

Agenda

- √ Business Problem & Goals
- ✓ Project Approach
- √ Solution Approach
- ✓ Exploratory Data Analysis
- ✓ Data Assumptions
- ✓ Data Understanding & Data Audit
- ✓ Univariate Analysis
- √ Bivariate Analysis
- ✓ Data Preparation & Feature Reduction
- √ Model Building & Fine Tuning
- ✓ Model Validation Outputs
- ✓ Recommendations

Business problem

- Business Context: One of the global banks would like to understand what factors
 driving credit card spend are. The bank want use these insights to calculate credit
 limit.
- Business Goals: Survey data is available for 5000 customers
 - Predict Total Spend for customers (total of primary and secondary card spends)
 - Establish credit limits based on the key drivers
 - Given the factors, predict credit limit for the new applicants
 - · Approach:
 - · Carry out regression to determine total spend
 - Establish relationship to determine credit limit.

Data Related Assumptions

- Target variable:- Create a total spent column by adding card spend on Primary and Secondary card.
- There are variables ("carown", "cartype", "carcatvalue", "carbought") which have -1 as the value. This will be treated as missing value and imputed accordingly
- Missing's less than 20% will be imputed with mode and constant 0(zero)
- As the data contains categorical conversion of some of the numerical variables, we will consider the categorical versions of the same for exploratory analysis.

Data Understanding

Input Data:

Total: 5000+ customers. Total Variables = 130+

84 variables are categorical and 36 are continuous variables

('custid', 'region', 'tow nsize', 'gender', 'age', 'agecat', 'birthmonth', 'ed', 'edcat', 'jobcat', 'union', 'employ', 'empcat', 'retire', 'income', 'lninc', 'inccat', 'debtinc', 'creddebt', 'lncreddebt', 'othdebt', 'lnothdebt', 'default', 'jobsat', 'marital', 'spoused', 'spousedcat', 'reside', 'pets_, 'pets_cats', 'pets_dogs', 'pets_birds', 'pets_reptiles', 'pets_small', 'pets_saltfish', 'pets_freshfish', 'homeown', 'hometype', 'address', 'addresscat', 'cars', 'carown', 'cartype', 'carvalue', 'carcatvalue', 'carbought', 'carbuy', 'commute, 'commutecat', 'commuteeatine, 'commuteeatine, 'commuteeatine, 'commutepublic', 'commutebike', 'commutew alk', 'commutecarpool', 'commutete, 'reason', 'polview', 'polparty', 'polcontrib', 'vote', 'card', 'cardtype', 'cardbenefit', 'cardfee', 'cardtenure', 'cardtenurecat', 'card2', 'card2type', 'card2benefit', 'card2fee', 'card2tenurecat', 'cardspent', 'active', 'bfast', 'tenure', 'churn', 'longmon', 'lnlongmon', 'lnlongten', 'lnlongten', 'tollfree', 'tollmon', 'lntollmon', 'tollten', 'equip', 'equipmon', 'lnequipmon', 'equipten', 'lnequipten', 'callcard', 'cardmon', 'lncardmon', 'lncardten', 'wireless', 'wiremon', 'lnw iremon', 'wireten', 'lnw ireten', 'multline', 'voice', 'pager', 'internet', 'callid', 'callw ait', 'forward', 'confer', 'ebill', 'ow ntv', 'hourstv', 'ownvcr', 'owndvd', 'owncd', 'ownpda', 'ownpda', 'ownpda', 'owngame', 'ownfax', 'news', 'response 01', 'response 02', 'response 03')

Missing infocolumns:

