S8 - CONSTRUCTION ELECTRIQUE

Protection des installations électriques

5841 : Normes et conventions 5852 : Réseaux de distribution

5853 : Normes de sécurité électrique

5862 et 5863 : Appareillage de protection

1) Rappel sur la distribution du courant électrique :

2) Rappel sur les symboles normalisés :

Appareillage de protection contre les surtensions

Appareils de production et transformation

Batterie de piles ou accus

Transformateur

Autotransformateur

Transformateur de séparation

Transformateur

de sécurité

Appareillage de connexion

ricne de prise de courant

Socle de prise de courant

Fiche et prise associé

Prise male

Prise femelle

Fiche et prise associées

Canalisations

Conducteur de phase

Neutre

De protection (terre)

5 conducteurs (3P + N + T)

3) Principaux appareils de protection:

Les installations doivent être protégées contre les court-circuits et les surcharges qui augmentent considérablement les courants.

Le fusible :

C'est un appareil composé d'un fil conducteur qui grâce à sa fusion ouvre le circuit lorsque l'intensité du courant dépasse la valeur maximale supportée par le fil.

Symboles:

Cartouche fusible cylindrique

Cartouche fusible cylindrique à percuteur

Coupe circuit domestique unipolaire

Coupe circuit
domestique unipolaire +
neutre —

Le coupe circuit fusible s'installe toujours sur la phase (neutre éventuellement) et ne doit en aucun cas être placé sur le conducteur de protection (Terre)

Ils sont classés selon leur usage et repérés par des symboles et des codes couleurs :

- Usage domestique: protection contre surcharges et court-circuits
 - Code gF
 - Ecriture noire + bague de couleur
 - Jaune = 10A
 - Rouge = 16 A
 - Verte = 20 A
- Usage Industriel : protection contre faibles et fortes surcharges et courtcircuits
 - Code gG (ancienne gI)
 - Ecriture noire
- Usage industriel pour accompagnement moteur: protection contre les courts circuits. Ils commencent à réagie pour un courant de 4x In et acceptent les surcharges lors des démarrages moteurs par exemple
 - Code aM
 - Ecriture verte

A noter qu'il existe des fusibles ultra rapides pour la protection des semiconducteurs contre les courts circuits

> Les disjoncteurs thermique, magnétique, magnéto-thermique :

Ils assurent la protection d'une installation contre les surcharges, les courtcircuits, les défauts d'isolement, par ouverture rapide du circuit en défaut. Il remplit aussi la fonction de sectionnement (isolement d'un circuit).

JMV-2019

• Déclencheur thermique : il protège contre les surcharges ; on utilise la déformation d'un bilame sous l'effet de la chaleur (effet joule) pour couper le circuit :

Symbole

 Déclencheur magnétique : il protège contre les court-circuits ; il utilise une bobine qui va réagir rapidement pour couper le circuit.

Symbole

• Déclencheur magnéto-thermique: les deux technologies sont associées.

Symbole:

TU NJ SUS

Disjoncteur magnéto-thermique

Le disjoncteur différentiel :

Associé à une prise de terre, il assure les protections suivantes :

- La protection des circuits contre les surintensités dues aux surcharges ou aux courts circuits ;
- La protection des personnes contre les contacts indirects (fuites de courant à la terre).

Exemple d'un interrupteur différentiel

4) <u>Démarche à suivre pour un dimensionnement électrique</u>

On détermine la section des canalisations et leurs protections à partir des caractéristiques (type de câble, mode de pose, ...) en conformité avec la norme NF $\it C$ 15-100 et suivant le diagramme ci-dessous :

5) Calcul du courant d'emploi IB

On calcule le courant d'emploi I_B à partir de la puissance à véhiculer dans le câble. Le guide UTE C 15-105 décrit une méthode de détermination du courant maximal d'emploi qui s'appuie sur la connaissance de la puissance de chaque circuit d'utilisation pour lequel sont attribués différents coefficients.

Coefficients minorants:

- facteur de simultanéité lié au foisonnement des circuits (prises de courant par exemple),
- facteur d'utilisation (ou de charge) généralement choisi entre 0,7 et 0,8.

Coefficients majorants:

- facteur lié au rendement ou au cos ϕ dégradé (lampes à fluorescence) et à des surintensités (démarrage moteurs),
- facteur de prévision d'extension de l'installation.

6) Choix du calibre de l'appareil de protection

L'intensité assignée In du dispositif de protection, coupe-circuit à fusible ou disjoncteur doit être prise juste supérieure à l'intensité d'emploi IB calculée :

In > IB

On réglera le disjoncteur de calibre In pour obtenir une intensité de réglage Ir \approx IB

Le choix du pouvoir de coupure de l'appareil **PdC** de protection se fera après calcul du courant de court-circuit présumé à l'endroit où l'appareil de protection est installé.

7) Détermination de la section de la canalisation

La section de la canalisation qui va véhiculer le courant d'emploi \mathbf{I}_B doit être choisie de sorte que le courant admissible \mathbf{I}_Z de celle-ci soit supérieur au calibre de l'appareil \mathbf{I}_n qui le protège.

Il convient donc de respecter : $I_B \leq I_n \leq I_Z$

Pour les disjoncteurs réglables, il est conseillé de choisir \mathbf{I}_Z égal ou juste supérieur au calibre \mathbf{I}_n nominal de l'appareil de protection.

Les conséquences d'un réglage thermique ${\bf Ir}$ inadapté ou d'une évolution du courant d'emploi ${\bf I_B}$ seront sans risque.

En cas de protection de la canalisation par coupe-circuit à fusibles il convient d'appliquer un coefficient majorant l'intensité $\mathbf{I}_{\mathbf{Z}}$.

Logigramme de détermination de la section d'une canalisation :

Pour prendre en compte les conditions dans lesquelles est installée la canalisation des facteurs de correction sont appliqués. Ils tiennent compte du mode de pose, du type de câble mono ou multiconducteur, de la nature de l'isolant et de l'âme des conducteurs, du regroupement des circuits, et de la température ambiante.

a) Méthode de référence et facteur de correction lié au mode de pose K1 : Des tableaux permettent de déterminer une lettre de sélection ou méthode de référence correspondant au type de conducteurs utilisés (mono ou multiconducteurs) et un coefficient d'influence K1.

		Câbles et conducteurs	posés à l'a	air libre					
N° mode de pose	Exemple	Description	Méthode de référence	Facteur de correction	Référence des tableaux spécifiques des facteurs liés aux groupements				
			reference	correction	Circuits	Couches	Conduits		
11		Câbles mono ou multiconducteurs, avec ou sans armature, fixés au mur	С	1	T1, D2		•		
11A		Câbles mono ou multiconducteurs, avec ou sans armature, fixés à un plafond	С	0,95	T1, D3				
12		Câbles mono ou multiconducteurs posés sur des chemins de câbles ou tablettes non perforées	С	1	T1, D2	T2			
13		Câbles multiconducteurs sur des chemins de câbles ou tablettes perforées, en parcours horizontal ou vertical	E	1	T1, D4	T2	-		
13A		Câbles monoconducteurs sur des chemins de câbles ou tablettes perforées, en parcours horizontal ou vertical	F	1	T1, D4	T2	-		
14	No.	Câbles multiconducteurs sur des corbeaux sur des chemins de câbles en treillis soudé	E	1	T1, D5	T2			
14A		Câbles monoconducteurs sur des corbeaux sur des chemins de câbles en treillis soudé	F	1	T1, D5	T2			

b) Facteur de correction lié au groupement de circuits K2 :

Ce facteur tient compte de l'influence thermique mutuelle des circuits placés côte à côte. Les câbles sont considérés comme jointifs si la distance les séparant n'excède pas 2 fois le diamètre du plus gros des câbles.

