编译原理

武汉大学计算机学院编译原理课程组

前述内容回顾

- ·编译程序
- · 编译方式与解释方式的根本区别
- · 编译程序的工作过程
- · 编译程序的结构
- · 编译程序的组织方式
- · 编译程序的构造

本章内容简介

- · 文法的形式定义
- · 语言的形式定义
- · 为语言构造文法
- · 和语法分析有关的概念
- · 文法的实用限制

第2章 文法和语言的形式定义

编译程序使得高级语言源程序所描述的功能得以在计算机上实现。编译程序的设计者就是高级语言的实现者,源程序的编写者就是高级语言的使用者,他们必须遵循同样的准则——高级语言程序的构成规则,才能使写出的源程序能够被成功地翻译,文法描述的就是高级语言程序的构成规则。

第2章 文法和语言的形式定义

•在20世纪50年代, Noam Chomsky首先对语言的描述问题进行了探讨。他提出了一种用来描述语言的数学系统, 并以此定义了四类性质不同的语言, 称为语言(文法)的Chomsky分类。

Noam Chomsky, 1928-

2010.8.13 乔姆斯基在北大

人们把用一组数学符号和规则来描述语言的方式称为形式描述,把所用的数学符号和规则称为形式语言。

•语言成份

• 字母表: 符号的有穷集, 符号构成了语言的句子

• 文法: 结构规则的有穷集

• 语义: 操作规则的有穷集

•符号和符号串在形式语言中是很重要的概念,任何一种语言都是由该语言的基本符号组成的符号串集合。

如: 英文、Pascal语言

2.1.1 字母表 (alphabet)

字母表是元素的非空有穷的集合。记为Σ。 字母表中的元素称为符号。

例如 $\Sigma=\{a, b,, y, z\}, \Sigma=\{0, 1\}$ $\Sigma=\{BEGIN, END, FOR, WHILE\}$

- 非空性
- 有穷性

2.1.2 符号串与符号串集合

符号串是字母表中的符号所组成的任何有穷序列,通常用小写的字母表示。不包含任何符号的符号串为空串,记为ε。

注意: ε ≠空格符号

符号串相等 ab ≠ ba 顺序

符号串的前缀、后缀、子串设 α,β,δ 是符号串,若 $x=\alpha\beta\delta$,则称 β 是x的子串。特别地,当 $\alpha=\epsilon$ 时,称 β 是x的前缀。当 $\delta=\epsilon$ 时,称 β 是x的后缀。

①符号串的长度

符号串的长度 = 符号串中所含符号的个数

$$|\epsilon| = 0$$

例: aba的长度为3。记为: |aba|=3

问: 若 Σ ={BEGIN, END, FOR, WHILE}, |BEGINEND| = ?

②符号串的连接

设x,y是符号串,将y直接地拼接到x之后所得的新符号串称为x与y的连接,记为xy。

注意:一般说来, xy不等于yx

x=3x=x 3

4

2.1 字母表与符号串

③符号串的方幂

符号串x与其自身的n-1次连接,称为x的n次方幂,记为 x^n 。

$$x^{0} = \varepsilon$$

$$x^{1} = x$$

$$x^{2} = xx$$

$$x^{n} = x^{n-1}x = xx^{n-1} = xx \dots x$$

例: x=abc 求 $x^k=?$

4符号串的逆

符号串x的倒置,记为 x^{-1} 。

性质:

1.
$$\varepsilon^{-1} = \varepsilon$$

2.
$$(x^{-1})^{-1} = x$$

⑤符号串集合的乘积

设A, B为两个符号串集合, 定义

和 A+B (或 $A\cup B$) ={ $w/w\in A$, 或 $w\in B$ }

积 $A\bullet B$ (或AB) = { $xy/x\in A$, $y\in B$ }

显然, $A+\emptyset=\emptyset+A=A$; $A\emptyset=\emptyset A=\emptyset$; $\{\varepsilon\}A=A\{\varepsilon\}=A$

4

2.1 字母表与符号串

6符号串集合的方幂

A为符号串集合,则A的幂运算为:

$$A^{0} = \{ \varepsilon \}$$

$$A^{1} = A$$

$$A^{2} = AA$$

$$A^{n} = A^{n-1}A$$

$$(n>0)$$

⑦符号串集合的正闭包A+

$$A^{+} = A + A^{2} + \dots = \bigcup_{i=1}^{\infty} A^{i}$$

4

2.1 字母表与符号串

⑧符号串集合的闭包A*

$$A^* = A^0 + A + A^2 + \dots = \bigcup_{i \ge 0}^{\infty} A^i$$

性质:

$$A^* = A^0 \cup A^+ = A^+ + \{ \varepsilon \}$$

 $A^+ = AA^* = A^*A$

如何描述语言?

