Theoretische Physik (Hebecker)

Robin Heinemann

December 9, 2016

Contents

1	Sem 1.1		oerblick	3	
2	Kinematik des Massenpunktes				
	2.1		atik der Massenpunktes in einer Dimension	4	
		2.1.1	Graphik	4	
		2.1.2	Üben dieser Logik an unserem Beispiel	4	
	2.2	Grund	begriffe der Differenzial und Integralrechung	4	
		2.2.1	Funktion	4	
		2.2.2	Differentiation oder Ableitung	5	
		2.2.3	Integrieren	6	
	2.3	Kinem	atik in mehreren Dimensionen	7	
		2.3.1	Zweidimensionale Bewegung	7	
		2.3.2	Dreidimensionale Bewegung	7	
	2.4	Vektor	räume	8	
		2.4.1	Einfachstes Beispiel	8	
		2.4.2	Unser Haupt-Beispiel	8	
	2.5	Kinem	atik in $d > 1$	9	
		2.5.1	Beispiel für 3-dimensionale Trajektorie	9	
	2.6	Skalar	produkt	9	
		2.6.1	Symmetrische Bilinearform	10	
		2.6.2	Norm (Länge) eines Vektors	10	
	2.7	Absta	nd zwischen Raumpunkten	10	
		2.7.1	Spezialfall	10	
		2.7.2	Infinitesimaler Abstand	11	
	2.8	Bogen	länge und begleitendes Dreibein	11	
		2.8.1	Beispiel in $d=2$	12	
	2.9	Vektor		12	
	2.10	Binorr	nalenvektor	13	
		2 10 1	Zur Information	13	

3	Gru	ndbegriffe der Newtonsche Mechanik 13				
	3.1	Newtonsche Axiome				
	3.2	Trajektorie				
	3.3	Differentialgleichungen				
		3.3.1 1. Ordnung				
		3.3.2 Anfangswertproblem				
		3.3.3 partielle Ableitung				
		3.3.4 Existenz und Eindeutigkeit				
		3.3.5 Beispiele				
		3.3.6 Separation der Variablen				
		3.3.7 System von Dgl				
		3.3.8 Systeme von n gewöhnlicher Dgl. p-ter Ordnung 16				
		3.3.9 Erste physikalische Beispiele				
	3.4	Taylorentwicklung				
		3.4.1 Interessantes "Gegenbeispiel"				
	3.5	Harmonischer Oszillator				
		3.5.1 Eindimensionales System				
	3.6	Lineare Differentialgleichungen				
		3.6.1 Zusammenfassung / Verallgemeinerung auf $n > 1 \dots 22$				
		3.6.2 Finden der partikulären Lösung				
4	Erhaltungssätze in Newtonscher Mechanik 2					
	4.1	Impulserhaltung				
	4.2	Drehimpulserhaltung				
	4.3	Konservative Kräfte und Energieerhaltung				
		4.3.1 Energieerhaltung				
		4.3.2 Kriterium für Konservativität				
	4.4	Kurvenintegrale				
	4.5	Satz von Stokes				
	4.6	Energieerhaltung für Systeme von Massenpunkten				
	4.7	Eindimensionale Bewegung				
5	Har	monischer Oszillator in komplexen Zahlen 31				
	5.1	Komplexe Zahlen				
		5.1.1 Ziel				
		5.1.2 Naive Definition				
		5.1.3 präzisere Definition				
		5.1.4 Zusammenfassung:				
		5.1.5 Fundamentalsatz der Algebra				
		5.1.6 Quaternionen				
	5.2	Anwendung auf harmonischen Oszillator				
	5.3	harmonischer Oszillator mit periodisch treibender Kraft				

6 S	ymmetrie der Raum zeit	36						
6	.1 Matrix, Determinante, Inverse Matrix	36						
	.2 Der Euklidische Raum	39						
	.3 Symmetriegruppe (M)	41						
	.4 Tensoren	43						
	.5 Galilei-Transformationen	45 46						
	.7 Dynamik	46						
	.8 Zusammenfassung:	47						
Ei	nleitung:							
•	Website: www.thphys.uni-heidelberg.de/hebecker/TP1/tp1.html							
•	• Bartelman Skripte							
1 S	Semesterüberblick							
1.	Newtonsche Mechanik							
2.	Lagrange / Hamilton Mechanik / Statistik / Kontinua							
3.	3. Elektrodynamik / Spezielle Relativitätstheorie							
4.	Quantenmechanik							
5.	Thermodynamik / Quantenstatistik							
6.	Allgemeine Relativitätstheorie / Kosmologie							
7.	Quantenfeldtheorie I (ggf. 5.)							
8.	Quantenfeldtheorie II (ggf. 6. \iff Stringtheorie / Teilchenphysik / Supersymetrie)	ym-						
9.	Masterarbeit							
10.	Masterarbeit							
1.1	Mathe							
wich	ntig:							
•	Gruppentheorie							

• Differientialgeometrie

2 Kinematik des Massenpunktes

Massenpunkt / Punktmasse - (selbstevidente) Abstraktion Kinematik: Beschreibung der Bewegung (Ursachen der Bewegung \rightarrow Dynamik)

2.1 Kinematik der Massenpunktes in einer Dimension

2.1.1 Graphik

- Ort: *x*
- zu Zeit t: x(t)
- Geschwindigkeit: $v(t) \equiv \frac{dx(t)}{dt} \equiv \dot{x}(t)$
- Beschleunigung: $a(t) \equiv \dot{v}(t) = \ddot{x}(t)$
- Beispiel: $x(t) \equiv x_0 + v_0 t + \frac{a_0}{2} t^2$, $v(t) = v_0 + a_0 t$, $a(t) = a_0$
- Umgekehrt: Integration, z.B. von Geschwindigkeit zu Trajektorie: Anfangsposition muss gegeben sein, z.B. $x(t_0) \equiv x_0$

$$x(t) = x_0 + \int_{t_0}^t v(t') dt'$$

Man prüft leicht $\dot{x}(t) = v(t)$

– Es gibt keine andere Funktion $\tilde{x}(t)$ mit $\dot{\tilde{x}}(t) = v(t)$ und $\tilde{x}(t_0) = x_0$

Analog: Von Beschleunigung zur Geschwindigkeit, und dann weiter zur Trajektorie

2.1.2 Üben dieser Logik an unserem Beispiel

Gegeben: $a(t) = a_0, t_0 = 0, v_0, x_0$

$$\implies v(t) = v_0 + \int_0^t a_0 dt' = v_0 + a_0 t$$
$$x(t) = x_0 + \int_0^t (v_0 + a_0 t') dt' = x_0 + v_0 t + \frac{a_0}{2} t^2$$

2.2 Grundbegriffe der Differenzial und Integralrechung

2.2.1 Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$$

2.2.2 Differentiation oder Ableitung

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

df bezeichnet den in Δx linearen Anteil des Zuwachs $\Delta f \equiv f(x + \Delta x) - f(x)$.

- Aus $\Delta f = f'(x)\Delta(x) + O(\Delta x^2)$ folgt $df = f'(x)\Delta x$
- Anwendung auf die Identitätsabbildung: $x \mapsto x \implies \mathrm{d} x = \Delta x$

$$\implies df = f'(x)dx \text{ oder } \frac{df(x)}{dx} = f'(x)$$

Dies ist eigentlich nur eine Schreibweise für f'(x), <u>aber</u> nützlich, weil bei kleinen Δx d $f \simeq \Delta f$ (Schreibweise beinhaltet intuitiv die Grenzwert-Definition)

- f'(x) wieder Funktion \implies analog: $f''(x), f'''(x), \dots, f^{(n)}(x)$
- Praxis

$$(f\cdot g)'=f'g+g'f \text{ (Produkt/Leibnizregel)}$$

$$(f\circ g)'(x)=f'(g(x))g'(x) \text{ (Kettenregel)}$$

$$(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))} \text{ (Ableitung der Inversen Funktion)}$$

- Begründung (nur zum letzten Punkt)

$$(f^{-1})'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}(f(y))} = \frac{\mathrm{d}y}{f'(y)\mathrm{d}y} = \frac{1}{f'(f^{-1}(x))}$$

- Schöne Beispiele

$$(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$$

 $\arctan'(x) \equiv (\tan^{-1}(x)) = \frac{1}{\tan^{-1}(y)}$ wobei $y = \tan^{-1}(x)$

Besser:

$$\tan^{-1}(y) = (\sin y \frac{1}{\cos y})' = \cos y \frac{1}{\cos y} + \sin y (\frac{1}{\cos y})' = 1 + \sin y (-\frac{1}{\cos^2 y})(-\sin y) = 1 + \cos y (-\cos y)(-\cos y) = 1 + \cos y (-\cos y)(-\cos y)(-\cos y)(-\cos y) = 1 + \cos y (-\cos y)(-\cos y)(-\cos$$

$$1 + \tan^2 y = 1 + x^2 \implies \arctan'(x) = \frac{1}{1 + x^2}$$

Verknüpfung

$$f \circ g : x \mapsto f(g(x))$$

Inverse

$$f^{-1}: x = f(y) \mapsto y$$

- Grenzwerte:
 - nützliche Regel: l'Hospital (" $\frac{0}{0}$ ") Falls $\lim_{x\to x_0} f, g = 0$ und $\lim_{x\to x_0} \frac{f'}{g'}$ existiert, so gilt $\lim_{x\to x_0} \frac{f}{g} = \lim_{x\to x_0} \frac{f'}{g'}$
 - weitere nützliche Regel

$$\lim \frac{\text{Beschränkt}}{\text{Unbeschränkt und monoton wachsend}} = 0$$

* Beispiel:

$$\lim_{y \to 0} \frac{\sin \frac{1}{y}}{\frac{1}{y}}$$

- Kürzen unter lim
 - * Beispiel:

$$\lim_{x \to \infty} \frac{x}{2x + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{\sqrt{x}}} = \frac{1}{2}$$

2.2.3 Integrieren

Fundamentalsatz der Analysis

$$\int_{a}^{y} f(x)dx = F(y)\&F'(y) = f(y)$$
$$\int_{a}^{y} f(x)dx = F(x) + C$$
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

 $(\rightarrow \text{ saubere Definition "uber Riemannsches Integral})$

Praxis

Partielle Integration

$$\int_{-\infty}^{y} f(x)g'(x)dx = f(y)g(y) - \int_{-\infty}^{y} f'(x)g(x)dx$$

Substitution Unter Annahme einer invertierbaren Funktion $x: y \mapsto x(y)$

$$\int f(x)dx = \int f(x)\frac{dx}{dy}dy = \int f(x(y))x'(y)dy$$

Andere Formulierung:

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution y = g(x)

Klassiker

$$\int \ln x dx = \int \ln x 1 dx = \ln x - \int \frac{1}{x} x dx = x(\ln x - 1)$$
$$\int x e^{x^2} dx = \int e^{x^2} \frac{1}{2} d(x^2) = \frac{1}{2} \int e^y dy = \frac{1}{2} e^y = \frac{1}{2} e^{x^2}$$

2.3 Kinematik in mehreren Dimensionen

2.3.1 Zweidimensionale Bewegung

Zweidimensional \rightarrow Bewegung in der Ebene. Trajektorie: x(t), y(t)

Beispiel

$$x(t) = v_0 t \sin \omega t$$

$$y(t) = v_0 t \cos \omega t$$

TODO Skizze der Trajektorie (Bahnkurve)

Raumkurve Menge aller Punkte $\{x, y\}$, die das Teilchen durchläuft

TODO Skizze Nichttriviale Darstellung nur im Raum (Raumkurve)

2.3.2 Dreidimensionale Bewegung

Die Darstellung der Trajektorie ist erschwert, denn man bräuchte 4 Dimensionen: 3 für Raum und 1 für Zeit Formal kein Problem: Trajektorie ist

•

•

$$x^{1}(t), x^{2}(t), x^{3}(t)$$

•

$$\{x^i(t)\}, i = 1, 2, 3$$

Dementsprechend:

$$v^{i}(t) = \dot{x}^{i}(t); a^{i}(t) = \dot{v}^{i}(t); i = 1, 2, 3$$

2.4 Vektorräume

Eine Menge V heißt Vektorraum, wenn auf ihr zwei Abbildungen

- die Addition (+)
- die Multiplikation mit reellen Zahlen (*)

definiert sind.

$$x:V\times V\to V$$

 $Multiplikation: \mathbb{R} \times V \to V$

 $V \times V$ - Produktmenge \equiv Menge aller Paare so dass gilt:

$$v+(w+u)=(v+w)+u \quad u,v,w\in V \qquad \text{Assoziativit\"at}$$

$$v+w=w+v \qquad \text{Kommutativit\"at}$$

$$\exists 0\in V: v+0=v \ \forall v\in V \qquad \text{Null}$$

$$\alpha(v+w)=\alpha v+\alpha w \qquad \text{Distributivit\"at}$$

$$(\alpha+\beta)v=\alpha v+\beta v \quad \alpha,\beta\in\mathbb{R} \qquad \text{Distributivit\"at}$$

$$\alpha(\beta v)=(\alpha\beta)v \qquad \text{Assoziativit\"at der Multiplikation}$$

$$1v=v \qquad \text{Multiplikation mit Eins}$$

2.4.1 Einfachstes Beispiel

 $V\equiv \mathbb{R}$ (mit der gewöhnlichen Addition und Multiplikation und mit $0\in \mathbb{R}$ als Vektorraum Null)

