CHAPTER 13

13.1 For three springs

$$\left(\frac{2k_{1}}{m_{1}} - \omega^{2}\right) A_{1} - \frac{k_{1}}{m_{1}} A_{2} = 0$$

$$-\frac{k_{1}}{m_{1}} A_{1} + \left(\frac{2k_{1}}{m_{1}} - \omega^{2}\right) A_{2} - \frac{k_{1}}{m_{1}} A_{3} = 0$$

$$-\frac{k_{1}}{m_{1}} A_{2} + \left(\frac{2k_{1}}{m_{1}} - \omega^{2}\right) A_{3} = 0$$

Substituting m = 40 kg and k = 240 gives

The determinant is $-\omega^6 + 36\omega^4 - 360\omega^2 + 864 = 0$, which can be solved for $\omega^2 = 20.4853$, 12, and 3.5147 s⁻². Therefore the frequencies are $\omega = 4.526$, 3.464, and 1.875 s⁻¹. Substituting these values into the original equations yields for $\omega^2 = 20.4853$, $A_1 = -0.707$ and $A_2 = A_3$. For $\omega^2 = 12$, $A_1 = -A_3$ and $A_2 = 0$. For $\omega^2 = 3.5147$, $A_1 = 0.707$ and $A_2 = A_3$. Based on these results, the following plots can be developed:

13.2 The system and the initial guesses can be set up as

First iteration:

```
>> e=max(x)
e =
    22
>> x=x/e
x =
    0.90909
    0.77273
    1.0000
```

Second iteration:

```
>> x=a*x
x =
   18.0000
   15.364
   19.955
>> e=max(x)
   19.955
>> x=x/e
x =
    0.90205
    0.76993
    1.0000
```

Third iteration:

```
>> x=a*x
x =
   17.964
   15.2964
   19.870
>> e=max(x)
   19.870
>> x=x/e
x =
    0.90405
    0.7698
    1.0000
```

Fourth iteration:

```
>> x=a*x
x =
   17.967
   15.312
  19.889
>> e=max(x)
  19.889
>> x=x/e
    0.90332
    0.76983
    1.0000
```

Thus, after four iterations, the result is converging on the highest eigenvalue. After several more iterations, it will converge on an eigenvalue of 19.884 with a corresponding eigenvector of [0.90351 0.76983 1].

13.3 The following script can be developed to determine the smallest eigenvalue with the power method. The script is set up to compute 4 iterations:

```
clear, clc, format short g
a=[2 8 10;8 4 5;10 5 7];
ai = inv(a)
x=[1 1 1]';
for i = 1:4
  disp('Iteration:')
  x=ai*x
  e=max(x)
  x=x/e
xn=x/norm(x)
The results are
ai =
               0.14286 -8.3267e-017
2.0476 -1.6667
    -0.071429
      0.14286
                               1.3333
                    -1.6667
Iteration:
     0.071429
      0.52381
     -0.33333
e =
      0.52381
x =
      0.13636
           1
     -0.63636
Iteration:
x =
      0.13312
       3.1277
      -2.5152
e =
       3.1277
x =
     0.042561
     -0.80415
Iteration:
x =
      0.13982
        3.394
      -2.7389
e =
        3.394
x =
     0.041196
           1
     -0.80699
Iteration:
      0.13991
      3.3985
      -2.7426
e =
```

Thus, after four iterations, the estimate of the lowest eigenvalue is 1/(3.3985) = 0.29424 with a normalized eigenvector of $[0.032022\ 0.7778\ -0.6277]$. This result can be compared with the lowest eigenvalue computed with the eig function,

13.4 By summing forces on each mass and equating that to the mass times acceleration, the resulting differential equations can be written

$$\begin{split} \ddot{x}_1 + \left(\frac{k_1 + k_2}{m_1}\right) x_1 - \left(\frac{k_2}{m_1}\right) x_2 &= 0\\ \ddot{x}_2 - \left(\frac{k_2}{m_2}\right) x_1 + \left(\frac{k_2 + k_3}{m_2}\right) x_2 - \left(\frac{k_3}{m_2}\right) x_3 &= 0\\ \ddot{x}_3 - \left(\frac{k_3}{m_3}\right) x_2 + \left(\frac{k_3 + k_4}{m_3}\right) x_3 &= 0 \end{split}$$

