Logistic Regression

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Gradient Descent/Ascent

- Gradient descent/ascent method is
 - Given a differentiable function of f(x) and an initial parameter of x_1
 - Iteratively moving the parameter to the lower/higher value of f(x)
 - By taking the direction of the negative/positive gradient of f(x)
- Why this works?

•
$$f(x) = f(a) + \frac{f'(a)}{11}(x-a) + O(||x-a||^2)$$

Useful Big-Oh Notation

- Assume $a=x_1$ and $x=x_1+h\mathbf{u}$, \mathbf{u} is the unit direction vector for the partial deriv.
- $f(x_1 + h\mathbf{u}) = f(x_1) + hf'(x_1)\mathbf{u} + h^2O(1)$
- $f(x_1 + h\mathbf{u}) f(x_1) \approx hf'(x_1)\mathbf{u}$

Always???

•
$$\mathbf{u}^* = argmin_{\mathbf{u}} \{ f(x_1 + h\mathbf{u}) - f(x_1) \} = argmin_{\mathbf{u}} hf'(x_1)\mathbf{u} = -\frac{f'(x_1)}{|f'(x_1)|}$$

•
$$: f(x_1 + h\mathbf{u}) \le f(x_1), \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\alpha$$

Gradient Descent

•
$$x_{t+1} \leftarrow x_t + h\mathbf{u}^* = x_t - h\frac{f'(x_1)}{|f'(x_1)|}$$

- Perfectly applicable to $\hat{\theta} = argmax_{\theta} \sum_{1 \leq i \leq N} log(P(Y_i|X_i;\theta))$
 - $f(\theta) = \sum_{1 \le i \le N} log(P(Y_i|X_i;\theta))$
 - Setup an initial parameter of θ_1
 - Iteratively moving θ_t to the higher value of $f(\theta_t)$
 - By taking the direction of the **positive** gradient of $f(\theta_t)$

How Gradient Descent Works

Example function: Rosenbrock function

•
$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

•
$$\frac{\partial}{\partial x_1} f(x_1, x_2) = -2(1 - x_1) - 400x_1(x_2 - x_1^2)$$

•
$$\frac{\partial}{\partial x_2} f(x_1, x_2) = 200(x_2 - x_1^2)$$

Assume the initial point

•
$$\mathbf{x}^0 = (x_1^0, x_2^0) = (-1.3, 0.9)$$

Partial derivative vector at the point

Global Minimum=0 at (1,1)

•
$$f'(\mathbf{x}^0) = \left(\frac{\partial}{\partial x_1} f(x_1, x_2), \frac{\partial}{\partial x_2} f(x_1, x_2)\right) = (-415.4, -158)$$

Update the point with the negative partial derivative in a small scale,

h=0.001

•
$$\mathbf{x}^1 \leftarrow \mathbf{x}^0 - h \frac{f'(\mathbf{x}^0)}{|f'(\mathbf{x}^0)|}$$

•
$$\mathbf{x}^1 = \begin{pmatrix} -1.3 - 0.001 \times -415.4/444.4335, \\ 0.9 - 0.001 \times -158/444.4335 \end{pmatrix}$$

$$\bullet = (-1.2991, 0.9004)$$

Repeat the update until converges

