Efficient E-matching for SMT Solvers

Leonardo de Moura, Nikolaj Bjørner Microsoft Research, Redmond

The Z3tting

- Z3 is an inference engine tailored towards formulas arising from program verification tools (Boogie/Spec#).
 - Large formulas
 - Integer arithmetic + other theories
 - Mostly universally quantified axioms
- Contributions:
 - E-matching code trees for efficient matching over congruence classes.
 - Inverted path indices for efficient incremental matching.

SMT solving using DPLL(QT)

Review:

- Γ : Context of asserted literals, initially Γ = \emptyset
- C: list(conjunction) of clauses
- Combined with theories in DPLL(T)
 - Subsets of Γ are propagated to theories.
 - $-\Gamma = \{a = f(a), a \neq f(f(a))\}$ unsat by Th(Equality).
 - Th(Equality) maintains E-graph (congruence closure)
 - Nodes are sets of terms appearing in C
 - Each set is congruence class of equalities asserted by Γ
 - E-graph($\{a = f(a), a \neq f(f(a)), b = c\}$) = $\{\{a, f(a), ff(a)\}, \{b, c\}\}$
 - class(a) = {a, f(a), ff(a)},
 - find(a) = find(f(a)) = a

Instantiating Quantifiers

But how to find t during instantiation?

$$(\forall x.\phi(x) \rightarrow \phi(t))$$

Approach:

1. Extract patterns from quantified formulas:

```
\forall x,i,v. \{ select(store(x,i,v),i) \} . select(store(x,i,v),i) = v \}
```

- 2. E-match: Search E-graph of Γ for terms matching patterns.
- 3. Add axioms for the matches that were found.

The E-matching problem

Input: A set of ground equations *E* a ground term *t* and a term *p*, where *p* possibly contains variables.

Output: The set of substitutions θ modulo E over the variables in p, such that

$$E \models t = \theta(p)$$

The E-matching challenge

- E-matching is in theory NP-hard
- The real challenge is finding new matches
 - Incrementally during a backtracking search
 - In a large database of patterns, many sharing substantial structure

Abstract E-matching

$$match(x,t,S) = \{\beta \cup \{x \mapsto t\} \mid \beta \in S, x \notin dom(\beta)\} \cup \{\beta \mid \beta \in S, find(\beta(x)) = find(t)\}$$

$$match(c,t,S) = S \text{ if } c \in class(t)$$

$$match(c,t,S) = \emptyset \text{ if } c \notin class(t)$$

$$match(f(p_1,\ldots,p_n),t,S) = \bigcup_{f(t_1,\ldots,t_n) \in class(t)} match(p_n,t_n,\ldots,match(p_1,t_1,S))$$

A more efficient approach

- Match is invoked for every pattern in database.
- To avoid common work:
 - Compile set of patterns into instructions.
 - By partial evaluation of naïve algorithm
 - Instruction sequences share common sub-terms.
 - Substitutions are stored in registers, backtracking just updates the registers.

E-matching code-trees

• Pattern $f(x_1, g(x_1, a), h(x_2), b)$:

Рс	Instructions
рс0	init(f, pc1)
pc1	check (4, b, pc2)
Pc2	bind (2, g, 5, pc3)
Pc3	compare (1, 5, pc4)
Pc4	check (6, a, pc5)
Pc5	bind (3, h, 7, pc6)
Pc6	yield(1,7)

Instruction	f(h(a),g(h(c),a),h(c), b)			
init(f)	reg[1] \leftarrow h(a), reg[2] \leftarrow g(h(c), reg[3] \leftarrow h(c), reg[4] \leftarrow b	a),		
check (4, b)	reg[4] = b			
bind (2, g, 5)	$reg[5] \leftarrow h(c), reg[6] \leftarrow a$	₽		
compare(1, 5)	$h(a) = reg[1] \neq reg[5] = h(c)$	9		

E-matching code-trees

• Pattern $f(x_1, g(x_1, a), h(x_2), b)$:

Рс	Instructions
pc0	init(f, pc1)
pc1	check (4, b, pc2)
Pc2	bind (2, g, 5, pc3)
Pc3	compare (1, 5, pc4)
Pc4	check (6, a, pc5)
Pc5	bind (3, h, 7, pc6)
Pc6	yield(1,7)