>20% (Intollmon, Intollten, Inequipmon, Inequipten, Incardmon, Incardten, Inw iremon, Inw ireten) <20% (tow nsize, Increddebt, Inothdebt, commutetime, Iongten, Inlongten, cardten)

xplora	tO	ry	Da	ata	An	aly	SIS												
User created						Sna	pshot	of some	eimpo	ortan	t feat	ures							
eature	N N	MISS Un	ique S	SUM I	MEAN	MEDIAN	STD	VAR	skew	skewtest_	skewtest_	IQRLowOLIQRHi	ghO corelatio	n pvalcards	corelation	pvalcard2:	corelation	pvalTotalsT	otalCorrelatio
otalSpend	5000	0	4886	2490393	498.0786	414.25	351.5293	123572.8	2.707547	45.22287	0	0	264 0.93981		0.829933	0	1	0	2.7697479
ardspent	5000	0	4760	1686013	337.2025	276.36	245.1451	60096.1	3.051237	47.94182	0	0	256		0.597256	0	0.939815	0	2.5370711
. 11	5000	0	4477	804380.6	160.8761	125.34	146,2928	21401.57	2.801163	45,99372	0	0	248 0.597256) 1	0	0.829933	0	2.4271893
· · · · · · · · · · · · · · · · · · ·	5000	0			13.22305	10.5066	10.60701		2.426434		. 0		218 0.36952				0.393581	6 20F-185	1.093545
	5000	0	12	20901	4.1802			2.703469			1.15F-222		153 0.358217						1.0563756
	5000	0	266	273798	54.7596		55.37751		5.179216		1.131-222		346 0.355016					8.06F-169	1.050373
		_									٠								
	5000	0			23.23258		21.23164				4.23E-224	0	334 0.302148						0.888220
	5000	0	5	12590	2.518	2	1.335677	1.784033	0.506401	13.83406	1.59E-43	0	0 0.31096	1.52E-112	0.254089	1.64E-74	0.320673	6.00E-120	0.885728
ardSpentPercentage	5000	0	4816	344965.7	68.99313	69.60307	15.28502	233.6317 e	-0.30185	-8.53762	1.37E-17	33	0 0.143112	2.72E-24	-0.56705	0	-0.13767	1.38E-22	0.847837
thdebt	5000	0	4973	18272.3	3.65446	2.09854	5.395172	29.10788	7.589924	69.1551	. 0	0	390 0.260533	2.24E-78	0.227568	9.59E-60	0.272972	3.75E-86	0.761070
thdebt_cat	5000	0	7	8351	1.6702	1	1.031138	1.063245	1.545902	32.94781	4.55E-238	0	353 0.248667	2.41E-71	0.214769	2.93E-53	0.260061	4.32E-78	0.723496
reddebt	5000	0	4950	9286.628	1.857326	0.926437	3.415732	11.66722	11.12004	78.15443	0	0	443 0.233253	9.29E-63	0.21089	2.25E-51	0.248547	2.82E-71	0.692690
etire													-0.15816	2.28F-29	-0.14386	1.56F-24	-0.16933	1.77F-33	0.471347
ncomeDebtRatio	5000	0	4998	70582.27	14.11645	11.33301	10.30952	106.2862	3.471181	50.90016	0	0	309 0.158518		0.13604	4.37F-22	0.167677	7.48F-33	0.462234
eature		cv	N	/IN	MAX	P1	Р		P10	P25	5	P50	P75	P90		P95	P99)	IQR
otalSpend		0.7057	771	8.11	4881	.05 58	.1976	133.106	184.0	33 27	6.2825	414.25	615.56	25 90	08.125	1145.1	47 17	60.102	339.2
ardspent		0.7269		C			.8195	91.3045	122.5		3.3775	276.36			10.062	782.31		15.807	235.3
ard2spent		0.909		0.05000			0	14.8195	28.6		6.9675	125.34	208.3		24.718	419.4		2.1298	141.342
pendRatio ncome cat		0.8021		0.253939 C		11	32091 2 1	2.654685	3.6554	84 5.9 3	975185 3	10.5066		56 26. 5	36023 6	32.558	7	0.93873 10	11.2221
ncome_cat		1.0112				773	9	13		3 16	24	38		57	109.1	1	47	272.01	
arvalue		0.9138		-1	_	9.6	-1	-1	2		9.2	17	31		52.91	_		92.001	21
arvalue_cat		0.5304	152	1	1	5	1	1		1	1	2		4	5		5	5	
ardSpentPercent	age	0.2215	544	c) :	100 31.	78026 4	12.94276	49.384	61 59	.11253	69.60307	79.4350	6 88.	17726	93.615	25	100	20.322
thdebt		1.4763	325	C	141.45	592 0.1	14299 (0.287692	0.4579	97 0.9	980301	2.09854	4.314	78 8.0	62046	11.815	98 24	.06426	3.3344
		0.6173		C		6	1	1		1	1	1		2	3		4	5	
thdebt_cat		1.8390	059	C	109.07	726 0.	03316 (0.101088	0.1756	82 0	.38552	0.926437	2.063	32 4.	29947	6.373	01 14	.28036	1.67830
reddebt_cat reddebt etire																			

