Oficina

Testes de Mercado e Metodologia Quantitativa

Carolina Musso

Universidade de Brasília

2024-12-12

Agenda

- Probabilidade
- Amostragem
- Questionários
- Análise de Dados

Probabilidade ...

Não é intuitivo.

Problema Monty Hall

Problema dos aniversários

Quantas pessoas são necessárias em um *grupo* para que a probabilidade de *pelo menos duas* delas compartilharem o mesmo *aniversário* seja maior que 90%?

60 pessoas

Porque é esquisito?

- Viés de confirmação: focamos no que confirma nossas expectativas.
- Lógica anecdótica: eventos raros moldam nossa percepção de frequência.
- Pensamento de Curto Prazo: Tendemos a exagerar eventos recentes e ignorar tendências de longo prazo.

Q Mas!

Compreender probabilidades ajuda a tomar decisões informadas e a diminuir erros.

Introdução à Probabilidade

- Uma função , definida na -álgebra de subconjuntos de ,e com valores entre [0,1], σé dita uma probabilidade se Ω ela satisfaz aos axiomas de Komolgorov:
- P() = 1;
- \bullet ; ω
- $\mathfrak{D}(A)$ $\underline{\mathfrak{A}}$ $\underline{$

$$P(\bigcup_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} P(A_i)$$

• A trinca (, ,) é chamada de espaço de probabilidade.

$$\Omega_{M}$$

H

Amostragem

Amostragem é um processo estatístico de seleção de uma parte **representativa** de uma população para realizar uma **inferência** sobre esta população.

PDAD

Pesquisa Distrital por Amostra de Domicílios

PDAD Ampliada 2023

- 12 municípios da Periferia Metropolitana de Brasília
- 16 outras localidades inseridas no DF e na PMB

Inferencia estatística

- Extrair informações de uma **amostra** para fazer inferências sobre a **população**.
- A teoria e os estudos de probabilidade fornecem a base matemática em amostras probabilísticas.
 - Estimar os parâmetros e quantificar a incerteza.
 - Testar hipóteses e avaliar a significância.

O famigerado tamanho da amostra

$$n = \frac{z^2 \cdot \sigma^2}{e^2}$$

- : ex.: para 95% de confiança;
- Zvariancia da população (ou uma estimativa);
- : margem de erro aceita.

e

Depende

- Tamanho da população: Se a população é pequena, a amostra deve ser ajustada.
- Distribuição da população: Se a população não é normal, a amostra deve ser maior.
- Variabilidade da população: Se a variabilidade é alta, a amostra deve ser maior.

Número "mágico": 385-400

Para estimar a uma proporção, podemos usar a variância máxima.

$$n = \frac{z^2 \cdot p(1-p)}{e^2}$$

variância máxima é (quando);

$$0,25$$
 $p=0,5$

$$n = \frac{1.96^2 \cdot 0.5(1 - 0.5)}{0.05^2} =$$

Se a população for pequena

Se a população é pequena (ex: 200).

$$n_{ajustado} = \frac{n_0}{1 + \frac{n_0 - 1}{1}} = \frac{1}{1}$$

 $n_{ajustado} = \frac{n_0}{1 + \frac{n_0 - 1}{1 + \frac{n_0$ máxima, então n não pode ser pequeno.

Se sei que a variância é pequena.

- População homogênea: Altura dos atletas de uma seleção de basquete.
- Variância pequena: .
- Margem de erro: . $\sigma^2 = 4 \ cm^2$ $e = 2 \ cm$

$$n = \frac{1.96^2 \cdot 4}{2^2} = 3.8416 \approx$$

- Mais que tamanho da amostra
 - O importante é como a amostra é coletada.

Exemplo

- N = 1000 pessoas de consumidores de um novo streaming. Quanto estão dispostos a pagar em média.
 - DP padrão da população é de 29 reais.
 - Estamos disposos a errar em apenas 2 reais.
 - Com uma confiança de 95%.

Qual o tamanho da amostra necessário nesse caso

- Pela fórmula inicial, precisaríamos de 795 pessoas.
- Ajustando para populações pequenas, 443.

Amostra com 443 pessoas.

Amostra Aleatória Simples:

- A média estimada é 69.8.
 - Estimativa pontual
- IC 95% (67.2, 72.3).
 - Estimativa intervalar
- A média real é de 68.9.
 - A média pontual está próxima da real.
 - O IC contém a média real.

Amostra com 443 pessoas.

- Não aleatória: Coletada na ordem em que a população foi gerada.
- Média de 41.8
 - Estimativa pontual
- IC de 95%: (39.9 e 43.7).
 - Estimativa intervalar

Lembre

A média real é de 68.9.

E se n = 795...

- 795 primeiros valores da população.
- A média de 61.4.
 - Estimativa pontual
- IC de 95%: **(59.5 e 63.3)**.
 - Estimativa intervalar

∇eja!

