8.14 grande base = AB

petite base =
$$2 \cdot (\frac{1}{2} AB) \cos(\alpha) = AB \cos(\alpha)$$

base moyenne = $\frac{1}{2} AB (1 + \cos(\alpha))$

 $hauteur = \frac{1}{2} AB \sin(\alpha)$

aire du trapèze = $\frac{1}{4} (AB)^2 \sin(\alpha) (1 + \cos(\alpha)) = f(\alpha)$

$$f'(\alpha) = \left(\frac{1}{4}(AB)^2 \sin(\alpha) \left(1 + \cos(\alpha)\right)\right)' = \frac{1}{4}(AB)^2 \left(\sin(\alpha) \left(1 + \cos(\alpha)\right)\right)'$$

$$= \frac{1}{4}(AB)^2 \left(\sin'(\alpha) \left(1 + \cos(\alpha)\right) + \sin(\alpha) \left(1 + \cos(\alpha)\right)'\right)$$

$$= \frac{1}{4}(AB)^2 \left(\cos(\alpha) \left(1 + \cos(\alpha)\right) + \sin(\alpha) \left(-\sin(\alpha)\right)\right)$$

$$= \frac{1}{4}(AB)^2 \left(\cos(\alpha) + \cos^2(\alpha) - \sin^2(\alpha)\right)$$

$$= \frac{1}{4}(AB)^2 \left(\cos(\alpha) + \cos^2(\alpha) - \left(1 - \cos^2(\alpha)\right)\right)$$

$$= \frac{1}{4}(AB)^2 \left(2\cos^2(\alpha) + \cos(\alpha) - 1\right)$$

$$= \frac{1}{4}(AB)^2 \left(2\cos(\alpha) - 1\right) \left(\cos(\alpha) + 1\right)$$

- 1) $2\cos(\alpha)-1=0$ donne $\cos(\alpha)=\frac{1}{2}$, d'où $\alpha=\pm\frac{\pi}{3}+2\,k\,\pi$ où $k\in\mathbb{Z}$
- 2) $\cos(\alpha) + 1 = 0$ entraı̂ne $\cos(\alpha) = -1$, d'où $\alpha = \pi + 2k\pi$ où $k \in \mathbb{Z}$

Mais la donnée du problème requiert $\alpha \in \left[0\,; \frac{\pi}{2}\right].$

$$\begin{array}{c|cccc}
0 & \frac{\pi}{3} & \frac{\pi}{2} \\
f' & + 0 & - \\
f & \nearrow & \frac{\pi}{2}
\end{array}$$

Ainsi l'aire du trapèze est maximale si $\alpha = \frac{\pi}{3}$.

Elle vaut $f(\frac{\pi}{3}) = \frac{1}{4} (AB)^2 \sin(\frac{\pi}{3}) (1 + \cos(\frac{\pi}{3})) = \frac{1}{4} (AB)^2 \frac{\sqrt{3}}{2} (1 + \frac{1}{2}) = \frac{3\sqrt{3}}{16} (AB)^2$