En triphasé, le nombre de circuits à considérer est le nombre total de lignes triphasées placées dans la canalisation.

T1 - Facteurs de correction pour groupement de plusieurs circuits ou plusieurs câbles multiconducteurs													
Disposition de circuits			Norr			urs de s ou de			onduct	eurs			
ou de câbles jointifs ⁽¹⁾	1	2	3	4	5	6	7	8	9	12	16	20	
D1 : Enfermés	1,00	0,80	0,70	0,65	0,60	0,55	0,55	0,50	0,50	0,45	0,40	0,40	
D2 : Simple couche sur les murs ou les planchers ou tablettes perforées	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	Pas d	ie facte	eur	
D3 : Simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64		duction léments	-	
D4 : Simple couche sur des tablettes horizontales perforées ou tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72		plus de		
D5 : Simple couche sur des échelles à câbles, corbeaux, treillis soudés, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78				

c) Facteur de correction lié à la température ambiante K3 :

La température ambiante et la nature de l'isolant ont une influence directe sur le dimensionnement des conducteurs.

La température à prendre en compte est celle de l'air autour des câbles (pose à l'air libre), et celle du sol pour les câbles enterrés.

Les câbles sont tous en polyéthylène réticulé PR. La température ambiante est de 40 °C, donner la valeur du coefficient K3 à partir du tableau T8 ci-dessous.

T8 - Facteurs de correction pour les températures ambiantes dans l'air différentes de 30 °C												
Température	Caoutchouc	Isola	ntion									
ambiante (°C)	Caoutenoue	PVC	PR									
10	1,29	1,22	1,15									
15	1,22	1,17	1,12									
25	1,15	1,12	1,08									
30	1,07	1,06	1,04									
35	0,93	0,94	0,96									
40	0,82	0,87	0,91									
45	0,71	0,79	0,87									
50	0,58	0,71	0,82									
55	-	0,61	0,76									
60	-	0,50	0,71									
65	-	-	0,65									
70	-	-	0,58									
75	-	-	0,50									
80	-	-	0,41									
85	-	-	-									
90	-	-	-									
95	-	-	-									

d) Choix de la section des conducteurs :

Quand tous les facteurs spécifiques de correction sont connus, on calcule le coefficient global K de correction égal au produit de tous les facteurs spécifiques.

On en déduit le courant fictif I'z admissible par la canalisation : $I_Z' = \frac{I_Z}{K}$

La connaissance de I'z permet alors de se reporter aux tableaux de détermination des courants admissibles (ci-après) qui permet de déterminer la section nécessaire (en mm²). La lecture s'effectue dans la colonne qui correspond au type de conducteur et à la ligne de la méthode de référence.

Pour trouver la section il suffit alors de choisir dans le tableau correspondant à la nature de l'âme la valeur de courant admissible immédiatement supérieure à la valeur I'Z.

		Co	urants	admiss	ibles d	ans les	canali	sations	(en A)				
Méthode de référence				ls	solant et	nombre	de con	ducteurs	s chargé	s			
В	PVC 3	PVC 2		PR 3		PR 2							
С		PVC 3		PVC 2	PR 3		PR 2						
D										PVC 3	PVC 2	PR 3	PR 2
E			PVC 3		PVC 2	PR 3		PR 2					
F				PVC 3		PVC 2	PR 3		PR 2				
S (mm²)													
Cuivre													
1,5	15,5	17,5	18,5	19,5	22	23	24	26		26	32	31	37
2,5	21	24	25	27	30	31	33	36		34	42	41	48
4	28	32	34	36	40	42	45	49		44	54	53	63
6	36	41	43	48	51	54	58	63		56	67	66	80
10	50	57	60	63	70	75	80	86		74	90	87	104
16	68	76	80	85	94	100	107	115		96	116	113	136
25	89	96	101	112	119	127	138	149	161	123	148	144	173
35	110	119	126	138	147	158	169	185	200	147	178	174	208
50	134	144	153	168	179	192	207	225	242	174	211	206	247
70	171	184	196	213	229	246	268	289	310	216	261	254	304
95	207	223	238	258	278	298	328	352	377	256	308	301	360
120	239	259	276	299	322	346	382	410	437	290	351	343	410
150		299	319	344	371	395	441	473	504	328	397	387	463
185		341	364	392	424	450	506	542	575	367	445	434	518
240		403	430	461	500	538	599	641	679	424	514	501	598
300		464	497	530	576	621	693	741	783	480	581	565	677
400					656	754	825		940				
500					749	868	946		1083				
630					855	1005	1088		1254				
Aluminium													
2,5	16.5	18,5	19,5	21	23	24	26	28					
4	22	25	26	28	31	32	35	38					
6	28	32	33	36	39	42	45	49					
10	39	44	46	49	54	58	62	67		57	68	67	80
16	53	59	61	66	73	77	84	91		74	88	87	104
25	70	73	78	83	90	97	101	108	121	94	114	111	133
35	86	90	96	103	112	120	126	135	150	114	137	134	160
50	104	110	117	125	136	146	154	164	184	134	161	160	188
70	133	140	150	160	174	187	198	211	237	167	200	197	233
95	161	170	183	195	211	227	241	257	289	197	237	234	275
120	186	197	212	226	245	263	280	300	337	224	270	266	314
150		227	245	261	283	304	324	346	389	254	304	300	359
185		259	280	298	323	347	371	397	447	285	343	337	398
240		305	330	352	382	409	439	470	530	328	396	388	458
300		351	381	406	440	471	508	543	613	371	447	440	520
400					526	600	663		740				
500					610	694	770		856				
630					711	808	899		996				

8) <u>Détermination de la section du neutre</u>

Par principe, le neutre doit avoir la même section que le conducteur de phase dans tous les circuits monophasés.

Dans les circuits triphasés de section supérieure à 16 mm² en cuivre et 25 mm² en aluminium, la section du neutre peut être réduite jusqu'à $S_{ph}/2$.

Toutefois cette réduction n'est pas autorisée si :

- les charges ne sont pas pratiquement équilibrées,
- le taux de courants harmoniques de rang 3 est supérieur à 15% du fondamental.

Si ce taux est supérieur à 33%, la section des conducteurs actifs des câbles multipolaires est choisie en majorant le courant I_B par un coefficient multiplicateur de 1,45. Pour les câbles unipolaires, seule la section du neutre est augmentée.

