Lecture 10

Lecturer: Asst. Prof. M. Mert Ankarali

10.1 Reachability & Controllability of DT-LTI Systems

For LTI a discrete time state-space representation

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

- A state x_r is said to be m-step **reachable**, if there exist an input sequence, $u[k], k \in \{0, 1, \dots m-1\}$, that transfers the state vector x[k] from the origin (i.e. x[0] = 0) to the state x_r in m number of steps, i.e. $x[m] = x_r$.
- A state x_d is said to be m-step **controllable**, if there exist an input sequence, $u[k], k \in \{0, 1, \dots m-1\}$, that transfers the state vector x[k] from the initial state x_c (i.e. $x[0] = x_c$) to the origin in m number of steps, i.e. x[m] = 0.

Note that

- the set \mathcal{R}_m of all m-step reachable states is a linear (sub)space: $\mathcal{R}_m \subset \mathbb{R}^n$
- the set \mathcal{C}_m of all m-step controllable states is a linear (sub)space: $\mathcal{C}_m \subset \mathbb{R}^n$

Let's characterize \mathcal{R}_m and then try to generalize the reachability concept. When x[0] = 0, the solution of x[m] is given by

$$x[m] = \left[\begin{array}{c|c} A^{m-1}B & A^{m-2}B & \cdots & AB & B \end{array} \right] \left[\begin{array}{c} u[0] \\ u[1] \\ \vdots \\ u[m-2] \\ u[m-1] \end{array} \right]$$

Let

$$\mathbf{R}_{m} = \begin{bmatrix} A^{m-1}B \mid A^{m-2}B \mid \cdots \mid AB \mid B \end{bmatrix}$$

$$\mathbf{U}_{m} = \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[m-2] \\ u[m-1] \end{bmatrix}$$

10-2 Lecture 10

then if a state x_r is reachable at k steps, it should satisfy the following equation for some \mathbf{U}_m .

$$\mathbf{M}_m \mathbf{U}_m = x_m$$

In order this matrix equation to have a solution x_r should be in the range space of \mathbf{M}_m .

$$x_r \in \text{Ra}(\mathbf{M}_m)$$

Thus m-step reachable sub-space is simply equal to range space of \mathcal{R}_k

$$Ra(\mathbf{R}_m) = \mathcal{R}_m$$

Theorem: For k < n < l

$$\mathcal{R}_k \subset \mathcal{R}_n = \mathcal{R}_l$$
$$Ra(\mathbf{R}_k) \subset Ra(\mathbf{R}_n) = Ra(\mathbf{R}_l)$$

Proof: It is fairly easy to observe that

$$\mathcal{R}_i \subset \mathcal{R}_{i+1}$$

 $\operatorname{Ra}(\mathbf{R}_i) \subset \operatorname{Ra}(\mathbf{R}_{i+1})$

since we add a new column (or columns for multi-input systems) to \mathbf{R}_i , thus it can only increase the dimension of the range-space. Thus we can conclude that

$$\mathcal{R}_k \subset \mathcal{R}_n \subset \mathcal{R}_l$$
$$\operatorname{Ra}(\mathbf{R}_k) \subset \operatorname{Ra}(\mathbf{R}_n) \subset \operatorname{Ra}(\mathbf{R}_l)$$

In order prove $\mathcal{R}_n = \mathcal{R}_l$, we simply use the Cayley-Hamilton theorem. Based on Cayley-Hamilton theorem

$$A^{n} = -a_{1}A^{n-1} - \dots - a_{n-1}A - a_{n}I$$

$$A^{n}B = -a_{1}A^{n-1}B - \dots - a_{n-1}AB - a_{n}B$$

which shows that A^nB is linearly dependent to previous columns and thus

$$\mathcal{R}_n = \mathcal{R}_l$$

 $\operatorname{Ra}(\mathbf{R}_n) = \operatorname{Ra}(\mathbf{R}_l)$

This theorem shows that if x_r is reachable in n steps then it is reachable for l > n steps, similarly, if it is not reachable in n steps then it is reachable for l > n steps. In this context, the sub-space of states reachable in n-steps, \mathcal{R}_n is referred as the reachable subspace of (A, N), and will be denoted simply by \mathcal{R} and $\mathbf{R} = \mathbf{R}_k$ will be system wide the reachability matrix. The system is termed a (fully) reachable system if

$$rank(\mathbf{R}) = n$$
$$Ra(\mathbf{R}) = \mathcal{R} = \mathbb{R}^n$$

Ex 10.1 Solve the following problems regarding controllable sub-space

- Show that $\mathcal{R} \subset \mathcal{C}$, $\forall (A, B)$, however $\mathcal{C} \subset \mathcal{R}$ not necessarily true $\forall (A, B)$.
- Similar to the reachable subspace, characterize the controllable subspace
- Derive conditions such that $\mathcal{R} = \mathcal{C}$

Lecture 10 10-3

10.1.1 Reachability Gramian

An alternative characterization of \mathbf{R} is using reachability Gramian (which is more critical for CT systems). m-step reachability Gramian, \mathbf{P}_m , is defined as

$$\mathbf{P}_{m} = \mathbf{R}_{m} \mathbf{R}_{m}^{T} = \sum_{i=0}^{k-1} A^{i} B B^{T} \left(A^{T} \right)^{i}$$

$$(10.1)$$

Note that \mathcal{P}_m is a symmetric positive semi-definite matrix.

