Package 'gwid'

September 4, 2024

Version 0.3.0 Maintainer Soroush Mahmoudiandehkordi <soroushmdg@gmail.com> **Description** Methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, 'gwid' incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs). License MIT + file LICENSE **Encoding UTF-8** Imports data.table, gdsfmt, SNPRelate, Matrix, ggplot2, plotly, utils, stats, RcppRoll, methods, piggyback, shiny, lattice, grid RoxygenNote 7.3.1 **Suggests** knitr, magrittr, rmarkdown, testthat (>= 3.0.0) Config/testthat/edition 3 URL https://github.com/soroushmdg/gwid, https://soroushmdg.github.io/gwid/ BugReports https://github.com/soroushmdg/gwid/issues NeedsCompilation no Author Soroush Mahmoudiandehkordi [aut, cre], Steven J Schrodi [aut],

Type Package

Title Genome-Wide Identity-by-Descent

Mehdi Maadooliat [aut]

Date/Publication 2024-09-03 23:10:02 UTC

Repository CRAN

2 Contents

Contents

Index

build_gwas
build_gwid
build_phase
case_control
extract
extract.gwas
extract.gwid
extract_window
extract_window.gwid
fisher_test
fisher_test.gwas
fisher_test.gwid
fisher_test.result_snps
gtest
gtest.haplotype_structure
haplotype_frequency
haplotype_frequency.haplotype_structure
haplotype_structure
haplotype_structure.gwas
haplotype_structure.gwid
launch_app
mcnemar_test
mcnemar_test.result_snps
mcnemar_test_permut
mcnemar_test_permut.result_snps
permutation_test
permutation_test.gwas
permutation_test.gwid
permutation_test.haplotype_structure
plot.gwas
plot.gwid
plot.haplotype_frequency
plot.haplotype_structure_frequency
plot.result_snps
plot.test_snps
print
print.gwas
roh
roh.phase
subset
subset.gwid
300000000000000000000000000000000000000

46

build_gwas 3

build_gwas

Open a SNP GDS file and extract information.

Description

Open a SNP GDS file and extract information.

Usage

```
build_gwas(gds_data = "name.gds", caco = "name.Rda", gwas_generator = TRUE)
```

Arguments

gds_data File name

caco An object of class caco. Output of case_control function.

gwas_generator logical; if TRUE an object of class result_snps will be saved inside output list.

Value

a list of seven objects; including smp.id, snp.id, snp.pos, smp.indx, smp.snp (a matrix with samples in rows and snp in columns), caco, snps(column sum of smp.snp for each case control)

build_gwid

Open a ibd file and extract information.

Description

Open a ibd file and extract information.

Usage

```
build_gwid(
  ibd_data = "name.ibd",
  gwas = "object of class gwas",
  gwid_generator = TRUE
)
```

Arguments

ibd_data a file name for output of Refined IBD

gwas object of class gwas

gwid_generator logical; if TRUE an object of class result_snps will be saved inside output list.

Value

the output will be a object(list) of class gwid contains profile object, IBD object and result_snps object.

4 case_control

build_phase

Read .vcf structured text format files and reduce the size of file.

Description

Read .vcf structured text format files and reduce the size of file.

Usage

```
build_phase(phased_vcf = "name.vcf", caco)
```

Arguments

phased_vcf A file name for a variant call format (vcf) file.

caco An object of class caco. Output of case_control function.

Value

the output will be a a list of class phase contains two sparse matrix for each haplotype.

case_control

Reload saved case-control list file

Description

Reload saved case-control list file

Usage

```
case_control(case_control_rda, ...)
```

Arguments

```
case_control_rda
```

A character string giving the name of the case-control file to load. The file is a list of character vectors including subject names in each case-control groups or csv file including subject name for a disease.

... name of a column (disease name) of csv file.

Value

The output will be a list of character vectors include subject names and groups. The class of returned object is caco.

extract 5

extract

Extract information from SNP GDS file.

Description

Extract information from SNP GDS file.

Usage

```
extract(obj, ...)
```

Arguments

obj an object of class gwas ... other arguments

Value

extract object instants

extract.gwas

Extract information from SNP GDS file.

Description

Extract information from SNP GDS file.

Usage

```
## S3 method for class 'gwas'
extract(obj, type = c("snps", "snp2", "nas"), snp_start, snp_end, ...)
```

Arguments

obj object of class gwas.

type indicate type of aggregation on sample-snp data and must be one of snps, snp2,

or nas

snp_start select starting position of snp, which we want to aggregate.
snp_end select ending position of snp, which we want to aggregate.

