ΘΕΜΑ 2

2.1. Ένας δορυφόρος μεταφέρεται από την γήινη επιφάνεια σε ύψος h όπου το βάρος του γίνεται το $\frac{1}{16}$ του βάρους που είχε στην επιφάνεια της Γης. Με κατάλληλη διάταξη ο δορυφόρος τίθεται σε κυκλική τροχιά

Αν το g_0 είναι η επιτάχυνση βαρύτητας στη γήινη επιφάνεια και R η ακτίνα της Γης, τότε η ταχύτητα περιφοράς του είναι:

(a)
$$\frac{1}{16} \sqrt{g_0 R}$$
 (b) $\frac{1}{4} \sqrt{g_0 R}$ (c) $\frac{1}{2} \sqrt{g_0 R}$

$$(\beta)^{\frac{1}{4}}\sqrt{g_0R}$$

(
$$\gamma$$
) $\frac{1}{2} \sqrt{g_0 R}$

2.1.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Η ταχύτητα διαφυγής ενός σώματος, αν εκτοξευτεί από την επιφάνεια της Γης έχει μέτρο u_{δ} . Τοποθετούμε το σώμα σε ύψος h από την επιφάνεια της Γης ως δορυφόρο σε κυκλική τροχιά, ώστε η γραμμική του ταχύτητα να έχει μέτρο $v=\frac{v_{\delta}}{2}$.

Η ένταση του πεδίου βαρύτητας στην γήινη επιφάνεια είναι \mathbf{g}_0 και η ακτίνα της Γης R.

Η ένταση του πεδίου βαρύτητας στο ύψος h είναι:

$$(\alpha)\frac{g_0}{\alpha}$$
,

(β)
$$\frac{g_0}{4}$$
 , (γ) $\frac{g_0}{16}$

$$(\gamma) \frac{g_0}{16}$$

2.2.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9