Time-Varying Formation Control for General Linear Multi-agent Systems with Switching Directed Topologies

Xiwang Dong¹ Guoqiang Hu²

¹School of Automation Science and Electrical Engineering, Beihang University

²School of Electrical and Electronic Engineering, Nanyang Technological University

EE261 2020 Spring

EE261 Project Time-Varying Formation Control

Jiahe Shi

troductio

Graph Laplacian

ormulation

Definitions System

Goals ϕ and r

imulation

Motivation

Broad Application

- ► Light show performance
- Communication relay
- Contour mapping

Limitation of Previous Works

- Time-invariant topology
- No theoretical guarantee
- No physical experiment

Elements of A Graph

Graph

$$G = \{Q, E, W\}$$

Node set

$$Q = \{q_1, \dots, q_N\}, |Q| = N$$

Edge set

$$E = \{ (q_i, q_j) : q_i, q_j \in Q \}$$

Weights

$$w_{ji} > 0 \iff q_{ij} = (q_i, q_j) \in E$$

Graph Representation

Weighted adjacency matrix

$$W = [w_{ij}] \in \mathbb{R}^{N \times N}$$

▶ Degree matrix $D \in \mathbb{R}^{N \times N}$ with $\deg_{\mathrm{in}}(q_i) = \sum_{i=1}^N w_{ij}$

$$D = \begin{bmatrix} \deg_{\mathrm{in}}(q_1) & & & \\ & \ddots & & \\ & & \deg_{\mathrm{in}}(q_N) \end{bmatrix}$$

L = D - W $\mathcal{L} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$

Intuition: Diffusion & Connectivity

$$Lx = \underbrace{\sum_{q_{ij} \in E} (x(j) - x(i))}_{\text{sum of outgoing derivatives for } q_i}$$

$$x^{\mathsf{T}}Lx = \underbrace{\sum_{q_{ij} \in E} (x(i) - x(j))^2 \ge 0}_{L \text{ is positive semi-definite}}$$

 $lackbox{}{}$ $0 \in \lambda(L)$ with associated eigenvector $\mathbf{1}_N$ for any graph

For better intuiton, vector x has elements v_i representing node i's value.

- ▶ 0 algebraic multiplicity: $n \Rightarrow (n-1)$ connected components

Agent Dynamics

Each agent i = 1, 2, ..., N has the general linear dynamics

$$\dot{x}_i = Ax_i(t) + Bu_i(t)$$
 $x_i(t) \in \mathbb{R}^3, \ u_i(t) \in \mathbb{R}^m$

Time-Varying Graph

There are p topology graphs in total.

- $ightharpoonup \sigma(t): [0,\infty) \mapsto \{1,2,\ldots,p\}$ maps time to a specific topology
- ▶ Each graph $G_{\sigma(t)}$ has its Laplacian matrix $L_{\sigma(t)}$
- ▶ Each agent node i in $G_{\sigma(t)}$ has a neighbor set $N_{\sigma(t)}^i$

Scenario

Definition (Formation Achievement)

A multi-agent system is said to achieve time-varying formation h(t) if \forall bounded initial states, \exists a vector-valued function $r(t) \in \mathbb{R}^3$ s.t.

$$\lim_{t \to \infty} (x_i(t) - h_i(t) - r(t)) = 0 \qquad i = 1, \dots, N$$

where r(t) is called the formation reference function.

lotivation

Graph Representation
Graph Laplacian

ormulation

Scenario

Definitions

System

Goals ϕ and r

 ϕ and rDwell Time

Simulation

Control Law

Let $\phi_i(t) = x_i(t) - h_i(t)$, the paper proposed the control law

$$u_i(t) = K_1 x_i(t) + K_2 \phi_i(t) + \alpha K_3 \sum_{j \in N_{\sigma(t)}}^{i} w_{ij} (\phi_j(t) - \phi_i(t)) + v_i(t)$$

where

- α: coupling strength, bound determined by graph, design parameter
- \triangleright $v_i(t)$: formation compensation, dependent on $h_i(t)$, expands feasible set

Closed-loop System

$$\dot{x}(t) = \left(I_N \otimes (A + BK_1 + BK_2) - \alpha L_{\sigma(t)} \otimes BK_3\right) x(t)$$

$$+ \left(\alpha L_{\sigma(t)} \otimes BK_3 - I_N \otimes BK_2\right) h(t) + \left(I_N \otimes B\right) v(t)$$

Convergence to Desired Formation

Can we have bounded $\phi(t) = x_i(t) - h_i(t)$?

