Программа курса «Комплексный анализ», часть II, 3 поток, механики (6 сем., 2014/2015 уч. год).

- 1. Интеграл в смысле главного значения. Вычет относительно области и его вычисление.
- 2. Лемма Жордана.
- 3. Теорема о вычетах для интеграла в смысле главного значения.
- 4. Примеры вычисления интегралов. Преобразования Фурье и Гильберта.
- 5. Теорема о логарифмических вычетах. Принцип аргумента.
- 6. Теорема Руше. Принцип сохранения области и его следствие.
- 7. Конформность голоморфных инъективных функций.
- 8. Обратный принцип соответствия границ.
- 9. Критерии локальной однолистности и локальной обратимости.
- 10. Принцип симметрии Римана-Шварца для конформных отображений.
- 11. Теорема Римана о конформном отображении (б/д). Теорема Каратеодори для жордановых областей (б/д). Их гидродинамическая интерпретация.
- 12. Обтекание цилиндра с вихрем. Поведение линий тока. Вполне регулярность.
- 13. Обтекание профиля Жуковского. Условие Чаплыгина.
- 14. Уравнение Эйлера-Бернулли для идеальной жидкости. Формула Чаплыгина для подъемной силы крыла.
- 15. Формула Жуковского для подъемной силы крыла.
- 16. Вычисление подъемной силы для профиля Жуковского.
- 17. Аналитическое продолжение вдоль пути и его свойства.
- 18. Единственность аналитического продолжения вдоль пути и его связь с продолжением по цепочке.
- 19. Гомотопные пути в области. Связь 1- и 2- гомотопности путей в области. Классы гомотопных замкнутых путей в $\mathbb{C}\setminus\{0\}$. Эквивалентные определения односвязной области в \mathbb{C} (б/д).
- 20. Аналитическое продолжение по близким путям и по путям гомотопии. Теорема о монодромии.
- 21. Аналитическое продолжение первообразной. Теорема об интегралах по гомотопным путям.
- 22. Полная аналитическая функция ($\Pi A\Phi$) в смысле Вейерштрасса. Теорема Пуанкаре-Вольтерра. Голоморфные ветви и точки аналитичности ветвей $\Pi A\Phi$.
- 23. Точки ветвления (ветвей) ПАФ, их классификация. ПАФ ${\rm Ln}\,z$ и z^p .
- 24. Первообразная рациональной функции как ПАФ. ПАФ Arctgz.
- 25. Модулярная функция и малые теоремы Пикара.

Содержание

	0.1 Сводка необходимых формулировок с прошлого семестра	3
1	Интеграл в смысле главного значения. Вычет относительно области и его вычисление. 1.1 Интеграл в смысле главного значения.	
2	Лемма Жордана.	5
3	Теорема о вычетах для интеграла в смысле главного значения.	6
4	Примеры вычисления интегралов. Преобразования Фурье и Гильберта.	7
5	Теорема о логарифмических вычетах. Принцип аргумента.	8
6	Теорема Руше. Принцип сохранения области и его следствие.	9
7	Конформность голоморфных инъективных функций.	10
8	Обратный принцип соответствия границ.	11
9	Критерии локальной однолистности и локальной обратимости.	12
10	Принцип симметрии Римана-Шварца для конформных отображений.	13

Сводка необходимых формулировок с прошлого семестра.

Определение 0.1. Пусть $\Gamma_s^+ - K\Gamma$ замкнутая жорданова кривая, ограничивающая область D_s $(s=1,\ldots,S),$ $S\geqslant 2$ — натуральное. Так жее пусть все $\overline{D_2},\ldots,\overline{D_S}$ лежат внутри области D_1 .

Тогда область $D=D_1 \diagdown \bigsqcup_{s=1}^S \overline{D_s}$ называется допустимой областью ранга S. (S-nopядок связности области <math>D)

Лемма 0.1 (Лемма Гурса (условие Δ)). Пусть D- область в $\mathbb{C},\ f\in C(D)$ тогда для \forall замкнутого треугольника $\Delta \in D$ имеем $\int\limits_{\partial^+\Delta}^{\int} f(z)dz=0$. В данном случае говорят, что функция f удовлетворяет условию треугольника.

Теорема 0.1 (Интегральная теорема Коши для допустимой области). Пусть D- donycmumas область c границей $\partial^+ D = \Gamma_1^+ \bigsqcup \Gamma_2^- \bigsqcup \cdots \bigsqcup \Gamma_S^-, \ f \in C(\overline{D}), \ f$ удовлетворяет условию Δ в D. Тогда $\int\limits_{\partial^+ D} f(z) dz = 0$.

Интеграл в смысле главного значения. Вычет относительно обла-1 сти и его вычисление.

Интеграл в смысле главного значения.

