Dispersion Relation of GKP Strings

Georgios Linardopoulos

Department of Physics, National and Kapodistrian University of Athens Institute of Nuclear and Particle Physics, N.C.S.R., "Demokritos"

Summer School on String Theory and Holography

Mathematica Summer School on Theoretical Physics, 6th Edition Lisbon/Porto 14-26 July 2014

Departamento de Fsica e Astronomia of Faculdade de Ciências da Universidade do Porto (FCUP)

Porto, 24 July 2014

1 Dispersion Relation of GKP Strings (arXiv:1311.5800)

1.1 Lambert W-Function

We want to check the following formula that gives the dispersion relation of what is known as the $\mathbb{R} \times S^2$ Gubser-Klebanov-Polyakov (GKP) string:

$$\mathcal{E} - \mathcal{J} = 1 - \frac{1}{4\mathcal{J}} \left(2W + W^2 \right) - \frac{1}{16\mathcal{J}^2} \left(W^2 + W^3 \right) - \frac{1}{256\mathcal{J}^3} \frac{W^3 \left(11W^2 + 26W + 16 \right)}{1 + W} + \dots, \tag{1.1}$$

- leading terms: $-\frac{1}{4\mathcal{J}}(2W+W^2) = \sum_{n=1}^{\infty} \mathfrak{a}_n \mathcal{J}^{n-1} (e^{-2\mathcal{J}-2})^n$.
- subleading terms: $-\frac{1}{16\mathcal{J}^2} (W^2 + W^3) = \sum_{n=2}^{\infty} \mathfrak{b}_n \mathcal{J}^{n-2} (e^{-2\mathcal{J}-2})^n$.
- next-to-subleading terms: $-\frac{1}{256\mathcal{J}^3} \frac{W^3 \left(11 W^2 + 26 W + 16\right)}{1 + W} = \sum_{n=3}^{\infty} \mathfrak{c}_n \, \mathcal{J}^{n-3} \, \left(e^{-2\mathcal{J}-2}\right)^n$.

where $\mathcal{E} \equiv \pi E/2\sqrt{\lambda}$ and $\mathcal{J} \equiv \pi J/2\sqrt{\lambda}$ are the (scaled) energy and angular momentum of the GKP string and the argument of the Lambert W-function is $W\left(8\mathcal{J}e^{-2\mathcal{J}-2}\right)$.

Upon expansion of Lambert's W-function, the second, third and fourth term on the r.h.s. of (1.1) provide three infinite series of coefficients which completely determine the L, NL and NNL contributions to the large-J finite-size corrections to the dispersion relation of a closed folded single-spin string rotating in $\mathbb{R} \times S^2$.

1.2 Series Inversion

To check (1.1), we write down the expressions for the conserved string charges:

$$E\left(\omega\right) = \frac{2\sqrt{\lambda}}{\pi\,\omega} \cdot \mathbb{K}\left(\frac{1}{\omega^2}\right) \Rightarrow \mathcal{E} \equiv \frac{\pi\,E}{2\,\sqrt{\lambda}} = \sqrt{1-x} \cdot \mathbb{K}\left(1-x\right), \qquad g = \frac{\sqrt{\lambda}}{4\pi}, \quad \lambda = g_{\text{YM}}^2\,N = R^4/\alpha'^2 \quad (1.2)$$

$$J(\omega) = \frac{2\sqrt{\lambda}}{\pi} \cdot \left[\mathbb{K}\left(\frac{1}{\omega^2}\right) - \mathbb{E}\left(\frac{1}{\omega^2}\right) \right] \Rightarrow \mathcal{J} \equiv \frac{\pi J}{2\sqrt{\lambda}} = \mathbb{K}(1-x) - \mathbb{E}(1-x), \tag{1.3}$$

where ω is the angular velocity of the GKP string and $x \equiv 1 - 1/\omega^2$ the complementary parameter of $1/\omega^2$. For long folded strings on S² ($\omega \to 1^+$), we expand the string energy and spin in terms of $x \to 0^+$:

$$\mathcal{E} \equiv \frac{\pi E}{2\sqrt{\lambda}} = \sqrt{1 - x} \cdot \sum_{n=0}^{\infty} x^n \left(d_n \ln x + h_n \right) = -\sum_{n=0}^{\infty} x^n \cdot \sum_{k=0}^n \frac{(2k - 3)!!}{(2k)!!} \left(d_{n-k} \ln x + h_{n-k} \right) \tag{1.4}$$

$$\mathcal{J} \equiv \frac{\pi J}{2\sqrt{\lambda}} = \sum_{n=0}^{\infty} x^n \left(c_n \ln x + b_n \right). \tag{1.5}$$

The coefficients that appear in series (1.4) and (1.5) are given by:

$$d_{n} = -\frac{1}{2} \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2}, \qquad h_{n} = -4 d_{n} \cdot (\ln 2 + H_{n} - H_{2n})$$

$$c_{n} = -\frac{d_{n}}{2n-1}, \qquad b_{n} = -4 c_{n} \cdot \left[\ln 2 + H_{n} - H_{2n} + \frac{1}{2(2n-1)} \right], \qquad n = 0, 1, 2, \dots$$
 (1.6)

We will use Mathematica to invert series (1.5) in terms of $x = x(\mathcal{J})$, then plug the result into (1.4) and obtain the first few terms of the finite-size corrections to the dispersion relation of the GKP string, $\mathcal{E} = \mathcal{E}(\mathcal{J})$.

Our result will be compared with the one for \mathfrak{a}_n , \mathfrak{b}_n , \mathfrak{c}_n that was found above.