MRI vs. fMRI

MRI (Magnetic Resonance Imaging) studies brain anatomy.

Functional MRI (fMRI) studies brain function.

https://lukas-snoek.com/NI-edu/index.html

https://andysbrainbook.readthedocs .io/en/latest/fMRI_Short_Course/fM RI_Intro.html

https://fmriprep.org/en/stable/#

https://nipy.org/nibabel/coordinate_ systems.html#introducing-someone

				rs-fMRI	Classification	Deep learning	2019
				rs-fMRI	Classification	RNN	2018
	2500 Magazi An 2500	etionest etion		rs-fMRI	Classification	LSTM	2017
Data type	Task/Application	Method	Year	rs-fMRI	Prediction	CNN	2018
fMRI	Survey	0	2001	rs-fMRI	Classification	3D CNN	2017
fMRI	Survey		1994	rs-fMRI	Pattern extraction	RBM	2018
fMRI			2010	t-fMRI	Pattern extraction	CNN	2018
fMRI	Survey		2008	t-fMRI	Feature extraction	CNN	2018
	Survey	8		t-fMRI	Pattern extraction	CNN	2017
fMRI	Survey	*	2012	t-fMRI	Classification	Deep learning	2018
fMRI	Classification	Machine learning	2009	t-fMRI	Classification	3D CNN	2018
fMRI	fMRI data analysis	SVM	2007	t-fMRI	Brain decoding	LSTM	2018
rs-fMRI	fMRI analysis	ICA	2016	t-fMRI	Pattern extraction	RNN	2016
rs-fMRI	Classification	Sparse dictionary learning	2012	t-fMRI	Pattern extraction	LSTM	2018
t-fMRI	Feature engineering	Sparse dictionary learning	2009	t-fMRI	Disease analysis	RNN	2017
t-fMRI	Classification	Machine learning	2014	rs-fMRI	Survey		2010
fMRI	Brain response analysis	Machine learning	2008	rs-fMRI	Survey		2008
fMRI	Classification	Hybrid Machine learning	2010	rs-fMRI	Survey		2007
rs-fMRI	Segmentation	Graph analysis	2014	rs-fMRI	FC extraction	ICA	2011
rs-fMRI	FC extraction	Matrix factorization	2013	rs-fMRI	FC extraction	Machine learning	2014
				rs-fMRI	FC extraction	Machine learning	2013
				rs-fMRI	FC extraction	ICA	2014

Qureshi et al. (2017)	SCZ = 72, HC = 72	ELM	99.3%
Johnston, Tolomeo, et al. (2015)	HC = 21, MDD = 19	SVM with leave one out cross validation	97.00%
Wang, Ren, and Zhang (2017)	HC = 29, MDD = 31	SVM with leave one out cross validation	95.00%
Khazaee, A (2017)	HC = 45, AD = 34	Naïve bayes	93.29 %
Gao et al. (2017)	BD = 37, MDD = 37	SVM with 10-fold cross validation	93.00%
Matsubara et al. (2019)	SCZ = 54, HC = 67	SVM with 10-fold cross validation	92.00%
Arbabshirani et al. (2014)	SCZ = 195, HC = 175	Functional connectivity and SVM	88.21%
Li et al. (2017)	BD = 22, MDD = 22	SVM with leave one out cross validation	86.00%
Johnston, Steele, et al. (2015)	HC = 21, MDD = 25	SVM with leave one out cross validation	85.00%
Chen et al. (2017)	HC = 31, ASD = 22	SVM	83.33%
Yoshida et al. (2017)	HC = 65, MDD = 58	PLSR with leave one out cross validation	80.00%
Rubin-Falcone et al. (2018)	BD = 26, MDD = 26	SVM with leave-two out cross validation	75.00%
Khazaee A (2017)	45 HC, AD = 34	SVM with radial base function	71.95%
Sankar et al. (2016)	HC = 20, MDD = 23	SVM with 5-fold cross validation	70.00%
Deng et al. (2018)	BD = 31, MDD = 36	SVM with leave one out cross validation	68.30%

Machine learning method/classifier

Accuracy achieved

Subjects & sample size

Name of study

TABLE 8 Deep learning studies with highest accuracies in healthy controls versus Alzheimer's disease

Dataset used

ADNI

ADNI

ADNI

ADNI

ADNI

ADNI

ADNI

Name of study

Basaia (2019)

Suk (2015)

Suk (2014)

Suk (2017)

Gupta et al. (2013)

Liu, Liu, Cai, Che, et al. (2014)

Li et al. (2014)

Suk (2015)	ADNI	Stacked Autoencoder	98.8
Hosseini-Asl et al. (2016)	ADNI	Convolutional neural network	97.6
Sarraf and Tofighi (2016)	ADNI	Convolutional neural network	96.9
Suk and Shen (2013)	ADNI	Stacked Autoencoder	95.9

