TD 4 STATISTIQUE - 1SN

Exercice 1.

Afin de tester la satisfaction des clients à service donné, on effectue un sondage et on définit une variable aléatoire Y_i de la façon suivante :

 $Y_i = 1$ si le client i est satisfait

 $Y_i = 0$ si le client i n'est pas satisfait

A l'aide d'un échantillon $(Y_1,...,Y_n)$ de même loi de Bernoulli

$$P[Y_i = 0] = \theta$$

$$P[Y_i = 1] = 1 - \theta$$

on désire tester les hypothèese $H_0: \theta = \theta_0 = 0.52$ et $H_1: \theta = \theta_1 = 0.48$.

- 1. Construire la vraisemblance des observations $y_1, ..., y_n$ et expliciter la région de rejet de H_0 du test de Neyman-Pearson (pour l'application numérique, on choisira un risque de première espèce $\alpha = 0.1$).
- 2. Déterminer la puissance de ce test.

Exercice 2. Soit $X_1, ..., X_n$ un échantillon d'une loi normale de moyenne m et de variance σ^2 . On veut faire le test d'hypothèses binaires suivant :

 $H_0: m=m_0; \sigma^2$ quelconque

 $H_1: m \neq m_0; \sigma^2$ quelconque

Pour construire le test, on retient le test du rapport des vraisemblances maximales ou test GLR (Generalized Likelihood Ratio).

- 1. On suppose $m=m_0$ connu. Rappeler l'estimateur du maximum de vraisemblance (EMV) de σ^2 .
- 2. Lorsque m et σ^2 sont inconnus, rappeler leurs estimateurs du maximum de vraisemblance.
- 3. Donner la forme du test GLR.
- 4. En décomposant $\sum_{i=1}^{n} (x_i m_0)^2$, montrer que l'on peut définir un test équivalent à l'aide de la statistique

$$T_n = \frac{\overline{X} - m_0}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

5. On rappelle que sous l'hypothèse H_0 , les deux variables aléatoires

$$U = \frac{\overline{X} - m_0}{\sigma / \sqrt{n}}$$
 et $V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}$

ont des lois connues $U \sim \mathcal{N}(0,1)$ et $V \sim \chi^2_{n-1}$. En déduire la loi de T_n . Soit $\alpha = 5\%$ le risque de première espèce. Donner la région critique du test effectué à l'aide de T_n .

1

Exercice 3.

On considère les observations $x_i, i=1,...,n$ (avec n=10) définies par

$$x_1 = 1 \mid x_2 = 0 \mid x_3 = 1 \mid x_4 = 1 \mid x_5 = 1 \mid x_6 = 1 \mid x_7 = 1 \mid x_8 = 2 \mid x_9 = 0 \mid x_{10} = 0$$

On suppose que les variables aléatoires associées à ces observations sont indépendantes et issues de la même loi de Poisson $P(\lambda)$. On rappelle que si X suit une une loi de Poisson de paramètre λ , on a $E[X] = \text{var}[X] = \lambda$ et $\varphi_X(t) = E[e^{itX}] = \exp[\lambda(e^{it} - 1)]$. On désire tester les deux hypothèses

$$\left\{ \begin{array}{l} H_0: \lambda = \lambda_0 \text{ (absence de planète)} \\ H_1: \lambda = \lambda_1 \text{ (présence de planète)} \end{array} \right.$$

avec $\lambda_1 < \lambda_0$.

