Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. El grupo conmutador de D_4 es isomorfo a C_2 .

Demostración. $N \subseteq G$, tenemos que G/N es abeliano si y solo si $[G,G] \subseteq N$. Tenemos que

$$K = {id, (12)(34), (13)(24), (14)(23)}$$

tenemos que $A_4/K \cong C_3$ y entonces es abeliano, y por tanto $H = [A_4, A_4] \leq K$.

Por otro lado:

$$(12)(34) \in H$$

$$(13)(24) \in H$$

$$(14)(23) \in H$$

Es decir, $H \leq K$ y entonces $[A_4, A_4] = K$.

Tenemos que $[D_4, D_4] = \langle r^2 \rangle = \{1, r^2\}.$

Proposición 2. Para todo $n \geq 3$, A_n es el único subgrupo de S_n de orden $\frac{n!}{2}$.

Demostración. Sea $H \leq S_n$ tal que $|H| = \frac{n!}{2}$. Entonces, $[S_n : H] = 2$ lo que implica que $H \leq S_n$ y por tanto $S_n/H \cong C_2$ y por tanto abeliano.

$$[S_n, S_n] = A_n \le H$$
 y como tienen el mismo orden, $A_n = H$.

Proposición 3. Un grupo abeliano tiene serie de composición si y solo si es finito.

Demostración. Si G es finito entonces tiene series de composición, la trivial. Sea G_i una serie de composición de longitud n de un grupo abeliano G. Por tanto, los factores G_i/G_{i-1} son simples.

Como G es abeliano, G_i es abeliano para todo i y por tanto los factores de la serie son abelianos.

Como un grupo abeliano es simple si y solo si es cíclico de orden un número primo, tenemos que existe un primo p $G_i/G_{i-1} \cong C_p$.

En particular, G_i/G_{i-1} es finito.

Basta demostrar que si G es un grupo y $N \leq G$ tal que N y G/N son finitos entonces G es finito.

 $G_1/G_0 = G_1$ es finito, y suponiendo G_k/G_{k-1} es finito, tenemos que G_k es finito. En n pasos tenemos que $G_n = G$ es finito.

Proposición 4. S_n para $n \geq 5$, solo tiene una serie de descomposición.

Demostración. Sabemos, por el teorema de Abel, que $1 \triangleleft A_n \triangleleft S_n$ es una serie de composición de S_n .

 $l(S_2) = 2$, y sus factores son A_n y C_2 .

Sea $1 \triangleleft N \triangleleft S_n$ otra serie de composición de S_n . Tenemos que $N/1 = N \in \{A_n, C_2\}$. Si $N = A_n$ es la serie anterior. Supongamos que $N \cong C_2$.

 $N = \langle \alpha \rangle = \{1, \alpha\} \text{ con } \alpha \in S_n \text{ con ord}(\alpha) = 2.$ Entonces:

$$\alpha = \prod_{i} (x_i \quad y_i)$$

donde $\{x_i, y_i\} \cap \{x_j, y_j\} = \emptyset$ si $i \neq j$.

Si k=1, tenemos que $\alpha=(x_1\quad y_1)$, una transposición. Sea $\beta=(x_1\quad z)$ siendo $z\neq x_1,y_1.$

$$\beta \alpha \beta^{-1} = (z \quad y_1) \notin \{1, \alpha\} = N$$

Por lo tanto $\beta N \beta^{-1} \not\leq N$ en contradicción con la normalidad de N. Si k > 1, consideramos $\gamma = (x_1 \quad x_2)$. Tenemos:

$$\gamma \alpha \gamma^{-1} = (x_1 \quad x_2)\alpha(x_1 \quad x_2) = \prod_{i,i \neq 1} (x_i \quad y_i) \notin \{1, \alpha\} = N$$

entonces $\gamma N \gamma^{-1} \not \leq N$, lo que entra en contradicción con que N sea normal. Si $n \geq 5$, tiene una única serie de composición.