ΠΡΟΓΡΑΜΜΑ

по дисциплине: Математическая статистика

по направлению

подготовки: 09.03.01 «Информатика и вычислительная техника»

физтех-школа: ВШПИ

кафедра: **высшей математики**

 $\begin{array}{c} \text{курс:} & \underline{2} \\ \text{семестр:} & \underline{4} \end{array}$

лекции — 30 часов

практические (семинарские)

занятия — 30 часов

лабораторные занятия — нет Диф. зачёт — 4 семестр

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа:

теор. курс — 45 часов

Программу составил

к. ф.-м. н., доцент М. П. Савёлов

Программа принята на заседании кафедры высшей математики 2 ноября 2023 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Виды сходимостей случайных векторов и связи между ними. Связь между сходимостью векторов и сходимостью их компонент. Теорема о наследовании сходимости.
- 2. Закон больших чисел, усиленный закон больших чисел и многомерная центральная предельная теорема для случайных векторов (б/д). Лемма Слуцкого. Пример применения леммы Слуцкого и его обобщение на многомерный случай (доказательство для одномерного случая).
- 3. Вероятностно-статистическая модель. Понятия наблюдения и выборки. Основная задача математической статистики. Параметрическая статистическая модель.
- 4. Эмпирическое распределение и эмпирическая функция распределения. Теорема Гливенко-Кантелли.
- 5. Статистики и оценки. Примеры статистик: выборочные характеристики, порядковые статистики. Основные свойства оценок (несмещенность, состоятельность, сильная состоятельность, асимптотическая нормальность) и взаимосвязи между ними.
- 6. Наследование состоятельности и сильной состоятельности при взятии непрерывной функции. Лемма о наследовании асимптотической нормальности.
- 7. Метод подстановки и метод моментов, их связь. Состоятельность и асимптотическая нормальность оценки метода моментов.
- 8. Квантили и выборочные квантили. Теорема об асимптотической нормальности выборочной квантили. Теорема о выборочной медиане (6/д).
- 9. Сравнение оценок, функция потерь и функция риска. Подходы к сравнению оценок: равномерный, байесовский, минимаксный, асимптотический.
- 10. Понятие плотности в дискретном случае. Неравенство Рао-Крамера и эффективные оценки. Критерий эффективности оценки.
- 11. Экспоненциальные семейства распределений. Их связь с условием существования эффективной оценки.
- 12. Достаточные статистики. Критерий факторизации Неймана—Фишера (доказательство для дискретного случая). Теорема Колмогорова—Блекуэлла— Рао об улучшении несмещенной оценки.
- 13. Полные статистики. Теорема Лемана–Шеффе об оптимальной оценке. Теорема о полной достаточной статистике в экспоненциальном семействе (6/д). Нахождение оптимальных оценок с помощью полных достаточных статистик.

- 14. Доверительные интервалы. Метод центральной статистики. Асимптотические доверительные интервалы. Построение асимптотических доверительных интервалов с помощью асимптотически нормальных оценок.
- 15. Метод максимального правдоподобия. Экстремальное свойство функции правдоподобия (б/д). Состоятельность оценки максимального правдоподобия (б/д).
- 16. Асимптотическая нормальность оценки максимального правдоподобия в регулярном случае для одномерного параметра (б/д). Асимптотическая эффективность оценки максимального правдоподобия (б/д). Условия, при которых эффективная оценка параметра является оценкой максимального правдоподобия.
- 17. Линейная регрессионная модель. Оценка наименьших квадратов, ее основные свойства. Теорема о наилучшей оценке в классе линейных оценок (6/д). Несмещенная оценка для дисперсии ошибки измерений σ^2 .
- 18. Гауссовская линейная модель. Достаточные статистики в гауссовской линейной модели. Наилучшие несмещенные оценки параметров в гауссовской линейной модели, их распределения.
- Распределения хи-квадрат, Стьюдента и Фишера, их свойства. Теорема об ортогональном разложении гауссовского вектора (б/д). Доверительные интервалы для параметров гауссовской линейной модели.
- 20. Проверка статистических гипотез: общие принципы и основные понятия (критическое множество, уровень значимости, альтернативы, ошибки первого и второго рода, функция мощности). Наиболее мощные и равномерно наиболее мощные критерии. Несмещенность и состоятельность статистического критерия.
- 21. Лемма Неймана–Пирсона. Построение с ее помощью наиболее мощных критериев. Теорема о монотонном отношении правдоподобия (б/д). Построение равномерно наиболее мощных критериев для односторонних альтернатив. Двойственность доверительного оценивания и проверки гипотез.
- 22. F-критерий для проверки линейных гипотез в гауссовской линейной модели.
- 23. Введение в A/B тестирование: одновыборочный и двухвыборочных критерий Стьюдента (t-test), Z-критерий (Z-test), критерий Фишера равенства дисперсий, критерий Вальда. U-критерий Манна-Уитни (6/д).
- 24. Критерий хи-квадрат Пирсона. Теорема Пирсона. Состоятельность критерия хи-квадрат. Критерий Колмогорова. Критерий фон Мизеса—Смирнова.
- 25. Байесовские оценки. Теорема о наилучшей оценке в байесовском подходе.
- 26. Бутстреп.

