Topologie Zusammenfassung

June 11, 2024

Contents

1	Topologische Räume	2
2	Konstruktion Topologischer Räume	3
	2.1 Die Spurtopologie	3
	2.2 Produkttopologie	3
	2.3 Quotiententopologie	3
3	Inneres, Häufungspunkte, Abschluss, Grenzwerte	4
4	Stetigkeit	5
5	Zusammenhängende topologische Räume	6
6	Kompakte Topologische Räume	7

1 Topologische Räume

Definition 1.1. Sei $X \neq \emptyset$. Eine Topologie auf X ist eine Familie $\mathcal{T} \subset \mathcal{P}(X)$ mit

- 1. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$
- 2. Die Vereinigung beliebig vieler Teilmengen aus \mathcal{T} ist in \mathcal{T}
- 3. Der Durchschnitt endlich vieler Teilmengen von \mathcal{T} ist in \mathcal{T}

Das Paar (X, \mathcal{T}) heißt topologischer Raum, die Elemente aus \mathcal{T} heißen offene Mengen.

Definition 1.2. Auf $X \neq \emptyset$ seien \mathcal{T} und \mathcal{T}' zwei Topologien mit $\mathcal{T} \subset \mathcal{T}'$. Dann heißt \mathcal{T}' die feinere und \mathcal{T} die gröbere Topologie. Ist zusätzlich $\mathcal{T} \neq \mathcal{T}'$, dann heißen die Relationen strikt feiner bzw. gröber.

Definition 1.3. Sei $X \neq \emptyset$. Eine Basis für eine Topologie auf X ist eine Familie $\mathcal{B} \subset \mathcal{P}(X)$ welche die Eigenschaften erfüllt

- 1. $\forall x \in X \exists B \in \mathcal{B} \text{ sodass } x \in B$
- 2. Sind $B_1, B_2 \in \mathcal{B}$ und $x \in B_1 \cap B_2$, dann existiert $B_3 \in \mathcal{B}$ mit

$$x \in B_3 \subset B_1 \cap B_2$$

Ist eine Basis \mathcal{B} gegeben, so heißt $\mathcal{T}(\mathcal{B})$ die von \mathcal{B} erzeugte Topologie über

$$U \in \mathcal{T}(\mathcal{B}) : \Leftrightarrow \forall x \in U \exists B \in \mathcal{B} \text{ mit } x \in B \subset U$$

Satz 1.4. Sei $X \neq \emptyset$, $\mathcal{B} \subset \mathcal{P}(X)$ eine Basis für eine Topologie auf X. Dann ist $\mathcal{T}(\mathcal{B})$ in der Tat eine Topologie.

Satz 1.5. Sei $X \neq \emptyset$ und \mathcal{B} eine Basis für eine Topologie auf X. Dann besteht $\mathcal{T}(\mathcal{B})$ aus genau den Mengen, die sich als Vereinigung von Mengen aus \mathcal{B} schreiben lassen.

Satz 1.6. Sei (X, \mathcal{T}) ein topologischer Raum. Sei dann $\mathcal{C} \subset \mathcal{T}$ mit der Eigenschaft

$$\forall U \in \mathcal{T} \ und \ x \in U \ \exists C \in \mathcal{C} : \ x \in C \subset U$$

Dann ist C bereits eine Basis für T.

Satz 1.7. Seien $\mathcal{B}, \mathcal{B}'$ Basen zweier Topologien $\mathcal{T}, \mathcal{T}'$. Dann sind die folgenden beiden Aussagen äquivalent

- 1. \mathcal{T}' ist feiner als \mathcal{T}
- 2. $\forall x \in X \text{ und } \forall B \in \mathcal{B} \text{ mit } x \in B \text{ existiert } B' \in \mathcal{B}' \text{ mit } x \in B' \subset B.$

Satz 1.8. Sei $X \neq \emptyset$. Ist dann $S \subset \mathcal{P}(X)$, so gibt es eine eindeutige gröbste Topologie, welche S enthält. Diese sei mit $\mathcal{T}(S)$ notiert.

Ist außerdem $\bigcup_{S \in \mathcal{S}} S = X$, dann ist $\mathcal{T}(\mathcal{S})$ genau die Menge beliebiger Vereinigungen von endlichen Durchschnitten von Mengen aus \mathcal{S} . \mathcal{S} heißt Subbasis von $\mathcal{T}(\mathcal{S})$.