Mesmo uma amostra maior, a média ainda está distante da média real (round(mean(população),1)) da população por não ser aleatória.

Na Prática

Limitações pesquisas amostrais probabilísticas

- Custo: Amostragem probabilística é mais cara que a não probabilística.
- **Tempo**: Pode ser mais demorada.
- Complexidade: Requer conhecimento técnico.
- Acesso: População desconhecida ou não acessível.

E agora?

Por onde começar

É preciso definir bem qual é a população de interesse.

- Em geral, valem esforços no sentido de conseguir a lista, com as partes interessadas ou órgãos públicos.
 - Ex: Melhorar bases de dados incompletas ou desatualizadas.

Amostragem estratificada

Pode-se melhorar a representatividade na amostra com o uso de estratificação (por setor, tamanho da empresa, etc.)

Amostragem estratificada

- Dividir a população em subgrupos (estratos) com características semelhantes.
- Outra forma de calcular o n, com diferentes possibilidade de alocação.

Voltando ao nosso exemplo...

- Na verdade, eram três grupos de consumidores:
 - Sol Nascente (250), Guará (350), Lago Sul (500).
- Agora com n=150 pessoas, dividido proporcionalmente e coletado aleatoriamente.
- Agora a média é 69. IC de 95%: (64.7 e 73.3).

∇eja!

O tamanho n diminuiu em relação à AAS, sem perda de precisão.

E se não fosse aleatória.

- A média da amostra estratificada não-aleatória é de 64.6
 - Média pontual.
- IC de 95%: (60.3 e 68.9)

∇eja!

A média real da população é de **68.9**. A estimativa já ficou bem melhor do que a coleta não aleatória de ~700 pessoas, mesmo também não sendo aleatória.

Outra possibilidade

- Amostragem sistemática.
 - Sorteia-se o primeiro elemento e cada -ésimo elemento (baseado no tamanho da améstra).
 - Exemplo amostra de 200 pessoas, k = 5.
- Dessa vez, a média da amostra é de 69.
- IC de 95%: **(65.3 e 72.8)**.

Q Lembre!

A média real da população é de 68.9.

Custo e Prazos

- Métodos digitais ou telefônicos são menos custosos que visitas.
- Questionários padrão ajudam na replicação e análise automatizáveis (relatórios estatísticos reprodutíveis);
 - Priorização de perguntas fechadas, facilita a análise.
 - Coleta de respostas por questionários eletrônicos, como forms, surveymonkey, redcap e etc.
- Uso de dados secundários.

Dados secundários: PDAD

- Pode ajudar a entender o tamanho da população de consumidores, por exemplo.
- Por exemplo, de acordo com a PDAD 2021 :
 - Em 61,6% dos domicílios, havia assinatura serviços on-line, como filmes, músicas, notícias, cursos, esportes etc.;
 - Em 40,4%, havia serviço de TV por assinatura; e
 - 7% assinavam revistas ou jornais impressos

Não respostas

Possibilidades

- Callbacks: Contatar novamente os respondentes
 - Aumentar número de respostas.
 - Utilize outros meios de contato.
 - Estabeleça um número máximo de tentativas de contato, considerando o custo-benefício.
 - Priorize subgrupos ou áreas com menores taxas de resposta inicial.

Callbacks

Otimização do Questionário

- Clareza e objetividade: Ser o mais curto e simples possível.
 - Usar termos claros e acessíveis.
 - Não misturar perguntas.
- Dar preferência a perguntas fechadas.
 - Evitar medidas subjetivas.
 - Usar escalas padronizadas

Otimização do Questionário

- Manter ordem lógica no questionário.
 - Manter o engajamento do respondente.
 - Evitar fadiga do respondente.
- Evitar perguntas tendenciosas.
- Piloto para testar a compreensão e a eficácia.

Exemplos

Exemplo:

"Com que frequência você estuda para as provas das disciplinas?"

- () Nunca
- () Raramente
- () Algumas vezes
- () Frequentemente
- () Sempre

"Quantos dias por semana, em média, você estuda para as provas das disciplinas?"

- () 0 dias
- () 1-2 dias
- () 3-4 dias

- () 5-6 dias
- () Todos os dias (7 dias)

Exemplo:

"Você está satisfeito com o ensino na sua faculdade?"

- () Sim
- () Não
- A pergunta é ampla demais.
- Não capta nuances de opiniões.
- Não há informações sobre quais aspectos precisam de melhorias.

Quão satisfeito você está com os seguintes aspectos do ensino na sua faculdade? 1 (Muito Insatisfeito) - 5 (Muito Satisfeito)

	1	2	3	4	5
Qualidade das aulas	0	0	0	0	0
Disponibilidade de professores para tirar dúvidas	0	0	0	0	0
Infraestrutura das salas de aula.	0	0	0	0	0

Exemplo:

"Há barreiras à livre circulação interestadual do produto X no Brasil? Explique, considerando fatores como custos de transporte, impostos etc."

