Implementing Multiple Regression Models in R

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Implement multiple regression in R
Interpret results of a multiple regression
Carry out multiple regression in R to
include categorical variables

Interpreting the Results of a Regression Analysis

\mathbb{R}^2

Measures overall quality of fit - the higher the better (up to a point)

Residuals

Check if regression assumptions are violated

Standard errors of individual coefficients are usually of little significance

Variance(y) = Variance(y') + Variance(e)

Total Variance (TSS)

A measure of how volatile the dependent variable is, and of much it moves around

Explained Variance (ESS)

A measure of how volatile the fitted values are - these come from the regression line

TSS = Variance(y)

Residual Variance (RSS)

This the variance in the dependent variable that can not be explained by the regression

TSS = Variance(y) ESS = Variance(y')

TSS = ESS + RSS

Variance Explained

Variance of the dependent variable can be decomposed into variance of the regression fitted values, and that of the residuals

TSS = Variance(y) ESS = Variance(y) RSS = Variance(e)

 $R^2 = ESS / TSS$

 \mathbb{R}^2

The percentage of total variance explained by the regression. Usually, the higher the R², the better the quality of the regression (upper bound is 100%)

 $R^2 = ESS / TSS$

 \mathbb{R}^2

In multiple regression, adding explanatory variables always increases R², even if those variables are irrelevant and increase danger of multicollinearity

Adjusted- $R^2 = R^2 \times (Penalty for adding irrelevant variables)$

Adjusted-R²

Increases if irrelevant* variables are deleted

(*irrelevant variables = any group whose F-ratio < 1)

Adjusted R² Residuals F-statistic

Standard Errors
of coefficients

Population and Sample

Population

All data points out there in the universe

Sample

A subset of the population

Representative Samples

Population

Unbiased Sample

Biased Sample

The regression line is based on a sample, not on the population

The regression line is based on a sample, not on the population

The regression line is based on a sample, not on the population

Different Samples, Different Fits

Conducting regression on different samples will yield different values of A and B

Sampling Distributions

Plotting A (or B) from millions of samples yields a bell curve

This is known as the sampling distribution

Different Samples, Different Fits

Sample Regression Line

$$y = A + Bx$$

Population Regression Line

$$y = \alpha + \beta x$$

We will never know the values of the population parameters α and β

Sampling Distributions

Sampling Distribution of A

α is the population parameter, A is the sample parameter

Sampling Distribution of B

β is the population parameter, B is the sample parameter

The sampling distributions are normal, and population mean is equal to sample mean

The sample parameters A and B are our 'best' estimates for population parameters α and β

Sampling Distributions

Sampling Distribution of A

α is the population parameter, A is the sample parameter

Sampling Distribution of B

β is the population parameter, B is the sample parameter

The sampling distributions are normal, and population mean is equal to sample mean

Normal Distribution

Average (mean) is μ Standard deviation is σ

Standard Errors

Standard Error of A

Standard deviation of the sampling distribution of A

Standard Error of B

Standard deviation of the sampling distribution of A

Standard error of a regression parameter is the standard deviation of the sampling distribution

Strong Cause-Effect Relationship

Residuals are small, standard errors are small

Weak Cause-Effect Relationship

Residuals are large, standard errors are large

Standard Errors and Residuals

Low Standard Error

High confidence that parameter coefficient is well estimated

High Standard Error

Low confidence that parameter coefficient is well estimated

The smaller the residuals, the smaller the standard errors and the better the quality of the regression

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

Residuals

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...

 $y_n = A + Bx_n + e_n$

RSS = Variance(e)

Residual Variance (RSS)

Easily calculated from regression residuals

$SE(\alpha)$, $SE(\beta)$ can be found from RSS

Estimate Standard Errors from RSS

Exact formulae are not important - reported by Excel, R...

The smaller the residuals, the smaller the standard errors and the better the quality of the regression

Probability of Occurrence

68% within 1 standard deviation of mean

Probability of Occurrence

95% within 2 standard deviations of mean

Probability of Occurrence

99% within 3 standard deviations of mean

Standard Errors

Standard Error of A

Standard deviation of the sampling distribution of A

Standard Error of B

Standard deviation of the sampling distribution of A

Standard error of a regression parameter is the standard deviation of the sampling distribution

t-Statistics

The probability distributions here are not normal, rather they follow a t-distribution

t-Statistics

Is an individual estimate of A or B 'adding value' at all?

