

Kötelező házi feladat 2

Tar Dániel GUTOY7

 $2018.\ \mathrm{m\'{a}jus}\ 2.$

BME Gépészmérnöki Kar	BMEGEMMAGM5	Név:	Tar Dániel
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód:	GUTOY7
Félév: 2017/18/02	2. kötelező házi feladat	Aláírás:	

	ÁBRA	KÓD2	KÓD3	KÓD4
Feladatkód:	2	1	2	2

A feladatban egy gerenda és egy hozzá rögzített tömeg rezgéseit vizsgáljuk. A gerenda kényszereit és a tömeg elhelyezkedését a megfelelő ábra szemlélteti. A gerenda állandó $\emptyset d$ átmérőjű, kör keresztmetszetű. A tartó anyagának rugalmassági modulusza E, sűrűsége ρ . A tömeg tehetetlenségi nyomatékát elhanyagoljuk.

FELADATOK

- 1. Készítsen méretarányos ábrát a tartóról a kényszerek feltüntetésével!
- **2.** Az m_0 koncentrált tömeg *elhanyagolásával* határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(a)}, f_2^{(a)}, f_3^{(a)})$ végeselemes módszer alkalmazásával! Az **AB** és **BC** szakaszon is 1 elemet használjon!
- 3. Az m_0 koncentrált tömeg elhanyagolásával határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(b)}, f_2^{(b)}, f_3^{(b)})$ VEM alkalmazásával! Az **AB** szakaszon két egyenlő hosszúságú elemet, míg a **BC** szakaszon 1 elemet használjon!
- **4.** Az m_0 koncentrált tömeg figyelembevételével határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(c)}, f_2^{(c)}, f_3^{(c)})$ VEM alkalmazásával! Az **AB** szakaszon két egyenlő hosszúságú elemet, míg a **BC** szakaszon 1 elemet használjon!

Az eredmények ellenőrzéséhez javasolt a tárgy honlapjáról letölthető SIKEREZ program használata.

	Feladatkód	KÓD2		KÓD3		KÓD4	
A		a	m_0	b	d	E	ρ
D		[m]	[kg]	[m]	[mm]	[GPa]	$\left[\mathrm{kg/m}^{3} \right]$
A	1	1.2	15	5	25	170	6000
T	2	1.7	20	6	35	190	6500
О	3	2.1	25	7	45	210	7000
K	4	2.6	30	8	55	230	7500

EREDMÉNYEK

$f_1^{(a)}$ [Hz]	$f_2^{(a)}$ [Hz]	$f_3^{(a)}$ [Hz]	$f_1^{(b)}$ [Hz]	$f_2^{(b)}$ [Hz]	$f_3^{(b)}$ [Hz]	$f_1^{(c)}$ [Hz]	$f_2^{(c)}$ [Hz]	$f_3^{(c)}$ [Hz]

eredmeny1 eredmeny2 eredmeny3 eredmeny4

Tartalomjegyzék

1.	Fela	dat	1
2.	Fela	dat	2
	2.1.	Végeselem modell az m_0 tömeg elhanyagolásával és az \mathbf{AB} szakaszon 1 elem használatával	2
	2.2.	A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal való helyettesítése	2
	2.3.	A globális merevségi- és tömegmátrixok összállítása	2
	2.4.	A mátrixok kondenzálása a lekötött szabadsági fokok alapján	3
	2.5.	A sajátkörfrekvenciák számítása az órán tanult képlet segítségével	3
3.	Fela	dat	4
		3.0.1. Végeselem modell az m_0 tömeg elhanyagolásával és az ${\bf AB}$ szakaszon 2 elem használatával	4
	3.1.	A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal	4
	2.0	való helyettesítése	4
	3.2.	A globális merevségi- és tömegmátrixok összállítása	4 5
	3.3. 3.4.	A mátrixok kondenzálása a lekötött szabadsági fokok alapján A sajátkörfrekvenciák számítása az órán tanult képlet segítségével	5
4.	Fela	\mathbf{dat}	6
	4.1.	Végeselem modell az \mathbf{AB} szakaszon 2 elem használatával:	6
	4.2.	A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal	
		való helyettesítése	6
	4.3.	A globális merevségi- és tömegmátrixok összállítása	6
	4.4.	${\bf A}$ mátrixok kondenzálása a lekötött szabadsági fokok alapján $$	6
	4.5.	A sajátkörfrekvenciák számítása az órán tanult képlet segítségével	7

1. Feladat

A házifeladat kód alapján az adatok SI mértékegységrendszerben:

1. táblázat. Adatok								
a	$a \mid m_0 \mid b \mid d \mid E$							
[m]	[kg]	[m]	[m]	[Pa]	$[kg/m^3]$			
1,2	15	6	35	$190 \cdot 10^{3}$	6500			

Továbbá a rúd keresztmetszetének a felülete:

$$A = \frac{d^2 \cdot \pi}{4} = 9,6211 \cdot 10^{-4} \ [m^2] \tag{1}$$

És a másodrendű nyomatéka:

$$I_z = \frac{d^4 \cdot \pi}{64} = 7,3662 \cdot 10^{-8} \ [m^4]$$
 (2)

Méretarányos ábra és a kényszerek:

1. ábra.