- 1. Vérifier que la statistique du test de Neyman-Pearson peut s'écrire $T = \sum_{i=1}^{n} X_i$ et déterminer la région critique associée.
- 2. Déterminer la fonction caractéristique de T et en déduire que T suit une loi de Poisson que l'on précisera sous chaque hypothèse.
- 3. Préciser le test de puissance maximale tel que le risque de première espèce α vérifie $\alpha \leq 0.05$. On précisera le risque maximal α , la décision prise au vu des données $x_i, i=1,...,10$ et la puissance de ce test. Pour les applications numériques, on prendra $\lambda_0=1$ et $\lambda_1=0.1$.
- 4. On suppose que *n* est suffisamment grand pour pouvoir utiliser les résultats du théorème de la limite centrale.
 - Donner la loi approchée de T issue de ce théorème.
 - Quelle est la valeur du seuil obtenue lorsqu'on confond la loi de T avec son approximation. En comparant avec la valeur obtenue précédemment, dire ce que vous pensez de cette approximation pour n=10.
 - Déterminer les courbes COR (caractéristiques opérationnelles du récepteur) découlant de cette loi approchée. On posera

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

et on notera $\Phi^{-1}(x)$ son inverse. En supposant que n est suffisamment grand pour faire les approximations nécessaires, déterminer les paramètres qui influent sur la performance asymptotique $(n \to \infty)$ du test. De ces deux cas

2

Premier Cas : $n = 100, \lambda_0 = 1, \lambda_1 = 0.1$

Deuxième Cas : $n = 100, \lambda_0 = 2, \lambda_1 = 1.1$

indiquer celui qui engendre la meilleure performance.

Correction exercice 1

1) La vraisemblance de ce problème est

$$L(y_1, ..., y_n; \theta) = \prod_{i=1}^n P[Y_i = y_i]$$
$$= \prod_{i=1}^n \theta^{1-y_i} (1-\theta)^{y_i}$$
$$= \theta^{n-n\overline{y}} (1-\theta)^{n\overline{y}}$$

avec

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

On rejette donc H_0 si

$$\frac{L(y_1,...,y_n;\theta_1)}{L(y_1,...,y_n;\theta_0)} > K_\alpha \Longleftrightarrow \overline{y} \ln \left(\frac{\theta_0}{\theta_1} \frac{1-\theta_1}{1-\theta_0} \right) > S_\alpha$$

Pour $\theta_0=0.52$ et $\theta_1=0.48$, on a

$$\frac{\theta_0}{\theta_1} \frac{1 - \theta_1}{1 - \theta_0} = \left(\frac{0.52}{0.48}\right)^2 > 1$$

donc on rejette H_0 si

$$\overline{y} > \nu_{\alpha}$$

où ν_{α} est un seuil dépendant du risque de première espèce α . Pour déterminer ce seuil, on se fixe une valeur de α

$$\alpha = P \left[\text{Rejeter } H_0 \middle| H_0 \text{ vraie} \right]$$

$$= P \left[\overline{Y} > \nu_{\alpha} \middle| \theta = \theta_0 \right]$$

En utilisant le théorème de la limite centrale, on peut approcher la loi de \overline{Y} comme suit

$$\overline{Y} \sim \mathcal{N}\left(1 - \theta, \frac{\theta\left(1 - \theta\right)}{n}\right)$$

Donc

$$\alpha = P \left[U = \frac{\overline{Y} - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} > \frac{\nu_\alpha - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} \right] U \sim \mathcal{N}(0, 1)$$

$$= 1 - F \left(\frac{\nu_\alpha - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} \right)$$

On en déduit

$$\frac{\nu_{\alpha} - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{r}}} = F^{-1} (1 - \alpha)$$

où F est la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$, d'où

$$\nu_{\alpha} = \sqrt{\frac{\theta_0 (1 - \theta_0)}{n}} F^{-1} (1 - \alpha) + (1 - \theta_0)$$

2) La puissance du test est

$$\pi = P \left[\text{Rejeter } H_0 \middle| H_1 \text{ vraie} \right]$$

$$= P \left[\overline{Y} > \nu_\alpha \middle| \theta = \theta_1 \right]$$

$$= 1 - F \left(\frac{\nu_\alpha - (1 - \theta_1)}{\sqrt{\frac{\theta_1 (1 - \theta_1)}{n}}} \right)$$

Correction exercice 2

1)
$$\tilde{\sigma}_{MV}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m_0)^2$$

2)
$$\hat{m}_{MV} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \hat{\sigma}_{MV}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$

