Geely Auto – Price Prediction

Seema Sharanappa Kanaje Multivariate Statistics Class

Abstract: To predict significant variables of a car that affect price of a car for Geely Auto Dataset.

Problem Statement:

A Chinese automobile company Geely Auto aspires to enter the US market by setting up their manufacturing unit there and producing cars locally to give competition to their US and European counterparts.

They have contracted an automobile consulting company to understand the factors on which the pricing of cars depends. Specifically, they want to understand the factors affecting the pricing of cars in the American market, since those may be very different from the Chinese market. The company wants to know:

- Which variables are significant in predicting the price of a car?
- How well those variables describe the price of a car.
- Based on various market surveys, the consulting firm has gathered a large dataset of different types of cars across the American market.

Business Goal:

We are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

Executive Summary:

The main aim of this report is to build a model that predicts price of the cars only using important variables, how closely the variables are related to price and to help business how each variable is related with independent variables which helps in analysis and to formulate the business strategy. Before starting with analysis, a round of data cleaning was needed. Further, analysis of all numerical variable's vs price using pairwise plots. Box plots is used to do the analysis of all categorical variables. Few models were built by eliminating variables using Recursive Feature Extraction (RFE) and by observing R-Squared, R-Squared adj and P-value. Afterward, model is evaluated, and it provides a decisive conclusion on the significant variables in understanding the pricing dynamics of a new market

Selected Method:

- Import and Cleaning the data
- Segregating the columns into numerical variables and categorical variables
- Visualizing numerical variables using pairwise plots and categorical variables by using boxplots and dropping columns based on collinearity.
- One hot encoding was used for the categorical columns and changing all the string to numbers.
- Splitting data into train and test set.
- Rescaling the data using standard scaler.
- Fitted Regression model.
- Summary of the model.
- New Model was built using Recursive Feature Extraction.
- New models were built by dropping columns with high P value and by observing R-Squared and R-Squared adj
- Evaluated the model by predicting data on test data along with Root mean square, Error Terms and Residual plots
- Concluding on the significant variables

Import and Cleaning data:

```
jaguar
VW
                 2
maxda
                 2
                 2
renault
mercury
                 1
porcshce
                 1
toyouta
                 1
vokswagen
                 1
Name: car_company, dtype: int64
        Figure 1
```

In Figure 1, we can see that data was entered with different abbreviation and spellings errors. We take these values and replace with correct values. For instance, Volkswagen as been abbreviated as 'vw', misspelt as 'Vokswagen'.

For analysis, we would only require name of car company but in the given data car company is mentioned along with the car model. We extract only company name and consider it as a independent variable for model building

Data Description:

Table 1 gives details of data dictionary along with type of the variable

Variable	Variable Description			
Symboling	that the auto is risky, -3 that it is probably prety safe.	Numerical		
wheelbase	Wheelbase of car.	Numerical		
carheight	Height of car.	Numerical		
curbweight	The weight of a car without occupants or baggage.	Numerical		
enginesize	Size of car.	Numerical		
boreratio	Boreratio of car.	Numerical		
stroke	Stroke or volume	Numerical		
compressionratio	Compression ratio of car.	Numerical		
horsepower	Horsepower	Numerical		
peakrpm	Car peak rpm.	Numerical		
price	Price of car.	Numerical		
'fueltype'	Car fuel type i.e gas or diesel.	Categorical		
'aspiration'	Aspiration used in a car.	Categorical		
'doornumber'	Number of doors in a car.	Categorical		
'carbody'	Body of car	Categorical		
'drivewheel'	Type of drive wheel.	Categorical		
'enginelocation'	Location of car engine.	Categorical		
'enginetype'	Type of engine	Categorical		
'cylindernumber'	Cylinder placed in the car.	Categorical		
'fuelsystem'	Fuel system of car.	Categorical		
car_company	Car brand name	Categorical		

Table 1

Data Visualization:

Figure 2

From the above heatmap(Figure 2), we see the correlation of Price with other variables:

- price is negatively correlated with symboling, peakrpm, citympg and highwaympg.
- price has a very low correlation with carheight, stroke and compression ratio.
- price shows a decent correlation with wheelbase, carlength, boreratio.
- price is highly correlated to carwidth, crubweight, enginesize and horsepower