Литература

- 1. Севастьянов Б. А. Курс теории вероятностей и математической статистики.— Москва: Наука, 1982.
- 2. Боровков А.А. Математическая статистика. Санкт-Петербург: Лань, 2010.
- 3. Ширяев А. Н. Вероятность 1. В 2-х кн. 3-е изд. Москва : МЦНМО, 2004.
- 4. Леман Э. Теория точечного оценивания. Москва : Физматлит, 1991. 448 с.

ЗАДАНИЯ

Литература

- 1. Ивченко Г. И., Медведев Ю. И. Математическая статистика. Москва : Высш. шк., 1984.~(цитируется С1)
- 2. Жуковский М. Е., Родионов И. В., Шабанов Д. А. Введение в математическую статистику: учебное пособие. Москва: МФТИ, 2016. (цитируется С2)

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 14–20 марта)

- І. Виды сходимости случайных векторов
 - C.2: §1, $N_{\underline{0}}$ 1-3.
- **Т.1.** Пусть $\xi, \xi_1, \xi_2, \ldots$ такие случайные величины, что $(\xi_n \xi)^2 \stackrel{\mathbf{P}}{\to} 0$ при $n \to \infty$. Показать, что $\xi_n^2 \stackrel{\mathbf{P}}{\to} \xi^2$ при $n \to \infty$.
- **Т.2.** Пусть $\xi, \xi_1, \xi_2, \ldots$ случайные величины. Привести пример, когда:
 - а) $\xi_n \stackrel{L_2}{\to} \xi$ и при этом $\xi_n \stackrel{\text{п.н.}}{\to} \xi$, $n \to \infty$;
 - б) $\xi_n \stackrel{\text{п.н.}}{\to} \xi$ и при этом $\xi_n \stackrel{L_2}{\to} \xi$, $n \to \infty$;
 - в) $\xi_n \xrightarrow{d} \xi$ и при этом $\xi_n \xrightarrow{\mathbf{P}} \xi$, $n \to \infty$.
- **Т.3.** Рассмотрим последовательность d-мерных случайных векторов $\vec{\xi_n}$. Доказать, что если при некотором $\vec{c} \in \mathbb{R}^d$ выполнено соотношение $\vec{\xi_n} \stackrel{d}{\to} \vec{c}$, то $\vec{\xi_n} \stackrel{\mathbf{P}}{\to} \vec{c}$.
- II. Статистики и оценки. Построение и сравнение оценок
 - **C.2:** §2, $N_{\underline{0}}$ 1; 3; 4; 6.
 - **C.2:** §3, № 3; 4; 7; 8.
 - C.2: §4, № 1; 2; 5; 6.
- **Т.4.** С помощью метода моментов построить оценку параметра θ для следующих распределений:
 - a) $Bern(\theta)$; 6) $Pois(\theta)$; b) $\mathcal{N}(\theta, 1)$; r) $\exp(\theta)$.

Является ли полученная оценка:

- 1) несмещенной?
- 2) состоятельной?
- 3) сильно состоятельной?
- 4) асимптотически нормальной?

- **Т.5.** Решить предыдущую задачу, используя вместо метода моментов метод максимального правдоподобия.
- **Т.6.** Рассмотрим распределение Коши с плотностью $p_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)}$. С помощью выборочной медианы построить асимптотически нормальную оценку для θ^2 и найти ее асимптотическую дисперсию.
- **Т.7.** Пусть X_1, \ldots, X_n выборка из распределения:
 - a) $Bern(\theta)$; 6) $Pois(\theta)$; B) $\mathcal{N}(\theta, 1)$; Γ) $exp(\theta)$.

Для каких функций $\tau(\theta)$ существует эффективная оценка? Найти соответствующую эффективную оценку и количество (фишеровской) информации, содержащейся в одном наблюдении.

III. Достаточные статистики. Полные статистики. Оптимальные оценки

C.2: §7, № 1; 5; 7; 8.

