ZeRO: Memory Optimizations Toward

**Training Trillion Parameter Models** 

# Related Works

### Model Parallelism

Model Parallel: memory usage and computation of a model is distributed across multiple workers

### **Megatron-LM:**

- + Split the matrix into multiple parts and do matmul separately.
- + No sync point within Linear and Self-attn.



# Pipeline Parallelism

The model is distributed across multiple GPUs over layers.

Devices can be idle while waiting for others

Pipeline Parallelism is a specific form of model parallelism

- + **GPipe:** Divides input data mini-batches into smaller micro-batches.
- + **PipeDream:** Start backward as soon as possible. Do async gradient update.
- + Note that PipeDream is not equivalent to traditional DL.





### Data Parallelism

Each device has the same model and do forward and backward on a mini-batch separately. Quite easy and intuitive, but ...

- Cannot train LLM that cannot fit into one device.
- 2. Each device has the whole replica of the model.



### Reduce

**Goal:** In data parallelism, it is essential to ensure that each device is updated coherently, therefore we need to aggregate(reduce) gradients across different devices.

 Centralized Reduce: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers

- All Reduce
- Naïve AllReduce
- Ring AllReduce

### Naïve AllReduce

- Each worker can send its local gradients to all other workers
- If we have N workers and each worker contains M parameters
- Overall communication: N \* (N-1) \* M parameters
- Issue: each worker communicates with all other workers; same scalability issue as parameter server



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- After step 1, each worker has the aggregated version of M/N parameters



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

 Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

 Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times
- Overall communication: 2 \* M \* N parameters
  - Aggregation: M \* N parameters
  - Broadcast: M \* N parameters

# Summary

|                   | Pros                                  | Cons                                                                                         |
|-------------------|---------------------------------------|----------------------------------------------------------------------------------------------|
| Model Parallelism | Good memory efficiency                | Poor compute /communication efficiency (5% of peak perf in training 40B model with Megatron) |
| Data parallelism  | Good compute/communication efficiency | Poor memory efficiency (Every device has one copy of model)                                  |

Question: How can we reduce memory footprint of DP?

# **Understanding Memory Consumption**

### The GPUs need to store

- Model weights
- Forward activation
- Backward gradient
- Optimizer state

# Memory Usage

Common methods in optimization: Adam + Mixed-precision Training

- + Optimizer States: Momentum + Variance
- + Model: Parameters and Gradients

### MIXED PRECISION TRAINING

# while $\theta_t$ not converged do $t\leftarrow t+1$ $g_t\leftarrow \nabla_{\theta}f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t\leftarrow \beta_1\cdot m_{t-1}+(1-\beta_1)\cdot g_t$ (Update biased first moment estimate) $v_t\leftarrow \beta_2\cdot v_{t-1}+(1-\beta_2)\cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t\leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\widehat{v}_t\leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t\leftarrow \theta_{t-1}-\alpha\cdot \widehat{m}_t/(\sqrt{\widehat{v}_t}+\epsilon)$ (Update parameters) end while



Adam Optimizer

Mixed-precision Training

# Memory Usage

Example: Adam as optim, and Mixed-precision Training. N parameters

- + FP32 master parameters: 4N Bytes
- + FP32 optimizer states: 4N \* 2 Bytes (Momentum and Variance)
- + FP16 model parameters: 2N Bytes
- + FP16 optimizer states: 2N Bytes (Momentum only)

16N Bytes in total!

For 1.5B GPT-2, 24GB vMem

For 175B GPT-3, 2800GB vMem

# Other Memory Usages

### + Activations:

+ As a concrete example, the 1.5B parameter GPT-2 model trained with sequence length of 1K and batch size of 32 requires about 60 GB of memory

### + Temporary Buffers:

+ Storing intermediate results. Operations such as gradient all-reduce, or gradient norm computation tend to fuse all the gradients into a single flattened buffer before applying the operation in an effort to improve throughput.

### + Memory Fragmentation:

+ In extreme cases can be 30%.



### Suppose there are

- Two data splits: Data<sub>0</sub> and Data<sub>1</sub>
- Two GPUs: GPU<sub>0</sub> and GPU<sub>1</sub>
- 16 layer Transformer Model





- FP16 parameters
- FP16 Gradients
- FP32 Optimizer States (Gradients, Variance, Momentum, Parameters)



- FP16 parameters
- FP16 Gradients
- FP32 Optimizer States (Gradients, Variance, Momentum, Parameters)



- FP16 parameters
- FP16 Gradients
- FP32 Optimizer States (Gradients, Variance, Momentum, Parameters)

# Common Approaches to Reduce Memory

- + Reducing Activation Memory
  - + Activation Checkpoint, Compression
  - + All Work in parallel with ZeRO
- CPU Offload
  - + Requires CPU-GPU-CPU transfer, which can take 50% time
- + Memory Efficient Optimizer
  - + Maintaining coarser-grained statistics of model parameters and gradients.
  - + Works in parallel with ZeRO

# ZeRO - Zero Redundancy Optimizer

Work done by Microsoft, implemented in Deepspeed.

### Features:

- + Eliminating data redundancy in data parallel training
- + Can be widely used in large language model training.





