Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung/Berufsreifeprüfung

BHS/BRP

17. September 2021

Angewandte Mathematik
Berufsreifeprüfung
Mathematik
Korrekturheft

BAfEP, BASOP, BRP

Beurteilung der Klausurarbeit

Beurteilungsschlüssel

erreichte Punkte	Note
44-48 Punkte	Sehr gut
38-43 Punkte	Gut
31-37 Punkte	Befriedigend
23-30 Punkte	Genügend
0-22 Punkte	Nicht genügend

Jahresnoteneinrechnung: Damit die Leistungen der letzten Schulstufe in die Beurteilung des Prüfungsgebiets einbezogen werden können, muss die Kandidatin/der Kandidat mindestens 14 Punkte erreichen.

Den Prüferinnen und Prüfern steht während der Korrekturfrist ein Helpdesk des BMBWF beratend zur Verfügung. Die Erreichbarkeit des Helpdesks wird für jeden Prüfungstermin auf *https://ablauf.srdp.at* gesondert bekanntgegeben.

Handreichung zur Korrektur

Für die Korrektur und die Bewertung sind die am Prüfungstag auf *https://korrektur.srdp.at* veröffentlichten Unterlagen zu verwenden.

- 1. In der Lösungserwartung ist ein möglicher Lösungsweg angegeben. Andere richtige Lösungswege sind als gleichwertig anzusehen. Im Zweifelsfall kann die Auskunft des Helpdesks in Anspruch genommen werden.
- 2. Der Lösungsschlüssel ist **verbindlich** unter Beachtung folgender Vorgangsweisen anzuwenden:
 - a. Punkte sind zu vergeben, wenn die jeweilige Handlungsanweisung in der Bearbeitung richtig umgesetzt ist.
 - b. Berechnungen im offenen Antwortformat ohne nachvollziehbaren Rechenansatz bzw. ohne nachvollziehbare Dokumentation des Technologieeinsatzes (verwendete Ausgangsparameter und die verwendete Technologiefunktion müssen angegeben sein) sind mit null Punkten zu bewerten.
 - c. Werden zu einer Teilaufgabe mehrere Lösungen von der Kandidatin/vom Kandidaten angeboten und nicht alle diese Lösungen sind richtig, so ist diese Teilaufgabe mit null Punkten zu bewerten, sofern die richtige Lösung nicht klar als solche hervorgehoben ist.
 - d. Bei abhängiger Punktevergabe gilt das Prinzip des Folgefehlers. Wird von der Kandidatin/vom Kandidaten beispielsweise zu einem Kontext ein falsches Modell aufgestellt, mit diesem Modell aber eine richtige Berechnung durchgeführt, so ist der Berechnungspunkt zu vergeben, wenn das falsch aufgestellte Modell die Berechnung nicht vereinfacht.
 - e. Werden von der Kandidatin/vom Kandidaten kombinierte Handlungsanweisungen in einem Lösungsschritt erbracht, so sind alle Punkte zu vergeben, auch wenn der Lösungsschlüssel Einzelschritte vorgibt.
 - f. Abschreibfehler, die aufgrund der Dokumentation der Kandidatin/des Kandidaten als solche identifizierbar sind, sind ohne Punkteabzug zu bewerten, wenn sie zu keiner Vereinfachung der Aufgabenstellung führen.
 - g. Rundungsfehler sind zu vernachlässigen, wenn die Rundung nicht explizit eingefordert ist
 - h. Jedes Diagramm bzw. jede Skizze, die Lösung einer Handlungsanweisung ist, muss eine qualitative Achsenbeschriftung enthalten, andernfalls ist dies mit null Punkten zu bewerten.
 - i. Die Angabe von Einheiten ist bei der Punktevergabe zu vernachlässigen, sofern sie nicht explizit eingefordert ist.

Speerwurf

a1)
$$z = w - w \cdot \cos\left(\frac{\alpha}{2}\right)$$

a2)
$$b = \pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$$

$$r = \frac{b \cdot 180^{\circ}}{\pi \cdot \alpha} = \frac{48,08 \cdot 180^{\circ}}{\pi \cdot 29^{\circ}} = 94,9...$$

Der Radius r beträgt rund 95 m.

