Lecture on ADMM

Acknowledgement: this slides is based on Prof. Wotao Yin's lecture notes

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Dual problem

convex equality constrained optimization problem

minimize
$$f(x)$$

subject to $Ax = b$

- ► Lagrangian: $L(x,y) = f(x) + y^T(Ax b)$
- ▶ dual function: $g(y) = \inf_x L(x, y)$
- ▶ dual problem: maximize g(y)
- $\blacktriangleright \ \operatorname{recover} \ x^\star = \operatorname{argmin}_x L(x,y^\star)$

Dual ascent

- lacktriangle gradient method for dual problem: $y^{k+1} = y^k + \alpha^k \nabla g(y^k)$
- $lackbox{} \nabla g(y^k) = A\tilde{x} b$, where $\tilde{x} = \operatorname{argmin}_x L(x, y^k)$
- dual ascent method is

$$x^{k+1} := \operatorname{argmin}_x L(x, y^k) // x$$
-minimization
$$y^{k+1} := y^k + \alpha^k (Ax^{k+1} - b) // \text{dual update}$$

▶ works, with lots of strong assumptions

Dual decomposition

► suppose *f* is separable:

$$f(x) = f_1(x_1) + \dots + f_N(x_N), \quad x = (x_1, \dots, x_N)$$

lacktriangledown then L is separable in x: $L(x,y) = L_1(x_1,y) + \cdots + L_N(x_N,y) - y^T b$,

$$L_i(x_i, y) = f_i(x_i) + y^T A_i x_i$$

lacktriangledown x-minimization in dual ascent splits into N separate minimizations

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} L_i(x_i, y^k)$$

which can be carried out in parallel

Dual decomposition

▶ dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

$$x_i^{k+1} := \operatorname{argmin}_{x_i} L_i(x_i, y^k), \quad i = 1, \dots, N$$

 $y^{k+1} := y^k + \alpha^k (\sum_{i=1}^N A_i x_i^{k+1} - b)$

- ▶ scatter y^k ; update x_i in parallel; gather $A_i x_i^{k+1}$
- ▶ solve a large problem
 - by iteratively solving subproblems (in parallel)
 - dual variable update provides coordination
- works, with lots of assumptions; often slow

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Method of multipliers

- a method to robustify dual ascent
- ▶ use **augmented Lagrangian** (Hestenes, Powell 1969), $\rho > 0$

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2)||Ax - b||_{2}^{2}$$

▶ method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

$$x^{k+1} := \underset{x}{\operatorname{argmin}} L_{\rho}(x, y^{k})$$

 $y^{k+1} := y^{k} + \rho(Ax^{k+1} - b)$

(note specific dual update step length ρ)

Method of multipliers dual update step

▶ optimality conditions (for differentiable *f*):

$$Ax^* - b = 0,$$
 $\nabla f(x^*) + A^T y^* = 0$

(primal and dual feasibility)

▶ since x^{k+1} minimizes $L_{\rho}(x, y^k)$

$$0 = \nabla_x L_{\rho}(x^{k+1}, y^k)$$

= $\nabla_x f(x^{k+1}) + A^T (y^k + \rho(Ax^{k+1} - b))$
= $\nabla_x f(x^{k+1}) + A^T y^{k+1}$

- ▶ dual update $y^{k+1} = y^k + \rho(x^{k+1} b)$ makes (x^{k+1}, y^{k+1}) dual feasible
- \blacktriangleright primal feasibility achieved in limit: $Ax^{k+1}-b\to 0$

Method of multipliers

(compared to dual decomposition)

- ▶ good news: converges under much more relaxed conditions $(f \text{ can be nondifferentiable, take on value } +\infty, \dots)$
- ► bad news: quadratic penalty destroys splitting of the *x*-update, so can't do decomposition

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

典型问题形式

考虑如下凸问题:

$$\min_{\substack{x_1, x_2 \\ \text{s.t.}}} f_1(x_1) + f_2(x_2),
\text{s.t.} A_1x_1 + A_2x_2 = b,$$
(1)

- f_1, f_2 是适当的闭凸函数,但不要求是光滑的, $x_1 \in \mathbb{R}^n, x_2 \in \mathbb{R}^m$, $A_1 \in \mathbb{R}^{p \times n}, A_2 \in \mathbb{R}^{p \times m}, b \in \mathbb{R}^p$.
- 问题特点:目标函数可以分成彼此分离的两块,但是变量被线性 约束结合在一起.常见的一些无约束和带约束的优化问题都可以 表示成这一形式。

问题形式举例

• 可以分成两块的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(x).$$

引入一个新的变量Z并令X = Z,将问题转化为

$$\min_{x,z} \quad f_1(x) + f_2(z),$$

s.t.
$$x - z = 0$$
.

• 带线性变换的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(Ax).$$

可以引入一个新的变量Z,令Z = Ax,则问题变为

$$\min_{x,z} f_1(x) + f_2(z),$$

s.t.
$$Ax - z = 0$$
.

问题形式举例

凸集C ⊂ ℝⁿ上的约束优化问题

$$\min_{x} f(x),$$
s.t. $Ax \in C$.

 $I_C(z)$ 是集合C的示性函数,引入约束z = Ax,那么问题转化为

$$\min_{x,z} f(x) + I_C(z),$$

s.t.
$$Ax - z = 0$$
.

• 全局一致性问题

$$\min_{x} \quad \sum_{i=1}^{N} \phi_i(x).$$

 $\phi_{x} = z$, 并将x复制N份, 分别为 x_{i} , 那么问题转化为

$$\min_{x_i,z} \quad \sum_{i=1}^N \phi_i(x_i),$$

增广拉格朗日函数法

● 首先写出问题(1)的增广拉格朗日函数

$$L_{\rho}(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\mathrm{T}}(A_1x_1 + A_2x_2 - b) + \frac{\rho}{2} ||A_1x_1 + A_2x_2 - b||_2^2,$$
(2)

其中 $\rho > 0$ 是二次罚项的系数.

• 常见的求解带约束问题的增广拉格朗日函数法为如下更新:

$$(x_1^{k+1}, x_2^{k+1}) = \underset{x_1, x_2}{\operatorname{argmin}} L_{\rho}(x_1, x_2, y^k), \tag{3}$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b),$$
 (4)

其中7为步长.

交替方向乘子法

Alternating direction method of multipliers, ADMM

- 交替方向乘子法的基本思路: 第一步迭代(3)同时对x₁和x₂进行优化 有时候比较困难,而固定一个变量求解关于另一个变量的极小问 题可能比较简单,因此我们可以考虑对x₁和x₂交替求极小
- 其迭代格式可以总结如下:

$$x_1^{k+1} = \operatorname*{argmin}_{x_1} L_{\rho}(x_1, x_2^k, y^k), \tag{5}$$

$$x_2^{k+1} = \operatorname*{argmin}_{x_2} L_{\rho}(x_1^{k+1}, x_2, y^k), \tag{6}$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b),$$
 (7)

其中 τ 为步长,通常取值于 $\left(0,\frac{1+\sqrt{5}}{2}\right)$

原问题最优性条件

因为f₁,f₂均为闭凸函数,约束为线性约束,所以当Slater条件成立时,可以使用凸优化问题的KKT条件来作为交替方向乘子法的收敛准则.问题(1)的拉格朗日函数为

$$L(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\mathrm{T}}(A_1x_1 + A_2x_2 - b).$$

根据最优性条件定理,若x₁*,x₂*为问题(1)的最优解,y*为对应的拉格朗日乘子,则以下条件满足:

$$0 \in \partial_{x_1} L(x_1^*, x_2^*, y^*) = \partial f_1(x_1^*) + A_1^{\mathrm{T}} y^*, \tag{8a}$$

$$0 \in \partial_{x_2} L(x_1^*, x_2^*, y^*) = \partial f_2(x_2^*) + A_2^{\mathrm{T}} y^*, \tag{8b}$$

$$A_1 x_1^* + A_2 x_2^* = b. (8c)$$

在这里条件(8c)又称为原始可行性条件,条件(8a)和条件(8b)又称为对偶可行性条件.

