Séance II : Séries de Fourier et espaces de Hilbert

A) Objectifs de la séance

A la fin de cette séance,

- je sais déterminer la série de Fourier d'une fonction continue périodique;
- je suis capable de déterminer la limite de la série de Fourier, lorsqu'elle existe;
- je connais la caractérisation des applications linéaires continues;
- je sais reconnaître un espace de Hilbert et montrer la convergence des suites dans un tel espace (suites de Cauchy);
- je sais exprimer un vecteur dans une base hilbertienne;
- je sais déterminer le projeté orthogonal d'un vecteur sur un convexe fermé d'un espace de Hilbert.

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions II.1 et II.2 sont à traiter avant la séance de TD. Les corrigés sont disponibles sur internet.

Question II.1 (Séries de Fourier)

Soient $f:[0,2\pi]\to\mathbb{C}$ une fonction continue par morceaux. On rappelle que les coefficients de Fourier complexes sont notés

 $c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx.$

Q. II.1.1 Rappeler l'identité de Parseval. Supposons que f est une fonction continue 2π -périodique. Montrer que $c_n(f)$ tend vers 0 quand |n| tend vers l'infini.

Q. II.1.2 Donner la décomposition en séries de Fourier de $f(x) = \cos(5x)$.

Question II.2 (Questions diverses sur les Hilbert)

Q. II.2.1 Soit H un espace de Hilbert et F, $G \subset H$. Montrer les relations suivantes:

(a)
$$F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$$
;

(b)
$$F^{\perp} \cap G^{\perp} \subset (F+G)^{\perp}$$
;

(c)
$$F \subset F^{\perp \perp}$$
;

(d)
$$F + G = H \Rightarrow F^{\perp} \cap G^{\perp} = \{0\};$$

Q. II.2.2 Soient $x, x' \in H$ et r, r' > 0 tels que les boules fermées $\overline{B}(x, r)$ et $\overline{B}(x', r')$ sont égales. Montrer que x = x' et r = r'. [Remarque: observez que cette propriété est vraie en général dans les EVN.]

C) Exercices

Exercice II.1

E. II.1.1 Donner la décomposition en séries de Fourier de la fonction 2π -périodique définie sur $[-\pi, \pi[$ par $f(x) = -\mathbf{1}_{[-\pi,0[}(x) + \mathbf{1}_{[0,\pi[}(x))])$. Quelle est la régularité de f? Que dire de la série de Fourier de cette fonction en 0? Peut-on avoir convergence normale de la série de Fourier de f vers f sur $[-\pi, \pi]$?

Exercice II.2 (Des sommes classiques)

Soit f la fonction 2π -périodique définie par $f(x) = x^2 \operatorname{sur} [-\pi, \pi[$.

E. II.2.1 Calculer la série de Fourier de *f* et établir le lien entre *f* et sa série de Fourier.

E. II.2.2 En déduire la valeur de
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 et $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

Exercice II.3 (Régularité et coefficients de Fourier)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et 2π -périodique. On a déjà vu que $c_n(f) \to 0$ quand $n \to \infty$ (le refaire si vous n'en êtes pas convaincu). Le but de cet exercice est d'étudier plus finement le lien entre décroissance des coefficients de Fourier et dérivabilité de f.

- **E. II.3.1** On suppose que $f \in \mathcal{C}^k(\mathbb{R})$, $k \geq 1$. Calculer les coefficients de Fourier de $f^{(k)}$.
- **E. II.3.2** En déduire que si $f \in C^{\infty}$, alors $c_n(f) = o(|n|^{-k})$ pour tout $k \in \mathbb{N}^*$.
- **E. II.3.3** Nous allons montrer la réciproque du résultat de la question précédente. On suppose donc que $c_n(f) = o(|n|^{-k})$ pour tout $k \in \mathbb{N}^*$. Soit S la série de Fourier définie par $S(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{inx}$.
- *(a) Montrer que $S \in \mathcal{C}^{\infty}$ et que S est la somme d'une série trigonométrique qui converge normalement.
- (b) En déduire les coefficients de Fourier de *S.* [On pourra utiliser une interversion somme-limite sans la justifier dans un premier temps. Après le cours 10, vous serez en mesure de justifier une telle interversion.]
- (c) On suppose que f et g sont continues sur $[0,2\pi]$ et que $\forall n \in \mathbb{Z}$, $c_n(f) = c_n(g)$. En utilisant l'identité de Parseval, montrer que f(x) = g(x) pour tout $x \in [0,2\pi]$.
- (d) En utilisant les résultats de (a), (b) et (c), montrer que f = S et donc que $f \in C^{\infty}$.
- (e) Enoncer le théorème démontré dans cet exercice.

Exercice II.4

Les questions sont indépendantes.

E. II.4.1 Soit H un espace de Hilbert et $(f_n)_{n\in\mathbb{N}}$ un suite de vecteurs orthogonaux. Montrer que $\sum_{n\in\mathbb{N}} f_n$ converge dans H sssi $\sum_{n\in\mathbb{N}} \|f_n\|_H^2$ converge dans \mathbb{R} .

E. II.4.2 Soit H un espace de Hilbert et \overline{B} sa boule unité fermée. Après avoir vérifié que le théorème de projection s'applique, montrer que la projection P de H sur \overline{B} vérifie $P(x) = \frac{x}{\|x\|}$ pour tout $x \in H \setminus \overline{B}$ et P(x) = x pour $x \in \overline{B}$.