... other arguments

Value

the output will be a result_snps (data.table) object including 3 columns including, snp_pos, case_control, and value

6 extract.gwid

Examples

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo\_freq, y = c("cases", "cont1"), plot\_type = "haplotype\_structure\_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

extract.gwid

Extract information from ibd data.

Description

Extract information from ibd data.

extract.gwid 7

Usage

```
## S3 method for class 'gwid'
extract(obj = "object of class gwid", snp_start, snp_end, ...)
```

Arguments

obj object of class gwid(output of function build_gwid)
snp_start select starting position of snp, which we want to aggregate.
snp_end select ending position of snp, which we want to aggregate.
other objects

Value

the output will be a result_snps (data.table) object including 3 columns including, "snp_pos", "case_control", and "value"

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
```

8 extract_window.gwid

```
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

extract_window

extract component of an object

Description

extract component of an object

Usage

```
extract_window(obj, ...)
```

Arguments

obj obj

... other variables

Value

the output will be a result_snps (data.table) object including 3 columns including, "snp_pos", "case_control", and "value"

extract_window.gwid

Extract information from ibd data in a moving window

Description

Extract information from ibd data in a moving window

Usage

```
## S3 method for class 'gwid'
extract_window(obj, w = 10, snp_start, snp_end, ...)
```

extract_window.gwid 9

Arguments

obj object of class gwid(output of function build_gwid)

w window size

snp_start select starting position of snp, which we want to aggregate.

snp_end select ending position of snp, which we want to aggregate.

other variables

Value

the output will be a result_snps (data.table) object including 3 columns including, "snp_pos", "case_control", and "value"

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
```

10 fisher_test.gwas

```
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

fisher_test

Fisher test

Description

Fisher test

Usage

```
fisher_test(obj, ...)
```

Arguments

obj an object ... other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

fisher_test.gwas

Fisher's Exact Test for gwas count data

Description

Fisher's Exact Test for gwas count data

Usage

```
## S3 method for class 'gwas'
fisher_test(
  obj,
  reference,
  snp_start,
  snp_end,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

fisher_test.gwas 11

Arguments

obj object of class gwas

reference reference group of subjects in which we want to perform fisher test test

snp_start select starting position of snps.

snp_end select ending position of snp.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 by 2 case

.. optional arguments to fisher.test

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
```

12 fisher_test.gwid

```
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

fisher_test.gwid

Fisher's Exact Test for gwid count data

Description

Fisher's Exact Test for gwid count data

Usage

```
## $3 method for class 'gwid'
fisher_test(
  obj,
  caco,
  snp_start,
  snp_end,
  reference,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

Arguments

An object of class gwid. Output of build_gwid function

An object of class caco. Output of case_control function.

snp_start select starting position of snps.

snp_end select ending position of snp.

reference group of subjects in which we want to perform fisher test

indicates the alternative hypothesis and must be one of "two.sided", "greater" or

"less". You can specify just the initial letter. Only used in the 2 by 2 case

optional arguments to fisher.test

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

fisher_test.result_snps 13

Examples

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

```
fisher_test.result_snps
```

fisher exact test for result_snps count data

Description

fisher exact test for result_snps count data

Usage

```
## $3 method for class 'result_snps'
fisher_test(
  obj,
  caco,
  reference,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

Arguments

obj An object of class result_snps

caco An object of class caco. Output of case_control function.

reference group of subjects in which we want to perform fisher test.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater" or

"less". You can specify just the initial letter. Only used in the 2 by 2 case

... optional arguments to fisher.test

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
```

gtest 15

```
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,</pre>
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

gtest

perform gtest

Description

perform gtest

Usage

```
gtest(haplotype_structure, ...)
```

Arguments

```
haplotype_structure
object of a class
... other variables
```

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
gtest.haplotype_structure
```

Perform G-test on haplotype structures extracted from haplotype_structure function

Description

Perform G-test on haplotype structures extracted from haplotype_structure function

Usage

```
## S3 method for class 'haplotype_structure'
gtest(haplotype_structure, reference, ...)
```

Arguments

haplotype_structure

An object of class haplotype_structure. Output of haplotype_structure func-

tion

reference group of subjects in which we want to perform G-test

... other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

haplotype_frequency

Description

haplotype frequency

Usage

```
haplotype_frequency(haplotype_structure, ...)
```

Arguments

```
haplotype_structure object of class haplotype structure
```

.. other variables

haplotype_frequency 17

Value

An object of class haplotype_frequency contains of two objects. first one is object of haplo-type_structure_frequency (data.table) and second one is object of class result_snps(data.table)

