Correction Examen session 1 2021-2022

Exercice 1. Dans tous cet exercice, on notera $\varphi(a,b)$ la similitude directe $z\mapsto az+b$, pour $a\in\mathbb{C}^*$ et $b\in\mathbb{C}$.

1. Par définition, on a

$$Sim^+ = \{ \varphi(a, b) \mid a \in \mathbb{C}^*, b \in \mathbb{C} \}$$

Bien-sûr, l'identité est l'application $\varphi(1,0)$, donc une similitude. Soient ensuite $\varphi(a,b)$ et $\varphi(c,d)$ deux similitudes directes, on a

$$\varphi(a,b) \circ \varphi(c,d)(z) = a(cz+d) + b$$
$$= acz + ad + b$$
$$= \varphi(ac, ad + b)(z)$$

Donc $\varphi(a,b)\circ\varphi(c,d)=\varphi(ac,ad+b)$ et Sim^+ est stable par composition. Enfin, on doit montrer que la réciproque d'une similitude est une similitude, on a

$$\varphi(a,b)(z) = z' \Leftrightarrow az + b = z'$$

$$\Leftrightarrow az = z' - b$$

$$\Leftrightarrow z = \frac{z'}{a} - \frac{b}{a} = \varphi\left(\frac{1}{a}, \frac{-b}{a}\right)$$

Donc $\varphi(a,b)^{-1} = \varphi\left(\frac{1}{a}, \frac{-b}{a}\right) \in \text{Sim}^+$, qui forme donc un sous-groupe du groupe des bijections de \mathbb{C} dans lui-même.

2. Par définition, on a

$$\operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+ = \{ \varphi(a,b) \mid a \in \mathbb{R}^*, b \in \mathbb{C} \}$$

On a vu que $Id = \varphi(1,0) \in \operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$. Ensuite, comme $\varphi(a,b) \circ \varphi(c,d) = \varphi(ac,ad+b)$, si $a,c \in \mathbb{R}^*$, alors $ac \in \mathbb{R}^*$ et $\varphi(a,b) \circ \varphi(c,d) \in \operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$. Enfin, si $\varphi(a,b) \in \operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$, alors $\frac{1}{a} \in \mathbb{R}^*$ et $\varphi(a,b)^{-1} = \varphi\left(\frac{1}{a},\frac{-b}{a}\right) \in \operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$, qui forme donc un sous-groupe de Sim^+ .

3. Le sous-groupe $\operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$ est distingué dans Sim^+ , en effet, pour $\varphi(a,b) \in \operatorname{Sim}^+$ et $\varphi(c,d) \in \operatorname{Sim}_{\mathbb{R},\mathbb{C}}^+$ (donc $c \in \mathbb{R}^*$), on a

$$\varphi(a,b)\varphi(c,d)\varphi(a,b)^{-1} = \varphi(ac,ad+b)\varphi\left(\frac{1}{a}, \frac{-b}{a}\right)$$
$$= \varphi\left(\frac{ac}{a}, -ac\frac{b}{a} + ad + b\right)$$
$$= \varphi\left(c, -bc + ad + b\right)$$

Comme c est toujours un réel non nul, on a bien $\varphi(a,b)\varphi(c,d)\varphi(a,b)^{-1} \in \mathrm{Sim}_{\mathbb{R},\mathbb{C}}^+$, qui est donc distingué dans Sim^+ .

- 4. Soit $\varphi(a,b) \in \mathrm{Sim}_{\mathbb{R},\mathbb{C}}^+$, on a $a \in \mathbb{R}^*$, on distingue deux cas :
 - Si a=1, alors $\varphi(a,b)=z+b$ est une translation de vecteur $b=\binom{\mathrm{Re}(b)}{\mathrm{Im}(b)}$
 - Si $a \neq 1$, alors $az + b = a(z \frac{b}{1-a}) + \frac{b}{1-a}$ est une homothétie, de rapport a, et de centre $\frac{b}{1-a}$ (autrement dit, la conjugaison par la translation de vecteur $\frac{b}{1-a}$ de l'homothétie de centre 0 et de rapport a).

5. Soit $\varphi(a,b)$ une similitude directe, on a

$$\varphi(a,b)(z) = z \Leftrightarrow az + b = z \Leftrightarrow b = z(1-a)$$

Si a = 1, alors $\varphi(a, b)$ n'admet des points fixes que si b = 0, on a alors $\varphi(a, b) = \varphi(1, 0) = Id$, qui admet plus qu'un point fixe.

Si $a \neq 1$, ceci est équivalent à $z = \frac{b}{1-a}$, donc $\varphi(a,b)$ admet un unique point fixe si et seulement si $a \neq 1$.

6. Une similitude directe est une bijection affine directe du plan, il s'agit donc d'une rotation si et seulement si c'est une isométrie, qui n'est pas une translation. Une similitude $\varphi(a,b)$ est une translation si et seulement si a=1, auquel cas c'est une rotation si et seulement si c'est l'identité, on évacue donc ce cas. Ensuite, pour $z,z' \in \mathbb{C}$, on a

$$|\varphi(a,b)(z) - \varphi(a,b)(z')| = |az - az'| = |a||z - z'|$$

donc $\varphi(a,b)$ multiplie les distances par |a|: c'est une isométrie si et seulement si $a \in \mathbb{S}^1$.

Au final, $\varphi(a,b)$ est une rotation si et seulement si $a \in \mathbb{S}^1 \setminus \{1\}$ ou si $\varphi(a,b) = Id$.

