

Natural Language Processing & Word Embeddings TOTAL POINTS 10				
1.	Suppose you learn a word embedding for a vocabulary of 10000 wor should be 10000 dimensional, so as to capture the full range of varia words.		1 point	
	○ True			
	○ False			
2.	What is t-SNE?		1 point	
	A linear transformation that allows us to solve analogies on word ve-			
	A non-linear dimensionality reduction technique			
	A supervised learning algorithm for learning word embeddings			
	An open-source sequence modeling library			
3.	Suppose you download a pre-trained word embedding which has be text. You then use this word embedding to train an RNN for a langu someone is happy from a short snippet of text, using a small trainin	age task of recognizing if	1 point	
	x (input text)	y (happy?)		
	I'm feeling wonderful today!	1		
	I'm bummed my cat is ill.	0		
	Really enjoying this!	1		
	Then even if the word "ecstatic" does not appear in your small train reasonably be expected to recognize "I'm ecstatic" as deserving a lal			
	True			
	False			
4.	Which of these equations do you think should hold for a good word apply)	embedding? (Check all that	1 point	
	$igcap e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$			
	$igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$			
	$igcap e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$			
	$igspace e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$			
5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector cor to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Py	1 point		
It is computationally wasteful.				
	$igcap$ The correct formula is $E^T*o_{1234}.$			
	This doesn't handle unknown words (<unk>).</unk>			
	None of the above: calling the Python snippet as described above is	fine.		

6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It

is that we learn a useful set of word embeddings.

○ True

is okay if we do poorly on this artificial prediction task; the more important by-product of this task

1 point

7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.		1 point
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$		
	$\bigcirc \ c$ is a sequence of several words immediately before $t.$		
	$\bigcirc \ c$ and t are chosen to be nearby words.		
	$\bigcirc \ c$ is the one word that comes immediately before $t.$		
8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embedding The word2vec model uses the following softmax function:	s.	1 point
	$P(t \mid c) = rac{e^{q_t^q \cdot c}}{\sum_{l = 0}^{mon} e^{q_t^d \cdot c}}$		
	Which of these statements are correct? Check all that apply.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$\hfill \square$ After training, we should expect θ_t to be very close to e_c when t and c are the same word.		
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:		1 point
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$		
	Which of these statements are correct? Check all that apply.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$\hfill \qquad \theta_i$ and e_j should be initialized randomly at the beginning of training.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
10.	You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of n_1 words. Keeping in mind that using word embeddings is a form of transfer learning, under which these circumstance would you expect the word embeddings to be helpful? $m_1 >> m_2$	n_2	1 point
	$m_1 \ll m_2$		
	O		
	I, Ching Chang, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		6 7 P
	Econ more about Coursers a Horior Code		
		Save	Submit

○ False