Intro to ARMA models

FISH 507 – Applied Time Series Analysis

Mark Scheuerell 12 Jan 2021

Topics for today

Review

- · White noise
- · Random walks

Autoregressive (AR) models

Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID

White noise (WN)

A time series $\{w_t\}$ is discrete white noise if its values are

- 1. independent
- 2. identically distributed with a mean of zero

The distributional form for $\{w_t\}$ is flexible

White noise (WN)

$$w_t = 2e_t - 1$$
; $e_t \sim \text{Bernoulli}(0.5)$

Gaussian white noise

We often assume so-called Gaussian white noise, whereby

$$w_t \sim N(0, \sigma^2)$$

and the following apply as well

autocovariance:
$$\gamma_k = \begin{cases} \sigma^2 & \text{if } k = 0 \\ 0 & \text{if } k \ge 1 \end{cases}$$

autocorrelation:
$$\rho_k = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \ge 1 \end{cases}$$

Gaussian white noise

$$w_t \sim N(0, 1)$$

Random walk (RW)

A time series $\{x_t\}$ is a random walk if

1.
$$x_t = x_{t-1} + w_t$$

2. w_t is white noise

Random walk (RW)

$$x_t = x_{t-1} + w_t; w_t \sim N(0, 1)$$

Random walk (RW)

Of note: Random walks are extremely flexible models and can be fit to many kinds of time series

Biased random walk

A biased random walk (or random walk with drift) is written as

$$x_t = x_{t-1} + u + w_t$$

where u is the bias (drift) per time step and w_t is white noise

Biased random walk

$$x_t = x_{t-1} + 1 + w_t; w_t \sim N(0, 4)$$

Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level) u plus white noise

Differencing a biased random walk

$$x_t - x_{t-1} = 1 + w_t; w_t \sim N(0, 1)$$

Linear stationary models

Linear stationary models

We saw last week that linear filters are a useful way of modeling time series

Here we extend those ideas to a general class of models call *autoregressive* moving average (ARMA) models

Autoregressive (AR) models

Autoregressive models are widely used in ecology to treat a current state of nature as a function its past state(s)

Autoregressive (AR) models

An *autoregressive* model of order p, or AR(p), is defined as

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$$

where we assume

- 1. w_t is white noise
- 2. $\phi_p \neq 0$ for an order-p process

Examples of AR(p) models

AR(1)

$$x_t = 0.5x_{t-1} + w_t$$

AR(1) with $\phi_1 = 1$ (random walk)

$$x_t = x_{t-1} + w_t$$

AR(2)

$$x_t = -0.2x_{t-1} + 0.4x_{t-2} + w_t$$

Examples of AR(p) models

Recall that *stationary* processes have the following properties

- 1. no systematic change in the mean or variance
- 2. no systematic trend
- 3. no periodic variations or seasonality

We seek a means for identifying whether our AR(p) models are also stationary

We can write out an AR(p) model using the backshift operator

$$x_{t} = \phi_{1}x_{t-1} + \phi_{2}x_{t-2} + \dots + \phi_{p}x_{t-p} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} - \phi_{1}x_{t-1} - \phi_{2}x_{t-2} - \dots - \phi_{p}x_{t-p} = w_{t}$$

$$(1 - \phi_{1}\mathbf{B} - \phi_{2}\mathbf{B}^{2} - \dots - \phi_{p}\mathbf{B}^{p})x_{t} = w_{t}$$

$$\phi_{p}(\mathbf{B})x_{t} = w_{t}$$

If we treat ${f B}$ as a number (or numbers), we can out write the *characteristic* equation as

$$\phi_p(\mathbf{B})x_t = w_t$$

$$\psi$$

$$\phi_p(\mathbf{B}) = 0$$

To be stationary, **all roots** of the characteristic equation **must exceed 1 in absolute value**

For example, consider this AR(1) model from earlier

$$x_t = 0.5x_{t-1} + w_t$$

For example, consider this AR(1) model from earlier

$$x_{t} = 0.5x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} - 0.5x_{t-1} = w_{t}$$

$$x_{t} - 0.5\mathbf{B}x_{t} = w_{t}$$

$$(1 - 0.5\mathbf{B})x_{t} = w_{t}$$

For example, consider this AR(1) model from earlier

$$(1 - 0.5\mathbf{B})x_t = w_t$$

$$\downarrow \downarrow$$

$$1 - 0.5\mathbf{B} = 0$$

$$-0.5\mathbf{B} = -1$$

$$\mathbf{B} = 2$$

This model is indeed stationary because ${f B}>1$

What about this AR(2) model from earlier?