In matrix form

$$\begin{cases} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \end{cases} + \begin{bmatrix} \frac{k_1 + k_2}{m_1} & -\frac{k_2}{m_1} & 0 \\ -\frac{k_2}{m_2} & \frac{k_2 + k_3}{m_2} & -\frac{k_3}{m_2} \\ 0 & -\frac{k_3}{m_3} & \frac{k_3 + k_4}{m_3} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

The k/m matrix becomes with: $k_1 = k_4 = 15$ N/m, $k_2 = k_3 = 35$ N/m, and $m_1 = m_2 = m_3 = 1.5$ kg

Solve for the eigenvalues/natural frequencies using MATLAB:

```
>> k1=15;k4=15;k2=35;k3=35;
>> m1=1.5;m2=1.5;m3=1.5;
>> a=[(k1+k2)/m1 -k2/m1 0;-k2/m2 (k2+k3)/m2 -k3/m2;0 -k3/m3 (k3+k4)/m3];
>> w2=eig(a)
w2 =
    6.3350
    33.3333
    73.6650
>> w=sqrt(w2)
w =
    2.5169
    5.7735
    8.5828
```

13.5 Here is a MATLAB session that uses eig to determine the eigenvalues and the natural frequencies:

Therefore, the eigenvalues are 0, 6, and 6. Setting these eigenvalues equal to $m\omega^2$, the three frequencies can be obtained.

$$m\omega_1^2 = 0 \Rightarrow \omega_1 = 0$$
 (Hz) 1st mode of oscillation $m\omega_2^2 = 6 \Rightarrow \omega_2 = \sqrt{6}$ (Hz) 2nd mode $m\omega_3^2 = 6 \Rightarrow \omega_3 = \sqrt{6}$ (Hz) 3rd mode

13.6 The solution along with its second derivative can be substituted into the simultaneous ODEs. After simplification, the result is

$$\left(\frac{1}{C_1} - L_1 \omega^2\right) A_1 \qquad -\frac{1}{C_2} A_2 \qquad = 0$$

$$-\frac{1}{C_1} A_1 \qquad \left(\frac{1}{C_1} + \frac{1}{C_2} - L_1 \omega^2\right) A_2 \qquad -\frac{1}{C_2} A_3 \qquad = 0$$

$$-\frac{1}{C_2} A_2 \qquad \left(\frac{1}{C_2} + \frac{1}{C_3} - L_3 \omega^2\right) A_3 = 0$$

Thus, we have formulated an eigenvalue problem. Further simplification results for the special case where the *C*'s and *L*'s are constant. For this situation, the system can be expressed in matrix form as

$$\begin{bmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{bmatrix} A_1 A_2 = \{0\}$$
(P13.6a)

where $\lambda = LC\omega^2$. MATLAB can be employed to determine values for the eigenvalues and eigenvectors : >>a=[1 -1 0; -1 2 -1; 0 -1 2];>>[v,d]=eig(a)

```
v = 0.7370 0.5910 0.3280 0.5910 -0.3280 -0.7370 0.3280 -0.7370 0.5910 d = 0.1981 0 0 0 1.5550 0 0 0 3.2470
```

The matrix v consists of the system's three eigenvectors (arranged as columns), and d is a matrix with the corresponding eigenvalues on the diagonal. Thus, the package computes that the eigenvalues are $\lambda = 0.1981$, 1.555, and 3.247. These values in turn can be used to compute the natural circular frequencies of the system

$$\omega = \begin{cases} 0.4450 / \sqrt{LC} \\ 1.2450 / \sqrt{LC} \\ 1.8019 / \sqrt{LC} \end{cases}$$

Aside from providing the natural frequencies, the eigenvalues can be substituted into the Eq. (P13.6a) to gain further insight into the circuit's physical behavior. For example, substituting $\lambda = 0.1981$ yields

$$\begin{bmatrix} 0.8019 & -1 & 0 \\ -1 & 1.8019 & -1 \\ 0 & -1 & 1.8019 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \{0\}$$

Although this system does not have a unique solution, it will be satisfied if the currents are in fixed ratios, as in

$$0.8019i_1 = i_2 = 1.8019i_3 \tag{P13.6b}$$

Thus, as depicted in (a) in the figure below, they oscillate in the same direction with different magnitudes. Observe that if we assume that $i_1 = 0.737$, we can use Eq. (P13.6b) to compute the other currents with the result

$$\{i\} = \begin{cases} 0.737 \\ 0.591 \\ 0.328 \end{cases}$$

which is the first column of the v matrix calculated with MATLAB.

