Spectral Theory Notes

Junkai Qi

1 Normed and Banach Spaces

Let X be a vector space over \mathbb{R} or \mathbb{C} .

Definition 1.1. A seminorm on X is a function $\|\cdot\|: X \to [0,\infty)$ satisfying:

- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$,
- $\|\alpha x\| = |\alpha| \cdot \|x\|$ for all scalars $\alpha \in \mathbb{F}, x \in X$.

If in addition $||x|| = 0 \Rightarrow x = 0$, then $||\cdot||$ is a norm, and X is a normed space.

The norm induces a metric d(x,y) := ||x-y||, which defines the norm topology on X.

Remark 1.2. In \mathbb{R}^n , the open ball

$$B_r(x) := \{ y \in \mathbb{R}^n : ||x - y|| < r \}$$

is an open set in the standard topology. This illustrates how a norm induces a natural topology on normed spaces.

Definition 1.3. A normed space X is a Banach space if it is complete with respect to the norm metric, i.e., every Cauchy sequence in X converges to a limit in X.

Examples include:

- ℓ^p spaces for $1 \le p \le \infty$,
- $L^p(U)$,
- Sobolev spaces $H^1(U)$.

2 Inner Product and Hilbert Spaces

Definition 2.1. An inner product on a complex vector space H is a map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ such that for all $x, y, z \in H$ and $\alpha, \beta \in \mathbb{C}$,

- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$,
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
- $\langle x, x \rangle > 0$ for all $x \neq 0$.

The induced norm is $||x|| := \sqrt{\langle x, x \rangle}$.

A vector space equipped with an inner product is a *pre-Hilbert space*. If it is complete with respect to the induced norm, it is called a *Hilbert space*.

Example 2.2. The sequence space

$$\ell^{2}(\mathbb{Z}) := \left\{ (a_{n})_{n \in \mathbb{Z}} : \sum_{n \in \mathbb{Z}} |a_{n}|^{2} < \infty \right\}$$

is a Hilbert space with inner product

$$\langle a, b \rangle = \sum_{n \in \mathbb{Z}} a_n \overline{b_n}.$$

3 Bounded Operator

Definition 3.1 (Bounded Operator and Operator Norm). Let V be a normed vector space. A linear operator $A: V \to V$ is called bounded if

$$||A|| := \sup \{||A\phi|| : \phi \in V, \ ||\phi|| = 1\} < \infty.$$

The set of bounded linear operators on V is denoted by $\mathcal{B}(V)$.

Remark 3.2. $\mathcal{B}(V)$ is a normed vector space under the operator norm. In fact:

- If $A, B \in \mathcal{B}(V)$, and $\lambda_1, \lambda_2 \in \mathbb{C}$, then $\lambda_1 A + \lambda_2 B \in \mathcal{B}(V)$;
- $AB \in \mathcal{B}(V)$, and $||AB|| \le ||A|| \cdot ||B||$.

Definition 3.3 (Adjoint and Self-Adjoint Operators). Let H be a Hilbert space. The adjoint of a bounded linear operator $A \in \mathcal{B}(H)$ is the unique operator $A^* \in \mathcal{B}(H)$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 for all $x, y \in H$.

An operator is called self-adjoint if $A = A^*$.

Remark 3.4. For $T, S \in \mathcal{B}(H)$, we have:

$$||T^*|| = ||T||, \quad ||T^*T|| = ||T||^2, \quad (aS + bT)^* = \bar{a}S^* + \bar{b}T^*, \quad (ST)^* = T^*S^*, \quad T^{**} = T.$$

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ denote the range and null space of A, respectively. Then the following dualities hold:

$$\mathscr{R}(A)^{\perp} = \mathscr{N}(A^*), \quad \mathscr{N}(A)^{\perp} = \overline{\mathscr{R}(A^*)}.$$

Definition 3.5 (Closed Operator). Let $A: X \to Y$ be a linear operator between Banach spaces. We say that A is closed if whenever $u_n \to u$ in X and $Au_n \to v$ in Y, it follows that

$$Au = v$$

Equivalently, the graph of A,

$$Graph(A) := \{(x, Ax) \in X \times Y : x \in \mathcal{D}(A)\},\$$

is closed in $X \times Y$.