9) <u>Détermination du conducteur de protection (terre)</u>

Section du conducteur de protection (SPE) en fonction de la section des conducteurs de phase (Sph)

Section des conducteurs de phase S _{Ph}	Section du conducteur de protection SPE
S _{ph} < 16 mm ²	Sph
16 mm ² < S _{ph} ≤ 35 mm ²	16 mm ²
S _{ph} > 35 mm ²	Sph / 2

Pour les matériels présentant des courants de fuite permanents élevés (>10mA), la section Spe du conducteur de protection devra être d'au moins 10 mm² pour le cuivre ou 16 mm² pour l'aluminium, ou bien le double de la section "normale" par la disposition d'un second conducteur parallèle au premier mis en œuvre jusqu'au point de l'installation où la section de 10 mm² (cuivre) ou 16 mm² (alu) est atteinte.

L'utilisation du schéma TN est recommandée en cas de courants de fuites élevés.

10) Vérification de la chute de tension maximale

Si la chute de tension est supérieure aux valeurs limites admises, il y a lieu d'augmenter la section des conducteurs jusqu'à ce que la chute de tension devienne inférieure aux valeurs prescrites.

Lorsque les canalisations principales de l'installation ont une longueur supérieure à 100 m, les valeurs limites admises des chutes de tension peuvent être augmentées de 0,005 % par mètre au-delà de 100 m, sans que ce supplément ne dépasse lui-même 0,5 %.

Cette chute de tension peut-être déterminée par calcul ou directement à l'aide de tableau. Les relations ci-dessous permettent de calculer la chute de tension dans un circuit.

Valeurs limites admises de chutes de tension											
Branchement	Eclairage	Autres usages									
Branchement à basse tension à partir du réseau de distribution public	3 %	5 %									
Branchement par poste de livraison ou poste de transformation à partir d'un réseau haute tension	6 %	8 %									

Ces valeurs de chutes de tension s'appliquent en fonctionnement normal, sans tenir compte d'appareils pouvant générer des courants d'appel importants et des chutes de tension au démarrage (ex. : moteur).

Chutes de tension unitaire (en V) pour 1 A et pour 100 m de conducteur avec λ = 0,08 m Ω /m (câbles multi ou monoconducteurs en trèfle)

	Tripl	nasé Cu 10	0 m	Triph	asé Alu 10	00 m
Section		Cos φ			Cosφ	
	1	0,85	0,35	1	0,85	0,35
1,5	1,533	1,308	0,544	2,467	2,101	0,871
2,5	0,920	0,786	0,329	1,480	1,262	0,525
4	0,575	0,493	0,209	0,925	0,790	0,331
6	0,383	0,330	0,142	0,617	0,528	0,223
10	0,230	0,200	0,088	0,370	0,319	0,137
16	0,144	0,126	0,058	0,231	0,201	0,088
25	0,092	0,082	0,040	0,148	0,130	0,059
35	0,066	0,060	0,030	0,106	0,094	0,044
50	0,046	0,043	0,024	0,074	0,067	0,033
70	0,033	0,032	0,019	0,053	0,049	0,026
95	0,024	0,025	0,016	0,039	0,037	0,021
120	0,019	0,021	0,014	0,031	0,030	0,018
150	0,015	0,017	0,013	0,025	0,025	0,016
185	0,012	0,015	0,012	0,020	0,021	0,014
240	0,010	0,012	0,011	0,015	0,017	0,013
300	0,008	0,011	0,010	0,012	0,015	0,012
400	0,006	0,009	0,010	0,009	0,012	0,011
500	0,005	0,008	0,009	0,007	0,011	0,010
630	0,004	0,007	0,009	0,006	0,009	0,010
2 x 120	0,010	0,010	0,007	0,015	0,015	0,009
2 x 150	0,008	0,009	0,006	0,012	0,013	0,008
2 x 185	0,006	0,007	0,006	0,010	0,011	0,007
2 x 240	0,005	0,006	0,005	0,008	0,009	0,006
3 x 120	0,006	0,007	0,005	0,010	0,010	0,006
3 x 150	0,005	0,006	0,004	0,008	0,008	0,005
3 x 185	0,004	0,005	0,004	0,007	0,007	0,005
3 x 240	0,003	0,004	0,004	0,005	0,006	0,004
4 x 185	0,003	0,004	0,003	0,005	0,005	0,004
4 x 240	0,002	0,003	0,003	0,004	0,004	0,003

11) Calcul des courants de courts circuits

La détermination des valeurs de courant de courts-circuits présumés en tous points d'une installation est essentielle au choix des matériels (Pouvoir de coupure Pdc des dispositifs de protection).

Elle commence par l'estimation de cette valeur à l'origine de l'installation, puis en n'importe quel point selon plusieurs méthodes dont le choix dépend de l'importance de l'installation, des données disponibles, du type de vérification à effectuer...

Le courant de court circuit est donné à l'amont par les données du transformateur choisi :

Transformateurs triphasés immergés dans un diélectrique liquide, conformes à la norme NFC 52-112 Valeurs calculées pour une tension à vide de 420 V

S (kVA)	50	100	160	200	250	315	400	500	630	800	1 000	1 250	1 600	2 000	2 500
In (A)	69	137	220	275	344	433	550	687	866	1100	1 375	1 718	2 200	2 749	3 437
Ucc (%)	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
l _{ccs} (kA)	1,81	3,61	5,78	7,22	9,03	11,37	14,44	18,05	22,75	19,26	24,07	30,09	38,52	48,15	60,18
R_{TR} (m Ω)	43,75	21,9	13,7	10,9	8,75	6,94	5,47	4,38	3,47	4,10	3,28	2,63	2,05	1,64	1,31
X _{TR} (mΩ)	134,1	67	41,9	33,5	26,8	21,28	16,76	13,41	10,64	12,57	10,05	8,04	6,28	5,03	4,02

Courants de court-circuit à l'extrémité d'une canalisation d'après les tableaux C3, guide C 15-105 de juin 2003

