Simply-Typed A-Calculus

Lecture 11 CS 565

Boolean and Nat terms

Some terms represent booleans, some represent natural numbers.

```
false
   false
   if t then t else t
   if t then t else t
   o
   succ t
   pred t
   iszero t
```

Bool and Nat values

Bool and Nat types

Evaluation preserves type

A Type System

type expressions: T ::= . .

typing relation: t : T

typing rules giving an inductive definition of

smallest binary relation between terms and types satisfying the The typing relation t:T for arithmetic expressions is the given rules.

A term t is typable (or well typed) if there is some T such that

Syntax: F₁

<i>t</i>
erms

terms:	constant true	constant false	conditional	variable	abstraction	application		integer	addition	
							Σ			Σ
II	true	false	$\mathbf{if}\ t_1\ \mathbf{then}\ t_2\ \mathbf{else}\ t_3$	×	$\lambda \mathbf{x} : T . t$	$t_1 t_2$	$\begin{bmatrix} \mathbf{x} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	nv	t + t'	(t)
::							_			
t										
rms										

Syntax: F₁

Types

ightarrow is a function type constructor and associates to the right

Formal arguments to functions have typing annotations.

abstraction value

.. × × falsetrue

nv

false value true value

values:

c

integer value

type of functions types: Σ

type of booleans type of integers

 Int

Static Semantics

 $\Gamma \vdash t : T$ The typing judgment

ullet We need to supply a context (Γ) giving types for free variables

Typing rules

$$\mathbf{x} : T \in \Gamma$$
 $\Gamma \vdash \mathbf{x} : T$
 $\Gamma \vdash \mathbf{x}$

$$\Gamma, \mathbf{x} : T_1 \vdash t_2 : T_2
\Gamma \vdash \lambda \mathbf{x} : T_1 \cdot t_2 : T_1 \rightarrow T_2$$

$$\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$$

$$\Gamma \vdash t_2 : T_{11}$$

$$\Gamma \vdash t_2 : T_{12}$$

$$\Gamma \vdash t_1 t_2 : T_{12}$$

Static Semantics (cont)

More typing rules

 $\overline{\Gamma} \vdash ext{true} : ext{Bool}$

T_TRUE

 $\Gamma \vdash \text{false} : \text{Bool}$

T_FALSE

 $\mathit{t}_{1}:\mathbf{Bool}$

 $\Gamma \vdash \mathbf{if} \ t_1 \ \mathbf{then} \ t_2 \ \mathbf{else} \ t_3 :$

 $\Gamma \vdash nv : \mathbf{Int}$

: Int $\vdash t_1 : \mathbf{Int}$

 $\overline{\Gamma} \vdash t_1 + t_2 : \mathbf{Int}$

Typing Derivations

A type derivation is a tree of instances of typing rules with the desired typing as the root.

The shape of the derivation tree exactly matches the shape of the term being typed.

Typing Derivations in F₁

Consider the term:

λx:int. Ab:bool. if b then f x else x in a typing environment that maps f to int→int

$$\Gamma \vdash f: Int \rightarrow Int \quad \Gamma \vdash x: Int$$

$\Gamma \vdash x$:Int	x : int	e x :Bool→Int	f:Int \rightarrow Int $\vdash \lambda x$:Int. λb :Bool.if b then f x else x:Int \rightarrow Bool \rightarrow Int
	se	els.	31s
	el	×	×
	×	¥	¥
$\Gamma \vdash f x:Int$	then f	b then	b then
	f:Int \rightarrow Int,x:Int,b:Bool \vdash if b then f x else x : int	f:Int \rightarrow Int, x:Int \vdash λ b:bool.if b then f x else x :Bool \rightarrow Int	Int.Ab:Bool.if
Γ⊢b:Bool	f:Int -Int,x:I	f:Int -Int, x:I	f:Int \rightarrow Int $\mapsto \lambda x$:

where $\Gamma = f:Int \rightarrow Int, x:Int, b:Bool$

Type Checking

Syntax-directed

Derivations follow syntactic structure of the program

Compositional

 Understand types of terms as being built from types of subterms Annotated

· All formal parameters are annotated with types

Without annotations, expressions need not have a unique type No need to infer types (although this wouldn't be so hard)

