CCACC ATG GCT CTG CAG ATC CCC AGC CTC CTC TCA GCT GCT GTG GTG GTG CTG ATG GTG CTG AGG AGC AGC CCA AGG ᆸ > Σ -ia^d β chain signal peptide-S A A V V V L Н ß Ц O_i KOZAK L

CONSENSUS

ACC TITA AGT ATC TOT CAG GOT GIT CAC GOT GOT CAC GOT GAA ATC AAC GAA GOT GGT OGT H A E I N E A (耳 Q A V

GCT AGC GGA GGG GGA AGC GGC GGA GGG GGA AAC TCC GAA AGG // AGC CCC ATC ACT GTG GAG TGG $\mathbf{E} = \mathbf{R} / / \mathbf{S} \mathbf{P} \mathbf{I} \mathbf{T} - \mathbf{I} \mathbf{A}^{\mathbf{d}} \beta \mathbf{1} - \beta \mathbf{2} \mathbf{DOMAINS} - \mathbf{I} \mathbf{A}^{\mathbf{d}} \beta \mathbf{1} - \beta \mathbf{2} \mathbf{DOMAINS} - \mathbf{I} \mathbf{A}^{\mathbf{d}} \beta \mathbf{1} - \beta \mathbf{2} \mathbf{DOMAINS} - \mathbf{A}^{\mathbf{d}} \mathbf{A}^{\mathbf{$ Ω E g G N ე ე PEPTIDE LINKER -----<u>ი</u>

ACT AGT GGT GGC GGT GGC AGC GGC GGT GGT TCC GGT GGC GGC GGT TCT GGC GGT GGC GGT TCC TCG AGT ល Ŋ Ø ט ט ט ರ ល G S G G G G S SINGLE CHAIN LINKER ტ ტ ש ណ ស ט ש ល

STOP GAA GAC GAC AIT // CCA GGG CCT TTA TGA Ы I // P G P - IA^d \alpha CHAIN - <u>H</u>

FIG. 2A

FIG. 2B

ţ

FIG. 3C

FIG. 3D

ţ

FIG. 3E

¢

FIG. 3F

FIG. 3G

FIG. 3H

FIG. 31

FIG. 3J

FIG. 3K

ť

ť

		•	17	7/26				
	FIG. 4A	$^{1A^d}$ $^{\alpha}$ TM-Cy	lgG C _L	_		FIG. 4B	[IgG C _L
	Ш	IA			出		Ш	
18 ^d a1-a2	IA ^d α1-α2	IA ^d α1-α2	IA ^d α1-α ²	·	DRAI $_{\alpha}$ 1- $_{\alpha}$ 2	1- ₀ 2 EE	DRAI _α 1- _α 2	$DRAl_{\alpha}^{1-\alpha}$ 2
			01		OI.	DRAI _α 1- _α 2	7	2
SION IA ^d β1-β2	S FUSION IA ^d β1-β2	FUSION IA ^d 31-82	FUSION IA ^d β1-β2	G FUSION	DRB1*1501 β1-β2 L2	FUSION DRB1*1501 β1 L2	MOD B2	*1501 β1-β2
sc-1A ^d /PEPTIDE FUSION SP PEP L1	sc-1A ^d /PEPTIDE-TAG FUSION SP PEP L1 IA ^G	sc-1A ^d TM/PEPTIDE FUSION dSP PEP L1	sc-1A*/PEPTIDE-C _L FUSION	sc-DR2/PEPTIDE-TAG FUSION	uSP PEP L1	sc-DR2- ₁₃ 2/PEPTIDE FUSION SPPEPL1 DRI	sc-DR2 MOD R2/PEPTIDE FUSION STORE S	sc-DR2/PEPTIDE-CL FUSION

FIG. 5A

FIG. 5B

FIG. 6B-2

FIG. 6B-1

100 IL-2 60 PRODUCED (UNITS/ml) (UNITS/ml) 20-20-39 78 156 312 sc-IA^d/gD (ng/WELL)

FIG. 7

ť

FIG. 8A

•

FIG. 8B

¢

FIG. 9A

FIG. 9B

25/26

	SEQ No.
CCACCATG	1
OPR132 5'-CCCCCAAGCTTCCCGGGCCACCATGGCTCTGCAGATCCCCAGC-3'	2
OPR133 5'-CCCCCCACTTAAGGTCCTTGGGCTGCTCAGCACC-3'	3
OPR102 5'-GGGGGGGCCATGGCCGGAAACTCCGAAAGGCATTTCG-3'	4
OPR104 5'-GCGGCGACTAGTCCACTCCACAGTGATGGGGC-3'	5
OPR100 5'-GGGGGGCCATGGCCGAAGACGACATTGAGGCCGAC-3'	6
OPR101 5'-GCGCGACTAGTCCAGTGTTTCAGAACCGGCTC-3'.	7
IADF100 5'-GGGGGGGATATCTCTCAGGCTGTTCACGCTG-3'	8
IADB100 5'-GGGGGGTTCGAAAAGTGTACTTACGGGGGGCTGGAATCTCAGGTTC-3'	9
OPR145 5'-GGGGGGCTCGAGTATCAAAGAAGAACATGTGATCATC-3'	10
DR1A-B 5'-GCGGCGGATCCGTTCTCTGTAGTCTCTGGGAGAGG-3'	11
OPR203000 5'-GATCCGAGGAAGAAGAGTACATGCCCATGGAACCCGGGTGAG-3'	12
OPR203001 5'-AATTCTCACCCGGGTTCCATCGGCATGTACTCTTCTTCCTCG-3'	13
DR2B-F 5'-CCCCCGCTAGCGGAGGGGGGGGAAGCGGCGGAGGGGGGACA CCCGACCACGTTTCCTGTGGCAGCCTAAGAGG-3'	14
DR2B-B2 5'-CCCCCGAATTCCCCACTAGTCCATTCCACTGTGAGAGGGCTTGTC AC-3'	15
MB201806 5'-GGGGGGGCCATGGCCTACGACGAGAACCCCGTGGTG-3'	16
MB175959 5'-GGGGGGACTAGTTCGCCGCTGCACTGTGAAGC-3'	17
MB201807 5'-GGGGGGTATGCATACGACGAGAACCCCGTGGTG-3'	18
MB201808 5'-GGGGGGACTAGTTCCACTTCGAGGAACTGTTTCC-3'	19
MB201809 5'-CCTCCTGGTCTCCTGTGAGTGG-3'	20
MB201810 5'-CCACTCACAGAGGAGACCAGGAGG-3'	21
OPR 215 5'-CCC CCC ACC GGT TAC GAC AAC CCC GTG GTG-3'	22
OPR 216 CCC CCC ATC GAT AAG TGT ACT TAC GTG GGA GAG GGC TTG GAG CAT-3	' 23

FIG. 10A

OVA 323-399

ISQAVHAAHAEINEAGR	26
Gd-246-261 APYSTLLPPELSETP	27
MBP (83-102) Y83 YDENPVVHFFKNIVTPRTPP	28
14 amino acid linker TSGGGGSGGGSSS	29
EE TAG EEEEYMPMEPG	
24 amino acid linker TSGGGGSGGGGGGGGSSS	31
MBP (S4-102) DENPVVHFFKNIVTPRTPP	32

FIG. 10B

ţ