Dynamical modeling in epidemiology

- 1. Problematic
- 2. Writing the equations
- 3. Analyzing the model

Dynamical modeling in epidemiology

- 1. Problematic
- 2. Writing the equations
- 3. Analyzing the model

The challenge of infectious diseases

- Infectious diseases (ID): still a major cause of death
 - Humans (tens of millions of deaths per year)
 - Animals (livestock, wild)

- Since 80s: ID are coming back!
 - Emergence of new diseases (Avian influenza, Chikungunya...)
 - Re-emergence of old ones (Tuberculosis...)

ID are a part of life ⇒ New interest for **ID**

The goals of epidemiology

Understanding:

- ➤ How ID appear
- > Pathogen strategies
- Dynamic of host pathogen systems

In order to:

- Anticipate the impact of ID
- Evaluate the efficiency of health policies (vaccination...)

ID cannot be directly observed ⇒ Mathematical models

Dynamical modeling in epidemiology

- 1. Problematic
- 2. Writing the equations
- 3. Analyzing the model

Modeling hypothesizes and parameters

6

Specificity of host-parasite systems

Needed to build a model with:

- A host demography model
- ➤ Including the dynamic of pathogen

We thus have to model:

- Entries and leavings of host individuals in time
- The transmission of the parasite between infected and susceptible hosts in time
- ➤ If relevant: recovery of infected hosts, loss of immune memory,...

Building a model

- Identifying the biological question impact of the disease, efficiency of a vaccination program...
- Formalizing hypothesizes and building the model Type of model? Which compartments? Model used for demography and transmission?... Eventually: equations
- Analysis of the model Formula for R₀, equilibrium states, stability of the equilibria Estimation of model parameters...
- Discussion of the results
 Consistency with observations/known tendencies; criticism/way to improve
 the model, new biological questions...

Ideally, a model should be simple, general and realistic ⇒ **compromise**

Different classes of mathematical models

- Can be:
 - **Discrete** or **continuous** time
 - ➤ **Deterministic** (no random fluctuations of parameters and variables) or **stochastic** (with random fluctuations)
- Here, model in continuous time and deterministic because:
 - Events having a short time scale (transmission...)
 - First approach: mean behavior of the system
- Compartmental models: majority of dynamical models in epidemiology
 - ⇒ Compartments chosen in agreement with biological assumptions

Compartmental models and differential equations (1/2)

• Characteristics:

- Population split into ≠ classes (compartments)
- Within a compartment, all individuals are assumed equivalent

Case of a deterministic model:

- Entries and leavings are flows of individuals
- The evolution of the system in time is entirely determined by initial conditions
 - ⇒ No random fluctuations in events' occurrence
- Useful for studying the mean behavior of the systems

Dynamic of the infection and choice of the compartments

Always take the point of view of the parasite!

Characteristics of host-parasite interactions

• <u>Virulence</u>

- Ability of the parasite to induce troubles in the host :
 - Induced additional mortality
 - pathology
 - Fertility loss
 - •
- Property of the host-parasite interaction(« product » of the exploitation of the host by the parasite)

Transmission mode of the parasite

- **direct transmission**: horizontal *vs* vertical (from mother to child)
- **indirect transmission**: water, ground, non hematophage arthropod
- through **vectors**: arthropod

Compartmental models and differential equations (2/2)

• <u>Vocabulary</u>:

- ▶ flow : quantity of individuals going from one compartment to another per unit of time (arrows on the flow diagram)
 Unit = individuals/unit of time
 - ➤ **rate** : flow divided by the number of individuals in the departure compartment (unit = 1/unit of time)

ex: a mortality rate m in a population of size N means that the flow of individuals dying is m.N

Mean time spent in a compartment:
inverse of the rate of departure from the compartment

ex: if m is the mortality rate, then the mean time spent in the population is 1/m. Rem: here 1/m is hence the life expectancy!

