

Evaluación Parcial Nº1

Sigla	Nombre Asignatura	Tiempo Asignado	% Ponderación
FPY1101	Fundamentos de Programación	3h	30%

1. Situación evaluativa

x Ejecución práctica

2. Agente evaluativo

3. Tabla de Especificaciones

Resultado de Aprendizaje	Indicador de Logro (IL)	Indicador de Evaluación (IE)	Ponderación Indicador Logro	Ponderación Indicador de Evaluación ¹
RA1 Construye	IL 1.2 Identifica un algoritmo considerando las entradas, procesos y salidas para dar solución a un problema planteado, considerando aspectos éticos en el algoritmo.	IE 1.2.1 Identifica un algoritmo considerando las entradas, procesos y salidas para dar solución a un problema planteado, considerando aspectos éticos en elalgoritmo.	10%	10%
algoritmos, utilizando estrategias de abstracción por medio de pseudocódigos, para dar solución ala	IL 1.3 Utiliza expresiones aritméticas, variables de control, asignación de resultados de expresiones relacionales y lógicas para desarrollar un algoritmo y posterior pseudocódigo.	IE 1.3.1 Declara las variables necesarias para asignar los resultados de expresiones aritméticas o lógicas según el caso planteado	30%	10%
problemática planteada en el contexto de negocio		IE 1.3.2 Utiliza expresiones aritméticas para realizar cálculos o mantener estados del algoritmo		20%
y considerando aspectos éticos enel algoritmo.	IL 1.4 Identifica la funcionalidad de las estructuras condicionales para el desarrollo de un algoritmo en pseudocódigo.	IE 1.4.1 Utiliza las estructuras condicionales necesarias dentro dela estructura del código para dar solución al problema planteado		20%
		IE 1.4.2 Utiliza expresiones lógicas dentro de la estructura condicionalque permita condicionar el flujo del programa.	30%	10%

¹ La ponderación del Indicador de Logro, debe ser distribuida como puntaje entre las preguntas que lo conformen.

IL 1.5 Identifica la de las estructuras d para el desarrollo d	e repetición estructura del código para dar	2007	10%
en pseudocódigo.	IE 1.5.2 Utiliza expresiones lógicas dentro de la estructura de repetición para permitir su iteración adecuada según el caso planteado	20%	10%
IL 1.6 Representa a través de diagrama pseudocódigo, para resultado según el requerimiento.	s de flujo y través de diagramas de flujo y	10%	10%
Total			100%

4. Instrucciones generales para el/la estudiante

Esta es una evaluación que corresponde a una prueba de ejecución práctica y tiene un 30% de ponderación sobre la nota final dela asignatura.

El tiempo para desarrollar esta evaluación es de 180 minutos y se realiza de manera individual en laboratorio.La

evaluación consiste en:

- Desarrollo de algoritmos considerando las estructuras de programación revisadas en clase a través de pseudocódigo odiagrama de flujo
- Uso de estructuras de entrada y salida
- Uso de variables
- Uso de estructuras condicionales
- Uso de estructuras de repetición

5. Evaluación

ENUNCIADO

La empresa de merchandising "*PlasTic*" necesita llevar un registro claro de los productos, cantidades y totales de ventas que van registrando día a día. Los productos que ofrece son:

Se dispone de precios especiales para los clientes que sean socios de *PlasTic*

Producto	Valor General	Valor Socio
1 Tazón	\$ 800	\$ 500
2 Llavero	\$ 500	\$ 300
3 Polera estampada	\$ 5.000	\$ 3.000

Descuento:

20% **Solo si** paga en efectivo

OBS1: Solo se puede acceder al descuento si se cancela en efectivo

OBS2: Solo se puede seleccionar 1 solo tipo de producto, pero se debe ingresar la cantidad de este

- 1. Desarrolle un algoritmo que sea app. Cíclica la cual permita calcular el total a pagar para un cliente que compra X productos (ver tabla productos y valores)
- 2. Imprima un ticket de venta, con la siguiente información:

Ejemplo de ticket para la venta de 20 Tazones para un cliente socio el cual paga en efectivo.

----- TICKET COMPRA -----

Producto: Tazón

Cantidad de entradas: 20 Tipo cliente: Socio

Subtotal \$ 10000

Descuento pago efectivo 20% \$2000

Total pagar \$ 8000

Se pide que desarrolle un algoritmo en PSeInt que permita realizar la venta y ver estadísticas básicas. Por lo tanto, el menú principal de la app debe tener las siguientes opciones:

Menú

- 1.- Venta de productos
- 2.- Ver estadísticas
- 3.- Salir

