

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Sistemas lineares

Marcelo Gorges

Matrizes

Denomina-se matriz do tipo $m \times n$ (lê-se: m por n) o conjunto de números reais, dispostos em uma tabela de m linhas e n colunas.

Utilizamos letras maiúsculas para indicar matrizes genéricas e letras minúsculas para indicarmos os elementos, portanto a representação genérica de uma matriz **A** pode ser indicada como:

$$\mathsf{A} = \begin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} & \mathsf{a}_{12} & \dots & \mathsf{a}_{1n} \\ \mathsf{a}_{21} & \mathsf{a}_{22} & \mathsf{a}_{22} & \dots & \mathsf{a}_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathsf{a}_{m1} & \mathsf{a}_{m2} & \mathsf{a}_{m2} & \dots & \mathsf{a}_{mn} \end{bmatrix}$$

Com m, $n \in IN^*$.

$$A = (a_{ij})_{mxn} \text{ em que, } i \in \{1, 2, 3, ..., \, m\} \text{ e } j \in \{1, 2, 3, ..., \, n\}$$

O elemento a_{ij} possui dois índices, onde: o i indica a linha e o j indica a coluna, às quais o elemento a_{ij} pertence.

Exemplo:

a₁₁(lê-se: a um um): elemento localizado na 1.ª linha e 1.ª coluna.

a₂₃(lê-se: a dois três): elemento localizado na 2.ª linha e 3.ª coluna.

Classificação das matrizes

Matriz nula

É a matriz que tem todos os elementos iguais a 0 (zero).

Exemplo:

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matriz quadrada

É a matriz que tem o número de m linhas igual ao número de n colunas.

Exemplo:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, é uma matriz do tipo 3x3 ou simplesmente de ordem 3.

Matriz identidade

É a matriz quadrada de ordem *n*, em que todos os elementos da diagonal principal são iguais a 1 e os demais elementos são iguais a 0 (zero)

Representa-se a matriz identidade por I_n .

Exemplo

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Operações entre matrizes

Para estudarmos as operações entre as matrizes, vamos considerar os seguintes exemplos:

Exemplos:

1. Um empresário possui duas indústrias de produção de macarrão. A produção mensal dessas indústrias, em toneladas, é representada pelas tabelas abaixo:

Indústria 1

	Comum	Sêmola	Com ovos
Outubro	15	15	20
Novembro	18	17	22
Dezembro	20	19	25

Indústria 2

	Comum	Sêmola	Com ovos
Outubro	10	15	26
Novembro	22	12	24
Dezembro	16	14	22

Qual a produção total das duas indústrias juntas?

Representação dessas tabelas em forma de matriz:

Indústria I.

$$A = \begin{bmatrix} 15 & 15 & 20 \\ 18 & 17 & 22 \\ 20 & 19 & 25 \end{bmatrix}$$

Indústria II.

$$B = \begin{bmatrix} 10 & 15 & 26 \\ 22 & 12 & 24 \\ 16 & 14 & 22 \end{bmatrix}$$

	Comum	Sêmola	Com ovos
Outubro	15+10	15+15	20+26
Novembro	18+22	17+12	22+24

20+16

Somando-se as duas indústrias, tem-se:

A matriz que representa essa tabela é:

Dezembro

$$C = \begin{bmatrix} 15+10 & 15+15 & 20+26 \\ 18+22 & 17+12 & 22+24 \\ 20+16 & 19+14 & 25+22 \end{bmatrix} = \begin{bmatrix} 25 & 30 & 46 \\ 40 & 29 & 46 \\ 36 & 33 & 47 \end{bmatrix}$$

A matriz C é denominada de matriz soma.

2. A multiplicação de uma matriz por um número real.

Supondo que a indústria I de massas de macarrão resolva triplicar a sua produção para o ano seguinte, desta maneira, tem-se:

19+14

25+22

$$3 \cdot A = 3 \cdot \begin{bmatrix} 15 & 15 & 20 \\ 18 & 17 & 22 \\ 20 & 19 & 25 \end{bmatrix} = \begin{bmatrix} 3 \cdot 15 & 3 \cdot 15 & 3 \cdot 20 \\ 3 \cdot 18 & 3 \cdot 17 & 3 \cdot 22 \\ 3 \cdot 20 & 3 \cdot 19 & 3 \cdot 25 \end{bmatrix}$$

$$3. A = \begin{bmatrix} 45 & 45 & 60 \\ 54 & 51 & 66 \\ 60 & 57 & 75 \end{bmatrix}$$

Veja que multiplicar uma matriz por um número real é multiplicar todos os valores dos elementos da matriz por este número real. Portanto, triplicar a matriz da indústria I é multiplicar todos os valores dos elementos por 3.

