A PREDICTIVE MODEL FOR WATER PUMPS STATUS TO IMPROVE EFFICIENCY ON DELIVERY IN TANZANIA

KEY RESULTS:

- IDENTIFIED THE FUNCTIONALITY OF THE PUMPS
- THE MODEL ACHIEVED 81% ACCURACY
- THE DATA WILL ENABLE BETTER DECISION MAKING & SERVICE DELIVERY

Performance of the Model

Model used: Random Forest Classifier

Accuracy: 81%

Key Metrics:

Fully Functional – F1: 0.85 | Precision: 0.81 | Recall: 0.89

Need repairs-F1: 0.41 | Precision: 0.55 | Recall: 0.33

Not functioning-F1: 0.81 | Precision: 0.84 | Recall: 0.78

Conclusion: The class of pumps that are functioning but need repairs is the hardest to predict

Key takeaways for the Management Company

A significant number of non-functional pumps might have been prevented through timely intervention & preventive maintenance.

Key Predictors of Pump Failure:

Construction Year – Older pumps show higher likelihood of failure Region – Geographic disparities influence functionality Management Type – Community or institutional oversight impacts performance

Installer – Quality and consistency vary by installation provider

The model enables **proactive identification of high-risk pumps**, allowing stakeholders to **forecast failures before they occur** and prioritize preventive maintenance.

Recommendations

Proactive Maintenance

Prioritize inspections and repairs for pumps flagged as high-risk by the model.

Targeted Investment

Direct funding and resources to regions with high failure rates to maximize impact.

Enhanced Data Collection

Train field teams and standardize reporting formats to improve data quality and model accuracy.

Digital Monitoring

Integrate sensors or mobile applications for real-time tracking and remote diagnostics.

Stakeholder Dashboard

Develop an interactive platform to visualize pump functionality, risk levels, and predictive insights.

Impact Potential

Short-Term Benefits:

- ▶ **Reduced Downtime:** Minimize pump outages and mitigate water scarcity
- ▶ **Optimized Maintenance:** Enable efficient, predictive scheduling of repairs

Long-Term Benefits:

- Cost Savings: Decrease long-term repair and replacement expenses
- Better Planning: Support smarter infrastructure investment and resource allocation
- Scalability: Apply the model across broader water and utility systems
- Community Trust: Improve service reliability and stakeholder confidence

