Spring 2022

CSE 317: Design and Analysis of Algorithms, Quiz - 1 [Section 3]

Monday, February 14, 2022. Total marks: 10 point, Duration: 15 minutes.

Name:	Ct., dont ID.
Name:	Student ID:

1. (10 points) Analyze the following algorithm and determine how many times the Algorithm POWER performs squaring (line no. 5). Use O-notations.

Algorithm: POWER

Input: $y \text{ and } z \text{ such that } y \in \mathbb{R} \text{ and } z \in \mathbb{N}$

Output: Returns y^z

- 1. x = 1
- 2. **while** (z > 0)
- 3. **if** z is odd **then** $x = x \cdot y$
- 4. z = |z/2|
- 5. $y = y^2$
- 6. return x

Solution: We see that every time **while** loop is executed, line no. 5 is executed. The number of times **while** loop is executed is depended on how quickly z becomes 0. Given that $z \in \mathbb{N}$ such that $2^{k-1} \le z \le 2^k$ for some $k \in \mathbb{N}$ and k > 0.

In each iteration of the **while** loop, the value of z is updated (decreased) to $\lfloor z/2 \rfloor$. So after the first iteration $\lfloor z/2 \rfloor$, after the second iteration $\lfloor z/2^2 \rfloor$, and so on. We can generalize that after j iteration we have $\lfloor z/2^j \rfloor = 1$ so in (j+1)-st iteration line no. 5 is executed last time and algorithm comes out of **while** loop.

We can conclude that line no. 5 is executed at least j+1 times such that $\lfloor z/2^j \rfloor = 1$, i.e.,

$$0 < \frac{z}{2^j} \le 1$$
$$z \le 2^j.$$

Since j is an integer we can conclude is at most $\log_2 z$. Therefore the number of times the line no. 5 is executed is $\Theta(\log z)$.