2 Espacios vectoriales

2.1 Espacio vectorial

Un **espacio vectorial** sobre un cuerpo \mathbb{K} (en general \mathbb{R} o \mathbb{C}) es un conjunto $V \neq \emptyset$ sobre el que hay definidas dos operaciones:

1. Suma:

$$\begin{array}{c} + : V \times V \longrightarrow V \\ & (\mathbf{u}, \mathbf{v}) \longrightarrow \mathbf{u} + \mathbf{v} \end{array}$$

verificando las siguientes propiedades:

- (a) Conmutativa: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \forall \mathbf{u}, \mathbf{v} \in V$.
- (b) Asociativa: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}), \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- (c) Elemento neutro: Existe $\mathbf{0} \in V$ tal que $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in V$.
- (d) Elemento opuesto: Para todo $\mathbf{u} \in V$ existe $-\mathbf{u} \in V$ tal que $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$

2. Producto por un escalar:

$$\begin{array}{c} \cdot : \mathbb{K} \times V \longrightarrow V \\ (\lambda, \mathbf{u}) \longrightarrow \lambda \cdot \mathbf{u} \end{array}$$

verificando las siguientes propiedades:

- (a) $1 \cdot \mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in V$.
- (b) $\lambda \cdot (\mu \cdot \mathbf{u}) = (\lambda \mu) \cdot \mathbf{u}, \forall \lambda, \mu \in \mathbb{K}, \forall \mathbf{u} \in V.$
- (c) $(\lambda + \mu) \cdot \mathbf{u} = \lambda \cdot \mathbf{u} + \mu \cdot \mathbf{u}, \forall \lambda, \mu \in \mathbb{K}, \forall \mathbf{u} \in V.$
- (d) $\lambda \cdot (\mathbf{u} + \mathbf{v}) = \lambda \cdot \mathbf{u} + \lambda \cdot \mathbf{v}, \forall \lambda \in \mathbb{K}, \forall \mathbf{u}, \mathbf{v} \in V.$

Los elementos de un espacio vectorial se llaman vectores.

Un espacio vectorial real es un espacio vectorial sobre el cuerpo \mathbb{R} de los números reales.

Nota: En lo sucesivo, siempre que no haya confusión se omitirá el punto (\cdot) en la operación producto por escalar.

Ejemplos

Son espacios vectoriales reales, con las operaciones que se indican, los siguientes:

1. El conjunto de *n*-uplas de números reales:

$$\mathbb{R}^n = \{ \mathbf{x} = (x_1, x_2, \dots, x_n) = (x_i)_{1 \le i \le n} : x_i \in \mathbb{R}, \ 1 \le i \le n \}$$

con las operaciones:

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
$$\lambda \mathbf{x} = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

2. El conjunto de matrices de dimensión $n \times m$:

$$\mathcal{M}_{n \times m}(\mathbb{R}) = \left\{ A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} : a_{ij} \in \mathbb{R}, 1 \le i \le n, 1 \le j \le m \right\}$$

con las operaciones: suma de matrices y producto por números reales.

3. El conjunto de todos los polinomios con coeficientes reales en la variable x:

$$\mathcal{P}(\mathbb{R}) = \left\{ \sum_{k=0}^{n} a_k x^k : n \in \mathbb{N}, \, a_k \in \mathbb{R} \right\}$$

con las clásicas operaciones de suma y producto por números reales.

4. El conjunto de todos los polinomios, con coeficientes reales en la variable x, de grado menor o igual que n:

$$\mathcal{P}_n(\mathbb{R}) = \left\{ \sum_{k=0}^n a_k x^k : a_k \in \mathbb{R} \right\}$$

con las mismas operaciones anteriores.

5. El conjunto de todas las funciones reales:

$$\mathcal{F}(\mathbb{R}) = \{ f : \mathbb{R} \longrightarrow \mathbb{R} \}$$

con las operaciones: suma de funciones y producto por números reales.

6. El conjunto de todas las sucesiones de números reales:

$$\mathcal{S} = \{(x_n)_{n=0}^{\infty} : x_n \in \mathbb{R}, n \ge 1\}$$

con las operaciones: suma de sucesiones y producto por números reales.

7. Si $\mathbb{Z}_2 = \{0, 1\}$, entonces \mathbb{Z}_2^n es un espacio vectorial sobre el cuerpo \mathbb{Z}_2 , con las operaciones:

$$0+0=1+1=0$$
, $0+1=1+0=1$ y $0\cdot 0=0\cdot 1=1\cdot 0=0$, $1\cdot 1=1$

2.2 Propiedades

Si V es un espacio vectorial, entonces

- 1. $0 \cdot \mathbf{u} = \mathbf{0}$.
- 2. $(-1) \cdot \mathbf{u} = -\mathbf{u}$.

para todo $u \in V$.

2.3 Subespacio vectorial

Se llama subespacio vectorial de un espacio vectorial V a cualquier subconjunto no vacío $S \subset V$ que es espacio vectorial con las mismas operaciones definidas sobre V.

