หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์ชุดที่ยี่สิบสาม วันจันทร์ที่ 9 สิงหาคม พ.ศ. 2564 จำนวน 4 ข้อ

ที่	เนื้อหา	โจทย์
1.	Dijkstra's algorithm จำนวน 1 ข้อ	1. เทอร์โบโปรแกรมมิ่ง (Turbo Programming)
2.	Bellman-Ford Algorithm จำนวน 1 ข้อ	2. แฟลชถนนพิศวง (FC_Road Wonder)
3.	Floyd-Warshall algorithm จำนวน 2 ข้อ	3. รัชต <i>๋</i> อย 2018 (RT_RushTOI)
		4. ความสัมพันธ์แบบถ่ายทอด (48_Transitive Closure)

1. เรื่อง Dijkstra's algorithm จำนวน 1 ข้อ

1. เทอร์โบโปรแกรมมิ่ง (Turbo Programming)

. ที่มา: ข้อหนึ่งเทอร์โบโปรแกรมมิ่ง ติวผู้แทนศูนย์ รุ่น 6 PeaTT~

เทอร์โบโปรแกรมมิ่งเป็นการแข่งขันเขียนโปรแกรมบนสาย (ออนไลน์) ที่เชื่อมต่อเครื่องคณิตกรณ์วางตัก (โน๊ตบุ๊ค) ของน้อง ๆ ผู้แทนศูนย์หลายเครื่องเข้าด้วยกัน

เนื่องจากเครื่องคณิตกรณ์วางตักของน้อง ๆ แต่ละคนไม่เหมือนกัน อาจจะเป็นที่กระด้างภัณฑ์ (ฮาร์ดแวร์), ละมุนภัณฑ์ (ซอฟต์แวร์), จิ๋วละมุน (ไมโครซอฟท์) หรือแม้แต่ตัวกล้ำและแยกสัญญาณ (โมเด็ม), เครื่องเฝ้าสังเกต (มอนิเตอร์), จอภาพผลึกเหลว (จอแอลซีดี), เครื่องกราดภาพ (สแกนเนอร์), จานบันทึกแบบแข็งที่หน่วยขับ (ฮาร์ดดิสก์) หรือแม้แต่แผ่นบันทึกชนิดอ่อนปวกเปียก (ฟลอปปี้ดิสก์) ส่งผลให้เครื่องของแต่ละคนมีคุณภาพไม่เหมือนกันและมีประสิทธิภาพในการโอนถ่ายข้อมูลได้ไม่เท่ากัน

ณ เวลาหนึ่ง มีเครื่องคณิตกรณ์วางตักอยู่ N เครื่อง ได้แก่ เครื่องที่ 1, 2, 3, ..., N และมีสายเชื่อมต่อ (สายแลน) อยู่ M สาย แต่ละสายจะทำการเชื่อมต่อ (ลิงค์) เครื่องคณิตกรณ์วางตักสองเครื่องเข้าด้วยกันแต่ในสายเชื่อมต่อนั้นก็มีจำนวนไวรัสอยู่ W ตัว คุณ ต้องการส่งข้อมูลจากเครื่องหมายเลข 1 ไปยังเครื่องเป้าหมายโดยได้รับจำนวนไวรัสรวมน้อยที่สุด จงเขียนโปรแกรมเพื่อหาเส้นทาง ส่งข้อมูลนั้น

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N M Q (1 <= N, Q <= 1,000 และ 1 <= M <= 100,000) แทนจำนวนเครื่องคณิตกรณ์วางตัก จำนวนสายเชื่อมต่อและจำนวนคำถามตามลำดับ

อีก M บรรทัดต่อมา รับจำนวนเต็ม S E W เพื่อบอกว่ามีสายเชื่อมต่อที่สามารถส่งข้อมูลจากเครื่องหมายเลข S ไปยังเครื่อง หมายเลข E ได้โดยที่สายเชื่อมต่อนี้มีไวรัสอยู่ W (0 <= W <= 50) ตัว

อีก Q บรรทัดต่อมา มีจำนวนเต็มบวก C แทนหมายเลขเครื่องคณิตกรณ์วางตักเป้าหมาย

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แต่ละบรรทัดแสดงจำนวนไวรัสรวมน้อยสุดที่ใช้ในการส่งข้อมูลจากเครื่องคณิตกรณ์วางตักหมายเลข 1 มายังเครื่อง คณิตกรณ์วางตักหมายเลข C ได้ หากไม่สามารถส่งข้อมูลได้ให้ตอบ -1

