ADT : Proofs

October 15rd 2015

David Lawrence

Edmundo Lopez

Alexis Marechal

Today we will study the relation between a model and its specification in the domain of AADTs, and two methodologies to prove theorems in this domain: equational and inductive proofs.

Consider the following AlPiNA ADT for the natural numbers :

```
ADT nat
  Sorts
    nat;
  Generators
    zero: nat;
    suc : nat -> nat;
  Operations
    +: nat, nat -> nat;
  Axioms
   x + zero = x;
10
   x + suc(y) = suc(x+y);
11
  Variables
12
    x : nat;
13
    y: nat;
```

Exercise 1: Algebraic specification

1. Given the previous AlPiNA code, define formally the algebraic specification that it represent.

Exercise $2:\Sigma$ algebras and models

1. Is the well known set of natural numbers $\mathbb N$ a Σ -algebra, if Σ is the signature of the above specification?

Exercise 3: Deductive proof (equational proof)

use only axioms and deduct from...

1. Make a *detailed* proof of the following theorem :

```
x + suc(zero) = suc(x)
```


and theorem basic

Exercise 4: Inductive proof

Consider the following theorem:

```
suc (zero) + x = suc(x)
```

- 1. Is it possible to prove it in the same way as the theorem from exercise 3? Why?
- 2. (Finitely generated by the generators algebra) Make a detailed proof of this theorem by taking into account that \mathbb{N} is finitely generated by the generators of the AADT.
- 3. (Finitely generated algebra) How would you do this proof if \mathbb{N} was only finitely generated?

Exercise 5: Another algebra

Consider a new set that we will call $\mathbb{N}' = \mathbb{N} \cup \{*, *'\}$, with a unary operation $suc^{\mathbb{N}'}$ and a binary operation $+^{\mathbb{N}'}$ defined respectively in tables 1 and 2.

$suc^{\mathbb{N}'}(n)$	
$n \in \mathbb{N}$	n+1
n = *	*
n = *'	*'

Table 1 – Behavior of the operation $suc^{\mathbb{N}'}$ in \mathbb{N}' .

$+^{\mathbb{N}'}(m,n)$	$n \in \mathbb{N}$	n = *	n = *'
$m \in \mathbb{N}$	m+n	*'	*
m = *	*	*	*
m = *'	*'	*'	*′

Table 2 – Behavior of the operation $+^{\mathbb{N}'}$ in \mathbb{N}' .

For instance, these tables indicate that:

For instance, these tables indicate that :
$$suc^{\mathbb{N}'}(2) = 3$$
, $suc^{\mathbb{N}'}(*) = *$ and $suc^{\mathbb{N}'}(*') = *'$, $+^{\mathbb{N}'}(2,3) = 5$, $+^{\mathbb{N}'}(1,*) = *'$, $+^{\mathbb{N}'}(*,1) = *$ and $+^{\mathbb{N}'}(*',*) = *'$.

- 1. (Model) Is this new set \mathbb{N}' a model of the AADT nat?
- 2. (Proofs) Make the proofs in the exercises 3 and 4 for \mathbb{N}' .