2 Konstruktion Topologischer Räume

2.1 Die Spurtopologie

Definition 2.1. Sei (X, \mathcal{T}) ein topologischer Raum und sei $\emptyset \neq Y \subset X$. Dann ist

$$\mathcal{T}_Y = \{ U \cap Y : U \in T \}$$

die Spurtopologie.

2.2 Produkttopologie

Definition 2.2. Seien X, Y topologische Räume. Dann ist die Menge

$$\mathcal{B} = \{U \times V : U \text{ offen in } X, V \text{ offen in } Y\}$$

Basis einer Topologie (der Produkttopologie) auf $X \times Y$. \mathcal{B} selber ist aber keine Topologie.

Satz 2.3. Ist \mathcal{B} eine Basis für eine Topologie auf X und ist \mathcal{C} eine Basis für eine Topologie auf Y, so ist

$$\mathcal{D}0\{B \times C : B \in \mathcal{B}, C \in \mathcal{C}\}$$

eine Basis für die Produkttopologie auf $X \times Y$.

Satz 2.4. Es seien X, Y topologische Räume und $A \subset X, B \subset Y$. Dann ist die Produkttopologie der Spurtopologien bezüglich A und B gleich der Spurtopologie der Produkttopologie bezüglich $A \times Y$ auf $X \times Y$.

2.3 Quotiententopologie

Wir schreiben $X' = X/\sim$ als die Quotientenmenge von X bezüglich der Äquivalenzrelation \sim . $\varphi: X \to X'$ sei die Funktion, die jedem Element $x \in X$ seinen Repräsentanten in X' zuordnet.

Satz 2.5. Sei \mathcal{T} eine Topologie auf X. Dann ist

$$\mathcal{T}' = \{ U \in X' : \varphi^{-1}(U) \in \mathcal{T} \}$$

eine Topologie auf X'.

Dieses Konzept lässt sich auf allgemeine surjektive Funktionen verallgemeinern.

3 Inneres, Häufungspunkte, Abschluss, Grenzwerte

Satz 3.1. $A \subset Y$ ist abgeschlossen in der Spurtopologie, genau dann, wenn $A = F \cap Y$ mit F in X abgeschlossen.

Satz 3.2. Ist $Y \subset Y$ selber abgeschlossen, in X, so ist jede relativ abgeschlossene Menge $Y \subset Y$ auch abgeschlossen in X

Satz 3.3. Sei X ein topologischer Raum und $A \subset X$. Dann gilt

- $x \in \bar{A} \Leftrightarrow f\ddot{u}r \ jede \ Umgebung \ U \ von \ x \ gilt \ A \cap U \neq \varnothing$.
- ist B eine Basis für diese Topologie, so gilt

$$x \in A \Leftrightarrow A \cap B \neq \emptyset \ \forall B \in \mathcal{B} : x \in B$$

Definition 3.4. Ein Punkt $x \in X$ heißt Häufungspunkt von A, wenn für jede Umgebung U von x gilt

$$U \cap (A \setminus \{x\}) \neq \emptyset$$

Das bedeutet, x liegt im Abschluss von $A \setminus \{x\}$.

Satz 3.5. Sei A' die Menge aller Häufungspunkte, so gilt

$$\bar{A} = A \cup A'$$

Definition 3.6. Eine Folge $x_n \subset X$ heißt konvergent gegen x, wenn es für alle offenen Umgebungen U von x ein N gibt, sodass $x_n \in U$ für alle $n \geq N$.

Definition 3.7. Ein topologischer Raum X heißt Hausdorffsch, wenn $\forall x, y \in X$ gibt es zwei offene Mengen U_x, U_y mit $x \in U_x, y \in U_y$ und $U_x \cap U_y \neq \emptyset$.

Satz 3.8. Sei X ein Hausdorff-Raum. Es gilt

• Alle einelementigen und alle endlichen Teilmengen von X sind abgeschlossen

- ist $A \subset X$, dann ist $x \in X$ Häufungspunkt von A genau dann, wenn jede Umgebung von x unendlich viele Elemente aus A enthält
- jede Folge aus X besitzt maximal einen Grenzwert.

4 Stetigkeit

Definition 4.1. Seien X und Y topologische Räume. Eine Abbildung $f: X \to Y$ ist stetig, wenn für alle offenen Mengen $U \subset Y$ das Urbild $f^{-1}(U)$ offen in X ist.

