100 Problems in Combinatorics

JAKE R. GAMEROFF

ABSTRACT. I want to get better at combinatorics. Here I solve 100 problems which I find illustrative, interesting, or fun. Aside from assessing the correctness of proofs, this document is not heavily revised, so typos are inevitable.

1. Graph Theory

1.1. Question 1. For an integer $k \geq 3$, let $N = R_3(k, k, k)$ be the minimum N such that in every edge-coloring of K_N in 3 colors there is a set X of k vertices so that all edges between vertices of X have the same color. Prove that

$$\binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2}-1} \ge 1.$$

Proof. Suppose

$$\binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2}-1} < 1$$

for a contradiction. Let Ω be the space of all colorings of the edges of K_N in 3 colors. Let $R \subseteq V(K_N)$ be a k-element subset of vertices, and let A_R be the event where R is monochromatic. So

$$P(A_R) = 3 \prod_{1 \le i \le {k \choose 2}} \frac{1}{3} = 3^{1 - {k \choose 2}}.$$

By sub-additivity,

$$P\left(\bigcup_{R\in[V(K_N)]^k} A_R\right) \le \sum_{R\in[V(K_N)]^k} 3^{1-\binom{k}{2}} = \binom{N}{k} 3^{1-\binom{k}{2}} < 1.$$

Thus there is a non-zero probability that there is no monochromatic k-element subgraph of K_N , contradicting $N = R_3(k, k, k)$. Hence (*) follows and we're done.

1.2. Question 2. Let F be a forest on n vertices. Prove that the intersection of k connected subgraphs of F is either empty or a tree.

Proof. It suffices to prove the claim when k=2, since given connected subgraphs C_1, C_2, \ldots, C_k , we have by induction that $C=C_1\cap\cdots\cap C_{k-1}$ is either a tree or empty. If C is a tree then it is connected and we may apply the case when k=2 to $C\cap C_k$. Otherwise C is empty so that $C\cap C_k$ is too. Thus, we just need to prove the base case now.

Let C_1, C_2 be two connected subgraphs of F. If $C_1 \cap C_2$ is not empty, then there is a vertex v in their intersection. Thus $C_1 \cap C_2$ is connected. Since $C_1 \cap C_2 \subseteq C_1$ and C_1 is acyclic, so is $C_1 \cap C_2$. Hence $C_1 \cap C_2$ is a tree. If $C_1 \cap C_2$ is not a tree, then it is either not connected or contains a cycl. The latter case can not hold, since $C_1 \cap C_2 \subseteq F$ is a forest.

If $C_1 \cap C_2$ is non-null, then it must be connected. Indeed, as before, there is a vertex v in $C_1 \cap C_2$. Then there is a path between the two components so that $C_1 \cap C_2$ must be connected. Applying the contrapositive, we obtain that $C_1 \cap C_2 = \emptyset$.

- 1.3. Question 3. Let G be a k-connected graph on n vertices.
 - (a) Prove that $|E(G)| \ge kn/2$.
 - (b) Let G' be obtained from G by adding a vertex v adjacent to every vertex in G. Show that G' is (k+1)-connected.
 - (c) Show that for every integer $k \geq 2$ and $n \geq k+1$ there is a k-connected graph with |V(G)| = n and $|E(G)| \leq (k-1)n$.

Proof. For (a) note that since G is k-connected, every vertex has degree at least k. Otherwise, there is a vertex with degree at most k-1; deleting its neighbours disconnects the graph, contradicting k-connectivity. By handshaking,

$$|E(G)| = \frac{1}{2} \sum_{v \in V(G)} \deg v \le nk/2.$$

For (b), let v be adjacent to every vertex in V(G) in G'. Let X be a subset of $\leq k$ vertices in V(G'). If $v \in X$ then $G' \setminus X = G \setminus (X \setminus \{v\})$ is connected since G is k-connected and $|X \setminus \{v\}| \leq k - 1$. Otherwise, $v \notin X$. Let $w \in X$ and note that $G' \setminus (X \setminus \{w\})$ is connected by k-connectivity. Then, we may remove w while preserving connectedness, since any two vertices x, y in $G' \setminus X$ are both adjacent to v. Hence G' is (k+1)-connected since X was arbitrary.

