

Fenômenos de transporte AULA 2- ESTÁTICA DOS FLUIDOS-

Profa. Kátia Lopes Silva

Definição de Estáticas dos Fluidos

A estática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma condição de equilíbrio estático, ao longo dessa aula são apresentados os conceitos fundamentais para a quantificação e solução de problemas relacionados à pressão estática e escalas de pressão.

Definição de pressão

A pressão média aplicada sobre uma superfície pode ser definida pela relação entre a força aplicada e a área dessa superfície e pode ser numericamente calculada pela aplicação da equação a seguir.

$$P = \frac{F}{A}$$

Unidade de Pressão :SI

Como a força aplicada é dada em Newtons [N] e a área em metro ao quadrado [m²], o resultado dimensional será o quociente entre essas duas unidades, portanto a unidade básica de pressão no sistema internacional de unidades (SI) é N/m² (Newton por metro ao quadrado).

A unidade N/m² também é usualmente chamada de Pascal (Pa), portanto é muito comum na indústria se utilizar a unidade Pa e os seus múltiplos kPa (quilo pascal) e MPa (mega pascal). Desse modo, as seguintes relações são aplicáveis:

```
1N/m<sup>2</sup> = 1Pa

1kPa = 1000Pa = 10<sup>3</sup>Pa

1MPa = 1000000Pa = 106Pa
```

Outras unidades

Na prática industrial, muitas outras unidades para a especificação da pressão também são utilizadas, essas unidades são comuns nos mostradores dos manômetros industriais e as mais comuns são: atm, mmHg, kgf/cm², bar, psi e mca. A especificação de cada uma dessas unidades está apresentada a seguir.

atm (atmosfera)
mmHg (milímetro de mercúrio)
kgf/cm² (quilograma força por centímetro ao quadrado)
bar (nomenclatura usual para pressão barométrica)
psi (libra por polegada ao quadrado)
mca (metro de coluna d'água)

Tabela de Conversão

Dentre as unidades definidas de pressão, tem-se um destaque maior para a atm (atmosfera) que teoricamente representa a pressão necessária para se elevar em 760mm uma coluna de mercúrio, assim, a partir dessa definição, a seguinte tabela para a conversão entre unidades de pressão pode ser utilizada.

```
1atm = 760mmHg = 101230Pa

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm<sup>2</sup>

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm<sup>2</sup> = 1,01bar

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm<sup>2</sup> = 1,01bar = 14,7psi

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm<sup>2</sup> = 1,01bar = 14,7psi = 10,33mca
```

Pressão Atmosférica- Barômetro de Torricelli

Sabe-se que o ar atmosférico exerce uma pressão sobre tudo que existe na superfície da Terra. A medida dessa pressão foi realizada por um discípulo de Galileu chamado Evangelista Torricelli, em 1643.

Para executar a medição, Torricelli tomou um tubo longo de vidro, fechado em uma das pontas, e encheu-o até a borda com mercúrio. Depois tampou a ponta aberta e, invertendo o tubo, mergulhou essa ponta em uma bacia com mercúrio. Soltando a ponta aberta notou que a coluna de mercúrio descia até um determinado nível e estacionava quando alcançava uma altura de cerca de 760 milímetros.

Acima do mercúrio, Torricelli logo percebeu que havia vácuo e que o peso do mercúrio dentro do tubo estava em equilíbrio estático com a força que a pressão do ar exercia sobre a superfície livre de mercúrio na bacia, assim, definiu que a pressão atmosférica local era capaz de elevar uma coluna de mercúrio em 760mm, definindo desse modo a pressão atmosférica padrão.

O mercúrio foi utilizado na experiência devido a sua elevada densidade, se o líquido fosse água, a coluna deveria ter mais de 10 metros de altura para haver equilíbrio, pois a água é cerca de 14 vezes mais leve que o mercúrio.

Barômetro de Torricelli

Dessa forma, Torricelli concluiu que essas variações mostravam que a pressão atmosférica podia variar e suas flutuações eram medidas pela variação na altura da coluna de mercúrio. Torricelli não apenas demonstrou a existência da pressão do ar, mas inventou o aparelho capaz de realizar sua medida, o barômetro como pode se observar na figura.

Exercícios

 Uma placa circular com diâmetro igual a 0,5m possui um peso de 200N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo.

Solução

Área da Placa:

$$A = \frac{\pi \cdot d^2}{4}$$

$$A = \frac{\pi \cdot 0.5^2}{4}$$

$$A = 0.19625 \text{ m}^2$$

Determinação da Pressão:

$$P = \frac{F}{A}$$

$$P = \frac{200}{0.19625}$$

$$P = 1019,1 \,\text{N/m}^2$$

$$P = 1019,1$$
 Pa

Exercícios

 Determine o peso em N de uma placa retangular de área igual a 2m² de forma a produzir uma pressão de 5000Pa.

Resolução

Cálculo do Peso:

$$P = \frac{F}{A}$$

$$F = P \cdot A$$

$$F = 5000 \cdot 2$$

$$F = 10000 \text{N}$$

A Força calculada corresponde ao peso da placa

Exercícios propostos

2) Uma placa circular com diâmetro igual a 1m possui um peso de 500N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo.

Exercícios Propostos

- Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela).
- a) converter 2atm em Pa.
- b) converter 3000mmHg em psi.
- c) converter 30psi em bar.
- d) converter 5mca em kgf/cm².
- e) converter 8bar em Pa.
- f) converter 10psi em Pa.

Manômetro de Bourdon - pressão relativa (Dispositivo mecânico) Pressão positiva

Engenharia elétrica

- Geralmente, os instrumentos medidores de pressão, os manômetros, indicam a diferença entre a pressão medida e a pressão atmosférica local, ou seja, medem a pressão relativa, que pode ser positiva ou negativa.
- As pressões relativas negativas, também chamadas de pressões de vácuo, são aquelas menores que a pressão atmosférica local.

A pressão absoluta pode ser calculada como:

$$p_{abs} = p_{atm} + p_{rel}$$

Pressão atmosférica padrão

Algumas propriedades dos fluidos

Massa específica ("densidade"), ρ (letra Grega "rô")

$$\rho = \frac{massa}{volume} = \frac{m}{V}$$

Para água a 5° C $\rho = 1 \frac{g}{cm^3} = 1000 \frac{kg}{m^3}$

Unidades: $\frac{g}{cm^3}, \frac{kg}{m^3}, \frac{slug}{ft^3}$

Massa específica de algumas substâncias a 25°C

Água	0,997 g/cm ³
	0,789 g/cm ³
Óleo de cozinh	a0,92 g/cm ³
Gasolina	0,720 g/cm ³
	2,70 g/cm ³
Chumbo	11,3 g/cm ³
Diamante	3,5 g/cm ³
Leite integral	1,03 g/cm ³
Mercúrio	13,6 g/cm ³
Ar 1	1,22x10 ⁻³ g/cm ³

Massa específica

$$\rho = \frac{m}{V}$$

Conforme se observa na expressão matemática da densidade, ela é inversamente proporcional ao volume, isto significa que quanto menor o volume ocupado por determinada massa, maior será a densidade. Vamos comparar duas substâncias: água e mercúrio.

Metal líquido à temperatura ambiente $\rho = 13,6 \text{ g/cm}^3$

Água, substância básica para existência da vida $\rho = 1.0 \text{ g/cm}^3$

Comparando as massas de 1 cm³ de água e 1 cm³ de mercúrio

Comparando os volumes de 13,6 g de água e mercúrio

mercúrio

 $13,6 g de água => 13,6 cm^3$

13,6 g de mercúrio => 1 cm³

Observação: A massa específica de cada material

dependerado, perolumes por pere aguado.

Engenharia elétrica

Massa específica, ρ

$$\rho_1 < \rho_2 < \rho_3 < \rho_4 < \rho_5 < \rho_6$$

Substâncias imiscíveis, quando colocadas juntas num mesmo recipiente, distribuem-se em diferentes camadas. As substâncias com menor massa específica posicionam-se mais em baixo, e as com menor massa específica mais em cima.

Fonte:

http://www.brasilescola.com

Massa específica, p

Tente imaginar como seria o mundo se a massa específica do gelo fosse maior que a da água líquida...

Iceberg: a maior parte do volume total de uma iceberg encontra-se submersa.

A massa específica das substâncias depende da temperatura

Propriedades da água

Temperatura T (°C)	Massa específica ρ (kg/m³)
0	999,9
5	1000,0
10	999,7
15	999,1
20	998,2
30	995,7
40	992,2
50	988,1
60	983,2
70	977,8
80	971,8
90	965,3
100	958,4

Propriedades do ar à pressão atmosférica-padrão

Temperatura T (°C)	Massa específica ρ (kg/m³)
-50	1,582
-30	1,452
-20	1,394
-10	1,342
0	1,292
10	1,247
20	1,204
30	1,164
40	1,127
50	1,092
60	1,060
70	1,030
80	1,000
90	0,973
100	0,946
200	0,746
300	0,616

Densidade, d

A densidade é a razão entre a massa específica de uma substância e a da substância de referência a 4°C, ou seja,

$$d = \frac{\rho}{\rho_{ref}} ou \ d = \frac{\gamma}{\gamma_{ref}}$$

Para líquidos, a substância de referência é a água e para os gases é o ar.

Por exemplo, quando dizemos que a densidade do mercúrio (Hg) é 13,6, queremos dizer que a massa específica do mercúrio é 13,6 vezes maior que a da água, ou que a massa do mercúrio é 13,6 vezes maior que a da água para o mesmo volume.

