Name	Parameters	Distribution No- tation	PMF/PDF	Support	Mean	Variance	MGF
Bernoulli	$p \in [0,1]$	$\operatorname{Bern}(p)$	$p^x(1-p)^{1-x}$	x = 0, 1	d	p(1-p)	$(1-p) + pe^t$
Binomial	$n\in \mathbb{N}, p\in [0,1]$	Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$x = 0, \dots, n$	du	np(1-p)	$((1-p)+p^t)^n$
Uniform	$a,b,\in\mathbb{Z},a< b$	$U(\{a,\dots,b\})$	1/(b-a+1)	$x = a, \dots, b$	(a+b)/2	$\frac{(b-a+1)^2 - 1}{12}$	$\frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$
$\mathrm{Geometric}^*$	$p \in [0,1]$	Geom(p)	$p(1-p)^{x-1}$	$x = 1, 2, \dots$	1/p	$(1-p)/p^2$	$\frac{pe^t}{(1-(1-p)e^t)}$
$\mathrm{Geometric}^*$	$p \in [0,1]$	$Geom_0(p)$	$p(1-p)^x$	$x = 0, 1, \dots$	(1-p)/p	$(1-p)/p^2$	$\frac{p}{(1-(1-p)e^t)}$
Poisson	λ > 0	$Pois(\lambda)$	$e^{-\lambda}\lambda^x/x!$	$x = 0, 1, \dots$	~	~	$\exp(\lambda(e^t - 1))$
Beta	$\alpha, \beta > 0$	Beta(lpha,eta)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$0 \le x \le 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Chi squared	k > 0	$\chi^2(k)$	$\frac{x^{k/2-1}e^{-x/2}}{\Gamma(k/2)2^{k/2}}$	x > 0	\mathcal{X}	2k	$(1-2t)^{-k/2}$
$\rm Exponential^*$	$\lambda > 0$	$Exp(\lambda)$	$\lambda e^{-\lambda x}$	x > 0	$1/\lambda$	$1/\lambda^2$	$(1-t/\lambda)^{-1}$
$\rm Exponential^*$	$\beta > 0$	Exp(eta)	$\frac{1}{\beta}e^{-x/\beta}$	x > 0	β	eta^2	$(1-\beta t)^{-1}$
Gamma*	$k, \lambda > 0$	$Gamma(k,\lambda)$	$\frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)}$	x > 0	k/λ	k/λ^2	$(1-t/\lambda)^{-k}$
Gamma*	$k, \theta > 0$	$Gamma(k, \theta)$	$\frac{x^{k-1}e^{-x/\theta}}{\theta^k\Gamma(k)}$	x > 0	$k\theta$	$k\theta^2$	$(1-t\theta)^{-k}$
Normal	$\mu \in \mathbb{R}, \sigma^2 > 0$	$N(\mu,\sigma^2)$	$\frac{\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)}{\sqrt{2\pi\sigma^2}}$	$x\in\mathbb{R}$	π	σ^2	$\exp(\mu t + \sigma^2 t^2/2)$
Uniform	$a,b\in\mathbb{R},a< b$	Unif(a,b)	1/(b-a)	a < x < b	(a + b)/2	$(b-a)^2/12$	$\frac{e^{bt} - e^{at}}{(b-a)t}$

1. Gamma/Beta Functions

- (1) $\Gamma(n) = (n-1)!$ when n is an integer.
- (2) $\Gamma(x+1) = x\Gamma(x)$ for any x > 0.
- (3) $\Gamma(1/2) = \sqrt{\pi}$ (4) $B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta)$

2. Order Statistics

If $X_1, \ldots X_N \stackrel{iid}{\sim} f$ where the X_n are continuous with pdf f and CDF F then

$$f_{X_{(1)}}(t) = N(1 - F(t))^{N-1}f(t)$$

(2)
$$f_{X_{(N)}}(t) = NF(t)^{N-1}f(t)$$