Course Outline

- Semiconductor Industry and Technology Overview
- IC Design Flows
- Timing in Digital Systems
- Front-end Design Flow
- Back-end Design Flow
- Interconnection and Signal Integrity
- Low-Power Design
- Design-for-Testability (DFT)
- Based on "Introduction to VLSI Design" slides by Professor Yusuf Leblebici of the Microelectronic Systems Laboratory (LSM) and others.

Synchronous vs. Asynchronous Systems

Synchronous Systems

- All memory elements are simultaneously updated using a global clock signal
- Functionality is ensured by strict constraints on the clock generation and distribution

Asynchronous Systems

 Self-timed systems with no global clock but have asynchronous circuit overhead (e.g., handshaking logic)

GALS

 Hybrid systems that are global asynchronous with no common clock between blocks, while each block is locally synchronous.

Synchronous Digital Logic

Pipelined Digital Logic

Pipelining results in smaller stage delays between register banks, and consequently, faster clock frequencies -> System throughput increases!

However, latency also increases slightly and hardware overhead grows as a result of additional registers and clock distribution network.

Clocked Logic Example

There is always more than one way of solving a problem!

Clocked Logic Example

Much faster but also complicated hardware!

Latch versus Register

- Latch stores data when clock is low
- Register
 stores data when clock
 rises

Characterizing Timing

Latch Parameters

Delays can be different for rising and falling data transitions

Register Parameters

Delays can be different for rising and falling data transitions

Positive Feedback: Bi-Stability

Meta-Stability

Gain should be larger than 1 in the transition region

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Converting into a MUX

Forcing the state (can implement as NMOS-only)

Mux-Based Latches

Negative latch (transparent when CLK= 0)

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

Positive latch (transparent when CLK= 1)

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

Mux-Based Latch

Mux-Based Latch

NMOS only

Non-overlapping clocks

Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge also called as master-slave latch pair

Master-Slave Register

Multiplexer-based latch pair

Storage Mechanisms

Critical Path

The clock speed is determined by the slowest feasible path between registers in the design, often referred to as *the critical path*.

Pipelining

Reference

Pipelined

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 - b_1$		
2	$a_2 + b_2$	$ a_1+b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1 + b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	a ₅ + b ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Clock Uncertainties

Sources of clock uncertainty

Clock Nonidealities

Clock skew

- Spatial variation in temporally equivalent clock edges;
 deterministic + random, t_{SK}
- Skew is constant from cycle to cycle by definition.

Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term t_{JL}

Variation of the pulse width

Important for level sensitive and mixed-edge clocking

Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time
- Only skew affects the race margin

Clock Skew

Positive and Negative Skew

Positive Skew

Launching edge arrives before the receiving edge

Negative Skew

Receiving edge arrives before the launching edge

Timing Constraints

Minimum cycle time:

$$T_{CLK} + \delta > t_{c-q-max} + t_{logic-max} + t_{su}$$

Worst case is when receiving edge arrives early (negative δ)

Preventing Set-Up Violations

Set-up violation:

Logic is too slow for the correct logic value to arrive at the inputs to the register on the right before one set-up time before the clock edge

Constraint to prevent this:

$$t_{clock} \geq t_{clock-Q-\max} + t_{\log ic-\max} + t_{set-up} - t_{skew}$$

The amount of time required to turn '>' into '=' is referred to as timing slack

Timing Constraints

Hold time constraint:

$$t_{c-q-min}$$
 + $t_{logic-min}$ > t_{hold} + δ

Worst case is when receiving edge arrives late Race between data and clock

Impact of Jitter

Impact of Jitter: Longest Logic Path

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$T_{CLK} + \delta > t_{c-q} + t_{LM} + t_{su} + t_{ji,1} + t_{ji,2}$$

Minimum cycle time is determined by the maximum delays through the logic

$$T_{CLK} > t_{c-q} + t_{LM} + t_{su} - \delta + 2 t_{ji}$$

Skew can be either positive or negative

Shortest Path

Clock Constraints in Edge-Triggered Systems

Minimum logic delay

$$t_{c-q} + t_{Lm} > t_{hold} + \delta$$

How to counter Clock Skew?

