电路与模拟电子技术实验 实验报告

班级___04022306__ 姓名_谢宝玛__ 学号_1120233506_ 成绩____

实验三 一阶电路响应的研究					
实验日期	11.7	实验分组	晚上		
桌号	4	同组同学姓名 或编号	97		

一、实验目的

- 1. 掌握 一阶 RC 电路零状态响应、零输入响应的概念和基本规律;
- 2. 掌握 一阶 RC 电路时间常数的测量方法;
- 3. 熟悉示波器的基本操作,初步掌握利用示波器监测电信号参数的方法;
- 4. 掌握 Multisim 使用用法;
- 5. 基于 Multisim 进行二阶电路的响应仿真(实验报告)
- 二、实验仪器和设备
- 1. 示波器;
- 2. 函数发生器;
- 3. 直流电源。
- 三、实验内容与要求
- (一)、一阶 RC 电路的零输入响应的仿真与实验验证计算过程:

Uc $(\infty)=9.9 \text{ V}$

Uc $(\tau)=9.9\times0.632=6.256 \text{ V}$

测量值: ΔV=6.256V 时对应的Δt

理论计算值: τ =RC=100 ms

1, 仿真电路

2, 示波器波形

3,实验电路

(二)一阶 RC 电路的零状态响应 仿真与实验验证计算过程:

Uc (∞)=9.9 V

Uc (τ)=9.9×0.368=3.643 V

测量值: ΔV=3.643V 时对应的Δt

理论计算值: τ =RC=100 ms

1, 仿真电路

2, 示波器波形

3,实验电路

(三)一阶 RC 电路的全响应 仿真与实验验证

理论计算:

$$\tau = R6 \times C3 = 100 \Omega \times 10 \mu F = 1 ms$$

$$U_{c}$$
 (t)=10V-6V× $e^{-(t/1 ms)}$ =7.81V

1, 仿真电路

3, 示波器图像

3,实验电路

实验表格

电路形式		零输入响应	零状态响应	全响应
元件参数		R=10kΩ, C=10uF		预习时根据仿真 电路中 开关初始 状态确定RC,实 际测试时保持状 态一 致
Uc (t)		Uc(τ)=9.9×0.632=6. 256 V	Uc(τ)=9.9×0.368 =3.643 V	Uc (t)=10V -6V× $e^{-(t/1)}$ ms) =7.81V
时间常 数 T	理论值	100 ms	100 ms	1 ms
	仿真值	99.461 ms	98.242 ms	1.117 ms
	测量值	100 ms	102 ms	1 ms

(四)基于函数发生器的一阶 RC 电路的零状态响应

1 通道输入信号的相关参数:

幅度:5 V 周期:1 ms 脉宽:0.5 ms

示波器结果

 Δ V=5.040 V;

Y2=3.865 V;

5. 040*0. 632=3. 185 V;

Y1=3.865-3.185=0.68 V

对应的 Δ t = τ = 21 μ s;

(五)基于函数发生器的一阶 RC 电路的零输入响应

1 通道输入信号的相关参数:

幅度:5 V 周期:1 ms 脉宽:0.5 ms

示波器结果

 $\Delta V = 5.040 \text{ V}$;

Y2=-3.065 V;

5. 040*0. 632=3. 185 V;

Y1=-3.065+3.185=0.12 V

对应的 $\Delta t = \tau = 20 \mu s$;

四、实验总结、收获体会和建议(包括实验出现的问题及处理方法)

1. 问题: 示波器显示三角波型

解决方法:输出电压源的输出波应调为方波

2. 问题: 4,5 实验测量误差过大

解决办法:调小示波器的刻度,使图形变宽后测量

五,思考题

(-)

改变输入信号的幅度不会改变电路过渡过程的快慢。这是因为过渡过程的速度是由电路本身的物理特性(如电阻和电容的值)决定的,主要由电路的时间常数来决定而与输入信号的幅度无关

 $(\underline{})$

1, 欠阻尼

2, 临界阻尼

3,过阻尼

临界阻尼状态下的临界阻值 $R=850\,\Omega$