1 剰余の定理

P(a) を a に関する多項式とする

$$P(a)=(a-k)Q(a)+R$$
 $\qquad \qquad (P(a)\ \&\ (a-k)\$ で割る)
ここで、 $a=k\ \&$ 代入すると
$$P(k)=(k-k)Q(k)+R$$

$$P(k)=R=0$$
 よって $P(a)=(a-k)Q(a)+P(k)$ つまり $P(k)=0\Leftrightarrow P(a)\ \&\ (a-k)$ で割り切れる。

具体例

$$P(a)=a^n-b^n$$
 とすると、 $P(b)=b^n-b^n=0$ なので、 $(a-b)$ は a^n-b^n を割り切れる 実際に、 $a^n-b^n=(a-b)(\sum_{k=0}^{n-1}a^{n-1-k}b^k)$ $n=3$ のとき、 $a^3-b^3=(a-b)(a^2+ab+b^2)$

2 $-1 \times -1 = 1$ の証明

$$-1+1=0 \qquad \qquad (マイナスの定義 $-a+a=0)$
$$-1\times (-1+1)=-1\times 0 \qquad \qquad (-1\ をかける)$$

$$(-1)\times (-1)+(-1)\times 1=0 \qquad \qquad (分配法則と、 $a\times 0=0)$
$$(-1)\times (-1)+(-1)=0 \qquad \qquad (a\times 1=a)$$
 (両辺に $1\$ を足す)$$$$