Sistemas de Numeração

Quantas bolinhas temos aqui?

Quantas bolinhas temos aqui?

1

E quantas bolinhas temos aqui?

E quantas bolinhas temos aqui?

Então aqui? Quantas são?

Então aqui? Quantas são?

(C) 2015-2022 Jandl.

Quer contar?

Sistemas de Numeração

Da necessidade de contar e depois operar as contagens, surgiram ideias e modos para sistematizar essa questão!

Sistemas de Numeração

 Durante toda história, os números passaram por diversas mudanças em sua representação.

(C) 2015-2022 Jandl.

Sistemas de Numeração

- Os primeiros sistemas de numeração surgiram por volta de 3500 A.C. com os egípcios e sumérios.
- Dos símbolos veio a ideia de representar números, usados pelos hebraicos, gregos e romanos:

```
15 10 50 1005001000
IV X L C D M
```

Numeral

- Símbolo ou grupo de símbolos que representa um número em um determinado instante da evolução do homem.
- Por exemplo:
 11, onze e XI têm o mesmo significado, assim como 5, cinco e V.

Sistema de Numeração

 A numeração posicional, originada na disposição de contas do ábaco, significou grande avanço no processo de cálculos.

Sistema de Numeração ou Sistema Numeral

- Em condições ideais, deve:
 - Dar a cada número representado uma descrição única ou padronizada;
 - Representar uma grande quantidade de números úteis, p.e.:
 - todos os números inteiros, ou
 - todos os números reais;
 - Refletir as estruturas algébricas e aritméticas dos números.

(C) 2015-2022 Jandl. 17/08/2022

17

Sistema de Numeração ou Sistema Numeral

- Sistema em que um conjunto de números são representados por numerais de uma forma consistente.
- É o contexto que permite a interpretação dos numerais:
 - 11 > numeral romano para dois
 - 11

 numeral decimal para onze
 - 11) numeral binário para três

- Sistema normalmente utilizado, onde existem 10 numerais (símbolos) denominados algarismos:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- A cada símbolo se associa uma quantidade.
- Esses algarismos são chamados de indo-arábicos porque tiveram origem nos trabalhos iniciados pelos hindus e pelos árabes.

- Com os algarismos formam-se os numerais.
- Estes símbolos, na sequência acima, são usados repetidamente, em agrupamentos de 10 em 10 unidades.

- A partir do agrupamento de 10 em 10 das unidades temos:
 - O grupo de dez unidades recebe o nome de dezena.
 - A cada grupo de 10 *dezenas* forma-se uma *centena*.
 - Os grupos de 1, 10, 100 elementos são chamados de ordens.
 - A cada três ordens forma-se um novo grupo denominado classe.

- As ordens são denominadas:
 - centenas (c)
 - dezenas (d)
 - unidades (u)
- Já as classes são:
 - Simples, Milhar, Milhão, Bilhão, Trilhão, Quatrilhão, Quintilhão, Sextilhão ...

(C) 2015-2022 Jandl. 17/08/2022

23

- 51 possui duas ordens e uma classe.
- 149 possui três ordens e uma classe.
- 2015 possui quatro ordens e duas classes.

Bases Numéricas

O cerne da numeração posicional

(C) 2015-2022 Jandl. 25

Forma genérica

• Qualquer número decimal:

$$a_n a_{n-1} a_{n-2} \dots a_4 a_3 a_2 a_1 a_0$$

• Pode ser representado como: $a_n 1 o n + a_{n-1} 1 o^{n-1} + ...$ $+ a_4 1 o^4 + a_3 1 o^3 + a_2 1 o^2 + a_1 1 o^1 + a_0 1 o^0$

• Aqui a **base numérica** (o tamanho do agrupamento dos numerais) é **10**.

