Minimum Risk Bayes Decision Theoretic Classifier

จัดทำโดย

นายปัณณวิชญ์ พันธ์วงศ์ 600610752

เสนอ

รศ.ดร.ศันสนีย์ เอื้อพันธ์วิริยะกุล

รายงานเล่มนี้เป็นส่วนหนึ่งของวิชา

261754

ภาคเรียนที่ 1 ปีการศึกษา 2564

1. Theories and Related Method

1.1. Covariance Matrices

ความแปรปรวนร่วมเกี่ยว(Covariance) เป็นการวัดปริมาณการเปลี่ยนแปลงของสองตัวแปรว่า จะมีการเปลี่ยนแปลงตามกันมาน้อยเท่าใด ในการคำนวณความแปรปรวนของของตัวแปรสามารถ คำนวณได้จาก

$$\sigma(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

เมทริกความแปรปรวนร่วมเกี่ยว(Covariance Matrix) เป็นเมทริกที่คำนวณ Covariance ที่มี มากกว่า 2 ตัวแปรให้อยู่ในรูปของเมทริก โดย $\sigma(x_i,y_i)=\sigma(y_i,x_i)$ ซึ่งคำนวณได้ในรูปของเมทริก

$$\mathcal{E} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

โดยผลลัพธ์ที่ได้จะอยู่ในรูปของเมทริกที่รวม Variance ของแต่ละคู่ตัวแปร ดังเมทริกต่อไปนี้

$$\mathcal{E} = \begin{pmatrix} \sigma(x, x) & \sigma(x, y) \\ \sigma(y, x) & \sigma(y, y) \end{pmatrix}$$

1.2. Multivariate normal distribution

การแจกแจงปรกติ(Normal distribution) เป็นการแจกแจงความน่าจะเป็นของค่าของตัวแปร สุ่มที่เป็นค่าแบบต่อเนื่อง โดยที่ค่าของตัวแปรสุ่มมีแนวโน้มที่จะมีค่าอยู่ใกล้ ๆ กับค่า ๆ หนึ่ง กราฟแสดง ค่าฟังก์ชันความหนาแน่น (probability density function) จะเป็นรูปคล้ายระฆังคว่ำ หรือเรียกว่า Gaussian function

การแจกแจงแบบปกติหลายตัวแปร(Multivariate normal distribution) เป็นการแจกแจงความ น่าจะเป็นของค่าหลายตัวแปร โดยมีสมการดังนี้

$$f(x_d|\omega) = \frac{\exp(-\frac{1}{2}(x-\mu)^T \mathcal{E}^{-1}(x-\mu))}{\sqrt{(2\pi)^d \|\mathcal{E}\|}}$$

1.3. Bayes' Theorem

ทฤษฎีของเบย์(Bayes' theorem) เป็นทฤษฎีที่เป็นส่วนขยายของความน่าจะเป็นแบบมีเงื่อนไข หรืออาจกล่าวว่าเป็นการหาความน่าจะเป็นของส่วนย่อยจากเหตุการณ์ที่สนใจหนึ่งที่เกิดขึ้นแล้ว โดยมี สมการดังนี้

$$P(x_i|\omega) = \frac{P(\omega|x_i) \cdot P(x_i)}{\sum_{i=1}^{n} P(\omega|x_i) \cdot P(x_i)}$$

กฎของเบย์(Bayes' rule) ที่ใช้ในการทดลองนี้จะเปรียบเทียบว่า sample ที่เข้ามานั้นมีโอกาส อยู่ในคลาสไหนมากที่สุด กล่าวคือจะเปรียบเทียบ $P(x_i|\omega_m)$ และ $P(x_i|\omega_n)$ หาก $P(x_i|\omega_m)$ มีค่า มากกว่า $P(x_i|\omega_n)$ จะถือว่า x_i อยู่ใน ω_m ในทางกลับกันหาก $P(x_i|\omega_m)$ มีค่าน้อยกว่า $P(x_i|\omega_n)$ จะถือว่า x_i จะอยู่ใน ω_n

$$P(x_i|\omega_m) > P(x_i|\omega_n), \quad x_i \in \omega_m$$

$$P(x_i|\omega_m) < P(x_i|\omega_n)$$
, $x_i \in \omega_n$

$$P(x_i|\omega_m) = P(x_i|\omega_n)$$
, random (ω_n, ω_m)