Theorem 3.6 (Closed Graph Theorem). Let $A: X \to Y$ be a closed linear operator between Banach spaces. Then A is bounded.

Remark 3.7. Let $A \in \mathcal{B}(X)$, and suppose $A - \lambda I$ is one-to-one and onto. Then $(A - \lambda I)^{-1} \in \mathcal{B}(X)$, i.e., the inverse is also bounded.

Indeed, define $B := (A - \lambda I)^{-1}$. Since the set

$$\{(x, (A - \lambda I)x)\} \subset X \times X$$

is closed. Then its inverse graph

$$Graph(B) = \{(y, By)\} = \{((A - \lambda I)x, x)\} \subset X \times X$$

is also closed. So the Closed Graph Theorem implies that $B \in \mathcal{B}(X)$.

4 Spectral Theory of Bounded Operators

Definition 4.1 (Resolvent, Spectrum, Spectral Radius). Let $A \in \mathcal{B}(X)$ be a bounded linear operator. The resolvent set of A is

$$\rho(A) := \{ \lambda \in \mathbb{C} : (A - \lambda I) \text{ is one-to-one and onto.} \}$$

The spectrum of A is

$$\sigma(A) := \mathbb{C} \setminus \rho(A).$$

And the spectral radius is

$$\operatorname{spr}(A) := \sup\{|z| : z \in \sigma(A)\}.$$

Definition 4.2 (Eigenvalue, Point Spectrum). A complex number $\lambda \in \sigma(A)$ is called an eigenvalue of A if

$$\ker(A - \lambda I) \neq \{0\}.$$

The set of all eigenvalues is called the point spectrum of A, denoted $\sigma_p(A)$. If $w \neq 0$ satisfies $Aw = \lambda w$, then w is called an eigenvector associated with λ .

Remark 4.3. In finite-dimensional spaces, the spectrum $\sigma(A)$ coincides with the set of eigenvalues $\sigma_p(A)$. In infinite-dimensional spaces, however, this is no longer true: the spectrum may strictly contain non-eigenvalues.

Example 4.4. Consider the discrete Laplacian Δ on $\ell^2(\mathbb{Z})$, defined by

$$[\Delta \psi](n) = \psi(n+1) + \psi(n-1), \quad \psi \in \ell^2(\mathbb{Z}).$$

We claim that Δ has no eigenvalues. Indeed, suppose $\Delta \psi = z \psi$ for some $\psi \neq 0$. Then:

$$z\psi(n) = \psi(n+1) + \psi(n-1),$$

whose characteristic equation is:

$$\chi^2 - z\chi + 1 = 0 \quad \Rightarrow \quad \chi = \frac{z \pm \sqrt{z^2 - 4}}{2}.$$

Let α, β be the two roots. Then a general solution is:

$$\psi(n) = C_0 \alpha^n + C_1 \beta^{-n}.$$

Since $|\alpha\beta| = 1$, either $|\alpha| \ge 1$ or $|\beta| \ge 1$, so the solution cannot lie in $\ell^2(\mathbb{Z})$ unless $\psi = 0$. Thus, $\ker(\Delta - zI) = \{0\}$, and Δ has no eigenvalues.

We will later prove that the spectrum of every bounded operator is nonempty. Therefore, in this example $\sigma(\Delta) \neq \sigma_p(\Delta)$.

