Pipeline Input and Layer Split

Table of Contents

- Vanilla model parallelism is inefficient
- Pipeline parallelism
- Intra-layer parallelism

Recap Data Parallelism

Overview

Model Parallelism vs Data Parallelism

- Model Parallelism
 - 각각의 machine이 모델 전체가 아 닌 일부만을 담당
- Data Parallelism
 - 각각의 machine이 전체 모델에 대한 copy를 가지고 연산

https://xiandong79.github.io/Intro-Distributed-Deep-Learning

Vanilla Model Parallelism

Figure 6.2 - Model partition on three GPUs GPU utilization is only around 33%

- Sequential layer dependency -> inefficiency (low GPU utilization rate)
- System inefficiency gets worse as more GPUs are involved

•
$$GPUutil = \frac{GPUwork}{total\ time} = \frac{2}{2*N} = \frac{1}{N}$$

- GPUwork: each GPU works for one forward and one backward computation
- Total time: GPU work * total number of GPUs

Pipeline Paralleism

 Pipeline Parallelism breaks each batch of training input into smaller microbatches and conducts data pipelining

- Left: takes 9 time slots for forward and backward pass
- Right: takes 5 time slots for forward and backward pass

Pipeline Paralleism

Pros and Cons

- Advantages
 - Reduces overall training time and GPU idle time
 - Easier implementation
 - Can be adapted to any kind of DNN model
- Disadvantages
 - GPU needs to send more instructions to GPUs
 - GPU idle time still exists
 - Introduces more frequent GPU communications (networking communication overhead)

Intra-layer Parallelism

Input Matrix (batch size = 4)

x(0,0)	x(0,1)	w(0,2)	w(0,3)
x(1,0)	x(1,1)	x(1,2)	x(1,3)
x(2,0)	x(2,1)	x(2,2)	x(2,3)
x(3,0)	x(3,1)	x(3,2)	x(3,3)

y = X * A

 $y_{01}, y_{23} =$

 $[X*A_{01}, X*A_{23}]$

Layer 1 Matrix

w(0,0)	w(1,0)	w(2,0)	w(3,0)
w(0,1)	w(1,1)	w(2,1)	w(3,1)
w(0,2)	w(1,2)	w(2,2)	w(3,2)
w(0,3)	w(1,3)	w(2,3)	w(3,3)

Input Matrix (batch size = 4)

x(0,0)	x(0,1)	w(0,2)	w(0,3)
x(1,0)	x(1,1)	x(1,2)	x(1,3)
x(2,0)	x(2,1)	x(2,2)	x(2,3)
x(3,0)	x(3,1)	x(3,2)	x(3,3)

Layer 1 Matrix Splits (Column-wise)

w(0,0)	w(1,0)	w(2,0)	w(3,0)	
w(0,1)	w(1,1)	w(2,1)	w(3,1)	
w(0,2)	w(1,2)	w(2,2)	w(3,2)	
w(0,3)	w(1,3)	w(2,3)	w(3,3)	

- Intra-layer parallelism achieves model parallelism without communication among the model partitions on each GPU
- For one split, it only introduce one All-Reduce in either forward or backward pass
- Mostly applicable to NLP (MLP layers)

Model Parallelism in Megatron

Figure 3: Model parallelism for a GPT-2 transformer layer.

Figure 2: (a): MLP and (b): self attention blocks of transformer. **f** and **g** are conjugate, **f** is an **identity** operator in the forward pass and **all-reduce** in the backward pass while **g** is an **all-reduce** in forward and **identity** in backward.