Machne Learning - Final Project

Manas Chatterjee April 15, 2019

Practical Machine Learning Course Project Report

These is a file produced during a homework assignment of Coursera's MOOC Practical Machine Learning

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, our goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

Data Sources

The training data for this project is available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data is available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project comes from this original source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

Intended Results

The goal of this project is to predict the manner in which they did the exercise. This is the "classe" variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.

- 1. Your submission should consist of a link to a Github repo with your R markdown and compiled HTML file describing your analysis. Please constrain the text of the writeup to < 2000 words and the number of figures to be less than 5. It will make it easier for the graders if you submit a repo with a gh-pages branch so the HTML page can be viewed online (and you always want to make it easy on graders:-).
- 2. You should also apply your machine learning algorithm to the 20 test cases available in the test data above. Please submit your predictions in appropriate format to the programming assignment for automated grading. See the programming assignment for additional details.

Reproducibility

In order to reproduce the same results, you need a certain set of packages as well as setting a pseudo random seed equal to the one I have used.

Note: To install, for instance, the rattle package in R, run this command: install.packages("rattle"). The following Libraries were used for this project, which you should install and load them in your working environment.

```
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rpart)
library(rpart.plot)
library(corrplot)
## corrplot 0.84 loaded
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:rattle':
##
##
       importance
library(RColorBrewer)
Finally, load the same seed with the following line of code:
```

Getting Data

set.seed(56789)

The following code fragment downloads the dataset to the data folder in the current working directory.

```
trainUrl <-"https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
testUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
trainFile <- "./data/pml-training.csv"
testFile <- "./data/pml-testing.csv"
if (!file.exists("./data")) {
    dir.create("./data")
}
if (!file.exists(trainFile)) {
    download.file(trainUrl, destfile = trainFile, method = "curl")
}
if (!file.exists(testFile)) {
    download.file(testUrl, destfile = testFile, method = "curl")
}
rm(trainUrl)
rm(testUrl)</pre>
```

Reading Data

After downloading the data from the data source, we can read the two csv files into two data frames.

```
trainRaw <- read.csv(trainFile)
testRaw <- read.csv(testFile)
dim(trainRaw)

## [1] 19622 160

dim(testRaw)

## [1] 20 160

rm(trainFile)
rm(testFile)</pre>
```

The training data set contains 19622 observations and 160 variables, while the testing data set contains 20 observations and 160 variables. The classe variable in the training set is the outcome to predict.

Cleaning Data

In this step, we will clean the dataset and get rid of observations with missing values as well as some meaningless variables.

1. We clean the Near Zero Variance Variables.

```
## raw_timestamp_part_1
                           1.000000
                                        4.26562022
                                                     FALSE FALSE
## raw_timestamp_part_2
                           1.000000
                                       85.53154622
                                                     FALSE FALSE
## cvtd_timestamp
                           1.000668
                                        0.10192641
                                                     FALSE FALSE
## new_window
                          47.330049
                                        0.01019264
                                                     FALSE TRUE
## num_window
                           1.000000
                                        4.37264295
                                                     FALSE FALSE
## roll belt
                           1.101904
                                        6.77810621
                                                     FALSE FALSE
## pitch_belt
                                                     FALSE FALSE
                           1.036082
                                        9.37722964
## yaw_belt
                           1.058480
                                        9.97349913
                                                     FALSE FALSE
## total_accel_belt
                           1.063160
                                        0.14779329
                                                     FALSE FALSE
## kurtosis_roll_belt
                        1921.600000
                                        2.02323922
                                                     FALSE TRUE
## kurtosis_picth_belt
                         600.500000
                                        1.61553358
                                                     FALSE TRUE
                                                     FALSE TRUE
## kurtosis_yaw_belt
                          47.330049
                                        0.01019264
## skewness_roll_belt
                        2135.111111
                                        2.01304658
                                                     FALSE TRUE
## skewness_roll_belt.1 600.500000
                                        1.72255631
                                                     FALSE TRUE
## skewness_yaw_belt
                                                     FALSE TRUE
                          47.330049
                                        0.01019264
## max_roll_belt
                           1.000000
                                        0.99378249
                                                     FALSE FALSE
## max_picth_belt
                           1.538462
                                        0.11211905
                                                     FALSE FALSE
## max_yaw_belt
                         640.533333
                                        0.34654979
                                                     FALSE TRUE
training01 <- trainRaw[, !NZV$nzv]</pre>
testing01 <- testRaw[, !NZV$nzv]</pre>
dim(training01)
## [1] 19622
               100
dim(testing01)
## [1] 20 100
rm(trainRaw)
rm(testRaw)
rm(NZV)
```

2. Removing some columns of the dataset that do not contribute much to the accelerometer measurements.

```
regex <- grepl("^X|timestamp|user_name", names(training01))
training <- training01[, !regex]
testing <- testing01[, !regex]
rm(regex)
rm(training01)
rm(testing01)
dim(training)

## [1] 19622 95</pre>
dim(testing)
```

[1] 20 95

3. Removing columns that contain NA's.

```
cond <- (colSums(is.na(training)) == 0)
training <- training[, cond]
testing <- testing[, cond]
rm(cond)</pre>
```

Now, the cleaned training data set contains 19622 observations and 54 variables, while the testing data set contains 20 observations and 54 variables.

Correlation Matrix of Columns in the Training Data set.

```
corrplot(cor(training[, -length(names(training))]), method = "color", tl.cex = 0.5)
```


Partitioning Training Set

we split the cleaned training set into a pure training data set (70%) and a validation data set (30%). We will use the validation data set to conduct cross validation in future steps.

```
set.seed(56789) # For reproducibile purpose
inTrain <- createDataPartition(training$classe, p = 0.70, list = FALSE)
validation <- training[-inTrain, ]
training <- training[inTrain, ]
rm(inTrain)</pre>
```

The Dataset now consists of 54 variables with the observations divided as following: 1. Training Data: 13737 observations.

