Using R and Bioconductor for proteomics data analysis

Laurent Gatto Computational Proteomics Unit

Projet PROSPECTOM 19 Nov 2014, Grenomble, France

Version of this document: 6f6ac51 [2014-11-16 22:08:29 +0000]

Setup

The follow packages will be used throughout this documents. R version 3.1.1 or higher is required to install all the packages using BiocInstaller::biocLite.

```
library("mzID")
library("MSnID")
library("MSGFplus")
library("MSnbase")
library("rpx")
library("MLInterfaces")
library("pRoloc")
library("pRolocdata")
library("rTANDEM")
library("MSGFplus")
library("MSGFgui")
library("rols")
library("rols")
```

The most convenient way to install all the tutorials requirement (and more related content), is to install RforProteomics with all its dependencies.

```
library("BiocInstaller")
biocLite("RforProteomics", dependencies = TRUE)
```

Introduction

This tutorial illustrates R / Bioconductor infrastructure for proteomics. Topics covered focus on support for open community-driven formats for raw data and identification results, packages for peptide-spectrum matching, quantitative proteomics, mass spectrometry (MS) and quantitation data processing. Links to other packages and references are also documented.

The vignettes included in the RforProteomics package also contains useful material.

Exploring available infrastructure

In Bioconductor version 3.0, there are respectively 65 proteomics, 44 mass spectrometry software packages and 7 mass spectrometry experiment packages. These respective packages can be extracted with the proteomicsPackages(), massSpectrometryPackages() and massSpectrometryDataPackages() and explored interactively.

```
library("RforProteomics")
pp <- proteomicsPackages()
display(pp)</pre>
```

Mass spectrometry data

Type	Format	Package
raw	mzML, mzXML, netCDF, mzData	mzR (read)
identification	mzIdentML	${\tt mzR} \ {\rm and} \ {\tt mzID} \ ({\rm read})$
quantitation	mzQuantML	
peak lists	mgf	${\tt MSnbase} \; ({\rm read/write})$
other	mzTab	${\tt MSnbase} \ ({\rm read/write})$

Getting data from proteomics repositories

Contemporary MS-based proteomics data is disseminated through the ProteomeXchange infrastructure, which centrally coordinates submission, storage and dissemination through multiple data repositories, such as the PRIDE data base at the EBI for MS/MS experiments, PASSEL at the ISB for SRM data and the MassIVE resource. The rpx is an interface to ProteomeXchange and provides a basic and unified access to PX data.

```
library("rpx")
pxannounced()
```

15 new ProteomeXchange annoucements

```
Publication.Data
##
       Data.Set
                                                 Message
## 1
     PXD000898 2014-11-13 14:42:49
                                                     New
     PXD000922 2014-11-12 11:03:38
                                                     New
## 3
     PXD001243 2014-11-12 08:54:07
                                                     New
## 4
     PXD001045 2014-11-11 08:20:08
                                                     New
    PXD001090 2014-11-10 13:37:29
                                                     New
## 6 PXD001089 2014-11-10 13:34:47
                                                     New
## 7
     PXD001099 2014-11-10 11:47:19 Updated information
## 8
     PXD001203 2014-11-10 11:46:31
                                                     New
## 9 PXD001074 2014-11-06 09:52:57
                                                     New
## 10 PXD001165 2014-11-05 15:22:20
                                                     New
## 11 PXD001423 2014-11-04 14:01:46
                                                     New
## 12 PXD001422 2014-11-04 13:57:55
                                                     New
## 13 PXD001421 2014-11-04 13:41:36
                                                     New
## 14 PXD001420 2014-11-04 13:25:20
                                                     New
## 15 PXD001419 2014-11-04 13:21:13
                                                     New
px <- PXDataset("PXD000001")</pre>
```

```
## Object of class "PXDataset"
```

```
## Id: PXD000001 with 8 files
## [1] 'F063721.dat' ... [8] 'erwinia_carotovora.fasta'
## Use 'pxfiles(.)' to see all files.

pxfiles(px)

## [1] "F063721.dat"
## [2] "F063721.dat-mztab.txt"
## [3] "PRIDE_Exp_Complete_Ac_22134.xml.gz"
## [4] "PRIDE_Exp_mzData_Ac_22134.xml.gz"
## [5] "PXD000001_mztab.txt"
## [6] "TMT_Erwinia_1uLSike_Top10HCD_iso12_45stepped_60min_01.mzXML"
## [7] "TMT_Erwinia_1uLSike_Top10HCD_iso12_45stepped_60min_01.raw"
## [8] "erwinia_carotovora.fasta"
```

Other metadata for the px dataset:

```
pxtax(px)
pxurl(px)
pxref(px)
```

Data files can then be downloaded with the pxget function as illustrated below. Alternatively, the file is available on the workshop's Amazon virtual machine in /data/Proteomics/data/.

```
mzf <- "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzXML"
if (!file.exists(mzf))
    mzf <- pxget(px, pxfiles(px)[6])
mzf</pre>
```

```
## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzXML"
```

Exercise

Explore what data files have been deposited by Pandey's recent draft map of the human proteome.