In a similar fashion, the second eigenvalue of $\lambda = 1.555$ can be substituted and the result evaluated to yield $-1.8018i_1 = i_2 = 2.247i_3$. As depicted in the above figure (*b*), the first loop oscillates in the opposite direction from the second and third.

Finally, the third mode can be determined as $-0.445i_1 = i_2 = -0.8718i_3$. Consequently, as in the above figure (*c*), the first and third loops oscillate in the opposite direction from the second.

13.7 Using an approach similar to Prob. 13.6, the system can be expressed in matrix form as

$$\begin{bmatrix} 1 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \{0\}$$

A package like MATLAB can be used to evaluate the eigenvalues and eigenvectors as in

Thus, we can see that the eigenvalues are $\lambda = 0.382$ and 2.618 or natural frequencies of $\omega = 0.618/\sqrt{LC}$ and $1.618/\sqrt{LC}$. The eigenvectors tell us that these correspond to oscillations that coincide (0.8507 0.5257) and which run counter to each other (-0.5257 0.8507).

13.8 Force balances can be written as

$$m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 + k_2 (x_2 - x_1)$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k_2 (x_2 - x_1)$$

Assume solutions

$$x_i = X_i \sin(\omega t)$$
 $x_i^{\prime\prime} = -X_i \omega^2 \sin(\omega t)$

Substitute

$$-m_1 X_1 \omega^2 \sin(\omega t) = -k_1 X_1 \sin(\omega t) + k_2 (X_2 \sin(\omega t) - X_1 \sin(\omega t))$$

$$-m_2 X_2 \omega^2 \sin(\omega t) = -k_2 (X_2 \sin(\omega t) - X_1 \sin(\omega t))$$

Cancel $sin(\omega t)$ and collect terms

$$\left(\frac{k_1 + k_2}{m_1} - \omega^2\right) X_1 - \frac{k_2}{m_1} X_2 = 0$$
$$-\frac{k_2}{m_2} X_1 + \left(\frac{k_2}{m_2} - \omega^2\right) X_2 = 0$$

Substitute parameters

$$(450 - \omega^2) X_1 - 200 X_2 = 0$$
$$-240 X_1 + (240 - \omega^2) X_2 = 0$$

MATLAB solution:

13.9 Force balances can be written as

$$\begin{split} & m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 + k_2 (x_2 - x_1) \\ & m_2 \frac{d^2 x_2}{dt^2} = -k_2 (x_2 - x_1) - k_3 (x_2 - x_3) \\ & m_3 \frac{d^2 x_3}{dt^2} = -k_3 (x_3 - x_2) - k_4 (x_3 - x_4) \\ & m_4 \frac{d^2 x_4}{dt^2} = k_4 (x_3 - x_4) \end{split}$$

Assume solutions

$$x_i = X_i \sin(\omega t)$$
 $x_i^{\prime\prime} = -X_i \omega^2 \sin(\omega t)$

Substitute

$$\begin{split} -m_1 X_1 \omega^2 \sin(\omega t) &= -k_1 X_1 \sin(\omega t) + k_2 (X_2 \sin(\omega t) - X_1 \sin(\omega t)) \\ -m_2 X_2 \omega^2 \sin(\omega t) &= -k_2 (X_2 \sin(\omega t) - X_1 \sin(\omega t)) - k_3 (X_2 \sin(\omega t) - X_3 \sin(\omega t)) \\ -m_3 X_3 \omega^2 \sin(\omega t) &= -k_3 (X_3 \sin(\omega t) - X_2 \sin(\omega t)) - k_4 (X_3 \sin(\omega t) - X_2 \sin(\omega t)) \\ -m_4 X_4 \omega^2 \sin(\omega t) &= k_4 (X_3 \sin(\omega t) - X_4 \sin(\omega t)) \end{split}$$

Collect terms

$$\left(\frac{k_1 + k_2}{m_1} - \omega^2\right) X_1 - \frac{k_2}{m_1} X_2 = 0$$

$$-\frac{k_2}{m_2} X_1 + \left(\frac{k_2 + k_3}{m_2} - \omega^2\right) X_2 - \frac{k_3}{m_2} X_3 = 0$$

$$-\frac{k_3}{m_3} X_2 + \left(\frac{k_3 + k_4}{m_3} - \omega^2\right) X_3 - \frac{k_4}{m_3} X_4 = 0$$

$$-\frac{k_4}{m_4} X_3 + \left(\frac{k_4}{m_4} - \omega^2\right) X_4 = 0$$

Substitute parameters

$$(450 - \omega^2) X_1 - 200 X_2 = 0$$

$$-240 X_1 + (240 - \omega^2) X_2 - 180 X_3 = 0$$

$$-225 X_2 + (375 - \omega^2) X_3 - 150 X_4 = 0$$

$$-200 X_3 + (200 - \omega^2) X_4 = 0$$

MATLAB solution:

v =

 $A=[450\ -200\ 0\ 0;-240\ 420\ -180\ 0;0\ -225\ 375\ -150;0\ 0\ -200\ 200];$ [v,d]=eig(A) wn=sqrt(diag(d))'/2/pi