High t-statistic => Yes

The higher the t-statistic of a coefficient, the higher our confidence in our estimate of that coefficient

p-Values

p-value(A) = 0.39

Low t-stat, high p-value

p-value(B) =
$$2 \times 10^{-15} \sim 0$$

High t-stat, low p-value

Is an individual estimate of A or B 'adding value' at all?

low p-value => Yes

The lower the p-value of a coefficient, the higher our confidence in our estimate of that coefficient

Interpreting Results of a Multiple Regression

Interpreting Results of a Multiple Regression

Adjusted R² Residuals F-statistic

Standard Errors
of coefficients

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

Residuals

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

RSS = Variance(e)

Residual Variance (RSS)

Easily calculated from regression residuals

Population Regression Line

Regression Equation:

$$y = \alpha + \beta x$$

Errors

$$y_1 = \alpha + \beta x_1 + \epsilon_1$$

 $y_2 = \alpha + \beta x_2 + \epsilon_2$
 $y_3 = \alpha + \beta x_3 + \epsilon_3$
...

 $y_n = \alpha + \beta x_n + \epsilon_n$

 σ^2 = Variance(ϵ)

Error Variance

Can not be calculated - like all population parameters, can only be estimated from sample

$$SER = \sqrt{\frac{RSS}{n-2}}$$

Standard Error of Regression (SER)

n is the number of points in the regression.

SER provides an unbiased estimator of error variance σ^2

x² Distribution with n-2 Degrees of Freedom

Easily calculated from regression residuals

F-Statistic

Does our regression as a whole 'add value' at all?

High F-statistic => Yes

p-values and t-statistics tell us whether individual parameter coefficients are 'good'

The F-statistic tells us whether a entire regression line is 'good'

Interpreting Results of a Multiple Regression

Adjusted R² Residuals F-statistic

Standard Errors
of coefficients

Interpreting Results of a Multiple Regression

Demo

Implement multiple regression in R

Extending Multiple Regression to Categorical Variables

Proposed Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Not a great fit - regression line is far from all points!

We can easily plot a great fit for males...

...and another great fit for females

Two lines - same slope, different intercepts

Adding A Dummy Variable

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Adding A Dummy Variable

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$D = 0$$
 for males

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$= A_1 + B_X$$

Adding A Dummy Variable

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 1 for females

$$y = A_1 + (A_2 - A_1) + Bx$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

The data contained 2 groups, so we added 1 dummy variable

Given data with k groups, set up k-1 dummy variables, else multicollinearity occurs

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + Bx$$

 $D_1 = 1$ for males

= 0 for females

 $D_2 = 1$ for females

= 0 for males

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + B_X$$

$$D_1 = 1$$
 for males

$$D_1 = 1$$
 for males $D_2 = 0$ for males

$$y = A_1x1 + A_20 + Bx$$

$$= A_1 + B_X$$

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + B_X$$

$$D_1 = 0$$
 for females $D_2 = 1$ for females

$$y = A_1 \times O + A_2 \times I + B \times$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + Bx$$

 $D_1 = 1$ for males

= 0 for females

 $D_2 = 1$ for females

= 0 for males

Given data with k groups, set up k-1 dummy variables and an intercept, <u>or</u> k dummy variables with no intercept

Demo

Perform regression with categorical variables in R

$$y = A + B_{S&P500}X_1$$

y = Returns on $x_1 = Returns on$ Exxon stock (XOM)

S&P 500

$$y = A + B_{NASDAQ}X_1$$

y = Returns on $x_1 = Returns on$ Exxon stock (XOM)

NASDAQ

$$y = A + B_{S\&P500}X_1 + B_{NASDAQ}X_2$$

y = Returns on Exxon stock (XOM)

 x_1 = Returns on S&P 500

x₂ = Returns on NASDAQ

$$y = A + B_{S&P500}x_1 + B_{USO}x_2$$

y = Returns on Exxon stock (XOM)

 x_1 = Returns on S&P 500

x₂ = Returns of oil prices (USO)

Ease of Prototyping

Excel is an awesome prototyping tool

Robustness and Reuse

R

Use **R for regression**: It makes sense whatever your use-case

Summary

Implemented multiple regression in R

Interpreted results of a multiple regression

Carried out multiple regression in R to include categorical variables