Univariate Analysis (X Variables - Numerical): Distributions

- Some of the variables are showing similar distribution to the Total Spent e.g. ed, debtinc, income, creddebt and othdebt
- There are a lot of n-modal distributions present e.g. address, age, cars, pets, reside, cardmon, cardten, equipmon, equipten, wiremon, wireten. For these, each mode will have to be addressed separately. Also check the contribution from each mode. One solution will be to convert them to categorical variable.
- There are a lot of zero values in some of the variables like cardmon, cardten, equipmon, equipten, othdebt, pets, tollmon, tollten, wiremon, wireten. It simply shows that these products or services are not used in last month by these customers. One solution will be to convert them to categorical variable.
- The information from pariplot of totals pent with other numerical variables shoes some linear relatioship with the variables income, creddebt and othdebt. Some other variables have linear relatioship but it is not that significant.

Univariate Analysis (X Variables - Categorical): Distributions

- Some of the variables are evenly spread and do not clearly show distinction between the count distribution i.e they are evenly distributed e.g. region, gender, jobsat, marital, vote, cardtype, cardbenefit,bfast,callid, callwait, forward, confer, ownipod, owngame, news
- Some of the variables with binary categories are heavily skewed, e.g. union, retire, default, cardfee, ownty, ownycr, owncd, owndyd, ownpda, ownfax, response 01, response 02, response 03
- Variables that have more than 2 categories also show skewed patterns, e.g. spousedcat, carown, commute, reason
- There are higher number of card users from townsize=1, But average overall spending from all the towns is same.
- Female cardholdes are slighty higher spenders than Male cardholders
- People having "Managerial and Professional" and "Sales and Office" are the top card holders. While people having jobs of "Managerial and Professional" and "Service" are highest spenders.
- Most of the cardholders are not retired and do not belong to any union.
- · Married people hold less cards than unmarried people. But their average spending is similar.
- Average spending of people defaulting on bank loan is similar to ones that have not defaulted although the cardholders in the default category are very less
- The spending increases with the increase in job satisfaction level

Data Audit riate and Bivariate

ANALYTI LABS

Univariate Analysis (X Variables - Categorical: [Cont..]

- More cardholders own a house. But their average spending is similar to cardholders who rent a house.
- · Single-Family cardholders are more likely to hold a card.
- Cars owners are higher number of cardholders compared to car leasing.
- There are variables ("carown", "cartype", "carcatvalue", "carbought") with value as "-1" i.e. "N/A", for which we might have to perform missing value treatment.
- There is increase in spend from standard to Luxury car owners.
- Car commuting cardholders are the highest cardholders. But average spend among all type of commute is similar.
- Choosing a card does not depend significantly on any particular reason.
- Extremely conservative people are less spenders as well as they are less among all cardholders. All
 others have similar average spend.
- AMEX card users are highest average spenders but maximum cardholders are having VISA, MASTER and DISCOVER cards
- · Lot of people prefer cards without fee
- · Lot of cardholders do not have internet connection
- More cardholders prefer paper bill
- Overall spend of people who owns items like vcr, cd, dvd, tv is higher than those who do not own these
 items