$$x_t = -0.2x_{t-1} + 0.4x_{t-2} + w_t$$

What about this AR(2) model from earlier?

$$x_{t} = -0.2x_{t-1} + 0.4x_{t-2} + w_{t}$$

$$\downarrow t$$

$$x_{t} + 0.2x_{t-1} - 0.4x_{t-2} = w_{t}$$

$$x_{t} + 0.2\mathbf{B}x_{t} - 0.4\mathbf{B}^{2}x_{t} = w_{t}$$

$$(1 + 0.2\mathbf{B} - 0.4\mathbf{B}^{2})x_{t} = w_{t}$$

What about this AR(2) model from earlier?

$$(1 + 0.2\mathbf{B} - 0.4\mathbf{B}^{2})x_{t} = w_{t}$$

$$\downarrow \downarrow$$

$$1 + 0.2\mathbf{B} - 0.4\mathbf{B}^{2} = 0$$

$$\downarrow \downarrow$$

$$\mathbf{B}_{1} \approx -1.35 \text{ and } \mathbf{B}_{2} \approx 1.85$$

This model is *not* stationary because only $\mathbf{B}_2 > 1$

What about random walks?

Consider our random walk model

$$x_t = x_{t-1} + w_t$$

What about random walks?

Consider our random walk model

$$x_{t} = x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} - x_{t-1} = w_{t}$$

$$x_{t} - 1\mathbf{B}x_{t} = w_{t}$$

$$(1 - 1\mathbf{B})x_{t} = w_{t}$$

What about random walks?

Consider our random walk model

$$x_{t} - x_{t-1} = w_{t}$$

$$x_{t} - 1\mathbf{B}x_{t} = w_{t}$$

$$(1 - 1\mathbf{B})x_{t} = w_{t}$$

$$\downarrow \downarrow$$

$$1 - 1\mathbf{B} = 0$$

$$-1\mathbf{B} = -1$$

$$\mathbf{B} = 1$$

Random walks are **not** stationary because $\mathbf{B} = 1 \not > 1$

We can define a parameter space over which all AR(1) models are stationary

$$x_t = \phi x_{t-1} + w_t$$

We can define a parameter space over which all AR(1) models are stationary

$$x_{t} = \phi x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} - \phi x_{t-1} = w_{t}$$

$$x_{t} - \phi \mathbf{B} x_{t} = w_{t}$$

$$(1 - \phi \mathbf{B}) x_{t} = w_{t}$$

For $x_t = \phi x_{t-1} + w_t$, we have

$$(1 - \phi \mathbf{B})x_t = w_t$$

$$\downarrow \downarrow$$

$$1 - \phi \mathbf{B} = 0$$

$$-\phi \mathbf{B} = -1$$

$$\mathbf{B} = \frac{1}{\phi}$$

$$\downarrow \downarrow$$

$$\mathbf{B} = \frac{1}{\phi} > 1 \text{ iff } 0 < \phi < 1$$

What if ϕ is negative, such that $x_t = -\phi x_{t-1} + w_t$?

$$x_{t} = -\phi x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} + \phi x_{t-1} = w_{t}$$

$$x_{t} + \phi \mathbf{B} x_{t} = w_{t}$$

$$(1 + \phi \mathbf{B}) x_{t} = w_{t}$$

For $x_t = -\phi x_{t-1} + w_t$, we have

$$(1 + \phi \mathbf{B})x_t = w_t$$

$$\downarrow \downarrow$$

$$1 + \phi \mathbf{B} = 0$$

$$\phi \mathbf{B} = -1$$

$$\mathbf{B} = -\frac{1}{\phi}$$

$$\downarrow \downarrow$$

$$\mathbf{B} = -\frac{1}{\phi} > 1 \text{ iff } -1 < \phi < 0$$

Stationary AR(1) models

Thus, AR(1) models are stationary if and only if $|\phi| < 1$

Coefficients of AR(1) models

Same value, but different sign

Coefficients of AR(1) models

Both positive, but different magnitude

Autocorrelation function (ACF)