Example of a chronic infectious disease

Hypothesizes

- Closed host population
- Demographic parameters: natality *b*, mortality *m*
- Direct transmission using the transmission function FT = f(S,I,N)
- No recovery, so no long-lasting immunity
- Additional mortality for infected individuals: rate α
- Example of such a disease?

• Flow diagram of the model:

Example of a chronic infectious disease

• Writing the ordinary differential equations (ode)

- For each compartment X:dX/dt = sum of entering flows minus sum of leaving flows
- Provides the evolution of the number of individuals in each compartment in time = the dynamic of the system in time

In our example:

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - f(S,I,N) \\ \frac{dI}{dt} = f(S,I,N) - (m+\alpha) \cdot I \end{cases}$$

Incidence function (1/2)

Incidence: number of new cases of infection (or diseases) during a unit of time

In the model:

$$S \xrightarrow{f(S,I,N)} I$$

f(S,I,N)=incidence and f is called **the incidence function**.

- **Efficient individual contact rate \lambda:** $\lambda(N) = c(N) \cdot e_c \cdot e_d$, with:
 - ightharpoonup c(N) = frequency of at risk contacts
 - \triangleright e_c = proportion of at risk contacts with an I that leads to the contamination of the S
 - \triangleright e_d = proportion of contaminations that lead to the spread of the parasite within its

host (=infection)

$$f(S,I,N)=\lambda(N).\ I/N.\ S$$

Proportion of contacts with infectious individuals

to acquire the infection

Number of individuals suscpitble

Efficient contact rate

Incidence function (2/2)

Representation of the transmission of the infectious agent:

2 classical models types

Mass action:

$$\lambda(N) = \beta \cdot N$$

Proportionate mixing:

$$\lambda(N) = \beta$$

Frequency of contacts proportional with the size or density pf_i hosts c(N)=c.N

 $f(S,I,N)=\beta.S.I$

$$\begin{cases} \frac{dS}{dt} = -\beta \cdot S \cdot I \\ \frac{dI}{dt} = \beta \cdot S \cdot I \end{cases}$$

 $S \xrightarrow{f(S,I,N)} I$

$$f(S,I,N)=\lambda(N)$$
. I/N . S

Frequency of contacts independent from the size or density of hosts:

$$c(N) = c$$

$$f(S,I,N)=\beta.S.I/N$$

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta \cdot S \cdot I}{S + I} \\ \frac{dI}{dt} = \frac{\beta \cdot S \cdot I}{S + I} \end{cases}$$

Choosing the model for the incidence function

Proportionate mixing

- MST

Mass action

- Aerosol transmission
- Vector transmission

A bit of both

Transmission through aggressive contacts

No strict rule, to be discussed with biologists

Dynamical modeling in epidemiology

- 1. Problematic
- 2. Writing the equations
- 3. Analyzing the model

The basic reproduction number $\mathbf{R}_0(1/2)$

Definition

 R_0 = number of newly infected individuals generated by **1 infected individual** over its infectious period, when he is released into **a fully susceptible population**.

Mathematically,

 R_0 = (nb of infections per time unit) x (mean duration of the infection) = (flow entering in I) / (flow leaving I), for I=1 and S=N

R₀ is called the **basic reproduction number**

The basic reproduction number $\mathbf{R}_0(2/2)$

• If R₀>1

One infected individual will cause several new cases before the end of its infectious period: the parasite can spread, ie cause an epidemic. Else if R_0 <1, the disease will rapidly go extinct.

Mathematically, $R_0 > 1$ means:

(flow entering in I) / (flow leaving I)>1 for
$$I=1$$
 and $S=N$
(flow entering in I) - (flow leaving I)>0 for $I=1$ and $S=N$

since
$$\frac{dI}{dt}\Big|_{\substack{I=1\\S\approx N}}$$
 = (flow entering in I) - (flow leaving I) then $\frac{dI}{dt}\Big|_{\substack{I=1\\S\approx N}}$ > 0

Which means that I increases. If, on the contrary, $R_0 < 1$, then $\left. \frac{dI}{dt} \right|_{S \approx N} < 0$ and I decreases.

