2021/22 (Sem.1)

- 1. Which of the following are true? (\varnothing denotes the empty set.)
 - (a) $\{1, 2, 4\} = \{4, 1, 2\}.$
- (b) $\{5,\emptyset\} = \{5\}.$
- (c) $\{5\} \in \{2, 5\}.$

- $\emptyset \in \{1, 2\}.$ (d)
- (e) $\{1,2\} \in \{1,\{2,1\}\}.$
- $1 \in \{\{1, 2\}\}.$

Solution:

- $\{1,2,4\} = \{4,1,2\}$: True (b) $\{5,\emptyset\} = \{5\}$: False
- (c) $\{5\} \in \{2, 5\}$: False

- $\emptyset \in \{1,2\}$: False (d)
- $\{1,2\} \in \{1,\{2,1\}\}$: True (f) $1 \in \{\{1,2\}\}$: False (e)

- 2. List the elements of the following sets:
 - (a) $\{x \in \mathbb{N} : x \text{ is odd and } x^2 < 30\};$
- (b) $\{x \in \mathbb{Z} : \exists y \in \mathbb{N} \ x^2 + y^2 = 20\}.$

Solution:

- (a) $\{x \in \mathbb{N} : x \text{ is odd and } x^2 < 30\} = \{1, 3, 5\}.$
- (b) $\{x \in \mathbb{Z} : \exists y \in \mathbb{N} \ x^2 + y^2 = 20\} = \{-4, -2, 2, 4\}.$
- 3. Here \mathbb{R} is the universal set. Let $A = \{x \in \mathbb{R} : -2 \leq x \leq 1\}$ and $B = \{x \in \mathbb{R} : -1 < x < 3\}$. Determine
 - (a) $A \cup B$,
- (b) $A \cap B$,
- (c) \overline{A} ,
- (d) $\overline{A} \cap \overline{B}$,
- (e) $A \setminus B$.

Solution:

- (a) $A \cup B = \{x \in \mathbb{R} : -2 \le x < 3\}.$
- (b) $A \cap B = \{x \in \mathbb{R} : -1 < x \le 1\}.$
- (c) $\overline{A} = \{x \in \mathbb{R} : (x < -2) \lor (x > 1)\}.$
- (d) $\overline{A} \cap \overline{B} = \{x \in \mathbb{R} : (x < -2) \lor (x \ge 3)\}.$
- (e) $A \setminus B = \{x \in \mathbb{R} : -2 \leqslant x \leqslant -1\}.$
- Let U denote the universal set. Prove the set identities that are **not** between double square brackets $\llbracket \dots \rrbracket$ below, for all sets A, B, and C.
 - $(a)^*$ Commutativity

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

- (b) Associativity
- $(A \cup B) \cup C = A \cup (B \cup C) \qquad (A \cap B) \cap C = A \cap (B \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (c)*Distributivity Idempotence (d)
- $A \cup A = A$

$$A \cap A = A$$

- Absorption (e)
- $A \cup (A \cap B) = A$

 $A \cap (A \cup B) = A$

- (f) De Morgan's Laws
- $[\![\overline{A \cup B} = \overline{A} \cap \overline{B}]\!]$ $\llbracket A \cup \varnothing = A \rrbracket$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

 $(g)^*$ Identities

(k)*

 $A \cap U = A$

- (h)* Annihilators
- $A \cup U = U$

 $\llbracket A\cap\varnothing=\varnothing \rrbracket$

- (i)*Complement
- $\llbracket A \cup \overline{A} = U
 rbracket$

 $A \cap \overline{A} = \emptyset$

- Double Complement Law $(j)^*$ Top and bottom
- $\llbracket \overline{\varnothing} = U \rrbracket$

 $\overline{U} = \emptyset$

(1)*Set difference $A \setminus B = A \cap \overline{B}$

Solution: Each identity can be proved using a truth table or be proved directly. Note that $A, B, C \subseteq U$ as U is the universal set.

	$x \in A$	$x \in B$	$x \in A \cap B$	$x \in B \cap A$
	Т	Τ	T	T
$(a)^*$	T	F	F	F
	\mathbf{F}	Т	F	F
	F	F	\mathbf{F}	F

So $\forall x \ (x \in A \cap B \Leftrightarrow x \in B \cap A)$.

