NASA Carbon Dioxide Reduction Technology Approaches

Morgan B. Abney Environmental Control and Life Support Systems NASA Marshall Space Flight Center

NASA Weekend Workshop on CO₂ Manufacturing June 28-29, 2014

Agenda

- How does NASA use CO₂ for Exploration?
- NASA Missions and Design Drivers
- ISS CO₂ Reduction
- NASA-Funded CO₂ Reduction Technology Development
- Other CO₂ Reduction Approaches Considered
- Where next?

How does NASA use CO₂?

- Life Support Systems
 - Metabolic CO₂ produced by crew during respiration
 - O₂ recovery is critical for long-duration missions where O₂ resupply is logistically unfeasible
- In Situ Resource Utilization (ISRU)
 - CO₂ obtained from Martian atmosphere
 - O₂ may be produced to support the crew or stockpiled for surface launch
 - Other materials may be produced (e.g. methane)

NASA Missions

- Low Earth Orbit (ISS)
 - Long Duration (years)
 - Resupply from Earth logistically feasible but used as testbed for future missions beyond LEO
- Surface Missions
 - Long Duration (years)
 - Lunar or Martian Surface
 - Mars Transit
- Resource Recovery
 - Oxygen recovery
 - Hydrogen recovery
 - Carbon recovery?

Design Drivers

- Life Support Design Considerations:
 - Maximize O₂ recovery
 - Ensure technology is highly robust and reliable
 - Minimize mass/volume/power
 - Make compatible with habitat
 - Microgravity compatible
 - Planetary Protection
- ISRU Design Considerations:
 - Scale necessary to be useful
 - Identify technology that produces useable products
 - Minimize consumables or materials necessary from Earth
 - Regolith fines
 - Planetary Protection

ISS CO₂ Reduction

- Sabatier-based CO₂ Reduction
- Developed by Hamilton Sundstrand

$$CO_2 + 4H_2 \leftrightarrow 2H_2O + CH_4$$

- Water electrolyzed to provide O₂ to the crew, H₂ recycled back to Sabatier
- Methane vented as waste product
- <50% O₂ recovery

AR Rack on ISS

NASA-Funded Development

- Life Support Systems
 - Sabatier Post-Processing for 90% O₂ Recovery
 - Bosch for 100% O₂ Recovery
- ISRU
 - CO₂/Water Co-Electrolysis to stockpile O₂
 - Sabatier to stockpile CH₄

LSS: Sabatier Post-Processing

- Plasma Pyrolysis Assembly (PPA)
 - Microwave-generated plasma
 - Primary Reaction:

$$2CH_4 \rightarrow 3H_2 + C_2H_2$$

- Can produce C_2H_6 , C_2H_4 , C_2H_2 , or C(s)
- Challenges
 - High power requirement (~2.5kW)
 - Unwanted C formation
 - H₂ Purification for recycle
- Potential 90% O₂ recovery

PPA Plasma

LSS: Bosch

Bosch Process

LSS: Bosch

Chemistry

- Challenges
 - Power Consumption
 - High Temperature Reactions
 - Catalyst Resupply
 - Volume/Mass
- Potential 100% O₂ Recovery

1980's Bosch System

ISRU: Co-Electrolysis

- Solid Oxide Electrolysis
 - Co-electrolysis of water and CO₂
 - Directly produces O₂

- Challenges
 - High temperatures limits
 ability to thermally cycle and maintain seals
 - Launch mass required to launch water needed for coelectrolysis
- Variable Oxygen recovery

ISRU: Sabatier

Same technology approach as ISS CO₂
 Reduction

- Challenges
 - CO₂ Capture from atmosphere
 - Resistance to regolith fines
 - H₂ for reaction must be launched from Earth
 - Pressurization of CH₄

Other Approaches Considered

- Direct CO_2 decomposition (to solid carbon and O_2)
- CO₂ conversion to alcohols
- CO₂ conversion to sugars precursors to food
- CO₂ conversion to various hydrocarbons for fuels
- CO₂ conversion to CH₄ → conversion to DLC for tooling or refurbishment

Where Next?

- Mission specific
 - Dependent on duration
 - Dependent on available resources (in situ or from Earth)
 - Martian surface missions = any number of useable materials or chemicals are of interest

Questions?

Contact Information

Morgan B. Abney, Ph.D.
National Aeronautics and Space Administration
Marshall Space Flight Center
Bldg 4755, Room 403-7
MSFC, AL 35812

morgan.b.abney@nasa.gov

Office Phone: +1 256 961 4758

Mobile Phone: +1 256 541 8534

Fax: +1 256 961 0737