K- Nearest Neighbour

1 Proximity:

Two observations:
$$(\alpha_{11}, \alpha_{21})$$

The distance between these two observations can be quantified using Euclidean distance:

$$d = \sqrt{(x_{11} - x_{12})^2 + (x_{21} - x_{22})^2}$$

Euclidean distance
$$(\alpha_1, y_1) \leftrightarrow (\alpha_2, y_2)$$

(12-74)2+ (42-41)2

Euclidean distance (in rectorized ordation)

be two rectors.

$$d = 21 - 22, \text{ the diff of the vectors on } 22$$

$$= ((211 - 212), (221 - 222))^{T}$$

the euclidean distance between the Qu & Qz can be written as

dist =
$$\sqrt{\alpha^{T} \alpha}$$

= $\sqrt{(\alpha_{11} - \alpha_{12}, \alpha_{21} - \alpha_{12})}$
 $(\alpha_{11} - \alpha_{12}, \alpha_{21} - \alpha_{21})$
= $\sqrt{(\alpha_{11} - \alpha_{12})^{2} + (\alpha_{21} - \alpha_{22})^{2}}$

H.W: design a function the calc. euclidean distance between two rectage using 1 for loop 2 rectorized motation.

Eucle-dian distance (in general)

	×ı	X2		×þ
ZyT ~	941	121		(4x)
A2T	9612	922	, - ,	2pz

The euclidean distance between 24 and 22 can be written as:

$$dist = \sqrt{(211 - 212)^2 + (221 - 222)^2 + - - + (211 - 212)^2}$$

$$= \sqrt{\left(\chi_1 - \chi_2\right)^T \left(\chi_1 - \chi_2\right)}$$

2) finding the nearest neighbour:

			XI	X2			Xþ
722		Z	u te				
€	we need to tind the	22	2.4		×	 	
	MN of this obs. from	25	j N	1 (
	the set of	2n-1			1	1	2 T
	these observations	र्ट्यू.		12			

```
1-HH
```

Step 1: calculate the dist. of & from 21, for all i=1(1) n

Step 2: NN = the obs. that corresponds to the shortest distance.

Simplest approach (1-MM):

2: for in range (1, len (train-data)):

d = dist. of the test obs. from the ith obs. in boun-data 3:

if a < min-dist: 4:

min-dist = d #update min-dist 5:

neorest-obs-index = (6:

end if 7:

8: end for

nearest_obs = train [i,]

3) 1-NN algorithm for classification:

Training data!						
	Χı	X2	- ×p	Y		
न्यू	241	9C21 -	2p1	41		
92 ^T	242	N22	- Ap2	y 2		
	· :	•	:	1		
ath,	2 h	2201-	apnz	yn_		

61	Test	docto	<u>.</u> :	
	×ı	X2		×p
25 ^T	241	904		72. ×
7/2 ^{*T}	9×	922		2 p2
2n2	$\alpha_{1n_2}^*$	221	2	94pn2

 $\eta_1 = no. of obs. in training data$ $\eta_2 = no. of obs. in test data$

a function 1: function to calculate the eucledian distance.

distance (2, 4) -> vetures eucledean dist. between the vectors of and y.

1 function 2: function to columbte the (orget the) NN for one test observation.

NN (train_X, train_y, a*) -> finds the nearest obs. to a* in the training data and get the raive of Y for that obs.

D fonction 3.

1NN (boun-X, test, boainy) -> returns the values of y for all the obs. In the test data corresp. to the nearest neighbors in the brain data.

(4)

2:
$$d = sqrt((x-y)^T(x-y))$$

6:

7:

- 1: 1NN (train-X, train-y, test-X):
- 2! for each observation at m test data:
- 3: y* = NN (train-x, train-y, 2*)
- 4: append y* in a list Y # initially Y is an empty 4st.
- 5: end for
- 6: return (Y)

Remover: This KNN algorithm is works for either a problem of regression or classification.