Exercice II.5 (Espace $\ell^2(\mathbb{N})$)

On note $\ell^2(\mathbb{N})$ l'espace des suites de carré sommable, i.e. $\ell^2(\mathbb{N}) = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \sum_{n \in \mathbb{N}} u_n^2 < \infty \}$. Les questions 1 à 4 de cet exercice sont indépendantes, mais se réfèrent toutes à l'espace $\ell^2(\mathbb{N})$. **E. II.5.1** Nous allons vérifier que $\ell^2(\mathbb{N})$ est un espace de Hilbert.

(a) Montrer que $\ell^2(\mathbb{N})$ est un espace préhilbertien (proposer un produit scalaire compatible avec la définition de $\ell^2(\mathbb{N})$).

Montrons la complétude. Soit $(u^{(k)})_{k\in\mathbb{N}}$ une suite de Cauchy d'éléments de $\ell^2(\mathbb{N})$.

- (b) Soit $\epsilon > 0$. Montrer qu'il existe K > 0 tel que pour tout $n \in \mathbb{N}$ et pour tous $j, k \geq K$, $|u_n^{(j)} u_n^{(k)}| \leq \epsilon$. En déduire que pour tout $n \in \mathbb{N}$, $\lim_{k \to \infty} u_n^{(k)}$ existe. On note $u_n^{(\infty)}$ cette limite.
- (c) Montrer qu'il existe $N \in \mathbb{N}$ tel que $\sum_{n \geq N} |u_n^{(K)}|^2 \leq \epsilon^2$.
- (d) En déduire que pour tout $M \ge N$, on a $(\sum_{N \le n \le M} |u_n^{(\infty)}|^2)^{\frac{1}{2}} \le 2\epsilon$, où les $u_n^{(\infty)}$ ont été définis à la question (b).
- (e) Montrer que $u^{(\infty)} = (u_n^{(\infty)})_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$, et en déduire que $(u^{(k)})_{k \in \mathbb{N}}$ converge dans $\ell^2(\mathbb{N})$ vers $u^{(\infty)}$.
- **E. II.5.2** Montrer que tout espace de Hilbert séparable est isométrique et isomorphe à $\ell^2(\mathbb{N})$.
- *E. II.5.3 Soit $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ bijective. Montrer que $\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^2} = \infty$. [Indication: commencer par étudier le signe de $\sum_{k=1}^{n} \frac{1}{k} \sum_{k=1}^{n} \frac{1}{\varphi(k)}$, pour tout $n \in \mathbb{N}^*$.]
- *E. II.5.4 On note $C = \{x = (x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) : \forall n, x_n \ge 0\}.$
- (a) Montrer que *C* est un convexe fermé.
- (b) Déterminer la projection sur C. [Indication: on pourra commencer par deviner la projection en dimension 2, puis vérifier que l'expression trouvée fonctionne aussi en dimension infinie.]

D) Approfondissement

Exercice II.6 (Théorème de Féjer)

Dans tout cet exercice, on utilisera les notations suivantes: pour tout $n \in \mathbb{Z}$, e_n est la fonction définie par $e_n(x) = e^{inx}$; $S_N = \sum_{|n| \le N} e_n$ et $V_N = \text{Vect}\{e_n : |n| \le N\}$. On note également $K_N = \frac{1}{N+1} \sum_{n=0}^N S_n$ pour tout $N \in \mathbb{N}$, la suite des noyaux de Féjer.

On rappelle que pour des fonctions continues sur \mathbb{R} , 2π -périodiques, le produit de convolution est donné par

$$(f * g)(x) = \frac{1}{2\pi} \int_{[0,2\pi]} f(x-y)g(y) \, dy.$$

E. II.6.1 On va démontrer le théorème de Féjer. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue 2π -périodique.

- (a) Montrer que $f * S_N$ est un polynôme trigonométrique (i.e. une combinaison linéaire des e_n) qu'on identifiera.
- (b) Si $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, démontrer l'égalité suivante:

$$K_N(x) = \frac{1}{N+1} \left(\frac{\sin(\frac{1}{2}(N+1)x)}{\sin(\frac{x}{2})} \right)^2.$$

- (c) Montrer que $K_N \ge 0$ et que $\frac{1}{2\pi} \int_0^{2\pi} K_N(x) \, dx = 1$. Déduire de la question précédente que pour tout $t \in]0, \pi]$, K_N converge uniformément vers 0 sur $]t, 2\pi t[$.
- *(d) Déduire des questions précédentes que $f * K_N$ converge uniformément vers f sur \mathbb{R} .

E. II.6.2 Application du théorème précédent: Soit f une fonction continue et 2π -périodique. On note $S_N(f)$ les sommes partielles de sa série de Fourier. Montrer que si f vérifie $||S_N(f)||_{\infty} \le 1$ pour tout $n \in \mathbb{N}$, alors $||f||_{\infty} \le 1$.

Exercice II.7 (Equations différentielles par méthode de Fourier)

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique et dérivable telle qu'il existe un réel $\alpha \in \mathbb{R}$ pour lequel:

$$\forall x \in \mathbb{R}, \ f'(x) = f(x + \alpha).$$

- **E. II.7.1** Si f est une solution, montrer que pour tout $n \in \mathbb{Z}$, $(in e^{in\alpha})c_n(f) = 0$.
- **E. II.7.2** En déduire pour quelle(s) valeur(s) de α on peut trouver une telle fonction f.

Exercice II.8 (Quelques questions de topologie des espaces de Hilbert)

Soit *H* un espace de Hilbert. Les questions sont indépendantes.

