Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 9

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science June 17, 2024

Recap: What did we do?

- decision under uncertainty
- ordered weighted averaging (OWA)
- weighted ordered weighted averaging (WOWA)

FAU M. Hartisch Decision Theory June 17, 2024 2/60

OWA

- Generalisation of Minimax/Maximin, Average, Hurwicz
- Give importance to best, second-best, third-best, ..., worst
- Maximin: all importance on worst
- Average: equal importance to all
- Hurwicz: importance to best and worst

OWA

- Given weight vector $w = (w_1, \dots, w_n)$
- $w_i \in [0, 1]$ and $\sum_{i \in [n]} w_i = 1$
- For fixed alternative a_i , consider outcomes (e_{i1}, \ldots, e_{in})
- Sort them from largest to smallest: $(e_{i\pi(1)}, \ldots, e_{i\pi(n)})$
- OWA is $\sum_{j \in [n]} w_j e_{i\pi(j)}$

Example

- Outcomes of alternative *a* are (5, 2, 6, 3)
- Weight vector is (1/2, 0, 1/4, 1/4)
- Sort outcomes from largest to smallest: (6, 5, 3, 2)
- Apply weights:

$$OWA(a) = 1/2 \cdot 6 + 0 \cdot 5 + 1/4 \cdot 3 + 1/4 \cdot 2 = 4.25$$

- To calculate OWA, it does not matter whether we minimise or maximise
- But this will be important to decide which of the alternatives we choose

OWA: Example

Maximize, w = (0, 0, 1/2, 1/2)

- $OWA(a_1) = 0 \cdot 6 + 0 \cdot 4 + 1/2 \cdot 2 + 1/2 \cdot 1 = 1.5$
- $OWA(a_2) = 0.6 + 0.4 + 1/2.2 + 1/2.2 = 2.0$
- $OWA(a_3) = 0 \cdot 8 + 0 \cdot 5 + 1/2 \cdot 2 + 1/2 \cdot 0 = 1$
- $OWA(a_4) = 0 \cdot 9 + 0 \cdot 9 + 1/2 \cdot 3 + 1/2 \cdot 0 = 1.5$
- We choose alternative a₂

OWA

- Can be considered as mix between "and" (andness) and "or" (orness)
- Worst-case: be good in the first scenario and in the second scenario and ...
- Best-case: be good in the first scenario or in the second scenario or ...
- Degree of orness depends on weight vector *w*:

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

- Orness of worst-case is 0, orness of best-case is 1
- Orness of average and median is 1/2

OWA

Recall the axioms table:

	Minimax	Hurwicz	Regret	Average
Complete ranking	✓	✓	✓	√
Labelling	✓	✓	\checkmark	\checkmark
Value scale	✓	\checkmark	\checkmark	\checkmark
Strong domination	✓	✓	✓	\checkmark
Irrelevant alternatives	✓	✓	X	✓
Constant to column	X	X	\checkmark	\checkmark
Row permutation	✓	\checkmark	X	\checkmark
Column duplication	✓	\checkmark	\checkmark	X

- Whenever something does not hold for Minimax, Hurwicz, Average, it also does not hold for OWA
- We inherit all counter-examples

OWA: Combinatorial

- Can apply OWA also to combinatorial problems for minimisation
- Heuristic for K scenarios:
 - For each item, sort the cost vector
 - Multiply with weights and add up
 - I.e., calculate OWA for a single item
 - Get item costs ĉ
 - Solve with respect to ĉ
- If item weights are non-increasing (conservative), gives w_1K approximation
- Special case: $w_1 = 1$, take worst-case of each item, gives K approximation

WOWA

- OWA cannot assign weights to specific scenarios
- Extension: weighted ordered weighted averaging (WOWA)
- Two sets of weights:
 - \circ w_i for each position in the ordered vector (as before)
 - $\circ p_j$ for each scenario s_j
- Can do the same as OWA and more
- High effort to compute

Today

- Decision under Risk
 - Basic Concepts
 - \circ μ -Principle
 - $\circ \mu$ - σ -Principle

Situation

- For each state s_j , there is a probability p_j
- Also possible: continuous states with continuous probability distribution
- Also possible: combinatorial problem with exponentially many alternatives

Reminder: Probability

Let $\Omega = \{e_1, \dots, e_n\}$ be the sample space of a random experiment. A function P that assigns a number P(A) to each event $A \subseteq \Omega$ of a random experiment, such that

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$ and
- 3. $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

is called a probability distribution. The number P(A) is called the probability of event A.

New Term: Certainty Equivalent

- Already familiar with decision based on expected value as a criterion under risk
- Will examine it more closely
- One relevant term here: Certainty Equivalent

FAU M. Hartisch Decision Theory June 17, 2024 14/60

Certainty Equivalent

- Consider alternative a_i
- Which certain amount $S(a_i)$ is as good as the uncertain outcome of a_i ?

Example

- You have a lottery ticket:
 - 90% chance of winning 0 Euros
 - 10% chance of winning 1000 Euros
- I offer you instead
 - 1 Euro?
 - ...or 900 Euros?
 - When do you sell?

Certainty Equivalent, Example

- What is it for
 - 75 Euros
 - 90 Euros
 - 100 Euros
 - 125 Euros
 - 150 Euros
- Certainty Equivalent = the amount at which the decision maker would sell
- Subjective

Certainty Equivalent

- ullet Assume we know the preference function Φ
- It holds (with abuse of notation)

$$\Phi(S(a_i)) = \Phi(a_i)$$

• a_i has the same value as $S(a_i)$

First Approach

- Natural choice: choose with respect to expected value
- Has shown good properties in decision under uncertainty:
 - Satisfies many axioms
 - Approximation for Minimax
 - Approximation for Regret
- ullet Expected value of a distribution often denoted as μ
- Therefore: μ -Principle

μ -Principle

- Let e_{i1}, \ldots, e_{in} be outcomes of alternative a_i
- μ -principle formally:

$$\Phi(a_i) = \sum_{j \in [n]} p_j e_{ij} = \mu_i$$

• What about certainty equivalent?

$$\Phi(\mu_i) = \sum_{j \in [n]} p_j \mu_i = \mu_i$$

Hence, certainty equivalent is the expected value.

Example

- You play a lottery:
 - 90% chance of winning 0 Euros
 - 10% chance of winning 1000 Euros
- Would sell ticket for 100 Euros
- Also: would pay 100 Euros to play

FAU M. Hartisch Decision Theory June 17, 2024 20/60

Critique

- Is the μ -Principle reasonable?
- Possible decision situations:
 - Decision about a frequently repeating action (repetition case)
 - Decision about a unique, non-repeating action (single case)

FAU M. Hartisch Decision Theory June 17, 2024 21/60

Repetition Case

- Law of Large Numbers / Central Limit Theorem:
 - Relative frequency of an experiment approaches its expected value

Example

• We flip a coin, outcome is heads (s_1) or tails (s_2)

$$\begin{array}{c|cccc} & s_1 & s_2 \\ \hline a_1 & 0 & 10 \\ a_2 & 5 & 5 \end{array}$$

- Both alternatives are equally good in terms of expected value
- Variance can be very different

Example

$$\begin{array}{c|cc} & s_1 & s_2 \\ a_1 & 0 & 10 \\ a_2 & 5 & 5 \end{array}$$

- Play N rounds in a row
- Expected value per game remains 5
- a₁'s winnings range from 0 to 10N
- a₂'s winnings are always 5N
- Variance decreases with more N
- It generally holds for $Var(X_i) = Var(X_0)$

$$Var(\frac{1}{N}\sum_{i\in[N]}X_i)=\frac{1}{N^2}\sum_{i\in[N]}Var(X_i)=\frac{Var(X_0)}{N}$$

Example

- Probabilities for N = 1, 2, 5, 10
- On the horizontal axis: Probability for average gain intervals [0, 2], [2, 4], ..., [8, 10]
- Probability that the result falls near the expected value increases
- 100 repetitions: 85% chance in the interval [4, 6]
- 250 repetitions: 99.9% chance in the interval [4, 6]

Repetition Case

- With more repetitions, the expected value becomes a more reliable estimate of the outcome
- For alternatives a_1 and a_2 with $\mu_1 > \mu_2$, a_1 becomes significantly better (when maximizing)
- With fewer repetitions, probability distributions overlap more

FAU M. Hartisch Decision Theory June 17, 2024 26/60

Example

$$\begin{array}{c|cc} & s_1 & s_2 \\ a_1 & 0 & 10 \\ a_2 & 4 & 5 \end{array}$$

- $\mu_1 = 5 > 4.5 = \mu_2$
- In a single attempt: 50% probability that a_1 is worse than a_2
- With enough repetitions: Probability that a_1 is worse becomes arbitrarily small

Example	e
---------	---

N	$p(e_1 > 4.55)$	$p(e_2 < 4.55)$	$p(e_1 \geq e_2)$
100	0.816	0.841	0.840
250	0.923	0.943	0.942
500	0.978	0.987	0.942
1000	0.998	0.999	0.999

• $\mu_1 > 4.55 > \mu_2$

Conclusion

- μ -Principle is reasonable when the experiment is repeated frequently
- Examples:
 - Quality assessment of workpieces
 - Tolerance estimates for cutting machines
 - Planning repairs for 1000 machines
 - Tires in the fleet
 - Light bulbs on the company premises

0 ...

