Base de données réparties - Algèbre Relationnelle-

Pr. EL KABTANE Hamada

Définition

- Langage procédural : indique comment construire une nouvelle relation à partir d'une ou plusieurs relations existantes.
- Langage abstrait, avec des opérations qui travaillent sur une (ou plusieurs) relation(s) pour définir une nouvelle relation sans changer la (ou les) relation(s) originale(s).
- Le résultat de toute opération est une relation (propriété de fermeture).

Les opérations de l'algèbre relationnelle

Les opérations fondamentales:

- Sélection
- Projection
- Produit cartésien
- Union
- Différence

Autres opérations:

- Jointure
- Intersection
- Division
- ...

Les opérateurs algébriques

Les opérateurs ensemblistes :

- Union
- Intersection
- Différence
- Produit

Autres opérations:

- Sélection
- Jointure
- Projection
- Division

Les opérateurs algébriques

Exemple:

- Client (<u>numClt</u>, nom, adresse, tel)
- Produit(<u>refProd</u>, marque, prix)
- Vente(<u>num</u>, #refProd, #numClt, date)

numClt	nom	adresse	tel
11/	Khalid	Marrakech	0655443322
12	Laila	Casa	NULL
13	Naima	Casa	NULL
14	Ahmed	Fès	0622334455

refProd	marque	prix
21	BMW	80000 DH
22	Peugeot	74000 DH
23	Toyota	67200 DH
24	Citroen	70000 DH

num	refProd	numClt	date
31	21	11	12/10/2023
32	22	12	20/11/2023
33	23	12	01/12/2023
34	24	14	02/12/2023

Les opérateurs unaires

■ Soit R(a1, ..., an) une relation:

• Selection $\sigma_{\text{predicat}}(R)$:

• La sélection travaille sur R et définit une relation qui ne contient que les tuples de R qui satisfont à la condition (prédicat) spécifiée.

■ Projection $\pi_{a1,...,an}(R)$:

 La projection travaille sur R et définit une relation restreinte à un sous-ensemble des attributs de R, en extrayant les valeurs des attributs spécifiés et en supprimant les doublons.

Opérateur SELECTION

■ Exemple:

• σ_{adresse=Casa} (Client):

numClt	nom	adresse	tel
11	Khalid	Marrakech	0655443322
12	Laila	Casa	NULL
13	Naima	Casa	NULL
14	Ahmed	Fès	0622334455

- La relation résultante a le même schéma que la relation d'origine.
- Expression de la sélection: =, ≠, <, ≤, >, ≥, ^, ¬, v

Opérateur SELECTION

Exercice:

- Afficher les clients qui habitent Casa ou Marrakech.
- Afficher les ventes du client numéro 32 effectuées le 20/11/2023.
- Afficher les clients qui n'habitent pas à Fès.

Solution:

- σ_{adresse='Casa'} or adresse='Marrakech'</sub> (Client)
- σ_{numClt=32} and date='20/11/2023'</sub> (Vente)
- σ_{not(adresse = 'Fes')} (Client)

Opérateur Projection

- La projection: Sélection de certaines colonnes d'une relation
- Exemple:
 - π nom, tel (Client):

numCli	nom	adresse	tel
11	Khalid	Marrakech	0655443322
12	Laila	Casa	NULL
13	Naima	Casa	NULL
14	Ahmed	Fès	0622334455
)	

Opérateur Projection

Exercice:

- Afficher la référence du produit et numéro du client.
- Afficher le nom et l'adresse des clients de Casa.

Solution:

- π refProduit, numClt (Vente)
- π nom, adresse (σadresse='Casa' (Client))

Opérations ensemblistes

Soient R(a1, ..., an) et S(b1, ..., bm) deux relations

■ Union RUS:

 L'union de deux relations R et S définit une relation qui contient tous les tuples de R, de S ou à la fois de R et S. Les doublons sont éliminés.

Différence d'ensembles: R-S

• La différence définit une relation qui comporte les tuples qui existe dans la relation R et non dans S.

■ Intersection R ∩ S:

• L'intersection définit une relation constituée de l'ensemble de tous les tuples présents dans R et S.

Operateur UNION

Soient R1 et R2 deux relations de même schéma.

R1 U R2 est la relation contenant les tuples (colonnes sans doublons) appartenant à R1 et R2.

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	сЗ	
-	d1	d2	d3	7

P2	A1	A2	A3	
K2	a1	a2	a3	*
	e1	e2	e3	
1	b1	b2	b3	*

U	N	Ι	O	N
R1	U	R	2	

Relation temporaire c1 d1

A1	A2	A3
a1	a2	a3
b1	b2	b3
c1	c2	с3
d1	d2	d3
e1	e2	e3

Suppression des lignes identiques

commutatif: [R1 \cup R2] = [R2 \cup R1]

associatif: $[(R1 \cup R2) \cup R3] = [R2 \cup (R1 \cup R3)]$

Operateur INTERSECTION

Soient R1 et R2 deux relations de même schéma.

R1 N R2 est la relation contenant les tuples (colonnes sans doublons) appartenant à R1 et R2.

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

p2[A1	A2	A3	
~2	a1	a2	a3	*
1	e1	e2	e3	
1	b1	b2	b3	*

INTERSECTION

R1∩R2

 A1
 A2
 A3

 a1
 a2
 a3

 b1
 b2
 b3

On garde que les lignes identiques

Relation temporaire

commutatif: $[R1 \cap R2] = [R2 \cap R1]$ associatif: $[(R1 \cap R2) \cap R3] = [R2 \cap (R1 \cap R3)]$

Operateur DIFFERENCE

Soient R1 et R2 deux relations de même schéma.

