

Departamento de Electrónica 66.10 Circuitos Electrónicos II

Proyecto

Chaure Fernando	90389
Combier Natasha	Intercambio
Marchi Pablo	90603
Müller Miguel	86130
Zurita Francisco	89722

20 de junio de 2012

Cuatrimestre / Año	1.er cuatrimestre 2012
Profesores:	Ing. Alberto Bertuccio

Fecha de entrega	Firma

Nota	Fecha de aprobación			Firma

Obsevaciones: _						

Índice

1.	Introducción	1							
2.	Objetivos								
3.	. Desarrollo								
	3.1. Cálculos del Amplificador de Audio	4							
	3.2. Cálculos de las Fuentes de Alimentación	4							
	3.3. Simulaciones	4							
	3.4. Realización del Circuito Impreso	4							
	3.4.1. Criterios de Diseño	4							
	3.4.2. Circuito Implementado	5							
	3.5. Mediciones	5							
	3.6. Comparativa Mediciones-Simulaciones	5							
4.	Conclusiones	6							
5.	Anexos	7							

1. Introducción

2. Objetivos

Especificaciones iniciales (típicas) de diseño:

- \blacksquare Potencia de Salida: desde 25 W a 100 W RMS @ 8 Ω
- Salida Clase G
- Distorsión amónica total(THD): < 0.002 % a 1 kHz ,< 0.01 % a 10 kHz: 20W (Baja tensión)
- Distorsión amónica total(THD): <0.003 % a 1 kHz , < 0.02 % a 10 kHz: 50W (Alta tensión)
- Respuesta en frecuencia: +/-0.1 dB, 10 Hz 30 kHz
- SNR: < -85 dB (20 Hz 20 kHz)
- Offset DC: < +/-25 mV
- Impedancia de entrada: 10 kohm
- Sensibilidad: 1V RMS
- Protección por cortocircuito y sobrecarga a la salida
- Alimentación: 220 VAC +10/-20 %,50 Hz Baja tensión: +/-20V a +/-25V (Fuente lineal) Alta tensión: +/-35V a +/-50V (Fuente conmutada)
- Eficiencia:>70 %

Características opcionales:

- Control de volumen VCA
- Boost +10 dB @ 30 Hz
- Ecualizador gráfico 5 bandas: +/-12 dB @64Hz, 250Hz, 1kHz, 4kHz, 12kHz
- Modulador / Demodulador FM para Public Adress

3. Desarrollo

- 3.1. Cálculos del Amplificador de Audio
- 3.2. Cálculos de las Fuentes de Alimentación
- 3.3. Simulaciones
- 3.4. Realización del Circuito Impreso
- 3.4.1. Criterios de Diseño
 - Caminos de los conductores de alimentación suficientemente anchos y dispuestos uno próximo al otro, con el objetivo de disminuir el área efectiva y por lo tanto la impedancia.
 - Capacitores de desacople del valor adecuado, de modo que funcionen a la frecuencia correspondiente.
 - Líneas de señal generando la menor área compatible con la distribución de los elementos con su camino de retorno. Especialmente los caminos de alta corriente y/o velocidad como para líneas de gran sensibilidad.
 - Área efectiva del circuito lo más pequeña posible.
 - Conexiones de masas y alimentación sin bucles.
 - Capacidades parásitas entre masa y las líneas de señal minimizadas al alejar pistas.

3.4.2. Circuito Implementado

- 3.5. Mediciones
- 3.6. Comparativa Mediciones-Simulaciones

4. Conclusiones

5. Anexos