CA	section des conducteurs de phase (mm²)		ueur de nètres)		nalisat	ion																	
	cuivre	†																					
230 V	1,5														1,3	1,8	2,6	3,6	5,1	7,3	10,3	15	21
400 V	2,5												1,1	1,5	2,1	3,0	4,3	6,1	8,6	12	17	24	34
	4												1,7	1,9	2,6	3,7	5,3	7,4	10,5	15	21	30	42
	6											1,4	2,0	2,8	4,0	5,6	7,9	11,2	16	22	32	45	63
	10										2,1	3,0	4,3	6,1	8,6	12,1	17	24	34	48	68	97	13
	16								1,7	2,4	3,4	4,8	6,8	9,7	14	19	27	39	55	77	110	155	21
	25						1,3	1,9	2,7	3,8	5,4	7,6	10,7	15	21	30	43	61	86	121	171	242	34
	35						1,9	2,6	3,7	5,3	7,5	10,5	15	21	30	42	60	85	120	170	240	339	47
	50					1,8	2,5	3,6	5,1	7,2	10,2	14	20	29	41	58	81	115	163	230	325	460	
	70					2,6	3,7	5,3	7,5	10,6	15	21	30	42	60	85	120	170	240	339			
	95 →				2,5	3,6	5,1	7,2	10,2	14	20	29	41	58	81	115	163	230	325	460			
	120		1,6	2,3	3,2	4,5	6,4	9,1	13	18	26	36	51	73	103	145	205	291	411				
	150	1,2	1,7	2,5	3,5	4,9	7,0	9,9	14	20	28	39	56	79	112	158	223	316	447				
	185	1,5	2,1	2,9	4,1	5,8	8,2	11,7	16	23	33	47	66	93	132	137	254	373	528				
	240	1,8	2,6	3,6	5,1	7,3	10,3	15	21	29	41	58	82	116	164	232	329	465	658				
	300	2,2	3,1	4,4	6,2	8,7	12,3	17	25	35	49	70	99	140	198	279	395	559					
	2 x 120	2,3	3,2	4,5	6,4	9,1	12,8	18	26	36	51	73	103	145	205	291	411	581					
	2 x 150	2,5	3,5	4,9	7,0	9,9	14,0	20	28	39	56	79	112	158	223	316	447	632					
	2 x 185	2,9	4,1	5,8	8,2	11,7	16,5	23	33	47	66	93	132	187	264	373	528	747					
		<u> </u>								<u> </u>								1	1				
	$ \begin{array}{c} (S) \to (L) \\ \downarrow \\ (arront) \to (aval) \end{array} $	coura	ant de	court-	circuit	au niv	eau co	onside	re (IK a	aval en	i ka)				↓								
	50	47,7	47,7	46,8	45,6	43,9	41,8	39,2	36,0	32,2	28,1	23,8	19,5	15,6	12,1	9,2	6,9	5,1	3,7	2,7	1,9	1,4	1,0
	40	38,5	38,5	37,9	37,1	36,0	34,6	32,8	30,5	27,7	24,6		17,8	14,5		8,8	6,7	5,0	3,6	2,6	1,9	1,4	1,0
	35	33,8	33,8	33,4	32,8	31,9	30,8	29,3	27,5	25,2	22,6	19,7	16,7	13,7	11,0	8,5	6,5	4,9	3,6	2,6	1,9	1,4	1,0
	30	29,1	29,1	28,8	28,3	27,7	26,9	25,7	24,8	22,5	20,4	18,0	15,5	12,9	10,4	8,2	6,3	4,8	3,5	2,6	1,9	1,4	1,0
	25	24,4	24,4	24,2	23,8	23,4	22,8	22,0	20,9	19,6	18,0	16,1	14,0	11,9		7,8	6,1	4,6	3,4	2,5	1,9	1,3	1,0
		-		-			-	-	-			-	-	-		-	-	-	· ·	2,5	<u> </u>		
	20>	19,6	19,6	19,5	19,2	19,0	18,6	18	17,3	16,4	15,2	13,9	12,3	10,6	8,9	7,2	5,7	4,4	3,3	-	1,8	1,3	1,0
	15	14,8	14,8	14,7	14,6	14,4	14,2	13,9	13,4	12,9	12,2	11,3	10,2	9,0	7,7	6,4	5,2	4,1	3,2	2,4	1,8	1,3	0,9
	10	9,9	9,9	9,9	9,8	9,7	9,6	9,5	9,3	9,0	8,6	8,2	7,6	6,9	6,2	5,3	4,4	3,6	2,9	2,2	1,7	1,2	0,9
	7	7,0	7,0	6,9	6,9	6,9	6,8	6,7	6,6	6,5	6,3	6,1	5,7	5,3	4,9	4,3	3,7	3,1	2,5	2,0	1,6	1,2	0,9
	5	5,0	5,0	5,0	5,0	4,9	4,9	4,9	4,8	4,7	4,6	4,5	4,3	4,1	3,8	3,5	3,1	2,7	2,2	1,8	1,4	1,1	0,8
	4	4,0	4,0	4,0	4,0	4,0	3,9	3,9	3,9	3,8	3,8	3,7	3,6	3,4	3,2	3,0	2,7	2,3	2,0	1,7	1,3	1,0	0,8
	3	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	2,9	2,9	2,9	2,8	2,7	2,6	2,5	2,4	2,2	2,0	1,7	1,0	0,8
	2	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	1,9	1,9	1,9	1,8	1,8	1,7	1,6	1,5	1,3	1,2	1,0	0,8	0,7
	1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,9	0,9	0,9	0,8	0,8	0,7	0,7	0,6	0,5
СВ	section des conducteurs de phase (mm²)	longu	eur de	e la ca	nalisat	ion (er	mètre	es)					ı										
00011	aluminium														4.0	4.5	0 -	0.0		7.0	40.7	4-	-
230 V 400 V	2,5													4 -	1,3	1,9	2,7	3,8	5,4	7,6	10,8		22
100 V	4												1,1	1,5	2,2	3,0	4,3	6,1	8,6	12	17	24	34
	6											4 -	1,6	1,7	2,5	3,5	4,9	7,0	9,9	14	20	28	40
	10										0.0	1,5	2,1	2,9	4,1	5,8	8,2	11,6		23	33	47	66
	16										2,2	3,0	4,3	6,1	8,6	12	17	24	34	49	69	98	13
	25								1,7	2,4	3,4	4,8	6,7	9,5	13	19	27	38	54	76	108	152	21
	35							1,7	2,4	3,3	4,7	6,7	9,4	13	19	27	38	53	75	107	151	213	30
	50						1,6	2,3	3,2	4,5	6,4	9,0	13	18	26	36	51	72	102	145	205	290	41
	70						2,4	3,3	4,7	6,7	9,4	13	19	27	38	53	75	107	151	213	302	427	
	95					2,3	3,2	4,5	6,4	9,0	13	18	26	36	51	72	102	145	205	290	410		
	120					2,9	4,0	5,7	8,1	11,4	16	23	32	46	65	91	129	183	259	366			
	150					3,1	4,4	6,2	8,8	12	18	25	35	50	70	99	141	199	281	398			
	185				2,6	3,7	5,2	7,3	10,4	15	21	29	42	59	83	117	166	235	332	470			
	240		1,6	2,3	3,2	4,5	6,5	9,1	13	18	26	37	52	73	103	146	207	293	414				
	1	1,4	1,9	2,7	3,9	5,5	7,8	11,0	16	22	31	44	62	88	124	176	249	352	497				
	300			_			0.4	11,4	16	23	32	46	65	91	129	183	259	366	517				
	300 2 x 120	1,4	2,0	2,9	4,0	5,7	8,1	11,4	1.0	20	UZ	170	00								1		
		1,4 1,6	2,0 2,2	2,9 3,1	4,0 4,4	5,7 6,2	8,8	12	18	25	35	50	70	99	141	199	281	398					
	2 x 120	_	_	_	_		-	_			_			_	_								

Il faudra choisir correctement les disjoncteurs en fonction des critères ci-dessous :

Courant assigné des disjoncteur type C (en ampères | 16 | 20 | 25 | 32 | 40 | 50 | 63 |

13 16

conducteurs (mm²)

93

Disjoncteurs courbe type C

76 119 166 225

185 259 351 119

150 235 329 446

190 296 415 583

370

379 593 830

593 926

948

2 3 2 2 2

24 36 59 95 148 207 281

4 8 2 2

30 4 4

29 89 148

30

86 38

111 296 880 880

178 474

148 222 370

182 274 456 729

148 237 356 593

148 247 395 593 988

2,5

95 142 237

119

17.5/23 53/65 172 229 336 472 9 30/41 86/95 155 220 289 441 125 283 128 90/118 8 14/17 168 257 367 24/32 55/70 8 8/11 130 336 TABLEAUX DES LONGUEURS MAXIMALES PROTEGEES CONTRE LES CC (CIRCUIT PROTEGE PAR DES FUSIBLES)

