

Intel Atom® C3XXX Product Family Intel® Firmware Support Package (Intel® FSP)

Integration Guide

October 2017

Production Validated 001

This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local sales office that you have the latest datasheet before finalizing a design.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, and MMX are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016-2017, Intel Corporation. All Rights Reserved.

Contents

1	Introd	duction			6	
	1.1 Purpose				6	
	1.2 Intended Audience					
	1.3					
	1.4 Acronyms and Terminology					
2	Intel®	FSP Overv	iew		8	
	2.1 Technical Overview				8	
	2.2 Intel® FSP Distribution Package					
		2.2.1		Layout		
3	Intel®	FSP Integr	ation		10	
	3.1	•		in this Document		
	3.2	·				
	3.3			traction		
	3.4		•	on Header		
	3.5 FSP Image ID and Revision					
	3.6		•	EVISIOI1		
	3.0	3.6.1		nlnit API		
		3.6.2	•	oryInit API		
		3.6.3	•	mExit API		
		3.6.4 3.6.5	-	FspSiliconInit API		
			•	ase API		
		0.0.0	3.6.5.1			
			3.6.5.2			
			3.6.5.3			
4	Intel®	FSP Outpu	ıt		15	
	4.1	4.1 SMRAM Resource Descriptor HOB				
	4.2	·				
	4.3 SMBIOS INFO HOB				15	
5	Intel® FSP Configuration Firmware File					
	5.1	UPD Data Structure			17	
		5.1.1 F	FSP Conf	figuration Data	17	
			5.1.1.1	FSP-T UPD Structure		
	5.1.2		5.1.1.2	Detailed Description	18	
		5.1.2.1	FSP-T UF	PD Data Region	18	
			FSP-M UPD Data Region	18		
			5.1.2.2	FSP-S UPD Data Region	24	
Appendix A	Memo	ory Down			27	
Appendix B	FIA MUX Configuration Structure2			28		
Annendix C	FMMC* DLL Configuration Structure			36		

Tables

Table 1.	Platform and Intel® FSP Documentation	6
Table 2.	Acronyms and Terminology	7
Table 3.	Memory Range and Cache Attributes	
Table 4.	Structure BL ME FIA MUX CONFIG Definition	

Revision History

Date	Revision	Description
October 2017	002	Production Validated 001
March 2017	001	Initial release - Production Candidate 001

§

1 Introduction

1.1 Purpose

The purpose of this document is to describe the steps required to integrate the Intel® Firmware Support Package (Intel® FSP) for Intel Atom® C3XXX Product Family (formerly Denverton-NS) System-on-a-Chip (SoC) into a bootloader solution. This document is a supplement to the Intel® Firmware Support Package: External Architecture Specification v2.0 (FSP EAS v2.0).

1.2 Intended Audience

This document is targeted at all platform and system developers who need to consume Intel® FSP binaries in their bootloader solutions. This includes, but is not limited to, system Basic Input/Output System (BIOS) developers, bootloader developers, system integrators, and end users.

1.3 Related Documents

Table 1. Platform and Intel® FSP Documentation

Document Name	Reference Number
Intel® FSP External Architecture Specification v2.0 (FSP EAS v2.0)	http://www.intel.com /content/dam/www/p ublic/us/en/document s/technical- specifications/fsp- architecture-spec- v2.pdf
Binary Configuration Tool (BCT) for Intel® FSP	https://github.com/I ntelFsp/BCT
Linux* FSP for Intel® Atom™ C3XXX Product Family	https://github.com/I ntelFsp/FSP
Intel® Atom™ C3XXX Product Family Intel® Firmware Support Package (Intel® FSP) Release Notes	335701

1.4 Acronyms and Terminology

Table 2. Acronyms and Terminology

Acronym	Definition
ACPI	Advanced Configuration and Power Interface
ВСТ	Binary Configuration Tool
BIOS	Basic Input/Output System
BSP	Boot Strap Processor
BSF	Boot Setting File
BWG	BIOS Writer's Guide
CAR	Cache-as-RAM
CPGC	Converged Pattern Generator and Checking
eMMC*	Embedded Multi-Media Controller*
FIA	Flexible I/O Adapter
HSUART	High Speed Universal Asynchronous receiver/Transmitter
Intel® FSP	Intel® Firmware Support Package
FSP API	Firmware Support Package Interface
GUID	Globally Unique Identifier
НОВ	Hand-off Blocks
HSIO	High Speed IO
LPC	Low Pin Count
MTRR	Memory Type and Range Register
MRC	Memory Reference Code
ODM	Original Design Manufacture
PCD	Platform Configuration Database
PCIe*	Peripheral Component Interconnect Express
PIC	Position Independent Code
RMT	Rank Margin Tool
SMM	System Management Mode
SoC	System-on-a-Chip
SPD	Serial Presence Detect
SMBIOS	System Management BIOS
SMBUS	System Management Bus
TSEG	Memory Reserved at the Top of Memory to be used as SMRAM
UPD	Updatable Product Data
VPD	Vital Product Data
xHCI	Extensible Host Controller Interface

2 Intel® FSP Overview

2.1 Technical Overview

The Intel® Firmware Support Package (Intel® FSP) provides chipset and processor initialization in a format that can easily be incorporated into many existing bootloaders.

The Intel® FSP performs the necessary initialization steps as documented in the *BIOS Writer's Guide (BWG)* including initialization of the CPU, memory controller, chipset, and certain bus interfaces, if necessary.

The Intel® FSP is <u>NOT</u> a stand-alone bootloader; therefore, it needs to be integrated into a host bootloader to carry out other bootloader functions, such as initializing non-Intel components, conducting bus enumeration, and discovering devices in the system and all industry standard initialization.

The Intel® FSP binary can be integrated easily into many different bootloaders, such as coreboot*, etc., and also into the embedded OS directly.

This Intel® FSP is compliant to the Intel® Firmware Support Package: External Architecture Specification v2.0 (FSP EAS v2.0).

Below are some required steps for the integration:

Customizing

The static FSP configuration parameters are part of the FSP binary and can be customized by the Binary Configuration Tool (BCT) tool (Refer to <u>Table 1</u>, Platform and Intel® FSP Documentation).

Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be rebased if it is placed at a location that is different from the preferred address during build process.

Placing

Once the FSP binary is ready for integration, the bootloader build process needs to be modified to place this FSP binary at the specific rebasing location identified above.

Interfacing

The bootloader needs to add code to set up the operating environment for the FSP, call the FSP with the correct parameters, and parse the FSP output to retrieve the necessary information returned by the FSP.

2.2 Intel® FSP Distribution Package

The Intel® FSP distribution package contains the following:

- FSP Binary DenvertonNSFsp.fd
- Updatable Product Data (UPD) structure definitions FspUpd.h, FspmUpd.h, FspsUpd.h, FsptUpd.h
- Boot Setting File (BSF) File DenvertonNSFsp.bsf

Refer to Table 1, Binary Configuration Tool (BCT) for Intel® FSP for the download link.

2.2.1 Package Layout

- DenvertonNSFspBinPkg
 - Docs
 - o license.txt
 - o DenvertonNSFspReleaseNotes.pdf
 - o DenvertonNSFspIntegrationGuide.pdf
 - FspBin
 - o DenvertonNSFsp.bsf (BSF file for configuring the data using BCT tool)
 - o DenvertonNSFsp.fd (FSP Binary)
 - Include
 - o FspUpd.h, FsptUpd.h, FspmUpd.h and FspsUpd.h (FSP UPD structure and related definitions)
 - Microcode
- DenvertonNSFspKitProductionRULACLicense.pdf

§

3 Intel® FSP Integration

3.1 Assumptions Used in this Document

The Intel® FSP for the Intel Atom® C3XXX Product Family SoC is built with a preferred base address of 0xFFF30000; the Intel® FSP binary is assumed to be placed at the same address as part of the bootloader build. Users may rebase the FSP binary at a different location with the Binary Configuration Tool (BCT) before integrating to the bootloader.

For other assumptions and conventions, refer to the Intel® FSP Interface (Intel® FSP API) section of the FSP EAS v2.0.

3.2 Boot Flow

Refer to <u>Table 2</u>, Intel® Firmware Support Package: External Architecture Specification v2.0 (FSP EAS v2.0) for the Boot flow chart.

Note: Intel Atom® C3XXX Product Family Intel® FSP does not return the reset-required status.

3.3 FSP Component Extraction

Intel Atom® C3XXX Product Family Intel® FSP image can be split into three different components (FSP-T, FSP-M and FSP-S) and each component can be located at different base addresses according to its execution location.

In Intel Atom® C3XXX Product Family boot flow there are three different execution stages:

- Execution in ROM
- · Execution in temporary RAM (Cache-as-RAM)
- Execution in system memory

The three extracted FSP components can be exactly mapped into different execution stages on Intel Atom® C3XXX Product Family Intel® FSP boot flow.

- FSP-T executes in ROM.
- FSP-M executes in temporary memory. After the memory is initialized, the generic code like PEI dispatcher and other FSP data is migrated into permanent memory.
- FSP-S executes in memory.

The FSP layout is shown in Figure 1. The following base addresses are used by default:

- FSP-T component is set to 0xFFF30000
- FSP-M component is set to 0xFFF32000
- FSP-S component is set to 0xFFFC3000

If the FSP component needs to be loaded at different address, use the BCT tool to rebase it before the integration.

FSP Binary is released as a single image (.FD extension). Use the python* script, SplitFspBin.py, to split the FD in to the different FSP components. SplitFspBin.py is available at https://github.com/tianocore/edk2/tree/master/IntelFsp2Pkg/Tools

The sample command shown below creates three binaries named after the input FSP binary and appended with "_M", "_S", and "_T" respectively.

python IntelFsp2Pkg\Tools\SplitFspBin.py split -f <FSP Binary>

Figure 1. FSP Component Layout View

3.4 Intel® FSP Information Header

The Intel® FSP has an FSP_INFO_HEADER structure embedded in each FSP component. It provides critical information required by the bootloader to successfully interface with the Intel® FSP. Refer to Table 2. Intel® Firmware Support Package: External Architecture Specification v2.0 (FSP EAS v2.0) for information on the structure of the Intel® FSP Information Header listed in Figure 1.

3.5 FSP Image ID and Revision

The FSP_INFO_HEADER structure inside each FSP component also contains an Image Identifier field and an Image Revision field that provide the identification and revision information for the FSP binary. It is important to verify these fields while integrating the FSP as the FSP configuration data could change over different FSP Image identifiers and revisions.

The Intel® FSP API parameters documented in this integration guide are applicable for the Image ID and Revision specified as below.

The current FSP ImageId string in the FSP information header is DNV-FSP0 and the ImageRevision field is $0 \times 00000110 (1.10)$.

3.6 Intel® FSP APIs

This release of the Intel® Atom™ C3XXX Product Family Intel® FSP supports all APIs required by the FSP EAS v2.0. The FSP information header contains the address offset for these APIs. Refer to Table 1, Intel® Firmware Support Package: External Architecture Specification v2.0 (FSP EAS v2.0) for Register usage and calling conventions. Any usage not described by the specification is described in the individual sections below.

The sections below highlights any changes that are specific to this FSP EAS v2.0 release.

3.6.1 TempRamInit API

Refer to the **TempRamInit** Section in the FSP EAS v2.0 for complete details including the prototype, parameters and return value details for this API.

If the bootloader initializes the Temporary RAM (CAR) and chipset BARs, calling this API should be skipped.

TempRamInit does basic early initialization; primarily, setting up temporary RAM using cache. The API returns a temporary memory data region that can be used by the bootloader with ECX pointing to beginning of temporary memory and EDX pointing to end of temporary memory. The temporary memory data region returned by this FSP release is from $0 \times \text{FEFO}_0000$ (ECX) to $0 \times \text{FEFF}_\text{FF00}$ (EDX).

Both FSPT_UPD.MicrocodeRegionBase and FSPT_UPD.MicrocodeRegionLength can be set to 0. However, if a valid region is passed and a newer microcode update revision is in this region, it will be loaded by the Intel® FSP.

