Derivatives

$$\begin{split} D_x e^x &= e^x \\ D_x \sin(x) &= \cos(x) \\ D_x \cos(x) &= -\sin(x) \\ D_x \tan(x) &= \sec^2(x) \\ D_x \cot(x) &= -\csc^2(x) \\ D_x \sec(x) &= \sec(x) \tan(x) \\ D_x \csc(x) &= -\csc(x) \cot(x) \\ D_x \sin^{-1} &= \frac{1}{\sqrt{1-x^2}}, x \in [-1,1] \\ D_x \cos^{-1} &= \frac{1}{\sqrt{1-x^2}}, x \in [-1,1] \\ D_x \tan^{-1} &= \frac{1}{1+x^2} \\ D_x \sec^{-1} &= \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1 \\ D_x \sinh(x) &= \cosh(x) \\ D_x \cosh(x) &= -\sinh(x) \\ D_x \tanh(x) &= \sec^2(x) \\ D_x \coth(x) &= -\csc^2(x) \\ D_x \cosh(x) &= -\csc^2(x) \\ D_x \cosh$$

Integrals

$$\begin{split} &\int \frac{1}{x} dx = \ln|x| + c \\ &\int e^x dx = e^x + c \\ &\int a^x dx = \frac{1}{\ln a} a^x + c \\ &\int e^{ax} dx = \frac{1}{a} e^{ax} + c \\ &\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c \\ &\int \frac{1}{\sqrt{1-x^2}} dx = \tan^{-1}(x) + c \\ &\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}(x) + c \\ &\int \sinh(x) dx = \cosh(x) + c \\ &\int \cosh(x) dx = \sinh(x) + c \\ &\int \tanh(x) dx = \ln|\cosh(x)| + c \\ &\int \tanh(x) \sech(x) dx = -\sech(x) + c \\ &\int \sech^2(x) dx = \tanh(x) + c \\ &\int \cosh(x) \coth(x) dx = -\cosh(x) + c \\ &\int \cosh(x) dx = \ln|\cos(x)| + c \\ &\int \cosh(x) dx = \ln|\sin(x)| + c \\ &\int \sinh(x) dx = -\cos(x) + c \\ &\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1}(\frac{u}{a}) + c \\ &\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c \end{split}$$

Fns and Identities

$$\begin{split} &\sin(\cos^{-1}(x)) = \sqrt{1-x^2} \\ &\cos(\sin^{-1}(x)) = \sqrt{1-x^2} \\ &\sec(\tan^{-1}(x)) = \sqrt{1+x^2} \\ &\tan(\sec^{-1}(x)) \\ &= (\sqrt{x^2-1} \text{ if } x \geq 1) \\ &= (-\sqrt{x^2-1} \text{ if } x \leq -1) \\ &\sinh^{-1}(x) = \ln x + \sqrt{x^2+1} \\ &\sinh^{-1}(x) = \ln x + \sqrt{x^2-1}, \ x \geq -1 \\ &\tanh^{-1}(x) = \frac{1}{2} \ln x + \frac{1+x}{1-x}, \ 1 < x < -1 \\ &\sec h^{-1}(x) = \ln [\frac{1+\sqrt{1-x^2}}{x}], \ 0 < x \leq -1 \end{split}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Trig Identities

$$\begin{array}{l} \sin^2(x) + \cos^2(x) = 1 \\ 1 + \tan^2(x) = \sec^2(x) \\ 1 + \cot^2(x) = \csc^2(x) \\ \sin(x \pm y) = \sin(x) \cos(y) \pm \cos(x) \sin(y) \\ \cos(x \pm y) = \cos(x) \cos(y) \pm \sin(x) \sin(y) \\ \tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x) \tan(y)} \\ \sin(2x) = 2\sin(x) \cos(x) \\ \cos(2x) = \cos^2(x) - \sin^2(x) \\ \cosh(n^2 x) - \sinh^2 x = 1 \end{array}$$

Calculus 3 Concepts Cartesian coords in 3D

given two points: (x_1, y_1, z_1) and (x_2, y_2, z_2) , Distance between them: $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$ $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$ Sphere with center (h,k,l) and radius r: $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$

