МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫХ НАУК КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №1.2 «Метод наименьших квадратов и модели регрессии» Группа ФН11-52Б

Вариант №9

Студент: Очкин Н.В.

Преподаватель: Кутыркин В.А.

Оценка:

Задание 2.1

Дана модель линейной регрессии:

$$Y = x_*^0 + z_1 x_*^1 + z_2 x_*^2 + z_3 x_*^3 + z_4 x_*^4 + z_5 x_*^5 + z_6 x_*^6 + \varepsilon$$
 (1)

Для оценки неизвестных вектора тренда ${}^>x_*=\left[x_*^0,x_*^1,\ldots,x_*^k\right)\in{}^>\mathbb{E}^{k+1}$ и параметра σ от случайной составляющей $\varepsilon\sim\mathcal{N}(0,\sigma)$ модели линейной регрессии (1). проводился эксперимент, в котором получены m=20 значений $y^1,\ldots,y^m\in\mathbb{R}$ регрессора модели (1) для m различных наборов ${}^<z^1=\left\langle z_1^1,\ldots,z_6^1\right\rangle,\ldots,{}^<z^m=\left\langle z_1^m,\ldots,z_6^m\right\rangle\in{}^<\mathbb{R}^6$ шести факторов модели (1).

Требуется получить оценки вектора тренда ${}^>x_* = \left[x_*^0, x_*^1, \dots, x_*^k\right) \in {}^>\mathbb{E}^{k+1}$ и параметра σ от случайной составляющей $\varepsilon \sim \mathcal{N}(0,\sigma)$ модели линейной регрессии (1). Если возможно, редуцировать модель регрессии (1) до приведённой модели. Результаты расчётов проиллюстрировать графически, сопроводив их необходимыми комментариями.

Решение

$$N = 9, \alpha = -0.025$$

z^1	z^2	z^3	z^4	z^5	z^6	$y + \alpha$	у
1.158574	1.194067	1.745872	1.566271	1.825556	1.942503	14.77	14.795
1.238868	1.913419	1.182653	1.044649	1.304209	1.924039	13.41	13.435
1.564043	1.561357	1.070589	1.778954	1.226447	1.824122	13.84	13.865
1.737266	1.798975	1.952239	1.752281	1.247871	1.54796	13.6	13.625
1.364544	1.03122	1.380596	1.688101	1.987396	1.058504	13.23	13.255
1.535295	1.742973	1.580401	1.063356	1.999237	1.425459	14.88	14.905
1.780725	1.306711	1.972594	1.68627	1.582629	1.767235	15.39	15.415
1.135044	1.139164	1.686178	1.220069	1.034577	1.019745	9.56	9.585
1.246498	1.114597	1.079653	1.333415	1.054445	1.156743	10.37	10.395
1.416456	1.349223	1.68038	1.003235	1.471908	1.095523	11.95	11.975
1.611866	1.972991	1.443953	1.014008	1.91699	1.182531	14.13	14.155
1.520585	1.427992	1.464156	1.011505	1.108341	1.981536	13.83	13.855
1.229896	1.304392	1.852107	1.705496	1.725639	1.21482	12.51	12.535
1.726829	1.866756	1.074984	1.09888	1.983154	1.256935	14.9	14.925
1.77279	1.363353	1.227454	1.076754	1.656758	1.675253	15.31	15.335
1.418256	1.072481	1.123447	1.438917	1.059481	1.080325	10.67	10.695
1.119724	1.947356	1.372631	1.635578	1.94058	1.112827	12.52	12.545
1.728446	1.802332	1.365001	1.184759	1.119633	1.880032	14.18	14.205
1.161107	1.359294	1.956206	1.143406	1.49144	1.688437	13.02	13.045
1.963561	1.271859	1.250008	1.19367	1.466262	1.624409	15.16	15.185

Вычисления проведём в «python» с помощью библиотеки «statsmodels».

Результаты вычислений:

	У-пересечение	z^1	z^2	z^3	z^4	z^5	z^6
Коэффициенты	0.017	2.9986	0.0062	-0.001	0.0005	2.9996	3.0001
t-статистика	1.7929	820.6219	2.0042	-0.3436	0.1451	1091.222	1062.342
Нижние 95%	-0.0035	2.9907	-0.0005	-0.0075	-0.0064	2.9936	2.994
Верхние 95%	0.0375	3.0065	0.0129	0.0054	0.0073	3.0055	3.0062