Bài 3. CÁC KHÁI NIỆM MỞ ĐẦU

A. TÓM TẮT LÍ THUYẾT

1. Khái niêm vectď

Khái niệm: Vectơ là một đoạn thẳng có hướng. Vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là \overrightarrow{AB} , đọc là "vectơ AB".

Đối với vectoAB, ta gọi

- $oldsymbol{\Theta}$ Đường thẳng d đi qua hai điểm A và B là giá của vecto AB.
- $\mbox{\Large \ \ }$ Độ dài đoạn thẳng AB là độ dài của vect
ơAB, kí hiệu là $\left|\overrightarrow{AB}\right|.$

Khi không cần chỉ rõ điểm đầu và điểm cuối của vectơ, vectơ còn được kí hiệu là \vec{a} , \vec{b} , \vec{u} , \vec{v} , Độ dài của vectơ \vec{a} được kí hiệu là $|\vec{a}|$.

2. Hai vectơ cùng phương, cùng hướng, bằng nhau

Dịnh nghĩa: Hai vecto \vec{a} , \vec{b} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu là $\vec{a} = \vec{b}$.

Nhận xét: Khi cho trước vecto \overrightarrow{a} và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho $\overrightarrow{OA} = \overrightarrow{a}$.

3. Vecto không

Định nghĩa: Vectơ không (kí hiệu là $\overrightarrow{0}$) là vectơ có điểm đầu và điểm cuối trùng nhau. Với các điểm bất kì A, B, C ta có $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC}$.

Quy ước: $\vec{0}$ (vectơ không) cùng phương và cùng hướng với mọi vectơ; hơn nữa $|\vec{0}| = 0$. **Nhận xét:** Hai điểm A, B trùng nhau khi và chỉ khi $\overrightarrow{AB} = \vec{0}$.

B. CÁC DẠNG TOÁN

Xác định một vectơ, đô dài vectơ

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tứ giác ABCD. Hãy chỉ ra các vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của tứ giác.

VÍ DỤ 2. Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài các vectơ \overrightarrow{AB} , \overrightarrow{BD} , \overrightarrow{DB} .

VÍ DỤ 3. Cho tam giác đều ABC có cạnh bằng a. Gọi M là trung điểm của BC. Tính độ dài vecto \overrightarrow{AM} .

2. Bài tập tự luận

BÀI 1. Cho lục giác đều ABCDEF có cạnh bằng a.

- a) Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của ngũ giác?
- b) Tính độ dài các vecto \overrightarrow{AD}

BÀI 2. Cho tạm giác ABC vuông tại A có BC = 2a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} .

							ì	Ē	i	۶	1	P	Ē	í	١	١	ŀ	١	ı	Ē	1	ľ	ŀ	ı								
														•				•	•	•												
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•
								•	•	•	•	•	•	•		•											•	•				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•													•								•		•		•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•		
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•
		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	

2

Hai vecto cùng phương, cùng hướng và bằng nhau

Sử dụng các định nghĩa

- $oldsymbol{\Theta}$ Hai vectơ cùng phương nếu chúng có giá song song hoặc trùng nhau.
- ❷ Hai vectơ cùng phương thì cùng hướng hoặc ngược hướng.
- ❷ Hai vectơ bằng nhau nếu chúng cùng độ dài và cùng hướng.

1. Ví dụ minh hoạ

VÍ DỤ 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

VÍ DỤ 2. Cho hình bình hành ABCD có tâm là O . Hãy tìm các cặp vectơ khác $\overrightarrow{0},$ bằng nhau và

- a) có điểm đầu và điểm cuối trong các điểm A , B , C và D .
- b) có điểm đầu là O hoặc điểm cuối là O.

2. Bài tập tự luận

RÀI 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

BÀI 2. Cho tạm giác đều ABC, hãy chỉ ra mối quan hệ về độ dài, phương và hướng giữa cặp vecto \overrightarrow{BA} và \overrightarrow{CA} . Hai vecto có bằng nhau không?

BÀI 3.

Cho hình lục giác đều ABCDEF có tâm O.

- a) Hãy tìm các vectơ khác $\overrightarrow{0}$ và bằng với \overrightarrow{AB} .
- b) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là B.
- c) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là C.

BÀI 4. Chứng minh ba điểm A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB}, \overrightarrow{AC}$ cùng phương.

C. CÂU HỎI TRẮC NGHIỆM

CÂU 1. Chọn khẳng định đúng trong các khẳng định sau.

