10 mar 121

Come trovare le soluzioni di una equazione senza utilizzare i metodi elementari usati fino ad ora.

P. 1796

 $e^{m} + m^{5} - 2 = 0$ n lu m - 1 = 0 $m^2 + lm m - 4 = 0$

- tougenti (Newton - Ropshon)

1. <u>verificare se la funtioni ha tevi</u> e separarli

- potremmo applicare t. Weierstrass [quanti somo? e unico? - f(n) monotorra (y')

tali de $f(a) \cdot f(b) < 0$ - troviamo a e b $\mathcal{C}(0) = -1$ abbiamo trovato f(2) > 0 $\begin{bmatrix} -2,0 \end{bmatrix}$ in cui ci sono degli $\begin{cases} (-2) > 0 \end{cases}$ [0, Z]7en' almeno Zaeri

 $\sim N^{h} + N^{3} - 1 = 0$

abbiamo sepavato gli zevi $w_i \in [0, 2]$

2. cercare lo zero

metodo di biserione ~

a	Ь	f (a)	ያ(b)	pt medio	§(xn)
0	2	-1	23	1	1
0	1	1	1	0, 5	-0,81
0,5	1	- O,8	1	0,45	- 0, 26
0,45		- 0, 26	1	0,875	+0,25
0, 75	0,875	-0,26	0,25	Q 8125	-0,028
	ĺ				

• • •

data f(n) per cui vole Weinerstrass in un intervallo in cui c'é sicuramente un solo zero prendo il punto medio e riapplico W. con uno degli estremi e il punto medio. (in base al segno) Ho ristretto l'intervallo in cui so dov'é la zero. RIAPPLICO ~ posso approssinare

ten