Определение 1.1. $\gamma \colon [\alpha, \beta] \to \mathbb{C}$ — кусочно-гладкий путь (КГ-путь), если он гладкий на каждом из отрезков

Определение 1.2. $\Gamma^+ = \{\gamma\}$ — класс эквивалентности $K\Gamma$ -путей называется $K\Gamma$ -кривой.

Определение 1.3. Пусть $\Gamma^+ - K\Gamma$ -кривая в $\overline{\mathbb{C}}$, а $[\Gamma^+]$ — траектория, $z_0 \notin [\Gamma^+]$, $z_0 \in \mathbb{C}$.

Ecли $\frac{1}{z-z_0} \circ \Gamma^+ - K\Gamma$ -кривая в \mathbb{C} , тогда $\Gamma^+ - \underline{K\Gamma}$ -кривая в $\overline{\mathbb{C}}$.

Определение 1.4. Допустимая кривая — жарданова $K\Gamma$ -кривая в \mathbb{C} (взаимооднозначная) либо замкнутая-

Теперь давайте определим интеграл в смысле главного значения.

- 1. Пусть Γ^+ допустимся кривая в $\overline{\mathbb{C}}$, $[\Gamma^+]$ траектория Γ^+ .
- 2. Положим $\mathcal{A} = \{a_1, \dots, a_J\} \in [\Gamma^+]$ конечное множество : $f \in C([\Gamma^+] \setminus \mathcal{A})$ комплекснозначная функция.
- 3. Для $\forall a_j \ \exists \delta_j \in (0,+\infty)$. Обозначим $\Delta = \{\delta_1,\ldots,\delta_J\}$, а $|\Delta| = \max_{j=1,\ldots,J} \{\delta_i\}$.
- 4. Пусть $\exists \delta > 0$: при $|\Delta| < \delta$ круги $\{B(a_j, \delta_j)\}_{j=0}^J$ попарно не пересекаются, причем для $\forall j\colon \ \partial B(a_j, \delta_j)\cap [\Gamma^+]$ содержит не более 2 точек (ровно 2, если Γ^+ замкнуто).
- 5. Обозначим через $\Gamma_{A\Delta}^+ = \Gamma^+ \diagdown \bigsqcup_{j=1}^J B(a_j, \delta_j)$ цепь кривых (выкинули точки с радиусами).

Тогда существует $I=(vp)\int\limits_{\Gamma^+}f(z)dz=\lim_{|\Delta|\to\infty}\int\limits_{\Gamma^+_{A\Delta}}f(z)dz$ — главное значение интеграла.

Определение 1.5. I- называется интегралом в смысле главного значения, если

для
$$\forall \varepsilon>0 \; \exists \delta>0 \colon |\Delta|<\delta \; u \; \left|I-\int\limits_{\Gamma_{A\Delta}^+} f(z)dz\right|<\varepsilon.$$

1.2Вычет относительно области.

Пусть D — допустимая область в $\overline{\mathbb{C}}$ ранга $s \geqslant 1$. (т.е. для $\forall z_0 \in \mathbb{C} \setminus \overline{D} \neq 0$ отображение $\frac{1}{z-z_0}$ переводит D в некоторую обычную допустимую область в \mathbb{C}). Граница области D: $\partial^+ D = \Gamma_1^+ \sqcup \Gamma_2^- \sqcup \cdots \sqcup \Gamma_s^-$.

Пусть для $\forall a \in \overline{D} \; \exists \delta_a > 0$: при всех $\delta \in (0, \delta_a)$: $\partial B(a, \delta) \cap \partial_{\overline{\mathbb{C}}} D$ содержит не более 2x точек и $\partial B(a, \delta) \cap \overline{D}$ является связной замкнутой кривой, ориентированной против часовой стрелки, если $a \neq \infty$, и по часовой, если $a=\infty$. Обозначим её за $\gamma_s^+(a)$.

Определение 1.6. Пусть в рамках вышеизложенных обозначений $\exists \delta_a^{'} > 0 \colon f \in C(B'(a, \delta_a^{'}) \cap \overline{D}).$ Tогда, если при $\delta < \min(\delta_a, \delta_a^{'})$ определён $\int f(z)dz$, то вычет в точке а относительно области D:

$$\operatorname{res}_{a,D} f(z) := \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\gamma'_{\delta}(a)} f(z) dz.$$

2 Лемма Жордана.