Single Case Decisions

- We have already seen: Expected value is not necessarily the best choice
- Two groups of arguments against it:
 - St. Petersburg paradox
 - Games of chance and insurance

FAU M. Hartisch Decision Theory June 17, 2024 30/60

St. Petersburg Paradox

- We toss a coin (head or tail) until the first head appears
 - On the first toss: Player receives 2 Euros
 - On the second toss: Player receives 4 Euros
 - 0 ...
 - On the *n*-th toss: Player receives 2ⁿ Euros
- Infinite possible outcomes

FAU M. Hartisch Decision Theory June 17, 2024 31/60

St. Petersburg Paradox

• Let s_i : Head appears on the *i*-th toss

- How much would you pay to play once?
- How much would you demand to play the bank once?
- Expected value:

$$\mu = 2 \cdot \frac{1}{2} + 4\frac{1}{4} + 8 \cdot \frac{1}{8} + \dots = \infty$$

St. Petersburg Paradox

- Expected value is infinitely large
- Certainty equivalent for μ -Principle is also infinite
- You would give everything you have, and more, to participate
- For no amount of money would you be willing to play the bank
- But how much would you really offer?
- μ -Criterion not satisfactory here

Games of Chance

- A company offers a game of chance
- For example:
 - Lottery
 - Roulette
 - Class lottery
- It sells many tickets
- The company wants to make money with it
- Goal of the company: Expected gain of a ticket is less than the price
- According to μ -principle: never participate!

Insurance

- A company offers insurances
- Many people participate
- The company wants to make money with it
- Goal of the company: Expected payout of an insurance is less than the price
- According to μ -principle: never insure!

Example

• For an individual, the following health care costs per year (in Euros) may occur:

- Expected value: 184.50 Euro
- According to the μ -criterion: only insure if monthly premium is cheaper
- Would we act that way?
- Outliers could ruin us

Discussion

- ullet Apparently, we do not always act according to the μ -criterion
- Can be interpreted differently:
 - We do not act rationally
 - \circ μ -criterion is not always sensible
- How is it with
 - Lottery
 - Liability insurance

FAU M. Hartisch Decision Theory June 17, 2024 37/60

Caution

- So far, we have only considered absolute gains/losses
- Caution with relative (percentage) values
- Consider the following game:
 - Start with 1 Euro
 - With probability 1/2: increase by 50%
 - With probability 1/2: decrease by 40%
- Is it worthwhile in terms of expected value?

Caution

- Game:
 - With probability 1/2: increase by 50%
 - With probability 1/2: decrease by 40%
- Expected value: $1/2 \cdot 1.5 + 1/2 \cdot 0.6 = 1.05$
- On average, we should make a profit
- Let's test it...

Simulation

Why?

• If we win once and lose once:

$$1 \cdot 1.5 \cdot 0.6 = 0.9$$

- Value is not 1.05
- Arithmetic mean: $(x_1 + x_2 + ... + x_n)/n$
- Geometric mean: $\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$
- We need to use geometric mean here

Alternative Criterion

- μ -Principle: consider only expected value
- μ - σ -Principle: also consider standard deviation/variance ("sigma")
- Reminder:
 - $\circ \sigma$ is standard deviation

$$\sigma = \sqrt{\sum_{j=1}^{n} p_j (x_j - \mu)^2}$$

 $\circ \sigma^2$ is variance

$$\sigma^2 = \sum_{j=1}^n p_j (x_j - \mu)^2$$

μ - σ -Principle

- We decide depending on μ and σ
- Can also explain lottery/insurance
- Let's assume we maximize $\Phi(\mu, \sigma)$
- The larger μ , the larger Φ should be
- What happens with σ ?
 - \circ Φ increases as σ grows: risk-seeking
 - \circ Φ decreases as σ grows: risk-averse

μ - σ -Principle

- Let's assume we can derive Φ
- It has two variables → partial derivatives
- $\partial \Phi(\mu, \sigma)/\partial \mu$ is partial derivative with respect to μ
- $\partial \Phi(\mu, \sigma)/\partial \sigma$ is partial derivative with respect to σ
- Formalization of cases:
 - $\circ \partial \Phi(\mu, \sigma)/\partial \mu > 0$
 - $\circ \partial \Phi(\mu, \sigma)/\partial \sigma > 0$: risk-seeking
 - $\circ \partial \Phi(\mu, \sigma)/\partial \sigma < 0$: risk-averse
- Risk-neutral: σ doesn't matter (μ -Principle)

Level Curves

- ullet Φ is a function with two inputs
- How would I draw it?

FAU M. Hartisch Decision Theory June 17, 2024 45/60

Level Curves

- ullet Φ is a function with two inputs
- How would I draw it?

FAU M. Hartisch Decision Theory June 17, 2024 45/60

Level Curves

- ullet Φ is a function with two inputs
- How would I draw it?