ADMM单步迭代最优性条件

● 由x2的更新步骤

$$x_2^k = \underset{x}{\operatorname{argmin}} \left\{ f_2(x) + \frac{\rho}{2} \left\| A_1 x_1^k + A_2 x - b + \frac{y^{k-1}}{\rho} \right\|^2 \right\},$$

根据最优性条件不难推出

$$0 \in \partial f_2(x_2^k) + A_2^{\mathrm{T}}[y^{k-1} + \rho(A_1 x_1^k + A_2 x_2^k - b)].$$
 (9)

 $\exists \tau = 1$ 时,根据(7)可知上式方括号中的表达式就是 y^k ,最终有

$$0 \in \partial f_2(x_2^k) + A_2^{\mathrm{T}} y^k,$$

● 由x1的更新公式

$$x_1^k = \underset{x}{\operatorname{argmin}} \left\{ f_1(x) + \frac{\rho}{2} ||A_1 x + A_2 x_2^{k-1} - b + \frac{y^{k-1}}{\rho}||^2 \right\},$$

假设子问题能精确求解, 根据最优性条件

$$0 \in \partial f_1(x_1^k) + A_1^{\mathsf{T}}[\rho(A_1x_1^k + A_2x_2^{k-1} - b) + y^{k-1}].$$

ADMM单步迭代最优性条件

• 根据ADMM 的第三式(7)取 $\tau = 1$ 有

$$0 \in \partial f_1(x_1^k) + A_1^{\mathrm{T}}(y^k + A_2(x_2^{k-1} - x_2^k)). \tag{10}$$

对比条件(8a)可知多出来的项为 $A_1^TA_2(x_2^{k-1}-x_2^k)$ 。因此要检测对偶可行性只需要检测残差

$$s^k = A_1^{\mathsf{T}} A_2 (x_2^{k-1} - x_2^k)$$

• 综上当 x_2 更新取到精确解且 $\tau = 1$ 时,判断ADMM 是否收敛只需要检测前述两个残差 r^k , s^k 是否充分小:

$$0 \approx ||r^k|| = ||A_1 x_1^k + A_2 x_2^k - b|| \quad (原始可行性), 0 \approx ||s^k|| = ||A_1^T A_2 (x_2^{k-1} - x_2^k)|| \quad (对偶可行性).$$
 (11)

Outline

- 1 交替方向乘子法
- ② 常见变形和技巧
- 3 应用举例
- Douglas-Rachford splitting method
- 6 convergence

线性化

- 线性化技巧使用近似点项对子问题目标函数进行二次近似.
- 不失一般性,我们考虑第一个子问题,即

$$\min_{x_1} \quad f_1(x_1) + \frac{\rho}{2} \|A_1 x_1 - v^k\|^2, \tag{12}$$

其中 $v^k = b - A_2 x_2^k - \frac{1}{\rho} y^k$.

• 当子问题目标函数可微时,线性化将问题(12)变为

$$x_1^{k+1} = \operatorname*{argmin}_{x_1} \left\{ \left(\nabla f_1(x_1^k) + \rho A_1^{\mathsf{T}} \left(A_1 x_1^k - v^k \right) \right)^{\mathsf{T}} x_1 + \frac{1}{2\eta_k} \|x_1 - x^k\|_2^2 \right\},\,$$

其中 η_k 是步长参数,这等价于做一步梯度下降.

当目标函数不可微时,可以考虑只将二次项线性化,即

$$x_1^{k+1} = \operatorname*{argmin}_{x_1} \left\{ f(x_1) + \rho \left(A_1^{\mathsf{T}} (A_1 x_1^k - v^k) \right)^{\mathsf{T}} x_1 + \frac{1}{2\eta_k} \|x_1 - x^k\|_2^2 \right\},$$

这等价于做一步近似点梯度步.

缓存分解

• 如果目标函数中含二次函数,例如 $f_1(x_1) = \frac{1}{2} ||Cx_1 - d||_2^2$,那么针对 x_1 的更新(5)等价于求解线性方程组

$$(C^{\mathsf{T}}C + \rho A_1^{\mathsf{T}}A_1)x_1 = C^{\mathsf{T}}d + \rho A_1^{\mathsf{T}}v^k.$$

- 虽然子问题有显式解,但是每步求解的复杂度仍然比较高,这时候可以考虑用**缓存分解**的方法. 首先对 $C^TC + \rho A_1^TA_1$ 进行Cholesky分解并缓存分解的结果,在每步迭代中只需要求解简单的三角形方程组
- 当 ρ 发生更新时,就要重新进行分解.特别地,当 $C^TC + \rho A_1^TA_1$ 一部分容易求逆,另一部分是低秩的情形时,可以用SMW公式来求逆.

优化转移

● 有时候为了方便求解子问题,可以用一个性质好的矩阵D近似二次项A^TA₁,此时子问题(12)替换为

$$x_1^{k+1} = \underset{x_1}{\operatorname{argmin}} \left\{ f_1(x_1) + \frac{\rho}{2} ||A_1 x_1 - v^k||_2^2 + \frac{\rho}{2} (x_1 - x^k)^{\mathsf{T}} (D - A_1^{\mathsf{T}} A_1) (x_1 - x^k) \right\}.$$

这种方法也称为优化转移.

• 通过选取合适的D,当计算 $\operatorname*{argmin}_{x_1}\left\{f_1(x_1) + \frac{\rho}{2}x_1^TDx_1\right\}$ 明显比计算 $\operatorname*{argmin}_{x_1}\left\{f_1(x_1) + \frac{\rho}{2}x_1^TA_1^TA_1x_1\right\}$ 要容易时,优化转移可以极大地简化子问题的计算.特别地,当 $D = \frac{\eta_k}{\rho}I$ 时,优化转移等价于做单步的近似点梯度步.

14/76

二次罚项系数的动态调节

- 原始可行性和对偶可行性分别用 $\|r^k\|$ 和 $\|s^k\|$ 度量.
- 求解过程中二次罚项系数ρ太大会导致原始可行性||ρ^k||下降很快, 但是对偶可行性||ρ^k||下降很慢;二次罚项系数太小,则会有相反的效果.这样都会导致收敛比较慢或得到的解的可行性很差.
- 一个自然的想法是在每次迭代时动态调节惩罚系数ρ的大小,从而使得原始可行性和对偶可行性能够以比较一致的速度下降到零.
 一个简单有效的方式是令

$$\rho^{k+1} = \begin{cases} \gamma_p \rho^k, & \|r^k\| > \mu \|s^k\|, \\ \frac{\rho^k}{\gamma_d} & \|s^k\| > \mu \|r^k\|, \\ \rho^k, & \not\equiv \&, \end{cases}$$

其中 $\mu > 1, \gamma_p > 1, \gamma_d > 1$ 是参数.常见的选择 为 $\mu = 10, \gamma_p = \gamma_d = 2$.在迭代过程中将原始可行性 $\|r^k\|$ 和对偶可行性 $\|s^k\|$ 保持在彼此的 μ 倍内.如果发现 $\|r^k\|$ 或 $\|s^k\|$ 下降过慢就应该相应增大或减小二次罚项系数 ρ^k .

超松弛

• 在(6)式与(7)式中, $A_1x_1^{k+1}$ 可以被替换为

$$\alpha_k A_1 x_1^{k+1} + (1 - \alpha_k)(A_2 x_2^k - b),$$

其中 $\alpha_k \in (0,2)$ 是一个松弛参数.

• 当 $\alpha_k > 1$ 时,这种技巧称为超松弛;当 $\alpha_k < 1$ 时,这种技巧称为欠松弛.实验表明 $\alpha_k \in [1.5, 1.8]$ 的超松弛可以提高收敛速度.

多块问题的ADMM

● 考虑有多块变量的情形

$$\min_{\substack{x_1, x_2, \dots, x_N \\ \text{s.t.}}} f_1(x_1) + f_2(x_2) + \dots + f_N(x_N),$$
s.t.
$$A_1 x_1 + A_2 x_2 + \dots + A_N x_N = b.$$
(13)

这里 $f_i(x_i)$ 是闭凸函数, $x_i \in \mathbb{R}^{n_i}, A_i \in \mathbb{R}^{m \times n_i}$.

• 同样写出增广拉格朗日函数 $L_{\rho}(x_1,x_2,\cdots,x_N,y)$,相应的多块ADMM 迭代格式为

$$x_1^{k+1} = \operatorname*{argmin}_x L_{\rho}(x, x_2^k, \cdots, x_N^k, y^k),$$
 $x_2^{k+1} = \operatorname*{argmin}_x L_{\rho}(x_1^{k+1}, x, \cdots, x_N^k, y^k),$
 $\dots \dots \dots$
 $x_N^{k+1} = \operatorname*{argmin}_x L_{\rho}(x_1^{k+1}, x_2^{k+1}, \cdots, x, y^k),$
 $y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} + \cdots + A_N x_N^{k+1} - b),$
其中 $\tau \in \left(0, \frac{1}{2}(\sqrt{5} + 1)\right)$ 为步长参数:

Outline

- 1 交替方向乘子法
- 2 常见变形和技巧
- ③ 应用举例
- Douglas-Rachford splitting method
- convergence

LASSO 问题的Primal 形式

• LASSO 问题

$$\min \quad \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|^2.$$

转换为标准问题形式:

$$\min_{x,z} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||z||_1,$$

s.t. x = z.

