Dérivation – Etude de fonctions

I. Nombre dérivé- Fonction dérivée (Rappels)

Activité D:

1. On considère f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 2x$. Étudier la dérivabilité de f en -1 puis interpréter le résultat graphiquement.

2. On considère g la fonction définie sur \mathbb{R} par g(x) = |x - 1|.

a. Etudier la dérivabilité de g à droite et à gauche en 1 puis interpréter les résultats graphiquement.

b. g est-elle dérivable en 1 ?

Définitions et propriétés :

Soit f une fonction définie sur un intervalle ouvert I et a un point de I.

- On dit que f est **dérivable** en a s'il existe un réel l tel que $\lim_{x \to a} \frac{f(x) f(a)}{x a} = l$.
- Le nombre l, noté f'(a) ou $\frac{df}{dx}(a)$, est appelé le **nombre dérivé** de la fonction f en a.
- Dans ce cas la courbe de f admet une tangente au voisinage de a d'équation y = f'(a)(x a) + f(a).
- La fonction $x \mapsto f'(a)(x-a) + f(a)$ s'appelle **l'approximation affine** de f au voisinage de a. On écrit alors $f(x) \cong f'(a)(x-a) + f(a)$ au voisinage de a.
- On dit que f est **dérivable à droite** de a, s'il existe un réel l', tel que $\lim_{\substack{x \to a \\ x > a}} \frac{f(x) f(a)}{x a} = l'$.
- Le nombre l', noté $f_d'(a)$, est appelé le **nombre dérivé** de la fonction f à droite en a.
- Dans ce cas la courbe de f admet une demi-tangente au voisinage de a d'équation $\begin{cases} y = f'_d(a)(x-a) + f(a) \\ x > a \end{cases}$. (On définit de même manière la dérivabilité à gauche en a)

O Exemple:

La fonction définie sur] $-\infty$; 1] par $f: x \mapsto x + 1 + 2\sqrt{1-x}$ est dérivable en -3. En effet :

On a
$$\lim_{x \to -3} \frac{f(x) - f(-3)}{x+3} = \lim_{x \to -3} \frac{x - 1 + 2\sqrt{1 - x}}{x+3}$$

$$= \lim_{x \to -3} \frac{(x - 1 + 2\sqrt{1 - x})(x - 1 - 2\sqrt{1 - x})}{(x+3)(x - 1 - 2\sqrt{1 - x})}$$

$$= \lim_{x \to -3} \frac{(x - 1)^2 + 2(1 - x)}{(x+3)(x - 1 - 2\sqrt{1 - x})}$$

$$= \lim_{x \to -3} \frac{(x + 3)(x - 1)}{(x+3)(x - 1 - 2\sqrt{1 - x})}$$

$$= \lim_{x \to -3} \frac{x - 1}{x - 1 - 2\sqrt{1 - x}} = \frac{1}{2}.$$

Donc f est dérivable en -3 et la courbe (C_f) admet au voisinage de -3 une tangente d'équation : $y = f'(-3)(x+3) + f(-3) = \frac{1}{2}x + \frac{7}{2}$.

 \triangleright Donnons une valeur approchée de f(-2.999):

La fonction affine tangente à (C_f) au voisinage de -3 est $g: x \mapsto \frac{1}{2}x + \frac{7}{2}$.

Ainsi : $f(-2.999) \cong g(-2.999)$.

Or $g(-2.999) = \frac{1}{2}(-2.999) + \frac{7}{2} = 2,0005.$

Par suite $f(-2.999) \cong 2,0005$.

O Remarques:

- Si $\lim_{x \to a} \frac{f(x) f(a)}{x a} = 0$, alors (C_f) admet une tangente horizontale au point A(a, f(a)).
- Si f est continue en a et $\lim_{\substack{x \to a \\ x > a}} \frac{f(x) f(a)}{x a} = \pm \infty$ ou $\lim_{\substack{x \to a \\ x < a}} \frac{f(x) f(a)}{x a} = \pm \infty$, alors (C_f) admet une demi-tangente verticale au point A(a, f(a)).