- **Т.8.** С помощью критерия факторизации найти достаточную статистику для следующего семейства распределений:
 - a) $Bern(\theta)$; 6) $Pois(\theta)$; B) $\mathcal{N}(\theta, 1)$; Γ) $\exp(\theta)$.

Проверить, является ли полученная статистика полной.

- **Т.9.** Построить оптимальную оценку функции $\tau(\theta) = 5\theta^2 + 3\theta + 7$ для $Bern(\theta)$.
- **Т.10.** Построить оптимальную оценку функции $\tau(\theta) = \sqrt{\theta}$ для $\exp(\theta)$.

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 9-15 мая)

І. Байесовские оценки

C.2: §14, № 1–5.

II. Проверка гипотез и доверительное оценивание

C.2: §8, No 2; 3; 6.

C.2: §10, \mathbb{N}_{2} 1; 6*; 7; 8*.

C.2: $\S12$, $N_{\underline{0}}$ 1; 2; 4; 6; 8.

Т.1. Пусть X_1, \ldots, X_n — выборка из распределения:

a) $Bern(\theta)$; 6) $Pois(\theta)$; B) $\mathcal{N}(\theta, 1)$; Γ) $\exp(\theta)$.

Построить доверительный интервал для параметра θ .

Т.2. Рассмотрим распределение Коши с плотностью $p_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)}$. С помощью выборочной медианы построить доверительный интервал для θ^2 .

- **Т.3.** Пусть X_1, \ldots, X_n выборка из экспоненциального распределения с параметром θ . Построить равномерно наиболее мощный критерий для проверки гипотезы $H_0: \theta = \theta_0$ против альтернативы:
 - a) $H_1: \theta > \theta_0$; 6) $H_1: \theta < \theta_0$.
- **Т.4.** Пусть X_1, \ldots, X_n выборка из $Bern(\theta)$. Проверить гипотезу $H_0: \theta \leq \theta_0$ против альтернативы $H_1: \theta > \theta_0$.
- III. Линейная регрессия. Проверка линейных гипотез.

C.2: §9. № 2-6.

C.2: §11, No 2; 4; 5.

С.1: гл.5, 3, 4.

- **Т.5.** Имеется 2 гирьки с весами θ_1 и θ_2 . На одних и тех же весах сначала взвесили первую гирьку, затем вторую, а потом обе сразу. Найти оценку наименьших квадратов для θ_1 и θ_2 и несмещенную оценку дисперсии ошибки измерений. Проверьте гипотезы:

 - a) $H_0: \theta_1 = \theta_2$; 6) $H_0: 2\theta_1 = 3\theta_2$.

IV. Задачи для решения с использованием Python

- **Т.6.** 1) Сгенерировать значение θ из равномерного распределения на отрезке [-10, 10].
 - 2) Сгенерировать выборку X_1, \dots, X_{1000} из распределения Коши с плотностью $p_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)}$.
 - 3) Найти выборочную медиану $\hat{\theta}$ и выборочное среднее \overline{X} .
 - 4) Проделать шаги 2-3 еще 100 раз, получив набор из 101 значения выборочной медианы и 101 значения выборочного среднего.
 - 5) Построить гистограмму по 101 полученному значению величины θ и провести вертикальную линию, соответствующую значению θ .
 - 6) Построить гистограмму, аналогичную той, которая была в предыдущем пункте, используя при этом \overline{X} вместо $\hat{\theta}$.
 - 7) Сделать вывод о том, какая статистика лучше оценивает параметр θ .
 - 8) Повторить шаги 1-7 еще 2 раза.
 - 9) Привести теоретическое объяснение результатов, полученных в ходе численного эксперимента.
 - 10) Является ли $\hat{\theta}$ состоятельной? Получить ответ аналитически. Подтвердите аналитические расчеты с помощью построенной выше гисто-
 - 11) Является ли $\hat{\theta}$ асимптотически нормальной? Получить ответ аналитически. Подтвердите аналитические расчеты с помощью построения вспомогательной гистограммы по 101 значению величины $\sqrt{n}(\hat{\theta} - \theta)$.
 - 12) Ответить на вопросы пунктов 10–11, заменив $\hat{\theta}$ на \overline{X} .

