http://www.na.edu				You Tube		
E-mail: moodle@na.edu						
NORTH AMERICAN UNIVERSITY INSPIRATION INNOVATION GLOBAL COMPETENCE						
Dashboard > COMP > COMP 3317.Algorithms.2016FLL.s1 > 14 November - 20 November > Networks						
Started on	Saturday, 3 December 2016, 3:45 PM					
State	Finished					
Completed on	Saturday, 3 December 2016, 3:50 PM					
Time taken	4 mins 45 secs					
	4.00/5.00					
Grade	80.00 out of 100.00					
Question 1	Correct Mark 1.00 out of 1.00					
Degree of a network is determined by degree of any of its nodes.						
Select one:						
o a. median						
ob. smallest						
c. None of the	above					
d. largest 						
Your answer is correct.						

The correct answer is: largest

Question 2 Correct Mark 1.00 out of 1.00					
In a network it is logical to use to traverse the nodes closer to the starting node first.					
Select one:					
oa. Exhaustive Search					
ob. Depth-First Search					
o. Breadth-First Search ✓					
od. Heuristic Search					
Your answer is correct.					
The correct answer is: Breadth-First Search					
Question 3 Correct Mark 1.00 out of 1.00					
Algorithm is best suited to find the shortest path between nodes in a network.					
Algorithm is best suited to find the shortest path between nodes in a					
Algorithm is best suited to find the shortest path between nodes in a network.					
Algorithm is best suited to find the shortest path between nodes in a network. Select one:					
Algorithm is best suited to find the shortest path between nodes in a network. Select one: a. Minimax					
Algorithm is best suited to find the shortest path between nodes in a network. Select one: a. Minimax b. Heuristic					
Algorithm is best suited to find the shortest path between nodes in a network. Select one: a. Minimax b. Heuristic c. Dijkstra's ✓					

Question 4 Correct Mark 1.00 out of 1.00 What is the purpose of the following algorithm? Boolean: Algo (Node: start_node) // Traverse the network starting from start_node. Traverse(start_node) // See if any node has not been visited. For Each node In <all nodes> If (Not node. Visited) Then Return False Next node // All nodes were visited. Return True **End Algo** Select one: a. Depth-first Traversal b. To find the spanning tree

Your answer is correct.

The correct answer is: To determine whether an undirected network is connected

c. To determine whether an undirected network has a cycle

d. To determine whether an undirected network is connected

Question 5	Incorrect	Mark 0.00 out of 1.00
Depth-first travers	_	implemented for trees might have a problem on
Select one:		
a. cycles		
ob. links		
c. nodes		
d. missing roc	ot 🗙	
Your answer is inco	rrect.	
The correct answer	is: cycles	