CSCM77 filtering & edges

Prof. Xianghua Xie

x.xie@swansea.ac.uk

http://csvision.swan.ac.uk

Image Filtering & Edge Detection

Motivation

Spatial domain filtering

- Spatial domain filtering
 - Linear filtering: convolution
 - Nonlinear filtering

Linear Filtering

- Convolution is a form of linear filtering
 - A linear combination of brightness in a local neighborhood.
 - Discrete convolution:

$$g(x,y) = w * I = \sum_{m=-a}^{a} \sum_{n=-b}^{b} w(m,n)I(x-m,y-n)$$

- Function w is called a convolution kernel or a filter mask of size (2a+1)x(2b+1).

4

Linear Filtering

- Convolution applies flipped kernel mask
 - Kernels (or masks) pre-rotated 180 degrees
 - Then apply direct pixel-to-pixel multiplication and compute the summation
- If kernel is not rotated
 - It is known as Correlation

Image Filtering

Often not for artistic reasons

Rather:

- Detect edges
- Noise suppression
- Find edges in busy patterns
- Search objects

6

Gaussian Smoothing

Linear filtering

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- $m{\sigma}$ controls spread of the Gaussian function
- Larger σ , larger smoothing
- Larger σ , larger kernel size
- Kernel separable: faster implementation

3x3, smallest kernel

Gaussian Smoothing

- Weighted average
- Isotropic
- Smoothing along the edges, as well as across the edges
- Not good at preserving edges
- New pixel values created across the edges

Median Filtering

- Nonlinear filtering
- Instead of using weighted mean, median value of local neighbourhood is used

64, if using a 3X3 Gaussian kernel:

 0.0113
 0.0838
 0.0113

 0.0838
 0.6193
 0.0838

 0.0113
 0.0838
 0.0113

Median Filtering

- Median is a more robust average than the mean
- Less affected by outlier
- Good at removing lines and isolated dots
- Does not create new pixel values (reducing number of gray levels)
- Preserve edges better
- Smooth sharp corners

Edge Detection

- Roughly speaking, edges are abrupt changes in intensity.
- A property attached to individual pixels
- Calculated by looking at the relationship a pixel has with its neighborhood pixels.

 If a pixel's gray-level value is similar to those around it, there is probably not an edge.

 If a pixel's has neighbours with widely varying gray levels, it may present an edge point.

Edge Detection

CSCM77: CVPR

Edge Detection

- Edges can be found by computing derivatives of image function
- Many are implemented with convolution masks
- Those masks are discrete approximations to differential operations.
- Measure the rate of change in the image brightness function.
- We will look at:
 - Prewitt operator (1st order)
 - Sobel operator (1st order)
 - Laplacian of Gaussian operator (2nd order)

Some return both edge strength and edge direction

Prewitt

- Gradient of image denoted as: ∇I
- Two components: horizontal and vertical
- Prewitt operator is one of the simplest forms
- First order central difference (remember to rotate the mask when applying convolution!)

$$M_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\nabla I = \begin{pmatrix} I_x \\ I_y \end{pmatrix} \cong \begin{pmatrix} M_x * I \\ M_y * I \end{pmatrix}$$

Provides edge strength and edge direction

magnitude =
$$\sqrt{I_x^2 + I_y^2}$$
 gradient direction = arctan $\left(\frac{I_y}{I_x}\right)$

Prewitt

- The gradient direction gives the direction of maximal growth of the function
- Edge direction is a rotation of gradient direction

Sensitive to noise

CSCM77: CVPR 15

- Similar to Prewitt operator
 - However, less sensitive to noise
- Combining Low Pass filtering, i.e. smoothing (G Gaussian):

$$\nabla (G * I) = (\nabla G) * I$$

Convolution kernels:

$$M_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad \nabla I = \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} \cong \begin{pmatrix} M_{x} * I \\ M_{y} * I \end{pmatrix}$$

- Approximations of Gaussian derivatives
- Provides edge strength and edge direction

magnitude =
$$\sqrt{I_x^2 + I_y^2}$$
 gradient direction = $\arctan\left(\frac{I_y}{I_x}\right)$

Kernel decomposition (faster implementation)

$$\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} +1 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Example:

CSMC77: CVPR

Example (gradient direction):

CSCM77: CVPR 18

• A simple visualisation of edge direction

Thresholded Sobel edge map has poor connectivity

Sobel Thresholded

Laplacian of Gaussian

- Based on second order derivatives
- $\nabla^2 I$

- Divergence of image gradient
- Looking for zero crossing
- Sensitive to noise, smoothing is necessary

$$\nabla^2(G*I) = (\nabla^2G)*I$$

- Discrete approximation, 5 by 5 case:
 - Symmetric kernel

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & -16 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Laplacian of Gaussian

- Sensitive to noise
- No edge direction information
- More accurate in localising edge centre pixels (zero crossing)
 - We are looking for zero crossing, not just zeros (mid-gray)

Laplacian of Gaussian

- Sensitive to noise
- No edge direction information
- More accurate in localising edge centre pixels (zero crossing)

Summary – filtering and edge detection

- Filtering
- Convolution & Correlation
- Gaussian Smoothing
- Median Filtering
- Prewitt
 - 1st order
 - Sensitive to noise
 - Edge magnitude and orientation
- Sobel
 - 1st order
 - Edge magnitude and orientation
 - Thresholded edge has poor connectivity
- LoG
 - 2nd order
 - Sensitive to noise
 - No edge direction information
 - Relatively more accurate in localising edge centre pixels