応用関数解析特論レポート

園田継一郎

2021年12月17日

1

ℂ2 の標準基底

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

について He_1 , He_2 を計算すると

$$He_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$He_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

となる. それぞれの内積は

$$\begin{split} \langle \mathrm{H}e_1, \mathrm{H}e_1 \rangle &= \frac{1}{2}(1+1) = 1 = \langle e_1, e_1 \rangle \\ \langle \mathrm{H}e_1, \mathrm{H}e_2 \rangle &= \frac{1}{2}(1-1) = 0 = \langle e_1, e_2 \rangle \\ \langle \mathrm{H}e_2, \mathrm{H}e_1 \rangle &= \frac{1}{2}(1-1) = 0 = \langle e_2, e_1 \rangle \\ \langle \mathrm{H}e_2, \mathrm{H}e_2 \rangle &= \frac{1}{2}(1+1) = 1 = \langle e_2, e_2 \rangle \end{split}$$

となり、標準基底について H はユニタリ作用素の条件を満たす. $\forall x,y \in \mathbb{C}^2$ は e_1,e_2 の線形結合で表せるので、

$$\langle Hx, Hy \rangle = \langle x, y \rangle$$

が得られる. よって H はユニタリ作用素である.