Métodos para PPL

Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

Bossosos

Considere o PPL:

$$\max c^T x = c^T \begin{pmatrix} x_B \\ x_n \end{pmatrix}$$

s.a.
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$x_B, x_N \geq 0$$

- Que tal colocarmos a F.O. em função de xN ? Porque ?
 - Como xN vai ser "zerada", vai ficar fácil saber qual o valor da SBV

- Considere o PPL:

$$\max c^T x = c^T \begin{pmatrix} x_B \\ x_n \end{pmatrix}$$

s.a.
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$x_B, x_N \geq 0$$

 Vemos que a f.o. em função de x_N fica:

- Considere o PPL:

$$\max c^T x = c^T \begin{pmatrix} x_B \\ x_n \end{pmatrix}$$

s.a.
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$x_B, x_N \geq 0$$

 Vemos que a f.o. em função de x_N fica:

$$c_B^T x_B + c_N^T x_N = c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$$

Considere o PPL:

$$\max c^T x = c^T \begin{pmatrix} x_B \\ x_n \end{pmatrix}$$

s.a.
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$x_B, x_N \geq 0$$

 Vemos que a f.o. em função de x_N fica:

$$c_{B}^{T}x_{B} + c_{N}^{T}x_{N} = c_{B}^{T}(B^{-1}b - B^{-1}Nx_{N}) + c_{N}^{T}x_{N}$$
$$= c_{B}^{T}B^{-1}b - c_{B}^{T}B^{-1}Nx_{N} + c_{N}^{T}x_{N}$$

Considere o PPL:

$$\max c^T x = c^T \begin{pmatrix} x_B \\ x_n \end{pmatrix}$$

s.a.
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$x_B, x_N \geq 0$$

 Vemos que a f.o. em função de x_N fica:

200000000

$$c_{B}^{T}x_{B} + c_{N}^{T}x_{N} = c_{B}^{T}(B^{-1}b - B^{-1}Nx_{N}) + c_{N}^{T}x_{N}$$
$$= c_{B}^{T}B^{-1}b - c_{B}^{T}B^{-1}Nx_{N} + c_{N}^{T}x_{N}$$

$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

Em uma SBV, ao "zerarmos" xN, ficamos com um valor fixo determinado

- Logo reescrevendo temos:

Bossospa

$$\max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Logo reescrevendo temos:

20000000

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Utilizando as seguintes notações para simplificar:

$$ar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 valor da solução

Logo reescrevendo temos:

Booocoo

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$ar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 valor da solução $c_j - z_j = (c_N^T - c_B^T B^{-1} N)_j; \quad (c - z)$ é um vetor

custo reduzido das variáveis não básicas

Logo reescrevendo temos:

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$ar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 valor da solução $c_j - z_j = (c_N^T - c_B^T B^{-1} N)_j; \quad (c - z)$ é um vetor custo reduzido das variáveis não básicas $ar{x}_{B_i} = (B^{-1} b)_i; \quad B^{-1} b$ é um vetor valor das variáveis básicas

Logo reescrevendo temos:

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$ar{z}=c_B^TB^{-1}b\in\mathbb{R}$$
 valor da solução $c_j-z_j=(c_N^T-c_B^TB^{-1}N)_j;\;(c-z)$ é um vetor custo reduzido das variáveis não básicas $ar{x}_{B_i}=(B^{-1}b)_i;\;B^{-1}b$ é um vetor valor das variáveis básicas $[B^{-1}N]_{ij}=y_{ij};\;B^{-1}N$ é uma matriz coeficientes das matrizes

Logo reescrevendo temos:

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$ar{z}=c_B^TB^{-1}b\in\mathbb{R}$$
 valor da solução $c_j-z_j=(c_N^T-c_B^TB^{-1}N)_j;\;(c-z)$ é um vetor custo reduzido das variáveis não básicas $ar{x}_{B_i}=(B^{-1}b)_i;\;B^{-1}b$ é um vetor valor das variáveis básicas $[B^{-1}N]_{ij}=y_{ij};\;B^{-1}N$ é uma matriz coeficientes das matrizes

$$A = [a_1, a_2, \dots, a_n]$$
 $I_N = \{j \mid a_j \in N\}$ - índice das variáveis não básicas $I_B = \{j \mid a_j \in B\}$ - índice das variáveis básicas

