Statistics 2 - Notes

Dom Hutchinson

October 3, 2019

Contents

	Estimation 1.1 Introduction	2 2
2	The Likelihood Function	3
3	Maximum Likelihood Estimates	4
0	Appendix	5
	0.1 Notation	
	0.2 R	5
	0.3 Probability Distributions	5

1 Estimation

1.1 Introduction

Definition 1.1 - Probabiltiy Space, $(\Omega, \mathcal{F}, \mathbb{P})$

A mathematical construct for modelling the real world. A Probabilty Space has three elements

- i) Ω Sample space.
- ii) \mathcal{F} Set of events.
- iii) \mathbb{P} Probability measure.

and most fulfil the following conditions

- i) $\Omega \in \mathcal{F}$;
- ii) $\forall A \in \mathcal{F} \implies A^c \in \mathcal{F}$;

iii)
$$\forall A_0, \dots, A_n \in \mathcal{F} \implies \left(\bigcup_i A_i\right) \in \mathcal{F};$$

- iv) $\mathbb{P}(\Omega) = 1$; and,
- v) $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ for disjoint A_1, A_2, \dots (Countable Additivity).

Definition 1.2 - Random Variable

A function which maps an event in the sample space to a value e.g. $X: \Omega \to \mathbb{R}$.

Remark 1.1 - Probability Density Function for iid Random Variable Vector

For $\mathbf{X} \sim f_n(\cdot; \theta)$ where each component of \mathbf{X} is independent and identically distribution the probability density function of \mathbf{X} is

$$f_n(\mathbf{x}; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Definition 1.3 - Expectation

The mean value for a random variable. For rv X

$$\mathbb{E}(X) := \sum_{x \in \mathcal{X}} x f_X(x) \quad \& \quad \mathbb{E}(X) := \int_{\mathbb{R}} x f_X(x) dx$$

Theorem 1.1 - Expection of a Function

For a function $g: \mathbb{R} \to \mathbb{R}$ and rv X with pmf f_X

$$\mathbb{E}(g(X)) := \sum_{g(x) \in Y} x f_X(x) \quad \& \quad \mathbb{E}(g(X)) := \int_{\mathbb{R}} g(x) f_X(x) dx$$

Theorem 1.2 - Expectation of a Linear Operator

For rv X with pmf $f_X \& a, b \in \mathbb{R}$

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Definition 1.4 - Variance

For rv X

$$\operatorname{var}(X) := \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Theorem 1.3 - Variance of a Linear Operator

For rv X and $a, b \in \mathbb{R}$

$$var(aX + b) = a^2 var(X)$$

Definition 1.5 - Moment of a Random Variable

For rv X the n^{th} moment of X is defined as $\mathbb{E}(X^n)$.

 $N.B. - \mathbb{E}(X^n) \neq \mathbb{E}(X)^n.$

Definition 1.6 - Covariance

For rv X & Y

$$cov(X,Y) := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Theorem 1.4 - Properties of Covaraince

Let X & Y be independent random variables

- i) cov(X, X) = var(X);
- ii) cov(X, Y) = 0

Theorem 1.5 - Variance of two Random Variables with linear operators

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) + 2abcov(X, Y)$$

Theorem 1.6 - Independent Random Variables

Random variables X_1, \ldots, X_n are independent iff

$$\mathbb{P}(X_1 \le a_1, \dots, X_n \le a_n) = \prod_{i=1}^n \mathbb{P}(X_i \le a_i) \ \forall \ a_1, \dots, a_n \in \mathbb{R}$$

2 The Likelihood Function

Definition 2.1 - Likelihood Function

Define $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and let \mathbf{x} be an observation of \mathbf{X} .

A Likelihood Function is any function, $L(\cdot; \mathbf{x}) : \Theta \to [0, \infty)$, which is proportional to the PMF/PDF of the observed realisation \mathbf{x} .

$$L(\theta; \mathbf{x}) := C f_b(\mathbf{x}; \theta) \ \forall \ C > 0$$

N.B. Sometimes this is called the *Observed* Likelihood Function since it is dependent on observed data.

Definition 2.2 - Log-Likelihood Function

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and \mathbf{x} be an observation of \mathbf{X} .

The Log-Likelihood Function is the natural log of a Likelihood Function

$$\ell(\theta; \mathbf{x}) := \ln f_n(\mathbf{x}; \theta) + C, \ C \in \mathbb{R}$$

Theorem 2.1 - Multidiensional Transforms

Let **X** be a continuous random vector in \mathbb{R}^n with PDF $f_{\mathbf{X}}$; $g: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous differentiable bijection; and, $h:=g^{-1}$.

Then $\mathbf{Y} = g(\mathbf{X})$ is a continuous random vector and its PDF is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h(\mathbf{y})H_h(\mathbf{Y}))$$

where

$$J_h := \left| \det \left(\frac{\partial h}{\partial \mathbf{y}} \right) \right|$$

Proposition 2.1 - Invaraince of Likelihood Function by bijective transformation of the observations independent of θ

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijetive transformation which is independent of θ ; and $\mathbf{Y} := g(\mathbf{X})$.

