## Machine Learning (CS 567)

#### Fall 2008

Time: T-Th 5:00pm - 6:20pm

**Location: GFS 118** 

**Instructor**: Sofus A. Macskassy (<u>macskass@usc.edu</u>)

Office: SAL 216

Office hours: by appointment

Teaching assistant: Cheol Han (<a href="mailto:cheolhan@usc.edu">cheolhan@usc.edu</a>)

Office: SAL 229

Office hours: M 2-3pm, W 11-12

#### Class web page:

http://www-scf.usc.edu/~csci567/index.html

#### Lecture 11 Outline

- Bayesian Learning
  - Probability theory
  - Bayesian Classification

# So far: Discriminative Learning

- We want to distuinguish between different classes based on examples of each class.
- Linear classifiers and decision trees generate separating planes between the classes.
- When a new instance needs to be classified, we check on which side of the decision boundaries it falls, and classify accordingly (deterministic).
- This is called <u>discriminative learning</u>, because we defined an explcit boundary that discriminates between the different classes.
- The classification algorithms studied so far (except logistic regression) fall into this category.

# Next: Generative Learning

- A different idea: use the data to build a <u>model</u> for each of the different classes
- To classify a new instance, we match it against the different models, then decide which model it resembles more.
- This is called generative learning
- Note that we now categorize whether an instances is more or less likely to come from a given model.
- Also note that you can use these models to generate new data.

### Learning Bayesian Networks: Naïve and non-Naïve Bayes

- Hypothesis Space
  - fixed size
  - stochastic
  - continuous parameters
- Learning Algorithm
  - direct computation
  - eager
  - batch

## But first... basic probability theory

- Random variables
- Distributions
- Statistical formulae

#### Random Variables

- A random variable is a random number (or value)
  determined by chance, or more formally, drawn according
  to a probability distribution
  - The probability distribution can be estimated from observed data (e.g., throwing dice)
  - The probability distribution can be synthetic
  - Discrete & continuous variables
- Typical random variables in Machine Learning Problems
  - The input data
  - The output data
  - Noise
- Important concept in learning: The data generating model
  - E.g., what is the data generating model for:
    - i) Throwing dice
    - ii) Regression
    - iii) Classification
    - iv) For visual perception

### Why have Random Variables?

- Our goal is to predict our target variable
- We are not given the true (presumably deterministic) function
- We are only given observations
  - Can observe the number of times a dice lands on 4
  - Can estimate the probability, given the input, that the dice will land on 4
  - But we don't know where the dice will land
  - Can only make a guess to the most likely value of the dice, given the input.

#### Distributions

- The random variables only take on discrete values
  - E.g., throwing dice: possible values:  $v_i \in \{1,2,3,4,5,6\}$
- The probabilies sum to 1

$$\sum_{i} P(v_i) = 1$$

- Discrete distributions are particularly important in classification
- Probability Mass Function or Frequency Function (normalized histogram)



A "non fair" dice

## Classic Discrete Distributions (I)

#### **Bernoulli Distribution**

- A Bernoulli random variable takes on only two values, i.e., 0 and 1.
- P(1)=p and P(0)=1-p or in compact notation:

$$P(x) = \begin{cases} p^x (1-p)^{1-x}, & \text{if } x = 0 \text{ or } x = 1\\ 0, & \text{otherwise} \end{cases}$$

 The performance of a fixed number of trials with fixed probability of success (p) on each trial is known as a Bernoulli trial.



