CmpE 220 Discrete Computational Structures

Instructor H. Birkan YILMAZ (birkan.yilmaz@boun.edu.tr)

Teaching Assistants Suzan Ece Ada PS Hours: TBA

Class Hours WW 78 NewHall 401 + Th 8 NewHall 401

Principle of Inclusion and Exclusion

Midterm 14 November (Tuesday)

Teaching Style In-Class

Course Website moodle.boun.edu.tr

Textbook Discrete Mathematics and Its Applications, 6e; Rosen; McGraw-Hill, 2007

Reference Books Discrete and Combinatorial Mathematics, 5e; Grimaldi; Addison-Wesley, 2004

Introduction to Discrete Structures; Preparata and Yeh; Addison-Wesley, 1973 Applied Abstract Algebra; Lidl and Pils; Springer-Verlag, 1984

Nicholas A. Loehr, An introduction to mathematical proofs

Goals This course is designed to teach i) propositional logic and proofs, ii) Set theory, iii) functions and relations,

iv) algebraic structures, v) groups and semi-groups vi) Graphs vii) lattices and Boolean algebra.

Good-to-know Latex

Tentative Outline

Week 1: Logic & Proof Techniques	Week 8 : Cardinality – Infinite Sets
 Introduction to Propositional Logic 	Countable Infinite Sets
 Logical Equivalence and Tautologies 	 Uncountable Infinite Sets
Rules of Inference	Week 9: Algebra I – Definitions
Week 2: Logic & Proof Techniques	Operations on Sets
 Proof Techniques 	Homomorphism
Introduction to Mathematical Induction	Week 10: Algebra II – Basic Algebraic Structures
Pigeon Hole Principle	 Groups (Monoids, Abelian Groups)
Week 3: Sets	Rings (Euclidean Division Theorem, Fermat's
 Introduction to Sets 	Theorem)
Product Sets	Week 11: Recursion
Week 4: Relations	Mathematical Induction Revisited
Week 5: Order & Equivalence Relations	Recursive Definitions
Week 6: Functions	Recursive Algorithms
 Compositions 	Inclusion-Exclusion Revisited
 Bijections and Inverse Functions 	Generating Functions
 Images and Inverse Images 	Week 12: Graphs I – Terminology & Theorems (Rosen)
Week 7: Cardinality – Finite Sets & Basics of Counting	Week 13: Graphs II – Shortest Path & Graph Coloring Problems
Combination and Permutation	(if time permits)
Discrete Probability	

Basis for evaluation (A change of +- 5% may of	occur in the basis of evaluation!)	Important: Homeworks assigned in this course
1 Midterm exam (In-Class)	27 %	are essential for passing the course. If you fail to
2-3 Pop Quizzes (In-Class)	18 %	submit on time, you will also fail the course!
1-2 Assignments (Homework)	20 %	
Final exam (In-Class)	35 %	Academic Honesty:
Total	100 %	Needless to say, honesty and trust are crucial to all
		of us. Cheating, plagiarism and collusion are
		serious offences and they will result in an overall F
		grade and disciplinary action.