Data and Clock Routing

Flip-Flop – Based Timing

Latch Parameters

Delays can be different for rising and falling data transitions

Latch-Based Design

L1 latch is transparent when f = 0

L2 latch is transparent when f = 1

Clock Distribution

H-tree

Clock is distributed in a tree-like fashion

H-Tree

Goal:

Try to equalize clock distribution path lengths to minimize the skew!

H-tree clock distribution network

H-Tree

Goal:

Try to equalize clock distribution path lengths to minimize the skew!

H-tree clock distribution network

H-Tree

Typical clock distribution network of a real chip

Clock Driver Network

Balanced clock driver network

The Grid System

- No RC-matching
- Large power
- Mostly in FPGAs

Balanced Grid

Balanced clock grid (Alpha processor)

Example: DEC Alpha 21164

- Clock Frequency: 300 MHz 9.3 Million Transistors
 - Total Clock Load: 3.75 nF

Power in Clock Distribution network: 20W out of 50

- Uses Two Level Clock Distribution:
 - Single 6-stage driver at center of chip
 - Secondary buffers drive left and right side
 - Clock grid in Metal3 and Metal4

21164 Clocking

- 2 phase single wire clock, distributed globally
- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load
- Local inverters for latching
- Conditional clocks in caches to reduce power
- More complex race checking
- Device variation

21164 Clocking

Clock Skew in Alpha Processor

EV6 (Alpha 21264) Clocking 600 MHz – 0.35um CMOS

Global clock waveform

- 2 Phase, with multiple conditional buffered clocks
 - 2.8 nF clock load
 - 40 cm final driver width
- Local clocks can be gated "off" to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

21264 Clocking

EV6 Clock Results

GCLK Skew (at Vdd/2 Crossings)

GCLK Rise Times (20% to 80% Extrapolated to 0% to 100%)

EV7 Clock Hierarchy

Active Skew Management and Multiple Clock Domains

- + Widely dispersed drivers
- + DLLs compensate static and low-frequency variation
- + Divides design and verification effort
- DLL design and verification is added work
- + Tailored clocks

Cell Library Example

QBAR

ms080cmosxCells

CMOSX 0.8 Micron Standard Cell Library

$A\mu E$

Advanced Microelectronics A Division of ITD ms080cmosxCells CMOSX 0.8 Micron Standard Cell Library

D flip-flop

Logic Equation: $Q = [(D \& CP[rise])] (Q^* \& CP[rise])]$ QRAR = !Q

Size in microns (W x II); 63.4 x 45.0

Pin Capacitance (fF)

pin	best	typical	worst
CF	14.1	21.6	30.9
D .	11.4	15.5	18.4
- Q	504	10.6	11.7
QHAR	11.4	12.7	22.3

Truth Table

DFF

CP	Q	QBAE
01	- 11	100
10	Q	QLAR

Delay Information

7ab Timir	Zub		Dest. 2.5V, -50	U. lond:0.35; tf0.631m	Ftr@2840s.	typical, 5% 2	5C. km/: 0.15 if:1.12na	pF ir:1.15as,		2V, 125C, lon 2.78m, (£2.27								
	1000.00		0.25 * load	1 * kud	4 * bad	0.25 * lond	1 * lead	4 * Isod	0.25 * load	L*lend	4 * kud							
		PD	1.249	0.315	0.647	0553	0539	1.15	151	1.76	261							
xp>qbu	01240	100	0.2	13 + 0.308 *	CL.	6.5	17+1,478*	CI	1.	46+0331*0	1.							
		TR	0.0997	0.206	0.811	0.144	0354	1.29	0.281	0,668	2.12							
						terror	0.211	0.256	0.545	0.459	0.624	1.23	124	1.78	3.34			
cp.>q	01-01	PD	0.1	90+0.258*	CL.	1.4	16+1309+	CL	3 3	12+159 °C	î.							
	*15.5.540.55	13.5.540.5							TR.	0.0374	0.225	0.817	0.198	0.517	1.89	0.456	1.35	4.96
		300	1.222	0.251	0.440	0.506	863	1.08	144	1.72	2.90							
rp>qbar	01-201	PD	0.2	02+0.169*	CL.		75 + 1,405 *	ct		35+105 ° C	1.							
	100000000	TR	0.0969	0.154	0.565	0.140	0.547	1.28	0.364	0.500	3.24							
17	PD	1.200	0.316	0.797	0.429	0631	1.37	116	1.55	291								
ep-riq	93~10	490	0.1	62 + 9.451 *	CL	1,3	78 - 4.514 *	CL	1.	89 + 1 32 + C	T.							
		TR	1.107	0.310	1.19	0210	0.537	1.92	0.441	1.06	3.33							

