

Análise IO

Tecnologia de Input e Output para XR

Alexandre Altair de Melo Realidade Aumentada e Virtual Professor Marcelo da Silva Hounsell 28/04/2025

Agenda

```
Objetivo;
Dispositivos de Input: Flock of Birds (tracker), Null Space VR Mark 2 suit, Reality Vest N64, Rapture Vest, Tesla Suit, Enflux (Full Body Suit), Rastreador (Tracker) [Polhemus/Ascension]);
Fechamento Input e Futuro;
Dispositivos de Output: [Google] CardBoard, BeeNoculus [Samsung] Gear VR 360, [Samsung] Odyssey Plus, [Google] Daydream;
Fechamento Output e Futuro;
Perguntas;
Referências;
Anexos;
```


Objetivo

Levantar o histórico recente e a evolução das tecnologias de hardware de entrada, saída e/ou hápticos para XR através da apresentação e caracterização dos dispositivos.

Dispositivos de Input

Os dispositivo de entrada a seguir são do tipo vestível com foco em rastreadores, coletes e roupas de corpo inteiro.

Flock of Birds (tracker)

O Flock of Birds é um sistema de rastreamento de movimento (motion tracker) desenvolvido pela **Ascension Technology Corporation**, amplamente utilizado em aplicações que requerem captura de movimento em tempo real, como realidade virtual, animação, simulações médicas e pesquisa científica desenvolvida pela Ascension Technology Corporation (DAY, 2000).

- Rastreamento 6DOF (seis graus de liberdade): Permite capturar tanto a posição (3 eixos) quanto a orientação (3 ângulos);
- Alta taxa de atualização: Ideal para aplicações em tempo real;
- Flexibilidade: Pode rastrear múltiplos sensores simultaneamente, o que o torna adequado para capturar movimentos de várias partes do corpo ou objetos;
- Aplicações: Usado em realidade virtual, animação, simulação de voo, análise de movimento esportivo, e até em neurociência para estudos de comportamento motor.

Flock of Birds (tracker)

O Flock of Birds uso para avaliação do movimento da coluna.

Figura 1

Figura 1 - Fonte: Gelalis, 2009

Null Space VR Mark 2 suit

O NullSpace VR Mark 2 Suit (também referido como Mark IIB ou posteriormente evoluído para o Hardlight VR Suit) é um dispositivo de entrada (input) para realidade virtual (VR) desenvolvido pela NullSpace VR, uma startup fundada por exalunos do Rochester University Robotics Club. Trata-se de um traje háptico projetado para aumentar a imersão em experiências de VR, permitindo que os usuários sintam sensações táteis correspondentes às ações no ambiente virtual, como impactos, vibrações ou até mesmo gotas de chuva (EMSPAK, 2022).

- Feedback Háptico: 16 pads vibratórios proporcionam sensações direcionais, como o impacto de um tiro ou a vibração de uma espada atingindo uma armadura;
- Rastreamento de Movimento: Sensores inerciais permitem o posicionamento relativo dos braços e torso em relação ao headset VR. API para integrar o traje a jogos.

Null Space VR Mark 2 suit

Null Space VR Mark 2 suit – Figura 2

Figura 2 - Fonte: Emspak, (2022)

Reality Vest N64, Rapture Vest

O Nuby Reality Vest é um acessório háptico lançado em 1998 pela Nuby para o Nintendo 64 (N64), projetado para ampliar a imersão em jogos por meio de feedback tátil. Abaixo, detalho suas características, funcionamento e contexto, com base nas informações disponíveis GARDNER (2021).

- Função: O colete funciona como uma extensão do Rumble Pak, o dispositivo de vibração oficial do N64. Ele proporciona feedback tátil ao vibrar em resposta a eventos nos jogos, como explosões, colisões ou disparos, compatíveis com o Rumble Pak (ex.: The Legend of Zelda: Ocarina of Time, Star Fox 64, GoldenEye 007);
- Design: É um colete leve, ajustável, com seis atuadores de vibração posicionados em pontos estratégicos: dois no peito, dois nos ombros e dois nas costas. Os atuadores são conectados por fios a uma unidade de controle;
- Conexão: O colete se conecta ao controle do N64 através do slot do Rumble Pak, utilizando um adaptador que transmite os sinais de vibração do jogo para o colete.

