O. Presentación del Informe

Título del Informe:

Tarea Obligatoria Nro. 1: Operaciones.

Autor:

Rodrigo Ciosek.

Materia / Asignatura:

Algoritmos y Estructuras de Datos 1.

Profesor:

Carlos Mascheroni.

Fecha de entrega:

8 de abril de 2025

1. Introducción

Desarrollar una función que, dada cierta operación entre dos valores devuelva el resultado correspondiente utilizando únicamente sumas y restas. No está permitido el uso de operadores matemáticos directos distintos de + y – (adición y sustracción).

La operación por realizar se indicará por medio de un tercer parámetro. Si los valores no son adecuados para la operación solicitada, la función deberá manejar dicha situación de forma apropiada.

2. Análisis

2.1 Definición y entendimiento del problema

Crear una función o procedimiento que retorne el resultado de operaciones aritméticas utilizando solamente la adición y la sustracción. Se pasarán tres valores como argumentos, dos valores enteros y un carácter que define la operación aritmética.

2.2 Entradas y salidas:

2.2.1 Entradas:

- Un valor entero "a".
- Un valor entero "b".
- Un carácter "op" que represente un símbolo aritmético. Puede ser '+', '-', '*', '/'.

2.2.2 Salidas:

 Un numero flotante que representa el resultado de una operación aritmética con los valores a, b y el operador.

2.3 Pre y Post condiciones

2.3.1 Pre condiciones

- "a", "b", "op", no sea nulo ni vacío
- Si "op" = 0, "num1" o "num2" != 0
- op == + o op == o op == + o op == +

2.3.2 Post condiciones

- Retorna un numero entero o flotante como resultado de la operación aritmética entre a y b.
- Si alguno de los parámetros está vacío devolverá un mensaje de error.
- Si se intenta realizar una división por 0 devolverá un mensaje de error.

3. Diseño

3.2 Pseudocódigo

```
Clase Algoritmo.java

Funcion Calculadora(a, op, b): Flotante

Si op!='-'Y op!='+'Y op!='/'Y op!='*'

Retornar "NaN"

FinSi

Segun op Hacer

Caso'-':

Retornar Utilidades.Resta(a,b)

Caso'+':

Retornar Utilidades.Suma(a,b)

Caso'/:

Retornar Utilidades.Division(a,b)

Caso'*:

Retornar Utilidades.Multiplicacion(a,b)
```

FinFuncion

```
Funcion suma(a,b): Entero
  Retornar a + b
FinFuncion
Funcion resta(a,b): Entero
  Retornar a - b
FinFuncion
Funcion multiplicacion(a,b): Entero
  resultado = 0
  absA = FuncionValorAbsoluto(a)
  absB = FuncionValorAbsoluto(b)
  Para i = 0 Hasta i=absB Hacer
    resultado = resultado + absA;
  FinPara
  Si a < 0 Y b < 0
    Retornar FuncionValorAbsoluto(resultado)
  FinSi
  Si a < 0 O b < 0
    Retornar resultado * -1
  FinSi
  Retornar resultado
FinFuncion
Funcion division(a,b): Flotante
  resultado = 0
  resto = 0
```

cociente = 0

absA = ValorAbsoluto(a)

Clase Utilidades.Java

```
absB = ValorAbsoluto(b)
restoAux = 0
restoDivLarga = 0
decimal = 0
// Calcular cociente
Mientras restaA >= absB Hacer
  restaA = restaA - absB
  cociente = cociente + 1
FinMientras
resto = restaA
resultado = cociente
Si resto = 0
  Retornar resultado
FinSi
// Division larga para conseguir el resto en decimal
// 1. Mutliplicar el resto * 10
restoAux = resto
Para i = 1 hasta i = 10 Hacer
  resto = resto + restoAux
FinPara
// 2. Conseguir cuantas veces entra el divisor en el resto
Mientras resto >= absA Hacer
  resto = resto - absA
  restoDivLarga = restoDivLarga + 1
FinMientras
// 3. Convertir restoDivLarga a decimal para sumarlo al resultado
Para i = 0 Hasta i = restoDivLarga
```

```
decimal = decimal + 0.1
FinPara
// 4. Sumarlo a resultado
resultado = resultado + decimal
Retornar resultado
```

FinFuncion

*/

4. Implementación

Algoritmo.java

```
public class Algoritmo { 14 usages
          public static float Calculadora(int a, char op, int b){ 14 usages
              if (op != '-' && op != '+' && op != '/' && op != '*') return Float.NaN;
13
14
              switch (op){
15
                 case '-':
16
                      return (Utilidades.restα(a,b));
                  case '+':
18
                     return Utilidades.sumα(a,b);
                  case '/':
20
21
                      if (b == 0) return Float.NaN;
22
                      return Utilidades.division(a,b);
                  case '*':
23
                     return Utilidades.multiplicαcion(a,b);
25
26
          return Float.NαN;
27
28
          }
29
```

