PQCrypto 2021

Quantum Indistinguishability for Public Key Encryption

Tommaso Gagliardoni, Juliane Krämer, and Patrick Struck

MOTIVATION AND BACKGROUND

Motivation

Adversary should not learn anything about m from c

INDCPA Security

- Classical security (QS0): both adversary and challenger are classical
- Post-quantum security (QS1): quantum adversary and classical challenger
- Quantum security (QS2): both adversary and challenger are quantum

Focus of this work

Quantum Operators

- Type-1 operator
 - Realisable for any f
 - Efficiently realisable if *f* is efficient
 - E.g. used in the QROM [BDFLSZ11]

- Type-1 operator of an encryption scheme
 - Fixed public key
 - Randomness is implicit

Fully-quantum INDCPA [BZ13]

- Obervation: $|y \oplus Enc(m_b)\rangle$ will be entangled with $|m_b\rangle$ while $|m_{1-b}\rangle$ remains unentangled
 - Adversary can detect this entanglement
 - Unachievable for any encryption scheme
- Withholding the message registers makes the notion equivalent to classical messages
- No security notion with a quantum indistinguishability phase exists (concurrent work: [CEV20])

Quantum Operators

$$|x\rangle \longrightarrow U_f^{(1)} \longrightarrow |x\rangle$$

$$|y\rangle \longrightarrow |y \oplus f(x)\rangle$$

- Type-1 operator
 - Realisable for any f
 - Efficiently realisable if *f* is efficient

- Type-2 operator [KKVB02]
 - Realisable only for reversible f
 - Not always efficiently realisable

NEW SECURITY NOTION

The qINDqCPA Security Notion

- Adversary does not get entangled registers
 - Avoids the Boneh-Zhandry impossibility result
- Randomness is classical, hence unentangled
 - Challenger can simply withhold it
- Question: can we efficiently build $U_{Enc}^{(2)}$?

- Explicitly de-randomise the operator
 - Randomness is implicit in [BZ13]
 - Required to ensure reversibility

Type-2 Operator for perfectly correct PKE

- Type-2 encryption operator requires knowledge of the secret key
- What about schemes with decryption failures?

Recoverable PKE

Idea: knowledge of the randomness allows to perfectly decrypt ciphertexts (without the secret key)

Examples: Most lattice-based and code-based PKE schemes

Type-2 Operator for Recoverable PKE

Type-2 encryption operator requires merely the public key

APPLICATION

qINDqCPA Security of Real-World PKE Schemes

- Code-based PKE ROLLO-II
- Canonical LWE-based PKE

- Hybrid Encryption
- All schemes are recoverable
 - Allow realisation of type-2 operators using merely the public key

qINDqCPA Security of ROLLO-II

$\mathtt{KGen}(\lambda;r)$	$\mathtt{Enc}(pk,m;r)$	
$\mathbf{x}, \mathbf{y} \coloneqq r$	$\mathbf{e}_1, \mathbf{e}_2 \coloneqq r$	
$\mathbf{h} \coloneqq \mathbf{x}^{-1}\mathbf{y} \bmod P$	$E \coloneqq Supp(\mathbf{e}_1, \mathbf{e}_2)$	
$sk \coloneqq (\mathbf{x}, \mathbf{y})$	$c_1 \coloneqq m \oplus O(E)$	
$pk \coloneqq \mathbf{h}$	$c_2 \coloneqq \mathbf{e}_1 + \mathbf{e}_2 \mathbf{h} \bmod P$	
$\mathbf{return}\ (pk,sk)$	return $c \coloneqq (c_1, c_2)$	

Message is encrypted using a One-Time Pad

- Equal superposition of all messages for $|m_0\rangle$ and a random classical message for $|m_1\rangle$
 - If b = 0: $|c_1\rangle$ will be an equal superposition
 - If b = 1: $|c_1\rangle$ will be a random classical ciphertext
 - Can be distinguished almost perfectly by measuring in the Hadamard basis

qINDqCPA Security of Hybrid Encryption

${\tt KGen}(\lambda)$	$\underline{\mathtt{Enc}_{pk}(m;r)}$	
$(pk, sk) \leftarrow \mathtt{KGen}^P(\lambda)$ $\mathbf{return}\; (pk, sk)$	$\mathbf{parse} \ r \ \mathbf{as} \ (r_1, r_2, r_3)$ $k \coloneqq \mathtt{KGen}^S(\lambda; r_1)$ $c_1 \coloneqq \mathtt{Enc}^S_k(m; r_2)$	Message m is encrypted using Symmetric Key Encryption Σ^S
	$c_2 \coloneqq \mathtt{Enc}^P_{pk}(k; r_3)$ $\mathbf{return}\ (c_1, c_2)$	Symmetric key k is encrypted using Public Key Encryption Σ^P

- Post-quantum (QS1) secure Σ^P + quantum (QS2) secure Σ^S [GHS16] \Rightarrow quantum (QS2) secure Σ
 - Σ^P used to encrypt the symmetric key which is classical
 - Σ^{S} used to encrypt the message which is quantum

qINDqCPA Security of Real-World PKE Schemes

- ROLLO-II
 - qINDqCPA insecure as a stand-alone PKE scheme
 - qINDqCPA secure in conjunction with a quantum secure SKE scheme
- Security depends on the use case
 - For the NIST standardization, post-quantum (QS1) security is sufficient
 - Potential problem when used in larger protocols

Summary

- Novel quantum security notion for public key encryption schemes based on type-2 operators
- Efficient realisation of type-2 operators for schemes that are perfectly correct or recoverable
- Positive and negative results for existing public key encryption schemes

Thank You!

IACR ePrint archive 2020/266 patrick@qpc.tu-darmstadt.de