Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum I

Úloha č. 9

Název úlohy: Měření modulu pružnosti v tahu

Jméno: Vojtěch Votruba

Datum měření: 2023-05-04

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0-2	
Výsledky a zpracování měření	0–9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 17	

Posuzoval: dne:

Pracovní úkoly

- 1. Změřte modul pružnosti v tahu E oceli z protažení drátu.
- 2. Změřte modul pružnosti v tahu E oceli a mosazi z průhybu trámku.
- 3. Výsledky měření graficky znázorněte, modul pružnosti určete pomocí lineární regrese.

1 Teoretická část

V rámci pracovních úkolů vyjdeme z Hookova zákona formulovaného latinsky jako "Ut tensio, sic vis." Matematicky ho pak vyjadřujeme rovnicí [1]

$$\frac{\Delta l}{l_0} = \varepsilon = \frac{\sigma}{E},\tag{1}$$

kde Δl je prodloužení tělesa, l_0 jeho původní délka, ε relativní prodloužení tělesa v daném směru, σ napětí působící na těleso a E modul pružnosti v tahu. Tento zákon, který platí v tzv. lineární oblasti zatížení, nám fenomenologicky říká, že vyvineme-li na těleso určitý tlak, tak se přímou úměrou relativně prodlouží.

Při měření modulu pružnosti kovového drátu použijeme tzv. zrcátkovou metodu [1]. Drát o průměru d a příslušné délce l_0 je při ní natažen přes kladku o průměru D s přidělaným zrcátkem. Na tento drát je zavěšována známá hmotnost m, která vyvíjí na drát tíhovou sílu $F_q = mg$. Z této tíhové síly napětí σ vypočteme podle vztahu

$$\sigma = \frac{F_g}{S} = \frac{4mg}{\pi d^2}. (2)$$

V důsledku zatížení se pak prodlouží drát a mírně se pootočí kladka, což nám pomocí stupnice (jejíž obraz je pozorován přes zrcátko dalekohledem) ve vzdálenosti L, umožní odečíst otočení a přepočtem tedy zjistit, o kolik se drát prodloužil. S použitím goniometrické aproximace pro malé úhly pak získáváme vztah [1]

$$\Delta l \approx D \frac{\Delta n}{4L},$$
 (3)

kde $\Delta n = n_0 - n$ je rozdíl v dílcích na stupnici před a po zatížení. Tyto výsledky následně složíme, provedeme na datech lineární regresi a vypočteme E podle vztahu.

$$E = \frac{m}{\Delta n} \cdot \frac{16l_0 gL}{\pi d^2 D}.\tag{4}$$

Měření průhybu trámku je realizováno pomocí objektivového mikrometru a dvou břitů, na které je trámek příslušného materiálu položen. Trámek po položení zatížíme veprostřed závažím známé hmotnosti a pozorujeme, jak se prohne. Teoreticky zde platí vztah [1]

$$\Delta y = \frac{mgl^3}{48EI_p},\tag{5}$$

kde Δy je změna průhybu trámku v místě závěsu, m hmotnost závaží, l vzdálenost dvou břitů a $I_p=\frac{ab^3}{12}$ plošný moment setrvačnosti obdélníkového průřezu trámkem – a zde značí šířku průřezu a b výšku.[1] Úpravou vztahu (4) finálně získáváme

$$E = \frac{m}{\Delta y} \cdot \frac{gl^3}{4ab^3},\tag{6}$$

kde znovu data zpracujeme lineární regresí.

2 Výsledky a zpracování měření

2.1 Podmínky pokusu

Měření bylo provedeno v místnosti PI v budově MFF UK na Karlově. Změřené podmínky termo-hygro-barometrem při pokusu byly následující: Teplota t=22,9(4) °C, relativní vlhkost $\Phi=32(3)\%$, tlak p=995(2) hPa. Za přesnou hodnotu místního tíhového zrychlení bylo vzato $g=9,81 \,\mathrm{m\cdot s^{-2}}$.[2]

2.2 Přípravná měření

Při plnění prvního pracovního úkolu bylo potřeba nejprve změřit hodnoty l_0 , d, D a L (viz sekce 1). Pro každou z těchto hodnot bylo vyhotoveno právě 6 měření a jako finální hodnota byl vzat aritmetický průměr. Všechna tato naměřená data s průměry byla vynesena do tabulky 1.