Definition 4.5 (Operator Convergence). Let $\{A_n\} \subset \mathcal{B}(V)$, and $A \in \mathcal{B}(V)$. We say that:

- $A_n \to A$ in **norm** if $||A_n A|| \to 0$;
- $A_n \to A$ strongly if for all $\phi \in V$, we have $A_n \phi \to A \phi$ in norm. This is denoted by

$$A = \operatorname{s-} \lim_{n \to \infty} A_n.$$

Remark 4.6. Norm convergence implies strong convergence, but the converse is false in general. This is one of the major differences between operator theory in finite- and infinite-dimensional settings.

Example 4.7. Let $V = \ell^2(\mathbb{Z})$, and define a sequence of operators $\{T_n\} \subset \mathcal{B}(V)$:

$$T_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}, \quad T_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad \dots$$

Let T = I be the identity operator, whose matrix is

$$T = id = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}.$$

Then:

- For all n, we have $||T_n|| = 1$;
- For $n \neq m$, we have $||T_n T_m|| = 1$, so $\{T_n\}$ is not a Cauchy sequence in norm;
- However, for any $q \in \ell^2(\mathbb{Z})$, we have $T_n q \to Tq$ strongly.

Therefore, $T_n \to T$ strongly but not in norm. This shows that strong convergence does not imply norm convergence in infinite-dimensional spaces.

Proposition 4.8. Let $\{A_n\} \subset \mathcal{B}(V)$ be a sequence of bounded operators such that

$$\sum_{n=1}^{\infty} \|A_n\| < \infty.$$

Then the series $A := \sum_{n=1}^{\infty} A_n$ converges in norm to an element of $\mathcal{B}(V)$, and

$$||A|| \le \sum_{n=1}^{\infty} ||A_n||.$$

Theorem 4.9. Let $A(V) \subset B(V)$ denote the set of invertible operators. Suppose $A \in A(V)$ and $B \in B(V)$ satisfies

$$||B|| < ||A^{-1}||^{-1}.$$

Then $A + B \in \mathcal{A}(V)$.

Sketch of Proof. Write $A + B = A(I + A^{-1}B)$. Define the Neumann series

$$R := \sum_{n=0}^{\infty} (-1)^n (A^{-1}B)^n.$$

This series converges in norm because $||A^{-1}B|| < 1$. Then

$$(I + A^{-1}B)R = R(I + A^{-1}B) = I$$
, so $(A + B)^{-1} = RA^{-1}$.

Remark 4.10. This theorem implies that $A(V) \subset B(V)$ is an open subset.

Define the resolvent function $R(A, z) := (A - zI)^{-1}$, mapping $\rho(A) \to \mathcal{B}(V)$.

Proposition 4.11 (Basic Resolvent Identities). Let $z, z' \in \rho(A)$, and $B \in \mathcal{B}(V)$. Then:

(a) First resolvent identity:

$$R(A, z) - R(A, z') = (z' - z)R(A, z)R(A, z').$$

(b) Second resolvent identity:

$$R(A, z) - R(B, z) = R(A, z)(B - A)R(B, z).$$

Sketch of (a). Since A-z is bijective, for any $y \in V$, we can find $x \in V$ such that

$$y = (A - z)x$$
.

Then we observe:

$$y + (z - z')x = (A - z')x.$$
$$(A - z')^{-1}y = x - (z - z')(A - z')^{-1}x.$$

Thus,

$$R(A,z)y - R(A,z')y = x - \left[x - (z - z')(A - z')^{-1}x\right] = (z - z')(A - z')^{-1}x.$$

Substituting x = R(A, z)y, we conclude:

$$R(A, z) - R(A, z') = (z' - z)R(A, z)R(A, z').$$

Moreover, we can see R(A, z)R(A, z') = R(A, z')R(A, z).

