华中科技大学考试卷 课程:数字电路与逻辑设计(一)

考试方式: <u>闭卷</u> 考试日期: 2023.2.17 晚 考试时长: 150 分钟.

院 (系): _	专业班级:	
----------	-------	--

学 号: _____

题号.	—.	二.	三.	四。	行。	六.	₹i.	八。	总分.
	(15) _e	(12)。	(10).	(12)。	(12)。	(16)	(18).	(5)。	(100)。
得分.									

- 1. 无符号十六进制数(AF,C)16 的十进制表示为_____(1)____。
- 2. (0100 0101)s4218CD 表达的 6 位二进制数, 其对应的格雷码为____(2)____。
- 3. 若某逻辑函数的对偶式 $L' = \overline{AB} \cdot (\overline{BC} + \overline{D})$,则 $\overline{L} \odot 0$ 的最简与或表达式为__(3)___。

5. 一个反柘器的输入和输出波形如题 5 图所示, 其传输延迟时间 Tpd 为___(5)__。

总 12 页 - 第 1 页。

- 6. 已知 3.3V 供电的 CMOS 二输入与非门芯片 V_{II(max)}=0.8V, V_{OI(max)}=0.2V, V_{III(min)}=2.0V, V_{OI(min)}=3.1V, 当输入端 A 的电平为 1.65V, 输入端 B 的电平为 0.4V 时,逻辑门的输出逻辑为____(6)____(不填具体电压值)。
- 7. 某小逻辑门输入 A、B 和输出 F 的波形如题图 7 所示,则该逻辑门为___(7)___。

题 8 图

9. 输入低电平有效的 8-3 线优先编码器, 若Q(LSB)为最高优先级, 当原码输出YYY。

10. 数字逻辑电路中,出现冒险现象的主要原因是电路中存在_____(10)____.

11. 将一个移位寄存器中的无符号数放大 8 倍, 需要__(11)___个移位时钟脉冲。

12. 模 7 减法计数器从 1 开始计数,经过 2022 个计数脉冲后其计数值为__(12)__。。

13. 用 4 片内部结构为单体 2 维地址译码的 4M×4bit DRAM 芯片,构成一个容量为 4M×16bit 的缓存空间。若其列地址为 9 位,则其行地址应有___(13)___位。.

变的周期性波形整形成较为理想的矩形波。.

15. 某 MCU 內置单极性的线性 D/A。校准后当输出模拟量为 0.5V,对应的数字量为 0xFA; 若要输出 2.8V 的直流电压,则对应的数字量为(__(15)__)10.

二、化简题 (共12分).

1. (6分)用代数法求逻辑函数 L 的最简与或式(无推导步骤不给分)。

$$L = \overline{\overline{\Lambda \overline{C} + \overline{\Lambda} B \overline{C}}} + B \overline{C} + \overline{\Lambda} B \overline{C}$$

I

2. (6分)用卡诺图化简求逻辑函数 L 的最简与或式 (无行列编号不画图不给分)。.

 $L(A,B,C,D) = \sum m(0,1,3,5,8,10,14) + \sum d(2,9,13)$

 三、波形图(共10分).

根据下图所示电路和X的输入波形,画出对应的 Q_1 、 J_2 (K_2)、 Q_2

的功能仿真波形(假定触发器初态均为0)。.

ガ 剱 评卷人 四、组合电路分析(共12分).

1. 根据A、B和C、D两组输入构成的点阵图所示电路,直接写

出F对应的逻辑函数,并设法得到该逻辑函数最小项的标准与或式。。

2. 利用 ROM 来实现该组合电路。如果将 A , B , C , D 分别接至 ROM 的地址输入端 $A_3 \sim A_0$ (A_0 为 LSB),请填写下表中 ROM 中每个寻址单元所存储的数据内容。

43~40	F_{c}	A3~A0	<i>F.</i>	A3~A0.	F_{r}	A3~A0	F.
0000	٠	0100 ₁	υ	1000-		1100-	ø
0001	o	0101-	,,	1001		1101	Э
0010-		0110	*3	1010-	v	1110-	J
0011	e	0111	p	1011	ě	1111-	

3. 根据题意简要说明该逻辑功能(20字以内,不按题意不得分),并在框中补充完善相应的 Verilog HDL 代码。

-1. AK 24 DO	
功能说明:	9

```
module test(A, B, C, D, F);
input A, B, C, D;
output F;
always@(*) begin
if (______) F = 1'b1;
else F = 1'b0;
end
endmodule
```

分数 五、组合电路应用设计(共12分) 评卷人 用 A, B, C, D 四种药物制定的治疗方案须满足以下条件:...

- 1) 要么不用 A, 若使用 A, 则不能使用 D; .
- 2) 要么不用 B, 若使用 B, 则必须同时使用 D;
- 3) B和C要么同时使用,要么都不用;
- 4) A和C中有且仅有一种被使用;

假定使用该药物为 1, 不使用为 0; 方案可行为 1, 方案不可行为 0; ,

1. 请写出以上各限定条件对应的逻辑表达式 Fi: 。

$F_1 =$	•	
F2=	•	
F _J =		
F_=		é

2.	请写出表示可行治疗方案的最简与或逻辑表达式 F.	并填写其真值表。
----	--------------------------	----------

A.	B	C	D.	F.	A.	B.	C	D.	F.
0.	0.	0.	0.	•	1.	0.	0.0	0	بد
0.	0.	0,	1-	*	1.	0.	O,	1.	•
8.	8.	1:	0.		1.	8.	1.	0.	
0.	1.	0-	0.		1.	1.	0.,	0.,	
0.	1.	0.	1.	٠	1.	1.	O,	1.	٠
0.	1.	1.	0.	e	1.	-1.	1.	0.0	
0.	1.	1.	1.	*	1.	1.	1.	1.	

