Data Structures & Signal Processing

BIPN 162

Objectives for today

- Identify the three common features of datasets: metadata, raw data, and processed data
- Define metadata and explore the metadata associated with an NWB file
- Describe features of time series and common ways to analyze them
- Load & explore an NWB time series

Neuroscience datasets are increasingly being shared online

Open Neuroscience Datasets https://bit.ly/openneurodatasets

Neurodata Without Borders

Neurodata Without Borders (NWB) is a data standard for neurophysiology, providing neuroscientists with a common standard to share, archive, use, and build analysis tools for neurophysiology data. NWB is designed to store a variety of neurophysiology data, including data from intracellular and extracellular electrophysiology experiments, data from optical physiology experiments, and tracking and stimulus data.

The **NWB team** consists of neuroscientists and software developers who recognize that adoption of a unified data format is an important step toward breaking down the barriers to data sharing in neuroscience.

(Courtesy of the Allen Institute for Brain Science)

See also Rübel et al. (2022):

https://elifesciences.org/articles/78362

Extracellular NWB File

Metadata e.g. nwb.subject

Information about the experiment, e.g. when/where the experiment occurred.

When was this experiment done?

Acquisition nwb.acquisition

Time series data for the experiment

When did the animal lick?

Intervals nwb.intervals

Tables containing what happened in each trial of the experiment

On trial 2, did the animal get the task right?

Units nwb.units

Neural activity during the experiment

Which neurons were firing during trial 2?

Signal processing

Anything recorded continuously over time is a time series (a set of data points generated from successive measurements over time)

Commonly encountered time series data in biology

- Gene expression data over time
- Neurophysiology recordings (e.g. electrophysiology, imaging)
- Circadian rhythm data
- Medical observations over time
- Animal movement
- Physiology data (e.g. heart rate/ECG, pulse rate, respiration, etc.)
- Molecules/proteins/cells moving

White blood cell tracking bacteria Image info

Common signal processing approaches

- Preprocessing & data cleaning
 - Removing outliers and/or noise
- Filtering
 - Using convolution
 - Using frequency
- Looking for correlations in time
- Clustering & classification
- Dimensionality reduction or segmentation
- Prediction
- Anomaly or peak detection spike sorting

Real world signals (e.g., brain and sound waves) are continuous in time. In other words, they're analog.

However, our computers are **digital** — based on **binary** representations of information.

When we work with continuous signals, then, we're always **sampling** and **digitizing**) them.

sampling

Important signal processing terms

Sampling frequency (or rate): how often was a sample collected?

- Lower for EEG (typically around 100 Hz), very high for spiking data why?
- Trade off: higher sampling rate means bigger data!

Nyquist rate: to accurately represent a periodic signal with a frequency, you have to sample *at least* twice as fast, otherwise you will get aliasing

Relatedly, we can only detect frequencies at half the sampling frequency: the
 Nyquist frequency

Blue = the signal we're trying to measure

Red = our sampling of that signal

fs = sampling frequency

Extracellular recordings require spike sorting

From Rey et al. (2015) "Past, present and future of spike sorting techniques"

Basic steps for spike sorting

- a bandpass **filter** is applied, e.g., between 300
 Hz and 3000 Hz, to keep the most useful part of
 the spectrum for spike sorting
- spikes are detected, usually with an amplitude threshold applied to the filtered data
- 3. relevant **features** of the spike shapes are extracted via a dimensionality reduction technique (PCA)
- 4. those features are the input to a **clustering algorithm** that performs the classification of the waveforms and associate each cluster to a unit.

PCA is also commonly (traditionally) used for extracellular spike sorting. After projecting onto these dimensions, you can then use a clustering algorithm (or detect them manually...)

Spike Correlations

Correlations can provide information about the **functional architecture** of networks

For example, **connectivity in the retina** (Greschner et al. 2011),

between the **visual thalamus and cortex** (Reid & Alonso, 1995),

and **between neurons in cortex** (Aertsen et al., 1989 & Alonso & Martinez, 1998)

Correlations between pairs of neurons can arise over a range of timescales

- Spikes may be precisely aligned in time, down to the millisecond
- Excitability may change on the order of seconds or longer

Neuroscientists often look for two different types of correlations: signal and noise correlations.

