

ENGENHARIA INFORMÁTICA – 1° ano /2° Semestre ANÁLISE MATEMÁTICA I

Teste 1

24-junho-2015 Duração:2h30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função real de variável real $f(x) = arccos(-\frac{1}{2}) arcsen(3x-1)$.
 - a. Comente a afirmação $f(\frac{1}{6}) = \frac{5\pi}{6}$.
 - b. Resolva a equação $2 \cot g \left(f(\frac{1}{6}) 3x \right) + 2 = 0$.
 - c. Averigue se a equação $f(x) = -\frac{\pi}{3}$ é possível. Justifique convenientemente a sua resposta.
 - d. Caracterize a função inversa de f indicando o domínio, o contradomínio e a expressão analítica.
- 2. Considere a região do plano A representada na figura seguinte:

- a. Reescreva o domínio plano na forma $E = \{(x, y) \in \Re^2 : a \le x \le b \land f(x) \le y \le g(x)\}.$
- b. Usando integrais indique, <u>sem calcular</u>, expressões simplificadas que lhe permitam determinar:
 - i. a área da região A.
 - ii. o volume do sólido de revolução que se obtém por rotação da região A em torno do eixo das ordenadas.
- 3. Considere a região do plano, definida pelo seguinte conjunto

$$E = \{(x, y) \in \Re^2 : x \ge y^2 - 1 \land x \le (y+1)^2 \land x \le 1\}$$

- a. Represente geometricamente a região E.
- b. Utilizando o cálculo integral identifique, <u>sem calcular</u>, a expressão que lhe permite determinar:
 - i. a área do domínio *E*.
 - ii. o volume do sólido de revolução que se obtém por rotação da região *E* em torno do eixo das abcissas.
 - iii. o perímetro total da região A

- 4. Considere a função real de variável real $f(x) = \begin{cases} -x+2, x \ge 1 \\ -\sqrt{-x+2}, x < 1 \end{cases}$.
 - a. Averigue a continuidade da função.
 - a. Averigue a continuidade da runção. b. Considere g uma função impar e $\int_{-1}^{2} g(x)dx = -1$. Calcule o valor do integral $\int_{1}^{2} (f+g)(x)dx$.
- 5. Considere a seguinte função $f(x) = \frac{1}{x\sqrt{x-1}}$.
 - a. Recorrendo à definição de primitiva, mostre que $2arctg(\sqrt{x-1}) + \pi$ é uma primitiva de f(x).
 - b. Justifique convenientemente que o integral $\int_{1}^{+\infty} f(x)dx$ é impróprio de 1ª espécie. Determine a sua natureza.
 - c. Considere os seguintes integrais:

I)
$$\int_{2}^{4} f(x)dx$$

II)
$$\int_{-4}^{0} f(x) dx$$

III)
$$\int_{1}^{4} f(x)dx$$

Identifique qual dos integrais é impróprio de 2ª espécie, justificando convenientemente a sua escolha. Determine a sua natureza.

- d. Justificando convenientemente a sua escolha, determine a e b por forma que a expressão $\int f(x)dx$ represente um integral impróprio misto.
- 6. Considere a região do plano E, identificada na figura seguinte:

- a. Usando integrais, identifique, sem calcular, uma expressão simplificada que lhe permita determinar a área da região E.
- b. Usando integrais, identifique, sem calcular, uma expressão simplificada que lhe permita determinar o volume do sólido que se obtém por rotação da região E em torno do eixo das ordenadas.
- c. Que pode concluir da existência da medida obtida na alínea anterior? Justifique convenientemente a sua resposta.

Cotação

1a	1b	1c	1d	2a	2bi	2bii	3a	3bi	3bii	3biii	4a	4b	5a	5b	5c	5d	6a	6b	6c
0.75	1	0.75	1.5	1	1	1	1	1.25	1.25	1	1	1.5	0.5	0.75	1.25	0.5	1	1	1

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste 2

24-junho-2015 Duração:2h30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

1. Indique, justificando, o valor lógico de cada uma das afirmações:

a.
$$\sum_{n=2}^{+\infty} \frac{3}{n^2 + n - 2}$$
 é uma série de Mengoli, convergente de soma igual $\frac{11}{6}$.

b.
$$\sum_{n=2}^{+\infty} \frac{2^{2-2n}}{3^{n-1}}$$
 é uma série geométrica, convergente, de soma igual a $\frac{1}{11}$.

