Riassunto delle cose utili - Primo parziale

Gabriel Rovesti

Indice

1	Inti	roduzione	2		
2	Dimostrare se un linguaggio è regolare				
	2.1	Costruzione diretta di un automa a stati finiti	2		
	2.2	Utilizzare operazioni di chiusura dei linguaggi regolari	3		
	2.3	Esprimere il linguaggio attraverso un'espressione regolare	3		
	2.4	Costruzione di automi per operazioni specifiche	4		
3	Dimostrare se un linguaggio non è regolare				
	3.1	Pumping Lemma per linguaggi regolari	4		
	3.2	Dimostrazioni strutturali	5		
	3.3	Proprietà di chiusura e interseczione con linguaggi regolari	5		
	3.4	Varianti del Pumping Lemma nell'applicazione	6		
4	0 00				
	4.1	Costruzione di una grammatica context-free	7		
	4.2	Costruzione di un automa a pila (PDA)	7		
	4.3	Operazioni di chiusura sui linguaggi context-free	8		
5	Tec	niche per dimostrare operazioni di chiusura	9		
	5.1	Chiusura dei linguaggi regolari	9		
	5.2	Chiusura dei linguaggi context-free	10		
6	Esempi di dimostrazioni complete				
	6.1	Esempio 1: $L = \{0^n 1^n \mid n \ge 1\}$ non è regolare	12		
	6.2	Esempio 2: $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e } i + j = k\}$ è context-free	12		
	6.3	Esempio 3: dimostrazione che flip (L) è regolare se L è regolare	13		
	6.4	Esempio 4: $L = \{a^n b^m c^m \mid n, m \ge 0\} \cup \{a^n b^n c^m \mid n, m \ge 0\}$			
		è context-free	14		
7	Tecniche specifiche per le grammatiche context-free genera-				
	lizz		15		
	7.1	Teorema di equivalenza	15		
	7.2	Esempi di applicazione	15		

8	Il P	Cumping Lemma per linguaggi context-free	16
	8.1	Enunciato del Pumping Lemma per linguaggi context-free	16
	8.2	Schema generale per la dimostrazione per contraddizione	16
	8.3	Esempio: $L = \{a^n b^n c^n \mid n \ge 0\}$ non è context-free	17
9	${f Tec}$	niche di dimostrazione per casi particolari	17
	9.1	Linguaggi con operatori aritmetici	17
	9.2	Linguaggi con palindromi e altri pattern	18
	9.3	Linguaggi che codificano problemi di decisione	18

1 Introduzione

Questo documento presenta una raccolta sistematizzata delle principali tecniche di dimostrazione utilizzate per i linguaggi formali, con particolare attenzione a:

- Dimostrare se un linguaggio è regolare
- Dimostrare se un linguaggio non è regolare
- Dimostrare se un linguaggio è context-free
- Dimostrare la chiusura delle classi di linguaggi rispetto a varie operazioni

Per ogni categoria, verranno presentati i principi teorici, le tecniche specifiche con esempi di applicazione, e schemi risolutivi riutilizzabili.

2 Dimostrare se un linguaggio è regolare

Per dimostrare che un linguaggio è regolare, esistono diverse tecniche:

2.1 Costruzione diretta di un automa a stati finiti

La tecnica più diretta consiste nel costruire esplicitamente un DFA (Deterministic Finite Automaton) o un NFA (Non-deterministic Finite Automaton) che riconosca il linguaggio.

Schema generale:

- 1. Identificare l'alfabeto Σ
- 2. Definire l'insieme degli stati Q (includendo uno stato iniziale q_0 e stati finali F)
- 3. Definire la funzione di transizione δ
- 4. Verificare che l'automa accetti esattamente le stringhe del linguaggio

Esempio: Dimostriamo che il linguaggio $L = \{w \in \{0,1\}^* \mid w \text{ ha un numero pari di } 1\}$ è regolare.

Soluzione: Costruiamo un DFA $A = (Q, \Sigma, \delta, q_0, F)$ dove:

- $Q = \{q_0, q_1\}$ dove q_0 rappresenta "numero pari di 1" e q_1 "numero dispari di 1"
- $\Sigma = \{0, 1\}$
- $\delta(q_0,0) = q_0$ (lo 0 non cambia la parità)
- $\delta(q_0, 1) = q_1$ (un 1 cambia da pari a dispari)
- $\delta(q_1,0) = q_1$ (lo 0 non cambia la parità)
- $\delta(q_1, 1) = q_0$ (un 1 cambia da dispari a pari)
- q_0 è lo stato iniziale
- $F = \{q_0\}$ sono gli stati finali (accettiamo stringhe con numero pari di 1)

2.2 Utilizzare operazioni di chiusura dei linguaggi regolari

I linguaggi regolari sono chiusi rispetto a diverse operazioni, tra cui unione, intersezione, concatenazione, stella di Kleene, complemento e differenza.