Reality Vest N64, Rapture Vest

Reality Vest N64 – Figura 3

Figura 3 - Fonte: Gardner, (2021)

Tesla Suit

O Tesla Suit é um dispositivo vestível (wearable) de tecnologia avançada projetado para proporcionar experiências imersivas por meio de feedback háptico, captura de movimento e monitoramento biométrico. Ele é amplamente utilizado em áreas como realidade virtual (VR), realidade aumentada (AR), treinamento, reabilitação médica, esportes e entretenimento (CASERMAN, 2021).

- Feedback Háptico: O traje possui múltiplos pontos de vibração que simulam sensações táteis, permitindo ao usuário "sentir" o ambiente virtual, como impactos, texturas ou movimentos;
- Captura de Movimento: Sensores embutidos rastreiam os movimentos do corpo em tempo real, eliminando a necessidade de dispositivos externos, como câmeras, para capturar gestos e posturas;
- Monitoramento Biométrico: O traje pode medir dados como frequência cardíaca, níveis de estresse e outras métricas fisiológicas, úteis para aplicações em saúde, esportes ou pesquisa;
- Estimulação Elétrica Muscular (EMS): Em algumas versões, o Tesla Suit usa EMS para estimular músculos, o que pode ser aplicado em treinamento físico ou reabilitação.

Tesla Suit

Tesla Suit – Exemplo de treinamento virtual – Figura 4

Figura 4 - Fonte: Tesla Suit, 2025.

Enflux (Full Body Suit)

O Enflux Full Body Suit é um dispositivo vestível (wearable) projetado para captura de movimento (motion capture) e rastreamento corporal em tempo real, funcionando como uma interface de input para aplicações em realidade virtual (VR), realidade aumentada (AR), esportes, fitness, reabilitação e desenvolvimento de jogos (BLAS, 2020).

- Captura de Movimento: Registra movimentos corporais completos, útil para jogos imersivos, animação 3D e simulações;
- Rastreamento de Exercícios: Monitora a forma durante treinos, ajudando a corrigir posturas e melhorar o desempenho em atividades como corrida, musculação ou yoga;
- Aplicações em VR/AR: Permite interações intuitivas em ambientes virtuais, eliminando a necessidade de controladores externos;
- Análise Biomecânica: Fornece dados para treinadores, fisioterapeutas ou pesquisadores analisarem movimentos e prevenir lesões.

Enflux (Full Body Suit)

Enflux Body Suit - Figura 5

Figura 5 - Fonte: Enflux, 2025.

Rastreador (Tracker) [Polhemus/Ascension]

Os rastreadores (trackers) Polhemus e Ascension são dispositivos de input baseados em tecnologia de rastreamento de movimento eletromagnético, amplamente utilizados para capturar movimentos em 6 graus de liberdade (6DOF), ou seja, posição (x, y, z) e orientação (yaw, pitch, roll). Esses dispositivos são aplicados em áreas como realidade virtual (VR), realidade aumentada (AR), simulação, biomecânica, medicina, pesquisa científica, treinamento militar e esportes (SIROKAI, 2012).

- Alta precisão (até 0,03 polegadas e 0,15 graus) e baixa latência (1-4 ms em modelos avançados);
- Sensores pequenos, como o Micro Sensor 1.8, podem ser embutidos em dispositivos médicos, como cateteres, ou em headsets VR.
- Não depende de iluminação ou linha de visão, permitindo rastreamento através de objetos, roupas ou paredes.

Rastreador (Tracker) [Polhemus/Ascension]

Rastreadores Polhemus/Ascension - Figura 6

Fig.1. The Ascension 3D Guidance medSAFE, the NDI Aurora and the Polhemus Fastrak tracking systems. These are the most commonly used EMT devices. (Courtesy of the manufacturers.)