Data Preparation for Model Building

ANALYTI LABS

Data Preparation

- Target variable: totalspent = cardspent + card2spent
- Column Drop:

 - 2 columns ("custid", "birthmonth") representing personal ID information were dropped All log transformed columns were dropped. Any required transformation will be performed as required during feature engineering steps
 - Improper Data:
 - There is variables "carbought" which has -1 as the value. This will be treated as missing value and imputed with mode

 - For spousecat, we can change the value -1 to 6
 For "carown", "cartype", "carcatvalue", carvalue and spoused, we can change the value -1 to 0
- Missing Data:
 - Replacing missing values with median value for continuous variables
 - Replacing missing values with mode value for categorical variables
 - Imputation strategy:
 - Mode: townsize
 - Mean: commutetime
 - · Default (0): longten and cardten

Data Preparation

Outlier Treatment:

All the numerical variables were clipped at 1% and 99% percentile values

· Numerical Transformation:

- Pow erTransformer (box-cox, yeo-johnson), QuantileTransformer and Log transformation was performed on all numerical variables
- Best transformation w as found as Log transformation

Numerical vs Categorical:

- Regression check was performed to check the R2 accuracy of each numerical and its categorical against the target variable.
- · Values with better R2 were selected.

Dropped variables:

'agecat', 'edcat', 'empcat', 'inccat', 'spousedcat', 'pets', 'addresscat', 'commutecat', 'cardtenurecat', 'card2tenurecat'

age : numerical = 4.2542 , categorical = 2.7151 ed : numerical = 1.2371 , categorical = 0.9483 employ : numerical = 2.3232 , categorical = 1.2603 income : numerical = 2.40957 , categorical = 14.0609 spoused : numerical = 0.5307 , categorical = 0.29 pets : numerical = 0.5574 , categorical = 0.29 pets : numerical = 1.9828 , categorical = 1.2695 commute : numerical = 0.1733 , categorical = 0.0501 cardtenure : numerical = 1.3871 , categorical = 0.8501 cardtenure : numerical = 1.3871 , categorical = 0.8421 card2tenure : numerical = 1.3719 , categorical = 0.7671

ANALYTI LABS

Data Preparation - Feature Engineering

New Categorical variables:

As there are lot of variables having huge number of zeroes, we have created few binomial features which
represent zero and non-zero values

• Feature Interactions:

- Various feature interactions were created using the PolynomialFeatures function from sklearn.preprocessing.
- Degree = 2 w as used as input.
- It included Feature to Feature interaction as well as square of variables

Polynomial up to Degree 3:

There was separate addition of square and cube versions of the numerical features only in the final data

Data Preparation - Feature Engineering

Significant variables based on RFE

- carcatvalue_1
- carcatvalue_2
- carcatvalue_3
- Ininc
- inccat
- card2 2
- carown_0
- reason 2
- edcat
- owndvd
- gender
- reason_2
- wireless
- ebill
- marital

Significant variables based on F_regression

- Ining
- inccat
- carcatvalue 1
- carcatvalue 3
- owndvd
- carown 0
- reason 2
- carown 1
- card 2
- card 3
- caru_s
- edcat
- carcatvalue_2
- card2_3
- owntv
- gender

