Адели на кривой и двойственность Серра-2

15 июля 2024 года

ЗАМЕЧАНИЕ: Наивное определение факторпучка $\Gamma(\mathfrak{F}'/\mathfrak{F},U)=\frac{\Gamma(\mathfrak{F}',U)}{\Gamma(\mathfrak{F},U)}$, вообще говоря, является только предпучком.

ЗАМЕЧАНИЕ: Наивное определение факторпучка $\Gamma(\mathfrak{F}'/\mathfrak{F},U)=\frac{\Gamma(\mathfrak{F}',U)}{\Gamma(\mathfrak{F},U)}$, вообще говоря, является только предпучком.

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — предпучок. Скажем, что два его локальных сечения в точке p эквивалентны, если они равны в ограничении на общую открытую окрестность. Класс эквивалентности сечений называется **ростком** предпучка в точке p, их множество называется **слоем** \mathcal{F}_p предпучка в точке p.

ЗАМЕЧАНИЕ: Наивное определение факторпучка $\Gamma(\mathfrak{F}'/\mathfrak{F},U)=\frac{\Gamma(\mathfrak{F}',U)}{\Gamma(\mathfrak{F},U)}$, вообще говоря, является только предпучком.

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — предпучок. Скажем, что два его локальных сечения в точке p эквивалентны, если они равны в ограничении на общую открытую окрестность. Класс эквивалентности сечений называется **ростком** предпучка в точке p, их множество называется **слоем** \mathcal{F}_p предпучка в точке p.

ОПРЕДЕЛЕНИЕ: Множество всех сопоставлений $p \mapsto \mathcal{F}_p$ образует пучок, хотя и очень большой, в котором \mathcal{F} содержится как предпучок. Пучковизацией $\tilde{\mathcal{F}}$ называется наименьший подпучок, содержащий образ \mathcal{F} .

ЗАМЕЧАНИЕ: Наивное определение факторпучка $\Gamma(\mathfrak{F}'/\mathfrak{F},U)=\frac{\Gamma(\mathfrak{F}',U)}{\Gamma(\mathfrak{F},U)}$, вообще говоря, является только предпучком.

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — предпучок. Скажем, что два его локальных сечения в точке p эквивалентны, если они равны в ограничении на общую открытую окрестность. Класс эквивалентности сечений называется **ростком** предпучка в точке p, их множество называется **слоем** \mathcal{F}_p предпучка в точке p.

ОПРЕДЕЛЕНИЕ: Множество всех сопоставлений $p \mapsto \mathcal{F}_p$ образует пучок, хотя и очень большой, в котором \mathcal{F} содержится как предпучок. Пучковизацией $\tilde{\mathcal{F}}$ называется наименьший подпучок, содержащий образ \mathcal{F} .

ОПРЕДЕЛЕНИЕ: Факторпучком \mathcal{F}'/\mathcal{F} называется пучковизация факторпучка, определенного наивно.

ЗАМЕЧАНИЕ: Мы рассматривали точную тройку пучков

$$0 \to \mathcal{O}(D) \to k(C) \to S \to 0,$$

получая $H^1(\mathcal{O}(D))$ как фактор $H^0(S)/k(C)$. Опишем явно структуру факторпучка S.

ЗАМЕЧАНИЕ: Мы рассматривали точную тройку пучков

$$0 \to \mathcal{O}(D) \to k(C) \to S \to 0,$$

получая $H^1(\mathcal{O}(D))$ как фактор $H^0(S)/k(C)$. Опишем явно структуру факторпучка S.

ПРЕДЛОЖЕНИЕ: Слои S_p — факторы $k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}.$ Сечения $\Gamma(S,U) \subset \prod_{p \in U} S_p$ на самом деле лежат в $\bigoplus_{p \in U} S_p$.

ЗАМЕЧАНИЕ: Мы рассматривали точную тройку пучков

$$0 \to \mathcal{O}(D) \to k(C) \to S \to 0,$$

получая $H^1(\mathcal{O}(D))$ как фактор $H^0(S)/k(C)$. Опишем явно структуру факторпучка S.

ПРЕДЛОЖЕНИЕ: Слои S_p — факторы $k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}.$ Сечения $\Gamma(S,U) \subset \prod_{p \in U} S_p$ на самом деле лежат в $\bigoplus_{p \in U} S_p$.

ДОКАЗАТЕЛЬСТВО: На каком-то открытом множестве сечение представляется как $f \in k(C)$ с точностью до сечений $\Gamma(\mathfrak{O}(D),U)$. Если U' — дополнение U до D и полюсов f, то $f|_{U'} \in \Gamma(\mathfrak{O}(D),U')$, а потому все ее ростки вне конечного множества нулевые. \blacksquare

ЗАМЕЧАНИЕ: Мы рассматривали точную тройку пучков

$$0 \to \mathcal{O}(D) \to \underline{k(C)} \to S \to 0,$$

получая $H^1(\mathcal{O}(D))$ как фактор $H^0(S)/k(C)$. Опишем явно структуру факторпучка S.

