# Constructing HPIs

RE420: URBAN AND REGIONAL ECONOMICS

# Review of HPI

### House Price Index

- A house price index (HPI) measures the price changes of residential housing as a percentage change from some specific start date (which has an HPI of 100).
- Popular HPI Construction Methodologies
  - 1. Representative Property HPI Method
  - 2. Average/Median HPI Method
  - 3. The Hedonic HPI Model
  - 4. The Repeat-Sales HPI Model



# The Representative Property Method

• The Representative Property Price Index defines a representative property and collect the price of the property in each period.

### Advantages:

- Easy and straightforward to understand
- Requires a small data size.

#### Limitations:

- The representative property may not be comparable across different markets
- It does not utilize information from other properties
- The chosen representative property may no longer accurately reflect the housing market.



 Average or Median Price Index collect the sale price data for all properties transacted during the period.

#### Advantage:

- Easy to calculate and understand
- Considers all property transactions rather than focusing one

#### Limitations:

- Requires a much larger data collection than Representative Property Method.
- Average/Median Price Index fails to control for changes in the *quality* or *mix* of properties



- The Hedonic House Price Index measures property values by accounting for various characteristics that affect price, such as size, location, and amenities.
- A Standard Hedonic Model (review Lecture Note 7 for more details!)

$$\ln P_{it} = \alpha + \beta_1 \ln X_{1i} + \beta_2 X_{2i} + \sum_{t=2}^{T} \gamma_t D_t + \varepsilon_{it}$$

- $P_i$  is transaction price of property i, and is expressed in logarithmic form because the housing transactions prices are log-normally distributed;
- X<sub>1</sub> represents any continuously measured property, locational and neighborhood hedonic characteristics (e.g., lot size);
- $X_2$  represents any discretely measured property, locational and neighborhood hedonic characteristics (e.g., number of bedrooms, presence of garage);
- $D_{it}$  is indicator variables which take value of 1 if property i transacted during period t and 0 otherwise (year dummy)



ejin Yoon

- The Hedonic House Price Index measures property values by accounting for various characteristics that affect price, such as size, location, and amenities.
- A Standard Hedonic Model (review Lecture Note 7 for more details!)

$$\ln P_{it} = \alpha + \beta_1 \ln X_{1i} + \beta_2 X_{2i} + \sum_{t=2}^{T} \gamma_t D_t + \varepsilon_{it}$$

- $P_i$  is transaction price of property i, and is expressed in logarithmic form because the housing transactions prices are log-normally distributed;
- X<sub>1</sub> represents any continuously measured property, locational and neighborhood hedonic characteristics (e.g., lot size);
- $X_2$  represents any discretely measured property, locational and neighborhood hedonic characteristics (e.g., number of bedrooms, presence of garage);
- $D_{it}$  is indicator variables which take value of 1 if property i transacted during period t and 0 otherwise (year dummy)



Heejin Yoon

- Specifically, the Hedonic House Price Index utilize the values of  $\gamma_t$  , the coefficient estimates of year dummies
- Changes in the  $\gamma_t$  values reflect annual changes in house price levels after accounting for the heterogeneous characteristics of individual housing units

### Advantages:

- Measures the house price changes while keeping the constant quality
  - Factors out the quality differences of housing units, separating the pure price change from the change in quality

#### Limitations:

- Data Intensive: Requires extensive data collection and sophisticated statistical techniques.
- Omitted Variable: Impossible to know all the variables that affect housing prices, and omitting the key variables will affect the estimated values for  $\gamma_t$ .