We also observe the following from Figure 2:

- carlength is highly correlated with carwidth. (corr = 0.84)
- carlength is highly correlated with wheelbase. (corr = 0.87)
- carwidth is highly correlated with crubweight. (corr = 0.87)
- crubweight is highly correlated with horsepower. (corr = 0.75)
- horsepower is highly correlated with enginesize. (corr = 0.81)
- highwaympg is highly correlated with citympg. (corr = 0.97)

To reduce multicollinearity, going to drop car length, car width as they both high correlation with curb weight. Therefore, we keep curb weight which is highly correlated to price and dr op car length and car width. Citympg and highwaympg have very low correlation with price. Therefore, dropping cithympg and highwaympg. We keep the rest of the variables as they ha ve high correlation.

Figure 3

We are doing pairwise plot of numerical columns along with price to get more insight of the data (Referring Figure 3 and 4):

- Wheelbase is linearly correlated with price. (3.a)
- Carheight is slightly linearly correlated. (3.b)
- Curbweight is linearly correlated with price. (3.c)
- enginesize is linearly correlated with price. (3.d)
- boreratio is linearly correlated with price. (4.a)
- stroke is very negligible correlated and has has formed clustered at the bottom. (4.b)
- Compression ratio is segregated into two clusters. (4.c)
- Horsepower is linearly correlated with price. (4.d)
- Peakrpm is distributed. (4.e)

Figure 4

Figure 5

Plotting boxplots for categorical columns vs price(Referring Figure 5):

- Vehicles with Diesel as their fueltype is more expensive that gas. There are lot of outliers in the gas vehicles
- There is also increase in the price if aspiration is of type turbo. There are lot of outliers in the std type
- Number of doors in the car does not show much effect on the price.
- Hatchback, Sedan and Wagon are less expensive than the hardtop and convertible. Hardtop being expensive out of all. There are more than few outliers in sedan.
- Drivewheel with 'rwd' gets pricier than 'fwd' and '4wd'.
- Engine locations matter a lot for the price of the car, we can see that engine at the rear are almost more 50percent expensive than the engine at the front

With engine type 'ohcv', the car of the price gets expensive. 'ohc' and 'ohcf' are the cheaper engines among all. Others are moderately pricey.

The price of the car also depends on the brand, in the below boxplot we can observe that 'BMW', 'BUICK', 'JAGUAR' and 'PORSCHE' are the expensive among all. Chervolet is least priced

Figure 7

Data Preparation:

As the categorical columns have string values, we convert them into integers by using one hot encoding in python. We use get_dummies object from pandas to get integer values in dataframe which is equivalent to one hot encoding.

I have split the dataset into two parts 70 percent as training data set and another 30 percent as test data set.

Also, there are few variables like peakrpm, price, enginesize etc have large numbers and few more have extremely small values which needs to be rescaled. So that all variables have comparable scale otherwise we end up obtaining model with very large or very small co-efficient in comparison with other co-efficient. I have done scaling by using scikit learn library in python.

It can be done either by Minmax or Standard Scaler techniques. I have used Standard Scaler technique for scaling my numerical variables.

Model Selection Criteria:

To get the detailed statistics, linear regression model was built using statsmodel. As we can observe in the below summary that they are plenty of variable which is not viable. Also, we can observe that there are lot of variables (marked in red) have high p-values. Though R-Squared and R-Squared adj are big enough but still this model is not recommended.