2.4.2 Unser Haupt-Beispiel

Zahlentupel aus n-Zahlen:

$$V \equiv \mathbb{R}^n = \{(x^1, x^2, \dots, x^n), x^i \in \mathbb{R}\}\$$

Notation:

$$\vec{x} = \begin{pmatrix} x^1 & x^2 & \dots & x^n \end{pmatrix}, \vec{y} = \begin{pmatrix} y^1 & \dots & y^n \end{pmatrix}$$

Man definiert:

$$\vec{x} + \vec{y} \equiv (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n)$$
$$\vec{0} \equiv (0, \dots, 0)$$
$$\alpha \vec{x} \equiv (\alpha x^1, \dots, \alpha x^n)$$

TODO (Maybe) Skizze 3D Vektor \rightarrow übliche Darstellung durch "Pfeile"

2.5 Kinematik in d > 1

Trajektorie ist Abbildung: $\mathbb{R} \to \mathbb{R}^3, t \to \vec{x}(t))(x^1(t), x^1(t), x^3(t))$

$$\vec{v} = \dot{\vec{x}}(t), \vec{a(t)} = \dot{\vec{v}}(t) = \ddot{\vec{x}}(t)$$

Setzt allgemeine Definition der Ableitung voraus:

$$\frac{\mathrm{d}\vec{y}(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\vec{y}(x + \Delta x) - \vec{y}(x)}{\Delta x} \implies \vec{y}'(x) = (y^{1'}(x), \dots, y^{n'}(x))$$

2.5.1 Beispiel für 3-dimensionale Trajektorie

Schraubenbahn:

$$\vec{x}t = (R\cos\omega t, R\sin\omega t, v_0 t)$$
$$\vec{v} = (-R\omega\sin\omega t, R\omega\cos\omega t, v_0)$$
$$\vec{a} = (-R\omega^2\cos\omega t, -R\omega^2\sin\omega t, 0)$$

TODO Skizze (Raumkurve) Kommentar:

 $\vec{x}, \vec{v}, \vec{a}$ leben in verschiedenen Vektorräumen! allein schon wegen $[x] = m, [v] = m s^{-1}$ Wir können wie in d = 1 von \vec{a} zu \vec{v} zu \vec{x} gelangen!

$$\vec{v}(t) = \vec{v_0} + \int_{t_0}^t dt' \vec{a}(t') = (v_0^1 + \int_{t_0}^t dt' a^1(t'), v_0^2 + \int_{t_0}^t dt' a^2(t'), v_0^3 + \int_{t_0}^t dt' a^2(t'))$$

Üben: Schraubenbahn; $t_0 = 0$, $\vec{x_0} = (R, 0, 0)$, $v_0 = (0, R\omega, v_0)$ Es folgt:

$$\vec{v}(t)(0, R\omega, v_0) + \int_0^t dt'(-R\omega^2)(\cos \omega t', \sin \omega t', 0)$$

$$= (0, R\omega, v_0) + (-R\omega^2)(\frac{1}{\omega}\sin \omega t', -\frac{1}{\omega}\cos \omega t', 0) \mid_0^t$$

$$= (0, R\omega, v_0) - R\omega(\sin \omega t, -\cos \omega t, 0) - (0, -1, 0)$$

$$= (-R\omega\sin \omega t, R\omega + R\omega\cos \omega t - R\omega, v_0)$$

$$= (-R\omega\sin \omega t, R\omega\cos \omega t, v_0)$$

Bemerkung Man kann Integrale über Vektoren auch durch Riemannsche Summen definieren:

$$\int_{t_0}^t \vec{v}(t')dt' = \lim_{n \to \infty} (v(t_0)\Delta t + \vec{v}(t_0 + \Delta t)\Delta t + \dots + \vec{v}(t - \Delta t)\Delta t)$$

mit $\Delta t = \frac{t-t_0}{N}$

2.6 Skalarprodukt

Führt von Vektoren wieder zu nicht-vektoriellen (Skalaren) Größen.

2.6.1 Symmetrische Bilinearform

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ "linear" Abbildung von $V \times V \to \mathbb{R}, \ (v, w) \mapsto v \cdot w$ mit den Eigenschaften

- $v \cdot w = w \cdot v$
- $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$

Sie heißt positiv-semidefinit, falls $v \cdot v \ge 0$,

Sie heißt positiv-definit, falls $v \cdot v = 0 \implies v = 0$ Hier : Skalarprodukt \equiv positiv definite symmetrische Bilinearform

2.6.2 Norm (Länge) eines Vektors

$$|v| = \sqrt{v \cdot v} = \sqrt{v^2}$$

 \mathbb{R}^n : Wir definieren

$$\vec{x} \cdot \vec{y} = x^1 y^1 + \ldots + x^n y^n \equiv \sum_{i=1}^n x^i y^i \equiv \underbrace{x^i y^i}_{\text{Einsteinsche Summenkonvention}}$$

$$|\vec{x}| = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$$

Wichtig: oben euklidisches Skalarprodukt! Anderes Skalarprodukt auf \mathbb{R}^2 : $\vec{x} \cdot \vec{y} = 7x^1y^2 + x^2y^2$ anderes Beispiel:

$$\vec{x} \cdot \vec{y} \equiv x^1 y^1 - x^2 y^2$$

symmetrische Bilinearform, nicht positiv, semidefinit! Frage:

Beispiel für Bilinearform die positiv-semidefinit ist, aber nicht positiv definit

$$\vec{x}\vec{y} = x^1y^1$$

2.7 Abstand zwischen Raumpunkten

Der anschauliche Abstand zwischen Raumpunkten \vec{x}, \vec{y} :

$$|\vec{x} - \vec{y}| = \sqrt{(\vec{x} - \vec{y})(\vec{x} - \vec{y})} = \sqrt{(\vec{x} - \vec{y})^2} = \sqrt{\sum_{i=1}^{3} (x^i - y^i)^2} = \sqrt{(x^i - y^i)(x^i - y^i)}$$
$$= \sqrt{\vec{x}^2 + \vec{y}^2 - 2\vec{x}\vec{y}} = \sqrt{|\vec{x}|^2 + |\vec{y}|^2 - 2|\vec{x}||\vec{y}|} \cos \theta$$

Haben benutzt: $\vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$

2.7.1 Spezialfall

$$\vec{x} = (x^1, 0, 0), \vec{y} = (y^1, y^2, 0)$$

 $\vec{x} \cdot \vec{y} = x^1 \cdot y^1; \cos \theta = \frac{y^1}{|\vec{y}|}; |\vec{x}| = x^1$

TODO Skizze

$$\implies \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta$$

Dass dies für beliebige Vektoren gilt, wird später klar werden.

2.7.2 Infinitesimaler Abstand

Speziell wird der infinitesimale Abstand wichtig sein:

$$d\vec{x} = (dx^1, dx^2, dx^3)$$

$$d\vec{x} = (\frac{dx^1}{dt}dt, \frac{dx^2}{dt}dt, \frac{dx^3}{dt}dt) = (v^1dt, v^2dt, v^3dt) = (v^1, v^2, v^3)dt = \vec{v}dt, \text{ oder: } \vec{v} = \frac{d\vec{x}}{dt}$$

$$\begin{split} &(\mathrm{d}\vec{x} \text{ analog zu d} f \text{ vorher});\\ &\mathrm{d}\vec{x}^2 = |\mathrm{d}\vec{x}|^2 = |\vec{v}|^2 \mathrm{d}t^2 \end{split}$$

$$|\mathrm{d}x| = |\vec{v}|\mathrm{d}t.$$

2.8 Bogenlänge und begleitendes Dreibein

 $|d\vec{x}|$ entlang $\vec{x}(t)$ aufaddieren \rightarrow Bogenlänge.

$$s(t) = \int_{t_0}^t |d\vec{x}| = \int_{t_0}^t dt' \left| \frac{d\vec{x}}{dt'} \right| = \int_{t_0}^t dt' \sqrt{\dot{\vec{x}}(t')^2} = \int_{t_0}^t \sqrt{\vec{v}(t')^2}$$

Infinitesimale Version:

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| = |\vec{v}|$$

Man kann (im Prinzip) s(t) = s nach t auflösen.

$$\implies t = t(s) \implies \underbrace{\vec{x}(s)}_{\text{Parametrisierung der Trajektorie durch die Weglänge } s} \equiv \vec{x}(t(s))$$

Nützlich, zum Beispiel für die Definition des Tangentenvektors:

$$\vec{T}(s) = \frac{\mathrm{d}\vec{x}(s)}{\mathrm{d}s}$$

Es gilt

$$|\vec{T} \parallel \vec{v}; |\vec{T}| = \left| \frac{\vec{v} dt}{|\vec{v}| dt} \right| = 1 \implies \vec{T} \cdot \vec{T} = 1$$

Ableiten nach s:

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}(1) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}(\vec{T} \cdot \vec{T}) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} \cdot \vec{T} + \vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = 2\vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

Nutze

$$\vec{T}\cdot\vec{T}=T^iT^i$$

⇒ Ableitung des Tangentenvektors ist orthogonal zum Tangentenvektor. Krümmungsradius der Bahn:

$$\rho \equiv \frac{1}{\left|\frac{\mathbf{d}\vec{T}}{\mathbf{d}s}\right|}$$

Normalenvektor:

$$\vec{N} = \frac{\frac{\mathrm{d}\vec{T}}{\mathrm{d}s}}{\left|\frac{\mathrm{d}\vec{T}}{\mathrm{d}s}\right|} = \rho \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

2.8.1 Beispiel in d=2

$$\vec{x}(t) = R(\cos \omega t, \sin \omega t)$$

$$\vec{v}(t) = R\omega(-\sin(\omega t), \cos \omega t)$$

$$|\vec{v}| = \sqrt{(R\omega)^2(\sin^2 \omega t + \cos^2 \omega t)} = R\omega$$

$$s(t) = \int_{t_0=0}^t dt' |\vec{v}| = R\omega t; \ t(x) == \frac{s}{R\omega}$$

$$\implies \vec{x}(s) = R(\cos \frac{s}{R}, \sin \frac{s}{R}), \vec{T} = \frac{d\vec{x}}{ds} = (-\sin \frac{s}{R}, \cos \frac{s}{R})$$

$$\frac{d\vec{T}}{ds} = -\frac{1}{R}(\cos \frac{s}{R}, \sin \frac{s}{R}) \implies \rho = R; \ \vec{N} = -(\cos \frac{s}{R}, \sin \frac{s}{R})$$

TODO Skizze

2.9 Vektorprodukt

$$V \times V \mapsto V; \ (\vec{a}, \vec{b}) \mapsto \vec{c} = \vec{a} \times \vec{b}$$

mit

$$c^{i} = (\vec{a} \times \vec{b})^{i} \equiv \sum_{i,k=1}^{3} \varepsilon^{ijk} a^{j} b^{k} = \varepsilon^{ijk} a^{j} b^{k}$$

dabei:

- $\varepsilon^{123} = \varepsilon^{231} = \varepsilon^{321} = 1$
- $\varepsilon^{213} = \varepsilon^{132} = \varepsilon^{321} = -1$
- sonst 0 ($\varepsilon^{ijk} = 0$, falls zwei Indizes gleich)

Alternativ:

•

$$|\vec{c}| = |\vec{a}| |\vec{b}| |\sin \theta|$$

- Richtung von \vec{c} definiert durch $\vec{c} \perp \vec{a} \wedge \vec{c} \perp \vec{c}$
- Vorzeichen von \vec{c} ist so, dass $\vec{a}, \vec{b}, \vec{c}$ ein "Rechtssystem" bilden

TODO Skizze

2.10 Binormalenvektor

$$= \vec{T} \times \vec{N}$$

 \vec{T},\vec{N},\vec{B} heißen "begleitendes Dreibein" und bilden ein Rechtssystem. alle haben Länge 1 \vec{T},\vec{N} spannen die "Schmiegebene" auf

2.10.1 Zur Information

$$\frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = \frac{1}{\rho}\vec{N}; \ \frac{\mathrm{d}\vec{B}}{\mathrm{d}s} = -\frac{1}{\sigma}\vec{B}; \ \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{\sigma}\vec{B} - \frac{1}{\rho}\vec{T}$$

 σ definiert die Torsion.

3 Grundbegriffe der Newtonsche Mechanik

3.1 Newtonsche Axiome

Dynamik: Ursachen der Bewegungsänderung \rightarrow Kräfte: $\vec{F} = (F^1, F^2, F^3)$

- 1. Es existierten Inertialsysteme (Koordinatensysteme in denen eine Punktmasse an der keine Kraft wirkt) nicht oder sich geradlinig gleichförmig bewegt: $\ddot{\vec{x}} = 0$
- 2. In solchen Systemen gilt: $\vec{F} = m\vec{x}$
- 3. Für Kräfte zwischen zwei Massenpunkten gilt:

$$\vec{F}_1 2 = -\vec{F}_2 1$$

4. definiert die **träge** Masse

Die entscheidende physikalische Aussage von 2. ist das Auftreten von $\ddot{\vec{x}}$ (nicht etwa $\dot{\vec{x}}$ oder $\ddot{\vec{x}}$) Alternative Diskussionen der obigen Axiomatik:

• zum Beispiel Kapitel 1.2 von Jose/Saletan (mit 2 Definition der Kraft)

3.2 Trajektorie

Vorhersagen erfordern: $\vec{F} \to \text{Trajektorie}$. Genauer: Sei $\vec{F}(\vec{x},t)$ gegeben. Berechne $\vec{x}(t)$!