O Exemple:

La fonction définie sur] $-\infty$; 1] par $f: x \mapsto x + 1 + 2\sqrt{1-x}$ n'est pas dérivable en 1 a gauche. En effet :

On a
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x - 1 + 2\sqrt{1 - x}}{x - 1}$$

$$= \lim_{x \to 1^{-}} \frac{(x - 1 + 2\sqrt{1 - x})(x - 1 - 2\sqrt{1 - x})}{(x - 1)(x - 1 - 2\sqrt{1 - x})}$$

$$= \lim_{x \to 1^{-}} \frac{(x + 3)(x - 1)}{(x - 1)(x - 1 - 2\sqrt{1 - x})}$$

$$= \lim_{x \to 1^{-}} \frac{x + 3}{x - 1 - 2\sqrt{1 - x}} = +\infty.$$

Parce que $\lim_{x \to 1^{-}} x + 3 = 4$ et $\lim_{x \to 1^{-}} x - 1 - 2\sqrt{1 - x} = 0^{-}$ du fait que x - 1 < 0 et

 $-2\sqrt{1-x} < 0 \text{ pour tout } x < 1.$

Donc f n'est pas dérivable en 1 à gauche.

Puisque f est continue en 1 à gauche et $\lim_{x\to 1^-} \frac{f(x)-f(1)}{x-1} = +\infty$, alors (C_f) admet une demitangente verticale au point A(1,2) dirigée vers le haut.

Application 1:

Etudier la dérivabilité de la fonction f en a puis interpréter graphiquement les résultats dans les cas suivants :

a.
$$f(x) = x^3 - x$$
 et $a = 2$ **b.** $f(x) = \frac{x+1}{x}$ et $a = 1$ **c.** $f(x) = \sqrt{2x+1}$ et $a = -\frac{1}{2}$ à droite.

Exercice O:

On considère f la fonction définie par $f(x) = \begin{cases} \frac{\sqrt{x^2+1}-1}{x}; si \ x \neq 0 \\ 0; si \ non \end{cases}$.

- **1.** Etudier la continuité de f en $x_0 = 0$.
- **2.** Etudier la dérivabilité de f en $x_0 = 0$. Interpréter graphiquement le résultat.

Propriété:

f est dérivable en a si et seulement s'elle est dérivable à droite et à gauche en a et $f_g'(a) = f_d'(a)$.

O Graphiquement:

Si $f_g'(a) \neq f_d'(a)$, alors (C_f) admet deux demi-tangentes non parallèles au point A(a, f(a)). Ce point est appelé **point anguleux.**

Application Q:

On considère f la fonction définie par $\begin{cases} f(x) = \sqrt{x} - 1 ; 0 \le x < 1 \\ f(x) = \frac{x^2 - 1}{4} ; x \ge 1 \end{cases}$

- 1. Montrer que f est continue en 1.
- **2.** Étudier la dérivabilité de f en 1.

O Remarque:

Si f est dérivable en a, alors elle est continue en a. la réciproque n'est pas toujours vraie.

O Exemple:

La fonction $x \mapsto |x|$ est continue en 0 mais n'est pas dérivable en ce point.

II. Opérations sur les fonctions dérivables-Monotonie d'une fonction

Propriété :

• Les fonctions polynomiales et les fonctions $x \mapsto cos(x)$ et $x \mapsto sin(x)$ sont dérivables sur \mathbb{R} .

• Toute fonction rationnelle est dérivable sur tout intervalle inclus dans son domaine de définition.

Tableau des fonctions dérivées usuelles :

La fonction f	La fonction dérivée f'	Domaine de dérivabilité de <i>f</i>
$x \mapsto a \ (ka \in \mathbb{R})$	$x \mapsto 0$	\mathbb{R}
$x \mapsto ax + b \ (a \in \mathbb{R} \ et \ b \in \mathbb{R})$	$x \mapsto a$	\mathbb{R}
$x \mapsto x^n \ (n \in \mathbb{N}^*)$	$x \mapsto nx^{n-1}$	\mathbb{R}
$x \mapsto \frac{1}{x}$	$\chi \mapsto -\frac{1}{\chi^2}$	\mathbb{R}^*
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
$x \mapsto \cos(x)$	$x \mapsto -\sin(x)$	\mathbb{R}
$x \mapsto \sin(x)$	$x \mapsto \cos(x)$	\mathbb{R}
$x \mapsto tan(x)$	$x \mapsto 1 + ta n^2(x) = \frac{1}{\cos^2(x)}$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi/k\in\mathbb{R}\right\}$

Propriété :

Soient f et g deux fonctions dérivables sur un intervalle I et k un réel, on a :

- La fonction f + g est dérivable sur I et (f + g)' = f' + g'.
- La fonction λf est dérivable sur I et $(\lambda f)' = \lambda f'$.
- La fonction $f \times g$ est dérivable sur I et $(f \times g)' = f' \times g + f \times g'$.
- La fonction f^n $(n \in IN)$ est dérivable sur I et $(f^n)' = nf' \times f^{n-1}$.
- Si $(\forall x \in I)$: $g(x) \neq 0$, alors la fonction $\frac{f}{g}$ est dérivable sur I et $\left(\frac{f}{g}\right)' = \frac{f' \times g f \times g'}{g^2}$.
- Si $(\forall x \in I)$: $f(x) \neq 0$, alors la fonction $\frac{1}{f}$ est dérivable sur I et $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$.
- Si $(\forall x \in I)$: f(x) > 0, alors la fonction \sqrt{f} est dérivable sur I et $(\sqrt{f})' = \frac{f'}{2\sqrt{f}}$.