✓ VECTO					♥ VNPmath - 0962940819 ♥
(A) vectơ là một	a đường thẳng có h	ướng.			QUICK NOTE
(B) vectơ là một	đoạn thẳng.				
© vectơ là một	đoạn thẳng có hư	ớng.			
(D) vectơ là một	đoạn thẳng không	g phân biệt điểm đầu	và điểm cuối.		
CÂU 2. Cho tam	giác ABC có thể	xác đinh được bao nh	uiêu vectơ (khác vectơ kh	nông) có	
	cuối là đỉnh $A, B,$, <i>C</i> ?		0)	
A 2.	B 3.	C 4.	D 6.		
	liểm phân biệt $A,$	$B.$ Số vecto (khác $\overrightarrow{0}$)	có điểm đầu và điểm cuố	ối lấy từ	
các điểm A, B là \bigcirc 2.	B) 6.	(c) 13.	(D) 12.		
_	<u> </u>	<u> </u>			
\overrightarrow{A} $\overrightarrow{AB} = \overrightarrow{BC}$.	giac deu ABC . Me	ệnh đề nào sau đây \mathbf{sa} $\stackrel{\bullet}{(\mathbf{B})} \overrightarrow{AC} \neq \overrightarrow{B}$			
$ \overrightarrow{AB} = \overrightarrow{BC} $	\$	<u> </u>	ng cùng phương \overrightarrow{BC} .		
' ' '	'	_	ng cung phuong BC.		
_	nh nào dưới đây là				
(A) Môi vectơ để đó.	u có một độ dài, đ	ó là khoảng cách giữa	điểm đầu và điểm cuối củ	ıa vecto	
	vecto \overrightarrow{a} được kí hi	êu là [ਕੋ]			
$ \overrightarrow{\mathbf{C}} \overrightarrow{PQ} = \overrightarrow{PQ}. $		φα τα α .			
! !					
$\boxed{\mathbf{D}} \left \overrightarrow{AB} \right = AB$	=BA.				
	giác ABC . Gọi M	, N lần lượt là trung đ	liểm các cạnh $AB,AC.$ N	Mệnh đề	
nào sau đây sai ?		\rightarrow \sim \rightarrow $-$	→	 →I	
$(\mathbf{A}) BC = 2NM$	B $MN = \frac{1}{2}$	(BC). (C) $AN = N$	\overrightarrow{C} . $\boxed{\mathbf{D}} \left \overrightarrow{MA} \right = \left \overrightarrow{M} \right $	B.	
CÂU 7. Cho hai v	ecto không cùng p	hương \vec{a} và \vec{b} . Khẳng	g định nào sau đây đúng	?	
(A) Không có ve	ctơ nào cùng phươ	ơng với cả hai vecto \overrightarrow{a}	và \vec{b} .		
B Có vô số vec	cto cùng phương vớ	ới cả hai vectơ \overrightarrow{a} và \overrightarrow{b}			
C Có một vect	ơ cùng phương với	cả hai vecto \vec{a} và \vec{b} .			
D Có hai vecto	o cùng phương với	cả hai vecto \vec{a} và \vec{b} .			
CÂU 8. Cho 3 điể	m phân biệt A, B .	C. Khi đó khẳng địn	h nào sau đây sai ?		
_		khi \overrightarrow{AB} và \overrightarrow{AC} cùng			
_		khi \overrightarrow{AB} và \overrightarrow{BC} cùng			
\bigcirc A, B, C thả	ng hàng khi và chỉ	khi \overrightarrow{AC} và \overrightarrow{BC} cùng	phương.		
\bigcirc A, B, C thả	ng hàng khi và chỉ	khi $AC = BC$.			
CÂU 9. Mệnh đề	nào sau đây đúng?				
(A) Có duy nhất	một vectơ cùng p	hương với mọi vecto.			
B Có ít nhất h	ai vecto cùng phươ	ong với mọi vectơ.			
C Có vô số veo	cto cùng phương vớ	ới mọi vectơ.			
D Không có ve	ecto não cùng phươ	ong với mọi vecto.			
CÂU 10. Khẳng đ	định nào sau đây đ	úng?			
_	<u> </u>	t vectơ thứ ba thì cùn	<u> </u>		
<u> </u>	-	t vectơ thứ ba khác $\overrightarrow{0}$	thì cùng phương.		
<u> </u>	là vectơ không có				
Diều kiện đủ	í để hai vectơ bằng	g nhau là chúng có độ	dài bằng nhau.		
			$\vec{0}$ cùng phương vớ	i \overrightarrow{OC} có	
	cuối là các đỉnh ci		(A)		
(A) 6.	(B) 7.	(C) 8.	(D) 4.		