GI

3. 若用一个 8 选 1 的多路选择器 (MUX) 来实现上述治疗方案可行性判别。请 在下图中分别标出各输入管脚的逻辑电平

(图中括号内,可填输入反变量)。其中 E 为使能端, $S_2S_1S_0$ 为通道选择端(S_2 为 MSB),当 E 有效时 $F = D_{S_2S_1S_0}$,当 E 无效时 F = 0 。

分 数.	
评卷人。	

六、时序电路分析(共16分).

请分析由 8421BCD 码十进制同步加法计数器 CNT10 和逻辑() 构成如下图所示的电路 (CNT10 功能说明详见 Page10 附录),

并解答如下问题。

- 1. 1) PE 为____(同步/异步)预置信号;.
 - 2) PE 的逻辑表达式为.

PE =____:

3) TC 的逻辑表达式为.

TC -____;

2. 画出状态转移图:

注: 状态框中用 Q,Q,Q,Q,对应的 | 进制数标识不同状态 (包括太用状态)。。

- 3. 简要说明该电路的功能(20 字以内),并据画出的状态图判断是否能自启动。
- 4. 请按如下要求将下面的 Verilog HDL 代码补充完整。。
 - 1)异步复位信号 CR_n 为低电平时, 初始状态设置为 0;
 - 2)CR_n 信号为高电平时, CT 模块具有与本题小题 2 相同的状态转移图。.

- [17 16 八] 用 D 触发器及部分组合逻辑设计如图所示的"[001]"序列检测器 (1 为序列的最后输入位)。其中 X 为序列信号输入, Y 为检测结果输出(设检出为 1)。
- 1. 根据状态转移图,填写状态表。,

Oron	$Q_1^{n+1}Q_0^{n+1}/Y_n$					
$Q_1^nQ_0^n$.	X = 0.	X = 1.				
00-						
01.						
11.						

2. 若将电路无效状态 10 作为无关项,电路_____(有/无)自启动能力。若不允许误报,请写出输出函数和激励函数的最简与或式:

3. 根据小题 1 中的状态图,将检测电路的 Verilog HDL 描述补充完整。

4. 依据小题 3 中的行为描述,若综合工具在 FPGA 器件上综合得到如下电路,其中 LUT 为 3 输入查找表,DFF 为 D 触发器。请填写各 LUT 内部 8bit RAM 需预加载的 控制字 (其中 LSB 对应 A₂A₁A₀=3'b000 时的 L 输出值)。

预	加载控制字。
LUT2	8'h
LUT1.	8'h
LUT0.	8'h

八、综合題(共5分).

CR

在进行模拟/数字信号的转换过程中,由采样定理可知:采样频率 f。和输入模拟信号中最高频率分量的频率 f_{imax} 必须满足 f_i $\geq 2 f$ _{imax} 关系式。某一声音信号采集系统功能框图如图所示,经麦克风声音采集、信号调理电路放大、A/D 转换模块,最后由存储控制器将数据存储到 RAM。假设采集的目标声音信号最高频率是 1kHz,ADC 输出位数为 8bit。试回答以下问题:

- 1. 若系統需要无失真采集 1 秒钟声音信号, 该存储器 RAM 的最小容量是多少 KB (Kilo-Bytes)? 诸给出计算依据。.
- 2. 若系统已按小题 1 配置了最小容量存储器。为采集更长时间的声音信号,需额外增加一片 4K×8bits 的 RAM,并通过在原存储控制器基础上增加一个寻址模块 (AddrSelect)来管理系统原配置的 RAM 和新增的 4KB RAM。要求访问新增存储器在内存空间上要求紧顺着原有 RAM 地址后面编排。寻址模块的 Verilog HDL 实现片段如下,请根据以上信息补充空白片段内容(详见后图并填入对应的小题号行中)。

附录

CNT10 是 8421BCD 码十进制同步加法计数器,具有高电平有效的计数允许端 CEP、CET• 预置数据端为 D_s 、 D_z , D_z , D_o (D_s 为最高位),输出数据端为 Q_s , Q_s , Q_s , Q_o (Q_s 为最高位)。 器件功能如下表所示: •

		I	输	λ.		116	de			1	in l	₩•	
青零.	预置.	使	能。	时钟.	f	页置数	居输入	ęž.		效据	输出.		进位
Œr∙	PE.	CEP.	CET.	CP.	D	D	<i>D</i> ₁ -	D ₂ .	Q ₃ .	Q2-	Qı-	Qo	TC.
レ	x-	X•:	X.	Xe	X.	X.	X.	X.	Lo	L	L	L	Lo
Н	し	Xes	Χě	1.	D3*.	D2*.	D ₁ +.	Do*.	D3.	D2	D_{1}	D 0"	#.
H₽	H≥	Ŀ	χo	X.	Xe	χz	Xe	X.	,	保。	待.	Þ	#0
He	H₂	X	L.	Χe	X.	×	×.	×e	۵	保。	持。		L
Н	H₂	Ho	H.	1 45	Xe	X.	Xa	X.	د	it.	数。	ø	#.

注: 1) DN*表示 CP 脉冲上升沿之前瞬间 DN 的电平,..

- 2) #表示只有当 Q₃ Q₁ Q₀ = 1001 且 CET = 1 时, TC 输出为高电平, 其余均为低电平。
- 3) $Q_3^n Q_2^n Q_1^n Q_0^n = 10 \sim 15 \text{ ft}$ $Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1} = Q_3^n Q_2^n Q_1^n Q_0^n + 1;$