ПРЕДЛОЖЕНИЕ: Слои S_p — факторы $k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}.$ Сечения $\Gamma(S,U) \subset \prod_{p \in U} S_p$ на самом деле лежат в $\bigoplus_{p \in U} S_p$.

ДОКАЗАТЕЛЬСТВО: На каком-то открытом множестве сечение представляется как $f \in k(C)$ с точностью до сечений $\Gamma(\mathfrak{O}(D),U)$. Если U' — дополнение U до D и полюсов f, то $f|_{U'} \in \Gamma(\mathfrak{O}(D),U')$, а потому все ее ростки вне конечного множества нулевые. \blacksquare

СЛЕДСТВИЕ: $H^0(S,C) = \mathbb{A}/\mathbb{A}(D)$. ДОКАЗАТЕЛЬСТВО: $\mathbb{A}/\mathbb{A}(D) = \bigoplus_{p \in D} k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}$.

ЗАМЕЧАНИЕ: Мы рассматривали точную тройку пучков

$$0 \to \mathcal{O}(D) \to \underline{k(C)} \to S \to 0,$$

получая $H^1(\mathcal{O}(D))$ как фактор $H^0(S)/k(C)$. Опишем явно структуру факторпучка S.

ПРЕДЛОЖЕНИЕ: Слои S_p — факторы $k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}.$ Сечения $\Gamma(S,U) \subset \prod_{p \in U} S_p$ на самом деле лежат в $\bigoplus_{p \in U} S_p$.

ДОКАЗАТЕЛЬСТВО: На каком-то открытом множестве сечение представляется как $f \in k(C)$ с точностью до сечений $\Gamma(\mathfrak{O}(D),U)$. Если U' — дополнение U до D и полюсов f, то $f|_{U'} \in \Gamma(\mathfrak{O}(D),U')$, а потому все ее ростки вне конечного множества нулевые. \blacksquare

СЛЕДСТВИЕ: $H^0(S,C) = \mathbb{A}/\mathbb{A}(D)$. ДОКАЗАТЕЛЬСТВО: $\mathbb{A}/\mathbb{A}(D) = \bigoplus_{p \in D} k(C)/\{f \in k(C) : \nu_p(f) \geqslant -n_p(D)\}$.

СЛЕДСТВИЕ: $H^1(\mathcal{O}(D)) = \mathbb{A}/(k(C) \oplus \mathbb{A}(D))$.

Первые когомологии всех дивизоров

ЗАМЕЧАНИЕ: Если D < D', то имеется сюръекция $H^1(\mathfrak{O}(D)) \to H^1(\mathfrak{O}(D)')$, и инъекция $H^1(\mathfrak{O}(D))^* \hookrightarrow H^1(\mathfrak{O}(D'))^*$. Имеем право рассмотреть объединение их всех. Это пространство k-значных функций на A, зануляющихся на k(C) и каком-либо $\mathbb{A}(D)$. Обозначим его за J.

Первые когомологии всех дивизоров

ЗАМЕЧАНИЕ: Если D < D', то имеется сюръекция $H^1(\mathfrak{O}(D)) \to H^1(\mathfrak{O}(D)')$, и инъекция $H^1(\mathfrak{O}(D))^* \hookrightarrow H^1(\mathfrak{O}(D'))^*$. Имеем право рассмотреть объединение их всех. Это пространство k-значных функций на A, зануляющихся на k(C) и каком-либо $\mathbb{A}(D)$. Обозначим его за J.

ПРЕДЛОЖЕНИЕ: J имеет структуру k(C)-векторного пространства. **ДОКАЗАТЕЛЬСТВО:** Если $a \in J$, определим fa как $(fa)(\alpha) = a(f\alpha)$. По определению, fa зануляется на k(C), и если a занулялся на $\mathbb{A}(D)$, то fa зануляется на $\mathbb{A}(D-(f))$.

Первые когомологии всех дивизоров

ЗАМЕЧАНИЕ: Если D < D', то имеется сюръекция $H^1(\mathfrak{O}(D)) \to H^1(\mathfrak{O}(D)')$, и инъекция $H^1(\mathfrak{O}(D))^* \hookrightarrow H^1(\mathfrak{O}(D'))^*$. Имеем право рассмотреть объединение их всех. Это пространство k-значных функций на A, зануляющихся на k(C) и каком-либо $\mathbb{A}(D)$. Обозначим его за J.

ПРЕДЛОЖЕНИЕ: J имеет структуру k(C)-векторного пространства. **ДОКАЗАТЕЛЬСТВО:** Если $a \in J$, определим fa как $(fa)(\alpha) = a(f\alpha)$. По определению, fa зануляется на k(C), и если a занулялся на $\mathbb{A}(D)$, то fa зануляется на $\mathbb{A}(D-(f))$.