Handling raw MS data

The mzR package provides an interface to the proteowizard code base, the legacy RAMP is a non-sequential parser and other C/C++ code to access various raw data files, such as mzML, mzXML, netCDF, and mzData. The data is accessed on-disk, i.e it does not get loaded entirely in memory by default. The three main functions are openMSfile to create a file handle to a raw data file, header to extract metadata about the spectra contained in the file and peaks to extract one or multiple spectra of interest. Other functions such as instrumentInfo, or runInfo can be used to gather general information about a run.

```
library("mzR")
ms <- openMSfile(mzf)
ms

## Mass Spectrometry file handle.
## Filename: TMT_Erwinia_1uLSike_Top10HCD_iso12_45stepped_60min_01.mzXML
## Number of scans: 7534</pre>
```

```
hd <- header(ms)
dim(hd)
## [1] 7534
              21
names (hd)
##
    [1] "seqNum"
                                    "acquisitionNum"
   [3] "msLevel"
##
                                    "polarity"
                                    "totIonCurrent"
##
   [5] "peaksCount"
  [7] "retentionTime"
                                    "basePeakMZ"
##
  [9] "basePeakIntensity"
                                    "collisionEnergy"
## [11] "ionisationEnergy"
                                    "lowMZ"
## [13] "highMZ"
                                    "precursorScanNum"
## [15] "precursorMZ"
                                    "precursorCharge"
## [17] "precursorIntensity"
                                    "mergedScan"
## [19] "mergedResultScanNum"
                                    "mergedResultStartScanNum"
## [21] "mergedResultEndScanNum"
```

Exercise

Database:

Number of scans: 5287
Number of PSM's: 5563

##

Extract the index of the MS2 spectrum with the highest base peak intensity and plot its spectrum. Is the data centroided or in profile mode?

Handling identification data

The RforProteomics package distributes a small identification result file (see ?TMT_Erwinia_1uLSike_Top10HCD_isol2_45ste that we load and parse using infrastructure from the mzID package.

/home/lgatto/dev/00_github/RforProteomics/sandbox/erwinia_carotovora.fasta

Various data can be extracted from the mzID object, using one the accessor functions such as database, scans, peptides, ... The object can also be converted into a data.frame using the flatten function.

Exercise

Is there a relation between the length of a protein and the number of identified peptides, conditioned by the (average) e-value of the identifications?

The mzR package also support fast parsing of mzIdentML files with the openIDfile function. Compare it, it terms of output and speed with mzID.

MS/MS database search

While searches are generally performed using third-party software independently of R or can be started from R using a system call, the rtandem package allows one to execute such searches using the X!Tandem engine. The shinytandem provides a interactive interface to explore the search results.

```
library("rTANDEM")
?rtandem
library("shinyTANDEM")
?shinyTANDEM
```

Similarly, the MSGFplus package enables to perform a search using the MSGF+ engine, as illustrated below:

A graphical interface to perform the search the data and explore the results is also available:

```
library("MSGFgui")
MSGFgui()
```

Exercise

Search TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzXML against the fasta file from PXD000001 using, for example, MSGFplus/MSGFgui.

