

토질 및 기초공학

Chapter 3. 흙의 분류와 다짐

박성직

1. 흙의 분류

- 흙의 분류법(soil classification system) ²
 - 다양한 종류의 흙을 비슷한 성질을 갖는 여러 군으로 분류
 - 공학적으로 많이 사용하고 있는 흙의 분류법은 흙입자 크기와 아터버 그한계를 함께 고려하는 통일분류법(united soil classification system)과 AASHTO분류법. 지반공학 기술자는 통일분류법을 많 이 사용하며, 도로 기술자는 AASHTO분류법을 많이 사용

1. 춁의 분류

• 입도조성분류법(삼각좌표분류법)

- 미국 농무부(US department of agriculture, USDA)가 만든 입도
 조성에 의한 분류법. 삼각좌표분류 법
 - ① 모래 크기 : 직경2.0~0.05mm
 - ② 실트 크기 : 직경
 0.05~0.002mm
 - ③ 점토 크기 : 직경 0.002mm보다 작은 것
- 입도조성에 의한 분류법은 소성을 고려하지 않으므로 중요한 흙의 여 러 성질을 나타낼 수 없기 때문에 대 부분의 공학적 목적에는 부적당

입도조성분류법(삼각좌표분류법) 7

- 통일분류법(unified soil classification system)
 - 미국의 Casagrande가 미국 공병단의 비행장 공사를 위하여 1942³ 년에 개발하고 그 후 여러 차례 개정되어 현재 지반공학 기술자들이 가장 많이 사용
 - 1. 자갈의 백분율 : 직경 75 mm~4.75 mm(4번체)
 - 2. 모래의 백분율 : 직경 4.75 mm(4번체)~0.075 mm(200번체)
 - 3. 세립토(실트와 점토)의 백분율 F: 직경 0.075 mm(200번체) 이하
 - 4. 균등계수와 곡률계수
 - 5. 40번체(직경 0.425 mm)를 통과하는 흙의 액성한계와 소성지수

• 통일분류법의 기호²

- 영문자 두 개의 기호로 표시하여 조립토 18가지, 세립토 7가지 및 피트(peat)로 분류
- 앞의 기호는 흙입자의 주된 크기를 나타내고, 뒤의 문자는 입도분포 나 소성

- 예시 4

- 1. 200번체 통과율이 50%보다 작으면 자갈이나 모래의 조립토(coarsegrained soil)이다. 여기에 속하는 흙의 기호는 G나 S로 시작된다. G는 자갈 또는 자갈질 흙을 나타내고, S는 모래 또는 모래질 흙을 나타낸다.
- 2. 200번체 통과율이 50% 이상이면 세립토(fine-grained soil)이다. 여기에 속하는 흙의 기호는 M, C, O로 시작된다. 무기질 실트에 대해서는 M, 무기질 점토에 대해서는 C, 그리고 유기질 실트와 유기질 점토에 대해서는 O로나타낸다.
- 3. 유기질이 매우 많은 흙은 Pt(peat, 피트)로 표시하고 더 이상 세분류 하지 않는다. 이들에 대해서는 검은 색이나 썩은 냄새 등 육안 및 후각으로 판정한다

• 조립토에서 뒤의 기호에 사용하는 문자

1. W: 입도분포가 양호한 흙

2. P: 입도분포가 불량한 흙

3. M : 실트가 섞인 흙

4. C: 점토가 섞인 흙

• 세립토에서 뒤의 문자에 사용하는 문자

1. L: 액성한계가 50% 미만인 압축성 또는 소성이 작은 흙

2. H: 액성한계가 50% 이상인 압축성 또는 소성이 큰 흙

• 소성도

- 세립토를 여러 가지로 세분하는 데는 액성 한계 LL 과 소성지수 PI 의 관계 및 범위가 사용

- A선 4

- 무기질 실트(inorganic silt)와 무기질 점토 (inorganic clay)를 구분하는 선인데, 무기질 점토는 A선 위쪽에 위치하며, 무기질 실트는 A선 아래쪽에 위치
- $PI = 0.73(LL 20)^6$