3) Le test GLR est défini par

Rejet de
$$H_0$$
 si $\frac{L\left(X_1,...,X_n;H_1\right)}{L\left(X_1,...,X_n;H_1\right)}>S_{\alpha}$

c'est-à-dire

Rejet de
$$H_0$$
 si
$$\frac{\left(2\pi\hat{\sigma}_{MV}^2\right)^{-n/2}\exp\left[-\frac{1}{2\hat{\sigma}_{MV}^2}\sum\left(X_i-\overline{X}\right)^2\right]}{\left(2\pi\tilde{\sigma}_{MV}^2\right)^{-n/2}\exp\left[-\frac{1}{2\tilde{\sigma}_{MV}^2}\sum\left(X_i-m_0\right)^2\right]} > K_{\alpha}$$

c'est-à-dire

Rejet de
$$H_0$$
 si $\frac{\tilde{\sigma}_{MV}^2}{\hat{\sigma}_{MV}^2} > S_{\alpha} \Leftrightarrow \frac{\sum (X_i - m_0)^2}{\sum_{i=1}^n (X_i - \overline{X})^2} > S_{\alpha}$

4) On décompose $\sum (X_i - m_0)^2$ comme suit

$$\sum (X_i - m_0)^2 = \sum (X_i - \overline{X} + \overline{X} - m_0)^2$$
$$= \sum (X_i - \overline{X})^2 + n(\overline{X} - m_0)^2$$

donc le test GLR est défini par

Rejet de
$$H_0$$
 si $\frac{\sum \left(X_i - \overline{X}\right)^2 + n\left(\overline{X} - m_0\right)^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2} > S_\alpha \Leftrightarrow T_n^2 > \mu_\alpha$
 $\Leftrightarrow T_n \in]-\infty, -\mu_\alpha[\cup]\mu_\alpha, \infty[$

5) La statistique T_n s'écrit sous la forme suivante :

$$T_n = \frac{\sigma}{\sqrt{n}} \frac{U}{\sigma \sqrt{V}} = \frac{1}{\sqrt{n(n-1)}} \frac{U}{\sqrt{\frac{V}{n-1}}}$$

où

$$W_n = \frac{U}{\sqrt{\frac{V}{n-1}}} \sim t_{n-1}$$

On en déduit

Rejet de
$$H_0$$
 si $W_n \in]-\infty, -c_{\alpha}[\ \cup\]c_{\alpha}, \infty[$

et

$$1 - \alpha = 1 - P [\text{rejeter } H_0 | H_0 \text{ vraie}]$$

$$= P [\text{accepter } H_0 | H_0 \text{ vraie}]$$

$$= P [|W_n| < c_\alpha | H_0 \text{ vraie}] = 0.95$$

Les tables de la loi de Student donnent la valeur de c_{α} .

Correction exercice 3

1) Des calculs élémentaires donnent

Rejet de
$$H_0$$
 si $T = \sum_{i=1}^n X_i < S_\alpha$

2) La fonction caractéristique de T est

$$E\left[e^{itT}\right] = \prod_{j=1}^{n} E\left[e^{itX_{j}}\right] = \exp\left[n\lambda\left(e^{it} - 1\right)\right]$$

qui est la fonction caractéristique d'une loi de Poisson de paramètre $n\lambda$ donc $T \sim P(n\lambda)$. Sous H_0 , on a $T \sim P(n\lambda_0) = P(10)$ et sous H_1 , on a $T \sim P(n\lambda_1) = P(1)$.

3) On a $\alpha = P$ [rejeter $H_0 | H_0$ vraie] = $P[T < S_\alpha | T \sim P(n\lambda_0) = P(10)]$. En analysant les tables de la loi de Poisson P(10), on trouve

$$S_{\alpha}=5\Rightarrow \alpha=0.0293$$
 et $S_{\alpha}=6\Rightarrow \alpha>0.05$.

