

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

# Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP3 1° semestre de 2018 GABARITO

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

## 1 – Primeira Questão (3,0 pontos)

Um restaurante popular apresenta apenas dois tipos de refeições: salada completa ou um prato à base de carne. Considere que 20% dos fregueses do sexo masculino preferem a salada, 30% das mulheres escolhem carne, 75% dos fregueses são homens. Para um freguês desse restaurante, sorteado ao acaso, obtenha a probabilidade dele:

### Resolução:

<u>Obs</u>: essa é uma questão praticamente igual a uma questão da AD1. Coloco aqui uma outra forma para desenvolver a questão.

**Consideram-se os seguintes eventos:** 

H: freguês é homem A: freguês prefere salada M: freguês é mulher B: freguês prefere carne.

Temos pelo enunciado: P(H) = 0.75,

P (A/H) = 0.20 eP(B/M) = 0.30.

Com isso, podemos construir o seguinte diagrama de árvore:



### a) preferir salada;

## Resolução:

Temos que calcular P(A). Utilizando o diagrama de árvore, temos que

 $P(A) = P(A \cap H) + P(A \cap M) = P(A/H)P(H) + P(A/M)P(M) = 0.25 \times 0.75 + 0.70 \times 0.25 = 0.325$ .

b) preferir carne dado que é um homem;

## Resolução:

Temos que calcular P(B/H). Pelo diagrama de árvore, temos que P(B/H) = 0.80

c) ser uma mulher, sabendo-se que prefere salada?

## Resolução:

Temos que calcular P(M / A). Mas, sabemos que

$$P(M/A) = \frac{P(M)P(A/M)}{P(A/H)P(H) + P(A/M)P(M)}.$$

Logo, utilizando o item (a) e o diagrama de árvore, temos que

$$P(M/A) = \frac{0.25 \times 0.70}{0.20 \times 0.75 + 0.25 \times 0.70} = 0.538$$
.

## 2 – Segunda Questão (1,0 ponto)

Ao lançar um dado muitas vezes uma pessoa percebeu que a face 6 saía com o dobro de frequência que a face 1, e que as outras faces saíam com a frequência esperada em um dado não viciado. Lançando-se o dado uma vez, qual a probabilidade de sair a face 1?

## Resolução:

Temos que:

A probabilidade de sair a face 1 é P(1) = x,

a probabilidade de sair a face 6 é P(6) = 2x,

a probabilidade de sair qualquer outra face: P(2) = P(3) = P(4) = P(5) = 1/6.

Calculando P(1) e P(6) temos

$$P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=1$$

então

$$x+1/6+1/6+1/6+1/6+2x=1 \Rightarrow 3x=1-4/6 \Rightarrow x=1/9$$

**Logo:** P(1)=1/9.

## 3 – Terceira questão – (1,0 pontoo)

Em um certo tipo de fabricação de fita magnética, ocorrem cortes a uma taxa de um corte por 2000 m. Qual é a probabilidade de que um rolo com comprimento de 4000 m apresente no máximo dois cortes?

### Resolução:

Usaremos a distribuição de Poisson 
$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k}!; k=0,1,2,\cdots$$
 usando  $\lambda=2$ 

Seja Y o número de cortes em um rolo de 4000 m, logo:

$$P(Y \le 2) = P(Y = 0) + P(Y = 1) + P(Y = 2)$$

ou

$$P(Y \le 2) = \frac{e^{-2}2^0}{0!} + \frac{e^{-2}2^1}{1!} + \frac{e^{-2}2^2}{2!} = 0,13534 + 0,27067 + 0,26067 = 0,6767$$
.

#### 4 – Quarta questão – (1,5 ponto)

Numa linha de produção era desejável verificar o tempo de montagem de um módulo eletrônico. Foi calculado uma média amostral de 10 equipamentos se obtendo 19,3 minutos. Calculou-se então outra média amostral com 100 equipamentos e foi obtido o valor 18,4 minutos. Para os dois casos a variância era de 1,69 minutos<sup>2</sup>. Avalie o intervalo de confiança para as duas situações com coeficiente de confiança de 95%.