- The Repeat-Sales House Price Index model extends the hedonic house price index model by utilizing the two paired transaction observations on the same property
- The Hedonic Model

$$\ln P_{it} = \alpha + \beta_1 \ln X_{1i} + \beta_2 X_{2i} + \gamma_t \tag{1}$$

$$\ln P_{is} = \alpha + \beta_1 \ln X_{1i} + \beta_2 X_{2i} + \gamma_s \ (t \neq s) \tag{1'}$$

• The Repeat-Sales Model: subtract eq. (1') from eq. (1),

$$\ln \frac{P_{it}}{P_{is}} = (\alpha - \alpha) + \beta_1 (\ln X_{1i} - \ln X_{1i}) + \beta_2 (X_{2i} - X_{2i}) + (\gamma_t - \gamma_s)$$
 (2)

 Since the hedonic characteristics remain unchanged, the first three terms in RHS equals to zero.

• From eq. (2), the repeat-sales model can be simplified to:

$$\ln \frac{P_{it}}{P_{is}} = \gamma_t - \gamma_s$$

### Advantages:

- Based on the same theoretical consideration as the Hedonic House Price Index
- Data burden is lower than the Hedonic HPI, because all  $X_i$ 's are differenced out

#### Limitations:

- Selection Bias: Rely on properties that sell multiple times— these properties may not represent the overall market
- Violation of constant quality assumption (Meese and Wallace, 1991): the same property may experience changes in housing quality

# Computing HPIs Using Stata & Excel

# Import the Housing Transaction Data

- File > Import > Data to Excel spreadsheet (\*.xls;\*.xlsx)
- Browse and select the file housing transactions v2.xlsx.
- Check "Import first row as variable names" and click "OK"



# 1. Average/Median HPI

### Let's start from the Average/Median HPI Model.

- 1. Tabulate the average transaction prices by each year:
  - Command: tabulate year, summarize(price)
    - . tabulate year, summarize(price)

|      | Summary of price |           |       |  |  |
|------|------------------|-----------|-------|--|--|
| year | Mean             | Std. dev. | Freq. |  |  |
| 2000 | 352456.81        | 205702.31 | 340   |  |  |
| 2001 | 362530.84        | 253994.12 | 355   |  |  |
| 2002 | 424676.2         | 294506.9  | 409   |  |  |
| 2003 | 436728.58        | 256155.97 | 432   |  |  |
| 2004 | 479291.47        | 356295.22 | 395   |  |  |
| 2005 | 519468.94        | 334838.52 | 365   |  |  |
| 2006 | 546087.28        | 321749.17 | 316   |  |  |
| 2007 | 553604.73        | 288896.16 | 244   |  |  |

- 2. Tabulate the median transaction prices by each year (2 step):
  - i. Generate the variable *median\_price*:
    - Command: bysort year: egen median\_price = median(price)
  - ii. Report the variable *median\_price* by each year:
    - Command: tabulate year, sum(median\_price)

tabulate year, summarize(median\_price)

|      | Summary of | f median_pri | ce    |
|------|------------|--------------|-------|
| year | Mean St    | td. dev.     | Freq. |
| 2000 | 310000     | 0            | 340   |
| 2001 | 305000     | 0            | 355   |
| 2002 | 350000     | 0            | 409   |
| 2003 | 375000     | 0            | 432   |
| 2004 | 390000     | 0            | 395   |
| 2005 | 424000     | 0            | 365   |
| 2006 | 465000     | 0            | 316   |
| 2007 | 497500     | 0            | 244   |
|      |            |              |       |

Why the standard deviation is zero for all years?



16

3. Copy & paste the "Mean" values from Steps 1. and 2. to Excel.

|   | А    | В                   | С                  |
|---|------|---------------------|--------------------|
| 1 | Year | Average House Price | Median House Price |
| 2 | 2000 | 352,456.81          | 310,000.00         |
| 3 | 2001 | 362,530.84          | 305,000.00         |
| 4 | 2002 | 424,676.20          | 350,000.00         |
| 5 | 2003 | 436,728.58          | 375,000.00         |
| 6 | 2004 | 479,291.47          | 390,000.00         |
| 7 | 2005 | 519,468.94          | 424,000.00         |
| 8 | 2006 | 546,087.28          | 465,000.00         |
| 9 | 2007 | 553,604.73          | 497,500.00         |