Explicit Trajectory of the Formation Reference Function

$$\lim_{t \to \infty} (\phi_i(t) - r(t)) = 0 \qquad i = 1, \dots, N$$

Can we have the expression of r(t), the "residual error"?

Topology Switching Frequency

How fast can we change the topology while keeping the system stable? How the structure of the graph affects this "minimum time"? ntroduction

Preliminaries
Graph Representation

ormulation

System

Goals

 ϕ and r

Dwell Time

Simulation

Dynamics of Formation Error

Deviation from the ideal formation

$$\phi_i(t) = x_i(t) - h_i(t)$$

▶ Using the closed-loop dynamic of x, $\dot{\phi}_i = \dot{x}_i - \dot{h}_i$

$$\dot{\phi}(t) = (I_N \otimes (A + BK_1 + BK_2) - \alpha L_{\sigma(t)} \otimes BK_3) \phi(t) + (I_N \otimes (A + BK_1))h(t) + (I_N \otimes B) v(t) - (I_N \otimes I_n) \dot{h}(t)$$

• We want $\phi(t)$ to be bounded when t is sufficiently large

tivation

Preliminaries
Graph Representation

Formulation

cenario lefinitions

alysis

Goals ϕ and r

Simulation

Using Property of Laplacian

We construct nonsingular matrix $U \in \mathbb{R}^{n \times n}$ s.t.

$$U^{-1} = \begin{bmatrix} - & \bar{u}_1 & - \\ & \bar{U} & \end{bmatrix} \qquad U = \begin{bmatrix} | & & \\ \tilde{u}_1 & & & \tilde{U} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ \vdots & & \tilde{U} & \end{bmatrix}$$

For eigenvectors x of the Laplacian L, $Lx = \lambda x$

$$U^{-1}L_{\sigma(t)}U = \begin{bmatrix} 0 & \bar{u}_1 L_{\sigma(t)} \tilde{U} \\ 0 & \bar{U} L_{\sigma(t)} \tilde{U} \end{bmatrix}$$

ntroductio

Preliminaries

Graph Representation Graph Laplacian

Formulation

Definitions System

nalysis

 ϕ and r

DWGII TIIIIO

imulation

$$\theta(t) = (U^{-1} \otimes I_n) \phi(t) = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_N \end{bmatrix} \quad \vartheta$$

Decompose Complete Dynamics

$$\dot{\phi}(t) = (I_N \otimes (A + BK_1 + BK_2) - \alpha L_{\sigma(t)} \otimes BK_3) \phi(t)$$

$$+ (I_N \otimes (A + BK_1)) h(t) + (I_N \otimes B) v(t)$$

$$- (I_N \otimes I_n) \dot{h}(t)$$

Jiahe Shi

Motivation Motivation

Graph Representation

Formulation

stem

Goals ϕ and r

φ and r

Dwell Time

imulation

Scenario
Definitions

Analysis Goals

 ϕ and r

Simulation

$$\dot{\phi}(t) = (I_N \otimes (A + BK_1 + BK_2)$$

$$- \alpha L_{\sigma(t)} \otimes BK_3) \phi(t)$$

$$+ (I_N \otimes (A + BK_1)) h(t)$$

$$+ (I_N \otimes B) v(t)$$

$$- (I_N \otimes I_n) \dot{h}(t)$$

$$\theta(t) = \left[\begin{array}{c} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_N \end{array} \right] \quad \vartheta \quad \left]$$