## Resolução:

A fórmula para intervalo de confiança é dada por

$$IC(\mu,\gamma) = \left[ \bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$
.

Para os dois casos  $\gamma=0.95$  o que implica  $z_{\gamma/2}=z_{0.475}=1.96$  . Como  $\sigma^2=1.69$  , então  $\sigma=1.3$ .

Para o primeiro caso a média amostral é 19,3 e n=10 e, portanto,  $\sqrt{n}\approx 3,1623$  . Com estes dados teremos

$$IC(\mu,) = \left[19,3-1,96\frac{1,3}{3,1623};19,3+1,96\frac{1,3}{3,1623}\right] \approx \left[19,3-0,8057;19,3+0,8057\right] \approx \left[18,49;20,11\right]$$
.

Para o segundo caso a média amostral é 18,4 e n=100 , ou seja,  $\sqrt{n}=10$  . Logo

$$IC(\mu,) = \left[18,4-1,96\frac{1,3}{10};18,4+1,96\frac{1,3}{10}\right] \approx \left[18,4-0,2548;18,4+0,2548\right] \approx \left[18,15;18,65\right]$$

## 5 – Quinta questão – (1,5 pontos)

Verifique quais das funções abaixo são distribuição de probabilidades.

a) 
$$f(x) = \frac{6}{5}(x^2 - x); x \in [1,2]$$
;

#### Resolução:

É fácil verificar que esta função é não negativa no intervalo dado. Integremos.

$$\int_{1}^{2} \frac{6}{5} (x^{2} - x) dx = \frac{6}{5} \left[ \int_{1}^{2} x^{2} dx - \int_{1}^{2} x dx \right] = \frac{6}{5} \left[ \frac{x^{3}}{3} |_{1}^{2} - \frac{x^{2}}{2}|_{1}^{2} \right] = \frac{6}{5} \left[ \frac{8 - 1}{3} - \frac{4 - 1}{2} \right] = \frac{6}{5} \left( \frac{7}{3} - \frac{3}{2} \right) = \frac{6}{5} \frac{5}{6} = 1 .$$

É um distribuição de probabilidade.

b) 
$$f(x) = \frac{x^2 + 2x}{18}$$
;  $x \in [0,3]$ ;

#### Resolução:

Novamente é fácil perceber que a função é não negativa no intervalo. Integremos.

$$\int_{0}^{3} \frac{x^{2} + 2x}{18} dx = \frac{1}{18} \left[ \int_{0}^{3} x^{2} dx + 2 \int_{0}^{3} x dx \right] = \frac{1}{18} \left[ \frac{x^{3}}{3} \Big|_{0}^{3} + 2 \frac{x^{2}}{2} \Big|_{0}^{3} \right] = \frac{1}{18} \left[ \frac{27}{3} + 9 \right] \frac{18}{18} = 1 .$$

Esta também é uma distribuição de probabilidade.

c) 
$$f(x)=e^x-2; x \in [0,2]$$
.

Resolução:

É fácil perceber que esta função toma valores negativos no intervalo. Por exemplo, em x = 0 a função toma o valor -1.

Assim, esta função não é distribuição de probabilidade.

**6 – Sexta questão – (2,0 pontos)** Na figura abaixo temos uma função que deve ser normalizada para termos uma função de distribuição de probabilidade, observando que fora do intervalo [1, 25/8] a função é nula.



a)Normalize a função obtendo a distribuição de probabilidade;

Resolução:

A distribuição é composta de trapézios e um retângulo. Podemos calcular a área total, que corresponde a integral dentro do intervalo, da seguinte forma:

$$A_1 + A_2 + A_3 = \frac{(3/2+1)}{2} \times (2-1) + \frac{(3/2+1)}{2} \times (5/2-2) + 1 \times (25/8-5/2) = \frac{5}{4} + \frac{5}{8} + \frac{5}{8} = \frac{5}{2} .$$

Mas isto não nos ajuda muito nas questões que se seguem. Achemos as funções correspondentes a cada segmento da função.

