CHAPTER 0 REVIEW OF ALGEBRA

03. Properties of Exponents and Radicals

Exercised by: Rizal Bimanto

The product $x \cdot x \cdot x$ of 3 x's is abbreviated x^3 . In general, for n a positive integer, x^n is the abbreviation product of nx's. The letter n in x^n is called the **the exponent**, and x is called the **base**. More specifically, if n is positive integers we have:

1.
$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{\bullet}$$

1.
$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ factors}}$$
2. $\underbrace{\frac{1}{x \cdot x \cdot x \cdot \dots \cdot x}}_{n \text{ factors}} \text{ for } x \neq 0$

3.
$$\frac{1}{x^{-n}} = x^n \text{ for } x \neq 0$$

4.
$$x^0 = 1$$

If $r^n = x$, where n is a positive integer, then r is an nth root of x. Second roots, the case n=2, are called **squared roots**; and third roots, the case n=3, are called cube roots.

Some numbers do not have an nth root that is a real number. For example, since the square of any real number is non-negative: there is no real number that is a square root of -4.

The principal of nth root of x is the nth root of x that is positive if x is positive and is negative if x is negative and n is odd. We denote the principal nth root of x by $\sqrt[n]{x}$:

$$\sqrt[n]{x}$$
 is
$$\begin{cases} \text{positive if } x \text{ is positive} \\ \text{negative if } x \text{ is negative and } n \text{ is odd} \end{cases}$$

For example, $\sqrt[3]{9} = 3$, $\sqrt[3]{-8} = -2$ and $\sqrt[3]{\frac{1}{27}} = \frac{1}{3}$ We define $\sqrt[n]{0} = 0$. The symbol of $\sqrt[n]{x}$ is called radical.

Here are the basic laws of exponent and radicals:

Law	$\mathbf{Example(s)}$
$1. x^m \cdot x^n = x^{m+n}$	$2^3 \cdot 2^5 = 2^8 = 256; x^2 \cdot x^3 = x^5$
2. $x^0 = 1$	$2^0 = 1$
3. $x^{-n} = \frac{1}{x^n}$	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$
$4. \ \frac{1}{x^{-n}} = x^n$	$\frac{1}{2^{-3}} = 2^3 = 8; \frac{1}{x^{-5}} = x^5$
$5. \ \frac{x^m}{x^n} = x^{m-n} = \frac{1}{x^{n-m}}$	$\frac{2^{12}}{2^8} = 2^4 = 16; \frac{x^8}{x^{12}} = x^{-4} = \frac{1}{x^4}$

6.
$$\frac{x^m}{x^m} = 1$$

$$7. (x^m)^n = x^{mn}$$

8.
$$(xy^n) = x^n y^n$$

$$9. \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

9.
$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$
 $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$ 10. $\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$ $\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$

11.
$$x^{\frac{1}{n}} = \sqrt[n]{x^1}$$

12.
$$x^{\frac{-1}{n}} = \frac{1}{x^{\frac{1}{n}}} = \frac{1}{\sqrt[n]{n}}$$

13.
$$\sqrt[n]{x} \sqrt[n]{y} = \sqrt[n]{xy}$$

$$14. \ \frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}$$

15.
$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[mn]{x}$$

16.
$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

17.
$$(\sqrt[m]{x^m}) = x$$

$$\frac{2^4}{2^4} = 1$$

$$(2^3)^5 = 2^{15}; (x^2)^3 = x^6$$

8.
$$(xy^n) = x^n y^n$$
 $(2 \cdot 4)^3 = 2^3 \cdot 4^3 = 8 \cdot 64 = 512$

$$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{2^3}$$

$$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$$

$$3^{\frac{1}{5}} = \sqrt[5]{3^1}$$

12.
$$x^{\frac{-1}{n}} = \frac{1}{x^{\frac{1}{n}}} = \frac{1}{\sqrt[n]{x}}$$
 $4^{\frac{-1}{2}} = \frac{1}{4^{\frac{1}{2}}} = \frac{1}{\sqrt[n]{4}} = \frac{1}{2}$

13.
$$\sqrt[n]{x} \sqrt[n]{y} = \sqrt[n]{xy}$$
 $\sqrt[3]{9} \sqrt[3]{2} = \sqrt[3]{9 \cdot 2} = \sqrt[3]{18}$

14.
$$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}$$
 $\frac{\sqrt[3]{90}}{\sqrt[3]{10}} = \sqrt[3]{\frac{90}{10}} = \sqrt[3]{9}$

15.
$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[mn]{x}$$
 $\sqrt[3]{\sqrt[4]{2}} = \sqrt[3\cdot4]{2} = \sqrt[12]{2}$

16.
$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m \mid 8^{\frac{2}{3}} = \sqrt[3]{8^2} = (\sqrt[3]{8})^2 = 2^2 = 4$$

$$\left(\sqrt[8]{7}\right)^8 = 7$$