POLNET2017: AMEN FOR LATENT FACTOR MODELS

Shahryar Minhas † , Peter D. Hoff ‡ , & Michael D. Ward † Duke University

- † Department of Political Science
- [‡] Department of Statistical Science

June 16, 2017

Motivation

Relational data consists of

- a set of units or nodes
- a set of measurements, y_{ij} , specific to pairs of nodes (i, j)

 y_{il}

 y_{jl}

 y_{kl}

Sender	Receiver	Event			i	j	k
$\overline{}$	j	y_{ij}		\overline{i}	NA	y_{ij}	y_{ik}
÷	$rac{k}{l}$	$egin{array}{c} y_{ik} \ y_{il} \end{array}$	\longrightarrow	j	y_{ji}	NA	y_{jk}
j	i	y_{ji}		k	y_{ki}	y_{kj}	NA
:	k l	y_{jk}		l	y_{li}	y_{lj}	y_{lk}
k	$i \over i$	$egin{array}{c} y_{jl} \ y_{ki} \end{array}$			1	ĺ	
:	j	y_{kj}				*	
1	l = i	y_{kl}			//		
	$\overset{\iota}{j}$	$egin{array}{c} y_{li} \ y_{lj} \end{array}$				\ \	
:	k	y_{lk}				\	

Relational data assumptions

GLM:
$$y_{ij} \sim \beta^T X_{ij} + e_{ij}$$

Networks typically show evidence against independence of e_{ij} : $i \neq j$

Not accounting for dependence can lead to:

- biased effects estimation
- uncalibrated confidence intervals
- poor predictive performance
- inaccurate description of network phenomena

We've been hearing this concern for decades now:

Thompson & Walker (1982)	Beck et al. (1998)	Snijders (2011)
Frank & Strauss (1986)	Signorino (1999)	Erikson et al. (2014)
Kenny (1996)	Li & Loken (2002)	Aronow et al. (2015)
Krackhardt (1998)	Hoff & Ward (2004)	Athey et al. (2016)

Outline

- Nodal and dyadic dependencies in networks
 - Can model using the "A" in AME
- Third order dependencies
 - Can model using the "M" in AME
- Application

What network phenomena? Sender heterogeneity

Values across a row, say $\{y_{ij}, y_{ik}, y_{il}\}$, may be more similar to each other than other values in the adjacency matrix because each of these values has a common sender i

	i	j	k	1
i	NA	Уij	Yik	Yil
j	Ујі	NA	Уjk	УјІ
k	Уki	Уkj	NA	УkI
1	Уli	Уij	YIk	NA

What network phenomena? Receiver heterogeneity

Values across a column, say $\{y_{ji}, y_{ki}, y_{li}\}$, may be more similar to each other than other values in the adjacency matrix because each of these values has a common receiver i

	i	j	k	1
i	NA	Уij	Уik	YiI
j	Ујі	NA	Уjk	УјІ
k	Уki	Уkj	NA	УkI
1	Уli	Уij	Уlk	NA

What network phenomena? Sender-Receiver Covariance

Actors who are more likely to send ties in a network may also be more likely to receive them

	i	j	k	1
i	NA	Уij	Уik	УiI
j	Ујі	NA	Уjk	Ујі
k	Уki	Уkj	NA	УkI
1	Уli	Уij	Уlk	NA

What network phenomena? Reciprocity

Values of y_{ii} and y_{ii} may be statistically dependent

	i	j	k	1
i	NA	Уij	Yik	YiI
j	Ујі	NA	Уjk	YjI
k	Уki	y_{kj}	NA	YkI
1	Ун	Уij	Yık	NA

We use this model to form the additive effects portion of AME

$$y_{ij} = \mu + e_{ij}$$
 $e_{ij} = a_i + b_j + \epsilon_{ij}$
 $\{(a_1, b_1), \dots, (a_n, b_n)\} \sim N(0, \Sigma_{ab})$
 $\{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} \sim N(0, \Sigma_{\epsilon}), \text{ where}$
 $\Sigma_{ab} = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} = \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$

- μ baseline measure of network activity
- e_{ii} residual variation that we will use the SRM to decompose

$$\begin{aligned} y_{ij} &= \mu + e_{ij} \\ e_{ij} &= a_i + b_j + \epsilon_{ij} \\ \{(a_1, b_1), \dots, (a_n, b_n)\} &\sim \textit{N}(0, \Sigma_{ab}) \\ \{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} &\sim \textit{N}(0, \Sigma_{\epsilon}), \text{ where} \\ \Sigma_{ab} &= \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} &= \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{aligned}$$

