

Spring School

Mikko Lehtimaki Mate Mohacsi Alex Stasik Eduarda Demori Susin

23/02/2018

6 Data Sets: What is What?

Data from 2 macaques motor cortex

Data generated by a point-neuron simulation

6 Data Sets: What is What?

Green: Rest Periods -Yellow: Moving Periods

6 Data Sets: What is What?

Green: Rest Periods Yellow: Moving Periods

Methods

Variables Considered:

- Inter-Spike Interval
- Local Coefficient of Variation
- Auto and Cross-Correlations
- Mean Frequency per Neuron
- Attractor Reconstruction

Statistical Tests Used:

- Kolmogorov-Smirnov test
- Mann Whitney
- Levene
- T-Student Test
- Pearson
- Kruskal

Exploring the Data: Fano-Factors (time binned)

$$F=rac{\sigma_W^2}{\mu_W}$$

Differentiating Data Sets

■ Comparing Fano-Factors

Fano factor of binned spike trains

Exploring the Data: Auto-Correlations

$$(f\star g)[n] \stackrel{ ext{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n]$$

Differentiating Between Monkeys

- Comparing the Auto-Correlations
 - → Kolmogorov-Smirnov test not robust enough

Statistical tests: Cross-Correlations Comparisons

$$(f\star g)[n] \stackrel{ ext{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n]$$

■ Using Pairs-wise Correlations and the Kolmogorov-Smirnov test

Statistical tests: Comparing Firing Rate per Neuron

Differentiating Data between the 2 Monkeys

■ Using Frequency per Neuron Distribution and the different statistical tests

Statistical tests: Attractor Reconstruction

$$\vec{r}(t) = (x(t), x(t-\tau), x(t-2\tau), \dots, x(t-m\tau))^T$$

 $\approx (x_i, x_{i-1}, x_{i-2}, \dots, x_{i-m})^T$

■ Using Eigenvalues and the Kolmogorov-Smirnov test

Statistical tests: Local Coefficient Of Variations

$$LV := \frac{3}{N} \sum_{i=1}^{N-1} \frac{(isi_i - isi_{i+1})^2}{(isi_i + isi_{i+1})^2}$$

Differentiating Between Monkeys

 Comparing the Local Coefficient of Variation Distribution

- 0.8

- 0.6

- 0.4

- 0.2

Conclusions

Data: Monkey 2

Data: Monkey 1

Data Set 0

Data Set 2

Data Set 1

Data Set 5

Data: Simulations

Data Set 3

Data Set 4

Conclusions

Data: Monkey 1

Data Set 0 Data Set 2

Data: Monkey 2

Data Set 1 Data Set 5

Data: Simulations

Data Set 3 Data Set 4

Thank you!