Fusibles am Fusibles am Fusibles gI (gG) 94/113 46/58 13/20 63 283 25/33 67/84 139 106/119 41/51 185 275 67/84 139 110/122 22 40/59 183 20 134 16 99/113 15/19 80/92 130 174 257 257 200 160 27/32 59/67 113 14/20 40/47 83/97 147 26/31 57/69 120 185 262 001 37/42 80/94 8 18/23 151 231 55/64 28/33 189 63 Fusibles aM 42/48 79/89 147 236 20 105/117 26/32 28/68 181 40/49 118 84/95 139 89/88 22 84/94 223 116 273 conducteurs (mm²)

2,5

8 | 120 | 12

Lorsque 2 valeurs sont indiquées pour une même section et un même courant assigné, la 1 acconcerne les conducteurs isolés au PCV, la 2 ams concerne les conducteurs isolés au PR ou EPR

TABLEAUX DES LONGUEURS MAXIMALES PROTEGEES CONTRE LES CC (CIRCUIT PROTEGE PAR DES DISJONCTEURS)

Disjoncteurs courbe type B Disjoncteurs courbe type B Disjoncteurs courbe type B

Disjoncteurs d'usage général

TABLEAU IIX

e	SC	:i-	de	255	30	uS	:								
		12500						9	10	14	19	29	37	47	61
		10000						8	12	17	24	35	47	59	64
		8000					9	10	15	21	59	43	59	74	80
		6300					8	12	20	27	37	55	74	94	102
		2000				9	10	18	56	34	47	69	94	118	129
		4000				7	12	20	31	43	69	98	117	148	151
		3200			9	8	15	25	38	54	73	108	146	185	201
		2500			8	12	20	31	46	69	94	138	188	237	257
		2000		9	10	15	24	39	62	88	117	173	234	596	322
	(1600		7	12	18	31	49	11	108	146	216	293	370	403
	Courant de fonctionnement instantané Im (en ampères)	1250	8	10	16	24	38	63	66	138	187	276	375	474	
	I _m (en a	1120	9	11	17	26	44	20	110	154	209	308	469		
	stantané	1000	4	12	20	30	49	62	123	173	235	345	469		
	ment in	875	8	14	22	34	99	06	141	197	268	385			
	tionne	800	6	16	56	37	19	86	154	215	293	432			
•	de fonc	200	11	18	28	42	20	113	178	247	335	464			
	ourant	630	11	61	31	47	8/	125	961	274	372				
	O	560	13	22	35	53	98	141	220	308	419				
		200	51	22	68	6\$	66	158	247	345	470				
		400	81	31	64	74	123	261	308	432					
		320	23	38	82	92	154	247	386						
		250	30	46	62	118	161	316	464						
		200	37	62	66	148	247	395							
		160	94	11	123	185	308	494							
		125	6\$	66	158	237	395								
		100	74	123	161	967	493								
		80	65	164	313 246	370									
		09	117	195		470									
		20	148	246	394										
	Section nominale des	conducteurs (mm²)	1,5	2,5	4	9	01	91	25	35	20	02	56	120	185

12) Notion de sélectivité pour les choix des disjoncteurs :

Dans une distribution radiale (comme le schéma ci-dessous), l'objectif de la sélectivité est de déconnecter du réseau le récepteur ou le départ en défaut (ici, par le disjoncteur D2), et seulement celui-ci, en maintenant sous tension la plus grande partie possible de l'installation :

Elle permet ainsi d'allier sécurité et continuité de service, et facilite la localisation du défaut.

La sélectivité est dite totale si elle est garantie quelle que soit la valeur du courant de défaut, jusqu'à la valeur maximale disponible dans l'installation.

Elle est dite partielle dans le cas contraire.

Les défauts rencontrés dans une installation sont de différents types :

- surcharge,
- court-circuit

Mais aussi :

- fuite de courant à la terre,
- creux ou absence momentanée de tension.

5 : sélectivité chronométrique.

Courbes B, C, D de disjoncteur (références données de la marque « HAGER ») :

Courbe "B"

NF EN 60898-1

disj.: NEN, MH, MHN, HMB, NQN

Courbe "C" NF EN 60898-1

disj.: MFN, MFS, MHN, MJN, NFN, NKN, HMC

disj. diff.: ACC, ADC, ADH, AFC, AFH

Courbe "D"

disjoncteurs: NGN, HMD

Choix possible des disjoncteurs DPX 125, 160 + DX

Réf. Version fixe Thermique réglable de 0,7 à 1 In et plombable Magnétique fixe réglé en usine DPX 125 - 16 kA Pouvoir de coupure lcu 16 kA (400 V√) 250 25 250 26 250 27 250 28 250 29 250 17 250 18 250 19 250 20 25 A 40 A 63 A 100 A 125 A 3P+N/2 ln 250 23 125 A DPX 125 - 25 kA Pouvoir de coupure lcu 25 kA (400 V √) 4P In 250 37 250 38 250 39 250 40 250 45 250 46 250 47 250 48 25 A 40 A 63 A 100 A 250 41 250 49 125 A 3P+N/2 ln 250 42 250 43 100 A 125 A DPX 125 - 36 kA Pouvoir de coupure lcu 36 kA (400 V√) 3P 4P In 250 50 250 51 250 52 250 53 250 54 250 58 250 59 16 A 25 A

40 A 63 A 100 A 125 A

Version fixe Réf.

Thermique réglable de 0,64 à 1 In et plombable

Pouvoir de coupure lcu 25 kA (400 V√)

Magnétique fixe réglé en usine

DPX 160 - 25 kA

ЗР 4P 251 23 251 24 251 31 251 32 251 33 63 A 100 A 160 A

3P+N/2 251 27

ЗΡ

In 160 A

DPX 160 - 50 kA

Pouvoir de coupure lcu 50 kA (400 V√) In

251 69 251 70 251 71 251 72 251 73 25 A 40 A 63 A 100 A

3P+N/2 251 67 160 A In 160 A

JMV-2019 21

EXEMPLE

Au départ d'un TGBT*, les calculs de l'installation imposent d'avoir un disjoncteur boîtier moulé 250 A. Les DX (10 kA) 40 A en aval, auront, en association avec le DPX 250 ER (25 kA) de tête, un pouvoir de coupure de 25 kA.

