

CompSci 401: Cloud Computing

Automation Contexts

Prof. Ítalo Cunha

Groups that use automation

- Individual customers
- Start-ups and enterprise customers
 - Individual developers
 - Large companies using public clouds
- Cloud providers

Automation for end users

- Usually provided as SaaS
 - Collaborative editing software (Microsoft Word, Google Docs)
 - Cloud storage (Microsoft OneDrive, Dropbox)
 - E-mail (Outlook, Gmail)
- Web or desktop application
- User only cares about using the service
 - Details hidden from the user
 - Management and operation are automated

Examples of automation for end users

- Website creating services
 - Automation of the back-end
 - Web servers
 - Reverse proxies
 - Load balancers
 - Databases
 - Storage
 - Updates to Web components

Examples of automation for end users

- Website creating services
 - Automation of the back-end
 - Web servers
 - Reverse proxies
 - Load balancers
 - Databases
 - Storage

Examples of automation for end users

- Website creating services
 - Automation of the back-end
 - Web servers
 - Reverse proxies
 - Load balancers
 - Databases
 - Storage
 - Updates to Web components

- E-mail
 - Management of the back-end
 - SMTP, IMAP, and POP servers
 - Blocklists
 - Anti-spam
 - Anti-phishing
 - Data warehousing
 - Web servers for front-end
 - Indexing for search

Automation for enterprises

- Enterprises need automation to manage their infrastructure
 - Software deployment and updates
 - Configuring servers and virtual machines
 - Applications on cloud resources
 - Platform as a Service
 - Automation frameworks for other applications
 - Applications on employee devices (e.g., company laptop)

Automation for enterprises

- Enterprises need automation to manage their infrastructure
 - Software deployment and updates
 - Configuring servers and virtual machines
 - Applications on cloud resources
 - Platform as a Service.
 - Automation frameworks for other applications
 - Applications on employee devices (e.g., company laptop)
- Frameworks automate computation
 - Hadoop MapReduce, Spark, Kubernetes, and others

Automation for cloud providers

- Like automation for enterprises, but on a larger scale
- Manage infrastructure
 - Software deployment, configuration, and updates

Automation for cloud providers

- Like automation for enterprises, but on a larger scale
- Manage infrastructure
 - Software deployment, configuration, and updates
- Handling customer demands

CompSci 401: Cloud Computing

Automation in Data Centers

Prof. Ítalo Cunha

There's a lot on top of the physical infrastructure

There's a lot on top of the physical infrastructure

There's a lot on top of the physical

Need for automation in data centers

- Extreme scale
 - Thousands of network devices
 - Hundreds of thousands of servers
 - Thousands of customers, some of them large enterprises
 - Millions of services
- Diverse services
 - Large cloud providers have several offerings

C-) Alibaba Cloud

Elastic Computing

Networking & CDN

Database

Storage

Security

Enterprise Applications & Cloud Communication

Analytics

Artificial Intelligence

Media Services

Hybrid Cloud

Container & Middleware

Developer Services

Internet of Things

Alibaba Cloud Academy

Management

Compute

Storage

Operations

Networking

Big Data

Databases

Serverless

Security

CI/CD

Application Integration

Artificial Intelligence

Tools

Other Google products

Support

Q Search for services, featu

Recently visited

Favorites

All services

- Analytics
- Application Integration
- □ AR & VR
- AWS Cost Management
- Blockchain
- Business Applications
- Compute
- Containers
- **(8)** Customer Enablement
- Database
- **X** Developer Tools
- End User Computing
- Front-end Web & Mobile
- **Game Development**
- Internet of Things
- Machine Learning
- Management & Governance
- Migration & Transfer
- Networking & Content Delivery
- Quantum Technologies
- 💍 Robotics
- Security, Identity, & Compliance
- Storage

Need for automation

- Extreme scale
 - Thousands of network devices
 - Hundreds of thousands of servers
 - Thousands of customers
 - Millions of services
- Diverse services
 - Large cloud providers have several offerings

FEATURED PRODUCTS

DigitalOcean

Droplets

Scalable virtual machines

Kubernetes

Managed Kubernetes clusters

App Platform

Get apps to market faster

Databases

Worry-free setup & maintenance

Spaces

Simple object storage

Choose a server where to run the VM

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image
- Configure virtual disk to forward disk accesses

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image
- Configure virtual disk to forward disk accesses
- Create disk image with guest OS

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image
- Configure virtual disk to forward disk accesses
- Create disk image with guest OS
- Configure IP address on the VM so it's accessible

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image
- Configure virtual disk to forward disk accesses
- Create disk image with guest OS
- Configure IP address on the VM so it's accessible
- Create credentials on the VM for customer access

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©
- Configure the hypervisor to run the VM
- Configure the network to forward packets
 - Possibly involving a tenant's virtual network
- Choose remote disk server where to store the VM disk image
- Configure virtual disk to forward disk accesses
- Create disk image with guest OS
- Configure IP address on the VM so it's accessible
- Create credentials on the VM for customer access
- Possibly install and configure applications requested by the user

- Choose a server where to run the VM
- Assume that the hypervisor is configured ©

 Possibly install and configure applications requested by the user

Need for automation in data centers

- Extreme scale
 - Thousands of network devices
 - Hundreds of thousands of servers
 - Thousands of customers
 - Millions of services
- Diverse services
 - Large cloud providers have several offerings
- Constant change
 - Customers, technologies, practices, and requirements change over time
 - Customers can request services at any time, and expect immediate provisioning

CompSci 401: Cloud Computing

What Can Be Automated?