 $\mathbf{R}_0 > \mathbf{1}$ is hence an epidemic condition.

Model equilibria: is endemy a possible outcome?

- The state of the system at time *t* is characterized by the number of individuals in **each** compartment.
 - Ex: For an SIR model, the state at t is given by the **triplet** (S(t),I(t),R(t))
- At the equilibrium, the system does not evolve anymore, so all derivative are equal to 0
- $\begin{cases} \frac{dS}{dt}(S^*, I^*, R^*) = 0\\ \frac{dI}{dt}(S^*, I^*, R^*) = 0\\ \frac{dR}{dt}(S^*, I^*, R^*) = 0 \end{cases}$ (S*,I*,R*) is hence an equilibrium if and only if
- The long term persistence of the parasite is possible if there is an endemic state, ie an equilibrium for which $I^*\neq 0$.

Back to the chronic infectious disease example

• Expression of the R₀

For I=1 and $S \approx N$:

$$R_0 = \frac{\beta \cdot S \cdot I}{(m+\alpha) \cdot I} \approx \frac{\beta \cdot N \cdot 1}{(m+\alpha) \cdot 1} = \frac{\beta \cdot N}{m+\alpha}$$

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m+\alpha) \cdot I \end{cases}$$

• Equilibria

dS/dt=dI/dt=0

 \Rightarrow Two equilibrium points: (S=0, I=0) and

$$\left(S^* = \frac{m+\alpha}{\beta}, I^* = \frac{(b-m)\cdot(m+\alpha)}{\beta\cdot(m+\alpha-b)}\right)$$

⇒ Poorly realistic demographic model…: keep a critical attitude!

Modeling host demography (1/3)

Flow diagram:

- Continuous time ⇒ differential equations:
- Exponential growth:
 - Example of a closed population (without migrations)
 - \triangleright Let b =natality rate and m = mortality rate:

$$\frac{dN}{dt} = bN - mN = (b - m)N = rN$$

Solving this ode, we find $N=N_0e^{rt}$: exponential growth of the population. r is called the growth rate

Modeling host demography (2/3)

Logistic growth model:

- In real life, the growth cannot be infinite
- Slowed down at large densities (brake term)
- Density dependent regulation
- \triangleright K = carrying capacity of the population (due to resources, shelter,..)
- The equation becomes

$$\frac{dN}{dt} = rN \left(1 - \frac{N}{K} \right)$$

where -rN/K is the brake term

Modeling host demography (3/3)

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m+\alpha) \cdot I \end{cases}$$

Introduction of a density dependence term: $m(N) = m_0 + aN$

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - (m_0 + a(S+I)) \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m_0 + a(S+I) + \alpha) \cdot I \end{cases}$$

Stability of the equilibria

That an equilibrium exists does not mean it will be reached.

To be attainable, an equilibrium must be **stable**: if we stay close enough from the equilibrium then we are "attracted".

• To evaluate stability, we use the **Jacobian** matrix, which is the matrix of partial derivatives.

Ex: in the SIR model:

$$\begin{cases} \frac{dS}{dt} = f(S, I, R) \\ \frac{dI}{dt} = g(S, I, R) \\ \frac{dR}{dt} = h(S, I, R) \end{cases} J = \begin{pmatrix} \frac{\partial f}{\partial S} & \frac{\partial f}{\partial I} & \frac{\partial f}{\partial R} \\ \frac{\partial g}{\partial S} & \frac{\partial g}{\partial I} & \frac{\partial g}{\partial R} \\ \frac{\partial h}{\partial S} & \frac{\partial h}{\partial I} & \frac{\partial h}{\partial R} \end{pmatrix}$$

Then we look at the **sign of the eigenvalues of** $J(S^*,I^*,R^*)$, where (S^*,I^*,R^*) is the equilibrium we want to study :

- If at least one eigenvalue has a real part $> 0 \implies UNSTABLE$