Figura 6 - Fonte: Sirokai, 2012.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Polhemus Tracker	1970s (Fastrak: 1990s)	Pioneiro em rastreamento eletromagnético, oferecendo 6DOF com sensores leves.
Flock of Birds (Ascension)	1989	Introduziu rastreamento eletromagnético 6DOF (seis graus de liberdade) para ambientes de RV.
Reality Vest N64	1998	Dispositivo háptico rudimentar projetado para o Nintendo 64, com feedback vibracional básico.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Enflux Full Body Suit	2017	Traje de captura de movimento baseado em sensores inerciais (IMUs) embutidos no tecido, eliminando a necessidade de câmeras externas ou marcadores.
Null Space VR Mark 2 Suit	2017	Traje háptico de corpo inteiro com feedback vibracional, projetado para RV imersiva.
Teslasuit	2018	Traje háptico avançado com feedback eletrotátil (estimulação neuromuscular) usando 68 canais elétricos para simular sensações complexas, como toque, calor, frio ou até dor leve.

Novos hardwares incluem:

- Woojer Vest 3 (Colete) 2022 Originalmente 2019 woojer.com Figura 8;
- Woojer Strap-3 (Fita) 2022 Originalmente 2019 woojer.com Figura 9;
- bHaptics TactSuit (Colete Fechado) 2024 Originalmente 2017 bhaptics.com Figura 10a.

 Aura Interactor (Colete) – 1994 – Dispositivo para Mega Drive e Super NES – Figura 10b - Popsci.
 Figura 10a - Fonte: bHaptics, 2025.

Figura 8 - Fonte: Woojer, 2025.

Figura 9 - Fonte: Woojer, 2025.

Dispositivos de Output

Os dispositivo de output a seguir tem como foco a questão de RV com foco em dispositivos de baixo custo e outras propostas com custo mais elevado.

[Google] CardBoard

O Google Cardboard é uma plataforma de realidade virtual (VR) de baixo custo desenvolvida pelo Google, lançada em 2014 durante a conferência Google I/O. Trata-se de um dispositivo simples, feito de papelão dobrável, que utiliza um smartphone como unidade de processamento e exibição para proporcionar experiências imersivas de realidade virtual. O Cardboard foi projetado para ser acessível, permitindo que usuários construam seus próprios visualizadores com materiais baratos ou adquiram versões pré-fabricadas. A iniciativa visava democratizar o acesso à realidade virtual, incentivando o desenvolvimento de aplicativos e experiências imersivas (WANG, 2024).

- Acessibilidade: Custos baixos permitiram ampla adoção, especialmente em países em desenvolvimento;
- Educação: O programa Expeditions levou experiências de VR a salas de aula, permitindo "viagens virtuais" a locais como museus e paisagens naturais;
- Desenvolvimento: O SDK do Cardboard, disponível para Android, iOS e Unity, incentivou a criação de mais de 160 milhões de downloads de aplicativos compatíveis até 2017;
- Inovação: Inspirou outras plataformas de VR acessíveis e influenciou o desenvolvimento do **Google Daydream**, uma evolução mais avançada.

[Google] CardBoard

Google CardBoard Figuras 11, 12 e 13

Figura 11 - Fonte: Valcarcel, 2015.

Figura 12 - Fonte: Valcarcel, 2015.

Figura 13 - Fonte: Valcarcel, 2015.

BeeNoculus

O BeeNoculus é um dispositivo de realidade virtual (VR) desenvolvido pela Beenoculus, uma empresa brasileira focada em tecnologias de realidade estendida (XR), que engloba realidade virtual, aumentada e mista. Lançado inicialmente em 2015, o BeeNoculus é um óculos de VR de baixo custo que utiliza um smartphone como unidade de processamento e exibição, semelhante ao Google Cardboard, mas com características próprias voltadas para o mercado brasileiro e aplicações em educação, entretenimento e treinamento corporativo (GOMES, 2021).

Características:

 O dispositivo é composto por um suporte de plástico ou material leve onde o smartphone é encaixado, com lentes internas que criam um efeito estereoscópico para proporcionar imersão em ambientes virtuais. Surgiu na linha do Google CardBoard.

BeeNoculus

BeeNoculus versões atuais, anexos mostra o original de 2015 Figuras 14 e 15

Figura 14 - Fonte: BeeNoculus, 2025.

Figura 15 - Fonte: BeeNoculus, 2025.

