DS₆

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ⊳ | encadrez les résultats principaux;
 - > soulignez les résultats et arguments intermédiaires importants ;
 - *⊳* soignez votre écriture ;

 - ⊳ enfin, numérotez vos copies (et non vos pages).
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le sur votre copie en expliquant les initiatives que vous avez été amené à prendre.
- Ne rendez pas le sujet avec vos copies.

Notations générales

Dans tout le sujet, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et E désigne un \mathbb{K} -espace vectoriel. On rappelle que E^* désigne l'espace vectoriel $L(E,\mathbb{K})$ des formes linéaires sur E.

Définitions et propriétés admises

Soit $f \in L(E)$.

• On dit que f est nilpotent ssi

$$\exists k \in \mathbb{N} : f^k = 0_{\mathcal{L}(E)}.$$

On note Nil(E) l'ensemble des endomorphismes nilpotents de E.

• Si f est nilpotent, il existe un plus petit entier naturel k tel que $f^k = 0_{L(E)}$. On l'appelle indice de nilpotence de f.

DS6

Autour de la nilpotence

Deux résultats

Les parties I, II et IV sont indépendantes. La partie III utilise des résultats de la partie II.

Partie I – Réduction des endomorphismes nilpotents.

Hypothèse

• Dans cette partie, on suppose E de dimension finie et on pose $n := \dim E$.

Données et notations

- On fixe $f \in L(E)$.
- Dans cette partie, on fixe $a \in E$ et $p \in \mathbb{N}^*$, et on suppose que

$$(a, f(a), \dots, f^{p-1}(a))$$
 est libre $(\mathrm{Id}_E, f, \dots, f^{p-1}, f^p)$ est liée.

• On fixe $\Phi \in E^*$ telle que

$$\forall i \in [0, p-2], \ \Phi(f^i(a)) = 0 \qquad et \qquad \Phi(f^{p-1}(a)) = 1.$$

• On pose

$$F := \operatorname{Vect}(a, f(a), \dots, f^{p-1}(a))$$
 et $G := \{x \in E \mid \forall i \in \mathbb{N}, \ \Phi(f^i(x)) = 0\}$.

1. Existence de Φ .

Justifier l'existence de Φ .

- **2.** (a) Montrer que $(\mathrm{Id}_E, f, \ldots, f^{p-1})$ est libre.
 - (b) Montrer que F est stable par f.
 - (c) Montrer que G est stable par f.
 - (d) Montrer que F et G sont en somme directe.
- **3.** Pour $i \in \mathbb{N}$, on note $\Phi_i := \Phi \circ f^i$.
 - (a) Montrer que $\forall i \in \mathbb{N}, \ \Phi_i \in E^*$.
 - (b) Montrer que

$$G = \bigcap_{i=0}^{p-1} \ker \Phi_i.$$

- (c) Montrer que $(\Phi_0, \ldots, \Phi_{p-1})$ est une famille libre.
- **4.** On admet que dim G = n p, ce qui sera démontré dans la partie IV. Montrer que $E = F \oplus G$.

5. Étude du cas nilpotent.

On suppose $E \neq \{0_E\}$. Soit $g \in \text{Nil}(E)$, dont on note q l'indice de nilpotence.

On admet qu'il existe $b \in E$ tel que

$$(b, g(b), \dots, g^{q-1}(b))$$
 est libre

et on fixe un tel b.

On pose $H := \text{Vect}(b, g(b), \dots, g^{q-1}(b))$; on admet que H est stable par g.

On note $g_{\parallel H}$ l'endomorphisme induit par g sur H.

Donner la matrice de $g_{\parallel H}$ dans la base $\left(g^{q-1}(b),g^{q-2}(b),\ldots,g(b),b\right)$ de H.

6. Bilan.

On suppose $E \neq \{0_E\}$ et on considère $g \in Nil(E)$.

