

Test 4

Topics: convex sets; convex functions; optimality conditions; Iterative Solution Algorithm for Unconstrained NLPPs

Subject: Computational Mathematics Period: 2021-1

- 1. Let $A, B \subseteq \mathbb{R}^p$ and $C \subseteq \mathbb{R}^q$ be convex sets and let $\alpha \in \mathbb{R}$. Then show that
 - (a) (2 pts.) A + B is convex and
 - (b) (2 pts.) αA is convex.
- 2. Let $f:[1,\infty)\to\mathbb{R}$, given by $f(x)=-\sqrt{x-1}$.
 - (a) (2 pts.) Determine whether f is convex. The assertion must be proven.
 - (b) (2 pts.) Determine whether f has a global minimum. The assertion must be proven.
 - (c) (1 pt.) Sketch the graph of f.
- 3. Consider the following unconstrained NLOP:

$$\min \qquad f(x_1, x_2),$$
$$(x_1, x_2) \in \mathbb{R}^2$$

where $f(x_1, x_2)$ is defined by

$$x_1^2 + 3 \cdot x_1 \cdot x_2 + x_2^2$$
.

In a .ipynb file using only python code:

- (a) (1 pt.) Plot the graph of f over an appropriate domain.
- (b) (2 pts.) Express f(x) in the form

$$\frac{1}{2} \cdot x^T \cdot Q \cdot x,$$

where Q is a 2×2 symmetric matrix, and determine the eigen values λ_{min} and λ_{max} (with $\lambda_{min} \leq \lambda_{max}$) of Q.

- (c) (3 pts.) Let u_{min} be a nonzero eigenvector associated with λ_{min} , and taking as initial point $x^0 := u_{min}$, conduct iterations of the Generic Algorithm for Unconstrained Nonlinear Optimization Problems using the steepest descent search direction and an exact line search to solve this problem.
- (d) (2 pts.) Is the point at which the algorithm terminates guaranteed to be a local or global optimum? Why?

July 14, 2021