

Determining the Best-Fit FPGA for a Space Mission: An Analysis of Cost, SEU Sensitivity, and Reliability

Melanie Berg, Ken LaBel

**MEI Technologies Incorporated
NASA/GSFC Radiation Effects and Analysis Group**

Sponsors:

- NASA Electronic Parts and Packaging (NEPP) Program and
- Defense Threat Reduction Agency under IACRO# 06-40121

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 1

Outline

- FPGA selection for flight missions
- Differentiating FPGAs
- Cost Analysis
- SEE Analysis
- Expanding Evaluation Criteria
 - Limitations of Bit Error Rate Calculators
 - SET Performance Degradation Metric
 - Availability Calculation
- Applying Evaluation criteria to the selection process

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 2

Flight Project FPGA Selection

- Primary Considerations
 - Criticality
 - Number of Mega-Operations Per Second (MOPS)
 - Internal clock frequency
 - Number of operations performed at each clock edge
 - Area/Power restraints
 - Cost
- Analysis
 - SEE and Reliability testing
 - Integrating traditional SEE metrics with obtainable MOPs

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 3

FPGA Characterization: Understanding the Differences to Develop a Comprehensive Analysis

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 4

Antifuse FPGA Devices (Actel and Aeroflex)

Pros:

- Most common FPGA devices utilized for space missions - **Heritage**
- Configuration is fused (no transistors) and is thus "HARDENED" – not affected by SEUs
- Logic has embedded mitigation at each DFF (either TMR or DICE) – eases the design phase

Cons:

- One time programmable – can complicate the design/debug phase
- Very expensive

RCELL in hardened Actel devices

Page 7

SRAM-Based FPGA's

Pros:

- The ability to reconfigure a function while in-flight is of great advantage to many missions
- Device is Less expensive
- Easier to debug/correct (with no mitigation)
- Performance (MOPS):
 - Speed
 - Increased User Device Resources

Cons:

- Configuration is SRAM-based – increased sensitivity to radiation (vs. antifuse)
- Additional design complexity necessary for mitigation
- Additional hardware necessary for (re)configuration

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 8

What Xilinx Does Well: Frequency and Number of Mega-Operations per Second:

$$T_{clockperiod} = \frac{1}{f}$$

$$\text{NMOPS} = f^*k$$

NASA

K: Resource and speed Dependent

Xilinx Virtex Series can supply a high frequency (f) with a large K value. NMOPS is very large compared to many other FPGA manufacturers

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 9

Xilinx FPGAs in Space: Configuration and Scrubbing

NASA

Minimal Requirements for Flight:

- Full Reconfigure
- To increase availability: use Scrubber
- Configuration Manager can be combined with external scrubber

Extra circuitry is required regardless in order to configure/re-configure

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 10

Criticality and Xilinx: Proposed Solution: Full TMR

- * Triple the design within the Xilinx FPGA device (including I/O)
- * User implemented (can lengthen design cycle)
- * Will consume >> 3x of original area
- * Difficult to implement multiple clock domains
- * Use an external FPGA device to scrub the configuration memory

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 11

Cost Analysis

- * Missions do not generally require a large number of replicated FPGA devices
- * Cost of a mission will not rely on FPGA device cost
- * Design cycle can grossly affect cost:
 - * Complexity of design architecture:
 - * One FPGA can not handle required number of operations per second.
 - * Chosen FPGA can not handle availability specifications – additional/complex mitigation is required.
 - * Complexity of verification
 - * Complexity of Board
 - * Poor choice in emulation or engineering models
- * Choose the FPGA that best meets requirements!**

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 12

Determining Reliability and Availability: Radiation Testing and SEE Analysis

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 13

Investigating Radiation Effects (SEE Analysis)

- Determine Bit sensitivity
 - Flip Flops
 - Configuration (SRAM based technology)
- Availability analysis
 - Given a function to implement – what is the percentage of time the output is correct vs. incorrect
 - Determine an availability rating that considers
 - Operational Frequency
 - Fluence
 - Repair time
 - Burst time

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 14

What Function to Implement for Testing?