En intersectant cette condition avec la condition $a \in \mathbb{R}^*$ caractérisant les éléments de $\mathrm{Sim}_{\mathbb{R},\mathbb{C}}^+$, on obtient que les rotations de $\mathrm{Sim}_{\mathbb{R},\mathbb{C}}^+$ sont formées par

$$\{Id\} \cup \{\varphi(-1,b) \mid b \in \mathbb{C}\}\$$

7. Par définition, on a

$$\operatorname{Sim}_{\pm 1,\mathbb{C}}^+ = \{ \varphi(\pm 1, b) \mid , b \in \mathbb{C} \}$$

On a vu que $Id = \varphi(1,0) \in \operatorname{Sim}_{\pm 1,\mathbb{C}}^+$. Ensuite, comme $\varphi(a,b) \circ \varphi(c,d) = \varphi(ac,ad+b)$, si $a,c \in \{\pm 1\}$, alors $ac \in \{\pm 1\}$ et $\varphi(a,b) \circ \varphi(c,d) \in \operatorname{Sim}_{\pm 1,\mathbb{C}}^+$. Enfin, si $\varphi(a,b) \in \operatorname{Sim}_{\pm 1,\mathbb{C}}^+$, alors $\frac{1}{a} \in \pm 1$ et $\varphi(a,b)^{-1} = \varphi\left(\frac{1}{a},\frac{-b}{a}\right) \in \operatorname{Sim}_{\pm 1,\mathbb{C}}^+$, qui forme donc un sous-groupe de Sim^+ .

Il s'agit d'un sous-groupe distingué : pour $\varphi(a,b) \in \mathrm{Sim}^+$ et $\varphi(\pm 1,d) \in \mathrm{Sim}_{\mathbb{R},\mathbb{C}}^+$, on a

$$\varphi(a,b)\varphi(\pm 1,d)\varphi(a,b)^{-1} = \varphi(\pm a,ad+b)\varphi\left(\frac{1}{a},\frac{-b}{a}\right)$$
$$= \varphi\left(\frac{\pm a}{a}, \mp a\frac{b}{a} + ad + b\right)$$
$$= \varphi(\pm 1, \mp b + ad + b)$$

On a bien $\varphi(a,b)\varphi(\pm 1,d)\varphi(a,b)^{-1}\in \mathrm{Sim}_{\pm 1,\mathbb{C}}^+$, qui est donc distingué dans Sim^+ .

8. Soit une similitude indirecte $f: z \mapsto a\overline{z} + b$, on a

$$f^{2}(z) = a\overline{(a\overline{z}+b)} + b = a\overline{a}z + a\overline{b} + b$$

Comme $a\overline{a} = |a|^2 \ge 0$, il ne peut être égal à -1, on ne peut donc avoir $f^2(z) = -z + 2$. Si $f = \varphi(a, b)$ est une similitude directe, on a

$$f^2 = \varphi(a^2, (a+1)b)$$

On doit donc résoudre le système

$$\begin{cases} a^2 = -1 \\ (a+1)b = 2 \end{cases} \Leftrightarrow \begin{cases} a = \pm i \\ b = \frac{2}{a+1} = \frac{2}{1\pm i} = 1 \mp i \end{cases}$$

On obtient donc deux solutions : les similitudes $\varphi(i, 1-i)$ et $\varphi(-i, 1+i)$

Exercice 2.

1. Cette application est une inversion, c'est l'inversion de rapport 4 et de centre 1. Un nombre complexe z est un point fixe pour cette application si et seulement si

$$z = \frac{4}{\overline{z-1}} + 1 \Leftrightarrow z\overline{(z-1)} = 4 + \overline{z} - 1$$
$$\Leftrightarrow z\overline{z} - z = 3 + \overline{z}$$
$$\Leftrightarrow z\overline{z} - z - \overline{z} + 3 = 0$$

Cette équation est l'équation complexe du cercle de centre 1 et de rayon 2, cercle qui admet pour équation réelle

$$(x-1)^2 + y^2 = 4$$

(où x et y désignent respectivement les parties réelles et imaginaires de z).

- 2. Comme $I_{1,2}$ est une inversion, il s'agit d'une involution, on a donc $I_{1,2} \circ I_{1,2} = Id$, ainsi, $I_{1,2}^n$ sera égale à Id si n est pair, et à $I_{1,2}$ si n est impair.
- 3. Soit z = 1 + it avec $t \in \mathbb{R}^*$, on a

$$I_{1,2}(1+it) = \frac{4}{1+it-1} + 1 = \frac{4}{it} + 1 = i\frac{4}{t} + 1$$

Quand t parcourt \mathbb{R}^* , $\frac{4}{t}$ parcourt également \mathbb{R}^* , l'ensemble obtenu est la droite verticale passant par 1 (c'est à dire la droite de départ).

Exercice 3. La norme de ω est $\frac{2}{4} + \frac{2}{4} = 1$, donc $\omega \in G$ le groupe des quaternions de norme 1, son inverse ω^{-1} est alors donné par son conjugué $\overline{\omega} = \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}$, on a

$$\omega i \omega^{-1} = \frac{1}{2} (1+j)i(1-j) = \frac{1}{2} (i-k)(1-j) = \frac{1}{2} (i-k-k-i) = -k$$

$$\omega j \omega^{-1} = \frac{1}{2} (1+j)j(1-j) = \frac{1}{2} (j-1)(1-j) = \frac{1}{2} (j-1+1+j) = j$$

$$\omega k \omega^{-1} = \frac{1}{2} (1+j)k(1-j) = \frac{1}{2} (k+i)(1-j) = \frac{1}{2} (k+i+i-k) = i$$

La matrice orthogonale associée à ω est donc

$$M_{\omega} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ -1 & 0 & 0 \end{pmatrix}$$

L'axe engendré par $\begin{pmatrix} 0\\1\\0 \end{pmatrix} = j$ est clairement stable : c'est l'axe de la rotation associée.