Schema generale:

- 1. Identificare operazioni che, applicate a linguaggi regolari, producono il linguaggio desiderato
- 2. Dimostrare che i linguaggi componenti sono regolari
- Concludere che il linguaggio risultante è regolare per le proprietà di chiusura

Esempio: Dimostriamo che il linguaggio $L = \{w \in \{0,1\}^* \mid w \text{ non contiene la sottostringa } 101\}$ è regolare.

Soluzione: Osserviamo che $L = \{0,1\}^* \setminus \{\{0,1\}^* \cdot \{101\} \cdot \{0,1\}^*\}$. Poiché $\{0,1\}^*$ è regolare, $\{101\}$ è finito (quindi regolare), la concatenazione preserva la regolarità, e il complemento di un linguaggio regolare è regolare, ne consegue che L è regolare.

2.3 Esprimere il linguaggio attraverso un'espressione regolare

Se riusciamo a descrivere il linguaggio tramite un'espressione regolare, allora è regolare per definizione.

2.4 Costruzione di automi per operazioni specifiche

Per alcune operazioni comuni su linguaggi, possiamo costruire automi specifici.

Esempio: Riconoscere suffissi di un linguaggio Consideriamo l'operazione $suffixes(L) = \{y \mid xy \in L \text{ per qualche } x \in \Sigma^*\}$. Se L è regolare, anche suffixes(L) è regolare.

Soluzione: Sia $A = (Q, \Sigma, \delta, q_0, F)$ un DFA che riconosce L. Costruiamo un NFA $A' = (Q', \Sigma, \delta', q'_0, F')$ che riconosce suffixes(L):

- $Q' = Q \cup \{q_0'\}$ dove q_0' è un nuovo stato
- $\delta'(q_0', a) = \{\delta(q_0, a), q_0'\}$ per ogni $a \in \Sigma$
- $\delta'(q, a) = \{\delta(q, a)\}$ per ogni $q \in Q, a \in \Sigma$
- F' = F

Questo NFA può iniziare a simulare A da qualsiasi punto della stringa di input, riconoscendo così tutti i suffissi di L.

3 Dimostrare se un linguaggio non è regolare

3.1 Pumping Lemma per linguaggi regolari

Il metodo principale per dimostrare che un linguaggio non è regolare è il Pumping Lemma.

Teorema (Pumping Lemma): Per ogni linguaggio regolare L, esiste un intero p > 0 (la "lunghezza di pumping") tale che, per ogni stringa $s \in L$ con $|s| \ge p$, s può essere suddivisa in tre parti s = xyz con le seguenti proprietà:

- 1. $|xy| \leq p$
- 2. |y| > 0
- 3. Per ogni $i \geq 0$, $xy^iz \in L$

Schema generale per la dimostrazione per contraddizione:

- 1. Assumere per assurdo che il linguaggio L sia regolare
- 2. Applicare il Pumping Lemma: esiste un p > 0 con le proprietà indicate
- 3. Scegliere una stringa $s \in L$ con $|s| \ge p$ opportunamente costruita

- 4. Mostrare che per ogni divisione s=xyz che soddisfa le condizioni 1 e 2 del lemma, esiste un $i \geq 0$ tale che $xy^iz \notin L$, contraddicendo la condizione 3
- 5. Concludere che L non è regolare

Esempio: Dimostriamo che il linguaggio $L = \{0^n 1^n \mid n \geq 0\}$ non è regolare.

Soluzione: Supponiamo per assurdo che L sia regolare. Allora esiste un intero p > 0 come nel Pumping Lemma. Consideriamo la stringa $s = 0^p 1^p \in L$. Per il Pumping Lemma, s può essere scritta come s = xyz con $|xy| \le p$, |y| > 0 e $xy^iz \in L$ per ogni $i \ge 0$.

Dato che $|xy| \le p$, entrambe x e y sono composte solo da 0. Sia $y = 0^k$ con k > 0. Consideriamo $xy^0z = xz$. Questa stringa contiene p - k zeri e p uni. Poiché k > 0, il numero di zeri è minore del numero di uni, quindi $xz \notin L$. Questo contraddice il Pumping Lemma, quindi L non è regolare.

3.2 Dimostrazioni strutturali

In alcuni casi, possiamo dimostrare che un linguaggio non è regolare utilizzando proprietà strutturali dei linguaggi regolari.

Esempio: Dimostriamo che il linguaggio $L = \{ww \mid w \in \{a, b\}^*\}$ non è regolare.

Soluzione: Supponiamo per assurdo che L sia regolare. Per il Pumping Lemma, esiste un intero p > 0 tale che ogni stringa $s \in L$ con $|s| \ge p$ può essere decomposta come s = xyz con $|xy| \le p$, |y| > 0 e $xy^iz \in L$ per ogni $i \ge 0$.

