NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
DESIGN STUDY OF A CENTERPLATE MOUNT FOR WIND TUNNEL MODELS.(U)
JUN 77 R W RUSSELL AD-A047 204 F/6 14/2 UNCLASSIFIED NL 1 OF 2 AD A047204 H

AD A O 47204

NAVAL POSTGRADUATE SCHOOL Monterey, California

nucter THESIS

Design Study of a Centerplate
Mount for Wind Tunnel Models.

by

Robert Wayne/Russell

June 1977 12 113 p.

Thesis Advisor:

L. V. Schmidt

Approved for public release; distribution unlimited.

COPY AVAILABLE TO DUC SEE. W.

251 450 m

AD NO.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED		
Design Study of a Centerplate Mount		Master's Thesis June 1977		
for Wind Tunnel Models	?	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(+)		
Robert Wayne Russell		-		
9. PERFORMING ORGANIZATION NAME AND ADDRE	35	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Naval Postgraduate School Monterey, CA 93940	V			
II. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Naval Postgraduate School		June 1977		
Monterey, CA 93940		113		
14. MONITORING AGENCY NAME & ADDRESS(If diffe	rent from Controlling Office)	IS. SECURITY CLASS. (of this report)		
Naval Postgraduate School		UNCLASSIFIED		
Monterey, CA 93940		15a. DECLASSIFICATION/DOWNGRADING		
16. DISTRIBUTION STATEMENT (of this Report)				
17. DISTRIBUTION STATEMENT (of the obstract enter	ed in Block 20, if different fro	m Report)		
18. SUPPLEMENTARY NOTES				
	·			
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number;			
Wind tunnel mounting system Aerodynamic tare evaluation				
20. ABSTRACT (Continue an reverse elde if necessary				
A three-strut wind-tun used with an electrical ba	nel model suppo	rt system was being 5 by 5 0 foot Department		
of Aeronautics low-speed w	ind tunnel. Th	e traditional method		
of image systems and alter	nate inverted m	ounting for the		
evaluation of aerodynamic	tares was consi	dered impractical for		
implementation in the smal	I sized tunnel.	ine design and		

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-014-6601 |

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered.

20. ABSTRACT (continued)

installation of an alternate model support system using a centerplate mount was accomplished. An aerodynamic evaluation for comparing the two model mounting concepts was performed via experiments with a single calibration wing. Additionally, these experiments were the first operational exercise of a recently developed microprocessor data acquisition system.

ACCTOS: N NTIS DDC		Section	
2 5 1 M2 [· · · · · · · · · · · · · · · · · · ·	************	
DISTRIBUTO: D.	yers eri	77 CODE	
A	23		
(B. 5		

Approved for public release; distribution unlimited.

Design Study of a Centerplate Mount for Wind Tunnel Models

by

Robert Wayne Russell Lieutenant, United States Navy B.S.A.E., Purdue University, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1977

Robert W Susself

Author

Approved by:

Louis V. Schmidt Thesis Advisor

Chairman, Department of Aeronautics

Much 1. Tomm

Dean of Science and Engineering

ABSTRACT

A three-strut wind-tunnel model support system was being used with an electrical balance in the 3.5 by 5.0 foot Department of Aeronautics low-speed wind tunnel. The traditional method of image systems and alternate inverted mounting for the evaluation of aerodynamic tares was considered impractical for implementation in the small sized tunnel. The design and installation of an alternate model support system using a centerplate mount was accomplished. An aerodynamic evaluation for comparing the two model mounting concepts was performed via experiments with a single calibration wing. Additionally, these experiments were the first operational exercise of a recently developed microprocessor data acquisition system.

TABLE OF CONTENTS

I.	INT	RODUC	TION								 	12
II.	MO U	NT DE	SIGN	CONSI	DERAT	IONS					 	14
	Α.	THRE	E-STF	RUT MO	UNT F	ROBLE	M AR	EAS			 	14
	В.	MODI	FIED	TASK	MK I	BALAN	ICE L	IMI	TAT I OI	VS	 	16
	С.	TEST	SECT	TION L	IMITA	ATIONS	ON	MO D	EL SI	ZE	 	20
	D.	ALTE	RNATI	VE MO	UNT P	ROPOS	SALS				 	22
III.	MOU	NT DE	SIGN								 	24
	Α.	TRAD	E-OFF	S OF	THE S	ELECT	ED C	ONF	[GURA	TION	 	24
	В.	MOUN	T CON	ISTRUC	TION	FEAT	JRES				 ·	27
	С.	TUNN	EL IN	NTEGRA	TION		. -				 	29
IV.	PRO	OF OF	CONC	EPT E	XPERI	MENT					 	33
	Α.	PREL	IMINA	ARY PR	EPARA	ATION					 	33
	В.	DESC	RIPTI	ON OF	CALI	BRAT	ON W	ING			 	34
	С.	THRE	E-STF	RUT MO	UNTIN	IG SYS	TEM	EXP	ERIME	NTS -	 	35
	D.	ADAP	TATIO	N OF	CALIE	BRATIO	N WI	NG .			 	36
	Ε.	CENT	ERPLA	TE MO	UNTIN	IG SYS	TEM	EXP	ERIME	NTS -	 	39
	F.	THEO	RETIC	CALLY	EXPE	CTED F	RESUL	.TS ·			 	39
٧.	PRE	SENTA	TION	OF DA	TA						 	43
VI.	CON	CLUSI	ONS -								 	62
	Α.	DATA	ANAL	YSIS							 	62
	В.	RECO	MMEN	OATION	s	· -					 	65
APPENI	XIC	A									 	67
APPENI	XIC	B									 	69
APPENI	XIC	C									 	73

COMPUTER PROGRAMS	111
REFERENCES	112
INITIAL DISTRIBUTION LIST	113

LIST OF TABLES

TABLE	CONTENT	MOUNT	Q(psf)	PAGE
I.	Run Log			45
II.	Corrected Data, Run 051501	Three-strut	40	49
III.	Corrected Data, Run 051801	Three-strut	40	50
IV.	Corrected Data, Run 051802	Three-strut	30	51
٧.	Corrected Data, Run 051803	Three-strut	20	52
VI.	Corrected Data, Run 052703	Centerplate	40	56
VII.	Aerodynamic Tares of Run 052703		40	57
VIII.	Corrected Data, Run 052702	Centerplate	30	58
IX.	Aerodynamic Tares of Run 052702		30	59
х.	Corrected Data, Run 052701	Centerplate	20	60
XI.	Aerodynamic Tares of Run 052701		20	61
χΙΙ.	Raw Data, Run 051501	Three-strut	40	75
XIII.	File Listing, Run 051501			76
XIV.	Raw Data, Weight Tare 051577	Three-strut	0	77
XV.	File Listing, Run 051577			78
XVI.	Raw Data, Run 051801	Three-strut	40	79
XVII.	File Listing, Run 051801			80
XVIII.	Raw Data, Run 051802	Three-strut	30	81
XIX.	File Listing, Run 051802			82
XX.	Raw Data, Run 051803	Three-strut	20	83
XXI.	File Listing, Run 051803			84
XXII.	Raw Dața, Weight Tare 051877	Three-strut	0	85

TABLE	CONTENT	MOUNT	Q(psf)	PAGE
XXIII.	File Listing, Run 051877		40	86
XXIV.	Raw Data, Aero Tare Wing-Off Run 052602	Centerplate		87
XXV.	File Listing, Run 052602			88
XXVI.	Raw Data, Aero Tare Wing-Off Run' 052603	Centerplate	30	89
XXVII.	File Listing, Run 052603			90
XXVIII.	Raw Data, Aero Tare Wing-Off Run 052601	Centerplate	20	91
XXIX.	File Listing, Run 052601			92
XXX.	Raw Data, Weight Tare Wing-Off, Run 052677	Centerplate	0	93
XXXI.	File Listing, Run 052677			94
XXXII.	Raw Data, Wing-On, Run 052703	Centerplate	40	95
XXXIII.	File Listing, Run 052703			96
XXXIV.	Raw Data, Wing-On, Run 052702	Centerplate	30	97
XXXV.	File Listing, Run 052702			98
XXXVI.	Raw Data, Wing-On, Run 052701	Centerplate	20	99
XXXVII.	File Listing, Run 052701			100
XXXVIII.	Raw Data, Weight Tare, Run 052777	Centerplate	0	101
XXXIX.	File Listing, Run 052777			102

LIST OF FIGURES

1.	Three-strut mount and calibration wing	15
2.	Wing attach point detail	15
3.	Left side, modified Task MK I balance	17
4.	Right side, modified Task MK I balance	17
5.	Balance parallelogram geometry	19
6.	View of 3.5 x 5.0 test section	21
7.	View of sizing trade-offs	25
8.	View of centerplate installation	30
9.	Q calibration testing	30
10.	Q calibration curves	32
11.	Centerplate and bullet fairing, wing-off	38
12.	Centerplate and bullet fairing, wing-on	38
13.	Lift curve, three-strut mount	46
14.	Drag polar, three-strut mount	47
15.	Pitching moment curve, three-strut mount	48
16.	Lift curve, centerplate mount	53
17.	Drag polar, centerplate mount	54
18.	Pitching moment curve, centerplate mount	55
19.	Three-strut moment transfer relations	71
20.	Centerplate moment transfer relations	72

TABLE OF SYMBOLS

Latin Symbols

- A.C. Aerodynamic center
- c Wing chord ft
- Mean aerodynamic chord (MAC), ft
- Centerline
- C_D Non-dimensional drag force coefficient = D/QS
- C₁ Non-dimensional lift force coefficient = L/QS
- C_M Non-dimensional pitch moment coefficient = M/QSc
- D Drag force, lbs, positive in aft direction
- L Lift force, lbs, positive in up direction
- M Pitching moment, ft-lbs, positive in nose up direction
- Q Dynamic pressure, lbs/ft^2 (PSF), = $\frac{1}{2} \rho V^2$
- R_N Reynolds number, non-dimensional, for the wing = $\rho V c/\mu$
- S Wing area, ft²
- V Velocity, ft/sec, positive in downstream direction

Greek Symbols

- Angle of attack (AOA), deg. or rad., positive in nose up direction
- Δ Change in position or specified variable, Δ ()
- ρ Density, slugs/ft³
- μ Absolute viscosity, slugs/ft-sec
- v Kinematic viscosity, $ft^2/sec = \mu/\rho$

Subscripts

- ()c/4 Variable referenced to 0.25 MAC
- () o Variable evaluated at $C_1 = 0$

ACKNOWLEDGMENT

The sincere gratitude of the author goes to Professor

Louis V. Schmidt for his patience, knowledge and professional
example. Additional thanks go to technicians Glenn Middleton,
Ron Ramaker and Stan Johnson for their help, interest and
craftsmanship in the project.

I. INTRODUCTION

The Department of Aeronautics at the Naval Postgraduate School (NPS) has seen limited low-speed wind-tunnel work in either its curricula or student research over the past several years despite housing several fine low-speed tunnels. The tunnel of primary interest was built to NPS specifications and design by West Coast Research. It offers an octagonal test section with 3.5 by 5.0 foot measurements and a maximum tunnel operating dynamic pressure (Q) of approximately 100 psf from its two-stage fan section. Although it is an excellent small tunnel, several factors have limited its use;

- (1) Lack of modern, electronic balance capable of supplying analog voltage signals,
- (2) Lack of a data acquisition system to convert analog voltage into convenient digital form,
- (3) Lack of a potential computer program for the calculation of wall correction factors for an arbitrary wing configuration, and
- (4) Lack of a flexible mounting system that would ease model construction, allow rapid model or configuration changes, and enable measurement of aerodynamic tares.

Recently, an improvement program has been initiated to correct the limiting factors with the objective of producing an integrated tunnel system. Work documented by Concannon in

Ref. 1 has removed factor one. Current work by Casko, Ref. 2, and Heard, Ref. 3, is projected to remove factors two and three, respectively. This thesis is a design study for a solution to factor four, namely, the development of an improved model mounting system. It is important to note the balance system lends itself to three-component longitudinal airframe data, only. Downstream planning is needed to acquire a full six-component balance facility capable of yielding aerodynamic information at both angle of attack and sideslip.

Completion of the integrated system should provide a modern, highly automated tunnel system, readily adaptable to various demands and capable of generating accurate airframe data suitable for engineering analysis.

II. MOUNT DESIGN CONSIDERATIONS

A. THREE-STRUT MOUNT PROBLEM AREAS

The three-strut mount has traditionally found great favor in low-speed wind tunnels for testing conventionally configured, nonaeroelastic models. As seen in figure 1, the three-strut mount consists of two main struts supporting the wing at two wing station attachment points, and a third strut attached to an aft tail sting. This type of mount is sufficiently rigid and offers ease of angle of attack variation, as pointed out on pg. 149 in Ref. 4. For larger low-speed tunnels, drag tare and interference evaluation is possible; however, the three-strut model support system is quite complex in this regard. Small tunnel size compounds the problem and most academic tunnels forego the evaluation of aerodynamic tares.

Exposed struts contribute a drag tare and/or a pitching moment variation in the case of the aft strut. Partial compensation is possible through the use of strut fairings or windshields over some of the exposed struts. Strut to fairing interference, though present, is usually negligible in small tunnels. A more serious interference effect is that of the wing strut and fairing on the wing, inducing unknown flow disturbances onto the wing's flow field.

Figure 1. Three-strut mount and calibration wing.

Figure 2. Wing attach point detail.

Techniques for the evaluation of this effect are documented in the literature and utilize a procedure involving an image system and alternate inverted mounting; cf, pp. 175-180, Ref. 4. Figure 2 depicts the requirement for extremely fine image detail and model hardware to facilitate this scheme. The investment in time and detail is usually by-passed in small tunnels because of the small absolute size of the correction sought and the inherent resolution of the balance system employed. The third strut varies the angle of attack, and it is reasonable to assume that an unfaired strut will contribute drag and pitching moment tares as a function of angle of attack. Elaborate, variable fairings have been devised to keep the exposed portion of the aft strut constant in some large tunnels, but aft strùts are generally unfaired in small tunnels. Additionally, wing attachment points preclude model experiments for investigating aeroelastic effects. A mounting system which would relax the above restrictions within the limitations of the tunnel balance and test section area was required.

B. MODIFIED TASK MK I BALANCE LIMITATIONS

The Department of Aeronautics acquired a Task Corporation MK I balance in 1958. The balance was a standard, three-component beam balance capable of lift, drag and pitching moment measurements. In Ref. 1 Concannon describes modifications made to the balance to provide electrical strain gage

Figure 3. Left side modified Task MK I balance.

Figure 4. Right side, modified Task MK I balance.

outputs, thereby upgrading its potential as an element of a modern data acquisition system. Figures 3 and 4 show the Task balance in its modified configuration.

Adoption of strain gage measurement imposes linear response load ranges. Concannon selected these ranges as;

- + 500 lbs. in lift,
- + 75 lbs. in drag, and
- + 75 ft.-lbs. in pitching moment

These values were taken as the expected maximum working loads for the proposed mount.

Figure 4 depicts the large cross beam for main strut support and a small aft lever arm for varying angle of attack via a tail strut. As would be supposed, the balance was designed for a three-strut mount shown previously in figure 1. The provisions for main beam support and aft angle of attack drive had to be incorporated in the proposed design.

The balance is also configured so that the geometry of a parallelogram had to be established and maintained for constant one-to-one angle of attack tracking. Figure 5 depicts the relationship between the lever arm pivot, main trunnion and aft pins. This was a primary consideration for the design of an alternate mount.

Figure 5. Balance parallelogram geometry.

C. TEST SECTION LIMITATIONS ON MODEL SIZE

The primary NPS low-speed tunnel offers a 3.5 by 5.0 foot test section with 20-inch fillets forming an octagonal cross-section as seen in figure 6. The main limitations imposed by test section size are the model span and a tradeoff between tail/canard moment arm and geometric angle of attack. The general rule of thumb for span is that it should be no more than 80% of the test section width. This yields a maximum span of four feet with six-inch tip clearance. Maximum moment arm is a function of maximum angle of attack and the allowable proximity of the tail or canard to a tunnel wall. A minimum six-inch clearance for the tail A.C. at maximum angle of attack was assumed for design purposes. The reason for the clearance requirement is the breakdown of potentially derived or empirically estimated wall corrections in the turbulent boundary layer.

A span of four feet and an aspect ratio of six yields a chord of 0.677 feet for a straight untapered wing. At standard sea level conditions and a Q of 60 psf, a Reynolds number of 950,000 resulted. Maximum tunnel Q, 100 psf, would only increase the Reynolds number to 1,250,000. These Reynolds number values are low for testing in the turbulent regime without some form of boundary layer tripping. Small aspect ratios and larger chords for the four-foot span would improve the situation, but low Reynolds numbers still represent a penalty inherent in small tunnels. For this reason tunnels

of the 3.5 by 5.0 foot size represent those used primarily for academic purposes or for work where Reynolds number scaling is of lesser importance.

Test section size also affects the amount of deviation from the centerline that is negligible, and the allowable solid blockage by the mount. Of course, it is best to keep both to a minimum, but they are generally not driving concerns, providing tunnel flow calibrations are accurate and the velocity profile is well developed and uniform.

D. ALTERNATE MOUNT PROPOSALS

Several mount configurations were proposed as solutions to the problem outlined in part A and the compatibility constraints listed in parts B and C. Balance limitation to three-component measurements considerably eased the problem of achieving sufficient lateral-directional rigidity.

Minimum mount complexity and interference with the primary aerodynamic surfaces was sought. These goals indicated a reduction in the number of struts, removal of the attach points from the wing and a design that could be adapted to the measurement of aerodynamic tares. Candidate proposals then included the single strut, tandem struts, centerplate and tail sting mounts.

The single strut mount is the simplest and keeps interference to a minimum but is weak in torsion and concentrates the stresses at a single attach point under the fuselage of a model. A fairly large strut width is required to provide sufficient rigidity and reasonable stress levels at design loads.

The tandem strut arrangement appeared to add no benefits at the cost of added complexity, but again, interference would be near minimum.

The centerplate mount represented what could be considered a continuous compromise of the previous two mount proposals. It would require only a single fairing, and the plate could fit in a slot along the under side of a model's fuselage. It seemed apparent that this mount would distribute the attachment forces more evenly, and that the detail of single point attachment would be eliminated. Width was traded for length, and the question of interference increase remained to be answered.

Tail sting mounting was the final consideration.

Although it offered the least interference and nil blockage, the mount is optimized for single jet models in a high-speed tunnel. Limited angle of attack variation was another constraint of this type. A more complex adaptation for angle of attack drive would also be required.

