§16. Логарифмические частотные характеристики

Исследование частотных свойств САУ значительно упрощается, если использовать частотные характеристики, построенные в логарифмическом масштабе. Такие характеристики называются логарифмическими частотными характеристиками (ЛЧХ).

Выясним, что они собой представляют. Для этого прологарифмируем $W(j\omega)$, выраженную в показательной форме:

$$\lg W(j\omega) = \lg A(\omega) + j\varphi(\omega) \lg e$$
.

В полученном выражении величина $\lg A(\omega)$ характеризует изменение системой амплитуд гармонических колебаний. За единицу измерения этого изменения принята величина 1 $\mathit{Бел}$, равная усилению сигнала по мощности в 10 раз. Так как мощность гармонического сигнала пропорциональна квадрату его амплитуды, то при использовании этой единицы для измерения отношения амплитуд перед логарифмом $\lg A(\omega)$ необходимо добавить множитель 2. Например, если на некоторой частоте $A(\omega) = 100$, то это означает, что мощности входного и выходного сигналов отличаются в 100^2 раз, т.е. на $2\lg 100 = 4$ $\mathit{Бел}$. В ТАУ используют единицу в 10 раз меньше - 1 $\mathit{∂Бел}$. Тогда перед логарифмом $\lg A(\omega)$ необходимо добавлять коэффициент 20, т.е. $20\lg A(\omega)$.

График зависимости $L(\omega) = 20\lg A(\omega)$, построенный в логарифмическом масштабе частот, называется логарифмической амплитудной частотной характеристикой (ЛАЧХ).

За единицу измерения по оси частот принимают $\partial e \kappa a \partial y$ - интервал, на котором частота увеличивается в 10 раз. Применяется также деление оси ω на октавы - 1 октава соответствует удвоению частоты. Тогда 1 $o \kappa m = \lg \left(2 \omega_{\parallel} / \omega_{\parallel} \right) = \lg \ 2 = 0,301 \ \partial e \kappa$.

Отметим, что для удобства пользования логарифмическим масштабом на отметке, соответствующей значению $\lg \omega$, обычно пишут само значение ω .

Логарифмирование оси частот позволяет сжать изображение в области частот $\omega > 1$ c^{-1} и растянуть его в области $\omega < 1$ c^{-1} . При этом точке

 $\omega = 0 \ c^{-1}$ соответствует значение $\lg \omega = -\infty$. Поэтому при построении ЛЧХ ось ординат проводят через некоторую произвольную точку, а не через точку $\omega = 0 \ c^{-1}$.

График зависимости фазовой частотной функции $\varphi(\omega)$ от логарифма частоты $\lg \omega$ называется логарифмической фазовой частотной характеристикой ЛФЧХ.

Пример 3.5.

Определить логарифмические частотные характеристики для условий примера 3.4.

Решение.

Воспользовавшись результатами, полученными в ходе решения примера 3.4, запишем:

$$L(\omega) = 20 \cdot \lg A(\omega) = 20 \cdot \lg \frac{10}{\sqrt{(1 - 0.09\omega^2)^2 + 0.09\omega^2}} =$$

$$= 20 \cdot \lg 10 - 10 \cdot \lg \left[(1 - 0.09\omega^2)^2 + 0.09\omega^2 \right] = 20 - 10 \cdot \lg \left[(1 - 0.09\omega^2)^2 + 0.09\omega^2 \right]_{\Box}$$

Соответствующие графики представлены на рис. 3.6. φ

Рис. 3.6

Использование ЛЧХ дает следующие преимущества:

- 1. Характеристики имеют меньшую кривизну и поэтому могут быть приближенно заменены ломаными линиями, составленными из нескольких прямолинейных отрезков *). Эти отрезки в большинстве случаев строятся достаточно просто.
- 2. В логарифмической системе координат легче находить суммарные характеристики различных соединений элементов.