Ch4. Basic Functions and Transformations

1. Even Functions and Odd Functions.

Even function: A function f is called even if $f(\alpha) = f(\alpha)$ for all a.

Odd function: A function f is called odd if f = 0for all a.

2. Complete the table of basic functions:

f(x) =

All Reg Number Domain: R (->) Range: 3 C

Odd or Even

f(-a)=c= =+(a) Odd) or Even

Domain: (-\omega, \omega) Range: (-00, 10)

f(-a) = -a = -f(a)

All Real Number Domain: (-/o, o) Range: [o,∞)

f(x) =

f(x) =

Odd or Even

a>0 $f(-\alpha) = |-\alpha| = \alpha = f(\alpha)$

Domain: (-∞,0) ∪ (0,∞) Range: (-60,0) U (0,60)

Odd) or Even

 $f(x) = \sqrt[3]{x}$

 $f(-\alpha) = -\frac{1}{\alpha} = -f(\alpha)$

Domain: (->>>>) Range: \(\int_{\mathcal{Q}_{\mathcal{P}}}\infty\) Odd or Even

 $f(-a) = (-a)^2 = a^2 = f(a)$

Domain: [0, \(\ni\))

f(x) =

Range: [0, \omega)

Odd or Even Neither

Domain: (-∞ 3∞)

Range: (-\omega, \omega)

Odd or Even f(-a) = (a) = -a = -f(a)

Range: $(-\infty, \infty)$

Odd or Even

3. Determine which of the following functions are even, odd, or neither.

(a)
$$f(x) = 2x^2 + x^4$$
 (b) $f(x) = x + 3x^3$ (c) $f(x) = x^3 + 4x^2$

4. Complete the table

4. Complete the table		
Transformation of $f(x)$	Given $f(x)$ and then draw the transformation	
y = f(x) + c	c > 0:	c < 0:
y = f(x+c)	c > 0:	c < 0:
y = cf(x)	c > 1:	0 < c < 1:
y = f(cx)	c > 1:	0 < c < 1:

