Denoising Diffusion Probabilistic Models

Докладчик: Асланов Алишер

Рецензент-исследователь: Поздеев Дмитрий

Хакер: Демитраки Елизавета

НИС МОП 2, 19 октября 2022

Синтез изображений

Figure 1: Generated samples on CelebA-HQ 256×256 (left) and unconditional CIFAR10 (right)

Идея DDPM

- Forward diffusion process зашумление
- Reverse diffusion process удаление шума
- Обучим модель удалять шум => неявно выучим распределение на исходных данных

[https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-2/]

Идея DDPM: генерация

Применим расшумляющую модель к случайному шуму и получим сгенерированный сэмпл

[https://webbigdata.jp/ai/post-14457]

Формализация идеи

x_t — изображение после **t** итераций добавления шума

x_0 — исходная картинка

T — число итераций (**T = 1000**)

Forward diffusion process: $q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$

$$\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

Variance schedule: $\beta_1, \ldots, \beta_T \in [0, 1]$

Reverse diffusion process: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$

$$p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$

[https://arxiv.org/pdf/2006.11239.pdf]

Формализация идеи

$$lpha_t = 1 - eta_t$$
 $ar{lpha}_t = \prod_{i=1}^t lpha_i$

$$\begin{aligned} \mathbf{x}_t &= \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1} & \text{; where } \boldsymbol{\epsilon}_{t-1}, \boldsymbol{\epsilon}_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ &= \sqrt{\alpha_t \alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_t \alpha_{t-1}} \bar{\boldsymbol{\epsilon}}_{t-2} & \text{; where } \bar{\boldsymbol{\epsilon}}_{t-2} \text{ merges two Gaussians (*)}. \\ &= \dots \\ &= \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \\ q(\mathbf{x}_t | \mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}) \end{aligned}$$

Прямой процесс сходится к стандартному нормальному распределению

Формализация идеи

При заданном **x_0** *теоремы Байеса через нормальное распределение:*

$$\begin{split} q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0),\tilde{\beta}_t\mathbf{I}),\\ \text{where} \quad \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t \quad \text{and} \quad \tilde{\beta}_t \coloneqq \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t \end{split}$$

 $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ расписать аналогично не выйдет, т.к. оно зависит от распределения на $\mathbf{x}_{-}\mathbf{0}$, которого мы не знаем

Функционал ошибки

Обучаемся методом максимального правдоподобия. Само по себе правдоподобие на практике не вычислимо => перейдем к вариационной нижней оценке

$$egin{aligned} -\log p_{ heta}(\mathbf{x}_0) &\leq -\log p_{ heta}(\mathbf{x}_0) + D_{\mathrm{KL}}(q(\mathbf{x}_{1:T}|\mathbf{x}_0) \| p_{ heta}(\mathbf{x}_{1:T}|\mathbf{x}_0)) \ &= -\log p_{ heta}(\mathbf{x}_0) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \Big[\log rac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})/p_{ heta}(\mathbf{x}_0)} \Big] \ &= -\log p_{ heta}(\mathbf{x}_0) + \mathbb{E}_q \Big[\log rac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})} + \log p_{ heta}(\mathbf{x}_0) \Big] \ &= \mathbb{E}_q \Big[\log rac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})} \Big] \end{aligned}$$

[https://lilianweng.github.io/posts/2021-07-11-diffusion-models/]

Функционал ошибки

Полученную оценку можно привести к следующему виду:

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}}\right]$$

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$

Функционал ошибки

$$\begin{split} & \tilde{\boldsymbol{\mu}}_t = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right) \\ & L_t = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{1}{2 \| \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t) \|_2^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] \\ & = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{1}{2 \| \boldsymbol{\Sigma}_{\theta} \|_2^2} \| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right) - \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) \|^2 \right] \\ & = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{(1 - \alpha_t)^2}{2\alpha_t (1 - \bar{\alpha}_t) \| \boldsymbol{\Sigma}_{\theta} \|_2^2} \| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|^2 \right] \\ & = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{(1 - \alpha_t)^2}{2\alpha_t (1 - \bar{\alpha}_t) \| \boldsymbol{\Sigma}_{\theta} \|_2^2} \| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t, t) \|^2 \right] \end{split}$$

[https://lilianweng.github.io/posts/2021-07-11-diffusion-models/]

Обучение и применение

Упрощенный функционал ошибки:

$$L_t^{ ext{simple}} = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, oldsymbol{\epsilon}_t} \Big[\|oldsymbol{\epsilon}_t - oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t)\|^2 \Big]$$

Algorithm 1 Training	Algorithm 2 Sampling	
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}	

[https://lilianweng.github.io/posts/2021-07-11-diffusion-models/]

Архитектура сети: U-Net

[https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/]

Интерполяция картинок

Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

Список источников

- https://arxiv.org/abs/2006.11239
- https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- https://www.youtube.com/watch?v=HoKDTa5jHvq
- https://www.youtube.com/watch?v=2Y2Qbsqnfiw
- https://www.youtube.com/watch?v=XTs7M6TSK9I
- https://www.youtube.com/watch?v=y7J6sSO1k50