Application 3:

1. Calculer la dérivée des fonctions suivantes :

$$f(x) = \frac{2x}{1+x^2}$$
; $h(x) = \sqrt{x}\sin(x) + \cos(x)$; $g(x) = (x^2 + 1)^5$

- **2.** a. Etudier la monotonie de la fonction f ci-dessus.
 - **b.** Dresser le tableau de variations de f.
 - **c.** En déduire que($\forall x \in \mathbb{R}$): −1 ≤ f(x) ≤ 1.

Exercice 2:

- I. On considère g la fonction définie sur $[0; +\infty[$ par $g(x) = x\sqrt{x} 1$.
- 1. Etudier la dérivabilité de *g* à droite en 0 . Interpréter graphiquement le résultat.
- **2.** Montrer que g est dérivable sur $]0; +\infty[$ puis calculer sa dérivée.
- **3.** Dresser le tableau de variations de g.
- **4.** Calculer g(1) puis déduire le signe de g sur $[0; +\infty[$.
- II. Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = 2x 3 + \frac{4}{\sqrt{x}}$.
- **1.** Montrer que $(\forall x \in]0; +\infty[): f'(x) = \frac{2g(x)}{x\sqrt{x}}$.
- **2.** Etudier les variations de f.
- **3.** Dresser le tableau de variations de f.
- **4.** En déduire que $(\forall x \in]0; +\infty[): f(x) \ge 3$.

III. Dérivée de la fonction composée :

& Activité @:

Soient f et g deux fonctions définies sur IR par : $f(x) = \cos(x)$; $g(x) = x^2 - 2x$

- **1.** Calculer f'(x) et g'(x) pour tout $x \in IR$.
- **2.** Calculer $f'(x) \times g'(f(x))$.
- **3.** Soit $h(x) = (g \circ f)(x)$. Déterminer h(x) puis calculer h'(x).
- **4.** Comparer h'(x) et $f'(x) \times g'(f(x))$.

Propriété :

• Si f est dérivable en un réel a et g dérivable en f(a), alors la fonction composée

• Si f est dérivable sur un intervalle I et g dérivable sur un intervalle I tel que $f(I) \subset I$, alors la fonction composée gof est dérivable sur I et de plus, pout tout $x \in I$: $(g \circ f)'(x) = g'(f(x)) \times f'(x).$

O Exemple:

Déterminons la dérivée de la fonction $h: x \mapsto \cos(\sqrt{x}) \sin |0| + \infty$

Pour tout x de $]0; +\infty[$, on a $h(x) = (g \circ f)(x)$ tel que $g(x) = \cos(x)$ et $f(x) = \sqrt{x}$.

Comme g est dérivable sur IR et f est dérivable sur $]0, +\infty[$ et que $f(]0; +\infty[) \subset IR$, alors la fonction h est dérivable sur $]0; +\infty[$.

Et on :
$$h'(x) = g'(f(x)) \times f'(x) = \frac{-\sin(\sqrt{x})}{2\sqrt{x}}$$
, pour tout x de $]0; +\infty[$.

Application @:

Calculer la dérivée des fonctions $f: x \mapsto \sin\left(x^2 - \frac{2}{3}x + 4\right)$ et $g: x \mapsto \cos\left(\frac{4}{x^2 + 4}\right)$

IV. Dérivée de la fonction Réciproque :

🖋 🖋 Propriété :

Soit f une fonction continue et strictement monotone sur un intervalle I de IR, et $a \in I$. Si f est dérivable en a et $f'(a) \neq 0$, alors la fonction f^{-1} est dérivable en f(a) et $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$

Application 5:

Soit f la fonction définie sur IR par $f(x) = x^3 + x$.

1. 1. Montrer que f admet une fonction réciproque définie sur IR.

2. a. Calculer f(1).

b. Montrer que f^{-1} est dérivable en 2 puis déterminer $(f^{-1})'(2)$.

Propriété :

Soit f une fonction continue et strictement monotone sur un intervalle I de IR.

Si f est dérivable sur I tel que $(\forall x \in I)$: $f'(x) \neq 0$, alors la fonction f^{-1} est dérivable sur J = f(I). De plus on a pour tout $x \in J : (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

O Conséquences:

O Soit *n* un entier naturel supérieur ou égal à 2.

La fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur]0; $+\infty$ [et pour tout $x \in$]0; $+\infty$ [: $\left(\sqrt[n]{x}\right)' = \frac{1}{n\sqrt[n]{x^{n-1}}}$.

○ Si f une fonction dérivable sur un intervalle I de IR et $(\forall x \in I)$: f(x) > 0, alors la fonction $x \mapsto \sqrt[n]{f(x)}$ est dérivable sur I et sa fonction dérivée est donnée par : $\sqrt[n]{f(x)} = \frac{f'(x)}{n \times (\sqrt[n]{f(x)})^{n-1}}.$

Application 6:

- 1. Calculer la dérivée de chacune des fonctions suivantes :
- $\mathbf{a.} \ f(x) = \sqrt[3]{x}$
- **b.** $f(x) = \sqrt[4]{x^3}$
- **c.** $f(x) = \sqrt[4]{1 + \cos^2(x)}$ **d.** $f(x) = \sqrt[3]{x^2 + 2x}$
- 2. A l'aide du nombre dérivé, calculer les limites suivantes :
 - $\text{a. } \lim_{x\to 0}\frac{\sqrt[3]{x+1}-1}{x}$
- **b.** $\lim_{x \to 1} \frac{(x^8+1)(\sqrt[4]{x^3}+1)-4}{x-1}$

Exercice 3:

Soit f la fonction numérique définie sur IR par $f(x) = x^3 - 3x - 3$.

- **1.** Etudier les variations de la fonction f.
- **2.** Soit g la restriction de f sur $[1;+\infty[$.
- a. Montrer que g admet une fonction réciproque définie sur un intervalle J à déterminer.
- **b.** Montrer que l'équation g(x) = 0 admet une unique solution α et que $2 < \alpha < 3$.
- **c.** Montrer que : $(g^{-1})'(0) = \frac{1}{3(\alpha^2 1)}$.

V.Branches infinies (Rappel)

Schéma récapitulatif de l'étude des branches infinies

 $\lim_{x \to \infty} f(x) = l$

 (C_f) admet une asymptote horizontale d'équation x = lau voisinage de ∞

 (C_f) admet une branche parabolique de direction l'axe des abscisses au voisinage de ∞

 (C_f) admet une branche parabolique de direction l'axe des ordonnées au voisinage de ∞

 (C_f) admet une branche parabolique de direction la droite d'équation y = ax au voisinage

 (C_f) admet une asymptote oblique d'équation y = ax + b au voisinage de ∞

$$\lim_{x \to \infty} f(x) - (ax + b) = 0$$

y = ax + b est asymptote oblique à (C_f) au voisinage de ∞

O Exemple 0:

On considère f la fonction définie sur $IR \setminus \{-1\}$ par : $f(x) = \frac{3-2x^2}{(1+x)^2}$

On a
$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} \frac{3-2x^2}{(1+x)^2} = -2$$
 et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3-2x^2}{(1+x)^2} = -2$. Donc la droite d'équation $y = -2$ est une asymptote horizontale à la courbe (C_f) au

voisinage de $+\infty$ et $-\infty$.

Et on a:
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{3 - 2x^2}{(1 + x)^2} = +\infty$$
 et $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{3 - 2x^2}{(1 + x)^2} = +\infty$.

Donc la droite d'équation x = 2 est une asymptote verticale de la courbe (C_f) .

O Exemple 2:

On considère g la fonction définie sur $[0; +\infty[$ par : $g(x) = 2x - \sqrt{x}$.

On a:
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2x - \sqrt{x} = \lim_{x \to +\infty} \sqrt{x} (2\sqrt{x} - 1) = +\infty.$$

On a
$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{2x - \sqrt{x}}{x} = \lim_{x \to +\infty} 2 - \frac{1}{\sqrt{x}} = 2.$$

On calcul alors
$$\lim_{x \to +\infty} \frac{g(x)}{x}$$
:

On a $\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{2x - \sqrt{x}}{x} = \lim_{x \to +\infty} 2 - \frac{1}{\sqrt{x}} = 2$.

Par suite : $\lim_{x \to +\infty} f(x) - 2x = \lim_{x \to +\infty} 2x - \sqrt{x} - 2x = \lim_{x \to +\infty} -\sqrt{x} = -\infty$.

D'où la courbe (C_x) admet une branche parabolique de direction de la dr

D'où la courbe (C_q) admet une branche parabolique de direction de la droite d'équation y = 2x au voisinage de $+\infty$.

