# 小结

#### 1.两个准则

夹逼准则;单调有界准则.

#### 2.两个重要极限

设 $\alpha$ 为某过程中的无穷小,

$$1^0 \lim_{\text{$\stackrel{\cdot}{ ext{$\downarrow$}}}} \frac{\sin \alpha}{\alpha} = 1; \quad 2^0 \lim_{\text{$\stackrel{\cdot}{ ext{$\downarrow$}}}} (1+\alpha)^{\frac{1}{\alpha}} = e.$$

例4 求 
$$\lim_{x\to\infty}(1-\frac{1}{r})^x$$
.

例5 求 
$$\lim_{x\to\infty} \left(\frac{3+x}{2+x}\right)^{2x}$$
.

解 原式 = 
$$\lim_{x\to\infty} [(1+\frac{1}{x+2})^{x+2}]^2 (1+\frac{1}{x+2})^{-4} = e^2$$
.

例 6 计算  $\lim_{x\to 0} (1-x)^{\frac{2}{x}}$ .

解

$$\lim_{x\to 0} (1-x)^{\frac{2}{x}} = \lim_{-x\to 0} \left\{ \left[ 1 + (-x) \right]^{\left(-\frac{1}{x}\right)} \right\}^{-2}$$

$$= \left\{ \lim_{-x \to 0} \left[ 1 + (-x) \right]^{\left(-\frac{1}{x}\right)} \right\}^{-2}$$

$$=\frac{1}{\mathbf{e}^2}.$$

例 7 计算 
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}, \quad \diamondsuit u = (1+x)^{\frac{1}{x}},$$

则当  $x \rightarrow 0$  时, $u \rightarrow e$ , 所以原式 = 1,即

$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1.$$

例8 计算 
$$\lim_{x\to 0} \frac{e^x-1}{x}$$
.

当 $x \rightarrow 0$ 时 $u \rightarrow 0$ . 所以

$$\lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{u\to 0} \frac{u}{\ln(1+u)} = 1.$$

$$\lim_{x\to 0}\frac{\mathbf{e}^x-1}{x}=1.$$

# 第三节

# 无穷小与无穷大

- 一、无穷小
- 二、无穷大
- 三、无穷小与无穷大的关系
- 四、无穷小的比较

#### 一、无穷小

**定义1**. 若  $x \to x_0$  时, 函数  $f(x) \to 0$ , 则称函数 f(x) (或 $x \to \infty$ )

为 $x \to x_0$  时的**无穷小**. (或 $x \to \infty$ )

例如:

 $\lim_{x\to 1} (x-1) = 0$ , 函数 x-1 当  $x\to 1$  时为无穷小;

$$\lim_{x \to \infty} \frac{1}{x} = 0$$
,函数  $\frac{1}{x}$  当  $x \to \infty$  时为无穷小;

$$\lim_{x \to -\infty} \frac{1}{\sqrt{1-x}} = 0$$
,函数  $\frac{1}{\sqrt{1-x}}$  当  $x \to -\infty$  时为无穷小.

**定义1.** 若 $x \to x_0$  (或  $x \to \infty$ ) 时,函数  $f(x) \to 0$ ,则 则称函数 f(x)为  $x \to x_0$ (或  $x \to \infty$ ) 时的**无穷小**.

**说明**:除 0 以外任何很小的常数都不是无穷小! 因为

显然 C 只能是 0!

### 定理 1.(无穷小的性质)

- (1) 有限个无穷小的代数和仍是无穷小;
- (2) 有限个无穷小的乘积仍是无穷小;
- (3) 无穷小与有界变量的乘积仍是无穷小;
- (4) 无穷小与极限不为0的变量的商仍是无穷小.

