華中科技大學

数字电路与逻辑设计 实验报告

专业:计算机科学与技术班级:CS2104学号:U202115424姓名:张森磊电话:15670561689邮件:1833842212@qq.com完成日期:2022-12-21

2022

实验报告及电路设计评分细则

评 分 项 目	满分	得分	备注
一、实验报告总分	100		
1、文档格式(段落、行 间距、缩进、图表、编 号等规范化)	15		
2、设计方案与实验过程	60		实验过程将从电路的复杂度、是否考虑竞争和险象、电路的美观等方面进行评分。
3、遇到的问题及处理	10		
4、设计方案存在的不足	5		
5、实验心得(含思政)	5		
6、意见和建议	5		
二、电路得分(头歌)	100		
三、实验课程总分	100		实验报告总分*0.6 + 电路得分(头歌)*0.4
教师签名			日期

目 录

1	实验	佥概述	1
	1.1	实验名称	
	1.2	实验目的	
	1.3	实验环境	1
	1.4	实验内容	1
	1.5	实验要求	2
2	设i	十方案与实验过程	3
	2. 1	方案设计	3
	2. 2	实验过程	9
3	设ì	十总结与心得	.33
	3. 1	实验总结	. 33
	3. 1. 1	遇到的问题及处理	. 33
	3. 1. 2	2设计方案存在的不足	. 33
	3. 2	实验心得	34
	3. 3	意见与建议	34

1 实验概述

1.1 实验名称

运动码表系统设计。

1.2 实验目的

实验将提供一个完整的数字逻辑实验包,从真值表方式构建7段数码管驱动电路, 到逻辑表达式方式构建四位比较器,多路选择器,利用同步时序逻辑构建BCD计数器, 从简单的组合逻辑电路到复杂时序逻辑电路,最终集成实现为运动码表系统。

实验由简到难,层次递进,从器件到部件,从部件到系统,通过本实验的设计、仿真、验证 3 个训练过程使同学们掌握小型数字电路系统的设计、仿真、调试方法以及电路模块封装的方法。

1.3 实验环境

软件: Logisim2.15.0.2 软件一套。

平台: https://www.educoder.net

1.4 实验内容

设计一个运动码表系统,具体内容及要求如下:

输入: 4个按钮,分别为 Start、Stop、Store 和 Reset。

输出: 4个7段数码管显示数字,分别显示秒和百分秒。

具体功能:

(1) 当按下 Start 时, 计时器清零, 重新开始计时;

(2) 当按下 Stop 时, 计时器停止计时, 显示计时数据;

- (3) 当按下 Store 时,若当前计时数据小于系统记录,则更新系统记录,并显示 当前计时数据;否则不更新系统记录,但显示系统记录。
 - (4) 当按下 Reset 时,复位,计时=0.00,系统记录=99.99 秒。

1.5 实验要求

- (1) 根据给定的实验包,将运动码表系统切分为一个个实验单元;
- (2) 对每一个实验单元,按要求设计电路并使用 Logisim 软件进行虚拟仿真;
- (3) 设计好的电路在 educoder 平台上提交并进行评测,直到通过全部关卡。

2 设计方案与实验过程

2.1 方案设计

本实验对运动码表数字系统进行模块化设计,按照以下流程进行系统的构建:

设计需求分析(外部数据,控制输入,输出,显示)-> 拆分为功能模块-> 功能模块的数据通路(此时不考虑控制信号,只要数据链路通了就行)-> 构建控制单元(如何从外部控制输入转化到内部的控制信号)。

2.1.1 码表功能需求分析

● 输入: 四个按钮 输出: 四个7段数码管

● Start: 计时器归零,重新开始计时。

● Stop: 停止计时,显示计时数据。

● Store: 尝试更新系统记录,并显示系统记录。

● Reset: 复位, 计时=00.00, 系统记录=99.99。

2.1.2 码表功能部件设计

(1) 运动码表模块划分如表 1

	功能部件	控制信号	输入	输出
1	时间计数器 TM	TM-En, TM-Rst	CLK	时间计数输出 16 位
2	16 位寄存器	SD-En	CLK,Din(16 位)	Q(16 位)
3	数码管显示		Din(16 位)	DisplayInfo(32 位)
4	比较器			
5	2 路选择器	Sel		

