

Linear and Discrete Optimization

Fourier-Motzkin elimination

The projection mapping

The *projection mapping* is the function $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ with

$$\pi(x_1,\ldots,x_n)=(x_1,\ldots,x_{n-1}).$$

For $S \subseteq \mathbb{R}^n$ the *projection* of S is the set $\pi(S) = {\pi(x) \colon x \in S}$.

Quiz

Suppose
$$P = \{x \in \mathbb{R}^3 : Ax \leq b\}$$
 with

with
$$A = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 1 & -2 \\ 1 & 4 & 2 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 6 \\ 3 \\ 6 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$2.x_1+3x_2+3x_3 \le 6$$

 $3x_3 \le 6-2-3$
 $= 1$
 $x_2 < \frac{1}{3}$

$$-2 \times 3 \leq -1$$

$$\times_3 \geq \frac{1}{2}$$

Is
$$(1, 1) \in \pi(P)$$
?

Completing a point in the projection

- Suppose we want to know whether $(x_1^*, \ldots, x_{n-1}^*)$ is in $\pi(P)$ where
- $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$

If $a_{in} \neq 0$ divide both sides by a_{in} . With $\bar{x} = (x_1, \dots, x_{n-1})$ we obtain an equivalent representation of P (X1..., X1.1) con be completed $x_n^* \leqslant d_i + f_i^T \overline{x}^* \quad i \in I_>$

$$(x_{1}, \dots, x_{n-\lambda}) \text{ for Be dompstered} \qquad x_{n} \leqslant d_{i} + f_{i}^{T} \overline{x}^{*} \quad j \in J_{<} \\ \text{ is } I_{>} \\ \text{ is } I_{>} \\ \text{ And } 0 \leqslant d_{k} + f_{k}^{T} \overline{x}^{*} \quad j \in K \\ \text{ MAX}$$

The projection of a polyhedron

If $P \subseteq \mathbb{R}^n$ is represented by

$$x_n \leqslant \underbrace{d_i + f_i^T \overline{x}}_{x_n \geqslant \underbrace{d_j + f_j^T \overline{x}}_{j \in J_{<}}}_{0 \leqslant d_k + f_k^T \overline{x}} \quad i \in I_{>}$$

Proof:
$$= (x_1^*, ..., x_n^*) \in P$$

to show $\overline{x}^* = (x_1^*, ..., x_n^*)$ sect. (1)

to show
$$\overline{X}^* = (X_n^*, ..., X_{n-n}^*)$$
 soft. $d_j + f_j^T \cdot \overline{X}^* \leq X_n^* = X_n^* \leq d_i + f_i^T \cdot \overline{X}^*$

2" Xx = (x*, ..., x*,) sot (1). To show: 3 Xn s.th. (x, ..., x, x,) + P

then $\pi(P)$ is represented by

$$\frac{d_{j} + f_{j}^{T} \overline{x}}{\Rightarrow 0} \leqslant \frac{d_{i} + f_{i}^{T} \overline{x}}{d_{k} + f_{k}^{T} \overline{x}} \quad i \in I_{>}, j \in J_{<}$$

Describes Polyhedron EIRM

max di+fix = mindi+fix i, EI 5636

Charly holds.

The projection of a polyhedron (cont.)

Corollary

If $P \subseteq \mathbb{R}^n$ is a polyhedron, then $\pi(P)$ is a polyhedron.

 $\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leq b\}.$

- $\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leq b\}.$
- Starting with $Q = \{(x, y) \in \mathbb{R}^{n+1} : Ax \leq b, c^T x = y\}.$

- $\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leq b\}.$
- ► Starting with $Q = \{(x, y) \in \mathbb{R}^{n+1} : Ax \leq b, c^T x = y\}.$
- Compute

$$(\pi(Q), \pi(\pi(Q)), \ldots, \pi^n(Q))$$

and the corresponding inequality representations

$$A_1 x^{(1)} \leqslant b_1, \dots, A^{(n)} x^{(n)} \leqslant b^{(n)}, \text{ where } x^{(i)} = \begin{pmatrix} y \\ x_1 \\ \vdots \\ x_{n-i} \end{pmatrix} \in \mathbb{R}^{n+1-i}.$$

- $\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leqslant b\}.$
- Starting with $Q = \{(x, y) \in \mathbb{R}^{n+1} : Ax \leq b, c^T x = y\}.$
- Compute

$$\pi(Q), \pi(\pi(Q)), \ldots, \pi^n(Q)$$

and the corresponding inequality representations

$$A_1 x^{(1)} \leqslant b_1, \dots, A^{(n)} x^{(n)} \leqslant b^{(n)}$$
, where $x^{(i)} = \begin{pmatrix} y \\ x_1 \\ \vdots \\ x_{n-i} \end{pmatrix} \in \mathbb{R}^{n+1-i}$.

▶ If $A^{(n)}x^{(n)} \leq b^{(n)}$ is infeasible, then LP is infeasible.

- $\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leqslant b\}.$
- Starting with $Q = \{(x, y) \in \mathbb{R}^{n+1} : Ax \leq b, c^{7}x = y\}.$
- Compute

$$\pi(Q), \pi(\pi(Q)), \dots, \pi^n(Q)$$
 nefficient

and the corresponding inequality representations

$$A_1 x^{(1)} \leqslant b_1, \dots, A^{(n)} x^{(n)} \leqslant b^{(n)}, \text{ where } x^{(n)} = \begin{cases} y \\ x_1 \\ \vdots \\ x_{n-i} \end{cases} \in \mathbb{R}^{n+1-i}$$

- ▶ If $A^{(n)}x^{(n)} \le b^{(n)}$ is infeasible, then LP is infeasible.
- Otherwise determine largest $x^{(n)*} = y^*$ and from there complement to $x^{(n-1)*}, \dots, x^{(0)*}$. $(x_1^{*}, \dots, x_n^{(0)*})$