Types and λ -calculus

Problem Sheet 3

* 1. Show that Θ is also a fixed point combinator, i.e for all terms M:

$$\Theta M =_{\beta} M (\Theta M)$$

** 2. In this question you will give an alternative predecessor combinator which, although longer, is more intuitive to explain.

We define the *Church Pair* of natural numbers m and n, written $\lceil (m, n) \rceil$, as the term $\lambda z. z \lceil m \rceil \lceil n \rceil$.

(a) Define combinators **Fst** and **Snd** with the property that:

$$\mathbf{Fst}^{\lceil}(m, n)^{\rceil} =_{\beta} \lceil m^{\rceil} \quad \text{and} \quad \mathbf{Snd}^{\lceil}(m, n)^{\rceil} =_{\beta} \lceil n^{\rceil}$$

(b) Consider the following Haskell program pred' on natural numbers.

pred'
$$n = \text{fst (foldn } n \text{ incr } (0,0))$$

where

$$incr (n,0) = (n,1)$$

$$incr (n,1) = (n+1,1)$$

$$foldn 0 f x = x$$

$$foldn n f x = f (foldn (n-1) f x)$$

What is the result of computing foldn 3 incr (0,0)?

(c) Implement pred' as a λ -term operating on Church Numerals.

** 3.

(a) Prove that natural number multiplication is λ -definable by programming a combinator **Mult**.

Hint: multiplication is iterated addition.

(b) Prove that your construction works by showing the following using induction on $n \in \mathbb{N}$ or on $m \in \mathbb{N}$ (which one works will depend on how you defined **Mult**):

$$\forall n \in \mathbb{N}. \ \forall m \in \mathbb{N}. \ \mathbf{Mult} \ \lceil m \rceil \lceil n \rceil =_{\beta} \lceil m * n \rceil$$

Hint: you may use the following fact without proving it:

$$\lceil k + 1 \rceil =_{\beta} Add \lceil 1 \rceil \lceil k \rceil$$

** 4. Use **Y** to define the recursive triangular number function: using the "recipe", give a combinator **Tri** that satisfies:

$$\operatorname{Tri} \lceil 0 \rceil =_{\beta} \lceil 0 \rceil$$
 and $\operatorname{Tri} \lceil n+1 \rceil =_{\beta} \operatorname{Add} \lceil n+1 \rceil (\operatorname{Tri} \lceil n \rceil)$

Convince yourself that $\text{Tri } \lceil 2 \rceil =_{\beta} \lceil 3 \rceil$ (this is obvious if you believe that your implementation of Tri really satisfies the given equations).

** 5. Prove that if $M =_{\beta} N$ and N is a normal form, then $M \twoheadrightarrow_{\beta} N$.

Therefore, we now know that e.g. $\text{Tri} \, \lceil 2 \rceil \rightarrow \beta \lceil 3 \rceil$, so these definitions actually *compute* an output given an input.

** 6. Show that β -normal forms are unique, i.e. show that if a term has two β -normal forms N_1 and N_2 , then they are actually the same term.

Therefore, we now know that e.g. **Tri** $\lceil 2 \rceil \not \twoheadrightarrow_{\beta} \lceil 4 \rceil$, so there is at most one output for each input.

*** 7. Show that there is no term *P* that satisfies $P(MN) =_{\beta} N$.