Instruction	f(h(a),g(h(a),a),h(c), b)			
init(f)	reg[1] \leftarrow h(a), reg[2] \leftarrow g(h(a),a), reg[3] \leftarrow h(c), reg[4] \leftarrow b			
check(4, b)	reg[4] = b	\$		
bind (2, g, 5)	$reg[5] \leftarrow h(a), reg[6] \leftarrow a$			
compare(1, 5)	h(a) = reg[1] = reg[5] = h(a)	&		
check(6, a)	a = reg[6] = a			
bind (3, h, 7)	reg[7] ← c			
yield(1,7)	$X_1 \rightarrow h(a), X_2 \rightarrow c$	&		

The E-matching abstract machine

init(f, next)	assuming $reg[0] = f(t_1, \ldots, t_n)$				
	$reg[1] := t_1; \ldots; reg[n] := t_n$				
	pc := next				
bind(i, f, o, next)	$push(bstack, choose-app(o, next, apps_f(reg[i]), 1))$				
	$\mathit{pc} := backtrack$				
check(i, t, next)	if $find(reg[i]) = find(t)$ then $pc := next$				
	$\mathbf{else}\ pc := backtrack$				
compare(i, j, next)	if $find(reg[i]) = find(reg[j])$ then $pc := next$				
	$\mathbf{else}\ pc := backtrack$				
$choose(\mathit{alt},\mathit{next})$	if $alt \neq nil$ then $push(bstack, alt)$ $pc := next$				
$yield(i_1,\ldots,i_k)$	yield substitution $\{x_1 \mapsto reg[i_1], \dots, x_k \mapsto reg[i_k]\}$				
	pc:=backtrack				
backtrack	if bstack is not empty then				
	pc := pop(bstack)				
	else stop				
${\sf choose\text{-}app}(o,next,s,j)$	if $ s \geq j$ then				
	let $f(t_1,\ldots,t_n)$ be the j^{th} term in s.				
	$reg[o] := t_1; \ldots; reg[o + n - 1] := t_n$				
	push(bstack, choose-app(o, next, s, j + 1))				
	pc := next				
	$\mathbf{else}\ pc := backtrack$				

Additional instructions

- Forward pruning
 - Prune exponential search early on
 - $f(g(x,y), h(x,z)) first check that t_1 = g(...) and t_2 = h(...)$ when matching $f(t_1, t_2)$

- Multi-patterns
 - Continue
 - Join = continue + compare

Incremental matching

5 = select(b, 2)
$$E_1 = \{ \{5, \text{ select(b,2)} \}, \{b\} \} \}$$

c = store(a, 2, 4) $E_2 = E_1 \cup \{ \{c, \text{ store(a,2,4)} \} \}$
b = c $E_3 = \{ \{b, c, \text{ store(a,2,4)} \}, \{5, \text{ select(b,2)} \} \}$
 $E_3 = \{ \{b, c, \text{ store(a,2,4)} \}, \{5, \text{ select(b,2)} \} \}$

Observation: pattern select(store(x, i, v), i) gets enabled when *child* of select is merged with term labeled by store.

Inverted path indices

Index all patterns with f(...g(...)...) sub-term, that may become enabled when

```
merge(n<sub>1</sub>, n<sub>2</sub>) where
```

```
\exists parent p_1 of n_1. Label(p_1) = f(...n_1...)
```

 \exists sibling m_2 of n_2 . Label(m_2) = g(...)

Pattern id	pattern	Path to g under f	Inverted paths
p1	f(f(g(x) ,a),x)	p1 → g: f.1.f.1	(f,g): f.1.f.1 \rightarrow p1
p2	h(c, f(g(y) , x))	p2 → g: h.2.f.1	(f,g): f.1.h.2 → p2
р3	f(f(g(x) ,b),y)	p3 → g: f.1.f.1	(f,g): f.1.f.1 \rightarrow p3
p4	f(f(a, g(x)), g(y))	p4 → g: f.1.f.2, f.2	(f,g): f.2.f.1 \rightarrow p4, (f,g): f.2 \rightarrow p4

Inverted path index

When to apply E-matching

Lazy Instantiation:

- Have SAT core assign all Boolean variables.
- Then find new quantifier instantiations.
- Useful if most instantiations are useless and explode the search space.