Analysing search results

The MSnID package can be used for post-search filtering of MS/MS identifications. One starts with the construction of an MSnID object that is populated with identification results that can be imported from a data.frame or from mzIdenML files.

```
library("MSnID")
msnid <- MSnID(".")</pre>
```

```
## Note, the anticipated/suggested columns in the
## peptide-to-spectrum matching results are:
## accession
## calculatedMassToCharge
## chargeState
## experimentalMassToCharge
## isDecoy
## peptide
## spectrumFile
## spectrumID
PSMresults <- read.delim(system.file("extdata", "human_brain.txt",
                                       package="MSnID"),
                          stringsAsFactors=FALSE)
psms(msnid) <- PSMresults</pre>
show(msnid)
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 997 at 37 % FDR
## #peptides: 687 at 57 % FDR
## #accessions: 665 at 65 \% FDR
The package then enables to define, optimise and apply filtering based for example on missed cleavages,
identification scores, precursor mass errors, etc. and assess PSM, peptide and protein FDR levels.
msnid$msmsScore <- -log10(msnid$`MS.GF.SpecEValue`)</pre>
msnid$absParentMassErrorPPM <- abs(mass_measurement_error(msnid))</pre>
filtObj <- MSnIDFilter(msnid)</pre>
filtObj$absParentMassErrorPPM <- list(comparison="<", threshold=5.0)
filtObj$msmsScore <- list(comparison=">", threshold=8.0)
show(filtObj)
## MSnIDFilter object
## (absParentMassErrorPPM < 5) & (msmsScore > 8)
filtObj.grid <- optimize_filter(filtObj, msnid, fdr.max=0.01,</pre>
                                  method="Grid", level="peptide",
                                  n.iter=500)
show(filtObj.grid)
## MSnIDFilter object
## (absParentMassErrorPPM < 2.3) & (msmsScore > 7.8)
msnid <- apply_filter(msnid, filt0bj.grid)</pre>
```

show(msnid)

```
## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 346 at 0 % FDR
## #peptides: 160 at 0 % FDR
## #accessions: 132 at 0 % FDR
```

The resulting data can be exported to a data.frame or to a dedicated MSnSet data structure for quantitative MS data, described below, and further processed and analyses using appropriate statistical tests.

High-level data interface

The above sections introduced low-level interfaces to raw and identification results. The MSnbase package provides abstractions for raw data through the MSnExp class and containers for quantification data via the MSnSet class. Both store

- 1. the actual assay data (spectra or quantitation matrix), accessed with spectra (or the [, [[operators) or exprs;
- 2. sample metadata, accessed as a data.frame with pData;
- 3. feature metadata, accessed as a data.frame with fData.

The figure below give a schematics of an MSnSet instance and the relation between the assay data and the respective feature and sample metadata.

Another useful slot is processingData, accessed with processingData(.), that records all the processing that objects have undergone since their creation (see examples below).

The readMSData will parse the raw data, extract the MS2 spectra and construct an MS experiment file.

[1] "/home/lg390/R/x86_64-unknown-linux-gnu-library/3.1/MSnbase/extdata/dummyiTRAQ.mzXML"

```
msexp <- readMSData(quantFile, verbose=FALSE)
msexp</pre>
```

```
## Object of class "MSnExp"
## Object size in memory: 0.2 Mb
## - - Spectra data - - -
## MS level(s): 2
## Number of MS1 acquisitions: 1
## Number of precursor ions: 5
## A unique MZs
## Precursor MZ's: 437.8 - 716.34
## MSn M/Z range: 100 2016.66
## MSn retention times: 25:1 - 25:2 minutes
## - - Processing information - -
## Data loaded: Sun Nov 16 22:10:02 2014
```

```
## MSnbase version: 1.14.0
## - - - Meta data - - -
## phenoData
##
     rowNames: 1
##
     varLabels: sampleNames
     varMetadata: labelDescription
##
## Loaded from:
     dummyiTRAQ.mzXML
## protocolData: none
## featureData
     featureNames: X1.1 X2.1 ... X5.1 (5 total)
##
     fvarLabels: spectrum
     fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
The identification results stemming from the same raw data file can then be used to add PSM matches.
## find path to a mzIdentML file
identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),</pre>
                 full.name = TRUE, pattern = "dummyiTRAQ.mzid")
identFile
## [1] "/home/lg390/R/x86_64-unknown-linux-gnu-library/3.1/MSnbase/extdata/dummyiTRAQ.mzid"
msexp <- addIdentificationData(msexp, identFile)</pre>
## reading dummyiTRAQ.mzid... DONE!
fData(msexp)
##
        spectrum scan number(s) passthreshold rank calculatedmasstocharge
## X1.1
               1
                               1
                                           TRUE
## X2.1
                                           TRUE
                                                                    546.9633
               2
                               2
                                                   1
## X3.1
               3
                              NA
                                             NA
                                                  NA
                                                                          NA
## X4.1
               4
                              NA
                                             NA
                                                  NA
                                                                          NA
                               5
                                           TRUE
## X5.1
               5
                                                   1
        experimentalmasstocharge chargestate ms-gf:denovoscore ms-gf:evalue
## X1.1
                         645.3741
                                             3
                                                               77
                                                                      79.36958
                                             3
## X2.1
                         546.9586
                                                               39
                                                                      13.46615
## X3.1
                               NA
                                            NA
                                                               NA
                                                                            NA
## X4.1
                                            NA
                                                                            NA
                               NA
                                                               NA
## X5.1
                         437.8040
                                             2
                                                                5
                                                                     366.38422
        ms-gf:rawscore ms-gf:specevalue assumeddissociationmethod
## X1.1
                   -39
                            5.527468e-05
                                                                 CID
## X2.1
                    -30
                            9.399048e-06
                                                                 CID
## X3.1
                    NA
                                                                <NA>
## X4.1
                    NA
                                                                <NA>
## X5.1
                   -42
                            2.577830e-04
                                                                 CID
##
        isotopeerror isdecoy post pre end start
                                                         accession length
```