$$\lambda x. x: int \rightarrow int$$

$$\lambda$$
 x. x : int \rightarrow int λ x. x : bool \rightarrow bool

Operational Semantics of F₁

Call-by-value evaluation relation

$$t \ \psi \ t'$$

$$egin{aligned} \lambda \mathbf{x} : T . t \ \psi \ \lambda \mathbf{x} : T . t \end{aligned} & E . LAM \ t_1 \ \psi \ \lambda \mathbf{x} : T . t_1' \ t_2 \ \psi \ v \ \hline & [\mathbf{x} \mapsto v] \ t_1' \ \psi \ v' \end{aligned} & E . App \end{aligned}$$

$$t_1 \Downarrow \mathbf{true}$$

$$t_2 \Downarrow v$$

$$\mathbf{if } t_1 \mathbf{then } t_2 \mathbf{else } t_3 \Downarrow v$$

$$t_1 \Downarrow \mathbf{false}$$

$$t_3 \Downarrow v$$

$$\mathbf{if } t_1 \mathbf{then } t_2 \mathbf{else } t_3 \Downarrow v$$

$$t_1 \Downarrow nv_1$$

$$t_2 \Downarrow nv_2$$

$$nv_1 + nv_2 = nv_3$$

$$t_2 \Downarrow nv_2$$

$$nv_1 + t_2 \Downarrow nv_3$$

$$t_1 + t_2 \Downarrow nv_3$$

$$t_1 + t_2 \Downarrow nv_3$$

$$t_2 \Downarrow v_3$$

$$t_3 \Downarrow v_4$$

$$t_4 \Downarrow v_4$$

$$t_4 \Downarrow v_4$$

$$t_5 \Downarrow v_4$$

Type Soundness for F1

Safety = Progress + Preservation

Progress:

A well-typed term is not stuck -- either it is a value, or it can take a step according to the evaluation rules

Preservation:

If a well-typed term makes a step of evaluation, the resulting term is also well-typed

Theorem ("subject reduction")

- If Γ⊢t:r and t∜v then Γ⊢ v:r
- By induction on t↓v

Need to address the issue of [v2↦x]t1'

Could also use induction on typing derivations

Some Helper Lemmas

Inversion (of typing relation), e.g.

- If $\Gamma \vdash x \colon x \colon t \mapsto \Gamma$
- If Γ⊢true:R then R=Bool
- If $\Gamma \vdash \lambda$ x:T.t:R then $R=T \rightarrow R'$ for some R' with $\Gamma, x: T \vdash t: R$

Uniqueness (of types): a term has at most one type

Canonical forms, e.g.

- If v is a value of type Bool, then v is either true or false
- If v is a value of type $T \rightarrow R$ then $v = \lambda x$: T.t

Permutation: can permute order of free var defs in Γ

Н വ Weakening: if $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$ then $\Gamma, x :$

Soundness

Consider the case:

$$t_1 \Downarrow \lambda x: T_2 \cdot t_1' \qquad t_2 \Downarrow v_2 \qquad [v_2/x]t_1' \Downarrow v$$

By derivation of $t_1 t_2 : \tau$ we know

$$\Gamma \vdash t_1 : \tau_2 \rightarrow \tau \qquad \Gamma \vdash t_2 : \tau_2$$

$$\Gamma \vdash t_1 t_2 : \tau$$

From IH on $\mathtt{t}_1 \Downarrow ...,$ we have Γ, \mathbf{x} : $\mathtt{t}_2 \vdash \mathtt{t}_1$ ' : \mathtt{t}

Need to infer that $\Gamma \vdash [v_2 \vdash x] t_1$ ' : τ and use the IH

Need a substitution lemma

Substitution Lemma

If $\Gamma, x: \tau \vdash t: \tau'$ and $\Gamma \vdash y: \tau$, then

$$\Gamma \vdash [y \mapsto x]t:T'$$

Proof: by induction on the derivation of Γ,x : τ (see page 106 and 107 of the text)

Significance of Type Soundness

The theorem says that the result of an evaluation has the same type as the initial expression

The theorem does not say that:

