

Lesson 5-Testing Line Tracking Module

1. Knowledege of Line Tracking Module

There are three Reflective Optical Sensors on Line Tracking Module. When the infrared light emitted by infrared diode shines on the surface of different objects, the sensor will receive light with different intensities after reflection.

As we know, black objects absorb light better. So when black lines are drawn on the white plane, the sensor can detect the difference. The sensor can also be called Line Tracking Sensor.

Warning:

Reflective Optical Sensor (including Line Tracking Sensor) should be avoided using in environment with infrared interference, like sunlight. Sunlight contains a lot of invisible light such as infrared and ultraviolet. Under environment with intense sunlight, Reflective Optical Sensor cannot work normally.

The following table shows the values of all cases when three Tracking Sensors detect objects of different colors. Among them, black objects or no objects were detected to represent 1, and white objects were detected to represent 0.

Left	Middle	Right	Value(binary)	Value(decimal)
0	0	0	000	0
0	0	1	001	1
0	1	0	010	2
0	1	1	011	3
1	0	0	100	4
1	0	1	101	5
1	1	0	110	6
1	1	1	111	7

2.Component/Module List

Component/Module	QTY	Picture	Remark
4WD Car Chassis	1		Provided by the 4WD Car Chassis Kit
UNO R3 Board	1		
L293D Motor control shield	1		You need to prepare these by yourself. These just as an example, you can DIY what is you want and prepared
Line Tracking Module	1		
Dupont line	Some		

3.Build an experiment

3.1 Assemble the UNO R3 Board to the 4WD body as shown below

3.2 Install the L293D Motor Control Shield on the UNO board as shown below

3.3 circuit connection

Connect the left front wheel motor to the M4 port of the Control Shield, the left rear wheel motor to the M1 port of the Control Shield, the right front wheel motor to the M3 port of the Control Shield, and the left rear wheel motor to the M2 port of the Control Shield;

Connect VCC of Line Tracking Module to 5V of Control Shield, GND to GND of Control Shield, S3(left) to A1 pin of Control Shield, S2(Middle) to A2 pin of Control Shield, S1(right) to the A3 pin of the Control Shield. As shown below

3.4 Circuit inspection

Before powering on, please carefully check whether the connected circuit is open or short-circuited, especially GND and 5V, GND and 3.3V, and must not be short-circuited. A short circuit can cause high current in your circuit, create excessive component heat and cause permanent damage to your hardware!

4.Program test

4.1 Test Line Tracking Module alone

Click "File---"Open" in the IDE interface, select the code under the path "4WD Car Chassis Kit Tutorial\ Sketches\ 05.1_Testing_Tracking_Sensor". After the code is compiled successfully, connect the UNO board to the computer through the USB cable, select the corresponding serial port, Upload the program to the UNO board.

After the code is uploaded successfully, open the serial monitor.

The monitor is shown below:

```
COM55
                                                                                     Send
Sensor Value (L / M / R / ALL) : 0
                                                            3
                                           1
                                                   1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 1
                                           0
                                                    0
                                                            4
Sensor Value (L / M / R / ALL) : 1
                                           0
                                                   0
                                                            4
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                                   1
                                                            1
                                           0
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                    1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                   1
                                                            1
Sensor Value (L / M / R / ALL) : 0
                                           0
                                                    1
                                                            1
✓ Autoscroll ☐ Show timestamp
                                               Newline
                                                                9600 baud
                                                                                Clear output
```

The code is below:

```
#define PIN_TRACKING_LEFT A1
2
      #define PIN_TRACKING_CENTER A2
3
     #define PIN_TRACKING_RIGHT A3
4
5
     u8 sensorValue[4]; //define a array, u8 = unsigned char, 0~255.
6
7
     void setup() {
8
        Serial.begin(9600); //set baud rate
9
        pinMode(PIN_TRACKING_LEFT, INPUT); //
        pinMode(PIN_TRACKING_RIGHT, INPUT); //
10
        pinMode(PIN_TRACKING_CENTER, INPUT); //
11
12
13
```



```
14
     void loop() {
        sensorValue[0] = digitalRead(PIN_TRACKING_LEFT);
15
        sensorValue[1] = digitalRead(PIN_TRACKING_CENTER);
16
17
        sensorValue[2] = digitalRead(PIN TRACKING RIGHT);
        sensorValue[3] = sensorValue[0] << 2 | sensorValue[1] << 1 | sensorValue[2];
18
19
       Serial.print("Sensor Value (L / M / R / ALL) : ");
        for (int i = 0; i < 4; i++) {
20
         Serial. print(sensorValue[i]);
21
22
          Serial.print('\t'); //means Tab
23
24
       Serial.print('\n'); //means new line
25
       delay(500);
26
27
```

Bitwise Operators

```
There are some Bitwise Operators.
<< (bitshift left)
If sensorValue[0] =1, sensorValue[1] = 1, sensorValue[2]=1
sensorValue[0] << 2 then sensorValue[0]=100, (Binary), namely 4(Decimal)
sensorValue[1] << 1 then sensorValue[0]=010, (Binary), namely 2(Decimal)
sensorValue[2]=001(Binary)
I (bitwise or)
The code turns to: 100 | 010 | 001 =111 (Binary), namely 7 (Decimal)
>> (bitshift right)
& (bitwise and)
^ (bitwise xor)
~ (bitwise not)
For more information, please refer to: https://www.arduino.cc/reference/
```