U선

- 액성한계와 소성지수의 관계의 상한선으로서 U⁷ 선보다 위쪽에 있는 흙은 없음
- $PI = 0.9(LL 8)^{8}$

• 통일분류법의 순서²

• 통일분류법의 순서²

통일분류법에 의한 세립토의 분류

'오랫동안 꿈을 그리는 사람은 마침내 그 꿈을 닮아간다' -앙드레 말로-

조립토의 명칭²

15	= 9		8 6	5														
品	입도양호한 자갈(well-graded gravel) 모래 섞인 입도양호한 자갈(well-graded gravel with sand)	입도불량한 자갈(poorly—graded gravel) 모래 섞인 입도불량한 자갈(poorly graded gravel with sand)	실트질 자갈(silty gravel) 모래 섞인 실트질 자갈(silty gravel with sand)	점토질 자갈(clayey gravel) 모래 섞인 점토질 자갈(clayey gravel with sand)	실트 점토질 자갈(silty clayey gravel) 모래 섞인 실트 점토질 자간(silty clayey gravel with sand)	실트 섞인 입도양호한 자갈(well-graded gravel with silt) 실트와 모래 섞인 입도양호한 자갈(well-graded gravel with silt and sand)	점토 섞인 입도양호한 자갈(well-graded gravel with silt) 점토와 모래 섞인 입도양호한 자갈(well-graded gravel with clay and sand)	실트 섞인 입도불량한 자갈(poorly graded gravel with silt) 설트와 모래 섞인 입도불량한 자갈(poorly graded gravel with silt and sand)	점토 섞인 입도불량한 자갈(poorly graded gravel with clay) 점토와 모래 섞인 입도불량한 자갈(poorly-graded gravel with clay and sand)	임도양호한 모래(well-graded sand) 자갈 섞인 입도양호한 모래(well-graded sand with gravel)	임도불량한 모래(poorly graded sand) 자갈 섞인 입도불량한 모래(poorly graded sand with gravel)	실트질 모래(silty sand) 자갈 섞인 실트질 모래(silty sand with gravel)	점토질 모래(clayey sand) 자갈 섞인 점토질 모래(clayey sand with gravel)	실트 점토질 모레(silty clayey sand) 자갈 섞인 실트 점토질 모래(silty clayey sand with gravel)	실트 섞인 입도양호한 모래(well-graded sand with silt) 실트와 자갈 섞인 입도양호한 모래(well-graded sand with silt and gravel)	점토 섞인 입도양호한 모래(well-graded sand with clay) 점토와 자갈 섞인 입도양호한 모래(well-graded sand with clay and gravel)	실트 섞인 입도불량한 모레(poorly graded sand with silt) 실트와 자갈 섞인 입도불량한 모레(poorly graded sand with silt and gravel)	점토 섞인 입도불량한 모래(poorly graded sand with clay) 점토와 자갈 섞인 입도불량한 모래(poorly graded sand with clay and gravel)
모래 백분율	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상									
자갈 백분율										15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상	15% 미만 15% 이상
기호	GW	GP	GM	CC	GC-GM	GW-GM	GW-GC	GP-GM	GP-GC	SW	SP	SM	SC	SC-SM	SW-SM	SW-SC	SP-SM	SP-SC

• 세립토의 명칭²

기호	200번체 통과율	모래백분율 자갈백분율	자갈 백분율	모래 백분 <u>율</u>	명 칭
CL	85% 이상 70~85% 70% 미만	1 이상 1 미만 1 이상 1 이상 1 미만 1 미만	15% 미만 15% 이상	15% 미만 15% 이상	
ML	85% 이상 70~85% 70% 미만	1 이상 1 미만 1 이상 1 이상 1 미만 1 미만	15% 미만 15% 이상	15% 미만 15% 이상	
CL-ML	85% 이상 70~85% 70% 미만	1 이상 1 미만 1 이상 1 이상 1 미만 1 미만	15% 미만 15% 이상	15% 미만 15% 이상	
СН	85% 이상 70~85% 70% 미만	1 이상 1 미만 1 이상 1 이상 1 미만 1 미만	15% 미만 15% 이상	15% 미만 15% 이상	
МН	85% 이상 70~85% 70% 미만	1 이상 1 미만 1 이상 1 이상 1 미만 1 미만	15% 미만 15% 이상	15% 미만 15% 이상	

