10. gaia

Teknologia fotonikoa

Sarrera

Gaur egun baliabide optikoek informazioaren transmisiorako sistema moduan duten garrantzia dela eta, gai honetan aztertuko dira:

- teknologia informatikoan argi iturri erabilienak:
 - · LASERra,
 - · LEDa,
- eta zuntz optikoa, transmisio-bide moduan.

- 1917an Albert Einsteinen erradiazio-materia alorrean *estimulatutako erradiazioa*ren inguruko lehen ikerketekin hasten da laserraren historia.
- T. Maiman izan zen, 1960ean, estimulatutako erradiazio igorpena frekuentzia ikusgaietan igortzen zuen gailu bat aurkezten. Gailu hau laser izendatu zen Light Amplification of Stimulated Emission Radiation akronimotik.
- Gaur egun laserrak hamaika aplikazio ditu besteak beste informatikan eta medikuntzan: CD eta DVD irakurgailuak, laser inprimagailuak, ordenagailuentzako memoria magneto-optikoak, barra-kode irakurgailuak, soldadura kirurgikoak, zehaztasunezko mozketak, luzera neurgailuak, e.a.

Eta hedapen etengabean!

Laserra

Laser mota desberdinak daude:

Argi iturri orok badu argia igortzen duen sustantzia bat (sustantzia aktiboa, SA) eta energia emateko mekanismo bat (EE).

- euskarri solidokoa: lehen laser eraginkorra. Sustantzia aktiboa solido kristalinoa da. Energia lanpara batek igorritako argiak ematen du, lanpararen igorpen espektroan SA kitzikatzeko behar diren uhin luzerak daudelarik.
- gasezkoa: SA gas nahasketa bat da. EE SA biltzen duen hodiaren muturreko elektrodoen artean ezarritako potentzial diferentzia handi baten (tentsio altuko iturri bat) ondorioz sortutako eremu elektrikoa.

Laser mota desberdinak daude:

- erdieroalekoa (diodozko laserra): SA erdieroalezko p-n juntura bat da eta EE hau zeharkatzen duen korronte bat. Eroalearen bolumena oso txikia bada, injekzio handia lor daiteke korronte txikiekin. Hau da laser mota hauen tamaina txikiaren arrazoia.
- Beste batzuk:
 - · kolorantezkoa,
 - gelezkoa,
 - X izpikoa,
 - · nuklearra...

Laserra

Laserren propietate nagusiak honakoak dira:

- Laser argia **koherentea** da: laser izpiek euren arteko fase korrespondentzia bat mantentzen dute.
- Laser argia monokromatikoa da: uhin luzera "bakarra" (tarte mugatu bat).
- Laser argia **oso direkzionala** da (dibergentzia angelu txikia): distantzia handietan ere argi izpia oso gutxi sakabanatzen da.

Propietate hauek egiten dute hain erabilgarri hainbat aplikazio teknologikoetan.

• Erradiazio-materia elkarrekintza:

Atomo batek erradiazio elektromagnetikoa xurgatu eta igortzen du, bakarrik baimendutako mailen arteko energia desberdintasunari dagokien uhin luzeretan.

• estimulatutako xurgatzea: E_1 energia mailan dagoen elektroi bat hurrengo energia mailara pasa daiteke E_2 - E_1 energia duen fotoia xurgatuz. Fotoiak elektroia kitzikatzen du.

Laserra

- Erradiazio-materia elkarrekintza:
 - berezko igorpena: goi energiako maila batean (E_2) dagoen elektroi bat mailaz jaitsi daiteke E_2 - E_1 energiako fotoia igorriz.

- Erradiazio-materia elkarrekintza :
 - estimulatutako igorpena: elektroi bat goi energiako (E_2) maila batean badago, egoera hau metaegonkorra bada eta E_2 - E_1 energiako fotoi bat badago, fotoi honek eragin dezake elektroia energia gutxiagoko mailara (E_1) pasatzea energia, noranzko eta fase bereko fotoi bat igorriz

* Maila honetan elektroien erdibizitza oso handia da kitzikatutako egoeren adierazgarri den erdibizitzarekin (~ 10-8 s) alderatuta.

Laserra

- · Populazioaren alderantzikatzea
 - · Oreka termikoan elektroi gehiago oinarrizko egoeran.
 - Kitzikatutako egoeran dauden elektroiak gehiengoak direnean → populazioaren alderantzikatzea

Laserraren funtzionamenduaren oinarria den estimulatutako igorpena gertatu ahal izateko, populazioaren alderantzikatzea beharrezkoa da.

• Fotoi batek estimulatutako igorpenaz beste bat sortzen badu, fasean dauden 2 fotoi guztiz berdin lortzen dira (koherentea). Hauetako bakoitzak beste fotoi bat sortu dezakete, eta beste hauek beste hainbeste.