- a1) Ein Punkt für das richtige Aufstellen der Formel.
- a2) Ein Punkt für das richtige Berechnen des Radius r.

b1)
$$f(x) = 0$$
 oder $-0.01 \cdot x^2 + 0.7 \cdot x + 1.8 = 0$

Berechnung mittels Technologieeinsatz:

$$(x_1 = -2,483), x_2 = 72,483$$

Die Speerspitze trifft in einer horizontalen Entfernung von rund 72,48 m auf dem Boden auf.

b1) Ein Punkt für das richtige Berechnen der horizontalen Entfernung.

c1)

Die momentane Änderungsrate von <i>h</i> zur Zeit <i>t</i> ist negativ für	D
Die momentane Änderungsrate von <i>h</i> zur Zeit <i>t</i> ist null für	В

А	t = 0
В	$t = t_1$
С	t < t ₁
D	t > t ₁

c1) Ein Punkt für das richtige Zuordnen.

Kartenspiel

a1) X ... Anzahl der gezogenen Zauber-Karten

$$P(X = 1) = 3 \cdot \frac{10}{30} \cdot \frac{20}{29} \cdot \frac{19}{28} = 0,4679..$$

Die Wahrscheinlichkeit, dass Sabine genau 1 Zauber-Karte zieht, beträgt rund 46,8 %.

- a2) E ... "Sabine zieht mindestens 1 Zauber-Karte"
- a1) Ein Punkt für das richtige Berechnen der Wahrscheinlichkeit.
- a2) Ein Punkt für das richtige Beschreiben des Ereignisses im gegebenen Sachzusammenhang.

Der Punkt ist auch zu vergeben, wenn im Baumdiagramm für p = 0,52 und für 1 - p = 0,48 angegeben wird (vgl. Lösung zu b2).

Der Punkt ist auch zu vergeben, wenn im Baumdiagramm "verliert" anstelle von "gewinnt nicht" geschrieben wird.

b2)
$$0.4 \cdot p + 0.6 \cdot 0.54 = 0.532$$
 $p = 0.52$

- b1) Ein Punkt für das richtige Vervollständigen des Baumdiagramms.
- **b2)** Ein Punkt für das richtige Berechnen der Wahrscheinlichkeit p.

Leuchtdioden

a1)
$$\left(\frac{1}{\sin\left(\frac{40^{\circ}}{4}\right)}\right)^2 = 33,1...$$

Für eine Rundum-Beleuchtung benötigt man 34 LEDs.

a1) Ein Punkt für das richtige Berechnen der Anzahl.

b1)
$$\frac{29000 - 60000}{160 - 140} = -1550$$

Toleranzbereich: [-1 600; -1 500]

- **b2)** Bei der dargestellten Kurve handelt es sich nicht um den Graphen einer Funktion, da nicht jedem Argument genau ein Funktionswert zugeordnet wird. (Hier sind der Temperatur 180 °C mehrere Lebensdauer-Werte zugeordnet.)
- b1) Ein Punkt für das richtige Ermitteln der mittleren Änderungsrate.
- b2) Ein Punkt für das richtige Begründen.

c1)
$$20 = a^{10} \implies a = \sqrt[10]{20} = 1,349...$$

- c2) Der maximale Lichtstrom von LEDs nimmt laut diesem Modell pro Jahr um rund 35 % (bezogen auf den Wert des jeweiligen Vorjahrs) zu.
- c1) Ein Punkt für das richtige Berechnen des Parameters a.
- c2) Ein Punkt für das richtige Interpretieren im gegebenen Sachzusammenhang.

Kosmetikartikel

- **a1)** $\mu = 75 \text{ ml}$
- a2) X ... Füllvolumen in ml

$$P(X \le a) = 0,1$$

Berechnung mittels Technologieeinsatz:

$$a = 73,077...$$

Intervall: [73,077...; 76,922...]

Auch ein Ermitteln mithilfe der Abbildung ist als richtig zu werten.

Toleranzbereich für die untere Intervallgrenze: [73; 73,2] Toleranzbereich für die obere Intervallgrenze: [76,8; 77]

a3)

- a1) Ein Punkt für das richtige Ablesen des Erwartungswerts μ .
- a2) Ein Punkt für das richtige Ermitteln des Intervalls.
- a3) Ein Punkt für das richtige Veranschaulichen der Wahrscheinlichkeit.

b1)

Der Median des Alters der männlichen Kunden ist größer als derjenige der weiblichen Kunden.	\boxtimes

Holzfeuchte und Holztrocknung

a1)
$$V = 0.995 \cdot 0.9 \cdot 0.95 \cdot a \cdot b \cdot c = 0.850725 \cdot a \cdot b \cdot c$$

a2)
$$1 - 0.850725 = 0.149275$$

Das Volumen des Holzstücks ist in trockenem Zustand um rund 14,9 % kleiner als in feuchtem Zustand.

