UNITED STATES PATENT APPLICATION

FOR

Transmitter and Method Having a Low Sampling Frequency for Digital to Analog Conversion

Invented by Bret Rothenberg

Prepared by: David R. Gildea, Reg. No. 38,465 Menlo Patent Agency LLC

Docket No.: RAD297

10

15

25

30

TRANSMITTER AND METHOD HAVING A LOW SAMPLING FREQUENCY FOR DIGITAL TO ANALOG CONVERSION

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates generally to signal transmitters more particularly to a transmitter having a method for reducing the frequency of a sampling clock signal used for converting a digital intermediate frequency (IF) signal to an analog IF signal.

Description of the Prior Art

Existing transmitters use digital signal processing for generating a digital intermediate frequency (IF) signal and then use a high speed digital to analog converter (DAC) for converting the digital IF signal to an analog IF signal. It is important in such transmitters that the DAC have a linear response so that incremental levels of the digital input signal are converted to consistent incremental levels in the analog output signal throughout the dynamic range of the output signal. A poor linearity causes distortion of the information that is transmitted.

In addition to the analog IF signal, the DAC also issues unwanted sets of IF analog signals, termed alias signals, as sidebands about a frequency that is used by the DAC for sampling the digital IF input signal. These IF

1

alias signals must be suppressed in order to meet regulations by the Federal Communications Commission (FCC) in the United States and by other government agencies in other countries.

5

10

Existing transmitters use a radio frequency (RF) filter for suppressing alias signals. This approach has the advantage that hardware for the RF filter is probably required in any case in order to suppress feed through of a local signal (RFLO) used for upconverting the IF signal to an RF transmit signal. However, it may be difficult and expensive to produce an RF filter that suppresses the alias signals sufficiently to achieve the low spurious signal levels required by regulations.

15

20

Another approach used by existing transmitters is to increase the sampling frequency of the DAC in order to obtain a large frequency separation between the highest frequency in the desired IF signal and the lowest frequency in the undesired alias signal. Having a larger frequency separation, the alias signal can be more easily suppressed by an IF filter that passes the IF signal. Unfortunately, as the sampling frequency is increased it becomes more difficult and expensive to achieve good linearity in the DAC.

25

30

Figs. 1A-B are frequency charts showing low side and high side frequency upconversion, respectively, for first and second transmitters of the prior art. The horizontal axes on the charts represent frequency and the vertical axes show the presence of signals. Zero frequency or DC is shown as a frequency F_0 . A sampling clock signal $S^{PA}_{\ \ C}$ having a

10

15

25

30

clock frequency $F_{\ c}^{PA}$ is used in a DAC for converting a digital representation of an intermediate frequency (IF) signal to an analog IF signal $S_{\ IF}^{PA}$ having IF channel frequencies corresponding to RF transmission channel frequencies.

The IF signal S^{PA}_{IF} has an IF frequency band ΔF^{PA}_{IF} between a lower IF frequency F^{PA}_{IF1} and an upper IF frequency F^{PA}_{IF2} . The DAC also issues undesired alias signals having alias frequencies symmetrical about the clock frequency F^{PA}_{c} and harmonics of the clock frequency F^{PA}_{c} . The pairs of alias signals are frequency images and negative frequency images of the IF signal S^{PA}_{IF} .

Exemplary alias signals S_{A2}^{PA} and S_{A1}^{PA} about the fundamental of the clock frequency F_{C}^{PA} have alias frequencies from a lower sum alias frequency F_{A21}^{PA} to an upper sum alias frequency F_{A22}^{PA} and an upper difference alias frequency F_{A11}^{PA} to a lower difference alias frequency F_{A12}^{PA} , respectively, where the frequency difference between F_{C}^{PA} and F_{A21}^{PA} equals F_{IF1}^{PA} , the frequency difference between F_{C}^{PA} and F_{A22}^{PA} equals F_{IF2}^{PA} , the frequency difference between F_{C}^{PA} and F_{A11}^{PA} equals the negative of F_{A11}^{PA} equals the negative of F_{A12}^{PA} each have a frequency band equal in width to the IF frequency band ΔF_{A12}^{PA} .

Referring to Fig. 1A an RF local oscillator (LO) signal S_{LOL}^{PA} having an RF local oscillator (LO) frequency F_{LOL}^{PA} is used for upconverting the IF signal S_{IF}^{PA} to an RF transmit

25

30

5

10

signal S_{RFL}^{PA} having an RF frequency band ΔF_{RF}^{PA} from an RF frequency F_{RFL1}^{PA} corresponding to the IF frequency F_{IF1}^{PA} to an RF frequency F_{RFL2}^{PA} corresponding to the IF frequency F_{IF2}^{PA} . In order to suppress feedthrough of the RFLO signal S_{LOL}^{PA} in a single stage upconversion of the IF signal S_{IF}^{PA} , the RFLO frequency F_{LOL}^{PA} is separated from the RF frequency F_{RFL1}^{PA} by a frequency width ΔF_{IF1}^{PA} equal to the frequency F_{IF1}^{PA} .

Referring to Fig. 1B an RF LO signal S_{LOH}^{PA} having an RF LO frequency F_{LOH}^{PA} is used for upconverting the IF signal S_{IF}^{PA} to an RF transmit signal S_{RFH}^{PA} having the same RF frequency band ΔF_{RF}^{PA} from an RF frequency F_{RFH1}^{PA} corresponding to the negative of the IF frequency F_{RFH2}^{PA} corresponding to the negative of the IF frequency F_{RFH2}^{PA} corresponding to the negative of the IF frequency F_{LOH}^{PA} . In order to suppress feedthrough of the RFLO signal S_{LOH}^{PA} in a single stage upconversion of the IF signal S_{IF}^{PA} , the RFLO frequency F_{LOH}^{PA} is separated from the RF frequency F_{RFH1}^{PA} by a frequency width ΔF_{IF1}^{PA} equal to the negative of the frequency F_{RFH1}^{PA} by a frequency width ΔF_{IF1}^{PA} equal to the negative of

It should be noted that the RF transmit signals S_{RFL}^{PA} and S_{RFH}^{PA} have frequency bands $\Delta F_{\text{RF}}^{PA}$ equal in width to the IF frequency band $\Delta F_{\text{IF}}^{PA}$. An IF filter having a frequency response FR_{IF}^{PA} passes the IF signal S_{IF}^{PA} and suppresses the alias signals S_{Al}^{PA} and S_{A2}^{PA} so that the alias signals S_{A1}^{PA} and S_{A2}^{PA} do not contaminate the RF transmit signals S_{RFL}^{PA} and S_{A2}^{PA} with spurious emissions.

It is desirable to minimize the sampling CLK frequency F_c^{PA} in order to more easily and at lower cost to achieve good linearity in the DAC and other digital processing

25

30

5

10

circuits. In existing transmitters where the IF frequency channels in the IF frequency band ΔF^{PA}_{IF} are upconverted to the RF frequency channels in the RF frequency band ΔF^{PA}_{RF} , the CLK frequency F^{PA}_{C} is expressed according to an equation 1 as a function of a frequency ratio R between the lowest alias frequency F^{PA}_{A12} that must be suppressed and the highest IF frequency F^{PA}_{IF2} that must be passed in the IF frequency response FR^{PA}_{IF} of the IF filter (R = $F^{PA}_{A12}/F^{PA}_{IF2}$), the width of the RF frequency band ΔF^{PA}_{RF} , and the lowest IF frequency F^{PA}_{IE1} .

$$F_{C}^{PA} = (\Delta F_{RF}^{PA} + \Delta F_{IF1}^{PA}) * (1 + R)$$

It can be seen from the equation 1 that the clock frequency $\textbf{F}^{\text{PA}}_{\phantom{\text{C}}\text{C}}$ can be minimized by reducing the frequency ratio R and/or reducing the lowest IF frequency F^{PA}_{IF1} . However, for a given technology, after a certain value is reached it is difficult and expensive to achieve the filter response FR_{IF}^{PA} to further reduce the frequency ratio for R. Moreover, filters in integrated circuits using standard integrated circuit technology have relatively soft transitions in the filter response FR_{IF}^{PA} and therefore require a relatively large value for the frequency ratio R. Furthermore, unless additional IF upconversion stages are used, the lowest IF frequency F_{IF1}^{PA} is determined by the frequency separation $\Delta F^{\text{PA}}_{\text{IF1}}$ that is required in an RF filter for suppressing feedthrough of the RF transmit signal $S^{PA}_{\ RFL}$ or the RF transmit signal SPA Unfortunately, these considerations have led practitioners in the art to use a relatively high frequency FPA, thereby increasing the

difficulty and cost of achieving sufficient linearity in a high speed DAC and other digital processing circuits.

