Graph Theory and Map Coloring

Tal Berdichevsky and Corinne Mulvey

MIT PRIMES Circle

May 18, 2019

Modeling Facebook

Modeling Facebook

Definition

A graph G is a set of vertices V(G) and edges E(G).

Definition

The *order* and *size* of a graph G are the cardinality of its vertex set |V(G)| and edge set |E(G)|, respectively.

Definition

For a graph G and vertex $v \in V(G)$, the degree $\deg_G(v)$ of v is the number of edges incident with v.

Fundamental Theorem of Graph Theory

Theorem

For any graph G of size m,

$$\sum_{v\in V(G)}\deg_G(v)=2m.$$

Types of Graphs

Definition

A complete graph is a graph G where every vertex $v \in V(G)$ is adjacent to every other vertex $u \in V(G)$. A complete graph is denoted by K_n where n is the order of G.

Types of Graphs

Definition

A path P_n is a sequence of n vertices where every two consecutive vertices have an edge between them.

Definition

A graph H = (V', E') is a *subgraph* of the graph G = (V, E) if $V' \subseteq V$, $E' \subseteq E$, and every edge $e \in E'$ has its endpoints in V'.

Types of Graphs

H:

H':

G:

G — е

Definition

A graph G is *connected* if for any pair of vertices in V(G) there is a path between them. A graph G is *disconnected* if there exists a pair of vertices in G which is not connected by a path.

Definition

A *bridge* is an edge e of a graph G such the graph G - e is disconnected.

Definition

A tree is a connected graph where every edge is a bridge.

Theorem

For every tree with order n and size m, we have m = n - 1.

Proof

Problem of the Five Palaces

Definition

A *planar graph* is a graph which can be drawn in a plane so that no edges intersect.

Definition

A *region* in a plane graph G is a section of the plane enclosed by edges of G.

The Euler Identity

If *G* is a connected plane graph of order *n*, size *m*, and *r* regions, then n - m + r = 2.

Proof

Trees: k - (k - 1) + 1 = 2

$$n - (m-1) + (r-1) = 2$$

 $n - m + r = 2$

Theorem

For any planar graph G of size m and order $n \ge 3$, we have

$$m \leq 3n - 6$$
.

Corollary

If G is a graph of order $n \ge 3$ and size m where m > 3n - 6, then G is nonplanar.

Corollary

Every planar graph contains a vertex of degree 5 or less.

Theorem

The complete graph K_5 is nonplanar.

Proof

The size of K_5 is 10 The order of K_5 is 5

$$m > 3n - 6$$

 $10 > 3(5) - 6 = 9$

Graph Colorings

Figure: Blank Map of the New England States

Graph Colorings

Graph Colorings

A 3-coloring of is the 3-chromatic graph G of the states $(\chi(G)=3).$

Four and Five Color Theorems

Theorem Every planar graph is 5 - colorable

Four and Five Color Theorems

Four and Five Color Theorems

Theorem

Every planar graph is 4 - colorable

- ▶ Proven in 1976 by Kenneth Appel and Wolfgang Haken
- ▶ 1,936 cases
- ▶ 1,200 hours of computer time