Resistors

Resistance

- Resistance is the opposition to current flow
- It has the symbol R with the unit Ohm (Ω)

Analogy

- Like a **narrow pipe** restricting water flow.
- Factors affecting resistance:
 - Material (copper vs rubber)
 - Length (longer wire = more resistance)
 - Thickness (thicker wire = less resistance)
 - Temperature (hotter wire = more resistance)

What is a resistor

- A resistor is an electrical component that opposes the flow of electric current.
- It creates a voltage drop when current passes through it.
- Resistance is measured in ohms (Ω) .
- Purpose: to control current, divide voltages, and protect components.

Function of a Resistor

Current Limiting

Voltage Division

Signal Conditioning

Heat Dissipation

Current Limiting

- **Purpose:** Protect components from excessive current.
- **Example:** LEDs need current limiting to prevent burning out.
- How it Works: The resistor restricts current according to Ohm's Law
- Typical Application: Resistor in series with an LED.
- **Key Point:** Without a resistor, sensitive components can be damaged.

Voltage Divider

- **Purpose:** To split an input voltage into a smaller output voltage.
- Circuit: Two resistors in series across a supply.
- Applications:
 - Sensor circuits (e.g. LDRs, thermistors)
 - Reference voltages
 - Scaling signals for measurement

Signal Processing

- **Biasing:** Set operating points in amplifiers (e.g. transistor base bias).
- Pull-up/Pull-down: Ensure logic inputs default to a known state (0 or 1).
- Filtering (with capacitors): Form RC low-pass or high-pass filters. Control which frequencies are allowed through.
- Impedance Control: Match circuit stages to prevent signal loss or distortion.

Heat Dissipation

• Why it matters: Resistors convert unwanted electrical energy into heat.

• Power Rating:

- Small resistors: ¼ W − 1 W
- Wirewound resistors: up to 100 W+

Applications:

- Used as heaters (to burn off excess power)
- Protection in high-current circuits
- Key Point: Always choose a resistor with a power rating higher than expected dissipation.

$$P = VI = I^2R = \frac{V^2}{R}$$

Types of Resistors

- We can divide resistors 3 main ways:
 - Fixed
 - Carbon Film
 - Metal Film
 - Wire Wound
 - Variable
 - Potentiometer
 - Rheostats
 - Special variable resistors
 - LDR
 - Thermistor
 - Varistor

Carbon Film Resistors

- Construction: A thin film of carbon deposited on an insulating substrate.
- Resistance Value: Controlled by the thickness and length of the carbon film.
- Power Rating: Typically, low to medium (¼ W to 2 W).
- **Tolerance**: Around ±5% (standard), but can be tighter.

Carbon Film Resistors

Advantages:

- Cheap and widely available
- Good stability for general use

• Limitations:

- Higher noise than metal film resistors
- Not suitable for high precision applications

Metal Film Resistors

- Construction: Thin layer of metal (often nickel-chromium) deposited on a ceramic rod.
- **Resistance Value**: Adjusted by cutting a helical groove in the film.
- Power Rating: Typically low (1/8 W to 1 W).
- **Tolerance**: Very precise, often ±1% or better.

Metal Film Resistors

Advantages:

- High accuracy and stability
- Low noise compared to carbon film
- Good temperature performance

• Limitations:

- Slightly more expensive than carbon film
- Limited to low–medium power applications

Wire wound Resistors

- Construction: Resistive wire (usually nichrome) wound around a ceramic or fiberglass core.
- Resistance Value: Determined by the length and thickness of the wire.
- Power Rating: High can handle several watts to hundreds of watts.
- **Tolerance:** Precise, typically ±1% or better.

Wire wound Resistors

Advantages:

- Excellent stability and accuracy
- Can dissipate large amounts of power
- Low temperature coefficient

• Limitations:

- Larger physical size
- Inductive properties (not ideal for high-frequency circuits)
- More expensive than film resistors

Potentiometer (3 terminals):

- Adjustable resistor with a wiper.
- Used as a voltage divider (all 3 terminals).
- Common in volume knobs, sensor calibration, etc.

Rheostat (2 terminals):

- Potentiometer used as a variable resistor.
- Controls current directly.
- Common in lamp dimmers, motor speed control.

• Types:

- Rotary (knob style)
- Linear (slider style)

BYJU'S

Light Dependent Resistors (LDRs)

• **Definition:** A special type of variable resistor whose resistance changes with light intensity.

Behaviour:

- Bright light → low resistance
- Darkness → high resistance

Applications:

- Automatic street lights
- Light meters (cameras)
- Solar garden lights

Thermistor

• **Definition:** A type of resistor whose resistance changes with temperature.

Types:

- NTC (Negative Temperature Coefficient): Resistance decreases as temperature increases. Common in temperature sensors.
- PTC (Positive Temperature Coefficient):Resistance increases as temperature increases. Used in resettable fuses and overcurrent protection.

Applications:

- Digital thermometers
- Temperature compensation in circuits
- Overheat protection in power supplies
- **Key Point:** Often used in a voltage divider like an LDR but responds to heat instead of light.

Varistor

- **Definition:** A resistor whose resistance changes with applied voltage.
- Common Type: MOV (Metal Oxide Varistor).
- Behaviour:
 - At normal voltages → very high resistance (almost open circuit).
 - At high voltages → resistance drops sharply, clamping the voltage.
- Applications:
 - Surge protection (e.g. in power strips, appliances).
 - Protecting circuits from voltage spikes (lightning, switching surges).
- **Key Point:** Acts like a safety valve only conducts when voltage exceeds a set threshold.

Identifying Resistors

Resistor Colour Code:

- Each band represents a number or multiplier.
- Final band = tolerance (gold = ±5%, silver = ±10%).

Other Identifiers:

- Marked values (printed on some precision resistors).
- Case size indicates power rating (¼ W, ½ W, etc.).

Identifying Resistors - Example

