Chapitre 1 : Vitesses de réaction

I Système – réaction chimique

A) Système physique ou chimique

Système (Σ): ensemble des constituants situés à l'intérieur d'une surface fermée.

 Σ + Milieu extérieur = Univers

Milieu extérieur

S est une surface fermée réelle (matérielle) ou fictive.

Système isolé : système n'échangeant ni matière ni énergie avec le milieu extérieur

Système fermé : système qui peut échanger de l'énergie (pas de matière)

Système ouvert : système qui peut échanger matière et énergie

B) Paramètres d'état du système

Ils précisent l'état macroscopique du système.

Exemples : volume, pression, température, masse, nombre de moles des différents corps purs, indice du milieu, densité volumique...

Définition : un paramètre extensif est un paramètre proportionnel à la quantité de matière, contrairement à un paramètre intensif.

Pour savoir si un paramètre est intensif ou extensif :

Un paramètre intensif a la même valeur dans Σ et Σ'

Pour un paramètre extensif, la valeur dans Σ' vaut λ fois celle dans Σ'

C) Phase

Système dont l'aspect macroscopique est le même en tout point.

D) Paramètre de composition d'une phase

On considère une phase contenant un ensemble de corps purs A_i de masses m_i , avec n_i moles.

Définitions:

- Fraction molaire du corps pur A_i : $x_i = \frac{n_i}{\sum_i n_j}$. On a : $\sum_i x_i = 1$

- Fraction massique de A_i : $y_i = \frac{m_i}{\sum_i m_j}$

Exemple: dans l'air,

$$x_{N_2} = 78\%$$
 $y_{N_2} = 75.5\%$

$$x_{O_2} = 21\%$$
 $y_{O_2} = 23\%$

$$x_{Ar} = 1\%$$
 $y_{Ar} = 1.5\%$

Pour les phases homogènes (= dont les paramètres intensifs sont continus et constants) gazeuse, liquide ou aqueuse :

- Concentration de A_i : $c_{A_i} = [A_i] = \frac{n_{A_i}}{V}$

$$[c_{A_i}] = \text{mol.L}^{-1}$$

Dans les phases gazeuses :

- On définit la pression partielle : c'est la pression exercée par le gaz s'il était seul dans l'enceinte de volume V.

Si A_i est un gaz parfait : $P_{A_i} = n_{A_i} \times \frac{RT}{V}$

Si la phase gazeuse contient plusieurs gaz, $P_{\text{totale}} = \sum_{i} P_{A_i}$. Si le mélange est idéal,

on a
$$P_{\text{totale}} = \frac{RT}{V} \sum_{i} n_{A_i} = n_{\text{total}} \frac{RT}{V}$$
 (Loi de Dalton)

Un mélange idéal de gaz parfaits se comporte donc comme un gaz parfait de n_{total} moles.

$$\frac{P_{A_i}}{P_{\text{totale}}} = \frac{n_{A_i}}{n_{\text{total}}} = x_i \Longrightarrow P_{A_i} = x_i \times P_{\text{totale}}$$

E) Méthode expérimentale de mesure des quantités de matière

Détermination des quantités de matière à un instant donné.

1) Méthodes chimiques

On prélève un échantillon de la solution à un instant *t*. On fait ensuite une <u>trempe</u> qui bloque l'avancement de la réaction (la composition devient stationnaire, indépendante du temps), puis on fait un <u>dosage</u> approprié qui donne les quantités de matière d'un ou des différents constituants de l'échantillon.

2) Méthodes physiques

Elles sont moins perturbatrices que les méthodes chimiques.

• Mesure des pressions

Pour les réactions en phase gazeuse :

$$C_2H_5 - NH_{2(g)} = C_2H_{4(g)} + NH_{2(g)}$$

Ethylamine Ethène Ammoniac

$$t = 0 a b c (mol)$$

$$t a - x b + x c + x (mol)$$

$$P(t) = \frac{[(a - x) + (b + x) + (c + x)]RT}{V} = \frac{(a + b + c + x)RT}{V}$$

$$P(0) = \frac{(a + b + c)RT}{V}$$

$$\frac{P(t)}{P(0)} = \frac{a + b + c + x}{a + b + c} = 1 + \frac{x}{a + b + c}$$

La mesure de la pression donne x, puis les quantités de matière des différentes espèces.

