Machine Learning (ML) 101 Methods in AI research

Dong Nguyen 12 Sept 2019

Practicalities

• **Literature for today:** Hal Daumé III, A Course in Machine Learning, Chapter 1 (Decision Trees; http://ciml.info/dl/vo_99/ciml-vo_99-cho2.pdf). Learning; http://ciml.info/dl/vo_99/ciml-vo_99-cho2.pdf).

• Speech & Language processing Section 25.2 (Dialog State: Interpreting Dialog Acts)

Last time

Dialog systems

- Chatbots vs. goal-based dialogue systems
- We came across approaches for which we needed to:
 - Select a response from the dataset ('information retrieval' approach)
 - Classify domain, intent, slot for frame-based approaches
 - Classify dialog acts
- Rule-based vs. machine learning approaches

Natural Language

Egesiel Magalhães S.	Loan Offer - Do you need a Loan @ 2% PA? Mail us your: Names,Home Add,Mob No,Email id,Amount Needed,Lo
Mr. Karim Zongo	PLEASE THIS IS VERY URGENT Compliment of the day, I am Mr. Karim Zongo Have a Business Proposal of \$5
CITIBANK OF NEW YORK	NEW MESSAGE FROM CITIBANK NEW YORK - CITIBANK INTERNATIONAL NEW YORK DIRECTOR, FOREIGN OPE
MRS. CHRISTY MCCOOL	MY DONATION OF 4 MILLION DOLLARS ARE YOU INTERESTED ? - I am writing to seek your consent to conduct

Spam classification

Intent: SHOWFLIGHT

I want to fly to San Francisco on Monday afternoon please

Intent classification

 $EN \leftarrow \rightarrow NL$

Machine translation

Image classification

ImageNet has 21841 classes http://image-net.org/explore

Digit recognition MNIST dataset

Diagnosing Diabetic Eye Disease https://ai.google/healthcare/

What is Machine Learning?

There are many definitions, here is a useful one:

A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improved with experience E.

Tom Mitchell, Machine Learning 1997

What is Machine Learning?

Three components:

- Task T
- Experience E
- Performance measure P

Detect the dialog act of an utterance

T: Classify the dialog act of an utterance

P: The fraction of utterances correctly classified

E: A set of utterances labeled with their dialog acts

What is Machine Learning?

Three components:

- Task T
- Experience E
- Performance measure P

Self-driving cars

T: Drive on public highways using vision sensors

P: Average distance traveled before an error

E: Sequence of images and steering commands from human drivers

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

The focus of our lectures!

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Learn a model using **labelled** instances

Example: image classification, dialog act classification.

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Learn a model using **unlabelled** data

Example: community detection

● ALPHAGO 01:30:35

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Agent: conversational agent

Environment: user

Reward: 1..5 poor-excellent dialog

Action: utterance by agent

RECAP! Hand crafted rules: dialog systems

To recognize SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Hand crafted rules: spam classification

```
Spam list => spam
'Buy' AND ('cheap' OR 'free') => spam
```

Very precise. Sometimes easier to fix mistakes.

Manually crafting rules takes a **lot** of time and is **difficult** to do.

High maintenance cost (e.g. need to adapt to changing language use)

Hand crafted rules: time-consuming!

232 industry categories and 504 occupation categories

Manual rules

– Development time = 192 person-months

Machine learning

- Development time = 4 person-months
- More accurate!

COMMERCIAL APPLICATIONS OF MASSIVELY PARALLEL SUPERCOMPUTERS FOR THE 90'S Waltz 1991.

Hand crafting rules for some tasks would be really difficult!

For example: author identification of texts

 It's (usually) not about the use of specific words, but about small differences between (relative) frequencies of words and grammatical constructions.

But collecting labels is easy...

 Learn a machine learning model using labeled example instances

• Need to define **features**, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

 Learn a machine learning model using labeled example instances

 Need to define **features**, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

Domain classification for dialog systems

I want to fly to San Francisco on Monday afternoon please

Domain: AIRLINE

Features: words

 Learn a machine learning model using labeled example instances

 Need to define features, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

Features for house price prediction:

- Overall condition of the house
- Neighborhood
- Condition of the basement
- Number of bedrooms
- Construction date
- First floor square meters
- Number of schools in within 2 km
- Condition of the kitchen
- .

 Learn a machine learning model using labeled example instances

 Need to define features, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..) Question: What features could we use to predict whether a credit card transaction is fraudulent or genuine?

