Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра информатики, вычислительной техники и информационной безопасности

Отчет защищен	с оценкой_	
Преподаватель_		С. В. Умбетов
« <u></u> »		2023 г.

Отчёт по лабораторной работе №5 по дисциплине «Алгоритмизация и программирование» «Двумерные массивы»

ЛР 09.03.03.5.005

Студент группы <u>ПИЭ-21</u>	А. Ю. Гончаров
группа	и.о., фамилия
Преподаватель ассистент, к. т. н.	С. В. Умбетов
должность, ученая степень	и.о., фамилия

Лабораторная работа №5

Двумерные массивы

Цели и задачи работы: Изучение алгоритмов формирования и обработки двумерных массивов, программирование и отладка программ формирования и обработки двумерных массивов.

Задание к работе: Реализовать программирование и отладку программм формирования и обработки двумерных массивов. Самостоятельно решить задачи в соответствии с индивидуальным вариантом.

Задание к выполнению принял: Гончаров А.Ю.

Ход работы

Задание №1. Даны положительные числа М, N, число D и набор из М чисел. Сформировать матрицу размера М х N, у которой первый столбец совпадает с исходным набором чисел, а элементы каждого следующего столбца равны сумме соответствующего элемента предыдущего столбца и числа D (в результате каждая строка матрицы будет содержать элементы арифметической прогрессии).

Составим блок-схему (рисунок 1) для решения данной задачи, которая представлена в варианте N = 5.

Рисунок 1 - блок-схема для задания №1

Напишем код программы в среде Microsoft Visual Studio Code. Программа представляет из себя два связанных файла. Первый файл (рисунок 2) расширения .html содержит гипертекстовую разметку Web-страницы (html-код), в том числе тег «script», содержащий ссылку на второй файл. Второй файл (рисунки 3-4) расширения .js содержит привязанный к html-странице JavaScript-код, реализующий ввод данных, формирование и обработку двумерных массивов в циклических процессах и вывод результатов.

Рисунок 2 – гипертекстовая разметка Web-страницы программы по заданию №1

```
Goncharov PIE21 lab5 1.v5.html
                               JS Goncharov PIE21 lab5 2.v5.js
C: > Users > alexe > OneDrive > Рабочий стол > АлтГТУ > Алг и Прог > III семестр > ЛР5 Двумерные массивы > ЛР5_Задания_и_блок-схемы > 👪 Goncharov_PIE2
      alert("Пользователь вводит целые положительные числа M, N (оба не больше десяти), число D. Программа формирует\
             набор из случайных М чисел в диапазоне от 1 до 20. Далее формируется матрица размера М х N,\
             у которой первый столбец совпадает с исходным набором чисел (list_M), а элементы каждого следующего столбца\
             равны сумме соответствующего элемента предыдущего столбца и числа D (в результате каждая строка матрицы будет\
             содержать элементы арифметической прогрессии).");
      let M;
      // Проверка М на соответствие условиям: целое и положительное (не больше десяти)
      do {
          M = prompt("Введите M:", 3);
      } while (M / (Math.round(M)) != 1 || M > 10 || M < 1);</pre>
      let list_M = [];
      for (let i = 0; i < M; i++) {
          list_M.push(Math.floor(Math.random() * (20 - 0 + 1)) + 0);
      // Проверка N на соответствие условиям: целое и положительное (не больше десяти)
      let N;
          N = prompt("Введите N", 3);
      } while (N / (Math.round(N)) != 1 || N > 10 || N < 1);</pre>
      let D;
      do {
          D = prompt("Введите D", 3);
      } while (D / (Math.round(D)) != 1);
```

