Odredite vremenski kontinuiranu Fourierovu transformaciju (CTFT)

$$_{\rm signala} x(t) = e^{jt} \mu(-t)$$

Odaberite jedan odgovor:

$$\sigma_{\rm a.} \pi \delta(\omega+1) + \frac{j}{\omega+1}$$

$$\delta_{\rm b.} \pi \delta(\omega - 1) + \frac{j}{\omega - 1}$$

$$\circ$$
 c. $\frac{j}{1-\omega}$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\pi\delta(\omega-1)+rac{j}{\omega-1}$$

Pitanje 2

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) - \delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi < \Omega < \pi$) dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 , $\phi(\Omega)=0$

$$\circ \ \ \phi(\Omega) = \frac{\pi}{2}$$

$$\circ$$
 _{c.} $\phi(\Omega) = -\frac{\pi}{2}$ _{za} $\Omega < 0$; $\phi(\Omega) = +\frac{\pi}{2}$ _{za} $\Omega > 0$

$$\begin{array}{l} \text{C} \quad _{\text{b.}} \phi(\Omega) = \frac{\pi}{2} \\ \text{C} \quad _{\text{c.}} \phi(\Omega) = -\frac{\pi}{2} _{\text{za}} \, \Omega < 0 _{\text{i}} \, \phi(\Omega) = +\frac{\pi}{2} _{\text{za}} \, \Omega > 0 \\ \text{C} \quad _{\text{d.}} \phi(\Omega) = +\frac{\pi}{2} _{\text{za}} \, \Omega < 0 _{\text{i}} \, \phi(\Omega) = -\frac{\pi}{2} _{\text{za}} \, \Omega > 0 \\ \text{C} \quad _{\text{e.}} \phi(\Omega) = -\frac{\pi}{2} \end{array}$$

$$\phi(\Omega) = -\frac{\pi}{2}$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\phi(\Omega)=+\frac{\pi}{2}$$
 za $\Omega<0$ i $\phi(\Omega)=-\frac{\pi}{2}$ za $\Omega>0$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretni Fourierov red (DTFS) realnog signala x(n). Za spektar vrijedi:

Odaberite jedan odgovor:

$$\quad \text{A. } X^*(e^{j\Omega}) = X(e^{j\Omega})$$

o L.
$$X^*(e^{j\Omega}) = X(e^{-j\Omega})$$
o L. $X^*_k = X_{-k}$

$$X_{k}^{*} = X_{-k}$$

$$X^*(j\omega) = X(-j\omega)$$

F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $X_k^* = X_{-k}$

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog

signala $x(t) = 4 + 2\cos(40\pi t - \frac{\pi}{3})$ uz period rastava T_0 jednak temeljnom periodu signala x(t). Kut $heta_1$ prvog harmonika iznosi:

Odaberite jedan odgovor:

orange of the jedan odgo of
$$\theta_1 = -\frac{\pi}{4}$$
 or $\theta_1 = -\frac{\pi}{2}$ or $\theta_1 = \frac{\pi}{3}$

$$\theta_{1} = -\frac{\pi}{2}$$

$$e_{c.} \theta_1 = \frac{\pi}{3}$$

$$\theta_1 = 4$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\theta_1 = -\frac{\pi}{3}$$

Točan odgovor je: $heta_1=-rac{\pi}{3}$

Pitanje **5**

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Za amplitudni spektar $|X(j\omega)|$ vremenski kontinuirane Fourierove transformacije (CTFT) realnog aperiodičkog signala x(t) vrijedi (a je realna konstanta):

Odaberite jedan odgovor:

$$\left| - \left| X(j\omega) \right| = -\frac{1}{a} |X(j\omega)|$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) c. $|X(-j\omega)|=|X(j\omega)|$

$$|X(-j\omega)| = |X(j\omega)|$$

$$\bigcap_{\mathbf{D}} |X(-j\omega)| = a|X(j\omega)|$$

$$|X(-j\omega)| = -|X(j\omega)|$$

$$|X_{\mathsf{F}}|X(-j\omega)| = \frac{1}{a}|X(j\omega)|$$

Povratna informacija

Točan odgovor je: $|X(-j\omega)| = |X(j\omega)|$

Pitanje 6

Niie odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{4},0,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{4}, 4, 4, 4\}$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) $X_k = \{\underline{1}, 1, 1, 1\}$ $X_k = \{\underline{1}, -1, 1, -1\}$ $X_k = \{\underline{1}, -j, -1, j\}$ Povratna informacija Točan odgovor je: $X_k = \{\underline{1}, 1, 1, 1\}$ Pitanje 7 Nije odgovoreno Broj bodova od 1,00 Označi pitanje Tekst pitanja Zadan je vremenski kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$ Odredite FAZU spektra drugog harmonika za k=2 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t). Odaberite jedan odgovor: $^{\circ}$ a. 0.5 $^{\circ}$ b. 0.4° c. 0 $^{\circ}$ d. 1° e. 0.8 f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) Povratna informacija Točan odgovor je: 0 Pitanje 8 Nije odgovoreno Broj bodova od 1,00 Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) + 2\delta(n) + \delta(n+1)_{\text{za kojeg}}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 a $A(\Omega) = \cos(\Omega) + 1$

$$O_{b} A(\Omega) = 2\cos(\Omega) + 2$$

$$\circ$$
 $A(\Omega) = \cos(\Omega)$

$$\circ$$
 d. $A(\Omega) = 0$

$$\circ$$
 e. $A(\Omega) = 2\cos(\Omega)$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$A(\Omega) = 2\cos(\Omega) + 2$$

Pitanje 9

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$ Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{b.} $\pi/2$

$$^{\circ}$$
 c. π

$$^{\circ}$$
 e. $-\pi$

$$\begin{array}{c} \circ \\ \bullet \\ \circ \\ f_{\bullet} -\pi/2 \end{array}$$

Povratna informacija

Točan odgovor je: 0

Pitanie 10

Niie odgovoreno Broj bodova od 1,00 Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) $_{\rm signala} x(t) = e^{jt} \dot{\mu}(-t)$

Odaberite jedan odgovor:

$$\circ$$
 a. $\pi\delta(\omega-1)$

$$\delta_{\rm b.} \pi \delta(\omega + 1)$$

$$\begin{array}{c} \circ \\ \circ \\ \circ \\ d. \\ \hline \begin{array}{c} 1 \\ \hline 1-\omega \end{array}$$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\int_{f} \frac{-1}{1-\omega}$$

Povratna informacija

Točan odgovor je: $1-\omega$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},0,0,4\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{4}, -4j, -4, 4j\}$$

Točan odgovor je: $X_k = \{\underline{1}, j, -1, -j\}$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretan signal $x(n)=\delta(n-1)-\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za AMPLITUDNI spektar dobivamo:

Odaberite jedan odgovor:

$$\alpha_{\rm a.} A(\Omega) = -2j\sin(\Omega)$$

$$A(\Omega) = 2j\sin(j\Omega)$$

$$\circ$$
 $A(\Omega) = 2\sin(\Omega)$

$$\circ$$
 d. $A(\Omega) = |\sin(\Omega)|$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = \left| 2\sin(\Omega) \right|$$

Povratna informacija

Točan odgovor je: $A(\Omega) = \left| 2\sin(\Omega) \right|$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite amplitudni spektar vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(t)$.

Odaberite jedan odgovor:

$$\circ$$
 a. $\frac{j}{1+\omega}$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

c. ništa od navedenog

$$o_{d.} \frac{1}{1+\omega}$$

$$e. \frac{-1}{1+\omega}$$

$$\circ$$
 f. $\frac{-j}{1+\omega}$

Povratna informacija

Točan odgovor je: ništa od navedenog

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite vremenski kontinuiranu Fourierovu transformaciju (CTFT)

$$_{\mathrm{signala}} x(t) = e^{-jt} \, \mu(t)$$

Odaberite jedan odgovor:

$$\delta = \pi \delta(\omega - 1) + \frac{1}{j(\omega - 1)}$$

$$\circ$$
 b $\frac{-j}{1+\omega}$

$$\sigma = \pi \delta(\omega + 1) + \frac{1}{j(\omega + 1)}$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$e. \frac{1}{1+\omega}$$

$$\circ$$
 f. $\frac{j}{1+\omega}$

Povratna informacija

Točan odgovor je:
$$\pi\delta(\omega+1)+rac{1}{j(\omega+1)}$$

Pitanje **5**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Koji od navedenih izraza opisuje svojstvo pomaka u vremenu za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$x(n-n_0) \longrightarrow X(e^{j\Omega})e^{j\Omega n_0}$$

$$\sim x(t-t_0) \bigcirc X(e^{j\Omega})e^{j\Omega t_0}$$

$$o _{d} x(\langle n-n_0\rangle_N) \bigcirc - X(k)W_N^{kn_0}$$

$$\circ$$
 $x(t-t_0) \bigcirc X(e^{j\Omega})e^{-j\Omega t_0}$

$$\circ$$
 _{f.} $x(n-n_0) \bigcirc - X(e^{j\Omega})e^{-j\Omega n_0}$

Povratna informacija

Točan odgovor je: $x(n-n_0) \bigcirc - X(e^{j\Omega})e^{-j\Omega n_0}$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},4,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{4}, 4j, -4, -4j\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Točan odgovor je: $X_k = \{\underline{1}, -j, -1, j\}$

Pitanje 7

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$ Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

 $^{\circ}$ b. $-\pi$

 $\begin{array}{c} \circ \\ \circ \\ \circ \\ d. \\ -\pi/2 \end{array}$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) \circ , $\pi/2$

Povratna informacija

Točan odgovor je: $\pi/2$

Pitanje 8

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$ Odredite FAZU spektra prvog harmonika za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

° b. −π

° c. 0

 \circ d. $\pi/2$

 $^{\circ}$ e. π

 $-\pi/2$

Povratna informacija

Točan odgovor je: $-\pi/2$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $^{\circ}$ a. π

о ь. 0

 \circ _{c.} $-\pi/2$

 \circ d. $-\pi$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ _{f.} $\pi/2$

Povratna informacija

Točan odgovor je: 0

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je $|X(j\omega)|_{\text{amplitudni spektar signala}} x(t) = \cos(t)_{\text{i ako je}} |G(j\omega)|_{\text{amplitudni spektar signala}} g(t) = x(t+3)_{\text{onda vrijedi (samo jedan izraz je točan):}}$

Odaberite jedan odgovor:

$$\bigcap_{\mathsf{A.}} |X(j\omega)| + |G(j\omega)| = 0$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$C_{\text{c.}}|G(j\omega)|-2|X(j\omega)|=0$$

$$C_{D}|X(j\omega)| + |G(j\omega)| = 2$$

$$G_{\text{E.}}[G(j\omega)] + 2|X(j\omega)| = 0$$

$$\circ || |X(j\omega)| - |G(j\omega)| = 0$$

Povratna informacija

Točan odgovor je: $|X(j\omega)| - |G(j\omega)| = 0$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Poznato je da je vremenski kontinuirana Fourierova transformacija (CTFT) nekog

signala
$$X(j\omega)=2\omega \left(\mu(\omega)-\mu(\omega-2)\right)$$
. Izračunajte energiju tog signala!