Peso específico, γ ("gamma")

Peso específico =
$$\frac{\text{peso}}{\text{volume}}$$

$$\gamma = \rho g$$

Para a água:
$$\gamma = \rho g = 1000 \frac{kg}{m^3} \times 9, 8 \frac{m}{s^2} = 9800 \frac{N}{m^3}$$

Pressão em um ponto

Existe uma determinada pressão em cada ponto de um fluido. Define-se pressão como a força normal por unidade de área em que atua, ou seja, a pressão **p** num ponto é o limite do quociente entre a força normal e a área em que atua quando a área tende a zero no entorno do

ponto:

$$p \equiv \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}$$

A pressão medida em um dado ponto em um fluido em repouso independe da direção.

Equação fundamental da estática dos fluidos

- Em um fluido em repouso, submetido ao campo gravitacional, as únicas forças que atuam sobre um elemento fluido são o peso e as forças devidas às pressões estáticas.
- Tem-se, em princípio, que a pressão **p** = **p**(**x**,**y**,**z**). Consideremos um elemento de volume Δ**x** Δ**y** Δ**z**, com faces paralelas aos planos coordenados de um sistema de coordenadas retangulares, isolado de um fluido em repouso com massa específica ρ, conforme é mostrado na figura a seguir, na qual designamos as pressões que atuam sobre o elemento de fluido de acordo com a coordenada de posição da face do elemento cúbico sobre a qual atua a pressão.

Balanço de forças na direção y

Assim, considerando um eixo y vertical com sentido positivo para cima, conclui-se que a pressão varia somente em função de y, de maneira que

$$\frac{dp}{dy} = -\rho g$$

Onde o sinal negativo aparece porque foi adotado um eixo de referência para cima enquanto que a aceleração da gravidade aponta para baixo.

Variação da pressão em um fluido em repouso

- A variação da pressão com a altura (ou profundidade) é obtida por meio da integração da equação fundamental da estática dos fluidos, que é aplicável para qualquer fluido em repouso.
- O peso específico γ = ρg pode ser constante ou variável em função da variação da massa específica ρ do fluido e, também, da variação do campo gravitacional.
- Estudaremos somente casos em que a aceleração da gravidade pode ser considerada constante.

Variação da pressão em um fluido incompressível

- Um fluido incompressível tem a massa específica constante, de forma que a integração da equação básica da estática dos fluidos fica simplificada.
- Para líquidos, geralmente é mais conveniente a adoção de um referencial com um eixo h, paralelo ao campo gravitacional, com origem na superfície livre e sentido positivo para baixo, conforme é apresentado na figura a seguir.
- Com isso, a equação fundamental pode ser reescrita como

$$\frac{dp}{dy} = \rho g = \text{constante} \tag{1}$$

A variação da pressão com a altura é determinada por meio da integração da equação fundamental usando condições de contorno adequadas. Considerando que a pressão num nível de referência \mathbf{y}_0 é \mathbf{p}_0 , determina-se a pressão $\mathbf{p}(\mathbf{y})$ numa altura \mathbf{y} , qualquer, integrando-se a equação (1), de forma que

$$\int_{p_0=p_{atm}}^p dp = \int_{y_0=0}^{y=h} \rho g dy$$

resultando em

$$p = p_{atm} + \rho gh \qquad (2)$$

Considerando um reservatório aberto,

$$p = p_{atm} + \rho g h$$

Ou, de forma geral,

$$p = p_{ref} + \rho g h$$

Em que:

p_{atm} = pressão atmosférica,

P_{ref} = pressão de referência, ou seja, pressão na superfície do líquido,

 ρ = massa específica do líquido,

 $g = aceleração da gravidade (<math>g = 9.8 \text{ m/s}^2$),

h = altura da coluna de fluido.

Assim, num fluido incompressível (ρ = constante) a pressão varia linearmente com a profundidade.

Qual tanque tem maior pressão na base, o tanque 1 ou o tanque 2?

Obs.: os tanques são cilindricos

Exemplo 01:

Determine a pressão na base de um tanque aberto, se ele contem uma camada de 7 cm de Hg, 20 cm de água e 30 cm de óleo.

Dados: $\rho_{\text{água}} = 1.0 \text{ g/cm}^3$, $\rho_{\text{óleo}} = 0.92 \text{ g/cm}^3$, $\rho_{\text{Hg}} = 13.6 \text{ g/cm}^3 \text{ e}$ $g = 9.8 \text{ m/s}^2$ e $P_{\text{atm}} = 101 \text{ kPa}$.

CONCLUINDO

A pressão em um fluido incompressível, homogêneo e em repouso, depende da profundidade do fluido em relação e um nível de referência, e não depende da largura ou forma do tanque ou recipiente que contém o fluido. (**Princípio de Stevin**)

superficie do líquido

Exemplo 02

Um tanque fechado contem ar comprimido e óleo como mostra a figura abaixo. Um manômetro de tipo tubo em U usando mercúrio está conectado ao tanque como mostrado. Determine a pressão lida no medidor. Considere:

