- 1. Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = 2x^3 + 4x 1$. Mostre que f tem um único zero em \mathbb{R} da seguinte maneira:
 - (a) Prove que f tem pelo menos um zero em \mathbb{R} utilizando o teorema de Bolzano;
 - (b) Prove em seguida que f não pode ter mais do que um zero em \mathbb{R} , utilizando o teorema de Rolle.
- 2. Utilize o teorema de Rolle para provar que:
 - (a) O polinómio $x^{102} + ax + b$, com $a, b \in \mathbb{R}$, tem no máximo duas raízes;
 - (b) O polinómio $x^{101} + ax + b$, com $a, b \in \mathbb{R}$, tem no máximo três raízes
- 3. Prove a validade das seguintes desigualdades utilizando o Teorema de Lagrange:
 - (a) $\tan x > x \text{ para } x \in]0, \frac{\pi}{2}[,$
 - (b) $\log(x+1) \log x < \frac{1}{x} \text{ para } x \in]0, +\infty[,$
 - (c) $|\sin x| \le |x|$ para qualquer $x \in \mathbb{R}$,
 - (d) $|\cos x 1| \le x^2$ para qualquer $x \in \mathbb{R}$,
 - (e) $|\sin x x| \le |x|^3$ para qualquer $x \in \mathbb{R}$,
 - (f) $\frac{x}{1+x^2} \le \arctan x \le x \text{ para } x \in [0, +\infty[,$
 - (g) $8 + \frac{1}{9} < \sqrt{66} < 8 + \frac{1}{8}$
- 4. Mostre que, no intervalo $]0, \frac{\pi}{2}[,$
 - (a) A função $x \mapsto \tan x x$ é estritamente crescente;
 - (b) A função $x \mapsto \frac{\sin x}{x}$ é estritamente decrescente
- 5. Mostre que nem toda a função diferenciável tem derivada contínua.
- 6. Seja f contínua em [0,1], diferenciável e positiva em]0,1[com f(0)=f(1)=0. Mostre que $g:]0,1[\to\mathbb{R}$ definida por $g(x)=\frac{f'(x)}{f(x)}$ é sobrejectiva.
- 7. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $|f(x) f(y)| \le (x y)^2$, para quaisquer x e y. Mostre que f é uma função constante em \mathbb{R} .