R1 - R2 est la relation contenant les tuples (colonnes sans doublons) de R1 n'appartenant pas à R2.

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

R2	A1	A2	A3	
~2	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

DIFFERENCE

R1-R2

Relation temporaire

A1	A2	A3
c1	c2	c3
d1	d2	d3

Non commutatif: $[R1 - R2] \neq [R2 - R1]$

Non associatif: $[(R1 - R2) - R3] \neq [R2 - (R1 - R3)]$

Opérations ensemblistes

Soit R(a1, ..., an) et S(b1, ..., bm) deux relations

Produit cartésien R x S:

 Le produit cartésien définit une relation constituée de la concaténation de tous les tuples de la relation R avec tous ceux de la relation S.

Α	В	С
a1	b1	c1
a2	b2	c2
a3	b3	c3

X	Y		
x1	y1		
x2	y2		

Α	В	С	X	Y
a1	b1	c1	x1	у1
a2	b2	c2	x1	у1
a3	b3	c3	x1	у1
a1	b1	c1	x2	y2
a2	b2	c2	x2	y2
a3	b3	c3	x2	y2

Propriétés de la structure

Même schéma:

- degré (R1 U R2) = degré(R1) = degré(R2)
- \blacksquare degré (R1 \cap R2) = degré(R1) = degré(R2)
- degré (R1 R2) = degré(R1) = degré(R2)

Schéma quelconque:

degré (R1 x R2) = degré(R1) + degré(R2)

Opérations de jointure

■ Jointure thêta (θ-join): R ⋈_p S

- La thêta-jointure définit une relation qui contient les tuples qui satisfont le prédicat « p » du produit cartésien de R et S. Le prédicat « p » est de la forme R.ai θ S.bj où θ est l'un des operateurs de comparaison (=, ≠, <, ≤, >, ≥).
- Si le prédicat « p » est l'égalité (=) on parle d'équijointure.
- Jointure naturelle: R * S
 - La jointure naturelle est une équijointure des relations R et S sur tous les attributs communs en retirant les occurrences multiples d'attributs.

Opérations de jointure

La jointure : opération JOIN, noté : ⋈ - combine une paire de tuples de deux relations en une seule tuple.

Client	\bowtie	Vente
num	éro = no_c	lient

numéro	nom	adresse	tel	num	refProd	numClt	date
11 /	Khalid	Marrakech	0655443322	31	21	11	12/10/2023
12	Laila	Casa	NULL	32	22	12	20/11/2023
13	Naima	Casa	NULL	33	23	12	01/12/2023
14	Ahmed	Fès	0622334455	34	24	14	02/12/2023

La relation résultante aura autant d'attributs que le produit cartésien (degré(client)+degré(Vente))

Opérateur JOINTURE / Theta-JOINTURE

Exercice:

- Afficher le nom des clients avec les dates de leurs achats.
- Afficher pour le client numéro 125, le numéro de vente et la marque des produits achetés.

Opérateur JOINTURE / Theta-JOINTURE

■ Exercice :

 Afficher la référence des produits dont le prix est supérieur au produit qui a pour référence 23.

```
Q3 P1 = \rho (Produit) opérateur de renommage

P2 = \sigma (P1)
P1.référence = 23

Res = \pi (Produit P2)
Produit.référence Produit.prix > P1.prix
```

Opérateur EQUIJOINTURE / JOINTURE NATURELLE

- Théta-jointure avec l'opérateur =
- Equijointure la condition fait appel à l'operateur =
- **■** Jointure **naturelle** noté *:

Équijointure dont la collection porte sur des attributs identiques (de même domaine et même nom)

Un seul des deux attributs est conservé dans le résultat.

π (Client Vente)
Client.nom, Vente.date Client.numéro = Vente.no_client

ou

Renommage Client.numéro en Client.no_client

π (Client * Vente)
Client.nom, Vente.date

Autres jointures

- Jointure externe gauche entre R et S: 🔀
 - La jointure externe gauche est une jointure dans laquelle les tuples de la relation R qui n'ont pas nécessairement de valeur correspondante dans S parmi les attributs communs de R et S, sont également inclus dans la relation résultante. Les valeurs manquantes dans la seconde relation sont mises à nul.
- Jointure externe droite entre R et S:
 - Le résultat conserve tous les tuples de la relation de droite.
- Jointure externe complète entre R et S:
 - Le résultat reprend tous les tuples de deux relations et remplit de nuls les attributs absents pour tous les cas de non correspondance.
- Semi-jointure entre R et S:
 - La semi-jointure définit une relation qui contient les tuples de R qui participent à la jointure de R avec S.

Opérateur de division

- Supposons que la relation R soit définie sur l'ensemble d'attributs A et que la relation S soit définie sur l'ensemble d'attributs B, de telle sorte que B ⊆ A. soit C= A – B.
- Division R ÷ S

La division définit une relation sur les attributs C, constituée de l'ensemble des tuples de R qui correspondent à la combinaison de tous les tuples de S.

$$T_1 = \Pi_C (R)$$

 $T_2 = \Pi_C ((S \times T_1) - R)$
 $T = T_1 - T_2$

Opérateur de division

■ La division : operateur **DIVIDE**, noté: ÷, utilisé pour répondre à des requêtes du type: « Quels sont les références des produits achetés par tous les clients? »

R1 =
$$\pi$$
 (Vente. ref_produit, Vente. no-client R2 = π (Client) Client. numéro RES = R1 ÷ R2

Operateur de renommage

- Opérateur rename, noté α
- Changer le nom d'un ou plusieurs attribut(s) d'une relation R:
- α [old_attr1: new_name_attr1, ...] R
- Utile avant les jointures.