Spatial Analysis and Modeling (GIST 4302/5302)

Guofeng Cao
Department of Geosciences
Texas Tech University

Outline of This Week

- Last week, we learned:
 - Spatial autocorrelation of areal data
 - Moran's I, Geary's C, Getis-Ord General G
 - Anselin's LISA
- This week, we will learn:
 - Regression
 - Spatial regression

From Correlation to Regression

Correlation

- <u>Co-</u>variation
- Relationship or association
- No direction or causation is implied

Regression

- Prediction of Y from X
- Implies, but does not prove, causation
- X (independent variable)
- Y (dependent variable)

Correlation Coefficient (r)

- One of the most common statistic
- measures the <u>strength of the relationship</u> (or "association") between <u>two</u> variables e.g. income and education
- Full name: Pearson product-moment correlation coefficient
- Varies on a scale from -1 thru 0 to +1

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Regression

• Simple regression

- Between two variables
 - One dependent variable (Y)
 - One independent variable (X)

$$Y = aX + b + \varepsilon$$

• Multiple Regression

- Between three or more variables
 - One dependent variable (Y)
 - Two or independent variable $(X_1, X_2...)$

$$Y = b_1 X_1 + b_2 X_2 + \dots + b_0 + \varepsilon$$

Simple Linear Regression

• Concerned with "predicting" one variable (Y - the dependent variable) from another variable (X - the independent variable)

$$Y = aX + b + \varepsilon$$

 $Y_i \sim \text{observations}$
 $\hat{Y}_i \sim predictions$
 $\varepsilon_i = Y_i - \hat{Y}_i$

How to Find the line of the Best Fit

- Ordinary Least Square (OLS) is the mostly common used procedure
- This procedure evaluates the difference (or error) between each observed value and the corresponding value on the line of best fit.
- This procedure finds a line that minimizes the sum of the squared errors.

Evaluating the Goodness of Fit: Coefficient of Determination (r²)

- The coefficient of determination (r²) measures the proportion of the variance in Y (the dependent variable) which can be predicted or "explained by" X (the independent variable). Varies from 1 to 0.
- It equals the correlation coefficient (r) squared.

$$r^{2} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (\hat{Y}_{i} - \overline{Y})^{2}}$$
 SS Regression or Explained Sum of Squares SS Total or Total Sum of Squares

Note:
$$\sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad SS \text{ Regression or} \qquad SS \text{ Residual or} \qquad SS \text{ Residual or} \qquad Explained Sum of} \qquad Squares \qquad Squares \qquad Squares$$

Partitioning the Variance on Y

$$\sum_{\substack{\uparrow \text{SS Total}}} (Y_i - \overline{Y})^2 = \sum_{\substack{\uparrow \text{SS Regression}}} (\hat{Y}_i - \overline{Y})^2 + \sum_{\substack{\uparrow \text{SS Residual}}} (Y_i - \hat{Y}_i)^2$$

or Total Sum of Squares

SS Regression or Explained Sum of Squares

$$r^{2} = \frac{\sum_{i} (\hat{Y}_{i} - \overline{Y}_{i})^{2}}{\sum_{i} (Y_{i} - \overline{Y}_{i})^{2}}$$

Standard Error of the Estimate

Measures *predictive accuracy*: the bigger the standard error, the greater the spread of the observations about the regression line, thus the predictions are less accurate

- σ = error mean square, or average squared residual = variance of the estimate, variance about regression

$$\sigma = \sqrt{\frac{\sum_{i} (Y_{i} - \hat{Y}_{i})^{2}}{n - k}}$$
 Sum of squared residuals

Number of observations minus degrees of freedom

(for simple regression, degrees of freedom = 2)

(for simple regression, degrees of freedom = 2)

Sample Statistics, Population Parameters and Statistical Significance tests

$$Y = aX + b + \varepsilon$$
 $Y = \alpha + \beta X + \varepsilon$

- a and b are *sample statistics* which are estimates of *population parameters* α and β
- β (and b) measure the change in Y for a one unit change in X. If $\beta = 0$ then X has no effect on Y
- Significant test
 - Test whether X has a statistically significant affect on Y
 - Null Hypothesis (H_0): in the population $\beta = 0$
 - Alternative Hypothesis (H₁): in the population $\beta \neq 0$

Test Statistics in Simple Regression

• Student's t test, similar to normal, but with heavier tails

$$t = \frac{b}{\text{SE(b)}} = \frac{b}{\sqrt{\frac{\sigma_e^2}{\sum_i (X - \overline{X})^2}}}$$

