Logique et raisonnements - Partie 2 : Ensembles

Savoir.	
	Maîtriser le vocabulaire des ensembles : élément, inclusion, complémentaire, union, intersection.
	Maîtriser le vocabulaire des fonctions : image, antécédent, bijection.
Savoir-faire.	
	Savoir calculer des unions, intersections, complémentaires d'ensembles.
	Savoir déterminer un domaine de définition.
	Savoir calculer une composition et montrer qu'une fonction est bijective

Ensembles

- Un **ensemble** est une collection d'objets distincts que l'on appelle des **éléments**. On note la liste des éléments qui définissent un ensemble en utilisant des accolades : { . . . }.
- On peut définir un ensemble soit par *extension*, en énumérant l'ensemble de ses éléments. Ainsi l'ensemble des nombres apparaissant sur les faces d'un dé est {1, 2, 3, 4, 5, 6}.
- On peut également définir un ensemble par *compréhension* en décrivant ses éléments par une ou plusieurs propriétés qui les caractérisent. Dans ce cadre, l'ensemble des entiers pairs peut s'écrire : $\{2k \mid k \in \mathbb{Z}\}.$
- L'ensemble qui ne comporte aucun élément est appelé **l'ensemble vide**; on le note Ø. Un ensemble qui ne comporte qu'un unique élément est appelé un *singleton*. Une *paire* est un ensemble de deux éléments distincts.
- Si un élément e appartient à l'ensemble E, on note : $e \in E$ (on dit aussi que E contient e). Dans le cas contraire, on écrit : $e \notin E$.

Inclusion, complémentaire

- **Inclusion.** Si A et B sont deux ensembles, l'écriture $A \subset B$ indique que "A est inclus dans B", ce qui signifie que tout élément de A appartient aussi à B. On dit aussi que A est une partie ou un sousensemble de B.
- **Égalité.** Deux ensemble *A* et *B* sont égaux s'ils ont exactement les mêmes éléments. D'un point de vue logique, cela équivaut à dire qu'ils sont mutuellement inclus l'un dans l'autre :

$$A = B \iff (A \subset B \text{ et } B \subset A)$$

— **Complémentaire.** Si A est une partie d'un ensemble E, on définit le *complémentaire de A*, noté $E \setminus A$ (ou encore \overline{A}), comme l'ensemble des éléments de E qui n'appartiennent pas à A:

$$E \setminus A := \{x \in E \mid x \notin A\}$$

On représente souvent les opérations sur les ensembles par de petits schémas appelés des *diagrammes de Venn*. En voici deux exemples pour l'inclusion et le complémentaire de deux ensembles.

Complémentaire de A

Exemple. Soit $E = \{1, 2, 3, 4, 5\}$ et $A = \{2, 5\}$.

- L'ensemble *E* contient 5 éléments ; *A* contient 2 éléments.
- Tout élément de *A* appartient à *E*, donc $A \subset E$.
- Le complémentaire de *A* dans *E* est $E \setminus A = \{1, 3, 4\}$.

Autres exemples.

- L'ensemble des nombres pairs $P = \{2k \mid k \in \mathbb{Z}\}$ est un sous-ensemble des entiers relatifs \mathbb{Z} . Son complémentaire dans \mathbb{Z} est : $\mathbb{Z} \setminus P = \{2k+1 \mid k \in \mathbb{Z}\}$. Il s'agit bien sûr des entiers impairs!
- $\mathbb{R} \setminus \{0\}$, que l'on note souvent \mathbb{R}^* , est l'ensemble des nombres réels non nuls.

Les ensembles que nous connaissons et utilisons le plus fréquemment sont les ensembles de nombres. Il y a ainsi par exemple :

- L'ensemble des nombres premiers \mathscr{P}
- L'ensemble des nombres entiers naturels $\mathbb N$
- L'ensemble des nombres entiers relatifs $\mathbb Z$
- L'ensemble des nombres rationnels $\mathbb{Q} := \{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \}$
- L'ensemble des nombres réels $\mathbb R$
- L'ensemble des nombres complexes C

On a d'ailleurs les inclusions :

$$\mathscr{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R} \subset \mathbb{C}$$
.

