

MA1: L04

Tom Smedsaas

Asymptotic notation Big O (\mathcal{O}), Omega (Ω) and Theta (Θ)

Asymptotic notation

Examples of statements about algorithms

- The simple algorithm to compute x^n is $\Theta(n)$
- The squaring algorithm to compute x^n is $\Theta(\log n)$
- The binary search algorithm is $\Theta(\log n)$
- A successful linear search is O(n)
- An unsuccessful linear search is Ω (n)

Asymptotic notation - definition

A function t(n) is said to be O(f(n)) if there exist two constants c and n_0 such that

$$|t(n)| < c|f(n)|$$
 for all $n > n_0$

Note that this is a *mathematical* definition!

Asymptotic notation

Example:
$$f(n) = n^2 + 10n + 100$$
 is $O(n^2)$

Why?

If n > 1 then

$$|f(n)| = n^2 + 10n + 100 < n^2 + 10n \cdot n + 100 \cdot n \cdot n = 111n^2$$

Thus, the constants c = 111 and $n_0 = 1$ works.

Note that it is the *existence* that is important – not the values!

Asymptotic notation

Since O is an *upper* limit it doesn't have to mean so much.

The function on the previous slide is, for example, also $\mathcal{O}(n^3)$ and $\mathcal{O}(2^n)$.

To specify a *lower* limit we can use Ω with a similar definition but with > instead of <.

The example function is also $\Omega(n^2)$.

If a functions is both O(f(n)) and $\Omega(f(n))$ it is said to be $\Theta(f(n))$.

In computer science it is quite common to say \mathcal{O} when you really mean Θ .

We use these concept to express the time a specific algorithm takes. Instead of time we can look on the number of times a central operation is performed.

Example: The number of multiplications performed in the squaring algorithm to compute x^n is $\Theta(\log n)$.

Note that we do not have to specify the base of the logarithm since

$$\log_a x = \frac{1}{\log_b a} \cdot \log_b x$$

Example:

```
O(1) indexing an array (a Python-list)
```

 $\Theta(\log n)$ binary search

 $\Theta(n)$ insert(0, x) in a Python-list of length n

 $\Theta(n \log n)$ fast sorting methods

 $\Theta(n^2)$ simple sorting methods

 $\Theta(n^3)$ multiplication of $n \times n$ - matrices

When analyzing algorithms, one may need to distinguish between best, worst and average complexity.

Example:

To sort n elements with *insertion sort* requires

- $\Theta(n)$ operations in best case
- $\Theta(n^2)$ operations in worst case
- $\Theta(n^2)$ operations on the average

What is meant by "on the average"?

When discussing searching, one often needs to distinguish between "successful" and "unsuccessful" search.

For example, the function

```
def search(x, lst):
    for e in lst:
        if e == x:
            return True
    return False
```

requires for a successful search

- $\Theta(1)$ operations in best case
- $\Theta(n)$ operations in worst case
- $\Theta(n)$ operations on average

while an unsuccessful search always require $\Theta(n)$ operations.

Time estimations

Suppose we know that the time of a certain algorithm is $\Theta(f(n))$. We can then estimate the time for large values of n with the function

$$t(n) = c \cdot f(n)$$

The constant $\,c\,$ depends on the computer dator, details in the program etc.

For a particular implementation and computer, it can be estimated by making one or more time measurements.

Example

Suppose that the time for a program that implements a $\Theta(n \log n)$ - algorithm has been measured to 1 sec for $n = 10^3$.

How long will the program then take for $n = 10^6$?

$$t(n) = c \, n \log n$$

$$t(10^3) = c \cdot 10^3 \log 10^3 = 1$$

$$c = 1/3000$$

$$t(10^6) = \frac{1}{3000} \cdot 10^6 \log 10^6 = 2000 \text{ sec } \approx 33 \text{ min}$$

Example

Suppose we have measured the sam but for a $\Theta(n^2)$ - algorithm. How long will the program then take for $n=10^6$?

$$t(n) = c \cdot n^2$$

 $t(10^3) = c \cdot (10^3)^2 = 1$
 $c = 10^{-6}$
 $t(10^6) = 10^{-6} \cdot (10^6)^2 = 10^6 \text{ sec } \approx 12 \text{ days}$

Conclusion : A $\Theta(n \log n)$ - algorithm is *much* faster than a $\Theta(n^2)$ - algorithm for large values n.

Theend