URBAN-BIASED STRUCTURAL CHANGE

Natalie Chen Warwick

Dennis Novy Warwick

Carlo Perroni Warwick

 $\begin{array}{c} \text{Horng Wong} \\ \text{Stockholm} \end{array}$

Work in progress - comments welcome

March 2023

MOTIVATION

Many countries have seen a rapid shift of economic activity from manufacturing to services

WE ASK:

- (1) Within a country, how different is structural change across locations?
- (2) What drives those location-specific patterns of structural change?

France 1995-2018

Aggregate structural change

Urban-biased structural change

EXPORTERS DRIVE URBAN-BIASED STRUCTURAL CHANGE

Exporters only

WHAT WE DO

- (1) Stylized facts: **urban-biased structural change** in France (1995-2018)
 - ▶ Services share of economic activity has increased more in large cities
 - Exporters drive urban-biased structural change
 - ► Large manufacturing (services) exporters choose small (large) cities

WHAT WE DO

- (1) Stylized facts: **urban-biased structural change** in France (1995-2018)
 - ▶ Services share of economic activity has increased more in large cities
 - Exporters drive urban-biased structural change
 - ► Large manufacturing (services) exporters choose small (large) cities
- (2) Model of cities, heterogeneous firms, & structural change:
 - ► Forces for urban-biased structural change:
 - (a) Sectoral TFP growth (Herrendorf, Rogerson, & Valentinyi, 2014)
 - (b) Changes in agglomeration externalities (Marshall, 1890; Jacobs, 1969)
 - (c) Falling international trade costs (Melitz, 2003; Gaubert, 2018)

WHAT WE DO

- (1) Stylized facts: **urban-biased structural change** in France (1995-2018)
 - ▶ Services share of economic activity has increased more in large cities
 - Exporters drive urban-biased structural change
 - Large manufacturing (services) exporters choose small (large) cities
- (2) Model of cities, heterogeneous firms, & structural change:
 - ► Forces for urban-biased structural change:
 - (a) Sectoral TFP growth (Herrendorf, Rogerson, & Valentinyi, 2014)
 - (b) Changes in agglomeration externalities (Marshall, 1890; Jacobs, 1969)
 - (c) Falling international trade costs (Melitz, 2003; Gaubert, 2018)
- (3) Structural estimation & quantitative assessment of forces & channels:
 - Sectoral TFP growth important for agg. structural change, but not urban bias
 - ▶ Changes in agglomeration ext. explain urban bias, also important for aggregate
 - ► Services trade a key channel for structural change

CONTRIBUTIONS

► Spatial structural change (Eckert, 2019; Eckert & Peters, 2018; Eckert, Ganapati, & Walsh, 2022; Fajgelbaum & Redding, 2022; Coeurdacier, Oswald, & Teignier, 2022)

Our project: (i) there is urban bias in structural change; (ii) it is driven by exporters

► Macro-development: Aggregate technological drivers and income effects mainly at the country level (Herrendorf, Rogerson, & Valentinyi, 2014; Comin, Lashkari, & Mestieri, 2021)

Our project: TFP growth cannot account for urban-biased structural change

► International trade: Role of trade in structural change largely focused on manufacturing (Alessandria, Johnson, & Yi, 2021)

 $Our\ project:\ growth\ of\ services\ exporters\ in\ large\ cities\ matters\ for\ structural\ change$

► Urban/spatial: Agglomeration economies and positive sorting (Combes, Duranton, Gobillon, Puga, & Roux, 2012; Behrens, Duranton, & Robert-Nicoud, 2014; Gaubert, 2018; Bakker, 2021)

Our project: changes in agglomeration forces key for understanding rise of service exporters

ROADMAP

- ► Facts on urban-biased structural change
- ▶ Model of cities, heterogeneous firms, and structural change
- ► Structural estimation
- \blacktriangleright Quantitative results on the drivers of urban-biased structural change

DATA FROM FRANCE

Output and trade:

