

# 6. Interactive Segmentation & Graph-Cut



# Semi-automated Segmentation



 User provides imprecise and incomplete specification of region – your algorithm has to read his/her mind.



#### Key problems

- 1. What groups of pixels form cohesive regions?
- 2. What pixels are likely to be on the boundary of regions?
- 3. Which region is the user trying to select?

# What makes a good region?

THING UNINES

- Contains similar color/texture
- Looks different than background
- Compact



# What makes a good boundary?

THE WAY TO SEE THE SEE

- High gradient along boundary
- Gradient in right direction
- Smooth



# The Image as a Graph





### Segmentation as a 2-class classification problem







Each pixel in the image should be labeled as either "background" or "foreground"



Result

## Training examples via markup





Pixels along user-scribble provide "supervised" RGB training-data Blue = background ( $\mathcal{B}$ ), yellow = foreground ( $\mathcal{F}$ )

## Simple 1-NN Classifier

1891 MG UNIVERS

Given an unlabeled pixel, C(i). Decide whether is background or foreground.





Compute new pixels RGB Euclidean distance (L2-norm) to all labeled B pixels, and all labeled F pixels.

Select nearest from each.

$$d_i^{\mathcal{F}} = \min_n \|C(i) - K_n^{\mathcal{F}}\|$$

$$d_i^{\mathcal{B}} = \min_m \|C(i) - K_m^{\mathcal{B}}\|$$

#### **Problem Formulation**



- For each pixel, we can assign a "label" that this pixel is either foreground or background.
- To automate this process, we define a cost for foreground/background at each pixel.
- The lower the cost, the more confident a pixel is to belong to a class.

$$E_1(x_i = 1) = 0 E_1(x_i = 0) = \infty \forall i \in \mathcal{F}$$

$$E_1(x_i = 1) = \infty E_1(x_i = 0) = 0 \forall i \in \mathcal{B}$$

$$E_1(x_i = 1) = \frac{d_i^{\mathcal{F}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} E_1(x_i = 0) = \frac{d_i^{\mathcal{B}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} \forall i \in \mathcal{U}$$

 $x_i$  is a pixel label (not its color). 1= Foreground, 0 = Background  $E_1$  is the cost;

 $\mathcal{F}$ ,  $\mathcal{B}$  represent the training-data (already labeled).  $\mathcal{U}$  are unlabeled/uncertain pixels.

## Adding a Markov Random Field



- The per-pixel cost is not enough
- To perform the final labeling, an MRF is used this enforces spatial constraints



Cost for labeling a node is  $E_1(xi)$  (as defined on the previous slide) Node cost often called the "data cost" or "likelihood energy"

Edges have two vertices  $x_i$  and  $x_j$ . Cost for an edge depend on what labels are assigned to  $x_i$  and  $x_j$ .

We will call this cost  $E_2(x_i, x_j)$  (defined on next slide)

Edges cost often called "smoothness term", or "smoothness prior", or "prior energy"

# **Edge Costs**



$$E_2(x_i, x_j) = |x_i - x_j| \cdot g(C_{ij})$$

#### where

$$g(\xi) = \frac{1}{\xi+1}, \ C_{ij} = ||C(i) - C(j)||^2$$

#### Possible Edge Configurations and cost:

Configuration 1



Cost = 1/[Color Difference]

Small Color Difference = Large Cost Large Color Difference = Small Cost (Ask yourself why?) Configuration 2



$$Cost = 0$$
  
 $|1-1| = 0$ 

Configuration 3



$$Cost = 0$$
$$|0-0| = 0$$

# How Edge Cost work



Two labels 
$$(l_1 \bigcirc and l_2 \bigcirc)$$

Three nodes,  $n_1$ ,  $n_2$ ,  $n_3$ 

(A very simple example)

 $l_1$  data cost

0.2

8.0

0.1

 $l_2$  data cost

8.0

0.2

0.9

nodes

 $n_1$ 

 $n_2$ 

 $n_3$ 

If we only assume "data cost" this is the optimal label solution (i.e. min energy)

 $l_1$  data cost  $l_2$  data cost

0.4 0.6





 $n_1$ 

 $n_{2}$ 



 $n_3$ 

Minimum cost

$$0.4 + 0.2 + 0.1 = 0.7$$





We now consider edge costs as shown in page 11.

New min energy is data\_cost + edge\_cost.

Where is the optimal label configuration? Compare with previous slide.

Some label configurations w/ edge cost



# Solving MRF



 Put all of these costs together and find the optimal labeling for the whole network



Remember, some points are already labeled (from markup), so they are fixed.

$$E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$

Solution is the label set that minimizes the cost function E(X).

Solution is often an approximation. Many approaches for minimizing E(X).

