

Non-IID Setting

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS, 2017

Federated Optimization

Key properties different from a typical distributed optimization problem

- Non i.i.d
 - Local dataset will not be representative of the population distribution
- <u>Unbalanced</u>
 - Varying amounts of local training data
- Massively distributed
 - The number of clients is much larger than the number of examples per client
- Limited communication
 - Devices are frequently offline or on slow