

Indian Association for the Cultivation of Science

(Deemed to be University under the de novo category)

Integrated Bachelor's and Master's Program
End-Semester Examination - 2019 (Semester-I)

Subject: Molecules of Life and Cells

Subject Code(s): BIS 1101

Full marks: 100

Time allotted: 3 h

(Answer PART - A and PART - B separately in your answer-script)

PART - A (Full marks 50) Answer all questions

- (a) What is cell cycle? Name the four basic phases of mitosis. [1+2]
 (b) What do actin filaments do? Why intermediate filaments are non-polar? [1+2]
 (c) What is Focal Adhesion? Draw a schematic diagram describing the structural organization of the focal adhesion. [1+2]
 (d) How would you distinguish between a free and a tethered protein molecule in solution by studying the microscopic trajectory of the protein. [3]
 (e) What is step length of a molecular motor? Explain the duty cycle. [1+2]
 (f) Consider a protein in a cytoplasm as a Voigt element comprises a spring and a
 - dashpot in series. Describe how the protein will relax when released from a stretched configuration.

 [3]

 (g) Describe Fick's 2nd equation. Use this equation to comment on the change of con-
- 2. (a) In biology, we often want to know the probability that a certain event will occur. For instance, an organism or animal in a given environment will either survive or die. Consider the probability that exactly k such events occur in n trials with probability p given by binomial distribution $P(k; n, p) = \binom{n}{k} p^k q^{n-k}$ where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Find the mean and the standard deviation.

centraion with time when spatial gradient is constant. [2+1]

- The Poisson distribution is a special case of the binomial distribution and is used to describe the distribution of rare events in a large population. Show that for a Poisson distribution, $\sum_{x=0}^{\infty} P(x) = 1$.
- (c) At the onset of an epidemic outbreak, find the probability of at most 5 diseased animals found in a flock of 200 animals, if experience shows that 2% of such animals are diseased.

[(2+3)+2+3]

3. Evidence suggests that the hydrolysis of the GTP cap of a microtubule occurs at a rate constant k_{hydro} that is independent of monomer concentration and has units of $[time]^{-1}$, just like k_{off} . Let us evaluate the growth of the GTP cap for a specific tubulin concentration.

- (a) Show that the number of tubulin dimers in the cap grows like $\frac{dn_{cap}^+}{dt} = \frac{dn^+}{dt} k_{hydro}$ assuming that the monomer solution is pure GTP-tubulin.
- (b) Calculate $\frac{dn^+}{dt}$ from Table given below if $[M]=20~\mu M$
- (c) Assume, without experimental justification, that $k_{hydro} = 30s^{-1}$. Plot the filament length, and the cap length, as a function of time until the filament reaches $10\mu M$ assuming that the negative end does not change with time (a tubulin dimer is about 8 nm long).
 - units are $(\mu M \cdot sec)^{-1}$ for k_{on} , sec⁻¹ for k_{on} , and μM for $[M]_c$

monomer in solution	k _{or} + (plus	k₀+ end)	k _∞ : (minu	k _{or} is end)	[M] _c +	$[M]_c$
microtubules growing (GTP) rapid disassembly	8.9±0.3 0	44±14 733±23	4.3±0.3 0	23±9 915±72	4.9±1.6 not appl	5.3±2.1 icable

[4+3+3]

- For molecules and assemblies that move passively within the cell, the associated time scale can be estimated from features of diffusion.
 - (a) For a protein with a 5 nm diameter, compute the diffusion constant in water using Stokes-Einstein equation. Take $k_BT = 4$ pN.nm, viscosity of water 10^{-3} Pa.s.
 - (b) What is the time scale for a protein to diffuse within E.coli? The size of the E.coli is $\sim 1 \ \mu m$.
 - (c) Find the diffusion time for the squid giant axon, which has a length of the order of 10 cm.
 - (d) Note down the key conclusion from the estimation of the above time scales and how it correlates with the activity of molecular motors.

[2+2+2+3]

PART - B (Full marks 50) Answer all questions

- 5. True of flase Explain (1+1 each, total marks 20)
 - (a) In E. coli, where the replication fork travels at 500 nucleotide pairs per second, the DNA ahead of the fork must rotate at nearly 3000 revolutions per minute.
 - (b) Since introns are largely genetic "junk," they do not have to be removed precisely from the primary transcript during RNA splicing.
 - (c) Lipid bilayer is permeable to hydrophobic molecules
 - (d) Both the layers of the plasma membrane of the cells are composed of identical lipids
 - (e) There exists a direct transport of molecule between mitochondria and the exterior of the cell
 - (f) Nuclear envelop is made up of TWO lipid bilayer
 - (g) Signal sequences are often found at the C terminal of the protein

- (h) The translocation complex on ER can transport proteins to two distinct destination 1)across the membrane and 2) transfer it in the lipid bilayer
- (i) Post-translational translocation require ATP hydolysis
- (j) Co-translational translocation require ATP hydolysis

6. Write the correct choice (2 each, total marks 10)

- (a) Which of the following optical microscopy techniques have best z-resolution (smallest resolution)
 - A) Confocal B) Fluorescence microscopy C) TIRF D) Two photon imaging
- (b) What is the phase difference between wave V1 and V2, in the following figure?

- A) 45Deg B) 90Deg C) 135Deg D) 180Deg
- (c) Which of the following will not modify the wave-front?
 - A) Prism B) Concave lens C) Convex lens D) Rectangular Glass slab
- (d) Which of the following improves the resolution (r) in optical imaging (small value of r)?
 - A) Increasing the wavelength of light B) Increasing the diameter of the lens
 - C) Increasing the size of the object D) increasing the refractive index of the object
- (e) Which of the following improves the resolution (r) in confocal imaging?
 - A) decreasing the pin hole B) increasing the pin hole
 - C) increasing the gain of the detector D) increasing the laser paper

7. Answer any 4 (5 marks each, total marks 20)

- (a) Describe the process of co-translational translocation in ER.
- (b) During vesicular mode of protein sorting, How does the vesicle get enriched of cargo molecules?
- (c) Compare the optical diagram of a bright field microscope with fluorescence microscope
- (d) Describe the working of Phase contrast microscopy
- (e) Describe the working of DIC microscopy
- (f) Describe the working of Confocal microscope