QUICK NOTE		ểm A, B, C phân biệ		 →
	_		$ \stackrel{\text{ang hàng là }}{\longrightarrow} \overrightarrow{AC} \text{ cùng } $	
			ng là \overrightarrow{CA} cùng phương	
			ang là \overrightarrow{CA} cùng phương	
	D Điều kiện cần	và đủ để A, B, C th	ẳng hàng là $\overrightarrow{AB} = \overrightarrow{AC}$	
	CÂU 13. Cho vectơ A vô số.	$\overrightarrow{MN} \neq \overrightarrow{0}$. Số vectơ B 1.	cùng hướng với vectơ \bar{l}	\overrightarrow{MN} là $lacktriangle$ 2.
	CÂU 14. Goi C là t	rung điểm của đoan	AB. Hãy chọn khẳng	định đúng trong các khẳng
	định sau.			
	$ \overrightarrow{\mathbf{A}} \ \overrightarrow{CA} = \overrightarrow{CB}. $		\bigcirc \overrightarrow{AB} và \overrightarrow{AC} cì	ing hướng.
	\bigcirc \overrightarrow{AB} và \overrightarrow{CB} ng	ược hướng.	$\boxed{\mathbf{D}} \left \overrightarrow{AB} \right = \overrightarrow{CB}.$	
	CÂU 15. Cho ba điệ Khi đó các cặp vecto		àng, trong đó điểm N	nằm giữa hai điểm M và P .
	$(\mathbf{A}) \overrightarrow{MP} \text{ và } \overrightarrow{PN}.$		\bigcirc \overrightarrow{NM} và \overrightarrow{NP} .	$(\mathbf{D}) \overrightarrow{MN}$ và \overrightarrow{MP} .
	CÂU 16. Phát biểu	nào sau đây đúng?		
			dài của chúng không b	àng nhau.
			dài của chúng không c	
			ng nhau hoặc song son	
		_	ng nhau noạc song son lau thì không cùng hướ	~
				mg.
	_	$\vec{a} \neq \vec{0}$. Mệnh đề nà		$\rightarrow \rightarrow \rightarrow \rightarrow$
	A Có vô số vecto		_	
		một \vec{u} mà $\vec{u} = -\vec{a}$.		tơ \vec{u} nào mà $\vec{u} = \vec{a}$.
	CÂU 18. Cho hình	the state of the s	Đẳng thức nào sau đây	sai?
	$\left \overrightarrow{AD} \right = \left \overrightarrow{BC} \right .$	$ \overrightarrow{BC} = \overrightarrow{DA} $	$\left . \bigcirc \left \overrightarrow{AB} \right = \left \overrightarrow{CD} \right .$	$\left \overrightarrow{AC} \right = \left \overrightarrow{BD} \right .$
	CÂU 19. Cho luc gi	ác đều <i>ABCDEF</i> tấ	àm O. Ba vectơ bằng v	ecto \overrightarrow{BA} là
		\overrightarrow{B} \overrightarrow{CA} , \overrightarrow{OF} , \overrightarrow{DB}	\overrightarrow{E} . \bigcirc \overrightarrow{OF} , \overrightarrow{DE} , \overrightarrow{CO}	. $\bigcirc \overrightarrow{OF}, \overrightarrow{ED}, \overrightarrow{OC}.$
	CÂU 20. Cho đoan	thẳng AB, I là trun	g điểm của <i>AB</i> . Khi đợ	- ń
	$(\mathbf{A}) \ \overrightarrow{BI} = \overrightarrow{AI}.$, , , , , , , , , , , , , , , , , , , ,	$\stackrel{f B}{B} \overrightarrow{BI}$ cùng hưới	
	$\boxed{\mathbf{c}} \left \overrightarrow{BI} \right = 2 \left \overrightarrow{IA} \right .$		$(\mathbf{D}) \left \overrightarrow{BI} \right = \left \overrightarrow{IA} \right .$	
			-	
				hức nào sau đây đúng?
	$\overrightarrow{\mathbf{A}} \ \overrightarrow{BC} = \overrightarrow{DA}.$		$\bigcirc \overrightarrow{BD} = \overrightarrow{AC}.$	$\left \overrightarrow{BD}\right = a.$
	CÂU 22. Cho hình	chữ nhật <i>ABCD</i> . Tr	ong các đẳng thức dưới	i đây, đẳng thức nào đúng?
	$(\mathbf{A}) \; \overrightarrow{AB} = \overrightarrow{CD}.$	$\overrightarrow{\mathbf{B}} \ \overrightarrow{AD} = \overrightarrow{BC}.$	$(\mathbf{C}) \overrightarrow{AC} = \overrightarrow{BD}.$	$\bigcirc \overrightarrow{BC} = \overrightarrow{DA}.$
	CÂU 23. Cho tam s	riác ABC với trung t	tuyến AM và trong tân	n G . Khi đó $ \overrightarrow{GA} $ bằng
	$\mathbf{A} \frac{1}{2} \overrightarrow{AM} .$	$\mathbf{B} \ \frac{2}{3} \overrightarrow{GM} .$		$\mathbf{D} - \frac{2}{3} \overrightarrow{MA} .$
	$\frac{\mathbf{A}}{2} AM .$	$\frac{\mathbf{G}}{3} GM $.	\bigcirc 2 GM .	$\mathbf{D} = \frac{1}{3} MA $.
		2	_	
	Bài 4	I. TÔNG VÀ	HIỆU CỦA HA	AI VECTO
	_	•	•	
	A. TÓM TẮT	LÝ THUYẾT		
	1. Phép toán c			
	_	• -	án. Khi thực hiện nhén	toán cộng hai vectơ, ta chú
	ý các quy tắc sau	co unin chat giao no	om izm onge men puep	tomi cons nai vecto, ta enu

 $\ \ \, \ \ \,$ Quy tắc 3 điểm: ("nối đuôi")

CÂU 23 Với ba điểm A,B,C bất kì, ta luôn có $|\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}|$

Quy tắc hình bình hành: ("chung đầu") **CÂU 23** Xét hình bình hành ABCD, ta luôn có $\overline{AB} + \overline{AD} = \overline{AC}$

 \bigcirc Quy tắc cộng vectơ đối: Nếu \vec{a} và \vec{b} đối nhau thì $\vec{a} + \vec{b} = \vec{0}$.

Tính chất: Với ba vectơ \vec{a} , \vec{b} , \vec{c} tùy ý

- $\ensuremath{ \bigodot}$ Tính chất giao hoán: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$.
- $m{\Theta}$ Tính chất kết hợp: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$.
- $m{\Theta}$ Tính chất của vectơ-không: $\vec{a} + \vec{0} = \vec{a}$.

2. Phép toán hiệu hai vectơ

- Vecto đối:
 - Vecto đối của \vec{a} kí hiệu là $-\vec{a}$.
 - Vecto đối của \overrightarrow{AB} là \overrightarrow{BA} , nghĩa là $\left[-\overrightarrow{AB} = \overrightarrow{BA} \right]$ (dùng để làm mất dấu trừ trước $vect\sigma$).
 - Vecto $\overrightarrow{0}$ được coi là vecto đối của chính nó.
- $\ \ \, \bigcirc$ Quy tắc trừ: Với ba điểm A,B,C bất kì, ta luôn có $\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$

3. Công thức trung điểm, trọng tâm

 \bigcirc Công thức trung điểm: Nếu M là trung điểm của đoạn AB thì

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$$

 $\ \, \bigcirc$ Công thức trọng tâm: Nếu G là trọng tâm của tam giác ABC thì

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

B. CÁC DẠNG TOÁN

Tính tổng, hiệu hai vectơ

- ❷ Ghép các vecto lại thích hợp.
- ❷ Dùng các quy tắc cộng vectơ để tính.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

	•	•	•	•	•				•	•	•	•	•	•	•	•						•	

-	-	Ī	Ī	Ī		•	•	•	•		Ī	Ī	Ī	Ī	Ī	Ī	•	•	•	•	•	•		•	•	Ī	

1. Ví dụ minh hoạ

CÂU 0. Cho tam giác ABC. Các điểm M, N và K lần lượt là trung điểm của AB, AC và BC.

