

Final Design Review: Raman Spectrometer for Soil Sample Classification

Senior Project Team: ECD 512

Sponsor: Avangrid

Client: Binghamton University Rover Team

Agenda

- Raman Spectroscopy Basics
- System Concept
 - Project Overview
 - Engineering Standards
- Detailed Design Overview
- Project Details
 - Risks and Mitigations
 - Financial Summary
 - Timeline
 - Next Steps

Raman Spectroscopy Basics

Purpose

 Identifies the chemical composition of materials by analyzing light scattered off a sample

How it Works

- A laser shines on the sample
- Most of the light reflects back unchanged, but a small portion changes due to molecular interactions
 - This is called Raman scattering
- Each molecule causes a unique pattern of light changes, allowing for material identification

Components of a Raman Spectrometer:

- Laser: Provides the light source, using a 532nm or 785nm laser
- Mirrors and Lenses: Direct the laser and scattered light
- Filters: Remove unwanted light that isn't useful for analysis
- Detector/Sensor: Captures the scattered light and records data for analysis

System Concept

Project Summary

- Our project involves the design and development of a custom-made Raman Spectrometer for the Binghamton University Rover Team. This portable device will assist in the classification of soil samples by analyzing aqueous soil solutions for the status of life.
 - The spectrometer will utilize a 24V power source and standard electrical components
 - O Display the resulting spectra graphically on a screen
 - It will be compact, self-contained, and capable of being mounted on the rover
 - A user guide and technical documentation included
 - While the Raman Spectrometer is intended for future Rover use,
 this project will be tested independently of the Rover

B

Use Case

- Designed for the Binghamton
 University Rover Team
- Suitable for use in the University
 Rover Challenge (URC) competition
- Science Mission Details
 - Teams must test soil samples for signs of life, and determine whether life is extant, extinct, or not present
 - All tests must be conducted by the rover during mission time

B

Specifications

Hardware:

- Device shall be powered using a 24V source
- Shall use standard electrical components
- Spectrometer shall be a self-contained unit
- Project shall include a user guide describing the device's functionality with a bill of materials
- Device shall process samples contained in standard cuvettes

Software:

- A spectra shall be displayed graphically on a screen
- Device shall produce a Raman spectra suitable for status of life analysis of a selected aqueous solution

Stretch Goals

Hardware:

- Measurements should be no more than 300mm
 x 200mm x 100mm (LxWxH)
- Should be capable of integration onto the 2025
 Rover
- Should draw no more than 1A from the 24V source
- Should weigh less than 2 kilograms

Software:

- Firmware should be written in C/C++
- Results display should include insight into the chemicals found in the solution through analysis of the spectra within 5-10 minutes

Alternate Designs

Laser:

- Option 1: 532nm Laser
- Option 2: 785nm Laser
- Trade-offs: cost, safety, resolution of spectra, fluorescence interference

Microcontroller:

- Option 1: Arduino Nano
- Option 2: Teensy 4.1
- Trade-offs: processor speed, amount of RAM, ease of use

Results Display:

- Option 1: Python GUI using Tkinter with graphs and analysis implemented on Raspberry Pi
- Option 2: Flutter GUI with graphs and analysis implemented on Raspberry Pi
- Trade-offs: ease of implementation, integration with Rover Team, professional appearance

CCD:

- Option 1: ILX551B CCD Linear Image Sensor
- Option 2: TCD1304DG CCD Linear Image Sensor
- Trade-offs: cost, precision, clock frequency, product availability

Engineering Standards

IEC 61010: Safety features to address issues such as fire and electrical shock.

IEEE 1100: Standards for grounding and powering the electronic.

ANSI Z136.1: The American National standard for laser safety.

IEC 60825: Ensures that laser products emitting radiation is in the wavelength of 180nm to 1mm.

Detailed Design Overview

Enclosure

Requirements:

- "Spectrometer shall be a selfcontained unit"
- "Measurements should be no more than 300mm x 200mm x 100mm (LxWxH)"
- "Should weigh less than 2 kilograms"

Implementation:

- 3D printed box with mounts for all optical and electrical components
- Grommets for wires and gasket between box and lid for dust-proofing

Laser

532 nm Solid-State Laser (JD 851)

- Serves as the excitation source to illuminate the sample and induce Raman scattering
- The inelastic scattering of light produces Raman signals, which reveal the sample's chemical composition

Why Use 532 nm?

