

INF115 Lecture 8: Data Modelling with ER

Adriaan Ludl
Department of Informatics
University of Bergen

Spring Semester 2021

INF115 Practical Aspects

Next lecture: Wednesday

24.02.2021 from 14:15 to 16:00

Mandatory assignment released this Friday (19.02.2021)!

Chapter 7: Data modelling with ER (Part 2)

Learning Goals:

- Information System and Database **Development with ER** (Entity Relationship)
- > Concrete, Abstract and Composite **Objects**
- > Frequently Used Modeling Patterns and Strategies
- ➤ Modelling Traps / Pitfalls

Databases and Information Systems

- An **Information System** is a system that enables collecting, storing, using, transmitting, and distributing *information*. [Wikipedia]
 - Humans
 - Machines
 - Networks
 - Programs/applications
 - Manual routines
 - Databases
- A database is usually a part of a *larger* information system.

System Development

What?

The development **process** that leads from requirements (« what ») to a system (« how »).

- A. Classical development methods use **phases**.
- B. Newer methods are more agile (smidig) and iterative.

Database design from abstraction to implementation

What?

- Conceptual (begrepsmessig) database design
 - Describes the database in a way independent of given technology
 - E/R-diagram
- Logical database design
 - Logical table structure independent of a specific DBMS
 - E/R-diagram with foreign keys (Ch. 8)
- Physical database design
 - Physical table structure adapted to a given DMBS

How?

Generate Database

Models and Perspectives

- Useful to make a model before building something complicated:
 - Drawings,
 - 3D-models, ...
- Theoretical models give a simplified view of reality. Simplification is justified to focus on essential traits (aspects) that have to be understood and at the same time neglect what is non-essential. [Wikipedia]
- Perspectives:

■ **Process** oriented: What will the system do?

■ *Information* oriented: What will the system represent?

■ *Object* oriented: A system is composed of «communicating objects».

Representing Data in Tables

We have already seen examples of how

We will now see more examples...

Vol. 11 LL-FYZ G-GOT GOU-HIP HIR-IN

Physical objects (can usually be touched)

More abstract objects: Loan (Lån)

LNr	KNr	Beløp	Start	År	Rente	Type
27630364643	50401	1550000	02.09.2015	20	5.5	Serie
27630382732	50104	65000	01.01.2019	8	7.6	Annuitet
27630393982	20932	1050000	20.07.2012	20	5.0	Annuitet
27630338829	90237	300000	10.12.2017	10	6.5	Annuitet
27630391882	70238	1250000	05.08.2018	15	5.5	Serie

- A loan is not a physical object, but it is quite «concrete».
- Are there foreign keys here ?
- Store just what we need: We can **generate** the repayment schedule (nedbetalingsplan).

Composite objects: Ordre og Ordrelinje

OrdreNr	Ordredato	KNr
20505	20.8.2019	5022
20506	20.8.2019	5009
20507	20.9.2019	5188

An **order** is composed of a «header» ...

... and several «lines».

One-to-many relationship

between an order and a line on the order.

OrdreNr	VNr	Pris	Antall
20505	10830	29.90	1
20505	77033	109.50	5
20506	10830	29.90	1
20506	44939	57.60	3
20506	65081	109.50	5
20507	12088	109.50	2

Tables as Relationships: ProsjektArbeid

PNr	AnsNr	AntTimer
1001	42	12
1001	71	44
1003	123	4
1003	42	21
1003	2	76
1003	93	59
1005	2	40
1005	19	7
1007	27	23
1012	2	15
1012	42	42

Every row represents an instance of the relationship.

The table represents the **many-to-many relationship** between projects and employees.

Quiz on Data modelling with ER (part 3)

Please answer the practice quiz on mitt.uib now (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/27455/quizzes

Break! Lecture resumes in 15 minutes

Events: Temperature measurements

StedNr	Dato	Temp
53	30.04.2019	7
53	12.05.2019	8
53	20.05.2019	6
54	20.05.2019	11
54	20.07.2019	4

An **event** is something that **happens** at a given **place** at a given **time**.

- What is an appropriate primary key in this table ?
- ➤ What if we want to make multiple measurements per day?

Tables and hierarchies: Genealogical trees (Slektstrær)

Id	Fornavn	Mor	Far
1	Ola		
2	Lise		
3	Per		1
4	Kari	2	
5	Arne		3
6	Johanne	4	5
7	Gunnar	4	5

Both father and mother relationships are one-to-many relationships.

Table representation: Let every child «point to» their father/mother.

> Are there **foreign keys** here?

Tables and hierarchies: Discussion forum

Id	Avsender	Dato	Melding	SvarPå
1	kahn	23.02.2019	Bla bla bla	
2	ok88	23.02.2019	Bla bla bla	1
3	jwh	24.02.2019	Bla bla bla	1
4	kahn	24.02.2019	Bla bla bla	3
5	kasper	24.02.2019	Bla bla bla	
6	jesper	25.02.2019	Bla bla bla	5

- Every thread is a **hierarchy** (a top-down tree).
 - A post can have many answers.
 - A post can start a new thread, or answer a previous post (innlegg).
- > Are there **foreign keys** in this table ?

