U	0: Ignore downstream I/O transactions; I/O cycles with address falling in the claimed range will be forwarded to
			the SB.
			1: Enable downstream I/O cycle to this port if its address falling in the claimed range of this device.

Offset Address: 7-6h (D2F0)

Status Register Default Value: 0010h

Bit	Attribute	Default	Description
15	RW1C	0	Detected Parity Error
			This bit is set whenever a poisoned TLP is received, regardless the state of Parity Error Enabled (Rx4[6])
14	RW1C	0	Signaled System Error
			This bit is set when:
			A device sends an ERR_FATAL or ERR_NONFATAL message
			Rx4[8] = 1
13	RW1C	0	Received Master Abort
			This bit is set when receiving a completion with Unsupported Request Completion Status
12	RW1C	0	Received Target Abort
			This bit is set when receiving a completion with Completer Abort Completion Status
11	RW1C	0	Signaled Target Abort
			This bit is set when completing a Request with Completer Abort Completion Status
10:9	RO	0	Reserved
			Always reads 0
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs:
			Requestor receives a Completion marked poisoned
			Requestor poisons a write Request
7:5	RO	0	Reserved
4	RO	1b	Capabilities List
			Indicate the presence of an extended capability list item. Always set to 1 for PCI Express device
3	RO	0	Interrupt Status
			Indicate an INTx message is pending internally
2:0	RO	0	Reserved

Offset Address: 8h (D2F0) Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision Code

Offset Address: 0B-9h (D2F0)

Class Code Default Value: 06 0400h

Bit	Attribute	Default	Description
23:0	RO	060400h	Class Code

Offset Address: 0Ch (D2F0)

Cache Line Size Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Cache Line Size
			Reserved

Offset Address: 0Dh (D2F0)

Master Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Master Latency Timer Reserved

Offset Address: 0Eh (D2F0)

Header Type Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Header Type

Offset Address: 0Fh (D2F0)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST Support

Offset Address: 17-10h (D2F0)

Base Address Register Default Value: 0000 0000 0000 0000 0000h

Bit	Attribute	Default	Description
63:0	RO	0	Base Address

Offset Address: 18h (D2F0)

Primary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Primary Bus Number

Offset Address: 19h (D2F0)

Secondary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Secondary Bus Number

Offset Address: 1Ah (D2F0)

Subordinate Bus Number Default Value: 00h

ı	Bit	Attribute	Default	Description
	7:0	RW	0	Subordinate Bus Number

Offset Address: 1Bh (D2F0)

Secondary Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Secondary Latency Timer - Reserved (Hardwired to 0)

Offset Address: 1Ch (D2F0)

I/O Base Default Value: F0h

Bit	Attribute	Default	Description
7:4	RW	Fh	I/O Base (AD[15:12] - Inclusive)
			This bridge will forward the cycles from primary side to PCI if the I/O address AD[15:12] is between I/O base and
			I/O limit (Rx1D[7:4]).
3:0	RO	0	I/O Addressing Capability
			0 means I/O addressing is 16-bit only.

Offset Address: 1Dh (D2F0)

I/O Limit Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	I/O Limit (AD[15:12] - Inclusive) This bridge will forward the cycles from primary side to PCI if the I/O address is between I/O base (Rx1C) and I/O limit.
3:0	RO	0	I/O Addressing Capability 0 means I/O addressing is 16-bit only.

Offset Address: 1F-1Eh (D2F0)

Secondary Status Default Value: 0000h

Bit	Attribute	Default	Description
15	RW1C	0	Detected Parity Error
			This bit is set when secondary side receives a poisoned TLP regardless of Rx4[6].
14	RW1C	0	Received System Error
			This bit is set when
			A device sends an ERR_FATAL or ERR_NONFATAL message
			2. Rx4[8] is 1
13	RW1C	0	Received Master Abort
12	RW1C	0	Received Target Abort
11	RW1C	0	Signaled Target Abort
10:9	RO	0	Reserved
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs:
			Requestor receives a Completion marked poisoned.
			2. Requestor poisons a write Request
7:0	RO	0	Reserved

Offset Address: 21-20h (D2F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Memory Base (AD[31:20] – Inclusive) The address bits [19:0] is not decoded.
3:0	RO	0	Reserved

Offset Address: 23-22h (D2F0)

Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Limit (AD[31:20]) The address [19:0] is not decoded.
3:0	RO	0	Reserved

Offset Address: 25-24h (D2F0)

Prefetchable Memory Base Default Value: FFF1h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Prefetchable Memory Base AD[31:20]
3:0	RO	1b	Reserved (Do not program)

Offset Address: 27-26h (D2F0)

Prefetchable Memory Limit Default Value: 0001h

Bit	it	Attribute	Default	Description
15:	· <u> </u>	RW	0	Prefetchable Memory Limit AD[31:20]
3:0	0	RO	1b	Reserved (Do not program)

Offset Address: 2B-28h (D2F0)

Prefetchable Memory Upper Base Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:4	RO	0	Reserved
3:0	RW	0	AD[35:32]
			This chip supports up to 16G.

Offset Address: 2F-2Ch (D2F0)

Prefetchable Memory Upper Limit Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:4	RO	0	Reserved
3:0	RW	0	AD[35:32] This chip supports up to 16G.

Offset Address: 31-30h (D2F0)

I/O Base Upper Default Value: 0000h

F	Bit	Attribute	Default	Description
	5:0	RO	0	I/O Base Upper 16 Bits Address for PCI

Offset Address: 33-32h (D2F0)

I/O Limit Upper Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0	I/O Limit Upper 16 Bits Address for PCI

Offset Address: 34h (D2F0)

Capability Pointer Default Value: 40h

This register contains the offset address from the start of the configuration space.

Bit	Attribute	Default	Description
7:0	RO	40h	Capability Pointer
			Capability Pointer: $Rx34 \rightarrow Rx40 \rightarrow Rx68 \rightarrow Rx70 \rightarrow Rx88 \rightarrow Rx98 \rightarrow NULL$

Offset Address: 3B-35h (D2F0) - Reserved

Offset Address: 3Ch (D2F0)

Interrupt Line Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	INT Line (For Software Use Only)

Offset Address: 3Dh (D2F0)

Interrupt Pin Default Value: 01h

В	Bit	Attribute	Default	Description
	7:0	RO	01h	INT Pin = INTA

Offset Address: 3F-3Eh (D2F0)

Bridge Control Default Value: 0000h

Bit	Attribute	Default	Description
15:7	RO	0	Reserved
6	RW	0	Secondary Bus Reset
			0: No reset
			1: Triggers a warm reset on the corresponding PCI Express Port
5	RO	0	Reserved
4	RW	0	Base VGA 16 Bits Decode
			0: All VGA alias range will be forwarded
			1: Only forward base VGA range (Alias range will not be forwarded)
3	RW	0	VGA Compatible I/O and Memory Address Range
			0: Do not forward VGA compatible memory and I/O
			1: Forward VGA compatible memory and I/O
			Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-
			bit decode). "Mono" text mode uses B0000-B7FFFh and "Color" Text Mode uses B8000-BFFFFh. Graphics
			modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is
			present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the VGA will use
			those addresses to emulate MDA modes.
2	RW	0	Block/Forward ISA I/O Cycles
			0: Forward all I/O cycles with address in the range defined by the I/O Base and I/O Limit
			1: Do not forward ISA I/O that are in the top 768 bytes of each 1K byte block address range
1	RW	0	SERR Enable
			Controls the forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL from secondary to primary
			0: Disable 1: Enable
0	RW	0	Parity Error Response Enable
			0: Ignore the response to poisoned TLPs
			1: Enable the response to poisoned TLPs

PCI Express Capability Registers (40-67h)

Offset Address: 41-40h (D2F0)

PCI Express List Default Value: 6810h

Bit	Attribute	Default	Description
15:8	RO	68h	Next Pointer
7:0	RO	10h	Capability ID

Offset Address: 43-42h (D2F0)

PCI Express Capabilities

			_
Bit	Attribute	Default	Description
15	RO	0	Reserved
14	RO	0	TCS Routing Supported
13:9	RO	0	Interrupt Message Number
8	RO	1b	Slot Implemented
			This bit when set indicates that the PCI Express Link associated with this Port is connected to a slot (as compared
			to being connected to an integrated component or being disabled),
7:4	RO	4h	Device / Port Type
			0100b: Root Port of PCI Express Root Complex
3:0	RO	1h	Capability Version

Default Value: 0141h

Offset Address: 47-44h (D2F0)

Device Capabilities Default Value: 0000 8001h

Bit	Attribute	Default	Description
31:28	RO	0	Reserved
27:26	RO	0	Captured Slot Power Limit Scale
			Reserved. For upstream port only
25:18	RO	0	Captured Slot Power Limit Value
			Reserved. For upstream port only
17:16	RO	0	Reserved
15	RO	1b	Role-Based Error Reporting
14	RO	0	Power Indicator Present
			Reserved. For upstream port or endpoint only
13	RO	0	Attention Indicator Present
			Reserved. For upstream port or endpoint only
12	RO	0	Attention Button Present
			Reserved. For upstream port or endpoint only
11:9	RO	0	Endpoint L1 Acceptable Latency
8:6	RO	0	Endpoint L0s Acceptable Latency
5	RO	0	Extended Tag Field Supported
			0: 5-bit Tag field supported
			1: 8-bit Tag field supported
4:3	RO	0	Phantom Functions Supported
			Reserved
2:0	RO	001b	Max Payload Size Supported
			001b: 32QW (256 bytes)

Offset Address: 49-48h (D2F0)

Device Control Default Value: 0810h

Bit	Attribute	Default	Description
15	RO	0	Reserved
14:12	RO	000b	Max Read Request Size
			000b: 128 bytes
			This field sets the maximum Read Request size for the device as a Requestor.
11	RW	1b	Enable No Snoop
			0: Disable
			1: Enable. If this bit is set to 1, the device is permitted to set the No Snoop bit in the Requestor Attributes of the
			transactions it initiate that do not require hardware enforced cache coherency.
10	RWS	0	Auxiliary Power PM Enable
			This bit when set enables device to draw AUX power independent of PME AUX power.
9	RO	0	Phantom Functions Enable
			Not supported.
8	RO/RW	0	Extended Tag Field Enable
			For Rx44[5], D2F0 Rx44-47[5] = $0 \rightarrow RO$
			For Rx44[5], D2F0 Rx44-47[5] = $1 \rightarrow RW$
7:5	RW	000b	Max Payload Size
			Maximum TLP payload size.
4	RW	1b	Enable Relaxed Ordering
			0: Disable
			1: Enable. If this bit is set to 1, the device is permitted to set the Relaxed Ordering bit in the Requestor Attributes
			of the transactions it initiate that do not require strong write ordering.
3	RW	0	Unsupported Request Reporting Enable
2	RW	0	Fatal Error Reporting Enable
			For a Root Port, the reporting of Fatal errors is internal to the root. No external ERR_FATAL message is
			generated.
1	RW	0	Non-Fatal Error Reporting Enable
			For a Root Port, the reporting of Non-Fatal errors is internal to the root. No external ERR_NONFATAL message
	DW	0	is generated.
0	RW	0	Correctable Error Reporting Enable
			For a Root Port, the reporting of correctable errors is internal to the root. No external ERR_COR message is
			generated.

Offset Address: 4B-4Ah (D2F0)

Device Status Default Value: 0010h

Bit	Attribute	Default	Description
15:6	RO	0	Reserved
5	RO	0	Transactions Pending
			This bit when set indicates that the Port has issued Non-Posted Requests on its own behalf (using the Port's own
			Requestor ID) which have not been completed.
4	RO	1b	AUX Power Detected
3	RW1C	0	Unsupported Request Detected
2	RW1C	0	Fatal Error Detected
1	RW1C	0	Non-Fatal Error Detected
0	RW1C	0	Correctable Error Detected

Offset Address: 4F-4Ch (D2F0)

Link Capabilities Default Value: 0018 3D01h

Bit	Attribute	Default	Description
31:24	RO	0	Port Number
			This field indicates the PCI Express Port number for the given PCI Express Link.
23:21	RO	0	Reserved
20	RO	1b	Data Link Layer Link Active Reporting Capable
19	RO	1b	Surprise Down Error Reporting Capable
18	RO	0	Clock Power Management
17:15	RO	0	L1 Exit Latency
14:12	RO	011b	L0s Exit Latency
11:10	RO	11b	Active State Link PM (ASPM) Support
9:4	RO	010000b	Maximum Link Width
			0: 010000b (x16 lanes)
			1: 000001b (x1 lane)
3:0	RO	0001b	Maximum Link Speed
			0001b: 2.5Gb/s Link speed

Offset Address: 51-50h (D2F0)

Link Control Default Value: 0000h

Bit	Attribute	Default	Description
15:9	RO	0	Reserved
8	RO	0	Enable Clock Power Management
7	RW	0	Extended Synch
			0: FCU Timer limit is 30us
			1: FCU Timer limit is 120us
6	RW	0	Common Clock Configuration
			0: Indicates that this Port and the component on the opposite end of the Link are operating with asynchronous
			reference clock.
			1: Indicates that this Port and the component on the opposite end of the Link are operating with a distributed
			common reference clock.
5	RW1C	0	Retrain Link
			Link retrain is initiated by writing 1 to this bit. This will direct the Physical Layer LTSSM to the Recovery state.
4	RW	0	Link Disable
			This bit disables the link when set to 1.
3	RO	0	Read Completion Boundary
			0: 64 byte
2	RO	0	Reserved
1:0	RW	00b	Active State Link PM (ASPM) Control
			00: Disabled 01: L0s Entry Enabled
			10: L1 Entry Enabled 11: L0s and L1 Entry Enabled

Offset Address: 53-52h (D2F0)

Link Status Default Value: 0nn1h

Bit	Attribute	Default	Description
15:14	RO	0	Reserved
13	RO	0	Data Link Layer Link Active
12	RO	1b	Slot Clock Configuration
			0: Use an independent clock irrespective of the presence of a reference on the connector.
			1: Use the same physical reference clock that the platform provides on the connector.
11	RO	0	Link Training
			This bit indicated that Link training is in progress (Physical Layer LTSSM is in Configuration or Recovery state)
			or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit once
			Link training is complete.
10	RO	0	Training Error
			Set when a Link training error occurred. Cleared by hardware upon successfully training of the Link to the L0 Link
			state.
9:4	RO	HwInit	Negotiated Link Width
			000001: x1 000010: x2
			000100: x4 001000: x8
			010000: x16
3:0	RO	0001b	Link Speed
			0001: 2.5Gb/s negotiated Link speed.

Offset Address: 57-54h (D2F0)

Slot Capabilities Default Value: 0000 0060h

Bit	Attribute	Default	Description
31:19	RO	0	Physical Slot Number
			Physical slot number attached to the Port.
18	RO	0	No Command Completed Support
17	RO	0	Electromechanical Interlock Present
16:15	RO	0	Slot Power Limit Scale
14:7	RO	0	Slot Power Limit Value
6	RO	1b	Hot-plug Capable
5	RO	1b	Hot-plug Surprise
4	RO	0	Power Indicator Present
3	RO	0	Attention Indicator Present
2	RO	0	MRL Sensor Present
1	RO	0	Power Controller Present
0	RO	0	Attention Button Present

Offset Address: 59-58h (D2F0)

Slot Control Default Value: 0000h

Bit	Attribute	Default	Description
15:13	RO	0	Reserved
12	RW	0	Slot Control Register, Data Link Layer State Changed Enable
			0: Disable 1: Enable
11	RO	0	Electromechanical Interlock Control
10	RO	0	Power Controller Control
			0: Power On 1: Power Off
9:8	RW	00b	Power Indicator Control
			00: Reserved 01: On 10: Blink 11: Off
			Writes to this field cause the Port to send the appropriate POWER_INDICATOR_* Message.
7:6	RW	00b	Attention Indicator Control
			00: Reserved 01: On 10: Blink 11: Off
			Writes to this field cause the Port to send the appropriate ATTENTION_INDICATOR_* Message.
5	RW	0	Hot-Plug Interrupt Enable
			This bit when set enables generation of Hot-Plug interrupt on enabled Hot-Plug events.
4	RW	0	Command Completed Interrupt Enable
			This bit when set enables the generation of Hot-Plug interrupt when a command is completed by the Hot-Plug
			controller.
3	RW	0	Presence Detect Changed Enable
			This bit when set enables the generation of Hot-Plug interrupt or Wakeup event on a presence detect changed event.
2	RO	0	MRL Sensor Changed Enable
1	RO	0	Power Fault Detected Enable
0	RW	0	Attention Button Pressed Enable
			This bit when set enables the generation of Hot-Plug interrupt or Wakeup event on an Attention Button pressed
			event.

Offset Address: 5B-5Ah (D2F0) Slot Status

Slot Status Default Value: 0000h

Bit	Attribute	Default	Description
15:9	RO	0	Reserved
8	RW1C	0	Data Link Layer State Changed
7	RO	0	Reserved
6	RO	0	Presence Detect State
			0: Slot empty 1: Card present in slot
5	RO	0	MRL Sensor State
			Reserved
4	RW1C	0	Command Completed
3	RW1C	0	Presence Detect Changed
2	RO	0	MRL Sensor Changed
1	RO	0	Power Fault Detected
0	RW1C	0	Attention Button Pressed

Offset Address: 5D-5Ch (D2F0)

Root Control Default Value: 0000h

Bit	Attribute	Default	Description
15:5	RO	0	Reserved
4	RO	0	CRS Software Visibility Enable
3	RW	0	PME Interrupt Enable
			0: Disable
			1: Enable interrupt generation upon receipt of a PME message as reflected in the PME status register bit. A PME
			interrupt is also generated if the PME status register bit is set when this bit is set from a cleared state.
2	RW	0	System Error on Fatal Error Enable
			0: Disable
			1: Enable generation of a System Error if a Fatal Error (ERR_FATAL) is reported by any of the devices in the
			hierarchy associated with the Root Port, or by the Root Port itself.
1	RW	0	System Error on Non-Fatal Error Enable
			0: Disable
			1: Enable generation of a System Error if a Non-Fatal Error (ERR_NONFATAL) is reported by any of the devices in
			the hierarchy associated with the Root Port, or by the Root Port itself.
0	RW	0	System Error on Correctable Error Enable
			0: Disable
			1: Enable generation of a System Error if a Correctable Error (ERR_COR) is reported by any of the devices in the
			hierarchy associated with the Root Port, or by the Root Port itself.

Offset Address: 5Eh (D2F0)

CRS Visibility Control Default Value: 0000h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RO	0	CRS Software Visibility Enable

Offset Address: 5Fh (D3F0) – Reserved

Offset Address: 63-60h (D2F0)

Root Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	PME Pending
			0: No pending PME
			1: Indicates that another PME is pending when the PME Status (bit 16) is set.
16	RW1C	0	PME Status
			Indicates that the PME was asserted by the Requestor ID indicated in PME Requestor ID (bit[15:0]).
15:0	RO	0	PME Requestor ID
			The Requestor ID of the last PME Requestor.

