Übungsblatt 10

Julius Auer, Alexa Schlegel

Aufgabe 1 (Wieviele Punkte liegen auf einer Geraden?):

- * effizienten Algorithmus an, der für eine Menge n Punkten $p_1, p_2, \ldots, p_n \in \mathbb{R}$ die maximale Zahl dieser Punkte bestimmt, die auf einer Geraden liegen
- * Hinweis: Dualisierung. $O(n^2 \log n)$ ist akzeptabel aber noch nicht optimal

Total ganz naiver Ansatz:

- * stelle alle möglichen Geraden auf, das sind wie viele? bestimmt: $O(n^2)$
- * pro Gerade schaue wie viele Punkte drauf liegen, d.h teste für jeden Punkt und jede Gerade (oha das ist viel) $O(n^2 \cdot n) = O(n^3)$
- * und dann das maximum nehmen, hm.

Dualisierung - Was ist das?

$$p = (p_x, p_y) \to p^* : b = p_x \cdot a - p_y$$

 $l : y = m \cdot x + c \to l^* = (m, -c)$

Wenn p liegt auf l, dann p^* liegt auf l^*

Punkte q, r, s sind kolinear, dann q^*, r^*, s^* schneiden sich in gemeinsamen Punkt.

Was macht man damit? Man dualisiert alle Punkte p_1^*, \ldots, p_n^* und schaut wo sich die meisten Geraden schneiden? Die Anzahl der Geraden ist dann das, was wir wohl gesucht haben. Jetzt muss man erstmal alle Schnittpunkte finden, oder?

Aufgabe 2 (Geben Sie für beliebiges $n \in \mathbb{N}$ eine Punktmenge der Größe $n \in \mathbb{R}^4$ an, deren konvexe Hülle die Größe (=Anzahl der Facetten) $\Omega(n^2)$ hat.):

- * 4D Punktmenge
- * brauch ich wohl mindestens 5 Punkte damit das Sinn macht
- * kann man das nicht auch irgendwie mit der Dualisierung umdrehen, sodass man eigentlich (anstelle der Facetten), die Anzahl der Ecken oder sowas in $\Omega(n^2)$ sucht?

Aufgabe 3 (inkementelle Kontruktion):

Eingaben, Einfügereihenfolgen, sodass Laufzeit $\Omega(n^2)$

a) konvexe Hülle einer Punktmenge in \mathbb{R}^3

TODO

b) Trapezzerlegung eines Arrangements von Strecken im \mathbb{R}^2

TODO