A similar computation yields:

$$R(A, z) - R(B, z) = R(A, z)(B - A)R(B, z).$$

Proposition 4.12 (Spectral Radius Estimate). For any bounded operator $A \in \mathcal{B}(V)$, the spectral radius satisfies

$$\operatorname{spr}(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\} < \|A\|.$$

Sketch of Proof. Consider

$$R(z) := \sum_{k=0}^{\infty} z^{-k-1} A^k,$$

which converges in operator norm for |z| > ||A||. This shows that $R(z) = (A - zI)^{-1}$ exists for such z, so

$$\sup\{|\lambda|:\lambda\in\sigma(A)\}\leq \|A\|.$$

Example 4.13 (Spectral Radius of the Discrete Laplacian). Recall the discrete Laplacian Δ on $\ell^2(\mathbb{Z})$, defined by

$$[\Delta \psi](n) = \psi(n+1) + \psi(n-1).$$

We have previously shown that Δ has no eigenvalues, i.e., $\sigma_p(\Delta) = \emptyset$. Moreover, it is known that the spectrum of Δ is

$$\sigma(\Delta) = [-2, 2].$$

To see that the spectral radius achieves the operator norm, consider the normalized vector

$$\psi^{(N)} := \frac{1}{\sqrt{2N+1}} \chi_{[-N,N]},$$

i.e., $\psi^{(N)}(n) = \frac{1}{\sqrt{2N+1}}$ for $|n| \leq N$, and zero otherwise. Then $\|\psi^{(N)}\| = 1$, and a direct computation shows

$$\|\Delta\psi^{(N)}\| \to 2 \quad as \ N \to \infty.$$

Hence, the operator norm $\|\Delta\| = 2$. Combining this with $\sigma(\Delta) = [-2, 2]$, we conclude

$$\operatorname{spr}(\Delta) = \|\Delta\| = 2.$$

Proposition 4.14. Let $A \in \mathcal{B}(V)$. Then $\sigma(A) \neq \emptyset$.

Proof. Suppose $\sigma(A) = \emptyset$, i.e., $\rho(A) = \mathbb{C}$. Then the resolvent

$$g(z) := (A - zI)^{-1}$$

is an entire $\mathcal{B}(V)$ -valued function. Moreover, from the resolvent estimate, we know

$$||g(z)|| = ||R(A, z)|| = O\left(\frac{1}{|z|}\right) \text{ as } |z| \to \infty.$$

By Liouville's theorem, this implies $g(z) \equiv 0$, which contradicts invertibility.

Example 4.15. Consider the right shift operator H on ℓ^1 , defined by

$$H(\xi_1, \xi_2, \xi_3, \dots) = (\xi_2, \xi_3, \xi_4, \dots).$$

Note that this operator is bounded but not self-adjoint, and ℓ^1 is not a Hilbert space, so this example lies outside the framework we discussed earlier.

We have:

- $\sigma(H) = \{z \in \mathbb{C} : |z| \le 1\};$
- every $\lambda \in \mathbb{D}$ is an eigenvalue, with eigenvector $(1, \lambda, \lambda^2, \dots) \in \ell^1$.

Its adjoint H^* acts on ℓ^{∞} by

$$H^*(\xi_1, \xi_2, \xi_3, \dots) = (0, \xi_1, \xi_2, \dots).$$

Although $\sigma(H^*) = \sigma(H)$, the operator H^* has no eigenvalues.

Remark 4.16. We conclude this section with three remarks:

- 1. Both **Theorem 4.9** and **Proposition 4.12** follow the same proof strategy: write the inverse operator as a Neumann series and then rigorously establish its convergence.
- 2. From **Theorem 4.9** we know that the resolvent set $\rho(A)$ is open, so the spectrum $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is closed. **Proposition 4.12** further shows that the spectrum is bounded. Therefore, $\sigma(A) \subset \mathbb{C}$ is compact.
- 3. One fundamental motivation for spectral theory is its application to solving PDEs of the form Lu = f. Understanding the existence and structure of the inverse operator L^{-1} , or more generally the resolvent $(L + \mu I)^{-1}$, is equivalent to analyzing the spectrum of L. For example, consider the second-order differential operator:

$$Lu = -u''(x),$$

and the eigenvalue equation

$$-u''(x) = \mu u(x), \quad \mu \in \mathbb{R}.$$

We consider two boundary conditions:

- (a) Dirichlet condition: u(0) = u(1) = 0.
- (b) Periodic condition: u is 1-periodic.

