

DATA MINING "Klasifikasi Decision Tree"

Technology vector created by sentavio - www.freepik.com

TIM PENGAMPU DOSEN DATA MINING
2024

Kontak Dosen

- Junta Zeniarja, M.Kom
- Email: junta@dsn.dinus.ac.id
- Youtube : https://www.youtube.com/JuntaZeniarja
- Scholar : http://bit.do/JuntaScholar

Introduction

- Algoritma C4.5 merupakan algoritma yang digunakan untuk membentuk pohon keputusan (*Decision Tree*).
- Pohon keputusan merupakan metode klasifikasi dan prediksi yang terkenal.
- Pohon keputusan berguna untuk mengekspolari data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target.

Varian Algoritma Decision Tree

- Banyak algoritma yang dapat dipakai dalam pembentukan pohon keputusan, antara lain: ID3, CART, dan C4.5 (Larose, 2005).
- Algoritma C4.5 merupakan pengembangan dari algoritma ID3 (Larose, 2005).
- Proses pada pohon keputusan adalah mengubah bentuk data (tabel) menjadi model pohon, mengubah model pohon menjadi rule, dan menyederhanakan rule (Basuki & Syarif, 2003).

Contoh Data Bermain Tenis

NO	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
1	Sunny	Hot	High	FALSE	No
2	Sunny	Hot	High	TRUE	No
3	Cloudy	Hot	High	FALSE	Yes
4	Rainy	Mild	High	FALSE	Yes
5	Rainy	Cool	Normal	FALSE	Yes
6	Rainy	Cool	Normal	TRUE	Yes
7	Cloudy	Cool	Normal	TRUE	Yes
8	Sunny	Mild	High	FALSE	No
9	Sunny	Cool	Normal	FALSE	Yes
10	Rainy	Mild	Normal	FALSE	Yes
11	Sunny	Mild	Normal	TRUE	Yes
12	Cloudy	Mild	High	TRUE	Yes
13	Cloudy	Hot	Normal	FALSE	Yes
14	Rainy	Mild	High	TRUE	No

Algoritma C4.5

Secara umum algoritma C4.5 untuk membangun pohon keputusan adalah sebagai berikut :

- 1. Pilih atribut sebagai akar.
- 2. Buat cabang untuk tiap-tiap nilai.
- 3. Bagi kasus dalam cabang.
- 4. Ulangi proses untuk setiap cabang sampai semua kasus pada cabang memiliki kelas yang sama.

Konsep Entropy

- Entropy (S) merupakan jumlah bit yang diperkirakan dibutuhkan untuk dapat mengekstrak suatu kelas (+ atau -) dari sejumlah data acak pada ruang sampel S.
- Entropy dapat dikatakan sebagai kebutuhan bit untuk menyatakan suatu kelas.
- Entropy digunakan untuk mengukur ketidakaslian S.

Konsep Entropy [2]

Untuk perhitungan nilai Entropy sbb:

$$Entropy(S) = \sum_{i=1}^{n} -pi * log_2 pi$$

Keterangan :

S: himpunan kasus.

A: fitur.

n: jumlah partisi S.

pi: proporsi dari S_i terhadap S

Konsep Gain

- Gain (S,A) merupakan perolehan informasi dari atribut A relative terhadap output data S.
- Perolehan informasi didapat dari output data atau variable dependent S yang dikelompokkan berdasarkan atribut A, dinotasikan dengan gain (S,A).

Konsep Gain [2]

- Untuk memilih atribut sebagai akar, didasarkan pada nilai gain tertinggi dari atribut-atribut yang ada.
- Untuk menghitung gain digunakan rumus :

$$Gain(S, A) = Entropy(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} * Entropy(S_i)$$

Keterangan :

S: himpunan kasus

A : atribut

n : jumlah partisi atribut A

|S_i|: jumlah kasus pada partisi ke-i

|S| : jumlah kasus dalam S

Langkah 1

- Menghitung jumlah kasus, jumlah kasus untuk keputusan Yes, jumlah kasus untuk keputusan No, dan Entropy dari semua kasus dan kasus yang dibagi berdasarkan atribut OUTLOOK, TEMPERATURE, HUMIDITY, dan WINDY.
- Setelah itu lakukan perhitungan Gain untuk setiap atribut.
- Hasil perhitungan ditunjukan di bawah ini.