Donc le test est défini par

Rejet de
$$H_0$$
 si $T < 5$

et le risque de première espèce associé est $\alpha=0.0293<0.05$. Les données sont telles que $\sum_{i=1}^n x_i=8$ et donc on accepte l'hypothèse H_0 avec $\alpha=0.0293$. Le calcul de la puissance du test conduit à

$$\pi = 1 - \beta = P \text{ [rejeter } H_0 | H_1 \text{ vraie]}$$

$$= P [T < 5 | T \sim P (1)]$$

$$= \sum_{i=0}^{4} p_i \sim 0.9963$$

La puissance du test est donc excellente.

- 4) a) Pour n grand, l'approximation normale est $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\lambda, n\lambda)$.
- b) On trouve $K_{\alpha} = n\lambda_0 + \sqrt{n\lambda_0}\Phi^{-1}(\alpha) \sim 4.8$. On trouve 4.8 au lieu de 5 et donc l'approximation est satisfaisante pour n=10 (puisque T prend des valeurs discrètes avoir T<5 ou T<4.8, c'est la même chose).
- c) Un calcul simple conduit à

$$PD = 1 - \beta = \Phi\left(\sqrt{n}\frac{\lambda_0 - \lambda_1}{\sqrt{\lambda_1}} + \sqrt{\frac{\lambda_0}{\lambda_1}}\Phi^{-1}(\alpha)\right)$$

c'est-à-dire asymptotiquement

$$PD = 1 - \beta \sim \Phi\left(\sqrt{n} \frac{\lambda_0 - \lambda_1}{\sqrt{\lambda_1}}\right)$$

Le paramètre qui règle la performance asymptotique du test est donc $\sqrt{n}\frac{\lambda_0-\lambda_1}{\sqrt{\lambda_1}}$. Dans les deux cas proposés $\lambda_0-\lambda_1=0.9$ et n=100. Le premier test est meilleur car PD est une fonction décroissante de λ_1 lorsque $\lambda_0-\lambda_1$ et n sont fixés.

$k \setminus \lambda$	0.8	0.9	1.0	2.0	3.0	4.0	5.0	6.0
0	0.4493	0.4066	0.3679	0.1353	0.0498	0.0183	0.0067	0.0025
1	0.3595	0.3659	0.3679	0.2707	0.1494	0.0733	0.0337	0.0149
2	0.1438	0.1647	0.1839	0.2707	0.2240	0.1465	0.0842	0.0446
3	0.0383	0.0494	0.0613	0.1804	0.2240	0.1954	0.1404	0.0892
4	0.0077	0.0111	0.0153	0.0902	0.1680	0.1954	0.1755	0.1339
5	0.0012	0.0020	0.0031	0.0361	0.1008	0.1563	0.1755	0.1606
6	0.0002	0.0003	0.0005	0.0120	0.0504	0.1042	0.1462	0.1606
7			0.0001	0.0034	0.0216	0.0595	0.1044	0.1377
8				0.0009	0.0081	0.0298	0.0653	0.1033
9				0.0002	0.0027	0.0132	0.0363	0.0688
10					0.0008	0.0053	0.0181	0.0413
11					0.0002	0.0019	0.0082	0.0225
12					0.0001	0.0006	0.0034	0.0113
13						0.0002	0.0013	0.0052
14						0.0001	0.0005	0.0022
15							0.0002	0.0009
16								0.0003
17								0.0001

