

Paralleles Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Motivation

Grundlage des Sortierens Komparator

Sortiernetzwerk Aufbau Korrektheit Odd-Even-Sort

Laufzeit
Herleitung
Vergleich mit Software sortieren

Zusammenfassung

Ausblick Anhang

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Zusammenfassung

Ausblick

Sortieren ist Grundlage für :

- Suche
- ► (Sortierung)
 - Listen
 - Wörterbücher
 - **...**
- ▶ Ist dies auch effektiver / in Hardware möglich?

Motivation

Grundlage des Sortierens Komparator

Sortiernetzwerk

Laufzeit

Zusammenfassung

Ausblick

Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- 2 Ausgänge


```
1
2
3
4
5
6
7
8
9
10
11
12
```

```
void comp(chan in1, in2, out1, out2 Comparer{}){
    a := <- in1;
    b := <- in2;

if (a < b){
    out1 <- a;
    out2 <- b;
    return void;
    }
    out1 <- a;
    out2 <- a;
    return void;
}</pre>
```


Motivation

Grundlage des Sortierens

Sortiernetzwerk Aufbau Korrektheit Odd-Even-Sort

Laufzeit

Zusammenfassung

Aushlick

Erweiterung: Aufbau, Aufgabe

Aufbau:

- mehrere Eingabeleitungen (gleiche Anzahl an Ausgabeleitungen)
- mehrere vergleichende Schritte

Aufbau:

- mehrere Eingabeleitungen (gleiche Anzahl an Ausgabeleitungen)
- mehrere vergleichende Schritte

Aufgabe:

Resultat soll sortierte Ausgabe sein

Aufbau:

- mehrere Eingabeleitungen (gleiche Anzahl an Ausgabeleitungen)
- mehrere vergleichende Schritte

Aufgabe:

▶ Resultat soll sortierte Ausgabe sein

grundlegendes Prinzip:

- intuitiver Einsatz von Vergleichen
- Schrittweises sortieren

Output

Input

7	4	4	4	4	1	_1_	_1_	1
4	7	5	_5_	_1	4	3	3	2
5	5	7	_1	5	3	4	2	3
	8							
6	1	8	_3_	_7_	2	_5_	5	5
	6							
							7	
	2							

Das Zahlenbeispiel funktioniert, aber funktioniert auch jedes andere?

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

► Führen einen Beweis durch Widerspruch

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

- ► Führen einen Beweis durch Widerspruch
- d.h: Wenn ein Algorithmus eine Eingabefolge nicht sortiert, so sortiert er trotzdem alle 0,1-Folgen.

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

- Führen einen Beweis durch Widerspruch
- ▶ d.h : Wenn ein Algorithmus eine Eingabefolge nicht sortiert, so sortiert er trotzdem alle 0,1-Folgen.
- somit ist das Ziel eine 0,1-Folge zu finden, die nicht sortiert wird

benötigen folgendes

- ▶ benötigen folgendes
 - ► Eingabefolge $E = e_0 ... e_N$

- benötigen folgendes
 - Eingabefolge E = e₀ ... e_N
 sortierte Folge S = s₀... s_N

- benötigen folgendes
 - Eingabefolge $E = e_0 \dots e_N$

 - ► sortierte Folge $S = s_0 ... s_N$ ► unsortierte Ausgabefolge $U = u_0 ... u_N$

- benötigen folgendes
 - ▶ Eingabefolge $E = e_0 \dots e_N$
 - sortierte Folge $S = s_0 \dots s_N$
 - unsortierte Ausgabefolge $U = u_0 \dots u_N$
 - ▶ k : (kleinster) Index an dem $u_k \neq s_k$

FU Berlin, Para Sort, ProSem Algo

- benötigen folgendes
 - ▶ Eingabefolge $E = e_0 \dots e_N$
 - sortierte Folge $S = s_0 \dots s_N$
 - unsortierte Ausgabefolge $U = u_0 \dots u_N$
 - ▶ k : (kleinster) Index an dem $u_k \neq s_k$
- ▶ dann gilt :

$$(1) \ u_i = s_i \ \forall \ 0 \le i < k$$

- benötigen folgendes
 - ▶ Eingabefolge $E = e_0 \dots e_N$
 - sortierte Folge $S = s_0 \dots s_N$
 - unsortierte Ausgabefolge $U = u_0 \dots u_N$
 - ▶ k : (kleinster) Index an dem $u_k \neq s_k$
- ▶ dann gilt :
 - (1) $u_i = s_i \ \forall \ 0 \le i < k$
 - (2) $u_r = s_k \text{ mit} : r > k$

Ш

▶ man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante c (heir : $c = s_k$) und Zahlenfolge E mit den Elementen e_i

$$f(e) = \begin{cases} 0, & \text{if } e_i \leq s_k \\ 1, & \text{if } e_i \geq s_k \end{cases}$$