Question: How can we partition optimizer states?



















loss backward to calculate fp16 gradients















- gradient gathering from another GPU and average gradient calculation



- fp32 gradient update



- fp32 variance update



- fp32 momentum update



- fp32 parameters update



- fp32 parameters update using fp16 gradient



- fp16 parameters update using fp32 parameters



all gather the gp16 weights to complete the iteration

#### Key idea:

- Each GPU is only responsible for one partition of the parameters, so it should also only be responsible for one partition of gradients that are corresponding to their designated parameters.
- But different GPUs are responsible for different data, meaning we still need to run all GPUs for all gradients.
- Therefore, during backward pass, a GPU can immediately delete the gradients that it's not responsible for, after it passes those gradients(computed with its data) to the GPU responsible for those gradients.
- The result is each GPU can hold less memory for gradients(linear to # of GPUs)



The backward pass starts

GPU 0,1,2 hold temporary buffers for the gradients that GPU 3 is responsible for (M3)



GPU 0,1,2 pass the M3 gradients to GPU 3



Then they delete M3 gradients, GPU 3 will keep M3 gradients.



GPU 0,2,3 hold temporary buffers for the gradients that GPU 2 is responsible for (M2)



GPU 0,2,3 pass the M2 gradients to GPU 2



Then they delete M2 gradients, GPU 2 will keep M2 gradients.



Same thing for GPU1/M1



Same thing for GPU0/M0



| DP   | <b>7.5</b> B Model (GB) |            |              | <b>128</b> B Model (GB) |            |              | 1T Model (GB) |            |              |
|------|-------------------------|------------|--------------|-------------------------|------------|--------------|---------------|------------|--------------|
|      | $P_{os}$                | $P_{os+g}$ | $P_{os+g+p}$ | $P_{os}$                | $P_{os+g}$ | $P_{os+g+p}$ | $P_{os}$      | $P_{os+g}$ | $P_{os+g+p}$ |
| 1    | 120                     | 120        | 120          | 2048                    | 2048       | 2048         | 16000         | 16000      | 16000        |
| 4    | 52.5                    | 41.3       | 30           | 896                     | 704        | 512          | 7000          | 5500       | 4000         |
| 16   | 35.6                    | 21.6       | 7.5          | 608                     | 368        | 128          | 4750          | 2875       | 1000         |
| 64   | 31.4                    | 16.6       | 1.88         | 536                     | 284        | 32           | 4187          | 2218       | 250          |
| 256  | 30.4                    | 15.4       | 0.47         | 518                     | 263        | 8            | 4046          | 2054       | 62.5         |
| 1024 | 30.1                    | 15.1       | 0.12         | 513                     | 257        | 2            | 4011          | 2013       | 15.6         |
|      |                         |            | 200          |                         |            |              |               |            |              |

Looks pretty good!

• In data parallel training, all GPUs keep all parameters during training





• In ZeRO, model parameters are partitioned across GPUs





GPU1 GPU2

- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters during forward





GPU1 GPU2

- In ZeRO, model parameters are partitioned across GPUs
- Parameters are discarded right after use





- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters again during backward





#### **Zero-DP Summary**

- Zero-DP stage 1 and 2 (optimizer state and gradient) doesn't additional communication, while enabling up to 8x memory reduction
- Zero-DP stage 3 (parameter) incurs a maximum of 1.5x communication

#### ZeRO - R

- Partitioned Activation Checkpointing
  - Split every activation to different devices. Gather them when needed.
- Constant Size Buffers
  - Buffer is used in doing all-reduce to improve bandwidth.
  - Modern implementations fuses all the parameters into a single buffer.
  - ZeRO uses constant size buffers to be more efficient for a large model.
- 3. Memory Defragmentation
  - Long-lived memory (Model parameters, Optimizer state): Store together
  - Short-lived memory (Discarded activations)

#### Results

Theoretical: On a 32GB V100 clusters (Up to 1024 V100),

- 1. Enable the training of a model with 1 Trillion (1000B) parameters using 1024 V100.
- 2. There is no limit to the number of GPUs. (So probably more)

| DP   | <b>7.5B Model</b> (GB) |            |              | 128      | BB Mod     | el (GB)      | 1T Model (GB) |            |              |
|------|------------------------|------------|--------------|----------|------------|--------------|---------------|------------|--------------|
|      | $P_{os}$               | $P_{os+g}$ | $P_{os+g+p}$ | $P_{os}$ | $P_{os+g}$ | $P_{os+g+p}$ | $P_{os}$      | $P_{os+g}$ | $P_{os+g+p}$ |
| 1    | 120                    | 120        | 120          | 2048     | 2048       | 2048         | 16000         | 16000      | 16000        |
| 4    | 52.5                   | 41.3       | 30           | 896      | 704        | 512          | 7000          | 5500       | 4000         |
| 16   | 35.6                   | 21.6       | 7.5          | 608      | 368        | 128          | 4750          | 2875       | 1000         |
| 64   | 31.4                   | 16.6       | 1.88         | 536      | 284        | 32           | 4187          | 2218       | 250          |
| 256  | 30.4                   | 15.4       | 0.47         | 518      | 263        | 8            | 4046          | 2054       | 62.5         |
| 1024 | 30.1                   | 15.1       | 0.12         | 513      | 257        | 2            | 4011          | 2013       | 15.6         |

Per-device memory consumption of different optimizations

#### Results

#### Practical:

- 1. Train a 17B model (Turing-NLG. The largest as of 2020.1) and has SOTA perplexity in Webtext-103.
- 2. Train a 100B model on 400 GPUs, achieving high throughput over baseline (~10x, 30% of the theoretical peak).





#### Summarization

- 1. ZeRO is a distributed learning framework with data parallelization.
- 2. ZeRO partitions model states across devices.
- ZeRO trains a new SOTA model with 17B models in 2019.