Special Timing Information

	bunt, 5.5V55C	typical, 5V, 25C	went 4.5V, 1250
Saturative and	03.	0.6	14
Holdtims en D	0.1	0.05	6.01
Minimorphic width-lev on CF	0.2	0.3	1.9
Minimum-pulse-width-high en CP	30.6	0.2	9.6
Minimum-period on CP	0.4	0.5	2.2
Maximum-fall-time suCP	- 4	35	3.82-02

Size in microns (W x II): 12.2 x 45.0

Pin Capacitance (IF) pin bes typical wors A0 16.5 24.2 37.1 A1 15.9 21.7 346

Logic Equation: Y = !(A0 | A1)

NOR2

Truth Table					
All	A1	Y	ı		
0	0	1	ı		
0	155.		ı		
1	0	- 1	ı		
-	100				

Delay Information

hits	hata Timina		Timing		best, 5.5V; -53	C, lead 9.35 1f 0.638ns	Fu 9.544s.	typical, 5V, 2	5C, hud 0.35 E.1. 12rs	pF x:1.15as.		5V,125C, ku 27km, (f2.2)	
	. 3		0.25 + load	1 t ked	4 * lead	0.25 * lood	1 * load	4 * lond	0.25 + bed	1 * lord	4 * load		
		Ι	1,103	0.231	0.827	0.273	0.629	1.88	0.549	1.68	5.07		
ni-y	10-01	Ю	0.07	257 + 0.343 *	CL.	. 11.	189 + 1.ZI * (1	0:	913+327*0	1		
	4.000,000,000	TR	1,309	0.582	1.79	0.760	1.20	3.99	11.5	2.91	19.5		
	100	700	100	ю	1.341	0.337	1.08	0.757	11605	1.72	0.302	1.25	3.40
nl~y	01-10	"	0.00	255 ± 0.668 ±	CL	- 0.	196 + 1.10 * 6	1	0.	26 < 2.17 * 6	1		
	10 8	TR	1.297	0.551	1.78	0,498	0.948	2.93	0.929	1.87	5.6		
	18 18		0.0542	0.225	9.767	0.212	0.349	1.79	9.635	1.50	4.83		
a0 - y	10>01	нэ.	0.00	344 + Q 555 *	CL	10.	123 + 1.19 + 0	1	.03	571+3.21±0	T		
		TR	1.202	0.555	1.77	0.951	1.17	3.04	110	2.84	10.3		
				***	4.165	0.349	100	0.300	0.627	1.73	0.600	1.71	1.43
10-y	01-10	ю	0.1	14+0.657*	CI	0.	250 + 10t * 6	т .	0:	505 + 2.12 * 6	1.		
	100051100	TR	9.739	0.566	1.79	0.344	0.982	2.96	1.05	1.97	5.68		

C_{load} on Flip-Flop

 C_{load} = output capacitance of flip-flop + input capacitance of NOR gate

Pin Capacitance (fF)						
pin	best	typical	worst			
CP	14.7	21.6	30.9			
D	10.4	13.5	18.4			
Q	5.04	10.6	11.7			
QBAR	11.4	12.7	22.3			

