Risolvere collisioni tra poligoni convessi

Elia Calligaris

12 settembre 2015

Indice

- Fondamenti
 - Descrivere la posizione dei poligoni
 - Somme di Minkowski
- Rilevare le collisioni
 - Una soluzione lineare
 - Ombre
 - Test in tempo logaritmico
- Risolvere le collisioni
 - Adattare l'algoritmo
 - Casi particolari

Enunciato del problema

Dati:

- due poligoni convessi A e B, tali che $A \cap B \neq \emptyset$
- una retta orientata d (direzione)

Ci si propone di:

- trovare la minima distanza $\sigma_d(A, B)$ necessaria a separare i due poligoni muovendo A lungo d;
- risolvere tale problema partendo dall'analisi di uno più semplice;
- arrivare ad una soluzione a costo logaritmico.

Figura 1: Esempio di risoluzione di collisione fra poligoni convessi.

Sezione 1

Fondamenti

Descrivere la posizione dei poligoni

- Per ogni poligono P si prende un punto di riferimento x arbitrario;
- La posizione di P è descritta dal vettore \vec{x} .
- In realtà non si prende un punto a caso...

Notazione

- Con $P^{\vec{x}}$ si indica il poligono P spostato di \vec{x} rispetto all'origine;
- Con solamente P si intende che il poligono ha il suo punto di riferimento nell'origine;
- Con -P si intende il poligono capovolto rispetto all'origine, cioè $-P = \{-p : p \in P\}$.

Somme di Minkowski

Nozione su cui si basano gli algoritmi a seguire.

Definizione 1

Dati due poligoni A e B, la loro somma di Minkowski è definita come: $A \oplus B = \{a + b : a \in A, b \in B\}$

Notazione

Per compattezza, "Somme di Minkowski" verrà abbreviato in sdM

Che significato hanno le sdM?

Somme di Minkowski

Nozione su cui si basano gli algoritmi a seguire.

Definizione 1

Dati due poligoni A e B, la loro somma di Minkowski è definita come: $A \oplus B = \{a + b : a \in A, b \in B\}$

Notazione

Per compattezza, "Somme di Minkowski" verrà abbreviato in sdM

Che significato hanno le sdM?

Somme di Minkowski Significato

Figura 2: Visualizzazione delle somme di Minkowski.

Somme di Minkowski Proprietà

Teorema 1

La somma di Minkowski di due poligoni convessi è, a sua volta, un poligono convesso.

Somme di Minkowski

Siano A e B due poligoni convessi, con n ed m punti rispettivamente:

- algoritmo a forza bruta: costo $O(n \times m)$.
 - Calcolare la somma di tutte le coppie di punti;
 - Costruire il convex hull dei punti ottenuti;
 - ⇒ Vengono calcolati punti superflui!
- algoritmo per poligoni convessi: costo O(n+m).
 - Lati dei poligoni ordinati per angolo di rotazione;
 - Assemblare i lati di entrambi i poligoni in ordine di angolo crescente.

Algoritmo per poligoni convessi

Figura 3: Visualizzazione della costruzione della *sdM* di due poligoni convessi.

Sezione 2

Rilevare le collisioni

Rilevare le collisioni Collision detection

- Problema più semplice della risoluzione delle collisioni;
- Determinare se due poligoni collidono (i.e. $A \cap B \neq \emptyset$);
- Algoritmo a costo $O(\log(n))$, dove $n = \max(|A|, |B|)$, proposto da Guibas e Stolfi e basato sulle sdM;
- Tale algoritmo verrà adattato per risolvere le collisioni.

Una prima soluzione...

... a costo lineare

Teorema 2

Dati due poligoni $A^{\vec{x}}$ e $B^{\vec{y}}$:

$$A^{\vec{x}} \cap B^{\vec{y}} \neq \emptyset \Longleftrightarrow \vec{x} - \vec{y} \in -A \oplus B \lor \vec{y} - \vec{x} \in A \oplus -B.$$

Tuttavia, come si è visto, calcolare la sdM ha costo almeno lineare.

 \Rightarrow Non serve costruire tutta la sdM!

Ombre

Un'ombra destra/sinistra di un poligono P (denotata P_R/P_L) è ciò che si ottiene "trascinando" P verso destra/sinistra, All'infinito. Da questa definizione si ottengono alcuni risultati interessanti.

