

Massively Growing Computing Needs

Big Data, IoT, AI, Deep Learning, Machine Learning, HPC

GPU Acceleration and Trends

Parallel computing & CUDA

GPUs speed up DL and HPC tasks from weeks to hours or less [2012+]

Containers & GPU-accelerated Applications

Complex s/w dependencies (e.g., DL)

- CUDA toolkit, DL libraries (cuDNN, cuBLAS..)
- DL frameworks: TF, PyTorch, Caffe etc
- NCCL, Open MPI, Horovod etc

Containers to the rescue!

Pre-packaged dependencies

All-in on containers

Simplify deployments, Quick start, Portable

NGC Registry: GPU-accelerated Software Hub

Containers and models for AI and HPC

- https://ngc.nvidia.com
- Tuned, tested, certified to run on Nvidia GPUs
- Monthly releases
- Software perf improvements

NGC: GPU-accelerated Containers for AI & HPC

Deep Learning	HPC	Machine Learning	Inference	Visualization
Caffe2	BigDFT	Dotscience	DeepStream	CUDA GL
Chainer	CANDLE	H2O Driverless Al	DeepStream 360d	Index*
CT Organ Segmentation	CHROMA*	Kinetica	TensorRT	ParaView*
CUDA Deep Cognition Studio	GAMESS* GROMACS	MapR	TensorRT Infr Server	ParaView Holodeck
DeepStream 360d	HOOMD-blue*	MATLAB		ParaView Index*
DIGITS	LAMMPS*	MMPS* OmniSci (MapD)		ParaView Optix*
Kaldi	Lattice Microbes	` ' '		•
Microsoft CNTK	Microvolution	RAPIDS		Render server
MXNet*	MILC*			
NVCaffe	NAMD*			
PaddlePaddle	Parabricks			
PyTorch*	PGI Compilers	 Docker and Singularity, HPC-CM *Multi-node enabled, NCCL/MPI Monthly releases, perf updates 		
TensorFlow*	PIConGPU*			
Theano	QMCPACK*			
Torch	RELION	• IVIOIILI	ily releases, peri	upuates
TLT Stream Analytics IVA				

Innovate Faster

Deploy Anywhere

Enterprise

SUPERMICE

Overview

- Motivation: AI / DL / ML / HPC
- ✓ NGC registry: GPU-accelerated container hub
- Internal Production GPU clusters
- Orchestration using K8s: challenges and approaches
- Learnings, best practices and next steps

Nvidia Saturn-V: Internal GPU Clusters

- Approx 14,000 GPUs total
- DGX-1 and DGX-2 GPU nodes
- Racks, pods, CPU, storage nodes
- Few different data centers, clusters
 - Mix of dedicated and shared
- Bare-metal / Xen VM (legacy)
- Slurm / Mesos (legacy) / K8s (NEW)

DGX-1 node with 8 GPUs

Cluster Users and Workloads

Internal AI / DL / ML / HPC / Viz teams

Data scientists, Container engrs, Verticals

Batch jobs: long running (days, weeks)

Size: {1, 2, 4, 8} gpus per job; multi-node in some

Mission-critical: SRE team, reliability, yield, perf

Job Submission Flow

Architecture Overview

Challenge 1:

HPC / Batch Management Long running Jobs

K8s and HPC/Batch Limitations

- K8s originally designed for web service workloads
- Multi-tenant + HPC / Batch requires:
 - Time limits and slices
 - Queues, quota, fair share
 - Node topology / affinity
 - Multi-node job
 - Checkpointing, preemption
 - w/ GPU support

Upstream activity (WIP / early)

- K8s/issue-68357: "Bring Batch capability to K8s"
- Kube-batch (v0.4), ...
- K8s-default scheduling framework, ...
- Slurm, LSF K8s operators, ...