Odaberite jedan odgovor:

$$a. \frac{16}{3\pi}$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 c. $\frac{2}{\pi}$

$$^{\circ}$$
 d. 4

$$\frac{1}{2}$$
 $\frac{32}{3}$

16

Točan odgovor je: 3π

Pitanje 2

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{0,4,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{4}, 4j, -4, -4j\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, -j, -1, j\}$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=-4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $^{\circ}$ a. 2π

b. 1 c. 0.5 d. 0.4 e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) f. 0.8
Povratna informacija Točan odgovor je: 0.5
Pitanje 4 Nije odgovoreno Broj bodova od 1,00
Označi pitanje
Tekst pitanja $ \text{Zadan je vremenski kontinuirani signal } x(t) = 0.8 \sin(t) + \sin(4t + \pi/3). $ Odredite FAZU spektra za $k = -1$ pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala $x(t)$. Odaberite jedan odgovor: $ \begin{array}{c} \text{Odaberite jedan odgovor:} \\ \text{Oa.} -\pi/2 \\ \text{Ob.} \pi \\ \text{Oc.} -\pi \\ \text{Od.} \text{Odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)} \\ \text{Oa.} \\ \text{Oa.}$
Točan odgovor je: $\pi/2$
Pitanje 5 Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) - \delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi < \Omega < \pi$) dobivamo:

Odaberite jedan odgovor:

$$\circ \ _{\rm a.} \phi(\Omega) = + \tfrac{\pi}{2} \, _{\rm za} \, \Omega < 0 \, _{\rm i} \, \phi(\Omega) = - \tfrac{\pi}{2} \, _{\rm za} \, \Omega > 0 \, _{\rm i}$$

$$\circ$$
 b $\phi(\Omega) = 0$

$$\circ \stackrel{\cdot}{_{\rm c.}} \phi(\Omega) = -\frac{\pi}{2} _{\rm za} \, \Omega < 0_{\rm i} \, \phi(\Omega) = +\frac{\pi}{2} _{\rm za} \, \Omega > 0_{\rm i}$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ \ _{\mathbf{e}} \ \phi(\Omega) = \frac{\pi}{2}$$

$$\circ$$
 $\phi(\Omega) = -\frac{\pi}{2}$

Povratna informacija

Točan odgovor je:
$$\phi(\Omega)=+\frac{\pi}{2}$$
 za $\Omega<0$ i $\phi(\Omega)=-\frac{\pi}{2}$ za $\Omega>0$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=e^{jt}$. Odredite FAZU spektra za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala x(t).

Odaberite jedan odgovor:

- a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \circ _{b.} $\pi/2$
- $\begin{array}{c|c} c. -\pi \\ c & -\pi/2 \end{array}$
- $^{\circ}$ e. π
- o f. 0

Povratna informacija

Točan odgovor je: U

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Koji od navedenih izraza opisuje svojstvo konvolucije za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Odaberite jedan odgovor:

Odaberite jedan odgovor:

a.
$$\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i)$$
 \longrightarrow $X_1(e^{j\Omega})X_2(e^{j\Omega})$

b. $\int_{-\infty}^{+\infty} x_1(\tau)x_2(t-\tau) d\tau$ \longrightarrow $X_1(k)X_2(k)$

c. $\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i)$ \longrightarrow $X_1(k)X_2(k)$

d. $\int_{-\infty}^{+\infty} x_1(\tau)x_2(t-\tau) d\tau$ \longrightarrow $X_1(e^{j\Omega})X_2(e^{j\Omega})$

e. $\sum_{i=0}^{N-1} x_1(i)x_2(\langle n-i\rangle_N)$ \longrightarrow $X_1(k)X_2(k)$

$$\bigcap_{k=0}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau \bigcirc \longrightarrow X_1(k) X_2(k)$$

$$\circ$$
 {c.} $\sum{i=-\infty}^{+\infty} x_1(i)x_2(n-i) \bigcirc \longrightarrow X_1(k)X_2(k)$

$$\bigcap_{\mathbf{d}} \int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau \bigcirc \longrightarrow X_1(e^{j\Omega}) X_2(e^{j\Omega})$$

$$\bigcirc \sum_{i=0}^{N-1} x_1(i) x_2 \left(\langle n-i \rangle_N \right) \bigcirc \longrightarrow X_1(k) X_2(k)$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i)$$
 \longrightarrow $X_1(e^{j\Omega})X_2(e^{j\Omega})$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) $signala x(t) = e^{-jt}\mu(-t)$

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\delta_{\rm b}$$
, $\pi\delta(\omega+1)$

c. ništa od navedenog

$$\circ$$
 d. $\frac{1}{\omega+1}$

$$\circ$$
 _{e.} $\pi\delta(\omega-1)$ \circ _{f.} $\frac{1}{\omega-1}$

Točan odgovor je: $\pi\delta(\omega+1)$

Pitanje 9

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $X(j\omega)=3(\omega+2)_{\text{odredite transformaciju signala}}x(t)e^{j2t}$?

Odaberite jedan odgovor:

$$a. 3(\omega + 2)e^{j2t}$$

$$\circ$$
 _{b.} $3(\omega + 2)$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{d.} $3(\omega+4)$

$$^{\circ}$$
 e. 3ω

Povratna informacija

Točan odgovor je: 3ω

Pitanje 10

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, 0, 1, 0\}$$

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{4}, 0, 4, 0\}$$

$$X_k = \{4j, 0, 4j, 0\}$$

$$X_k = \{\overline{1,0}, -1, 0\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1},0,1,0\}$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $x(j\omega)=5\omega$ odredite transformaciju signala x(t-2)?

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ _{b} 5(\omega - 2)$$

$$^{\circ}$$
 c. $5\omega e^{2j\omega}$

$$o_{\rm d.} 5(\omega-2)e^{j\omega}$$

$$^{\circ}$$
 e. $5\omega e^{-2j\omega}$

$$\circ$$
 , $5(\omega+2)$

Povratna informacija

Točan odgovor je: $5\omega e^{-2j\omega}$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{0,4,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, 4j, -4, -4j\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, -j, -1, j\}$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},0,0,4\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, j, -1, -j\}$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, -4j, -4, 4j\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

Točan odgovor je: $X_k = \{\underline{1}, j, -1, -j\}$

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $X(j\omega)=3(\omega+2)$ odredite transformaciju signala $x(t)e^{j2t}$?

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ _b $3(\omega+2)$

 $\sim 3(\omega+4)$

o d. 0

 \circ e. $3(\omega+2)e^{j2t}$

 $^{\circ}$ f. 3ω

Povratna informacija

Točan odgovor je: 3ω

Pitanje 5

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+2\delta(n)+\delta(n+1)_{\rm za\ kojeg}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi<\Omega<\pi$) dobivamo:

Odaberite jedan odgovor:

$$\sigma_{\rm a}$$
, $\phi(\Omega)=\pi_{\rm za}|\Omega|<\frac{\pi}{2}$, $\phi(\Omega)=0_{\rm za}|\Omega|>\frac{\pi}{2}$

$$\phi_{\text{b.}} \phi(\Omega) = 0_{\text{za}} |\Omega| < \frac{\pi}{2} \phi(\Omega) = \pi_{\text{za}} |\Omega| > \frac{\pi}{2}$$

$$\circ$$
 _{c.} $\phi(\Omega) = \pi$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{e.} $\phi(\Omega) = 0$

$$\circ$$
 , $\phi(\Omega) = -\pi$

Povratna informacija

Točan odgovor je: $\phi(\Omega)=0$

Pitanje 6

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra za k=4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

$$-\pi/6$$

$$-\pi/3$$

$$\circ$$
 d. $\pi/3$

$$_{\rm e.}~\pi/6$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $-\pi/6$

Pitanje **7**

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- ° a. 0
- \circ _{b.} $\pi/2$
- $^{\circ}$ c. π
- $-\pi/2$
- $^{\circ}$ e. $-\pi$
- f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: 0

Pitanje **8**

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra za k=-4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- $-\pi/6$
- \circ _{b.} $\pi/3$
- ° c. 0
- $_{\sf d.} \pi/6$
- $\circ_{\rm e.} -\pi/3$
- f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $\pi/6$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretnu Fourierovu transformaciju (DTFT) linearne konvolucije signala $x(n)_{\rm i}\,y(n)_{\rm .}$ Spektar linearne konvolucije jest:

Odaberite jedan odgovor:

 \circ A. NX_kY_k

 \circ B. $X(e^{j\Omega})Y(e^{j\Omega})$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ D $X(j\omega)Y(j\omega)$

 $\int_{\mathsf{E}} \frac{1}{2\pi} X(e^{j\Omega}) Y(e^{j\Omega})$

 \circ _{F.} $T_0X_kY_k$

Povratna informacija

Točan odgovor je: $X(e^{j\Omega})Y(e^{j\Omega})$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(-t)$.

