Universidad Panamericana Maestría en Ciencia de Datos Econometría

Actividad RLS

Enrique Ulises Báez Gómez Tagle 16 de agosto de 2025

Índice

1. Ejercicio 1	2
2. Ejercicio 2	4
3. Ejercicio 3	6
4. Ejercicio 4- Usando Dataset de la tarea anterior	9
5. Ejercicio 5	14
6. Link al repositorio con código fuente	15

1. Ejercicio 1

Se realizó un estudio para determinar si ciertas medidas de la fuerza estática del brazo influyen en las características de "levantamiento dinámico" de un individuo. Veinticinco individuos se sometieron a pruebas de fuerza y luego se les pidió que hicieran una prueba de levantamiento de peso, en el que el peso se elevaba en forma dinámica por encima de la cabeza. A continuación se presentan los datos.

Cuadro 1: Datos de fuerza del brazo y levantamiento dinámico

Individuo	Fuerza del brazo, x	Levantamiento dinámico, y
1	17.3	71.7
2	19.3	48.3
3	19.5	88.3
4	19.7	75.0
5	22.9	91.7
6	23.1	100.0
7	26.4	73.3
8	26.8	65.0
9	27.6	75.0
10	28.1	88.3
11	28.2	68.3
12	28.7	96.7
13	29.0	76.7
14	29.6	78.3
15	29.9	60.0
16	29.9	71.7
17	30.3	85.0
18	31.3	85.0
19	36.0	88.3
20	39.5	100.0
21	40.4	100.0
22	44.3	100.0
23	44.6	91.7
24	50.4	100.0
25	55.9	71.7

[•] a. Realice el diagrama de dispersión entre las variables, obtenga e interpreta las estadísticas descriptivas de las mismas.

El diagrama de dispersión muestra una tendencia positiva moderada entre la fuerza del brazo (x) y el levantamiento dinámico (y). Al analizar las estadísticas descriptivas, se observa que ambas variables presentan medias cercanas a sus medianas, lo que indica una distribución relativamente simétrica.

Figura 1: Dispersión: y vs. x.

Estadísticas descriptivas

Variable	Media	Mediana	Desv. Est.	Min	Q1	Q3	Max
Fuerza del brazo x	31.15	29.0	9.87	17.3	26.4	36.0	55.9
Levantamiento dinámico y	82.00	85.0	14.13	48.3	71.7	91.7	100.0

 b. Calcule el coeficiente de correlación lineal y realice la prueba de hipótesis correspondiente para validar si existe o no relación lineal entre las variables, con una significancia del 5 %.
El coeficiente de Pearson es

$$r = 0.3917$$
, p -valor = 0.0528 .

Con $p > \alpha = 0.05$ no se rechaza $H_0: \rho = 0$; no hay evidencia suficiente de relación lineal al 5%.

• c. Estime los coeficientes del modelo de regresión lineal simple por MCO. El modelo estimado es:

$$\hat{y} = 64.53 + 0.561 x$$
, $R^2 = 0.153$.

La pendiente es marginalmente no significativa (p = 0.053), mientras que el intercepto sí lo es (p < 0.01).

• d. Obtenga la estimación puntual para una fuerza del brazo de 30.

$$\hat{y}(30) = 81.36,$$

IC del 95% para la media condicional: [75.82, 86.89]; intervalo de predicción del 95%: [53.33, 109.38].

• e. Grafique los residuales en comparación con la variable independiente y comente los resultados. La Figura 2 muestra residuales centrados en cero $(\bar{e} \approx 0)$ y prácticamente incorrelacionados con x $(corr(x, e) \approx 0)$, consistente con los supuestos de MCO.

Figura 2: Residuales vs. x.

2. Ejercicio 2

Doce marcas de shampoo de venta en México han compartido información acerca de sus ventas y del monto en inversión publicitaria durante 2023. Los datos anuales de ambas variables se presentan a continuación:

Cuadro 2: Ventas y Inversión Publicitaria en Redes Sociales (2023)

Marca	Ventas (Millones de lts.)	Inversión (Millones de pesos)
A	2.4	6
В	1.6	2
C	2.3	5
D	1.5	1
E	3.2	4
F	2.5	7
G	1.8	4
Н	1.8	3
I	3.5	8
J	3.4	11
K	1.5	2
L	3.2	12

• a. Realice el diagrama de dispersión entre las variables, obtenga e interpreta las estadísticas descriptivas de las mismas.