Centerplate mounting appeared the most promising, and it was felt that the questioned increase in interference over the single strut mount would be negligible, if any. This approach was selected, and further design considerations are addressed in subsequent sections.

III. MOUNT DESIGN

A. CENTERPLATE CONFIGURATION TRADE-OFFS

After selection of the centerplate as the most promising design, several immediate engineering decisions were required to fix mount geometry. Since the mount would be expected to test a wide variety of models and wing types, a -15° to plus +30° angle of attack range was arbitrarily selected. The location of the plate trunnion about which the plate would describe a circular arc was a primary consideration. Selection of the arc radius with the plate at zero angle of attack fixes the trunnion location vertically below the test section centerline. Further considerations on this radius length were the tail-to-wall proximity at maximum angle of attack for a representative tail moment arm, 25 inches assumed, and the amount of fairing blockage required to shield the main support. Minimum radius length improves the former but is inverse for the latter. As stated previously, a minimum wall clearance of six inches for all aerodynamic surfaces was desired. A small radius also favors minimum deviation from test section centerline, but then incurs the possibility of interference by the proximity of the fairing. The trade-off considerations are depicted in figure 7.

Rough plots of various parameters as a function of arc radius were constructed and an engineering judgment on a 14-inch radius was made.

Figure 7. View of Sizing Tradeoffs.

The basic mount geometry was thus fixed. For an A.C. on the test section centerline and balance focal point when $\alpha = 0^{\circ}$, its vertical deviation is -0.48 inches and the longitudinal deviation is \pm 3.62 inches for $\alpha = \pm$ 15°. The maximum vertical deviation is -1.88 inches and the maximum longitudinal deviations are +3.62 inches forward/-7.00 inches aft respectively for the design condition $\alpha = -15^{\circ}$, $+30^{\circ}$. Vertical deviation in the +15° case is 1.1% of tunnel height vs. 4.5% for the maximum +30° condition. It should be noted that the vertical displacement represents the only increase of tail/canard proximity compared to a three-strut mount pivoting about an axis through the centerline. These were considered acceptable for well developed, tunnel flow profiles. By mounting the wing above the plate's upper surface, maximum deviation of the A.C. can be reduced since the total variation could be made to center about the test section centerline in addition to the option of providing a desired design model angle condition on the test section centerline.

Plate length was selected as twenty inches, ten inches on each side of the vertical centerline when the plate is at $\alpha = 0^{\circ}$. This represented a trade-off between model fuselage slot length, fairing length and lateral-directional rigidity. A fuselage spar was predicted to give added directional rigidity, and so a sizeable 20-inch width was selected to improve its torsional bending resistance for a given thickness.

B. MOUNT CONSTRUCTION FEATURES

Having fixed centerplate geometry, the detailed design work remained. Simplicity, strength and rigidity were the primary design goals. A design safety factor of ten over yield for the most critical combination of maximum working loads outlined in section II, part B, indicates the emphasis on eliminating structural deformations.

A single stainless steel support with a vertical fork to accept the centerplate was adopted. A one-half inch diameter steel trunnion pin installed with an interference fit to the aluminum centerplate was supported in journal bearings of the flanking doublers. Plate thickness was selected as three-eighths inch, with twin three-sixteenth inch doublers below the level of the fairing.

The left fork of the main support was designed to be removable for initial installation of the centerplate assembly and for later adaptation or modification as desired. The plate was attached with four 1/4 - 20 cap screws and trued by two alignment pins.

The main support was directly attached to the Task balance by 1/4 - 20 cap screws and a backing plate. The bottom of the support was submerged five inches below the level of the tunnel floor. The remainder of the support and lower third of the centerplate incorporated a fairing for smooth flow and minimal interference.

The fairing consists of wooden, contoured leading and trailing edges, an angle frame of aluminum and two removable aluminum side plates. Close attention was paid to fairing aerodynamics to minimize cross flow separation at the leading edge and adverse pressure gradient separation at the trailing edge. A slot was milled into the upper cap to allow approximately one-sixteenth inch clearance for the centerplate. entire fairing was to be mounted on a three-quarter inch plywood tunnel floor. The old flooring was retained to accommodate the original three-strut mount, if some unforeseen requirement for it should arise. The fairing was 12.5 inches high with a cross-section of 27.45 square inches. This represents a blockage factor of 1.31% for the tunnel test section. The resulting blockage appeared to be acceptable, and a tunnel Q calibration was performed with plate fairing installed.

The angle of attack was varied by a strut attached to the aft end of the centerplate and submerged under the fairing. An adjustable turnbuckle was incorporated to provide precise parallelogram alignment for proper angle of attack tracking.

The entire mount was fabricated to the specification of the author by the craftsmen of the Department of Aeronautics model shop from readily available materials. Critical part tolerance met or exceeded 0.002 inches.

C. TUNNEL INTEGRATION

The original three-strut mount was removed after the collection of baseline data. The three-quarter inch plywood flooring was removed to keep the three-strut system intact. Then, the main support was checked on the main beam of the balance to insure correct fit. A new one-piece plywood floor was fabricated and mated to the test section framework. The fairing was then fastened along the test section centerline. The fairing sides were removed, and the centerplate was installed (see figure 8). The aft strut was adjusted, and the angle of attack was trued. The angle of attack was checked by a precision inclinometer throughout the design range of the mount, and found to be accurate within one second of arc. Concurrently, a check was made to ensure proper clearances of the plate, main support and aft strut. Rolling moments were applied to the plate to ensure minimal torsional deflection and to confirm that plate and fairing slot interference would not occur. An interference light was rigged with a series circuit between the balance and fairing. Subsequent runs indicated no fairing interference and that torsional rigidity was not a factor at the highest Q tested for a representative wing, 50 psf. Some minor alterations to the fairing framework were made to improve access to the main support side plate, but no major problems were encountered in the installation phase.

Figure 8. View of centerplate installation

Figure 9. Q calibration testing.

Once installed, a dynamic pressure calibration was performed to account for the revised tunnel configuration, including the centerplate fairing (see figure 9). The procedure was to take readings of a shrouded total pressure, a piezo ring static pressure, and a pitot-static tube which included total Q and static pressure measured over the fairing on the tunnel centerline. The first two pressure sources combine to yield a reference Q, Q_{ref} , while the last two pressures establish the Q to be calibrated, Q_{cal} .

Initially, an attempt to measure these values was made with a scanivalve; however, tunnel turbulence and the time delay of manual switching between-data channels produced widely scattered data. At this point the power of the data acquisition system was utilized, and it was reprogrammed to scan each pressure transducer 128 times during a two-second time frame and numerically average the sample readings. The resulting scatter was noticeably reduced. Further refinement of the Q readings was made by incorporation of the subsonic pitot-static correction for compressibility effects [Ref. 5]. For Q's available to the low-speed tunnel, errors on the order of 1.0% could occur if the Mach correction were not taken into account. A summary of this Q correction is presented in figure 10.

Figure 10. Q calibration curves.

IV. PROOF OF CONCEPT EXPERIMENT

During the time period when the plate mount system was being fabricated, experiments were initiated to provide baseline data suitable for verification of the plate mount concept using an existing calibration wing. An added goal of the test sequence was the proof testing under actual laboratory conditions of the microprocessor oriented data acquisition system developed independently by Casko (Ref. 2). Initial testing, after modification of the Task MK I balance, indicated that inaccuracies were present due to the unavailability of the aerodynamic tares and the interference inherent when testing with a three-strut model support system. The accurately constructed calibration wing, which was available for the three-strut mount tests (see Figure 1), was subsequently adapted for comparable experiments upon the plate mounting system.

A. PRELIMINARY PREPARATION

The signal conditioning amplifiers used by Concannon (Ref. 1) when acquiring his reported strain gage calibrations were rebuilt by the Department of Aeronautics for the express purpose of making possible improved electronic interfacing with the new data acquisition system. Therefore, a more current set of calibration matrix constants had to be determined. This was performed with a static loading frame and

calibration weights on the three-strut mounting system while installed in the tunnel test section. Following procedures outlined by Concannon in Ref. 1, the balance was calibrated to resolve lift force, drag force and pitching moment relative to a lateral axis through the intersection of the main strut trunnion axis and the vertical centerline of the balance cross beam. It is important to note that the accurate resolution of forces and moments about this axis (the virtual center or focal point of the balance) is independent of the type of support mount used, and any offset of a desired model reference point requires a moment transfer. Numerical values for the correlated reduction matrix constants may be found in Appendix A.

It should also be noted that the first stage fan blades were removed from the tunnel for refurbishing prior to the course of these experiments, which in turn effectively limited the tunnel test section operating dynamic pressure (Q) to approximately 55 pounds per square foot (psf). No advantage was seen in pushing the single stage fan to its limit, hence a dynamic pressure range of 20 to 40 psf was selected for test purposes.

B. DESCRIPTION OF CALIBRATION WING

The calibration wing available for the experiment had a modified NACA 63-010 airfoil, constant over a three-foot span. The wing was without taper or twist, and had a sixinch chord. The rectangular wing tip sections were adapted

from NACA 63-015 contours. The wing attached to the main struts of the three-point mount at two wing trunnions located six inches on either side of the longitudinal axis, and coincident with the quarter-chord line. A thin steel sting attached to the wing spar and trailed aft to the tail strut pin attachment point. Sting width in the airfoil section was 0.50 inches, and it was filleted to 0.25 inches from the wing trailing edge to the aft tail strut clevis pin region. The sting moment arm for the three-strut mount was 15.00 inches.

C. THREE-STRUT MOUNTING SYSTEM EXPERIMENTS

The objective of the three-strut mount experiments was to document accurately the performance of the calibration wing upon this type of support system without aerodynamic tare estimations being applied. The main struts were carefully faired by individual windshields to within approximately four inches of the wing surface. The aft (tail) strut was unfaired.

Wind-off weight tares for the aforementioned configuration were recorded through the angle of attack test range of -6.0 to +14.0 degrees by one degree increments. The tunnel Q was set to approximately 40 psf, and uncorrected aerodynamic data were recorded as printout on an ASR-33 Teletype unit. It should be noted that each printed row of information included five channels of data at a particular angle of

attack condition, including a numerically averaged Q value obtained during that two-second sampling period. This feature of the data acquisition system eliminated the necessity for precise tunnel dynamic pressure management.

After several days had transpired, the above data collection procedure was duplicated in its entirety to verify the repeatability of the system. Additional data for test runs at Q values of 20 and 30 psf were also collected. Each pitch-pause polar run required about eight minutes for approximately 30 individual angle of attack settings.

D. ADAPTATION OF CALIBRATION WING

The calibration wing was originally designed for a three-strut support system. The wing attachment points had approximately two-inch square, contoured cover plates on both upper and lower surfaces (see figure 2). These were faired in with modeling clay and smoothed. The wing also had a one-half inch channel to accept the tail sting.

The forward section of the tail sting was duplicated to adapt the wing, but sufficient steel material was retained on the underside of the adaptor to allow the milling of a plate attachment slot. The centerplate was secured in this slot by two 1/4-20 cap screws. Two additional cap screws were inserted vertically through the adaptor and wing spar to fasten into tapped holes on the plate's upper surface. The wing adaptor was designed to position the wing quarter-chord

on the plate's vertical centerline, which aligned with the balance focal point at zero angle of attack. This feature was provided for geometrical simplifications in the moment transfer equations, as outlined in Appendix B.

A slender, bullet-shaped body fairing was incorporated to insure minimal flow disruption at the wing root. The fairing was constructed with two separate wooden center sections. One center section was solid (without wing cutouts) to provide a smooth fairing during wing-off weight and aerodynamic tare evaluations (see Figure 11). The other center section was contoured to accept the wing adaptor and wing panel (see Figure 12). Both fairings were fastened to either plate or wing adaptor by cap screws. Careful attention to tolerance details provided a close fit of the fairing to wing and plate and enhanced the torsional rigidity of the wing root, inasmuch as the actual wing spar details allowed only a one-half inch wide steel adaptor.

The fairing was kept as small as possible, and the two-inch fairing diameter represented 5.56 percent of the wing's three foot span. The small relative size of the body fairing provided an intuitive feeling that wing lift carry-over in the fairing area would be quite reasonable.

An approximate stress analysis was performed for wing root bending of the aluminum wing spar. A 40 percent margin over yield was estimated for design loads at Q = 60 psf. This seemed reasonable, since maximum test Q was selected as 40 psf.

Figure 11. Centerplate and bullet fairing, wing-off.

Figure 12. Centerplate and bullet fairing, wing-on.

E. CENTERPLATE MOUNTING SYSTEM EXPERIMENTS

The objective of the centerplate mount experiments was to document accurately the performance of the modified calibration wing when installed on the plate mount, including estimates of the aerodynamic tares for the wing-off configuration. With this information, a quantitative comparison between both support systems could be made with reasonable certainty.

After the centerplate (described in Section III C) was installed, the body fairing was fastened onto the upper edge of the plate and wind-off weight tares were taken (see Section IV C). Wind-on runs were then conducted for Q values of 40, 30 and 20 psf, respectively.

The body fairing was removed from the tunnel, the wingon center section was fitted, and then the entire wing-body assembly was reinstalled onto the plate support in the tunnel test section. A complete repetition of the previous wing-off steps was then performed.

Incorporation of tares for both wing-off/on cases was accomplished by means of computer programs presented in a following section.

F. THEORETICALLY EXPECTED RESULTS

Independent of mounting considerations, one should have an engineering feel for the expected results of a finite wing with a symmetrical airfoil. Section data on NACA 63-010 and

NACA 63-009 airfoils (Ref. 6) were the basis for approximate estimates of the ideal, free-air behavior of the calibration wing. The lift curve, drag polar and pitching moment curve will be reviewed in that order.

The referenced section data indicated a linear section lift curve slope of approximately $0.10~\rm deg^{-1}$. Correction for a wing aspect ratio of six yielded a three-dimensional lift curve slope on the order of $0.073~\rm deg^{-1}$ (Ref. 7). Of course, a finite wing's $C_{L_{max}}$ will occur at an angle of attack several degrees higher than the 10 degree value observed in the sectional data. However, approximately the same maximum lift coefficient would be expected for both two- and three-dimensional wing cases when operated with approximately the same Reynolds number values. Further inspection of symmetrical airfoil behavior indicates a lift curve symmetric about the origin with a zero lift angle (α_{ol}) of zero.

The drag polar (plot of C_L vs. C_D) is also symmetric, but about the coefficient of drag axis with a zero lift drag (C_{D_O}) value of approximately 0.008 (80 drag counts). The C_{D_O} values of both the two- and three-dimensional wing cases should be identical, since induced drag is not a factor at zero lift for an untwisted and uncambered wing. Note that the C_{D_O} estimate of 0.008 was based for a model with standard roughness, and no drag-bucket phenomenon (characteristic of laminar flow airfoils) was expected.

As a check on the magnitude of the drag tares for the centerplate and fairing, an estimate of the turbulent skin friction drag at Q=40 psf in sea-level conditions was performed.

Plate Reynolds number:

$$(R_N)_{\text{Plate}} = \frac{Vx}{v} = \frac{(183.5 \text{ ft/sec})(1.67 \text{ ft})}{0.000158 \text{ ft}^2/\text{sec}} = 1.94 \times 10^6$$

Body fairing Reynolds number:

$$(R_N)_{\text{Fairing}} = 1.94 \times 10^6 \times \frac{(2.67 \text{ ft})}{(1.67 \text{ ft})} = 3.10 \times 10^6$$

If the entire plate were in turbulent flow, then skinfriction drag would be:

$$D_{f_p} = 2 \times Q \times S \times C_f$$

where

$$C_f = 0.455 \times (\log_{10} R_N)^{-2.58}$$

Hence $D_{fp} = 2 \times (40 \text{ psf})(1.18 \text{ ft}^2)(0.00396) = 0.374 \text{ lb}$

If the entire body fairing were in turbulent flow, then:

$$D_{f_F} = 1 \times (40 \text{ psf})(1.40 \text{ ft}^2)(0.00379) = 0.212 \text{ lb}$$

where S_f = cylindrical approximation to body fairing wetted areal Total drag then becomes:

$$D_T = D_{f_p} + D_{f_F} = 0.586 \text{ lb}$$

And the drag coefficient, referenced to wing area, would be:

$$C_{D_T} = \frac{D_T}{QS} = \frac{0.586 \text{ lb}}{(40 \text{ psf})(1.5 \text{ ft}^2)} = 0.0098$$

The turbulent flow approximation was assumed based upon the observation that the leading edge of the centerplate had a 0.030-inch bluntness for safety and ease of fabrication, while the plate surface was smooth but unpolished for the experiment.

Wing-alone stability as measured by the slope $dC_{M\bar{c}/4}$ provides a direct indication of the wing aerodynamic center location. The slope would be zero if the aerodynamic center were located at the wing quarter-MAC location. Additionally, the symmetry of the airfoil would lead one to expect a zero value of $C_{M\bar{c}/4}$ at zero left; i.e., $C_{M\bar{c}} = 0$.

V. PRESENTATION OF DATA

A summary of all the wind tunnel runs performed in conjunction with this study are listed in Table 1. Corrected aerodynamic data for the runs at Q = 40, 30, and 20 psf are presented in that order. Each tabulated run in this section represents reduced data for 27 geometric angle of attack conditions. The geometric angle of attack was varied from minus six degrees to plus fourteen degrees in one degree increments. As a repeatability check within each run, the angle of attack was then returned to plus six degrees and reduced in two degree increments to minus four degrees. The data presented for each geometric angle of attack condition were the aerodynamic angle of attack, Q, C_1 , C_D , and $C_{M\bar{C}/4}$. The three-strut configuration data are corrected only for weight tares. Centerplate configuration data are corrected for aerodynamic tares as well as weight tares, and tables of the reduced aerodynamic tare coefficients are presented immediately behind their respective run data.

Three-strut run 051501 and centerplate run 052703 at Q = 40 psf were selected as the most representative because of the higher nominal Q and subsequent removal of any possible taxing of balance resolution. Plots of C_L vs. α , C_D and $C_{M\bar{C}/4}$ were constructed for these data and immediately precede the table for their respective runs. The plots of run 051501

were reproduced on the plots for run 052703 to facilitate a direct comparison of calibration wing performance on each mounting system.

The reduction programs and storage records are presented in later sections of this report. The raw data are displayed in Appendix C.

Reference is not included on Reynolds number since the runs were made in virtually identical conditions and no scaling correlations were attempted.