- ► Firm balance sheet data (FICUS-FARE):
 - ► All firms (1995-2018)
 - ► Sales, value-added, employment, exports (including services firms!), location

Population size in cities:

- ► Matched employer-employee data (DADS):
 - ► All workers (1995-2018)
 - ► Location of work and residence
- ► City ≡ commuting zone (Combes, Duranton, Gobillon, Puga, & Roux, 2012)

Our sample:

- Firms with 1 establishment, or with all establishments in the same commuting zone
- Services: accommodation/catering, admin/support services, arts/entertainment, construction, finance/insurance, ICT, real estate, and specialized/technical services

314 COMMUTING ZONES IN MAINLAND FRANCE

DISTRIBUTION OF ECONOMIC ACTIVITY ACROSS CITY SIZES

		Manuf	Manufacturing		vices
Statistic	City size bin	1995	2018	1995	2018
Share of revenue	1	0.67	0.58	0.33	0.42
	2	0.64	0.53	0.36	0.47
	3	0.54	0.42	0.46	0.58
	4	0.56	0.37	0.44	0.63
	5	0.32	0.15	0.68	0.85
	overall	0.49	0.35	0.51	0.65
Share of exports	1	0.97	0.95	0.03	0.05
	2	0.96	0.94	0.04	0.06
	3	0.88	0.84	0.12	0.16
	4	0.92	0.75	0.08	0.25
	5	0.54	0.33	0.46	0.67
	overall	0.83	0.71	0.17	0.29

Urban-biased structural change in France 1995-2018

EXPORTERS DRIVE URBAN-BIASED STRUCTURAL CHANGE

Non-exporters only

Exporters only

CHANGING LOCATIONS OF EXPORTERS

Note: city size bin 1 represents the set of smallest cities and bin 5 the largest cities.

SORTING PATTERNS DIFFER BETWEEN MANUFACTURING & SERVICES EXPORTERS

Non-exporters

Model of cities with structural change, sorting & trade

Goal: Quantitatively assess the sources of urban-biased structural change and the channels through which they operate

Data	Model ingredient
- Aggregate structural change	Sectoral TFP growth (Ngai & Pissarides, 2007)
	Income effects (Comin, Lashkari, & Mestieri, 2021)
- Cities differ in population size	Agglomeration effects and sorting
- Δ sector-city & firm-city sorting	of sectors and firms to cities
- Exporters important for urban-biased	Selection into exporting and variable
structural change	trade costs that differ across sectors

Model Structure: Countries and Cities

We build on Gaubert's (2018) model of cities

Countries:

▶ Two symmetric countries: Home and Foreign

Cities: details

- \triangleright Measure I of ex-ante identical cities
- \triangleright Cities host workers and two sectors: manufacturing (m) and services (s) firms
- ▶ City size (population) determined by agglomeration & congestion forces
- ► Free mobility of (homogeneous) workers and goods/services within countries
- Wages are higher in larger cities to compensate workers for higher land prices

Model Structure: Preferences and firms

Preferences: details

- Non-homothetic CES aggregator across sectors $j \in \{m, s\}$ (Comin, Lashkari, & Mestieri, 2021)
 - ► Relative price effects
 - ▶ Non-homothetic income effects
- ▶ Homothetic CES aggregator within each sector

Firms:

- ▶ Monopolistic manufacturing and services sectors
- ▶ Production function: $q(z, j, i) = A_j \Psi_j(z, L(i)) l^{\alpha_j} h^{1-\alpha_j}$ where $\alpha_j \in (0, 1]$
 - \triangleright A_i : sector-specific TFP
 - $\blacktriangleright \Psi_i(z,L(i))$: sorting and agglomeration
 - ightharpoonup Export status $x \in \{0, 1\}$
- ▶ Variable trade costs τ_j and fixed export cost f_j^x
- \triangleright Firms jointly choose city i, whether to export ξ , labor l, and land h

