## 2000年1月 MATHEMATICS N PRACTICE AND THEORY Jan 2000

$$+ \int_{u}^{+} g(x) dx \left[ \int_{j=1}^{n} 0.98^{j-1} 0.02(jt+a+f(js-(0.98(j(s-1)+j-1))) + 0.98^{n}(nt+k+f(u-(0.98(u-n)+n))) \right]$$

### 3 模型求解及结果

我们对 s 从 1 至 100, u 从 100 至 600 用穷举法进行搜索, 比较 F(s,u) 的值, 求得最优解 为: s=54, u=304, 此时目标函数值为 9. 37681, 若限定 u 为 s 的整数倍, 则最优解为: s=51, u= 306, 此时目标函数值为 9.40044

### 4 考虑其它故障的情况

若考虑其它故障, 我们将上述模型中的假设 1 改为: 其它故障与刀具故障的发生相互独 立, 其它故障服从区间[0, 22800]上的均匀分布 此时模型依然具有下列形式:

$$m in F(s, u) = \frac{E(F)}{E(N)}$$

其中, E(F) 与 E(W) 的表达式只需遍历其它故障的发生、刀具故障的发生以及第一次检查 出不合格品这三个事件的所有情况即可推导出、由于其形式相当复杂、我们不在此列出

类似于前面的模型, 我们可以求出在考虑其它故障的情况下, 最优解为:  $s=40~\mu=314$ , 此时目标函数值为 9.57354

## Mathematical Model of Automatic Managing of Lathe

YANG Zhen-hua, Q U Zhong-hua

(Nanjing University of Posts & Telecommunications, Nanjing 210003)

In this paper, we establish the mathemaical model of problem A of 1999 Chinese Undergraduate Mathematical Contest in Modeling — automatic managing of lathe Then we give the solution of this model

# 刀具问题的仿真及灵敏度分析

赵桂芹、 周 林

(东南大学, 南京 210096)

本文通过计算机模拟仿真, 搜索到了CM CM - 99A 题中换刀间隔与检查间隔的近似最优解及单位 正品最小费用, 并对 p1 (好刀生产正品的概率), p2 (坏刀生产正品的概率), k, f, d 进行了灵敏度分析, 得出 u (换刀间隔)是最重要的优化参数的结论

#### 1 检查策略及其仿真

CM CM - 99A 题中随机因素多,难以准确把握,因而仅从理论上求不出第一问,第二问 的最优解,对众多的参数也无法证明哪个是更重要的,这时仿真就显示出它的优越性 我们 通过大量仿真(大多数仿真 1 亿次, 重要数据仿真 10 亿次), 先搜索出近似最优解的大致范 围, 再在小范围内穷举, 找到了问题的近似最优解, 并进行策略对比和参数灵敏度分析, 故仿 真方法在解决复杂随机问题中正越来越多地被采用

在问题 2 中, 定义  $p_1$  为好刀生产正品的概率,  $p_2$  为坏刀生产正品的概率, 由于  $p_1$ = 0.98, p2= 0.4, 好刀可以生产废品, 坏刀也可以生产正品, 增加了问题难度, 因而检查会发生 误判,多检查可减少误判,防止坏刀生产大片坏零件,但增加了检查费用/根据减少检查费 用与减少误判损失的侧重点不同,提出了以下 7 个检查策略,画出策略 I、IV的程序框图(见 附录),其余框图与之类似

in 为检查间隔. s=1,2,...

策略 I 查第 sn 个零件, 正品—继续生产;

废品—停止生产. 换刀

策略Ⅱ 查第 sn 个零件, 正品—生产:

废品—查第 sn+ 1 个零件, 正品—生产;

废品—换刀

策略III 查第sn 个零件, 正品, 查第sn+1 个零件, 正品—生产;

废品—换刀:

废品—换刀

策略 $\mathbb{N}$  查第  $\mathfrak{s}_n$  个零件, 正品, 查第  $\mathfrak{s}_{n+1}$  个零件, 正品—生产:

废品. 查第 sn+ 2 个零件. 正品—生产:

废品—换刀:

废品. 查第 sn+ 1 个零件, 正品, 查第 sn+ 2 个零件, 正品—生产;

废品—换刀:

废品—换刀

策略 V, VI, VII相应与策略 II, III, IV, 只是将 sn+1, sn+2 改为 sn-1, sn-2

## 仿真结果及数据分析

对问题 1, 因  $p_1=1$ ,  $p_2=0$ , 故只需使用第一种检查策略, 仿真数据如下:

