



# **Problem Statement**

- Air pollution is an increasing concern across the globe as it has been linked to the development of respiratory illness
- An interactive platform for the public to visualize and predict the relationship between geographic respiratory death rates in the United States and air pollution does not exist.

# **Our Aim**

We aim to develop such a tool in order to illustrate:

- How the air quality index (AQI) correlates with geographic respiratory death rates in the United States
- If we could predict respiratory death rates given prior and current pollution levels.



# **Use Cases**

 Objective of user interaction: For a user to visualize the correlation between respiratory death rate and air pollution for a desired U.S. country and to receive a predicted respiratory illness risk factor for that county.

• The expected interaction between the user (any public citizens) and our system:

The user chooses a county from an interactive map.

 A graph displaying the respiratory death rate, air pollution, and the correlation between the two within that county appears.

A predicted risk factor is displayed.

Individual makes decision based on risk factor (i.e. wear a mask).

# **Data Overview**

- United State Environmental Protection Agency (Air Pollution)
   <a href="https://aqs.epa.gov/aqsweb/airdata/download\_files.html#AQI">https://aqs.epa.gov/aqsweb/airdata/download\_files.html#AQI</a>
- Centers for Disease and Control for Prevention (Death Rate)
   https://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html



## **Model Evaluation**

## **Death Rate and Air Pollution Correlation**

- Pearson Correlation
- Spearman Correlation



# **Modeling Evaluation**

Forecasting Air Quality Index

## **Traditional Time Series**

data

- Method: ARIMA (Auto Regressive Integrated Moving Average)
- Easy to compute and train
- Accuracy may be low for complex

## **Deep Learning**

- Method: LSTM (long short-term memory) or RNN (recurrent neural net)
- Require computational resource
- More time to train
  - (Often) better accuracy

## **Technical Tools Evaluations**

Bokeh or Plotly Python Libraries to Create Interactive U.S. Map - Both integrate with Jupyter notebooks

### **Bokeh**

- Handle large datasets easily.
- Integrates well with python.
- Targets modern web browsers.
- Apparently "elegant and simple" to use.
- Has an interactive map option.

### **Plotly and Chart\_Studio**

- Open source python graphing library.
   used for interactive graphs.
- Uses pandas dataframes.
- Generates a pre-programmed U.S.
   Map using the MapBox Choropleth
   Maps option.
  - Interactive maps have been created with this library that have zooming, panning, and clicking options.

# Plotly and Chart\_Studio

Panning and Zooming in on Washington counties



Interactive map of the U.S. showing unemployment rates across U.S. counties.

### Tutorial code used to make map:



# **Bokeh**

```
In [38]: from bokeh.io import show
         from bokeh.models import LogColorMapper
         from bokeh.palettes import Viridis6 as palette
         from bokeh.plotting import figure
         from bokeh.sampledata.us_counties import data as counties
         from bokeh.sampledata.unemployment import data as unemployment
         palette.reverse()
             code: county for code, county in counties.items() if county["state"] in ["tx", 'sc', 'sd', 'tn', 'tx',
          'ut','vt','va','wa','wv','wi','wy','al','id','il','in','ky','la','me','md','ma','mi','mn','ms','mo','mt','ne','nv','nh
         county_xs = [county["lons"] for county in counties.values()]
         county ys = [county["lats"] for county in counties.values()]
         county names = [county['name'] for county in counties.values()]
         county rates = [unemployment[county id] for county id in counties]
         color mapper = LogColorMapper(palette=palette)
         data=dict(
             x=county_xs,
             y=county ys,
             name=county names,
             rate=county rates,
          TOOLS = "pan, wheel zoom, reset, hover, save"
              title="Texas Unemployment, 2009", tools=TOOLS,
              x_axis_location=None, y_axis_location=None,
                  ("Name", "@name"), ("Unemployment rate)", "@rate%"), ("(Long, Lat)", "($x, $y)")
              ],x_range=(100,100), y_range=(100,100))
          p.grid.grid line color = None
          p.hover.point policy = "follow mouse"
         p.patches('x', 'y', source=data,
                    fill_color={'field': 'rate', 'transform': color_mapper},
                    fill alpha=0.7, line color="white", line width=0.5)
          show(p)
```













# **Bokeh Versus Plotly**

## **Bokeh**

### Pros:

- Generates interactive map.
- Generates figure URL.
- Interactive tool properties are adjustable.
- Able to link to Google Maps.

### Cons:

- Documentation is limited for creating interactive maps.
- Requires a lot of lines of code to generate the map.
- Doesn't use the pandas library directly.
- Difficult to learn.



## **Plotly and Chart\_Studio**

### Pros:

- Easy to use and requires little code to generate the interactive U.S. map.
- Interactive features (i.e. panning, zooming, and clicking) are easy to implement.
- Works well with pandas library.
- The API documentation is clear and understandable.

### Cons:

 Must pay to generate URL for interactive map: PlotlyRequestError: This file is too big! Your current subscription is limited to 524.288 KB uploads. For more information, please visit: https://go.plot.ly/get-pricing.

