[BPA-DE2] Digital Electronics 2

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1 Table of Contents

ć	ab assignme	nt 7	. 1
	_	paration tasks. Submit:	
	1.1.1	Table with voltage divider, calculated, and measured ADC values for all buttons	. 2
	1.1.2	Analog to Digital Converter Description	. 2
	1.1.3	Description of UART functions	. 6
	1.2 ADC	C. Submit:	. 3
	1.2.1 LCD/UAF	Listing of ADC_vect interrupt routine with complete code for sending data to the RT and identification of the pressed button	. 3
	1.2.2	Screenshot of SimulIDE circuit when "Power Circuit" is applied.	. 5
	1.3 UAF	RT. Submit:	. 6
	1.3.1 data bits	(Hand-drawn) picture of UART signal when transmitting data DE2 in 4800 702 mode (7, odd parity, 2 stop bits, 4800 Bd),	. 6
	1.3.2	Listing of code for calculating/displaying parity bit.	. 7

Lab assignment 7

[BPA-DE2] Digital Electronics 2

Assignment 7

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1.1 Preparation tasks. Submit:

1.1.1 Table with voltage divider, calculated, and measured ADC values for all buttons.

Push button	PC[A0] voltage	ADC value (calculated)	ADC value (measured)
Right	0V	0	0
Up	0.495V	101	101
Down	1.203V	246	245
Left	1.970V	403	402
Select	3.182V	651	650
none	5V	1023	1022

1.1.2 Analog to Digital Converter Description

Operation	Register(s)	Bit(s)	Description
Voltage Reference	ADMUX	REDS1:0	01:AVcc voltage reference, 5V
Input Chanel	ADMUX	MUX3:0	0000: ADC0, 0001: ADC1,
ADC enable	ADCSRA	ADEN	Writing this bit to one/ zero enable/ disable the ADC
Start conversion	ADCSRA	ADSC	This bit has to write to one to start conversion
ADC interrupt enable	ADCSRA	ADIE	When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.
ADC clcok prescaler	ADCSRA	ADPS2:0	000: Division factor 2,001:2; 010:4,
ADC result	ADCL and ADCH		When ADCL is read, the ADC Data Register is not updated until ADCH is read. ADC results

[BPA-DE2] Digital Electronics 2

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1.2 ADC. Submit:

1.2.1 Listing of ADC_vect interrupt routine with complete code for sending data to the LCD/UART and identification of the pressed button.

```
ISR(ADC_vect)
    // WRITE YOUR CODE HERE
    uint16_t value = 0;
    char lcd_string[4] = "0000";
      // Displaying parity bit of value
      parity_display(value);
      // Sending data to UART1
      uint8_t c;
      c = uart_getc();
      if(c != '\0')
             if (c == '1')
             {
             uart_putc(c);
             }
      }
   value = ADC;
                                 // Copy ADC result to 16-bit variable
    itoa(value, lcd_string, 10); //Convert to string in decimal
    lcd gotoxy(8, 0);
    lcd_puts(" ");
    lcd_gotoxy(8, 0);
   lcd_puts(lcd_string);
    if (value < 700)
    {
             uart puts("Button was pressed: ");
             uart puts(lcd string);
             uart_puts("\r\n");
    }
    itoa(value, lcd_string, 16); //Convert to string in hexa
    lcd_gotoxy(13, 0);
    lcd puts("
    lcd_gotoxy(13, 0);
    lcd_puts(lcd_string);
      lcd_gotoxy(8, 1);
      if (value == 0) // If the right button was pressed
```

[BPA-DE2] Digital Electronics 2

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

```
{
             lcd_puts("
             lcd_gotoxy(8, 1);
             lcd_puts("Right");
             parity_display(value);
      if (value == 101) // If the right button was pressed
             lcd_puts("
             lcd_gotoxy(8, 1);
             lcd_puts("Up");
             parity_display(value);
      if (value == 245) // If the right button was pressed
             lcd puts("
             lcd_gotoxy(8, 1);
             lcd puts("Down");
             parity_display(value);
      if (value == 402) // If the right button was pressed
             lcd_puts("
                            ");
             lcd gotoxy(8, 1);
             lcd_puts("Left");
             parity_display(value);
      if (value == 650) // If the right button was pressed
                           ");
             lcd puts("
             lcd_gotoxy(8, 1);
             lcd_puts("Select");
             parity_display(value);
      }
      // Displaying parity data on UART
      if (value < 700)
      {
             uart_puts("Parity bit of value is: ");
             uart_putc(parity+48);
             uart_puts("\r\n");
      }
}
```

[BPA-DE2] Digital Electronics 2

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1.2.2 Screenshot of SimulIDE circuit when "Power Circuit" is applied.

[BPA-DE2] Digital Electronics 2

Assignment 7

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1.3 UART. Submit:

1.3.1 (Hand-drawn) picture of UART signal when transmitting data DE2 in 4800 702 mode (7 data bits, odd parity, 2 stop bits, 4800 Bd),

1.3.2 Description of UART functions

Function name	Function parameters	Description	Example
uart_init	UART_BAUD_SELECT (9600, F_CPU)	Initialize UART to 8N1 and set baudrate to 9600 Bd	uart_init(UART_BAUD_SELECT(9600, F_CPU));
uart_getc	void	Get received byte from ringbuffer	unsigned int uart getc(void)
uart_putc	unsigned char data	Put byte to ringbuffer for transmitting via UART	void uart putc(unsigned char data)
uart_puts	s string to be transmitted	Put string to ringbuffer for transmitting via UART	void uart puts(const char *s)

[BPA-DE2] Digital Electronics 2

GitHub: https://github.com/ShalaKreshnik

Name and Surname: Kreshnik Shala

Person ID: 226108

Date: Tuesday, November 17, 2020

1.3.3 Listing of code for calculating/displaying parity bit.

```
uint8_t parity = 0;
// Hex values of every single bit for example 0b0000000000010 is defined as(0x0002)
and 0b10000000000000000000000 is defined as (0x8000)
wint16_t arr[16] = \{ 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0010, 0x0010,
                        0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000
void parity_display(int a)
                                                uint8_t parity_count = 0;
                                                                        for (uint16_t i =0; i<16; i++)
                                                                                                 if ((arr[i]&a)!=0)
                                                                                                                         parity_count++; // counting number of 1s in a value
                                                                         if(parity count == 0) // If the count is 0 (No 1 bit)
                                                                                                                         parity = 0;
                                                                         else if(parity_count%2 == 0) // If sum of 1's is an even number
                                                                                                 parity = 1;
                                                                         else if(parity_count%2 == 1) // If the sum of 1's is an odd number
                                                                                                 parity = 0;
                                                                         lcd_gotoxy(15, 1); // Parity display location
                                                                         lcd_putc(parity+48); // Converting to character
};
```