# Questions?



### Min-cut & Max-flow



- We need to begin with the Max-flow problem
- Max-flow is mathematically equivalent to Min-cut
- The interactive segmentation can be formulated as a Min-cut problem



#### Max Flow



- Given a network of links of varying capacity, a source, and a sink, what is the maximum amount of total flow from the source to the sink??
  - Equivalently, how much flow along each edge?



# Essentially a Linear Programming Problem



- One variable per edge (how much flow)
- One linear constraint per vertex
  - flow in = flow out
- Two inequalities per edge
  - 0 < flow < capacity</li>
- One linear combination to maximize
  - Total flow leaving source
  - Equivalently, total flow arriving at sink

# Essentially a Linear Programming Problem



- The optimal solution occurs at the boundary of some high-D simplex
  - Some variables reach their maximum value
  - The others are then determined by the linear constraints
- The Simplex method:
  - Start from some valid state
  - Find a way to increase one of the variables to its maximum value in an attempt to make the objective function better (here, to maximize the total flow)
  - Repeat until convergence

### **Basic Idea**



- Start with no flow
- Find path from source to sink with capacity
  - Typically, by breadth-first search



### Basic Idea



- Increase the flow in that path to reach its maximum capacity
- Keep track of flow directions



## Repeat



- Find path from source to sink with capacity
  - E.g. by breadth first search



## Repeat



- Find path from source to sink with capacity
- Increase the flow in that path to reach its maximum capacity
- Keep track of flow directions

























• The maximum amount of flow is 16





- Saturated edges represent the bottleneck
- Cutting across them breaks the graph into two pieces while removing the minimum amount of capacity





- All nodes connected to source form a group
- The others form another group





- All nodes connected to source form a group
- The others form another group



# Questions?



# Essentially a Linear Programming Problem



- Min-cut is the dual problem to Max-flow
- So optimizing max flow also optimizes Min-cut
- The breadth-first search for paths can be made more efficient for typical graphs in computer vision

An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov\*

[PAMI 2004]

# How does this relate to segmentation?



- Build a graph from pixels. 4 or 8-way connected.
  - Need to assign a 0 or 1 value to each vertex



# Foreground vs Background



- Edge capacity = Similarity of neighboring pixels
  - So we want to cut between dissimmilar pixels
  - Edge thickness indicates smoothness cost  $S_{pq}$



#### What are the source and sink?



• Option A: Pick two pixels, one as source the other as sink



#### What are the source and sink?



- Option B (better): Add two additional nodes representing the foreground and background
- Connect them with different capacities to pixels belong to FG or BG



## 1D Case (to simplify the figure)



- Edges between pixels
  - Capacity = likelihood (or -cost) that they belong to the same group
- Edges from FG to pixels
  - Capacity = likelihood (or -cost) that they belong to FG
- Edges from BG to pixels
  - Capacity = likelihood (or -cost) that they belong to BG
- The Min-cut leaves each pixel either connected to the FG node or the BG node



#### Likelihood/Cost of FG and BG

- How likely is the foreground to have color F? the background to have color B?
- Fit a Gaussian (or Gaussian Mixture) models in RGB space based on pixel color from user strokes
- The likelihood is computed according to the distance between the color and the Gaussian centers

$$P_x = \sum_n \omega_n \exp(-|C_x - K_n|2)$$

 $K_n$  is the n-th Gaussian center,  $\omega_n$  is the proportion of marked pixels that belong to the n-th center.







#### **Speedup Strategies**



- Apply a pre-segmentation (over-segmentation) to the image
- Break image into super-pixels
- Then group those super-pixels into different segments

(a)
(b)
(c)



## Results























#### Interactive Segmentation Summary



- Scribble based segmentation
  - Very fast and intuitive
- Developed by Microsoft
  - Photoshop developed 'Quick Selection' later
- Very popular in research papers
  - Easy to implement

Siggraph 2004

#### **Lazy Snapping**

†Yin Li\* †Jian Sun †Chi-Keung Tang †Heung-Yeung Shum †Hong Kong University of Science and Technology †Microsoft Research Asia

## Questions?



#### **Binary Graph-Cut Optimization**



Minimize an objective function defined on a graph

$$E(X) = \sum_{p \in V} D_p(x_p) + \sum_{(p,q) \in E} S_{pq}(x_p, x_q)$$

$$X = \{x_1, x_2, \dots, x_N\}, x_p = \{0,1\},\$$

V, E are the set of vertices and edges of a graph  $D_p(\cdot)$  and  $S_{pq}(\cdot)$  are functions defined on vertices and edges

We begin with the binary problem with Potts model:

$$S_{pq}(x_p, x_q) = w_{pq}\delta(|x_p - x_q|) = \begin{cases} w_{pq} & if & x_p \neq x_q \\ 0 & otherwise \end{cases}$$