3.6.2 FspMemoryInit API

Refer to the FspMemoryInit Section in the FSP EAS v2.0 for the prototype, parameters and return value details for this API.

The FSP stack size reserved for this revision of the FSP is 320KB, stack base is 0xFEFFB000 by default.

The FspmUpdPtr is pointer to FSPM UPD structure which is described in header file FspmUpd.h.

Boot Loader must pass valid Cache-as-RAM (CAR) region for FSP stack use through these UPDs:

- FSPM UPD.FspmArchUpd.StackBase
- FSPM UPD.FspmArchUpd.StackSize.

Note: Certain platforms might need some GPIOs to be initialized prior to the memory initialization. In this case, the bootloader needs to configure the required GPIO pins properly before calling into FspMemoryInit. For example, to read SPD data, the System Management Bus (SMBUS) pins have to be configured properly.

3.6.3 TempRamExit API

Refer to the TempRamExit Section in the FSP EAS v2.0 for the prototype, parameters and return value details for this API.

If the bootloader initialized the Temporary RAM (CAR) as well as the chipset BARs and skipped calling <code>TempRamInit</code> API, then the bootloader is required to skip calling this API, to tear down the temporary memory area setup in the cache, and to bring the cache back to normal mode of operation.

This revision of Intel® FSP does not have any fields/structure to pass as parameter for this API. Pass Null for TempRamExitParamPtr.

At the end of TempRamExit execution, the original code and data caching are disabled. The Intel® FSP reconfigures the following Memory Type and Range Registers (MTRRs) for performance optimization.

Table 3. Memory Range and Cache Attributes

Memory Range	Cache Attribute
0x00000000 - 0x0009FFFF	Write back
0x000A0000 - 0x000BFFFF	Uncacheable
0x000c0000 – Top of Low Memory	Write back
0xFF800000 - 0xFFFFFFFF (Flash region)	Write protect
0x1000000000 – Top of High Memory	Write back

The bootloader can reconfigure the MTRRs immediately after this API call.

3.6.4 FspSiliconInit API

Refer to the FspSiliconInit Section in the FSP EAS v2.0 for the prototype, parameters and return value details for this API.

The FspsUpdPtr is pointer to FSPS UPD structure which is described in header file FspsUpd.h.

The bootloader is responsible for programming the MTRRs for Boot Strap Processor (BSP) as needed after TempRamExit but before entering FspSiliconInit. If MTRRs are not programmed properly, boot performance might be impacted.

3.6.5 NotifyPhase API

Refer to the NotifyPhase Section in the FSP EAS v2.0 for the prototype, parameters and return value details for this API.

Note: It is **REQUIRED** that all the supported <code>NotifyPhase</code> APIs are called and in the recommended order.

3.6.5.1 PostPciBusEnumeration Notification

The bootloader calls this phase, <code>EnumInitPhaseAfterPciEnumeration</code>, after PCI bus enumeration but before execution of third party code such as option ROMs. Currently, no special operation is done in this phase, but in the future updates, programming may be added in this phase.

3.6.5.2 ReadyToBoot Notification

The bootloader calls this phase, <code>EnumInitPhaseReadyToBoot</code>, before giving control to OS Loader. It includes some final initialization steps recommended by the BWG, including power management settings, locking down security-related registers, and switching devices into ACPI mode if required, etc.

3.6.5.3 EndOfFirmware Notification

Intel® Atom™ C3XXX Product Family does not support this API.

§

4 Intel® FSP Output

The Intel® FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it progresses through initializing the silicon.

Refer to <u>Table 1</u>, Platform Initialization (PI) Specification - Volume 3: Shared Architectural Elements specification for PI Architectural HOBs.

Refer to the Intel® FSP Output chapter of the FSP EAS v2.0 for details about Intel® FSP Architectural HOBs.

The section below describes the HOBs implemented in Intel® Atom™ C3XXX Product Family Intel® FSP that are not covered in the previous two specifications.

4.1 SMRAM Resource Descriptor HOB

The Intel® FSP reports the system SMRAM T-SEG range through a generic resource HOB if T-SEG is enabled. The owner field of the HOB identifies the owner as T-SEG.

```
#define FSP_HOB_RESOURCE_OWNER_TSEG_GUID \
{ 0xd038747c, 0xd00c, 0x4980, { 0xb3, 0x19, 0x49, 0x01, 0x99, 0xa4, 0x7d,
0x55 } }
```

4.2 FIA MUX HOB

The Intel® FSP reports the Flexible I/O Adapter (FIA) Mux Settings thru the FIA Mux HOB.

```
#define FSP_FIAMUX_HOB_GUID \
{ 0x26ad492e, 0xf951, 0x4e43, { 0xbc, 0x72, 0x22, 0x76, 0x58, 0xb1, 0xf6,
0x23 } }
```

Refer to the FspmUpd.h for the details of HOB structure.

4.3 SMBIOS INFO HOB

The Intel® FSP will report the System Management BIOS (SMBIOS) through a HOB with below Globally Unique Identifier (GUID). This information can be consumed by the bootloader to produce the SMBIOS tables.

October 2017


```
} DIMM INFO;
typedef struct {
UINT8 ChannelId;
UINT8 DimmCount;
DIMM_INFO DimmInfo[MAX_DIMMS_NUM];
} CHANNEL_INFO;
typedef struct {
UINT8 Revision;
UINT8 DataWidth;
/** As defined in SMBIOS 3.0 spec
Section 7.18.2 and Table 75
UINT8 MemoryType;
UINT16 MemoryFrequencyInMHz;
/** As defined in SMBIOS 3.0 spec
Section 7.17.3 and Table 72
UINT8 ErrorCorrectionType;
UINT8 ChannelCount;
CHANNEL_INFO ChannelInfo[MAX_CHANNELS_NUM];
} FSP SMBIOS MEMORY INFO;
```

4.4 MarginCheckerTestReport HOB

The Intel® FSP uses this HOB to pass information (for Margin Check) from MRC to the boot loader.

