TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

INTRODUCTION

Every petroleum production system must have a source from which the production fluid comes from. This source refers to the well completion, which is the interface between the system and the reservoir. A detailed explanation about completions, reservoirs and inflow performance is out of the scope of this report, however, the idea is to introduce the concept of inflow performance relationship or IPR.

The IPR is a mathematical expression relating the average reservoir pressure, the well bottom hole pressure and its inflow hydrocarbon flowrate from the reservoir to the flowing bottomhole for a given depletion state. The pressure difference between the reservoir and the bottom hole is the driving force to transport hydrocarbons out of the well location within a reservoir and up to the surface.

As defined above, the IPR is a pseudo-steady state expression, since it depends on the evolution of the pressure difference between the reservoir and the well bottom hole pressure, also known as drawdown. The average reservoir pressure depends on the amount of wells, and production rate, and the flowing bottomhole pressure is related to the well infrastructure and surface network. Since the reservoir depletion is given in terms of weeks or months, production engineers approximate the drawdown behavior with the IPR. In this way, they are capable of scheduling production and even prepare forecast about it.

This class supports the following IPR models

- Vogel equation
- Jones equation
- Fetkovich equation
- · Back pressure equation
- · Productivity index model

DOCUMENT OBJECTIVE

Describing the main features, algorithms and calculations perform by the VertCompletionObj class.

TEP4905-RP-02-06 Rev. 1

TEP4905 - MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

DOCUMENT SCOPE

Describe all properties, methods and events included in the VertCompletionObj class, in its version 01. Additional to this, provide a detailed explanation on the major algorithms applied to solve the object depending on the variable configurations.

Class developed in MATLAB R2015a.

PRELIMINARIES

In the following sections there are shown all inflow performance relationships (IPR) included in the model. The unit system is not set, therefore, for obtaining a particular variable in a preferred system, the remaining variables in the equation have to be consistent. For more information about IPR, review (Beggs, 2003), or any other reference book or source about petroleum production engineering.

As a remark, the symbol P_{ws} was used to refer to the average reservoir pressure. However, in some books this symbol may be used to design other locations in the production system.

VOGEL EQUATION

$$\frac{q_{sc}}{q_{sc,max}} = 1 - 0.2 \cdot \frac{P_{wf}}{P_{ws}} - 0.8 \cdot (\frac{P_{wf}}{P_{ws}})^2$$
 (eq. 01)

where:

 q_{sc} Inflow flowrate corresponding to wellbore flowing pressure

 $q_{sc,max}$ Inflow rate corresponding to zero wellbore flowing pressure

 P_{wf} Wellbore flowing pressure

 P_{ws} Average reservoir pressure at a given depletion state

JONES EQUATION

$$P_{ws} - P_{wf} = A \cdot q_{sc} + B \cdot q_{sc}^2 \tag{eq. 02a}$$

$$P_{ws}^2 - P_{wf}^2 = A \cdot q_{sc} + B \cdot q_{sc}^2$$
 (eq. 02b)

where:

A Jones' model laminar flow constant

B Jones' model turbulent flow constant

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

FETKOVICH EQUATION

$$\frac{q_{sc}}{q_{sc,max}} = (P_{ws}^2 - P_{wf}^2)^n$$
 (eq. 03)

where:

n Exponent depending on well characteristics, typically ranging from 0,568 to 1,000

BACK PRESSURE EQUATION

$$q_{sc} = C \cdot (P_{ws}^2 - P_{wf}^2)^n \tag{eq. 04}$$

where:

C Flow coefficient

n Exponent depending on well characteristics

WELL PRODUCTIVITY INDEX MODEL

$$q_{sc} = J_o \cdot (P_{ws} - P_{wf}) \tag{eq. 05a}$$

$$q_{sc} = J_g \cdot (P_{ws}^2 - P_{wf}^2)$$
 (eq. 05b)

where:

*J*_o Oil productivity index

 J_g Gas productivity index

PROPERTIES

An attribute table describes each property. This table is a simplified version of the property attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the property functionality.

For information, the attribute descriptions are as follows:

Property attribute	Description	Values
Access	Property accessibility once a class instance is created.	{public protected
	· Public: unrestricted access	private}
	· Protected: access from classes and subclasses	
	· Private: access from class member only	

TECHNICAL REPORT 6

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

Property attribute	Description	Values
Dependent Property auto-calculated by class instance, once all dependencies have been set. When true, the property does not store any value, and it is calculated in every callback.		{true false}
Hidden	Property visibility for a class instance. When true, the property is not listed in the available class instance's properties.	{true false}
Set access	Property ability to be written by the user in a class instance. Public: unrestricted access Protected: access from classes and subclasses Private: access from class member only Immutable: access from class constructor only	{public protected private immutable}
Get access Property ability to be read by the user in a class instance. Public: unrestricted access Protected: access from classes and subclasses Private: access from class member only		{public protected private}

One important remark about this class is that the user has to select one of the available type of IPR and provide all the required information (constants, maximum inflow rate and exponents). IPR models can be used one at a time, and their properties are unrelated to other models.

