A Book of Abstract Algebra (2nd Edition)

Consider $a \in D$ if and only if the point $(a,0)$ is constructible from $\{O,I\}$
Comment
Step 2 of 4
Constructible point:
Constructible point is either the end point of given unit segment or it is the intersection of two lines determined by previous constructible points.
Comment
Step 3 of 4
D is a set of real numbers. Therefore, we can add, subtract, multiply any two points of them.
Let $a,b\in D$, then the points $(a,0)$ and $(b,0)$ are constructible from $\{O,I\}$
Comment
Step 4 of 4
Now, we have to prove that length ab is constructed from the lengths a and b
Consider the below figure:

fig: multiplication

by observing, there exist two equal triangles.

a and b are constructible lengths.

using the property of similar triangles, we have

$$\frac{1}{a} = \frac{b}{x}$$

$$x = ab$$

Then, the length ab is constructible from $\{O, I\}$, which implies $ab \in D$

Therefore, if $a, b \in D$, then $ab \in D$.

Hence, proved

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Honor Shield

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy