Chapter 4: Determinants

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 4.1: Determinants of Order 2

Exercise 4.1.1. Label the following statements as being true or false.

- (a) The function $\det: M_{2\times 2}(F) \to F$ is a linear transformation.
- (b) The determinant of a 2×2 matrix is a linear function of each row of the matrix when the other row is held fixed.
- (c) If $A \in M_{2\times 2}(F)$ and det(A) = 0, then A is invertible.
- (d) If u and v are vectors in \mathbb{R}^2 emanating from the origin, then the area of the parallelogram having u and v as adjacent side is

$$\det \begin{pmatrix} u \\ v \end{pmatrix}$$
.

(e) A coordinate system is right-handed if and only if its orientation equals 1.

Proof of (a). False. Example 4.1.1, or take

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F) \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then $det(A + B) = det(I_2) = 1 \neq 0 = 0 + 0 = det(A) + det(B)$. \square

Proof of (b). True. Proposition 4.1. \square

Proof of (c). False. Proposition 4.2. \square

 $Proof\ of\ (d).$ False. The area should be

$$O\begin{pmatrix} u \\ v \end{pmatrix} \cdot \det \begin{pmatrix} u \\ v \end{pmatrix} = \left| \det \begin{pmatrix} u \\ v \end{pmatrix} \right|.$$

Proof of (e). True. See Exercise 4.1.12. \square

Exercise 4.1.2. Compute the determinants of the following elements of $M_{2\times 2}(\mathbb{R})$.

(a)
$$\begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 8 & 0 \\ 3 & -1 \end{pmatrix}$$

Proof of (a).

$$\det \begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix} = 6 \cdot 4 - (-3) \cdot 2 = 24 + 6 = 30.$$

Proof of (b).

$$\det \begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix} = (-5) \cdot 1 - 2 \cdot 6 = -5 - 12 = -17.$$

Proof of (c).

$$\det \begin{pmatrix} 8 & 0 \\ 3 & -1 \end{pmatrix} = 8 \cdot (-1) - 0 \cdot 3 = -8.$$

Exercise 4.1.3. Compute the determinants of the following elements of $M_{2\times 2}(\mathbb{C})$.

(a)
$$\begin{pmatrix} -1+i & 1-4i \\ 3+2i & 2-3i \end{pmatrix}$$

(b)
$$\begin{pmatrix} 5 - 2i & 6 + 4i \\ -3 + i & 7i \end{pmatrix}$$

$$(c) \begin{pmatrix} 2i & 3\\ 4 & 6i \end{pmatrix}$$

Proof of (a).

$$\det \begin{pmatrix} -1+i & 1-4i \\ 3+2i & 2-3i \end{pmatrix} = (-1+i) \cdot (2-3i) - (1-4i) \cdot (3+2i)$$
$$= (1+5i) - (11-10i)$$
$$= -10+15i.$$

Proof of (b).

$$\det \begin{pmatrix} 5 - 2i & 6 + 4i \\ -3 + i & 7i \end{pmatrix} = (5 - 2i) \cdot (7i) - (6 + 4i) \cdot (-3 + i)$$
$$= (14 + 35i) - (-22 - 6i)$$
$$= 36 + 41i.$$

Proof of (c).

$$\det \begin{pmatrix} 2i & 3\\ 4 & 6i \end{pmatrix} = (2i) \cdot (6i) - 3 \cdot 4 = -12 - 12 = -24.$$

Exercise 4.1.4. For each of the following pairs of vectors u and v in \mathbb{R}^2 , compute the area of the parallelogram determined by u and v.

- (a) u = (3, -2) and v = (2, 5)
- (b) u = (1,3) and v = (-3,1)
- (c) u = (4, -1) and v = (-6, -2)
- (d) u = (3,4) and v = (2,-6)

Proof of (a).

$$\left| \det \begin{pmatrix} 3 & -2 \\ 2 & 5 \end{pmatrix} \right| = |19| = 19.$$

Proof of (b).

$$\left| \det \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} \right| = |10| = 10.$$

Proof of (c).

$$\left| \det \begin{pmatrix} 4 & -1 \\ -6 & -2 \end{pmatrix} \right| = \left| -14 \right| = 14.$$

Proof of (d).

$$\left| \det \begin{pmatrix} 3 & 4 \\ 2 & -6 \end{pmatrix} \right| = \left| -26 \right| = 26.$$

Exercise 4.1.5. Prove that if B is the matrix obtained by interchanging the rows of a 2×2 matrix A, then det(B) = -det(A).

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then

$$B = \begin{pmatrix} c & d \\ a & b \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then det(B) = cb - ad = -(ad - bc) = -det(A). \square

Exercise 4.1.6. Prove that if the two columns of $A \in M_{2\times 2}(F)$ are identical, then det(A) = 0.

Proof. By assumption, write

$$A = \begin{pmatrix} a & a \\ c & c \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then det(A) = ac - ac = 0. \square

Exercise 4.1.7. Prove that for any $A \in M_{2\times 2}(F)$, $det(A^t) = det(A)$.

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F),$$

then

$$A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

So $det(A) = ad - bc = ad - cb = det(A^t)$. \square

Exercise 4.1.8. Prove that if $A \in M_{2\times 2}(F)$ is upper triangular, then det(A) equals the product of the diagonal entries of A.

Proof. Write

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F)$$

since A is upper triangular. Then $\det(A) = ad$, which is equal to the product of the diagonal entries, a and d, of A. \square

Exercise 4.1.9. Prove that for any $A, B \in \mathsf{M}_{2 \times 2}(F)$ we have $\det(AB) = \det(A) \cdot \det(B)$.

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F),$$

$$B = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then

$$AB = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

A direct calculation shows

$$\begin{aligned} \det(AB) &= (ae + bg)(cf + dh) - (af + bh)(ce + dg) \\ &= (acef + adeh + bcfg + bdgh) - (acef + adfg + bceh + bdgh) \\ &= adeh + bcfg - adfg - bceh \\ &= (ad - bc)(eh - fg) \\ &= \det(A)\det(B). \end{aligned}$$

Exercise 4.1.10. The classical adjoint of a 2×2 matrix $A \in M_{2\times 2}(F)$ is the matrix

$$C = \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}.$$

Prove

- (a) $CA = AC = [\det(A)]I$.
- (b) det(C) = det(A).
- (c) The classical adjoint of A^t is C^t .
- (d) If A is invertible, then $A^{-1} = [\det(A)]^{-1}C$.

Note that

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

Proof of (a).

$$CA = \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{22}A_{11} - A_{12}A_{21} & A_{22}A_{12} - A_{12}A_{22} \\ -A_{21}A_{11} + A_{11}A_{21} & -A_{21}A_{12} + A_{11}A_{22} \end{pmatrix}$$

$$= \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$

$$= [\det(A)]I.$$

$$AC = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}A_{22} - A_{12}A_{21} & -A_{11}A_{12} + A_{12}A_{11} \\ A_{21}A_{22} - A_{22}A_{21} & -A_{21}A_{12} + A_{22}A_{11} \end{pmatrix}$$

$$= \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$

$$= [\det(A)]I.$$

Proof of (b).

$$det(C) = A_{22}A_{11} - (-A_{12})(-A_{21})$$
$$= A_{11}A_{22} - A_{12}A_{21}$$
$$= det(A).$$

Proof of (c).

$$A^t = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}.$$

The classical adjoint of A^t is

$$\begin{pmatrix} A_{22} & -A_{21} \\ -A_{12} & A_{11} \end{pmatrix} = C^t.$$

Proof of (d). Proposition 4.2. \square

Exercise 4.1.11. Let $\delta: M_{2\times 2}(F) \to F$ be a function with the following three properties.

- (i) δ is a linear function of each row of the matrix when the other row is held fixed.
- (ii) If the two rows of $A \in M_{2\times 2}(F)$ are identical, then $\delta(A) = 0$.
- (iii) If I is the 2×2 identity matrix, then $\delta(I) = 1$.

Prove that $\delta(A) = \det(A)$ for all $A \in \mathsf{M}_{2 \times 2}(F)$. (This result is generalized in Section 4.5.)

Proof. Write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

(1) If u, v are elements of F^2 and k is a scalar, then

$$\delta \begin{pmatrix} u \\ v + ku \end{pmatrix} = \delta \begin{pmatrix} u + kv \\ v \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix}.$$

In fact,

$$\delta \begin{pmatrix} u \\ v + ku \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix} + \delta \begin{pmatrix} u \\ ku \end{pmatrix} \qquad \text{(Property (i))}$$

$$= \delta \begin{pmatrix} u \\ v \end{pmatrix} + k\delta \begin{pmatrix} u \\ u \end{pmatrix} \qquad \text{(Property (ii))}$$

$$= \delta \begin{pmatrix} u \\ v \end{pmatrix}. \qquad \text{(Property (ii))}$$

Similarly,
$$\delta \begin{pmatrix} u + kv \\ v \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix}$$
.

(2) If u, v are elements of F^2 , then

$$\delta \begin{pmatrix} u \\ v \end{pmatrix} = -\delta \begin{pmatrix} v \\ u \end{pmatrix}.$$

In fact,

$$0 = \delta \begin{pmatrix} u + v \\ u + v \end{pmatrix}$$
 (Property (ii))

$$= \delta \begin{pmatrix} u + v \\ u \end{pmatrix} + \delta \begin{pmatrix} u + v \\ v \end{pmatrix}$$
 (Property (i))

$$= \delta \begin{pmatrix} v \\ u \end{pmatrix} + \delta \begin{pmatrix} u \\ v \end{pmatrix}.$$
 ((1))

(3) If v is an element of F^2 , then

$$\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = 0.$$

In fact,

$$\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = \delta \begin{pmatrix} 0+0 \\ v \end{pmatrix}$$
$$= \delta \begin{pmatrix} 0 \\ v \end{pmatrix} + \delta \begin{pmatrix} 0 \\ v \end{pmatrix}.$$
(Property (i))

In particular, $\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = 0 = \det \begin{pmatrix} 0 \\ v \end{pmatrix}$.

(4) To show $\delta(A) = \det(A)$, we consider three possible cases about the first row: $A_{11} \neq 0$, $A_{12} \neq 0$, or $A_{11} = A_{12} = 0$. The case $A_{11} = A_{12} = 0$ is proved in (3). We prove the rest two cases in (5) and (6). Write

$$u = (A_{11}, A_{12})$$
 and $v = (A_{21}, A_{22})$.

(5) Show that $\delta(A) = \det(A)$ if $A_{11} \neq 0$. So

$$\delta(A) = \delta \begin{pmatrix} u \\ v \end{pmatrix}$$

$$= \delta \begin{pmatrix} u \\ v - \frac{A_{21}}{A_{11}} u \end{pmatrix}$$

$$= \delta \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix}$$

$$= \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} A_{11} & A_{12} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} A_{11} & 0 \\ 0 & 1 \end{pmatrix}$$

$$= A_{11} \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \det(A)\delta(I)$$

$$= \det(A).$$
(Property (iii))

(6) Show that $\delta(A) = \det(A)$ if $A_{12} \neq 0$. So

$$\begin{split} \delta(A) &= \delta \begin{pmatrix} u \\ v - \frac{A_{22}}{A_{12}} u \end{pmatrix} & ((1)) \\ &= \delta \begin{pmatrix} A_{11} & A_{12} \\ A_{21} - \frac{A_{22}A_{11}}{A_{12}} & 0 \end{pmatrix} & (Property (i)) \\ &= \begin{pmatrix} A_{21} - \frac{A_{22}A_{11}}{A_{12}} \end{pmatrix} \delta \begin{pmatrix} A_{11} & A_{12} \\ 1 & 0 \end{pmatrix} & (Property (i)) \\ &= \begin{pmatrix} A_{21} - \frac{A_{22}A_{11}}{A_{12}} \end{pmatrix} \delta \begin{pmatrix} 0 & A_{12} \\ 1 & 0 \end{pmatrix} & (Property (i)) \\ &= A_{12} \begin{pmatrix} A_{21} - \frac{A_{22}A_{11}}{A_{12}} \end{pmatrix} \delta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & (Property (i)) \\ &= -A_{12} \begin{pmatrix} A_{21} - \frac{A_{22}A_{11}}{A_{12}} \end{pmatrix} \delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & (2)) \\ &= \det(A)\delta(I) \\ &= \det(A). & (Property (iii)) \end{split}$$

Exercise 4.1.12. Let $\{u,v\}$ be an ordered basis for \mathbb{R}^2 . Prove that

$$O\binom{u}{v} = 1$$

if and only if $\{u,v\}$ forms a right-handed coordinate system. (Hint: Recall the definition of a rotation given in Example 2.1.2.)

If $\beta = \{u, v\}$ is an ordered basis for \mathbb{R}^2 , define the orientation of β as

$$O\binom{u}{v} = \frac{\det\binom{u}{v}}{\left|\det\binom{u}{v}\right|}.$$

A coordinate system $\{u, v\}$ is called right-handed if u can be rotated in a counterclockwise direction through an angle θ $(0 < \theta < \pi)$ to coincide with v.

Example 2.1.2. For any angle θ , define $\mathsf{T}_{\theta}:\mathbb{R}^2\to\mathbb{R}^2$ by

$$\mathsf{T}_{\theta}(a_1, a_2) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta).$$

 T_{θ} is called the rotation by θ .

Proof.

- (1) By Example 2.1.2, for any coordinate system $\{u, v\}$, there is $0 < \theta < 2\pi$ and $\alpha > 0$ such that $v = \alpha \mathsf{T}_{\theta}(u)$. Write $u = (u_1, u_2) \in \mathbb{R}^2, v = (v_1, v_2) \in \mathbb{R}^2$.
- (2) Calculate $\det \begin{pmatrix} u \\ v \end{pmatrix}$.

$$\det \begin{pmatrix} u \\ v \end{pmatrix} = \det \begin{pmatrix} u \\ \alpha \mathsf{T}_{\theta}(u) \end{pmatrix}$$

$$= \alpha \det \begin{pmatrix} u \\ \mathsf{T}_{\theta}(u) \end{pmatrix}$$

$$= \alpha \det \begin{pmatrix} u_1 & u_2 \\ u_1 \cos \theta - u_2 \sin \theta & u_1 \sin \theta + u_2 \cos \theta \end{pmatrix}$$

$$= \alpha (u_1^2 + u_2^2) \sin \theta.$$

(3)

$$\begin{split} O\begin{pmatrix} u \\ v \end{pmatrix} &= 1 \Longleftrightarrow \det \begin{pmatrix} u \\ v \end{pmatrix} = \alpha(u_1^2 + u_2^2) \sin \theta > 0 \\ &\iff \sin \theta > 0 \\ &\iff 0 < \theta < \pi \\ &\iff \{u,v\} \text{ is a right-handed coordinate system.} \end{split}$$

Section 4.2: Determinants of Order n

Exercise 4.2.2. Find the value of k that satisfies the following equation.

$$\det \begin{pmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

Proof (Exercise 4.2.25). By Exercise 4.2.25, $\det(3A) = 3^3 \det(A)$ for any $A \in \mathsf{M}_{3\times 3}(F)$, or $k=3^3=27$. \square

Exercise 4.2.26. Let $A \in M_{n \times n}(F)$. Under what conditions is $\det(-A) = \det(A)$?

Proof (Exercise 4.2.25). By Exercise 4.2.25, $\det(-A) = (-1)^n \det(A)$ for any $A \in \mathsf{M}_{n \times n}(F)$. That is, n is even if and only if $\det(-A) = \det(A)$. \square

Section 4.3: Properties of Determinants

Exercise 4.3.9. A matrix $M \in M_{n \times n}(\mathbb{C})$ is called nilpotent if, for some positive integer k, $M^k = O$, where O is the $n \times n$ zero matrix. Prove that if M is nilpotent, then $\det(M) = 0$.

Proof. Given any nilpotent matrix $M \in \mathsf{M}_{n \times n}(\mathbb{C})$ such that $M^k = O$ for some $k \in \mathbb{Z}^+$.

$$M^k = O \Longrightarrow \det(M^k) = \det(O)$$

 $\Longleftrightarrow \det(M)^k = 0$ (Theorem 4.7)
 $\Longleftrightarrow \det(M) = 0.$

Exercise 4.3.11. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $QQ^t = I$. Prove that if Q is orthogonal, then $det(Q) = \pm 1$.

Proof. By the orthogonality of Q, $QQ^t = I$. So

$$\begin{split} QQ^t &= I \Longrightarrow \det \left(QQ^t\right) = \det(I) \\ &\iff \det(Q) \det \left(Q^t\right) = \det(I) \\ &\iff \det(Q) \det(Q) = \det(I) \end{split} \qquad \text{(Theorem 4.7)} \\ &\iff \det(Q)^2 = 1 \\ &\iff \det(Q)^2 = 1 \end{aligned} \qquad \text{(Example 4.2.4)}$$

Exercise 4.3.14. Prove that if $A, B \in M_{n \times n}(F)$ are similar, then $\det(A) = \det(B)$.

Proof. Since A, B are similar, there exists an invertible matrix Q such that

$$\begin{split} B &= Q^{-1}AQ. \text{ So} \\ &\det(B) = \det\left(Q^{-1}AQ\right) \\ &= \det\left(Q^{-1}\right) \det(A) \det(Q) \qquad \qquad \text{(Theorem 4.7)} \\ &= \det(Q) \det\left(Q^{-1}\right) \det(A) \qquad \qquad \text{(F is field)} \\ &= \det\left(QQ^{-1}\right) \det(A) \qquad \qquad \text{(Theorem 4.7)} \\ &= \det(I) \det(A) \qquad \qquad \text{(Example 4.2.4)} \\ &= \det(A). \end{split}$$