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

$$\bar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 $c_j - z_j = (c_N^T - c_B^T B^{-1} N)_j; \quad (c - z) \text{ é um vetor}$
 $\bar{x}_{B_i} = (B^{-1} b)_i; \quad B^{-1} b \text{ é um vetor}$
 $[B^{-1} N]_{ij} = y_{ij}; \quad B^{-1} N \text{ é uma matriz}$

$$A = [a_1, a_2, \dots, a_n]$$
 $I_N = \{j \mid a_j \in N\}$ - índice das variáveis não básicas $I_B = \{j \mid a_j \in B\}$ - índice das variáveis básicas

reescrevendo

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

$$ar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 $c_j - z_j = (c_N^T - c_B^T B^{-1} N)_j$; $(c - z)$ é um vetor
 $ar{x}_{B_i} = (B^{-1} b)_i$; $B^{-1} b$ é um vetor
 $[B^{-1} N]_{ij} = y_{ij}$; $B^{-1} N$ é uma matriz

$$A = [a_1, a_2, \dots, a_n]$$

 $I_N = \{j \mid a_j \in N\}$ - índice das variáveis não básicas
 $I_B = \{j \mid a_j \in B\}$ - índice das variáveis básicas

1000000

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$i=1,\ldots,m$$

$$x_j \geq 0$$

$$i \in I_N \cup I_B$$

- Chamamos de <u>formato padrão</u> em relação a uma base B

E que sabemos equivale a um vértice do poliedro, ao "zerarmos" xN

Exemplo:
$$\max x_1 + 2x_2$$

s.a.
$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \geq 0$$

Exemplo:
$$\max x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 > 0$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

- Exemplo:
$$\max x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 > 0$

20000000

- vamos pegar x₃ e x₄ para compor uma base inversível, logo temos:

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\bar{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$

$$x_j \ge 0$$

- Exemplo:
$$\max x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 > 0$

- vamos pegar x_3 e x_4 para compor uma base inversível, logo temos:

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\bar{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$

$$x_j \ge 0$$

- Exemplo:
$$\max x_1 + 2x_2$$

s.a.
$$2x_1 + x_2 + x_3 = 6$$

 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\bar{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6\\4 \end{bmatrix}$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

$$y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

- Exemplo:
$$\max x_1 + 2x_2$$

s.a.
$$2x_1 + x_2 + x_3 = 6$$

 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

- vamos pegar x_3 e x_4 para compor uma base inversível, logo temos:

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\bar{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{i \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$i=1,\ldots,m$$

$$x_j \geq 0$$

$$i \in I_N \cup I_B$$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\overline{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

- Como ficaria o modelo na base x3 e x4?

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$i=1,\ldots,m$$

$$x_j \geq 0$$

$$i \in I_N \cup I_B$$

$$egin{aligned} B = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \ N = egin{bmatrix} 2 & 1 \ 1 & 1 \end{bmatrix}, \ c_B = egin{bmatrix} 0 \ 0 \end{bmatrix}, \ c_N = egin{bmatrix} 1 \ 2 \end{bmatrix}, \ b = egin{bmatrix} 6 \ 4 \end{bmatrix} \end{aligned}$$

$$\overline{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

- Como ficaria o modelo na base x3 e x4?

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

Note que o PPL acima é o mesmo que o original, apenas rearranjado

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

$$i=1,\ldots,m$$

$$i \in I_N \cup I_B$$

$$egin{aligned} B = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \ N = egin{bmatrix} 2 & 1 \ 1 & 1 \end{bmatrix}, \ c_B = egin{bmatrix} 0 \ 0 \end{bmatrix}, \ c_N = egin{bmatrix} 1 \ 2 \end{bmatrix}, \ b = egin{bmatrix} 6 \ 4 \end{bmatrix} \end{aligned}$$

$$\bar{z} = c_B^T B^{-1} b = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$\max 0 + (1)x_1 + (2)x_2$$

s.a.
$$x_3 = 6 - (2x_1 + 1x_2)$$

$$x_4 = 4 - (1x_1 + 1x_2)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

Problema no formato da base B, qual é a solução básica em B?

Beleza, já temos como enumerar as bases viáveis, zerar os xN, e chegar em SD onde as soluções são vértices, mas como saber se aquela base (vértice) que estamos vendo é o ótimo sem ter que ver TODOS os vértice ?

