

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 5

Дисциплина Моделирование.

Тема Исследование математической модели на основе

технологии вычислительного эксперимента

 Студент
 Сиденко А.Г.

 Группа
 ИУ7-63Б

Оценка (баллы)

Преподаватель Градов В.М.

Цель работы: Получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа. Исследование проводится с помощью программы, созданной в лабораторной работе №4.

Все величины как в лабораторной 4, кроме

$$F(t) = \frac{F_{max}}{t_{max}} t \cdot exp\left(-\left(\frac{t}{t_{max}} - 1\right)\right)$$

где

 F_{max} – амплитуда импульса потока

 t_{max} – время достижения амплитуды

Результаты

1. Провести исследование по выбору оптимальных шагов по времени и пространству. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Точность расчета будем оценивать, уменьшая шаги и наблюдая сходимость решений, как это делалось в лабораторной работе №1.

Шаг по пространству:

1	0.5	0.1	0.05	0.01	0.005	0.001
300.000	300.000	300.000	300.000	300.000	300.000	300.000
314.134	324.927	333.636	333.746	333.680	333.572	330.172
340.435	360.669	372.647	372.843	372.669	372.407	369.380
363.704	396.550	412 . 565	412.814	412.508	412.074	408.204
388.004	431.798	451 . 827	452.101	451.653	451.042	445.997
412.416	462.311	489.792	490.073	489.479	488.692	482.373
432.714	493.581	522.353	522.650	521.939	521.010	513.622
453.870	520.006	555.163	555.454	554.619	553.545	545.047
475.214	547.562	587.208	587.481	586.521	585.303	575.693
496.351	575.098	618.114	618.363	617.279	611.426	600.967
512.684	602.056	643.292	643.554	642.379	642.865	626.833
529.749	623.028	669.018	669.259	667.987	667.474	652.372
547.099	644.986	694.400	694.613	693.244	692.224	677.208
564.425	667.129	719.077	719.258	717.792	716.443	701.159

```
751.036
          910.564
                    982.458
                              982.371
                                                   977.086
                                                             954.572
                                         979.927
757.637
          918.648
                    990.338
                              990.224
                                         987.747
                                                   984.872 |
                                                             962.106
764.078
          926.468
                    997.882 |
                              997.741 | 995.233 | 992.324 |
                                                             969.309 |
                    1005.075 | 1004.907 | 1002.367 | 999.426 | 976.168
770.337
          933.997
776.397
         941.214
                    1011.904
                               1011.712
                                           1009.141 |
                                                      1006.168
                                                                 982.672
782.244
          948.104
                    1018.365
                                1018.148
                                           1015.547 |
                                                      1012.543
                                                                  988.816
                    1024.453
                               1024.213
787.865
         954.654
                                           1021.583 |
                                                      1018.549
                                                                  994.598
                    1030.168
                                                     1024.185 |
793.250 |
         960.857
                               1029.905 |
                                          1027.248 |
                                                                  1000.01
         966.708
                    1035.511
798.393
                               1035.227
                                          1032.543 |
                                                     1029.453
                                                                 1005.07
```

Таким образом, оптимальный шаг h = 0.1.

Шаг по времени:

1	0.5 0.1 0.05 0.01
643.292	615.493 551.925 551.675 551.475
535.182	508.377 447.830 447.617 447.446
461.065	437.637 385.415 385.229 385.080
410.489	391.050 348.572 348.414 348.287
375.976	360.331 327.135 327.005 326.901
352.375	340.024 314.856 314.754 314.672
336.190	326.564 307.952 307.876 307.814
325.058	317.624 304.154 304.099 304.054
317.379	311.679 302.114 302.076 302.045
312.069	307.724 301.048 301.022 301.002
308.389	305.094 300.505 300.489 300.476
305.834	303.348 300.237 300.227 300.220
304.057	302.191 300.108 300.102 300.098
302.821	301.427 300.048 300.045 300.042

Таким образом, оптимальный шаг $\tau = 0.1$.

Рассмотрим влияние на получаемые результаты амплитуды импульса и времени.

$$F_{max} = 100$$

$$t_{max} = 10$$

$$F_{max} = 1000$$

$$t_{max} = 10$$

Время, с

2000 -

1000 -

Таким образом, при увеличении F_{max} возрастает и максимальная температура стержня. При изменении t_{max} меняется время импульса, соответственно меняется время достижения точки с максимальной температурой.

2. График зависимости температуры при 3-4 значениях параметров a_2, b_2 теплоемкости.

 a_2, b_2 меняются попарно значениями из массивов:

$$a_2 = [0.5, 1, 2, 5]$$

$$b_2 = [0.0005, 0.001, 0.005, 0.01]$$

Соотвественно, с каждым шагом значение теплоемкости уведичивается.

Графики по порядку:

- ullet синий $a_2=0.5,\,b_2=0.0005$
- \bullet оранжевый $a_2=1,\,b_2=0.001$
- ullet зеленый $a_2=2,\ b_2=0.005$
- \bullet красный $a_2 = 5, b_2 = 0.01$

Получается, что с увеличением теплоемкости темп роста и максимальное значение температуры уменьшаются.

3. График зависимости температуры в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν и длительностью t_u .

$$\bullet \ \nu = \frac{1}{8}, t_u = 4$$

•
$$\nu = \frac{1}{5}, t_u = 1$$

•
$$\nu = \frac{1}{3}, t_u = 1$$

По мере роста частоты импульсов размах колебаний температуры уменьшается.

Уменьшается вплоть до нуля в этот момент в торец поступает постоянный поток.

Рассмотрим данный график и график из лабораторной работы 3 при всех одинаковых параметрах модели.

На левом рисунке представлен график из 3 работы, а на правом из текущей.

Полученное температурное поле совпало с результатом расчета T(x).