Union, intersection

- **L'union de** A **et** B est l'ensemble des éléments qui sont soit dans A, soit dans B (et éventuellement dans les deux à la fois). On la note : $A \cup B$ définie par $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$.
- **L'intersection de** A **et** B est l'ensemble des éléments qui sont à la fois dans A et dans B. On la note : $A \cap B$ définie par $A \cap B = \{x \mid x \in A \text{ et } x \in B\}$.
- Si $A \cap B = \emptyset$, on dit que les ensembles A et B sont **disjoints**.

Ensembles disjoints

Exemple. Si $A = \{1, 2, 3\}$ et $B = \{2, 4\}$, alors on a :

$$A \cup B = \{1, 2, 3, 4\}$$
 $A \cap B = \{2\}.$

Fonctions

— Une **fonction** (ou une **application**) d'un ensemble E vers un ensemble F, est la donnée pour chaque élément x de E d'un unique élément y de F. On écrit alors cela : f(x) = y. L'élément y s'appelle l'**image** de x, et l'élément x est un **antécédent** de y.

- On note cette application " $f: E \longrightarrow F, x \longmapsto f(x)$ ".
- L'ensemble E s'appelle le **domaine de définition** de f (il est parfois noté \mathcal{D}_f).
- Ce sera souvent à vous de déterminer le domaine de définition (le plus grand possible). Par exemple l'expression $f(x) = \sqrt{x}$ définit une fonction $f: [0, +\infty[\to \mathbb{R}]$. En effet pour avoir le droit d'écrire \sqrt{x} il faut que x soit positif ou nul.

Exercice. Déterminer les domaines de définition (dans \mathbb{R}) des fonctions définies par les expressions suivantes :

$$- f(x) = \frac{x-1}{x+1}$$
$$- f(x) = \sqrt{x+3}$$

$$- f(x) = \ln(3x - 7)$$

$$- f(x) = \sqrt{\frac{1}{x^2 - 2}}$$

Composition

Composition Soient E, F, G trois ensembles, et $f: E \longrightarrow F$, $g: F \longrightarrow G$ deux applications. Alors on peut définir la **composée** de f par g, notée $g \circ f$, comme étant l'application : $g \circ f: E \to G$ définie par :

$$(g \circ f)(x) = g(f(x))$$

Exemple. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$ et soit $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \cos(2x + 1)$, alors $g \circ f: \mathbb{R} \to \mathbb{R}$ est la fonction donnée par :

$$(g \circ f)(x) = g(f(x)) = g(x^2) = \cos(2x^2 + 1)$$

Attention $f \circ g$ est aussi définie mais est une toute autre application. Son expression est donnée par :

$$(f \circ g)(x) = f(g(x)) = f(\cos(2x+1)) = (\cos(2x+1))^2$$
.

Exemple. Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ définie par $f(x) = \frac{1}{x}$ et $g: \mathbb{R}_+^* \to \mathbb{R}$ définie par $g(x) = \frac{x-2}{x+3}$ (rappel : $\mathbb{R}_+^* =]0, +\infty[$). Alors

$$(g \circ f)(x) = g(f(x)) = g(\frac{1}{x}) = \frac{\frac{1}{x} - 2}{\frac{1}{x} + 3} = \frac{1 - 2x}{1 + 3x}$$

3

Bijection

— **Bijection.** On dit que l'application $f: E \to F$ est **bijective** si chaque élément de F possède un antécédent par f, et que cet antécédent est de plus unique. Dans ce cas, l'application f établit une correspondance parfaite entre les éléments de E et les éléments de F.

- Si $f: E \to F$ est bijective, alors l'application $g: F \to E$ qui à tout élément de y de F associe son unique antécédent x par f dans E est bien définie et est également bijective. Elle est notée f^{-1} et s'appelle la **bijection réciproque** de f.
- On a alors $(f^{-1} \circ f)(x) = x$ (pour tout $x \in E$) et aussi $(f \circ f^{-1})(y) = y$ (pour tout $y \in F$).
- Exemple. Soit $f:[0,+\infty[\to [0,+\infty[,x\mapsto x^2.$ Sa bijection réciproque est la fonction racine carrée : $f^{-1}:[0,+\infty[\to [0,+\infty[,x\mapsto \sqrt{x}.$ On a bien $(\sqrt{x})^2=x$ et $\sqrt{x^2}=x$, pour tout $x\geqslant 0$.
- Exponentielle et logarithme sont bijections réciproques l'une de l'autre : $\exp(\ln(x)) = x$ (pour tout x > 0) et $\ln(\exp(x)) = x$ (pour tout $x \in \mathbb{R}$).