Table I Wind-Tunnel Run Log

5-15-77 051577 0 Weight tare, calibration wing on three-strut mount " 051501 40 Data for C _L vs., C _D , C _{Mc̄/4} 5-18-77 051877 0 Weight tare, calibration wing on three-strut mount " 051801 40 Data for C _L vs., C _D , C _{Mc̄/4} " 051802 30 " " " 051803 20 " " 5-24-77 8-58 Q calibration, plate fairing in clear tunnel 5-26-77 052677 0 Weight tare, plate plus fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc̄/4} " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc̄/4} " 052702 30 " " " 052703 40 " "	DATE	RUN #	NOMINAL Q (psf)	PURPOSE
5-18-77 051877 0 Weight tare, calibration wing on three-strut mount " 051801 40 Data for C _L vs., C _D , C _{Mc̄} /4 " 051802 30 " " " 051803 20 " " 5-24-77 8-58 Q calibration, plate fairing in clear tunnel 5-26-77 052677 0 Weight tare, plate plus fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc̄} /4 " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc̄} /4 " 052702 30 " "	5-15-77	051577	0	
wing on three-strut mount " 051801	н	051501	40	Data for C _L vs., C _D , C _{Mc/4}
" 051802 30 " " " 051803 20 " " 5-24-77 8-58 Q calibration, plate fairing in clear tunnel 5-26-77 052677 0 Weight tare, plate plus fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc̄} /4 " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc̄} /4 " 052702 30 " "	5-18-77	051877	0	
" 051802 30 " 051803 20 " " 5-24-77 8-58 Q calibration, plate fairing in clear tunnel 5-26-77 052677 0 Weight tare, plate plus fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc̄} /4 " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc̄} /4 " 052702 30 " "	н	051801	40	Data for C _L vs., C _D , C _{Mc/4}
5-24-77 8-58 Q calibration, plate fairing in clear tunnel 5-26-77 052677 0 Weight tare, plate plus fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc} /4 " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc} /4 " 052702 30 " "	п	051802	30	
in clear tunnel 5-26-77	H	051803	20	
fairing, wing-off " 052601 20 Aerodynamic tares for C _L , C _D , C _{Mc̄} /4 " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc̄} /4 " 052702 30 " "	5-24-77	•••	8-58	
C _D , C _{Mcd/4} " 052602 40 " " " 052603 30 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mcd/4} " 052702 30 " "	5-26-77	052677	0	
" 052602 40 " " 5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc/4} " 052702 30 " "	н	052601	20	
5-27-77 05277 0 Weight tare, plate plus fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc/4} " 052702 30 " "		052602	40	
fairing, wing-on " 052701 20 Data for C _L vs., C _D , C _{Mc/4} " 052702 30 " "	н	052603	30	u u
" 052702 30 " "	5-27-77	05277	0	
" 052702 30 " "	0	052701	20	Data for C _L vs., C _D , C _{Mc/4}
" 052703 40 " "		052702	30	
	n = _	052703	40	н

Figure 13. Lift curve, three-strut mount.

Figure 14. Drag polar, three-strut mount.

Figure 15. Pitching moment curve, three-strut mount.

TABLE II

CORREC	TED DATA O	F RUN # 5:	1591	•	
FOH #	AOA (DEG)	0(PSF)	CL.	CD	CM-C/4
1	-0.8917	41.2018	-0.4769	0.0468	-0.0395
2	-0.7407	41.4827	-0.3968	0.0389	-0.0336
3	-0.5911	41.2767	-0.3166	0.0343	-0.0374
-1	-0.4446	40.8366	-9.2406	0.0299	-0.0328
5	-0.2967	41.8011	-9.1649	0.0231	-0.0375
6	-0.1485	42.2318	-0.0836	0.0263	-0.0352
7	-0.0031	41.8853	-0.0071	0.0248	-0.0320
3	0.1474	41.4827	0.0750	6.0350	-0.0334
9	0.2836	41.9228	0.1420	0.0247	-0.0265
10	0.4326	42.2599	0.2190	0.0262	-0.0254
11	9.5792	42.6157	0.2927	0.0238	-0.0236
12	0.7228	42.9434	0.3662	0.0322	-0.0223
13	0.8676	42.4471	0.4365	0.0372	-0.0215
1-4	1.0161	42.8030	0.5133	0.0427	-0.82'4
15	1.1546	42.7280	0.5774	0.0532	-0.0249
16	1.2849	42.0913	0.6332	0.0714	-0.0342
17	1.4132	41.8011	0.6773	0.0970	-0.0428
18	1.5335	41.0520	0.7038	0.1275	-0.0631
19	1.6438	40.9490	0.7158	0.1576	-0.0835
20	1.7326	41.2299	0.7073	0.1816	-0.0973
21	1.8235	40.2093	0.6940	0.2032	-0.1119
22	0.366)	42.0258	0.4339	0.0367	-0.0212
23	0.5711	41.1456	0.2874	0.0293	-0.0268
24	0.2875	41.2486	0.1429	0.0243	-0.0258
25	-0.0029	40.7898	-0.0086	0.0249	-0.0335
26	-0.3003	39.3291	-0.1670	9.6273	-0.0350
27	-0.5917	39.9003	-0.3230	0.0344	-0.0390

TABLE III

CORREC	TED DATA O	F RUN # 51	.801	3 5 6 6 6 6	
ROW #	AOA(DEG)	Q(PSF)	CL	CD	CM-C24
1	-0.8874	41.0404	-0.4754	0.0453	-0.0328
2	-0.7446	40.8947	-0.4031	0.0392	-0.0324
3	-0.5949	40.9936	-0.3228	0.0331	-0.0297
4	-0.4466	39.6453	-0.2418	0.0288	-0.0270
5	-0.2976	39.6172	-0.1654	0.0271	-0.0312
5	-0.1532	41.1341	-0.0914	0.0247	-0.0272
7	-0.0034	41.1060	-0.0076	0.0244	-0.0290
8	9.1429	40.9936	0.0664	0.0245	-0.0281
9	0.2879	41.9299	0.1438	0.0249	-0.0262
10	0.4352	41.5273	0.2215	0.0259	-0.0218
11	0.5798	41.8738	0.2935	0.0288	-0.0232
12	6.7212	41.6678	0.3635	0.0330	-0.0251
13	0.8696	41.7801	0.4394	0.0374	-0.9232
14	1.0127	41.6210	0.5119	0.0429	-0.0209
15	1.1516	42.0236	0.5750	0.0531	-0.0222
16	1.2873	41.5929	0.6334	0.0725	-0.0356
1.7	1.4129	41.7240	0.6767	0.0983	-0.0449
18	1.5317	41.4711	0.7042	0.1612	-0.2365
19	1.6410	41.6490	0.7210	0.1569	-0.0838
20	1.7367	40.6752	0.7157	0.1317	-0.0975
21	1.8167	40.5442	0.6829	0.2011	-0.1102
22	0.8644	41.3213	0.4360	0.0374	-0.0224
23	0.5786	42.0142	0.2916	0.0290	-0.0235
24	0.2849	41.2183	0.1388	0.0250	-0.0259
25	-0.0002	40.9842	-0.0023	0.0245	-0.0282
26	-0.2983	39.7576	-0.1665	0.0270	-0.0318
27	-0.5982	40.6565	-0.3282	0.0344	-0.0350

TABLE IV

CORREC	CTED DATA ()F RUN # 5:	1802		
ROW #	AOA (DEG)	Q(PSF)	CL	OD :	CM-C/4
1	-0.8828	30.2724	-0.4721	0.0445	-0.0335
2	-0.7404	29.9447	-0.4000	0.0374	-0.0276
3	-0.5964	29.7294	-0.3255	0.0324	-0.0296
4	-0.4449	30.2350	-0.2388	0.0275	-0.0246
5	-0.2933	29.6732	-0.1582	0.0256	-0.0282
6	-0.1503	30.0103	-0.0864	0.0230	-0.0225
7	-0.0048	30.3848	-0.0098	0.0221	-0.0214
8	0.1440	29.7106	0.0696	0.0224	-0.0222
9	0.2906	30.7032	0.1481	0.0234	-0.0227
10	0.4333	30.6751	0.2199	0.0249	-0.0197
1 1	0.5767	30.7125	0.2887	0.0275	-0.0179
12	0.7291	30.7500	0.3742	0.0317	-0.0191
13	0.8676	31.0028	0.4411	0.0358	0.0178
14	1.0154	30.7032	0.5161	0.0433	-0.0221
15	1.1509	30.4035	0.5761	0.0541	-0.0226
16	1.2892	30.8998	0.6316	0.0712	-0.0204
17	1.4138	30.7593	0.6732	9.0994	-0.0453
18	1.5309	30.2537	0.7078	0.1743	-0.3004
19	1.6379	30.0758	0.7160	0.1578	-0.0358
20	1.7313	30.2537	0.7101	0.1818	-0.0980
21	1.8228	30.4316	0.6929	0.2042	-0.1151
22	0.8648	30.9372	0.4368	0.0370	-0.0240
23	0.5796	30 .55 33	0.2932	0.0284	-0.0231
24	0.2834	31.0028	0.1364	0.0247	-0.0289
25	-0.0047	30.8998	-0.0096	0.0236	-0.0284
26	-0.2946	30.7593	-0.1686	0.0264	-0.0334
27	-0.5978	30.4410	-0.3276	0.0326	-0.0288

TABLE. V

CORREC	TED DATA O	F RUN # 51	803		
ROW #	AOA(DEG)		CL	CD	CM-C/4
1	-0.9016	20.1786	-0.4986	0.0424	-0.0343
2	-0.7527	20.4595	-0.4203	0.0361	-0.0307
3	-0.6109	20.7966	-0.3491	0.0317	-0.0317
4	-0.4609	20.3752	-0.2651	0.0251	-0.0187
5	-0.3103	20.2442	-0.1863	0.0243	-0.0293
6	-0.1575	20.6374	-0.0983	0.0217	-0.0221
7	-0.0115	20.7123	-0.0209	0.0227	-0.0290
3	0.1308	20.7966	0.0529	0.0219	-0.0239
9	0.2847	20.8809	0.1392	0.0225	-0.0217
10	0.4299	20.6749	0.2144	0.0235	-0.0146
11	0.5719	20.8060	0.2830	.0.0260	-0.0117
12	0.7269	21.0307	0.3728	0.0308	-0.0172
13	0.8723	20.6749	0.4440	0.0340	-0.0080
14	1.0158	21.1056	0.5170	0.0414	-0.0107
15	1.1590	20.6468	0.5853	0.0536	-0.0117
16	1.2797	20.9277	0.6215	0.0678	-0.0076
17	1.4087	21.0213	0.6697	0.0971	-0.0205
18	1.5226	20.3846	0.6926	0.1946	-0.3953
19	1.6317	20.5251	0.7058	0.1567	-0.0830
20	1.7286	20.5157	. 0.7008	0.1828	-0.1032
21	1.8135	20.5906	0. <i>6</i> 777	0.2031	-0.1187
22	0.8724	20.8809	0.4439	0.0355	-0.0180
23	0.5815	20.6936	0.2966	0.0260	-0.0148
24	0.2778	20.7779	0.1273	0.0226	-0.0202
25	-0.0131	20.5906	-0.0235	0.0219	-0.0246
26	-0.3105	20.7779	-0.1868	0.0250	-0.0319
27	-0.6123	20.3565	-0.3516	0.0313	-0.0265

Figure 16. Lift curve, centerplate mount.

Figure 17. Drag polar, centerplate mount.

Figure 18. Pitching moment curve, centerplate mount.

TABLE VI

CORREC	TED DATA O	F RUN # 52	703	E SAME III	
ROW #	AOA (DEG)	Q(PSF)	CL	CD	CM-C/4
1	-6.2505	39.4395	-0.4958	0.0248	0.0074
2	-5.2190	39.7807	-0.4212	0.0169 -	0.0191
2 3	-4.1657	39.4495	-0.3338	9.0130	0.0084
4	-3.1060	40.1219	-0.2458	0.0099	0.0049
5	-2.0654	40.0216	-0.1728	0.0065	0.0100
5	-1.0133	39.8610	-0.0983	0.0069	0.0028
7	-0.0023	40.5836	-0.0237	0.0083	-0.0072
3	1.0470	40.6839	0.0525	0.0070	0.0029
9	2.0834	40.7542	0.1334	0.0083	0.0022
16	3.1529	40.7140	0.2145	0.0097	0.0089
11	4.1833	40.5735	0.2840	0.0133	0.0046
12	5.2486	40.8545	0.3647	0.0178	0.0073
13	6.2822	41.1657	0.4362	0.0238	0.0043
14	7.3203	40.7442	0.5085	0.0332	-0.0076
15	8.3716	40.8746	0.5729	0.0438	-0.0009
16	9.4025	41.3664	0.6384	0.0637	-0.0107
17	10.4536	40.7542	0.6943	0.0922	-0.0291
18	11.4654	40.7743	0.7299	0.1215	-0.0525
19	12.4795	40.4832	0.7530	0.1509	-0.0712
20	13,4730	39.3911	0.7588	0.1815	-0.1003
21	14.4694	40.1219	0.7528	0.2043	-0.1143
22	6.2810	41.0452	0.4310	0.02 50 1	-0.0040
23	4.1850	40.4531	0.2851	0.0144	-0.0018
24	2.0951	40.9047	0.1280	0.0095	-9.0071
25	-0.0051	41.1657	-0.0283	0.0094	-0.0149
26	-2.0721	39.9915	-0.1821	0.0095	-0.0083
27	-4.1862	40.4832	-0.3412	0.0157	-0.0068

TABLE VII

RERODY	NAMIC TARE	S OF RUN #	52703		
ROW #	. AOA(BEG)	Q(PSF)	DCL	DCD	DCM-0/4
1	-6.2505	39.4395	-0.0101	-0.0092	0.0203
2	-5.2190	39.7807	-0.0121	-0.0106	0.0281
3	-4.1657	39.4495	-0.0085	-0.0111	0.0280
4	-3.1060	40.1219	-0.0117	-0.0109	0.0250
5	-2.0654	40.0216	-0.0134	-0.0102	0.0197
6	-1.0133	39.8610	-0.0145	-0.0102	0.0170
7	-0.0023	40.5836	-0.0172	-0.0094	0.0100
8	1.0470	40.6839	-0.0157	-0.0100	0.0074
9	2.0834	40.7542	-0.0178	-0.0098	0.0049
10	3.1529	40.7140	-0.0152	-0.0103	0.0073
11	4.1833	40.5735	-0.0172	-0.0106	0.0062
12	5.2486	40.8545	-0.0162	-0.0104	0.0068
13	6.2822	41.1657	-0.0188	-0.0106	0.0061
14	7.3203	40.7442	-0.0213	-0.0103	0.0013
15	8.3716	40.8746	-0.0214	-0.0103	0.0013
16	9.4025	41.3664	-0.0230	-0.0112	0.0048
17	10.4536	40.7542	-0.0214	-0.0111	0.0031
18	11.4654	40.7743	-0.0237	-0.0112	0.0020
19	12.4795	40.4832	-0.0243	-0.0118	0.0041
20	13.4730	39.8911	-0.0246	-0.0115	0.0012
21	14.4694	40.1219	-0.0248	-0.0119	0.0005
22	6.2810	41.0452	-0.0207	-0.0099	-0.0004
23	4.1850	40.4531	-0.0187	-0.01 00	0.0026
24	2.0951	40.9047	-0.0174	-0.0090	-0.0031
25	-0.0051	41.1657	-0.0170	-0.0092	0.0082
26	-2.0721	39.9915	-0.0171	-0.0087	0.0099
27	-4.1862	40.4832	-0.0158	-0.0084	0.0095

TABLE VIII

CORRE	CTED DATA OF	F RUN # 52	702	,•	
ROW #	AOA(DEG)	Q(PSF)	CL	CD	CM-C/4
1	-6.2427	30.1529	-0.4829	0.0238	0.0093
2 3	-5.2126	30.8980	-0.4108	0.0173	0.0187
3	-4.1453	30.3039	-0.3283	0.0108	0.0256
4	-3.1054	30.6865	-0.2464	0.0085	0.0096
5	-2.0594	30.3945	-0.1629	0.0066	0.0110
6	-1.0084	30.5355	-0.0894	0.0055	0.0101
7	0.0065	30.7369	-0.0093	0.0073	0.0015
8	1.0417	30.5959	0.0688	0.0083	-0 .0 038
9	2.0987	30.6060	0.1535	0.0080	0.0064
19	3.1618	30.7570	0.2275	0.0078	0.026
11	4.1932	30.7671	0.3019	0.0112	0.0213
12	5.2570	30.8778	0.3769	0.0158	0.0257
13	6.2951	30.9785	0.4558	0.0226	0.0176
14	7.3239	30.7872	0.5177	0.0328	0.0013
15	8.3844	30.7570	0.5939	0.0452	0.0098
16	9.4051	30.6261	0.6443	0.0631	0.0027
17	10.4486	30.5858	0.7023	0.0922	-0.0179
18	11.4685	30.5556	0.7351	0.1215	-0.0430
19	12.4819	70.57 5 8	0.7570	0.1514	-0.0634
20	13.4732	30.1227	0.7591	0.1798	-0.0897
21	14.4732	30.4549	0.7592	0.2059	-0.1175
22	6.2910	30.5456	0.4491	0.0245	-0.0015
23	4.1905	30.4081	0.2959	0.0132	0.0022
24	2.0844	30.4046	0.1301	0.0100	-0.0094
25	0.0020	30.7570	-0.0167	0.0101	-0.0180
26	-2.0688	30.7369	-0.1750	a.0092	-0.0076
27	-4.1848	30.3643	-0.3372	9.0136	0.0038

TABLE IX

HERODY	NAMIC TARE				
ROW #	AOA(DEG)	. Q(PSF) :	DCL	DCD	DCM-C/4
1	-6.2427	30.1529	-0.0067	-0.0094	0.0188
2	-5.2126	30.898 0	-0.0097	-0.0104	0.0240
3	-4.1453	30.3039	-0.0078	-0.0119	0.0331
4	-3.1054	30.6865	-0.0087	-0.0115	0.0287
5	-2.0594	30.3945	-0.0127	-0.0101	0.0197
6	-1.0084	30.5355	-0.0101	-0.0116	0.0250
7	0.0065	30.7369	-0.0110	-0.0104	0.0179
8	1.0417	30.5959	-0.0094	-0.0098	0.0054
9	2.0987	30.6060	-0.0098	-0.0109	.0.0093
10	3.1618	30.7570	-0.0124	-0.0109	0.0104
11	4.1932	30.7671	-0.0145	-0.0114	0.0093
12	5.2570	30.8778	-0.0121	-0.0119	0.0145
13	6.2951	30.9785	-0.0143	-0.0116	0.0119
14	7.3239	30.7872	-0.0149	-0.0114	0.0068
15	8.3844	30.7570	-0.0182	-0.0120	ø.0 0 83
16	9.4051	30.6261	-0.0199	-0.0130	0.0115
17	10.4486	30.5858	-0.0190	-0.0124	0.0077
18	11.4685	30.555 <i>6</i>	-0.0210	-0.0124	.0.0054
19	12.4819	30.5758	-0.0219	-0.0129	0.0062
20	13.4732	30.1227	-0.0223	-0.0121	0.0010
21	14.4732	30.4549	-0.0251	-0.0120	-0.0045
22	6.2910	30.5456	-0.0187	-0.0107	0.0000
23	4.1905	30.9081	-0.0154	-0.0102	-0.0006
24	2.0844	30.4046	-0.0156	-0.0089	-0.0078
25	0.0020	30.7570	-0.0175	-0.0093	0.0080
26	-2.0688	30.7369	-0.0151	-0.0089	0.0085
27	-4.1848	30.3643	-0.0138	-0.0088	0.0106