- a1) Ein Punkt für das richtige Aufstellen der Formel.
- a2) Ein Punkt für das richtige Ermitteln des Prozentsatzes.

b1)

$\frac{t}{T} = \left(\frac{d}{D}\right)^{-\frac{3}{2}}$	\boxtimes

b1) Ein Punkt für das richtige Ankreuzen.

c1)

Toleranzbereich für x_0 : [92; 97]

c2)
$$f(x) = k \cdot x + d$$

x ... relative Luftfeuchtigkeit in %

f(x) ... Wassergehalt von Holz dieser Holzsorte bei der relativen Luftfeuchtigkeit x in %

$$k = \frac{9.4 - 7.8}{55 - 45} = 0.16$$
$$d = 7.8 - 0.16 \cdot 45 = 0.6$$
$$f(x) = 0.16 \cdot x + 0.6$$

- c1) Ein Punkt für das richtige Kennzeichnen des Punktes P.
- c2) Ein Punkt für das richtige Aufstellen der Funktionsgleichung.

Bordcomputer

a1)
$$\frac{(1.5+1)\cdot 4}{2} = 5$$

- a2) Im Intervall [8 min; 12 min] hat der PKW (rund) 5 km zurückgelegt.
- a1) Ein Punkt für das richtige Berechnen des Flächeninhalts.
- **a2)** Ein Punkt für das richtige Interpretieren im gegebenen Sachzusammenhang unter Angabe der zugehörigen Einheit.

b1)

b1) Ein Punkt für das richtige Einzeichnen des Graphen.

c1)

Die Beschleunigung des PKW ist im Intervall [4 min; 8 min] negativ.	\boxtimes

c1) Ein Punkt für das richtige Ankreuzen.

Aufgabe 7 (Teil B)

Grundstücke

- a1) Da der Winkel α der längsten Seite des Dreiecks gegenüberliegt, ist er der größte Winkel des Dreiecks.
- a2) Wäre α ein rechter Winkel, dann müsste der Satz des Pythagoras gelten:

$$16,49^2 + 18,44^2 = 611,9537$$

 $25,06^2 = 628,0036$
 $611,9537 \neq 628,0036$

Daher ist α kein rechter Winkel.

a3)
$$25,06^2 = 18,44^2 + 16,49^2 - 2 \cdot 18,44 \cdot 16,49 \cdot \cos(\alpha)$$
 $\alpha = 91,51...^{\circ}$

a4)
$$A = \frac{18,44 \cdot 16,49}{2} \cdot \sin(\alpha) = 151,984...$$

Der Flächeninhalt dieses Grundstücks beträgt rund 151,98 m².

- a1) Ein Punkt für das richtige Begründen.
- a2) Ein Punkt für das richtige Zeigen.
- a3) Ein Punkt für das richtige Berechnen des Winkels α .
- a4) Ein Punkt für das richtige Berechnen des Flächeninhalts.

b1) I:
$$f(0) = 0$$

II:
$$f(12) = 2$$

III:
$$f(18) = 6$$

IV:
$$f(22) = 12$$

oder:

I:
$$a \cdot 0^3 + b \cdot 0^2 + c \cdot 0 + d = 0$$

II:
$$a \cdot 12^3 + b \cdot 12^2 + c \cdot 12 + d = 2$$

III:
$$a \cdot 18^3 + b \cdot 18^2 + c \cdot 18 + d = 6$$

IV:
$$a \cdot 22^3 + b \cdot 22^2 + c \cdot 22 + d = 12$$

b2) Berechnung mittels Technologieeinsatz:

$$a = \frac{1}{396} = 0,00252...$$

$$b = -\frac{19}{396} = -0.0479...$$

$$c = \frac{25}{66} = 0,378...$$

$$d = 0$$

b3)
$$A = \frac{22 \cdot 12}{2} - \int_0^{22} f(x) dx = 62,7...$$

Der Flächeninhalt des Grundstücks nimmt durch die Erweiterung um rund 63 m² zu.

