Quantum Computing

Nathan Chapman

Central Washington University

CS 530: High Performance Computing, Spring 2024

Why do we care?

- Because it's cool
- It turns out quantum computers can easily break classical cryptography

Qubits - Heads or Tails?

Does a coin show heads or tails?

Qubits - Single

- Classical "Bit"
 - State is true or false
 - Always
- Quantum "Qubit"
 - State is true or false or tralse or frue
 - State is a little bit of both
 - Until measured
 - At measurement, the state is true or false
- Example A simple coin
 - Classical Deterministic via applied force, torque, height, etc.
 - Quantum Probabilistic until measured

Figure: The Bloch sphere representation of a qubit $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$

Qubits - Multiple

- 2 qubits \implies state is a mix between the 4 permutations $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$
- Each permutation has its own probability such that the total is 1
- Bell State: 50% |00> and 50% |11>

Demo: 2 quantum coins with a volunteer

Qubits - Quantum Registers

Classical

- Register of size $N \equiv N$ flip-flops
- Stores 1 permutation of states

Quantum

- Register of size $N \equiv N$ qubits
- Stores ALL 2^N permutations of states

The information density of a quantum computer can be massive

Quantum Computation - Single Qubit Gates

Classical

- Only one non-trivial gate
- $\bullet \ \mathsf{NOT} \mathsf{0} \to \mathsf{1}$

Quantum

- Several non-trivial gates
- NOT (X) swaps the probabilities
- Z flips the sign of the probability on the
 |1⟩ state
- Hadamard "mixes" the pure states toward the other
 - ullet $|0
 angle
 ightarrow 50\% \, |0
 angle$ and $50\% \, |1
 angle$
 - ullet $|1
 angle
 ightarrow 50\%\,|0
 angle$ and $-50\%\,|1
 angle$

Quantum Computation - Single Bit Gates

Figure: A comparison between logic gates that can act on a single classical or quantum bit.

Quantum Computation - Multi-Qubit Gates

Classical

• AND, OR, XOR, NAND, NOR

- XOR isn't invertible
- NAND makes up all gates

Quantum

- Controlled not CNOT
- Uses a control bit and a target
- If control is 1, NOT target, otherwise do nothing
- CNOT is invertible
- CNOT and single-gates make up all multi-gates

Quantum gates need to conserve information

Quantum Computation - Circuits

- Sequence of gates
- Read left to right
- Lines are "wires"
- No loops
- Wires can't connect to conserve information
- Can connect from one bit (black dot) to a target bit (⊕)
- ⊕ represents addition mod 2

Figure: A quantum circuit to swap the states of two given qubits (left) and its compact notation (right).

Quantum Algorithms - The Quantum Fourier Transform

- ullet Classical DFT $y_k \equiv rac{1}{\sqrt{N}} \sum\limits_{i=0}^{N-1} e^{2\pi i j k/N} x_j$
- FFT uses $\Theta(N2^N)$ gates
- ullet Quantum FT $|j
 angle
 ightarrow rac{1}{\sqrt{2^N}} \sum\limits_{k=0}^{2^N-1} e^{2\pi i j k/2^N} \ket{k}$
- QFT uses $\Theta(N^2)$ gates

Figure: A 3-qubit quantum Fourier transform circuit. S, T are the phase and $\pi/8$ gates, respectively.

Quantum computers calculate the Fourier Transform with exponentially fewer operations

Demo - Qiskit

- Many quantum cloud computing platforms
- Most popular is Qiskit by IBM
- Allows jobs to be submitted to IBM's quantum computer with 127 qubits
- Demo

Figure: A real quantum computer

Conclusion

- Quantum computation is different at the most fundamental levels
- A collection of N qubits stores 2^N values
- Every quantum gate can be made of CNOT and single-qubit gates
- Quantum gates conserve information
- A quantum circuit is a sequence of applied quantum gates
- The quantum Fourier Transform requires exponentially fewer operations
- There are real quantum computers in the world and we can use them with Qiskit!