El diagrama de dispersión de la Figura 3 sugiere una relación positiva clara entre inversión en redes (x) y ventas (y).

Figura 3: Dispersión: Ventas vs. Inversión en redes.

Estadísticas descriptivas

Variable	Media	Mediana	Desv. Est.	Min	Q1	Q3	Max
Ventas y (mill. lts.)	2.392	2.35	0.768	1.50	1.75	3.20	3.50
Inversión x (mill. pesos)	5.417	4.50	3.528	1.00	2.75	7.25	12.00

■ b. Calcule el intervalo de confianza al 95 % para coeficiente de correlación lineal. Se obtuvo el coeficiente de Pearson

$$r = 0.8334$$
, p -valor = 0.000759 .

Vía la transformación z de Fisher, el intervalo de confianza al 95 % es

Como p < 0.05 y el IC no incluye 0, existe evidencia de una relación lineal positiva entre $x \in y$.

• c. Estime los coeficientes del modelo de regresión lineal simple por MCO. El modelo estimado es

$$\hat{y} = 1.4089 + 0.1814 x, \qquad R^2 = 0.695.$$

La pendiente es estadísticamente significativa ($t=4.769,\ p=0.001$). La Figura 4 muestra la recta ajustada.

Figura 4: RLS: Ventas (mill. lts.) en función de Inversión en redes (mill. pesos).

• d. Utilizando un nivel de significancia del 5 %, pruebe la hipótesis estadística de que por cada 500 mil pesos adicionales de inversión anual en redes sociales, se espera un incremento en las ventas anuales de shampoo mayor a 50 mil litros.

Formulamos $H_0: \beta_1 \leq 0.1$ vs. $H_1: \beta_1 > 0.1$, donde β_1 se mide en millones de litros por millón de pesos. Con $\hat{\beta}_1 = 0.1814, SE(\hat{\beta}_1) = 0.0380, df = 10$:

$$t = \frac{\hat{\beta}_1 - 0.1}{SE(\hat{\beta}_1)} = 2.1404,$$
 p -valor = 0.0290.

Como p < 0.05, se rechaza H_0 . En unidades del enunciado, por 0.5 millones de pesos el incremento esperado es

 $0.1814 \times 0.5 = 0.0907$ millones de litros (= 90.7 mil lts.) > 50 mil lts.

3. Ejercicio 3

El siguiente juego de datos describe la producción de esencia floral en una comunidad en Francia. La variable independiente (X) se refiere a la cantidad de flores procesadas para extraer su esencia por cada productor (en miles de unidades). La variable dependiente (Y) es una medida del aceite extraído en onzas por la cantidad de flores procesadas.

Cuadro 3: Datos de flores procesadas (X) y producción de esencia (Y)

Obs.	Flores X (miles)	Producción Y (onzas)
1	1.00	1.71
2	1.08	1.52
3	1.15	1.29
4	1.15	3.09
5	1.20	2.21
6	1.30	2.26
7	1.37	2.40
8	1.37	2.10
9	1.43	1.96
10	1.46	2.09
11	1.52	2.02
12	1.57	1.31
13	1.65	2.17
14	1.65	2.28
15	1.65	2.41
16	1.66	2.23
17	1.87	3.04
18	2.03	2.06
19	2.05	2.73
20	2.30	2.36

• a. Grafique los datos en un diagrama de dispersión. La Figura 5 muestra el diagrama de dispersión entre flores procesadas (x) y producción de esencia (y). Se observa una tendencia positiva tenue.

Figura 5: Dispersión: Producción vs. Flores.

Estadísticas descriptivas

Variable	Media	Mediana	Desv. Est.	Min	Q1	Q3	Max
x (flores, miles)	1.523	1.49	0.347	1.00	1.275	1.652	2.30
y (producción, onzas)	2.162	2.19	0.477	1.29	2.005	2.370	3.09

• b. ¿Cree que exista una relación entre la producción de esencia y la cantidad de flores procesadas? ¿Es esta positiva o negativa?

El coeficiente de Pearson fue

$$r = 0.3757$$
, p -valor = 0.1026, $IC_{95\%}(r) = [-0.0802, 0.7016]$.

La relación estimada es positiva, pero la evidencia al 5% no es concluyente (el p-valor es mayor que 0.05 y el IC incluye 0).

• c. Por medio del ajuste de una línea recta, verifique que: $b_0 = 1.38$, $b_1 = 0.52$, $S^2 = 0.206$. Mediante MCO se obtuvo

$$\hat{y} = 1.3756 + 0.5163 x, \qquad S^2 = \frac{\text{SSE}}{n-2} = 0.2064.$$

Estos valores coinciden con los de referencia (diferencias < 0.005). La Figura 6 muestra la recta ajustada.

Figura 6: RLS: y en función de x.

• d. Construya la tabla de análisis de varianza (ANOVA) y realice la prueba de significancia para la regresión. ¿Es esta significativa o no?

Con n = 20 observaciones:

$$SSR = 0.6104, \ SSE = 3.7153, \ SST = 4.3257, \quad R^2 = \frac{SSR}{SST} = 0.1411.$$

Cuadro 4: ANOVA

Fuente	SC	gl	CM
Regresión	0.6104	1	0.610435
Error	3.7153	18	0.206405
Total	4.3257	19	_

La prueba F da

$$F = \frac{\text{MSR}}{\text{MSE}} = \frac{0.6104/1}{3.7153/18} = 2.9575, \qquad p = 0.1026.$$

Conclusión: a un 5 % de significancia, no es significativa (no se rechaza H_0).

• e. Encuentre el error estándar de la pendiente y un intervalo de confianza al 95 %.

$$SE(\hat{\beta}_1) = 0.3002, \qquad IC_{95\%}(\beta_1) = [-0.1144, 1.1471].$$

La pendiente no es significativa al $5\,\%$ porque el IC incluye 0.

• f. ¿Qué porcentaje de la variabilidad total de la respuesta es explicado por el modelo? (Sugerencia: bondad de ajuste).

$$R^2 = 0.1411 \implies 14.11\%$$
 de la variabilidad de y es explicada por x.

• g. Determine un intervalo de confianza para la respuesta media al 95% cuando el número de flores procesadas es igual a x=1.25.

Para $x_0 = 1.25$:

$$\widehat{E[y \mid x_0]} = 2.0210, \qquad IC_{95\%} : [1.7468, 2.2953].$$

■ h. Determine un intervalo de predicción al 95 % cuando el número de flores procesadas es igual a x = 1.95.

Para $x_0 = 1.95$:

$$\hat{y}(x_0) = 2.3825, \quad \text{PI}_{95\%} : [1.3680, 3.3969].$$

4. Ejercicio 4- Usando Dataset de la tarea anterior

Considere el ejemplo de servicio de TV por cable descrito a continuación.

Encuesta de televisión por cable

Una empresa de televisión por cable encargó a un bufete un estudio de mercado para conocer el perfil de los clientes potenciales de una zona residencial formada por dos colonias. Las colonias constan de 12 y 25 manzanas con un total de 236 y 605 hogares, respectivamente. Mediante muestreo probabilístico (no discutido aquí) se seleccionó una muestra de ocho manzanas y cinco hogares por manzana. En cada hogar seleccionado se recabaron varias respuestas de las que presentamos solamente algunas de éstas.

Cuadro 5: Tabla 2: Encuesta de televisión por cable

Variable	Descripción
1. Colonia	Colonia a la que pertenece el hogar de la zona residencial
2. Manzana	Número de manzana a la que pertenece el hogar
3. Adultos	Número de adultos por hogar
4. Niños	Número de niños menores de 12 años por hogar
5. Teles	Número de televisores por hogar
6. Tipo	Tipo de televisor que posee: blanco y negro (B), color (C), ambos (A)
7. Tvtot	Suma del número de horas frente al televisor en la semana de todos
	los miembros de la familia
8. Renta	Cantidad máxima de renta que el jefe del hogar estaría dispuesto a
	pagar al mes por servicio de TV por cable (múltiplos de \$5)
9. Valor	Valor catastral del hogar (m\$). La respuesta se usa para dar idea
	aproximada del ingreso familiar

Cuadro 6: Datos muestrales: hogares (n=40)

Obs.	Colonia	Manzana	Adultos	Niños	Teles	Renta	TVtot	Tipo	Valor
1	2	20	3	2	2	50	68	В	79928
2	2	25	3	3	1	65	82	В	94415
3	2	20	1	2	1	45	40	A	120896
4	2	8	2	2	2	35	56	A	132867
5	2	25	1	2	0	0	0	N	141901
6	2	14	1	2	0	0	0	N	147997
7	2	22	2	1	1	65	30	A	156410
8	2	20	3	1	3	45	62	C	156841
9	2	25	3	3	2	70	82	A	157041
10	2	20	2	2	3	45	60	С	161222
11	2	8	3	2	1	70	84	A	162509
12	2	8	2	1	3	45	34	A	180124
13	2	14	2	1	1	55	38	С	180437
14	2	8	2	1	2	45	42	A	190314
15	2	14	2	3	1	55	86	A	192265
16	2	25	1	2	3	70	40	В	192816
17	2	14	4	2	4	75	84	C	193279
18	2	20	4	3	3	55	14	C	205656
19	1	2	3	1	3	50	31	C	216190
20	2	22	1	1	3	65	42	C	216321
21	2	22	4	2	2	75	76	C	216465
22	2	22	2	3	2	40	74	C	225694
23	1	4	3	1	3	60	35	C	237752
24	2	25	1	1	1	55	22	C	241531
25	2	8	1	3	2	75	54	C	249098
26	1	9	2	1	3	65	27	C	252221
27	1	9	3	1	4	65	35	C	261763
28	2	14	2	2	1	65	52	C	269898
29	2	22	2	3	4	60	70	C	271556
30	1	2	3	3	3	65	69	C	279163
31	1	4	3	2	3	60	54	C	299558
32	1	9	4	0	4	70	32	В	311195
33	1	4	2	0	4	75	16	С	318551
34	1	2	3	0	4	70	24	A	322652
35	1	4	2	0	2	60	20	C	329198
36	1	2	2	0	2	60	20	A	332699
37	1	2	3	0	3	70	28	C	336290
38	1	9	3	0	5	85	28	C	355641
39	1	9	2	0	3	70	20	C	357972
40	1	4	3	0	4	80	28	С	370325

■ a. Ajuste por mínimos cuadrados un modelo de regresión lineal simple para la respuesta **Renta**, con el **Valor** catastral (en miles de pesos) como variable independiente. Calcule los coeficientes y el error estándar de la regresión, y grafique los residuales contra el regresor x (gráfica de dispersión). Con todos los datos, el modelo estimado por MCO es

$$\widehat{\text{Renta}} = \hat{\beta}_0 + \hat{\beta}_1 x, \quad \hat{\beta}_0 = 30.3232, \ \hat{\beta}_1 = 0.1225.$$

El error estándar de la regresión es $\sigma = \sqrt{\text{MSE}} = 15.2446$.

Figura 7: RLS (todos): Renta vs. Valor catastral.

Figura 8: Residuales vs. x (todos).

■ b. ¿Cuál es la significancia de la regresión? (valor-p del estadístico F). Para todos los datos, la ANOVA de la regresión produce:

Cuadro 7: ANOVA (todos los datos)

Fuente	gl	SC	$\mathbf{C}\mathbf{M}$	F	p
Regresión	1	3496.3622	3496.3622	15.0447	0.000404
Error	38	8831.1378	232.3984	_	_
Total	39	12327.5000	_	_	_

Por tanto,

$$F = 15.0447,$$
 $p = 0.000404,$ $R^2 = 0.2836.$

Conclusión: la regresión es significativa al 5 % (se rechaza $H_0: \beta_1=0$).