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 5 3	-1
1 2 10	40
2 3 10	30
3 4 10	
4 5 10	
1 5 50	
6	
5	
4	

++++++++++++++++

2. เรื่อง Bellman-Ford Algorithm จำนวน 1 ข้อ

2. แฟลชถนนพิศวง (FC Road Wonder)

ที่มา: ข้อสี่ Flash Contest 2017 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น 13

เมืองอันแสนสงบที่คุณอาศัยอยู่นั้น มีทางแยกจำนวน N ทางแยก และถนนจำนวน M เส้น ถนนในเมืองนี้เป็นถนนทางเดียว แต่ความแปลกของเมืองนี้คือมีถนนพิศวงอยู่ K เส้น แต่ละเส้นจะมีเลขบ่งบอก W ถ้าคุณเข้าถนนเส้นนี้ด้วยเวลา P คุณจะออกจาก ถนนเส้นนี้ได้ในเวลา P-W กล่าวคือ ถนนปกติจะใช้เวลาผ่านถนนเป็น W แต่ถนนพิศวงจะใช้เวลาผ่านถนนเป็น -W นั่นเอง

ในเช้าตรู่ของทุก ๆ วัน คุณได้อาศัยอยู่ตรงทางแยก S และต้องการทราบว่า การจะไปทางแยกใด ๆ คุณจะใช้เวลาในการ เดินทางสั้นที่สุดเท่าไหร่

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนเต็ม 4 จำนวน คือ N M K T (1 <= N <= 1,000; 1 <= M <= 1,000; 1 <= K <= 100; 1 <= T <= 100) โดยที่ N ระบุจำนวนแยก แยกมีหมายเลขตั้งแต่ 1 ถึง N; M แทนจำนวนถนน; K แทนจำนวนถนนพิศวง; T แทนจำนวน คำถาม

จากนั้นอีก M บรรทัด ระบุข้อมูลถนนปกติ ในบรรทัดที่ 1+J จะระบุจำนวนเต็ม 3 จำนวน A B W (1 <= A <= N; 1 <= B <= N; 1 <= W <= 3,000) เพื่อบอกว่ามีถนนปกติหมายเลข J ออกจากเมือง A ไปยังเมือง B และมีเลขบ่งบอก W จากนั้นอีก K บรรทัด ระบุข้อมูลถนนพิศวง ในบรรทัดที่ 1+M+J จะระบุจำนวนเต็ม 3 จำนวน A B W (1 <= A <= N; 1 <= B <= N; 1 <= W <= 3,000) เพื่อบอกว่ามีถนนพิศวงหมายเลข J ออกจากเมือง A ไปยังเมือง B และมีเลขบ่งบอก W อีก T บรรทัดถัดมา ระบุตัวเลข T ตัว แสดงถึง Si เพื่อบอกว่าวันที่ i คุณได้อาศัยอยู่ตรงทางแยก Si

<u>ข้อมูลส่งออก</u>

T บรรทัด แต่ละบรรทัด แสดงตัวเลข N ตัว บ่งบอกถึง ระยะเวลาสั้นสุดในการเดินทางจากแยก Si ไปยังเมือง i ใด ๆ หากไม่มี เส้นทางจากเมือง Si ยังเมือง i หรือ ระยะเวลาสั้นสุดมีค่าเป็น -INF ให้แสดงค่า -1

ข้อมูลนำเข้า	ข้อมูลส่งออก
10 5 5 5	12 0 -1 -1 1 -1 -1 5 -1 -1

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

1 7 8	-1 -1 -1 0 -1 -1 -1 -1 -1
2 5 1	-1 -1 -1 -1 -1 0 -1 -1 -1
3 4 7	-1 -1 -1 -1 -1 -1 0 -1 -1
5 8 4	-6 -1 -1 6 -3 -1 -5 1 -1 0
5 1 11	
10 1 6	
10 5 3	
10 3 1	
9 5 10	
5 7 2	
2	
4	
6	
8	
10	

+++++++++++++++++

3. เรื่อง Floyd-Warshall algorithm จำนวน 2 ข้อ

3. รัชต๋อย 2018 (RT_RushTOI)

. ที่มา: ข้อหนึ่ง Rush TOI 2018 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น 14