Лемма 2.1. Пусть функция f(z) определена и непрерывна на множестве $\Pi_+ = \{z \in \mathbb{C} | \operatorname{Im} z \geqslant 0, |z| \geqslant R_0 > 0\}$. Положим при $R > R_0$: $M(R) := \max_{z \in \gamma_R} f(z)$, где $\gamma_R = \{z = Re^{i\theta}, 0 < \theta < \pi\}$ — полуокружность. Предположим, что f(z) стремится к нулю на бесконечности так, что $\lim_{R \to \infty} M(R) = 0$, тогда для $\forall \lambda$ справедливо соотношение

$$\operatorname{res}_{\infty,D}(f(z)e^{i\lambda z}) = 0.$$

Доказательство. Из определения вычета относительно области

$$\operatorname{res}_{\infty,D} f(z)e^{i\lambda z} = \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\gamma_R} f(z)e^{i\lambda z} dz.$$

В указанных выше обозначениях имеем

$$\left| \int\limits_{\gamma_R} f(z) e^{i\lambda z} dz \right| = \left| \int\limits_0^\pi f(Re^{i\theta}) e^{\lambda(iR\cos\theta - R\sin\theta)} iRe^{i\theta} d\theta \right| \leqslant \int\limits_0^\pi M(R) Re^{-\lambda R\sin\theta} d\theta$$

Справедлива оценка $\sin\theta\geqslant\frac{2\theta}{\pi}$ на $0\leqslant\theta\leqslant\frac{\pi}{2}$. Исходя из этого сделаем замену $\tau=\frac{2R\theta}{\pi}$, тогда

$$\int_{0}^{\pi} M(R)Re^{-\lambda R\sin\theta}d\theta = 2M(R)\int_{0}^{\frac{\pi}{2}} Re^{-\lambda R\sin\theta}d\theta \leqslant 2M(R)\int_{0}^{\frac{\pi}{2}} Re^{-\frac{2\lambda R\theta}{\pi}}d\theta = \pi M(R)\int_{0}^{R} e^{-\lambda \tau}d\tau = \pi M(R)(1 - e^{-\lambda R});$$

Значит,

$$\left| \int_{\gamma_R} f(z)e^{i\lambda z} dz \right| \leq \underbrace{\pi M(R)}_{\to 0} \underbrace{(1 - e^{-\lambda R})}_{\to 1} \xrightarrow{R \to +\infty} 0.$$

3 Теорема о вычетах для интеграла в смысле главного значения.

Теорема 3.1. Пусть D- допустимая в $\overline{\mathbb{C}}$ область, $\mathcal{A}=\{a_1,\ldots,a_N\}\subset \overline{D}$ (если $\infty\in \overline{D}$, тогда $\infty\in \mathcal{A}$). $\mathcal{A}-\kappa$ онечное множество, $f\in A(D\backslash\mathcal{A})\cap C(\overline{D})$. Тогда

$$(vp)\int\limits_{\partial^+ D} f(z)dz = 2\pi i \sum_{n=1}^N \mathop{\rm res}\limits_{a_n,D} f(z).$$

То есть интеграл в смысле главного значения существует, если и только если выечеты в каждой точке из А относительно области D существуют. В таком случае данное равенство выполняется.

Доказательство. Для $\forall a_j \in \mathcal{A} \ \exists \delta_j \in (0, +\infty)$. Обозначим $\Delta = \{\delta_1, \dots, \delta_N\}$, а $|\Delta| = \max_{j=1,\dots,N} \{\delta_j\}$.

Пусть $\exists \delta > 0$: при $|\Delta| < \delta$ круги $\{B(a_j, \delta_j)\}_{j=0}^{N}$ — попарно не пересекаются, соответственно определим $\gamma_{\delta_j}^+(a_j)$.

Положим $D_{\mathcal{A}\Delta} = D \setminus \bigsqcup_{j=1}^N \overline{B(a_j, \delta_j)}$ — допустимая область в $\mathbb C$.

Очевидно, что $f \in A(D_{\mathcal{A}\Delta}) \cap C(\overline{D_{\mathcal{A}\Delta}})$. Пусть $\mathcal{A}' = \mathcal{A} \cap \partial D = \{a_1, \dots, a_J\}$, где $J \leqslant N$ и $\infty = a_J$, если $\infty \in \partial D$.

Пускай $\Gamma^+_{\mathcal{A}'\Delta'} = \partial^+ D \setminus \bigsqcup_{j=1}^J B(a_j, \delta_j)$, где $\Delta' = \{\delta_1, \dots, \delta_J\}$.

Значит, $\partial^+ D_{\mathcal{A}\Delta} = \Gamma^+_{\mathcal{A}'\Delta'} \cap \bigsqcup_{j=1}^N \gamma^-_{\delta_j}(a_j).$

Тогда по интегральной теореме Коши:

$$0 = \int_{\partial^{+}D_{A\Delta}} f(z)dz = \int_{\Gamma_{\partial^{+}D}^{+}} f(z)dz - \sum_{j=1}^{N} \int_{\gamma_{\delta_{j}}^{+}(a_{j})} f(z)dz.$$

4	Примеры берта.	вычисления	интегралов.	Преобразования	Фурье и Гиль-
			7		

Теорема о логарифмических вычетах. Принцип аргумента.

Теорема Руше. Принцип сохранения области и его следствие.

Конформность голоморфных инъективных функций.

8	Обратный принцип соответствия границ.

9	критерии	локальной	однолистности	и локальнои	ооратимости.

10	Принцип симметрии Римана-Шв ний.	арца для конформных	отоораже
	13		