Model Structure: Agglomeration and Sorting

$$\log \Psi_j(z, i) = \log z + \frac{a_j}{L(0)} \log \frac{L(i)}{L(0)} + \frac{\xi_j \log z + 1 - \xi_j}{1 + \log z} \left(\left(1 + \log \frac{L(i)}{L(0)} \right)^{s_j} - 1 \right)$$
where $a_j \in [0, 1], \ s_j \in [0, 1], \ \xi_j \in [0, 1]$

- ▶ Departure from Gaubert (2018): translog-like functional form to allow for negative sorting
- \triangleright a_j : strength of agglomeration externalities
- \triangleright s_j : rate of diminishing returns to agglomeration externalities
- \triangleright ξ_j : governs direction and strength of sorting by firm size and city size
 - \triangleright $\xi_j > 0.5$: **positive** sorting
 - \triangleright $\xi_j < 0.5$: **negative** sorting
 - \triangleright $\xi_i = 0.5$: no sorting

STRUCTURAL ESTIMATION: KEY PARAMETERS

We estimate time-varying agglomeration parameters:

- ▶ One set for 1995, another for 2018 (unlisted parameters common across 1995 & 2018)
- ▶ Method of simulated moments: pooled 1995+2018 specification

We calibrate time-varying sectoral TFP and trade costs

Key parameters	Method	Time-varying
Sorting effect (ξ_j)	Estimate	No
Agglomeration effect (a_j)	Estimate	Yes
Variable trade costs (τ_j)	Average export intensity	Yes
Fixed export cost (f_i^x)	Proportion of exporters	Yes
Sectoral TFP (A_j)	Δ aggregate sectoral rev share,	Yes
	Δ real GDP per capita	

other parameter

STRUCTURAL ESTIMATION: METHOD OF SIMULATED MOMENTS

Find parameters Θ that minimize distance between data M and model \widehat{M} moments:

$$\widehat{\Theta} = \arg \min_{\Theta} \ \left(M - \widehat{M}(\Theta) \right)' \mathcal{W}^{-1} \left(M - \widehat{M}(\Theta) \right)$$

- W is inverse of var-cov matrix of data moments
- ► Targeted moments for each sector and snapshot:
 - I. Normalized log revenue distributions
 - II. Mean normalized log revenue by city size quintiles
 - III. Distribution of sector-level revenues across city size quintiles
- ➤ Same moments as Gaubert (2018), no export status-specific moments
- Given observed city sizes, estimation procedure finds agglomeration/sorting parameters that rationalize these moments

KEY ESTIMATION AND CALIBRATION RESULTS

Key estimated parameters	Sector	Value in 1995	Value in 2018
Sorting effect (ξ_j)	MN	0.484	0.484
	SS	0.842	0.842
Agglomeration curvature (x_j)	MN	0.887	0.887
	SS	0.525	0.525
Agglomeration effect (a_j)	MN	0.095	0.084
	SS	0.386	0.413
Variable trade costs (τ_j)	MN	1.148	1.073
	SS	4.009	2.196
Sectoral TFP (A_j)	MN	1	3.159
-	SS	1	0.801

other parameters

Three sector-specific forces used for counterfactuals: A_j , a_j , τ_j

WHAT DRIVES URBAN-BIASED STRUCTURAL CHANGE?

Counterfactual change in **manufacturing** share of revenue in each city size bin:

- ► Start from estimated 1995 equilibrium
- ▶ Change only A_i , a_i , or τ_i to 2018 levels

City size bin	Data	\mathbf{Model}	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	-0.074	-0.026	-0.148	0.096	0.005
2	-0.119	-0.054	-0.156	0.079	0.005
3	-0.128	-0.115	-0.152	0.045	0.004
4	-0.178	-0.168	-0.163	-0.014	0.005
5 (largest)	-0.175	-0.249	-0.147	-0.131	0.003
Agg. structural change	-0.145	-0.143	-0.158	0.012	0.004
Agg. welfare change (%)	-	1.389	1.324	0.991	1.029

Message: TFP changes drive aggregate structural change but not its urban bias. Changes in agglomeration forces drive urban bias.