Denoising Diffusion Probabilistic Models

Prepared by the student of group 192: Pozdeev Dmitrii

Overview

[https://lilianweng.github.io/posts/2021-07-11-diffusion-models/]

Timeline

- 2015 Start point
- 2015-2020 Score matching approach

Timeline

- 2015 Start point
- 2015-2020 Score matching approach
- 2020 DDPM
- 2021 Improved DDPM
- 2021 Diffusion Models Beat GANs

DDPM Loss

Use variational lower bound

[https://arxiv.org/pdf/2006.11239.pdf]

$$L_{\text{vlb}} \coloneqq L_0 + L_1 + \dots + L_{T-1} + L_T$$

$$L_0 \coloneqq -\log p_{\theta}(x_0|x_1)$$

$$L_{t-1} \coloneqq D_{KL}(q(x_{t-1}|x_t, x_0) \mid\mid p_{\theta}(x_{t-1}|x_t))$$

$$L_T \coloneqq D_{KL}(q(x_T|x_0) \mid\mid p(x_T))$$

DDPM Loss

Use variational lower bound

[https://arxiv.org/pdf/2006.11239.pdf]

$$egin{aligned} \mathbb{E}_{\mathbf{x}_0,m{\epsilon}} \Big[rac{eta_t^2}{2\sigma_t^2lpha_t(1-ar{lpha}_t)} \, ig\| m{\epsilon} - m{\epsilon}_{ heta}(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1-ar{lpha}_t}m{\epsilon},t) ig\|^2 \Big] \ & lpha_t \coloneqq 1 - eta_t ext{ and } ar{lpha}_t \coloneqq \prod_{s=1}^t lpha_s \ & L_{ ext{simple}} = E_{t,x_0,m{\epsilon}} \, ig[||m{\epsilon} - m{\epsilon}_{ heta}(x_t,t)||^2 ig] \end{aligned}$$

U

Improved DDPM

Use variational lower bound

[https://arxiv.org/pdf/2006.11239.pdf]

Improved DDPM

[https://arxiv.org/pdf/2006.11239.pdf]

- $\beta_1, ..., \beta_T$ decay schedule is linear
- Variances of p_{θ} are fixed

Learn variances

[https://arxiv.org/pdf/2102.09672.pdf]

$$\Sigma_{ heta}(x_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t)$$

$$L_{ ext{hybrid}} = L_{ ext{simple}} + \lambda L_{ ext{vlb}}$$

Improved DDPM

[https://arxiv.org/pdf/2102.09672.pdf]

Improved DDPM

[https://arxiv.org/pdf/2102.09672.pdf]

Results

Table 1. Ablating schedule and objective on ImageNet 64×64 .

Iters	T	Schedule	Objective	NLL	FID
200K	1K	linear	$L_{ m simple} \ L_{ m simple}$	3.99	32.5
200K	4K	linear		3.77	31.3
200K	4K	linear	$L_{ m hybrid} \ L_{ m simple} \ L_{ m hybrid} \ L_{ m vlb}$	3.66	32.2
200K	4K	cosine		3.68	27.0
200K	4K	cosine		3.62	28.0
200K	4K	cosine		3.57	56.7
1.5M 1.5M	4K 4K	cosine cosine	$L_{ m hybrid} \ L_{ m vlb}$	3.57 3.53	19.2 40.1

Table 2. Ablating schedule and objective on CIFAR-10.

Iters	T	Schedule	Objective	NLL	FID
500K	1K	linear	$L_{ m simple} \ L_{ m simple}$	3.73	3.29
500K	4K	linear		3.37	2.90
500K	4K	linear	$L_{ m hybrid} \ L_{ m simple} \ L_{ m hybrid} \ L_{ m vlb}$	3.26	3.07
500K	4K	cosine		3.26	3.05
500K	4K	cosine		3.17	3.19
500K	4K	cosine		2.94	11.47

[https://arxiv.org/pdf/2102.09672.pdf]

Speed up diffusion

Use variational lower bound

[https://arxiv.org/pdf/2006.11239.pdf]

Speed up diffusion

[https://arxiv.org/pdf/2006.11239.pdf]

- Skip some steps
- 10x to 50x faster sampling [3]

Now

[https://cdn.openai.com/papers/dall-e-2.pdf]

Gallery

A small domesticated carnivorous mammal with soft fur, a short snout, and retractable claws

A golden retriever eating ice cream on a beautiful tropical beach at sunset, high resolution

A musk ox grazing on beautiful wildflowers

A blue unicorn flying over a mystical land

Humans building a highway on mars, highly detailed

Sailboat sailing on a sunny day in a mountain lake, highly detailed

A confused grizzly bear in calculus class

A ballerina performs a beautiful and difficult dance on the roof of a very tall skyscraper; the city is lit up and glowing behind her

A knight riding on a horse through the countryside

A panda playing on a swing set

Applications

• Diffusion repo

Conclusions

• Diffusion models are analytically tractable and flexible

Conclusions

- Diffusion models are analytically tractable and flexible
- But sampling can be expensive

Conclusions

- Diffusion models are analytically tractable and flexible
- But sampling can be expensive
- Be prepared for yet another diffusion paper

References

- [1] main article DDPM
- [2] <u>improved</u> DDPM
- [3] fast sampling
- Awesome blogpost