Assignment 2:

EEE3088F - Engineering design principles

Prepared By:

Ronak Mehta - MHTRON001

Vikyle Naidoo - NDXVIK005

Faculty of Engineering and the Built Environment

12th April 2019

Questions:

- 1) Block Diagrams for Gyroscope and accelerometer.
- i) Combined diagram:

ii) For Accelerometer:

Three sub-blocks were used, namely:

Angle to acceleration, Accelerometer sensor model and Acceleration to angle

Accelerometer sensor model:

iii) For Gyroscope:

Three sub-blocks were used, namely:

Angle to angular velocity, Gyroscope sensor model and Angular velocity to angle

1. Angle to angular velocity

2. Gyroscope sensor model:

3. Angular velocity to angle:

2) (a) and (b)

For Accelerometer:

i) Sensor Noise:

Model block: Band-limited white noise power: $9.62E-9 \text{ ms}^{-2} = (10E-6*9.81*\text{sqrt}(50))^2 *0.02$

ii) Range:

Model block: Sensor Saturation: Upper Limit = $4*9.81 = 39.24 \text{ ms}^{-2}$ Lower Limit = $-4*9.81 = -39.24 \text{ ms}^{-2}$

iii) Acceleration-Voltage conversion: Gain: $0.0765 \text{ Vm}^{-1}\text{s}^2 = 3/4/9.81$

iv) Slew rate: Rate Limiter:

Rising slew rate = $10 \text{ V/}\mu\text{s}$ Falling slew rate = - 10 $V/\mu s$

v) <u>ADC:</u>

Quantization level: 0.0007 volts per bit = $3/((2^{12})-1)$

vi) <u>Voltage-acceleration conversion:</u> Gain: $13.08 \text{ ms}^{-2}\text{V}^{-1} = (4*9.81)/3$

For Gyroscope:

i) Sensor Noise:

Model block: Band-limited white noise power: 0.01 degrees/sec = (0.1*sqrt(50))^2*0.02

ii) Range:

Model block: Sensor Saturation: Upper Limit = 2000 degrees/sec Lower Limit = - 2000 degrees/sec

iii) Angular velocity-Voltage conversion:

Gain: 0.0015 Vs/degree = 3/(2000)

iv) Slew rate:

Rate Limiter:

Rising slew rate = 16 V/ μ s Falling slew rate = -16 V/ μ s

v) <u>ADC:</u> Quantization level: 45.8E-6 volts per bit = 3/((2^16)-1)

vi) <u>Voltage-angular velocity conversion:</u> Gain: 666.67 degree/s/V = (2000)/3

2.(c)

Figure 1 Comparison of output

yellow : input blue: accelerometer

red: gyro

3)

The specifications in assignment 1 was that this device needs to be capable of measuring any angle in a 360deg range around a single axis with an accuracy of 0.5deg and provide the user with feedback.

For the gyroscope we chose the axis of measurement to be the x axis. Hence ax = $gsin\theta$ For an accuracy of 0.5 deg \Rightarrow 0.0087 rad = 0.87e-2

Figure 2 output of sensors when input is held constant

yellow : input blue: accelerometer

red: gyro

From the above graph it is apparent that the input (yellow) and the accelerometer(blue) are both at the same value (ie 0 rad). Hence blue is masking yellow since they are the same value \rightarrow there is minimal or zero error in this scenario.

It is apparent that the gyro output (red) is differing from the input by a max error = 2.367e-2 rad from the specs we have 2.367e-2>0.87e-2 hence the gyro does not pass the specifications.

In conclusion the accelerometer is most accurate, and the gyroscope does not meet the specifications