

Final Project Presentation

Nomor Kelompok: Kelompok Stumble Nama Mentor: Erwin

Nama:

- Dominicus Christian Bagus Susanto
- Rizka Mahdalela

Machine Learning Class

Program Studi Independen Bersertifikat Zenius Bersama Kampus Merdeka

Petunjuk

- Waktu presentasi adalah 5 menit (tentatif, tergantung dari banyaknya kelompok yang mendaftarkan diri)
- Waktu tanya jawab adalah 5 menit
- Silakan menambahkan gambar/visualisasi pada slide presentasi
- Upayakan agar tetap dalam format poin-poin (ingat, ini presentasi, bukan esai)
- Jangan masukkan code ke dalam slide presentasi (tidak usah memasukan screenshot jupyter notebook)

- 1. Latar Belakang
- 2. Explorasi Data dan Visualisasi
- 3. Modelling
- 4. Kesimpulan

Latar Belakang

Latar Belakang Project

Sumber Data:

https://www.kaggle.com/datasets/blastchar/telco-customer-churn?resource=download

Problem: classification

Tujuan:

 Memprediksi dan menganalisis perilaku pelanggan yang mempertahankan ataupun meninggalkan langganan dan mengembangkan program retensi

Explorasi Data dan Visualisasi

Business Understanding

(Amaresan, 2021) Customer churn adalah persentase pelanggan yang berhenti berlangganan suatu bisnis tertentu.

(Yunita, 2019) Churn dihitung dari berapa banyak pelanggan yang meninggalkan bisnis dalam waktu tertentu.

Customer churn harus diminimalisasi karena bisnis akan mengalami kerugian besar jika kehilangan pelanggan, karena faktanya mendapat pelanggan baru 5 kali lebih mahal daripada mempertahankan pelanggan yang sudah ada.

Data Cleansing

Data terdiri dari 7042 baris dan 21 kolom

Tidak terdapat missing value ketika pertama kali pengecekan Namun ketika mengubah data bertipe object ke float dan dan integer, ditemukan beberapa missing value berjumlah 11. 11 row data tersebut dihapus karena tidak terlalu berpengaruh Terhadap 7000 data.

<class 'pandas.core.frame.dataframe'=""></class>											
RangeIndex: 7043 entries, 0 to 7042											
_	ata columns (total 21 columns):										
#	Column		Null Count	Dtype							
0	customerID	7043	non-null	object							
1	gender	7043	non-null	object							
2	SeniorCitizen	7043	non-null	int64							
3	Partner	7043	non-null	object							
4	Dependents	7043	non-null	object							
5	tenure	7043	non-null	int64							
6	PhoneService	7043	non-null	object							
7	MultipleLines	7043	non-null	object							
8	InternetService	7043	non-null	object							
9	OnlineSecurity	7043	non-null	object							
10	OnlineBackup	7043	non-null	object							
11	DeviceProtection	7043	non-null	object							
12	TechSupport	7043	non-null	object							
13	StreamingTV	7043	non-null	object							
14	StreamingMovies	7043	non-null	object							
15	Contract	7043	non-null	object							
16	PaperlessBilling	7043	non-null	object							
17	PaymentMethod	7043	non-null	object							
18	MonthlyCharges	7043	non-null	float64							
19	TotalCharges	7043	non-null	object							
20	Churn	7043	non-null	object							

Data Cleansing

Melakukan encoding terhadap data kategorikal menjadi data numerikal agar

dapat dikalkulasi

```
{'Contract': {0: 'Month-to-month', 1: 'One year', 2: 'Two year'},
 'Dependents': {0: 'No', 1: 'Yes'},
 'DeviceProtection': {0: 'No', 1: 'Yes', 2: 'No internet service'},
 'InternetService': {0: 'DSL', 1: 'Fiber optic', 2: 'No'},
 'MultipleLines': {0: 'No phone service', 1: 'No', 2: 'Yes'},
 'OnlineBackup': {0: 'Yes', 1: 'No', 2: 'No internet service'},
 'OnlineSecurity': {0: 'No', 1: 'Yes', 2: 'No internet service'},
 'PaperlessBilling': {0: 'Yes', 1: 'No'},
 'Partner': {0: 'Yes', 1: 'No'},
 'PaymentMethod': {0: 'Electronic check',
                  1: 'Mailed check',
                   2: 'Bank transfer (automatic)',
                   3: 'Credit card (automatic)'},
 'PhoneService': {0: 'No', 1: 'Yes'},
 'StreamingMovies': {0: 'No', 1: 'Yes', 2: 'No internet service'},
 'StreamingTV': {0: 'No', 1: 'Yes', 2: 'No internet service'},
 'TechSupport': {0: 'No', 1: 'Yes', 2: 'No internet service'}}
```


Data Cleansing

Melakukan feature selection berdasarkan Variance Threshold sebesar 0.1.