P(x) for **p**=0.3

## Classic Discrete Distributions (II)

#### **Binomial Distribution**

- Like Bernoulli distribution: binary input variables: 0 or 1, and probability P(1)=p and P(0)=1-p
- What is the probability of k successes, P(k), in a series of n independent trials? (n>=k)
- P(k) is a binomial random variable:

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ where } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Bernoulli distribution is a subset of the binomial distribution (i.e., n=1)

## Classic Discrete Distributions (II)

#### **Binomial Distribution**







### Classic Discrete Distributions (III)

#### **Multinomial Distribution**

- A generalization of the binomial distribution to multiple outputs (i.e., multiple classes an be categorized instead of just one class)
- n independent trials can result in one of r types of outcomes, where each outcome  $c_r$  has a probability  $P(c_r) = p_r(p_r = 1)$ .
- What is the probability  $P(n_1,n_2,...,n_r)$ , i.e., the probability that in n trials, the frequency of the r classes is  $(n_1,n_2,...,n_r)$ ? This is a multinomial random variable:

$$P(n_1, n_2, \dots, n_r) = \binom{n}{n_1 n_2 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

where

$$\binom{n}{n_1 n_2 \cdots n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

### Continuous Probability Distributions

- The random variables take on real values.
- Continuous distributions are discrete distributions where the number of discrete values goes to infinity while the probability of each discrete value goes to zero.
- Probabilities become densities.
- Probability density integrates to 1.

$$\int_{-\infty}^{+\infty} p(x)dx = 1$$

#### Continuous Probability Distributions (cont'd)

Probability Density Function p(x)



Probability of an event:

$$P(a < x < b) = \int_{a}^{b} p(x)dx = 1$$

### Classic Continuous Distributions (I)

#### **Normal Distribution**

The most used distribution

$$P(x) = \frac{1}{\sqrt{(2\pi)^d \|\Sigma\|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

- Also called Gaussian distribution after C.F.Gauss who proposed it
- Justified by the Central Limit Theorem:
  - Roughly: "if a random variable is the sum of a large number of independent random variables it is approximately normally distributed"
  - Many observed variables are the sum of several random variables
- Shorthand:

$$x \sim N(\mu, \Sigma)$$



## Classic Continuous Distributions (II)

#### **Uniform Distribution**

• All data is equally probably within a bounded region R, p(x)=1/R



### **Expected Value**

 The expected value, mean or average of the random variable x is defined by:

$$E[x] = \mu = \sum_{x \in \mathcal{X}} x P(x) = \sum_{i=1}^{m} v_i p_i.$$

• More generally, if f(x) is any function of x, the expected value of f is defined by:

$$E[f(x)] = \sum_{x \in \mathcal{X}} f(x)P(x).$$

- This is also called the center of mass.
- Note that forming an expected values is *linear*, in that if  $\alpha_1$  and  $\alpha_2$  are arbitrary constants, then we have

$$E[\alpha_1 f_1(x) + \alpha_2 f_2(x)] = \alpha_1 E[f_1(x)] + \alpha_2 E[f_2(x)]$$

#### **Expected Value**

General rules of thumb:

$$E[g(x)] \neq g(E[x])$$

$$E[\alpha x] = \alpha E[x]$$

$$E[x+y] = E[x] + E[y]$$

$$E\left[\sum_{i} \alpha_{i} x_{i}\right] = \sum_{i} \alpha_{i} E[x_{i}]$$

• In general:

$$E[x \cdot y] \neq E[x] \cdot E[y]$$

Given a FINITE sample data, the Expectation is:

$$E[x] = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

#### Variance and Standard Deviation

• Variance: 
$$Var[x] = \sigma^2 = E[(x - \mu)^2] = \sum_{x \in \mathcal{X}} (x - \mu)^2 P(x)$$

- σ is the *standard deviation* of x. The variance is never negative and approaches 0 as the probability mass is centered at one point.
- The standard deviation is a simple measure of how far values of x are likely to depart from the mean.
  - i.e., the standard or typical amount one should expect a randomly drawn value of x to deviate or differ from  $\mu$ .

