

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № <u>6</u>

Название: Построение и программная реализация алгоритмов

численного дифференцирования

Дисциплина: Вычислительные алгоритмы

Студент	ИУ7И - 46Б		Андрич К.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			В.М. Градов
		(Полпись дата)	(И.О. Фамилия)

Цель работы

Получение навыков построения алгоритма вычисления производных от сеточных функций.

Задание

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

параметры функции неизвестны и определять их не нужно.

			-	-		
x	У	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3 2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.

В столбец 5 занести вторую разностную производную.

Код программы

В программе есть 4 файлов: 2 заголовочных файла (functions.h и errors.h) и 2 файла кода в СИ (main.c, functions.c)

errors.h

```
#ifndef ERRORS_H
#define ERRORS_H

#define OK 0
#define NO_VALUE -1
#endif //ERRORS_H
```

functions.h

```
#ifndef FUNCTIONS H
#define FUNCTIONS H
#include <stdio.h>
#include <stdlib.h>
#define N 6
typedef struct
{
     float y1;
     float y2;
     float y3;
     float y4;
     float y5;
} struct_t;
float left_diffder(float Y[N], int step, int inx);
float center diffder(float Y[N], int step, int inx);
float runge_second(float Y[N], int step, int inx);
float alignment_vars(float Y[N], float X[N], int inx);
float second_diffder(float Y[N], int step, int inx);
void solve(struct t results[N], float X[N], float Y[N]);
void check print(float x);
void print(struct_t results[N], float Y[N]);
#endif //FUNCTIONS_H
```

```
#include "functions.h"
#include "errors.h"
float left_diffder(float Y[N], int step, int inx)
{
   float result;
   if (inx > 0 && inx < N)</pre>
   {
        result = (Y[inx] - Y[inx - 1]) / step;
        return result;
    }
    else
        return NO_VALUE;
}
float center_diffder(float Y[N], int step, int inx)
   float result;
   if (inx > 0 \&\& inx < N - 1)
   {
        result = (Y[inx + 1] - Y[inx - 1]) / (2 * step);
        return result;
    }
    else
        return NO_VALUE;
}
float runge_second(float Y[N], int step, int inx)
    float result, y1, y2;
   if (inx >= 2)
    {
        y1 = left_diffder(Y, step, inx);
        y2 = (Y[inx] - Y[inx - 2]) / (2 * step);
        result = 2 * y1 - y2;
        return result;
    }
    else
        return NO_VALUE;
}
float alignment_vars(float Y[N], float X[N], int inx)
```

```
float result, d;
             if (inx <= N - 2)
             {
                           d = ((1 / Y[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1]) - (1 / Y[inx])) / ((1 / X[inx + 1])) / ((1
X[inx]));
                            result = (d * (Y[inx] * Y[inx])) / (X[inx] * X[inx]);
                           return result;
              }
             else
                           return NO_VALUE;
}
float second_diffder(float Y[N], int step, int inx)
{
             float result;
             if (inx > 0 && inx < N - 1)
                           result = (Y[inx - 1] - 2 * Y[inx] + Y[inx + 1]) / (step * step);
                           return result;
              }
              else
                           return NO_VALUE;
}
void solve(struct t results[N], float X[N], float Y[N])
{
             int step = 1;
             for (int i = 0; i < N; i++)
             {
                           results[i].y1 = left_diffder(Y, step, i);
                           results[i].y2 = center_diffder(Y, step, i);
                           results[i].y3 = runge second(Y, step, i);
                           results[i].y4 = alignment_vars(Y, X, i);
                           results[i].y5 = second_diffder(Y, step, i);
             }
}
void check_print(float x)
{
             if (x == NO_VALUE)
                           printf("| %11s ", "-");
              else
                           printf("| %11f ", x);
```

```
}
void print(struct_t results[N], float Y[N])
{
    printf("| %11s ", "X");
   printf("| %11s ", "Y");
   for (int i = 0; i < N - 1; i++)
        printf("| %11d ", i + 1);
   printf("|\n");
   for (int i = 0; i < N; i++)
    {
        printf("| %11d ", i + 1);
        printf("| %11f ", Y[i]);
        check print(results[i].y1);
        check_print(results[i].y2);
        check print(results[i].y3);
        check_print(results[i].y4);
        check print(results[i].y5);
       printf("|\n");
```

main.c

```
#include "functions.h"
#include "errors.h"

int main(void)
{
    float X[N] = {1.00, 2.00, 3.00, 4.00, 5.00, 6.00};
    float Y[N] = {0.571, 0.889, 1.091, 1.231, 1.333, 1.412};
    struct_t results[N];
    solve(results, X, Y);
    print(results, Y);
    return OK;
}
```

Результаты работы

```
atarina@LAPTOP
               I1VEUM2H:/mnt/c/Users/katar/Desktop/MSTU Bauman/main/Algorithm/LR6$ ./app.exe
                                       1 |
                                                                     3
                                                                                   4
                                                                                                  5
                                                      2
                  0.571000
                                                                            0.408499
                  0.889000
                                0.318000
                                               0.260000
                                                                            0.246899
                                                                                          -0.116000
                  1.091000
                                0.202000
                                               0.171000
                                                             0.144000
                                                                            0.165437
                                                                                          -0.062000
                                                                            0.117744
                                                                                          -0.038000
                  1.231000
                                0.140000
                                               0.121000
                                                             0.109000
                                               0.090500
                                                                            0.089496
                                                                                          -0.023000
           5
                  1.333000
                                0.102000
                                                             0.083000
                  1.412000
                                0.079000
                                                             0.067500
```

X	Y	1	2	3	4	5
1	0.571	-	-	-	0.408499	-
2	0.889	0.318000	0.260000	-	0.2468899	-0.11600
3	1.091	0.202000	0.171000	0.144000	0.165437	-0.06200
4	1.231	0.140000	0.121000	0.109000.	0.117744	-0.038000
5	1.333	0.102000	0.090500	0.083000	0.089496	-0.023000
6	1.412	0.079000	-	0.067500	-	-

Левая разностная производная с точностью O(h)

$$y'_n = \frac{y_n - y_{n-1}}{h} + O(h)$$
.