▶ man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante c (heir : $c = s_k$) und Zahlenfolge E mit den Elementen e_i

$$f(e) = \begin{cases} 0, & \text{if } e_i \leq s_k \\ 1, & \text{if } e_i \geq s_k \end{cases}$$

Ausgabe muss also wie folgt aussehen

▶ man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante c (heir : $c = s_k$) und Zahlenfolge E mit den Elementen e_i

$$f(e) = \begin{cases} 0, & \text{if } e_i \leq s_k \\ 1, & \text{if } e_i \geq s_k \end{cases}$$

Ausgabe muss also wie folgt aussehen

$$00.....01_k...0_r...$$

▶ man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante c (heir : $c = s_k$) und Zahlenfolge E mit den Elementen e_i

$$f(e) = \begin{cases} 0, & \text{if } e_i \leq s_k \\ 1, & \text{if } e_i \geq s_k \end{cases}$$

Ausgabe muss also wie folgt aussehen

$$00 \dots 01_k \dots 0_r \dots$$

⇒ 0,1-Folge ist nicht sortiert

▶ man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante c (heir : $c = s_k$) und Zahlenfolge E mit den Elementen e_i

$$f(e) = \begin{cases} 0, & \text{if } e_i \leq s_k \\ 1, & \text{if } e_i \geq s_k \end{cases}$$

Ausgabe muss also wie folgt aussehen

$$00 \dots 01_k \dots 0_r \dots$$

- ⇒ 0,1-Folge ist nicht sortiert
- ⇒ Widerspruch zur Annahme

Vorteile des 0,1-Prinzips :

- einfach
 - ► sauberer Testcode
 - Sicherheit
- Anzahl der Testfälle sinkt

$$n^n \rightarrow 2^n$$

0,1- Beispiel

Beispiel an der Tafel ?

Mergesort Quicksort

Mergesort Quicksort

Quicksort : wo ist das Pivot Element ? Mit welchem Element müssen wir nun vergleichen?

Mergesort Quicksort

Quicksort: wo ist das Pivot Element?

Mit welchem Element müssen wir nun vergleichen?

Mergesort : Wo ist nun das größte Element ?

welcher Vergleich kommt nun?)

effektiveres Netzwerk

Aufgabe:

- ▶ Resultat soll sortierte Ausgabe sein
- soll effizient sein

Aufgabe:

- Resultat soll sortierte Ausgabe sein
- ▶ soll effizient sein

grundlegendes Prinzip:

- ▶ intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher

Ablauf:

Voraussetzung : bekommen zwei sortierte Listen

- Voraussetzung : bekommen zwei sortierte Listen
- trennen in geraden und ungeraden Index

- Voraussetzung : bekommen zwei sortierte Listen
- trennen in geraden und ungeraden Index
- ▶ fassen a(even) b(odd) = c und a(odd) b(even) = d zusammen (Resultat wird rekursiv sortiert)

- Voraussetzung : bekommen zwei sortierte Listen
- trennen in geraden und ungeraden Index
- fassen a(even) b(odd) = c und a(odd) b(even) = d zusammen (Resultat wird rekursiv sortiert)
- sortierte c und d werden indexweise verschachtelt

- Voraussetzung : bekommen zwei sortierte Listen
- trennen in geraden und ungeraden Index
- fassen a(even) b(odd) = c und a(odd) b(even) = d zusammen (Resultat wird rekursiv sortiert)
- sortierte c und d werden indexweise verschachtelt
- aufeinander folgende Paare werden verglichen und in richtige Reihenfolge gebracht

$$A = 2, 3, 4, 8$$

$$B = 1, 5, 6, 7$$

$$A = 2, 3, 4, 8$$

$$B = 1, 5, 6, 7$$

$$A_e = 2, 4$$
 $B_o = 5, 7$ \Rightarrow $C = 2, 4, 5, 7$

$$A = 2, 3, 4, 8$$

$$B = 1, 5, 6, 7$$

$$A_e = 2, 4$$
 $B_o = 5, 7 \Rightarrow C = 2, 4, 5, 7$

$$A_0 = 3,8$$
 $B_e = 1,6$ \Rightarrow $D = 1,3,6,8$

$$A = 2, 3, 4, 8$$

$$B = 1, 5, 6, 7$$

$$A_e = 2, 4$$
 $B_o = 5, 7 \Rightarrow C = 2, 4, 5, 7$

$$A_0 = 3,8$$
 $B_e = 1,6$ \Rightarrow $D = 1,3,6,8$

nach dem verschachteln

$$A = 2, 3, 4, 8$$

$$B = 1, 5, 6, 7$$

$$A_e = 2, 4$$
 $B_o = 5, 7 \Rightarrow C = 2, 4, 5, 7$

$$A_0 = 3,8$$
 $B_e = 1,6$ \Rightarrow $D = 1,3,6,8$

nach dem verschachteln

Resultat:

- Veranschaulichung mit dem 0,1-Pinzip
 - gleichmäßiges Aufteilen von Nullen und Einsen
 - somit alle nah beieinander
- mit Bubblesort verwandt : Laufzeit

worst : $O(n^2)$ best : O(n)

Übertragung auf Komparatornetzwerk

- sortiert / mischt Eingabelisten
 - ▶ untere Hälfte alle größer als in oberer
- rekursiv die kleineren Listen
- Resultat eine Sortierte Liste

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit Herleitung Vergleich mit Software sortieren

Zusammenfassung

Ausblick

N	Anzahl der Schritte		
2^{1}			
-			

N	Anzahl der Schritte		
21	1		

N	Anzahl der Schritte
2 ¹ 2 ²	1

N	Anzahl der Schritte
2 ¹ 2 ²	1 1+2

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k	1 1+2

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k	$ \begin{array}{c} 1 \\ 1+2 \\ 1+2+3+\ldots+k-1+k = \sum_{i=1}^{k} i \end{array} $

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k (kleiner Gauss)	

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k (kleiner Gauss)	$ \begin{array}{r} 1 \\ 1+2 \\ 1+2+3+\ldots+k-1+k = \sum_{i=1}^{k} i \\ = \frac{k \cdot (k+1)}{2} \end{array} $

N	Anzahl der Schritte
21	1
2 ⁻ 2 ²	1 + 2
2 ^k	$1+2+3+\ldots+k-1+k=\sum_{i=1}^{k}i$
(kleiner Gauss)	$=\frac{k\cdot(k+1)}{2}$
$(k = log_2 n)$	2

N	Anzahl der Schritte		
21	-		
2 ¹ 2 ²	1		
۷.	1+2		
2 ^k	$1+2+3+\ldots+k-1+k=\sum_{i=1}^{k}i$		
(kleiner Gauss)	$=\frac{k\cdot(k+1)}{2}$		
$(k = log_2 n)$	$\Rightarrow \frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$		

- Schritte gegen Vergleiche
 - ▶ in jedem Schritt $\frac{n}{2}$ Komparatoren benötigt $\frac{n}{2} \left(\cdot \frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1) \right)$
 - ▶ 1 Vergleicher bei Software benötigt
 - Laufzeit konstant
- Abhängigkeit von der Eingabe
- ▶ Bezug zum vorherigen Vergleich
- ▶ Andere Laufzeiten

Algorithmus	Laufzeit		
	best	worst	
		2	
Bubblesort	O(n)	$O(n^2)$	
Mergosort	O(<i>n</i> log <i>n</i>)	O(<i>n</i> log <i>n</i>)	
Quicksort	O(n log n)	O(n ²)	
Netzwerk	$\frac{1}{2} \cdot \log_2 n$ ($(\log_2 n + 1)$	

- Schritte gegen Vergleiche
 - in jedem Schritt $\frac{n}{2}$ Komparatoren benötigt $\frac{n}{2} \left(\cdot \frac{1}{2} \cdot \log_2 n \, (\log_2 n + 1) \right)$
 - ▶ 1 Vergleicher bei Software benötigt
 - Laufzeit konstant
- Abhängigkeit von der Eingabe
- ▶ Bezug zum vorherigen Vergleich
- Andere Laufzeiten

Algorithmus	Laufzeit			
	best	worst	avarage / normiert	
Bubblesort Mergosort Quicksort Netzwerk	$O(n)$ $O(n \log n)$ $O(n \log n)$ $\frac{1}{2} \cdot \log_2 n$	$O(n^2)$ $O(n \log n)$ $O(n^2)$ $\log_2 n + 1)$	$\frac{\frac{1}{2}(n^2 - n \cdot \ln n - (\gamma + \ln(2) - 1) \cdot n) + O(\sqrt{n})}{n \log n}$ $n \log n$ $\frac{n}{2}(\frac{1}{2} \cdot \log_2 n (\log_2 n + 1))$	

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Zusammenfassung

Ausblick

Zusammenfassung

- paralleles sortieren ist schnell und effizient
- problemabhängige Lösung

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Zusammenfassung

Ausblick Anhang

Ausblick

- 2D Netzwerke
- Hypercubes
- Paketrouting
- Simulation von Maschinenmodellen
- · . . .

Taschenbuch der Algorithmen.

Springer Verlag, 2008.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes.

Thomsom Publisching , 1997. 3-8266-0248-X

Laufzeiten Sortieralgorithmen www.wikipedia.de

Alternativer Ansatz zum Beweis des 0,1-Prinzip

http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/networks/nulleins.htm

Fragen, Anregungen?