Similarly for $A \cup B$.

	$x \in A$	$x \in B$	$x \in C$	$x \in A \cap B$	$x \in (A \cap B) \cap C$	$x \in B \cap C$	$x \in A \cap (B \cap C)$
	T	Т	Т	Т	T	T	T
	Т	Τ	F	${ m T}$	\mathbf{F}	F	F
	Т	F	Τ	F	${ m F}$	F	F
(b)	T	F	F	F	${ m F}$	F	F
	F	Т	Т	F	\mathbf{F}	Γ	F
	F	Т	F	F	\mathbf{F}	F	F
	F	\mathbf{F}	Т	F	\mathbf{F}	F	F
	F	F	F	F	F	F	F

So $\forall x \ (x \in (A \cap B) \cap C \Leftrightarrow x \in A \cap (B \cap C))$. This means $(A \cap B) \cap C = A \cap (B \cap C)$.

Alternatively, for every z,

$$z \in (A \cap B) \cap C \quad \Leftrightarrow \quad (z \in A \cap B) \land z \in C \qquad \text{by the definition of } \cap;$$

$$\Leftrightarrow \quad (z \in A \land z \in B) \land z \in C \qquad \text{by the definition of } \cap;$$

$$\Leftrightarrow \quad z \in A \land (z \in B \land z \in C) \qquad \text{as } \land \text{ is associative;}$$

$$\Leftrightarrow \quad z \in A \land (z \in B \cap C) \qquad \text{by the definition of } \cap;$$

$$\Leftrightarrow \quad z \in A \cap (B \cap C) \qquad \text{by the definition of } \cap;$$

So $(A \cap B) \cap C = A \cap (B \cap C)$. One can rewrite this as:

$$(A \cap B) \cap C = \{x : (x \in A \cap B) \land (x \in C)\}$$
 by the definition of \cap ;

$$= \{x : ((x \in A) \land (x \in B)) \land (x \in C)\}$$
 by the definition of \cap ;

$$= \{x : (x \in A) \land ((x \in B) \land (x \in C))\}$$
 as \land is associative;

$$= \{x : (x \in A) \land (x \in B \cap C)\}$$
 by the definition of \cap ;

$$= A \cap (B \cap C)$$
 by the definition of \cap .

Similarly for $A \cup B \cup C$.

$$(c)^* A \cup (B \cap C)$$

$$= \{x: (x \in A) \lor (x \in B \cap C)\}$$
 by the definition of \cup ;

$$= \{x: (x \in A) \lor (x \in B \land x \in C)\}$$
 by the definition of \cap ;

$$= \{x: ((x \in A) \lor (x \in B)) \land ((x \in A) \lor (x \in C))\}$$
 as \lor distributes over \land ;

$$= \{x: (x \in A \cup B) \land (x \in A \cup C)\}$$
 by the definition of \cup ;

$$= (A \cup B) \cap (A \cup C)$$
 by the definition of \cap .

Similarly for $A \cap (B \cup C)$.

(d)
$$\begin{array}{|c|c|c|} \hline x \in A & x \in A \cap A \\ \hline T & T \\ F & F \\ \hline \end{array}$$

So $\forall x \ (x \in A \cap A \Leftrightarrow x \in A)$. This means $A \cap A = A$.

Similarly for $A \cup A$.

(e) For every z,

$$z \in A \cup (A \cap B) \quad \Leftrightarrow \quad z \in A \vee z \in A \cap B \qquad \qquad \text{by the definition of } \cup; \\ \Leftrightarrow \quad z \in A \vee (z \in A \wedge z \in B) \quad \text{by the definition of } \cap; \\ \Leftrightarrow \quad z \in A \qquad \qquad \text{by absorption in propositional logic.}$$

So
$$A \cup (A \cap B) = A$$
.
Similarly for $A \cap (A \cup B) = A$.

(h)* For every $z \in U$,

$$z \in A \cup U \quad \Leftrightarrow \quad z \in A \land z \in U$$
 by the definition of U ; $\Leftrightarrow \quad z \in U$ as $z \in U$.