#define gFspFastBootCheckerHobGuid = { 0x7897f07b, 0xcda, 0x40e3, { 0xb4, 0xe4, 0x51, 0x5f, 0x47, 0x3b, 0x4, 0xb6 }};

§

October 2017

Intel® FSP Configuration Firmware File 5

The Intel® FSP binary contains a configurable data region that is used by the FSP during the initialization. Refer to the Intel® FSP Configuration Firmware File chapter of the FSP EAS v2.0 for details.

Note: A stack in temporary memory is used to store the Updatable Product Data (UPD) data structure. This UPD data structure is copied, updated, and then passed to the FSP API. When permanent memory is initialized, the Intel® FSP sets up a new stack in the permanent memory and tears down the temporary memory. However, the Intel® FSP saves the whole bootloader temporary memory region in a GUID HOB. The bootloader can access the data in the temporary memory by parsing this HOB. The migrated temporary memory contains an identical copy of the original data. Pointers to data stored in the temporary memory needs to be updated to the location of the same data in the permanent memory

5.1 **UPD Data Structure**

The UPD data structure and related structure definitions are provided in the FspUpd.h, FsptUpd.h, FspmUpd.h and FspsUpd.h file in the release package. The basic information for each option is provided in the BCT configuration file. Use the BCT tool to load this BSF file and get the detailed configuration option information.

5.1.1 **FSP Configuration Data**

5.1.1.1 **FSP-T UPD Structure**

FSP-T Core UPD Configuration is described in the FSP-T UPD Structure section of the FSP EAS

```
#include < FsptUpd.h>
typedef struct {
  UINT32
                               MicrocodeRegionBase;
 UINT32
                               MicrocodeRegionLength;
  UINT32
                               CodeRegionBase;
  UINT32
                               CodeRegionLength;
  UINT8
                               Reserved1[16];
} FSPT CORE UPD;
```

October 2017 Document Number: 335702-002US

5.1.1.2 Detailed Description

FSP-T Core UPD Configuration.

The documentation for this structure was generated from the following file:

FsptUpd.h

MicrocodeRegionBase: Base address of the microcode region. This address must be 16 byte aligned.

MicrocodeRegionLength: Length of the microcode region. The length must be total size of all patches or 0xFFFFFFFFF if auto size detection is desired.

CodeRegionBase: Base address of the cacheable flash region.

CodeRegionLength: Length of the cacheable flash region. A size of 0 indicates that no code caching is desired.

5.1.2 FSP-T UPD Data Region

This UPD data region can be configured statically by the BCT tool in the same way as Vital Product Data (VPD) data region, but can also be overridden by the bootloader at runtime. This provides more flexibility for the bootloader to customize these options dynamically as needed.

PcdPort80RouteDisable

Used to enable/disable diversion of Low Pin Count (LPC) Port80 writes. When selecting item "0x0/VPD-Style", this Platform Configuration Database (PCD) cannot be overridden and act as a VPD PCD. Valid inputs are:

0x0 - VPD-Style

0x1 - "Enabled Port80 Output" (Default)

0x2 - "Disabled Port80 Output"

PcdRegionTerminator

This field has a value of 0x55AA indicating the end of UPD data. DO NOT MODIFY.

5.1.2.1 FSP-M UPD Data Region

The UPD parameters that are part of the MemoryInitUpd and consumed by the FspMemoryInit API are described below.

PcdCustomerRevision

The customer can add a label/version ID, maximum 32 characters.

PcdSmmTsegSize

Used to specify the Size of SMRAM (TSEG) memory reserved. Valid inputs are:


```
0x02 - "2 MB" (Default)
0x04 - "4 MB"
0x08 - "8 MB"
0x16 - "16 MB"
```

PcdFspDebugPrintErrorLevel

Controls the Intel® FSP debug message level. To allow the Intel® FSP debug message print out, this option should be configured to any level other than 0. Valid inputs are:

```
0 \times 00 - 0 \times 00

0 \times 01 - 0 \times 01

0 \times 02 - 0 \times 02 (Default)

0 \times 03 - 0 \times 03
```

PcdSpdSmbusAddress_0_0

Used to configure Smbus address of Channel 0 DIMM 0 on the platform. Valid inputs are:

```
From 0x00 to 0xFF

Default: 0xA0
```

PcdSpdSmbusAddress_0_1

Used to configure Smbus address of Channel 0 DIMM 1 on the platform. Valid inputs are:

```
From 0x00 to 0xFF

Default: 0xA2
```

PcdSpdSmbusAddress_1_0

Used to configure Smbus address of Channel 1 DIMM 0 on the platform. Valid inputs are:

```
From 0x00 to 0xFF

Default: 0xA4
```

PcdSpdSmbusAddress_1_1

Used to configure Smbus address of Channel 1 DIMM 1 on the platform. Valid inputs are:

```
From 0x00 to 0xFF

Default: 0xA6
```

PcdMrcRmtSupport

Used to enable/disable Memory Reference Code (MRC) Rank Margin Tool (RMT). If enabled, the MRC prints out the rank margining information so that it can be used as the input for the RMT to analyze the platform memory sub-system margining. PcdFastBoot option should be disabled because MRC fast boot path skips normal memory training steps. The RMT log is printed to the serial console. Valid inputs are:

```
0 - "Disabled" (Default)
1 - "Enabled"
```

October 2017
Document Number: 335702-002US

PcdMrcRmtCpgcExpLoopCntValue

Used to configure Rank Margin Tool (RMT). Set the Converged Pattern Generator and Checking (CPGC) $\exp _loop_cnt$ field for RMT execution 2^ (exp_loop_cnt -1). Valid inputs are:

From 1 to 15

Default: 12

PcdMrcRmtCpgcNumBursts

Used to configure Rank Margin Tool (RMT). Set the CPGC num_bursts field for RMT execution 2^ (num bursts -1). Valid inputs are:

From 1 to 15

Default: 6

PcdMemoryPreservation

Used to enable/disable the memory preservation through warm resets. Valid inputs are:

```
0 - "Disabled" (Default)
1 - "Enabled"
```