- 2. Validation Data: 5885 observations.
- 3. Testing Data: 20 observations.

Data Modelling

Decision Tree

We fit a predictive model for activity recognition using Decision Tree algorithm.

```
modelTree <- rpart(classe ~ ., data = training, method = "class")
prp(modelTree)</pre>
```


Now, we estimate the performance of the model on the validation data set.

```
predictTree <- predict(modelTree, validation, type = "class")
confusionMatrix(validation$classe, predictTree)</pre>
```

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction
                             С
                                   D
                                        Ε
                            20
                                       26
##
             A 1526
                       41
                                  61
                            74
                                       29
##
                264
                      646
                                 126
                 20
                       56
                           852
                                       26
##
```

```
##
            D
                 93
                          133
                               665
                                      42
                      31
##
            F.
                82
                      85
                           93
                               128
                                    694
##
## Overall Statistics
##
##
                   Accuracy: 0.7448
                     95% CI: (0.7334, 0.7559)
##
       No Information Rate: 0.3373
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.6754
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.7688
                                    0.7520
                                              0.7270
                                                        0.6321
                                                                 0.8494
## Specificity
                                    0.9019
                                              0.9631
                                                        0.9381
                                                                 0.9234
                           0.9621
## Pos Pred Value
                           0.9116
                                    0.5672
                                              0.8304
                                                        0.6898
                                                                 0.6414
## Neg Pred Value
                           0.8910
                                    0.9551
                                              0.9341
                                                        0.9214
                                                                 0.9744
## Prevalence
                           0.3373
                                    0.1460
                                              0.1992
                                                                 0.1388
                                                        0.1788
## Detection Rate
                           0.2593
                                    0.1098
                                              0.1448
                                                        0.1130
                                                                 0.1179
## Detection Prevalence
                                                                 0.1839
                           0.2845
                                    0.1935
                                              0.1743
                                                        0.1638
## Balanced Accuracy
                           0.8654
                                    0.8270
                                              0.8450
                                                        0.7851
                                                                 0.8864
accuracy <- postResample(predictTree, validation$classe)</pre>
ose <- 1 - as.numeric(confusionMatrix(validation$classe, predictTree)$overall[1])
rm(predictTree)
rm(modelTree)
```

The Estimated Accuracy of the Random Forest Model is 74.4774851% and the Estimated Out-of-Sample Error is 25.5225149%.

Random Forest

We fit a predictive model for activity recognition using Random Forest algorithm because it automatically selects important variables and is robust to correlated covariates & outliers in general. We will use 5-fold cross validation when applying the algorithm.

```
modelRF <- train(classe ~ ., data = training, method = "rf", trControl = trainControl(method = "cv", 5)
modelRF</pre>
```

```
## Random Forest
##
## 13737 samples
## 53 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10989, 10990, 10990, 10990, 10989
```

```
## Resampling results across tuning parameters:
##
           Accuracy
##
     mtry
                       Kappa
##
      2
           0.9949768
                       0.9936459
##
     27
           0.9976705
                       0.9970535
     53
           0.9957051 0.9945672
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
Now, we estimate the performance of the model on the validation data set.
predictRF <- predict(modelRF, validation)</pre>
confusionMatrix(validation$classe, predictRF)
## Confusion Matrix and Statistics
##
##
             Reference
                                       Ε
## Prediction
                 Α
                            C
                                 D
            A 1674
                       0
                            0
                                  0
                                       0
##
                 3 1136
##
            В
                            0
                                  0
                                       0
##
            С
                 0
                       1 1022
                                  3
                                       0
                       0
##
            D
                  0
                            4
                               960
##
            Е
                  0
                       0
                            0
                                  1 1081
##
## Overall Statistics
##
##
                   Accuracy: 0.998
                     95% CI : (0.9964, 0.9989)
##
       No Information Rate: 0.285
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9974
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9982
                                     0.9991
                                              0.9961
                                                        0.9959
                                                                  1.0000
## Specificity
                                     0.9994
                                              0.9992
                                                        0.9992
                                                                  0.9998
                           1.0000
## Pos Pred Value
                           1.0000
                                     0.9974
                                              0.9961
                                                        0.9959
                                                                 0.9991
## Neg Pred Value
                           0.9993
                                     0.9998
                                              0.9992
                                                        0.9992
                                                                  1.0000
## Prevalence
                           0.2850
                                     0.1932
                                              0.1743
                                                        0.1638
                                                                 0.1837
## Detection Rate
                           0.2845
                                     0.1930
                                              0.1737
                                                        0.1631
                                                                  0.1837
## Detection Prevalence
                                              0.1743
                                                                  0.1839
                           0.2845
                                     0.1935
                                                        0.1638
## Balanced Accuracy
                           0.9991
                                     0.9992
                                              0.9976
                                                        0.9975
                                                                 0.9999
accuracy <- postResample(predictRF, validation$classe)</pre>
ose <- 1 - as.numeric(confusionMatrix(validation$classe, predictRF)$overall[1])
```

The Estimated Accuracy of the Random Forest Model is 99.7960918% and the Estimated Out-of-Sample

rm(predictRF)

Error is 0.2039082%. Random Forests yielded better Results, as expected!

Predicting The Manner of Exercise for Test Data Set

Now, we apply the Random Forest model to the original testing data set downloaded from the data source. We remove the problem_id column first.

```
rm(accuracy)
rm(ose)
predict(modelRF, testing[, -length(names(testing))])

## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```