## Robust Endpoint Detection for Speech Recognition Based On Discriminative Feature Extraction

Author: Koichi Yamamoto,

Klau Reinhard

Professor: 陳嘉平

Reporter: 許峰閣

#### 大綱

介紹

• 聲音偵測(Voice Activty Detection)

• 端點偵測(Endpoint Detection)

●實驗

#### 介紹

·端點偵測在語音辨識中可以增進效能,降低計算量,因為如果端點偵測都正確,只會有有用的speech frame進入後端處理

• 在以往都使用energy-based但是該方法在 low SNR時準確度並不高,所以在這裡結合 了log-likelihood的方法

## Voice Activity Detection

• 在以能量為基礎的聲音偵測中,當log-energy超過 門檻值時,變被歸類為speech否則為non-speech

• 該門檻值用以下算式界定

$$E_{noise}(t) = \lambda E_{noise}(t-1) + (1-\lambda)E(t)$$

E(t) 是frame t的log-energy  $\lambda$  是 forgetting factor

$$T_e(t) = E_{noise}(t) + \gamma$$

#### Voice Activity Detection

• Likelihood-based使用GMM為分類器,首先要訓練speech及non-speech的GMM, non-speech及speech的log-likelihood ratio如下

$$L(t) = g_1(\mathbf{y}(t); \Lambda) - g_0(\mathbf{y}(t); \Lambda)$$

- $g_0$  與  $g_1$  分別代表non-speech及speech GMM的log-likelihood
- y(t) 代表feature vector for frame t

• 爲了增加噪音環境時的強建性,在QBNF (quantile based noise estimation)之前,先用spectral subtraction(SS)爲前置處理

$$\hat{S}(k,t) = \max\{X(k,t) - \alpha \hat{N}(k,t), \beta X(k,t)\}$$

- X(k,t)代表 kth-PSD of noisy signal at frame t
- $\widehat{N}$  (k,t)代表 kth-PSD of noise estimation by QBNE
- $\widehat{S}$  (k,t)代表 kth-PSD of enhanced input signal

· 每個frame的log-energy用下式得到

$$E(t) = \log \sum_{k=K_L}^{K_H} \hat{S}(k, t)$$

 $K_H$  及  $K_L$  分別代表最高及最低的frequency component

• 用 log mel-filterbank來取得GMM的feature vector如下:

$$\mathbf{x}(t) = \left[x_1(t), \dots, x_N(t), \Delta_1(t), \dots, \Delta_N(t)\right]^T$$

N代表mel-filterbank的數量

 $x_n(t)$  爲n-th log mel-filterbank的energy

·接著將feature vector減掉每個frame的平均來作 normalized得到下式

$$\overline{\mathbf{x}}(t) = \left[\overline{x}_1(t), \dots, \overline{x}_N(t), \Delta_1(t), \dots, \Delta_N(t)\right]^T$$

• 再將  $\overline{X}(t)$  投影到lower feature vector y(t) 來降低計算量

$$\mathbf{y}(t) = \mathbf{P}\overline{\mathbf{x}}(t)$$

• P為一個M \* 2N的投影矩陣利用Principle component analysis(PCA) 求出

• 接著就可以判斷該frame是否爲speech,只要符合下式該frame即爲speech

$$E(t) > T_e(t)$$
 &  $L(t) > T_l(t)$ 

• 作完VAD以後利用finite-state automaton決 定start-of-speech和end-of-speech

• 在之前我們知道投影矩陣使用PCA來求得, 而GMM則使用EM alg.來訓練,但是這些方 法並不是基於可以將speech及non-speech 的分類得到最小的錯誤率,所以在這裡提出 discriminative feature extraction

 DFE是based on minimum classification error/generalized probabilistic descent (MEC/GPD)

 The frame-based misclassification measure of the likilihood ratio :

$$d = -g_j(\mathbf{y}(t); \Lambda) + g_{i \neq j}(\mathbf{y}(t); \Lambda)$$
$$\mathbf{y}(t) \in C_j \text{ and } i, j \in [0, 1]$$

 $C_j$  是兩個分類分別為speech and non-speech 如果該frame分類正確則d會是負的

• 由上式可以得到DFE的loss function

$$l = \frac{1}{1 + \exp(-\tau d)}$$

au 是控制sigmoid function的斜率 所有投影矩陣及 $\mathsf{GMM}$ 中的參數都設為  $\phi$ 

 $\phi$  is updated base on MCE/GPD training rule:

$$\Phi[t+1] = \Phi[t] - \varepsilon_t \nabla_{\Phi} l(\overline{\mathbf{x}}(t); \Phi[t])$$

 用來訓練投影矩陣及GMM的資料,分別有 speech及noise的data

• Speech data 爲clean環境的三千句句子

Noise data使用JEIDA noise database

• 在混和成noisy data

• Input signal 的 sample rate 11025Hz

• K<sub>L</sub>及 K<sub>H</sub>分別為 130 Hz 和 4900Hz

• 有24個mel-filterbank

• Feature vector的dimension 爲16

Table 1. The statistical information of the histograms, where each value represents the rate (%) of the distribution.

| Conditions            | Clean |      |      |      | Car 5dB |      |      |      | Babble 5dB |      |      |      |
|-----------------------|-------|------|------|------|---------|------|------|------|------------|------|------|------|
| The difference of the | SOS   |      | EOS  |      | SOS     |      | EOS  |      | SOS        |      | EOS  |      |
| number of frames      | ≤10   | ≤30  | ≤10  | ≤30  | ≤10     | ≤30  | ≤10  | ≤30  | ≤10        | ≤30  | ≤10  | ≤30  |
| Energy                | 96.7  | 99.7 | 91.7 | 99.1 | 59.5    | 79.7 | 60.3 | 78.4 | 57.1       | 77.0 | 56.9 | 76.3 |
| Proposed without DFE  | 94.0  | 98.9 | 92.7 | 98.2 | 67.5    | 82.5 | 60.0 | 79.6 | 63.3       | 78.0 | 60.2 | 78.1 |
| Proposed with DFE     | 95.9  | 99.1 | 92.5 | 98.0 | 79.6    | 92,2 | 73.8 | 90.6 | 79.5       | 91.6 | 74.3 | 91.6 |



**Figure 1.** The histograms of the differences (# of frames) between manually labeled and detected endpoints: SOS (left) and EOS (right) points for 5dB SNR car noise.



Recording environments

Figure 2. The sentence error rate of the ASR for the four recording environments.