Отчет о выполнении лабораторной работы 3.6.1

Спектральный анализ электрических сигналов

Г. А. Багров

ФРКТ МФТИ, 19.11.2022

Цель работы: изучить спектральный состав периодических электрических сигналов.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье, компьютер (монитор в виде экрана осциллографа).

Теоретические сведения:

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью анализатора спектра и сравниваются с рассчитанными теоретически.

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций — ряда Фурье:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t} \text{ или } f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\omega_0 t\right) + b_n \sin\left(n\omega_0 t\right) \right] \tag{1}$$

Здесь $\omega_0 = 2\pi/T$, где T - период функции f(t). Коэффициенты a_n, b_n определяются по формуле:

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\omega_0 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\omega_0 t) dt.$$
(2)

Здесь t_1 — время, с которого начинается отсчет.

Коэффициенты c_n могут быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-in\omega_0 t} dt.$$

Наборы коэффициентов разложения в комплексной $\{c_n\}$ и действительной $\{a_n, \varphi_n\}$ формах связаны соотношением:

$$a_n = 2|c_n|, \qquad \varphi_n = \arg c_n = \arctan(\frac{b_n}{a_n}).$$

Периодическая последовательность прямоугольных импульсов

Рис. 1: Прямоугольные импульсы, их спектр

Введем величину: $\Omega = \frac{2\pi}{T}$, где T — период повторения импульсов. Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\pi/2}^{\tau/2} V_0 \cos(n\Omega t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega \tau/2)}{n\Omega \tau/2} = 2V_0 \frac{\sin(\pi n\tau/T)}{\pi n} \sim \frac{\sin x}{x}.$$
 (3)

Здесь V_0 - амплитуда сигнала.

Поскольку функция четная, то $b_n = 0$.

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n=\frac{2\pi}{\tau\Omega}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{4}$$

Периодическая последовательность цугов

Рис. 2: Цуги, их спектр

Возьмём цуги колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T. Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt = V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\tau}{2}} \right). \tag{5}$$

Пусть T кратно τ . Тогда спектры последовательности прямоугольных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

Амплитудно-модулированные колебания

Рис. 3: Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{6}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (7)$$

Преобразуя (6), можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (8)

Экспериментальная установка

Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого в таких системах гетеродином, подаются на вход смесителя. Смеситель — элемент, преобразующий колебания с частотами ν_1 и ν_2 в колебания на комбинированных частотах: $\nu_1 + \nu_2$ и $\nu_1 - \nu_2$. "Разностный" сигнал смесителя поступает на фильтр — высокодобротный колебательный контур, настроенный на некоторую фиксированную резонансную частоту ν_0 . Таким образом, если f(t) содержит гармонику $\nu = \nu - \nu_0$ (ν — частота гетеродина), она будет усилена, а отклик будет пропорционален её амплитуде.

Рис. 4: Структурная схема анализатора спектра

В спектральном анализаторе частота гетеродина пропорциональна напряжению, подаваемому на развертку по оси X встроенного в анализатор осциллографа. Выходной сигнал подается на канал Y. На экране анализатора возникает, таким образом, график, изображающий зависимость амплитуды гармоник входного сигнала от частоты, т. е. его спектр (при этом информация о фазах гармоник теряется).

Ход работы и обработка результатов

- А. Исследование спектра периодической последовательности прямоугольных импульсов
- 1) Настроим генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}$ Гц (период T=1~мc) и длительностью импульса $\tau=T/20=50~\text{мкc}$. Получим спектр сигнала. Изменяя на генераторе параметры сигнала, будем наблюдать, как изменяется спектр.

Рис. 5: Спектр сигнала при: а) $\nu=1$ к Γ ц, $\tau=50$ мкс; b) $\nu=1$ к Γ ц, $\tau=75$ мкс; c) $\nu=2$ к Γ ц, $\tau=75$ мкс; d) $\nu=2$ к Γ ц, $\tau=100$ мкс e) $\nu=2$ к Γ ц, $\tau=50$ мкс; f) $\nu=4$ к Γ ц, $\tau=50$ мкс;

На рисунке 5 масштаб графиков d-f отличается от масштаба a-c в 2 раза по оси у (напряжение). Из графиков видно, что при увеличении ν в k раз, $\Delta \nu$ остается неизменным, а $\delta \nu$ также увеличивается в k раз. При увеличении τ в k раз, $\Delta \nu$ уменьшается в k раз, а $\delta \nu$ остается неизменным.