• 交替方向乘子法迭代格式为

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \|Ax - b\|^2 + \frac{\rho}{2} \|x - z^k + \frac{1}{\rho} y^k\|_2^2 \right\},$$

$$= (A^T A + \rho I)^{-1} (A^T b + \rho z^k - y^k),$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} \left\{ \mu \|z\|_1 + \frac{\rho}{2} \|x^{k+1} - z + \frac{1}{\rho} y^k\|^2 \right\},$$

$$= \underset{z}{\operatorname{prox}}_{(\mu/\rho)\|\cdot\|_1} \left(x^{k+1} + \frac{1}{\rho} y^k \right),$$

$$y^{k+1} = y^k + \tau \rho (x^{k+1} - z^{k+1}).$$

LASSO 问题的Primal 形式

- 注意,因为 $\rho > 0$,所以 $A^TA + \rho I$ 总是可逆的·x迭代本质上是计算一个岭回归问题(ℓ_2 范数平方正则化的最小二乘问题);而对Z的更新为 ℓ_1 范数的邻近算子,同样有显式解·在求解X迭代时,若使用固定的罚因子 ρ ,我们可以缓存矩阵 $A^TA + \rho I$ 的初始分解,从而减小后续迭代中的计算量.
- 需要注意的是,在LASSO 问题中,矩阵 $A \in \mathbb{R}^{m \times n}$ 通常有较多的列(即 $m \ll n$),因此 $A^TA \in \mathbb{R}^{n \times n}$ 是一个低秩矩阵,二次罚项的作用就是将 A^TA 增加了一个正定项. 该ADMM 主要运算量来自更新x变量时求解线性方程组,复杂度为 $O(n^3)$ (若使用缓存分解技术或SMW 公式则可进一步降低每次迭代的运算量)

LASSO 问题的对偶形式

• 考虑LASSO 问题的对偶问题

$$\min_{\substack{b \text{T} y + \frac{1}{2} ||y||^2, \\ \text{s.t.}}} b^{\text{T}} y + \frac{1}{2} ||y||^2,$$

$$||A^{\text{T}} y||_{\infty} \le \mu.$$
(14)

引入约束A^Ty+z=0,可以得到如下等价问题:

min
$$b^{T}y + \frac{1}{2}||y||^{2} + \underbrace{I_{||z||_{\infty} \le \mu}(z)}_{h(z)}$$
,
s.t. $A^{T}y + z = 0$. (15)

• 对约束 $A^{T}y+z=0$ 引入乘子x,对偶问题的增广拉格朗日函数为

$$L_{\rho}(y,z,x) = b^{\mathrm{T}}y + \frac{1}{2}||y||^{2} + I_{||z||_{\infty} \le \mu}(z) - x^{\mathrm{T}}(A^{\mathrm{T}}y + z) + \frac{\rho}{2}||A^{\mathrm{T}}y + z||^{2}.$$

LASSO 问题的对偶形式

• 当固定y,x时,对z的更新即向无穷范数球 $\{z|||z||_{\infty} \leq \mu\}$ 做欧几里得投影,即将每个分量截断在区间 $[-\mu,\mu]$ 中;当固定z,x时,对y的更新即求解线性方程组

$$(I + \rho A A^{\mathrm{T}})y = A(x^{k} - \rho z^{k+1}) - b.$$

• 因此得到ADMM 迭代格式为

$$\begin{split} z^{k+1} &= \mathcal{P}_{\|z\|_{\infty} \le \mu} \left(\frac{x^k}{\rho} - A^T y^k \right), \\ y^{k+1} &= (I + \rho A A^T)^{-1} \Big(A (x^k - \rho z^{k+1}) - b \Big), \\ x^{k+1} &= x^k - \tau \rho (A^T y^{k+1} + z^{k+1}). \end{split}$$

• 虽然ADMM 应用于对偶问题也需要求解一个线性方程组,但由于LASSO 问题的特殊性($m \ll n$),求解y更新的线性方程组需要的计算量是 $O(m^3)$,使用缓存分解技巧后可进一步降低至 $O(m^2)$,这大大小于针对原始问题的ADMM.

22/76

广义LASSO 问题

■ 对许多问题x 本身不稀疏,但在某种变换下是稀疏的:

$$\min_{x} \quad \mu \|Fx\|_{1} + \frac{1}{2} \|Ax - b\|^{2}. \tag{16}$$

● 一个重要的例子是当 $F \in \mathbb{R}^{(n-1) \times n}$ 是一阶差分矩阵

$$F_{ij} = \begin{cases} 1, & j = i+1, \\ -1, & j = i, \\ 0, & 其他, \end{cases}$$

且A = I时,广义LASSO问题为

$$\min_{x} \quad \frac{1}{2} \|x - b\|^{2} + \mu \sum_{i=1}^{n-1} |x_{i+1} - x_{i}|,$$

这个问题就是图像去噪问题的TV模型; 当A = I且F是二阶差分矩阵时,问题(16)被称为一范数趋势滤波.

23/76

广义LASSO 问题

• 通过引入约束Fx = z:

$$\min_{x,z} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||z||_1,$$
s.t. $Fx - z = 0$, (17)

• 引入乘子y, 其增广拉格朗日函数为

$$L_{\rho}(x,z,y) = \frac{1}{2} ||Ax - b||^2 + \mu ||z||_1 + y^{\mathsf{T}}(Fx - z) + \frac{\rho}{2} ||Fx - z||^2.$$

● 此问题的x迭代是求解方程组

$$(A^{\mathrm{T}}A + \rho F^{\mathrm{T}}F)x = A^{\mathrm{T}}b + \rho F^{\mathrm{T}}\left(z^{k} - \frac{y^{k}}{\rho}\right),$$

而z迭代依然通过 ℓ_1 范数的邻近算子.

广义LASSO 问题

● 因此交替方向乘子法所产生的迭代为

$$\begin{split} \boldsymbol{x}^{k+1} &= (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} + \rho \boldsymbol{F}^{\mathrm{T}}\boldsymbol{F})^{-1} \left(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{b} + \rho \boldsymbol{F}^{\mathrm{T}} \left(\boldsymbol{z}^{k} - \frac{\boldsymbol{y}^{k}}{\rho} \right) \right), \\ \boldsymbol{z}^{k+1} &= \mathrm{prox}_{(\mu/\rho)\|\cdot\|_{1}} \left(\boldsymbol{F}\boldsymbol{x}^{k+1} + \frac{\boldsymbol{y}^{k}}{\rho} \right), \\ \boldsymbol{y}^{k+1} &= \boldsymbol{y}^{k} + \tau \rho (\boldsymbol{F}\boldsymbol{x}^{k+1} - \boldsymbol{z}^{k+1}). \end{split}$$

• 对于全变差去噪问题, $A^TA+\rho F^TF$ 是三对角矩阵,所以此时x迭代可以在O(n)的时间复杂度内解决;对于图像去模糊问题,A是卷积算子,则利用傅里叶变换可将求解方程组的复杂度降低至 $O(n\log n)$;对于一范数趋势滤波问题, $A^TA+\rho F^TF$ 是五对角矩阵,所以x迭代仍可以在O(n)的时间复杂度内解决

25/76

SDP

Consider

$$\min_{X \in S^n} \langle C, X \rangle$$
s.t. $\langle A^{(i)}, X \rangle = b_i, \quad i = 1, \dots, m,$
 $X \succeq 0$

The dual problem

$$(D) \quad \begin{cases} \min_{y \in \mathbb{R}^m, S \in S^n} & -b^\top y \\ \text{s.t.} & \mathcal{A}^*(y) + S = C, \quad S \succeq 0, \end{cases}$$

Augmented Lagrangian function:

$$\mathcal{L}_{\mu}(X, y, S) = -b^{\top} y + \langle X, A^{*}(y) + S - C \rangle + \frac{1}{2\mu} \|A^{*}(y) + S - C\|_{F}^{2}.$$

26/76

ADMM for SDP

$$y^{k+1} := \arg \min_{y \in \mathbb{R}^m} \mathcal{L}_{\mu}(X^k, y, S^k),$$

$$= -(\mathcal{A}\mathcal{A}^*)^{-1} \left(\mu(\mathcal{A}(X^k) - b) + \mathcal{A}(S^k - C) \right)$$

$$S^{k+1} := \arg \min_{S \in S^n} \mathcal{L}_{\mu}(X^k, y^{k+1}, S), \quad S \succeq 0,$$

$$X^{k+1} := X^k + \frac{\mathcal{A}^*(y^{k+1}) + S^{k+1} - C}{\mu}.$$

• The S-subproblem:

$$\min_{S \in S^n} \quad \left\| S - V^{k+1} \right\|_F^2, \quad S \succeq 0,$$

where $V^{k+1} := V(S^k, X^k) = C - A^*(y(S^k, X^k)) - \mu X^k$.