3.3 Differentialgleichungen

hier nur "gewöhnliche DGL" (nur Ableitungen nach einer Variable) (im Gegensatz zu "partiellen" (Ableitung nach verschiedenen Variablen))

3.3.1 1. Ordnung

Die allgemeine Form einer gewöhnlichen Dgl. 1. Ordnung (⇒ nur 1. Ableitung):

$$y'(x) = f(x, y)$$

Lösung Funktion: $y:x\mapsto y(x)$ mit y'(x)=f(x,y(x)) (im Allgemeinen wird x aus einem gewissen Intervall kommen: $x\in I\equiv (a,b)\subseteq \mathbb{R}$)

3.3.2 Anfangswertproblem

Gegeben durch:

- 1. Dgl.: y' = f(x, y)
- 2. Anfangsbedingung $(x_0; y_0) \in \mathbb{R}^2$

Gesucht: Funktion y(x) mit (für $x \in I, x_0 \in I$:

- 1. y'(x) = f(x, y(x))
- 2. $y(x_0) = y_0$

3.3.3 partielle Ableitung

Wir betrachten ab sofort auch Funktionen mehrerer Variablen: $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto f(x, y)$ Partielle Ableitung:

$$\frac{\partial f(x,y)}{\partial y} \equiv \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

Rechenregeln: Wie bei normalen Ableitung, nur mit x fest.

Beispiel

$$f(x, y, z) \equiv x^{2} + yz$$
$$\frac{\partial f}{\partial x} = 2x$$
$$\frac{\partial f}{\partial y} = z$$
$$\frac{\partial f}{\partial z} = y$$

3.3.4 Existenz und Eindeutigkeit

... viele Theoreme über Existenz und Eindeutigkeit (Peano und Picand / Lindelöf) Insbesondere sind Existenz und Eindeutigkeit gesichert falls:

$$f(x,y) \wedge \frac{\partial f(x,y)}{\partial y}$$

stetig sind.

"Begründung" Zeichne an jedem Punkt (x,y) einen Vektor (1,f(x,y)) ein.

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = y'(x) = f(x, y(x)) = \frac{(x, y(x))}{1}$$

Weiteres Argument für die Existenz und Eindeutigkeit TODO(Skizze) Steigung der gesuchten Funktion bei x_0 ist bekannt als $f(x_0, y_0) \Longrightarrow$ kann Wert der Funktion bei $x + \Delta x$ abschätzen: $y_0 + \Delta x f(x_0, y_0)$ (für kleine Δx) Kenne Steigung bei $x_0 \Delta x$: $f(x_0 + \Delta x, y_0 + \Delta x f(x_0, y_0)) \Longrightarrow$ Schätze Wert der Funktion bei $x_0 + 2\Delta x$ ab. (\Longrightarrow perfekt für Numerik)

3.3.5 Beispiele

1.

$$y'(x) = f(x, y), f(x, y) = 3$$
$$y'(x) = 3 \implies y(x) = \int 3dx = 3x + c$$

Das ist schon die allgemeine Lösung der Dgl. Ein Anfangswertproblem, zum Beispiel mit $(x_0, y_0) = (-1, 1)$ lässt sich durch Bestimmen der Konstanten lösen:

$$y(x) = 3x + c \implies 1 = 3(-1) + c \implies c = 4 \implies y(x) = 3x + 4$$

3.3.6 Separation der Variablen

Separation der Variablen funktioniert wenn f(x,y) = g(x)h(y)

Beispiel

$$f(x,y) = \frac{x}{y} \implies y'(x) = \frac{x}{y(x)}$$

 $\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{x}{y} \implies y\mathrm{d}y = x\mathrm{d}x$

Variablen sind getrennt, kann einfach Integrieren

$$\int y \, \mathrm{d}y = \int x \, \mathrm{d}x \implies \frac{y^2}{2} = \frac{x^2}{2} + c \implies y = \pm \sqrt{x^2 + 2c}$$

Lösen allgemeines Anfangswertproblem allgemeines Anfangswertproblem mit Anfangsbedingung (x_0, y_0)

$$y_0^2 = x_0^2 + 2c \implies 2c = y_0^2 - x_0^2 \implies y = \begin{cases} \sqrt{y_0^2 + x^2 - x_0^2} & y_0 \ge 0\\ -\sqrt{y_0^2 + x^2 - x_0^2} & y_0 \le 0 \end{cases}$$

1. TODO Skizze

3.3.7 System von Dgl.

(Fast) alles oben gesagte funktioniert auch für Systeme gewöhnlicher Dgl. 1. Ordnung:

$$\frac{\mathrm{d}y^1(x)}{\mathrm{d}x} = f^1(x, y^1, \dots, y^n)$$

$$\frac{\mathrm{d}y^n(x)}{\mathrm{d}x} = f^n(x, y^n, \dots, y^n)$$

Vektorschreibweise:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \vec{f}(x, \vec{y})$$

Wir haben hier eine vektorwertige Funktion von n+1 Variablen benutzt:

$$\vec{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

Anfangsbedingungen: $(x_0, \vec{y_0}) \to n+1$ Parameter. Einer davon entspricht der Verschiebung entlang ein und derselben Lösung \Longrightarrow allgemeine Lösung hat (n+1)-1=n Parameter oder Integrationskonstanten.

3.3.8 Systeme von n gewöhnlicher Dgl. p-ter Ordnung

$$\vec{y}^{(p)}(x) = \vec{f}(x, \vec{y}, \vec{y}', \vec{y}'', \dots, \vec{y}^{(p-1)})$$

Anfangsbedingungen: $(x_0, \vec{y_0}, \vec{y_0}, \dots, \vec{y_0}^{(p-1)}), \vec{y_0} \stackrel{\wedge}{=} \vec{y'}(x)$ bei $x = x_0$

Tatsache Systeme von Dgl. können auf größere Systeme niedrigerer Ordnung zurückgeführt werden. Wir illustrieren dies am Beispiel mit p=2

Beispiel

$$\vec{y}''(x) = \vec{f}(x, \vec{y}, \vec{y}')$$

Dies ist äquivalent zu einem System von 2n Dgl 1. Ordnung

$$\begin{cases} \vec{z}'(x) &= \vec{f}(x, \vec{y}, \vec{z}) \\ \vec{y}'(x) &= \vec{z} \end{cases} (\equiv g(x, \vec{y}, \vec{z}))$$

Ursprüngliche Form folgt durch Einsetzen der 2. Gleichung in die Erste. Das verallgemeinert sich sofort auf die Ordnung p: Man gibt einfach der (p-1) niederen Ableitungen neue Namen und betrachtet sie als neue Variablen. Die zusätzlichen Dgl sind schlicht die Aussagen, dass es sich dabei immer noch um die ehemaligen Ableitungen handelt.

 \implies System von p Dgl 1. Ordnung; allgemeine Lösung hat p Parameter

3.3.9 Erste physikalische Beispiele

Punktmasse 3 Dgl 2. Ordnung:

$$\ddot{\vec{x}} = \frac{1}{m} \vec{F}(t, \vec{x}, \dot{\vec{x}})$$

 \implies 6 Dgl 1. Ordnung:

$$\begin{cases} \dot{\vec{v}} &= \frac{1}{m} \vec{F}(t, \vec{x}, \vec{v}) \\ \dot{\vec{x}} &= \vec{v} \end{cases}$$
 (1)

In vielen Fällen: (zeitunabhängiges) Kraftfeld $\vec{F}(\vec{x})$ ("Vektorfeld").

Darstellung in d=2 (Skizze Vektorfeld). wichtig: doppelte Markierung der Achsen

Einfachster Fall (d = 1) betrachte den Fall, dass F von v, aber nicht von t abhängt:

$$\begin{cases} \dot{v} &= \frac{F(x,v)}{m} \\ \dot{x} &= v \end{cases} \tag{2}$$

$$\binom{v}{x} = \binom{\frac{F(x,v)}{m}}{v}$$

1. **TODO** Darstellung im Phasenraum Analyse im Phasenraum passt perfekt zur früheren allgemeinen Analyse von Dgl 1. Ordnung Analog in d=3: Vektorfeld: $(\frac{\vec{F}}{m}, \vec{v})$, Phasenraum (\vec{x}, \vec{v}) oder (\vec{x}, \vec{p}) ist 6-dimensional

Harmonischer Oszillator (d = 1) F(x) = -kx

$$\begin{cases} \dot{v} &= -x \\ \dot{x} &= v \end{cases} \tag{3}$$

Phasenraum des Harmonischen Oszillator

Freier Fall mit Luftwiderstand Aufgabe: Bestimme die zeitliche Entwicklung von v wenn Körper im Schwerefeld losgelassen wird. $F_R = -cv^2$ Problem 1 - dim: x wachse nach unten, Start bei $t = 0, x = 0, \dot{x} = 0$

$$F = m\ddot{x} \implies mg - c\dot{x}^2 = m\ddot{x} \implies \begin{cases} mg - cv^2 &= m\dot{v} \\ v &= \dot{x} \end{cases}$$

Erste Gleichung enthält kein x und kann unabhängig gelöst werden:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{c}{m}v^2$$
$$\mathrm{d}t = \frac{\mathrm{d}v}{g - \frac{c}{m}v^2}$$

Konstanten und Dimensionen

$$[g] = \text{m s}^{-2}; [\frac{c}{m}] = \text{N kg}^{-1} \text{ m}^{-2} \text{ s}^{2}$$

Kann leicht Konstanten der Dimension Zeit und Geschwindigkeit bilden:

$$\hat{t} = \sqrt{\frac{m}{gc}}, \hat{v} = \sqrt{\frac{gm}{c}}$$

Benutze jetzt die dimensionslosen Variablen $t' = \frac{t}{\hat{t}}, v' = \frac{v}{\hat{v}}$

$$\implies dt' = \frac{dv'}{1 - v^{2\prime}} = \frac{dv'}{2} (\frac{1}{1 + v'} + \frac{1}{1 - v'})$$

$$2t' = \ln 1 + v' - \ln 1 - v' + c$$

v'=0 bei $t'=0 \implies c=0$ Auflösen nach v':

$$e^{2t'} = \frac{1+v'}{1-v'} \implies \dots$$

$$\implies v' = 1 - \frac{2}{e^{2t'} + 1} \implies v = \hat{v}(1 - \frac{2}{e^{\frac{2t}{\hat{t}}}} + 1)$$

 $\implies \hat{v}$ ist Grenzgeschwindigkeit, wird exponentiell angenommen, wenn $t \gg \hat{t}$

Zugabe: einfache physikalische Argumente für die Größe von c:

- 1. $[c] = \text{kg m}^{-1}$, Input: A (Querschnitt), $\rho_L \implies c \sim \rho_L A$
- 2. Energiebilanz an verdrängter Luft:

$$F_R \cdot l \sim E_{\rm kin, Luft} \sim \rho_L l A \frac{v^2}{2}$$

3.4 Taylorentwicklung

Ohne Beschränkung der Allgemeinheit $x_0 = 0$. Untersuche Verhalten beliebiger glatter Funktionen f(x) nahe x = 0

$$f(x) = f(0) + \int_0^x dx' f'(x')$$

$$= f(0) + f'(x')(x_- x) \Big|_0^x - \int_0^x dx' f''(x')(x' - x)$$

$$= f(0) + f'(0)x - f''(x') \frac{(x' - x)}{2} \Big|_0^x + \int_0^x dx' f'''(x') \frac{(x' - x)^2}{2}$$

$$= f(0) + f'(x)x + f''(0) \frac{x^2}{2} + \dots$$

Allgemein:

$$f(x) = f(0) + \sum_{n=1}^{m} f^{(n)}(0) \frac{x^n}{n!} + \overbrace{\int_0^x dx' f^{(m+1)}(x') \frac{(x'-x)^m}{m!}}^{\text{Restglied}}$$

Falls das Restglied für $n \to \infty$ verschwindet:

$$f(x) = f(0) + \sum_{n=1}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$$

Analog: Taylor-Reihe:

$$f(x) = f(x_0) + \sum_{n=1}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

- 1. Oft erste Terme = gute Näherung
- 2. Verallgemeinerung auf viele Variablen

3.4.1 Interessantes "Gegenbeispiel"

$$f(x) \equiv \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Überzeugen sie sich, dass alle Ableitungen existieren, auch bei Null! Sie Brauchen:

$$\lim_{x \to 0} \frac{1}{x^n} e^{-\frac{1}{x^2}} = 0$$

Die Ableitungen verschwinden sogar bei Null \implies Taylor-Reihe ist Null, keine gute Näherung

3.5 Harmonischer Oszillator

- eines der wichtigsten physikalischen Systeme
- beschreibt viele kompliziertere Systeme angenähert

3.5.1 Eindimensionales System

$$d = 1, F = F(x)$$

$$F(x) = -\frac{\mathrm{d}}{\mathrm{d}x}v(x) = -v'(x)$$

Damit haben wir das **Potential** (\rightarrow beschreibt die potentielle Energie des Massenpunktes) v als Stammfunktion von -F definiert

• Skizze

Massenpunkt kann nur ruhen, wo F = 0 beziehungsweise V' = 0. Genauer: Nur Minima (Maxima instabil).