기호	소성	200번체 통과율	모래백분율 자갈백분율	자갈 백분율	모래 백분율	명 칭
OL	PI≧4	85% 이상		,	,	유기질 점토(organic clay)
	이고 A선	70~85%	1 이상			모래 섞인 유기질 점토(organic clay with sand)
	위쪽		1 미만			자갈 섞인 유기질 점토(organic clay with
		50% -lml	4 2 2 2 2	4500 -lml		gravel)
		70% 미만	1 이상 1 이상	15% 미만 15% 이상		모래질 유기질 점토(sandy organic clay) 자갈 섞인 모래질 유기질 점토(sandy organic
				10		clay with gravel)
			1 미만 1 미만		15% 미만 15% 이상	자갈질 유기질 점토(gravelly organic clay) 모래 섞인 자갈질 유기질 점토(gravelly
			1 -14		13% -1.8	organic clay with sand)
	PI<4	85% 이상	4 4 1 2 1			유기질 실트(organic silt)
	또는 A선	70~85%	1 이상			모래 섞인 유기질 실트(organic silt with sand)
	아래쪽		1 미만			자갈 섞인 유기질 실트(organic clay with
		70% 미만	1 이상	15% 미만		gravel) 모래질 유기질 실트(sandy organic silt)
		10% -16	1 이상	15% 이상		자갈 섞인 모래질 유기질 실트(sandy
			1 미만		15% 미만	organic silt with gravel) 자갈질 유기질 실트(gravelly organic silt)
			1 미만		15% 이상	모래 섞인 자갈질 유기질 실트(gravelly
						organic silt with sand)
OH	A선 위쪽	85% 이상 70~85%	1 이상			유기질 점토(organic clay) 모래 섞인 유기질 점토(organic clay with
						sand)
			1 미만			자갈 섞인 유기질 점토(organic clay with gravel)
		70% 미만	1 이상	15% 미만		모래질 유기질 점토(sandy organic clay)
			1 이상	15% 이상		자갈 섞인 모래질 유기질 점토(sandy organic clay with gravel)
			1 미만		15% 미만	자갈질 유기질 점토(gravelly organic clay)
			1 미만		15% 이상	모래 섞인 자갈질 유기질 점토(gravelly
	A선	85% 이상				organic clay with sand) 유기질 실트(organic silt)
	아래쪽	70~85%	1 이상			모래 섞인 유기질 실트(organic silt with
			1 미만			sand) 자갈 섞인 유기질 실트(organic clay with
			, –			gravel)
		70% 미만	1 이상 1 이상	15% 미만 15% 이상		모래질 유기질 실트(sandy organic silt) 자갈 섞인 모래질 유기질 실트(sandy
			1 -10	1070 -18		organic silt with gravel)
			1 미만 1 미만		15% 미만 15% 이상	, , , , , , , , , , , , , , , , , , , ,
1			1 비단		19% 01%	organic silt with sand)

2. 퉁일분류법

• 예제 3.2²

다음과 같은 특성을 갖는 흙을 통일분류법으로 분류하라. 3

75mm체 통과율 = 100%4번체 통과율 = 80%10번체 통과율 = 70%40번체 통과율 = 65%200번체 통과율 = 45%액성한계 = 30%소성지수 = 10%

• 예제 3.3²

2가지 흙에 대한 입도분포곡선이 그림 3-5에 나타나 있다. 이 흙을 통일분류법으로 분류하여 ³ 기호와 명칭을 구하라. 40번체를 통과한 흙의 액성한계와 소성한계는 다음과 같다.

