

X3-Class HiPERFET™ **Power MOSFET**

IXFY26N30X3 IXFA26N30X3 IXFP26N30X3

300V 26A $66m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

N-Channel Enhancement Mode Avalanche Rated

G S

	D (Tab)
TO-220 (IXFP)	
	GDS D (Tab)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	300	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	300	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	26	A	
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	40	А	
I _A	T _C = 25°C	13	A	
E _{AS}	$T_{c} = 25^{\circ}C$	250	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P_{D}	T _C = 25°C	170	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	g 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-252 TO-263 TO-220	0.35 2.50 3.00	9 9 9	

Features

- International Standard Packages
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	300			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 500\mu A$	2.5		4.5	V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		53	66	mΩ

Symbol Test Conditions Char		Chara	racteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Jnless Otherwise Specified) Mi	in.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$ 14		23	S	
R _{Gi}	Gate Input Resistance		1.4	Ω	
C _{iss}			1465	pF	
C _{oss}	$V_{gs} = 0V, V_{DS} = 25V, f = 1MHz$		225	pF	
C _{rss}			1	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related \(\mathbb{V}_{GS} = 0 \mathbb{V}		100	pF	
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		350	pF	
t _{d(on)}	Resistive Switching Times		23	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		25	ns	
t _{d(off)}	$R_{\rm G} = 30\Omega$ (External)		80	ns	
t,	Ti _G = 3052 (External)		19	ns	
Q _{g(on)}			22	nC	
Q _{gs}	$V_{gs} = 10V, V_{Ds} = 0.5 \cdot V_{Dss}, I_{D} = 0.5 \cdot I_{D25}$		7	nC	
Q _{gd}			7	nC	
R _{thJC}				0.73 °C/W	
R _{thCS}	TO-220		0.50	°C/W	

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			26	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			104	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} ight. ight.$	$I_F = 13A$, -di/dt = 100A/ μ s $V_R = 100V$		105 470 9		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

70

60

9V

8V

7V

10

6V

10

0

5V

V_{DS} - Volts

© 2018 IXYS CORPORATION, All Rights Reserved

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area 100 R_{DS(on)} Limit 10 I_D - Amperes 100µs 0.1 $T_J = 150^{\circ}C$ 10ms $T_C = 25^{\circ}C$ DC Single Pulse 0.01 10 100 1,000

V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

IXFY26N30X3

IXFA26N30X3 IXFP26N30X3

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.