

- If $\gamma = 1$, the return is not discounted.
- ullet For larger values of γ , the agent cares more about the distant future. Smaller values of γ result in more extreme discounting, where in the most extreme case agent only cares about the most immediate reward.

MDPs and One-Step Dynamics

- The **state space** ${\cal S}$ is the set of all (*nonterminal*) states.
- In episodic tasks, we use \mathcal{S}^+ to refer to the set of all states, including terminal states.
- The **action space** \mathcal{A} is the set of possible actions. (Alternatively, $\mathcal{A}(s)$ refers to the set of possible actions available in state $s \in \mathcal{S}$.)
- (Please see Part 2 to review how to specify the reward signal in the recycling robot example.)
- The **one-step dynamics** of the environment determine how the environment decides the state and reward at every time step. The dynamics can be defined by specifying $p(s',r|s,a) \doteq \mathbb{P}(S_{t+1}=s',R_{t+1}=r|S_t=s,A_t=a)$ for each possible s',r,s, and a.
- A (finite) Markov Decision Process (MDP) is defined by:
 - a (finite) set of states \mathcal{S} (or \mathcal{S}^+ , in the case of an episodic task)
 - ullet a (finite) set of actions ${\cal A}$
 - a set of rewards \mathcal{R}
 - the one-step dynamics of the environment
 - ullet the discount rate $\gamma \in [0,1]$

Search or ask questions in Knowledge.

Ask peers or mentors for help in Student Hub.

NEXT