Mesure d'absorbance

On définit l'absorbance $A = \log \left(\frac{I_1}{I_2} \right)$

Loi de Beer-Lambert : $A = \varepsilon_{\lambda} \times l \times c$ (ε_{λ} dépend de l'espèce absorbante et de λ , unité mol⁻¹.m²)

F) Equation bilan, coefficients stoechiométriques, avancement de la réaction

$$a_1R_1 + a_2R_2 + \dots = a_1'P_1 + a_2'P_2 + \dots$$

ou $0 = a_1'P_1 + a_2'P_2 + \dots - a_1R_1 - a_2R_2 - \dots = \sum_i v_i A_i$

(v_i est une grandeur algébrique entière)

Exemple : $2H_{2(g)} + O_{2(g)} = 2H_2O_{(l)}$

$$v_{_{\mathrm{H}_2\mathrm{O}}} = +2$$
 $v_{_{\mathrm{O}_2}} = -1$ $v_{_{\mathrm{H}_2}} = -2$

Les coefficients stoechiométriques traduisent les proportions dans lesquelles les réactifs sont consommés et les produits formés, c'est-à-dire :

$$\frac{n_{R_1}(0) - n_{R_1}(t)}{a_1} = \frac{n_{R_2}(0) - n_{R_2}(t)}{a_2} = \dots = \frac{n_{R_1}(t) - n_{R_1}(0)}{a_1'} = \frac{n_{R_2}(t) - n_{R_2}(0)}{a_2'} = \xi(t)$$

 $(\xi : avancement de la réaction)$

Pour tout *i*, on a :
$$\xi(t) = \frac{n_{A_i}(t) - n_{A_i}(0)}{v_i} \Leftrightarrow n_{A_i}(t) = n_{A_i}(0) + v_i \xi(t)$$

$$[\xi] = mol$$

Si plusieurs réactions se déroulent simultanément :

$$0 = \sum_{i} v_{i,1} A_i ; 0 = \sum_{i} v_{i,2} A_i ; ...; 0 = \sum_{i} v_{i,n} A_i$$

On définit encore un avancement de réaction :

$$\xi_k(t) = \frac{\Delta_k n_{A_i}}{V_{i,k}}$$
. ($\Delta_k n_{A_i}$: nb de moles de A_i formés entre 0 et t par la $k^{\text{ième}}$ réaction)

$$\Delta n_{A_i} = n_{A_i}(t) - n_{A_i}(0) = \sum_k \Delta_k n_{A_i} = \sum_k V_{i,k} \xi_k(t)$$

ou
$$n_{A_i}(t) = n_{A_i}(0) + \sum_k v_{i,k} \xi_k(t)$$

II Vitesses de formation, de disparition et de réaction

A) Vitesses de formation et de disparition

• Vitesse globale de formation de A_i :

$$v_{g,A_{i}}^{f} = \frac{dn_{A_{i}}}{dt} = \frac{d}{dt} \left(n_{A_{i}}(t) - n_{A_{i}}(0) \right) = \frac{d}{dt} (\Delta n_{A_{i}})$$

• Vitesse globale de disparition de A_i :

$$v_{g,A_i}^d = -v_{g,A_i}^f$$

• Vitesse volumique de formation de A_i :

$$v_{A_i}^f = \frac{1}{V} v_{g,A_i}^f = \frac{1}{V} \frac{dn_{A_i}}{dt}$$

Si
$$V$$
 est constant : $v_{A_i}^f = \frac{d[A_i]}{dt}$

• Vitesse volumique de disparition de A_i :

$$v_{A_i}^d = -v_{A_i}^f$$

• Unités

$$[v_{g,A_i}^d] = [v_{g,A_i}^f] = \text{mol.s}^{-1}$$

$$[v_{A_i}^d] = [v_{A_i}^f] = \text{mol.L}^{-1}.\text{s}^{-1}$$

Les vitesses sont définies indépendamment des réactions qui ont lieu.

