Réalisation du circuit intégré MOSTEC - Capacités + Diodes diffusées

Etape sous-traitée

Dépôt oxyde humide épais Ouverture des zones actives

<u>Première séance</u>

<u>rice</u>				
	Duré e	Groupe 1 (Lot CAPA)	Groupe 2 (<u>Lot DIODE</u>)	
8h00	30′	Présentation générale salle blanche		
8h30	45'	Observation zones actives – Démo microscope Nettoyage des plaques 4 plaques + 1 substrat vierge	Observation zones actives – Démo microscope Nettoyage des plaques 4 plaques	
9h15	30'	Oxydation thermique des 4 plaques Lot CAPA+ substrat vierge Dopage par diffusion des 4 plaques Lot DIODE Avec D. Constantin		
9h45	60'	Etude oxyde de champ Profilomètre Ellipsométrie	Modélisation dopage Modélisation implantation TRIM	
		Modélisation dopage	Etude oxyde de champ	
10h45 60'		Visite intérieur salle blanche	Etude dopage R-carré substrat R-carré témoin dopé	
		Etude dopage	Visite intérieur salle blanche	
11h45	25'		Retrait du verre de phosphore	
12h10	20'	Présentation pulvérisation cathodique Chargement des plaques dans le bâti de pulvérisation cathodique		

Etapes sous-traitée

Sortie des plaques des fours d'oxydation thermique et de recuit Chargement des plaques dans le bâti de pulvérisation

Deuxième séance

	Durée	Groupe 1 (Lot CAPA)	Groupe <u>DIO</u>	
13h30	30'	Dépôt Aluminium R-carré Alu + Substrat ⇒ ρ (Al)		
14h00	105'	Etalement résine (Ø promoteur adhérence) Photolithographie Niveau 4 Dvpt résine - <i>µscope</i> - durcissement <i>profilomètre ⇒ épaisseur résine</i>		IDEM Niveau 6
15h45	30'	Gravure humide de l'aluminium profilomètre ⇒ e(résine gravée+AI) Observation microscope		IDEM
16h15	15'	Gravure humide résine profilomètre ⇒ épaisseur Al Sélectivité gravure humide		IDEM
16h30	15′	Mesure du motif Nettoyage profilomètre arriè		
16h45	15'	Nettoyage RIE face arrière Mesure du profilome		· · · · ·

Les zones actives sont définies : gravure de l'oxyde de sorte à découvrir la surface du semiconducteur que l'on va utiliser, c'est-à-dire la zone où va se positionner le composant.

Vue en coupe Lot 1

Si P <100>

Plaquette initiale

Oxydation épaisse

→ masque de niveau 2

A l'échelle de la diode : Vue en coupe Lot 2

On oxyde d'abord thermiquement le silicium pour créer une couche passivante de silice de 0,5 à 1µm d'épaisseur.

Les zones actives sont définies : gravure de l'oxyde de sorte à découvrir la surface du semiconducteur que l'on va utiliser, c'est-à-dire la zone où va se positionner le composant.

Si P <100>

Plaquette initiale

Oxydation épaisse

Ouverture des zones actives

→ masque de niveau 2

REALISATION DU DIELECTRIQUE INTER-ARMATURE

Le diélectrique est un film mince (~40 à 80 nm) de dioxyde de silicium. Afin qu'il présente un bon comportement diélectrique, il est important de maîtriser parfaitement les interfaces et la qualité de l'oxyde.

Ainsi, la phase de nettoyage avant l'oxydation est primordiale et l'oxyde mince est réalisé par oxydation thermique sèche suivi d'un recuit sous azote

Nettoyage

Oxydation mince

REALISATION DE LA JONCTION PN

Le substrat étant dopé P, pour réaliser la jonction PN, il est nécessaire de faire diffuser ou d'implanter dans le substrat du phosphore qui se substitue à des atomes de silicium dans le réseau cristallin de façon à le rendre de type N.