* TGBT : Tableau Général Basse Tension

Association ou coordination des disjoncteurs DPX En réseau triphasé (+ N) 400/415 V selon IEC 60947-2

	1	Disjoncte		nt		Courbe D								
			(-h 000	DX-D		(-L	DPX	125	DPX	160	DPX 2	50 ER		
			IZ,5 KA		25 à 12,5 kA courbe C			- 50 kA be C	25 kA	36 kA	25 kA	50 kA	25 kA	50 kA
		6 à 32 A	40 à 125 A	10 à 32 A	10 à 32 A	40 à 63 A	16 à 125 A	16 à 125 A	25 à 160 A	25 à 160 A	100 à 250 A	100 à 250 A		
	2 à 20 A	25	12,5	25	50	25	25	25	25	25	25	25		
DX	25 A	25	12,5	25	50	25	25	25	25	25	25	25		
6 000 - 10 kA	32 A		12,5			25	25	25	25	25	25	25		
courbes B	40 A		12,5			25	25	25	25	25	25	25		
et C	50 A						25	25	20	20	20	20		
	63 A						25	25	15	15	15	15		
	1 à 20 A			25	50	25	25	25	25	25	25	25		
DX-h	25 A			25	50	25	25	25	25	25	25	25		
10 000	32 A					25	25	25	25	25	25	25		
25 à 12,5 kA	40 A					25	25	25	25	25	25	25		
courbes B, C	50 A					25	25	25	20	20	20	20		
DX-D - 15 kA	63 A						25	25	15	15	15	15		
	A 08						20	20	20	20	20	20		
DX-MA	100 A						20	20	20	20	20	20		
	125 A								15	15	15	15		
DX-D - 25 kA	10 à 32 A				25	25	25	25	25	25	25	25		
DX-L														
50 kA	10 à 63 A				50	50				50		50		
courbe C														
DPX 125	16 à 125 A							36		50		50		
DPX 160	25 à 160 A									50		50		
DPX 250 ER	100 à 250 A													
DPX 250	40 à 250 A													
DPX 630	320 à 630 A													
DPX 1 600	630 à 1 250 A													

(1) Attention : le calibre et le seuil magnétique du disjoncteur amont doivent être supérieurs au calibre et seuil magnétique du disjoncteur aval

13) Disjoncteurs différentiels

Si une installation monophasée ou triphasée, présente un défaut d'isolement, par exemple un récepteur dont la masse est reliée à la terre, le courant qui entre dans le récepteur I est différent du courant qui en ressort I-If. (If courant de fuite à la terre) :

Si, du fait de la résistance de contact, le défaut n'est pas franc, les systèmes de protection contre les surintensités, les surtensions, les baisses de tension ne fonctionnent pas, il y a risque d'électrocution par contact indirect.

Principe de fonctionnement du dispositif différentiel :

Pour fonctionner, le différentiel est principalement constitué de deux composants indispensables :

- un tore magnétique
- un relais sensible

Ce dispositif mesure en permanence la différence entre la valeur du courant entrant et la valeur du courant sortant.

Le tore magnétique fonctionne comme un transformateur. Le primaire mesure les courants entrants et sortants du circuit à surveiller, le secondaire alimente le relais sensible.

En l'absence de défaut (rupture d'isolant), nous aurons :

$$I_1 = I_2$$

En présence de défaut, la somme des courants n'est pas nulle et se traduit par un courant différentiel.

$$I_1 \neq I_2$$
 avec $I_1 > I_2$. $I_1 - I_2 = I_f$
(If: courant de défaut)

Dès que cet écart atteint la sensibilité du différentiel (I_{Δ}), le relais sensible commande l'ouverture des contacts principaux du dispositif de coupure associé (interrupteur ou disjoncteur).

 $\frac{I_{\Delta n}}{2} \leqslant I_{\Delta} \leqslant I_{\Delta n}$ soit pour un 30 mA déclenchement possible de 15 mA à 30 mA $(I_{\Delta n} = t I_{\Delta n})$

La valeur du courant entrant (phase) est différente de la valeur du courant sortant (neutre). Le courant différentiel provoque un flux magnétique dans le tore K1, lequel génère un courant qui va agir sur le relais sensible K2, et faire déclencher la mécanique du dispositif différentiel.

 $I_f \neq 0 \text{ donc}$:

l₁ > l₂

Ф1 > Ф2

Les contacts s'ouvrent, l'équipement est mis automatiquement hors tension.

JMV-2019

Structure interne d'un disjoncteur différentiel Uni + Neutre et tétrapolaire :

Disjoncteur Uni + Neutre

Disjoncteur tétrapolaire

- 1. Contacts de puissance
- 2. Accrochage mécanique ou serrure
- 3. Élément de réarmement
- 4. Tore magnétique
- 5. Bobinages principaux
- * N'existe pas sur l'interrupteur différentiel

- 6. Bobine de détection
- 7. Relais sensible de détection
- 8. Détection thermique* et magnétique*
- 9. Bouton et résistance de test

Les repères sont les mêmes que pour le disjoncteur monophasé.

En l'absence de défaut, nous aurons :

$$I_1 + I_2 + I_3 + I_n = 0$$

Le flux dans le tore magnétique sera donc nul.

Il n'y aura donc pas de courant induit dans la bobine de détection.

En présence d'un défaut, nous aurons :

$$\overrightarrow{l_1 + l_2 + l_3 + l_n} \neq 0$$

Le flux dans le tore sera différent de zéro, un courant sera donc induit dans la bobine de détection et celle-ci provoquera le déclenchement du disjoncteur.

En outre, les disjoncteurs et interrupteurs différentiels disposent d'un bouton de test à manœuvrer périodiquement pour vérifier le bon fonctionnement de l'appareil.

Le bouton de test permet une vérification périodique du bon fonctionnement des différentiels. Ce circuit met le dispositif en déséquilibre provoquant ainsi son déclenchement.

Les types de "différentiel" :

Type AC - Applications courantes :

Les différentiels type AC détectent les courants résiduels alternatifs. Dans la majorité des cas (applications courantes), ils sont utilisés en détection sur courant alternatif 50/60 Hz.

Type A - Applications spécifiques :

Les différentiels type A, en plus des caractéristiques des types AC, détectent aussi les courants résiduels à composante continue. Utilisés chaque fois que des courants de défauts ne sont pas sinusoïdaux.

Ils sont particulièrement adaptés aux applications des lignes dédiées :

- Dans les locaux d'habitation, sur les circuits spécialisés cuisinière ou plaque de cuisson, circuits spécialisés lave-linge.
- Dans les autres installations, sur les circuits où des matériels de classe 1 sont susceptibles de produire des courants de défauts à composante continue, variateurs de vitesse avec convertisseur de fréquence...

Type Hpi - Applications spéciales

Les différentiels type Hpi, comportant une immunisation complémentaire aux déclenchements intempestifs nettement supérieure au niveau exigé par la norme, détectent les courants résiduels à composante alternative et continue (type A). Ils fonctionnent de -25°C à + 40°C et s'utilisent dans les cas spéciaux suivants :

- Perte d'information préjudiciable : comme les lignes d'alimentation de matériel informatique (banque, instrumentation de base militaire, centre de réservation aérien...),
- Perte d'exploitation préjudiciable (machines automatisées, instrumentation médicale, ligne congélateur...),
- · Lieux où le risque de foudre est élevé,
- · Sites avec des lignes très perturbées (utilisation des fluo...),
- · Sites avec de grandes longueurs de lignes.

ATTENTION

La fonction différentielle Haute Sensibilité (HS) permet une protection en cas de défaillance de la protection de base. Ce moyen n'est pas reconnu à lui seul comme suffisant d'autant qu'il ne protège pas contre les contacts directs (Ph/Ph) ou (Ph/N) mais assure la protection contre les contacts (Ph/Terre).