表中 u: 换刀间隔, n: 检查间隔, 表内数据为单 ~ 位正品平均费用 从而得到近似最优解为(u,n)=(354,19),单 位正品最小平均费用= 4 628 元/个 对问题 2. 我们仿真后的最好结果如下(10 亿 \_

| n  | 353   | 354    | 355   | 356    |
|----|-------|--------|-------|--------|
| 17 | 4 634 | 4. 645 | 4 638 | 4. 645 |
| 18 | 4 633 | 4 640  | 4 634 | 4 635  |
| 19 | 4 636 | 4 628  | 4 636 | 4 639  |
| 20 | 4 629 | 4. 639 | 4 639 | 4. 637 |
|    |       |        |       |        |

收稿日期: 1999-11-20; 指导教师: 朱道元

次)

#### 2.1 数据分析

(1) u 354, n 19, 这是可以理解的 因为刀  $^{-1}$ 具最好的情况为  $p_1 = 1, p_2 = 0$ , 在问题 1 下, (u, n)= (354, 19) 为最优解, 现检查的判别作用降低, n必不小于 19; 由于刀具判断发生困难, 为保证好刀 概率仍较大,不是通过检查方法而是通过刀具提前 更换来实现

| 策略  | <i>u</i> (个) | $n(\uparrow)$ | 最小费用(单位正品) |
|-----|--------------|---------------|------------|
| I   | 270          | 45            | 9. 459     |
| II  | 270          | 45            | 9. 722     |
| III | 295          | 117           | 9. 346     |
| IV  | 305          | 33            | 9. 327     |
| V   | 270          | 45            | 9. 752     |
| VI  | 284          | 108           | 9. 350     |
| VII | 318          | 29            | 9. 342     |

(2) 数据表明. 检查策略制约着最佳换刀间隔 与最佳检查间隔

对策略 [, 检查费用小, 简单可行, 但易发生好刀误判, 坏刀漏网情况, 平均费用稍大

对策略 II 与 V, 只是检查方式不同, 分别为向前查, 向后查, 其共同特点是检查两次, 相 信正品即反映好刀, 只有两次均为废品时才换刀, 侧重于防止好刀误换, 但由于 p 2= 0. 4, 因 而坏刀最容易漏网,造成大片坏零件,平均费用最大 不同点是:由于好刀产生废品的概率 只有2%,若第一次检查为废品,向后查是废品的概率要大,易于查到坏刀;而向前查,若又 是废品、则可以早一点判断出刀的好坏、少生产一个坏零件、节省零件损失费用、若是正品、 而其实刀已经坏了, 由于继续生产, 则产生出一批坏零件, 零件损失费用不低于策略Ⅱ的零 件损失费用, 而最终孰优孰劣, 与废品损失及检查间隔有关

类似分析可用于策略[II与VI的关系,不同之处是它们克服了策略 II 与策略 V 的缺点,侧 重于防止坏刀漏网, 应当优于策略 II 与策略 V. 数据表明, 策略III与VI的检查间隔大(117 个), 就是因为 100 之内坏刀可能性很小, 故不查, 且一旦查出就换刀, 以防坏刀漏网

至于策略1V 与策略VII,与上述分析类似,但其综合了策略11、111与策略 V、VI的优点,使 误判概率达到最小,而1V与V11数据也体现了这一点: 换刀间隔较大, 每次检查间隔较小, 检查 次数多, 防止误判

- (3) u 是最重要的优化参数 无论什么策略, 无论什么检查间隔, u 集中在 300 附近, 而 n的波动范围较大,有时两个策略的n相隔较远,如策略VI与策略VII,这一般是想象不到的,其 原因在于检查的双向影响: 多检查费用大, 但有利于减小误判(好刀误换或坏刀继续使用).
- (4) 在大量的仿真数据中, 我们还发现, 在近似最优解的附近, 单位正品平均费用波动 不超过 5%.
  - (5) 策略Ⅳ较优

综上所述,仿直结果与直观认识基本一致 下列数据进一步证明了仿直结果的合理性

| 策略         | I      | II     | III    | IV     | V      | VI     | VII    |
|------------|--------|--------|--------|--------|--------|--------|--------|
| (295, 117) | 9. 567 | 9. 975 | 9. 346 | 9. 460 | 9. 977 | 9. 363 | 9. 487 |
| (305, 33)  | 9. 729 | 10 298 | 9. 927 | 9. 327 | 10 289 | 10 050 | 9. 416 |
| (284, 108) | 9. 510 | 9. 795 | 9. 345 | 9. 397 | 9. 825 | 9. 350 | 9. 399 |
| (318, 29)  | 9. 669 | 10 098 | 10 076 | 9. 370 | 10 156 | 10 127 | 9. 342 |

由此可见, 对于不同的(u,n), 某一特定策略并不总是优于其它策略, 而近似最优解 (u,n)是与 $p_1,p_2$ 等各个参数的值相对应的,因而,若改变各个参数的值,则各个策略孰优孰 劣, 就需要另一轮仿真来进行数据分析了.