Odaberite jedan odgovor:

 $a. \frac{-1}{1-\omega}$

 \circ b. $\frac{1}{1-\omega}$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $\sigma_{\rm d} \pi \delta(\omega + 1)$

$$\frac{\circ}{\circ}_{\mathsf{f.}} \pi \delta(\omega - 1)$$

Točan odgovor je: $\pi\delta(\omega-1)$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo dva vremenski diskretna signala $x(n)=\{1,\underline{1},1,1\}$

 $y(n)=\{\underline{1},1,1,1\}$ za koja je poznato da imaju sve uzorke jednake nuli osim

zadanih (podcrtani uzorak odgovara indeksu nula). Za pripadne spektre $X(e^{j\Omega})$

 $_{
m i}\,Y(e^{j\Omega})$ dobivene vremenski diskretnom Fourierovom transformacijom (DTFT) vrijedi:

Odaberite jedan odgovor:

$$X(e^{j\Omega}) = e^{j\Omega}Y(e^{j\Omega})$$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X(e^{j\Omega}) = e^{-j}Y(e^{j\Omega})$$

e. ništa od navedenoga
$$\sum_{\rm f.} X(e^{j\Omega}) = e^j Y(e^{j\Omega})$$

Povratna informacija

Točan odgovor je:
$$X(e^{j\Omega})=e^{j\Omega}Y(e^{j\Omega})$$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+2\delta(n)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 a. $A(\Omega) = \cos(\Omega) + 1$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 $A(\Omega) = 2\cos(\Omega) + 2$

$$o_{d} A(\Omega) = 2\cos(\Omega)$$

$$\circ$$
 _{e.} $A(\Omega) = \cos(\Omega)$

$$\circ$$
 , $A(\Omega)=0$

Povratna informacija

Točan odgovor je: $A(\Omega) = 2\cos(\Omega) + 2$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $^{\circ}$ a. 0.5

° b. 1

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $^{\circ}$ d. 0.8

 $^{\circ}$ e. 2π

o _{f.} 0.4

Povratna informacija

Točan odgovor je: 0.4

Pitanje 4

Nije odgovoreno

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretni Fourierov red (DTFS) realnog signala x(n). Za spektar vrijedi:

Odaberite jedan odgovor:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 B. $X_k^* = X_k$

$$X_{k}^{*} = X_{-k}$$

$$X^*(e^{j\Omega}) = X(e^{j\Omega})$$

$$\circ$$
 $X^*(j\omega) = X(-j\omega)$

Povratna informacija

Točan odgovor je: $X_k^* = X_{-k}$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite fazni spektar vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(t)$.

Odaberite jedan odgovor:

a. ništa od navedenoga

$$^{\circ}$$
 b. $-\infty$

$$\circ$$
 _{c.} $\pi/2$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$^{\circ}$$
 f. π

Točan odgovor je: ništa od navedenoga

Pitanje 6

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{4}, 0, 4, 0\}$$

$$X_k = \{\underline{1}, 0, -1, 0\}$$

$$X_k = \{\underline{4}, 0, -4, 0\}$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, 0, 1, 0\}$$

$$X_k = \{4j, 0, 4j, 0\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1},0,1,0\}$

Pitanje **7**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite FAZU spektra za k=-4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

o a. 0

b. π c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) d. $\pi/3$ e. $-\pi/3$
Povratna informacija
Točan odgovor je: $-\pi/3$
Pitanje 8 Nije odgovoreno Broj bodova od 1,00 Označi pitanje
Tekst pitanja
Zadan je vremenski kontinuirani signal $x(t)=-e^{jt}$. Odredite FAZU spektra za k pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala $x(t)$.
Odaberite jedan odgovor: a. 0 b. π c. $\pi/2$ d. $-\pi/2$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) f. 2π

Povratna informacija Točan odgovor je: π

Označi pitanje

Pitanje **9**

Nije odgovoreno Broj bodova od 1,00

Tekst pitanja

Za amplitudni spektar $|X(j\omega)|_{\text{vremenski kontinuirane Fourierove transformacije (CTFT)}}$ realnog aperiodičkog signala $x(t)_{\text{vrijedi }(a)}$ je realna konstanta):

Odaberite jedan odgovor:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$|X(-j\omega)| = |X(j\omega)|$$

$$|X(j\omega)| = -\frac{1}{a}|X(j\omega)|$$

$$|X(-j\omega)| = \frac{1}{a}|X(j\omega)|$$

$$|X(-j\omega)| = a|X(j\omega)|$$

$$|X(-j\omega)| = -|X(j\omega)|$$

Povratna informacija

$$_{\text{Točan odgovor je:}}|X(-j\omega)|=|X(j\omega)|$$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite vremenski kontinuiranu Fourierovu transformaciju (CTFT)

$$_{\rm signala} x(t) = e^{-jt} \mu(t)$$

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sigma_{\rm b}$$
 $\pi\delta(\omega+1) + \frac{1}{j(\omega+1)}$

$$\circ$$
 c. $\frac{-j}{1+\omega}$

$$\sigma_{\rm d} \pi \delta(\omega - 1) + \frac{1}{j(\omega - 1)}$$

$$\circ$$
 e. $\frac{1}{1+\omega}$

$$\circ$$
 f. $\frac{\jmath}{1+\omega}$

Povratna informacija

Točan odgovor je:
$$\pi\delta(\omega+1)+rac{1}{j(\omega+1)}$$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog

signala $x(t)=-2+3\sin(5\pi t-\frac{\pi}{2})_{
m uz\ period\ rastava}$ T_0 jednak temeljnom periodu signala x(t). Koeficijent X_0 rastava u red iznosi:

Odaberite jedan odgovor:

$$X_0 = -2$$

$$X_0 = -1$$

$$C_{c.} X_0 = 0$$

D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_0 = 2$$

$$X_0 = -\frac{\pi}{2}$$

Povratna informacija

Točan odgovor je: $X_0 = -2$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{4}, 0, 4, 0\}$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, 0, -1, 0\}$$

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{1}, 0, 1, 0\}$$
 $X_k = \{\underline{4j}, 0, 4j, 0\}$

Točan odgovor je: $X_k = \{\underline{1}, 0, 1, 0\}$

Pitanje 3

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $x(j\omega)=5\omega$ odredite transformaciju signala x(t-2)?

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 b. $5\omega e^{2j\omega}$

$$\circ$$
 _{c.} $5(\omega+2)$

$$\circ$$
 _{d.} $5(\omega-2)$

$$\circ$$
 _{e.} $5(\omega-2)e^{j\omega}$

$$^{\circ}$$
 f. $5\omega e^{-2j\omega}$

Povratna informacija

Točan odgovor je: $5\omega e^{-2j\omega}$

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo dva signala $x(n)=\{\underline{1},1,1,1\}$ i $y(n)=\{1,\underline{1},1,1\}$ za koja je poznato da imaju sve uzorke jednake nuli osim zadanih (podcrtani uzorak odgovara indeksu

nula). Za pripadne spektre $X(e^{j\Omega})_{\mathrm{i}}\,Y(e^{j\Omega})_{\mathrm{dobivene}}$ vremenski diskretnom Fourierovom transformacijom (DTFT) vrijedi:

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X(e^{j\Omega}) = e^{-j}Y(e^{j\Omega})$$

$$\circ$$
 $X(e^{j\Omega}) = e^{-j\Omega}Y(e^{j\Omega})$

$$\circ_{d.} X(e^{j\Omega}) = e^j Y(e^{j\Omega})$$

e. ništa od navedenoga
$$(x) = \sum_{\mathbf{f}} X(e^{j\Omega}) = e^{j\Omega} Y(e^{j\Omega})$$

Povratna informacija

Točan odgovor je:
$$X(e^{j\Omega})=e^{-j\Omega}Y(e^{j\Omega})$$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $X(j\omega)=e^{-2j\omega}\,\mu(\omega)_{
m odredite\ transformaciju\ signala}\,x(t-3)_{
m ?}$

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$e^{-2j(\omega+3)} \mu(\omega)$$

$$e^{-3j\omega}\,\mu(\omega)$$

$$\circ \stackrel{\cdot \cdot}{_{\mathsf{d}.}} e^{-2j\omega} \, \mu(\omega)$$

$$e. e^{-5j\omega} \mu(\omega)$$

$$e^{-2j(\omega-3)} \mu(\omega)$$

Povratna informacija

Točan odgovor je: $e^{-5j\omega}\,\mu(\omega)$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Koji od navedenih izraza opisuje svojstvo konvolucije za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Odaberite jedan odgovor:

$$\bigcap_{\mathbf{a}, \int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau \bigcirc \longrightarrow X_1(k) X_2(k)$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\bigcap_{i=0}^{N-1} x_1(i) x_2(\langle n-i\rangle_N) \bigcirc \longrightarrow X_1(k) X_2(k)$$

$$\bigcap_{\mathbf{d}} \int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau \bigcirc \longrightarrow X_1(e^{j\Omega}) X_2(e^{j\Omega})$$

o c.
$$\sum_{i=0}^{N-1} x_1(i) x_2 \left(\langle n-i \rangle_N \right) \bigcirc \bullet X_1(k) X_2(k)$$
 o d.
$$\int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) \, d\tau \bigcirc \bullet X_1(e^{j\Omega}) X_2(e^{j\Omega})$$
 o e.
$$\sum_{i=-\infty}^{+\infty} x_1(i) x_2(n-i) \bigcirc \bullet X_1(e^{j\Omega}) X_2(e^{j\Omega})$$
 o f.
$$\sum_{i=-\infty}^{+\infty} x_1(i) x_2(n-i) \bigcirc \bullet X_1(k) X_2(k)$$

$$\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i) \bigcirc \longrightarrow X_1(k)X_2(k)$$

Povratna informacija

Točan odgovor je:
$$\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i)$$
 \longrightarrow $X_1(e^{j\Omega})X_2(e^{j\Omega})$

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog signala perioda četiri čiji jedan period vremenski diskretnog Fourierovog reda (DTFS) je $\{\underline{0},2,0,2\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$x(n) = \{4j, 0, -4j, 0\}$$

$$x(n) = \{\underline{4}, 0, -4, 0\}$$

$$x(n) = \{\underline{1}, 0, 1, 0\}$$

$$x(n) = \{\underline{4}, 0, 4, 0\}$$

$x(n) = \{\underline{1}, 0, -1, 0\}$	0	e. 3	v(n)) =	$\{\underline{1},$	0,	-1,	0
--------------------------------------	---	------	------	-----	--------------------	----	-----	---

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $x(n)=\{\underline{4},0,-4,0\}$

Pitanje **8**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $^{\circ}$ a. 0.4

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $^{\circ}\,$ c. 2π

 $^{\circ}$ d. 1

° e. 0.8

 $^{\circ}$ f. 0.5

Povratna informacija

Točan odgovor je: 0.5

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra za k=-4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- $\alpha_{\rm a.} \pi/3$
- \circ _{b.} $\pi/6$
- c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $-\pi/6$
- $-\pi/3$
- o f. 0

Povratna informacija

Točan odgovor je: $\pi/6$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $X(j\omega)=2\omega$ odredite transformaciju signala x(2t)?