<u>Teorema</u>: Se $\bar{x}_B \ge 0$ e (c_j - z_j) ≤ 0 , $\forall j \in I_N$, então a solução x* onde $x_B^* = \bar{x}_B$ e $x_N^* = 0$ será uma solução ótima para o PPL

Bossospa

max
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a. $x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$ $i = 1, \dots, m$
 $x_j \ge 0$ $i \in I_N \cup I_B$

<u>Teorema</u>: Se $\bar{x}_B \ge 0$ e (c_i - z_i) ≤ 0 , $\forall j \in I_N$, então a solução x* onde $x_B^* = \bar{x}_B$ e $x_N^* = 0$ será

Vemos que pela função objetivo z =
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j, \qquad i = 1, \dots, m$$

$$x_j \ge 0 \qquad \qquad i \in I_N \cup I_B$$

<u>Teorema</u>: Se $\bar{x}_B \ge 0$ e (c_j - z_j) ≤ 0 , $\forall j \in I_N$, então a solução x* onde $x_B^* = \bar{x}_B$ e $x_N^* = 0$ será

uma solução ótima para o PPL

Vemos que pela função objetivo z =
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

mas como
$$c_j - z_j \le 0$$
 e $x_j \ge 0$, temos que z $\le \bar{z} = c_B^T B^{-1} b = c^T x^*$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a. $x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$ $i = 1, \dots, m$

$$x_j \ge 0$$
 $i \in I_N \cup I_B$

<u>Teorema</u>: Se $\bar{x}_B \ge 0$ e (c_j - z_j) ≤ 0 , $\forall j \in I_N$, então a solução x* onde $x_B^* = \bar{x}_B$ e $x_N^* = 0$ será

uma solução ótima para o PPL

20000000

Vemos que pela função objetivo z =
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

mas como
$$c_j - z_j \le 0$$
 e $x_j \ge 0$, temos que z $\le \bar{z} = c_B^T B^{-1} b = c^T x^*$

logo, o valor de z nunca ultrapassará cx*, e como x* é uma solução do problema, ela é ótima.

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j, \qquad i = 1, \dots, m$$

$$x_j \ge 0 \qquad \qquad i \in I_N \cup I_B$$

- Voltando ao nosso exemplo anterior na base $B=\{x_3,x_4\}$:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

- Voltando ao nosso exemplo anterior na base $B=\{x_3,x_4\}$:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

- Voltando ao nosso exemplo anterior na base B={x₃,x₄}:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

200000000

- Como z-c^T=(1 2), logo não é ótimo. Vamos considerar agora $B=\{x_2,x_3\}$:

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

- Voltando ao nosso exemplo anterior na base $B=\{x_3,x_4\}$:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow B^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

- Voltando ao nosso exemplo anterior na base $B=\{x_3,x_4\}$:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

- Como z-c^T=(1 2), logo não é ótimo. Vamos considerar agora $B=\{x_2,x_3\}$:

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow B^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

- Voltando ao nosso exemplo anterior na base $B=\{x_3,x_4\}$:

max
$$0 + (1)x_1 + (2)x_2$$

s.a. $x_3 = 6 - (2x_1 + 1x_2)$
 $x_4 = 4 - (1x_1 + 1x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \ c_B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ b = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow B^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 $\bar{z} = c_B^T B^{-1}b = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 8$

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Bossosso

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

$$c_{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, c_{N} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_{B} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \bar{z} = 8$$

Vamos fazer no quadro ?

- Continuando:

200000000

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- Vamos montar o problema nesta base x2 e x3:

$$c_{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, c_{N} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_{B} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \bar{z} = 8$$

$$\max_{j \in I_N} \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$

$$x_j \ge 0$$

Continuando:

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Vamos montar o problema nesta base x2 e x3:

$$c_{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, c_{N} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_{B} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \bar{z} = 8$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$
 $x_j \geq 0$

$$x_j \geq 0$$

$$i=1,\ldots,m$$

$$i \in I_N \cup I_B$$

$$\max 8 - 1x_1 - 2x_4$$

s.a.
$$x_2 = 4 - (x_1 + x_4)$$

$$x_3 = 2 - (x_1 - 1x_4)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

Continuando:

$$c - z = c_N^T - c_B^T B^{-1} N = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Vamos montar o problema nesta base x2 e x3:

$$c_{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, c_{N} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\bar{x}_{B} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \bar{z} = 8$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$
 $x_j \geq 0$

$$x_i \geq 0$$

$$i=1,\ldots,m$$

$$i \in I_N \cup I_B$$

max
$$8 - 1x_1 - 2x_4$$

s.a. $x_2 = 4 - (x_1 + x_4)$
 $x_3 = 2 - (x_1 - 1x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

- Como $(c_i - z_i)$ ≤ 0, $\forall j \in I_N$ então esta é a solução ótima.