Consideriamo la stringa $s = a^p b^p a^p b^p \in L$. Per il Pumping Lemma, possiamo scrivere s = xyz con le proprietà indicate. Dato che $|xy| \le p$, xy è contenuta interamente nella prima parte a^p di s. Sia $y = a^k$ con $0 < k \le p$.

Consideriamo $xy^2z=xa^{2k}z$. Questa stringa avrà p+k lettere a nella prima metà, ma solo p lettere a nella seconda metà. Quindi xy^2z non può essere della forma ww e non appartiene a L, contraddicendo il Pumping Lemma. Pertanto, L non è regolare.

3.3 Proprietà di chiusura e interseczione con linguaggi regolari

I linguaggi regolari sono chiusi rispetto all'intersezione con altri linguaggi regolari. Possiamo sfruttare questa proprietà per dimostrare che un linguaggio non è regolare.

Schema generale:

- 1. Assumere per assurdo che il linguaggio L sia regolare
- 2. Trovare un linguaggio regolare R tale che $L \cap R$ è un linguaggio noto non regolare
- 3. Poiché i linguaggi regolari sono chiusi rispetto all'intersezione, se L fosse regolare, anche $L \cap R$ sarebbe regolare
- 4. Concludere che L non può essere regolare

Esempio: Consideriamo $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e se } j > 0 \text{ allora } i = k\}$. Dimostriamo che L non è regolare.

Soluzione: Supponiamo per assurdo che L sia regolare. Intersechiamo L con il linguaggio regolare $R=a^*b^+c^*$. Otteniamo $L\cap R=\{a^ib^jc^i\mid i,j>0\}$ che è un linguaggio non regolare (facilmente dimostrabile con il Pumping Lemma). Questo contraddice la chiusura dei linguaggi regolari rispetto all'intersezione. Quindi L non è regolare.

3.4 Varianti del Pumping Lemma nell'applicazione

Quando si applica il Pumping Lemma, la scelta della stringa e l'analisi delle possibili decomposizioni sono cruciali. Ecco alcune varianti comuni:

- 1. Linguaggi della forma $L = \{a^nb^n \mid n \ge 0\}$: Come visto nell'esempio precedente, si sceglie $s = a^pb^p$ e si dimostra che il "pumping" nella parte degli a porta a stringhe non nel linguaggio.
- **2. Linguaggi della forma** $L = \{a^{n^2} \mid n \ge 0\}$: Si sceglie $s = a^{p^2}$ e si mostra che aggiungere o rimuovere un numero di a non trasforma il numero totale in un quadrato perfetto.
- 3. Linguaggi con vincoli sulla parità o sull'uguaglianza di conteggi: Come $L = \{w \in \{0,1\}^* \mid w \text{ ha lo stesso numero di } 0 \text{ e di } 1\}$, dove si sceglie $s = 0^p 1^p$ e si dimostra che modificare il conteggio di un simbolo rompe l'equità.
- **4.** Linguaggi con relazioni o condizioni strutturali: Come $L = \{w \# w \mid w \in \{a,b\}^*\}$, dove si sceglie $s = a^p \# a^p$ e si mostra che alterando una parte si rompe la relazione di uguaglianza.

4 Dimostrare se un linguaggio è context-free

4.1 Costruzione di una grammatica context-free

Il metodo più diretto è costruire una grammatica context-free che generi esattamente il linguaggio desiderato.

Schema generale:

- 1. Identificare i componenti strutturali del linguaggio
- 2. Definire le variabili non terminali che rappresentano questi componenti
- 3. Definire le regole di produzione
- 4. Verificare che la grammatica generi esattamente il linguaggio desiderato

Esempio: Dimostriamo che il linguaggio $L = \{a^n b^n \mid n \geq 0\}$ è context-free.

Soluzione: Costruiamo una grammatica $G = (V, \Sigma, R, S)$ dove:

- $V = \{S\}$
- $\Sigma = \{a, b\}$
- $R = \{S \rightarrow aSb \mid \varepsilon\}$

Questa grammatica genera esattamente le stringhe della forma a^nb^n per $n \ge 0$:

- La regola $S \to \varepsilon$ genera la stringa vuota (caso n = 0)
- La regola $S \to aSb$ permette di aggiungere una coppia a,b attorno a una stringa già generata, garantendo che il numero di a sia uguale al numero di b

4.2 Costruzione di un automa a pila (PDA)

Un altro approccio consiste nel costruire un PDA (Pushdown Automaton) che riconosca il linguaggio.

Schema generale:

- 1. Identificare come utilizzare la pila per monitorare le proprietà necessarie
- 2. Definire gli stati e le transizioni del PDA
- 3. Verificare che il PDA accetti esattamente le stringhe del linguaggio

Esempio: Dimostriamo che il linguaggio $L = \{a^n b^n \mid n \ge 0\}$ è context-free usando un PDA.