Odaberite jedan odgovor:

- a. 0
- \circ _{b.} $\omega/2$
- \circ $j\omega/2$
- d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $^{\circ}$ e. ω
- \circ f. 4ω

Povratna informacija

Točan odgovor je: $\omega/2$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(t)$.

Odaberite jedan odgovor:

 $a. \frac{-1}{\omega-1}$

 \circ b. $\pi\delta(\omega-1)$

 \circ _{c.} $\pi\delta(\omega+1)$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ e. $\frac{-1}{\omega+1}$

f. ništa od navedenog

Povratna informacija

Točan odgovor je: $\frac{-1}{\omega-1}$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

° a. 1

 $^{\circ}$ b. 2π

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $^\circ$ d. 0.4

Točan odgovor je: 0.4

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=e^{jt}$. Odredite FAZU spektra za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala x(t).

Odaberite jedan odgovor:

a. 0

 $-\pi/2$

 $^{\circ}$ c. π

 $\begin{array}{c|c} \circ & d. -\pi \\ \circ & e. \pi/2 \end{array}$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: 0

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretnu Fourierovu transformaciju (DTFT) realnog signala x(n). Za spektar vrijedi:

$$\circ_{\mathsf{A}.} X_k^* = X_{-k}$$

$$\begin{array}{c} \mathbf{A}.\ X_k - X_{-k} \\ \mathbf{C}.\ X^*(e^{j\Omega}) = X(e^{-j\Omega}) \\ \mathbf{C}.\ X^*(j\omega) = X(-j\omega) \\ \mathbf{C}.\ X_k^* = X_k \end{array}$$

$$\circ$$
 _{c.} $X^*(j\omega) = X(-j\omega)$

$$\circ$$
 D. $X_k^* = X_k$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$= X^*(e^{j\Omega}) = X(e^{j\Omega})$$

Povratna informacija

Točan odgovor je:
$$X^*(e^{j\Omega}) = X(e^{-j\Omega})$$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite fazni spektar vremenski kontinuirane Fourierove transformacije (CTFT) $_{\rm signala} x(t) = e^{-jt} \mu(t)$

Odaberite jedan odgovor:

$$\circ$$
 a. $\pi/2$

$$^{\circ}$$
 b. $-\infty$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $^{\circ}$ f. π

Povratna informacija

Točan odgovor je: ništa od navedenoga

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t) = 0.8\sin(t) + \sin(4t + \pi/3)$ Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

$$a. -\pi/2$$

$$\circ$$
 _{b.} $\pi/2$

$$^{\circ}$$
 c. π

$$^{\circ}$$
 d. $-\pi$

Povratna informacija

Točan odgovor je: $\pi/2$

Pitanje **7**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) - \delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi < \Omega < \pi$) dobivamo:

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\phi(\Omega) = -\frac{\pi}{2}$$

$$\circ$$
 _{c.} $\phi(\Omega) = \frac{\pi}{2}$

$$\begin{array}{ll} \bullet & \phi(\Omega) = +\frac{\pi}{2} \operatorname{za} \Omega < 0 \operatorname{i} \phi(\Omega) = -\frac{\pi}{2} \operatorname{za} \Omega > 0 \\ \bullet & \phi(\Omega) = -\frac{\pi}{2} \operatorname{za} \Omega < 0 \operatorname{i} \phi(\Omega) = +\frac{\pi}{2} \operatorname{za} \Omega > 0 \end{array}$$

$$\circ_{\rm e.} \phi(\Omega) = -\tfrac{\pi}{2} \operatorname{za} \Omega < 0 \operatorname{i} \phi(\Omega) = + \tfrac{\pi}{2} \operatorname{za} \Omega > 0$$

$$\circ$$
 , $\phi(\Omega) = 0$

Povratna informacija

Točan odgovor je:
$$\phi(\Omega)=+\frac{\pi}{2}$$
 za $\Omega<0$ i $\phi(\Omega)=-\frac{\pi}{2}$ za $\Omega>0$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretan Fourierov red (DTFS) perodične konvolucije signala x(n) i y(n) perioda N. Spektar periodične konvolucije jest:

Odaberite jedan odgovor:

- \circ A. NX_kY_k
- \circ B. X_kY_k
- \circ c. $T_0X_kY_k$
- D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $\circ \ _{\mathsf{E}} X(j\omega)Y(j\omega)$
- \circ , $X(e^{j\Omega})Y(e^{j\Omega})$

Povratna informacija

Točan odgovor je: NX_kY_k

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) jednaka $x(j\omega)=5\omega$ odredite transformaciju signala x(t-2)?

- $^{\circ}$ a. $5\omega e^{-2j\omega}$
- \circ b. $5\omega e^{2j\omega}$
- \circ _{c.} $5(\omega-2)e^{j\omega}$
- \circ d. $5(\omega-2)$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) f. $5(\omega+2)$

Povratna informacija

Točan odgovor je: $5\omega e^{-2j\omega}$

Pitanje 10

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},0,0,4\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$\begin{array}{cccc} & X_k = \{ \underline{1}, 1, 1, 1 \} \\ & &$$

F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, j, -1, -j\}$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog

signala $x(t)=-2+3\sin(5\pi t-\frac{\pi}{2})$ uz period rastava T_0 jednak temeljnom periodu signala x(t). Koeficijent X_0 rastava u red iznosi:

Odaberite jedan odgovor:

$$A. X_0 = 2$$

$$S_{B.} X_0 = 0$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_0 = -2$$

$$X_0 = -\frac{\pi}{2}$$

$$X_0 = -1$$

Povratna informacija

Točan odgovor je: $X_0=-2$

Pitanje **2**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretnu Fourierovu transformaciju (DTFT) linearne konvolucije signala $x(n)_{\rm i}\,y(n)_{\rm .}$ Spektar linearne konvolucije jest:

Odaberite jedan odgovor:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ \int_{\mathsf{B}} \frac{1}{2\pi} X(e^{j\Omega}) Y(e^{j\Omega})$$

$$\circ$$
 _{c.} $T_0X_kY_k$

$$\circ$$
 D. $X(j\omega)Y(j\omega)$

$$\circ$$
 E. NX_kY_k

$$K_{\text{F.}} X(e^{j\Omega}) Y(e^{j\Omega})$$

Povratna informacija

Točan odgovor je: $X(e^{j\Omega})Y(e^{j\Omega})$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog

signala $x(t)=-3\cos(16\pi t+\frac{\pi}{4})$ uz period rastava T_0 jednak temeljnom periodu signala x(t). Koeficijent X_0 rastava u red iznosi:

Odaberite jedan odgovor:

$$X_0 = 16$$

$$X_0 = 3$$

$$\circ$$
 _{c.} $X_0 = \frac{\pi}{4}$

D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_0 = 0$$

$$X_0 = -3$$

Povratna informacija

Točan odgovor je: $X_0=0$

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{4,0,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, -1, 1, -1\}$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, 4, 4, 4\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

Točan odgovor je: $X_k = \{\underline{1}, 1, 1, 1\}$

Pitanje 5

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(t)$.

Odaberite jedan odgovor:

a. ništa od navedenog

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

c. $\frac{1}{\omega-1}$

 $\circ \int_{\mathsf{e}}^{\mathsf{d}} \pi \delta(\omega+1)$

 $\sigma_{\rm f.} \pi \delta(\omega-1)$

Povratna informacija

Točan odgovor je: $\pi\delta(\omega-1)$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da su spektri (CTFT) vremenski kontinuiranih signala $x_1(t)$ i $x_2(t)$ jednaki $X_1(j\omega)=5\omega$ i $x_2(j\omega)=2/\omega$ odredite vremenski kontinuiranu Fourierovu transformaciju (CTFT) konvolucije $x_1(t)*x_2(t)$.

$$\circ$$
 a. $\frac{10}{\omega}$

$$^{\circ}$$
 c. 5ω

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ \ _{
m e.} \ rac{5\omega^2 + 2}{10}$$

Povratna informacija

Točan odgovor je: 10

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$ Odredite FAZU spektra prvog harmonika za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

b.
$$-\pi$$

$$\circ$$
 _{c.} $\pi/2$

$$\circ$$
 _{e.} $-\pi/2$

Povratna informacija

Točan odgovor je: $-\pi/2$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+2\delta(n)+\delta(n+1)_{\rm za\ kojeg}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 _a $A(\Omega) = \cos(\Omega) + 1$

$$A(\Omega) = 0$$

$$\circ$$
 _{c.} $A(\Omega) = \cos(\Omega)$

$$\circ$$
 _{d.} $A(\Omega) = 2\cos(\Omega) + 2$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = 2\cos(\Omega)$$

