Bilinear forms

Jovana Savic

February 20, 2021

Definition 1. Consider vector space $V \times V$. A positive definite, symmetric bilinear mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is called an inner product on V.

• Symmetric

$$(\forall x, y \in V)(\langle x, y \rangle = \langle y, x \rangle)$$

• Positive definite

$$(\forall x \in V/\{0\}) (\langle x, x \rangle > 0) \land (\langle 0, 0 \rangle = 0)$$

• Bilinear

$$\forall x, y, z \in V, \lambda \in \mathbb{R}$$
$$\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$$
$$\langle x, \lambda y + z \rangle = \lambda \langle x, y \rangle + \langle x, z \rangle$$

Lemma 1. A function $\beta(x,y): V \times V \to \mathbb{R}$ that can be written in the form $\beta(x,y) = x^T A y$ where A is a square matrix has the property of bilinearity. We call such function bilinear form.

Proof. We can directly show that this is the case.

$$\beta(\lambda x + y, z) = (\lambda x + y)^T A z$$
$$= \lambda x^T A z + y^T A z$$
$$= \lambda \beta(x, z) + \beta(y, z).$$

Also,

$$\beta(x, \lambda y + z) = x^{T} A(\lambda y + z)$$
$$= \lambda x^{T} A y + x^{T} A z$$
$$= \lambda \beta(x, y) + \beta(x, z).$$

Lemma 2. A bilinar form is symmetric if and only if matrix A is symmetric.

Proof. Since the result of the function is a real number, transposing it doesn't change it.

$$\beta(x, y) = x^T A y = (x^T A y)^T$$
$$= y^T A^T x.$$

We can see that if $A^T = A$ the above can be written as:

$$\beta(x, y) = y^T A x = \beta(y, x).$$

Definition 2. Matrix A is positive definite if for any $x \in V/\{0\}$ $x^TAx > 0$.

Theorem 3. Matrix A is positive definite if its eigenvalues are positive. Its eigenvalues are found as the solutions to the equation:

$$det(A - \lambda I) = 0$$

In summary, a bilinear form is:

- Symmetric: if $A^T = A$.
- Bilinear: always
- Positive definite: if the solutions to det $(A \lambda I) = 0$ are positive ¹.

If all of the above are satisfied then it's an inner product.

¹It's easy to see that if x=0 the result of $x^TAx=0$ is true for any matrix A.