DEPARTMENT OF MATHEMATICS MTL 122: Real and Complex Analysis

Mid Semester

converges uniformly to the zero function on [0, 1].

Marks - 40

[5 Marks]

[5 Marks]

All questions are compulsory. Assume everything done in class.

Show that the set of irrational numbers in \mathbb{R} is not a F_{σ} set. [5 Marks] (2.) Let (X_1, d_1) and (X_2, d_2) be compact metric spaces. Define a metric $D((x_1, y_1), (x_2, y_2)) =$ $\max\{d_1(x_1,x_2),d_2(y_1,y_2)\}\ \text{on}\ X_1\times X_2.$ Show that the metric space $(X_1 \times X_2, D)$ is compact. [5 marks] (3.) Let $X = \{a, b, c, d, e, f\}$ and $\mathcal{T} = \{X, \emptyset, \{\underline{a}\}, \{b, c\}, \{a, b, c\}, \{b, c, \underline{d}, e, f\}, \{b, c, e, f\}, \{a, b, c, e, f\}, \{\underline{a}, \underline{d}, e, f\}, \{d, e, f\}, \{e, f\}\}$ be a topology defined on X. Determine the interior, closure and boundary of the set $A = \{a, d\}$ and $B = \{b, e, f\}$ in $(X,\mathcal{T}).$ [5 Marks] (4.) Let (X, T_1) and (Y, T_2) be topological spaces and $f: X \to Y$. Prove that i) If T_1 is discrete than f is continuous. ii) If T_2 is indiscrete than f is continuous. [4 Marks] (5.) Prove that a continuous image of a connected topological space is connected. [5 Marks] (6.) Let $r = \frac{m}{n}$ be the unique representation for every rational (i.e. m and n be coprime). Define $f: \mathbb{R} \to \mathbb{R}$ as f(i) = 0 for all irrational i and $f(r) = \frac{1}{n}$ for all rational r. Show that f is continuous at all irrationals and discontinuous at all rationals. Does there exist any function that is continuous at all rationals and discontinuous at all irrationals? Explain in brief. [6 Marks] (7.) Let $g:[0,1]\to\mathbb{R}$ be continuous with g(1)=0. Show that the sequence $\{x^ng(x)\}$

Prove that a sequence of equicontinuous functions converges uniformly in $\mathcal{C}(X)$.