1.4. Cross-validation Test

การวัดประสิทธิภาพด้วยวิธี Cross-validation นี้จะทำการแบ่งข้อมูลออกเป็นหลายส่วน (มักจะ แสดงด้วยค่า k) เช่น 5-fold cross-validation คือ ทำการแบ่งข้อมูลออกเป็น 5 ส่วน โดยที่แต่ละส่วนมี จำนวนข้อมูลเท่ากัน หรือ 10-fold cross-validation คือ การแบ่งข้อมูลออกเป็น 10 ส่วน โดยที่แต่ละ ส่วนมีจำนวนข้อมูลเท่ากัน หลังจากนั้นข้อมูลหนึ่งส่วนจะใช้เป็นตัวทดสอบประสิทธิภาพของโมเดล ทำวน ไปเช่นนี้จนครบจำนวนที่แบ่งไว้ ซึ่งในการทดลองนี้จะใช้ 10-fold cross-validation

2. Algorithm (Flow Chart)

อันดับแรกจะทำการ shuffle ข้อมูลทั้งหมด จากนั้นจะทำการทดลองโดยจะทำการแบ่ง 10-fold cross-validation จากข้อมูล 200 records กล่าวคือ ข้อมูลสำหรับหา Covariance, Mean, P(w) ของคลาส ใดๆ มี 180 และสำหรับทดสอบตามกฏของเบย์ 20 records โดยจะนำข้อมูลสำหรับทดสอบไปหาค่าของการ แจกแจงแบบปกติหลายตัวแปรของแต่ละคลาส จากนั้นจะทำการเปรียบเทียบตามกฏของเบย์และวัดผลลัพธ์

รูปที่ 1 Flow chart ของระบบ

3. Analyze data

ข้อมูลจะประกอบไปด้วย 4 features มีทั้งหมด 200 records ซึ่งได้ถูกแบ่งกลุ่ม(class) ไว้ทั้ง หมด 2 class ได้แก่ class 1 และ class 2 ดังตารางนี้

No.	Feature 1	Feature 2	Feature 3	Feature 4	Class
1	5.91	3.09	3.74	1.17	1
200	6.29	3.22	5.77	1.59	2

4. Experimental

ผู้จัดทำได้ทำการทดลอง 2 แบบ ซึ่งแต่ละการทดลองจโดยทำการแบ่งเทรน(Train) กับเทส(Test) โดย ใช้ 10-folds cross validation โดยทำตามอัลกอริทึมตาม<u>ข้อ 2</u> โดยการทดลองที่ 1 จะใช้ 4 Features และ การทดลองที่ 2 จะใช้ 2 Features โดยเป็น Feature1 และ Feature2 ทำการทดลอง

4.1. การทดลองที่ 1

รูปที่ 2 ค่าเฉลี่ยของ Features ในแต่ละ Fold

จาก**รูปที่ 2** สังเกตได้ว่า ค่าเฉลี่ยของ Feature3(สีเขียว) และ Feature4(สีแดง) ของแต่ละ class มีค่าที่ต่างกันเห็นได้อย่างชัดเจน และสำหรับ Feature1(สีฟ้า) มีค่าเฉลี่ยของแต่ละคลาสต่างกันเล็กน้อย แต่สำหรับ Feature2(สีเหลือง) มีค่าที่ใกล้เคียงกันมากๆจนแยกไม่ออก

