

Examen Parcial

Curso: Álgebra lineal 2 Ciclo: 2016.1

A lo largo de este examen, E denotará un e.p.i. real de dimensión finita, $\operatorname{End}(E) := \mathcal{L}(E, E)$, y un operador $A \in \operatorname{End}(E)$ será llamado de **normal** si A y A^* conmutan.

- 1. [5 pts.] Sea $A \in \text{End}(E)$ un operador normal. Demuestre que
 - (a) todo autovector de A es también autovector de A^* , con el mismo autovalor.
 - (b) $\ker(A)^{\perp} = \operatorname{im}(A)$
- 2. [5 pts.] Sean $P \in \text{End}(E)$ una proyección. Pruebe que P es auto-adjunto si es normal.
- 3. [5 pts.] Sea $F:=C^{\infty}(\mathbb{R},\mathbb{R}).$ Muestre que los subespacios G,H generados por los conjuntos
 - (a) $\{\cos(x), \sin(x)\},\$
 - (b) $\{e^x, xe^x, x^2e^x\},\$

respectivamente, son invariantes por el operador derivación $D: F \to F$.

4. [5 pts.] Considere en $F:=\{f:[-1,1]\to\mathbb{R}\ ;\ f\ \text{es\ continua}\}$ el producto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

donde $f,g \in F$. Muestre que el subespacio vectorial P de las funciones pares es el complemento ortogonal del subespacio I de las funciones impares.