Wydział WFiIS	Imię i nazwisko 1. Mateusz Kulig 2. Przemysław Ryś		Rok 2022	Grupa 3	Zespół 1
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Ogniwo słoneczne				Nr ćwiczenia 134
Data wykonania 24.04.2022	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W sprawozdaniu opisana została charakterystyka prądowo napięciową oraz sprawność ogniw: monokrystalicznego, polikrystalicznego oraz amorficznego. Źródłem światła użytego w eksperymencie była lampa jarzeniowa. Każde z ogniw różniło się między sobą powierzchnią czynną oraz liczbą sekcji. W konsekwencji przeprowadzonego doświadczenia udało się dowieść iż największą wydajnością charakteryzuje się ogniwo monokrystaliczne.

1. Wstęp teoretyczny

Ogniwem słonecznym nazywamy urządzenie, które przetwarza energię światła słonecznego na prąd elektryczny. Dla fotoogniwa półprzewodnikowego proces przemiany energii odbywa się w warstwie zubożonej. Foton przenosi elektron z pasma walencyjnego do pasma przewodnictwa. Zjawisko to może zachodzić o ile energia kwantu światła jest większa niż szerokość przerwy energetycznej. W ten sposób przemieszczone elektrony i dziury tworzą prąd elektryczny. Najpopularniejszym materiałem z którego tworzy się fotoogniwa jest krzem. Wyróżniamy ogniwa monokrystaliczne, charakteryzujące się największą wydajnością, oraz tańsze ogniwa polikrystaliczne lub amorficzne. Charakterystyka prądowo-napięciowa takich ogniw jest podobna do charakterystyki diody półprzewodnikowej, jest jedynie przesunięta w dół o wartość proporcjonalną do natężenia światła. Moc wydzielona na ogniwie wyrażona jest za pomocą wzoru

$$P = UI. (1)$$

Istnieje wartość napięcia dla którego wydzielana moc P_{max} jest największa. Za jej pomocą zdefiniować możemy sprawność fotoogniwa wyrażoną jako

$$\eta = \frac{P_{max}}{\phi nS},\tag{2}$$

gdzie ϕ to natężenie światła, n liczba sekcji składających się na fotoogniwo, a S to powierzchnia jednej sekcji. Analiza procesu konwersji światła słonecznego na energię elektryczną wskazuje, że maksymalna sprawność ogniwa krzemowego wynosi około 25%.

2. Aparatura

Do przeprowadzenia doświadczenia użyliśmy następujących przyrządów:

- Fotoogniwa krzemowe:
 - Monokrystaliczne, którego liczba sekcji, to n = 1, a jej powierzchnia wynosi S = 64 [cm²].
 - Polikrystaliczne, którego liczba sekcji, to n = 8, a powierzchnia pojedynczej sekcji wynosi S = 7.8 [cm²].
 - Amorficzne, którego liczba sekcji, to n = 14, a powierzchnia pojedynczej sekcji wynosi S = 5.5 [cm²].
- Lampa jarzeniowa umieszczona na regulowanym statywie,
- Amperomierz i woltomierz w eksperymencie wykorzystane zostały dwa multimetry, które zostały odpowiednio podłączone tak by spełniały funkcje amperomierza i woltomierza. Dokładność amperomierza wynosiła 0,1 [mA], natomiast woltomierza 0,01 [V].
- Linijka za jej pomocą mierzyliśmy odległość pomiędzy źródłem światła a fotoogniwem, a jej dokładność wynosi 1 [mm].
- Luksomierz użyliśmy go do zmierzenia natężenia światła wydzielanego przez lampę.

3. Metodyka doświadczenia

Doświadczenie rozpoczęliśmy od zmierzenia, za pomocą luksomierza, ilości światła docierającego na miejsce pomiaru. Dalej podłączyliśmy monokrystaliczne ogniwo krzemowe i za pomocą pokrętła znajdującego się na płytce zmienialiśmy napięcie. Odczytaną z amperomierza wartość natężenia prądu zapisywaliśmy i od razu obliczaliśmy wydzielaną moc. Po znalezieniu napięcia dla którego wartość mocy była największa, wykonywaliśmy jeszcze kilka dodatkowych pomiarów, by otrzymać dokładniejsze wyniki. Całą procedurę powtórzyliśmy dla fotoogniwa polikrystalicznego i amorficznego. Doświadczenie zakończyliśmy pomiarem dla fotoogniwa monokrystalicznego przy różnej odległości dzielącej lampę i płytkę.

