

M2177.003100 Deep Learning

[3: Deep Feedforward Networks]

Electrical and Computer Engineering Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 17:03:00 on 2020/09/06)

Introduction

Feedfoward Networks

Deep Feedforward Networks

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - Chapter 6
- online resources:

 - ► Stanford CS231n: CNN for Visual Recognition ► Link

Introduction

Feedfoward Networks

Deep Feedforward Networks

Deep feedforward net

- quintessential deep learning model
 - aka feedforward neural net, multilayer perceptron (MLP)
- goal: approximate some function f^*
 - e.g. a classifier: $y = f^*(x)$ maps input x to category y
- how it works: parameterize + learn
 - define a mapping $y = f(x; \theta)$ and
 - \blacktriangleright learn parameters θ that give the best approximation
- extremely important
 - basis of many important commercial applications
 - e.g. convolutional nets, recurrent nets, transformer

Architecture

- e.g. a feedforward neural net with two hidden layers
 - lacktriangle parameters $m{ heta}$: weight $m{W}$ and bias $m{b}$

- called feedforward because
 - lacktriangleright information flows $m{x} o m{f} \to m{y}$

- no feedback connections
 - no output is fed back into the model
 - c.f. recurrent neural nets (ch 10)
- called networks because
 - represented by composing many different functions

• associated with a directed acyclic graph

describes how component functions are composed together

e.g. functions $f^{[1]}$, $f^{[2]}$, and $f^{[3]}$ connected in a chain:

$$f(\mathbf{x}) = f^{[3]}(f^{[2]}(f^{[1]}(\mathbf{x})))$$

- $f^{[l]}$: called l-th layer
- final layer: called output layer
- ► chain length ⇒ model depth ("deep learning")

Training neural nets

- training: we drive f(x) to match $f^*(x)$
- training data: noisy/approximate examples of $f^*(x)$
 - \blacktriangleright each example: $(\underbrace{\boldsymbol{x}}_{\text{input}},\underbrace{\boldsymbol{y}}_{\text{label}})$ with $y\approx f^*(\boldsymbol{x})$
 - \Rightarrow directly specifies what output layer must do at each x
- behavior of the other layers: not directly specified by training data
 - ► these layers: called hiden layers
 - features are distributed over hidden layers
- instead, the learning algorithm must decide
 - **b** how to use hidden layers to best approximate f^*

Understanding feedforward nets

- begin with linear models and
 - consider how to overcome their limitations
- linear models:
 - efficient/reliable (closed form or convex)
 - cannot understand interaction between any two input variables
- ullet to extend linear models to represent ${\color{red} {\color{blue} {Nonlinear}} {\color{blue} {\color{blue} {Nonlinear}}}}$ functions of x
 - lacktriangle apply the linear model not to $m{x}$ itself but to transformed input $\phi(m{x})$

equivalently: kernel trick (sec 5.7.2)

- how to choose ϕ ?
 - 1. use a very generic ϕ

- (e.g. ∞ -dim ϕ as in RBF kernel)
- "generic" but often poor "generalization"
- 2. manually engineer ϕ

(e.g. traditional ML)

- specialized but laborious
- 3. learn ϕ

(e.g. deep learning)

we have a model

$$y = f(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{w}) = \phi(\boldsymbol{x}; \boldsymbol{\theta})^{\top} \boldsymbol{w}$$

- \triangleright parameters θ : used to learn ϕ from a broad class of functions
- ightharpoonup parameters $m{w}$: map from $\phi(m{x})$ to desired output
- (deep) feedforward nets:
 - ightharpoonup learn deterministic mappings from x to y (no feedback connections)
 - \blacktriangleright ϕ defines a hidden layer

To deploy a DNN

should make design decisions:

- just as linear model
 - choose optimizer/cost function/output units
 - gradient-based learning (sec 6.2)
- unique to feedforward nets
 - ▶ hidden layers ⇒ choosing activation functions (sec 6.3)
 - network architecture (sec 6.4)
 - how many layers
 - how to connect these layers
 - how many units in each layer
- training:
 - back-propagation and its modern generalizations (sec 6.5)

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation Hidden Units Forward/Backward Functions

Deep Feedforward Networks

Recall: logistic regression as a neuron model

signal: $z = \boldsymbol{w}^{\top} \boldsymbol{x} + b$

activation: $a = \sigma(z)$

Feedforward neural net

composed of logistic regression units

Concept of training & testing a neural net

image sources: https://dognameguide.com/images/dog.gif,
https://static.autoblog.nl/images/wp2009/ultimate-dog-car.jpg,
http://exmoorpet.com/wp-content/uploads/2012/08/cat.png

Modern neural nets

- core ideas: no change since 80s
 - ▶ the same backprop/gradient descent: still in use
- recent improvement due to:
 - ▶ larger data sets ⇒ better generalization
 - larger neural nets ← better hw/sw infrastructure
 - better algorithms, in particular:
 - MSE → Cross entropy loss
 sigmoid → ReU

