團隊測驗報告

報名序號:110087

團隊名稱:教授哩底隊

註1:請用本PowerPoint 文件撰寫團隊程式說明,請轉成PDF檔案繳交。

註2:依據競賽須知第七條,第4項規定:

測試報告之簡報資料不得出現企業、學校系所標誌、提及企業名稱、 學校系所、教授姓名及任何可供辨識參賽團隊組織或個人身分的資料 或資訊,違者取消參賽資格或由評審會議決議處理方式。

一、資料前處理

• 資料預處理

▶目的:整理重複數據資料

▶檔名:dataset.py

- ▶自定義函式toIndependent_csv(),將數據集中F_1到F_13欄位相同但O欄位輸出 資料不同的訓練資料做處理,使得每筆訓練資料皆不重複
- ▶O欄位輸出處理可為平均數(mean)、中位數(median)或眾數(mode)

資料標準化(Standardization/ Z-score normalization)

▶目的:轉換數據資料結構以加速收斂

▶檔名:csv utils.py

▶將清理過後的資料利用sklearn內建函式StanderScaler()與fit_transform(),使得所有數據的平均為0、標準差為1,並將資料轉換成符合運算結構的張量(tensor)

二、演算法和模型介紹(P.1)

- 演算法介紹
 - ➤使用Multi-Layer Perceptron(MLP)演算法
 - ➤並利用Model ensemble來增加訓練的預測表現

二、演算法和模型介紹(P.2)

- 模型介紹與優化
 - 1. 使用 Multi-Layer Perceptron(MLP) 模型架構,並建立三層隱藏層
 - ① 檔名:model.py
 - ② 輸入層節點數:13 (資料特徵值F_1~F_13)
 - ③ 第一隱藏層節點數:128
 - ④ 第二隱藏層節點數:256
 - ⑤ 第三隱藏層節點數:128 or 256
 - ⑥ 輸出層節點數:1 (預測O值)
 - 2. 使用 Adam(Adaptive Moment Estimation) 學習優化器
 - ① 目的:用於優化類神經網路中的權重與偏差值
 - ② 優化器建立在train.py檔之中

二、演算法和模型介紹(P.3)

- 模型評估與收斂
 - 1. 建立損失函數(Loss Function)
 - ① 目的:評估預測結果與真實值間之差異
 - ② 使用均方誤差(Mean Squared Error, MSE)來建立函數
 - ③ 損失函數建立在train.py檔之中
 - 2. 使用Gradual Warm-up策略 (訓練初期)
 - ① 目的:起初訓練的Loss值通常都很大,而我們為了避免資料的過擬合(Overfitting),所以建立Warm-up策略,而Gradual Warm-up是用漸進式的方式由低到高增加Learning rate來訓練每個Epoch。此機制不僅能避免Learning rate突然增加,也可以幫助訓練初期能有較好的收斂
 - ② Gradual Warm-up策略建立在train.py檔之中

二、演算法和模型介紹(P.4)

- 模型評估與收斂
 - 3. 使用Cosine Annealing策略 (訓練中後期)
 - ① 目的:訓練後期容易因為過大的Learning rate使得模型陷入局部最小值(Local minimum) 而影響效能,利用Cosine Annealing漸進式的方式由高到低減少Learning rate來訓練後期的模型,幫助找到全局最小值(Global minimum)
 - ② Cosine Annealing策略建立在train.py檔之中

二、演算法和模型介紹(P.5)

- Dataloaders -- PyTorch中用於讀取數據的接口
 - 1. 透過資料前處理後,所篩選出的資料筆數共 21,766 筆
 - 2. 為了避免篩選過後的資料過擬合(Overfitting),我們利用sklearn內建函式 train_test_split(),透過設定超參數訓練檔(training.yaml)中的 VAL_RATE 參數來劃分訓練資料與驗證資料的比重
 - ① VAL_RATE: 0.8(or 0.9)
 - ② 訓練資料(train_loader): 17,412(or 19,589) 筆資料
 - ③ 驗證資料(val loader): 4,354(or 2,177) 筆資料

三、預測結果(P.1)

• 在進行預測後,以下有幾種較佳之模型設定:

模型	輸入層	隱藏層	各隱藏層	VAL_RATE	資料前處理	輸出層
編號	節點數	層數	節點數	參數設定	(O欄位)	節點數
1	13	3	128-256-128	0.8	O欄位輸出處理使用 平均數	1
2	13	3	128-256-128	0.8	O欄位輸出處理使用 中位數	1
3	13	3	128-256-128	<u>0.9</u>	O欄位輸出處理使用 平均數	1
4	13	<u>5</u>	128-256-256-256-128	0.8	O欄位輸出處理使用 平均數	1

三、預測結果(P.2)

• 在演算法的介紹當中,我們提及利用Model ensemble來增加訓練的預測表現,所以我們將四種模型所預測的分數加以平均作為我們的預測值結果。

S	eq MLP	_13-128-256-128 MLP	_13-128-256-128 ML	P_13-128-256-128 MI	LP_13-128-256-256-256-128	Average Output
	1	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	2	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	3	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	4	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	5	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	6	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	7	2.819832325	-0.026237428	0.512207687	0.970664978	1.069116891
	8	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	9	2.819832325	-0.026237428	0.512207687	0.970664978	1.069116891
	10	2.819832325	-0.026237428	0.512207687	0.970664978	1.069116891
	11	2.819832325	-0.026237428	0.512207687	0.970664978	1.069116891
	12	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	13	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	14	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	15	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	16	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	17	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	18	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	19	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375
	20	2.389365196	-0.010343552	-0.004091883	0.829967737	0.801224375

註:資料筆數眾多僅擷取部分示意

四、Tensorboard訓練圖示(P.1)

A.訓練資料(Train)

四、Tensorboard訓練圖示(P.2)

B.驗證資料(Validation)

四、Tensorboard訓練圖示(P.3)

B.驗證資料(Validation)

註:Epoch數為1,000