	OLS Reg	ression Re	sults			
D V1-1			d .		0.074	
Dep. Variable:	pri		ared:		0.971	
Model:			R-squared:		0.954	
Method:			tistic:		56.84	
Date:	Mon, 14 Dec 20		(F-statistic):		9.79e-51	
Time:	18:16:		ikelihood:		50.986	
No. Observations:	1	.43 AIC:			6.027	
Df Residuals:		89 BIC:			166.0	
Df Model:		53				
Covariance Type:	nonrobu					
	coef	std err	t	P> t	[0.025	0.9
const	-1.4135	0.675	-2.094	0.039	-2.755	-0.
symboling	0.0054	0.042	0.127	0.899	-0.079	0.
wheelbase	0.2429	0.068	3.583	0.001	0.108	0.
carheight	-0.1951	0.053	-3.665	0.000	-0.301	-0.
curbweight	0.2512	0.115	2.179	0.032	0.022	0.
enginesize	1.6652	0.325	5.120	0.000	1.019	2.
boreratio	-0.7216	0.154	-4.681	0.000	-1.028	-0.
stroke	-0.1518	0.062	-2.447	0.016	-0.275	-0.
compressionratio	-0.1071	0.284	-0.377	0.707	-0.672	0.
horsepower	-0.0774	0.163	-0.475	0.636	-0.401	0.
peakrpm	0.1632	0.046	3.513	0.001	0.071	0.
fueltype gas	-0.8807	0.518	-1.699	0.093	-1.911	0.
aspiration turbo	0.4425	0.133	3.336	0.001	0.179	0.
doornumber two	-0.0831	0.072	-1.156	0.251	-0.226	0.
carbody hardtop	-0.5840	0.261	-2.241	0.028	-1.102	-0.
carbody hatchback	-0.5762	0.201	-2.864	0.005	-0.976	-0.
carbody sedan	-0.5303	0.205	-2.588	0.011	-0.937	-0.
carbody wagon	-0.4841	0.216	-2.237	0.028	-0.914	-0.
drivewheel fwd	0.0157	0.116	0.135	0.893	-0.215	0.
drivewheel_rwd	0.0710	0.166	0.428	0.670	-0.259	0.
enginelocation_rear	0.5721	0.302	1.894	0.062	-0.028	1.
enginetype_dohcv	1.5851	0.789	2.010	0.047	0.018	3.
enginetype l	1.3551	0.360	3.767	0.000	0.640	2.
enginetype_ohc	0.0713	0.206	0.347	0.730	-0.338	0.
enginetype_ohcf	0.8099	0.195	4.150	0.000	0.422	1.
enginetype_ohcv	0.0328	0.177	0.186	0.853	-0.318	0.
enginetype_rotor	2.1890	0.536	4.081	0.000	1.123	3.
cylindernumber_five	1.7003	0.648	2.623	0.010	0.412	2.
cvlindernumber four	2.6142	0.840	3.112	0.002	0.945	4.

Therefore, I am using RFE to automatically pick important features/variables. RFE is a Recursive Feature Elimination, to select features by recursively considering smaller and smaller sets of features. RFE is performed by scikit learn library and feature selection module. I did select 20 features as my n_feature parameter to RFE module. Below are the variables that are chosen by the RFE model (Figure 9):

Figure 9

These are the variables rejected by the RFE.

Figure 10

Figure 11, model was built using the features provide by RFE. But still, we can see there are variables with high P-values

	OLS Regre	ssion Re				
Dep. Variable:	price	P cou	ared:		0.931	
Model:	015		R-squared:		0.931	
Method:	Least Squares		tistic:		93.26	
Date:	Mon, 14 Dec 2020		(F-statistic)		4.53e-63	
Time:	18:17:34		ikelihood:		-11.520	
No. Observations:	143		ikelinood.		61.04	
Df Residuals:	124				117.3	
Df Model:	18				11/.5	
Covariance Type:	nonrobust					
covariance Type.	IIOIII ODUSC					
	coef s	td err	t	P> t	[0.025	0.975]
const	0.1929	0.147	1.312	0.192	-0.098	0.484
curbweight	0.4409	0.088	5.006	0.000	0.267	0.615
enginesize	0.3268	0.087	3.738	0.000	0.154	0.500
carbody hardtop	-0.4344	0.246	-1.764	0.080	-0.922	0.053
carbody hatchback	-0.3883	0.152	-2.558	0.012	-0.689	-0.088
carbody sedan	-0.3195	0.149	-2.141	0.034	-0.615	-0.024
carbody wagon	-0.4859	0.166	-2.924	0.004	-0.815	-0.157
enginelocation rear	1.2635	0.456	2.770	0.006	0.361	2.166
enginetype dohcv	0.3121	0.401	0.779	0.438	-0.481	1.105
enginetype_1	0.1297	0.104	1.247	0.215	-0.076	0.336
enginetype rotor	0.3574	0.091	3.907	0.000	0.176	0.538
cylindernumber three	0.4158	0.202	2.060	0.041	0.016	0.815
cylindernumber_twelve	e 0.3206	0.367	0.874	0.384	-0.406	1.047
cylindernumber_two	0.3574	0.091	3.907	0.000	0.176	0.538
car_company_audi	0.4959	0.141	3.512	0.001	0.216	0.775
car_company_bmw	1.1969	0.130	9.206	0.000	0.940	1.454
car_company_buick	0.8290	0.157	5.281	0.000	0.518	1.140
car_company_peugeot	-0.2861	0.139	-2.058	0.042	-0.561	-0.011
car_company_porsche	0.9451	0.287	3.294	0.001	0.377	1.513
car_company_saab	0.2985	0.176	1.693	0.093	-0.050	0.647
car_company_volvo	0.3523	0.134	2.626	0.010	0.087	0.618
Omnibus:	20.275		n-Watson:	======	2.008	
Prob(Omnibus):	0.000	Jarqu	e-Bera (JB):		53.594	
Skew:	0.501	Prob(JB):		2.30e-12	
Kurtosis:	5.827	Cond.	No.		5.31e+16	
=======================================						

Figure 11

Figure 12, though there is no change in R-Squared and R-Squared adj values. But still, we can observe that p value of 'cylindernumber_twelve' is greater than 0.05. We eliminate that and rebuild the model

Dep. Variable:	pric				0.931	
Model:		OLS Adi. R-squared:			0.921	
Method:	Least Square				99.02	
	Mon, 14 Dec 202		(F-statistic):		6.04e-64	
Dace. Time:	18:18:1		ikelihood:		-11.868	
No. Observations:	14		IKEIIIIOOU.		59.74	
Df Residuals:	12				113.1	
Df Model:	1				115.1	
Covariance Type:	nonrobus					
	coef	std err	t	P> t	[0.025	0.9751
const	0.1923	0.147	1.310	0.193	-0.098	0.483
curbweight	0.4397	0.088	5.001	0.000	0.266	0.614
enginesize	0.3308	0.087	3.797	0.000	0.158	0.503
carbody_hardtop	-0.4338	0.246	-1.764	0.080	-0.920	0.053
carbody_hatchback	-0.3871	0.152	-2.554	0.012	-0.687	-0.087
carbody_sedan	-0.3185	0.149	-2.137	0.035	-0.613	-0.024
carbody_wagon	-0.4838	0.166	-2.916	0.004	-0.812	-0.155
enginelocation_rear	1.1057	0.408	2.710	0.008	0.298	1.913
enginetype_l	0.1306	0.104	1.258	0.211	-0.075	0.336
enginetype_rotor	0.3596	0.091	3.938	0.000	0.179	0.540
cylindernumber_three	9,4182	0.201	2,976	9.949	0.019	9,817
cylindernumber_twelve		0.366	0.830	0.408	-0.420	1.028
cylindernumber_two	0.3596	0.091	3.938	0.000	0.179	0.540
car_company_audi	0.4953	0.141	3.513	0.001	0.216	0.774
car_company_bmw	1.1931	0.130	9.198	0.000	0.936	1.450
car_company_buick	0.8235	0.157	5.260	0.000	0.514	1.133
car_company_peugeot	-0.2875	0.139	-2.071	0.040	-0.562	-0.013
car_company_porsche	1.0967	0.210	5.210	0.000	0.680	1.513
car_company_saab	0.2989	0.176	1.698	0.092	-0.049	0.647
car_company_volvo	0.3509	0.134	2.620	0.010	0.086	0.616
======================================	19.42		======== n-Watson:		2.020	
Omnibus: Prob(Omnibus):	19.42		n-Watson: e-Bera (JB):		2.020 50.132	
Prob(Umnibus): Skew:	0.00				1.30e-11	
	0.48	z rrob(1.506-11	

Figure 12

Now there is slight increase in R-squared adj. As P value of 'enginetype_l' is greater than 0.05, we will rebuild the model and check.