- evaluation never gets stuck (it is not a progress theorem)
- evaluation terminates

Contextual semantics

Define redexes and contexts

 \mathcal{H}

contexts

redexes if v then t_1 else t_2 $(\lambda \mathbf{x} : T.t) v$

 $rac{7}{2}$

Contextual semantics

Н → E[t] iff E[r] Global reduction rule: Local rules:

 $t \longrightarrow t'$ Evaluation

$$(\lambda \mathbf{x} : T.t) v \longrightarrow [\mathbf{x} \mapsto v] t$$
 E.App

if false then
$$t_1$$
 else $t_2 \longrightarrow t_2$

E_IFF

E_IFT

$$\frac{nv_1 + nv_2 = nv_3}{nv_1 + nv_2 \longrightarrow nv_3} \quad \text{E-PLUS}$$

Contextual Semantics

Decomposition Lemma:

- r such that t = E[r]
- Any well-typed term can be decomposed Any well-typed non-value can make progress
- Furthermore, there exists au' such that $\Gamma \vdash \ r \colon au'$ All redexes are well-typed
- Furthermore, there exists t' such that $r \to t$ ' and $\Gamma \vdash t$ ': τ ' Local reductions are type-preserving
- Furthermore, for any au′, $\Gamma \vdash au$ ′:au′ implies $\Gamma \vdash au$ [au']:auAn expression keeps its type if we replace a redex by an expression of the same type

Contextual Semantics

Type preservation theorem:

• If $\Gamma \vdash t:\tau$ and $t \to t'$ then $\Gamma \vdash t':\tau$

Follows from the decomposition lemma

Progress theorem:

- If Γ⊢ t:τ and t is not a value then there exists t' such that e can make progress: $t \rightarrow t$
- The progress theorem says that execution can make progress on well-typed expressions.
- Furthermore, because of type preservation, we know that the execution of a well-typed expression never gets stuck.

Typability

We may erase types from expressions systematically:

```
erase(x) = x

erase(t1 t2) = erase(t1) erase(t2)

erase(\lambda x:T.t) = \lambda x. erase(t)
```

- Is an untyped expression typable (with respect to a given type • E.g. erase($\lambda x: Bool.\lambda y: Bool-> Bool.y x$)= $\lambda x.\lambda y.y x$ environment)?
- Given t, does there exist t' and τ such that erase(t') = t and $\Gamma \vdash t' : \tau$
- There is an infinite collections of typings for this term $\lambda x \cdot x$ is typable in the empty environment

Erasure commutes with evaluation

Theorem (9.5.2)

- 1. if $t \to t'$ in λ_{\to} then erase(t) \to erase(t') in λ .
- 2. if erase(t) \rightarrow m in λ then there exists t' such that $t \to t'$ in λ_{\rightarrow} and erase(t')

Curry style and Church style

Curry

subset of terms and show that they don't exhibit bad "run-time" define evaluation for untyped terms, then define the well-typed behaviors. Erase and then evaluate.

Church:

define the set of well-typed terms and give evaluation rules only for such well-typed terms.

Static Semantics for Product Types: F1x

Extend the semantics with (binary) tuples:

$$\begin{array}{c} \Gamma \vdash t_1 : \mathsf{T}_1 \\ \Gamma \vdash t_2 : \mathsf{T}_2 \\ \hline \Gamma \vdash \{t_1, t_2\} : \mathsf{T}_1 \times \mathsf{T}_2 \\ \hline \Gamma \vdash t_1 : \mathsf{T}_1 \times \mathsf{T}_2 \\ \hline \Gamma \vdash t_1 : \mathsf{T}_1 \times \mathsf{T}_2 \\ \hline \Gamma \vdash t_1 : \mathsf{T}_1 \times \mathsf{T}_2 \end{array} \qquad \text{T-Pair}$$

Static Semantics for Product Types: F1x Extend the small-step semantics:

Records

Records are like tuples with labels

t ::= ... | {
$$L_1 = t_1$$
, ..., $L_n = t_n$ } | t.L

New form of values:

$$v ::= \{ L_1 = v_1, \ldots, L_n = v_n \}$$

New form of types:

$$\tau ::= \dots \mid \{ L_1 : \tau_1, \dots, L_n : \tau_n \}$$

Follows the same basic structure as Tuples

Sum Types (System F1+)

