

### Example 4.4

A network with bandwidth of 10 Mbps can pass only an average of 12,000 frames per minute with each frame carrying an average of 10,000 bits. What is the throughput of this network?

#### **Solution**

We can calculate the throughput as

Throughput = 
$$\frac{12,000 \times 10,000}{60}$$
 = 2 Mbps

The throughput is almost one-fifth of the bandwidth in this case.

# Propagation & Transmission delay

- **Propagation speed** speed at which a bit travels though the medium from source to destination.
- Transmission speed the speed at which all the bits in a message arrive at the destination. (difference in arrival time of first and last bit)

# Propagation and Transmission Delay

- Propagation Delay = Distance/Propagation speed
- Transmission Delay = Message size/bandwidth bps
- Latency = Propagation delay + Transmission delay +
   Queueing time + Processing time



### Example 4.5

What are the propagation time and the transmission time for a 2.5-kbyte message (an e-mail) if the bandwidth of the network is 1 Gbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at  $2.4 \times 10^8$  m/s.

#### Solution

We can calculate the propagation and transmission time as shown on the next slide:



# Example 4.5 (continued)

Propagation time = 
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

Transmission time = 
$$\frac{2500 \times 8}{10^9}$$
 = 0.020 ms

Note that in this case, because the message is short and the bandwidth is high, the dominant factor is the propagation time, not the transmission time. The transmission time can be ignored.



## Example 4.6

What are the propagation time and the transmission time for a 5-Mbyte message (an image) if the bandwidth of the network is 1 Mbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at  $2.4 \times 10^8$  m/s.

### Solution

We can calculate the propagation and transmission times as shown on the next slide.



## Example 4.6 (continued)

Propagation time = 
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$
  
Transmission time =  $\frac{5,000,000 \times 8}{10^6} = 40 \text{ s}$ 

Note that in this case, because the message is very long and the bandwidth is not very high, the dominant factor is the transmission time, not the propagation time. The propagation time can be ignored.

### Figure 4.6 Filling the link with bits for case 1