2.4 Caracterización de subespacios vectoriales

Si V es un espacio vectorial y $S \subset V$, $S \neq \emptyset$, entonces

$$S \text{ es subespacio vectorial de } V \Longleftrightarrow \begin{cases} (1) \ \mathbf{u} + \mathbf{v} \in S, \ \forall \mathbf{u}, \mathbf{v} \in S \\ (2) \ \lambda \mathbf{u} \in S, \ \forall \lambda \in \mathbb{K} \ \mathbf{y} \ \forall \mathbf{u} \in S \end{cases}$$

Demostración:

- (\Rightarrow) Evidente, pues S es espacio vectorial.
- (\Leftarrow) (1) y (2) garantizan que las operaciones están bien definidas sobre S, al ser éste un conjunto cerrado respecto de ellas. Además, por ser S un subconjunto de V, se verifican todas las propiedades de la suma y el producto siempre que sea cierto que $\mathbf{0} \in S$ y que el opuesto de cualquier elemento de S está en S. Ahora bien, para cualquier $\mathbf{u} \in S$,

$$\mathbf{0} = 0 \cdot \mathbf{u} \in S$$
 y $-\mathbf{u} = (-1) \cdot \mathbf{u} \in S$

luego S es un subespacio vectorial de V.

2.5 Corolario

Si V es un espacio vectorial y $S \subset V$, $S \neq \emptyset$, entonces

$$S$$
 es subespacio vectorial de $V \iff \lambda \mathbf{u} + \mu \mathbf{v} \in S$, $\forall \lambda, \mu \in \mathbb{K}$, $\forall \mathbf{u}, \mathbf{v} \in S$

Ejemplos

- 1. En todo espacio vectorial V, el conjunto $\{0\}$ es un subespacio vectorial llamado subespacio trivial.
- 2. Sea $\mathcal{F}(\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ el espacio vectorial de las funciones reales. Son subespacios vectoriales:

$$S_1 = \{ f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 \}$$
 $S_2 = \{ f \in \mathcal{F}(\mathbb{R}) : f \text{ continua} \}$
 $S_3 = \{ f \in \mathcal{F}(\mathbb{R}) : f \text{ acotada} \}$ $S_4 = \{ f \in \mathcal{F}(\mathbb{R}) : f \text{ derivable} \}$

y no lo son

$$S_5 = \{ f \in \mathcal{F}(\mathbb{R}) : f(x) > 0, \forall x \in \mathbb{R} \}$$

$$S_6 = \{ f \in \mathcal{F}(\mathbb{R}) : |f(x)| \le 1, \forall x \in \mathbb{R} \}$$

3. Son subespacios vectoriales del espacio vectorial $\mathcal{P}(\mathbb{R})$, de todos los polinomios en x con coeficientes reales, los siguientes:

$$S_1 = \{ p \in \mathcal{P}(\mathbb{R}) : p'(0) = 0 \}$$
 $S_2 = \{ p \in \mathcal{P}(\mathbb{R}) : a_0 = a_1 = 0 \}$

donde a_0 y a_1 son los coeficientes de grado 0 y 1, respectivamente. No son subespacios vectoriales:

$$S_3 = \{ p \in \mathcal{P}(\mathbb{R}) : \operatorname{grado}(p) = 4 \}$$
 $S_4 = \{ p \in \mathcal{P}(\mathbb{R}) : \operatorname{el grado de } p \text{ es par} \}$

4. En el espacio vectorial de todas las matrices cuadradas de orden n, el subconjunto de las matrices simétricas es un subespacio vectorial, y no lo son el subconjunto de las matrices regulares ni el de las matrices singulares.

- 5. El conjunto de soluciones del sistema homogéneo $A\mathbf{x} = \mathbf{0}$, $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, es un subespacio vectorial de \mathbb{R}^n .
- 6. Son subespacios vectoriales de $\mathcal{M}_{2\times 2}(\mathbb{R})$:

$$S_1 = \left\{ \left(\begin{array}{cc} 0 & a \\ b & 0 \end{array} \right) : a, b \in \mathbb{R} \right\} \qquad S_2 = \left\{ \left(\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right) : a \in \mathbb{R} \right\}$$

y no lo es

$$S_3 = \left\{ \left(\begin{array}{cc} 0 & 1 \\ a & 0 \end{array} \right) : a \in \mathbb{R} \right\}$$

2.6 Combinación lineal

Sea V un espacio vectorial. Se dice que $\mathbf{v} \in V$ es **combinación lineal** de los vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subset V$, si existen $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$ tales que

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$$

Ejemplos

1. En \mathbb{R}^3 , para averiguar si el vector $\mathbf{v} = (1, 2, 3)$ es combinación lineal de $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (2, 4, 0)$ y $\mathbf{v}_3 = (0, 0, 1)$, se plantea la ecuación vectorial:

$$(1,2,3) = \alpha(1,1,1) + \beta(2,4,0) + \gamma(0,0,1)$$

que equivale al siguiente sistema de ecuaciones, cuyas soluciones son las que se indican:

$$\begin{cases} \alpha + 2\beta &= 1\\ \alpha + 4\beta &= 2\\ \alpha &+ \gamma = 3 \end{cases} \implies \begin{cases} \alpha = 0\\ \beta = 1/2\\ \gamma = 3 \end{cases}$$

Luego $\mathbf{v} = 0\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 + 3\mathbf{v}_3$, y el vector \mathbf{v} es combinación lineal de $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ (y también de $\{\mathbf{v}_2, \mathbf{v}_3\}$).

