

Northwestern Summer Research Opportunity Program (2021)

Tiilt Lab

Kyung Myung (Andy) Ko

Research Project

Brain-Computer Interface: EEG signal to initiate Minecraft playing command

https://www.researchgate.net/figure/Experimental-setup-Screen-participant-with-electroencephalography-EEG-headset-EEG_fig1_348013241

Outline

- Introduction
 - Project Description
 - My Role
- Methodology
 - Dataset
 - Feature Extraction
 - Model Description
- Results
 - Model Evaluation Metrics
 - Results Discussion
- Conclusion
 - Current Position
 - Future Goals

I. Introduction

Project Description

My Role

Project Description

Multimodal

- Using multiple inputs for better interaction with the system
- Speech-based, eye tracking, object detection

Multicraft

- Multimodal input to control the Minecraft interface
- Support diverse learners in non-traditional learning environments.

My Role

Electroencephalography (EEG)

Measures electrical activity of a brain

Characteristics:

• Entails diverse and rich information

Challenges:

Complexity in processing

II. Methodology

Dataset

Feature Extraction

Model Description

Dataset

Muse S. (Headset)

Has 4 sensors (dry electrodes): TP9, TP 10, AF7, AF8 to measure data from

Additional Tools

- muse-IsI: python package to access the EEG data
- BlueMuse: GUI to connect the headset to a PC

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8513653, Real-time Mental State Recognition using a Wearable EEG

Dataset

State 1. Wandering

Subjects were to move in any direction from the map

State 2. Mining

Subjects were to simply mine with any tool

State 3. Building

 Subjects were to build anything (default to N x N shape) using any type of block

Feature Extraction

Short-time Windowing Technique

- Single-point features does not convey enough information for the models to learn
- Generates a total of 988 features + label = (989)
- Specific feature details could be found from
 "Classification of EEG Signals Based on Image
 Representation of Statistical Features" by J.
 Ashford, J. Bird, F. Campelo, and D. Faria

Model Description

XGBoost

Gradient Boosting technique

K-Nearest Neighbor (KNN)

Uses Euclidean distance to determine the closest

neighbors

Gated Recurrent Unit (GRU)

- Deep learning architecture
- Uses update and reset gate to determine what information to include/lose every time series

III. Results

Model Evaluation Metrics

Discussion

Model Evaluation Metrics

Confusion Matrix WANDERING Actual MINING BUILDING WANDERING MINING Predicted

KNN: 86.99%

XGBoost: 93.15%

GRU: 91.78%

Discussion

Meaning of the Evaluation Metrics

- Use the trained model to predict at EEG state at real-time
- May even use more than one model for the classification task

Meaning of our Work

- Introducing EEG to accessible application
- Contribute to next level of interaction with machines

IV. Conclusion

Current Position

Future Goals

Current Position

Current Work

- Real-time Minecraft playing state classification using the trained models
- Developing a real-time task conversion based on the result of the EEG status

Current Models

- May need more dataset from more various users
- Still discovering optimal hyperparameter settings for the GRU model

Future Goals

Future Goals

Incorporating eye gaze feature to perform more precise commands

Challenges

- Need more dataset to train the models
- Developing a real-time classification result conversion to appropriate Minecraft actions

Questions?

Thank You For Listening!

peanut61313@gmail.com

https://github.com/andyko208/EEG_Classification