- Agora comparando as duas soluções básicas que encontramos, observe que apesar do problema ser expresso em 2 bases diferentes, o problema ainda é o mesmo (apenas rearranjado de forma diferente):
 - Se aplicar a solução básica do PPL baseado em $B_{\{3,4\}}$ no PPL baseado em $B_{\{2,3\}}$, alcançamos que F.O ?
 - Se aplicar a solução básica do PPL baseado em $B_{\{2,3\}}$ no PPL baseado em $B_{\{3,4\}}$, alcançamos que F.O ?

$$B_{\{3,4\}}$$
 max $0 + (1)x_1 + (2)x_2$ max $8 - 1x_1 - 2x_4$ s.a. $x_3 = 6 - (2x_1 + 1x_2)$ s.a. $x_2 = 4 - (x_1 + x_4)$ $x_4 = 4 - (1x_1 + 1x_2)$ $x_3 = 2 - (x_1 - 1x_4)$ $x_1, x_2, x_3, x_4 \ge 0$

Agora vendo as bases no gráfico:

$$\max 0 + (1)x_1 + (2)x_2$$

s.a.
$$x_3 = 6 - (2x_1 + 1x_2)$$

$$x_4 = 4 - (1x_1 + 1x_2)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

Mas como fazer essa passagem de bases?

$$\max 8 - 1x_1 - 2x_4$$

s.a.
$$x_2 = 4 - (x_1 + x_4)$$

$$x_3 = 2 - (x_1 - 1x_4)$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1, x_2, x_3, x_4 \geq 0$$

Não ótima

Ótima

Para responder essa pergunta, vamos apresentar o famoso método SIMPLEX.

Dado um PPL Ax = b e $x \ge 0$, a idéia é partir de uma S.B.V., passar para outra S.B.V. adjacente com f.o. maior ou igual, até atingir o ótimo.

Lembrando que $|S.B.V.| \leq C_n^m$ o método irá convergir (sob certas condições)

$$Ax = b$$

$$x \ge 0$$

Seja:
$$\max c^T x$$

$$Ax = b$$

• Passo 1

Escolha uma partição A = [BN] onde B_{mxm} é inversível tal que $B^{-1}b \ge 0$, para o PPL:

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \ge 0$$

$$\forall i = 1...m$$

$$\forall j \in (I_B \cup I_N)$$

Onde:

$$\overline{z} = c_B^T B^{-1} b$$

$$(c_j - z_j) = (c_N^T - c_B^T B^{-1} N)_j$$

$$\overline{x}_{B_i} = (B^{-1} b)_i$$

$$y_{ij} = (B^{-1} N)_{ij}$$

Passo 2

Bossosos

A partir da S.B.V. $x_b = B^{-1}b$ e $x_N = 0$ checar se a solução é ótima

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

$\underline{\text{Passo } 2}$

2000000

A partir da S.B.V. $x_b = B^{-1}b$ e $x_N = 0$ checar se a solução é ótima

Se $(c_j - z_j) \le 0$, $\forall j \in I_N$, então PARE, a solução $\overline{z} = c_B^T B^{-1} b$ é ótima.

Senão, escolher x_k tal que $k \in I_N$ e $(c_j - z_j) > 0$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

TROCA DE BASE

- Vai de uma base B1 (vértice 1) para uma base B2 (vértice 2 adjacente a 1)
- Vértices adjacentes no conjunto de soluções, tem bases com diferença de uma coluna

x_k para entrar na base

$\underline{\text{Passo } 2}$

A partir da S.B.V. $x_b = B^{-1}b$ e $x_N = 0$ checar se a solução é ótima

Se $(c_j - z_j) \le 0$, $\forall j \in I_N$, então PARE, a solução $\overline{z} = c_B^T B^{-1} b$ é ótima.

Senão, escolher x_k tal que $k \in I_N$ e $(c_j - z_j) > 0$

objetivo Aumentar o valor de x_k , mantendo $x_j = 0, \forall j \in I_N - \{k\}$

200000000

$$z = \overline{z} + (c_k - z_k)x_k + \sum_{j \in I_N - \{k\}} (c_j - z_j)x_j$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

x_k para entrar na base

$\underline{\text{Passo } 2}$

A partir da S.B.V. $x_b = B^{-1}b$ e $x_N = 0$ checar se a solução é ótima

Se $(c_j - z_j) \le 0$, $\forall j \in I_N$, então PARE, a solução $\overline{z} = c_B^T B^{-1} b$ é ótima.