3. Multiplicação entre matrizes.

Sabendo que o preço em milhares de reais da produção por tonelada das indústrias de massas de macarrão é dada pela tabela a seguir:

$$P = \begin{bmatrix} 2,50\\3,00\\3,50 \end{bmatrix}$$

Determine o preço de produção mensal da indústria II.

A indústria II, portanto terá como custo de produção, a seguinte planilha:

	Comum	Sêmola	Com ovos
Outubro	10.2,50	15 . 3,00	26.3,50
Novembro	22.2,50	12.3,00	24 . 3,50
Dezembro	16 . 2,50	14 . 3,00	22.3,50

Ou seja, como custo mensal então:

	Custo mensal em milhares de reais		
Outubro	10 . 2,50 + 15 . 3,00 + 26 . 3,50		
Novembro	22 . 2,50 + 12 . 3,00 + 24 . 3,50		
Dezembro	16 . 2,50 + 14 . 3,00 + 22 . 3,50		

Desta maneira, tem-se a matriz:

$$B \cdot P = C = \begin{bmatrix} 10 \cdot 2,50 + 15 \cdot 3,00 + 26 \cdot 3,50 \\ 22 \cdot 2,50 + 12 \cdot 3,00 + 24 \cdot 3,50 \\ 16 \cdot 2,50 + 14 \cdot 3,00 + 22 \cdot 3,50 \end{bmatrix} = \begin{bmatrix} 161,00 \\ 175,00 \\ 159,00 \end{bmatrix}$$

A multiplicação de matrizes é definida da seguinte forma: dada uma matriz $A = (a_{ij})$ do tipo m x n e uma matriz $B = (b_{ij})$ do tipo n x p, o produto da matriz A pela matriz B é uma matriz $C = (c_{ij})$ do tipo m x p tal que o elemento c_{ij} é calculado multiplicando-se ordenadamente os elementos da linha i, da matriz A, pelos elementos da coluna j, da matriz B, e somando-se os produtos obtidos.

A matriz C é o produto de A por B, e indicamos por AB.

De forma geral, tem-se então:

Para que o produto de duas matrizes seja possível, o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda matriz.

Exercícios

1. Observe as seguintes tabelas.

1.º Supermercado:

	Produto 1	Produto 2	Produto 3
1.ª semana	60	30	10
2.ª semana	52	27	12
3.ª semana	56	29	16

2.º Supermercado:

	Produto 1	Produto 2	Produto 3
1.ª semana	40	24	6
2.ª semana	32	20	10
3.ª semana	36	18	8

Estas tabelas podem ser representadas pelas seguintes matrizes:

$$A = \begin{bmatrix} 60 & 30 & 10 \\ 52 & 27 & 12 \\ 56 & 29 & 16 \end{bmatrix} e B = \begin{bmatrix} 40 & 24 & 6 \\ 32 & 20 & 10 \\ 36 & 18 & 8 \end{bmatrix}$$

Com base no enunciado anterior, responda as questões:

- a) Calcular a soma dos produtos vendidos nos dois supermercados, ou seja, A + B.
- b) Determinar o valor do dobro da matriz B, ou seja, 2. B.
- c) Calcular o dobro da matriz A mais a metade da matriz B, ou seja, $2A + \frac{1}{2}$. B.
- d) Sabendo que os preços dos produtos, em reais, são dados de acordo com

a matriz
$$P = \begin{bmatrix} 1,00 \\ 2,00 \\ 3,00 \end{bmatrix}$$
, determine as matrizes D e F. Onde:

■ D =A . P e F = B . P e dê o significado das matrizes D e F, em relação ao faturamento dos dois supermercados.

Determinantes

Determinante é o único número real que se associa a uma matriz quadrada, através de operações específicas, realizadas com todos os elementos que compõem a matriz.

Determinante de uma matriz de 2.ª ordem

Seja a matriz quadrada de 2.ª ordem:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Denomina-se determinante associado à matriz A_{2x2} o número obtido pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.

Assim,

$$\det A = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Exemplo:

Calcule o determinante da matriz $B = \begin{bmatrix} 5 & 2 \\ -1 & 3 \end{bmatrix}$.