2. En $\mathcal{M}_{2\times 2}(\mathbb{R})$, para averiguar si la matriz $A = \begin{pmatrix} -1 & 0 \\ 2 & 4 \end{pmatrix}$ es combinación lineal de $A_1 = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ y $A_2 = \begin{pmatrix} 3 & 2 \\ 3 & 5 \end{pmatrix}$, se plantea la ecuación matricial:

$$\begin{pmatrix} -1 & 0 \\ 2 & 4 \end{pmatrix} = \alpha \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} + \beta \begin{pmatrix} 3 & 2 \\ 3 & 5 \end{pmatrix} \Longrightarrow \begin{cases} \alpha + 3\beta = -1 \\ \alpha + 2\beta = 0 \\ 2\alpha + 3\beta = 2 \\ 2\alpha + 5\beta = 4 \end{cases}$$

Este sistema es incompatible, luego A no es combinación lineal de $\{A_1, A_2\}$.

2.7 Dependencia e independencia lineal de vectores

Sea V un espacio vectorial. Se dice que el conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subset V$ es linealmente dependiente si y sólo si existen $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$, con algún $\alpha_i \neq 0$, tales que $\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$. En caso contrario, se dice que el conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente.

Para estudiar si un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente dependiente o independiente, se plantea la ecuación

$$\sum_{i=1}^{n} \alpha_i \mathbf{v}_i = \mathbf{0}$$

y se estudian sus soluciones. Si admite alguna solución no nula el conjunto de vectores es linealmente dependiente, y si sólo admite la solución nula es linealmente independiente.

Ejemplos

1. En \mathbb{R}^4 , los vectores $\mathbf{v}_1 = (1,0,-1,2)$, $\mathbf{v}_2 = (1,1,0,1)$ y $\mathbf{v}_3 = (2,1,-1,1)$ son linealmente independientes, pues

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 = \mathbf{0} \Longrightarrow \begin{cases} \alpha + \beta + 2\gamma = 0 \\ \beta + \gamma = 0 \\ -\alpha - \gamma = 0 \\ 2\alpha + \beta + \gamma = 0 \end{cases} \Longrightarrow \alpha = \beta = \gamma = 0$$

2. En \mathbb{R}^4 , los vectores \mathbf{v}_1 , \mathbf{v}_2 , y \mathbf{v}_3 , del ejemplo anterior, y $\mathbf{v}_4 = (1, 0, -1, 4)$ son linealmente dependientes, pues

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 + \delta \mathbf{v}_4 = \mathbf{0} \Longrightarrow \begin{cases} \alpha + \beta + 2\gamma + \delta = 0 \\ \beta + \gamma & = 0 \\ -\alpha & -\gamma - \delta = 0 \\ 2\alpha + \beta + \gamma + 4\delta = 0 \end{cases} \Longrightarrow \begin{cases} \alpha = -2t \\ \beta = -t \\ \gamma = t \\ \delta = t \end{cases}, \ t \in \mathbb{R}$$

que admite soluciones no nulas. Por ejemplo, para t = -1, $2\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 - \mathbf{v}_4 = \mathbf{0}$.

2.8 Propiedades

En un espacio vectorial V se cumplen las siguientes propiedades:

- 1. $\{v\}$ linealmente dependiente $\iff v = 0$
- 2. $\mathbf{0} \in A \subset V \Longrightarrow A$ es linealmente dependiente
- 3. $\{\mathbf{u}, \mathbf{v}\}\$ linealmente dependiente $\iff \mathbf{u} = \lambda \mathbf{v}$ (son proporcionales)
- 4. A linealmente independiente y $B \subset A \Longrightarrow B$ es linealmente independiente
- 5. A linealmente dependiente y $A \subset B \Longrightarrow B$ es linealmente dependiente
- 6. A linealmente dependiente \iff Existe $\mathbf{v} \in A$ que es combinación lineal de $A \setminus \{\mathbf{v}\}$
- 7. A linealmente independiente \iff No existe $\mathbf{v} \in A$ que sea combinación lineal de $A \setminus \{\mathbf{v}\}$

2.9 Lema

Si V es un espacio vectorial y $A = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset V$, entonces

$$L(A) = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}_i : \alpha_i \in \mathbb{K} \right\}$$

es un subespacio vectorial de V, que se llama **subespacio generado** por A. El conjunto A se llama **sistema de generadores** de L(A).

Demostración: Si $\mathbf{u} = \sum_{i=1}^{m} \alpha_i \mathbf{v}_i \in L(A), \mathbf{v} = \sum_{i=1}^{m} \beta_i \mathbf{v}_i \in L(A), \mathbf{v} \in \mathbb{K}$, entonces

$$\lambda \mathbf{u} + \mu \mathbf{v} = \sum_{i=1}^{m} (\lambda \alpha_i + \mu \beta_i) \mathbf{v}_i \in L(A)$$

Ejemplos

1. Si $V = \mathbb{R}^3$ y $A = \{ \mathbf{v}_1 = (1, 0, 1), \mathbf{v}_2 = (1, 1, -1) \}$, entonces $L(A) = \{ \mathbf{v} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 : \alpha, \beta \in \mathbb{R} \} = \{ \mathbf{v} = (\alpha + \beta, \beta, \alpha - \beta) : \alpha, \beta \in \mathbb{R} \}$