Mistura uma questão fechada com explicações abertas.

Sugestão

- Existem barreiras à livre circulação interestadual do produto X no Brasil? (Sim/Não)
- Quais são os principais fatores que contribuem para essas barreiras? (Opções: Custos de transporte, impostos, regulamentações estaduais, outros).
- Se outros, por favor, especifique.

Exemplo:

"Informe se, caso as Requerentes deste Ato de Concentração viessem a aumentar o preço do produto X após a Operação (por exemplo, em um patamar entre 5% e 10%), sua empresa: (i) continuaria adquirindo os produtos desses fornecedores, ou (ii) substituiria os produtos das Requerentes por produtos de outro(s) fornecedor(es), conseguindo ter sua demanda integralmente atendida. Justifique."

- Longa, múltiplos parênteses que podem confundir.
- Combina uma pergunta fechada aberta.

Solução Proposta

- Se os preços do produto X fornecido pelas requerentes aumentassem entre 5% e 10% após a operação, como sua empresa responderia? Selecione a alternativa mais provável.
 - Continuaríamos adquirindo os produtos das Requerentes, mesmo com o aumento de preço.
 - Reduziríamos parcialmente as compras desses fornecedores, complementando com outros fornecedores.
 - Substituiríamos completamente os produtos das Requerentes por outros fornecedores.
 - Não é possível atender nossa demanda integralmente com outros fornecedores.

Não respostas

- Maneiras de minimizar impacto de não respostas:
- Se souber de antemão a taxa, aumenta-se n.

TABLE 13.3 Smallest Value of n for Given Limit of Error d, with Risk $\alpha=0.05$

Nonresponse,		d	(%)	
$100W_2$	20	15	10	5
0	24	43	96	384
2	27	50	122	653
4	31	60	166	2000
6	36	75	255	
8	43	99	521	
10	53	142		
15	112			

Ponderação por frequência de Resposta

 Ajuste os pesos das observações respondidas para refletir a representatividade no total da amostra.

Exemplo:

 Se um grupo (como jovens) tem uma baixa taxa de resposta, as respostas obtidas desse grupo terão maior peso.

Pós-Estratificação

- Divida a amostra em estratos de acordo com características relacionadas à probabilidade de resposta (idade, sexo, região, etc.).
- Ajuste as proporções para refletir a composição populacional conhecida.

Exemplo: Se um estrato deveria representar 30% da população, mas representa apenas 20% na amostra final, multiplique os pesos desse estrato por (1.5).

Estimando médias: Ajustar Viés

- 20% não responderam, e a maioria deles é homem, que são mais altos (~170cm).
- 80% responderam, maioria são mulheres, que são mais baixas (~164).

$$Vi\acute{e}s = W_{nr} \cdot (Y_r - Y_{nr})$$

(i) Variáveis contínuas

O intervalo é muito amplo, e as **suposições** sobre o comportamento dos nãorespondentes são mais complexas.

Para estimativa de proporções

- Ex: proporção de pessoas que concordam com uma decisão.
- Mais fácil, pois está sempre entre [0, 1]
- Podemos fazer intervalos conservadores:
 - Limite inferior (p = 0): Todos responderam "não".
 - Limite superior (p = 1): Todos esponderam "sim". . . .

Para estimativa de proporções

TABLE 13.2

95% Confidence Limits for P(%) when n = 1000

% Nonresponse,		Sample Percentage, 100p ₁			
$100W_2$	5	10	20	50	
0	(3.6, 6.4)	(8.1, 11.9)	(17.5, 22.5)	(46.7, 53.2)	
5	(3.4, 11.1)	(7.6, 16.3)	(16.5, 26.5)	(44.4, 55.6)	
10	(3.2, 15.8)	(7.2, 20.8)	(15.6, 30.4)	(42.0, 58.0)	
15	(3.0, 20.5)	(6.8, 25.2)	[#] (14.7, 34.3)	(39.6, 60.4)	
20	(2.8, 25.2)	(6.3, 29.7)	(13.7, 38.3)	(37.2, 62.8)	

Imputação de Dados Faltantes

Uma possibilidade é **Regressão**: Com base nos respondentes, preveja para os não-respondentes.

Análises

- Não basta fazer a análise descritiva da amostra. É preciso "expandir" a amostra para a população.
- Estimativas **intervalares** são mais robustas que estimativas pontuais.
- SAS
- R: pacote survey

Análise de dados não probabilísticos

Rao, J.N.K. On Making Valid Inferences by Integrating Data from Surveys and Other Sources. Sankhya B 83, 242–272 (2021)

Obrigada!