AMENDMENTS TO THE CLAIMS

This Listing Of Claims will replace all prior versions, and listings, of the claims in the application.

Listing of the Claims:

Claim 1 (Currently Amended): A process for the preparation of a compound of formula:

$$R^{1}$$
 R^{2}
 R^{2}

and/or an addition salt of a proton acid, wherein R^1 represents C_{1-8} -alkyl or phenyl, and R^2 represents alkyl, cycloalkyl, aryl or aralkyl, each aryl or aralkyl being optionally further substituted with alkyl, alkoxy and/or halogen, and R^2 -represents C_{1-8} -alkyl or phenyl, which process comprises the following steps:

- a) reacting a mixture comprising:
 - (i) a methyl ketone of formula:

wherein R1 is as defined above, and

(ii) a compound of formula:

$$H_2N-R^2$$
 (V)

and/or an addition salt of proton acid, wherein R² is as defined above, and

(iii) formaldehyde or a source of formaldehyde selected from the group consisting of formaldehyde in aqueous solution, 1,3,5-trioxane, paraformaldehyde and mixtures thereof, in the presence of

a solvent selected from the group consisting of water, aliphatic alcohols, cycloaliphatic alcohols and mixtures thereof, and

optionally a proton acid

to provide a β-keto amine of formula:

$$0 \xrightarrow{R^1} R^2$$
II

and/or an addition salt of a proton acid, and

b) reducing the carbonyl group of β -keto amine to afford a compound of formula I, and/or an addition salt of a proton acid

wherein the step a) is carried out at a pressure above 1.5 bar.

Claim 2 (Currently Amended): The process of claim 1 wherein R^1 is selected from the group consisting of linear or branched $G_{1.8}$ -alkyl $G_{1.8}$ -alkyl, $G_{3.8}$ cycloalkyl, phenyl, naphthyl, furanyl, benzofuranyl, thienyl, benzo[b]thienyl and aralkyl, wherein the alkyl moiety of the aralkyl residue is linear $G_{1.4}$ alkyl, and the aryl moiety is selected from the group consisting of phenyl, naphthyl, furanyl, benzofuranyl, thienyl and benzo[b]thienyl, each aryl or aralkyl being optionally substituted with halogen, linear or branched $G_{1.4}$ alkyl, linear or branched $G_{1.4}$ alkoxy, $G_{3.6}$ cycloalkyl, $G_{3.6}$ $G_{2.6}$ $G_{3.6}$ $G_{3.6}$

Claim 3 (Currently Amended): The process of claim 1 wherein R^2 is selected from the group consisting of linear or branched $C_{1.8}$ -alkyl $C_{1.8}$ -alkyl, $C_{3.8}$ -cycloalkyl, phenyl, naphthyl, furanyl, benzofuranyl, thienyl, benzo[b]thienyl and aralkyl, wherein the alkyl moiety of the aralkyl residue is linear $C_{1.4}$ -alkyl, and the aryl moiety is selected from the group consisting of phenyl, naphthyl, furanyl, benzofuranyl, thienyl and benzo[b]thienyl, each aryl or aralkyl being optionally substituted with halogen, linear or branched $C_{1.4}$ -alkyl, linear or branched $C_{1.4}$ -alkoxy, $C_{3.6}$ -cycloalkyl, CF_3 , C_2F_5 , CCF_3 or CC_2F_5 .

Claim 4 (Previously Presented): The process of claim 1, wherein the compound of formula V is present in an amount at least equimolar to that of the compound of formula IV.

Claim 5 (Currently Amended): The process of claim 1, wherein the proton acid <u>is</u> <u>present in step a) and</u> is a carboxylic <u>acid</u> or an inorganic acid, the <u>acid being preferably</u> selected from the group consisting of formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, benzoic acid, HF, HCl, HBr, HI, H₂SO₄, H₃PO₄, mono alkali malonate, alkali hydrogensulfates, alkali hydrogenphosphates and alkali hydrogencarbonates.

Claim 6 (Currently Amended): The process of claim 1, wherein aliphatic and cycloaliphatic alcohols are selected from the group selected of linear or branched aliphatic G_{1-12} alcohols G_{1-12} -alcohols, cycloaliphatic G_{5-8} -alcohols G_{5-8} -alcohols, di- and/or triethylene glycols and mono G_{1-4} -alkyl G_{1-4} -alkyl or acetyl derivatives thereof, each of said alcohols containing 1 to 3 hydroxy groups.

Claim 7 (Currently Amendedl): The process of claim 6, wherein the alcohol is selected from the group consisting of methanol, ethanol, propanol, isopropyl alcohol, butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol, cyclopentanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, 1,2-butanediol, 1,2-butanediol, 1,2-butanediol, 1,2-butanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2,3-propanetriol, 1,2,6-hexanetriol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether and triethylene glycol monoacetate.

Claim 8 (Previously Presented): The process of claim 1, wherein the pressure during reaction step a) is in the range of 1.5 to 10 bar.

Claims 9 to 20 (Cancelled)

Claim 21 (Currently Amended): The process of claim 2 wherein R² is linear or branched C₁₋₈-alkyl C₁₋₈-alkyl.

Claim 22 (Previously Presented): The process of claim 3, wherein the compound of formula V is present in an amount at least equimolar to that of the compound of formula IV.

Claim 23 (Currently Amended): The process of claim 4, wherein <u>a</u> the proton acid <u>is</u> <u>present in step a) and</u> is a carboxylic <u>acid</u> or an inorganic acid, the <u>acid being preferably</u> selected from the group consisting of formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, benzoic acid, HF, HCl, HBr, HI, H₂SO₄, H₃PO₄, mono alkali malonate, alkali hydrogensulfates, alkali hydrogenphosphates and alkali hydrogencarbonates.

Claim 24 (Currently Amended): The process of claim 5, wherein aliphatic and cycloaliphatic alcohols are selected from the group selected of linear or branched aliphatic G_{1-12} alcohols G_{1-12} -alcohols, cycloaliphatic G_{5-8} -alcohols G_{5-8} -alcohols, di- and/or triethylene glycols and mono G_{1-4} -alkyl G_{1-4} -alkyl or acetyl derivatives thereof, each of said alcohols containing 1 to 3 hydroxy groups.

Claim 25 (Previously Presented): The process of claim 7, wherein the pressure during reaction step a) is in the range of 1.5 to 10 bar.

Claims 26 to 30 (Cancelled)

Claim 31 (Previously Presented): The process of claim 8, wherein the pressure during reaction step a) is in the range of 1.5 to 5 bar.

Claim 32 (Previously Presented): The process of claim 25, wherein the pressure during reaction step a) is in the range of 1.5. to 5 bar.

Claim 33 (Currently Amended): The process of Claim 1, wherein \mathbb{R}^2 \mathbb{R}^1 is phenyl.

Claim 34 (Previously Presented): The process of Claim 2, wherein R² is phenyl.

Claim 35 (New): The process of claim 1, wherein a proton acid is present, and the proton acid is selected from the group consisting of formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, benzoic acid, HF, HCI, HBr, HI, H₂SO₄, H₃PO₄, mono alkali malonate, alkali hydrogensulfates, alkali hydrogenphosphates and alkali hydrogencarbonates.

Claim 36 (New): The process of claim 4, wherein a proton acid is present, and the proton acid is selected from the group consisting of formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, benzoic acid, HF, HCI, HBr, HI, H₂SO₄, H₃PO₄, mono alkali malonate, alkali hydrogensulfates, alkali hydrogenphosphates and alkali hydrogencarbonates