교육 과정 소개서.

퀴즈처럼 풀면서 배우는 파이썬 딥러닝 300제+ 연습문제 패키지 Online.

강의정보

강의장 온라인 강의 | 데스크탑, 노트북, 모바일 등

수강 기간 평생 소장

상세페이지 https://www.fastcampus.co.kr/data_online_dl300

담당 패스트캠퍼스 고객경험혁신팀

강의시간 51시간 4분

문의

강의 관련 전화 문의: 02-568-9886 수료증 및 행정 문의: 02-501-9396 / help.online@fastcampus.co.kr

강의특징

나만의 낮이나 새벽이나

속도로 내가 원하는 시간대에 나의 스케쥴대로 수강

원하는 곳 어디서나 시간을 쪼개 먼 거리를 오가며

오프라인 강의장을 찾을 필요 없이 어디서든 수강

무제한 무엇이든 반복적으로 학습해야

복습 내것이 되기에 이해가 안가는 구간 <mark>몇번이고 재생</mark>

강의목표

- 딥러닝 이론을 실무 필드에서 활용할 수 있게 됩니다. 수많은 실전 문제를 풀면서 딥러닝 경험을 쌓고, 실제 업무에 응용하거나 모델을 구현할 수 있습니다.
- 딥러닝의 본질인 문제 해결 능력이 올라갑니다. 막연하고 파편화되어 있던 지식을 체계화하여 필요한 코드를 변형해서 짤 수 있게 됩니다.
- 어떤 데이터를 마주하더라도 효과적으로 활용할 수 있게 됩니다. 100만 개 이상의 다양한 데이터로 실습하기 때문에 어떤 상황에도 쉽게 적용할 수 있습니다.

강의요약

- 본 강의는 이론적인 내용부터 차근차근 올라가기보다 실습을 먼저 경험하며 이론까지 밟아 내려가는 방식을 이용합니다. 실시간 동영상에서의 물체 탐지, 얼굴 이미지 생성, 딥페이크 영상 제작 등의 실습을 해보실 수 있습니다.
- 딥러닝은 더이상 어렵기만 한 분야가 아닙니다. 수학을 잘 해야만 딥러닝을 다룰 수 있다는 고정관념을 넘어 '수포자' 들도 간단히 최신 딥러닝 모델까지 구현할 수 있도록 강의를 구성했습니다.
- 기존처럼 강사가 코딩하는 것을 보고 그저 따라하는 것이 아닌 수강생분들이 직접 하나씩 코드를 작성해보고 문제를 풀어보면서 수강하는 새로운 방식으로 진행되어 제대로 된 실력과 성과를 얻어낼 수 있을 것입니다.
- 흥미로운 주제와 전문가들의 실전 솔루션을 통해 실무 스킬을 습득할 수 있는 국내 유일무이한 강의라 생각합니다. 수 많은 딥러닝 문제들을 경험하면서 실무 관점의 팁들을 모두 알려드립니다.

- 포항공과대학교 컴퓨터공학과 석사 - Software Maestro 9기 - Best of the Best 6기
 [한빛미디어] 이것이 취업을 위한 코딩 테스트다 with 파이썬 저자 Deep Learning Security 관련 주저자 국제 학회 논문 보유 KISA, 한국표준협회 및 다양한 고등학교/대학교에서 진행한 강의 경험 다수
 현 IT대기업 AI부서 소속 현 연세대학교 디지털애널리스틱 일반대학원 겸임교수 전 SK텔레콤 Data Cell 검색&분석 파트장 건 SK텔레콤 Tech Expert Board member 연세대학교 컴퓨터공학과 석사 졸업
 2020 연세대학교 디지털애널리스틱 일반대학원 겨울 학기, 연세대학교 학사 방학특강 2019 연세대학교 디지털애널리스틱 일반대학원 겨울 학기, 연세대학교 학사 방학특강 2018 연세대학교 Bigdata X YONSEI 특강 2016 한국SW산업협회 데이터 기반 데이터사이언티스트 양성과정
- 서울대학교 전기공학부 학부, 석사 졸 - 딥러닝 영상처리 전공
- 개발자 대상 딥러닝 교육 다수 - 이미지처리 강의 다수 - 모두를 위한 딥러닝 시즌 2 main creator
- 현 브레인크루 대표이사 - 전 삼성전자 무선사업부 엔지니어 - 삼성전자 SCSA 1기 - C-LAB 삼성전자 사내벤처 - 위스콘신 주립대 경제학
 사용자 관심사 기반 뉴스 추천 B2B 솔루션 개발 딥러닝 블로그 운영(테디노트) 인공지능 이력서 채용 프로젝트 프리랜서 팀장 블루투스 BLE 펌웨어 및 앱개발 파이썬 데이터분석, 머신러닝, 딥러닝 강의 다수 텐서플로 강의 다수

Intro.

딥러닝 시작하기

파트별 수강시간 01:39:19

강의목적	
Ch 01. 딥러닝 소개	
딥러닝이란	
딥러닝의 원리	
딥러닝이 주로 다루는 문제들	
Ch 02. 딥러닝의 원리	
딥러닝의 구조	
비용 함수	
경사하강법	
딥러닝 라이브러리	
딥러닝을 제대로 공부하는 법	

01.

이미지 분류 기초

파트별 수강시간 08:16:22

-11 1 - 1
기초지식 개요 RNN 분류의 특색
도입전 기본 처리 - 문제 01~05
전처리 - 문제 06~10
시각화 방법 - 문제 11~15
데이터 오그멘테이션 - 문제 16~26
모델링 - 문제 27~31
결과 확인 - 문제 32~34
모델 저장 및 로드, 다운 - 문제 35~38
Ch 02. 인물 사진에서 성별과 표정 분석하기
기초지식 개요 - 멀티 아웃풋 모델
도입전 기본 처리 - 문제 01~10
전처리 - 문제 11~14
시각화 방법 - 문제 15~20
모델링 - 문제 21~25
결과 확인 - 문제 26~27
멀티 모델링 - 문제 28~32
결과 확인 - 문제 33~34
모델 분리 - 문제 35~38
통합 모델 저장 및 로드, 다운 - 문제 39~42
Ch 03. 여러 의상 사진에서 옷 종류 구분하기
기초지식 개요 멀티레이블 분류란
도입전 기본 처리 - 문제 01~05
전처리 - 문제 06~10
시각화 방법 - 문제 11~14
데이터 오그멘테이션 - 문제 15~16
데이터 오그멘테이션 - 문제 17
데이터 오그멘테이션 - 문제 18~21
모델링 - 문제 22~26
결과 확인 - 문제 27~28
멀티 레이블 모델링 - 문제 29~32
모델 저장 및 로드, 다운 - 문제 33~36

02.

이미지 변형 기초

파트별 수강시간 13:05:27

Ch01. 손상된 의류 이미지 화질 복구하기
기초지식 개요 오토인코더
도입전 기본 처리 - 문제 01~05
전처리 - 문제 06~11
시각화 방법 - 문제 12~15
데이터 오그멘테이션 - 문제 16~26
모델링 - 문제 27~30
결과확인 - 문제 31~33
모델 저장 및 로드,다운 - 문제 34~37
Ch 02. 인물 사진에서 배경 없애기
기초지식 개요 - 오토인코더 및 세그먼트
도입전 기본 처리 - 문제 01~08
도입전 기본 처리 - 구글드라이브 mount
전처리 - 문제 09~11
시각화 방법 - 문제 12~15
AE 모델링 - 문제 16~20
결과 확인 - 문제 21~25
Unet 모델링 - 문제 26~30
결과 확인 - 문제 31~35
모델 저장 및 로드, 다운 - 문제 36~39
Ch 03. 칼라 사진을 흑백 사진으로 변경하기
기초지식 개요 - 오토인코더 및 colorization
도입전 기본 처리 - 문제 01~08
전처리 - 문제 09~11
시각화 방법 - 문제 12~14
모델링 - 문제 15~19
결과 확인 - 문제 20~22
더욱 간단한 모델링 - 문제 23~27
결과 확인 - 문제 28~30
극단적 선형 흑백 모델 - 문제 31~33
모델 저장 및 로드, 다운 - 문제 34~37

02.

이미지 변형 기초

파트별 수강시간 13:05:27

Ch 04. 흑백 사진을 칼라 사진으로 변경하기			
기초지식 개요 - 오토인코더 및 colorization			
도입전 기본 처리			
전처리			
시각화 방법			
모델링			
결과 확인			
모델링 2			
모델링 2			
모델링 2			
결과 확인 2			
모델 저장 및 로드, 다운			
Ch 05. 학종이만한 사진을 고화질로 확대하기			
기초지식 개요 - 오토인코더 및 colorization			
도입전 기본 처리 - 문제 01~09			
전처리 - 문제 10~11			
시각화 방법 - 문제 12~15			
모델링 - 문제 16~20			
결과 확인 - 문제 21~24			
모델 저장 및 로드, 다운 - 문제 25~28			

03.

텍스트 분류 기초

파트별 수강시간 07:38:07

Ch 01. 딥러닝으로 Seq2Seq 계산기 만들기
기초지식 개요 Seq2Seq란
도입전 기본 처리 - 문제 01
데이터 전처리 - 문제 02~06
데이터 시각화 - 문제 07~08
Seq2Seq용 입출력 보정 - 문제 09~13
Seq2Seq 모델링 - 문제 14~18
모델 학습 결과 확인 - 문제 19~25
모델 저장 및 로드, 다운 - 문제 26~29
Ch 02. 기초지식 개요
Encoder로 토픽예측을?
도입전 기본처리 - 문제 01~03
데이터 전처리 - 문제 04~11
데이터 시각화 - 문제 12~19
Seq2Seq의 Encoder 이용 모델링 - 문제 20~26
모델 학습 결과 확인 - 문제 27~35
모델 저장 및 로드, 다운 - 문제 36~39
Ch 03. SeqSeq로 네이버 댓글 감성분석하기
기초지식 개요-Encoder로 토픽예측을?
도입전 기본처리 문제 01-04
도입전 기본처리 문제 05-08
도입전 기본처리 문제 08-18
도입전 기본처리 문제 19-26
SeqSeq의 Encoder 이용 모델링 - 문제 27-33
모델 학습 결과 확인 - 문제 34-42
모델 저장 및 로드 다운 - 문제 43-46

04.

객체 탐지 및 영상 인식 모델링

파트별 수강시간 06:53:21

Image Classfication 이론			
데이터 다운로드 및 전처리 - 문제 01~05			
Pretrained MobileNetV3로 Training하기 - 문제 06~08			
Model 성능 올리기 - 문제 09~12			
Model 성능 올리기 - 문제 13~15			
Model 성능 올리기 - 문제 16~18			
Image Localization 이론			
데이터 다운로드 및 전처리 - 문제 01~02			
데이터 다운로드 및 전처리 - 문제 03~04			
tfrecord 파일 만들기- 문제 05~08			
Image Localization 모델 작성 및 학습 - 문제 09~10			
Image Localization 모델 작성 및 학습 - 문제 11~12			
Image Localization 모델 작성 및 학습 - 문제 13			
Image Localization 모델 작성 및 학습 - 문제 14~16			
Multi-task Learning을 활용하여 성능 개선하기 - 문제 17~18			
Multi-task Learning을 활용하여 성능 개선하기 - 문제 19~21			
Object Detection 이론			
Data 다운로드 및 확인 - 문제 01~03			
Data Augmentation - 문제 04~07			
Anchor Box 정보 만들기 - 문제 08~11			
Label Encoding - 문제 12~16			
Dataset 만들기 - 문제 17~19			
RetinaNet Model 만들기 - 문제 20~21			
Model 학습하기 - 문제 22~25			
학습된 Model로 결과 확인하기 - 문제 26~27			

05.

시계열 예측 및 자연어 처리 모델링

파트별 수강시간 04:08:25

Ch 01. LSTM을 활용해 주가 예측 모델 구현하기					
데이터 불러오기 및 EDA - 문제 01~10					
시계열 데이터 시각화 - 문제 11~14					
시계열 데이터의 전처리 - 문제 15~18					
모델 구현하기 - 문제 19~21					
모델을 활용한 예측 및 결과 시각화 - 문제 24~26					
Ch 02. 딥러닝 기반 뉴스 기사 생성 모델 구현하기					
Intro					
데이터 불러오기 및 전처리 - 문제 01~02					
데이터 불러오기 및 전처리 - 문제 03~04					
데이터 불러오기 및 전처리 - 문제 05					
단어 사전 만들기 - 문제 06~07					
단어 사전 만들기 - 문제 08					
데이터셋 생성 및 EDA - 문제 09(1)					
데이터셋 생성 및 EDA - 문제 09(2)					
데이터셋 생성 및 EDA - 문제 10					
Sequential 모델 구현하기 - 문제 11					
Sequential 모델 구현하기 - 문제 12~13					
Sequential 모델 구현하기 - 문제 14					
Sequential 모델 구현하기 - 문제 15(1)					
Sequential 모델 구현하기 - 문제 15(2)					
모델을 활용한 뉴스 기사 생성 - 문제 16~18					
모델을 활용한 뉴스 기사 생성 - 문제 19					

05.

