FGI-2 Aufgabenblatt 03

Sabrina Buczko 6663234, Julian Deinert 6535880, Rafael Heid 6704828 Gruppe 06 3

3.3

3.3.1

$$L(A_1) = (\{a, c\} \cdot \{b\})^*$$

$$L(A_2) = \{a, c\} \cdot \{b\}^* \cdot \{a, c\} \cdot \{a\}^* \cdot (\{b\} \cdot \{a, c\} \cdot \{b\}^* \cdot \{a, c\} \cdot \{a\}^*)^*$$

$$L^{\omega}(A_1) = (\{a, c\} \cdot \{b\})^{\omega}$$

$$L^{\omega}(A_2) = (\{a, c\} \cdot \{b\}^* \cdot \{a, c\} \cdot \{a\}^* \cdot \{b\})^{\omega}$$

3.3.2

3.3.3

$$L(A_3) = \emptyset$$

$$L^{\omega}(A_3) = \emptyset$$

3.4

3.4.1

Für $TS_1 \Leftrightarrow TS_2$ müsste gelten:

 $\mathcal{B} = \{(z_0, p_0), (z_2, p_8), (z_1, p_1), (z_2, p_2), (z_0, p_3), (z_1, p_4), (z_2, p_5), (z_0, p_6), (Z_2, P_4), (z_1, p_7)\}$ Da aber (z_2, p_4) nicht in \mathcal{B} liegt, da z_2 ein Endzustand ist und p_4 nicht sowie von z_2 eine c-Kante wegführt und von p_4 nur eine b-Kante. Somit sind TS_1 und TS_2 nicht bisimilar.

Für
$$TS_1 \hookrightarrow TS_3$$

 $\mathcal{B} = \{(z_0, q_0), (z_2, q_1), (z_1, q_2), (z_2, q_3), (z_0, q_4), (z_2, q_5), (z_1, q_6), (z_2, q_7), (z_0, q_8), (z_2, q_9)....\}$

In jedem zweiten Relationspaar ist z_2 enthalten und dazwischen immer abwechselnd z_0 oder z_1 . Dies wird dann weiter fortgeführt mit q_i . Somit sind TS_1 und TS_3 bisimilar.

```
Für TS_2 \rightleftharpoons TS_3

\mathcal{B} = \{(p_0, q_0), (p_8, q_1), (p_1, q_2), (p_2, q_3), (p_0, q_4), (p_8, q_5), (p_3, q_4), (p_2, q_5), (p_4, q_6), (p_5, q_7), (p_6, q_8), (p_4, q_9), (p_7...)...\}

Somit sind TS_2 und TS_3 bisimilar.
```

3.4.2

a.)
$$\mathcal{B}_1 = \{(z_0, q_0), (z_2, q_1), (z_3, q_1), (z_4, q_4), (z_1, q_2), (z_1, q_3)\}$$

 $\mathcal{B}_2 = \{(q_0, z_0), (q_1, z_2), (q_1, z_3), (q_4, z_4), (q_2, z_1), (q_3, z_1)\}$

Die Bisimulationsrelation ist eine Menge von Paaren, die für jeden Zustand eine TS_1 angibt, welchem Zustand er aus einem TS_2 zugeordnet werden kann. Daraus folgt $TS_1 \cong TS_2$. Dadurch ist es nicht relevant in welcher Reihenfolge die Zustände in den Paaren zugeordnet werden. Also gilt $\mathcal{B}_1 = \mathcal{B}_1$ und das bedeutet dass beide die Bedingungen für die Bisimulation erfüllen.

b.)
$$\mathcal{B}_3 = (\mathcal{B}_1 \cup \mathcal{B}_2) = \{(z_0, q_0), (z_2, q_1), (z_3, q_1), (z_4, q_4), (z_1, q_2), (z_1, q_3)\} \cup \{(q_0, z_0), (q_1, z_2), (q_1, z_3), (q_4, z_4), (q_2, z_1), (q_3, z_1)\}$$

Alle Paare aus der ersten Relation \mathcal{B}_1 sind auch in \mathcal{B}_2 enthalten. Demnach steht jeder Zustand z aus TS_1 in Relation zu einem Zustand q aus TS_2 und umgekehrt. Daher erfüllt auch \mathcal{B}_3 die Bedingungen für die Bisimulation.

c.) Wenn die Kante (q_1, b, q_1) entfernt wird, sind TS_1 und TS_3 nicht bisimilar, da in der Relation das Paar (z_2, q_1) enthalten wäre aber nur von dem Zustand z_2 eine b-Kante wegführt. Bei q_1 wurde diese Kante entfernt und somit haben z_2 und q_1 nicht die gleichen Zustandsfolgen und es kann keine Bisimulationsrelation zwischen den beiden TS aufgestellt werden.