	흙 A	흙 B	4
액성한계(%)	24	30	
소성한계(%)	18	20	

그림 3-5 2가지 흙의 입도분포곡선 ⁶

3. AASHTO분류법¹

• AASHTO분류법²

- 미국의 도로 및 교통협회(American Association of State Highway and Transportation Officials, AASHTO)에서 발표 한 분류법으로서, 여러 차례 개정되어 도로설계용으로 많이 사용
- AASHTO분류법은 흙의 입도, 액성한계, 소성지수 등에 따라 흙을
 12가지 기호로 분류
- − 분류 기준 ⁴
 - 1. 자갈 : 직경 75mm~2mm(10번체)
 - 2. 모래 : 직경 2mm(10번체)~0.075mm(200번체)
 - 3. 실트와 점토 : 직경 0.075mm(200번체) 이하
 - 소성지수 PI≤ 10 : 실트질 흙
 - 소성지수 PI≥ 11 : 점토질 흙
 - 4. 75mm보다 큰 율석(cobble)이나 옥석(boulder)은 이료에서 제외시키지 만, 그 비율은 기록

3. AASHTO분류법¹

• AASHTO분류법²

- 흙의 입도, 액성한계, 소성지수 등에 따라 12가지 기호로 분류³

	4											
일반적 분류		조립토 (200번체 통과율 35% 이하)							세립토 (200번체 통과율 35% 초과)			
		A-1				A-	-2					A-7*
분	류기호	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5 A-7-6
체분석	10번체	50 이하										
통과율	40번체	30 이하	50 이하	51 이상								
(%)	200번체	15 이하	25 이하	10 이하	35 이하	35 이하	35 이하	35 이하	36 이상	36 이상	36 이상	36 이상
4014 -11	액성한계				40 이하	41 이상	40 이하	41 이상	40 이하	41 이상	40 이하	41 이상
40번체 통과분	소성지수	6 9	이하	비소성 (NP)	10 이하	10 이하	11 이상	11 이상	10 이하	10 이하	11 이상	11 이상
 ਦ	군지수		0		0		4 이하		8 이하	12 이하	16 이하	20 이하
주요구성재료		석편, 자갈, 모래 가는 모래		1	실트질 또는 점토질 자갈 및 모래				실트질 흙 점토질 흙		질 흙	
노상토로서 일반적 등급				<u> </u>	수 또는 영	통호			적합 또는 불량			

3. AASHTO분류법

• 군지수(group index, GI) 2

- 도로의 노상토 재료로 사용되는 흙의 품질을 평가하기 위하여 사용³
- 일반적으로 군지수가 클수록 흙의 품질은 나쁨

$$GI = (F-35)[0.2+0.005(LL-40)] + 0.01(F-15)(PI-10)$$

여기서,
$$F$$
= 200번체 통과율 5 LL = 액성한계 PI = 소성지수

군지수 결정 규칙⁶

- 1. 식 (3.1)로 구한 군지수는 반올림하여 정수로 나타낸다.
- 2. 만약 식 (3.1)로 구한 군지수가 음수이면 GI=0으로 한다. 8
- 3. 군지수의 상한선은 없다.
- 4. A-1-a, A-1-b, A-2-4, A-2-5, A-3에 속하는 흙의 군지수는 항상 0이다. 그림 3-6 AASHTO 소성도 10
- 5. A-2-6, A-2-7에 속하는 흙의 군지수를 계산할 때는 첫 번째 항을 무시하고 다음 식으로 계산한다.

'오랫동안 꿈을 그리는 사람은 마침내 그 꿈을 닮아간다' -앙드레 말로-

3. AASHTO분류법

• 예제 3.4²

어느 흙에 대한 입도분석의 결과가 다음과 같고, 40번체를 통과한 흙의 액성한계와 소성지수는 ³ 각각 30%와 10%이다. 이 흙을 AASHTO분류법에 의하여 분류하라.

