COMP2610 - Information Theory Assignmentire Proposite Language Help

https://eduassistpro.github.

Add We hatteredu_assist_pr

27 August 2018

Brief Recap of Course (Last 6 Weeks)

- How can we quantify information?
 - Basic Definitions and Key Concepts

i Brobability Entropy & Pormation ect Exam Help

- Probabilistic Inference
- https://eduassistpro.github.
- Add WeChat edu_assist_pr
- What is randomness?
 - Kolmogorov Complexity

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information?

Assignment Project Exam Help

- Ho https://eduassistpro.github.
 - Source Coding Theorem, Kraft Inequality
- Block, Huffman, and Lempel-Ziv Coding

 How much case var the correctant I GOU_assist_pr
 - Noisy-Channel Coding
 - Repetition Codes, Hamming Codes
- What is randomness?
 - Kolmogorov Complexity

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information?

Assignment Project Exam Help

- Ho https://eduassistpro.github.
 - Source Coding Theorem, Kraft Inequality
- Block, Huffman, and Lempel-Ziv Coding

 How Adds We nat edu_assist_pr
- What is randomness?
 - Kolmogorov Complexity

This time

Basic goal of compression

Assignment Project Exam Help
Informal statement of source coding theorem

https://eduassistpro.github.

- Introduction
 - Overview
- Assignment and Project Exam Help

 What's the best we can do?
 - Formhttps://eduassistpro.github.
 - Defining Codes
 - Formal Add We Chat edu_assist_pr
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

What is Compression?

Assignment Project Exam Help

https://eduassistpro.github.

What is Compression?

Cn y rd ths mssg with ny vwls? Assignment Project Exam Help (Estimates of 1-1.5 bits per character, compared to log 26 4.7)

Addid WeChat edu_assist_production of the control o

of symbols or blocks of symbols

abcdefghijklmnopqrstuvwxyz- y (a) $P(y \,|\, x)$

Compression in a Nutshell

Assignment Project Exam Help

Data con https://eduassistpro.github.messag

A General Communication Game

Imagine the following game between Sender & Receiver:

- Sender & Receiver agree on code for each outcome ahead of time
- As send for Heads: hipr Post of leget Exame Help
 - Receiver decodes message and recovers outcome sequence

Goal: Want small messages on average when outcomes are from a fixed, known, but uncertain source (e.g., coin flips with known bias)

Assignment Project Exam Help Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Co
- co https://eduassistpro.github.

Not very interesting!

Accepting the property of the first of the control of the control

- Co

Not very https://eduassistpro.github.

Things get interesting if we:

- accepted in transmission hat edu_assist_pr
- allow variable length messages

Accepting the property of the first of the control of the control

- Co

Not very https://eduassistpro.github.

Things get interesting if we:

- accepted in things sihats edu_assist_pr
- allow variable length messages (next week)

As we are happy to fail on up to 3% of the sequences we can ignore any Asequentes the land of the citals EXAM HELP

Why? T

https://eduassistpro.github.

Af we are happy to fail on up to 5% of the sequences we can ignore any sequences with most be challed the challenge of the control of the challenge of the control of the challenge of the challe

Why? T

There ar https://eduassistpro.github.

- bits/outcome
 - Smallest bits/outcome needed for 10,000 outcome sequences?

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and Aegustiesizement Project Exam Help

https://eduassistpro.github.

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and

Assignment Project Exam Help

Source

degree on ttps://eduassistpro.github.

Then: the average number of bits per outcome you w hly equal to the entropy of the curce at edu_assist_p

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and

Assignment Project Exam Help

Source

degree on ttps://eduassistpro.github.

Then: the average number of bits per outcome you we have equal to the entropy of the curce at edu_assist_p

To define: "Uniformly code", "large sequences", "degree of reliability", "average number of bits per outcome", "roughly equal"

- Introduction
 - Overview
- Assignment Project Exam Help
 What's the best we can do?
 - Formhttps://eduassistpro.github.
 - Defining Codes
 - FormAdd, WeChat edu_assist_pr
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

Entropy and Information: Recap

Ensemble

An ensemble X is a triple (x, A_X, \mathcal{P}_X) ; x is a random variable taking any $x \in \mathbb{R}$ in $x \in \mathbb{R}$ and $x \in \mathbb{R}$

https://eduassistpro.github.

