Aufgabe 1: Netzausschnitt

Daten:

$$U_{q1} = 24 \text{ V}$$
 $U_{q2} = 12 \text{ V}$ $R = 100 \Omega$
 $I_1 = 1 \text{ A}$ $I_2 = 2 \text{ A}$ $I_3 = 3 \text{ A}$

Berechnen Sie die Ströme I_4 , I_5 , I_6 , I_7 und I_8 .

Aufgabe 2: Ersatzspannungsquelle (Thévenin)

Daten:

$$U_{\rm q1} = 24 \, {\rm V}$$
 $I_{\rm q2} = 600 \, {\rm mA}$
 $R_1 = 10 \, \Omega$ $R_2 = 22 \, \Omega$ $R_3 = 33 \, \Omega$
 $R_4 = 47 \, \Omega$ $R_5 = 56 \, \Omega$

Ermitteln Sie die Ersatzspannungsquelle (Thévenin) zwischen den Anschlüssen A und B: Skizze der Schaltung mit Angabe von $U_{\rm qE}$ und $R_{\rm iE}$.

Aufgabe 3: Anpassung

- a) Bestimmen Sie den Lastwiderstand R_L , so dass in ihm die Leistung maximal wird.
- b) Berechnen Sie die maximale Leistung P_{Lmax} in der Last.

Aufgabe 4: Maschenstrom- und Knotenpotenzialverfahren

Berechnen Sie den Strom I mit dem Maschenstrom- und dem Knotenpotenzialverfahren.