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
1 0.0064 0.0027 0.0011 0.0005 0.0002 0.0001 0.0004 0.0002 3 0.0521 0.0286 0.0150 0.0076 0.0037 0.0018 0.0008 4 0.0912 0.0573 0.0337 0.0189 0.0102 0.0053 0.0027 5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.11	$k \setminus \lambda$	7.0	8.0	9.0	10.0	11.0	12.0	13.0
1 0.0064 0.0027 0.0011 0.0005 0.0002 0.0001 0.0004 0.0002 3 0.0521 0.0286 0.0150 0.0076 0.0037 0.0018 0.0008 4 0.0912 0.0573 0.0337 0.0189 0.0102 0.0053 0.0027 5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.11			0.0000	0.0004				
2 0.0223 0.0107 0.0050 0.0023 0.0010 0.0004 0.0002 3 0.0521 0.0286 0.0150 0.0076 0.0037 0.0018 0.0008 4 0.0912 0.0573 0.0337 0.0189 0.0102 0.0053 0.0027 5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0661 10 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.10	I -				0.000	0.000	0.0001	
3 0.0521 0.0286 0.0150 0.0076 0.0037 0.0018 0.0008 4 0.0912 0.0573 0.0337 0.0189 0.0102 0.0053 0.0027 5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1								
4 0.0912 0.0573 0.0337 0.0189 0.0102 0.0053 0.0027 5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1099 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.								
5 0.1277 0.0916 0.0607 0.0378 0.0224 0.0127 0.0070 6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1015 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0								
6 0.1490 0.1221 0.0911 0.0631 0.0411 0.0255 0.0152 7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1015 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0343 0.0724								
7 0.1490 0.1396 0.1171 0.0901 0.0646 0.0437 0.0281 8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1015 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0383 <th< th=""><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	1							
8 0.1304 0.1396 0.1318 0.1126 0.0888 0.0655 0.0457 9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1015 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.088 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 <th< th=""><th></th><th>0.1490</th><th>0.1221</th><th>0.0911</th><th>0.0631</th><th>0.0411</th><th>0.0255</th><th>0.0152</th></th<>		0.1490	0.1221	0.0911	0.0631	0.0411	0.0255	0.0152
9 0.1014 0.1241 0.1318 0.1251 0.1085 0.0874 0.0661 10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1099 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0990 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0004 0.0014 0.0037 0.0084 0.0161 <		0.1490	0.1396	0.1171		0.0646	0.0437	0.0281
10 0.0710 0.0993 0.1186 0.1251 0.1194 0.1048 0.0859 11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1099 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0001 0.0003 0.0009 0.0024 0.0004 0.0001 <th></th> <th>0.1304</th> <th>0.1396</th> <th>0.1318</th> <th>0.1126</th> <th>0.0888</th> <th>0.0655</th> <th>0.0457</th>		0.1304	0.1396	0.1318	0.1126	0.0888	0.0655	0.0457
11 0.0452 0.0722 0.0970 0.1137 0.1194 0.1144 0.1015 12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1099 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 <th>9</th> <th>0.1014</th> <th>0.1241</th> <th>0.1318</th> <th>0.1251</th> <th>0.1085</th> <th>0.0874</th> <th>0.0661</th>	9	0.1014	0.1241	0.1318	0.1251	0.1085	0.0874	0.0661
12 0.0263 0.0481 0.0728 0.0948 0.1094 0.1144 0.1099 13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0004 0.0012 0.0030 0.0065 2	10	0.0710	0.0993	0.1186	0.1251	0.1194	0.1048	0.0859
13 0.0142 0.0296 0.0504 0.0729 0.0926 0.1056 0.1099 14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0004 0.0012 0.0030 0.0065 23 0.0001 0.0001 0.0003 0.0006 0.0016 0.0003 26 0.000	11	0.0452	0.0722	0.0970	0.1137	0.1194	0.1144	0.1015
