117. Let $X_1, ..., X_n$ be independent and identically distributed (IID) random variables with mean μ and variance σ^2 . Define the sample mean \bar{X} and sample variance S^2 as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

- (a) For this part only, suppose the X_i are normally distributed. Use the Derived Distribution approach to find an expression that has a Student's T distribution with n-1 degrees of freedom.
- (b) It is now not necessarily the case that X_i are normal. Consider \bar{X} and S^2 as a sequence in the sample size n; that is, consider the sample mean and sample variance as

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

Prove that

$$Z_n = \sqrt{n} \left(\frac{\bar{X}_n - \mu}{S_n} \right) \stackrel{\mathcal{D}}{\to} Z$$

where Z is a standard normal random variable.

Hint: The variance of S_n^2 is $Var(S_n^2) = 2\sigma^4/(n-1)$.