4. Convert the values to HPI by normalizing the 2000 value to 100.

Command: =B2/\$B\$2\*100, =B3/\$B\$2\*100, =B4/\$B\$2\*100, ...

| А    | В                   | С                  | D              | E          |
|------|---------------------|--------------------|----------------|------------|
| Year | Average House Price | Median House Price | Average HPI    | Median HPI |
| 2000 | 352,456.81          | 310,000.00         | =B2/\$B\$2*100 | 100.00     |
| 2001 | 362,530.84          | 305,000.00         | 102.86         | 98.39      |
| 2002 | 424,676.20          | 350,000.00         | 120.49         | 112.90     |
| วกกร | 136 728 5 <u>8</u>  | 375 በበበ በበ         | 123 91         | 120 97     |

| А    | В                   | С                  | D              | E          |
|------|---------------------|--------------------|----------------|------------|
| Year | Average House Price | Median House Price | Average HPI    | Median HPI |
| 2000 | 352,456.81          | 310,000.00         | 100.00         | 100.00     |
| 2001 | 362,530.84          | 305,000.00         | =B3/\$B\$2*100 | 98.39      |
| 2002 | 424,676.20          | 350,000.00         | 120.49         | 112.90     |
| 2003 | 436 728 58          | 375 000 00         | 123.91         | 120 97     |

5. Plot the Average HPI and Median HPI.

Select the data > Insert > Line Graph







- 1. Tabulate the average transaction prices by each year, only for 1-4 bedrooms:
  - Command: tabulate year if bedroom>=1 & bedroom<=4, summarize(price)</p>
    - . tabulate year if bedroom>=1 & bedroom<=4, summarize(price)

|      | Summary of price |           |       |  |
|------|------------------|-----------|-------|--|
| year | Mean             | Std. dev. | Freq. |  |
| 2000 | 312495.25        | 160127.7  | 302   |  |
| 2001 | 333587.22        | 226358.82 | 325   |  |
| 2002 | 374629.98        | 198548.17 | 369   |  |
| 2003 | 382476.09        | 181866.73 | 387   |  |
| 2004 | 436298.4         | 324694.49 | 356   |  |
| 2005 | 469943.88        | 271896.33 | 325   |  |
| 2006 | 484146.5         | 253634.43 | 277   |  |
| 2007 | E35500 36        | 272114 57 | 222   |  |

- 2. Tabulate the average transaction prices by each year, only for 5-8 bedrooms:
  - Command: tabulate year if bedroom>=5 & bedroom<=8, summarize(price)</p>
    - . tabulate year if bedroom>=5 & bedroom<=8, summarize(price)

|      | Summary of price |           |       |  |  |
|------|------------------|-----------|-------|--|--|
| year | Mean             | Std. dev. | Freq. |  |  |
| 2000 | 670046.05        | 249934.49 | 38    |  |  |
| 2001 | 676086.67        | 322416.05 | 30    |  |  |
| 2002 | 886352.63        | 541378.14 | 40    |  |  |
| 2003 | 903300           | 322568.83 | 45    |  |  |
| 2004 | 871741.03        | 394893.2  | 39    |  |  |
| 2005 | 921860           | 495727.93 | 40    |  |  |
| 2006 | 986025.64        | 405338.02 | 39    |  |  |
| 2007 | 837113.64        | 297028.7  | 22    |  |  |

3. Copy & paste the "Mean" values from Steps 1. and 2. to Excel.

| l A  | D                                  | C                                  |
|------|------------------------------------|------------------------------------|
| Year | Average House Price (1-4 Bedrooms) | Average House Price (5-8 Bedrooms) |
| 2000 | 312,495.25                         | 670,046.05                         |
| 2001 | 333,587.22                         | 676,086.67                         |
| 2002 | 374,629.98                         | 886,352.63                         |
| 2003 | 382,476.09                         | 903,300.00                         |
| 2004 | 436,298.40                         | 871,741.03                         |
| 2005 | 469,943.88                         | 921,860.00                         |
| 2006 | 484,146.50                         | 986,025.64                         |
| 2007 | 525,509.26                         | 837,113.64                         |
| 2000 | E20 200 0E                         | 070 Q0E 7Q                         |