CIML, figure 1.1

Setting:

X: input space (set of possible instances)

Y: output space

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider)

Learning:

Input: $\langle x^{(i)}, y^{(i)} \rangle$: training example

Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Tasks & data

features output

Input:
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Housing price prediction:

This is a *regression* problem (target is a real number)

What are the dimensions of the features and the target?

$$x^{(i)} \in \mathbb{R} \text{ (one)}$$

 $y^{(i)} \in \mathbb{R} \text{ (one)}$

Tasks & data

features output

Input:
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the

features

Breast cancer diagnosis (malignant or benign):

This is a *classification* problem (target is a category)

The focus of our lectures!

What are the dimensions of the features and the target?

$$x^{(i)} \in \mathbb{R}^2 \text{ (two)}$$

 $y^{(i)} \in \{0,1\} \text{ (one)}$

Learning

Generalization

- Training versus test examples
- Memorization is not enough!

Inductive bias

 Allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of the observed data (Battaglia et al. 2018, Mitchell 1980)

Training data

[CIML 2.1 and 2.2]

Sample of the sa

Test data

ABBA: bird vs. non-bird

AABB: Fly vs. no-fly

Underlying assumptions to generalize to new input!

Supervised machine learning for classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- Neural networks
- Decision trees
- K-nearest neighbors
- And many more...

Supervised machine learning for classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- Neural networks
- Decision trees
- K-nearest neighbors
- And many more...

Decision Trees

Asking the right questions

You: Is the course under consideration in Systems?

Me: Yes

You: Has this student taken any

other Systems courses?

Me: Yes

You: Has this student liked most

previous Systems courses?

Me: No

You: I predict this student will not like this course.

Is it a good time to play tennis?

(Outlook = Sunny,
Temperature = Hot,
Humidity = High,
Wind = Strong)

Answer: No

Decision trees represent disjunction of conjunctions of constraints on the attribute values

```
(Outlook = Sunny ∧ Humidity = Normal) V
(Outlook = Overcast) V
(Outlook = Rain ∧ Wind = Weak)
```

Decision trees can be represented as if-then rules (helps interpretability ©)

Question: create a decision tree for

```
A \land B \lor \neg A \land C ((A and B) or (not A and C))
```

Question: create a decision tree for

```
A \land B \lor \neg A \land C ((A and B) or (not A and C))
```


CIML, figure 1.1

Setting:

X: input space (set of possible instances)

Y: output space

```
y=1: likes the course 0: doesn't like course
```

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider) Set of all possible decision trees

Learning:

Input: $\langle x^{(i)}, y^{(i)} \rangle$: training example

Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Learning decision trees

Find the 'best' tree $h \in H$, i.e. the tree that minimizes training error, or maximizes training accuracy

What about doing an exhaustive search? Computationally infeasible

Instead: We use a greedy search

Learning decision trees

Start with empty tree

Base cases:

If all instances have the same label \rightarrow create a leaf with that label and exit If no features left to split \rightarrow create a leaf with the majority label

Else:

Select the best test to split the data on Split the data according to the test Recurse on each subset of the data

Selecting attributes to split

Is it a good time to play tennis?

Question:

which one would you choose?

Selecting attributes to split

We want to be more certain about the label after splitting:

After split:

All instances have the same label

Uniform distribution over labels

How can we quantify this intuition?

Selecting attributes to split: misclassification rate

What is the error when choosing the majority label after a split?

Selecting attributes to split: Information Gain

Entropy:

$$H(S) = -\sum_{i} p_i \log_2 p_i$$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

Entropy comes from information theory

$$[9+, 5-] - (9/14) \log_2 (9/14) - (5/14) \log_2 (5/14) = 0.940$$

$$[7+, 7-] - (7/14) \log_2 (7/14) - (7/14) \log_2 (7/14) = 1$$

$$[14+, 0-] - (14/14) \log_2 (14/14) - (0/14) \log_2 (0/14) = 0$$

Selecting attributes to split: Information Gain

Entropy:

$$H(S) = -\sum_{i} p_i \log_2 p_i$$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

Entropy comes from information theory

Information Gain:

Entropy before you split – entropy after split (weighted by probability of following each branch)

Selecting attributes to split: Information Gain

```
[9+, 5-]
    H=0.940
                          0.940 - (7/14) * 0.985 - (7/14) *
    Humidity
                          0.592 = 0.1515
high / normal
[3+, 4-] [6+, 1-]
H=0.985 H=0.592
     [9+, 5-]
     E=0.940
                          0.940 - (8/14) * 0.811 - (6/14)
      Wind
                          *1 = 0.048
[6+, 2-] [3+, 3-]
```

H=0.811 H=1.0

Selecting attributes to split

Decision boundary

x1

Decision boundary

x1

Decision boundary

max depth = 25

x1 x1

Inductive bias

Underlying assumptions to generalize to new input! What type of solutions are we more likely to prefer?