Perhitungan Node 1

NO	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
1	Sunny	Hot	High	FALSE	No
2	Sunny	Hot	High	TRUE	No
3	Cloudy	Hot	High	FALSE	Yes
4	Rainy	Mild	High	FALSE	Yes
5	Rainy	Cool	Normal	FALSE	Yes
6	Rainy	Cool	Normal	TRUE	Yes
7	Cloudy	Cool	Normal	TRUE	Yes
8	Sunny	Mild	High	FALSE	No
9	Sunny	Cool	Normal	FALSE	Yes
10	Rainy	Mild	Normal	FALSE	Yes
11	Sunny	Mild	Normal	TRUE	Yes
12	Cloudy	Mild	High	TRUE	Yes
13	Cloudy	Hot	Normal	FALSE	Yes
14	Rainy	Mild	High	TRUE	No

		jml kasus(S)	Tidak (S1)	Ya (S2)	Entropy	Gain
total		14	4	10	0.86312	
outlook						0.258521
	cloudy	4	0	4	0	
	rainy	5	1	4	0.72193	
	sunny	5	3	2	0.97095	
temp						0.1838509
	col	4	0	4	0	
	hot	4	2	2	1	
	mild	6	2	4	0.9183	
humidity						0.3705065
	high	7	4	3	0.98523	
	normal	7	0	7	0	
windy						0.0059777
	FALSE	8	2	6	0.81128	
	TRUE	6	4	2	0.9183	

Cara Perhitungan Node 1

Baris total kolom Entropy dihitung dengan persamaan:

$$Entropy(Total) = \left(-\frac{4}{14} * log_2\left(\frac{4}{14}\right)\right) + \left(-\frac{10}{14} * log_2\left(\frac{10}{14}\right)\right)$$

• Entropy(Total) = 0,863120569

Cara Perhitungan Node 1 [2]

- Nilai gain pada baris OUTLOOK dihitung :
- $Gain(Total, Outlook) = Entropy(Total) \sum_{i=1}^{n} \frac{|Outlook_i|}{|Total|} * Entropy(Outlook_i)$
- $Gain(Total, Outlook) = 0.863120569 \left(\left(\frac{4}{14}*0\right) + \left(\frac{5}{14}*0.722\right) + \left(\frac{5}{14}*0.97\right)\right)$
- Gain(Total, Outlook) = 0.2585

		jml kasus(S)	Tidak (S1)	Ya (S2)	Entropy	Gain
total		14	4	10	0.86312	
outlook						0.258521
	cloudy	4	0	4	0	
	rainy	5	1	4	0.72193	
	sunny	5	3	2	0.97095	
temp						0.1838509
	col	4	0	4	0	
	hot	4	2	2	1	
	mild	6	2	4	0.9183	
humidity						0.3705065
	high	7	4	3	0.98523	
	normal	7	0	7	0	
windy						0.0059777
	FALSE	8	2	6	0.81128	
	TRUE	6	4	2	0.9183	

Cara Perhitungan Node 1[3]

- Dari hasil diketahui bahwa atribut dengan gain tertinggi adalah HUMIDITY yaitu sebesar 0.37. Sehingga HUMIDITY dapat menjadi node akar.
- Ada dua nilai atibut dari HUMIDITY, yaitu HIGH dan NORMAL.
- Nilai atribut NORMAL sudah mengklasifikasikan kasus menjadi 1, yaitu keputusannya Yes, sehingga tidak perlu dilakukan perhitungan lebih lanjut.
- Tetapi untuk nilai **HIGH** masih perlu dilakukan perhitungan lagi.

Langkah 2

- Menghitung jumlah kasus, jumlah kasus untuk keputusan Yes, jumlah kasus untuk keputusan No.
- Entropy dari semua kasus dan kasus yang dibagi berdasarkan atribut OUTLOOK, TEMPERATURE dan WINDY, yang dapat menjadi node akar dari nilai atribut HIGH.
- Setelah itu lakukan perhitungan Gain, untuk tiap-tiap atribut.