So $A \cup U = U$.

(j)*
$$\overline{\overline{A}} = \{x \in U : \sim (x \in \overline{A})\}$$
 by the definition of $\overline{\cdot}$;

$$= \{x \in U : \sim (\sim (x \in A))\}$$
 by the definition of $\overline{\cdot}$;

$$= \{x \in U : x \in A\}$$
 by the Double Negation Law;

$$= A.$$

(1)* For every $z \in U$,

$$z \in A \setminus B \Leftrightarrow z \in A \land z \notin B$$
 by the definition of \;
$$\Leftrightarrow z \in A \land (z \in U \land z \notin B)$$
 as $z \in U$; by the definition of $\overline{\cdot}$;
$$\Leftrightarrow z \in A \land \overline{B}$$
 by the definition of $\overline{\cdot}$.

So $A \setminus B = A \cap \overline{B}$.

- 5. Let U denote the universal set. Prove the following for all sets A, B, C. You may use what you showed in Question 4 in your proofs.
 - (a)* $A \cap \emptyset = \emptyset$ and $A \cup \emptyset = A$.

- (b) $\overline{\varnothing} = U$ and $A \cup \overline{A} = U$.
- (c) If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.
- $(d)^* A \subseteq A \cup B$.

(e) If $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

- (f) $B \subseteq A$ if and only if $A \cap B = B$.
- $(g)^* (A \cap B) \cup C = A \cap (B \cup C)$ if and only if $C \subseteq A$. $(h)^*$ If $B = (A \cap \overline{B}) \cup (B \cap \overline{A})$, then $A = \emptyset$.

Solution:

$$(\mathbf{a})^* \ A \cap \varnothing = A \cap \overline{U} = \overline{\overline{A}} \cap \overline{U} = \overline{\overline{A} \cup U} = \overline{U} = \varnothing.$$

$$A \cup \varnothing = A \cup \overline{U} = \overline{\overline{A}} \cup \overline{U} = \overline{\overline{A} \cap U} = \overline{\overline{A}} = A.$$

(b)
$$\overline{\varnothing} = \overline{\overline{U}} = U$$
.
 $A \cup \overline{A} = \overline{\overline{A}} \cup \overline{A} = \overline{\overline{A} \cap A} = \overline{A \cap \overline{A}} = \overline{\varnothing} = U$.

(c) Suppose $A \subseteq B$ and $A \subseteq C$. This means that if $x \in A$, then $x \in B$ and $x \in C$, and thus $x \in B \cap C$. So $A \subseteq B \cap C$.

- (d)* If $x \in A$, then $x \in A$ or $x \in B$, and thus $x \in A \cup B$. This shows $A \subseteq A \cup B$.
- (e) Suppose $A \subseteq B$. Example 4.3.8 in the notes then tells us $A \cap C \subseteq A \subseteq B$ and $A \cap C \subseteq C$. So $A \cap C \subseteq B \cap C$ by (c).
- (f) (\Rightarrow) Suppose $B \subseteq A$. Then $B \cap B \subseteq A \cap B$ by (e). So $B \subseteq A \cap B$. Conversely, Example 4.3.8 in the notes tells us $A \cap B \subseteq B$. Hence $A \cap B = B$.
 - (\Leftarrow) Suppose $A \cap B = B$. Then $B = A \cap B \subseteq A$ by Example 4.3.8 in the notes.
- (g)* (\Rightarrow) Suppose $(A \cap B) \cup C = A \cap (B \cup C)$. Then (d) and Example 4.3.8 in the notes imply $C \subseteq (A \cap B) \cup C = A \cap (B \cup C) \subseteq A$.
 - (\Leftarrow) Suppose $C \subseteq A$. Then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) = (A \cap B) \cup C$ by (f).

Note: The point here is to be careful about parentheses.

