Formelbüchlein GF Mathematik

gym|lerbermatt / WaJ

Version 2018

Inhalt

1			2
	1.1	Algebra Basics	2
	1.2	Funktionstypen	3
	1.3	Funktionen anwenden	
2	Geo	ometrie	9
	2.1	Planare und räumliche Figuren	0
	2.2	Basics Vektoren, Geraden, Ebenen	1
	2.3	Vektoroperationen	
	2.4	Vektorbeziehungen	3
	2.5	Vektorkonstruktionen	
3	Sto	chastik 1	5
	3.1	Wahrscheinlichkeit Basics	5
	3.2	Kombinatorik	
	3.3	Spezielle Zufallsereignisse	
	3.4	Zufallsvariable und Wahrscheinlichkeitsverteilung	

1 Algebra & Analysis

1.1 Algebra Basics

Zahlen	Bruch: Zähler Nenner
N	Natürliche Zahlen: 1, 2, 3,
\mathbb{Z}	Ganze Zahlen:, $-2, -1, 0, 1, 2,$
Q	Rationale Zahlen: "Brüche" $\frac{p}{q}$ (abbrechend oder periodisch)
I	Irrationale Zahlen (nicht abbrechend und aperiodisch): $\sqrt{2} = 1.414\dots$ Diagonale des Einheitsquadrats $e = 2.718\dots$ Euler'sche Zahl, $\pi = 3.141\dots$ Durchmesser des Einheitskreis
\mathbb{R}	Reelle Zahlen: Alle Punkte des Zahlenstrahls
Wurzeln	$\sqrt[n]{x} = u$ (n-te Wurzel von x), da $u^n = x$
Potenzgesetze	Potenz x^a (" x hoch a ", x Basis, a Exponent) (I) $x^0 = 1, x^1 = x$ (K) $\frac{1}{x^n} = x^{-n}$ (W) $\sqrt[n]{x} = x^{1/n}$ (GB) $x^n \cdot x^m = x^{n+m}$ (GE) $x^n \cdot y^n = (x \cdot y)^n$ (PP) $(x^n)^m = x^{n \cdot m}$
Operatorenhierarchie	Potenz- vor Punkt- vor Strichrechnung
Binomische Formeln	$(x+y)^2 = x^2 + 2xy + y^2 (1)$ $(x-y)^2 = x^2 - 2xy + y^2 (2)$ $(x-y)(x+y) = x^2 - y^2 (3)$
Logarithmen	$\log_b(x) = u$ (Logarithmus von x zur Basis b), da $b^u = x$.
Insbesondere!	$\log_b(a^n) = n \cdot \log_b(a)$
logarithmus naturalis	$ ln(a) := \log_e(a) $
Zehner-Logarithmus	$\log(a) := \log_{10}(a)$
TR-Regel	$\log_b(a) = \frac{\log_n(a)}{\log_n(b)} = \frac{\ln(a)}{\ln(b)} = \frac{\log(a)}{\log(b)}$

Gleichungen	klassifiziere!
Lineare Gleichung	ax + b = 0 x auf eine Seite, Rest auf andere Seite, Division mit Vorfaktor von x .
Lineare Gleichungssysteme	$\begin{vmatrix} ax + by + d &= 0 & (1) \\ dx + ey + f &= 0 & (2) \\ \rightarrow x \text{ z.B. mit Additionsverfahren.} \end{aligned}$
Quadratische Gleichungen	$ax^2 + bx + c = 0$ faktorisieren $d \cdot (x - x_1) \cdot (x - x_2) = 0$, oder $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ mit TI-82: wähle PRGM "QuadrGl"
Wurzelgleichungen	$ax^n + b = 0$ \rightarrow isoliere x^n , auf beiden Seiten $\sqrt[n]{}$ anwenden.
Variable im Exponenten	$au^{x} + b = 0$ \rightarrow isoliere u^{x} , auf beiden Seiten $\ln(.)$ anwenden, Nutze $\ln(u^{x}) = x \ln(u)$.
Gleichungen mit sin, cos, tan	$a \sin(x) + b = 0$ $\rightarrow \text{ isoliere } \sin(x),$ $\text{brauche } \sin^{-1}(.).$ $\sin(x) = c \cdot \cos(x)$ $\rightarrow \frac{\sin(x)}{\cos(x)} = \tan(x) = c,$ $\text{brauche } \tan^{-1}(.).$