Recall that the *autocorrelation function* (ρ_k) measures the correlation between $\{x_t\}$ and a shifted version of itself $\{x_{t+k}\}$

ACF for AR(1) models

ACF oscillates for model with $-\phi$

ACF for AR(1) models

For model with large ϕ , ACF has longer tail

Partial autocorrelation funcion (PACF)

Recall that the *partial autocorrelation function* (ϕ_k) measures the correlation between $\{x_t\}$ and a shifted version of itself $\{x_{t+k}\}$, with the linear dependence of $\{x_{t-1}, x_{t-2}, \dots, x_{t-k-1}\}$ removed

ACF & PACF for AR(p) models

PACF for AR(p) models

Do you see the link between the order *p* and lag *k*?

Using ACF & PACF for model ID

Model	ACF	PACF
AR(p)	Tails off slowly	Cuts off after lag p

Moving average (MA) models

Moving average models are most commonly used for forecasting a future state

Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

where w_t is white noise

Each of the x_t is a sum of the most recent error terms

Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

where w_t is white noise

Each of the x_t is a sum of the most recent error terms

Thus, *all* MA processes are stationary because they are finite sums of stationary WN processes

Examples of MA(q) models

ACF & PACF for MA(q) models

ACF for MA(q) models

Do you see the link between the order *q* and lag *k*?

Using ACF & PACF for model ID

Model	ACF	PACF
AR(<i>p</i>)	Tails off slowly	Cuts off after lag p
MA(q)	Cuts off after lag q	Tails off slowly

It is possible to write an AR(p) model as an MA(∞) model

For example, consider an AR(1) model

$$x_t = \phi x_{t-1} + w_t$$

For example, consider an AR(1) model

$$x_{t} = \phi x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t-1} = \phi x_{t-2} + w_{t-1}$$

$$\downarrow \downarrow$$

$$x_{t-2} = \phi x_{t-3} + w_{t-2}$$

$$\downarrow \downarrow$$

$$x_{t-3} = \phi x_{t-4} + w_{t-3}$$

Substituting in the expression for x_{t-1} into that for x_t

$$x_{t} = \phi x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t-1} = \phi x_{t-2} + w_{t-1}$$

$$\downarrow \downarrow$$

$$x_{t} = \phi(\phi x_{t-2} + w_{t-1}) + w_{t}$$

$$x_{t} = \phi^{2} x_{t-2} + \phi w_{t-1} + w_{t}$$

And repeated substitutions yields

$$x_{t} = \phi^{2}x_{t-2} + \phi w_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} = \phi^{3}x_{t-3} + \phi^{2}w_{t-2} + \phi w_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} = \phi^{4}x_{t-4} + \phi^{3}w_{t-3} + \phi^{2}w_{t-2} + \phi w_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} = w_{t} + \phi w_{t-1} + \phi^{2}w_{t-2} + \cdots + \phi^{k}w_{t-k} + \phi^{k+1}x_{t-k-1}$$

If our AR(1) model is stationary, then

$$|\phi| < 1$$

which then implies that

$$\lim_{k\to\infty}\phi^{k+1}=0$$

If our AR(1) model is stationary, then

$$|\phi| < 1$$

which then implies that

$$\lim_{k \to \infty} \phi^{k+1} = 0$$

and hence

$$x_{t} = w_{t} + \phi w_{t-1} + \phi^{2} w_{t-2} + \dots + \phi^{k} w_{t-k} + \phi^{k+1} x_{t-k-1}$$

$$\downarrow \downarrow$$

$$x_{t} = w_{t} + \phi w_{t-1} + \phi^{2} w_{t-2} + \dots + \phi^{k} w_{t-k}$$

Invertible MA(q) models

An MA(q) process is *invertible* if it can be written as a stationary autoregressive process of infinite order without an error term

$$x_{t} = w_{t} + \theta_{1} w_{t-1} + \theta_{2} w_{t-2} + \dots + \theta_{q} w_{t-q}$$

$$\psi?$$

$$w_{t} = x_{t} + \sum_{k=1}^{\infty} (-\theta)^{k} x_{t-k}$$

Invertible MA(q) models

Q: Why do we care if an MA(q) model is invertible?