Different frequency plans have been used to resolve this issue. For example, one of the alias signals can be used as the desired IF signal, or the transmission frequency channels may be first generated at RF instead of IF.

However, these alternative frequency plans require the resolution of other problems. There is a need for another method in a transmitter for reducing the sampling frequency for converting a digital IF signal to an analog IF signal while still suppressing IF alias signals.

10

15

20

25

30

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to reduce the sampling frequency for converting a digital IF signal to an analog IF signal by using high side and low side upconversion and reusing the IF channel frequencies for upper and lower segments of an RF frequency band, respectively.

Briefly, in a preferred embodiment a transmitter of the present invention includes a digital to analog converter (DAC), an intermediate frequency (IF) filter, a high-low radio frequency local (RFLO) signal generator, and an RF upconverter. The DAC receives a multilevel digital IF signal having IF frequency channels corresponding to RF transmission frequency channels and issues a desired analog IF signal. The DAC also issues undesired IF alias signals. The IF filter passes the analog IF signal and suppresses the alias signals.

The high-low RFLO generator generates an RFLO signal that is controlled to switch between a first (low RF) frequency that is below a desired RF frequency band and a second (high RF) frequency that is above the desired RF frequency band. The RF upconverter uses the low RF frequency for upconverting the IF frequency channels into the RF transmission frequency channels in the lower half of the RF frequency band and uses the high RF frequency for upconverting the same IF frequency channels into the RF transmission frequency channels in the upper half of the RF frequency band.

An advantage of the present invention of the transmitter having the high-low RFLO signal generator is that a lower sampling clock frequency is used for converting a digital IF signal to an analog IF signal

5

10

These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various figures.

RAD297 "TRANSMITTER AND METHOD HAVING A LOW SAMPLING FREQUENCY FOR DIGITAL TO ANALOG CONVERSION" by Rothenberg

10

IN THE DRAWINGS

Figs. 1A-B are frequency charts showing low side and high side frequency upconversion, respectively, for a transmitter of the prior art;

Fig. 1C is a frequency chart for a transmitter of the present invention;

Figs. 2A and 2B are a block diagrams of a transmitters of the present invention having non-complex and complex upconversion, respectively, using the frequencies illustrated in the frequency chart of Fig. 1C; and

Fig. 3 is a flow chart of a method for the transmitter of Figs. 2A-B.

30

10

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1C is a frequency chart for a transmitter 10 of the present invention. The horizontal axis of the chart represents frequency with zero frequency, or DC, at frequency F_0 and the vertical axis shows the presence of signals. A detailed description of the manner in which the signals and frequencies are generated is to be found below in the description accompanying Fig. 2A. Briefly, in the Fig. 1C a sampling clock (CLK) signal S_c has a sampling CLK frequency F_c . An analog intermediate frequency (IF) signal $S_{\rm IF}$ has an IF frequency band $\Delta F_{\rm IF}$ having IF frequency channels from a lower IF frequency $F_{\rm IF1}$ to an upper IF frequency $F_{\rm IF2}$.

Alias signals S_{A2} and S_{A1} have alias frequencies from a lower sum alias frequency F_{A21} to an upper sum alias frequency F_{A22} and from an upper difference alias frequency F_{A11} to a lower difference alias frequency F_{A12} , respectively. The frequency difference between F_{c} and F_{A21} equals F_{IF1} , the frequency difference between F_{c} and F_{A22} equals F_{IF2} , the frequency difference between F_{c} and F_{A11} equals the negative of F_{IF1} , and the frequency difference between F_{c} and F_{A12} equals the negative of F_{IF2} . The alias signals S_{A1} and S_{A2} each have a band equal in width to the IF frequency band ΔF_{IF} .