The general solution to $u'' + \mu u = 0$ depends on the sign of μ :

$$u(x) = \begin{cases} C_1 e^{-\sqrt{-\mu}x} + C_2 e^{\sqrt{-\mu}x} & \mu < 0, \\ ax + b & \mu = 0, \\ C_1 \sin(\sqrt{\mu}x) + C_2 \cos(\sqrt{\mu}x) & \mu > 0. \end{cases}$$

We now analyze which values of μ yield nontrivial solutions under the two boundary conditions:

- (i) μ < 0: No nontrivial solution satisfies either (a) or (b).
- (ii) $\mu = 0$: The general solution is linear. Under (a), the only solution is trivial. Under (b), constants are solutions, so $\mu = 0$ is an eigenvalue for (b) only.
- (iii) $\mu > 0$: Write $\mu = n^2\pi^2$. Then $u(x) = C\sin(n\pi x)$ satisfies (a), while $u(x) = C_1\sin(n\pi x) + C_2\cos(n\pi x)$ satisfies (b). Hence, for both (a) and (b), the eigenvalues are $\mu_n = n^2\pi^2$, and the eigenfunctions form a Fourier basis.

5 Self-Adjoint Operators and Spectral Measures

For the sake of clarity, we omit certain technical proofs and focus on outlining the overall theoretical framework. The precise definition of self-adjoint operators and the proofs of the following results can be found in Section 1.4 of our textbook.

Proposition 5.1. Let $A \in \mathcal{B}(H)$. Then:

- $||A^*|| = ||A||$;
- $||A^*A|| = ||A||^2$;
- For all $A, B \in \mathcal{B}(H)$, $a \in \mathbb{C}$, we have:

$$(A+B)^* = A^* + B^*, \quad (aA)^* = \bar{a}A^*, \quad (AB)^* = B^*A^*.$$

Definition 5.2. An operator $A \in \mathcal{B}(H)$ is called:

- self-adjoint if $A = A^*$;
- unitary if $AA^* = A^*A = I$;
- normal if $AA^* = A^*A$;
- idempotent if $A^2 = A$.

Proposition 5.3. If $A \in \mathcal{B}(H)$ is self-adjoint, then $\sigma(A) \subset \mathbb{R}$ is a compact set. Moreover, for any normal operator $A \in \mathcal{B}(H)$, we have:

$$||A|| = \operatorname{spr}(A).$$

Sketch of Proof. Let z = x + iy, with $y \neq 0$. Then for any $\phi \in H$, we compute:

$$\|(A-z)\phi\|^2 = \|(A-x)\phi - iy\phi\|^2 = \|(A-x)\phi\|^2 + y^2\|\phi\|^2 - \langle A\phi - x\phi, iy\phi \rangle - \langle iy\phi, A\phi - x\phi \rangle.$$

Since $\langle i\phi, \phi \rangle = -\langle \phi, i\phi \rangle$ and A is self-adjoint, we have:

$$\langle A\phi, i\phi \rangle = \langle \phi, iA\phi \rangle = -\langle i\phi, A\phi \rangle.$$

Hence the cross terms cancel, and we obtain:

$$||(A-z)\phi||^2 \ge y^2 ||\phi||^2,$$

which shows that A-z is injective and bounded below.