2) При фиксированных параметрах $\nu=1$ к Γ ц и $\tau=50$ мкс измерим высоты (амплитуды) a_n и частоты ν_n первых 6 гармоник спектра (см. таблицу 1). По формуле (3) расчитаем теоретические

значения амплитуд спектра. Экспериментальные значения сходятся с теоретическими с точностью 3%.

n	ν_n , к Γ ц	a_n , мВ	$a_{n;reop}$, мВ
1	1	282	282
2	2	276	276
3	3	270	268
4	4	261	258
5	5	250	246
6	6	239	232

Таблица 1: характеристики спектра с частотой 1 кГц

3) Теперь проведем измерения зависимости ширины спектра $\Delta \nu$ от времени импульса τ в диапазоне от 20 до 200 мкс при фиксированной $\nu=1$ к Γ ц. Ширина измеряется от центра спектра до первой гармоники с нулевой амплитудой.

τ , MKC	$1/\tau, 1/{ m mc}$	$\Delta \nu$, к Γ ц
40	25,0	25,0
80	12,5	12,5
120	8,3	8,0
160	6,3	6,0
200	5,0	5,0

Таблица 2: Зависимость ширины прямоугольного испульса от времени импульса

Рис. 6: График зависимости ширины импульса от времени импульса

Угол наклона графика (вычисленный по МНК) равен 1,0, что говорит о том, что соотношение неопределенности выполнено, т.е. $\Delta \nu \cdot \tau = 1$.

Б. Исследование спектра периодической последовательности цугов

4) Установим на генераторе режим подачи периодических импульсов синусоидальной формы. Частоту несущей установим $\nu_0=50$ к Γ ц, период повторения T=1 мс ($\nu_{\text{повт}}=1$ к Γ ц), число периодов в одном импульсе N=5 (длительность импульса $\tau=N/\nu_0=100$ мкс).

Получим на экране осциллографа спектр сигнала. Изменяя параметры сигнала: основную частоту ν_0 , период сигнала T и количество циклов в цуге N, будем наблюдать, как изменяется вид спектра (см. puc.7).

Рис. 7: Спектр сигнала при: а) $\nu_{\text{повт}}=50~\text{к}$ Гц, T=1~мc,~N=5;~b) $\nu_{\text{повт}}=65~\text{к}$ Гц, T=1~мc,~N=5;~c) $\nu_{\text{повт}}=50~\text{к}$ Гц, T=2~мc,~N=5;~d) $\nu_{\text{повт}}=50~\text{к}$ Гц, T=4~мc,~N=5;~e) $\nu_{\text{повт}}=50~\text{к}$ Гц, T=1~мc,~N=10;~f) $\nu_{\text{повт}}=50~\text{к}$ Гц, T=1~мc,~N=20.

5) При фиксированных параметрах $\nu_0=50\,$ и $N=5\,$ измерим зависимость расстояния $\delta\nu$ между соседними спектральными компонентами сигнала от периода T повторения импульсов. Построим также график зависимости $\delta\nu(1/T)$. См. рис. 8.

Проведем наилучшую прямую по МНК. По углу наклона графика ясно, что соотношение неопределенности также выполнено.

T, c	1/T, 1/c	δu , к Γ ц
0,2	5,0	4,995
0,5	2,0	1,973
1	1,0	0,965
3	0,3	0,304
5	0,2	0,205

Таблица 3: Зависимость ширины прямоугольного испульса от времени импульса

Рис. 8: График зависимости $\delta \nu$ (1/T)

Г. Исследование спектра амплитудно-модулированного сигнала

6) Установим на генераторе режим модулированного по амплитуде синусоидального сигнала. Установим частоту несущей $\nu_0=50$ к Γ ц, частоту модуляции $\nu_{\rm мод}=2$ к Γ ц, глубину модуляции – 50% ($m_0=0,5$).

Измерим экспериментально максимальную и минимальную амплитуды сигнала:

$$A_{max} = 1239 \text{ MB}, \qquad A_{min} = 413 \text{ MB}.$$

Посчитаем величину m:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = 0, 5.$$

7) Изменяя несущую частоту ν_0 и частоту модуляции ν , будем наблюдать, как изменяется положение спектральных линий. При изменении несущей частоты изменяется положение центральной спектральной линии, при изменении частоты модуляции прямо пропорционально с коэффициентом 1 меняется расстояние между боковыми и центральной спектральными линиями.

Рис. 9: Спектр сигнала при: а) $\nu_0=50$ к Γ ц; $\nu_{\text{мод}}=2$ к Γ ц; b) $\nu_0=50$ к Γ ц; $\nu_{\text{мод}}=4$ к Γ ц; c) $\nu_0=58$ к Γ ц; $\nu_{\text{мод}}=2$ к Γ ц.

8) Меняя на генераторе глубину модуляции m в диапазоне от 0,1 до 1, будем измерять отношение $a_{\rm fok}/a_{\rm och}$ амплитуд боковой и основной спектральных линий. Также построим график зависимости $a_{\rm fok}/a_{\rm och}(m)$.

m	$a_{\text{бок}}, \text{мB}$	$a_{\text{осн}}$, мВ
0,1	27,0	536,2
0,25	64,5	536,2
0,4	104,0	536,2
0,6	158,4	536,2
0,8	211,6	536,2
1	266,5	536,2

Таблица 4: Зависимость отношения амплитуд боковой и основной спектральных линий от глубины модуляции

Угол наклона графика, вычисленный по МНК, равен $(0,498\pm0,004)$. Это значение близко к теоретическому: $a_{\text{бок}}=\frac{m}{2}a_{\text{осн}}$.

Рис. 10: График зависимости a/a(m)

Д. Исследование спектра сигнала, модулированного по фазе

9) Установим на генераторе режим модулированного по фазе синусоидального сигнала с несущей $\nu_0=50$ кГц, частотой модуляции $\nu_{\text{мод}}=2$ кГц и максимальным отклонением (глубиной модуляции) фазы $\varphi_m=10^o$. Меняя параметры сигнала ν_0 , $\nu_{\text{мод}}$, φ_m , будем наблюдать, как изменяется спектр.

Рис. 11: Спектр сигнала при: а) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, $\varphi_m=10^o$; b) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=4$ к Γ ц, $\varphi_m=10^o$; c) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=6$ к Γ ц, $\varphi_m=10^o$; d) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, $\varphi_m=20^o$; e) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, $\varphi_m=40^o$; f) $\nu_0=56$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, $\varphi_m=10^o$.

Из качественного изображения спектров видно, что изменение ν_0 влечет сдвиг спектра по горизонтальной оси, изменение $\nu_{\text{мод}}$ влечет прямо пропорциональное изменение расстояния между ближайшей боковой спектральной линией и центральной, изменение φ_m влечет изменение отношения амплитуд боковых спектральных линий к амплитуде центральной линии.

Е. Изучение фильтрации сигналов

Рис. 12: Схема установки для изучения фильтрации сигналов

10) Соберем схему согласно рис. 12. Зафиксируем параметры интегрирующей RC-цепочки (ФНЧ): $R=3000~{\rm Om},~C=1000~{\rm n\Phi}.$ Характерное время $\tau_{\rm RC}=RC=3$ мкс, соответствующая частота $\nu_{\rm RC}=1/\tau_{\rm RC}=333~{\rm к}$ Гц. Подадим на вход RC-цепочки сигнал в форме последовательности прямоугольных импульсов с периодом повторения $T=\tau_{\rm RC}$ и длительностью импульса $\tau=\tau_{\rm RC}/20.$

Рис. 13: Фильтрованный сигнал и его спектр при: a-b) T=3 мкс; c-d) T=4 мкс.

11) Измерим амплитуды спектральных гармоник фильрованного и нефильтрованного сигналов в зависимости от частоты при периоде повторения T=4 мкс (см. табл. 5). Построим график зависимости амплитудного коэффициента фильтрации $K_n=\frac{a_n^\Phi}{a_n^o}$ от частоты ν (см. рис. 14).

n	ν , к Γ ц	a_n^{Φ} , мВ	$a_n^{\rm o}$, мВ	K
1	7,8	5,5	200	0,0275
2	15,6	1,5	170	0,0088
3	23,5	10,7	250	0,0428
4	31,2	16,0	262	0,0611
5	39,0	2,8	180	0,0153
6	46,9	3,4	195	0,017
7	54,7	46,5	275	0,1691
8	62,5	6,5	218	0,0298
9	70,0	1,5	159	0,0094

Таблица 5: Зависимость характеристик сигнала от частоты

Рис. 14: График зависимости $K(\nu)$

Из графика получаем, что $f\approx 55$ кГц. $\tau_{\rm RC}=\frac{1}{2\pi f}\approx 2,9$ мкс, что примерно соответствует непосредственно расчитанному значению.

Выводы:

В данной работе были исследованы спектры периодических электрических сигналов: прямоугольные импульсы, цуги гармонических колебаний, а также гармонические сигналы, модулированные по амплитуде. Также для них была проверена справедливость ряда теоретических соотношений.