

物理实验(二)

磁滞回线

时间: 2024年1月2日

创作人: 陆知辰

学号: 10225301478

目录

—,	、实	验摘要	2
	1.1	实验概要	2
	1.2	实验目的	2
=	、实	验原理	2
	2.1	铁磁材料的磁滞现象	2
	2.2	用示波器观察和测量磁滞回线的实验原理和线路	4
Ξ,	、实	验装置器材介绍	7
四、	、实	验内容及实验步骤	7
	4.1	电路连接	7
	4.2	样品退磁	7
	4.3	观察退磁回线	7
	4.4	观察基本磁化曲线	8
	4.5	已知条件	8
	4.6	W_{BH}	8
	4.7	$\mu-H$ 曲线	8
	4.8	不同曲线观察	8
	4.9	二次测量	8
五、	、实	验原始数据	9
六、	、实	验数据处理 1	L 1
七、	、思	考题 1	L 1
	7.1	思考题一	11
	7.2	思考题二	11
八、	、实	验中个人的思考与感想	L 1
	8.1	对于实验个人观点	11
	8.2	实验中的总结	11

一、 实验摘要

1.1 实验概要

铁磁物质是一种性能特异、用途广泛的材料. 铁、钴、镍及其众多合金以及含铁的氧化物均属铁磁物质,铁磁物质的一个特征是在外磁场作用下能被强烈磁化,故铁磁物质的磁导率很高,铁磁物质的另一个特征是磁滞现象,即磁化场停止作用后,铁磁物质仍会保留磁化状态,磁滞现象有着广泛的应用.

1.2 实验目的

- 1. 认识铁磁物质的磁化规律,比较不同铁磁材料的动态磁化特性。
- 2. 了解利用示波器测量铁磁材料动态磁滞回线的原理和方法。
- 3. 测绘铁磁样品的磁滞回线和基本磁化曲线。

二、实验原理

2.1 铁磁材料的磁滞现象

图 2.1为铁磁物质磁感应强度 B 与磁场强度 H 之间的关系曲线。图中的原点 O 表示磁化之前铁磁物质处于磁中性状态,即 B=0,H=0. 当磁场的 H 从零开始增加时,磁感应强度 B 随之缓慢上升,如线段 Oa 所示;继之 B 随 H 迅速增长,如线段 ab 所示;其后 B 的增长又趋缓慢,并当 H 增至 Hm 时,B 到达饱和值.OabS 称为起始磁化曲线。当磁场从 Hm 逐渐减小至零,磁感应强度 B 并不沿起始磁化曲线恢复到原点 O,而是沿另一条新曲线 SR 下降。比较线段 OS 和 SR 可知,减小 B 相应也减小,但 B 的变化滞后于 H 的变化,这种现象称为磁滞,磁滞的明显特征是当 H=0 时,B 不为零,而保留剩磁 B。

二、 实验原理

3

图 1: 铁磁材料磁滞回线

当磁场反向从 O 逐渐变至 $-H_e$ 。时,磁感应强度 B 消失. 这说明要消除剩磁,必须施加反向磁场, H_e 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段 RD 称为退磁曲线。

图 2.1还表明, 当磁场按

$$H_m \to 0 \to -H_e \to -H_m \to 0 \to H_e \to H_m$$

次序变化,相应的磁感应强度 B 则沿闭合曲线 SRDS'R'D'S' 变化,这条闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁芯),将沿磁滞回线反复被磁化 \rightarrow 去磁 \rightarrow 反向磁化 \rightarrow 反向去磁,在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

应该说明,当初始态为 H=0,B=0 的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图 2所示. 这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率 $\mu=\frac{1}{H}$ 。因 H 的关系成非线性,故铁磁材料的 H 不是常数,而是随 H 而变化,如图 H 而变化,如 H 而变化,如 H 而变化,如 H 和 H 而变化,如 H 和 H 和 H 和 H 和 H 和 H 和 H 和 H 和 H 和 H

图 2: 同一材料的一簇磁滞曲线 图 3: 铁磁材料 μ 和 H 的关系

磁化曲线和磁滞回线是铁磁材料分类和选用的重要依据,图 2.1为常见的两种典型的磁滞回线。其中软磁材料磁滞回线狭长,矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料;而便磁材料磁滞回线较宽,矫顽力大,剩磁强,可用来制造永磁体。

图 4: 不同材料的磁滞回线

2.2 用示波器观察和测量磁滞回线的实验原理和线路

在用示波器观察时,示波器工作在 XY 工作模式,其中 x 轴输人为磁场强度 H,y 轴输入为磁感应强度 B。观察和测量磁滞回线和基本磁化曲线

二、 实验原理 5

的线路如图 2.2所示。

图 5: 实验原理线路

在图 2.2中待测样品为 EI 型砂钢片,被制为闭合的环形,然后均匀绕以励磁线圈 N_1 ,和测量线圈 N_2 。220V 的交流电经电压变换后经过多挡开关 S_1 ,加到励磁绕组 N_1 上, S_1 可以调节加到 N_1 ,上的电压值。 R_1 为可调电阻,用来对励磁电流取样,其总值为 5Ω 。调节 R_1 处的多挡开关,即以 0.5Ω 等间隔改变可调电阻 R_1 与示波器并联部分的电阻,从而可以调节输入到示波器上的电压 U_H 。

