D&P Exercise V.1.7b

Peter Mao

April 1, 2021

Abstract

In Lemma V.1.08 (p 104), D&P show that for simple tensors in $X^* \otimes X$,

$$\hat{\boldsymbol{f}}(\boldsymbol{g}\otimes\boldsymbol{x}_2)=0\Longrightarrow \boldsymbol{g}\otimes\boldsymbol{x}_2=\boldsymbol{0}.$$

In order to show that \hat{f} is injective, we need to show that this inference holds for composite tensors, not just simple tensors.

Show that any finite sum

$$oldsymbol{t} = \sum_{i=1}^n oldsymbol{g}^i \otimes oldsymbol{x}_i$$

can be written in a form in which all the x_i 's are linearly independent and infer that $\hat{f}(t) = 0 \Longrightarrow t = 0$.

Proof. Suppose that in the list of n simple tensors, d of them are linearly independent. Certainly $d \leq \dim X$, and if d = n, then we are done. For d < n, arrange and label the x_i 's such that $\{x_i \mid i = 1 \dots d\}$ are linearly independent. Then each vector in $\{x_j \mid j = d+1 \dots n\}$ is a linear combination of the vectors in $\{x_i \mid i = 1 \dots d\}$:

$$x_j = \sum_{i=1}^d a_j^i x_i \qquad \text{for } d < j \le n.$$
 (1)

In terms of $\{x_i \mid i = 1 \dots d\}$ we rewrite t as:

$$t = \sum_{i=1}^{d} g^{i} \otimes x_{i} + \sum_{j=d+1}^{n} g^{j} \otimes x_{j} \qquad \text{(finite sum with d linearly independent x's)}$$

$$= \sum_{i=1}^{d} g^{i} \otimes x_{i} + \sum_{j=d+1}^{n} g^{j} \otimes \sum_{i=1}^{n} a_{j}^{i} x_{i} \qquad \text{(substituting in Equation 1)}$$

$$= \sum_{i=1}^{d} (g^{i} + \sum_{j=d+1}^{n} a_{j}^{i} g^{j}) \otimes x_{i} \qquad \text{(collect simple tensors by x_{i})}$$

$$= \sum_{i=1}^{d} g'^{i} \otimes x_{i}. \qquad \text{(collect g's)}$$

Thus we find that we can rewrite any finite sum of simple tensors as a sum of linearly independent simple tensors, and by the linearity of \hat{f} and D&P's result on simple tensors, we find the result we were looking for:

$$\hat{\boldsymbol{f}}(\boldsymbol{t}) = 0 \Longrightarrow \boldsymbol{t} = \boldsymbol{0}. \tag{3}$$

This means that $\ker \hat{\pmb{f}} = \{ \pmb{0} \}$; or, $\hat{\pmb{f}}$ is injective.