#### 定理 2. (无穷小与函数极限的关系)

$$\lim_{x \to x_0} f(x) = A \iff f(x) = A + \alpha$$
,其中 $\alpha$ 为  $x \to x_0$ 时的无穷小量.

$$\lim_{x \to x_0} f(x) = A$$

$$\forall \varepsilon > 0, \exists \delta > 0, \text{ if } 0 < |x - x_0| < \delta \text{ if } 1$$

$$|f(x) - A| < \varepsilon$$

$$\frac{\alpha = f(x) - A}{-A} \lim_{x \to x_0} \alpha = 0$$

对自变量的其它变化过程类似可证.

#### 二、无穷大

**定义2.** 若**任给** M > 0,总存在  $\delta > 0$  (**正数** X),使对一切满足不等式  $0 < |x - x_0| < \delta$  (|x| > X) 的 x,总有 |f(x)| > M

则称函数 f(x)当  $x \to x_0(x \to \infty)$  时为无穷大, 记作

$$\lim_{x \to x_0} f(x) = \infty. \qquad (\lim_{x \to \infty} f(x) = \infty)$$

若在定义中将①式改为 f(x) > M(f(x) < -M),

则记作 
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = +\infty \left( \lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = -\infty \right)$$

#### 注意:

- 1. 无穷大不是很大的数, 它是描述函数的一种状态.
- 2. 函数为无穷大, 必定无界. 但反之不真!

例如, 函数 
$$f(x) = x \cos x, x \in (-\infty, +\infty)$$

$$f(2n\pi) = 2n\pi \to \infty \ (\stackrel{\text{def}}{=} n \to \infty)$$

但 
$$f(\frac{\pi}{2} + n\pi) = 0$$

所以  $x \to \infty$  时, f(x) 不是无穷大!







**例**.证明 
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$

证: 
$$\forall M > 0$$
, 要使  $\left| \frac{1}{x-1} \right| > M$ , 只要  $\left| x-1 \right| < \frac{1}{M}$ .

$$\left| \frac{1}{x-1} \right| > M$$

$$\therefore \lim_{x \to 1} \frac{1}{x - 1} = \infty.$$

说明: 若 
$$\lim_{x \to x_0} f(x) = \infty$$
, 则直线  $x = x_0$ 

为曲线 y = f(x) 的铅直渐近线.

$$y = \frac{1}{x - 1}$$

$$x = x_0$$

**例.**证明 
$$\lim_{x \to -1} \frac{1}{1+x} = \infty$$

证: 
$$\forall M > 0$$
, 要使  $\left| \frac{1}{1+x} \right| > M$ , 只要  $|1+x| < \frac{1}{M}$ .

因此可以取
$$\delta = \frac{1}{M}$$
, 当 $0 < |x - (-1)| = |x + 1| < \delta$ 时,有

$$\left| \frac{1}{1+x} \right| > \frac{1}{\delta} = M$$

$$\therefore \lim_{x \to -1} \frac{1}{1+x} = \infty$$

#### 三、无穷小与无穷大的关系

定理3. 在自变量的同一变化过程中,

若 
$$f(x)$$
 为无穷大,则  $\frac{1}{f(x)}$  为无穷小;  
若  $f(x)$  为无穷小,且  $f(x) \neq 0$ ,则  $\frac{1}{f(x)}$  为无穷大.

**说明**:据此定理,关于无穷大的问题都可转化为 无穷小来讨论.

**例**. 求 
$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m}$$
,其中 $a_0 \neq 0, b_0 \neq 0, n, m \in N^+$ 

原式=
$$\lim_{x\to\infty} \frac{a_0 + a_1 \frac{1}{x} + \dots + a_n \frac{1}{x^n}}{b_0 + b_1 \frac{1}{x} + \dots + b_m \frac{1}{x^n}} = \frac{a_0 + a_1 \lim_{x\to\infty} \frac{1}{x} + \dots + a_n \lim_{x\to\infty} \frac{1}{x^n}}{b_0 + b_1 \lim_{x\to\infty} \frac{1}{x} + \dots + b_m \lim_{x\to\infty} \frac{1}{x^n}} = \frac{a_0}{b_0}$$