Urban-biased structural change: non-exp vs exp

Decomposing UBSC. Structural change at the city bin level can be written as:

$$\Delta\omega_{mt}(i) = \left(\gamma_t^{nx}(i)\Delta\omega_{mt+1}^{nx}(i) + \omega_{mt+1}^{nx}(i)\Delta\gamma_{t+1}^{nx}(i)\right) + \left(\gamma_t^{x}(i)\Delta\omega_{mt+1}^{x}(i) + \omega_{mt+1}^{x}(i)\Delta\gamma_{t+1}^{x}(i)\right)$$

where:

- ▶ Manufacturing share of revenue in city i: $\omega_{mt}(i) = \frac{R_{mt}(i)}{R_{mt}(i) + R_{st}(i)}$
- ► Manufacturing share of exporter revenue in city i: $\omega_{mt}^{x}(i) = \frac{R_{mt}^{x}(i)}{R_{mt}^{x}(i) + R_{st}^{x}(i)}$
- ► Exporter share of revenue in city i: $\gamma_t^x(i) = \frac{R_t^x(i)}{R(i)}$

Urban-biased structural change: non-exporters

Counterfactual change in **manufacturing** share of revenue in each city size bin:

- ▶ Start from estimated 1995 equilibrium
- ▶ Change only A_i , a_i , or τ_i to 2018 levels
- ► The below shows $\Delta \omega_{mt+1}^{nx}(i)$

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	-0.132	-0.011	-0.017	0.020	-0.003
2	-0.116	-0.012	-0.015	0.010	0.002
3	-0.107	-0.015	-0.015	0.004	0.006
4	-0.137	-0.015	-0.012	-0.002	0.006
5 (largest)	-0.116	-0.006	-0.004	-0.003	0.002

Message: Structural change among non-exporters does not display urban bias.

Urban-biased structural change: exporters

Counterfactual change in **manufacturing** share of revenue in each city size bin:

- ▶ Start from estimated 1995 equilibrium
- ▶ Change only A_i , a_i , or τ_i to 2018 levels
- ► The below shows $\Delta \omega_{mt+1}^{x}(i)$

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	-0.034	-0.026	-0.045	0.021	-0.095
2	-0.043	-0.057	-0.040	0.012	-0.123
3	-0.097	-0.106	-0.055	0.012	-0.219
4	-0.148	-0.188	-0.108	-0.003	-0.260
5 (largest)	-0.236	-0.417	-0.132	-0.125	-0.275

Message: Structural change among exporters is urban-biased. Changes in TFP, agglomeration, and trade costs matter for urban bias among exporters.

WHAT DRIVES URBAN-BIASED STRUCTURAL CHANGE? EXPORT REV

Counterfactual change in manufacturing share of export revenue in each city size bin:

- ▶ Start from estimated 1995 equilibrium
- ▶ Change only variable one driver to 2018 levels

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	-0.019	-0.094	-0.065	0.031	-0.134
2	-0.017	-0.119	-0.065	0.023	-0.165
3	-0.047	-0.213	-0.092	0.019	-0.224
4	-0.169	-0.319	-0.140	-0.008	-0.256
5 (largest)	-0.207	-0.480	-0.140	-0.116	-0.263
Agg. structural change	-0.122	-0.241	-0.100	0.006	-0.215

Message: Similar story if we look at structural change in terms of export revenue.

EXTENSIVE MARGIN OF EXPORTING: MANUFACTURING

Counterfactual change in the proportion of **manufacturing** exporters in each city size bin:

- ▶ Start from estimated 1995 equilibrium, do a *switch one on* exercise.
- ▶ This exercise is about the extensive margin of exporting
- ▶ Note: this is an untargeted moment

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	0.020	0.026	0.001	0.013	0.011
2	0.020	0.020	0.001	0.005	0.012
3	0.011	0.013	0.001	-0.001	0.013
4	0.007	0.001	-0.001	-0.007	0.011
5 (largest)	-0.017	-0.010	-0.001	-0.010	0.005
Overall	0.050	0.050	0.001	-0.000	0.052

Message: Changes in agglomeration ext explain changes in location of exporters, but not the overall increase in proportion of exporters.