Hence the solution is

$$S^{k+1} := V_{\dagger}^{k+1} := Q_{\dagger} \Sigma_{+} Q_{\dagger}^{\top}$$

where
$$V^{k+1} = Q\Sigma Q^{ op} = \begin{pmatrix} Q_{\dagger} & Q_{\dagger} \end{pmatrix} \begin{pmatrix} \Sigma_{+} & 0 \\ 0 & \Sigma_{-} \end{pmatrix} \begin{pmatrix} Q_{\dagger}^{ op} \\ Q_{\dagger}^{ op} \end{pmatrix}$$

ADMM for SDP

Updating the Lagrange multiplier X^{k+1}

• Updating formula:

$$X^{k+1} := X^k + \frac{\mathcal{A}^*(y^{k+1}) + S^{k+1} - C}{\mu}$$

Equivalent formulation:

$$X^{k+1} = \frac{1}{\mu}(S^{k+1} - V^{k+1}) = \frac{1}{\mu}V_{\ddagger}^{k+1},$$

where
$$V_{\ddagger}^{k+1} := -Q_{\ddagger}\Sigma_{-}Q_{\ddagger}$$
.

• Note that X^{k+1} is also the optimal solution of

$$\min_{X \in S^n} \quad \left\| \mu X + V^{k+1} \right\|_F^2, \quad X \succeq 0.$$

稀疏逆协方差矩阵估计

• 该问题的基本形式是

$$\min_{X} \quad \langle S, X \rangle - \ln \det X + \mu \|X\|_{1}, \tag{18}$$

其中S是已知的对称矩阵,通常由样本协方差矩阵得到.变量 $X \in S_{++}^n$, $\|\cdot\|_1$ 定义为矩阵所有元素绝对值的和.

● 目标函数由光滑项和非光滑项组成,因此引入约束X = Z将问题的两部分分离:

min
$$\underbrace{\langle S, X \rangle - \ln \det X}_{f(X)} + \underbrace{\mu ||Z||_1}_{h(Z)},$$

s.t. $X = Z.$

引入乘子U作用在约束X-Z=0上,可得增广拉格朗日函数为

$$L_{\rho}(X,Z,U) = \langle S,X \rangle - \ln \det X + \mu \|Z\|_1 + \langle U,X-Z \rangle + \frac{\rho}{2} \|X-Z\|_F^2.$$

29/76

稀疏逆协方差矩阵估计

● 首先,固定Z^k,U^k,则X子问题是凸光滑问题,对X求矩阵导数并 令其为零,

$$S - X^{-1} + U^k + \rho(X - Z^k) = 0.$$

这是一个关于X的矩阵方程,可以求出满足上述矩阵方程的唯一正 定的X为

$$X^{k+1} = Q \operatorname{Diag}(x_1, x_2, \cdots, x_n) Q^{\mathrm{T}},$$

其中Q包含矩阵 $S - \rho Z^k + U^k$ 的所有特征向量, x_i 的表达式为

$$x_i = \frac{-d_i + \sqrt{d_i^2 + 4\rho}}{2\rho},$$

 d_i 为矩阵 $S - \rho Z^k + U^k$ 的第i个特征值.

- 固定 X^{k+1}, U^k ,则Z的更新为矩阵 ℓ_1 范数的邻近算子.
- 最后是常规的乘子更新.

矩阵分离问题

• 考虑矩阵分离问题:

$$\min_{X,S} ||X||_* + \mu ||S||_1,$$

s.t. $X + S = M$, (19)

其中||.||,与||.||*分别表示矩阵ℓ1范数与核范数.

• 引入乘子Y作用在约束X+S=M上,我们可以得到此问题的增广 拉格朗日函数

$$L_{\rho}(X, S, Y) = \|X\|_* + \mu \|S\|_1 + \langle Y, X + S - M \rangle + \frac{\rho}{2} \|X + S - M\|_F^2.$$
(20)

矩阵分离问题

• 对于X子问题,

$$\begin{split} X^{k+1} &= \underset{X}{\operatorname{argmin}} \ L_{\rho}(X, S^k, Y^k) \\ &= \underset{X}{\operatorname{argmin}} \left\{ \|X\|_* + \frac{\rho}{2} \left\| X + S^k - M + \frac{Y^k}{\rho} \right\|_F^2 \right\}, \\ &= \underset{X}{\operatorname{argmin}} \left\{ \frac{1}{\rho} \|X\|_* + \frac{1}{2} \left\| X + S^k - M + \frac{Y^k}{\rho} \right\|_F^2 \right\}, \\ &= U \operatorname{Diag} \left(\operatorname{prox}_{(1/\rho)\|\cdot\|_1} (\sigma(A)) \right) V^{\mathsf{T}}, \end{split}$$

其中 $A=M-S^k-\frac{Y^k}{\rho}$, $\sigma(A)$ 为A的所有非零奇异值构成的向量并且 $U\mathrm{Diag}(\sigma(A))V^T$ 为A的约化奇异值分解.

32/76

矩阵分离问题

• 对于S子问题,

$$\begin{split} S^{k+1} &= \underset{S}{\operatorname{argmin}} \ L_{\rho}(X^{k+1}, S, Y^{k}) \\ &= \underset{S}{\operatorname{argmin}} \left\{ \mu \|S\|_{1} + \frac{\rho}{2} \left\| X^{k+1} + S - M + \frac{Y^{k}}{\rho} \right\|_{F}^{2} \right\} \\ &= \operatorname{prox}_{(\mu/\rho)\|\cdot\|_{1}} \left(M - X^{k+1} - \frac{Y^{k}}{\rho} \right). \end{split}$$

• 那么交替方向乘子法的迭代格式为

$$\begin{split} X^{k+1} &= U \mathrm{Diag} \Big(\mathrm{prox}_{(1/\rho) \| \cdot \|_1} (\sigma(A)) \Big) V^{\mathrm{T}}, \\ S^{k+1} &= \mathrm{prox}_{(\mu/\rho) \| \cdot \|_1} \left(M - L^{k+1} - \frac{Y^k}{\rho} \right), \\ Y^{k+1} &= Y^k + \tau \rho (X^{k+1} + S^{k+1} - M). \end{split}$$

33/76

Image blurring model

$$b = Kx_t + w$$

- x_t is unknown image
- *b* is observed (blurred and noisy) image; *w* is noise
- $N \times N$ -images are stored in column-major order as vectors of length N^2

blurring matrix K

- represents 2D convolution with space-invariant point spread function
- with periodic boundary conditions, block-circulant with circulant blocks
- can be diagonalized by multiplication with unitary 2D DFT matrix
 W:

$$K = W^H \mathbf{diag}(\lambda)W$$

equations with coefficient $I + K^T K$ can be solved in $O(N^2 \log N)$ time

Total variation deblurring with 1-norm

min
$$||Kx - b||_1 + \gamma ||Dx||_{tv}$$

s.t. $0 \le x \le 1$

second term in objective is total variation penalty

• Dx is discretized first derivative in vertical and horizontal direction

• $\|\cdot\|_{tv}$ is a sum of Euclidean norms: $\|(u,v)\|_{tv} = \sum_{i=1}^n \sqrt{u_i^2 + v_i^2}$

Image blurring model by ADMM

Consider an equivalent model by splitting:

min
$$||u||_1 + \gamma ||v||_{tv}$$
, s.t. $u = Kx - b$, $v = Dx$, $y = x$, $0 \le y \le 1$

ADMM requires:

- decoupled prox-evaluations of $||u||_1$ and $||v||_{tv}$, and projections on C
- solution of linear equations with coefficient matrix

$$I + K^T K + D^T D$$

solvable in $O(N^2 \log N)$ time

Image blurring: Example

- 1024 × 1024 image, periodic boundary conditions
- Gaussian blur
- salt-and-pepper noise (50% pixels randomly changed to 0/1)

original

noisy/blurred

restored

全局一致性优化问题

• 增广拉格朗日函数为

$$L_{\rho}(x_1, \dots, x_N, z, y_1, \dots, y_N) = \sum_{i=1}^N \phi_i(x_i) + \sum_{i=1}^N y_i^{\mathrm{T}}(x_i - z) + \frac{\rho}{2} \sum_{i=1}^N \|x_i - z\|^2.$$

• 固定 z^k, y^k , 更新 x_i 的公式为

$$x_i^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \phi_i(x) + \frac{\rho}{2} \left\| x - z^k + \frac{y_i^k}{\rho} \right\|^2 \right\}.$$
 (21)

- 注意,虽然表面上看增广拉格朗日函数有(N+1)个变量块,但本质上还是两个变量块.这是因为在更新某xi时并没有利用其他xi的信息,所有xi可以看成一个整体.相应地,所有乘子yi也可以看成一个整体.
- 迭代式(21)的具体计算依赖于 ϕ_i 的形式,在一般情况下更新 x_i 的表达式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho} \left(z^k - \frac{y_i^k}{\rho} \right).$$

全局一致性优化问题

• 固定 x_i^{k+1}, y_i^k , 问题关于z是二次函数, 因此可以直接写出显式解:

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} \left(x_i^{k+1} + \frac{y_i^k}{\rho} \right).$$

• 综上,该问题的交替方向乘子法迭代格式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho} \left(z^k - \frac{y_i^k}{\rho} \right), \ i = 1, 2, \dots, N,$$

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} \left(x_i^{k+1} + \frac{y_i^k}{\rho} \right),$$

$$y_i^{k+1} = y_i^k + \tau \rho (x_i^{k+1} - z^{k+1}), \ i = 1, 2, \dots, N.$$

39/76

The exchange problem

Model $\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathbb{R}^n$,

$$\min \sum_{i=1}^{N} f_i(\mathbf{x}_i), \text{ s.t. } \sum_{i=1}^{N} \mathbf{x}_i = \mathbf{0}.$$

- it is the dual of the consensus problem
- exchanging n goods among N parties to minimize a total cost
- our goal: to decouple x_i -updates

An equivalent model

$$\min \sum_{i=1}^{N} f_{i}(\mathbf{x}_{i}), \text{ s.t. } \mathbf{x}_{i} - \mathbf{x}_{i}^{'} = \mathbf{0}, \forall i, \sum_{i=1}^{N} \mathbf{x}_{i}^{'} = \mathbf{0}.$$

The exchange problem

ADMM after consolidating the \mathbf{x}_i' update:

$$\begin{aligned} \mathbf{x}_i^{k+1} &= & \underset{\mathbf{x}_i}{\operatorname{argmin}} f_i(\mathbf{x}_i) + \frac{\beta}{2} \|\mathbf{x}_i - (\mathbf{x}_i^k - \mathsf{mean}\{\mathbf{x}_i^k\} - \mathbf{u}^k)\|_2^2, \\ \mathbf{u}^{k+1} &= & \mathbf{u}^k + \mathsf{mean}\{\mathbf{x}_i^{k+1}\}. \end{aligned}$$

Applications: distributed dynamic energy management

A general form with inseparable f and separable g

$$\min_{\mathbf{x},\mathbf{z}} \sum_{l=1}^{L} (f_l(\mathbf{x}) + g_l(\mathbf{z}_l)), \text{ s.t. } \mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b}$$

- Make L copies $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L$ of \mathbf{x}
- Decompose

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_L \end{bmatrix}, \mathbf{z} = \begin{bmatrix} \mathbf{z}_1 \\ \vdots \\ \mathbf{z}_L \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_L \end{bmatrix}$$

• Rewrite Ax + z = 0 as

$$\mathbf{A}_{l}\mathbf{x}_{l}+\mathbf{z}_{l}=\mathbf{b}_{l},\mathbf{x}_{l}-\mathbf{x}=\mathbf{0},l=1,\cdots,L.$$

New model:

$$\begin{aligned} \min_{\mathbf{x}, \{\mathbf{x}_l\}, \mathbf{z}} & & \sum_{l=1}^{L} (f_l(\mathbf{x}_l) + g_l(\mathbf{z}_l)) \\ \text{s.t.} & & \mathbf{A}_l \mathbf{x}_l + \mathbf{z}_l = \mathbf{b}_l, \mathbf{x}_l - \mathbf{x} = \mathbf{0}, l = 1, \cdots, L. \end{aligned}$$

- x_l's are copies of x
- z_l's are sub-blocks of z
- Group variables $\{x_l\}$, z, x into two sets
 - $\{x_l\}$: given z and x, the updates of x_l are separable
 - (z, x): given $\{x_l\}$, the updates of z_l and x are separable Therefore, standard (2-block) ADMM applies.
- One can also add a simple regularizer $h(\mathbf{x})$

Consider *L* computing nodes with MPI.

- ullet ${f A}_l$ is local data store on node l only
- $\mathbf{x}_l, \mathbf{z}_l$ are local variables; \mathbf{x}_l is stored and updated on node l only
- x is the global variable; computed and dispatched by MPI
- \mathbf{y}_l , $\bar{\mathbf{y}}_l$ are Lagrange multipliers to $\mathbf{A}_l\mathbf{x}_l + \mathbf{z}_l = \mathbf{b}_l$ and $\mathbf{x}_l \mathbf{x} = \mathbf{0}$, respectively, stored and updated on node l only

At each iteration,

- ullet each node l computes \mathbf{x}_l^{k+1} , using data \mathbf{A}_l
- ullet each node l computes \mathbf{z}_l^{k+1} , prepares $\mathbf{P}_l = (\cdots)$
- MPI gathers P_l and scatters its mean, x^{k+1} , to all nodes l
- ullet each node l computes $\mathbf{y}_l^{k+1}, \bar{\mathbf{y}}_l^{k+1}$

A formulation with separable f and separable g

$$\min \sum_{j=1}^N f_j(\mathbf{x}_j) + \sum_{i=1}^M g_i(\mathbf{z}_i), \text{ s.t. } \mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b},$$

where

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N), \mathbf{z} = (\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_M).$$

Decompose A in both directions as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1N} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2N} \\ & & \cdots & \\ \mathbf{A}_{M1} & \mathbf{A}_{M2} & \cdots & \mathbf{A}_{MN} \end{bmatrix}, also \ \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_M \end{bmatrix}.$$

Same model:

$$\min \sum_{j=1}^{N} f_j(\mathbf{x}_j) + \sum_{i=1}^{M} g_i(\mathbf{z}_i), \text{ s.t. } \sum_{j=1}^{N} \mathbf{A}_{ij}\mathbf{x}_j + \mathbf{z}_i = \mathbf{b}_i, i = 1, \cdots, M.$$

45/76

 $\mathbf{A}_{ij}\mathbf{x}_{j}^{\prime}\mathbf{s}$ are coupled in the constraints. Standard treatment:

$$\mathbf{p}_{ij}=\mathbf{A}_{ij}\mathbf{x}_{j}.$$

New model:

$$\min \sum_{j=1}^N f_j(\mathbf{x}_j) + \sum_{i=1}^M g_i(\mathbf{z}_i), \text{ s.t. } \frac{\sum_{j=1}^N \mathbf{p}_{ij} + \mathbf{z}_i = \mathbf{b}_i, \forall i,}{\mathbf{p}_{ij} - \mathbf{A}_{ij}\mathbf{x}_j = 0, \forall i, j.}$$

ADMM

- alternate between $\{\mathbf{p}_{ij}\}$ and $(\{\mathbf{x}_j\}, \{\mathbf{z}_i\})$
- p_{ij}—subproblems have closed-form solutions
- $(\{x_j\}, \{z_i\})$ -subproblem are separable over all x_j and z_i
 - \mathbf{x}_i -update involves f_i and $\mathbf{A}_{1i}^T \mathbf{A}_{1i}, \cdots, \mathbf{A}_{Mi}^T \mathbf{A}_{Mi}$;
 - \mathbf{z}_i —update involves g_i .
- ready for distributed implementation

Question: how to further decouple f_j and $\mathbf{A}_{1j}^T \mathbf{A}_{1j}, \dots, \mathbf{A}_{Mj}^T \mathbf{A}_{Mj}$?

For each \mathbf{x}_j , make M identical copies: $\mathbf{x}_{1j}, \mathbf{x}_{2j}, \cdots, \mathbf{x}_{Mj}$. New model:

$$\min \sum_{j=1}^{N} f_j(\mathbf{x}_j) + \sum_{i=1}^{M} g_i(\mathbf{z}_i), \text{ s.t. } \begin{aligned} \sum_{j=1}^{N} \mathbf{p}_{ij} + \mathbf{z}_i &= \mathbf{b}_i, & \forall i, \\ \mathbf{p}_{ij} - \mathbf{A}_{ij} \mathbf{x}_{ij} &= \mathbf{0}, & \forall i, j, \\ \mathbf{x}_j - \mathbf{x}_{ij} &= \mathbf{0}, & \forall i, j. \end{aligned}$$

ADMM

- alternate between $(\{\mathbf{x}_j\}, \{\mathbf{p}_{ij}\})$ and $(\{\mathbf{x}_j\}, \{\mathbf{z}_i\})$
- $(\{\mathbf{x}_j\}, \{\mathbf{p}_{ij}\})$ -subproblem are separable
 - \mathbf{x}_j -update involves f_j only; computes $\operatorname{prox}_{f_j}$
 - p_{ij}-update is in closed form
- $(\{\mathbf{x}_{ij}\}, \{\mathbf{z}_i\})$ -subproblem are separable
 - \mathbf{x}_{ij} -update involves $(\alpha I + \beta \mathbf{A}_{ij}^T \mathbf{A}_{ij})$;
 - \mathbf{y}_i -update involves g_i only; computes $\operatorname{prox}_{g_i}$.
- ready for distributed implementation