4. Analiza danych

Przeprowadziliśmy pomiar charakterystyki prądowo napięciowej dla trzech różnych typów ogniw, wyznaczając przy tym opór, moc, napięcie przypadające na jedną sekcję oraz gęstość prądu. Wyżej wymienione wielkości zebrane zostały w poniższych tabelach Tab. 1-3.

Tab. 1. Ogniwo monokrystaliczne, którego liczba sekcji, to n = 1, a jej powierzchnia wynosi S = 64 [cm²].

$R = \frac{U}{I} \left[\Omega \right]$	<i>U</i> [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$
1,4	0,146	103,9	15,2	0,146	1,623
2,0	0,204	101,5	20,7	0,204	1,586
2,6	0,253	98,9	25,0	0,253	1,545
3,2	0,301	93	28,0	0,301	1,453
3,4	0,31	90,8	28,1	0,31	1,419
3,7	0,324	88,3	28,6	0,324	1,380
4,2	0,348	82,1	28,6	0,348	1,283
5,1	0,371	72,2	26,8	0,371	1,128

6,3	0,394	62,9	24,8	0,394	0,983
11,5	0,425	37,1	15,8	0,425	0,580
16,3	0,434	26,7	11,6	0,434	0,417
21,2	0,439	20,7	9,1	0,439	0,323
26,1	0,441	16,9	7,5	0,441	0,264
31,2	0,443	14,2	6,3	0,443	0,222
36,1	0,444	12,3	5,5	0,444	0,192
40,8	0,445	10,9	4,9	0,445	0,170
45,5	0,446	9,8	4,4	0,446	0,153
50,8	0,447	8,8	3,9	0,447	0,138
74,7	0,448	6	2,7	0,448	0,094
99,8	0,449	4,5	2,0	0,449	0,070

Tab. 2. Ogniwo polikrystaliczne, którego liczba sekcji, to n = 8, a powierzchnia pojedynczej sekcji wynosi S = 7.8 [cm²].

series //o [em].						
$R = \frac{U}{I} \left[\Omega \right]$	U [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$	
106,6	0,81	7,6	6,16	0,101	0,974	
202,8	1,46	7,2	10,51	0,183	0,923	
228,6	1,6	7	11,20	0,200	0,897	
248,5	1,69	6,8	11,49	0,211	0,872	
272,7	1,8	6,6	11,88	0,225	0,846	
296,9	1,9	6,4	12,16	0,238	0,821	
316,1	1,96	6,2	12,15	0,245	0,795	
327,9	2	6,1	12,20	0,250	0,782	
340,0	2,04	6	12,24	0,255	0,769	
362,1	2,1	5,8	12,18	0,263	0,744	
413,0	2,23	5,4	12,04	0,279	0,692	
504,2	2,42	4,8	11,62	0,303	0,615	
619,5	2,54	4,1	10,41	0,318	0,526	
730,6	2,63	3,6	9,47	0,329	0,462	
812,1	2,68	3,3	8,84	0,335	0,423	
941,4	2,73	2,9	7,92	0,341	0,372	
1022,2	2,76	2,7	7,45	0,345	0,346	
1158,3	2,78	2,4	6,67	0,348	0,308	
1473,7	2,8	1,9	5,32	0,350	0,244	
1658,8	2,82	1,7	4,79	0,353	0,218	

Tab. 3. Ogniwo amorficzne, którego liczba sekcji, to n = 14, a powierzchnia pojedynczej sekcji wynosi S = 5.5 [cm²].