Las ecuaciones

$$\left\{ \begin{array}{ll} x = \alpha + \beta \\ y = \beta \\ z = \alpha - \beta \end{array} \right. ; \ \alpha, \beta \in \mathbb{R}$$

se llaman **ecuaciones paramétricas** de L(A). Las ecuaciones paramétricas son útiles para obtener, dándo valores reales a los parámetros α y β , los diferentes vectores de L(A). Así, por ejemplo, para $\alpha = 2$ y $\beta = -1$ se obtiene el vector $\mathbf{v} = (1, -1, 3) \in L(A)$. Eliminando parámetros en las ecuaciones paramétricas, se obtiene:

$$x - 2y - z = 0$$

que se llaman **ecuaciones implícitas** de L(A) (en este caso sólo una). Las ecuaciones implícitas son útiles para comprobar si un determinado vector pertenece a L(A) (el vector debe verificar todas las ecuaciones). Por ejemplo, el vector $(3,1,1) \in L(A)$ pues $3-2\cdot 1-1=0$, y el vector $(-1,2,1) \notin L(A)$, pues $-1-2\cdot 2-1 \neq 0$.

2. En \mathbb{R}^4 , las ecuaciones paramétricas e implícitas del subespacio generado por

$$A = {\mathbf{v}_1 = (1, -1, 1, -1), \mathbf{v}_2 = (1, 2, -1, 3)}$$

son

$$\begin{cases} x_1 = \alpha + \beta \\ x_2 = -\alpha + 2\beta \\ x_3 = \alpha - \beta \\ x_4 = -\alpha + 3\beta \end{cases} ; \quad \alpha, \beta \in \mathbb{R} \quad \Longrightarrow \begin{cases} x_1 - 2x_2 - 3x_3 = 0 \\ x_1 - 2x_3 - x_4 = 0 \end{cases}$$

2.10 Propiedades

Si A y B son dos subconjuntos finitos de un espacio vectorial V, entonces:

- 1. $A \subset B \Longrightarrow L(A) \subset L(B)$.
- 2. $A \subset L(B) \iff L(A) \subset L(B)$.
- 3. $L(A) = L(B) \iff A \subset L(B) \text{ y } B \subset L(A)$.

2.11 Proposición

Sea V un espacio vectorial y $\{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset V$. Si \mathbf{v}_m es combinación lineal de $\{\mathbf{v}_1, \dots, \mathbf{v}_{m-1}\}$, entonces

$$L({\mathbf{v}_1,\ldots,\mathbf{v}_m}) = L({\mathbf{v}_1,\ldots,\mathbf{v}_{m-1}})$$

Demostración:

 (\supset) Si $\mathbf{v} \in L(\{\mathbf{v}_1, \dots, \mathbf{v}_{m-1}\})$, entonces

$$\mathbf{v} = \sum_{i=1}^{m-1} \alpha_i \mathbf{v}_i = \sum_{i=1}^{m-1} \alpha_i \mathbf{v}_i + 0 \mathbf{v}_m \in L\left(\{\mathbf{v}_1, \dots, \mathbf{v}_m\}\right)$$

(\subset) Sea $\mathbf{v}_m = \sum_{i=1}^{m-1} \beta_i \mathbf{v}_i$. Si $\mathbf{v} \in L(\{\mathbf{v}_1, \dots, \mathbf{v}_m\})$, entonces

$$\mathbf{v} = \sum_{i=1}^{m} \alpha_i \mathbf{v}_i = \sum_{i=1}^{m-1} \alpha_i \mathbf{v}_i + \alpha_m \sum_{i=1}^{m-1} \beta_i \mathbf{v}_i = \sum_{i=1}^{m-1} (\alpha_i + \alpha_m \beta_i) \mathbf{v}_i \in L(\{\mathbf{v}_1, \dots, \mathbf{v}_{m-1}\})$$

2.12 Base de un espacio vectorial

Se llama base de un espacio vectorial (o subespacio vectorial) a cualquiera de sus sistemas de generadores que esté formado por vectores linealmente independientes.

2.13 Teorema de la base

Todo espacio vectorial $V \neq \{0\}$ (o subespacio vectorial) con un sistema de generadores finito posee al menos una base.

Demostración: Sea $A_m = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ un sistema de generadores de V. Si A_m es linealmente independiente, entonces $B = A_m$ es una base de V. En caso contrario habrá un vector, que se puede suponer \mathbf{v}_m , que es combinación lineal de los restantes, por lo que

$$V = L(A_m) = L(A_{m-1})$$
 con $A_{m-1} = \{\mathbf{v}_1, \dots, \mathbf{v}_{m-1}\}$

Si A_{m-1} es linealmente independiente, entonces $B = A_{m-1}$ es una base de V. En caso contrario, se repite el razonamiento anterior hasta llegar a algún $A_i = \{\mathbf{v}_1, \dots, \mathbf{v}_i\}$ que sea linealmente independiente y que será la base.

El final del proceso anterior está asegurado pues, en el peor de los casos, después de m-1 pasos se llegaría a $A_1 = \{\mathbf{v}_1\}$ con $\mathbf{v}_1 \neq \mathbf{0}$ (pues $L(A_1) = V \neq \{\mathbf{0}\}$), y este sería la base.