TABLE X

					*
CORREC		IF RUN # 52	701		
ROW #	AOA(DEG)	Q(PSF)	CL	CD	CN−C/4
1	-6.2698	20.2376	-0.5061	0.0256	0.0066
2	-5.2260	20.0659	-0.4310	0.0199	0.0054
3	-4.1855	19.9346	-0.3581	0.0141	0.0030
4	-3.1238	19.6519	-0.2751	0.0103	0.0095
	-2.0751	20.0659	-0.1870	0.0057	
5 6 7	-1.0229	19.9346	-0.1132	0.0067	0.0068
ž	-0.0059	20.1265	-0.0297	0.0085	-0.0038
ė	1.0464	19.9043	0.0515	0.0068	0.0157
8 9	2.0796	20.1568	0.1272	0.0041	0.0337
เย็	3.1475	20.0962	0.2073	0.0058	0.0422
11	4.1750	20.1770	0.2721	0.0086	0.0403
12	5.2513	20.0457	0.3709	0.0144	0.0376
13	6.2841		0.4378	0.0204	
		20.2275			
14	7.3462	19.9952	0.5149	0.0319	0.0106
15	8.3705	20.1770	0.5727	0.0428	0.0195
16	9.4025	20.0760	0.6400	0.0654	
- 17	10.4337	19.7428	0.6944	0.0951	-0.0168
18	11.4662	19.9447	0.7312	0.1232	- 0. 0373
19	12.4792	19.7629	0.7526	0.1531	-0.0572
20	13.4718	19.8538	0.7568	0.1829	-0.0900
21	14.4691	19.6519	0.7524	0.2050	-0.1016
22	6.2839	30.0558	0.4373	0.0228	0.0095
23	4.1783	20,3386	0.2758	0.0113	0.0194
24	2.0749	19.8437	0.1195	0.0073	0.0084
25	-0.0034	20.3284	-0.0256	0.0118	-0.0257
26	-2.0942	20.12651	-0.2183	0.0094	-0.0056
27	-4.2092	19.9548	-0.3773	0.0161	-0.005 8

TABLE XI

AERODYNAMIC TARE	S OF RUN #	52701		
ROW # AOA(DEG)	Q(PSF)	DCL	DCD	DCM-C/4
1 -6.2698	20.2376	-0.0084	-0.0085	0.0173
2 -5.2260	20.0659	-0.0106	-0.0076	0.0073
3 -4.1855	19.9346	-0.0096	-0.0088	0.0093
4 -3.1238	19.6519	-0.0138	-0.0096	0.0183
5 -2.0751	20.0659	-0.0148	-0.0104	0.0285
6 -1.0229	19.9346	-0.0125	-0.0114	0.0292
7 -0.0059	20.1265	-0.0166	-0.0101	0.0200
8 1.0464	19.9043	-0.0129	-0.0105	0.0134
9 2.0796	20.1568	-0.0169	-0.0134	0.0243
10 3.1475	20.0962	-0.0147	-0.0138	0.0297
11 4.1750	20.1770	-0.0142	-0.0145	0.0295
12 5.2513	20.0457	-0.0112	-0.0135	0.0266
13 6.2841	20.2275	-0.0170	-0.0136	0.0267
14 7.3462	19.9952	-0.0170	-0.0117	0.0107
15 8.3705	20.1770	-0.0175	-0.0124	0.0146
16 9.4025	20.0760	-0.0210	-0.0140	0.0215
17 10.4337	19.7428	-0.0183	-0.0121	0.0104
18 11.4662	19.9447	-0.0199	-0.0133	0.0148
19 12.4792	19.7629	-0.0190	-0.0136	0.0163
20 13.4718	19.8538	-0.0200	-0.0134	0.0120
21 14.4691	19.6519	-0.0194	-0.0131	0.0077
22 6.2839	20.0558	-0.0233	-0.0110	0.0053
23 4.1783	20.3385	-0.0198	-0.0127	0.0175
24 2.0749	19.8437	-0.0210	-0.0103	0.0020
25 -0.0034	20.3284	-0.0218	-0.0089	0.0104
26 -2.0942	20.1265	-0.0224	-0.0080	0.0126
27 -4.2092	19.9548	-0.0217	-0.0051	-0.0151

VI. CONCLUSIONS

A. DATA ANALYSIS

Comparison of the three-strut mount and centerplate mount results was best achieved by inspection of the last three plots in the previous section. The lift curve, drag polar and pitching moment curve will again be examined in order.

The lift curve data for both runs yields essentially the same lift curve slope. The slope value of 0.072 deg-1 compares favorably with the theoretical value of approximately 0.073 deg^{-1} . The centerplate mount yielded a C_{Lmax} of 0.7588 vice 0.7210 for the three-strut mount. Direct comparison of the measured $C_{l,max}$ was not possible because the test Reynolds numbers were less than those on available published data. It is, however, roughly estimated that the $C_{l,max}$ attainable would be on the order of 0.8 and so close agreement is indicated. Possible cause for the centerplate to exhibit a higher $C_{l,max}$ may be attributed to aerodynamically smoothing the wing attach points with modelling clay/tape and removal of the three-strut interference source. Curve fitting the data points for the centerplate case indicates that its curve may fall very slightly below the three-strut curve. This would yield a very small negative C_1 intercept for $\alpha = 0$. If the actual trace were lower, a possible cause might be a difference in bullet-fairing attitude with the wing-on adapter. Inspection of the drag polar illustrated the need for accurate aerodynamic tares. The $C_{\rm Dmin}$ at $C_{\rm L}$ = 0 for the three-strut mount is 0.0250 compared to 0.0083 for the aerodynamically corrected centerplate coefficient. This is a gross discrepancy, and one which prompted the construction of a mount for which aerodynamic tares could be more easily acquired. Inspection for the drag tare at the corresponding angle of attack for this condition yielded a drag tare coefficient of 0.0094. This compares very favorably with the estimate of 0.0098 calculated in section IV, part F. Comparison of the centerplate $C_{\rm D}$ value appears favorable with respect to section data corrected for aspect ratio, but again a direct comparison is not obtainable because of $R_{\rm N}$ mismatch.

The effect of the unfaired aft strut "disappearing" into the floor was exhibited at higher angles of attack. For each increasingly higher angle of attack condition, the values of the respective C_D 's approached each other. The uncompensated contribution of the faired struts became small by comparison to the large C_D measured, and the wetted area of the aft strut was reduced. When C_L is plotted vs. C_D , this effect showed up as a tendency toward vertical stacking of the data points from both cases at the higher C_1 's.

Finally, inspection of the pitching moment curve reveals several notable discrepancies for the three-strut case, run 051501. The pronounced slope of the linear range indicates that the quarter chord point is aft of the actual aerodynamic

required for a chord of 0.5 feet. An error of only a few hundredths of an inch readily shows up. The displacement of the curve to the right indicates the uncorrected interference effects of the three-strut mount, and possibly to a lesser extent, unavoidable limits on airfoil uniformity at this small scale. The airfoil is nominally accurate in contour to 0.001 inches to the quarter chord point and to 0.003 inches thereafter. The centerplate plot of run 052703 showed that marked improvement was available with aerodynamic tares. The relatively large scatter exhibited by the data points was attributed to the small scale and working close to the limits of the balance resolution.

Possible biasing was also noted for the centerplate pitching moment case, in that the repeatability check points predominantly fall to the right for each Q tested. Attempts at localizing this within the data were not conclusive, and the need for additional data points would be indicated for work in which a precise pitching moment was required. Resolution of $C_{M\bar{C}/4}$ inferred by the 27 data points of the presented runs is on the order of 0.005. The pitching moment curve for the centerplate mount does, however, show a considerable improvement over the three-strut mount in that it falls much closer to zero for its constant range. Also, the slope of the faired curve appeared more nearly vertical, indicating a better coincidence of the quarter-chord point with the wing

aerodynamic center. The scatter of the data points somewhat tempered this last observation. A possible fix for the scatter may involve a change of the drag-moment strain gauges on the modified balance to improve the conditioning of the reduction matrix as mentioned by Concannon in Ref. 1, pg. 59.

Summarizing, the centerplate mount has demonstrated a large improvement by incorporating readily attainable aerodynamic tares. The proof of concept experiment displayed excellent agreement with theoretical lift curve slope and indicated "predictable" tendencies for the drag polar and pitching moment curves. Mount flexibility was exhibited by readily adapting an existing calibration wing. The accuracy improvement available with centerplate mounting, coupled with an excellent data system and wall correction program, represents a powerful tool for academic endeavors and independent research on airframe configurations.

B. RECOMMENDATIONS

The single most disturbing hardware problem involved in the study was the scatter of the data points for the pitching moment coefficient. While this parameter is among the hardest to accurately measure in a small wind tunnel, it is felt that the additional effort to change strain gauges may be warranted if tunnel utilization improves. The current resolution would suffice for any academic use, but the uncertainty may be too great for some engineering work requiring a very precise pitching moment coefficient.

The longest current delay in data reduction is the task of manually reentering all the raw data into the department's HP9830 computer for reduction. The microprocessor data acquisition system does have the capability for instant data reduction but at the loss of the raw data. It also has a punched paper tape output capability. It is felt that the raw data should be retained for system analysis and trouble shooting, but that some additional effort be invested toward interfacing the punched paper tape as a direct input to a software reduction program in one of the available, digital computers.

Further work remains to obtain more complete and current tunnel calibrations including pressure distributions and flow inclinations. It is also recommended that future studies in the tunnel include methods of Reynolds number compensation such as boundary layer tripping, since restricted Reynolds number capability is an inherent tunnel limitation.

Finally, it is felt that this study has contributed to the practicality of the tunnel and that the Department of Aeronautics will see greater utilization of this facility. It is hoped that the advances in modern tunnel research and improved capabilities of this tunnel recommend themselves for a larger share of the Department's curricula and research.

APPENDIX A

BASIC AERODYNAMIC AND TUNNEL RELATIONS

A raw data row consists of geometric angle of attack, dynamic pressure, and three strain gauge outputs that have been numerically averaged during a two second sampling interval. The first strain gauge output is directly proportional to lift. Configuration of the balance mixes the drag and moment, consequently, the remaining two strain gauges outputs must be resolved by a calibration matrix. The elements were determined by static loadings and correlation. The calibration matrix to convert gauges outputs in volts D.C. to lift drag and moment force in lbs. was:

The coefficients generated by the reduction programs are the non-dimensional coefficients C_L , C_D , and $C_{M\bar{C}/4}$ given by the relations:

$$C_L = L/QS$$
 $C_D = D/QS$
 $C_{M\bar{c}/4} = M\bar{c}/4/QS\bar{c}$

C_L was assumed as the independent variable and was only corrected for aerodynamic tares. Geometric angle of attack, and drag were corrected for wall corrections and aerodynamic tares. All data was corrected for wind-off dead weight zero readings and therefore, only the differential readings due to aerodynamic loading were reduced.

Wall corrections take the following form of those on pg. 341, 343 of Ref. 4:

$$\alpha_{\text{aero}} = \alpha_{\text{geom}} + \Delta \alpha$$

Where $\Delta \alpha = \frac{s}{c} 57.3 \, C_L = 0.6102 \, C_L \, deg.$

$$c_D = c_{Du} + \Delta c_D$$

Where $\Delta C_D = \delta \frac{s}{c} C_L^2 = 0.0106 C_L^2$

 $S = Wing area, 1.5 ft^2$

C = Tunnel cross-sectional area, 14.5 ft²

 δ = Tunnel factor given by Pope on pg. 343 of Ref. 2,

= 0.103 for the 3.5 x 5.0 octagonal configuration $\Delta C_{\mbox{\scriptsize M}}$ was not utilized since the test was wing alone.

No tares other than dead weight were available for the three-strut mount. Wing-off runs were obtained to provide aerodynamic tares for the centerplate mount support situation.

APPENDIX B

MOUNT TRANSFER EQUATIONS

The focal line about which the three component balance resolves lift, drag and moment is centered 25.500 inches above the main beam and on the centerline of the tunnel test section. The three-strut mount wing trunnions are coincident with this axis and as long as the wing A.C. was also coincident no further corrections would be necessary. Plans of the calibration wing indicate that the A.C. was one-tenth inch above the focal axis at zero model angle when on the three-strut mount. The simple moment transfer resulted and the relation can be seen in figure 19.

$$C_{M} = C_{M}' - \frac{h}{c} \cos \alpha C_{D} + \frac{h}{c} \sin \alpha C_{L}$$

The main trunnion of the centerplate mount is necessarily below this focal axis and so the aerodynamic forces must be transferred from the model to the focal axis. This relation is slightly different since the pivot axis is not coincident with the focal axis. Also, the wing is located above the upper surface of the centerplate. The equation follows and the relation may be seen on figure 20.

$$C_{M} = C_{M}' + (h \sin \alpha C_{L} + (1.1667 - h \cos \alpha)C_{D})/\bar{c}$$

Note that the above equations are in non-dimensional form and those on the figures were in dimensional form for the purpose of clarity. Dividing the figure equations by QSC would yield equivalent non-dimensional relations.

Figure 19. Three-strut moment transfer relations.

Figure 20. Centerplate moment transfer relations.

APPENDIX C

The following data was logged with a new microprocessor data acquisition system. The data variations in format and sequence represent a learning curve as familiarity with the system increased. Each run consists of a minimum of two wind-off zeros and 27 angle of attack conditions. Initial dead weight tares were taken at 21 conditions and two zero checks, but were later expanded to encompass the six extra check point conditions for fully redundant repeatability checks. The initial and final wind-off zeros for runs on the 18th of May were included in the calculation of each run's data. Thereafter, individual wind-off zeros were taken with each run or were repeated as the final and initial data rows in consecutive runs. Initial and final wind-on data rows for the runs of the 27th of May were checked for consistency and then dropped from reduction as the zero point was already redundant within the 27 reduced data rows. In initial weight tare runs for which the precise angle of attack was not required, the angle of attack values were rounded to the nearest integer to speed data entry. Slight deviation between raw data and computer storage values only reflects HP9830 computer rounding for fixed -4 format and not the stored value.

Wind-on to wind-off times for the 27 angle of attack positions settled to about eight minutes with manual angle of attack settings. Programmed microprocessor setting promises to reduce this interval by a factor of one half.

The computer file record of each data group immediately follows the respective raw data.

TABLE XII

RUN NO: 051501 .. 15 MAY 1777 3 STRUT SUPPORT CALIB. WING

*	CH. O	СН• 1	CH. 2	CH• 3	CH• 4	
030	- • 6007	4.397	• 5125	6-794E-02	• 4039	
031	- • 4986	4 • 427	• 4633	8 • 827 E-02	• 37 51	
032	- • 3979	4 • 405	· 4093	• 1054	• 3544	
033	- • 2978	4.358	• 3591	• 1195	• 3329	
034	1966	4-461	• 3135	• 1262	• 3262	
035	-9.753E-02	4 • 507	• 2613	• 1303	• 3189	
036	1.213E-03	4.470	-2111	• 1340	• 3142	
037	• 1016	4 - 427	• 1585	• 1348	• 3125	
038	• 1970	4-474	• 1135	• 1321	• 3161	
039	• 2990	4. 510	6-167E-02	• 1264	• 3235	
040	• 4006	4 • 548	1 · 196E-02	• 1169	• 3347	
041	. 4994	4 • 583	- 3.835E-02	• 1047	• 3528	
042	• 6012	4.530	-8-555E-05	8.964E-02	• 37 27	
043	• 7029	4.568	- 1358	7 • 08 4E- 02	• 3989	
044	•8017	4 • 560	- • 1777	3.720E-02	• 4443	
045	·8985	4 • 49 2	- • 2082	-1.807E-02	• 5228	
046	• 9999	4 • 461	- • 2343	-• 1020	• 6419	
047	1 • 104	4 • 38 1	- • 2438	-• 1905	• 7706	
048	1 • 207	4 • 370	- • 2503	- 2829	• 9039	
049	1 • 301	4 • 400	- • 2479	- • 3637	1.021	
050	1 - 400	4 • 29 1	- • 2285	- • 4160	1.098	
051	• 6013	4 • 485	-7.762E-02	9.221E-02	. 3690	
052	• 3977	4 • 39 1	2.206E-02	• 1200	• 3316	
053	• 2003	4 • 402	- 1144	• 1340	• 3130	
054	H. 343 E-03	4.353	•2119	• 1366	• 3110	
055	- 1984	4-197	• 3090	• 1319	. 3164	
056	- • 3946	4 • 258	• 4065	• 1113	. 3466	
057	1-223E-03	-7 · 123E-03	• 2062	· 2029	• 2051	
058						