10번체 통과율 = 100% 4

40번체 통과율 = 80%

200번체 통과율 = 58%

4. 흙의 다짐 원리

흙의 다짐(compaction)²

- 타격, 압력, 진동, 반죽 등의 방법으로 흙에 에너지를 가하여 흙입자 사이의 간격을 조밀하게 하여 흙의 물리적, 역학적 특성을 개선하는 것
- 느슨한 흙에 다짐을 하면 흙속의 공기가 배출되어 간극이 감소하여 흙의 투수 성과 압축성이 감소
- 흙의 단위중량이 증가하여 흙의 전단강도가 증가하며, 기초지반의 지지력은 증가하고 침하량은 감소
- 흙을 다질 때 물을 가해주면 그 물이 마치 윤활유처럼 흙입자들 사이에 작용 하게 되어 흙입자들은 서로 미끄러져서 조밀
- 함수비를 점차로 증가시키면서 동일한 다짐에너지를 가하면 단위부피당 흙입 자의 무게가 점차로 증가하여 흙의 건조단위중량이 증가. 그러나 함수비가 계속 증가하여 어느 값을 초과하면 함수비가 증가함에 따라서 건조단위중량이 오히려 감소
- 흙의 최대건조단위중량 $\gamma_{d, max}$ 이 얻어질 때 즉, 흙이 가장 잘 다져질 때의 함 5 수비를 최적함수비(optimum moisture content, OMC)

• 실내다짐시험 2

- 일정한 부피의 몰드(mold)에 흙을 3층이나 5층으로 나누어 깔고 각³ 층마다 래머(rammer, 철추)를 낙하시켜서 다짐에너지를 가하여 흙을 다지는 것
- 다짐에너지(compaction energy, E_c)⁴

$$E_c = \frac{Wh N_b N_l}{V}$$

여기서,
$$W=$$
 래머의 무게 $h=$ 래머의 낙하높이 $N_b=$ 각 층당 다짐횟수 $N_l=$ 다짐 층수 $V=$ 몰드의 부피

• 실내다짐시험 2

표준다짐시험방법³

• 내경 100mm, 높이 127.3mm(부피 1,000cm³)의 5 물드에 흙을 3층으로 나누어 넣고 각 층마다 2.5kg의 래머를 30cm의 높이에서 25회씩 낙하시켜서 다짐을 하는 방법

─ 수정다짐시험방법 ⁵

• 내경 150mm, 높이 125mm(부피 2,209cm³)의 몰 드에 흙을 5층으로 나누어 넣고 각 층마다 4.5kg의 래 머를 45cm의 높이에서 55회씩 낙하시켜서 다짐을 하 는 방법

- 한국산업규격에 의한 실내다짐시험⁹

	방법	래머무게 (kg)	낙하높이 (cm)	1층당 다짐횟수	충수	몰드내경 (mm)	허용최대입경 (mm)	
	A	2.5	30	25	3	100	19	
	В	2.5	30	55	3	150	37.5	
	C	4.5	45	25	5	100	19	
ı	D	4.5	45	55	5	150	19	
1	E	4.5	45	92	3	150	37.5	+

그림 3-7 표준다짐시험 장치 8

간다' - 앗드레 막로-

10

• 예제 3.5²

표준다짐시험방법과 수정다짐시험방법의 다짐에너지를 각각 계산하라.

• 실내다짐시험의 방법과 순서²

- 1. 몰드에 흙을 3층이나 5층으로 나누어 깔고 각 층마다 래머를 낙하시켜서 흙을 다진다.
- 2. 다져진 흙의 무게와 부피를 측정하고, 흙의 전체(습윤)단위중량 γ 를 다음 식으로 구한다.
- 3. 다져진 흙의 함수비 w를 측정하고, 흙의 건조 단위중량 γ_d 를 다음 식으로 구한다.
- 4. 흙의 함수비를 4~5차례 바꾸어가면서 동일한 방법으로 시험을 반복 실시한다.
- 5. 각 시험에서 구한 함수비 w와 건조단위중량 γ_d 의 관계를 그림 3-8과 같이 표시한다. 각 점들을 부드럽게 연결한 곡선을 다짐곡선이라고 한다.
- 6. 다짐곡선의 꼭지점에서 최대건조단위중량과 최 적함수비 OMC(optimum moisture content) 를 구한다