Top 15 variables in each selection method

ANALYTI LABS

Data Preparation - Feature Engineering **PCA** VIF for some of the features For some features Features 10 11 12 features ncomeDehtRatio -0.00804 0.009564 -0.09241 -0.01186 0.002859 -0.27889 0.011034 0.056639 -0.07366 0.027141 -0.01037 0.033336 -0.03949 -0.03547 -0.05337 -0.02882 -0.058931.021509838 pets saltfish active $0.177897 \quad 0.142708 \quad 0.14909 \quad -0.03914 \quad -0.13088 \quad \underline{0.005539} \quad \textcolor{red}{\textbf{-0.71401}} \quad -0.18206 \quad -0.1919 \quad 0.233973 \quad 0.007525 \quad 0.055761 \quad 0.019651 \quad 0.029847 \quad 0.032472 \quad -0.03681 \quad 0.172005 \quad 0.05671 \quad 0.019651 \quad 0.009847 \quad 0.009847$ address -0.27666 -0.17697 -0.28338 0.049115 0.016233 0.700875 0.115228 -0.21371 0.115948 -0.09476 0.049761 -0.06762 -0.02903 -0.07013 0.038077 -0.03883 -0.05327 1.02238452 card2fee address_cat $0.212248 \quad 0.198999 \quad 0.405956 \quad 0.026255 \quad -0.02342 \\ \hline{ \textbf{0.801746}} \quad -0.06862 \quad -0.14734 \quad 0.039632 \quad -0.05691 \quad 0.012953 \quad -0.03607 \quad -0.03115 \quad -0.01859 \quad 0.028061 \quad -0.03266 \\ \hline{ \textbf{0.012}} \quad -0.01899 \quad -0.01899 \quad -0.01899 \quad -0.018999 \quad -$ 1.023634203 cardfee -0.20451 0.075097 0.032062 -0.04273 -0.06387 0.009529 -0.004 0.020129 0.063974 -0.10498 0.061649 -0.063 0.00183 -0.05844 0.01536 -0.0106 0.093977age_cat 0.759992 -0.26844 -0.10072 0.147558 0.098825 0.008092 -0.00464 -0.01362 -0.06982 0.149789 -0.06555 0.0763 0.070972 -0.04362 -0.05662 -0.00184 -0.13192 1.025951369 pets cats bfast_2 0.777571 $-0.25312 \quad -0.06071 \quad 0.147312 \quad 0.105132 \quad -0.00222 \quad -0.01825 \quad -0.01047 \quad -0.08427 \quad 0.162636 \quad -0.07468 \quad 0.09034 \quad 0.071319 \quad -0.02916 \quad -0.05575 \quad 0.007876 \quad -0.14623 \quad -0.01047 \quad$ bfast_3 **0.731229** -0.34054 -0.14966 0.127369 0.22625 0.017836 0.018051 -0.02349 -0.12283 0.195146 -0.07709 0.08928 0.061166 0.09199 -0.03118 0.030395 -0.13949 1.027038075 pets birds callcard -0.28041 -0.04401 0.09394 0.208515 0.010888 -0.00543 -0.01631 -0.11895 0.204565 -0.08371 0.09205 0.055817 0.098662 -0.04062 0.028506 -0.13671.028094475 pets freshfish callid 0.528089 0.081819 -0.24635 -0.24018 -0.06851 -0.0109 0.03235 -0.02268 0.08875 -0.11917 0.025497 -0.06952 -0.02101 -0.05748 0.049579 -0.05733 0.055979 allwait 0.202357 0.428201 -0.1936 -0.58602 0.010794 0.027985 0.021253 0.00491 -0.01495 0.019632 -0.00424 0.016312 0.002245 0.00913 0.031777 -0.02027 -0.01066 1.029681848 pets small carbought_0 0.222134 0.417127 -0.17056 -0.58803 0.019261 0.019474 -0.00485 0.017931 -0.02029 0.023455 -0.01364 0.016178 0.007818 0.025071 0.008138 -0.0299 -0.03338 carbought_1 0.016004 0.010955 -0.01882 -0.0102 0.015171 0.0232 0.044468 -0.0527 0.144787 -0.03929 -0.35082 0.143101 0.215014 0.031912 0.032489 0.124518 0.130265 1.030027304 pets_reptiles -0.00127 -0.0051 -0.01781 -0.00926 0.034471 -0.02359 0.02896 0.022652 -0.05797 -0.00687 0.00071 -0.00111 -0.04189 