TABLE XIII

RUN NO): 51501				
ROW #	сне	CH1	CH2	СНЗ	CH4
1	0.0007	0.0006	0.2071	0.2035	0.2053
2	-0.6007	4.3970	0.5125	0.0679	0.4039
3	-0.4986	4.4270	0.4633	0.0883	0.3751
4	-0.3979	4.4050	0.4093	0.1054	0.3544
5	-0.2978	4.3580	0.3591	0.1195	0.3329
234567	-0.1966	4.4610	0.3135	0.1262	0.3262
7	-0.0975	4.5070	0.2613	0.1303	0.3189
8	0.0012	4.4700	0.2111	0.1340	0.3142
8 9	0.1016	4.4270	0.1585	0.1348	0.3125
19	0.1970	4.4740	0.1135	0.1321	0.3161
11	0.2990	4.5100	0.0617	0.1264	0.3235
12	0.4006	4.5480	0.0120	0.1169	. 0.3347
13	0.4994	4.5830	-0.0384	0.1047	0.3528
14	0.6012	4.5300	-0.0822	0.0896	0.3727
15	0.7029	4.5680	-0.1358	0.0708	0.3989
16	0.8017	4.5600	-0.1777	0.0372	0.4443
17	0.8985	4.4920	-0.2082	-0.0181	0.5228
18	0.9999	4.4610	-0.2343	-0.1020	0.6419
19	1.1040	4.3810	-0.2438	-0.1905	0.7706
29	1.2070	4.3700	-0.2503	-0.2829	0.9039
21	1.3010	4.4000	-0.2479	-0.3637	1.0210
22	1.4000	4.2910	-0,2285	-0.4160	1.0980
23	0.6013	4.4856	-0.0776	0.0922	0.3690
24	0.3977	4.3910	0.0221	0.1200	0.3316
25	0.2003	4.4020	0.1144	0.1340	0.3130
26	0.0023	4.3530	0.2119	0.1366	0.3110
27	-0.1984	4.1970	0.3090	0.1319	0.3164
58	-0.3946	4.2580	0.4065	0.1113	0.3466
29	0.0012	-0.0071	0.2062	0.2029	0.2051
RUN #	51501	DATA IS STOR	PER IN FILE	# 8	

TABLE XIV

RUN NO: STATIC CALIB. ... 15 MAY 1977 AT 1605

•	CH. O	CH • 1	CH• 5	CH• 3	CH- 4
006	1.223E-03	1 • 242E-03	- 2049	• 2019	• 2050
007	- • 6034	1.223E-03	· 2053	• 2018	- 2046
800	5001	1.232E-03	· 2059	. 2017	· 2064
009	- • 4000	1 · 223E-03	· 2048	. 2019	· 2063
010	- • 30 18	1.223E-03	. 2052	• 2020	· 2060
011	-• 19 68	1.223E-03	• 2059	. 2021	· 2056
012	-9.770E-02	1.223E-03	- 2056	. 2024	· 2043
013	-1.495E-03	1.223E-03	· 2058	. 2028	• 2057
014	9.870E-02	1.223E-03	· 2064	• 2030	· 2048
015	.2001	1 · 223E-03	- 2057	. 2035	. 2067
016	• 30 19	1 · 223E-03	- 2054	• 2039	· 2063
017	· 4006	1.223E-03	· 2059	. 2044	· 2048
018	• 5020	1.223E-03	• 2063	• 2051	- 2061
019	• 60 39	1.223E-03	- 2062	· 2058	· 2053
020	• 7003	1 · 19 4E- 03	. 2063	. 2062	• 2056
021	-8043	1 · 19 4E-03	. 2065	. 2066	· 2035
022	•9034	1 · 137E-03	. 2069	• 2073	. 2024
023	1.002	1.099E-03	2067	. 2084	. 2031
024	1.100	1.070E-03	. 2063	. 2096	· 2020
025	1.203	5-264E-04	• 2063	. 2104	· 2005
026	1 • 300	7 · 648E-04	. 2064	.2113	. 2009
027	1 • 40 3	1 · 450E-04	. 2062	. 2124	- 2005
028 029	7 · 362E-04	5-836E-04	• 207 1	• 2035	• 2053

TABLE XV

RUN NO	51577				
ROW #	сна	CH1	CH2	CH3	CH4
1	0.0000	0.0000	0.2049	0.2019	0.2056
2	-6.0000	0.0000	0.2053	0.2018	0.2046
2 3 4	-5.0900	0.0000	0.2059	0.2017	0.2064
	-4.0000	0.0000	0.2048	0.2019	0.2063
5	-3.6000	0.6066	0.2052	0.2020	0.2060
6	-2.9999	0.0000	0.2059	6.2021	0.2056
7	-1.0000	6.6666	0.2056	0.2024	0.2043
56739	0.0000	0.0000	0.2058	0.2028	0.2057
	1.0000	0.0000	0.2064	0.2030	0.2048
10	2.0000	8.6999	0.2057	0.2035	0.2067
11	3.9999	0.0000	0.2054	6.2039	0.2063
12	4.0000	0.0000	0.2059	0.2044	0.2048
13	5.9999	0.0000	0.2063	0.2051	0.206t
14	6.0000	θ . $\theta\theta\theta\theta$	0.2062	0.2058	0.2053
15	7.0000	0.0000	0.2063	0.2062	0.2056
16	8.0000	0.0000	0.2065	0.2066	0.2935
17	୨.ପ୍ରତ୍ର	0.0000	0.2069	0.2073	0.2024
13	្រំ. មិមិម្	0.0000	0.2067	9.2084	0.2031
19	11 9000	0.0000	0.2063	6.2096	0.2020
20	12.0000	0.0000	0.2063	0.2104	0.2005
21 22	13.0000	0.0000	0.2064	0.2113	0.2009
22	14.8888	a.000 0	0.2062	0.2124	0.2005
23	6.0000	0.0000	0.2062	0.2058	0.2053
24	4.0000	9.0999	0.2 05 9	0.2044	0.2048
25	2.0000	ପ. ପ୍ରଥନ	0.2057	0.2035	0.2067
26	. 0.0000	0.0000	0.2 05 8	0.2028	0.2057
27	-2.0000	0.0000	0.2059	0.2021	0.2056
38	-4.0000	0.0000	0.2048	0.2019	0.2063
29	0.0000	0.0000	0.2071	0.2035	0.2053
民以付 兼	51577 DA	ATA IS STOP	ED IN FILE	# 7	

TABLE XVI

MIN 51801. G= 40 PSF

	CH. O	CH • 1	CH• 2	СН• 3	CH•	4
037	- • 5973	4 • 392	• 50 60	6.868E-05	• 3980	
038	- • 4986	4 • 29 1	• 4536	9.063E-02	• 3675	
	3926	4. 379	4044	1068	3463	
040	- • 3979	4 • 387	4081	• 1965	• 3462	
041	- • 2990	4.243	• 3514	• 1210	• 3262	
042	1966	4.240	• 3044	• 1291	• 3157	
043	-9.740E-02	4 • 402	• 2611	• 1319	• 3118	
044	1.232E-03	4.399	• 2077	• 1342	• 309 1	
045	• 1015	4 • 387	• 1597	• 1338	• 3092	
046	• 2002	4 • 487	• 1081	• 1307	• 3126	
047	• 3000	4.444	5.973E-02	• 1263	• 3178	
048	• 400 7	4 • 48 1	1.063E-02	• 1177	- 3302	
049	• 4994	4. 459	-3.304E-02	• 1064	• 3467	
050	• 6015	4 • 47 1	-8.295E-02	9 • 153E-02	. 3675	
051	•7004	4.454	- 1296	7 - 331E-02	. 3906	
052	.8007	4 • 497	- • 1739	3.828E-02	433 1	
053	. 9008	4 • 451	2074	-1.848E-02	• 5215	
054	1.000	4.465	2376	- 1050	. 6442	
055	1.102	4 • 438	- • 2523	- • 1958	• 77 57	
056	1.201	4 • 457	- • 2647	2884	. 3098	
057	1 • 300	4 • 353	2516	- • 3563	1.007	
2.	1 . 400	4 • 339	- • 2289	- • 4160	1.093	
059	• 5984	4.422	-7.739E-02	9 · 221E-02	. 3648	
060	· 4007	4 • 49 6	1.222E-02	• 1171	- 3314	
061	. 2002	4-411	• 1137	• 1318	.3116	
062	1 . 223E-03	4.386	. 2046	• 1341	· 309 1	
063	1967	4-255	• 3059	• 1302	. 3143	
064	3979	4 • 351	• 4101	• 1073	. 3477	
065	1 . 223E-03	4 • 329	. 2091	• 1354	- 307 1	
066			2001			
		\$11				

TABLE XVII

RUN NO	: 51801				
RON # 234 5567	CH0 0.0012 -0.5973 -0.4986 -0.3979 -0.2990	CH1 0.0013 4.3920 4.2910 4.3870 4.2430	CH2 0.2035 0.5060 0.4536 0.4081 0.3514	CH3 0.2034 0.0687 0.0906 0.1065 0.1210 0.1291	CH4 0.2034 0.3980 0.3675 0.3462 0.3262 0.3157
7 8 9 10	-0.1966 -0.0974 0.0012 0.1015 0.2002 0.3000	4.2400 4.4020 4.3990 4.3870 4.4870 4.4440	0.3044 0.2611 0.2077 0.1597 0.1081 0.0597	0.1319 0.1342 0.1338 0.1307 0.1263	0.3118 0.3091 0.3092 0.3126 0.3178
12 13 14 15 16	0.4007 0.4994 0.6015 0.7004 0.8007	4.4810 4.4590 4.4710 4.4540 4.4970	0.0106 -0.0336 -0.0836 -0.1296 -0.1739	0.1177 0.1064 0.0915 0.0733 0.0383	0.3302 0.3467 0.3675 0.3906 0.4381
17 18 19 20 21 22	0.9008 1.0000 1.1020 1.2010 1.3000	4.4510 4.4650 4.4380 4.4570 4.3530 4.3390	-0.2074 -0.2376 -0.2523 -0.2647 -0.2516 -0.2289	-0.0185 -0.1050 -0.1958 -0.2884 -0.3563 -0.4160	0.5215 0.6442 0.7757 0.9092 1.0070 1.0930
23 24 25 26 27	0.5984 0.4007 0.2002 0.0012 -0.1967	4.4220 4.4960 4.4110 4.3860 4.2550	-0.0774 0.0122 0.1137 0.2046 0.3059	0.0922 0.1171 0.1318 0.1341 0.1302	0.3648 0.3314 0.3116 0.3091 0.3143
28 29 RUN #	-0.3979 0.0012	4.3510 0.0166 ATA IS STOR	0.4101 0.2015 ED IH FIL	0.1073 0.2021 E# 10	0.3477 0.2033

TABLE XVIII

RIN 51802. Q=30 PSF

*	CH. O	CH.	1	Сн. 2	CH• 3	CH.	4	
067	- • 5947	3.242		. 4246	• 1060	• 3440		
068	- • 49 63	3 - 207		• 3883	.1210	. 3213		
069	3978	3-184		• 3526	• 1345	- 3047		
070	2992	3 • 238		• 3145	• 1423	· 29 38		
07 1	- 1967	3-178		• 2754	• 1498	2833		
072	-9.757E-02	3.214		• 2429	• 1529	. 2785		
073	1-165E-03	3 - 254		. 2075	• 1546	• 2755		
07 4	• 1015	3.182		• 1699	• 1553	• 27 47		
075	• 2002	3-288		.1312	• 1525	. 2787		
07 6	• 2991	3 • 28 5		9.801E-02	• 1482	- 2849		
077	• 4005	3 - 289		6. 402E-02	• 1415	. 2934		
078	• 5008	3 - 293		2.374E-02	• 1330	3057		
079	• 5984	3.320		-9.879E-03	• 1228	· 3207		
080	• 7005	3 • 288		-4-445E-02	• 1079	- 3419		
08 1	• 7994	3.256		-7 - 017 E-02	8 • 226E-08	• 3761		
082	• 9 0 3 8	3 - 309		- 1009	3.514E-02	. 4397		
083	1.003	3 - 294		1202	-2.544E-02	• 5317		
084	1 • 099	3.240		- • 1308	-8.801E-02	6225		
085	1.201	3 • 221		1322	- 1511	.7141		
086	1 • 298	3.240		- 1326	2111	.8002		
087	1 • 400	3.259		1259	2646	8783		
088	• 5982	3.313		-7 • 17 1E-03	• 1229	. 3214		
089	• 4007	3.272	•	6-359E-02	. 1426	• 29 39		
090	• 2002	3 • 320	-	• 1370	• 1519	· 2826		
09 1	1 · 223E-03	3.309		• 2078	• 1539	. 2793		
092	1966	3.294		• 2797	· 1490	· 2863		
093	- • 3979	3.250		• 3575	• 1328	• 3072		
09 4								

TABLE XIX

RUN NO): 51802				
ROW # 1234567	0.0012 -0.5947 -0.5947 -0.4963 -0.3978 -0.2992 -0.1967 -0.0976	CH1 0.0013 3.2420 3.2070 3.1840 3.2380 3.1780 3.2140	CH2 0.2035 0.4246 0.3883 0.3526 0.3145 0.2754 0.2429	CH3 0.2034 0.1060 0.1210 0.1345 0.1423 0.1498 0.1529	CH4 0.2034 0.3440 0.3213 0.3047 0.2938 0.2833
9 10 11 12 13 14	0.0012 9.1015 0.2002 0.2991 0.4005 0.5008	3.2540 3.2540 3.1820 3.2850 3.2850 3.2890 3.3200	0.2075 0.1699 0.1312 0.0980 0.0640 0.0237	0.1546 0.1553 0.1525 0.1482 0.1415 0.1330 0.1228	0.2755 0.2747 0.2787 0.2849 0.2934 0.3057 0.3207
15 16 17 18 19	0.7005 0.7994 0.9038 1.0030 1.0990	3.2880 3.2560 3.3090 3.2940 3.2400	-0.0099 -0.0445 -0.0702 -0.1009 -0.1202 -0.1308	0.1079 0.0823 0.0351 -0.0254 -0.0880	0.3419 6.3761 0.4397 0.5317 0.6225
20 21 22 23 24 25	1.2010 1.2980 1.4000 0.5982 0.4007 0.2002	3.2210 3.2400 3.2590 3.3130 3.2720 3.3200	-0.1322 -0.1326 -0.1259 -0.0072 0.0636 0.1370	-0.1511 -0.2111 -0.2646 0.1229 0.1426 0.1519	0.7141 0.8002 0.8783 0.3214 0.2939 0.2826
26 27 28 29 RUH #	0.0012 -0.1966 -0.3979 0.0012 51802 DF	3.3090 3.2940 3.2600 0.0166 ATA IS STOR	0.2078 0.2797 0.3575 0.2015 ED IN FILE	0.1539 0.1490 0.1328 0.2021 E# 11	0.2793 0.2863 0.3072 0.2033

TABLE XX

HUN 51803, Q=20 PSF

	CH• 0	CH• 1	CH• 2	СН∙ 3	CH• 4	
09 5	- • 5974	2.164	• 3586	• 1423	• 29 15	
096	- • 4962	2.194	• 3356	• 1503	. 2796	
097	- • 3979	2.230	• 3149	• 1570	• 27 19	
098	2992	2.185	• 28 61	• 1643	. 2601	
099	1966	2.171	• 2610	• 1693	• 2543	
000	-9.751E-02	2.213	· 2341	• 1706	• 2522	
00 1	1.223E-03	2.221	• 209 6	• 17 15	• 2522	
002	9.852E-02	2 • 230	• 18 50	• 1711	• 2516	
003	• 1997	2.239	• 1568	• 1700	• 2524	
004	• 2991	2.217	• 1341	• 1672	• 2559	
005	• 3992	2.231	• 1105	• 1624	• 2618	
006	• 4994	2 • 255	8 • 09 4E-02	• 1569	• 27 10	
007	• 6014	2.217	6-025E-02	• 1503	. 2793	
008	• 7003	2.263	3-254E-02	• 1381	• 2961	
009	. 8018	2.214	1.452E-02	• 1196	• 3208	
010	• 9005	2.244	6.504E-04	9 • 240E-02	• 3573	
011	1.0000	2.254	-1.678E-02	4. 410E-02	· 4272	
012	1 • 100	2.186	-1.699E-02	4.942E-03	4857	
013	1.201	2.201	-2.224E-02	-3.561E-02	• 5487	
014	1 • 301	2.200	-2.173E-02	-7.521E-02	• 6077	
015	1 • 400	2.208	-1-462E-02	- • 1074	• 6547	
016	• 6015	2.239 .	5-906E-02	• 1505	· 2801	
017	• 4005	2.219	• 1076	• 1642	· 2603	
018	- 2001	5 • 558	• 1617	• 1699	• 2530	
019	1 • 223E-03	2.208	• 2107	• 1721	• 2506	
050	- 1965	2 • 228	• 2632	• 1686	• 2558	
021	- • 3978	2.183	• 3136	• 1579	• 269 6	
023	1 • 223E-03	1 • 639 E-02	• 2017	• 2013	• 2027	
	1 - 223E-03	1 • 662E-02	.2015	• 2021	• 2033	
024			į			

TABLE XXI

RUN NO): 51803				
DOLL H	cue		A110	0110	3 6 244
ROW #	CHO	CH1	CH2	CH3	CH4
1	0.0012	9.9913	0.2035	0.2034	0.2034
2	-0.5974	2.1640	0.3586	0.1423	0.2915
3	-0.4962	2.1940	0.3356	0.1503	0.2796
4 5 6 7 8 9	-0.3979	2.2300	0.3149	0.1570	0.2719
5	-0.2992	2.1850	0.2861	0.1643	0.2601
Б	-0.1966	2.1710	0.2610	0.1693	0.2543
7	-0.0975	2.2130	0.2341	0.1706	0.2522
8	0.0012	2.2210	0.2096	0.1715	0.2522
	0.0985	2.2300	0.1850	0.1711	0.2516
10	0.1997	2.2390	0.1568	0.1700	0.2524
11	0.2991	2.2170	0.1341	0.1672	0.2559
12	0.3992	2.2310	0.1105	0.1624	0.2618
13	0.4994	2.2550	0.0809	0.1569	0.2710
14	0.6014	2.2170	0.0603	0.1503	0.2793
15	0.7003	2.2630	0.0325	0.1381	0.2961
16	0.8018	2.2140	0.0145	0,1196	0.3208
17	0.9805	2.2448	0.0007	0.0924	0.3573
18	1.0000	2.2540	-0.0168	0.0441	0.4272
19	1.1000	2.1860	-0.0170	0.0049	0.4857
20	1.2010	2.2010	-0.0222	-0.0356	0.5487
21	1.3010	2.2000	-0.0217	-0.0752	0.6077
22	1.4000	2.2080	-0.0146	-0.1074	0.6547
23	0.6015	2.2390	0.0591	0.1505	0.2801
24	0.4005	2.2190	0.1076	0.1583 0.1642	0.2603
25	0.2001	2.2280		0.1699	0.2530
26	0.0012	2.2200	0.1617		
27	-0.1965	2.2080	0.2107	0.1721	0.2506
		2.2280	0.2632	0.1686	0.2558
28	-0.3978	2.1830	0.3136	0.1579	0.2696
29	0.0012	0.0166 0.0	0.2015	0.2021	0.2033
RUN #	51863 D	ATA IS STOR	ED IN FILE	# 12	