1.2 Funktionstypen

Funktion f	Bildet x auf $y = f(x)$ ab (Maschinchen). Zu jedem x gibt es ein eindeutig bestimmtes y .
f(x)	f(x) bezeichnet den Wert, auf den x unter f abgebildet wird.
Graph von f	Die "Kurve", die man erhält, wenn man die Punkte $(x f(x))$ in ein Koordinatensystem einzeichnet.

Polstelle von f	Definitionslücke von f .
Asymptote von f	Grenzfunktion von f für $x \to \pm \infty$.
Polynom vom Grad n	$f(x) = a_n \cdot x^n + \dots + a_1 \cdot x + a_0 \text{ mit } a_n \neq 0;$ $a_n, \dots, a_1, a_0 \text{ heissen Koeffizienten; } n = 0, 1, 2, \dots$
Konstante Funktion	$f(x) = a \ \forall x \in \mathbb{D} \ (\text{Grad } 0), \text{ Graph: } =$
Lineare Funktion	$f(x) = m \cdot x + q$ (Grad 1), $m = \frac{\Delta y}{\Delta x}$ Steigung, q y -Achsenabschnitt. Gerade:
Quadratische Funktion	$f(x) = a \cdot x^2 + b \cdot x + c \text{ (Grad 2)}$ Graph: $\forall d$ oder $\land \text{(Parabeln)}.$
Kubische Funktion	$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d \text{ (Grad 3)}$ Graph: $\neg \vdash \rightarrow$ oder $\neg \vdash \rightarrow$.
Nullstelle	x mit P(x) = 0
Potenzfunktion	$f(x) = x^n $ (<i>n</i> reell)
parabolisch	$f(x) = x^{gerade}$ (2, 4,), Graph:
hyperbolisch	$f(x) = \frac{1}{x^{gerade}} = x^{-gerade}$, Graph: $f(x) = \frac{1}{x^{ungerade}} = x^{-ungerade}$, Graph: Polstelle bei $x = 0$, Ayomptote $y = 0$.
Wurzelfunktion	$f(x) = \sqrt[gerade]{x} = x^{1/gerade}$, Graph: $f(x) = \sqrt[gerade]{x} = x^{1/ungerade}$, Graph:
Exponentialfunktion	$f(t) = a \cdot b^t$, $b > 1$ prozentuales Wachstum; Graph: $f(t) = a \cdot b^t$, $0 < b < 1$ prozentualer Zerfall; Graph: Asymptote $y = 0$.

schematisch	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Logarithmen	$f(x) = \log_a(x) \ (a > 0)$, Graph: $f(x) = \log_a(x) \ (0 < a < 1)$, Graph: h Inversfunktion einer Exponentialfunktion: z.B. $\ln(e^x) = x$
Trigonometrische Funktionen (Schwingungen)	definiert via Einheitskreis.
x Radian [rad]	Bogenlänge auf dem Einheitskreis, Start bei (1 0). Einmal rundherum ist 2π . $x > 0$: Gegenuhrzeigersinn, $x < 0$: Uhrzeigersinn.
$x \text{ Grad } [^{\circ}]$	Punkt auf dem Einheitskreis, der mit dem Startpunkt (1 0) und dem Zentrum (0 0) den Winkel x einschliesst. Eine volle Umdrehung entspricht 360!'. $x > 0$: Gegenuhrzeigersinn, $x < 0$: Uhrzeigersinn.
Sinus	$\sin(x) = \bigcirc$, Graph: $\triangle \bigcirc$
Cosinus	$\cos(x) = \bigcirc$, Graph: \bigcirc
Tangens	$\tan(x) = \frac{\sin(x)}{\cos(x)}$
Trigonometrischer Pythagoras	$\sin^2(x) + \cos^2(x) = 1$

