Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-110 Απειροστικός Λογισμός Ι Διδάσκων: Θ. Μουχτάρης Λύσεις Πρώτης Σειράς Ασκήσεων

Άσκηση 1^η

a)
$$\lim_{x \to \infty} \frac{2x+3}{5x+7} = \lim_{x \to \infty} \frac{2+\frac{3}{x}}{5+\frac{2}{x}} = \frac{2}{5}$$

b)

$$\lim_{x \to \infty} \frac{x+1}{x^2+3} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{1}{x^2}}{1 + \frac{3}{x^2}} = 0$$

c)

Όπως οι παραπάνω, αποτέλεσμα -12

d)
$$\lim_{x \to \infty} \frac{7x^3}{x^3 - 3x^2 + 6x} = \lim_{x \to \infty} \frac{7}{1 - \frac{3}{x} + \frac{6}{x^2}} = 7$$

e)

$$\lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}} = \lim_{x \to \infty} \frac{1 - x^{(1/5) - (1/3)}}{1 + x^{(1/5) - (1/3)}} = \lim_{x \to \infty} \frac{1 - \left(\frac{1}{x^{2/15}}\right)}{1 + \left(\frac{1}{x^{2/15}}\right)} = 1$$

f)

$$\lim_{x \to \infty} \frac{x^{-1} + x^{-4}}{x^{-2} - x^{-3}} = \lim_{x \to \infty} \frac{x + \frac{1}{x^2}}{1 - \frac{1}{y}} = \infty$$

g)

$$\lim_{x \to \infty} \ \frac{2x^{5/3} - x^{1/3} + 7}{x^{8/5} + 3x + \sqrt{x}} = \lim_{x \to \infty} \ \frac{2x^{1/15} - \frac{1}{x^{19/15}} + \frac{7}{x^{8/5}}}{1 + \frac{3}{x^{3/5}} + \frac{1}{x^{11/10}}} = \infty$$

h)

$$\lim_{x \to \infty} \frac{\sqrt[3]{x - 5x + 3}}{2x + x^{2/3} - 4} = \lim_{x \to \infty} \frac{\frac{1}{x^{2/3}} - 5 + \frac{3}{x}}{2 + \frac{1}{x^{1/3}} - \frac{4}{x}} = -\frac{5}{2}$$

i)

$$\lim_{x \to \pi} \sin(x - \sin x) = \sin(\pi - \sin \pi) = \sin(\pi - 0) = \sin \pi = 0,$$

and function continuous at $x = \pi$.

j)
$$\lim_{t\to 0} \sin\left(\frac{\pi}{2}\cos(\tan t)\right) = \sin\left(\frac{\pi}{2}\cos(\tan(0))\right) = \sin\left(\frac{\pi}{2}\cos(0)\right) = \sin\left(\frac{\pi}{2}\right) = 1,$$
, and function continuous at $t=0$.
k)
$$\lim_{y\to 1} \sec\left(y\sec^2y - \tan^2y - 1\right) = \lim_{y\to 1} \sec\left(y\sec^2y - \sec^2y\right) =$$

$$\lim_{y\to 1} \sec\left((y-1)\sec^2y\right) = \sec\left((1-1)\sec^21\right)$$

$$= \sec\left(0 = 1, \text{ and function continuous at } y = 1.$$
l)
$$\lim_{x\to 0} \tan\left[\frac{\pi}{4}\cos\left(\sin x^{1/3}\right)\right] = \tan\left[\frac{\pi}{4}\cos\left(\sin(0)\right)\right] = \tan\left(\frac{\pi}{4}\cos\left(0\right)\right) = \tan\left(\frac{\pi}{4}\right) = 1,$$
and function continuous at $x = 0$.

Άσκηση 2^η

(a)
$$\lim_{t \to t_0} (3f(t)) = 3 \lim_{t \to t_0} f(t) = 3(-7) = -21$$

(b)
$$\lim_{t \to t_0} (f(t))^2 = \left(\lim_{t \to t_0} f(t)\right)^2 = (-7)^2 = 49$$

(c)
$$\lim_{t \to t_0} (f(t) \cdot g(t)) = \lim_{t \to t_0} f(t) \cdot \lim_{t \to t_0} g(t) = (-7)(0) = 0$$

(d)
$$\lim_{t \to t_0} \ \frac{f(t)}{g(t)-7} = \frac{\lim_{t \to t_0} f(t)}{\lim_{t \to t_0} (g(t)-7)} = \frac{\lim_{t \to t_0} f(t)}{\lim_{t \to t_0} g(t) - \lim_{t \to t_0} 7} = \frac{-7}{0-7} = 1$$

(e)
$$\lim_{t \to t_0} \cos(g(t)) = \cos\left(\lim_{t \to t_0} g(t)\right) = \cos 0 = 1$$

(f)
$$\lim_{t \to t_0} |f(t)| = \left| \lim_{t \to t_0} f(t) \right| = |-7| = 7$$

(g)
$$\lim_{t \to t_0} (f(t) + g(t)) = \lim_{t \to t_0} f(t) + \lim_{t \to t_0} g(t) = -7 + 0 = -7$$

