Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

Exercício 5

Capítulo 4, Página 211

Introduction to the Theory of Computation

ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 1 1 de 2

From definition of

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

we see that string s is not its element (i.e. $s \in \overline{E_{\text{TM}}}$) if either s is not an encoding of some TM or $L(N) \neq \emptyset$, where $s = \langle N \rangle$. In second case, this means there is some string w which is accepted by machine N.

Hence the recognizer T for language $\overline{E_{\text{TM}}}$ works as follows:

T = "On input s:

- 1. Convert string s to TM N which it encodes; if s is not an encoding of any TM, accept.
- 2. Let w_1, w_2, \ldots be a list of all strings in Σ^* . For each $k = 1, 2, \ldots$ now do the following:
- 3. Simulate TM N for k steps on strings w_1, w_2, \ldots, w_k ; if N accepts any of these strings, accept."

We had to be careful with simulating machine N on every string, since it may not halt on some string, which would be inconvenient.

Resultado 2 de 2

The key is that machines from complement eventually accept some string.

Avaliar esta solução

< Exercício 4

Exercício 6 >

Privacidade Termos de serviço

Português (BR) ✓