50

NA

170 ECA0984; ECA3829

ECA1028

<NA>

231

275

NΑ

X1.1

X2.1

X3.1

1

<NA>

FALSE

FALSE

Α

Α

NA <NA> <NA>

R 186

K 62

NA

```
## X4.1
                <NA>
                                                             <NA>
                          NA <NA> <NA> NA
                                               NA
                                                                      NA
## X5.1
                                               22
                                                          ECA0510
                                                                     166
                   1
                       FALSE
                                L
                                     K 28
##
                                                                         description
## X1.1 DNA mismatch repair protein; acetolactate synthase isozyme III large subunit
                 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
## X2.1
## X3.1
## X4.1
                                                                                 <NA>
## X5.1
                           putative capsular polysacharide biosynthesis transferase
##
                   pepseq modified modification
                                                             databaseFile
## X1.1 VESITARHGEVLQLRPK
                             FALSE
                                             NA erwinia_carotovora.fasta
            IDGQWVTHQWLKK
                             FALSE
                                             NA erwinia_carotovora.fasta
## X3.1
                     <NA>
                                NA
                                             NA
                                                                      <NA>
## X4.1
                     <NA>
                                NA
                                              NA
                                                                      <NA>
                             FALSE
## X5.1
                  LVILLFR
                                             NA erwinia_carotovora.fasta
        identFile nprot npep.prot npsm.prot npsm.pep
                      2
## X1.1
                2
                                1
                                          1
                                                    1
## X2.1
                2
                      1
                                1
                                          1
                                                    1
## X3.1
                     NA
                               NA
                                                   NA
               NA
                                          NA
                                                   NA
## X4.1
                                          NA
               NA
                     NA
                               NA
## X5.1
                2
                      1
                                1
                                           1
                                                    1
```

msexp[[1]]

```
## Object of class "Spectrum2"
## Precursor: 645.3741
## Retention time: 25:1
## Charge: 3
## MSn level: 2
## Peaks count: 2921
```

Total ion count: 668170086

plot(msexp[[1]], full=TRUE)

as(msexp[[1]], "data.frame")[100:105,]

```
## mz i
## 100 141.0990 588594.812
## 101 141.1015 845401.250
## 102 141.1041 791352.125
## 103 141.1066 477623.000
## 104 141.1091 155376.312
## 105 141.1117 4752.541
```

Quantitative proteomics

There are a wide range of proteomics quantitation techniques that can broadly be classified as labelled vs. label-free, depending whether the features are labelled prior the MS acquisition and the MS level at which quantitation is inferred, namely MS1 or MS2.

	Label-free	Labelled
MS1	XIC	SILAC, 15N
MS2	Counting	iTRAQ, TMT

In terms of raw data quantitation, most efforts have been devoted to MS2-level quantitation. Label-free XIC quantitation has however been addressed in the frame of metabolomics data processing by the xcms infrastructure.

An MSnExp is converted to an MSnSet by the quantitation method. Below, we use the iTRAQ 4-plex isobaric tagging strategy (defined by the iTRAQ4 parameter; other tags are available).

```
plot(msexp[[1]], full=TRUE, reporters = iTRAQ4)
```



```
msset <- quantify(msexp, method = "trap", reporters = iTRAQ4, verbose=FALSE)
exprs(msset)</pre>
```

```
## X1.1 4483.320 4873.996 6743.441 4601.378

## X2.1 1918.082 1418.040 1117.601 1581.954

## X3.1 15210.979 15296.256 15592.760 16550.502

## X4.1 4133.103 5069.983 4724.845 4694.801

## X5.1 11947.881 13061.875 12809.491 12911.479
```

processingData(msset)

```
## - - - Processing information - - -
```

```
## Data loaded: Sun Nov 16 22:10:02 2014
## iTRAQ4 quantification by trapezoidation: Sun Nov 16 22:10:04 2014
## MSnbase version: 1.14.0
```

Other MS2 quantitation methods available in quantify include the (normalised) spectral index SI and (normalised) spectral abundance factor SAF or simply a simple count method.