PcdFastBoot

Used to enable/disable the Fast Boot function. Once enabled, all following boots use the presaved MRC data to improve the boot performance. Valid inputs are:

```
0 - "Disabled"
1 - "Enabled" (Default)
```

PcdEccSupport

Used to enable/disable the error correcting code memory support. Valid inputs are:

```
0 - "Disabled"
1 - "Enabled" (Default)
```


PcdHsuartDevice

Select the Peripheral Connect Interface (PCI) High Speed Device for Serial Port. It is expected that the bootloader will configure the PCI High Speed UART (HSUART) Device for Serial Port prior to calling the FspInitEntry API. The bootloader should update this Updatable Product Data (UPD) with the function number of the HSUART device so that the Intel® FSP can output to the serial port. The supported device functions are 0, 1, and 2. The Intel® FSP defaults to function 0 if this UPD is not configured with one of the supported function numbers.

```
0 - HSUART0 (Default)
1 - HSUART1
2 - HSUART2
```

PcdMemoryDown

Used to enable/disable the Memory Down function. For designs that implement memory soldered down to the board and that do not include SPD EEPROMs on the board, enable this PCD. It is also required that the bootloader configures the SPD data; refer to <u>Appendix A</u>.

However, if the design implements memory soldered down to the board and includes SPD EEPROMs on the board, then it is not required to enable this PCD. In this situation, the Intel® FSP needs to be configured with the SPD SMbus addresses for the SPD EEPROMs for each memory bank.

```
0 - "Disabled" (Default)
1 - "Enabled"
```

PcdMemoryDownConfigPtr

It is required that the bootloader configures this UPD prior to calling the FspMemoryInit API if the board design includes soldered down memory. Refer to Appendix A for details on Memory Down support. This PCD cannot be configured by the BCT Tool.

```
0 - (Default)
```

PcdEnableSATA0

Used to enable/disable SATA Controller 0, including Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

PcdEnableSATA1

Used to enable/disable SATA Controller 1, including Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

October 2017 Intel Atom Document Number: 335702-002US

PcdEnableIQAT

Used to enable/disable Intel Quick Assist Technology devices, including Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

PcdSmbusSpdWriteDisable

Used to enable/disable SPD Write Protect. Set this PCD to Force Disable to allow writes to slaves $0 \times A0 - 0 \times AE$. After completing SPD flow, it is highly recommended that the bootloader set SPD_WD. This will prevent any future writes (accidental or malicious) to the DIMM EEPROMs; a malicious write could corrupt an EEPROM and cause a Permanent Denial of Service (platform will not boot) until the DIMM is replaced. A platform may be designed such that SMBusO segment includes EEPROMs, other than DIMM EEPROM (not Intel recommended). In this case, if the Original Design Manufacture (ODM) expects write access by a regular SW driver or by BIOS/System Management Mode (SMM) at a later time, it is possible to leave SPD_WD cleared. However, the ODM should know that this exposes the DIMM EEPROMs to the security vulnerability noted above.

```
1 - "Force Enable" (Default)
2 - "Force Disable"
```

PcdEnableMeShutdown

Enable/disable sending the ME SHUTDOWN message to ME. Valid inputs are:

```
0x0 - "Disabled" (Default)
0x1 - "Enabled"
```

PcdEnableXhci

Enable/disable Extensible Host Controller Interface (xHCI) controller, including Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```


PcdDdrFreq

Set DDR Memory Frequency to a specific value. Valid inputs are:

```
15 - "Auto"

3 - "1600 MHz"

4 - "1866 MHz"

5 - "2133 MHz" (Default)

6 - "2400 MHz"
```

For DDR3 memory, items "Auto", "1600" and "1866" MHz can be selected. For DDR4 memory, items "Auto", "1866", "2133", and "2400" MHz can be selected.

PcdMmioSize

Used to set memory mapped IO space size. Valid inputs are:

```
0 - 2048M (Default)
1 - 1024M
2 - 3072M
```

PcdHalfWidthEnable

Used to enable/disable 32-bit Memory Bus Mode. Valid inputs are:

```
0x0 - "Disabled" (Default)
0x1 - "Enabled"
```

PcdTclIdle

Used to modify Tcl timing for performance improvement. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

PcdInterleaveMode

Used to select memory interleave mode. Valid inputs are:

```
0 - disabled
1 - mode0
2 - mode1
3 - mode2 (Default)
```

PcdMemoryThermalThrottling

Used to enable/disable memory thermal throttling management mode.

```
0x0 - "Disabled" (Default)
0x1 - "Enabled"
```

October 2017
Document Number: 335702-002US

5.1.2.3 FSP-S UPD Data Region

The UPD parameters that are part of the SiliconInitUpd and are consumed by the FspSiliconInit API are described below.

PcdBifurcationPcie0

Configure Peripheral Component Interconnect Express * (PCIe*) controller 0 bifurcation.

- 0 X2X2X2X2
- 1 X2X2X4
- 2 X4X2X2
- 3 X4X4
- 4 X8 (Default)

PcdBifurcationPcie1

Configure PCIe* controller 1 bifurcation.

- 0 X2X2X2X2
- 1 X2X2X4
- 2 X4X2X2
- 3 X4X4 (Default)
- 4 X8

PcdActiveCoreCount

Used to select the number of Active Cores.

```
0 - ALL (Default)
```

1..15 - 1..15 Cores

PcdCpuMicrocodePatchBase

It is required that the bootloader configures this UPD prior to calling the FspSiliconInit API. This UPD cannot be modified using the BCT.

0 - (Default)

PcdCpuMicrocodePatchSize

It is required that the bootloader configures this UPD prior to calling the FspSiliconInit API. This UPD cannot be modified using the BCT.

0 - (Default)

PcdEnablePcie0

Used to enable/disable PCIe* Controller 0 by controlling Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
```

0x1 - "Enabled" (Default)

PcdEnablePcie1

Used to enable/disable PCIe Controller 1 by controlling Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

PcdPcieRootPort[0:7] DeEmphasis

Used to configure PCIe root ports (1-8) De-Emphasis settings. Valid inputs are:

```
0x0 - "6 dB" (Default)
0x1 - "3.5 dB"
```

PcdPcieRootPort[0:7]LinkSpeed

PCIe* Root Port 1-8 Link Speed. Upper limit on link operational speed for PCI Express RootPort

```
0x1 - GEN1
0x2 - GEN2
0x3 - GEN3 (Default)
```

PcdPcieRootPort[0:7]Aspm

Enable/Disable PCI Express Active State Power Management (ASPM) settings.