4. Convert the values to HPI by normalizing the 2000 value to 100.

Command: =B2/\$B\$2\*100, =B3/\$B\$2\*100, =B4/\$B\$2\*100, ...

|   |      |                                    | _                                  |                            |                            |
|---|------|------------------------------------|------------------------------------|----------------------------|----------------------------|
| Y | /ear | Average House Price (1-4 Bedrooms) | Average House Price (5-8 Bedrooms) | Average HPI (1-4 Bedrooms) | Average HPI (5-8 Bedrooms) |
|   | 2000 | 312,495.25                         | 670,046.05                         | =B2/\$B\$2*100             | 100.00                     |
|   | 2001 | 333,587.22                         | 676,086.67                         | 106.75                     | 100.90                     |
|   | 2002 | 374,629.98                         | 886,352.63                         | 119.88                     | 132.28                     |
|   |      |                                    |                                    |                            |                            |

| J | А    | ט                                  | C                                  | U                          | L                          |
|---|------|------------------------------------|------------------------------------|----------------------------|----------------------------|
|   | Year | Average House Price (1-4 Bedrooms) | Average House Price (5-8 Bedrooms) | Average HPI (1-4 Bedrooms) | Average HPI (5-8 Bedrooms) |
|   | 2000 | 312,495.25                         | 670,046.05                         | 100.00                     | 100.00                     |
|   | 2001 | 333,587.22                         | 676,086.67                         | =B3/\$B\$2*100             | 100.90                     |
| 1 | 2002 | 374,629.98                         | 886,352.63                         | 119.88                     | 132.28                     |



5. Plot the Average HPI for 1-4 Bedrooms and the Average HPI for 5-8 Bedrooms

Select the data > Insert > Line Graph





# 2. Hedonic HPI

# Next is the Hedonic HPI. Let's come back to Stata and run Hedonic Regression Model.

1. Create logarithms of price and bldgsqft

Command: gen ln\_price = ln(price)

Command: gen ln\_bldgsqft = ln(bldgsqft)

2. Run the linear regression:  $\ln(Price_{it}) = \alpha + \beta_1 bedrooms + \beta_2 bathrooms + \beta_3 \ln(bldgsqft) + \beta_4 centair + \beta_5 fireplace + \gamma_{2001} D_{year=2001} + \dots + \gamma_{2016} D_{year\_2016} + \varepsilon_{it}$ .

Command: regress ln\_price bedrooms bathrooms ln\_bldgsqft centair fireplace i.year

. regress ln\_price bedrooms bathrooms ln\_bldgsqft centair fireplace i.year

| Source      | SS          | df        | MS         |       | er of obs<br>, 4883) | =    | 4,905<br>319.38 |
|-------------|-------------|-----------|------------|-------|----------------------|------|-----------------|
| Model       | 1087.91584  | 21        | 51.8055161 |       |                      | =    | 0.0000          |
| Residual    | 792.058383  | 4,883     | .162207328 |       | uared                | _    | 0.5787          |
| Kesidudi    | /92.030303  | 4,003     | .10220/320 |       | uareu<br>R-squared   |      | 0.5769          |
| Total       | 1970 07422  | 4 004     | 20225526   |       |                      |      |                 |
| Total       | 1879.97422  | 4,904     | .383355265 | Root  | MSE                  | =    | .40275          |
|             |             |           |            |       |                      |      |                 |
| ln_price    | Coefficient | Std. err. | t          | P> t  | [95% c               | onf. | interval]       |
| bedrooms    | .0108292    | .0101169  | 1.07       | 0.284 | 00900                | 45   | .030663         |
| bathrooms   | .0639268    | .012628   | 5.06       | 0.000 | .03917               | 02   | .0886833        |
| ln_bldgsqft | .7758501    | .0290961  | 26.67      | 0.000 | .71880               | 87   | .8328915        |
| centair     | 0171451     | .0129034  | -1.33      | 0.184 | 04244                |      | .0081514        |
| fireplace   | .294652     | .0135324  | 21.77      | 0.000 | .26812               |      | .3211816        |
| , z. cpzucc |             |           |            |       |                      |      |                 |
| year        |             |           |            |       |                      |      |                 |
| 2001        | .0492443    | .0305742  | 1.61       | 0.107 | 0106                 | 95   | .1091835        |
| 2002        | .1893342    | .029561   | 6.40       | 0.000 | .13138               | 14   | .2472871        |
| 2003        | .2488985    | .0292265  | 8.52       | 0.000 | .19160               |      | .3061955        |
| 2004        | .3082835    | .0298027  | 10.34      | 0.000 | . 24985              |      | .3667101        |
| 2005        | .4174222    | .030375   | 13.74      | 0.000 | .35787               |      | .4769708        |
| 2006        | .4961729    | .0314812  | 15.76      | 0.000 | .43445               |      | .5578903        |