- b1) Ein Punkt für das richtige Erstellen des Gleichungssystems.
- b2) Ein Punkt für das richtige Berechnen der Koeffizienten von f.
- b3) Ein Punkt für das richtige Berechnen des Flächeninhalts.

Aufgabe 8 (Teil B)

Kino

a1)

$K \setminus (P \cup V)$	Α
$K \cap P$	С

А	Menge der Personen, die nur für das Kinoticket Geld ausgeben
В	Menge der Personen, die für das Kinoticket Geld ausgeben
С	Menge der Personen, die sowohl für das Kinoticket als auch für das Parkticket Geld ausgeben
D	Menge der Personen, die entweder für das Kinoticket oder für das Parkticket oder für beides Geld ausgeben

a2) 12 Personen geben nur für das Kinoticket Geld aus.

a3)
$$\frac{35}{12+13+35+22} = \frac{35}{82} = 0,4268...$$

Rund 42,7 % aller befragten Personen sind in der Menge $K \cap P \cap V$ enthalten.

- a1) Ein Punkt für das richtige Zuordnen.
- a2) Ein Punkt für das richtige Beschreiben im gegebenen Sachzusammenhang.
- a3) Ein Punkt für das richtige Berechnen des Prozentsatzes.

b1) Ermittlung mittels Technologieeinsatz:

 $f(t) = 2,96 \cdot t + 97,9$ (Koeffizienten gerundet)

b2) Gemäß diesem Modell steigen die jährlichen Nettoeinnahmen um rund 2,96 Millionen Euro pro Jahr.

b3)

- b1) Ein Punkt für das richtige Aufstellen der Gleichung der Funktion f.
- b2) Ein Punkt für das richtige Interpretieren im gegebenen Sachzusammenhang.
- b3) Ein Punkt für das richtige Einzeichnen des Graphen von f.
- c1) x ... Anzahl der verkauften Tickets für Kinosaal X

 $y \dots$ Anzahl der verkauften Tickets für Kinosaal Y

z ... Anzahl der verkauften Tickets für Kinosaal Z

I:
$$x + y + z = 120$$

II:
$$14.8 \cdot x + 17 \cdot y + 19.3 \cdot z = 2067$$

III:
$$1,25 \cdot x = z$$

c2) Berechnung mittels Technologieeinsatz:

$$x = 40$$

$$y = 30$$

$$z = 50$$

- c1) Ein Punkt für das richtige Erstellen des Gleichungssystems.
- c2) Ein Punkt für das richtige Berechnen der Anzahl der jeweils verkauften Tickets.

Aufgabe 9 (Teil B)

Kartenhaus

a1)

Anzahl der Stock-	insgesamt	Karten für das
werke n	benötigte Karten	unterste Stockwerk
5	40	14

a2)
$$z_n = 2 + (n-1) \cdot 3$$

oder:

$$z_n = 3 \cdot n - 1$$

a3)
$$Z_{25} = 74$$

Um ein 25-stöckiges Kartenhaus zu errichten, benötigt Maria 74 zusätzliche Karten.

- a1) Ein Punkt für das Eintragen der beiden richtigen Zahlen.
- a2) Ein Punkt für das richtige Erstellen des expliziten Bildungsgesetzes.
- a3) Ein Punkt für das richtige Ermitteln der Anzahl der zusätzlich benötigten Karten.

b1)
$$s_{50} = 3 \cdot \frac{50 \cdot 51}{2} - 50 = 3775$$

Für ein 50-stöckiges Kartenhaus werden insgesamt 3775 Karten benötigt.

b2)
$$3 \cdot 32 = 96$$

 $96 = 3 \cdot \frac{n \cdot (n+1)}{2} - n$

Berechnung mittels Technologieeinsatz:

$$(n_1 = -8, 16...);$$
 $n_2 = 7,83...$

Alexanders Kartenhaus kann höchstens 7 Stockwerke haben.

- b1) Ein Punkt für das richtige Berechnen der Gesamtanzahl der Karten.
- b2) Ein Punkt für das richtige Berechnen der Anzahl der Stockwerke.

c1)

X _i	-5	20
$P(X = X_i)$	<u>7</u> 8	<u>1</u> 8

c2)
$$E(X) = -5 \cdot \frac{7}{8} + 20 \cdot \frac{1}{8} = -\frac{15}{8} = -1,875$$

- c1) Ein Punkt für das richtige Erstellen der Wertetabelle.
- c2) Ein Punkt für das richtige Berechnen des Erwartungswerts.