Fold 1	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 2	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.314	-0.023	0.021	-0.011	Fea. 1	0.312	-0.022	0.017	-0.012
Fea. 2	-0.024	0.116	-0.009	0.003	Fea. 2	-0.02	0.118	-0.012	0.005
Fea. 3	0.021	-0.007	0.166	0.016	Fea. 3	0.018	-0.013	0.148	0.014
Fea. 4	-0.009	0.004	0.017	0.04	Fea. 4	-0.011	0.004	0.014	0.04
Fold 3	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 4	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.313	-0.007	0.026	-0.006	Fea. 1	0.301	-0.023	0.015	-0.015
Fea. 2	-0.009	0.114	-0.005	0.002	Fea. 2	-0.023	0.119	-0.008	0.006
Fea. 3	0.025	-0.004	0.162	0.016	Fea. 3	0.015	-0.009	0.152	0.01
Fea. 4	-0.009	0.001	0.015	0.038	Fea. 4	-0.015	0.006	0.01	0.038
Fold 5	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 6	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.282	-0.032	0.019	-0.013	Fea. 1	0.324	-0.02	0.032	-0.011
Fea. 2	-0.033	0.113	-0.011	0.006	Fea. 2	-0.019	0.119	-0.005	0.006
Fea. 3	0.017	-0.011	0.145	0.018	Fea. 3	0.033	-0.005	0.143	0.011
Fea. 4	-0.014	0.006	0.018	0.041	Fea. 4	-0.009	0.007	0.012	0.041
Fold 7	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 8	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.317	-0.023	0.043	-0.015	Fea. 1	0.306	-0.014	0.038	-0.012
Fea. 2	-0.023	0.11	0	0.011	Fea. 2	-0.013	0.104	-0.001	0.003
Fea. 3	0.044	0	0.144	0.017	Fea. 3	0.04	-0.002	0.158	0.018
Fea. 4	-0.016	0.01	0.017	0.036	Fea. 4	-0.013	0.002	0.017	0.039
Fold 9	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 10	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.326	-0.017	0.024	-0.015	Fea. 1	0.276	-0.016	0.031	-0.006
Fea. 2	-0.02	0.099	-0.018	0.01	Fea. 2	-0.014	0.117	-0.007	0.006
Fea. 3	0.025	-0.015	0.157	0.017	Fea. 3	0.034	-0.007	0.162	0.015
Fea. 4	-0.013	0.011	0.017	0.04	Fea. 4	-0.008	0.005	0.013	0.039

รูปที่ 3 Covariance Matrix ของ Class 1 ในแต่ละ Fold

Fold 1	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 2	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.353	0.022	0	0.002	Fea. 1	0.369	-0.002	-0.01	-0.009
Fea. 2	0.02	0.097	0.011	-0.001	Fea. 2	-0.001	0.106	0.009	-0.006
Fea. 3	0.001	0.012	0.187	0.028	Fea. 3	-0.007	0.01	0.182	0.025
Fea. 4	0.003	0	0.028	0.078	Fea. 4	-0.006	-0.005	0.027	0.075
Fold 3	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 4	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.369	0.004	-0.003	0	Fea. 1	0.373	0.01	-0.02	-0.012
Fea. 2	0.007	0.105	0.014	-0.002	Fea. 2	0.012	0.105	0.016	-0.004
Fea. 3	0.002	0.014	0.194	0.025	Fea. 3	-0.017	0.016	0.2	0.031
Fea. 4	0.003	-0.001	0.026	0.079	Fea. 4	-0.011	-0.004	0.031	0.08
Fold 5	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 6	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.389	0.005	-0.013	0	Fea. 1	0.387	0	-0.011	-0.009
Fea. 2	0.005	0.107	0.011	-0.006	Fea. 2	0.001	0.104	0.003	-0.008
Fea. 3	-0.012	0.011	0.197	0.03	Fea. 3	-0.009	0.003	0.175	0.024
Fea. 4	-0.001	-0.006	0.029	0.078	Fea. 4	-0.007	-0.007	0.025	0.081
Fold 7	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 8	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.366	0.001	-0.01	-0.001	Fea. 1	0.338	0.02	-0.031	-0.011
Fea. 2	0.001	0.103	0.013	-0.004	Fea. 2	0.02	0.096	0.015	-0.002
Fea. 3	-0.013	0.012	0.19	0.024	Fea. 3	-0.028	0.016	0.168	0.033
Fea. 4	-0.003	-0.005	0.023	0.081	Fea. 4	-0.012	-0.003	0.031	0.078
Fold 9	Fea. 1	Fea. 2	Fea. 3	Fea. 4	Fold 10	Fea. 1	Fea. 2	Fea. 3	Fea. 4
Fea. 1	0.36	-0.002	0.007	0	Fea. 1	0.383	-0.012	-0.022	-0.007
Fea. 2	-0.005	0.097	0.004	-0.009	Fea. 2	-0.01	0.095	0.017	0.004
Fea. 3	0.006	0.006	0.181	0.025	Fea. 3	-0.023	0.016	0.195	0.021
Fea. 4	0.001	-0.007	0.027	0.08	Fea. 4	-0.008	0.003	0.02	0.073