E.g., prefer smaller models with similar training accuracy (e.g. shallow decision trees), i.e. decisions can be made by only looking at a small number of features.

Model selection

Model selection

• **Features:** Words, user profile, etc.

Model: Decision trees, or maybe something different?

We are interested in how well the model **generalizes!**

i.e. how does it perform on data it hasn't seen before?

Classification: Accuracy

#correctly labeled instances
#total instances

	Truth: A	Truth: B
Predicted: A	70	40
Predicted: B	30	60

Accuracy: 130/200 = 0.65

Train & test data

Dataset

Training set

Test set

Train your model on this data!

Test your model on this data

80% accurate on the test data

85% accurate on the test data

64% accurate on the test data

Ok let's use the yellow model!! It is 85% accurate

Train & test data

Hold on...

Dataset

Training set

Test set

Train your model on this data!

Test your model on this data

80% accurate on the test data

85% accurate on the test data

64% accurate on the test data

Warning!!

Training error is an optimistic estimate of your system's true error. So evaluate on a holdout test set. But...

Test set is only unbiased if you **NEVER** do **ANY** learning on the test set.

- Feature development
- Selecting the model
- ...

Train & dev & test data

Cross validation

Train and tune your parameters on folds 1-3

E.g. train on folds 2 and 3, test on fold 1. Usually 10 folds, but depends on the data

Overfitting and underfitting

Underfitting: The model is too simple. It could have learned something but didn't.

Example: A decision tree which always predicts the same label (majority class)

Overfitting: The model pays too much attention to idiosyncrasies of the training data.

Example: a leaf for each instance in your training data (training error will be zero!).

Constrain to simpler trees

- Max. depth
- Max. number of leaves
- Minimum number of instances per leaf

Overfitting and underfitting

Model complexity

Parameters vs. hyper parameters

• **Parameters:** The weights or structure selected by the learning algorithm

Hyperparameters:

'Parameters that control the other parameters'. 'Things' we can tune but are not selected by the learning algorithm.

Parameters vs. hyper parameters

- **Parameters:** The weights or structure selected by the learning algorithm
- Hyperparameters:

 'Parameters that control the other parameters'. 'Things' we can tune but are not selected by the learning algorithm.

Decision trees

Parameters:

structure of a specific decision tree

Hyperparameters:

Maximum depth, minimum number of instances per leaf, ..

Cannot be naively adjusted using the training data, because increasing max depth will always reduce the training error!

Υ	X1	X2
0	0	1
0	0	0
0	0	1
1	0	1
1	0	1
1	1	1
1	1	0
1	1	0
1	1	0
1	1	0

Accuracy

#correctly labeled instances

#total instances

Question: What is the accuracy of a classifier that would predict the majority label?

Accuracy is not suitable when the label distributions are (heavily) skewed!

	Truth: A	Truth: B
Predicted: A	True Positive (TP)	False Positive (FP)
Predicted: B	False Negative (FN)	True Negative (TN)

$$accuracy = \frac{\#TP + \#TN}{\#TP + \#FP + \#FN + \#TN}$$

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Precision for class A: 70/110 = 0.64

$$precision = \frac{\text{#TP}}{\text{#TP+\#FP}}$$

What fraction of the ones that you have identified belong to that class?

Of all messages labeled as spam, what fraction is actually spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

$$70/110 = 0.64$$

Precision for class B:

$$60/90 = 0.67$$

$$precision = \frac{\#TP}{\#TP + \#FP}$$

What fraction of the ones that you have identified belong to that class?

Of all messages labeled as spam, what fraction is actually spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Recall A:
$$70/100 = 0.7$$

$$recall = \frac{\text{#TP}}{\text{#TP+\#FN}}$$

What fraction of the ones that belong to the class have you identified?

Of all the messages that are actually spam, what fraction has the system labeled as spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Recall A:
$$70/100 = 0.7$$

$$60/100 = 0.6$$

$$recall = \frac{\text{#TP}}{\text{#TP+\#FN}}$$

What fraction of the ones that belong to the class have you identified?

Of all the messages that are actually spam, what fraction has the system labeled as spam?

Precision recall curve

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*. Use the "confidence" of the classifier

Low confidence

Precision = 4/5
Recall = 4/5

Precision recall curve

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*.
Use the "confidence" of the classifier

How can we compute the confidence of a decision tree?

Low confidence

Precision = 3/3 = 1

Recall = 3/5

Precision recall curve

Question: Come up with a task for which *precision* is more important, and a task for which *recall* is more important

Evaluation

Combining recall and precision using F-measure

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Often
$$\beta = 1$$
:

$$F_1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Multiclass classification

- Many classification tasks are *binary* (e.g. spam or not spam).
- But... often there are more than 2 classes. This is called **multiclass** classification.