Prof. Ítalo Cunha

What can be automated?

- Most tasks related to software and data can be automated
- Run as much as possible in software
 - Virtualization
 - Software-defined networks
- "Lights-out" datacenter: remote automated management

Management of virtual resources

- Creation, deletion, modification, and reconfiguration of
 - Virtual machines
 - Virtual disks
 - Virtual networks
 - Containers
 - Applications
- Autoscaling

Workload monitoring and accounting

- Cloud providers measure a lot
- Billing customers
- Storing and indexing monitoring information useful for troubleshooting
 - Server and network failures, hotspots, security issues
- Identify trends and projecting demand
 - What resources are in high demand
 - When to expand capacity

Optimization

- Reconfiguration and placement of virtual resources
 - Load balancing across servers
 - Improve performance
 - Moving virtual resources from underutilized physical resources
 - Save power and reduce wear
 - Network traffic localization
 - Reduce link utilization and end-to-end latency
 - Server-to-server and network storage

Safety and recovery

- Scheduled or periodic backup of customer data
- Data replication for performance and resilience
- Fast rerouting around failed network devices
- Failure detection from monitoring data
- Anomaly detection from monitoring data
 - Partially malfunctioning devices
 - Buggy applications
 - Misbehaving VMs
 - Security breaches and attacks

Software updates

- Keeping applications and the operating system up-to-date
 - Latest features
 - Better performance
 - Security issues
- Upgrading software installed by customers
- Providing tooling for continuous deployment and integration

Security policy enforcement

- Applying security patches to fix vulnerabilities
- Configuration of firewalls and access control lists (ACLs)
- Manage secrets, certificates, and encryption keys
- Configuring virtual private networks (VPNs) and encryption

CompSci 401: Cloud Computing

Levels of Automation

Prof. Ítalo Cunha

Monitoring & Measurement

Trends & Prediction

Monitoring & Measurement

Monitoring & Measurement

Root Cause Analysis

Trends & Prediction

Monitoring & Measurement

Deployment & Configuration

Complexity Ø Sophistication

Customer's application cannot communicate with database. What is the cause of the problem?

- Network failure
- Disk failure
- Misconfiguration (network, storage, application)

Root Cause Analysis

Trends & Prediction

Monitoring & Measurement

Levels of Automation

Root Cause Analysis

Trends & Prediction

Monitoring & Measurement

Deployment & Configuration

Often use advanced statistical methods or artificial intelligence

CompSci 401: Cloud Computing

Automation Tools

Prof. Ítalo Cunha

Lots of automation tools

- Automation is great, so let's have more of it
- Computing infrastructures are complex
 - Many, possibly conflicting operational goals
 - Keep VMs of a single tenant close together
 - Keep VMs on lightly-loaded servers
 - Tools reflect these different goals

Lots of automation tools

- Automation is great, so let's have more of it
- Computing infrastructures are complex
 - Many, possibly conflicting operational goals
 - Keep VMs of a single tenant close together
 - Keep VMs on lightly-loaded servers
 - Tools reflect these different goals
- Tools to automate one or a subset of tasks
 - Operators often specialize in specific tasks
 - Tools can capture this knowledge

Automating configuration across vendors

- Configuration is key, and a major target for automation
- But different vendors have different configuration mechanisms
 - Similar functionalities, but different configuration

Networking

Linux Distros

Web Servers

Automating configuration across vendors

- Configuration is key, and a major target for automation
- But different vendors have different configuration mechanisms
 - Similar functionalities, but different configuration
- Vendor-independent configuration language
 - Tool translates configuration into each vendor's specific format
 - Operators does not need to interact with the system being configured

Automating configuration across vendors

- Configuration is key, and a major target for automation
- But different vendors have different configuration mechanisms
 - Similar functionalities, but different configuration
- Vendor-independent configuration language
 - Tool translates configuration into each vendor's specific format
 - Operators does not need to interact with the system being configured

Example: ANSIBLE

```
- tasks:
-- name: Create user
-- become: yes
-- user:
-- name: "{{ item }}"
-- groups: hadoop, docker
-- state: present
-- system: no
-- createhome: yes
-- with_items: "{{ users }}"
```


Declarative vs Imperative Specification Languages

- Imperative: State action to be performed
 - Create user cunha on all virtual machines
 - Assign IP address 192.168.1.17 to the VM's Ethernet interface
- Declarative: State the desired outcome
 - User cunha should exist on all virtual machines
 - The VM's main IP address is 192.168.1.17

Declarative vs Imperative Specification Languages

- Imperative: State action to be performed
 - Create user cunha on all virtual machines
 - Assign IP address 192.168.1.17 to the VM's Ethernet interface
- Declarative: State the desired outcome
 - User cunha should exist on all virtual machines
 - The VM's main IP address is 192.168.1.17
- Complications arise when specification does not cover corner cases
 - What is user cunha already exists?
 - What if the VM has no Ethernet interface or multiple interfaces?

Example: ANSIBLE

```
tasks:
-- name: Create user
become: yes
user:
-- name: "{{ item }}"
-- groups: hadoop, docker
-- state: present
-- system: no
-- createhome: yes
-- with_items: "{{ users }}"
```


Push → Central controller configures all devices

- Push → Central controller configures all devices
- Pull → Each device queries the central controller to update its config

- Push → Central controller configures all devices
- Pull → Each device queries the central controller to update its config

- Push → Central controller configures all devices
- Pull → Each device queries the central controller to update its config

- - Requires central node to know about all machines
- Pull → Each device queries the central controller to update its config
 - Requires an agent to run on each device