Offset Address: 64-67h (D2F0) - Reserved

PCI Power Management Capability Structure Registers (68-6Fh)

Offset Address: 6B-68h (D2F0)

Power Management Capabilities Default Value: C822 7001h

Bit	Attribute	Default	Description
31:27	RO	19h	PME Support
			Bit 31, 30 and 27 are set to 1b (PME Message will be forwarded).
26	RO	0	D2 Support
25	RO	0	D1 Support
24:22	RO	0	AUX Current
21	RO	1b	Device Specific Initialization
20:19	RO	0	Reserved
18:16	RO	010b	Version
15:8	RO	70h	Next Pointer
7:0	RO	01h	Capability ID

Offset Address: 6F-6Ch (D2F0)

Power Management Status/Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	0	Power Management Data
23:16	RO	0	Reserved
15	RW1CS	0	PME Status
			This bit's setting is not modified by hot, warm, or cold reset.
14:13	RO	0	Data Scale
12:9	RO	0	Data Select
8	RWS	0	PME Enable
			This bit's setting is not modified by hot, warm, or cold reset.
7:2	RO	0	Reserved
1:0	RW	0	Power State

PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)

Offset Address: 73-70h (D2F0)

MSI Capability Support Default Value: 0180 8805h

Bit	Attribute	Default		Description		
31:25	RO	0	Reserved			
24	RO	1b	This MSI capability supports pre-ve	ctor masking capability		
23	RO	1b	This MSI capability supports 64 bit	message address only		
22:20	RW	000b	Multiple Message Enable			
			000: 1message allocated	001: 2 message allocated		
			010: 4 message allocated 011: 8 message allocated			
			100: 16 message allocated 101: 32 message allocated			
			11x: Reserved			
19:17	RO	000b	Multiple Message Capable			
			000: 1message requested	001: 2 message requested		
			010: 4 message requested	011: 8 message requested		
			100: 16 message requested 101: 32 message requested			
			11x: Reserved			
16	RW	0	MSI Enable			
			0: This Port is prohibited from using MSI to request service			
			1: This Port is permitted to use MSI to request service.			
15:8	RO	88h	Next Capability Pointer			
7:0	RO	05h	Capability ID			

Default Value: 0000 0000h

Offset Address: 77-74h (D2F0)

System-Specified Message Address - Low Default Value: 0000 0000h

Bit	Attribute	Default	Description	
31:2	RW	0	System-Specified Message Address Bit [31:2]	
1:0	RO	0	System-Specified Message Address Bit [1:0] These bits will always read as 0	

Offset Address: 7B-78h (D2F0)

System-Specified Message Address - High

Bit	Attribute	Default	Description	
31:4	RW	0	System-Specified Message Address Bit [63:36] The chip supports address up to A35.	
3:0	RW	0	System-specified Message Address [35:32]	

Offset Address: 7D-7Ch (D2F0)

Message Data Default Value: 0000h

Bit	Attribute	Default	Description	
15:0	RW	0	Message Data	
			The message data is to be put on data [15:0] of MSI cycles	

Offset Address: 7F-7Eh (D2F0) - Reserved

Offset Address: 83-80h (D2F0)

Message Mask Control Default Value: 0000 0000h

ĺ	Bit	Attribute	Default	Description	
ſ	31:1	RO	0	Reserved	
ı	0	RW	0	Mask Bit for Message 0	

Offset Address: 87-84h (D2F0)

Message Pending Status Default Value: 0000 0000h

Bit	Attribute	Default	Description	
31:1	RO	0	Reserved	
0	RO	0	Pending Bit for Message 0	

HyperTransport Message Signal Interrupt (MSI) Capability Registers (88-97h)

Offset Address: 8B-88h (D2F0)

Capability Support Default Value: A802 9808h

Bit	Attribute	Default	Description	
31:27	RO	10101b	Capability Type	
26:18	RO	000000	This MSI capability supports pre-vector masking capability	
17	RO	1b	Fixed, the HT-MSI this chip support is only for MSI address like 00000000 FEEx_xxxx.	
16	RW	0	MSI Enable	
			0: This port is prohibited from using MSI to request service.	
			1: This port is permitted to use MSI to request service.	
15:8	RO	98h	Next Pointer	
7:0	RO	08h	Capability ID	

Offset Address: 97-8Ch (D2F0) - Reserved

Subsystem ID and Subsystem Vendor ID Capability Registers (98-9Fh)

Offset Address: 99-98h (D2F0)

Capability Support Default Value: 000Dh

Bit	Attribute	Default	Description
15:8	RO	0	Next Pointer
7:0	RO	0Dh	Capability ID

Offset Address: 9D-9Ch (D2F0)

Subsystem Vendor ID Control Default Value: 1106h

Bit	Attribute	Default	Description	
15:0	RO	1106h	Subsystem Vendor ID	

Offset Address: 9F-9Eh (D2F0)

Subsystem ID Control Default Value: C323h

Bit	Attribute	Default	Description
15:0	RO	C323h	Subsystem ID

PCI Express Transaction Layer Registers (A0-A7h)

Offset Address: A0h (D2F0)

Downstream Control 1 Default Value: 01h

Bit	Attribute	Default	Description		
7	RW	0	Downstream Cycles Have Traffic Class TC1		
			0: Disabled 1: Enabled.		
6	RW	0	Downstream Cycles Have Attribute "No Snoop" Set		
			0: Disabled 1: Enabled		
5	RW	0	Downstream Cycles Have Attribute "Relaxed Ordering" Set		
			0: Disabled 1: Enabled		
4	RW	0	Downstream Lock Cycle Support		
			0: Disabled 1: Enabled		
3	RW	0	Downstream Arbitration Scheme		
): Fixed priority: VC1 CPL > VC0 CPL > Down Stream Command		
			1: Round Robin arbitration priority between VC1 CPL, VC0 CPL and Down Stream Command		
2	RW	0	Downstream Post-Write Allowed to Pass IOW		
			0: Not allowed. 1: Allowed		
1	RW	0	Downstream Post-Write Allowed to Pass Read		
			0: Not allowed. 1: Allowed		
0	RW	1b	Downstream Pipeline		
			0: Disabled 1: Enabled		

Offset Address: A1h (D2F0)

Downstream Control 2 Default Value: 14h

Bit	Attribute	Default		Description	
7	RW1C	0	Downstream Configuration Completion Status		
			0: Normal completion.		
			1: At least one configuration request ended with a CRS (Configuration Request Retry Status) completion.		
6	RO	0	Reserved		
5	RW	0	Data Return of Upstream	Read Requests	
			0: The chip always checks C	CPL credit unless the endpoint advertises infinite CPL credits.	
			1: The chip does not check (CPL credit even when endpoint advertises finite CPL credits.	
4	RW	1b	Transaction Layer Downst	tream does not check downstream PH credit for PME_TURN_OFF message as the	
			PCIe v1.1 spec requirement		
			0: Disable	1: Enable	
3	RW	000b	C2P Read Completion Tim	ner for Vector Development Mode	
			When this bit is set to 1, the	timer defined in RxA1[2:0] becomes:	
			000: 1us 001: 3us		
			010: 10us	011: 20us	
			100: 50us	101: 100us	
			110: 200us	111: 500us	
2:0	RW	100b	C2P Read Completion Timeout Timer		
			000: Reserved	001: 1ms	
			010: Reserved 011: 10ms (Spec. lower bound)		
			100: 30ms	101: Reserved	
			110: Reserved	111: Reserved	

Offset Address: A2h (D2F0) Downstream Control 3

Downstream Control 3 Default Value: 30h

Bit	Attribute	Default	Description		
7	RO	0	Reserved		
6:4	RW	011b	Waiting for GNT Timer for Priority Arbitration Mode		
			If GNT timer of VC0/C2P request expires, VC0/C2P request will become higher priority		
			Priority VC1 > VC0 > C2P request when set RxA0[3]=0		
			000: 4ns 001: 16ns		
			010: 32ns 011: 64ns		
			100: 96ns 101: 128ns		
			110: 256ns 111: 512ns		
3	RO	0	Reserved		
2	RW	0	Pending C2P NP cycle blocks L1 entry		
			0: Disable. L1 entry won't consider C2P NP completion		
			1: Enable. L1 entry will need to wait for C2P NP completion		
1:0	RW	00b	Downstream Arbitration Parking		
			00: GNT park on the last request source		
			01: GNT park on VC1 completion. If VC1 is not enabled (or no VC1), park on VC0 completion		
			10: GNT park on VC0 completion		
			11: GNT park on C2P request		

Offset Address: A3h (D2F0)

Downstream Control 4 Default Value: FCh

Bit	Attribute	Default	Description
7:4	RW	1111b	Retry Buffer Level:
			0000: 2-level 0001: 4-level
			0010: 6-level 0011: 8-level
			0100: 10-level 0101: 12-level
			0110: 14-level 0111: 16-level
			1000: 18-level 1001: 20-level
			1010: 22-level 1011: 24-level
			1100: 26-level 1101: 28-level
			1110: 30-level 1111: 32-level
3	RW	1b	Downstream Read Retry Time Out Control in DL_Down State
			0: Disable downstream read retry time out. If RxA3[0] is set to 1, downstream read request will always wait for
			DL_DLUp assertion then retry.
			1: Enable downstream read retry time out (when RxA3[0] is set to 1 and RxA3[1] is set to 0). The timer is the
			same as completion time out timer. After time out, this read request will not be retried again even DL_DLUp
			assertion.
2	RW	1b	Downstream Cycle Control/Latency Improvement
			0: Disable downstream HPOP/DPOP assert at the same time
			1: Enable downstream HPOP/DPOP assert at the same time
1	RW	0	CPL Timer Control
			0: Enable. Refer to D2F0 RxA1[2:0], D3F0RxA1[2:0]
			1: Disable
0	RW	0	Downstream Read Cycle Retry
			0: When DL_DOWN is asserted, transaction layer returns "FF" to PXPTRF for C2P read cycle.
			1: When DL_DOWN is asserted, transaction layer holds C2P read cycle and this incompletes C2P read cycle will be
			retried when DL_UP is asserted.

Offset Address: A4h (D2F0)

Upstream Control Default Value: 5Ch

Bit	Attribute	Default	Description
7	RW	0	Upstream Address A35~A31 Forced to 0
			0: Disabled.
			1: Enabled for system testing or loop back mode test. The upcoming data may be checked in the system memory
6	RW	1b	A guard bit for improving timing to prevent upstream write FIFO from begin overwritten
5	RW	0	Upstream Checking Malformed TLP through "Byte Enable Rule" and "Over 4K Boundary Rule"
			0: Disabled. 1: Enabled.
4	RW	1b	Downstream Read Wait till the Upstream Write Data Flushed
			0: Disabled. 1: Enabled.
3	RW	1b	Infinite Flow Control
			0: Current Design
			1: CPLH & CPLD & NPD Become Infinite mode
2	RW	1b	Flow Control Update for Each Header
			0: Update header credit whenever received two TLPHs
			1: Update header credit whenever received TLPH (including PH, NPH and CPLH)
1	RW	0	VC1 Request Queue Usage (when VC1 is disabled in the capability header; i.e. $Rx144[0] = 0$)
			0: Disabled
			1: Enabled. It allows Transaction Layer map non-snoop upstream request through VC1 Request Queue to the
			Central Traffic Controller (Note that when this bit is 1, bit-0 has to be 0).
0	RW	0	C2P Completion Timeout Timer Value Control When PHY Retrain Link or In Configuration State
			0: Keep the timeout value
			1: Reset the timeout value

Default Value: 7Fh

Offset Address: A5h (D2F0)

Credit Advertisement Control Default Value: FFh

Bit	Attribute	Default	Description
7:4	RW	1111b	Upstream Posted (write) Data FIFO Size, and the Initial PD Credit Value
			0011: 4-line upstream write FIFO size, and initial PD credit = 'h20
			0010: 3-line upstream write FIFO size, and initial PD credit = 'h10
			0001: 2-line upstream write FIFO size, and initial PD credit = 'h8
			0000: 1-line upstream write FIFO size, and initial PD credit = 'h4
3:0	RW	1111b	Upstream PH Header Queues Size, and the Initial PH Credit
			0011: 8-level PH header queue, and initial PH credit = 'h8
			0010: 4-level PH header queue, and initial PH credit = 'h4
			0001: 2-level PH header queue, and initial PH credit = 'h2
			0000: 1-level PH header queue, and initial PH credit = 'h1

Offset Address: A6h (D2F0)

Credit Advertisement Control

Bit	Attribute	Default	Description
7	RW	0	NPH Initial Credit
			1: Enable NPH/NPD credit to device and improve PCI Express performance only when RxA6[3:0] is 1111b and
			RxA4[3] is 1b.
			0: Disable if RxA6[3:0] is not 1111b, or when RxA4[3] is not 1b or when both of them.
6:4	RW	111b	Upstream Read CPL Header Size
			111: 256QW 32-level
			110: 224QW 28-level
			101: 192QW 24-level
			100: 160QW 20-level
			011: 128QW 16-level
			010: 96QW 12-level
			001: 64QW 8-level
			000: 32QW 4-level
3:0	RW	1111b	Upstream Non-Posted Request Queue Size, and Initial NPH Credit Value
			0011: 8-level NPH header queue, and initial NPH credit = 'h8
			0010: 4-level NPH header queue, and initial NPH credit = 'h4
			0001: 2-level NPH header queue, and initial NPH credit = 'h2
			0000: 1-level NPH header queue, and initial NPH credit = 'h1

Offset Address: A7h (D2F0)

Upstrea	pstream Performance Control Default Value: 0					
Bit	Attribute	Default	Description			
7	RW	0	Transaction layer patch MSI cycle low address is masked bug register. The value of Revision Code bit			
			7(RX08[7]) in this root port should be the same as this register.			
			0: Transaction layer mask low address[4:2] for both MSI and other P2C cycles.			
6	RO	0	1: Transaction layer does not mask low address[4:2] for both MSI and other P2C cycles.			
	_	~	Reserved			
5	RW	0	Transaction layer header queue pre-load design dynamic clock enable for power management			
			1: Turn on the transaction layer header queue pre-load design dynamic clock enable.			
	DIV	0	0: Otherwise			
4	RW	0	Upstream Read FIFO Entry Release Timing			
			0: Upstream read FIFO entry release when the last data pop into retry data FIFO.			
	2011	_	1: Upstream read FIFO entry release when the first data pop into retry data FIFO			
3	RW	0	Downstream Read Data Wait for Previous Upstream Write Complete			
			0: Disable 1: Enable			
2	RW	1b	Upstream Requests Read and Write Orders			
			0: Upstream requests are served in order.			
			1: Upstream write always pass upstream read.			
1	RW	0	Upstream Read Data TLP Return Policy			
			0: One upstream request with over 16DW length or non-8-QW boundary alignment must be split into multiple CPL			
			TLPs.			
			1: Multiple CPL TLPs which belong to the same upstream request can be merged into one single CPL TLP.			
0	RW	0	Upstream Write Cycle will be 4QW Align			
			0: Disable 1: Enable			

Offset Address: A8-AFh (D2F0) - Reserved

Note: The default value is "1"

If we want to program the value to "0', we should follow the following in sequence.

- 1. Must in Non-QUICK mode simulation.
- 2. Set Rx50[4] = 1 (disable link). 3. Program RxA4[3] = 0.
- 4. Enable Link, clear register Rx50[4] = 0, re-do flow control initialization.

Default Value: 0Ch

Default Value: 40h

PCI Express Data Link Layer Registers (B0-B8h)

Offset Address: B0h (D2F0)

Ack/Nak Latency Timer Limit

Bit	Attribute	Default	Description
7:0	RW	0Ch	Timer Limit for Ack/Nak Latency Timer and Update FC Latency Timer (in unit of 250MHz) 00: 4 x 1 Clocks 01: 4 x 2 Clocks 02: 4 x 3 Clocks. 0n: 4 x (n+1) Clocks FF: 4 x 256 Clocks.

Offset Address: B1h (D2F0)

Replay Timer Limit Default Value: 12h

Bit	Attribute	Default	Description
7:0	RW	12h	Replay Timer Limit (in Unit of 250MHz)
			00: 8 x 1 Clocks 01: 8 x 2 Clocks 02: 8 x 3 Clocks 0n: 8 x (n+1) Clocks FF: 8 x 256 Clocks.

Offset Address: B2h (D2F0)

FCU (Flow Control Unit) Control and Status

Bit	Attribute	Default		Description
7	RW1C	0	FCU Timeout Status	
			1 Means the FCU timeout has occurred	
6	RW	1b	FCU Receive Timer Enable Control	
			0: Disable the timeout mechanism	
			1: Enable the timeout mechanism	
5	RW	0	FCU Receive Timer Limit	
			0: Timeout limit of 200us 1:	Timeout limit of 300us
4	RW	0	FCU Receive Timer Reset Control	
			0: Timer reset by FCI/FCU only	
			1: Timer reset by any received DLLPs	
3:1	RO	0	Reserved	
0	RW	0	A guard bit for DL and TL to reset upstream	m related logic when retrain is going on

Offset Address: B3h (D2F0)

Replay Timer Control Default Value: 81h

Bit	Attribute	Default	Description
7:6	RW	10b	Replay Timer Control While Rewind (resend those DLLPs which do not have corresponding ACK/NAK
			received)
			00: Hold Replay Timer during rewind.
			01: During rewind, if ACK/NAK comes in, reset and hold the Replay Timer.
			10: During rewind, reset and hold the Replay Timer as long as the Retry Buffer is empty.
			11: Reserved.
5:3	RO	0	Reserved
2:0	RW	001b	Count of Replay Timer Expired During RXL0s (Receiving Physical in L0s state) Before Resend the TLP
			When Rx50[7] is set to 0:
			000: Wait forever for the Acknowledge from the device side
			001: Resend the TLP after 1 x Replay timer expired
			010: Resend the TLP after 2 x Replay timer expired
			011: Resend the TLP after 4 x Replay timer expired
			100: Resend the TLP after 8 x Replay timer expired
			101: Resend the TLP after 16 x Replay timer expired
			110: Resend the TLP after 32 x Replay timer expired
			111: Resend the TLP after 64 x Replay timer expired
			When RX50[7] is set to 1:
			000: Wait forever for the Acknowledge from the device side
			001: Resend the TLP after 16 x Replay timer expired
			010: Resend the TLP after 32 x Replay timer expired
			011: Resend the TLP after 64 x Replay timer expired
			100: Resend the TLP after 128 x Replay timer expired
			101: Resend the TLP after 256 x Replay timer expired
			110: Resend the TLP after 512 x Replay timer expired
			111: Resend the TLP after 1024 x Replay timer expired

Offset Address: B4h (D2F0)

Arbitration Control Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3	RW	0	TLP V.S. Flow Control Initialization for VC0 in Arbitration
			0: TLP is not allowed to pass FCl2 for VC0
			1: TLP is allowed to pass FCI2 for VC0
2:0	RW	000b	Data Link TX Packets Arbitration Scheme
			000: Strict priority: NAK or timeout ACK > TLP > FCU > pending ACK
			001: Reserved.
			010: Strict priority: TLP > NAK or timeout / pending ACK > FCU
			011: Strict priority: TLP > FCU > NAK or timeout / pending ACK
			100: Strict priority: NAK or timeout / pending ACK > TLP > FCU
			101: Strict priority: NAK or timeout / pending ACK > FCU > TLP
			110: Strict priority: FCU > TLP > NAK or timeout / pending ACK
			111: Strict priority: FCU > NAK or timeout ACK > TLP > pending ACK

Default Value: 21h

Offset Address: B5h (D2F0)

FCU Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6	RW	0	FCU Timer Control
			0: Update flow control credit when either Transaction Layer requested packets being sent or when FCU timer
			expired
			1: Update flow control credit only when FCU timer expired
5:4	RW	00b	ACK DLLP Collapse Method
			00: Send ACK when the latency timer RxB0 expired.
			01: Send ACK every 4 correct TLP has been received
			10: Send ACK every 8 correct TLP has been received
			11: Send ACK every 16 correct TLP has been received
3:2	RO	0	Reserved
1	RW	0	FCI (Flow Control Initialization) Process End Condition
			0: Complete FCI process when TLP/FCU has been received
			1: Do not complete FCI process even when TLP/FCU has been received
0	RW	0	VC1 FCI DLLP Transmission Scheme
			0: Transmit FCI DLLP only when FCI timer expired
			1: Transmit FCI DLLP continuously as long as the FCI process is not finished

Offset Address: B6h (D2F0)

Transaction / Link Layer Checking Control

Bit	Attribute	Default	Description
7	RW	0	Nak_Scheduled Flag Control
			Nak_Scheduled Flag is set after a Nak is scheduled by receiving a TLP with CRC or Seq_Num ERROR,
			and Nak_Scheduled Flag is cleared after receiving a new Ack.
			0: Disable Nak_Scheduled Flag. Schedule Nak regardless of Nak_Scheduled Flag.
			1: Enable Nak_Scheduled Flag. Nak can only be scheduled when Nak_Scheduled Flag is cleared.
6:5	RW	01b	Timeout mechanism for TTLEN. (only in X1/X2)
			When timeout, DL waits for DW boundary and automatically generates a TTL (TLP Tail) to finish the
			TLP.
			00: wait for lus
			01: wait for 2us
			10: wait for 3us
			11: wait for 4us
4	RW	0	Phyls Deskew Buffer Power Management
3:1	RO	0	Reserved
0	RW	1b	LCRC Checking Control
			0: Do not check LCRC
			1: Check LCRC

Offset Address: B7h (D2F0) – Reserved

Offset Address: B8h (D2F0)

Data Link Layer Header Position Default Value: 00h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RW	0	Data Link Layer Header Position
			0: SDP (Start DLLP) can be in Lane0/4/8/12
			1: SDP (Start DLLP) always at Lane0.