Рисунок 3 – привязанный к html-странице JavaScript-код по заданию №1 (первая часть)

```
Goncharov_PIE21_lab5_1.v5.html
                              JS Goncharov_PIE21_lab5_2.v5.js
C: > Users > alexe > OneDrive > Рабочий стол > АлтГТУ > Алг и Прог > III семестр > ЛР5 Двумерные массивы > ЛР5_Задания_и_блок-схемы > 🥦 Gonchar
     let D;
     do {
       D = prompt("Введите D", 3);
     } while (D / (Math.round(D)) != 1);
      let list_MxN = [];
     for (let i = 0; i < M; i++) {
        list_MxN.push([]);
        for (let j = 0; j < N; j++) {
             list_MxN[i].push(list_M[i] + D * (j));
         if (i < M - 1) {
              list_MxN[i] = "[ " + list_MxN[i].join(', ') + " ],";
          } else {
              list_MxN[i] = "[ " + list_MxN[i].join(', ') + " ]";
      list_MxN = list_MxN.join("\n
      list MxN = "Матрица MxN = [" + list MxN;
      list_MxN = list_MxN + "]";
 41
      alert("M = " + M + ", N = " + N + ", D = " + D + "\nMaccub M = [ " + list_M.join(", ") + " ]\n" + list_MxN);
```

Рисунок 4 – привязанный к html-странице JavaScript-код по заданию №1 (вторая часть)

В написанной программе реализована проверка вводимого значения на соответствие условиям задания на всех этапах. Например, программа запрашивает значение N, пока оно не начнёт соответствовать следующим условиям: N - натуральное число от 1 до 10 включительно. После ввода корректного значения происходит переход к следующим инструкциям. Пример "реакции" программы показан на рисунках 5-6.

Рисунок 5 – ввод строки вместо натурального числа от 1 до 10 включительно

Подтвердите действие Введите N		
3		
	ОК	Отмена

Рисунок 6 – повторный запрос программой необходимой величины

Проведём тестирование написанной программы и проверку работы Visual Studio Code ручным способом на тетрадном листке с помощью преобразований в уме, поскольку математическая сложность данных действий совсем небольшая, а реализация проверки в электронных таблицах излишне трудоёмка для такого задания. Ниже в таблице 1 представлено сравнение результатов работы проверяемой программы и проверочные результаты.

Таблица 1 – Сравнение результатов выполнения задания №1

	Номер проверки и	Результаты работы	Проверочные результаты	Свер-
	исходные данные	программы	(матрица MxN)	ка
		(матрица MxN)		
	№1 (M=5, N=7, D=5, массив M = [0, 4, 10, 19, 13])	[[0, 5, 10, 15, 20, 25, 30], [4, 9, 14, 19, 24, 29, 34], [10, 15, 20, 25, 30, 35, 40], [19, 24, 29, 34, 39, 44, 49], [13, 18, 23, 28, 33, 38, 43]]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Да
Исходные данные и новые матрицы	№2 (M=8, N=4, D=-7, массив M = [5, 12, 5, 15, 11, 2, 15, 12])	[[5, -2, -9, -16], [12, 5, -2, -9], [5, -2, -9, -16], [15, 8, 1, -6], [11, 4, -3, -10], [2, -5, -12, -19], [15, 8, 1, -6], [12, 5, -2, -9]]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Да
	№3 (M=2, N=3, D=1, массив M = [6, 14])	[[6, 7, 8], [14, 15, 16]]	E 14, 15, 1677	Да
	№4 (M=4, N=4, D=4, массив M = [7, 18, 9, 16])	[[7, 11, 15, 19], [18, 22, 26, 30], [9, 13, 17, 21], [16, 20, 24, 28]]	[18, 11, 15, 10], (18, 22, 26, 302, [3, 13, 14, 21], [16, 20, 24, 28]]	Да
	№5 (M=1, N=5, D=95, массив M = [0, 4, 10, 19, 13])	[[3, 98, 193, 288, 383]]	[[3, 98, 103, 288, 383]]	Да

Задание №2. Дана матрица размера MxN (М - чётное число). Поменять местами верхнюю и нижнюю половины матрицы.

Составим блок-схему (рисунок 7) для решения данной задачи, которая представлена в варианте №5.