Solução:

det B =
$$5 \cdot 3 - 2 \cdot (-1)$$

det B = 17

Determinante de uma matriz de 3.ª ordem

Seja a matriz quadrada de 3.ª ordem:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Indicamos o determinante da matriz A por:

$$\det A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Para o cálculo desse determinante procedemos da seguinte forma:

 repetimos as duas primeiras colunas à direita da matriz e efetuamos as seis multiplicações indicando;

- os produtos obtidos na direção da diagonal principal permanecem com o mesmo sinal;
- os produtos obtidos na direção da diagonal secundária mudam de sinal;
- o determinante é a soma dos valores assim obtidos.

$$\det A = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{32} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$

Exemplo:

Calcule o determinante da matriz $B = \begin{bmatrix} 2 & 3 & 3 \\ 1 & 2 & 0 \\ 4 & -1 & 6 \end{bmatrix}$

Solução:

$$\det B = \begin{vmatrix} 2 & 3 & 5 \\ 1 & 2 & 0 \\ 4 & -1 & 6 \end{vmatrix}$$

Aplicando a regra de Sarrus temos:

$$\det B = 2.2.6 + 3.0.4 + 5.1.(-1) - 4.2.5 - (-1).0.2 - 6.1.3$$

$$\det B = 24 + 0 - 5 - 40 - 0 - 18$$

$$\det B = -39$$

Observação: esta regra é denominada **regra de Sarrus** e só se aplica a determinantes de 3.ª ordem.

Exercícios

2. Calcular os determinantes, das matrizes de 2.ª ordem, dadas:

a)
$$A = \begin{bmatrix} -2 & 5 \\ -4 & 8 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 6 & 1 \\ 10 & 5 \end{bmatrix}$$

3. Calcular os determinantes, das matrizes de 3.ª ordem, dadas:

a)
$$P = \begin{bmatrix} 0 & 2 & -2 \\ 3 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

b)
$$K = \begin{bmatrix} -2 & 3 & -2 \\ 1 & -1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

4. Se
$$M = \begin{bmatrix} 9 & -4 \\ -3 & 2 \end{bmatrix}$$
 e $N = \begin{bmatrix} 1 & -1 & 3 \\ 6 & -4 & 2 \\ 3 & 2 & 0 \end{bmatrix}$ determinar o valor de 5. det $M - \frac{1}{2}$. det N .

■ Sistemas lineares

Sistemas lineares de m equações nas n incógnitas $x_1, x_2, x_3, ..., x_n$ é todo o sistema da forma:

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2 \\ ... \\ a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m \end{cases}$$

Tal que, a_{11} , a_{12} , ... a_{1n} são números reais denominados de coeficientes e b_1 , b_2 , ... b_m são números reais denominados de termos independentes.

Se o conjunto de números $(\alpha_1, \alpha_2, ... \alpha_n)$ satisfizer todas as equações do sistema, será denominado solução do sistema linear.

Classificação dos sistemas lineares

Os sistemas lineares são classificados quanto ao número de soluções, da seguinte forma:

Regra de Cramer

Seja o sistema linear de *m* equações e *n* incógnitas:

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2 \\ ... \\ a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m \end{cases}$$

A regra de Cramer é um método utilizado para a resolução de sistemas lineares.

Esta regra será aplicada se e somente se, o determinante da matriz dos coeficientes das incógnitas for diferente de zero, isto é:

$$D = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \neq 0$$

Desta forma, o sistema terá uma solução única dada por:

$$x_1 = \frac{D_{x_1}}{D}, x_2 = \frac{D_{x_2}}{D}, ..., x_n = \frac{D_{x_n}}{D}$$

Em que:

 D_{x_1} , D_{x_2} , ..., D_{x_n} são os determinantes que se obtém da matriz dos coeficientes das incógnitas, substituindo-se a coluna dos coeficientes da incógnita procurada pelos temos independentes b_1 , b_2 , ..., b_m .

Exemplos:

1. Resolva o sistema
$$\begin{cases} 2x + 3y = 8 \\ x - y = -1 \end{cases}$$

Solução:

Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$

$$D = 2 \cdot (-1) - 1 \cdot 3$$

$$D = -2 - 3$$

$$D = -5$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{bmatrix} 8 & 3 \\ -1 & -1 \end{bmatrix}$$

$$D_{y} = \begin{bmatrix} 2 & 8 \\ 1 & -1 \end{bmatrix}$$

$$D_x = 8 \cdot (-1) - (-1) \cdot 3$$

$$D_v = 2 \cdot (-1) - 1 \cdot 8$$

$$D_{y} = -8 + 3$$

$$D_v = -2 - 8$$

$$D_{v} = -5$$

$$D_{v} = -10$$

Assim, a solução do problema será:

$$x = \frac{D_x}{D} = \frac{-5}{-5} = 1$$

$$y = \frac{D_y}{D} = \frac{-10}{-5} = 2$$

Resposta: $S = \{(1, 2)\}.$

2. Resolva o sistema
$$\begin{cases} 2x + 6y = 9 \\ x + 3y = -1 \end{cases}$$

Solução:

Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix}$$

$$D = 2.3 - 1.6$$

$$D = 6 - 6$$

$$D = 0$$

Como o determinante da matriz dos coeficientes é igual a 0 (zero) não aplicaremos a regra de Cramer.