Decentralized ADMM

After making local copies \mathbf{x}_i for \mathbf{x} , instead of imposing the consistency constraints like

$$\mathbf{x}_i - \mathbf{x} = 0, i = 1, \cdots, M,$$

consider graph $\mathcal{G}=(\mathcal{V},\varepsilon)$ where $\mathcal{V}=\{\text{nodes}\}$ and $\varepsilon=\{\text{edges}\}$

and impose one type of the following consistency constraints

Decentralized ADMM

- Decentralized ADMM run on a connected network
- There is no data fusion / control center
- Applications:
 - wireless sensor networks
 - collaborative learning
- ADMM will alternative perform the followings
 - Local computation at each node
 - Communication between neighbors or broadcasting in neighborhood
- Since data is not shared or centrally store, data security is preserved
- Convergence rate depends on
 - the properties (e.g., convexity, condition number) of the objective function
 - the size, connectivity, and spectral properties of the graph

Example: latent variable graphical model selection

V. Chandrasekaran, P.Parrilo, A. Willsky

Model of regularized maximum normal likelihood

$$\min_{R,\mathcal{S},L} \langle R, \hat{\Sigma}_X \rangle - \log \det(R) + \alpha \|S\|_1 + \beta Tr(L), \text{ s.t. } R = S - L, R \succ 0, L \succeq 0,$$

where X are the observed variables, $\Sigma_X^{-1} \approx R = S - L$, S is spare, L is low rank. First two terms are from the log-likelihood function

$$l(K; \Sigma) = \log \det(K) - \operatorname{tr}(K\Sigma).$$

Introduce indicator function

$$\mathcal{I}(L \succeq 0) := \left\{ \begin{array}{ll} 0, & \textit{if } L \succeq 0 \\ +\infty, & \textit{otherwise}. \end{array} \right.$$

Obtain the 3-block formulation

$$\min_{R,S,L} \langle R, \hat{\Sigma}_X \rangle - \log \, \det(R) + \alpha \|S\|_1 + \beta \mathrm{Tr}(L) + \mathcal{I}(L \succeq 0), \, \text{ s.t. } R - S + L = 0.$$

Example: stable principle component pursuit

Model

$$\min_{L,S,Z} \qquad \|L\|_* + \rho \|S\|_1$$

s.t.
$$L + S + Z = M$$
$$\|Z\|_F \le \sigma,$$

M = low-rank + sparse + noise.

For quantities such as images and videos, add $L \ge 0$ component wise.

New model:

$$\begin{aligned} & \min_{L,S,Z,K} & & \|L\|_* + \rho \|S\|_1 + \mathcal{I}(\|Z\|_F \leq \sigma) + \mathcal{I}(K \geq 0) \\ & \text{s.t.} & & L+S+Z=M \\ & & L-K=0. \end{aligned}$$

Block-form constraints:

$$\left(\begin{array}{cc} I & I \\ I & 0 \end{array}\right) \left(\begin{array}{c} L \\ S \end{array}\right) + \left(\begin{array}{cc} I & 0 \\ 0 & -I \end{array}\right) \left(\begin{array}{c} Z \\ K \end{array}\right) = \left(\begin{array}{c} M \\ 0 \end{array}\right).$$

Example: mixed TV and l_1 regularization

Model

$$\min_{x} TV(x) + \alpha ||Wx||_{1}, \text{ s.t. } ||Rx - b||_{2} \le \sigma.$$

New model:

$$\min_{x} \qquad \sum_{i} \|z_{i}\|_{2} + \alpha \|Wx\|_{1} + \mathcal{I}(\|y\|_{2} \leq \sigma)$$
s.t.
$$z_{i} = D_{i}x, \forall i = 1, \cdots, N$$

$$y = Rx - b.$$

If use two sets of variables, x vs $(y, \{z_i\})$

$$\begin{pmatrix} R \\ D_1 \\ \vdots \\ D_N \end{pmatrix} x - \begin{pmatrix} y \\ z_1 \\ \vdots \\ z_N \end{pmatrix} = \begin{pmatrix} b \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

x-subproblem is not easy to solve.

Two solutions to decouple variables

To solve a subproblem with coupling variables

- 1. apply the prox-linear inexact update, or
- 2. introduce bridge variables, as done in distributed ADMM.

For example, consider

$$\min_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}} (f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2)) + g(\mathbf{y}), \text{ s.t. } (\mathbf{A}_1 \mathbf{x}_1 + \mathbf{A}_2 \mathbf{x}_2) + \mathbf{B} \mathbf{y} = \mathbf{b}.$$

In the ADMM $(\mathbf{x}_1,\mathbf{x}_2)-$ subproblem, \mathbf{x}_1 and \mathbf{x}_2 are coupled. However, the prox-linear update is separable

$$\min_{\mathbf{x}_1,\mathbf{x}_2} (f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2)) + \left\langle \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}, \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \right\rangle + \frac{1}{2t} \left\| \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{x}_1^k \\ \mathbf{x}_2^k \end{bmatrix} \right\|_2^2.$$

53/76

非凸约束问题

考虑如下约束优化问题:

$$\min_{\mathbf{x}} f(\mathbf{x}), \\
s.t. \quad \mathbf{x} \in \mathcal{S},$$

其中f是凸的,但是S是非凸的。可以将上述问题改写为:

$$\min_{\mathbf{x}} f(\mathbf{x}) + \mathbb{I}_{\mathcal{S}}(\mathbf{z}),$$
s.t. $\mathbf{x} - \mathbf{z} = \mathbf{0}$,

交替方向乘子法产生如下迭代:

$$\begin{aligned} & \boldsymbol{x}^{k+1} = \operatorname*{argmin}_{\boldsymbol{x}} \left(f(\boldsymbol{x}) + (\rho/2) \| \boldsymbol{x} - \boldsymbol{z}^k + \boldsymbol{u}^k \|_2^2 \right), \\ & \boldsymbol{z}^{k+1} = \Pi_{\mathcal{S}} (\boldsymbol{x}^{k+1} + \boldsymbol{u}^k), \\ & \boldsymbol{u}^{k+1} = \boldsymbol{u}^k + (\boldsymbol{x}^{k+1} - \boldsymbol{z}^{k+1}) \end{aligned}$$

其中, $\Pi_{\mathcal{S}}(z)$ 是将z投影到集合 \mathcal{S} 中。因为f是凸的,所以上述x-极小化步是凸问题,但是z-极小化步是向一个非凸集合的投影 $\mathbb{R}_{\mathbb{R}}$ 5476

非凸约束问题

一般来说,这种投影很难计算,但是在下面列出的这些特殊情形中可以精确求解。

• 基数:如果 $S = \{x | card(x) \le c\}$,其中card(v)表示非零元素的数目,那么 $\Pi_S(v)$ 保持前c大的元素不变,其他元素变为0。例如回归选择(也叫特征选择)问题:

$$\min_{\mathbf{x}} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2},$$
s.t. $\mathbf{card}(\mathbf{x}) \leq c$.

- 秩:如果S是秩为c的矩阵的集合,那么card(V)可以通过对V做奇异值分解, $V = \sum_i \sigma_i u_i u_i^T$,然后保留前c大的奇异值及奇异向量,即 $\Pi_S(V) = \sum_{i=1}^c \sigma_i u_i u_i^T$ 。
- 布尔约束:如果 $S = \{x | x_i \in \{0,1\}\}$,那么 $\Pi_S(v)$ 就是简单地把每个元素变为0和1中离它更近的数。

非负矩阵分解和补全

非负矩阵分解和补全问题可以写成如下形式:

$$\min_{\boldsymbol{X},\boldsymbol{Y}} \quad \|\mathcal{P}_{\Omega}(\boldsymbol{X}\boldsymbol{Y} - \boldsymbol{M})\|_F^2,$$
s.t. $\boldsymbol{X}_{ij} \geq 0, \boldsymbol{Y}_{ij} \geq 0, \forall i, j,$

其中, Ω 表示矩阵M中的已知元素的下标集合, $\mathcal{P}_{\Omega}(A)$ 表示得到一个新的矩阵A',其下标在集合 Ω 中的所对应的元素等于矩阵A的对应元素,其下标不在集合 Ω 中的所对应的元素为0。注意到,这个问题是非凸的。

为了利用交替方向乘子法的优势,我们考虑如下的等价形式:

$$\begin{aligned} \min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{X},\boldsymbol{Y},\boldsymbol{Z}} & \frac{1}{2} \|\boldsymbol{X}\boldsymbol{Y} - \boldsymbol{Z}\|_F^2, \\ s.t. & \boldsymbol{X} = \boldsymbol{U}, \boldsymbol{Y} = \boldsymbol{V}, \\ & \boldsymbol{U} \geq 0, \boldsymbol{V} \geq 0, \\ & \mathcal{P}_{\Omega}(\boldsymbol{Z} - \boldsymbol{M}) = 0. \end{aligned}$$