Note that spectra that have not been assigned any peptide (NA) or that match non-unique peptides (npsm > 1) are discarded in the counting process.

See also The isobar package supports quantitation from centroided mgf peak lists or its own tab-separated files that can be generated from Mascot and Phenyx vendor files.

Importing third-party data

The PSI mzTab file format is aimed at providing a simpler (than XML formats) and more accessible file format to the wider community. It is composed of a key-value metadata section and peptide/protein/small molecule tabular sections.

```
mztf <- pxget(px, pxfiles(px)[2])

## Downloading 1 file
## F063721.dat-mztab.txt already present.

(mzt <- readMzTabData(mztf, what = "PEP"))

## Warning in readMzTabData(mztf, what = "PEP"): Support for mzTab version
## 0.9 only. Support will be added soon.

## Detected a metadata section
## Detected a peptide section

## MSnSet (storageMode: lockedEnvironment)
## assayData: 1528 features, 6 samples
## element names: exprs
## protocolData: none
## phenoData
## rowNames: sub[1] sub[2] ... sub[6] (6 total)</pre>
```

```
##
     varLabels: abundance
##
     varMetadata: labelDescription
## featureData
     featureNames: 1 2 ... 1528 (1528 total)
##
##
     fvarLabels: sequence accession ... uri (14 total)
     fvarMetadata: labelDescription
##
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## mzTab read: Sun Nov 16 22:10:09 2014
## MSnbase version: 1.14.0
```

It is also possible to import arbitrary spreadsheets as MSnSet objects into R with the readMSnSet2 function. The main 2 arguments of the function are (1) a text-based spreadsheet and (2) column names of indices that identify the quantitation data.

```
csv <- dir(system.file ("extdata" , package = "pRolocdata"),</pre>
           full.names = TRUE, pattern = "pr800866n_si_004-rep1.csv")
getEcols(csv, split = ",")
    [1] "\"Protein ID\""
                                       "\"FBgn\""
##
##
   [3] "\"Flybase Symbol\""
                                       "\"No. peptide IDs\""
    [5] "\"Mascot score\""
                                       "\"No. peptides quantified\""
##
##
   [7] "\"area 114\""
                                       "\"area 115\""
                                       "\"area 117\""
  [9] "\"area 116\""
##
## [11] "\"PLS-DA classification\""
                                       "\"Peptide sequence\""
## [13] "\"Precursor ion mass\""
                                       "\"Precursor ion charge\""
## [15] "\"pd.2013\""
                                       "\"pd.markers\""
ecols <- 7:10
res <- readMSnSet2(csv, ecols)
head(exprs(res))
##
     area.114 area.115 area.116 area.117
## 1 0.379000 0.281000 0.225000 0.114000
## 2 0.420000 0.209667 0.206111 0.163889
## 3 0.187333 0.167333 0.169667 0.476000
## 4 0.247500 0.253000 0.320000 0.179000
```

head(fData(res))

5 0.216000 0.183000 0.342000 0.259000 ## 6 0.072000 0.212333 0.573000 0.142667

```
##
     Protein.ID
                        FBgn Flybase.Symbol No..peptide.IDs Mascot.score
## 1
        CG10060 FBgn0001104
                                G-ialpha65A
                                                                    179.86
                                                           3
                                                           5
## 2
        CG10067 FBgn0000044
                                     Act57B
                                                                    222.40
## 3
        CG10077 FBgn0035720
                                    CG10077
                                                           5
                                                                    219.65
## 4
        CG10079 FBgn0003731
                                                           2
                                       Egfr
                                                                     86.39
## 5
        CG10106 FBgn0029506
                                    Tsp42Ee
                                                           1
                                                                     52.10
        CG10130 FBgn0010638
## 6
                                  Sec61beta
                                                           2
                                                                     79.90
     No..peptides.quantified PLS.DA.classification Peptide.sequence
## 1
                                                  PM
```

```
## 2
                             9
                                                   PM
## 3
                             3
                             2
## 4
                                                   PM
## 5
                             1
                                                              GGVFDTIQK
## 6
                             3
                                             ER/Golgi
                                                    pd.2013 pd.markers
##
     Precursor.ion.mass Precursor.ion.charge
                                                         PM
                                                                unknown
## 1
                                                         PM
                                                                unknown
## 2
## 3
                                                    unknown
                                                                unknown
## 4
                                                                unknown
                                                         PM
## 5
                 626.887
                                              2 Phenotype 1
                                                                unknown
## 6
                                                   ER/Golgi
                                                                     ER
```

