Scalable Data Engineering, Exercise 1

HENRY HAUSTEIN

Task 1

- (a) False
- (b) False
- (c) False (?) it just provided a link to the data sources
- (d) True
- (e) False. The data cube is the base just for MOLAP. ROLAP uses a relational database.
- (f) False. Depends on your goals/data.
- (g) True
- (h) False. It can have multiple fact tables.
- (i) False. You have to transform it back to a data cube for better readability.
- (j) True. If properly normalised.

Task 2

	one fact table	multiple fact tables
partially normalised	star schema	galaxy schema
normalised	snowflake schema	snowstorm schema

Task 3

Task 4

Task 5

When storing all information in a single large table, each tuple (= row) consists of 5 strings and 1 integer, so in total $5 \cdot 128 \cdot 8$ Bit + $3 \cdot 64$ Bit = 5.312 Bit. With 1000 rows in this table, we need in total 5.312.000 Bit = 664.000 Byte. In the exercise they say the season and episode columns are empty, but we need to save them anyway.

For the star schema we have 4 tables:

- fact table: $1000 \cdot (7.64 \text{ Bit} + 128.8 \text{ Bit}) = 1.472.000 \text{ Bit}$
- company table: $1000 \cdot (64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 1.088.000 \text{ Bit}$
- director table: $1000 \cdot (64 \text{ Bit} + 2 \cdot 128 \cdot 8 \text{ Bit}) = 2.112.000 \text{ Bit}$
- kind table: $7 \cdot (64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 7.616 \text{ Bit}$

In total this are 4.679.616 Bit = 584.952 Byte.

For the snowflake schema we have 5 tables:

- fact table: $1000 \cdot (7 \cdot 64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 1.472.000 \text{ Bit}$
- company table: $1000 \cdot (64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 1.088.000 \text{ Bit}$
- director table: $1000 \cdot (2 \cdot 64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 1.152.000 \text{ Bit}$
- director status table: $3 \cdot (64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 3.264 \text{ Bit}$
- kind table: $7 \cdot (64 \text{ Bit} + 128 \cdot 8 \text{ Bit}) = 7.616 \text{ Bit}$

In total this are 3.722.880 Bit = 465.360 Byte.