$R = \frac{U}{I} \left[\Omega \right]$	<i>U</i> [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$
108,7	0,2	1,84	0,37	0,014	0,335
1004,4	1,82	1,812	3,30	0,130	0,329
1919,2	3,42	1,782	6,09	0,244	0,324
2963,2	5,15	1,738	8,95	0,368	0,316
3800,1	6,54	1,721	11,26	0,467	0,313
3975,3	6,75	1,698	11,46	0,482	0,309
4184,1	7	1,673	11,71	0,500	0,304
4430,8	7,24	1,634	11,83	0,517	0,297
4529,7	7,32	1,616	11,83	0,523	0,294
4783,7	7,52	1,572	11,82	0,537	0,286

5136,0	7,74	1,507	11,66	0,553	0,274
5951,3	8,07	1,356	10,94	0,576	0,247
6965,9	8,38	1,203	10,08	0,599	0,219
7887,5	8,55	1,084	9,27	0,611	0,197
8933,3	8,71	0,975	8,49	0,622	0,177
9977,3	8,8	0,882	7,76	0,629	0,160
11017,4	8,88	0,806	7,16	0,634	0,147
12048,5	8,94	0,742	6,63	0,639	0,135
13005,8	9	0,692	6,23	0,643	0,126
15184,6	9,05	0,596	5,39	0,646	0,108

Rys. 1. Charakterystyka prądowo napięciowa dla przypadku ogniwa monokrystalicznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Rys. 2. Charakterystyka prądowo napięciowa dla przypadku ogniwa polikrystalicznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Rys. 3. Charakterystyka prądowo napięciowa dla przypadku ogniwa amorficznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Rys. 4. Charakterystyka prądowo napięciowa wszystkich ogniw w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Wnioskując z wykresu stwierdzamy, iż największą gęstość prądu zwarcia daje ogniwo monokrystaliczne, najmniejszą natomiast amorficzne.

Największe napięcie przypadające na jedną sekcje daje ogniwo amorficzne, najmniejsze natomiast polikrystaliczne.

Korzystając z wzoru (2) jesteśmy w stanie obliczyć sprawność wyżej badanych ogniw. Natężenie światła użyte w doświadczeniu wynosiło 116 $\left[\frac{W}{m^2}\right]$.

Ogniwo monokrystaliczne ma sprawność $\eta_m = 3.9 \%$.

Ogniwo polikrystaliczne ma sprawność $\eta_p = 1.7 \%$.

Ogniwo amorficzne ma sprawność $\eta_a = 1,3$ %.

Jak można zauważyć największą sprawność posiada ogniwo monokrystaliczne, co jest związane z wyższą klasą użytych do jego produkcji surowców.

Tab. 4. Tabela charakterystyki prądowo napięciowej oraz wartości mocy od odległości

ogniwa	od	źródła	światła.

<i>U</i> [V]	I [mA]	$P = U \cdot I [mW]$	d [cm]
0,13	95,4	12,40	27,5
0,12	85	10,20	29,5
0,11	7,85	0,86	31,1
0,1	6,99	0,70	33,8
0,09	63,3	5,70	36
0,08	5,89	0,47	37,6
0,07	53,1	3,72	40
0,06	47,5	2,85	42,9
0,05	35,8	1,79	51

Zależność mocy od odległości zestawiona została na poniższym wykresie.

Rys. 5. Zależność mocy ogniwa od odległości od źródła światła

Jak widać na powyższym wykresie Rys. 5. w miarę oddalania ogniwa od lampy zauważamy, że moc maleje z kwadratem odległości. Zgadza się to z przewidywaniem teoretycznym.

5. Podsumowanie

W wyniku przeprowadzonego doświadczenia udało się wyznaczyć charakterystyki prądowo napięciowe oraz sprawności ogniw: monokrystalicznego $\eta_m=3.9$ %, polikrystalicznego $\eta_p=1.7$ % oraz amorficznego $\eta_a=1.3$ %. Największą sprawnością charakteryzowało się ogniwo monokrystaliczne co było przewidziane jeszcze przed przeprowadzonym doświadczeniem. Z wykresów charakterystyki prądowo napięciowej odpowiednich ogniw od razu widać eksponencjalny związek między wielkościami.

6. Literatura

[1] - http://website.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/134.pdf - 24.04.2022