表 1

2.1.3 运动码表模块实现

(1) 时间计数器

a.四位 BCD 计数器设计

一共存在 0~9 共 10 个状态,对应的状态编码为 0000~1001。由状态转换真值表如图 1 可以得到四位 BCD 计数器状态机。接着进行输出函数的设计,只有当状态为 1001输出 1,即 Cout=S3&S1 可直接得到如图 2 电路。完成状态机以及输出函数的设计后,借助 4 个 D 触发器完成四位 BCD 计数器的构建。

图 1

b. 码表计数器设计

码表计数器一共 16 位输出,包括 4个 BCD 计数器,分别对应 10 秒,1 秒,1/10 秒,1/100 秒。低位计数到 9 时,相邻高位在时钟到来时加 1。

通过每个 BCD 计数器的进位输出 Carry 以及使能端 en 构建码表计数器。只有当低位都产生进位输出的情况下,高位加 1。因此,第 1 位的 en 由第 0 位的 Carry 过与门得到,第 2 位的 en 由第 0,1 位的 Carry 过与门得到,第 3 位的 en 由第 0,1,2 位的 Carry 过与门得到。

(2) 16 位寄存器

如图 3, 利用四个 D 触发器, 构造 4 位并行加载寄存器。再用四个 4 位并行加载

寄存器构造 16 位并行加载寄存器。

(3) 数码管显示

a.数码管驱动

数码管驱动是将数字 0-9 转化为数码管的 0-9 输出;数码管元件有 a-g 七根管加一个小数点共 8 位输出,小数点可以单独处理,我们设计驱动电路的时候 4 输入,7 输出即可。利用图 4 真值表可以在 logisim 中直接得到。

ХЗ	X2	X1	X0	Seg_1	Seg_2	Seg_3	Seg_4	Seg_5	Seg_6	Seg_7
0	0	0	0	0	1	1	1	1	1	1
0	0	0	1	0	0	0	1	0	0	1
0	0	1	0	1	0	1	1	1	1	0
0	0	1	1	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1	0	0	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	0	0	0	1	1	0
1	0	1	1	1	0	0	0	0	1	1
1	1	0	0	1	1	0	1	0	0	0
1	1	0	1	1	1	1	0	0	1	0
1	1	1	0	1	1	0	0	1	1	0
1	1	1	1	0	0	0	0	0	0	0

图 4

b.数码管显示驱动

通过分线器将输入的 Din 分为 16 个数,每 4 位数用一个数码管驱动分出 7 条控制 7 段数码管的线。再用一个分线器和电源,把一共 32 个数值合成一个 32 位数 DispInfo。

(4) 无符号比较器

a. 4 位无符号比较器

按照先高位,后低位的比较原则,可以写出输出 Great 的表达式为 X3~Y3+X3⊕ Y3 X2~Y2+ X3⊕Y3 X2⊕Y2 X1~Y1+ X3⊕Y3 X2⊕Y2 X1⊕Y1X0~Y0; Equal 的表达式 为 X3⊕Y3 X2⊕Y2 X1⊕Y1X0⊕Y0; Less 的表达式为~X3Y3+X3⊕Y3 ~X2 Y2+ X3⊕Y3 X2⊕Y2 ~X1Y1+ X3⊕Y3 X2⊕Y2 X1⊕Y1~X0Y0 将表达式分别填入 logisim 中即可得到 如图 5 所示电路图。

图 5

b.16 位无符号比较器

16 位无符号比较器需要 4 个 4 位无符号比较器,构建思路与 4 位无符号比较器相同,不过一次比较四位。另外利用 Less=~Great~Equal 对电路进行简化。

(5) 2 路选择器

a.2 路选择器 (1位)

利用逻辑表达式 Out=SelX1+~SelX2 可以得到二路选择器(1 位)的电路。

b.2 路选择器(16位)

利用分线器将 16 位的输入分成 16 个一位,分别与 1 位的 2 路选择器连接,最后再通过分线器将输出合成 16 位。

2.1.3 码表数据通路构建

通过构建输入来源表 (表 2), 按数据流构建数据通路, 其中有多个输入来源的需要增设多路选择器。

	功能部件	数据输入	来源
1	时间计数器 TM		
2	16 位寄存器	CLK,Din(16 位)	99.99 或者当前记录
3	数码管显示 DP	Din(16 位)	TM.Q 或 SD.Q
4	比较器		当前计时&SD.Q