设通过 N_1 的交流励磁电流为 i,根据安培环路定律,样品的磁场强度为

$$H = \frac{N_1 \cdot i}{L} \tag{1}$$

式中 L 为样品的平均磁路长度,设 R_1 与示波器并联部分的电阻为 R_{1s} ,则有

$$U_H = R_{1s}i \tag{2}$$

在交流励磁电路恒定的情况下, U_H 随可调电阻 R_1 的 R_{1s} 部分变大而变大。通过 U_H 和 R_{1s} 的值可以得到励磁电流的值。有

$$H = \frac{N_1}{LR_{1s}} \cdot U_H \tag{3}$$

二、 实验原理 6

当式中 N_i 、L、 R_1 均已知的常数时,可由 U_H 确定 H 的值。

在交变磁场下,样品的磁感应强度瞬时值 B 由测量线圈和 R_2C_2 电路来确定,根据法拉第电磁感应定律,由于样品中磁通量 Φ 的变化,在测量线圈中产生的感生电动势的大小为

$$\varepsilon_2 = N_2 \frac{d\Phi}{dt} \tag{4}$$

$$\Phi = \frac{1}{N_2} \int \varepsilon_2 dt \tag{5}$$

$$B = \frac{\varepsilon}{S} = \frac{1}{N_2 S} \int \varepsilon dt \tag{6}$$

式中S为样品的截面积。

如果忽略自感电动势和电路损耗,则回路方程为

$$\varepsilon_2 = i_2 R_2 + U_B \tag{7}$$

式中 i_2 为感生电流, U_B 为积分电容 C_2 两端电压,设在 Δt 时间内 i_2 向电容 C_2 充电电荷量为 Q,则有

$$U_B = \frac{Q}{C_2} \tag{8}$$

$$\varepsilon_2 = i_2 R_2 + \frac{Q}{C_2} \tag{9}$$

如果选取足够大的 R_2 和 C_2 ,使 $i_2R_2 >> \frac{Q}{c_2}$

$$\varepsilon_2 = i_2 R_2 = \frac{dQ}{dt} R_2 = C_2 \frac{dU_B}{dt} R_2 \tag{10}$$

上式中可由 U_B 确定 B,则有

$$B = \frac{C_2 R_2}{N_2 S} U_B \tag{11}$$

综上所述,只要将 U_H 和 U_B 分别加到示波器的 "X 输入"和 "Y 输入"便可观察样品的 B-H 曲线,并可用示波器测出 U_H 和 U_B 值,进而根据公式计算出 B 和 H。

三、 实验装置器材介绍

磁滞回线实验仪、示波器

四、 实验内容及实验步骤

4.1 电路连接

选择硅钢片材料 (蓝色) 磁芯, 按电路图连接线路, 并令 $R_1=5\Omega$, "U 选择"置于 0 位。 U_H 和 U_B , 分别接示波器的"X 输入"和"Y 输入"。

4.2 样品退磁

开启实验仪电源,转动"U选择"旋钮,令 U从 0增至 3V,然后再转动旋钮,将 U从最大值降为 0,从而消除剩磁,确保样品处于磁中性状态,即 B=H=0,如图 6所示.

图 6: 退磁示意图

图 7: 调节不当引起的畸变现象

4.3 观察退磁回线

令 U=3.0V, 开启示波器电源,并分别调节示波器 X 和 Y 轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线,若图形顶部出现编织状的小环,如图 7所示,这时应该检查示波器的通道输入方式,一般应选择"DC",或

者 X 通道 "AC",Y 通道 "DC",并适当选择 R_1 值,或降低励磁电压 U 予以消除。

4.4 观察基本磁化曲线

按步骤 2 对样品进行退磁,从 U=0 开始,逐挡提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线,记录下这些磁滞回线 顶点的 B 和 H 的值,并将 B 和 H 的值作图连线就是样品的基本磁化曲线。

4.5 已知条件

调节 U=3.0 V, $R_1=5\Omega$,测定样品的一组 U_B 、 U_H 值,并根据已知条件: L= 75 mm,S=120 mm^2 , $C_2=20\mu F$, $R_2=10k\Omega$,N=60 匝,计算出相应的 B 和 H 的值。