Senão, escolher x_k tal que $k \in I_N$ e $(c_j - z_j) > 0$

objetivo Aumentar o valor de x_k , mantendo $x_j = 0, \forall j \in I_N - \{k\}$

200000000

$$z = \overline{z} + (c_k - z_k)x_k + \sum_{j \in I_N - \{k\}} (c_j - z_j)x_j$$

$$x_k \to z$$

x_k para entrar na base

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

Bossosos

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k - \sum_{j \in I_N - \{k\}} y_{ij} x_j$$

$$\forall i = 1...m$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k - \sum_{j \in I_N - \{k\}} y_{ij} x_j$$

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

$$\forall i = 1...m$$

$$\forall i = 1...m$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

 $\forall i = 1...m$

 $\forall i = 1...m$

bilidade do PPL.

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k - \sum_{j \in I_N - \{k\}} y_{ij} x_j$$

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

Seja
$$L_1 = \{i | y_{ik} > 0\}$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

200000000

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k - \sum_{j \in I_N - \{k\}} y_{ij} x_j$$

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

Seja
$$L_1 = \{i | y_{ik} > 0\}$$

como $x_{B_i} \geq 0$, temos que

$$\forall i = 1...m$$

$$\forall i = 1...m$$

$$\max_{z} z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \ge 0$$

$$\overline{x}_{B_i} - y_{ik} x_k \ge 0$$

$$y_{ik}x_k \leq \overline{x}_{B_i}$$

$$x_k \leq \overline{x}_{B_i}/y_{ik}$$

$$\forall i = 1...m$$

limite superior para x_k

Vamos fazer no quadro ?

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

200000000

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k - \sum_{j \in I_N - \{k\}} y_{ij} x_j$$

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

Seja
$$L_1 = \{i | y_{ik} > 0\}$$

como $x_{B_i} \geq 0$, temos que

 $\forall i = 1...m$

$$\forall i = 1...m$$

 $\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$

$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \ge 0$$

e para y_{ik} <= 0, precisamos analisar ?

 $y_{ik}x_k \leq \overline{x}_{B_i}$

$$x_k \leq \overline{x}_{B_i}/y_{ik}$$

$$\forall i = 1...m$$

limite superior para x_k

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

800000000

Seja

$$x_k \le \overline{x}_{B_i}/y_{ik}$$

$$x_k \le \overline{x}_{B_i}/y_{ik} \qquad \qquad \frac{\overline{x}_{B_s}}{y_{sk}} = \min_{i \in L_1} \{ \frac{\overline{x}_{B_i}}{y_{ik}} \}$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

Seja

$$x_k \le \overline{x}_{B_i}/y_{ik}$$

$$x_k \le \overline{x}_{B_i}/y_{ik} \qquad \qquad \frac{\overline{x}_{B_s}}{y_{sk}} = \min_{i \in L_1} \{ \frac{\overline{x}_{B_i}}{y_{ik}} \}$$

Se $L_1 = \infty$ então PARE (ILIMITADO)

Senão, muda a base:

$$I_B = (I_B \cup \{k\}) - \{B_s\}$$

$$I_N = (I_N \cup \{B_s\}) - \{k\}$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

Seja

$$x_k \le \overline{x}_{B_i}/y_{ik}$$

$$x_k \le \overline{x}_{B_i}/y_{ik} \quad \Longrightarrow \quad \frac{\overline{x}_{B_s}}{y_{sk}} = \min_{i \in L_1} \{ \frac{\overline{x}_{B_i}}{y_{ik}} \}$$

Se $L_1 = \infty$ então PARE (ILIMITADO)

Senão, muda a base:

200000000

$$I_B = (I_B \cup \{k\}) - \{B_s\}$$

$$I_N = (I_N \cup \{B_s\}) - \{k\}$$

Quando x_k entra na base com valor de

Então a variável x_s vai para zero pois

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

<u>Teste da Razão</u> Determinar o maior aumento em x_k sem ir para a invia-

bilidade do PPL.