Vectors

Vector: \vec{u} Unit Vector: \hat{u} Magnitude: $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$ Unit Vector: $\hat{u} = \frac{\vec{u}}{||\vec{u}||}$

Dot Product $\vec{u} \cdot \vec{v}$ Produces a Scalar (Geometrically, the dot product is a vector projection) $\vec{u} = \langle u_1, u_2, u_3 \rangle$ $\vec{v} = \langle v_1, v_2, v_3 \rangle$ $\vec{u} \cdot \vec{v} = \vec{0}$ means the two vectors are Perpendicular θ is the angle between them. $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$ $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ $\hat{u} \cdot \hat{v} = \cos(\theta)$ $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$ $\vec{u} \cdot \vec{v} = 0$ when \perp

Angle Between \vec{u} and \vec{v} : $\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||})$

Projection of \vec{u} onto \vec{v} : $pr_{\vec{v}}\vec{u} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}||^2}$ Cross Product $\vec{u} \times \vec{v}$ Produces a Vector (Geometrically, the cross product is the area of a paralellogram with sides $||\vec{u}||$ and $||\vec{v}||$ $\vec{u} = \langle u_1, u_2, u_3 \rangle$ $\vec{v} = \langle v_1, v_2, v_3 \rangle$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

 $\vec{u} \times \vec{v} = \vec{0}$ means the vectors are paralell

Equation of a Plane

 (x_0, y_0, z_0) is a point on the plane and $\langle A, B, C \rangle$ is a normal vector

$$\begin{split} &A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\ &< A,B,C>\cdot <\\ &x-x_0,y-y_0,z-z_0>=0\\ &Ax+By+Cz=D \text{ where }\\ &D=Ax_0+By_0+Cz_0 \end{split}$$

Coord Svs Conv

Cylindrical to Rectangular $x = r \cos(\theta)$ $y = r \sin(\theta)$ z = zRectangular to Cylindrical $r = \sqrt{x^2 + y^2}$ $\tan(\theta) = \frac{\dot{y}}{x}$ Spherical to Rectangular $x = \rho \sin(\phi) \cos(\theta)$ $y = \rho \sin(\phi) \sin(\theta)$ $z = \rho \cos(\phi)$ Rectangular to Spherical $\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan(\theta) = \frac{y}{x}$ $\cos(\phi) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$ Spherical to Cylindrical $r = \rho \sin(\phi)$ $\theta = \theta$ $z = \rho \cos(\phi)$ Cylindrical to Spherical $\rho = \sqrt{r^2 + z^2}$ $\theta = \theta$ $\cos(\phi) = \frac{z}{\sqrt{r^2 + z^2}}$

Unit Circle

Surfaces

Ellipsoid

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Hyperboloid of One Sheet

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (Major Axis: z because it follows -)

Hyperboloid of Two Sheets

 $\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (Major Axis: Z because it is the one not subtracted)

Elliptic Paraboloid

 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (Major Axis: z because it is the variable NOT squared)

Hyperbolic Paraboloid

(Major Axis: Z axis because it is not squared)

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

Elliptic Cone

(Major Axis: Z axis because it's the only one being subtracted)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

1 of the variables is missing $(x-a)^2 + (y-b^2) = c$ (Major Axis is missing variable)

Partial Derivatives

Partial Derivatives are simply holding all other variables constant (and act like constants for the derivative) and only taking the derivative with respect to a given variable.

Given z=f(x,y), the partial derivative of z with respect to x is:

$$\begin{split} f_x(x,y) &= z_x = \frac{\partial z}{\partial x} = \frac{\partial f(x,y)}{\partial x} \\ \text{likewise for partial with respect to y:} \\ f_y(x,y) &= z_y = \frac{\partial z}{\partial y} = \frac{\partial f(x,y)}{\partial y} \end{split}$$

Notation

For f_{xyy} , work "inside to outside" f_x then f_{xy} , then f_{xyy}

$$f_{xyy} = \frac{\partial^3 f}{\partial x \partial^2 y}$$

$$\begin{split} f_{xyy} &= \frac{\partial^3 f}{\partial x \partial^2 y}, \\ \text{For } \frac{\partial^3 f}{\partial x \partial^2 y} \text{ , work right to left in the denominator} \end{split}$$