Pin Capacitance (fF)

pin	best	worst	
A0	16.5	24.2	37.1
A1	15.9	23.3	34.6
Y	5.54	10.1	13.6

Timing Tables

- Predict delay
 - Note delay different for rising and falling edges

Delay Information

Path	n Timing		best, 5.5V, -55C, load:0.35pF tr:0.584ns, ath Timing tE0.638ns		typical, 5V, 25C, load:0.35pF tr:1.15ns, tf:1.12ns		worst, 4.5V, 125C, lond:0.35pF tr:2.78ns, tf:2.27ns					
	12.5		0.25 * load	1 * kud	4 * load	0.25 * load	1 * load	4 * load	0.25 * load	1 * lead	4 * kud	
		PD	0.249	0.315	0.647	0.553	0.679	1.18	1.52	1.76	261	
ep.>qbur	01 > 10	PD	0.2	13 + 0.308 *	CL	0.5	17+0.478*	CL	1.4	46 + 0.831 * 0	L	
		TR.	0.0697	0.206	0.811	0.144	0.354	1.29	0.281	0.668	2.32	
	01>01 PD		700	0.211	0.266	0.545	0.459	0.624	1.25	124	1.70	3.34
cp⇒q		PD	0.1	80+0.258 *	CL	0.4	16 + 0.609 * 0	CL	1.	12 + 1.59 * C	L	
1,43 9 0,955		TR.	0.0874	0.229	0.847	0.198	0.517	1.89	0.456	1.33	4.86	
		PD	0.222	0.258	0.440	0.506	0.613	1.03	1.44	1.72	2.80	
ep⇒qbar	01>01	PD	0.2	02 + 0.169 *	CL	0.4	75 + 0.403 * 0	CL	1.	35 + 1.03 * C	L	
5 350 5 500 5 5510		TR.	0.0669	0.154	0.565	0.140	0.347	1.26	0.364	0.901	3.24	
		7075	0.209	0.316	0.797	0.429	0.631	1.37	1.16	1.59	291	
cp>q	01>10 PD	PD	0.1	62 + 0.451 *	CL	0.3	78 + 0.714 * 0	CL	1.	09 + 1.32 * C	L	
		TR	0.107	0.310	1.19	0.210	0.537	1.92	0.441	1.06	3,55	

Data Sheet Example

 Using timing approximations in the datasheet, what is the maximum clock frequency for this circuit (ignore wire load, Tskew)?

CL: pin

Q -> AU.	
$C_{L_{max}} = 0.0371 + 0.0117 pF = 0.0488 pF$	
$T_{cp-Q_{max}} = max(1.12+1.59*CL, 1.09 + 1.32*C)$	CL)
= max(1.12+1.59*0.0488,	
1.09 + 1.32*0.04	88)

= max(1.2, 1.15) = 1.2 ns

Q->A1:

 $\cap \rightarrow \Lambda \cap \cdot$

 $T_{cp-Q_{max}} = 1.2 \text{ ns}$

Pin Capacitance (fF)

pin	hest	typical	worst
A0	16.5	24.2	37.1
A1	15.9	23.3	34.6
Y	5.54	10.1	13.6

DFF Pin Capacitance (fF)

	457	3.7	1955
pin	best	typical	worst
CP	14.7	21.6	30.9
D	10.4	13.5	18.4
Q	5.04	10.6	11.7
QBAR	11.4	12.7	22.3

Data Sheet Example

Tlogic	:	ii.		The second contract of the con	5V, 125C, loa 2.78ns, tf:2.27	STATE STATE OF STATE	
	a1->y		10->01 PD —	0.25 * load	1 * load	4 * load	
I		10->01		0.749	1.68	5.07	
I		Minimum	TR	0.5	0.503 + 3.27 * CL		
				1.15	2.91	10.3	
I	0.40020.000	01->10	PD -	0.502	1.25	3.40	
	a1->y	01->10	Part Carlo	0.2	0.420 + 2.17 * CL		
	8		TR	0.920	1.87	5.61	
I		Section (Control of Control of Co	PD -	0.636	1.50	4.85	
I	a0->y	a0->y 10->01	50 ST SC	0.2	371 + 3.21 * 0	ĈL.	
L			TR	1.10	2.84	10.3	
			PD -	0.609	1.31	3.43	
I	a0->y	01->10	ID	0.5	505 + 2,12 * 0	CL.	
- 1			TR	1.05	1.97	5.68	