Soluzione: Costruiamo un PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ dove:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, A\}$ (Z_0 è il simbolo iniziale della pila, A è usato per contare le a)
- Transizioni δ :
 - $-\delta(q_0, a, Z_0) = \{(q_0, AZ_0)\}$ (se vedo a, spingo A sulla pila)
 - $-\delta(q_0,a,A)=\{(q_0,AA)\}$ (se vedo a, spingo A sulla pila)
 - $-\delta(q_0, b, A) = \{(q_1, \varepsilon)\}$ (se vedo b, prelevo A dalla pila)
 - $-\delta(q_1,b,A) = \{(q_1,\varepsilon)\}$ (se vedo b, prelevo A dalla pila)
 - $-\delta(q_1,\varepsilon,Z_0) = \{(q_2,Z_0)\}$ (transizione ε allo stato finale)
- q_0 è lo stato iniziale
- Z_0 è il simbolo iniziale della pila
- $F = \{q_2\}$ è l'insieme degli stati finali

Il PDA funziona così: per ogni a in input, spinge un simbolo A sulla pila. Quando inizia a leggere b, passa allo stato q_1 e per ogni b rimuove un simbolo A. Se alla fine la pila contiene solo Z_0 (cioè tutti gli A sono stati rimossi), la stringa viene accettata.

4.3 Operazioni di chiusura sui linguaggi context-free

I linguaggi context-free sono chiusi rispetto a varie operazioni, come unione, concatenazione, stella di Kleene, sostituzione e omomorfismo.

Schema generale:

- 1. Identificare operazioni che, applicate a linguaggi context-free, producono il linguaggio desiderato
- 2. Dimostrare che i linguaggi componenti sono context-free
- 3. Concludere che il linguaggio risultante è context-free per le proprietà di chiusura

Esempio: Dimostriamo che il linguaggio $L = \{a^i b^j c^k \mid i, j, k \geq 0 \text{ e } i = j \text{ o } j = k\}$ è context-free.

Soluzione: Osserviamo che $L = L_1 \cup L_2$ dove $L_1 = \{a^i b^i c^k \mid i, k \ge 0\}$ e $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}.$

 L_1 è context-free perché può essere generato dalla grammatica $S \to aAb \mid A, A \to aAb \mid C, C \to cC \mid \varepsilon$.

 L_2 è context-free perché può essere generato dalla grammatica $S\to aS\mid B,B\to bBc\mid \varepsilon.$

Poiché l'unione di linguaggi context-free è context-free, $L=L_1\cup L_2$ è context-free.

5 Tecniche per dimostrare operazioni di chiusura

5.1 Chiusura dei linguaggi regolari

I linguaggi regolari sono chiusi rispetto alle seguenti operazioni:

- Unione, intersezione, complemento, differenza
- Concatenazione, stella di Kleene
- Inversione (reversal)
- Omomorfismo, omomorfismo inverso
- Sostituzione

Schema generale per dimostrare la chiusura:

- 1. Assumere che i linguaggi di partenza siano riconosciuti da DFA
- 2. Costruire un nuovo automa che riconosca il linguaggio risultante dall'operazione
- 3. Dimostrare che l'automa costruito è un DFA o NFA
- 4. Concludere che il linguaggio risultante è regolare

Esempio: Chiusura rispetto all'operazione "a/L" Definiamo $a/L = \{w \mid aw \in L\}$. Dimostriamo che se L è regolare, anche a/L è regolare.

Soluzione: Sia $A = (Q, \Sigma, \delta, q_0, F)$ un DFA che riconosce L. Costruiamo un DFA $A' = (Q, \Sigma, \delta, q'_0, F)$ dove $q'_0 = \delta(q_0, a)$.

A' simula cosa farebbe A dopo aver letto il simbolo a, quindi accetta esattamente le stringhe w tali che $aw \in L$.

Esempio: Chiusura rispetto a "ROL(L)" Definiamo $ROL(L) = \{wa \mid aw \in L, w \in \Sigma^*, a \in \Sigma\}$. Dimostriamo che se L è regolare, anche ROL(L) è regolare.

Soluzione: Sia $A = (Q, \Sigma, \delta, q_0, F)$ un DFA che riconosce L. Costruiamo un NFA $A' = (Q', \Sigma, \delta', q'_0, F')$ dove:

- $Q' = Q \times \Sigma \cup \{q'_0\}$
- $\delta'(q'_0, a) = \{(q_0, a)\}$ per ogni $a \in \Sigma$
- $\delta'((q,b),a) = \{(\delta(q,a),b)\}$ per ogni $q \in Q, a,b \in \Sigma$
- $F' = \{(q, a) \mid \delta(q, a) \in F\}$

A' tiene traccia del primo simbolo letto nella seconda componente dello stato, e verifica che dopo aver letto l'intera stringa, aggiungendo questo primo simbolo alla fine si otterrebbe una stringa in L.

