

Improving the Layout of Oligonucleotide Microarrays: Pivot Partitioning

Sérgio A. de Carvalho Jr. 1,2,3 Sven Rahmann 1,2

¹Algorithms and Statistics for Systems Biology, Genome Informatics, Technische Fakultät, Universität Bielefeld, Germany

²International NRW Graduate School in Bioinformatics and Genome Research

 $^3{\sf Graduiertenkolleg}$ Bioinformatik

6th Workshop on Algorithms in Bioinformatics Zürich, Sep 2006

Outline

- Introduction: Microarray Layout
- Conflict Index Evaluation Model
- Pivot Partitioning Algorithm

Outline

Introduction •0000

- Introduction: Microarray Layout

High-Density Oligonucleotide Microarrays

Probe Synthesis: Photolitographic Masks

- Probes are synthesized on the chip in a series of steps
- Each step appends a particular nucleotide to selected regions
- Selection occurs by exposure to light

p_1	p_2	p_3	
ACT	CTG	GAT	
ρ_4	p_5	p_6	
TCC	GAC	GCC	
ΤСС	GAC	ρ_9	

<i>S</i> =	ACGTACGTACGT
$\varepsilon_1 =$	
$\varepsilon_2 =$	
$\epsilon_3 =$	
$\varepsilon_4 =$	
ε ₅ =	
$\varepsilon_6 =$	
ε ₇ =	
E 8 =	
50 -	

ρ_1	p_2	p_3	
ACT	CTG	GAT	
<i>p</i> ₄	p ₅	<i>p</i> ₆	
		888	
TCC	GAC	GCC	
ρ_7	p ₈	<i>p</i> ₉	

```
S = ACGTACGTACGT
\varepsilon_3 =
\varepsilon_5 =
\varepsilon_6 =
\varepsilon_7 =
= 83
```

ρ_1	p_2	p_3	
ACT	CTG	GAT	
<i>p</i> ₄	p ₅	p_6	
TCC	GAC	GCC	
P ₇	GAC P ₈	p ₉	

S =	ACGTACGTACGT
$\varepsilon_1 =$	A
$\varepsilon_2 =$	-C
$\epsilon_3 =$	
$\varepsilon_4 =$	
ε ₅ =	
$\varepsilon_6 =$	
ε ₇ =	
E 8 =	-C
S 0 _	Λ

p_1	p ₂	p_3	
ACT	CTG	GAT	
p_4	p_5	p_6	
TCC	G AC	GCC	
p_7	p_8	p_9	
TAC	CGT	AAT	

$$S = ACGTACGTACGT$$
 $\mathcal{E}_1 = A - - - - - \mathcal{E}_2 = -C - - - - \mathcal{E}_3 = -G - - - \mathcal{E}_4 = - - - \mathcal{E}_5 = -G - - - \mathcal{E}_6 = -G - - \mathcal{E}_7 = - - \mathcal{E}_8 = -CG - - -$

ρ_1	p_2	p_3	
ACT	CTG	GAT	
ρ_4	p_5	p_6	
TCC	GAC	GCC	
$rac{TCC}{p_7}$	GAC P ₈	P ₉	

ρ_1	p_2	p_3	
ACT	CTG	GAT	
p_4	p_5	p_6	
TCC	GAC	GCC	
n	n	n	
ρ_7	p_8	p_9	

ρ_1	p_2	p_3	
ACT	CTG	GAT	
p_4	p_5	p_6	
TCC	GAC	GCC	
p ₇	<i>p</i> ₈	p_9	
TAC	CGT	AAT	

Left-most embedding!