Introduction

Feedfoward Networks
Gradient-Based Learning

Architecture Vectorized Representation Hidden Units Forward/Backward Functions

Deep Feedforward Networks

Training a neural network

- nonlinearity of a neural net ⇒ non-convex loss function
 - largest difference from linear models
- neural nets: thus usually trained by
 - iterative, gradient-based optimizers (ch 8)
- sgd applied to non-convex loss functions
 - no convergence guarantee
 - sensitive to initial parameters
- feedforward neural nets
 - ▶ often initialize all weights to Small mudon values (sec 8.4)

Gradient-based learning

- gradient descent can train learning models
 - e.g. linear regression and SVM
- computing gradient for a neural net: slightly more complicated
 - but can still be done efficiently by back-prop (sec 6.5)
- for gradient-based learning we must choose:
 - 1. (5) function
 - 2. model output representation

Cost function for neural nets

- total cost function
 - primary cost function + regularization term (ch 7)
- most modern neural nets: trained using maximum likelihood
 - i.e. cost function = negative log-likelihood (NLL)
 - = cross-entropy between training data and model distribution

$$\begin{split} J(\boldsymbol{\theta}) &= -\mathbb{E}_{\mathbf{x},\mathbf{y} \sim \hat{p}_{\mathbf{data}}} \log p_{\mathbf{model}}(\boldsymbol{y} \,|\, \boldsymbol{x}) \\ &= \frac{1}{m} \sum_{i=1}^m L(\boldsymbol{y^{(i)}}, \hat{\boldsymbol{y}^{(i)}}) \\ \text{(for binary output)} &= -\frac{1}{m} \sum_{i=1}^m \left[\boldsymbol{y^{(i)}} \log \hat{\boldsymbol{y}^{(i)}} + (1-\boldsymbol{y^{(i)}}) \log (1-\hat{\boldsymbol{y}^{(i)}}) \right] \end{split}$$

- a recurring theme: gradient of cost function must be large/predictable
 - ▶ NLL: more popular than MSE in this sense (see textbook)¹

¹e.g. using log undoes exp of sigmoid/softmax

Output units

- suppose: a feedforward net provides hidden features $m{h} = f(m{x}; m{\theta})$
- output layer:
 - provides additional transformation from features to output

- ▶ most common: linear/sigmoid/<u>Softmax</u> output units
- ullet softmax 2 units: represent probability distribution over K classes
 - bernoulli : sigmoid = multinoulli : softmax

²better name: "softargmax"

Multinoulli (or categorical) distribution

- ullet a distribution over a single discrete variable with k finite states
 - ▶ parameterized by vector $p \in [0,1]^{k-1}$ $(p_i : probability of i-th state)$
 - ▶ $1 \mathbf{1}^{\top} p$: the final, k-th state's probability $(\mathbf{1}^{\top} p \leq 1)$
- "<u>multi nouli"</u> ": recently coined term³
 - ▶ as a special case (i.e. single trial) of multinomial distribution
 - lacktriangle multinomial distribution: a distribution over vectors in $\{0,\dots,n\}^k$
 - \triangleright represents how many times each of k categories is visited when n samples are drawn from a multinoulli distribution

distribution	# classes	# trials (samples)
Bernoulli	2	1
multinoulli	k	1
binomial	2	n
multinomial	k	n

 $^{^3}$ many texts use"multinomial" to refer to multinoulli without clarifying they refer only to n=1 case

Types of output units

type	output	formula	output distribution
linear	vector	$\hat{\boldsymbol{y}} = \boldsymbol{W}^{\top} \boldsymbol{h} + \boldsymbol{b}$ $\hat{\boldsymbol{y}} = \sigma(\boldsymbol{w}^{\top} \boldsymbol{h} + \boldsymbol{b})$ $\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{W}^{\top} \boldsymbol{h} + \boldsymbol{b})$	Gaussian
sigmoid	scalar		Bernoulli
softmax	vector		multinoulli

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Introduction

Feedfoward Networks

Gradient-Based Learning

Architecture

Vectorized Representation

Hidden Units Forward/Backward Functions

Deep Feedforward Networks

Notation

- notes:
 - ▶ *J*: cost function
 - ▶ \bigstar and $d\bigstar = \frac{\partial J}{\partial \bigstar}$ have the $\frac{\delta \Delta MC}{\Delta MC}$ size

layer/node indices

$$a_j^{[l]} \overset{\leftarrow}{\leftarrow} ext{layer} \ \leftarrow ext{node index}$$