To show surjectivity of A-z, observe that

$$\overline{\text{Ran}(A-z)} = \ker((A-\bar{z})^*)^{\perp} = \ker(A-\bar{z})^{\perp} = \{0\}^{\perp} = H.$$

Thus, Ran(A-z) is dense. Since we already showed that A-z is bounded below, it follows that its range is also closed. Hence,

$$Ran(A - z) = H.$$

More explicitly, suppose $\psi_n = (A-z)\phi_n \to \psi$ in H. Then,

$$\|\phi_n - \phi_m\| \le \frac{1}{|y|} \|\psi_n - \psi_m\|,$$

so $\{\phi_n\}$ is a Cauchy sequence, hence converges to some $\phi \in H$, and we have $\psi_n = (A-z)\phi_n \to (A-z)\phi$, thus $\psi = (A-z)\phi \in \text{Ran}(A-z)$.

Therefore, A-z is bijective, and $z \in \rho(A)$, i.e.,

$$\sigma(A) \subset \mathbb{R}$$
.

Now when A is normal. First observe:

$$||A^{2n}|| = ||A^*A||^n = ||A||^{2n}$$
, so $||A^n|| = ||A||^n$.

By the general spectral radius formula,

$$\operatorname{spr}(A) = \lim_{n \to \infty} \|A^n\|^{1/n} = \lim_{n \to \infty} \|A\| = \|A\|.$$

Proposition 5.4 (Orthogonal Projection Operator). Suppose $V \subset H$ is a closed subspace of a Hilbert space, and let P denote the orthogonal projection onto V. Then:

- (a) $P \in \mathcal{B}(H)$, i.e., P is a bounded linear operator;
- (b) $P^2 = P = P^*$, i.e., P is self-adjoint and idempotent;
- (c) For any orthonormal basis $\{h_n\}$ of H, we have:

$$\dim V = \sum_{n} \langle h_n, Ph_n \rangle,$$

where the right-hand side is independent of the choice of orthonormal basis. We allow both sides to be infinite.

Remark 5.5. If $A \in \mathbb{C}^{n \times n}$ is a self-adjoint matrix, then by the spectral theorem, we can write

$$A = \sum_{\lambda \in \sigma(A)} \lambda P_{\lambda},$$

where P_{λ} denotes the orthogonal projection onto the eigenspace $\ker(A - \lambda I)$. Since $P_{\lambda}P_{\mu} = 0$ for $\lambda \neq \mu$, and $P_{\lambda}^2 = P_{\lambda}$, for any polynomial ρ , we can see

$$\rho(A) = \sum_{\lambda \in \sigma(A)} \rho(\lambda) P_{\lambda}.$$

If f is any continuous function on \mathbb{R} , we can similarly define

$$f(A) := \sum_{\lambda \in \sigma(A)} f(\lambda) P_{\lambda},$$

which shows that all information about A is captured by its spectrum $\sigma(A)$.

However, in the infinite-dimensional setting, the spectrum may not consist of eigenvalues at all, so the projections P_{λ} are not defined and the above formula does not make sense.

In general, if A is a self-adjoint operator on a Hilbert space and $f: \mathbb{R} \to \mathbb{C}$ is continuous, we use the fact that $\sigma(A) \subset \mathbb{R}$ is compact. By the Weierstrass approximation theorem, we can find a sequence of polynomials $\{p_n\}$ such that

$$p_n \to f$$
 uniformly on $\sigma(A)$.

Then we define the continuous functional calculus by

$$f(A) := \lim_{n \to \infty} p_n(A).$$

The first thing we must verify is that the definition of f(A) is independent of the choice of approximating polynomial sequence $\{p_n\}$.

Proposition 5.6. Let $A \in \mathcal{B}(V)$ is normal, and let p be a polynomial. Then

$$\sigma(p(A)) = p(\sigma(A)) := \{p(z) : z \in \sigma(A)\}.$$

Remark 5.7. Combined with **Proposition 5.3**, if $A \in \mathcal{B}(H)$ is normal and p is a polynomial, then

$$||p(A)|| = \sup \{|p(z)| : z \in \sigma(A)\}.$$

Now suppose $\{p_n\}$, $\{q_n\}$ are two sequences of polynomials converging uniformly to a continuous function f on $\sigma(A)$. Then

$$||p_n(A) - q_n(A)|| = \sup\{|p_n(z) - q_n(z)| : z \in \sigma(A)\} \to 0,$$

which shows that the operator

$$f(A) := \lim_{n \to \infty} p_n(A)$$

is well-defined and independent of the choice of approximating polynomials.

