F.O. M(N
$$Z(code) = \cdots + C: X_i + CF_i \cdot Y_i + \cdots$$

$$Y(0,1) \longrightarrow CF = compta = code figo volume for the perfect of the perfect of$$

(A1)
$$3x_1 + 2x_2 \le 18 + M \cdot Y$$

(A1) $3x_1 + 2x_2 \le 18 + M \cdot Y$

(A2) $5x_1 + 4x_2 \le 16 + M \cdot (1-Y)$

1: Usins R2

(A1) $3x_1 + 2x_2 \le 18 + M \cdot Y$

(A2) $5x_1 + 4x_2 \le 16 + M \cdot (1-Y)$

1: Usins R2

(A2) $4x_2 \le 18 + M \cdot (1-Y)$

(A3) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(A4) $4x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(B4) $4x_1 + 2x_2 \le 18 + M \cdot (1-Y)$

(L2) $5 \times 4 + 4 \times 1 \le 16 + M \frac{1}{2}$ $\frac{1}{2} (0.1) \le 0.51 \text{ RZ}$

(A3) $3_{x_A} + 5_{x_2} \le 20 + M \cdot \frac{1}{3}$ $\frac{1}{3} \times \frac{1}{3} \times$

Y1 + /2 + /3 = 2

$$f(x_1, \dots, x_n) \leq 5 \mid 8 \mid 10$$

$$= I_{guil} \text{ que } caso (4)$$

b) Aluminio - Ky bush 100 - cost 0.21 um

resto de Ky - cost 0.13

Al, = kg de Al a 0.21 En rob Al-Alith, Al, = 0.13

100 (Y) = Ala = 100 | Condi Ala=100

Ala = M. (Y)

4)
$$X = 5 | 12 | 32$$
 solve water
 $X = 5 | 42 | 32$ solve water
 $X = 5 \cdot 12 | 12 | 32 | 32$
 $X = 5 \cdot 12 | 12 | 32 | 32$
 $X = 5 \cdot 12 | 12 | 32 | 32$

En una fundición se desea producir al <u>mínimo coste</u> 1000 Kg de una aleación especial con las características químicas de un máximo del 3 % de hierro, del 5 % de cobre, del 2 % de manganeso, del 1,5 % de magnesio, de un mínimo del 75 % de aluminio y entre el 12,5 y 15 % de silicio.

Para ello se dispone de <u>5 tipos de chatarra</u>, subproductos de la misma fundición y de <u>dos metales</u> como el <u>aluminio</u> y el <u>silicio</u> que es preciso comprar. En la siguiente tabla se recogen las características técnicas y comerciales (precio de coste unitario y disponibilidad máxima) de estos siete componentes, de tal forma que hay un límite máximo de disponibilidad en los 5 subproductos, exigiéndose además un consumo mínimo de 200 Kg. en el subproducto 3 y de 50 Kg en el subproducto 4.

Componente	Características técnicas						Características comerciales	
	Fe	Cu	Mn	Mg	Al	Si	Coste unitario por Kg.	Disponi- bilidad máxima en Kg.
Subprod.1	0,15	0,03	0,02	0,02	0,70	0,02	0,03	100
Subprod.2	0,04	0,05	0,04	0,03	0,75	0,06	0,08	1250
Subprod.3	0,02	0,08	0,01	-	0,80	0,08	0,17	400
Subprod.4	0,04	0,02	0,02	-	0,75	0,12	0,12	350
Subprod.5	0,02	0,06	0,02	0,01	0,80	0,02	0,15	750
Aluminio	0,01	0,01	-	-	0,97	0,01	0,21 (0,13)	ilimitad
Silicio	0,03		-	-	-	0,97	0,38	ilimitad

$$P_{i} = k_{y} \text{ de production in } \{s_{1}b_{1}, s_{2}b_{2}, s_{3}b_{4}, s_{3}b_{5}, ab_{1}, s_{4}b_{5}\}$$

$$NIN Z = 0.03 \cdot P_{s1} + 0.08 \cdot P_{s2} + 0.17 \cdot P_{s3} + 0.17 \cdot P_{s4} + 0.21 \cdot P_{s} + 0.21 \cdot P_{s} + 0.38 P_{s1}$$

$$ZP_{i} = 1000 \qquad 0.15 \cdot P_{s1} + 0.04 \cdot P_{s2} + 0.02 \cdot P_{s3} + 0.04 \cdot P_{s1} + 0.02 \cdot P_{s5} + 0.01 \cdot P_{s} = 0.03 \cdot P_{s1}$$

$$P_{s1} \leq 100 \qquad 0.03 \cdot P_{s1} + 0.05 \cdot P_{s3} + 0.02 \cdot P_{s4} + 0.06 \cdot P_{i} + 0.01 \cdot P_{s} \leq 0.05 \cdot 1000$$

$$P_{s2} \leq 1250 \qquad 0.03 \cdot P_{s3} + 0.02 \cdot P_{s4} + 0.06 \cdot P_{i} + 0.01 \cdot P_{s} \leq 0.05 \cdot 1000$$

$$SO \leq P_{s4} + 350 \qquad P_{s} \leq 750$$

1) Lo mismo per para todos las ky

$$Al_1 \leq 100 \cdot (1-7)$$
 $(00^{-7} \leq Al_2 \leq M \cdot 7)$