- parameters
 - lacktriangle weight: $oldsymbol{W}^{[l]}$
 - ightharpoonup bias: $m{b}^{[l]}$
- gradient: $\mathbf{d} \bigstar \triangleq \frac{\partial J}{\partial \bigstar}$ *e.g.*

$$egin{aligned} \mathtt{d}oldsymbol{z}&=rac{\partial J}{\partial oldsymbol{z}}\ \mathtt{d}oldsymbol{a}&=rac{\partial J}{\partial oldsymbol{w}}\ \mathtt{d}oldsymbol{W}&=rac{\partial J}{\partial oldsymbol{w}}\ \mathtt{d}oldsymbol{b}&=rac{\partial J}{\partial oldsymbol{b}} \end{aligned}$$

image modified from: S. Haykin, Neural Networks and Learning Machines. Pearson Education, 3rd ed., 2010

Operations for each layer

layer l

- ightharpoonup parameters: $oldsymbol{W}^{[l]}, oldsymbol{b}^{[l]}$
- activation function: $q^{[l]}$
- - ightharpoonup input: $da^{[l]}$, cached $z^{[l]}$
 - lacktriangle output: $\mathrm{d}m{a}^{[l-1]},\mathrm{d}m{W}^{[l]},\mathrm{d}m{b}^{[l]}$

$$oldsymbol{W}^{[l]} \leftarrow oldsymbol{W}^{[l]} - \epsilon \mathtt{d} oldsymbol{W}^{[l]} \ oldsymbol{h}^{[l]} \leftarrow oldsymbol{h}^{[l]} - \epsilon \mathtt{d} oldsymbol{h}^{[l]}$$

image modified from: Ng, Deep Learning (Coursera), https://www.coursera.org/specializations/deep-learning

Overall architecture

parameter update (ϵ : learning rate)

$$oldsymbol{W}^{[l]} \leftarrow oldsymbol{W}^{[l]} - \epsilon oldsymbol{eta}^{[l]} \ oldsymbol{b}^{[l]} \leftarrow oldsymbol{b}^{[l]} - \epsilon \mathrm{d} oldsymbol{b}^{[l]}$$

image modified from: Ng, Deep Learning (Coursera), https://www.coursera.org/specializations/deep-learning

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture

Vectorized Representation

Hidden Units Forward/Backward Functions

Deep Feedforward Networks

A running example

hidden layer

$$a_1^{[1]} = g(\boldsymbol{w}_1^{[1] \top} \boldsymbol{x} + b_1^{[1]})$$

 $a_2^{[1]} = g(\boldsymbol{w}_2^{[1] \top} \boldsymbol{x} + b_2^{[1]})$
 $a_3^{[1]} = g(\boldsymbol{w}_3^{[1] \top} \boldsymbol{x} + b_3^{[1]})$

output layer

$$a^{[2]} = g(\boldsymbol{w}^{[2] \top} \boldsymbol{a}^{[1]} + b^{[2]})$$

Vectorized representation

separate equations

$$\begin{aligned} a_1^{[1]} &= g(\boldsymbol{w}_1^{[1]\top} \boldsymbol{x} + b_1^{[1]}) = g(z_1^{[1]}) \\ a_2^{[1]} &= g(\boldsymbol{w}_2^{[1]\top} \boldsymbol{x} + b_2^{[1]}) = g(z_2^{[1]}) \\ a_3^{[1]} &= g(\boldsymbol{w}_3^{[1]\top} \boldsymbol{x} + b_3^{[1]}) = g(z_3^{[1]}) \end{aligned}$$

vectorized equations

$$\mathbf{z}^{[1]} = \begin{bmatrix} z_1^{[1]} \\ z_2^{[1]} \\ z_3^{[1]} \end{bmatrix} = \underbrace{\begin{bmatrix} -----\mathbf{w}_1^{[1]\top} & ----- \\ \mathbf{w}_2^{[1]\top} & ------ \\ \mathbf{w}_3^{[1]\top} & ------ \end{bmatrix}}_{\text{matrix? TWO choices}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \end{bmatrix}, \quad \mathbf{a}^{[1]} = \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \end{bmatrix} = g\left(\mathbf{z}^{[1]}\right)$$

Weight matrix conventions

- RL (right-left) convention
 - weight for $i o j: w_{ji}$ $ar{m{w}}_{11} \quad m{w}_{12} \\ m{w}_{21} \quad m{w}_{22} \\ m{w}_{31} \quad m{w}_{32} \end{bmatrix} \in \mathbb{R}^{3 imes 2}$
- then

$$\begin{bmatrix} \cdots & \mathbf{w}_{1}^{\top} & \cdots \\ \cdots & \mathbf{w}_{2}^{\top} & \cdots \\ \cdots & \mathbf{w}_{3}^{\top} & \cdots \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{12} \\ \mathbf{w}_{21} & \mathbf{w}_{22} \\ \mathbf{w}_{31} & \mathbf{w}_{32} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$
$$= \mathcal{W}$$

