Module 5: Statistical inference (II)

Siyue Yang

05/21/2022

This module we will review basics of parametric inference.

Parametric inference

Parametric models,

$$\mathfrak{F} = \{ f(\mathbf{x}; \theta) : \theta \in \Theta \}$$

where the $\Theta \subset \mathbb{R}^k$ is the parameter space and $\theta = (\theta_1, \dots, \theta_k)$ is the parameter.

▶ Goal of parametric inference: estimate the parametric θ (assume we known the form of the density).

Parameter of interest and nuisance parameter

Often, we are interested in estimating some function $T(\theta)$.

For example, if $X \sim N(\mu, \sigma^2)$, then

- Parameters: $\theta = (\mu, \sigma)$
- ▶ Parameter space: $\Theta = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma > 0\}$

If the goal is to estimate the μ then

- ▶ Parameter of interest: $T(\theta) = \mu$
- Nuisance parameter: σ

Methods for generating parametric estimators

- 1. Method of moments
- 2. Maximum likelihood

Method of moments

Suppose that the parameter $\theta = (\theta_1, \dots, \theta_k)$ has k components.

For $1 \le j \le k$, define the j^{th} moment

$$\alpha_j \equiv \alpha_j(\theta) = \mathbb{E}_{\theta}\left(X^j\right) = \int x^j dF_{\theta}(x)$$

▶ The *i*th sample moment

$$\widehat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

▶ The method of moments estimator $\widehat{\theta}_n$

$$\alpha_{1}\left(\widehat{\theta}_{n}\right) = \widehat{\alpha}_{1}$$

$$\vdots$$

$$\alpha_{k}\left(\widehat{\theta}_{n}\right) = \widehat{\alpha}_{k}$$

Maximum likelihood

- ▶ Parametric model: $f(x; \theta), X_1, ..., X_n$ iid
- Likelihood function

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$$

► The log-likelihood function

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$$

The maximum likelihood estimator (MLE)

$$\hat{ heta}_{ extit{MLE}} = rg \max_{ heta} \mathcal{L}(heta)$$

An example of MLE

Likelihood function for Bernoulli with n=20 and $\sum_{i=1}^{n} X_i = 12$. The MLE is $\hat{p}_n = 12/20 = 0.6$.

Why is maximum likelihood estimation so popular?

- A unified framework for estimation.
- Under mild regularity conditions, MLEs are
 - 1. **consistent** \rightarrow converge to the true value in probability as $n \rightarrow \infty$, i.e.

$$\lim_{n\to\infty} P(|\hat{\theta} - \theta| \le \epsilon) = 1 \quad \forall \epsilon > 0$$

- 2. **asymptotically normal** $\rightarrow \sqrt{n}(\hat{\theta} \theta) \sim N(0, \sigma^2)$ for large n
- 3. **asymptotically efficient** \rightarrow achieve the lowest variance for large n
- 4. **equivariant** \to if $\hat{\theta}$ is the MLE for θ then $g(\hat{\theta})$ is the MLE for $g(\theta)$

Steps to find the MLE

1. Write out the likelihood

$$\mathcal{L}(\theta) = f(X_1, \ldots, X_n; \theta)$$

2. Simplify the log likelihood

$$\ell(\theta) = \log \mathcal{L}(\theta)$$

- 3. Take the derivative of $\ell(\theta)$ with respect to the parameter of interest, θ Set = 0
- 4. Solve for θ (get $\hat{\theta}_{MLE}$)
- 5. Check that $\hat{ heta}_{MLE}$ is a maximum $\left(rac{\partial^2}{\partial heta^2} \ell(heta) < 0
 ight)$

Suppose we have an iid sample $\{X_1, \ldots, X_n\}$ with $X_i \sim \text{Bernoulli}(p)$. Find the MLE for p.

Suppose we have an iid sample $\{X_1, \ldots, X_n\}$ with $X_i \sim \text{Bernoulli}(p)$. Find the MLE for p.

1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where
$$S = \sum_i X_i$$

Suppose we have an iid sample $\{X_1, \ldots, X_n\}$ with $X_i \sim \text{Bernoulli}(p)$. Find the MLE for p.

1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where $S = \sum_i X_i$

2. Log-likelihood

$$\ell_n(p) = S \log p + (n - S) \log(1 - p)$$

Suppose we have an iid sample $\{X_1, \ldots, X_n\}$ with $X_i \sim \text{Bernoulli}(p)$. Find the MLE for p.