5.2 Chiusura dei linguaggi context-free

I linguaggi context-free sono chiusi rispetto alle seguenti operazioni:

- Unione, concatenazione, stella di Kleene
- Omomorfismo, sostituzione
- Intersezione con linguaggi regolari

Ma non sono chiusi rispetto a:

- Intersezione (in generale)
- Complemento

Schema generale per dimostrare la chiusura:

- 1. Assumere che i linguaggi di partenza siano generati da grammatiche context-free
- 2. Costruire una nuova grammatica che generi il linguaggio risultante dall'operazione
- 3. Dimostrare che la grammatica costruita è context-free
- 4. Concludere che il linguaggio risultante è context-free

Esempio: Chiusura rispetto all'operazione "suffix(L)" Definiamo $suffix(L) = \{y \mid xy \in L \text{ per qualche } x \in \Sigma^*\}$. Dimostriamo che se L è context-free, anche suffix(L) è context-free.

Soluzione: Sia $G = (V, \Sigma, R, S)$ una grammatica context-free che genera L. Costruiamo una nuova grammatica $G' = (V', \Sigma, R', S')$ dove:

- $V' = V \cup \{S'\}$ dove S' è un nuovo simbolo non terminale
- R' contiene tutte le regole di R, più le seguenti nuove regole:
 - $-S' \rightarrow S$
 - $-S' \to aS'$ per ogni $a \in \Sigma$

Questa grammatica genera suffix(L) perché:

- Può generare qualsiasi stringa in L (usando $S' \to S$ e poi le regole originali)
- Può aggiungere qualsiasi prefisso arbitrario a una stringa di L (usando ripetutamente $S' \to aS'$)

Esempio: Chiusura rispetto all'operazione "superstring(L)" Definiamo $superstring(L) = \{xyz \mid y \in L \text{ e } x, z \in \Sigma^*\}$. Dimostriamo che se L è context-free, anche superstring(L) è context-free.

Soluzione: Sia $G = (V, \Sigma, R, S)$ una grammatica context-free che genera L. Costruiamo una nuova grammatica $G' = (V', \Sigma, R', S')$ dove:

- $V' = V \cup \{S', A, B\}$ dove S', A, B sono nuovi simboli non terminali
- R' contiene tutte le regole di R, più le seguenti nuove regole:
 - $-S' \rightarrow ASB$
 - $-A \rightarrow aA \mid \varepsilon \text{ per ogni } a \in \Sigma$
 - $-B \rightarrow bB \mid \varepsilon$ per ogni $b \in \Sigma$

Questa grammatica genera superstring(L) perché:

- Può generare qualsiasi prefisso $x \in \Sigma^*$ usando le regole di A
- Può generare qualsiasi stringa $y \in L$ usando le regole originali di G
- Può generare qualsiasi suffisso $z \in \Sigma^*$ usando le regole di B

6 Esempi di dimostrazioni complete

6.1 Esempio 1: $L = \{0^n 1^n \mid n \ge 1\}$ non è regolare

Dimostrazione: Supponiamo per assurdo che L sia regolare. Per il Pumping Lemma, esiste un intero p>0 tale che ogni stringa $s\in L$ con $|s|\geq p$ può essere decomposta come s=xyz con $|xy|\leq p,\,|y|>0$ e $xy^iz\in L$ per ogni $i\geq 0$.

Consideriamo la stringa $s = 0^p 1^p \in L$. Per la condizione $|xy| \le p$, la sottostringa xy è composta solo da 0. Quindi $y = 0^k$ per qualche k > 0.

Consideriamo ora $xy^0z = xz$. Questa stringa contiene p - k zeri e p uni, quindi non è della forma 0^n1^n e non appartiene a L. Questo contraddice la condizione che $xy^iz \in L$ per ogni $i \geq 0$.

Pertanto, L non è regolare.

6.2 Esempio 2: $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e } i + j = k\}$ è context-free

Dimostrazione: Costruiamo una grammatica context-free $G = (V, \Sigma, R, S)$ che genera L.

- $V = \{S, A\}$
- $\bullet \ \Sigma = \{a,b,c\}$
- R contiene le seguenti regole:

$$\begin{array}{l} - \ S \rightarrow Ac \\ - \ A \rightarrow aAc \mid bAc \mid \varepsilon \end{array}$$

Per comprendere come questa grammatica genera L, osserviamo che ogni derivazione ha la forma:

$$S \Rightarrow Ac$$

$$\Rightarrow aAcc$$

$$\Rightarrow abAccc$$

$$\Rightarrow \dots$$

$$\Rightarrow a^{i}b^{j}\varepsilon c^{i+j+1}$$

$$= a^{i}b^{j}c^{i+j+1}$$

La derivazione produce una stringa in cui il numero di c è i+j+1, dove i è il numero di a e j è il numero di b. Sia k=i+j+1, quindi i+j=k-1. Possiamo modificare leggermente la grammatica per ottenere i+j=k:

$$\bullet \ V = \{S, A\}$$

- $\Sigma = \{a, b, c\}$
- R contiene le seguenti regole:
 - $-S \rightarrow A$
 - $-A \rightarrow aAc \mid bAc \mid \varepsilon$

