SPM: SOFTWARE PROJECT MANAGEMENT

SPM: UNIT-3 04/17

12 APRIL 2022 / IT-3rd year, VIth semester FALL SEMESTER, YEAR (VIth, 3rd) FALL SESSION (2021-22) (SPM)
MS. SHWETA TIWARI

MS. SHWETA TIWARI Published: April 12, 2022

SPM: SOFTWARE PROJECT MANAGEMENT TOPIC On: CPMCRITICAL PATH METHOD

By SHWETA TIWARI

Under On: SOFTWARE PROJECT MANAGEMENT

TOPIC On: CPM- CRITICAL PATH METHOD

Problem of Critical Path Method (CPM)

Determine the critical path, the critical activities and the project completion time

Problem 1

The following details are available regarding a project:

Activity	Predecessor Activity	Duration (Weeks)
A		3
В	A	5
С	A	7
D	В	10
Е	С	5
F	D,E	4

Determine the critical path, the critical activities and the project completion time.

Solution

First let us construct the network diagram for the given project. We mark the time estimates along the arrows representing the activities. We obtain the following diagram:

Consider the paths, beginning with the start node and stopping with the end node. There are two such paths for the given project. They are as follows:

Path I

with a time of 3 + 5 + 10 + 4 = 22 weeks.

Path II

with a time of 3 + 7 + 5 + 4 = 19 weeks.

Compare the times for the two paths. Maximum of $\{22,19\} = 22$. We see that path I has the maximum time of 22 weeks. Therefore, path I is the critical path. The critical activities are A, B, D and F. The project completion time is 22 weeks.

We notice that C and E are non-critical activities.

Time for path I - Time for path II = 22 - 19 = 3 weeks.

Therefore, together the non- critical activities can be delayed upto a maximum of 3 weeks, without delaying the completion of the whole project.

Problem 2

Find out the completion time and the critical activities for the following project:

Solution

In all, we identify 4 paths, beginning with the start node of 1 and terminating at the end node of 10. They are as follows:

Path I

Time for the path = 8 + 20 + 8 + 6 = 42 units of time.

Path II

Time for the path = 10 + 16 + 11 + 6 = 43 units of time.

Path III

Time for the path = 10 + 16 + 14 + 5 = 45 units of time.

Path IV

Time for the path = 7 + 25 + 10 + 5 = 47 units of time.

Compare the times for the four paths. Maximum of $\{42, 43, 45, 47\} = 47$. We see that the following path has the maximum time and so it is the critical path:

The critical activities are C, F, J and L. The non-critical activities are A, B, D, E, G, H, I and K. The project completion time is 47 units of time.

Problem 3

Draw the network diagram and determine the critical path for the following project:

Activity	Time estimate (Weeks) 5	
1-2		
1-3		
1-4	3	
2 -5	5	
3 -6	7	
3 -7	10	
4 -7	4	
5 -8	2	
6 -8	5	
7 -9	6	
8 -9	4	

Solution

We have the following network diagram for the project:

Solution

We assert that there are 4 paths, beginning with the start node of 1 and terminating at the end node of 9. They are as follows:

Path I

Time for the path = 5 + 5 + 2 + 4 = 16 weeks.

Path II

Time for the path = 6 + 7 + 5 + 4 = 22 weeks.

Path III

Time for the path = 6 + 10 + 6 = 16 weeks.

Path IV

Time for the path = 3 + 4 + 6 = 13 weeks.

Compare the times for the four paths. Maximum of $\{16, 22, 16, 13\} = 22$. We see that the following path has the maximum time and so it is the critical path:

The critical activities are B, E, I and K. The non-critical activities are A, C, D, F, G, H and J. The project completion time is 22 weeks.