Offset Address: BF-B9h (D2F0) - Reserved

PCI Express Physical Layer Registers (C0-CBh)

Offset Address: C3-C0h (D2F0)

PHY Control Default Value: 0027 0003h

Bit	Attribute	Default	Description
31:24	RO	0	PHYLS_STATE Mapping See the table below.
23:22	RO	0	Reserved
21	RW	1b	Lane Enable Based on Receiver Detection's Output 0: Enable lanes based on LTSSM negotiation results 1: Disable lanes based on receiver detection's results
20	RW	0	Bypass PHYES Receiver Detect Function 0: Derived from PHYES 1: Bypass Receiver Detect
19	RW	0	State Machine LTSSM Exit POLLING_ACTIVE 0: LTSSM may exit POLLING_ACTIVE when receiving 8 TS after sending more than 1024 TS 1: LTSSM always waits for 24 ms timeout to exit POLLING_ACTIVE.
18	RW	1b	Scheme to Enter L1/L23 Entry 0: Wait IDLE ordered set to enter L1/L23 entry 1: Wait electrical idle and ignore IDLE ordered set to enter L1/L23
17	RW	1b	Running Disparity Check 0: Disable 1: Enable
16	RW	1b	State machine LTSSM enter Detect.Active from Detect.Quiet 0: Wait for the Electrical idle signal from the PHYES or 12ms after RESET# becomes inactive 1: Always wait for 12ms after the RESET# becomes inactive
15:13 12:8	RO RW	0	Reserved PHY Lane Configuration Setting
			10000: x16 with normal connection 01000: x8 with normal connection 00100: x4 with normal connection 00010: x2 with normal connection 00001: x1 with normal connection 00001: x1 with normal connection 01111: x16 with reverse connection 10111: x8 with reverse connection 11011: x4 with reverse connection 11101: x2 with reverse connection 11101: x1 with reverse connection 11110: x1 with reverse connection 10101: force into L0s state (for testing and measurement used only) 00000: Use PHY negotiation Other values are not allowed.
7	RW	0	Quick Timeout Counter Setting When set to 1, following timeout counters will be shorter: TIMEOUT_2MS → TIMEOUT_4US TIMEOUT_12MS → TIMEOUT_24US TIMEOUT_24MS → TIMEOUT_48US TIMEOUT_48MS → TIMEOUT_96US TIMEOUT_1024TS → TIMEOUT_32TS Receiver Detection: 15x1024ns → 1x1024ns
6	RW	0	Disable Data Scrambling / Descrambling 0: Enable 1: Disable
5:3	RW	000Ь	Loopback Mode Selection (Applies to All 16 Lanes) 000: No loopback 001: PHYLS loopback from TX end to RX end 010: PHYES loopback from TX end to RX end 011: External loopback from TX end to RX end 100: Reserved 101: PHYLS loopback from RX end to TX end 110: PHYES loopback from RX end to TX end 111: Reserved
2:0	RW	011b	COMMA Detection Window 000, 001: Illegal values Others: Delay number of T to determine correct lane-to-lane deskew value

Table 20. Mapping Table for RxC3[7]

Table 20. Mapping Table for RxC3[7]						
LTSSM states	Binary Coding	Hexadecimal Coding				
DETECT_QUIET	8'B0000_0000	8'H00				
DETECT_ACTIVE	8'B0000_0001	8'H01				
POLLING_ACTIVE	8'B0001_0000	8'H10				
POLLING_CONFIGURATION	8'B0001_0001	8'H11				
POLLING_SPEED	8'B0001_0010	8'H12				
POLLING_COMPLIANCE	8'B0001_0100	8'H14				
CONFIGURATION_RCVRCFG_STEP_1	8'B0010_0001	8'H21				
CONFIGURATION RCVRCFG STEP 2	8'B0010_0010	8'H22				
CONFIGURATION_RCVRCFG_STEP_3	8'B0010_0011	8'H23				
CONFIGURATION_RCVRCFG_STEP_4	8'B0010_0100	8'H24				
CONFIGURATION_RCVRCFG_STEP_5	8'B0010_0101	8'H25				
CONFIGURATION_RCVRCFG_STEP_6	8'B0010_0110	8'H26				
CONFIGURATION RCVRCFG STEP 7	8'B0010_0111	8'H27				
CONFIGURATION_IDLE	8'B0010_1000	8'H28				
RECOVERY_RCVRLOCK	8'B0011_0000	8'H30				
RECOVERY_RCVRCFG	8'B0011_0001	8'H31				
RECOVERY_IDLE	8'B0011_0011	8'H33				
LOOPBACK_MSTR_ENTRY	8'B0100_0000	8'H40				
LOOPBACK_MSTR_ACTIVE	8'B0100_0001	8'H41				
LOOPBACK_MSTR_EXIT	8'B0100_0011	8'H43				
LOOPBACK_SLAV_ENTRY	8'B0100_0100	8'H44				
LOOPBACK_SLAV_ACTIVE	8'B0100_0101	8'H45				
LOOPBACK_SLAV_EXIT	8'B0100_0111	8'H47				
DISABLED_ENTRY	8'B0101_0000	8'H50				
DISABLED_DISABLED	8'B0101_0001	8'H51				
HOTRESET_ACTIVE	8'B0110_0000	8'H60				
L0L0_TXL0_RXL0	8'B1000_1010	8'H8A				
L0L0S_TXL0_RXENTRY	8'B1001_1000	8'H98				
L0L0S_TXL0_RXIDLE	8'B1001_1001	8'H99				
L0L0S_TXL0_RXFTS	8'B1001_1011	8'H9B				
L0SL0_TXENTRY_RXL0	8'B1010_0010	8'HA2				
L0SL0_TXIDLE_RXL0	8'B1010_0110	8'HA6				
L0SL0_TXFTS_RXL0	8'B1010_1110	8'HAE				
L0SL0S_TXENTRY_RXENTRY	8'B1011_0000	8'HB0				
L0SL0S_TXENTRY_RXIDLE	8'B1011_0001	8'HB1				
L0SL0S_TXENTRY_RXFTS	8'B1011_0011	8'HB3				
L0SL0S_TXIDLE_RXENTRY	8'B1011_0100	8'HB4				
L0SL0S_TXIDLE_RXIDLE	8'B1011_0101	8'HB5				
L0SL0S_TXIDLE_RXFTS	8'B1011_0111	8'HB7				
L0SL0S_TXFTS_RXENTRY	8'B1011_1100	8'HBC				
L0SL0S_TXFTS_RXIDLE	8'B1011_1101	8'HBD				
L0SL0S_TXFTS_RXFTS	8'B1011_1111	8'HBF				
L1_ENTRY	8'B1100_0000	8'HC0				
L1_IDLE	8'B1100_0001	8'HC1				
L23READY_ENTRY	8'B1101_0000	8'HD0				
L23READY IDLE	8'B1101 0001	8'HD1				

Default Value: 4444 4444h

Offset Address: C7-C4h (D2F0) Elastic Buffer Base Registers for Lane 0 to 7

Bit	Attribute	Default	Description			
31	RO	0	Reserved			
30:28	RW	4h	Elastic Buffer Base Register for Lane 7			
			0, 1, 7: Illegal values			
			Others: delay numbers of T for elastic buffer operations			
27	RO	0	Reserved			
26:24	RW	4h	Elastic Buffer Base Register for Lane 6			
			0, 1, 7: Illegal values			
		_	Others: delay numbers of T for elastic buffer operations			
23	RO	0	Reserved			
22:20	RW	4h	Elastic Buffer Base Register for Lane 5			
			0, 1, 7: Illegal values			
4.0			Others: delay numbers of T for elastic buffer operations			
19	RO	0	Reserved			
18:16	RW	4h	Elastic Buffer Base Register for Lane 4			
			0, 1, 7: Illegal values			
1.5	D.O.	0	Others: delay numbers of T for elastic buffer operations			
15	RO	0	Reserved			
14:12	RW	4h	Elastic Buffer Base Register for Lane 3			
			0, 1, 7: Illegal values			
1.1	D.O.		Others: delay numbers of T for elastic buffer operations			
11	RO	0	Reserved			
10:8	RW	4h	Elastic Buffer Base Register for Lane 2			
			0, 1, 7: Illegal values			
7	RO	0	Others: delay numbers of T for elastic buffer operations			
6:4	RW	4h	Reserved			
0.4	KW	4n	Elastic Buffer Base Register for Lane 1 0, 1, 7: Illegal values			
3	RO	0	Others: delay numbers of T for elastic buffer operations Reserved			
2:0	RW	0 4h	Elastic Buffer Base Register for Lane 0			
2.0	IX W	411	0, 1, 7: Illegal values			
			Others: delay numbers of T for elastic buffer operations			
			Others, delay numbers of 1 for elastic outlet operations			

Default Value: 4444 4444h

Offset Address: CB-C8h (D2F0) Elastic Buffer Base Registers for Lane 8 to 15

Bit	Attribute	Default	Description
31	RO	0	Reserved
30:28	RW	4h	Elastic Buffer Base Register for Lane 15
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
27	RO	0	Reserved
26:24	RW	4h	Elastic Buffer Base Register for Lane 14
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
23	RO	0	Reserved
22:20	RW	4h	Elastic Buffer Base Register for Lane 13
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
19	RO	0	Reserved
18:16	RW	4h	Elastic Buffer Base Register for Lane 12
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
15	RO	0	Reserved
14:12	RW	4h	Elastic Buffer Base Register for Lane 11
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
11	RO	0	Reserved
10:8	RW	4h	Elastic Buffer Base Register for Lane 10
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
7	RO	0	Reserved
6:4	RW	4h	Elastic Buffer Base Register for Lane 9
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
3	RO	0	Reserved
2:0	RW	4h	Elastic Buffer Base Register for Lane 8
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations

Offset Address: CF-CBh (D2F0) – Reserved

PCI Express Power Management Module Registers (D0-DFh)

Offset Address: D3-D0h (D2F0) PMC Control

PMC Control Default Value: 0000 2050h

Bit	Attribute	Default	Description
31:24	RW	00b	Idle Period to Enter ASL1
			Minimum time period is 128ns
			00: 128ns
			01: 2x128ns
			02: 3x128ns
			FF: 256x128ns
23:16	RW	00b	Idle Period to Enter LOs
			Minimum time period is 128ns
			00: 128ns
			01: 2x128ns 02: 3x128ns
			FF: 256x128ns
15	RW1C	0	Error Status Report
13	KW1C	U	This bit is set when device cannot have electrical idle after the waiting period programmed at RxD1[6:4] expired.
14	RO	0	Reserved
13:12	RW	10b	Electrical Idle Waiting Period before Move to L1 State (after issue ACK to the L1 request from the device).
13.12	1011	100	00: Always wait for electrical idle
			01: Wait 32 clock
			10: Wait 64 clock
			11: Reserved
11:10	RO	0	Reserved
9:8	RW	0	Downstream Cycles Triggered C2P Cycles, Period of Staying at L0 Before Returned to L1 for PHY (when
			PMU is in non-D0 state)
			00: immediately
			01: 1 cfgW or message + delay10T
			10: 1 32QW +1cfgW or message+ delay10T
			11: 2 32QW +1 cfgW or message + delay10T
7	RO	0	Reserved
6:4	RW	101b	Timeout Period
			This timer is used when waiting for ACK from a device after issued PME_TURNOFF message to notify the device
			to move to power down mode.
			000: 1us 001: 2us 010: 4us 011: 8us
			100: 16us 011. 8us 101: 32us
			100. 10us 101. 32us 111: 128us
3	RW	0	Stop Port Clock When No Device On This Port
3	ICVV	U	0: Disable 1: Enable
2	RW	1b	Enable Link Retrain when Bad DLLP Is Checked
-	20,7	10	0: Disable I: Enable
1	RW	0	Link Loopback
			0: Normal operation
			1: Direct device to enter Loopback mode, receiving data in the device will be sent to the transmit side
0	RW	0	Link Reconfigure Link width
			Link width reconfiguration is initiated by writing 1 to this bit. This will direct the Physical Layer LTSSM to the
			Recovery state first, and then to the Configuration state.
			0: When Link Reconfigure Link width, LTSSM must be in Detect state
			1: When Link Reconfigure Link width, LTSSM can be in Configuration state

Default Value: 00h

Offset Address: D4h (D2F0)

PHYES Module Overall Control – Applied to x16 and x4 PHYES

Bit	Attribute	Default	Description
7	RW	0	Power Management Enable for X1 Notebook
			When working in Notebook only supporting PCIe X1, this bit is set to 1. Then the other 15 Lane's clock will be
			gated to save power.
6	RW	0	Control FCI Receive Timer (300us)
			0: Disable the timeout mechanism
			1: Enable the timeout mechanism
5:2	RO	0	Reserved
1	RW	0	Lane Reversal
			0: Do not support lane reversal
			Link / Lane number will be sent only on lane0~(maxlinkwidth-1).
			1: Support lane reversal.
			Link / Lane number will be sent on lane0 ~(maxlinkwidth-1), (16-maxlinkwidth)~ 15.
0	RW	0	Un-negotiated Lanes State during Configuration.Complete
			0: During Configuration. Complete, un-negotiated lanes will be electrical idle.
			1: During Configuration. Complete, Link/Lane number will be pad for un-negotiated lanes

Offset Address: D7-D5h (D2F0) - Reserved

Offset Address: D8h (D2F0)

PMC Express Message Status Default Value: 00h

Bit	Attribute	Default	Description
7	RW1C	0	Excessive Errors Occurred But Not Reported in MSGC 0: Normal operation. 1: There are errors not reported to the system
6:0	RO	0	Reserved

Offset Address: DB-D9h (D2F0) – Reserved

Offset Address: DF-DCh (D2F0)

MSI Mapping Capability Default Value: A802 0008h

Bit	Attribute	Default	Description	
31:27	RO	10101b	Capability Type	
26:18	RO	0	Reserved	
17	RO	1b	Address for Mapping MSI is Fixed at 0000_0000_FEEx_xxxx and This Capability Block is One Double	
			Word	
16	RW	0	MSI Enable	
			0: This port is prohibited from using MSI to request service	
			1: This port is permitted to use MSI to request service.	
			Note: this register is connected to GXD6[0] and not used now.	
15:8	RO	0	Next Pointer	
7:0	RO	08h	Capability ID	

Default Value: 0Ch

Default Value: 07h

Default Value: 81h

PCI Express Electrical PHY Registers (E0-EAh)

Offset Address: E0h (D2F0)

PHYES Module Overall Control (For Both x16 and x4 PHYES)

Bit	Attribute	Default	Description
7	RW	0	Enable new PLL_LOCK Scheme to Monitor Any Abnormal Jitter
			0: Disabled 1: Enabled
6:4	RO	0	Reserved
3:1	RW	110b	Charge Pump Current Control
0	RW	0	Charge Pump Style Control

Offset Address: E1h (D2F0)

First 8 Lanes PHYES Module Related Control

Bit	Attribute	Default	Description
7:5	RO	0	Reserved
4	RW	0	Receiving Polarity Change Control
			0: Have the same polarity on the loop-back/received data
			1: Have reverse polarity on the loop-back/received data
3:2	RW	01b	Squelch Window Select (64~175my)
1	RW	1b	Electrical Idle Signal De-Assert Condition Electrical idle signal will be de-asserted at once and remained at least 4ns when electrical idle exit condition is detected. Electrical idle signal will be de-asserted at once and remained at least 16ns when electrical idle exit condition is detected.
0	RW	1b	Electrical Idle Signal Assert Condition 0: Electrical idle signal is asserted only when electrical idle condition is detected and remained at least 16ns. 1: Electrical idle signal is asserted at once when the electrical idle condition is detected.

Offset Address: E2h (D2F0)

First 8 Lanes PHYES Module Control – Rx/Tx 1

Bit	Attribute	Default	Description	
7	RW	1b	Receiver Termination	
			0: Disable 1: Enable	
6	RW	0	Mobile Swing	
			0: Disable 1: Enable	
5	RW	0	PHYES Clock Buffer Power Down on Lane 0-7	
			0: All enable	
			1: Power down	
4	RW	0	Lane 4-7 Clock Buffer Power Down	
			0: All enable	
			1: Lane 4-7 power down	
3:2	RW	00b	Receiver Input Rise Delay (duty cycle adjustment for the first 8 lanes)	
			00: 0 ps 01: 4 ps	
			10: 15 ps 11: 50 ps	
1:0	RW	01b	Receiver Input Fall Delay (duty cycle adjustment for the first 8 lanes)	
			00: 0 ps 01: 7 ps	
			10: 24 ps 11: 55 ps	

Default Value: 9Ah

Default Value: 88h

Default Value: 81h

Offset Address: E3h (D2F0)

First 8 Lanes PHYES Module Control – Rx/Tx 2

Bit	Attribute	Default		Description	
7	RW	1b	PCIe Pads Driving Control		
			0: Autocomp		
			1: Manual setting through bit	s RxE3[2:0]	
6:5	RW	00b	Filter Depth Valid Only W	nen CDR Type is Set to 0	
			00: Filter depth = 2	01: Filter depth = 3	
			10: Filter depth = 5	11: Filter depth = 7	
4	RW	1b	CDR Type		
			0: 1/N type	1: Pseudo 6X scheme	
3	RW	1b	CDR Filter Depth		
			The bit is only valid when R	xE3[4] = 1	
			0: Filter depth = 6	1: Filter depth = 8	
2:0	RW	010b	First 8 Lanes, Lane 0 – 7, T	ermination Resistance Selection	
			Resistance Range: 62Ω (000)		
			Default: 50Ω (010b)	, , ,	

Offset Address: E4h (D2F0)

First 8 Lanes PHYES Module Control – Rx/Tx 3

Bit	Attribute	Default	Description
7:4	RW	8h	Pre/De-Emphasis Level Selection
3:0	RW	8h	Driver Current Source Selection

Offset Address: E7-E5h (D2F0) – Reserved

Offset Address: E8h (D2F0)

Second 8 Lanes PHYES Module Control - Rx/Tx 1

Bit	Attribute	Default	Description
7	RW	1b	Enable Receiver Termination
			0: Disable 1: Enable
6	RW	0	Mobile Swing
			0: Disable 1: Enable
5	RO	0	Reserved
4	RW	0	Lane 12-15 Clock Buffer Power Down
			0: All enable
			1: Lane 12 - 15 power down
3:2	RW	00b	Receiver Input Rise Delay (duty cycle adjustment for the second 8 lanes)
			00: 0 ps 01: 4 ps
			10: 15 ps 11: 50 ps
1:0	RW	01b	Receiver Input Fall Delay (duty cycle adjustment for the second 8 lanes)
			00: 0 ps 01: 7 ps
			10: 24 ps 11: 55 ps

Offset Address: E9h (D2F0) Second 8 Lanes PHYES Module Control – Rx/Tx 2

Bit	Attribute	Default	Description
7	RW	1	PCIe Pads Driving Control
			0: Autocomp
			1: Manual setting through bits RxE9[2:0]
6	RO	0	Reserved
5	RW	0	Clock Buffer Power Down in PHYES for the Second 8 Lanes
			0: All enable
			1: Lane 8 - 15 power down
4:3	RO	0	Reserved
2:0	RW	010b	Second 8 Lanes, Lane 8 –15, Termination Resistance Selection
			Resistance Range: 62Ω (000b) - 43Ω (111b)
			Default: 50Ω (010b)

Default Value: 82h

Default Value: 88h

Offset Address: EAh (D2F0) Second 8 Lanes PHYES Module Control – Rx/Tx 3

Bit	Attribute	Default	Description
7:4	RW	8h	Pre/De-Emphasis Level Selection
3:0	RW	8h	Driver Current Source Selection

Offset Address: EF-EBh (D2F0) - Reserved

PCI Express Electrical PHY Test Registers (F0-F9h)

Offset Address: F3-F0h (D2F0) PHY Test

PHY Test Default Value: 0600 0000h

Bit	Attribute	Default	Description		
31	RW	0	Electrical PHY Test Mode Enable		
			Program this bit to 1 to start Electrical PHY test		
30:28	RO	0	Reserved		
27:24	RW	6h	Test Pattern Check Length		
			Number of T when the receiving side starts to check transmitted and received patterns		
			Suggested Value Settings: (Lane 0 for example)		
			RxC0[5:3] = 001b: RxC4[2:0] + 2		
			RxC0[5:3] = 010b: RxC4[2:0] + 2 + (Loopback Path Latency/4ns) + 1		
23:20	RW	0	Select Test Pattern		
			0000: Reserved		
			0001: User define, use RxRxF7-F4[25:16]		
			0010: K28.5 test bit sequence		
			0011: K28.7 test bit sequence		
			0100: K test for differential pair current		
			0101: J test for differential pair current		
			0110: D21.5 test bit sequence		
			0111: D30.3 test bit sequence		
			1000: Ten contiguous run of 3 test bit sequence		
			1001: Low transition density test bit sequence		
			1010: Half-rate/quarter-rate test bit sequence		
			1011: Low frequency spectral test bit sequence		
			1100: Simultaneous switching test bit sequence		
			1101: Reserved		
			1110: Reserved		
19:16	RW	0	1111: Reserved		
19:10	KW	0	Select Lane for Loop Back Test 0000: Loop back test on lane 0		
			0001: Loop back test on lane 1		
			•		
			1111: Loop back test on lane 15		
15:8	RW	0	Repeated Count of the Test Pattern (as selected in RxF2[7:4])		
13.6	IX VV	U	00~0Bh: Illegal.		
			OCh: Test pattern repeats 12 times		
			ODh: Test pattern repeats 12 times		
			obii. Test pattern repeats 15 times		
			FFh: Test pattern repeats 255 times		
7:0	RO	0	Reserved		

Offset Address: F7-F4h (D2F0)

PHY Test Symbol Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RO	0	Electrical PHY Test Error
			1: An error occurred in loop back test mode receiving side
30	RO	0	Electrical PHY Built-In Self Test Error of Symbol Comparison
			That same errors happen or COMMA symbols are never detected during PHYBIST period; reported from
			PTNCMP
29:26	RO	0	Reserved
25:16	RO	00b	Transmitted Symbol when RxF3[7] is set to 1
			00 when RxF3[7] is 0
15:10	RO	0	Reserved
9:0	RO	00b	Received Symbol when RxF3[7] is set to 1
			00 when RxF3[7] is 0

Offset Address: F9-F8h (D2F0)

PHY BIST Counter Test Mode Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0	PHY BIST Period Electrical PHY Test Error

Offset Address: FF-FAh (D2F0) – Reserved

Default Value: 1401 0001h

Default Value: 0000 0000h

Device 2 Function 0 (D2F0) - PCI Express Root Port G Extended Space

Registers defined in the Extended Space can be accessed through PCI Express Enhanced Configuration Access Mechanism, which utilizes a flat memory-mapped address space to access the configuration registers. Please check PCI Express Specification for the detail information.