### Sample variance and covariance

• Sample Variance 
$$Var[x] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - E[x])^2$$

- Why division by (N-1)? This is to obtain an unbiased estimate of the variance. (unbiased estimate:  $E[\hat{x}] = x$ )
- Covariance

$$Cov[x, y] = E[(x - E[x])(y - E[y])]$$

Sample Covariance

$$Cov[x, y] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - E[x])(y_i - E[y])$$
$$Cov[\mathbf{x}] = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_i - E[\mathbf{x}])(\mathbf{x}_i - E[\mathbf{x}])^T$$

#### Biased vs. Unbiased variance

- Biased variance:  $V = \frac{1}{n} \sum_{i=1}^{n} (x_i X')^2$
- "Anti-biased" variance:  $V^* = \frac{1}{n} \sum_{i=1}^{n} (x_i X_i)^2$

$$\rightarrow$$
  $(n-1)^2 V^* = n^2 V$ 

$$\rightarrow \sqrt{V^* \cdot V} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - X')^2$$

## Sample variance

 $s^2$  is sample variance,  $\sigma^2$  is true variance,  $\mu$  is true mean

$$\begin{split} E[s^2] &= E\left[\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2\right] \text{ (where } \overline{x} = E[x] \text{ is the sample mean)} \\ &= \frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2 \\ &= \frac{1}{n-1}\sum_{i=1}^n ((x_i - \mu) - (\overline{x} - \mu))^2 \\ &= \frac{1}{n-1}\sum_{i=1}^n E\left[(x_i - \mu)^2\right] - 2E\left[(x_i - \mu) - (\overline{x} - \mu)\right] + E\left[(\overline{x} - \mu)^2\right] \\ &= \frac{1}{n-1}\sum_{i=1}^n \left[\sigma^2 - 2\left(\frac{1}{n}\sum_{j=1}^n E\left[(x_i - \mu)(x_j - \mu)\right]\right) + \frac{1}{n^2}\sum_{j=1}^n \sum_{k=1}^n E\left[(x_j - \mu)(x_k - \mu)\right]\right] \\ &= \frac{1}{n-1}\sum_{i=1}^n \left[\sigma^2 - \frac{2\sigma^2}{n} + \frac{\sigma^2}{n}\right] \\ &= \frac{1}{n-1}\sum_{i=1}^n \frac{(n-1)\sigma^2}{n} \\ &= \frac{(n-1)\sigma^2}{n-1} \\ &= \sigma^2 \end{split}$$

## **Conditional Probability**

• P(x|y) is the probability of the occurrence of event x given that y occurred and is given as:

$$P(x|y) = \frac{P(x \cap y)}{P(y)}$$

 Knowing that y occurred reduces the sample space to y, and the part of it where x also occurred is (x,y)



## **Conditional Probability**

• P(x|y) is the probability of the occurrence of event x given that y occurred and is given as:

$$P(x|y) = \frac{P(x \cap y)}{P(y)}$$

- Knowing that y occurred reduces the sample space to y, and the part of it where x also occurred is (x,y)
- This is only defined if P(y)>0. Also, because  $\cap$  is commutative, we have:

$$P(x \cap y) = P(x|y)P(y) = P(y|x)P(x)$$

### Statistical Independence

If x and y are independent then we have

$$P(x|y) = P(x)$$

From there it follows that

$$P(x \cap y) = P(x)P(y)$$

• In other words, knowing that y occurred does not change the probability that x occurs (and vice versa).





### Bayes Rule

Remember:

$$P(x \cap y) = P(x|y)P(y) = P(y|x)P(x)$$

Bayes Rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

- Interpretation
  - P(y) is the **PRIOR** knowledge about y
  - X is new evidence to be incorporated to update my belief about y.
  - P(x|y) is the **LIKELIHOOD** of x given that y was observed.
  - Both prior and likelhood can often be generated beforehand, e.g., by histogram statistics
  - P(x) is a normalizing factor, corresponding to the <u>marginal</u> <u>distribution</u> of x. Often it need not be evaluated explicitly, but it can become a great computational burden.
    - "P(x) is an enumeration of all possible combinations of x, and the probability of their occurrence."
  - P(y|x) is the **POSTERIOR** probability of y, i.e., the belief in y after on discovers x.