2. Determine justificando, a natureza das seguintes séries numéricas:

a.
$$\sum_{n=1}^{+\infty} \frac{\log 2^n}{\sqrt{n^5}}$$

b.
$$\sum_{n=3}^{+\infty} \left(1 + \frac{\pi}{n^2}\right)^{2n^2}$$

3. Considere as seguintes equações diferenciais ordinárias de 1ª ordem:

(i)
$$\left(\frac{1}{x} - y\right) + xy' = 0$$

$$(ii) x^2 y' = xy - g(x)$$

(iii)
$$(t^2 + 1)x' - \frac{2xt}{t^2 + 1} = 0$$

- a. Identifique, justificando, a equação (i) quanto ao tipo e determine a sua solução geral.
- b. Determine g(x) por forma a que $y = x \ln(x)$ seja solução da equação (ii).
- c. Justifique que a equação (iii) é de variáveis separáveis e resolva-a sujeita à condição x(0) = 1.
- 4. Complete a seguinte expressão em [.] por forma a obter primitivas imediatas, justificando qual(is) a(s) regra(s) aplicada(s) $\int \frac{e^{2x+1}}{4+9e^{[.]}} dx$.
- 5. Considere a seguinte função $f(x) = \frac{x^3}{\sqrt{(4-x^2)^3}}$.
 - a. Calcule a primitiva $\int f(x)dx$ utilizando para o efeito a técnica de primitivação por partes.
 - b. Utilizando a técnica de primitivação de funções trigonométricas calcule

$$\int \frac{1}{\cot g^2(x)\cos\sec(x)} dx$$

c. Considerando a substituição $x = 2sen(t), t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, mostre que $\int f(x)dx$ se reduz à primitiva da alínea anterior e estabeleça o respetivo resultado.

6. Calcule as seguintes primitivas:

d.
$$\int \frac{2x^2 - 4x + 1}{(x - 1)(x^2 - 3x + 2)} dx.$$

e.
$$\int \frac{(1+e^x)(1+e^{2x})}{e^{-2x}} dx$$

f.
$$\int \frac{2sen^3(\sqrt{x}+1)}{\sqrt{x}\,sec(\sqrt{x}+1)} dx$$

g.
$$\int \frac{1}{x} arcsen(ln(x))dx$$

Cotação

1	2	3a	3b	3c	4	5a	5b	5c	6a	6b	6c	6d
2	2	1,5	1	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5

ENGENHARIA INFORMÁTICA – 1° ano /2° Semestre ANÁLISE MATEMÁTICA I

Exame

24-junho-2015 Duração:2h30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função real de variável real $f(x) = arccos(-\frac{1}{2}) arcsen(3x-1)$.
 - a. Averigue se a equação $f(x) = -\frac{\pi}{3}$ é possível. Justifique convenientemente a sua resposta.
 - b. Caracterize a função inversa de f indicando o domínio, o contradomínio e a expressão analítica.
- 2. Considere a região do plano, definida pelo seguinte conjunto

$$E = \{(x, y) \in \Re^2 : x \ge y^2 - 1 \land x \le (y+1)^2 \land x \le 1\}$$

- a. Represente geometricamente a região E.
- b. Utilizando o cálculo integral identifique, <u>sem calcular</u>, a expressão que lhe permite determinar:
 - i. a área do domínio E.
 - ii. o perímetro total da região A
- c. Calcule o volume do sólido de revolução que se obtém por rotação da região *E* em torno do eixo das abcissas.
- 3. Considere a seguinte função $f(x) = \frac{1}{x\sqrt{x-1}}$.
 - a. Recorrendo à definição de primitiva, mostre que $2arctg(\sqrt{x-1}) + \pi$ é uma primitiva de f(x).
 - b. Considere os seguintes integrais:

I)
$$\int_{2}^{4} f(x)dx$$

II)
$$\int_{1}^{0} f(x)dx$$

III)
$$\int_{1}^{4} f(x)dx$$

Identifique qual dos integrais é impróprio de 2ª espécie, justificando convenientemente a sua escolha. Determine a sua natureza.

4. Determine justificando, a natureza das seguintes séries numéricas:

a.
$$\sum_{n=2}^{+\infty} \frac{3}{n^2 + n - 2}$$

b.
$$\sum_{n=2}^{+\infty} \frac{2^{2-2n}}{3^{n-1}}$$

5. Resolva as seguintes equações diferenciais ordinárias de 1ª ordem:

a.
$$\left(\frac{1}{x} - y\right) + xy' = 0$$

b.
$$(t^2 + 1)x' - \frac{2xt}{t^2 + 1} = 0$$

6. Considere a seguinte função
$$f(x) = \frac{x^3}{\sqrt{(4-x^2)^3}}$$
.

a. Utilizando a técnica de primitivação de funções trigonométricas calcule

$$\int \frac{1}{\cot g^2(x)\cos ec(x)} dx$$

- b. Considerando a substituição $x = 2sen(t), t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, mostre que $\int f(x)dx$ se reduz à primitiva da alínea anterior e estabeleça o respetivo resultado.
- 7. Calcule as seguintes primitivas:

a.
$$\int \frac{2x^2 - 4x + 1}{(x - 1)(x^2 - 3x + 2)} dx.$$

b.
$$\int \frac{1}{x} arcsen(\ln x) dx$$

Cotação

1a	1b	2a	2bi	2bii	2c	3a	3b	4a	4b	5a	5b	6a	6b	7a	7b
0,75	1,25	1	1,5	1,5	1,5	0,5	2	1	1	1	1	1,5	1,5	1,5	1,5