รูปที่ 4 Covariance Matrix ของ Class 2 ในแต่ละ Fold

Fold 1	Pre	edict	Acc	Fold 2	Predict		Acc
Actual	10	0	100	Actual	7	1	95
	0	10			0	12	
Fold 3	Pre	edict	<u>Acc</u>	Fold 4	Pre	dict	<u>Acc</u>
Actual	12	0	100	Actual	10	0	100
Actual	0	8	100	Actual	0	10	100
Fold 5	Pre	edict	<u>Acc</u>	Fold 6	Predict		<u>Acc</u>
Actual	11	0	100	Actual	9	0	95
Actual	0	9			1	10	
Fold 7	Pre	edict	<u>Acc</u>	Fold 8	Pre	dict	<u>Acc</u>
1 at I	9	2	00	4	13	0	100
Actual	0	9	90	Actual	0	7	100
Fold 9	Pre	edict	Acc	Fold 10	Predict		<u>Acc</u>
Actual	9	0	100	Actual	7	0	95
	0	11	100	ACTUAL	1	12	90
Mean Acc.				97	5		

รูปที่ 5 Confusion Matrix Test 1 ในแต่ละ fold

จาก**รูปที่ 5** พบว่าโดยเฉลี่ยทั้ง 10 folds มีค่าความแม่นยำถึง 97.5% โดยค่าความแม่นยำ มีค่าต่ำ ที่สุดอยู่ใน fold 7 ซึ่งมีค่า 90%

4.2. การทดลองที่ 2

สำหรับการทดลองที่ 1 ใช้ 2 features ในการทดลอง โดยเลือกใช้ Feature1 และ Feature2 ได้ ผลลัพธ์ดังนี้

รูปที่ 6 ค่าเฉลี่ยของ Features ในแต่ละ Fold

จาก**รูปที่ 6** สังเกตได้ว่า ค่าเฉลี่ยของทั้ง 2 Features ในแต่ละคลาส มีค่าใกล้เคียงกันมากๆ โดย มีเพียงแค่ Feature1 ที่มีค่าต่างกันเล็กน้อย

Fold 1	Fea. 1	Fea. 2	Fold 2	Fea. 1	Fea. 2
Fea. 1	0.314	-0.023	Fea. 1	0.312	-0.022
Fea. 2	-0.024	0.116	Fea. 2	-0.02	0.118
Fold 3	Fea. 1	Fea. 2	Fold 4	Fea. 1	Fea. 2
Fea. 1	0.313	-0.007	Fea. 1	0.301	-0.023
Fea. 2	-0.009	0.114	Fea. 2	-0.023	0.119
Fold 5	Fea. 1	Fea. 2	Fold 6	Fea. 1	Fea. 2
Fea. 1	0.282	-0.032	Fea. 1	0.324	-0.02
Fea. 2	-0.033	0.113	Fea. 2	-0.019	0.119
Fold 7	Fea. 1	Fea. 2	Fold 8	Fea. 1	Fea. 2
Fea. 1	0.317	-0.023	Fea. 1	0.306	-0.014
Fea. 2	-0.023	0.11	Fea. 2	-0.013	0.104
Fold 9	Fea. 1	Fea. 2	Fold 10	Fea. 1	Fea. 2
Fea. 1	0.326	-0.017	Fea. 1	0.276	-0.016
Fea. 2	-0.02	0.099	Fea. 2	-0.014	0.117