若n < m,用 $x^m$ 同除分子分母,则

原式=
$$\lim_{x\to\infty} \frac{a_0 \frac{1}{x^{m-n}} + a_1 \frac{1}{x^{m-n+1}} + \dots + a_n \frac{1}{x^m}}{b_0 + b_1 \frac{1}{x} + \dots + b_m \frac{1}{x^m}} = \frac{0 + 0 + \dots + 0}{b_0 + 0 + \dots + 0} = 0$$

$$若n>m$$
,

因为
$$\lim_{x\to\infty} \frac{b_0 x^m + b_1 x^{m-1} + \dots + b_m}{a_0 x^n + a_1 x^{n-1} + \dots + a_n} = 0$$
,根据定理3有

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \infty$$

$$\therefore \lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \begin{cases} \frac{a_0}{b_0}, & n = m \\ 0, & n < m \\ \infty, & n > m \end{cases}$$

#### 四、无穷小的比较

**引例.**  $x \to 0$ 时, 3x,  $x^2$ ,  $\sin x$  都是无穷小, 但

$$\lim_{x \to 0} \frac{x^2}{3x} = 0, \qquad \lim_{x \to 0} \frac{\sin x}{3x} = \frac{1}{3},$$

$$\lim_{x \to 0} \frac{\sin x}{x^2} = \infty,$$

可见无穷小趋于0的速度是多样的.

定义. 设 $\alpha$ ,  $\beta$  是自变量同一变化过程中的无穷小,

若 
$$\lim \frac{\beta}{\alpha} = 0$$
,则称  $\beta$  是比  $\alpha$  **高阶**的无穷小,记作  $\beta = o(\alpha)$ 

若  $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$ ,则称  $\beta$  是比  $\alpha$  **低阶**的无穷小;

若  $\lim \frac{\beta}{\alpha} = C \neq 0$ ,则称  $\beta$  是  $\alpha$  的**同阶**无穷小;

若  $\lim_{\alpha \to \infty} \frac{\beta}{\alpha^k} = C \neq 0$ , 则称  $\beta$  是关于  $\alpha$  的 k 阶无穷小;

若  $\lim_{\alpha} \frac{\beta}{\alpha} = 1$ , 则称  $\beta$ 是  $\alpha$  的**等价**无穷小, 记作  $\alpha \sim \beta$  或  $\beta \sim \alpha$ 

#### 例如, 当 $x \rightarrow 0$ 时

$$x^{3} = o(6x^{2})$$
;  $\sin x \sim x$ ;  $\tan x \sim x$   
arcsin  $x \sim x$ ;  $\ln(1+x) \sim x$ ;  $e^{x} - 1 \sim x$ 

#### 又如,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4(\frac{x}{2})^2} = \frac{1}{2}$$

故  $x \to 0$  时  $1 - \cos x$  是关于 x 的二阶无穷小, 且

$$1 - \cos x \sim \frac{1}{2}x^2$$

**例1.** 证明: 当
$$x \to 0$$
 时,  $\sqrt[n]{1+x}-1 \sim \frac{1}{n}x$ 

**iE:** 
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{\frac{1}{n}x}$$

$$\begin{vmatrix} a^n - b^n = (a-b) & (a^{n-1} + a^{n-2}b + \dots + b^{n-1}) \\ = \lim_{x \to 0} & \frac{(\sqrt[n]{1+x})^n - 1}{\frac{1}{n}x \left[ (\sqrt[n]{1+x})^{n-1} + (\sqrt[n]{1+x})^{n-2} + \dots + 1 \right]}$$

$$= 1$$

$$\therefore \stackrel{\text{...}}{=} x \to 0 \text{ 时}, \sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$$

