```
#include <stdio.h>
int main() {
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        printf("%d\n", i);
    }
    for (int j = 0; j < n; j++) {
        printf("%d\n", j);
    return 0;
}
 #include <stdio.h>
 int main()
  {
      int n;
      scanf("%d", &n);
      int i = 1;
      while (i < n)
  {
          printf("%d\n", i);
          i *= 2;
      }
      return 0;
 }
 #include <stdio.h>
 int main() {
      int n;
```

```
scanf("%d", &n);
      for (int i = 0; i < n; i++) {
          for (int j = 0; j < n; j++) {
              for (int k = 0; k < 100; k++) {
                  printf("%d %d %d\n", i, j, k);
              }
      return 0;
 }
#include <stdio.h>
int main() {
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        for (int j = 1; j < n; j *= 2) {
            printf("%d %d\n", i, j);
        }
    }
    return 0;
}
 #include <stdio.h>
 int main() {
     int n;
     scanf("%d", &n);
      for (int i = 0; i < n; i++) {
          for (int j = 0; j < n; j++) {
              for (int k = 1; k < n; k *= 2) {
```

```
printf("%d %d %d\n", i, j, k);
            }
        }
    return 0;
}
#include <stdio.h>
void process(int start, int end) {
    if (start >= end) return;
    int mid = (start + end) / 2;
    printf("%d %d\n", start, end);
    process(start, mid);
    process(mid + 1, end);
}
int main() {
    int n;
    scanf("%d", &n);
    process(0, n);
    return 0;
}
```

Space complexity analysis

```
31 January 2025
           15:08
#include <stdio.h>
int fibonacci(int n) {
    if (n <= 1) {
        return n;
    return fibonacci(n-1) + fibonacci(n-2);
}
int main() {
    int n = 6;
    printf("Fibonacci of %d: %d\n", n, fibonacci(n));
    return 0;
}
O(n), due to the recursion call stack. The depth of recursion can go up to n.
#include <stdio.h>
int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
        result *= i;
    return result;
}
int main() {
    int n = 5;
    printf("Factorial of %d: %d\n", n, factorial(n));
   return 0;
}
O(1), since only a few variables (result, i) are used and no extra space is allocated.
       #include <stdio.h>
       void reverseArray(int arr[], int n) {
           for (int i = 0; i < n / 2; i++) {
               int temp = arr[i];
               arr[i] = arr[n - i - 1];
               arr[n - i - 1] = temp;
           }
       }
       int main() {
           int arr[] = \{1, 2, 3, 4, 5\};
           int n = 5;
           reverseArray(arr, n);
```

```
return 0;
  }
  \mathrm{O}(\mathrm{1}), since no additional memory is used other than the input
  array and a few variables.
#include <stdio.h>
void copyarray(int arr[], int n) {
    int newArr[n];
    for (int i = 0; i < n; i++) {
        newArr[i] = arr[i];
}
int main() {
    int arr[] = \{1, 2, 3, 4, 5\};
    int n = 5;
    copyarray(arr, n);
    return 0;
}
O(n), since a new array newArr of size n is created
#include <stdio.h>
void mergeArrays(int arr1[], int n1, int arr2[], int n2) {
    int mergedArr[n1 + n2];
    int i = 0, j = 0, k = 0;
    while (i < n1 \&\&\& j < n2) {
        if (arr1[i] < arr2[j]) {</pre>
            mergedArr[k++] = arr1[i++];
        } else {
            mergedArr[k++] = arr2[j++];
    }
    while (i < n1) {
        mergedArr[k++] = arr1[i++];
    while (j < n2) {
        mergedArr[k++] = arr2[j++];
}
int main() {
    int arr1[] = \{1, 3, 5\};
    int arr2[] = \{2, 4, 6\};
    int n1 = 3, n2 = 3;
```