Povratna informacija

Točan odgovor je: $A(\Omega) = 2\cos(\Omega) + 2$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiranu Fourierovu transformaciju (CTFT) realnog signala x(t). Za spektar vrijedi:

Odaberite jedan odgovor:

$$\circ$$
 A. $X_k^* = X_k$

$$X^*(j\omega) = X(-j\omega)$$

$$X_k^* = X_{-k}$$

$$X^*(e^{j\Omega}) = X(e^{-j\Omega})$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X^*(j\omega) = X(j\omega)$$

Točan odgovor je: $X^*(j\omega) = X(-j\omega)$

Pitanje 10

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{4}, 0, 4, 0\}$$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, 0, 1, 0\}$$

$$X_k = \{4j, 0, 4j, 0\}$$

$$X_k = \{\overline{1,0}, -1, 0\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, 0, 1, 0\}$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretni Fourierov red (DTFS) realnog signala x(n). Za spektar vrijedi:

Odaberite jedan odgovor:
$${\overset{\circ}{\circ}}_{\mathrm{A.}} X_k^* = X_k$$

$${\overset{\circ}{\circ}}_{\mathrm{B.}} X^*(e^{j\Omega}) = X(e^{-j\Omega})$$

$$\circ$$
 _{c.} $X^*(j\omega) = X(-j\omega)$

D. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) o $X_k^* = X_{-k}$

$$X_k^* = X_{-k}$$

$$X^*(e^{j\Omega}) = X(e^{j\Omega})$$

Povratna informacija

Točan odgovor je:
$$X_k^* = X_{-k}$$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{0, 4, 0, 0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, -1, 1, -1\}$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, \underline{4}j, -4, -4j\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

Povratna informacija

Točan odgovor je:
$$X_k = \{\underline{1}, -j, -1, j\}$$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog signala x(t) je $x(t)=4+2\sin(40\pi t+\frac{\pi}{3})$ uz period rastava T_0 jednak temeljnom periodu signala x(t). Koeficijent X_0 rastava u red iznosi:

Odaberite jedan odgovor:

$$A. X_0 = 8$$

$$X_0 = 4$$

$$X_0 = 2$$

$$\sum_{D.} X_0 = \frac{\pi}{3}$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$_{\mathsf{F.}} X_0 = 0$$

Povratna informacija

Točan odgovor je: $X_0=4$

Pitanje **4**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiranu Fourierovu transformaciju (CTFT) linearne konvolucije signala $x(t)_{\,\mathrm{i}}\,y(t)_{\,\mathrm{c}}$ Spektar linearne konvolucije jest:

Odaberite jedan odgovor:

$$\circ$$
 A. $X(e^{j\Omega})Y(e^{j\Omega})$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 $\frac{1}{2\pi}X(j\omega)Y(j\omega)$

$$\circ$$
 D. NX_kY_k

$$\circ$$
 _E $X(j\omega)Y(j\omega)$

$$\circ$$
 $T_0X_kY_k$

Povratna informacija

Točan odgovor je: $X(j\omega)Y(j\omega)$

Pitanje **5**

Nije odgovoreno

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(t)$.

Odaberite jedan odgovor:

$$\circ$$
 a. $\frac{-1}{1+\omega}$

ο b. 0
c.
$$\frac{1}{1+\omega}$$

$$\int_{\text{d.}}^{\text{c. }1+\omega} \pi \delta(\omega+1)$$

$$\circ$$
 d. $\pi\delta(\omega+1)$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $\pi\delta(\omega+1)$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=e^{jt}$. Odredite AMPLITUDU spektra za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala x(t).

$$^{\circ}$$
 a. 0.5

$$^{\circ}$$
 b. -1

$$^{\circ}$$
 c. j

$$^{\circ}$$
 d. 1

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: 1

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+\delta(n)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\alpha_{\rm a.} A(\Omega) = \left| 2\cos(\Omega) + 1 \right|$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = |\cos(\Omega)|$$

$$A(\Omega) = \left| \cos(\Omega) + 1 \right|$$

$$A(\Omega) = |2\cos(\Omega) + 2|$$

$$A(\Omega) = |2\cos(\Omega)|$$

Povratna informacija

Točan odgovor je:
$$A(\Omega) = \left| 2\cos(\Omega) + 1 \right|$$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) + 2\delta(n) + \delta(n+1)_{\text{za kojeg}}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi < \Omega < \pi$) dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 $\phi(\Omega) = \pi$

$$\circ$$
 b. $\phi(\Omega) = 0$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 d. $\phi(\Omega)=0$ za $|\Omega|<rac{\pi}{2}$ i $\phi(\Omega)=\pi$ za $|\Omega|>rac{\pi}{2}$

$$\circ \ _{\mathbf{e}} \phi(\Omega) = -\pi$$

$$\sigma_{\mathrm{f.}} \phi(\Omega) = \pi_{\mathrm{za}} |\Omega| < \frac{\pi}{2} \sigma(\Omega) = 0_{\mathrm{za}} |\Omega| > \frac{\pi}{2}$$

Povratna informacija

Točan odgovor je: $\phi(\Omega)=0$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t) = e^{-jt}\mu(t)$

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 b. $\frac{-1}{1-\omega}$

$$\circ$$
 d. $\frac{1}{1-\omega}$

$$e. \frac{1}{1+\omega}$$

o d.
$$\frac{1}{1-\omega}$$
o e. $\frac{1}{1+\omega}$
o f. $\frac{-1}{1+\omega}$

Povratna informacija

Točan odgovor je: $1+\omega$

Pitanje 10

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$ Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

- a. 0
- $-\pi/2$
- $^{\circ}$ c. $-\pi$
- ${\circ\atop \circ}_{\rm d.} \pi$
- f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: 0

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo vremenski diskretan Fourierov red (DTFS) signala perioda N za kojeg _vrijedi $x(n) = -x(kN-n)_{\mathrm{gdje\ je}}\ k \in \mathbb{Z}$. Transformacija takvog signala je:

- a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- b. čisto realan periodičan niz
- c. čisto imaginaran periodičan niz
- d. kompleksan aperiodičan simetrični niz

e. kompleksan aperiodičan niz					
f. kompleksan aperiodičan antisimetrični niz					
Povratna informacija					
Točan odgovor je: čisto imaginaran periodičan niz					
Pitanje 2					
Nije odgovoreno Broj bodova od 1,00					
Označi pitanje					
Tekst pitanja					
Zadan je vremenski kontinuirani signal $x(t)=e^{-jt}$. Odredite AMPLITUDU spektra za $k=1$ pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala $x(t)$.					
Odaberite jedan odgovor:					
Odaberite jedan odgovor: a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) b. 2 c. $1/2$ d. 0 e. 1 f. π Povratna informacija					
Točan odgovor je: 0					
Pitanje 3 Nije odgovoreno Broj bodova od 1,00					
Označi pitanje					
Tekst pitanja					

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra prvog harmonika za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- a. 0.8
- ° b. 1
- ° c. 0
- d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $^{\circ}\,$ e. $0.5\,$
- $^{\circ}$ f. 0.4

Povratna informacija

Točan odgovor je: 0.4

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(-t)$.

Odaberite jedan odgovor:

- \circ a. $\frac{1}{\omega+1}$
- \circ b. $\frac{1}{\omega-1}$
- c. ništa od navedenog
- d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \circ _{e.} $\pi\delta(\omega+1)$
- $\sigma_{\rm f.} \pi \delta(\omega-1)$

Povratna informacija

Točan odgovor je: $\pi\delta(\omega+1)$

Pitanje **5**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiranu Fourierovu transformaciju (CTFT) realnog signala x(t). Za spektar vrijedi:

Odaberite jedan odgovor:

$$X_k^* = X_{-k}$$

$$\circ$$
 _{B.} $X^*(j\omega) = X(-j\omega)$

$$\circ$$
 $X_k^* = X_k$

$$\circ \overset{\circ}{\operatorname{D.}} X^*(e^{j\Omega}) = X(e^{-j\Omega})$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X^*(j\omega) = X(j\omega)$$

Povratna informacija

Točan odgovor je: $X^*(j\omega) = X(-j\omega)$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski diskretni Fourierov red (DTFS) realnog signala x(n). Za spektar vrijedi:

Odaberite jedan odgovor:

$$X_k^* = X_k$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{C.} $X^*(e^{j\Omega}) = X(e^{-j\Omega})$

$$X^*(j\omega) = X(-j\omega)$$

$$= X^*(e^{j\Omega}) = X(e^{j\Omega})$$

$$X_k^* = X_{-k}$$

Točan odgovor je: $X_k^* = X_{-k}$

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite amplitudni spektar vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(-t)$.

