

Towards Synthetic Ecosystems of Disease Vectors

Elaine Liu [Department of Statistics, Carnegie Mellon University], Abby Smith [Department of Statistics, Carnegie Mellon University], Samuel Ventura [Department of Statistics, Carnegie Mellon University]

INTRODUCTION

INFECTIOUS DISEASEVECTORS

Vector (Epidemiology): any agent (animal, or microorganism) that carries and transmits an infectious pathogen into another living organism

Common Vectors: hematophagous arthropods

- Mosquitos Dengue, Chikungunya, Zika, Mayaro and Yellow Fever
- Lyme, Rocky Mountain Spotted Fever
- Flies, Sand Flies, Lice, Fleas

AGENT-BASED MODEL (ABM)

- ABM: Simulate autonomous agents' interactions in constrained environments [1]
- **Example ABM**: Synthetic Populations and Ecosystems of the World (SPEW) for studying the spread of infectious diseases among human populations [2]
- Proposed Disease Pathogen Agent Modeling Framework:

MAXENT

- Modeling probability distribution for a species based on the maximumentropy approach [3]
- Input Data:
 - Species Presence Data: geographical locations of observed species from Global Biodiversity Information Facility (GBIF), which provides species observance data around the world.
 - Environment Factors: a set of global climate layers (gridded climate data) from WorldClim, which provides monthly precipitation and temperature information with the spatial resolution down to 1 km².
- Output Data: two types of probability grid cell outputs
 - Raw Probability: proportion of potential distribution each site represents
 - Logistic Probability: the probability of occurrence

$$P_{raw} = \frac{f_1(z)}{f(z)} = e^{\eta(z)}$$
 $P_{logistic} = Pr(y = 1|z) = \tau e^{\eta(z) - r}/(1 - \tau + \tau e^{\eta(z) - r})$

 $f_1(z)$: conditional density at presence sites

f(z): marginal density across the study area

 $\eta(z) = \alpha + \beta * h(z)$, a linear score of feature vector h(z)

 τ : probability of presence at sites with typical conditions for a species

MODEL DETAILS

FROM GLOBALTO LOCAL PREDICTIONS

- Take the name of a geographical region by a string vector
- e.g. c("USA), c("USA", "Pennsylvania"), c("USA", "Pennsylvania", "Allegheny")
- Extract geographical boundaries from Global Administrative Areas (GADM) as spatial polygons
- Masking the prediction grids with geographical boundaries to extract regional distribution
- Transform Raw Probability Predictions:

TIME DEPENDENT PREDICTIONS

- Many infectious disease vectors are highly sensitive to environmental conditions such as temperature and precipitation.
- It is therefore important to study seasonal **changes** in the vector populations as environment factors change throughout a year.
- This is achieved by:
 - Subsetting environment layers by month
 - Subsetting species occurrence data by month
 - Fitting separate models for each month
- Compare likelihood of a species' presence in different months using mean logistic probability ratios, which reflects the true probability of a species' presence

POPULATION SAMPLING

Monthly Sample Size:

grid in the region

- Given a specific sample size in a reference month, calculate the corresponding sample size for other months based on logistic probabilities, which reflect true probabilities of presence
- Sampling Methodology:
- Drawing grid cells with replacement according to transformed raw probabilities
- Adding to each sampled cell a uniformly distributed within-cell deviation from the cell center

SIMULATION RESULT DEMO

Simulation results for yellow fever mosquitos (Aedes Aegypti) in Pennsylvania, drawing 2000 samples in June:

NEXT STEPS

REAL POPULATION SIZES

To simulate a synthetic population of infectious disease vectors, it is essential to use the true population size for sampling:

Currently, there is no publicly available source specifying actual population counts for individual species

CLIMATE CHANGE EFFECTS

Modifying environmental layers to study the effects of various climate changes (such as global warming) on infectious disease vector populations:

CUSTOMIZATION

- Flexible input & output format:
 - Allowing users to supply input data instead of using the default data sources for more updated and relevant results
 - Improving the system's compatibility with various input formats for region name and species name
- **Efficient prediction:**
 - Replacing global predictions with regional predictions, which may save substantial running time especially when users are only interested in modeling disease vector populations for a limited number of regions
 - Incorporating this alternative prediction approach as a speed-up option

CONCLUSIONS

Proposed Infectious Disease Vector Modeling System:

- Generating synthetic populations of non-human disease vectors to complement human-based synthetic ecosystems such as SPEW
- Predicting presence probability for any species, any region and any month of the year, based on species observation data and environmental factors
- Reflecting seasonal changes in species population for use in more realistic, time-dependent ABMs

ACKNOWLEDGEMENTS

- 1. Agent-based model Wikipedia. (n.d.). Retrieved April 3, 2017, from https://en.wikipedia.org/wiki/Agent-based_model
- Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
- 3. Gallagher, S., Richardson, L., Ventura, S. L., & Eddy, W. F. (2017). SPEW: Synthetic Populations and Ecosystems of the World. arXiv preprint arXiv:1701.02383.