for (int i = 0; i < n; i++) {
 printf("%d ", arr[i]);</pre>

```
mergeArrays(arr1, n1, arr2, n2);
      return 0;
  }
  The size of mergedArr is O(n1 + n2).
#include <stdio.h>
void countFrequency(int arr[], int n) {
    int freq[100] = \{0\};
    for (int i = 0; i < n; i++) {
        freq[arr[i]]++;
    for (int i = 0; i < 100; i++) {
        if (freq[i] > 0) {
            printf("%d occurs %d times\n", i, freq[i]);
    }
}
    int arr[] = {1, 2, 2, 3, 3, 4, 4, 4, 4};
    int n = 10;
    countFrequency(arr, n);
    return 0;
}
Since the freq[100] array is fixed in size and does not depend on n, it is considered
O(1) space. The dominant factor is the input array arr[], making the overall space
complexity O(n) in general.
```

In space complexity: O(n1 + n2) can be simplified to O(n) if both n1 and n2 are on the same order of magnitude.

However, you should consider the specific case:

• If n1 and n2 are the sizes of two different input parameters and are of the same order of magnitude, then the space complexity can be simplified to O(n).

Stable and Inplace

31 January 2025 15:0

- Definition: A sorting algorithm is considered stable if it preserves the relative order of elements with equal keys (i.e., elements that compare equal are kept in their original order in the input).
- Key Point: If two elements A and B have the same value and A appears before B in the input, they will remain in the same order in the output.
- Example: If sorting a list of people by their names, a stable sort will ensure that people with the same name maintain the original order they appeared in the list.
- Example Algorithms:
 - Merge Sort (Stable)
 - Bubble Sort (Stable)
 - Insertion Sort (Stable)
 - Radix Sort (Stable, because it sorts based on individual digits, which preserves relative order)

In-place Sorting

- Definition: A sorting algorithm is in-place if it sorts the list without requiring any extra space (beyond a constant amount). Essentially, it reuses the original input array to store the sorted data.
- Key Point: The sorting is done by modifying the elements of the array, with no significant additional memory overhead (ignoring the memory used for variables).
- Example Algorithms:
 - Quick Sort (In-place)
 - o Heap Sort (In-place)
 - Bubble Sort (In-place)
 - Selection Sort (In-place)
 - o Insertion Sort (In-place

Can an Algorithm be Both Stable and In-place? an algorithm can be both stable and in-place, but not all stable algorithms are in-place and vice versa. For example:

- Bubble Sort is both stable and in-place.
- Quick Sort is in-place but not stable.

Radix sort (stable)

```
31 January 2025 14:55
```

 $2 \rightarrow 1$

```
Step 1: Find the Maximum Number
We first find the maximum number to determine the number of digits.
Max = 802 (3 digits, so we perform 3 passes).
Step 2: Sorting by Least Significant Digit (1s place)
We use Counting Sort to sort based on the 1s place.
170 \rightarrow 0
45 → 5
75 → 5
90 → 0
802 \rightarrow 2
24 \rightarrow 4
2 \rightarrow 2
66 \rightarrow 6
Counting the occurrences of digits (0-9)
0 \rightarrow 2
2 \rightarrow 2
4 → 1
5 \rightarrow 2
6 \rightarrow 1
Placing numbers in sorted order by 1s place
[170, 90, 802, 2, 24, 45, 75, 66]
Sorting by 10th place
170 \rightarrow 7
90 → 9
802 → 0
2 \rightarrow 0
24 \rightarrow 2
45 → 4
75 → 7
66 \rightarrow 6
Counting the occurrences of digits (0-9)
0 \rightarrow 2
```

```
4 → 1
```

 $6 \rightarrow 1$

7 **→** 2

9 **→** 1

Placing numbers in sorted order by 10s place: [802, 2, 24, 45, 66, 170, 75, 90]

 $2 \rightarrow 0$

24 *→* 0

45 *→* 0

66 *→* 0

170 → 1

75 *→* 0

90 → 0

1 → 1

8 **→** 1

Placing numbers in sorted order by 10s place: [2, 24, 45, 66, 75, 90, 170, 802]