4.2 Line Tracking 4WD car

The car will make different actions according to the value transmitted by the line-tracking sensor. When

Left	Middle	Right	Value(binary)	Value(decimal)	Action
0	0	0	000	0	Stop
0	0	1	001	1	Turn Right
0	1	0	010	2	Move Forward
0	1	1	011	3	Turn Right
1	0	0	100	4	Turn Left
1	0	1	101	5	Move Forward
1	1	0	110	6	Turn Left
1	1	1	111	7	Move Forward

Flow chart of line tracking car is as below:

Click "File---"Open" in the IDE interface, select the code under the path "4WD Car Chassis Kit Tutorial\ Sketches\ 05.2_Line_Tracking_Car". After the code is compiled successfully, connect the UNO board to the computer through the USB cable, select the corresponding serial port, upload the program to the UNO board.

Turn on the power. Use a black tape to build a line and then put your car on it as below.

You will see that the 4WD car will follow the trajectory

The code is below.

```
#include <AFMotor.h>
AF_DCMotor motor1(1);//define motor1
AF_DCMotor motor2(2);//define motor2
AF_DCMotor motor3(3);//define motor3
AF_DCMotor motor4(4);//define motor4
#define PIN_TRACKING_LEFT A1
#define PIN_TRACKING_CENTER A2
#define PIN_TRACKING_RIGHT A3

void setup() {
```



```
pinsSetup(); //set up pins
 getTrackingSensorVal();//Calculate Voltage speed Compensation
void loop() {
 u8 trackingSensorVal = 0;
  trackingSensorVal = getTrackingSensorVal(); //get sensor value
  switch (trackingSensorVal)
    case 0:
             //000//car stop
     motor1.run(RELEASE);// motor1 stop run
     motor2.run(RELEASE);
     motor3. run(RELEASE);
     motor4. run(RELEASE);
      break;
    case 7:
              //111//car stop
     motor1.run(RELEASE);// motor1 stop run
     motor2.run(RELEASE);
     motor3. run(RELEASE):
     motor4.run(RELEASE);
      break;
              //001//car turn
    case 1:
      motor1. setSpeed(150);//setup the speed of motor2
      motor4. setSpeed(150);//setup the speed of motor3
      motor1.run(FORWARD);//motor1 run forward
      motor4. run (FORWARD):
      break:
    case 3:
              //011//car turn right
      motor1. setSpeed(100);//setup the speed of motor2
      motor4. setSpeed(100);//setup the speed of motor3
      motor1.run(FORWARD);//motor1 run forward
      motor4. run (FORWARD);
      break;
    case 2:
              //010
              //101//car move forward
    case 5:
      motor1. setSpeed(200);//setup the speed of motor1
      motor2. setSpeed(200);//setup the speed of motor2
      motor3. setSpeed(200);//setup the speed of motor3
      motor4. setSpeed(200);//setup the speed of motor4
      motor1. run (FORWARD);// motor1 run FORWARD
      motor2. run (FORWARD);
      motor3. run (FORWARD);
      motor4. run (FORWARD);
      break:
    case 6:
              //110//car turn left
       motor1.run(RELEASE);// motor1 stop run
       motor4. run(RELEASE);
       motor2.setSpeed(150);//setup the speed of motor2
       motor3.setSpeed(150);//setup the speed of motor3
       motor2.run(FORWARD);// motor2 run FORWARD
       motor3.run(FORWARD);
      break;
              //100 //car turn right
    case 4:
       motor1. run(RELEASE);
       motor4. run (RELEASE);
       motor2.setSpeed(150);//setup the speed of motor2
```



```
motor3.setSpeed(150);//setup the speed of motor3
      motor2.run(FORWARD);// motor2 run FORWARD
       motor3.run(FORWARD);
      break;
    default:
      break;
}
//when black line on one side is detected, the value of the side will be 0, or the value is 1
u8 getTrackingSensorVal() {
 u8 trackingSensorVal = 0;
  trackingSensorVal = (digitalRead(PIN TRACKING LEFT) == 1 ? 1 : 0) << 2
 (digitalRead(PIN_TRACKING_CENTER) == 1 ? 1 : 0) << 1 \mid (digitalRead(PIN_TRACKING_RIGHT) == 1 ? 1 : 0) << 0; 
 return trackingSensorVal;
void pinsSetup() {
  //define tracking sensor pin
 pinMode(PIN_TRACKING_LEFT, INPUT);
 pinMode(PIN TRACKING RIGHT, INPUT);
 pinMode(PIN_TRACKING_CENTER, INPUT);
```

Exp1 ? Exp2 : Exp3;

```
If Exp1 is true, the result of this code is Exp2.

If Exp1 is false, the result of this code is Exp3.

For example

If y=8;

var = (y < 10) ? 30 : 40; then var=30

If y=10

var = (y < 10) ? 30 : 40; then var=40
```

switch...case


```
switch (var)
{ case 1:
    //do something when var equals 1
    break;
    case 2:
    //do something when var equals 2
    break;
    default:
    // if nothing else matches, do the default
    // default is optional
    break;
}
For more information, please refer to:
https://www.arduino.cc/reference/en/language/structure/control-structure/switchcase/
```

What's Next?

THANK YOU for participating in this learning experience!

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or questions about this lesson, please feel free to contact us: cokoino@outlook.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a revised version.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective, innovative and exciting products.

http://cokoino.com/

Thank you again for choosing Cokoino products.