Notation

For the following analysis, we have some predefined notations.

ullet For any array A, any indices l and r, A[l,r) represents the subarray of A in range [l,r):

$$A[l,r) := (A[l], \dots, A[r-1]).$$

Note that when $l \geq r$, A[l, r) is empty.

Similarly,

$$A[l,r] := (A[l], \dots, A[r]),$$

$$A(l,r] := (A[l+1], \dots, A[r]),$$

$$A(l,r) := (A[l+1], \dots, A[r-1]).$$

Algorithm

```
compute_prefix_function(P[0, m))
1
2
       pi[0, m) = empty array
3
       pi[0] = 0
       for q = 1 to m - 1
4
            k = pi[q - 1]
5
            while k > 0 and P[k] != P[q]
6
7
                k = pi[k - 1]
            if P[k] == P[q]
8
9
                k++
            pi[q] = k
10
11
       return pi
```

Correctness

Compute Prefix Function

Input: A string P of size m, where $m \ge 1$.

Output: An array $\pi[0, m)$ such that for all valid indices q, $\pi[q]$ represents the size k of the longest proper prefix of P[0, q] that is also a suffix of P[0, q]. Let's refer to it as the longest prefix-suffix of P[0, q].

$$\pi[q] = \max\{k : P[0, k) = P(q - k, q] \text{ and } k \le q\}$$
 (1)

Proof

Define the set of loop invariant \mathcal{I} that at the start each iteration of the for loop in line 4-10,

• \mathcal{I}_1 : In bounds

$$0 < q \le m$$

- \mathcal{I}_2 : $\pi[0,q)$ is correct as the desired output.
- 1. **Initialization:** At the start we have q = 1, and $\pi[0]$ is correctly initialized in line 3, thus \mathcal{I} is correct trivially.
- 2. **Maintenance:** Assume that \mathcal{I} is true at the start of an iteration, we aim to show that it remains true at the start of the next iteration.

The boundary check \mathcal{I}_1 remains true trivially since q is only modified in the for loop statement. Let's focus on \mathcal{I}_2 .

Based on the assumption of \mathcal{I} , in line 5 we have k as the size of the longest prefix-suffix of P[0, q-1].

$$P[0,k) = P[q - k, q), \quad 0 \le k < q \tag{2}$$

And now we want to see whether we expand or shrink this prefix by first checking if P[k] = P[q].

- (a) Let's first consider k = 0 and $P[k] \neq P[q]$. This means the first element fails to match, so a prefix-suffix does not exist, and we stored 0 into $\pi[q]$. \mathcal{I}_2 is correct.
- (b) Now we consider P[k] = P[q]. This means the previous prefix-suffix remains matched and can be expanded in this iteration.

In this case, the while loop at line 6-7 is skipped, and we enter line 9: k is increased by 1. That is, the prefix expands, now including P[k] corresponding to P[q]:

$$P[0,k) = P[q - (k-1), q] = P(q - k, q], \quad k \le q.$$

We can also claim that this prefix-suffix is the longest possible since it is inherited from $\pi[q-1]$. Suppose to the contrary that there were a longest valid prefix-suffix of length k' > k, its first k' - 1 characters would contradict the maximality of $\pi[q-1]$. Thus, k is the size of the longest proper prefix and the suffix of P[0,q], and we stored it correctly in $\pi[q]$. \mathcal{I}_2 remains true.

- (c) Finally, let's tackle the case where $k \neq 0$ and $P[k] \neq P[q]$. This means that the previous prefix-suffix fails to match in this iteration. But we do not have to discard it completely since the π we recorded so far provides some useful information. Let's examine how the *fallback* mechanic works in the while loop at line 6-7 with another set of loop invariant \mathcal{J} .
 - \mathcal{J}_1 : In bounds.

$$0 \le k \le q$$

• \mathcal{J}_2 : k is the size of a proper prefix and suffix of P[0,q). (not necessarily longest)

$$P[0,k) = P[q-k,q)$$

• \mathcal{J}_3 : There does not exist k' > k+1 such that k' is the size of a proper prefix and suffix of P[0,q].

$$\nexists k' > k+1: \quad P[0,k') = P(q-k',q]$$

With \mathcal{J} , we have (k+1) always being a candidate for $\pi[q]$ if P[k] and P[q] match, and we do not miss any valid prefix-suffix along the way.

Initialization By equation (2) in line 5, \mathcal{J}_1 and \mathcal{J}_2 are true. And the maximality of $k = \pi[q-1]$ ensures \mathcal{J}_3 .

Maintenance Assume that \mathcal{J} is true at the start of an iteration, we want to show that it remains true at the end of this iteration.

Since $\pi[k-1]$ represents the size of the longest prefix-suffix of P[0, k-1], let $\hat{k} = \pi[k-1]$ be the update of k at line 7, then we have

$$P[0, \hat{k}) = P[k - \hat{k}, k), \quad 0 \le \hat{k} < k \tag{3}$$

Combine this with \mathcal{J}_2 , then

$$P[0, \hat{k}) = P[k - \hat{k}, k) = P[q - \hat{k}, q), \quad 0 \le \hat{k} < k < q \tag{4}$$

Thus, \hat{k} is the size of a valid prefix-suffix. \mathcal{J}_1 and \mathcal{J}_2 remain true after updating k. By the assumption of \mathcal{J}_3 , we know that there does not exist k' > k + 1 being the size of a valid prefix-suffix, and we want to expand the invalid range to $k' > \hat{k} + 1$.

This can be established by the maximality of $\pi[k-1]$ as the following. Suppose to the contrary that there were a prefix-suffix of P[0,q] of size k',

$$P[0, k') = P(q - k', q], \quad \hat{k} + 1 < k' \le k + 1$$

that is,

$$P[0, k'-1) = P[q - (k'-1), q), \quad \hat{k} < k'-1 \le k.$$

But if we combine this with equation (4), we would get

$$P[0, k'-1) = P[q - (k'-1), q) = P[k - (k'-1), k).$$

This means we would have a prefix-suffix of P[k-1] of size k'-1, which would be longer than $\pi[k-1] = \hat{k}$. This contradicts the maximality of $\pi[k-1]$.

Thus, \mathcal{J}_3 remains true after we update k as \hat{k} .

Termination The while loop always terminates since with equation (4), k is always decreasing, so either k reaches 0 first, or we find P[k] = P[q] first.

Based on the initialization and maintenance of \mathcal{J} , we now have either

- (i) k = 0 and $P[k] \neq P[q]$, this has been solved in case (a), or
- (ii) P[k] = P[q]. Based on \mathcal{J} , we have k+1 as the size of the longest prefix-suffix of P[0,q], so we can increase k by 1, and correctly store it in $\pi[q]$. \mathcal{I}_2 remains true.
- 3. **Termination:** The loop always terminates since q is increasing and always reaches m.

When the loop terminates as q = m, based on the initialization and maintenance of \mathcal{I} , we have $\pi[0, m)$ all being the correct output. Therefore, the algorithm is correct.