[Samsung] Gear VR 360

O Samsung Gear VR é um dispositivo de realidade virtual (VR) lançado pela Samsung em parceria com a Oculus, anunciado pela primeira vez em setembro de 2014 na IFA e comercializado a partir de novembro de 2015. Trata-se de um óculos de VR baseado em smartphone, projetado para oferecer experiências imersivas de 360 graus utilizando a tela e o poder de processamento de dispositivos móveis Samsung Galaxy compatíveis (GUGENHEIMER, 2016).

- Estrutura: Um headset leve com alças ajustáveis, lentes biconvexas e sensores (giroscópio, acelerômetro) para rastreamento de movimento da cabeça;
- Funcionamento: O smartphone é encaixado na parte frontal do Gear VR, conectado via USB ou USB-C. A tela do celular é dividida em duas imagens estereoscópicas, e as lentes criam um campo de visão (FOV) de aproximadamente 96 a 110 graus;
- Interação: Inclui um touchpad lateral e botões físicos no headset. A partir de 2017, uma versão com controlador de movimento foi lançada, aumentando a interatividade em jogos e aplicativos.

[Samsung] Gear VR 360

[Samsung] Gear VR 360 Figura 16

Figura 16 - Fonte: Samsung, 2025.

[Samsung] Odyssey Plus

O Samsung HMD Odyssey+ é um headset de realidade virtual (VR) e realidade mista (Mixed Reality - MR) lançado em outubro de 2018 pela Samsung, como parte da plataforma Windows Mixed Reality (WMR) da Microsoft. Trata-se de uma evolução do Samsung HMD Odyssey original (2017), projetado para oferecer uma experiência imersiva de VR com alta qualidade visual, áudio espacial e configuração simplificada, sem a necessidade de sensores externos. O Odyssey+ é um dispositivo de saída que utiliza um PC como unidade de processamento, sendo voltado para jogos, simulações, educação e aplicações profissionais (ANGELOV, 2020).

- Display: Duas telas AMOLED de 3,5 polegadas, com resolução de 1440x1600 por olho (3K combinado), taxa de atualização de 90 Hz e campo de visão (FOV) de 110 graus. Inclui tecnologia Anti-Screen Door Effect (Anti-SDE), que reduz a percepção de pixelização;
- Rastreamento: 6 graus de liberdade (6DoF) com rastreamento "inside-out" via duas câmeras frontais e sensores internos (giroscópio, acelerômetro, proximidade);
- Áudio: Fones de ouvido integrados com áudio espacial 360° da AKG e microfone embutido para interação com Cortana e chats;
- Controladores: Dois controladores de movimento WMR com gatilhos, touchpads, thumbsticks e bot= botões, conectados via Bluetooth.

[Samsung] Odyssey Plus

[Samsung] Odyssey Plus Figura 17

Figura 17 - Fonte: Samsung, 2025.

[Google] Daydream

O Google Daydream é uma plataforma de realidade virtual (VR) móvel desenvolvida pelo Google, lançada em 2016 como uma evolução do Google Cardboard. O principal dispositivo associado à plataforma é o Daydream View, um headset de VR que utiliza smartphones Android compatíveis (certificados como "Daydream-ready") para fornecer experiências imersivas. Anunciado na conferência Google I/O em maio de 2016, o Daydream View foi lançado em 10 de novembro de 2016, com foco em oferecer VR acessível, de alta qualidade e integrada ao sistema operacional Android Nougat (7.1 e posteriores). A plataforma foi descontinuada em outubro de 2019 devido à baixa adoção por consumidores e desenvolvedores (CRADDOCK, 2018).

- Estrutura: O Daydream View é um headset leve (220 g, 30% mais leve que o Gear VR) com lentes biconvexas e um compartimento frontal para encaixar o smartphone. Possui um sensor NFC para detectar automaticamente o telefone;
- Smartphones Compatíveis: Apenas dispositivos certificados pelo Google, como Google Pixel, Pixel 2, Samsung Galaxy S8, Moto Z, ZTE Axon 7, entre outros, podiam rodar o Daydream, exigindo telas de baixa persistência, processadores para 60 FPS e sensores de rastreamento precisos.