表 2

2.2.4 控制单元构建

(1) 状态转换

如图 6,根据码表功能的需要,设计了 000~101 共 6 个状态。

图 6

之后在 excel 中填写状态转移表,可以得到自动生成的逻辑表达式如下:

N2: \sim start \sim reset S2 \sim S1 + \sim reset S2 \sim S1 \sim S0 + \sim start \sim stop store \sim reset \sim S2 S1 S0 + store \sim reset S2 \sim S1 + stop \sim reset S2 \sim S1

N1: \sim start \sim store \sim reset \sim S2 S1 + \sim reset \sim S2 S1 + start \sim store \sim reset \sim S2 S1 S0 + start store \sim reset \sim S2 S1

N0: \sim start \sim reset \sim S1 + \sim reset \sim S1 \sim S0 + \sim store \sim reset \sim S2 S1 S0 + \sim reset \sim NewRecord \sim S2 S1 S0 + \sim reset S2 \sim S1 + \sim start store \sim reset \sim S2 S0 + start store \sim reset \sim S2 S0

将上述逻辑表达式输入到 logisim 中得到状态转换电路。

(2) 输出函数

输出函数真值表如图 7 所示,利用真值表可以直接生成输出函数电路。

	当前	前状	态(玑	心态)		輸入信号								·	
S3	S2	S1	S0	现态 10进制	start	stop	store	reset	NewRecord	100	SDse1	SDen	DPse1	TMen	TMreset
0	0	0	0	0							0	1	1	0	1
0	0	0	1	1							0	0	1	0	1
0	0	1	0	2							0	0	1	1	0
0	0	1	1	3							0	0	1	0	0
0	1	0	0	4						Π	1	1	1	0	0
0	1	0	1	5							0	0	0	0	0

图 7

2.2.5 运动码表设计

运动码表如图 8,初始状态时要保证 16 位寄存器 SD 中储存的数据无穷大,即设为9999。第一次 Store 的时候比较 9999 与计时器 TM 中值的大小,此时用 SD-SEL 来决定,把小的那个值传入寄存器 SD 中。以后每次 Store 都要比较寄存器 SD 中的值与当前计时器 TM 中值的大小,通过 16 位无符号比较器来完成,取小的那一个存入寄存器 SD 中,并输入码表显示 DP,从而显示在码表上同时修改 NewRecord 的值,此时用 DP-SEL 来决定。

图 8

2.2 实验过程

2.2.1 7段数码管驱动电路

- (1) 电路图
- a. 内部结构电路如图 9 所示。

图 9

b. 封装电路图如图 10 所示。

电路引脚如表3所示。

信号	1/0	位宽	说明
X3~X0	输入	1	4 位 BCD 码输入
Seg1~Seg7	输出	1	7 位数码管驱动信号

表 3

(2) 测试图

图 11 数码管显示"0"

图 12 数码管显示 "2"

(3) 测试分析

该7数码管驱动电路可以正确将4位BCD码显示。

2.2.2 二路选择器 (16位)

(1) 电路图

a. 内部结构电路如图 14 所示。

图 13 2 路选择器 (1位) 电路

图 14 2 路选择器 (16位) 电路

b. 封装电路图如图 15 所示。

电路引脚如表 4 所示。

信号	1/0	位宽	说明
X0	输入	16	2 路输入之一路
X1	输入	16	2 路输入之一路
Sel	输入	16	选择控制端
Out	输出	16	Out=(Sel==0)?X0:X1;

表 4

(2) 测试图

图 16

(3) 测试分析

此时电路输入 X 为 000a、Y 为 0008, Sel 为 1,输出 Out=Y=0008。

2.2.3 16 位无符号比较器

- (1) 电路图
- a. 内部结构电路如图 17 所示

图 17

b. 封装电路图如图 18 所示。

电路引脚如表 5 所示。

信号	1/0	位宽	说明
X	输入	16	输入X
Υ	输入	16	输出Y
Great	输出	1	X大于Y
Equal	输出	1	X等于Y
Less	输出	1	Χ小于Υ