En raisonnant par récurrence sur la dimension de E, montrer qu'il existe une base $\mathcal B$ de E telle que

$$\operatorname{Mat}_{\mathscr{B}}(g) = \begin{pmatrix} \boxed{J_{k_1}} & & (0) \\ \hline J_{k_2} & & \\ & \ddots & \\ (0) & & \boxed{J_{k_r}} \end{pmatrix}$$

où $r \in \mathbb{N}^*$, où $\forall i \in [1, r]$, $k_i \in \mathbb{N}^*$ et où, pour $k \in \mathbb{N}^*$, la matrice $J_k \in \mathcal{M}_k(\mathbb{K})$ est définie par

$$J_k := \begin{pmatrix} 0 & 1 & & (0) \\ \vdots & \ddots & \ddots & \\ \vdots & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

Partie II – Algébrisation des développements limités.

Une notation

Pour $n \in \mathbb{N}$ et pour $P, Q \in \mathbb{K}[X]$, on note $P \equiv_n Q$ ssi

$$\exists R \in \mathbb{K}[X] : P - Q = X^{n+1}R.$$

7. Compatibilité aux opérations algébriques.

Soit $n \in \mathbb{N}$ et soient $P_1, Q_1, P_2, Q_2 \in \mathbb{K}[X]$ tels que

$$P_1 \equiv_n Q_1$$
 et $P_2 \equiv_n Q_2$.

- (a) Soit $\lambda \in \mathbb{K}$. Montrer que $P_1 + \lambda P_2 \equiv_n Q_1 + \lambda Q_2$.
- (b) Montrer que $P_1 \times P_2 \equiv_n Q_1 \times Q_2$.

8. Une caractérisation analytique.

Soit $n \in \mathbb{N}$ et soit $P \in \mathbb{K}[X]$. Montrer que

$$P \equiv_n 0_{\mathbb{K}[X]} \iff (P(t) = o(t^n) \text{ quand } t \to 0).$$

Notation

Si
$$f \in \mathscr{C}^{\infty}(]-1,1[,\mathbb{K})$$
 et si $n \in \mathbb{N}$, on note

$$\mathsf{T}_{f,\,n} := \sum_{k=0}^{n} f^{(k)}(0) \frac{X^k}{k!} \in \mathbb{K}[X].$$

- **9.** Soit $n \in \mathbb{N}$ et soient $f, g \in \mathscr{C}^{\infty}(]-1, 1[, \mathbb{K})$.
 - (a) Soit $\lambda \in \mathbb{K}$. Montrer que $\mathsf{T}_{f+\lambda g,\,n} = \mathsf{T}_{f,\,n} + \lambda \mathsf{T}_{g,\,n}$.
 - (b) Montrer que $\mathsf{T}_{f\times g,\,n}\equiv_n \mathsf{T}_{f,\,n}\times \mathsf{T}_{g,\,n}$.

Partie III – Existence d'une racine p-ième pour les unipotents.

Notations

- $Si \ \alpha \in \mathbb{R} \ et \ si \ k \in \mathbb{N}, \ on \ note \ \begin{pmatrix} \alpha \\ k \end{pmatrix} := \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}.$
- Pour $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}$, on note

$$\mathsf{R}_{\alpha,\,n} \coloneqq \sum_{k=0}^{n} \binom{\alpha}{k} X^k.$$

Polynômes d'endomorphismes

• $Si \ P \in \mathbb{K}[X]$ et qu'on écrit

$$P = a_0 + a_1 X + \dots + a_d X^d$$

 $(où d \in \mathbb{N} \text{ et } où \forall i, a_i \in \mathbb{K}), \text{ et } si f \in L(E), \text{ alors on pose}$

$$P(f) := a_0 \operatorname{Id}_E + a_1 f + \dots + a_d f^d$$
.