$$\gamma = \frac{W}{V}$$

$$\gamma_d = \frac{\gamma}{1+w}$$

• 예제 3.6²

표준다짐시험결과가 다음과 같을 때 최대건조단위중량과 최적함수비를 구하라.3

다져진 흙의 무게(g)	1,864	1,965	2,032	2,056	2,037	2,013
함수비 (%)	12	14	16	18	20	22

부피 <i>V</i> (cm³)	젖은 흙무게 <i>W</i> (g)	전체단위중량 γ (g/cm^3)	함수비 w (%)	건조단위중량 γ_d $({ m g/cm}^3)$
1,000	1,864	1,864	12	1.664
1,000	1,965	1,965	14	1.724
1,000	2,032	2,032	16	1.752
1,000	2,056	2,056	18	1.742
1,000	2,037	2,037	20	1.698
1,000	2,013	2,013	22	1.650

• 영공기간극곡선 2

- 다짐에 의하여 간극속의 공기가 완전히 배출되어 공기의 부피가 00^3 되고 간극이 물로 100% 포화될 때, w와 γ_d 의 관계 곡선
- 포화도 S에 따라 달라지는 w와 γ_d 의 관계곡선을 포화도곡선 (saturation curve)
- _ 흙의 건조단위중량

$$\gamma_d = \frac{G_s}{1+e} \gamma_w = \frac{G_s}{1+\frac{G_s w}{S}} \gamma_w$$

여기서,
$$\gamma_d$$
 = 흙의 건조단위중량 5 γ_w = 물의 단위중량 e = 간극비 G_s = 흙입자의 비중 S = 포화도

• 영공기간극곡선 원

- 포화도 S가 일정할 때, 함수비 w의 변화에 따른 3
 건조단위중량 의 변화를 구하는 방법
 - 1. 흙입자의 비중 G_s를 구한다.
 - 2. 물의 단위중량 γ_w를 구한다.
 - 3. 포화도 S가 80%일 때, 함수비 w를 5%, 10% 15% 등으로 바꾸어 가면서 건조단위중량 γ_d 를 식 (3.6)으로 구하고, w와 γ_d 의 관계를 표시하면 그림 3-10의 점선과 같이 된다.
 - 4. 포화도 S가 100%일 때, 식 (3.6)은 다음 식과 같이 된다. 함수비 w를 5%, 10%, 15% 등으로 바꾸어 가면서 건조단위중량 γ_d 를 식 (3.7)로 구하고, w와 γ_d의 관계를 표시하면 그림 3-10의 점선과 같이 된다.

$$\gamma_d = \frac{G_s}{1 + G_s w} \gamma_w$$

그림 3-10 영공기간극곡선 7

• 예제 3.7²

흙입자의 비중 $G_s = 2.68$ 인 흙의 영공기간극곡선을 그려라. 3

$$w = 5\%$$
: $\gamma_d = \frac{G_s}{1 + G_s w} \gamma_w = \frac{2.68}{1 + 2.68 \times 0.05} \times 1 \text{t/m}^3 = 2.36 \text{t/m}^3$

$$w = 10\%$$
: $\gamma_d = \frac{2.68}{1 + 2.68 \times 0.10} \times 1 \text{t/m}^3 = 2.11 \text{t/m}^3$

$$w = 15\%$$
: $\gamma_d = \frac{2.68}{1 + 2.68 \times 0.15} \times 1 \text{t/m}^3 = 1.91 \text{t/m}^3$

$$w = 20\%$$
: $\gamma_d = \frac{2.68}{1 + 2.68 \times 0.20} \times 1 \text{t/m}^3 = 1.74 \text{t/m}^3$

$$w = 25\%$$
: $\gamma_d = \frac{2.68}{1 + 2.68 \times 0.25} \times 1 \text{t/m}^3 = 1.60 \text{t/m}^3$