ПРЕДЛОЖЕНИЕ: $\dim_{k(C)} J \le 1$. ДОКАЗАТЕЛЬСТВО: Оценка размерностей по Риману — Роху. ■

ПРЕДЛОЖЕНИЕ: Пусть M — пространство всех рациональных дифференциальных форм. Спаривание $M \times \mathbb{A} \to k, \langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}(\alpha_p \omega)$ задает k(C)-линейный гомоморфизм $M \xrightarrow{\theta} J$.

ПРЕДЛОЖЕНИЕ: Пусть M — пространство всех рациональных дифференциальных форм. Спаривание $M \times \mathbb{A} \to k, \langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}(\alpha_p \omega)$ задает k(C)-линейный гомоморфизм $M \xrightarrow{\theta} J$.

ДОКАЗАТЕЛЬСТВО: k(C)-линейность очевидна. Нужно, чтобы функционал $\langle \omega, - \rangle$ на аделях занулялся на $k(C) \subset \mathbb{A}$ и каком-то $\mathbb{A}(D)$. Первое — теорема о вычетах, второе очевидно для D — дивизора полюсов ω .

ПРЕДЛОЖЕНИЕ: Пусть M — пространство всех рациональных дифференциальных форм. Спаривание $M \times \mathbb{A} \to k, \langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}(\alpha_p \omega)$ задает k(C)-линейный гомоморфизм $M \xrightarrow{\theta} J$.

ДОКАЗАТЕЛЬСТВО: k(C)-линейность очевидна. Нужно, чтобы функционал $\langle \omega, - \rangle$ на аделях занулялся на $k(C) \subset \mathbb{A}$ и каком-то $\mathbb{A}(D)$. Первое — теорема о вычетах, второе очевидно для D — дивизора полюсов ω .

ЗАМЕЧАНИЕ: Как и пространство J, M имеет структуру предела по всем эффективным дивизорам как $\lim \Omega(-D)$.

ПРЕДЛОЖЕНИЕ: Пусть M — пространство всех рациональных дифференциальных форм. Спаривание $M \times \mathbb{A} \to k, \langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}(\alpha_p \omega)$ задает k(C)-линейный гомоморфизм $M \xrightarrow{\theta} J$.

ДОКАЗАТЕЛЬСТВО: k(C)-линейность очевидна. Нужно, чтобы функционал $\langle \omega, - \rangle$ на аделях занулялся на $k(C) \subset \mathbb{A}$ и каком-то $\mathbb{A}(D)$. Первое — теорема о вычетах, второе очевидно для D — дивизора полюсов ω .

ЗАМЕЧАНИЕ: Как и пространство $J,\ M$ имеет структуру предела по всем эффективным дивизорам как $\lim \Omega(-D)$.

ПРЕДЛОЖЕНИЕ: Отображение $\theta \colon M \to J$ сохраняет эту структуру. **ДОКАЗАТЕЛЬСТВО:** Пусть $\theta(\omega)$ зануляется на $\mathbb{A}(D)$. Для всякой точки $p \in C$ имеем адель $\alpha \in \mathbb{A}(D)$ с $\alpha_p = t^{-n_p(D)}$, где t — локальный параметр в p, и $\alpha_q = 0$ при $q \neq p$. Тогда для всякой p имеем $\langle \omega, \alpha_p \rangle = 0$, и потому $\omega \in \Omega(-D)$.

ПРЕДЛОЖЕНИЕ: Пусть M — пространство всех рациональных дифференциальных форм. Спаривание $M \times \mathbb{A} \to k, \langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}(\alpha_p \omega)$ задает k(C)-линейный гомоморфизм $M \xrightarrow{\theta} J$.

ДОКАЗАТЕЛЬСТВО: k(C)-линейность очевидна. Нужно, чтобы функционал $\langle \omega, - \rangle$ на аделях занулялся на $k(C) \subset \mathbb{A}$ и каком-то $\mathbb{A}(D)$. Первое — теорема о вычетах, второе очевидно для D — дивизора полюсов ω .

ЗАМЕЧАНИЕ: Как и пространство $J,\ M$ имеет структуру предела по всем эффективным дивизорам как $\lim \Omega(-D)$.

ПРЕДЛОЖЕНИЕ: Отображение $\theta \colon M \to J$ сохраняет эту структуру. **ДОКАЗАТЕЛЬСТВО:** Пусть $\theta(\omega)$ зануляется на $\mathbb{A}(D)$. Для всякой точки $p \in C$ имеем адель $\alpha \in \mathbb{A}(D)$ с $\alpha_p = t^{-n_p(D)}$, где t — локальный параметр в p, и $\alpha_q = 0$ при $q \neq p$. Тогда для всякой p имеем $\langle \omega, \alpha_p \rangle = 0$, и потому $\omega \in \Omega(-D)$.

ТЕОРЕМА: (двойственность Серра) $\Omega(-D) \cong J(D)$.

ДОКАЗАТЕЛЬСТВО: Если $\theta(\omega) = 0$, то она лежит в $\Omega(-D)$ для сколь угодно большого D и потому сама равняется нулю. Ненулевое линейное отображение одномерных векторных пространств над полем есть изоморфизм. \blacksquare