- row/sender effect (a_i) & column/receiver effect (b_i)
- Modeled jointly to account for correlation in how active an actor is in sending and receiving ties

$$egin{aligned} y_{ij} &= \mu + e_{ij} \ e_{ij} &= a_i + b_j + \epsilon_{ij} \ \{(a_1,b_1),\dots,(a_n,b_n)\} &\sim \textit{N}(0,oldsymbol{\Sigma}_{ab}) \ \{(\epsilon_{ij},\epsilon_{ji}): i
eq j\} &\sim \textit{N}(0,oldsymbol{\Sigma}_{\epsilon}), \text{ where} \ oldsymbol{\Sigma}_{ab} &= egin{pmatrix} \sigma_{a}^2 & \sigma_{ab} \ \sigma_{ab} & \sigma_{b}^2 \end{pmatrix} & oldsymbol{\Sigma}_{\epsilon} &= \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \ \rho & 1 \end{pmatrix} \end{aligned}$$

- σ_a^2 and σ_b^2 capture heterogeneity in the row and column means
- σ_{ab} describes the linear relationship between these two effects (i.e., whether actors who send [receive] a lot of ties also receive [send] a lot of ties)

$$egin{aligned} y_{ij} &= \mu + e_{ij} \ e_{ij} &= a_i + b_j + \epsilon_{ij} \ \{(a_1,b_1),\ldots,(a_n,b_n)\} &\sim \textit{N}(0,\Sigma_{ab}) \ \{(\epsilon_{ij},\epsilon_{ji}): i
eq j\} &\sim \textit{N}(0,\Sigma_{\epsilon}), ext{ where} \ \Sigma_{ab} &= egin{pmatrix} \sigma_{a}^2 & \sigma_{ab} \ \sigma_{ab} & \sigma_{b}^2 \end{pmatrix} & \Sigma_{\epsilon} &= \sigma_{\epsilon}^2 egin{pmatrix} 1 & \rho \ \rho & 1 \end{pmatrix} \end{aligned}$$

- ϵ_{ij} captures the within dyad effect
- Second-order dependencies are described by σ_ϵ^2
- Reciprocity, aka within dyad correlation, represented by $\boldsymbol{\rho}$

Third Order Dependencies

Номорніцу

STOCHASTIC EQUIVALENCE

To account for these patterns we can build on what we have so far and find an expression for γ :

$$y_{ij} \approx \beta^T X_{ij} + a_i + b_j + \gamma(u_i, v_j)$$

Latent Factor Model: The "M" in AME

Each node i has an unknown latent factor

$$\mathbf{u}_i, \mathbf{v}_j \in \mathbb{R}^k \ i, j \in \{1, \dots, n\}$$

The probability of a tie from i to j depends on their latent factors

$$\begin{split} \gamma(\mathbf{u}_i, \mathbf{v}_j) &= \mathbf{u}_i^\mathsf{T} D \mathbf{v}_j \\ &= \sum_{k \in K} d_k u_{ik} v_{jk} \\ D \text{ is a } K \times K \text{ diagonal matrix} \end{split}$$

Can account for both stochastic equivalence and homophily

Swiss Climate Change Application

Cross-sectional network measuring whether an actor indicated that they collaborated with another during the policy design of the Swiss CO_2 act (Ingold 2008)

Parameter Estimates

	Expected Effect	Logit	MRQAP	LSM	ERGM	AME
Conflicting policy preferences						
Business vs. NGO	_	-0.86	-0.87*	-1.37*	-1.11*	-1.37*
Opposition/alliance	+	1.21*	1.14*	0.00	1.22*	1.08*
Preference dissimilarity	_	-0.07	-0.60	-1.76*	-0.44	-0.79*
Transaction costs						
Joint forum participation	+	0.88*	0.75*	1.51*	0.90*	0.92*
Influence						
Influence attribution	+	1.20*	1.29*	0.08	1.00*	1.09*
Alter's influence indegree	+	0.10*	0.11*	0.01	0.21*	0.11*
Influence absolute diff.	_	-0.03*	-0.06*	0.04	-0.05*	-0.07*
Alter = Government actor	+	0.63*	0.68	-0.46	1.04*	0.55
Functional requirements						
$Ego = Environmental \; NGO$	+	0.88*	0.99	-0.60	0.79*	0.67
Same actor type	+	0.74*	1.12*	1.17*	0.99*	1.04*

Latent Factor Visualization

Out of Sample Performance Assessment

- Randomly divide the $n \times (n-1)$ data points into S sets of roughly equal size, letting s_{ii} be the set to which pair $\{ij\}$ is assigned.
- For each $s \in \{1, \dots, S\}$:
 - Obtain estimates of the model parameters conditional on $\{y_{ij}: s_{ij} \neq s\}$, the data on pairs not in set s.
 - For pairs $\{kl\}$ in set s, let $\hat{y}_{kl} = E[y_{kl}|\{y_{ij}: s_{ij} \neq s\}]$, the predicted value of y_{kl} obtained using data not in set s.

This procedure generates a sociomatrix of out-of-sample predictions of the observed data

Performance Comparison

Network Dependencies

Standard Network Dependence Measures

Simulation Comparison

AMEN v LSM Performance

AMEN versus LSM Net Dependence

AMEN varying K Performance

AMEN varying K Net Dependence