No intervalo [1, 2] a reta pode ser obtida usando a equação y=ax+b para os pontos (1, 1) e (2, 3/2), ou seja,

$$1=a\times 1+b$$
;  $\frac{3}{2}=a\times 2+b$  resultando no sistema de equações lineares  $a+b=1$   
 $2a+b=\frac{3}{2}$  que tem

como solução  $a=\frac{1}{2},b=\frac{1}{2}$  o que nos da equação da reta  $y=\frac{1}{2}(x+1)$  .

No intervalo [2, 5/2] obteremos a reta pelos pontos (2, 3/2) e (5/2, 1). Substituindo na equação

da reta teremos 
$$\frac{3}{2} = a \times 2 + b$$
;  $1 = a \times \frac{5}{2} + b$  que resulta no sistema  $\frac{2a + b = \frac{3}{2}}{\frac{5}{2} \times a + b = 1}$  de solução

$$a = -1, b = \frac{7}{2}$$
 dando a reta  $y = -x + \frac{7}{2}$ .

O último segmento no intervalo [5/2; 25/8] é a função constante de valor 1. Integremos

$$\int_{1}^{25/8} f(x) dx = \int_{1}^{2} \frac{1}{2} (x+1) dx + \int_{2}^{5/2} \left(-x + \frac{7}{2}\right) dx + \int_{5/2}^{25/8} 1 dx = \frac{1}{2} \left[\int_{1}^{2} x dx + \int_{1}^{2} dx\right] - \int_{2}^{5/2} x dx + \frac{7}{2} \int_{2}^{5/2} dx + \int_{5/2}^{25/8} dx$$

que desenvolvendo nos dá

$$\int_{1}^{25/8} f(x) dx = \frac{1}{2} \left[ \frac{x^2}{2} \Big|_{1}^{2} + x \Big|_{1}^{2} \right] - \frac{x^2}{2} \Big|_{2}^{5/2} + \frac{7}{2} x \Big|_{2}^{5/2} + x \Big|_{5/2}^{25/8} = \frac{1}{2} \left[ \frac{4-1}{2} + (2-1) \right] - \frac{1}{2} \left[ \left( \frac{5}{2} \right)^2 - 2^2 \right] + \frac{7}{2} \left( \frac{5}{2} - 2 \right) + \left( \frac{25}{8} - \frac{5}{2} \right) + \frac{1}{2} \left( \frac{5}{8} - \frac{5}{2} \right) + \frac{1}$$

e, finalmente,

$$\int_{1}^{25/8} f(x) dx = \frac{5}{4} - \frac{9}{8} + \frac{7}{4} + \frac{5}{8} = \frac{5}{2} .$$

Esta é a constante de normalização.

b) Calcule a probabilidade  $P(1,2 \le X \le 2,8)$  da distribuição obtida;

Resolução:

A probabilidade para o caso desta distribuição de probabilidade será dada por

$$P(1,2<2,8) = \frac{2}{5} \left[ \frac{1}{2} \int_{1,2}^{2} (x+1) dx + \int_{2}^{5/2} \left( -x + \frac{7}{2} \right) dx + \int_{5/2}^{2,8} dx \right] .$$

Aproveitemos o valor já calculado no item anterior, correspondente a segunda integral, ou seja,

$$P(1,2<2,8) = \frac{2}{5} \left[ \frac{1}{2} \int_{1,2}^{2} (x+1) dx + \frac{5}{8} + \int_{5/2}^{2,8} dx \right] = \frac{2}{5} \left\{ \frac{1}{2} \left[ \frac{x^2}{2} \Big|_{1,2}^2 + x \Big|_{1,2}^2 \right] + \frac{5}{8} + x \Big|_{5/2}^{2,8} \right\} = \frac{2}{5} \left[ \frac{16}{25} + \frac{2}{5} + \frac{5}{8} + \frac{3}{10} \right] = 0,786 .$$

c) Calcule o valor médio da distribuição obtida;

