

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Electrónica de Potência

Simulações para o 3º Trabalho de laboratório

João Bernardo Sequeira de Sá	n.º 68254
Maria Margarida Dias dos Reis	$\rm n.^o~73099$
Rafael Augusto Maleno Charrama Gonçalves	$\rm n.^o~73786$
Nuno Miguel Rodrigues Machado	n.º 74236

Grupo do turno de segunda-feira das 17h00 - 2000

Lisboa, de Dezembro de 2015

${\rm \acute{I}ndice}$

1	Conversor BUCK	2
2	Conversor $Boost$	4
3	Converor CC-CC Reductor-Amplificador Buck-Boost	6

1 Conversor BUCK

Foi utilizado três configurações do conversor BUCK com objetivo de o compreender melhor, em primeiro lugar é realizado a simulação para uma carga resistiva, R, depois para uma carga resistiva e indutiva, RL, e por fim para uma carga capacitiva, indutiva e resistiva, RLC.

1.0.1 Carga Resistiva, R

O circuito utilizado na simulação é referido na imagem Figura 1

Figura 1: Circuito do conversor BUCK com carga resitiva, R.

O sinal de controlo de comando é representado por uma onda quadrada de 50kHz com um duty cycle de 50%. Assim sendo pode-se visualizar na Figura 2 a tensão e corrente na carga.

Figura 2: Tensão (sinal vermelho)
e corrente (sinalazul) de saida.

1.0.2 Carga Resistiva e inductiva, RL

De igual forma pode-se apresentar o circuito de simulação que está referenciado na Figura 3.

Figura 3: Circuito do conversor BUCK com carga resitiva e inductiva, RL.

Alterando a frequência do sinal de comando para 10kHz obtém-se o seguinte resultado da tensão e da corrente na carga.

Figura 4: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

Para o regime não lacunar, quando a corrente na carga passa por zero, corresponde a uma frequência do sinal de controlo aproximado a 4kHz obtende-se o seguinte resultado.

Figura 5: Corrente (sinal a azul) na saída.

1.0.3 Carga Resistiva, inductiva e capacitiva, RLC

Foi acrescentado um condensador de 15 nF em paralelo com a carga RL obtendo-se assim o seguinte circuito de simulação.

Figura 6: Circuito do conversor BUCK com carga resitiva, inductiva e capacitiva, RLC.

Obtendo-se o seguinte resultado para a tensão e corrente na carga.

Figura 7: Tensão (sinal vermelho)e corrente (sinal azul) na carga.

2 Conversor Boost

Outro conversor estudado é o conversor Boost. Na Figura 8 está representado o circuito de simulação utilizado.

Figura 8: Circuito do conversor ${\it Boost.}$

${\bf A}$ forma de onda da corrente e da tensão na bobine podem ser visualizados na Figura 9

Figura 9: Tensão (sinal vermelho)e corrente (sinal azul) na bobine.

3 Converor CC-CC Reductor-Amplificador Buck-Boost

Outro conversor CC-CC aqui simulado é o Buck-Boost. Na Figura 10 está definido o circuito usado na simulação.

Figura 10: Circuito do conversor Buck-Boost.

De seguida é apresentado o resultado da simulação do circuito apresentado, para facilitar a visualização o resultado da tensão na resistência de carga está no sentido inverso.

Figura 11: Simulação do circuito conversor Buck-Boost, onde é apresentado a tensão na carga (Vermelho) e a corrente no diodo (Azul).