Tabulka 1: Naměřené hodnoty délek l_0 , d, D a L. Na konci tabulky jsou uvedeny aritmetické průměry.

l_0/cm	d/mm	D/mm	L/cm
114,4(3)	0,485(5)	38,55(5)	106,5(3)
114,3(3)	0,495(5)	38,50(5)	106,9(3)
114,2(3)	0,495(5)	38,55(5)	107,0(3)
114,4(3)	0,485(5)	38,45(5)	106,9(3)
114,1(3)	0,490(5)	38,55(5)	107,0(3)
114,3(3)	0,490(5)	38,55(5)	106,8(3)
114,3(3)	0,490(7)	38,52(7)	106,9(4)

Celková nejistota zprůměrovaných hodnot byla složena z nejistoty měřidla σ_B a nejistoty statistické σ_A podle vztahu [3]

$$\sigma^2 = \sigma_A^2 + \sigma_B^2,\tag{7}$$

kde nejistota σ_A byla spočtena standardním vzorcem jako směrodatná odchylka [3] z 6 naměřených hodnot a σ_B byla odhadnuta pro různá měření různě (popsáno níže).

Délky l_0 a L byly změřeny pásmovým měřidlem, které má nejmenší dílek velikosti 1 mm, ale kvůli tomu, že část drátu byla nepřístupná a měřidlo se při rozvinutí prohýbalo, byla zvolena raději vyšší nejistota $\sigma_{l_0,L}=3$ mm. Průměr drátu d byl změřen mikrometrickým šroubem s nejistotou měřidla určenou jako polovina nejmenšího dílku $\sigma_B=0{,}005$ mm.

Průměr kladky D byl změřen posuvným měřítkem s nejistotou měřidla odhadnutou jako velikost celého nejmenšího dílku $\sigma_D = 0.05 \,\mathrm{mm}$.

Pro splnění druhého pracovního úkolu bylo podle rovnice (6) nutné určit tři rozměry: šířku a, výšku b a vzdálenost l, přičemž a a b musíme určit pro každý trámek zvlášť. Z naměřených hodnot pak byl znovu spočten aritmetický průměr a nejistoty A a B byly sečteny podle rovnice (7). Všechna tato naměřená data s průměry byla vynesena do tabulky 2

Tabulka 2: Naměřené hodnoty rozměrů l, a, b. Na konci tabulky jsou uvedeny aritmetické průměry.

l/cm	$a_{ m mosaz}/{ m cm}$	$b_{ m mosaz}/{ m mm}$	$a_{ m ocel}/{ m cm}$	$b_{ m ocel}/{ m mm}$
41,2(1)	1,1860(5)	1,940(5)	1,1930(5)	1,915(5)
41,0(1)	1,1875(5)	1,940(5)	1,1915(5)	1,905(5)
41,1(1)	1,1878(5)	1,935(5)	1,1925(5)	1,920(5)
X	1,1890(5)	1,930(5)	1,1915(5)	1,920(5)
X	1,1874(5)	1,925(5)	1,1910(5)	1,920(5)
X	1,1876(5)	1,935(5)	1,1910(5)	1,930(5)
41,1(1)	1,188(1)	1,934(8)	1,191(1)	1,92(1)

Délka l byla změřena pásmovým měřidlem stejně jako délky L a l_0 . V tomto případě bylo ale měření kratší vzdálenosti výrazně jednodušší, a proto nejistota byla odhadnuta pouze jako velikost nejmenšího dílku $\sigma_l=1$ mm. Rozměry a a b byly měřeny mikrometrickým šroubem, a proto jejich nejistota byla odhadnuta jako polovina nejmenšího dílku 0.005 mm.

2.3 Prodloužení drátu

Toto měření probíhalo postupným přidáváním závaží na misku a zapisováním hodnot n na stupnici pozorované dalekohledem. Pro původní protažení byla použita podle instrukcí hmotnost 1 kg a 11,00(5) cm byla počáteční hodnota na stupnici, m pak označíme přidanou hmotnost.

Po konzultaci s vyučující byla zvolena mírně odlišná metoda při odebírání závaží – pro účel diskuse a přesné zachycení oblasti, ve které přestává platit lineární Hookův zákon, byla po zapsání hodnoty n pro určitou hmotnost

všechna závaží (kromě původního 1 kg) z misky sundána a byla zaznamenána znovu hodnota n_0 . Na změně této hodnoty tak lze pozorovat, kdy přesně došlo k plastickým deformacím drátu. Naměřená data z tohoto pokusu jsou uvedena v tabulce 3.