```
0x0 - Disabled
0x2 - L1 (Default)
```

PcdEnableGbE

Used to enable/disable LAN Controller by controlling the Static Power Gating. Valid inputs are:

```
0x0 - "Disable LAN 0 & LAN 1"
0x1 - "Enable LAN 0 & LAN 1" (Default)
0x2 - "Disable LAN 1 only"
```

PcdFiaMuxConfigRequestPtr

It is required that the bootloader configures this UPD prior to calling the FspSiliconInit API to set the request FIA MUX configuration to allow Intel® FSP overriding High Speed IO (HSIO) lanes for PCIe*/SATA/USB3 controllers. Refer to Appendix B for details how to configure this pointer. This PCD cannot be configured by the BCT Tool.

```
0 - (Default
```

PcdEnableEmmc

Used to enable/disable Embedded Multi-Media Controller* (eMMC*) by controlling the Static Power Gating. Valid inputs are:

```
0x0 - "Disabled"
0x1 - "Enabled" (Default)
```

October 2017
Document Number: 335702-002US

October 2017

Document Number: 335702-002US

${\bf PcdEMMCDLLConfigPtr}$

It is required that the bootloader configures this UPD prior to calling the FspSiliconInit API to set eMMC DLL configuration for eMMC controller. Refer to <u>Appendix C</u> for more details. This PCD cannot be configured by the BCT Tool.

0 - (Default)

§

Appendix A Memory Down

The details of Memory Down structure are shown below. These can be found in the FspmUpd.h header file included in the Intel® FSP package.

```
/* Maximum Number of Memory Channels */
#define MAX CH 2
#define MAX_DIMM 2
                                /* Maximum Number of DIMMs PER Memory
Channel */
#define MAX SPD BYTES 512 /* Maximum Number of SPD bytes */
typedef enum {
 STATE MEMORY SLOT = 0,
                          /* No memory down and a physical memory
slot. */
 STATE MEMORY DOWN = 1,
                          /* Memory down and not a physical memory
slot. */
} MemorySlotState;
typedef struct {
 MemorySlotState SlotState[MAX_CH][MAX_DIMM]; /* Memory Down state of
each DIMM in each Channel */
 UINT16
                  SpdDataLen;
                                                /* Length in Bytes of a
single DIMM's SPD Data */
 UINT8 *SpdDataPtr[MAX_CH][MAX_DIMM]; /* Pointer to SPD Data
for each DIMM in each Channel */
} MEMORY_DOWN_CONFIG;
```

It is the responsibility of the bootloader to provide the SPD Data for the DIMMs used in the platform.

§

October 2017
Document Number: 335702-002US

Appendix B FIA MUX Configuration Structure

The details of the FIA MUX Configure structure are shown below. These can be found in the FspmUpd.h header file included in the Intel® FSP package.

```
* FIA MUX configuration structures.
#define BL ME FIA MUX LANE NUM MAX
#define BL ME FIA MUX LANE NUM MIN
#define BL ME FIA MUX LANE MUX SEL WIDTH 2
#define BL ME FIA MUX LANE MUX SEL MASK
                                                               0 \times 3
#define BL ME FIA MUX LANE XHCI ONLY
                                                               0xFF00000000
typedef enum {
  BL FIA LANE00 = 0,
  BL FIA LANE01,
  BL FIA LANE02,
  BL FIA LANE03,
  BL FIA LANE04,
  BL FIA LANE05,
  BL FIA LANE06,
  BL FIA LANE07,
  BL FIA LANE08.
  BL FIA LANE09,
  BL FIA LANE10.
  BL FIA LANE11,
  BL FIA LANE12,
  BL FIA LANE13,
  BL FIA LANE14,
  BL FIA LANE15,
  BL FIA LANE16,
  BL FIA LANE17,
  BL FIA LANE18,
  BL FIA LANE19,
} BL ME FIA MUX LANE ORDER;
#define BL ME FIA MUX LANE SATAO BEGING BL FIA LANE04
#define BL ME FIA MUX LANE SATA1 BEGING BL FIA LANE12
#define BL FIA LANE CONFIG(Config, Lane) ( (UINT64) ( (UINT64) (Config) << (</pre>
(UINT64)(Lane) * (BL ME FIA MUX LANE MUX SEL WIDTH))))
typedef union BL ME FIA MUX CONFIG {
  UINT64 MeFiaMuxLaneConfig;
  struct {
     UINT64 Lane00MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE UINT64 Lane01MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE UINT64 Lane02MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE
     UINT64 LaneO3MuxSel : 2; // ME FIA MUX LANE DISABLED OR PCIE
UINT64 LaneO4MuxSel : 2; // ME FIA MUX LANE DISABLED OR PCIE OR SATA
UINT64 LaneO5MuxSel : 2; // ME_FIA_MUX_LANE_DISABLED OR PCIE OR SATA
UINT64 LaneO6MuxSel : 2; // ME_FIA_MUX_LANE_DISABLED OR PCIE OR SATA
     UINT64 LaneO7MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA UINT64 LaneO8MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA UINT64 LaneO9MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA
     UINT64 Lane10MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA UINT64 Lane11MuxSel : 2; // ME_FIA_MUX_LANE_DISABLED or PCIE or SATA
```