1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where $S = \sum_i X_i$

2. Log-likelihood

$$\ell_n(p) = S \log p + (n - S) \log(1 - p)$$

3. MLE (Solved the scoring equation)

$$\ell_n'(p) = 0$$

The MLE is $\widehat{p}_n = S/n$.

Score function and Fisher information

Score function

$$s(X; \theta) = \frac{\partial \log f(X; \theta)}{\partial \theta}$$

Fisher information

$$I_n(\theta) = \mathbb{V}_{\theta} \left(\sum_{i=1}^n s(X_i; \theta) \right)$$

= $\sum_{i=1}^n \mathbb{V}_{\theta} (s(X_i; \theta))$

Asymptotic normality

Let $se = \sqrt{\mathbb{V}(\widehat{\theta}_n)}$. Under appropriate regularity conditions, the following hold:

1. se $\approx \sqrt{1/I_n(\theta)}$ and

$$\frac{\left(\widehat{\theta}_{n}-\theta\right)}{\mathsf{se}}\leadsto \mathsf{N}(0,1).$$

2. Let $\widehat{se} = \sqrt{1/I_n \left(\widehat{\theta}_n\right)}$. Then,

$$\frac{\left(\widehat{\theta}_n - \theta\right)}{\widehat{\operatorname{se}}} \rightsquigarrow N(0, 1)$$

$$C_n = \left(\widehat{\theta}_n - z_{\alpha/2}\widehat{\operatorname{se}}, \widehat{\theta}_n + z_{\alpha/2}\widehat{\operatorname{se}}\right)$$

Then, $\mathbb{P}_{\theta} (\theta \in C_n) \to 1 - \alpha$ as $n \to \infty$.

Elements of likelihood estimation

One random variable: Given a model for X which assumes X has a density $f(x; \theta)$, $\theta \in \Theta \subset \mathbb{R}^k$, we have the following definitions:

```
\begin{array}{ll} \text{likelihood function} & L(\theta;x) = c(x)f(x;\theta) \\ \text{log-likelihood function} & \ell(\theta;x) = \log L(\theta;x) \\ \text{score function} & u(\theta) = \partial \ell(\theta;x)/\partial \theta \\ \text{observed information function} & j(\theta) = -\partial^2 \ell(\theta;x)/\partial \theta \partial \theta^T \\ \text{expected information (in one observation)} & i(\theta) = \operatorname{E}_{\theta} \left\{ U(\theta)U(\theta)^T \right\} \end{array}
```

Elements of likelihood estimation (i.i.d.)

Independent observations: When we have X_i independent, identically distributed from $f(x_i; \theta)$, then, denoting the observed sample $\mathbf{x} = (x_1, \dots, x_n)$ we have:

```
likelihood function L(\theta; \mathbf{x}) = \prod_{i=1}^n f\left(x_i; \theta\right) log-likelihood function \ell(\theta) = \ell(\theta; \mathbf{x}) = \sum_{i=1}^n \ell\left(\theta; x_i\right) maximum likelihood estimate \hat{\theta} = \hat{\theta}(\mathbf{x}) = \arg\sup_{\theta} \ell(\theta) score function U(\theta) = \ell'(\theta) = \sum U_i(\theta) observed information function j(\theta) = -\ell''(\theta) = -\ell''(\theta; \mathbf{x}) observed (Fisher) information j(\hat{\theta}) = \operatorname{E}_{\theta} \left\{ U(\theta)U(\theta)^T \right\} = ni_1(\theta) expected (Fisher) information i(\theta) = \operatorname{E}_{\theta} \left\{ U(\theta)U(\theta)^T \right\} = ni_1(\theta)
```

Delta method

If $\tau = g(\theta)$ where g is differentiable and $g'(\theta) \neq 0$ then

$$\frac{\left(\widehat{\tau}_{n}-\tau\right)}{\widehat{\mathsf{se}}(\widehat{\tau})} \rightsquigarrow \textit{N}(0,1)$$

where $\widehat{\tau}_n = g\left(\widehat{\theta}_n\right)$ and

$$\widehat{\operatorname{se}}\left(\widehat{ au}_{n}\right)=\left|g'(\widehat{\theta})\right|\widehat{\operatorname{se}}\left(\widehat{\theta}_{n}\right)$$

Hence, if

$$C_{n} = \left(\widehat{\tau}_{n} - z_{\alpha/2}\widehat{\operatorname{se}}\left(\widehat{\tau}_{n}\right), \widehat{\tau}_{n} + z_{\alpha/2}\widehat{\operatorname{se}}\left(\widehat{\tau}_{n}\right)\right)$$

then $\mathbb{P}_{\theta} (\tau \in C_n) \to 1 - \alpha$ as $n \to \infty$.