- *E. II.8.1 On suppose que *H* est séparable, i.e. qu'il existe un sous-ensemble dénombrable dense de *H*. Montrer que la boule unité fermée de *H* n'est pas compacte. [Indication: considérer une base hilbertienne et calculer la distance entre deux éléments de ce système.]
- *E. II.8.2 On rappelle qu'un sous-espace d'un espace vectoriel de dimension finie est fermé (le prouver si vous n'en êtes pas convaincu). On suppose à nouveau H séparable et on considère une base hilbertienne $(e_n)_{n\in\mathbb{N}}$ de H (i.e. en particulier $\overline{\mathrm{Vect}\{e_n,n\in\mathbb{N}\}}=H$). Montrer que $\mathrm{Vect}\{e_n,n\in\mathbb{N}\}$ n'est pas fermé. [Indication: considérer $u_N=\sum_{n=1}^N\frac{1}{n}e_n$.] En déduire que $\mathrm{Vect}\{e_n,n\in\mathbb{N}\}\neq H$.
- *E. II.8.3 Soit M un sous-espace de H (non nécessairement fermé). Montrer que M^{\perp} est fermé et que $\overline{M}^{\perp} = M^{\perp}$.

Séance 2 : Eléments de correction des exercices

Solution de Q. II.1.1 f est continue sur $[0,2\pi]$, elle y est donc en particulier bornée et de carré intégrable, i.e. $\int_0^{2\pi} |f(t)|^2 dt < \infty$. Ainsi l'égalité de Parseval donne

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} |c_n(f)|^2.$$

La série étant convergente, on a $c_n(f) \to 0$.

Solution de Q. II.1.2 On déduit facilement de l'expression: $\cos(5x) = \frac{e^{5ix} + e^{-5ix}}{2}$ que les coefficients de Fourier de f sont tous nuls à l'exception de $c_5(f) = c_{-5}(f) = \frac{1}{2}$.

Solution de Q. II.2.1 On rappelle que $F^{\perp} = \{x \in H : \langle x, y \rangle = 0, \ \forall y \in F\}.$

- (a) Si $x \in G^{\perp}$, alors pour tout $y \in F$, $\langle x, y \rangle = 0$ car y est aussi dans G, par hypothèse.
- (b) Soit $z \in F^{\perp} \cap G^{\perp}$. Alors $\forall x \in F, y \in G, \langle z, x+y \rangle = \langle z, x \rangle + \langle z, y \rangle = 0$.
- (c) $F^{\perp \perp} = \{z \in H : \langle z, y \rangle = 0, \ \forall y \in F^{\perp} \}$. Soit donc $x \in F$, alors pour tout $y \in F^{\perp}$, $\langle x, y \rangle = 0$, donc $x \in F^{\perp \perp}$.
- (d) Soit $x \in H$. Par hypothèse, il existe $x_F \in F$ et $x_G \in G$ tels que $x = x_F + x_G$. Soit $z \in F^{\perp} \cap G^{\perp}$. On a $\langle z, x \rangle = \langle z, x_F \rangle + \langle z, x_G \rangle = 0$.

Solution de Q. II.2.2 On raisonne par contraposée. Supposons d'abord que x=x' et r>r'. Alors pour n'importe quel vecteur unitaire $u, x+ru \in \overline{B}(x,r) \setminus \overline{B}(x',r')$. Si maintenant on suppose que $x \neq x'$ (quelque soit r,r', disons par exemple $r \geq r'$), alors on pourra vérifier que le point $x+r\frac{x-x'}{\|x-x'\|}$ appartient à $\overline{B}(x,r)$ mais pas à $\overline{B}(x',r')$.

Solution de E. II.1.1 La fonction f est impaire, donc pour $n \in \mathbb{Z} \setminus \{0\}$,

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx = -i \frac{1}{2\pi} \int_0^{2\pi} f(x) \sin(nx) dx$$
$$= -i \frac{1}{2\pi} \int_0^{\pi} \sin(nx) dx + i \frac{1}{2\pi} \int_{\pi}^{2\pi} \sin(nx) dx$$
$$= -i \frac{1}{\pi} \left(\frac{1}{n} - \frac{(-1)^{|n|}}{n} \right).$$

De plus, toujours car f est impaire, $c_{-n}(f) = -c_n(f)$. On remarque également que $c_0(f) = 0$. Donc la série de Fourier de f est donnée par

$$\forall N \in \mathbb{N}^*, \quad S_N(f)(x) = -i\frac{1}{\pi} \sum_{n=-N, n \neq 0}^{N} \left(\frac{1}{n} - \frac{(-1)^{|n|}}{n}\right) e^{inx}$$

$$= -\frac{1}{\pi} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{(-1)^n}{n}\right) i(e^{inx} - e^{-inx})$$

$$= \frac{2}{\pi} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{(-1)^n}{n}\right) \sin(nx).$$

f est C^1 par morceaux mais pas continue sur $[0,2\pi]$. Donc on ne peut lui appliquer que le théorème de Dirichlet simple, en particulier en 0:

$$\lim_{N \to +\infty} S_N(f)(x) = \frac{1}{2} \left(f(0^-) + f(0^+) \right) = 0.$$

Il ne peut y avoir convergence normale de la série de Fourier. En effet, une série de fonctions continues qui converge normalement a pour limite une fonction continue. Or f n'est pas continue.

Solution de E. II.2.1 La fonction f est paire, donc pour tout $n \in \mathbb{Z}$,

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(nx) dx,$$

et $c_n(f) = c_{-n}(f)$.

