Use Case 1: Sentiment Classification with Word2Vec

» **Task:** determine polarity of document (*news or blog or tweet*)

Page: 1 of 14

Classes: positive, negative and neutral

» **Assumption**: the document contains only one opinion (not true in many cases)

Example:

"This is a beautiful bracelet.."

Is it positive, negative or neutral?

Application Scenarios

- Full of zany characters and richly applied satire, and some great plot twists: is this a positive or negative review?
- Public opinion on the stock market mined from Tweets
- What do people think about a political candidate or issue?
- Can we predict election outcomes or market performance from sentiment analysis?

Page: 2 of 14

Overview of Approach

Review Text

I purchased one of these from Giant **Feature** Feature / Extraction Representation Machine Learning Score [0-1]

Feature Representation

• Review: My small cat loves this carrier. It is very soft inside and it has a small window that my cat can use to look outside.

Some are useful words and others not. How to assign weights?

Page: 4 of 14

Word2Vec: skip-gram

Approach

Review Text

I purchased one of these from Giant Word **Vectors** Word Embeddings SVM / Logistic Regression Score [0-1]

Performance Evaluation

	Positive	Negative	Neutral	Total
Train	2,642	994	3,436	7,072
Dev	408	219	493	1,120
Test	1,570	601	1,639	3,810

SemEval-13 Twitter Sentiment Classification Data

Performance Evaluation

Method	Macro-F1	
DistSuper + unigram	61.74	Advanced
DistSuper + uni/bi/tri-gram	63.84	Feature
SVM + unigram	74.50	Engineering
SVM + uni/bi/tri-gram	75.06	
NBSVM	75.28	
RAE	75.12	
NRC (Top System in SemEval)	84.73	Lexicons +
NRC - ngram	84.17	Handcoded rules
$SSWE_u$	84.98	NV 1007
$SSWE_u$ +NRC	86.58	Word2Vec (Finetuned)
$SSWE_u$ +NRC-ngram	86.48	

Word vectors can replace manual feature engineering!

Use Case 2: Sentiment Classification with CNN

- » Sometimes the classification task is tough
- » Word2Vec + SVM : Not always achieve high performance
 - ♦ E.g. More than word context is required

Page: 9 of 14

CNN Approach

Text pre-processing for CNN

- Extract Word2Vec for each word in the text
- Keep the sequence intact
- Pass them all as a matrix to CNN

Data Augmentation

- CNN requires large number of training data
- In image classification, CNN is usually trained with translating, scaling, rotating and flipping the input images (to ensure invariance property)
- For sentiment classification, words in text are replaced with most frequent meaning found from a thesaurus (eg. WordNet)

Page: 11 of 14

» Only randomly chosen words are replaced (not all)

Classification Performance

Model	Thesaurus	Train	Test
Large ConvNet	No	99.71%	96.34%
Large ConvNet	Yes	99.51%	96.08%
Small ConvNet	No	98.24%	95.84%
Small ConvNet	Yes	98.57%	96.01%
Bag of Words	No	88.46%	85.54%
•			

