Theory of Automata

Nondeterministic Finite Automata

Dr. Sabina Akhtar

Revision

- Design DFA for
 - L = The set of all the strings whose 3^{rd} last symbol is 0.

NONDETERMINISTIC FINITE AUTOMATA

Nondeterminism

- A *nondeterministic finite automaton* has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.
 - Being non-deterministic

• Each transition function therefore maps to a <u>set</u> of states

Deterministic computation

Nondeterministic computation

 q_1 Start

w = 010110

w = 010110

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - $-\sum ==> a$ finite set of input symbols (alphabet)
 - $q_0 ==> a start state$
 - F ==> set of accepting states
 - $-\delta ==>$ a transition function, which is a mapping between Q x $\sum ==>$ subset of Q
- An NFA is also defined by the 5-tuple:
 - $-\{Q, \sum, q_0, F, \delta\}$

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then *accept w*;
 - Otherwise, reject w.

NFA for strings containing 01

Why is this non-deterministic?

What will happen if at state q₁ an input of 0 is received?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

• Transition table

symbols

	δ	0	1
states	\mathbf{q}_0	$\{q_0,q_1\}$	$\{q_0\}$
	q_1	Φ	$\{q_2\}$
	*q ₂	{q ₂ }	{q ₂ }

- Build an NFA for the following language:
 - L = { w | w ends with 111 as a substring}
- Provide formal specification and transition table as well.

Class Activity

Build an NFA for the following language:

```
L = \{ w \mid w \text{ contains a 1 on its 3}^{rd} \text{ last position} \}
```

 Provide formal specification and transition table as well.

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \emptyset \}$

Extended Delta

 Show the processing of extended delta using the above NFA for 00101.

Extended Delta

1.
$$\hat{\delta}(q_0, \epsilon) = \{q_0\}.$$

Class Activity – Extended delta

		sym	symbols		
	δ	0	1		
states	→ q ₀	$\{q_0,q_1\}$	{q ₀ }		
	q_1	Ф	{q ₂ }		
	*q ₂	{q ₂ }	{q ₂ }		

Show the processing of extended delta using the above transition table.

$$\delta(q_0, 110101) = ?$$

Class Activity

Build an NFA for the following language:

```
L = \{ w \mid w \text{ ends in } 111 \}
```

 Provide formal specification and transition table as well.

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

ε-NFAs have one more column in their transition table

Example of an ε -NFA

L = {w | w is empty, or if non-empty will end in 01}

ε-closure of a state q, ECLOSE(q), is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε-transitions. To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε -closure states as well.

Example of an ε -NFA

L = {w | w is empty, or if non-empty will end in 01}

Simulate for w=101:

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	{q' ₀ ,q ₀ }
	q_0	${q_0,q_1}$	$\{q_0\}$	$\{q_0\}$
	q_1	Ø	{q ₂ }	{q₁}
	*q ₂	Ø	Ø	{q ₂ }

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ϵ -closure states as well.

Example of another ε-NFA

Simulate for w=101, w = 111?

Differences: DFA vs. NFA

DFA

- 1. All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- 3. Accepts input if the last state visited is in F
- 4. Sometimes harder to construct because of the number of states

NFA

- 1. Some transitions could be nondeterministic
 - A transition could lead to a subset of states
- Not all symbol transitions need to be defined explicitly (if undefined will go to an error state this is just a design convenience, not to be confused with "non-determinism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct

References

- Book Chapter 2
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr10/sp r10.html#LECTURE%20NOTES
- Lectures from Washington State University
 - http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/