Última actualização: 3/Dez/2003

ÁLGEBRA LINEAR A REVISÃO DA PARTE IV

Parte IV - Diagonalização

Conceitos:

valor próprio, vector próprio, **espaço próprio**, subespaço invariante, base própria, multiplicidade algébrica, multiplicidade geométrica, **matriz diagonalizável**, valor e vector próprio complexo, base própria complexa, vector próprio generalizado, bloco de Jordan, **forma canónica de Jordan**, decomposição de Jordan

Dada uma matriz quadrada $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$ com entradas reais:

Um vector não-nulo $v \in \mathbb{R}^n$, diz-se um **vector próprio** de A quando Av é múltiplo escalar de v, i.e., quando $Av = \lambda v$ para algum $\lambda \in \mathbb{R}$.

Nesse caso, λ diz-se o **valor próprio** de A associado ao vector próprio v.

O espaço próprio de A associado ao valor próprio λ é $E_{\lambda} = \mathrm{Ker} \; (A - \lambda \mathrm{Id})$

Uma **base própria** de A é uma base de \mathbb{R}^n constituída por vectores próprios de A.

Um subespaço vectorial $E \subseteq \mathbb{R}^n$ é um **subespaço invariante** para A se $v \in E \Longrightarrow Av \in E$. Por exemplo, $\operatorname{Ker} A$, $\operatorname{Im} A$, \mathbb{R}^n , $\{0\}$ e os espaços próprios de A são subespaços invariantes para A.

Seja λ_0 um valor próprio de A.

A multiplicidade algébrica de λ_0 é a multiplicidade de λ_0 como raiz do polinómio característico $p_A(\lambda) = \det(A - \lambda \mathrm{Id})$.

A multiplicidade geométrica de λ_0 é a dimensão do respectivo espaço próprio $E_{\lambda} = \operatorname{Ker} (A - \lambda \operatorname{Id}).$

A multiplicidade geométrica de λ_0 é sempre menor ou igual à multiplicidade algébrica de λ_0 .

Factos:

• Vectores próprios associados a valores próprios distintos são l.i. Porquê?

Suponha-se que v_1,\ldots,v_m são vectores próprios associados aos valores próprios $\lambda_1,\ldots,\lambda_m$ distintos, e suponha-se que $c_1v_1+\ldots+c_mv_m=0$. Aplique-se a matriz $(A-\lambda_2\mathrm{Id})(A-\lambda_3\mathrm{Id})\ldots(A-\lambda_m\mathrm{Id})$ a ambos os membros desta equação para concluir que tem que ser $c_1=0$. Analogamente mostra-se que $c_2=0,\ldots,c_m=0$. Consequências:

- Se A tem n valores próprios distintos, então há uma base própria de A. Porquê? Para essa base própria escolha-se um vector próprio de A correspondente a cada valor próprio.
- ullet Se as multiplicidades geométricas dos valores próprios de A somam n, então há uma base própria de A.

Porquê? Para essa base própria escolha-se uma base de cada espaço próprio de A.

Matrizes semelhantes: Suponha-se que A e B são matrizes semelhantes, i.e., que existe uma matriz invertível S tal que $B=S^{-1}AS$. Então

• as características são iguais

$$car A = car B ;$$

• as nulidades são iguais

$$nulA = nulB$$

• os polinómios característicos são iguais

$$p_A(\lambda) = p_B(\lambda)$$

• os determinantes são iguais

$$\det A = \det B \ ;$$

• os traços são iguais

$$trA = trB$$
;

- os valores próprios são os mesmos e com as mesmas multiplicidades algébricas e geométricas;
- os vectores próprios correspondem-se mas não são necessariamente os mesmos: se v é vector próprio de B associado ao valor próprio λ , então Sv é vector próprio de A associado ao valor próprio λ .

A matriz A diz-se **diagonalizável** quando A é semelhante a uma matriz diagonal.

3

A matriz A é diagonalizável sse há uma base própria de A.

Porquê?

