Logistic Regnession

Oxforset Study hours		0/12 (Pags /		
2 3 4 5 6 7 8		fail fail fail fail fail fail fail pass fass fass	A Can	we solve problem with ear regression.
0.5	X X 1	+ + + + + + + + + + + + + + + + + + +	10	Supply Cartillians

In case of Linear regression with authors
line shifts its position. So the thresold
the shifts its position. So the thresold

Y \(\leq 0.5 = 0 \), \(\text{Y} > 0.5 = 1 \) fails to achive.

To fix this we use Logistic Regression signaid function.

hocal = signald (do + dix)

$$= \frac{1}{1 + e^{-C\theta_0 + \theta_1 \times 1}} \int \delta(sigmoid) - \frac{1}{1 + e^{-x}}$$

But here MSE cost function is generate a non-convex function

But we need a convex function so we will not stuck at local minima.

So we will not stuck at local minima.

and neach to global minima:

so we use <u>laglass</u> cost function.

* Log Loss Cost function cost(40 CX)(1) = {-109(ho(21)) if Y=1 1-log (1-hfx)) if 4=0 1 I Never local minima (ast (hox), yii) = - y log (hox)) - (i-y) log(1-h(x)) By putting value of y (1010) we will get above equations. minimize cost function Jobo (di) by changing do , di using convergence algorithm. Repeat L Convergence Oj = Oj - X & J(Oo, O1)