Assignment 6.

1. Given ACS. Define XA: S > IR, the characteristic function of A, by

Consider $X_A: IR \to IR$. What are the pts. where X_A is cts.? What one the pts. where it is discontinuous?

- 2. Let $f: (M,d) \rightarrow (N,g)$ be continuous, and let A be a separable subset of M. Prove that f(A) is also separable.
- 3. A function $f: \mathbb{R} > \mathbb{R}$ is said to be Lipschitz function if $\exists \ k < \infty$ st. $|f(x) f(y)| \leq k |x y|, \ \forall \ x, y \in \mathbb{R}.$ Prove that a Lipschitz function is continuous.
- 4. Fix k > 1 and define f: lo => iR by f(x) = xk · 1s f continuous? Explain.
- 5. Define $g: l_2 \to \mathbb{R}$ by $g(x) = \sum_{n=1}^{\infty} a_n/n$. Is g continuous ? Explain.
 - 6. fix y elo and define h: l, → l, by h(x) = (xn, yn) . Show that his continuous.
- 7. Suppose that we are given a point x and a seq. (x_n) in a metric space M, and suppose that $f(x_n) \to f(x)$, \forall continuous, real-valued function f on M.

 Does it follow that $x_n \to x$ in M? Explain.
- 8. Given disjoint nonempty closed sets E, F, define $f: M \to \mathbb{R}$ by $f(x) = \frac{d(x, E)}{d(x, F)}$

Show that f is a cts. function on M.