$$\dot{\theta}_1(t) = (A + BK_1 + BK_2)\theta_1(t)$$

$$-\alpha(\bar{u}_1L_{\sigma(t)}\tilde{U}) \otimes BK_3\vartheta(t)$$

$$+ (\bar{u}_1 \otimes (A + BK_1))h(t)$$

$$+ (\bar{u}_1 \otimes B)v(t) - (\bar{u}_1 \otimes I_n)\dot{h}(t)$$

$$\dot{\vartheta}(t) = (I_{N-1} \otimes (A + BK_1 + BK_2) - \alpha(\bar{u}_1 L_{\sigma(t)} \tilde{U}) \otimes BK_3) \vartheta(t) + (\bar{U} \otimes (A + BK_1)) h(t) + (\bar{U} \otimes B) v(t) - (\bar{U} \otimes I_n) \dot{h}(t)$$

Consider number of agents N=3. A possible construction of U

$$U = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \Rightarrow \qquad U^{-1} = \begin{bmatrix} 1 \\ -1 & 1 \\ -1 & 1 \end{bmatrix}$$

Therefore, consider in 3D xyz space where n=3,

$$\theta = (U^{-1} \otimes I_n) \phi = \begin{pmatrix} \begin{bmatrix} 1 \\ -1 & 1 \\ -1 & 1 \end{bmatrix} \otimes I_3 \end{pmatrix} \begin{vmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{vmatrix} = \begin{vmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 - \phi_1 \\ \vdots \\ \phi_9 - \phi_3 \end{vmatrix} = \begin{bmatrix} \theta_1 \in \mathbb{R}^{3 \times 1} \\ \vartheta \in \mathbb{R}^{3 \times 2} \end{bmatrix}$$

Jiahe Shi

ntroductio

Motivation

Preliminaries
Graph Representation

ormulation

Scenario
Definitions
System

pals

 ϕ and rDwell Time

Simulation

We further construct auxiliary variables ϕ_c and $\phi_{\bar{c}}$ s.t. $\phi = \phi_c + \phi_{\bar{c}}$

$$\phi_c(t) = (U \otimes I_n) \begin{bmatrix} \theta_1(t) \\ \mathbf{0} \end{bmatrix} = (U \otimes I_n) (\mathbf{e}_1 \otimes \theta_1(t))$$
$$= (U\mathbf{e}_1) \otimes (I_n \theta_1(t)) = \mathbf{1}_N \otimes \theta_1(t)$$
$$\phi_{\bar{c}}(t) = (U \otimes I_n) \begin{bmatrix} \mathbf{0} \\ \vartheta(t) \end{bmatrix}$$

Then

$$\phi_{\bar{c}} = \phi - \mathbf{1}_N \otimes \theta_1 = x_i - h_i - \theta_1$$

According to definition of formation achievement, we want $\lim_{t\to\infty}\phi_{\bar c}(t)=0$, due to non-singularity of U,

$$\lim_{t \to \infty} \phi_{\bar{c}}(t) = 0 \iff \lim_{t \to \infty} \vartheta(t) = 0$$

We can choose $r(t) = \theta_1(t)$

Analysis: $\phi(t) = x(t) - h(t)$ and r(t), Results

$$\dot{\vartheta}(t) = (I_{N-1} \otimes (A + BK_1 + BK_2) - \alpha(\bar{u}_1 L_{\sigma(t)} \tilde{U}) \otimes BK_3) \vartheta(t)$$

$$+ (\bar{U} \otimes (A + BK_1)) h(t) + (\bar{U} \otimes B) v(t) - (\bar{U} \otimes I_n) \dot{h}(t)$$

- To have $\lim_{t\to\infty}\vartheta(t)=0$,
 - 1. Zero-input part is A.S. Let $\bar{\vartheta}$ denote zero-input system.
 - 2. Zero-state part $\rightarrow 0$ as $t \rightarrow \infty$