Ziel Untersuchung der Bewegung in der Nähe von Minimal (also bei $x \approx x_0$ wobei $v'(x_0) = 0$ gelte)

V(x) bei $x_0, V'(x_0) = 0, |x - x_0|$ klein

$$\implies V(x) \simeq V(x_0) + \frac{1}{2}v''(x_0)(x - x_0)^2$$

$$\implies F(x) \simeq -V''(x_0)(x - x_0)$$

$$x - x_0 \equiv y \implies \underbrace{F(y) = -ky}_{\text{harmonischer Oszillator}}, k \equiv v''(0)$$

Wir sehen: Harmonischer Oszillator ist eine Idealisierung von potentiell sehr großem Nutzen (viele Systeme)

Lösung Newton $\Longrightarrow m\ddot{y}=-ky$ beziehungsweise $\ddot{y}=-\omega^2 y, \omega \equiv \sqrt{\frac{k}{m}}$

 $\implies \sin \omega t$ und $\cos \omega t$ sind Lösungen

 $\implies y(t) = A \sin \omega t + B \cos \omega t$ ist auch Lösung (wegen Linearität)

(wegen der beiden frei wählbaren Konstanten ist dies schon die allgemeine Lösung)

Verallgemeinerungen

- Reibungsterm $\sim \dot{y}$
- treibende Kraft $\sim f(t)$

3.6 Lineare Differentialgleichungen

allgemeine Form einer linearen Dgl. n-ter Ordnung:

$$y^{(n)} + f_{n-1}(x)y^{(n-1)}(x) + \ldots + f_0(x)y(x) = f(x)$$

Das Wort linear bezieht sich nur auf y, nicht x

Die Dgl. heißt homogen falls $f(x) \equiv 0$ Homogen von Grad p: Ersetzung $y \to \alpha y$ führt zu Vorfaktor αp , hier p = 1

- $\bullet\,$ wir hatten oben dem Fall n=2"mit konstanten Koeffizienten"
- noch einfacheres Beispiel: $n = 1, f \equiv 0$ (aber beliebige Koeffizienten)

$$y' + a(x)y = 0$$

Das ist separabel:

$$\frac{dy}{dx} + a(x)y = 0$$

$$\frac{dy}{dx} = -a(x)y$$

$$\frac{dy}{x} = -a(x)dx$$

$$\int \frac{dy}{y} = -\int a(x)dx$$

$$\ln y - A(x) + c_1$$

$$y = ce^{-A(x)}$$

A(x) sei eine beliebige aber fest gewählte Stammfunktion von a Wir können den inhomogenen Fall lösen, durch "Variation der Konstanten"

– Ansatz:
$$y = C(x)e^{-A(x)}$$
, Dgl. $y' + ay = f$
$$(ce^{-A})' + aCe^{-A} = f$$

$$c'e^{-A} - CA'e^{-A} + Cae^{-A} = f$$

Beachte A' = a

$$\implies c'e^{-A} = fe^A, c(x) = \int \mathrm{d}x f(x)e^{A(x)}$$

$$y(x) = \left[\int^x \mathrm{d}x' f(x')e^{A(x')}\right]e^{-A(x)}$$

f(x') ist eine frei wählbare additive Konstante im x'-Int. $(C(x) \to C(x) + \alpha)$ entspricht der Addition der Lösung der homogenen Dgl.

3.6.1 Zusammenfassung / Verallgemeinerung auf n > 1

Definition 1 Linear Unabhängig. Ein Satz von Funktionen $f_1(x), \ldots, f_n(x)$ heißt linear unabhängig, falls jede Linearkombination bei der nicht alle Koeffizienten Null sind auch nicht Null ist:

$$\alpha_1 f_1(x) + \dots + \alpha_n f_n(x) \equiv 0 \implies \alpha_1 = \dots = \alpha_n = 0$$

(identisch zur linearen Unabhängigkeit von Vektoren)

Fakt Kennt man n linear unabhängige Lösungen einer homogenen linearen Dgl. n-ter Ordnung, so kennt man die allgemeine Lösung:

$$y_{hom}(x) = C_1 y_1(x) + \ldots + C_n y_n(x)$$

Die allgemeine Lösung ist stets von dieser Form.

Wenn wir außerdem eine **partikuläre** Lösung der inhomogenen Gleichung haben, so haben wir auch schon deren allgemeinen Lösung

$$y(x) = y_{hom}(x) + y_{part}(x)$$

"Beweis" durch Einsetzen in

$$y^{(n)} + f_{n-1}y^{(n-1)} + \ldots + f_0y = f$$

3.6.2 Finden der partikulären Lösung

Auch bei n > 1: Variation der Konstanten (Funktioniert gut bei konstanten Koeffizienten) Mächtigere Methoden: Überführen von System von linearen Dgl. 1. Ordnung (braucht Matrixrechnung)

4 Erhaltungssätze in Newtonscher Mechanik

4.1 Impulserhaltung

Systeme mit mehreren Massenpunkten $a, b \in \{1, ..., n\}$ Trajektorien: $\vec{x}_a(t), a = 1, ..., n$

Satz 1 Impulserhaltung. Bei verschwindenden externen Kräften $(\vec{F}_{ext} = 0)$ gilt:

$$\vec{p} \equiv \sum_{a} \vec{P_a} \equiv \sum_{a} m_a \dot{\vec{x_a}} = const$$

Beweis.

$$\begin{split} \dot{\vec{p}} &= \sum_{a} m_{a} \ddot{\vec{x_{a}}} \\ &= \sum_{a} \vec{F_{a}} \\ &= \sum_{a \neq b} (\sum_{a \neq b} \vec{F_{ab}}) \\ &= \sum_{a,b} \vec{F_{ab}} \\ &= \sum_{a \neq b} \vec{F_{ab}} + \sum_{a < b} \vec{F_{ab}} \\ &= \sum_{a > b} (\vec{F_{ab}} + \vec{F_{ba}}) \\ &= \sum_{a > b} (\vec{F_{ab}} + \vec{F_{ba}}) \\ &= 0 \\ &\downarrow \\ 3. \text{ Newtonsches Axiom} \end{split}$$

mit äußeren Kräften:

$$\dot{\vec{p}} = \sum_{a} \vec{F}_{a,ext.} \equiv \vec{F}_{ext}$$

Falls zum Beispiel die äußere Kraft nicht in x^1 -Richtung wirkt ($F_{\text{ext}}^1 = 0$), so gilt immer noch $p^1 = \text{const}$ (eigentlich drei Erhaltungssätze für p^1, p^2, p^3 , manchmal gelten nur einige davon)

4.2 Drehimpulserhaltung

Oft: Kräfte wirken parallel zur Verbindungslinie zweier Massenpunkte:

- Gravitationskraft
- Elektrostatische Kraft
- Modell der masselosen Stange (\rightarrow Modell für starre Körper!)

Definition 2 Drehimpuls.

$$\vec{L}_a \equiv \vec{x}_a \times \vec{p}_a$$
$$(\vec{L}_a)^i = \varepsilon^{ijk} x_a^j p_a^k$$

Falls $\vec{F}_{a,ext} = 0$ und alle interne Kräfte wirken parallel zur Verbindungslinie der jeweiligen Punkte, dann gilt **Drehimpulserhaltung**

Satz 2 Drehimpulserhaltung.

$$\vec{L} \equiv \sum_{a} \vec{L}_{a} = \sum_{a} m_{a} \vec{x}_{a} \times \dot{\vec{x}}_{a} = \sum_{a} \vec{x}_{a} \times \vec{p}_{a} = const$$

Beweis. Nachrechnen:

$$\begin{split} \dot{\vec{L}} &= \sum_{a} m_a (\dot{\vec{x}}_a \times \dot{\vec{x}}_a + \vec{x}_a + \dot{\vec{x}}_a) \\ &= \sum_{a} \vec{x}_a \times \vec{F}_a \\ &= \sum_{a \neq b} \vec{x}_a \times \vec{F}_{ab} \qquad \text{(Summe "über alle Paare von } a, b, a \neq b) \\ &= \sum_{a > b} (\vec{x}_a \times \vec{F}_{ab} + \vec{x}_b \times \vec{F}_{ba}) \\ &= \sum_{a > b} (\vec{x}_a - \vec{x}_b) \times \vec{F}_{ab} \end{split}$$

da $\vec{F}_{ab} \parallel (\vec{x}_a - \vec{x}_b)$ per Annahme

$$=0$$

Bei externen Kräften:

$$\dot{ec{L}} = \sum_{a} ec{x}_a imes ec{F}_{a,ext} \equiv ec{M}_{ext}$$

 M_{ext} ist das durch äußere Kräfte auf Punkt a ausgeübte **Drehmoment**, allgemein (für einzelnen Punkt):

$$\vec{M} = \vec{x} \times \vec{F} = \dot{\vec{L}}$$

Wichtig: Drehimpulserhaltung gilt auch dann wenn alle äußeren Kräfte Zentralkräfte sind, Zentralkraft:

$$\vec{F}_a \parallel \vec{x}_a$$

Drehimpuls hängt vom Koordinatensystem ab.

Bemerkung 1. $\vec{L} \equiv \vec{x} \times \vec{p}$ (allgemeiner jedes Kreuzprodukt von Vektoren) ist ein **Axial-** oder **Pseudovektor**, das heißt: Bei Drehungen wie Vektor, Bei Reflexion am Ursprung kein Vorzeichenänderung

Beweis.

$$\vec{a} \rightarrow -\vec{a}, \vec{b} \rightarrow -\vec{b} \implies \vec{a} \times \vec{b} \rightarrow +\vec{a} \times \vec{b}$$

4.3 Konservative Kräfte und Energieerhaltung

Definition 3 Gradient. Gradient von V:

$$\vec{\nabla} \equiv \left(\frac{\partial V}{\partial x^1}, \frac{\partial V}{\partial x^2}, \frac{\partial V}{\partial x^3}\right)$$

 $\frac{\partial}{\partial x}$ ist ein "Differentialoperator", also:

$$\frac{\partial}{\partial x}: f(x,y) \mapsto \frac{\partial f(x,y)}{\partial x}$$

Dementsprechend $\frac{\partial^2}{\partial x^2}$ ist ein "Differential
operator" zweiter Ordnung, also:

$$\frac{\partial^2}{\partial x^2}: f(x,y) \mapsto \frac{\partial^2 f(x,y)}{\partial x^2}$$

 $\vec{\nabla} V$ ist gute Schreibweise, weil $\vec{\nabla}$ ein vektorwertiger Differentialoperator ist:

$$\vec{\nabla} = \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3}\right)$$

Definition 4 konservatives Kraftfeld. Ein zeitunabhängiges Kraftfeld $\vec{F}(\vec{x})$ heißt konservativ falls es eine Funktion $V(\vec{x})$ ("Potential") gibt. sodass

$$\vec{F} = -\vec{\nabla}V$$

4.3.1 Energieerhaltung

Für einen Massenpunkt in einem konservativen Kraftfeld gilt:

$$E = T + V$$
 potentielle Energie $= \frac{m}{2}\dot{\vec{x}}(t)^2 + V(\vec{x}(t)) = \text{const}$

Begründung

$$\begin{split} \frac{\mathrm{d}T}{dt} &= \frac{m}{2} \frac{\mathrm{d}}{dt} (\dot{x}^i \dot{x}^i) = \frac{m}{2} 2 \dot{x}^i \ddot{x}^i = m \dot{\vec{x}} \ddot{\vec{x}} \\ \frac{\mathrm{d}V}{dt} &= \lim_{\Delta t \to 0} \frac{V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3)}{\Delta t} \end{split}$$

mit
$$\Delta x = \frac{\mathrm{d}\vec{x}}{dt} \Delta t$$

Umschreiben des Zählers

$$\begin{split} &V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3) \\ &\cong \frac{\partial V}{\partial x^1}(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \Delta x^1 + \frac{\partial V}{\partial x^1}(x^1, x^2, x^3 + \Delta x^3) \Delta x^2 + \frac{\partial V}{\partial x^1}(\vec{x}) \Delta x^3 \end{split}$$

Teilen durch Δt , Grenzwertbildung

$$\frac{\mathrm{d}V}{dt} = \frac{\partial V}{\partial x^i}(\vec{x}(t)) \frac{\mathrm{d}x^i}{dt}$$

oder (allgemeine Rechenregel)

$$\mathrm{d}V = \frac{\partial V}{\partial x^i} \mathrm{d}x^i$$

Allgemeine Formulierung der Rechenregel: Sei $f: \mathbb{R}^n \to \mathbb{R} \wedge \vec{x} : \mathbb{R} \to \mathbb{R}^n$ Die Verknüpfung $f \circ \vec{x} : \mathbb{R} \to \mathbb{R}$ ist eine Funktion. Für diese gilt:

$$\underbrace{\mathrm{d}f}_{\text{totales Differential}} = \frac{\partial f}{\partial x^i} \mathrm{d}x^i = (\vec{\nabla}f) \mathrm{d}\vec{x} \tag{4}$$

oder totale Ableitung:

(5)

$$\frac{\mathrm{d}f}{dt} = \frac{\partial f}{\partial x^i} \frac{\mathrm{d}x^i}{\mathrm{d}t} \tag{6}$$

Unsere Anwendung

(7)

$$\dot{E} = m\dot{\vec{x}}\ddot{\vec{x}} + \frac{\partial V}{\partial x^i}\dot{x}^i = \vec{F}\dot{\vec{x}} + (\vec{\nabla}V)\dot{\vec{x}} = 0 \checkmark$$
(8)

$$V(x^{1} + \Delta x^{1}, x^{2} + \Delta x^{2}, x^{3} + \Delta x^{3}) - V(x^{1}, x^{2} + \Delta x^{2}, x^{3} + \Delta x^{3})$$

Vergleiche:

$$f(x + \Delta) - f(x) \cong f'(x)\Delta$$

4.3.2 Kriterium für Konservativität

Für *einfach zusammenhängende Gebiete*1 gilt:

$$\vec{F}$$
 ist konservativ $\iff \vec{\nabla} \vec{F} = 0$

Begründung ⇒

$$\vec{F} = -\vec{\nabla}V \implies \vec{\nabla} \times \vec{F} = 0$$

$$\equiv \text{Rotation von } F \text{ (rot } F)$$

 $^{^1\}mathrm{Jede}$ geschlossene Kurve kann auf Länge Null zusammengezogen werden

$$\begin{split} (\vec{\nabla} \times \vec{F})^i &= \varepsilon^{ijk} \frac{\partial}{\partial x^j} F^k = \varepsilon^{ijk} \partial^i F^k \\ &= -\varepsilon^{ijk} \partial^j \partial^k V = -\frac{1}{2} (\varepsilon^{ijk} - \varepsilon^{ikj}) \partial^j \partial^k V \\ &= -\frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V + \frac{1}{2} \varepsilon^{ikj} \underbrace{\partial^k \partial^j}_{\partial x} V \\ &\text{habe benutzt } \underbrace{\frac{\partial}{\partial x} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial x}}_{\partial x} \\ &= -\frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V + \frac{1}{2} \varepsilon^{ijk} \partial^j \partial^k V = 0 \\ &\downarrow \\ k \leftrightarrow j \end{split}$$

 \leftarrow

Wähle beliebiges festes \vec{x}_0 im Gebiet. Definiere Potential als minus Arbeit am Massenpunkt $\to Abbildung$

$$V(\vec{x}) \equiv -\int_{\vec{x}_0}^{\vec{x}} \vec{F}(x) d\vec{s}$$
 (Linienintegral)

Linienintegral kann immer definiert werden, wenn Kurve durch Gebiet mit Vektorfeld verläuft

$$d\vec{s} \equiv d\vec{x}(s) = (\frac{dx^1}{ddx}, \frac{dx^2}{ddx}, \frac{dx^3}{ddx})ds$$

Also gilt:

$$\vec{F} \, \mathrm{d}\vec{s} = F^i \left(\frac{\mathrm{d}x^i}{ds}\right) \mathrm{d}s$$

Integrand im normalen Riemann Integral

Wähle beliebigen kleinen Vektor \vec{l} und berechne:

$$\vec{l}\vec{F}(\vec{x}) \cong -(-\int_{\vec{x}}^{\vec{x}+\vec{l}} d\vec{s}\vec{F})$$

$$= -((-\int_{\vec{x}_0}^{\vec{x}+\vec{l}} d\vec{s}\vec{F}) - (-\int_{\vec{x}_0}^{\vec{x}} d\vec{s}\vec{F}))$$

$$= -(V(\vec{x}+\vec{l}) - V(\vec{x}))$$

$$\cong -\frac{\partial V}{\partial x^i} l^i = -\vec{l}(\vec{\nabla}V)$$

$$\implies \vec{l}(\vec{F} + \vec{\nabla}V) = 0$$

$$\implies \vec{F} + \vec{\nabla}V = 0$$

Lücke: Wegunabhängigkeit der Definition von V: Wähle zwei unterschiedliche Wege (L_1, L_2) :

$$\int_{L_1} d\vec{s} \vec{F} - \int_{L_2} d\vec{s} \vec{F} = \oint d\vec{s} \vec{F}$$

$$\downarrow$$
Rand von Σ

Satz von Stokes

$$= \int_{\Sigma} \vec{df} (\vec{\nabla} \times \vec{F})$$
$$(\operatorname{rot} \vec{F})^i = (\vec{\nabla} \times \vec{F})^i = \varepsilon^{ijk} \frac{\partial}{\partial x^j} F^k$$

zum Beispiel:

$$(\vec{\nabla} \times \vec{F})^{1} = \frac{\partial F^{3}}{\partial x^{2}} - \frac{\partial F^{2}}{\partial x^{3}}$$

$$\int_{L_{2}} d\vec{s} \vec{F} - \int_{L_{1}} d\vec{s} \vec{F} = \oint_{\partial \Sigma} d\vec{s} \vec{F} = \int_{\Sigma} d\vec{f} * (\vec{\nabla} \times \vec{F}) \stackrel{!}{=} 0$$
"Stokes"

4.4 Kurvenintegrale

Jedes Kurvenintegral kann durch Parametrisierung der Kurve berechnet werden. Kurve $C \to \vec{x}(t)$

$$d\vec{x} \equiv d\vec{s}$$

$$\int_C d\vec{s} \vec{F}(\vec{x}) \equiv \int_C d\vec{x} \vec{F}(\vec{x}) = \int_{t_1}^{t_2} dt \frac{d\vec{x}(t)}{dt} \vec{F}(\vec{x}(t))$$

4.5 Satz von Stokes

Definition 5 Satz von Stokes.

$$\oint d\vec{s}\vec{F} = \int_{\Sigma} d\vec{f}(\vec{\nabla} \times \vec{F})$$

Beweis.

$$\oint d\vec{s}\vec{F} = \int_0^{\Delta x^1} ds F^1(x,0) + \int_0^{\Delta x^2} ds F^2(\Delta x^1,s) - \int_0^{\Delta x^1} ds F^1(s,\Delta x^2) - \int_0^{\Delta x^2} ds F^2(0,s)$$

$$= \int_0^{\Delta x^1} ds (F^1(s,0) - F^1(s,\Delta x^2)) + \int_0^{\Delta x^2} ds (F^2(\Delta x^1,s) - F^2(0,s))$$

$$= \int_0^{\Delta x^1} ds (\frac{\partial F^1}{\partial x^2}) \Delta x^2 + \int_0^{\Delta x^2} ds \frac{\partial F^2}{\partial x^1} \Delta x^1 + O(\Delta^3)$$

$$= \Delta x^1 \Delta x^2 (\frac{\partial F^2}{\partial x^1} - \frac{\partial F^1}{\partial x^2}) + O(\Delta^3)$$

$$= \Delta x^1 \Delta x^2 (\vec{\nabla} \times \vec{F})^3 + O(\Delta^3)$$

$$= \Delta x^1 \Delta x^2 \hat{e}_3 (\vec{\nabla} \times \vec{F})$$

 $\Delta \vec{f} =$ Der dem kleinen Flächenelement zugeordnete Vektor

$$\approx \Delta \vec{f}(\vec{\nabla} \times \vec{F})$$

Allgemein steht $\Delta \vec{f}$ oder $d\vec{f}$ für ein kleines oder infinitesimales Flächenelement, Länge $\stackrel{\hat{}}{=}$ Größe der Fläche Die Richtung des Vektors definiert **Orientierung** der Fläche (Zum Beispiel Oben = da, wo der Pfeil hin zeigt)

Randkurve: so definiert, dass man von oben gesehen linksherum (mathematisch positiver Drehsinn) läuft

- 1. Spezielle Lage in unserer Rechnung unwichtig
- 2. Übergang zu größeren Flächen durch Aufaddieren

Fläche = $N\Delta^2 \implies N \sim \frac{1}{Delta^2}$

$$\sum_{\text{Rechtecke}} \oint \mathrm{d}\vec{s} \vec{F} = \sum_{\text{Rechtecke}} \int \mathrm{d}\vec{f} (\vec{\nabla} \times \vec{F}) + NO(\Delta^3)$$
 Zahl der Rechtecke = $O(\Delta)$

weil sich nicht "innere Ränder wegheben"

$$\oint \mathrm{d}\vec{s}\vec{F} = \sum_{\text{Rechtecke}} \int \mathrm{d}\vec{f}(\vec{\nabla} \times \vec{F})$$

klar

$$\oint \mathrm{d}\vec{s}\vec{F} = \int \mathrm{d}\vec{f}(\vec{\nabla} \times \vec{F})$$

Glätten des Randes: Zerlegung des Randes $\Delta \vec{s}$ in kleine Rechtecke $\Delta \vec{s}_1, \Delta \vec{s}_2$

$$\Delta \vec{s} = \Delta \vec{s}_1 + \Delta \vec{s}_2$$

$$\vec{F} \Delta \vec{s} = \vec{F} \Delta \vec{s}_1 + \vec{F} \Delta \vec{s}_2 = \vec{F}_1 \Delta \vec{s}_1 + \vec{F}_2 \Delta \vec{s}_2 + O(\Delta x^2)$$

 $\vec{F}, \vec{F_1}, \vec{F_2}$ jeweils am Mittelpunkt der Linienelemente Zahl derartiger Randelemente $\sim \frac{1}{\Delta} \implies$ Fehler $O(\Delta)$

 \implies Auch nach Summation bleibt Fehler von $O(\Delta)$

Besser wäre Zerlegung in Simplices ("Haben sie mal versucht eine Schildkröte zu fliesen") $\hfill\Box$

Für unsere Anwendung: wichtig, dass jede geschlossene Kurve in einem einfach zusammenhängenden Gebiet, **Rand** ist.

4.6 Energieerhaltung für Systeme von Massenpunkten

Massenpunkte: $\vec{x}_a, a = 1, \dots, n$

Kräfte: seien \parallel zu $\vec{x}_a - \vec{x}_b$ ("Zentralkräfte")

Solche Kräfte kann man stets schreiben als:

$$\vec{F}_{ab} = -\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|)$$

mit:

$$V_{ab} = Vba, \vec{\nabla}_a = (\frac{\partial}{\partial x_a^1}, \frac{\partial}{\partial x_a^2}, \frac{\partial}{\partial x_a^3})$$

dazu:

$$-\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|) = (-\vec{\nabla}_a |\vec{x}_a - \vec{x}_b|) V'_{ab}(|\vec{x}_a - \vec{x}_b|)$$

Dies zeigt:

$$= -\vec{\nabla}_a \sqrt{(\vec{x}_a - \vec{x}_b)^2}$$
$$= \frac{\vec{x}_a - \vec{x}_b}{|\vec{x}_a - \vec{x}_b|}$$

Wir können passendes V für jede Zentralkraft finden. Man berechnet einfach V' und sucht die Stammfunktion.

Prüfe Konsistenz mit 3. Axiom:

$$\underbrace{-\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|)}_{\vec{F}_{ab}} = +\vec{\nabla}_b V_{ab}(|\vec{x}_a - \vec{x}_b|) = \underbrace{+\vec{\nabla}_b V_{ba}(|\vec{x}_b - \vec{x}_a|)}_{-\vec{F}_{ba}}$$

In diesem System gilt Energieerhaltung:

$$E = \sum_{a} T_a + \frac{1}{2} \sum_{a \neq b} V_{ab} = \sum_{a} T_a + \sum_{a < b} V_{ab} = \text{const}$$

Begründung:

$$\dot{E} = \sum_{a} \dot{\vec{x}}_{a} \vec{F}_{a} + \frac{1}{2} \sum_{a \neq b} ((\vec{\nabla}_{a} V_{ab}) \dot{\vec{x}}_{a} + (\vec{\nabla}_{b} V_{ab}) \dot{\vec{x}}_{b})$$

$$= \sum_{a \neq b} \dot{\vec{x}}_{a} \vec{F}_{ab} + \frac{1}{2} \sum_{a \neq b} (-\vec{F}_{ab} \dot{\vec{x}}_{a} - \vec{F}_{ab} \dot{\vec{x}}_{b}) = 0$$

$$\text{Umbenennung } a \leftrightarrow b$$

$$(= W - \frac{1}{2}W - \frac{1}{2}W)$$

Bemerkung: Passend gewähltes V_{ab} gibt das Modell der starren Stangen

4.7 Eindimensionale Bewegung

$$F(x) = m\ddot{x}$$

- mit Einsatz allgemein lösbar!
- Startpunkt: Jedes 1-dim. zeitunabhängiges Kraftfeld ist konservativ

$$E = \frac{m}{2}\dot{x}^2 + V(x) = \text{const}$$

(bis auf Vorzeichen)

$$\dot{x} = \sqrt{\frac{2}{m}(E - V(x))} \implies dt = \frac{dx}{\sqrt{\frac{2}{m}(E - V(x))}}$$

$$t = \frac{dx}{\sqrt{\frac{2}{m}(E - V(x))}}$$

Integral lösen, Integrationskonstante und Energie so bestimmen, das Anfangswertproblem gelöst

$$t = t(x)$$
 auflösen $\implies x = x(t) \checkmark$

viel einfacher als allgemeine Differentialgleichung 2. Ordnung

5 Harmonischer Oszillator in komplexen Zahlen

Motivation

Harmonischer Oszillator mit Reibung:

$$\ddot{x} = -\omega^2 x - c\dot{x}$$

Exponentieller Ansatz:

$$x \sim e^{\alpha t} \implies \alpha^2 + \omega^2 + c\alpha = 0$$

gesucht: α , Betrachte Grenzfälle:

1. ω klein

$$\implies \alpha^2 + c\alpha = 0 \implies \alpha = -c \implies x \sim e^{-ct}$$

2. ω groß (beziehungsweise c klein)

$$\alpha^2 + \omega^2 \simeq 0$$

nicht lösbar!