Pour n=0, on trouve $c_0(f)=\frac{1}{2\pi}\left(\int_0^\pi x^2dx+\int_\pi^{2\pi}(x-2\pi)^2dx\right)=\frac{\pi^2}{3}$. Pour $n\geq 1$, on intègre par parties deux fois:

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx$$

$$= \frac{1}{2\pi} \left[x^2 \frac{\sin(nx)}{n} \right]_{-\pi}^{\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} 2x \frac{\sin(nx)}{n} dx$$

$$= \frac{1}{2\pi} \left[2x \frac{\cos(nx)}{n^2} \right]_{-\pi}^{\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} 2 \frac{\cos(nx)}{n^2} dx$$

$$= \frac{2(-1)^n}{n^2}.$$

Ainsi, pour tout $N \in \mathbb{N}^*$,

$$\forall x \in [0, 2\pi[, S_N(f)(x)] = \frac{\pi^2}{3} + \sum_{n=1}^N \frac{4(-1)^n}{n^2} \cos(nx).$$

Or f est C^1 par morceaux et continue, donc on peut appliquer le théorème de Dirichlet uniforme pour conclure que

$$\lim_{N\to+\infty} \|S_N(f) - f\|_{\infty} = 0.$$

Solution de E. II.2.2 On évalue S(f) en π , ce qui donne

$$S(f)(\pi) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{2n}}{n^2} = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2},$$

dont on sait qu'il y a égalité avec $f(\pi) = \pi^2$. Ainsi,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{4} (\pi^2 - \frac{\pi^2}{3}) = \frac{\pi^2}{6}.$$

Pour obtenir $\sum_{n=1}^{\infty} \frac{1}{n^4}$, on remarque que cette somme est à peu de chose près la somme des $c_n(f)^2$. On va donc utiliser Parseval:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} c_n(f)^2$$
$$= \frac{\pi^4}{9} + \sum_{n \ge 1} \frac{8}{n^4}.$$

Or

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \frac{1}{\pi} \int_0^{\pi} |f(x)|^2 dx$$
$$= \frac{\pi^4}{5},$$

d'où on obtient $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Solution de E. II.3.1 On obtient $c_n(f^{(k)})$ par intégrations par parties successives. Faisons-le pour k = 1:

$$c_n(f') = \frac{1}{2\pi} \int_0^{2\pi} f'(x) \cos(-nx) dx + i \frac{1}{2\pi} \int_0^{2\pi} f'(x) \sin(-nx) dx$$

$$= \frac{1}{2\pi} \left[f(x) \cos(nx) \right]_0^{2\pi} + \frac{n}{2\pi} \int_0^{2\pi} f(x) \sin(nx) dx$$

$$- i \frac{1}{2\pi} \left[f(x) \sin(nx) \right]_0^{2\pi} + i \frac{n}{2\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$

$$= inc_n(f).$$

En itérant, on trouve $c_n(f^{(k)}) = (in)^k c_n(f)$.

Solution de E. II.3.2 On sait que pour tout $k \in \mathbb{N}$, $\lim_{|n| \to +\infty} c_n(f^{(k)}) = 0$ (voir Q. II.1.1). Ainsi, d'après la question précédente, on a $\forall k \in \mathbb{N}$,

$$|n|^k |c_n(f)| = |c_n(f^{(k)})| = o(1),$$

d'où le résultat.

Solution de E. II.3.3

(a) On rappelle la notation $e_n(x) = e^{inx}$. On sait que $||c_n(f)e_n||_{\infty} = |c_n(f)|$, $\forall n \in \mathbb{Z}$. Donc par hypothèse, il existe C > 0 tel que $|c_n(f)| \leq \frac{C}{n^2}$. Donc S converge normalement. De même en considérant la somme partielle $S_N(x) = \sum_{n=-N}^N c_n(f)e^{inx}$ et en la dérivant, on montre que $S_N^{(k)}$ converge normalement pour tout $k \in \mathbb{N}$. Donc pour tout $k \in \mathbb{N}$,

$$\forall x \in [0,2\pi], \quad S^{(k)}(x) = \sum_{n \in \mathbb{Z}} (in)^k c_n(f) e^{inx},$$

et $S \in \mathcal{C}^{\infty}$.

(b) La suite S_N converge uniformément vers S (car la série S_N converge normalement). On peut donc faire le calcul suivant:

$$|c_n(S)| = |\langle S, e_n \rangle| = \frac{1}{2\pi} |\int_{[0,2\pi]} \sum_{m \in \mathbb{Z}} c_m(f) e^{-i(n-m)x} dx|$$

$$\leq \sum_{m \in \mathbb{Z}} |c_m(f)| < \infty.$$

On peut dès lors appliquer le théorème de Fubini-Lebesgue (ce théorème d'interversion sera présenté en détails au cours 10) pour obtenir:

$$c_n(S) = \frac{1}{2\pi} \int_{[0,2\pi]} \sum_{m \in \mathbb{Z}} c_m(f) e^{-i(n-m)x} dx$$
$$= \sum_{m \in \mathbb{Z}} c_n(f) \frac{1}{2\pi} \int_{[0,2\pi]} e^{-i(n-m)x} dx$$
$$= c_n(f).$$

(c) Voir cours. On utilise donc l'identité de Parseval:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x) - g(x)|^2 dx = \sum_{n \in \mathbb{Z}} |c_n(f - g)|^2$$
$$= \sum_{n \in \mathbb{Z}} |c_n(f) - c_n(g)|^2 = 0.$$

Comme f et g sont continues, on en déduit que ces deux fonctions sont égales.