รูปที่ 7 Covariance Matrix ของ Class 1 ในแต่ละ Fold

Fold 1	Fea. 1	Fea. 2	Fold 2	Fea. 1	Fea. 2
Fea. 1	0.353	0.022	Fea. 1	0.369	-0.002
Fea. 2	0.02	0.097	Fea. 2	-0.001	0.106
Fold 3	Fea. 1	Fea. 2	Fold 4	Fea. 1	Fea. 2
Fea. 1	0.369	0.004	Fea. 1	0.373	0.01
Fea. 2	0.007	0.105	Fea. 2	0.012	0.105
Fold 5	Fea. 1	Fea. 2	Fold 6	Fea. 1	Fea. 2
Fea. 1	0.389	0.005	Fea. 1	0.387	0
Fea. 2	0.005	0.107	Fea. 2	0.001	0.104
Fold 7	Fea. 1	Fea. 2	Fold 8	Fea. 1	Fea. 2
Fea. 1	0.366	0.001	Fea. 1	0.338	0.02
Fea. 2	0.001	0.103	Fea. 2	0.02	0.096
Fold 9	Fea. 1	Fea. 2	Fold 10	Fea. 1	Fea. 2
Fea. 1	0.36	-0.002	Fea. 1	0.383	-0.012
Fea. 2	-0.005	0.097	Fea. 2	-0.01	0.095

รูปที่ 8 Covariance Matrix ของ Class 1 ในแต่ละ Fold

Fold 1	Pre	dict	Acc	Fold 2	Predi	ct	<u>Acc</u>
Actual	6	4	50	Actual	6	2	65
Actual	6	4		ACTUAL	5	7	05
Fold 3	Pre	dict	Acc	Fold 4	Predi	ct	<u>Acc</u>
Actual	7	5	60	Actual	7	3	50
Actual	3	5	00	Actual	7	3	50
Fold 5	Pre	dict	Acc	Fold 6	Predict		Acc
Actual	5	6	45	Actual	7	2	4 E
Actual	5	4			5	6	65
Fold 7	Pre	dict	Acc	Fold 8	Predi	Predict	
Actual	7	4	65	Actual	8	5	65
Actual	3	6	03	Actual	2	5	03
Fold 9	Pre	dict	Acc	Fold 10	Predict		<u>Acc</u>
Actual	6	3	55	Actual	4	3	30
	6	5	33	ACTUAL	11	2	20
<u>Mear</u>	Acc.			5	5		

รูปที่ 9 Confusion Matrix Test 2 ในแต่ละ fold

จาก**รูปที่ 9** สำหรับการทดลอง 2 พบว่า มีความแม่นยำเพียงแค่ 55% โดย Fold ที่ 10 มีความ แม่นยำต่ำที่สุดเพียงแค่ 30% เท่านั้น

5. Analyze the experiment

จากการทดลองพบว่า การทดลองที่ 1 มีความแม่นยำโดยเฉลี่ยถึง 90% และการทดลองที่ 2 มีความ แม่นยำ 55% ซึ่งสามารถสังเกตได้จาก ค่าเฉลี่ยของ Feature ในแต่ละ Folds ในการทดลองที่ 1 พบว่า Feature3 และ Feature4 มีค่าที่ต่างกันเห็นได้อย่างชัดเจนในแต่ละ Class ลำดับถัดมาคือ Feature1 มีค่า ต่างกันเพียงเล็กน้อย และลำดับสุดท้าย Feature2 มีค่าเฉลี่ยที่แทบจะคล้ายคลึงกัน ดังนั้น Feature ที่ เหมาะสมคือ Feature3 และ Feature4 ซึ่งการทดลองที่ 2 ผู้ทดลองได้ทดลองใช้ Feature1 และ Feature2 จึงทำให้ผลลัพธ์ออกมามีค่าที่ไม่แม่นยำ