2.14 Coordenadas respecto de una base

Si $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es una base del espacio vectorial V, entonces para todo $\mathbf{v} \in V$ se tiene que

$$\mathbf{v} = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n = \sum_{i=1}^n x_i \mathbf{v}_i$$

Se llaman coordenadas de v respecto de la base B a la n-upla $(x_1, \ldots, x_n) \in \mathbb{K}^n$, y se indica

$$\mathbf{v} = (x_1, \dots, x_n)_B$$

2.15 Unicidad de las coordenadas

En un espacio vectorial, las coordenadas de un vector respecto de una base finita son únicas. **Demostración**: Si $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es una base de V, y $\mathbf{v} \in V$, entonces

$$\begin{cases} \mathbf{v} = (x_1, \dots, x_n)_B = \sum_{i=1}^n x_i \mathbf{v}_i \\ \mathbf{v} = (x_1', \dots, x_n')_B = \sum_{i=1}^n x_i' \mathbf{v}_i \end{cases} \implies \sum_{i=1}^n (x_i - x_i') \mathbf{v}_i = \mathbf{0} \implies x_i = x_i', \ 1 \le i \le n$$

ya que los vectores de B son linealmente independientes. Luego las coordenadas de cualquier vector respecto de la base son únicas.

2.16 Bases usuales

En cada uno de los siguientes espacios vectoriales, la base usual es la que se indica:

1. En \mathbb{R}^n ,

$$B_c = {\mathbf{e}_1 = (1, 0, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 1)}$$

que también se llama base canónica.

2. En $\mathcal{M}_{n\times m}(\mathbb{R})$, B=

$$= \left\{ E_1 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, E_{n \cdot m} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

3. En $\mathcal{P}_n(\mathbb{R})$,

$$B = \left\{1, x, x^2, \dots, x^n\right\}$$

Siempre que no haya confusión, se suele omitir la indicación de la base en la expresión de las coordenadas respecto de las bases usuales.

2.17 Uso de operaciones elementales para obtención de bases

Sea $V = \mathbb{R}^n$ y $A = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset V$. Si se representa también por A la matriz cuyas filas son los vectores de A, y A_r es una matriz reducida de A, entonces una base de L(A) está formada por los vectores correspondientes a las filas no nulas de A_r . Si la matriz reducida que se considera es la escalonada, la base que se obtiene es la más sencilla posible.

Todo lo anterior es igualmente válido cuando V es un espacio vectorial arbitrario con base finita, y sus vectores vienen expresados por sus coordenadas respecto de dicha base.

Ejemplos

1. Si
$$A = \{ \mathbf{v}_1 = (1, 3, 4), \mathbf{v}_2 = (2, -1, 1), \mathbf{v}_3 = (3, 2, 5), \mathbf{v}_4 = (5, 15, 20) \} \subset \mathbb{R}^3$$
, entonces
$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 3 & 4 \\ 0 & 7 & 7 \end{pmatrix} \qquad \begin{pmatrix} 1 & 3 & 4 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & -1 & 1 \\ 3 & 2 & 5 \\ 5 & 15 & 20 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & 4 \\ 0 & 7 & 7 \\ 0 & 7 & 7 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

y $B = {\mathbf{u}_1 = (1, 3, 4), \mathbf{u}_2 = (0, 1, 1)}$ es una base de L(A). Para hallar las coordenadas del vector $\mathbf{v} = (2, -1, 1)$ respecto de dicha base, se procede así:

$$\mathbf{v} = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2 \Longrightarrow (2, -1, 1) = \alpha(1, 3, 4) + \beta(0, 1, 1) \Longrightarrow \begin{cases} \alpha = 2 \\ 3\alpha + \beta = -1 \\ 4\alpha + \beta = 1 \end{cases} \Rightarrow \begin{cases} \alpha = 2 \\ \beta = -7 \end{cases}$$

de donde $\mathbf{v} = 2\mathbf{u}_1 - 7\mathbf{u}_2 = (2, -7)_B$. En referencia a esta base, las ecuaciones paramétricas e implícitas de L(A) son:

$$\begin{cases} x = \alpha \\ y = 3\alpha + \beta ; \alpha, \beta \in \mathbb{R} \implies x + y - z = 0 \\ z = 4\alpha + \beta \end{cases}$$

2. Antes de proceder a hallar una base del subespacio generado por

$$A = \{\mathbf{p}_1 = 1 - x^3, \mathbf{p}_2 = x - x^3, \mathbf{p}_3 = 1 - x, \mathbf{p}_4 = 1 + x - 2x^3\} \subset \mathcal{P}_3(\mathbb{R})$$

se expresan los vectores (polinomios) respecto de la base usual:

$$A = {\mathbf{p}_1 = (1, 0, 0, -1), \mathbf{p}_2 = (0, 1, 0, -1), \mathbf{p}_3 = (1, -1, 0, 0), \mathbf{p}_4 = (1, 1, 0, -2)}$$

Entonces

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

y una base de L(A) es:

$$B = \{\mathbf{q}_1 = (1, 0, 0, -1) = 1 - x^3, \mathbf{q}_2 = (0, 1, 0, -1) = x - x^3\}$$