- LR (left-right) convention
 - weight for $\underline{i o j: w_{ij}}$ $\vec{\pmb{W}} = \begin{bmatrix} \pmb{w}_{11} & \pmb{w}_{12} & \pmb{w}_{13} \\ \pmb{w}_{21} & \pmb{w}_{22} & \pmb{w}_{23} \end{bmatrix} \in \mathbb{R}^{2 \times 3}$

then

$$\begin{bmatrix} --- & \mathbf{w}_1^\top & --- \\ --- & \mathbf{w}_2^\top & --- \\ --- & \mathbf{w}_3^\top & --- \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{21} \\ \mathbf{w}_{12} & \mathbf{w}_{22} \\ \mathbf{w}_{13} & \mathbf{w}_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \bigvee \top \times$$

Vectorized representation

two flavors

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation Hidden Units

Forward/Backward Functions

Deep Feedforward Networks

Hidden units

- what they do:
 - 1. accept a vector of inputs x
 - 2. compute an affine transformation $\pmb{z} = \pmb{W}^{ op} \pmb{x} + \pmb{b}$
 - 3. apply an element-wise nonlinear function g to z
 - 4. return $\underline{\text{activation}}$ a = g(z)

- hidden units differ only in activation function g(z)
- rectified linear units (ReLU): excellent default choice
 - non-differentiability: can be disregarded in practice
 - many other types also available
- hidden unit design remains an active area of research
 - e.g. $g(z) = \cos(z)$ gives < 1% error on MNIST
 - new types: published only if clearly show significant improvement
- notation
 - $g^{[l]}$: activation function for layer l
 - mixing activation function types in a layer: uncommon

Activation functions

sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

· leaky ReLU

 $\max\{0.01z, z\}$

tanh

tanh(z)

• ELU

 $\begin{cases} z & z \ge 0 \\ \alpha(e^z - 1) & z < 0 \end{cases}$

ReLU

 $\max\{0,z\}$

maxout

 $\max\{z_1,z_2\}$

Rectified linear units (ReLU)

- activation function: $g(z) = \max\{0, z\}$
- pros
 - ▶ no saturation in (+) region
 - computationally very efficient
 - converges faster than sigmoid
 - biologically more plausible than sigmoid

cons

- not zero-centered output
- ▶ **३**०० gradient in (−) region

ReLU Initialization

- ReLU:
 - typically used on top of an affine transformation:

$$\boldsymbol{h} = g(\boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{b}) \tag{1}$$

- good practice:
 - set all elements of b to a $\frac{\text{Small positive}}{\text{positive}}$ number (e.g. 0.1 or 0.01)
 - ⇒ ReLU initially active for most inputs in training set
 - ⇒ derivatives can pass through

ReLU optimization

- easy to optimize (∵ so similar to linear units)
 - half zero, half linear
- derivatives through ReLU
 - remain large whenever the unit is active
 - ► not only large but also <u>consistence</u> (=1)
 - ▷ derivative: 1 everywhere unit is active
 - second derivative: 0 almost everywhere
- ⇒ gradient direction is far more useful for learning
 - than activation functions with second-order effects

ReLU Generalization

- overcome ReLU limitation (zero gradient in (-) region)
 - guaranteed to receive gradient everywhere
 - 1. absolute value rectification: g(z) = |z|
 - 2. leaky ReLU: $g(z) = \max{\{\alpha z, z\}}$
 - 3. parametric ReLU: $g(z) = \max\{\alpha z, z\}$
 - 4. exponential ReLU:

$$g(z) = \begin{cases} z & z \ge 0\\ \alpha(e^z - 1) & z < 0 \end{cases}$$

- more robust to noise than leaky ReLU

(fixed α)

 $(\frac{\mathsf{learnable}}{lpha})$

Further generalization: maxout units

- learn the activation function itself
 - learn a precaige linear, convex function with up to k pieces
 - ightharpoonup approximate any convex function with arbitrary fidelity (with large k)
- cons: more parameters/neurons required

Prior to ReLU

- popular: sigmoid activations
 - logistic sigmoid: $g(z) = \sigma(z)$

▶ tanh: g(z) = tanh(z)

- ▶ closely related: $tanh(z) = 2\sigma(2z) 1$
- tanh: typically performs better than logistic sigmoid
 - zero centered (but still kills gradient when saturated)
 - resembles y = x more closely at (near) zero \Rightarrow easier training
 - ▶ use tanh when a sigmoidal activation function must be used

Logistic sigmoid activation

- historically popular
 - ightharpoonup outputs to range [0,1]
 - nice interpretation
 - saturating "firing rate" of a neuron

- cons
 - ▶ saturation ⇒ killed gradient
 - not zero-centered output
 - ightharpoonup exp (\cdot) computation
- use logistic sigmoid as hidden units in feedfoward nets: now discouraged
 - ▶ use as output unit: acceptable (e.g. probability estimation)

Saturation kills gradient

- widespread saturation of sigmoidal units
 - ⇒ can make gradient-based learning very difficult