รัชต์อย 2018 เป็นการแข่งขันเขียนโปรแกรมที่มีเครื่องคณิตกรณ์จำนวน N เครื่อง และเชื่อมต่อกันด้วยสายแลนจำนวน M สาย สายแลนแต่ละสายสามารถส่งข้อมูลแบบทางเดียวจากเครื่องหมายเลข si ไปยังเครื่องหมายเลข ei ได้ wi หน่วย

พีทเทพเป็นผู้จัดการแข่งขันรัชต๋อยนี้ เขาอยากรู้ว่าเครื่องคณิตกรณ์แต่ละเครื่องสามารถส่งข้อมูลไปหาเครื่องต่าง ๆ ได้น้อย ที่สุดกี่หน่วย

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนข้อมูลที่น้อยที่สุดที่เครื่องคณิตกรณ์แต่ละเครื่องจะส่งไปหาเครื่องอื่น ๆ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M แทนจำนวนเครื่องคณิตกรณ์และจำนวนสายแลนตามลำดับ โดยที่ N ไม่เกิน 300 และ M ไม่เกิน 10,000

อีก M บรรทัดต่อมา รับจำนวนเต็มบวก si ei wi ห่างกันหนึ่งช่องว่าง โดยที่ 1 <= si, ei <= N และ wi ไม่เกิน 1,000 30% ของชุดข้อมูลทดสอบจะมี N, M ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น N บรรทัด แต่ละบรรทัดแสดงจำนวนเต็ม N จำนวนแสดงจำนวนข้อมูลน้อยที่สุดในการส่งไปหาเครื่องอื่น ๆ ตามลำดับจากเครื่องที่ 1 ถึงเครื่องที่ N ห่างกันหนึ่งช่องว่าง หากไม่สามารถส่งข้อมูลไปได้ให้ตอบ 0

ข้อมูลนำเข้า	ข้อมูลส่งออก
--------------	--------------

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

4 5	0 10 15 0
1 2 10	0 0 10 0
2 3 10	0 0 0 0
1 3 15	10 20 25 10
4 4 10	
4 1 10	

++++++++++++++++

4. ความสัมพันธ์แบบถ่ายทอด (48 Transitive Closure)

ที่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ ม.บูรพา รุ่น 14 ออกโดย PeaTT~

กำหนดให้ G = (V, E) เป็นกราฟแบบมีทิศทางที่ไม่มี parallel edges และ self-loop

นิยาม Transitive closure ของ G (แทนด้วยสัญลักษณ์ G^T) ว่าเป็นกราฟที่มี vertices เหมือนกับ G โดยที่ G^T จะมีเส้น เชื่อม $u \to v$ ก็ต่อเมื่อในกราฟ G มี directed path จาก u ไปยัง v

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อรับค่าของกราฟ G ในรูปแบบของ Adjacency matrix แล้วทำการหา Transitive closure ของ G และแสดงผลในรูปของ Adjacency Matrix เช่นเดียวกัน

จากภาพ กราฟ G^T มีเส้นทางที่เพิ่มมาจากกราฟ G ได้แก่ โหนด 2 มีเส้นทางไปยังโหนด 2 ได้ (เป็น cycle ผ่านโหนด 4), โหนด 2 มีเส้นทางไปยังโหนด 1 (โดยผ่านโหนด 3 (โดยผ่านโหนด 1), โหนด 4 มีเส้นทางไปยังโหนด 1 (โดยผ่านโหนด 2), โหนด 4 มีเส้นทางไปยังโหนด 3 (โดยผ่านโหนด 2 และโหนด 1) และ โหนด 4 มีเส้นทางไปยังโหนด 4 ได้ (เป็น cycle ผ่านโหนด 2)

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N แทนจำนวน vertices ในกราฟ โดยที่ N ไม่เกิน 500

อีก N บรรทัด แสดงตัวเลข 0 (ไม่มีเส้นเชื่อม) หรือ 1 (มีเส้นเชื่อม) ในรูปแบบ Adjacency matrix โดยในเส้นทแยงมุมจะเป็น ตัวเลข 0 เสมอ

<u>ข้อมูลส่งออก</u>

N บรรทัด แสดงตัวเลข 0 หรือ 1 ในรูปแบบ Adjacency matrix ของ G^{T}

|--|

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

4	0 0 1 0
0 0 1 0	1 1 1 1
1 0 0 1	0 0 0 0
0 0 0 0	1 1 1 1
0 1 0 0	

++++++++++++++++++