### Learning Bayesian Networks: Naïve and non-Naïve Bayes

- Hypothesis Space
  - fixed size
  - stochastic
  - continuous parameters
- Learning Algorithm
  - direct computation
  - eager
  - batch

# Roles for Bayesian Methods

#### Provides practical learning algorithms:

- Naive Bayes learning
- Bayesian belief network learning
- Combine prior knowledge (prior probabilities) with observed data
- Requires prior probabilities

#### Provides useful conceptual framework

 Provides "gold standard" for evaluating other learning algorithms

# **Bayes Theorem**

Consider hypothesis space H

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- $P(h) = \text{prior prob. of hypothesis } h \in H$
- P(D) = prior prob. of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

# Choosing Hypotheses

Natural choice is most probable hypothesis given the training data, or *maximum a posteriori* hypothesis  $h_{MAP}$ :

$$h_{\mathsf{MAP}} = \operatorname{argmax}_{h \in H} P(h|D)$$

$$= \operatorname{argmax}_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h \in H} P(D|h)P(h)$$

If we assume  $P(h_i) = P(h_j)$  then can further simplify, and choose the *maximum likelihood* (ML) hypothesis

$$h_{\mathsf{ML}} = \operatorname{argmax}_{h \in H} P(D|h)$$

# Bayes Theorem: Example

#### Does patient have cancer or not?

– A patient takes a lab test and the result comes back positive. The test returns a correct positive result in 98% of the cases in which the disease is actually present, and a correct negative result in 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

# Bayes Theorem: Example

P (cancer) = 0.008 P (
$$\neg$$
cancer) = 0.992 P (+|cancer) = 0.98 P (-|cancer) = 0.02 P (+| $\neg$ cancer) = 0.03 P (-| $\neg$ cancer) = 0.97

A positive test result comes in for a patient.

What is the  $h_{MAP}$ ?

$$P(+|cancer)P(cancer) = (0.98)*(0.008) = .0078$$
  
 $P(+|\neg cancer)P(\neg cancer) = (0.03)*(0.992) = .0298$ 

$$h_{\mathsf{MAP}} = \neg \mathsf{cancer}$$

#### Brute Force MAP Learner

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis  $h_{MAP}$  with the highest posterior probability

$$h_{\mathsf{MAP}} = \mathsf{argmax}_{h \in H} P(h|D)$$

#### **Evolution of Posterior Probs**



 As data is added, certainty of hypotheses increases.

# Classifying New Instances

So far we've sought the most probable hypothesis given the data D (i.e.,  $h_{\mathsf{MAP}}$ )

Given new instance **x**, what is its most probable *classification*?

 $h_{\text{MAP}}(\mathbf{x})$  is not the most probable classification!

# Classification Example

#### Consider:

Three possible hypotheses:

$$P(h_1|D) = .4$$
,  $P(h_2|D) = .3$ ,  $P(h_3|D) = .3$ 

Given new instance x,

$$h_1(\mathbf{x}) = +, h_2(\mathbf{x}) = -, h_3(\mathbf{x}) = -$$

- What's  $h_{MAP}(\mathbf{x})$  ?
- What's most probable classification of x?

# Bayes Optimal Classifier

#### **Bayes optimal classification:**

$$\operatorname{argmax}_{v \in V} \sum_{h \in H} P(v|h)P(h|D)$$

#### Example:

• 
$$P(h_1|D) = .4$$
,  $P(-|h_1) = 0$ ,  $P(+|h_2) = 1$ 

• 
$$P(h_2|D) = .3$$
,  $P(-|h_2) = 1$ ,  $P(+|h_3) = 0$ 

• 
$$P(h_3|D) = .3$$
,  $P(-|h_3) = 1$ ,  $P(+|h_3) = 0$ ,

#### therefore

$$\sum_{h \in H} P(+|h)P(h|D) = 0.4$$

$$\sum_{h \in H} P(-|h)P(h|D) = 0.6$$
 MAP class

## Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many hypotheses.

