Tema 5: Teoría Semántica

Lógica

Grado en Ingeniería Informática 2018/19

uc3m

Teoría Semántica en cálculo proposicional

Introducción

- Utiliza la simbolización vista hasta el momento
- La diferencia principal es que el sistema de fórmulas y estructuras deductivas válidas no se construye a partir de los axiomas y reglas sino mediante una simbolización del significado de las proposiciones

Introducción

- Para esto, se necesita
 - Un conjunto de significados atribuibles a las proposiciones {V,F} o {1,0}
 - Definición semántica de las conectivas (tablas de verdad)
 - Una definición semántica de deducción correcta

Tablas de verdad

• Definición de conectivas

p	~p
V	F
F	V

p	q	$p \wedge q$
V	V	V
v	F	F
F	V	F
F	F	F

p	q	$p \vee q$
V	V	V
V	F	V
F	V	V
F	F	F

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Tablas de verdad

• El número de interpretaciones (filas) es 2^n , donde n es el número de proposiciones que intervienen en la fórmula.

Interpretaciones para 3 proposiciones

-		-		- 1	
		р	q	r	
7	*	1	1	1	Γ
6	\sim	1	1	0	
5	\sim	1	0	1	
4	\sim	1	0	0	
3	\sim	0	1	1	
2	\sim	0	1	0	
1	\sim	0	0	1	
0	\sim	0	0	0	

Evaluación de Fórmulas

- Es posible construir la tabla de significado de cualquier fórmula a partir de las correspondientes fórmulas parciales que la integran
- **Interpretación:** asignación de significados a sus componentes básicas (una línea de la tabla de verdad)
 - Modelo: interpretación que hace cierta una fórmula
 - Contramodelo (contraejemplo):
 interpretación que hace falsa la fórmula

Equivalencia

Considere las formulas que siguen:

$$p \wedge q \sim (\sim p \vee \sim q) \sim (p \rightarrow \sim q) \sim (q \rightarrow \sim p)$$

- Si se construyen las tablas de verdad, se puede verificar que se obtienen columnas finales idénticas.
- Cuando se obtienen los mismos resultados para cualquier interpretación (fila) estamos ante un caso de *equivalencia lógica*

Evaluación de Fórmulas

- De acuerdo con el resultado de las interpretaciones, las fórmulas pueden clasificarse en:
 - Tautología: siempre es verdad (|=)
 - Contradicción: siempre es falsa
 - Contingencia: valores distintos (ninguna de las anteriores)
- Una fórmula que tiene al menos un modelo es satisfacible (al menos una línea en la que todas las fórmulas son válidas).
- Una fórmula sin contraejemplos es semánticamente válida.

Evaluación de Fórmulas

2 ³ interpretaciones			Fórmula 1	Fórmula 2	Fórmula 3	
p = q = r		-	$(p \wedge q) \wedge \neg (q \vee r)$	$(p \wedge q) \rightarrow (q \wedge r)$	$(p \wedge q) \rightarrow (q \vee r)$	
	1	1	1	.0	1	1
	1	1	0	0	0	1
	1	0	1	0	1	1
	1	0	0	0	1	1
	0	1	1	0	Ť	1
	0	1	0	0	1	1
	0	0	1	0	1	1
	0	0	.0	0	1	1

- F1 es insatisfacible (contradicción) (tautología negada)
- F2 es satisfacible
- F3 es una tautología (semánticamente válida)

Evaluación de Fórmulas

• Ejemplos: tautologías

р	$p \rightarrow p$,							
1	1	р	q	$q\top$	p → (q →	р)			
0	1	1	1	1	1				
		1	0	1	1	р	q	~p → q	p → (~p → q)
		0	1	0	1	1	1	1	1
		0	0	1	1	1	0	1	1
						0	1	1	1
						0	0	0	1

Evaluación de Fórmulas

• Ejemplos: contradicciones y contingencia

Deducción Correcta

- Dada una estructura deductiva
 p₁,p₂,p₃,...,pn⇒q se define como correcta
 cuando no existe una interpretación que haga
 p₁,p₂,p₃,...,pn verdadero y q falso.
- Para comprobar que una estructura deductiva es incorrecta, basta con encontrar una interpretación que no cumpla la regla anterior.

