Университет ИТМО

Факультет программной инженерии и компьютерной техники

Прикладная математика

Лабораторная работа №4

Конструирование распознавателя для КС-грамматики методом рекурсивного спуска
Вариант 3

Выполнил: Студент группы Р3310 Глушков Дмитрий Сергеевич

Исходная грамматика

```
G = {VT, VN, P, S}

VN = {S, A, B, C}

VT = {a, b, c}

P = {

    S \rightarrow ABCa

    A \rightarrow aA | aB | a

    B \rightarrow BBb | BBbb | bbb

    C \rightarrow cccA | ccBB | cC | c
```

Устранение левой рекурсии

Так как множество Р содержит правила вида $A \to A\alpha$, $A \in VN$, и $\alpha \in V^*$, то исходная грамматика G является леворекурсивной, а значит для нее нельзя применять метод рекурсивного спуска. Пошаговый процесс устранения леворекурсивных правил грамматики представлен в таблице 1.

Таблица 1. Устранение левой рекурсии.

$A \in VN$	Правила вида А →Аα	Правила вида $A \to \beta 1$	Новый эквивалентный набор правил без правил $A \rightarrow A\alpha$
S	_	S → ABCa	Правила вида А → Аα отсутствуют, множество правил с S остается неизменным
A	_	$A \rightarrow aA$ $A \rightarrow aB$ $A \rightarrow a$	Правила вида А → Аα отсутствуют, множество правил с А остается неизменным
В	B → BBb B → BBbb	B → bbb	$B \rightarrow bbb$ $B \rightarrow bbbX$ $X \rightarrow Bb \mid Bbb$ $X \rightarrow BbX \mid BbbX$
С	-	$C \rightarrow cccA$ $C \rightarrow ccBB$ $C \rightarrow cC$ $C \rightarrow c$	Правила вида А → Aα отсутствуют, множество правил с С остается неизменным

После устранения леворекурсивных правил, множество Р'имеет следующий вид:

```
P` = \{ \\ S \rightarrow ABCa \\ A \rightarrow aA \mid aB \mid a \\ B \rightarrow bbb \mid bbbX \\ X \rightarrow Bb \mid Bbb \mid BbX \mid BbbX \\ C \rightarrow cccA \mid ccBB \mid cC \mid c \\ \}
```

Левая факторизация

Так как наличие в грамматике правил вида $A \to \alpha \beta_1 | \alpha \beta_2$ может затруднить процесс построения распознавателя, необходимо провести левую факторизацию. Поэтапный процесс левой факторизации представлен в таблице 2.

Таблица 2. Левая факторизация.

$A \in VN$	Правила вида $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$	Цепочка α максимальной длины	Эквивалентный набор правил без правил вида $A \rightarrow \alpha \beta_1 \alpha \beta_2$
S	-	_	Без изменений
А	A → aA A → aB	α = a	$Y \rightarrow A \mid B \mid \epsilon$ $A \rightarrow aY$
В	B → bbb B → bbbX	$\alpha = bbb$	$Z \rightarrow \varepsilon \mid X$ $B \rightarrow bbbZ$
X	$X \rightarrow Bb$ $X \rightarrow Bbb$ $X \rightarrow BbX$ $X \rightarrow BbbX$	$\alpha = Bb$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
С	$C \rightarrow CCCA$ $C \rightarrow CCBB$ $C \rightarrow CC$ $C \rightarrow C$	α = c	$V \rightarrow CCA \mid CBB \mid C \mid$ ε $C \rightarrow CV$

После проведения левой факторизации, множество Р`` имеет следующий вид:

```
P`` = \{ \\ S \rightarrow ABCa \\ Y \rightarrow A \mid B \mid \epsilon \\ A \rightarrow aY \\ Z \rightarrow \epsilon \mid X \\ B \rightarrow bbbZ \\ W \rightarrow \epsilon \mid b \mid X \mid bX \\ X \rightarrow BbW \\ V \rightarrow CCA \mid CBB \mid C \mid \epsilon \\ C \rightarrow CV \}
```

В данном множестве Р`` также можно провести факторизацию правил, содержащих слева символы W и V, однако это не является необходимым.

Построение множеств FIRST и FOLLOW для нетерминальных символов множества P``

В таблице 3 представлены значения isnullable() для каждого нетерминала из множества Р``, используемые в построении множеств FIRST.

Таблица 3. Значения isnullable().

Нетерм.	S	Y	А	Z	В	W	Χ	V	С
isnullable	0	1	0	1	0	1	0	1	0

В таблице 4 представлен процесс построения множеств FIRST для нетерминальных символов множества Р``.

Таблица 4. Множества FIRST для нетерминалов из Р``.

Шаг	First (S)	First (Y)	First (A)	First (Z)	First (B)	First (W)	First (X)	First (V)	First (C)
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	٤	a	٤	b	b, ε	Ø	c, E	С
2	а	a,b,ε	а	b, ε	b	b, ε	b	С, ε	С

В таблице 5 представлен процесс построения множеств FOLLOW для нетерминальных символов множества Р``.

Таблица 5. Множества FOLLOW для нетерминалов из Р``.

Шаг	FLLW (S)	FLLW (Y)	FLLW (A)	FLLW (Z)	FLLW (B)	FLLW (W)	FLLW (X)	FLLW (V)	FLLW (C)
0	\$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	\$	Ø	Ø	Ø	Ø	Ø	Ø	\$, a	\$, a
2	\$	Ø	Ø	\$,a,b	\$,a,b	Ø	Ø	\$, a	\$, a
3	\$	Ø	Ø	\$,a,b	\$,a,b	\$,a,b	\$,a,b	\$, a	\$, a
4	\$	\$,a,b	\$,a,b	\$,a,b	\$,a,b	\$,a,b	\$,a,b	\$, a	\$, a

Результирующая грамматика:

```
G`` = {VT, VN``, P``, S}

VN`` = {S, A, B, C, W, V, X, Y, Z}

VT = {a, b, c}

P`` = {

    S \rightarrow ABCa

    Y \rightarrow A | B | \epsilon

    A \rightarrow aY

    Z \rightarrow \epsilon | X

    B \rightarrow bbbZ

    W \rightarrow \epsilon | b | X | bX

    X \rightarrow BbW

    V \rightarrow CCA | CBB | C | \epsilon

    C \rightarrow CV
}
```

При желании, можно убедиться, что к данной грамматике применим метод рекурсивного спуска.