

General entropic constraints on CSS codes for magic distillation protocols

Rhea Alexander^{1,2}, Si Gvirtz-Chen², Nick Koukoulekidis¹, & David Jennings^{1,2,3}

Imperial College London¹, University of Leeds², & PsiQuantum³

arXiv:2211.07535

Outline

- Setting the scene
 Magic distillation & majorization on discrete phase space (odd d)
- II. A (restricted) stat mech framework for qubit magic Entropic conditions for generic completely CSS-preserving channels
- III. **Application to protocols based on CSS codes** *Upper and lower bounds on code parameters*

Magic state injection model

magic $\{|m\rangle\}$ + stabilizer operations \mathcal{O}_{STAB} = universal quantum computing

Problem: magic states noisy

Solution: protocol to purify

Magic state distillation

- Problem: Existing protocols costly!
- Can we do better?
- Want constraints on resource cost/ overhead ($\approx n$)
- **Prior work:** Lower bounds on n from monotones¹ or majorization²

¹Fang and Liu; Seddon et al.; Regula (2020; 2021; 2022)

²Koukoulekidis and Jennings (2022)

Majorization on discrete phase

space

Discrete phase space

• channel
$$\mathcal{E} \Leftrightarrow^3$$
 matrix $W_{\mathcal{E}} = d^2W_{J(\mathcal{E})}$:

$$W_{\mathcal{E}(\rho)}(\mathbf{y}) = \sum_{\mathbf{x}} W_{\mathcal{E}}(\mathbf{y}|\mathbf{x})W_{\rho}(\mathbf{x})$$

Odd d:

ho magic \Rightarrow negativity in $W_{
ho}^{4}$

$$\mathcal{E} \in \mathcal{O}_{SO} \Rightarrow W_{\mathcal{E}}$$
 stochastic

i.e.,
$$W_{\mathcal{E}}(\mathbf{y}|\mathbf{x}) \geq 0$$
, $\forall \mathbf{x}, \mathbf{y} \in \mathcal{P}_d$

³Wang, Wilde, and Su 2019.

⁴Veitch, Ferrie, et al. 2012.

Relative majorization

• c.f. thermodynamics: stochasic processing \sim "free energy non-increasing" 5

⁵Brandao et al. (2015)

Framework for MSQC in odd d

• Extends 5,6 to quasi-distributions for $\alpha \in \mathcal{A}$

Stochastic (stabilizer) processing of quasi-dristributions (magic)

relative to some distinguished reference process

But: most algorithms use qubits!

⁵Koukoulekidis and Jennings (2022)

 $^{{}^6\}mathcal{A} := \{ \frac{2a}{2b-1} : a \ge b \ge 1 \}$

Q: Can we extend to qubits?

Problem with Qubits

- Known difficulties constructing W_{ρ} with "nice properties"
- · There is no representation satisfying

$$W_{\mathcal{E}_2\otimes\mathcal{E}_1}=W_{\mathcal{E}_2}\otimes W_{\mathcal{E}_1}$$
 and $W_{\mathcal{E}_2\circ\mathcal{E}_1}=W_{\mathcal{E}_2}W_{\mathcal{E}_1}$,

such that all $\mathcal{O}_{\textit{STAB}}$ are stochastic 7

⁷Schmid et al. (2022)

Approach

1) Restrict to distillation protocols based on⁸

 $\mathcal{O}_{css} \coloneqq \textit{completely CSS-preserving operations}$

2) Construct representation W_{ρ} :

$$\mathcal{E} \in \mathcal{O}_{css} \implies W_{\mathcal{E}}$$
 stochastic

Penalty: W_{ρ} complex-valued unless ρ rebit (e.g. $|H\rangle \stackrel{\mathcal{C}}{\leftrightarrow} T|+\rangle$)

⁸Delfosse et al. 2015; Catani and Browne 2018.

Completely CSS-preserving operations?