3. Resolva o sistema a seguir, utilizando a regra de Cramer:
$$\begin{cases} 2x + y - z = 5 \\ 3x - 2y + z = -2 \\ x + z = 0 \end{cases}$$

Escrevendo todos os coeficientes, temos:

$$\begin{cases} 2x + y - 1z = 5 \\ 3x - 2y + 1z = -2 \\ 1x + 0y + 1z = 0 \end{cases}$$

Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{vmatrix} 2 & 1 & -1 \\ 3 & -2 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$D = 2 \cdot (-2) \cdot 1 + 3 \cdot 0 \cdot (-1) + 1 \cdot 1 \cdot 1 - 1 \cdot (-2) \cdot (-1) - 2 \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 1$$

$$D = -4 + 0 + 1 - 2 - 0 - 3$$

$$D = -8$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{bmatrix} 5 & 1 & -1 \\ -2 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad D_{y} = \begin{bmatrix} 2 & 5 & -1 \\ 3 & -2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad D_{z} = \begin{bmatrix} 2 & 1 & 5 \\ 3 & -2 & -2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\det D_x = -8 \qquad \qquad \det D_y = -16 \qquad \qquad \det D_z = 8$$

Assim, a solução do problema será:

$$x = \frac{D_{x}}{D} = \frac{-8}{-8} = 1$$

$$y = \frac{D_{y}}{D} = \frac{-16}{-8} = 2$$

$$z = \frac{D_{z}}{D} = \frac{8}{-8} = -1$$

Resposta: $S = \{(1, 2, -1)\}$

Resolução de sistemas por escalonamento

Observe o seguinte sistema:

$$\begin{cases} x + y + z = 100 & E(I) \\ y + 2z = 40 & E(II) \\ 3z = 30 & E(III) \end{cases}$$

Observe que ele forma um tipo de "escadinha", evidenciando que o número de incógnitas diminui a cada equação.

Para resolvê-lo, devemos proceder da seguinte maneira:

- Determinar o valor de z em E III;
- Substituir o valor de z encontrado em E II;
- Substituir os valores de y e z em E I para determinar o valor de x.

Essa solução simples foi possível porque a terceira equação apresentou apenas uma incógnita, a segunda, duas, e a primeira, três incógnitas.

Um sistema linear de equações desse tipo é chamado de escalonado.

Para obtermos um sistema escalonado, devemos eliminar a primeira incógnita em todas as equações a partir da equação II; eliminar a segunda incógnita em todas as equações a partir da equação III, e assim por diante. Para isso utilizaremos as seguintes operações:

- Trocar de lugar duas equações do sistema;
- Multiplicar ou dividir os dois membros de uma equação por número diferente de zero;
- Adicionar a uma equação uma outra, multiplicada por um número real diferente de zero.

Exemplos:

1. Numa loja, os artigos A e B, juntos, custam R\$70,00, dois artigos A mais um C custam R\$70,00, dois artigos A mais um C custam R\$105,00 e a diferença de preço entre os artigos B e C, nessa ordem, é R\$5,00. Qual o preço dos artigos A,B e C?

Solução:

$$\begin{cases} A + B = 70 & E(1) \\ 2A + C = 105 & E(2) \\ B - C = 5 & E(3) \end{cases}$$

Resolvendo o sistema pelo método do escalonamento, tem-se:

Primeiramente, elimina-se o termo que tem a incógnita A em E(2); para isso, adiciona-se E(2) a E(1) multiplicada por –2;

$$-2A - 2B = -140$$

 $2A + C = 105$
 $-2B + C = -35$

Fica-se então com o seguinte sistema:

$$\begin{cases} A + B = 70 \\ -2B + C = -35 & E(4) \end{cases}$$
$$B - C = 5 & E(3)$$

O próximo passo é eliminar a incógnita B em E(4). Para isso, adicionamos E(4) a E(3) multiplicada por 2;

$$-2B + C = -35$$

 $2B - 2.C = 10$
 $-C = -2$

Finalizadas as eliminações, chega-se a um sistema linear equivalente ao sistema linear inicial, entretanto apresentando-se de forma escalonada:

$$\begin{cases} A + B = 70 \\ -2B + C = -35 \\ -C = -25 \end{cases}$$

Para resolver esse sistema, basta determinar C na terceira equação, substituílo na segunda para achar B e, em seguida, substituir B na primeira equação para encontrar o valor de A.