CL:
Pin Capacitance (fF) NOR2

pin	best	typical	worst
A0	16.5	24.2	37.1
Al	15.9	23.3	34.6
Y	5.54	10.1	13.6

DFF

Pin Capacitance (fF)

pin	best	typical	worst
CP	14.7	21.6	30.9
D	10.4	13.5	18.4
Q	5.04	10.6	11.7
QBAR	11.4	12.7	22.3

NOR2

CL = 0.0136 + 0.0184 = 0.032 pF

From A0: Tlogic = $\max (0.503 + 3.27*0.032, 0.420+2.17*0.032)$

= 0.61 ns

From A1: Tlogic = $\max (0.505+2.12*0.032, 0.371 +3.21*0.032)$

 $= 0.57 \, \mathrm{ns}$

Data Sheet Example

Tsu

Special Timing Information

	best, 5.5V, -55C	typical, 5V, 25C	worst, 4.5V, 125C
Setup-time on D	0.3	0.6	1.4
Hold-time on D	0.1	0.05	0.01
Minimum-pulse-width-low on CP	0.2	0.3	0.9
Minimum-pulse-width-high on CP	80.0	0.2	0.6
Minimum-period on CP	0.4	0.8	2.2
Maximum-fall-time on CP	4	39	3.8e+02

Delay Metric

- Usual Metric for delay:
 - Delay of an inverter with a fan-out of 4: FO4
- Estimating FO4:
 - Typical ~ 360 x L_{eff} (ps)
 - Worst Case ~ 600 x L_{eff} (ps)
 - L_{eff} = Effective gate length in um ~ 0.7 x L_{drawn}
 - E.g., in a 0.18um process, L_{eff} = 0.126um and FO4 \leq 75ps

Examples:

Inverter	= FO4	2-input NAND gate	= 2·FO4
1-bit adder	= 10·FO4	2-input Multiplexer	= 4·FO4
Flip-flop t _{c-a}	= 4·FO4	Flip-flop t _{su} & t _h	= 2·FO4
Flip-flop t _{c-q} Clock skew	= 4·FO4	Clock jitter	= 2·FO4

Examples of Improving Timing Performance

- Example 1 : Benefits of Pipelining and Parallelism
- Example:

If t_comparator = 20 · FO4, what is the clock period? (Use values on previous page)

Pipelining

Replace with:

$$T_{cp} = t_{ck-Q} + t_{logic} + t_{su} + t_{skew} + t_{jitter}$$

= $4 + 20 + 2 + 4 + 2 = 32 FO4$

- What is the delay improvement?
- What is the drawback?

Logic Level Parallelism

Replace with:

- Clock Period = 52 · FO-4
- No increase in area

Retiming

 Impact of critical paths can often be reduced by retiming or rebalancing a design.

Example:

Before:

$$T_{cp} = 4 + 20 + 5 + 2 + 4 + 2 = 37 FO4$$

After:

$$T_cp = 4 + 20 + 2 + 4 + 2 = 32 FO4$$

Note: Clock level logic sequence has been changed

Timing Mantra

- One clock, one edge; Flip-flops only
 - For your design (at least for each module), use one clock source and only one edge of that clock.
- Only use edge-triggered flip-flops; why?
- Moving data between different clock domains requires careful timing design and synthesis "scripting".
- If you need multiple clocks in your design:
 - Make them related by a powers of 2, e.g., 50, 100 and 200 MHz
 - Consider one clock per module
 - Consider resynchronizing using flip-flops between clock domains

Caveat

 Tools and designers are getting better at using latches and multiphase clocks. However, this requires experience to get correct.