A: It helps us identify the model's parameters

Invertible MA(q) models

For example, these MA(1) models are equivalent

$$x_t = w_t + \frac{1}{5}w_{t-1} \text{ with } w_t \sim N(0, 25)$$

$$\updownarrow$$

$$x_t = w_t + 5w_{t-1} \text{ with } w_t \sim N(0, 1)$$

Variance of an MA(1) model

The variance of x_t is given by

$$x_{t} = w_{t} + \frac{1}{5}w_{t-1} \text{ with } w_{t} \sim N(0, 25)$$

$$\downarrow Var(x_{t}) = Var(w_{t}) + \left(\frac{1}{25}\right) Var(w_{t-1})$$

$$= 25 + \left(\frac{1}{25}\right) 25$$

$$= 25 + 1$$

$$= 26$$

Variance of an MA(1) model

The variance of x_t is given by

$$x_t = w_t + 5w_{t-1} \text{ with } w_t \sim N(0, 1)$$

$$\downarrow Var(x_t) = Var(w_t) + (25)Var(w_{t-1})$$

$$= 1 + (25)1$$

$$= 1 + 25$$

$$= 26$$

Rewriting an MA(1) model

We can rewrite an MA(1) model in terms of x

$$x_{t} = w_{t} + \theta w_{t-1}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$w_{t} = x_{t} - \theta w_{t-1}$$

Rewriting an MA(1) model

And now we can substitute in previous expressions for w_t

Invertible MA(1) model

If we constrain $|\theta| < 1$, then

$$\lim_{k\to\infty} (-\theta)^{k+1} w_{t-k-1} = 0$$

and

$$w_{t} = x_{t} - \theta x_{t-1} - \dots - \theta^{k} x_{t-k} - \theta^{k+1} w_{t-k-1}$$

$$\downarrow \downarrow$$

$$w_{t} = x_{t} - \theta x_{t-1} - \dots - \theta^{k} x_{t-k}$$

$$w_{t} = x_{t} + \sum_{k=1}^{\infty} (-\theta)^{k} x_{t-k}$$

Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as

$$x_{t} = \phi_{1} x_{t-1} + \dots + \phi_{p} x_{t-p} + w_{t} + \theta_{1} w_{t-1} + \dots + \theta_{q} w_{t-q}$$

Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

$$\phi_p(\mathbf{B})x_t = \theta_q(\mathbf{B})w_t$$

Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

$$\phi_p(\mathbf{B})x_t = \theta_q(\mathbf{B})w_t$$

ARMA models are *stationary* if all roots of $\phi_p(\mathbf{B}) > 1$

ARMA models are *invertible* if all roots of $\theta_q(\mathbf{B}) > 1$

Examples of ARMA(p,q) models

ACF for ARMA(p,q) models

PACF for ARMA(p,q) models

Using ACF & PACF for model ID

Model	ACF	PACF
AR(p)	Tails off slowly	Cuts off after lag p
MA(q)	Cuts off after lag q	Tails off slowly
ARMA(p,q)	Tails off slowly	Tails off slowly

NONSTATIONARY MODELS

Autoregressive integrated moving average (ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of *autoregressive integrated moving average* (ARIMA) models

ARIMA models are indexed with orders (p,d,q) where d indicates the order of differencing

Definition

 $\{x_t\}$ follows an ARIMA(p,d,q) process if $(1 - \mathbf{B})^d x_t$ is an ARMA(p,q) process

An example

Consider an ARMA(1,0) = AR(1) process where

$$x_t = (1 + \phi)x_{t-1} + w_t$$

An example

Consider an ARMA(1,0) = AR(1) process where

$$x_{t} = (1 + \phi)x_{t-1} + w_{t}$$

$$\downarrow \downarrow$$

$$x_{t} = x_{t-1} + \phi x_{t-1} + w_{t}$$

$$x_{t} - x_{t-1} = \phi x_{t-1} + w_{t}$$

$$(1 - \mathbf{B})x_{t} = \phi x_{t-1} + w_{t}$$

So x_t is indeed an ARIMA(1,1,0) process

Topics for today

Review

- · White noise
- · Random walks

Autoregressive (AR) models

Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID