LSHTM

David Hajage

March 4, 2021

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Time plots


```
autoplot(USAccDeaths) +
  ylab("Total deaths") + xlab("Year")
```


- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal plots


```
ggseasonplot(USAccDeaths, year.labels=TRUE,
    year.labels.left=TRUE) + ylab("Total deaths")
```


Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot()

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal polar plots


```
ggseasonplot(USAccDeaths, year.labels=TRUE,
polar=TRUE) + ylab("Total deaths")
```


Seasonal polar plots


```
ggseasonplot(USAccDeaths, year.labels=TRUE,
polar=TRUE) + ylab("Total deaths")
```


Only change is to switch to polar coordinates.

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Seasonal subseries plots


```
ggsubseriesplot(USAccDeaths) +
ylab("Total deaths")
```


Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggsubseriesplot()

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal polar plots
- 4 Seasonal subseries plots
- 5 Lag plots and autocorrelation

Lagged scatterplots

gglagplot(USAccDeaths/1000, lags=9)

Lagged scatterplots

gglagplot(USAccDeaths/1000, lags=9, do.lines=FALSE)

Lagged scatterplots

gglagplot(USAccDeaths/1000, lags=9, do.lines=FALSE)

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- Autocorrelations are correlations associated with these scatterplots.

Autocorrelation

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

and

$$c_k = rac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

 $r_k = c_k/c_0$

Autocorrelation

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T}\sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- r_1 indicates how successive values of y relate to each other
- $ightharpoonup r_2$ indicates how y values two periods apart relate to each other
- \blacksquare r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Autocorrelation

Results for first 9 lags for USAccDeaths data:

ggAcf(USAccDeaths)