Data processing and analysis

Processing and normalisation

Each different types of quantitative data will require their own pre-processing and normalisation steps. Both isobar and MSnbase allow to correct for isobaric tag impurities normalise the quantitative data.

```
data(itraqdata)
qnt <- quantify(itraqdata, method = "trap",</pre>
                 reporters = iTRAQ4, verbose = FALSE)
impurities \leftarrow matrix(c(0.929,0.059,0.002,0.000,
                        0.020,0.923,0.056,0.001,
                        0.000,0.030,0.924,0.045,
                         0.000,0.001,0.040,0.923),
                      nrow=4, byrow = TRUE)
## or, using makeImpuritiesMatrix()
## impurities <- makeImpuritiesMatrix(4)</pre>
qnt.crct <- purityCorrect(qnt, impurities)</pre>
processingData(qnt.crct)
## - - - Processing information - - -
## Data loaded: Wed May 11 18:54:39 2011
## iTRAQ4 quantification by trapezoidation: Sun Nov 16 22:10:11 2014
## Purity corrected: Sun Nov 16 22:10:11 2014
## MSnbase version: 1.1.22
plot0 <- function(x, y, main = "") {</pre>
    old.par <- par(no.readonly = TRUE)</pre>
    on.exit(par(old.par))
    par(mar = c(4, 4, 1, 1))
    par(mfrow = c(2, 2))
    sx <- sampleNames(x)</pre>
    sy <- sampleNames(y)</pre>
    for (i in seq_len(ncol(x))) {
        plot(exprs(x)[, i], exprs(y)[, i], log = "xy",
              xlab = sx[i], ylab = sy[i])
        grid()
    }
}
```


Various normalisation methods can be applied the MSnSet instances using the normalise method: variance stabilisation (vsn), quantile (quantiles), median or mean centring (center.media or center.mean), ...

```
qnt.crct.nrm <- normalise(qnt.crct, "quantiles")
plot0(qnt, qnt.crct.nrm)</pre>
```

The combineFeatures method combines spectra/peptides quantitation values into protein data. The grouping is defined by the groupBy parameter, which is generally taken from the feature metadata (protein accessions, for example).

```
## arbitraty grouping
g <- factor(c(rep(1, 25), rep(2, 15), rep(3, 15)))
prt <- combineFeatures(qnt.crct.nrm, groupBy = g, fun = "sum")</pre>
```

Combined 55 features into 3 using sum

```
processingData(prt)
```

```
## - - Processing information - - -
## Data loaded: Wed May 11 18:54:39 2011
## iTRAQ4 quantification by trapezoidation: Sun Nov 16 22:10:11 2014
## Purity corrected: Sun Nov 16 22:10:11 2014
## Normalised (quantiles): Sun Nov 16 22:10:11 2014
## Combined 55 features into 3 using sum: Sun Nov 16 22:10:11 2014
## MSnbase version: 1.1.22
```

Finally, proteomics data analysis is generally hampered by missing values. Missing data imputation is a sensitive operation whose success will be guided by many factors, such as degree and (non-)random nature of the missingness. Missing value in MSnSet instances can be filtered out and imputed using the filterNA and impute functions.

```
set.seed(1)
qnt0 <- qnt
exprs(qnt0)[sample(prod(dim(qnt0)), 10)] <- NA
table(is.na(qnt0))

##
## FALSE TRUE
## 209 11

qnt00 <- filterNA(qnt0)
dim(qnt00)

## [1] 44 4

qnt.imp <- impute(qnt0)
plot0(qnt, qnt.imp)</pre>
```


Exercise

The mzt instance created from the mzTab file has the following is a TMT 6-plex with the following design:

In this TMT 6-plex experiment, four exogenous proteins were spiked into an equimolar *Erwinia* carotovora lysate with varying proportions in each channel of quantitation; yeast enolase (ENO) at 10:5:2.5:12.5:10, bovine serum albumin (BSA) at 1:2.5:5:10:5:1, rabbit glycogen phosphory-lase (PHO) at 2:2:2:2:1:1 and bovin cytochrome C (CYT) at 1:1:1:1:1:2. Proteins were then digested, differentially labelled with TMT reagents, fractionated by reverse phase nanoflow UPLC (nanoACQUITY, Waters), and analysed on an LTQ Orbitrap Velos mass spectrometer (Thermo Scientic).