定理1. 
$$\alpha \sim \beta \longrightarrow \beta = \alpha + o(\alpha)$$

**iII:** 
$$\alpha \sim \beta \implies \lim_{\alpha} \frac{\beta}{\alpha} = 1$$

$$\implies \lim(\frac{\beta}{\alpha} - 1) = 0, \text{ [I] } \lim \frac{\beta - \alpha}{\alpha} = 0$$

$$\beta - \alpha = o(\alpha), \ \exists \beta = \alpha + o(\alpha)$$

例如,  $x \to 0$ 时,  $\sin x \sim x$ ,  $\tan x \sim x$ , 故

$$x \to 0$$
 时,  $\sin x = x + o(x)$ ,  $\tan x = x + o(x)$ 

**定理2.**设
$$\alpha \sim \alpha'$$
,  $\beta \sim \beta'$ , 且  $\lim \frac{\beta'}{\alpha'}$  存在,则 
$$\lim \frac{\beta}{\alpha'} = \lim \frac{\beta'}{\alpha'}$$

**iII:** 
$$\lim \frac{\beta}{\alpha} = \lim \left( \frac{\beta}{\beta'} \frac{\beta'}{\alpha'} \frac{\alpha'}{\alpha} \right)$$

$$= \lim \frac{\beta}{\beta'} \lim \frac{\beta'}{\alpha'} \lim \frac{\alpha'}{\alpha} = \lim \frac{\beta'}{\alpha'}$$

例如, 
$$\lim_{x\to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x\to 0} \frac{2x}{5x} = \frac{2}{5}$$

## 因式代替规则: 若 $\alpha \sim \beta$ , 且 $\varphi(x)$ 极限存在或有

界,则

$$\lim \alpha \varphi(x) = \lim \beta \varphi(x)$$

例如, 
$$\lim_{x\to 0} \arcsin x \cdot \sin \frac{1}{x} = \lim_{x\to 0} x \cdot \sin \frac{1}{x} = 0$$

例1. 求 
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$
.

**解:** 原式 = 
$$\lim_{x\to 0} \frac{\tan x (1-\cos x)}{x^3}$$

$$= \lim_{x \to 0} \frac{x \cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$$

原式 
$$\neq \lim_{x \to 0} \frac{x - x}{x^3}$$

例2. 求 
$$\lim_{x\to 0} \frac{(1+x^2)^{\frac{1}{3}}-1}{\cos x-1}$$
.

$$(1+x^2)^{\frac{1}{3}} - 1 \sim \frac{1}{3}x^2$$
$$\cos x - 1 \sim -\frac{1}{2}x^2$$

例3. 求 
$$\lim_{x\to 0^+} \frac{(x^3+x^{\frac{5}{2}})\sqrt{\sin 2x}}{\tan^3 x}$$
.

**解:** 因为当 $x \to 0^+$ 时, $\sin 2x \sim 2x$ , $\tan x \sim x$ 

原式 = 
$$\lim_{x \to 0^+} \frac{(x^3 + x^{\frac{5}{2}})\sqrt{2x}}{x^3}$$

$$= \lim_{x \to 0^{+}} \frac{x^{3} \sqrt{2x}}{x^{3}} + \lim_{x \to 0^{+}} \sqrt{2} \frac{x^{\frac{3}{2} + \frac{1}{2}}}{x^{3}}$$

$$=\sqrt{2}$$

例4. 求 
$$\lim_{x\to 0} \frac{\sin x(e^{-x^2}-1)}{x^2\ln(1-2x)}$$
.

解: 因为当 $x \to 0$ 时,

$$\sin x \sim x, e^{-x^2} - 1 \sim -x^2, \ln(1 - 2x) \sim -2x$$

∴原式 = 
$$\lim_{x \to 0^+} \frac{x(-x^2)}{x^2(-2x)} = \frac{1}{2}$$

#### 常用等价无穷小总结

设□为无穷小,则

$$\square \sim \sin \square \sim \tan \square \sim \arcsin \square \sim \ln(1+\square) \sim e^{\square} - 1$$

$$(1+\Box)^{\frac{1}{n}}-1\sim\frac{1}{n}\Box,\quad (1+\Box)^{\alpha}-1\sim\alpha\Box,$$

$$1 - \cos \Box \sim \frac{1}{2} \Box^2$$