Para hallar las coordenadas del polinomio $\mathbf{p} = -1 + 2x - x^3 = (-1, 2, 0, -1)$ respecto de dicha base, se procede así:

$$\mathbf{p} = (-1,2,0,-1) = \alpha(1,0,0,-1) + \beta(0,1,0,-1) \Longrightarrow \left\{ \begin{array}{cc} \alpha & = -1 \\ \beta = 2 \\ 0 = 0 \\ -\alpha - \beta = -1 \end{array} \right. \Rightarrow \left\{ \begin{array}{cc} \alpha = -1 \\ \beta = 2 \end{array} \right.$$

de donde $\mathbf{p} = -\mathbf{q}_1 + 2\mathbf{q}_2 = (-1,2)_B$. En referencia a esta base, y representando un polinomio arbitrario por $\mathbf{p} = a + bx + cx^2 + dx^3 = (a,b,c,d)$, las ecuaciones paramétricas e implícitas de L(A) son:

$$\begin{cases} a = \alpha \\ b = \beta \\ c = 0 \\ d = -\alpha - \beta \end{cases} ; \alpha, \beta \in \mathbb{R} \implies \begin{cases} a + b + d = 0 \\ c = 0 \end{cases}$$

3. Antes de proceder a hallar una base del subespacio generado en $\mathcal{M}_{2\times 2}(\mathbb{R})$ por A=

$$= \left\{ M_1 = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}, M_4 = \begin{pmatrix} -3 & 3 \\ 5 & 3 \end{pmatrix}, M_5 = \begin{pmatrix} -1 & 1 \\ 3 & 1 \end{pmatrix} \right\}$$

se expresan los vectores (matrices) respecto de la base usual:

$$A = \left\{ \begin{array}{l} M_1 = (1, -1, 0, -1), M_2 = (0, 0, 1, 1), M_3 = (2, -2, 2, -2), M_4 = (-3, 3, 5, 3), \\ M_5 = (-1, 1, 3, 1) \end{array} \right\}$$

Entonces

$$\begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 2 & -2 & 2 & -2 \\ -3 & 3 & 5 & 3 \\ -1 & 1 & 3 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

y una base de L(A) es B =

$$\left\{ N_1 = (1, -1, 0, 0) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, N_2 = (0, 0, 1, 0) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, N_3 = (0, 0, 0, 1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Puesto que la base se ha obtenido llegando hasta la matriz escalonada, ahora es mucho más fácil obtener las coordenadas de una matriz respecto de ella. De esta manera

$$M = \begin{pmatrix} 2 & -2 \\ 3 & -2 \end{pmatrix} = (2, -2, 3, -2) = 2N_1 + 3N_2 - 2N_3 = (2, 3, -2)_B$$

En referencia a esta base, y representando una matriz arbitraria por

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, b, c, d)$$

las ecuaciones paramétricas e implícitas de L(A) son:

$$\begin{cases} a = \alpha \\ b = -\alpha \\ c = \beta \\ d = \gamma \end{cases} ; \alpha, \beta, \gamma \in \mathbb{R} \implies a + b = 0$$

2.18 Proposición

Si $V \neq \{0\}$ es un espacio vectorial con una base formada por n vectores, entonces cualquier conjunto de n+1 vectores es linealmente dependiente.

Demostración: Sea $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ una base de V y $A = \{\mathbf{u}_1, \dots, \mathbf{u}_n, \mathbf{u}_{n+1}\} \subset V$, con

$$\mathbf{u}_i = \sum_{j=1}^n a_{ij} \mathbf{v}_j = (a_{i1}, a_{i2}, \dots, a_{in})_B , \ 1 \le i \le n+1$$

Para que una combinación lineal de los vectores de A sea igual al vector cero, se ha de cumplir:

$$\sum_{i=1}^{n+1} \alpha_i \mathbf{u}_i = \left(\sum_{i=1}^{n+1} a_{i1} \alpha_i, \sum_{i=1}^{n+1} a_{i2} \alpha_i, \dots, \sum_{i=1}^{n+1} a_{in} \alpha_i\right) = \mathbf{0} \Longleftrightarrow \begin{cases} \sum_{i=1}^{n+1} a_{i1} \alpha_i = 0\\ \sum_{i=1}^{n+1} a_{i2} \alpha_i = 0\\ \vdots\\ \sum_{i=1}^{n+1} a_{in} \alpha_i = 0 \end{cases}$$

que es un sistema lineal homogéneo de n ecuaciones con n+1 incógnitas, y tiene por tanto infinitas soluciones $(\alpha_1, \alpha_2, \dots, \alpha_{n+1}) \neq (0, 0, \dots, 0)$. Luego A es linealmente dependiente.

2.19 Teorema del cardinal o de la dimensión

Todas las bases de un espacio vectorial $V \neq \{0\}$ tienen el mismo número de elementos (cardinal). **Demostración**: Sean $B_1 = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ y $B_2 = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ dos bases de V. Puesto que B_1 es base y B_2 es linealmente independiente, $m \leq n$, y puesto que B_2 es base y B_1 es linealmente independiente, $n \leq m$. Luego m = n.

2.20 Dimensión de un espacio vectorial

Se llama **dimensión** de un espacio vectorial $V \neq \{0\}$, que se representa por dim V, al cardinal de una cualquiera de sus bases. La dimensión de $V = \{0\}$ es cero.