Introduction

00000

ρ_1	p_2	p_3	
ACT	CTG	GAT	
p_4	p_5	p_6	
TCC	GAC	GCC	
p ₇	<i>p</i> ₈	p_9	
TAC	CGT	AAT	

```
S = ACGTACGTACGT
\varepsilon_9 = 100010010000
```

Problem: Unintended Illumination

- Untargeted spots can be accidentally activated
 - Diffraction of light
 - Internal reflection
- Production of defective probes
- More likely near the borders between masked and unmasked spots: border conflict

Border Length Minimization Problem (Hannenhalli et al., 2002)

 Find arrangement (and embeddings) with minimum number of border conflicts

Outline

- Conflict Index Evaluation Model

Conflict Index: Motivation

Introduction

- Border Length measures the quality of a particular mask
 - We are more interested in a per-probe measure
- Practical considerations need to be taken into account:
 - a) Stray light might activate probes that are as far as three cells away from the targeted spot
 - b) Imperfections produced in the middle of a probe are more harmful than in its extremities

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^T \Bigl(\omega(p,t) \sum_{p'} \delta(p,p',t) \Bigr),$$

where $\delta(p, p', t)$ are distance-dependent weights (a) and $\omega(p, t)$ are position-dependent weights (b) defined as follows.

Conflict Index: Definition

Introduction

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^T \Bigl(\omega(p,t) \sum_{p'} \delta(p,p',t)\Bigr)$$

0.06	0.08	0.10	0.11	0.10	0.08	0.06
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.11	0.25	1.00	Р	1.00	0.25	0.11
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.06	0.08	0.10	0.11	0.10	0.08	0.06

a) Distance-dependent weights $\delta(p, p', t)$

$$\delta(p, p', t) := \begin{cases} (d(p, p'))^{-2} & \text{if } p' \text{ is unmasked at step } t, \\ 0 & \text{otherwise,} \end{cases}$$

where d(p, p') is the Euclidean distance between the spots of p and p'.

Conflict Index: Definition

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^{T} \left(\omega(p,t) \sum_{p'} \delta(p,p',t) \right)$$

b) Position-dependent weights $\omega(p,t)$

$$\omega(p,t) := \left\{ egin{array}{ll} c \cdot \exp\left(\theta \cdot \lambda(p,t)
ight) & ext{if p is masked at step t,} \\ 0 & ext{otherwise,} \end{array}
ight.$$

where c > 0 and $\theta > 0$ are constants,

$$\lambda(p,t) := 1 + \min(b_{p,t}, \ell_p - b_{p,t}),$$

 $b_{p,t}$ denotes the number of nucleotides synthesized up to and including step t, and ℓ_p is the length of probe p.

Outline

- Introduction: Microarray Layout
- Conflict Index Evaluation Model
- Pivot Partitioning Algorithm

Previous Work: Place and Re-embed

- The microarray layout problem has been traditionally approached in two phases:
 - 1) Placement of probes given a fixed embedding
 - 2) Re-embedding of probes given a fixed placement

Placement: Row-epitaxial (Kahng et al., 2003)

- Essentially greedy
- Spots are filled in a pre-defined order
 - Select probe from a list Q such that conflicts with filled spots are minimized
- Restrict the maximum size of Q

Re-embedding: several algorithms

- All based on the Optimum Single Probe Embedding (OSPE)
- OSPE re-embed a probe optimally in regards to its neighbors
- Difference is in the order in which re-embeddings take place

Optimum Single Probe Embedding (OSPE)

- Dynamic Programming
- Originally developed for border length minimization
- Now extended for conflict index minimization

Previous Work: Partitioning

More recently, a partitioning algorithm was proposed

- Divide the problem into smaller sub-problems
- Each sub-problem is treated as a separate placement
- Reduce run-time; may improve placement

Partitioning: Centroid-based Quadrisection (Kahng et al., 2003)

To do...

Summary

- Conflict Index: new model for evaluating microarray layouts
- Pivot Partitioning: new partitioning algorithm
 - Faster and better selection of pivots
 - Improved assignment of probes to regions
 - First to combine placement and re-embedding

Thanks!

- Prof. Dr. Jens Stoye
- Prof. Dr. Robert Giegerich
- AG Genominformatik
- Graduiertenkolleg Bioinformatik
- Graduate School in Bioinformatics and Genome Research
- ...and thank you for your attention!

More info on

http://gi.cebitec.uni-bielefeld.de/assb/chiplayout