$Q(T_0) \cap Q(\omega) \neq Q$ (for HW problem, it's false).

Group is polycyclic if it has a subnormal series with cyclic factors.

A finite group is polyeyelic iff it is solvable

(in general)

prove (for finite group:

Let 1=6, ≤ 6, ≤ ... ≤ Gn = G, Gi+1/6; is abelian.

Then $G_{i+1/G_i} = C_1^{i+1} \times C_{k_{i+1}}^{i+1}$ where C_i^{i+1} is a galic

 $SO \qquad 14 C_{i}^{i_{1}} A \left(C_{i}^{i_{2}} \times C_{i}^{i_{3}}\right) A \cdots A \left(C_{i}^{i_{2}} \times \cdots \times C_{k_{i+1}}^{i_{j+1}}\right) = G_{i+1}/G_{i}$ $H_{i}^{i_{1}} \qquad \dots \qquad H_{k_{i+1}}^{i_{j+1}}$

let $H_{i}^{ii} = \text{preimage of } H_{i}^{iii} \subseteq G_{i+1}/G_{i}$ in G_{i+1}

Then $\forall j$, $\widetilde{H}_{j+1}^{(i+)}/\widetilde{H}_{j}^{(i+)}\cong H_{j+1}^{(i+)}/H_{j}^{(i+)}\cong C_{j+1}^{(i+)}$

So $1 \neq \dots \neq G_i \neq \widetilde{H}_i^{in} \neq \dots \neq \widetilde{H}_{k_{in}}^{in} = G_{i+1} \neq \dots$

An extension is polycyclic if it is contained in a Galors extension my polycyclic group.

Theorem K/F is polycyclic iff it is a tower or cyclic extensions

If $K \in E$ s.t. Gal(E/F) is polycyclic, Let $H = Gal(E/K) \leq G$.

Then I subnormal series

H=Ho=Ho=Ho=Ho=G

To be proved

Next time

 $\forall i, let L_i = Fix(H_i).$

Then $F \subseteq L_{k-2} \subseteq \dots \subseteq L_0 = K$.

tower of cyclic extensions of F.

(*) It K/F be a tower of cyclic extensions, then It E be the Galoi's Closure of K/F.

Then E is also a tower of Galoi's extensions

Whose groups are subgroups of cyclic groups

(So are cyclic).

Theorem if K/L, L/F are polycydic, tuen

K/F is polycydic.

If Li/F, Lz/F are polycydic, tren

Linlz/F & Lilz/F are polycydic.

Extension is polyradical if it is a tower of smple radical extensions F(Ja)/F.

Theorem If K/F is polyradical, it is polycyclic.

If K/F is polycyclic & contains all

roots of unity of degrees dividing [K:F],

then K/F is polyradiae (assume charF=0 or > [k:F]).

proof let K/F be a tower of radiral extensions of degrees $n_1, ..., n_K$. Let $\tilde{F} = F(\omega_1, ..., \omega_K)$ where ω_i is a printing root of unity of degree n_i . Let $\tilde{K} = K\tilde{F}$. Then \tilde{K}/\tilde{F} is a tower of vadical extensions 4 so is a tower of cyclic extensions, and \tilde{F}/F is a composite of cyclotemic extensions, and so it is a tower of cyclotemic extensions, and so it is a tower of cyclotemic extensions.

So \tilde{K}/F is contained in a polygydic Calors extension, and K is also contained there.

If K/F is a tower of cyclic extensions & all roots of I one in F, trunit is a tower of raducal extensions.

Det f∈F(X) is solvable in radicals if each of its roots is contained in a polyradical extension (then they all are in one, the composition). a is expressible by madicals if it is contained on a polyraducal extension.

Theorem (assuming charf is "good"), $f \in F(X)$ is

Solvable in radicula iff Gal(f) is solvable (= polycyclic).

If f is irreducible 4 one of its roots is

expressible by radicula, then f is solvable in radicula.

proof. If f is solvable by radicals, all roots of f one contained in polyradical K/F.

(Separable!) Then K/F is contained in a polycyclic Galois extension E/F.

Let L be the splitting field of f.

Then L = K = E. Then Gal (L/F) is

a quotient gray of Gal (E/F),

So Gal (L/F) = Gal(f) is solvable.

Conversely, if Gal(f) is solvable, let

L be the splitting field of f, let