Simple Architecture

- No functional Masking
- Easy to base-line across FPGAs
- Reduces Test time
- increases state space coverage

Complex Architecture

- Functional Masking
- Minimal state space coverage (short test runs – reset upon error)
- Only significant for specific design

Actual flight Architecture

- Usually not available at test time
- Can be very expensive to test
- Can not cover a significant amount of state space while testing
- Usually have to start from scratch at every error event

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 15

Simple Architecture: Windowed Shift Register

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 16

Calculating Error Cross Sections

Traditional

$$\sum \frac{\text{Events}}{\text{Fluence}}$$

error
calculation

- TF: Total Effective Fluence
- TB: Time in Burst
- Flux: particles/second

Error calculation:
Bursts within data

$$\sum \text{Events}$$

$$TF - (TB * FLUX)$$

- Analysis of event frequency
- Cross section fed to error rate calculator based off of a cumulative distribution probability function ($P(T > t)$)
- We are not analyzing how long we are in error

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 17

Clock Frequency Effects 54MeV*cm²/mg:

Aeroflex:

σ decreases as Frequency increases

Most significant with larger
combinatorial logic
structures due to the
increased number of paths

Actel
 σ decreases as Frequency decreases

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 18

Error Cross-Section Results Prove for Antifuse Devices...

- Static testing is not sufficient
- Static simulation is not sufficient
- Assumptions of frequency response can not automatically be made
 - Actel produced expected (traditional) response
 - Aeroflex – unexpected... combinatorial logic acts as transient filter

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 19

REAG Testing of Xilinx SRAM-Based FPGAs.

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 20

Scrubbing Facts:

- Most SRAM based FPGA faults are believed to occur in configuration memory
 - Correction of fault can only be accomplished by:
 - Reconfiguration – can be costly (time wise)
 - Scrubbing
 - Reconfiguration brings down the system
 - While scrubbing, the system is fully operational.
 - Scrubbing does not reduce the probability of an upset occurring
 - Frequency of scrubbing can reduce the amount of time the upset is present in the configuration memory
 - Unable to scrub everything
- Warning: High Current spikes observed by Xilinx consortium:**
- Observed @ fluence = $1e08$ ($1e05 < \text{flux} < 1e06$): FLUX is extremely accelerated for scrubbing mitigation technique
 - Readback+CRC is performed at every frame – different than blind-scrubber of REAG
 - REAG did not observe event... tests performed with flux $< 1e03$

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 21

Non-TMR Windowed Architecture

N levels of logic between DFFS ... 2 strings each; N = 0, 8, and 20

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 22

Error Cross Section Calculation: Dealing with Bursts

$$\sigma \cong \frac{NE}{TFL - (TB * FLUX)}$$

Can not make direct comparison with
Antifuse device bit error rate

Cross-section based
off of functional
upsets (shift register)
Simultaneous Multiple
errors exist in shift
register

Count burst as one
error event

Burst can potentially
mask faults

- * could have a much higher frequency of events
- * just masked by burst
- * Will be further investigated by fault injection

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA.

Page 23

Evaluation Criteria and Device Selection

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA.

Page 24

Limitations with Error Cross Sections as sole Evaluation Criteria

- Frequency Effect Analysis and Successful Operations per second:

DUTA:@100MHz over 1E07 fluence: no bursts 10 errors

DUTB:@ 50MHz over 1E07 fluence: no bursts 5 errors

$$\sigma_A = 2 * \sigma_B; \text{ Assumes constant error rate per frequency}$$

Common Interpretation: Cross Section increases with Frequency –
Decrease Clock Rate for Critical Missions

- However, B has to run twice as long as A to complete the same number of successful operations.
- Illustrates that per number of completed operations, each has the same probability to accumulate an equivalent number of errors

In this case: Slower Clock does not influence errors per successful operation

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 25

Limitations with Error Cross Sections as sole Evaluation Criteria (Continued)

Burst Analysis:

- Cross section probability calculation is based off of Event frequency (not event duration).
- Cross section does not consider burst or repair time (availability)

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 26

Bit Error Rate Misconceptions:

- Given a Bit Error rate of 5e-08, what does this mean???