- **Т.7.** Решить предыдущую задачу, заменив распределение Коши на $\mathcal{N}(\theta, 1)$.
- **Т.8.** Рассмотрим равномерное распределение $U[0,\theta]$. Пусть $\hat{\theta}_1$ оптимальная оценка параметра θ , а $\hat{\theta}_2$ — оценка, построенная с помощью метода моментов. Сравнить $\hat{\theta}_1$ и $\hat{\theta}_2$ тем же способом, что и в предыдущей задаче. Найти дисперсию аналитически и численно. Предполагая, что размер выборки стремится к бесконечности, сравнить (аналитически) скорость стремления к нулю дисперсий оценок с асимптотикой вида $\frac{1}{ni(\theta)}$ из неравенства Крамера-Рао. Могут ли аналогичные результаты получиться в случае, когда выполнены условия регулярности?
- Т.9. Рассмотрим следующий эксперимент. Имеется 2 гирьки с весами $\theta_1 = 5$ и $\theta_2 = 8$. На одних и тех же весах сначала n раз взвесили первую первую гирьку, получив значения X_1, \ldots, X_n , затем 2n раз взвесили вторую гирьку, получив значения Y_1, \dots, Y_{2n} , а потом n раз взвесили сразу обе гирьки.
 - 1) При каждом $n=1,2,\ldots,200$ с помощью гауссовской линейной модели реализуйте данный эксперимент, предполагая, что $\sigma^2 = 1$, и проверьте гипотезу $H_0: 8\theta_1 = 5\theta_2$ с помощью F-критерия.
 - 2) Пусть $\xi_n = 0$, если гипотеза H_0 отвергается, и $\xi_n = 1$ в противном случае. Доля правильных ответов в первых n экспериментах вычисляется по формуле $\frac{\sum_{i=1}^{n} \xi_n}{n}$. Проиллюстрируйте графически, как в зависимости от n меняется доля правильных ответов.

 - 3) Проделайте аналогичную процедуру с гипотезой $H_0: 2\theta_1 = 3\theta_2$. 4) Вычислите оптимальную оценку для θ_1 и сравните ее с оценкой $\frac{\sum_{i=1}^n X_i}{n}$. 5) Вычислите оптимальную оценку для θ_2 и сравните ее с оценкой $\frac{\sum_{i=1}^2 Y_i}{2n}$.
- **Т.10.** Сгенерируйте выборку из $\mathcal{N}(0,1)$ размера 1000. Преобразуйте выражение

$$D_n = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|$$

так, чтобы вместо $\sup_{x\in\mathbb{R}}$ получился максимум по конечному множеству. Постройте график зависимости D_n от n при $1 \le n \le 1000$. Верно ли, что у последовательности D_n есть предел? Если да, то чему он равен и как называется соответствующий вид сходимости? Найдите с помощью выборки приближенное значение $\mathbf{P}(\sqrt{n}D_n \leq x)$ при $x \in [-1,10]$ и постройте график этой функции. Изобразите на том же графике функцию распределения K(x), соответствующую распределению Колмогорова.

- **Т.11.** 1) Пусть $\theta = -10$. Сгенерировать выборку размера n = 200 из распределения $\mathcal{N}(\theta, 1)$. Построить точный доверительный интервал для θ .
 - 2) Повторить пункт 1 для остальных значений θ из множества

- $\Theta = \left\{ \frac{k}{10} : k = -100, -99, \dots, 100 \right\}.$
- 3) Построить график, отметив на оси абсцисс значения $\theta \in \Theta$ и изобразив при каждом θ вертикальный отрезок, соответствующий доверительному интервалу, построенному при данном θ . На полученном графике изобразить прямую $f(\theta) = \theta$.
- 4) Повторить пункты 1–3 при $n \in \{5, 10, 100\}$. Как меняется длина доверительного интервала с ростом n? Подтвердить результаты численного эксперимента аналитически.
- **Т.12.** Решить предыдущую задачу, заменив $\mathcal{N}(\theta, 1)$ на $Pois(\theta)$.
- **Т.13.** 1) Сгенерируйте выборку X_1, \ldots, X_{1000} из распределения $\mathcal{N}(70, 10)$.
 - 2) Будем интерпретировать X_i как время, необходимое курьеру для доставки i-го заказа. Через T обозначим время, необходимое для доставки большей части заказов (скажем, 95% заказов). Другими словами, T это квантиль порядка 0,95 распределения $\mathcal{N}(70,10)$. Найдите T с точностью до второго знака после запятой.
 - 3) Постройте по выборке оценку величины T. С помощью бутстрепа оцените точность полученной оценки.
 - 4) Повторите пункты 1-3, используя вместо числа 0,95 значения 0,9 и 0,8.

Задания составили:

к. ф.-м. н., доцент М. П. Савёлов к. ф.-м. н., ст. преп. М. В. Меликян