- a) Tìm các vectơ bằng với \overline{MK} .
- b) Tìm các vectơ đối của \overrightarrow{MN} .
- c) Xác định các vecto $\overrightarrow{AM} + \overrightarrow{MN}$; $\overrightarrow{AM} + \overrightarrow{NK}$; $\overrightarrow{AM} + \overrightarrow{NK}$ \overrightarrow{KN} : $\overrightarrow{AM} - \overrightarrow{AN}$: $\overrightarrow{MN} - \overrightarrow{NC}$: $\overrightarrow{BK} - \overrightarrow{CK}$.

CÂU 0. Cho hình bình hành ABCD tâm O.

- a) Tìm vecto bằng với \overrightarrow{OC} .
- b) Xác định các vecto $\overrightarrow{OA} + \overrightarrow{OC}$; $\overrightarrow{OB} + \overrightarrow{OD}$; $\overrightarrow{AB} + \overrightarrow{CD}$: $\overrightarrow{AD} - \overrightarrow{BC}$: $\overrightarrow{OA} + \overrightarrow{DC}$.

CÂU 0. Cho hình bình hành ABCD Hai điểm M và Nlần lượt là trung điểm của BC và AD Xác định vecto

$$\overrightarrow{DA} + \overrightarrow{DC}$$
,

$$\overrightarrow{AM} + \overrightarrow{AN}$$
.

$$\overrightarrow{AN} + \overrightarrow{CM}$$
.

$$\overrightarrow{MB} + \overrightarrow{NC}$$
.

2. Bài tập tự luận

BÀI 1. Tính tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$.

BÀI 2. Cho tạm giác ABC với M, N, P lần lượt là trung điểm của BC, CA, AB. Tính tổng $\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN}$.

BÀI 3. Cho hai hình bình hành ABCD và AB'C'D' có chung đỉnh A. Tính $\overrightarrow{u} = \overrightarrow{B'B} + \overrightarrow{B'B}$ $\overrightarrow{CC'} + \overrightarrow{D'D}$.

BÀI 4. Cho tam giác ABC, gọi D, E, F, G, H, I theo thứ tự là trung điểm các cạnh AB, BC, CA, DF, DE, EF. Tính vecto $\overrightarrow{u} = \overrightarrow{BE} - \overrightarrow{GH} - \overrightarrow{AI} + \overrightarrow{FE}$?

CÂU 0. Cho lục giác đều ABCDEF tâm O. Rút gọn vecto $\overrightarrow{v} = \overrightarrow{AF} + \overrightarrow{BC} + \overrightarrow{DE}?$

BÀI 6. Goi O là tâm của tam giác đều ABC. Tính $\overrightarrow{u} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.

BÀI 7. Cho hình bình hành ABCD. Trên các đoạn thẳng DC, AB theo thứ tự lấy các điểm M, N sao cho DM = BN. Gọi P là giao điểm của AM, DB và Q là giao điểm của CN, DB. Tính $\vec{u} = \overrightarrow{DP} - \overrightarrow{QB}$.

Xác định vị trí của một điểm từ đẳng thức vecto

1. Ví dụ minh hoạ

VÍ DU 1. Cho tam giác ABC. Điểm M thỏa mãn điều kiên $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Mênh đề nào sau đây đúng?

- (\mathbf{A}) M là điểm sao cho tứ giác BAMC là hình bình hành.
- (**B**) M là điểm sao cho tứ giác ABMC là hình bình hành.
- (**C**) M là trọng tâm tam giác ABC.
- $(\mathbf{D}) M$ thuộc đường trung trực của AB.

2. Bài tập tự luận

BÀI 1. Cho tam giác ABC. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.

BÀI 2. Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiên $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} =$ AM.

BÀI 3. Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $|\overrightarrow{MB} + \overrightarrow{CD}| =$ $|\overrightarrow{MC} + \overrightarrow{DA}|$.

Tính độ dài vectơ

1. Ví du minh hoa

VÍ DỤ 1. Cho tam giác đều ABC có cạnh AB = a, xác định và tính độ dài của vecto

a)
$$\vec{x} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

b)
$$\vec{y} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

VÍ DU 2.

Cho hình vuông ABCD tâm O cạnh bằng a. Tính

a)
$$\left| \overrightarrow{AB} + \overrightarrow{BC} \right|$$
.

b)
$$\left| \overrightarrow{AB} - \overrightarrow{AC} \right|$$

b)
$$\left| \overrightarrow{AB} - \overrightarrow{AC} \right|$$
. c) $\left| \overrightarrow{AB} + \overrightarrow{OD} - \overrightarrow{BC} \right|$.

2. Bài tập tự luận

BÀI 1. Cho tạm giác ABC vuông tại A có AB=2, AC=4, xác định và tính độ dài của vecto $\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}$.