PCI Express Extended Capabilities (100-13Fh)

Offset Address: 103-100h (D2F0)

Advance Error Reporting Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	140h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0001h	PCI Express Extended Capability ID

Offset Address: 107-104h (D2F0)

Uncorrectable Error Status

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RW1CS	0	Unsupported Request Error Status (TL)
19	RW1CS	0	ECRC Error Status (TL)
18	RW1CS	0	Malformed TLP Status (TL)
17	RW1CS	0	Receiver Overflow Status (TL)
16	RW1CS	0	Unexpected Completion Status (TL)
15	RW1CS	0	Completer Abort Status (TL)
14	RW1CS	0	Completion Timeout Status (TL)
13	RW1CS	0	Flow Control Protocol Error Status (TL)
12	RW1CS	0	Poisoned TLP Status (TL)
11:6	RO	0	Reserved
5	RW1CS	0	Surprise Down Error Status
4	RW1CS	0	Data Link Protocol Error Status (DLL)
3:1	RO	0	Reserved
0	RW1CS	0	Training Error Status (PHY)

Offset Address: 10B-108h (D2F0)

Uncorrectable Error Mask Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RWS	0	Unsupported Request Error Mask (TL)
19	RWS	0	ECRC Error Mask (TL)
18	RWS	0	Malformed TLP Mask (TL)
17	RWS	0	Receiver Overflow Mask (TL)
16	RWS	0	Unexpected Completion Mask (TL)
15	RWS	0	Completed Abort Mask (TL)
14	RWS	0	Completion Timeout Mask (TL)
13	RWS	0	Flow Control Protocol Error Mask (TL)
12	RWS	0	Poisoned TLP Mask (TL)
11:6	RO	0	Reserved
5	RWS	0	Surprise Down Error Mask
4	RWS	0	Data Link Protocol Error Mask (DLL)
3:1	RO	0	Reserved
0	RWS	0	Training Error Mask (PHY)

Offset Address: 10F-10Ch (D2F0)

Uncorrectable Error Severity Default Value: 0006 2031h

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RWS	0	Unsupported Request Error Severity (TL)
19	RWS	0	ECRC Error Severity (TL)
18	RWS	1b	Malformed TLP Severity (TL)
17	RWS	1b	Receiver Overflow Error Severity (TL)
16	RWS	0	Unexpected Completion Error Severity (TL)
15	RWS	0	Completed Abort Error Severity (TL)
14	RWS	0	Completion Timeout Error Severity (TL)
13	RWS	1b	Flow Control Protocol Error Severity (TL)
12	RWS	0	Poisoned TLP Severity (TL)
11:6	RO	0	Reserved
5	RWS	1b	Surprise Down Error Severity
4	RWS	1b	Data Link Protocol Error Severity (DLL)
3:1	RO	0	Reserved
0	RWS	1b	Training Error Severity (PHY)

Offset Address: 113-110h (D2F0)

Correctable Error Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:14	RO	0	Reserved
13	RW1CS	0	Advisory Non-Fatal Error Status
12	RW1CS	0	Replay Timer Timeout Status (DLL)
11:9	RO	0	Reserved
8	RW1CS	0	REPLAY_NUM Rollover Status (DLL)
7	RW1CS	0	Bad DLLP Status (DLL)
6	RW1CS	0	Bad TLP Status (DLL)
5:1	RO	0	Reserved
0	RW1CS	0	Receiver Error Status (PHY)

Offset Address: 117-114h (D2F0)

Correctable Error Mask Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:14	RO	0	Reserved
13	RWS	0	Advisory Non-Fatal Error Mask
12	RWS	0	Replay Timer Timeout Mask (DLL)
11:9	RO	0	Reserved
8	RWS	0	REPLAY_NUM Rollover Mask (DLL)
7	RWS	0	Bad DLLP Mask (DLL)
6	RWS	0	Bad TLP Mask (DLL)
5:1	RO	0	Reserved
0	RWS	0	Receiver Error Mask (PHY)

Offset Address: 11B-118h (D2F0)

Advanced Error Capabilities and Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:9	RO	0	Reserved
8	RWS	0	ECRC Check Enable (TL)
7	RO	0	ECRC Check Capable (TL)
6	RWS	0	ECRC Generation Enable (TL)
5	RO	0	ECRC Generation Capable (TL)
4:0	ROS	0	First Error Pointer (TL)

Default Value: 0000 0000h

Offset Address: 11F-11Ch (D2F0)

Header Log Register 1st DW Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 1st DW

Offset Address: 123-120 (D2F0)

Header Log Register 2nd DW Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 2nd DW

Offset Address: 127-124h (D2F0)

Header Log Register 3rd DW

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 3rd DW

Offset Address: 12B-128h (D2F0)

Header Log Register 4th DW Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 4th DW

Offset Address: 12F-12Ch (D2F0)

Root Error Command Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:3	RO	0	Reserved
2	RW	0	Fatal Error Reporting Enable
1	RW	0	Non-Fatal Error Reporting Enable
0	RW	0	Correctable Error Reporting Enable

Offset Address: 133-130h (D2F0)

Root Error Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:27	RO	0	Advanced Error Interrupt Message Number (TL)
26:7	RO	0	Reserved
6	RW1CS	0	Fatal Error Messages Received (TL)
5	RW1CS	0	Non-Fatal Error Messages Received (TL)
4	RW1CS	0	First Uncorrectable Fatal Error Message Received (TL)
			Set to 1 when the first Uncorrectable Error Message received is for a Fatal Error
3	RW1CS	0	Multiple ERR_FATAL/NONFATAL Received (TL)
2	RW1CS	0	ERR_FATAL/NONFATAL Received (TL)
1	RW1CS	0	Multiple ERR_COR Received (TL)
0	RW1CS	0	ERR_COR Received (TL)

Offset Address: 137-134h (D2F0)

Error Source Identification Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:16	ROS	0	ERR FATAL/NONFATAL Source Identification (TL)
15:0	ROS	0	ERR_COR Source Identification (TL)

Default Value: 1801 0002h

Default Value: 0000 0001h

Offset Address: 13B-138h (D2F0)

Error Source Identification Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Error DLLP log register

Offset Address: 13C-13Fh (D2F0) – Reserved

Virtual Channel Capability (140-14Fh)

Virtual Channel Capability is defined for Egress direction of the device. For Root Port, since only VC0 is defined.

- VC0 mapping: TC0, TC1, TC2, TC3, TC4, TC5, TC6, TC7
- No VC arbitration table
- No port arbitration table

Offset Address: 143-140h (D2F0)

Virtual Channel Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	180h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0002h	PCI Express Extended Capability ID

Offset Address: 147-144h (D2F0)

Port VC Capability 1

Bit	Attribute	Default	Description
31:12	RO	0	Reserved
11:10	RO	0	Port Arbitration Table Entry Size
			Reserved for root port.
9:8	RO	0	Reference Clock
			Reserved for root port.
7	RO	0	Reserved
6:4	RO	0	Low Priority Extended VC Count
3	RO	0	Reserved
2:0	RO	001b	Extended VC Count

Offset Address: 14B-148h (D2F0)

Port VC Capability 2 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	00b	VC Arbitration Table Offset
			00 since only VC0 is defined
23:8	RO	0	Reserved
7:0	RO	0	VC Arbitration Capability
			Reserved

Offset Address: 14D-14Ch (D2F0)

Port VC Control Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RO	0	Reserved
3:1	RW	0	VC Arbitration Select Reserved
0	RO	0	Local VC Arbitration Table Reserved

Default Value: 0000 0000h

Offset Address: 14F-14Eh (D2F0)

Port VC Status Default Value: 0000h

Bit	Attribute	Default	Description
15:1	RO	0	Reserved
0	RO	0	VC Arbitration Table Status
			Reserved

VC0 Resource (150-15Bh)

Offset Address: 153-150h (D2F0) VC Resource Capability (VC0)

Attribute Bit Default Description 31:24 RO Port Arbitration Table Offset (VC0) Reserved for Root Port. 23 RO 0 Reserved 22:16 Maximum Time Slots (TL) RO 0 15 RO 0 **Reject Snoop Transactions** RO 0 **Advanced Packet Switching** Reserved 13:8 RO 0 Reserved **Port Arbitration Capability** 7:0 RO 0 Reserved for Root Port.

Offset Address: 157-154h (D2F0)

VC Resource Control (VC0)

Default Value: 8000 00FFh

Bit	Attribute	Default	Description
31	RO	1b	VC Enable
30:27	RO	0	Reserved
26:24	RO	0	VC ID
23:20	RO	0	Reserved
19:17	RW	0	Port Arbitration Select
		_	Reserved for Root Port
16	RO	0	Load Port Arbitration Table Reserved for Root Port
15:8	RO	0	Reserved
7:0	RW Bit 0: RO	FFh	TC/VC Mapping This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0. Note: Bit 0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 15B-158h (D2F0)

VC Resource Status (VC0)

Default Value: 0002 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	1b	VC Negotiation Pending (TL) This bit indicates whether the Virtual Channel negotiation is in Pending state (set/clear by hardware) 0: Negotiation is complete 1: Negotiation is on-going.
16	RO	0	Port Arbitration Table Status Reserved for Root Port
15:0	RO	0	Reserved

Default Value: 0000 0000h

Default Value: 0100 0000h

Default Value: 0000 0000h

VC1 Resource (15C-167h)

The following registers exist only when Rx144[0] is programmed to 1. If Rx144[0]=0, all the following content will be read as 0.

Offset Address: 15F-15Ch (D2F0)

VC Resource Capability (VC1)

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table Offset (VC1)
			Reserved for Root Port
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
15	RO/RW	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	0	Port Arbitration Capability
			Reserved for Root Port

Offset Address: 163-160h (D2F0)

VC Resource Control (VC1)

Bit	Attribute	Default	Description
31	RW	0	VC Enable
30:27	RO	0	Reserved
26:24	RW	1h	VC ID
23:20	RO	0	Reserved
19:17	RW	0	Port Arbitration Select
			Reserved for Root Port
16	WO	0	Load Port Arbitration Table
			Reserved for Root Port
15:8	RO	0	Reserved
7:0	RW	0	TC/VC Mapping
	Bit 0: RO		This field indicates the TCs that are mapped to VC1. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC1 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to
			VCO.
			Note: Bit0 is hardwired to 0 (i.e. TC0 is always mapped to VC0).

Offset Address: 167-164h (D2F0)

VC Resource Status (VC1)

	`	*	
Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL) This bit indicates whether the Virtual Channel negotiation is in Pending state (set/clear by hardware) 0: Negotiation is complete 1: Negotiation is on-going.
16	RO	0	Port Arbitration Table Status Reserved for Root Port
15:0	RO	0	Reserved

Default Value: 0001 0005h

Default Value: 0101 0100h

Default Value: 0001 0001h

Default Value: 0000 0000 0000 0000h

Root Complex Topology Capability List Registers (180-19Bh)

Offset Address: 183-180h (D2F0)

Root Complex Link Declaration Capabilities Header

Bit	Attribute	Default	Description
31:20	RO	0	Next Capability
19:16	RO	1h	Capability Version
15:0	RO	0005h	Capability ID

Offset Address: 187-184h (D2F0) Element Self Description Register

Bit	Attribute	Default	Description
31:24	RO	01h	Port Number (Root Port 0)
23:16	RO	01h	Component ID
15:8	RO	01h	Number of Link Entries
7:4	RO	0	Reserved
3:0	RO	0h	Element Type
			00: Configuration Space Element
			01: System egress port or internal sink
			10: Internal Root Complex Link

Offset Address: 193-190h (D2F0) Upstream Link Descriptor Register

Bit	Attribute	Default	Description
31:24	RO	0	Target Port Number
			Indicate the port number of RCRB-H
23:16	RO	01h	Target Component ID
15:2	RO	0	Root Complex Link Declaration Capability
1	RO	0	Link Type
			Indicates that the link points to RCRB-H
0	RO	1b	Link Valid

Offset Address: 19B-194h (D2F0) Upstream Link Base Address Register

Bit	Attribute	Default	Description
63:32	RO	0	Base Address Upper.
31:0	RO	0	Base Address Lower

Note: Base Address Register value for RCRB-H [63:12]

Offset Address: 19F-19Ch (D2F0) - Reserved

<u>Device 3 Function 0 (D3F0) – PCI Express Root Port 0 (x1) (PCI-to-PCI Virtual Bridge)</u>

Device3 Function 0, a 1-Lane PCI Express root port, is connected to the PCI bus through AD14 as the IDSEL. All registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through I/O registers CF8 / CFC with bus number 0, device number 3 and function number 0.

Header Registers (0-3Fh)

Offset Address: 1-0h (D3F0)

Vendor ID Default Value: 1106h

	Bit	Attribute	Default	Description
Г	15:0	RO	1106h	Vendor ID

Offset Address: 3-2h (D3F0)

Device ID Default Value: C364h

Bit	Attribute	Default	Description
15:0	RO	C364h	Device ID

Offset Address: 5-4h (D3F0)

Command Register Default Value: 0000h

Bit	Attribute	Default	Description
15:11	RO	0	Reserved
10	RW	0	Interrupt Disabled
			Set when the device is prevented from generating INTx messages
9	RO	0	Reserved
8	RW	0	SERR# Enable
			0: Disable error report
			1: Enable reporting of non-fatal and fatal errors
7	RO	0	Reserved
6	RW	0	Parity Error Response
			0: Ignore parity errors & continue
			1: Take normal action on detected parity errors
5:3	RO	0	Reserved
2	RW	0	Bus Master Enable
			0: Disable
			1: Enable
			Controls the ability to forward Memory and I/O Read/Write requests in the upstream direction. Disabling this
			bit disables MSI messages.
1	RW	0	Memory Space
			0: Ignore downstream memory transactions; memory cycles with address falling in the claimed range will be
			forwarded to the SB
			1: Enable downstream memory cycle to this port if its address falling in the claimed range of this device.
0	RW	0	I/O Space
			0: Ignore downstream I/O transactions; I/O cycles with address falling in the claimed range will be forwarded to
			the SB.
			1: Enable downstream I/O cycle to this port if its address falling in the claimed range of this device.

Offset Address: 7-6h (D3F0)

Status Register Default Value: 0010h

Bit	Attribute	Default	Description
15	RW1C	0	Detected Parity Error
			This bit is set whenever a poisoned TLP is received, regardless the state of Parity Error Enabled (Rx4[6])
14	RW1C	0	Signaled System Error
			This bit is set when:
			A device sends an ERR_FATAL or ERR_NONFATAL message
			2. $Rx4[8] = 1$
13	RW1C	0	Received Master Abort
			This bit is set when receiving a completion with Unsupported Request Completion Status
12	RW1C	0	Received Target Abort
			This bit is set when receiving a completion with Completer Abort Completion Status
11	RW1C	0	Signaled Target Abort
			This bit is set when completing a Request with Completer Abort Completion Status
10:9	RO	0	Reserved
			Always reads 0.
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs:
			Requestor receives a Completion marked poisoned
			2. Requestor poisons a write Request
7:5	RO	0	Reserved
4	RO	1b	Capabilities List
			Indicates the presence of an extended capability list item. Always set to 1 for PCI Express device
3	RO	0	Interrupt Status
			Indicates an INTx message is pending internally (TL)
2:0	RO	0	Reserved

Offset Address: 8h (D3F0) Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Revision Code

Offset Address: 0B-9h (D3F0)

Class Code Default Value: 06 0400h

Bit	Attribute	Default	Description
23:0	RO	060400h	Class Code

Offset Address: 0Ch (D3F0)

Cache Line Size Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Cache Line Size – Reserved (No impact on functionality)

Offset Address: 0Dh (D3F0)

Master Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Master Latency Timer – Reserved (Hardwired to 0)

Offset Address: 0Eh (D3F0)

Header Type Default Value: 81h

Bit	Attribute	Default	Description
7:0	RO	81h	Header Type Code A multiple function device.

Offset Address: 0Fh (D3F0)

Built In Self Test (BIST)

Default Value: 00h

ĺ	Bit	Attribute	Default	Description
I	7:0	RO	0	BIST Support

Offset Address: 17-10h (D3F0)

Base Address Default Value: 00h

Bit	Attribute	Default	Description
63:0	RO	0	Base Address

Offset Address: 18h (D3F0)

Primary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Primary Bus Number

Offset Address: 19h (D3F0)

Secondary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Secondary Bus Number

Offset Address: 1Ah (D3F0)

Subordinate Bus Number Default Value: 00h

	Bit	Attribute	Default	Description
I	7:0	RW	0	Subordinate Bus Number

Offset Address: 1Bh (D3F0)

Secondary Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Secondary Latency Timer Reserved

Offset Address: 1Ch (D3F0)

I/O Base Default Value: F0h

Bit	Attribute	Default	Description
7:4	RW	Fh	I/O Base (AD[15:12] - inclusive) This bridge will forward the cycles from primary side to PCI if the IO address AD[15:12] is between IO base and IO limit (Rx1D)
3:0	RO	0	I/O Addressing Capability 0 means IO addressing is 16-bit only.

Offset Address: 1Dh (D3F0)

I/O Limit Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	I/O Limit (AD[15:12] - inclusive)
			This bridge will forward the cycles from primary side to PCI if the IO address[15:12] is between IO base
			(Rx1C) and IO limit.
3:0	RO	0	I/O Addressing Capability
			0 means IO addressing is 16-bit only.

Offset Address: 1F-1Eh (D3F0)

Secondary Status Default Value: 0000h

Bit	Attribute	Default	Description
15	RW1C	0	Detected Parity Error
			This bit is set when secondary side receives a poisoned TLP regardless of Rx4[6]
14	RW1C	0	Received System Error
			This bit is set when
			1. A device sends an ERR FATAL or ERR NONFATAL message
			2. Rx4[8] is 1
13	RW1C	0	Received Master Abort
12	RW1C	0	Received Target Abort
11	RW1C	0	Signaled Target Abort
10:9	RO	0	Reserved
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs:
			Requestor receives a Completion marked poisoned.
			2. Requestor poisons a write Request
7:0	RO	0	Reserved

Offset Address: 21-20h (D3F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Memory Base (AD[31:20] – inclusive) The address [19:0] is not decoded.
3:0	RO	0	Reserved Always reads 0.

Offset Address: 23-22h (D3F0)

Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Limit (AD[31:20]) The address [19:0] is not decoded.
3:0	RO	0	Reserved Always reads 0.

Offset Address: 25-24h (D3F0)

Prefetchable Memory Base Default Value: FFF1h

L	Bit	Attribute	Default	Description
ſ	15:4	RW	FFFh	Prefetchable Memory Base AD[31:20]
L	3:0	RO	1b	Reserved (Do not program)

Offset Address: 27-26h (D3F0)

Prefetchable Memory Limit Default Value: 0001h

Bit	Attribute	Default	Description
15:4	RW	0	Prefetchable Memory Limit AD[31:20]
3:0	RO	1b	Reserved (Do not program)

Offset Address: 2B-28h (D3F0)

Prefetchable Memory Upper Base Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:4	RO	0	Reserved
3:0	RW	0	AD[35:32] This chip supports up to 16G

Offset Address: 2F-2Ch (D3F0)

Prefetchable Memory Upper Limit Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:4	RO	0	Reserved
3:0	RW	0	AD[35:32]
			This chip supports up to 16G

Offset Address: 31-30h (D3F0)

I/O Base Upper Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0	I/O Base Upper 16 bits Address

Offset Address: 33-32h (D3F0)

I/O Base Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0	I/O Limit Upper 16 bits Address

Offset Address: 34h (D3F0)

Capability Pointer Default Value: 40h

Contains an offset from the start of configuration space.

Bit	Attribute	Default	Description
7:0	RO	40h	Capability Pointer Capability Pointer: $Rx34 \rightarrow Rx40 \rightarrow Rx68 \rightarrow Rx70 \rightarrow Rx88 \rightarrow Rx98 \rightarrow NULL$

Offset Address: 35-3Bh (D3F0) - Reserved

Offset Address: 3Ch (D3F0)

Interrupt Line Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	INT Line (For Software Use Only)

Offset Address: 3Dh (D3F0)

Interrupt Pin Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	INT Pin 01: INTA

Offset Address: 3F-3Eh (D3F0)

Bridge Control Default Value: 0000h

Bit	Attribute	Default	Description
15:7	RO	0	Reserved
6	RW	0	Secondary Bus Reset
			0: No reset
			1: Triggers a warm reset on the corresponding PCI Express Port
5	RO	0	Reserved
4	RW	0	Base VGA 16 bits Decode
			0: All VGA alias range will be forwarded
			1: Only forward base VGA range (Alias range will not be forwarded)
3	RW	0	VGA Compatible I/O and Memory Address Range
			0: Do not forward VGA compatible memory and I/O
			1: Forward VGA compatible memory and I/O
			Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh
			(10-bit decode). "Mono" text mode uses B0000-B7FFFh and "Color" Text Mode uses B8000-BFFFFh.
			Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If
			an MDA is present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the
			VGA will use those addresses to emulate MDA modes.
2	RW	0	Block/Forward ISA I/O Cycles
			0: Forward all I/O cycles with address in the range defined by the I/O Base and I/O Limit
			1: Do not forward ISA I/O that are in the top 768 bytes of each 1K byte block address range
1	RW	0	SERR Enable
			Controls the forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL from secondary to primary
			0: Disable 1: Enable
0	RW	0	Parity Error Response Enable
			0: Ignore the response to poisoned TLPs
			1: Enable the response to poisoned TLPs

PCI Express Capability Registers (40-63h)

Offset Address: 41-40h (D3F0)

PCI Express List Default Value: 6810h

Bit	Attribute	Default	Description
15:8	RO	68h	Next Pointer
7:0	RO	10h	Capability ID

Offset Address: 43-42h (D3F0)

PCI Express Capabilities Default Value: 0141h

Bit	Attribute	Default	Description
15	RO	0	Reserved
14	RO	0	TCS Routing Supported
13:9	RO	0	Interrupt Message Number
8	RO	1b	Slot Implemented
			This bit when set indicates that the PCI Express Link associated with this Port is connected to a slot (as
			compared to being connected to an integrated component or being disabled),
7:4	RO	0100b	Device / Port Type
			0100b: Root Port of PCI Express Root Complex
3:0	RO	0001b	Capability Version

Offset Address: 47-44h (D3F0)

Device Capabilities Default Value: 0000 8001h

Bit	Attribute	Default	Description
31:28	RO	0	Reserved
27:26	RO	0	Captured Slot Power Limit Scale
			Reserved. For upstream port only.
25:18	RO	0	Captured Slot Power Limit Value
			Reserved. For upstream port only.
17:16	RO	0	Reserved
15	RO	1b	Role-Based Error Reporting
14	RO	0	Power Indicator Present
			Reserved. For upstream port only.
13	RO	0	Attention Indicator Present
			Reserved. For upstream port only.
12	RO	0	Attention Button Present
			Reserved. For upstream port only.
11:9	RO	0	Endpoint L1 Acceptable Latency
			111b: more than 64us
8:6	RO	0	Endpoint L0s Acceptable Latency
			Default is set by hardware initial.
5	RO	0	Extended Tag Field Supported
			0: 5-bit Tag field supported
			1: 8-bit Tag field supported
4:3	RO	0	Phantom Functions Supported
			Reserved
2:0	RO	001b	Max Payload Size Supported
			001b: 32QW (256 bytes)

Offset Address: 49-48h (D3F0) Device Control Default Value: 0810h

Bit	Attribute	Default	Description
15	RO	0	Reserved
14:12	RO	000b	Max Read Request Size
			000: 128 bytes
			This field sets the maximum Read Request size for the device as a Requestor.
11	RW	1b	Enable No Snoop
			0: Disable
			1: Enable. If this bit is set to 1, the device is permitted to set the No Snoop bit in the Requestor Attributes of
			the transactions it initiate that do not require hardware enforced cache coherency.
10	RWS	0	Auxiliary Power PM Enable
			This bit when set enables device to draw AUX power independent of PME AUX power.
9	RO	0	Phantom Functions Enable
8	RO/RW	0	Extended Tag Field Enable
			When Rx44[5] is set to 0, this bit is RO
			When Rx44[5] is set to 1, this bit is RW
7:5	RW	0	Max Payload Size
			Maximum TLP payload size.
4	RW	1b	Enable Relaxed Ordering
			0: Disable
			1: Enable. If this bit is set to 1, the device is permitted to set the Relaxed Ordering bit in the Requestor
		_	Attributes of the transactions it initiate that do not require strong write ordering.
3	RW	0	Unsupported Request Reporting Enable
2	RW	0	Fatal Error Reporting Enable
			For a Root Port, the reporting of Fatal errors is internal to the root. No external ERR_FATAL message is
	75.44.4		generated.
1	RW	0	Non-Fatal Error Reporting Enable
			For a Root Port, the reporting of Non-Fatal errors is internal to the root. No external ERR_NONFATAL
	DW	0	message is generated.
0	RW	0	Correctable Error Reporting Enable
			For a Root Port, the reporting of correctable errors is internal to the root. No external ERR_COR message is
			generated.

