Bagging and blocking: Inference via particle filters for interacting dynamic systems

Edward Ionides
University of Michigan, Department of Statistics

Statistics seminar series at
Chalmers University of Technology / University of Gothenburg
Tuesday November 23, 2021

Collaborators:

Kidus Asfaw, Ning Ning, Joonha Park and Aaron King

Outline

The curse of dimensionality. Particle filter (PF) methods are effective for inference on low-dimensional nonlinear partially observed stochastic dynamic systems. They scale exponentially badly.

Bagged filters. Combining independent Monte Carlo filters.

- Unadapted bagged filter (UBF)
- adapted bagged filter (ABF)
- adapted bagged filter with intermediate resampling (ABF-IR)

Blocked particle filter (BPF). Independently developed by Rebeschini and van Handel (2015) (in theory) and Ng et al. (2002) (in practice)

From filtering to inference. Iterated filtering using stochastically perturbed parameters.

Metapopulation dynamics. Bagged and blocked filters work on collections of weakly coupled populations, in theory and practice.

What is a SpatPOMP?

POMP models are partially observed Markov processes, also known as state space models or hidden Markov models

SpatPOMP models are POMP models with a unit structure

Latent Markov process: $X_{u,n} = X_u(t_n)$, $u \in 1:U$, $n \in 1:N$

Observation process: $Y_{u,n}$ depends only on $X_{u,n}$

The units could be a metapopulation, say cities in an epidemic model

U=40 units for a coupled measles SEIR model

Bagged filter inputs, outputs and implicit loops.

input:

simulator for $f_{\boldsymbol{X}_0}(\boldsymbol{x}_0)$ and $f_{\boldsymbol{X}_n|\boldsymbol{X}_{n-1}}(\boldsymbol{x}_n\,|\,\boldsymbol{x}_{n-1})$ evaluator for $f_{Y_{u,n}|X_{u,n}}(y_{u,n} \mid x_{u,n})$

number of replicates, \mathcal{I} neighborhood structure, $B_{u,n}$ data, $\boldsymbol{y}_{1\cdot N}^*$

ABF and ABF-IR: particles per replicate, J

ABF-IR: number of intermediate timesteps, S

ABF-IR: measurement variance parameterizations, $\overset{\leftarrow}{\mathbf{v}}_{u.n}$ and $\overset{\rightarrow}{\mathbf{v}}_{u.n}$

output: Log likelihood estimate, $\ell^{\text{MC}} = \sum_{n=1}^{N} \sum_{n=1}^{U} \ell_{nn}^{\text{MC}}$ implicit loops:

ABF-IR: approximate process and observation mean functions, μ and h_{un}

u in 1:U, n in 1:N, i in 1: \mathcal{I} , j in 1:J

UBF. Unadapted bagged filter.

Simulate $\boldsymbol{X}_{0:N,i} \sim f_{\boldsymbol{X}_{0:N}}(\boldsymbol{x}_{0:N})$

Measurement weights, $w_{u,n,i}^M = f_{Y_{u,n}|X_{u,n}}(y_{u,n}^* \mid X_{u,n,i})$

on weights
$$w^M$$
 . $\equiv i$

Prediction weights, $w_{u,n,i}^P = \prod_{(\tilde{u},\tilde{n}) \in B_{u,n}} w_{\tilde{u},\tilde{n},i}^M$

 $\ell_{u,n}^{\,\mathrm{MC}} = \log\left(\textstyle\sum_{i=1}^{\mathcal{I}} w_{u,n,i}^{M} w_{u,n,i}^{P}\right) - \log\left(\textstyle\sum_{i=1}^{\mathcal{I}} w_{u,n,i}^{P}\right)$

The unadapted bagged filter is not as naive as it may first appear

- ullet UBF seems naive. Particle filter (PF) method are well known to scale better with N than unconditional simulations.
- ullet UBF scales well with U for weakly coupled systems.
- \bullet With modern computers, large numbers of simulations are feasible even when U and N are not small.
- Initially we studied UBF as a theoretical toy. Then we found it is competitive in practice on some models of interest.

Adapted simulation: An easier problem than filtering

- We aim to make each replicate track the data in a weak sense that does not involve a solution to the full filtering problem.
- ullet The adapted simulation problem is to draw from $f_{m{X}_n|m{Y}_n,m{X}_{n-1}}ig(m{x}_n\,|\,m{y^*}_n,m{x}_{n-1}ig).$
- The adapted bagged filter (ABF) algorithm uses importance sampling to carry out adapted simulation on each replicate.
- ABF calculates the likelihood using the proper weight restricted to a neighborhood.

ABF. Adapted bagged filter.

