Lógica Epistêmica

Jonas Arêas, Marcelo Jochem e Renan Iglesias 16 de outubro de 2009

1 Motivação e Intuição

A lógica epistêmica, também chamada de "lógica do conhecimento" é uma parte da lógica modal usada para representar o conhecimento sobre fatos, agregando o princípio da certeza (operador K), ou da incerteza (operador B). Com ela podemos afirmar coisas do tipo: "pode ser que haja vida em outros planetas", "é impossível a existência de gelo a 100 graus celsius", "não se pode saber se duendes existem ou não", entre outras afirmações.

Em adição a sua relevância aos problemas filosóficos tradicionais, a lógica epistêmica tem muitas aplicações em ciência da computação e economia. Exemplos englobam a área de robóticas, segurança de redes e criptografia ao estudo de interações sociais de vários tipos.

No início de sua criação, tentativas foram feitas para desenvolver sistemas para descrever conhecimento atual de agentes reais. O termo "conhecimento" foi originalmente usado em um sentido geral para informar um agente que aprova conscientemente uma sentença, ou ele imediatamente verifica se a mesma é verdade quando levantada.

Com a idéia de tornar isso possível, idealizações foram feitas a respeito da capacidade racional dos agentes, e sistemas modais foram propostos a fim de descrever tais agentes. Para conservar a lógica modal como uma lógica do conhecimento, uma nova interpretação da lógica epistêmica foi proposta: o conhecimento implícito foi inventado, e a lógica modal epistêmica é agora interpretada descrevendo esse conceito, ou seja, não é descrito o que o agente atualmente sabe, mas somente o que segue logicamente de seu atual conhecimento.

2 Linguagem

2.1 Alfabeto

Dado um conjunto Φ de símbolos proposicionais, $\Phi = \{p, q, ...\}$, o alfabeto epistêmico sobre Φ é constituído por: cada um dos elementos de Φ ; o símbolo \bot (absurdo); os conectivos lógicos \neg (negação), \rightarrow (implicação), \land (conjunção) e \lor (disjunção); os operadores epistêmicos K (indica conhecimento) e B (indica crença); e os parênteses, como símbolos auxiliares.

2.2 Linguagem induzida pelo alfabeto sobre Φ

A linguagem modal induzida pelo alfabeto epistêmico sobre Φ é definida indutivamente da seguinte forma:

$$\varphi ::= p \mid \bot \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \neg \varphi \mid K\varphi \mid B\varphi$$

Com relação à lógica clássica, as únicas novidades são o $K\varphi$ e o $B\varphi$. O K serve para representar o conhecimento (knowledge) sobre um fato. Em português claro: $K\varphi$ quer dizer "sabe-se que φ é verdadeiro". O B é usado para mostrar uma crença (belief) em um determinado fato. Por exemplo, $B\varphi$ quer dizer "acredita-se que o fato φ é verdadeiro". Numa analogia com a lógica modal, temos que o K representa o \square e o K representa o K e possível usar esses operadores indicando a quem está se referindo para o caso de haver mais de um agente. Por exemplo, se a pessoa K crê em um fato K0 e a pessoa K1 sabe K2, podemos representar como K3.

Muitas discussões filosóficas envolvem este tema, pois foram criadas várias teorias sobre o conhecimento dos fatos. Alguns dizem que se uma pessoa sabe um fato φ , ela sabe que sabe o fato φ (KK φ), dentre outras filosofias.

3 Semântica

3.1 Frames

Um possível mundo semântico para a lógica epistêmica com um agente c simples consiste em um $frame\ F$, representado pelo par $(W,\ R_c)$, sendo W um conjunto não vazio de mundos possíveis e R_c uma relação de acessibilidade relativa ao agente c sobre W. Um modelo M para um sistema epistêmico consiste em um frame e uma função φ associando conjuntos de mundos possíveis; a saber, o conjunto de mundos possíveis na qual eles são verdadeiros.

Sendo A o conjunto de fórmulas proposicionais atômicas, então $\varphi: A \to P(W)$, onde P denota o conjunto de todos os subconjuntos de P. O modelo $M = (W, R_c, \varphi)$ é chamado de modelo de Kripke e a semântica resultante a semântica de Kripke. Uma fórmula atômica proposicional a, é dita ser verdadeira em um mundo w em M (escrito como M, $w \models a$) se e somente se w está no conjunto de mundos possíveis designados por a, isto é, M, $w \models a$ se e somente se $w \models \varphi(a)$ para todo $a \in A$. A fórmula K_cA é verdade em um mundo w (isto é, M, $w \models K_cD$) se e somente se $\forall w' \in W$, se R_cww' , então M, $w' \models D$.

Uma fórmula modal é dita ser válida no frame se e somente se a fórmula é verdade para toda atribuição possível em todos os mundos no frame.

4 Axiomas

Assumindo que K_i é uma relação de equivalência, e que os agentes são perfeitamente racionais, alguns axiomas de conhecimento podem ser derivados:

- Axioma distributivo: $(K_i \varphi \wedge K_i (\varphi \to \psi)) \to K_i \psi$

Este axioma é tradicionalmente conhecido como K. Em termos epistêmicos, ele afirma que se um agente sabe φ e sabe que $\varphi \to \psi$, então o agente deve saber ψ .

- Axioma da generalização do conhecimento: se M $\models \varphi$ então $M \models K_i \varphi$ Outro axioma que podemos derivar é se φ é válido, então $K_i \varphi$. Isso não significa que φ é verdade, então o agente i sabe φ ; significa que se φ é verdade em todo mundo que um agente considera ser um mundo possível, então o agente deve saber φ em todo mundo possível. Este princípio é tradicionalmente chamado de N.
 - Axioma da verdade: $K_i \varphi \to \varphi$

Este axioma é também conhecido como T. Ele diz que se um agente sabe fatos, então os fatos devem ser verdadeiros. Este tem sido tomado frequentemente como a principal diferença entre o conhecimento e a crença. Enquanto você pode acreditar em algo que é falso, você não pode saber algo que é falso.

- Axioma da introspecção positiva: $K_i \varphi \to K_i K_i \varphi$

Este axioma e o próximo afirmam que um agente tem uma introspecção a respeito de seu próprio conhecimento. O axioma da introspecção positiva, também conhecido como Axioma KK, diz especificamente que agentes sabem o que eles sabem.

- Axioma da introspecção negativa: $\neg K_i \varphi \to K_i \neg K_i \varphi$ Este axioma diz que os agentes sabem o que eles não sabem.