3. Copy & paste the coefficient values for the year dummies (2001 to 2016).

And, for the 2000 coefficient value, enter 0.

|      | D D         |
|------|-------------|
| Year | Coefficient |
| 2000 | 0.0000      |
| 2001 | 0.0492      |
| 2002 | 0.1893      |
| 2003 | 0.2489      |
| 2004 | 0.3083      |
| 2005 | 0.4174      |
| 2006 | 0.4962      |
| 2007 | 0.4926      |

4. Take the exponential function of the coefficient, since the dependent variable of the linear regression was the logarithm of price ( $\because \exp(\ln(price)) = price$ )

Command: =exp(B2)

|      | 2 "         | F (0 (1) )       |
|------|-------------|------------------|
| Year | Coefficient | Exp(Coefficient) |
| 2000 | 0.0000      | 1.00             |
| 2001 | 0.0492      | =EXP(B3)         |
| 2002 | 0.1893      | 1.21             |
| 2003 | 0.2489      | 1.28             |

5. Multiply 100 to the Exp(Coefficient) values to make the 2000 HPI value to 100.

Command: =C2\*100

| / \  | U           | _                |             |
|------|-------------|------------------|-------------|
| Year | Coefficient | Exp(Coefficient) | Hedonic HPI |
| 2000 | 0.0000      | 1.00             | =C2*100     |
| 2001 | 0.0492      | 1.05             | 105.05      |
| 2002 | 0.1893      | 1.21             | 120.84      |
| 2003 | ი 2489      | 1 28             | 128 26      |

#### 6. Plot the Hedonic HPI

Select the data > Insert > Line Graph





# 3. (Optional) Repeat-Sales HPI

#### The last practice is the Repeat-Sales HPI Model

1. Run the same linear regression as the Hedonic HPI Model.
But this time, we add one additional term to ensure the estimation is done within the same properties that are transacted more than twice.

Command: regress ln\_price i.propid bedrooms bathrooms ln\_bldgsqft centair fireplace i.year

This will take some time. While waiting for the Stata results, I will answer the questions.