1.3 Funktionen anwenden

Schnittpunkte	
Nullstelle von f	x mit $f(x) = 0$. Schnittpunkt des Graphen von f mit der x -Achse.
Nullstellen mit TI-82	plot f , wähle CALC und dann OPTION 2
y-Achsenschnittpunkt von f	f(0) Schnittpunkt des Graphen von f mit der y -Achse.
Schnittpunkt von f und g	$x \text{ mit } f(x) = g(x) \to S(x f(x)) \text{ oder } S(x g(x))$

Funktionsanpassung	verschieben, strecken/stauchen \leftrightarrow Graph anpassen.
Verschiebung in x	$f(x-3) = \xrightarrow{3}$, $f(x+3) = \xleftarrow{3}$
Verschiebung in y	f(x) + 3 = 13, $f(x) - 3 = 13$
Streckung an y -Achse	$f(3 \cdot x) = \stackrel{1/3}{\longleftrightarrow} , f(\frac{1}{3} \cdot x) = \stackrel{3}{\longleftrightarrow} , f(\frac{1}{a} \cdot x) = \stackrel{a}{\longleftrightarrow}$
Streckung an x -Achse	$3 \cdot f(x) = 13$, $\frac{1}{3} \cdot f(x) = 1/3$, $a \cdot f(x) = 1$
Spiegelung	f(-x) an y-Achse, $-f(x)$ an x-Achse, $-f(-x)$ am Ursprung
Ableitung von f	f'(x) ("f Strich von x"). Tangentensteigung von f im Punkt x.
Differenzenquotient ü. $[x_1, x_2]$	$\frac{\Delta f}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ (durchschnittliche Änderungsrate $\searrow 2$)
Differential quotient bei x	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (momentane Änderungsrate
Tangentengleichung	Funktionsgleichung der Tangente (linear/Gerade).
Extrema & Wendestellen	f'(x) = 0: Horizontaltangente $f''(x) < 0$: x lokales Maximum (rechtsgekrümmt) $f''(x) > 0$: x lokales Minimum (linksgekrümmt) $f''(x) = 0$: x Wendepunkt oder Terrassenpunkt $f'''(x) \neq 0$: x Wende- oder Terrassenpunkt (hinreichend)
Ableitungsregeln	AK $(c)' = 0$ MK $(c \cdot f)' = c \cdot f'$ S $(f+g)' = f' + g'$ P $(f \cdot g)' = f' \cdot g + f \cdot g'$ Q $\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$ KR $(f(g))' = f'(g) \cdot g'$
Spezielle Ableitungen	$(x^n)' = n \cdot x^{n-1}$ $(e^x)' = e^x$ $(\ln(x))' = \frac{1}{x}$ $(\sin(x))' = \cos(x)$ $(\cos(x))' = -\sin(x)$
f'(x) mit TI-82	plot f , dann CALC und wähle OPTION 6

Integral von f	$\int_a^b f(x)dx$ Integral von f von a bis b (Integrationsgrenzen $a\leq b)$ "Fläche zwischen dem Graphen von f und der $x\text{-Achse},$ begrenzt durch a und b ."
Rechtecksumme	$\int_{a}^{b} f(x) dx \approx f(x_{1}) \cdot \Delta x + f(x_{2}) \cdot \Delta x + \dots + f(x_{n}) \cdot \Delta x$ $n \to \infty \to \Delta x \to 0 \to \text{bessere N\"{a}herung}.$
Integrationsregeln	(MK) $\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} g(x) dx$ (S) $\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ (U) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx (a \le b \le c)$
Rotationsvolumen	$V_{\rm Rot} = \pi \int_a^b [f(x)]^2 dx$ Rotation des Graphen von f um die x -Achse.
Stammfunktion von f	Eine Funktion F heisst Stammfunktion von f , wenn $F'(x) = f(x) \ \forall x$.
Hauptsatz der Integral- & Differenzialrechnung	Um $\int_a^b f(x) dx$ zu berechnen, finde eine Stammfunktion F von f . Es ist dann $\int_a^b f(x) dx = F(x) _a^b = F(b) - F(a)$. Spezielle Stammfunktionen: $f(x) = x^n \qquad \to \qquad F(x) = \frac{1}{n+1} \cdot x^{n+1} \qquad (n \neq -1)$ $f(x) = x^{-1} = \frac{1}{x} \qquad \to \qquad F(x) = \ln(x)$ $f(x) = e^x \qquad \to \qquad F(x) = e^x$ $f(x) = \sin(x) \qquad \to \qquad F(x) = -\cos(x) \qquad (x \text{ in Radian})$ $f(x) = \cos(x) \qquad \to \qquad F(x) = \sin(x) \qquad (x \text{ in Radian})$
$\int_{a}^{b} f(x) dx \text{ mit TI-82}$	plot f , wähle CALC und dann OPTION 7
Folgen & Summen	
arithmetisch	a_1 Startwert, a_1 Startwert, d konstante Differenz $(d = a_2 - a_1 = a_3 - a_2 = \dots)$ $a_k = a_1 + (k-1)d$ (Zaunpfosten) $s_n = a_1 + a_2 + \dots + a_n = \frac{n}{2}(a_1 + a_n)$ ("Gauss-Trick") $s = a_1 + a_2 + \dots = \pm \infty \ (d \neq 0)$