Lemma: $\mathcal{R}_m = \operatorname{Ra}(\mathbf{R}_m) = \operatorname{Ra}(\mathbf{P}_m)$

Proof: Let's fits show that $Ra(\mathbf{P}_m) \subset Ra(\mathbf{R}_m)$. If $x \in Ra(\mathbf{P}_m)$, then $\exists v \in \mathbb{R}^n$ s.t. $x = \mathbf{P}_m v$ then

$$x = \mathbf{P}_m v = \mathbf{R}_m \mathbf{R}_m^T v = \mathbf{R}_m y \implies x \in \operatorname{Ra}(\mathbf{R}_m) \implies \operatorname{Ra}(\mathbf{P}_m) \subset \operatorname{Ra}(\mathbf{R}_m)$$

Now let's show that $Ra(\mathbf{R}_m) \subset Ra(\mathbf{P}_m)$. We know that

$$\operatorname{Ra}(\mathbf{R}_m) \subset \operatorname{Ra}(\mathbf{P}_m) \iff \operatorname{Ra}^{\perp}(\mathbf{P}_m) \subset \operatorname{Ra}^{\perp}(\mathbf{R}_m)$$

So we can equivalently show that $\operatorname{Ra}^{\perp}(\mathbf{P}_m) \subset \operatorname{Ra}^{\perp}(\mathbf{R}_m)$. Let $q \in \operatorname{Ra}^{\perp}(\mathbf{P}_m)$, then

$$q^{T}\mathbf{P}_{m} = \mathbf{0} \implies q^{T}\mathbf{P}_{m}q = 0 \iff q^{T}\mathbf{R}_{m}\mathbf{R}_{m}^{T}q = 0 \iff (\mathbf{R}_{m}^{T}q)^{T}(\mathbf{R}_{m}^{T}q) = 0$$

$$\iff \mathbf{R}_{m}^{T}q = \mathbf{0} \iff q^{T}\mathbf{R}_{m} = \mathbf{0}^{T} = \mathbf{0}$$

$$\implies q \in \operatorname{Ra}^{\perp}(\mathbf{R}_{m}) \implies \operatorname{Ra}^{\perp}(\mathbf{P}_{m}) \subset \operatorname{Ra}^{\perp}(\mathbf{R}_{m})$$

This completes the proof. As a result of this lemma, full reachable subspace $\mathcal{R} = \text{Ra}(\mathbf{P}_l)$ for any $l \geq 0$. As a result we can make the following conclusions

- (A, B) pair is fully reachable \iff dim $[Ra(\mathbf{P}_l)] = n$ for any $l \ge n$
- (A, B) pair is fully reachable \iff det $[\mathbf{P}_l] \neq 0$ for any $l \geq n$

If x[k+1] = Ax[k] is asymptotically stable, then $\mathbf{P}_{\infty} = \lim_{k \to \infty} \sum_{i=0}^{k-1} A^i B B^T \left(A^T\right)^i \stackrel{\triangle}{=} P$ is well defined and P satisfies the following Lyapunov equation

$$APA^T - P = -BB^T$$

To understand this derivation, refer to the Quadratic Lyapunov Functions for LTI systems section in Lecture Notes 8.

Ex 10.2 Let x[k+1] = Ax[k] be asymptotically stable. Then, show that

$$APA^T - P = -BB^T$$

has a unique positive definite solution of P, if and only if, (A, B) pair is fully reachable.

10-4 Lecture 10

10.1.2 Modal Aspects and Modal Reachability Tests

Lemma: The reachable sub-space, \mathcal{R} is A invariant, i.e. $x \in \mathcal{R} \Rightarrow Ax \in \mathcal{R}$. We write this as $A\mathcal{R} \subset \mathcal{R}$.

Proof: Let $x \in \mathcal{R}$ then $\exists \mathbf{U}_n \in \mathbb{R}^{np}$, s.t. $x = \mathbf{R}\mathbf{U}_n$ where $B \in \mathbb{R}^{n \times p}$, then

$$x = \left[A^{n-1}B \mid A^{n-2}B \mid \dots \mid AB \mid B \right] \mathbf{U}_n$$

Now let's expand Ax

$$Ax = \left[A^n B \mid A^{n-1} B \mid \dots \mid A^2 B \mid AB \right] \mathbf{U}_n$$

Using Cayley-Hamilton theorem we reach that

$$A^{n} = -a_{n-1}A^{n-1} - \dots - a_{1}A - a_{0}I$$

$$A^{n}B = -a_{n-1}A^{n-1}B - \dots - a_{1}AB - a_{0}B$$

$$Ax = \left[\sum_{i=0}^{n-1} A^{i}B \mid A^{n-2}B \mid \dots \mid A^{2}B \mid AB \right] \mathbf{U}_{n}$$

$$Ax \in \operatorname{Span} \left\{ A^{n-1}B, A^{n-2}B, \dots AB, B \right\} = \mathcal{R}$$