Aber: wir wissen schon $\sin \omega t$, $\cos \omega t$ sind Lösungen.

Falls jede gesuchte Gleichung lösbar \Longrightarrow Hoffnung auf elegante allgemeine Lösung **Speziell:** $\alpha^1=-1$ (für $\omega=1,c=0$)

5.1 Komplexe Zahlen

5.1.1 Ziel

reelle Zahlen so zu erweitern, dass $x^2 = -1$ lösbar

5.1.2 Naive Definition

Definiere "Imaginäre Einheit" $x^2 = -1$ lösbar "i", so dass $i^2 = -1$ Wollen addieren und Multiplizieren, deshalb erkläre komplexe Zahl $\mathbb C$ als:

$$\mathbb{C} \ni z)x + iy, x, y \in \mathbb{R}$$

Wir definieren außerdem:

- $z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) \equiv (x_1 + x_2) + i(y_1 + y_2)$
- $z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) \equiv x_1x_2 + x_1iy_2 + iy_1x_2 + iy_1iy_2 \equiv (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1)$

5.1.3 präzisere Definition

Definition 6 Körper. Körper ("Field") ist eine Menge K mit zwei binären Operationen (" + ", " · "), so dass:

•
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
 (Assoziativität)

•
$$\alpha + \beta = \beta + \alpha$$
 (Kommutativität)

•
$$\exists 0 \in K : \alpha + 0 = \alpha \, \forall \, \alpha$$
 (Null)

•
$$\forall \alpha \exists (-\alpha) \in K : \alpha + (-\alpha) = 0$$
 (Additives Inverses)

•
$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$
 (Assoziativität der Mult.)

•
$$\alpha \cdot \beta = \beta \cdot \alpha$$
 (Kommutativität der Mult.)

•
$$\exists 1 \in K : 1 \cdot \alpha = \alpha \, \forall \, \alpha$$
 (Eins)

•
$$\forall \alpha \neq 0 \,\exists \, \alpha^{-1} \in K : \alpha \cdot \alpha^{-1} = 1$$
 (Inverses der Mult.)

•
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$
 (Distributivität)

Wir kennen bereits:

•
$$K = \mathbb{Q}$$
 (rationale Zahlen)

•
$$K = \mathbb{R}$$
 (reelle Zahlen)

Definition 7 Komplexer Zahlenkörper. Komplexe Zahlen sind die Menge $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ mit den Operationen

•
$$(x_1, y_1) + (x_2, y_2) \equiv (x_1 + x_2, y_1 + y_2)$$

•
$$(x_1, y_1) \cdot (x_2, y_2) \equiv (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$$

Das ist äquivalent zu unserer "naiven Definition" z = x + iy

Aufgabe: Prüfen sie, dass die Axiome erfüllt sind! Schwierigster Teil: Multiplikations-Inverses, Idee / Vorschlag:

$$z^{-1} = (x+iy)^{-1} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$

 $\mathbb{C}=\mathbb{R}^2 \implies$ Darstellung durch Vektoren in Ebene liegt nahe.

- Addition: \equiv Vektoraddition
- Multiplikation: Beträge der Vektoren werden multipliziert, Winkel "arg" werden addiert.
- $\arg z = \phi$
- $\Re z = x$
- $\Im z = y$
- $|z| = \sqrt{x^2 + y^2}$

Übliche Funktionen (exp, ln, sin, cos) können mittels ihrer in $\mathbb R$ bekannten Taylorreihe auf $\mathbb C$ übertragen werden

Besonders wichtig:

$$e^z \equiv \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Brauchen $e^{z+w} = e^z \cdot e^w$

Nachrechnen:

$$e^{z+w} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k}$$

Binominialkoeffizient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

englisch: "n choose k"

durch Umschreiben der Summen erhält man:

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{n^{k}}{k!} \frac{w^{n-k}}{(n-k)!}$$
$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{z^{k}}{k!} \frac{w^{l}}{l!} = e^{z} e^{w}$$

Insbesondere:

komplexe Zahl e vom Betrag 1
$$e^z = e^{x+iy} = \underbrace{e^x}_{\text{reelle Zahl}} e^{iy}$$

In der Tat:

$$e^{iy} = \sum_{n=0}^{\infty} \frac{(iy)^n}{n!} = \sum_{k=0}^{\infty} \frac{iy^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(iy)^{2k+1}}{(2k+1)!}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k y^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!}$$
$$= \cos y + i \sin y$$

 \implies Eulersche Formel

$$e^{i\phi} = \cos\phi + i\sin\phi$$

5.1.4 Zusammenfassung:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$w = e^z = e^x e^{iy} = |w|e^{i\arg w}$$

$$\ln w = z = x + iy = \ln|w| + i\arg w$$

Problem: $\arg w$ und deshalb l
n nicht eindeutig definiert Lösung: Definiere $\arg w \in (-\pi,\pi)$

5.1.5 Fundamentalsatz der Algebra

In \mathbb{C} hat jedes Polynom

$$P_n(z) = \sum_{i=0}^n a_i z^i$$

eine Nullstelle z_0

In der Tat hat es sogar n Nullstellen:

$$P_n(z) = (z - z_0) \cdot \underbrace{P_{n-1}(z)}_{\text{Hat wieder eine Nullstelle, usw.}}$$

(Man sagt: Körper \mathbb{C} ist algebraisch abgeschlossen)

- Es gibt auf $\mathbb C$ wichtige Abbildung: "komplexe Konjugation"

$$z \to z^* \stackrel{\wedge}{=} z \to \bar{z}$$

Definiert durch:

$$(x+iy)^* = x - iy, (\rho e^{i\phi})^* = \rho e^{-i\phi}$$

also auch

$$(z^*)^* = z$$

5.1.6 Quaternionen

$$1, i \to 1, i, j, k, i^2 = j^2 = k^2 = -1$$

 $ij = k, ji = -k, jk = i, \dots$

5.2 Anwendung auf harmonischen Oszillator

Erinnerung: physikalisches Problem:

$$\ddot{x} + c\dot{x} + \omega^2 x = 0$$

Fall $\frac{c}{2} > \omega$ (Kriechfall)

$$x = e^{\alpha t}, \alpha^2 + c\alpha + \omega^2 = 0$$
$$\alpha_{1,2} = -\frac{c}{2} \pm \sqrt{\frac{c^2}{4} - \omega^2}$$

⇒ 2 linear unabhängige Lösungen, also allgemeine Lösung durch lineare Superposition

⇒ exponentielles Abfallverhalten, ohne Oszillationen

Fall $\frac{c}{2}<\omega$ (Schwingfall), $\sqrt{-x}=i\sqrt{x}$

$$\alpha_{1,2} = -\frac{c}{2} \pm i\sqrt{\omega^2 - \frac{c^2}{4}} \equiv -\frac{c}{2} \pm i\tilde{\omega}$$

$$x_{1,2} = e^{-\frac{c}{2}t}e^{\pm i\omega t} = e^{-\frac{c}{2}t}(\cos \pm \tilde{\omega}t + i\sin \pm \tilde{\omega}t)$$

$$x_{1,2} = e^{-\frac{c}{2}t}(\cos \tilde{\omega}t \pm i\sin \tilde{\omega}t)$$

Durch Linearkombination \rightarrow 2 reelle Lösungen:

$$x_1 = e^{-\frac{c}{2}t}\cos\tilde{\omega}t;$$
 $x_2 = e^{-\frac{c}{2}t}\sin\tilde{\omega}t$

 \implies allgemeine Lösung durch Linearkombination

⇒ gedämpfte Schwingung

Fall $\frac{c}{2} = \omega$ (aperiodischer Grenzfall)

$$\alpha_1 = \alpha_2$$

 \implies Nur eine linear unabhängige Lösung, brauche weitere Lösung um allgemeine Anfangsbedingungen zu erfüllen

Idee: Betrachte Schwingfall Lösungen für $\tilde{\omega} \to 0$

Taylor:

$$\cos x = 1 + (x^2); \qquad \sin x = x + O(x^3)$$
$$\implies x_1 = e^{-\frac{c}{2}t}; \qquad x_2 = e^{-\frac{c}{2}t} \tilde{\omega}t$$

⇒ Wieder asymptotische Annäherung an 0 ohne Oszillation

5.3 harmonischer Oszillator mit periodisch treibender Kraft

Inhomogene Dgl:

$$\ddot{x} + c\dot{x} + \omega^2 x = \frac{1}{m}F(t), F(t) = fe^{i\underline{\omega}t}$$

Ansatz:

$$\begin{split} x(t) &= A e^{i\underline{\omega}t} \\ \Longrightarrow & (A(-\underline{\omega}^2 + ic\underline{\omega} + \omega^2) - \frac{f}{m}) e^{i\omega t = 0} \\ A &\equiv |A| e^{i\phi} = \frac{f}{m} \cdot \frac{1}{\omega^2 - \omega^2 + ic\omega} \end{split}$$

mit

$$\frac{1}{a+ib} = \frac{a-ib}{a-ib} \frac{1}{a+ib} = \frac{a-ib}{a^2-b^2}$$

und elementarer Algebra findet man den Realteil der Lösung:

$$\Re x(t) = |A| \cos \underline{\omega}t + \phi$$

$$|A| = \frac{\frac{f}{m}}{\sqrt{\omega^2 - \omega^2} + c^2 \omega^2}, \tan \phi = \frac{c\underline{\omega}}{\underline{\omega}^2 - \omega^2}$$

Allgemeine Lösung ergibt sich, indem man zu dieser partikulären Lösung der inhomogenen Gleichung die allgemeine Lösung der homogenen Gleichung addiert.

Wichtig: Langzeitverhalten ist durch die partikuläre Lösung bestimmt \implies Resonanzkatastrophe bei $c\to 0\&\underline{\omega}\to\omega$

6 Symmetrie der Raum zeit

6.1 Matrix, Determinante, Inverse Matrix

Definition 8 Permutation. Eine Permutation (Bez: σ) von n Elementen ist eine umkehrbare Abbildung einer Menge von n Elementen auf sich selbst:

Menge: $\{1,\ldots,n\}$, Abb: $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}, i\mapsto \sigma i$ oft nützlich: Man denke an die elementweise Anwendung von σ auf $\{1,\ldots,n\}:\to\{\sigma(1),\ldots,\sigma(n)\}$

Eine Permutation heißt **gerade** (sgn(σ) = 1), falls sie sich aus geradzahlig vielen Vertauschungen von Nachbarn ergibt. Zum Beispiel ist 123 \rightarrow 312 das Produkt von 123 \rightarrow 132 und 123 \rightarrow 213:

$$123 \rightarrow 132 \rightarrow 312$$

Definition 9 Levi-Civita-Tensor.

$$\varepsilon^{\sigma(1)...\sigma(n)} \equiv \operatorname{sgn}(\sigma)$$

Insbesondere: $\varepsilon^{12...n} = 1$

- Eine $(n \times m)$ Matrix ist ein Schema A^{ij} von Zahlen, die jeweils Eintrag i in Zeile i und Spalte j bezeichnen.
- Man kann eine $(n \times m)$ -Matrix mit einer $(m \times p)$ -Matrix multiplizieren:

$$(AB)^{ij} = \sum_{k=1}^{m} A^{ik} B^{kj}$$

das Ergebnis ist eine $(n \times p)$ -Matrix

Definition 10 Determinante. Für quadratische $((n \times n)$ -Matrizen) definieren wir die **Determinante**:

$$\det A = \frac{1}{n!} \varepsilon^{i_1 \dots i_n} A^{i_1 j_1} A^{i_2 j_2} \dots A^{i_n j_n} \varepsilon^{j_1 \dots j_n}$$

n-dim. Levi-Civita-Symbol

Damit erhält man:

Determinante einer (1×1) -Matrix: die Zahl selbst.