$$a_1 \xrightarrow{q} a_2 \xrightarrow{q} \dots \xrightarrow{q} a_n$$

$$a_1 \text{ Startwert,}$$

$$q \text{ konstanter Quotient } (q = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots)$$

$$a_k = a_1 \cdot q^{k-1}$$

$$s_n = a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{1-q^n}{1-q} \ (q \neq 1)$$

$$s = a_1 + a_2 + \dots = \left\{ \begin{array}{c} \frac{a_1}{1-q} & \text{falls } -1 < q < 1 \\ \pm \infty & \text{falls } |q| > 1 \end{array} \right\}$$

$$Gauss-Trick$$

$$1 + 2 + 3 + \dots + n = \frac{n}{2} \cdot (1 + n)$$
Summe der Quadratzahlen
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2 Geometrie

2.1 Planare und räumliche Figuren

Dreieck b h c a	3 Kanten Umfang: $a+b+c$ Innenwinkelsumme: $\alpha+\beta+\gamma=180^\circ$ Fläche: $\frac{1}{2}\cdot a\cdot h$ ($h=$ Hšhe, senkrecht auf a) Cosinussatz: $c^2=a^2+b^2-2\cdot a\cdot b\cdot cos(\gamma)$ Sinussatz: $\frac{\sin(\alpha)}{a}=\frac{\sin(\beta)}{b}=\frac{\sin(\gamma)}{c}=\frac{1}{2R}$ (R : Umkreisradius)	
Δ	gleichschenkliges Dreieck Schenkel $b = c$, Basis a	
\triangle	gleichseitiges Dreieck $a=b=c$ (es folgt $\alpha=\beta=\gamma=60^{\circ}$)	
$\underbrace{\frac{H}{\alpha}}_{A}G$	rechtwinkliges Dreieck Pythagoras: $H^2 = A^2 + G^2$ Trigonometrie: "GugelHopf, AHa, Geht Auch!" $H=$ Hypotenuse, $A=$ Ankathete (von α), $G=$ Gegenkathete (von α)	
Viereck $b \overbrace{a}^{c} \underbrace{\delta}^{d} d$	4 Kanten Umfang: $a+b+c+d$ Winkelsumme: $\alpha+\beta+\gamma+\delta=360^\circ$	
	Rechteck: $\alpha = \beta = \gamma = \delta = 90^{\circ}, \ a = c \text{ und } b = d$ Fläche: $a \cdot b$	
	Quadrat: $\alpha = \beta = \gamma = \delta = 90^{\circ}$, $a = b = c = d$ Fläche: a^2	
	Parallelogramm: $a c$ and $b d$ (es folgt $a=c$ und $b=d$) Fläche: $a\cdot h$ ($h=$ Hšhe, senkrecht zu a)	
h	gleichschenkliges Trapez: $a c$ und $b=d$ Fläche: $\frac{h}{2}(a+c)$ ($h=$ Hšhe, senkrecht zu a und c)	
Kreis r	Umfang: $2\pi r$ (r ist Radius) Fläche: πr^2	

Prisma

"Grundfläche = Deckel", z.B. Quader, gerader Zylinder, schiefer Zylinder

Volumen: $h \cdot G$

h=Hšhe (senkrecht zur Grundfläche), G=Grundfläche

Würfel (alle Seiten s gleich lang)