BÀI 2. Cho hình chữ nhật ABCD có AC = 5, AB = 3, xác định và tính độ dài của vecto

a)
$$\vec{a} = \overrightarrow{AD} - \overrightarrow{AC}$$
.

b)
$$\vec{b} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

BÀI 3. Cho hình thang ABCD có $\widehat{A} = \widehat{D} = 90^{\circ}$, AB = AD = 3, CD = 5, xác định và tính đô dài của vectơ

a)
$$\vec{x} = \overrightarrow{AB} - \overrightarrow{AC}$$
.

b)
$$\vec{y} = \overrightarrow{DB} + \overrightarrow{DC}$$
.

Chứng minh một đẳng thức vectơ

Ta thường dùng một trong hai cách sau:

- ① Thực hiện các phép toán, biến đổi đẳng thức cần chứng minh đi đến một kết quả hiển nhiên đúng.
- ② Biến đổi vế phức tạp thành vế đơn giản (biến vế trái thành vế phải hoặc ngược

1. Ví du minh hoa

VÍ DỤ 1. Cho bốn điểm $A,\,B,\,C,\,D.$ Chứng minh các đẳng thức sau:

a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$$
;

b)
$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$$
;

c)
$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$$
;

d)
$$\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AC} - \overrightarrow{BD}$$
.

VÍ DỤ 2. Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA và AB; Olà một điểm bất kì. Chứng minh rằng

a)
$$\overrightarrow{BM} + \overrightarrow{CN} + \overrightarrow{AP} = \overrightarrow{0}$$
;

b)
$$\overrightarrow{AP} + \overrightarrow{AN} - \overrightarrow{AC} + \overrightarrow{BM} = \overrightarrow{0}$$
;

c)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM} + \overrightarrow{ON} + \overrightarrow{OP}$$
.

VÍ DU 3. Cho hình bình hành ABCD tâm O; M là một điểm bất kì trong mặt phẳng . Chứng minh

a)
$$\overrightarrow{BA} + \overrightarrow{DA} + \overrightarrow{AC} = \overrightarrow{0}$$
;

b)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
;

c)
$$\overrightarrow{OA} + \overrightarrow{DC} = \overrightarrow{CO} - \overrightarrow{CD}$$
;

d)
$$\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$$
.

2. Bài tấp tư luân

BÀI 1. Cho năm điểm A, B, C, D, E. Chứng minh rằng

a)
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EA} = \overrightarrow{CB} + \overrightarrow{ED}$$
;

b)
$$\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}$$
.

BÀI 2. Cho các sáu điểm A, B, C, D, E, F. Chứng minh rằng

a)
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EA} = \overrightarrow{CB} + \overrightarrow{ED}$$
;

b)
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{AE} + \overrightarrow{BF} + \overrightarrow{CD}$$
;

c)
$$\overrightarrow{AC} + \overrightarrow{DE} - \overrightarrow{DC} - \overrightarrow{CE} + \overrightarrow{CB} = \overrightarrow{AB}$$
;

c)
$$\overrightarrow{AC} + \overrightarrow{DE} - \overrightarrow{DC} - \overrightarrow{CE} + \overrightarrow{CB} = \overrightarrow{AB}$$
; d) $\overrightarrow{AB} - \overrightarrow{AF} + \overrightarrow{CD} - \overrightarrow{CB} + \overrightarrow{EF} - \overrightarrow{ED} = \overrightarrow{0}$.

BÀI 3. Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC các hình bình hành ABEF, ACPQ, BCIJ. Chứng minh $\overrightarrow{EJ} + \overrightarrow{IP} + \overrightarrow{QF} = \overrightarrow{0}$.

BÀI 4. Cho tam giác ABC có trung tuyến AM.

a) Chứng minh
$$\overrightarrow{MA} - \overrightarrow{BA} + \overrightarrow{AC} - \overrightarrow{AM} = \overrightarrow{0}$$
;

b) Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC; BE cắt AM tại NChứng minh \overrightarrow{NA} và \overrightarrow{NM} là hai vec tơ đối nhau.

BÀI 5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA. Chứng minh rằng MQ = NP.

BÀI 6. Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm BC và AD. Chứng minh rằng

a)
$$\overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{AD}$$
;

b)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
:

c)
$$\overrightarrow{OB} + \overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{OA}$$
;

d)
$$\overrightarrow{ND} - \overrightarrow{AB} = \overrightarrow{BC} - \overrightarrow{AM}$$
.

Ứng dụng của vectơ trong thực tiễn

Phép cộng vectơ tương ứng với các quy tắc tồng hợp Iực, tổng hợp vận tốc:

- Nếu hai lực cùng tác động vào chất điểm A và được biểu diễn bởi các vecto \vec{u}_1, \vec{u}_2 thì hợp lực tác động vào A được biểu diễn bởi vecto $\vec{u}_1 + \vec{u}_2$.
- Nếu một con thuyền di chuyền trên sông với vận tốc riêng (vận tốc so với dòng nước) được biểu diễn bởi vect
ơ $\overrightarrow{v_r}$ và vận tốc của dòng nước (so với bờ) được biểu diễn bởi vectơ $\overline{v_n}$ thì vận tốc thực tế của thuyền (so với bờ) được biểu diễn bởi vector $\vec{v}_r + \vec{v}_n$.

1. Ví du minh hoa

VÍ DU 1.

Cho hai lực đồng quy $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$ như hình vẽ. Biết độ lớn của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ lần lượt là 3N và 2N. Tính độ lớn hợp lực của $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$.

VÍ DU 2.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\widehat{AMB}=60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

VÍ DU 3.