Odaberite jedan odgovor:

a. ništa od navedenog

b. $\frac{\jmath}{\sqrt{1+\omega^2}}$

 \circ _{c.} $\pi\delta(\omega-1)$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $\begin{array}{ccc}
 & \frac{1}{|1-\omega|} \\
 & \frac{1}{1-\omega}
\end{array}$

Povratna informacija

Točan odgovor je: ništa od navedenog

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+2\delta(n)+\delta(n+1)_{\rm za\ kojeg}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

$$\circ$$
 a. $A(\Omega) = 2\cos(\Omega)$

$$\circ$$
 _{b.} $A(\Omega) = 2\cos(\Omega) + 2$

$$\circ$$
 _{c.} $A(\Omega) = \cos(\Omega) + 1$

$$A(\Omega) = 0$$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = \cos(\Omega)$$

Povratna informacija

Točan odgovor je:
$$A(\Omega) = 2\cos(\Omega) + 2$$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=2 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak DVOSTRUKOM temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $^{\circ}$ a. 0.4

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $^{\circ}$ c. 0.8

 $^{\circ}\,$ d. $1\,$

° e. 0

o f. 0.5

Povratna informacija

Točan odgovor je: 0.4

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo dva signala $x(n)=\{\underline{1},1,1,1\}$ $_{\mathrm{i}}$ $y(n)=\{1,\underline{1},1,1\}$ $_{\mathrm{za\ koja}}$ je poznato da imaju sve uzorke jednake nuli osim zadanih (podcrtani uzorak odgovara indeksu nula). Za pripadne spektre $X(e^{j\Omega})_{\mathrm{i}}$ $Y(e^{j\Omega})_{\mathrm{dobivene\ vremenski\ diskretnom}}$ Fourierovom transformacijom (DTFT) vrijedi:

Odaberite jedan odgovor:

a. ništa od navedenoga

$$X(e^{j\Omega}) = e^{-j}Y(e^{j\Omega})$$

$$\circ$$
 . $X(e^{j\Omega}) = e^{-j\Omega}Y(e^{j\Omega})$

$$X(e^{j\Omega}) = e^{j\Omega}Y(e^{j\Omega})$$

$$\circ _{e} X(e^{j\Omega}) = e^{j}Y(e^{j\Omega})$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$X(e^{j\Omega})=e^{-j\Omega}Y(e^{j\Omega})$$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite FAZU spektra za k=4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

$$\circ$$
 _{a.} $\pi/3$

$$-\pi/3$$

$$^{\circ}$$
 c. π

$$\circ$$
 _{e.} $-\pi$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $\pi/3$ Pitanje 2 Nije odgovoreno Broj bodova od 1,00 Označi pitanje Tekst pitanja Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) $_{\rm iednaka} X(j\omega) = 3(\omega+2)_{\rm odredite\ transformaciju\ signala} x(t)e^{j2t}$ Odaberite jedan odgovor: a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) \circ _b $3(\omega+4)$ \circ _{c.} $3(\omega+2)$ o d. 0 \circ e. 3ω \circ $_{\rm f} 3(\omega+2)e^{j2t}$ Povratna informacija Točan odgovor ie: 3ω Pitanje 3 Nije odgovoreno Broj bodova od 1,00 Označi pitanje Tekst pitanja Promatramo signal $x(n) = \delta(n-1) + \delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo: Odaberite jedan odgovor: a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) \circ b. $A(\Omega) = 2\cos(\Omega)$

 $\circ A(\Omega) = |\cos(\Omega)|$

$$\begin{array}{ccc} & A(\Omega) = \cos(\Omega) \\ & A(\Omega) = 0 \\ & A(\Omega) = \left| 2\cos(\Omega) \right| \end{array}$$

Točan odgovor je: $A(\Omega) = \left| 2\cos(\Omega) \right|$

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

 $\begin{array}{c} \circ \quad \text{a.} \ \pi \\ \circ \quad \text{b.} \ \pi/2 \\ \circ \quad \text{c.} \ 0 \end{array}$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $\begin{array}{c} \circ \\ e. -\pi \\ \circ \\ f. -\pi/2 \end{array}$

Povratna informacija

Točan odgovor je: $\pi/2$

Pitanje 5

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT)

$$_{\rm signala} x(t) = e^{jt} \mu(t)$$

Odaberite jedan odgovor:

a. ništa od navedenog

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ _{c.} $\pi\delta(\omega+1)$

O d. $\frac{-1}{\omega-1}$

 $\sigma_{\rm f.} \pi \delta(\omega - 1)$

Povratna informacija

Točan odgovor je: $\frac{-1}{\omega-1}$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n) = \delta(n-1) + 2\delta(n) + \delta(n+1)_{\mathrm{za\ kojeg}}$ računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi < \Omega < \pi$) dobivamo:

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 $\circ _{\mathbf{b}} \phi(\Omega) = -\pi$

 \circ $\phi(\Omega)=0$

 $\begin{array}{ll} \bullet \quad _{\mathrm{d.}} \phi(\Omega) = \pi_{\,\mathrm{za}} |\Omega| < \frac{\pi}{2} \, _{\mathrm{i}} \phi(\Omega) = 0_{\,\mathrm{za}} |\Omega| > \frac{\pi}{2} \, _{\mathrm{i}} \\ \bullet \quad _{\mathrm{e.}} \phi(\Omega) = 0_{\,\mathrm{za}} |\Omega| < \frac{\pi}{2} \, _{\mathrm{i}} \phi(\Omega) = \pi_{\,\mathrm{za}} |\Omega| > \frac{\pi}{2} \end{array}$

 \circ , $\phi(\Omega) = \pi$

Povratna informacija

Točan odgovor je: $\phi(\Omega)=0$

Pitanje **7**

Nije odgovoreno

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$ Odredite FAZU spektra prvog harmonika za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- b. 0.8
- $^{\circ}$ c. 0
- $^{\circ}$ d. 0.4
- $^{\circ}\,$ e. $0.5\,$
- f. 1

Povratna informacija

Točan odgovor je: 0

Pitanje 8

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t)jednaka $X(j\omega)=e^{-2j\omega}\,\mu(\omega)$ odredite transformaciju signala x(t-3)?

o a.
$$e^{-2j\omega} \mu(\omega)$$

o b. $e^{-5j\omega} \mu(\omega)$

$$e^{-2j(\omega-3)} \mu(\omega)$$

o c.
$$e^{-2j(\omega-3)} \mu(\omega)$$

o d. $e^{-2j(\omega+3)} \mu(\omega)$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) \circ , $e^{-3j\omega} \mu(\omega)$ Povratna informacija Točan odgovor je: $e^{-5j\omega}\,\mu(\omega)$ Pitanje 9 Nije odgovoreno Broj bodova od 1,00 Označi pitanje Tekst pitanja Promatramo vremenski diskretan Fourierov red (DTFS) perodične konvolucije signala x(n)i y(n) perioda N . Spektar periodične konvolucije jest: Odaberite jedan odgovor: \circ _{A.} $X(j\omega)Y(j\omega)$ B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) C. $X(e^{j\Omega})Y(e^{j\Omega})$ \circ D. X_kY_k \circ E. $T_0X_kY_k$ \circ F. NX_kY_k Povratna informacija Točan odgovor je: NX_kY_k Pitanje 10 Nije odgovoreno Broj bodova od 1,00 Označi pitanje Tekst pitanja Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri

čiji jedan period je $\{\underline{0},0,0,4\}$. Podcrtani član odgovara indeksu nula.

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, -4j, -4, 4j\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

Povratna informacija

Točan odgovor je:
$$X_k = \{\underline{1}, j, -1, -j\}$$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+2\delta(n)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\alpha_{a.} A(\Omega) = 2\cos(\Omega)$$

$$\bigcap_{b} A(\Omega) = \cos(\Omega) + 1$$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = 2\cos(\Omega) + 2$$

$$\circ$$
 _{e.} $A(\Omega) = \cos(\Omega)$

$$\circ$$
 _{f.} $A(\Omega) = 0$

Povratna informacija

Točan odgovor je:
$$A(\Omega)=2\cos(\Omega)+2$$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

- ° a. 1
- о ь. 0.4
- c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- $^{\circ}$ d. 0.8
- $^{\circ}\,$ e. 2π
- ° f. 0.5

Povratna informacija

Točan odgovor je: 0.4

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(t)$.

- \circ a. $\pi\delta(\omega+1)$
- b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \circ , $\pi\delta(\omega-1)$
- o d. $\frac{-1}{\omega-1}$
- $e. \frac{-1}{\omega+1}$

0	f.	ništa	od	navedenog
---	----	-------	----	-----------

Točan odgovor je:
$$\frac{-1}{\omega-1}$$

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) $signala x(t) = e^{jt} \mu(-t)$

Odaberite jedan odgovor:

$$c. \frac{-1}{1-\omega}$$

o d.
$$\pi\delta(\omega-1)$$
o e. $\frac{1}{1-\omega}$
o f. $\pi\delta(\omega+1)$

$$\circ$$
 e. $\frac{1}{1-\omega}$

$$\sigma_{\rm f.} \pi \delta(\omega + 1)$$

Povratna informacija

Točan odgovor je: $\pi\delta(\omega-1)$

Pitanje **5**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiran Fourierov red (CTFS) perodične konvolucije signala x(t) $_{
m i}\,y(t)_{
m perioda}\,T_0$. Spektar periodične konvolucije jest:

$$\circ$$
 A. X_kY_k

$$\circ$$
 B. $T_0X_kY_k$

$$\circ$$
 C. NX_kY_k

$$\circ$$
 D. $X(j\omega)Y(j\omega)$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 , $X(e^{j\Omega})Y(e^{j\Omega})$

Povratna informacija

Točan odgovor je: $T_0 X_k Y_k$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=e^{jt}$. Odredite FAZU spektra za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljnom periodu signala x(t).

Odaberite jedan odgovor:

$$\circ$$
 a. $\pi/2$

$$-\pi/2$$

Povratna informacija

Točan odgovor je: 0

Pitanje **7**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{0,4,0,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{4}, 4j, -4, -4j\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$X_k = \{\underline{1}, -j, -1, j\}$$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Za amplitudni spektar $|X(j\omega)|_{\text{vremenski kontinuirane Fourierove transformacije (CTFT)}}$ realnog aperiodičkog signala $x(t)_{\text{vrijedi }(a)}$ je realna konstanta):