Les paramètres expérimentaux sont ajustés de sorte à obtenir des valeurs de profondeur de jonctions adéquates (environ 0,3 µm)

Implantation, nettoyage, recuit

REALISATION DE LA SECONDE ARMATURE (CAPACITE) ET DES CONTACTS METALLIQUES (DIODE)

Une couche d'aluminium est déposée par évaporation ou par pulvérisation cathodique sur l'ensemble de la plaquette.

La couche est ensuite photolithographiée puis gravée pour créer la seconde armature de la capacité et le contact électrique face avant.

Métallisation (Al)

→ masque de niveau 4

Une couche d'aluminium est déposée par évaporation ou par pulvérisation cathodique sur l'ensemble de la plaquette.

La couche est ensuite photolithographiée puis gravée pour créer les plots de contact électrique en face avant.

Métallisation (Al)

Lithogravure de Al → masque de niveau 6

MASQUE DE NIVEAU 2

Ouverture des zones actives dans l'oxyde épais

Suite à la litho gravure de ce masque, seules les zones hachurées sont éliminées.

MASQUE DE NIVEAU 4

Gravure de l'aluminium (capacités)

...

Suite à la litho gravure de ce masque, seules les zones hachurées restent présentes.

DE NIVEAU 6

Gravure de l'aluminium (diodes)

Suite à la litho gravure de ce masque, seules les zones hachurées restent présentes.

Capacités

De gauche à droite :

Capacité MIMsurface utile 320*200μm² Capacité MIMsurface utile 320*200μm² Capacité MIMsurface utile 200*200μm² Capacité MIMsurface utile 100*100μm²

Dans le cadre de ce TP, l'armature en Si-poly est remplacée par une armature en aluminium. Il s'agit donc de capacités MIM (Métal-Isolant-Métal)

<u>Diodes</u>

diode PIN 1 : 50*100μm² diode PIN 2 : 100*100μm²

Attention, du fait de la non réalisation du niveau 4, le contact P se fait en face arrière tandis que le contact N se fait en face avant par le plot du haut. Le plot du bas ne contacte rien.

Par ailleurs, il s'agit de diode PN et non PIN (ca l'isolant n'est pas réalisé sur le lot DIODE)

Diode de grande surface et de petit périmètre surface 200*200µm² périmètre : 800µm

Diode de grande surface et de grand périmètre surface 40*160µm² périmètre : 4056µm

Caractéristiques matériaux

Substrat

Données fabricant

Données mesurées

Orientation e = Dopant $\rho = Dopant$

 $\begin{array}{cccc} Epaisseur & R\acute{e}sistance\ de\ feuille & R\square = \\ R\acute{e}sistivit\acute{e} & R\acute{e}sistivit\acute{e} & \rho = \\ & Dopage & Na = \end{array}$

Oxyde de champs

Epaisseur ellipso $e^{ellipso}(SiO_2)=$ Epaisseur profilomètre $e^{profilo}(SiO_2)=$

______Capacité

Epaisseur oxyde e(oxyde)=

Diode

Dopant

Résistance de feuille (4 pointes) $R\square =$ Résistance de feuille (induction) $R\square =$

Aluminium

 $\begin{array}{ll} Epaisseur & e(Al) = \\ Résistance \ de \ feuille & R \square = \\ Résistivité & \rho = \\ Résistivité \ théorique & \rho^{th}(Al) = \end{array}$

Fiche procédés

Oxyde de champs (sous-traité)

S

-	Technique utilisée
-	Calculer les temps de croissance nécessaire pour obtenir 500 nm de SiO_2 sur silicium par oxydation humide et oxydation sèche à 1050° C
- <u>Netto</u>	Justifier le choix de la technique utilisée
-	Rôle de chaque étape, conséquence sur le caractère hydrophile ou hydrophobe du silicium

- Technique utilisée, justifier
- Profil de température, expliquer le rôle des étapes-clés

Calcul de l'épaisseur théorique d'oxyde, comparer à la valeur mesurée. Quelle est l'épaisseur de Si consommé pour former cette couche de SiO₂?