Volumen: s^3

Kegel und Pyramiden

"Decke ist Punkt" (Spitze),

z.B.: gerader Kegel, schiefer Kegel, gerade Pyramide, schiefe

Pyramide

Volumen: $\frac{1}{3} \cdot h \cdot G$

h=Hšhe (senkrecht auf Grundfläche), G=Grundfläche

Kugel

Oberfläche: $4\pi r^2$ (r ist Radius)

Volumen: $\frac{4\pi}{3}r^3$

2.2 Basics Vektoren, Geraden, Ebenen

 $A(A_x|A_y|A_z)$

3D-Punkt mit Koordinaten A_x, A_y, A_z . Position im 3D-Raum.

Ursprung: O = (0|0|0)

 $\vec{v} = \left(\begin{array}{c} v_x \\ v_y \\ v_z \end{array}\right)$

Vektor mit Komponenten v_x , v_y , v_z "Wie kommt man vom Ende zur Sp

"Wie kommt man vom Ende zur Spitze des Pfeils parallel zu den 3 Koordinatenachsen?"

Nullvektor: $\vec{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$-\vec{v} = \begin{pmatrix} -v_x \\ -v_y \\ -v_z \end{pmatrix}$$

Gegenvektor von \vec{v} .

"Wie kommt man von der Spitze zum Schaft des Pfeils \vec{v} parallel zu den 3 Koordinatenachsen?"

 $\overrightarrow{AB} = \begin{pmatrix} B_x - A_x \\ B_y - A_y \\ B_z - A_z \end{pmatrix}$

Vektor vom Punkt A zum Punkt B.

 ${\bf "Endpunkt\ minus\ Anfangspunkt"}.$

 $\overrightarrow{OA} = \overrightarrow{A} = \left(\begin{array}{c} A_x \\ A_y \\ A_z \end{array} \right)$

Ortsvektor vom Punkt $A; A \sim \vec{A}$

Vektor der vom Ursprung zum Punkt A zeigt.

$\mathbf{Gerade}\ g$	Eine Gerade g ist eindeutig bestimmt durch einen Aufpunkt/Stützvektor A (irgendein Punkt auf g) und einem Richtungsvektor \vec{r} (irgendein Vektor parallel zu g). Paramterform $g \colon \vec{A} + \lambda \cdot \vec{r}$
Winkel zwischen Geraden	Winkel zwischen den Richtungsvektoren von g und h .
Ebene E	Eine Ebene E ist eindeutig bestimmt durch einen Punkt $A \in E$ (irgendein Punkt in E) und einen Normalenvektor \vec{n} von E (irgendein Vektor senkrecht auf E). Koordinatenform: $Ax + By + Cz + D = 0$ mit $\vec{n} = \begin{pmatrix} A \\ B \\ C \end{pmatrix}$
Winkel Gerade-Ebene	Winkel zwischen Richtungsvektor von g und Normalenvektor auf E .
Winkel zwischen Ebenen	Winkel zwischen Normalenvektoren von E und E.

2.3 Vektoroperationen

$ \vec{v} = v = \sqrt{v_x^2 + v_y^2 + v_z^2}$	Betrag/Länge von \vec{v}
Einheitsvektor	$ \vec{e} = 1$ (Vektor der Länge 1); z.B. $\vec{e}_x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
$\lambda \cdot \vec{v} = \begin{pmatrix} \lambda \cdot v_x \\ \lambda \cdot v_y \\ \lambda \cdot v_z \end{pmatrix}$	S-Multiplikation von \vec{v} mit Skalar $\lambda \in \mathbb{R}$. Streckt den Pfeil \vec{v} um den Faktor λ .
$\vec{v} \pm \vec{w} = \begin{pmatrix} v_x \pm w_x \\ v_y \pm w_y \\ v_z \pm w_z \end{pmatrix}$	Summe von \vec{v} und $\vec{w}/-\vec{w}$. Vektor, der das Dreieck vervollständigt. "Aneinanderhängen von \vec{v} und $\vec{w}/-\vec{w}$."
$\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z$	Skalarprodukt von \vec{v} und \vec{w} . Zwischenwinkel der Vektoren \vec{v} und \vec{w} . (Enden aneinanderfügen)
$\cos(\varphi) = \frac{\vec{v} \cdot \vec{w}}{ \vec{v} \cdot \vec{w} }$	φ ist Winkel zwischen den Vektoren \vec{v} und \vec{w} .