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
\# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

haplotype_frequency.haplotype_structure

haplotype frequency in sliding windows

Description

haplotype frequency in sliding windows

Usage

```
## S3 method for class 'haplotype_structure'
haplotype_frequency(haplotype_structure, ...)
```

Arguments

```
haplotype_structure

An object of class haplotype_structure. Output of haplotype_structure function.

... other variables
```

Value

An object of class haplotype_frequency contains of two objects. first one is object of haplo-type_structure_frequency (data.table) and second one is object of class result_snps(data.table)

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
```

haplotype_structure 19

```
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

haplotype_structure

haplotype structures in a window

Description

haplotype structures in a window

Usage

```
haplotype_structure(obj, ...)
```

Arguments

obj object

... other variables

Value

The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.

haplotype_structure.gwas

extract haplotype structures of individuals in a window

Description

extract haplotype structures of individuals in a window

Usage

```
## S3 method for class 'gwas'
haplotype_structure(obj, phase, w = 10, snp_start, snp_end, ...)
```

Arguments

obj object of class gwas

phase An object of class phase. Output of build_phase function

w window size

snp_start select starting position of snps.

snp_end select ending position of snps.

... other variables

Value

The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
```

```
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

haplotype_structure.gwid

extract haplotype structures of pairwise ibd samples in a window

Description

extract haplotype structures of pairwise ibd samples in a window

Usage

```
## S3 method for class 'gwid'
haplotype_structure(obj, phase, w = 10, snp_start, snp_end, ...)
```

Arguments

An object of class gwid. Output of build_gwid function.

An object of class phase. Output of build_phase function.

w window size

snp_start select starting position of snps.

snp_end select ending position of snps.

other variables

22 launch_app

Value

The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

mcnemar_test 23

Description

laucnh a shiny app

Usage

```
launch_app(data_folder_address, ...)
```

Arguments

```
data_folder_address
```

address of the folder that your data folders are. for example if you have two sets of data such as data1 and data2 and they are in mydata folder then your data_folder_address should be "./mydata"

... other variables

Value

open a shiny app

mcnemar_test

mcnemar test

Description

mcnemar test

Usage

```
mcnemar_test(roh, ...)
```

Arguments

roh roh as class result_snp

... other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

24

```
mcnemar_test.result_snps

mcnemar test
```

Description

mcnemar test

Usage

```
## S3 method for class 'result_snps'
mcnemar_test(
  roh = "object of class result_snps (output of function roh with fun=sum)",
  reference,
  w = 10,
  ...
)
```

Arguments

roh An object of class result_snps (output of function roh with fun=sum)
reference reference group of subjects in which we want to perform fisher test.

window size

w window size
... other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

Description

menemar permutation

Usage

```
mcnemar_test_permut(mcnemar, ...)
```

Arguments

```
mcnemar macnemar test output
... other variables
```

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

Description

mcnemar permutation test

Usage

```
## $3 method for class 'result_snps'
mcnemar_test_permut(
    mcnemar = "object of class result_snps (output of function mcnemar_test with fun=sum)",
    roh_mat = "output of roh function when roh_mat = TRUE",
    gwas = "object of class gwas",
    nperm = 1000,
    reference = "cases",
    w,
    ...
)
```

Arguments

```
mcnemar macnemar test output
roh_mat roh matrix
gwas gwas
nperm number of permutation
reference reference group
w window
... other variables
```

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

permutation_test.gwas

permutation_test

permutation test

Description

permutation test

Usage

```
permutation_test(obj, ...)
```

Arguments

```
objobjectother variables
```

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
permutation_test.gwas Permutation test for gwas object
```

Description

Permutation test for gwas object

Usage

```
## S3 method for class 'gwas'
permutation_test(
  obj,
  snp_start,
  snp_end,
  nperm = 1000,
  reference = "cases",
  ...
)
```

permutation_test.gwas 27

Arguments

obj object of class gwas

snp_start elect starting position of snps.

snp_end select ending position of snp.

nperm Number of permutations.

reference reference group of subjects in which we want to perform fisher test

other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,</pre>
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
```

28 permutation_test.gwid

```
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

permutation_test.gwid permutation test for gwid count data

Description

permutation test for gwid count data

Usage

```
## $3 method for class 'gwid'
permutation_test(
   obj,
   gwas,
   snp_start,
   snp_end,
   nperm = 100,
   reference = "cases",
   ...
)
```

Arguments