Application O:

On considère f la fonction définie par $f(x) = \frac{x^2 + x - 1}{x + 2}$.

- **1.** Donner \mathcal{D}_f l'ensemble de définition de f.
- **2.** Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$. Interpréter les résultats.
- **3.** a. Vérifier, pour tout x de \mathcal{D}_f , que $f(x) = x 1 + \frac{1}{x+2}$.
- **b.** Montrer que la droite d'équation (D): y = x 1 est une asymptote oblique de (C_f) au voisinage de $+\infty$ et $-\infty$.

c. Etudier les positions relatives entre la courbe (C_f) et la droite (D).

VI.Concavité d'une courbe - Points d'inflexion :

Propriété :

Soient f une fonction deux fois dérivable sur un intervalle I et (C_f) sa courbe représentative et $a \in I$.

- Si f'' est positive sur l'intervalle I, alors (C_f) est convexe
- Si f'' est négative sur l'intervalle I, alors (C_f) est concave.
- Si f'' s'annule en a en changeant de signe, alors le point A(a; f(a)) est un point d'inflexion de (C_f) .

Application 8:

On considère f la fonction définie par $f(x) = \frac{x^2 + x - 1}{x + 2}$.

Etudier la concavité de (C_f) en précisant les points d'inflexion s'ils existent.

III. Eléments de symétrie d'une courbe :

1. Axe de symétrie :

Propriété :

Soit f une fonction définie sur un ensemble D et (C_f) sa courbe représentative dans un repère orthonormé.

La droite (Δ) d'équation x = a ($a \in \mathbb{R}$) est un *axe de symétrie* de la courbe (C_f) si et seulement si : $\{(\forall x \in D); (2a - x) \in D \}$ ($\forall x \in D$); f(2a - x) = f(x)

Application 9:

Montrer que la droite (Δ): x = 1 est un axe de symétrie de la courbe de la fonction f définie par $f(x) = \sqrt{x^2 - 2x + 3}$.

2. Centre de symétrie :

Propriété :

Soit f une fonction définie sur un ensemble D et (C_f) sa courbe représentative dans un repère orthonormé.

Le point $\Omega(a; b)$ tel que $(a; b) \in \mathbb{R}^2$ est un *centre de symétrie* de la courbe (C_f) si et seulement si : $\begin{cases} (\forall x \in D); & (2a - x) \in D \\ (\forall x \in D); & f(2a - x) + f(x) = 2b \end{cases}$

Application @@:

On considère f la fonction définie par $f(x) = \frac{x^2 + x - 1}{x + 2}$.

- Montrer que le point $\Omega(-2; -3)$ est un centre de symétrie de la courbe de la fonction f définie par $f(x) = \frac{x^2 + x 1}{x + 2}$.
- **2.** En déduire qu'il suffit d'étudier f sur]-2; $+\infty[$.

& Exercice @:

On considère f la fonction définie par $f(x) = \frac{x^2 + x - 1}{x + 2}$

- 1. Donner les coordonnées des points d'intersection de (C_f) avec les axes du repère.
- **2.** Etudier les variations de f.
- **3.** Soit g la restriction de f sur $[-1; +\infty[$.

Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.

4. Construire (D): y = x - 1, (C_f) et $(C_{g^{-1}})$ dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

Exercice de synthèse :

- **L.** On considère g la fonction définie sur \mathbb{R} par $g(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$.
- **1.** Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.

- **2.** a. Montrer, pour tout réel x, que $g'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}}$.
 - **b.** Donner le tableau des variations de g.
 - **c.** En déduire, pour tout réel x, que g(x) > 0.
- II. Soit f la fonction qui définie sur \mathbb{R} par $f(x) = x 1 + \sqrt{x^2 + 1}$, et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.
- **1.** Calculer $\lim_{x \to +\infty} f(x)$.
- **2.** Montrer que $\lim_{x \to -\infty} f(x) = -1$. Interpréter géométriquement le résultat.
- **3.** Montrer que la droite (*D*): y = 2x 1 est une asymptote oblique de (C_f) au voisinage de $+\infty$.
- **4. a.** Montrer, pour tout réel x, que f'(x) = g(x).
 - **b.** Dresser le tableau des variations de f.
- **5.** Calculer f(1) puis tracer (C_f) .
- **6. a.** Montrer que f admet une fonction réciproque f^{-1} definie sur un intervalle J à déterminer.
- **b.** Montrer que f^{-1} est derivable en $\sqrt{2}$ puis calculer $(f^{-1})'$ $(\sqrt{2})$.
- **c.** Tracer $(C_{f^{-1}})$ dans le même repère.