Ungleichungen von Kraft & McMillan Proseminar Informationstheorie

Phil Pützstück

November 5, 2018

Seien $q, r \in \mathbb{N}, l \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code C mit Wortlängen l genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

Seien $q, r \in \mathbb{N}, l \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen l genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

Annahmen:

Anzahl Code-Wörter q > 1

Seien $q, r \in \mathbb{N}, l \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen l genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

Annahmen:

- Anzahl Code-Wörter q > 1
- ▶ Wortlängen I aufsteigend sortiert und $I_1 > 0$

Seien $q, r \in \mathbb{N}, l \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen l genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

Annahmen:

- Anzahl Code-Wörter q > 1
- ▶ Wortlängen I aufsteigend sortiert und $I_1 > 0$
- ▶ Code-Alphabet von C ist [0, r-1]

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \leq 1 \implies \mathcal{C}$ existiert".

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte \mathcal{T}_2^3 :

Richtung " $\sum_{k=1}^{q} \frac{1}{r_{k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte \mathcal{T}_2^3 :

Richtung " $\sum_{k=1}^{q} \frac{1}{r_{k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte $\mathcal{T}_2^3:$ $w_1=0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte \mathcal{T}_2^3 : $w_1=0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte $\mathcal{T}_2^3 \setminus v_0$: $w_1=0, w_2=11$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte $\mathcal{T}_2^3 \setminus v_0$: $w_1=0, \ w_2=11$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). Betrachte $(\mathcal{T}_2^3 \setminus v_0) \setminus v_{11}$: $w_1=0, \ w_2=11, \ w_3=101$

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: $\mathcal C$ sofort dekodierbar $\iff \mathcal C$ Präfixcode. Am Beispiel q=3, r=2, l=(1,2,3). $w_1=0, w_2=11, w_3=101$

- q = 3 Wörter über Alphabet $[0, r 1] = [0, 1] = \{0, 1\}.$
- ▶ Wortlängen $|w_1| = I_1$, $|w_2| = I_2$, $|w_3| = I_3$ eingehalten.
- ▶ Präfixcode $C = \{w_1, w_2, w_3\} = \{0, 11, 101\}$ konstruiert.

Sei also i=1. Wähle Knoten v_w der Höhe $l_1>0$ beliebig und setze $w_i=w_1:=w$.

Sei also i=1. Wähle Knoten v_w der Höhe $l_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := I_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_r^h :

Sei also i=1. Wähle Knoten v_w der Höhe $l_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := I_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_1 hat dann noch $r^h - r^{h-l_1}$ Blätter.

 \mathcal{T}_1 hat dann noch $r^h - r^{h-l_1}$ Blätter.

Weiter gilt:

$$r^h - r^{h-l_1} = r^h \left(1 - \sum_{k=1}^1 \frac{1}{r^{l_k}} \right)$$

 \mathcal{T}_1 hat dann noch $r^h - r^{h-l_1}$ Blätter.

Weiter gilt:

$$r^{h} - r^{h-l_{1}} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{l_{k}}} \right)$$

$$> r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{l_{k}}} \right)$$

 \mathcal{T}_1 hat dann noch $r^h - r^{h-l_1}$ Blätter.

Weiter gilt:

$$r^{h} - r^{h-l_{1}} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{l_{k}}} \right)$$

$$> r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{l_{k}}} \right) \ge 0$$

Nun $i \in [1, q-1]$ sodass $\{w_j \mid j \in [1, i]\}$ ein Präfix-Code mit $|w_j| = l_j$ ist, und \mathcal{T}_i noch mindestens 1 Blatt v_x hat.

Nun $i \in [1, q-1]$ sodass $\{w_j \mid j \in [1, i]\}$ ein Präfix-Code mit $|w_j| = l_j$ ist, und \mathcal{T}_i noch mindestens 1 Blatt v_x hat.

- $ightharpoonup \mathcal{T}_i$ zusammenhängend
- ▶ also ex. $v_w \in V(\mathcal{T}_i)$ mit $height(v_w) = I_{i+1} \leq h$
- ightharpoonup Setze $w_{i+1} := w$.