Small dots = individual presentations;
Big circles = mean responses

- **a.** Tuning curves for two hypothetical cells
- **b.** Spike count correlation (**noise** correlation) for those cells
- c. Signal correlation

From Cohen & Kohn, 2011

Signal correlations

measures the correlation coefficient between the cells' mean responses to different stimuli.

often used to quantify the extent to which a pair of neurons has similar tuning or other functional properties.

decreases in this type of correlation can lead to sparsening of population responses

Noise correlations

measures the correlation between responses to repeated presentations of identical stimuli, under the same behavioral conditions

"spike count correlations"

	Reference number	Area	Firing rate (spikes per s)	Duration (ms)	State (task, anesthesia, etc.)	r _{sc}
	12*	V1	~25	2,560	Anesthetized	0.2
	26*	V1 V1	3.4	1,280	Anesthetized	0.18
	23	V1	5.4	1,894	Anesthetized	0.25
	31	V1		1,054	Anesthetized	0.26
	13*	V1	~50	1,860	Fixation	0.25
Noise, or spike count correlations (r _{sc}) tend to be small but	28*	V1	~3	500	Fixation	0.01
	82	V1		400	Tracing	0.18
	83*	V1	30	1,000	Discrimination	0.1
	A. Zandvakili and A.K. unpublished data*	, V2	5	1,000	Anesthetized	0.11
	M. Smith and M. Sommer (University of Pittsburgh), persona		5.2	1,000	Fixation	0.05
n o oitiv co	communication*					
positive	7*	V4	21	200	Attention/detection task	0.04
	8*	V4	>5, ~20	800	Attention/tracking task	0.05
and tend to be higher	A.B.G. Graf (New York University), personal communication*	MT	~10	300	Anesthetized	0.09
for neurons that are	29*	MT	~20	500	Fixation	0.1
Tot fiedforts that are	15*	MT	28.5	500	Discrimination	0.13
near each other	6/22*	MT	~20	1,000	Discrimination	0.15
near each other	84	Perirhinal	~12	200-500	Fixation/matching task	0.02
	85	Supp motor area		66 or 200	Serial reaching	0.013
From Cohen & Kohn. 2011	27	Supp motor area	~15	200	Reaching	0.02
FIOH Collett & Rollit, 2011	86	Premotor areas	~5	400	Grasping/imagery task	0.02
	87	M1	~20	600	Reaching	0.1-0.2
	25	Motor/parietal; areas 2/5		1,000	Reaching	0.02-0.04
	88	Substantia nigra	58	500	Cue matching	0.01-0.04

Variability in r_{sc} across studies can largely be explained by differences in firing rate

From Cohen & Kohn, 2011

Spike count correlations change how well a population of neurons can decode a stimulus

How correlated are they if we shift the second spike train **back 10 ms**?

nature communications

Explore content > About the journal > Publish with us >

nature > nature communications > articles > article

Article Open access | Published: 28 January 2021

Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals

<u>Caitlin S. Mallory, Kiah Hardcastle, Malcolm G. Campbell, Alexander Attinger, Isabel I. C. Low, Jennifer</u>
<u>L. Raymond & Lisa M. Giocomo</u> □

Nature Communications 12, Article number: 671 (2021) Cite this article

7722 Accesses | 12 Citations | 38 Altmetric | Metrics

Abstract

Neural circuits generate representations of the external world from multiple information streams. The navigation system provides an exceptional lens through which we may gain insights about how such computations are implemented. Neural circuits in the medial

Caitlin Mallory (Postdoc @ UC Berkeley)

Lisa Giocomo (Professor @ Stanford)

Dataset that we'll explore today!

Additional Resources (Signal processing)

https://mark-kramer.github.io/Case-Studies-Python/03.html

https://voyteklab.com/oscillations/publications/interpreting-spectrum/

Related UCSD classes:

COGS 118C. Neural Signal Processing

DSC 120. Signal Processing for Data Analysis