Homework 4

Lijie Hu

1 Problem 1

We first prove it is ϵ -LDP, by the definition of Y_i we known that $\Pr(Y_i = 1), \Pr(Y_i = 0) \in [\frac{1}{e^{\epsilon}+1}, \frac{e^{\epsilon}}{e^{\epsilon}+1}]$ no matter what x_i is. Thus we always have $e^{-\epsilon} \leq \frac{\Pr(Y_i = 1|x_i)}{\Pr(Y_i = 1|x_i')} \leq e^{\epsilon}$ for any pair of x_i, x_i' .

We then consider the unbiaseness, we have

$$\mathbb{E}(\hat{\mu}) = \frac{m}{n} \left(\sum_{i=1}^{n} \mathbb{E}[Y_i] \frac{e^{\epsilon} + 1}{e^{\epsilon} - 1} - \frac{1}{e^{\epsilon} - 1} \right)$$

$$= \frac{m}{n} \left(\sum_{i=1}^{n} \left(\frac{1}{e^{\epsilon} + 1} + \frac{x_i(e^{\epsilon} - 1)}{m(e^{\epsilon} + 1)} \right) \frac{e^{\epsilon} + 1}{e^{\epsilon} - 1} - \frac{1}{e^{\epsilon} - 1} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Finally we will show the variance, first we have

$$\hat{\mu} - \mu = \frac{m}{n} \sum_{i=1}^{n} (Y_i - \mathbb{E}(Y_i)) \frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}.$$
(1)

Thus,

$$\operatorname{Var}(\hat{\mu}) = \frac{m^2}{n^2} \left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\right)^2 \sum_{i=1}^n \operatorname{Var}(Y_i) = O\left(\frac{m^2}{n\epsilon^2} \operatorname{Var}(Y_i)\right). \tag{2}$$

For each i since $Y_i \in [0,1]$ thus we have

$$Var(Y_i) \leq 1$$

. Thus we have the proof.

2 Problem 2

We first proof it is ϵ -LDP. By the definition of z_i we known that $\Pr(z_i = z) \in [\frac{1}{e^{\epsilon}+1}, \frac{e^{\epsilon}}{e^{\epsilon}+1}]$ for any possible output, no matter what x_i is. Thus we always have $e^{-\epsilon} \leq \frac{\Pr(Y_i = 1 | x_i)}{\Pr(Y_i = 1 | x_i')} \leq e^{\epsilon}$ for any pair of x_i, x_i' .

For unbiaseness, if x = 0, then we can see that $\mathbb{E}[z] = 0$. Otherwise by definition

$$\mathbb{E}[z_i] = \frac{1}{m} \sum_{j=1}^m (0, 0, \dots, \mathbb{E}[z_{i,j}], 0, \dots, 0) = \frac{1}{m} \sum_{j=1}^m (0, 0, \dots, mx_{i,j}, 0, \dots, 0) = x_i.$$

3 Problem 3

I mainly follow the idea in [2]. Consider a fixed distance k, the worst case is that we can change up to k entries in $x_1, ..., x_n$ to 0 or Λ and then change the median value from x_{m-k} to x_{m+k} . Therefore, when the median is an end point of a large empty interval the local sensitivity at distance k is maximized. In order to achieve that, we can modify entries $x_{m-k+1}, \dots, x_{m-1+t}$ for some $t = 0, \dots, k+1$ to 0 or Λ . By the definition of the smooth sensitivity we have

$$A^{(k)}(x) = \max_{y:d(x,y) \le k} LS(y) = \max_{0 \le t \le k+1} (x_{m+t} - x_{m+t-k-1})$$

And, then we have:

$$S_{f,\epsilon}(D) = \max_{k=0,\dots,n} \left(e^{-k\epsilon} \max_{0 \le t \le k+1} (x_{m+t} - x_{m+t-k-1}). \right)$$
 (3)

4 Problem 4

To prove the algorithm is (ϵ, δ) -DP, we know that using the AboveThreshold for finding one query that is larger than c is ϵ' -DP with $\epsilon' = \frac{\epsilon}{2\sqrt{2c\log 2/\delta}}$. Thus, by the composition theorem (Corollary 7.4) we can see that the algorithm is (ϵ, δ) -DP. The same for the ϵ -DP.

Next we focus on the accuracy, first by Theorem 9.2 we know that Abovethreshold is (α, β) -accurate for $\alpha = \frac{8(\log k + \log 2/\beta)}{\epsilon}$. Since Algorithm 2 is c compositions of Abovethreshold. Thus here $\epsilon = \epsilon' = \frac{\epsilon}{2\sqrt{2c\log 2/\delta}}$ and $\beta = \frac{\beta}{c}$ since we need the accuracy holds for each query. Thus, for (ϵ, δ) -DP, Algorithm 2 will be (α, β) -accurate for $\alpha = \frac{16\sqrt{2c\log 2/\delta}(\log k + \log 2c/\beta)}{\epsilon}$. Thus same for ϵ -DP.