An IF frequency response FR_{IF} passes the IF signal S_{IF} between the IF frequency F_{IF1} and the IF frequency F_{IF2} and suppresses the alias signals S_A above the alias frequency

10

15

25

 S_{A12} . A radio frequency (RF) local oscillator (LO) signal S_{LOL} has an RF LO frequency F_{LOL} ; and an RF LO signal S_{LOH} has an RF LO frequency F_{LOH} . An RF frequency band ΔF_{RF} extends from the RF frequency F_{RFL} to the RF frequency F_{RFH} . An RF frequency F_{CTR} is a midpoint between the RF frequency F_{RFL} and the RF frequency F_{RFL} .

An RF transmit signal S_{RFL} has a frequency band having a width equal to the IF frequency band ΔF_{IF} in a lower part of the RF frequency band ΔF_{RF} from the RF frequency F_{RFL} to the RF frequency F_{CTR} .

Similarly, an RF transmit signal S_{RFH} has a frequency band having a width equal to the IF frequency band ΔF_{IF} in an upper part of the RF frequency band ΔF_{RF} from the RF frequency F_{RFH} to the RF frequency F_{CTR} .

The lower RF LO frequency F_{LOL} and the lower RF frequency F_{RFL} have a frequency separation ΔF_{IFI} equal in width to the lower IF frequency F_{IFI} . Similarly, the higher RF LO frequency F_{LOH} and the higher RF frequency F_{RFH} have the frequency separation ΔF_{IFI} equal in width to the negative of the lower IF frequency F_{IFI} . It will be described below that for a given RF frequency band ΔF_{RF} equal to the prior art RF frequency band ΔF_{RF}^{PA} and a given lower IF frequency F_{IFI} equal to the prior art lower IF frequency F_{IFI}^{PA} the CLK frequency F_{C} of the present invention is lower than the prior art clock frequency F_{C}^{PA} .

25

30

10

Fig. 2A is a block diagram of an embodiment of the transmitter 10 of the present invention referred to by the reference number 10. The transmitter 10 includes a microprocessor system 11, a digital signal processor 12, a digital multiplier 14, a digital to analog converter (DAC) 16, an intermediate frequency (IF) filter 18, a radio frequency (RF) upconverter 22, and an RF output section 24. Preferably, digital signal processor 12, the digital multiplier 14, the DAC 16, the IF filter 18, the RF upconverter 22, and the RF section 24 are complex for processing in-phase (I) and quadrature phase (Q) channels.

The transmitter 10 also includes a sampling clock generator 32 for generating the CLK signal Sc at the CLK frequency Fc; an IF channel select local oscillator signal (IFLO) generator 36 for generating an IFLO signal 38; and a high-low RF signal (RFLO) generator 42 for generating either the RF LO signal S_{LOL} or the RF LO signal S_{LOH} .

The IFLO frequency 38 of the IFLO generator 36 is controlled by the microprocessor system 11 for generating IF channel frequencies for subsequent upconversion to RF transmission frequency channels. The high-low RFLO generator 42 is controlled by the microprocessor system 11 to switch between the RF LO signal \mathbf{S}_{LOL} and the RF LO signal \mathbf{S}_{LOH} according to whether the current RF transmission frequency channel is in the lower half (below F_{CTR}) or upper half (above F_{CTR}) of the RF frequency band ΔF_{RF} microprocessor system 11 includes a memory for storing variable and fixed data and programmed instructions for directing the operation of the microprocessor system 11 in a

25

30

5

10

convention manner for controlling the operation of the elements of the transmitter 10. It should be understood that amplifiers are required for amplifying the various signals and a power supply is required for powering the elements of the transmitter 10.

The digital signal processor 12 uses the CLK signal S_c for interpolating a baseband signal 52 having information to be transmitted and issues in-phase (I) and quadrature phase (Q) components of a complex DSP signal 54. The IFLO generator 36 generates an IFLO signal 38 that is controlled by the microprocessor system 11 to shift frequency according to the transmit frequency channel of the RF transmit signals \mathbf{S}_{RFL} and \mathbf{S}_{RFH} in which the transmit information is to be transmitted. The digital multiplier 14 uses the IFLO signal 38 for converting the I and Q components of the DSP signal 54 to I and Q components of a digital IF signal 58 having a digital IF carrier frequency that changes or hops according to IF channel frequencies. Circuits within the digital multiplier 14 are synchronized according to the CLK signal S_c .

