# Universidad Nacional de Río Negro Física III B - 2019

Unidad 02

Clase U02 C01

Fecha 26 Mar 2019

Cont Primer Principio

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b



# Contenidos: Termodinámica, alias F3B, alias F4A





### En resumen...

- Tengo n moles de un gas de una cierta atomicidad
- El gas se encuentra en un estado "A"
- ¿Cuánto calor necesito para cambiar su temp. en ΔΤ?
  - Transformación a V=cte:  $Q=C_V n \Delta T$
  - Transformación a P=cte:  $Q=C_p n \Delta T$

| Atomicidad  | C <sub>v</sub> | C <sub>P</sub> | γ   |
|-------------|----------------|----------------|-----|
| Monoatómico | 3/2 R          | 5/2 R          | 5/3 |
| Biatómico   | 5/2 R          | 7/2 R          | 7/5 |
| Triatómico  | 6/2 R          | 8/2 R          | 4/3 |

#### El signo de Q coincide con $\Delta T$

Q>0 → Calor entregado por el medio al sistema Q<0 → Calor entregado por el sistema al medio

# Ley de Dulong-Petite

$$E_{K} = \sum_{i=1}^{N} \left[ \frac{1}{2} m \left( v_{x,i}^{2} + v_{y,i}^{2} + v_{z,i}^{2} \right) + \frac{1}{2} k_{ef} \left( x_{i}^{2} + y_{i}^{2} + z_{i}^{2} \right) \right]$$



- ¿Grados de libertad?
  - $v_x$ ,  $v_y$ ,  $v_z$ , x, y,  $z \leftarrow 6$
- Equipartición: ½ kT
- Energía interna:

$$U = \frac{6}{2}NkT = 3nRT$$

Calor específico:

$$Q = \Delta U = Cn\Delta T \rightarrow C = 3R$$

### Sistema termodinámico

- Sistema termodinámico: contenido total de energía, en cualquiera de sus formas (incluyendo la masa), que se encuentra en una región macroscópica del espacio.
  - Variables de estado termodinámicas que definen al sistema → temperatura, energía interna, presión, entropía, ...



- Sistema en equilibrio
  - Las variables de estado no cambian con el tiempo
- Fuera de equilibrio
  - Transferencia "lenta" de energía

H. Asorey - F3B 2019

### Cambios de fase



- El cambio de fase de un sistema termodinámico implica que algunas de las características de esa fase cambian. Requiere un intercambio de energía
  - Fusión: sólido (baja energía cinética) a líquido (alta energía cinética)

 Solidificación: inverso. ¿Flujo de energía?

 ¿Sentido de ese intercambio?



- Calor latente: calor liberado o absorbido por un sistema termodinámico durante una transformación a temperatura constante (latente = escondido, 1762 J. Black)
  - Calor de fusión: sólido a líquido
  - Calor de vaporización: líquido a gas
- Ehrenfest: Calor latente ↔ transformación de fase de primer orden
- Cambio de fase → temperatura del sistema permanece constante

# Calor latente específico

- Propiedad intensiva L: calor requerido para cambiar completamente de fase a una determinada cantidad de substancia (usualmente en masa)
- Calor requerido para cambiar de fase una masa m:

$$L \stackrel{\text{def}}{=} \frac{Q}{m} \rightarrow Q = mL$$

- Agua: valores anormalmente altos (¡puentes H!). ¡Usos!
  - Fusión (a 273K): 334 kJ/kg, vaporización (a 373K): 2257 kJ/kg
  - Transpiración, Refrigeración, ¿rocío?...

### Calor latente versus calor sensible



Mar 26, 2019 H. Asorey - F3B 2019

# Paréniesis acuoso

$$H2O \rightarrow \theta = 104,45^{\circ} \rightarrow M=18 \text{ g/mol} \rightarrow Tf=273 \text{ K}$$

H2S 
$$\rightarrow$$
  $\theta$  = 92,1°  $\rightarrow$  M=34 g/mol  $\rightarrow$  Tf=191 K  
H2Se  $\rightarrow$   $\theta$  = 91°  $\rightarrow$  M=81 g/mol  $\rightarrow$  Tf=207 K  
H2Te  $\rightarrow$   $\theta$  = 90°  $\rightarrow$  M= 127 g/mol  $\rightarrow$  Tf=224 K











Mar 26, 2019 H. Asorey - F3B 2019

11/29

# Momento dipolar de la molécula de agua



# En el episodio anterior...

Una transformación representa al cambio de estado del gas

Calor específico cantidad de calor para que un mol de sust. cambie su temperatura en 1 K

$$P_{A} = P_{B}$$

$$V_{A}$$

$$V_{B}$$

$$C = \frac{Q}{n \Delta T}$$

$$U = C_V R n T$$

#### **Energía interna**

Si T cambia, habrá un cambio en la energía interna del gas

$$\Delta U = C_V R n \Delta T$$

Primer principio de la termodinámica



# Nada se gana, nada se pierde, todo se transforma

 La conservación de la energía para un sistema termodinámico se expresa de la siguiente forma



Primer principio de la termodinámica

Q= Calor cedido al sistema (signo de  $\Delta T$ )

 $\Delta U$ = Cambio de la energía interna del sistema (signo de  $\Delta T$ )

W = Trabajo realizado por el sistema (signo de  $\Delta V$ )

## Nueva transformación

- Vimos transformaciones a P=cte (isobara) y V=cte (isocora)
  - Isobara:

• 
$$\Delta U = a/2 n R \Delta T$$

• 
$$Q = \Delta U + W$$

socora:

• 
$$Q = C_V n \Delta T$$

• 
$$Q = \Delta U$$

- ¿Cómo será una expansión isotérmica?
  - Baño térmico (p. ej.: Atmósfera, Océano, ...)
    - Reservorio de calor a una temperatura T dada
    - Puede ceder o absorber calor sin que T se vea afectada
    - Un sistema en contacto con un baño → evolución isotérmica

# Transformación Isotérmica, T=cte

### Si $T = \text{cte pV} = nRT \rightarrow p V = \text{cte (a n cte)}$



Mar 26, 2

# Transformación isotérmica



$$T_A < T_B < T_X$$

El gas se encuentra en el estado "B"
 Evoluciona en forma isotérmica (baño térmico a T<sub>B</sub>=T<sub>C</sub>)
 El gas finaliza en el estado "C"

### Transformación isotérmica



## En resumen.... II

#### Isobara:

- W = p ∆V
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

#### Isoterma:

- W = n R T ln  $(V_f / V_i)$
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

#### • socora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

#### Adiabática

 Próximamente en los mejores cines de su barrio

## Recordemos y

• Índice adiabático:

$$\gamma = \frac{C_P}{C_V}$$

- z es la atomicidad del gas: z=3,5,6 para un gas mono, bi y triatómico respectivamente)
- Luego →

$$\gamma = \frac{C_p + R}{C_v} \rightarrow \gamma = 1 + \frac{R}{C_v}$$

$$\gamma = 1 + \frac{R}{Z} \rightarrow \gamma = 1 + \frac{2}{a}$$

$$\frac{z}{2}R$$

Otra forma de escribir  $\gamma$ :

 $y = \frac{z+2}{z}$ 

# Último caso: No hay intercambio de calor

- No hay intercambio de calor con el medio
  - Recipiente muy aislado (calorímetro); ó
  - Transformación muy rápida (abriendo una Coca Cola)
- En este caso: Q = O ← Transformación Adiabática
- Q =  $\Delta U + W \rightarrow O = \Delta U + W \rightarrow W = -\Delta U$
- En una expansión adiabática, el trabajo se realiza a costa de la energía interna del gas
- Expansión adiabática → Brusco descenso de T
   Y viceversa: en una compresión adiabática, todo el trabajo se convierte en energía interna (Zonda)

Mar 26, 2019 H. Asorey - F3B 2019 21/29

# El zonda: efecto Föhn









Mar 26, 2019 H. Asorey - F3B 2019 22/29

# El primer principio dice:

- Q=O → W = ∆U → límite: dW = -dU → p dV=-dU
- Pero dU = (z/2) d (n R T) y por la ec. Estado, nRT=pV:

$$dU = \left(\frac{z}{2}\right)d(pV) \rightarrow dU = \left(\frac{z}{2}\right)(dpV + pdV)$$

$$\Rightarrow$$
 pdV =  $-\frac{z}{2}$  V dp  $-\frac{z}{2}$  pdV

$$p dV + \left(\frac{z}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp \rightarrow \left(\frac{z+2}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp$$

$$\left(\frac{z+2}{z}\right)p\,dV = -V\,dp \rightarrow \gamma p\,dV = -V\,dp \rightarrow -\gamma \left(\frac{dV}{V}\right) = \frac{dp}{p}$$

Mar 26, 2019

H. Asorey - F3B 2019

23/29

• Integrando ambos lados:

$$-\gamma \int_{V_{i}}^{V_{f}} \frac{dV}{V} = \int_{p_{i}}^{p_{f}} \frac{dp}{p}$$

$$-\gamma \ln \left(\frac{V_{f}}{V_{i}}\right) = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\ln \left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \left(\frac{p_{f}}{p_{i}}\right)$$

Transformación Adiabática

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} \rightarrow p V^{\gamma} = cte \rightarrow T V^{\gamma-1} = cte$$

## La cuenta "a mano"

Per el fine processo Q= W+AU yans Q=000 W--AU EC ETGL ( ) = ( = du = du = oycomodu = m( = ) nRdT = (= ) d( nat) = (= ) d( pV) = ) qn=-qn -> pqn=- (= ) ( ngh+ bgn) . Howhere pdV+(=) bdV=-= Vdp -> (1-=) bdV=-= Vdp => (= x2) (= - N9b -> (= - N9b =0 8 P91= - N9b =0\_8 pdy = dp . Integrands: -8 1/4 dp/p. > -8 lu ( \fr ) = lu ( \fr ) -> lu ( \fr ) -> \fr ( = > pi Vi = p+ V+ > /pV = cti /

## Curvas adiabáticas



H. Asorey - F3B 2019

## Adiabáticas vs isotermas



- Se aproximan asintóticamente a los ejes
- Cada adiabática intersecta a una isoterma en un único punto (volveremos...)
  - Las adiabáticas son isentrópicas (volveremos...)

Mar 26, 2019

H. Asorey - F3B 2019

27/29

# Trabajo adiabático

Según el primer principio y teniendo en cuenta Q=0:

$$W = -\Delta U \rightarrow W = -\frac{z}{2} nR\Delta T \rightarrow W = -\frac{z}{2} nR(T_f - T_i)$$

$$W = -\frac{z}{2} (P_f V_f - P_i V_i)$$

$$W = -\left(\frac{P_f V_f - P_i V_i}{\gamma - 1}\right)$$

### En resumen.... Il

#### Isobara:

- W =  $p \Delta V$
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

#### Isoterma:

- W = n R T ln  $(V_f / V_i)$
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

$$Q = DU + W$$

#### Isocora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

#### Adiabática

- W =  $-\Delta U$
- $\Delta U = (z/2) n R \Delta T$
- $Q = O \rightarrow W = -\Delta U$

PV = nRT