36

| bedrooms<br>bathrooms<br>ln_bldgsqft<br>centair<br>fireplace | 9<br>9<br>9<br>9 | (omitted) (omitted) (omitted) (omitted) (omitted) | Why are these variables omitted? |       |          |          |  |
|--------------------------------------------------------------|------------------|---------------------------------------------------|----------------------------------|-------|----------|----------|--|
| year                                                         |                  |                                                   |                                  |       |          |          |  |
| 2001                                                         | .1927407         | .1250085                                          | 1.54                             | 0.130 | 058744   | .4442253 |  |
| 2002                                                         | .1776825         | .0913309                                          | 1.95                             | 0.058 | 0060515  | .3614165 |  |
| 2003                                                         | .3835455         | .0833742                                          | 4.60                             | 0.000 | .2158183 | .5512728 |  |
| 2004                                                         | .4567866         | .0808398                                          | 5.65                             | 0.000 | .294158  | .6194152 |  |
| 2005                                                         | .5301381         | .0871304                                          | 6.08                             | 0.000 | .3548543 | .7054219 |  |
| 2006                                                         | .585651          | .0926486                                          | 6.32                             | 0.000 | .399266  | .7720359 |  |
| 2007                                                         | .383019          | .1171721                                          | 3.27                             | 0.002 | .1472992 | .6187388 |  |
| 2008                                                         | .4748535         | .1495316                                          | 3.18                             | 0.003 | .1740347 | .7756724 |  |
| 2009                                                         | .3090678         | .133791                                           | 2.31                             | 0.025 | .0399149 | .5782206 |  |
| 2010                                                         | .4402269         | .1176293                                          | 3.74                             | 0.000 | .2035873 | .6768664 |  |
| 2011                                                         | .2354484         | .2257394                                          | 1.04                             | 0.302 | 2186807  | .6895776 |  |
| 2012                                                         | .1850152         | .1076532                                          | 1.72                             | 0.092 | 0315551  | .4015855 |  |
| 2013                                                         | .2984959         | .1096969                                          | 2.72                             | 0.009 | .0778141 | .5191777 |  |
| 2014                                                         | .2350642         | .1122369                                          | 2.09                             | 0.042 | .0092727 | .4608558 |  |
| 2015                                                         | .3603864         | .125347                                           | 2.88                             | 0.006 | .1082207 | .6125521 |  |
| 2016                                                         | .3035756         | .1001968                                          | 3.03                             | 0.004 | .1020056 | .5051456 |  |
|                                                              |                  |                                                   |                                  |       |          |          |  |
| _cons                                                        | 11.84357         | .1725428                                          | 68.64                            | 0.000 | 11.49645 | 12.19068 |  |

TOGETHER FORWARD®

2. Copy & paste the coefficient values of year dummies (2001 to 2016).

And, for the 2000 coefficient value, enter 0.

| Year | Coefficient |  |
|------|-------------|--|
| 2000 | 0.0000      |  |
| 2001 | 0.1927      |  |
| 2002 | 0.1777      |  |
| 2003 | 0.3835      |  |
| 2004 | 0.4568      |  |
| 2005 | 0.5301      |  |
| 2006 | 0.5857      |  |
| 2007 | 0.3830      |  |

3. Take the exponential function of the coefficient, since the dependent variable of the linear regression was the logarithm of price ( $\because \exp(\ln(price)) = price$ )

Command: =exp(B2)

| , , , |             | 3                |
|-------|-------------|------------------|
| Year  | Coefficient | Exp(Coefficient) |
| 2000  | 0.0000      | 1.00             |
| 2001  | 0.1927      | =EXP(B3)         |
| 2002  | 0.1777      | 1.19             |
| 2003  | 0.3835      | 1.47             |
|       |             |                  |

leejin Yoon

4. Multiply 100 to the Exp(Coefficient) values to make the 2000 HPI value to 100.

Command: <u>=C2\*100</u>

| 4 | А    | В           | С                | D                |
|---|------|-------------|------------------|------------------|
|   | Year | Coefficient | Exp(Coefficient) | Repeat-Sales HPI |
|   | 2000 | 0.0000      | 1.00             | =C2*100          |
|   | 2001 | 0.1927      | 1.21             | 121.26           |
|   | 2002 | 0.1777      | 1.19             | 119.44           |
|   | 2003 | 0.3835      | 1.47             | 146.75           |
|   |      | 0 1500      | 4.50             | 457.00           |

5. Plot the Repeat-Sales HPI

Select the data > Insert > Line Graph





# Different HPI Models Together





# **Key Takeaways**

- Practice the actual construction of various Housing Price Index (HPI) methodologies
- Recognize that evaluations of housing market conditions can differ based on the specific HPI being analyzed