Perhitungan Node 1.1

NO	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
1	Sunny	Hot	High	FALSE	No
2	Sunny	Hot	High	TRUE	No
3	Cloudy	Hot	High	FALSE	Yes
4	Rainy	Mild	High	FALSE	Yes
5	Rainy	Cool	Normal	FALSE	Yes
6	Rainy	Cool	Normal	TRUE	Yes
7	Cloudy	Cool	Normal	TRUE	Yes
8	Sunny	Mild	High	FALSE	No
9	Sunny	Cool	Normal	FALSE	Yes
10	Rainy	Mild	Normal	FALSE	Yes
11	Sunny	Mild	Normal	TRUE	Yes
12	Cloudy	Mild	High	TRUE	Yes
13	Cloudy	Hot	Normal	FALSE	Yes
_14	Rainy	Mild	High	TRUE	No

		jml kasus(S)	Tidak (S1)	Ya (S2)	Entropy	Gain
Humidity High		7	4	3	0.98522814	
outlook						0.69951385
	cloudy	2	0	2	0	
	rainy	2	1	1	1	
	sunny	3	3	0	0	
temp						0.02024421
	col	0	0	0	0	
	hot	3	2	1	0.91829583	
	mild	4	2	2	1	
windy						0.02024421
	FALSE	4	2	2	1	
	TRUE	3	2	1	0.91829583	

Cara Perhitungan Node 1.1

- Atribut dengan Gain tertinggi adalah OUTLOOK, yaitu sebesar 0.6995.
- Sehingga OUTLOOK dapat menjadi node cabang dari nilai atribut HIGH.
- Ada tiga nilai dari atribut OUTLOOK yaitu CLOUDY, RAINY dan SUNNY.
 - CLOUDY => klasifikasi kasus 1 (Yes)
 - **SUNNY** => klasifikasi kasus 1 (No)
 - RAINY => masih perlu perhitungan lagi.

Cara Perhitungan Node 1.1 [2]

Langkah 3

- Menghitung jumlah kasus, jumlah kasus untuk keputusan Yes, jumlah kasus untuk keputusan No.
- Entropy dari semua kasus dan kasus yang dibagi berdasarkan atribut TEMPERATURE dan WINDY, yang dapat menjadi node cabang dari nilai atribut RAINY.
- Setelah itu lakukan perhitungan Gain, untuk tiap-tiap atribut.

Perhitungan Node 1.1.2

NO	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
1	Sunny	Hot	High	FALSE	No
2	Sunny	Hot	High	TRUE	No
3	Cloudy	Hot	High	FALSE	Yes
4	Rainy	Mild	High	FALSE	Yes
5	Rainy	Cool	Normal	FALSE	Yes
6	Rainy	Cool	Normal	TRUE	Yes
7	Cloudy	Cool	Normal	TRUE	Yes
8	Sunny	Mild	High	FALSE	No
9	Sunny	Cool	Normal	FALSE	Yes
10	Rainy	Mild	Normal	FALSE	Yes
11	Sunny	Mild	Normal	TRUE	Yes
12	Cloudy	Mild	High	TRUE	Yes
13	Cloudy	Hot	Normal	FALSE	Yes
14	Rainy	Mild	High	TRUE	No

Node 1.1.2		jml kasus(S)	Tidak (S1)	Ya (S2)	Entropy	Gain
Humidity High and Outlook Rainy		2	1	1	1	
temp						0
	cool	0	0	0	0	
	hot	0	0	0	0	
	mild	2	1	1	1	
windy						1
	FALSE	1	0	1	0	
	TRUE	1	1	0	0	

Cara Perhitungan Node 1.1.2

- Atribut dengan Gain tertinggi adalah WINDY, yaitu sebesar 1.
- Sehingga WINDY dapat menjadi node cabang dari nilai atribut RAINY.
- Ada dua nilai dari atribut WINDY, yaitu FALSE dan TRUE.
 - Nilai atribut FALSE sudah mengklasifikasikan kasus menjadi 1 (Yes).
 - Nilai atribut TRUE sudah mengklasifikasikan kasus menjadi 1 (No).
 - Sehingga tidak perlu dilakukan perhitungan lagi.

Cara Perhitungan Node 1.1.2 [2]

Implementasi Python

Mengimpor library yang diperlukan:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
import matplotlib.pyplot as plt
```

Implementasi Python [2]

- Membaca data input.
- Sebagai ilustrasi , dataset yang digunakan di dalam program ini adalah dataset bunga IRIS yang bersumber pada data yang dipublikasikan oleh Fisher (Fisher, 1950) yang tersedia di website UCI Machine Learning Repository.

