Adversarial Training and Robustness for Multiple Perturbations

Florian Tramèr Stanford University **Dan Boneh** Stanford University

Hanqing Chao

Can we achieve adversarial robustness to

different types of perturbations simultaneously?

For now, the answer is NO

(a) MNIST models trained on $\ell_1, \ell_2 \& \ell_{\infty}$ attacks.

(b) MNIST models trained on ℓ_{∞} and RT attacks.

(c) CIFAR10 models trained on ℓ_1 and ℓ_{∞} attacks.

(d) CIFAR10 models trained on ℓ_{∞} and RT attacks.

Notations:

- Data distribution \mathcal{D} , $(x, y) \sim \mathcal{D}$, $x \in \mathbb{R}^d$, $y \in [C]$
- Classifier $f: \mathbb{R}^d \to [C]$
- Zero-one loss: $l(f(x), y) = \mathbb{I}_{f(x) \neq y}$
- A type of perturbation: a set S, e.g., S can be an l_p -ball for a l_p perturbation

Notations:

- Data distribution \mathcal{D} , $(x, y) \sim \mathcal{D}$, $x \in \mathbb{R}^d$, $y \in [C]$
- Classifier $f: \mathbb{R}^d \longrightarrow [C]$
- Zero-one loss: $l(f(x), y) = \mathbb{I}_{f(x) \neq y}$
- A type of perturbation: a set S, e.g., S can be an l_p -ball for a l_p perturbation
- Adversarial risk: $\mathcal{R}_{adv}(f;S) \coloneqq E_{(x,y)\sim\mathcal{D}}[\max_{r\in S} l(f(x+r),y)]$
- For multiple perturbation sets $S_1, ..., S_n$:

$$\mathcal{R}_{\text{adv}}^{\text{max}}(f; S_1, \dots, S_n) \coloneqq \mathcal{R}_{\text{adv}}(f; \cup_i S_i) , \quad \mathcal{R}_{\text{adv}}^{\text{avg}}(f; S_1, \dots, S_n) \coloneqq \frac{1}{n} \sum_i \mathcal{R}_{\text{adv}}(f; S_i) .$$

• Define S_1, S_2 are Mutually Exclusive Perturbations (MEPs), if $\mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}(f; S_1, S_2) \geq 1/|\mathcal{C}|$

 l_{∞} and l_{1} perturbations are *Mutually Exclusive*

- Construct a specific distribution ${\mathcal D}$
- Prove that for $\forall f, \mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}(f; S_{\infty}, S_1) \geq 1/2$

 l_{∞} and l_{1} perturbations are *Mutually Exclusive*

- Construct a specific distribution \mathcal{D}
- Prove that for $\forall f, \mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}(f; S_{\infty}, S_1) \geq 1/2$

$$y \stackrel{u.a.r}{\sim} \{-1, +1\}, \quad x_0 = \begin{cases} +y, \text{ w.p. } p_0, \\ -y, \text{ w.p. } 1 - p_0 \end{cases}, \quad x_1, \dots, x_d \stackrel{i.i.d}{\sim} \mathcal{N}(y\eta, 1),$$
 (2)

where $p_0 \ge 0.5$, $\mathcal{N}(\mu, \sigma^2)$ is the normal distribution and $\eta = \alpha/\sqrt{d}$ for some positive constant α .

 l_{∞} and l_{1} perturbations are *Mutually Exclusive*

- Construct a specific distribution \mathcal{D}
- Prove that for $\forall f, \mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}(f; S_{\infty}, S_1) \geq 1/2$

$$y \stackrel{u.a.r}{\sim} \{-1, +1\}, \quad x_0 = \begin{cases} +y, \text{ w.p. } p_0, \\ -y, \text{ w.p. } 1 - p_0 \end{cases}, \quad x_1, \dots, x_d \stackrel{i.i.d}{\sim} \mathcal{N}(y\eta, 1),$$
 (2)

where $p_0 \ge 0.5$, $\mathcal{N}(\mu, \sigma^2)$ is the normal distribution and $\eta = \alpha/\sqrt{d}$ for some positive constant α .

Theorem 1. Let f be a classifier for \mathcal{D} . Let S_{∞} be the set of ℓ_{∞} -bounded perturbations with $\epsilon = 2\eta$, and S_1 the set of ℓ_1 -bounded perturbations with $\epsilon = 2$. Then, $\mathcal{R}^{avg}_{adv}(f; S_{\infty}, S_1) \geq 1/2$.

 l_{∞} and Spatial perturbations are (nearly) Mutually Exclusive

Theorem 2. Let f be a classifier for \mathcal{D} (with $x_0 \sim \mathcal{N}(y, \alpha^{-2})$). Let S_∞ be the set of ℓ_∞ -bounded perturbations with $\epsilon = 2\eta$, and S_{RT} be the set of perturbations for an RT adversary with budget N. Then, $\mathcal{R}_{adv}^{avg}(f; S_\infty, S_{RT}) \geq 1/2 - O(1/\sqrt{N})$.

As the distribution $\mathcal D$ is constructed, these two theorem might not hold in a real dataset.

Multi-perturbation ADV training

For a normal adversarial training: $L(f(\mathcal{A}(\boldsymbol{x})), y)$ where $\mathcal{A}(\cdot)$ is an attack procedure.