TABLE XXII

18 MAY 1977 WIND OFF BALANCE READINGS 1500

FEADY SCAN

*	CH. O	. CH- 1	CH• 2	CH• 3	CH• 4
006	1.223E-03	1 • 223E-03	- 2010	• 2019	• 2032
007	6006	1 · 223E-03	. 2014	• 2015	· 2038
008	4986	1 · 223E-03	. 2012	• 2015	· 2034
009	3997	1 · 223E-03	-2014	· 2017	· 2041
010	- • 2987	1 · 223E-03	• 2016	• 2016	• 2054
011	- 1995	1.223E-03	• 2019	• 2020	• 2034
012	-9.728E-02	1.232E-03	• 2022	• 2023	· 2042
013	1.223E-03	1 · 223E-03	. 2026	- 2028	· 2031
014	• 1016	1.223E-03	. 2019	· 20 29	• 2030
015	• 2001	1.232E-03	• 2019	• 2035	. 2020
016	• 2992	1-242E-03	• 2030	• 2042	· 2025
017	• 4007	1 · 223E-03	. 2021	• 2045	. 2022
018	• 4994	1.223E-03	• 2030	• 2052	- 2017
019	• 6021	1.270E-03	· 2032	• 2059	• 2024
020	• 7003	1.280E-03	. 2025	• 2062	· 2017
021	• 7998	1-242E-03	· 2028	· 20 68	· 2005
022	•9009	1.280E-03	. 2033	· 2077	· 2001
023	1.000	1.261E-03	.2026	· 2086	· 2007
024	1 • 100	1.251E-03	• 2030	· 209 5	• 1990
025	1.201	1-404E-03	• 2035	• 2107	• 1977
026	1 • 300	1 • 299 E-03	· 2023	• 2113	• 1979
027	1 • 400	1 • 308E-03	- 2028	• 2124	• 1964
028	• 5982	1 • 289 E-03	• 2034	• 2059	- 2011
089	• 3698 • 4006	1 • 337 E - 03 1 • 337 E - 03	• 2031	• 2048 • 2048	• 2021 • 2020
030	• 2001	1.337E-03	2027	• 2039	• 2023
032	1.223E-03	1.299E-03	• 2029	• 2033	• 2027
033	1967	1 • 337 E-03	2024	• 2025	2025
034	- • 3977	1 • 537 E- 03	• 2017	• 2027	• 2030
035	1.232F-03	1 • 308 E- 03	2035	• 2034	2034
036	2022 00	0002 00	2000	. 2004	- 2007

TABLE YXIII

RUN NO	51877				
ROW #	сна	CH1	СН2	снэ	CH4
1	0.0000	0.0000	0.2010	0.2019	6.2032
_	-6.0000	0.0000	0.2014	0.2015	0.2038
3	-5.0000	0.0000	0.2012	0.2015	0.2034
4	-4.0000	0.0000	0.2014	0.2017	0.2041
5	-3.0000	0.0000	0.2016	0.2016	0.2054
234567	-2.0000	0.0000	0.2019	0.2020	0.2034
ž	-1.0000	0.0000	0.2022	0.2023	0.2042
8	0.0000	0.0000	0.2026	0.2028	0.2031
ğ	1.0000	0.0000	0.2019	0.2029	0.2030
10	2.0000	9.9999	0.2019	0.2035	0.2020
11	3.0000	0.0000	0.2030	0.2042	0.2025
12	4.0000	0.0000	0.2021	0.2045	0.2022
13	5.0000	0.0000	0.2030	0.2052	0.2017
14	6.0000	0.0000	0.2032	0.2059	0.2024
15	7.0000	0.0000	0.2025	0.2062	0.2017
16	8.0000	0.0000	0.2028	0.2068	0.2005
17	9.0000	9.0000	0.2033	0.2077	0.2001
is	10.0000	0.0000	0.2026	0.2086	0.2007
19	11.0000	0.0000	0.2030	0.2095	0.1190
20	12.0000	0.0000	0.2035	0.2107	0.1977
21	13.0000	0.0000	0.2023	0.2113	0.1979
22	14.0000	0.0000	0.2028	0.2124	0.1964
.23	6.0000	0.0000	0.2034	0.2059	0.2011
24	4.0000	9.9999	0.2031	0.2048	0.2020
25	2.0000	0.0000	0.2027	0.2039	0.2023
26	0.0000	0.0000	0.2029	0.2033	0.2027
27	-2.0000	0.0000	0.2024	0.2025	0.2025
28	-4.0000	0.0000	0.2017	0.2027	0.2030
29	0.0000	0.0000	0.2035	0.2034	0.2034
RUN #		DATA IS STOR			

TABLE XXIV

RUN 052602 ON 26 MAY 1977
PLATE PLUS FAIRING (WING OFF)
NOMINAL Q= 40 PSF

SCAN

The second secon

#-	CH. 0	CH • 1	CH• 2	CH• 3	Сн• 4
064	.0122	• 0158	.0079	• 00 42	.0012
065	.0122	4 • 47 5	0024	- • 0239	-0418
066	-5.971	4-467	0026	• 00 1 4	.0218
067	-4.982	4 • 441	0030	0004	• 0268
068	-3.973	4-480	0011	-•0054	• 0311
069	-2.979	4.396	0018	- • 0098	• 0330
070	-1.989	4-410	0022	0145	• 0360
071	9666	4.353	0037	0194	• 0380
072	.0122	4 • 438	0045	0251	• 0419
073	.9912	4.373	0042	0290	0458
074	2.005	4 • 383	- • 0044	0334	• 0465
075	2.994	4 • 44 1	0031	0379	• 0517
076	4.001	4-411	0035	0422	• 0544
077	4.999	4 • 409	0046	0456	• 0562
078	5.990	4.398	-•0050	0498	• 05 9 3
079	6.984	4-383	0062	-•0539	• 0624
080	7.998	4 • 380	- • 00 59	0572	• 0641
08 1	9.001	4.322	0064	0607	• 0670
082	10.01	4 - 447	- • 00 63	-•0656	• 07 19
083	11.00	4-408	0073	0690	• 07 36
08 4	11.99	4.381	0079	-• 07 29	• 077 1
085	12.99	4.357	0078	-• 07 64	• 0800
03 6	13.98	4 • 37 3	0082	0800	• 05 5f
087	5. 141	4 • 402	0042	- • 0493	· 0593
088	3.034	4 • 398	0034	0411	0535
089	1.977	4-343	0023	0324	• 0469
090	.0122	4 • 427	0018	0233	• 0419
09 1	-1.988	4.344	0017	0132	• 0337
092	-3.970	4.367	0013	0046	• 0279
093	.0122	4.346	0016	0234	.0412
094	.0122	• 0203	•0065	• 0020	• 0012

TABLE XXV

RUN NO): 52 60 2				
RON NO ROW # 123455678910 11213 14415 15617 18920 21223	0: 52602 CH0 0.0122 ~5.9710 ~4.9820 ~3.9730 ~2.9790 ~1.9890 ~0.9666 0.0122 2.0050 2.9940 4.9990 4.9990 5.9980 10.0100 11.9980 12.9980 13.9800 5.9900	CH! 0.0158 4.4670 4.4610 4.4800 4.4800 4.4100 4.3730 4.4800 4.4980 4.4980 4.3830 4.4410 4.4980 4.3830 4.4470 4.4800 4.3810 4.3810 4.3810 4.3810 4.3810	0.0079 -0.0030 -0.0031 -0.0031 -0.0035 -0.0042 -0.00442 -0.0055 -0.0055 -0.0059 -0.0063 -0.0063 -0.0063 -0.0063	0.0042 0.0044 -0.0044 -0.0054 -0.0054 -0.0154 -0.0154 -0.0154 -0.0151 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250 -0.0250	CH4 0.0012 0.0218 0.0268 0.0268 0.0330 0.0360 0.0380 0.0419 0.0458 0.0517 0.05641 0.05624 0.06719 0.0771 0.0800 0.0835
22	13.9800	4.3730	-0.0082	-0.0800	0.0835
24 25	3.9840 1.9770	4.3980 4.3430	-0.0034 -0.0023	-0.0411 -0.0324	0.0535 0.0469
26 27	0.0122 -1.9880	4.4270 4.3440	-0.0018 -0.0017	-0.0233 -0.0132	0.0419 0.0337
28 29	-3.9700 0.0122	4.3670 0.0203	-0.0013 0.0065	-0.0046 0.0020	0.0279 0.0012
RUN #	52602 DH	TA IS STOR	ED IN FIL	E# 5	

TABLE XXVI

HIN 052603 ON 26 MAY 1977
PLATE PLUS FAIRING (WING OFF)
NOMINAL Q= 30 PSF

SCAN

#	Сн• 0	CH• 1	CH. 2	CH• 3	CH • 4
09 5	.0122	.0187	• 0056	• 0012	.0012
09 6	.0122	3.249	0005	0184	.0316
097	-5.968	3.228	0009	• 0035	.0133
098	-4.981	3.283	0016	.0012	.0173
099	-3.983	3-210	0009	0007	.0202
100	-2.979	3 - 263	0002	- • 00 59	•0235
101	-1.984	3.282	0014	0102	• 0253
102	9658	3.236	0010	0146	• 0297
103	.0122	3.287	0004	0186	•0321
104	.9927	3.325	0005	0242	• 0353
10.5	2.011	3.244	• 0005	0275	0369
106	2.999	3.241	- • 0009	0311	• 0401
107	3.988	3.198	0010	- 0353	• 0428
108	5.002	3.272	- • 0017	0391	• 0467
109	5.994	3.246	0015	- • 0427	• 0484
110	6.988	3.224	- • 0014	0463	•0513
111	8.002	3.235	0026	-• 0507	• 0550
112	8.997	3.214	0030	- • 0545	• 0578
113	10.01	3.281	0033	0585	• 0610
. 114	11.00	3.302	- • 00 40	0625	• 0632
115	12.00	3-234	- • 0045	0661	• 0656
116	13.00	3.300	- • 00 47	0702	• 0 683
117	13.98	3 • 209	0059	0734	• 070
118	5.994	3.236	0015	0435	• 049 1
119	3.988	3. 197	0004	- • 0359	• 0425
120	1.982	3.245	0004	0278	• 0369
121	.0122	3.252	- • 0009	0185	•0318
122	-1.984	3.273	• 0002	0104	• 0258
123	-3.992	3.269	• 0004	0011	• 0199
124	.0122	3.204	0012	0186	• 0309
125	.0122	.0211	• 0054	.0012	.0015

TABLE XXVII

RUN NO: 52603				
ROW # CHØ	CH1	" CH2	CHS	CH4
1 0.0122	0.0187	0.0056	0.0012	0.0012
	3.2280	-0.0009	0.0035	0.0133
2 -5.9680 3 -4.9810	3.2830	-0.0016	0.0012	0.0173
4 -3.9830	3.2100	-0.0009	-0.0007	0.0202
4 -3.9830 5 -2.9790 6 -1.9840 7 -0.9658	3.2630	-0.0002	-0.0059	0.0235
6 -1.9840	3.2820	-0.0014	-0.0102	0.9253
7 -0.9658	3.2360	-0.0010	-0.0146	0.0297
8 0.0122	3.2870	-0.0004	-0.0186	0.0321
9 0.9927	3.3250	-0.0005	-0.0242	0.0353
10 2.0110	3.2440	0.0005	-0.0275	0.0369
11 2.9990	3.2410	-0.0009	-0.0311	0.0401
12 3.9880	3.1980	-0.0010	-0.0353	0.0428
13 5.0020	3.2720	-0.0017	-0.0391	0.0467
14 5.9940	3.2460	-0.0015	-0.0427	0.0484
15 6.9880	3.2240	-0.0014	-0.0463	0.0513
16 8.0020	3.2350	-0.0026	-0.0507	0.0550
17 8.9970	3.2140	-0.0030	-0.0545	0.0578
18 (0.0100	3.2810	-0.0033	-0.0585	0.0610
19 11.0000	3.3020	-0.0040	-0.0625	0.0632
20 12.0000	3.2340	-0.0045	-0.0661	0.0656
21 13.0000	3.3000	-0.0047	-0.0702	0.0689
22 13.9800	3.2090	-0.0059	-0.0734	0.0703
23 5.9940	3.2360	-0.0015	-0.0435	0.0491
24 3.9880	3.1970	-0.0004	-0.0359	0.0425
25 1.9820	3.2450	-0.0004	-0.0278	0.0369
26 0.0122	3.2520	-0.0009	-0.0185	0.0318
27 -1.9840	3.2730	0.0002	-0.0104	0.0258
28 -3.9920	3.2690	0.0004	-0.0011	0.0199
29 0.0122	0.0211	0.0054	0.0012	0.0012
RUN # 52603 DAT				

TABLE XXVIII

HUN 052601 ON 26 MAY 1977 PLATE PLUS FAIRING (WING OFF) NOMINAL 0= 20 PSF

> SCAN

•	CH. O	CH• 1	CH• 5	СН• 3	CH• 4
033	.0122	.0124	• 00 67	.0024	.0012
034	.0122	2-175	.0012	0104	• 0199
035	-5-974	2.176	.0012	.0115	• 0030
036	-4.984	2.192	• 0013	• 0076	• 0050
037	-3.995	2.207	.0013	•0031	• 0090
038	-2.982	2.186	.0012	.0012	.0112
039	-1.992	2.175	.0016	• 0000	.0142
040	9688	2.184	. 0014	- • 0048	•0176
041	•0122	2.187	.0012	- • 0091	• 0206
042	• 99 10	2.167	.0016	0123	• 0233
043	2.006	2.154	• 0015	-• 01 68	• 0277
044	2.994	2.191	• 0019	0199	.0312
045	3.984	2.171	• 0029	0238	• 0338
046	4.998	2.194	.0021	0277	0354
047	5.990	2.142	.0016	0308	• 037 2
048	6.984	2.184	-0018	- • 0349	• 0390
049	7.998	2.152	.0021	0378	• 0410
050	9.002	2.163	•0013	- • 0415	.0442
051	10.01	2.182	.0016	- • 0452	• 0457
052	10.99	2.178	.0014	- • 0484	• 0486
053	12.00	2.165	.0014	- • 0517	• 0507
054	12.99	2.162	.0013	-•0556	• 0545
055	13.98	2.195	.0012	- 0585	• 0564
056	5.991	2.189	.0015	0311	• 0365.
057	3.985	2.149	• 0022	0231	• 0323
058	1-977	2.163	• 0020	0157	• 0266
059	.0122	2.174	-0021	-•0080	• 0505
060	-1-989	2.213	.0018	• 0011	•0132
061	-3.993	2.188	- 0017	• 0047	• 0079
062	.0122	2.176	.0018	- • 0081	• 0209
063	.0122	•0164	• 007 6	• 0043	.0012

TABLE XXIX

RUN N	0: 52601				
ROW # 1234567899101123145167899212334525	CH0 0.0122 -5.9740 -4.9840 -3.9950 -2.9820 -1.99682 -1.99682 -2.9960 -2.9960 -2.99800 -2.99800 -2.99800 -3.99800	CH1 0.1760 0.1760 0.1760 0.1760 0.1760 0.1870 0.1870 0.1870 0.1870 0.1870 0.18870 0.1890	CH2 5.0012 6.0013 6.0013 6.0014 6.0016 6.0016 6.0016 6.0018 6.0018 6.0018 6.0018 6.0018	0.0034 0.0031 0.0031 0.0031 0.0031 0.0048 -0.00123	0.044 0.0012 0.0030 0.0030 0.0030 0.0112 0.0142 0.0233 0.0334 0.03354 0.03354 0.03410 0.04457 0.04457 0.0565 0.0365 0.0365
26	0.0122	2.1740	0.0020 0.0021	-0.0157 -0.0080	0.0266 0.0202
27	-1.9890	2.2130	0.0018	0.0000	0.0132
28	-3.9930	2.1880	0.0017	0.0047	0.0079
29	0.0122	0.0164	0.0076	0.0043	0.0012
F1月4 非	52601 D	ATA IS STOR	ED IN FILE	# 4	

TABLE XXX

1620 ON 26 MAY 1977

- .. STATIC WEIGHT TARE, WINE-OFF..
 .. PLATE PLUS FAIRING (WING-OFF)

> SCAN

*	CH. O	CH • 1	CH• 2	CH• 3	CH - 4
004	•0122	•0037	•0014	•0012	• 0011
005	-5.993	•0035	•0012	• 0201	0134
006	-4.985	• 00 48	• 0020	•0181	0117
007	-3.979	• 0059	.0017	.0151	0102
00 R	-2.976	• 00 64	• 0029	.0114	0076
009	-1.992	•0065	.0036	.0081	0041
010	-1.005	.0066	.0027	· 0048	0029
011	0047	.0061	• 0038	• 0014	•0010
012	•9893	• 00 60	• 0030	• 0015	.0012
013	1.975	• 0062	• 0041	0050	• 0014
014	2.983	•0064	• 0039	0061	• 0049
015	3.982	• 00 67	• 0047	0088	• 0060
016	4.998	· 0066	• 0030	0133	• 0090
017	5.988	•0072	• 0042	0166	.0112
018	6.984	• 0079	• 0045	0183	•0133
019	7.998	•0079	• 0049	0216	• 0150
020	8.991	•0077	.0052	0247	• 0158
021	9.978	•0083	• 0047	0278	•0190
022	11.00	•0084	• 0050	0304	.0201
023	12.01	.0095	• 0047	0338	.0220
024	12.99	•0093	• 0049	0366	• 0253
025	14.01	.0094	• 0047	0382	.0264
026	5.986	• 0099	.0062	-•0138	•0111
027	3.981	.0100	• 0057	0073	• 00 62
058	1.975	•0098	• 0059	.0012	.0025
029	.0120	•0101	• 0063	• 0037	.0012
030	-1.991	•0100	• 0063	•0106	0034
031	-3.977	•0107	• 0059	0185	0081
032	.0122	•0109	• 007 6	• 0043	•0012