Entropy and Information: Recap

Ensemble

An ensemble X is a triple (x, A_X, \mathcal{P}_X) ; x is a random variable taking assignment. Pringeboolities x am p_2 in p_2

Informa

The info https://eduassistpro.github.

$$h(a_i) = \log_2 \frac{1}{p_i} = \log p$$

Entropy and Information: Recap

Ensemble

An ensemble X is a triple (x, A_X, \mathcal{P}_X) ; x is a random variable taking and p_X and p_X .

Informa

The info https://eduassistpro.github.

$$h(a_i) = \log_2 \frac{1}{p_i} = \log p$$

ld WeChat edu_assist

Entropy

The **entropy** of an ensemble X is the average information

$$H(X) = \mathbb{E}[h(X)] = \sum_{i} p_{i}h(a_{i}) = \sum_{i} p_{i}\log_{2}\frac{1}{p_{i}}$$

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

Assignment Projects Exam Help

Source https://eduassistpro.github Given an e : A_X , rce code for X. The number of symbols in c(x) is the I or x. The extension of c(x) is the I or c(x) in the extension of c(x) is the I or c(x) is the I

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

Assignment Projects Exam Help

Source https://eduassistpro.github. Given an e : \mathcal{A}_X , rce code for X. The number of symbols in c(x) is the I or x. The extension of is of local by fix at x edu_assist_pro.github.

Example:

- The code c names outcomes from $A_X = \{r, g, b\}$ by c(r) = 00, c(g) = 10, c(b) = 11
- The length of the codeword for each outcome is 2.
- The extension of c gives c(rgrb) = 00100011

Types of Codes

Aet Spignansemble and c Project a Tode for X-We Tayleish Project and e Uniform Code if I(x) is the same for all $x \in \mathcal{A}_X$

- Var
 - https://eduassistpro.github.

Types of Codes

At Sign ensemble and c Project a Example 1 Cisp. Uniform Code if I(x) is the same for all $x \in A_X$

- Var

Another https://eduassistpro.github. be unambiguously determined given c(x).

- Loss Ass doct if We Chart edu_assist_pr
- Lossy Code otherwise

Types of Codes

Examples

Assign, c(a) = 01, c(c) = 10, c(i) = 11 is uniform rossiless Help

- https://eduassistpro.github.
- **3** c(a) = 0, c(b) = 0, c(c) = 110, c(d) = 0
- \bullet c(a) Add WeChatedu_assist_predu_assist_predu_assist_preduction.
- c(a) = -, c(b) = -, c(c) = 10, c(d) = 11 is uniform lossy

A Note on Lossy Codes & Missing Codewords

When talking about a uniform lossy code c for $A_X = \{a, b, c\}$ we write

Assignment-Project Exam Help

where the symbol – means "no codeword". This is shorthand for "the receiver

For the phttps://eduassistpro.github.

and the sender and receiver agreeing that the code _assist_ways be decoded as b

Assigning the outcome a_i the missing codeword "–" just means "it is not possible to send a_i reliably"

- Introduction
 - Overview
- Assignment Project Exam Help
 What's the best we can do?
 - https://eduassistpro.github.
 - Defining Codes
 - Formal And Chapter Chat edu_assist_pr
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

Lossless Coding

Example: Colours

Assignment The colour ensemble with Ax = Help

Suppos https://eduassistpro.github.

$$c(\mathbf{r}) = 00$$
; $c(g) = 10$; and $c(b) = 11$

On average, we will use $I(\mathbf{r})p_{\mathbf{r}} + I(\mathbf{g})p_{\mathbf{g}} + I(\mathbf{b})p_{\mathbf{b}} = 2$ bits per outcome

2N bits to code a sequence of N outcomes

Raw Bit Content

Uniform coding gives a crude measure of information: the number of bits required to assign equal length codes to each symbol

Raw Bit Conent Project Exam Help If X is an ensemble with outcome set \mathcal{A}_X then its raw bit content is

https://eduassistpro.github.

- 000
- This is a uniform encoding of o b
- Wechat edu_assist
- Ы 011
- 100 e
- f 101
- 110
- h 111

- The probabilities of the outcomes are ignored
- Same as assuming a uniform distribution

For the purposes of compression, the exact codes don't matter – just the number of bits used.

Lossy Coding
Example: Colours

Assignment Teregreent With the Help $\rho_x = 0.5$ and $\rho_g = \rho_b = 0.25$.

```
https://eduassistpro.github.
```

c(rrrrrr) = 0000000; c(rrbbrbr) = 0

Lossy Coding
Example: Colours

Assignment Teregreen with the Help $\rho_{\rm r}=0.5$ and $\rho_{\rm g}=\rho_{\rm b}=0.25$.

https://eduassistpro.github.

c(rrrrr) = 0000000; c(rrbbrbr) = 0

what is paddwell echat edu_assist_pr

Given we can code a sequence of length N, how many bits are expected?