Offset Address: 4B-4Ah (D3F0)

Device Status Default Value: 0010h

Bit	Attribute	Default	Description
15:6	RO	0	Reserved
5	RO	0	Transactions Pending
			This bit when set indicates that the Port has issued Non-Posted Requests on its own behalf (using the Port's
			own Requestor ID) which have not been completed.
4	RO	1b	AUX Power Detected
3	RW1C	0	Unsupported Request Detected (TL)
2	RW1C	0	Fatal Error Detected (TL)
1	RW1C	0	Non-Fatal Error Detected (TL)
0	RW1C	0	Correctable Error Detected (TL)

Offset Address: 4F-4Ch (D3F0)

Link Capabilities Default Value: 0118 3C11h

Bit	Attribute	Default	Description
31:24	RO	01h	Port Number
			This field indicates the PCI Express Port number for the given PCI Express Link.
23:21	RO	0	Reserved
20	RO	1b	Data Link Layer Link Active Reporting Capable
19	RO	1b	Surprise Down Error Reporting Capable
18	RO	0	Clock Power Management
17:15	RO	000b	L1 Exit Latency
			000: less than lus.
			The value reported indicates the length of time this Port requires to complete transition from L1 to L0.
14:12	RO	011b	L0s Exit Latency
			000: less than 64ns.
			The value reported indicates the length of time this Port requires to complete transition from L0s to L0.
11:10	RO	11b	Active State Link PM (ASPM) Support
			11b: L0s and L1 supported.
			This field indicates the level of ASPM supported on the PCI Express Link.
9:4	RO	000001b	Maximum Link Width
			010000b for x16 Link width
			000001b for x1 Link width
3:0	RO	1h	Maximum Link Speed
			1h: 2.5Gb/s Link speed

Offset Address: 51-50h (D3F0) Link Control Default Value: 0000h

Bit	Attribute	Default	Description
15:9	RO	0	Reserved
8	RO	0	Enable Clock Power Management
7	RW	0	Extended Synch
			0: FCU Timer limit is 30us
			1: FCU Timer limit is 120us
6	RW	0	Common Clock Configuration
			0: Indicates that this Port and the component on the opposite end of the Link are operating with asynchronous
			reference clock.
			1: Indicates that this Port and the component on the opposite end of the Link are operating with a distributed
			common reference clock.
5	RW1C	0	Retrain Link
			A write of 1 to this bit initiates Link retrained by directing the Physical Layer LTSSM to the Recovery state.
4	RW	0	Link Disable
			This bit disables the Link when set to 1.
3	RO	0	Read Completion Boundary
			0: 64 byte
2	RO	0	Reserved
1:0	RW	00b	Link Active State PM (ASPM) Control
			00b: Disabled 01b: L0s Entry Enabled
			10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled

Offset Address: 53-52h (D3F0)

Link Status Default Value: 0nn1h

Bit	Attribute	Default	Description
15:14	RO	0	Reserved
13	RO	0	Data Link Layer Link Active
12	RO	1b	Slot Clock Configuration (TL)
			0: Use an independent clock irrespective of the presence of a reference on the connector.
			1: Use the same physical reference clock that the platform provides on the connector.
11	RO	0	Link Training (PHY)
			This bit indicated that Link training is in progress (Physical Layer LTSSM is in Configuration or Recovery
			state) or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this
			bit once Link training is complete.
10	RO	0	Training Error (PHY)
			Set when a Link training error occurred. Cleared by hardware upon successfully training of the Link to the L0
			Link state.
9:4	RO	HwInit	Negotiated Link Width (PHY)
			Default value set by hardware initial.
			000001: x1 000010: x2
			000100: x4 001000: x8
			010000: x16
3:0	RO	0001b	Link Speed
			0001: 2.5Gb/s negotiated Link speed.

Offset Address: 57-54h (D3F0) Slot Capabilities

Slot Capabilities Default Value: 0000 0060h

Bit	Attribute	Default	Description
31:19	RO	0	Physical Slot Number
			Physical slot number attached to the Port.
18	RO	0	No Command Completed Support
17	RO	0	Electromechanical Interlock Present
16:15	RO	0	Slot Power Limit Scale
			Reserved
14:7	RO	0	Slot Power Limit Value
			Reserved
6	RO	1b	Hot-plug Capable
			Reserved
5	RO	1b	Hot-plug Surprise
			Reserved
4	RO	0	Power Indicator Present
			Reserved
3	RO	0	Attention Indicator Present
			Reserved
2	RO	0	MRL Sensor Present
			Reserved
1	RO	0	Power Controller Present
			Reserved
0	RO	0	Attention Button Present
			Reserved

Offset Address: 59-58h (D3F0)

Slot Control Default Value: 0000h

Bit	Attribute	Default	Description
15:13	RO	0	Reserved
12	RW	0	Slot Control Register: Data Link Layer State Changed Enable 0: Disable 1: Enable
11	RO	0	Electromechanical Interlock Control
10	RO	0	Power Controller Control Reserved
9:8	RW	00b	Power Indicator Control Reserved
7:6	RW	00b	Attention Indicator Control Reserved
5	RW	0	Hot-Plug Interrupt Enable Reserved
4	RW	0	Command Completed Interrupt Enable Reserved
3	RW	0	Presence Detect Changed Enable Reserved
2	RO	0	MRL Sensor Changed Enable Reserved
1	RO	0	Power Fault Detected Enable Reserved
0	RW	0	Attention Button Pressed Enable Reserved

Offset Address: 5B-5Ah (D3F0)

Slot Status Default Value: 0000h

Bit	Attribute	Default	Description
15:9	RO	0	Reserved
8	RW1C	0	Slot Status Register: Data Link Layer State Changed
7	RO	0	Reserved
6	RO	0	Presence Detect State
			0: Slot empty 1: Card present in slot
5	RO	0	MRL Sensor State
			Reserved
4	RW1C	0	Command Completed
3	RW1C	0	Presence Detect Changed
2	RO	0	MRL Sensor Changed
1	RO	0	Power Fault Detected
0	RW1C	0	Attention Button Pressed

Offset Address: 5D-5Ch (D3F0)

Root Control Default Value: 0000h

Bit	Attribute	Default	Description
15:5	RO	0	Reserved
4	RO	0	CRS Software Visibility Enable
3	RW	0	PME Interrupt Enable
			0: Disable
			1: Enable interrupt generation upon receipt of a PME message as reflected in the PME status register bit. A
			PME interrupt is also generated if the PME status register bit is set when this bit is set from a cleared state.
2	RW	0	System Error on Fatal Error Enable
			0: Disable
			1: Enable generation of a System Error if a Fatal Error (ERR_FATAL) is reported by any of the devices in the
			hierarchy associated with the Root Port, or by the Root Port itself.
1	RW	0	System Error on Non-Fatal Error Enable
			0: Disable
			1: Enable generation of a System Error if a Non-Fatal Error (ERR_NONFATAL) is reported by any of the
			devices in the hierarchy associated with the Root Port, or by the Root Port itself.
0	RW	0	System Error on Correctable Error Enable
			0: Disable
			1: Enable generation of a System Error if a Correctable Error (ERR_COR) is reported by any of the devices in
			the hierarchy associated with the Root Port, or by the Root Port itself.

Offset Address: 5Eh (D3F0)

CRS Visibility Control Default Value: 00h

Bit	Attribute	Default	Description
7:1	RO	0	Reserved
0	RO	0	CRS Software Visibility Enable

Offset Address: 5Fh (D3F0) – Reserved

Offset Address: 63-60h (D3F0)

Root Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	PME Pending (TL)
			0: No pending PME
			1: Indicates that another PME is pending when the PME Status (bit 16) is set.
16	RW1C	0	PME Status (TL)
			Indicates that the PME was asserted by the Requestor ID indicated in PME Requestor ID (bit[15:0]).
15:0	RO	0	PME Requestor ID (TL)
			The Requestor ID of the last PME Requestor.

Offset Address: 67-64h (D3F0) – Reserved

PCI Power Management Capability Structure Registers (68-6Fh)

Offset Address: 6B-68h (D3F0)

Power Management Capabilities Default Value: C822 7001h

Bit	Attribute	Default	Description
31:27	RO	19h	PME Support
			Bit 31, 30 and 27 are set to 1b (PME Message will be forwarded).
26	RO	0	D2 Support
25	RO	0	D1 Support
24:22	RO	0	AUX Current
21	RO	1b	Device Specific Initialization
20:19	RO	0	Reserved
18:16	RO	010b	Version
15:8	RO	70h	Next Capability Pointer
7:0	RO	01h	Capability ID

Offset Address: 6F-6Ch (D3F0)

Power Management Status/Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	0	Power Management Data
23:16	RO	0	Reserved
15	RW1CS	0	PME Status
			This bit's setting is not modified by hot, warm, or cold reset.
14:13	RO	0	Data Scale
12:9	RO	0	Data Select
8	RWS	0	PME Enable
			This bit's setting is not modified by hot, warm, or cold reset.
7:2	RO	0	Reserved
1:0	RW	0	Power State

PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)

Offset Address: 73-70h (D3F0)

MSI Capability Support Default Value: 0180 8805h

Bit	Attribute	Default	Description
31:25	RO	0	Reserved
24	RO	1b	This MSI capability supports pre-vector masking capability
23	RO	1b	This MSI Capability Supports 64 Bit Message Address Only
22:20	RW	000b	Multiple Message Enable
			000: 1 message allocated 001: 2 message allocated
			010: 4 message allocated 011: 8 message allocated
			100: 16 message allocated 101: 32 message allocated
			11x: Reserved
19:17	RO	000b	Multiple Message Capable
			000: 1 message requested 001: 2 message requested
			010: 4 message requested 011: 8 message requested
			100: 16 message requested 101: 32 message requested
			11x: Reserved
16	RW	0	MSI Enable
			0: This Port is prohibited from using MSI to request service
			1: This Port is permitted to use MSI to request service.
15:8	RO	88h	Next Pointer
7:0	RO	05h	Capability ID

Default Value: 0000 0000h

Offset Address: 77-74h (D3F0)

System-Specified Message Address - Low Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:2	RW	0	System-Specified Message Address Bit [31:2]
1:0	RO	0	System-Specified Message Address Bit [1:0] These bits will always read as 0

Offset Address: 7B-78h (D3F0)

System-Specified Message Address - High

Bit	Attribute	Default	Description
31:4	RW	0	System-Specified Message Address Bit [63:36] The chip supports address up to A35.
3:0	RW	0	System-specified Message Address [35:32]

Offset Address: 7D-7Ch (D3F0)

Message Data Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RW	0	Message Data
			The message data is to be put on data [15:0] of MSI cycles

Offset Address: 7F-7Eh (D3F0) – Reserved

Offset Address: 83-80h (D3F0)

Message Mask Control Default Value: 0000 0000h

I	Bit	Attribute	Default	Description
I	31:1	RO	0	Reserved
ı	0	RW	0	Mask Bit for Message ()

Offset Address: 87-84h (D3F0)

Message Pending Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:1	RO	0	Reserved
0	RO	0	Pending Bit for Message 0

HyperTransport Message Signal Interrupt (MSI) Capability Structure Registers (88-8Bh)

Offset Address: 8B-88h (D3F0)

MSI Capability Support Default Value: A802 9808h

Bit	Attribute	Default	Description
31:27	RO	10101b	Capability Type
26:18	RO	0	This MSI capability support pre-vector masking capability
17	RO	1b	HT-MSI this chip support is only for MSI address like 00000000_FEEx_xxxx.
16	RW	0	MSI Enable
			0: This port is prohibited from using MSI to request service.
			1: This port is permitted to use MSI to request service.
15:8	RO	98h	Next Pointer
7:0	RO	08h	Capability ID

Offset Address: 97-8Ch (D3F0) - Reserved

Subsystem ID and Subsystem Vendor ID Capability Structure Registers (98-9Fh)

Offset Address: 98h (D3F0)

Capability ID Default Value: 0Dh

Bit	Attribute	Default	Description
7:0	RO	0Dh	Capability ID

Offset Address: 99h (D3F0)

Next Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Next Pointer

Offset Address: 9D-9Ch (D3F0)

Subsystem Vendor ID Control Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	Subsystem Vendor ID

Offset Address: 9F-9Eh (D3F0)

Subsystem ID Control Default Value: C323h

Bit	Attribute	Default	Description
15:0	RO	C323h	Subsystem ID

PCI Express Transaction Layer Registers (A0-A7h)

Offset Address: A0h (D3F0)

Downstream Control 1 Default Value: 01h

Bit	Attribute	Default	Description
7	RW	0	Downstream Cycles Have Traffic Class TC1
			0: Disabled 1: Enabled
6	RW	0	Downstream Cycles Have Attribute "No Snoop" Set
			0: Disabled 1: Enabled
5	RW	0	Downstream Cycles Have Attribute "Relaxed Ordering" Set
			0: Disabled 1: Enabled
4	RW	0	Downstream Lock Cycle Support
			0: Disabled 1: Enabled
3	RW	0	Downstream Arbitration Scheme
			0: Fixed priority: VC1 CPL > VC0 CPL > Down Stream Command
			1: Round Robin arbitration priority between VC1 CPL, VC0 CPL and Down Stream Command
2	RW	0	Downstream Post-Write Allowed to Pass IOW
			0: Not allowed. 1: Allowed
1	RW	0	Downstream Post-Write Allowed to Pass Read
			0: Not allowed. 1: Allowed
0	RW	1b	Downstream Pipeline
			0: Disabled 1: Enabled

Offset Address: A1h (D3F0)

Downstream Control 2 Default Value: 14h

Bit	Attribute	Default	Description
7	RW1C	0	Downstream Configuration Completion Status
			0: Normal completion.
			1: At least one configuration request ended with a CRS (Configuration Request Retry Status) completion.
6	RO	0	Reserved
5	RW	0	For the Data Return of Upstream Read Requests
			0: The chip always checks CPL credit unless when endpoint advertises infinite CPL credits.
			1: The chip does not check CPL credit even when endpoint advertises finite CPL credits.
4	RW	1b	Transaction Layer Downstream Does Not Check Downstream PH Credit for PME TURN OFF
			Message as the PCIe V1.1 Spec requirement
			0: Disable 1: Enable
3	RW	000b	C2P Read Completion Timer for Vector Development Mode
			When this bit is set to 1, the timer defined in RxA1[2:0] becomes:
			000: 1us 001: 3us
			010: 10us 011: 20us
			100: 50us 101: 100us
			110: 200us 111: 500us
2:0	RW	100b	C2P Read Completion Timeout Timer
			000: Reserved 001: 1ms
			010: Reserved 011: 10ms (Spec. lower bound)
			100: 30ms 101: Reserved
			110: Reserved 111: Reserved

Offset Address: A2h (D3F0) Downstream Control 3

Downstream Control 3 Default Value: 30h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	011b	Waiting for GNT Timer for Priority Arbitration Mode
			Priority $VC1 > VC0 > C2P$ request when set $RxA0[3] = 0$. If GNT timer of $VC0/C2P$ request expires,
			VC0/C2P request will become higher priority.
			000: 4ns 001: 16ns
			010: 32ns 011: 64ns
			100: 96ns 101: 128ns
			110: 256ns 111: 512ns
3	RO	0	Reserved
2	RW	0	Pending C2P NP Cycle Blocks L1 Entry
			0: Disable. L1 entry won't consider C2P NP completion
			1: Enable. L1 entry will need to wait for C2P NP completions
1:0	RW	00b	Downstream Arbitration Parking
			00: GNT park on the last request source
			01: GNT park on VC1 completion. If VC1 is not enabled (or no VC1), park on VC0 completion
			10: GNT park on VC0 completion
			11: GNT park on C2P request

Offset Address: A3h (D3F0)

Downstream Control 4 Default Value: 7Ch

Bit	Attribute	Default	Description
7:4	RW	0111b	Retry Buffer Level Bit 7: Read only 0000: 1-level 0001: 2-level 0010: 3-level 0011: 4-level 0100: 5-level 0101: 6-level 0110: 7-level 0111: 8-level 1xxx: Reserved 0111: 8-level
3	RW	1b	Downstream Read Retry Time Out Control. in DL_Down State 0: Disable downstream read retry time out. If bit 0 is set to 1, downstream read request will always wait for DL_DLUp assertion then retry. 1: Enable downstream read retry time out (when bit 0 is set to 1b and bit 1 is set to 0b). The timer is the same as completion time out timer. After time out, this read request will not be retried again even DL_DLUp assertion.
2	RW	1b	Downstream Cycle Control/Latency Improvement 0: Disable downstream HPOP/DPOP assert at the same time 1: Enable downstream HPOP/DPOP assert at the same time
1	RW	0	CPL Timer Control 0: Enable. Refer to D3F0 RxA1[2:0] 1: Disable
0	RW	0	Downstream Read Cycle Retry Register 0: When DL_DOWN is asserted, transaction layer returns "FF" to PXPTRF for C2P read cycle. 1: When DL_DOWN is asserted, transaction layer holds C2P read cycle and this incompleted C2P read cycle will be retried when DL_UP is asserted.

Offset Address: A4h (D3F0) Upstream Control Default Value: 5Ch

Bit	Attribute	Default	Description
7	RW	0	Upstream Address A35-A31 Forced to 0
			0: Disabled
			1: Enabled for system testing or loop back mode test. The upcoming data may be checked in the system
			memory
6	RW	1b	Guard bit for improving timing to prevent upstream write FIFO from being overwritten
5	RW	0	Upstream Checking Malformed TLP through "Byte Enable Rule" And "Over 4K Boundary Rule"
			0: Disabled 1: Enabled
4	RW	1b	Downstream Read Wait Till The Upstream Write Data Flushed
			0: Disabled 1: Enabled
3	RW	1b	Infinite Flow Control
			0: Advertise credits 2, 4, 1 for CPLH, CPLD, NPD (4DW as the units), update credits when device responds
			normally
			1: CPLH & CPLD & NPD Become Infinite mode
2	RW	1b	Flow Control Update for Each Header
			0: Current Design (update header credit whenever received two TLPHs
			1: Update header credit whenever received TLPH (including PH, NPH and CPLH)
1	RW	0	VC1 Request Queue Usage (when VC1 is disabled in the capability header; i.e. Rx144[0] = 0)
			0: Disabled
			1: Enabled. It allows Transaction Layer map non-snoop upstream request through VC1 Request Queue to the
			Central Traffic Controller (Note that when this bit is 1, bit-0 has to be 0).
0	RW	0	C2P Completion Timeout Timer Value Control When PHY Retrain Link or In Configuration State
			0: Keep the timeout value
			1: Reset the timeout value

Offset Address: A5h (D3F0)

Credit Advertisement Control Default Value: FFh

Bit	Attribute	Default	Description
7:4	RW	1111b	Upstream Posted (write) Data FIFO Size, and the Initial PD Credit Value
			0011: 4-line upstream write FIFO size, and initial PD credit = 'h20
			0010: 3-line upstream write FIFO size, and initial PD credit = 'h10
			0001: 2-line upstream write FIFO size, and initial PD credit = 'h8
			0000: 1-line upstream write FIFO size, and initial PD credit = 'h4
3:0	RW	1111b	Upstream PH Header Queues Size, and the Initial PH Credit
			0011: 8-level PH header queue, and initial PH credit = 'h8
			0010: 4-level PH header queue, and initial PH credit = 'h4
			0001: 2-level PH header queue, and initial PH credit = 'h2
			0000: 1-level PH header queue, and initial PH credit = 'h1

Offset Address: A6h (D3F0)

Credit Advertisement Control Default Value: 7Fh

Bit	Attribute	Default	Description
7	RO	0	Reserved
6:4	RW	111b	Upstream Read CPL Header Size
			111: 256QW 32-level
			110: 224QW 28-level
			101: 192QW 24-level
			100: 160QW 20-level
			011: 128QW 16-level
			010: 96QW 12-level
			001: 64QW 8-level
			000: 32QW 4-level
3:0	RW	1111b	Upstream Non-Posted Request Queue Size, and Initial NPH Credit Value
			0011: 8-level NPH header queue, and initial NPH credit = 'h8
			0010: 4-level NPH header queue, and initial NPH credit = 'h4
			0001: 2-level NPH header queue, and initial NPH credit = 'h2
			0000: 1-level NPH header queue, and initial NPH credit = 'h1

Offset Address: A7h (D3F0)

Upstream Performance Control Default Value: 04h

Bit	Attribute	Default	Description
7	RW	0	Transaction layer patch MSI cycle low address is masked bug register. The value of Revision Code bit 7 (RX08[7]) in this root port should be the same as this register. 0: Transaction layer mask low address[4:2] for both MSI and other P2C cycles. 1: Transaction layer does not mask low address[4:2] for both MSI and other P2C cycles.
6	RO	0	Reserved
5	RW	0	Transaction Layer Header Queue Pre-Load Design Dynamic Clock Enable for Power Management 1: Turn on the transaction layer header queue pre-load design dynamic clock enable. 0: Otherwise
4	RW	0	Upstream Read FIFO Entry Release Timing 0: Upstream read FIFO entry release when the last data pop into retry data FIFO. 1: Upstream read FIFO entry release when the first data pop into retry data FIFO. x16/x8 design is recommended to set 1 for better performance.
3	RW	0	Downstream Read Data Wait for Previous Upstream Write Complete 0: Disable 1: Enable
2	RW	1b	Upstream Requests Read and Write Orders 0: Upstream requests are served in order 1: Upstream write always pass upstream read
1	RW	0	Upstream Read Data TLP Return Policy 0: One upstream request with over 16DW length or non-8-QW boundary alignment must be splitted into multiple CPL TLPs. 1: Multiple CPL TLPs belong to the same upstream request can be merged into one single CPL TLP
0	RW	0	Upstream Write Cycle Will Be 4QW Align 0: Disable 1: Enable

Offset Address: AF-A8h (D3F0) – Reserved

Default Value: 3Bh

PCI Express Data Link Layer Registers (B0-B6h)

Offset Address: B0h (D3F0)

Ack / Nak Latency Timer Limit

Bit	Attribute	Default	Description
7:0	RW	3Bh	Timer Limit for Ack/Nak Latency Timer and Update FC Latency Timer (in unit of 250MHz) 00: 4 x 1 Clocks 01: 4 x 2 Clocks 02: 4 x 3 Clocks. 0n: 4 x (n+1) Clocks FF: 4 x 256 Clocks.