Satz 4.2. Seien X, Y topologische Räume. Es sei $f: X \to Y$ eine Funktion, dann sind die folgenden Eigenschaften äquivalent.

- 1. f ist stetig
- 2. Für jede Menge $A \subset X$ ist $f(\overline{A}) \subseteq \overline{f(A)}$
- 3. Für jede in Y abgeschlossene Menge $F \subset Y$ ist $f^{-1}(Y)$ abgeschlossen in X
- 4. zu jedem $x \in X$ und jeder Umgebung V von f(x) gibt es eine Umgebung U von x, sodass $f(U) \subseteq V$.

Definition 4.3. Eine bijektive Abbildung $f: X \to Y$ sodass f und f^{-1} stetig sind, heißt Homöomorphismus.

Definition 4.4. Ist f eine stetige, injektive aber nicht surjektive Abbildung, so sei $\overline{Z} = f(X) \subset Y$. Die Einschränkung

$$\tilde{f}:X\to \overline{Z}$$

ist bijektiv. Ist \tilde{f} ein Homö
omorphismus, so nennen wir f eine Einbettung von X in
 Y.

Definition 4.5. Existiert zwischen X und Y ein Homöomorphismus, so heißen X und X homöomorph, geschrieben $X \cong Y$.

Satz 4.6. Seien X, Y, Z topologische Räume. Dann gilt

- 1. jede konstante Funktion $f: X \to Y$ ist stetig
- 2. ist $A \subset X$, so ist die Inklusion $f: A \to X$ stetig
- 3. $sind f: X \to Y \text{ stetiq und } q: Y \to Z \text{ stetiq, so ist } q \circ f \text{ stetiq}$
- 4. ist $f: X \to Y$ stetig und $A \subset X$, so ist die Restriktion $f: X \to A$ stetig bzgl. der Spurtopologie.

Satz 4.7. Seien X, Y topologische Räume und es gelte $X = A \cup B$ mit A, B abgeschlossen. Weiter seien die beiden Funktionen $f: A \to Y$ und $g: B \to Y$ stetig bzgl. der jeweiligen Spurtopologien und sei

$$f(x) = g(x) \ \forall x \in A \cap B$$

dann ist

$$h(x) = \begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$$

stetig auf X.

Satz 4.8. Es sei

$$f: A \to X \times Y$$

eine vektorwertige Funktion. f ist stetig genau dann, wenn f_1 und f_2 stetig sind.

5 Zusammenhängende topologische Räume

Definition 5.1. Ein topologischer Raum X heißt unzusammenhängend, wenn $\exists U, V$ offen, sodass $U \cap V = \emptyset$, $U \neq \emptyset$, $V \neq \emptyset$ und $X = U \cup V$. X heißt zusammenhängend, wenn es keine solche Separation gibt. Das ist äquivalent dazu, dass X und \emptyset die einzigen abgeschloffenen Mengen sind.

Lemma 5.2. Sei X ein topologischer Raum und sei $Y \subset X$. Eine Separation von Y bzgl. der Spurtopologie ist ein Paar (A, B) mit

$$A \neq \varnothing, B \neq \varnothing, A \cup B = Y, \overline{A} \cap B = \varnothing, A \cap \overline{B} = \varnothing$$

Lemma 5.3. Sei X ein unzusammenhängender topologischer Raum mit Separation (U, V). Ist $Y \subset X$ zusammenhängend, so ist $Y \subset U$ oder $Y \subset V$.

Satz 5.4. Die Vereinigung zusammenhängender Räume ist zusammenhängend, wenn alle Räume mindestens einen Punkt gemeinsam haben.

Satz 5.5. Sind X, Y zusammenhängende Räume, so ist $X \times Y$ zusammenhängend.

Satz 5.6. Sei $A \subset X$ ein zusammenhängender Teilraum. Dann ist B mit $A \subset B \subset \overline{A}$ zusammenhängend.

Satz 5.7. Das stetige Bild eines zusammenhängenden Raumes ist zusammenhängend.

Definition 5.8. Sei X ein topologischer Raum.

1. Für $x, y \in X$ definieren wir einen Weg von x nach y als stetige Abbildung

$$\gamma:[a,b]\to X$$

mit

$$\gamma(a) = x, \ \gamma(b) = y$$

2. X ist weg-zusammenhängend, wenn es für alle x,y einen Weg γ gibt, der in X enthalten ist

Lemma 5.9. Weg-zusammenhängend \Rightarrow zusammenhängend aber umgekehrt nicht.