Con questa grammatica, ogni derivazione produrrà stringhe della forma $a^ib^jc^{i+j}$, ovvero stringhe in cui il numero di c è uguale alla somma del numero di a e b. Quindi, questa grammatica genera esattamente il linguaggio $L = \{a^ib^jc^k \mid i,j,k \geq 0 \text{ e } i+j=k\}.$

6.3 Esempio 3: dimostrazione che flip(L) è regolare se L è regolare

Definiamo flip $(L) = \{w \in \{0,1\}^* \mid \text{il flip di } w \text{ appartiene a } L\}$, dove il flip di una stringa si ottiene cambiando tutti gli 0 in 1 e tutti gli 1 in 0.

Dimostrazione: Sia $A = (Q, \Sigma, \delta, q_0, F)$ un DFA che riconosce L. Costruiamo un DFA $A' = (Q', \Sigma, \delta', q'_0, F')$ che riconosce flip(L) come segue:

- Q' = Q (l'insieme degli stati rimane lo stesso)
- $\Sigma = \{0, 1\}$ (l'alfabeto rimane lo stesso)
- $\delta'(q,0) = \delta(q,1)$ e $\delta'(q,1) = \delta(q,0)$ per ogni $q \in Q$ (la funzione di transizione scambia gli 0 con gli 1)
- $q'_0 = q_0$ (lo stato iniziale non cambia)
- F' = F (gli stati finali non cambiano)

Per dimostrare che A' riconosce flip(L), dobbiamo mostrare che per ogni stringa $w \in \{0,1\}^*$, $w \in \text{flip}(L)$ se e solo se w è accettata da A'.

Sia \overline{w} il flip di w.

 (\Rightarrow) Se $w \in \text{flip}(L)$, allora $\overline{w} \in L$. Quindi, \overline{w} è accettata da A. Ciò significa che esiste una sequenza di stati q_0, q_1, \ldots, q_n in A tale che $\delta(q_{i-1}, \overline{w}_i) = q_i$ per $i = 1, \ldots, n$, e $q_n \in F$.

Per costruzione di A', abbiamo $\delta'(q_{i-1}, w_i) = \delta(q_{i-1}, \overline{w}_i) = q_i$ per $i = 1, \ldots, n$. Pertanto, w è accettata da A'.

 (\Leftarrow) Se w è accettata da A', allora esiste una sequenza di stati q_0, q_1, \ldots, q_n in A' tale che $\delta'(q_{i-1}, w_i) = q_i$ per $i = 1, \ldots, n$, e $q_n \in F'$.

Per costruzione di A', abbiamo $\delta(q_{i-1}, \overline{w}_i) = \delta'(q_{i-1}, w_i) = q_i$ per $i = 1, \ldots, n$. Poiché F' = F, $q_n \in F$. Quindi, \overline{w} è accettata da A, il che significa che $\overline{w} \in L$ e $w \in \text{flip}(L)$.

Poiché A' è un DFA, flip(L) è regolare.

6.4 Esempio 4: $L = \{a^n b^m c^m \mid n, m \ge 0\} \cup \{a^n b^n c^m \mid n, m \ge 0\}$ è context-free

Dimostrazione: Osserviamo che $L = L_1 \cup L_2$, dove $L_1 = \{a^n b^m c^m \mid n, m \ge 0\}$ e $L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$.

Dimostriamo che L_1 e L_2 sono entrambi context-free, e quindi la loro unione L è context-free per la proprietà di chiusura.

Per L_1 , costruiamo la grammatica $G_1 = (V_1, \Sigma, R_1, S_1)$ dove:

- $V_1 = \{S_1, A, B\}$
- $\Sigma = \{a, b, c\}$
- R_1 contiene le regole:

$$-S_1 \rightarrow aS_1 \mid A$$

$$-A \rightarrow bBc \mid \varepsilon$$

$$-B \rightarrow bBc \mid \varepsilon$$

 G_1 genera L_1 perché:

- $S_1 \to aS_1 \ldots \to a^n A$ genera la parte a^n
- $A \to bBc$ inizia la generazione della parte b^mc^m
- $B \to bBc \dots \to b^{m-1}Bc^{m-1} \to b^mc^m$ complete la generazione

Per L_2 , costruiamo la grammatica $G_2 = (V_2, \Sigma, R_2, S_2)$ dove:

•
$$V_2 = \{S_2, C, D\}$$

•
$$\Sigma = \{a, b, c\}$$

• R_2 contiene le regole:

$$-S_2 \rightarrow aC_2b \mid D$$

$$-C_2 \rightarrow aC_2b \mid \varepsilon$$

$$-D \rightarrow cD \mid \varepsilon$$

 G_2 genera L_2 perché:

•
$$S_2 \to aC_2b \ldots \to a^nC_2b^n \to a^nb^n$$
 genera la parte a^nb^n

•
$$S_2 \to D \to cD \dots \to c^mD \to c^m$$
 genera la parte c^m

Ora, costruiamo una grammatica $G = (V, \Sigma, R, S)$ per $L = L_1 \cup L_2$:

•
$$V = V_1 \cup V_2 \cup \{S\}$$

•
$$\Sigma = \{a, b, c\}$$

• R contiene tutte le regole di R_1 e R_2 , più le regole:

$$-S \rightarrow S_1 \mid S_2$$

Questa grammatica genera $L = L_1 \cup L_2$, che è quindi context-free.