Dep. Variable:				ıared:		0.930		
Model:		OLS	_	R-squared:		0.922		
Method:	Least Squ			tistic:		105.4		
Date:	Mon, 14 Dec			(F-statisti	c):	8.12e-65		
Time:	18:1	8:38	_	.ikelihood:	-12.262			
No. Observations:		143	AIC:			58.52		
Df Residuals:		126	BIC:			108.9		
Df Model:		16						
Covariance Type:	nonro	bust						
=======================================		=====				========		
	coef	std	err	t	P> t	[0.025	0.975	
const	0.1826	0.	146	1.249	0.214	-0.107	0.47	
curbweight	0.4097	0.	.080	5.118	0.000	0.251	0.56	
enginesize	0.3717	0.	072	5.174	0.000	0.230	0.51	
carbody hardtop	-0.4315	0.	246	-1.757	0.081	-0.917	0.05	
carbody hatchback	-0.3803	0.	151	-2.516	0.013	-0.679	-0.08	
carbody sedan	-0.3078	0.	148	-2.076	0.040	-0.601	-0.01	
carbody wagon	-0.4607	0.	163	-2.821	0.006	-0.784	-0.13	
enginelocation rear	1.0757	0.	406	2.650	0.009	0.272	1.87	
enginetype l	0.1401	0.	103	1.359	0.176	-0.064	0.34	
enginetype rotor	0.3837	0.	.086	4.439	0.000	0.213	0.55	
cylindernumber three	0.4174	0.	201	2.075	0.040	0.019	0.81	
cylindernumber two	0.3837	0.	.086	4.439	0.000	0.213	0.55	
car company audi	0.5039	0.	140	3.588	0.000	0.226	0.78	
car company bmw	1.1710	0.	127	9.235	0.000	0.920	1.42	
car company buick	0.8074	0.	155	5.204	0.000	0.500	1.11	
car company peugeot	-0.2773	0.	138	-2.008	0.047	-0.551	-0.00	
car company porsche	1.0769	0.	209	5.156	0.000	0.664	1.49	
car company saab	0.3150	0.	175	1.803	0.074	-0.031	0.66	
car company volvo	0.3557		134	2.662	0.009	0.091	0.62	
	========	=====		=======	========	========		
Omnibus:	16	.922	Durbin-Watson:			2.016		
Prob(Omnibus):		.000				42.459		
Skew:		.404	Prob(6.03e-10		
Kurtosis:		.544	Cond.	. ,		7.00e+16		

Figure 13

After eliminating 'enginetype_l', model has still slightly higher P-value for 'Car_Peugeot'

	OLS Reg	gression	Results					
Dep. Variable:	pri	ice R-		0.930				
Model:	OLS Adj. R-squared:				0.922			
Method:	Least Squar	res F-	statistic:		105.4			
Date:	Mon, 14 Dec 20	920 Pr	ob (F-statisti	c):): 8.12e-65			
Time:	18:20:	:16 Lc	g-Likelihood:		-12.262			
No. Observations:	1	143 AI	C:		58.52			
Df Residuals:	1	126 BI	C:		108.9			
Df Model:		16						
Covariance Type:	nonrobu	ust						
=======================================	coef	std err		======= P> t	[0.025	0.9751		
const	0.1826	0.146	1.249	0.214	-0.107	0.472		
curbweight	0.4097	0.080	5.118	0.000	0.251	0.568		
enginesize	0.3717	0.072	5.174	0.000	0.230	0.514		
carbody hardtop	-0.4315	0.246	-1.757	0.081	-0.917	0.054		
carbody hatchback	-0.3803	0.151	-2.516	0.013	-0.679	-0.081		
carbody sedan	-0.3078	0.148	-2.076	0.040	-0.601	-0.014		
carbody_wagon	-0.4607	0.163	-2.821	0.006	-0.784	-0.137		
enginelocation rear	1.0757	0.406	2.650	0.009	0.272	1.879		
enginetype_rotor	0.3837	0.086	4.439	0.000	0.213	0.555		
cylindernumber_three	0.5575	0.288	1.933	0.055	-0.013	1.128		
cylindernumber_two	0.3837	0.086	4.439	0.000	0.213	0.555		
car_company_audi	0.5039	0.140	3.588	0.000	0.226	0.782		
car_company_bmw	1.1710	0.127	9.235	0.000	0.920	1.422		
car_company_buick	0.8074	0.155	5.204	0.000	0.500	1.114		
car_company_peugeot	-0.1371	0.138	-0.997	0.321	-0.409	0.135		
car_company_porsche	1.0769	0.209	5.156	0.000	0.664	1.490		
car_company_saab	0.3150	0.175		0.074	-0.031	0.661		
car_company_volvo	0.3557	0.134	2.662	0.009	0.091	0.620		
				=======				
Omnibus:	16.9		rbin-Watson:		2.016			
Prob(Omnibus):	0.6		rque-Bera (JB)	:	42.459			
Skew:	0.4	104 Pr	ob(JB):		6.03e-10			
Kurtosis:	5.5	544 Cc	nd. No.		6.58e+16			