IM ... GENET

ImageNet has 21841 classes

Speech act classification
15 speech acts in the project
dataset

F1 for multiclass problems

F1 scores for individual classes

• In addition:

- Micro F1 average: Calculate F1 by counting total nr of true positives, false negatives and false positives
- Macro F1 average: Calculate metrics for each class, and aggregate by taking an (unweighted) average

-		
1	real world	increase
	goal	revenue
2	real world	better ad
	mechanism	display
3	learning	classify
9	problem	click-through
4	data collection	interaction w/
4		current system
5	collected data	query, ad, click
_	data	1 2 . 11 . 1
6	representation	bow ² , \pm click
-	select model	decision trees,
7	family	depth 20
	select training	subset from
8	data	april'16
	train model &	final decision
9	hyperparams	tree
10	predict on test	subset from
10	data	may'16
11	evaluate error	zero/one loss
11		for \pm click
12		(hope we
	deploy!	achieve our
		goal)

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Decide what and how to collect data!

Often (in ML): Use datasets others created

- Many publicly available labelled datasets (https://archive.ics.uci.edu/ml/index.php, Kaggle (https://www.kaggle.com/), etc
- Shared tasks (competitions.. leader boards)

But... often these datasets are not sufficient (specific domains, new tasks, industry, etc...) → You need to collect your own data

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Decide what and how to collect data!

Some labels can be collected 'automatically'

• E.g. whether user clicked on an ad

When annotating your own data:

- Develop annotation guidelines (sometimes called code book, especially in the social sciences)
- Compute inter-annotator agreement and withinannotator agreement.
- If humans can't agree about the right label....

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Decide what and how to collect data!

Be suspicious of 'ground truth' or 'gold labels'!

- Annotator noise
- Inherent ambiguity
- Some concepts are very hard to formalize! (hate speech detection)

garbage in, garbage out

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Decision trees, or something else?

In addition:

- **Baseline model:** Compare your model against very stupid baselines (e.g. majority baseline) and simple machine learning methods
- **Oracle model:** If your system depends on various components (e.g. a dialog system), test overall performance with 'oracle' components.

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Usually a combination of multiple evaluation metrics.

Also take into account:

- Cost of errors (e.g. accidently labeling a spam email as 'ok' vs. a self-driving car not detecting a pedestrian crossing a street)
- Brittleness
- Biases
- Etc..

Before deciding to deploy it!

Question!

You are a reviewer for the *best AI conference* and asked to review a submitted article. (Or, you're a journalist wanting to write a piece about a newly released system. Or, you're a software developer deciding whether to implement a new AI system.)

"Our system is the best. Its training errors are so low!"

Nope, training errors are optimistic estimates.

Question!

You are a reviewer for the *best AI conference* and asked to review a submitted article. (Or, you're a journalist wanting to write a piece about a newly released system. Or, you're a software developer deciding whether to implement a new AI system.)

"Our system is the best. Its test error is only 0.10 with d=3"

This is suspicious. Looks like the best result was reported by choosing a d based on the test data.

Question!

You are a reviewer for the *best AI conference* and asked to review a submitted article. (Or, you're a journalist wanting to write a piece about a newly released system. Or, you're a software developer deciding whether to implement a new AI system.)

"Our system is the best. Its test error is only 0.10. We chose d=3 based on cross-validation"

Yup, the hyper parameters are selected based on cross validation on the training data.

What do you need to know

- Pros and cons of rule-based vs. supervised learning
- Differences between supervised, unsupervised, reinforcement learning
- Decision Trees (algorithm, entropy, error rate)
- Concepts such as decision boundary, overfitting, underfitting, inductive bias, hyperparameters
- How to set up machine learning experiments (cross validation, evaluation metrics, precision recall tradeoff)

Example questions

- Draw a decision tree for simple problems.
 - Be able to compute the best split according to information gain and misclassification rate
- Frame a problem as a machine learning problem.
- Compute evaluation metrics (precision, recall, accuracy, F1).

Resources

- scikit-learn https://scikit-learn.org. Python library with many implementations for ML models (incl. decision trees), as well as pre processing and evaluation
- kaggle https://www.kaggle.com/. Improve your ML skills by participating in competitions with shared datasets.
- There are many online tutorials and online courses (e.g. ML courses by Andrew Ng, Fast AI, etc.)

Books

Freely available online!:
http://www.deeplearningbook.org/

Freely available online!: https://web.stanford.edu/~hastie/ElemStatLearn/

Thanks

Some slides based on (or inspired by) slides by Matt Gormley and Carlos Guestrin, Soheil Feizi