阿布都赛米·阿布都外力 学号: 2020182631 考试号: 180150129

实验名称: 同源模建法构建蛋白质的三维结构

实验目的:

1. 掌握通过同源模建法进行未知跨膜蛋白 P2RY6 的三维结构的构建。

实验原理:

认为蛋白质三级结构的保守性远超过一级序列的保守性。所以根据待建模序列(目标)与一个或多个已知蛋白结构的序列(模板)间的同源性(序列一致性),直接由目标序列的一级结构预测其三级结构。模板蛋白和目标蛋白的序列一致性需要大于 30%,越大建模准确性越有保障。本实验使用 Discovery Studio 软件通过同源模建法进行未知跨膜蛋白 P2RY6 的三维结构的构建。

本实验所用的软件环境:

DS Version: 19.1.0.18287

PP Version: 19.1.0.1963

DS Client Version: 19.1.0.18287

OS Distribution: Windows

OS Version: 10.0.19044

实验步骤:

1. 查找目标蛋白序列: 进入 Uniprot 网站(https://www.uniprot.org),搜索目标蛋白,本实验中搜索 P2RY6。选择 Q15077,点击 Download,再点击 Go,下载目标蛋白序列。

2. Blast 蛋白序列比对:

目标蛋白序列的填入:点击 Discovery Studio 软件上菜单栏上的 File → New → Protein Sequence Window → 填入目标蛋白序列,也就是复制刚才下载好的文件中的文本,粘贴到 Discovery Studio 中的 Protein Sequence Window。结果如下图:

🔣 Protein Sequen	ce Window 🗵																	₽-□
		10	20		30	1 40		50		60	- 1	70		80	1	90	1	00
Untitled1	MEWDNGTO	QALGLPP	TTCVYRE	NFKQLL	LPPVYS	AVLAAGL	PLNICV	ITQIC	TSRRA	LTRTA	VYTLNI	LALADI	LYACS	LPLLI	YNYAQ	GDHWF	FGDFA	CRLVRF
	1 110	12	0 1	130		140	150		160		170		180		190		200	1
Untitled1	LFYANLHG	SILFLTC	ISFQRYL	GICHPL.	APWHKR	GGRRAAW	LVCVAVV	VLAVT	TQCLP	TAIFA	ATGIQE	RNRTVO	YDLSF	PALAT	HYMPY	GMALT	VIGFLI	LPFAAL
	210	220	230		240	1 250		260		270		280		290		300		310
Untitled1	LACYCLLA	CRLCRQD	GPAEPVA	QERRGK.	AARMAV	VVAAAFA	ISFLPF	HITKT	AYLAVI	RSTPG	V P C T V I	EAFA	AYKGT	RPFAS	SANSVL	DPILF	YFTQKI	KFRRRP
	320		330	340		350	360		370		380		390		400	1	410	
Untitled1	HELLQKLT	' A KWQRQG	R															
	111																	

Blast 蛋白序列比对:点击 Discovery Studio 软件上的 Macromolecules >> Create Homology Models >> BLAST Search (NCBI Server)来进行蛋白晶体数据库中相似蛋白的查找。

- 3. 选择合适蛋白模板:本实验选择了 4XNV_A(E-value 最小),右键此选项,点击 Load Selected Structures 进行蛋白模板的载入。
- 4. 创建序列-结构对齐矩阵:点击 Discovery Studio 软件上的 Macromolecules→ Create Homology Models → Align Sequence to Templates 生成模板蛋白与目标蛋白的结构对 齐矩阵。设置参数如下:

5. 蛋白建模:点击 Discovery Studio 软件上的 Macromolecules→ Create Homology Models → Build Homology Models 进行同源模型的建立。设置参数如下:

6. 模型评估:

拉氏图的绘制:点击 Discovery Studio 软件菜单栏上的 Chart → Ramachandran Plot 分别对每个同源模型进行拉氏图的绘制。

Profiles-3D: 点击 Discovery Studio 软件上的 Macromolecules→ Create Homology Models → Verify Protein (Profiles-3D) 分别对每个同源模型进行 Profiles-3D 的绘

制。设置参数如下:

以残基打分作图:选择 AminoAcid 选项卡,点击 Discovery Studio 软件菜单栏上的 Chart → Line Plot, X 轴设为 name, Y 轴设为 verify score, Color by Data Series 设为 Molecule 同时给每个同源模型进行残基打分作图,如下图所示。

实验结果:

1. Blast 蛋白序列比对的结果:

Status: Success Elapsed Time: 00:00:28

Summary: Untitled1 found 100 NCBI BLAST hits.

2. 创建序列-结构对齐矩阵的结果:

Status: Success Elapsed Time: 00:00:13

Summary: Model sequence Untitled1 aligned with 1 template. Sequence identity = 31.0%. Sequence similarity = 48.5%.

3. 蛋白建模的结果:

Status: Success Elapsed Time: 00:01:24

Summary:

Model Scores							
Name	PDF Total Energy	PDF Physical Energy	DOPE Score				
Untitled1.M0003	1219.2933	742.159478000002	-36820.281250				
Untitled1.M0001	1238.3477	754.255235000001	-36606.445313				
Untitled1.M0002	1412.0177	783.25606	-36696.117188				

截图:

4. 模型评估的结果:

(1) 拉氏图:

(2) Profiles-3D:

Status: Success Elapsed Time: 00:00:24

Summary:

Name	Verify Score	Verify Expected High Score	Verify Expected Low Score
Untitled1.M0001	73.93	135.595	61.0176
Untitled1.M0002	76.6	135.595	61.0176
Untitled1.M0003	80.48	135.595	61.0176

讨论:

可以从各模型的 PDF Total Energy 值看出,M0003 模型的可靠性最好。从拉氏图可以看出,三个模型的质量都很好(判断依据:当落于核心区+允许区的氨基酸残基百分比>95%时,表明模型质量较高)。从各模型的 Profiles-3D 评估可以看出,三个模型的可靠性都很好。