0.000237 -0.0682 0.038623 0.045288carbuv 1.030239551 pets dogs $0.172858 \quad 0.151882 \quad 0.359557 \quad 0.024706 \quad -0.01769 \quad \textbf{0.753098} \quad -0.05974 \quad -0.13365 \quad 0.067346 \quad -0.06554 \quad 0.018162 \quad -0.0352 \quad -0.00345 \quad -0.00064 \quad 0.048796 \quad -0.01754 \quad 0.020173 \quad -0.00064 \quad -0.01769 \quad -0.0176$ card2 2 0.871299 -0.25852 -0.16183 0.156071 -0.06451 0.000129 0.000547 -0.01077 0.05576 -0.06925 0.032767 -0.04571 -0.01685 -0.03768 0.024348 -0.02494 0.026053 card2 3 1.034243815 response 02 0.000423 - 0.00777 - 0.006491 - 0.02046 - 0.002323 - 0.01188 - 0.0167 - 0.005327 - 0.0247 - 0.00582 - 0.00564 - 0.03414 - 0.033752 - 0.073562 - 0.019849 - 0.075838 - 0.02788card2 4 **0.553716** 0.054052 -0.25027 -0.18865 -0.07597 -0.0108 0.043975 -0.04212 0.129552 -0.14169 0.031501 -0.10404 -0.04201 -0.05319 0.079459 -0.05815 0.132609 1.040096324 gender card2 5 card2benefit_2 0.20074 0.19391 0.373844 0.023787 -0.0223 0.703134 -0.06185 -0.13124 0.017396 -0.04189 0.007351 -0.0238 -0.04406 -0.02872 0.011321 -0.03721 -0.03798 1.045757701 union ard2benefit_3 **0.722898** -0.12823 -0.23861 0.00443 -0.10138 -0.00309 0.035893 -0.03678 0.140373 -0.15455 0.054412 -0.11851 -0.04759 -0.06622 0.077587 -0.06637 0.140136 $-0.45667 \quad 0.095279 \quad 0.049898 \quad -0.09538 \quad 0.12274 \quad 0.02837 \quad 0.03901 \quad -0.02978 \quad -0.03914 \quad 0.130982 \quad -0.0243 \quad 0.061487 \quad -0.00707 \quad -0.0292 \quad -0.0295 \quad -0.01003 \quad 0.016342 \quad -0.0243 \quad -0.$ card2benefit 4 1.047804009 response 03 ard2fee 0.0261 -0.01754 0.015922 1.050093382 response 01 0.851842 -0.23853 -0.11996 0.171679 -0.04822 -0.01622 -0.03924 0.01522 0.017968 -0.05024 -0.00399 -0.01949 -0.00242 -0.00649 0.022108 -0.02108 -0.00187 -0.02466 ard2tenure ard2type_2 0.036861 0.039538 0.188873 -0.01638 0.033312 -0.26692 0.112872 -0.71106 0.219017 -0.02334 0.065006 -0.13039 -0.04531 -0.03405 -0.04037 -0.0297 -0.16047 1.072157909 polcontrib $0.495545 \quad 0.302706 \quad \textbf{0.643094} \quad -0.02923 \quad 0.043682 \quad -0.11778 \quad -0.0275 \quad -0.17259 \quad -0.01588 \quad 0.180303 \quad 0.020791 \quad 0.029253 \quad 0.003006 \quad 0.03545 \quad -0.00141 \quad -0.00202 \quad 0.088987 \quad -0.0141 \quad -0.00202 \quad 0.089887 \quad -0.00141 \quad -0.00202 \quad -0.00141 \quad -0.00141 \quad -0.00202 \quad -0.00141 \quad -0.0$ ard2type_3 $0.464355 \quad 0.310962 \quad \textbf{0.638758} \quad -0.02482 \quad 0.017567 \quad -0.14016 \quad -0.08391 \quad -0.17727 \quad -0.01175 \quad 0.133122 \quad 0.005335 \quad 0.030456 \quad 0.004988 \quad 0.03773 \quad -0.00482 \quad 0.010965 \quad 0.057139 \quad -0.01175 \quad 0.00482 \quad 0.00$ 1.073137107 vote ard2type_4 $-0.31885 \quad 0.352842 \quad 0.004652 \quad 0.143632 \quad 0.097044 \quad 0.002482 \quad 0.022404 \quad -0.08086 \quad -0.04605 \quad 0.088256 \quad -0.04753 \quad 0.03792 \quad -0.00753 \quad 0.047549 \quad -0.01149 \quad -0.0079 \quad 0.005696 \quad -0.01491 \quad$ 1.093947876 catty pea BS ard_3

