CSCI 338: Computer Science Theory

Sample Question 2 (30-35 minutes)

Given graph G = (V, E), an Independent Set of size K is a set $V' \subseteq V$, |V'| = K, such that for every $u, v \in V'$ we have $(u, v) \notin E$. We learn in class that it is NP-complete. This question is about another problem called Set Packing.

INSTANCE: Collection C of finite sets, positive integer $K \leq |C|$. QUESTION: Does C contain K disjoint sets?

Example. $C = \{\{1,3,5\}, \{2,3,4\}, \{2,4,6\}, \{3,6\}\}\}$. $\{1,3,5\}$ and $\{2,4,6\}$ are the 2 disjoint sets C contains.

(2.1) Prove that Set Packing is in NP.

- Nondeterministically select K sets from C, e.g., DI, Dz, ..., DK, where DiEC.
- Check DinDi = of for all sitisk.
- If all the () tests pass, accept; otherwise, reject

// Checking DiADj = of can be done by sorting in O(hlogh) time

The total time is $\binom{k}{2}$. $O(n\log n) = O(n^3\log n)$ time. Therefore, set Packing $\in NP$.

(2.2) Design a polynomial time reduction function which reduces (the decision version of) Independent Set to (the decision version of) Set Packing.

Take an input graph G=(V,E) for IS, construct a Collection of |V| finite (corresponding to the vertices in V) as follows:

- If there is an edge i between u, v then add i into the sets associated with u, v, Su and Sv. (Initially Su is empty, for all uE V.)
- G has an IS of size K ith

 C has a collection of K disjoint sets.
- The reduction takes OC/V/+/E/) EO(n2) time

Example $S_{u} = \{1, 2, 5\}$ $S_{v} = \{4, 5\}$ $S_{w} = \{1, 3, 4\}$ $S_{w} = \{1, 3, 4\}$ $S_{w} = \{1, 3, 4\}$

- C has 2 disjoint sets {4,5} fz,3}