POLITECNICO DI TORINO

Laurea Magistrale in Ingegneria Aerospaziale

Tesi Magistrale

Processor in the loop simulations and Code generation for Unmanned Aerial systems

Relatore:		Autore:
Prof.ssa Elisa Capello		Luigi Sante
Co-Relatore:		
Dott. Davide Carmina	ti	
_	Dicembre 2020	_

Sommario

Ringraziamenti

Indice

\mathbf{E}	enco	delle tabelle	5			
El	enco	delle figure	6			
1	Intr	roduzione	7			
2	Letteratura					
3	Sist	ema Quadrirotore	11			
	3.1	Descrizione del drone	12			
	3.2	PX4 Autopilot	13			
		3.2.1 Architettura del software	13			
		3.2.2 Strumenti per lo sviluppo del codice	14			
	3.3	Modello matematico	18			
	3.4	Leggi di controllo	19			
	3.5	Algoritmo di guida	20			
4	Sim	ulazioni	21			
	4.1	Simulazione SITL	22			
	4.2	Conclusioni	23			
Ri	ihling	grafia	25			

Elenco delle tabelle

Elenco delle figure

3.1	Architettura del codice di PX4 Autopilot	16
3.2	Architettura del flight stack di PX4	17

Capitolo 1

Introduzione

La tesi prevede lo sviluppo del software necessario per il governo di un velivolo a pilotaggio remoto. Data la complessità della generazione del software necessario alla guida e controllo dei velivoli di questo tipo, l'approccio più intuitivo, che permette la collaborazione tra diverse figure professionali quali programmatori e ingegneri aerospaziali e meccatronici, risulta essere sicuramente basata sull'utilizzo di una logica progettuale a modelli. Questo tipo di approccio permette di semplificare lo sviluppo del software, concentrando gli sforzi di chi si occupa della creazione della logica di controllo sugli aspetti effettivamente importanti della funzionalità di questo, lasciando la complessità della generazione di algoritmi e le relative basi di dati a chi ha maggiore competenza informatica, attraverso lo sviluppo degli strumenti che automatizzano la generazione del codice e la sua compilazione. Lo sviluppo del software effettuato in questo modo è accompagnato per ogni passaggio dalla corrispettiva fase di verifica: MIL, SIL, PIL, HIL; aspetto derivato proprio dal classica metodologia di sviluppo del software utilizzante il modello denominato a V, e pienamente solidificato in molti settori industriali. Estato scelto di utilizzare per l'implementazione dell'autopilota il dispositivo PixHawk con il relativo firmware PX4. Lo sviluppo del software avviene quinti specificatamente per questo ecosistema di prodotti e relativi firmware. Il codice del firmware è open-source, permettendo la possibilità di studiare e modificare il suo codice, producendo una soluzione che più si adatta alle specifiche. Il codice si trova ad uno stato abbastanza evoluto nello sviluppo, possedendo tutta una serie di funzionalità già sufficiente per gestire un velivolo a pilotaggio remoto. Concentrandosi solo sulla corretta configurazione dell'architettura e dei parametri interni per il software presente è quindi possibile avere un prodotto funzionante. Nel caso però si voglia inserire un personale modello di guida e controllo o di un nuovo stimatore, non sono previsti nativamente strumenti di modellazione, limitando lo sviluppo del software solo alle persone con una competenza informatica alta e obbligando la concentrazione su molti aspetti contemporaneamente, compresi la vera e propria programmazione, incrementando la complessità di progettazione. Oltre alle difficoltà di creazione del codice, la fase di verifica si limita a SIL e PIL, erroneamente chiamata HITL dai creatori del progetto. In modo complementare a PX4, si affianca lo sviluppo di un tool specifico per Simulink. Questo pacchetto software, si occupa di permettere la generazione automatica del codice, oltre che la verifica dello stesso in fase di esecuzione. Simulink già permette nativamente di effettuare delle simulazione MIL, aspetto che trascende dalla implementazione specifica. Grazie al tool si permette la generazione del codice in modo automatico e l'inserimento del modulo prodotto nel firmware. Integrando gli strumenti di compilazione presenti in PX4 si possono quindi effettuare le simulazioni SIL e PIL.

Capitolo 2

Letteratura

Capitolo 3

Sistema Quadrirotore

3.1 Descrizione del drone

3.2 PX4 Autopilot

Il firmware utilizzato nelle simulazioni di software in the loop e processor in the loop è il PX4 Autopilot.

Questo software mette a disposizione diverse funzionalità per avere un sistema di gestione e controllo robusto e affidabile, implementato in diversi tipi di sistemi. L'implementazione non è quindi specifica solo a mezzi aerei di qualsiasi configurazione, ma anche a velicoli di terra, marini e razzi. Il software è open-source e vanta del contributo di parecchi sviluppatori, dagli esperti del settore a contributi di livello accademico. Lo sviluppo open-source permette quindi di aggiungere o modificare le funzionalità messe a disposizione in modo da soddisfare le proprie esigenze e arricchire il progetto generico di nuove funzionalità utili ad altri. Il sistema operativo sulla quale viene eseguito materialmente il codice può essere Nuttx o Linux/MacOS la cui distinzione principale in questa applicazione è solo nella gestione di task e thread.

