Généralités sur les suites

Quelques calculs généraux pour commencer

Calcul 1.1 — Des puissances.

0000

Écrire à l'aide d'une seule puissance les expressions suivantes.

a)
$$(-1)^4 \times (3^4)^5 \dots$$

a)
$$(-1)^4 \times (3^4)^5$$
 ... b) $-1^4 \times (3^{-1})^{-2}$..

c)
$$(-1)^5 \times 3^4 \times 2^4$$
.

Calcul 1.2 — Des fractions.

0000

Écrire sous la forme d'une fraction les expressions suivantes.

a)
$$\frac{x+3}{3} + \frac{2x-1}{6}$$
.

b)
$$\frac{x}{2} + \frac{x}{3} \dots$$

c)
$$2 + \frac{3x - 8}{5} \dots$$

Calcul 1.3 — Des carrés.

0000

Développer les expressions suivantes.

a)
$$(3x+1)^2$$

b)
$$(4x-3)^2$$

Suites définies explicitement

Calcul 1.4

Soit $(u_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 + 4n + 1$. Calculer :

a)
$$u_0 = \dots$$

c)
$$u_2 = \dots$$

b)
$$u_1 = \dots$$

d)
$$u_3 = \dots$$

Calcul 1.5

Soit $(u_n)_n$ la suite définie pour tout $\underline{n \in \mathbb{N}}$ par $u_n = \frac{4n-1}{n+1}$. Calculer:

a)
$$u_0 = \dots$$

c)
$$u_2 = \dots$$

b)
$$u_1 = \dots$$

d)
$$u_3 = \dots$$

Calcul 1.6

0000

Soit $(u_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 2n - 1$. Exprimer en fonction de n:

a)
$$u_{n+1} = \dots$$

c)
$$u_{2n} = \dots$$

b)
$$u_{n-1} = \dots$$

d)
$$u_n + 1 = \dots$$

Calcul 1.7

Soit $(u_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 - n$. Exprimer en fonction de n:

a)
$$u_{2n} = \dots$$
 b) $u_{n+1} = \dots$ c) $u_{2n+1} = \dots$

b)
$$u_{n+1} = \dots$$

c)
$$u_{2n+1} = \dots$$

Calcul 1.8

Soit $(v_n)_n$ la suite définie pour tout $n \in \mathbb{N}^*$ par $v_n = \frac{(-1)^n}{n}$. Exprimer en fonction de n:

a)
$$v_{2n} = \dots$$

c)
$$v_{4n} = \dots$$

b)
$$v_{2n+1} = \dots$$

d)
$$v_{2n+2} = \dots$$

Suites définies par récurrence

Calcul 1.9

Soit $(u_n)_n$ la suite définie par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$. Calculer :

a)
$$u_1 = \dots$$

c)
$$u_3 = \dots$$

b)
$$u_2 = \dots$$

d)
$$u_4 = \dots$$

Calcul 1.10

Soit $(u_n)_n$ la suite définie par $u_0 = -1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = -u_n - 1$. Calculer :

a)
$$u_1 = \dots$$

c)
$$u_3 = \dots$$

b)
$$u_2 = \dots$$

d)
$$u_4 = \dots$$

Calcul 1.11 0000 Soit $(u_n)_n$ la suite définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = (n+2)u_n$. Calculer: c) $u_3 = \dots$ a) $u_1 = \dots \dots \dots$ b) $u_2 = \dots \dots$ d) $u_4 = \dots$ Calcul 1.12 0000 Soit $(u_n)_n$ la suite définie par $u_0=1$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=3^n\times u_n.$ Calculer :

Soit $(u_n)_n$ la suite définie par $u_0=0$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=\sqrt{u_n^2+2n+1}$. Calculer : a) $u_1 = \dots \dots \dots \dots$ d) $u_4 = \dots$ b) $u_2 = \dots$

Calcul 1.14 0000 Soit $(u_n)_n$ la suite définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \left(n + \frac{1}{2}\right) \times u_n$. Calculer : c) $u_3 = \dots$

Suites définies par récurrence avec paramètre

Calcul 1.15 — Une suite définie par récurrence avec paramètre. 0000 Soit $a \in \mathbb{R}$ et $(v_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $\begin{cases} v_0 = a \\ v_{n+1} = 2v_n + 1. \end{cases}$ Exprimer en fonction de a:

c) $v_3 = \dots$ a) $v_1 = \dots \dots \dots \dots$

a) $u_1 = \dots \dots \dots \dots$

Calcul 1.13

0000

Calcul 1.16 — Une autre suite définie par récurrence avec paramètre.

Soit $a \in \mathbb{R}$ et $(w_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $\begin{cases} w_0 = 1 \\ w_{n+1} = a^n \times w_n \end{cases}$ Exprimer en fonction de a:

a)
$$w_1 = \dots$$

c)
$$w_3 = \dots$$

b)
$$w_2 = \dots$$

d)
$$w_4 = \dots$$

Calculs plus avancés

Calcul 1.17 — Suite et fractions.

Soit $(u_n)_n$ la suite définie par $u_1 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{u_n + 1}$.

Calcul 1.18

Dans chacun des cas suivants, donner la valeur de $n \in \mathbb{N}$ pour laquelle on a $u_n = 4$.