Assim, temos:

$$-C = -25$$

$$C = 25$$

Substituindo C por 25 na segunda, tem-se:

$$-2B + 25 = -35$$

$$-2B = -60$$

$$B = 30$$

E colocando o valor de B na primeira, tem-se:

$$A + 30 = 70$$

$$A = 40$$

Assim, os artigos custam: A = R\$40,00; B = R\$30,00 e C = R\$25,00.

2. Resolva o seguinte sistema por escalonamento.

$$\begin{cases} x + 2y + 3z = 6 & E(I) \\ 2x - y + z = 2 & E(II) \\ 3x + y - 2z = 2 & E(III) \end{cases}$$

Para eliminar a variável x da segunda equação E(II), devemos multiplicar a primeira equação E(I) por (-2) e somar com a segunda equação. Assim teremos;

$$\begin{cases} x + 2y + 3z = 6 \\ -5y - 5z = -10 \\ 3x + y - 2z = 2 \end{cases}$$

De forma análoga para eliminar a variável x na terceira equação E(III), devemos multiplicar E(I) por (-3) e somar com E(III). Obtendo assim:

$$\begin{cases} x + 2y + 3z = 6 \\ -5y - 5z = -10 & E(IV) \\ -5y - 11z = -16 & E(V) \end{cases}$$

E por fim para eliminar a variável y de E(V), devemos multiplicar a equação E(IV) por (-1) e somar com E(V). Logo:

$$\begin{cases} x + 2y + 3z = 6 \\ -5y - 5z = -10 \\ -6z = -6 \end{cases}$$

Este sistema é dito escalonado.

Agora para determinar o valor das variáveis procedemos da seguinte forma:

Obtemos o valor da variável z na equação:

$$-6z = -6$$

$$z = 1$$

Substituindo o valor de z em E (IV) temos:

$$-5y -5z = -10$$

$$-5y - 5(1) = -10$$

$$y = 1$$

E por fim para determinar o valor de z, substituímos os valores de y e z em E (l).

Assim:

$$x + 2y + 3z = 6$$

$$x + 2(1) + 3(1) = 6$$

$$x = 1$$

Portanto a solução para o sistema dado é $S = \{(1, 1, 1)\}.$

Exercícios

5. Resolver os sistemas abaixo, utilizando a regra de Cramer:

a)
$$\begin{cases} 2x - 4y = 16 \\ 3x + 3y = -3 \end{cases}$$

b)
$$\begin{cases} x + 3y = 1 \\ 2x - y = 9 \end{cases}$$

6. Encontrar o conjunto solução dos sistemas lineares a seguir:

a)
$$\begin{cases} 2x - y + 3z = 18 \\ x + 2y - z = 4 \\ -2x + 4y + 3z = 3 \end{cases}$$
b)
$$\begin{cases} 2x + 3y - z = 3 \\ -3x + y + 2z = 7 \\ x + 2y + z = 4 \end{cases}$$

7. Na feira, uma freguesa verificou que as barracas A, B e C tinham preços diferentes por caixa do produto, conforme a tabela a seguir:

	Morango	Laranja	Pera
А	R\$4,00	R\$5,00	R\$3,00
В	R\$5,00	R\$4,00	R\$4,00
C	R\$5,00	R\$4,00	R\$3,00

Comprando x caixas de morangos, y caixas de laranjas e z caixas de peras, na barraca A, a freguesa gastaria R\$23,00; na B R\$25,00 e comprando as mesmas quantidades na barraca C ela gastaria R\$22,00. Determinar x + y + z.