(d) Par hypothèse, f est continue, et d'après les questions (a) et (b), S est continue et les coefficients de Fourier de S et f coïncident. Donc par le résultat de (c), f = S.

(e) On a démontré le résultat suivant:

Soit f une fonction continue et périodique. Alors $f \in \mathcal{C}^{\infty}$ si et seulement si pour tout $k \in \mathbb{N}$, $\lim_{|n| \to +\infty} |n|^k c_n(f) = 0$.

Solution de E. II.4.1 Pour tout $N \in \mathbb{N}$, notons $S_N = \sum_{n=0}^N f_n$ et $T_N = \sum_{n=0}^N \|f_n\|^2$. On remarque que par orthogonalité des vecteurs (et application du théorème de Pythagore):

$$\forall N \ge M \in \mathbb{N}, \quad \|S_N - S_M\|^2 = \sum_{n=M+1}^N \|f_n\|^2 = |T_N - T_M|,$$
 (II.1)

d'où il vient que $(S_N)_{N\in\mathbb{N}}$ est de Cauchy (dans H) sssi $(T_N)_{N\in\mathbb{N}}$ est de Cauchy (dans \mathbb{R}).

Supposons que $(S_N)_{N\in\mathbb{N}}$ converge. Il suffit de montrer que $(T_N)_{N\in\mathbb{N}}$ est une suite de Cauchy, puisque \mathbb{R} est complet. Soit $\epsilon>0$. Comme $(S_N)_{N\in\mathbb{N}}$ converge, c'est une suite de Cauchy. Donc il existe $N_0\in\mathbb{N}$ tel que

$$\forall N, M \geq N_0, \quad ||S_N - S_M|| < \epsilon.$$

Ainsi par l'égalité (II.1), $(T_N)_{N\in\mathbb{N}}$ est une suite de Cauchy.

La réciproque se démontre exactement de la même manière.

Solution de E. II.4.2 Le théorème de projection s'applique car $\overline{B} = \{x \in H : \|x\| \le 1\}$ est convexe (vérifiez-le) et fermé (par définition). Ainsi, pour tout $x \in H$, il existe un unique $y \in \overline{B}$ tel que $d(x,\overline{B}) = d(x,y) = \|x-y\|$. Ce y est noté P(x). Remarquons pour commencer que pour tout $x \in H \setminus \{0\}$, $\frac{x}{\|x\|} \in \overline{B}$. Pour répondre à la question, il suffit (par unicité de la projection), de montrer que pour tout $x \in H \setminus \overline{B}$, tout $z \in \overline{B}$, on a $\|x-z\| \ge \|x-\frac{x}{\|x\|}\|$. L'égalité de Pythagore donne:

$$||x - z||^{2} = ||x - \frac{x}{||x||} - (z - \frac{x}{||x||})||^{2} = ||x - \frac{x}{||x||}||^{2} - 2\operatorname{Re}(\langle x - \frac{x}{||x||}, z - \frac{x}{||x||}\rangle) + ||z - \frac{x}{||x||}||^{2}$$

$$\geq ||x - \frac{x}{||x||}||^{2} - 2\operatorname{Re}(\langle x - \frac{x}{||x||}, z - \frac{x}{||x||}\rangle),$$

donc il suffit de montrer que $\text{Re}(\langle x - \frac{x}{\|x\|}, z - \frac{x}{\|x\|} \rangle) \leq 0$. Comme

$$\langle x - \frac{x}{\|x\|}, z - \frac{x}{\|x\|} \rangle = \langle x, z \rangle - \|x\| - \langle \frac{x}{\|x\|}, z \rangle + 1$$

$$= (\|x\| - 1) \left(\langle \frac{x}{\|x\|}, z \rangle - 1 \right),$$

on obtient $\operatorname{Re}(\langle x-\frac{x}{\|x\|},z-\frac{x}{\|x\|}\rangle)=(\|x\|-1)\left(\operatorname{Re}(\langle \frac{x}{\|x\|},z\rangle)-1\right)$. On a $\|x\|\geq 1$ et $|\langle \frac{x}{\|x\|},z\rangle|\leq 1$ par Cauchy-Schwarz, car $\frac{x}{\|x\|},z\in \overline{B}$. D'où le résultat.

Solution de E. II.5.1

Dans la résolution de cet exercice, on considère $\ell^2(\mathbb{N})$ comme un \mathbb{R} -espace vectoriel (cela simplifie seulement les notations, les résultats restent valables dans \mathbb{C}).

- (a) On vérifie aisément que $\ell^2(\mathbb{N})$ est un espace vectoriel et que l'application $\langle u,v\rangle=\sum_{n\in\mathbb{N}}u_nv_n$ est un produit scalaire. Une suite $u=(u_n)_{n\in\mathbb{N}}$ est dans $\ell^2(\mathbb{N})$ sssi $\|u\|^2=\sum_{n\in\mathbb{N}}u_n^2<\infty$. Cette norme correspond bien au produit scalaire que nous venons de définir (i.e. $\|u\|^2=\langle u,u\rangle$), donc $\ell^2(\mathbb{N})$ muni de ce produit scalaire est bien un espace préhilbertien.
- (b) $(u^{(k)})_{k\in\mathbb{N}}$ étant une suite de Cauchy d'éléments de $\ell^2(\mathbb{N})$, il existe $K\in\mathbb{N}$ tel que $\forall j,k\geq K$, $\|u^{(j)}-u^{(k)}\|\leq \epsilon$. Autrement dit,

$$\sum_{n\in\mathbb{N}} |u_n^{(j)} - u_n^{(k)}|^2 \le \epsilon^2.$$

En particulier, $\forall j, k \geq K$, chaque terme de la somme précédente est plus petit que ϵ^2 . Donc pour tout $n \in \mathbb{N}$ fixé, la suite $(u_n^{(k)})_{k \in \mathbb{N}}$ est de Cauchy dans \mathbb{R} . Donc elle converge.