```
obj An object of class gwid. Output of build_gwid function
gwas object of class gwas
snp_start select starting position of snps.
snp_end select ending position of snp.
nperm Number of permutations.
reference group
... other variables
```

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,</pre>
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

Description

Permutation test for 'haplotype_structure' object

Usage

```
## S3 method for class 'haplotype_structure'
permutation_test(obj, nperm, reference, ...)
```

Arguments

obj object of class 'haplotype_structure'

nperm Number of permutations.

reference group of subjects in which we want to perform 'gtest'

... other variables

Value

the output will be a test_snps (data.table) object including 3 columns: "snp_pos", "case_control", and "value" which is a p-values.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
```

plot.gwas 31

```
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

plot.gwas

Line plot of gwas objects

Description

Line plot of gwas objects

Usage

```
## S3 method for class 'gwas'
plot(x, y = NA, title = "number of snps", ...)
```

Arguments

x object of class gwas.
 y default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case", "control")
 title title of the plot.
 optional argument of plot

Value

an interactive line plot of gwas objects for each case control subjects.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data</pre>
```

32 plot.gwid

```
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
\# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
\verb|plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)|
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

plot.gwid

Line plot of gwid objects

Description

Line plot of gwid objects

Usage

```
## S3 method for class 'gwid'
plot(
    x,
    y = NA,
    title = "number of IBD in each snp",
```

plot.gwid 33

```
plot_type = c("result_snps", "profile"),
  reference,
    ...
)
```

Arguments

An object of class gwid. Output of build_gwid function.

y default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control")

title title of the plot.

plot_type either "result_snps" or "profile".

reference group of subjects in which we want to have profile plot.

if plot_type is "result_snps" it is optional argument of plot. if plot_type is "profile" we can subset plot based on snp_start and snp_end locations.

Value

if plot_type is "result_snps" an interactive line plot of result_snps for each case control subjects. if plot_type is "profile" an interactive profile plot of identity by descent subjects in subset of locations.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
```

```
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

plot.haplotype_frequency

Line plot of haplotype_frequency object

Description

Line plot of haplotype_frequency object

Usage

```
## S3 method for class 'haplotype_frequency'
plot(
    x,
    y = NA,
    plot_type = c("haplotype_structure_frequency", "result_snps"),
    type = c("version1", "version2"),
    ly = TRUE,
    nwin,
    title,
    line_size = 0.6,
    ...
)
```

Arguments

```
x an object of class haplotype_frequency
y default value is 'NA', if specified it should be a vector of names of subject
groups i.e. 'y = c("case", "control")'

plot_type either "result_snps" or ""haplotype_structure_frequency""

type either "version1" or "version2" when plot_type is ""haplotype_structure_frequency""

ly if TRUE, we have a plotly object and if it is false plot is going to be a ggplot object.
```

```
nwin window number

title title of the plot.

line_size geom_line size

... optional argument of plot
```

Value

an interactive line plot of haplotype_frequency objects for each case control subjects.

```
piggyback::pb_download(repo = "soroushmdg/gwid", tag = "v0.0.1",
dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control)
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
```

```
nwin = 1, type = "version1",ly = FALSE)
```

```
plot.haplotype_structure_frequency
```

Two type of line plots for haplotype_structure_frequency objects.

Description

Two type of line plots for haplotype_structure_frequency objects .

Usage

```
## S3 method for class 'haplotype_structure_frequency'
plot(
    x,
    y = NA,
    type = c("version1", "version2"),
    nwin,
    ly = TRUE,
    line_size = 0.6,
    ...
)
```

Arguments

X	an object of class haplotype_structure_frequency
У	default value is NA, if specified it should be a vector of names of subject groups i.e. $y = c("case","control")$
type	either "version1" or "version2"
nwin	window number
ly	if 'TRUE', we have a 'plotly' object and if it is 'FALSE' plot is going to be a 'ggplot' object.
line_size	geom_line size
	other variables

Value

an interactive line plot of haplotype_structure_frequency objects for each case control subjects.

plot.result_snps 37

Examples

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo\_freq, y = c("cases", "cont1"), plot\_type = "haplotype\_structure\_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

plot.result_snps

Line plot of result_snps objects

Description

Line plot of result_snps objects

38 plot.result_snps

Usage

```
## S3 method for class 'result_snps'
plot(x, y = NA, title, snp_start, snp_end, ly = TRUE, line_size = 0.6, ...)
```

Arguments

An object of class result_snps. Χ default value is NA, if specified it should be a vector of names of subject groups У i.e. y = c("case", "control")title title of the plot. snp_start select starting position of snps. select ending position of snps. snp_end if TRUE, we have a plotly object and if it is false plot is going to be a ggplot ly object. line_size geom line size

... geom_fine size
... other variables

Value

an interactive line plot of result snps for each case control subjects.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps)
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
```

plot.test_snps 39

```
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

plot.test_snps

Line plot of test_snps objects

Description

Line plot of test_snps objects

Usage