• Eager Instantiation:

- Find new quantifier instantiations whenever new terms are created and new equalities are asserted.
- Useful if instantiations help pruning the search space.

Hybrid:

Uses scoring on useful quantifiers to promote/demote instantiation time.

Experimental evaluation

Fig. 8. SMT-LIB Benchmarks

Experimental evaluation

Fig. 10. Boogie Benchmarks

	ESC/Java		Boogie		S-expr Simplifier	
	# valid	time	# valid	time	# valid	time
Simplify	2331	499.03	903	1851.29	18	10985.80
Zap	2222	6297.04	901	2612.64	22	777.78
Z3 (lazy)	2331	212.81	907	157.2	32	2904.27
Z3 (lazy wo. code trees)	2331	224.14	907	240.44	28	2369.00
Z3 (eager wo. inc.)	2331	1495.07	907	229.2	10	2410.52
Z3 (eager mod-time)	2331	85.1	907	39.79	32	1341.38
Z3 (eager wo. code trees)	2331	48.28	907	26.85	32	654.62
Z3 (default)	2331	45.22	907	18.47	32	194.54

E-matching limitations

E-matching needs ground (seed) terms.

It fails to prove simple properties when ground (seed) terms are not available.

Example:

$$(\forall x . f(x) \le 0) \land (\forall x . f(x) > 0)$$

Matching loops:

$$(\forall x . f(x) = g(f(x))) \land (\forall x . g(x) = f(g(x)))$$

- Inefficiency and/or non-termination.
- Some solvers have support for detecting matching loops based on instantiation chain length.
- Our technology for inferring patterns is weak. Strong reliance on (Spec#/Boogie) compiler or theory supplied patterns.

Future work

- Model checking.
- Superposition calculus + SMT.
- Decidable fragments.

Conclusions

 Matching-time significantly reduced when using E-matching code trees and inverted path indices.

 Inverted path indices: Pay for what you use, not for what you might.

Lazy vs. Eager depends on quality of patterns.

Related work

DPLL(T): Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: CAV 04.

Simplify: Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. (2005)

Nelson, G.: Techniques for program verification. (1981)

Verifun: Flanagan, C., Joshi, R., Saxe, J.B.: An explicating theorem prover for quantified formulas. (2004)

ESC-Java: Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for java. In: PLDI. (2002)

Boogie: DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking object-oriented programs. MSR-TR (2005)

Spec# Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In: CASSIS 2004.

E-matching: Kozen, D.: Complexity of finitely presented algebras. In: STOC. (1977) 164–177

Theories: Slagle, J.R.: Automatic theorem proving with built-in theories including equality, partial ordering, and sets. J. ACM (1972)

Theories: Stickel, M.E.: Automated deduction by theory resolution. J. Autom. Reasoning (1985)

Theories; Baalen, J.V., Roach, S.: Using decision procedures to accelerate domain-specific deductive synthesis systems. (1999)

Theories: Waldmann, U., Prevosto, V.: SPASS+T. In: ESCoR. (2006) 18–33

SMT: Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to satisfiability procedures: Extension,

combination of theories and an experimental appraisal Fro Cos. (2005)

SMT: Leino, K.R.M., Musuvathi, M., Ou, X.: A two-tier technique for supporting quantifiers in a lazily proof-explicating tp TACAS05

SMT: Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker. In: CAV '04. LNCS 3114 (2004)

SMT: Moskal, M., Lopusza´nski, J.: Fast quantifier reasoning with lazy proof explication.

SMT: Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: CAV'06.

SMT Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theorem proving for software analysis. In: LPAR 2005.

Indexing: A"it-Kaci, H.: Warren's abstract machine: a tutorial reconstruction. MIT Press, Cambridge, MA, USA (1991)

Indexing: Voronkov, A.: The anatomy of vampire implementing bottom-up procedures with code trees. JAR (1995)

Indexing: Riazanov, A., A. Voronkov: Vampire 1.1 (system description). In: IJCAR '01.

Indexing: Graf, P., Meyer, C.: Advanced indexing operations on substitution trees. In CADE 1996

Indexing: Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. IJCAR'01

.