Chapitre 7

Limites de Suites

I. SUITES MAJORÉES, MINORÉES ET BORNÉES

A. DÉFINITIONS

- Une suite (u_n) est *majorée* s'il existe un réel M tel que : $\forall n \in \mathbb{N}, u_n \leq M$.
- Une suite (u_n) est *minorée* s'il existe un réel m tel que : $\forall n \in \mathbb{N}, u_n \ge m$.
- Une suite est *bornée* si elle est majorée *et* bornée.

B. EXEMPLE

La suite $(\frac{1}{n})_{n\geqslant 1}$ est minorée par 0, mais aussi par tout nombre négatif.

Elle est majorée par 1 (qui est aussi son maximum) et par tout nombre supérieur à 1. Elle est donc bornée.

II. DÉFINITIONS

A. LIMITE INFINIE

1. Définition

Une suite (u_n) a pour limite $+\infty$ si, quel que soit le réel M, l'intervalle $]M; +\infty[$ contient tous les termes de la suite à partir d'un certain rang.

Autrement dit, pour tout réel M, on peut trouver un rang n tel que :

$$\forall n \ge N, u_n > M$$

A partir du rang N, tous les termes sont supérieurs à M.

On note:

$$\lim_{n\to+\infty}u_n=+\infty$$

On peut dire que la suite diverge vers $+\infty$.

 $\text{H.P. }: \forall \mathbf{M} \in \mathbb{R}, \ \exists \mathbf{N} \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geq \mathbf{N} \Longrightarrow u_n > \mathbf{M})$

2. Définition

Une suite (u_n) a pour limite $-\infty$, si, quel que soit le réel m, l'intervalle $]-\infty$; m[contient tous les termes de le suite à partir d'un certain rang.

Autrement dit, pour tout réel m, on peut trouver un rang N tel que :

$$\forall n \ge N$$
, $u_n < m$

A partir du rang N, tous les termes sont inférieurs à m.

On note:

$$\lim_{n\to+\infty}u_n=-\infty$$

On peut dire que la suite diverge vers $-\infty$.

H.P. : $\forall m \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \implies u_n < m)$

3. Théorème

$$\lim_{n \to +\infty} n^2 = +\infty \qquad \qquad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

$$\lim_{n \to +\infty} \ln(n) = +\infty \qquad \qquad p \in \mathbb{N}^*, \lim_{n \to +\infty} n^p = +\infty$$

$$\lim_{n \to +\infty} \ln\left(\frac{1}{n}\right) = -\infty$$

4. RAPPELS

$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \dots$$
 signe

 $\forall n \in \mathbb{N}, \ u_n > 0 \quad \frac{u_{n+1}}{u_n} \quad \text{on compare à } 1$

Cas où $u_n = f(n)$, par exemple : $u_n = \sqrt{n^2 + n - 3}$ on étudie f.

A. ARITHMÉTIQUE

$$u_{n+1} = u_n + r$$
 alors $u_n = u_0 + nr$ $(u_n = u_p + (n-p)r)$
 $S = u_0 + u_1 + \dots + u_n = \frac{u_0 + u_n}{2} \times (n+1)$

B. GÉOMÉTRIQUE

$$u_{n+1} = qu_n$$
 alors $u_n = u_0 \times q^n$ $(u_n = u_p \times q^{n-p})$
 $S = u_0 + u_1 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$

B. Limites Finies / Suites Convergentes

1. Définition

Une suite (u_n) *converge* vers un réel ℓ si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang.

Autrement dit, on peut trouver un rang N à partir duquel tous les termes de la suite sont aussi près que l'on veut de ℓ .

On dit que ℓ est la *limite* de la suite (u_n) et que la suite est *convergente*.

On note:

$$\lim_{n\to+\infty}u_n=\ell$$

$$\text{H.P.}: \quad \forall \epsilon > 0, \ \exists \mathbf{N} \in \mathbb{N}, \ \forall \, n \in \mathbb{N}, \Big(n \geq \mathbf{N} \implies u_n \in \left] \ell - \epsilon; \ell + \epsilon \right[\Big)$$

2. Théorème

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} e^{-n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

3. Définition

Une suite qui n'est pas convergente est divergente.

4. EXEMPLE

La suite (u_n) définie par $u_n = (-1)^n$ est divergente.

III. PROPRIÉTÉS SUR LES LIMITES

A. THÉORÈMES DE COMPARAISON

1. Théorème

Soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang $u_n \le v_n$:

— Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

— Si
$$\lim_{n \to +\infty} v_n = -\infty$$
 alors $\lim_{n \to +\infty} u_n = -\infty$

2. DÉMONSTRATION

On suppose que $\lim_{n\to+\infty} u_n = +\infty$.

Soit M > 0, il existe un rang N, à partir duquel si $n \ge N_1$, alors $u_n \ge M$.