- (c) Comme $u^{(K)} \in \ell^2(\mathbb{N})$, on a $\sum_{n \in \mathbb{N}} |u_n^{(K)}|^2 < \infty$. Donc le reste de la série tend vers 0, i.e. il existe $N \in \mathbb{N}$ tel que $\sum_{n \geq N} |u_n^{(K)}|^2 \leq \epsilon^2$.
- (d) Soit $M \ge N$ et $k \ge K$,

$$\left(\sum_{N \le n \le M} |u_n^{(k)}|^2\right)^{\frac{1}{2}} = \left(\sum_{N \le n \le M} |u_n^{(k)} - u_n^{(K)} + u_n^{(K)}|^2\right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{N \le n \le M} |u_n^{(k)} - u_n^{(K)}|^2\right)^{\frac{1}{2}} + \left(\sum_{N \le n \le M} |u_n^{(K)}|^2\right)^{\frac{1}{2}}$$

$$\leq 2\epsilon,$$

où nous avons utilisé l'inégalité triangulaire à la deuxième ligne, et les résultats des questions (b) et (c) à la troisième. Ce qui précède étant vrai pour tout $k \geq K$, et la somme portant sur un nombre fini d'indices, l'inégalité passe à la limite quand $k \to +\infty$, d'où le résultat de la question.

(e) Le résultat de la question précédente implique que la suite $(\sum_{n\leq N}|u_n^{(\infty)}|^2)_{N\in\mathbb{N}}$ est de Cauchy (dans \mathbb{R}), donc elle converge. Ce qui signifie que $u^{(\infty)}\in\ell^2(\mathbb{N})$. En reprenant l'inégalité de la question (b), on a pour tout $N\in\mathbb{N}$, et tout $j,k\geq K$, $\sum_{n\leq N}|u_n^{(j)}-u_n^{(k)}|^2\leq \varepsilon^2$. D'où en passant à la limite quand $k\to\infty$:

$$\sum_{n \le N} |u_n^{(\infty)} - u_n^{(j)}|^2 \le \epsilon^2$$

Puis en passant à la limite $N \to \infty$,

$$||u^{(\infty)} - u^{(j)}|| \le \epsilon.$$

Donc $(u^{(k)})_{k\in\mathbb{N}}$ converge bien vers $u^{(\infty)}$ dans $\ell^2(\mathbb{N})$ et cet espace est de Hilbert.

Solution de E. II.5.2 Soit H un espace de Hilbert séparable et $\{e_n\}_{n\in\mathbb{N}}$ une base hilbertienne de H (dont l'existence est assurée par un théorème du cours). Considérons l'application linéaire

$$\varphi: \frac{H \to \ell^2(\mathbb{N})}{x \mapsto (\langle x, e_n \rangle)_{n \in \mathbb{N}}}.$$

Par le théorème de Parseval, φ est une isométrie, elle est donc notamment injective. La surjectivité est évidente, donc φ est bijective.

Solution de E. II.5.3 Comme suggéré dans l'énoncé, on remarque que $\varphi(\{1,\ldots,n\})=\{p_1,\ldots,p_n\}$ où nous avons ordonné les éléments $\varphi(1),\ldots,\varphi(n)$ de sorte que $p_1<\cdots< p_n$ (les inégalités sont strictes par injectivité de φ). Par récurrence, on en déduit donc que $p_k\geq k$ pour tout $k\in\{1,\ldots,n\}$. Donc

$$\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{\varphi(k)} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{p_k} \ge 0.$$

Par application de l'inégalité de Cauchy-Schwarz,

$$\left(\sum_{k=1}^{n} \frac{1}{k}\right)^{2} = \left(\sum_{k=1}^{n} \frac{1}{\sqrt{\varphi(k)}} \frac{\sqrt{\varphi(k)}}{k}\right)^{2}$$

$$\leq \sum_{k=1}^{n} \frac{1}{\varphi(k)} \sum_{k=1}^{n} \frac{\varphi(k)}{k^{2}}$$

$$\leq \sum_{k=1}^{n} \frac{1}{k} \sum_{k=1}^{n} \frac{\varphi(k)}{k^{2}},$$

grâce à l'inégalité précédente. On obtient donc $\sum_{k=1}^n \frac{1}{k} \leq \sum_{k=1}^n \frac{\varphi(k)}{k^2}$, ce qui par passage à la limite donne le résultat.