The DAC 16 includes an I DAC 16I and a Q DAC 16Q for using the CLK signal S_c for converting the second digital IF signal to I and Q components of the desired analog IF signal $S_{\rm IF}$ and undesired alias signals $S_{\rm A}$. The analog IF signal $S_{\rm IF}$ has an IF carrier frequency in the frequency band $\Delta F_{\rm IF}$ between the IF frequency $F_{\rm IF1}$ and the IF frequency $F_{\rm IF2}$.

As described above, the undesired alias signals S_A have frequency ranges that are images and negative images of the

30

10

frequency range F_{IF1} to F_{IF2} of the IF signal S_{IF} and appear in pairs having alias frequencies symmetrical about the CLK frequency F_{C} and about harmonics of the CLK frequency F_{C} . The exemplary alias signals S_{A2} and S_{A1} have the alias frequencies F_{A21} to F_{A22} and F_{A11} to F_{A12} , respectively, as described above. The IF filter 18 includes an I IF filter 18I and a Q IF filter 18Q having frequency response FR_{IF} for passing I and Q components of the analog IF signal S_{IF} and suppressing the alias signals S_{A} . In the frequency response of the IF filter FR_{IF} cuts off for suppressing the alias signal S_{A2} and the alias signal S_{A1} is suppressed by the quadrature balance of the upconversion in the receive 10.

The RF upconverter 22 includes an I mixer 22I, a Q mixer 22Q, and a 90 degree phase splitter 62. The 90 degree phase splitter 62 receives either the RF LO signal S_{LOL} or the RF LO signal S_{LOH} and issues an I component to the I mixer 22I and a Q component to the Q mixer 22Q. The I mixer 22I uses the I component of the RF LO signal S_{LOL} or the RF LO signal S_{LOH} and issues an I RF signal to the RF section 24. Similarly, the Q mixer 22Q uses the Q component of the RF LO signal S_{LOH} or the RF LO signal S_{LOH} and issues a Q RF signal to the RF section 24.

The RF section 24 includes a summer 64, a selectable inverter 66, and an RF filter 68. The summer 64 sums the I RF signal received at a first input with the Q RF signal received through the inverter 66 at a second input and issues a summed RF signal to the RF filter 68. The RF filter 68 passes the summed RF signal and suppresses feedthrough of the RF LO signal S_{LOL} or the RF LO signal S_{LOH} for issuing the RF transmit signal S_{RFL} or the RF transmit

25

30

10

signal S_{RFH} , respectively. The lower IF frequency F_{IF1} is preferably determined by the frequency separation ΔF_{IF1} between the RFLO frequency F_{LOL} or F_{LOH} and the RF transmit frequency F_{RFL} or F_{RFH} , respectively, that is required by the RF filter 68 for suppressing the feedthrough RFLO signal S_{LOL} or S_{LOH} .

The RF filter 68 may also act in combination with the IF filter 18 for suppressing upconverted representations of the alias signals $S_{\rm A}$. When the transmitter 10 is coupled with a receiver for forming a transceiver, the RF filter 68 may be embodied in a diplexer. The inverter 66 is controlled by the microprocessor system 11 for inverting or non-inverting the Q RF signal in coordination with the control of the high-low selection for one of the RF LO signal $S_{\rm LOL}$ and the RF LO signal $S_{\rm LOH}$ from the high-low RFLO generator 42. It should be understood that the selectable inverter 66 may be disposed for selectably inverting the Q signal in either the RF or IF signal path, or pushed through the summer 64 for selectably inverting the summed RF signal and the I signal in either the RF or IF signal path.