• Vanish' gradient problem: errors 'vanish' with backprop

image sources:

https://kr.123rf.com/photo_6994403_the-pyramid-from-glasses-in-which-flows-wine-from-a-bottle.html, http://bestfountainideas.com/champagne-fountain/champagne-fountain-pictures/

One-sided input slows down training

• recall: $\frac{\partial}{\partial w}(wx) = x$

- ullet gradient of cost function wrt $oldsymbol{w}$
 - directly depends on x

- all positive/negative inputs
 - ► cause 29-29 updates
 - ⇒ slow convergence

normalization matters!

right image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Practical advice

- feedforward nets
 - use ReLU (carefully tune learning rates)
 - try out leaky ReLU, maxout, ELU
 - try out tanh (but don't expect too much)
 - do not use sigmoid
- other than feedforward nets
 - ▶ Signoidal activations: more common
 - e.g. RNN/probabilistic models/some autoencoders -> 에서는 호텔 Most 년 사용됐.

Exploiting linearity

- principle of ReLU (and its generalizations):
 - models are easier to optimize if their behavior is closer to linear
- this principle also applies to recurrent networks
 - ▶ training becomes much easier when some linear computations are involved
 - e.g. LSTM propagates information through time via summation
- linear boundary: sometimes susceptible to adversarial examples

Outline

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation Hidden Units

Forward/Backward Functions

Deep Feedforward Networks

Summary

Forward function

interface

ightharpoonup input: $oldsymbol{a}^{[l-1]}$

ightharpoonup output: $oldsymbol{a}^{[l]}$

ightharpoonup cache: $oldsymbol{z}^{[l]}$

assumptions

$$oldsymbol{W} = oldsymbol{ar{W}} \in \mathbb{R}^{(k imes n)}$$
 column-arranged minibatch

- action: 1 example

$$egin{align} & \underline{oldsymbol{z}^{[l]}} & = \underbrace{oldsymbol{W}^{oldsymbol{N}}}_{(k imes 1)} \underline{oldsymbol{a}^{[l-1]}} + oldsymbol{b}^{[l]} \ & \underline{oldsymbol{a}^{[l]}} & = g^{[l]}(oldsymbol{z}^{[l]}) \ & \underbrace{oldsymbol{a}^{[l]}}_{(k imes 1)} & = g^{[l]}(oldsymbol{z}^{[l]}) \end{aligned}$$

action: minibatch (size m)

$$\underbrace{\boldsymbol{Z}^{[l]}}_{(k \times m)} = \underbrace{\boldsymbol{W}^{[l]}}_{(k \times n)} \underbrace{\boldsymbol{A}^{[l-1]}}_{(n \times m)} + \boldsymbol{b}^{[l]}$$

$$\underbrace{\boldsymbol{A}^{[l]}}_{(k \times m)} = g^{[l]}(\boldsymbol{Z}^{[l]})$$

Backward function

interface

lacktriangle input: $\mathrm{d} a^{[l]}$, cached $z^{[l]}$

lacksquare output: $\mathrm{d} a^{[l-1]}, \mathrm{d} W^{[l]}, \mathrm{d} b^{[l]}$

• action: 1 example $\frac{\mathrm{d}z^{[l]}}{(k\times 1)} = \frac{\mathrm{d}a^{[l]}}{(k\times 1)} \odot \underbrace{g^{[l]}(z^{[l]})}_{(k\times 1)}$ $\frac{\mathrm{d}W^{[l]}}{(k\times n)} = \underbrace{\mathrm{d}z^{[l]}}_{(k\times 1)} \underbrace{a^{[l-1]\top}}_{(1\times n)}$ $\underbrace{\mathrm{d}b^{[l]}}_{(k\times 1)} = \underbrace{\mathrm{d}z^{[l]}}_{(k\times 1)}$ $\underbrace{\mathrm{d}a^{[l-1]}}_{(n\times 1)} = \underbrace{W^{[l]\top}}_{(n\times k)} \underbrace{\mathrm{d}z^{[l]}}_{(k\times 1)}$

• action: minibatch (size m)

$$\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(k\times m)} = \underbrace{\mathrm{d}\boldsymbol{A}^{[l]}}_{(k\times m)} \odot \underbrace{\boldsymbol{g}^{[l]'}(\boldsymbol{Z}^{[l]})}_{(k\times m)}$$

$$\frac{\mathrm{d}\boldsymbol{W}^{[l]}}{(k\times n)} = \frac{1}{m} \underbrace{\mathrm{d}\boldsymbol{Z}^{[l]}}_{(k\times m)} \underbrace{\boldsymbol{A}^{[l-1]\top}}_{(m\times n)}$$

$$\underbrace{\mathrm{d}\boldsymbol{b}^{[l]}}_{(k\times 1)} = \frac{1}{m} \underbrace{\mathrm{d}\boldsymbol{Z}^{[l]}}_{(k\times m)} \underbrace{\boldsymbol{1}}_{(m\times 1)}$$

$$\underline{\mathrm{d}\boldsymbol{A}^{[l-1]}}_{(n\times m)} = \underbrace{\boldsymbol{W}^{[l]\top}}_{(n\times k)} \underbrace{\mathrm{d}\boldsymbol{Z}^{[l]}}_{(k\times m)}$$

$$ullet$$
 post-action (update): $m{W}^{[l]} \leftarrow m{W}^{[l]} - \epsilon \mathtt{d} m{W}^{[l]}$ $m{b}^{[l]} \leftarrow m{b}^{[l]} - \epsilon \mathtt{d} m{b}^{[l]}$

