Community detection:

- 1. Clustering by edge betweenness
 - a. Edge betweenness: number of shortest passing over the edge.
 - i. High means an edge is important link connect groups
 - ii. Low is not important pass
 - b. The girvan-newman algorithm:
 - i. Computer edge betweenness
 - ii. Remove the edge with the highest betweenness
 - iii. Recalculate edge betweenness
 - iv. Repeat the process until the network is splits into meaningful communities

- In general, how we distribute credit of a node to its edges depends on number of shortest paths
 - ☐ Say there were 5 shortest paths to D and only 3 to F
 - ☐ Then credit of edge (D,G) = 5/8 and credit of edge (F,G) = 3/8
- □ Node D gets credit = 1 + credits of edges below it = 1 + 3 + 0.5 = 4.5
- \square Node F gets credit = 1 + 0.5 = 1.5
- ☐ D has only one parent, so Edge (E,D) gets credit = 4.5 from D
- ☐ Likewise for F: Edge (E,F) gets credit = 1.5 from F
- c. Con for girvan-newman is computationally expensive for large graphs.
- 2. Define Modularity Q (higher is better)
 - a. A measure of how well a network is partitioned into communities
 - b. Given a partition of the network into groups s in S
 - c. Q = Sum((number edges in groups s)-(expected number edges in s))
- 3. Modularity (range: -1 to 1):

Modularity of partitioning S of graph G: • $\mathbf{Q} \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)] The expected existence of the edge in s All possible pairs The actual of nodes in s: existence of the edge both (i,j),(j,i) Hints but not (i,i),(j,j)

- ☐ Determine *m* and *ki*, *kj* based on *G* (before cuttings)
- ☐ Determine Aij based on s in S (after cuttings)
- □ If $s=\{n\}$ is a singleton, then use 2*(0 kx*kx/2m) = -kx*kx/m

a.

- 4. Spectral clustering (graph cut)
 - a. Partitioning a graph to minimize the number of edges that connect different communities.
 - b. Goal: minimize the cut size but smallest group size is not always best
 - i. Divide nodes into two sets so that the cut (set of edges that connect nodes in different sets) is minimized
 - ii. Want the two sets to be approximately equal in size
 - iii. Maximize the number of within-group connections
 - iv. Minimize the number of between-group connections
 - c. Normalized cut:

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

i.

- ii. Vol(t) = edges (count even after edge cut)
- iii. Good cut= 0 Strongly connected groups with minimal between group edges
- iv. Bad cut = 1. Weak Separation many cross group connections
- d. Matrix:

■ Adjacency matrix (A):

 \square $n \times n$ matrix

 \Box $A=[a_{ii}], a_{ii}=1$ if edge between node i and j

■ Degree matrix (D):

 \square $n \times n$ diagonal matrix

 \square **D**=[d_{ii}], d_{ii} = degree of node i

- e. Laplase matrix
 - i. row sum = 0
 - ii. Symmetric

- 5. Bypartite graph:
 - a. A complete bipartitie graph: Contains all possible edges between a vertex of f and a vertex of c
- 6. Direct discovery