Offset Address: B1h (D3F0)

Replay Timer Limit Default Value: 59h

Bit	Attribute	Default		Description	
7:0	RW	59h	Replay Timer Limit (In unit	of 250MHz)	
			00: 8 x 1 Clocks	01: 8 x 2 Clocks	
			02: 8 x 3 Clocks	0n: 8 x (n+1) Clocks	
			FF: 8 x 256 Clocks.		

Offset Address: B2h (D3F0)

FCU Control and Status

Default Value: 40h

Bit	Attribute	Default	Description
7	RW1C	0	FCI/FCU Timeout Status
			1 means the FCI/FCU timeout has occurred
6	RW	1b	FCI/FCU Receive Timer Enable Control
			0: Disable the timeout mechanism
			1: Enable the timeout mechanism
5	RW	0	FCI/FCU Receive Timer Limit
			0: Timeout limit of 200us 1: Timeout limit of 300us
4	RW	0	FCI/FCU Receive Timer Reset Control
			0: Timer reset by FCI/FCU only
			1: Timer reset by any received DLLPs
3:1	RO	0	Reserved
0	RW	0	Guard bit for DL and TL to reset upstream related logic when retrain is going on

Offset Address: B3h (D3F0)

Replay Timer Control Default Value: 81h

Bit	Attribute	Default	Description
7:6	RW	10b	Replay Timer Control While Rewind Resend those DLLPs which do not have corresponding ACK/NAK received. 00: Hold Replay Timer during rewind. 01: During rewind, if ACK/NAK comes in, reset and hold the Replay Timer 10: During rewind, reset and hold the Replay Timer as long as the Retry Buffer is empty 11: Reserved.
5:3	RO	0	Reserved
2:0	RW	001b	Count of Replay Timer Expired During RXL0s (Receiving Physical in L0s state) Before Resend the TLP
			This bit work with Rx50[7] to define the time for repeat the replay.
			When Rx50[7] is set to 0: 000: Wait forever for the Acknowledge from the device side 001: Resend the TLP after 1 x Replay timer expired 010: Resend the TLP after 2 x Replay timer expired 011: Resend the TLP after 4 x Replay timer expired 100: Resend the TLP after 8 x Replay timer expired 100: Resend the TLP after 16 x Replay timer expired 101: Resend the TLP after 32 x Replay timer expired 110: Resend the TLP after 64 x Replay timer expired 111: Resend the TLP after 64 x Replay timer expired
			000: Wait forever for the Acknowledge from the device side 001: Resend the TLP after 16 x Replay timer expired 010: Resend the TLP after 32 x Replay timer expired 011: Resend the TLP after 64 x Replay timer expired 100: Resend the TLP after 128 x Replay timer expired 101: Resend the TLP after 256 x Replay timer expired 101: Resend the TLP after 256 x Replay timer expired 110: Resend the TLP after 512 x Replay timer expired 111: Resend the TLP after 1024 x Replay timer expired

Offset Address: B4h (D3F0)

Arbitration Control Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3	RW	0	TLP vs. Flow Control Initialization for VC0 in Arbitration Priority
			0: TLP is not allowed to pass FCI2 for VC0
			1: TLP is allowed to pass FCI2 for VC0
2:0	RW	000b	Data Link TX Packets Arbitration Scheme
			000: Strict priority: NAK or timeout ACK > TLP > FCU > pending ACK
			001: Reserved.
			010: Strict priority: TLP > NAK or timeout / pending ACK > FCU
			011: Strict priority: TLP > FCU > NAK or timeout / pending ACK
			100: Strict priority: NAK or timeout / pending ACK > TLP > FCU
			101: Strict priority: NAK or timeout / pending ACK > FCU > TLP
			110: Strict priority: FCU > TLP > NAK or timeout / pending ACK
			111: Strict priority: FCU > NAK or timeout ACK > TLP > pending ACK

Default Value: 01h

Offset Address: B5h (D3F0)

FCU Control Default Value: 10h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6	RW	0	FCU Timer Control
			0: Update flow control credit when either Transaction Layer requested packets being sent or when FCU
			timer expired
			1: Update flow control credit only when FCU timer expired
5:4	RW	01b	ACK DLLP Collapse Method
			00: Send ACK when the latency timer RxB0 expired.
			01: Send ACK every 4 correct TLP has been received
			10: Send ACK every 8 correct TLP has been received
			11: Send ACK every 16 correct TLP has been received
3:2	RO	0	Reserved
1	RW	0	FCI Process End Condition
			0: Complete FCI process when TLP/FCU has been received
			1: Do not complete FCI process even when TLP/FCU has been received
0	RW	0	VC1 FCI DLLP Transmission Scheme
			0: Transmit FCI DLLP only when FCI timer expired
			1: Transmit FCI DLLP continuously as long as the FCI process is not finished

Offset Address: B6h (D3F0)

Transaction / Link Layer Checking Control

Bit	Attribute	Default	Description
7:5	RO	0	Reserved
4	RW	0	Phyls Deskew Buffer Power Management
3:1	RO	0	Reserved
0	RW	1b	LCRC Checking Control
			0: Do not check LCRC 1: Check LCRC

Offset Address: BF-B7h (D3F0) – Reserved

Default Value: 0007 0003h

PCI Express Physical Layer Registers (C0-C7h)

Offset Address: C3-C0h (D3F0)

PHYLS General Control

Bit	Attribute	Default	Description
31:24	RO	0	PHYLS_STATE Mapping
			See the mapping table.
23:21	RO	0	Reserved
20	RW	0	Bypass PHYES Receiver Detect Function
			0: Derived from PHYES
1.0			1: Bypass Receiver Detect
19	RW	0	State Machine LTSSM Exit POLLING_ACTIVE
			0: LTSSM may exit POLLING_ACTIVE when receiving 8 TS after sending more than 1024 TS
10	DW	1b	1: LTSSM always waits for 24 ms timeout to exit POLLING_ACTIVE.
18	RW	10	Scheme to Enter L1/L23 Entry
			0: Wait IDLE ordered set to enter L1/L23 entry 1: Wait electrical idle and ignore IDLE ordered set to enter L1/L23
17	RW	1b	Running Disparity Check
1 /	KW	10	0: Disable
			1: Enable
16	RW	1b	State machine LTSSM enter Detect.Active from Detect.Quiet
10	IC VV	10	0: Wait for the Electrical idle signal from the PHYES or
			12ms after RESET# becomes inactive
			1: Always wait for 12ms after the RESET# becomes inactive
15:14	RW	00	Auto/Manual Configuration
			00: Auto negotiation
			Others: Reserved
13	RO	0	Reserved
12:8	RW	00000b	PHY Lane Configuration Setting
			11111: x1 with normal connection for Root Port 1 PE0
			10101: force into L0S state, for testing measurement used only
			11000: force into DETECT_QUIET state, for testing measurement used only
			11001: force into DETECT_ACTIVE state, for testing measurement used only
			00000: Use PHY negotiation
			Other values are not allowed.
7	RW	0	Quick Timeout Counter Setting
			When set to 1, following timeout counters will be shorter:
			TIMEOUT_2MS → TIMEOUT_4US
			TIMEOUT_12MS → TIMEOUT_24US
			TIMEOUT_24MS → TIMEOUT_48US
			TIMEOUT_48MS → TIMEOUT_96US
			TIMEOUT_1024TS → TIMEOUT_32TS
6	RW	0	Receiver Detection: 15x1024ns → 1x1024ns Disable Data Scrambling / Descrambling
0	KW	0	0: Enable
			1: Disable
5:3	RW	000b	Loopback Mode Selection (Applies to All 16 Lanes)
3.3	IC VV	0000	000: No loopback
			001: PHYLS loopback from TX end to RX end
			010: PHYES loopback from TX end to RX end
			011: External loopback from TX end to RX end
			100: Reserved
			101: PHYLS loopback from RX end to TX end
			110: PHYES loopback from RX end to TX end
			111: Reserved
2:0	RW	011b	COMMA Detection Window
			000, 001: Illegal values
			Others: Delay number of T to determine correct lane-to-lane deskew value

Note:

RxC3-C0[15:14] Programming Sequence:

- 1. Program Dev3Func0 Rx50[4] = 1, must be programmed first 3. Program Dev3Func0 RxC1[7:6] to the desired configuration 5. Program Dev3Func0 Rx50[4] = 0, must be programmed last)

Default Value: 0000 4444h

Offset Address: C7-C4h (D3F0) Elastic Buffer Base Registers for Lane 0 - 3

Bit	Attribute	Default	Description
31:15	RO	0	Reserved
14:12	RW	100b	Elastic Buffer Base Register for Lane 3
			0, 1, 7: Illegal values
			Others: Delay numbers of T for elastic buffer operations
11	RO	0	Reserved
10:8	RW	100b	Elastic Buffer Base Register for Lane 2
			0, 1, 7: Illegal values
			Others: Delay numbers of T for elastic buffer operations
7	RO	0	Reserved
6:4	RW	100b	Elastic Buffer Base Register for Lane 1
			0, 1, 7: Illegal values
			Others: Delay numbers of T for elastic buffer operations
3	RO	0	Reserved
2:0	RW	100b	Elastic Buffer Base Register for Lane 0
			0, 1, 7: Illegal values
			Others: Delay numbers of T for elastic buffer operations

Offset Address: CF-CBh (D3F0) - Reserved

PCI Express Power Management Module Registers (D0-D3h)

Offset Address: D3-D0h (D3F0)

PMC Control Default Value: 0000 2050h

Bit	Attribute	Default	Description
31:24	RW	00h	Idle Period to Enter ASL1
			Minimum time period is 128ns
			00: 128ns
			01: 2x128ns
			02: 3x128ns
			FF: 256x128ns
23:16	RW	00h	Idle Period to Enter LOs
			Minimum time period is 128ns
			00: 128ns
			01: 2x128ns 02: 3x128ns
			FF: 256x128ns
15	W1C	0	Error Status Report
13	*****		This bit is set when device cannot have electrical idle after the waiting period programmed at RxD1[6:4] expired.
14	RO	0	Reserved
13:12	RW	10b	Electrical Idle Waiting Period before Move to L1 State (after issue ACK to the L1 request from the device).
			00: Always wait for electrical idle
			01: Wait 32 clock
			10: Wait 64 clock
			11: Reserved
11:10	RO	0	Reserved
9:8	RW	00b	Downstream Cycles Triggered C2P Cycles, Period of Staying at L0 Before Returned to L1 for PHY (when
			PMU is in non-D0 state)
			00: immediately
			01: 1 cfgW or message + delay10T 10: 1 32QW +1cfgW or message+ delay10T
			11: 2 32QW +1 cfgW or message + delay10T
7	RO	0	Reserved
6:4	RW	101b	Timerout timer for waiting for the acknowledge from the device when issued PME TURNOFF message to
0.4	IC VV	1010	notice the device to go into power down mode.
			000: 1us 001: 2us
			010; 4us 011; 8us
			100: 16us 101: 32us
			110: 64us 111: 128us
3	RW	0	Stop Port Clock When No Device On This Port
			0: Disable 1: Enable
2	RW	0	Enable Link Retrain When Bad DLLP Is Checked
	2000		0: Disable 1: Enable
1	RW	0	Link Loopback
			0: Normal operation
0	DW	0	1: Direct device to enter Loopback mode, receiving data in the device will be sent to the transmit side
0	RW	0	Link Reconfigure Link Width Link width reconfiguration is initiated by writing 1 to this bit. This will direct the Physical Layer LTSSM to the
			Recovery state first, and then to the Configuration state.
			0: When reconfigure link width, LTSSM must be in Detect state
			1: When reconfigure link width, LTSSM can be in Configuration state
			1. When recoming the make width, E1550W can be in Configuration state

Default Value: 02h

Offset Address: D4h (D3F0)

PHYES Module Overall Control – Applied to x16 and x4 PHYES

Bit	Attribute	Default	Description
7	RW	0	Reserved
6	RW	0	Control FCI Receive Timer (300us)
			0: Disable the timeout mechanism
			1: Enable the timeout mechanism
5:2	RO	0	Reserved
1	RW	1b	Lane Reversal
			0: Do not support lane reversal
			Link / Lane number will be sent only on lane0~(maxlinkwidth-1).
			1: Support lane reversal.
			Link / Lane number will be sent on lane0 ~(maxlinkwidth-1), (16-maxlinkwidth)~ 15.
0	RW	0	Un-negotiated Lanes State during Configuration.Complete
			0: During Configuration. Complete, un-negotiated lanes will be electrical idle.
			1: During Configuration. Complete, Link/Lane number will be pad for un-negotiated lanes

Offset Address: D7-D5h (D2F0) – Reserved

Offset Address: D8h (D3F0)

PMC Express Message Status Default Value: 00h

Bit	Attribute	Default	Description
7	RW1C	0	Excessive Errors Occurred But Not Reported in The MSGC 0: Normal operation. 1: There are errors not reported to the system
6:0	RO	0	Reserved

Offset Address: DF-D9h (D3F0) – Reserved

PCI Express Electrical PHY Registers (E0-E4h)

Offset Address: E0h (D3F0)

PHYES Module Overall Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Enable New PLL_LOCK Scheme to Monitor Any Abnormal Jitter 0: Disabled 1: Enabled
6:0	RO	0	Reserved

Offset Address: E1h (D3F0)

PHYES Module Related Control Default Value: 0Bh

Bit	Attribute	Default	Description
7:5	RO	0	Reserved
4	RW	0	Receiving Polarity Change Control
			0: Have the same polarity on the loop-back/received data
			1: Have reverse polarity on the loop-back/received data
3:2	RW	10b	Squelch Window Select (64~175mv)
1	RW	1b	Electrical Idle Signal De-Assert Condition
			0: Electrical idle signal will be de-asserted at once and remained at least 4ns when electrical idle exit condition
			is detected.
			1: Electrical idle signal will be de-asserted at once and remained at least 16ns when electrical idle exit condition
			is detected.
0	RW	1b	Electrical Idle Signal Assert Condition
			0: Electrical idle signal is asserted only when electrical idle condition is detected and remained at least 16ns.
			Electrical idle signal is asserted at once when the electrical idle condition is detected.

Default Value: 9Ah

Offset Address: E2h (D3F0)

PHYES Module Control – Rx/Tx 1 Default Value: 01h

Bit	Attribute	Default	Description
7	RO	0	Reserved
6	RW	0	Mobile Swing
			0: Disable 1: Enable
5	RW	0	PHYES Clock Buffer Power Down on Lane 0-3
			0: All enable
			1: Power down
4	RW	0	Lane 2-3 Clock Buffer Power Down
			0: All enable
			1: Power down
3:2	RW	00b	Receiver Input Rise Delay (duty cycle adjustment for the 4 lanes)
			00: 0 ps 01: 4 ps
			10: 15 ps 11: 50 ps
1:0	RW	01b	Receiver Input Fall Delay (duty cycle adjustment for the 4 lanes)
			00: 0 ps 01: 7 ps
			10: 24 ps 11: 55 ps

Offset Address: E3h (D3F0) PHYES Module Control – Rx/Tx 2

Bit	Attribute	Default		Description	
7	RW	1b	PCIe Pads Driving Control		
			0: Autocomp		
			1: Manual setting through bits [2:0] and I	RxE2[2:0]	
6:5	RW	00b	Filter Depth Valid Only When CDR T	ype is set to 0	
			00: Filter depth = 2	01: Filter depth = 3	
			10: Filter depth = 5	11: Filter depth = 7	
4	RW	1b	CDR Type	•	
			0: 1/N type	1: Pseudo 6X scheme	
3	RW	1b	CDR Filter Depth		
			The bit is only valid when $RxE3[4] = 1$		
			0: Filter depth = 6	1: Filter depth = 8	
2:0	RW	010b	Lane 0 -3 Termination Resistance Selection		
			Resistance Range: $62\Omega (000b) \sim 43\Omega (11)$	11b)	
			Default: 50Ω (010b)	,	

Offset Address: E4h (D3F0)

PHYES Module Control – Rx/Tx 3 Default Value: 88h

Bit	Attribute	Default	Description	
7:4	RW	8h	Pre/De-Emphasis Level Selection	
3:0	RW	8h	Driver Current Source Selection	

Offset Address: EF-E5h (D3F0) - Reserved

PCI Express Electrical PHY Test Registers (F0-F7h)

Offset Address: F3-F0h (D3F0) PHY Test

HY Test Default Value: 0600 0000h

Bit	Attribute	Default	Description
31	RW	0	Electrical PHY Test Mode Enable
			Program this bit to 1 to start Electrical PHY test
30:28	RO	0	Reserved
27:24	RW	0110b	Test Pattern Check Length
			Number of T when the receiving side starts to check transmitted and received patterns
			Suggested Value Settings: (Lane 0 for example)
			RxC0[5:3] = 01: RxC4[2:0] + 2
			RxC0[5:3] = 10, 11: RxC4[2:0] + 2 + (loopback path latency / 4ns) + 1
23:20	RW	0000b	Select Test Pattern
			0000: SKP Order-Set
			0001: User define, use RxF7-F4[25:16]
			0010: K28.5 test bit sequence
			0011: K28.7 test bit sequence
			0100: K test for differential pair current
			0101: J test for differential pair current
			0110: D21.5 test bit sequence
			0111: D30.3 test bit sequence
			1000: Ten contiguous run of 3 test bit sequence
			1001: Low transition density test bit sequence
			1010: Half-rate/quarter-rate test bit sequence
			1011: Low frequency spectral test bit sequence
			1100: Simultaneous switching test bit sequence
			1110: Reserved
			1111: Reserved
19:18	RO	0	Reserved
17:16	RW	00b	Select Lane for Loop Back Test
17.10	IC VV	000	00: Loop back test on lane 0
			01: Loop back test on lane 1
			10: Loop back test lane 2
			11: Loop back test n lane 3
15:8	RW	0	Repeated Count of the Test Pattern (as selected in RxF2[7:4])
			00~0Bh: Illegal.value
			0Ch: Test pattern repeats 12 times
			0Dh: Test pattern repeats 13 times
			FFh: Test pattern repeats 255 times
7:0	RO	0	Reserved

Offset Address: F7-F4h (D3F0)

PHY Test Symbol Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RO	0	Electrical PHY Test Error
			1: An error occurred in loop back test mode receiving side
30	RO	0	Electrical PHY Built-In Self Test Error of Symbol Comparison
			That same errors happen or COMMA symbols are never detected during PHYBIST period; reported from PTNCMP
29:26	RO	0	Reserved
25:16	RO	0	Transmitted Symbol when RxF3[7] is set to 1
			00 when RxF3[7] is 0
15:10	RO	0	Reserved
9:0	RO	0	Received Symbol when RxF3[7] is set to 1
			00 when RxF3[7] is 0

Default Value: 0000h

Offset Address: F9-F8h (D3F0) Electrical PHY Test Error Counter During PHYBIST Period

Bit	Attribute	Default	Description
15:0	RO	0	Electrical PHY Test Error Counter During PHYBIST Period

Offset Address: FF-FAh (D3F0) - Reserved

Default Value: 1401 0001h

Device 3 Function 0 (D3F0) – PCI Express Root Port 1 Extended Space

Registers defined in the Extended Space can be accessed through PCI Express Enhanced Configuration Access Mechanism, which utilizes a flat memory-mapped address space to access the configuration registers. Please check PCI Express Specification for the detail information.