#### Gibbs algorithm:

- 1. Choose one hypothesis at random, according to P(h|D)
- 2. Use this one to classify new instance

### **Error of Gibbs**

Noteworthy fact [Haussler 1994]: Assume target concepts are drawn at random from H according to priors on H. Then:

 $E[error_{Gibbs}] \le 2E[error_{BayesOptimal}]$ Suppose correctly, uniform prior distribution over H, then

- Pick any hypothesis consistent with the data, with uniform probability
- Its expected error no worse than twice Bayes optimal

# Naive Bayes Classifier

Along with decision trees, neural networks, kNN, one of the most practical and most used learning methods.

#### When to use:

- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

#### Successful applications:

- Diagnosis
- Classifying text documents

# Naïve Bayes Assumption

- Suppose the features  $x_i$  are discrete
- Assume the  $x_i$  are conditionally independent given y.
- In other words, assume that:

$$P(x_i|y) = P(x_i|y,x_j), \forall i,j$$

Then we have:

$$P(x_1, x_2, \dots, x_n | y) = P(x_1 | y) P(x_2 | y) \dots P(x_n | y)$$

 For binary features, instead of O(2<sup>n</sup>) numbers to describe a model, we only need O(n)!

#### Graphical Representation of Naïve Bayes Model



- Each node contains a probability table
  - y: P(y = k)
  - $-x_j$ :  $P(x_j = v | y = k)$  "class conditional probability"
- Interpret as a generative model
  - Choose the class k according to P(y = k)
  - Generate each feature *independently* according to  $P(x_j = v \mid y = k)$
  - The feature values are *conditionally independent*  $P(x_i, x_i \mid y) = P(x_i \mid y) \cdot P(x_i \mid y)$

# Naïve Bayes Algorithm

Naïve\_Bayes\_Learn(examples)
For each target value  $y_j$   $P(\widehat{y}_j) \leftarrow \text{estimate } P(y_j)$ For each attribute value  $x_i$   $P(\widehat{x}_i|y_j) \leftarrow \text{estimate } P(x_i|y_j)$ 

Classify\_New\_Instance(
$$\mathbf{x}$$
)
$$y_{\text{NB}} = \operatorname{argmax}_{y_j \in Y} P(y_j) \Pi_i P(x_i | y_j)$$

# Naïve Bayes: Example

Consider the *PlayTennis* problem and new instance
 *Outlook* = *sun*, *Temp* = *cool*, *Humid* = *high*, *Wind* = *strong*>
 Want to compute:

$$y_{\text{NB}} = \operatorname{argmax}_{y_j \in Y} P(y_j) \Pi_i P(x_i | y_j)$$

P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

• So,  $y_{NB} = n$ 

# Naïve Bayes: Subtleties

 Conditional independence assumption is often violated

$$P(x_1, x_2 \dots x_{n_i} | y_j) = \prod_i P(x_i | y_j)$$

- ...but it works surprisingly well anyway. Note don't need estimated posteriors  $P(y_j|\mathbf{x})$  to be correct; need only that
  - $\operatorname{argmax}_{y_j \in Y} P(y_j | \mathbf{x}) = \operatorname{argmax}_{y_j \in Y} P(y_j) \Pi_i P(x_i | y_j)$
- See Domingos & Pazzani [1996] for analysis
- Naïve Bayes posteriors often unrealistically close to 1 or 0

# Decision Boundary of naïve Bayes with binary features

- The parameters of the model are  $\theta_{i,1}$  =  $P(x_i=1|y=1), \ \theta_{i,0}=P(x_i=1|y=0), \ \theta_1=P(y=1)$
- What is the decision surface?

$$\frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = \frac{P(y=1)\prod_{i=1}^{n} P(x_i|y=1)}{P(y=0)\prod_{i=1}^{n} P(x_i|y=0)}$$

Using the log trick, we get:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = \log \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{n} \log \frac{(x_i|y=1)}{P(x_i|y=0)}$$

• Note that in the equation above, the  $x_i$  would be 1 or 0, depending on the values were present in the instance.