Erstes nicht triviales Beispiel: (2×2) -Matrix

$$\det A = \det \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix} = \frac{1}{2!} \varepsilon^{ij} A^{ik} A^{jl} \varepsilon^{kl}$$

$$= \frac{1}{2!} (\varepsilon^{12} A^{11} A^{22} \varepsilon^{12} + \varepsilon^{12} A^{12} A^{21} \varepsilon^{21} + \varepsilon^{21} A^{21} A^{12} \varepsilon^{12} + \varepsilon^{21} A^{22} A^{11} \varepsilon^{21}$$

$$= \frac{1}{2} (A^{11} A^{22} + A^{12} A^{21} - A^{21} A^{12} + A^{22} A^{11}) = A^{11} A^{22} - A^{12} A^{21}$$

Man überlegt sich leicht:

$$\det A = \sum_{\sigma} \operatorname{sgn} \sigma A^{1\sigma(1)} A^{2\sigma(2)} \dots A^{n\sigma(n)}$$

Also: n! Summanden, Jeder ist Produkt von je einem Element aus jeder Zeile und Spalte der Matrix. Vorzeichen ist Vorzeichen der Permutation (siehe unten)

Beispiel 1 (3 \times 3)-Matrix. Rechenschema:

$$A = \begin{pmatrix} A^{11} & A^{12} & A^{13} & A^{11} & A^{12} \\ A^{21} & A^{22} & A^{23} & A^{21} & A^{22} \\ A^{31} & A^{32} & A^{33} & A^{31} & A^{32} \end{pmatrix}$$
$$\det A = A^{11}A^{22}A^{33} + A^{12}A^{23}A^{31} + \dots$$

Betrachte nun den Ausdruck:

$$\varepsilon^{i_1 i_2 \dots i_n} A^{i_1 j_1} A^{i_2 j_2} \dots A^{i_n j_n} = \varepsilon^{i_1 i_2 \dots} A^{i_2 j_2} A^{i_1 j_2} \dots$$

$$= \varepsilon^{i_2 i_1 \dots} A^{i_2 j_2} A^{i_2 j_1} \dots = -\varepsilon^{i_1 i_2 \dots i_n} A^{i_1 j_2} A^{i_2 j_1} \dots A^{i_n j_n}$$

Vorzeichenwechsel durch Vertauschen zweier Indizes, obiger Ausdruck ist "total antisymmetrisch"

Totale Antisymmetrie ist die definierende Eigenschaft von ε . Sie bestimmt jeden Ausdruck mit u Indizes bis auf Vorfaktor. Deshalb:

$$\varepsilon^{i_1\dots i_n}A^{i_1j_1}\dots A^{i_nj_n}=c\varepsilon^{j_1\dots j_n}$$

Multipliziere mit $\varepsilon^{j_1...j_n}$:

$$n! \det A = c\varepsilon^{j_1...j_n} \varepsilon^{j_1...j_n} = cn!$$

 \implies alternative Formel für det A:

$$e^{i_1...i_n} A^{i_1j_1} \dots A^{i_nj_n} = (\det A) \varepsilon^{j_1...j_n}$$

Zentraler Fakt: A invertierbar \iff det $A \neq 0$ Inverse Matrix:

$$(A^{-1})^{ij} = \frac{1}{(n-1)! \det A} \varepsilon^{ji_2...i_n} \varepsilon^{ij_2...j_n} A^{i_2j_2} \dots A^{i_nj_n}$$

Prüfen:

$$(A^{-1})^{ij}A^{jk} = \frac{1}{(n-1)! \det A} \varepsilon^{ji_2...i_n} \varepsilon^{ij_2...j_n} A^{jk} A^{i_2j_2} \dots A^{i_nj_n}$$
$$= \frac{1}{(n-1)! \det A} (\det A) \underbrace{\varepsilon^{kj_2...j_n} \varepsilon^{ij_2...j_n}}_{(n-1)!\delta^{ik}}$$
$$= \delta^{ik} \checkmark$$

Kommentar:

$$\frac{1}{(n-1)!} \varepsilon^{ii_2...i_n} \varepsilon^{jj_2...j_n} A^{i_2j_2} ... A^{i_nj_n}$$

$$= (-1)^{i+j} \det(M(i,j))$$

$$\downarrow$$
Matrix der Cofaktoren

Matrix der Cofaktoren ergibt sich aus A Streichen von Zeile i und Spalte j

6.2 Der Euklidische Raum

physikalischer Raum: $V=\mathbb{R}^3$ mit Skalarprodukt $\vec{x},\vec{y}\to\vec{x}\cdot\vec{y}=x^iy^i$

Unser Ziel: Symmetrien, also Abbildungen $R: V \to V, \vec{x} \mapsto \vec{x}'$, welche die Struktur des Raumes respektieren. Das heißt:

$$\begin{split} R(\alpha \vec{x} + \beta \vec{x}) &= \alpha R(\vec{x}) + \beta R(\vec{y}) \\ R(\vec{x}, \vec{y}) &\equiv \vec{x} \vec{y} = R(x) R(y) \\ \downarrow \end{split}$$

Sagt nur: Zahlen transformieren nicht

Zunächst nur Linearitätsbedingung (wird respektiert von allgemeinen linearen Transformationen)

$$x^i \mapsto x'^i = R^{ij}x^j$$

oder

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \mapsto \begin{pmatrix} x'^1 \\ \vdots \\ x'^n \end{pmatrix} = \begin{pmatrix} R^{11} & \dots & R^{1n} \\ \vdots & & \vdots \\ R^{n1} & \dots & R^{nn} \end{pmatrix}$$

Symmetrie: Lineare Transformation: $\vec{x} \mapsto R(\vec{x})$

konkret: $x^i \mapsto x'^i = R^{ij}x^j$

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \mapsto \begin{pmatrix} x'^1 \\ \vdots \\ x'^n \end{pmatrix} = \begin{pmatrix} R^{11} & \cdots & R^{1n} \\ \vdots & & \vdots \\ R^{n1} & \cdots & R^{nn} \end{pmatrix} \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

Kurzschreibweise:

$$x \mapsto x' = Rx$$

- hier: Großbuchstaben = Matrizen
- Kleinbuchstaben = Vektoren

Beispiel 2 n = 2.

$$x'^{1} = R^{11}x^{1} + R^{12}x^{2}$$
$$x'^{2} = R^{21}x^{1} + R^{22}x^{2}$$

Ganz explizit

$$R = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Transformation der beiden Basisvektoren Jeder andere Vektor $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$) ist schreibbar als $\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Er transformiert demnach gemäß

$$\binom{\alpha}{\beta} \mapsto \alpha \binom{2}{1} + \beta \binom{0}{1} = \binom{2\alpha}{\alpha + \beta}$$

Wichtig: Symmetrietransformationen müssen verknüpfbar sein:

Dazu: Betrachte zwei Transformationen:

$$R_1: x \mapsto R_1 x; R_2: x \mapsto R_2 x$$

zusammen:

$$R_1 \circ R_2 : x \mapsto R_2 R_1 x$$

Die Komponente i des entstehenden Vektors ist:

$$(R_2R_1x)^i = R_2^{ij}(R_1x)^j = R_2^{ij}R_1^{jk}x^k$$

Man kann die Abbildung $x \mapsto R_2 R_2 x$ auch "in einem Schritt" als Transformation durch die Produktmatrix $R_2 R_1$ realisieren:

$$(R_2R_1x)^i = \underbrace{(R_2^{ij}R_1^{jk})}_{\text{Produktmatrix}} x^k$$

Die Produktmatrix ist $(R_2R_1)^{ij}=R_2^{ij}R_1^{jk}\equiv R_3^{ik}$ Hinweis zum expliziten Rechnen:

$$\begin{pmatrix} R_1^{11} & R_1^{12} & R_1^{13} \\ R_1^{21} & R_1^{22} & R_1^{23} \\ R_1^{31} & R_1^{32} & R_1^{33} \end{pmatrix}$$

$$\begin{pmatrix} R_2^{11} & R_2^{12} & R_2^{13} \\ R_2^{21} & R_2^{22} & R_2^{23} \\ R_2^{31} & R_2^{32} & R_2^{33} \end{pmatrix} \begin{pmatrix} R_3^{11} & R_3^{12} & R_3^{13} \\ R_3^{21} & R_3^{22} & R_3^{23} \\ R_3^{31} & R_3^{32} & R_3^{33} \end{pmatrix}$$

Für den Begriff der Symmetrie brauchen wir Invertierbarkeit. Wir nennen eine Transformation beziehungsweise die entsprechende Matrix R invertierbar, falls es eine zweite Matrix R^{-1} gibt, so dass

$$R^{-1}\circ R=id \qquad \qquad \text{(Identit"atsabbildung)}$$

$$(R^{-1})^{ij}R^{jk}=\mathbb{X}^{ik}\equiv \delta^{ik}$$

Wäre Linearität die einzige wichtige Eigenschaft: dann wären die Symmetriefunktionen alle

$$R \in GL(n) \\ \downarrow$$

Menge aller invertierbaren $n\times m$ Matrizen

Wir brauchen zusätzlich:

$$\vec{x}\vec{y} = R(\vec{x})R(\vec{y}), R(x)^i = R^{ij} \times j$$

Dazu wichtige Schreibweise

$$(M^T)^{ij} = M^{ji}$$
 (T für transponiert)

auch:
$$x = \begin{pmatrix} x^i \\ \dots \\ x^n \end{pmatrix}, x^{\vec{i}} = (x^1 \dots x^n)$$
 Es gilt: $\vec{x}\vec{y} = x^Ty = x^iy^i$ es gilt weiterhin:

$$R(\vec{x})R(\vec{y}) = (Rx)^T(Ry) = (x^TT^T)(Ry) = x^TR^tRy$$

Nebenrechnung

$$((AB)^T)^{ij} = (AB)^{ji} = A^{jk}B^{jk} = B^{ki}B^{jk} = (B^T)^{ik}(A^{tilde})^{kj}$$
$$= (B^TA^T)^{ij}$$
$$\implies (AB)^T = B^TA^T$$

Ziel: $x^TR^TRy = xT_y$ soll gelten für beliebige x,y. Dies gilt genau dann wenn $R^TR = \mathbb{1}$

$$(R^T)^{ik}R^{kj} = \delta^{ii}$$
$$R^{ki}R^{kj} = \delta^{ii}$$
$$R^{ik}R^{jk} = \delta^{ii}$$

wenn $AB = \mathbb{1}$, so auch $BA = \mathbb{1}$

Symmetrien des euklidischen Raums: xRx mit $R^TT=\mathbb{F}$ $R\in O(3)\subset ULU3$

6.3 Symmetriegruppe (M)

Symmetrien in Physik und Mathe \rightarrow Gruppen Bisher:

- Matrixgruppen
 - -GL(n) Symmetriegruppe des Vektorraums \mathbb{R}^n
 - -O(n) Symmetriegruppe des euklidischen Raumes

Allgemeiner: Eine Gruppe ist eine Menge G mit einer Binären Operation $G\times G\to G$ für die gilt:

- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- $\exists e \in G : a \cdot e = e \cdot a = a \, \forall \, a \text{ ("Eins")}$
- $\forall a \in G \,\exists \, a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$

Eine Gruppe heißt "abelsch" falls $a \cdot b = b \cdot a \, \forall \, a, b$ Beispiele dafür:

• $\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$

Falls sie statt "." die Operation "+" zur Gruppenoperation erklären, dann sind

• $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}$

Gruppen mit "+"

Definition 11 Körper. K mit Operationen $+, \cdot$ ist ein Körper falls:

- (K, +) ist abelsche Gruppe (Eins = 0)
- $(K \setminus \{0\}, \cdot)$ ist auch abelsche Gruppe
- Distributivität

GL(n) ist eine (nicht abelsche) Gruppe. Müssen prüfen: A, B invertierbar $\implies A \cdot B$ invertierbar. Wir geben das Inverse zu $A \cdot B$ einfach an:

$$(B^{-1}A^{-1})(AB) = B^{-1}(AA^{-1})B = B^{-1}B = \mathbb{X}$$

 $GL^+(n)$ - orientierungserhaltende Untergruppe \equiv alle A in GL(n) mit $\det A>0$ O(n) ist Untergruppe von GL(n). Müssen prüfen dass A,B orthogonal $\Longrightarrow A\cdot B$ orthogonal. Dazu:

$$(A \cdot B)^T (A \cdot B) = B^T A^T A B = B^T B = \mathbb{1}$$

Wichtige Untergruppe: Spezielle Orthogonale Transformation SO(n)Diese Transformationen erfüllen: det(R) = 1

Dazu zwei Fakten: $\det A^T = \det A, \det(AB) = (\det(A))(\det B)$ Damit folgt aus $R^TR = \mathbb{1}$

$$\det(R^T R) = \det(R^T)(\det R) = (\det R)^2 = \det \mathbb{R} = 1, \det R = \pm 1$$

 \equiv Matrizen in O(n) mit det = 1

Speziell in n=3 (3d-Raum) wird die Reflexion bezüglich y,z Ebene beschrieben durch:

$$R_x = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \det R_x = -1$$

Fakt: Jedes Element von O(3) ist schreibbar als R oder $R \cdot R_x$ mit $R \in SO(3)$, SO(3) sind "echte" Drehungen.