Explore the mzt data using some of the illustrated functions. The heatmap and MAplot (see

MAplot function), taken from the RforProteomics vignette, have been produced using the same data.

Statistical analysis

R in general and Bioconductor in particular are well suited for the statistical analysis of data. Several packages provide dedicated resources for proteomics data:

- MSstats: A set of tools for statistical relative protein significance analysis in DDA, SRM and DIA experiments.
- msmsTest: Statistical tests for label-free LC-MS/MS data by spectral counts, to discover differentially expressed proteins between two biological conditions. Three tests are available: Poisson GLM regression, quasi-likelihood GLM regression, and the negative binomial of the edgeR package.
- isobar also provides dedicated infrastructure for the statistical analysis of isobaric data.

Machine learning

The MLInterfaces package provides a unified interface to a wide range of machine learning algorithms. Initially developed for microarray and ExpressionSet instances, the pRoloc package enables application of these algorithms to MSnSet data.

```
library("MLInterfaces")
library("pRoloc")
library("pRolocdata")
data(dunkley2006)
traininds <- which(fData(dunkley2006)$markers != "unknown")</pre>
ans <- MLearn(markers ~ ., data = t(dunkley2006), knnI(k = 5), traininds)
ans
## MLInterfaces classification output container
## The call was:
## MLearn(formula = markers ~ ., data = t(dunkley2006), .method = knnI(k = 5),
       trainInd = traininds)
## Predicted outcome distribution for test set:
##
##
        ER lumen ER membrane
                                       Golgi Mitochondrion
                                                                 Plastid
##
              5
                           140
                                          67
                                                        51
                                                                       29
                      Ribosome
                                                   vacuole
##
              PM
                                         TGN
##
              89
                            31
                                           6
## Summary of scores on test set (use testScores() method for details):
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
  0.4000 1.0000 1.0000 0.9332 1.0000 1.0000
kcl <- MLearn( ~ ., data = dunkley2006, kmeansI, centers = 12)</pre>
## clusteringOutput: partition table
##
##
         2
                         6
                             7
                                 8
                                     9 10 11 12
## 56 29 55 49 29 78 40
                                 9 112 44
                                           31 157
## The call that created this object was:
## MLearn(formula = ~., data = dunkley2006, .method = kmeansI, centers = 12)
plot(kcl, exprs(dunkley2006))
```


Average silhouette width: 0.33

PCA screeplot


```
hcl <- MLearn( ~ ., data = t(dunkley2006), hclustI(distFun = dist, cutParm = list(k = 4)))
hcl</pre>
```

plot(hcl, exprs(t(dunkley2006)))

Cluster Dendrogram

dstruc Ifun (*, "complete")

silhouette n = 16 4 clusters C_j $j: n_j \mid ave_{i \in C_j} s_i$ 1: $4 \mid 0.44$ 10 12 10 12 15 3: $4 \mid 0.52$ 15 3: $4 \mid 0.55$ 16 4: $4 \mid 0.45$ 18 4: $4 \mid 0.45$ 18 5ilhouette width s_i

Average silhouette width: 0.49

PCA screeplot

"ESI" "HiRes ESI"

PCA colored by partition

Annotation

##

All the Bioconductor annotation infrastructure, such as biomaRt, GO.db, organism specific annotations, ... are directly relevant to the analysis of proteomics data. A total of 93 ontologies, including some proteomics-centred annotations such as the PSI Mass Spectrometry Ontology, Molecular Interaction (PSI MI 2.5) or Protein Modifications are available through the rols.

```
library("rols")
olsQuery("ESI", "MS")

## MS:1000073 MS:1000162
```

Data from the Human Protein Atlas is available via the hpar package.

Other relevant packages/pipelines

- Analysis of post translational modification with isobar.
- Analysis of label-free data from a Synapt G2 (including ion mobility) with synapter.
- Analysis of spatial proteomics data with pRoloc.
- Analysis of MALDI data with the MALDIquant package.
- Access to the Proteomics Standard Initiative Common QUery InterfaCe with the PSICQUIC package.

Additional relevant packages are described in the RforProteomics vignettes.