1. "Max" strategy: For each input x, we train on the strongest adversarial example from all attacks, i.e., the max in $\hat{\mathcal{R}}_{adv}$ is replaced by $L(f(\mathcal{A}_{k^*}(x)), y)$, for $k^* = \arg\max_k L(f(\mathcal{A}_k(x)), y)$.

Multi-perturbation ADV training

For a normal adversarial training: $L(f(\mathcal{A}(\boldsymbol{x})), y)$ where $\mathcal{A}(\cdot)$ is an attack procedure.

- 1. "Max" strategy: For each input x, we train on the strongest adversarial example from all attacks, i.e., the max in $\hat{\mathcal{R}}_{adv}$ is replaced by $L(f(\mathcal{A}_{k^*}(x)), y)$, for $k^* = \arg\max_k L(f(\mathcal{A}_k(x)), y)$.
- 2. "Avg" strategy: This strategy simultaneously trains on adversarial examples from all attacks. That is, the max in $\hat{\mathcal{R}}_{adv}$ is replaced by $\frac{1}{n} \sum_{i=1}^{n} L(f(\mathcal{A}_i(\boldsymbol{x}), y))$.

- $\beta \in [0,1]$
- $r = r_1 + r_2$
- $r_1 \in \beta \cdot S_1$
- $r_2 \in (1 \beta) \cdot S_2$

- $\beta \in [0,1]$
- $r = r_1 + r_2$
- $r_1 \in \beta \cdot S_1$
- $r_2 \in (1 \beta) \cdot S_2$

An affine attack is equal or stronger than the union of multiple attacks

- $\beta \in [0,1]$
- $r = r_1 + r_2$
- $r_1 \in \beta \cdot S_1$
- $r_2 \in (1 \beta) \cdot S_2$

An affine attack is equal or stronger than the union of multiple attacks

Claim 3. For a linear classifier $f(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$, we have $\mathcal{R}_{adv}^{max}(f; S_p, S_q) = \mathcal{R}_{adv}(f; S_{affine})$.

- $\beta \in [0,1]$
- $r = r_1 + r_2$
- $r_1 \in \beta \cdot S_1$
- $r_2 \in (1 \beta) \cdot S_2$

An affine attack is equal or stronger than the union of multiple attacks

Claim 3. For a linear classifier $f(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$, we have $\mathcal{R}_{adv}^{max}(f; S_p, S_q) = \mathcal{R}_{adv}(f; S_{affine})$.

Theorem 4. Let $f(x) = sign(\mathbf{w}^T x + b)$ be a linear classifier for \mathcal{D} (with $x_0 \sim \mathcal{N}(y, \alpha^{-2})$). Let S_{∞} be some ℓ_{∞} -ball and S_{RT} be rotation-translations with budget N > 2. Define S_{affine} as above. Assume $w_0 > w_i > 0, \forall i \in [1, d]$. Then $\mathcal{R}_{adv}(f; S_{affine}) > \mathcal{R}_{adv}^{max}(f; S_{\infty}, S_{RT})$.

Experiments

Experiments on MNIST

Model	Acc.	ℓ_∞	ℓ_1	ℓ_2	$1-\mathcal{R}_{\text{adv}}^{\text{max}}$	$1-\mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}$
Nat	99.4	0.0	12.4	8.5	0.0	7.0
$\begin{array}{c} Adv_{\infty} \\ Adv_{1} \\ Adv_{2} \end{array}$	98.9	91.1 0.0 0.4	78.5	50.6	6.8 0.0 0.4	38.2 43.0 46.7
$\begin{array}{c} Adv_{avg} \\ Adv_{max} \end{array}$					49.9 52.4	63.0 63.4

Model	Acc.	ℓ_∞	RT	$1-\mathcal{R}_{\mathrm{adv}}^{\mathrm{max}}$	$1-\mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}$
Nat	99.4	0.0	0.0	0.0	0.0
$\begin{array}{c} Adv_{\infty} \\ Adv_{RT} \end{array}$				0.2 0.0	45.8 47.3
$\begin{array}{c} Adv_{avg} \\ Adv_{max} \end{array}$				82.9 83.8	87.3 87.6

3.0

40.0

41.3

73.0

72.4

Experiments

Experiments on CIFAR10

Model	Acc.	ℓ_∞	ℓ_1	$1-\mathcal{R}_{adv}^{max}$	$1-\mathcal{R}_{\mathrm{adv}}^{\mathrm{avg}}$	Model	Acc.	ℓ_∞	RT	$1-\mathcal{R}_{adv}^{max}$	1 -
Nat	95.7	0.0	0.0	0.0	0.0	Nat	95.7	0.0	5.9	0.0	
$\begin{array}{c} Adv_{\infty} \\ Adv_{1} \end{array}$				16.4 53.1	44.9 60.0	$\begin{array}{c} Adv_{\infty} \\ Adv_{RT} \end{array}$				8.7 0.0	
$\begin{array}{c} Adv_{avg} \\ Adv_{max} \end{array}$	91.1 91.2	64.1 65.7	60.8 62.5	59.4 61.1	62.5 64.1	$\begin{array}{c} Adv_{avg} \\ Adv_{max} \end{array}$				65.2 65.7	

Experiments

Experiments on affine attacks

Dataset	Attacks	acc. on $S_{\rm U}$	acc. on S_{affine}
MNIST	ℓ_∞ & RT	83.8	62.6
CIFAR10	ℓ_∞ & RT	65.7	56.0
CIFAR10	$\ell_\infty \ \& \ \ell_1$	61.1	58.0

Thanks !