6. Appendix

```
import numpy as np
from numpy import linalg as LA
import pandas as pd
# mean
def mean(x): return np.round(x.mean(axis=0),3)
def std(x): return np.round(x.std(axis=0),3)
# covarian-matrix
def cov matrix(x):
   fact = x.shape[0] - 1
    return np.round(np.dot((x-mean(x)).T,(x-std(x)))*(1/fact),3)
# multivariate normal distribution
def multi distribution(X,cov,mean):
    const = ((2*np.pi)**(cov.shape[1]/2))
    cov norm = LA.norm(cov)**(0.5)
    exp = np.array(list(map(lambda x: np.exp(-0.5*np.dot(np.dot((x-
mean),LA.inv(cov)),(x-mean).T)),X)))
    return ((1/(const*cov norm))*exp)
```

```
# cross validations
def cross validations split(shape, folds):
    fold size = int(shape * folds/100)
    k = 0
    index = []
    for i in range(1, folds+1):
        index.append([k,i*fold size]) if (i < folds) else</pre>
index.append([k,shape])
        k = i*fold size
    return index
# probability of Wi
def prob of p(n,N):
   return n/N
# for 2 classes
def bayes rules(f1,f2,p1,p2):
    likelihood ratio = f1/f2
    threshold = p2/p1
    decision matrix = (likelihood ratio > threshold)
   return np.where(decision matrix,np.float64(1),np.float64(2)).reshape(-1)
# confusion matrix
def confusion_matrix(y_pred,y_true,err = False):
    if y true.shape != y pred.shape : return
    def condition(y pred,y true):
        if y_pred == y_true and y_true == 1:
            return "TN"
        elif y_pred != y_true and y_true == 2:
            return "FP"
        elif y_pred != y_true and y_true == 1:
            return "FN"
        return "TP"
   matrix = np.array([[0, 0], [0, 0]])
    for i in range(y true.shape[0]):
        result = condition(y pred[i],y true[i])
        if result == "TN":
           matrix[0][0] += 1
        elif result == "FN":
            matrix[0][1] += 1
        elif result == "FP":
            matrix[1][0] += 1
        else:
            matrix[1][1] += 1
    if err:
        return matrix,100-(matrix[0][0]+matrix[1][1])*100/y true.shape[0]
    return matrix
```

```
def preprocess data(data,i,j):
    population = np.concatenate((data[:i],data[j:]))
    samples = data[i:j]
    x class1 = population[population[:,-1] == 1][:,:-1]
    x class2 = population[population[:,-1] == 2][:,:-1]
    # calculate P(Wi)
    p1 = prob of p(population[population[:,-1] == 1][:,:-
1].shape[0],population.shape[0])
    p2 = prob_of_p(population[population[:,-1] == 2][:,:-
1].shape[0],population.shape[0])
    # calculate COV(Wi)
    cov_1 = cov_matrix(x_class1)
    cov_2 = cov_matrix(x_class2)
    # calculate mean(Wi)
    mean 1 = mean(x class1)
    mean 2 = mean(x class2)
    pre_data = {
        'population' : population,
        'x sample' : samples[:,:-1],
        'x class1' : x_{class1}, # separate the data to class 1
        'x class2' : x class2, # separate the data to class 2
        'p1': p1,
        'p2': p2,
        'y sample': samples[:,-1],
        'cov1': cov 1,
        'cov2': cov 2,
        'mean1': mean 1,
        'mean2': mean 2,
    return pre data
```

```
# main
if name == " main ":
    # split features and classes to two classes
   data = np.genfromtxt('TWOCLASS.csv',delimiter=',')[1:,:]
   np.random.shuffle(data) # shuffle data
   k = 1
   for i,j in cross validations split(data.shape[0],10):
       # * ----- preprocess data -----
       x1 = preprocess data(data,i,j) # for test 1
       x2 = preprocess data(data[:,[0,1,-1]],i,j) # for test 2
       # calculate multivariate normal distribution test 1
       fx1 1 = multi distribution(x1['x sample'],x1['cov1'],x1['mean1'])
       fx1_2 = multi_distribution(x1['x_sample'],x1['cov2'],x1['mean2'])
       # calculate multivariate normal distribution test 2
       fx2 1 = multi distribution(x2['x sample'],x2['cov1'],x2['mean1'])
       fx2 = multi distribution(x2['x sample'],x2['cov2'],x2['mean2'])
       # evaluate test 1
       y_pred1 = bayes_rules(fx1_1,fx1_2,x1['p1'],x1['p2'])
       y true1 = x1['y sample']
       # evaluate test 1
       y pred2 = bayes rules(fx2 1,fx2 2,x2['p1'],x2['p2'])
       y true2 = x2['y sample']
       print("############## K=", k ," #############")
       k+=1
```