Seja

$$x_k \le \overline{x}_{B_i}/y_{ik}$$

$$x_k \le \overline{x}_{B_i}/y_{ik} \qquad \qquad \frac{\overline{x}_{B_s}}{y_{sk}} = \min_{i \in L_1} \{ \frac{\overline{x}_{B_i}}{y_{ik}} \}$$

Se $L_1 = \infty$ então PARE (ILIMITADO)

Senão, muda a base:

200000000

$$I_B = (I_B \cup \{k\}) - \{B_s\}$$

$$I_N = (I_N \cup \{B_s\}) - \{k\}$$

$$\max z = \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
$$x_j \ge 0$$

Quando x_k entra na base com valor de

Então a variável x_s vai para zero pois

$$x_{B_i} = \overline{x}_{B_i} - y_{ik} x_k$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

200000000

Forma padrão

max
$$x_1 + 2x_2$$

s.a.
$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Forma padrão

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Vamos partir da base formada pelas variáveis de folga $I_B = \{3,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} \quad N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \quad b^T = \begin{bmatrix} 6 & 4 \end{bmatrix}$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Forma padrão

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Vamos partir da base formada pelas variáveis de folga $I_B = \{3,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} b^{T} = [6 \ 4]$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$\bar{x}_B = B^{-1}b = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cc} 6 \ 4 \end{array}
ight] = \left[egin{array}{cc} 6 \ 4 \end{array}
ight]$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Forma padrão

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Vamos partir da base formada pelas variáveis de folga I_B={3,4}

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} b^{T} = [6 \ 4]$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$ar{x}_B = B^{-1}b = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cc} 6 \ 4 \end{array}
ight] = \left[egin{array}{cc} 6 \ 4 \end{array}
ight]$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Forma padrão

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Vamos partir da base formada pelas variáveis de folga I_B={3,4}

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} b^{T} = \begin{bmatrix} 6 & 4 \end{bmatrix}$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$ar{x}_B = B^{-1}b = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cc} 6 \ 4 \end{array}
ight] = \left[egin{array}{cc} 6 \ 4 \end{array}
ight]$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo:

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Forma padrão

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} b^{T} = \begin{bmatrix} 6 & 4 \end{bmatrix}$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$\bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} \qquad c_N^T - z = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 0$$

$$y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

não ótimo

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1} N = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} b^{T} = [6 \ 4]$$

$$c_B^T = [0 \ 0] \ c_N^T = [1 \ 2]$$

$$\bar{x}_B = B^{-1}b = \left[egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \left[egin{array}{cc} 6 \\ 4 \end{array} \right] = \left[egin{array}{cc} 6 \\ 4 \end{array} \right]$$

$$ar{z}=c_B^Tar{x}_B=egin{bmatrix} 0 & 0\end{bmatrix}egin{bmatrix} 6 & 4\end{bmatrix}=0 \qquad \qquad c_N^T-z=egin{bmatrix} 1 & 2\end{bmatrix}-egin{bmatrix} 0 & 0\end{bmatrix}egin{bmatrix} 2 & 1 & 1 & 1 & 1 \end{bmatrix}=egin{bmatrix} 1 & 2\end{bmatrix}$$

$$y = B^{-1}N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Forma Básica de $I_B={3,4}$:

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

max
$$0 + x_1 + 2x_2$$

s.a. $x_3 = 6 - (2x_1 + x_2)$
 $x_4 = 4 - (x_1 + x_2)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

aumentar x_1 ou x_2 , qual é o

melhor?

Exemplo: Forma básica

200000000

max
$$0 + x_1 + 2x_2$$

s.a.
$$x_3 = 6 - (2x_1 + x_2)$$

$$x_4 = 4 - (x_1 + x_2)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

É ótima ? Não pois $c_1 - z_1 = 1 > 0$, vamos aumentar x_1

Exemplo: Forma básica

Teste da Razão:

20000000

max
$$0 + x_1 + 2x_2$$

s.a.
$$x_3 = 6 - (2x_1 + x_2)$$

$$x_4 = 4 - (x_1 + x_2)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

aumentar x_1 ou x_2 , qual é o melhor ?

É ótima ? Não pois $c_1-z_1=1>0$, vamos aumentar x_1

Exemplo: Forma básica

200000000

max
$$0 + x_1 + 2x_2$$

s.a.
$$x_3 = 6 - (2x_1 + x_2)$$

$$x_4 = 4 - (x_1 + x_2)$$

$$x_1, x_2, x_3, x_4 \geq 0$$

aumentar x₁ ou x₂, qual é o melhor?