- Laser argia: estimulatutako igorpen bidezko fotoi pilaketa. Baldintzak:
 - Sistema populazioaren alderantzikatze egoeran egon behar da, igorritako fotoi kopurua xurgatutakoa baina handiago izan dadin (anplifikazioa).
 - Sistemaren kitzikatutako egoera egoera metaegonkor bat izan behar da, populazioaren alderantzikatzea eta igorpen estimulatuak berezkoak baina gertatzeko aukera gehiago izatea ahalbidetzen duena (koherentea).
 - Igorritako fotoiak sisteman konfinatuta egon behar dira beste igorpen batzuk kitzikatzeko behar beste denbora. Hau lortzeko sistemaren muturretan ispiluak gaineratzen dira: alde batekoak %100 islatzen du, besteak <%100, laser izpia sortuz (kolimatuta).

Laserra

Adibidea: helio-neón gasezko laserra

Hodiaren barruan atomoak, sustantzia aktiboa. Hodiari tentsio bat aplikatzen zaio, elektroiak hoditik desplazatuz, atomoekin talka eginez eta hauek kitzikatuz.

- · CD/DVD batean biltegiratzea
 - Disko trinkoaren (CD) agerpenarekin informazioa formatu digitalean biltegiratzen da.
 - Informazioaren biltegiratzea diskoan markatutako (putzuak) eta markatu gabeko eskualdeen bidez.
 - Batetik besterako (markarik gabeko eskualdetik putzura edo alderantziz) '1' logiko bat bezala ulertzen da.
 - Puntu batetik bestera aldaketarik ez badago '0' logikoa.
 - Markaren tamaina: diskoa irakurtzeko erabilitako laserraren $\lambda/4$.
 - DVD: λ laburragoa \Rightarrow markaren tamaina txikiagoa \Rightarrow dentsitate handiagoa.

Laserra

- •CD/DVD irakurgailu baten detekzio sistema
 - Osagai optikoak erradialki mugitzen den beso batean (diskoaren eskualde guztietara iristeko).
 - · Laserrak argia gorantz.
 - Argia lente kolimatzaile batetik pasatzen da izpi paraleloak lortuz
 - Ondoren zatitzaile batetik pasatzen da
 - •Laser izpia CDaren puntu txiki batean enfokatzen da
 - •Izpiak puntu horretan marka bat aurkitzen badu, dispertsatu egiten da (oso argi gutxi itzuli jatorrizko bidetik)

- CD/DVD irakurgailu baten detekzio sistema
 - Izpiak eskualde lau bat topatzen badu (markarik gabekoa), jatorrizko bidetik islatzen da.
 - Islatutako argia zatitzailera iristean zati bat eskuinera islatzen da.
 - Lente batek argi hau enfokatu eta fotozelulak detektatzen du.
 - Fotozelulara argi pultsu moduan iristen den informazio digitala, diskoaren zirkuitu elektronikoak kudeatzen du.

Laserra

- · Biltegiratze magnetooptikoa
 - Disko magnetooptiko batek materiale ferromagnetikoa du, eta gainazalari normala den eremu magnetikoa.
 - Marka bat grabatzeko potentzia handiko laser bat enfokatzen da desiratutako puntuan, bitartean elektroiman batek jatorrizko noranzkoaren kontrako eremu bat aplikatzen duelarik
 - Laserrak puntuaren magnetizazioa aldatu ahal izateko beharrezko tenperaturara berotzen du.
 - Laserra kentzean (puntua hoztu egiten da) magnetizazioa mantendu egiten da.

- · Biltegiratze magnetooptikoa
 - Diskoa irakurtzeko bere gainazalean potentzia txikiko laser bat islatzen da.
 - •Islatutako argiaren polarizazioaren funtzioan puntuaren magnetizazioa antzematen da (izpia zatitzaile bat behar du).
 - Diskoa ezabatzeko elektroimanak jatorrizko eremuaren noranzko bereko eremu magnetikoa ezartzen du, eta laserrak diskoko puntu guztiak berotzen ditu, hauen jatorrizko egoera berreskuratuz.

LED

- LED diodoa (LED, light-emitting diode) vs laser diodoa
 - Erdieroalez osatutako argi iturrien oinarria zuzenean polarizatutako **pn juntura** bat da.
 - LEDak orokorrean trafiko seinaleetan, pantaila elektronikoetan, ekipo elektronikoetako argi adierazle moduan eta *distantzia laburreko komunikazioan* erabiltzen dira. Laser erdieroaleak aurkezpenetan pointer moduan, DVD eta CD irakurleetan eta *distantzia handiko komunikazioetan* erabiltzen dira.

LED

- LED: sortutako fotoiak zuzenean kanpora igortzen dira
 - Argi iturriek elektroi fluxua zuzenean kanpora zuzendutako erradoazio bihurtu dezakete (LED) edo igorritako erradiazioa behin eta berriz islatu erazi dezakete (laser).
 - pn juntur batean e eta h birkonbinaketak daude. Birkonbinaketa hauek izan daitezke:
 - erradiatiboak: askatutako energia fotoi moduan igortzen da
 - ez-erradiatiboak: energia bero moduan galtzen da

LED

- LED: sortutako fotoiak zuzenean kanpora igortzen dira
 - \bullet Eroapen bandan (kitzikatuta) dagoen elektroi bat balentzi bandako hutsune batekin birkonbinatu daiteke, E_g energiako fotoi bat igorriz, berezko igorpena.

