

Disease Outbreaks

NAVANEETH M
NIROSHA BUGATHA
KUNAL NIRANJAN DESAI
ARJUN MAHADEVAN

Motivation

- What is a Disease outbreak?
 - A disease outbreak is an epidemic that occurs suddenly and within a relatively confined geographic area. The occurrence of disease outbreak depends on the mode of transmission, source of disease etc.,
- COVID-19 pandemic that started in January 2020.
- To gain insights into fatalities and factors affecting outbreaks between 1996 to 2020.
- To create awareness about different diseases and its epidemiological profile like mode of transmission, symptoms, pathogens etc.,

Questions

- What were the most fatal outbreaks experienced around the world in each country?
- How does COVID-19 compare to past outbreaks?
 - Case Fatality, Spread, Transmission Medium, Incubation Period, etc.
- Do some countries have more experience handling outbreaks?
- Can we model the spread of a disease?

Methodology

Data Collection

- Web Scraping
- NLP-Entity Extraction from News Articles

Phase I

ETL

• Dataset creation, Identify Features

Visualization

Visualization & Information Dashboard

Phase II

Model for Fatality

- Cluster Outbreak based on diseases and country
- Case Fatality Ratio

Model for Spread

 Compartmental SIR disease model using infection rate and recovery rate

Inference

 Use model to infer spread and compare fatalities

Datasets/Tools

Data Source:

Coronavirus Resource Center

► Tools:

Beautiful Soup

spaCy

Data-science pipeline

Results & Evaluation

Past Outbreaks & Fatalities

Most Fatal Outbreaks around the world between 1996 to 2020

Outbreaks with Highest Case Fatality Ratios

Disease	Country	Year	Death CFR ▼
Encephalitis	Nepal	1997	223 90.28
Ebola	Congo	2003	128 89.51
Marburg haemorrhagic fever	Angola	2005	357 84.40
Influenza	Madagascar	2002	671 83.04
Avian	Indonesia	2008	113 81.75
Meningococcal disease	Burkina Faso	2002	447 76.15
Acute haemorrhagic fever syndrome	Congo	2003	44 72.13
Viral haemorrhagic fever	Congo	1999	63 67.74
(Ebola)	Gabon	1996	42 66.67
Meningococcal disease	Burkina Faso	2003	542 55.31
Lassa fever	Nigeria	2016	149 54.58
Plague	Madagascar	2017	202 41.94
MERS-CoV	Saudi Arabia	2014	347 36.03
Yellow fever	Brazil	2019	483 35.10
Rift Valley fever	Kenya	2007	121 29.44
West Nile	United States	2002	211 21.91
Typhoid fever	Congo	2004	134 19.25
SARS	Hong Kong SAR, China	2003	298 16.98
SARS	Taiwan	2003	735 8.94
Dengue	Pakistan	2019	3075 6.53
Cholera	Zimbabwe	2009	731 0.92

COVID-19

Country	CFR
Italy	12.72
UK	12.47
France	10.78
Spain	10.30
Iran	6.24
China	4.02
US	3.95
Germany	2.35

Countries that Experienced Most Outbreaks

- For some countries, the COVID-19 is the first disease outbreak, while some countries
 have had a disease outbreak almost every year
- Congo has experienced highly fatal outbreaks
- China has had a high number of low fatality Influenza type outbreaks.

Time Dependent SIR Model For COVID-19

SIR model is a compartmental model that describes the dynamics of an infectious disease. The model divides the population n into compartments S (Susceptible), I (Infectious) and R (Recovered).

$$S(t) + X(t) + R(t) = n$$

SIR model describes the number of people in each of the above compartments using differential equations.

$$\frac{dS(t)}{dt} = \frac{-\beta S(t)X(t)}{n}, \qquad \frac{dX(t)}{dt} = \frac{\beta(t)S(t)X(t)}{n} - \gamma X(t), \qquad \frac{dR(t)}{dt} = \gamma X(t)$$

Transmission Rate (β) is a parameter that determines the disease transmission through exposure and contact.

$$\beta(t) = \frac{[X(t+1) - X(t)] + [R(t+1) - R(t)]}{X(t)}$$

Recovery Rate (γ) is a parameter that expresses the rate of disease recovery.

$$\gamma(t) = \frac{R(t+1) - R(t)}{X(t)}$$

- We used data from first 45 days to learn the parameters β and γ .
- $\hat{\beta} = a_1 \beta(t-1) + a_2 \beta(t-2) + \dots + a_J \beta(t-J) + a_0 = \sum_{j=1}^J a_j \beta(t-j) + a_0$
- $\hat{\gamma} = b_1 \gamma(t-1) + b_2 \gamma(t-2) + \dots + b_K \gamma(t-K) + b_0 = \sum_{k=1}^K b_k \gamma(t-k) + b_0$

Insights From SIR Model - Canada

Predicted Transmission vs Original Transmission Rate on Test set

Variation in the Observed Trend and Predicted Trend of Confirmed Cases

Insights From SIR Model - USA

Predicted Transmission vs Original Transmission Rate on Test set

Variation in the Observed Trend and Predicted Trend of Confirmed Cases

Why result makes sense?

- Our project captures the incompleteness with respect to reporting of data during an epidemic
- Government officials and decision makers rely on the reported data available which do not portray the true picture during an epidemic i.e., the true spread could be much higher

Data product

- Publically available data set on outbreaks other than covid-19
- Dashboard of all outbreaks from 1996 to 2020

Key Learning

- Formulating Data from scratch from different websites when no data was available.
- Identifying tools to extract features and entity in best possible and efficient manner
- Ability to deliver complex information through Dashboard
- Can we still use traditional models for disease analysis? Identified epidemiological models
- Formulated probabilistic models and regression data
- In short span of time making our project relatable and present results for current COVID-19 situation as well

Future Work

- Live updating of dashboard based on availability of data for COVID-19
- Update model parameters for COVID-19 as and when more data becomes available from all over world
- Investigate further to improve model to understand spread of epidemic

Thank you