Suponha-se que v_1,\ldots,v_n é uma base própria de A e que $\lambda_1,\ldots,\lambda_n$ são os respectivos valores próprios associados, i.e., $Av_j=\lambda_j v_j$ (os λ_j 's podem ser repetidos). Então $S^{-1}AS=D$ onde

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \qquad \mathbf{e} \qquad S = \begin{bmatrix} & & & & | \\ v_1 & \dots & v_n & \\ & & & | & \end{bmatrix} .$$

Diagonalizar uma matriz:

verificar se a matriz A é diagonalizável e, se for, encontrar uma matriz de mudança de base S tal que $S^{-1}AS$ é diagonal. As etapas são as seguintes:

(1) Achar os valores próprios de A, i.e., achar as raízes do polinómio característico

$$p_A(\lambda) = \det(A - \lambda \operatorname{Id})$$
.

(2) Para cada valor próprio λ_i , achar uma base do seu espaço próprio

$$E_{\lambda_j} = \text{Ker } (A - \lambda_j \text{Id})$$
.

(3) A matriz A é diagonalizável sse as dimensões dos espaços próprios E_{λ_j} 's somam n. Nesse caso, obtém-se uma base própria v_1, \ldots, v_n de A coleccionando bases dos E_{λ_j} 's e $S^{-1}AS$ é diagonal onde S é a matriz cujas colunas são os v_j 's.

O problema da existência de valores próprios leva a trabalhar com *números complexos*. O problema da existência de vectores próprios leva a trabalhar com *forma canónica de Jordan*.

Teorema fundamental da Álgebra (Gauss, 1799):

Qualquer polinómio p(x) de grau n e com coeficientes complexos é da forma

$$p(x) = k(x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n)$$

para certas constantes $k, \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ $(k \neq 0)$.

l.e., a soma das multiplicidades algébricas das raízes de um polinómio de grau n é n.

Ou seja, qualquer polinómio não constante tem raízes em \mathbb{C} .

Em particular, qualquer matriz tem valores próprios em \mathbb{C} .

 $\mathbb{C}^n = \{(z_1, \dots, z_n) : z_j \in \mathbb{C}\}$ é um **espaço vectorial complexo** de dimensão n: o produto por escalares complexos

$$\lambda(z_1,\ldots,z_n)=(\lambda z_1,\ldots,\lambda z_n)$$
, $\lambda\in\mathbb{C}$

e a adição de vectores de \mathbb{C}^n

$$(z_1,\ldots,z_n)+(w_1,\ldots,w_n)=(z_1+w_1,\ldots,z_n+w_n)$$

satisfazem as propriedades da definição de espaço vectorial.

As seguintes noções e os seguintes resultados valem em \mathbb{C}^n como em \mathbb{R}^n :

- matriz, transformação linear, núcleo, imagem,
- eliminação de Gauss, forma escalonada,
- espaço vectorial, independência linear, base, dimensão, coordenadas,
- determinante, valor próprio, vector próprio, diagonalização.

Dada uma matriz quadrada $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$ com entradas complexas:

Um vector não-nulo $v \in \mathbb{C}^n$, diz-se um **vector próprio complexo** de A quando Av é múltiplo escalar de v, i.e., quando $Av = \lambda v$ para algum $\lambda \in \mathbb{C}$. Nesse caso, λ diz-se o **valor próprio complexo** de A associado ao vector próprio v. O **espaço próprio complexo** de A associado ao valor próprio λ é $E_{\lambda} = \operatorname{Ker} (A - \lambda \operatorname{Id})$ em \mathbb{C}^n . Uma **base própria complexa** de A é uma base de \mathbb{C}^n constituída por vectores próprios complexos de A. A partir daqui, mesmo que não seja dito o adjectivo "complexo", considera-se as noções de vector próprio, valor próprio, etc. neste contexto mais geral.

Por definição de polinómio característico,

$$p_A(\lambda) = \det(A - \lambda \operatorname{Id})$$

= $(-1)^n \lambda^n + (-1)^{n-1} (\operatorname{tr} A) \lambda^{n-1} + \dots + (\det A)$.