Tính lực kéo cần thiết để kéo một khẩu pháo có trọng lượng 22 148 N (xấp xỉ 2 260 kg) lên một con dốc nghiêng 30° so với phương nằm ngang (hình bên). Nếu lực kéo của mỗi người bằng 100 N thì cần tối thiểu bao nhiêu người để kéo pháo (bỏ qua ma sát trượt giữa bánh xe và mặt phẳng nghiêng)?

VÍ DU 4.

Hai con tàu xuất phát cùng lúc từ bờ bên này để sang bờ bên kia của dòng sông (hai bờ song song nhau) với vận tốc riêng không đổi và có độ lớn bằng nhau. Hai tàu luôn giữ lái sao cho chúng tạo với bờ cùng một góc nhọn nhưng một tàu hướng xuống hạ lưu, một tàu hướng lên thượng nguồn. Vận tốc dòng nước là đáng kể, các yếu tố bên ngoài khác không ảnh hưởng tới vận tốc của các tàu. Hỏi tàu nào sang bờ bên

2. Bài tấp tư luân

RÀI 1

Cho hai lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \vec{F}_1 , \vec{F}_2 lần lượt là 300 (N) và 400 (N) và 4

BÀI 2.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{AMB} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

C. CÂU HỔI TRẮC NGHIỆM

CÂU 1. Cho ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng?

(A)
$$\overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{CB}$$
. (B) $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}$. (C) $\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{BC}$. (D) $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}$.

CÂU 2. Rút gon biểu thức vecto $\overrightarrow{AM} + \overrightarrow{MB} - \overrightarrow{AC}$ ta được kết quả đúng là

- $(A) \overrightarrow{MB}.$
- $\overrightarrow{\mathbf{C}}$ \overrightarrow{CB} .
- \bigcirc \overrightarrow{AB} .

CÂU 3. Goi O là tâm hình vuông ABCD. Tính $\overrightarrow{OB} - \overrightarrow{OC}$.

 $(\overrightarrow{A}) \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{BC}.$

- $\overrightarrow{\mathbf{B}} \overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{DA}.$
- $\overrightarrow{\textbf{C}} \overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{OD} \overrightarrow{OA}.$

CÂU 4. Cho bốn điểm A, B, C, D phân biệt và $\vec{u} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CB} - \overrightarrow{BD}$. Khẳng định nào sau đây đúng?

- $(\mathbf{A}) \vec{u} = \vec{0}.$
- $(\mathbf{B}) \ \overrightarrow{u} = \overrightarrow{AD}.$
- $\overrightarrow{\mathbf{D}} \ \overrightarrow{u} = \overrightarrow{AC}.$

CÂU 5.

Cho hình bình hành ABCD tâm O . Hỏi vecto $\overrightarrow{AO}-\overrightarrow{DO}$ bằng vectơ nào trong các vectơ sau?

- $(\mathbf{A}) \overrightarrow{BA}$.
- $(\mathbf{B}) \overrightarrow{BC}.$
- $(\mathbf{C}) \overrightarrow{DC}.$
- $(\mathbf{D}) \overrightarrow{AC}.$

CÂU 6. Cho tạm giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Tổng $\overrightarrow{MP} + \overrightarrow{NP}$ bằng vecto nào?

- $(\mathbf{A}) \overrightarrow{PA}.$
- $(\mathbf{B}) \overrightarrow{AM}.$
- $(\mathbf{C}) \overrightarrow{PB}.$
- $(\mathbf{D}) \overrightarrow{AP}.$

CÂU 7.

AII	ICK	NO	Π.
SU		\mathbf{n}	ш.

Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây

$$(\mathbf{A}) \overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = \overrightarrow{0}.$$

$$(\mathbf{C}) \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{0}.$$

$$(\mathbf{D}) \overrightarrow{BC} + \overrightarrow{EF} = \overrightarrow{AD}.$$

CÂU 8. Cho hình bình hành ABCD, vecto $\overrightarrow{BC} - \overrightarrow{AB}$ bằng vecto nào dưới đây?

- $(A) \overrightarrow{DB}.$
- $(\mathbf{B}) \ \overrightarrow{BD}.$
- (C) \overrightarrow{AC} .
- $(\mathbf{D}) \ \overrightarrow{CA}.$

CÂU 9.

Cho hình bình hành ABCD. Goi G là trong tâm của tam giác ABC. Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) \ \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{BD}.$$

$$(\mathbf{B}) \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{CD}.$$

$$(\mathbf{C}) \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{O}.$$

$$(\mathbf{D}) \overrightarrow{GA} + \overrightarrow{GD} + \overrightarrow{GC} = \overrightarrow{CD}.$$

CÂU 10. Chọn mệnh đề sai trong các mệnh đề sau.

(A) Nếu
$$\vec{a} + \vec{b} = \vec{c} \text{ thì } |\vec{a}| + |\vec{b}| = |\vec{c}|.$$

$$\overrightarrow{B}$$
 $\overrightarrow{FY} - \overrightarrow{BY} = \overrightarrow{FB}$ với B, F, Y bất kì.