EXTENSIVE MARGIN OF EXPORTING: SERVICES

Counterfactual change in the proportion of services exporters in each city size bin:

- ▶ Start from estimated 1995 equilibrium, do a *switch one on* exercise.
- ► This exercise is about the extensive margin of exporting
- ▶ Note: this is an untargeted moment

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	0.004	0.001	0.000	-0.001	0.002
2	0.005	0.004	0.000	-0.001	0.006
3	0.007	0.004	0.000	-0.001	0.006
4	0.007	0.005	0.001	0.000	0.005
5 (largest)	0.008	0.015	0.001	0.003	0.009
Overall	0.030	0.030	0.002	0.000	0.028

Message: Changes in agglomeration ext explain changes in location of exporters, but not the overall increase in proportion of exporters. Changes in trade costs explain urban-biased extensive margin of exporting.

AGGREGATE EXPORT GROWTH: MANUFACTURING

The contribution of each city size bin to aggregate manufacturing export growth:

▶ Start from estimated 1995 equilibrium, do a switch one on exercise

▶ Aggregate export growth:
$$g_{jt+1}^f = \sum_i \left(\frac{R_{jt}^f(i)}{\sum_{i'} R_{jt}^f(i')}\right) g_{jt+1}^f(i)$$

Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	22.1%	29.3%	23.5%	27.5%	22.4%
2	25.4%	28.9%	24.0%	28.0%	23.6%
3	18.9%	18.1%	18.4%	18.5%	17.9%
4	19.6%	12.2%	13.6%	13.1%	14.9%
5 (largest)	13.8%	11.5%	20.6%	13.0%	21.3%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	1.398	1.771	0.967	1.007	1.741

Message: Trade costs drive all of MN export growth, with effects concentrated in small cities. Note: Increase in foreign MN TFP reduces Home MN exports.

AGGREGATE EXPORT GROWTH: SERVICES

The contribution of each city size bin to aggregate **services** export growth:

▶ Start from estimated 1995 equilibrium, do a *switch one on* exercise

▶ Aggregate export growth:
$$g_{jt+1}^f = \sum_i \left(\frac{R_{jt}^f(i)}{\sum_{i'} R_{jt}^f(i')}\right) g_{jt+1}^f(i)$$

▶ Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	2.7%	11.0%	13.5%	11.4%	12.0%
2	4.1%	12.1%	14.0%	12.6%	14.4%
3	9.1%	15.6%	16.4%	15.0%	18.1%
4	15.8%	19.8%	20.6%	20.0%	21.0%
5 (largest)	68.3%	41.4%	35.5%	40.9%	34.6%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	2.813	6.726	2.564	1.018	5.921

Message: Trade costs drive most of SS export growth, with effects concentrated in large cities. TFP also played an important role. Note: Increase in foreign MN TFP increases Home SS exports.

AGGREGATE DOMESTIC REVENUE GROWTH: MANUFACTURING

The contribution of each city size bin to agg manufacturing domestic revenue growth:

▶ Start from estimated 1995 equilibrium, do a *switch one on* exercise

▶ Aggregate domestic revenue growth:
$$g_{jt+1}^d = \sum_i \left(\frac{R_{jt}^d(i)}{\sum_{i'} R_{jt}^d(i')}\right) g_{jt+1}^d(i)$$

▶ Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	28.9%	29.2%	23.4%	27.4%	22.4%
2	26.1%	28.8%	24.0%	27.9%	23.6%
3	18.2%	18.2%	18.5%	18.6%	17.9%
4	16.7%	12.3%	13.7%	13.2%	15.0%
5 (largest)	10.1%	11.4%	20.4%	12.9%	21.2%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	0.864	0.899	0.962	1.000	0.874

Message: Model reproduces well the decline in MN domestic revenue. Trade costs and TFP drive this decline.