• c. Repita los incisos anteriores pero sin considerar los 2 casos donde y=0. ¿Consideraría los nuevos coeficientes estadísticamente iguales a los anteriores? Comente. Excluyendo los dos casos con y=0, el modelo es

$$\widehat{\text{Renta}} = \hat{\beta}_0 + \hat{\beta}_1 x, \quad \hat{\beta}_0 = 41.7885, \ \hat{\beta}_1 = 0.0840, \quad \sigma = 10.0569.$$

Figura 9: RLS (sin y=0): Renta vs. Valor catastral.

Figura 10: Residuales vs. x (sin y = 0).

ANOVA ($\sin y = 0$):

Cuadro 8: ANOVA ($\sin y = 0$)

Fuente	gl	SC	$\mathbf{C}\mathbf{M}$	F	p
Regresión	1	1543.1332	1543.1332	15.2572	0.000396
Error	36	3641.0773	101.1410	_	_
Total	37	5184.2105	_	_	_

Los coeficientes cambian (intercepto mayor y pendiente menor), pero ambos modelos muestran pendiente positiva significativa (p < 0.001).

• d. Compare los coeficientes de determinación R^2 en ambos casos. Comente.

Cuadro 9: Comparativo de ajuste

Modelo	\hat{eta}_0	\hat{eta}_1	R^2	σ
Todos los datos	30.3232	0.1225	0.2836	15.2446
Sin y = 0	41.7885	0.0840	0.2977	10.0569

Se observa una leve mejora en \mathbb{R}^2 al remover los dos ceros:

$$R_{\text{todos}}^2 = 0.2836, \qquad R_{\sin y=0}^2 = 0.2977.$$

Esto sugiere que los ceros podrían corresponder a hogares sin disposición de pago (no-demanda) y afectan el ajuste lineal.

5. Ejercicio 5

Determine cuáles de entre los siguientes modelos son lineales en los parámetros, en las variables, o en ambos. ¿Cuáles de estos modelos son modelos de regresión lineal?

(a) $Y_i = \beta_0 + \beta_1 \frac{1}{X_i} + \varepsilon_i$

Es lineal en los parámetros (β_0, β_1) porque puede escribirse como $\beta_0 + \beta_1 z_i$ con $z_i = 1/X_i$. No es lineal en la variable original X_i (sí lo es en z_i). Sí es un modelo de regresión lineal (RLS) usando $1/X_i$ como regresor.

(b) $Y_i = \beta_0 + \beta_1 \ln X_i + \varepsilon_i$

Lineal en los parámetros; no lineal en X_i pero lineal en el regresor transformado ln X_i . Sí es RLS con $\ln X_i$ como variable explicativa.

(c) $Y_i = \beta_0 X_i^{\beta_1} + \varepsilon_i$ No lineal en los parámetros (porque β_1 está en el exponente) ni en X_i . Tomar logaritmos da $\ln Y_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2}$ $\ln(\beta_0 X_i^{\beta_1} + \varepsilon_i)$, lo cual **no** equivale a un modelo lineal con error aditivo. Por tanto, **no es un modelo** de regresión lineal tal como está especificado.

- (d) $\ln Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ Lineal en los parámetros y lineal en el regresor X_i . Sí es RLS.
- (e) $\ln Y_i = \ln \beta_0 + \beta_1 \ln X_i + \varepsilon_i$ No es lineal en el parámetro β_0 . Reparametrizando $\alpha_0 = \ln \beta_0$ se obtiene $\ln Y_i = \alpha_0 + \beta_1 \ln X_i + \varepsilon_i$, que es lineal en (α_0, β_1) y en $\ln X_i$. Se puede estimar como RLS, con restricción implícita $\beta_0 > 0$ y luego $\beta_0 = e^{\alpha_0}$.
- (f) $Y_i = \beta_0 + \beta_1^3 X_i + \varepsilon_i$ No es lineal en el parámetro β_1 . Definiendo $\gamma_1 = \beta_1^3$ queda $Y_i = \beta_0 + \gamma_1 X_i + \varepsilon_i$, lineal en (β_0, γ_1) . Se puede estimar como RLS; luego $\beta_1 = \sqrt[3]{\gamma_1}$.

6. Link al repositorio con código fuente

https://github.com/enriquegomeztagle/MCD-Econometria/tree/main/HWs/RLS-Activity