

planetmath.org

Math for the people, by the people.

proof of Banach fixed point theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfBanachFixedPointTheorem}$

Date of creation 2013-03-22 13:08:34 Last modified on 2013-03-22 13:08:34 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 5

Author asteroid (17536)

Entry type Proof

Classification msc 54A20 Classification msc 47H10 Classification msc 54H25 Let (X, d) be a non-empty, complete metric space, and let T be a contraction mapping on (X, d) with constant q. Pick an arbitrary $x_0 \in X$, and define the sequence $(x_n)_{n=0}^{\infty}$ by $x_n := T^n x_0$. Let $a := d(Tx_0, x_0)$. We first show by induction that for any $n \ge 0$,

$$d(T^n x_0, x_0) \le \frac{1 - q^n}{1 - q} a.$$

For n=0, this is obvious. For any $n\geq 1$, suppose that $d(T^{n-1}x_0,x_0)\leq \frac{1-q^{n-1}}{1-q}a$. Then

$$d(T^{n}x_{0}, x_{0}) \leq d(T^{n}x_{0}, T^{n-1}x_{0}) + d(x_{0}, T^{n-1}x_{0})$$

$$\leq q^{n-1}d(Tx_{0}, x_{0}) + \frac{1 - q^{n-1}}{1 - q}a$$

$$= \frac{q^{n-1} - q^{n}}{1 - q}a + \frac{1 - q^{n-1}}{1 - q}a$$

$$= \frac{1 - q^{n}}{1 - q}a$$

by the triangle inequality and repeated application of the property $d(Tx, Ty) \le qd(x, y)$ of T. By induction, the inequality holds for all $n \ge 0$.

Given any $\epsilon > 0$, it is possible to choose a natural number N such that $\frac{q^n}{1-q}a < \epsilon$ for all $n \geq N$, because $\frac{q^n}{1-q}a \to 0$ as $n \to \infty$. Now, for any $m, n \geq N$ (we may assume that $m \geq n$),

$$d(x_m, x_n) = d(T^m x_0, T^n x_0)$$

$$\leq q^n d(T^{m-n} x_0, x_0)$$

$$\leq q^n \frac{1 - q^{m-n}}{1 - q} a$$

$$< \frac{q^n}{1 - q} a < \epsilon,$$

so the sequence (x_n) is a Cauchy sequence. Because (X,d) is complete, this implies that the sequence has a limit in (X,d); define x^* to be this limit. We now prove that x^* is a fixed point of T. Suppose it is not, then $\delta := d(Tx^*, x^*) > 0$. However, because (x_n) converges to x^* , there is a

natural number N such that $d(x_n, x^*) < \delta/2$ for all $n \geq N$. Then

$$d(Tx^*, x^*) \leq d(Tx^*, x_{N+1}) + d(x^*, x_{N+1})$$

$$\leq qd(x^*, x_N) + d(x^*, x_{N+1})$$

$$< \delta/2 + \delta/2 = \delta,$$

contradiction. So x^* is a fixed point of T. It is also unique. Suppose there is another fixed point x' of T; because $x' \neq x^*$, $d(x', x^*) > 0$. But then

$$d(x', x^*) = d(Tx', Tx^*) \le qd(x', x^*) < d(x', x^*),$$

contradiction. Therefore, x^* is the unique fixed point of T.