Data Preparation - Feature Reduction

- We started with all features that are output of the data preparation steps.
- Finally we found out the best features by using three methods Factor analysis, RFE and Random Forest
- Multicollinearity was addressed using VIF with threshold = 5. As an business exception income was added back in the final features list

Model Building & Fine Tuning ANALYTIXLABS

Model Building Approaches

- Below models were explored
 - Linear Regression
 - Random Forest Regression
 - Adaboost Regression
 - · Gradient Boost Regression
 - XG Boost Regression
- · Other approaches
 - Tried predicting primary and secondary card spends separately and then adding up
 - Many variations of yvariable were tried such as Spendratio (Total Spend/Income), Spend Percentage, Spend difference. All had minor variations but not significant.
 - Calculating median spend based on certain categories. But this was dropped as this was not helpful in deciding drivers. Although this was giving improved R2 and reduced MAPE
 - · Combining XG Boost and then successive application of Adaboost and Gradient boost gave improved MAPE
 - Transformation techniques StandardScaler & PowerTransform. However, both had limited impact

Data Split and Model Executions

- Data was split into Train(70%) and Test(30%).
- There was k-Fold validation performed where k-fold was taken as 10
- Baseline was defined by taking mean value of train data as prediction
- Three techniques LinearRegression, RandomForestRegressor and XGBRegressor were used to check the MAPE and Accuracy.
- · Detail execution and corresponding outputs are present in attached document.

Models Comparison - Metrics

- · XGBClassifier model has come out as the top model with consideration of train R2, MAPE_ACCURACY.
- Linear Regression stands second with small reductions in accuracies but better in terms of reduced overfitting

Final Model:

- · As there is not much difference in the outcomes of Linear Regression and XGBoostClassifier models, either of them can be chosen as final
 - But due to less overfitting, we will finalize Linear Regression as the best model

- Best parameters after tuning:
 Linear Regression: 'copy_X': True, 'fit_intercept': True, 'normalize': False
- XGBoost: learning_rate=0.01, n_estimators=686, max_depth=4, min_child_weight=1, gamma=1, subsample=0.8, colsample_bytree=1, reg_alpa=1.2, scale_pos_weight=1
- RandomForest: n_estimators=240, bootstrap=True, max_features='auto', max_depth=8 min_samples_split=50, min_samples_leaf=7,

Train	Test	Train_Test		
		Metric	Features_used	Model Name
237.35	235.7	MAE	ORIG	BASELINE
23.52	24.98	MAPE_ACCURACY		
0.00	NA	R2_ACCURACY		
186.28	188.8	MAE	FINAL	LinearRegression
53.09	52.62	MAPE_ACCURACY		
32.10	NA	R2_ACCURACY		
185.90	189.19	MAE	ORIG	
53.31	52.5	MAPE_ACCURACY		
32.67	NA	R2_ACCURACY		
177.76	195.75	MAE	FINAL	RandomForestRegressor
55.84	50.04	MAPE_ACCURACY		
34.72	NA	R2_ACCURACY		
78.69	198.98	MAE	ORIG	
83.46	49.96	MAPE_ACCURACY		
84.57	NA	R2_ACCURACY		
175.02	191.46	MAE	FINAL	XGBRegressor
57.34	52.06	MAPE_ACCURACY		
36.87	NA	R2_ACCURACY		
137.97	195.74	MAE	ORIG	
67.55	51.18	MAPE_ACCURACY		
59.74	NA	R2 ACCURACY		