- a) La suite $(u_n)_n$ définie pout tout $n \in \mathbb{N}$ par $u_n = -6n + 64$
- b) La suite $(u_n)_n$ définie pout tout $n \in \mathbb{N}$ par $u_n = \frac{n^2 20}{n+3}$

Réponses mélangées

► Réponses et corrigés page 5

Fiche nº 1. Généralités sur les suites

Réponses

1.1 a)	1.7 a) $4n^2 - 2n$	1.12 c)
1.1 b)	1.7 b) $n^2 + n$	1.12 d)
1.1 c)	1.7 c) $4n^2 + 2n$	1.13 a)
	,	1.13 b)
1.2 a) $\boxed{\frac{4x+5}{6}}$	1.8 a) $\left \frac{1}{2n} \right $	1.13 c)
F		1.13 d)
1.2 b) $\left\lfloor \frac{5x}{6} \right\rfloor$	1.8 b) $\left\lfloor \frac{-1}{2n+1} \right\rfloor$	1.14 a) $\frac{1}{2}$
3x+2	1	2
1.2 c) <u>5</u>	$1.8 \text{ c}) \dots \qquad \qquad \boxed{\frac{1}{4n}}$	1.14 b) $\boxed{\frac{3}{4}}$
1.3 a) $9x^2 + 6x + 1$	1 9 3)	7
1.3 b) $16x^2 - 24x + 9$	1.8 d) $\left\lfloor \frac{1}{2n+2} \right\rfloor$ 1.9 a)	1.14 c)
1.4 a)	1.9 a)	105
	1.9 b)	1.14 d) $\left \frac{105}{16} \right $
1.4 b)	1.9 c)	10
1.4 c)	1.9 c)	1.15 a)
	1.9 d)	,
1.4 d)		1.15 b) $4a + 3$
150)	1.10 a)	1 15 a)
1.5 a)	1.10 b)	1.15 c) $8a + 7$
3	110 6)	1.15 d) $16a + 15$
1.5 b) $\left \frac{3}{2} \right $	1.10 c)	
		1.16 a)
15.)	1.10 d)	1.16 b)
1.5 c) $\left \frac{1}{3} \right $	1.11 a)	
		1.16 c)
1.5 d) $\left \frac{11}{4} \right $	1.11 b)	
1.5 d) 4	1 11 -\	1.16 d) a^6
1.0.)	1.11 c)	
1.6 a) $2n+1$	1.11 d)	1.17 $\left \frac{13}{36} \right $
1.6 b)	1.12 a)	30
		1.18 a)
1.6 c) $4n-1$	1.12 b)	1 10 b)
1.6 d)	_	1.18 b)

Corrigés

1.6 a) On a
$$u_{n+1} = 2(n+1) - 1 = 2n+2-1 = 2n+1$$
.

1.6 b) On a
$$u_{n-1} = 2(n-1) - 1 = 2n - 2 - 1 = 2n - 3$$
.

1.6 c) On a
$$u_{2n} = 2(2n) - 1 = 4n - 1$$
.

1.6 d) On a
$$u_n + 1 = 2n - 1 + 1 = 2n$$
.

1.11 b) On a
$$u_2 = u_{1+1} = (1+2)u_1 = 3 \times 2 = 6$$
.

On a $u_1 = u_{0+1} = (0+2)u_0 = 2 \times 1 = 2$.

1.11 c) On a
$$u_3 = u_{2+1} = (2+2)u_2 = 4 \times 6 = 24$$
.

.....

1.11 d) On a
$$u_4 = u_{3+1} = (3+2)u_3 = 5 \times 24 = 120$$
.

1.16 a) On a
$$w_1 = a^0 \times w_0$$
, d'où $w_1 = 1 \times 1$. Ainsi $w_1 = 1$.

1.16 b) On a
$$w_2 = a^1 \times w_1$$
, d'où $w_2 = a \times 1$. Ainsi $w_2 = a$.

1.16 c) On a
$$w_3 = a^2 \times w_2$$
, d'où $w_3 = a^2 \times a$. Ainsi $w_3 = a^3$.

1.16 d) On a
$$w_4 = a^3 \times w_3$$
, d'où $w_4 = a^3 \times a^3$. Ainsi $w_4 = a^6$.

1.17 On trouve
$$u_2 = \frac{1}{2}$$
, $u_3 = \frac{1}{3}$ et $u_4 = \frac{1}{4}$. La moyenne de u_2 , u_3 et u_4 est : $\frac{u_2 + u_3 + u_4}{3} = \frac{13}{36}$.

1.18 a) On résout l'équation
$$-6n + 64 = 4$$
 et on trouve $n = 10$.

1.18 b) Résolvons l'équation
$$\frac{n^2 - 20}{n+3} = 4$$
. On a

$$\frac{n^2 - 20}{n+3} = 4 \iff n^2 - 20 = 4(n+3)$$
$$\iff n^2 - 20 = 4n + 12$$
$$\iff n^2 - 4n - 32 = 0$$

On reconnaît une équation du second degré de discriminant 144. Les racines de $X^2 - 4X - 32$ sont -4 et 8. Le nombre n étant un entier naturel, on ne garde que la racine positive. C'est à dire n = 8.

.....