Grupo 2B, Certamen II Pregunta 1

Ismael Cabrera Irrazabal 202023019-6

2 Cristian Recabarren Mallea 202023057-8

I. Introducción

Fig. 1. Sistema a trabajar

Se utilizará el modelo presentado en la Figura 1 para analizar y calcular sus diferentes ejericios propuestos, mediante el uso de parámetros concentrados (ABCD)

II. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

Se entregan los valores por unidad de largo z e y con el cual obtendremos los parámetros ABCD de la matriz de parámetros concentrados para así lograr, con los datos entregados (potencia, tensión y frecuencia), determinar los requerimientos pedidos en los problemas siguientes.

Fig. 2. Matriz ABCD de parámetros concentrados

III. VARIACIÓN DE LA MAGNITUD DE TENSIÓN

Con los cálculos en todo el trayecto, obtenemos que la potencia con 200 personas en 100 km es $P=5\,\mathrm{MW}$ por lo que obteniendo los parámetros ABCD de línea media, queda la siguiente relación: $\begin{pmatrix} Vr \\ Ir \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} Vr \\ Ir \end{pmatrix}$ con $A=D=1\angle 0$, B=Z=10.05+j34.75 , $C=j291\,\mathrm{\mu S}$, $Vr\angle \delta$ como incógnita e $Ir=\frac{5\,\mathrm{MW}}{Vr\angle \delta}$ al resolver llegamos a $Vr\angle \delta=1\angle 0\cdot Vr\angle 0+(10.05+j34.75)\cdot\frac{5e6}{Vr\angle 0}$ al trabajar con magnitudes llegamos a que $|Vr|=17.168\,\mathrm{kV}$ y por tanto su variación queda como $\Delta V=\frac{Ve-Vr}{Ve}\cdot 100=23.7\,\%$

IV. ESTABILIDAD TEÓRICA

El límite de estabilidad teórica máxima y mínima son proporcionales y dependientes de la magnitud de la tensión al cuadrado e inversamente proporcional de la distancia que recorrre $\frac{P}{\min,\max} = \frac{|Ve|\cdot|Vr|-|A|\cdot|Vr^2|}{|B|} \text{ con } 0 < L < 100 \,\mathrm{km} \text{ y r}$ tomada solamente parte real de $Z=10.05\,\Omega$ $P=346.5\,\mathrm{MW}$ $\frac{P}{P}=0\,\mathrm{W}$

V. COMPENSACIÓN SHUNT

A. Método alternativo

Los inconvenientes son tamaño, peso y costo para el traslado de la compensación, proponemos la implementación de STAT-COMS y compensaciones a lo largo de la linea en puntos fijos.

B. Compensación dinámica

Calculamos compensacion para caso 100 km

$$22.5 \,\mathrm{kV} = |(0.995 \angle 0.084^{\circ} \,\Omega + 36.17 \angle 73.87^{\circ} \,\Omega \cdot x) \cdot 22.5 \,\mathrm{kV}|$$

$$+\frac{36.17 \angle 73.87^{\circ} \ \Omega \cdot 5 \ MW}{22.5 \ kV}$$

Obteniendo x=9.4 mS, Xc=90 μ F, Xc=106.44 Ω

Q=—V $_r|^2$ $_{Xc^{-1}=4.76\,\mathrm{MV\,A}}$, y para valores por largo Xc mS y Q divididos en $100\,\mathrm{km}$