# Decision Boundary of naïve Bayes with binary features

let: 
$$w_o = \log \frac{P(y=1)}{P(y=0)}$$

$$w_{i,1} = \log \frac{P(x_i=1|y=1)}{P(x_i=1|y=0)}$$

$$w_{i,0} = \log \frac{P(x_i=0|y=1)}{P(x_i=0|y=0)}$$

We can re-write the decision boundary as:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = w_0 + \sum_{i=0}^{n} (w_{i,1}x_i + w_{i,0}(1-x_i))$$
$$= w_0 + \sum_{i=1}^{n} w_{i,0} + \sum_{i=1}^{n} (w_{i,1} - w_{i,0})x_i$$

This is a <u>linear decision boundary!</u>

# Representing $P(x_j|y)$

#### Many representations are possible

- Univariate Gaussian
  - if  $x_j$  is a continuous random variable, then we can use a normal distribution and learn the mean  $\mu$  and variance  $\sigma^2$
- Multinomial/Binomial
  - ullet if  $x_j$  is a discrete random variable,  $x_j \in \{v_1, ..., v_m\}$ , then we construct a conditional probability table
- Discretization
  - ullet convert continuous  $oldsymbol{x}_i$  into a discrete variable
- Kernel Density Estimates
  - apply a kind of nearest-neighbor algorithm to compute  $P(x_j \mid y)$  in neighborhood of query point

# Representing $P(x_j|y)$ – Discrete Values

- Multinomial/Binomial
  - ullet if  $x_{j}$  is a discrete random variable,  $x_{j} \in \{v_{1}, ..., v_{m}\}$ , then we construct the conditional probability table

|             | y = 1                       | <i>y</i> =2                 | *** | <i>y</i> =K                 |
|-------------|-----------------------------|-----------------------------|-----|-----------------------------|
| $x_j = v_1$ | $P(x_j = v_1 \mid y = 1)$   | $P(x_j=v_1 \mid y=2)$       |     | $P(x_j = v_1 \mid y = K)$   |
| $x_j = v_2$ | $P(x_j = v_2 \mid y = 1)$   | $P(x_j = v_2   y = 2)$      |     | $P(x_j = v_2 \mid y = K)$   |
|             |                             |                             |     |                             |
| $x_j = v_m$ | $P(x_j = \nu_m \mid y = 1)$ | $P(x_j = \nu_m \mid y = 2)$ | ••• | $P(x_j = \nu_m \mid y = K)$ |

$$P(x_j = v_l | y = k) = \frac{\text{number of instances for which } x_j = v_l \text{ and } y = k}{\text{number of instances for which } y = k}$$

#### Discretization via Mutual Information

- Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].
  - To discretize feature  $x_j$ , grow a decision tree considering only splits on  $x_j$ . Each leaf of the resulting tree will correspond to a single value of the discretized  $x_i$ .



#### Discretization via Mutual Information

- Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].
  - To discretize feature  $x_j$ , grow a decision tree considering only splits on  $x_j$ . Each leaf of the resulting tree will correspond to a single value of the discretized  $x_i$ .
  - Stopping rule (applied at each node). Stop when

$$I(x_j; y) < \frac{\log_2(N-1)}{N} + \frac{\Delta}{N}$$

$$\Delta = \log_2(3^K - 2) - [K \cdot H(S) - K_l \cdot H(S_l) - K_r \cdot H(S_r)]$$

– where S is the training data in the parent node;  $S_I$  and  $S_r$  are the examples in the left and right child. K,  $K_I$ , and  $K_r$  are the corresponding number of classes present in these examples. I is the mutual information, H is the entropy, and N is the number of examples in the node.

## Discretization: Thermometer Encoding

- Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].
  - An alternative encoding [Macskassy et al. 02] is similar to thermometer coding as used in neural networks [Gallant 93].
  - Rather than encode continuous values into *one* value, encode into 2v values, where v is the number of split points created.
  - Each encoded binary value represents whether the continuous value was greater or less-than-or-equal to one of the split points.