7 Tecniche specifiche per le grammatiche contextfree generalizzate

Le grammatiche context-free generalizzate consentono di avere espressioni regolari sul lato destro delle regole di produzione. Vediamo come dimostrare che queste grammatiche non aumentano il potere espressivo delle grammatiche context-free normali.

7.1 Teorema di equivalenza

Ogni grammatica context-free generalizzata può essere convertita in una grammatica context-free normale che genera lo stesso linguaggio.

Dimostrazione strutturale: Mostreremo come rimpiazzare le regole con espressioni regolari sul lato destro con regole equivalenti in forma standard. Consideriamo i seguenti casi:

- 1. Rimpiazza ogni regola $A \to R + S$ con le due regole $A \to R$ e $A \to S$
- 2. Per ogni regola $A \to R \cdot S$, aggiungi due nuove variabili A_R e A_S e rimpiazza la regola con le regole $A \to A_R A_S$, $A_R \to R$ e $A_S \to S$
- 3. Per ogni regola $A\to S^*$, aggiungi una nuova variabile A_S e rimpiazza la regola con le regole $A\to AA_S\mid \varepsilon$ e $A_S\to S$
- 4. Rimpiazza ogni regola $A \to \emptyset$ con nessuna regola (rimuovi la regola)
- 5. Rimpiazza ogni regola $A \to \varepsilon$ con la regola standard $A \to \varepsilon$

Ripeti questo processo finché non rimangono solamente regole nella forma standard $A \to u$ dove u è una stringa di variabili e terminali, o $u=\varepsilon$

7.2 Esempi di applicazione

Esempio 1: Consideriamo la grammatica generalizzata con regole:

•
$$S \rightarrow aS \mid aSbS \mid \varepsilon$$

Esempio 2: Consideriamo la grammatica generalizzata con regole:

•
$$S \rightarrow (S) \mid SS \mid \varepsilon$$

Entrambe queste grammatiche sono già in forma standard perché non contengono espressioni regolari sul lato destro.

Esempio 3: Consideriamo la grammatica generalizzata con regole:

• $S \rightarrow a(b+c)^*$

Trasformiamola in una grammatica in forma standard:

- $S \rightarrow aA$
- $A \to BA \mid \varepsilon$
- $B \rightarrow b \mid c$

8 Il Pumping Lemma per linguaggi context-free

Analogamente al caso dei linguaggi regolari, esiste un Pumping Lemma anche per i linguaggi context-free, che può essere utilizzato per dimostrare che un linguaggio non è context-free.

8.1 Enunciato del Pumping Lemma per linguaggi contextfree

Teorema (Pumping Lemma per linguaggi context-free): Per ogni linguaggio context-free L, esiste un intero p > 0 (la "lunghezza di pumping") tale che, per ogni stringa $s \in L$ con $|s| \ge p$, s può essere suddivisa in cinque parti s = uvxyz con le seguenti proprietà:

- 1. $|vxy| \leq p$
- 2. |vy| > 0
- 3. Per ogni $i \geq 0$, $uv^i x y^i z \in L$

8.2 Schema generale per la dimostrazione per contraddizione

- 1. Assumere per assurdo che il linguaggio L sia context-free
- 2. Applicare il Pumping Lemma: esiste un p > 0 con le proprietà indicate
- 3. Scegliere una stringa $s \in L$ con $|s| \ge p$ opportunamente costruita
- 4. Mostrare che per ogni divisione s=uvxyz che soddisfa le condizioni 1 e 2 del lemma, esiste un $i \geq 0$ tale che $uv^ixy^iz \notin L$, contraddicendo la condizione 3
- 5. Concludere che L non è context-free

8.3 Esempio: $L = \{a^n b^n c^n \mid n \ge 0\}$ non è context-free

Dimostrazione: Supponiamo per assurdo che L sia context-free. Allora esiste un intero p > 0 come nel Pumping Lemma. Consideriamo la stringa $s = a^p b^p c^p \in L$. Per il Pumping Lemma, s può essere scritta come s = uvxyz con $|vxy| \le p$, |vy| > 0 e $uv^i xy^i z \in L$ per ogni $i \ge 0$.

Dato che $|vxy| \leq p$, la sottostringa vxy può contenere al massimo p caratteri, quindi può contenere caratteri di al massimo due tipi diversi (ad esempio, $a \in b$, o $b \in c$), ma non tutti e tre.