FAU M. Hartisch Decision Theory June 17, 2024 45/60

Level Curves

- Worse if high
- Risk-averse

- Better if to the right
- Better if high
- Risk-seeking

Level Curves

- What is the certainty equivalent?
- Move along the level curve to the intersection with the μ -axis
- Equally good situation with variance equal to zero

Examples of $\Phi(\mu, \sigma)$

1.
$$\Phi(\mu, \sigma) = \mu - \alpha \sigma$$

2.
$$\Phi(\mu, \sigma) = \mu - \alpha \sigma^2$$

- Difference between the expected value and α times the standard deviation or variance.
- α > 0: risk-averse
- α < 0: risk-seeking

FAU M. Hartisch Decision Theory June 17, 2024 49/60

Example - Maximize

Example - Maximize

- a_1 is dominated by a_2 (absolute dominance)
- μ_1 = 9, σ_1 = 3
- $\Phi(a_1) = \mu_1 \alpha \sigma_1^2 = 9 \alpha \cdot 9$
- μ_2 = 16, σ_2 = 12
- $\Phi(a_2) = \mu_2 \alpha \sigma_2^2 = 16 \alpha \cdot 144$
- ullet It depends on lpha which alternative is considered better
- How precise is this relationship?

Example

$$9-9\alpha=16-144\alpha$$

 $135\alpha=7$
 $\alpha=7/135$

Thus:

$$\Phi(a_1) \begin{cases}
< \Phi(a_2) & \text{for } \alpha < 7/135 \\
= \Phi(a_2) & \text{for } \alpha = 7/135 \\
> \Phi(a_2) & \text{for } \alpha > 7/135
\end{cases}$$

• The preference function $\Phi(\mu, \sigma) = \mu - \alpha \sigma^2$ can select an absolutely dominated alternative.

Additional Metrics

- Besides μ and σ , other metrics can also be used
- For example:
 - Worst-case
 - Quantile values
 - Loss probability
 - Expected loss
 - Range

Worst-Case

• μ – min Principle:

$$\Phi(\mu_i, e_i^{\min}) = \lambda \mu + (1 - \lambda)e_i^{\min}$$

- Hodges-Lehmann rule
- Similar to Hurwicz: λ weights two metrics
 - \circ λ = 1: μ -Principle
 - \circ λ = 0: Maximin
- Combination is also possible between extremization and satisficing, e.g.,
 - \circ Maximize μ and demand $e^{\min} \geq S$

Quantile Values

- Given a critical probability p^k
- Quantile value f = the largest outcome for which the probability is not below p^k
- $p^k = 0.5$: Median
- p^k close to 0 or 1: best-case and worst-case

Example

Cumulative probability:

Loss Probability

- Probability that a critical value e^k is undershot: $p(e_1 < e^k)$
- Specifies the desired level, minimizing the probability of falling below it

Example

• For $e^k = -0.5$:

$$p(e_1 < -0.5) = 1 - p(e_1 \ge -0.5) = 1 - 0.73 = 0.27$$

• For $e^k = 1$:

$$p(e_1 < 1) = 1 - p(e_1 \ge 1) = 1 - 0.43 = 0.57$$

Expected Loss

- Consider all outcomes K_i below the critical value e^k
- $K_i = \{ j \in [n] : e_{ij} < e^k \}$
- Expected value of the distance of these outcomes to e^k

$$V_i = \sum_{j \in K_i} p_j (e^k - e_{ij})$$

• Special case $e^k = 0$: Sum only negative outcomes

$$V_i = -\sum_{j \in [n]: e_{ij} < 0} p_j e_{ij}$$

Range

Difference between the largest and smallest outcome

$$y(a_i) = \max_{j \in [n]} e_{ij} - \min_{j \in [n]} e_{ij}$$

FAU M. Hartisch Decision Theory June 17, 2024 59/60

Quiz

Question 1

True or false?

The more often I repeat the same experiment, the closer the average result gets to the expected value.

Question 2

True or false?

The more often I repeat the same experiment, the larger the variance becomes.

Question 3

Determine expected value and variance:

a)
$$\mu = 4$$
, $\sigma^2 = 1$

b)
$$\mu = 5$$
, $\sigma^2 = 1.5$

c)
$$\mu = 5$$
, $\sigma^2 = 2$

Quiz

Question 1

True or false?

The more often I repeat the same experiment, the closer the average result gets to the expected value.

Solution

Correct: Law of Large

Numbers.

Question 2

True or false?

The more often I repeat the same experiment, the larger the variance becomes.

Solution

False: The variance becomes smaller.

Question 3

Determine expected value and variance:

a)
$$\mu = 4$$
, $\sigma^2 = 1$

b)
$$\mu = 5$$
, $\sigma^2 = 1.5$

c)
$$\mu = 5$$
, $\sigma^2 = 2$

Solution

Correct: b)