Feature Engineering:

- This is the process of creating new features from the existing features in the dataset.
- The primary aim is to try and come up with new features that can help boost model performance.
- This is a completely experimental step and is limited only by the creativity of the programmer.

Data Pre-processing:

- The process of converting the dataset into a form suitable for training a model
- Almost all features require some sort of pre-processing before model training
- Ex: scaling numeric variables, encoding categorical variables

Libraries:

- Pandas
- Scikit-learn
- Tsfresh
- Feature Engine
- NLTK

1. Extreme Values:

- o Ask:
 - Are the extreme values genuine ?
 - Are the extreme values erroneous?
- O How to Identify?
 - Mean and Standard Deviation
 - IQR
 - Beyond / below percentiles
 - Isolation Forest
 - Plots
 - □ Box Plot
 - □ KDE Plot + Rug Plot
- Remedial Steps:
 - Delete extreme values
 - Cap / Floor extreme values
 - □ Arbitrary values
 - □ Mean +/- (3 * Standard Deviation)
 - \Box Q1 1.5 * 1QR, Q3 + 1.5 * IQR
 - □ 5th and 95th percentiles
 - Represent extreme values as missing (for later imputation)

2. Missing Values:

O Ask:

- Are values missing because they don't exist?
- Are values missing because they weren't recorded?

Remedial Steps:

- Delete missing values
- Create Indicator columns
- Impute missing values
 - □ Mean
 - □ Mode
 - □ Median
 - □ Constant Value
 - □ Algorithms (MICE, KNN)

3. Mathematical Operations:

Combining Features:

•	Aggregations:

- □ Sum
- □ Max
- □ Min
- □ Mean

Relativity:

- □ Ratios
- □ Differences
- Decision Trees

- □ Use subset of input features to train a decision tree□ Use predictions from the tree as new feature
- Polynomial Features

• Functions:

- Log
- Square Root
- Reciprocal
- Exponential

• Transformations:

- Power Transformations
- Box-Cox transformation
- Yeo-Johnson transformation

Feature Discretization:

- Equal Width
- Equal Frequency
- Arbitrary Intervals
- K-Means Clustering

4. Feature Scaling

- Standardization
- Normalization
- Median and IQR

5:07 AM

1. Missing Values:

- Most common value
- Arbitrary Value

2. Manipulating Categories:

- Group Rare Categories
- Replace Related Categories with Meaningful Values
- Convert to Binary Categories

3. **Encoding Categories:**

- Ordinal Encoding
- One-hot Encoding
- Rare-label Encoding
- Frequency Encoding
- Target Mean Encoding

1. Extracting Features from Dates:

- Day
- Month
- Year
- Quarter
- Weekday
- Day of the Year
- Day of the Week
- Year Half (from Quarter)

2. Extracting Features from Timestamps:

- Hour
- Minute
- Second

3. Creating new Features:

- o Difference between 2 features time/date
- o Represent "time lag" in minutes, seconds

Text Variables

Thursday, April 25, 2024 4:57 AM

1. Aggregations:

- Frequency of characters
- Frequency of words
- Frequency of unique words

2. Ratios:

Take ratios from above created features

1. Filter Methods:

- o Involves ranking each variable in the dataset and then selection
- Variables are ranked based on some statistical metric calculated
 - Chi-square test statistic
 - F-test statistic
 - Correlation Coefficient
 - Mutual Information
- These techniques don't involve any Machine Learning flavours
- o These techniques are fast and easily scalable

2. Wrapper Methods:

- These techniques involve generating various subsets of the dataset
- o Each subset is evaluated against a Machine Learning model
 - Involves training multiple models

- Trains one model for each subset
- o The variables present in the best performing subset are the selected features
- o Algorithms:
 - Exhaustive Search
 - Forward Elimination
 - Backward Elimination

3. Embedded Methods:

- The selection mechanism used, is built-in into the Machine Learning model as part of its training phase
 - Linear Regression
 - LASSO Regression
 - Logistic Regression
 - Linear Models
 - Decision Trees
 - Random Forest
 - Tree-based Models
- o These techniques involve training only a single model
- Features are selected by ranking based on estimated coefficients or feature importances produced by the trained model

Major Components

Thursday, April 25, 2024

• Built-in Transformers — St. Warre

- Custom Transformers
 - Python Class
 - Python Function \
- Function Transformer
- Feature Union
- Pipeline
- Column Transformer

SUBJ-US CONFORMS

Sequence of Steps

Tuesday, April 30, 2024

1. Import Libraries

2. Display Settings

- Pandas --> Display all columns
- Warnings --> Ignore warnings
- Scikit-learn --> Transform Output

3. Read Training Data

4. Transformation Operations (column-wise)

o Airline:

- Imputation
- Group Rare Labels
- One-hot Encoding

o Date of Journey:

- Date-time features
- Min Max Scaling

Source / Destination:

- Group Rare Labels
- Mean Encoding
- Power Transformer
- Is North City

Departure / Arrival time:

Duration:

- Capping by Quantiles (Winsorizer)
- Imputation
 - Duration categories
 - □ Ordinal Encoding (*ordinal column*; *specify categories*)
 - □ RBF Percentiles Similarity (RBF Kernel)
 - □ Power Transformer

Compute the rbf (gaussian) kernel between X and Y.

 $K(x, y) = \exp(-gamma ||x-y||^2)$

for each pair of rows x in X and y in Y.

- Over arbitrary minutes
- □ Standard Scaling

Total Stops:

- Imputation
- Is Direct Flight

Additional Info:

- Imputation
 - ☐ Group Rare Labels
 - □ One-hot Encoding
 - □ Have Info

5. Feature Selection

Selection by performance of each Individual Feature

6. Putting it all Together

7. Data Preprocessing

