Nichtlineare Optimierung - 2. Hausaufgabe

 $\begin{array}{lll} \hbox{Claudia Wohlgemuth} & 366323 \\ \hbox{Thorsten Lucke} & 363089 \\ \hbox{Felix Thoma} & 358638 \end{array}$

Tutor: Mathieu Rosière, Di 8-10 Uhr

16. Mai 2017

2.1	2.2	2.3	2.4	\sum

Anmerkungen:

Es sei $f: \mathbb{R}^n \to \mathbb{R}$ konvex und $x \in \mathbb{R}^n$. Für $h \in \mathbb{R}^n$ bezeichne f'(x, h) die Richtungsableitung von f im Punkt x in Richtung h und weiter definieren wir

$$g_h: \mathbb{R} \to \mathbb{R}, \quad g_h(t) = f(x+th).$$

(i) ¹ Sei $h \in \mathbb{R}^n$ beliebig, aber fest gewählt. Mit der Konvexität von f folgt auch die Konvexität von g_h ; betrachte dazu für $t_1, t_2 \in \mathbb{R}$, $\lambda \in [0, 1]$

$$g_h(\lambda t_1 + (1 - \lambda)t_2) = f((\lambda + (1 - \lambda))x + (\lambda t_1 + (1 - \lambda)t_2)h)$$

$$= f(\lambda(x + t_1h) + (1 - \lambda)(x + t_2h))$$

$$\leq \lambda f(x + t_1h) + (1 - \lambda)f(x + t_2h) = \lambda g_h(t_1) + (1 - \lambda)g_h(t_2).$$

Dann gilt für $t, t_1, t_2 \in \mathbb{R}$ mit $t_1 < t < t_2$ wie aus Analysis I bekannt

$$\frac{g(t) - g(t_1)}{t - t_1} \le \frac{g(t_2) - g(t_1)}{t_2 - t_1} \le \frac{g(t_2) - g(t)}{t_2 - t}.$$

Diese Ungleichung zeigt, dass der Differenzenquotient monoton wachsend ist (fixiere dazu jeweils t_1,t_2 beziehungsweise t). Damit ist insbesondere $\frac{g(t)-g(0)}{t}$ für $t \searrow 0$ monoton fallend und durch $\frac{g(0)-g(-1)}{-1}$ nach unten beschränkt. Somit existiert

$$\lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(x + th) - f(x)}{t} = f'(x, h).$$

(ii) Sei $h \in \mathbb{R}^n$ und $\lambda > 0$, dann gilt mit $s = \lambda t$

$$f'(x, \lambda h) = \lim_{t \to 0} \frac{f(x + t\lambda h) - f(x)}{t} = \lambda \lim_{t \to 0} \frac{f(x + t\lambda h) - f(x)}{\lambda t}$$
$$= \lambda \lim_{s \to 0} \frac{f(x + sh) - f(x)}{s} = \lambda f'(x, h).$$

(iii) Seien $h_1, h_2 \in \mathbb{R}^n$. Mit (ii) gilt dann

$$f'(x, h_1 + h_2) = \lim_{t \to 0} \frac{f(x + t(h_1 + h_2)) - f(x)}{t}$$

$$= \lim_{t \to 0} \frac{f((\frac{1}{2} + \frac{1}{2})x + \frac{1}{2}2th_1 + \frac{1}{2}2th_2)) - (\frac{1}{2} + \frac{1}{2})f(x)}{t}$$

$$\leq \lim_{t \to 0} \frac{\frac{1}{2}f(x + 2th_1) - \frac{1}{2}f(x) + \frac{1}{2}f(x + 2th_2) - \frac{1}{2}f(x)}{t}$$

$$= \frac{1}{2}f'(x, 2h_1) + \frac{1}{2}f'(x, 2h_2)$$

$$= f'(x, h_1) + f'(x, h_2).$$

(iv) Als Gegenbeispiel untersuchen wir die euklidische Norm $||\cdot||:\mathbb{R}^2\to\mathbb{R}$ und ihre Richtungsableitung in Null. Dann ist

$$f'(0, e_1) = 1$$
 und $f'(0, e_2) = 1$ sowie $f'(0, e_1 + e_2) = \sqrt{2}$.

 $^{^1} vgl. \\ http://www.mathematik.uni-dortmund.de/~tdohnal/TEACH/Seminar_AnaIII_SS2013/Strickmann_Konvexe_Fkt.pdf; S.4$

Gegeben sei $z \in \mathbb{R}^n$. Wir untersuchen zu $\lambda \geq 0$

$$f_{\lambda} \colon \mathbb{R}^n \to \mathbb{R}, \quad f_{\lambda}(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|x\|_1 = \frac{1}{2} \sum_{k=1}^n |x_k - z_k|^2 + \lambda \sum_{k=1}^n |x_k|.$$

(i) Wir zeigen, dass für jedes $\lambda \geq 0$ ein eindeutiges $x_{\lambda} = \arg\min_{x \in \mathbb{R}^n} f_{\lambda}(x)$ gibt. Sei also $\lambda \geq 0$ beliebig. Wir zeigen, dass f_{λ} koerziv und streng konvex ist. Mit

$$f_{\lambda}(x) = \frac{1}{2}\|x - z\|_2^2 + \lambda \|x\|_1 \geq \frac{1}{2}\|x - z\|_2^2 \geq \|x\|_2^2 - \|x\|_2 \|z\|_2 + \|z\|_2^2 \geq \|x\|_2 (\|x\|_2 - \|z\|_2)$$

folgt die Koerzitivität von f_{λ} .