# Kernel Density Estimators

- Define  $K(x_j,x_{i,j})=\frac{1}{\sqrt{2\pi}\sigma}\exp-\left(\frac{x_j-x_{i,j}}{\sigma}\right)^2$  to be the Gaussian Kernel with parameter  $\sigma$
- Estimate

$$P(x_j|y=k) = \frac{\sum_{\{i|y=k\}} K(x_j, x_{i,j})}{N_k}$$

where  $N_k$  is the number of training examples in class k.

# Kernel Density Estimators (2)

• This is equivalent to placing a Gaussian "bump" of height  $1/N_k$  on each training data point from class k and then adding them up



# Kernel Density Estimators (3)

Resulting probability density



## The value chosen for $\sigma$ is critical





 $\sigma$ =0.15???

 $\sigma = 0.50$ 

# Learning the Probability Distributions by Direct Computation

- P(y=k) is just the fraction of training examples belonging to class k.
- For multinomial variables,  $P(x_j = v \mid y = k)$  is the fraction of training examples in class k where  $x_i = v$
- For Gaussian variables,  $\hat{\mu}_{jk}$  is the average value of  $x_j$  for training examples in class k.  $\hat{\sigma}_{jk}$  is the sample standard deviation of those points:

$$\hat{\sigma}_{jk} = \sqrt{\frac{1}{N_k} \sum_{\{i|y_i=k\}} (x_{i,j} - \hat{\mu}_{jk})^2}$$

#### Improved Probability Estimates via Laplace Corrections

- When we have very little training data, direct probability computation can give probabilities of 0 or 1. Such extreme probabilities are "too strong" and cause problems
- Suppose we are estimating a probability P(z) and we have  $n_0$  examples where z is false and  $n_1$  examples where z is true. Our direct estimate is

$$P(z=1) = \frac{n_1}{n_0 + n_1}$$

• Laplace Estimate. Add 1 to the numerator and 2 to the denominator

$$P(z=1) = \frac{n_1 + 1}{n_0 + n_1 + 2}$$

This says that in the absence of any evidence, we expect P(z) = 0.5, but our belief is weak (equivalent to 1 example for each outcome).

Generalized Laplace Estimate. If z has K different outcomes, then we estimate it as

$$P(z=1) = \frac{n_1 + 1}{n_0 + \dots + n_{K-1} + K}$$

#### Naïve Bayes Applied to Diabetes Diagnosis



- Bayes nets and causality
  - Bayes nets work best when arrows follow the direction of causality
    - two things with a common cause are likely to be conditionally independent given the cause; arrows in the causal direction capture this independence
  - In a Naïve Bayes network, arrows are often <u>not</u> in the causal direction
    - diabetes does not cause pregnancies
    - diabetes does not cause age
  - But some arrows are correct
    - diabetes does cause the level of blood insulin and blood glucose

## Non-Naïve Bayes

- Manually construct a graph in which all arcs are causal
- Learning the probability tables is still easy. For example, P(Mass | Age, Preg) involves counting the number of patients of a given age and number of pregnancies that have a given body mass
- Classification:

$$P(D = d|A, P, M, I, G) =$$

$$P(I|D = d)P(G|I, D = d)P(D = d|A, M, P)$$

$$P(I, G)$$



## Bayesian Belief Network





Network represents a set of conditional ind. assertions:

- Each node is asserted to be conditionally ind. of its nondescendants, given its immediate predecessors.
- Directed acyclic graph

## Bayesian Belief Network





Represents joint probability distribution over all variables

- e.g., P(Storm, BusTourGroup, ..., ForestFire)
- in general,  $P(y_1, \ldots, y_n) = \prod_{i=1}^n P(y_i | \text{Parents}(Y_i))$  where Parents $(Y_i)$  denotes immediate predecessors of  $Y_i$  in the graph
- Therefore, the joint distribution is fully defined by graph, plus the CPTS:  $P(y_i|\mathsf{Parents}(Y_i))$

# Inference in Bayesian Nets

- How can one infer the (probabilities of) values of one or more network variables, given observed values of others?
- Bayes net contains all information needed for this inference
- If only one variable with unknown value, easy to infer it
- Easy if BN is a "polytree"
- In general case, problem is NP hard (#P-complete, Roth 1996).

