BART - Denoising Sequence-to-Sequence Pre-training for Natural Language Genration, Translation, and Comprehension

[가짜연구소 : Agora NLP paper review group] 논문 발재로 공부한 'BART' 내용에 대해 정리 하고자 한다. 이번 포스팅에서는 'BART' 을 제안한 <u>BART :</u>

<u>Denoising Sequence-to-Sequence Pre-training for Natural Language</u>

<u>Genration, Translation, and Comprehension</u> 논문 내용을 바탕으로 참고 자료와 함께 다시 정리 하였다.

1. Introduction

- BART는 Sequence-to-Sequence model 이면서, denoising task를 pre-train object 하는 model
- ▼ Bi-directional Encoder (BERT)와 Autoregressive Decoder (GPT)를 사용한 구조
 - Input text는 BERT의 Masked Language Model (MLM) 처럼 corrupted text를 input으로 사용
 - Correpted input text를 original text로 reconstrut하는 task
 - 하지만 기존 Masked Language Model (MLM) 방법들은 특정 End task 형태에 집중
- **▼** Difference BERT, BART

BERT

- Transformer Encoder 부분으로만 구성한 model
- o MLM pre-train object와 NSP(Next Sentence Prediction) pre-train object 학습
- 。 또한 BERT는 denoising Auto-Encoder base

$$log p_{ heta}(ar{x}|\hat{x}) pprox \, \sum_{t=1}^{T} m_t \, log p_{ heta}(x_t \, | \, \hat{x})$$

 $(\overline{x}: \text{reconstruct document, } \hat{x}: \text{corrupted document, } m_t: \text{masked token index)}$

즉, Corrupted text가 input일 때 reconstruct text (Original text) 로 되돌릴 확률

▼ XLNet에서는 MLM의 independent assumption problem 지적

- '모든 masked token은 독립적으로 재구축 되기 때문에 equal한 것이 아니라 approxi-mation' 하는 한계
- fine-tuning에서는 masked token index를 사용하지 않기 때문에 pre-train / fine-tuning discrependency

BART

- ▼ Bi-directional encoder + Autoregressive decoder 구조
 - Decoder의 각 layer별 cross-attention을 수행
 - Decoder에서 GeLUs activation function 사용
 - Parameter를 평균 0. 분산이 0.2인 정규 분포로 초기화
- Autoregressive Decoder를 가짐으로 BERT의 단점을 개선함
- Pre-train task에 MLM을 사용하는데 이전 모델과 달리 Noise Flexibility를 가짐

2. Model

▼ BART Architecture

 Corrupted text를 input으로 하고, 해당 Text를 reconstruct한 decoder의 output과 original text의 cross-entropy reconstruct loss로 학습

$$loss \, function(x, class) = -log(\frac{exp(x[class])}{\sum_{j} exp(x[j])}) = -x[class] \, + \\ log(\sum_{j} exp(x[j]))$$

 $(x: original text(batch size, seq_len), class: deocder outputs(batch size, seq_len, |v|))$

[그림 1] BART process architecture

▼ Denoising object

함)

- Token masking : BERT와 동일하게 random token을 sampling 하고 이를 masking
- Token deletion : random하게 token을 제거
- Text infilling: poisson (λ = 3) 분포에서 span length를 추출한 길이만큼 text span을 sampling하고, 각 token을 단일 mask token으로 대체
 (SpanBERT에서 아이디어를 얻었는데 SpanBERT는 span의 길이를 알려주었으나 해당 논문에선 알려주지 않고 모델이 얼마나 많은 토큰이 빠졌는지 예측하게
- **Sentence Permutation** : full stop들을 기준으로 document를 sentence로 나누고, 문장들을 ran-dom하게 섞음
- Document rotation : random token을 선택하고 document를 해당 token으로 시작하도록 rotate
 - → model이 sentent의 시작이 어디인지 학습할수 있도록 함

[그림 2] Type of denoising object

3. Fine-tuning BART

▼ Sequence Classification Task

- 같은 input이 encoder와 decoder에 입력으로 사용하며, 디코더의 final hidden state가 새로운 linear classifier로 전달
- BERT의 [CLS] token과 유사하지만 마지막 토큰까지 입력해주면서 전체 입력에 대한 디코더의 attention을 계산할 수 있게 구조화 함

▼ Token classification tasks

• document를 encoder와 decoder에 입력으로 사용하며, decoder의 top hidden state를 각 단어에 대한 representation으로 하여 token classification에 사용

▼ Sequence Generation Tasks

• BART는 autoregressive 디코더를 갖고 있으므로 바로 fine-tuning 가능

▼ Machine Translation Tasks

• BART를 machine translation 을 위한 pre-trained 디코더로 사용하고 새로운 인코더를 추가해 encoder-decoder를 fine-tuning

새로운 인코더는 외국어를 BART가 학습한 언어로 denoising 할 수 있는 입력으로 mapping 하는 역할

[그림 3] fine-tuning BART for classification and Translation

4. Comparing Pre-training Objectives

- BART는 noising method에 제약을 두지 않음으로 다양한 방법을 비교 실험 해봄
- 일반적인 sequence-to-sequence task처럼 source를 인코더에 주고 target을 디코더 output으로 하는 방법과 source를 디코더 target의 prefix로 주고 target 부분만 loss를 계산하는 방법으로 학습
 - \rightarrow 전자의 경우 BART가 다른 model 보다 좋은 performance를 보였으나 후자의 경우 그렇지 못함

▼ Comparison Objectives

- Language Model : GPT와 비슷하며, left-to-right transformer model을 train (cross-attention이 빠진 BART 디코더)
- Permuted Language Model: XL-Net을 기반으로, 1/6 토큰을 샘플링하고 랜덤한 순서로 auto-regressive하게 생성
- Masked Language Model: BERT처럼 15% 토큰을 mask 토큰으로 바꾸고 독립 적으로 토큰을 예측
- Multitask Masked Language Model : self-attention mask를 추가해서 masked language mo-del을 학습
- Masked Seq-to-Seq : 토큰의 50%를 포함하는 span에 mask를 하고 mask된 토 큰을 예측하는 seq-to-seq 모델을 학습

Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-
Masked Language Model	90.0	83.5	24.77	7.87	12.59	7.06
Masked Seq2seq	87.0	82.1	23.40	6.80	11.43	6.19
Language Model	76.7	80.1	21.40	7.00	11.51	6.56
Permuted Language Model	89.1	83.7	24.03	7.69	12.23	6.96
Multitask Masked Language Model	89.2	82.4	23.73	7.50	12.39	6.74
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

[그림 4] Comparison or pre-training objectives

Result summary

○ Pre-trained 모델의 성능은 task가 큰 영향을 줌

▼ Token masking이 중요함

- 실험결과 Document rotation이나 sentence shuffling 기법만 사용했을때 성 능이 좋지 않음
- Token deletion이나 masking 방법을 사용한 것이 더 좋은 성능을 보였고 generation task에서는 deletion이 masking 보다 더 좋은 성능을 보임

▼ Left-to-right pre-training이 generation 성능을 향상에 영향

- Masked Language Model과 Permuted Language Model은 다른 모델에 비해 generation 성능이 떨어지는데, 그 이유를 논문에서는 left-to-right autoregressive 모델링이 포함되지 않았기 때문이라고 주장
- SQuAD에선 문맥의 정보(future context)가 중요하기 때문에 이 정보를 얻지 못하는 left-to-right 디코더는 성능이 좋지 않음
- Pre-training 방법만 중요한 것이 아님

5. Large-scale Pre-training Experiments

• 최근 연구에서 큰 batch size와 corpora를 사용해 pre-training이 성능의 향상 이끌어내고 있음으로 비교 실험 진행

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

	CN	N/Daily	Mail	XSum		
	R1	R2	RL	R1	R2	RL
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72
UniLM	43.33	20.21	40.51	-	-	-
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27
BART	44.16	21.28	40.90	45.14	22.27	37.25

[그림 5] Comparison Benchmark Dataset result