非负矩阵分解和补全

$$L_{\alpha,\beta}(X,Y,Z,U,V,\Lambda,\Pi) = \frac{1}{2} ||XY - Z||_F^2 + \Lambda \bullet (X - U)$$

$$+ \Pi \bullet (Y - V) + \frac{\alpha}{2} ||X - U||_F^2 + \frac{\beta}{2} ||Y - V||_F^2,$$

$$X^{k+1} = \underset{X}{\operatorname{argmin}} L_{\alpha,\beta}(X,Y^k,Z^k,U^k,V^k,\Lambda^k,\Pi^k),$$

$$Y^{k+1} = \underset{Y}{\operatorname{argmin}} L_{\alpha,\beta}(X^{k+1},Y,Z^k,U^k,V^k,\Lambda^k,\Pi^k),$$

$$Z^{k+1} = \underset{P_{\Omega}(Z-M)=0}{\operatorname{argmin}} L_{\alpha,\beta}(X^{k+1},Y^{k+1},Z,U^k,V^k,\Lambda^k,\Pi^k),$$

$$U^{k+1} = \underset{U \geq 0}{\operatorname{argmin}} L_{\alpha,\beta}(X^{k+1},Y^{k+1},Z^{k+1},U,V^k,\Lambda^k,\Pi^k),$$

$$V^{k+1} = \underset{V \geq 0}{\operatorname{argmin}} L_{\alpha,\beta}(X^{k+1},Y^{k+1},Z^{k+1},U^{k+1},V,\Lambda^k,\Pi^k),$$

$$\Lambda^{k+1} = \Lambda^k + \tau \alpha(X^{k+1} - U^{k+1}),$$

$$\Pi^{k+1} = \Pi^k + \tau \beta(Y^{k+1} - V^{k+1}).$$

Outline

- 1 交替方向乘子法
- 2 常见变形和技巧
- 3 应用举例
- Douglas-Rachford splitting method
- 5 convergence

Douglas-Rachford splitting algorithm

Consider

$$\min \quad f(x) = g(x) + h(x)$$

g and h are closed convex functions

Douglas-Rachford iteration: starting at any $z^{(0)}$, repeat

$$x^{(k)} = \operatorname{prox}_{th}(z^{(k-1)})$$

$$y^{(k)} = \operatorname{prox}_{tg}(2x^{(k)} - z^{(k-1)})$$

$$z^{(k)} = z^{(k-1)} + y^{(k)} - x^{(k)}$$

- *t* is a positive constant (simply scales the objective)
- useful when g and h have inexpensive prox-operators
- under weak conditions (existence of a minimizer), $x^{(k)}$ converges

Equivalent form

start iteration at y-update

$$y^+ = \text{prox}_{tg}(2x - z); \quad z^+ = z + y^+ - x; \quad x^+ = \text{prox}_{th}(z^+)$$

switch z- and x-updates

$$y^{+} = \text{prox}_{tg}(2x - z); \quad x^{+} = \text{prox}_{th}(z + y^{+} - x); \quad z^{+} = z + y^{+} - x$$

• make change of variables w = z - x

alternate form of DR iteration: start at $x^{(0)} \in \text{dom } h, w^{(0)} \in t\partial h(x^{(0)})$

$$y^{+} = \operatorname{prox}_{tg}(x - w)$$

$$x^{+} = \operatorname{prox}_{th}(y^{+} + w)$$

$$w^{+} = w + y^{+} - x^{+}$$

Interpretation as fixed-point iteration

Douglas-Rachford iteration can be written as

$$z^{(k)} = F(z^{(k-1)})$$

where $F(z) = z + \text{prox}_{tg}(2\text{prox}_{th}(z) - z) - \text{prox}_{th}(z)$

fixed points of F and minimizers of g + h

• if z is a fixed point, then $x = prox_{th}(z)$ is a minimizer:

$$z = F(z), \quad x = prox_{th}(z) \Rightarrow prox_{tg}(2x - z) = x = prox_{th}(z)$$
$$\Rightarrow x - z \in t\partial g(x); z - x \in t\partial h(x)$$
$$\Rightarrow 0 \in t\partial g(x) + t\partial h(x)$$

• if x is a minimizer and $u \in t\partial g(x) \cap -t\partial h(x)$, then x-u=F(x-u)

Douglas-Rachford iteration with relaxation

fixed-point iteration with relaxation

$$z^+ = z + \rho(F(z) - z)$$

 $1 < \rho < 2$ is overrelaxation, $0 < \rho < 1$ is underrelaxation

first version of DR method

$$x^{+} = \text{prox}_{th}(z)$$

 $y^{+} = \text{prox}_{tg}(2x^{+} - z)$
 $z^{+} = z + \rho(y^{+} - x^{+})$

alternate version

$$y^{+} = \text{prox}_{tg}(x - w)$$

$$x^{+} = \text{prox}_{th}((1 - \rho)x + \rho y^{+} + w)$$

$$w^{+} = w + \rho y^{+} + (1 - \rho)x - x^{+}$$

Dual application of Douglas-Rachford method

separable convex problem

min
$$f_1(x_1) + f_2(x_2)$$

s.t. $A_1x_1 + A_2x_2 = b$

dual problem

$$\max \quad -b^T z - f_1^* (-A_1^T z) - f_2^* (-A_2^T z)$$

we apply the Douglas-Rachford method (page 3) to minimize

$$\underbrace{b^{T}z + f_{1}^{*}(-A_{1}^{T}z)}_{g(z)} + \underbrace{f_{2}^{*}(-A_{2}^{T}z)}_{h(z)}$$

Douglas Rachford on the dual

$$y^+ = \text{prox}_{tp}(z - w), \quad z^+ = \text{prox}_{th}(y^+ + w), \quad w^+ = w + y^+ - z^+$$

first line: use result in "lect-dualProxGrad.pdf" to compute $y^+ = \text{prox}_{to}(z - w)$

$$\hat{x_1} = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T (A_1 x_1 - b) + \frac{t}{2} ||A_1 x_1 - b - w/t||_2^2)$$

$$y^+ = z - w + t (A_1 \hat{x_1} - b)$$

second line: similarly, compute $z^+ = \text{prox}_{th}(z + t(A_1\hat{x_1} - b))$

$$\hat{x_2} = \underset{x_1}{\operatorname{argmin}} (f_1(x_2) + z^T A_2 x_2 + \frac{t}{2} ||A_1 \hat{x_1} + A_2 x_2 - b||_2^2)$$

$$z^+ = z + t(A_1 \hat{x_1} + A_2 \hat{x_2} - b)$$

third line reduces to $w^+ = -tA_2\hat{x_2}$

Alternating direction method of multipliers

Define the augmented Lagrangian function:

$$L_t(x_1, x_2, z) = f_1(x_1) + f_2(x_2) + z^T (A_1 x_1 + A_2 x_2 - b) + \frac{t}{2} ||A_1 x_1 + A_2 x_2 - b||_2^2$$

minimize augmented Lagrangian function over x₁

$$x_1^{(k)} = \underset{x_1}{\operatorname{argmin}} L_t(x_1, x_2^{(k-1)}, z^{(k-1)})$$

$$= \underset{x_1}{\operatorname{argmin}} \left(f_1(x_1) + (z^{(k-1)})^T A_1 x_1 + \frac{t}{2} \|A_1 x_1 + A_2 x_2^{(k-1)} - b\|_2^2 \right)$$

minimize augmented Lagrangian function over x₂

$$x_2^{(k)} = \underset{x_2}{\operatorname{argmin}} L_t(x_1^{(k)}, x_2, z^{(k-1)})$$

$$= \underset{x_2}{\operatorname{argmin}} \left(f_2(x_2) + (z^{(k-1)})^T A_2 x_2 + \frac{t}{2} \|A_1 x_1^{(k)} + A_2 x_2 - b\|_2^2 \right)$$

odual update $z^{(k)}=z^{(k-1)}+t(A_1x_1^{(k)}+A_2x_2^{(k)}-b)$ also known as split Bregman method

Outline

- 1) 交替方向乘子法
- 2 常见变形和技巧
- 3 应用举例
- Douglas-Rachford splitting method
- 5 convergence

Nonexpansiveness

if $u = \operatorname{prox}_h(x), v = \operatorname{prox}_h(y)$, then

$$(u-v)^{\top}(x-y) \ge ||u-v||^2$$

 $prox_h$ is *firmly nonexpansive*, or *co-coercive* with constant 1

follows from characterization of proximal mapping and monotonicity

$$x - u \in \partial h(u), y - v \in \partial h(v) \implies (x - u - y + v)^{\top} (u - v) \ge 0$$

implies (from Cauchy-Schwarz inequality)

$$\|\operatorname{prox}_h(x) - \operatorname{prox}_h(y)\|_2 \le \|x - y\|_2$$

prox_h is nonexpansive, or Lipschitz continuous with constant 1

Douglas-Rachford iteration mappings

define iteration map F and negative step G

$$F(z) = z + \operatorname{prox}_{tg}(2\operatorname{prox}_{th}(z) - z) - \operatorname{prox}_{th}(z)$$

$$G(z) = z - F(z)$$

$$= \operatorname{prox}_{th}(z) - \operatorname{prox}_{tg}(2\operatorname{prox}_{th}(z) - z)$$

