Electronic Structure Theory

What is Electronic Structure Theory

 Determination of location and structure of electrons within a molecule

Vs Classical Calculations

Singlepoint Calculations

- Calculation on a single fixed geometry
- Electronic properties:
 - UV/Vis, IR, CD spectra
 - NMR/Magnetic susceptibility
 - Bonding information
 - Reaction energies/Transition states

Geometry Optimization

0	0.0000	0.0000	0.0000
Η	0.0000	1.5875	0.0000
Η	0.7938	-1.8521	0.0000

QM Model Selection

- Molecular Orbitals (MOs) are expanded in the basis of Atomic Orbitals (AOs). These
 AOs are defined by your basis set
- Your method defines how you are calculating those MOs (what approximations)
- Combined, these are referred to as your model, model chemistry, or level of theory
- Often written together with a slash, with the method first

hf/sto-3q

b3lyp/6-31g*

pbe0/def2-SVP

ccsd(t)/aug-cc-pvdz

Why not use QM for everything?

 Geometry optimization of this molecule took 7 hours on two cores (psi4, ωB97x/6-31G*)

Method Hierarchy

- There is a zoo of methods, all with their strengths and weaknesses
- Hartree-Fock (HF) very basic, but inaccurate relative to others (lacks correlation)
- Møller–Plesset perturbation theory (MP2, MPn) Adds correlation
- Coupled Cluster (CCS, CCSD, CCSD(T)) Very accurate, very expensive
- Density Functional Theory (DFT) Very good balance between accuracy and cost
 - Walter Kohn 1998 Nobel Prize in Chemistry for the development of DFT

Basis Sets

- Two common types of functions in basis sets
- Slater: $e^{-\alpha x}$
- Gaussian: $e^{-\alpha x^2}$
- Most atom centered codes use gaussian
- *In general*, larger basis sets are more accurate (but more expensive of course)

Molecules

- In QM, we generally only care about:
 - Element (number of protons)
 - Coordinates
 - Charge & multiplicity (unpaired electrons)
- Bonds do not exist in the QM world

- Two units of distance
 - Angstrom (Å, 10^{-10} m)
 - bohr (5.291 772 \times 10⁻¹¹m or 0.5291772 Å)

0	1.548014347149	0.00000000000	0.060071441686
Н	0.548241218221	0.00000000000	0.038771425885
Н	1.819295099755	0.0000000000	-0.902428819751