IPRTYPE

Description	Inflow performance relationship type String defining the type of inflow performance relationship (IPR) to be used to calculate the well inflow production. The class supports most of the traditional IPR equations, including: well productivity index (for oil and gas reservoirs), Vogel equation, Fetkovich equation, Jones equation (for gas and oil reservoirs) and the backpressure equation.				
	This string can be one of the following: . 'Well PI' . 'Vogel' . 'Fetkovich' . 'Jones' . 'Backpressure equation'				
Access	Value by default =	Dependent Dependent	False	Set access	Public
Hidden	False	Class	String	Get access	Public

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

Qsc

Description	Reservoir production, standard conditions				
	Reservoir production given in Sm³/d. Standard conditions refer to 1 atm (101,33 kPa) and 15,56 C.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

Pws

Description	Reservoir pressure Reservoir pressure given in kPa.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

PwF

Description	Bottom hole pressure Well bottom hole pressure given in kPa.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TwF

Description	Bottom hole temperature Well bottom hole temperature given in C.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

JONESA

Description	Jones equation constant, laminar flow				
	Jones equation constant related to the laminar flow.				
	The property IPRType must be set to `Jones', and the following properties need to be defined as well: JonesType and JonesB				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

JONESB

Description	Jones equation constant, turbulent flow				
	Jones equation constant related to the turbulent flow.				
	The property IPRType must be set to 'Jones', and the following properties need to be defined as well: JonesType and JonesA.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

JONESTYPE

Description	Jones equation formulation String specifying the type of reservoir, hence IPR formulation. This string can be one of the following:					
	· `Gas'					
	· 'Oil'					
	The property IPRType must be set to 'Jones', and the following properties need to be defined as well: JonesB and JonesA.					
	Value by default =	'oil'				
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	String	Get access	Public	

WELLPIJ

Description	Well productivity index				
	Well productivity index value, suggested in Sm3/d.kPa The property IPRType must be set to `Well PI', and the following properties need to be defined as well: WellPIType.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

Jun-30-2015

WELLPITYPE

Description	Well productivity index equation formulation String specifying the type of reservoir, hence IPR formulation. This string can be one of the following:					
	· `Gas'					
	· 'Oil'					
	The property IPRType must be set to 'Well PI', and the following properties need to be defined as well: WellPIJ.					
	Value by default = 'oil'					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	String	Get access	Public	

VOGEL**Q**MAX

Description	Jones equation parameters, maximum flowrate Maximum flowrate, as required by Jones IPR equation suggested in Sm3/d. The property IPRType must be set to 'Vogel'.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

FETKOVICHQMAX

Description	•	Fetkovich equation parameters, maximum flowrate Maximum flowrate, as required by Jones IPR equation suggested in Sm3/d.				
	The property IPRType must be set to 'Fetkovich', and the following properties need to be defined as well: FetkovichN.					
Access	Public	Public Dependent False Set access Public				
Hidden	False	Class	Double	Get access	Public	

FETCHOVITCHN

Description	Fetkovich equation	Fetkovich equation parameters, exponent				
	Exponent dependi	Exponent depending on well characteristics, typically ranging from 0,568 to 1,000.				
	The property IPRType must be set to 'Fetkovich', and the following properties need to be defined as well: FetkovichQmax.					
Access	Public	Public Dependent False Set access Public				
Hidden	False	Class	Double	Get access	Public	

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

BACKPRESSUREC

Description	Back pressure equa	Back pressure equation parameters, coefficient				
	The property IPRType must be set to 'Backpressure equation', and the following properties need to be defined as well: BackPressureN.					
Access	Public	Public Dependent False Set access Public				
Hidden	False	Class	Double	Get access	Public	

BACKPRESSUREN

Description	· · · · · · · · · · · · · · · · · · ·	Back pressure equation parameters, exponent				
	The property IPRType must be set to 'Backpressure equation', and the following properties need to be defined as well: BackPressureC.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

CALCULATIONTYPE

Description	Type of IPR formul	Type of IPR formulation					
		±					
Access	Public	Dependent	False	Set access	Public		
Hidden	False	Class	String	Get access	Public		

AOFP

Description	Absolute open flow potential				
	Maximum inflow rate from a well. This value corresponds to a well bottom hole pressure equal to 0 kPa.				
Access	Public	Dependent	True	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

METHODS

An attribute table describes each method. This table is a simplified version of the method attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the method functionality.

For information, the attribute descriptions are as follows:

Method attribute	Description	Values
Access	Method accessibility once a class instance is created.Public: unrestricted accessProtected: access from classes and subclassesPrivate: access from class member only	{public protected private}
Hidden	Method visibility for a class instance. When true, the property is not listed in the available class instance's methods.	{true false}
Static	Method independency on a class object. Relative to methods inherent to the class code, such as error/exception handling. When true, the method is only available inside the class code only and does not require arguments related to the class instance.	{true false}

SOLVE COMPLETION

Description	pressure (P_{wf}) or the to defined the IPR	s the IPR model selence inflow flowrate (q variables, since the	cted by the user, cal o,sc). The user must b e method does not a m3/d for inflow flov	e consistent with th apply any error con	e unit system used
Access	Public	Hidden	False	Static	False

