WELCOME

International Marketing: Analysis for the Internationalization of Semiconductors to Japan

INTERNATIONAL UNDERGRADUATE PROJECT

INTERNATIONALIZATION OF COMPACT CHIPS TO JAPAN

AGENDA

01	SEMICONDUCTOR SECTOR
02	GLOBAL VALUE CHAIN
03	SELECTED ACTIVITIES AND COUNTRIES
04	MARKET ACTIVITY ANALYSIS
05	STRATEGIC GROUPS
06	STRATEGY IDENTIFICATION
07	MODE OF OPERATION
08	CONCLUSION

SEMICONDUCTOR SECTOR

GLOBAL VALUE CHAIN

P&D

PROJECT

INPUTS

MANUFACTURING

ASSEMBLY AND TESTING

PROJECT AUTOMATION DISTRIBUTION AND MARKETING

BASIC

Government and private investment

•••••

Identification of materials and chemical processes

APPLIED

Specific processes and technologies

+

DEVELOPMENT

Application of research

Development of integrated circuits, software and compact chips

Reuse of previous projects

MATERIALS)

Chemicals, gases, minerals and high purity materials

MACHINERY

Specific equipment for wafer production

Creation of controlled environments for the production of integrated systems

Printing integrated circuits in wafer format

Converting wafers into finished chips

Packaging chips in protective frames

Carrying out quality and efficiency tests

Supply of software and support services

Strategic technology

DISTRIBUTION

Original equipment manufacturers

MARKETING

Competitive Marketing

.......

Dissemination of the semiconductor model for product promotion

SELECTED ACTIVITY

P&D

PROJECT

INPUTS

MANUFACTURING

ASSEMBLY AND TESTING

PROJECT AUTOMATION DISTRIBUTION AND MARKETING

BASIC

Government and private investment

.....

Identification of materials and chemical processes

APPLIED

Specific processes and technologies

+

DEVELOPMENT

Application of research

Development of integrated circuits, software and compact chips

Reuse of previous projects

MATERIALS

Chemicals, gases, minerals and high purity materials

MACHINERY

Specific equipment for wafer production

Creation of controlled environments for the production of integrated systems

Printing integrated circuits in wafer format

Converting wafers into finished chips

Packaging chips in protective frames

Carrying out quality and efficiency tests

Supply of software and support services

Strategic technology

DISTRIBUTION

Original equipment manufacturers

MARKETING

Competitive Marketing

.......

Dissemination of the semiconductor model for product promotion

DEVELOPMENT OF COMPACT CHIPS

- Prioritization of Project Links
- Critical Importance in the Value Chain
- Higher Value Added 40% to 50%
- Specialization and Efficiency
- Competitive Advantages

SELECTED COUNTRIES

Country of Origin

- Participation in Nearly All Links
- 38% Value Added in the Global Value Chain
- High Growth Projection
- Intellectual Expertise

Country of Destination

- Incentives
- Lower Vulnerability to Risks
- High Market Projection and Logistic Index

ANALYSIS OF MARKET ATTRACTIVENESS IN JAPAN

2024

HIGH IMPACT

MULTIPLE COMPANIES

INDUSTRY GIANTS

NO SUPPLY BOTTLENECKS

LOW IMPACT

ECONOMIES OF SCALE
FOCUS ON INNOVATION

AGGRESSIVE
COMPETITION

HIGH IMPACT

FEW SUPPLIERS

UNIQUE AND SPECIFIC PRODUCTS

LOW IMPACT

INTERDEPENDENCE WITH BUYERS

DIFFICULTY IN FORWARD INTEGRATION

LOW IMPACT

MANY BUYERS

FOCUS ON QUALITY -LOW PRICE BARGAINING POWER

STRATEGIC FRONTS

DIFFICULTY IN BACKWARD INTEGRATION

LOW IMPACT

HIGH DEGREE OF SPECIALIZATION

INNOVATIVE TECHNOLOGIES

SPECIFICITY OF FUNCTIONS

STRATEGIC GROUPS

ESPM

OPERATING STRATEGY

Global Integration

Operating at economies of scale reduces production costs

Requires significant product adaptation

Logistics faces global market competition but has minimal local impact

Local Responsiveness

High semiconductor consumption in Japan

Strong regulatory and economic policies

Government incentives require decisive responses

OPERATING STRATEGY

INTEGRATION

LOCAL RESPONSIVENESS

OPERATING STRATEGY

TRANSNATIONAL STRATEGY

- Specialization and Efficiency
- Meticulous attention
- Local Response
- Direct presence in Japan,
 maintaining full control over operations

MODE OF OPERATION

ENTRY MODE

- Faster process;
- Organizational misalignment (cultural);

JOINT-VENTURE

- ROI (-8%);
- Risk of eliminating up to 10,000 new jobs.

OPPORTUNITIES

PROJECT OFFICE

- \$300 million subsidy;
- ROI (+37.01%);
- Positive cash flow in approximately 5 years;
- Urban rental (15%-25%);
- Osaka, Tokyo University;
- Logistics flow (Sagawa, Yamato).

CASE: INTEL, MICRON AND NVIDIA

They represent 25% of the value-added revenue in the United States:

- Intel: Leader in the American sector for microchip development.
- Micron: American giant in advancing memory and storage solutions for chips.
- Nvidia: American powerhouse in graphical processing and semiconductor AI.

OBJECTIVE:

Develop chips with greater innovation and operational efficiency in East Asia.

RESULTS:

- Micron: Cost (\$3.6 billion) x Return (\$5 billion).
- Nvidia: Cost (\$740 million) x Return (\$1 billion).
- Intel: Cost (\$300 million) x Return (\$1 billion).

Top 3 Companies in Chip Development

CHOSEN ACTIVITY

DEVELOPMENT OF COMPACT CHIPS IN JAPAN.

CONCLUSION

STRATEGY

TRANSNATIONAL

ENTRY MODE

PROJECT OFFICE

WEAPPRECIATEYOUR ATTENTION!