

Parcours Data Scientist

Projet 8: Veille Technologique Recurrent Neural Networks

Sommaire

- Principe du RNN
 - Problèmes liés
 - Utilisation
- Etat de l'art
 - Simple RNN
 - LSTM
 - GRU
 - QRNN
- Evaluation
- Conclusion

hand-designed feature extraction Classication objective function ERROR RATE deep bidirectional LSTM ence transcription tasks word error rate neural network architecture End-to-End Speech Recognition Recurrent Neural Learning dealing words Neural Network Soutput sequence activation Recurrent Neural network architecture End-to-End Speech Recognition Recurrent Neural Networks Bidirectional RNNs anguage model pronunciation dictionary word sequence Connectionist Temporal Classication transcription loss function prior linguistic information Memory architecture Schmidhuber

Maximum Mutual Information

Principe du RNN

- Prédictions sur des données temporelles
 - Sorties récurrentes
- Utilisation multiples
 - Retards
 - analyse de texte
 - Traduction

— ...

- Back propagation différente
 - BP dans le temps et l'espace
- Problème
 - Vanishing Gradient

Principe du RNN

- Utilisation
 - 1-to-1: Classification simple
 - 1-to-N: Générateur
 - N-to-1 : Classification « complexe »
 - N-to-N: Traduction / multi Classification

31/01/2018

- Simple RNN
 - 1970's
 - Pb Vanishing Gradient
 - Rapide (calcul simple)
 - Peu utilisé

- $S(t) = f\left(\sum_{inputs} a_i * x_i(t) + h\left(\sum_{inputs} a_i * x_i(t-1)\right)\right)$
- $S(t) = f\left(\sum_{inputs} a_i * x_i + b2 * (S(t-1))\right)$

- LSTM 1997
 - 2 portes + 2 Etats
 - Hidden & Cell State
 - Input & Output Gate
- LSTM 2000
 - 3ème porte
 - Forget Gate
- Performances très hautes (x_{t-1})
- Gourmant en calcul
- Nombreuses variations

- GRU
 - -2014
 - Plus rapide que LSTM
 - Même performances
 - Basé sur LSTM
 - 1 état (Hidden State)
 - 2 portes
 - Update Gate
 - Reset Gate

QRNN

- 2016/2017 (https://arxiv.org/abs/1611.01576)
- Nouvelle architecture (Parallélisme des calculs)
- Plus rapide que LSTM/GRU
- Performances encore basses

		Sequence length				
		32	64	128	256	512
Batch size	8	5.5x	8.8x	11.0x	12.4x	16.9x
	16	5.5x	6.7x	7.8x	8.3x	10.8x
	32	4.2x	4.5x	4.9x	4.9x	6.4x
	64	3.0x	3.0x	3.0x	3.0x	3.7x
	128	2.1x	1.9x	2.0x	2.0x	2.4x
	256	1.4x	1.4x	1.3x	1.3x	1.3x

QRNN

31/01/2018

- Dataset: Large Movie Review Dataset
- Type : Analyse de Sentiments
- Contenu: 25k commentaires train + 25k test
 - (50 % positifs et Négatifs)
 - Longueur de la séquence à choisir
 - Dataset préparé
- Evaluation à topologie identique
 - 1 Embedding Layer (1 -> 128 dimensions)
 - 1 Cellule SRNN/LSTM/GRU/QRNN
 - 1 Layer FC + Sigmoïde
 - Optimiser : Adam
 - Metriques : Accuracy, Loss, Temps
 - 1 Epoch (Overfitting)

31/01/2018

31/01/2018

MINE Nicolas

31/01/2018

- 15

- 12

- 9

- 6

- Pas les Performances souhaitées
 - Possibilité d'optimisations importantes
 - Régularisations
 - Stride/Kernel
 - Dropout (1D)
 - Gradient Clipping
 - Modèles récent
 - Evolutions possible (LSTM)
- Pas le gain de temps évalué
 - Différents critères
 - Différents GPU?
 - Modèle non optimisé (Github)?

31/01/2018

Conclusion

- Forte évolutions en 50 ans
- Champ d'application très large
- Très démocratisé (traduction, Analyse de sentiments, classification)
- 30 ans de flottements
- Encore limite (musique : GANs)
- LSTM très majoritaire
- QRNN encore un peu jeune mais prometteur
- Le synthetic gradient : novateur contre VG/EG?

31/01/2018

