Revisiting NEAT Part II:

Compositional Pattern Producing Networks

Machine Intelligence Community

Motivation

Motivation

Recap of NEAT

Neuroevolution of Augmenting Topologies

- Minimal Topology
- Incremental Growth
- Speciation

Recap of NEAT

https://twitter.com/dennybritz/status/855494508888203264

https://twitter.com/hardmaru/ status/854524933187158016 Motivation

- Simultaneously discover and train neural networks
- Justify architectural components
- Novel architectures

Start from minimal topology

 reduce size of network and architectural search space

Incremental Growth

Justify architectural components

Speciation

Protect innovation

Compositional Pattern Producing Networks

A Novel Abstraction of Development

- Developmental Encoding
- Local Interaction
- Temporal Unfolding

Key Ideas and Properties

- 1. **Compact representations** for complex structures
- 2. Develop structural motifs (regularities)
- 3. Discover complex phenotypes via progressive **complexification** of genotype
- 4. Simulating local interaction and temporal unfolding is unnecessary
 - a. Local Interaction neighboring phenotypes are correlated
 - b. Temporal Unfolding state of a phenotype at one moment in time affects future states in the same area

Background

1. Artificial Development

2. Patterns of Development

- a. Repetitions
- b. Repetition with Variation
- c. Symmetry
- d. Imperfect Symmetry
- e. Elaborated Regularity
- f. Preservation of Regularity

3. Complexification

Patterns Without Local Interaction

- ArtificialDevelopmentalEncodings
- Patterns of Development
- Complexification

Eliminating Temporal Unfolding

- Describe phenotype without explicitly simulating temporal unfolding
- 2. Instead abstract development as a **composition of functions**
- 3. **Phenotype** now expressed as a **distribution of points**

- To eliminate temporal unfolding, must mimic local interaction to remain a valid abstraction of development
- Coordinate frame is established in early stages of natural embryo development
- New coordinate frames for defining subregions, subfields, build off initial axis
- Assumes boundaries between body segments becomes the region of subfield

- Describe process as a computation graph. Look familiar?
- Weighted connections leaving functions
- Multiple incoming connections summed
- X and Y are initial coordinate axes

CPPN-NEAT

- Node genes contain additional field for activation function
- Node assigned random activation from pool
- Compatibility function contains extra term to account for activation function

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W} + c_4 \cdot \overline{A}$$

CPPN Computational Complexity

- $\underline{ extbf{Must}}$ fully activate for all N coordinates, so O(N)
 - e.g. a 2x2 grid, ${\it O}(N^2)$
- Can produce phenotype at any resolution by increasing number of coordinates
- CPPN is an infinite resolution mathematical structure
- Computational complexity minimized for a task by activating at minimally necessary resolution
- CPPN activated independently for every coordinate in phenotype allowing complete computation of every coordinate to be parallelizable

CPPN-NEAT Neural Network Phenotype

Experiments

Picbreeder

Goals of experiments

- CPPNs abstract natural development without depending on local interaction and unfolding over time
- 2. The way CPPNs solve tasks parallels natural evolution and development
- Ability to establish and exploit regularities in general
- 4. Establish relationship between CPPNs and development

CPPN-NEAT-based Interactive Pattern Evolution

Elaboration on Pure Symmetry

Elaboration on Pure Symmetry

Representing Imperfect Symmetry

Repetition with Variation

Repetition with Variation

Future work

- Extending CPPNs as functions of their environments
- 2. Adaptation via requerying CPPN
- 3. Contiguous morphology problem and solutions in \mathbb{R}^N
- Applying CPPNs to large-scale neural networks, physical morphologies, and building architectures

Conclusions

General pattern-generating mechanism

CPPNs exhibit fundamental properties of natural development

- 1. Symmetry
- 2. Imperfect symmetry
- 3. Repetition
- 4. Repetition with variation
- 5. Elaboration of existing regularities via complexification
- 6. Preservation of regularities

Final motivating tweet

Citations

[0] Stanley, Kenneth O. "Compositional pattern producing networks: A novel abstraction of development." *Genetic programming and evolvable machines* 8.2 (2007): 131-162.

[1] Helms, Lucas, and Jeff Clune. "Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms." PloS one 12.3 (2017): e0174635.

[2] http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/