湖南大学期末考试试卷

课程名称: <u>线性代数 A</u>; 课程编码: <u>GE03003</u>; 考试时间: 120 分钟注意: 请在答题纸规定的地方答题, 否则计零分.

一、(此题答在答题纸第1页)填空题(每小题3分,共12分)

1. 已知
$$A = \begin{pmatrix} t & 6 & 4 \\ 2 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix}$$
, $B 为 3 \times 4$ 矩阵, 且秩 $(B) = 3$, 若秩 $(AB) = 2$, 则 $t =$ ____.

2.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{101} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{100} =$$

- 3. 设 n 阶矩阵 A 的元素全为 1. 则 A 的 n 个特征值是
- 4. 设A为3阶矩阵, |A|=2,则|(2A)⁻¹-5A*|=_____

二、(此题答在答题纸第 1 页) 将矩阵
$$\begin{pmatrix} 1 & -1 & 3 & -4 & 3 \\ 3 & -3 & 5 & -4 & 1 \\ 2 & -2 & 3 & -2 & 0 \\ 3 & -3 & 4 & -2 & -1 \end{pmatrix}$$
 化为行最简形矩阵. (8 分)

三、(此题答在答题纸第 2 页) (1) 已知 5 阶行列式
$$D_5 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{bmatrix} = 27$$
,求 $A_{41} + A_{42} + A_{43}$

和 $A_{44}+A_{45}$, 其中 $A_{4j}(j=1,2,3,4,5)$ 为 D_5 中第 4 行第 j 列元素的代数余子式. (8 分)

(2) 设
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
是三维列向量,矩阵 $A = (\alpha_1, \alpha_2, 2\alpha_3 - \alpha_4 + \alpha_2), B = (\alpha_3, \alpha_2, \alpha_1),$
$$C = (\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_4, \alpha_4 + 3\alpha_1), 若 |B| = -5, |C| = 40, 求 |A|. (8 分)$$

四、(此题答在答题纸第 3 页) (1) 已知四阶矩阵
$$\mathbf{A}$$
 的逆矩阵为 $\mathbf{A}^{-1}=\begin{pmatrix} \mathbf{5} & \mathbf{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{8} & \mathbf{3} \\ \mathbf{0} & \mathbf{0} & \mathbf{5} & \mathbf{2} \end{pmatrix}$,试求其伴

随矩阵 A*的逆矩阵. (8分)

(2) 设
$$\alpha = (1,0,-1)^T$$
, $\beta = (1,-1,2)^T$, $A = \alpha \beta^T$, 且 $|k E - A^5| = k^3 + 1$, 试求 k . (8分)

- 五、(此题答在答题纸第 4 页)在 R^3 中求一非零向量使之在标准基 $\epsilon_1, \epsilon_2, \epsilon_3$ 和基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标相同,其中 $\alpha_1 = (1,-1,2)^T$, $\alpha_2 = (2,1,-1)^T$, $\alpha_3 = (-4,1,1)^T$. (8 分)
- 六、(此题答在答题纸第 4 页)设向量组 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,3,5)^T$ 不能由向量 $4 \beta_1 = (1,1,1)^T, \quad \beta_2 = (1,2,3)^T, \quad \beta_3 = (3,4,k)^T$ 线性表示。(1)求向量组 $\alpha_1,\alpha_2,\alpha_3$ 的一个极 大无关组;(2)求 k 的值;(3)将向量 β_1 用 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。(8 分)
- 七、(此题答在答题纸第 5 页)设 $\alpha_1,\alpha_2,\cdots,\alpha_r(r\geq 2)$ 是数域 P上的线性空间 V 中线性无关的向量组,任取 $k_1,k_2,\cdots k_{r-1}\in P$,求证: $\beta_1=\alpha_1+k_1\alpha_r,\beta_2=\alpha_2+k_2\alpha_r,...,\beta_{r-1}=\alpha_{r-1}+k_{r-1}\alpha_r$ 线性无关。(10 分)
- 八、(此题答在答题纸第 6 页) 已知二次曲面 $x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$ 可以经过正交变换 $(x,y,z)^T = P(\xi,\eta,\zeta)^T$ 化为椭圆柱面 $\eta^2 + 4\zeta^2 = 4$. 求 a,b的值和正交矩阵 P. (12 分)
- 九、(此题答在答题纸第 7 页)非齐次线性方程组 $\begin{cases} -2x_1+x_2+x_3=-2\\ x_1-2x_2+x_3=\lambda \end{cases}$, 当 λ 取何值时有解?并求 $x_1+x_2-2x_3=\lambda^2$ 出它的解。(10 分)