CSPB 3202 Artificial Intelligence

Machine Learning

Geena Kim

Logistic Regression

Review- types of machine learning problems

Review-Linear Regression

$$\hat{y}^{(i)} = \mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

Bias-Variance Trade-off

Binary Classification

Yes or No problem

- Creditcard Default
- Fradulant Insurance Claim
- Spam Filtering
- Medical Diagnosis
- Survival Prediction
- Customer Retention
- Image Recognition

Binary Classification

Linear vs Logistic Regression

Linear vs Logistic Regression

Linear vs Logistic Regression

Logistic Function

$$P^{(i)} = \sigma(z^{(i)})$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$z^{(i)} = \boldsymbol{W} \cdot \boldsymbol{X} + b$$

Called "logit" and is related to the decision boundary

Logistic Regression- Univariate

University Acceptance

SAT_M	accept
690.0	0.0
710.0	1.0
790.0	1.0
770.0	0.0
770.0	1.0

Logistic Regression- Multivariate

Breast Cancer Diagnosis

label	concave points_worst	radius_worst
0	0.08263	13.05
1	0.16730	16.39
0	0.14650	10.85
1	0.15100	21.86
1	0.14900	21.31

$$z = 0.443 \times 1 + 2.76 \times 2 - 7.57 = 0$$

Estimating parameters in logistic regression

Estimating parameters in logistic regression

Interpreting Logistic Regression Result

Type I error and Type II error

Type I error (false positive)

Type II error (false negative)

Binary Classification Performance Metrics


```
from sklearn.metrics import confusion_matrix
confusion_matrix(y_true, y_pred)
```

```
pd.DataFrame(confusion matrix(yt, yp, labels=[0,1]))
```

Performance Metrics-ROC, AUC

Receiver-Operating Characteristics Curve

Which Performance Metric should I choose?

- Accuracy
- Sensitivity, Recall, TPR
- Specificity, Selectivity, TNR
- Precision, PPV
- False Positive Rate (fall-out)
- False Negative Rate (miss rate)
- £1 score
- AUC
- Confusion matrix

$$99999 = 1 \rightarrow 99.9$$
 $13=0$
 2

Loss: Why use Cross-Entropy, not Accuracy?

Cross Entropy

$$\mathcal{H}(P,Q) = -\sum_{i} P_{i} \log(Q_{i}) = -\frac{1}{m} \sum_{i}^{m} y_{i} \log \hat{p}_{i} + (1 - y_{i}) \log (1 - \hat{p}_{i})$$

Scikit-Learn's logistic regression

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression().fit(X, y)
```

```
model.predict(X_test)
```

model.predict_proba(X_test)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.decision_function https://github.com/scikit-learn/scikit-learn/blob/1495f6924/sklearn/linear_model/logistic.py

Under the Hood of sklearn's logistic regression

solver: str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, optional (default='liblinear').

liblinear (variant of Newton's method)

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$
$$x^{+} = x - (\nabla^{2} f(x))^{-1} \nabla f(x)$$

Using sklearn's LogisticRegression

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression().fit(X, y)
```

```
model.coef_
model.intercept
```

Yp = model.predict(X_test)

P = model.predict_proba(X_test)

Using sklearn's LogisticRegression

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
from sklearn.linear model import LogisticRegression as LR
clf = LR(class weight="balanced", solver='liblinear').fit(X train, y train.ravel())
clf.score(X test,y test)
0.9649122807017544
from sklearn.metrics import confusion matrix, accuracy score, fl score, precision score, recall score
vp = clf.predict(X test)
print('acc', accuracy score(y test, yp))
print('recall', recall score(y test, yp))
print('precision', precision score(y test, yp))
print('F1', f1 score(y test, yp))
acc 0.9649122807017544
recall 0.9302325581395349
precision 0.975609756097561
F1 0.9523809523809524
pd.DataFrame(confusion matrix(y test, yp, labels=[0,1]))
```

What about the statistics?

Another library

```
import statsmodels.api as sm
logit model=sm.Logit(y train,x train)
result=logit model.fit()
print(result.summary())
Optimization terminated successfully.
         Current function value: 0.681033
         Iterations 4
                           Logit Regression Results
Dep. Variable:
                                        No. Observations:
                                                                             455
Model:
                                        Df Residuals:
                                                                            454
                                Logit
Method:
                                  MLE
                                        Df Model:
                     Wed, 18 Sep 2019
                                        Pseudo R-squ.:
                                                                        -0.03232
Date:
Time:
                             19:23:16
                                         Log-Likelihood:
                                                                         -309.87
                                        LL-Null:
converged:
                                 True
                                                                         -300.17
                                         LLR p-value:
                                                                             nan
                 coef
                         std err
                                                  P>|z|
                                                             [0.025
                                                                         0.975]
               2.3970
                           0.731
                                      3.279
                                                              0.964
                                                  0.001
                                                                           3.830
x1
```

Bootstrap (Resample)

Next Lecture: Ways to train better

Regularization

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

class

sklearn.linear model.LogisticRegressionCV

Cross-Validation