Рисунок 7 - блок-схема для задания №2

Напишем код программы в среде Microsoft Visual Studio Code. Программа представляет из себя два связанных файла. Первый файл (рисунок 8) расширения .html содержит гипертекстовую разметку Web-страницы (html-код), в том числе тег «script», содержащий ссылку на второй файл. Второй файл (рисунки 9-10) расширения .js содержит привязанный к html-странице JavaScript-код, реализующий ввод данных, формирование и обработку двумерных массивов в циклических процессах и вывод результатов.

```
      ♦ Goncharov_PIE21_lab5_1.v5.html
      J5 Goncharov_PIE21_lab5_1.v5.js
      ♦ Goncharov_PIE21_lab5_2.v5.html
      X

      > Users > alexe > OneDrive > Pa6oчий стол > АлтГТУ > Алт и Прог > III семестр > ЛР5 Двумерные массивы > ЛР5_Задан
      1 < (1D0CTYPE html>
      2 < head>
      3 < title>Гончаров_ПИЭ-21_ЛР-5_В-5_Зд2</title>

      4 </head>
      5 < body>
      6 < script src="Goncharov_PIE21_lab5_2.v5.js"></script>

      7 </bd>

      ⟨/body>
      8 </html>

    ♦ Goncharov_PIE21_lab5_2.v5.js">
```

Рисунок 8 – гипертекстовая разметка Web-страницы программы по заданию №2

```
Goncharov_PIE21_lab5_1.v5.html
                                  JS Goncharov_PIE21_lab5_1.v5.js
                                                                                                     JS Goncharov_PIE21_lab5_2.v5.js X
Users > alexe > OneDrive > Рабочий стол > АлтГТУ > Алг и Прог > III семестр > ЛР5 Двумерные массивы > ЛР5_Задания_и_блок-схемы > 🥦 Goncharov_PIE21_
      alert("Пользователь вводит целые положительные числа М (чётное), N (оба до десяти). Программа формирует матрицу\
              размера М х N из\
              случайных чисел в диапазоне от 10 до 99. Затем программа меняет местами верхнюю и нижнюю половины матрицы.");
      let M:
      // Проверка М на соответствие условиям: целое, положительное и чётное до десяти
          M = prompt("Введите M:", 4);
      while (M / (Math.round(M)) != 1 || M > 10 || M < 1 || M % 2 == 1);</pre>
 10
      // Проверка N на соответствие условиям: целое и положительное до десяти
      let N;
        N = prompt("Введите N", 3);
      } while (N / (Math.round(N)) != 1 || N > 10 || N < 1);</pre>
      let list_MxN = [];  // Изначальный массив MxN
let MxN_copy = [];  // Массив для записи значений list_MxN в строку
      for (let i = 0; i < M; i++) {
           list_MxN.push([]);
           for (let j = 0; j < N; j++) {
               list_MxN[i].push(Math.floor(Math.random() * (99 - 10 + 1)) + 10);
           MxN_copy.push(list_MxN[i].join(', ')); // Преобразование вложенных массивов в строки
```

Рисунок 9 – привязанный к html-странице JavaScript-код по заданию №2 (вторая часть)

```
Oncharov PIE21 lab5 1.v5.html
                                JS Goncharov PIE21 lab5 1.v5.js

◆ Goncharov PIE21 lab5 2.v5.html

                                                                                                JS Goncharov PIE21 lab5 2.v5.js X
Users > alexe > OneDrive > Рабочий стол > АлтГТУ > Алг и Прог > III семестр > ЛР5 Двумерные массивы > ЛР5_Задания_и_блок-схемы > 🥦 Goncharov_PIE21_lab
      let MxN_copy = []; // Массив для записи значений list_MxN в строку
     for (let i = 0; i < M; i++) {
         list_MxN.push([]);
          for (let j = 0; j < N; j++) {
               list_MxN[i].push(Math.floor(Math.random() * (99 - 10 + 1)) + 10);
          MxN_copy.push(list_MxN[i].join(', ')); // Преобразование вложенных массивов в строки
      MxN_copy = MxN_copy.join("\n
      let list_MxN_new = list_MxN;
           [list_MxN_new[i], list_MxN_new[i + M / 2]] = [list_MxN_new[i + M / 2], list_MxN_new[i]];
      // Преобразование вложенных массивов в строки
      for (let i = 0; i < M; i++) {
          list_MxN_new[i] = list_MxN_new[i].join(', ');
      list_MxN_new = list_MxN_new.join("\n
      alert("M = " + M + ", N = " + N + "\nИзначальный массив = [" + MxN_copy + "]" +
             "\nКонечный массив = [" + list_MxN_new + "]");
```

