[19]中华人民共和国国家知识产权局

[51] Int. Cl7

G11C 16/00 G11C 16/06

[12] 实用新型专利说明书

[21] ZL 专利号 01234694.2

[45]授权公告日

2002年6月12日

[11]授权公告号 CN 2495017Y

[22]申请日 2001.8.29

[73]专利权人 记忆科技(深圳)有限公司 ### 518067 广东省深圳市岭口后海大道

地址 518067 广东省深圳市蛇口后海大道东南 工贸大厦 5 楼

[72]设计人 王伟良 贾宗铭

[21]申请号 01234694.2

[74]专利代理机构 深圳市中知专利代理有限公司 代理人 王雄杰

权利要求书2页 说明书7页 附图页数2页

[54]实用新型名称 一种通用串行总线接口闪存存储器 [57] 搞要

本实用新型公开了一种通用串行总线接口内存存储器,通过通 用串行总线接口连接电脑和该存储器,电路包括 FLASH 芯片,电源模块,包含 USB 接口控制器的微处理器芯片、EEPROM、读写控制电路、USB 插槽, USB 插槽分别与 USB 电缆、USB 接口及电源相连, FLASH 芯片分别与电源、微处理器芯片 U1 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连,解决了用软盘存储的速度慢、可靠性差且不能适应图像、音频和视频数据的存储和交换问题,具有体积小、应用范围广、使用方便、存储量大、读写速度快、使用安全和可靠性高等优点,广泛应用于各种台式电脑和笔记本电脑。

知识产权出版社出版

权 利 要 求 书

- 1、一种通用串行总线接口闪存存储器,通过通用串行总线接口连接电脑和该存储器,其特征在于:电路包括 FLASH 芯片,电源模块,包含 USB 接口控制器的微处理器芯片、EEPROM、读写控制电路、USB 插槽, USB 插槽分别与 USB 电缆、USB 接口及电源相连, FLASH 芯片分别与电源、微处理器芯片 U1 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连。
- 2、根据权利要求 1 所述的存储器, 其特征在于: 读写控制电路 具有读写保护开关 U6, U6 与芯片 U1 和芯片 U2 相连并短接后接地。
- 3、根据权利要求 1 所述的存储器, 其特征在于: 电源模块包括芯片 U5 和多个电容, 芯片 U5 与 USB 端口 U4 相连, 芯片 U5 与电容C1 相连并通过电容 C1 接地, 芯片 U5 的引脚 3 是电源 Vcc 的输出并通过电容 C2、C6、C7、C8、C9 和 C10 接地。
- 4、根据权利要求 1 所述的存储器, 其特征在于: EEPROM 具有芯片 U3 和多个电阻, 芯片 U3 与电源 Vcc 连接并短接后接地, 芯片 U3 的两脚分别与芯片 U1 的两脚相连, 且芯片 U3 分别通过呈并联的电阻 R6、R7 与电源 Vcc 相连。
- 5、根据权利要求 1 所述的存储器, 其特征在于: FLASH 芯片 U2 的两脚短接后与电源 Vcc 连接并短接后接地, 芯片 U2 的 29, 30, 31,

32, 41, 42, 43 和 44 脚分别与芯片 U1 的 24, 25, 26, 27, 28, 29, 30 和 31 脚相连, 芯片 U2 的 7、8、9、16、17 和 18 脚分别与芯片 U1 的 16、40、18、19、17 和 39 脚相连, 芯片 U2 的 7、8、18 和 19 脚分别通过电阻 R15、R14、R13 和 R12 与电源 Vcc 连接。