Then \mathbf{Y} is a random variable with PDF/PMG

$$f_{\mathbf{Y}}(\mathbf{y};\theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y});\theta)$$

Hence, if $\mathbf{y} = g(\mathbf{x})$ then $L_{\mathbf{Y}}(\theta; \mathbf{y}) \propto L_{\mathbf{X}}(\theta; \mathbf{x})$

Proof 2.2 - Proposition 2.1

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijective transformation which is independent of θ ; $h := g^{-1}$; \mathbf{X}, \mathbf{Y} be a rvs st $\mathbf{Y} := g(\mathbf{X})$.

i) Discrete Case - Consider the case when ${\bf X}$ is a discrete rv. Then

$$f_{\mathbf{Y}}(y;\theta) = \mathbb{P}(\mathbf{Y} = \mathbf{y}; \theta)$$

$$= \mathbb{P}(g^{-1}(\mathbf{Y}) = g^{-1}(\mathbf{y}); \theta)$$

$$= \mathbb{P}(h(\mathbf{Y}) = h(\mathbf{y}); \theta)$$

$$= \mathbb{P}(\mathbf{X} = h(\mathbf{y}); \theta)$$

$$= f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta)$$

ii) Continuous Case - Consider the case when ${\bf X}$ is a continuous rv. Then, by **Theorem 2.1**

$$f_{\mathbf{Y}}(\mathbf{y}; \theta) = f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) J_{g^{-1}}(\mathbf{y})$$

Since $J_{g^{-1}}$ does not depend on θ this case is solved.

Thus in botoh cases $L_{\mathbf{Y}}(\theta; y) = f_{\mathbf{Y}}(y; \theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) = L_{\mathbf{X}}(\theta; \mathbf{x}).$

3 Maximum Likelihood Estimates

Definition 3.1 - Maximum Likelihood Estimate

Let $\mathbf{X} \sim f_n(\cdot; \theta)$; and \mathbf{x} be a realisation of \mathbf{X} .

The Maximum Likelihood Estimate is the value $\hat{\theta} \in \Theta$ st

$$\forall \theta \in \Theta \ f_n(\mathbf{x}; \hat{\theta}) \ge f_n(\mathbf{x}, \theta)$$

Equivalently

$$\forall \ \theta \in \Theta \ L(\hat{\theta}; \mathbf{x}) \ge L(\theta; \mathbf{x}) \quad \text{or} \quad \ell(\hat{\theta}; \mathbf{x}) \ge \ell(\theta; \mathbf{x})$$

i.e. $\hat{\theta}(\mathbf{x}) := \operatorname{argmax}_{\theta}(L(\theta; \mathbf{x}))$.

Remark 3.1 - The Maximum Likelihood Estimate may <u>not</u> be unique

0 Appendix

0.1 Notation

Notation	Denotes
$\theta \in \Theta \subseteq \mathbb{R}^{d_{\theta}}$	Scalar or vector parameter characterising a probability distribution
$\hat{ heta}$	Estimation for the value of the parameter θ
θ^*	True value of the paramter θ
\mathbb{P}	Probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$
Ω	Sample space
X	Scalar random variable
\mathcal{F}	Sigma field (Set of events)
χ	Support of rv XX. A set set X is definitely in it i.e. $\mathbb{P}(X \in \chi; \theta) = 1$
\mathbf{X}	Vector consiting of scalar random variables

0.2 R

Command	Result
hist(a)	Plots a histogram of the values in array a
mean(a)	Returns the mean value of array a
rbinom(s,n,p)	Samples n of $Bi(n,p)$ random variables
rep(v,n)	Produces an array of size n where each entry has value v
$x \leftarrow v$	Maps value v to variable x

0.3 Probability Distributions

Definition 0.1 - Binomial Distribution

Let X be a discrete random variable modelled by a *Binomial Distribution* with n events and rate of success p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}(X)np = \& Var(X) = np(1-p)$$

Definition 0.2 - Gamma Distribution

Let T be a continuous randmo variable modelled by a $Gamma\ Distribution$ with shape parameter α & scale parameter λ . Then

$$f_T(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} \quad \text{for } x > 0$$

$$\mathbb{E}(T) = \frac{\alpha}{\lambda} \quad \& \quad Var(T) = \frac{\alpha}{\lambda^2}$$

N.B. $\alpha, \lambda > 0$.

Definition 0.3 - Exponential Distribution

Let T be a continuous random variable modelled by a *Exponential Distribution* with parameter λ . Then

$$\begin{array}{rcl} f_T(t) &=& \mathbbm{1}\{t \geq 0\}.\lambda e^{-\lambda t} \\ F_T(t) &=& \mathbbm{1}\{t \geq 0\}.\left(1 - e^{-\lambda t}\right) \\ \mathbbm{E}(X) = \frac{1}{\lambda} &\& & Var(X) = \frac{1}{\lambda^2} \end{array}$$

N.B. Exponential Distribution is used to model the wait time between decays of a radioactive source.

Definition 0.4 - Normal Distribution

Let X be a continuous random variable modelled by a Normal Distribution with mean μ &

variance σ^2 .

Then

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

$$M_X(\theta) = e^{\mu\theta + \sigma^2\theta^2(1/2)}$$

$$\mathbb{E}(X) = \mu \& Var(X) = \sigma^2$$

Definition 0.5 - Poisson Distribution

Let X be a discrete random variable modelled by a $Poisson\ Distribution$ with parameter $\lambda.$ Then

$$p_X(k) = \frac{e^{-\lambda}\lambda^k}{k!} \quad \text{For } k \in \mathbb{N}_0$$

$$\mathbb{E}(X) = \lambda \quad \& \quad Var(X) = \lambda$$

N.B. Poisson Distribution is used to model the number of radioactive decays in a time period.