Gradients

The Gradient of a function in 2 variables is $\nabla f = \langle f_x, f_y \rangle$ The Gradient of a function in 3 variables is $\nabla f = \langle f_x, f_y, f_z \rangle$

Chain Rule(s)

Take the Partial derivative with respect to the first-order variables of the function times the partial (or normal) derivative of the first-order variable to the ultimate variable you are looking for summed with the same process for other first-order variables this makes sens for. Example:

let x = x(s,t), y = y(t) and z = z(x,y). z then has first partial derivative: $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ x has the partial derivatives: $\frac{\partial x}{\partial s}$ and $\frac{\partial x}{\partial t}$ and y has the derivative: In this case (with z containing x and y as well as x and y both containing s and t), the chain rule for $\frac{\partial z}{\partial s}$ is $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s}$

 $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{d\hat{y}}{dt}$ Note: the use of "d" instead of " ∂ " with the function of only one independent variable

The chain rule for $\frac{\partial z}{\partial t}$ is

Limits and Continuity

Limits in 2 or more variables Limits taken over a vectorized limit just evaluate separately for each component of the limit. Strategies to show limit exists

1. Plug in Numbers, Everything is

2. Algebraic Manipulation

-factoring/dividing out -use trig identites

3. Change to polar coords $if(x,y) \rightarrow (0,0) \Leftrightarrow r \rightarrow 0$

Strategies to show limit DNE

1. Show limit is different if approached from different paths

 $(x=y, x=y^2, \text{ etc.})$

2. Switch to Polar coords and show the limit DNE.

Continunity

A fn, z = f(x, y), is continuous at (a,b) if $f(a,b) = \lim_{(x,y)\to(a,b)} f(x,y)$ Which means:

- 1. The limit exists
- 2. The fn value is defined
- 3. They are the same value

Directional Derivatives

Let z=f(x,y) be a fuction, (a,b) ap point in the domain (a valid input point) and \hat{u} a unit vector (2D). The Directional Derivative is then the derivative at the point (a,b) in the direction of \hat{u} or: $D_{\vec{u}}f(a,b) = \hat{u} \cdot \nabla f(a,b)$ This will return a scalar. 4-D version: $D_{\vec{u}}f(a,b,c) = \hat{u} \cdot \nabla f(a,b,c)$

Tangent Planes

let F(x,y,z) = k be a surface and P = (x_0, y_0, z_0) be a point on that surface. Equation of a Tangent Plane: $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle$

Approximations

let z = f(x, y) be a differentiable function total differential of f = dz $dz = \nabla f \cdot \langle dx, dy \rangle$ This is the approximate change in z The actual change in z is the difference in z values: $\Delta z = z - z_1$

Maxima and Minima

Internal Points

- 1. Take the Partial Derivatives with respect to X and Y $(f_x \text{ and } f_y)$ (Can use gradient)
- 2. Set derivatives equal to 0 and use to solve system of equations for x and v 3. Plug back into original equation for
- Use Second Derivative Test for whether points are local max, min, or saddle

Second Partial Derivative Test

1. Find all (x,y) points such that $\nabla f(x,y) = \vec{0}$ 2. Let $D = f_{xx}(x, y) f_{yy}(x, y) - f_{xy}^{2}(x, y)$ IF (a) D > 0 AND $f_{xx} < 0$, f(x,y) is local max value

- (b) D > 0 AND $f_{xx}(x, y) > 0$ f(x,y) is local min value
- (c) D < 0, (x,y,f(x,y)) is a saddle point
- (d) D = 0, test is inconclusive
- 3. Determine if any boundary point gives min or max. Typically, we have to parametrize boundary and then reduce to a Calc 1 type of min/max problem to solve.

The following only apply only if a boundary is given

1. check the corner points 2. Check each line $(0 \le x \le 5)$ would give x=0 and x=5) On Bounded Equations, this is the global min and max...second derivative

test is not needed.