Analyse 1: Calcul différentiel pour une ou plusieurs variables

Joseph Salmon

Septembre 2014

Rappels d'algèbre linéaire

Équation d'une droite en dimension deux

$$\Delta = \{(x_1, x_2) | a_1 x_1 + a_2 x_2 = c \} \quad \text{ou} \quad \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \right\rangle = c$$

Rappels d'algèbre linéaire II

Définition : hyperplan

Un **hyperplan** H de \mathbb{R}^d est l'ensemble des points $x=(x_1,\ldots,x_d)^{\top}$ qui vérifient pour un vecteur directeur $a=(a_1,\ldots,a_d)^{\top}$ et une constante réelle c l'équation suivante :

$$a_1x_1 + \dots + a_dx_d = c$$
 ou $\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}, \begin{pmatrix} a_1 \\ \vdots \\ a_d \end{pmatrix} \right\rangle = c$

Définition : dérivée

 $f: \mathbb{R} \to \mathbb{R}$ est **dérivable en** x^* si la limite du taux d'accroisement existe $f(x) = \lim_{x \to \infty} \frac{f'(x^*)}{x^*} = \lim_{x \to \infty} \frac{f(x)}{x^*} = \frac{f'(x^*)}{x^*} = \frac{f'(x^*)$

existe, *i.e.*,
$$f'(x^*) = \lim_{x \to x^*} = \frac{f(x) - f(x^*)}{x - x^*}$$

Définition : dérivée

 $f: \mathbb{R} \to \mathbb{R}$ est **dérivable en** x^* si la limite du taux d'accroisement $f(x) - f(x^*)$

existe, *i.e.*,
$$f'(x^*) = \lim_{x \to x^*} = \frac{f(x) - f(x^*)}{x - x^*}$$

Définition : dérivée

 $f:\mathbb{R} \to \mathbb{R}$ est **dérivable en** x^* si la limite du taux d'accroisement existe, i.e., $f'(x^*) = \lim_{x \to x^*} = \frac{f(x) - f(x^*)}{x - x^*}$

Définition : dérivée

 $f: \mathbb{R} \to \mathbb{R}$ est **dérivable en** x^* si la limite du taux d'accroisement $f(x) - f(x^*)$

existe, *i.e.*,
$$f'(x^*) = \lim_{x \to x^*} = \frac{f(x) - f(x^*)}{x - x^*}$$

Interprétation tangentielle

Définition : tangente

Si f est dérivable en x^* alors la droite Δ d'équation $y=f'(x^*)(x-x^*)+f(x^*)$ est la droite **tangente** à f au point x^*

Rem: approximation d'ordre un de f (formule de Taylor d'ordre un)

Propriétés classiques de la dérivée

Théorème : linéarité

Si f et g sont dérivables alors $\alpha f+\beta g$ l'est aussi pour tous α et β réels. De plus $(\alpha f+\beta g)'=\alpha f'+\beta g'$

Exemples de calcul:

$$f(x) = 1 f'(x) = 0$$

$$f(x) = x^n f'(x) = nx^{n-1} (pour $n \in \mathbb{N}^*$)
$$f(x) = \exp(x) f'(x) = \exp(x)$$

$$\vdots \vdots$$$$

Pour aller plus loin: Gourdon (2008), Chapitre II. 1

Dérivée partielle d'une fonction multi-dimensionnelle

On ne s'intéressera uniquement aux fonctions à valeurs réelles dans toute la suite du cours : $f:\mathbb{R}^d \to \mathbb{R}$

Définition : dérivée partielle

La $\pmb{i}^{\text{ième}}$ dérivée partielle de $f:\mathbb{R}^d\to\mathbb{R}$ au point x^* est la dérivée de la fonction définie par

$$\mathbb{R} \to \mathbb{R}$$

$$t \mapsto f(x_1^*, \dots, t, \dots, x_d^*)$$

prise au point x_i^* . On note $\frac{\partial f}{\partial x_i}(x^*)$ cette quantité.

 $\overline{\text{Interprétation}}$: c'est la dérivée de la fonction réelle obtenue quand on gèle toutes les coordonnées sauf la $i^{\text{ième}}$.

Dérivée partielle d'une fonction multi-dimensionnelle II

Lien dérivées partielles et gradient

$$f: \mathbb{R}^d \to \mathbb{R}$$

Définition : gradient

Quand f admet des dérivées partielles en x^* pour toutes les directions, on appelle **gradient** de f en x^* le vecteur :

$$\nabla f(x^*) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x^*) \\ \vdots \\ \frac{\partial f}{\partial x_d}(x^*) \end{pmatrix} \in \mathbb{R}^d$$

Rem: quand la fonction est "régulière" on obtient l'approximation

$$f(x) \approx f(x^*) + \langle \nabla f(x^*), x - x^* \rangle$$

Interprétation tangentielle

Définition : différentiable

Une fonction $f:\mathbb{R}^d \to \mathbb{R}$ est dite **différentiable en** $\boldsymbol{x^*}$ si

$$\lim_{x \to x^*} \frac{|f(x) - f(x^*) - \langle \nabla f(x^*), x - x^* \rangle|}{\|x - x^*\|} = 0$$

Dérivées partielles d'ordre deux

De manière récursive on peut définir la dérivée partielle d'ordre quelconque :

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x^*) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)(x^*)$$

On admet ici la propriété de Schwartz :

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x^*) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x^*)$$

Définition : matrice Hessienne

$$\nabla^2 f(x^*) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x^*) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x^*) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d}(x^*) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x^*) & \frac{\partial^2 f}{\partial x_2^2}(x^*) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d}(x^*) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1}(x^*) & \frac{\partial^2 f}{\partial x_d \partial x_2}(x^*) & \cdots & \frac{\partial^2 f}{\partial x_d^2}(x^*) \end{bmatrix}$$

Approximation quadratique

Quand la fonction est "régulière" on obtient l'approximation

$$f(x) \approx f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{1}{2} (x - x^*)^\top \nabla^2 f(x^*) (x - x^*)$$

 $\frac{\text{Interprétation}}{\text{polynôme d'ordre deux au voisinage de } x^*$

Pour aller plus loin: Rouvière (2009)

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$A$$
 matrice symétrique réelle : $A=egin{pmatrix} a & b \ b & c \end{pmatrix}$ et $x=egin{pmatrix} x_1 \ x_2 \end{pmatrix}$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$(y_1,y_2)\mapsto y_1^2$$

$$(y_1, y_2) \mapsto y_1^2 + y_2^2$$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$(y_1, y_2) \mapsto y_1^2 + y_2^2$$

$$(y_1,y_2)\mapsto y_1^2-y_2^2$$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$(y_1,y_2)\mapsto y_1^2$$

$$(y_1, y_2) \mapsto y_1^2 + y_2^2$$
 $(y_1, y_2) \mapsto y_1^2 - y_2^2$

$$(y_1,y_2)\mapsto y_1^2-y_2^2$$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

$$\begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x_1, x_2) & \mapsto x^\top A x = a x_1^2 + 2b x_1 x_2 + c x_2^2 \end{cases}$$

Références I

► X. Gourdon.

Les maths en tête : Analyse.

Ellipses Marketing, ELLIPSES MARKETING edition, 2008.

► F. Rouvière.

Petit guide de calcul différentiel : à l'usage de la licence et de l'agrégation.

Enseignement des mathématiques. Cassini, 2009.