[Google] Daydream

Google Daydream Figura 18

Figura 18 - Fonte: Financial Times, 2025.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Google Cardboard	2014	 Introduziu VR acessível usando smartphones e um visor de papelão; Suporte básico para vídeos 360° via YouTube; Sem sensores avançados ou controles dedicados; dependia do acelerômetro e giroscópio do smartphone.
Samsung Gear VR 360	2015	 Evolução do conceito de VR móvel, usando smartphones Samsung Galaxy (como Note 5, S6, S7); Incluía sensores próprios (acelerômetro, giroscópio) para rastreamento de baixa latência, superando o Cardboard; Design em plástico com lentes de melhor qualidade, oferecendo maior conforto e campo de visão.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Beenoculus	2015	 Lançado na CES 2015, foi um dos primeiros óculos VR de baixo custo para smartphones, com preço de R\$99 no Brasil; Similar ao Cardboard, usava smartphones com giroscópio para experiências imersivas, com lentes para visão estereoscópica 3D; Design compacto, leve, sem fios, compatível com vários tamanhos de smartphone; Foco inicial em democratizar VR no Brasil, com aplicações em games, educação e entretenimento.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Google Daydream View	2016	 Sucessor do Cardboard, integrado ao Android Nougat com a plataforma Daydream; Design em tecido leve e respirável, mais confortável que o Cardboard e menos "claustrofóbico"; Incluía um controle remoto com sensores para interação em ambientes virtuais, permitindo manipulação de objetos; Exigia smartphones compatíveis com Daydream (ex.: Google Pixel), com especificações robustas.

Dispositivo	Ano de Lançamento	Evolução Tecnológica
Samsung Odyssey Plus	2018	 Headset VR de alto desempenho para PCs, parte da plataforma Windows Mixed Reality; Não dependia de smartphones, utilizando displays AMOLED duplos (1440x1600 por olho) para maior resolução e qualidade visual; Rastreamento inside-out com câmeras embutidas, eliminando a necessidade de sensores externos; Incluía controles de movimento para interações precisas em jogos e aplicativos; Áudio integrado com tecnologia AKG, oferecendo som espacial imersivo.

Novos abordagens incluem:

 Google encerrou os projetos Daydream e CardBoard, focando agora em vez de RV em RA, com uso do projeto Lens: https://lens.google/ - Lançamento 2017.
 O foco passou a ser o software usando o hardware dos dispositivos que usam a plataforma.

Obrigado

UDESC – Universidade do Estado de Santa Catarina

alexandre.melo@edu.udesc.br

www.udesc.br

Rua Madre Benvenuta, 2007, Itacorubi Florianópolis - SC CEP 88035-901

Referências

- ANGELOV, Vladislav et al. Modern virtual reality headsets. In: **2020 International congress on human-computer interaction, optimization and robotic applications (HORA)**. IEEE, 2020. p. 1-5.
- ASHAKEN your senses. Disponível em: https://www.woojer.com/. Acesso em: 26 abr. 2025.
- BLAS, Héctor Sánchez San et al. A multi-agent system for data fusion techniques applied to the internet of things enabling physical rehabilitation monitoring. **Applied Sciences**, v. 11, n. 1, p. 331, 2020.
- BEENOCULUS. Magicverso. Disponível em: https://beenoculus.com.br/. Acesso em: 26 abr. 2025.
- CASERMAN, Polona; KRUG, Clemens; GÖBEL, Stefan. Recognizing full-body exercise execution errors using the teslasuit. **Sensors**, v. 21, n. 24, p. 8389, 2021.
- CRADDOCK, Ida Mae. Immersive virtual reality, Google Expeditions, and English language learning. Library Technology Reports, v. 54, n. 4, p. 7-9, 2018.
- DAY, Judd S.; MURDOCH, Duncan J.; DUMAS, Genevieve A. Calibration of position and angular data from a magnetic tracking device. **Journal of Biomechanics**, v. 33, n. 8, p. 1039-1045, 2000.
- EMSPAK, Jesse. **New Virtual Reality Suit Lets You Reach Out & Touch 'Environment'**. 2022. Disponível em: https://www.livescience.com/53870-nullspace-virtual-reality-suit.html. Acesso em: 26 abr. 2025.
- ENFLUX. **MOTION CAPTURE CLOTHING for Creators and Developers**. Disponível em: https://www.getenflux.com/. Acesso em: 26 abr. 2025.
- FINANCIAL TIMES. Disponível em: https://www.ft.com/content/58b2fd92-a7e3-11e6-8898-79a99e2a4de6. Acesso em: 26 abr. 2025.