Let $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$ and let $\psi = g(p) = \log(p/(1-p)$).

Let $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$ and let $\psi = g(p) = \log(p/(1-p))$.

The Fisher information function is I(p) = 1/(p(1-p))

Let $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$ and let $\psi = g(p) = \log(p/(1-p))$.

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE \widehat{p}_n is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

Let $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$ and let $\psi = g(p) = \log(p/(1-p))$.

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE \widehat{p}_n is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

The MLE of ψ is $\widehat{\psi} = \log \widehat{p}/(1-\widehat{p})$. Since, g'(p) = 1/(p(1-p)), according to the delta method

$$\widehat{\operatorname{se}}\left(\widehat{\psi}_{n}\right)=\left|g'\left(\widehat{p}_{n}\right)\right|\widehat{\operatorname{se}}\left(\widehat{p}_{n}\right)=\frac{1}{\sqrt{n\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)}}$$

Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and let $\psi = g(p) = \log(p/(1-p))$.

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE \widehat{p}_n is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

The MLE of ψ is $\widehat{\psi} = \log \widehat{p}/(1-\widehat{p})$. Since, g'(p) = 1/(p(1-p)), according to the delta method

$$\widehat{\operatorname{se}}\left(\widehat{\psi}_{n}\right)=\left|g'\left(\widehat{p}_{n}\right)\right|\widehat{\operatorname{se}}\left(\widehat{p}_{n}\right)=\frac{1}{\sqrt{n\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)}}$$

An approximate 95 percent confidence interval is

$$\widehat{\psi}_n \pm \frac{2}{\sqrt{n\widehat{p}_n (1-\widehat{p}_n)}}$$

MLE in R

Sometimes, there is no closed-form solution, so we need to use optimization methods to find the maximum of the log-likelihood.

- optim() find values of some parameters that minimizes some function.
- Newton-Raphson
- ► EM-algorithm

Newton-Raphson

Derivative of the log-likelihood around θ^3 :

$$0 = \ell'(\widehat{\theta}) \approx \ell'\left(\theta^{j}\right) + \left(\widehat{\theta} - \theta^{j}\right)\ell''\left(\theta^{j}\right)$$

Solving for $\widehat{\theta}$ gives

$$\widehat{\theta} pprox \theta^{j} - rac{\ell'\left(\theta^{j}
ight)}{\ell''\left(\theta^{j}
ight)}.$$

This suggests the following iterative scheme:

$$\widehat{\theta}^{j+1} = \theta^j - \frac{\ell'(\theta^j)}{\ell''(\theta^j)}$$

In the multiparameter case, the mle $\widehat{\theta} = (\widehat{\theta}_1, \dots, \widehat{\theta}_k)$ is a vector and the method becomes

$$\widehat{\theta}^{j+1} = \theta^{j} - H^{-1}\ell'\left(\theta^{j}\right)$$

where $\ell'(\theta^j)$ is the vector of first derivatives and H is the matrix of second derivatives of the log-likelihood.

Expectation-Maximization (EM) algorithm

Idea: Iterate between taking an expectation then maximizing.

Suppose we have data Y whose density $f(y;\theta)$ leads to a log-likelihood that is hard to maximize. However we can find another variable Z s.t. $f(y;\theta) = \int f(y,z;\theta) dz$ and $f(y,z;\theta)$ is easy to maximize.

- Pick a starting value θ^0 . Now for $j=1,2,\ldots$, repeat steps E and M below:
- ► (The E-step): Calculate

$$J\left(\theta\mid\theta^{j}\right)=\mathbb{E}_{\theta^{j}}\left(\log\frac{f\left(Y^{n},Z^{n};\theta\right)}{f\left(Y^{n},Z^{n};\theta^{j}\right)}\mid Y^{n}=y^{n}\right).$$

The expectation is over the missing data Z^n treating θ^i and the observed data Y^n as fixed.

▶ (M-step) Find θ^{j+1} to maximize $J(\theta \mid \theta^{j})$