Sei $j \in [1,i]$. Wir haben bereits alle Knoten $v_w \ge v_{w_j}$ im Schritt $\mathcal{T}_j := \mathcal{T}_{j-1} \setminus v_{w_j}$ gelöscht. Da wir $v_{w_{i+1}}$ aus \mathcal{T}_i gewählt haben, kann also **nicht** $v_{w_i} \le v_{w_{i+1}}$ gelten.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. \mathcal{C} bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(l_j \leq l_{i+1}, \text{ also } w_{i+1} \not\sqsubseteq w_j)$.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(I_j \leq I_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i+1=q, so haben wir q Wörter gewählt und sind fertig.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(l_j \le l_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn:

$$\mathcal{T}_i$$
 hat nach Konstruktion $r^h - \sum_{l=1}^i r^{h-l_k}$ Blätter

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(I_j \leq I_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn: \mathcal{T}_{i+1} hat nach Konstruktion also:

$$r^h - \sum_{k=1}^{i+1} r^{h-l_k}$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(I_j \leq I_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn: \mathcal{T}_{i+1} hat nach Konstruktion also:

$$r^h - \sum_{k=1}^{r+1} r^{h-l_k} > r^h - \sum_{k=1}^{q} r^{h-l_k}$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(l_j \leq l_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn: \mathcal{T}_{i+1} hat nach Konstruktion also:

$$r^{h} - \sum_{k=1}^{l+1} r^{h-l_{k}} > r^{h} - \sum_{k=1}^{q} r^{h-l_{k}} = r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{l_{k}}} \right)$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. \mathcal{C} bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(l_j \leq l_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn: \mathcal{T}_{i+1} hat nach Konstruktion also:

$$r^{h} - \sum_{k=1}^{i+1} r^{h-l_k} > r^{h} - \sum_{k=1}^{q} r^{h-l_k} = r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{l_k}} \right) \ge 0$$

Blätter.

Somit Präfixcode $\mathcal C$ nach dieser Methode konstruierbar. Dieser ist nach [JJ00] auch sofort dekodierbar.

Nun zeigen wir, dass wenn $\mathcal C$ sofort dekodierbar, also ein Präfix-Code ist, auch die Ungleichung gelten muss.

Nun zeigen wir, dass wenn C sofort dekodierbar, also ein Präfix-Code ist, auch die Ungleichung gelten muss. Betrachte für $i \in [1, q]$ die Menge der Blätter unter v_{w_i} :

$$L_i := \{ v \in V(\mathcal{T}_r^h) \mid v_{w_i} \leq v \land height(v) = h \}$$

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$, denn:

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$, denn:

Sei o.E. $i < j, v_w \in L_i \cap L_j$, also v_w gleichzeitig Blatt unter v_{w_i}, v_{w_j} .

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$, denn:

Sei o.E. $i < j, v_w \in L_i \cap L_j$, also v_w gleichzeitig Blatt unter v_{w_i}, v_{w_j} . Dann gilt:

$$v_{w_i} \leq v_w \wedge v_{w_j} \leq v_w$$

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_i = \emptyset$, denn:

Sei o.E. $i < j, v_w \in L_i \cap L_j$, also v_w gleichzeitig Blatt unter v_{w_i}, v_{w_j} . Dann gilt:

$$v_{w_i} \leq v_w \wedge v_{w_j} \leq v_w \implies w_i \sqsubseteq w \wedge w_j \sqsubseteq w$$

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_i = \emptyset$, denn:

Sei o.E. $i < j, v_w \in L_i \cap L_j$, also v_w gleichzeitig Blatt unter v_{w_i}, v_{w_j} . Dann gilt:

$$v_{w_i} \leq v_w \wedge v_{w_j} \leq v_w \implies w_i \sqsubseteq w \wedge w_j \sqsubseteq w \implies w_i \sqsubseteq w_j$$

Widerpruch, denn $w_i, w_j \in \mathcal{C}$ und \mathcal{C} ist Präfix-Code!

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Für $i, j \in [1, q]$ mit $i \neq j$ ist $L_i \cap L_j = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Für
$$i, j \in [1, q]$$
 mit $i \neq j$ ist $L_i \cap L_j = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Damit haben wir nun:

$$r^h \ge \left| \bigcup_{i \in [1,q]} L_i \right|$$

Für
$$i, j \in [1, q]$$
 mit $i \neq j$ ist $L_i \cap L_j = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Damit haben wir nun:

$$r^h \ge \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i|$$

Für
$$i, j \in [1, q]$$
 mit $i \neq j$ ist $L_i \cap L_i = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Damit haben wir nun:

$$r^h \ge \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-l_i} = r^h \sum_{i=1}^q \frac{1}{r^{l_i}}$$

Für
$$i, j \in [1, q]$$
 mit $i \neq j$ ist $L_i \cap L_i = \emptyset$

Weiter hat \mathcal{T}_r^h nur r^h Blätter, und $|L_i| = r^{h-l_i}$.

Damit haben wir nun:

$$r^h \ge \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-l_i} = r^h \sum_{i=1}^q \frac{1}{r^{l_i}}$$
 $\iff \sum_{i=1}^q \frac{1}{r^{l_i}} \le 1$

Dies war zu zeigen.

Review of Kraft or smth.

Wir haben also gezeigt:

Seien $q, r \in \mathbb{N}, l \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen l genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

Wissen nun, wie so ein Code erstellt werden kann