表 5

(2) 测试图

图 19

(3) 测试分析

电路输入 X 为 000a、Y 为 0008,输出 Great=1, Equal=Less=0。结果正确。X=Y, X<Y 情况同理。

2.2.4 并行加载寄存器

(1) 电路图

a. 内部结构电路如图 21 所示。

图 20 4 位并行加载寄存器

图 21 16 位并行加载寄存器

b. 封装电路图如图 22 所示。

16

电路引脚如表 6 所示。

信号	1/0	位宽	说明
Clock	输入	1	时钟脉冲, 上升沿有效
Din	输入	16	寄存数据输入端
En	输入	1	使能输入端, 高电平有限
Q	输出	16	使能输入端,高电平有限

表 6

(2) 测试图

请勿增删改引脚,请在下方利用上方输入输出引脚的隧道标签信号构建电路,ctrl+d复制选择组件

图 23

图 24

图 25

(3) 测试分析

输入 Din=0009, En, CLK 均为 0 时,输出 Q 为 0;

保持 Din=0009 不变, En, CLK 均为 1 时, 输出 Q=0009;

之后输入 Din 变为 0000, 但 En, CLK 均为 0 时, 输出 Q 仍为 0009;

综上电路功能正确。

2.2.5 四位 BCD 计数器

(1) 电路图

a. 内部结构电路如图 26 所示。

图 26

b. 封装电路图如图 27 所示。

电路引脚如表7所示。

信号	1/0	位宽	说明
CLK	输入	1	时钟输入
Rst	输入	1	异步复位信号,为1时Q=0
En	输入	1	使能端, 为1时进行计数
Q	输出	4	计时器计时输出
Cout	输出	1	进位输出,数到9时输出为1

表 7

(2) 测试图

图 29

图 30

图 31

(3) 测试分析

输入 En 为 1,Rst 为 0,计数器于每个时钟周期输出 Q=Q+1,当 Q=9 时,进位 Cout=1,之后设置异步复位 Rst=1,电路还原,输出 Q=0。

2.2.6 码表计数器

(1) 电路图

a. 内部结构电路如图 32 所示。

图 32

b. 封装电路图如图 33 所示。

图 33

电路引脚如表 8 所示。

信号	1/0	位宽	说明
CLK	输入	1	时钟输入

Rst	输入	1	异步复位信号,为1时异步清零
En	输入	1	使能端, 为1时进行计数
Q	输出	4	计时器计时输出

表9

(2) 测试图

(3) 测试分析

在码表测试器自动电路中,设置时钟为 Ticks Enabled, 经观察,该码表测试器可以正确显示 00.00-99.99 的任意时间数据,并可以不断循环,从 99.99 再变回 00.00。由以上可以确定电路构建成功。

2.2.7 码表显示驱动

(1) 电路图

a. 内部结构电路如图 35 所示。

b. 封装电路图如图 36 所示。

图 36

电路引脚如表9所示。

信号	1/0	位宽	说明
Din	输入	16	4 位十进制(16 位 BCD)
DispInfo	输出	32	4 个 8 段(7 段+小数点)数码驱动信号

表 9

(2) 测试图

24

图 37

(3) 测试分析

输入 Din 为 0100-0100-0100-0100 时,输出 DispInfo 为 11010010-11010011-11010010-11010010,结果正确。

2.2.10 码表控制器

(1) 电路图

a. 内部结构电路如图 40 所示。

图 38 码表控制器状态转换

图 39 码表控制器输出函数

图 40 码表控制器

b.封装电路图如图 41 所示。

图 41

电子引脚如表 10 所示。

信号	1/0	位宽	说明
CLK	输入	1	时钟脉冲
Start	输入	1	开始计时信号
Stop	输入	1	停止计时信号
Store	输入	1	存储计时记录信号
Reset	输入	1	即使复位信号,记录恢复为 99.99
Newrecord	输入	1	新的最好成绩记录信号
Sdel	输出	1	最好成绩记录的选择信号
Sden	输出	1	保存最好成绩记录的寄存器复位信号
Dpsel	输出	1	显示计时成绩记录的选择信号
Tmen	输出	1	码表计数器的使能信号
TMreset	输出	1	码表计数器的复位信号