2. Feladat

2.1. Végeselem modell az m_0 tömeg elhanyagolásával és az AB szakaszon 1 elem használatával

2. ábra.

2.2. A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal való helyettesítése

Az elemi merevségi mátrix:

$$K_{e,4\times4} = \frac{I_z \cdot E}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$
(3)

Az elemi tömegmátrix:

$$M_{e,4\times4} = \frac{\rho \cdot A \cdot L}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^2 & 13L & -3L^2 \\ 54 & 13L & 156 & -22L \\ -13L & -3L^2 & -22L & 4L^2 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
(4)

2.3. A globális merevségi- és tömegmátrixok összállítása

Globális merevségi mátrix:

$$K_{G,6\times6} = \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0\\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)}\\ 0 & K_{21}^{(2)} & K_{22}^{(2)} \end{bmatrix}$$
(5)

Globális tömegmátrix mátrix:

$$M_{G,6\times6} = \begin{bmatrix} M_{11}^{(1)} & M_{12}^{(1)} & 0\\ M_{21}^{(1)} & M_{22}^{(1)} + M_{11}^{(2)} & M_{12}^{(2)}\\ 0 & M_{21}^{(2)} & M_{22}^{(2)} \end{bmatrix}$$
(6)

2.4. A mátrixok kondenzálása a lekötött szabadsági fokok alapján

Lekötött szabadsági fokok:

$$V_1 = 0 \qquad \Phi_1 = 0 \qquad V_2 = 0$$

Az elmozdulásvektor:

$$U = \begin{bmatrix} V_1 \\ \Phi_1 \\ V_2 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix}$$
 (7)

A kondenzált merevségi mátrix:

$$K_{G,K,3\times3} = \begin{bmatrix} K_{G_{44}} & K_{G_{45}} & K_{G_{46}} \\ K_{G_{54}} & K_{G_{55}} & K_{G_{56}} \\ K_{G_{64}} & K_{G_{65}} & K_{G_{66}} \end{bmatrix}$$
(8)

A kondenzált merevségi mátrix:

$$M_{G,K,3\times3} = \begin{bmatrix} M_{G_{44}} & M_{G_{45}} & M_{G_{46}} \\ M_{G_{54}} & M_{G_{55}} & M_{G_{56}} \\ M_{G_{64}} & M_{G_{65}} & M_{G_{66}} \end{bmatrix}$$
(9)

A kondenzált elmozdulásvektor:

$$U_K = \begin{bmatrix} \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} \tag{10}$$

2.5. A sajátkörfrekvenciák számítása az órán tanult képlet segítségével

$$det(K_{G,K} - \omega^2 \cdot M_{G,K}) = 0 \tag{11}$$

A sajátértékenként az ω^2 -eket kapjuk, majd ebből a sajátfrekvenciák:

$$f_{1,2,3} = \frac{\omega_{1,2,3}}{2 \cdot \pi} \tag{12}$$

Amivel a sajátfrekvenciák:

$$f_1^a = 1,6197 [Hz]$$
 $f_2^a = 7,6607 [Hz]$ $f_3^a = 30,4388 [Hz]$

!!TODO: sikerz ellenőrzés és eredmények kijavítása, eredmenyek ellenőrzése.

A további feladatokat az előző analógiájaként végezhetjük el, az elv ugyan az. Csak a különbségeket és az eredményeket fogom részletezni.

3. Feladat

3.1. Végeselem modell az m_0 tömeg elhanyagolásával és az AB szakaszon 2 elem használatával

3. ábra.

3.2. A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal való helyettesítése

Az elemi merevségi mátrix:

$$K_{e,4\times4} = \frac{I_z \cdot E}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$
(13)

Az elemi tömegmátrix:

$$M_{e,4\times4} = \frac{\rho \cdot A \cdot L}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^2 & 13L & -3L^2 \\ 54 & 13L & 156 & -22L \\ -13L & -3L^2 & -22L & 4L^2 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
(14)

3.3. A globális merevségi- és tömegmátrixok összállítása

Globális merevségi mátrix:

$$K_{G,6\times6} = \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0\\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)}\\ 0 & K_{21}^{(2)} & K_{22}^{(2)} \end{bmatrix}$$
(15)

Globális tömegmátrix mátrix:

$$M_{G,6\times6} = \begin{bmatrix} M_{11}^{(1)} & M_{12}^{(1)} & 0\\ M_{21}^{(1)} & M_{22}^{(1)} + M_{11}^{(2)} & M_{12}^{(2)}\\ 0 & M_{21}^{(2)} & M_{22}^{(2)} \end{bmatrix}$$
(16)