Resolução:

Pela definição de média, teremos

$$\mu = \int_{1}^{25/8} x f(x) dx = \frac{2}{5} \left[ \frac{1}{2} \int_{1}^{2} x(x+1) dx + \int_{2}^{5/2} x \left( -x + \frac{7}{2} \right) dx + \int_{5/2}^{25/8} x dx \right]$$

ou

$$\mu = \frac{2}{5} \left\{ \frac{1}{2} \left[ \int_{1}^{2} x^{2} dx + \int_{1}^{2} x dx \right] - \int_{2}^{5/2} x^{2} dx + \frac{7}{2} \int_{2}^{5/2} x dx + \int_{5/2}^{25/8} x dx \right\} = \frac{2}{5} \left[ \frac{x^{3}}{6} |_{1}^{2} + \frac{x^{2}}{4} |_{1}^{2} - \frac{x^{3}}{3} |_{2}^{5/2} + \frac{7}{4} x^{2} |_{2}^{5/2} + \frac{x^{2}}{2} |_{2}^{25/8} \right]$$

logo

$$\mu = \frac{2}{5} \left\{ \frac{2^3 - 1^3}{6} + \frac{2^2 - 1^2}{4} - \frac{(5/2)^3 - 2^3}{3} + \frac{7}{4} \left[ (5/2)^2 - 2^2 \right] + \frac{(25/8)^2 - 5/2^2}{2} \right\} = \frac{2}{5} \left[ \frac{7}{6} + \frac{3}{4} - \frac{61}{24} + \frac{63}{16} + \frac{67}{48} \right] = \frac{649}{320} \approx 2,0281$$

d) Calcule a variância da distribuição obtida.

## Resolução:

# A definição de variância é

$$\sigma^2 = \int_{1}^{25/8} x^2 f(x) dx - \mu^2 .$$

## Calculemos a integral

$$\int_{1}^{25/8} x^{2} f(x) dx = \frac{2}{5} \left[ \frac{1}{2} \int_{1}^{2} x^{2} (x+1) dx + \int_{2}^{5/2} x^{2} \left( -x + \frac{7}{2} \right) dx + \int_{5/2}^{25/8} x^{2} dx \right]$$

ou ainda

$$\int_{1}^{25/8} x^{2} f(x) dx = \frac{2}{5} \left\{ \frac{1}{2} \left[ \int_{1}^{2} x^{3} dx + \int_{1}^{2} x^{2} dx \right] - \int_{2}^{5/2} x^{3} dx + \frac{7}{2} \int_{2}^{5/2} x^{2} dx + \int_{5/2}^{25/8} x^{2} dx \right\}$$

## e desenvolvendo teremos

$$\int_{1}^{25/8} x^{2} f(x) dx = \frac{2}{5} \left[ \frac{x^{4}}{8} \Big|_{1}^{2} + \frac{x^{3}}{6} \Big|_{1}^{2} - \frac{x^{4}}{4} \Big|_{2}^{5/2} + \frac{7}{6} x^{3} \Big|_{2}^{5/2} + \frac{x^{3}}{3} \Big|_{5/2}^{25/8} \right]$$

### que resulta em

$$\int_{1}^{25/8} x^{2} f(x) dx = \frac{2}{5} \left\{ \frac{2^{4} - 1^{4}}{8} + \frac{2^{3} - 1^{3}}{6} - \frac{(5/2)^{4} - 2^{4}}{4} + \frac{7}{6} \left[ (5/2)^{3} - 2^{3} \right] + \frac{(25/8)^{3} - 5/2^{3}}{3} \right\}$$

## e finalmente

$$\int_{1}^{25/8} x^{2} f(x) dx = \frac{2}{5} \left[ \frac{15}{8} + \frac{7}{6} - \frac{369}{64} + \frac{427}{48} + \frac{7625}{1536} \right] = \frac{3421}{768} \approx 4,4544 .$$