- 8. Uma empresa deve enlatar uma mistura de amendoim, castanha de caju e castanha-do-pará. Sabe-se que o quilo de amendoim custa R\$5,00, o quilo da castanha-de-caju R\$20,00 e o quilo da castanha-do-pará R\$16,00. Cada lata deve conter meio quilo da mistura e o custo total dos ingredientes deve ser de R\$5,75. Além disso, a quantidade de castanha-de-caju deve ser um terço da soma das outras duas.
 - a) Escreva o sistema linear que representa a situação descrita.
 - b) Resolva o referido sistema, determinando as quantidades, em gramas, de cada ingrediente por lata.
- 9. Uma montadora de automóveis produz carros das categorias popular e luxo. Por mês, são produzidos 4 200 carros da categoria popular, sendo 2 300 do modelo hatch e 1 900 do modelo sedan. Já da categoria luxo são produzidos 1 800 carros, 720 do modelo hatch e 1 080 do modelo sedan.
 - a) Forme uma matriz M na qual as categorias estão nas linhas, os modelos estão nas colunas e os elementos são as quantidades produzidas.
 - b) Se os preços de cada carro são os seguintes: \$20 mil para o modelo popular hatch, \$35 mil para o modelo popular sedan, \$55 mil para o modelo luxo hatch e \$70 mil para o modelo luxo sedan, forme uma matriz N_{2x2} na qual os modelos estão nas linhas, as categorias nas colunas e os elementos são os preços de cada veículo.
 - c) Se você multiplicar a 1.ª linha da matriz M com a 1.ª coluna de N, qual será o resultado? O que ele significa?

Gabarito

Sistemas Lineares

1. a)
$$A + B = \begin{bmatrix} 60 & 30 & 10 \\ 52 & 27 & 12 \\ 56 & 29 & 16 \end{bmatrix} + \begin{bmatrix} 40 & 24 & 6 \\ 32 & 20 & 10 \\ 36 & 18 & 8 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 60+40 & 30+24 & 10+6 \\ 52+32 & 27+20 & 12+10 \\ 56+36 & 29+18 & 16+8 \end{bmatrix} = \begin{bmatrix} 100 & 54 & 16 \\ 84 & 47 & 22 \\ 92 & 47 & 24 \end{bmatrix}$$

b)
$$2 \cdot B = 2 \cdot \begin{bmatrix} 40 & 24 & 6 \\ 32 & 20 & 10 \\ 36 & 18 & 8 \end{bmatrix} = \begin{bmatrix} 80 & 48 & 12 \\ 64 & 40 & 20 \\ 72 & 36 & 16 \end{bmatrix}$$

c)
$$2 \cdot A + \frac{1}{2} \cdot B = 2 \cdot \begin{bmatrix} 60 & 30 & 10 \\ 52 & 27 & 12 \\ 56 & 29 & 16 \end{bmatrix} + \frac{1}{2} \cdot \begin{bmatrix} 40 & 24 & 6 \\ 32 & 20 & 10 \\ 36 & 18 & 8 \end{bmatrix}$$

$$2.A + \frac{1}{2}.B = \begin{bmatrix} 120 & 60 & 20 \\ 104 & 54 & 24 \\ 112 & 58 & 32 \end{bmatrix} + \begin{bmatrix} 20 & 12 & 3 \\ 16 & 10 & 5 \\ 18 & 9 & 4 \end{bmatrix} =$$

$$= \begin{bmatrix} 140 & 72 & 23 \\ 120 & 64 & 29 \\ 130 & 67 & 36 \end{bmatrix}$$

d)
$$D = A \cdot P = \begin{bmatrix} 60 & 30 & 10 \\ 52 & 27 & 12 \\ 56 & 29 & 16 \end{bmatrix} \cdot \begin{bmatrix} 1,00 \\ 2,00 \\ 3,00 \end{bmatrix}$$

$$D = \begin{bmatrix} 60.1,00 + 30.2,00 + 10.3,00 \\ 52.1,00 + 27.2,00 + 12.3,00 \\ 56.1,00 + 29.2,00 + 16.3,00 \end{bmatrix} = \begin{bmatrix} 150,00 \\ 142,00 \\ 162,00 \end{bmatrix}$$

A matriz D representa o faturamento do supermercado A em relação a cada um dos produtos.

$$F = B \cdot P = \begin{bmatrix} 40 & 24 & 6 \\ 32 & 20 & 10 \\ 36 & 18 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1,00 \\ 2,00 \\ 3,00 \end{bmatrix}$$

$$F = \begin{bmatrix} 40.1,00 + 24.2,00 + 6.3,00 \\ 32.1,00 + 20.2,00 + 10.3,00 \\ 36.1,00 + 18.2,00 + 8.3,00 \end{bmatrix} = \begin{bmatrix} 106,00 \\ 102,00 \\ 96,00 \end{bmatrix}$$

A matriz F representa o faturamento do supermercado B em relação a cada um dos produtos.

