P10. Consider a datagram network using 8-bit host addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
1	0
10	1
111	2
otherwise	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

Interface 0

Range: 10000000 through 10111111

Number of addresses: 64

Interface 1

Range: 11000000 through 11011111

Number of addresses: 32

Interface 2

Range: 11100000 through 11111111

Number of addresses: 32

Interface 3

Range: 00000000 through 01111111

Number of addresses: 128

P14. Consider a subnet with prefix 128.119.40.128/26. Give an example of one IP address (of form xxx.xxx.xxx) that can be assigned to this network. Suppose an ISP owns the block of addresses of the form 128.119.40.64/26. Suppose it wants to create four subnets from this block, with each block having the same number of IP addresses. What are the prefixes (of form a.b.c.d/x) for the four subnets?

128.119.40.0/28

128.119.40.16/28

128.119.40.32/28

128.119.40.64/28

P17. Suppose datagrams are limited to 1,500 bytes (including header) between source Host A and destination Host B. Assuming a 20-byte IP header, how many datagrams would be required to send an MP3 consisting of 5 million bytes? Explain how you computed your answer.

MP3 file size = 5 million bytes.

each datagram can carry 1500-40=1460 bytes of the MP3 file. Number of datagram = $5 * 10^6 / 1460 = 3425$

- P21. Consider the SDN OpenFlow network shown in Figure 4.30. Suppose that the desired forwarding behavior for datagrams arriving at s2 is as follows:
- any datagrams arriving on input port 1 from hosts h5 or h6 that are destined to hosts h1 or h2 should be forwarded over output port 2;
- any datagrams arriving on input port 2 from hosts h1 or h2 that are destined to hosts h5 or h6 should be forwarded over output port 1;
- any arriving datagrams on input ports 1 or 2 and destined to hosts h3 or h4 should be delivered to the host specified;
- hosts h3 and h4 should be able to send datagrams to each other.
 Specify the flow table entries in s2 that implement this forwarding behavior.

s2 flow table

Match	Action
Ingress Port: 1; IP Src: 10.3.*.*; IP Dst: 10.1.*.*	Forward(2)
Ingress Port: 2; IP Src: 10.1.*.*; IP Dst: 10.3.*.*	Forward(1)
Ingress Port: 1; IP Dst: 10.2.0.3	Forward(3)
Ingress Port: 2; IP Dst: 10.2.0.3	Forward(3)
Ingress Port: 4; IP Src=10.2.0.4; IP Dst: 10.2.0.3	Forward(3)
Ingress Port: 1; IP Dst: 10.2.0.4	Forward(4)
Ingress Port: 2; IP Dst: 10.2.0.4	Forward(4)
Ingress Port: 3; IP Src=10.2.0.3; IP Dst: 10.2.0.4	Forward(4)

P23. Consider again the scenario from P21 above. Give the flow tables entries at packet switches s1 and s3, such that any arriving datagrams with a source address of h3 or h4 are routed to the destination hosts specified in the destination address field in the IP datagram. (Hint: Your forwarding table rules should include the cases that an arriving datagram is destined for a directly attached host or should be forwarded to a neighboring router for eventual host delivery there.)

S1 flow table

Match	Action
IP Src = 10.2.*.*; IP Dst = 10.1.0.1	Forward (2)
IP Src = 10.2.*.*; IP Dst = 10.1.0.2	Forward (3)
IP Src = 10.2.*.*; IP Dst = 10.3.*.*	Forward (1)

S3 flow table

Match	Action
IP Src = 10.2.*.*; IP Dst = 10.3.0.6	Forward (1)
IP Src = 10.2.*.*; IP Dst = 10.3.0.5	Forward (2)
IP Src = 10.2.*.*; IP Dst = 10.1.*.*	Forward (3)