Deep Boltzman Machine

Deep multilayer perceptron

Stacked Autoencoder

Deep learning architecture

Convolutional neural network

Deep weighted subclass-based sparse multi-task learning

Sparse auto-encoder with convolutional neural network

Multiple sparse regression with convolutional neural network

Accuracy achieved

99.2

95.1

94.9

94.7

91.4

91.02

87.8

Обзор статьи

Некоторые характеристики датасета

- 30 участников с данными FMRI
- 13 чередующихся эпизодов по 30 секунд (речь / музыка)
- Всё переведено на голландский
- аудио и видеодорожка аннотированы (время начала и конца появления каждого объекта)
- Снимки FMRI в формате BIDS
- Папка видео → 135 tsv файлов (для 129 объектов, и 6 персонажей)

Fig. 2 Overview of data records. (a-e) Structure of folders and files in the dataset with example (f)MRI and iEEG folders from one subject.

Speech Prediction in Silent Videos using Variational

Autoencoders

Обзор статьи

- Решается задача озвучивания видео с применением вариационного автоэнкодера
- Во время обучения на вход подается последовательность кадров и звуковой сигнал
- Сначала с помощью энкодеров получают эмбеддинги независимо для каждого аудио/видео фрейма
- Далее применяют LSTM и полносвязный слой для получения среднего и дисперсии вариационных распределений q
- Оптимизируют ELBO (evidence lower bound)

$$\begin{split} \mathcal{L}(\theta, \phi; \mathbf{x}) &= \sum_{t=1}^{N} \mathbb{E}_{q_{\phi_a}(z|a_t)}[\lambda \log p_{\theta_a}(a_t|z)] \\ &- \beta K L[q_{\phi_a}(z|a_t)||q_{\phi_f}(z|f_t)] \end{split}$$

Комментарий

- Чтобы решать нашу задачу, нужно будет заменить первичную обработку звукового сигнала (перевод в спектрограмму и audio encoder), а также последующее восстановление сигнала из спектрограммы (audio decoder, Griffin-Lim reconstruction) на соответствующие компоненты для обработки fMRI
- В исходном виде данную модель придется обучать отдельно для каждого участника эксперимента

Машинное обучение для работы с видео

Общие идеи для работы с видео

- 3D свёртки по времени и пространству (минусы: много параметров, вычислительно дорого)
- Факторизация 3D свёрток на 2D для пространства и 1D для времени
- Two-Stream подход
- Inflated 3D CNN использование предобученных на картинках 2D свёрток для начального приближения
- Использование разных типов attention

Задачи, на которые обратить внимание

- Video-to-Video
- Озвучивание видео

Статьи

- Серия обзоров методов работы с видео (https://towardsdatascience.com/deep-learning-on-video-part-one-the-early-days-8a3632ed47d4)
- Inflated 3D CNN (https://arxiv.org/pdf/1705.07750.pdf)

Предобученные модели

https://github.com/facebookresearch/SlowFast

Speech Prediction in Silent Videos using Variational Autoencoders (https://arxiv.org/abs/2011.07340)

Обзор статьи

- Решается задача озвучивания видео с применением вариационного автоэнкодера
- Во время обучения на вход подается последовательность кадров и звуковой сигнал
- Сначала с помощью энкодеров получают эмбеддинги независимо для каждого аудио/видео фрейма
- Далее применяют LSTM и полносвязный слой для получения среднего и дисперсии вариационных распределений q
- Оптимизируют ELBO (evidence lower bound)

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \sum_{t=1}^{N} \mathbb{E}_{q_{\phi_a}(z|a_t)} [\lambda \log p_{\theta_a}(a_t|z)] - \beta KL[q_{\phi_a}(z|a_t)||q_{\phi_f}(z|f_t)]$$

Комментарий

- Чтобы решать нашу задачу, нужно будет заменить первичную обработку звукового сигнала (перевод в спектрограмму и audio encoder), а также последующее восстановление сигнала из спектрограммы (audio decoder, Griffin-Lim reconstruction) на соответствующие компоненты для обработки fMRI
- Чтобы не обучать модель отдельно для каждого участника, необходимо добавить закодированную информацию о человеке (conditional VAE)

Video-to-Video Synthesis

(https://arxiv.org/abs/1808.06601)

Обзор статьи

- Решается задача генерации нового видео по исходному
- Модель conditional GAN
- Markov assumption
- Используются два дискриминатора: для отдельных кадров и для видеоряда
- Функция потерь содержит компоненту, отвечающую за согласованность генерируемого сигнала

fMRI: preprocessing, classification and pattern recognition

Обзор статьи

- Исследуется задача классификации (например, психических расстройств) по снимкам FMRI
- Проблема fMRI слишком шумный сигнал
- Шум возникает от движения головы, биения сердца, температурного фона и т.д.
- Рассматриваются несколько подходов шумоподавления
- Также рассматриваются новые Feature Extraction подходы, основанные на топологическом анализе данных
- Предлагается новый pipeline для решения задач неврологии
- Показывается эффективность на задачах определения эпилепсии и депрессии

Figure 1: The scheme of the proposed noise-aware fMRI processing pipeline.