Courbes de fonctionnement différentiels

SANS TERRE OU TERRE DÉCONNECTÉE

Le différentiel ne détectera pas de différence entre le courant entrant et le courant sortant de l'installation. La masse métallique sera portée au potentiel de 230 V.

Si une personne touche à la carcasse, cette personne sera soumise à une tension de 230 V...! Dans ce cas, le différentiel 300 mA ne sert à rien. Seul le différentiel 30 mA peut sauver l'utilisateur, mais n'empêchera pas le choc électrique.

MAUVAISE TERRE

La résistance de terre étant trop élevée, le courant de fuite sera inférieur au courant de déclenchement du différentiel, 300 ou 500 mA. Le différentiel ne déclenche pas et ne sert donc à rien. La masse sera portée à un potentiel dangereux. Cette mauvaise terre peut aussi être dûe à un desserrage ou mauvais serrage des cosses de terre. Dans ce cas, seul un différentiel 30 mA peut empêcher le choc électrique.

TERRE ADAPTÉE

Le courant de défaut étant supérieur au calibre du différentiel, celui-ci ouvrira ses contacts et mettra ainsi l'installation hors tension.

La protection remplira donc son rôle avant qu'une personne entre en contact avec la masse métallique.

NOTA - Si vous constatez qu'une protection différentielle a déclenché, il ne faut surtout pas chercher à tout prix à remettre l'équipement sous tension.

Il faudra détecter et éliminer le défaut en premier lieu.

IMPORTANT - Chaque fois que les prises de terre sont mauvaises ou aléatoires, utiliser de préférence des différentiels 30 mA au lieu de 300 mA pour la protection contre les contacts indirects.

Depuis 2003, la **norme NF** *C* **15-100** impose l'utilisation du différentiel type *A* car certains matériels de type lave-linge, plaques à induction intègrent des composants électroniques (pour la variation de vitesse ou l'induction) susceptibles de créer des défauts de type "composante continue" que le type *A* va détecter en plus des défauts à composante alternative. Les circuits spécialisés cuisinière/plaque de cuisson et lave-linge seront obligatoirement protégés par l'inter différentiel de type *A*.

Comment choisir une protection différentielle?

La norme NF C 15-100 impose l'utilisation d'une protection différentielle de sensibilité inférieure ou égale à 30 mA dans des cas tels que :

- Prises de courant jusqu'à 32 A,
- Prises de terre de valeurs trop élevées (sol sablonneux ou granitique...),
- Exploitations agricoles,
- Appareils utilisés sur la voie publique (rôtisseries, machines à glace...),
- Laboratoires et salles techniques des établissements scolaires,
- Chantiers,
- Stands for ains.
- Terrains de camping et de caravaning,
- Quais des ports de plaisance,
- Locaux où le risque de coupure du conducteur de protection existe,
- Salles d'eau (tous les circuits),
- Éclairages extérieurs (jardins),
- Piscines, bassins et fontaines,
- Sanitaires des immeubles collectifs (prises de courant des salles de lavabos),
- Cabines téléphoniques et abris-bus,
- Câbles chauffants sans armure métallique et noyés dans le sol,
- Locaux à risque d'explosion,
- Groupes électrogènes,
- Tous les circuits des installations électriques,

Dans le cas des locaux comportant un risque d'incendie, la protection sera assurée par un dispositif différentiel de sensibilité 300 mA (station service, stockage de produits inflammables...).

Cas particulier de la continuité de service :

Dans certains locaux sans personnel où une attention particulière est requise pour la continuité de service, les déclenchements intempestifs de disjoncteurs ne sont pas admissibles (locaux isolés de relais téléphonique/ TV ou radios, stations de pompage...). L'association d'un disjoncteur différentiel Hpi, avec commande motorisée et un réenclencheur, permet d'obtenir une continuité de service optimum. Ce type d'installation est interdit dans le domestique et les FRP

Existe-il une réglementation particulière dans les locaux d'habitation?

- Les locaux d'habitation doivent être équipés en tête de distribution d'un différentiel de sensibilité au plus égal à 500 mA (type 5).
- Toutes les prises de courant doivent être équipées de conducteur de protection et être à éclipse.
- Tous les circuits (éclairage, prises de courant, etc...) doivent être équipés d'un conducteur de protection.
- Tous les circuits doivent être protégés en amont par un dispositif différentiel de sensibilité inférieure ou égale à 30 mA.

Dans les salles d'eau, la réglementation prévoit 4 volumes distincts qui sont définis par rapport à la position de la baignoire ou du bac à douche.

Volume 0 : volume intérieur de la baignoire ou du bac à douche.

Volume 1: volume délimité par les plans verticaux de la baignoire ou du bac à douche, d'une hauteur de 2,25 m à partir du fond de la baignoire ou du bac à douche.

Volume 2 : volume au dessus du volume 1 jusqu'à 3 m et situé à 0,6 m des bords extérieurs de la baignoire ou du bac à douche, sur une hauteur de 3 m.

Volume 3 : volume situé entre 0,6 m et 3 m des bords extérieurs de la baignoire ou du bac à douche, sur une hauteur de 2,25 m.

Matériel électrique	dans les locaux conte	nant une ba	ignoire ou u	ine douche	
Vol	ımes	0	1	2	3
Indices de prote	ction contre l'eau	IP X7	IP X4	IP X3	IP X1
Désignation	Mesures de protection contre les chocs électriques				
Chauffe-eau électrique à accumulation	Classe I	NON	OUI si horizontal	OUI	OUI
Autres chauffe-eau électriques	Classe I + Diff. 30 mA	NON	OUI	OUI	OUI
	TBTS* 12 V	OUI	OUI	OUI	OUI
Éclairage, chauffage	TBTS* 50 V	NON	NON	NON	OUI
et autres appareils	Classe II + Diff. 30 mA	NON	NON	OUI	OUI
	Classe II + Diff. 30 mA (ou TRS)	NON	NON	NON	OUI
Interruptour	TBTS* 12 V	0	OUI	OUI	OUI
interrupteur	TBTS* 50 V/230 V	0	NON	NON	OUI
Boîte de raccordement sauf chauffe-eau		0	OUI	OUI	OUI
Boîte de dérivation		0	NON	NON	OUI
Prise rasoir 20 à 50 VA	TRS* incorporé	0	NON	OUI	OUI
Prise 16 A 2P + T	Diff. 30 mA	0	NON	NON	OUI
Transformateur de sécurité ou de séparation		•	NON	NON	OUI
	Indices de prote Désignation Chauffe-eau électrique à accumulation Autres chauffe-eau électriques Éclairage, chauffage et autres appareils Interrupteur Boîte de raccordement sauf chauffe-eau Boîte de dérivation Prise rasoir 20 à 50 VA Prise 16 A 2P + T Transformateur de	Indices de protection contre l'eau Désignation Mesures de protection contre les chocs électriques Chauffe-eau électrique à accumulation Autres chauffe-eau électriques Classe I + Diff. 30 mA TBTS* 12 V Eclairage, chauffage et autres appareils Classe II + Diff. 30 mA Classe II + Diff. 30 mA Classe II + Diff. 30 mA TBTS* 12 V TBTS* 12 V TBTS* 50 V/230 V Boîte de raccordement sauf chauffe-eau Boîte de dérivation Prise rasoir 20 à 50 VA TRS* incorporé Prise 16 A 2P + T Diff. 30 mA Transformateur de sécurité ou de séparation	Indices de protection contre l'eau IP X7	Non	Indices de protection contre l'eau IP X7 IP X4 IP X3

^{*} TBTS : très basse tension de sécurité * TRS : transfo de séparation de circuit

JMV-2019 32

Rappel des principales indications portées sur les appareils

Classe

Appareils ayant au moins une isolation principale et un dispositif permettant de relier ses parties métalliques à la terre 🔔

Classe II

Symbole 🔲 Appareils à double isolation renforcée ne disposant donc pas de dispositif de mise à la terre.