Figure 14

After eliminating 'car_company_peugeot' from the model. The model looks stable and all the variables are in limits. Also, there is not much change in the R-Squared value and R-Squared adj values. We go ahead and predict the price of the car with model.

	OLS Re	_					
Dep. Variable:		ice				0.030	
Dep. variable: Model:	pr	ols		uared:	0.930		
Model: Method:				R-squared:		0.922	
	Least Squares Mon, 14 Dec 2020			atistic:	`	112.4	
Date:				(F-statisti	c):	1.23e-65	
Time:	18:21			Likelihood:		-12.824	
No. Observations:		143	AIC:			57.65	
Df Residuals:		127	BIC:			105.1	
Df Model:		15					
Covariance Type:	nonrol						
	coef	std		t	P> t	[0.025	0.975]
const	0.1666	0.	145	1.147	0.254	-0.121	0.454
curbweight	0.3598	0.	062	5.762	0.000	0.236	0.483
enginesize	0.4097	0.	061	6.728	0.000	0.289	0.530
carbody hardtop	-0.4303	0.	246	-1.752	0.082	-0.916	0.056
carbody hatchback	-0.3783	0.	151	-2.503	0.014	-0.677	-0.079
carbody sedan	-0.3118	0.	148	-2.103	0.037	-0.605	-0.018
carbody wagon	-0.4482	0.	163	-2.752	0.007	-0.771	-0.126
enginelocation rear	1.0316	0.	404	2.557	0.012	0.233	1.830
enginetype rotor	0.4092	0.	083	4.957	0.000	0.246	0.573
cylindernumber_three	0.5343	0.	287	1.859	0.065	-0.034	1.103
cylindernumber two	0.4092	0.	083	4.957	0.000	0.246	0.573
car company audi	0.5441	0.	135	4.044	0.000	0.278	0.810
car company bmw	1.1889	0.	126	9.472	0.000	0.941	1.437
car company buick	0.8564	0.	147	5.820	0.000	0.565	1.148
car company porsche	1.0916	0.	208	5.239	0.000	0.679	1.504
car company saab	0.3565	0.	170	2.101	0.038	0.021	0.692
car_company_volvo	0.4011		126	3.193	0.002	0.153	0.650
Omnibus:		.094		in-Watson:		2.023	
Prob(Omnibus):		.000		ue-Bera (JB)		45.061	
Skew:		.450	Prob(JB):			1.64e-10	
Kurtosis:		.598	Cond. No.			4.87e+16	

Figure 15

Model Comparison:

For training data, Plotting y_test and y_pred to understand the spread. From the spread we understand it is linear

An error term is a residual variable produced by a statistical or mathematical model, which is created when the model does not fully represent the actual relationship between the independent variables and the dependent variables. It is normally distributed which is good to go. Root mean square, value of zero is the perfect model. But there is deviation of 0.2646 which is acceptable. Lower RMS value better the model. Below graphs shows plot residuals, which are clustered on to left and rest are distributed. There is a spike as well in the below line where it is clustered which indicates there are outliers

Even in test data, there is deviation of 0.27146 which is acceptable. Plotting y_test and y_pred to understand the spread. From the spread we understand it is linear. Below graphs shows plot residuals, which are clustered on to left and rest are distributed. There is a spike as well in the below line where it is clustered which indicates there are outliers.

Conclusion: From our final model, the model looks stable and all the variables are in limits. Also, there is not much change in the R-Squared value and R-Squared adj values. Error terms is also normally distributed overall the model looks good. All the below variables would help in the prediction of the price.

- 1. Engine Size
- 2. Engine Location
- 3. Engine Type
- 4. Cylinder Number
- 5. Car Brand

References:[1] Kaggle, geely-auto-car-price-linear-regression-assignment.

[2] Towards Data Science, Predicting car price.

[3] https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html