

Natural Language Processing Lab

Week3: UNIX Lab

Praveen Joshi

05/10/2020

Alexa – E2E

https://www.krminc.com/alexa-app-develpment/

Alexa - Engineering

https://alexa.github.io/alexa-auto-sdk/SEQUENCE_DIAGRAMS.html

Alexa - NLP

https://www.dipockdas.com/2016/11/create-alexa-skill-for-your-amazon.html

Regular Expressions

- Why?
 - Matching/Finding
 - Doing something with matched text
 - Validation of data
 - Case insensitive matching
 - Parsing data (ex: html)
 - Converting data into diff for etc.

Regular Expressions

- Entities to extract:
 - Board of Directors
 - Price at NAV
 - Fund Assets (millions)
 - Expense Ratio
 - Minimum Initial Investment
 - Fund Name, Class and series extraction
 - Annual Management Fees
 - Expense Ratio

DIRECTORS

Peter Blessing Dermot Butler Stuart Anthony Williams Matteo Rigginello

REGISTERED OFFICE

70 Sir John Rogerson's Quay Dublin 2 Ireland

SECRETARY

Matsack Trust Limited 70 Sir John Rogerson's Quay Dublin 2

ATLANTE FUNDS PLC

SPONSOR

Albemarle Asset Management Limited 28-29 Dover Street London W1S 4NA United Kingdom

INVESTMENT MANAGER

Albemarle Asset Management Limited 28-29 Dover Street London W1S 4NA United Kingdom

ADMINISTRATOR

Bank of Ireland Securities Services Limited New Century House Mayor Street Lower IFSC Dublin 1 Ireland

https://github.com/praveenjoshi01/Hedge_Fund_Information_Extraction

Issues: Regular Expressions

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Slide taken from Dr. Haithem Afli's Lecture on NLP

	Actual Value (as confirmed by experiment)			
		positives	negatives	
d Value y the test)	positives	TP True Positive	FP False Positive	
Predicted Value (predicted by the test)	negatives	FN False Negative	TN True Negative	

https://alearningaday.blog/2016/09/14/confusion-matrix/

- Set of words: {the, The, There, then, other, there}
- Ground Truth: {the, The}
- Regex(Set of words): {the, there, then, other}

	Actual Value (as confirmed by experiment)		
		positives	negatives
d Value	positives	TP True Positive	FP False Positive
Predicted Value (predicted by the test)	negatives	FN False Negative	TN True Negative

		Actual Value		
Predicted Value		Positives	Negatives	
	Positives	the	there, then, other	
	Negatives	The	There	

Confusion Matrix – Regex Expressions

- Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
- Not matching things that we should have matched (The)
 - False negatives (Type II)

	Actual Value (as confirmed by experiment)			
		positives	negatives	
d Value y the test)	positives	TP True Positive	FP False Positive	
Predicted Value (predicted by the test)	negatives	FN False Negative	TN True Negative	

		Actual Value		
Predicted Value		Positives	Negatives	
	Positives	the	there, then, other	
	Negatives	The	There	

https://alearningaday.blog/2016/09/14/confusion-matrix/

Slide taken from Dr. Haithem Afli's Lecture on NLP

		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCECONDITION POSTOTAL POPULATION	
TEST OUT-	TEST POS	True Pos TP	Type I Error False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
COME	TEST NEG	Type II Error False Neg FN	True Neg TN	False Omission Rate FOR = <u>FN</u> TEST N	Neg Predictive Value NPV = <u>TN</u> TEST N
	ACCURACY ACC ACC = <u>TP+TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR = TP CONDITION POS	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG	Pos Likelihood Ratio LR + LR + = <u>TPR</u> FPR	Diagnostic Odds Ratio DOR DOR = <u>LR +</u> LR -
		Miss Rate False Neg Rate FNR FNR = FN CONDITION POS	Specificity (SPC) True Neg Rate TNR TNR =TN CONDITION NEG	Neg Likelihood Ratio LR - LR - = <u>TNR</u> FNR	

https://www.unite.ai/what-is-a-confusion-matrix/

- Set of words: {the, The, There, then, other, there}
- Ground Truth: {the, The}
- Regex(Set of words): {The, There}
- Identify Quadrant?
 - Q1
 - Q2
 - Q3
 - Q4
 - Type 1 error
 - Type 2 error

	Predicted Value		
Actual Value		Positives	Negatives
	Positives	Q1	Q2
	Negatives	Q3	Q4

- Set of words: {the, The, There, then, other, there}
- Ground Truth: {the, The}
- Regex(Set of words): {The, There}
- Identify Quadrant?
 - Q1
 - Q2
 - Q3
 - Q4
 - Type 1 error
 - Type 2 error

	Predicted Value		
Actual Value		Positives	Negatives
	Positives	TP	FN/T2
	Negatives	FP/T1	TN

- Set of words: {the, The, There, then, other, there}
- Ground Truth: {the, The}
- Regex(Set of words): {The, There}
- Identify Quadrant?
 - the
 - The
 - There
 - Then
 - other
 - there

	Predicted Value			
Actual Value		Positives	Negatives	
	Positives	Q1	Q2	
	Negatives	Q3	Q4	

- Set of words: {the, The, There, then, other, there}
- Ground Truth: {the, The}
- Regex(Set of words): {The, There}
- Identify Quadrant?
 - the
 - The
 - There
 - Then
 - other
 - there

	Actual Value		
Predicted Value		Positives	Negatives
	Positives	The	There
	Negatives	the	then, other, there

Resolution: Regular Expression

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Slide taken from Dr. Haithem Afli's Lecture on NLP

Text classification

17

Steps of Text Classification

Deep Learning Approach

2020-10-23 www.cit.ie

Lab Exercise

Cygwin

Thank you

Praveen Joshi

05/10/2020