```
iris = datasets.load_iris()
features = iris['data']
target = iris['target']
```

Implementasi Python [3]

Membuat objek model Decision Tree.

```
decisiontree = DecisionTreeClassifier(random_state=0,
    max_depth=None, min_samples_split=2,
    min_samples_leaf=1, min_weight_fraction_leaf=0,
    max_leaf_nodes=None, min_impurity_decrease=0)
```

Implementasi Python [4]

Mentraining model Decision Tree.

```
model = decisiontree.fit(features, target)
```

Implementasi Python [5]

- Membuat prediksi.
- Pada tahap ini dilakukan pengambilan sampel observasi dan membuat prediksi.
- Sampel yang diberikan adalah data dimensi kelopak.
- Fungsi predict() digunakan untuk memeriksa kelas yang dimilikinya, sedangkan predict_proba digunakan untuk memeriksa probabilitas kelas dari prediksi tersebut.

```
observation = [[5, 4, 3, 2]]
model.predict(observation)
model.predict_proba(observation)
```

MATA KULIAH

DATA MINING

Implementasi Python [6]

Membuat grafik visualisasi Decision Tree.

Implementasi Python [7]

- Ket:
 - max_depth => parameter bagi kedalaman maksimum dari decision tree.
 Jika max_depth = None, maka decision tree akan dibuat sampai seluruh data termasuk kedalam tree. Sedangkan jika max_depth=k (k sebuah bilangan bulat) maka kedalaman tree dibatasi sampai ke dalam k.
 - min_sample_split => parameter bagi jumlah minimum sampel dalam setiap node sebelum node dipecah (displit). Jika min_samples_split = k (k sebuah bilangan bulat) maka jumlah minimum sampel dalam node tersebut adalah k. Sedangkan jika min_samples_split = r (r sebuah bilangan pecahan) maka jumlah minimum sampel dalam node tersebut adalah r persen dari keseluruhan data input.

Implementasi Python [8]

- Ket:
 - max_samples_leaf => parameter bagi jumlah minimum data yang dibutuhkan dalam sebuah leaf. Aturan pemberian nilai bagi min_samples_leaf sama dengan min_samples_split.
 - max_leaf_nodes => parameter bagi jumlah maksimum leaf.
 - min_impurity_split => parameter bagi jumlah minimum penurunan impurity sebelum dilakukan split.

Implementasi Python [9]

 Hasil Visualisasi Pohon Keputusan dari Kode Python sebelumnya seperti terlihat pada gambar disamping.

Implementasi Python dengan Dataset CSV

```
#import numpy, pandas dan scikit-learn
import numpy as np
import pandas as pd
from sklearn import tree
#membaca dataset dari file ke pandas dataFrame
irisDataset = pd.read_csv('D:\klasifikasi_dataset_iris.csv',
                          delimiter=',', header=0)
#mengubah kelas (kolom "Species") dari string ke unique-integer
irisDataset["Species"] = pd.factorize(irisDataset.Species)[0]
#menghapus kolom "Id"
irisDataset = irisDataset.drop(labels="Id", axis=1)
#mengubah dataframe ke array numpy
#irisDataset = irisDataset.as matrix()
irisDataset = irisDataset.to_numpy()
```

- Import library yang diperlukan seperti numpy, pandas dan sklearn.
- Membaca dataser dari file csv ke pandas dataframe.
- Mengubah dataframe ke array numpy.

Implementasi Python dengan Dataset CSV [2]

4	Α	В	С	D	E	F
	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	1	7	03.02	04.07	01.04	Iris-versicolor
	2	06.04	03.02	04.05	01.05	Iris-versicolor
	3	06.09	03.01	04.09	01.05	Iris-versicolor
	4	05.05	02.03	4	01.03	Iris-versicolor
	5	06.05	02.08	04.06	01.05	Iris-versicolor
	6	05.07	02.08	04.05	01.03	Iris-versicolor
	7	06.03	03.03	04.07	01.06	Iris-versicolor
	8	04.09	02.04	03.03	1	Iris-versicolor
)	9	06.06	02.09	04.06	01.03	Iris-versicolor
	10	05.02	02.07	03.09	01.04	Iris-versicolor
2	11	5	2	03.05	1	Iris-versicolor
3	12	05.09	3	04.02	01.05	Iris-versicolor
Ļ	13	6	02.02	4	1	Iris-versicolor
5	14	06.01	02.09	04.07	01.04	Iris-versicolor
5	15	05.06	02.09	03.06	01.03	Iris-versicolor
7	16	06.07	03.01	04.04	01.04	Iris-versicolor
3	17	05.06	3	04.05	01.05	Iris-versicolor
)	18	05.08	02.07	04.01	1	Iris-versicolor
)	19	06.02	02.02	04.05	01.05	Iris-versicolor
	20	05.06	02.05	03.09	01.01	Iris-versicolor

Sampel dataset bunga IRIS seperti gambar disamping.

Implementasi Python dengan Dataset CSV [3]

- Selanjutnya membagi dataset, dimana 40 baris data untuk training dan 20 baris data untuk testing.
- Kemudian memecah dataset ke input dan label.

Implementasi Python dengan Dataset CSV [4]

```
#mendefinisikan decision tree classifier
model = tree.DecisionTreeClassifier()
#mentraining model
model = model.fit(inputTraining, labelTraining)
#memprediski input data testing
hasilPrediksi = model.predict(inputTesting)
print("label sebenarnya ", labelTesting)
print("hasil prediksi: ", hasilPrediksi)
#menghitung akurasi
prediksiBenar = (hasilPrediksi == labelTesting).sum()
prediksiSalah = (hasilPrediksi != labelTesting).sum()
print("prediksi benar: ", prediksiBenar, " data")
print("prediksi salah: ", prediksiSalah, " data")
print("akurasi: ", prediksiBenar/(prediksiBenar+prediksiSalah)
      * 100, "%")
```

- Mendefinisikan model decision tree classifier.
- Mentraining model.
- Memprediksi input data testing.
- Kemudian mengevaluasi model dengan menghitung akurasinya.

Implementasi Python dengan Dataset CSV [5]

- Tampilan hasil eksekusi program python.
- Terlihat untuk label sebenarnya dan hasil prediksi, juga terdapat prediksi benar dan salah, serta hasil akurasinya.

Latihan Soal (Kuis)

FAKULTAS ILMU KOMPUTER

1. Hitung Entropy dan Gain serta tentukan pohon keputusan yang terbentuk dari contoh kasus keputusan bermain tenis dibawah ini :

OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
Sunny	Hot	High	No	Don't Play
Sunny	Hot	High	Yes	Don't Play
Cloudy	Hot	High	No	Play
Rainy	Mild	High	No	Play
Rainy	Cool	Normal	No	Play
Rainy	Cool	Normal	Yes	Play
Cloudy	Cool	Normal	Yes	Play
Sunny	Mild	High	No	Don't Play
Sunny	Cool	Normal	No	Play
Rainy	Mild	Normal	No	Play
Sunny	Mild	Normal	Yes	Play
Cloudy	Mild	High	Yes	Play
Cloudy	Hot	Normal	No	Play
Rainy	Mild	High	Yes	Don't Play

Latihan Soal (Kuis)

2. Kerjakan latihan tahapan klasifikasi dengan Decision Tree pada latihan sebelumnya, dataset bisa diganti / dimodifikasi, simpan dalam *decisiontree.py* atau *decisiontree.ipynb*, repositorikan file pada **github.com** dan kirimkan URL github melalui Assignment pada kulino (Pada blok Minggu ke-7).

Referensi

- 1. Kusrini, Taufiq Emha, Algoritma Data Mining, *Penerbit Andi*, 2009.
- Ian H. Witten, Frank Eibe, Mark A. Hall, Data mining: Practical Machine Learning Tools and Techniques 4th Edition, *Elsevier*, 2017.
- 3. Budi Santosa, Ardian Umam, Data Mining dan Big Data Analytics, Penebar Media Pustaka, 2018.
- 4. Yaya Heryadi, Teguh Wahyono, Machine Learning: Konsep dan Implementasi, Penerbit Gava Media, 2020.
- 5. Sumber gambar: www.freepik.com.

ANY QUESTIONS?

ANY QUESTIONS?