Solution de E. II.5.4

- (a) On voit facilement que C est convexe. Montrons qu'il est fermé. Soit $(u^{(k)})_{k\in\mathbb{N}}$ une suite d'éléments de C qui converge vers $u\in\ell^2(\mathbb{N})$. Alors en particulier, pour tout $n\in\mathbb{N}$ fixé, $\lim_{k\to\infty}u_n^{(k)}=u_n$. Donc $u_n\geq 0$ car \mathbb{R}_+ est fermé dans \mathbb{R} . Donc $u\in C$.
- (b) Grâce au résultat précédent et au théorème de projection, on sait que la projection sur C existe. Définissons l'application p_C par

$$\forall u \in \ell^2(\mathbb{N}), \quad p_C(u)_n = \left\{ \begin{array}{ll} u_n & \text{si } u_n \ge 0 \\ 0 & \text{si } u_n < 0. \end{array} \right.$$

Comme dans la preuve de la question Q.II.4.2, il suffit pour montrer que p_C est bien le projeté de prouver que pour tout $u \in \ell^2(\mathbb{N})$ et tout $v \in C$, $\langle u - p_C(u), v - p_C(u) \rangle \leq 0$. Le produit scalaire s'écrit:

$$\langle u - p_{\mathcal{C}}(u), v - p_{\mathcal{C}}(u) \rangle = \sum_{n \in \mathbb{N}} (u_n - p_{\mathcal{C}}(u)_n)(v_n - p_{\mathcal{C}}(u)_n).$$

Etudions chaque terme de la somme: si $u_n \ge 0$, alors $p_C(u)_n = u_n$ et donc $(u_n - p_C(u)_n)(v_n - p_C(u)_n) = 0$. Si $u_n < 0$, alors $p_C(u)_n = 0$ et donc $(u_n - p_C(u)_n)(v_n - p_C(u)_n) = u_n v_n \le 0$ $(v_n \ge 0)$. Donc $\langle u - p_C(u), v - p_C(u) \rangle \le 0$.

Solution de E. II.6.1

(a) On a, par un changement de variable immédiat,

$$f * S_N = \sum_{|n| \le N} \frac{1}{2\pi} \int_{[0,2\pi]} f(x - y) e_n(y) \, dy$$
$$= \sum_{|n| \le N} \frac{1}{2\pi} \int_{[0,2\pi]} f(z) e^{in(x-z)} \, dz$$
$$= \sum_{|n| \le N} c_n(f) e_n(x).$$

On reconnaît la somme partielle de la série de Fourier de f.

(b) Soit $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. S_n est la somme d'une suite géométrique, donc

$$S_n(x) = e^{-inx} \frac{e^{(2n+1)ix} - 1}{e^{ix} - 1} = \frac{\sin\left((n + \frac{1}{2})x\right)}{\sin\left(\frac{x}{2}\right)}.$$

Ainsi, en écrivant $\sin\left((n+\frac{1}{2})x\right)=\mathrm{Im}(e^{i(n+\frac{1}{2})x})$, on trouve:

$$\sum_{n=0}^{N} e^{i(n+\frac{1}{2})x} = e^{i\frac{x}{2}} \frac{e^{i(N+1)x} - 1}{e^{ix} - 1} = e^{i(N+1)\frac{x}{2}} \frac{\sin\left((N+1)\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

On en déduit le résultat.

(c) Si $x \in 2\pi\mathbb{Z}$, on déduit directement de sa définition que $K_N(x) \geq 0$. Si $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, cela provient de l'expression trouvée à la question précédente. Pour tout $n \in \mathbb{Z}^*$,

$$\frac{1}{2\pi} \int_0^{2\pi} e_n(x) + e_{-n}(x) dx = \frac{1}{\pi} \int_0^{2\pi} \cos(nx) dx = 0.$$

Donc $\frac{1}{2\pi} \int_0^{2\pi} S_n(x) dx = \frac{1}{2\pi} \int_0^{2\pi} e_0(x) dx = 1$. K_N étant une combinaison linéaire des S_n , on trouve bien le résultat annoncé.

Enfin, sur $]t, 2\pi - t[, \sin(\frac{x}{2}) > \sin(\frac{t}{2}), donc$

$$0 \le K_N(x) \le \frac{1}{(N+1)\sin(\frac{t}{2})^2}.$$

Ainsi K_N tend uniformément vers 0 sur $]t, 2\pi - t[$ quand $N \to +\infty$.

(d) Soit $t \in]0, \pi]$, on a en utilisant que $\frac{1}{2\pi} \int_0^{2\pi} S_n(x) dx = 1$:

$$|f * K_N(x) - f(x)| = |\int_0^{2\pi} (f(x - y)K_N(y) - f(x)K_N(y)) dy|$$

$$= |\int_{]t,2\pi - t[} (f(x - y) - f(x)) K_N(y) dy|$$

$$+ |\int_{[0,t] \cup [2\pi - t,2\pi]} (f(x - y) - f(x)) K_N(y) dy|.$$

Comme f est continue, elle est majorée sur $[0,2\pi]$, donc sur $\mathbb R$ (car elle est 2π -périodique). Notons $M=\sup_{x\in\mathbb R}|f(x)|$. De plus elle est uniformément continue sur $[0,2\pi]$ (par le théorème de Heine), donc sur $\mathbb R$.

Fixons $\epsilon > 0$. Il existe alors $t_0 > 0$ tel que pour tous $x, y \in [0, 2\pi]$, $|x - y| \le t_0 \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{4\pi}$.

De plus, par le résultat de la question précédente, il exsite $N \in \mathbb{N}^*$ tel que:

$$\sup_{x\in]t_0,2\pi-t_0[}|K_N(x)|<\frac{\epsilon}{8\pi M}.$$

Ainsi, en reprenant l'égalité précédente,

$$|f * K_N(x) - f(x)| < 2M \int_{]t,2\pi - t[} K_N(y) dy + \int_{[0,t] \cup [2\pi - t,2\pi]} \frac{\epsilon}{4\pi} K_N(y) dy$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

On vient de démontrer le théorème de Féjer. Grâce à la question (a), on peut même préciser une suite de polynômes trigonométriques qui approche f uniformément, il s'agit de (après un calcul que vous pourrez vérifier):

$$f * K_N = \frac{1}{N+1} \sum_{n=0}^{N+1} \sum_{|k| \le n} c_k(f) e_k$$
$$= \sum_{|k| \le N} \left(1 - \frac{|k|}{N+1} \right) c_k(f) e_k.$$

Solution de E. II.6.2 D'après les hypothèses de l'énoncé, on remarque pour tout $N \in \mathbb{N}$, $||f * K_N||_{\infty} = \frac{1}{N+1} ||\sum_{n=0}^N S_n(f)||_{\infty} \le 1$.