 $t = \frac{b}{\text{SE(b)}} = \frac{b}{\sqrt{\frac{\sigma_e^2}{\sum (X - \overline{X})^2}}} \quad \text{where } \sigma_e^2 \text{ is the variance of the estimate,}$ with degrees of freedom = n - 2

• F-test, A test can also be conducted on the *coefficient of* determination (r²) to test if it is significantly greater than zero, using the F frequency distribution.

$$F = \frac{\text{Regression S.S./d.f.}}{\text{Residual S.S./d.f.}} = \frac{\sum_{i} (\hat{Y}_{i} - \overline{Y})^{2} / 1}{\sum_{i} (Y_{i} - \hat{Y}_{i})^{2} / n - 2}$$

Mathematically identical to each other

Multiple regression

 Multiple regression: Y is predicted from 2 or more independent variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_m X_m + \varepsilon$$

- β_0 is the *intercept*—the value of Y when values of <u>all</u> $X_j = 0$
- $\beta_1...\beta_m$ are <u>partial</u> regression coefficients which give the change in Y for a one unit change in X_j , all other X variables held constant
- *m* is the number of independent variables

How to Decide the Best Multiple Regression Hyperplane?

• Least square - Same as in the simple regression case

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m + \varepsilon$$
or $Y_i = \sum_{j=0}^m X_{ij} \beta_j + \varepsilon_i$ (actual Y_i).
$$\hat{Y}_i = \sum_{j=0}^m X_{ij} b_j \text{ predicted values for } Y \text{ (regression hyperplane)}) = \text{residuals } \xi$$

$$e_i = Y_i - \sum_{j=0}^m X_{ij} b_j = (Y_i - \hat{Y}_i) = (\text{Actual } Y_i - \text{Predicted } \{\hat{Y}_i\} + \sum_{j=0}^m (Y_i - \hat{Y}_j)^2$$

$$\text{Min } \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

Evaluating the Goodness of Fit:

Coefficient of Multiple Determination (R²)

• Similar to simple regression, the coefficient of multiple determination (R²) measures the proportion of the variance in Y (the dependent variable) which can be predicted or "explained by" all of X variables in combination.

Varies from 0 to 1.

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

SS Regression or Explained Sum of Squares

Formulae identical to simple regression

SS Total or Total Sum of Squares

17

As with simple regression

$$\sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad SS \text{ Total or} \qquad SS \text{ Regression or} \qquad + SS \text{ Residual or} \qquad Explained Sum of} \qquad Squares$$

$$\downarrow \qquad \uparrow \qquad SS \text{ Residual or} \qquad SQuares$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad SS \text{ Residual or} \qquad SQuares$$

Reduced or Adjusted \overline{R}^2

- R² will <u>always</u> increase each time another independent variable is included
 - an additional dimension is available for fitting the regression *hyperplane* (the multiple regression equivalent of the regression line)
- Adjusted \overline{R}^2 is normally used instead of R^2 in multiple regression

$$\overline{R}^2 = 1 - (1 - R^2)(\frac{n-1}{n-k})$$

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept.

Interpreting partial regression coefficients

- The regression coefficients (b_j) tell us the change in Y for a 1 unit change in X_j , all other X variables "held constant"
- Can we compare these b_j values to tell us the relative importance of the independent variables in affecting the dependent variable?
 - If $b_1 = 2$ and $b_2 = 4$, is the affect of X_2 twice as big as the affect of X_1 ?
 - NO!
- The size of b_j depends on the <u>measurement scale</u> used for each independent variable
 - if X_1 is income, then a 1 unit change is \$1
 - but if X_2 is rmb or Euro(€) or even cents (ℂ) 1 unit is <u>not</u> the same!
 - And if X_2 is % population urban, 1 unit is very different
- Regression coefficients are <u>only</u> directly comparable if the <u>units are</u> all the same: all \$ for example

Standardized partial regression coefficients

- How do we compare the relative importance of independent variables?
- We know we cannot use partial regression coefficients to directly compare independent variables <u>unless</u> they are <u>all</u> measured on the same scale
- However, we can use <u>standardized</u> partial regression coefficients (also called *beta weights*, *beta coefficients*, or *path coefficients*).
- They tell us the number of standard deviation (SD) unit changes in Y for a one SD change in X)
- They are the partial regression coefficients <u>if</u> we had measured <u>every</u> variable in *standardized form*

$$eta_{YX_j}^{std} = b_j (rac{S_{X_j}}{S_Y})$$

Test Statistics in Multiple Regression:

- Similar as in the simple regression case, but for each independent variable
- The student's test can be conducted for <u>each</u> partial regression coefficient b_j to test if the associated independent variable influences the dependent variable.
 - Null Hypothesis $H_o: b_i = 0$

$$t = \frac{b_j}{\text{SE}(b_j)}$$

with degrees of freedom = n - k, where k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept (m+1).