Observación: Una base de un espacio vectorial $V \neq \{0\}$ de dimensión n está formada por cualesquiera n vectores linealmente independientes.

2.21 Teorema de extensión de la base

Sea $V \neq \{\mathbf{0}\}$ un espacio vectorial de dimensión n y $A = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subset V$ un conjunto linealmente independiente de r < n vectores. Entonces existen $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\} \subset V$ tales que $\{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ es base de V.

Demostración: Puesto que A es linealmente independiente y su cardinal es r < n, A no es sistema de generadores de V, luego existirá $\mathbf{v}_{r+1} \in V$ tal que $\mathbf{v}_{r+1} \notin L(A)$. Entonces $A_1 = A \cup \{\mathbf{v}_{r+1}\}$ es linealmente independiente.

Si r + 1 = n, A_1 es base. En caso contrario, se repite el proceso anterior para obtener A_2 linealmente independiente con r + 2 vectores, y así sucesivamente.

2.22 Interpretación geométrica de subespacios

Sean $V = \mathbb{R}^n$ y $S \subset \mathbb{R}^n$ es un subespacio vectorial.

- 1. Si dim S = 0, $S = \{0\}$ es un **punto** (el origen).
- 2. Si dim S=1, $S=L(\{\mathbf{u}\})$ es la **recta** que pasa por el origen con vector de dirección \mathbf{u} .
- 3. Si dim S=2, $S=L(\{\mathbf{u},\mathbf{v}\})$ es el **plano** que pasa por el origen con vectores de dirección \mathbf{u} y \mathbf{v} .
- 4. Si $2 < k = \dim S < n-1$, S es un k-plano que pasa por el origen.
- 5. Si dim S = n 1, S es un **hiperplano** que pasa por el origen.
- 6. Si dim S = n, $S = \mathbb{R}^n$ es todo el espacio.

2.23 Suma e intersección de subespacios

Si S y T son dos subespacios vectoriales, de un mismo espacio vectorial V, se define su **intersección** y **suma** como

$$S \cap T = \{ \mathbf{v} \in V : \mathbf{v} \in S \ y \ \mathbf{v} \in T \}$$
 $y \quad S + T = \{ \mathbf{u} + \mathbf{v} \in V : \mathbf{u} \in S \ y \ \mathbf{v} \in T \}$

respectivamente. Los conjuntos $S \cap T$ y S + T son subespacios vectoriales.

Ejemplo

Sean $S = \{(x, y, z) : y = 0\}$ y $T = \{(x, y, z) : x - z = 0\}$ dos subespacios vectoriales de \mathbb{R}^3 . Los vectores de $S \cap T$ son aquellos que están S y T, por lo que sus ecuaciones implícitas son la unión de las de ambos subespacios. Por lo tanto, las ecuaciones y una base de $S \cap T$ son

$$\begin{cases} y = 0 \\ x - z = 0 \end{cases} \implies \begin{cases} x = \alpha \\ y = 0 \\ z = \alpha \end{cases} ; \quad \alpha \in \mathbb{R} \implies B_{S \cap T} = \{(1, 0, 1)\}$$

Un sistema de generadores de S+T es la unión de una base de S con otra de T. Puesto que $B_S = \{(1,0,0),(0,0,1)\}$ y $B_T = \{(0,1,0),(1,0,1)\}$, entonces

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies B_{S+T} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \implies S + T = \mathbb{R}^3$$

Se puede observar que la representación de un vector de S+T como suma de un vector de S y otro de T no es única. Por ejemplo,

$$\mathbf{u} = (1, 1, 1) = (1, 0, 1) + (0, 1, 0) = (3, 0, 3) + (-2, 1, -2)$$

siendo, en cada suma, el primer vector de S y el segundo de T.

2.24 Suma directa de subespacios

Si S y T son dos subespacios vectoriales, de un mismo espacio vectorial V, se dice que S+T es **suma directa** de los subespacios S y T, que se representa por $S \oplus T$, si es única la expresión de cada vector de la suma como un vector de S más otro de T.

2.25 Caracterización de la suma directa

Sean S y T dos subespacios vectoriales de V. Entonces

La suma de
$$S$$
 y T es directa \iff $S \cap T = \{0\}$

Demostración:

- (⇒) Si $S \cap T \neq \{0\}$, entonces existe $\mathbf{v} \neq \mathbf{0}$ con $\mathbf{v} \in S \cap T$, de donde $\mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v}$, y la suma no sería directa.
- (\Leftarrow) Si $\mathbf{u} = \mathbf{v}_1 + \mathbf{w}_1 = \mathbf{v}_2 + \mathbf{w}_2$, entonces $\mathbf{v}_1 \mathbf{v}_2 = \mathbf{w}_2 \mathbf{w}_1 \in S \cap T$, luego $\mathbf{v}_1 \mathbf{v}_2 = \mathbf{w}_2 \mathbf{w}_1 = \mathbf{0}$ de donde $\mathbf{v}_1 = \mathbf{v}_2$ y $\mathbf{w}_1 = \mathbf{w}_2$, y la suma sería directa.

