Logică pentru Informatică - Subiectul 8 (28.01.2019)

Nume, prenume:	Se va completa de către student	
	Nume, prenume:	
An, grupă:	An, grupă:	

Începeți rezolvarea pe această pagină. Numerotați toate paginile.

Se va completa de		
profesorul corector		
Subject	Punctaj	
1		
2		
3		
4		
5		
Total		

Reguli de inferență pentru deducția naturală:

- 1. (5p). Enunțați definiția următoarei noțiuni: formă normală Skolem clauzală (FNSC).
- 2. (10p). Scrieți o formulă din LP1 care modelează următoarea afirmație: niciun număr par nu este prim.
- 3. (10p). Fie $\varphi_1 = \forall x. (P(x) \land Q(x))$ și $\varphi_2 = \neg \exists x. (\neg P(x) \lor \neg Q(x))$ două formule din LP1. Folosind definiția noțiunii de echivalență, demonstrați că $\varphi_1 \equiv \varphi_2$.
- 4. (10p). Demonstrați folosind rezolutia de bază că formula de mai jos este nesatisfiabilă:

$$\varphi = \forall x. \exists y. (P(x, y) \land \exists x. \forall y. \neg P(x, y)).$$

5. (10p). Dați o demonstrație formală pentru secvența $\{\neg(\exists x.P(x))\} \vdash \forall x.\neg P(x)$, folosind deducția naturală.