- (h)* Suppose $B = (A \cap \overline{B}) \cup (B \cap \overline{A})$. Note $A = A \cap U = A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$. So it suffices to show both $A \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$.
 - Suppose $A \cap B \neq \emptyset$. Let $z \in A \cap B$. Then $z \in A \cap B \subseteq B = (A \cap \overline{B}) \cup (B \cap \overline{A})$. So either $z \in A \cap \overline{B}$ or $z \in B \cap \overline{A}$. However, we know $z \notin A \cap \overline{B}$ because $z \in B$. Similarly, we know $z \notin B \cap \overline{A}$ because $z \in A$. So we have a contradiction.
 - Suppose $A \cap \overline{B} \neq \emptyset$. Let $z \in A \cap \overline{B}$. Then $z \in (A \cap \overline{B}) \cup (B \cap \overline{A}) = B$. These contradict each other because the former says $z \in \overline{B}$ and the latter says $z \in B$.

Alternatively, one can proceed algebraically as follows.

• As $B = (A \cap \overline{B}) \cup (B \cap \overline{A})$, we have

$$B = B \cap B = ((A \cap \overline{B}) \cup (B \cap \overline{A})) \cap B = (A \cap \overline{B} \cap B) \cup (B \cap \overline{A} \cap B)$$
$$= (A \cap \varnothing) \cup (B \cap \overline{A}) = \varnothing \cup (B \cap \overline{A}) = B \cap \overline{A}.$$
$$A \cap B = A \cap B \cap \overline{A} = B \cap \varnothing = \varnothing.$$

• Part (d) implies $A \cap \overline{B} \subseteq (A \cap \overline{B}) \cup (B \cap \overline{A}) = B$. So applying part (e) gives

$$A \cap \overline{B} = A \cap \overline{B} \cap \overline{B} \subseteq B \cap \overline{B} = \emptyset.$$

As \emptyset is a subset of any set, we conclude that $A \cap \overline{B} = \emptyset$.

There are many other proofs.

٠.

- 6. In lexical analysis (CS4212), regular expressions are used to describe how tokens are constructed from strings. The basic construction is **concatenation**: If x and y are strings, then xy is the string formed by the symbols of x followed by the symbols of y; e.g., if x = CS and y = 1231, then xy = CS1231, yx = 1231CS and yy = 12311231. If X and Y are sets of strings, define $XY = \{xy : x \in X \land y \in Y\}$.
 - (a) Let $X = \{1, 01, 11, 011\}$ and $Y = \{00, 100\}$. Determine XY, YX and XX.
 - (b) If S is a set of strings, what is $\varnothing S$?

Solution:

- (b) If $w \in \varnothing S$, then w = xy for some $x \in \varnothing$ and $y \in S$. But there is no $x \in \varnothing$. So there can be no $w \in \varnothing S$. This means $\varnothing S = \varnothing$.

7. Determine $\mathcal{P}(\mathcal{P}(\varnothing))$.

Solution:

$$\mathcal{P}(\mathcal{P}(\varnothing)) = \mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}.$$

8. For each of the following, determine whether it is true for all sets A, B.

(a)
$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$$
.

(b)
$$\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$$
.

Solution:

- (a) Let $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. If $S \in \mathcal{P}(A)$, then $S \subseteq A$, so $S \subseteq A \cup B$, i.e. $S \in \mathcal{P}(A \cup B)$. Similarly for $S \in \mathcal{P}(B)$. Thus $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- (b) Consider $A = \{2\}$ and $B = \{3\}$. Then $\{2,3\} \in \mathcal{P}(A \cup B)$. But $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\varnothing, \{2\}, \{3\}\}$. So $\{2,3\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. Therefore $\mathcal{P}(A \cup B) \not\subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$ in general.
- 9. Let $A_1, A_2, ...$ be sets. Then the finite unions and the finite intersections can be defined for each positive integer n as follows:

$$\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup \dots \cup A_n \quad \text{and} \quad \bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap \dots \cap A_n.$$

(a) Let n be an integer and $n \ge 2$. Determine $\bigcup_{k=1}^n A_k$ and $\bigcap_{k=1}^n A_k$ in each of the following cases. (i) $A_k = \{k\}$. (ii) $A_k = \{x \in \mathbb{R} : 0 < x < k\}$. (iii) $A_k = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{k}\}$.

Define X and Y by: for all x, y,

and $x \in X$ if and only if $x \in \bigcup_{k=1}^n A_k$ for some positive integer n, $y \in Y$ if and only if $y \in \bigcap_{k=1}^n A_k$ for all positive integer n.

