1

NCERT 8 ex 13

EE24BTECH11032- John Bobby

Question: Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, y = 0, y = 4 into 3 equal parts.

Solution:

I. Theoretical Method

The variables used in $y^2 = 4x$ are given below

Variable	Description	values
V	Quadratic form of the matrix	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
u	Linear coefficient vector	$\begin{pmatrix} -2 \\ 0 \end{pmatrix}$
f	constant term	0

The variables used in $x^2 = 4y$ are given below

Variable	Description	values
V	Quadratic form of the matrix	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
u	Linear coefficient vector	$\begin{pmatrix} 0 \\ -2 \end{pmatrix}$
f	constant term	0

The point of intersection of the line with the parabolas is

$$x_i = h + k_i m \tag{1}$$

where, k_i is a constant and is calculated as follows:

$$k_{i} = \frac{1}{m^{\top}Vm} \left(-m^{\top} (Vh + u) \pm \sqrt{[m^{\top} (Vh + u)]^{2} - g(h)(m^{\top}Vm)} \right).$$
 (2)

Substituting the input parameters into k_i ,

For the line
$$x = 0$$
, $\mathbf{h} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\mathbf{m} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

For the function $y^2 = 4x$ we get k = 0 Thus $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

For the function $x^2 = 4y$ we get k = 0 Thus $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Similarly, on repeating the same process for the line x = 4 to each of the functions, we get the intersection points as $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$.

Area between
$$y^2 = 4x$$
 and $x^2 = 4y = \int_0^4 2\sqrt{x}dx - \int_0^4 \frac{x^2}{4}dx = \frac{32}{3} - \frac{16}{3} = \frac{16}{3}$
Area between $x^2 = 4y$ and $x = 0$ and $x = 4 = \int_0^4 2\sqrt{x}dx = \frac{16}{3}$

Area between
$$y^2 = 4x$$
 and $y = 0$ and $y = 4 = \int_0^{40} \frac{y^2}{4} dy = \frac{16}{3}$

We can see that the 3 areas are equal.

II. TRAPEZOIDAL METHOD

Using trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx (b - a) \left(\frac{f(a) + f(b)}{2} \right)$$

Applying trapezoid rule for all values of x between 0 and 2π where h is the step size

$$A = \frac{1}{2}h(y(x_1) + y(x_0)) + \frac{1}{2}h(y(x_2) + y(x_1)) + \dots + \frac{1}{2}h(y(x_n) + y(x_{n-1}))$$

Let $A(x_n)$ be the area enclosed by the curve y(x) from $x = x_0$ to $x = x_n$, $(x_0, x_1, \dots x_n)$ be equidistant points with step-size h.

$$A(x_n + h) = A(x_n) + \frac{1}{2}h(y(x_n + h) + y(x_n))$$
(3)

We can repeat this till we get required area.

Discretizing the steps, making $A(x_n) = A_n$, $y(x_n) = y_n$ we get,

$$A_{n+1} = A_n + \frac{1}{2}h(y_{n+1} + y_n) \tag{4}$$

We can write y_{n+1} in terms of y_n using first principle of derivative. $y_{n+1} = y_n + hy'_n$

$$A_{n+1} = A_n + \frac{1}{2}h\left((y_n + hy_n') + y_n\right)$$
 (5)

$$A_{n+1} = A_n + \frac{1}{2}h\left(2y_n + hy_n'\right) \tag{6}$$

$$A_{n+1} = A_n + hy_n + \frac{1}{2}h^2y_n' \tag{7}$$

$$x_{n+1} = x_n + h \tag{8}$$

For $y^2 = 4x$, $y_n = 2\sqrt{x_n}$ and $y'_n = \frac{1}{\sqrt{x_n}}$

For $x^2 = 4y$, $y_n = \frac{x^2}{4}$ and $y'_n = \frac{x}{2}$ The general difference equation will be given by

$$A_{n+1} = A_n + hy_n + \frac{1}{2}h^2y_n' \tag{9}$$

$$A_{n+1} = A_n + h(\cos x_n) + \frac{1}{2}h^2(-\sin x_n)$$
 (10)

$$x_{n+1} = x_n + h \tag{11}$$

Iterating till we reach $x_n = 4$ will return the required area for each function.