```
UINT64 Lane12MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA UINT64 Lane13MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA UINT64 Lane14MuxSel : 2; // ME FIA MUX LANE DISABLED or PCIE or SATA
    UINT64 Lane15MuxSel: 2; // ME_FIA_MUX_LANE_DISABLED or PCIE or SATA
UINT64 Lane16MuxSel: 2; // ME_FIA_MUX_LANE_DISABLED or XHCI or SATA
UINT64 Lane17MuxSel: 2; // ME_FIA_MUX_LANE_DISABLED or XHCI or SATA
UINT64 Lane18MuxSel: 2; // ME_FIA_MUX_LANE_DISABLED or XHCI or SATA
    UINT64 Lane19MuxSel : 2; // ME_FIA_MUX_LANE_DISABLED or XHCI or SATA
    UINT64 Reserved : 24;
  } BL MeFiaMuxLaneMuxSel;
} BL ME FIA MUX CONFIG;
typedef enum {
  BL ME FIA MUX LANE DISCONNECTED,
  BL ME FIA MUX LANE PCIE,
  BL ME FIA MUX LANE SATA,
  BL ME FIA MUX LANE XHCI,
} BL ME FIA MUX LANE CONFIG;
#define BL ME FIA SATA LANE SEL WIDTH
#define BL ME FIA SATA LANE XHCI ONLY 0x55000000
typedef enum {
  BL FIA SATA LANE04 = 0,
  BL FIA SATA LANE05,
  BL FIA SATA LANE06,
  BL FIA SATA LANE07,
  BL FIA SATA LANE08,
  BL FIA SATA LANE09,
  BL FIA SATA LANE10,
  BL FIA SATA LANE11,
  BL FIA SATA LANE12,
  BL FIA SATA LANE13,
  BL FIA SATA LANE14,
  BL FIA SATA LANE15,
  BL FIA SATA LANE16,
  BL FIA SATA LANE17,
  BL FIA SATA LANE18,
  BL FIA SATA LANE19
} BL ME FIA SATA LANE ORDER;
#define BL FIA SATA LANE CONFIG(Config, Lane) ( (UINT32) ( (UINT32) (Config) << (</pre>
(UINT32) (Lane) * (BL ME FIA SATA LANE SEL WIDTH))))
typedef union BL ME FIA SATA CONFIG {
  UINT64 MeFiaSataLaneConfig;
  struct {
    UINT64 Lane04SataSel : 2;
    UINT64 Lane05SataSel : 2;
    UINT64 LaneO6SataSel : 2;
     UINT64 Lane07SataSel : 2;
    UINT64 Lane08SataSel : 2;
    UINT64 Lane09SataSel : 2;
    UINT64 Lane10SataSel : 2;
    UINT64 Lanel1SataSel : 2;
    UINT64 Lane12SataSel : 2;
    UINT64 Lane13SataSel : 2;
     UINT64 Lane14SataSel : 2;
    UINT64 Lane15SataSel : 2:
    UINT64 Lane16SataSel : 2;
    UINT64 Lane17SataSel : 2;
    UINT64 Lane18SataSel : 2;
    UINT64 Lane19SataSel : 2;
    UINT64 Reserved
                         : 32;
  } BL MeFiaSataLaneSataSel;
```



```
} BL ME FIA SATA CONFIG;
typedef enum
 BL_ME_FIA_SATA_CONTROLLER_LANE_ASSIGNED = 0,
 BL ME FIA SATA CONTROLLER LANE NOT ASSIGNED = 1,
 BL ME FIA SATA CONTROLLER LANE SS AND GPIO ASSIGNED = 3
} BL ME FIA SATA LANE CONFIG;
#define BL ME FIA PCIE ROOT PORT LINK WIDTH SEL WIDTH
#define BL ME FIA PCIE ROOT PORTS STATE WIDTH
#define BL ME FIA PCIE ROOT CONFIG XHCI ONLY
                                                        0 \times 0
typedef enum {
 BL FIA PCIE ROOT PORT 0 = 0,
 BL FIA PCIE ROOT PORT 1,
 BL FIA PCIE ROOT PORT 2,
 BL FIA PCIE ROOT PORT 3,
 BL FIA PCIE ROOT PORT 4,
 BL FIA PCIE ROOT PORT 5,
 BL FIA PCIE ROOT PORT 6,
 BL FIA PCIE ROOT PORT 7
} BL ME FIA PCIE ROOT PORT ORDER;
#define BL FIA PCIE ROOT PORT CONFIG(Type, Config, PcieRootPort) \
  (((Type) == BL ME FIA PCIE ROOT PORT STATE) ? \
      ((UINT64)((UINT64)(Config) << (UINT64)(PcieRootPort))) : \
      ((UINT64)((UINT64)(Config) << (UINT64)(((UINT64)(PcieRootPort) *
(BL ME FIA PCIE ROOT PORT LINK WIDTH SEL WIDTH)) + \
      BL ME FIA PCIE ROOT PORTS STATE WIDTH))))
typedef union BL ME FIA PCIE ROOT PORTS CONFIG {
  UINT64 MeFiaPcieRootPortsConfig;
 struct {
   UINT64 PcieRp0En
                       : 1;
: 1;
: 1;
: 1;
   UINT64 PcieRp1En
   UINT64 PcieRp2En
   UINT64 PcieRp3En
   UINT64 PcieRp4En
   UINT64 PcieRp5En
                          : 1;
   UINT64 PcieRp6En
                      : 1;
   UINT64 PcieRp7En
                            : 1;
   UINT64 PcieRp0LinkWidth: 4;
   UINT64 PcieRplLinkWidth: 4;
   UINT64 PcieRp2LinkWidth: 4;
   UINT64 PcieRp3LinkWidth: 4;
   UINT64 PcieRp4LinkWidth: 4;
   UINT64 PcieRp5LinkWidth : 4;
   UINT64 PcieRp6LinkWidth: 4;
   UINT64 PcieRp7LinkWidth: 4;
   UINT64 Reserved
  } BL MeFiaPcieRpConfig;
} BL ME FIA PCIE ROOT PORTS CONFIG;
typedef enum
 BL ME FIA PCIE ROOT PORT STATE,
 BL ME FIA PCIE ROOT PORT LINK WIDTH
} BL ME FIA PCIE ROOT PORT CONFIG TYPE;
typedef enum
 BL ME FIA PCIE ROOT PORT DISABLED,
 BL ME FIA PCIE ROOT PORT ENABLED
} BL_ME_FIA_PCIE_ROOT_PORT_STATE_CONFIG;
```



