Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas.

Fix a field K.

Definition. Given vector spaces V_1, \ldots, V_n and W, a function $\varphi : V_1 \times \cdots \times V_n \to W$ is *multilinear* if it is linear in each argument separately, e.g., fixing $v_1 \in V_1, \ldots, v_n \in V_n$, then the function $V_1 \to W$ defined by $v_1 \mapsto \varphi(v_1, \ldots, v_n)$ is linear.

Example. For n=2, W=K, a multilinear map $V_1 \times V_2 \to K$ is called a *bilinear form*. Say $V_1=V_2=\mathbb{R}^n$, the dot product $(v_1,v_2)\mapsto v_1\cdots v_2$ is a bilinear form.

Example. Say $K = \mathbb{C}$, $V = \mathbb{C}^n$, then we have a multilinear map $V \times \cdots \times V \to \mathbb{C}$ defined by $(v_1, \ldots, v_n) \mapsto \det((v_1 \cdots v_n))$, seeing v_i as column vectors of an $n \times n$ matrix over \mathbb{C} .

Definition. Let U, V be vector spaces. A *tensor product* of U and V is a vector space T equipped with a bilinear map $\varphi: U \times V \to T$ that is universal, i.e., given any bilinear map $\psi: U \times V \to W$, there exists a unique linear map $\rho: T \to W$ such that $\psi = \rho \circ \varphi$.

Proposition. Let V, W be vector spaces. Suppose (T, φ) and (T', φ') are two tensor products of V and W. Then there exists a unique isomorphism $i: T \to T'$ such that $\varphi' = i \circ \varphi$.

Proof. There exists a unique linear map $i: T \to T'$ such that $\varphi' = i \circ \varphi$ by definition. There also exists a unique linear map $j: T' \to T$ such that $\varphi = j \circ \varphi'$ by definition. Then $i \circ j: T' \to T'$ satisfies $i \circ j \circ \varphi' = i \circ \varphi = \varphi'$, but we also know $\mathrm{id}_{T'} \circ \varphi' = \varphi'$, so by uniqueness, $i \circ j = \mathrm{id}_{T'}$. Similarly, $j \circ i = \mathrm{id}_{T}$.

Remark. Because of uniqueness, we abuse notation and speak of "the" tensor product.

Proposition. The tensor product of any two vector spaces exists.

Remark. The proof is kind of long, so see it in discussion or Jamboard notes, or look it up.

¹I didn't say this, and I'm not sure who did.