- (b) State the definitions of X and Y symbolically (using \exists , \forall , etc.).
- (c) Determine X and Y for the three cases in (a).
- (d)* In program semantics (CS4214), the meaning of a program is sometimes defined with **fixed points**, which are either an infinite union or an infinite intersection. One way to define them is:

and $x \in \bigcup_{k=1}^{\infty} A_k$ if and only if $x \in A_k$ for some positive integer k, $y \in \bigcap_{k=1}^{\infty} A_k$ if and only if $y \in A_k$ for all positive integer k.

Prove that $X = \bigcup_{k=1}^{\infty} A_k$ and $Y = \bigcap_{k=1}^{\infty} A_k$, where X and Y are as in (b). [In other words, part (b) gives equivalent definitions for $\bigcup_{k=1}^{\infty} A_k$ and $\bigcap_{k=1}^{\infty} A_k$.]

Solution:

- (a) (i) $\bigcup_{k=1}^{n} \{k\} = \{1, \dots, n\}.$ $\bigcap_{k=1}^{n} \{k\} = \emptyset \text{ since } n \ge 2.$
 - (ii) $\bigcup_{k=1}^{n} \{ x \in \mathbb{R} : 0 < x < k \} = \{ x \in \mathbb{R} : 0 < x < n \}.$ $\bigcap_{k=1}^{n} \{ x \in \mathbb{R} : 0 < x < k \} = \{ x \in \mathbb{R} : 0 < x < 1 \}.$
 - (iii) $\bigcup_{k=1}^{n} \{x \in \mathbb{R} : 0 \leqslant x \leqslant \frac{1}{k}\} = \{x \in \mathbb{R} : 0 \leqslant x \leqslant 1\}.$ $\bigcap_{k=1}^{n} \{x \in \mathbb{R} : 0 \leqslant x \leqslant \frac{1}{k}\} = \{x \in \mathbb{R} : 0 \leqslant x \leqslant \frac{1}{n}\}.$
- (b) $x \in X \leftrightarrow \exists n \in \mathbb{Z}^+ \ x \in \bigcup_{k=1}^n A_k.$ $y \in Y \leftrightarrow \forall n \in \mathbb{Z}^+ \ y \in \bigcap_{k=1}^n A_k.$
- (c) (i) $X = \mathbb{Z}^+; \quad Y = \varnothing.$
 - (ii) $X = \mathbb{R}^+; \quad Y = \{x \in \mathbb{R} : 0 < x < 1\}.$
 - (iii) $X = \{x \in \mathbb{R} : 0 \leqslant x \leqslant 1\}; \qquad Y = \{0\}.$

(d)*
$$X = \bigcup_{k=1}^{\infty} A_k$$
: Suppose $x \in X$. So $\exists n \in \mathbb{Z}^+$ $x \in \bigcup_{k=1}^n A_k = A_1 \cup \cdots \cup A_n$.
Then $x \in A_k$ for some $k \in \mathbb{Z}^+$. So $x \in \bigcup_{k=1}^{\infty} A_k$. Therefore $X \subseteq \bigcup_{k=1}^{\infty} A_k$. Suppose $x \in \bigcup_{k=1}^{\infty} A_k$. If $k \in \mathbb{Z}^+$ such that $x \in A_k$, then $x \in \bigcup_{i=1}^k A_i$. So $x \in X$. Therefore $\bigcup_{k=1}^{\infty} A_k \subseteq X$. Equality follows.
$$Y = \bigcap_{k=1}^{\infty} A_k$$
: Suppose $y \in Y$. So $\forall n \in \mathbb{Z}^+$ $y \in \bigcap_{k=1}^n A_k$. In particular, $\forall n \in \mathbb{Z}^+$ $y \in A_n$. So $y \in \bigcap_{k=1}^{\infty} A_k$. Therefore $Y \subseteq \bigcap_{k=1}^{\infty} A_k$. Suppose $y \in \bigcap_{k=1}^{\infty} A_k$. This means $\forall k \in \mathbb{Z}^+$ $y \in A_k$. Then $y \in \bigcap_{k=1}^n A_k$ for any $n \in \mathbb{Z}^+$. So $y \in Y$. Therefore $\bigcap_{k=1}^{\infty} A_k \subseteq Y$. Equality follows.