Tables and graphs (networks): Distance Matrix

Fra	Til	Km
Bø	Porsgrunn	63
Porsgrunn	Notodden	86
Bø	Notodden	34
Bø	Rauland	88

- A *graph* is a collection of **nodes** (cities) and **edges** (paths).
- Every edge is a row in the table.
- Nodes (cities) can be stored in a separate table.
- > Store paths in both directions separately?

Tables and graphs (networks): Hike (fottur)

TurNr	StartHytte	Gradering
56	Glefsebu	Lett
77	Høgåshytta	Middels

TurNr	Dag	TilHytte
56	1	Mimrebu
56	2	Storvassbui
77	1	Breheimen
77	2	Mimrebu
77	3	Krikut

Modelling Patterns / Strategies

There are useful data modelling patterns or strategies can be applied to many typical problems (modelleringsmønstre eller modelleringsklisjee) [Skagestein].

Examples:

- «Is-an» hierarchies (a cat is an animal with four legs ...)
- «Has-an» hierarchies (a product ist built from ...)
- A paper form is built from a header and lines ...
- Should we store only data on the current situation?
- Or also historical data?

Entity or attribute?

- ❖ It is an important question to consider whether a **quantity** shall be an *entity* or an *attribute of another entity*.
- ➤ If we only store the name of a **municipality** (*kommune*), then it could be an attribute in *Ansatt*.
- ➤ However, if we need to store more information about the municipality, then we should introduce it as an actual entity.

Current or historical data?

- What did the product cost before ?
 - Store price changes or daily values ?
 - Work on time periods.
- *Time stamp* as (partial) <u>identifier (PK)</u> in the *entity* that represents **events**.

Header/line pattern (master/detail)

Many **registration forms** and **reports** are structured in two parts:

- A header and a number of lines.
- Examples:
 - An **order overview** has the order date and the client number in the header, and in addition lines each of which gives the product number and the number of units odered.
 - A time sheet has the employee number and time period in the header, and then a number of lines that specify the project number and the number of hours worked on the project.
 - A transcript of records (vitnemål) has the student number, start and end year in the header, and then a number of lines each with course code, exam date and grade.

Self referencing relationship

- It is entirely possible to make relationships that involve only one entity type. These are called **self-relationships** (**egenforhold**).
- For example reltationships between humans friends, partners, spouses, teammates, colleagues, boss, etc ...

Hierarchies

- Self referencing relationships can be used to model arbitrarily deep hierarchies: genealogical trees, catalogs/maps, discussion forum ...
- Can the number of levels vary? Upper limit?
- Which model gives the simplest queries ?

Star schema

- A data warehouse contains aggregated data from one or several databases and potentially other data sources. The data warehouse is used for strategic decisions.
- Data models for a data warehouse are often based on a central fact table joined to multiple dimension tables, where time is often one of the dimensions.

Modelling traps/pitfalls: fan trap

- An incomplete data model: we did not get a relationship between *Institute* and *Employee*.
- From a given institute we find the corresponding campus, but from there we have a *branching* (vifte = fan) to *Ansatt*.

Modelling traps/pitfalls: fan trap

- An incomplete data model: we did not get a relationship between *Institute* and *Employee*.
- From a given institute we find the corresponding campus, but from there we have a *branching* (vifte = fan) to *Ansatt*.

Solution:

Modelling traps: chasm trap

- An incomplete data model: we did not specify to which county club (fylkeslag) the clubless members belong.
- The model has «0 or 1» for the relationship between Club and Member (Medlem), this gives a **chasm** (kløft) in Local Club.

Modelling traps: chasm trap

- An incomplete data model: we did not specify to which county club (fylkeslag) the clubless members belong.
- The model has «0 or 1» for the relationship between Club and Member (Medlem), this gives a **chasm** (kløft) in Local Club.

Quizz on Data modelling with ER (part 4)

Please answer the practice quizz on mitt.uib now (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/27455/quizzes

Chapter 7: Data Modelling with ER

Summary of part 1:

- Goals of data modelling and database design.
- > ER and UML are visual modelling languages.
- > Entities with attributes and identifiers (PK).
- > One-to-one, one-to-many and many-to-many relationships.
- > Weak entities and identifying relationships.
- > Common abstraction methods.

Chapter 7: Data modelling with ER (Part 2)

Summary of ER part 2:

- Information System and Database **Development with ER** (Entity Relationship)
- > Concrete, Abstract and Composite **Objects**
- > Frequently Used **Modeling Patterns** and Strategies
- Modelling Traps

INF115 Practical Aspects

Next lecture: Wednesday

24.02.2021 from 14:15 to 16:00

Mandatory assignment released this Friday (19.02.2021)!