B) Vitesse de réaction

On considère une réaction $0 = \sum_{i} v_i A_i$

• Vitesse globale de réaction :

$$v_g = \frac{d\xi}{dt}$$

• Vitesse volumique de réaction :

$$v = \frac{1}{V} \frac{d\xi}{dt}$$

C) Lien entre vitesses de formation et de réaction

On considère une réaction $0 = \sum_{i} v_i A_i$

$$v_{A_{i}}^{f} = \frac{1}{V} \frac{dn_{A_{i}}}{dt} = \frac{1}{V} \frac{d}{dt} (n_{A_{i}}(0) + v_{i}\xi(t)) = v_{i} \times \frac{1}{V} \frac{d\xi}{dt} = v_{i} \times v$$

De même,
$$v_{g,A_i}^f = v_i \times v_g$$

Si on a plusieurs réactions simultanées,

$$v_{A_{i}}^{f} = \frac{1}{V} \frac{dn_{A_{i}}}{dt} = \frac{1}{V} \frac{d}{dt} (n_{A_{i}}(0) + \sum_{k} v_{i,k} \xi_{k}(t)) = \sum_{k} v_{i,k} \times v_{k}$$

D) Réactions avec ordre

On considère une réaction $0 = \sum_{i} v_i A_i$

Si $v = k \times \prod_i [A_i]^{\beta_i}$ on dit que la réaction possède un ordre ; k est la constante de vitesse (dépend de la température), β_i est l'ordre partiel par rapport à l'espèce A_i , $\beta = \sum_i \beta_i$ est l'ordre global de la réaction. $[k] = \text{mol}^{1-\beta} \cdot L^{\beta-1} \cdot s^{-1}$

Exemples:

-
$$H_{2(g)} + Br_{2(g)} = 2HBr_{(g)}$$
 $v = k \frac{[H_2][Br_2]^{1/2}}{1 + k' \frac{[HBr]}{[Br]}}$ ne possède pas d'ordre.

-
$$2NO_{(g)} + O_{2(g)} = 2NO_{2(g)}$$
 $v = k[NO]^2[O_2]$ avec 2/NO, 1/O₂, 0/NO₂

Si $\beta_i = 0$ pour les produits, la réaction est dite "simple"

Dépendance avec la température :

- v dépend de T par l'intermédiaire de k. Souvent, $k(T) = A \times e^{-E_a/RT}$ (loi d'Arrhenius)
 - A: facteur de fréquence [A] = [k]

 E_a : Energie d'activation expérimentale, correspond à l'énergie à fournir à une mole de réactif pour atteindre les produits de la réaction $[E_a] = \text{J.mol}^{-1}$

R : constante des gaz parfaits

T: température en K

k(T) est croissante.

Détermination expérimentale de A et E_a :

On mesure k(T) pour différents T, et on utilise la relation $\ln k(T) = \ln A - \frac{E_a}{RT}$

III Etude des réactions avec ordre

On veut accéder aux $\beta_i, E_a, A,...$

On utilise une méthode différentielle ou intégrale.

On envisage ici les cas où il n'y a qu'une seule réaction.

A) Technique de séparation d'Ostwald. Dégénérescence de l'ordre

Exemple:

A + B = P. On suppose que la réaction est simple :

$$v = k[A]^{\alpha}[B]^{\beta}$$

On introduit A en grand excès.

	Α	+	В	Ш	P	
t = 0	а		b			(mol.L ⁻¹)
t	а-х		b-x			(IIIOI.L)

$$x = \frac{\xi}{V}$$

A est en excès. Donc a >> b

A tout instant, $x \le b$ donc $a - x \ge a - b \approx a = [A]_0$

$$v = k[A]^{\alpha}[B]^{\beta} \approx k \times a^{\alpha} \times [B]^{\beta}$$

$$v \approx k' [B]^{\beta}$$
 avec $k' = k \times a^{\alpha}$

Dégénérescence de l'ordre ($\alpha + \beta \rightarrow \beta$)

 β est le pseudo ordre de la réaction et k' la nouvelle constante de vitesse associée à β . La loi de vitesse devient plus simple à étudier.

B) Méthodes différentielles

Raisonnement sur les vitesses (formation, disparition ou formation)

$$v_{A_i}^f = \frac{d[A_i]}{dt}$$

Exemple d'exploitation:

$$A + B \rightarrow P$$
, $v = k[A]^{\alpha}[B]^{\beta}$

A
$$t = 0, v_0 = k[A]_0^{\alpha} [B]_0^{\beta}$$

Protocole : on réalise plusieurs expériences avec $[B]_0$ fixé, puis on mesure v_0 pour plusieurs valeurs de $[A]_0$

$$\log(v_0) = \log k + \alpha \log[A]_0 + \beta \log[B]_0$$

On fait de même ensuite pour trouver β , puis la détermination graphique de l'ordonnée à l'origine permet de trouver k.