Representação Genérica na base 10

Decomposição na forma geral

classe	milhar	cl	asse simple	es					
a4	a3	a2	a1	a0					
5	1	9	2	3					
					3	x1	=3*10^0	=	3
					2	x10	=2*10^1	=	20
					9	x100	=9*10^2	=	900
					1	x'1000	=1*10^3	=	1000
					5	x'10000	=5*10^4	=	50000
									51923

(C) 2015-2022 Jandl. 27

Bases Numéricas

- A base numérica para contagem não precisa ser 10 e pode ser qualquer outra, bastando existirem numerais distintos na mesma quantidade da base:
 - Decimal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Binário {0, 1}
 - Octal {0, 1, 2, 3, 4, 5, 6, 7}
 - Hexadecimal {o, 1... 8, 9, A, B, C, D, E, F}

(C) 2015-2022 Jandl. 28

Numeração Posicional Contagem [zero → vinte]

- **Decimal**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- Binário: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100
- Octal: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24
- **Hexadecimal**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14

Notação

 Para evitar a confusão, bastante possível, entre valores de bases numéricas diferentes:

$$(100)_2 \rightarrow (4)_{10}$$

$$(100)_{8} \rightarrow (64)_{10}$$

$$(100)_{16} \rightarrow (256)_{10}$$

(C) 2015-20<mark>22 Jandl</mark>.

Conversões entre bases numéricas

Conversão Numérica $(X)_a \rightarrow (Y)_b$

Número X na base A Equivalente de X na base 10

Numero Y na base B

Conversão Numérica

$$(X)_a \rightarrow (Y)_b$$

Use a **forma geral** para sair da base A e obter o equivalente na base 10

Número X na base A

Equivalente de X na base 10 Numero Y na base B

33

Conversão Numérica

$$(X)_a \rightarrow (Y)_b$$

Use a divisão inteira sucessiva para sair da base 10 e obter o equivalente na base B

Número X na base A Equivalente de X na base 10

Numero Y na base B

34

Conversão entre Bases $(30414)_5 \rightarrow (Y)_8$

$$(30414)_5 = 3.5^4 + 0.5^3 + 4.5^2 + 1.5^1 + 4.5^0$$

$$= (1984)_{10}$$

forma geral

1984	8			
0	248	8		
	0	31	8	
	lai	7	3	8
inteira	Leitu	ra	3	0

Quando quociente torna-se zero, finalizase a conversão.

divisão inteira sucessiva

$$(30414)_5 = (1984)_{10} = (3700)_8$$

(C) 2015-2022 Jandl.

Conversão entre Bases $(274)_8 \rightarrow (Y)_2$

$$(274)_8 = 2.8^2 + 7.8^1 + 4.8^\circ$$

= $(188)_{10}$

forma geral

188	2					
0	94	2				
	0	47	2			
		1	23	2		
			1	11	2	
1	ção inteir		Leitu	1	5	
	COO INTOIR			-		

Quando quociente torna-se zero, finalizase a conversão.

divisão inteira sucessiva

$$(274)_8 = (188)_{10} = (10111100)_2$$

2 2 0 1 2

1

0

Conversão entre Bases

$$(30414)_5 \rightarrow (Y)_{16}$$

forma geral

$$(30414)_5 = 3.5^4 + 0.5^3 + 4.5^2 + 1.5^1 + 4.5^0$$
$$= (1984)_{10}$$

1984	16		
0	124	16	
	12 = C	7	16
	loi	7	0

divisão inteira sucessiva

Atenção com restos em bases maiores que 10! conversão.

$$(30414)_5 = (1984)_{10} = (7C0)_{16}$$

Quando quociente torna-se zero, finalizase a conversão.

37

Exercícios de Fixação

Exercícios de Fixação

- Converter os números seguintes, expressos na base decimal, em seus correspondentes hexadecimais, octais e binários:
 - 83, 2015, 317, 767, 1964, 103629
- 2. Converter os números seguintes, expressos em hexadecimal, para seus correspondentes octais, binários e decimais:
 - DoD, CAFE, BABE, Fo5C4, E550BoBo