시계열 예측 및 자연어 처리 모델링

파트별 수강시간 04:08:25

Ch 03, seq2seq 모델을 활용한 챗봇 구현하기
Intro
seq2seq 모델의 개요 - 문제 01
seq2seq 모델의 개요 - 문제 02
seq2seq 모델의 개요 - 문제 03
데이터 전처리 - 문제 04
데이터 전처리 - 문제 05
데이터 전처리 - 문제 06
데이터셋 구성 - 문제 07
데이터셋 구성 - 문제 08
데이터셋 구성 - 문제09
토큰화(Tokenizer) - 문제 10
토큰화(Tokenizer) - 문제 11
토큰화(Tokenizer) - 문제 12~13
토큰화(Tokenizer) - 문제 14
데이터셋 변환 함수 정의 - 문제 15
데이터셋 변환 함수 정의 - 문제 16
모델 생성 - 문제 17
모델 생성 - 문제 18
모델 생성 - 문제 19
학습 - 문제 20
학습 - 문제 21
학습 - 문제 22
예측 - 문제 23
예측 - 문제 24
테스트 - 문제 25

06.

딥러닝 최신 논문 구현하기

파트별 수강시간 09:23:01

Ch 01. StyleGAN을 활용한 얼굴 편집(Face Editing)

StyleGAN을 활용한 얼굴 생성 및 모핑 - 문제 01~02

StyleGAN을 활용한 얼굴 생성 및 모핑 - 문제 03~05

StyleGAN을 활용한 얼굴 생성 및 모핑 - 문제 06

얼굴 임베딩(Face Embedding) - 문제 07~11

얼굴 교차(Crossover) - 문제 12~14

임베딩 벡터 연산(Latent Vector Arithmetic) - 문제 15~19

시맨틱 정보 변경(Semantic Editing) - 문제 20~24

스타일 전송(Style Transfer) - 문제 25~26

얼굴 복구(Face Reconstruction) - 문제 27~29

Ch 02. 딥페이크 개요 및 강의 소개

Single Image 얼굴 표정 재연(Face Reenactment) - 문제 01~08(1)

Single Image 얼굴 표정 재연(Face Reenactment) - 문제 01~08(2)

Single Image 얼굴 교체(Face Swapping) - 문제 09~18(1)

Single Image 얼굴 교체(Face Swapping) - 문제 09~18(2)

딥페이크 탐지(DeepFakes Detection) - 문제 19~28(1)

딥페이크 탐지(DeepFakes Detection) - 문제 19~28(2)

영상 기반 얼굴 교체(Face Swapping) - 문제 29~33(1)

영상 기반 얼굴 교체(Face Swapping) - 문제 29~33(2)

Ch 03. 실시간 객체 탐지 개요 및 강의 소개

다양한 데이터셋 둘러보기 - 문제 01~05

YOLO v5 아키텍처 핵심 정리

Mask Wearing Dataset으로 YOLO v5 모델 학습하기 - 문제 06~13

Oxford Pets 데이터셋으로 YOLO v5 모델 학습하기 - 문제 14~21

커스텀 데이터셋 라쿤(Raccoon) - 문제 22~28

Ch 04. SinGAN을 활용한 자연 이미지 해상도 개선 개요

SinGAN 아키텍처 핵심 정리

SinGAN을 활용한 초해상도(Super-Resolution) 실습 - 문제 01~05

SinGAN을 활용한 랜덤 샘플링(Random Sampling) 및 애니메이션(Animation) - 문제 06~07

SRGAN을 활용한 해상도 개선 개요

SRGAN 아키텍처 핵심 정리

SRGAN을 활용한 초해상도(Super-Resolution) 실습 - 문제 01~03

SRGAN을 활용한 초해상도(Super-Resolution) 실습 - 문제 04~05

SRGAN을 활용한 초해상도(Super-Resolution) 실습 - 문제 06~09

주의 사항

- 상황에 따라 사전 공지 없이 할인이 조기 마감되거나 연장될 수 있습니다.
- 패스트캠퍼스의 모든 온라인 강의는 **아이디 공유를 금지**하고 있으며 1개의 아이디로 여러 명이 수강하실 수 없습니다.
- 별도의 주의사항은 각 강의 상세페이지에서 확인하실 수 있습니다.

수강 방법

- 패스트캠퍼스는 크롬 브라우저에 최적화 되어있습니다.
- 사전 예약 판매 중인 강의의 경우 1차 공개일정에 맞춰 '온라인 강의 시청하기'가 활성화됩니다.

화불 규정

- 온라인 강의는 각 과정 별 '정상 수강기간(유료수강기간)'과 정상 수강기간 이후의 '복습수강기간(무료수강기간)'으로 구성됩니다.
- 환불금액은 실제 결제금액을 기준으로 계산됩니다.

수강 시작 후 7일 이내	100% 환불 가능 (단, 수강하셨다면 수강 분량만큼 차감)
수강 시작 후 7일 경과	정상(유료) 수강기간 대비 잔여일에 대해 학원법 환불규정에 따라 환불 가능

※ 강의별 환불규정이 상이할 수 있으므로 각 강의 상세페이지를 확인해 주세요.