(**c**) Nếu
$$ABCD$$
 là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

$$(\mathbf{D}) \overrightarrow{AM} + \overrightarrow{MH} = \overrightarrow{AH} \text{ với } A, M, H \text{ bất kì.}$$

CÂU 11. Trong mặt phẳng cho bốn điểm bất kì A, B, C, O. Đẳng thức nào sau đây là đúng?

$$(\mathbf{A}) \ \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA}. \ (\mathbf{B}) \ \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}. \ (\mathbf{C}) \ \overrightarrow{OA} = \overrightarrow{CA} - \overrightarrow{CO}. \ (\mathbf{D}) \ \overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{BA}.$$

CÂU 12. Cho ba điểm A, B, C phân biệt. Đẳng thức nào sau đây là sai?

$$(\mathbf{A}) \ \overrightarrow{AC} + \overrightarrow{AB} = \overrightarrow{CB}. \ (\mathbf{B}) \ \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}. \ (\mathbf{C}) \ \overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}. \ (\mathbf{D}) \ \overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}.$$

CÂU 13. Tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$ bằng

- $(\mathbf{A}) \ \overrightarrow{MR}.$
- $(\mathbf{B}) \ \overrightarrow{MN}.$
- $(\mathbf{D}) \, \overrightarrow{MQ}.$

CÂU 14. Cho 4 điểm bất kì A, B, C, D. Đẳng thức nào sau đây sai?

 $(\mathbf{A}) \ \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}.$

(B) $\overrightarrow{DA} = \overrightarrow{BD} - \overrightarrow{CD}$.

 $(\mathbf{C}) \overrightarrow{AB} = \overrightarrow{DB} - \overrightarrow{DA}.$

 $(\mathbf{D}) \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC}.$

CÂU 15. Cho bốn điểm A, B, C. Tính $\overrightarrow{AB} - \overrightarrow{AC}$.

- $(A) \overrightarrow{CA}.$
- $(\mathbf{B})\ 2 \cdot \overrightarrow{AC}.$
- $(\mathbf{C}) \vec{0}$.
- $(\mathbf{D}) \overrightarrow{AC}$.

CÂU 16. Cho tam giác ABC và điểm M bất kỳ, chọn đẳng thức **đúng**.

 $(\mathbf{A}) \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$

 $(\mathbf{B}) \overrightarrow{MA} + \overrightarrow{BM} = \overrightarrow{AB}.$

 $(\mathbf{C}) \overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{CB}.$

 $(\mathbf{D}) \overrightarrow{AA} - \overrightarrow{BB} = \overrightarrow{AB}.$

CÂU 17. Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD. Tổng của \overrightarrow{NC} và \overrightarrow{MC} là

- $(\mathbf{A}) \vec{0}$.
- (B) \overrightarrow{MN} .
- $(\mathbf{C}) \ \overrightarrow{NM}.$
- $(\mathbf{D}) \overrightarrow{AC}$.

CÂU 18. Cho hình bình hành ABCD. Gọi I, J lần lượt là trung điểm BC và AD. Tính $\overline{JC} - \overline{IC}$ không bằng

- $(\mathbf{A}) \ \overrightarrow{DC}.$
- $(\mathbf{B}) \ \overrightarrow{JI}$.
- $(\mathbf{C}) \overrightarrow{AB}.$
- $(\mathbf{D}) \, \overrightarrow{AC}$.

CÂU 19. Cho hình bình hành ABCD. Điểm M thỏa mãn điều kiên $\overrightarrow{MB} - \overrightarrow{BC} + \overrightarrow{BO} = \overrightarrow{DO}$. Khẳng định nào sau đây đúng?

(A) M trùng với A. (B) M trùng với B. (C) M trùng với O. (D) M trùng với C.

CÂU 20. Cho hình bình hành ABCD có tâm O. Điểm M thỏa mãn điều kiện OM = 0 $\overrightarrow{OA} - \overrightarrow{OB} + \overrightarrow{DC}$. Khẳng định nào sau đây đúng?

(A) M trùng với B.

(**B**) M trùng với D.

(**C**) M trùng với A.

 $(\mathbf{D}) M$ trùng với điểm O.