6、根据权利要求 1 所述的存储器, 其特征在于: USB 插槽分别通过电阻 R3、R2 和 R4 与芯片 U1 连接。

7、根据权利要求 1 所述的存储器,其特征在于:包含 USB 接口控制器的微处理器芯片 U1,芯片 U1 与电源 Vcc 相连并接地,芯片 U1 还通过电容 C3 连接到电源 Vcc,芯片 U1 同时通过电阻 R1 和电阻 R5分别接地,芯片 U1 并分别通过电阻 R10 和电阻 R11 与电源 Vcc 连接,发光二极管 LED1 的 1 端与电阻 R9 相连,其 2 端接地,芯片 U1 通过电阻 R9 与发光二极管 LED1 的 1 端相连,晶振 Y1 和电阻 R8 并联,晶振 Y1 的两端分别与芯片 U1 的两脚相连,晶振 Y1 的两端分别通过电容 C4、C5 接地。

说 明 书

一种通用串行总线接口闪存存储器

技术领域 本实用新型涉及一种通用串行总线接口闪存存储器,即涉及一种用于移动数据存储的 USB 接口 FLASH 存储器,是一种应用于台式电脑、笔记本电脑的可移动存储设备,通过 USB 接口与电脑互连并交换数据。

背景技术 在现有技术中,所采用的外部存储器一直是磁盘。软盘作为一种便于在不同电脑之间进行数据交换的介质,从最初的 512K、1.2M,一直发展到现在仍在使用的 1.44M。随着计算机技术的发展,大量的图型、音频、视频数据在个人电脑上需要存储和交换。相比之下,1.44M 的软磁盘在存储容量上早已无法胜任现在的需要。其次,软盘作为一种磁介质的存储器,读写需要具有机械动作的软盘驱动器进行,它的速度很慢,可靠性也相对较差。除了使用软盘之外,现在还有其它一些设备可以用于移动数据的存储,如可移动硬盘、MO、CD-RW、ZIP 盘、SmartMedia 卡及 CompactFlash 卡等,但这些设备各自有不同的缺点,可移动硬盘容易损坏,而 ZIP 盘、MO、CD-RW、martMedia 卡及 CompactFlash 卡等均需要额外的驱动设备支持,携带使用很不方便。

技术方案 本实用新型的目的在于提供一种移动和使用方便、无需安装额外的驱动器和外接电源、存储容量大、读写速度快及可靠性高的通用串行总线接口闪存存储器,以替代或补充软盘以及现有的移动存储设备。

为了达到上述目的,本实用新型提供了如下的技术方案:设计一种通用串行总线接口闪存存储器,通过通用串行总线接口连接电脑和该存储器,电路包括 FLASH 芯片,电源模块,包含 USB 接口控制器的微处理器芯片、EEPROM、读写控制电路、USB 插槽,USB 插槽分别与USB 电缆、USB 接口及电源相连,FLASH 芯片分别与电源、微处理器芯片 U1 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连。

在实施本实用新型的过程中,对于硬件的设计,首先是考虑此外设存储器和计算机之间接口的选择,通用串行总线(英文Universal Serial Bus缩写)是由Intel、Compaq、Digital、IBM、Microsoft、NEC、Northern Telecom等七家世界著名的计算机和通讯公司发起并制定的,USB是应用在PC领域的新型接口技术,它可以将PC机的外围设备方便地联接到主机上。因此,本实用新型采用了USB接口,它利用USB接口来连接电脑和这个外存储器。一方面,它提供数据传输的通道,同时向前述的外存储器提供工作电能。

本实用新型较好的技术方案可以是: 读写控制电路具有读写保护 开关 U6, U6 与芯片 U1 和芯片 U2 相连并短接后接地。读写控制电路

的作用是允许把该 FLASH 存储器设置为"只读"或"读写"两种状态之一,达到防止数据被误删除的目的。具体地说,其电路主要由写保护开关 U6 组成,U6 的 1,2,3,4 和 6 脚短接后接地,U6 的 7 脚连接到 U1 的 21 脚和 U2 的 19 脚。