Il sistema operativo Nuttx è un sistema RTOS (Real-Time Operating System) è svilupato appositamente per implementazioni embedeed. Essendo sviluppato per un contesto specifico ha tutte le caratteristiche necessarie per essere eseguito in sistemi che devono avere prestazioni migliori con poche risorse disponibili. Vengono utilizzati gli standard POSIX e ANSI. Inoltre, sono implementate funzionalità di programmazione concorrenziale per l'esecuzione di processi in parallelo. Le funzionalità del firmware vengono eseguite in questo sistema come task separati e ogni task può eseguire diversi thread. Nell'implementazione su sistemi Linux/MacOS invece i moduli sono eseguiti come thread del processo principale, non c'è quindi una distinzione tra threads e tasks, oltre a non essere ottimizzato per sistemi embedeed.

3.2.1 Architettura del software

Il firmware è principalmente suddiviso in due categorie di moduli:

- Flight stack : composta dalla parte che stima lo stato del sistema e il relativo controllo
- Middleware : composta dalle interfacce che collegano i vari moduli interni di PX4 tra di loro e verso l'esterno, con la possibilità di integrare gli hardware utilizzati.

Il sistema quindi separa le varie funzionalità in moduli separati, eseguiti in modo indipendente che scambiano i dati e comandi tra di loro e con l'esterno attraverso messaggi asincroni. Nella figura 3.1 è riportato lo schema di alto livello del software di PX4 e la sua modularità.

Flight stack

Il flight stack, mostrato in figura 3.2 è l'insieme di moduli che si occupano della stima dello stato del sistema e di tutti le funzionalità per il controllo, la guida e la navigazione. Esiste anche un modulo per interfacciarsi con il volo manuale attraverso radiocomando.

Estimator L'estimator è il modulo che prendendo i dati da uno o più sensori determina lo stato attuale del velivolo. E' possibile selezionare diversi tipi di estimato, quello selezionato in questo caso è uno stimatore con filtro di Kalman.

Controller Si occupa di prendere in input i vari punti della pianificazione e confrontarli con lo stato attuale determinato dell'estimator. In questo modo vengono determinati i segnali di comando di output che saranno poi elaborati dal mixer. Questa funzionalità è implementata da più moduli, suddividendo la dinamica lenta e la dinamica veloce del drone. Verrà disabilitata la sua funzionalità per sostituirla con l'applicazione sviluppata su Simulink.

Mixer Il mixer si occupa di tradurre i segnali del comandi normalizzati di rollio, imbardata, beccheggio e manetta, da consegnare all'hardware che genera gli impulsi pwm utilizzati per il controllo del motore.

Middleware

Questo insieme di moduli si occupa invece di tutte le comunicazioni interne tra processi e tra PX4 e il mondo esterno. É composta principalmente dai driver per i sensori, i canali di comunicazione verso l'esterno e il bus di trasmissione di messaggi attraverso μ ORB e MAVLink. In questo contesto ricade anche la connessione con un simulatore per testare il codice generato nelle varie fasi di validazione.

3.2.2 Strumenti per lo sviluppo del codice

L'intero codice del firmware PX4 viene messo a disposizione attraverso la piattaforma github. Il progetto contiene all'interno le toolchain necessarie per compilare
il sistema nei vari sistemi operativi. Agendo sulle varie possibili configurazioni di
compilazione è possibile modificare e aggiunge delle funzionalità. Modificando le
impostazioni di compilazione si può generare il programma finale da caricare ed
eseguire sull'autopilota. Sono presenti anche delle configurazioni per effettuare l'analisi e la verifica del codice generato attraverso l'utilizzo di un ambiente simulato.
I simulatori che presentano una configurazione di base sono : Gazebo, jMAVSim ,
AirSim, Xplane. Per quanto riguarda questa tesi, verrà utilizzato il software Gazebo sfruttando parzialmente il codice già presente e adottando alcune modifiche.

Nulla vieta comunque di poter collegare un simulatore diverso attraverso la creazione di un interfaccia dati con il firmware. Infatti, la connessione viene effettuata attraverso UDP o seriale, utilizzando su essa il protocollo MAVLink.

Figura 3.1. Architettura del codice di PX4 Autopilot

Figura 3.2. Architettura del flight stack di PX4

3.3 Modello matematico

3.4 Leggi di controllo

3.5 Algoritmo di guida

Capitolo 4

Simulazioni

4.1 Simulazione SITL

4.2 Conclusioni

Bibliografia

- [1] Davide Carminati. «Design and Testing of Indoor UAS Control Techniques». Politecnico di Torino, 2019.
- [2] MAVLink Developer Guide. Dronecode Project. 2020. URL: https://mavlink.io/en/ (visitato il 30/03/2020).
- [3] NuttX. Wikipedia. 2020. URL: https://it.wikipedia.org/wiki/NuttX (visitato il 30/03/2020).
- [4] PX4 Autopilot User Guide (1.8.2). PX4 Dev Team. 2020. URL: https://docs.px4.io/v1.8.0/en/#px4-autopilot-user-guide--180 (visitato il 30/03/2020).
- [5] PX4 Development Guide (v1.8.0). PX4 Dev Team. 2020. URL: https://dev.px4.io/v1.8.0/en/index.html#px4-development-guide-v180 (visitato il 30/03/2020).
- [6] Inc. The MathWorks. PX4 Autopilots Support from Embedded Coder. 2020. URL: https://it.mathworks.com/hardware-support/px4-autopilots.html (visitato il 30/03/2020).