14 0.0071 0.0169 0.0324 0.0521 0.0728 0.0905 0.1021 15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0001 0.0004 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0001 0.0003 0.0006 0.0001 0.0004 0.0001 0.0002	12	0.0263	0.0481	0.0728	0.0948	0.1094	0.1144	0.1099
15 0.0033 0.0090 0.0194 0.0347 0.0534 0.0724 0.0885 16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0004 0.0012 0.0030 0.0065 23 0.0001 0.0002 0.0006 0.0001 0.0003 0.0008 0.0008 25 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 28 0.000	13	0.0142	0.0296	0.0504	0.0729	0.0926	0.1056	0.1099
16 0.0014 0.0045 0.0109 0.0217 0.0367 0.0543 0.0719 17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0004 0.0012 0.0030 0.0065 23 0.0001 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0001 0.0003 0.0003 0.0006 0.0001 26 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 28 0.0001 0.0001 0.0001 0.0001 0.0001 <th>14</th> <th>0.0071</th> <th>0.0169</th> <th>0.0324</th> <th>0.0521</th> <th>0.0728</th> <th>0.0905</th> <th>0.1021</th>	14	0.0071	0.0169	0.0324	0.0521	0.0728	0.0905	0.1021
17 0.0006 0.0021 0.0058 0.0128 0.0237 0.0383 0.0550 18 0.0002 0.0009 0.0029 0.0071 0.0145 0.0255 0.0397 19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0004 0.0002 0.0006 0.0012 0.0030 0.0065 23 0.0001 0.0002 0.0006 0.0001 0.0003 0.0008 0.0020 24 0.0001 0.0001 0.0003 0.0004 0.0001 0.0002 0.0005 26 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 28 0.0001 0.0001 0.0001 0.0001 0.0001	15	0.0033	0.0090	0.0194	0.0347	0.0534	0.0724	0.0885
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	0.0014	0.0045	0.0109	0.0217	0.0367	0.0543	0.0719
19 0.0001 0.0004 0.0014 0.0037 0.0084 0.0161 0.0272 20 0.0002 0.0006 0.0019 0.0046 0.0097 0.0177 21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0004 0.0012 0.0030 0.0065 23 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0001 0.0003 0.0008 0.0020 25 0.0001 0.0001 0.0004 0.0001 0.0002 0.0005 27 0.0001 0.0001 0.0001 0.0001 0.0001 28 0.0001 0.0001 0.0001 0.0001	17	0.0006	0.0021	0.0058	0.0128	0.0237	0.0383	0.0550
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	0.0002	0.0009	0.0029	0.0071	0.0145	0.0255	0.0397
21 0.0001 0.0003 0.0009 0.0024 0.0055 0.0109 22 0.0001 0.0004 0.0012 0.0030 0.0065 23 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0003 0.0008 0.0020 25 0.0001 0.0004 0.0004 0.0001 26 0.0001 0.0002 0.0005 27 0.0001 0.0001 0.0001 28 0.0001 0.0001 0.0001	19	0.0001	0.0004	0.0014	0.0037	0.0084	0.0161	0.0272
22 0.0001 0.0004 0.0012 0.0030 0.0065 23 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0003 0.0008 0.0020 25 0.0001 0.0004 0.0004 0.0010 26 0.0002 0.0005 0.0001 0.0001 28 0.0001 0.0001 0.0001 29 0.0001 0.0001	20		0.0002	0.0006	0.0019	0.0046	0.0097	0.0177
23 0.0002 0.0006 0.0016 0.0037 24 0.0001 0.0003 0.0008 0.0020 25 0.0001 0.0004 0.0004 0.0010 26 0.0001 0.0002 0.0005 28 0.0001 0.0001 0.0001 29 0.0001 0.0001	21		0.0001	0.0003	0.0009	0.0024	0.0055	0.0109
24 0.0001 0.0003 0.0008 0.0020 25 0.0001 0.0004 0.0010 26 0.0002 0.0005 27 0.0001 0.0001 28 0.0001 29 0.0001	22			0.0001	0.0004	0.0012	0.0030	0.0065
25 26 27 28 29 0.0001 0.0001 0.0004 0.0002 0.0001 0.0001 0.0001 0.0001	23				0.0002	0.0006	0.0016	0.0037
26 27 28 29 0.0002 0.0001 0.0001 0.0001 0.0001	24				0.0001	0.0003	0.0008	0.0020
27 28 29 0.0001 0.0001 0.0001 0.0001	25					0.0001	0.0004	0.0010
28 29 0.0001 0.0001	26						0.0002	0.0005
29 0.0001	27						0.0001	0.0002
29 0.0001	28							0.0001
	29							
30	1							