Sprawozdanie - laboratorium nr 12

Całkowanie numeryczne metodą Romberga.

Damian Płóciennik

22 maja 2019

1 Wstęp teoretyczny

Całkowanie numeryczne oznacza zastosowanie metod numerycznych w celu wyznaczenia przybliżonej wartości całki oznaczonej.

1.1 Metoda Romberga

Korzystamy ze wzoru trapezów:

$$h = \frac{b-a}{n},\tag{1}$$

$$S_n = h \left(\sum_{i=0}^n f(a+ih) - \frac{f(a) + f(b)}{2} \right).$$
 (2)

Jeśli $x \in [0,1]$ to dla kolejnych wartości n dostajemy poniższy ciąg przybliżeń wartości całki:

$$S_{0} = \frac{1}{2}f(0) + \frac{1}{2}f(1)$$

$$S_{2} = \frac{1}{4}f(0) + \frac{1}{2}\left\{f\left(\frac{1}{2}\right)\right\} + \frac{1}{4}f(1)$$

$$S_{4} = \frac{1}{8}f(0) + \frac{1}{4}\left\{f\left(\frac{1}{4}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{3}{4}\right)\right\} + \frac{1}{8}f(1)$$

$$S_{6} = \frac{1}{16}f(0) + \frac{1}{8}\left\{f\left(\frac{1}{8}\right) + f\left(\frac{1}{4}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{3}{4}\right) + f\left(\frac{7}{8}\right)\right\} + \frac{1}{16}f(1).$$
(3)

Zauważmy, że do obliczenia T_{2n} można wykorzystać już obliczone T_n :

$$S_{2} = \frac{1}{2}S_{0} + \frac{1}{2}\left\{f\left(\frac{1}{2}\right)\right\}$$

$$S_{4} = \frac{1}{2}S_{2} + \frac{1}{4}\left\{f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right)\right\}$$

$$S_{6} = \frac{1}{2}S_{4} + \frac{1}{8}\left\{f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right)\right\},$$
(4)

co ogólnie dla przedziału całkowania [a,b] można zapisać jako:

$$S_{2n} = \frac{1}{2}S_{2(n-1)} + h_{2n}\sum_{i=1}^{n} f(a + (2i-1)h)$$
(5)

z krokiem całkowania $h_{2n} = \frac{b-a}{2^n}$.

W metodzie Romberga zakładamy, że odległość między (n+1) węzłami wynosi $h_{2n}=\frac{b-a}{2^n}$.

Do obliczenia całki wykorzystujemy rekurencyjną formułę z wzorem trapezów:

$$R_{0,0} = \frac{1}{2}(b-a)[f(a)+f(b)]$$

$$R_{n,0} = \frac{1}{2}R_{n-1,0} + \frac{b-a}{2^n} \sum_{i=1}^{2^n-1} f\left(a+(2i-1)\frac{b-a}{2^n}\right)$$

$$R_{n,m} = \frac{1}{2}R_{n,m-1} + \frac{4^m R_{n,m-1} - R_{n-1,m-1}}{4^m - 1}$$
(6)

Obliczenia przerywa się, gdy spełniony jest warunek $|R_{k,k}-R_{k-1,k-1}|<\varepsilon,\varepsilon\in R$ lub po osiągnięciu zadanej liczby iteracji k.

Metoda Romberga jest przykładem kwadratury adaptacyjnej.

2 Zadanie do wykonania

2.1 Opis problemu

Celem zadania było zaprogramowanie metody Romberga całkowania numerycznego, tak aby uzyskać tablicę całek:

gdzie $D_{w,k}$ z pierwszej kolumny określone były następująco:

$$D_{0,0} = \frac{1}{2}(b-a)(f(a)+f(b)) \tag{8}$$

oraz

$$D_{n,0} = \frac{1}{2}D_{w-1,0} + h_w \sum_{i=0}^{2^{w-1}} f(a + (2i-1)h_w)$$
(9)

z krokiem całkowania

$$h_w = \frac{b-a}{2^w}. (10)$$

Elementy w kolejnych kolumnach zostały liczono, korzystając ze wzoru:

$$D_{w,k} = \frac{4^k D_{w,k-1} - D_{w-1,k-1}}{4^k - 1}. (11)$$

W zadaniu należalo policzyć wartości trzech całek dla podanych wartości n:

$$\int_{0}^{1} \frac{\sin(x)}{x} dx \tag{12}$$

dla n = 7,

$$\int_{-1}^{1} \frac{\cos(x) - e^x}{\sin(x)} dx \tag{13}$$

dla n = 15,

$$\int_{1}^{\infty} \frac{1}{xe^x} dx \tag{14}$$

dla n=7.

2.2 Wyniki

Do wykonania zadania wykorzystano program napisany w języku C. W poniższych tabelach zaprezentowano wartości z pierwszej kolumny oraz z diagonali tablicy całek dla poszczególnych przypadków.

w	$D_{w,0}$	$D_{w,w}$
0	0.9207354924	0.9207354924
1	0.9397932848	0.9461458823
2	0.9445135217	0.9460830041
3	0.9456908636	0.9460830704
4	0.9459850299	0.9460830704
5	0.9460585610	0.9460830704
6	0.9460769431	0.9460830704
7	0.9460815385	0.9460830704

Tabela 1: Tabela z wartościami elementów $D_{w,0}$ oraz $D_{w,w}$ z tablicy całek dla $\int_{0}^{1} \frac{\sin(x)}{x} dx$; $w \in \{0, ..., n\}$

Łatwo zauważyć, że już dla w=3 na diagonali osiągnięto zbieżność i uzyskano oczekiwaną wartość. Wartości z pierwszej kolumny również zbiegają do poszukiwanej wartości całki, jednak czynią to znacznie wolniej.

w	$D_{w,0}$	$D_{w,w}$
0	-2.7932066937	-2.7932066937
1	-2.3966034462	-2.2644023637
2	-2.2852177581	-2.2470016508
3	-2.2563258990	-2.2465960135
4	-2.2490302656	-2.2465917462
5	-2.2472016745	-2.2465917245
6	-2.2467442304	-2.2465917226
7	-2.2466298502	-2.2465917217
8	-2.2466012536	-2.2465917212
9	-2.2465941041	-2.2465917210
10	-2.2465923167	-2.2465917208
11	-2.2465918698	-2.2465917208
12	-2.2465917580	-2.2465917208
13	-2.2465917301	-2.2465917207
14	-2.2465917231	-2.2465917207
15	-2.2465917213	-2.2465917207

Tabela 2: Tabela z wartościami elementów $D_{w,0}$ oraz $D_{w,w}$ z tablicy całek dla $\int_{-1}^{1} \frac{\cos(x) - e^x}{\sin(x)} dx$; $w \in \{0, ..., n\}$

W drugim przypadku możemy dostrzec efekt podobny do poprzedniego, choć zbieżność na diagonali osiągnięto znacznie później. Jednak wynik bardzo zbliżony do oczekiwanego (z dokładnością do 7 miejsc po przecinku) osiągnięto już dla w=4.

W celu obliczenia trzeciej całki z wykorzystaniem napisanego programu należało przekształcić ją do postaci:

$$\int_{0}^{1} \frac{e^{-\frac{1}{t}}}{t} dt. \tag{15}$$

Uzyskano wyniki:

w	$D_{w,0}$	$D_{w,w}$
0	0.1839397206	0.1839397206
1	0.2273051435	0.2417602845
2	0.2198339234	0.2157157321
3	0.2193509579	0.2193701669
4	0.2193835798	0.2194097488
5	0.2193839324	0.2193828331
6	0.2193839343	0.2193839414
7	0.2193839344	0.2193839345

Tabela 3: Tabela z wartościami elementów $D_{w,0}$ oraz $D_{w,w}$ z tablicy całek dla $\int_{1}^{\infty} \frac{1}{xe^x} dx$; $w \in \{0, ..., n\}$

W ostatnim przypadku widać, że wynik zbiega do pewnej wartości, jednak tym razem liczba kroków nie była wystarczająca do osiągnięcia zbieżności. Mimo tego wyniki od w=5 są dość dokładne i w większości przypadków byłyby one zadowalające.

3 Wnioski

Metoda Romberga pozwala w szybki sposób na numeryczne policzenie wartości całek. Odpowiednio niski poziom błędu wartości całki można osiągnąć zwiększając liczbę węzłów całkowania. Wartości na diagonali tablicy całek osiągają zbieżność dość szybko, natomiast wartości w pierwszej kolumnie zbiegają również do poszukiwanej wartości, jednak dzieje się to znacznie wolniej. Zastosowanie warunku zbieżności mogłoby ograniczyć ilość obliczeń, ale w wielu przypadkach wymagałoby wielu realokacji tablicy.

Reasumując, metoda Romberga jest szybką i skuteczną metodą numerycznego obliczania wartości całek.

4 Bibliografia

• Chwiej Tomasz: Całkowanie numeryczne przy użyciu kwadratur. [online]. [dostęp: 29.05.2019]. Dostęp w Internecie: http://galaxy.agh.edu.pl/~chwiej/mn/calkowanie_1819.pdf