TABLE XXXI

RUN NO): 52677				1
ROW #	сна	CHI	CH2	СНЗ	CH4
1	0.0122	0.0037	0.0014	0.0012	0.0011
å	-5.9930	0.0035	0.0012	0.0201	-0.0134
23	-4.9850	0.0000	0.0020	0.0181	-0.0117
4	-3.9790	0.0059	0.0020	0.0151	-0.0102
5	-2.9760	0.0007 0.0064	0.0029	0.0131	-0.9076
6	-1.9920	0.0007	0.0025	0.0081	-0.0041
- 6 7	-1.0050	0.0000	0.0036	0.0001 0.0048	-0.0029
8	-0.0047	0.0000	0.0027 0.0038	0.0045	0.0010
. 9	0.9893	0.0001 0.0060	0.0030 0.0030	0.0014	0.0010
10	1.9750	0.0000	0.0030 0.0041	-0.0012 -0.0020	0.0012
11	2.9830	0.0062	0.0039	-0.0061	0.0014 0.0049
12	2.7000 3.9820	0.0067	0.0037 0.0047	-0.0061	0.0047 0.0060
13	4.9988	9.0066 9.0066	0.0047 0.0030	-0.0133	0.0000 0.0090
14	5.9880	0.0055 0.0072	0.0030 0.0042	-0.0133 -0.0166	0.0070 0.0112
15	5.9840	0.0072 0.0079			
16	7.9980	0.0079 0.0 0 79	0.0045	-0.0183	0.0133
17			0.0049	-0.0216	0.0150
	5.9910	0.0077	0.0052	-0.0247	0.0158
18	9.9780	0.0083	0.0047	-0.0278	0.0190
(9	11.0000	0.0084	0.0050	-0.0304	0.0201
20	12.0100	0.0092	0.0047	-0.0338	0.0220
21 22	12.9900	0.0093	0.0049	-0.0366	0.0253
22	14.0100	0.0094	0.0047	-0.0382	0.0264
23	5.9860	0.0099	0.0062	-0.0138	0.0111
24 25	3.9810	0.0100	0.0057	-0.0073	0.0062
25	1.9750	0.0098	0.0059	0.0012	0.0025
26	0.0120	0.0101	0.0063	0.0037	0.0012
27	-1.9910	0.0100	0.0063	0.0106	-0.0034
28	-3.9770	0.0107	0.0059	0.0185	-0.0081
29	0.0122	0.0109	0.0076	0.0043	0.0012
RUN #	52677 DA	ITA IS STOR	ED IN FILE	# 3	

XXXII

RLN 052703 ON 27 MAY 1977 PLATE PLUS FAIRING AND WING NOMINAL Q= 40 PSF

SCO - SCNA

	CH. O	CH• 1	CH• 2	CH. 3	CH- 4
092	.0122	- 8229	• 0052	• 00 63	• 00 19
093	.0122	41.02	• 00 66	0462	- 08 00
094	-5.948	39 - 55	- 3015	. 0254	.0649
095	-4.962	39 - 89	.2561	.0120	.0615
096	-3.962	39.56	.2026	• 0005	.0620
097	-2.956	40-23	• 1487	0134	• 0656
098	-1.960	40 - 13	• 1031	0234	.0662
099	9533	39.97	• 0552	7.0353	.0723
100	.0122	40 - 69	• 0079	0455	• 0798
101	1.015	40.79	0392	0530	• 08 39
102	2.002	40.86	- • 09 25	- • 0573	-0905
103	3.022	40.82	1484	0607	· 0978
104	4.010	40 • 68	1872	0635	• 1075
105	5.026	40.96	- • 2393	0645	• 1175
106	6-016	41.27	- • 289 2	-•0658	• 1320
107	7.010	40.85	- • 3339 .	0704	• 1533
108	8.022	40.98	3756	-• 08 58	1891
109	9.013	41 - 47	- • 4239	1228	· 2630
110	10.03	40.86	- • 4517	-• 1800	• 3664
111	11.02	40.88	- • 4762	2431	4788
112	18.05	40 • 59	- • 487 4	- 3096	• 59 28
113	13-01	40.00	- • 4844	- • 37 67	•7027
114	14.01	40.23	- • 4834	4371	.8013
115	6.018	41.15	- • 28 62	0670	- 1341
116	4.011	40.56	- • 1875	0629	· 1084
117	2.017	41-01	- • 0894	0573	• 09 20
118	.0122	41.27	•0119	- • 0449.	•0803
119	,-1.961	40 - 10	• 1073	0221	.0674
120	-3-978	40 • 59	· 209 2	• 0006	• 0636
121	•0122	40-17	• 0089	0429	.0792
122	.0122	· 2811	•0012	• 00 57	•0012

TABLE XXXIII

ROW # CH0 CH1 CH2 CH3 CH4 1 0.0122 0.2229 0.0052 0.0063 0.0019 2 -5.9480 39.5500 0.3015 0.0254 0.0649 3 -4.9620 39.8900 0.2561 0.0120 0.0615 4 -3.9620 39.5600 0.2026 0.0005 0.0620 5 -2.9560 40.2300 0.1487 -0.0134 0.0656 6 -1.9600 40.1300 0.1031 -0.0234 0.0662 7 -0.9533 39.9700 0.0552 -0.0353 0.0723 8 0.3122 40.6900 0.0079 -0.0455 0.0798 9 1.0150 40.7900 -0.0392 -0.0530 0.0339 10 2.0020 40.8600 -0.0925 -0.0573 0.0939 11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.12020 15 7.0100 40.8500 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0300 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8800 -0.4517 -0.1800 0.3664 19 11.0200 40.8800 -0.4874 -0.3096 0.5928 21 13.0100 40.8800 -0.4874 -0.3096 0.5928 21 13.0100 40.8000 -0.4874 -0.3096 0.5928 22 14.0100 40.8000 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.4834 -0.4371 0.8013 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.0119 -0.0449 9.0803 29 0.0122 0.2811 0.0012 0.0057 0.0012	RUN NO	: 52703				
9 1.0150 40.7900 -0.0392 -0.0530 0.0839 10 2.0020 40.8600 -0.0925 -0.0573 0.0905 11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8300 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3767 0.7027 22 14.0100 40.0300 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636	1	0.0122 -5.9480	0.2229 39.5500	0.0052 0.3015	0.0063 0.0254	0.0019
9 1.0150 40.7900 -0.0392 -0.0530 0.0839 10 2.0020 40.8600 -0.0925 -0.0573 0.0905 11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8300 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3767 0.7027 22 14.0100 40.0300 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636	4	-3.9620	39.5600	0.2026	0.0005	0.0620
9 1.0150 40.7900 -0.0392 -0.0530 0.0839 10 2.0020 40.8600 -0.0925 -0.0573 0.0905 11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8300 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3767 0.7027 22 14.0100 40.0300 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636	5 6	-1.9600	40.1300	0.1031	-0.0234	0.0662
9 1.0150 40.7900 -0.0392 -0.0530 0.0839 10 2.0020 40.8600 -0.0925 -0.0573 0.0905 11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8300 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3767 0.7027 22 14.0100 40.0300 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636	7 8					
11 3.0220 40.8200 -0.1424 -0.0607 0.0978 12 4.0100 40.6800 -0.1872 -0.0635 0.1075 13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0300 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8600 -0.4762 -0.2431 0.4788 20 12.0200 40.8300 -0.4762 -0.2431 0.4788 21 13.0100 40.5000 -0.4874 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 <	9	1.0150	40.7900	-0.0392		
13 5.0260 40.9600 -0.2393 -0.0645 0.1175 14 6.0160 41.2700 -0.2892 -0.0658 0.1320 15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0300 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8600 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3096 0.5928 21 13.0100 40.0000 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9616 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	11	3.0220	40.8200	-0.1424	-0.0607	0.0978
15 7.0100 40.8500 -0.3339 -0.0704 0.1533 16 8.0220 40.9800 -0.3756 -0.0858 0.1891 17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8800 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3096 0.5928 21 13.0100 40.0000 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	13	5.0260	40.9600	-0.2393	-0.0645	0.1175
17 9.0130 41.4700 -0.4239 -0.1228 0.2630 18 10.0360 40.8600 -0.4517 -0.1800 0.3664 19 11.0200 40.8800 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3096 0.5928 21 13.0100 40.0000 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.00057 0.0012 9 0.0122 0.2811 0.0012 0.0057 0.0012	15	7.0100	40.8500	-0.3339	-0.0704	0.1533
19 11.0200 40.8800 -0.4762 -0.2431 0.4788 20 12.0200 40.5900 -0.4874 -0.3096 0.5928 21 13.0100 40.0000 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	17	9.0130				0.2630
20 12.0200 40.5900 -0.4874 +0.3096 0.5928 21 13.0100 40.0000 -0.4844 -0.3767 0.7027 22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 +0.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012						
22 14.0100 40.2300 -0.4834 -0.4371 0.8013 23 6.0180 41.1500 -0.2862 -0.0670 0.1341 24 4.0110 +0.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 9.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0066 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	20	12.0200	40.5900	-0.4874		
24 4.0110 40.5600 -0.1875 -0.0629 0.1084 25 2.0170 41.0100 -0.0894 -0.0573 0.0920 26 0.0122 41.2700 0.0119 -0.0449 0.0803 27 -1.9610 40.1000 0.1073 -0.0221 0.0674 28 -0.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	- 22	14.0100	40.2300	-0.4834	-0.4371	0.8013
26 0.0122 41.2700 0.0119 -0.0449 0.0803 27 -1.9616 40.1000 0.1073 -0.0221 0.0674 28 -3.9780 40.5900 0.2092 0.0006 0.0636 29 0.0122 0.2811 0.0012 0.0057 0.0012	24	4.0110	40.5600	-0.1875	-0.0629	0.1084
28 -3.9780 40.5900 0.2 092 0.0006 0.063 6 29 0.0122 0.2811 0.0012 0. 005 7 0.0012	26	0.0122	41.2700	0.0119	-0.0449	9.0803
	28				0.0006	0.0636
						0.0012

TABLE XXXIV

FLN 052702 ON 28 MAY 1977 PLATE PLUS FAIRING AND WING NOMINAL Q= 30 PSF

> SCAN

	CH. O	CH- 1	CH. S	CH• 3	CH+ .4
061	-0122	• 1835	• 0046	• 0049	•0012
062	0122	30-97	• 0038	0343	- 9608
063	-5-948	30-15	- 2277	• 0270	• 0449
064	-4.962	30-89	• 19 65	.0132	• 0468
065	-3.945	30.30	• 1549	•0036	.0442
066	-2.955	30 68	• 1170	00 37	• 0455
067	-1.960	30 - 39	• 07 58	0151	• 0504
068	9538	30 • 53	.0419	0246	0548
069	•0122	30.73	- 0040	0343	.0618
070	.9997	30 • 59	0322	0402	.0664
07 1	2.005	30-60	0734	7	.07.18
072	3.023	30.75	1106	0516	.0768
073	4.009	30.76	1475	0540	. 0843
074	5.027	30-87	1829	0569	. 09 45
07 5	6.017	30-97	2232	0573	. 1055
076	7 - 008	30-78	2520	0639	. 1252
077	.8.022	30-75	289 3	0808	. 1600
078	9.012	30-62	3134	- · 1083 /	- 2096
079	10.02	30-58	3399	1531	. 2906
080	.11.02	30 - 55	3563	2017	. 37 54
.081	12.02	30-57	3670	2554	. 4665
082	13.01	30-12	3631	3036	5426
083	14.01	30-45	3683	3531	6267
084	6.017	30-54	- 2189	0563	• 1059
085	4.010	30.90	1449	0522	- 0851
086	2.005	30 - 40	0647	- • 0458	0726
087	.0122	30.75	.0052	0335	.0619
880	-1.962	30.73	.0821	0144	.0513
089	-3.979	30.36	-1579	.0044	.0436
090	.0155	30-11	.0064	0326	. 0604
091	.0155	• 2240	• 0038	• 0054	.0014

TABLE XXXV

RUN NO	0: 52702			- 77	
ROW #	. сна	CH1	CH2	СНЗ	CH4
1	0.0122	0.1835	0.0046	0.0049	0.0012
	-5.9480	30.1500	0.2277	0.0270	0.0449
2 3	-4.9620	30.8900	0.1965	0.0132	0.0468
4	-3.9450	30.3000	0.1549	0.0036	0.0442
	-2.9550	30.6800	0.1170	-0.0037	0.0455
5 6 7	-1.9600	30.3900	0.0758	-0.0151	0.0504
	-0.9538	30.5300	0.0419	-0.0246	0.0548
8	0.0122	30.7300	0.0040	-0.0343	0.0612
9	0.9997	30.5900	-0.0322	-0.0402	0.0664
10	2.0050	30.6000	-0.0734	-0.0451	0.0713
11	3.0230	30.7500	-0.1106	-0.0516	0.0763
12	4.0090	30.7600	-0.1475	-0.0540	0.0843
13	5.0270	30.8700	-0.1829	~0.0569	0.0945
14	6.0170	30.9700	-0.2232	-0.0573	0.1055
15	7.0080	30.7800	-0.2520	-0.0639	0.1252
16	8.0220	30.7500	-0.2893	-0.0808	91699
17	9.0120	30,6200	-0.3134	-0.1083	0.2096
18	10.0200	30.5800	-0.3399	-0.1531	0.2906
19	11.0200	30.5500	-0.3563	-0.2017	0.3754
20	12.0200	30 .570 0	-0.3670	-0.2554	9.4665
21	13.0100	30.1200	-0.3631	-0.3036	0.5426
22	14.0100	30.4500	-0.3683	-0.3531	9.6267
23	6.0170	30.5400	-0.2189	-0.0563	0.1059
24	4.0100	30.9000	-0.1449	-0.0522	0.0851
25		30.4000	-0.0647	-0.0458	0.0726
26		30.7500	0.0052	-0.0335	0.0619
27	-1.9620	30.7300	0.0821	-0.0144	0.0513
28	-3.9790	30.3600	0.1579	0.0044	0.0436
29		0.2240	0.0038	0.0054	0.0014
RUN #	52702	DATA IS STOI	RED IN FILE	# 9	

TABLE XXXVI

RUN 052701 · CN 27 MAY 1977 FLATE PLUS FAIRING AND WING NOMINAL Q= 20 PSF

> SCAN

•	CH. 0 .	CH. 1	CH. 5	СН• 3	CH• 4
030	•0122	. 1477	• 0041	• 0038	.0024
031	•0123	20.24	.0118	0198	• 0430
032	-5.961	20.21	• 1608	.0324	.0246
033	-4.963	20.04	• 1348	.0211	.0251
034	-3.967	19.91	• 1118	.0129	.0252
035	-2.956	19.63	.0833	• 0031	.0285
036	-1.961	20.04	.0585	0024	• 0315
037	- • 9 5 38	19.91	• 0354	0115	• 0367
038	.0122	20.10	• 0089	0205	.0422
039	1.015	19.88	- • 0149	0286	• 0465
040	5.005	20.13	- • 0407	0342	• 0519
041	3.021	20.07	0651	- • 0389	• 0584
042	4.009	20.15	- • 0857	0442	• 0655
043	5.025	50.05	- 1150	0461	• 0713
044	6.017	50.50	- 1395	0503	08 10
045	7.032	19.97	- 1621	0550	• 09 27
046	8.021	20-15	1814	0675	• 1160
047	9.012	20.05	- • 2031	0906	• 1575
048	10.01	19.72	- 2152	1229	· 2103
049	11.02	19.92	- • 229 6	- 1559	· 2678
050	12.02	19.74	2334	- 1913	• 3256
051	13.01	19.83	- 2365	- • 5585	38 48
052	14.01	19 463	- • 2323	-• 2573	• 4277
053	6.017	50.03	- • 1401	0477	• 0787
054	4.010	20.31	-•0886	0422	• 0654
055	2.002	19.82	0391	0323	• 0509
056	.0122	20.30	• 00 68	0197	• 0425
057	-1.961	20-10	• 0669	0005	• 0301
058	-3.979	19.93	• 1154	• 0138	• 0230
059	.0122	20.08	•0103	0200	• 0431
060	•0122	• 1900	• 0043	• 00 48	•0022

TABLE XXXVII

RUN NO): 52701 [°]	1.00			
ROW #	СНО	CHI	CH2	СНЗ	CH4
1	0.0122	0.1477	0.0041	0.0038	0.0024
2	-5.9610	20.2100	0.1608	0.0324	0.0246
2	-4.9630	20.0400	0.1348	0.0211	0.0251
4	-3.9670	19.9100	0.1118	0.0129	0.0252
5 6 7	-2.9560	19.6300	0.0833	0.0031	0.0285
6	-1.9610	20.0400	0.0585	-0.0024	0.0315
	-0.9538	19.9100	0.0354	-0.0115	0.0367
8	0.0122	20.1000	0.0089	-0.0205	0.0422
9	1.0150	19.9800	-0.0149	-0.0286	0.0465
10	2.0020	20.1300	-0.0407	-0.0342	0.0519
11	3.0210	20.0700	-0.0651	-0.0389	0.0584
12	4.0090	20.1500	-0.0857	-0.0442	0.0655
13	5.0250	20.0200	-0.1150	-0.0461	0.0713
14	6.0170	20.2000	-0.1395	-0.0503	0.0810
15	7.0320	19.9700	-0.1621	-0.0550	9.0927
16	8.0210	20.1500	-0.1814	-0.0675	0.1160
17	9.0120	20.0500	-0.2031	-0.0906	0.1575
18	10.0100	19.7200	-0.2152	-0.1229	0.2103
19	11.0200	19.9200	-0.2296	-0.1559	0.2678
20	12.0200	19.7400	-0.2334	-0.1913	0.3256
21	13.0100	19.8300	-0.2365	-0.2232	0.3848
22	14.0100	19.6300	-0.2323	-0.2573	0.4277
23	6.0170	20.6300	-0.1401	-0.0477	0.0787
24	4.0100	20.3100	-0.0886	-0.0422	0.0654
25	2.0020	19.8200	-0.0391	-0.0323	0.0509
26	0.0122	20.3000	0.0068	-0.0197	0.0425
27	-1.9610	20.1000	0.0669	-0.0005	0.0301
28	-3.9790	19.9300	0.1154	0.0138	0.0230
29	0.0122	0.1900	0.0043	0.6048	0.0022
RUN #	52701 DA	ATA is STOR	ED IN FILE	# 8	

TABLE XXXVIII

WEIGHT TARE . . PLATE PLUS FAIRING AND WING 27 MAY 1977 AT 1620

> SCAN

•	CH. 0	CH• 1	CH+ 5	. CH• 3	CH- 4
001	.0124	• 1410	.0036	0025	• 0038
002	-5.949	• 1404	• 0038	• 0408	0182
003	-4.959	• 1383	• 0033	.0346	0140
004	-3.943	-1418	.0035	• 0278	0099
005	-2.951	• 1419	• 0033	.0212	0056
006	-1.961	• 1438	-0047	•0160	• 0006
007	9545	• 1456	.0042	• 0102	• 0012
800	.0122	• 1435	- 0049	• 0038	• 0039
009	1.016	• 1436	• 0052	.0012	• 0062
010	2.003	- 1457	• 00 47	-,0043	.0111
011	3.022	- 1456	• 0046	0103	•0165
012	4.010	- 1467	• 0045	0171	-0208
013	4.996	- 1446	• 0046	0228	.0245
014	6-017	- 1411	-0041	0287	• 0285
015	7 - 008	• 1443	• 0039	0352	• 0316
016	8.022	-1433	• 0045	0402	• 0364
017	9.028	- 1434	• 0040	0464	• 039 1
018	10.03	• 1456	• 0044	0517	• 0436
019	11.02	- 1476	• 0042	0574	• 0476
020	12.01	-1492	• 0046	0627	• 0516
120	13.00	• 1485	• 0042	0682	• 0540
022	14.01	• 1496	• 0044	0736	• 0578
023	6.017	• 1483	.0041	7 • 0281	• 028 1
024	4 • 009	• 1484	• 00 53	+.0166	• 0205
025	2.002	- 1501	• 0045	0035	-0111
026	.0122	1488	• 0057,	• 0045	•0015
027	-1-960	• 1543	• 0055	. 0165	0012
028	-3-977	• 1552	• 0048	.0298	0108
029	.0122	• 1497	• 0050	• 0045	• 0024