Definition 5.10. Für einen topologischen Raum X bilden wir eine Äquivalenzrelation \sim über

$$x, y \in X : x \sim y \Leftrightarrow \exists Y \subset X : Y$$
 zusammenhängend mit $x, y \in Y$

Satz 5.11. Zusammenhangskomponenten eines topologischen Raums X sind zusammenhängende, paarweise disjunkte Teilmengen von X deren Vereinigung X ist. Das sind genau die Äquivalenzklassen von \sim . Jede zusammenhängende Teilmenge von X ist ganz in einer der Zusammenhangskomponenten enthalten.

6 Kompakte Topologische Räume

Definition 6.1. Gegeben ein topologischer Raum (X, \mathcal{T}) . Sei $\mathcal{A} \subset \mathcal{P}(X)$. \mathcal{A} ist eine Überdeckung, wenn

$$X = \bigcup_{A \in \mathcal{A}} A$$

Gilt außerdem $\mathcal{A} \subset \mathcal{T}$, so spricht man von einer offenen Überdeckung. Wenn es zu jeder offenen Überdeckung \mathcal{A} eine endliche Teilüberdeckung gibt, so ist X kompakt.

Lemma 6.2. Sei X ein topologischer Raum und $Y \subset X$. Dann ist Y abgeschlossen bezüglich der Spurtopologie genau dann, wenn es $A \subset T$ gibt, sodass

$$Y \subset \bigcup_{A \in \mathcal{A}} A$$

und es von dieser Überdeckung eine endliche Teilüberdeckung gibt.

Satz 6.3. Abgeschlossene Teilräume eines kompakten Raums X sind kompakt.

Satz 6.4. Jeder kompakte Teilraum eines Hausdorff-Raums ist abgeschlossen.

Satz 6.5. Das stetige Bild eines kompakten topologischen Raums ist wieder kompakt.

Bemerkung 6.6. Kompaktheit ist eine topologische Eigenschaft.

Satz 6.7. Ist $f: X \to Y$ eine bijektive stetige Abbildung, X kompakt und Y Hausdorffsch, so ist f bereits ein Homöomorphismus.

Satz 6.8. Das kartesische Produkt endlich vieler kompakter topologischer Räume ist wieder kompakt.

Es gibt auch die Begriffe der Häufungspunkt- und Folgenkompaktheit. Diese sind schwächer als die klassische Kompaktheit, aber in metrischen Räumen äquivalent.

- **Definition 6.9.** 1. Ein topologischer Raum X heißt lokal kompakt bei $x \in X$, wenn es einen kompakten Teilraum C von X gibt, der eine Umgebung von X enthält.
 - 2. X heißt lokal kompakt, wenn er bei allen Punkten $x \in X$ lokal kompakt ist.

6.1 Riemann-Sphäre

Die komplexe Ebene kann kompaktifiziert werden, indem die Ebene homöomorph auf eine Kugel mit fehlendem Punkt abgebildet wird. Der Kugelmittelpunkt sei bei $(0,0,\frac{1}{2})^T$ mit Radius $\frac{1}{2}$. Der Homoömorphismus bildet eine komplexe Zahl z=x+iy ab auf S(z). Die Koordinaten auf der Riemann-Sphäre werden als ξ,η,ζ bezeichnet. Die Formel für die Sphäre ist dann

$$\xi^2 + \eta^2 + (\zeta - \frac{1}{2})^2 = \frac{1}{4}$$

Die stereografische Abbildung S(z) bildet nun jedes $z \in \mathbb{C}$ ab auf den Schnittpunkt der Verbindungsgerade von z mit dem Nordpol $(0,0,1)^T$ der Kugel. Man kann sich davon überzeugen, dass S ein Homöomorphismus ist.

Die Kugel kann durch die Zunahme eines einzelnen Punktes (des Nordpols) kompaktifiziert werden. Da es sich um einen Homöomorphismus handelt, kann auch \mathbb{C} kompaktifiziert werden (indem ∞ hinzugenommen wird).

Satz 6.10 (1-Punkt Kopaktifizierung). Sei X ein lokal kompakter Hausdorff-Raum. Dann gibt es einen Raum Y mit folgenden Eigenschaften

- 1. X ist ein Teilraum von Y
- 2. $Y \setminus X$ besteht aus genau einem Element.
- 3. Y ist ein kompakter Raum