 It is possible to define edge weights to solve the minimization by mincut

#### **Binary Graph-Cut Optimization**

- Set edge weights
  - Set weight between p and q as  $w_{pq}$
  - Set weight between p and source as  $D_p(1)$
  - Set weight between p and sink as  $D_p(0)$
- Effectively:
  - $x_p=1$  means p is assigned to source (the edge between p and sink is cut)
  - $x_p = 0$  means p is assigned to sink (the edge between p and source is cut)
  - When  $x_p \neq x_q$ , the edge between  $x_p$  and  $x_q$  is cut
- Any configuration of X corresponds to a cut
  - So min-cut minimizes E(X)



#### **Binary Graph-Cut Optimization**



More general result is provided in the following paper
 What Energy Functions Can Be Minimized
 via Graph Cuts?
 [PAMI 2004]

Vladimir Kolmogorov, Member, IEEE, and Ramin Zabih, Member, IEEE

• Given a binary function,  $x_p \in \{0, 1\}$ 

$$E(X) = \sum_{p \in V} D_p(x_p) + \sum_{(p,q) \in E} S_{pq}(x_p, x_q)$$

Graph-cut can find the GLOBAL minimum of E iff  $S_{pq}(0,0) + S_{pq}(1,1) < S_{pq}(0,1) + S_{pq}(1,0)$ 

# What if $x_p$ is not binary?



- What if  $x_p$  is not binary, e.g.  $x_p \in \{1,2,...,n\}$ ?
- The basic idea: convert this problem to a binary one
- Start from an initial configuration, and iteratively improve the result
  - Two possible solutions:
  - Alpha-expansion and Alpha-beta swap
  - Both methods improve the result by solving a binary graph-cut problem at each iteration
  - Converge to a LOCAL minimum



- Start from an initial configuration
  - Alpha-expansion: pick any statue "alpha" and decide if the statues at a vertex should change to "alpha" or keep unchanged
  - This is a binary problem. We can define a binary parameter  $y_p$  at each vertex, where  $y_p$ =1 (or 0) means change to "alpha" (or not).
  - Then we can obtain an optimal  $y_p$  at each vertex by the binary graph-cut algorithm.
  - Alpha-beta swap: pick any two statues "alpha" and "beta" and decide if we should swap "alpha (or beta)" for "beta (or alpha)" at each vertex
  - This is a binary problem. We can define a binary parameter  $y_p$  at each vertex, where  $y_p = 1$  (or 0) means swap (or not).
  - ${\bf \cdot}$  Then we can obtain an optimal  $y_p$  at each vertex by the binary graph-cut algorithm

Generally, alpha-expansion outperforms alpha-beta swap



#### Alpha-expansion

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each label  $\alpha \in \mathcal{L}$
- 3.1. Find  $\hat{f} \in \operatorname{argmin} E(f')$  among f' within one  $\alpha$ -expansion of f
- 3.2. If  $E(\hat{f}) < E(f)$ , set  $f := \hat{f}$  and success := 1
- 4. If success = 1 goto 2
- 5. Return *f*



#### Alpha-beta swap

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each label  $\{\alpha, \beta\} \in \mathcal{L}$
- 3.1. Find  $\hat{f} \in \operatorname{argmin} E(f')$  among f' within one  $\alpha \beta$  swap of f
- 3.2. If  $E(\hat{f}) < E(f)$ , set  $f := \hat{f}$  and success := 1
- 4. If success = 1 goto 2
- 5. Return *f*





#### Summary of big ideas



- Treat image as a graph
  - Pixels are nodes
  - Between-pixel edge weights based on color difference
  - Per-pixel weights for affinity to foreground/background
- Good regions are produced by a low-cost cut (GrabCuts, Graph Cut Belief Propagation, etc)

## Questions?



#### **Grab Cuts**



#### "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother\*

Vladimir Kolmogorov<sup>†</sup> Microsoft Research Cambridge, UK Andrew Blake<sup>‡</sup>













Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

SIGGRAPH 2004



#### what is easy or hard for graphcut-based segmentation?













### easier examples















## more difficult examples















### What about More General Energies?



- Graph-cut generally produces strong results, but on limited energy functions
- Switch to BP (belief-propagation), TRW (tree-reweighted message passing) for more general energies
  - But also slightly worse results
  - No regularization condition

Convergent Tree-reweighted Message Passing for Energy Minimization

**PAMI 2006** 

Vladimir Kolmogorov
University College London, UK  $E(X) = \sum_{p \in V} D_p(x_p) + \sum_{59} S_{pq}(x_p, x_q)$ 

#### What about Dense Pixel Connections?



- Connecting to 4/8 neighbors generates excessive smooth of object boundaries
- This problem can be solved by fully connected a graph
  - Every node is connected to every other node
  - Graph-cut running time is  $O(mn^2)$ 
    - *m* is the number of edges, *n* is the number of vertices
  - This paper finds an efficient solution by Gaussian filtering



#### Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Philipp Krähenbühl

Computer Science Department Stanford University philkr@cs.stanford.edu Vladlen Koltun

Computer Science Department Stanford University vladlen@cs.stanford.edu

## **Fully Connected CRFs**