```
## S3 method for class 'test_snps'
plot(
    X,
    y = NA,
    title,
    snp_start,
    snp_end,
    ly = TRUE,
    line_size = 0.6,
    log_transformation = TRUE,
    QQplot = FALSE,
    ...
)
```

Arguments

```
x an object of class test_snps.

y default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control")

title title of the plot.

snp_start select starting position of snps.

snp_end select ending position of snps.
```

40 plot.test_snps

Value

an interactive line plot of test_snps objects for each case control subjects.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
```

print 41

```
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)</pre>
```

print

print

Description

print

Usage

```
print(x, ...)
```

Arguments

x an object... other objects

Value

print an object

print.gwas

print gwas instants

Description

print gwas instants

Usage

```
## S3 method for class 'gwas'
print(x, ...)
```

Arguments

x object gwas... other objects

Value

print number of subjects and number of SNPs of a GWAS object

42 roh

Examples

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
print(snp_data_gds)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294, snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

roh

runs of homozygosity

Description

runs of homozygosity

roh.phase 43

Usage

```
roh(phase, ...)
```

Arguments

phase object of phase ... other variables

Value

runs of homozygosity data table or matrix

roh.phase

runs of homozygosity

Description

runs of homozygosity

Usage

```
## $3 method for class 'phase'
roh(
  phase,
  gwas,
  w = 10,
  fun = c("sum", "mean"),
  snp_start,
  snp_end,
  roh_mat = FALSE,
  ...
)
```

Arguments

```
phase An object of class phase. Output of build_phase function gwas object of class gwas

w window size

fun an aggregate function. either "sum" or "mean"

snp_start select starting position of snps.

snp_end select ending position of snps.

roh_mat return roh as matrix

other variables
```

44 subset.gwid

Value

the output will be a result_snps (data.table) object including 3 columns including, "snp_pos", "case_control", and "value"

subset

subset an object

Description

```
subset an object
```

Usage

```
subset(obj, ...)
```

Arguments

obj object

. . . other variables

Value

the output will be a object(list) of class gwid contains profile object and result_snps object.

subset.gwid

subset gwid object based on snp position

Description

subset gwid object based on snp position

Usage

```
## S3 method for class 'gwid'
subset(obj, snp_start, snp_end, ...)
```

Arguments

obj object of class gwid(output of function build_gwid)

snp_start select starting position of snp, which we want to aggregate.
snp_end select ending position of snp, which we want to aggregate.

... other variables

subset.gwid 45

Value

the output will be a object(list) of class gwid contains profile object and result_snps object.

```
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")</pre>
genome_data_file <- paste0(tempdir(),"//chr3.gds")</pre>
phase_data_file <- paste0(tempdir(),"//chr3.vcf")</pre>
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")</pre>
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)</pre>
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,</pre>
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)</pre>
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)</pre>
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",</pre>
snp_start = 119026294, snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases", "cont1"), ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,</pre>
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)</pre>
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
```

Index

```
build_gwas, 3
                                                plot.haplotype_frequency, 34
build_gwid, 3
                                                plot.haplotype_structure_frequency, 36
build_phase, 4
                                                plot.result_snps, 37
                                                plot.test_snps, 39
case_control, 4
                                                print, 41
                                                print.gwas, 41
extract, 5
extract.gwas, 5
                                                roh. 42
extract.gwid, 6
                                                roh.phase, 43
extract_window, 8
                                                subset, 44
extract_window.gwid, 8
                                                subset.gwid, 44
fisher_test, 10
fisher_test.gwas, 10
fisher_test.gwid, 12
fisher_test.result_snps, 13
gtest, 15
gtest.haplotype_structure, 16
haplotype_frequency, 16
\verb|haplotype_frequency.haplotype_structure|,\\
        18
haplotype_structure, 19
haplotype_structure.gwas, 20
haplotype_structure.gwid, 21
launch_app, 22
mcnemar_test, 23
mcnemar_test.result_snps, 24
mcnemar_test_permut, 24
\verb|mcnemar_test_permut.result_snps|, 25|
permutation_test, 26
permutation_test.gwas, 26
permutation_test.gwid, 28
permutation_test.haplotype_structure,
        29
plot.gwas, 31
plot.gwid, 32
```