Proposition 5.8. Based on the previous discussion, for any self-adjoint operator $A \in \mathcal{B}(H)$, we can define a map

$$f \in C(\sigma(A)) \mapsto f(A) \in \mathcal{B}(H)$$

via uniform approximation by polynomials. This assignment satisfies the following properties for all $f, g \in C(\sigma(A)), a \in \mathbb{C}$:

- (f+g)(A) = f(A) + g(A),
- (af)(A) = af(A),
- (fg)(A) = f(A)g(A), (which implies commutativity)
- $(f(A))^* = \overline{f}(A)$,
- 1(A) = I, where $1(z) \equiv 1$.

Moreover, by **Proposition 5.3** and the polynomial approximation procedure, we have the operator norm estimate:

$$||f(A)|| = ||f||_{L^{\infty}(\sigma(A))}.$$

As usual, we begin with the finite-dimensional setting. Suppose $A \in \mathbb{C}^{n \times n}$ is a self-adjoint matrix. Then for any $v \in \mathbb{C}^n$, we have:

$$\langle v, f(A)v \rangle = \sum_{\lambda \in \sigma(A)} f(\lambda) ||P_{\lambda}v||^2,$$

where P_{λ} denotes the orthogonal projection onto $\ker(A - \lambda I)$.

This expression can be interpreted as an integral of f against the Dirac measure supported on $\sigma(A)$, with weights $||P_{\lambda}v||^2$ assigned to each $\lambda \in \sigma(A)$. That is,

$$\langle v, f(A)v \rangle = \int_{\sigma(A)} f(\lambda) \, d\mu_v(\lambda),$$

where $\mu_v := \sum_{\lambda \in \sigma(A)} \|P_{\lambda}v\|^2 \delta_{\lambda}$.

Even though in infinite-dimensional Hilbert spaces we may not be able to guarantee the existence of eigenvalues, the expression $\langle v, f(A)v \rangle$ still defines a measure μ_v on $\sigma(A)$, known as the spectral measure associated to v.

Theorem 5.9 (Spectral Theorem). Let $A \in \mathcal{B}(H)$ be self-adjoint. Then for all $\phi, \psi \in H$, there exists a complex Borel measure $\mu = \mu_{\phi,\psi}^A$ on $\sigma(A)$, such that

$$\langle \phi, f(A)\psi \rangle = \int_{\sigma(A)} f(\lambda) \, d\mu(\lambda)$$

for all $f \in C(\sigma(A))$. In particular, when $\phi = \psi$, μ is a positive measure.

Proof. Consider the map

$$f \mapsto \langle \phi, f(A)\psi \rangle.$$

This is a linear bounded functional on $C(\sigma(A))$, since

$$|\langle \phi, f(A)\psi \rangle| \le ||f(A)|| ||\phi|| ||\psi|| \le ||f||_{C(\sigma(A))} ||\phi|| ||\psi||.$$

By the Riesz representation theorem, there exists a unique complex Borel measure μ such that

$$\langle \phi, f(A)\psi \rangle = \int_{\sigma(A)} f(\lambda) \, d\mu(\lambda).$$

Now suppose $\phi = \psi$ and $f \ge 0$ in $C(\sigma(A))$. Then we can find $g \in C(\sigma(A))$ such that $g^2 = f$. By the functional calculus (via polynomial approximation), we have

$$f(A) = g(A)^2$$
, and $g(A) = g(A)^*$.

So

$$\langle \phi, f(A)\phi \rangle = \langle \phi, g(A)^2 \phi \rangle = ||g(A)\phi||^2 \ge 0.$$

This shows that $\mu_{\phi,\phi}$ is a nonnegative regular Borel measure.