(h)
$$\lim_{t \to t_0} \left(\frac{1}{f(t)} \right) = \frac{1}{\lim_{t \to t_0} f(t)} = \frac{1}{-7} = -\frac{1}{7}$$

Άσκηση 3^η

(a) Suppose x_0 is rational $\Rightarrow f(x_0) = 1$. Choose $\epsilon = \frac{1}{2}$. For any $\delta > 0$ there is an irrational number x (actually infinitely many) in the interval $(x_0 - \delta, x_0 + \delta) \Rightarrow f(x) = 0$. Then $0 < |x - x_0| < \delta$ but $|f(x) - f(x_0)| = 1 > \frac{1}{2} = \epsilon$, so $\lim_{x \to x_0} f(x)$ fails to exist \Rightarrow f is discontinuous at x_0 rational.

On the other hand, x_0 irrational $\Rightarrow f(x_0) = 0$ and there is a rational number x in $(x_0 - \delta, x_0 + \delta) \Rightarrow f(x) = 1$. Again $\lim_{x \to x_0} f(x)$ fails to exist \Rightarrow f is discontinuous at x_0 irrational. That is, f is discontinuous at every point.

(b) f is neither right-continuous nor left-continuous at any point x_0 because in every interval $(x_0 - \delta, x_0)$ or $(x_0, x_0 + \delta)$ there exist both rational and irrational real numbers. Thus neither limits $\lim_{x \to x_0^+} f(x)$ and $\lim_{x \to x_0^+} f(x)$ exist by the same arguments used in part (a).

Άσκηση 4^η

Let $\epsilon = \frac{|f(c)|}{2} > 0$. Since f is continuous at x = c there is a $\delta > 0$ such that $|x - c| < \delta \implies |f(x) - f(c)| < \epsilon$ $\implies f(c) - \epsilon < f(x) < f(c) + \epsilon$.

If f(c) > 0, then $\epsilon = \frac{1}{2}f(c) \Rightarrow \frac{1}{2}f(c) < f(x) < \frac{3}{2}f(c) \Rightarrow f(x) > 0$ on the interval $(c - \delta, c + \delta)$.

If f(c) < 0, then $\epsilon = -\frac{1}{2}f(c) \Rightarrow \frac{3}{2}f(c) < f(x) < \frac{1}{2}f(c) \Rightarrow f(x) < 0$ on the interval $(c - \delta, c + \delta)$.

Άσκηση 5^η

$$\lim_{h \to 0} \ \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \ \frac{(100 - 4.9(2+h)^2) - (100 - 4.9(2)^2)}{h} = \lim_{h \to 0} \ \frac{-4.9 \, (4 + 4h + h^2) + 4.9(4)}{h}$$

= $\lim_{h \to 0} (-19.6 - 4.9h) = -19.6$. The minus sign indicates the object is falling <u>downward</u> at a speed of 19.6 m/sec.

Άσκηση 6^η

a)

Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the zero point, 0, on the equator $\Rightarrow 0 + \pi R$ represents the midnight point (at the same exact time). Suppose x_1 is a point on the equator "just after" noon $\Rightarrow x_1 + \pi R$ is simultaneously "just after" midnight. It seems reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically opposite point just after midnight: That is, $T(x_1) - T(x_1 + \pi R) > 0$. At exactly the same moment in time pick x_2 to be a point just before midnight $\Rightarrow x_2 + \pi R$ is just before noon. Then $T(x_2) - T(x_2 + \pi R) < 0$. Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate Value Theorem says there is a point c between 0 (noon) and πR (simultaneously midnight) such that $T(c) - T(c + \pi R) = 0$; i.e., there is always a pair of antipodal points on the earth's equator where the temperatures are the same.

- b) At most 1 horizontal asymptote: If $\lim_{x \to -\infty} \frac{f(x)}{g(x)} = L$, then the ratio of the polynomials' leading coefficients is L, so $\lim_{x \to -\infty} \frac{f(x)}{g(x)} = L$ as well.
- c) cos x = x \Rightarrow (cos x) x = 0. If x = $-\frac{\pi}{2}$, cos $\left(-\frac{\pi}{2}\right) \left(-\frac{\pi}{2}\right) > 0$. If x = $\frac{\pi}{2}$, cos $\left(\frac{\pi}{2}\right) \frac{\pi}{2} < 0$. Thus cos x x = 0 for some x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ according to the Intermediate Value Theorem.

Άσκηση 7^η

 $|A-9| \le 0.01 \Rightarrow -0.01 \le \pi \left(\frac{x}{2}\right)^2 - 9 \le 0.01 \Rightarrow 8.99 \le \frac{\pi x^2}{4} \le 9.01 \Rightarrow \frac{4}{\pi} (8.99) \le x^2 \le \frac{4}{\pi} (9.01)$ $\Rightarrow 2\sqrt{\frac{8.99}{\pi}} \le x \le 2\sqrt{\frac{9.01}{\pi}}$ or $3.384 \le x \le 3.387$. To be safe, the left endpoint was rounded up and the right endpoint was rounded down.