Utilidades.java

```
public class Utilidades { 4 usages
2
            public static int suma(int a, int b) { 1usage
3
                return a + b;
5
            public static int resta(int a, int b) { 1usage
7
                return a - b;
9
            }
            public static int multiplicacion(int a, int b) { 1usage
11
                int resultado = \theta;
12
                int absA = Math.abs(a);
13
                int absB = Math.abs(b);
14
                for (int \underline{i} = 0; \underline{i} < absB; \underline{i} + +) {
15
                    resultado += absA;
16
                }
17
                if (a < \theta \&\& b < \theta) return Math.abs(resultado);
18
                if (a < 0 \mid | b < 0) return resultado * -1;
19
                return resultado;
21
```

```
public static float division(int a, int b) { 1usage
23
24
                float resultado = 0;
25
                int resto = 0;
                int cociente = 0;
27
                int absA = Math.\alpha bs(a);
28
                int absB = Math.abs(b);
29
                int restaA = absA;
30
                // Conseguir el cociente
31
                while (restaA >= absB) {
32
                     restaA -= absB;
33
                     cociente++;
34
35
                \underline{\text{resto}} = \underline{\text{restaA}};
36
37
                resultado = cociente;
                if (resto == 0) return resultado;
38
39
40
                // Division Larga para conseguir el restante en decimal
41
                // 1. Conseguir el resto * 10
42
                int restoAux = resto;
43
                 for (int i = 1; i < 10; i++) {
44
                     resto += restoAux;
45
                }
46
47
48
                // 2. Conseguir el cuantas veces entra el divisor en el resto*10
49
50
                int restoDivLarga = 0;
                while (<u>resto</u> >= absB) {
51
                     resto -= absB;
52
53
                     restoDivLarga++;
54
55
                //3. Convertir restoDivLarga a decimal
56
                float decimal = 0;
57
                for (int \underline{i} = 0; \underline{i} < \underline{restoDivLarga}; \underline{i} + +) {
58
59
                     decimal += 0.1f;
61
62
                resultado += decimal;
                return resultado;
63
            }
64
65
```

5. Verificación y Validación

Pruebas

- Caso básico 1:
 - \circ (-1, '+', 5) \rightarrow Resultado esperado: 4.0
- Caso básico 2:
 - \circ (1, '+', -5) \rightarrow Resultado esperado: -4.0
- Caso básico 3:
 - \circ (6, '-', 5) \rightarrow Resultado esperado: 1.0
- Caso básico 4:
 - \circ (5, '-', 6) \rightarrow Resultado esperado: -1.0
- Caso básico 5:
 - \circ (-5, '-', -6) \rightarrow Resultado esperado: 1.0
- Caso básico 6:
 - \circ (1, '*', 5) \rightarrow Resultado esperado: 5.0
- Caso básico 7:
 - \circ (6, '*', -2) \rightarrow Resultado esperado: -12.0
- Caso básico 8:
 - \circ (0, '*', 10) \rightarrow Resultado esperado: 0.0
- Caso básico 9:
 - \circ (10, '*', 0) \rightarrow Resultado esperado: 0.0
- Caso básico 10:
 - \circ (1, '/', -5) \rightarrow Resultado esperado: -0.2
- Caso básico 11:
 - \circ (5, '/', 0) \rightarrow Resultado esperado: NaN
- Caso básico 12:
 - \circ (0, '/', 5) \rightarrow Resultado esperado: 0.0
- Caso básico 13:
 - o (0, '', 5) → Resultado esperado: NaN
- Caso básico 14:
 - o (0, '&', 5) → Resultado esperado: NaN

Resultados:

- Caso básico 1: 4.0 (Correcto)
- Caso básico 2: -4.0 (Correcto)
- Caso básico 3: 1.0 (Correcto)
- Caso básico 4: -1.0 (Correcto)
- Caso básico 5: 1.0 (Correcto)
- Caso básico 6: 5.0 (Correcto)
- Caso básico 7: -12.0 (Correcto)
- Caso básico 8: 0.0 (Correcto)
- Caso básico 9: 0.0 (Correcto)
- Caso básico 10: -0.2 (Correcto)
- Caso básico 11: NaN (Correcto)
- Caso básico 12: 0.0 (Correcto)
- Caso básico 13: NaN (Correcto)
- Caso básico 14: NaN (Correcto)

6. Conclusiones

Buen ejercicio para poder entender como funciona la multiplicación y la división con mas profundidad y aprender a aplicarlo en código. Me resulto complicada la división, me ayudo a investigar como podría conseguir que me devolviera el resultado con resto y aprendí un concepto que se llama división larga, asique me llevo un concepto nuevo.