Consideriamo i vari casi:

- 1. Se vxy contiene solo a, allora v e y contengono solo a. Pertanto, uv^2xy^2z conterrà più di p caratteri a, ma esattamente p caratteri b e p caratteri c. Quindi, $uv^2xy^2z \not\in L$.
- 2. Se vxy contiene solo b, allora v e y contengono solo b. Pertanto, uv^2xy^2z conterrà più di p caratteri b, ma esattamente p caratteri a e p caratteri c. Quindi, $uv^2xy^2z \notin L$.
- 3. Se vxy contiene solo c, allora v e y contengono solo c. Pertanto, uv^2xy^2z conterrà più di p caratteri c, ma esattamente p caratteri a e p caratteri b. Quindi, $uv^2xy^2z \not\in L$.
- 4. Se vxy contiene a e b, allora almeno uno tra v e y contiene a o b. In $uv^0xy^0z=uxz$, il numero di a sarà diverso dal numero di b, che saranno diversi dal numero di c. Quindi, $uxz \notin L$.
- 5. Se vxy contiene $b \in c$, il ragionamento è analogo al caso precedente.

In tutti i casi, troviamo un i (0 o 2) tale che $uv^i xy^i z \notin L$, contraddicendo il Pumping Lemma. Pertanto, L non è context-free.

9 Tecniche di dimostrazione per casi particolari

9.1 Linguaggi con operatori aritmetici

Molti linguaggi includono relazioni aritmetiche tra i conteggi dei simboli. Vediamo alcune tecniche specifiche per questi casi.

Esempio: $L = \{a^n b^m \mid n \le m \le 2n\}$ Dimostriamo che L è context-free. **Soluzione:** Osserviamo che $L = \{a^n b^n (b?)^n \mid n \ge 0\}$, dove $(b?)^n$ significa che possiamo avere da 0 a n simboli b aggiuntivi. Costruiamo una grammatica context-free:

- $S \rightarrow AB$
- $A \rightarrow aAb \mid \varepsilon$

• $B \rightarrow bB \mid \varepsilon$

Questa grammatica genera a^nb^n usando A, e poi può aggiungere fino a n simboli b aggiuntivi usando B.

9.2 Linguaggi con palindromi e altri pattern

I linguaggi che coinvolgono palindromi o pattern simili spesso richiedono tecniche specifiche.

Esempio: $L = \{ww^R \mid w \in \{a,b\}^*\}$, dove w^R è l'inverso di w Dimostriamo che L è context-free.

Soluzione: Costruiamo una grammatica context-free:

• $S \rightarrow \varepsilon \mid aSa \mid bSb$

Questa grammatica genera palindromi, che hanno la forma ww^R solo quando $w = w^R$ (cioè quando w stesso è un palindromo). Per generare ww^R per qualsiasi w, abbiamo bisogno di una grammatica diversa. Ad esempio:

- $S \rightarrow aSa \mid bSb \mid C$
- $C \rightarrow aCa \mid bCb \mid \varepsilon$

Questa grammatica non è corretta. La grammatica corretta per $L = \{ww^R \mid w \in \{a,b\}^*\}$ è:

• $S \rightarrow aSa \mid bSb \mid \varepsilon$

Per $L = \{ww \mid w \in \{a, b\}^*\}$ (che è diverso da $\{ww^R \mid w \in \{a, b\}^*\}$), possiamo dimostrare che non è context-free usando il Pumping Lemma.

9.3 Linguaggi che codificano problemi di decisione

Alcuni linguaggi codificano problemi di decisione complessi. Ad esempio, il linguaggio delle stringhe che rappresentano numeri primi, o il linguaggio delle stringhe che rappresentano grammatiche ambigue.

Esempio: $L = \{a^n \mid n \text{ è un numero primo}\}$ Questo linguaggio è regolare? Dimostriamo che non lo è.

Soluzione: Supponiamo per assurdo che L sia regolare. Per il Pumping Lemma, esiste un intero p > 0 tale che ogni stringa $s \in L$ con $|s| \ge p$ può essere decomposta come s = xyz con $|xy| \le p$, |y| > 0 e $xy^iz \in L$ per ogni $i \ge 0$.

Sia q un numero primo maggiore di p. Allora $s=a^q\in L$. Per il Pumping Lemma, s può essere scritta come s=xyz con $|xy|\leq p,\,|y|>0$ e $xy^iz\in L$ per ogni $i\geq 0$.

Poiché $|xy| \leq p < q$, abbiamo |y| = k > 0 e |z| = q - |xy| > 0. Consideriamo xy^2z . Questa stringa ha lunghezza |x|+2|y|+|z|=|x|+|y|+|y|+|y|+|z|=q+|y|=q+k. Ma q+k non è necessariamente un numero primo, quindi xy^2z non è necessariamente in L, contraddicendo il Pumping Lemma. Pertanto, L non

è regolare.