```
typedef enum
 BL ME FIA PCIE ROOT PORT LINK WIDTH BICTRL = 0,
 BL ME FIA PCIE ROOT PORT LINK X1 = 0xF
} BL ME FIA PCIE ROOT PORT LINK CONFIG;
typedef struct BL ME FIA CONFIG
 BL_ME_FIA_MUX_CONFIG MuxConfiguration;
BL_ME_FIA_SATA_CONFIG SataLaneConfiguration;
 BL ME FIA PCIE ROOT PORTS CONFIG PcieRootPortsConfiguration;
} BL ME FIA CONFIG;
* The FIA MUX CONFIG block describes the expected configuration of
* FIA MUX configuration.
typedef struct {
 UINT32 SkuNumLanesAllowed; // Platform view of Num Lanes allowed
 BL ME FIA CONFIG FiaMuxConfig; // Current Platform FIA MUX Configuration
 BL ME FIA CONFIG FiaMuxConfigRequest; // FIA MUX Configuration Requested
} BL FIA MUX CONFIG;
^{\star} The FIA MUX CONFIG STATUS describes the status of configuring
* FIA MUX configuration.
typedef struct {
 UINT64
           FiaMuxConfigGetStatus; // Status returned from FiaMuxConfigGet, if
not EFI SUCCESS, then error occurred and user can decide on next steps
UINT64 FiaMuxConfigSetStatus; // Status returned from FiaMuxConfigSet, if
not EFI SUCCESS, then error occurred and user can decide on next steps
BOOLEAN FiaMuxConfigSetRequired; // Boolean: true - a FiaMuxConfigSet was
required, false otherwise
} BL FIA MUX CONFIG STATUS;
* FIA MUX Config HOB structure
typedef struct {
 BL FIA MUX CONFIG
                               FiaMuxConfig;
 BL_FIA_MUX_CONFIG FiaMuxConfig;
BL_FIA_MUX_CONFIG_STATUS FiaMuxConfigStatus;
} BL FIA MUX CONFIG HOB;
/* PCIe port bifurcation codes - matches setup option values */
#define PCIE BIF CTRL x2x2x2x2
#define PCIE_BIF_CTRL_x2x2x4
#define PCIE BIF CTRL x4x2x2
                                           2
#define PCIE BIF CTRL x4x4
                                          3
#define PCIE BIF CTRL x8
#define BL MAX PCIE CTRL
* HSIO INFORMATION structure
typedef enum {
 BL SKU HSIO 06 = 6,
 BL SKU HSIO 08 = 8,
 BL SKU HSIO 10 = 10,
 BL SKU HSIO 12 = 12,
 BL SKU HSIO 20 = 20,
} BL SKU HSIO LANE NUMBER;
typedef struct {
```



```
UINT16 NumLanesSupported;
UINT8 PcieBifCtr[BL MAX PCIE_CTRL];
BL ME FIA CONFIG FiaConfig;
} BL_HSIO_INFORMATION;
```

 $\label{local_problem} \textbf{PcdFiaMuxConfigRequestPtr} \ is \ a \ pointer \ for \ request \ \texttt{FIA} \ \ \texttt{MUX} \ configuration \ to \ be \ configured \ by \ the \ Intel^* \ FSP. \ It \ pointed \ to \ a \ structure \ BL_\texttt{ME}_\texttt{FIA}_\texttt{CONFIG}.$

Table 4. Structure BL_ME_FIA_MUX_CONFIG Definition

Bit Range	Options	Descriptions
63:40	0	Reserved (RSVD): Reserved
39:38	00b – Lane disabled 01b – Reserved 10b – Lane owned by SATA 11b – Lane owned by xHCI	FIA MUX configuration of Lane 19
37:36	00b – Lane disabled 01b – Reserved 10b – Lane owned by SATA 11b – Lane owned by xHCI	FIA MUX configuration of Lane 18
35:34	00b – Lane disabled 01b – Reserved 10b – Lane owned by SATA 11b – Lane owned by xHCI	FIA MUX configuration of Lane 17
33:32	00b – Lane disabled 01b – Reserved 10b – Lane owned by SATA 11b – Lane owned by xHCI	FIA MUX configuration of Lane 16
31:30	00b – Lane disabled 01b – Lane owned by PCle* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 15
29:28	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 14
27:26	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 13
25:24	00b – Lane disabled 01b – Lane owned by PCle* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 12

Bit Range	Options	Descriptions
23:22	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 11
21:20	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 10
19:18	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 9
17:16	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 8
15:14	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 7
13:12	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 6
11:10	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 5
09:08	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Lane owned by SATA 11b – Reserved	FIA MUX configuration of Lane 4

Bit Range	Options	Descriptions
07:06	00b – Lane disabled 01b – Lane owned by PCIe* 10b – Reserved 11b – Reserved	FIA MUX configuration of Lane 3
05:04	00b – Lane disabled 01b – Lane owned by PCle* 10b – Reserved 11b – Reserved	FIA MUX configuration of Lane 2
03:02	00b – Lane disabled 01b – Lane owned by PCle* 10b – Reserved 11b – Reserved	FIA MUX configuration of Lane 1
01:00	00b – Lane disabled 01b – Lane owned by PCle* 10b – Reserved 11b – Reserved	FIA MUX configuration of Lane 0

Appendix C EMMC* DLL Configuration Structure

The details of the eMMC DLL Configure structure are shown below. These can be found in the FspmUpd.h header file included in the Intel® FSP package.

```
\frac{/*}{*} eMMC DLL structure for EMMC DLL registers settings
typedef struct {
 UINT32 TxCmdCntl;
 UINT32 TxDataCntl1;
 UINT32 TxDataCntl2;
 UINT32 RxCmdDataCntl1;
 UINT32 RxStrobeCntl;
 UINT32 RxCmdDataCntl2;
 UINT32 MasterSwCntl;
} BL_EMMC_DLL_CONFIG;
typedef struct {
 UINT16
                  Signature;
 BL EMMC DLL CONFIG
                               eMMCDLLConfig;
} BL_EMMC_INFORMATION;
```

§