Aggregate domestic revenue growth: services

The contribution of each city size bin to aggregate services domestic revenue growth:

▶ Start from estimated 1995 equilibrium, do a *switch one on* exercise

▶ Aggregate domestic revenue growth:
$$g_{jt+1}^d = \sum_i \left(\frac{R_{jt}^d(i)}{\sum_{i'} R_{jt}^d(i')} \right) g_{jt+1}^d(i)$$

▶ Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	12.8%	10.3%	12.7%	10.6%	13.0%
2	14.6%	12.9%	14.9%	13.4%	15.1%
3	16.0%	16.3%	18.3%	16.5%	18.1%
4	18.8%	21.1%	21.2%	20.7%	21.1%
5 (largest)	37.9%	39.5%	32.9%	38.7%	32.7%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	1.736	1.788	1.844	0.943	0.874

Message: Model reproduces well the growth in SS domestic revenue. TFP drives this growth; trade costs and agglomeration forces offset it. Action concentrated in large cities.

AGGREGATE TOTAL REVENUE GROWTH: MANUFACTURING

The contribution of each city size bin to aggregate manufacturing revenue growth:

▶ Start from estimated 1995 equilibrium, do a switch one on exercise

Aggregate revenue growth:
$$g_{jt+1} = \sum_{i} \left(\frac{R_{jt}(i)}{\sum_{i'} R_{jt}(i')} \right) g_{jt+1}(i)$$

Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	26.8%	29.2%	23.4%	27.4%	22.4%
2	25.9%	28.8%	24.0%	27.9%	23.6%
3	18.4%	18.2%	18.5%	18.5%	17.9%
4	17.6%	12.2%	13.7%	13.2%	15.0%
5 (largest)	11.3%	11.4%	20.4%	12.9%	21.2%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	0.980	1.071	0.964	1.002	1.009

AGGREGATE TOTAL REVENUE GROWTH: SERVICES

The contribution of each city size bin to aggregate **services** revenue growth:

▶ Start from estimated 1995 equilibrium, do a switch one on exercise

▶ Aggregate revenue growth:
$$g_{jt+1} = \sum_{i} \left(\frac{R_{jt}(i)}{\sum_{i'} R_{jt}(i')} \right) g_{jt+1}(i)$$

Note: this is an untargeted moment. Growth rate is defined as g = 1 + y

City size bin	Data	Model	Δ TFP	Δ agglomeration	Δ trade costs
1 (smallest)	11.9%	10.4%	12.7%	10.7%	12.8%
2	13.8%	12.7%	14.9%	13.3%	15.0%
3	15.5%	16.3%	18.2%	16.5%	18.1%
4	18.5%	20.9%	21.2%	20.7%	21.1%
5 (largest)	40.3%	39.7%	33.0%	38.8%	33.1%
Overall (shares)	100%	100%	100%	100%	100%
Overall $(1+y)$	1.789	1.938	1.866	0.954	1.028

CONCLUSION

- ▶ We document three new facts about structural change in France from 1995 to 2018:
 - ► Structural change is **urban-biased**
 - **Exporters** account for the urban bias
 - Large services exporters have expanded in populous cities and large manufacturing exporters have grown in less populous locations
- ▶ We build a model of heterogeneous firms and cities to explain these facts and quantify the forces of urban-biased structural change
- ▶ Our model features three sector-specific forces of urban-biased and aggregate change:
 - ► Sectoral TFP growth
 - ► Changes in agglomeration externalities
 - ► Falling international trade costs
- ▶ Structural estimation reveals that:
 - ► Changes in agglomeration externalities is an important *force*
 - ► Services trade is an important *channel*

PARC ANDRÉ CITROËN, 15TH ARRONDISSEMENT OF PARIS

APPENDIX

Sales: Exports:

back

Value-added:

Employment:

Sales: Exports:

Value-added:

Employment:

EXPORTERS DRIVE URBAN-BIASED STRUCTURAL CHANGE

Non-exporters only

Exporters only

EXPORTERS DRIVE URBAN-BIASED STRUCTURAL CHANGE

Non-exporters only

Exporters only

Sorting patterns differ between exporters & non-exporters

Exporters

POPULATION OF COMMUTING ZONES

The two largest in each bin:

- ▶ Paris and Lyon
- ► Grenoble and Orly
- ▶ Brest and Reims
- ► Chartres and Gap
- ► Ganges and Flandre-Lys

CHANGING LOCATIONS OF MANUFACTURING & SERVICES FIRMS

Note: city size bin 1 represents the set of smallest cities and bin 5 the largest cities.