Не возможно вычислить первое значение

Центральная разностная производная с точностью $O(h^2)$

$$y'_n = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2).$$

Не возможно вычислить первое и шестое значение

2ая формула Рунге с точностью $O(h^2)$

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2).$$

Не возможно вычислить первое и второе значение

Выравнивающие переменные

$$y_{x'} = \frac{\eta_{\xi'} \xi_{x'}}{\eta_{y'}} = \frac{\eta_{\xi'} y^2}{x^2}$$

Не возможно вычислить шестое значение

2ая разностная производная с точностью $O(h^2)$

$$y''_n = \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} + O(h^2)$$

Не возможно вычислить первое и шестое значение

Вопросы при защите лабораторной работы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной N y' в крайнем правом узле x_N .

$$y^{N-1} = y^{N} - \frac{h}{1!} y^{N} + \frac{h^{2}}{2!} y^{N} - \frac{h^{3}}{3!} y^{N} + \frac{h^{4}}{4!} y^{N} - \dots$$

$$2h^{2}y^{N} = y^{N-2} - y^{N} + 2hy^{N}$$

$$2h^{2}$$

$$y^{N-1} = y^{N} - hy^{N} + \frac{h^{2}}{2} \frac{y^{N-2} - y^{N} + 2hy^{N}}{2h^{2}}$$

$$y^{N-1} = y^{N} - hy^{N} + \frac{h^{2}}{2} \frac{y^{N-2} - y^{N} + 2hy^{N}}{2h^{2}}$$

$$y^{N-1} = y^{N} - hy^{N} + \frac{y^{N-2} - y^{N} + 2hy^{N}}{4}$$

$$y^{N-1} = \frac{4y^{N} - 4hy^{N} + y^{N-2} - y^{N} + 2hy^{N}}{4}$$

$$4y^{N-1} = 3y^{N} - 2hy^{N} + y^{N-2}$$

$$y^{N} = \frac{3y^{N} - 4y^{N-1} + y^{N-2}}{2h} + O(h^{2})$$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной y_0 " в крайнем левом узле x_0 .

$$y_{1} = y_{0} + \frac{hy'_{0}}{1!} + \frac{h^{2}}{2!} y_{0}" + \frac{h^{3}}{3!} y_{0}" + \frac{h^{4}}{4!} y_{0}" + \frac{h^{4}}{$$

$$y_{0}'' - \frac{y_{0}''}{2} = \frac{y_{2} - 2y_{1} + 2y_{0}}{2h^{2}}$$

$$y_{0}'' = \frac{y_{2} - 2y_{1} + 2y_{0}}{42} + O(h^{2})$$

3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной y_0' в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$
.

$$\Omega = \phi(h) + \frac{\phi(h) - \phi(mh)}{m^{p} - 1} + O(h^{p} + 1)$$

$$m = 2, p - 1$$

$$\phi(h) + \phi(h) - \phi(2h) + O(h^{2}) = 2 \phi(h) - \phi(2h) + O(h^{2})$$

$$2\left(\frac{y_{1} - y_{2}}{h^{2}} - \frac{y_{2}}{2}y_{0}^{"}\right) - \left(\frac{y_{2} - y_{2}}{2h} - hy_{0}^{"}\right) + O(h^{2}) = \frac{-3y_{0} + 4y_{1} - y_{2}}{2h}$$

$$\Omega = 11 + h + \frac{h^{2}}{h^{2}} + \frac{h^{2}}{h^{2}} + \frac{13}{h^{2}}$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной y_0' в крайнем левом узле x_0 .

$$y_{1} = y_{0} + \frac{h}{1!} y_{0}' + \frac{h^{2}}{2!} y_{0}'' + \frac{h^{3}}{3!} y_{0}''' + \frac{h^{4}}{4!} y_{1}'' + \dots$$

$$y_{2} = y_{0} + \frac{2h}{7!} y_{0}' + \frac{4h^{2}}{2!} y_{0}'' + \frac{8h^{3}}{3!} y_{0}''' + \frac{16h^{4}}{4!} y_{1}'' + \dots$$

$$y_{3} = y_{0} + \frac{3h}{1!} y_{0}' + \frac{gh^{2}}{2!} y_{0}'' + \frac{12h^{3}}{3!} y_{0}''' + \frac{8h^{4}}{4!} y_{1}'' + \dots$$

$$y_{0}' = y_{1} - y_{0} - \frac{h^{2}}{2} y_{0}'' - \frac{h^{3}}{6!} y_{0}'''$$

$$y_{0}'' = \frac{4y_{1} - 3y_{0} - y_{2}}{2h} + \frac{h^{2}}{3!} y_{0}'''$$

$$y_{0}''' = \frac{4y_{3} - y_{0} - 3hy_{0}' - \frac{9}{2}h^{2} y_{0}''}{27h^{3}}$$

$$y_{0}''' = \frac{4y_{3} - y_{0} - 3hy_{0}' - \frac{9}{2}h^{2} y_{0}''}{27h^{3}}$$

$$y_{0}'' = \frac{4y_{3} - 27y_{3} + 108y_{1} - 85y_{0}}{664} + O(h^{3})$$