Рисунок 10 – привязанный к html-странице JavaScript-код по заданию №2 (вторая часть)

В написанной программе реализована проверка вводимого значения на соответствие условиям задания на всех этапах. Например, программа запрашивает значение М, пока оно не начнёт соответствовать следующим условиям: М - целое положительное чётное число не больше десяти. После ввода корректного значения происходит переход к следующим инструкциям. Пример "реакции" программы показан на рисунках 11-12.

Рисунок 12 – повторный запрос программой необходимой величины

Проведём тестирование написанной программы и проверку работы Visual Studio Code ручным способом на тетрадном листке с помощью преобразований в уме, поскольку логическая сложность данных действий совсем небольшая, а реализация проверки в электронных таблицах излишне трудоёмка для такого задания. Ниже в таблице 2 представлено сравнение результатов работы проверяемой программы и проверочные результаты.

Таблица 2 – Сравнение результатов выполнения задания №2

	Номер проверки и	Результаты работы	Проверочные результаты	Свер-
	исходные данные	программы (матрица MxN)	(матрица MxN)	ка
	№1 (M=4, N=3, [61, 10, 39 82, 19, 12 65, 86, 39 81, 68, 81])	[65, 86, 39 81, 68, 81 61, 10, 39 82, 19, 12]	65 86 39 81 68 81 61 10 39 82 19 12	Да
Исходные данные и новые матрицы	№2 (M=8, N=4, [41, 37, 68, 14 41, 48, 95, 75 73, 44, 11, 78 12, 76, 57, 59 66, 42, 28, 55 29, 78, 61, 92 44, 13, 50, 96 83, 41, 80, 86])	[66, 42, 28, 55 29, 78, 61, 92 44, 13, 50, 96 83, 41, 80, 86 41, 37, 68, 14 41, 48, 95, 75 73, 44, 11, 78 12, 76, 57, 59]	66 42 28 55 29 78 61 92 44 13 50 96 83 41 80 86 41 37 68 14 41 48 95 75 73 44 11 78 12 76 57 59	Да
	№3 (M=2, N=5, [74, 29, 53, 10, 50 47, 71, 57, 20, 22])	[47, 71, 57, 20, 22 74, 29, 53, 10, 50]	47 71 57 20 22 74 29 53 10 50	Да
	№4 (M=6, N=5, [85, 36, 69, 33, 11 80, 33, 55, 66, 54 78, 71, 40, 13, 99 68, 97, 60, 49, 86 70, 51, 13, 81, 28 16, 69, 34, 35, 59])	[68, 97, 60, 49, 86 70, 51, 13, 81, 28 16, 69, 34, 35, 59 85, 36, 69, 33, 11 80, 33, 55, 66, 54 78, 71, 40, 13, 99]	68 97 60 49 86 70 51 13 81 28 16 69 34 35 59 85 36 69 33 11 80 33 55 66 54 78 71 40 13 99	Да
	N25 (M=2, N=10, [89, 76, 68, 61, 56, 51, 58, 29, 43, 18 88, 86, 17, 42, 52, 98, 31, 38, 89, 52])	[88, 86, 17, 42, 52, 98, 31, 38, 89, 52 89, 76, 68, 61, 56, 51, 58, 29, 43, 18]	88 86 17 42 52 98 31 38 89 52 89 76 68 61 56 51 58 29 43 18	Да

Вывод

В ходе выполнения лабораторной работы я изучил алгоритмы формирования и обработки двумерных массивов, ознакомился с особенностями таких массивов в языке JavaScript посредством программирования и отладки циклических программ формирования и обработки двумерных массивов.

В написанных программах для реализации "прохода" по матрице мной были использованы вложенные циклы типа "for".

В ходе выполнения работы особенного внимания потребовало изучение механизмов преобразования вложенных массивов в строки.