4.6 W_{BH}

根据得到的 B 和 H 的值作 B-H 曲线,根据曲线求得 $B_m B_r H_e$ 等参数,并估算曲线的面积来求得 W_{BH} 。

4.7 $\mu - H$ 曲线

依次测定 U=0.5、1.0、...、3.5V 十组 U_HU_B ,计算得出相应的 $H_mH_m\mu$,作出 $\mu-H$ 曲线。

4.8 不同曲线观察

改变 R_1 , 观察不同的磁化曲线。

4.9 二次测量

更换样品为另一个磁芯($N_1=90$ 匝),重复上述步骤,并对比两种材料的测量结果。

五、 实验原始数据

1									
			华	东 师	范	大 学			
11		物	理	实	验	报	告		
Ē		123		1/	-5-2-	312	—		
	班 级		_ ~	同组者_	Cape to		姓名学号		
	组 别	- 3		2					
	姓名学号		_	日 加_			成	Ji	
5 y	· 实验	题目:	灭		300	٧٧,٥	× -1.02	Y Ibom	
7 8	UH X	CH	横			0.31/	-1,264		
	Da Y	CH	in	7		127		4toom/	
	UP)	<u> </u>	7		A STATE	1.5V	- /.40	360 m	
	g-	-	5	· · · · · · · · · · · · · · · · · · ·	37	1.87	-1.267	6Bo m	
梨 3	V .5Q'					211V,	-1.2hv	Sporns	
	· E)				24	126	920 m	
(OS	-1.00V			Y	05	3,080	(1,2)	-11 / 102 m	J
1.2mg	. 60	<u>.</u>			1.2ms	LOOV	11.6	-960mV	
1.4ms	-440 mi	ims .	-240MV	17	1.6	9,80 mV	12	-920mV	
3.8ms	80 mV	3.2ms	GoomV		2,4	920mV	12.4	-860mV	
4.9ms	180mV	3.2ms 4.4ms	780mV		2.8	870 mV	129	-800mV.	
5.2 MS	. (V	5.bms	かん		3.2	760mV			
6.8 ms		6.4ms	MKY		3.6	680mV			17
8.0ms	LHOV	76 ms	1.38V		44	560mV 430mV		\rightarrow	7/
91.2 ms	136V 136V	Bams	(136V		5,2	30mV			\
ID.IL mg	\$80 mV	-10m5-	-l-02V	Y	5.6	-20mV		10	\
10.9 ms	\$80 mV 40 mV 40 mV 260mV	11.245	-Pomr		6.0	-230mV			65.0
13 ms	2bom\				6-4	-400mV			
13.2 ms	-80 mV -280mV				6.8	-580mV			
14.4ms				176	7.2	-740mV			
15-6ms	-1.121		aribai		7.6 8.0	-900 m -1194V			X
16-8 ns	-1.30V		1,31		8.4	-1.08V			
19 mS	-1.38				8.8	-1:10V			
19.2ms	-1/261		17.5%		9.2	-1.12			
20.4ms	-880hv		W.		9.6	-1.00V			7 2
ZVATVIS	- 000 M	The state of		1117	11.4	-1.0b	V		
					10.8.	-1,00			

图 8: 实验原始数据 1

		NI /		100	
	120				
(D -1V ·	Y 0 1.24				
400 840 MV	400 1,24 V	0.3	1.44	my ool	
900 -720	800 /12 V	0.9	1.44	360	
1,2 -560	12 1:18 V-	1,2	1.14	480	
1.6 400	1.6 LIGU.	1.5	1.44	580	黄金
2 -200	2 1.11.	1.3	1.44	7,00	10
24 -80	2.4 1.047	2-1	(44	360	196
2.3 160	2.4 (V '	24	1.ly	390	
3,2 360	3.2 00 my-	2.7	1.44	6-1	
3.6 560	3.6 840 mV	3	alth	wib.	
4 680	4 760m				P.
4.4 940	4.4 G27mV				
43 960	48 ggomv				
5,2 1,080	52 360mV.				
5.6 WY.	C-6 Japmv.	1800	HI W		
6.0 1,240	BA 40ml.				
6.4 1.320	6.4 -140mv.	199		4	
6.8 1.4V	6-8 -320 mV-				
726 1.440	76 -bromv		11/19	All lines	
9,4- 1.4V	8.4 -1.02V'				911
9,2 1,240	9,2 1,20%	1-14-36		120	
180 9,60AV	100 -124V.				
wisc [Fra)	10A -12V.				4
11.6 HOMN	11.6 -1-147				
0-4 40mv	124 -1.06V				
132 -400 m)	B.2 -920mg				1
14:0 -630hm	(4.9' -720m)	,			
13 -960mV	MA -Soomv.	17.6	∌ om√		14
152 -1.00V	(5.) -340m	144 10	W		
1613 -136V.	18.0. OV.	19-2 /2			1
17.6 -1.44V	16.9 360mV	1/20 (36			I.

图 9: 实验原始数据 2

六、 实验数据处理

七、 思考题

- 7.1 思考题一
- 7.2 思考题二

八、 实验中个人的思考与感想

- 8.1 对于实验个人观点
- 8.2 实验中的总结