Odaberite jedan odgovor:

$$|X(j\omega)| = -\frac{1}{a}|X(j\omega)|$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$|X(-j\omega)| = |X(j\omega)|$$

$$|X(-j\omega)| = a|X(j\omega)|$$

$$|X(-j\omega)| = \frac{1}{a}|X(j\omega)|$$

$$|X(-j\omega)| = -|X(j\omega)|$$

Povratna informacija

$$_{\text{Točan odgovor je:}}|X(-j\omega)|=|X(j\omega)|$$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+\delta(n+1)_{\rm za\ kojeg\ računamo\ vremenski}$ diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi<\Omega<\pi$) dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 $\phi(\Omega) = \pi$

$$\phi(\Omega) = -\pi$$

$$\circ$$
 _{c.} $\phi(\Omega) = 0$ _{za} $|\Omega| < \frac{\pi}{2}$ i $\phi(\Omega) = \pi$ _{za} $|\Omega| > \frac{\pi}{2}$

$$\circ$$
 d $\phi(\Omega) = 0$

$$e_{\mathrm{e}} \phi(\Omega) = \pi_{\mathrm{za}} |\Omega| < \frac{\pi}{2} \phi(\Omega) = 0_{\mathrm{za}} |\Omega| > \frac{\pi}{2}$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\phi(\Omega) = 0$$
 za $|\Omega| < \frac{\pi}{2}$ i $\phi(\Omega) = \pi$ za $|\Omega| > \frac{\pi}{2}$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, 0, -1, 0\}$$

$$X_k = \{\underline{1}, 0, 1, 0\}$$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{4j}, 0, 4j, 0\}$$

$$X_k = \{\underline{4}, 0, 4, 0\}$$

Točan odgovor je: $X_k = \{\underline{1},0,1,0\}$

Pitanje 1

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog

 $x(t) = 4 - 2\cos(50\pi t + \frac{\pi}{2})_{\rm uz\; period\; rastava}\; T_{0\; \rm jednak\; temeljnom}$ periodu signala x(t). Kut θ_1 prvog harmonika iznosi:

Odaberite jedan odgovor:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\theta_1 = -rac{\pi}{4}$$

$$\begin{array}{ccc} {}^{\mathrm{D.}} \theta_1 = -rac{\pi}{2} \\ {}^{\mathrm{C.}} \theta_1 = rac{\pi}{4} \end{array}$$

$$\theta_1 = \frac{\pi}{4}$$

$$\theta_1 = 4$$

$$e_{\mathsf{F.}} \theta_1 = \frac{\pi}{2}$$

Povratna informacija

Točan odgovor je: $heta_1 = -rac{\pi}{2}$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{2},0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{4}, 0, 4, 0\}$$

$$X_k = \{\underline{1}, 0, 1, 0\}$$

$$X_k = \{\underline{1}, 0, -1, 0\}$$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4j}, 0, 4j, 0\}$$

Povratna informacija

Točan odgovor je:
$$X_k = \{\underline{1},0,1,0\}$$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Razmatramo Fourierov red (CTFS) vremenski kontinuiranog signala x(t) $x(t) = 4 + 2\sin(40\pi t + \frac{\pi}{3})$ uz period rastava T_0 jednak temeljnom periodu signala x(t). Koeficijent X_0 rastava u red iznosi:

Odaberite jedan odgovor:

$$A. X_0 = 8$$

$$X_0 = \frac{\pi}{3}$$

$$\circ$$
 $X_0 = 0$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_0 = 2$$

Povratna informacija

Točan odgovor je: $X_0=4$

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi<\Omega<\pi$) dobivamo:

Odaberite jedan odgovor:

$$\text{o}_{\text{a.}} \, \phi(\Omega) = 0_{\, \text{za}} |\Omega| < \tfrac{\pi}{2} \, \text{i} \, \phi(\Omega) = \pi_{\, \text{za}} |\Omega| > \tfrac{\pi}{2}$$

$$\circ$$
 $\phi(\Omega) = 0$

$$\sigma_{\rm c.} \phi(\Omega) = \pi_{\rm za} |\Omega| < \frac{\pi}{2} \phi(\Omega) = 0_{\rm za} |\Omega| > \frac{\pi}{2}$$

d. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{e.} $\phi(\Omega) = -\pi$

$$\circ$$
 $\phi(\Omega) = \pi$

Povratna informacija

Točan odgovor je: $\phi(\Omega)=0$ za $|\Omega|<\frac{\pi}{2}$ i $\phi(\Omega)=\pi$ za $|\Omega|>\frac{\pi}{2}$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite imaginarni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{jt}\mu(-t)$

Odaberite jedan odgovor:

$$\alpha$$
 $\pi\delta(\omega+1)$

c.
$$\frac{1}{1-\omega}$$

$$\circ$$
 d. $\frac{-1}{1-\omega}$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 $_{ extsf{f.}}\pi\delta(\omega-1)$ Povratna informacija

Točan odgovor je:
$$\frac{-1}{1-\omega}$$

Pitanje **6**

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) $_{\text{signala}} x(t) = e^{jt} \mu(-t)$

Odaberite jedan odgovor:

$$\circ$$
 a. $\frac{1}{1-\omega}$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\sigma_{\rm d.} \pi \delta(\omega+1)$$

$$\circ$$
 e. $\frac{-1}{1-\omega}$

$$\stackrel{\text{d. }}{\circ}_{\text{e. }} \frac{-1}{1-\omega} \\ \stackrel{\text{f. }}{\circ} \pi \delta(\omega-1)$$

Povratna informacija

Točan odgovor je: $\pi\delta(\omega-1)$

Pitanje **7**

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite amplitudni spektar vremenski kontinuirane Fourierove transformacije (CTFT) $_{\rm signala}\,x(t)=e^{-jt}\mu(t)$

Odaberite jedan odgovor:

$$\circ$$
 a. $\frac{j}{1+\omega}$

$$\circ$$
 b. $\frac{1}{1+\omega}$

- c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- d. ništa od navedenog

$$\circ$$
 e. $\frac{-j}{1+\omega}$

Povratna informacija

Točan odgovor je: ništa od navedenog

Pitanje **8**

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\cos(t)+\cos(4t+\pi/3)$. Odredite AMPLITUDU spektra drugog harmonika za k=2 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

$$^{\circ}$$
 a. 0.4

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$^{\circ}$ d. 1

Povratna informacija

Točan odgovor je: 0

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},0,4,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

A. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, -1, 1, -1\}$$

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{4}, -4, 4, -4\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

$$X_k = \{\underline{1}, 1, 1, 1\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, -1, 1, -1\}$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za amplitudni spektar dobivamo:

Odaberite jedan odgovor:

$$\alpha_{\rm a.} A(\Omega) = \left| 2\cos(\Omega) \right|$$

$$\circ$$
 _{b.} $A(\Omega) = 0$

c. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$A(\Omega) = |\cos(\Omega)|$$

$$A(\Omega) = 2\cos(\Omega)$$

$$\circ$$
 , $A(\Omega) = \cos(\Omega)$

Povratna informacija

Točan odgovor je: $A(\Omega) = \left| 2\cos(\Omega) \right|$

Pitanje 1

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra prvog harmonika za k=1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

o a. 0

 $^{\circ}$ b. π

 \circ _{c.} $\pi/2$

 $-\pi/2$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ f. $-\pi$

Povratna informacija

Točan odgovor je: $-\pi/2$

Pitanje 2

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite realni dio spektra vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(-t)$.

Odaberite jedan odgovor:

$$\circ$$
 a. $\pi\delta(\omega-1)$

$$\circ$$
 b. $\frac{1}{\omega-1}$

c. ništa od navedenog

$$\circ$$
 d. $\frac{1}{\omega+1}$

$$\circ$$
 _{e.} $\pi\delta(\omega+1)$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $\pi\delta(\omega+1)$

Pitanje 3

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$. Odredite FAZU spektra za k=-4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t).

Odaberite jedan odgovor:

$$\circ$$
 _{a.} $\pi/6$

$$\circ$$
 _{b.} $\pi/3$

$$\circ$$
 d. $-\pi/6$

$$\circ$$
 e. $-\pi/3$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $\pi/6$

Pitanje 4

Nije odgovoreno

Broj bodova od 1,00

Tekst pitanja

Promatramo vremenski diskretni Fourierov red (DTFS) realnog signala x(n). Za spektar vrijedi:

Odaberite jedan odgovor:
$${\overset{\circ}{\circ}}_{\mathrm{A.}} X_k^* = X_k$$

B. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 , $X^*(e^{j\Omega}) = X(e^{-j\Omega})$

$$\circ _{\mathrm{D.}} X^*(e^{j\Omega}) = X(e^{j\Omega})$$

$$X_{k}^{*} = X_{-k}$$

$$X^*(j\omega) = X(-j\omega)$$

Povratna informacija

Točan odgovor je: $X_k^* = X_{-k}$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t) = 0.8\sin(t) + \sin(4t + \pi/3)$ Odredite FAZU spektra za k=-1 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

$$\alpha_{\rm a.} \pi/2$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$^{\circ}$$
 c. π

$$-\pi/2$$

$$^{\circ}$$
 e. $-\pi$

o f. 0

Povratna informacija

Točan odgovor je: $\pi/2$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)-\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi<\Omega<\pi$) dobivamo:

Odaberite jedan odgovor:

Odabente jedan odgovor.
$$\begin{array}{l} \bullet \quad _{\mathrm{a.}} \phi(\Omega) = \frac{\pi}{2} \\ \bullet \quad _{\mathrm{b.}} \phi(\Omega) = -\frac{\pi}{2} \,_{\mathrm{za}} \,\Omega < 0 \,_{\mathrm{i}} \,\phi(\Omega) = +\frac{\pi}{2} \,_{\mathrm{za}} \,\Omega > 0 \\ \bullet \quad _{\mathrm{c.}} \phi(\Omega) = 0 \\ \bullet \quad _{\mathrm{d.}} \phi(\Omega) = +\frac{\pi}{2} \,_{\mathrm{za}} \,\Omega < 0 \,_{\mathrm{i}} \,\phi(\Omega) = -\frac{\pi}{2} \,_{\mathrm{za}} \,\Omega > 0 \\ \bullet \quad _{\mathrm{e.}} \phi(\Omega) = -\frac{\pi}{2} \end{array}$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\phi(\Omega)=+\frac{\pi}{2}$$
 za $\Omega<0$ i $\phi(\Omega)=-\frac{\pi}{2}$ za $\Omega>0$

Pitanje 7

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo signal $x(n)=\delta(n-1)+\delta(n+1)$ za kojeg računamo vremenski diskretnu Fourierovu transformaciju (DTFT). Za osnovni period FAZNOG spektra ($-\pi<\Omega<\pi$) dobivamo:

Odaberite jedan odgovor:

$$\circ$$
 $\phi(\Omega) = -\pi$

$$0 \int_{\mathrm{b.}} \phi(\Omega) = 0_{\mathrm{za}} |\Omega| < \frac{\pi}{2} \int_{\mathrm{i}} \phi(\Omega) = \pi_{\mathrm{za}} |\Omega| > \frac{\pi}{2}$$

$$\circ$$
 $\phi(\Omega) = \pi$

$$\circ$$
 _{d.} $\phi(\Omega) = 0$

$$\circ \ _{\mathrm{e.}} \phi(\Omega) = \pi_{\mathrm{za}} |\Omega| < \frac{\pi}{2} \mathrm{i} \, \phi(\Omega) = 0_{\mathrm{za}} |\Omega| > \frac{\pi}{2}$$

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\phi(\Omega)=0$$
 za $|\Omega|<\frac{\pi}{2}$ i $\phi(\Omega)=\pi$ za $|\Omega|>\frac{\pi}{2}$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{2,0,2,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, 0, -1, 0\}$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{4}, 0, -4, 0\}$$

$$X_k = \{\underline{1}, 0, 1, 0\}$$

$$X_k = \{4j, 0, 4j, 0\}$$

$$X_k = \{\underline{4}, 0, 4, 0\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1},0,1,0\}$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Tekst pitanja

Za amplitudni spektar $|X(j\omega)|_{ ext{vremenski}}$ kontinuirane Fourierove transformacije (CTFT) realnog aperiodičkog signala x(t) vrijedi (a je realna konstanta):

Odaberite jedan odgovor:

$$|X(-j\omega)| = a|X(j\omega)|$$

$$|X(-j\omega)| = \frac{1}{a}|X(j\omega)|$$

$$\circ$$
 _{c.} $|X(-j\omega)| = |X(j\omega)|$

$$|X_{\mathrm{D}}|X(j\omega)| = -\frac{1}{a}|X(j\omega)|$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) o $_{\rm F.}|X(-j\omega)|=-|X(j\omega)|$

$$|X(-j\omega)| = -|X(j\omega)|$$

Povratna informacija

Točan odgovor je: $|X(-j\omega)| = |X(j\omega)|$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Ako je poznato da je vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t) $y_{\rm jednaka} X(j\omega) = 5j(\omega-2)_{\rm odredite\ transformaciju\ signala} x(t)e^{-j2t}$

Odaberite jedan odgovor:

- a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
- \circ $_{\mathsf{c.}}\,5j\omega$
- \circ d. $5j(\omega-4)$
- \circ $5j(\omega-2)e^{-j2t}$

 $^{\circ}$ f. $\omega+2$

Povratna informacija

Točan odgovor je: $5j\omega$

Pitanje 1

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Odredite fazni spektar vremenski kontinuirane Fourierove transformacije (CTFT) signala $x(t)=e^{-jt}\mu(t)$.

Odaberite jedan odgovor:

a. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

 \circ _{b.} $\pi/2$

° c. 0

 $^{\circ}$ d. π

 $^{\circ}$ e. $-\infty$

f. ništa od navedenoga

Povratna informacija

Točan odgovor je: ništa od navedenoga

Pitanje 2

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Koji od navedenih izraza opisuje svojstvo konvolucije za vremenski diskretnu Fourierovu transformaciju (DTFT)?

Odaberite jedan odgovor:

$$\sum_{i=-\infty}^{+\infty} x_1(i) x_2(n-i) \bigcirc \longrightarrow X_1(e^{j\Omega}) X_2(e^{j\Omega})$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$\sum_{i=-\infty}^{+\infty} x_1(i)x_2(n-i)$$
 \longrightarrow $X_1(e^{j\Omega})X_2(e^{j\Omega})$

Pitanje 3

Nije odgovoreno Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo dva vremenski diskretna signala $x(n)=\{1,\underline{1},1,1\}$ i $y(n)=\{\underline{1},1,1,1\}$ za koja je poznato da imaju sve uzorke jednake nuli osim zadanih (podcrtani uzorak odgovara indeksu nula). Za pripadne spektre $X(e^{j\Omega})$ i $Y(e^{j\Omega})$ dobivene vremenski diskretnom Fourierovom transformacijom (DTFT) vrijedi:

Odaberite jedan odgovor:

$$\begin{array}{ll} \bigcirc \ _{\text{a.}} X(e^{j\Omega}) = e^{-j\Omega}Y(e^{j\Omega}) \\ \bigcirc \ _{\text{b.}} X(e^{j\Omega}) = e^{j\Omega}Y(e^{j\Omega}) \\ \bigcirc \ _{\text{c.}} X(e^{j\Omega}) = e^{j}Y(e^{j\Omega}) \\ \bigcirc \ _{\text{c.}} X(e^{j\Omega}) = e^{-j}Y(e^{j\Omega}) \end{array}$$

e. ništa od navedenoga

f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je:
$$X(e^{j\Omega})=e^{j\Omega}Y(e^{j\Omega})$$

Pitanje 4

Nije odgovoreno Broj bodova od 1,00

Tekst pitanja

Zadan je vremenski kontinuirani signal $x(t)=0.8\sin(t)+\sin(4t+\pi/3)$ Odredite FAZU spektra za k=4 pri rastavu u Fourierov red (CTFS) uz period rastava T_0 jednak temeljenom periodu signala x(t)

Odaberite jedan odgovor:

$$a. \pi/6$$

b. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{c.} $\pi/3$

$$-\pi/3$$

$$-\pi/6$$

Povratna informacija

Točan odgovor je: $-\pi/6$

Pitanje 5

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Poznato je da je vremenski kontinuirana Fourierova transformacija (CTFT) nekog signala $X(j\omega)=2\omega \left(\mu(\omega)-\mu(\omega-2)\right)$. Izračunajte energiju tog signala!

Odaberite jedan odgovor:

a.
$$\infty$$

o b.
$$\frac{16}{3\pi}$$

$$\overset{\circ}{\circ}$$
 c. $\frac{4}{2}$

$$\frac{2}{d}$$

e. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$_{\rm f.} 32/3$
Povratna informacija
Točan odgovor je: $\frac{16}{3\pi}$
Pitanje 6 Nije odgovoreno Broj bodova od 1,00
Označi pitanje
Tekst pitanja
Razmatramo vremenski diskretan Fourierov red (DTFS) signala perioda N za kojeg vrijedi $x(n)=-x(kN-n)_{\rm gdje}$ je $k\in\mathbb{Z}$. Transformacija takvog signala je:
Odaberite jedan odgovor:
a. kompleksan aperiodičan antisimetrični niz
b. čisto realan periodičan niz
c. čisto imaginaran periodičan niz
d. kompleksan aperiodičan simetrični niz
e. kompleksan aperiodičan niz
f. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)
Povratna informacija
Točan odgovor je: čisto imaginaran periodičan niz
Pitanje 7 Nije odgovoreno Broj bodova od 1,00 Označi pitanje
Tekst pitanja
Razmatramo Fourierov red (CTFS) vremenski kontinuiranog $x(t) = 4 - 2\cos(50\pi t + \frac{\pi}{2})_{\text{uz period rastava}} T_{0 \text{ jednak temeljnom periodu signala}} x(t)_{\text{Kut}} \theta_{1 \text{ prvog harmonika iznosi:}}$
Odaberite jedan odgovor:

$$\begin{array}{ccc} \circ_{\text{A.}} \theta_1 = 4 \\ \circ_{\text{B.}} \theta_1 = -\frac{\pi}{2} \\ \circ_{\text{C.}} \theta_1 = \frac{\pi}{2} \\ \circ_{\text{D.}} \theta_1 = -\frac{\pi}{4} \\ \circ_{\text{E.}} \theta_1 = \frac{\pi}{4} \end{array}$$

F. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

Povratna informacija

Točan odgovor je: $heta_1=-rac{\pi}{2}$

Pitanje 8

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiran Fourierov red (CTFS) perodične konvolucije signala x(t) $_{
m i}\,y(t)_{
m perioda}\,T_0$. Spektar periodične konvolucije jest:

Odaberite jedan odgovor:

$$\circ$$
 A $T_0X_kY_k$

$$\circ$$
 _{B.} $X(j\omega)Y(j\omega)$

$$\circ$$
 , $X(e^{j\Omega})Y(e^{j\Omega})$

$$\circ$$
 D. X_kY_k

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova) o NX_kY_k

$$\circ$$
 , NX_kY_k

Povratna informacija

Točan odgovor je: $T_0 X_k Y_k$

Pitanje 9

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Promatramo vremenski kontinuiranu Fourierovu transformaciju (CTFT) linearne konvolucije signala $x(t)_{\rm i}\,y(t)$. Spektar linearne konvolucije jest:

Odaberite jedan odgovor:

$$\circ$$
 A NX_kY_k

$$\circ$$
 _{B.} $X(j\omega)Y(j\omega)$

$$\circ$$
 $T_0X_kY_k$

$$\log_{\mathrm{D.}} \frac{1}{2\pi} X(j\omega) Y(j\omega)$$

E. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$\circ$$
 _{F.} $X(e^{j\Omega})Y(e^{j\Omega})$

Povratna informacija

Točan odgovor je: $X(j\omega)Y(j\omega)$

Pitanje 10

Nije odgovoreno

Broj bodova od 1,00

Označi pitanje

Tekst pitanja

Izračunajte jedan period vremenski diskretnog Fourierovog reda (DTFS) signala perioda četiri čiji jedan period je $\{\underline{0},0,4,0\}$. Podcrtani član odgovara indeksu nula.

Odaberite jedan odgovor:

$$X_k = \{\underline{1}, 1, 1, 1\}$$

$$X_k = \{\underline{1}, -1, 1, -1\}$$

C. odustajem od odgovora (pitanje se boduje kao nedogovoreno s 0 bodova)

$$X_k = \{\underline{1}, -j, -1, j\}$$

$$X_k = \{\underline{4}, -4, 4, -4\}$$

$$X_k = \{\underline{1}, j, -1, -j\}$$

Povratna informacija

Točan odgovor je: $X_k = \{\underline{1}, -1, 1, -1\}$