Border Truck Traffic Forecasting

Suraj Mishra

Statistical Forecasting

STAT8041 - Spring 2024 - Section 1

Guided by: Professor Jonatham Plumbtree

Topics

- Introduction
- Problem Statement
- Dataset Overview
- Data Preprocessing
- Data Visualization(ACF,PACF)
 Visualization(ACF,PACF)
- Data Transformation
- Forecasting and Analysis
- Conclusion

Introduction

Eastern Border Transportation Coalition (EBTC), a non-profit group of representatives of the constituent state and provincial transportation agencies from Michigan

A key objective of the forecasting approach is to develop a straight-forward and efficient model that provides defensible forecasts based on historical trends.

To ensure that there are adequate facilities and personnel in place to meet the continued growth in trade between the two countries

About the Dataset

Port Name	State	Port Code	Border	Date	Measure	Value	Latitude	Longitude
Roma	Texas	2310	US-Mexico Border	Dec 2023	Buses	46	26.404	-99.019
Del Rio	Texas	2302	US-Mexico Border	Dec 2023	Trucks	6552	29.327	-100.928
Willow Creek	Montana	3325	US-Canada Border	Jan 2024	Pedestrians	2	49.000	-109.731
Whitlash	Montana	3321	US-Canada Border	Jan 2024	Personal Vehicles	29	48.997	-111.258
Ysleta	Texas	2401	US-Mexico Border	Jan 2024	Personal Vehicle Passengers	521714	31.673	-106.335

Number of Records: 393,000

Variables: 10

DATA PREPARATION GATHER DISCOVER CLEANSE TRANSFORM ENRICH STORE

Date conversions using mutate()

Check for null and duplicates

Combining ports data into monthly average

DATA DISTRIBUTION OF NUMBER OF TRUCKS

- ☐ Michigan seems to have the highest movement of trucks across the border
- □ Detroit handles the highest volume of truck traffic with considerable variability, Port Huron has moderate traffic with less variability, and Sault Sainte Marie has the lowest.

AUTOCORRELATION PLOTS

ACF PLOT

GS Display Plots

DATA TRANSFORMATIONS

Log transformation of Monthly data of trucks

2000 Jan

2020 Jan

We used XTL decomposition since the data has seasonal variations, hence we decomposed to get trend and seasonality

Time Series Model

ERROR ANALYSIS

Identify and rectify forecast errors errors

VALIDATION METRICS

Assess forecast performance using using metrics

CONFIDENCE INTERVALS

Estimate range of forecasted values values

EXPONENTIAL SMOOTHENING MODEL

Model: ETS(A, Ad, A)

Model: ETS(A, Ad, A)

Smoothing parameters: alpha = 0.4308 beta = 0.0001000294 gamma = 0.0001001801 phi = 0.9709474

AIC 8281.540

AIC 8281.540

BIC 8283.698

MSE: 91303809.3420198 RMSE: 9555.30268186308 MAPE: 0.0444392199410917

MAE: 8955.87852854038

MULTIPLE LINEAR REGRESSION

Residual standard error: 4045 on 321

degrees of freedom

Multiple R-squared: 0.973, Adjusted R-squared: 0.9728

F-statistic: 5782 on 2 and 321 DF,

p-value: < 0.00000000000000222

Residuals show stationary and are normally distributed

Multiple_Linear_Predict <dbl> 193296.7 181009.9 218033.2 187772.7 215648.3 211317.8 193988.3 214006.2 198687.6

208360.1

201801.7

167222.8

Steps to apply forecasting for Auto Regressive Models

PLOT DATA

DATA TRANSFORMATION

DATA STATIONARITY

MODEL FITTING AND EVALUATION

EXAMINE ACF AND PACF AND VERIFY RESIDUALS

KPSS TEST

CHOOSE NUMBER OF AR AND MA TERMS FOR SEASONAL AND NON-SEASONAL ARIMA MODELS

STATIONARITY OF THE DATA

0.02943175 0.1

ARIMA MODELS

p	d	q	Model
1	1	1	ARIMA(1,1,1)
2	1	2	ARIMA()
0	1	2	ARIMA()

Optimal Model: ARIMA(2,0,2)

sigma² estimated as 128278747:

log likelihood=- 3487.68

AIC=6989.37 AICc=6989.72 BIC=7015.83

SEASONALLY ADJUSTED DATA

Seasonal differenced data does not look stationarity

Seasonal second differenced data does look stationarity

SEASONAL ARIMA MODELS

р	d	q	Model
0	1	2	ARIMA(1,1,1)
2	1	0	ARIMA(2,1,0)

Р	D	Q	Seasonal Model
1	1	1	(1,1,1)
2	1	2	(0,1,2)
1	1	2	(1,1,2)

Optimal Model: ARIMA(2,0,2) (0,1,2)

sigma² estimated as 128278747:

log likelihood=- 3487.68

AIC=6989.37 AICc=6989.72 BIC=7015.83

DATA INSIGHTS

Leverage trends for forecasts forecasts

PROJECT SUMMARY

MODEL	RMSE	MAE
ETS	9555.302	8955.878
Multiple Linear	5378.155	2919.457
ARIMA	12508.005	11063.411
SARIMA	12341.961	10920.49

- ✓ ARIMA AND SARIMA show similar accuracy but overall Multiple Linear Regression shows the best accuracy in terms of RMSE and MAE.
- ✓ We recommend use of Linear regression since its easy to implement with less computational costs.

Empowering insights for better decisions and customer relations.