Bring Batch Capability into Kubernetes #68357

Batch: Queues, Quotas and Fair share

K8s default scheduler:

- Single queue, FIFO priority w/o blocking
- Quota per namespace & at pod admission time

Custom scheduler + controller supports:

- Queue per user (or team)
- Quota per user (or team) at scheduling time
- DRF fairness, FIFO w/o blocking

Target:

Hierarchical quotas, Dynamic fair share

Multiple users / teams

Batch: Handling long running jobs

Timeslices, checkpointing, preemption

Challenges of long running jobs

- Failures / lost work / yield
- Rolling updates take time
- Enforcing fair share

Smaller time slices

Job specifies:

Total run time: e.g, 7 days Min time slice: e.g., 1 hours

Preemption

Preempt (a) lower priority

(b) over time slice

(c) over fair usage

To help Starving jobs, Fairness, De-frag

Multi-node Jobs with MPI

- Strong demand for multi-node GPU jobs
 - o E.g., 128-GPUs per job

- Two approaches:
 - Async SGD: Parameter-server
 - Sync SGD: MPI, NCCL, Horovod

Upstreamed: MPI Operator for Kubeflow

Multi-node Jobs with MPI in K8s

- Multi-node networking (WIP)
 - CNI with RDMA / Infiniband / Mellanox
- Gang/Co-scheduling with MPI operator
 - Quotas, queues, time limits
 - Full-node, reservation, backfilling
 - Dynamic priority
- Status: WIP

Challenge-2:

Efficient GPU Management
Telemetry, health checks, affinity, upgrades

GPU Telemetry and Efficiency

- Utilization, visibility (NVML, nvidia-smi..)
- Data Center GPU Manager (DCGM)
 - Health monitoring, diagnostics
 - Metrics: GPU, memory, power util, temp, NVLink/PCIe, ..
- Upstreamed: DCGM exporter for Prometheus
- Per-pod metrics via "KubeletPodResources"
- https://github.com/NVIDIA/gpu-monitoring-tools

DGX-1 node with 8 Volta GPUs

Telemetry data in Grafana

Telemetry: Utilization of a 8-GPU job

GPU Health and Pre-flight checks

- DCGM: Periodic non-invasive GPU health checks
 - Scheduler avoids scheduling jobs on unhealthy nodes
- Custom: Pre-flight checks (GPU + end-end) to improve Yield
 - Job re-submitted automatically if pre-flight check fails

GPU Affinity

- Socket affinity and CPU-GPU allocation
- Reserving CPUsets for system jobs
- Kubelet / TopologyManager modifications
- Custom scheduler enhancements
 - Optimal GPU selection w/o K8s core API mod
- Status: Testing / upstream discussion in progress

DGX-1 node: 40% perf difference (closeby vs across-socket)

Prod Challenges:

Hitless transition, yield, upgrades

Hitless Transition and Batch Federation

- Approach: Batch Federation and Job UI/CLI abstraction
 - Route jobs to cluster based on user, team, job type etc.
 - Similarity to Kubefed / multi-cluster but for batch workloads
- Possibly later: Queues and quotas at Federation layer

Hitless Rolling Upgrade Operator

Upgrade worker nodes without affecting long running jobs

Misc: Long Standing K8s Issues

- Node-level user namespace remapping
 - Root inside to non-root outside (<u>kubernetes/KEP/127</u>, since 2016)
- Enforcing size limit on /dev/shm or emptyDir
 - Hinders some Pytorch jobs sharing a node (<u>kubernetes/KEP/63126</u>)
- Bare-metal and private VM service environments
 - Kops, kubespray modifications
- Scalability aspects with Kubelet missing some API server updates
 - Adjusted MAX_CONCURRENT_STREAMS and the pod GC Threshold

Summary

- NGC registry: GPU-accelerated container hub
 - https://ngc.nvidia.com
- Internal Prod GPU clusters using K8s
 - Successful transition, Yield improvements
- HPC/batch challenges and enhancements:
 - Time limits/slices, queues, fair share, checkpointing, preemption, multi-node
- GPU management: Telemetry, Health check, GPU affinity, Upgrades etc.

Ongoing Work

- Spark, ML/ETL, Inference with GPUs
- HPC/Batch in upstream K8s, Multi-node, GPU affinity, Sharing
- Continue contribution / collaboration with community

⇒ More GPU empowered workloads in K8s!

Buy More GPUs, Save Time & Money