LARGER CITIES ARE MORE EXPORT INTENSIVE

Note. Oity size bits i represents the set of smallest cities and bits 5 the largest cities.

LARGER CITIES HAVE BECOME MORE EXPORT INTENSIVE

LARGER FIRMS ARE MORE EXPORT INTENSIVE

back

Larger firms have become more export intensive

Model Structure: Cities

- \triangleright Mass L of identical workers
- ► Utility:

$$U(i) = \left(\frac{C(i)}{\eta}\right)^{\eta} \left(\frac{h(i)}{1-\eta}\right)^{1-\eta}$$

▶ Budget constraint:

$$PC(i) + p_h(i)h(i) = W(i)$$

► Free mobility:

$$W(i) = \Lambda p_h(i)^{1-\eta}$$

► Land price schedule:

$$p_h(i) = L(i)^{\gamma}$$

Model Structure: Preferences

Non-homothetic CES preferences (Comin, Lashkari, Mestieri, 2021):

$$\sum_{j} \theta_{j}^{\frac{1}{\rho}} \left(\frac{Q_{j}}{Q^{\varsigma_{j}}} \right)^{\frac{\rho-1}{\rho}} = 1$$

Each sector j's sales share is then:

$$\vartheta_{j} = \frac{P_{j}Q_{j}}{\sum_{k} P_{j}Q_{k}} = \frac{\theta_{j}P_{j}^{1-\rho}Q^{(1-\rho)(\varsigma_{j}-1)}}{\sum_{k} \theta_{k}P_{k}^{1-\rho}Q^{(1-\rho)(\varsigma_{k}-1)}}$$

When $\zeta_j = 1 \,\forall j$, preferences are homothetic.

Homothetic CES within sectors:

$$Q_{j} = \left(\int_{\omega \in \Omega_{j}} q_{j}(\omega)^{\frac{\sigma_{j}-1}{\sigma_{j}}} d\omega \right)^{\frac{\sigma_{j}}{\sigma_{j}-1}}$$

MODEL STRUCTURE: DISCUSSION

We do not distinguish between:

- 1. Different manufacturing/service sectors:
 - ightharpoonup \Rightarrow no role for changes in the composition of manufacturing output
 - Reason: no evidence that different manufacturing (service) sectors have changed sorting patterns (go)
- 2. Tradable services and location-specific services:
 - \triangleright \Rightarrow no role for non-homotheticity in preferences in shaping spatial sorting
 - Reason: no evidence in the data that concentration of services firms in large cities is accounted for by growth of local services firms

back to model

SHIFTING CITY-LEVEL COMPARATIVE ADVANTAGE?

back

ALL PARAMETERS

Parameters	Value	Method/source	$\Delta \mathbf{Time}$
Consumption exp. share (η)	0.8	INSEE household exp. survey	No
Land price elasticity (γ)	0.7	Combes et al (2016)	No
Non-homotheticity (ς_j)	1.3	Comin et al (2021)	No
Between-sector CES elasticity (ρ)	0.3	Comin et al (2016)	No
Within-sector CES elasticity (σ_j)	11, 3	Revenue/total cost ratio	No
Labor share (α_j)	0.35, 0.47	wage bill/total cost ratio	No
Sectoral production weight (θ_j)	0.18,0.82	Aggregate sectoral revenue share	No
Location and scale of $\Gamma_j(z)$ dist.	-	Estimate	No
Var of location-specific shock (ν_i^{ϵ})	-	Estimate	No
Agglomeration effect (a_j)	-	Estimate	Yes
Agglomeration curvature (s_j)	-	Estimate	No
Sorting effect $(\xi_{j,x})$	-	Estimate	No
Variable trade costs (τ_j)	-	Export intensity	Yes
Fixed export cost (f_i^x)	-	Proportion of exporters	Yes
Sectoral TFP (A_j)	-	Δ aggregate sectoral rev share,	Yes
		Δ real GDP per capita	