Appareils protégés contre les chutes verticales de gouttes d'eau (condensation).

Appareils protégés contre l'eau en pluie jusqu'à 60° de la verticale.

Appareils protégés contre les projections d'eau de toutes directions.

Liaison équipotentielle dans la salle d'eau

Les éléments conducteurs de la salle d'eau doivent être reliés entre eux par une liaison équipotentielle (conducteur rigide de 2,5 mm²).

Les masses métalliques et les contacts de terre des prises de courant doivent être reliés au conducteur de protection (terre).

EXEMPLE

Corps métalliques des appareils électro-domestiques tels que machine à laver, chauffe-eau, radiateur électrique, etc...

La liaison équipotentielle sera raccordée à la terre. Cette liaison sera soit apparente soit encastrée mais en aucun cas ne pourra être faite par un conducteur nu ou isolé et noyé directement dans les parois.

EXEMPLE

Canalisations métalliques d'eau, de chauffage, de gaz, de vidange. Le corps des appareils sanitaires métalliques, les huisseries métalliques, etc...

Qu'est-ce qu'un interrupteur différentiel ?

C'est un appareil ayant deux fonctions indépendantes regroupées dans un même boîtier :

- une fonction interrupteur,
- une fonction différentielle B utilisant l'interrupteur comme organe de coupure automatique.

Qu'est-ce qu'un disjoncteur différentiel?

C'est un appareil ayant deux fonctions dépendantes regroupées dans un même boîtier :

- une fonction disjoncteur,
- une fonction différentielle B utilisant les contacts du disjoncteur comme organe de coupure automatique.

Pourquoi choisir un disjoncteur ou un interrupteur différentiel?

L'interrupteur différentiel s'utilise lorsqu'il n'y a pas besoin d'assurer la protection surcharge et court-circuit, ces protections étant déjà assurées en amont ou en aval par fusible et/ou disjoncteur. Lorsque ces protections ne sont pas assurées, le disjoncteur différentiel s'impose.

Qu'appelle-t-on sensibilité d'un dispositif différentiel?

On appelle sensibilité d'un dispositif différentiel la valeur du courant de défaut dit "courant résiduel de défaut" pour lequel le dispositif s'ouvrira obligatoirement.

EXEMPLE

30 mA ou 300 mA ou 500 mA sont des valeurs normalisées

En combien de temps un différentiel déclenche-t-il ?

(voir les coubes de fonctionnement p. 43)

Lorsqu'il détecte un défaut, un différentiel normal ouvre le circuit dans un temps généralement inférieur à 50 ms. Ce temps est indépendant de la sensibilité de l'appareil et de la valeur du courant de défaut.

Peut-on réaliser une sélectivité entre deux différentiels ?

Un différentiel ayant généralement un temps de déclenchement quasiment constant pour tout défaut supérieur à sa sensibilité, il n'est pas possible d'obtenir une sélectivité entre deux appareils même s'ils sont de sensibilités différentes.

Les deux différentiels déclenchent, mettant ainsi "hors tension" l'ensemble de l'installation!

Cependant, il y a sélectivité dans deux cas :

• Si le défaut a une valeur comprise entre les deux plages de déclenchement des protections n° I et II (ce cas reste relativement rare et très aléatoire).

- Si par un artifice interne, la détection du différentiel n°l est légèrement retardée (≥ 50 ms en général : différentiel retardé ou de type S). Dans ce cas, qu'elle que soit la valeur du défaut, seul l'appareil n°ll s'ouvrira car :
- la sensibilité amont (300 mA) est trois fois supérieure à la sensibilité aval (30 mA),
- le temps de déclenchemlent amont (environ 80 ms, selon la valeur du courant de défaut) est très supérieur au temps de déclenchement aval (instantané : environ 20 ms).

Quels sont les éléments à relier à la terre ?

La NF C 15-100 impose un conducteur de protection (PE - conducteur vert/jaune) sur tous les circuits. Doivent être reliés à la terre :

- les structures métalliques des bâtiments : huisseries, charpentes métalliques, conduites d'eau métalliques, etc...
- les éléments métalliques des salles d'eau, des piscines et en règle générale les éléments métalliques de tous les équipements situés à l'extérieur ou directement en contact avec un liquide conducteur.
 Ne pas raccorder ces masses à la terre est aussi dangereux que l'absence de terre. Cela rend le différentiel inefficace.

Comment est réalisée une prise de terre ?

La résistance d'une prise de terre dépend :

- de la nature (plus ou moins conductrice) du sol, du taux d'humidité et de la température. Une prise de terre réalisée dans un sol argileux et humide sera de plus faible valeur ohmique que celle placée dans un sol sablonneux et sec
- de ses dimensions et de sa forme. Une prise de terre réalisée en boucle à fond de fouille (câble ceinturant les fondations d'un bâtiment) aura une meilleure valeur qu'un simple piquet enfoncé dans le sol.

REMARQUE

Il est interdit d'utiliser comme prise de terre des canalisations de gaz, de vidanges, de chauffage central et d'eau (qui pourraient être interrompue lors des travaux de remplacement de ces canalisations par PVC par exemple). Mais il est important de mettre ces canalisations métalliques à la terre.

Prise de terre réalisée à fond de fouille

Conducteur en tranchée

Quelles sont les valeurs limites de la résistance de terre ?

Pour calculer la résistance maxi que devra avoir une prise de terre pour assurer la sécurité, il faudra fixer deux éléments :

• la tension limite admissible sur la masse en défaut : UL.

• la valeur du courant de fuite qui circulera en cas de défaut à la terre.

Cette valeur sera limitée par la sensibilité du dispositif différentiel :

Ex : $I_{\Delta} = 500 \text{ mA}$

on aura: Rt = $\frac{UL}{Id}$ = 100 ohms

I∆ : Sensibilité du différentiel
 Rt : Résistance de la prise de terre

Le cas étudié ci-dessus est celui des locaux d'habitation.

REMARQUE

Pour que le dispositif différentiel remplisse sa fonction, il faudra donc que la résistance de terre Rt soit inférieure à 100 ohms.

Le tableau ci-dessous donne la valeur maximum de la résistance de terre en fonction de la sensibilité du disjoncteur employé et de la tension maxi tolérable sur la masse en défaut (50 V).

I∆ (mA)	Rt (ohm) < à
10	5 000
30	1 660
300	166
500	100
650	77

 $I\Delta$: Sensibilité du différentiel Rt : Résistance de la prise de terre