### 3 灵敏度分析

为方便起见, 我们仅在策略VII下, 比较参数改变后 u, n 的变化情况

1. p 1= 0 99 其余参数值不变

| 2      | Λ | 3  | 其余参数值不变 |
|--------|---|----|---------|
| 2. D2- | u | Э, |         |

| n  | 290    | 295    | 300    | 305    | 310    |
|----|--------|--------|--------|--------|--------|
| 28 | 7. 385 | 7. 384 | 7. 395 | 7. 296 | 7. 491 |
| 31 | 7. 420 | 7. 371 | 7. 312 | 7. 348 | 7. 313 |
| 34 | 7. 312 | 7. 293 | 7. 231 | 7. 333 | 7. 415 |
| 37 | 7. 284 | 7. 332 | 7. 428 | 7. 428 | 7. 361 |

| n  | 290    | 300    | 310    | 320    |
|----|--------|--------|--------|--------|
| 30 | 9. 254 | 9. 230 | 9. 247 | 9. 218 |
| 35 | 9. 260 | 9. 204 | 9. 203 | 9. 285 |
| 40 | 9. 283 | 9. 229 | 9. 204 | 9. 208 |
| 45 | 9. 247 | 9. 193 | 9. 206 | 9. 354 |

 $p_1 = 0.99$  时,与问题 2 相比,单价下降,u 减小,n 增大,这是因为刀具生产零件的情况变好,而 $p_2$  变小,类似于 $p_1$  变大,同时还可看到 $p_1$  对单位正品价格影响较大,而 $p_2$  对单位正品价格影响较小

| _   |       |       |       |       |       |
|-----|-------|-------|-------|-------|-------|
| n u | 300   | 305   | 310   | 315   | 320   |
| 70  | 6 793 | 6 789 | 6 745 | 6 733 | 6 708 |
| 75  | 6 698 | 6 866 | 6 847 | 6 793 | 6 803 |
| 80  | 6 700 | 6 677 | 6 690 | 6 663 | 6 679 |
| 85  | 6 726 | 6 721 | 6 710 | 6.710 | 6 696 |

2. f = 100, 其余参数值不变

与问题 2 相比, n 增大, 这是因为 f 降低后, 坏零件损失费用减小, 因而其相对于整个检查费用变小, 从而可以加大检查间隔

3. k= 800, 其余参数值不变

d= 4000, 其余参数值不变

| n  | 260   | 265   | 270   | 275   | 280   |
|----|-------|-------|-------|-------|-------|
| 45 | 8 679 | 8 689 | 8 651 | 8 812 | 8 768 |
| 50 | 8 694 | 8 789 | 8 687 | 8 753 | 8 691 |
| 55 | 8 665 | 8 667 | 8 640 | 8 600 | 8 830 |
| 60 | 8 715 | 8 736 | 8 713 | 8 653 | 8 697 |

| n u | 260    | 265    | 270    | 275    | 280    |
|-----|--------|--------|--------|--------|--------|
| 30  | 9. 676 | 9. 632 | 9. 600 | 9. 707 | 9. 635 |
| 35  | 9. 663 | 9. 630 | 9. 574 | 9. 543 | 9. 538 |
| 40  | 9. 602 | 9. 585 | 9. 538 | 9. 545 | 9. 520 |
| 45  | 9. 567 | 9. 522 | 9. 539 | 9. 665 | 9. 620 |

与问题 2 比较, u 减小, 这是因为 k 减小后, 预防性换刀次数增加可减少总费用, 而 d 增加后, 故障后换刀费用对整个检查费用的影响变大, 因而提前换刀才可以减小单位正品费用 对 t 也可以做类似分析

## The Simulation and Sensitivity Analysis for Knife Problem

ZHAO Gui-qin, ZHOU L in

(Southeast University, Nanjing 210096)

**Abstract** As to the problem A in CMCM - 99, this article firstly search out the approximate optimal solution to knife-replacement period, check period and the minimum cost for unit good-product through computer artificial simulation, and then have sensitivity analysis for  $p_1$  (the probability of good-product produced by good knife),  $p_2$  (the probability of good-product produced by bad knife), k, f, d, at last concludes that u (the knife-replacement period) is the most important optimizing parameter

## 附录一



### 附录二



## 说 明

在生产零件时,必须考虑5%的非刀具故障.具体方法为:生成一个均匀分布的RV,  $\epsilon rror-pos$  动始值为0,  $\epsilon rror-pos=error-pos+RV$ , 若该零件为第 $\epsilon rror-pos$  个 零 件、则 该 零 件 必 为 坏 零 件、同 时  $\epsilon rror-pos+eRV$ .