• On admet que, pour tous $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$, on a alors

$$(P+\lambda Q)(f)=P(f)+\lambda Q(f) \quad \ et \quad (PQ)(f)=P(f)\circ Q(f).$$

- **10.** (a) Calculer $R_{1/2,3}$.
 - (b) Calculer $(R_{1/2,3})^2$.
- **11.** Soit $p \in \mathbb{N}^*$. Montrer que, pour tout $n \in \mathbb{N}$, $(\mathsf{R}_{1/p,n})^p \equiv_n 1 + X$.
- **12.** Soit $p \in \mathbb{N}^*$. Montrer que $\forall f \in \text{Nil}(E), \ \exists g \in L(E) : g^p = \text{Id}_E + f$.

Remarque

Les endomorphismes qui s'écrivent $\mathrm{Id}_E + f$ où $f \in \mathrm{Nil}(E)$ sont appelés unipotents. On a ainsi démontré, dans cette partie, que les endomorphismes unipotents admettent des racines p-ièmes pour tout $p \geqslant 1$.

Partie IV - Un peu de dualité.

Hypothèse

• Dans cette partie, on suppose E de dimension finie et on pose $n := \dim E$.

Notations et propriétés admises

• $Si \mathscr{F} \in E^n$ et qu'on écrit $\mathscr{F} = (x_1, \dots, x_n)$, où $\forall i \in [1, n], x_i \in E$, on pose

$$\operatorname{CL}_{\mathscr{F}}: \left\{ \begin{array}{l} \mathbb{K}^n \longrightarrow E \\ \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \longmapsto \sum_{i=1}^n \lambda_i x_i. \end{array} \right.$$

• On pose également

$$\operatorname{CL}: \left\{ \begin{array}{l} E^n \longrightarrow \operatorname{L}(\mathbb{K}^n, E) \\ \mathscr{F} \longmapsto \operatorname{CL}_{\mathscr{F}}. \end{array} \right.$$

On admet que CL est linéaire.

• $Si \mathcal{B} \in E^n$, on admet que

$$\mathscr{B}$$
 base de $E \implies \mathrm{CL}_{\mathscr{B}}$ isomorphisme;

dans ce cas, on note $Coords_{\mathscr{B}} := (CL_{\mathscr{B}})^{-1}$.

• $Si \mathcal{G} \in (E^*)^n$ et qu'on écrit $\mathcal{G} = (\varphi_1, \dots, \varphi_n)$, où $\forall i \in [1, n], \varphi_i \in E^*$, on pose

$$EV_{\mathscr{G}}: \left\{ \begin{array}{l} E \longrightarrow \mathbb{K}^n \\ x \longmapsto \begin{pmatrix} \varphi_1(x) \\ \vdots \\ \varphi_n(x) \end{pmatrix}. \right.$$

13. Soit $\mathscr{F} \in E^n$. Montrer que

 $CL_{\mathscr{F}}$ isomorphisme $\Longrightarrow \mathscr{F}$ base de E.

- 14. Montrer que CL est un isomorphisme.
- 15. Soit \mathscr{G} une base de E^* . Montrer que $\mathrm{EV}_\mathscr{G}$ est un isomorphisme.
- **16.** Soit \mathscr{G} une base de E^* .
 - (a) Montrer qu'il existe \mathscr{B} une base de E telle que Coords $_{\mathscr{B}} = \mathrm{EV}_{\mathscr{G}}$.
 - (b) On écrit $\mathscr{G} = (\varphi_1, \dots, \varphi_n)$ et on considère une base $\mathscr{B} = (e_1, \dots, e_n)$ de E telle que Coords $\mathscr{B} = \mathrm{EV}_\mathscr{G}$.

Montrer que, pour tout $p \in [1, n]$,

$$\bigcap_{i=1}^{p} \ker \varphi_i = \operatorname{Vect}(e_{p+1}, \dots, e_n).$$

DS6

17. Une formule de dualité.

Soit $p \in \mathbb{N}$ et soit $(\varphi_1, \dots, \varphi_p) \in (E^*)^p$ une famille libre de formes linéaires de E. Montrer que

$$\dim\left(\bigcap_{i=1}^{p}\ker\varphi_{i}\right)=n-p.$$

FIN DU SUJET.

DS 6