Session information

```
## R version 3.1.1 Patched (2014-09-02 r66514)
## Platform: x86_64-unknown-linux-gnu (64-bit)
##
## attached base packages:
## [1] stats4
                 parallel stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
##
## other attached packages:
## [1] hpar_1.8.0
                             rols_1.8.0
                                                  MSGFgui_1.0.1
## [4] rTANDEM_1.6.0
                             data.table_1.9.4
                                                  pRolocdata_1.5.2
## [7] pRoloc_1.7.1
                             MLInterfaces_1.46.0 cluster_1.15.3
## [10] annotate_1.44.0
                             XML_3.98-1.1
                                                  AnnotationDbi_1.28.1
## [13] GenomeInfoDb_1.2.3
                             IRanges_2.0.0
                                                  S4Vectors_0.4.0
## [16] rpx_1.2.0
                             MSGFplus_1.0.3
                                                  MSnID_1.0.0
## [19] mzID_1.4.1
                             RforProteomics_1.5.2 MSnbase_1.14.0
## [22] BiocParallel_1.0.0
                             mzR_2.0.0
                                                  Rcpp 0.11.3
## [25] Biobase_2.26.0
                             BiocGenerics_0.12.1 BiocInstaller_1.16.1
## [28] knitr_1.8
##
## loaded via a namespace (and not attached):
## [1] affy 1.44.0
                                     affyio 1.34.0
## [3] base64enc 0.1-2
                                     BatchJobs 1.5
## [5] BBmisc 1.8
                                     biocViews_1.34.1
## [7] BradleyTerry2_1.0-5
                                     brew_1.0-6
## [9] brglm_0.5-9
                                     car_2.0-21
## [11] caret_6.0-37
                                     Category_2.32.0
                                     chron_2.3-45
## [13] checkmate_1.5.0
## [15] class_7.3-11
                                     codetools_0.2-9
## [17] colorspace_1.2-4
                                     DBI_0.3.1
## [19] digest_0.6.4
                                     doParallel_1.0.8
## [21] e1071_1.6-4
                                     evaluate_0.5.5
## [23] fail_1.2
                                     FNN_1.1
## [25] foreach_1.4.2
                                     formatR_1.0
## [27] gdata_2.13.3
                                     genefilter_1.48.1
## [29] ggplot2_1.0.0
                                     graph_1.44.0
## [31] grid_3.1.1
                                     gridSVG_1.4-0
## [33] GSEABase_1.28.0
                                     gtable_0.1.2
## [35] gtools_3.4.1
                                     htmltools_0.2.6
```

```
## [37] httpuv_1.3.2
                                     impute_1.40.0
## [39] interactiveDisplay_1.4.0
                                     interactiveDisplayBase_1.4.0
## [41] iterators 1.0.7
                                     kernlab 0.9-19
## [43] labeling_0.3
                                     lattice_0.20-29
## [45] limma_3.22.1
                                     lme4_1.1-7
## [47] lpSolve 5.6.10
                                     MALDIquant 1.11
## [49] MASS 7.3-35
                                     Matrix 1.1-4
                                     mime_0.2
## [51] mclust_4.4
## [53] minqa_1.2.4
                                     munsell_0.4.2
## [55] mvtnorm_1.0-0
                                     nlme_3.1-118
## [57] nloptr_1.0.4
                                     nnet_7.3-8
                                     pls_2.4-3
## [59] pcaMethods_1.56.0
## [61] plyr_1.8.1
                                     preprocessCore_1.28.0
## [63] proto_0.3-10
                                     proxy_0.4-13
## [65] R6_2.0.1
                                     randomForest_4.6-10
## [67] RBGL_1.42.0
                                     R.cache_0.10.0
## [69] RColorBrewer_1.0-5
                                     RCurl_1.95-4.3
## [71] rda 1.0.2-2
                                     reshape2 1.4
## [73] rJava_0.9-6
                                     RJSONIO_1.3-0
## [75] R.methodsS3 1.6.1
                                     R.oo 1.18.0
## [77] rpart_4.1-8
                                     RSQLite_1.0.0
## [79] RUnit_0.4.27
                                     R.utils_1.34.0
## [81] sampling_2.6
                                     scales_0.2.4
## [83] sendmailR 1.2-1
                                     sfsmisc 1.0-26
                                     shinyFiles_0.4.0
## [85] shiny_0.10.2.1
## [87] splines_3.1.1
                                     SSOAP 0.8-0
## [89] stringr_0.6.2
                                     survival_2.37-7
## [91] tools_3.1.1
                                     vsn_3.34.0
## [93] xlsx_0.5.7
                                     xlsxjars_0.6.1
## [95] XMLSchema_0.7-2
                                     xtable_1.7-4
## [97] zlibbioc_1.12.0
```