C) Méthodes intégrales

On raisonne sur la fonction $t \to [A_i]_t$, caractéristique de la loi de vitesse.

1) Etude de la loi de vitesse

Ordre $0: A \rightarrow P$

v = k, constante indépendante du temps

$$v_A^f = \frac{d[A]}{dt} = (-1) \times v = -k$$

$$[A] = [A]_0 - k(t-0)$$

$$[A] = [A]_0 - kt$$

Pour vérifier qu'une réaction est d'ordre 0 :

Ordre 1: $A \rightarrow P$

$$v = k \times [A]^1$$

$$v_A^f = \frac{d[A]}{dt} = (-1) \times v = -k[A]$$

$$\Leftrightarrow \int_{0}^{t'} \frac{d[A]}{[A]} = \int_{0}^{t'} -kdt \Leftrightarrow \ln[A] - \ln[A]_{0} = -k \times t \Leftrightarrow [A] = [A]_{0} e^{-k \times t}$$

$$\frac{\text{Ordre 2:}}{1^{\text{er}} \text{ cas:}} A \rightarrow P$$

$$v = k \times [A]^2$$

$$v_A^f = \frac{d[A]}{dt} = (-1) \times v = -k[A]^2$$

$$\Leftrightarrow \int_{0}^{t'} -\frac{d[A]}{[A]^{2}} = \int_{0}^{t'} + kdt \Leftrightarrow \left[\frac{1}{[A]}\right]_{0}^{t'} = \left[k \times t\right]_{0}^{t'} \Leftrightarrow \frac{1}{[A]} - \frac{1}{[A]_{0}} = k \times t$$

2ème cas

Z Ca	<u>s</u> .				
	A	+	В	\rightarrow	P
t = 0	a		b		
t	a- $x(t)$		b- $x(t)$		
$v = k \times$	[A][B]				

$$v_A^f = \frac{d[A]}{dt} = (-1) \times v = -k[A][B]$$

$$\Leftrightarrow -\frac{dx}{dt} = -k(a-x)(b-x) \Leftrightarrow \int_0^{t'} \frac{dx}{(a-x)(b-x)} = \int_0^{t'} k \times dt$$
Si $a \neq b$,
$$\frac{1}{(a-x)(b-x)} = \frac{\frac{b-x}{b-a} - \frac{a-x}{b-a}}{(a-x)(b-x)}$$
Donc
$$\int_0^{t'} \frac{dx}{(a-x)(b-x)} = \int_0^{t'} \frac{dx}{(b-a)(a-x)} - \int_0^{t'} \frac{dx}{(b-a)(b-x)} = \int_0^{t'} k \times dt$$

$$\Leftrightarrow \frac{1}{b-a} \left[\left[-\ln(a-x) \right]_0^t + \left[\ln(b-x) \right]_0^t \right] = k \times t$$

$$\Leftrightarrow \frac{1}{b-a} \ln \frac{a(b-x)}{b(a-x)} = kt$$

2) Temps de demi réaction

C'est le temps au bout duquel la moitié de la quantité initiale d'un réactif a été consommée.

Ordre 0:
$$A \rightarrow P$$

 $v = k$, $[A] = [A]_0 - kt$
 $[A](t_{1/2}) = [A]_0 / 2 \Rightarrow t_{1/2} = \frac{[A]_0}{2k}$

Ordre 1:
$$A \rightarrow P$$

 $v = k[A], [A] = [A]_0 e^{-kt}$

 $[A](t_{1/2}) = [A]_0 / 2 \Rightarrow t_{1/2} = \frac{\ln 2}{k}$ indépendant de la concentration initiale

Ordre 2: A \rightarrow P

$$v = k[A]^2$$
, $\frac{1}{[A]} - \frac{1}{[A]_0} = k \times t$
 $[A](t_{1/2}) = [A]_0 / 2 \Rightarrow \frac{2}{[A]_0} - \frac{1}{[A]_0} = k \times t_{1/2} \Rightarrow t_{1/2} = \frac{1}{k[A]_0}$