- \mathcal{O}_{css} + rebit magic states = universal quantum computing⁹
- Many existing distillation protocols based on \mathcal{O}_{css}

e.g. CSS code projections (seminal 15-1 protocol¹⁰)

⁹Delfosse et al. (2015)

¹⁰Bravyi and Kitaev (2005)

CSS code projections

In practice: project onto codespace of [[n, k, D]] CSS code¹¹ C

(X-type/ Z-type generators only)

¹¹Bravyi and Kitaev (2005) Campbell and Browne (2009)

Choosing reference process

 $\begin{array}{lll} \textbf{Intuition:} & \mathsf{Code} & \mathsf{projection} \\ \mathsf{protocols} & \mathsf{are} & \mathit{sub-unital} \\ (\mathsf{since}, \Pi = \mathbb{I}_{l}) & & \end{array}$

Entropic constraints

Result: If an [[n, k, D]] CSS code projection $\rho^{\otimes n} \mapsto p\rho'$ exists, then $\Delta D_{\alpha} \leq 0$, $\forall \alpha \in A$.

$$\Rightarrow$$
 Lower (n_L) and upper (n_U) bounds on n

Can compute numerically using root-finding methods, or...

$$\Delta D_{lpha} \coloneqq D_{lpha}(W_{
ho_{
ho}}||W_{ au_{
ho}}) - nD_{lpha}(W_{
ho}||W_{rac{1}{2}})$$

Analytic upper and lower bounds

Theorem 1: Bounds on resource cost

Let ρ, ψ be rebit magic states. If $\rho^{\otimes n} \mapsto p \rho'$, where $\|\rho' - \psi^{\otimes k}\|_1 \le \epsilon'$, under an [n, k, D] CSS code projection, then for any $\alpha \in \mathcal{A}$

$$\begin{split} n &\leq \frac{k \left[H_{\alpha}(W_{\psi}) - 1\right] + h_{\alpha}(\frac{p}{1 + 4\epsilon'})}{H_{\alpha}(W_{\rho}) - 1}, \quad (\text{if } H_{\alpha}(W_{\rho}) > 1), \\ n &\geq \frac{k \left[1 - H_{\alpha}(W_{\psi})\right] - h_{\alpha}(\frac{p}{1 + 4\epsilon'})}{\left[1 - H_{\alpha}(W_{\rho})\right]}, \quad (\text{if } H_{\alpha}(W_{\rho}) < 1). \end{split}$$

Note: extends to odd d for generic stabilizer codes for $1 \mapsto \log d$

Lower bound comparison

Task: Distill perfect $|{\it H}\rangle$ up to $\epsilon'=10^{-9}$ from $\rho(\epsilon)^{\otimes n}$: $\rho(\epsilon)\coloneqq (1-\epsilon)\,|{\it H}\rangle\langle{\it H}|+\epsilon\frac{\mathbb{1}}{2}$

Monotone bounds:

PR = projective robustness¹² GR = generalized robustness¹³ mana¹⁴

¹⁴Regula 2022.

¹⁴Seddon et al. 2021.

¹⁴Veitch, Mousavian, et al. 2014.

Upper bounds

Task: Distill perfect $|H\rangle$ up to output error $\epsilon'=10^{-9}$, from $\rho(\epsilon)^{\otimes n}$

PR = projective robustness¹⁵

(
$$lpha$$
=2 bound) $o n^* \coloneqq 2 rac{\log p - \log[1 + 4\epsilon']}{\log[1 - \epsilon + rac{\epsilon^2}{2}]}$

¹⁵Regula (2022)

Future work

Can we extend to... CV systems, full set of qubit SO, non-rebit magic states?

Recall: for non-rebit magic states (e.g. $T|+\rangle$) our rep W_{ρ} is complex-valued

But: can always define valid quasiprobability distributions from

$$\mathbf{w}_{\rho} := \operatorname{Re}\{W_{\rho}\} \oplus \operatorname{Im}\{W_{\rho}\},$$

 $\mathbf{r}_{\tau} := \frac{1}{2}W_{\tau} \oplus W_{\tau},$

such that:

$$\exists\, \mathcal{E} \in \mathcal{O}_{\mathrm{CSS}}: \quad \mathcal{E}(\rho) = \rho' \text{ and } \mathcal{E}(\tau) = \tau' \quad \implies \quad D_{\alpha}(\mathbf{w}_{\rho}||\mathbf{r}_{\tau}) \geq D_{\alpha}(\mathbf{w}_{\rho'}||\mathbf{r}_{\tau'}).$$

"complex relative majorization": O

Thanks! Questions?

Si Gvirtz-Chen

Nick Koukoulekidis

David Jennings