如何描述包含无穷多个句子的语言?

举例: 〈标识符〉的语法描述

 $a, b, x1, sum, \dots$

语法描述

- 自然语言
 - 如: 〈标识符〉
 - "是由字母后跟若干个(≥0)字母或数字的符号串组成"
- · 语法图(Syntax Graph)

语法描述

· BNF范式 (Backus-Naur Form)

⟨标识符⟩::= ⟨字母⟩ | ⟨标识符⟩⟨字母⟩ | ⟨标识符⟩⟨数字⟩

· 扩充的BNF (EBNF: Extended BNF)

<标识符>::= <字母> {<字母>|<数字>}

2.2.1 文法

为深入研究语言的内在性质,需要寻找构造语言的方法—文法。 文法是对语言结构的定义和描述。

可以证明: 给定一个文法, 就能从结构上唯一地确定其语言。

例如:程序设计语言中的无符号整数是由下列规则构成的:

<无符号整数>→〈无符号整数〉〈数字〉

〈无符号整数〉→〈数字〉

<数字>→0|1|2|3|4|5|6|7|8|9

无符号整数365

2.2.1 文法

1. 终结符号.

终结符号是组成语言的基本符号,如保留字、标识符、常数、运算符、界限符等。终结符号是语言的不可再分的基本符号。终结符号形成的集合记为V_T。

2. 非终结符号.

非终结符号用来表示语言的语法成分(或语法范畴、语法单位),例如"赋值语句"。非终结符号所形成的集合记为V_N。

$$V_T \cap V_N = \emptyset$$

3. 产生式: 产生式 (规则) 是一个有序对 (α , β), 通常写作 $\alpha \rightarrow \beta$ (β) (β)

其中 α 称为产生式的左部, β 称为产生式的右部。 α \in ($V_T \cup V_N$)⁺, β \in ($V_T \cup V_N$)*。

产生式是用来定义一个语法成分的。它描述了一个语法成分的形成规则。例如标识符的构成规则可描述为:

〈标识符〉→〈字母〉 | 〈标识符〉〈字母〉 | 〈标识符〉〈数字〉

假如有若干条规则有相同的左部,通常写作: $\alpha \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$

文法G是一个四元组, $G[S]=(V_N, V_T, P, S)$ 。

V_N ——非终结符号集。

V_T ——终结符号集。

P ——表示产生式的有穷非空的集合。

S ——开始符号。至少要在一条产生式中作为左部出现。

例 定义标识符的文法

```
G[〈标识符〉]=( {〈标识符〉,〈字母〉,〈数字〉},

{ A, B, ..., Y, Z, 0, 1, ..., 9}, P, 〈标识符〉〉)

P 定义为:

〈标识符〉→〈字母〉|〈标识符〉〈字母〉|〈标识符〉〈数字〉

〈字母〉→A|B|C|D|E|F|G|.....|U|V|W|X|Y|Z

〈数字〉→0|1|2|3|4|5|6|7|8|9
```


2.2.2 文法分类

乔姆斯基(Chomsky)把文法分成四种类型,即0型、1型、2型和3型。

这四类文法的区别在于:对产生式规则的形式上施加不同的限制。

0型文法 $\alpha \rightarrow \beta$ $\alpha \in (V_N \cup V_T)^+, \beta \in (V_N \cup V_T)^*$

1型文法 $\alpha \rightarrow \beta$ $1 \leq |\alpha| \leq |\beta|$ $\alpha \in (V_N \cup V_T)^+, \beta \in (V_N \cup V_T)^+$

2型文法 $A \rightarrow \beta$ $A \in V_N$, $\beta \in (V_N \cup V_T)^+$

3型文法 $A \rightarrow a$ 或 $A \rightarrow aB$ $A,B \in V_N$, $a \in V_T$

2.2 文法及其分类——举例

例0. 文法G₀[S]:

$$G_0[S]=(\{S, A, B, C, D\}, \{a\}, P, S), 其中P为$$

S→ACaB

aD→Da

Ca→aaC

 $AD \rightarrow AC$

CB→DB

aE→Ea

CB→E

AE→_ε

$$\alpha \rightarrow \beta$$
 $\alpha \in (V_N \cup V_T)^+, \beta \in (V_N \cup V_T)^*$

2.2 文法及其分类——举例

例1. 文法G₁[S]:

$$G_1[S]=(\{S, B, C, D\}, \{a, b, c\}, P, S), 其中P为$$

$$CB \rightarrow BC$$
 $bB \rightarrow bb$

$$\alpha \rightarrow \beta$$
 $1 \leq |\alpha| \leq |\beta|$, $\alpha \in (V_N \cup V_T)^+$, $\beta \in (V_N \cup V_T)^+$

2.2 文法及其分类——举例

例2. 文法G₂[Z]:

$$G_2[Z]=(\{Z, S, A, B, C\}, \{a, b, c\}, P, Z),$$

其中P为:

Z→SC

S→aAc

 $A \rightarrow aAc|bBb$ $C \rightarrow aCb|\epsilon$

B→bB|ε

扩充的2型文法: $A \rightarrow \beta$ $A \in V_N$, $\beta \in (V_N \cup V_T)^*$

4

2.2 文法及其分类——举例

例3. 文法G₃[Z]:

 $G_3[Z]=({Z, U, V}, {0, 1}, P, Z), 其中P为$

Z→U0|V1

U→**Z**1|1

V→Z0|0

左线性文法: $A \rightarrow \alpha$ 或 $A \rightarrow B\alpha$, $A,B \in V_N$, $\alpha \in V_T$ *

右线性文法: $A \rightarrow \alpha$ 或 $A \rightarrow \alpha B$, $A,B \in V_N$, $\alpha \in V_T$ *

四种类型文法的关系: PSG - CSG - CFG - RG

区别:产生式规则的形式

- □ 限制逐渐增强
- □ 能力逐渐减弱
- □ 定义(生成)的语言集逐渐减小

☞ 为什么要对文法进行分类?

2.3 语言和语法树

语法成分的构成可用文法予以描述。给定文法后,可以通过推导得到该文法所描述的语言。

2.3 语言和语法树——推导

1. 直接推导

如果 $\alpha \to \beta$ 是文法G的一条产生式,而 γ , δ 是($V_T \cup V_N$)*中任意一个符号串,则将 $\alpha \to \beta$ 作用于符号串 $\gamma \alpha \delta$ 上得到符号串 $\gamma \beta \delta$,称符号串 $\gamma \beta \delta$ 是符号串 $\gamma \alpha \delta$ 的直接推导,记为

直接推导的逆过程称为直接归约,即由符号串 γ β δ 可直接归约到 γ α δ 。

直接推导举例

文法G[E]:

$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T} | \mathbf{T}$$
 $\mathbf{T} \rightarrow \mathbf{T} + \mathbf{F} | \mathbf{F}$ $\mathbf{F} \rightarrow (\mathbf{E}) | \mathbf{i}$

$$\mathbf{F} \rightarrow (\mathbf{E}) \mid \mathbf{i}$$

*
$$T F \Rightarrow * T F F$$

2.3 语言和语法树——推导

2. 推导

设 α_0 、 α_1 、... α_n (n>0) 均为($V_T \cup V_N$)*中的符号串,且有 $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \alpha_{n-1} \Rightarrow \alpha_n$

则称以上序列是长度为n的推导,即 α_0 可经过n步推导得到 α_n 。

$$\alpha \xrightarrow{0}^{+} \alpha_{n}$$

推导的逆过程称为归约,即 α_n 可归约到 α_0 。

2.3 语言和语法树——推导

2. 推导

$$\alpha \stackrel{*}{\Rightarrow} \beta$$

表示 α ⁺ ⇒

 $\alpha \stackrel{+}{\Rightarrow} \beta \qquad \dot{\mathfrak{g}} \qquad \alpha = \beta$

即从α出发,经过0步或多步推导,可推导出β。

例: <无符号整数>→ <无符号整数><数字> | <数字> <数字>→0|1|2|3|4|5|6|7|8|9

无符号整数23

2.3 语言和语法树——语言

1. 句型

设有文法G[S],如果 $S \stackrel{*}{\Rightarrow} u$,则称符号串u为文法G[S]的句型。

2. 句子

设有文法G[S],如果 $S \stackrel{*}{\Rightarrow} u$,且 $u \in V_T^*$,

则称符号串u为文法G[S]的句子。

2.3 语言和语法树——语言

3. 语言

设有文法G[S],则文法G[S]描述的语言为:

L (G[S]) = {
$$\mathbf{u} \mid S \stackrel{*}{\Longrightarrow} \mathbf{u}$$
 , $\mathbf{H} \mathbf{u} \in V_{\mathsf{T}}^*$ }

举例: $G_1[E]$: $E \rightarrow E+T|T$ $T \rightarrow T*F|F$ $F \rightarrow (E)|i$

 $G_2[N]: N \to ND|D D \to 0|1|2|3|4|5|6|7|8|9$

语言奏规则文法

- 1. 找出语言的若干典型句子
- 2. 分析句子特点
- 3. 根据句子特点凑规则
- 4. 得到文法
- 5. 检查文法,应满足:
 - (1) 语言的所有句子都能由S推导得到;
 - (2) S推导得到的所有终结符号串都是语言的句子.

4

语言_凑规则,文法

【例1】 $L(G_1)=\{a^nb^n|n>0\}$,求 G_1 .

【例2】 $L(G_2)=\{a^nb^n \mid n\geq 0\}, \ \text{求}G_2.$

【例3】 $L(G_3)=\{a^nb^m \mid n\geq 0, m>0\}, 求G_3.$

【例4】 $L(G_4)=\{a^nb^{2m-1} \mid n\geq 1, m\geq 1\}, 求G_4.$

【例5】 $L(G_5)=\{a^nb^{2n-1} \mid n\geq 1\}, \ 求G_5.$

【例6】分别用右线性文法、左线性文法、正规文法来描述语言: "所有以0开头,后接0个或多个10组成的符号串的集合".即:

$$L=\{ 0(10)^n \mid n \ge 0 \}$$

语言_凑规则,文法

【例6】 L={ 0(10)ⁿ | n≥0 }

 $L=\{ (01)^n0 \mid n \ge 0 \}$

右线性文法 P₁:

 $S \rightarrow 0A$

左线性文法 P_4 :

 $S \rightarrow A0$

 $A \rightarrow 10A|\epsilon$

 $A \rightarrow A01|\epsilon$

左线性文法

P₂:

 $S \rightarrow S10|0$

右线性文法

P₅:

 $S \rightarrow 01S|0$

正规文法

P₃:

 $S \rightarrow 0A|0$

左线性文法 P_6 :

 $S \rightarrow A0|0$

 $A \rightarrow 1S$

 $A \rightarrow S1$

 $0(10)^n = 0101010...1010 = 0101010...1010 = (01)^n0$ n个01 n个10

文法和语言的关系

- > 给定一个语言,能确定相应的文法,但不是唯一的。
- > 给定一个文法,就能从结构上唯一地确定其语言。
- ▶ 给定一个文法G总能产生一个语言L(G),它可能包含一些句子,也可能不包含任何句子(空语言)。

空语言:不包含任何句子。

文法和语言的关系——文法等价

【定义】文法等价

设G与G'是两个文法,如果L(G)=L(G'),则称文法G与G'是等价的。

> 文法等价是语法等价,而非语义等价。

例: G1[S]: S→A | S-A A→a | b | c

G2[S]: $S \rightarrow A \mid A-S \mid A \rightarrow a \mid b \mid c$

与语法分析有关的几个概念

【定义】最左推导和最右推导

如果在某个推导过程中的任何一步直接推导α⇒β中,都是对符号串α的最左(右)非终结符号进行替换,则称其为最左(右)推导。最右推导又叫做规范推导。由规范推导得到的句型称为规范句型。

最左直接推导: $\mathbf{xUy} \Rightarrow \mathbf{xuy}, \mathbf{x} \in V_T^*, \mathbf{U} \in V_N$

最右直接推导: $xUy \Rightarrow xuy$, $y \in V_T^*$, $U \in V_N$

与语法分析有关的几个概念

【定义】最右归约和最左归约

最左推导的逆过程称为最右归约。

最右推导 (规范推导) 的逆过程称为最左归约。

例: $G[S] = (\{S,A\}, \{0,1,2,3,4,5,6,7,8,9\}, P, S)$

 $P: S \to SA \mid A$

 $A \rightarrow 0|1|2|3|4|5|6|7|8|9$

- > 每个句子都有一个规范推导
- > 每个句型不一定存在规范推导

递归

如果文法的产生式呈U→xUy形式,则称其为规则递归,也 称直接递归。

如果文法中有推导 $\mathbf{U} \stackrel{*}{\Rightarrow} \mathbf{x} \mathbf{U} \mathbf{y}$,则称其为文法递归,也称间接递归。

左递归

如果文法的产生式呈 $U \rightarrow Uy$ 形式,则称其为规则左递归,也称直接左递归。

如果文法中有推导U $\stackrel{*}{\Rightarrow}$ Uy ,则称其为文法左递归,也称间接左递归。

右递归

如果文法的产生式呈 $U\rightarrow xU$ 形式,则称其为规则右递归,也称直接右递归。

如果文法中有推导 $U \stackrel{*}{\Rightarrow} xU$,则称其为文法右递归,也称间接右递归。

直接递归 (规则递归)

 $G_1[S]: S \rightarrow Sa|Ab|b|c$

 $A \rightarrow Bc|a$

 $B \rightarrow Sb|b$

直接左递归

 $G_2[S]: S \rightarrow a|\epsilon|aTb$

 $T \rightarrow S, T \mid S$

直接右递归

间接递归(文法递归)

文法 $G_3[S]$: $S \rightarrow Aa|c$

 $A \rightarrow Bc|a$

 $B \rightarrow Sb|b$

间接左递归

递归

文法递归的作用:

用较少的产生式产生无穷多个句子,实现"用有穷表示无穷"。

> 若一个语言的句子有无穷多个,则其对应的文法必定是递归的。

【例】 G[〈无符号整数〉]:

< 无符号整数>→<数字>|< 无符号整数><数字>
<数字>→0|1|2|3|4|5|6|7|8|9

2.3 语言和语法树——语法分析树

设文法 $G=(V_N, V_T, P, S)$,

满足以下条件的树称为一棵语法分析树(parse tree)。

- (1) 树中的每个结点都有标记,该标记是 $V_N \cup V_T$ 中某一个符号;
- (2) 树根的标记是识别符号S;
- (3) 若一个结点至少有一个后继,则该结点上的标记必为非终结符号;
- (4) 若一个标记为U的结点,它有标记依次为 x_1 、 x_2 、...、 x_n 的直接后继结点,则 $U \rightarrow x_1 x_2 \dots x_n$ 必定是文法G的一条产生式。

语法分析树与推导

▶ 由推导生成语法分析树

依直接推导(产生式)增添分枝,直至推导结束。

若推导过程不同,语法树的生长过程也不同,但最终生成的语法树完全相同。

> 由语法分析树构造推导

由分枝建立直接推导,剪枝直至无分枝可剪。

按照这个构造方法,每个语法树必定至少存在一个推导,当剪枝次序不同时,将得到不同的推导。

语法分析树举例

【例】已知表达式文法G[E]:

 $E \rightarrow -EE$

 $E \rightarrow -E$

 $E \rightarrow a$

 $E \rightarrow b$

 $E \rightarrow c$

试问 -- a - bc 是不是L(G)的句子? 若是,请给出该句子 所有可能的语法树;若不是,请说明理由。

自然语言的二义性

《论语•泰伯篇》 民可使由之不可使知之

▶ 民可使由之,不可使知之。

- ▶ 民可, 使由之; 不可, 使知之。
- ▶ 民可使, 由之; 不可使, 知之。

二义性问题

> 句子的二义性

- ⇒一个句子有两棵(或以上)不同的语法树
- ⇒ 存在两个(或以上)不同的最左推导
- ⇒ 存在两个(或以上)不同的最右推导

文法的二义性

- ⇒文法G中的某一句子具有二义性
- > 语言的二义性
 - ⇒ 不存在任何无二义性的文法来描述某语言L

二义性举例

【例】语言 $\{a^ib^ic^j \mid i,j\geq 1\}$ $\cup \{a^ib^jc^j \mid i,j\geq 1\}$ 是先天二义性的。

存在必为二义性的句子 $a^kb^kc^k$ ($k \ge 1$)。

二义性问题的不可判定性

二义性问题是不可判定的。即:不存在一个算法,它能在有限的步骤内,确切地判定一个文法是否为二义性的。

【例】已知文法G[S]:

S→SaS | SbS | cSd | eS | f

请证明该文法是二义性文法。

方法1: 找一句子(句型),存在两棵(以上)不同的语法树。

方法2: 找一句子(句型),存在两种(以上)不同的最左推导过程。

方法3: 找一句子(句型),存在两种(以上)不同的最右推导过程。

2.4 文法的实用限制

在实际使用文法时,经常会对文法有所限制,使之满足某种具体的编译方法的要求。

- □消除文法的二义性
- □ 文法的压缩(化简)
- □消除单规则
- □消除空产生式
- □消除左递归

如果文法G中的某一个句子存在两棵(包括两棵)以上不同的语法树(即有两个不同的最左或最右推导),则称该文法是二义性的。

例: Pascal语言中关于if语句的文法:

<if语句>→if<条件>then<语句>

|if<条件>then<语句>else<语句>

S → <if语句> | i:=E <if语句>→if B then S | if B then S else S

例: S → <if語句> | i:=E <if语句>→ if B then S | if B then S else S

句型 if B then if B then S else S 就有两棵不同的语法树。

排除文法二义性通常有两种方法:

悬挂else问题

- (1) 设定消除二义性规则:在语义上加些限制。 最近嵌套规则
- (2) 重写文法: 重新构造一个等价的无二义性文法。

【例】if语句:等价的无二义性文法

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt | i:=E

 $unmatched_stmt \rightarrow if expr then stmt /$

if expr then matched_stmt else unmatched_stmt

 $expr \rightarrow 0 \mid 1$

排除文法二义性通常有两种方法: 运算符的优先级和结合性

- (1) 设定消除二义性规则:在语义上加些限制。
- (2) 重写文法: 重新构造一个等价的无二义性文法。

等价的无二义性文法 G'[E]: $E \rightarrow E+T \mid E-T \mid T$ $T \rightarrow T*F \mid T/F \mid F$ $F \rightarrow (E) \mid i$

2.4 文法的实用限制

在实际使用文法时,经常会对文法有所限制,使之满足某种具体的编译方法的要求。

- □消除文法的二义性
- □ 文法的压缩(化简)
- □消除单规则
- □消除空产生式
- □消除左递归

2.4 文法的实用限制——文法的压缩

1. 文法不能含有多余产生式:

无法推导出终结符号串的产生式。

从开始符号出发的所有推导都不会用到的产生式。

【例】文法G[S]: $S \rightarrow Ab$ $A \rightarrow f \mid Db$ $B \rightarrow f$

4

2.4 文法的实用限制——文法的压缩

2. 文法不能含有有害产生式: U→U

【例】 $G[S] = (\{S,A\}, \{0,1,2,3,4,5,6,7,8,9\}, P, S)$

 $P: S \to SA \mid A \mid S$

 $A \rightarrow 0|1|2|3|4|5|6|7|8|9$

2.4 文法的实用限制——文法的压缩

【定义】若文法G[S]的所有产生式都满足下列实用限制条件:

- 1. 没有多余产生式
- 2. 没有有害产生式

则称文法G[S]是压缩或化简的。

文法压缩举例

【例】化简(压缩)下面的文法

 $G_1[S]: S \rightarrow Aa|cc$

 $A \rightarrow Ae|Ca|a|A$

 $C \rightarrow Cb$

 $\mathbf{D} \rightarrow \mathbf{b} | \mathbf{D} \mathbf{b}$

化简后的文法

 $G_2[S]: S \rightarrow Aa|cc$

 $A \rightarrow Ae|a$

2.4 文法的实用限制

在实际使用文法时,经常会对文法有所限制,使之满足某种具体的编译方法的要求。

- □消除文法的二义性
- □ 文法的压缩(化简)
- □消除单规则
- □消除空产生式
- □消除左递归

2.4 文法的实用限制——删除单规则

删除单规则(单产生式): A→B

【例】 $G_1[E]: E \rightarrow E+T \mid T$

 $T \rightarrow T*F \mid F$

 $F \rightarrow (E)|i$

₩ 删除单产生式后的等价文法

 $G_2[E]: E \rightarrow E + T \mid T*F \mid (E) \mid i$

 $T \rightarrow T^*F \mid (E) \mid i$

 $F \rightarrow (E) \mid i$

2.4 文法的实用限制

在实际使用文法时,经常会对文法有所限制,使之满足某种具体的编译方法的要求。

- □消除文法的二义性
- □ 文法的压缩(化简)
- □消除单规则
- □消除空产生式
- □消除左递归

2.4 文法的实用限制——删除空产生式

删除空产生式 $(\varepsilon$ 规则): $U\rightarrow \varepsilon$

【例】G₁[S]: A→aBbD

 $B \rightarrow DD$

 $\mathbf{D} \rightarrow \mathbf{b} | \mathbf{c}$

删除空产生式后的等价文法

 $G_2[S]: A \rightarrow aBbD|aBb|abD|ab$

 $B \rightarrow DD|D$

 $D \rightarrow b$

2.4 文法的实用限制

在实际使用文法时,经常会对文法有所限制,使之满足某种具体的编译方法的要求。

- □消除文法的二义性
- □ 文法的压缩 (化简)
- □消除单规则
- □消除空产生式
- □消除左递归

消除直接左递归U→Uy

• 采用EBNF表示

[x]——x可以出现零次或一次 {x}——x可以出现零次到多次 x(y|z)——等价于 xy 或 xz

(1) 提取公因子

$$A \rightarrow ux|uy|...|uz$$

$$\Rightarrow$$

$$A \rightarrow u(x|y|...|z)$$

(2) 消除直接左递归

$$A \rightarrow x|y|...|z|Au$$

$$\Rightarrow$$

$$A \rightarrow (x|y|...|z)\{u\}$$

消除直接左递归U→Uy

• 直接改写法

引进新的非终结符号,将左递归改写为右递归。

设有产生式 $U \rightarrow U x_1 | U x_2 | ... | U x_m | y_1 | y_2 | ... | y_n$ 其中, $y_1,...,y_n$ 均不以符号U为首, $x_1,...,x_m$ 均不为 ϵ ,增加新非终结符号U',将上述产生式变换为 $U \rightarrow y_1 U' | y_2 U' | ... | y_n U' | \varepsilon$

消除直接左递归

【例】 $G_1[S]: S \rightarrow Sa|b|c$

EBNF:

 $G_2[S]: S \rightarrow (b|c)\{a\}$

直接改写法:

 $G_3[S]: S \rightarrow bS'|cS'$

 $S' \rightarrow aS' | \epsilon$

消除直接左递归

【例】
$$G_1[E]: E \rightarrow E + T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E)|i$$

EBNF:

$$G_2[E]: E \rightarrow T\{+T\}$$

$$T \rightarrow F\{*F\}$$

$$F \rightarrow (E)|i$$

直接改写法:

$$G_3[E]: E \rightarrow TE'$$

$$T \rightarrow F T'$$

$$T' \rightarrow *FT' | \varepsilon$$

$$F \rightarrow (E) \mid i$$

文法 (生成)		自动机(识别)	语言
0型文法	PSG	TM	
1型文法	CSG	LBA	PL的语法规则
2型文法	CFG	PDA	
3型文法	RG	FSA	PL的词法规则

1. 自上而下分析方法

2. 自下而上分析方法

- 1. 自上而下分析方法的基本思想
 - 构造语法树角度:

从S出发,利用文法产生式向下构造语法树,使得叶子结点 从左至右的排列恰好与给定的待检查串匹配。

推导角度:从S出发,利用文法产生式,为串寻找一个最左推导序列。

【例】G₁₆[S]: S→aAbc|aB, A→ba, B→beB|d 待检查串 abed

问题: 当 $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$ 时,A具有多个候选式,如何恰好选择其中一个使得分析工作能够继续?

- 带回溯的自上而下分析方法(不确定的自上而下分析方法)
- 确定的自上而下分析方法

限制文法: 若某非终结符有多个侯选式, 当侯选式首符号是终结符时, 应保证它们互不相同。

【例】G₁₇[S]: S→aBc|bCd, B→eB|f, C→dC|c 待检查串 aefc

- 2. 自下而上分析方法的基本思想
 - 构造语法树角度:从待检查串出发,利用产生式向上构造语法树,直至到达S。
 - 推导角度:从待检查串出发,寻找一个最左归约,直至到达S。
 - 【例】G[S]: S→SA|A, A→0|1|2|3|4|5|6|7|8|9 待检查串 365

问题1:如何选择合适的产生式?

问题2:将它应用到构造好的语法树的哪个部分?

(去替换符号串的哪个子串?)

第2章内容小结

- · 文法的形式定义
- · 语言的形式定义
- · 为语言构造文法
- · 与语法分析有关的概念
- · 文法的实用限制

下章内容简介 —— 第3章

- · DFA、NDFA
- ·NDFA到DFA的转换
- ·正规文法与FA
- ·正规表达式与FA