Integrating over areas, volumes, lines

cartesian line integral

$$dl = dx$$

$$\int_0^L dx = x \Big|_0^L = L$$

For a circle: r(211-0) = 2111

$$A = \left(\frac{\Gamma^2}{2}\right)^R \otimes \left(\Theta\right)^{2\pi} = \pi R^2$$

VOLUMES

$$dv = drdsds' = dr(rde)(rsinede)$$

$$dv = r^2 sinededr$$

Putting this in table form

	cartesian	polar
line, dl	dl = dx	de = rde
area, dA	dA = dxdy	$dA = r^2 d\theta dr$
volume, dv	dV = dxdydz	dv = r2sin@d@d@dr

To find an electric field, at say point P, from a charge distribution which is continuous Superposition may be used, and contributions from small elements of charge, dq, may be summed.

If a total charge, Q, is uniformly distributed along a line of charge of length L, the charge can be written:

$$Q = \left(\frac{\text{charge}}{\text{length}}\right) \left(\text{total length}\right) = \lambda L$$

$$\text{We'll call this}$$

The charge of a small section of the line is dq = \(\lambda d\times \) (differential charge element). Similarly, if Q is uniformly distributed on an area, A:

$$O = \left(\frac{\text{charge}}{\text{area}}\right) (\text{total area}) = \sigma A$$

$$A = \sigma dA$$

For a charge Q uniformly distributed over a volume:

or, in table form:

	total charge	differential charge
length	$Q = \lambda L$	$dq = \lambda dx$
area	Q = 0A	dg = odA
volume	Q = PV	dg = PdV