Математическая статистика

Домашняя работа № 4

Проверка статистических гипотез

Попов Юрий, СКБ-172

ОГЛАВЛЕНИЕ

4.1 Геометрическое распределение					
4.2 Экспоненциальное распределение	7				

Предисловие

Немного теории

Определение 1 *Статистическая гипотеза* - это некоторое предположение о виде или параметрах распределений

Определение 2 Статистический критерий - это правило, по которому каждой реализации выборки ставится в соответствие решение: принимаем гипотезу H_0 или отвергаем ее(то есть принимаем гипотезу H_1)

Определение 3 Уровень значимости статистического теста - допустимая для данной задачи вероятность ошибки первого рода, то есть вероятность отклонить нулевую гипотезу, когда на самом деле она верна

Определение 4 В случае, когда H_0 и H_1 - простые гипотезы, $P(x \in \mathcal{F}|H_0)) = \lambda$ - ошибка 1 рода

 $\beta = P(H_0|H_1)$ - ошибка второго рода

Определение 5 Если H_0 состоит из одного определения, то говорят, что H_0 - простая гипотеза, иначе H_0 сложная гипотеза

Определение 6 Если H_1 состоит из одного определения, то говорят, что H_1 - *простая гипотеза*, иначе H_1 *сложная гипотеза*

Определение 7 Функция мощности критерия - это функционал на множестве допустимых распределений ${\mathcal F}$ и выборке X

Перейдем к практике

4.1 Геометрическое распределение

В качестве критерия я взял критерий Пирсона. Этот метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей. Это наиболее часто употребляемый критерий для проверки гипотезы о принадлежности наблюдаемой выборки некоторому теоретическому закону распределения.

Этот критерий универсальный

Для каждой выборки составим расчетную таблицу:

Выдвинем гипотезу H_0 : распределение генеральной совокупности X подчинено геометрическому закону с параметром р Проверим эту гипотезу по критерию Пирсона при уровне значимости $\lambda=0.05$

	0	1	2	3	4	5	6	
freq	91.00	88.0	72.0	74.0	68.0	63.00	46.0	
x_i * n_i	0.00	88.0	144.0	222.0	272.0	315.00	276.0	ŧ
(\hat(x) - x)^2 * n	1502614.75	1430550.0	1152162.0	1165518.5	1054017.0	960891.75	690287.5	8266

3 rows × 51 columns

Выборочное среднее равно: 128.5 Выборочная исправленная дисперсия равна: 14305.844 Выборочное исправленное среднее квадратическое отклонение равно 119.607

	0	1	2	3	4	5	6	
freq	99.00	85.00	80.0	69.00	76.0	54.0	51.00	
x_i * n_i	0.00	85.00	160.0	207.00	304.0	270.0	306.00	
hat(x)	1004710.75	1201701 25	1000100.0	1006767.25	1170010.0	000004 5	705010 75	

3 rows × 47 columns

Выборочное среднее равно: 128.5 Выборочная исправленная дисперсия равна: 14358.978 Выборочное исправленное среднее квадратическое отклонение равно 119.829

59	69	72	76	Сумма
1.00	1.00	1.00	1.00	1000.0
59.00	69.00	72.00	NaN	9196.0
830.25	3540.25	3192.25	2756.25	14306844.0

4.2 Экспоненциальное распределение

Литература

- [1]
- [2] ссылка1
- [3] ссылка2
- [4] // ссылка3
- [5] // ссылка4