Lossy Coding Example: Colours

What is probability we carried ply code a sequence of X outcomes $P(x_1 ... x_N \text{ has no } g) = P(x_1 \neq g) ... P(x_N \neq g) = (1 \quad p_g)^N$

https://eduassistpro.github.

Lossy Coding

Example: Colours

What is probability we carrie only code a sequence of
$$N$$
 outcomes $P(x_1 \ldots x_N \text{ has no } g) = P(x_1 \neq g) \ldots P(x_N \neq g) = \begin{pmatrix} 1 & p_g \end{pmatrix}^N$

Given what the strong of the s

$$\mathbb{E}[I(X_1) + \cdots + I(X_N)|X_1 \neq g, \dots, X / g]$$

=N(A)dd(b)WeChat edu_assist_pr

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

• c.f. 2N bits with lossless code

Lossy Coding

Example: Colours

What is probability we carrie only code a sequence of
$$N$$
 outcomes $P(x_1 \ldots x_N \text{ has no } g) = P(x_1 \neq g) \ldots P(x_N \neq g) = \begin{pmatrix} 1 & p_g \end{pmatrix}^N$

Given what the strong of the s

$$\mathbb{E}[I(X_1) + \cdots + I(X_N)|X_1 \neq g, \dots, X / g]$$

=N(A)dd(b)WeChat edu_assist_pr

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

• c.f. 2N bits with lossless code

Lossy Coding

Example: Colours

What is probability we carrie only code a sequence of
$$N$$
 outcomes $P(x_1 \ldots x_N \text{ has no } g) = P(x_1 \neq g) \ldots P(x_N \neq g) = \begin{pmatrix} 1 & p_g \end{pmatrix}^N$

https://eduassistpro.github.

$$\mathbb{E}[I(X_1) + \dots + I(X_N) | X_1 \neq g, \dots, X / g]$$

=N(A,ddo)WeChat_edu_assist_pr

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

• c.f. 2N bits with lossless code

For small δ , smallest collection of most lik

There is an inherent trade off between the number of bits required in a Antorm less required to provide the provid

Add WeChat edu_assist_pr

23/28

There is an inherent trade off between the number of bits required in a Anisom less required in the proving the subset of the s

- We can code a sequence of length N with probability $(1 \delta)^N$
- If we can code a sequence, its expected length is $N \log_2 |S_\delta|$

Example

Antgitive y construct subytrer wing elements of invasor of probability till we have reached the 1 of threshold

probac	The state of the s
X	a_i)
a	
b	https://eduassistpro.github.
С	δ
d	3/16
е	Add WeChat edu_assist_pr
f	1/64 4 11 CCHAt GAG_AGGIST_PT
g	1/64
h	1/64

Example

Antaitive ye great a supplier by the probability till we have reached the 1 - 8 threshold

```
a https://eduassistpro.github.

b https://eduassistpro.github.

c d 3/16 \delta = 1/64: S_{\delta} = \{a, e \}_{1/64}

g 1/64 WeChat edu_assist_pro.github.
```

Example

ntgitively construct state the first specific of the short of the shor

```
X
  https://eduassistpro.github.
        \delta=1/64 : S_\delta=\{a,
  Add WeChat edu_assist_pr
```

Example

Antgitive vocansing subvired by the probability till we have reached the 1 - 8 threshold

* https://eduassistpro.github.

 $\delta=1/64$: $S_\delta=\{a,$

Add WeChatedu_assist_pr

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

https://eduassistpro.github.

Add WeChat edu_assist_pr

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim next time is to understand this:

Add WeChat edu_assist_pr

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim next time is to understand this:

The Source Coding Theorem for Uniform Codes. Let X be an ensemble with entropy H=H(X) bits. Given $\epsilon>0$ and $0<\delta<$

https://eduassistpro.github.

What?

- The length (XWs becaveractured U_assist_proportion δ
- Given a tiny probability of error δ , the average bits per symbol can be made as close to H as required.
- Even if we allow a large probability of error we cannot compress more than H bits ber symbol.

Some Intuition for the SCT

As son prodering incident symbols in precise mile; with the production of length N.

As Ihttps://eduassistpro.github.

Add WeChat edu_assist_properties of the state of the stat

each typical sequence

Next time

Recap: typical sets

Assignment of source Project Exam Help Proof of source coding theorem

https://eduassistpro.github.

Add WeChat edu_assist_pr