Supplementary Material for: "Shifts in colour morph frequencies along an urbanisation gradient in the ground beetle *Pterostichus madidus*"

Maxime Dahirel, Hélène Audusseau, Solène Croci

S1 - Model description

For the present study, our response variable is $n_{i,j}/N_{i,j}$, the proportion of black-legged beetles captured in a given woodland i during a given sampling session j, with $N_{i,j}$ the corresponding total number of P. madidus beetles. Note that this naturally only includes woodland \times session combinations with $N_{i,j} > 0$. We ran the below models for each of the 8 possible urbanisation metrics described in the main text.

We initially built binomial models as follows:

$$n_{i,j} \sim \text{Binomial}(p_{i,j}, N_{i,j}),$$

 $\text{logit}(p_{i,j}) = \beta_0 + (\beta_1 + \eta_j) \times x_i + \alpha_i + \gamma_j,$

with x_i the (centered and scaled) urbanisation metric at site i, β_0 and β_1 the fixed-effects intercept and urbanisation slope, respectively, α_i the site-specific random intercept, and γ_j and η_j the session-specific random intercept and slope. Random effects are distributed as follows:

$$\alpha_i \sim \text{Normal}(0, \sigma_{\alpha}),$$
$$\begin{bmatrix} \gamma_j \\ \eta_j \end{bmatrix} \sim \text{MVNormal} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{\Omega} \right),$$

, where Ω is the covariance matrix for the session-specific random effects, which can be decomposed into its constituent standard deviations and correlation matrix R in this way:

$$oldsymbol{\Omega} = egin{bmatrix} \sigma_{\gamma} & 0 \ 0 & \sigma_{\eta} \end{bmatrix} oldsymbol{R} egin{bmatrix} \sigma_{\gamma} & 0 \ 0 & \sigma_{\eta} \end{bmatrix}.$$

We used weakly informative priors inspired by @mcelreathStatisticalRethinkingBayesian2020. We used Normal(0, 1) priors for the fixed effects β , and Half – Normal(0, 1) priors for all standard deviations σ . We used a LKJ(2) prior for the correlation matrix \mathbf{R} .

Evaluations of these models revealed slight but consistent evidence of overdispersion. We therefore fitted the equivalent beta-binomial models to account for that overdispersion:

$$n_{i,j} \sim \text{BetaBinomial}(p_{i,j}, N_{i,j}, \phi),$$

where ϕ is an added overdispersion parameter with prior $1/\phi \sim \text{HalfNormal}(0,1)$. The remainder of the models is the same as in the binomial case.

- ${f S2}$ Model performance comparisons
- ${f S3}$ Model effect of urbanisation comparison
- S4 Seasonal variation in urbanisation effect
- ${\bf S5}$ Population size variability along the urbanisation gradient

References