Referências

- GARDNER, Daniel Lowell. **Thresholds of Interpretation: Interfaces on the periphery of gameplay.** University of California, Irvine, 2021.
- GELALIS, Ioannis D. et al. Three-dimensional analysis of cervical spine motion: reliability of a computer assisted magnetic tracking device compared to inclinometer. **European Spine Journal**, v. 18, p. 276-281, 2009.
- GOMES, Danyane Simão et al. Experiência subjetiva quanto ao uso da realidade virtual em indivíduos com lesão da medula espinal traumática. **Aletheia**, v. 54, n. 2, 2021.
- GOOGLE. Disponível em: https://lens.google/intl/pt-BR/. Acesso em: 26 abr. 2025.
- GUGENHEIMER, Jan et al. SwiVRChair: A Motorized Swivel Chair to Nudge Users' Orientation for 360 Degree Storytelling in Virtual Reality. 2016.
- HIGH Voltage Electrical Safety Training. Disponível em: https://teslasuit.io/use-cases/high-voltage-electrical-safety-training/. Acesso em: 26 abr. 2025.
- POPSCI. Disponível em: https://www.popsci.com/technology/aura-interactor/. Acesso em: 26 abr. 2025.
- SAMSUNG. Disponível em: https://www.samsung.com/africa_pt/mobile-accessories/gear-vr-r323-sm-r323nbkaxfa. Acesso em: 26 abr. 2025.
- SAMSUNG. Disponível em: https://news.samsung.com/br/samsung-apresenta-o-novo-hmd-odyssey-no-brasil. Acesso em: 26 abr. 2025.
- SIROKAI, B. et al. Best practices in electromagnetic tracking system assessment. **Proc Jt Work New Technol Comput Assist Surg (SCATh), Madrid ID**, v. 12, p. 1-4, 2012.

Referências

- UNLOCK a new Dimension of Experience. Disponível em: https://www.bhaptics.com/. Acesso em: 26 abr. 2025.
- VALCARCEL, Josh. **Google Cardboard Is VR's Gateway Drug**: the great democratizer of virtual reality is here. and it's made of cardboard.. The great democratizer of virtual reality is here. And it's made of cardboard.. 2015. Disponível em: https://www.wired.com/2015/05/try-google-cardboard/. Acesso em: 26 abr. 2025.
- WANG, Zilin; CHAN, Moon-Tong. A systematic review of google cardboard used in education. **Computers & Education: X Reality**, v. 4, p. 100046, 2024.

Anexos

Quadro 3 – Vídeos Dispositivos – Mostrados nessa apresentação – Fonte: Próprio Autor, 2025

Dispositivo	Vídeo
Flock of Birds (tracker)	https://www.youtube.com/wa tch?v=6KSaBDvkHBQ
Null Space VR Mark 2 suit	https://www.youtube.com/wa tch?v=Yc0p2LimAjE
Reality Vest N64, Rapture Vest	https://www.youtube.com/wa tch?v=r9gx_wAaq5A
Tesla Suit	https://www.youtube.com/wa tch?v=KC83goKZXK8
Enflux (Full Body Suit)	https://www.youtube.com/wa tch?v=HcvKxg6OwMk
Rastreador (Tracker) [Polhemus/Ascension]	https://www.youtube.com/wa tch?v=6m26LhrjNgM

Anexos

Quadro 3 – Vídeos Dispositivos – Mostrados nessa apresentação – Fonte: Próprio Autor, 2025

Dispositivo	Vídeo
Google Cardboard	https://www.youtube.com/wa tch?v=y1YHKSjp5bk
Beenoculus	https://www.youtube.com/wa tch?v=01oyOfJmLM4
[Samsung] Gear VR 360	https://www.youtube.com/wa tch?v=GJleNSCdvWI
[Samsung] Odyssey Plus	https://www.youtube.com/wa tch?v=YLCv8xACTGQ
[Google] Daydream	https://www.youtube.com/wa tch?v=j7jqmdlxdvY