Pelo teorema fundamental da Álgebra,

$$p_A(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$$

= $(-1)^n \lambda^n + (-1)^{n-1} (\lambda_1 + \dots + \lambda_n) \lambda^{n-1} + \dots + \lambda_1 \cdot \dots \cdot \lambda_n$,

onde $\lambda_1,\ldots,\lambda_n$ são os valores próprios (complexos) de A com multiplicidades (i.e., os λ_j 's podem ser repetidos). Assim,

$$\det A = \lambda_1 \cdot \ldots \cdot \lambda_n \qquad \qquad \mathsf{e} \qquad \left[\operatorname{tr} A = \lambda_1 + \ldots + \lambda_n \right].$$

ou seja, o determinante é igual ao produto dos valores próprios (com multiplicidades) e o traço é igual à soma dos valores próprios (com multiplicidades).

F

Um **bloco de Jordan** para o valor $\lambda \in \mathbb{C}$ é uma matriz quadrada da forma

$$\begin{bmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \end{bmatrix}$$

i.e.,

- todas as entradas da diagonal principal são λ ,
- todas as entradas imediatamente acima da diagonal principal são 1 e
- todas as outras entradas são 0.

Uma forma canónica de Jordan para uma matriz A é uma matriz J formada por blocos de Jordan ao longo da diagonal e semelhante a A (i.e., $A=SJS^{-1}$ para alguma matriz invertível S).

Uma decomposição de Jordan para A é uma factorização de A do tipo

$$A = SJS^{-1}$$

onde S é uma matriz invertível (matriz de mudança de base) e J é uma matriz do tipo

com cada J_j um bloco de Jordan para o valor λ_j ,

$$J_{j} = \begin{bmatrix} \lambda_{j} & 1 & & & \\ & \lambda_{j} & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_{j} & 1 \\ & & & & \lambda_{i} \end{bmatrix} .$$

Teorema: Qualquer matriz quadrada tem formas canónicas de Jordan.

Para achar decomposições de Jordan para A, começa-se por calcular os valores próprios e os vectores próprios de A.

• Quando há uma base própria de A, achar uma decomposição de Jordan para A é diagonalizar A: Seja $v_1, v_2, \ldots v_n$ uma base de vectores próprios de A, com $\lambda_1, \lambda_2, \ldots \lambda_n$ os respectivos valores próprios associados. Então $A = SJS^{-1}$ com

$$S = \begin{bmatrix} & & & & | \\ v_1 & \dots & v_n & & \\ & & & | & \end{bmatrix} \qquad \mathbf{e} \qquad J = D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} .$$

Neste caso, todos os blocos de Jordan que formam J são 1×1 .

• Quando não há uma base própria de A, para obter uma base há que completar o máximo de vectores próprios l.i. que se conseguir com vectores próprios generalizados. Um vector não-nulo $w \in \mathbb{C}^n$, diz-se um vector próprio generalizado de A para o valor próprio λ quando $(A-\lambda \mathrm{Id})^n w=0$ para algum $n=1,2,3,\ldots$ De seguida, mostra-se como é que se obtém decomposições de Jordan para matrizes 2×2 e 3×3 com vectores próprios generalizados.

O número de blocos de Jordan em J é sempre igual ao número máximo de vectores próprios linearmente independentes de A.

Para **matrizes** 2×2 só há dois casos possíveis:

Caso 1 Há uma base constituída por vectores próprios v_1 e v_2 (eventualmente complexos) de A. Sejam λ_1 e λ_2 os respectivos valores próprios, i.e., $Av_i = \lambda_i v_i$, i = 1, 2 (pode ser $\lambda_1 = \lambda_2$). Então uma decomposição de Jordan (neste caso, uma diagonalização) para A é

$$A = \underbrace{\begin{bmatrix} & | & & | \\ v_1 & v_2 & & | \\ & & | & & | \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} \lambda_1 & & & \\ \lambda_2 & & & \\ & & \lambda_2 \end{bmatrix}}_{J=D} \underbrace{\begin{bmatrix} & & & \\ & & & \\ & & & & \\ & & & & \end{bmatrix}}_{S^{-1}}.$$

