L8: Linear Regression

Prof. Xun Jiao

Before class

- HW1 feedback: check with TA dma2@Villanova.edu (Dongning Ma)
- HW 2 due by Wed

Linear Regression Review regression supervisedlearning • • • • • • Machine learning classification unsupervised learning

What is a linear equation?

Linear regression assumes a predictor of the form

(or
$$Ax = b$$
 if you prefer)

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

How to find Θ ?

• In other words, how to find a line that can fit the data?

Cost Function

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

Squared error function: most-widely used cost function.

Let us use an example with one parameter

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_1)$$

(function of the parameter θ_1)

What is the J() value under different theta?

> Find theta that can minimize J()

What is our final goal?

- Our final goal is to find a parameter theta that can minimize the cost function J.
 - Did we find it?
 - How can we validate it?

Now, what if we have two parameters?

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0$$
 =50

$$h_{\theta}(x) = 50 + 0.06x$$

$$\theta_1$$
 =0.06

What would our J() look like???

$$J(\theta_1)$$

(function of the parameter θ_1)

Contour plots/figures

Another example with different parameter

Is this model better than previous one?

Ultimate example

Is this model better than previous one?

So, the problem really becomes, how can we automatically find parameters that minimize cost function J?

Gradient Descent!

Have some function $J(\theta_0,\theta_1)$ Want $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$ Can be even more theta

Outline:

- Start with some $\, heta_0, heta_1\,\,$ e.g., both are zeros
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Which direction I should move if I want to go down (as rapidly as possible)?

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) } learning rate
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