Deducción Correcta

Ejemplo: Modus Ponens: A, A \rightarrow B \Rightarrow B

A	$A \rightarrow B$	В
V	V	V
V	F	F
F	V	V
F	V	F

No hay ninguna interpretación donde las premisas sean V y la conclusión F.

Por tanto, la deducción es correcta

Deducción Correcta

• **Ejemplo:** $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

_	A	В	C	$A \rightarrow B$	$B \rightarrow C$	A→C
	1	1	1	1	1	→ 1
	1	1	0	1	0	0
	1	0	1	0	1	1
	1	0	0	0	1	0
-						
	0	1	1	1	1	→ 1
	0	1	0	1	0	1
	0	0	1	1	1	→ 1
	0	0	0	1	1	→ 1

Deducción incorrecta

• **Ejemplo:** $A \rightarrow B, B \rightarrow C \Rightarrow C \rightarrow A$

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

A	В	C	$A \rightarrow B$	$B \rightarrow C$	C→A
1	1	1	1	1	1
1	1	0	1	0	1
1	0	1	0	1	1
1	0	0	0	1	1
0 0 0 0	1 1 0 0	1 0 1 0	1 1 1	0 1 1	0 1 0 1

Teorema de la Deducción

• Es demostrable mediante la definición semántica de deducción

Si

$$p_1,p_2,p_3,...,p_n \Rightarrow q$$

Es una deducción correcta

$$p_1, p_2, ..., p_{n-1} \Rightarrow p_n \rightarrow q$$

También es una deducción correcta

Tautologías asociadas una Deducción

 Si p₁,p₂,p₃,...,pn⇒q es una deducción semánticamente correcta, entonces

$$\models p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow ... (p_n \rightarrow q)...)$$
 es una tautología

 Si p₁,p₂,p₃,...,pn⇒q es una deducción semánticamente correcta, entonces

$$\models \mathbf{p_1} \land \mathbf{p_2} \land \mathbf{p_3} \land \dots \land \mathbf{p_n} \rightarrow \mathbf{q}$$
 es una tautología

• Las fórmulas asociadas son equivalentes

Tautologías asociadas una Deducción

- Dos ideas importantes:
 - Mediante la TS podemos comprobar si una deducción es correcta, pero no demostrar dicha corrección.
 - Si una deducción es correcta, la fórmula asociada es una tautología. Lo recíproco también es cierto.

- Frente a los sistemas axiomáticos, TS permite definir un procedimiento *sistemático* para comprobar si una deducción es correcta o si una fórmula es semánticamente válida.
- Dos métodos principales
 - Directo
 - · Construcción de una tabla de verdad completa
 - Problemático si hay muchas interpretaciones
 - Contraejemplo
 - · Búsqueda de una interpretación específica

Comprobación de Deducciones

- Procedimiento contraejemplo
 - Construir una fórmula asociada
 - Generar interpretaciones y calcular significados para la fórmula
 - Buscando algún significado falso (contraejemplo)
- Alternativa: operar de forma análoga con una deducción completa buscando una interpretación tal que
 - · Todas las premisas sean verdaderas
 - Conclusión falsa

$$(\sim A \vee \sim B) \Rightarrow \sim (A \wedge B)$$
 Fórmula asociada: $(\sim A \vee \sim B) \Rightarrow \sim (A \wedge B)$

Método directo

A	В	~A	~B	A A B	~A ∨ ~B	$\sim (A \wedge B)$	$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$
V	V	F	F	V	F	F	V
V	F	F	V	F	V	V	V
F	V	V	F	F	V	V	V
F	F	V	V	F	V	V	V

La formula asociada es una tautología (no hay contraejemplos), entonces la deducción es correcta.

Comprobación de Deducciones

$$(\sim A \vee \sim B) \Rightarrow \sim (A \wedge B)$$

Fórmula asociada:

$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

Método del contraejemplo

• 1.
$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

• 2.
$$(\sim A \lor \sim B) \rightarrow \sim (A \land B)$$
Verdad

Verdad

• 3.(
$$\sim$$
A \vee \sim B) \rightarrow \sim (A \wedge B)

$$({\tilde{A}}\vee {\tilde{B}}) \to {\overset{\sim}{(A}}\wedge B)$$

$$(\sim A \lor \sim B) \rightarrow \sim (A \land B)$$

A=F, B=V, entonces \sim (A \wedge B) es V A=V, B=F, entonces \sim (A \wedge B) es V ^1 A=F B=F, entonces \sim (A \wedge B) es V

La implicación no puede ser falsa, no hay contraejemplos, por lo que deducción es correcta.

$$(\sim A \vee \sim B) \rightarrow \sim (A \wedge B)$$

Método del contraejemplo. Otra representación

Valores copiados ____

Condiciones

No hay un contraejemplo. La deducción es correcta

Comprobación de Deducciones

 $p \lor q, q \to r, p \to s \Longrightarrow s$ Método directo

р	q	r	s	p∨q	$\mathbf{q} ightarrow \mathbf{r}$	$\mathbf{p} \rightarrow \mathbf{s}$
0	0	0	0	0	1	1
0	0	0	1	0	1	1
0	0	1	0	0	1	1
0	0	1	1	0	1	1
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	0
1	0	0	1	1	1	1
1	0	1	0	1	1	0
1	0	1	1	1	1	1
1	1	О	0	1	0	0
1	1	О	1	1	0	1
1	1	1	0	1	0	0
1	1	1	1	1	0	1

Existe una interpretación en

la que las premisas con V y la conclusión F Deducción no correcta

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Una interpretación es un contraejemplo si: premisas V y conclusión F

O Existe una interpretación que hace premisas V y conclusión F (contraejemplo): p=0, q=1, r=1, s=0 Deducción incorrecta

Comprobación de Deducciones

• Analizamos la corrección de la deducción estudiando si la fórmula asociada es una tautología.

$$[p \rightarrow (q \lor r)] , (r \leftrightarrow s) , t \Rightarrow (p \rightarrow q)$$

$$([p \rightarrow (q \lor r)] \land (r \leftrightarrow s) \land t) \rightarrow (p \rightarrow q)$$

$$1 \qquad 1 \qquad 1 \qquad 1 \qquad 0 \qquad 0$$

Intentamos identificar una interpretación para la cual el consecuente sea F, y el antecedente V. Para esto, p tiene que ser V q tiene que ser F. Para que el segmento proveniente de la primera premisa sea V, r tiene que ser V. Esto supone que s también deberá ser V. Si t fuese v, entonces todo el antecedente sería V, con lo que queda claro que existe un contraejemplo y NO ES UNA TAUTOLOGÍA

Refutación

- Otra vía potencial fundamentada en la misma idea que la del contraejemplo
- Negamos la conclusión, la unimos a las premisas y vemos si el conjunto resultante es satisfacible

$$p_1, p_2, p_3, ...p_n \Rightarrow \mathbf{q}$$

$$p_1^p_2^p_3^ ...^p_n^{\sim} \mathbf{q}$$

• La deducción es correcta si y sólo si la segunda expresión es insatisfacible.

Propiedades Formales de Cálculo Prop.

- El sistema formal de cálculo proposicional tiene como propiedades:
 - Consistencia: no es demostrable una fórmula y su negación
 - Completitud: toda fórmula válida es demostrable.
 - Decidibilidad: existe un procedimiento efectivo de comprobar si una fórmula es válida.

Teorema de Post: $\mid B$ es demostrable $\leftrightarrow \mid B$