## Agora calculemos a variância

$$\sigma^2 = \int_{1}^{25/8} x^2 f(x) dx - \mu^2 = \frac{3421}{768} - \left(\frac{649}{320}\right)^2 \approx 0,3411 .$$

Tabela da distribuição Normal N(0,1)

| Z <sub>C</sub> | 0,00   | 0,01   | 0,02   | 0,03   | 0,04   | 0,05    | 0,06   | 0,07   | 0,08    | 0,09   |
|----------------|--------|--------|--------|--------|--------|---------|--------|--------|---------|--------|
| 0              | 0      | 0,0040 | 0,0080 | 0,0120 | 0,0160 | 0,0199  | 0,0239 | 0,0279 | 0,0319  | 0,0359 |
| 0,1            | 0,0398 | 0,0040 | 0,0000 | 0,0120 | 0,0100 | 0,0199  | 0,0239 | 0,0279 | 0,0319  | 0,0353 |
| 0,1            | 0,0330 | 0,0430 | 0,0476 | 0,0910 | 0,0337 | 0,0330  | 0,1026 | 0,0073 | 0,1103  | 0,0733 |
| 0,2            | 0,0793 | 0,0032 | 0,0871 | 0,0310 | 0,0348 | 0,0367  | 0,1020 | 0,1004 | 0,1103  | 0,1141 |
| 0,3            | 0,1179 | 0,1217 |        |        | 0,1331 | 0,1306  |        | 0,1443 | 0,1460  |        |
| 0,4            | 0,1334 | 0,1391 | 0,1628 | 0,1664 | 0,1700 | 0,1730  | 0,1772 | 0,1000 | 0,1044  | 0,1879 |
| 0,5            | 0,1915 | 0,1950 | 0,1985 | 0,2019 | 0,2054 | 0,2088  | 0,2123 | 0,2157 | 0,2190  | 0,2224 |
| 0,6            | 0,2257 | 0,2291 | 0,2324 | 0,2357 | 0,2389 | 0,2422  | 0,2454 | 0,2486 | 0,2517  | 0,2549 |
| 0,7            | 0,2580 | 0,2611 | 0,2642 | 0,2673 | 0,2704 | 0,2734  | 0,2764 | 0,2794 | 0,2823  | 0,2852 |
| 0,8            | 0,2881 | 0,2910 | 0,2939 | 0,2967 | 0,2995 | 0,3023  | 0,3051 | 0,3078 | 0,3106  | 0,3133 |
| 0,9            | 0,3159 | 0,3186 | 0,3212 | 0,3238 | 0,3264 | 0,3289  | 0,3315 | 0,3340 | 0,3365  | 0,3389 |
| 0,5            | 0,5155 | 0,5100 | 0,5212 | 0,5250 | 0,5204 | 0,5205  | 0,5515 | 0,5540 | 0,5505  | 0,5505 |
| 1,0            | 0,3413 | 0,3438 | 0,3461 | 0,3485 | 0,3508 | 0,3531  | 0,3554 | 0,3577 | 0,3599  | 0,3621 |
| 1,1            | 0,3643 | 0,3665 | 0,3686 | 0,3708 | 0,3729 | 0,3749  | 0,3770 | 0,3790 | 0,3810  | 0,3830 |
| 1,2            | 0,3849 | 0,3869 | 0,3888 | 0,3907 | 0,3925 | 0,3944  | 0,3962 | 0,3980 | 0,3997  | 0,4015 |
| 1,3            | 0,4032 | 0,4049 | 0,4066 | 0,4082 | 0,4099 | 0,4115  | 0,4131 | 0,4147 | 0,4162  | 0,4177 |
| 1,4            | 0,4192 | 0,4207 | 0,4222 | 0,4236 | 0,4251 | 0,4265  | 0,4279 | 0,4292 | 0,4306  | 0,4319 |
|                | ,      | ,      | ,      | ,      | ,      | Í       | ĺ      | ,      | ,       | Ź      |