6

- <u>Diode réalisation de la jonction</u>
 Technique de dopage utilisée, citer une technique de dopage alternative
 - Profil de température, données expérimentales

<u>Dépôt des contacts métalliques</u>
- Description de la technique de dépôt

Paramètre de dépôts

Cible	Pression de travail	
Gaz	Puissance	
Couleur du plasma	Durée	

Epaisseur attendue

Photolithogravure

7

Mesures

Epaisseur (résine)	
Epaisseur (résine gravée + "alu)	
Epaisseur (Alu)	

En déduire la sélectivité de la gravure

Données expérimentales

Résine	Durée (insolation)
Vitesse d'étalement	Durée (développement)
T(séchage)	T(durcissement)
Durée (séchage)	Durée(durcissement)

0	Epaisseur de résine attendue
0	Role du séchage

Gravure aluminium

o Role du recuit

o Données expérimentales

Bain d'attaque	
Température	
Durée	

- o En tenant compte de la vitesse de gravure annoncée, estimer l'épaisseur d'aluminium
- retrait résine (méthode)

$\infty \ \, \frac{\text{Nettoyage face arrière}}{\text{- pourquoi ?}}$

A quel moment et comment est-il effectué

Fiche mesures

Ellipsométrie

-	Décrire la technique
-	Mesure de l'épaisseur d'oxyde de champs Au moins 5 points de mesure différents, calcul de moyenne et déviation standard
-	mesure de l'épaisseur d'oxyde mince (capacité)
∞ <u>Prof</u> -	ilométrie Décrire la technique
-	Mesure de l'épaisseur d'oxyde de champs Comparer à la mesure précédente
-	Mesure de l'épaisseur d'aluminium. En déduire la vitesse de dépôt.

Mesure de résistivité – 4 pointes alignées - Décrire la technique	
- Substrat Tableau de mesure, graphique, résistance de	e feuille, résistivité, dopage
- Jonction PN (témoin diffusé pleine plaque ou tér Tableau de mesure, graphique, résistance de	
Mesure de résistivité – méthode inductive - Décrire la technique	
- Substrat résistance de feuille, comparer aux résultats	précédemment obtenus
 Aluminium résistance de feuille, résistivité; justifier que l'aluminium 	e la résistance de feuille mesurée est bien celle de

Jonction PN (témoin diffusé ou implanté pleine plaque) résistance de feuille.

L'OXYDATION

Introduction:

L'oxydation est un procédé technologique qui permet de créer à la surface du silicium un oxyde (SiO₂) par un simple apport d'oxygène, le silicium étant issu du substrat. Dans le circuit MOSTEC, l'oxyde est utilisé, soit comme isolant entre composant, soit comme diélectrique dans les composants (grille de transistor MOS, diélectrique au sein de capacités...). L'oxydation du silicium est effectuée à haute température (700 à 1250°C) en présence d'un courant gazeux oxydant (oxyde thermique).

L'OXYDATION THERMIQUE:

• Principe :

- On forme une couche de silice SiO₂ à la surface de la plaquette de silicium par oxydation dans un four à haute température (voir figure) parcouru par un courant gazeux oxydant. On distingue deux types d'oxydation selon la nature de l'oxydant :
 - l'oxydation sèche est réalisée en présence d'un courant gazeux d'oxygène sec, selon :

$$\langle Si \rangle + O_2 \rightarrow \langle SiO_2 \rangle$$

- l'oxydation humide, beaucoup plus rapide, se caractérise par un courant d'oxygène chargé en vapeur d'eau, soit :

$$\langle Si \rangle + 2 \text{ H}_2O \rightarrow \langle SiO_2 \rangle + 2 \text{ H}_2$$

Système d'oxydation thermique.

