

I. Pen-and-paper

$$E(\omega): \frac{1}{2} \sum_{j=1}^{2} (3j - |\omega^{T} x_{j}|^{2} + \frac{1}{2} (|\omega||^{4})$$

$$\nabla E(\omega): a_{0} \Im \left(\frac{1}{2} \cdot (3 - |x|\omega)^{T} (3 - |x|\omega) + \frac{1}{2} |\omega^{T} \omega\right) > P(c)$$

$$(=) - 2 X^{T} 2 + (2X^{T} \cdot x + |A|^{T}) |\omega| = 0$$

$$= \cdot \cdot \cdot \times T^{2} = (X^{T} \cdot x + |A|^{T}) |\omega| = 0$$

$$\Rightarrow |\omega| = X^{T} 2 \times (|X^{T} \cdot x + |A|^{T}) |\omega| = 0$$

$$\begin{cases} 1 & 1 & 1 & 1 & 1 \\ 0.8 & 1 & 1/2 & 1/2 \\ 0.911 & 1 & 1/218 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/214 & 1/254 \\ 0.911 & 1 & 1/218 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/218 & 1/214 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/218 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 \\ 0.911 & 1 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/214 & 1/214 \\ 0.911 & 1/2$$

$$\frac{\partial^{2}}{\partial u^{23}} = \frac{\partial^{2}}{\partial a^{23}} \cdot d^{2} \cdot d$$

$$\frac{\partial E}{\partial b^{(1)}} = \frac{1 - 013787}{-013787}$$

Homework III - Group 041

$$\frac{\partial E}{\partial U^{(1)}} = \frac{\partial E}{\partial a^{(2)}} \cdot a^{(1)} = \frac{\partial E}{\partial a^{(2)}} \cdot f'(a^{(2)}) \cdot a^{(1)} = \frac{\partial E}{\partial a^{(2)}} \cdot (+o_{1}) \cdot a^{(1)} \cdot a^{(1)} \cdot a^{(2)} \cdot a^{(1)} \cdot a^{(2)} \cdot a^{(1)} \cdot a^{(2)} \cdot$$

$$\frac{\partial E}{\partial U^{2}} = \frac{\partial E}{\partial u^{2}} = -1/2169$$

$$\frac{\partial E}{\partial u^{2}} = \frac{\partial E}{\partial u^{2}} \times \times^{T} = \frac{\partial E}{\partial u^{2}} \cdot \beta'(a^{T}) \cdot \chi^{T} = \frac{\partial E}{\partial u^{T}} \cdot \chi^{T} = \frac{\partial E}{\partial u^{2}} \cdot \gamma^{T} = \frac{\partial E}{\partial u^{T}} \cdot \chi^{T} = \frac{\partial E}$$

$$= \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \times \left(-1 \\ 2163 \end{array}\right) \times \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) \times \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) \times \left(\begin{array}{$$

Homework III - Group 041

$$\begin{array}{lll} & \int_{0}^{\infty} \int_{0}$$

II. Programming and critical analysis

4) Ridge MAE: 0.162829976437694 MLP 1 MAE: 0.0680414073796843 MLP 2 MAE: 0.0978071820387748

- **6)** Iterações do MLP 1: 452 Iterações do MLP 2: 77
- 7) As iterações do MLP 1 são maiores que as do MLP 2 o que é o contrário do esperado. Tem-se que quando o modelo aprende com early restart, como é o caso do MLP 1, o processo de aprendizagem é parado apenas quando não é detetado um melhoramento na pontuação de validação igual ou superior a um determinado valor durante um determinado número de iterações. Isto é feito para contornar o potencial barulho estatístico no dataset. Tendo isto em consideração, a presença de bastante barulho estatístico no dataset pode motivar o maior número de iterações em MLP 1, uma vez que a paragem do processo é adiada várias vezes. Quanto à diferença de performance, o MLP 1 resultou num modelo que não está over-fitted, o que resulta numa melhor performance comparativamente ao MLP 2.

III. APPENDIX

Paste your programming code here using Consolas 9pt or 10pt.

Use highlighting or colored text to facilitate the analysis by your faculty hosts.

Homework III - Group 041

```
#* import data
from scipy.io.arff import loadarff
data = loadarff("kin8nm.arff")
df = pd.DataFrame(data[0])
num columns = df.shape[1]
#* partition data
from sklearn.model_selection import train_test_split
X, y = df.iloc[:, 0:num_columns-1], df['y']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.70, random_state=0)
#* linear regressor with Ridge regularization
from sklearn.linear model import Ridge
rr = Ridge(alpha=0.1)
#* MLP_1 and MLP_2 regressors
from sklearn.neural_network import MLPRegressor
MLP1r = MLPRegressor(hidden_layer_sizes=(10, 10), activation="tanh", max_iter=500, random_state=0,
early_stopping=True)
MLP2r = MLPRegressor(hidden_layer_sizes=(10, 10), activation="tanh", max_iter=500, random_state=0,
early_stopping=False)
#* learn (".values" was added to avoid warnings)
rr.fit(X train.values, y train.values)
MLP1r.fit(X_train.values, y_train.values)
MLP2r.fit(X_train.values, y_train.values)
rr_y_pred = rr.predict(X_test.values)
MLP1r_y_pred = MLP1r.predict(X_test.values)
MLP2r_y_pred = MLP2r.predict(X_test.values)
#* compute MAE
from sklearn.metrics import mean_absolute_error
y_true = y_test
rr_MAE = mean_absolute_error(y_true, rr_y_pred)
MLP1r MAE = mean_absolute_error(y_true, MLP1r_y_pred)
MLP2r_MAE = mean_absolute_error(y_true, MLP2r_y_pred)
print("Ridge MAE: " + str(rr_MAE))
print("MLP1 MAE: " + str(MLP1r_MAE))
print("MLP2 MAE: " + str(MLP2r_MAE))
***
```


Homework III - Group 041

```
rr residuals = abs(y true - rr y pred)
MLP1r_residuals = abs(y_true - MLP1r_y_pred)
MLP2r_residuals = abs(y_true - MLP2r_y_pred)
#* plot
import matplotlib.pyplot as plt
plt.boxplot(x=rr_residuals)
plt.title(label="Ridge")
plt.show()
plt.boxplot(x=MLP1r_residuals)
plt.title(label="MLP 1")
plt.show()
plt.boxplot(x=MLP2r residuals)
plt.title(label="MLP 2")
plt.show()
plt.hist(x=rr_residuals)
plt.title(label="Ridge")
plt.show()
plt.hist(x=MLP1r_residuals)
plt.title(label="MLP 1")
plt.show()
plt.hist(x=MLP2r_residuals)
plt.title(label="MLP 2")
plt.show()
MLP1r_iterations = MLP1r.n_iter_
MLP2r_iterations = MLP2r.n_iter_
print('MLP1 Iterations: ' + str(MLP1r_iterations))
print('MLP2 Iterations: ' + str(MLP2r_iterations))
```