- **Higher energy photons:** Compared to longer wavelengths (e.g., 785 nm), 532 nm light provides more energy, resulting in stronger Raman signals
- **Ideal for many organic samples:** Works well for substances with low fluorescence interference
- Compact and affordable solid-state laser: Readily available, making it suitable for custom setups

How it Works

- 1. Laser beam is directed through optical components (e.g., lenses and mirrors)
- 2. The laser excites the sample, and inelastic scattering occurs
- 3. Raman-shifted light is separated from the Rayleigh scattering by a filter and analyzed through a diffraction grating and CCD detector

Pricing

• **Cost:** \$15 (Laser pointer Store)

Optics

Microscope Slide (Beam Splitter)

- Reflects laser light while transmitting scattered Raman light
- Price: \$9

Bi-Convex Lens Ø1", f = 30.0 mm, Uncoated

- Focuses both the laser beam and scattered light into desired paths
- Price: \$59

Longpass Filter, Colored-Glass Alternative, 2x2 in., 550 nm Cut-on

- Removes Rayleigh scattering, isolating only the Raman signal
- Price: \$102

Ø1" Mounted Pinhole, 50 ± 3 μm Pinhole Diameter, Stainless Steel

- Controls the amount of light entering the spectrometer for better resolution
- Price: \$79

Dielectric-Coated Concave Mirror, 400 - 750 nm, f = 50 mm

- Focuses light onto the diffraction grating and then the CCD
- Price: \$160

Ruled Diffraction Grating, 25 x 25 mm, 500 nm, 26.7° Blaze, 1800 g/mm

- Disperses light into component wavelengths for spectral analysis
- Price: \$139

B

Charge Coupling Device (CCD)

TCD1304DG CCD Linear Image Sensor

- Collects the spectra from the end of the optics array
- Data will be taken from device using Teensy and analyzed with the Raspberry Pi
- Clock Frequency: 0.8 4 MHz
- Spectra focused around 550 nm
- Similar sensitivity to other Raman Spectrometer designs
- Price: ~\$38

Microcontroller

Teensy 4.1

- Used to toggle laser, collect data from CCD and send to Raspberry Pi for visualization and analysis
- Easily programmable with Arduino IDE
- ARM Cortex M7 Processor at 600 MHz
- 55 total I/O pins
- Can support 32 bit floating point numbers and 64 bit doubles
- Provided by the Rover team

Raspberry Pi

Raspberry Pi 4 Model B

- Using to collect data from Teensy and visualize it on our results display.
- Micro HDMI to allow communication with display
- Multiple USB ports for programming
- Anywhere from 1-8GB of RAM available
- Wifi and bluetooth capabilities
- Provided by the Rover team

Results Display

Requirements:

- "A spectra shall be displayed graphically on a screen"
- "Results display should include insight into the chemicals found in the solution through analysis of the spectra within 5-10 minutes"

Implementation:

- GUI created with Flutter for easy-to-read user display
- Receive and send data from Teensy over USB
- Use Raspberry Pi connected to external monitor display

B

Voltage Converter

Requirements:

- "Device shall be powered using a 24V source"
- "Shall use standard electrical components"

Implementation:

- The 24V source will be converted to lower voltages for the microcontroller, laser, and the CCD
- Using a buck converter for the efficiency, minimizing the energy lose during a power conversion

Price:

• ~\$8 LM2596

Project Details

B

Potential Risks and Mitigation

Category	Risk	Mitigation
Parts Availability	 Difficulty in sourcing key components (e.g., laser, diffraction grating, CCD sensor) Lead times may exceed the project timeline 	- Identify and order critical components early - Maintain a list of alternative suppliers and compatible components
Lab Access	- Limited access to an optics table could slow integration	- Coordinate a shared calendar with the professor who manages the table - Request lab reservations ahead of time
Technical Challenges (Firmware & Optics)	 Difficulty in calibrating the laser and optical elements Firmware development may encounter bugs that disrupt spectral analysis 	 Start early prototyping and calibration sessions Use open-source firmware libraries to speed up development Conduct regular code reviews

Potential Risks and Mitigation

Category	Risk	Mitigation
Hard Deadlines & Scheduling Issues	- Tasks may take longer than expected due to unforeseen challenges Missing internal deadlines could impact final delivery.	 Use a Gantt chart with buffer periods for critical tasks. Regularly update Dr. Summerville on progress. Hold weekly team meetings to adjust workloads.
Budget Constraints	- Unforeseen expenses may exceed the \$1500 budget High-quality equipment may cost more than expected.	 Prioritize high-cost components early. Track expenses closely. Reuse lab equipment or source parts from past projects. Reserve funds for emergencies.

