Analyse Numérique Matricielle

Filière:

S1-- ENSAH --

Ingénierie des données

F.MORADI

Exercice 1:

Considérons la matrice : $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 \\ 2 & 5 & 2 \end{pmatrix}$.

- **1-** Calculer detA et P(A) le polynôme caractéristique de A.
- **2-** Montrer que 1 est une valeur propre de A.
- **3-** Déterminer Sp(A) le spectre de A et en déduire $\rho(A)$ le rayon spectral de A.
- **4-** Donner A^{-1} la matrice inverse de A.

Exercice 2:

Soit
$$J_n = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 1 & \dots & 1 & 1 \end{pmatrix} \epsilon \mathcal{M}_n(\mathbb{R}).$$

- 2- La matrice J_n est-elle inversible? Si oui déterminer son inverse.

3- Considérons la matrice
$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix} \epsilon \mathcal{M}_5(\mathbb{R}).$$

3- Considérons la matrice
$$A=\begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$
 $\epsilon\mathcal{M}_5(\mathbb{R}).$ a- Montrer que $A^2=\begin{pmatrix} 8 & 7 & 7 & 7 & 7 \\ 7 & 8 & 7 & 7 & 7 \\ 7 & 7 & 8 & 7 & 7 \\ 7 & 7 & 7 & 8 & 7 \\ 7 & 7 & 7 & 8 & 7 \\ 7 & 7 & 7 & 7 & 8 \end{pmatrix}$ en utilisant la matrice J_5 .

- b-La matrice A est-elle inversible? Si oui déterminer son inverse.
- c-En déduire un polynôme Annulateur de A et les valeurs propres possibles.
- d- Déterminer Sp(A).

Exercice 3:

Considérons le nombre complexe $j=e^{\frac{2i\pi}{3}}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ et les matrices

$$X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix} \text{ et } Y = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}.$$

- **1-** Calculer X^2 , Y^2 , X^4 et Y^4
- **2-** En déduire les valeurs propres possibles des matrices X et Y.
- **3-** Calculer XY et YX.
- 4- En déduire l'inverse de X et l'inverse de Y.

Exercice 4:

Soit
$$A = \begin{pmatrix} \beta & \alpha & \alpha \\ \alpha & \beta & \alpha \\ \alpha & \alpha & \beta \end{pmatrix}$$
 avec $(\alpha, \beta) \in \mathbb{R}^2$.

1- Montrer que :

$$det A = (\beta + 2\alpha) (\beta - \alpha)^2$$

- **2-** En déduire P(A) le polynôme caractéristique de A et Sp(A) le spectre de A.
- **3-** Considérons la matrice : $B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.
- **a-** Déterminer Sp(B) le spectre de B et en déduire le rayon spectral $\rho(B)$.
- **b-** Déterminer les sous espaces propres.

Exercice 5:

1- Posons
$$K = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 et $A = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$. Calculer K^2 et en déduire A^{1010} .

- **2-** Posons $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} chx & shx \\ shx & chx \end{pmatrix}$ avec $x \in \mathbb{R}$. **a-** Calculer detB et P(B) le polynôme caractéristique de B.
- **b-** Déterminer Sp(B).
- **c-** Calculer J^2 , L^2 , JL et LJ.
- **d-** En déduire pour tout $n \ge 1$, J^n et L^n . **e-** Montrer que : $\forall n \ge 1$, $B^n = \begin{pmatrix} ch(nx) & sh(nx) \\ sh(nx) & ch(nx) \end{pmatrix}$.

Exercice 6:

On considère la matrice carrée suivante : $M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$.

- **1-** Calculer (M-I)(M+3I) et déduire les valeurs propres possibles de M.
- **2-** Calculer P(M) le polynôme caractéristique de M.
- **3-** Déduire Sp(M) le spectre de M et le rayon spectral $\rho(M)$.
- **4-** Déterminer le reste de la division euclidienne du polynôme X^3 par (X-1)(X+3)et calculer M^3 .
- **5-** En déduire M^n pour tout $n \in \mathbb{N}$.

Exercice 7:

Soient $(a, b, c) \in \mathbb{R}^3$ tels que: $a^2 + b^2 + c^2 = 1$, $V = \begin{pmatrix} a \\ b \end{pmatrix}$ et la matrice $N = VV^T$.

1- Déterminer N , calculer V^TV et en déduire N^2 .

2- Soit
$$M = \begin{pmatrix} a^2 - 1 & ab & ac \\ ab & b^2 - 1 & bc \\ ac & bc & c^2 - 1 \end{pmatrix}$$
, calculer M^n pour tout $n \in \mathbb{N}$.