Advanced Error Reporting Capability (100-137h)

Offset Address: 103-100h (D3F0)

Advanced Error Reporting Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	140h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0001h	PCI Express Extended Capability ID

Offset Address: 107-104h (D3F0)

Uncorrectable Error Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RW1C	0	Unsupported Request Error Status (TL)
19	RW1CS	0	ECRC Error Status (TL)
18	RW1CS	0	Malformed TLP Status (TL)
17	RW1CS	0	Receiver Overflow Status (TL)
16	RW1CS	0	Unexpected Completion Status (TL)
15	RW1CS	0	Completer Abort Status (TL)
14	RW1CS	0	Completion Timeout Status (TL)
13	RW1CS	0	Flow Control Protocol Error Status (TL)
12	RW1CS	0	Poisoned TLP Status (TL)
11:6	RO	0	Reserved
5	RW1CS	0	Surprise Down Error Status
4	RW1CS	0	Data Link Protocol Error Status (DLL)
3:1	RO	0	Reserved
0	RW1CS	0	Training Error Status (PHY)

Offset Address: 10B-108h (D3F0)

Uncorrectable Error Mask Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RWS	0	Unsupported Request Error Mask (TL)
19	RWS	0	ECRC Error Mask (TL)
18	RWS	0	Malformed TLP Mask (TL)
17	RWS	0	Receiver Overflow Mask (TL)
16	RWS	0	Unexpected Completion Mask (TL)
15	RWS	0	Completed Abort Mask (TL)
14	RWS	0	Completion Timeout Mask (TL)
13	RWS	0	Flow Control Protocol Error Mask (TL)
12	RWS	0	Poisoned TLP Mask (TL)
11:6	RO	0	Reserved
5	RWS	0	Surprise Down Error Mask
4	RWS	0	Data Link Protocol Error Mask (DLL)
3:1	RO	0	Reserved
0	RWS	0	Training Error Mask (PHY)

Offset Address: 10F-10Ch (D3F0)

Uncorrectable Error Severity Default Value: 0006 0031h

Bit	Attribute	Default	Description
31:21	RO	0	Reserved
20	RWS	0	Unsupported Request Error Severity (TL)
19	RWS	0	ECRC Error Severity (TL)
18	RWS	1b	Malformed TLP Severity (TL)
17	RWS	1b	Receiver Overflow Error Severity (TL)
16	RWS	0	Unexpected Completion Error Severity (TL)
15	RWS	0	Completed Abort Error Severity (TL)
14	RWS	0	Completion Timeout Error Severity (TL)
13	RWS	1b	Flow Control Protocol Error Severity (TL)
12	RWS	0	Poisoned TLP Severity (TL)
11:6	RO	0	Reserved
5	RWS	1b	Surprise Down Error Severity
4	RWS	1b	Data Link Protocol Error Severity (DLL)
3:1	RO	0	Reserved
0	RWS	1b	Training Error Severity (PHY)

Offset Address: 113-110h (D3F0)

Correctable Error Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:14	RO	0	Reserved
13	RW1CS	0	Advisory Non-Fatal Error Status
12	RW1CS	0	Replay Timer Timeout Status (DLL)
11:9	RO	0	Reserved
8	RW1CS	0	REPLAY_NUM Rollover Status (DLL)
7	RW1CS	0	Bad DLLP Status (DLL)
6	RW1CS	0	Bad TLP Status (DLL)
5:1	RO	0	Reserved
0	RW1CS	0	Receiver Error Status (PHY)

Offset Address: 117-114h (D3F0)

Correctable Error Mask Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:14	RO	0	Reserved
13	RWS	0	Advisory Non-Fatal Error Mask
12	RWS	0	Replay Timer Timeout Mask (DLL)
11:9	RO	0	Reserved
8	RWS	0	REPLAY NUM Rollover Mask (DLL)
7	RWS	0	Bad DLLP Mask (DLL)
6	RWS	0	Bad TLP Mask (DLL)
5:1	RO	0	Reserved
0	RWS	0	Receiver Error Mask (PHY)

Offset Address: 11B-118h (D3F0)

Advanced Error Capabilities and Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:9	RO	0	Reserved
8	RWS	0	ECRC Check Enable (TL)
7	RO	0	ECRC Check Capable (TL)
6	RWS	0	ECRC Generation Enable (TL)
5	RO	0	ECRC Generation Capable (TL)
4:0	ROS	0	First Error Pointer (TL)

Offset Address: 11F-11Ch (D3F0)

Header Log (TL) 1 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 1st DW

Offset Address: 123-120Ch (D3F0)

Header Log (TL) 2 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 2nd DW

Offset Address: 127-124h (D3F0)

Header Log (TL) 3 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 3rd DW

Offset Address: 12B-128h (D3F0)

Header Log (TL) 4 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Header Log Register 4th DW

Offset Address: 12F-12Ch (D3F0)

Root Error Command Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:3	RO	0	Reserved
2	RW	0	Fatal Error Reporting Enable
1	RW	0	Non-Fatal Error Reporting Enable
0	RW	0	Correctable Error Reporting Enable

Offset Address: 133-130h (D3F0)

Root Error Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:27	RO	0	Advanced Error Interrupt Message Number (TL)
26:7	RO	0	Reserved
6	RW1CS	0	Fatal Error Messages Received (TL)
5	RW1CS	0	Non-Fatal Error Messages Received (TL)
4	RW1CS	0	First Uncorrectable Fatal Error Message Received (TL)
			Set to 1 when the first Uncorrectable Error Message received is for a Fatal Error
3	RW1CS	0	Multiple ERR_FATAL/NONFATAL Received (TL)
2	RW1CS	0	ERR_FATAL/NONFATAL Received (TL)
1	RW1CS	0	Multiple ERR_COR Received (TL)
0	RW1CS	0	ERR_COR Received (TL)

Offset Address: 137-134h (D3F0)

Error Source Identification Default Value: 0000 0000h

This register is updated regardless of the settings of Root Control register and the Root Error Command register.

Bit	Attribute	Default	Description
31:16	ROS	0	ERR_FATAL / NONFATAL Source Identification (TL)
15:0	ROS	0	ERR COR Source Identification (TL)

Default Value: 1801 0002h

Offset Address: 13B-138h (D3F0)

Error Source Identification Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:0	ROS	0	Error DLLP log register

Offset Address: 13C-13Fh (D3F0) - Reserved

Virtual Channel Capability (140-14Fh)

Virtual Channel Capability is defined for Egress direction of the device. For Root Port, since only VC0 is defined (VC0 mapping: TC0, TC1, TC2, TC3, TC4, TC5, TC6, TC7), there is no implementation of VC Arbitration Table and Port Arbitration Table.

Offset Address: 143-140h (D3F0)

Virtual Channel Enhanced Capability

Bit	Attribute	Default	Description
31:20	RO	180h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0002h	PCI Express Extended Capability ID

Offset Address: 147-144h (D3F0)

Port VC Capability 1 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:12	RO	0	Reserved
11:10	RO	0	Port Arbitration Table Entry Size
			Reserved for root port
9:8	RO	0	Reference Clock
			Reserved for root port
7	RO	0	Reserved
6:4	RO	0	Low Priority Extended VC Count
3	RO	0	Reserved
2:0	RO	0	Extended VC Count

Offset Address: 14B-148h (D3F0)

Port VC Capability 2 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	0	VC Arbitration Table Offset 00 since only VC0 is defined
23:8	RO	0	Reserved
7:0	RO	0	VC Arbitration Capability

Offset Address: 14D-14Ch (D3F0)

Port VC Control Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RO	0	Reserved
3:1	RW	0	VC Arbitration Select Reserved
0	RO	0	Load VC Arbitration Table Reserved

Offset Address: 14F-14Eh (D3F0)

Port VC Status Default Value: 0000h

Bit	Attribute	Default	Description
15:1	RO	0	Reserved
0	RO	0	VC Arbitration Table Status Reserved

VC0 Resource (150-15Bh)

Offset Address: 150-153h (D3F0)

VC Resource Capability (VC0)

Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table Offset (VC0)
			Reserved for root port
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
15	RO	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	0	Port Arbitration Capability
			Reserved for root port

Offset Address: 157-154h (D3F0)

VC Resource Control (VC0)

Default Value: 8000 00FFh

Bit	Attribute	Default	Description
31	RO	1b	VC Enable
30:27	RO	0	Reserved
26:24	RO	0	VC ID
23:20	RO	0	Reserved
19:17	RW	0	Port Arbitration Select
			Reserved for root port
16	RO	0	Load Port Arbitration Table
			Reserved for root port
15:8	RO	0	Reserved
7:0	RW	FFh	TC/VC Mapping
	Bit 0: RO		This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to
			VC0.
			Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 15B-158h (D3F0)

VC Resource Status (VC0) Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status
			Reserved for root port
15:0	RO	0	Reserved

Default Value: 0000 0000h

Default Value: 0100 0000h

Default Value: 0000 0000h

VC1 Resource (15C-167h)

The following registers exist only when Rx144[0] is programmed to 1. If Rx144[0]=0, all the following content will be read as 0.

Offset Address: 15F-15Ch (D3F0)

VC Resource Capability (VC1)

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table Offset (VC1)
			Reserved for root port
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
15	RO	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved for root port
13:8	RO	0	Reserved
7:0	RO	0	Port Arbitration Capability
			Reserved for root port

Offset Address: 163-160h (D3F0)

VC Resource Control (VC1)

Bit	Attribute	Default	Description
31	RW	0	VC Enable
30:27	RO	0	Reserved
26:24	RW	1b	VC ID
23:20	RO	0	Reserved
19:17	RW	0	Port Arbitration Select
			Reserved for root port
16	WO	0	Load Port Arbitration Table
			Reserved for root port
15:8	RO	0	Reserved
7:0	RW	0	TC/VC Mapping
	Bit 0: RO		This field indicates the TCs that are mapped to VC1. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC1 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to
			VCO.
			Note: Bit0 is hardwired to 0 (i.e. TC0 is always mapped to VC0).

Offset Address: 167-164h (D3F0)

VC Resource Status (VC1)

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status
			Reserved for root port
15:0	RO	0	Reserved

Offset Address: 17F-168h (D3F0) - Reserved

Default Value: 0001 0005h

Root Complex Topology Capability List Registers (180-19Bh)

Offset Address: 183-180h (D3F0)

Root Complex Link Declaration Capabilities Header

Bit	Attribute	Default	Description
31:20	RO	0	Next Capability
19:16	RO	1h	Capability Version
15:0	RO	0005h	Capability ID

Offset Address: 187-184h (D3F0)

Element Self Description Register Default Value: 0201 0100h

Bit	Attribute	Default	Description
31:24	RO	02h	Port Number (Root Port 0)
23:16	RO	01h	Component ID
15:8	RO	01h	Number of Link Entries
7:4	RO	0	Reserved
3:0	RO	0h	Element Type 00: Configuration Space Element
			01: System egress port or internal sink 10: Internal Root Complex Link

Offset Address: 193-190h (D3F0)

Upstream Link Descriptor Register Default Value: 0001 0001h

Bit	Attribute	Default	Description
31:24	RO	0	Target Port Number
			Indicate the port number of RCRB-H
23:16	RO	01h	Target Component ID
15:2	RO	0	Root Complex Link Declaration Capability
1	RO	0	Link Type
			Indicates that the link points to RCRB-H
0	RO	1b	Link Valid

Offset Address: 19B-194h (D3F0)

Upstream Link Base Address Register Default Value: 0000 0000 0000 0000h

Bit	Attribute	Default	Description
63:32	RO	0	Base Address Upper.
31:0	RO	0	Base Address Lower

Note: Base Address Register value for RCRB-H [63:12]

Offset Address: 19F-19Ch (D2F0) - Reserved

Default Value: 0401 0002h

PCIe Root Complex Register Block for Host

Virtual Channel Capability (000-00Fh)

Offset Address: 003-000h (RCRB-H)

Virtual Channel Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	040h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0002h	PCI Express Extended Capability ID

Offset Address: 007-004h (RCRB-H)

Port VC Capability 1 Default Value: 0000 0801h

Bit	Attribute	Default	Description
31:12	RO	0	Reserved
11:10	RO	10b	Port Arbitration Table Entry Size
			The upstream arbitration unit of this chip supports up to 6 ports.
			10b indicates the size of port arbitration table entry is 4 bits.
9:8	RO	0	Reference Clock
			Reserved.
7	RO	0	Reserved
6:4	RO	0	Low Priority Extended VC Count
3	RO	0	Reserved
2:0	RO	001b	Extended VC Count

Offset Address: 00B-008h (RCRB-H)

Port VC Capability 2 Default Value: 0000 0001h

Bit	Attribute	Default	Description
31:24	RO	00h	VC Arbitration Table 00: Table is not present.
23:8	RO	0	Reserved
7:0	RO	01h	VC Arbitration Capability

Offset Address: 00D-00Ch (RCRB-H)

Port VC Control Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RO	0	Reserved
3:1	RW	0	VC Arbitration Select
0	RO	0	Load VC Arbitration Table
			Reserved

Offset Address: 00F-00Eh (RCRB-H)

Port VC Status Default Value: 0000h

Bit	Attribute	Default	Description
15:1	RO	0	Reserved
0	RO	0	VC Arbitration Table Status
			Reserved

Default Value: 0000 0001h

Default Value: 8000 00FFh

VC0 Resource (010-01Bh)

Offset Address: 013-010h (RCRB-H)

VC Resource Capability (VC0)

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table (VC0)
			Reserved
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
			Reserved
15	RO	0	Reject Snoop Transactions
			Reserved
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	01h	Port Arbitration Capability
			T_WRR 128 phase

Offset Address: 017-014h (RCRB-H)

VC Resource Control (VC0)

Bit	Attribute	Default	Description
31	RO	1b	VC Enable
30:27	RO	0	Reserved
26:24	RO	0	VC ID
23:20	RO	0	Reserved
19:17	RO	0	Port Arbitration Select
			Reserved
16	RO	0	Load Port Arbitration Table
			Reserved
15:8	RO	0	Reserved
7:0	RW	FFh	TC/VC Mapping
	Bit 0: RO		This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0.
			Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 01B-018h (RCRB-H)

VC Resource Status (VC0)

Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status
			Reserved
15:0	RO	0	Reserved

Default Value: 1000 0010h

Default Value: 0100 0000h

Default Value: 0000 0000h

Default Value: 0001 0005h

VC1 Resource (01C-027h)

Rx01C-027h registers exist only when Rx004[0] = 1.

Offset Address: 01F-01Ch (RCRB-H)

VC Resource Capability (VC1)

Bit	Attribute	Default	Description
31:24	RO	10h	Port Arbitration Table Offset (VCN)
23	RO	0	Reserved
22:16	RW	0	Maximum Time Slots (TL)
15	RW	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	10h	Port Arbitration Capability

Offset Address: 023-020h (RCRB-H)

VC Resource Control (VC1)

Bit	Attribute	Default	Description
31	RO	0	VC Enable
30:27	RO	0	Reserved
26:24	RO	1h	VC ID
23:17	RO	0	Reserved
16	RO	0	Load Port Arbitration Table
15:8	RO	0	Reserved
7:0	RO	0	TC/VC Mapping
			This field indicates the TCs that are mapped to VC1. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC1 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0.
			Note: Bit 0 is hardwired to 0 (i.e. TC0 is always mapped to VC0).

Offset Address: 027-024h (RCRB-H)

VC Resource Status (VC1)

Bit	Attribute	Default	Description	
31:18	RO	0	Reserved	
17	RO	0	VC Negotiation Pending (TL)	
16	RO	0	Port Arbitration Table Status	
15:0	RO	0	Reserved	

Root Complex Link Declaration Enhanced Capability (040-04Fh)

Offset Address: 043-040h (RCRB-H)

Root Complex Link Declaration Capabilities Header

Bit	Attribute	Default	Description	
31:20	RO	0	Next Capability	
19:16	RO	1h	Capability Version	
15:0	RO	0005h	PCI Express Extended Capability ID	

Offset Address: 047-044h (RCRB-H)

Element Self Description Default Value: 0001 0601h

Bit	Attribute	Default	Description	
31:24	RO	0	Port Number	
			0: Egress port	
23:16	RO	01h	Component ID	
15:8	RO	06h	Number of Link Entries	
			6 Links	
7:4	RO	0	Reserved	
3:0	RO	1h	Element Type	
			0h: Configuration space element	
			1h: System egress port or internal sink	
			2h: Internal Root Complex Link	

Offset Address: 04F-048h (RCRB-H) - Reserved

Link Entry for PEG (050-05Fh)

Offset Address: 053-050h (RCRB-H)

PEG Link Description Default Value: 0101 0003h

Bit	Attribute	Default	Description	
31:24	RO	01h	Target Port Number	
23:16	RO	01h	Target Component ID	
15:2	RO	0	Reserved	
1	RO	1b	Link Type	
			Link points to PEG.	
0	RO	1b	Link Valid	

Offset Address: 057-054h (RCRB-H) - Reserved

Offset Address: 05F-058h (RCRB-H)

Root Port Graphic Base Address Default Value: 0000 0000 0001 0000h

Bit	Attribute	Default	Description
63:28	RO	0	Reserved
27:20	RO	0	Bus Number
19:15	RO	02h	Device Number
14:12	RO	0	Function Number
11:0	RO	0	Reserved

Link Entry for PE0 (060-06Fh)

Offset Address: 060-063h (RCRB-H)

PE0 Link Description Default Value: 0201 0003h

Bit	Attribute	Default	Description	
31:24	RO	02h	Target Port Number	
23:16	RO	01h	Target Component ID	
15:2	RO	0	Reserved	
1	RO	1b	Link Type	
			Link points to PE0.	
0	RO	1b	Link Valid	

Offset Address: 067-064h (RCRB-H) - Reserved

Offset Address: 06F-068h (RCRB-H)

PE0 Base Address Default Value: 0000 0000 0001 8000h

Bit	Attribute	Default	Description
63:28	RO	0	Reserved
27:20	RO	0	Bus Number
19:15	RO	03h	Device Number
14:12	RO	0	Function Number
11:0	RO	0	Reserved

Offset Address: 09F-070h (RCRB-H) - Reserved

Link Entry for RCRB-V (0A0-0AFh)

Offset Address: 0A3-0A0h (RCRB-H)

Link Description Default Value: 0601 0001h

Bit	Attribute	Default	Description	
31:24	RO	06h	Target Port Number	
23:16	RO	01h	Target Component ID	
15:2	RO	0	Reserved	
1	RO	0	Link Type	
			Link points to RCRB-V.	
0	RO	1b	Link Valid	

Offset Address: 0A7-0A4h (RCRB-H) – Reserved

Offset Address: 0AF-0A8h (RCRB-H)

RCRB-V Base Address Default Value: 0000 0000 0000 0000 0000h

Bit	Attribute	Default	Description
63:32	RO	0	Base Address Upper
31:0	RO	0	Base Address Lower

Virtual Channel Port Arbitration Table for VCN (100h-13F)

Offset Address: 103-100h (RCRB-H)

VCN Port Arbitration Table 1 Default Value: 0000 0000h

Bit	Attribute	Default		Description				
31:28	RW	0	Phase 7					
			0: Idle or others	1: PEG	2: PE0	3: PE1		
			4: PE2	5: PE3	6: V-Link	7: AGP		
27:24	RW	0	Phase 6					
23:20	RW	0	Phase 5					
19:16	RW	0	Phase 4					
15:12	RW	0	Phase 3					
11:8	RW	0	Phase 2					
7:4	RW	0	Phase 1					
3:0	RW	0	Phase 0					

Offset Address: 107-104h (RCRB-H)

VCN Port Arbitration Table 2 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 15
27:24	RW	0	Phase 14
23:20	RW	0	Phase 13
19:16	RW	0	Phase 12
15:12	RW	0	Phase 11
11:8	RW	0	Phase 10
7:4	RW	0	Phase 9
3:0	RW	0	Phase 8

Offset Address: 10B-108h (RCRB-H)

VCN Port Arbitration Table 3 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 23
27:24	RW	0	Phase 22
23:20	RW	0	Phase 21
19:16	RW	0	Phase 20
15:12	RW	0	Phase 19
11:8	RW	0	Phase 18
7:4	RW	0	Phase 17
3:0	RW	0	Phase 16

Offset Address: 10F-10Ch (RCRB-H)

VCN Port Arbitration Table 4 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 31
27:24	RW	0	Phase 30
23:20	RW	0	Phase 29
19:16	RW	0	Phase 28
15:12	RW	0	Phase 27
11:8	RW	0	Phase 26
7:4	RW	0	Phase 25
3:0	RW	0	Phase 24

Offset Address: 113-110h (RCRB-H)

VCN Port Arbitration Table 5 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 39
27:24	RW	0	Phase 38
23:20	RW	0	Phase 37
19:16	RW	0	Phase 36
15:12	RW	0	Phase 35
11:8	RW	0	Phase 34
7:4	RW	0	Phase 33
3:0	RW	0	Phase 32

Offset Address: 117-114h (RCRB-H)

VCN Port Arbitration Table 6 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 47
27:24	RW	0	Phase 46
23:20	RW	0	Phase 45
19:16	RW	0	Phase 44
15:12	RW	0	Phase 43
11:8	RW	0	Phase 42
7:4	RW	0	Phase 41
3:0	RW	0	Phase 40

Offset Address: 11B-118h (RCRB-H)

VCN Port Arbitration Table 7 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 55
27:24	RW	0	Phase 54
23:20	RW	0	Phase 53
19:16	RW	0	Phase 52
15:12	RW	0	Phase 51
11:8	RW	0	Phase 50
7:4	RW	0	Phase 49
3:0	RW	0	Phase 48

Offset Address: 11F-11Ch (RCRB-H)