CALCULATEPWF

Description	Calculate flowing l	Calculate flowing bottomhole pressure				
		This method solve the IPR model selected by the user, using the flowing bottomhole formulation of the equation. This is an auxiliary method used by the SolveCompletion method.				
Access	Public	Hidden	False	Static	False	

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

CALCULATEQ

Description	Calculate inflow flowrate				
	This method solve the IPR model selected by the user, using the inflow flowrate formulation of the equation. This is an auxiliary method used by the SolveCompletion method.				
Access	Public	Hidden	False	Static	False

PWFBACKPRESSURE

Description	Flowing bottomhole pressure calculation, back pressure equation				
	This method solves the back pressure equation (IPR model), to calculate the flowing bottomhole pressure. This is an auxiliary method used by the CalculatePwf method.				
Access	Protected	Hidden	True	Static	False

PWFFETKOVICH

Description	Flowing bottomhole pressure calculation, Fetkovich equation				
	This method solves the Fetkovich equation (IPR model), to calculate the flowing bottomhole pressure. This is an auxiliary method used by the CalculatePwf method.				
Access	Protected	Hidden	True	Static	False

PwfJones

Description	Flowing bottomhole pressure calculation, Jones equation				
	This method solves the Jones equation (IPR model), to calculate the flowing bottomhole pressure. This is an auxiliary method used by the CalculatePwf method.				
Access	Protected	Hidden	True	Static	False

PwfVogel

Description	Flowing bottomhole pressure calculation, Vogel equation				
	This method solves the Vogel equation (IPR model), to calculate the flowing bottomhole pressure. This is an auxiliary method used by the CalculatePwf method.				
Access	Protected	Hidden	True	Static	False

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

PWFWELLPI

Description	Flowing bottomhole pressure calculation, well productivity index				
	This method solves the well productivity index formulation (IPR model), to calculate the flowing bottomhole pressure. This is an auxiliary method used by the CalculatePwf method.				
Access	Protected	Hidden	True	Static	False

QBACKPRESSURE

Description	Inflow flowrate calculation, back pressure equation				
	This method solves the back pressure equation (IPR model), to calculate the inflow flowrate. This is an auxiliary method used by the CalculateQ method.				
Access	Protected	Hidden	True	Static	False

QFETKOVICH

Description	Inflow flowrate calculation, Fetkovich equation				
	This method solves the Fetkovich equation (IPR model), to calculate the inflow flowrate. This is an auxiliary method used by the CalculateQ method.				
Access	Protected	Hidden	True	Static	False

QJONES

Description	Inflow flowrate calculation, Jones equation				
	This method solves the Jones equation (IPR model), to calculate the inflow flowrate. This is an auxiliary method used by the CalculateQ method.				
Access	Protected	Hidden	True	Static	False

QVogel

Description	Inflow flowrate calculation, Vogel equation				
	This method solves the Vogel equation (IPR model), to calculate the inflow flowrate. This is an auxiliary method used by the CalculateQ method.				
Access	Protected	Hidden	True	Static	False

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

QWELLPI

Description	Inflow flowrate calculation, well productivity index				
	This method solves the well productivity index formulation (IPR model), to calculate the inflow flowrate. This is an auxiliary method used by the CalculateQ method.				
Access	Protected	Hidden	True	Static	False

STRUCTURE BRIEFING

In the following table, there is a list of all public properties included in every object created from this class.

Property	Name	Remarks
IPRType	Inflow performance relationship type	Required. Default value = 'well PI'
Qsc	Reservoir production, standard conditions	Required.
Pws	Reservoir pressure	Required.
Pwf	Well down hole pressure	Required.
Twf	Well down hole temperature	Required.
JonesA	Jones equation constant, laminar flow	Required (*).
JonesB	Jones equation constant, turbulent flow	Required (*).
JonesType	Jones equation formulation	Required (*). Default value = 'oil'
WellPIJ	Well productivity index	Required (*).
WellPIType	Well productivity index equation formulation	Required (*). Default value = 'oil'
VogelQmax	Vogel equation, maximum inflow rate	Required (*).
FetkovichQmax	Fetkovich equation, maximum inflow rate	Required (*).
FetkovichN	Fetkovich equation, exponent	Required (*).
BackPressureC	Back pressure equation, coefficient	Required (*).
BackPressureN	Back pressure equation, exponent	Required (*).
CalculationType	Production system calculation type	Required. Default value = 'pwf'
AOFP	Absolute open flow potential	Dependent.

^(*) For using one IPR equation, all parameters related to it must be defined. Only one IPR can be use at a time.

TEP4905-RP-02-06 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

APPLICATION

In the next blocks of code, some applications of the class are shown

EXAMPLE 1: DEFINING AN OBJECT

```
VC = VertCompletionObj;
VC.Pws = 2e4;
VC.Twf = 45;
VC.IPRType = 'Well PI';
VC.WellPIType = 'oil';
VC.WellPIJ = 30/100;
```

REFERENCES

Beggs, H. (2003). *Production Optimization using Nodal Analysis* (II ed.). Tulsa, Oklahoma, USA: OGCI and Petroskills Publications.