Wyznaczanie gęstości walca

Hubert Ładziński

4 kwietnia 2017

1 Streszczenie

W pracy badano gęstość brązowego metalowego walca korzystajać w tym celu z trzech metod pomiaru zatytuowanych odpowiednio A,B,C. Głównym celem doświadczenia było wyłonienie najprecyzyjniejszej z nich a także określenie z jakiego metalu mógł być wykonany walec. Wyniki poszczególnych metod przedstawia tabela 1.

Tabela 1: Wyniki pomiarów

Metoda	A	В	С
Wartość [g/cm ³]	8,3676	8,35	8,4039
Niepewność [g/cm ³]	0,0065	0,41	0,0047

2 Wstęp

Pierwsza metoda polegała na pomiarze wysokości i średnicy, druga na wyznaczaniu objętości za pomocą wody i menzurki, trzecia natomiast wykorzystywała prawo archimedesa. Przed pomiarami wykonano również serie pomiarow masy walca. Do obliczenia gęstości za pomocą metody A wykorzystano wzór 1 gdzie \overline{m} oznacza średnią masę, \overline{H} średnią wysokość, \overline{D} średnią średnice

$$\rho_A = \frac{4\overline{m}}{\pi \overline{D}^2 \overline{H}} \tag{1}$$

Do obliczenia gęstości przy pomocy danych uzyskanych metodą B zastosowano wzór 2, gdzie \overline{V} oznacza średnią różnicę objętości

$$\rho_B = \frac{\overline{m}}{\overline{V}} \tag{2}$$

Przy obliczaniu gęstości metodą C użyto wzoru 3, gdzie ρ_w oznacza gęstość wody, której wartość w tym przypadku przyjęto na $(0,997610\pm0,000001)~{\rm g/cm^3}$ [1]. Natomiast \overline{m}_{ww} oznacza średnią różnice mas wskazywanej przez wagę przy wkładaniu i wyciąganiu walca z wody

$$\rho_C = \frac{\overline{m}\rho_w}{\overline{m}_{ww}} \tag{3}$$

3 Układ doświadczalny i pomiary

Przed wykonaniem pomiarów metodami A,B i C zmierzono ośmiokrotnie masę walca na wadze z dokładnością odczytu $\Delta_m=0,01$ g. Pomiary masy znajdują się w tabeli 2. Metoda A polegała na 10 krotnym zmierzeniu średnicy oraz siedmiokrotnym zmierzeniu wysokości walca za pomocą suwmiarki o najmniejszej działce oczytu 0,01 mm co daje $\Delta_D=0,01$ mm, $\Delta_H=0,01$ mm. Metoda B wykorzystywała menzurkę z wodą, do której była wsadzana próbka. Menzurkę napełniano tak aby poziom wody pokrywał się z jedną z kresek skali, zapisywano V_1 następnie zanurzano całkowicie próbkę, która podnosiła poziom wody do V_2 . Dokładność odczytu menzurki wynosi $\Delta_V=1$ cm³. Metoda C opierała się na prawie Archimedesa, nalano wody destylowanej o temperaturze 22, 7°C do zlewki, która została położona na wadze użytej do pomiary masy walca i zmierzono masę m_{zw} . Następnie zanurzano walec zawieszony na statywie za pomocą nitki w wodzie i odczytywano wartość wskazywaną przez wagę m_{zwp} . Pomiary zebrane za pomocą metod A,B,C widnieją w tabelkach 3,4,5.

Tabela 2: Pomiar masy

	· ·							
Pomiar	1	2	3	4	5	6	7	8
Masa [g]	153,19	$123,\!18$	153,19	$153,\!21$	153,19	$153,\!21$	153,18	153,18

Tabela 3: Pomiary metodą A

Pomiar	1	2	3	4	5	6	7	8	9	10
Średnica [cm]	2,400	2,401	2,397	2,399	2,399	2,400	2,398	2,399	2,398	2,398
Wysokość [cm]	4,053	4,061	4,050	4,051	4,046	4,046	4,047			

Tabela 4: Pomiary metodą B

	Pomiar	1	2	3	4	5	6
Ī	V_1 [cm ³]	40	39	47	47	57	57
	V_2 [cm ³]	58	58	66	65	75	75

Tabela 5: Pomiary metoda C

Pomiar	1	2	3	4	5	6
m_{zw} [g]	296,51	296,33	296,14	296,95	296,77	296,23
m_{zwp} [g]	314,71	314,52	314,30	314,13	313,97	315,41

4 Analiza danych

Dysponując danymi przedstawionymi w tabeli 2 liczymy średnią masę \overline{m} wraz z niepewnością u_m obliczoną ze wzoru 7, gdzie $s_{\overline{m}}$ oznacza statystczną niepewność standardową średniej masy

$$u_m^2 = s_{\overline{m}}^2 + \frac{1}{3}\Delta_H^2 \tag{4}$$

Dostajemy $\overline{m} \pm u_m = (153, 1913 \pm 0, 0058)$ g. W taki sam sposób liczymy średnią średnice oraz wysokość wraz z niepewnością otrzymując $\overline{D} \pm u_D = (2, 39890 \pm 0, 00069)$ cm, $\overline{H} \pm u_H = (4, 051 \pm 0, 021)$ cm co pozwala nam policzyć niepewność gęstości obliczonej ze wzoru 1 za pomocą wzoru 5 dostając $\rho_A \pm u_A = (8, 3676 \pm 0, 0065)$ g/cm³

$$u_A = \sqrt{\rho_A^2 \left(\left(\frac{u_m}{\overline{m}} \right)^2 + \left(\frac{2u_D}{\overline{D}} \right)^2 + \left(\frac{u_H}{\overline{H}} \right)^2 \right)} \tag{5}$$

Identycznie postępujemy w przypadku metody B gdzie wynik gęstości wraz z niepewnością obliczoną ze wzoru 6 wynosi $\rho_B \pm u_B = (8, 35 \pm 0, 41)g/cm^3$

$$u_B = \sqrt{\rho_B^2 \left(\left(\frac{u_m}{\overline{m}} \right)^2 + \left(\frac{u_V}{\overline{V}} \right)^2 \right)} \tag{6}$$

gdzie wartość $u_V = 0,89443~\mathrm{cm}^3$ obliczamy ze wzoru 7

$$u_V = \sqrt{s_V^2 + u_{V1}^2 + u_{V2}^2} \tag{7}$$

Tak samo obliczamy niepewność dla metody C ze wzoru 8, $\rho_C \pm u_C = (8,4039 \pm 0,0047)~{\rm g/cm^3}$

$$u_C = \sqrt{\rho_C^2 \left(\left(\frac{u_m}{\overline{m}} \right)^2 + \left(\frac{u_{mww}}{\overline{m}_{ww}} \right)^2 + \left(\frac{u_{\rho w}}{\rho_w} \right)^2 \right)}$$
 (8)

gdzie wartość $u_{mww}=0,01025$ g obliczamy ze wzoru 9

$$u_{mww} = \sqrt{s_{\overline{mww}}^2 + \frac{2}{3}\Delta_m^2} \tag{9}$$

5 Dyskusja i wnioski

Po przeanalizowaniu danych zebranych metodami A,B i C możemy śmiało stwierdzić, że sposób pomiaru wykorzystujący prawo Archimedesa okazał się być najprecyzyjniejszy z niepewnością względną równą 0,056% i wynikiem $\rho_C \pm u_C = (8,4039 \pm 0,0047)$ g/cm³. Najprawdopodobniej spowodowane jest to względnie dużą precyzją użytej wagi i małą niepewnością gęstości wody. Niezwykle blisko precyzyjności wyniku otrzymanego metodą C zbliżył sie wynik z metody A, którego niepewność względna wyniosła 0,077%. Na ostatnim miejscu uplasował sie wynik uzyskany metodą B , który za sprawą szerokiej podziałki na menzurce posiada niepewność względną równą 4,879%. Na podstawie wyniku uzyskanego metodą C i koloru próbki można przypuszczać, że walec użyty w doświadczeniu był zrobiony z mosiądzu, którego tablicowa wartość gęstości w temperaturze pokojowej i ciśnieniu atmosferycznym waha się w przedziale (8400,8700) kg/m³ [2].

Literatura

- [1] http://webbook.nist.gov/chemistry/fluid/
- [2] https://www.simetric.co.uk/si_metals.htm