表 10

2.2.10 运动码表

(1) 电路图

a. 内部结构电路如图 42 所示。

图 42

b. 封装电路图如图 43 所示。

28

电路引脚如表 11 所示

信号	1/0	位宽	说明
CLK	输入	1	时钟脉冲
Start	输入	1	开始计时信号
Stop	输入	1	停止计时信号
Store	输入	1	存储计时记录信号
Reset	输入	1	即使复位信号,记录恢复为 99.99
Time	输出	16	计时成绩或者成绩记录

表 11

(2) 测试图

点击 Start,运动码表开始计时。

图 44 开始计时

点击 Stop,运动码表暂停计时。此时最好成绩记录为 9999。

图 45 停止计时

点击 Store,运动码表的值存储到寄存器 SD中,同时最好成绩记录发生改变。

图 46 存储更新记录

再点击 Start,运动码表再次开始计时。

图 47 再次计时

再次点击 stop,码表停止计时。

图 48 再次停止计时

点击 Store,此时运动码表显示的值比最好成绩记录大,所以运动码表显示最好成绩记录。

图 49 存储不更新记录

点击 Rst 码表恢复初始状态。

图 51 恢复初始状态

(3) 测试分析

通过以上验证,可以确定该运动码表电路完成了实验所需的所有要求。

3.设计总结与心得

3.1 实验总结

通过实验,我将课本学习的组合逻辑电路,同步时序逻辑电路,异步逻辑时序电路等知识在 logosim 平台上进行了运用,完成了一个小型数字系统运动码表的构建。

3.1.1 遇到的问题及处理

在进行 16 二路选择器电路连线时,由于连线过多,导致排线混乱,造成了一线 线路短接。自己起初没有在部件之间预先留有充足的空间来排线,导致后面线路挤在 一起。将各部件分开重新布局后解决了这个问题。并且在此之后的实验里面,我都会先 检查部件的布局之后在进行排线,减去了不少麻烦。

在设计码表控制器的状态转换时,一共设计了6个状态。但是起初自己在考虑状态转换时考虑并不全面,导致出错,同时我认为这也是整个实验最难的一部分。最后,我重新分析了一遍6个状态之间的转换关系,最终解决了问题。

3.1.2设计方案存在的不足

实际生活中运动码表具有记录和显示若干骑行数据的功能,比如当前速度、骑行里程、骑行时间等。

本次实验中只实现了运动码表最基本的计时功能。并且码表的测量范围过小,只有一分钟。此外,码表只能存储当前最小时间,不能存储多组数据,现实中码表一般具有存储多组数据的功能,比如体育老师在体育课上测量一组学生的跑步成绩时可以用到。

此外,可以结合传感器实现当前速度测量等一些更为复杂的功能。

3.2 实验心得

在整个实验过程中,数字码表系统被拆分为一个个小的模块单独实现,循序渐进,自己在做实验的过程中体会到了从零开始,完成一个数字码表的乐趣。

Logism 可以根据真值表或者逻辑表达式生成电路图,利用好这一功能,能够为电路设计免去不少的麻烦。同时,选择怎样生成电路图也很重要。比如在设计比较器时,直接写出 Great, Equal, Less 的逻辑表达式要比利用真值表生成电路图要更加省事。

在电路图连线的过程中需要我们的细心与耐心,尤其是像 16 位的二路选择器这种线路密集的电路,更需要认真排线,需要我们耐心将线路连接正确同时兼具你美观性。

在面对码表控制器的转移时,起初会觉得无从下手。但是遇到这种情况,不能简单的直接放弃。而是要联系课本,由课本电路设计的方法进一步思考,慢慢的便会有了思路。

3.3 意见与建议

本次实验采用分层设计,模块设计构造运动码表数字系统。难度从易到难,将课本中一些经典的数字电路如寄存器,7段数码管显示器实现了 logisim 的仿真。不过个人认为数字码表设计的数字电路还是有限的,可以在数字码表前补充一些数字电路的实验,扩大实验的覆盖面。

数字码表实验中,码表控制器状态转换相对前面的几个部分难度较大,状态很容易考虑不全面,希望老师可以在状态设计这一部分给予一定的指导。