Überlegen Sie sich, dass $R \in SO(2)$ allgemein schreibbar ist als

$$R = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Identifizieren sie SO(2) mit folgender Menge

$$\{z \in \mathbb{C} \mid |z| = 1\}$$

Die Gruppenoperation soll der komplexen Multiplikation entsprechen

6.4 Tensoren

Ein Tensor von Rang (oder Stufe) m im n-dimensionalen Vektorraum $V = \mathbb{R}^n$ ist eine multilineare Abbildung:

$$t: \underbrace{V \times V \times \ldots \times V}_{m\text{-mal}} \to \mathbb{R}$$

Praktisch:

$$t: (\vec{x}_{(1)}, \vec{x}_{(2)}, \dots, \vec{x}_{(n)}) \mapsto t_{i_1 \dots i_m} x_{(1)}^{i_1} \dots x_{(m)}^{i_m}$$

Beispiel 3. • Euklidisches Skalarprodukt: $V \times V \to \mathbb{R}$

$$\delta: (\vec{x}, \vec{y}) \mapsto \delta_{ij} x^i y^j \equiv \vec{x} \cdot \vec{y} \in \mathbb{R}$$

• Noch einfacher:

$$t: V \to \mathbb{R}: t_i \vec{x} \to t_i x^i \in \mathbb{R}$$

Die Menge solcher linearen Abbildungen bildet auch einen n-dimensionalen Vektorraum, den sogenannten Dualraum V^* (zu V) Notation: $\underline{t} = \{t_1, \dots, t_n\} \in V^*$ Erinnerung: $\vec{x} = \{x^1, \dots, x^n\} \in V$

Oben(Unten schreiben der Indizes macht die "natürliche Wirkung") von \underline{t} auf \vec{x} besonders deutlich: $t_i x^i \in \mathbb{R}$

- oben: kontravariant
- unten: kovariant (\rightarrow Co-Vektor $\in V^*$)

Für und: enorme Vereinfachung:

Wir haben immer euklidischen Raum und damit die besondere Rolle von δ_{ij} und die inversen Matrix δ^{ij}

$$\delta_{ij}\delta^{jk} = \delta_i^k = (\mathbb{1}_i^k)$$

Dies erlaubt uns Indizes beliebig zu "heben" und zu "senken":

$$t^i \equiv \delta^{ij} t_i, x_i \equiv \delta_{ij} x^j$$

Damit können wir V und V^* identifizieren. Wir können auch alle Tensor Indizes beliebig oben oder unten schreiben. Wir werden zur Vereinfachung weiterhin schreiben

$$\vec{x}\vec{y} = x^i y^i$$
 (eigentlich $x^i y^j \delta_{ij}$)

(Mehr zum Dualraum in Lineare Algebra)

Für uns: Tensor der Stufe 1: ist Vektor

$$t: \vec{x} \mapsto t^i x^i = \vec{t} \vec{x} \in \mathbb{R}$$

Wichtig für uns: Resultat von Anwendung eines Rang-1-Tensors auf Vektor ist invariant unter Drehungen:

$$x \mapsto Rx : t \mapsto Rt$$

$$x \mapsto x' = Rx, x^{ij} = R^{ij}x^j$$

Invarianz:

$$t^T x = t^T R^T R x$$

Betrachte einfaches, allgemeines Beispiel für Tensor der Stufe 2:

$$\begin{split} t &\equiv U \otimes W \in V \otimes V \\ t : (\vec{x}, \vec{y}) &\mapsto (u^i w^j) \cdot (x^i y^j) = (\vec{u} \cdot \vec{x}) \cdot (\vec{w} \cdot \vec{y}) \end{split}$$

 $\text{mit } t^{ij} \equiv u^i w^j$

$$=t^{ij}x^iy^j$$

Grob gesagt: $V \otimes V$ ist die Menge aller Linearkombinationen von Elementen wie $U \otimes W$ Transformation von $t^{ij} = u^i w^j$ unter Drehungen:

$$t^{ij} = u^i w^j \xrightarrow{R} R^{ik} u^k R^{jl} w^l = R^{ik} R^{jl} t^{kl}$$

Invarianz von $t(\vec{x}, \vec{y})$:

$$\begin{split} t(\vec{x}, \vec{y}) &\to (Rt)(Rx, Ry) = (R^{ik}r^{jl}t^{kl})(R^{ip}x^p)(R^{jq}y^q) \\ &= (R^{ik}R^{ip})(R^{jl}R^{jq})t^{kl}x^py^q \\ &= \delta^{kp}\delta^{lq}t^{kl}x^py^q \\ &= t^{kl}x^ky^l \\ &= t(\vec{x}, \vec{y}) \end{split}$$

Allgemeine Transformation eines Tensors unter Drehungen:

$$t \to t' = Rt \cdot t'^{i_1 \dots i_m} = R^{i_1 j_1} \dots R^{i_m j_m} t^{j_1 \dots j_m}$$

Invarianz von $t(\vec{u}_{(1)}, \dots, \vec{u}_{(m)})$ folgt wie oben.

Fortgeschrittener Kommentar: Gruppe wirkt auf Vektoren aus $K \equiv$ Darstellung Für unser Beispiel der Wirkung von O(n) auf \mathbb{R}^k war das "offensichtlich" mit Tensoren haben wir "nicht triviales Beispiel für Darstellung"

$$\underbrace{R \in O(n)}_{\text{Elemente } R^{ij}} \overset{\text{Darst.}}{\mapsto} D(R) \in \underbrace{n^2 \times n^2\text{-Matrizen}}_{\text{Elemente } D(R)^{ij,kl} = R^{ik}R^{jl}}$$

Dieses D(R) wirkt wie oben beschrieben auf Tensoren:

$$t^{ij} \stackrel{D(R)}{\mapsto} D(R)^{ij,kl} t^{kl}$$

D(R) ist eine Darstellung von O(n), die verschieden ist von der "definierenden" Darstellung

Transformation von δ^{ij}

$$\delta^{\prime ij} = R^{ik}R^{jl}\delta^{kl} = R^{ik}R^{jk} = \delta^{ij}$$

 $\implies \delta^{ij}$ ist ein invarianter Tensor

weiteres Beispiel: (für m=n: Levi Civita-Tensor) Wir schreiben nur m=n=3 Fall aus:

$$\varepsilon(\vec{x}, \vec{y}, \vec{z}) = \varepsilon^{ijk} x^i y^j z^k = x^i \varepsilon^{ijk} y^j z^k = \vec{x}(\vec{y} \times \vec{z})$$

Transformation:

$$\varepsilon'^{i_1 i_2 i_3} = R^{i_1 j_1} R^{i_2 j_2} R^{i_3 j_3} \varepsilon^{j_1 j_2 j_3} = \varepsilon^{i_1 i_2 i_3} \det(R) = \varepsilon^{i_1 i_2 i_3}$$

$$\downarrow$$

$$R \in SO(3)$$

Fakt: Falls t_1, t_2 Tensoren vom Rang m_1, m_2 sind, so ist das folgende ein Tensor vom Rang $m_1 + m_2 - 2l_i$:

$$t_1^{i_1...i_li_{l+1}...i_m}t_2^{i_1...i_lj_{l+1}...j_{m_2}}=t^{i_{l+1}...i_{m_1}j_{l+1}...j_{m_2}}$$

Anwendungen: $\vec{a} \times \vec{v}$ ist ein Pseudovektor:

$$(\vec{a}'\times\vec{b}')^i\equiv\varepsilon^{ijk}a'^jb'^k=\pm\varepsilon'^{ijk}a'^jb'^k=\pm R^{il}\varepsilon^{ljk}a^jb^k=\pm R^{il}(\vec{a}\times\vec{b})^l$$
 falls Spiegelung

6.5 Galilei-Transformationen

Bisher: \mathbb{R}^3 mit Symmetriegruppe O(3)

Jetzt: Physikalische Raum Zeit: Zusätzlich: $t \in \mathbb{R}$

Punkt $\vec{x} \in \mathbb{R}^3 \xrightarrow{neu}$ Ereignisse $(t, \vec{x}) \in \mathbb{R} \times \mathbb{R}^3$

Müssen abschaffen: $\vec{0}$ im Vektorraum. In der Tat: $|\vec{x}|, |\vec{y}|$ sind unphysikalisch, physikalisch ist nur $|\vec{x} - \vec{y}|$, ebenso ist nur $t_1 - t_2$ physikalisch

- \implies Symmetrie transformationen:
- 1. Rotationen: $(t,x) \mapsto (t,Rx), R \in O(3)$
- 2. Translationen: $(t,x) \mapsto (t+s,x+y), s \in \mathbb{R}, y \in \mathbb{R}^3 \implies \text{Abschaffung der } 0 \in \mathbb{R}$ und $\vec{0} \in \mathbb{R}^3$ "
- 3. Boosts: $(t,x) \mapsto (t,x+vt), v \in \mathbb{R}^3$ "zeitabhängige Verschiebung"

Die Galilei-Gruppe G ist die von 1., 2. und 3. "generierte" Gruppe. Nicht trivialer Boost Rot.

Fakt: Jedes $g \in G$ ist schreibbar als $g = \begin{matrix} \uparrow & \uparrow \\ g_3 \circ g_2 \circ g_1 \end{matrix}$ Man muss dazu unter anderem \downarrow Trans

zeigen, dass es zu einem $g_2 \circ g_1 \circ g_2'' \in G$ ein g_2'', g_1'' gibt, sodass $g_2 \circ g_1 \circ g_2' = g_2'' \circ g_1''$ "Boost" = Zunahme (der Geschwindigkeit). Boost einer Trajektorie: $(t, \vec{x}(t)) \mapsto (t, \vec{x}(t) + \vec{v}_0 t)$ $\vec{v} = \dot{\vec{x}}(t) \mapsto \vec{v}' = \dot{\vec{x}}(t) + \vec{v}_0$

Boost zerstören das Konzept der Gleichörtlichkeit: Seien (t, x), (t', x) zwei Ereignisse am gleichen Ort. Boost $\implies (t, x + vt), (t', x + vt')$, **nicht** mehr am gleichen Ort

6.6 Affiner Raum

Definition 12. O(3) Symmetriegruppe des euklidischen Raumes. "Elegant!".

Besser: Definition des **affinen Raumes**: Gegeben sein Menge A, ein Vektorraum V und eine Abbildung $A \times A \to V, (P,Q) \mapsto \vec{PQ}$ sodass $\vec{PQ} + \vec{QR} = \vec{PR}$. Außerdem: Zu jeden $P \in A, \vec{V}$ soll es eindeutig ein $Q \in A$ geben, sodass $\vec{=PQ}$, das Paar (A,V) heißt affiner Raum

Beispiel 4. Zu jedem Vektorraum gehört ein affiner Raum: Wähle $A \equiv V, V \times V \to V, (\vec{x}, \vec{y}) \mapsto \vec{y} - \vec{x}$

Sei (A^4, V^4) ein 4-dimensionaler affiner Raum. (Man denke zum Beispiel an den zu $\mathbb{R} \times \mathbb{R}^3$ gehörigen affinen Raum)

Physikalische Raumzeit: $(A^{(4)}, V^{(4)})$ mit

- 1. Eine lineare Abbildung $V^4 \to \mathbb{R}$ ("Zeitfunktion") (im konkreten Beispiel: $((t, x), (t', x')) \mapsto t' t$)
- 2. Sei $\tilde{V}^{(3)} \subset V^{(4)}$ der Raum von Pfeilen zwischen gleichzeitigen Ereignissen $(v \in \tilde{V}^{(3)}$ heißt $T(\tilde{v}) = 0$) Dann hat \tilde{V} ein Skalarprodukt, "Abstandsfunktion". Im konkreten Beispiel: $(t,x), (t,x') \mapsto |x-x'|$

Zusammen bilden 1. und 2. eine Galileische Struktur. Die physikalische Raumzeit ist $(A^{(4)}, V^{(4)})$ mit galileischer Struktur

G sind die Transformationen des $(A^{(4)}, V^{(4)})$, welche seine Galileische Struktur respektieren.

6.7 Dynamik

Dynamik soll invariant sein! Betrachte Trajektorie, die die Bewegungsgleichung erfüllt:

$$(t, \vec{x}(t)), m \frac{\mathrm{d}^2 \vec{x}}{\mathrm{d}t^2} = \vec{F}(t, \vec{x}(t))$$

Transformierte Trajektorie:

$$t', \vec{x}'(t') = (t + s, R\vec{x}(t) + \vec{y} + \vec{v}(t + x))$$

Dazu:

$$m\frac{\mathrm{d}^2}{\mathrm{d}t'^2} = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = mfrac\mathrm{d}^2\mathrm{d}t^2(R\vec{x}(t) + \vec{y} + \vec{v}(t+s)) = mR\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = R\vec{F}(t, \vec{x}(t))$$

⇒ Newtonsche Dynamik ist invariant falls Kräfte wie Vektoren transformieren. (hatten wir schon verlangt) Bei Systemen von Massepunkten mit Zentralkräften ist die Kraft gleich dem Gradient, sie besitzt automatisch Vektor-Transformationseigenschaften

Wir fordern bei

$$mR\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = R\vec{F}(t, \vec{x}(t))$$

eigentlich

$$R\vec{F}(t, \vec{x}(t)) = \vec{F}'(t', x'(t'))$$

Wichtig: Die Transformation von \vec{F} beinhaltet nicht nur Drehung, sondern auch Transformation über das Argument. Betrachte zur Vereinfachung $R = \mathbb{1} \implies \vec{F}'(t', \vec{x}') = \vec{F}(t, \vec{x})$

Geschwindigkeitsabhängige Kräfte: zum Beispiel Reibung

$$\vec{F}_R = -\alpha(\vec{x} - vu)$$

$$\downarrow$$
Medium

6.8 Zusammenfassung:

Allgemeingültiges Schema:

- Beschreibung der Bewegung festlegen (Spielfeld) (hier: affiner Raum und Galileische Struktur)
- Identifikation der Symmetriegruppe (hier Galilei Gruppe)
- Invarianz der Dynamik prüfen beziehungsweise fordern (Spielregeln) (Newtonsches Grundgesetz)