2.

a) det
$$A = (-2)$$
, $8 - (-4)$, $5 = -16 + 20 = 4$

b)
$$\det B = 6.5 - 10.1 = 30 - 10 = 20$$

3.

a)
$$\det D = 0.1.(-1) + 3.(-1).(-2) + 2.1.1 - 1.1.(-2) - 3.2.(-1) - (-1).1.0$$

 $\det D = 0 + 6 + 2 + 2 + 6 + 0$
 $\det D = 16$

b)
$$\det K = (-2) \cdot (-1) \cdot 1 + 1 \cdot 2 \cdot (-2) + 3 \cdot 2 \cdot 0 - (-2) \cdot (-1) \cdot 0 - 1 \cdot 3 \cdot 1 - (-2) \cdot 2 \cdot 2$$

 $\det K = 2 - 4 + 0 - 0 - 3 + 8$
 $\det K = 3$

Desta forma:

5. det M -
$$\frac{1}{2}$$
 . det N = 5.6 - $\frac{1}{2}$. 62 = 30 - 31 = -1

Resposta: - 1

5.

a) Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{bmatrix} 2 & -4 \\ 3 & 3 \end{bmatrix}$$

$$D = 2.3 - 3.(-4)$$

$$D = 6 + 12$$

$$D = 18$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{vmatrix} 16 & -4 \\ -3 & 3 \end{vmatrix}$$

$$D_{y} = 16.3 - (-3).(-4)$$

$$D_{y} = 48 - 12$$

$$D_{y} = \begin{bmatrix} 2 & 16 \\ 3 & -3 \end{bmatrix}$$

$$D_v = 2 \cdot (-3) - 3 \cdot 16$$

$$D_{y} = -6 - 48$$

$$D_{y} = -54$$

Assim, a solução do problema será:

$$x = \frac{D_x}{D} = \frac{36}{18} = 2$$

$$y = \frac{D_y}{D} = \frac{-54}{18} = -3$$

Resposta:
$$S = \{(2, -3)\}$$

b) Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$D = 1 \cdot (-1) - 2 \cdot 3$$

$$D = -1 - 6$$

$$D = -7$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{bmatrix} 1 & 3 \\ 9 & -1 \end{bmatrix}$$

$$D_x = 1 \cdot (-1) - 9 \cdot 3$$

$$D_x = -1 - 27$$

$$D_x = -28$$

$$D_{y} = \begin{bmatrix} 1 & 1 \\ 2 & 9 \end{bmatrix}$$

$$D_v = 1.9 - 2.1$$

$$D_{v} = 9 - 2$$

$$D_v = 7$$

Assim, a solução do problema será:

$$x = \frac{D_x}{D} = \frac{-28}{-7} = 4$$

$$y = \frac{D_y}{D} \frac{7}{-7} = -1$$

Resposta: $S = \{(4, -1)\}.$

6.

a) Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ -2 & 4 & 3 \end{bmatrix}$$

$$D = 2 \cdot 2 \cdot 3 + 1 \cdot 4 \cdot 3 + (-2) \cdot (-1) \cdot (-1) - (-2) \cdot 2 \cdot 3 - 1 \cdot (-1) \cdot 3 - 4 \cdot (-1) \cdot 2$$

$$D = 12 + 12 - 2 + 12 + 3 + 8$$

$$D = 45$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{bmatrix} 18 & -1 & 3 \\ 4 & 2 & -1 \\ 3 & 4 & 3 \end{bmatrix}$$

$$D_{x} = 225$$

$$D_{y} = \begin{vmatrix} 2 & 18 & 3 \\ 1 & 4 & -1 \\ -2 & 3 & 3 \end{vmatrix}$$

$$D_{v} = 45$$

$$D_{z} = \begin{vmatrix} 2 & 1 & 18 \\ 3 & -2 & 4 \\ 1 & 0 & 3 \end{vmatrix}$$

$$D_z = 135$$

Assim, a solução do problema será:

$$x = \frac{D_x}{D} = \frac{225}{45} = 5$$

$$y = \frac{D_y}{D} = \frac{45}{45} = 1$$

$$z = \frac{D_z}{D} = \frac{135}{45} = 3$$

Resposta: $S = \{(5, 1, 3)\}.$

b) Resolvendo o determinante da matriz dos coeficientes, teremos:

$$D = \begin{bmatrix} 2 & 3 & -1 \\ -3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$D = 2.1.1 + 3.2.1 + (-3).2.(-1) + (-1).1.1 - 2.2.2 - (-3).3.1$$

$$D = 2 + 6 + 6 + 1 - 8 + 9$$

$$D = 16$$

Portanto, o sistema é possível e determinado.

