Seminar 4

In this seminar you will study:

- Trigonometric Identities
- Converting angles: from degrees to radians and vice-versa
- Finding range and period of trigonometric functions
- Finding values of trigonometric function
- Solving trigonometric equations

Trigonometric functions

$$\cos\theta = \frac{\text{Adjacent Side}}{\text{Hypotenuse}} = \frac{x}{r} = \frac{x}{1} = x$$

$$\sin\theta = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{y}{r} = \frac{y}{1} = y$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 ; $\cos \theta \neq 0$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} \quad ; \quad \sin \theta \neq 0$$

$$\sec \theta = \frac{1}{\cos \theta}$$
 ; $\cos \theta \neq 0$

$$\csc \theta = \frac{1}{\sin \theta} \quad ; \quad \sin \theta \neq 0$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta \quad ; \quad \cos \theta \neq 0$$

$$1 + \cot^2 \theta = \csc^2 \theta \quad ; \quad \sin \theta \neq 0$$

Trigonometric identities:

Trigonometric identities

Example: Prove that
$$\frac{1 + \cot^2 \theta}{\csc^2 \theta - 1} = \sec^2 \theta$$

Solution:

LHS =
$$\frac{1 + \cot^2 \theta}{\csc^2 \theta - 1}$$

$$= \frac{1 + \frac{\cos^2 \theta}{\sin^2 \theta}}{\frac{1}{\sin^2 \theta} - 1}$$

$$= \frac{\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}}{\frac{1 - \sin^2 \theta}{\sin^2 \theta}}$$

$$= \frac{1}{(1 - \sin^2 \theta)} = \frac{1}{\cos^2 \theta}$$

$$= \sec^2 \theta = \text{RHS}$$

Alternative method

LHS =
$$\frac{1 + \cot^2 \theta}{\csc^2 \theta - 1}$$
=
$$\frac{\csc^2 \theta}{\cot^2 \theta}$$
=
$$\frac{\frac{1}{\sin^2 \theta}}{\cos^2 \theta}$$
=
$$\frac{1}{\sin^2 \theta}$$
=
$$\frac{1}{\cos^2 \theta}$$
=
$$\frac{1}{\cos^2 \theta}$$
= RHS

Conversion Formulae

• Degrees to Radians

angle in radians = angle in degrees
$$\times \left(\frac{\pi}{180^{\circ}}\right)$$

• Radians to Degree

angle in degrees = angle in radians
$$\times \left(\frac{180^{\circ}}{\pi}\right)$$

The range of Trigonometric functions

• The range of \sin and \cos functions is: [-1,1].

i.e.
$$-1 \le \cos \theta \le 1$$
 and $-1 \le \sin \theta \le 1$, $\theta \in \mathbb{R}$

• The range of sec and cosec functions is: $\mathbb{R} - (-1, 1)$.

i.e.
$$\sec \theta \le -1$$
 or $\sec \theta \ge 1$, $\theta \ne (2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$

and
$$\csc\theta \leq -1$$
 or $\csc\theta \geq 1$, $\theta \neq k\pi$, $k \in \mathbb{Z}$

• The range of \tan and \cot functions is: \mathbb{R} .

i.e.
$$\tan \theta \in (-\infty, +\infty), \quad \theta \neq (2k+1)\frac{\pi}{2}, \ k \in \mathbb{Z}$$

and
$$\cot \theta \in (-\infty, +\infty), \quad \theta \neq k\pi, \ k \in \mathbb{Z}$$

The range of Trigonometric functions

Example: Find the range of $f(x) = 5 - 3\sin(4x - 7)$

Solution:

For any $\theta \in \mathbb{R}, -1 \leq \sin \theta \leq 1$.

For $f(x) = 5 - 3\sin(4x - 7)$, the angle θ is 4x - 7.

$$\Rightarrow$$
 $-1 \le \sin(4x - 7) \le 1$

$$\Rightarrow$$
 $-1 \times (-3) \le \sin(4x - 7) \times (-3) \le 1 \times (-3)$

 \Rightarrow $3 \ge -3\sin(4x-7) \ge -3$

$$\Rightarrow$$
 $-3 \le -3\sin(4x-7) \le 3$

$$\Rightarrow$$
 $-3 + (5) \le -3\sin(4x - 7) + (5) \le 3 + (5)$

 $\Rightarrow 2 \le 5 - 3\sin(4x - 7) \le 8$

$$\Rightarrow$$
 2 $\leq f(x) \leq 8 \Rightarrow$ The range of $f: R_f = [2, 8]$

Multiply the inequality through by (-3)

Add (5) to the inequality

The period of Trigonometric functions

• The period (principal period) of $aT_1(bx+c)+d$ is $\frac{2\pi}{|b|}$,

where T_1 is the trigonometric function: \sin , \cos , \csc , or \sec .

ullet The period (principal period) of $aT_2(bx+c)+d$ is $\dfrac{\pi}{|b|}$,

where T_2 is the trigonometric function: $\tan \operatorname{or} \cot$.

Signs of Trigonometric functions in the quadrants

Finding values of Trigonometric functions

Example: If $\cot \theta = -\frac{9}{40}$, find $\cos \theta + \sin \theta$, where $\frac{3\pi}{2} < \theta < 2\pi$.

Solution:

$$\cot \theta = -\frac{9}{40} \quad \Rightarrow \quad \tan \theta = -\frac{40}{9}$$

Since
$$\frac{3\pi}{2} < \theta < 2\pi$$

 θ is in Quadrant IV

$$\frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta} = \left(-\frac{40}{41}\right) + \left(+\frac{9}{41}\right)$$

$$= -\frac{31}{41}$$
Quadrant IV
$$\sin \theta < 0$$

$$\cos \theta > 0$$

Solving Trigonometric equations

Example 1: Solve $\sin \theta = \frac{1}{2}$, $\theta \in [0, \pi]$.

Solution:

$$\sin \theta = \frac{1}{2}$$

 \therefore reference angle in quadrant I is $\alpha = \frac{\pi}{6}$

But $\theta \in [0, \pi]$

$$\therefore \ \theta = \begin{cases} \frac{\pi}{6} \\ \frac{5\pi}{6} \end{cases}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

Solving Trigonometric equations

Example 2: Solve for $\theta \in [0, 2\pi]$, $\sin^2 \theta + 2\sin \theta - 3 = 0$.

Solution:

Let
$$\sin \theta = t$$

$$t^2 + 2t - 3 = 0$$

$$\Rightarrow (t+3)(t-1) = 0$$

$$\Rightarrow t = -3 \text{ or } t = 1$$

But $\sin \theta \in [-1, 1]$

$$\sin \theta \neq -3$$

$$\Rightarrow \sin \theta = 1$$

 \therefore reference angle in quadrant I is $\alpha = \frac{\pi}{2}$

since
$$\theta \in [0, 2\pi]$$

$$\therefore \quad \theta = \frac{\pi}{2}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

THANKS FOR YOUR ATTENTION