Theorem 0.1 The regular n-gon is constructible iff $n = 2^r p_1 p_2 \dots p_k$, p_i Fermat primes.

Recall: A number α is constructible iff $\mathbb{Q}(\alpha) \supset E_j \subset \ldots \supset E_2 \supset E_1 \subset E = \mathbb{Q}$ E_{i+1}/E_i is quadratic. $E_{i+1} = E_i(\sqrt{a_i})$

A prime p is Fermat iff $p = 2^{2^a} + 1$,

 $3, 5, 17, 257, 65537, \dots$

Proof: Both sides are equivalent to $\phi(n) = 2^i$.

$$\circ \phi(n) = p_1^{r_1 - 1}(p_1 - 1) \dots p_k^{r_k - 1}(p_k - 1);$$

$$n = p_1^{r_1} \dots p_k^{r_k}$$

Power of $2 \iff \text{all } p_i's \neq 2$ appear with multiplicity 1 and are Fermat.

 $\circ \circ \text{Regular } n - gon \text{ constructible } \iff Re(\zeta_n) = cos(\frac{2\pi}{n}) \text{ is constructible.constructible}$

 $cos(\frac{2\pi}{n})$ iff angle $\frac{2\pi}{n}$ constructible.

 $\iff \mathbb{Q}(\cos \frac{2\pi}{n}/\mathbb{Q})$ is a tower of quadratic extensions.

$$\alpha = \frac{1}{2}(\zeta_n + \zeta_n^{-1}) = \frac{1}{2}(e^{2i\pi}n + e^{-2i\pi}n)$$

Tower
$$\mathbb{Q}(\zeta_n) - (2) - \mathbb{Q}(\alpha) - \cdots - \mathbb{Q}$$

$$f(x) = (X - \zeta_n)(X - \zeta_n^{-1})$$

$$= x^2 - (\zeta_n + \zeta_n^{-1})x + 1$$

$$= x^2 - 2\alpha x + 1$$

 $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois because subgroups of abelian groups are normal.

Lemma: Let E/F is Galois with abelian Galois group. Then E is a tower of quadratic extensions of $F \iff [E:F] = \text{power of } 2$

 \implies clear.

 \longleftarrow Induction on [E:F]

[E:F] = 1 true.

[E:F] > 1. Choose $g \in Gal(E/F)$ of order 2.

 $\langle g \rangle \subseteq Gal(E/F)$

 $\implies E^{\langle g \rangle}/F$ Galois, then use induction.

0.0.1 Radical Extensions

Definition 0.2 A finite extension L/F is solvable by radicals if there is a tower of extensions $F = F_0 \hookrightarrow F_2 \hookrightarrow \ldots \hookrightarrow F_m$

such that

• $\forall i \exists n, a \in F_i \text{ s.t. } F_{i+1} = F_i(\sqrt[n]{a})$

• $L \subseteq F_m$

Example 0.3 $F \subset F(\sqrt[n]{a}), a \subset F$

Let ζ_n be a primitive n^{th} root of 1.

Assume $char(F), \slash n$ $x^n - a$ has no multiple roots.

 $E = F(\sqrt[n]{a}, \zeta_n)$ Galois Galois $F(\sqrt[n]{a})$ $F(\sqrt{\zeta_n})$ Galois $F(\sqrt[n]{a})$

 $Gal(F(\zeta_n)/F) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$

 $Gal(F(\sqrt[n]{a}, \zeta_n)/F(\zeta_n)) \hookrightarrow \mathbb{Z}/n\mathbb{Z} \ (addition)$

 $Gal(F(\sqrt[n]{a},\zeta_n)/F(\zeta_n)) =$