- 10. Let B and E_1, E_2, \ldots be sets.
 - (a)* Suppose E_i and E_j are disjoint (i.e., have empty intersection) for all distinct positive integers i, j. Prove that $E_i \cap B$ and $E_j \cap B$ are disjoint for all distinct positive integers i, j.
 - (b) Prove that

$$\left(\bigcup_{k=1}^{\infty} E_k\right) \cap B = \bigcup_{k=1}^{\infty} (E_k \cap B).$$

Solution:

- (a)* Let i, j be distinct positive integers. Since $E_i \cap E_j = \emptyset$, we have $(E_i \cap B) \cap (E_j \cap B) = E_i \cap E_j \cap B = \emptyset \cap B = \emptyset$.
- (b) For all z,

$$z \in \left(\bigcup_{k=1}^{\infty} E_{k}\right) \cap B \quad \Leftrightarrow \quad z \in \bigcup_{k=1}^{\infty} E_{k} \wedge z \in B$$

$$\Leftrightarrow \quad (\exists k \in \mathbb{Z}^{+} \ z \in E_{k}) \wedge z \in B$$

$$\Leftrightarrow \quad \exists k \in \mathbb{Z}^{+} \ (z \in E_{k} \wedge z \in B)$$

$$\Leftrightarrow \quad \exists k \in \mathbb{Z}^{+} \ z \in E_{k} \cap B$$

$$\Leftrightarrow \quad z \in \bigcup_{k=1}^{\infty} (E_{k} \cap B).$$
(note)

So
$$\left(\bigcup_{k=1}^{\infty} E_k\right) \cap B = \bigcup_{k=1}^{\infty} (E_k \cap B).$$

11.* Consider the claim:

For all sets A, B and C, $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

The following is a "proof": For all z,

$$z \in (A \setminus B) \cup (B \setminus A)$$

$$\Rightarrow z \in A \setminus B \text{ or } z \in B \setminus A$$

$$\Rightarrow z \in A \text{ and } z \notin B \text{ or } z \in B \text{ and } z \notin A$$

$$\Rightarrow z \in A \text{ or } z \in B \text{ and } z \notin A \text{ and } z \notin A$$

$$\Rightarrow z \in A \cup B \text{ and } z \in \overline{B \cap A}$$

$$\Rightarrow z \in (A \cup B) \cap \overline{B \cap A}$$

$$\Rightarrow z \in (A \cup B) \setminus (B \cap A).$$

Therefore $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

- (a) Point out the errors in the "proof".
- (b) Prove or disprove the claim.

Solution:

(a) For all z,

$$z \in (A \setminus B) \cup (B \setminus A)$$

$$\Rightarrow z \in A \setminus B \text{ or } z \in B \setminus A$$

$$\Rightarrow z \in A \text{ and } z \notin B \text{ or } z \in B \text{ and } z \notin A \quad \longleftarrow \mathbf{ambiguous}$$

$$\Rightarrow z \in A \text{ or } z \in B \text{ and } z \notin B \text{ and } z \notin A \quad \longleftarrow \mathbf{unclear why one can reorder} \land \mathbf{and} \lor$$

$$\Rightarrow z \in A \cup B \text{ and } z \in \overline{B \cap A} \quad \longleftarrow \overline{B} \cap \overline{A} \neq \overline{B \cap A} \text{ in general}$$

 $\Rightarrow z \in (A \cup B) \cap \overline{B \cap A}$

 $\Rightarrow z \in (A \cup B) \setminus (B \cap A).$

Moreover, the \Leftarrow direction of the proof is missing.

(b)
$$(A \setminus B) \cup (B \setminus A) = (A \cap \overline{B}) \cup (B \cap \overline{A})$$

 $= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$
 $= ((A \cup B) \cap (\overline{B} \cup B)) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A}))$
 $= (A \cup B) \cap U \cap U \cap (\overline{B} \cap \overline{A})$
 $= (A \cup B) \cap (\overline{B} \cap \overline{A})$
 $= (A \cup B) \setminus (B \cap A)$.