2.26 Fórmula de la dimensión

Sean S y T subespacios vectoriales de un espacio vectorial V de dimensión finita. Entonces

$$\dim(S \cap T) + \dim(S + T) = \dim S + \dim T$$

Demostración: Si dim S = n, dim T = m, dim $(S \cap T) = r$ y $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ es una base de $S \cap T$, usando el teorema de extensión de la base, sean

$$B_S = \{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$$
 y $B_T = \{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{w}_{r+1}, \dots, \mathbf{w}_m\}$

bases de S y T, respectivamente. Para demostrar la fórmula de la dimensión, es suficiente demostrar que

$$B = \{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_n, \mathbf{w}_{r+1}, \dots, \mathbf{w}_m\}$$

es una base de S+T. En primer lugar, B es linealmente independiente:

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} + \sum_{j=r+1}^{m} \beta_{j} \mathbf{w}_{j} = \mathbf{0} \implies \sum_{j=r+1}^{m} \beta_{j} \mathbf{w}_{j} = -\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \in S \cap T \implies \sum_{j=r+1}^{m} \beta_{j} \mathbf{w}_{j} = \sum_{j=1}^{r} \beta_{j} \mathbf{v}_{j}$$
$$\implies \sum_{j=1}^{r} \beta_{j} \mathbf{v}_{j} - \sum_{j=r+1}^{m} \beta_{j} \mathbf{w}_{j} = \mathbf{0} \implies \beta_{j} = 0, \ 1 \leq j \leq m \implies \beta_{j} = 0, \ r+1 \leq j \leq m$$

pues B_T es base de T, y entonces

$$\sum_{i=1}^{n} \alpha_i \mathbf{v}_i = \mathbf{0} \quad \Longrightarrow \quad \alpha_i = 0 \,, \, 1 \le i \le n$$

pues B_S es base de S. Finalmente, B es sistema de generadores de S+T, pues si $\mathbf{u} \in S+T$ entonces

$$\mathbf{u} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i + \sum_{i=1}^{r} \beta_i \mathbf{v}_i + \sum_{i=r+1}^{m} \beta_i \mathbf{w}_i = \sum_{i=1}^{r} (\alpha_i + \beta_i) \mathbf{v}_i + \sum_{i=r+1}^{n} \alpha_i \mathbf{v}_i + \sum_{i=r+1}^{m} \beta_i \mathbf{w}_i$$

Ejemplo

En \mathbb{R}^4 se consideran los subespacios vectoriales

$$S = L\left(\{(1,0,-1,2),(0,1,1,0)\}\right) \quad \text{y} \quad T = L\left(\{(1,0,1,-1),(0,1,-1,3)\}\right)$$

Puesto que

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 2 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

una base de S+T es $B_{S+T}=\{(1,0,-1,2),(0,1,1,0),(0,0,2,-3)\}$, y sus ecuaciones son:

$$\begin{cases} x_1 = \alpha \\ x_2 = \beta \\ x_3 = -\alpha + \beta + 2\gamma \end{cases}; \alpha, \beta, \gamma \in \mathbb{R} \implies x_1 + 3x_2 - 3x_3 - 2x_4 = 0$$
$$x_4 = 2\alpha - 3\gamma$$

Usando la fórmula de la dimensión, $\dim(S \cap T) = 2 + 2 - 3 = 1$. Las ecuaciones implícitas de S y T son

$$S \equiv \begin{cases} x_1 = \alpha \\ x_2 = \beta \\ x_3 = -\alpha + \beta \end{cases}; \alpha, \beta \in \mathbb{R} \implies \begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 - x_4 = 0 \end{cases}$$

$$T \equiv \begin{cases} x_1 = \alpha \\ x_2 = \beta \\ x_3 = \alpha - \beta \\ x_4 = -\alpha + 3\beta \end{cases}; \alpha, \beta \in \mathbb{R} \implies \begin{cases} x_1 - x_2 - x_3 = 0 \\ x_1 - 3x_2 + x_4 = 0 \end{cases}$$

y las ecuaciones y base de $S \cap T$ son

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 - x_4 = 0 \\ x_1 - x_2 - x_3 = 0 \\ x_1 - 3x_2 + x_4 = 0 \end{cases} \implies \begin{cases} x_1 - x_2 = 0 \\ 2x_2 - x_4 = 0 \\ x_3 = 0 \end{cases} \implies \begin{cases} x_1 = \alpha \\ x_2 = \alpha \\ x_3 = 0 \\ x_4 = 2\alpha \end{cases}; \alpha \in \mathbb{R} \implies B_{S \cap T} = \{(1, 1, 0, 2)\}$$

2.27 Subespacios suplementarios

Dos subespacios S y T de un espacio vectorial V se llaman **suplementarios** si $V = S \oplus T$. Si $S \oplus T = U \subsetneq V$, se dice que S y T son suplementarios en U.

Si $V = S \oplus T$, entonces dim $V = \dim S + \dim T$. Además,

$$\begin{cases} \{\mathbf{v}_1,\ldots,\mathbf{v}_r\} & \text{base de } S \\ \{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} & \text{base de } T \end{cases} \Longrightarrow \{\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} & \text{base de } V$$

y también:

$$\left\{\begin{array}{l} \{\mathbf{v}_1,\ldots,\mathbf{v}_r\} \ \text{ base de } S \\ \{\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} \ \text{ base de } V \end{array}\right. \Longrightarrow L\left(\{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\}\right) \ \text{ es suplementario de } S$$