## Inference in Practice

#### In practice, can succeed in many cases

- Exact inference methods work well for some network structures (small "induced width")
- Monte Carlo methods "simulate" the network randomly to calculate approximate solutions
- Now used as a primitive in more advanced learning and reasoning scenarios. (e.g., in relational learning)

# Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe *ForestFire*, *Storm*, *BusTourGroup*, *Thunder*, but not *Lightning*, *Campfire*...

Similar to training neural network with hidden units

- In fact, can learn network conditional probability tables using gradient ascent!
- Converge to network h that (locally) maximizes
   P(D|h)

### **Gradient Ascent for BNs**

Let  $w_{ijk}$  denote one entry in the conditional probability table for variable  $Y_i$  in the network

$$w_{ijk} = P(Y_i = y_{ij} | \text{Parents}(Y_i) = u_{jk} \text{ values})$$

e.g., if  $Y_i = Campfire$ , then  $u_{ik}$  might be

Perform gradient ascent by repeatedly:

1. Update all  $w_{ijk}$  using training data  ${\it D}$ 

$$w_{ijk} \leftarrow_{ijk} + \eta \frac{\sum_{d \in D} P_h(y_{ij}, u_{jk}|d)}{w_{ijk}}$$

2. Then, renormalize the  $w_{ijk}$  to assure

$$\sum_{j} w_{ijk} = 1, \ o \le w_{ijk} \le 1$$

## Unknown Structure

When structure unknown...

- Algorithms use greedy search to add/subtract edges and nodes
- Active research topic

Somewhat like decision trees: searching for a discrete graph structure

## **Belief Networks**

- Combine prior knowledge with observed data
- Impact of prior knowledge (when correct!) is to lower the sample complexity
- Active research area (UAI)
  - Extend from Boolean to real-valued variables
  - Parameterized distributions instead of tables
  - Extend to first-order systems
  - More effective inference methods

**–** ...

# Naïve Bayes Summary

- Advantages of Bayesian networks
  - Produces stochastic classifiers
    - can be combined with utility functions to make optimal decisions
  - Easy to incorporate causal knowledge
    - resulting probabilities are easy to interpret
  - Very simple learning algorithms
    - if all variables are observed in training data
- Disadvantages of Bayesian networks
  - Fixed sized hypothesis space
    - may underfit or overfit the data
    - may not contain any good classifiers if prior knowledge is wrong
  - Harder to handle continuous features

# **Evaluation of Naïve Bayes**

| Criterion                       | LMS | Logistic | LDA | Trees | NNbr | Nets | NB   |
|---------------------------------|-----|----------|-----|-------|------|------|------|
| Mixed data                      | no  | no       | no  | yes   | no   | no   | yes  |
| Missing values                  | no  | no       | yes | yes   | some | no   | yes  |
| Outliers                        | no  | yes      | no  | yes   | yes  | yes  | disc |
| <b>Monotone</b> transformations | no  | no       | no  | yes   | no   | some | disc |
| Scalability                     | yes | yes      | yes | yes   | no   | yes  | yes  |
| Irrelevant inputs               | no  | no       | no  | some  | no   | no   | some |
| Linear<br>combinations          | yes | yes      | yes | no    | some | yes  | yes  |
| Interpretable                   | yes | yes      | yes | yes   | no   | no   | yes  |
| Accurate                        | yes | yes      | yes | no    | no   | yes  | yes  |

- Naïve Bayes is very popular, particularly in natural language processing and information retrieval where there are many features compared to the number of examples
- In applications with lots of data, Naïve Bayes does not usually perform as well as more sophisticated methods