北京航空航天大学 2011-2012 学年 第二学期期末

《材料力学B》 考试A卷

班	级					
姓	名	成 绩				

2012年6月13日

班号	•	学号	姓名	成绩
7 J		-11 <u></u>	XI.13	以》

《 材 料 力 学 B》期末试卷

一、填空题(第一题3分,第二题4分,第三题3分,共10分)

2、	在低碳钢材料单	向拉伸破坏的	整个过程中,	材料经历了四个阶段,	它们依次
	是			和	0

3、已知塑性材料的许用拉应力[σ],则根据第三和第四强度理论确定的纯剪切许用 切应力[τ]分别为_____和____。

- 二、单选题(5小题,每题4分,共20分)
- 1、拉杆左右两段分别由钢、铝材料制成,承受轴向拉力 *F*。以下关于左右两段应力和变形的说法正确的是_____。

A、应力相等、变形相同;

B、应力相等、变形不同;

C、应力不同、变形相同;

- D、应力不同、变形不同;
- 2、在等截面圆轴表面画一如图所示的微正方形,受扭时该正方形____。
- A、 保持为正方形;
- B、 变为菱形;
- C、 变为矩形;
- D、 变为平行四边形;

- 3、图示横截面为等腰梯形的纯弯梁受正的弯矩 M 作用,则梁横截面上最大弯曲拉应力与最大弯曲压应力之比为____。
- A = 5:7;
- B、1:3;
- $C_{x} 2:3;$
- $D_{V} 1:1;$

4、下图所示单元体的主应力大小及方向为____。

A,
$$\sigma_1 = 40 \text{MPa}, \alpha = -30^{\circ}$$
;

B.
$$\sigma_1 = 80 \text{MPa}, \alpha = -30^{\circ};$$

C.
$$\sigma_1 = 40 \text{MPa}, \alpha = 60^{\circ};$$

D.
$$\sigma_1 = 80 \text{MPa}, \alpha = 60^{\circ}.$$

、塑性材料等截面圆轴的危险截面上作用有轴力 $-F_N$,弯矩 M 和扭矩 T (F_N 、M 和 T 为大于 0 的数值)。若材料的单向拉伸许用应力为 $[\sigma]$,横截面积为 A,抗弯截面系数为 W,则根据第四强度理论,正确的强度条件为_____。

(A)
$$\sqrt{\left(-\frac{F_N}{A} + \frac{M}{W}\right)^2 + \left(\frac{T}{W}\right)^2} \le \left[\sigma\right]$$

(B)
$$\sqrt{\left(\frac{F_N}{A} + \frac{M}{W}\right)^2 + 0.75 \left(\frac{T}{W}\right)^2} \le \left[\sigma\right]$$

(C)
$$\sqrt{\left(\frac{F_N}{A} + \frac{M}{W}\right)^2 + \left(\frac{T}{W}\right)^2} \le [\sigma]$$

(D)
$$\sqrt{\left(-\frac{F_N}{A} + \frac{M}{W}\right)^2 + 0.75\left(\frac{T}{W}\right)^2} \le \left[\sigma\right]$$

- 二、计算题(5题,第1题10分,其余每题15分,共70分)
- 1. 图示桁架,杆 1、杆 2 横截面均为圆形,直径分别为 d_1 =30mm, d_2 =20mm,两杆材料相同,许用应力[σ]=160MPa,该桁架在节点 A 处承受铅锤方向载荷 F=80KN作用。试校核桁架强度。(10 分)

2. 图示处于静力平衡状态的阶梯型圆截面轴,在 A、B、C 三截面分别受集中扭力 偶作用,其中 M_1 =0.8KN·m, M_3 =1.5KN·m,AB 段直径 d_1 =40mm,BC 段直径 d_2 =70mm,材料的剪切模量 G=80Gpa,许用切应力[τ]=80MPa,许用单位长度扭 转角[θ]=1°/m。求:1)AC 两截面的相对转角;2)校核轴的强度和刚度。(15 分)

3. 画出图示梁的剪力、弯矩图。(15分)

4. 图示悬臂梁,同时承受载荷 F_1 与 F_2 作用,试求横截面 C 的挠度,设弯曲刚度 EI 为常数。(15 分)

5. 如图所示,在一体积较大的钢块上开一贯穿的槽,槽的宽度和深度都为 10mm。槽内紧密无间隙地嵌入一尺寸为 10mm×10mm×10mm 的立方体铝块。当铝块上表面受到 F=6KN 的均布压力作用时,不考虑钢块和铝块之间的摩擦,并假设钢块不变形。铝的弹性模量 E=70GPa,泊松比 μ =0.3。试求铝块的三个主应力及三个方向相应的变形量。(15 分)