Soit $\epsilon > 0$ et $N \in \mathbb{N}$ tel que, par application du théorème de Féjer, $||f - f * K_N||_{\infty} < \epsilon$. Alors

$$||f||_{\infty} \le ||f - f * K_N||_{\infty} + ||f * K_N||_{\infty} \le \epsilon + 1.$$

L'inégalité précédente étant vraie pour tout $\epsilon > 0$, on obtient le résultat.

Solution de E. II.7.1 Il suffit de vérifier que $c_n(f') = inc_n(f)$ (voir par exemple Exercice II.3) et que $c_n(f(\cdot + \alpha)) = e^{in\alpha}c_n(f)$.

Solution de E. II.7.2 Si f est solution de l'équation, f' doit être continue, donc $f \in \mathcal{C}^1$. En conséquence, f est limite uniforme de sa série de Fourier (théorème de Dirichlet uniforme ou de Féjer). Remarquons que f=0 est solution.

Si une solution non identiquement nulle existe, il doit donc exister $n \in \mathbb{Z}$ tel que $c_n(f) \neq 0$. Par la question précédente, on a pour ce n que $e^{in\alpha} = in$. Ceci n'est possible que pour $n = \pm 1$, valeurs pour lesquelles on trouve $\alpha = \frac{\pi}{2}$. Réciproquement, on vérifie que les fonctions de la forme $f(x) = -i\lambda_{-1}e^{-ix} + i\lambda_1e^{ix}$ pour λ_{-1} , $\lambda_1 \in \mathbb{C}$ sont solutions. Ce sont les seules possibles.

Solution de E. II.8.1 On rappelle la propriété de Borel-Lebesgue: un ensemble est compact si de tout recouvrement par des ouverts, on peut extraire un recouvrement fini.

Notons \overline{B} la boule unité fermée de H, et $\{e_n\}_{n\in\mathbb{N}}$ une base hilbertienne (qui existe car H est séparable). On considère le recouvrement de \overline{B} par $\bigcup_{n\in\mathbb{N}} B(e_n,1)$ (les boules ouvertes centrées en e_n et de rayon 1). Il est clair que $B\subset\bigcup_{n\in\mathbb{N}} B(e_n,1)$ et donc $\overline{B}\subset\bigcup_{n\in\mathbb{N}} B(e_n,1)$. En supposant (par l'absurde) que \overline{B} est compacte, on peut alors extraire un recouvrement fini, qu'on note $\overline{B}\subset\bigcup_{k=1}^N B(e_{n_k},1)$. Prenons $e_m\notin\{e_{n_1},\ldots,e_{n_N}\}$. On remarque que $\|e_m-e_{n_k}\|=\sqrt{2}$ pour tout $k\in\{1,\ldots,N\}$. En particulier, $e_m\notin\bigcup_{k=1}^N B(e_{n_k},1)$, ce qui contredit l'existence d'un sous-recouvrement fini.

Solution de E. II.8.2 Considérons la suite $u_N = \sum_{n=1}^N \frac{1}{n} e_n$ proposée dans l'énoncé. Pour tout $N \in \mathbb{N}^*$, $u_N \in \text{Vect}\{e_n, n \in \mathbb{N}\}$ car c'est une combinaison linéaire d'un nombre fini d'éléments de la base. On montre facilement que (u_N) est une suite de Cauchy et donc qu'elle admet une limite dans H. Cependant, cette limite, notée u, ne peut s'exprimer comme une combinaison linéaire finie des e_n . En effet, si tel était le cas, on aurait $u = \sum_{k=1}^K \lambda_k e_{n_k}$ avec $\lambda_k \neq 0$. Et ainsi pour $e_m \notin \{e_{n_1}, \dots, e_{n_K}\}$, $\langle u, e_m \rangle = 0$, ce qui est en contradiction avec

$$\langle u, e_m \rangle = \lim_{N \to +\infty} \langle u_N, e_m \rangle = \frac{1}{m}.$$

Notez que la première égalité est due à la continuité du produit scalaire. Donc $\text{Vect}\{e_n, n \in \mathbb{N}\}$ n'est pas fermé et ne peut être égal à H.

Solution de E. II.8.3 Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de M^{\perp} qui converge vers $f\in H$. Montrons que $f\in M^{\perp}$.

Soit donc $x \in M$. Il suffit de montrer que $\langle x, f \rangle = 0$. Or par continuité du produit scalaire,

$$\lim_{n\to+\infty}\langle x,f_n\rangle=\langle x,f\rangle,$$

d'où le fait que $\langle x, f \rangle = 0$.

Montrons maintenant le deuxième point. $M \subset \overline{M}$, donc on a déjà $\overline{M}^{\perp} \subset M^{\perp}$. Montrons l'inclusion réciproque. Soit $y \in M^{\perp}$ et $x \in \overline{M}$. Par définition, x est limite (dans H) d'une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de M. Or pour tout $n \in \mathbb{N}$, $\langle y, x_n \rangle = 0$. Par continuité du produit scalaire à nouveau, $\langle y, x \rangle = 0$.