Total of 30 parameters to estimate over 1995+2018 and manufacturing+services back

OTHER ESTIMATION RESULTS

Key estimated parameters	Sector	Exporter	Value in 1995	Value in 2018
Agglomeration effect (a_j)	MN		0.502	0.493
	SS		0.160	0.177
Sorting effect $(\xi_{j,x})$	MN	No	0.052	0.052
	MN	Yes	-0.020	-0.020
	SS	No	4.959	4.959
	SS	Yes	4.122	4.122
Variable trade costs (τ_j)	MN		1.148	1.073
	SS		4.009	2.196
Fixed export costs (f_i^x)	MN		0.068	0.099
	SS		0.096	0.189
Sectoral TFP (A_j)	MN		1	2.667
	SS		1	0.908

back

STRUCTURAL ESTIMATION: DETOUR

$$\log R_{j}(z,i) - E[\log R_{j}(0)] = \log \Psi_{j}(z,i)^{\sigma_{j}-1} (1 + \mathbf{1}[export_{j}(z,i)]\tau_{j}^{1-\sigma_{j}})$$

$$- E\Big[\log \Psi_{j}(z,0)^{\sigma_{j}-1} (1 + \mathbf{1}[export_{j}(z,0)]\tau_{j}^{1-\sigma_{j}}) \mid z \in \mathcal{Z}_{j}(0)\Big]$$

$$- (\sigma_{j}-1) \Big((1-\eta)\alpha_{j} + (1-\alpha_{j}) \Big) \left(\frac{1}{1-\eta} \right) \log \frac{W(i)}{W(0)}$$

$$+ (\sigma_{j}-1)\hat{\epsilon}_{i},$$

Key object to estimate is the productivity function: $\Psi_j(z,i)$

- ▶ Given observed city size distribution, guess parameters in $\Psi_j(z,i)$, as well as those governing the distribution of z and $\hat{\epsilon}$
- ➤ Solve joint location choice and exporting choice problem
- ▶ Simulate relevant moments and compare with data

STRUCTURAL ESTIMATION: MODEL FIT

Urban-biased structural change in distribution of sectoral sales across cities: data and model

STRUCTURAL ESTIMATION: MODEL FIT 1995

Moments	Data	\mathbf{Model}	Data	Model
	Manufacturing		Services	
Share of revenue				
City 1 (smallest)	0.259	0.241	0.141	0.124
City 2	0.232	0.221	0.149	0.169
City 3	0.171	0.202	0.163	0.161
City 4	0.161	0.136	0.169	0.164
City 5 (largest)	0.178	0.199	0.379	0.381
Firm size-city size				
City 1 (smallest)	0.000	0.000	0.000	0.000
City 2	0.016	-0.013	0.066	0.142
City 3	-0.037	0.058	0.087	0.128
City 4	0.070	0.081	0.177	0.211
City 5 (largest)	0.070	0.106	0.475	0.345

STRUCTURAL ESTIMATION: MODEL FIT 1995

Moments	Data	Model	Data	Model
	Manufacturing		<u>Services</u>	
Share of revenue (exporters only)				
City 1 (smallest)	0.253	0.253	0.050	0.047
City 2	0.245	0.221	0.062	0.098
City 3	0.171	0.202	0.085	0.087
City 4	0.158	0.129	0.149	0.089
City 5 (largest)	0.184	0.196	0.655	0.679
Firm size-city size (exporters only)				
City 1 (smallest)	0.000	0.000	0.000	0.000
City 2	-0.021	-0.144	0.021	0.087
City 3	-0.121	-0.187	0.060	-0.001
City 4	-0.081	-0.159	0.147	0.003
City 5 (largest)	-0.380	-0.248	0.432	0.251