$\vec{v} \times \vec{w} = \begin{pmatrix} v_y w_z - v_z w_y \\ v_z w_x - v_x w_z \\ v_x w_y - v_y w_x \end{pmatrix}$	Vektorprodukt (oder Kreuzprodukt) von \vec{v} und \vec{w} . Produziert einen Vektor, der senkrecht auf \vec{v} und auf \vec{w} steht. Rechte-Hand-Regel: Zeigefinger \times Mittelfinger \to Daumen zeigt in Richtung Produkt.
$ ec{v} imesec{w} $	Fläche des Parallelogramms, das durch \vec{v} und \vec{w} aufgespannt wird.

2.4 Vektorbeziehungen

$ \begin{aligned} v_x &= w_x \\ \vec{v} &= \vec{w} &\Leftrightarrow v_y &= w_y \\ v_z &= w_z \end{aligned} $	\vec{v} und \vec{w} sind gleich (Repräsentanten).
$\vec{v} \parallel \vec{w} \Leftrightarrow \vec{v} = \lambda \cdot \vec{w}$	\vec{v} und \vec{w} sind kollinear (Pfeile sind parallel; das heisst, verschobene, gestreckte, und/oder gespiegelte Versionen).
$\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \cdot \vec{w} = 0$	\vec{v} und \vec{w} sind orthogonal (90° Winkel) genau dann, wenn das Skalarpodukt von \vec{v} und \vec{w} Null ist.
$P \in g \Leftrightarrow \overrightarrow{AP} \parallel \overrightarrow{r}$	Punkt P ist auf der Geraden g (gegeben durch Punkt A und Richtungsvektor r) genau dann, wenn der Vektor von A nach P kollinear (parallel) zum Vektor \vec{r} ist.
$P \in E \Leftrightarrow \overrightarrow{AP} \perp \overrightarrow{n}$	Punkt P ist in der Ebene E (gegeben durch Punkt A und Normalenvektor \vec{n}), falls der Vektor von A nach P orthogonal ist zu \vec{n} .

2.5 Vektorkonstruktionen

Schnittpunkt $P = g \cap h$	P ist Schnittpunkt der Geraden g and h : P ist auf der Geraden g und P ist auf der Geraden h .
Schnittpunkt $P = g \cap E$	P ist ein Schnittpunkt der Geraden g und der Ebene E : P ist auf der Geraden g und P ist in der Ebene E
Distanz $d(A, B)$	Distanz zwischen zwei Punkten \underline{A} und \underline{B} : Länge/Betrag des Vektors \overline{AB} , \overline{AB}
Distanz $d(P, E)$	Distanz zwischen dem Punkt P und der Ebene E : Finde den Schnittpunkt Q der Geraden g und der Ebene E , wobei g durch den Punkt P geht und senkrecht auf E steht. Die Distanz ist dann gegeben durch $ \overrightarrow{PQ} $.

Distanz $d(P,g)$	Distanz zwischen Punkt P und der Geraden g : Finde den Schnittpunkt Q der Geraden g und h , wobei h durch den Punkt P geht und senkrecht auf g steht. Distanz ist gegeben durch $ \overrightarrow{PQ} $.
$ {\bf Schwerpunkt} S $	Der Schwerpunkt eines Dreiecks mit den Eckpunkten A, B und C entspricht beispielsweise dem Durchschnitt dieser drei Punkte: $S = \frac{A+B+C}{3}.$