Find Way to Solve for $v_i(t)$

Choose
$$T=\begin{bmatrix} \ddot{B} \\ \hat{B} \end{bmatrix}$$
 s.t. $TB=\begin{bmatrix} I_{n_u} \\ \mathbf{0} \end{bmatrix}$, from 2 it can be proved that

$$\lim_{t \to \infty} (\bar{B}A(h_i - h_j) - \bar{B}(\dot{h}_i - \dot{h}_j)) = 0$$

$$\lim_{t \to \infty} \left(\bar{B}(A + BK_1)(h_i - h_j) - \bar{B}(\dot{h}_i - \dot{h}_j + \bar{B}(v_i - v_j)) \right) = 0$$

Motivation

Graph Representation

Formulation

Definitions System

Goals

 ϕ and r

Simulation

Summary

r(t)

$$\dot{\theta}_{1}(t) = (A + BK_{1} + BK_{2})\theta_{1}(t) - \alpha(\bar{u}_{1}L_{\sigma(t)}\tilde{U}) \otimes BK_{3}\vartheta(t) + (\bar{u}_{1} \otimes (A + BK_{1}))h(t) + (\bar{u}_{1} \otimes B)v(t) - (\bar{u}_{1} \otimes I_{n})\dot{h}(t)$$

r(t) is dependent on x, v and h.

$$(A + BK_1 + BK_2)P + P(A + BK_1 + BK_2)^{\mathsf{T}} - BB^{\mathsf{T}} + \beta P < 0$$

► For each graph, given $\hat{\mu}_{\sigma(t)}$ (min. real part of eigenvalues of $\bar{U}L_{\sigma(t)}\tilde{U}$) for $\mu_{\sigma(t)} \in (0, \hat{\mu}_{\sigma(t)})$, choose $\Xi_{\sigma(t)} = \Xi_{\sigma(t)}^{\mathsf{T}} \succ 0$ s.t.

$$\left(\bar{U}L_{\sigma(t)}\tilde{U}\right)^{\mathsf{T}}\Xi_{\sigma(t)} + \Xi_{\sigma(t)}\left(\bar{U}L_{\sigma(t)}\tilde{U}\right) > 2\mu_{\sigma(t)}\Xi_{\sigma(t)}$$

Let $\gamma = \max \lambda_{\max}(\Xi_i^{-1}\Xi_j)$, it can be shown that the Lyapunov function

$$V = \bar{\vartheta}^{\mathsf{T}}(\Xi_{\sigma(t)} \otimes P^{-1})\bar{\vartheta}$$

satisfies $\dot{V}=-\beta V$, which shows exponential decay of V, dwell time $\tau_0>\frac{\ln(\gamma)}{\beta}$

Jiahe Shi

ntroduction

Preliminaries
Graph Representation
Graph Language

Formulation

efinitions

Goals ϕ and r

Dwell Time

Simulation

$$A = \begin{bmatrix} 4 & -2 & 2 \\ 1 & 3 & 5 \\ 2 & 7 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$h_i = \begin{bmatrix} r \sin\left(\omega t + \frac{(i-1)\pi}{3}\right) \\ 2r \sin\left(\omega t + \frac{(i-1)\pi}{3}\right) \\ r \cos\left(\omega t + \frac{(i-1)\pi}{3}\right) \end{bmatrix} \qquad r = 6, \ \omega = 2$$

Implementation video:

https://www.bilibili.com/video/BV13f4y1m7XZ

Motivation

Graph Representation
Graph Laplacian

Formulation

Definitions System

Analysis

 ϕ and rOwell Time

Simulation

Summary

► The assignment of the eigenvalues are not "optimal"

Graph Representation
Graph Laplacian

Scenario

Definitions

Definition System

Goals ϕ and r

 ϕ and rDwell Time

Simulation

Summary

4□ → 4問 → 4 = → 4 = → 9 < 0</p>

ightharpoonup DOI: 10.1016/j.automatica.2016.06.024 (Analysis Part, not successfully implemented and contains potential error, such as wrong v(t) calculation)

DOI: 10.1049/iet-cta.2013.1007 (The actual implemented paper)