Auf der anderen Seite ist f_{λ} Summe einer streng konvexen Funktion $n: x \mapsto \|x-z\|_2^2$ und einer konvexen Funktion $x \mapsto \|x\|_1$ und somit selbst streng konvex. Bemerke dazu, dass $n''(x) = \mathrm{id}_{\mathbb{R}^n}$ positiv definit ist und daher n streng konvex und dass für alle $x, y \in \mathbb{R}^n$ und $t \in [0, 1]$ mit der Dreiecksungleichung

$$||tx + (1-t)y||_1 \le t||x||_1 + (1-t)||y||_1$$

gilt. Insgesamt ist f_{λ} also streng konvex und somit insbesondere stetig sowie koerziv und besitzt damit einen eindeutigen Minimierer x_{λ} .

(ii)

Sei $A: \mathbb{R}^n \to \mathbb{R}^m$ linear und $b \in \mathbb{R}^m$. Wir betrachten die Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ mit

$$f(x) = \frac{1}{2} ||Ax - b||^2 = \frac{1}{2} \langle Ax - b, Ax - b \rangle = \frac{1}{2} (\langle A^T Ax, x \rangle - 2 \langle A^T x, b \rangle + \langle b, b \rangle).$$

(i) Dann ist die Ableitung in $x \in \mathbb{R}^n$, wie aus Analysis II bekannt, gegeben durch

$$f'(x) = A^T A x - A^T b$$

gegeben. Damit ergibt sich der Gradient

$$\nabla f(x) = f'(x)^T = x^T A^T A - b^T A^T.$$

- (ii) Ist $\bar{x} \in \mathbb{R}^n$ ein Minimierer von f, dann ist insbesondere die notwendige Optimalitätsbedingung erfüllt, d.h. es gilt $f'(\bar{x}) = 0$ und somit $A^T A \bar{x} = A^T b$. Wie aus Numerik bekannt, ist $A^T A$ eine symmetrische, positiv semi-definite Matrix. Wegen $f''(x) = A^T A$ für alle $x \in \mathbb{R}^n$ ist f also konvex. Damit ist die Erfüllung der notwendigen Optimalitätsbedingung bereits hinreichend für Minimalität in einem Punkt.
- (iii) Nach (i) genügt es zu zeigen, dass $A^Tb \in \operatorname{im} A^TA$ ist. Wir zeigen sogar im $A^T = \operatorname{im} A^TA$. Dabei ist die Inklusion im $A^T \supset \operatorname{im} A^TA$ klar. Für $x \in \mathbb{R}^n$ gilt weiterhin

$$\langle A^T Ax, x \rangle = \langle Ax, Ax \rangle$$

d.h. $x \in \ker A^T A$ genau dann, wenn $x \in \ker A$ ist, kurz $\ker A^T A = \ker A$. Damit ist

$$\operatorname{rank} A^T A = \operatorname{rank} A = \operatorname{rank} A^T$$
.

Daher muss bereits im $A^T=\operatorname{im} A^TA$ gelten, d.h. es gibt eine Lösung $\bar{x}\in\mathbb{R}^n$ von $A^TAx=A^Tb$.

(iv) Nach obiger Beobachtung ist $n=\operatorname{rank} A=\operatorname{rank} A^TA$ und somit $A^TA\colon\mathbb{R}^n\to\mathbb{R}^n$ ebenfalls injektiv und daher sogar bijektiv. Folglich erfüllt nur $x=(A^TA)^{-1}A^Tb$ die notwendige Optimalitätsbedingung und ist nach (ii) einziger Minimierer.

Gegeben sei eine stetig differenzierbare Funktion $f \colon \mathbb{R}^n \to \mathbb{R}$ und ein Punkt $\bar{x} \in \mathbb{R}^n$. Für $d \in \mathbb{R}^n$ definieren wir

$$g_d \colon \mathbb{R} \to \mathbb{R}, \quad g_d(t) = f(\bar{x} + td).$$

(i) Sei f konvex und besitze für jedes $d \in \mathbb{R}^n$ die Funktion g_d in $\bar{x} \in \mathbb{R}$ ein lokales Minimum bei t=0. Mit f ist auch g_d für $d \in \mathbb{R}^n$ differerenzierbar und mit der notwendigen Optimalitätsbedingung folgt

$$0 = g'_d(0) = \lim_{t \to 0} \frac{g_d(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(\bar{x} + td) - f(\bar{x})}{t} = f'(\bar{x}, d).$$

Da f stetig differenzierbar ist, so ist die Ableitung in einem Punkt durch die partiellen Ableitungen gegeben. Insgesamt ist also $f'(\bar{x}) = 0$. Zusammen mit der Konvexität folgt bereits, dass \bar{x} ein Minimierer von f ist.

(ii) Wir betrachten die stetig differenzierbare Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = (y - x^2)(y - 2x^2).$$

Für
$$d = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R} \setminus \{0\}$$
 ist

$$g_d(t) = (ty - t^2x^2)(ty - 2t^2x^2).$$

Für den Fall x=0 und $y\neq 0$ vereinfacht sich die Funktion sogar zu

$$q_d(t) = t^2 y^2 > 0 = q(0)$$
 für $t \neq 0$

und falls y=0 und $x\neq 0$ zu

$$q_d(t) = 2t^4x^4 > 0 = q(0)$$
 für $t \neq 0$.

Andernfalls ist für $|t| < \frac{2|y|}{x^2}$ auch

$$g_d(t) > 0 = g_d(0)$$
 mit $t \neq 0$.

Insgesamt ist t = 0 für jedes $d \in \mathbb{R}^2 \setminus \{0\}$ ein lokaler Minimierer von g_d . Trotzdem ist

$$f(0,0) = 0 > -1 = f(1,1).$$