Rajiv Gandhi Institute of Petroleum Technology Quiz-1

Course Code Full Marks Inorganic & Physical Chemistry

CY111 40

Date & Time 10/Feb/2022, 9:15 AM- 10:00 AM

1A- to- 1J: MCQ, each question carries 1.5 marks each, one wrong answer carries -5 marks.

1A.	. The concept that all microscopic physical entities have both wave & particle properties is called wave-particle:				
	(a) Singularity	(b) Triality	(c) Infinality	(d) Duality (e	e) Intellectuality
1B. 7	Γhe number energ	y states possible ii	the range $E < \frac{15h}{8m}$	$\frac{h^2}{a^2}$ of a cubic box of si	de 'a' is
	(a) 03	(b) 6	(c) 12	(d) 12	(e) 15
1C.	The wave function for a quantum mechanical particle in a 1-D box of length "l" is given by Ψ = Sin (π x/L). The value of 'A' for a box of length 50 cm is				
	(a) 0.1 (cm) ^{-1/2}	(b) 0.2 (cm) ^{-1/2}	(c) $5\sqrt{2}$ (cm) ^{-1/2}	(d) $\sqrt{2}/10$ (cm)	y-1/2 (e) 0.00
1D.	. In the probabilistic interpretation of wave function $\psi,$ the $ \psi ^2$ is:				
	(a) probability amplitude	· · · ·	(c) negative probability	(d) 1.00	(e) 0.00
			erial particle is ass progressive wave, d		
1F. V		are entangled an er's spin to be dov		nt one has its spin up,	how long does it
a) Instantaneously	b) 1 microsecono	d c) 1 nanosecond	l, d) 1 femtosecond,	e) Speed of light
1G.	The Dirac equation	on shows that ever	ry particle has		
	(a) Wave function	(b) An Antipart	icle (c) A Matri	(d) A duality	y (e) Uncertainty

1H. When one operates with d^2/dx^2 on the function $6 \sin(4x)$, one finds that

- a) the function is an eigenfunction with eigenvalue -96.
- b) the function is an eigenfunction with eigenvalue 16.
- c) the function is an eigenfunction with eigenvalue -16.
- d) the function is not an eigenfunction.
- e) None of the above is a true statement.

11. Indicate which of the following functions are "acceptable."

- a) $\psi = x$
- b) $\psi = x2$
- c) $\psi = \sin x$
- d) $\psi = \exp(-x)$
- e) $\psi = \exp(-x^2)$

1J. The reason for normalizing a wavefunction ψ is

- a) to guarantee that ψ is square-integrable.
- b) to make $\psi^*\psi$ equal to the probability distribution function for the particle.
- c) to make ψ an eigenfunction for the Hamiltonian operator.
- d) to make ψ satisfy the boundary conditions for the problem.
- e) to make ψ display the proper symmetry characteristics.
- 2 How does Planck's Theory explain Black Body Radiation? 5

5

10

10

- 3 Calculate the de Broglie wavelength in nanometers for each of the following:
 - a) An electron that has been accelerated from rest through a potential change of 500V.
 - b) A bullet weighing 5 gm and traveling at 400 m s⁻¹
- 4 Consider an electron in a one-dimensional box of length 258 pm.
 - a) What is the zero-point energy (*ZPE*) for this system? For a mole of such systems?
 - b) What electronic speed classically corresponds to this ZPE? Compare to the speed of light.
- 5 For a particle in the n=2 state in a one-dimensional box of length L,
 - a) By sketching *estimate* the probability, ρ , for finding the particle between x = 0 and x = 0.20L.
 - b) calculate the probability using wave functions.
 - c) what probability for finding the particle between x = 0 and x = 0.20L is predicted by classical physics?