Pour réaliser des oxydes épais, on utilisera l'oxydation humide car plus rapide. Toutefois, l'oxyde humide étant plus poreux que l'oxyde sec, ce mode d'oxydation sera suivi d'un oxyde sec de manière à densifier l'oxyde total. De même, l'opération d'oxydation sera commencée en oxygène sec de façon à obtenir une interface Si/SiO2 de bonne qualité.

Pour les oxydes minces, de l'ordre de quelques Angströms, l'oxygène sec donne des taux de croissance encore relativement élevés. Pour bien contrôler les faibles épaisseurs, on utilise alors l'effet de dilution de l'oxygène dans un gaz neutre, tel que l'azote ou l'argon.

• Cinétique de croissance :

La cinétique d'oxydation du silicium dépend essentiellement de deux phénomènes :

- la réaction à la surface Si/SiO₂ $\langle Si \rangle +O_2 \rightarrow \langle SiO_2 \rangle$

- la diffusion de l'oxygène à travers la couche d'oxyde déjà formée.

L'épaisseur d'oxyde formé évolue alors avec le temps suivant une loi parabolique-linéaire :

$$e^2 + A.e = B.t$$
 (modèle de Deal et Grove)
où e est l'épaisseur d'oxyde formé
 t le temps d'oxydation

B une constante qui caractérise la diffusion de O₂ dans

SiO₂

B/A une constante qui caractérise la réaction à l'interface.

Les paramètres *B* et *B/A* sont liés au dopage, aux conditions de température et de pression des gaz et sont très différents selon que l'oxydation est sèche ou humide. C'est ainsi qu'à 1000°C, il faut 8h pour obtenir une épaisseur de 2000Å en oxygène sec, alors qu'une même épaisseur est obtenue en moins d'une heure en oxydation humide. Les figures de la page suivante permettent de déterminer la constante *B* et le rapport *B/A* en fonction de la température et des conditions d'oxydation. Durant l'oxydation, il y a consommation de Si, et par conséquent, l'interface Si/SiO₂ se déplace vers l'intérieur de la plaquette. On admet en première approximation que :

$$e_{Si} = 0.44 e_{Ox}$$

où e_{Si} est l'épaisseur de Si consommé et e_{Ox} l'épaisseur d'oxyde formé..

Les températures élevées ainsi que la consommation du silicium font que l'oxydation thermique n'est pratiquée qu'au cours des premières étapes du processus technologique (oxyde épais) sous peine de modifier profondément les structures existantes (interdiffusion des différents matériaux empilés).

• Qualité de l'interface Si/SiO2 :

La tension de claquage de SiO_2 est de l'ordre de 12MV/cm (soit pour une épaisseur de l'oxyde de grille de $600 \mathring{A}$, une tension de 72V théorique). Toutefois, cette valeur n'est atteinte que si l'interface Si/SiO_2 est parfaite, ce qui suppose une bonne qualité "mécanique" et électrique du SiO_2 formé qui est en général fortement dépendant de la procédure de nettoyage du substrat avant l'oxydation. De plus, afin de diminuer la densité des charges à la surface, un recuit final est réalisé (10 min à $1050^{\circ}C$ sous azote).

Evolution de B et B/A en fonction de la température pour différents types d'oxydation (Si, orientation (100)).

B.E. Deal and Grove, Journal of Applied Physics, Vol. 36, page 3770 (1965)

• Contrôle de l'épaisseur :

Le contrôle de l'épaisseur d'oxyde peut être réalisé par différentes méthodes, telle que la filométrie mécanique (alphastep) ou l'ellipsométrie. Une première indication de aisseur est donnée par la couleur réfléchie par la plaquette de silicium recouverte de ce, éclairée en lumière blanche sous incidence normale (cf. tableau).

Couleur	Epaisseur (en microns)			
Gris	0,01			
Brun	0,05			
Bleu	0,08			
Violet	0,10	0,28	0,46	
Bleu	0,15	0,30	0,49	0,65
Vert	0,18	0,33	0,52	0,68
Jaune	0,21	0,37	0,56	0,72
Rouge	0,25	0,44	0,62	0,75