3 Stochastik

3.1 Wahrscheinlichkeit Basics

Zufallsexperiment	Experiment mit zufälligen Ereignissen $\omega_1, \ldots, \omega_n$. Einmalig ausgeführt wird eines der Ereignisse eintreten, aber wir kšnnen nicht 100% voraussagen, welches.
Stichproben raum Ω	$\Omega = \{\omega_1, \dots, \omega_n\}$, Menge aller Ereignisse.
$ \Omega $	Anzahl der m šglichen Ereignisse in Ω (Kardinalität).
Wahrscheinlichkeit $P(\omega_k)$	$P(\omega_k) = \frac{N_k}{N}$ (oft in Prozent angegeben) N_k Anzahl Ereignisse ω_k bei N (gross) Durchführungen des Experiments.
Ereignis E	E ist eine Teilmenge von Ω ($E \subseteq \Omega$). Wir sagen, das Ereignis E ist eingetreten, falls ein Element von E eingetreten ist.
Wahrscheinlichkeit $P(E)$	$P(E) = \frac{N_E}{N}$ Prozentsatz der Zufallsexperimente mit Ausgang E , wenn das Experiment oft wiederholt wird (N) . N_E Anzahl Zufallsexperimente mit Ausgang E .
$P(\{\omega_1,\omega_5,\omega_6\})$	Wahrscheinlichkeit, dass ein Ereignis mit einem Ausgang ω_1 , ω_5 , oder ω_6 (unvereinbar) eintritt. $P(\{\omega_1, \omega_5, \omega_6\}) = P(\omega_1) + P(\omega_5) + P(\omega_6) \text{ (Kolmogorov (III))}$
$P(\Omega)$	Sicheres Ereignis, $P(\Omega) = 1$ (Kolmogorov II)
$P(\{\})$	$P(\{\}) = 0$ "unmšgliches Ereignis", $\{\}$ oder \emptyset , leere Menge
$P(\overline{E})$	Wahrscheinlichkeit, dass E nicht eintritt. \overline{E} heisst das Gegenereignis von E . Es enthält alle Ausgänge von Ω , die nicht in E sind. Satz: $P(\overline{E}) = 1 - P(E)$ (Gegenwahrscheinlichkeit)
$P(E \cap F)$	Wahrscheinlichkeit, dass E und F eintreten. $E \cap F$ heisst der Schnitt von E und F . Es enthält alle Ereignisse, die sowohl in E als auch in F sind.
unvereinbare Ereignisse	E und F heissen unvereinbar, falls $E \cap F = \{\}$ (Wahrscheinlichkeit 0, dass E und F gleichzeitig eintreten).

 $P(E \cup F)$

Wahrscheinlichkeit, dass E oder F eintritt (nur E, nur F, oder ihr Schnitt). $E \cup F$ heisst Vereinigung von E und F. Es enthält alle Ausgänge in E, in F, oder im Schnitt.

Es gilt: $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

Bedingte Wahrscheinlichkeit

P(E|F) ("P von E unter der Voraussetzung F") ist die Wahrscheinlichkeit, dass E eintritt, unter der Voraussetzung, dass F bereits eingetreten ist. Definition:

 $P(E|F) := \frac{P(E \cap F)}{P(F)} \text{ oder } P(F) \cdot P(E|F) = P(E \cap F)$

unabhängige Ereignisse

E und F heissen unabhängig, falls der Eintritt von E keinen Einfluss auf den Eintritt von F hat (oder vice-versa). Das heisst, P(E|F) = P(E) oder $P(E \cap F) = P(E) \cdot P(F)$.

3.2 Kombinatorik

Fakultät

$$n!=n\cdot(n-1)\cdot n(-2)\cdot\ldots\cdot 1,$$
"n-Fakultät".
 $0!{=}1!{=}1,\ n!=n\cdot(n-1)!$ TI-82: PRB \rightarrow !

Binomialkoeffizienten

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k! \cdot (n-k)!}, \text{ "n tief k"}.$$

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = 1, \begin{pmatrix} n \\ 1 \end{pmatrix} = n,$$

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix} \text{ (Pascal-Dreieck)}$$

Permutation

n Personen auf n Stühle in eine Reihe setzen.

verschiedene Buchstaben

Anzahl der verschiedenen "W \check{s} rter" ist n!