LED

· Plastikozko kapsulatua

• Lehen LEDek intentsitate baxuko argi gorria igortzen zuten, baina gaur egunekoek argitasun handiko argi infragorria, ikusgaia eta ultramorea igortzen dute. Kolorea (uhin luzeraren, eta hortaz) erdieroalearen debekatutako bandaren menpekoa.

LED

- · Ezaugarri nagusiak:
 - **Igorritako potentzia**, 1 mW ingurukoa. Tenperatura igotzean txikitzen da. 2 V inguruko tentsioetatik aurrera hasten da igortzen (zenbait mA-ko korronteak).
 - Erantzun-abiadura, injektatutako korrontearen aldaketen aurreko erantzunaren abiadura. Orokorrean maiztasun altuetan lan egiten dute.
 - Fidagarritasuna, LED baten bataz besteko funtzionamendu denbora, huts egiten hasi aurretik:
 - ordu gutxi → fabrikazio akatsak
 - denbora luza (milioika ordu) → materialak zahartu egiten dira eta igorpenaren ezaugarriak aldatzen dira (baina igortzen jarraitzen dute). Laserren zaharkitzeak ordea hondamena dakar, argia igortzeari uzten diotelarik.

LED

- LED diodo motak:
 - ELED (Edge LED), argi Igorpenaren noranzkoa Korronteari elkarzuta
 - **SLED** (Surface LED), oso argi izpi zabalaz igortzen dute → zuntz optikoarekin akoplamendu galerak.

Zuntz optikoa

- Guztirako barne islapenaren aplikazioa: **argia gidatzeko** beirazko edo plastiko gardenezko hagatxoak.
- Hagatxo horiek **zuntz optikoak** dira eta informazioa (argi laserreko pultsu digitalak) eroaten dute zeharo abiadura handietan.

 Argi izpi bat hagatxo garden batean zehar hedatzen, jarraikako barne islapenen ondorioz

- Zuntz optikoa osatzen dute: **nukleo garden** bat, estaldura batez eta babeserako estalki batez inguratuta.
- Estalduraren n < nukleoaren n → argiak nukleo eta estalduraren arteko interfazea angelu kritikoa baina handiagoa den angelu batez erasotzen badu argia nukleoan zehar *errebotatzen* doa ia intentsitate galerarik jasan gabe.
- Plastikozko estalkia: kalte mekanikoetaz babestu
- Diametroa: mikra hamarkadak

Zuntz optikoa

- Onarpen konoa: nukleoaren sarrerako angelu onargarriak.
 - Kono barruko angeluekin, argia nukleotik igortzen da (A izpia).
 - Konotik kanpoko angeluekin, argiak nukleo-estaldura gainazala angelu kritikoa baina angelu txikiagoarekin erasotzen du, estalduran sartuz (B izpia).

- · Onarpen konoa:
 - Angelu kritikoa txikiagoa → onarpen konoa handiagoa.

Irudiko izpia zuntz optikoan sartzen da justu onarpen konoaren barruan → guztirako barne islapena.

Zuntz optikoa

- · Bat-bateko errefrakzio-indizeko modu anitzeko zuntza
 - **Modu anitza**: zuntzean sartzen den argia angelu desberdinak jarraituz hedatzen da.
 - Bat-bateko errefrakzio-indizea : nukleoa eta estalduraren arteko errefrakzioen arteko ezjarraitasuna

· Bat-bateko errefrakzio-indizeko modu anitzeko zuntza

- (a) Sarrerako pultsuaren laser argiaren intentsitatea.
- (b) Irteerako pultsua: zuntz optikoan argiak jarraitzen dituen ibilbide desberdinak direla eta zabalduta → Pultsuak seinale bitar baten bi egoerak ('0' eta '1') badira, pultsuen gainezarmen bat edo intentsitate murrizketa bat (detekzio mailaren azpitik) ekar dezake → informaizo galera.

Zuntz optikoa

- Mailaz mailako errefrakzio-indizeko zuntz optikoa
 - Mailaz mailako errefrakzio-indizea: nukleoaren errefrakzio indizea zentrotik aldentzen den heinean txikitzen da
 - → Ardatza jarraitzen ez duten izpiak etengabe errefraktatzen dira, kurbatuz
 - → Pultsuaren distortsioa eta zuntzean igarotze denbora txikitzen dira (ibilbidearen luzera murrizten da).

- Bat-bateko errefrakzio-indizeko modu bakarreko zuntza
 - **Modu bakarra:** nukleoa oso txikia egiten da, praktikoki ibilbide guztien luzera berdina delarik.
 - Gainera nukleoaren eta estalduraren errefrakzio indizeen ezberdintasuna murrizten bada, ardatzaren arabera zuzenduta ez dauden izpiak estalduran sartzen

dira, xurgatuak izanik →
Argi izpien zabalkuntzaren
murrizketa areagotuz

→ Bit-rate handiak

Zuntz optikoa

• Zuntz optiko paralelo sorta bat erabiltzen bada → Transmisio lerro optikoa → Ahots, bideo eta datu seinaleak leku batetik bestera transferitu daitezke.