6. 흙의 다짐에 영향을 미치는 요인

- 함수비 이외에 다짐에너지의 크기, 흙의 종류 등
- 다짐에너지에 의한 영향
 - 1. 다짐에너지가 커지면 최대건조단위중량이 증가한다.
 - 2. 다짐에너지가 커지면 최적함수비 OMC는 감소한다.
 - 다짐에너지가 클수록 최적함수비가 감소한다는 것에서 현 장에서 흙을 다질 때 대형 다짐장비를 사용하면 물을 덜 뿌 려주면서 다져도 된다
 - 최적곡선: 여러 다짐곡선의 꼭지점을 연결한 선. 일종의 포화도곡선
 - 다짐에너지에 따른 위의 특성은 모든 종류의 흙에 적용된다. 그러나 다짐의 정도는 다짐에너지에 직접 비례하지 않음

다짐에너지가 다짐에 미치는 영향 5

6. 흙의 다짐에 영향을 미치는 요인

• 흙의 종류에 의한 영향²

- 1. 다짐에너지가 같을 경우 조립토(자갈, 모래)가 세립토(실트, 점토)보다 다짐이 잘 되고, 다짐곡선은 왼쪽 위로 이동한다. 즉, 최대건조단위중량이 증가하고 최적함수비 OMC는 감소한다.
- 2. 조립토에서는 입도분포가 양호할수록 다짐이 잘 된다. 즉, 최대건조단위중량이 증가하고 최적함 수비 OMC는 감소한다.
- 3. 세립토에서는 소성이 작을수록 다짐이 잘 된다. ⁵ 즉, 최대건조단위중량이 증가하고 최적함수비 OMC는 감소한다.
- 4. 조립토의 다짐곡선은 세립토의 다짐곡선에 비 6 해서 경사가 급한 경향이 있다.

여러 종류의 흙에 대한 다짐곡선 8

• 사질토의 다짐 특성²

- 입도불량한 모래의 다짐곡선은 1개의 꼭지점을 갖는 다짐곡선과는 달리 처음에는 함수비가 증가 함에 따라 건조단위중량이 감소하다가 함수비가 더욱 증가하면 건조단위중량이 증가하여 최대값 에 도달
- 처음에 함수비가 증가하여도 건조단위중량이 감소하는 것은 간극수에 의한 모관장력(capillary tension)이 흙입자의 미끄러짐 및 다짐을 방해하여 오히려 흙의 부피가 늘어나기 때문이며,. 이러한 부피팽창을 벌킹(bulking)
- 물을 더욱 증가시키면 표면장력이 사라져서 흙의 ⁵
 부피가 작아져서 건조단위중량이 다시 증가

그림 3-14 입도불량한⁷ 모래의 다짐곡선

7. **흙의 다짐 특성** ¹

점토의 다짐 특성²

다짐과 점토의 구조³

- 점토를 최적함수비보다 작은 건조측의 함수비로 ⁴ 다지면 점토는 면모구조 (점A)
- 함수비가 증가하면 입자 주위의 확산이중층이 팽 ⁵ 창하고 점토입자간의 반발력이 증가하여 면모화되는 정도가 감소하고 건조단위중량이 증가 (점B)
- 함수비가 증가하면 이중층이 더 팽창하게 되고 그 결과 입자간의 반발력이 계속 증가하여 이산 구조. 그러나 늘어난 물이 흙입자가 집중되는 것 을 방해하기 때문에 건조단위중량은 감소 (점C)
- 함수비가 일정한 경우에는 다짐에너지가 클수록 ⁷ 점토입자의 배열이 더욱 평행한 형태가 되어 이 산구조가 더 뚜렷(점 D, 점 E). 입자간의 거리가 가깝게 되어 흙은 더 큰 단위중량을 갖게 됨

다짐이 점토의 구조에 미치는 영향 9

점토의 다짐 특성²

- 다짐과 투수계수³

- 흙속에서 물이 얼마나 빨리 흐르는가를 나타내는 투수계수는 함수비가 증가함에 따라서 감소
- 투수계수는 거의 최적함수비에서 최소값
- 최적함수비보다 큰 함수비에서는 투수계수 가 약간 증가
- 최적함수비의 건조측에서 투수계수가 큰 이유는 점토입자의 배열이 불규칙한 면모 구조이어서 간극이 크기 때문
- 최적함수비의 습윤측에서 다질 때 투수계 수가 작아지므로, 흙댐의 다짐처럼 차수가 목적인 경우에는 최적함수비보다 약간 더 많은 함수비 즉 습윤측에서 다짐을 하는 것 이 효과적