ANALYTI LABS

Model Comparison - Other models

Model Comparison													
				Train Test						st	t		
Model Group	Features	Model	Standardization	R ²	MAE	MSE	RMSE	MAPE	MAE	MSE	RMSE	MAPE	
1	PCA	Linear Regression	StandardScaler	0.2414	209.07	82060	286	62.1	211.1	80993	285	64.36	
2	PCA	XG Boost	StandardScaler	86.7	87.8	14286	119.5	27.1	214.4	83464	289	65.62	
3	All	Gradient Boost	StandardScaler	45.8	179	58631	242	53	194.6	69469	264	58.8	
3	All	Layered Adaboost	StandardScaler	45.9	175.4	59535	244	47.7	190.6	69832	264	53.6	
3	All	Layered Adaboost	StandardScaler	43.11	175.5	61535	248	44.7	189.6	71388	267	50.3	
	All	XG Boost	StandardScaler	56.41	160.4	47152	217	48.41	198	70886	266	60.2	
4	All	Layered Adaboost	StandardScaler	56.6	156.8	47901	218.9	43.1	193.6	71065	266	55	
4	All	Layered GradientB	StandardScaler	54.1	157	49637	223	40.3	192.6	72440	269	51.9	
5	All	XG Boost	None	56.1	159.6	47498	218	47.7	196	70257	265	59	
5	All	Layered Adaboost	None	55.2	157	48479	221	42.8	192	70723	266	54	
5	All	Layered GradientB	None	53.6	157	50245	224	40.2	191	72170	268	51.1	

Tool of implementation & Key Drivers

- The implementation tool is created in excel and attached below.
- Final equation using Linear Regression:

```
    5.1113 - 0.5884 * card_2 - 0.6011 * card_3 - 0.7023 * card_4 - 0.4905 * card_5 - 0.3913 * card2_2 - 0.3831 * card2_3 - 0.4361 * card2_4 - 0.2813 * card2_5 + 0.2483 * reason_2 - 0.165 * reason_4 - 0.0553 * gender_1 + 0.5838 * income - 0.0305 * income_sqr
```


- Credit Limit will be given thrice of predicted Credit card spend.
- Income is the major positive key driver for finding credit limit of any customer
- Having American Express card increases the credit limit by around 2-3 times compared to other cards.
- Male customers are given more credit compared to female customers
- Customers coming to get new credit cards with reason of "Convenience" get better credit limit
- Income _square helps to put a cap on credit limit for high income customers
- All customers irrespective of deciding factors will get minimum credit limit of 165

Positive drivers are marked in green Negative drivers are marked in red

Decile Analysis

Decile	pred_val	Cardspent_val
9	833.5420	912.2399
8	621.8103	712.9803
7	529.5894	593.1252
6	464.9185	517.2574
5	413.2706	465.7444
4	372.2152	425.1774
3	336.5317	388.5363
2	307.3986	343.4760
1	275.1145	319.2682
0	223.0948	263.8456

Decile	Pred_val	Cardspent_val
9	860.0851	915.7990
8	628.8650	707.0851
7	530.9035	538.8130
6	464.4957	536.6252
5	415.6433	483.7722
4	373.9221	423.9477
3	338.4644	374.7855
2	304.5084	344.6931
1	274.5320	317.2925
0	226.7048	274.5087

Recommendations & Next Steps

- · Regular model rebuilding after specific time interval will be required for maintenance.
- · The key drivers for the model are income and existing cards possessed by the customer.
- One should make sure that they remain consistent after certain time period. Any changes should be incorporated into the model and retrained accordingly.
- Also check should be performed if newer predictors can be found and helpful to have better prediction on the data.