3.4. A mátrixok kondenzálása a lekötött szabadsági fokok alapján

Lekötött szabadsági fokok:

$$V_1 = 0 \qquad \Phi_1 = 0 \qquad V_2 = 0$$

Az elmozdulásvektor:

$$U = \begin{bmatrix} V_1 \\ \Phi_1 \\ V_2 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix}$$
 (17)

A kondenzált merevségi mátrix:

$$K_{G,K,3\times3} = \begin{bmatrix} K_{G_{44}} & K_{G_{45}} & K_{G_{46}} \\ K_{G_{54}} & K_{G_{55}} & K_{G_{56}} \\ K_{G_{64}} & K_{G_{65}} & K_{G_{66}} \end{bmatrix}$$
(18)

A kondenzált merevségi mátrix:

$$M_{G,K,3\times3} = \begin{bmatrix} M_{G_{44}} & M_{G_{45}} & M_{G_{46}} \\ M_{G_{54}} & M_{G_{55}} & M_{G_{56}} \\ M_{G_{64}} & M_{G_{65}} & M_{G_{66}} \end{bmatrix}$$
(19)

A kondenzált elmozdulásvektor:

$$U_K = \begin{bmatrix} \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} \tag{20}$$

3.5. A sajátkörfrekvenciák számítása az órán tanult képlet segítségével

$$det(K_{G,K} - \omega^2 \cdot M_{G,K}) = 0 (21)$$

A sajátértékenként az ω^2 -eket kapjuk, majd ebből a sajátfrekvenciák:

$$f_{1,2,3} = \frac{\omega_{1,2,3}}{2 \cdot \pi} \tag{22}$$

Amivel a sajátfrekvenciák:

$$f_1^a = 1,6197 [Hz]$$
 $f_2^a = 7,6607 [Hz]$ $f_3^a = 30,4388 [Hz]$

4. ábra.

4. Feladat

4.1. Végeselem modell az AB szakaszon 2 elem használatával:

4.2. A rúdelemek paraméteres elemi mátrixai, és 2x2-es almátrixokkal való helyettesítése

Az elemi merevségi mátrix:

$$K_{e,4\times4} = \frac{I_z \cdot E}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$
(23)

Az elemi tömegmátrix:

$$M_{e,4\times4} = \frac{\rho \cdot A \cdot L}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^2 & 13L & -3L^2 \\ 54 & 13L & 156 & -22L \\ -13L & -3L^2 & -22L & 4L^2 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
(24)

4.3. A globális merevségi- és tömegmátrixok összállítása

Globális merevségi mátrix:

$$K_{G,6\times6} = \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0\\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)}\\ 0 & K_{21}^{(2)} & K_{22}^{(2)} \end{bmatrix}$$
(25)

Globális tömegmátrix mátrix:

$$M_{G,6\times6} = \begin{bmatrix} M_{11}^{(1)} & M_{12}^{(1)} & 0\\ M_{21}^{(1)} & M_{22}^{(1)} + M_{11}^{(2)} & M_{12}^{(2)}\\ 0 & M_{21}^{(2)} & M_{22}^{(2)} \end{bmatrix}$$
(26)

4.4. A mátrixok kondenzálása a lekötött szabadsági fokok alapján

Lekötött szabadsági fokok:

$$V_1 = 0 \qquad \Phi_1 = 0 \qquad V_2 = 0$$

Az elmozdulásvektor:

$$U = \begin{bmatrix} V_1 \\ \Phi_1 \\ V_2 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix}$$
 (27)

A kondenzált merevségi mátrix:

$$K_{G,K,3\times3} = \begin{bmatrix} K_{G_{44}} & K_{G_{45}} & K_{G_{46}} \\ K_{G_{54}} & K_{G_{55}} & K_{G_{56}} \\ K_{G_{64}} & K_{G_{65}} & K_{G_{66}} \end{bmatrix}$$
(28)

A kondenzált merevségi mátrix:

$$M_{G,K,3\times3} = \begin{bmatrix} M_{G_{44}} & M_{G_{45}} & M_{G_{46}} \\ M_{G_{54}} & M_{G_{55}} & M_{G_{56}} \\ M_{G_{64}} & M_{G_{65}} & M_{G_{66}} \end{bmatrix}$$
(29)

A kondenzált elmozdulásvektor:

$$U_K = \begin{bmatrix} \Phi_2 \\ V_3 \\ \Phi_3 \end{bmatrix} \tag{30}$$

4.5. A sajátkörfrekvenciák számítása az órán tanult képlet segítségével

$$det(K_{G,K} - \omega^2 \cdot M_{G,K}) = 0 \tag{31}$$

A sajátértékenként az ω^2 -eket kapjuk, majd ebből a sajátfrekvenciák:

$$f_{1,2,3} = \frac{\omega_{1,2,3}}{2 \cdot \pi} \tag{32}$$

Amivel a sajátfrekvenciák:

$$f_1^a = 1,6197 [Hz]$$
 $f_2^a = 7,6607 [Hz]$ $f_3^a = 30,4388 [Hz]$