Caso 2 Todos os vectores próprios são múltiplos de um v para o valor próprio λ : tem-se $v \neq 0$ e $(A - \lambda \mathrm{Id})v = 0$. Seja w um vector próprio generalizado que é solução da equação $A = (A - \lambda \mathrm{Id})w = v$. Então uma decomposição de Jordan para A é

$$A = \underbrace{\left[\begin{array}{c|c} | & | \\ v & w \\ | & | \end{array}\right]}_{S} \underbrace{\left[\begin{array}{c} \lambda & 1 \\ \lambda \end{array}\right]}_{J} \underbrace{\left[\begin{array}{c} \\ \\ \end{array}\right]}_{S^{-1}}$$

Para **matrizes** 3×3 há três casos possíveis:

Caso 1 Há uma base constituída por vectores próprios v_1 , v_2 e v_3 (eventualmente complexos) de A. Sejam λ_1 , λ_2 e λ_3 os respectivos valores próprios, i.e., $Av_i = \lambda_i v_i$, i = 1, 2, 3 (os λ_i 's podem ser repetidos). Então uma decomposição de Jordan (neste caso, uma diagonalização) para A é

$$A = \underbrace{\begin{bmatrix} & | & & | & & \\ & v_1 & v_2 & v_3 & \\ & & & | & & | \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & & \end{bmatrix}}_{S^{-1}}$$

Caso 2 Há dois vectores próprios v_1 e v_2 linearmente independentes, mas não três. Sejam λ_1 e λ_2 os respectivos valores próprios, i.e., $Av_i=\lambda_i v_i,\ i=1,2$ (pode ser $\lambda_1=\lambda_2$).

Quando $\lambda_1 \neq \lambda_2$, suponha-se sem perda de generalidade que λ_1 é o valor próprio com multiplicidade algébrica 2, ou seja, que o polinómio característico de A é $p_A(\lambda) = -(\lambda - \lambda_1)^2(\lambda - \lambda_2)$. Ache-se um vector próprio generalizado w que é solução da equação $A = (A - \lambda_1)^2(\lambda - \lambda_2)$. Então uma decomposição de Jordan para $A = (A - \lambda_1)^2(\lambda - \lambda_2)$.

Quando $\lambda_1=\lambda_2$ só há um valor próprio a que se chama λ_0 , ou seja, o polinómio característico de A é $p_A(\lambda)=-(\lambda-\lambda_0)^3$. Em geral, há que substituir os vectores próprios v_1 , v_2 por outros linearmente independentes tais que um deles pertença ao espaço das colunas de $A-\lambda_0\mathrm{Id}$. Sem perda de generalidade, suponha-se que v_1 e v_2 já foram escolhidos de maneira a ser $v_1\in\mathrm{Im}\ (A-\lambda_0\mathrm{Id})$. Assim há um vector próprio generalizado w satisfazendo a equação $A-\lambda_0\mathrm{Id}$. Então uma decomposição de Jordan para A é

Caso 3 Todos os vectores próprios são múltiplos de um v para o valor próprio λ : temse $v \neq 0$ e $(A - \lambda \operatorname{Id})v = 0$. Seja w um vector próprio generalizado que é solução da equação $A - \lambda \operatorname{Id} v = v$ e seja u um vector próprio generalizado que é solução da equação $A - \lambda \operatorname{Id} v = v$. Então uma decomposição de Jordan para A é

$$A = \underbrace{\begin{bmatrix} \mid & \mid & \mid \\ v & w & u \\ \mid & \mid & \mid \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} \lambda & 1 \\ & \lambda & 1 \\ & & \lambda \end{bmatrix}}_{I} \underbrace{\begin{bmatrix} & & & \\ & \lambda & 1 \\ & & \lambda \end{bmatrix}}_{S^{-1}}$$