Calculando os demais determinantes, teremos:

$$D_{x} = \begin{bmatrix} 3 & 3 & -1 \\ 7 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

$$D_{y} = \begin{vmatrix} 2 & 3 & -1 \\ -3 & 7 & 2 \\ 1 & 4 & 1 \end{vmatrix}$$

$$D_{v} = 32$$

$$D_{z} = \begin{vmatrix} 2 & 1 & 3 \\ 3 & -2 & 7 \\ 1 & 0 & 4 \end{vmatrix}$$

$$D_{z} = 16$$

Assim, a solução do problema será:

$$x = \frac{D_x}{D} = \frac{-16}{16} = -1$$

$$y = \frac{D_y}{D} = \frac{32}{16} = 2$$

$$z = \frac{D_z}{D} = \frac{16}{16} = 1$$

Resposta: $S = \{(-1, 2, 1)\}.$

7. Barraca A:
$$4x + 5y + 3z = 23 E(1)$$

Barraca B: 5x + 4y + 4z = 25 E(2)

Barraca C:
$$5x + 4y + 3z = 22 E(3)$$

Resolvendo o sistema pelo método do escalonamento, tem-se:

Primeiramente, elimina-se o termo que têm a incógnita x em E(2) e E(3); para isso, adiciona-se E(2) multiplicado por 4 a E(1) multiplicado por –5;

$$-20x - 25y - 15z = -115$$
$$20x + 16y + 16z = 100$$
$$-9y + z = -15$$

Agora, adiciona-se E(3) multiplicado por 4 a E(1) multiplicado por –5;

$$-20x - 25y - 15z = -115$$
$$20x + 16y + 12z = 88$$
$$-9y - 3z = -27$$

Fica-se então com o seguinte sistema:

$$\begin{cases}
4x + 5y + 3z = 23 \\
-9y + z = -15 & E (4) \\
-9y - 3z = -27 & E (5)
\end{cases}$$

O próximo passo é eliminar a incógnita y em E(5). Para isso, adicionamos E(4) a E(5) multiplicado por – 1;

$$-9y + z = -15$$

 $9y + 3z = 27$
 $4z = 12$

Finalizada as eliminações, chega-se a um sistema linear equivalente ao sistema linear inicial, entretanto apresentando-se de forma escalonada:

$$\begin{cases}
4x + 5y + 3z = 23 \\
-9y + z = -15 \\
4z = 12
\end{cases}$$

Para resolver esse sistema, basta achar z na terceira equação, substituí-lo na segunda para achar y e, em seguida, substituir z e y na primeira equação para encontrar o valor de x.

Assim, temos:

$$4z = 12$$

$$z = 3$$

Substituindo z por 3 na segunda, tem-se:

$$-9y + 3 = -15$$

$$-9y = -18$$

$$y = 2$$

E colocando o valor de z e y na primeira, tem-se:

$$4.x + 5.2 + 3.3 = 23$$

$$4.x = 4$$

$$x = 1$$

Assim, o valor de x + y + z = 1 + 2 + 4 + 3 = 6.

- 8.
- a) (x) amendoim: R\$5,00 o quilo;
 - (y) caju: R\$20,00 o quilo;
 - (z) castanha-do-pará: R\$16,00 o quilo.

Assim, temos o sistema:

$$\begin{cases} 5x + 20y + 16z = 5,75 \\ x + y + z = 0,5 \end{cases}$$
$$y = \frac{1}{3} (x + z)$$

\$112.500.000,00, que significa o faturamento da montadora com os veículos da categoria popular.

Organizando o sistema, tem-se:

$$\begin{cases}
5x + 20y + 16z = 5,75 \\
x + y + z = 0,5 \\
x - 3y + z = 0
\end{cases}$$

b) Do sistema organizado:

$$\begin{cases} 5x + 20y + 16z = 5,75 & E(1) \\ x + y + z = 0,5 & E(2) \\ x - 3y + z = 0 & E(3) \end{cases}$$

De E(2) e E(3) vem:

$$x + y + z = 0.5$$

$$- x + 3y - z = 0$$

$$4y = 0.5$$

Ou seja, y = 0,125.

Substituindo esse valor na E(1) e E(2) e resolvendo o sistema obtido, x = 0.25 e z = 0.125.

Então:

Amendoim = 0,25kg = 250g

Caju =
$$0,125$$
kg = 125 g

 $Castanha-do-par\acute{a}=0,125kg=125g$

9.