- 점토의 다짐 특성²
 - 다짐과 압축성³
 - 최적함수비의 건조측과 습윤측 상태에서 다져진 점토의 일차원 압밀특성 4

- 면모구조를 파괴시키지 못 할 정도의 작은 압력으로 점토시료를 압밀할 경우에는 ⁸
 건조측 다짐을 한 시료가 습윤측 다짐을 한 시료보다 압축성이 작게 됨
- 면모구조를 파괴시킬 정도의 큰 압력으로 점토시료를 압밀할 경우에는 건조측 다짐을 한 시료가 습윤측 다짐을 한 시료보다 압축성이 크게 됨

점토의 다짐 특성²

- 다짐과 강도³

- 다짐을 받은 점토의 일축압축강도는 다짐함 수비가 클수록 감소하며, 최적함수비 부근 에서 강도가 크게 감소
 - 건조측과 습윤측에서 다짐을 하여 같은 건 조단위중량을 나타내었다 할지라도, 건조 측 다짐을 받은 시료의 면모구조가 습윤측 다짐을 받은 시료의 이산구조보다 더 큰 강 도를 나타냄을 의미
- 다짐의 목적이 강도증가인 경우에는 최적함 수비보다 약간 작은 함수비 즉 건조측에서 다짐을 하는 것이 효과적

8. 현장다짐

• 현장다짐 장비²

- 현장에서 흙을 다질 때 흙을 적절한 두메로 느슨하게 깐 다음 다짐장비를 이용 ³
- 대부분의 현장다짐에는 롤러(roller)를 이용
 - 1. 강륜롤러(smooth-wheel roller)
 - 강재(steel)로 된 원통모양의 롤러로서, 도로 노상을 다지거나 사질토나 점성토로 된 성토의 마무리작업에 적합
 - 2. 고무타이어롤러(pneumatic rubber-tired roller) ⁵
 - 여러 줄의 고무타이어가 부착된 중량이 큰 차량. 사질토와 점성토의 다짐에 사용 6
 - 3. 양족롤러(sheep's foot roller) ⁷
 - 강제 원통 표면에 많은 돌기가 부착된 롤러. 돌기의 작용은 흙을 혼합시키고 단단한 흙덩어리를 부 ⁸
 수는 역할. 점토층을 다질 때 아주 효과적
 - 4. 진동롤러(vibratory roller)
 - 강륜롤러, 고무타이어 롤러에 진동기(vibrator)를 부착시킨 것. 사질토를 다질 때 특히 효과적

8. 현장다짐

• 강륜롤러²

• 고무타이어롤러

양쪽롤러

8. 현장다짐

현장다짐 특성²

- ─ 롤러의 통과횟수³
 - 흙의 건조단위중량은 어느 정도까지는 롤러의 통과횟수에 따라 증가하지만, 점차 일정. 경 ⁴ 제적으로 최대건조단위중량을 얻을 수 있는 롤러의 통과횟수는 10~15회 정도
- 그 깊이에 따른 다짐효과⁵
 - 다짐효과(건조단위중량)는 지표면보다 약간 아래에서 가장 크게 나타난 다음 깊이가 커질수⁶ 록 감소.
 - 지표면에 가해진 압력이 깊이에 따라서 감소하며, 결국 깊은 곳에서는 흙이 덜 다져지기 때문
- 다짐층 두메⁷
 - 다짐장비와 통과횟수가 정해지면 다짐층의 두메를 결정. 실제로 현장에서는 대부분의 토공 ⁸ 사의 경우 한 층의 다짐두메로 30cm를 많이 적용
- 과다짐⁹
 - 너무 큰 다짐에너지로 흙을 다지면 흙구조가 파괴되는 등 흙속에 결함이 생겨서 흙의 건조 ¹⁰ 단위중량이나 강도가 감소