F is firmly nonexpansive (co-coercive with parameter 1)

$$(F(z) - F(\hat{z}))^T (z - \hat{z}) \ge ||F(z) - F(\hat{z})||_2^2 \quad \forall z, \hat{z}$$

implies that G is firmly nonexpansive:

$$(G(z) - G(\hat{z}))^{T}(z - \hat{z})$$

$$= \|G(z) - G(\hat{z})\|_{2}^{2} + (F(z) - F(\hat{z}))^{T}(z - \hat{z}) - \|F(z) - F(\hat{z})\|_{2}^{2}$$

$$\geq \|G(z) - G(\hat{z})\|_{2}^{2}$$

Proof.

firm nonexpansiveness of F

• define $x = \text{prox}_{th}(z), \hat{x} = \text{prox}_{th}(\hat{z})$, and

$$y = \operatorname{prox}_{t\varrho}(2x - z), \quad \hat{y} = \operatorname{prox}_{t\varrho}(2\hat{x} - \hat{z})$$

• substitute expressions F(z) = z + y - x and $F(\hat{z}) = \hat{z} + \hat{y} - \hat{x}$:

$$(F(z) - F(\hat{z}))^{T}(z - \hat{z})$$

$$\geq (z + y - x - \hat{z} - \hat{y} + \hat{x})^{T}(z - \hat{z}) - (x - \hat{z})^{T}(z - \hat{z}) + ||x - \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(z - \hat{z}) + ||z - x - \hat{z} + \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(2x - z - 2\hat{x} + \hat{z}) - ||y - \hat{y}||_{2}^{2} + ||F(z) - F(\hat{z})||_{2}^{2}$$

$$\geq ||F(z) - F(\hat{z})||_{2}^{2}$$

inequalities use firm nonexpansiveness of $prox_{th}$ and $prox_{tg}$

$$(x - \hat{x})^T (z - \hat{z}) \ge ||x - \hat{x}||_2^2, \quad (2x - z - 2\hat{x} + \hat{z})^T (y - \hat{y}) \ge ||y - \hat{y}||_2^2$$

Convergence result

$$z^{(k)} = (1 - \rho_k)z^{(k-1)} + \rho_k F(z^{(k-1)})$$

= $z^{(k-1)} - \rho_k G(z^{(k-1)})$

assumptions

- optimal value $f^* = \inf_x (g(x) + h(x))$ is finite and attained
- $\rho_k \in [\rho_{\min}, \rho_{\max}]$ with $0 < \rho_{\min} < \rho_{\max} < 2$

result

- $z^{(k)}$ converges to a fixed point z^* of F
- $x^{(k)} = \text{prox}_{th}(z^{(k-1)})$ converges to a minimizer $x^* = \text{prox}_{th}(z^*)$ (follows from continuity of prox_{th})

Proof.

Let z^* be any fixed point of F(z) (zero of G(z)). Consider iteration k (with $z = z^{(k-1)}$, $\rho = \rho_k$, $z^+ = z^{(k)}$):

 $<-\rho(2-\rho)\|G(z)\|_2^2$

$$||z^{+} - z^{*}||_{2}^{2} - ||z - z^{*}||_{2}^{2} = 2(z^{+} - z)^{T}(z - z^{*}) + ||z^{+} - z||_{2}^{2}$$

$$= -2\rho G(z)^{T}(z - z^{*}) + \rho^{2}||G(z)||_{2}^{2}$$

where M = a , (2 - a) (line 3 is firm noneynansiveness of C)

 $< -M||G(z)||_2^2$

where $\mathit{M} = \rho_{\min}(2-\rho_{\max})$ (line 3 is firm nonexpansiveness of G)

(22) implies that

$$M\sum_{k=0}^{50} \|G(z^{(k)})\|_2^2 \le \|z^{(0)} - z^*\|_2^2, \quad \|G(z^{(k)})\|_2 \to 0$$

• (22) implies that $\|z^{(k)}-z^*\|_2$ is nonincreasing; $z^{(k)}$ bounded • since $\|z^{(k)}-z^*\|_2$ is nonincreasing, the limit $\lim_{k\to\infty}\|z^{(k)}-z^*\|_2$ exists

(22)

continued.

- since the sequence $z^{(k)}$ is bounded, it has a convergent subsequence
- let $\bar{z_k}$ be a convergent subsequence with limit \bar{z} ; by continuity of G,

$$0 = \lim_{k \to \infty} G(\bar{z_k}) = G(\bar{z})$$

hence, \bar{z} is a zero of G and the limit $\lim_{k\to\infty} \|z^{(k)} - \bar{z}\|_2$ exists

• let $\bar{z_1}$ and $\bar{z_2}$ be two limit points; the limits

$$\lim_{k \to \infty} \|z^{(k_{j_1})} - \bar{z_1}\|_2, \quad \lim_{k \to \infty} \|z^{(k_{j_2})} - \bar{z_2}\|_2$$

exist, and subsequences of $z^{(k)}$ converge to $\bar{z_1}$, resp. $\bar{z_2}$; therefore

$$\|\bar{z_2} - \bar{z_1}\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z_1}\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z_2}\|_2 = 0$$

72/76

多块ADMM收敛性反例

• 考虑最优化问题

min 0,
s.t.
$$A_1x_1 + A_2x_2 + A_3x_3 = 0$$
, (23)

其中 $A_i \in \mathbb{R}^3$, i=1,2,3为三维空间中的非零向量, $x_i \in \mathbb{R}$, i=1,2,3是自变量.该问题实际上就是求解三维空间中的线性方程组,若 A_1,A_2,A_3 之间线性无关,则问题(23) 只有零解.此时容易计算出最优解对应的乘子为 $y=(0,0,0)^T$.

• 增广拉格朗日函数为

$$L_{\rho}(x,y) = 0 + y^{\mathrm{T}}(A_1x_1 + A_2x_2 + A_3x_3) + \frac{\rho}{2} ||A_1x_1 + A_2x_2 + A_3x_3||^2.$$

多块ADMM收敛性反例

● 当固定x2, x3, y时,对x1求最小可推出

$$A_1^{\mathrm{T}}y + \rho A_1^{\mathrm{T}}(A_1x_1 + A_2x_2 + A_3x_3) = 0,$$

整理可得

$$x_1 = -\frac{1}{\|A_1\|^2} \left(A_1^{\mathrm{T}} \left(\frac{y}{\rho} + A_2 x_2 + A_3 x_3 \right) \right).$$

可类似地计算x2, x3的表达式

• 因此多块交替方向乘子法的迭代格式可以写为

$$x_{1}^{k+1} = -\frac{1}{\|A_{1}\|^{2}} A_{1}^{T} \left(\frac{y^{k}}{\rho} + A_{2} x_{2}^{k} + A_{3} x_{3}^{k} \right),$$

$$x_{2}^{k+1} = -\frac{1}{\|A_{2}\|^{2}} A_{2}^{T} \left(\frac{y^{k}}{\rho} + A_{1} x_{1}^{k+1} + A_{3} x_{3}^{k} \right),$$

$$x_{3}^{k+1} = -\frac{1}{\|A_{3}\|^{2}} A_{3}^{T} \left(\frac{y^{k}}{\rho} + A_{1} x_{1}^{k+1} + A_{2} x_{2}^{k+1} + A_{3} x_{3}^{k+1} \right),$$

$$y^{k+1} = y^{k} + \rho (A_{1} x_{1}^{k+1} + A_{2} x_{2}^{k+1} + A_{3} x_{3}^{k+1}).$$

74/76

(24)

多块ADMM收敛性反例

● 自变量初值初值选为(1,1,1), 乘子选为(0,0,0). 选取A为

$$\widetilde{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\stackrel{\Rightarrow}{\mathcal{A}}$ $\widehat{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$.

● 下图记录了在不同A下x和y的ℓz范数随迭代的变化过程.

(a) 系数矩阵为Ã

References

Douglas-Rachford method, ADMM, Spingarn's method

- J. E. Spingarn, Applications of the method of partial inverses to convex programming: decomposition, Mathematical Programming (1985)
- J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal algorithm for maximal monotone operators, Mathematical Programming (1992)
- P.L. Combettes and J.-C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE Journal of Selected Topics in Signal Processing (2007)
- S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers (2010)
- N. Parikh, S. Boyd, *Block splitting for distributed optimization* (2013)

image deblurring: the example is taken from

D. O'Connor and L. Vandenberghe, *Primal-dual decomposition by operator splitting and applications to image deblurring* (2014)