É ótima ? Não pois $c_1 - z_1 = 1 > 0$, vamos aumentar x_1 Teste da Razão:

$$x_3$$
: $x_1 \le \frac{6}{2} = 3$
 x_4 : $x_1 \le \frac{4}{1} = 4$

$$x_4$$
: $x_1 \le \frac{4}{1} = 4$

Vemos então que $x_1 \le 3$ é o menor L.S., logo: $x_1 = 3$ e $x_3 = 0$ x_1 entra na base e x_3 sai, $I_B = \{1,4\}$

Exemplo: Nova base $I_B = \{1,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = [1 \ 0] \ c_N^T = [2 \ 0]$$

Bossosso

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$

s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$
 $x_{B}, x_{N} \ge 0$

Exemplo: Nova base $I_B = \{1,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 0 \end{bmatrix} c_N^T = \begin{bmatrix} 2 \ 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 0 \end{bmatrix} c_N^T = \begin{bmatrix} 2 \ 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 0 \end{bmatrix} c_N^T = \begin{bmatrix} 2 \ 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3$$

$$y = B^{-1}N = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,4\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 0 \end{bmatrix} c_N^T = \begin{bmatrix} 2 \ 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3$$

$$y = B^{-1}N = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 3/2 & -1/2 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array} \right] B = \left[\begin{array}{ccc} 2 & 0 \\ 1 & 1 \end{array} \right] B^{-1} = \left[\begin{array}{ccc} 1/2 & 0 \\ -1/2 & 1 \end{array} \right] N = \left[\begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

$$c_B^T = \begin{bmatrix} 1 \ 0 \end{bmatrix} c_N^T = \begin{bmatrix} 2 \ 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3$$

$$y = B^{-1}N = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 3/2 & -1/2 \end{bmatrix}$$

Formato Base para $I_B = \{1,4\}$:

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

max
$$3 + 3/2x_2 - 1/2x_3$$

s.a. $x_1 = 3 - (1/2x_2 + 1/2x_3)$
 $x_4 = 1 - (1/2x_2 - 1/2x_3)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

20000000

max
$$3 + 3/2x_2 - 1/2x_3$$

s.a. $x_1 = 3 - (1/2x_2 + 1/2x_3)$
 $x_4 = 1 - (1/2x_2 - 1/2x_3)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Não pois $c_2 - z_2 = 3/2 > 0$, vamos aumentar x_2

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

20000000

max
$$3 + 3/2x_2 - 1/2x_3$$

s.a. $x_1 = 3 - (1/2x_2 + 1/2x_3)$
 $x_4 = 1 - (1/2x_2 - 1/2x_3)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Não pois $c_2 - z_2 = 3/2 > 0$, vamos aumentar x_2 Teste da Razão:

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

200000000

max
$$3 + 3/2x_2 - 1/2x_3$$

s.a. $x_1 = 3 - (1/2x_2 + 1/2x_3)$
 $x_4 = 1 - (1/2x_2 - 1/2x_3)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Não pois $c_2 - z_2 = 3/2 > 0$, vamos aumentar x_2 Teste da Razão:

$$x_1$$
: $x_2 \le \frac{3}{1/2} = 6$
 x_4 : $x_2 \le \frac{1}{1/2} = 2$

Vemos então que $x_1 \le 2$ é o menor L.S., logo: $x_2 = 2$ e $x_4 = 0$ x_2 entra na base e x_4 sai, $I_B = \{1,2\}$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,2\}$

 $c_B^T = [1 \ 2] \ c_N^T = [0 \ 0]$

Bossosos

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$

s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$
 $x_{B}, x_{N} \geq 0$

Exemplo: Nova base $I_B = \{1,2\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 2 \end{bmatrix} c_N^T = \begin{bmatrix} 0 \ 0 \end{bmatrix} \quad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & -1 \ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \ 4 \end{bmatrix} = \begin{bmatrix} 2 \ 2 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,2\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 \ 2 \end{bmatrix} c_N^T = \begin{bmatrix} 0 \ 0 \end{bmatrix} \quad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & -1 \ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \ 4 \end{bmatrix} = \begin{bmatrix} 2 \ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 6$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{1,2\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 & 2 \end{bmatrix} c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix} \quad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 6$$

$$y = B^{-1}N = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$
 s.a. $x_B = B^{-1} b - B^{-1} N x_N$ $x_B, x_N \geq 0$

Exemplo: Nova base $I_B = \{1,2\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 1 & 2 \end{bmatrix} c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix} \quad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 6$$

$$y = B^{-1}N = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$c_B^T = \begin{bmatrix} 1 & 2 \end{bmatrix} c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix} \quad \bar{x}_B = B^{-1}b = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 6$$

$$y = B^{-1}N = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \end{bmatrix}$$

Formato base $I_B = \{1,2\}$:

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

max
$$6 + x_3 - 3x_4$$

s.a.
$$x_1 = 2 - (1x_3 - 1x_4)$$

$$x_2 = 2 - (-1x_3 + 2x_4)$$

$$x_1,\ x_2,\ x_3,\ x_4\geq 0$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

20000000

max
$$6 + x_3 - 3x_4$$

s.a. $x_1 = 2 - (1x_3 - 1x_4)$
 $x_2 = 2 - (-1x_3 + 2x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Não pois $c_3-z_3=1>0$, vamos aumentar x_3

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

20000000

max
$$6 + x_3 - 3x_4$$

s.a. $x_1 = 2 - (1x_3 - 1x_4)$
 $x_2 = 2 - (-1x_3 + 2x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Não pois $c_3 - z_3 = 1 > 0$, vamos aumentar x_3 Teste da Razão:

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

20000000

max
$$6 + x_3 - 3x_4$$

s.a. $x_1 = 2 - (1x_3 - 1x_4)$
 $x_2 = 2 - (-1x_3 + 2x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$x_1: x_3 \leq \frac{2}{1} = 2$$

 x_2 : nos daria apenas um L.I. $x_3 \ge -2$

Vemos então que $x_3 \le 2$ é o menor L.S., logo: $x_2 = 3$ e $x_4 = 1$ x_3 entra na base e x_1 sai, $I_B = \{2,3\}$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Nova base $I_B = \{2,3\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = [2 \ 0] \ c_N^T = [1 \ 0]$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Nova base $I_B = \{2,3\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 2 & 0 \end{bmatrix} \ c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$

s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$
 $x_{B}, x_{N} \ge 0$

Exemplo: Nova base $I_B = \{2,3\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 2 & 0 \end{bmatrix} \ c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 8$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Nova base $I_B = \{2,3\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 2 & 0 \end{bmatrix} c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 $\bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 8$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Exemplo: Nova base $I_B = \{2,3\}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

$$c_B^T = \begin{bmatrix} 2 & 0 \end{bmatrix} c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 8$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

$$c_B^T = \begin{bmatrix} 2 & 0 \end{bmatrix} c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \bar{x}_B = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\bar{z} = c_B^T \bar{x}_B = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 8$$

$$y = B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$c_N^T - z = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix}$$

Formato base $I_B = \{2,3\}$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

max
$$8 - x_1 - 2x_4$$

s.a. $x_2 = 4 - (1x_1 + 1x_4)$
 $x_3 = 2 - (1x_1 - 1x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

200000000

max
$$8 - x_1 - 2x_4$$

s.a. $x_2 = 4 - (1x_1 + 1x_4)$
 $x_3 = 2 - (1x_1 - 1x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Sim, pois $(c_i - z_i) \le 0$, $\forall j \in I_N$

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

200000000

max
$$8 - x_1 - 2x_4$$

s.a. $x_2 = 4 - (1x_1 + 1x_4)$
 $x_3 = 2 - (1x_1 - 1x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Sim, pois $(c_j - z_j) \le 0$, $\forall j \in I_N$

Solução S.B.V. ótima $x_1=0$, $x_2=4$, $x_3=2$, $x_4=0$, com Z=8

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exemplo: Forma básica

200000000

max
$$8 - x_1 - 2x_4$$

s.a. $x_2 = 4 - (1x_1 + 1x_4)$
 $x_3 = 2 - (1x_1 - 1x_4)$
 $x_1, x_2, x_3, x_4 \ge 0$

É ótima ? Sim, pois $(c_j - z_j) \le 0$, $\forall j \in I_N$

Solução S.B.V. ótima $x_1=0$, $x_2=4$, $x_3=2$, $x_4=0$, com Z=8

E se na escolha da primeira variável a entrar na base tivesse sido x₂ ao invés de x₁ ?

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Exercício

- Dado o PPL abaixo:

$$\max \quad 3x_1 + 2x_2 \tag{1}$$

$$x_1 + x_2 \le 4 \tag{2}$$

$$2x_1 + x_2 \le 5$$
 (3)

$$x_1, x_2 \ge 0 \tag{4}$$

- 1) coloque ele na forma padrão
- 2) Aplique o método Simplex (a partir da <u>base inicial fornecida pelas variáveis</u> <u>de folga</u>) e encontre a solução ótima. Escolha sempre a variável de entrada na base de maior ganho (de maior custo)
 - 1) PPL na primeira base
 - 2) PPL na segunda base
 - 3) PPL na terceira base

max
$$c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Até a próxima