The transmitter 10 transmits the RF transmit signals S_{RFL} and S_{RFH} in a regulated transmit frequency band ΔF_{RF} from the RF frequency F_{RFL} to the RF frequency F_{RFH} . The RF transmit signals S_{RFL} and S_{RFH} are transmitted in frequency channels or subchannels of the transmit frequency band ΔF_{RF} . The RF output may change or hop between the lower (F_{RFL} to F_{CTR}) and upper (F_{RFH} to F_{CTR}) halves of the transmit frequency band ΔF_{RF} and between channels or subchannels within the lower and upper halves of the transmit frequency band ΔF_{RF}

30

10

but at any one time the RF transmit signal S_{RFL} or S_{RFH} is transmitted in a single channel or subchannel. In addition to the transmission frequency channels, the RF transmit signals S_{RFL} and S_{RFH} may be transmitted in time channels or slots of a time division multiple access (TDMA) communication plan.

The memory in the microprocessor system 11 includes programmed instructions for a channel selector 71 for controlling the frequency of the IFLO signal 38 according to the current desired frequency channel and programmed instructions for a high-low band switch 72. The high-low band switch 72 directs the high-low RFLO generator 42 to switch to the RF LO signal $S_{\text{\tiny LOL}}$ for channels in the low band $(\textbf{F}_{\text{RFL}} \text{ to } \textbf{F}_{\text{CTR}})$ and the RF LO signal \textbf{S}_{LOH} for channels in the high band (F_{RFH} to $F_{\text{CTR}})\,.$ The high-low band switch 72 also directs the inverter 66 to switch between non-invert and invert and directs the digital signal processor 12 to compensate for spectral inversion in the upconversion between the low and high bands. The use of the RF center frequency $F_{\mbox{\scriptsize CTR}}$ to separate high and low bands results in an IF frequency band ΔF_{IF} of one-half the transmit frequency band ΔF_{RF} , thereby enabling a lower sampling CLK frequency ${\tt F}_{\tt c}$ to be used by the digital signal generator 12 and the DAC 16.

It is desirable to minimize the sampling CLK frequency F_c used in the DAC 18 and the digital signal processor 12. The CLK frequency F_c is expressed in an equation 2 as the sum one-half times the width of the RF frequency band ΔF_{RF} plus the lowest IF frequency F_{IFI} times the sum of one plus

25

30

the frequency ratio $R = F_{A12}/F_{IF2}$ between the lowest alias frequency F_{A12} that must be suppressed and the highest IF frequency F_{IF2} that must be passed in the IF frequency response FR_{IF} of the IF filter 18.

5

10

$$F_{c} = (\frac{1}{2} * \Delta F_{RF} + F_{IF1}) * (1 + R)$$
 (2)

It will be noted that the equation 2 for the present invention differs from the equation 1 for the prior art by relating the sampling CLK frequency F_c to one-half times the width of the RF frequency band ΔF_{RF} in contrast to one times the width of the RF frequency band ΔF_{RF}^{PA} for the sampling CLK frequency F_c^{PA} of the prior art transmitter. Because the RF frequency bands ΔF_{RF} and ΔF_{RF}^{PA} are likely to be set by regulations, the present invention has the benefit of having a substantially lower sampling CLK frequency F_c than the sampling CLK frequency F_c^{PA} of the prior art. Some of the benefit of the present invention is obtained when the CLK frequency F_c is related to a fraction, such as 6/10, 7/10, 8/10, and 9/10, of the width of RF frequency band between one-half and one.

It is known by those of ordinary skill in the art that the complex upconversion as described above for the transmitter 10 suppresses the alias difference signal S_{A1} to a degree that is determined by the gain balance and quadrature phase between the I and Q signal paths. In a preferred embodiment, the transmitter 10 of the present invention achieves additional suppression of the alias difference signal S_{A1} while minimizing the sampling frequency F_{C} as shown in the equation 2. In an alternative

25

30

10

embodiment, the transmitter 10 depends upon the balance and phase of the I and Q signal paths for suppressing the alias difference frequencies F_{A12} to F_{A11} . In this embodiment, the frequency ratio R in the equations 1 and 2 is the ratio F_{A21}/F_{IF2} of the lower sum alias frequency F_{A21} and the upper IF frequency F_{IF2} . In another embodiment the frequency ratio R in the equations 1 and 2 is the ratio F_{c}/F_{IF2} .