13.10 (a) For four interior points (h = 3/5), the resulting system of equations is

$$\begin{bmatrix} (2-0.36p^2) & -1 & 0 & 0 \\ -1 & (2-0.36p^2) & -1 & 0 \\ 0 & -1 & (2-0.36p^2) & -1 \\ 0 & 0 & -1 & (2-0.36p^2) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = 0$$

Setting the determinant equal to zero and expanding it gives

$$(2 - 0.36p^2)^4 - 3(2 - 0.36p^2)^2 + 1 = 0$$

which can be solved for the first four eigenvalues

$$p = \pm 1.0301$$

 $p = \pm 1.9593$
 $p = \pm 2.6967$
 $p = \pm 3.1702$

(b) The system can be normalized so that the coefficient of the eigenvalue is unity:

$$\begin{bmatrix} 5.5556 & -2.7778 & 0 & 0 \\ -2.7778 & 5.5556 & -2.7778 & 0 \\ 0 & -2.7778 & 5.5556 & -2.7778 \\ 0 & 0 & -2.7778 & 5.5556 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = 0$$

MATLAB solution:

```
0.6015
        0.3717 0.3717 -0.6015
   0.3717
        0.6015 -0.6015 0.3717
d =
                  0
   1.0610
            0
                              0
          3.8388
                              0
      0
       0
           0
                 7.2723
                             0
                  0
                        10.0501
       0
              0
wn =
   1.0301
          1.9593
                  2.6967
                        3.1702
```

(c) Power method:

```
clear, clc, format short g
A=[5.5556 -2.7778 0 0;-2.7778 5.5556 -2.7778 0; ...
    0 -2.7778 5.5556 -2.7778;0 0 -2.7778 5.5556];
x=[1 1 1 1]';
for i = 1:4
    disp('Iteration:')
    x=a*x
    e=max(x)
    x=x/e
end
xn=x/norm(x)
```

The 4 iterations are

6.9445

```
Iteration:
x =
    2.7778
         0
         0
    2.7778
e =
    2.7778
x =
     1
     0
     0
     1
Iteration:
    5.5556
   -2.7778
   -2.7778
    5.5556
    5.5556
x =
    1.0000
   -0.5000
   -0.5000
    1.0000
Iteration:
x =
    6.9445
   -4.1667
   -4.1667
```

If the process is continued, the result for the maximum eigenvalue is p = 7.2724 with an associated eigenvector [0.6015 - 0.3717 - 0.3717 0.6015].

13.11 (a) Substituting the assumed solutions and their derivatives gives

These can be substituted into the original differential equations,

$$c_1 \lambda e^{\lambda t} = -5c_1 e^{\lambda t} + 3c_2 e^{\lambda t}$$
$$c_2 \lambda e^{\lambda t} = 100c_1 e^{\lambda t} - 301c_2 e^{\lambda t}$$

Cancelling the exponentials and rearranging converts the system into an eigenvalue problem

$$(-5 - \lambda)c_1 + 3c_2 = 0$$
$$100c_1 + (-301 - \lambda)c_2 = 0$$

(b) The characteristic equation is

$$\begin{vmatrix} -5 - \lambda & 3 \\ 100 & -301 - \lambda \end{vmatrix} = (-5 - \lambda)(-301 - \lambda) - 3(100) = \lambda^2 + 306\lambda + 1205$$

which can be solved for the eigenvalues

$$\frac{\lambda_1}{\lambda_2} = \frac{-306 \pm \sqrt{(-306)^2 - 4(1)(1205)}}{2} = 302.0101, -3.9899$$

In MATLAB:

Therefore, the eigenvalues for this system are -302.01 and -3.9899. Alternatively, the eig function can be used to determine the same result as well as the associated eigenvectors:

(c) The solution can then be written as

$$\{y\} = c_1 \begin{cases} 0.94772 \\ 0.31909 \end{cases} e^{-302.01t} + c_2 \begin{cases} -0.0101 \\ 0.99995 \end{cases} e^{-3.9899t}$$

