Proyecto de Machine Learning

Predicción de victorias en partidas de League of Legends

Mapa de juego

3 CALLES 2 JUNGLAS

En las bases y en las calles hay Torres que protegen el avance del equipo contrario

Hay "monstruos" controlados por el juego (Minions, Dragones, Heraldos...)

Eliminar Torres, "monstruos" o jugadores contrarios proporciona Oro y Experiencia

La duración media de las partidas oscila entre los 25-45 minutos.

60% train 20% test 20% validación

Datasets de Kaggle

~ 26.500 registros

Comparativa entre partidas de 10 y 15 minutos

Mismas features para comparativa

Métrica: Accuracy

51 features inciales:
47 features numéricas
4 features categóricas
Sin datos missing

Después de la transformación de las categóricas y la eliminación de un target encubierto -> 61 features

Target balanceado para ambos Datasets

Partidas de 15 min

Partidas de 10 min

Modelos empleados

Random Forest Catboost XGBoost Lightgbm SVC Redes Neuronales....

Modelo	Train_15min	Test_15min	Validación_15min	Train_10min	Test_10min	Validación_10min
M1_randomforest	1.00	0.81	0.81	1.00	0.74	0.73
M1_randomforest_GridS	0.82	0.81	0.81	0.76	0.74	0.73
M1_gradientboosting	0.83	0.81	0.81	0.77	0.74	0.73
M1_gradientboosting_GridS	0.84	0.81	0.81	0.77	0.74	0.73
M1_catboost	0.86	0.81	0.80	0.81	0.73	0.73
M1_catboost_GridS	0.82	0.81	0.81	0.76	0.74	0.73
M1_xgboost	0.99	0.79	0.79	0.95	0.72	0.72
M1_lightgbm	0.91	0.80	0.80	0.86	0.73	0.73
M1_lightgbm_GridS	0.82	0.81	0.81	0.78	0.74	0.73
M1_svc	0.50	0.51	0.49	0.50	0.50	0.50
M1_svc_GridS	1.00	0.51	0.49	1.00	0.50	0.50
M1_linearsvc	0.50	0.51	0.49	0.50	0.50	0.50
M1_linearsvc_GridS	0.50	0.51	0.49	0.50	0.50	0.50

- Eliminar columnas más correlacionadas
- Escalar los datos
- Combinaciones de las anteriores

Modelo Definitivo definitivo

Random Forest

Con los datos casi en bruto (solo tratando las categóricas)

 Sin eliminar columnas correlacionadas ni aplicar un escalado en los datos.

Sin modificar hiperparámetros

Partidas de 15 min

Partidas de 10 min

Predicted label