In a numerical example, the width of the RF frequency band ΔF_{RF}^{PA} and ΔF_{RF}^{PA} is 186 MHz; the IF frequency F_{IF1} and F_{IF1}^{PA} is 30 MHz; and the frequency ratio R is 2.25 for the frequency response FR_{IF} for R = F_{A12}^{PA}/F_{IF2} and the frequency response FR_{IF}^{PA} for R = $F_{A12}^{PA}/F_{IF2}^{PA}$. For the transmitter 10 of present invention, the CLK signal S_c has a CLK frequency F_c of 400 MHz according to the equation 2. For a prior art transmitter the CLK signal S_c^{PA} has a CLK frequency F_c^{PA} of 702 MHz according to the equation 1. In this numerical example the sampling clock frequency is approximately 57% of the sampling clock frequency of the prior art.

Fig. 2B is a block diagram of an embodiment of the transmitter 10 of the present invention referred to by the reference number 10B. The transmitter 10B differs from the transmitter 10 in that the transmitter 10B uses non-complex upconversion.

The transmitter 10B includes a microprocessor system 11B and non-complex variations of the upconversion elements of the transmitter 10. In other words the transmitter 10B includes a non-complex digital signal processor 12B; a non-complex digital multiplier 14B; a non-complex DAC 16B; a

25

30

non-complex IF filter 18B; a non-complex RF upconverter 22B; and a non-complex RF output section 24B all operating in a manner that is analogous to the complex digital signal processor 12; the complex digital multiplier 14; the complex DAC 16; the complex IF filter 18; the complex RF upconverter 22; and the complex RF output section 24, respectively. It should be understood that amplifiers are required for amplifying the various signals and a power supply is required for powering the elements of the transmitter 10B.

10

The transmitter 10B also includes the sampling clock generator 32 for generating the CLK signal S_{c} at the CLK frequency F_c ; the IF channel select local oscillator signal (IFLO) generator 36 for generating the IFLO signal 38; and the high-low RF signal (RFLO) generator 42 for generating either the RF LO signal $S_{\scriptsize LOL}$ or the RF LO signal $S_{\scriptsize LOH}$ as The DSP signal 54B and the digital IF described above. signal 58B are analogous to the DSP signal 54 and digital IF signal 58 as shown in Fig. 2A and described in the accompanying detailed description for the I channel of the The IF signal S_{IF} and the alias signals S_{A} transmitter 10. are as shown in Figs. 1C and 2A described in the respective accompanying detailed descriptions for the I channel of the transmitter 10. The signals $S_{\text{LOL}},\ S_{\text{LOH}}\ S_{\text{RFL}},\ \text{and}\ S_{\text{RFH}}$ are as shown in Figs. 1C and 2A and described in the accompanying detailed descriptions.

The RF section 24B includes an RF filter 68B. The microprocessor system 11B includes the channel selector 71 for controlling the IF channel and a high-low band switch 72B for controlling the digital signal processor 12B for compensating for spectral inversion in coordination with the

5

10

control of the high-low selection for one of the RF LO signal S_{LOL} and the RF LO signal S_{LOH} from the high-low RFLO generator 42.

Fig. 3 is a method of the present invention for transmitting RF transmit signals S_{RFL} and S_{RFH} in a transmit frequency band ΔF_{RF} between the RF frequency F_{RFL} and the RF frequency F_{RFH} . In a step 102 a transmit frequency channel is selected within the transmit frequency band ΔF_{RF} . In a step 104 it is determined whether the transmit frequency channel is in the low band between the low RF frequency F_{RFL} and the RF center frequency F_{CTR} or in the high band between the RF frequency F_{RFH} and the high RF center frequency F_{CTR} . In a step 106 when the transmit frequency channel is in the low band, the RF LO signal S_{LOL} is generated for converting the IF signal S_{IF} to the RF transmit signal S_{RFL} . In a step 108 when the transmit frequency channel is in the high band, the RF LO signal S_{LOH} is generated for converting the RF LO signal S_{LOH} is generated for converting the RF LO signal S_{LOH} is generated for converting the IF signal S_{LF} to the RF transmit signal S_{RFH} .

Although the present invention has been described in terms of the presently preferred embodiments, it is to be understood that such disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after having read the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention.

30

What is claimed is: