UNIVERSITE DE SOUSSE

Institut Supérieur d'Informatique Et des Techniques de Communication Hammam Sousse

جامعة سوسة المعهد العالي للإعلامية وتقتيات الاتصال بحمام سوسة

Travail TD3 DECISION TREE

Réalisé par: Ibtihel Dardouri 3 DNI 2

Année_Universitaire 2021_2022

Exercises

1. Consider the training examples shown in Table for a binary classification problem.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

- a. Compute the Gini index for the overall collection of training examples.
- \Rightarrow The Gini index for the overall examples is $1 (5/10)^2 (5/10)^2 = 0.5$.
- b. Compute the Gini index for the Customer ID attribute
- ⇒ The Gini index for the Customer ID attribute is 0.
- c. Compute the Gini index for the Gender attribute.
- \Rightarrow The gini for Male (of Female) is $1 0.4^2 0.6^2 = 0.48$.
- \Rightarrow The Gini index for the Gender attribute is $0.5 \times 0.48 + 0.5 \times 0.48 = 0.48$.
- d. Compute the Gini index for the Car Type attribute using multiway split.
- \Rightarrow The gini for Family car is 1-(1/4)² -(3/4)² =0.375, Sports car is 0, and Luxury car is 0.2188.

- \Rightarrow Gini index is 0.1625.
- e. Compute the Gini index for the Shirt Size attribute using multiway split.
- ⇒ The gini for Small shirt size is 0.48, Medium shirt size is 0.4898, Large shirt size is 0.5, and Extra Large shirt size is 0.5.
- ⇒ Gini index for Shirt Size attribute is 0.4914.
- f. Which attribute is better, Gender, Car Type, or shirt size?
- ⇒ Car Type because it has the lowest Gini index
- g. Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.
- ⇒ The attribute cannot be used for prediction (it has no predictive power) since new customers are assigned to new Customer IDs.
- 2. Consider the training examples shown in Table for a binary classification problem.

Instance	a1	a2	a3	Target Class
1	Т	Т	1.0	+
2	Т	Т	6.0	+
3	Т	F	5.0	-
4	F	F	4.0	+
5	F	Т	7.0	-
6	F	Т	3.0	-
7	F	F	8.0	-
8	Т	F	7.0	+
9	F	Т	5.0	-

- a. What is the entropy of this collection of training examples with respect to the class attribute?
- \Rightarrow The entropy of the training examples is $-4/9 \log 2(4/9) 5/9 \log 2(5/9) = 0.9911$.

b. What are the information gains of a1 and a2 relative to these training examples?

 \Rightarrow

The entropy for a_1 is

$$\begin{split} &\frac{4}{9}\bigg[-(3/4)\log_2(3/4)-(1/4)\log_2(1/4)\bigg]\\ &+ &\frac{5}{9}\bigg[-(1/5)\log_2(1/5)-(4/5)\log_2(4/5)\bigg]=0.7616. \end{split}$$

Therefore, the information gain for a_1 is 0.9911 - 0.7616 = 0.2294.

The entropy for a_2 is

$$\begin{split} &\frac{5}{9}\bigg[-(2/5)\log_2(2/5)-(3/5)\log_2(3/5)\bigg]\\ +&\frac{4}{9}\bigg[-(2/4)\log_2(2/4)-(2/4)\log_2(2/4)\bigg]=0.9839. \end{split}$$

Therefore, the information gain for a_2 is 0.9911 - 0.9839 = 0.0072.

c. For a3, which is a continuous attribute, compute the information gain for every possible split

 \Rightarrow

a_3	Class label	Split point	Entropy	Info Gain
1.0	+	2.0	0.8484	0.1427
3.0	-	3.5	0.9885	0.0026
4.0	+	4.5	0.9183	0.0728
5.0	-			
5.0	-	5.5	0.9839	0.0072
6.0	+	6.5	0.9728	0.0183
7.0	+			
7.0	-	7.5	0.8889	0.1022

The best split for a_3 occurs at split point equals to 2.

- d. What is the best split (among a1, a2 and a3) according to the information gain?
- ⇒ a1
- e. What is the best split (between a1 and a2) according to the misclassification error rate?
- \Rightarrow The error rate for a1 is 2/9 and that for a2 is 4/9 so that a1 is the best split attribute.
- f. What is the best split (between a1 and a2) according to the Gini index?

 \Rightarrow

For attribute a_1 , the gini index is

$$\frac{4}{9} \bigg[1 - (3/4)^2 - (1/4)^2 \bigg] + \frac{5}{9} \bigg[1 - (1/5)^2 - (4/5)^2 \bigg] = 0.3444.$$

For attribute a_2 , the gini index is

$$\frac{5}{9} \bigg[1 - (2/5)^2 - (3/5)^2 \bigg] + \frac{4}{9} \bigg[1 - (2/4)^2 - (2/4)^2 \bigg] = 0.4889.$$

Since the gini index for a_1 is smaller, it produces the better split.

Instance	a_1	a_2	a_3	Target Class
1	T	T	1.0	+
2	T	\mathbf{T}	6.0	+
3	T	F	5.0	_
4	F	F	4.0	+
5	F	T	7.0	_
6	F	T	3.0	_
7	F	F	8.0	_
8	T	F	7.0	+
9	F	T	5.0	_