MATH 2106 Homework 2

Wenqi He

September 6, 2018

Problem 1

GCD(a, b) can be written as an integer combination of a and b:

$$g = ax + by$$

If $c \mid a$ and $c \mid b$, then $c \mid RHS$, and therefore $c \mid LHS$

Problem 2

If M is prime, then it's already a contradiction. On the other hand, if it's composite, then it must be divisible by some p_i . Suppose $p_i \mid M$. Since p_i also divides every term on the right side except the i-th term

$$p_i \mid M - \sum_{j \neq i} A_j \Rightarrow p_i \mid A_i$$

where A_i denotes the *i*-th term. If $p_i \mid A_i$, then p_i must divide some p_j where $j \neq i$, since the prime factorization of the *i*-th term doesn't contain p_i . However, p_j is only divisible by 1 and itself, so this is a contradiction.

Problem 3

Apply the GCD algorithm;

$$990 = 11 \cdot 84 + 66$$

$$84 = 1 \cdot 66 + 18$$

$$66 = 3 \cdot 18 + 12$$

$$18 = 1 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$

so
$$GCD(990, 84) = GCD(12, 6) = 6$$
.

$$6 = 18 - 12$$

$$= 18 - (66 - 3 \cdot 18) = -1 \cdot 66 + 4 \cdot 18$$

$$= -1 \cdot 66 + 4 \cdot (84 - 66) = 4 \cdot 84 - 5 \cdot 66$$

$$= 4 \cdot 84 - 5 \cdot (990 - 11 \cdot 84) = -5 \cdot 990 + 59 \cdot 84$$

Scale the equation by 4:

$$-20 \cdot 990 + 236 \cdot 84 = 24$$

To find the general solution, we can add and subtract multiples of

$$lcm(a,b) = \frac{ab}{gcd(a,b)} = \frac{990 \cdot 84}{6}$$

$$-20 \cdot 990 + 236 \cdot 84 + \frac{990 \cdot 84}{6}t - \frac{990 \cdot 84}{6}t = 24$$
$$990\left(-20 + \frac{84}{6}t\right) + 84\left(236 - \frac{990}{6}t\right) = 24$$
$$990\left(-20 + 14t\right) + 84\left(236 - 165t\right) = 24$$

Therefore,

$$\begin{cases} x = -20 + 14t \\ y = 236 - 165t \end{cases}$$

1.4.6

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$
$$\mathcal{P}(\{3\}) = \{\emptyset, \{3\}\}$$

$$\mathcal{P}(\{1,2\}) \times \mathcal{P}(\{3\}) = \\ \{(\emptyset,\emptyset),(\emptyset,\{3\}),(\{1\},\emptyset),(\{1\},\{3\}),(\{2\},\emptyset),(\{2\},\{3\}),(\{1,2\},\emptyset),(\{1,2\},\{3\})\} \\$$

1.4.18

$$|P(A \times P(B))| = 2^{|A \times P(B)|} = 2^{|A| \cdot |P(B)|} = 2^{|A| \cdot 2^{|B|}} = 2^{m \cdot 2^n}$$

1.8.4

$$\bigcup_{i\in\mathbb{N}} A_i = \{2n : n \in \mathbb{Z}\}, \quad \bigcap_{i\in\mathbb{N}} A_i = \{0\}$$

1.8.8

$$\bigcup_{\alpha \in \mathbb{R}} \{\alpha\} \times [0,1] = \{(x,y) \in \mathbb{R}^2 : 0 \leq y \leq 1\}, \quad \bigcap_{\alpha \in \mathbb{R}} \{\alpha\} \times [0,1] = \emptyset$$

1.8.14

Yes. if $x \in \bigcap_{\alpha \in I} A_{\alpha}$, then $\forall \alpha \in I : x \in A_{\alpha}$. Now since $J \subseteq I$,

$$\alpha' \in J \Rightarrow \alpha' \in I \Rightarrow x \in A_{\alpha'}$$

In other words, $\forall \alpha' \in J : x \in A_{\alpha'}$, or equivalently $x \in \bigcap_{\alpha \in J} A_{\alpha}$. Therefore,

$$x \in \bigcap_{\alpha \in I} A_\alpha \Rightarrow x \in \bigcap_{\alpha \in J} A_\alpha$$

or equivalently,

$$\bigcap_{\alpha \in I} A_{\alpha} \subseteq \bigcap_{\alpha \in J} A_{\alpha}$$

2.5.10

The statement is only false when $(P \land Q) \lor R$ is true but $R \lor S$ is false. In order for $R \lor S$ to be false, both R and S must be false. And because $(P \land Q) \lor R$ is true, $P \land Q$ must be true, and so P, Q are both true.

2.6.6

Ρ	Q	R	$P \wedge Q \wedge R$	$\neg (P \land Q \land R)$	$\neg P$	$\neg Q$	$\neg R$	$ \mid (\neg P) \lor (\neg Q) \lor (\neg R) $
\overline{T}	Т	Т	Т	F	F	F	F	F
\overline{T}	Т	F	F	T	F	F	Т	Т
\overline{T}	F	Т	F	T	F	Т	F	Т
\overline{T}	F	F	F	T	F	Т	Т	Т
\overline{F}	Т	Т	F	T	Т	F	F	Т
\overline{F}	Т	F	F	T	Т	F	Т	Т
$\overline{\mathbf{F}}$	F	Т	F	T	Т	Т	F	Т
\overline{F}	F	F	F	T	Т	Т	Т	T

Note that the columns corresponding to $\neg(P \land Q \land R)$ and $(\neg P) \lor (\neg Q) \lor (\neg R)$ have the same truth values.

2.6.10

$$(P\Rightarrow Q)\vee R=(\neg P\vee Q)\vee R=\neg P\vee Q\vee R$$

$$\neg((P\wedge \neg Q)\wedge \neg R)=\neg(P\wedge \neg Q)\vee R=(\neg P\vee Q)\vee R=\neg P\vee Q\vee R$$

Therefore they are equivalent.