☑ VECTO VNPmath - 0962940819 **CÂU 21.** Cho bốn điểm phân biệt A, B, C, D. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{MD} =$ **QUICK NOTE** $\overrightarrow{AD} + \overrightarrow{BC}$. Khẳng định nào sau đây đúng? $(\mathbf{A}) M$ là trung điểm CD. **(B)** M là trung điểm AB. \bigcirc M là trung điểm AD. $(\mathbf{D}) M$ là trung điểm BC. **CÂU 22.** Cho các điểm phân biệt A, B, C, D, E, F. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{ME} + \overrightarrow{MF} = \overrightarrow{AC} + \overrightarrow{BE} + \overrightarrow{DF}$. Khẳng định nào sau đây đúng? (A) M là trọng tâm tam giác ABC. (**B**) M là trọng tâm tam giác BCD. (**C**) M là trọng tâm tam giác ABD. (**D**) M là trọng tâm tam giác ACD. **CÂU 23.** Cho hình bình hành ABCD có E là trung điểm AB. Điểm M thỏa mãn điều kiên $E\dot{B} = A\dot{M} - B\dot{C}$. Khẳng định nào sau đây đúng? (A) M là trung điểm AD. (**B**) M là trung điểm CD. (**C**) M là trung điểm AB. $(\mathbf{D}) M$ là trung điểm BC. **CÂU 24.** Cho tam giác ABC đều có canh bằng a. Tìm tập hợp điểm M thỏa mãn điều kiên $\left| \overrightarrow{MC} \right| = \left| \overrightarrow{AB} + \overrightarrow{AC} \right|.$ (A) M thuộc đường tròn tâm A bán kính $a\sqrt{3}$. **(B)** M thuộc đường tròn tâm C bán kính $\frac{a\sqrt{3}}{2}$ (**c**) M thuộc đường tròn tâm B bán kính $a\sqrt{3}$. (**D**) M thuộc đường tròn tâm C bán kính $a\sqrt{3}$. **CÂU 25.** Cho hình thang ABCD có AB song song với CD. Cho AB = 2a, CD = a. O là trung điểm của AD. Khi đó, $\left| \overrightarrow{OB} + \overrightarrow{OC} \right| = \frac{3a}{2}$ $|\overrightarrow{OB} + \overrightarrow{OC}| = a.$ $\left| \overrightarrow{OB} + \overrightarrow{OC} \right| = 2a.$ $(\mathbf{D})\left|\overrightarrow{OB} + \overrightarrow{OC}\right| = 3a.$ **CÂU 26.** Cho tam giác ABC vuông cân tại A có $BC = a\sqrt{2}$, M là trung điểm của BC. Khẳng định nào sau đây đúng? $\left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{2}}{2}.$ $|\overrightarrow{BA} + \overrightarrow{BM}| = a.$ \bigcirc $|\overrightarrow{BA} + \overrightarrow{BM}| = \frac{a\sqrt{3}}{2}.$ $\left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{6}}{2}$ **CÂU 27.** Cho hình vuông ABCD cạnh a tâm O. Tính theo a độ dài của vecto $\vec{u} = \overrightarrow{AB} + \overrightarrow{OD} - \overrightarrow{BC}.$ \bigcirc $\frac{a\sqrt{2}}{\hat{a}}$. \bigcirc $\frac{3a\sqrt{2}}{2}$. $(\mathbf{c}) a\sqrt{2}$. **CÂU 28.** Cho hình vuông ABCD có cạnh bằng a. Khi đó $|\overrightarrow{AD} + \overrightarrow{AB}|$ bằng $\bigcirc \frac{\sqrt{3}}{2}$. \bigcirc 2a. **CÂU 29.** Cho tam giác ABC vuông cân tại C, $AB = \sqrt{2}$. Tính độ dài của $\overrightarrow{AB} + \overrightarrow{AC}$ **(B)** $2\sqrt{5}$. (**c**) $\sqrt{3}$. **CÂU 30.** Cho hình bình hành ABCD có DA = 2cm, AB = 4cm và đường chéo BD = 5cm. Tính $|\overrightarrow{BA} - \overrightarrow{DA}|$. **(B)** 4cm. **(C)** 5cm. (A) 2cm. (\mathbf{D}) 6cm. **CÂU 31.** Cho hình thang ABCD có hai đáy AB = a, CD = 2a. Gọi M, N là trung điểm của AD, BC. Khi đó $|\overrightarrow{MA} + \overrightarrow{MC} - \overrightarrow{MN}|$ bằng $\bigcirc \frac{a}{2}$. $(\mathbf{B}) 3a.$ $(\mathbf{D}) 2a.$

độ dài vecto $M\dot{D}$.

(A) $a\sqrt{2}$.

CÂU 32. Cho hình vuông ABCD cạnh a, \underline{d} là đường thẳng qua \underline{A} , song song với BD. Gọi M là điểm thuộc đường thẳng d sao cho $|\overline{MA} + \overline{MB} + \overline{MC} - \overline{MD}|$ nhỏ nhất. Tính theo a

 $\bigcirc \frac{a\sqrt{5}}{2}$

CÂU 33.

Cho hai lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \vec{F}_1 , \vec{F}_2 đều bằng 300 (N) và $\widehat{AMB} = 120^{\circ}$. Tìm cường độ của lực tổng hợp tác động vào vật.

- (A) 300 (N). (B) 700 (N). (C) 100 (N). (D) 500 (N).

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 25 (N) và góc $\widehat{AMB} = 60^{\circ}$. Khi đó cường độ lực của \overrightarrow{F}_3 là

- **(A)** $25\sqrt{3}$ (N).
- **B**) $50\sqrt{3}$ (N).
- **(c)** $50\sqrt{2}$ (N).
- **(D)** $100\sqrt{3}$ (N).

CÂU 35.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\widehat{AMB} = 120^\circ$ và $\widehat{AMC} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- (A) 300 (N). (B) 700 (N). (C) 100 (N).
- **(D)** 500 (N).

CÂU 36.

Cho ba lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$, $\vec{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực $\vec{F}_1, \, \vec{F}_2$ đều bằng 300 (N) và $\vec{F}_3 = 400$ (N). Lại có $\widehat{AMB} = 120^{\circ}$ và $\widehat{AMC} = 150^{\circ}$. Tìm cường đô của lực tổng hợp tác động vào vật.

- **(A)** 300 (N).
- **(B)** 700 (N).
- **(C)** 100 (N).
- **(D)** 500 (N).

Bài 3.	Các khái niệm mở đầu	1
A	Tóm tắt lí thuyết	1
B	Các dạng toán	1
	Dạng 1. Xác định một vectơ, độ dài vectơ	1
	🗁 Dạng 2. Hai vectơ cùng phương, cùng hướng và bằng nhau	2
	Câu hỏi trắc nghiệm	2
Bài 4.	Tổng và hiệu của hai vectơ	4
A	TÓM TẮT LÝ THUYẾT	4
\mathbf{B}	Các dạng toán	5
	🗁 Dạng 1. Tính tổng, hiệu hai vectơ	5
	Dạng 2. Xác định vị trí của một điểm từ đẳng thức vecto	
	🗁 Dạng 3. Tính độ dài vectơ	7
	🗁 Dạng 4. Chứng minh một đẳng thức vecto	7
	Dạng 5. Ứng dụng của vectơ trong thực tiễn	8
	Câu hỏi trắc nghiệm	9