TABLE XXXIX

RUN NO): 52777		• • •		
ROW #	CHØ	CH1	CH2	снз	CH4
1	0.0124	0.1410	0.0036	0.0025	0.0038
	-5.9490	0.1404	0.0038	0.0408	-0.0182
2 3	-4.9590	0.1383.	0.0033	0.0346	-0.0140
4	-3.9430	0.1418	0.0035	0.0278	-0.0099
5	-2.9510	0.1419	0.0033	0.0212	-0.0056
6	-1.9610	0.1438	0.0047	0.0160	0.0006
7	-0.9545	0.1456	0.0042	0.0102	0.0012
8	0.0122	0.1435	0.0049	0.0038	0.0039
9	1.0160	0.1436	0.0052	0.0012	0.0062
10	2.0030	0.1457	0.0047	-0.0043	0.0111
11	3.0220	0.1456	0.0046	-0.0103	0.0165
12	4.0100	0.1467	0.0045	-0.0171	0.0208
. 13	4.9960	0.1446	0.0046	-0.0228	0.0245
14	6.0170	0.1411	0.0041	-0.0287	0.0285
15	7.0080	0.1443	0.0039	-0.0352	0.0316
16	8.0220	0.1433	0.0045	-0.0402	0.0364
17	9.0280	0.1434	9.0040	-0.0464	0.0391
18	10.0300	0.1456	0.0044	-0.0517	0.0436
19	11.0200	0.1476	0.0042	-0.0574	0.0476
20	12.0100	0.1492	0.0046	-0.0627	0.0516
21	13.0000	Ø.1485	0.0042	-0.0682	0.0540
22	14.0100	0.1496	0.0044	-0.0736	0.0578
23	6.0170	1483	0.0041	-0.0281	0.0281
24	4.0090	0.1484	0.0053	-0.0166	0.0205
25	2.0020	0.1501	0.0045	-0.0035	0.0111
26	0.0122	6.1488	0.0057	0.0045	0.0015
27	-1.9600	0.1543	0.0055	0.0165	-0.0012
28	-3.9770	0,1552	0.0048	0.0298	-0.0108
29	0.0122	0.1497	0.0050	9.0045	0.0024
RUN #	52777 I	IATA IS STOR	ED IN FILE	E# 7	

COMPUTER PROGRAMS

Program A

REM "PROGRAM TO STORE DATA ON TAPE" DISP "ENTER RUN #";

INPUT R1

REM "TUNNEL DATA PROCESSING"

COH R1, DE 40, 51

```
40 DISP "ENTER # OF DATA ROWS";
50 INPUT J
60 FOR N=1 TO J
70 DISP "ENTER DATA ROW";N;"";
80 INPUT DEN;13,DEN;23,DEN;33,DEN;53
90 NEXT N
91 PRINT "RUN NO: "R1
92 PRINT "RUN NO: "R1
93 PRINT "ROW #"TAB10"CH0"TAB20"CH1"TAB30"CH2"TAB40"CH3"TAB50"CH4"
                                                                                                                                                                                                                                                                                                                                                                                                                      STORE DATA 2
PRINT "RUH #"R1"DATA IS STORED IN FILE#"2""
FORMAT 2X,F3.0,2X,F7.4,3X,F7.4,3X,F7.4
                                                                                                                                                                                                                                                                           10 WRITE (15,300)N, DCH, 11, DCH, 21, DCH, 31, DCH, 41, DCN, 51
                                                                                                                                                                                                                                                                                              115 NEXT N
120 DISP "VERIFY DATA, PRESS (CONT-EXEC) ";
125 STOP
130 DISP "INPUT STORAGE FILE #";
140 INPUT Z
                                                                                                                                                                                                                                                 188 FOR N=1 TO J
```

Program B

1 COM RI, DE 48,51

```
10 REM "TUNNEL DATA FROCESSING"
11 REM "TUNNEL DATA FROCESSING"
12 REM "PROGRAM TO GENERATE CL,CD,CM-C/4 FOR 3 STRUT MOUNT"
                                                                                                                                                                                                                                                                       DISP "ENTER Q CAL FOR RUN";
                                                                                                                                                                                                                                                                                              DISP "ENTER, RUN FILE #1;
                                                                                                                                                 K1=(D[1,3]+D[J,3])/2
K2=(D[1,4]+D[J,4])/2
K3=(D[1,5]+D[J,5])/2
                                                                                                                                                                                                                              TCN-1,3]=DCN,3]-K1
TCN-1,4]=DCN,4]-K2
TCN-1,5]=DCN,5]-K3
                                                                                                                                                                                                        TCN-1,KJ=DCN,KJ
                                                                                                                                                                                   FOR N=2 TO J-1
FOR K=1 TO 2
                                                                                                                                                                                                                                                                                                                    DHTH G
                                                                                                                                        DATA G
                                                                                                                                                                                                                                                                                    INPUT 2
                                                                                                                                                                                                                                                              NEXT N
                                                                                                                                                                                                                                                                                                         INPUT
                                                                                                                                                                                                                                                                                                                   LOAD
                                                                                                                                        90 LOAD
                                                                                                                                                   120
130
140
150
                                                                                                                                                                                                                                         200
```

```
DEN, 4]=XEN, 4]+8*DEN, 3]†2
DEN, 5]=XEN, 5]+(DEN, 3]*0.008333*SIN(A1)-DEN, 4]*0.008333*COS(A1))/C1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DATA OF RUN #"RI
CORR'N-DRAG";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INPUT B
DISP "ENTER WALL CORR'N-BOA";
INPUT F
                                                                                                                                                                                                                                                                                           X[N-1,2]=(D[N,2]-K1)*Z/0.1084
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X[N, 4]=Y[2,1]/(X[N, 2]*S1)
X[N, 5]=Y[3,1]/(X[N, 2]*S1*C1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 X[N, 3]=Y[1,1]/(X[N,2]*S1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D[ N, 1 ]=X[ N, 1 ]+F*D[ N, 3 ]
K1:(D[1,2]+D[J,2])/2
K2=(D[1,3]+D[J,3])/2
K3=(D[1,4]+D[J,4])/2
K4=(D[1,5]+D[J,5])/2
FOR N=2 TO J-1
X[N-1,1]=D[N,1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FOR N=1 TO J-2
| L[1,1]=X[N,3]-T[N,3]
| L[2,1]=X[N,4]-T[N,4]
| L[3,1]=X[N,5]-T[N,5]
                                                                                                                                                                                                                                                                                                                                          X[N-1,3]=D[N,3]-K2
X[N-1,4]=D[N,4]-K3
X[N-1,5]=D[N,5]-K4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NEXT N
PRINT "CORRECTED
DISP "INPUT WALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOR N=1 TO J-2
A1=X[N,1]/57.3
D[H,3]=X[N,3]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DCN, 2 1=XCN, 2 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MAT Y=A*L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MEXT N
      ^{\circ} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 960
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      926
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     988
```

PRINT "ROW #"THB8"AOA(DEG)"TAB18"Q(PSF)"TAB30"CL"TAB40"CD"TAB48"CM-C/4" FOR N=1 TO J-2 WRITE (15,1300)N,D[N,13,D[N,23,D[N,33,D[N,43,D[N,53] STORE DATA 2 PRINT "RUN #"R1"REDUCED DATA IS STORED IN FILE #"Z" " FORMAT 2%,F3.0.1%,F8.4,2%,F8.4,3%,F7.4,3%,F7.4,3%,F7.4 GOTO 237 STOP DISP "ENTER FILE # FOR REDUCED DATA"; INPUT Z DISP "CHECK DATA, PRESS (CONT-EXEC)"; NEXT N 1666 1616 1626 1636 1846 10000 10000 10000 10000 10000 1466 1416

Program C

10 REM "TUNNEL DATA PROCESSING" 12 REM "PROGRAM TO GENERATE CL.CD,CM-C/4"

COM RISDIAGS

```
REM .....
DIM AE3,31,LE3,11,XE40,51,TE40,51,CE40,51,U$E801,YE3,11,VE40,51,WE40,51
MAT READ A
                                  DATA -96.154,0,0,0,17.5,25.575,0,-89.065,-66.07
                                                                                      INPUT J
DISP "ENTER WD/WG OFF THRE DATH FILE #";
                                                                                                                                                                                                                                                                     NEXT N
DISP "ENTER WD OFF/WG ON TARE FILE #";
                                              C1=0.5
S1=1.5
DISP "ENTER # OF DATA ROWS";
                                                                                                                                     K1=(D[1,3]+D[j,3])/2
K2=(D[1,4]+D[j,4])/2
K3=(D[1,5]+D[j,5])/2
                                                                                                                                                                                                                                                                                                                     K1=(DE 1,3]+BE J,3])/2
K2=(DE 1,4]+BE J,4])/2
K3=(DE 1,5]+BE J,5])/2
                                                                                                                                                                                                                                TCN-1,3]=DCN,3]-K1
TCN-1,4]=DCN,4]-K2
TCN-1,5]=DCN,5]-K3
                                                                                                                                                                                                       TEN-1,KJ=DEN,KJ
                                                                                                                                                                               FOR N=2 TO J-1
FOR K=1 TO 2
                                                                                                                                                                                                                                                                                                         LOAD DATA G
                                                                                                                             DATA G
                                                                                                                                                                                                                                                                                              INPUT G
                                                                                                                                                                                                                    NEXT K
                                                                                                               INPUT G
           20 DIM A
30 MAT R
50 CI=0.
60 SI=1.
61 DISP
70 DISP
80 INPUT
                                                                                                                                          26
                                                                                                                                                                               158
168
                                                                                                                                                                                                                                 96
                                                                                                                                                                                                                                             200
                                                                                                                                                                                                                                                         218
228
```

```
227 FOR N=2 TO J-1
228 FOR K=1 TO 2
229 V(N-1, K]=D(N, K]
239 V(N-1, K]=D(N, K]
230 V(N-1, A]=D(N, A]-K]
231 V(N-1, A]=D(N, A]-K2
232 V(N-1, A]=D(N, A]-K2
233 V(N-1, A]=D(N, A]-K2
233 V(N-1, A]=D(N, A]-K3
234 NEXT N
235 DISP "ENTER Q CAL OF 05-25-77 FOR RUN";
236 INPUT Z
239 DISP "ENTER WING OFF RUN FILE #";
240 INPUT Z
250 LOAD DATA G
250 LOAD DATA G
250 K1=(D(1,2)+D(J,2))/2
250 K2=(D(1,3)+D(J,2))/2
250 K3=(D(1,3)+D(J,2))/2
250 K3=(D(1,3)+D(J,3))/2
250 K1=(D(1,2)+D(J,2))/2
250 K3=(D(1,3)+D(J,3))/2
250 K1=(D(1,3)+D(J,3))/2
250 K1=(D(1,3)+D(J,3))/2
250 K1-1,1]=D(N,2]-K1)
350 K1-1,1]=D(N,3)-K2
350 K1-1,1]=X(N,3)-T(N,3)
350 L(1,1)=X(N,3)-T(N,3)
350 L(2,1)=X(N,3)-T(N,3)
350 L(2,1)=X(N,3)
350
```

```
640 DISP "ENTER WING ON RUN FILE #";
650 LOAD DATA G
660 LOAD DATA G
670 K1=(D[1,2]+D[J,2])/2
680 K2=(D[1,3]+D[J,3])/2
680 K2=(D[1,3]+D[J,3])/2
690 K3=(D[1,5]+D[J,5])/2
700 K4=(D[1,5]+D[J,5])/2
700 K4=(D[1,5]+D[J,5])/2
720 C[N-1,1]=D[N,1]
720 C[N-1,1]=D[N,3]-K2
730 C[N-1,3]=D[N,3]-K2
750 C[N-1,3]=D[N,3]-K2
750 C[N-1,3]=D[N,3]-K2
750 C[N-1,3]=D[N,3]-K4
770 L[1,1]=C[N,3]-V[N,3]
870 L[1,1]=C[N,3]-V[N,3]
870 L[2,1]=C[N,3]-V[N,3]
870 L[2,1]=C[N,3]-V[N,5]
870 L[2,1]=C[N,3]-V[N,5]
870 C[N,3]=Y[1,1]/(C[N,2]*S1)
870 C[N,3]=Y[1,1]/(C[N,2]*S1)
870 NEXT N
870 N
```

```
PRINT "ROW #"TABS"AOA(DEG)"TAB18"Q(PSF)"TAB30"CL"TAB40"CD"TAB48"CM-C/4"
FOR N=1 TO J-2
             950 DCN,4]=(CEN,4]-XEN,4])+B*DCN,3]†2
960 DCN,5]=(CEN,5]-XEN,5])+(DCN,3]*H*SIN(A1)+DCN,4]*(1.166-H*COS(A1)))/C1
970 DCN,1]=(CEN,1]+F*DCN,3]
980 DCN,2]=(CEN,2]
990 NEXT N
                                                                                                                                                                                                                                                                                                  PRINT "RUN #"R1"REDUCED DATA IS STORED IN FILE #"2" "
FORMAT 2%,F3.0,1%,F8.4,2%,F8.4,3%,F7.4,3%,F7.4,3%,F7.4
                                                                                                                                                                        WRITE (15, 1300) N, DEN, 13, DEN, 23, DEN, 33, DEN, 43, DEN, 53
                                                                                                                                                                                                                                                DISP "ENTER FILE # FOR REDUCED DATA";
                                                                                                                                                                                            NEXT N
DISP "CHECK DATA, PRESS (CONT-EXEC)";
FOR N=1 TO J-2
H1=C[N:1]/57.3
D[N:3]=C[N:3]-X[H:3]
                                                                                                                                                                                                                                                                                    DATA 2
                                                                                                                                                                                                                                                                                                                                      G0T0 237
                                                                                                                                                                                                                                                                 INPUT Z
                                                                                                                                                                                                                                                                                     STORE
                                                                                                                                                                                                                              STOP
                                                                                                                                         8888
8888
8888
8888
8888
8888
8888
8888
```

PROGRAM C(a)

MODIFICATION TO COMPUTE AERODYNAMIC TARES

```
1000 PRINT "ROW #"TAB8"AOA(DEG)"TAB18"Q(PSF)"TAB29"DCL"TAB39"DCD"TAB47"DCM-C/4"
1010 FOR N=1 TO J-2
1020 WRITE (15,1300)N,DCN,1],DCN,2],WCN,3],WCN,4],WCN,5]
1030 NEXT N
1040 DISP "CHECK DATH,PRESS (CONT-EXEC)";
1050 STOP
                                                                                                                                                                                          WEN, 3]=-XEN, 3]

DEN, 4]=(CEN, 4]-XEN, 4])+B*DEN, 3]+2

WEN, 4]=-XEN, 4]

DEN, 5]=(CEN, 5]-XEN, 5])+(DEN, 3]*H*SIH(A1)+DEN, 4]*(1,166-H*COS(A1)))/C1

WEN, 5]=-XEN, 5]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STORE DATA 2.
PRINT "RUN #"R1"REDUCED AERO TARES ARE STORED IN FILE #"Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT 2X, F3. 0, 1X, F8. 4, 2X, F8. 4, 3X, F7. 4, 3X, F7. 4, 3X, F7. 4
                                                                                              DISP "ENTER HEIGHT ABOVE TRUNNION (FT)";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MISP "ENTER FILE # FOR REDUCED DATA";
FRINT "AERODYNAMIC TARES OF RUN #"RI
DISP "INFUT WALL CORR'N-DRAG";
                                                        DISP "ENTER WALL CORR!N-AOA";
INPUT F
                                                                                                                                                                                                                                                                                        DEN, 1 ]=CEN, 1 ]+F*DEN, 3 ]
DEN, 2 ]=CEN, 2 ]
                                                                                                                                                                          DEN, 3 1=0EN, 3 1-XEN, 3 1
                                                                                                                                 FOR N=1 FO J-2
A1=CEN,11757.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INPUT 2
                                      INPUT B
                                                                                                                INPUT H
                                                                                                                                                                                                                                                                   961 MIN, 5]=
970 DIN, 1]=
980 DIN, 2]=
990 NEXT N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     676
600
690
690
                                                                                                                                                                        940
                                                                                                                                                                                                                                                  969
                                       5
5
3
                                                        999
                                                                                                                                                       930
                                                                                              926
```

REFERENCES

- Concannon, M. J., <u>Design Study of a Strain Gauge Wind Tunnel Balance</u>, M.S. Thesis, Naval Postgraduate School, Monterey, March 1974.
- Casko, J. D., A Microprocessor Controlled Automatic Data Logging System - (ADL), M. S. Thesis, Naval Postgraduate School, Monterey, June 1977.
- 3. Heard, C. A., <u>Wind Tunnel Wall Corrections for Arbitrary Planforms and Wind Tunnel Cross-sections</u>, M.S. Thesis, Naval Postgraduate School, Monterey, June 1977.
- 4. Pope, A. and Harper, J. J., Low-speed Wind Tunnel Testing, Wiley, 1966.
- 5. Dommasch, D. O., Sherby, S. S., and Connolly, T. F., Airplane Aerodynamics, Pitman, 1967. Pg. 49-53.
- 6. Abbott, I. H. and vonDoenoff, A. E., Theory of Wing Sections, McGraw-Hill, 1949. Pg. 336, 510.
- 7. Etkin, B., <u>Dynamics of Flight Stability and Control</u>, Wiley, 1959. Pg. 448.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station - Alexandria, VA 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93940	2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, CA 93940	1
4.	Professor L. V. Schmidt, Code 67Sx Department of Aeronautics Naval Postgraduate School Monterey, CA 93940	1
5.	LT Robert Wayne Russell, USN 1023 Halsey Drive Monterey, CA 93940	1