For (c) we may assume that n>2k-2, otherwise $k+1\leq n\leq 2k-2$ and

$$\binom{n}{2} = \frac{n(n-1)}{2} \le \frac{2k-2}{2} \cdot n = (k-1)n$$

so we can just take $G = K_n$, which is (n-1)-connected so that it is k-connected since $k+1 \le n$. Let G be d-regular, where d=2k-2. Then by handshaking,

$$|E(G)| = \frac{1}{2} \sum_{v \in V(G)} d = \frac{n}{2} (2k - 2) = (k - 1)n.$$

It remains to prove that G is k-connected. Let X be a set of at most k-1 vertices.

We prove (c) by induction on k. For $k \geq 2$ and $n \geq k + 1$, the cycle C_n on n vertices is the graph we need. Indeed,

$$|E(C_n)| = n = 1 \cdot n = (k-1)n.$$

Now fix $k \geq 3$. By the IH we obtain a graph G' on n' vertices and m' edges such that G' is (k-1)-connected, $n' \geq k$, and $m' \leq (k-2)n'$. Now let G be obtained by taking a vertex $v \in V(G')$ and connecting it to every vertex in G'. Then from (b) G is k-connected. This uses n' edges. Let n = n' + 1 and m = m' + n'. Then $n = n' + 1 \geq k + 1$ and

$$m = m' + n' \le (k - 2)n' + n' = (k - 1)n'$$

$$\le (k - 1)(n' + 1) = (k - 1)n$$

which completes the proof.

1.4. **Question 4.** Prove that:

- (a) If T is a tree then |V(T)| = |E(T)| + 1.
- (b) If F is a forest and c(F) is the number of components of F, then c(F) = |V(F)| |E(F)|.

Proof. For (a) we proceed by induction on |V(T)|. If |V(T)| = 1 then T is edgeless so that |V(T)| = 0 + 1 = |E(T)| + 1. Now fix $|V(T)| \ge 2$. Then T has at least one leaf v. Let $T' = T \setminus v$. Then T' is a tree on |V(T)| - 1 vertices, so by the IH we have |V(T')| = |E(T')| + 1. Appending v to T' gives one new vertex and one new edge. Hence |V(T)| = |V(T')| + 1 = |E(T')| + 1 + 1 = |E(T)| + 1 and we're done.

For (b) we induct on c(F). If c(F) = 1 then from (a)

$$|V(F)| = |E(F)| + 1 \Leftrightarrow 1 = |V(F)| - |E(F)|.$$

Then if $c(F) \geq 2$, let F' be obtained from F by deleting one entire component C. Then by the IH we have c(F') = |V(F')| - |E(F')| and since C is a tree, (a) implies that |V(C)| = |E(C)| + 1. Putting these two together, we obtain that

$$c(F) = c(F') + 1 = |V(F')| - |E(F')| + |V(C)| - |E(C)|$$

= |V(F)| - |E(F)|,

since $V(F') \cap V(C) = E(F') \cap E(C) = \emptyset$. This completes the proof. \square

1.5. Question 5. Let G be a k-connected graph. Show using the definitions that if G' is obtained from G by adding a new vertex v adjacent to at least k vertices of G, then G' is k-connected.

Proof. Let N(v) be the set of neighbours of v in G'. Suppose for a contradiction that G' is not k-connected. Then there is a set X with $|X| \leq k-1$ such that $G' \setminus X$ is disconnected. Then, we have two cases:

- (1) If $v \in X$ then $G' \setminus X = G \setminus (X \setminus v)$ can not be disconnected since $|X \setminus v| \le k 2$ and G is k-connected, a contradiction.
- (2) If $v \notin X$ then from k-connectivity, $H = G \setminus X = (G' \setminus X) \setminus v$ is connected. Then H contains a vertex $w \in N(v)$, since $|X| = k-1 < k \le |N(v)|$ and $v \notin N(v)$. Thus, $G' \setminus X$ is still connected since v has positive degree within which, a contradiction.

This completes the proof.

1.6. **Question 6.** Let $\omega(G)$ be the size of the largest clique in G. Prove that $\omega(G) < \chi(G)$. Find a graph G with $\omega(G) < \chi(G)$.

Proof. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a clique in G of size $n = \omega(G)$. Assign x_1 color 1; then x_2, x_3, \ldots, x_n can not be colored using color 1. Then color x_2 using color 2; then x_3, x_4, \ldots, x_n can not be colored using color 2. Continuing this way, we need n colors to color X and hence G. Thus, $\omega(G) \leq \chi(G)$.

Consider the cycle C_5 . We can not color C_5 using two colors, but we can using three. But $\omega(C_5) = 2$. Thus, $\omega(G) = 2 < 3 = \chi(C_5)$.