Chapter 2 - Solutions

Alessio Caciagli

March 2021

1 Exercise 2.1

In ϵ -greedy action selection, greedy action is always selected with probability (1- ϵ). On the other side, with probability ϵ a random selection from all the actions is performed with equal probability i.e. we assume a uniform distribution for the probability of selecting a certain action a. These two cases are of course mutually exclusive. In formal terms, assuming N actions are available, the probability of selecting the best action is:

$$p(x) = (1 - \epsilon) + \frac{\epsilon}{N} \tag{1}$$

The second term arises since p(x=k)=1/N for a uniform distribution. With N=2 and $\epsilon=0.5$, the result is p(x)=0.5+0.5*0.5=0.75.

2 Exercise 2.2

Let's tabulate the mean rewards, $Q_t(a)$, at each time step:

Time	$Q_t(1)$	$Q_t(2)$	$Q_t(3)$	$Q_t(4)$
t = 0	0	0	0	0
t = 1	1	0	0	0
t = 2	1	1	0	0
t = 3	1	3/2	0	0
t = 4	1	5/3	0	0
t = 5	1	5/3	0	0

Given this, we can reconstruct whether the ϵ case might have occurred at each time step:

- At t = 1, either ϵ or greedy selection might have occurred (because all actions are greedy at the start)
- At t=2, ϵ selection has occurred (the greedy action is 1)
- At t=3, either ϵ or greedy selection might have occurred (because both actions 0 and 1 are greedy)

- At t = 4, either ϵ or greedy selection might have occurred (although the greedy action 2 has been selected)
- At t = 5, ϵ selection has occurred (the greedy action is 2)

3 Exercise 2.3

Assuming both methods have converged so that the optimal action corresponds to the greedy action (which is reasonable in the limit $t \to \infty$), we have the following by applying Equation 1:

- For the $\epsilon = 0.1$ case, the probability of optimal action selection is p(x) = 0.9 + 0.1 * 0.1 = 0.91
- For the $\epsilon=0.01$ case, the probability of optimal action selection is p(x)=0.99+0.01*0.1=0.991

Since we can disregard the transient in the long run, the method with the highest probability of optimal action selection will also yield the highest cumulative reward. Hence, method $\epsilon = 0.01$ will perform best. \Box

4 Exercise 2.4

The estimate Q_{n+1} is given by the general formula:

$$Q_{n+1} = Q_n + \alpha_n (R_n - Q_n) \tag{2}$$

We can expand recursively, such that, for the first two expansions:

$$Q_{n+1} = \alpha_n R_n + (1 - \alpha_n) Q_n$$

$$= \alpha_n R_n + (1 - \alpha_n) [Q_{n-1} + \alpha_{n-1} (R_{n-1} - Q_{n-1})]$$

$$= \alpha_n R_n + (1 - \alpha_n) [\alpha_{n-1} R_{n-1} + (1 - \alpha_{n-1}) Q_{n-1}]$$

$$= \alpha_n R_n + (1 - \alpha_n) \alpha_{n-1} R_{n-1} + (1 - \alpha_n) (1 - \alpha_{n-1}) Q_{n-1}$$
(3)

We can refactor it in the final form:

$$Q_{n+1} = \left(\prod_{i=1}^{n} (1 - \alpha_i)\right) Q_1 + \sum_{i=1}^{n} \alpha_i R_i \prod_{j=i+1}^{n} (1 - \alpha_j)$$
 (4)

As a check, we can assume a stationary problem with weights $\alpha_i = 1/i$. In this case, the first term of Equation 4 is zero, and the second term becomes:

$$Q_{n+1} = \sum_{i=1}^{n} \frac{R_i}{i} \left(1 - \frac{1}{i+1} \right) \dots \left(1 - \frac{1}{n} \right)$$

$$= \sum_{i=1}^{n} \frac{R_i}{i} \frac{i}{i+1} \dots \frac{n-1}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} R_i$$
(5)

which is the estimate of the action value for a stationary problem. Hence, Equation 4 is the estimate of the action value for the general case of step-size parameters α_n (either stationary or non-stationary). \square

5 Exercise 2.5

See the companion *code* folder (for code and notebooks) for the implementation.

The constant step-size method is superior to the incremental sample average method for non-stationary problems.