

GRID)

Chctembi

Выполнил студент ВМ 42 Шалыгин А. О.

Содержание:

- 1. Определение и назначение.
- 2. Свойства.
- 3. История.
- 4. Архитектура.
- 5. Основные определения.
- 6. Сервисы.
- 7. Безопасность.
- 8. Области применения.
- 9. Литература.

Грид (англ. grid — решетка, сеть) —

согласованная, открытая и стандартизованная компьютерная среда, которая обеспечивает гибкое, безопасное, скоординированное разделение вычислительных ресурсов и ресурсов хранения информации, которые являются частью этой среды, в рамках одной виртуальной организации.

К прикладным задачам GRID относятся:

- сложное моделирование;
- совместная визуализация очень больших наборов научных данных;
- распределенная обработка в целях анализа данных;
- связывание научного инструментария с удаленными компьютерами и архивами данных.

Грид вычисления —

это форма распределённых вычислений, в которой «виртуальный суперкомпьютер» представлен в виде кластера соединённых с помощью сети, слабосвязанных компьютеров, работающих вместе для выполнения огромного количества заданий (операций, работ).

НАЗНАЧЕНИЕ GRID

вычислительные системы (computational GRID)

хранение больших массивов информации (data GRID)

GRID также называют распределенной информационновычислительной средой **PИВС**

Характерные свойства РИВС

- масштабы вычислительного ресурса
- гетерогенность среды
- пространственное (географическое) распределение информационно-вычислительного ресурса
- объединение ресурсов, которые не могут управляться централизованно (в случае, если они не принадлежат одной организации);
- использование стандартных, открытых, общедоступных протоколов и интерфейсов;
- обеспечение информационной безопасности.

GMO

История

1985–1995 - Программа Национального Научного Фонда США «National Science Foundation (NSF) Supercomputer Centers».

Октябрь 1997 - NSF инициировал новую программу развития информационных технологий — Partnerships for Advanced Computational Infrastructure (PACI).

1998 - Создан (и успешно развивается) инструментальный пакет Globus Toolkit.

1999 - Сформировалось (и активно действует) международное научное Грид-сообщество – Global Grid Forum (GGF)

2002- GGF и IBM была представлена новая системная разработка – Open Grid Service Architecture (OGSA).

2003 - Создано объединение Enterprise Grid Alliance (EGA)

2006 - GGF и EGA объявили о слиянии и образовании Open Grid Forum (OGF)

Архитектура GRID

Модель песочных часов

Многоуровневая архитектура GRID

Архитектура GRID

Взаимодействие прикладной программы с различными уровнями GRID-системы

Основные определения

РЕСУРС - вычислительные ресурсы, системы хранения, каталоги, сетевые ресурсы.

Ресурсы могут быть разделены на физические и логические. К физическим относятся: оперативная память, память на долговременных носителях, количество и производительность процессоров и т.д. Примерами логических ресурсов являются распределенная файловая система, компьютерный кластер, распределенный пул компьютеров.

СЕТЕВОЙ ПРОТОКОЛ - это формальное описание форматов сообщений и набор правил, определяющий обмен сообщениями. Различают сетевые протоколы нижнего (Ethernet и др.), среднего (IP, TCP и др.) и высокого уровня (FTP, HTTP и др.).

Основные определения

СИНТАКСИС - это правила, определяющие порядок и форму записи информации в сообщении.

СЕРВИС – это сущность, которая предоставляет специфическую функциональность.

ИНТЕРФЕЙС ПРИКЛАДНЫХ ПРОГРАММ (API) представляет собой набор функций (сервисов), позволяющих прикладной программе осуществлять доступ к ресурсам через обслуживающую операционную систему.

Сервисы GRID

- идентификация выполняемой программы
- авторизация пользователя
- поиск ресурсов
- описание ресурсов
- резервирование ресурсов
- выполнение распределённых алгоритмов
- доступ к удалённым данным
- распределение ресурсов
- обнаружение неполадок

Безопасность

специализированное программное обеспечение - middleware

Протоколы защиты

- **Kerberos** IETF стандарт, который поддерживает безопасность системы через установление подлинности.
- TLS. TLS (Transport Layer Security) (исходно известный как SSL) IETF стандарт для установления подлинности, целостности и конфиденциальности сообщения
- CMS. CMS (Cryptografic Message syntax) стандарт IETF определяет синтаксис, который позволяет в цифровой форме подписать, подтвердить подлинность, или зашифровать произвольные сообщение
- GSS-API. GSS-API (Generic Security Service API) стандарт IETF, который определяет интерфейс прикладных программ

Области применения

- распределенные высокопроизводительные вычисления, решение очень крупных задач, требующих максимальных процессорных ресурсов, памяти и т.д.;
- «высокопоточные» вычисления, позволяющие организовать эффективное использование ресурсов для небольших задач, утилизируя временно простаивающие компьютерные ресурсы;
- проведение крупных разовых расчетов;
- вычисления с привлечением больших объемов распределенных данных, например, в метеорологии, астрономии, физике высоких энергий;
- коллективные вычисления: одновременная работа нескольких взаимодействующих задач разных пользователей.

- Поиск следов внеземных цивилизаций
- •Обработка данных, полученных радиотелескопом Аресибо
- •Около 5 млн. участников
- •1200 СРU лет в день
- •Постоянная вычислительная мощность ~34 ТF (примерно такая, какая достигнута в Симуляторе Земли в Японии)
- •Высокая степень гетерогенности ресурсов >77 различных типов процессоров

GMO

- Поиск простых чисел Мерсенна. Числа Мерсенна имеют вид
 Mp = 2p 1, где p-простое
- Самое большое известное на данный момент простое число M43112609 = 243112609 1 было найдено в рамках проекта GIMPS в августе 2008 года. Оно состоит из 12,978,189 цифр!!
- Ресурсы (на 10.06.2009):
 - команд 216
 - участников 20888
 - o CPUs 115601
 - о мощность 38.497 терафлоп

- Приложение Drug Discovery, позволяющее вычислять вероятность прямого контакта между потенциальным лекарством и белком-мишенью
- Первый в истории биомедицины сеанс массовой обработки данных (малярия)
 - Исследовано 46 миллионов посадочных лиганд
 - о Получено более 1 Тб данных
 - О Использованы ~1000 компьютеров из15 стран, что составляет ~ 80 машино/лет
 - Средний фактор ускорения 600
- Второй сеанс (птичий грипп)
 - Использованы ~5000 компьютеров из 27 стран, что составляет ~ 420 машино/лет
 - о Получено более 2 Тб данных
 - Средний фактор ускорения 2000

Обработка данных БАК производится с помощью GRID вычислений.

Селективность (степень отбора) ~ 1 из 1013

Литература:

- http://ru.wikipedia.org/wiki/GRID
- http://jre.cplire.ru/win/dec03/4/text.html
- http://www.gridclub.ru
- http://egee.pnpi.nw.ru/ ПИЯФ РАН