本实用新型较好的技术方案又可以是: 电源模块包括芯片 U5 和多个电容, 芯片 U5 与 USB 端口 U4 相连, 芯片 U5 与电容 C1 相连并通过电容 C1 接地, 芯片 U5 的引脚 3 是电源 Vcc 的输出并通过电容 C2、C6、C7、C8、C9 和 C10 接地。电源模块的作用是从 USB 插槽上的 1 脚取得+5V 电压, 进行变换和稳压后提供整个装置的电能供应。具体地说, 电源部分主要由芯片 U5 和多个电容组合而成, 芯片 U5 的 2 脚接到 USB 端口 U4 的 1 脚,同时芯片 U5 的 2 脚还通过电容 C1 接地, 芯片 U5 的引脚 3 则是电源的输出 Vcc, 它为所有电路提供电能, U5 的 3 脚还通过电容 C2、C6、C7、C8、C9,C10 接地。

本实用新型较好的技术方案也可以是: EEPROM 具有芯片 U3 和多个电阻,芯片 U3 与电源 Vcc 连接并短接后接地,芯片 U3 的两脚分别与芯片 U1 的两脚相连,且芯片 U3 分别通过呈并联的电阻 R6、R7 与电源 Vcc 相连。EEPROM 提供该 FLASH 存储器的部分参数存储空间,它主要由 U3 和部分电阻构成,其具体连接方式为:芯片 U3 的 1 脚接至电源 Vcc,芯片 U3 的 2,3 和 7 脚短接后接地,芯片 U3 的 5 脚接到芯片 U1 的 35 脚,6 脚接到 U1 的 36 脚,同时芯片 U3 的 5、6 脚分别通过上拉电阻 R6、R7 接到电源 Vcc。

5

本实用新型较好的技术方案又可以是: FLASH 芯片 U2 的两脚短接后与电源 Vcc 连接并短接后接地,芯片 U2 的 29,30,31,32,41,42,43 和 44 脚分别与芯片 U1 的 24,25,26,27,28,29,30 和 31 脚相连,芯片 U2 的 7、8、9、16、17 和 18 脚分别与芯片 U1 的 16、40、18、19、17 和 39 脚相连,芯片 U2 的 7、8、18 和 19 脚分别通过电阻 R15、R14、R13 和 R12 与电源 Vcc 连接。所述的 FLASH 芯片提供了该 FLASH 存储器的数据存储空间。

本实用新型较好的技术方案也可以是: USB 插槽分别通过电阻 R3、R2 和 R4 与芯片 U1 连接。USB 插槽一方面提供该 FLASH 存储器的电源,另一方面也是该存储器和电脑连接的通道,其具体的连接方式为: 引脚 2 通过电阻 R3 连接到芯片 U1 的 41 脚,引脚 3 通过电阻 R2 连接到芯片 U1 的 43 脚,同时引脚 3 通过电阻 R4 连接到芯片 U1 的 42 脚。

本实用新型较好的技术方案还可以是:包含 USB 接口控制器的微处理器芯片 U1,芯片 U1 的 10 脚与电源 Vcc 相连并通过 7 脚接地,芯片 U1 的 13 脚还通过电容 C3 连接到电源 Vcc,芯片 U1 同时通过电阻 R1 和电阻 R5 分别接地,芯片 U1 并分别通过电阻 R10 和电阻 R11 与电源 Vcc 连接,发光二极管 LED1 的 1 端与电阻 R9 相连,其 2 端接地,芯片 U1 通过电阻 R9 与发光二极管 LED1 的 1 端相连,晶振 Y1 和电阻 R8 并联,晶振 Y1 的两端分别与芯片 U1 的两脚相连,晶振 Y1 的两端分别通过电容 C4、C5 接地。微控制器 U1 是该装置的核心元件。

与现有技术相比,本实用新型具有以下明显的优点: 1、本实用新型的体积小,便于携带; 2、本实用新型支持 Windows 98/SE, Windows Me, Windows 2000 等多个操作系统,因而,应用范围广; 3、本实用新型无需安装额外的驱动器,不需要外接电源,即插即用,带电插拔,因而使用方便; 4、其存储容量大,有 8M,16M,32M,64M,一直最大到 1G,因而适应性强,能适应现代大量图像、音频、视频数据的要求; 5、具有较快的读写速度,为软盘的 20 倍,因而技术效果好; 6、具有身份识别和安全加密功能,因而使用安全; 7、存储可靠性高,抗震,防潮,保证数据不会丢失。