The unknown constants can then be evaluated by applying the initial conditions

$$\begin{bmatrix} 0.94772 & -0.0101 \\ 0.31909 & 0.99995 \end{bmatrix} \begin{cases} c_1 \\ c_2 \end{cases} = \begin{cases} 50 \\ 100 \end{cases}$$

which can be solved for

which can be substituted back into the solution to give

$$\{y\} = 53.461 \begin{cases} 0.94772 \\ 0.31909 \end{cases} e^{-302.01t} + 82.888 \begin{cases} -0.0101 \\ 0.99995 \end{cases} e^{-3.9899t}$$

which yields the final solution

$$y_1 = 50.837e^{-3.9899t} - 0.83718e^{-302.0101t}$$
$$y_2 = 17.116e^{-3.9899t} + 82.884e^{-302.0101t}$$

13.12 The decay rate can be calculated as 0.69315/28.8 = 0.021526/yr. Substituting this value into the differential equations yields

$$\begin{split} \frac{dc_1}{dt} &= -0.027126c_1\\ \frac{dc_2}{dt} &= -0.031526c_2\\ \frac{dc_3}{dt} &= 0.01902c_1 + 0.01387c_2 - 0.068526c_3\\ \frac{dc_4}{dt} &= 0.33597c_3 - 0.39753c_4\\ \frac{dc_5}{dt} &= 0.11364c_4 - 0.15453c_5 \end{split}$$

v =

Assume solutions of the form: $c_i = c_i(0)e^{-\lambda t}$. Substitute the solutions and their derivatives into the differential equations converts the system into an eigenvalue problem

$$\begin{bmatrix} 0.027126 - \lambda & 0 & 0 & 0 & 0 \\ 0 & 0.031526 - \lambda & 0 & 0 & 0 \\ -0.01902 & -0.01387 & 0.068526 - \lambda & 0 & 0 \\ 0 & 0 & -0.33597 & 0.39753 - \lambda & 0 \\ 0 & 0 & 0 & -0.11364 & 0.15453 \end{bmatrix} \{c\} = \{0\}$$

The eigenvalues and eigenvectors can be determined with MATLAB:

```
clear,clc,clf format short g k=0.69315/32.2; A=zeros(5);A(1,1)=-(0.0056+k);A(2,2)=-(0.01+k); A(3,3)=-(0.047+k);A(4,4)=-(0.376+k);A(5,5)=-(0.133+k); A(3,1)=.01902;A(3,2)=.01387;A(4,3)=.33597;A(5,4)=.11364; [v,d]=eig(A)
```

The solution can then be written as

$$\{c\} = c_1(0) \begin{cases} 0 \\ 0 \\ 0 \\ 1 \end{cases} e^{-0.15453t} + c_2(0) \begin{cases} 0 \\ 0 \\ 0.90584 \\ -0.42362 \end{cases} e^{-0.39753t} + c_3(0) \begin{cases} 0 \\ 0.50874 \\ 0.51952 \\ 0.68649 \end{cases} e^{-0.068526t}$$

$$+ c_4(0) \begin{cases} 0.81034 \\ 0 \\ 0.37229 \\ 0.33768 \\ 0.30121 \end{cases} e^{-0.027126t} + c_5(0) \begin{cases} 0 \\ 0.85749 \\ 0.32144 \\ 0.29507 \\ 0.27261 \end{cases}$$

The unknown constants can then be evaluated by applying the initial conditions

which can be substituted back into the solution to give

$$\{c\} = 24.749 \begin{cases} 0\\0\\0\\1 \end{cases} e^{-0.15453t} + 103.31 \begin{cases} 0\\0\\0.90584\\-0.42362 \end{cases} e^{-0.39753t} + 47.833 \begin{cases} 0\\0.50874\\0.51952\\0.68649 \end{cases} e^{-0.068526t}$$

$$+ 21.843 \begin{cases} 0.81034\\0\\0.37229\\0.33768\\0.30121 \end{cases} e^{-0.027126t} + 35.569 \begin{cases} 0\\0.85749\\0.32144\\0.29507\\0.27261 \end{cases} e^{-0.031526t}$$