Exhaustive summary

(notation: $d \bigstar \triangleq \frac{\partial J}{\partial \bigstar}$)

• RL-convention weight matrix: $\boldsymbol{\dot{W}}$ $(k \times n)$

input	signal (z,Z)	output	δ -error (d z , d Z)	d $oldsymbol{W}$	$\mathtt{d}b$	$\mathtt{d} x,\mathtt{d} X$	opt
$x \ (n \times 1)$	$egin{aligned} Wx+b\ (k imes 1) \end{aligned}$	$a = g(z)$ $(k \times 1)$	$\mathtt{d} a \odot g'(z) riangleq oldsymbol{\delta} \ (k imes 1)$	$\frac{\boldsymbol{\delta x}^\top}{(k\times n)}$	$oldsymbol{\delta} (k imes 1)$	$oldsymbol{W}^{ op}oldsymbol{\delta} \ (n imes 1)$	1
$X_{ } \ (n imes m)$	$egin{aligned} WX + b \ (k imes m) \end{aligned}$	$ \begin{array}{c} A = g(Z) \\ (k \times m) \end{array} $	$\mathtt{d} A \odot g'(Z) riangleq oldsymbol{\Delta} \ (k imes m)$	$\frac{\frac{1}{m}\boldsymbol{\Delta}\boldsymbol{X}^{\top}}{(k\times n)}$	$\frac{\frac{1}{m}\mathbf{\Delta}1_{m\times 1}}{(k\times 1)}$	$oldsymbol{W}^{ op}oldsymbol{\Delta} \ (n imes m)$	2
$X_{\equiv} \ (m \times n)$	$XW^{\top} + b$ $(m \times k)$	$m{A} \ (m imes k)$	$oldsymbol{\Delta} (m imes k)$	$\frac{\frac{1}{m}\boldsymbol{\Delta}^{\top}\boldsymbol{X}}{(k\times n)}$	$\frac{1}{m} \mathbf{\Delta}^{\top} 1_{m \times 1}$ $(k \times 1)$	$oldsymbol{\Delta} W \ (m imes n)$	3

ullet LR-convention weight matrix: $ec{m{W}}$ (n imes k)

input	signal (z,Z)	output	δ -error (d z , d Z)	d $oldsymbol{W}$	$\mathtt{d}b$	$\mathtt{d} x,\mathtt{d} X$	opt
$x \ (n \times 1)$	$W^{\top}x + b$ $(k \times 1)$	$a \ (k \times 1)$	$oldsymbol{\delta} \ (k imes 1)$	$xoldsymbol{\delta}^{ op} \ (n imes k)$	$oldsymbol{\delta} (k imes 1)$	$W\delta \ (n imes 1)$	4
$X_{ } \ (n \times m)$	$W^{\top}X + b$ $(k \times m)$	$A = (k \times m)$	$oldsymbol{\Delta} (k imes m)$	$rac{1}{m} X \mathbf{\Delta}^{ op} \ (n imes k)$	$\frac{\frac{1}{m}\mathbf{\Delta}1_{m\times 1}}{(k\times 1)}$	$m{W}m{\Delta}$ $(n imes m)$	5
$X_{\equiv} \ (m \times n)$	$egin{aligned} XW + b \ (m imes k) \end{aligned}$	$m{A} \ (m imes k)$	$oldsymbol{\Delta} (m imes k)$	$\frac{\frac{1}{m}X^{\top}\mathbf{\Delta}}{(n\times k)}$	$\frac{\frac{1}{m}\mathbf{\Delta}^{\top}1_{m\times 1}}{(k\times 1)}$	$oldsymbol{\Delta} oldsymbol{W}^{ op} \ (m imes n)$	6

ullet option 1: single example, RL-convention $ar{oldsymbol{W}}$

- ★ use in textbook
 - algorithm 6.2
 - ▶ algorithm 6.3
- ★ coursera⁴

ullet option 6: size-m minibatch (row-wise), LR-convention $\dot{oldsymbol{W}}$

- ⋆ use in textbook
 - ▶ sec 6.5.7

⁴uses option 1 for single example and option 3 for minibatch

algorithms using textbook notation (option 1, single example)