Tabulka 3: Naměřené hodnoty n, n_0 po zatížení a následném odlehčení hmotnosti m, dále vypočtený rozdíl Λ_n

m/g	n – zatížení /cm	n_0 – odlehčení /cm	$\Delta n = n_0 - n/\mathrm{cm}$
100	10,70(5)	11,00(5)	0,30(7)
200	10,40(5)	11,00(5)	0,60(7)
300	10,05(5)	11,00(5)	0.95(7)
400	9,75(5)	11,00(5)	1,25(7)
500	9,50(5)	11,00(5)	1,50(7)
600	9,15(5)	11,00(5)	1,85(7)
700	8,85(5)	11,00(5)	2,15(7)
800	8,50(5)	11,00(5)	2,50(7)
900	8,25(5)	11,00(5)	2,75(7)
1000	7,90(5)	10,90(5)	3,00(7)
1100	7,55(5)	10,90(5)	3,35(7)
1200	7,20(5)	10,90(5)	3,70(7)
1300	6,95(5)	10,85(5)	3,90(7)
1400	6,60(5)	10,85(5)	4,25(7)
1500	6,30(5)	10,85(5)	4,55(7)
1600	6,00(5)	10,80(5)	4,80(7)
1700	5,70(5)	10,80(5)	5,10(7)
1800	5,35(5)	10,75(5)	5,40(7)
1900	5,00(5)	10,70(5)	5,70(7)

Nejistota n a n_0 byla odhadnuta jako polovina nejmenšího dílku stupnice na $\sigma_n=0.05\,\mathrm{cm}$. Podle metody přenosu chyb [3] pak vychází $\sigma_{\Delta n}=\sqrt{2}\sigma_n\approx 0.07\,\mathrm{cm}$. Nejistota hmotnosti laboratorních závaží nebyla uvažována (je jistě maximálně v řádu gramů). Závislost $\Delta n=\Delta n(m)$ byla dále vynesena do grafu 1 pomocí programu Origin, ve kterém byly naměřené hodnoty také nafitovány – konkrétně funkcí $Analysis::Fitting::Linear\ Fit$ s rovnicí y=ax+b.

Obrázek 1: Závislost změny na stupnici Δn na zátěžové hmotnosti m

Velikost směrnice, kterou nám vrátil program Origin tedy vychází $\lambda_{drát} = 2,99(2) \times 10^{-2} \,\mathrm{m \cdot kg^{-1}}$. Tento výsledek pomocí rovnice (4) a získaných hodnot v předchozí podsekci přepočteme na modul pružnosti

$$E = 221(6)$$
 GPa.

Přičemž nejistota E byla spočtena podle metody přenosu chyb [3] jako

$$\sigma_E = E \sqrt{\left(\frac{\sigma_{\lambda_{\text{drát}}}}{\lambda_{\text{drát}}}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2 + 4\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_D}{D}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2}.$$
 (8)

2.4 Průhyb trámku

Toto měření probíhalo podobně jako měření v předchozí podsekci. Postupně byla přidávána jistá známá hmotnost m na misku uchycenou ve středu trámku a po každé byla z objektivového mikrometru stanovena hodnota prohnutí y.

V této podsekci nebylo podle pokynů vyučující postupné odebírání závaží prováděno 1 . Namísto toho bylo jako kontrola "proti" plastickým deformacím provedeno změření prohnutí y trámku bez závaží na začátku a na konci po odebrání všech závaží. Tyto hodnoty se pro ocelový i mosazný trámek shodovaly. Naměřené hodnoty z tohoto pracovního úkolu jsou uvedeny v tabulce 4

Tabulka 4: Naměřené hodnoty prohnutí y v závislosti na hmotnosti m.

m/g	$y_{ m ocel}/{ m mm}$	$y_{ m mosaz}/{ m mm}$
0	0,1(1)	0,3(1)
50	0,6(1)	1,2(1)
100	1,1(1)	2,1(1)
150	1,6(1)	3,1(1)
200	2,0(1)	3,9(1)
250	2,5(1)	4,9(1)
300	3,1(1)	5,8(1)
350	3,5(1)	6,8(1)
400	4,0(1)	7,6(1)
450	4,5(1)	8,6(1)

Nejistota laboratorních závaží zde, podobně jako v předchozí podsekci, nebyla uvažována. Za nejistotu y byla vzata celá velikost nejmenšího dílku (nikoliv jeho polovina, protože ryska stupnice se vždy při přiložení dalšího závaží výrazně rozklepala) objektivového mikrometru o velikosti $\sigma_y = 0.1$ mm. Z dat v tabulce 4 byly vypočteny rozdíly Δy a ty byly vyneseny do grafu 2 stejnou metodou jako při plnění předchozího prac. úkolu.

Obrázek 2: Závislost prohnutí trámku Δy na zavěšené hmotnosti m

¹Experimentátor si později na stránce [1] dohledal, že podle pokynů k měření má toto odlehčování také být proměřeno. Během měření mu ale paní doktora Kodetová, která měla odborný dohled, řekla, že to není třeba.

