1. Assuming the elementary properties of the trigonometric functions show on the interval $(0, \pi/2)$ that the function $\tan(x) - x$ is strictly increasing and $\frac{\sin(x)}{x}$ is strictly decreasing.

Solution: Consider the function $f(x):(0,\pi/2)\to\mathbb{R}$ given by $f(x)=\tan(x)-x$. Note that $f'(x)=\tan^2(x)$. We note that the derivative is positive on the domain $(0,\pi/2)$. Hence, the function is strictly increasing. Let $g(x)=\frac{\sin(x)}{x}$ where $g:(0,\pi/2)\to\mathbb{R}$. We have $g'(x)=\frac{x\cos(x)-\sin(x)}{x^2}$. We must show that $x\cos(x)-\sin(x)$ is negative for all $x\in(0,\pi/2)$ to show that g(x) is strictly decreasing. Let $h(x)=x\cos(x)-\sin(x)$ on $(0,\pi/2)$. Note that h'(0)=0 and that $h'(x)=-x\sin(x)$. Hence, h'(x)<0 on the interval $(0,\pi/2)$ so h(x) is strictly decreasing. Therefore, the maximum for h occurs at x=0 and h(x) is negative on the interval.

2. We first define limits at infinity.

Definition 0.1. Given a metric space Y, a point $L \in Y$ and $f : [0, \infty) \to Y$ has limit $L \in Y$ at infinity, written

$$\lim_{x \to \infty} f(x) = L,$$

if for every $\varepsilon > 0$ there is a C > 0 such that if x > C then $d_Y(f(x), L) < \varepsilon$.

Warning: This is now a definition you will be expected to know

Show that if $f:[0,\infty)\to Y$ is continuous and has a limit at infinity then f is uniformly continuous.

Solution: We will prove the result directly. This argument is made slightly more complicated by a small technical detail. Compare and contrast this with the hints I gave in class.

Proof. Let $f:[0,\infty)\to Y$ be a continuous function with a limit L at infinity. Let $\varepsilon>0$ be given. There exists a C>0 such that if x>C then $d_Y(f(x),L)<\frac{\varepsilon}{2}$. Thus for $x,y\in(C,\infty)$ we have that

$$d_Y(f(x), f(y)) \le d_Y(f(x), L) + d_Y(f(y), L) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Let $\hat{C}=C+\hat{\varepsilon}>C$ where $\hat{\varepsilon}>0$. We have that $[0,\infty)=[0,\hat{C}]\cup[\hat{C},\infty)$. On the interval $[0,\hat{C}]$ the function $f|_{[0,\hat{C}]}$ is uniformly continuous since $[0,\hat{C}]$ is a compact set. Thus, there exists a $\delta>0$ such that if $x,y\in[0,\hat{C}]$ and $|x-y|<\delta$ then $d_Y(f(x),f(y))<\varepsilon$. We can now claim that $f:[0,\infty)\to Y$ is uniformly continuous. Suppose $|x-y|<\delta/2$. If $x,y\in[0,\hat{C}]$ then clearly $d_Y(f(x),f(y))<\varepsilon$ by uniform continuity. If $x,y\in[\hat{C},\infty)$ then $d_Y(f(x),f(y))<\varepsilon$ by the existence of the limit at infinity. Now suppose without loss of generality that $x\in[0,\hat{C}]$ and $y\in[\hat{C},\infty)$. We have that $x\leq\hat{C}\leq y$. Note since $|x-y|\leq\delta/2$ then $|x-\hat{C}|<\delta/2$ and $|y-\hat{C}|\leq\delta/2$. Thus

$$d_Y(f(x), f(y)) \le d_y(f(x), f(\hat{C})) + d_Y(f(\hat{C}), f(y)) < \varepsilon + \varepsilon = 2\varepsilon$$

by combining the above two arguments.

3. Let $f:[0,1] \to [0,1]$ be a continuous function. Show that f has a fixed point, i.e. there is a point $x \in [0,1]$ such that f(x) = x.

Solution: We will prove the result by using the intermediate value theorem.

Proof. Let g(x) = f(x) - x on [0, 1]. Since f(x) is a continuous function so is g(x). Note that f has a fixed point x_0 if and only if $g(x_0) = f(x_0) - x_0 = x_0 - x_0 = 0$. If x = 0 then $g(0) = f(0) - 0 = f(0) \ge 0$ since $f: [0, 1] \to [0, 1]$. Likewise, $g(1) = f(1) - 1 \le 0$. By intermediate value theorem, since $g(1) \le 0 \le g(0)$ there exists a $x_0 \in (0, 1)$ such that $g(x_0) = 0$. Thus, f(x) has a fixed point.

4. Formulate and prove a squeeze theorem for functions.

Solution: Here is one version of the squeeze theorem for functions.

Theorem 0.2. Suppose $f, g, h : X \to \mathbb{R}$ and suppose that for all $x \in X$ we have that

$$f(x) \le g(x) \le h(x)$$
.

If

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x),$$

then

$$\lim_{x \to a} g(x) = L.$$

Proof. We note that $\lim_{x\to a} f(x) = L$ if and only if for all sequences $x_n \to a$ we have that $f(x_n) \to L$. We note that if $x_n \to a$ then

$$\lim_{n \to \infty} f(x_n) = L = \lim_{n \to \infty} h(x_n).$$

Moreover, we have that

$$f(x_n) \le g(x_n) \le h(x_n).$$

Therefore, given any arbitrary $x_n \to a$ we have by the squeeze theorem for sequences that $g(x_n) \to L$. Therefore, $\lim_{x\to a} g(x) = L$.

5. We start with the following definition

Definition 0.3. Let X and Y be metric spaces. We call a function $f: X \to Y$ Lipschitz continuous if there exists a K > 0 such that

$$d_Y(f(p), f(q)) \le K d_X(p, q)$$

for all $p, q \in X$.

Let U be an open interval of \mathbb{R} . Prove that if f is differentiable and $f':U\to\mathbb{R}$ is bounded, then f is Lipschitz continuous.

Solution: We prove the result via Mean Value Theorem.

Proof. Let p and q be arbitrary points in U where p < q. Since f is differentiable on U it is differentiable on (p,q) and continuous on [p,q]. We have via the mean value theorem there exists a $r \in (p,q)$ such that

$$f(q) - f(p) = f'(r)(q - p)$$

Since $f': U \to \mathbb{R}$ is bounded there exists a K such that $f'(x) \leq K$ for all $x \in U$. Thus,

$$f(q) - f(p) = K(q - p).$$

More generally,

$$|f(p) - f(q)| \le K|p - q|.$$

Hence, f is Lipschitz continuous.