Initialize adapted simulation: $m{X}_{0.i}^{
m A} \sim f_{m{X}_0}(m{x}_0)$

For
$$n$$
 in $1:N$

Proposals: $X_{n,i,i}^{P} \sim f_{X_{n-1}}(x_n | X_{n-1,i}^{A})$

Measurement weights: $w_{u,n,i,j}^M = f_{Y_{u,n}|X_{u,n}}(y_{u,n}^* \mid X_{u,n,i,j}^P)$

Adapted resampling weights: $w_{n,i,j}^{\mathrm{A}} = \prod_{u=1}^{U} w_{u,n,i,j}^{M}$

Resampling:
$$\mathbb{P}\big[r(i)=a\big]=w_{n,i,a}^{\mathrm{A}}\Big(\sum_{k=1}^{J}w_{n,i,k}^{\mathrm{A}}\Big)^{-1}$$

Resampling:
$$\mathbb{P}[r(i) = a] = w_{n,i,a}^{A} \left(\sum_{k=1}^{J} w_{n,i,k}^{A}\right)^{-1}$$

$$X_{n,i}^{\mathbf{A}} = X_{n,i,r(i)}^{\mathbf{P}}$$

$$w_{u,n,i,j}^{\mathbf{P}} = \prod_{\tilde{n}=1}^{n-1} \left[\frac{1}{J} \sum_{k=1}^{J} \prod_{(\tilde{u},\tilde{n}) \in B_{u,n}^{[\tilde{n}]}} w_{\tilde{u},\tilde{n},i,k}^{M} \right] \prod_{(\tilde{u},n) \in B_{u,n}^{[n]}} w_{\tilde{u},n,i,j}^{M}$$

End for

$$\ell_{u,n}^{\,\mathrm{MC}} = \log \left(\frac{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{M} w_{u,n,i,j}^{P}}{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{P}} \right)$$

Intermediate resampling

- ullet Intermediate resampling splits the time interval between observations into S subintervals.
- Reweighting and/or sampling at each subinterval uses a revised estimate
 of the anticipated measurement density at the end of the interval called a
 guide function.
- This is applicable to continuous time models.
- Intermediate resampling has useful theoretical and empirical properties (Del Moral and Murray, 2015; Park and Ionides, 2019).
- Intermediate resampling for adapted simulation within ABF gives the ABF-IR algorithm.
- Intermediate resampling within PF gives the guided intermediate resampling filter (GIRF) of Park and Ionides (2019), a generalization of the auxiliary particle filter of Pitt and Shepard (1999).

ABF-IR. ABF with intermediate resampling.

Initialize adapted simulation: $m{X}_{0.i}^{
m A} \sim f_{m{X}_0}(m{x}_0)$

For n in 1:N

Intermediate proposals: $X_{n,s,i,j}^{\text{IP}} \sim f_{X_{n,s}|X_{n,s-1}}(\cdot|X_{n,s-1,i,j}^{\text{IR}})$ $\mu_{n,s,i,i}^{IP} = \mu(X_{n,s,i,i}^{IP}, t_{n,s}, t_n)$

 $\theta_{u,n,s,i,j} = \stackrel{\leftarrow}{\nabla}_u \left(V_{u,n,s,i,j}^{\text{meas}} + V_{u,n,s,i,j}^{\text{proc}}, \mu_{u,n,s,i,j}^{\text{IP}} \right)$

 $\ell_{u,n}^{\text{MC}} = \log \left(\frac{\sum_{i=1}^{L} \sum_{j=1}^{J} w_{u,n,i,j}^{M} w_{u,n,i,j}^{r}}{\sum_{i=1}^{L} \sum_{j=1}^{J} w_{u,n,i,j}^{P}} \right)$

End For

End for

Set $X_{n,i}^{A} = X_{n,S,i,1}^{IR}$

 $g_{n,s,i,j} = \prod_{u=1}^{U} f_{Y_{u,n}|X_{u,n}}(y_{u,n}^* \mid \mu_{u,n,s,i,j}^{\text{IP}}; \theta_{u,n,s,i,j})$

Guide weights: $w_{n,s,i,j}^G = g_{n,s,i,j}/g_{n,s-1,i,j}^R$

 $V_{u,n,s,i,j}^{\text{meas}} = \overrightarrow{v}_{u}(\theta, \mu_{u,n,s,i,j}^{\text{IP}}) , \qquad V_{u,n,s,i}^{\text{proc}} = V_{u,n,i}\left(t_{n} - t_{n,s}\right) / \left(t_{n} - t_{n,0}\right)$

Resampling: $\mathbb{P}[r(i,j)=a] = w_{n,s,i,a}^G \left(\sum_{k=1}^J w_{n,s,i,k}^G\right)^{-1}$ $X_{n,s,i,j}^{\text{IR}} = X_{n,s,i,r(i,j)}^{\text{IP}}$ and $g_{n,s,i,j}^{\text{R}} = g_{n,s,i,r(i,j)}$