algorithm 1 forward computation

1:
$$a^{[0]} = x$$

2: **for**
$$l = 1, ..., L$$
 do

з:
$$z^{[l]} = \mathbf{\bar{W}}^{[l]} a^{[l-1]} + b^{[l]}$$

4:
$$a^{[l]} = f(z^{[l]})$$

5: end for

6:
$$\hat{m{y}} = m{a}^{[L]}$$

7:
$$J = L(\boldsymbol{y}, \hat{\boldsymbol{y}}) + \lambda \Omega(\boldsymbol{\theta})$$

algorithm 2 backward computation

1:
$$oldsymbol{g} \leftarrow
abla_{\hat{oldsymbol{y}}} J =
abla_{\hat{oldsymbol{y}}} L(\hat{oldsymbol{y}}, oldsymbol{y})$$

2: for
$$l = L, L - 1, ..., 1$$
 do

з:
$$oldsymbol{g} \leftarrow
abla_{oldsymbol{z}^{[l]}} J = oldsymbol{g} \odot f'(oldsymbol{z}^{[l]})$$

4:
$$\nabla_{\boldsymbol{h}^{[l]}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{h}^{[l]}} \Omega(\boldsymbol{\theta})$$

5:
$$abla_{oldsymbol{ar{W}}[l]} J = oldsymbol{g} oldsymbol{a}^{[l-1] op} + \lambda
abla_{ar{W}}^{}_{[l]} \Omega(heta)$$

6:
$$oldsymbol{g} \leftarrow
abla_{oldsymbol{g}[l-1]} J = oldsymbol{ar{W}}^{[l] op} oldsymbol{g}$$

7: end for

algorithms using textbook notation (option 6, minibatch)

algorithm 3 forward computation

1:
$$A^{[0]} = X =$$

2: **for**
$$l = 1, ..., L$$
 do

з:
$$m{Z}^{[l]} = m{A}^{[l-1]} \, ec{m{W}}^{[l]} + m{b}^{[l]}$$

4:
$$\boldsymbol{A}^{[l]} = f(\boldsymbol{Z}^{[l]})$$

5: end for

6:
$$\hat{\boldsymbol{Y}} = \boldsymbol{A}^{[L]}$$

7:
$$J = L(\boldsymbol{Y}, \hat{\boldsymbol{Y}}) + \lambda \Omega(\boldsymbol{\theta})$$

algorithm 4 backward computation

1:
$$\mathbf{G} \leftarrow \nabla_{\hat{\mathbf{Y}}} J = \nabla_{\hat{\mathbf{Y}}} L(\hat{\mathbf{Y}}, \mathbf{Y})$$

2: **for**
$$l = L, L - 1, ..., 1$$
 do

з:
$$oldsymbol{G} \leftarrow
abla_{oldsymbol{Z}^{[l]}} J = oldsymbol{G} \odot f'(oldsymbol{Z}^{[l]})$$

4:
$$\nabla_{\boldsymbol{b}^{[l]}} J = \frac{1}{m} \boldsymbol{G}^{\top} \mathbf{1} + \lambda \nabla_{\boldsymbol{b}^{[l]}} \Omega(\boldsymbol{\theta})$$

5:
$$\nabla_{ec{m{W}}^{[l]}}J=rac{1}{m}$$
 $m{G}+\lambda
abla_{ec{W}^{[l]}}\Omega(m{ heta})$

6:
$$oldsymbol{G} \leftarrow
abla_{oldsymbol{A}^{[l-1]}} J = oldsymbol{G} ec{oldsymbol{W}}^{[l] op}$$

7: end for

algorithm 5 back propagation (minibatch of size m; learning rate ϵ)

- 1: initialize all parameters W, b
- 2: repeat
- 3: pick a minibatch \mathbb{X}_m from \mathbb{X}
- 4: forward: compute all activations A
- 5: compute cost $J = \frac{1}{m} \sum L(\boldsymbol{Y}^{(i)}, \, \hat{\boldsymbol{Y}}^{(i)}) + \lambda \Omega(\boldsymbol{\theta})$
- 6: backward: compute all gradients
- 7: update parameters:

$$egin{array}{lll} m{W} \leftarrow m{W} & - \epsilon \mathrm{d} \, m{W} & ext{(weights)} \ m{b} \leftarrow m{b} & - \epsilon \mathrm{d} \, m{b} & ext{(bias)} \end{array}$$

- 8: until it is time to stop
- 9: return final parameters

$$oldsymbol{W}^*, oldsymbol{b}^*$$

Remarks

- complications of backprop in practice
 - multi-output operation
 - memory considerations
 - supporting diverse data types
 - handling undefined gradients
- field of automatic differentiation:
 - concerned with how to compute derivatives algorithmically
 - backprop: a special case of reverse mode accumulation
 - c.f. real-time recurrent learning (RTRL): forward mode accumulation
- implementations such as theano and TensorFlow
 - use heuristics to iteratively simplify backprop graph for efficiency

