Problem 1.32 Check the fundamental theorem for gradients, using $T = x^2 + 4xy + 2yz^3$, the points $\mathbf{a} = (0, 0, 0)$, $\mathbf{b} = (1, 1, 1)$, and the three paths in Fig. 1.28:

- (a) $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$;
- (b) $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$;
- (c) the parabolic path $z = x^2$; y = x.

Problem 1.39

- (a) Check the divergence theorem for the function $\mathbf{v}_1 = r^2 \hat{\mathbf{r}}$, using as your volume the sphere of radius R, centered at the origin.
- (b) Do the same for $\mathbf{v}_2 = (1/r^2)\mathbf{\hat{r}}$. (If the answer surprises you, look back at Prob. 1.16.)

Problem 1.40 Compute the divergence of the function

$$\mathbf{v} = (r\cos\theta)\,\mathbf{\hat{r}} + (r\sin\theta)\,\mathbf{\hat{\theta}} + (r\sin\theta\cos\phi)\,\mathbf{\hat{\phi}}.$$

Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R, resting on the xy plane and centered at the origin (Fig. 1.40).

Problem 1.50

(a) Let $\mathbf{F}_1 = x^2 \hat{\mathbf{z}}$ and $\mathbf{F}_2 = x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}}$. Calculate the divergence and curl of \mathbf{F}_1 and \mathbf{F}_2 . Which one can be written as the gradient of a scalar? Find a scalar potential that does the job. Which one can be written as the curl of a vector? Find a suitable vector potential.

Problem 1.51 For Theorem 1, show that $(d) \Rightarrow (a)$, $(a) \Rightarrow (c)$, $(c) \Rightarrow (b)$, $(b) \Rightarrow (c)$, and $(c) \Rightarrow (a)$.

Problem 1.52 For Theorem 2, show that $(d) \Rightarrow (a)$, $(a) \Rightarrow (c)$, $(c) \Rightarrow (b)$, $(b) \Rightarrow (c)$, and $(c) \Rightarrow (a)$.

Problem 1.53

- (a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a scalar? Find a scalar function that does the job.
- (b) Which can be expressed as the curl of a vector? Find such a vector.