AntiFuse

- Bit Error Rate is based on DFFs
- Number of DFFs will be from a few hundred to 10's of thousands
- Comes out to about 1 error every 10,000 days or better**

SRAM

- Generally pertains to configuration bit rate
- If for example 1e7 bits can affect the design upon upset – then can have **1 upset every 2 days**

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 27

SET Performance Metric:

- Given a failure rate (worse-case is bit-error rate): MTTF
- Determines required operational frequency and necessary parallelism
- NOP_{target} : Targeted Number of operations
- $F*k$: operational frequency * implemented number of operations (each cycle)
- ECi : Number of clock cycles of error per event i
- Cyc_{rad} : Total number of operational clock cycles during irradiation
- Acc: Acceleration Factor

$$f*k = \frac{NOP_{target}}{MTTF} \left\{ \frac{1.0}{1.0 - \frac{1.0}{Acc} * \left(\sum_{i=1}^n \frac{ECi}{Cyc_{rad}} \right)} \right\}$$

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 28

Availability Calculation using Radiation Data

$MTTF$

$$A = \frac{MTTF}{MTTR + MTTF} \quad A = 1 \text{ is a perfect system}$$

A: Steady State Availability

LET = 8MeV*cm ² /mg	MTTR	MTTF	A steady State
RTAX @150MHz	6.67×10^{-9}	$3.6 \times 10^5 \text{ AccR}$	$(3.6 \times 10^5 \text{ AccR}) / (6.67 \times 10^{-9} + 3.6 \times 10^5 \text{ AccR})$
Aeroflex @ 100MHz	10^{-8}	$6.0 \times 10^5 \text{ AccA}$	$(6.0 \times 10^5 \text{ AccA}) / (10^{-8} + 6.0 \times 10^5 \text{ AccA})$
Xilinx @ 100MHz	1.6×10^{-2}	41 AccX	$(41 \text{ AccX}) / (1.6 \times 10^{-2} + 41 \text{ AccX})$

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 29

Mission Device Selection

- Xilinx showed a relatively low availability rating at 100MHz.
 - If used at full rate, will achieve much higher operations per second.
 - Higher MOPS can include scheduled downtime and may be a great fit.
- Criticality and reliability play a major role in device selection
 - Missions have traditionally chosen antifuse devices for critical specifications.
 - Actel has been in the forefront
 - Aeroflex is very promising with its combinatorial transient filtering.
 - For less critical functionality, SRAM devices are being heavily investigated

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 30

Embedded vs. User Implemented TMR

- Discrete state space is $\approx 2^{\#DFFs}$
- Add XTMR to Xilinx
 - * Observed area increase @ 5x and 6x
 - * I/O speed may be jeopardized (Simultaneously Switching Signals)
 - * Internal operational speed can be decreased

	Clock Speeds	Contains Mitigation	# FLIP FLOPS	# User TMR FLIP FLOPS
ACT2	<10 MHz	NO	<400 to 1000	<400 to 1000
RTSX	< 50 MHz	Yes	<2000 to 4000	<2000 to 4000
RTAXS	<200 MHz	Yes	<21,000	<21,000
XILINX V4 LX25	< 400 MHz	NO	<22,000	<5,000
XILINX V4 FX60	< 400 MHz	NO	<52,000	<10,000

* Not datasheet clock speeds ... actual design clock speeds

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 31

Understand Requirements – Select Wisely

If criticality (reliability and availability) is essential:

- * Antifuse FPGAs provide safer solutions
- * Antifuse FPGAs can shorten the design cycle – More Cost Effective
 - * Verification is eased (mitigation is embedded and does not have to be verified)
 - * Board design is simplified – do not have to triple I/O (signal integrity requirements)
 - * Multiple clock domains are easier to implement

If MOPS is essential

- * SRAM based design can ease the design cycle (without additional TMR)
 - * Available IP cores
 - * Re-programmability
 - * Number of high speed available resources
- * SRAM based FPGA currently provide the fastest internal clocking (internal DLL + multiple embedded Power PCs)

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 32

Summary

- Each FPGA type has its advantages. SEE analysis must take this into account for a comprehensive comparison
- Sensitivity calculations are provided to missions to assist in the selection process.
 - Test to determine additional mitigation schemes required per FPGA
 - Bit Error calculations
 - Availability and degradation analysis
- Formulae have been presented:
 - Adjust Bit error calculations due to long bursts
 - SET Performance degradation Metric
 - Availability
- Mission Cost and design cycle are directly related.
 - Keep designs simple
 - Each FPGA has its advantages
 - Choose the best fit FPGA for your mission specifications

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 33

**Thank You
Questions?**

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Page 34