Outline

Introduction

Feedfoward Networks

Deep Feedforward Networks

Summary

Architecture exploration

- main architectural considerations in chain-based architectures
 - network depth and layer width
- a feedforward net with a single layer
 - sufficient to represent any function
 - but may have infeasibly large layer and
 - may fail to learn and generalize correctly
- deeper networks
 - use far fewer units per layer and far fewer parameters
 - ▶ generalize better to test set
 - but harder to optimize (e.g. vanishing/exploding gradient)
- ideal architecture for a task
 - must be found via experimentation (guided by validation error)

Universal approximation theorem (Hornik et al., '89; Cybenko, '89)

- a feedforward net with linear output layer + hidden layer(s)
 - ► can approximate any function (given enough hiden units)

but the ability to learn that function: not guaranteed

image source: Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data. AMLBook, 2012

⁵should be Borel measurable: see textbook

Network size

- universal approximation theorem
 - says there exists a network large enough to achieve any accuracy
 - but does not say how large this network will be
- unfortunately
 - ► an exponential number of hidden units may be required in the worse case
 - e.g. binary case
 - 2^{2^n} : the number of possible binary functions on vectors $\textbf{\emph{v}} \in \{0,1\}^n$
 - 2^n bits required to select one such function
 - \Rightarrow which will in general require $O(2^n)$ degrees of freedom

Exponential advantage of deeper networks

- some families of functions
 - lacktriangle can be approximated efficiently with depth >d
 - lacktriangle but require a much larger model if depth is restricted to $\leq d$
 - ⊳ such <u>Shallow</u> model requires exponential # of hidden units
- Montufar et al. (2014) showed: piecewise linear networks
 - can represent functions with a number of regions exponential in net depth
 - *e.g.* two hidden units \Rightarrow four regions

image source: https://arxiv.org/abs/1402.1869

Statistical interpretation

• choosing a specific ML algorithm = encoding our prior beliefs

about what kind of function the algorithm should learn

• choosing a deep model = encoding a very general belief

the function to learn should involve composition of simpler functions

- empirically: greater depth ⇒ better generalization
 - two examples on next page

• test set accuracy consistently increases with increasing depth

- other increases to model size
 - do not yield the same effect
- task: from photos of addresses
 - transcribe multi-digit numbers

• increasing # of parameter's without increasing depth: not effective

- shallow models overfit
 - ▶ at ~20 million parameters
- deep ones can benefit
 - from having over 60 million

image source: I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016

Other architectural considerations

- so far: neural nets as simple chains of layers
 - ▶ main considerations: depth of network and width of each layer
- in practice: neural nets show considerably more diversity
 - many net architectures: task specific
 - ▷ CNNs: computer vision (ch 9)
 - ⊳ RNNs: sequence processing (ch 10)
 - these have their own architectural considerations

Chaining

- layers need not be connected in a chain
 - even though this is the most common practice
- many architectures build a main chain
 - but then add extra architectural features to it

= residual

- e.g. Skip connections:
 - go from layer i to layer i+2 or higher
 - make gradient flow more easily from output layers to layers nearer input
 - ▶ ResNet, HighwayNet, DenseNet (shown) ► Link

Layer-wise connection

- another key consideration of architecture design:
 - how to connect a pair of layers to each other
- ullet in default neural net layer (FC) (described by linear transformation via matrix $oldsymbol{W}$)
 - every input unit: connected to every output unit
- many specialized networks have fewer connections
 - ▶ each input unit: connected to only a small **block** of output units
- these strategies for reducing # of connections
 - ▶ reduce # of parameters/amount of computation to evaluate the net
 - but are highly problem-dependent → see later chapters
 - e.g. CNNs (ch 9): sparse connection patterns effective for vision problems

Outline

Introduction

Feedfoward Networks

Deep Feedforward Networks

Summary

Summary

- deep feed forward net: quintessential deep model
 - lacktriangle universal function approximator parameterized by $m{ heta}=(m{W},m{b})$
 - \blacktriangleright learn θ by gradient-based backprop algorithm
- building blocks of deep feedforward nets
 - neuron: modeled by logistic regression
 - lacktriangle forward function: propagates $m{x}$ to output, giving loss $L(m{y},\hat{m{y}})$
 - ightharpoonup backward function: propagates da to input, giving dW, db
 - lacktriangle update: $\mathtt{d} \, W \leftarrow \mathtt{d} \, W \epsilon \mathtt{d} \, W$, $\mathtt{d} \, b \leftarrow \mathtt{d} \, b \epsilon \mathtt{d} \, b$
 - activation function: ReLU/variants are popular for deep feedforward nets
 - output units: linear, sigmoid, softmax units
- deep feedforward neural nets
 - more depth gives better generalization, but training is challenging
 - ⇒ architectural modifications in convolutional nets/recurrent nets