Consider types of the form:

- either an Int or a Bool
- either a function or an Int

These types are called disjoint union types

Introduce new form of expressions and types:

t::=...| inl t | inr t | case t of inl
$$x \Rightarrow t_1$$
 | inr $y \Rightarrow t_2$ T::=... | $\tau_1 + \tau_2$

- A value of type $\tau_1 + \tau_2$ is either a τ_1 or a τ_2
- · Similar to unions in C or Pascal, but safe

Distinguishing between components is under compiler control

• case is a binding operator: x bound in t_1 and y bound in t_2

Examples

Consider the type "unit" with a single element called "*"

The type optional integer defined as "unit + int"

- Similar to option types in ML
- No argument: inl *
- Argument is 5: inr 5

To use the argument, must test its kind:

in1/inr are value-carrying tags and case does tag checking

 $^{\circ}$

Sum Types

Can think of bool as a unit type:

Typing Rules for Sum Types

$$\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \ \overline{\Gamma} \vdash \mathsf{inlt}_1 : \mathsf{T}_1 + \mathsf{T}_2$$

$$\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_2$$
 \vdash inrt, $\cdot \mathsf{T}_1 + \mathsf{T}_2$

$$\Gamma \vdash \mathsf{inrt}_1 : \mathsf{T}_1 + \mathsf{T}_2$$

$$\begin{array}{c} \Gamma\,,\,\mathsf{x}_2:\,\mathsf{T}_2\vdash\mathsf{t}_2:\,\mathsf{T}\\ \hline \Gamma\vdash\mathsf{case}\,\mathsf{t}_0\,\mathsf{ofinl}\,\mathsf{x}_1\Rightarrow\mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2\Rightarrow\mathsf{t}_2:\,\overline{\mathsf{T}} \end{array}$$

$$T_INR$$

$$T_CASESM$$

Dynamic Semantics

$$\mathsf{case}\,(\,\mathsf{inl}\,\mathsf{v}_0\,)\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1\,\Rightarrow\,\mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2\,\Rightarrow\,\mathsf{t}_2\,\longrightarrow\,[\,\mathsf{x}_1\,\mapsto\,\mathsf{v}_0\,]\,\mathsf{t}_1$$

$$\mathsf{case}\left(\mathsf{inr}\,\mathsf{v}_0\right)\mathsf{ofinl}\,\mathsf{x}_1\Rightarrow\mathsf{t}_1\big|\mathsf{inr}\,\mathsf{x}_2\Rightarrow\mathsf{t}_2\longrightarrow\big[\mathsf{x}_2\mapsto\mathsf{v}_0\big]\mathsf{t}_2$$

$$\mathsf{t}_0 \,\longrightarrow\, \mathsf{t}_0'$$

$$\mathsf{case}\, t_0\, \mathsf{ofinl}\, x_1 \Rightarrow t_1 \, |\, \mathsf{inr}\, x_2 \Rightarrow t_2 \longrightarrow \mathsf{case}\, t_0' \, \mathsf{ofinl}\, x_1 \Rightarrow t_1 \, |\, \mathsf{inr}\, x_2 \Rightarrow t_2$$

$$t_1 \longrightarrow t_1' \qquad \qquad \qquad \mathsf{t}_1 \longrightarrow \mathsf{t}_1'$$

$$\inf_{1} \xrightarrow{t_{1}} \underbrace{\text{E.INL}}_{1}$$

$$\begin{array}{ccc} t_1 & \longrightarrow t_1' \\ \hline \text{inr} t_1 & \longrightarrow \text{inr} t_1' \end{array} \quad \text{E_INR}$$

E_CASEINR

E_CASEINL

Type Soundness for F1+

Type soundness still holds

case which ensures that one does not interchange a τ_1 for a τ_2 The key is that the only way to use a value of $\tau_1+\tau_2$ is with There is no way to use a value of $\tau_1 + \tau_2$ inappropriately Still, something is missing

• How to inferτ resp. τ1 or τ2

In C or Pascal, proper tag checking is the responsibility of the programmer (unsafe)