Klassiker MISSISSIPPI	Anzahl verschiedener "Wšrter" $\frac{11!}{4!\cdot 4!\cdot 2!}$
Binärzahl 00110010	Anzahl verschiedene Bytes $\frac{8!}{5!\cdot 3!} = \begin{pmatrix} 8 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$

3.3 Spezielle Zufallsereignisse

Laplace-Experiment	Zufallsereignis, bei dem jeder Ausgang (von n m*sglichen) gleichwahrscheinlich ist. $P(\omega_1) = \cdots = P(\omega_n) = \frac{1}{n} = \frac{1}{ \Omega }$ $P(E) = \frac{ E }{ \Omega } = \frac{\text{g"unstig}}{\text{m*sglich}}$
Binomial verteilung $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Erfolg/Misserfolg-Experiment (z.B. Coin-Flip) Erfolgswahrscheinlichkeit p (Success), Misserfolg $q=1-p$ (Fail), n Wiederholungen. Wahrscheinlichkeit für genau k Erfolge: $P(k) = \binom{n}{k} p^k \cdot q^{n-k} = \mathtt{binompdf}(n, p, k).$ p darf sich von Experiment zu Experiment nicht ändern!

3.4 Zufallsvariable und Wahrscheinlichkeitsverteilung

Zufallsvariable	Die Gršsse X nimmt einer der Zustände $x_1,, x_n$ (sortiert, $x_1 < < x_n$) für ein Ereignis an. (Gleicher X -Wert für verschiedene Ausgänge m*sglich.)
$\{X = x_k\}$	Die Zufallsvariable " X nimmt den Wert x_k an".
$P(X=x_k)$	Wahrscheinlichkeit, dass X den Wert x_k annimmt. $P(X = x_1 \text{ oder } X = x_2) = P(X = x_1) + P(X = x_2)$
Verteilung von X	Menge der Wahrscheinlichkeiten $P(X = x_1), \dots, P(X = x_n)$.
Kumulative Verteilung von X	Menge aller Wahrscheinlichkeiten $P(X \leq u)$, wobei u von $-\infty$ bis ∞ . $P(X \leq x_k) = P(X = x_1) + \dots + P(X = x_k)$ $P(X \leq x_n) = P(X = x_1) + \dots + P(X = x_n) = 1$ $P(X > x_k) = 1 - P(X \leq x_k)$

Erwartungswert E bzw. μ von X

Mittelwert der X-Werte, wenn das Zufallsexperiment oft wiederholt wird (N).

$$\mu = \frac{x_1 + x_2 + x_3 + \dots + x_N}{N}$$

$$E(X) = P(X = x_1) \cdot x_1 + \dots + P(X = x_n) \cdot x_n$$

Standardabweichung σ von X

Mass für die durchschnittliche Abweichung vom Mittelwert, wenn das Zufallsexperiment oft wiederholt wird (N).

 $\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + (x_3 - \mu)^2 + \dots + x_N}{N}}$

 $\sigma = \sqrt{P(X = x_1) \cdot (x_1 - \mu)^2 + \dots + P(X = x_k) \cdot (x_k - \mu)^2}$

X heisst binomialverteilt mit Parameter p und n, wenn X die Werte 0, 1, 2, ..., n annimmt, und

$$P(X = k) = \binom{n}{k} p^k \cdot (1 - p)^{n - k} \ (\to \text{Abschnitt 3.3}).$$

Es ist

Binomialverteilung

 $P(X=k) = \mathtt{binompdf}(n, p, k)$

 $P(X \leq k) = \mathtt{binomcdf}(n, p, k)$

 $P(X \ge k) = 1 - \mathtt{binomcdf}(n, p, k - 1)$

Insbesondere: $\mu = n \cdot p$ und $\sigma = \sqrt{n \cdot p \cdot (1-p)}$

Kontinuierliche Verteilung

Die Zufallsvariable X nimmt Werte auf einem Intervall an. X ist definiert durch $P(a \le X \le b)$ für alle m*sglichen Werte zwischen a und b.

X ist normalverteilt mit Erwartungswert μ und Standardabweichung σ , falls

Welchung
$$\sigma$$
, rans
$$P(a \le X \le b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx$$
Gauss'sche Glockenkurve

Normalverteilung

$$P(a \leq X \leq b) = \mathtt{normcdf}(a, b, \mu, \sigma)$$

$$P(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 0.67$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.99$$