Bill of Materials

Item	Manufacturer	Part_Number	Description	Qty	Cos	t/Unit	S	ubtotal
	1 Mikikit	091158BRB2P ONF	Cuvettes	1	\$	1.19	\$	11.89
	2 SanDisk	SDSQUA4-032 G-GN6MT	MicroSD card for Rasp Pi	1	\$	6.39	\$	12.77
	3 TalentCell	LF8011	Talentcell 24V 6Ah LiFePO4 Battery Pack LF8011, 25.6V 153.6Wh Deep Cycle Rechargeable Lithium Iron Phosphate Batteries	1	\$	42.99	\$	42.99
	4 Aitrip	LM2596	5 Pack LM2596 DC to DC Buck Converter 3.0-40V to 1.5-35V Power Supply Step Down Module	1	\$	1.60	\$	7.99
	5 Laser Pointer Store	JD-851	532nm green laser 30 mW	1	\$	14.90	\$	14.90
	6 Newport	20CGA-550	Longpass Filter, Colored-Glass Alternative, 2x2 in., 550 nm Cut-on	1	\$	102.00	\$	102.00
	7 Thorlabs	CM127-050-E 02	Ø1/2" Dielectric-Coated Concave Mirror, 400 - 750 nm, f = 50 mm	1	\$	65.63	\$	65.63
	8 Thorlabs	CM254-050-E0	Ø1" Dielectric-Coated Concave Mirror, 400 - 750 nm, f = 50 mm	1	\$	93.55	\$	93.55
	9 Newport	33009FL01-290	Ruled Diffraction Grating, 25 x 25 mm, 500 nm, 26.7° Blaze, 1800 g/mm	1	\$	139.00	\$	139.00
1	0 Thorlabs	LB1757	N-BK7 Bi-Convex Lens, Ø1", f = 30.0 mm, Uncoated	2	\$	29.36	\$	58.72
1	1 McKesson	70-101PMCK	McKesson Premium Microscope Slides, Plain, Float Glass, Beveled Edges, 25 mm x 75 mm x 1 mm, 72 Count	1	\$	0.13	\$	9.40
1	2 Thorlabs	P50K	Ø1" Mounted Pinhole, 50 ± 3 μm Pinhole Diameter, Stainless Steel	1	\$	78.62	\$	78.62
1	3 Toshiba	TCD1304DG(8 Z,K)	CCD LINEAR IMAGE SENSOR	1	\$	37.90	\$	37.90
1	4 Kxable	KXU2A-Mic-2F	Micro-usb cable	1	\$	2.65	\$	5.29

Financial Summary

Optics and Filters

Longpass Filter (550 nm): Cost: \$102.00

Concave Mirrors: Total Cost: \$159.19

• Diffraction Grating: Cost: \$139.00

• **Bi-Convex Lenses**: Total Cost: **\$58.72**

• 50μm Entrance Slit: Cost: \$78.62

Subtotal for Optics and Filters: \$537.53

Laser Source:

• 532 nm Green Laser (30 mW): Cost: \$14.90

Subtotal for Laser Source: \$14.90

Budget Analysis

- **Major Expenses**: Optical components are the primary cost drivers, representing 77% of the budget. This emphasis reflects the precision required for spectral analysis. Shipping is free other than one component.
- **Cost-Effectiveness**: Through strategic sourcing, we balanced high-quality optics with cost-effective electronic components, maximizing our budget's impact.
- Project Scope Alignment: The chosen parts align with our project's technical goals and field requirements, ensuring portability, durability, and accuracy for use in variable outdoor conditions.

Sample Handling:

Cuvettes: Cost: **\$11.89**

• Microscope Slides: Cost: \$9.40

Total Cost: \$694.00

Budget:\$1500

Subtotal for Laser and Sample Handling: **\$21.29**

Power and Storage Components:

Battery Pack (24V, 6Ah LiFePO4): Cost: \$42.99

Buck Converter: Cost: \$7.99

MicroSD Card (32GB): Cost: \$12.77CCD Linear image Sensor: Cost: \$37.90

Micro-USB Cable: Cost: \$5.29

Subtotal for Power and Storage: **\$106.94**

Project Timeline

Complete
In Progress
Not Started

Task	Project La	aunch	System C	oncept			Prelimina	ry Design			Final Detailed Design				
	Aug. 19 - Aug 25	Aug. 26 - Sept 1	Sept. 2 - Sept. 8	Sept. 9 - Sept. 15	Sept 16 - Sept 22	Sept. 23 - Sept. 29	Sept. 30 - Oct. 6	Oct. 7 - Oct. 13	Oct. 14 - Oct. 20	Oct. 21 - Oct. 27	Oct. 28 - Nov. 3	Nov. 4 - Nov. 10	Nov. 11 - Nov. 17	Nov. 18 - Nov. 24	
Project Launch / Project Kickoff															
Specifications															
System Concept Review															
Preliminary Design Deck												>			
Research Components															
Order Parts															
Final Design Pres														*	

Project Timeline

Complete
In Progress
Not Started

,	,							Not Started										
Task	Integrate	e and Test	Final	Final System Verification					Project Wrap Up					Final Detailed Design				
	Jan. 21 - Jan. 26	Jan. 27 - Feb. 2	Feb. 3 - Feb. 9	Feb. 10 - Feb. 16	Feb. 17 - Feb. 23	Feb. 24 - Mar. 2	Mar. 3 - Mar. 9	Mar. 10 - Mar. 16	Mar. 17 - Mar. 23	Mar. 24 - Mar. 30	Mar. 31 - Apr. 6	Apr. 7 - Apr. 13	Apr. 14 - Apr. 20	Apr. 21 - Apr. 27	Apr. 28 - May 4	May. 5 - May 6		
Spring Project Launch																		
Finalize Test Plans/Procedures																		
Finish Integration																		
Integration & Test Plan Review						\	-											
User Accept Demos										*								
Final System Verification												\rightarrow	>					
Final Project Exposition															>			
Final Project Wrap Up																\		

Next Steps

This semester:

- Finish prototypes of individual components
- Begin integrations

Next semester:

- Integrations testing
- Troubleshooting
- Final design

Questions?