EEE 391

Basics of Signals and Systems
Announced Quiz I
16 March 2010, Tuesday
closed book and notes
no calculators

Given Time: 60 min

Exam	Total	Points
Part	Points	Received
Q1	30	
Q2	34	
Q3	36	
Total	100	

Allocation of points:

- 1) 30 pts (a) 12 pts (b) 18 pts
- 2) 34 pts (a) 12 pts (b) 22 pts
- 3) 36 pts

Attention:

Read all the questions carefully and $\underline{\text{show your work}}$ for full or partial credit. Justify all your answers.

Given Formulas:

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\left(\frac{2\pi}{T_0}\right)kt} dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\left(\frac{2\pi}{L_0}\right)kt}$$

$$\int_{e}^{-j} \frac{2\pi k}{\sqrt{n}} dt = \begin{cases} \sqrt{n} & k=0 \\ 0 & k\neq 0 \end{cases}$$

$$e^{j\theta} = \cos\theta + j \sin\theta$$

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$sin \theta = cos(\theta - T/z)$$

$$\cos \theta = \sin (\theta + \sqrt[4]{2})$$

$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\sin\left(\frac{T}{6}\right) = \cos\left(\frac{T}{3}\right) = \frac{1}{2}$$

$$\cos\left(\frac{\pi}{2}\right) = 0$$
 $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{37}}{2}$

$$sin(A \pm B) = sinAcosB \pm cosAsinB$$

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_k t + \phi_k) = A\cos(\omega_k t + \phi)$$
where $Ae^{j\phi} = \sum_{k=1}^{N} A_k e^{j\phi_k}$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$

$$\times [n] = \times (nT_s) = \times (\frac{n}{f_s})$$

$$\hat{\omega}_{\ell} = \hat{\omega}_{0} + 2\pi \ell$$

$$\hat{\omega}_{\ell} = -\hat{\omega}_{o} + a\pi \ell$$

EFE 391 Announced Quiz 1:

①
$$x(t) = 3 - 4 \sin(\omega t + \pi) + 5 \cos[\omega t + (\tan^{-1} \frac{4}{3})]$$

- a) Find the phasors representing each of the three terms in the signal.
- b) Find the result using phasor addition and express x(t) in the form $x(t) = A\cos(\omega t + \phi)$.
- ② Some of the Fourier series coefficients of a real and periodic signal x(t) are given as:

$$a_1 = \frac{1}{j}$$
 $a_2 = 2e^{j\frac{\pi}{3}}$ $a_4 = j-1$ where $j = \sqrt{-1}$ It is known that the average value of the signal is -2. The Fourier series coefficients for $1k1 \neq 0, 1, 2, 4$ are all zero a) Write the Fourier series coefficients for $k = -4, -3, -2, -1, 0, 1, 2, 3, 4$

 $R = -4 \cdot (3 \cdot 3) \cdot (3 \cdot$

in polar form.

b) Express the signal x(t) in the form:

$$x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(w_k t + \phi_k)$$

where $w_k = kw_0$ and $w_0 = 4 \text{ rad/s}$.

3 Suppose that a discrete-time signal $\times [n]$ is given by: $\times [n] = 2 \cos(0.3\pi n + \frac{\pi}{4})$

and that it was obtained by sampling a continuous-time signal $x(t) = A \cos(2\pi f_0 t + \phi)$ at a sampling frequency of $f_s = 5 \, \text{kHz}$. Determine three <u>different</u> continuous-time signals that could have produced x[n]. All these continuous-time signals should have a frequency less than $6 \, \text{kHz}$. Be careful in writing the phase part of the signals.