which yields the final solution

$$c_1 = 21.843(0.81034)e^{-0.027126t}$$

```
c_2 = 35.569(0.85749)e^{-0.031526t}
c_3 = 21.843(0.37229)e^{-0.027126t} + 35.569(0.32144)e^{-0.031526t} + 47.833(0.50874)e^{-0.068526t}
c_A = 21.843(0.33768)e^{-0.027126t} + 35.569(0.29507)e^{-0.031526t} + 47.833(0.51952)e^{-0.068526t} + 103.31(0.90584)e^{-0.39753t}
c_5 = 21.843(0.30121)e^{-0.027126t} + 35.569(0.27261)e^{-0.031526t} + 47.833(0.68649)e^{-0.068526t} + 103.31(-0.42362)e^{-0.39753t} + 24.749(1)e^{-0.15453t}
   or
    c_1 = 17.7e^{-0.027126t}
    c_2 = 30.5e^{-0.031526t}
    c_3 = 8.132e^{-0.027126t} + 11.433e^{-0.031526t} + 24.335e^{-0.068526t}
    c_4 = 7.376e^{-0.027126t} + 10.495e^{-0.031526t} + 24.85e^{-0.068526t} + 93.582e^{-0.39753t}
    c_5 = 6.579e^{-0.027126t} + 9.696e^{-0.031526t} + 32.837e^{-0.068526t} - 43.764e^{-0.39753t} + 24.749e^{-0.15453t}
    A plot of the final results can be generated as
    t=[1963:2010];
   c1=17.7*exp(-0.027126*(t-1963))
    c2=30.5*exp(-0.03152*(t-1963))
    c3=8.132*exp(-0.027126*(t-1963))+11.433*exp(-0.03152*(t-1963))...
       +24.335*exp(-0.06852*(t-1963))
    c4=7.376*exp(-0.027126*(t-1963))+10.495*exp(-0.03152*(t-1963))...
       +24.85*exp(-0.06852*(t-1963))+93.582*exp(-0.06852*(t-1963))
    c5=6.579*exp(-0.027126*(t-1963))+9.696*exp(-0.03152*(t-1963))...
       +32.837*exp(-0.06852*(t-1963))-43.764*exp(-0.06852*(t-1963))...
       -24.749*exp(-0.15453*(t-1963))
   plot(t,c1,t,c2,'-',t,c3,t,c4,t,c5)
    ylim([0 120]),legend('y1','y2','location','Best')
        140
                                                Superior
        120
                                                Michigan
                                                Huron
        100
                                                Ontario
         80
         60
         40
         20
          1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
    13.13
   function [eval, evect,ea,iter] = powereig(A,es,maxit)
    %Power method for largest eigenvalue
    % input:
    % es = desired relative error (default = 0.0001%)
    % maxit = maximum allowable iterations (default = 50)
   % output:
    % eval = largest eigenvalue
   % evect = largest eigenvector
    % ea = approximate relative error (%)
```

```
% iter = number of iterations
if nargin<1,error('at least 1 input argument required'),end
if nargin<2 isempty(es), es=0.0001;end
if nargin<3 | isempty(maxit), maxit=50;end
format short g
n=length(A);
vect=ones(n,1);
val=0;iter=0;ea=100;
while(1)
 valold=val;
 vect=A*vect;
 val=max(abs(vect));
 vect=vect./val;
 iter=iter+1;
 if val~=0, ea = abs((val-valold)/val)*100; end
 if ea<=es | iter >= maxit,break,end
end
eval=val;evect=vect;
end
Example 13.3:
A=[40 -20 0; -20 40 -20; 0 -20 40];
[eval,evect,ea,iter] = powereig(A)
evect=evect/norm(evect)
[v,d]=eig(A)
eval =
      68.284
evect =
      0.70711
          - 1
      0.70711
ea =
 5.1534e-005
iter =
   11
evect =
          0.5
     -0.70711
         0.5
v =
          0.5
                 -0.70711
                                   -0.5
      0.70711 -2.0817e-017
                                0.70711
          0.5
                0.70711
                                   -0.5
d =
                                      0
       11.716
                        0
                       40
           Ω
                                      Ω
            0
                        0
                                 68.284
Prob. 13.2:
clear,clc
A=[2 8 10;8 4 5;10 5 7];
[eval, evect,ea,iter] = powereig(A)
evect=evect/norm(evect)
[v,d]=eig(A)
eval =
       19.884
evect =
```

```
0.90351
     0.76983
ea =
 7.9461e-005
iter =
   11
evect =
     0.58213
     0.49599
      0.6443
v =
    -0.81247
               -0.032022
                              0.58213
     0.38603
                 -0.7778
                              0.49599
     0.43689
                  0.6277
                              0.6443
     -7.1785
                      0
                                    0
                0.29424
           0
                                   0
           0
                               19.884
                  0
```