VCN Port Arbitration Table 8 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 63
27:24	RW	0	Phase 62
23:20	RW	0	Phase 61
19:16	RW	0	Phase 60
15:12	RW	0	Phase 59
11:8	RW	0	Phase 58
7:4	RW	0	Phase 57
3:0	RW	0	Phase 56

Offset Address: 123-120h (RCRB-H)

VCN Port Arbitration Table 9 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 71
27:24	RW	0	Phase 70
23:20	RW	0	Phase 69
19:16	RW	0	Phase 68
15:12	RW	0	Phase 67
11:8	RW	0	Phase 66
7:4	RW	0	Phase 65
3:0	RW	0	Phase 64

Offset Address: 127-124h (RCRB-H)

VCN Port Arbitration Table 10 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 79
27:24	RW	0	Phase 78
23:20	RW	0	Phase 77
19:16	RW	0	Phase 76
15:12	RW	0	Phase 75
11:8	RW	0	Phase 74
7:4	RW	0	Phase 73
3:0	RW	0	Phase 72

Offset Address: 12B-128h (RCRB-H)

VCN Port Arbitration Table 11 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 87
27:24	RW	0	Phase 86
23:20	RW	0	Phase 85
19:16	RW	0	Phase 84
15:12	RW	0	Phase 83
11:8	RW	0	Phase 82
7:4	RW	0	Phase 81
3:0	RW	0	Phase 80

Offset Address: 12F-12Ch (RCRB-H)

VCN Port Arbitration Table 12 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 95
27:24	RW	0	Phase 94
23:20	RW	0	Phase 93
19:16	RW	0	Phase 92
15:12	RW	0	Phase 91
11:8	RW	0	Phase 90
7:4	RW	0	Phase 89
3:0	RW	0	Phase 88

Offset Address: 133-130h (RCRB-H)

VCN Port Arbitration Table 13 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 103
27:24	RW	0	Phase 102
23:20	RW	0	Phase 101
19:16	RW	0	Phase 100
15:12	RW	0	Phase 99
11:8	RW	0	Phase 98
7:4	RW	0	Phase 97
3:0	RW	0	Phase 96

Offset Address: 137-134h (RCRB-H)

VCN Port Arbitration Table 14 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 111
27:24	RW	0	Phase 110
23:20	RW	0	Phase 109
19:16	RW	0	Phase 108
15:12	RW	0	Phase 107
11:8	RW	0	Phase 106
7:4	RW	0	Phase 105
3:0	RW	0	Phase 104

Offset Address: 13B-138h (RCRB-H)

VCN Port Arbitration Table 15 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 119
27:24	RW	0	Phase 118
23:20	RW	0	Phase 117
19:16	RW	0	Phase 116
15:12	RW	0	Phase 115
11:8	RW	0	Phase 114
7:4	RW	0	Phase 113
3:0	RW	0	Phase 112

Offset Address: 13F-13Ch (RCRB-H) VCN Port Arbitration Table 16 Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Phase 127
27:24	RW	0	Phase 126
23:20	RW	0	Phase 125
19:16	RW	0	Phase 124
15:12	RW	0	Phase 123
11:8	RW	0	Phase 122
7:4	RW	0	Phase 121
3:0	RW	0	Phase 120

VC Arbitration Timer (200-20Fh)

PCI Express arbitration scheme is based on the same scheme used in the DRAM Controller. A timer named as Occupancy Timer is used to guarantee the number of time slots one requester will be granted when there is no high priority requesters come in. Another timer named as Promote Timer is used for a requester to upgrade its requests to high priority if it is not served after the Promote Timer times out. However, priority request promoted by the expiration of the Promote Timer will be served once only.

Offset Address: 200h (RCRB-H)

VC0 Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	VC0 Occupancy Timer (in unit of 125MHz)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n <= 15$

Offset Address: 201h (RCRB-H)

VC0 Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	VC0 Promote Timer (in unit of 125MHz)
			0000: Timer is off
			0nh: n x 4 T, where 1< n <= 15

Offset Address: 202h (RCRB-H)

VC1 Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	VC1 Occupancy Timer (in unit of 125MHz)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n <= 15$

Offset Address: 203h (RCRB-H)

VC1 Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	VC1 Promote Timer (in unit of 125MHz)
			0000: Timer is off
			0nh: n x 4 T, where 1< n <= 15

Note: Port arbitration timers defined by registers 202h and 203h are not applicable in current VC1 implementation; currently the VC1 arbitration is in strict priority.

Offset Address: 20F-204h (RCRB-H) - Reserved

Port Arbitration Timer for VC0 (210-219h)

Offset Address: 210h (RCRB-H)

PEG Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of 125MHz)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n <= 15$

Offset Address: 211h (RCRB-H)

PEG Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: n x 4 T, where 1< n <= 15

Offset Address: 212h (RCRB-H)

PE0 Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of 125MHz)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0 nh: n x 4 T, where $1 < n \le 15$

Offset Address: 213h (RCRB-H)

PE0 Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: n x 4 T, where 1< n <= 15

Offset Address: 229-214h (RCRB-H) – Reserved

Default Value: 00h

Default Value: 80h

Default Value: 00h

Default Value: 00h

Host Side Upstream Arbitration Timers (230-23Fh)

A fair arbitration timer is designed for the upstream traffic, which provides a fair arbitration between PCI express devices and other devices like AGP, PCI2 master, I/O APIC and V-Link. The arbitration scheme also used the one currently implemented in the DRAMC.

Offset Address: 230h (RCRB-H)

PCIe – VC0 Occupancy Timer

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of host frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where 1< n <= 15

Offset Address: 231h (RCRB-H)

PCIe – VC0 Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: n x 4 T, where 1< n <= 15

Offset Address: 232h (RCRB-H)

PCIe – VC1 Occupancy Timer

Bit	Attribute	Default	Description
7	RW	1b	PCIe - VC1 Strict Priority
			0: Disable 1: Enable
6:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of host frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n <= 15$

Offset Address: 233h (RCRB-H)

PCIe-VC1 Promote Timer

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: n x 4 T, where 1 < n <= 15

Offset Address: 234h (RCRB-H)

V-Link Arbitration Timer Control

Bit	Attribute	Default	Description	
7	RW	0	Strict Priority to GPCI or NVC (PMADS) Request	
			0: Disable 1: Enable	
6	RW	0	High Priority to GPCI or NVC (with PMSIO) Request	
			0: Disable 1: Enable	
5:4	RO	0	Reserved	
3:0	RW	0h	Occupancy Timer (in unit of host frequency)	
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)	
			0nh: n x 4 T, where 1< n <= 15	

Default Value: 80h

Default Value: 00h

Offset Address: 235h (RCRB-H)

V-Link Promote Timer Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RO	0	Reserved	
3:0	RW	0h	Promote Timer (in unit of host frequency)	
			0000: Timer is off	
			0 nh: n x 4 T, where $1 < n \le 15$	

Offset Address: 236h (RCRB-H)

V-Link – VC1 Arbitration Timer Control

Bit	Attribute	Default	Description	
7	RW	1b	Strict Priority to V-Link – VC1	
			0: Disable 1: Enable	
6:4	RO	0	Reserved	
3:0	RW	0h	Occupancy Timer (in unit of host frequency)	
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)	
			0nh: n x 4 T, where 1< n <= 15	

Offset Address: 237h (RCRB-H)

V-Link – VC1 Promote Timer

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: n x 4 T, where 1< n <= 15

Offset Address: 238h (RCRB-H)

AGP Arbitration Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Strict Priority to GADS from AGPC
			0: Disable 1: Enable
6	RW	0	High Priority to GADS with GISOCH Asserted
			0: Disable 1: Enable
5:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of host frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n \le 15$

Offset Address: 239h (RCRB-H)

AGP Promote Timer Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RO	0	Reserved	
3:0	RW	0h	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: n x 4 T, where 1 < n <= 15	

Offset Address: 23Ah (RCRB-H)

PCI2 / NVC Occupancy Timers

Default Value: 00h

Bit	Attribute	Default	De	escription
7:6	RO	0	Reserved	
5:4	RW	00b	NVC Occupancy Timer (in unit of host frequency	
			00: Timer is off (i.e. 1T Round Robin scheme)	01: 4T
			10: 8T	11: 16T
3:2	RO	0	Reserved	
1:0	RW	00b	PCI2 Occupancy Timer (in unit of host frequency)
			00: Timer is off (i.e. 1T Round Robin scheme)	01: 4T
			10: 8T	11: 16T

Offset Address: 23Bh (RCRB-H)

PCI2 / NVC Promote Timers

Default Value: 00h

Bit	Attribute	Default	D	escription
7:6	RO	0	Reserved	
5:4	RW	00b	NVC Promote Timer (in unit of host frequency)	
			00: Timer is off	01: 4T
			10: 8T	11: 16T
3:2	RO	0	Reserved	
1:0	RW	00b	PCI2 Promote Timer (in unit of host frequency)	
			00: Timer is off (i.e. 1T Round Robin scheme)	01: 4T
			10: 8T	11: 16T

Offset Address: 23Ch (RCRB-H)

IO APIC Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of host frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0 nh : $n \times 4 \text{ T}$, where $1 < n <= 15$

Offset Address: 23Dh (RCRB-H)

IO APIC Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of host frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where $1 < n <= 15$

Offset Address: 23F-23Eh (RCRB-H) - Reserved

Default Value: 00h

Default Value: 00h

DRAM Side Upstream Arbitration Timers (240-245h)

This fair arbitration timer is for upstream traffic to do a fair arbitration between all of the VC1 PCI Express devices and AGP.

Offset Address: 240h (RCRB-H)

PCIe-VC1 Arbitration Control

Bit	Attribute	Default	Description
7	RW	0	Strict Priority to VC1
			0: Disable 1: Enable
6:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of DRAMC frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			$0 \text{ nh}: \text{ n x 4 T, where } 1 < \text{ n} \le 15$

Offset Address: 241h (RCRB-H)

PCIe-VC1 Promote Timer

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of DRAMC frequency) 0000: Timer is off 0nh: n x 4 T, where 1< n <= 15

Offset Address: 243-242h (RCRB-H) - Reserved

Offset Address: 244h (RCRB-H)

AGP Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Occupancy Timer (in unit of DRAMC frequency)
			0000: Timer is off (Arbitration will be based on a fairly RR scheme)
			0nh: n x 4 T, where 1< n <= 15

Offset Address: 245h (RCRB-H)

AGP Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	Reserved
3:0	RW	0h	Promote Timer (in unit of DRAMC frequency)
			0000: Timer is off
			$0 \text{nh}: n \times 4 \text{ T}, \text{ where } 1 < n <= 15$

Default Value: 0401 0002h

PCIe Root Complex Register Block for V-Link

Virtual Channel Capability (000-00Fh)

Offset Address: 003-000h (RCRB-V)

Virtual Channel Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	040h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0002h	PCI Express Extended Capability ID

Offset Address: 007-004h (RCRB-V)

Port VC Capability 1 Default Value: 0000 0001h

Bit	Attribute	Default	Description
31:12	RO	0	Reserved
11:10	RO	0	Port Arbitration Table Entry Size
			Reserved
9:8	RO	0	Reference Clock
			Reserved for RCRB-V
7	RO	0	Reserved
6:4	RO	0	Low Priority Extended VC Count
			LPVC=0
3	RO	0	Reserved
2:0	RO	001b	Extended VC Count

Offset Address: 00B-008h (RCRB-V)

Port VC Capability 2 Default Value: 0000 0001h

Bit	Attribute	Default	Description
31:24	RO	0	VC Arbitration Table Offset Reserved
23:8	RO	0	Reserved
7:0	RO	01h	VC Arbitration Capability

Offset Address: 00D-00Ch (RCRB-V)

Port VC Control Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RO	0	Reserved
3:1	RW	000b	VC Arbitration Select
0	RO	0	Load VC Arbitration Table
			Reserved

Offset Address: 00F-00Eh (RCRB-V)

Port VC Status Default Value: 0000h

Bit	Attribute	Default	Description
15:1	RO	0	Reserved
0	RO	0	VC Arbitration Table Status
			Reserved

Default Value: 0000 0001h

VC0 Resource (010-01Bh)

Offset Address: 013-010h (RCRB-V)

VC Resource Capability (VC0)

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table Offset (VC0)
			Reserved
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
			Reserved
15	RO	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	01h	Port Arbitration Capability
			Non-configurable hardware fixed arbitration support

Offset Address: 017-014h (RCRB-V)

VC Resource Control (VC0)

Default Value: 8000 00FFh

Bit	Attribute	Default	Description
31	RO	1b	VC Enable
30:27	RO	0	Reserved
26:24	RO	0	VC ID
23:20	RO	0	Reserved
19:17	RW	000b	Port Arbitration Select
16	RO	0	Load Port Arbitration Table
			Reserved
15:8	RO	0	Reserved
7:0	RW	FFh	TC/VC Mapping
	Bit 0: RO		This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0.
			Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 01B-018h (RCRB-V)

VC Resource Status (VC0)

Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status
			Reserved
15:0	RO	0	Reserved

Default Value: 0000 0001h

Default Value: 0100 0000h

Default Value: 0000 0000h

VC1 Resource (01C-027h)

The Rx01C - Rx027 registers will exist only when Rx004[0] is programmed to 1.

Offset Address: 01F-01Ch (RCRB-V)

VC Resource Capability (VC1)

Bit	Attribute	Default	Description
31:24	RO	00h	Port Arbitration Table Offset (VC1)
			Reserved
			00h: NULL
23	RO	0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
			Reserved
15	RO	0	Reject Snoop Transactions
14	RO	0	Advanced Packet Switching
			Reserved
13:8	RO	0	Reserved
7:0	RO	01h	Port Arbitration Capability

Offset Address: 023-020h (RCRB-V)

VC Resource Control (VC1)

Bit	Attribute	Default	Description
31	RO	0	VC Enable
30:27	RO	0	Reserved
26:24	RO	1h	VC ID
23:17	RO	0	Reserved
16	RO	0	Load Port Arbitration Table
			Reserved
15:8	RO	0	Reserved
7:0	RO	0	TC/VC Mapping
			This field indicates the TCs that are mapped to VC1. If bit [n] is 1, the corresponding traffic class TCn is
			mapped to VC1 ($0 \le n \le 7$). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0.
			Note: Bit 0 is hardwired to 0 (i.e. TC0 is always mapped to VC0).

Offset Address: 027-024h (RCRB-V)

VC Resource Status (VC1)

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status Reserved for RCRB-V
15:0	RO	0	Reserved

Default Value: 0801 0005h

Root Complex Link Enhanced Capability (040-0AFh)

Offset Address: 043-040h (RCRB-V)

Root Complex Link Declaration Capabilities Header

Bit	Attribute	Default	Description
31:20	RO	080h	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0005h	PCI Express Extended Capability ID

Offset Address: 047-044h (RCRB-V)

Element Self Description Default Value: 0601 0202h

Bit	Attribute	Default	Description
31:24	RO	06h	Port Number
			Port number = 6
23:16	RO	01h	Component ID
15:8	RO	02h	Number of Link Entries
			2 Link
7:4	RO	0	Reserved
3:0	RO	2h	Element Type
			0h: Configuration Space Element
			1h: System egress port or internal sink
			2h: Internal Root Complex Link

Offset Address: 04F-048h (RCRB-V) - Reserved

Link Entry 1 (050-05Fh)

Offset Address: 053-050h (RCRB-V)

Link Description Default Value: 0001 0001h

Bit	Attribute	Default	Description
31:24	RO	0	Target Port Number
23:16	RO	01h	Target Component ID
15:2	RO	0	Reserved
1	RO	0	Link Type
			Type 0 is for RCRB-H.
0	RO	1b	Link Valid

Offset Address: 057-054h (RCRB-V) - Reserved

Offset Address: 05F-058h (RCRB-V)

Link Address Default Value: 0000 0000 0000 0000 0000h

Bit	Attribute	Default	Description
63:32	RO	0	Link Address Bits 63:32
31:0	RO	0	Link Address Bits 31:0

Link Entry 2 (060-06Fh)

Offset Address: 063-060h (RCRB-V)

Link Description Default Value: 0002 0001h

Bit	Attribute	Default	Description
31:24	RO	0	Target Port Number
			Port 0
23:16	RO	02h	Target Component ID
15:2	RO	0	Reserved
1	RO	0	Link Type
			Type $0 = RCRB DMI$
0	RO	1b	Link Valid

Offset Address: 067-064h (RCRB-V) – Reserved

Offset Address: 06F-068h (RCRB-V)

Link Address Default Value: 0000 0000 0000 0000 0000h

Bit	Attribute	Default	Description
63:32	RO	0	Link Address Bits 63:32
31:0	RO	0	Link Address Bits 31:0

Root Complex Internal Link Control Enhanced Capability Header (080-08Bh)

Offset Address: 083-080h (RCRB-V)

Root Complex Link Declaration Enhanced Capability Header Default Value: 0001 0006h

Bit	Attribute	Default	Description
31:20	RO	0	Next Capability Offset
19:16	RO	1h	Capability Version
15:0	RO	0006h	PCI Express Extended Capability ID

Offset Address: 087-084h (RCRB-V)

Root Complex Link Capabilities Default Value: 0000 2421h

Bit	Attribute	Default	Description
31:18	RO	0	Reserved
17:15	RO	0	L1 Exit Latency
14:12	RO	010b	L0s Exit Latency
			010: 128ns to 256ns
11:10	RO	01b	Active State Link PM Support
			L0s and L1 Supported
9:4	RO	02h	Maximum Link Width
			X2
3:0	RO	1h	Maximum Link Speed
			2.5Gb/s

Offset Address: 089-088h (RCRB-V)

Root Complex Link Control Default Value: 0000h

Bit	Attribute	Default	Description
15:8	RO	0	Reserved
7	RW	0	Extended Sync
6:2	RO	0	Reserved
1:0	RW	0	Active State Link PM Control

Offset Address: 08B-08Ah (RCRB-V)
Root Complex Link Status Default Value: 0021h

Bit	Attribute	Default	Description
15:10	RO	0	Reserved
9:4	RO	02h	Negotiated Link Width
			X2
3:0	RO	1h	Link Speed
			2.5Gb/s

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 21. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T_{C}	Case Operating Temperature	0	85	oC	1
T_{S}	Storage Temperature	-55	125	оС	1
VCCA33HCK	Power for Host CPU Clock PLL	3	3.6	Volts	1
VCCA33MCK	Power for Memory Clock PLL	3	3.6	Volts	1
VCCA33PLL[3:1]	Power for Graphics Controller PLL	3	3.6	Volts	1
VCCA33DAC[2:1]	Power for DAC	3	3.6	Volts	1
VCCA33PEX[2:0]	Power for PCI Express Port	3.13	3.46	Volts	1
VCCA33PEXCK	Power for PCI Express Clock	3.13	3.46	Volts	1
VTT	Power for CPU I/O Interface Logic	0.94	1.16	Volts	1
VCCMEM	Power for Memory I/O Interface Logic	2.37/1.71 (DDR/DDR2)	2.62/1.89 (DDR/DDR2)	Volts	1
VCC15VL	Power for V-Link I/O Interface Logic	1.44	1.76	Volts	1
VCC33PEX	Power for PCIe I/O Interface Logic	3.13	3.46	Volts	1
VCC33GFX	Power for Graphics Display I/O Logic	3	3.6	Volts	1
VCC15	Core Power	1.44	1.76	Volts	1
VSUS15	Suspend Power	1.35	1.65	Volts	1
VSUS15PEX	PCI Express Suspend Power	1.42	1.57	Volts	1
HGTLVREF[1:0]	Host CPU Interface AGTL+ Voltage Reference	0.57	0.77	Volts	1
MEMVREF[1:0]	Memory Voltage Reference	0.86	1.31	Volts	1
VLVREF	V-Link Voltage Reference	0.405	0.687	Volts	1
$V_{ m IN}$	Signals Input voltage	0	$V_{RAIL}\pm10\%$ (Memory&PCI-E: $V_{RAIL}\pm5\%$)	Volts	1,2
$ m V_{OUT}$	Signals Output voltage	0	$V_{RAIL}\pm 10\%$ (Memory&PCI-E: $V_{RAIL}\pm 5\%$)	Volts	1,2

Notes:

^{1.} Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

^{2.} V_{RAIL} is defined as the VCC level of the respective rail. Memory is 2.5V (DDR) or 1.8V (DDR2), and Graphics / Display is 3.3V.

DC Characteristics

Table 22. DC Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 1.6V \pm 5\%$, GND=0V

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	0	0.8	Volts	
$V_{ m IH}$	Input High Voltage	2	VCC	Volts	
V_{OL}	Output Low Voltage	_	0.55	Volts	
V _{OH}	Output High Voltage	2.4	-	Volts	
$ m I_{IL}$	Input Leakage Current	_	10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	_	20	uA	$0 < V_{OUT} < V_{CC}$

Package Thermal Simulation

Heat sink is required for this chip.

Package	Simulation Result Thermal Characterization (unit: °C/W)			
Specification				
	Vflow (m/s)	θја		
HSBGA	0.00	12.35		
37.5 x 37.5 mm	1.00	10.06		
	2.00	8.94		
	4.00	7.96		
	θјс	3.60		
	θјb	6.10		

Vflow (m/s): Velocity of external flow passing by the package

T_j (°C): Junction temperature
T_a (°C): Ambient temperature

T_cx (°C): Temperature on whole top surface equal to ambient temperature

θjc (°C/W): Junction-to-case thermal resistance

 $\theta \mathbf{jc} = (T_j-T_cx) / Power where T case equal to Ta$

θja (°C/W): Junction-to-ambient thermal resistance

 θ **ja** = (T_j-T_a) / Power

θjb (°C/W): Junction-to-board thermal resistance

MECHANICAL SPECIFICATIONS

Figure 4. RoHS and Total Green Mechanical Specifications - HSBGA-951 Ball Grid Array Package with Heat Spreader