MA 214, Introduction to Numerical Analysis, Spring 2018 Tutorial 1: Extra Problem

- 1. Let $p_n(x)$ be a polynomial of degree $n \geq 1$.
 - (a) If c is a simple root of p_n , then show that there exists a polynomial $q_{n-1}(x)$ of degree n-1 such that

$$p_n(x) = (x - c)q_{n-1}(x)$$
 and $q_{n-1}(c) \neq 0$.

(b) If c is a double root of p_n , then show that there exists a polynomial $q_{n-2}(x)$ of degree n-2 such that

$$p_n(x) = (x - c)^2 q_{n-2}(x)$$
 and $q_{n-2}(c) \neq 0$.

(c) If c is a root of p_n of multiplicity m, then show that there exists a polynomial $q_{n-m}(x)$ of degree n-m such that

$$p_n(x) = (x - c)^m q_{n-m}(x)$$
 and $q_{n-m}(c) \neq 0$.