The formula for calculating the standard error (SE) of b_j is more complex than for simple regression, so it is not shown here.

Test Statistics in Mutiple Regression testing the <u>overall</u> model

- We test the *coefficient of multiple determination* (\mathbb{R}^2) to see if it is significantly greater than zero, using the F frequency distribution.
- It is an <u>overall</u> test to see if at <u>least one</u> independent variable, or two or more in combination, affect the dependent variable.
- Does <u>not</u> test if <u>each and every</u> independent variable has an effect

$$F = \frac{\text{Regression S.S./d.f.}}{\text{Residual S.S./d.f.}} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 / k - 1}{\sum_{i=1}^{n} (\hat{Y}_i - \hat{Y}_i)^2 / n - k}$$

Again, k is the number of coefficients in the regression equation, normally equal to the number of variables (m) plus 1.

- Similar to the F test in simple regression.
 - But unlike simple regression, it is <u>not</u> identical to the t tests.
- It is possible (but unusual) for the F test to be significant but all t tests not significant.

Model/Variable Selection

- Model selection is usually an iterative process
- \mathbb{R}^2 nor Adjusted \overline{R}^2
- P-value of coefficient
- Maximum likelihood
- Akaike Information Criteria (AIC)
 - the <u>smaller</u> the AIC value the <u>better</u> the model

$$AIC = 2k + n[ln(Residual Sum of Squares)]$$

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept term.

Regression in GeoDa

Procedures for Regression

- Diagnostic
 - Outlier
 - Constant variance
 - Normality
- Transformation
 - Transforming the response
 - Transforming the predictors
- Scale Change, principal component and collinearity, and auto/cross-correlation
- Variable selection
 - Step-wise procedures
- Model fit and analysis

Always look at your data Statistics might lie

Anscombe, Francis J. (1973). "Graphs in statistical analysis". *The American Statistician* **27**: 17–21.

Source: Brigs UT Dallas

Spurious relationships

Ice Cream sales related to Drownings

- *Omitted variable* problem
 - --both are related to a <u>third variable</u> not included in the analysis

Source: Briggs UT Dallas

Linear Regression does not prove causal effects!

- States with higher incomes can afford to spend more on education, so illiteracy is lower
 - Higher Income -> Less Illiteracy
- The higher the level of literacy (and thus the lower the level of <u>il</u>literacy) the more high income jobs.
 - Less Illiteracy -> Higher Income
- Regression will not decide!

Income

Illiteracy

Mark Monmonier How to Lie with Maps

Second Edition

With a new Foreword by H. J. de Blij

Spatial Regression

Spatial Autocorrelation vs Correlation

Spatial Autocorrelation:

shows the association or relationship between the same variable in "nearby" areas.

Moran's I: 0.633954

Standard Correlation

shows the association or relationship between two different variables

Consequences of Ignoring Spatial Autocorrelation

- correlation coefficients and coefficients of determination appear <u>bigger</u> than they really are
 - You think the relationship is stronger than it really is
 - the variables in nearby areas affect each other
- Standard errors appear <u>smaller</u> than they really are
 - exaggerated precision
 - You think your predictions are better than they really are since standard errors measure *predictive accuracy*
 - More likely to conclude relationship is *statistically significant*.

Diagnostic of Spatial Dependence

For correlation

- calculate Moran's I for each variable and test its statistical significance
- If Moran's I is significant, you may have a problem!

• For regression

- calculate the residualsmap the residuals: do you see any spatial patterns?
- Calculate Moran's I for the residuals: is it statistically significant?

When (spatial) correlation happens

- Try to think of <u>omitted variables</u> and include them in a multiple regression.
 - Missing (omitted) variables may cause spatial autocorrelation
- Regression assumes <u>all</u> relevant variables influencing the dependent variable are included
 - If relevant variables are missing, model is *misspecified*

Spatial Regression Methods

- Spatial Econometrics Approaches
 - Lag model
 - Error model
- Spatial Statistics Approaches
 - Simultaneous Autoregressive Models (SAR)
 - A more general case of Spatial Econometrics
 - Conditional Autoregressive Models (CAR)
- Other methods:
 - Generalized linear model with mixed effects
 - Generalized additive model
 - Generalized Estimating Equations

37

Spatial Econometrics Approaches

Spatial lag model

$$Y = \beta_0 + (\lambda WY) + X\beta + \varepsilon$$

values of the <u>dependent variable</u> in neighboring locations (WY) are included as an extra explanatory variable

• these are the "spatial lag" of Y

Spatial error model

$$Y = \beta_0 + X\beta + \rho W\varepsilon + \xi$$

 ξ is "white noise"

values of the <u>residuals</u> in neighboring locations ($W\varepsilon$) are included as an extra term in the equation;

• these are "spatial error"

Spatial Lag and Spatial Error Models: conceptual comparison

Ordinary Least Squares

X_j X_i Y_j Y_j Y_i Y_i

OLS

No influence from neighbors

SPATIAL LAG

Dependent variable influenced by neighbors

SPATIAL ERROR

Residuals influenced by neighbors

Baller, R., L. Anselin, S. Messner, G. Deane and D. Hawkins. 2001. Structural covariates of US County homicide rates: incorporating spatial effects,. Criminology, 39, 561-590

Source: Briggs UT Dallas

Spatial Lag Model

- Incorporates spatial effects by including a spatially lagged dependent variable as an additional predictor
- Outcome is dependent on the outcome for neighbors
- The 'spatially lagged' or 'average neighbouring' Wy is correlated with the unobserved error term, thus the model leads to biased and inefficient coefficients if using OLS

Spatial Error Model

- Incorporates spatial effects through error term
- Unobserved factors in neighboring locations are correlated
- With spatial error violate the assumption that error terms are uncorrelated and coefficients are inefficient if using OLS

Lag or Error Model: Which to use?

- **Lag** model primarily controls spatial autocorrelation in the <u>dependent</u> variable
- Error model controls spatial autocorrelation in the <u>residuals</u>, thus it controls autocorrelation in <u>both</u> the dependent <u>and</u> the independent variables
- Conclusion: the <u>error model</u> is more robust and generally the better choice.
- Statistical tests called the LM Robust test can also be used to select
 - Will <u>not</u> discuss these

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION Data set : bostonpolygon Dependent Variable : CMEDV Number of Observations: 506
Mean dependent var : 22.5289 Number of Variables : 2
S.D. dependent var : 9.1731 Degrees of Freedom : 504 R-squared : 0.184299 F-statistic : 113.873
Adjusted R-squared : 0.182680 Prob(F-statistic) : 4.16755e-024
Sum squared residual: 34730.7 Log likelihood : -1787.88
Sigma-square : 68.9102 Akaike info criterion : 3579.76
S.E. of regression : 8.30121 Schwarz criterion : 3588.21
Sigma-square ML : 68.6378
S.E of regression ML: 8.28479 Variable Coefficient Std.Error t-Statistic Probability CONSTANT 41.39839 1.806375 22.91793 0.0000000 NOX -34.01786 3.187837 -10.67114 0.0000000 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITION NUMBER 9.686514 TEST ON NORMALITY OF ERRORS TEST DF VALUE PROB Jarque-Bera 2 443.2973 0.0000000 DIAGNOSTICS FOR HETEROSKEDASTICITY RANDOM COEFFICIENTS TEST DF VALUE PROB
Breusch-Pagan test 1 1.131862 0.2873785
Koenker-Bassett test 1 0.4377741 0.5081988 SPECIFICATION ROBUST TEST DF VALUE PROB 2 6.069546 0.0480856 TEST White DIAGNOSTICS FOR SPATIAL DEPENDENCE FOR WEIGHT MATRIX : boston2.5.qwt (row-standardized weights)

 (row-standardized weights)

 TEST
 MI/DF
 VALUE
 PROB

 Moran's I (error)
 0.195775
 15.2444755
 0.0000000

 Lagrange Multiplier (lag)
 1
 127.4022649
 0.0000000

 Robust LM (lag)
 1
 1.7548967
 0.1852623

 Lagrange Multiplier (error)
 1
 207.8469315
 0.0000000

 Robust LM (error)
 1
 82.1995633
 0.0000000

 Lagrange Multiplier (SARMA)
 2
 209.6018282
 0.00000000

Model Fitting

Maximum likelihood estimation

$$\varepsilon = Y - (\beta_0 + \lambda WY + X\beta)$$

- ε are assumed to be normally distributed
- Likelihood distribution of ε can be derived
- *I-λW must be invertible matrix (non-singular)*

Model/Variable Selection

- Which model best predicts the dependent variable?
- Neither R² nor Adjusted can be used to compare different spatial Regression models
- We use Akaike Information Criteria (AIC)
 - the <u>smaller</u> the AIC value the <u>better</u> the model

AIC = 2k + n[ln(Residual Sum of Squares)]

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept term. Note: can <u>only</u> be used to compare models with the <u>same</u> dependent variable

• End of this topic