Both **SparkContext** and **SparkSession** are essential components in Spark, but they serve different purposes.

1. SparkContext (Older API)

Definition

- SparkContext was the entry point for interacting with Spark in RDD-based APIs (before Spark 2.0).
- It was used to create **RDDs (Resilient Distributed Datasets)** and interact with the Spark cluster.

Usage

- When you initialize Spark, SparkContext is created automatically inside the SparkSession.
- If you are using older versions of Spark (before 2.0), you have to create a SparkContext explicitly.

Example

```
python
CopyEdit
from pyspark import SparkContext

sc = SparkContext("local", "MyApp") # Creating SparkContext
rdd = sc.parallelize([1, 2, 3, 4, 5]) # Creating an RDD
print(rdd.collect()) # Output: [1, 2, 3, 4, 5]
```

Limitations

- Only supports RDD-based APIs.
- Doesn't support DataFrames and Datasets directly.
- Requires a separate SQLContext, HiveContext, etc., for SQL-based operations.

2. SparkSession (Unified API, Introduced in Spark 2.0)

Definition

- SparkSession is the **new unified entry point** to Spark functionalities.
- It **internally contains SparkContext**, along with SQLContext, HiveContext, and StreamingContext.
- It allows operations on RDDs, DataFrames, and Datasets.

Usage

- Introduced in **Spark 2.0**, SparkSession simplifies working with Spark.
- Supports both DataFrames and RDDs.

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("MyApp").getOrCreate() # Creating SparkSession df = spark.createDataFrame([(1, "Alice"), (2, "Bob")], ["id", "name"]) # Creating DataFrame df.show()

Advantages of SparkSession

- ☑ Unified API Works with RDDs, DataFrames, and Datasets.
- **Easier Configuration** No need to create separate SQLContext, HiveContext, etc.
- ✓ Optimized Performance Uses Catalyst Optimizer for SQL and DataFrame operations.

Key Differences: SparkContext vs SparkSession

Feature	SparkContext	SparkSession
Introduced In	Spark 1.x	Spark 2.x
Purpose	Entry point for RDDs	Entry point for DataFrames, Datasets, RDDs
API Type	Low-level API	High-level API
SQL Support	Requires separate SQLContext	Built-in SQL support
DataFrame Support	Not directly supported	Fully supported
Streaming Support	Requires StreamingContext	Built-in support

Which One to Use?

- Use SparkSession **2** (Recommended) → If you are using Spark **2.0** or later.
- Use SparkContext → Only if working with low-level RDDs or older Spark versions.

Example: Getting SparkContext from SparkSession

If needed, you can still access SparkContext from SparkSession:

spark = SparkSession.builder.appName("MyApp").getOrCreate()

sc = spark.sparkContext # Accessing SparkContext from SparkSession

print(sc.appName)

Output: MyApp

RDD next page

```
num = sc.parallelize([5,5,4,3,2,9,2,4,5,6,7,8,9], 9)
```

Understanding the Command in Real-Time Scenarios

Breakdown of the Command:

- 1. sc.parallelize(data, numPartitions)
 - a. sc: Refers to the **SparkContext**, which is the entry point for Spark functionality.
 - b. parallelize([5,5,4,3,2,9,2,4,5,6,7,8,9], 9):
 - i. Creates an RDD (Resilient Distributed Dataset) from the given list [5,5,4,3,2,9,2,4,5,6,7,8,9].
 - ii. Divides the data into 9 partitions for parallel processing.

Real-Time Meaning and Use Case

The command **distributes** the list of numbers **across 9 partitions**, allowing Spark to process them in parallel.

Real-Time Scenario Example:

Imagine you're **analyzing sensor readings from 9 different IoT devices** in a factory. Each device generates a **small batch of temperature readings** (like the numbers in the list). By partitioning the data across **9 partitions**, Spark can:

- Process the readings in parallel.
- Improve computation speed.
- Enable **fault tolerance** (if a partition fails, Spark can recompute only the affected partition).

Example Use Case:

Assume you want to find the average temperature from sensor readings.

```
avg_temp = num.mean()
print(avg_temp)
```

This will compute the **mean of all sensor readings efficiently** by leveraging Spark's distributed computing.

Key Takeaways:

- 1. Parallel Processing: The data is split across 9 partitions for parallel execution.
- 2. **Efficient Computation:** Allows Spark to handle large datasets efficiently.
- 3. Scalability: If new sensors are added, Spark can dynamically adjust partitions.

Understanding RDD Partitions in PySpark

RDD (Resilient Distributed Dataset) is the fundamental data structure in Apache Spark. It divides large datasets into smaller partitions and distributes them across multiple nodes in a cluster for parallel processing.

1. What is Partitioning in Spark?

Partitioning refers to how **Spark splits data into chunks (partitions) and distributes them across the cluster** for parallel computation.

- Each partition contains a subset of the entire dataset.
- Spark processes each partition independently in parallel.
- More partitions can improve performance up to a certain point.

2. Understanding sc.parallelize(data, numPartitions)

```
num = sc.parallelize([5,5,4,3,2,9,2,4,5,6,7,8,9], 9)
```

This command does the following:

- Creates an RDD from the given list [5,5,4,3,2,9,2,4,5,6,7,8,9].
- **Divides the dataset into 9 partitions**, each containing approximately **one or two elements**.
- Spark distributes these partitions across different nodes in the cluster.

Example: Viewing Partitions

You can check how many partitions an RDD has using:

```
print(num.getNumPartitions())
# Output: 9
```

To see how data is distributed among partitions:

```
print(num.glom().collect())
```

This groups elements **by partitions** and returns:

```
[[5], [5], [4], [3], [2], [9], [2], [4], [5, 6, 7, 8, 9]]
```