T.D. I - Calcul matriciel

I - Opérations sur des matrices

Exercice 1. Soit
$$A = \begin{pmatrix} 2,5 & 2 & -1 \\ 5 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & 1 & -1 & 2 \\ -0,5 & -3 & 1 & 1 \\ 4 & -2,5 & 0 & 3 \end{pmatrix}$.

- **1.** Calculer AB.
- **2.** Que dire du produit BA?

Exercice 2. Déterminer les coefficients manquants :

$$\begin{pmatrix} 2 & \cdots \\ \cdots & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Exercice 3. ($\mathbf{C}_{\mathbf{s}}^{\mathbf{s}}$) Soit $A = \begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 3 \\ -2 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix}$.

Effectuer les calculs suivants :

1.
$$A + 2B$$
.

3.
$$A + BC$$
.

4.
$$(A - I_2)(B - I_2)$$
.

Exercice 4. (\clubsuit) Pour chacune des matrices J suivantes, calculer J^2 , J^3 puis J^k pour tout $k \ge 3$.

1.
$$J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

$$\mathbf{3.} \ J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

2.
$$J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

4.
$$J = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Exercice 5. (\bigcirc) Soit A une matrice d'ordre 3 et I la matrice identité d'ordre 3. Développer l'expression (A-2I)(A-I).

Exercice 6. (\$\ddot*) Soit A une matrice d'ordre 4 et I la matrice identité d'ordre 4. Développer l'expression $(A+I)^3$.

Exercice 7. Soit
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 0 & 0 \\ 3 & 1 & -1 \end{pmatrix}$$
. Calculer A^2 puis A^3 .

Exercice 8. Soit
$$A = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}$$
. Calculer A^2 puis A^3 .

Exercice 9. ()

- **1.** Soit a et b deux réels. Développer l'expression $(a+b)^2$.
- **2.** Soit $A = \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & 9 \\ 1 & 1 \end{pmatrix}$.
 - a) Calculer $(A+B)^2$.
 - **b)** Calculer $A^2 + 2AB + B^2$.
 - c) Que peut-on conclure?

II - Calculs de puissances

II.1 - Récurrences

Exercice 10. (
$$\clubsuit$$
) Soit $A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

1

1. Calculer A^2 et A^3 .

2. Montrer par récurrence que pour tout n entier naturel non nul,

$$A^n = \begin{pmatrix} 4^n & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. Cette relation est-elle encore vraie lorsque n = 0?

Exercice 11. (
$$\bigcirc$$
) Soit $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 .
- **2.** Montrer par récurrence que pour tout n entier naturel,

$$A^n = \begin{pmatrix} 5^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}.$$

Exercice 12. Soit $B = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$.

- 1. Calculer B^2 et B^3 .
- **2.** Montrer par récurrence que pour tout n entier naturel, $B^{2n+1} = \begin{pmatrix} 0 & 2^{2n+1} \\ 2^{2n+1} & 0 \end{pmatrix}.$

Exercice 13. Soit
$$B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$
.

- 1. Calculer B^2 et B^3 .
- 2. Montrer par récurrence que pour tout n entier naturel, $\begin{pmatrix} 3^{2n+1} & 0 & 0 \end{pmatrix}$

$$B^{2n+1} = \begin{pmatrix} 3^{2n+1} & 0 & 0\\ 0 & 0 & 2^{2n+1}\\ 0 & 2^{2n+1} & 0 \end{pmatrix}.$$

Exercice 14. Soit $A = \begin{pmatrix} -2 & 0 & 0 \\ -3 & 1 & 3 \\ -3 & 3 & 1 \end{pmatrix}$ et I la matrice identité d'ordre 3.

- **1. a)** Calculer $A^2 2A 8I$.
- **b)** Démontrer par récurrence qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que pour tout entier naturel $n\geqslant 0$, on ait $A^n=a_nA+b_nI$. On précisera les premiers termes $a_0,\ a_1,\ a_2,\ b_0,\ b_1,\ b_2$; et on exprimera a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- **2.** On définit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_n = 4a_n + b_n \\ v_n = -2a_n + b_n \end{cases}$.
 - a) Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont géométriques.
 - **b)** En déduire une expression de u_n et v_n en fonction de n.
 - c) En déduire une expression de a_n et b_n en fonction de n.
- **3.** Exprimer A^n en fonction de n.

II.2 - Formule du binôme

Exercice 15. Soit
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $J = A - 2I_3$.

- 1. Expliciter J, J^2 et J^3 . En déduire la valeur de J^k pour tout entier $k \geqslant 3$.
- **2.** Montrer à l'aide de la formule du binôme de Newton que pour tout n entier naturel,

$$A^{n} = 2^{n} \left(I_{3} + \frac{n}{2} J + \frac{n(n-1)}{8} J^{2} \right).$$

- **3.** En déduire, pour $n \ge 2$, les neufs coefficients de la matrice A^n . Vérifier que votre résultat reste vrai pour n = 0 et n = 1.
- 4. Démontrer le résultat précédent en utilisant une récurrence.

Exercice 16. Soit
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 3 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
 et $B = A - 3I_3$.

1. Expliciter B, B^2 et B^3 . En déduire B^k pour tout $k \ge 3$.

2. A l'aide de la formule du binôme de Newton, montrer que pour tout entier $n \geqslant 2$,

$$A^{n} = 3^{n} \left(I + \frac{n}{3}B + \frac{n(n-1)}{18}B^{2} \right).$$

- **3.** La formule est-elle encore vraie pour n = 0? n = 1?
- **Exercice 17.** Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Montrer que pour tout n entier naturel, $A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$.

naturel,
$$A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$
.