Zde nám program Origin vrátil směrnice $\lambda_{\text{mosaz}} = 0.018\,37(6)\,\text{m}\cdot\text{kg}^{-1}$ a $\lambda_{\text{ocel}} = 0.009\,78(5)\,\text{m}\cdot\text{kg}^{-1}$, jejichž převrácené hodnoty podle vztahu (6) a hodnot naměřených v přípravných měřeních přepočteme na modul pružnosti E.

$$E_{\text{mosaz}} = 108(2) \,\text{GPa},$$

 $E_{\text{ocel}} = 207(4) \,\text{GPa}.$

Přičemž nejistota E v této podsekci byla podle metody přenosu chyb [3] spočtena vztahem

$$\sigma_E = E\sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + 9\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 9\left(\frac{\sigma_b}{b}\right)^2}.$$
 (9)

3 Diskuse výsledků

3.1 Tabelované hodnoty

Prvním kritériem, kterým můžeme zhodnotit kvalitu měření, je porovnání hodnot naměřených s hodnotami tabelovanými.

Ačkoliv je modul pružnosti E materiálová konstanta, není překvapivé, že se pro ocelový drát a ocelový trámek v rámci nejistoty neshoduje – ocel je slitina a její vlastnosti budou vždy záležet na konkrétním složení, které může být jiné například pro ocel používanou ve stavebnictví a pro ocel používanou do zbraní.

Tabulky [4] uvádí hodnotu modulu pružnosti pro ocel 220 GPa, pro mosaz pak rozsah 100 GPa až 110 GPa. Webová stránka pro strojní konstruktéry [5] například zase uvádí hodnotu 210 GPa pro ocel a 99 GPa pro mosaz. S těmito hodnotami jsou námi změřené výsledky v dobré shodě.

3.2 Odlehčování a plastické deformace

Ačkoliv odlehčování v rámci tohoto měření nebylo prováděno podle postupu uvedeného na [1] (při měření prodloužení drátu byl využit alternativní způsob a při měření prohnutí trámku byly pedagogem zadány jiné instrukce – viz sekce Výsledky a zpracování měření), získali jsme informace o rozsahu plastických deformací během měření.

Z tabulky 3, konkrétně z jejího třetího sloupce můžeme vidět, že do zatěžování závažím o hmotnosti $m=900\,\mathrm{g}$, nebylo možné pozorovat žádnou změnu v klidové délce drátu. Jakmile jsme tuto hranici překročili, začalo nejspíše docházet k plastickým deformacím. Dalším vysvětlením by mohlo být například proklouznutí drátu v kladce, to se ale zdá nepravděpodobné, neboť i po překročení hranice $m=900\,\mathrm{g}$ se klidová délka drátu dále nepatrně nelineárně prodlužovala. Nemůžeme ale kompletně vyloučit, že k žádným plastickým deformacím nedocházelo a že výchylka byla způsobena například drknutím do aparatury.

Ve druhé části měření nebyly žádné plastické deformace zaznamenány, počáteční hodnota prohnutí se shodovala s hodnotou prohnutí přeměřenou po sundání všech závaží a prodlužování se tak jevilo jako kompletně elastické. To odpovídá "naivní" představě, jelikož trámek se obecně zdá svojí geometrií odolnější než drát a byly na něj kladeny výrazně lehčí závaží. Na druhou stranu u trámku jsme také změřili nižší modul pružnosti a probíhající fyzikální jev pravděpodobně bude mnohem komplikovanější než tato "naivní" představa.

3.3 Další zdroje chyby

Toto měření vyšlo natolik přesně, že není nutné zohledňovat další zdroje chyby. Kdybychom je chtěli nalézt, mohli bychom například započítat chybu způsobenou goniometrickou aproximací ve vztahu (3).

4 Závěr

Vycházejíce z Hookova zákona se nám podařilo splnit pracovní úkoly a změřit modul pružnosti v tahu ocelového trámku $E_{\rm ocel} = 207(4)~{\rm GPa}$, mosazného trámku $E_{\rm mosaz} = 108(2)~{\rm GPa}$ a ocelového drátu $E_{\rm drát} = 221(6)~{\rm GPa}$.

Reference

- [1] Měření modulu pružnosti v tahu [online]. [cit. 2023-05-18]. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/zadani/109
- [2] VALOUCH, Miloslav. Pětimístné logaritmické tabulky a tabulky konstant. 19. Praha: Nakladatelství Československé akademie věd, 1962.

- [3] ENGLICH, Jiří. Úvod do praktické fyziky. Praha: Matfyzpress, 2006. ISBN 80-86732-93-2.
- [4] MIKULČÁK, J., F. ZEMÁNEK, B. KLIMEŠ, J. ŠIROKÝ a V. ŠŮLA. *Matematické, fyzikální, chemické tabulky a vzorce pro střední školy.* Praha: Státní pedagogické nakladatelství, n.p., 1988.
- [5] Mechanické vlastnosti pevných látek [online]. [cit. 2023-05-18]. Dostupné z: https://e-konstrukter.cz/prakticka-informace/mechanicke-vlastnosti-pevnych-latek