附图说明 以下是本实用新型的图面说明:

图 1 是基于 USB 接口的 FLASH 外存储器的结构示意框图;

图 2 是基于 USB 接口的 FLASH 外存储器的电路原理图。

图 1 中,明确表示了一种通用串行总线接口闪存存储器。

图 2 中,明确表示了电路中个分电路及元器件的连接关系。

实施方式 以下结合"记忆小闪霸"的具体实施方式对本实用新型进行更加详细的描述:

参照图 1, 其包括 FLASH 芯片, 电源模块, 包含 USB 接口控制器的微处理器芯片、EEPROM、读写控制电路、USB 插槽, USB 插槽分别

与 USB 电缆、USB 接口及电源相连 FLASH 芯片分别与电源、微处理器芯片 U1 及读写控制电路相连,微处理器芯片 U1 又分别与 EEPROM 及读写控制电路相连。

参照图 2,读写控制电路具有读写保护开关 U6,U6 的 1,2,3, 4 和 6 脚短接后接地, U6 的 7 脚连接到 U1 的 21 脚和 U2 的 19 脚; 电 源部分主要由芯片 U5 和多个电容组合而成, 芯片 U5 的 2 脚接到 USB 端口 U4 的 1 脚,同时芯片 U5 的 2 脚还通过电容 C1 接地,芯片 U5 的 引脚 3 则是电源的输出 Vcc, 它为所有电路提供电能, U5 的 3 脚还通 过电容 C2, C6, C7, C8, C9, C10 接地; EEPROM 主要由芯片 U3 和部 分电阻构成,芯片 U3 的 1 脚接至电源 Vcc, 芯片 U3 的 2, 3 和 7 脚 短接后接地, 芯片 U3 的 5 脚接到芯片 U1 的 35 脚, 6 脚接到 U1 的 36 脚,同时芯片 U3 的 5、6 脚分别通过上拉电阻 R6、R7 接到电源 Vcc: FLASH 芯片 U2 的两脚短接后与电源 Vcc 连接并短接后接地,芯片 U2 的 29, 30, 31, 32, 41, 42, 43 和 44 脚分别与芯片 U1 的 24, 25, 26, 27, 28, 29, 30 和 31 脚相连, 芯片 U2 的 7、8、9、16、17 和 18 脚分别与芯片 U1 的 16、40、18、19、17 和 39 脚相连,芯片 U2 的 7、8、18 和 19 脚分别通过电阻 R15、R14、R13 和 R12 与电源 Vcc 连接;: USB 插槽电路的引脚 2 通过电阻 R3 连接到芯片 U1 的 41 脚, 引脚 3 通过电阻 R2 连接到芯片 U1 的 43 脚,同时引脚 3 通过电阻 R4 连接到芯片 U1 的 42 脚:包含 USB 接口控制器的微处理器芯片 U1, 芯片 U1 的 10 脚与电源 Vcc 相连并通过 7 脚接地, 芯片 U1 的 13 脚还 通过电容 C3 连接到电源 Vcc, 芯片 U1 同时通过电阻 R1 接地, 其 37

通过电阻 R5 接地, 芯片 U1 的 14、15 脚分别通过电阻 R10 和电阻 R11 与电源 Vcc 连接, 发光二极管 LED1 的 1 端与电阻 R9 相连, 其 2 端接地, 芯片 U1 的 20 脚通过电阻 R9 与发光二极管 LED1 的 1 端相连, 晶振 Y1 和电阻 R8 并联, 晶振 Y1 的两端分别与芯片 U1 的 8、9 脚相连, 晶振 Y1 的两端分别通过电容 C4、C5 接地。

说明书附图

图 1

说 明 书 附 图

图 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.