Or, il existe un rang N_2 , à partir duquel $n > N_2$, $v_n \ge u_n$.

Donc, il existe un rang N = max (N₁; N₂) à partir duquel $v_n \ge u_n > M$ donc :

$$\lim_{n\to+\infty}v_n=+\infty\quad\square$$

3. Théorème dit « des Gendarmes » (Théorème d'Encadrement)

Soient (u_n) , (v_n) , et (w_n) trois suites telles qu'à partir d'un certain rang $u_n \le v_n \le w_n$:

Si
$$\lim_{n\to +\infty} u_n = \ell$$
 et $\lim_{n\to +\infty} w_n = \ell$ où ℓ est un réel alors :

$$\lim_{n\to+\infty} \nu_n = \ell$$

4. EXEMPLE

Soit (u_n) définie par $u_n = \frac{(-1)^n}{n}$.

$$\forall n \in \mathbb{N}, \quad -1 \le (-1)^n \le 1$$

$$\iff \frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}$$

Or,
$$\lim_{n \to +\infty} \frac{-1}{n} = 0$$
, $\lim_{n \to +\infty} \frac{1}{n} = 0$.

D'après le Théorème des Gendarmes, $\lim_{n \to +\infty} u_n = 0$.

B. Convergence Monotone

1. THÉORÈME ADMIS

Toute suite croissante et majorée converge vers une limite finie.

Toute suite décroissante et minorée converge vers une limite finie.

2. Théorème

Soit une suite (u_n) croissante et qui converge vers un réel ℓ , alors (u_n) est majorée par ℓ .

A. DÉMONSTRATION PAR L'ABSURDE

On suppose que (u_n) est croissante.

1. Lemme

Si (u_n) est croissante, si p et n sont deux entiers naturels tels que $p \le n$.

Alors, $u_p \le u_n$.

2. DÉMONSTRATION DE LA LEMME PAR RÉCURRENCE

- Initialisation : On fixe p donc $u_p \le u_{p+1}$.
- Hérédité : On suppose que $k \ge 1$, $u_p \le u_{p+k}$. $u_p \le u_{p+k} \implies u_p \le u_{p+k} \le u_{p+k+1} \quad \Box$

On suppose $\exists n_0 \in \mathbb{N}, \ u_{n_0} > \ell$.

Or tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang.

Prenons l'intervalle ouvert a; b tel que $\ell < b < u_{n_0}$.

Il existe un indice $p > n_0$ tel que $u_p \in]a; b[$ (Ils y sont tous à partir d'un certain rang !)

Donc, $u_p < b < u_{n_0}$, ce qui impossible car (u_n) est croissante et d'après la lemme, $p > n_0 \implies u_p \ge u_{n_0}$.

C'est absurde, donc, $\forall n \in \mathbb{N}, u_n \leq \ell$. \square

Limites de Suites

3. Théorème

Toute suite croissante et non-majorée diverge vers $+\infty$.

Toute suite décroissante et non-minorée diverge vers $-\infty$.

A. DÉMONSTRATION

Soit M un réel, et $(u_n)_{n \in \mathbb{N}}$, une suite croissante, non-majorée.

Il existe un rang N tel que $u_N > M$.

Donc, (u_n) diverge vers $+\infty$.

— Si (u_n) admettait une limite finie, d'après le théorème de croissance :

$$\lim_{n \to +\infty} u_n = \ell \implies \forall n \in \mathbb{N}, \ u_n \leq \ell$$

 (u_n) est majorée par ℓ , c'est une contradiction. \square

— Soit $M \in \mathbb{R}$ et $(u_n)_{n \in \mathbb{N}}$, une suite non-majorée, donc, $\exists n_0, \ u_{n_0} > M$ D'après la lemme, pour (u_n) croissante : $p, \ n \in \mathbb{N}, \ p \le n \implies u_p \le u_n$. Ainsi :

$$\forall n \ge n_0, \ u_n \ge u_{n_0} > M$$

Donc, tous les termes à partir de n_0 sont supérieurs à M. D'où :

$$\lim_{n\to+\infty}u_n=+\infty$$

C. Rappel: Limite de (q^n) où $q \in \mathbb{R}$

1. Théorème

— Si
$$q > 1$$
, $\lim_{n \to +\infty} q^n = +\infty$

$$-- \operatorname{Si} q = 1, \lim_{n \to +\infty} q^n = 1$$

- Si
$$-1 < q < 1$$
, $\lim_{n \to +\infty} q^n = 0$

— Si q < -1, la suite diverge.

IV. OPÉRATIONS SUR LES LIMITES

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ admettant des limites finies ou infinies.

E.I.: Forme Indéterminée, il faut faire un calcul pour lever l'indétermination

A. SOMME

TABLEAU 7.1. – Tableau des Limites de Sommes de Suites

		$\lim u_n$	
$\lim v_n$	ℓ'	+∞	$-\infty$
ℓ'	$\ell + \ell'$	+∞	-∞
+∞	$+\infty$	$+\infty$	F.I.
$-\infty$	$-\infty$	F.I.	$-\infty$

B. Produit

TABLEAU 7.2. – Tableau des Limites de Produits de Suites

		$\lim u_n$			
$\lim v_n$	$\ell \neq 0$	0	+∞	$-\infty$	
$\ell' \neq 0$	$\ell \times \ell'$	0	$\pm\infty$ selon signe ℓ'	$\pm\infty$ selon signe ℓ'	
0	0	0	F.I.	F.I.	
$+\infty$	$\pm\infty$ selon signe ℓ	F.I.	+∞	$-\infty$	
$-\infty$	$\pm\infty$ selon signe ℓ	F.I.	$-\infty$	$+\infty$	

C. QUOTIENT

TABLEAU 7.3. – Tableau des Limites de Quotients de Suites

		$\lim u_n$				
$\lim v_n$	$\ell \neq 0$	0	$+\infty$	$-\infty$		
$\ell' \neq 0$	$rac{\ell}{\ell'}$	0	$\pm\infty$ selon signe ℓ'	$\pm\infty$ selon signe ℓ'		
0	$\pm\infty$ selon signe ℓ et 0	F.I.	$\pm\infty$ selon signe 0	$\pm\infty$ selon signe 0		
$+\infty$	0	0	F.I.	F.I.		
$-\infty$	0	0	F.I.	EI.		

D. EXEMPLES

1. Somme

 $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n^2-n$ EI.

= n(n-1) On a levé l'indétermination

$$\underbrace{\lim_{n \to +\infty} n^2 = +\infty \quad \lim_{n \to +\infty} -n = -\infty}_{\text{EI.}} \qquad \lim_{n \to +\infty} n = +\infty \quad \lim_{n \to +\infty} n - 1 = +\infty$$

Donc, par produit, $\lim_{n\to+\infty} n(n+1) = +\infty$ et donc, $\lim_{n\to+\infty} u_n = +\infty$

2. Produit

Soit
$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=n$ $\lim_{n\to+\infty}u_n=+\infty$

Soit
$$(v_n)_{n\in\mathbb{N}}$$
, définie par $v_n=\frac{1}{\sqrt{n}}$ $\lim_{n\to+\infty}v_n=0$

$$u_n \times v_n = n \times \frac{1}{\sqrt{n}} = \sqrt{n}$$
 or $\lim_{n \to +\infty} \sqrt{n} = +\infty$

Donc,
$$\lim_{n\to+\infty}(u_n\times v_n)=+\infty$$

Autre Exemple:

$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=n^2$ $\lim_{n\to+\infty}u_n=+\infty$

$$(\nu_n)_{n\in\mathbb{N}}$$
, définie par $\nu_n = \frac{1}{n} - 4$ $\lim_{n \to +\infty} \nu_n = -4$ (Somme)

Donc,
$$\lim_{n\to+\infty} (u_n \times v_n) = -\infty$$

3. QUOTIENT

$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=\frac{1}{n^2-3}$ $\lim_{n\to+\infty}u_n=+\infty$ (Somme)
Donc, par quotient, $\lim_{n\to+\infty}u_n=0$.

V. Limite de Suite et Continuité

A. Théorème

Soit f une fonction *continue* sur un intervalle I et $(u_n)_{n\in I}$, une suite qui converge vers un réel ℓ , telle que $\forall n \in \mathbb{N}$, $u_n \in I$, $\ell \in I$, alors, la suite $(f(u_n))$ converge vers $f(\ell)$.

1. EXEMPLE

Soit le suite (u_n) , définie par $u_n = \frac{4n}{n+1}$. Alors $\lim_{n \to +\infty} u_n = 4$.

Donc, la suite (v_n) , définie par $v_n = \sqrt{u_n}$ converge vers $\sqrt{4} = 2$.

B. Théorème

Soit f une fonction *continue* sur un intervalle I, telle que $f(I) \subset I$ et $(u_n)_{n \in \mathbb{N}}$ une suite définie par $u_{n+1} = f(u_n)$ et $u_0 \in I$.

Si la suite (u_n) converge vers un réel ℓ , alors ℓ est solution de l'équation f(x) = xOn peut dire que ℓ est un point fixe de f.

1. Démonstration

$$\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = f(\ell)$$

2. Remarque

Graphiquement, les termes de la suite se rapprochent du point d'intersection \mathcal{C}_f et la droite d'équation y = x. Uniquement si la suite converge !

FIGURE 7.1. – Représentation Graphique de la Convergence d'une Suite Ici, lorsque u_0 est supérieur au deuxième point fixe de f, le suite diverge.