Measurement weights: $w_{u,n,i,j}^M = f_{Y_{u,n}|X_{u,n}}(y_{u,n}^*|X_{u,n,i,j}^G)$ $w_{u,n,i,j}^{\mathrm{P}} = \prod_{\tilde{n}=1}^{n-1} \Big[\frac{1}{J} \sum_{a=1}^{J} \prod_{\substack{(\tilde{u},\tilde{n}) \in B_{i}^{[n]} \\ \tilde{u},\tilde{n}} \in B_{i}^{[n]}} w_{\tilde{u},\tilde{n},i,a}^{M} \Big] \prod_{\substack{(\tilde{u},n) \in B_{u,n}^{[n]} \\ \tilde{u},\tilde{n}}} w_{\tilde{u},n,i,j}^{M}$

Guide variance: $V_{u,n,i} = \text{Var}\{h_{u,n}(X_{u,n,i,j}^G), j \text{ in } 1:J\}$ $g_{n,0,i,j}^{\mathrm{R}}=1$ and $\boldsymbol{X}_{n,0,i,i}^{\mathrm{IR}}=\boldsymbol{X}_{n-1,i}^{\mathrm{A}}$

For s in 1:S

Guide simulations: $X_{n,i,j}^G \sim f_{X_n|X_{n-1}}(x_n | X_{n-1,i}^A)$

Software for SpatPOMP models

- We use the asif, asifir and girf implementations in the R package spatPomp (Asfaw et al., 2019).
- spatPomp offers a class 'spatPomp' that extends the 'pomp' class for POMP models in the R package pomp (King et al., 2016).
- All methods available in pomp can formally be applied to 'spatPomp' objects, though they may not be practically effective for spatiotemporal POMPs.

Filtering U-dimensional correlated Brownian motion

Filtering U units of a coupled measles SEIR model

Simulated data using a gravity model with geography, demography and transmssion parameters corresponding to UK pre-vaccination measles.

Filtering U units of Lorenz 96 toy atmospheric model

$$dX_u(t) = \{X_{u-1}(t)(X_{u+1}(t) - X_{u-2}(t)) - X_u(t) + F\}dt + \sigma dB_u(t)$$

From filtering to parameter inference

- Log likelihood evaluation in principle enables likelihood-based or Bayesian inference.
- Iterated filtering maximizes the likelihood for PF or GIRF (Ionides et al., 2015).
- Particle Markov chain Monte Carlo can be applied with any likelihood estimate (Andrieu et al., 2010). It is numerically intractable when Monte Carlo estimates are costly and noisy.
- Extending iterated filtering to bagged filters is future work.

Measles likelihood slices for G and μ_{IR} via ABF

- \bullet Simulating 15 year of data from U=40 cities for the measles model.
- ullet The gravitational coupling constant G is fairly weakly identified: a week of computing on a 30 core machine gives Monte Carlo error on the same scale as the statistical uncertainty.
- ullet The recovery rate μ_{IR} is well identified.

Theorem

Let ℓ^{MC} denote the Monte Carlo likelihood approximation constructed by UBF, ABF or ABF-IR. Consider a limit with a growing number of replicates, $\mathcal{I} \to \infty$. Suppose regularity assumptions listed in the paper. There are quantities $\epsilon(U,N) = O(1)$ and $V(U,N) = O(U^2N^2)$ such that

$$\mathcal{I}^{1/2} [\ell^{\,\scriptscriptstyle\mathsf{MC}} - \ell - \epsilon U N] \xrightarrow[\mathcal{T} \to \infty]{d} \mathcal{N} [0, V],$$

where $\frac{d}{\mathcal{I} \to \infty}$ denotes convergence in distribution and $\mathcal{N}[\mu, \Sigma]$ is the normal distribution with mean μ and variance Σ . If an additional spatiotemporal mixing assumption holds, we obtain an improved variance bound

$$V(U,N) = O(UN)$$

References I

- Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 72:269–342.
- Asfaw, K., Ionides, E. L., and King, A. A. (2019). spatPomp: R package for statistical inference for spatiotemporal partially observed Markov processes. https://github.com/kidusasfaw/spatPomp.
- Del Moral, P. and Murray, L. M. (2015). Sequential Monte Carlo with highly informative observations. *Journal on Uncertainty Quantification*, 3:969–997.
- Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. *Proceedings of the National Academy of Sciences of the* USA, 112:719–724.

References II

- King, A. A., Nguyen, D., and Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp. *Journal of Statistical Software*, 69:1–43.
- Ng, B., Peshkin, L., and Pfeffer, A. (2002). Factored particles for scalable monitoring. *Proceedings of the 18th Conference on Uncertainty and Artificial Intelligence*, pages 370–377.
- Park, J. and Ionides, E. L. (2019). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. Arxiv:1708.08543v3.
- Pitt, M. K. and Shepard, N. (1999). Filtering via simulation: Auxillary particle filters. *Journal of the American Statistical Association*, 94:590–599.
- Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? *The Annals of Applied Probability*, 25:2809–2866.