| 1,5            | 0,4332 | 0,4345 | 0,4357 | 0,4370 | 0,4382 | 0,4394  | 0,4406 | 0,4418 | 0,4429  | 0,4441 |
| 1,6            | 0,4452 | 0,4463 | 0,4474 | 0,4484 | 0,4495 | *0,4505 | 0,4515 | 0,4525 | 0,4535  | 0,4545 |
| 1,7            | 0,4554 | 0,4564 | 0,4573 | 0,4582 | 0,4591 | 0,4599  | 0,4608 | 0,4616 | 0,4625  | 0,4633 |
| 1,8            | 0,4641 | 0,4649 | 0,4656 | 0,4664 | 0,4671 | 0,4678  | 0,4686 | 0,4693 | 0,4699  | 0,4706 |
| 1,9            | 0,4713 | 0,4719 | 0,4726 | 0,4732 | 0,4738 | 0,4744  | 0,4750 | 0,4756 | 0,4761  | 0,4767 |
|                |        |        |        |        |        |         |        |        |         |        |
| 2,0            | 0,4772 | 0,4778 | 0,4783 | 0,4788 | 0,4793 | 0,4798  | 0,4803 | 0,4808 | 0,4812  | 0,4817 |
| 2,1            | 0,4821 | 0,4826 | 0,4830 | 0,4834 | 0,4838 | 0,4842  | 0,4846 | 0,4850 | 0,4854  | 0,4857 |
| 2,2            | 0,4861 | 0,4864 | 0,4868 | 0,4871 | 0,4875 | 0,4878  | 0,4881 | 0,4884 | 0,4887  | 0,4890 |
| 2,3            | 0,4893 | 0,4896 | 0,4898 | 0,4901 | 0,4904 | 0,4906  | 0,4909 | 0,4911 | 0,4913  | 0,4916 |
| 2,4            | 0,4918 | 0,4920 | 0,4922 | 0,4925 | 0,4927 | 0,4929  | 0,4931 | 0,4932 | 0,4934  | 0,4936 |
|                |        |        |        |        |        |         |        |        |         |        |
| 2,5            | 0,4938 | 0,4940 | 0,4941 | 0,4943 | 0,4945 | 0,4946  | 0,4948 | 0,4949 | *0,4951 | 0,4952 |
| 2,6            | 0,4953 | 0,4955 | 0,4956 | 0,4957 | 0,4959 | 0,4960  | 0,4961 | 0,4962 | 0,4963  | 0,4964 |
| 2,7            | 0,4965 | 0,4966 | 0,4967 | 0,4968 | 0,4969 | 0,4970  | 0,4971 | 0,4972 | 0,4973  | 0,4974 |
| 2,8            | 0,4974 | 0,4975 | 0,4976 | 0,4977 | 0,4977 | 0,4978  | 0,4979 | 0,4979 | 0,4980  | 0,4981 |
| 2,9            | 0,4981 | 0,4982 | 0,4982 | 0,4983 | 0,4984 | 0,4984  | 0,4985 | 0,4985 | 0,4986  | 0,4986 |
|                |        |        |        |        |        |         |        |        |         |        |
| 3,0            | 0,4987 | 0,4987 | 0,4987 | 0,4988 | 0,4988 | 0,4989  | 0,4989 | 0,4989 | 0,4990  | 0,4990 |
| 3,1            | 0,4990 | 0,4991 | 0,4991 | 0,4991 | 0,4992 | 0,4992  | 0,4992 | 0,4992 | 0,4993  | 0,4993 |
| 3,2            | 0,4993 | 0,4993 | 0,4994 | 0,4994 | 0,4994 | 0,4994  | 0,4994 | 0,4995 | 0,4995  | 0,4995 |
| 3,3            | 0,4995 | 0,4995 | 0,4995 | 0,4996 | 0,4996 | 0,4996  | 0,4996 | 0,4996 | 0,4996  | 0,4997 |

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.