Homework 12

Problem 1. Let G be a pseudorandom generator of stretch ℓ such that $\ell(n) \geq 2n$.

- (a) Define G' as $G'(s) = G(s0^{|s|})$. Is G' necessarily a pseudorandom generator?
- (b) Define G'' as $G''(s) = G(s_1 \cdots s_{n/2})$ for $s = s_1 s_2 \cdots s_n$. Is G'' necessarily a pseudorandom generator?

Solution. (a) Not necessarily. Assume we have a PRG $H: \{0,1\}^{n/2} \to \ell(n)$, we construct $G(s) = H(s_1 \dots s_{n/2}) s_{n/2+1} \dots s_n$. Easy to see that G(s) is also a PRG. However $G'(s) = H(s)0^n$ is clearly not a PRG.

(a) Yes. By the security of G, we have that for any PPT adversary $\mathcal{A}(\text{poly in } n/2, \text{ which is also poly in } n)$, we have

$$|\Pr_{s}[\mathcal{A}(G(s_1...s_{n/2})) = 1] - \Pr_{s}[\mathcal{A}(R_{\ell(n/2)}) = 1]| \le \operatorname{negl}(n/2) = \operatorname{negl}(n).$$

Since $G''(s) = G(s_1 \dots s_{n/2})$, the beyond result also applies.

Problem 2. A keyed family of functions F_k is a pseudorandom random permutation (PRP) if (a) $F_k(\cdot)$ and $F_k^{-1}(\cdot)$ are efficiently computable given the key k and (b) for any polynomial-time algorithm \mathcal{A} ,

$$\left| \Pr \left(\mathcal{A}^{F_k(\cdot), F_k^{-1}(\cdot)}(1^n) = 1 \right) - \Pr \left(\mathcal{A}^{f_n(\cdot), f_n^{-1}(\cdot)}(1^n) = 1 \right) \right| \leq \operatorname{negl}(n).$$

Consider the following encryption scheme

- 1. Sample key k uniformly at random.
- 2. On input plaintext $x \in \{0,1\}^{n/2}$, algorithm Enc_k samples randomness $r \in \{0,1\}^{n/2}$ and outputs ciphertext $F_k(r||x)$.

Solve the following problems assuming that F_k is a PRP.

- (a) Show how the decryption Dec_k works.
- (b) Prove that the encryption scheme is CPA-secure.

Solution. (a) The decryption algorithm runs $F_j^{-1}(\cdot)$ on the ciphertext, and output the second half as the plaintext. (b) The proof is similar to the proof in class. If there is an adversary $\mathcal{A}^{\operatorname{Enc}_k(\cdot)}$ that breaks the IND-CPA security of the encryption protocol, we will also construct an adversary \mathcal{D} that breaks the security of PRP.

The adversary $\mathcal{D}^{F_k(\cdot),F_k^{-1}(\cdot)}$ works as follows:

Homework 12 Student Name

• It first calls $\mathcal{A}^{\text{Enc}_k(\cdot)}$ and generates two plaintext x_0, x_1 . Since we have access to $F_k(\cdot)$, we can simulate $\operatorname{Enc}_k(\cdot) = F_k(r||\cdot)$.

- It samples $r \leftarrow \{0,1\}^{n/2}, b \leftarrow \{0,1\}$, and sends $F_k(r||x_b)$ to \mathcal{A} .
- \mathcal{A} returns b', \mathcal{D} outputs 1 if b' = b.

We note that $\Pr[\mathcal{D}^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1]=\Pr[\mathcal{A} \text{ succ}] \geq \frac{1}{2}+\frac{1}{\operatorname{poly}(n)}$. Now we prove that if we replace $F_k(\cdot)$ in \mathcal{D} with a random function f, $\Pr[\mathcal{D}^{f_k(\cdot),f_k^{-1}(\cdot)}(1^n)=1] \leq \frac{1}{2} + \operatorname{negl}(n)$. Assuming \mathcal{A} makes q(n) queries to the oracle f, we can see that if it queries the challenge point $r||x_b$, it will success with probability 1, otherwise it cannot success better than the random guessing b strategy. Since r is random, it has probability at most $q(n)/2^{n/2}$ to query the challenge point. Thus we have

$$\Pr[\mathcal{D}^{f_k(\cdot), f_k^{-1}(\cdot)}(1^n) = 1] \le \frac{1}{2} + \frac{q(n)}{2^{n/2}}$$

Comparing the two cases, we can see that \mathcal{D} breaks the security of PRP.