(Bex, 2021) melakukan VT dapat menambah performa atau setidaknya mengurangi kompleksitas model

Hasil dari feature selection ini adalah fitur PhoneService dihapus

Exploratory Data Analysis

Insight 1

Pelanggan memiliki presentase churn tinggi

Ketika masa berlangganan atau tenure masih rendah,

Sedangkan ketika pelanggan sudah lama berlangganan,

Presentase churn kecil atau rendah.

Exploratory Data Analysis

Insight 2

Pelanggan yang berlangganan menggunakan internet service fiber optic lebih banyak yang churn daripada pelanggan yang menggunakan internet service lain.

Exploratory Data Analysis

Insight 3

Pelanggan yang berlangganan dengan kontrak

Month-to-month lebih berpotensi untuk churn daripada

Kontrak one year dan two year. Hal ini dapat berkaitan

Dengan presentase senior citizen yang lebih banyak churn

Daripada yang bukan senior citizen.

Dapat disimpulkan bahwa senior citizen yang berlangganan

Month-to-month memiliki presentase churn yang tinggi.

Modelling

Modelling

Menggunakan train test split dengan rasio 80:20 dengan random state 101 Tidak melakukan rescaling data dan teknik PCA karena performa akurasi yang lebih buruk

KNN: 0.29 akurasi dengan standar deviasi 0.003900

Decision Tree: 0.57 akurasi dengan standar deviasi 0.005802

Model awal yang digunakan KNN, Multinomial Naive Bayes, DT

KNN: 0.76 akurasi dengan standar deviasi 0.008139 NB: 0.67 akurasi dengan standar deviasi 0.009082

Decision Tree: 0.73 akurasi dengan standar deviasi 0.014526

K-Nearest Neighbor

Parameters

 $N_neighbors = 3, 5, 10$

Algorithm = 'ball_tree', 'kd_tree', 'brute'

Weights = 'uniform', 'distance'

	algorithm	n_neighbors	weights	Training accuracy	Testing accuracy	Ranking
4	ball_tree	10	uniform	0.808089	0.776711	1
10	kd_tree	10	uniform	0.808178	0.776533	2
16	brute	10	uniform	0.808222	0.776356	3

Multinomial Naive Bayes

Parameters
Alpha = 0.1, 1.0, 2.0, 3.0, 1.5
fit_prior = True, False

	alpha	fit_prior	Training accuracy	Testing accuracy	Ranking
0	0.1	True	0.673289	0.673956	1
4	2.0	True	0.673067	0.673956	1
2	1.0	True	0.673156	0.673778	3

Decision Tree

Parameters splitter = 'best', 'random' criterion = 'gini', 'entropy' random _state = '1, 51, 101

	criterion	random_state	splitter	Training accuracy	Testing accuracy	Ranking
6	entropy	1	best	0.998622	0.734222	1
8	entropy	51	best	0.998622	0.733867	2
10	entropy	101	best	0.998622	0.733333	3

Model Akhir

Hasil K-Nearest Neighbour: precision recall f1-score support				support	Hasil Naive Ba	yes: precision	nocall	f1-score	support
						pi ecision	recall	11-30016	Suppor C
0	0.82	0.93	0.87	1052	0	0.88	0.65	0.75	1052
1	0.65	0.40	0.50	355	1	0.41	0.74	0.53	355
accuracy			0.79	1407	accuracy			0.67	1407
macro avg	0.74	0.66	0.68	1407	macro avg	0.65	0.69	0.64	1407
weighted avg	0.78	0.79	0.78	1407	weighted avg	0.76	0.67	0.69	1407

Hasil Deci	sic	n Tree:			
		precision	recall	f1-score	support
	0	0.83	0.80	0.81	1052
	1	0.46	0.50	0.48	355
accura	су			0.72	1407
macro a	vg	0.64	0.65	0.65	1407
weighted a	vg	0.73	0.72	0.73	1407

Conclusion

Kesimpulan

Model paling baik untuk memprediksikan churn adalah K-Nearest Neighbor dengan tingkat akurasi mencapai 80%

Faktor yang harus diperhatikan stakeholder untuk menurunkan churn adalah memperbaiki kualitas produk internet service yang menggunakan fiber optic. Kemudian, stakeholder juga harus mampu untuk menarik perhatian customer pada usia remaja hingga bekerja (non-senior citizen) yang terbukti memiliki presentase churn rendah

Referensi

https://blog.hubspot.com/service/what-is-customer-churn

https://towardsdatascience.com/how-to-use-variance-thresholding-for-robust-feature-selection-a4503f2b5c3f

https://scialert.net/fulltext/?doi=jas.2014.171.176. How the Parameters of K-nearest Neighbor Algorithm Impact on the Best Classification Accuracy: In Case of Parkinson Dataset

Terima kasih!

Ada pertanyaan?