Teorema 3

$$P_L \cap P_R = P$$

(c) Ombra destra

Teorema 4

$$A \cap B \neq \emptyset \Leftrightarrow A_R \cap B_L \neq \emptyset \land A_L \cap B_R \neq \emptyset.$$

Di conseguenza, riformulando il teorema 2, si può:

- Prendere un'ombra sinistra $L^{\vec{u}}$ ed una destra $R^{\vec{v}}$;
- Testare se $\vec{w} = \vec{v} \vec{u}$ sta in $L \oplus -R$. \Rightarrow Con una tecnica particolare!

Osservazione

Si noti che -R è un'ombra sinistra

Teorema 4

$$A \cap B \neq \emptyset \Leftrightarrow A_R \cap B_L \neq \emptyset \land A_L \cap B_R \neq \emptyset.$$

Di conseguenza, riformulando il teorema 2, si può:

- Prendere un'ombra sinistra $L^{\vec{u}}$ ed una destra $R^{\vec{v}}$;
- Testare se $\vec{w} = \vec{v} \vec{u}$ sta in $L \oplus -R$. \Rightarrow Con una tecnica particolare!

Osservazione

Si noti che -R è un'ombra sinistra!

Test in tempo logaritmico sfruttando le ombre

- Siano l' ed r' i punti iniziali delle catene L ed -R, rispettivamente;
- Siano I" ed r" i loro punti finali;
- Allora $L \oplus -R$ sarà una catena convessa (verso destra) che va da l' + r' a l'' + r''; in particolare, sarà la catena che sta più a destra di tutte le altre.

- Siano f e g i lati mediani di L ed -R;
- Si avrà allora che le ombre saranno da essi divise in una parte superiore ed una inferiore, indicate con L_H/L_L e $-R_H/-R_L$;
- Senza perdita di generalità, si supponga che f venga prima di g in ordine di angolo: allora si può definire la catena D, composta da $L_L \oplus -R_L, f, g$ e $L_H \oplus -R_H$;
- D sarà una catena convessa verso destra, ma non è detto che corrisponda a $L \oplus -R$

Con riferimento alla figura a fianco, \vec{w} può cadere in una delle seguenti aree:

- LEFT: \vec{w} è sicuramente dentro $L \oplus -R$, quindi c'è una collisione;
- ABOVE: \vec{w} è sopra g, quindi f e L_L possono essere scartati in quanto irrilevanti;
- BELOW: \vec{w} è sopra f, quindi g e $-R_H$ possono essere scartati in quanto irrilevanti;

Figura 4: Immagine tratta da [2]

- Se \vec{w} non cade in LEFT, dopo un certo numero di passi una delle due ombre (ipotizziamo sia L) sarà ridotta ad un singolo vertice \vec{x} :
- A questo punto basta vedere se $\vec{w} \vec{x}$ sta dentro -R tramite una semplice ricerca binaria (a costo $O(\log(n))$).
- \Rightarrow Quindi abbiamo risolto il problema ad un costo complessivo di $O(\log(n))$.

Osservazione

Costruire le ombre dei poligoni ha costo lineare, quindi devono pre-computate.

Sezione 3

Risolvere le collisioni

Risolvere le collisioni Penetration Depth

A questo punto bisogna adattare l'algoritmo descritto da Guibas e Stolfi per determinare σ_d , ovvero la profondità di penetrazione:

- L'algoritmo precedente trova il lato di $L \oplus -R$ che interseca il raggio orizzontale (verso destra) da \vec{w} ;
- Adesso invece si vuole trovare il lato e che interseca il raggio r che parte da \vec{w} in direzione d;
- Se z è il punto di intersezione tra e ed r, allora $\sigma_d = \vec{z} \vec{w}$;
- Come annunciato, questa procedura manterrà il costo logaritmico.

Adattare l'algoritmo

- Si costruisce la catena D, come in precedenza;
- Dati i lati mediani f e g:
 - se r interseca o sta sotto f, si procede come in BELOW;
 - se interseca o sta sopra g, si procede come in ABOVE.
- Si itera fino a ridurre un'ombra ad un singolo punto \vec{x} ;
- Quindi $\vec{w} = \vec{w} \vec{x}$, e r va modificato affinché passi per \vec{w} ;
- Si esegue una ricerca binaria per trovare un'intersezione tra r ed un lato dell'ombra rimanente:
 - Se viene trovata, abbiamo il punto \vec{z} grazie al quale possiamo determinare la profondità della collisione;
 - Altrimenti significa che non c'è collisione alcuna.

A questo punto abbiamo trovato σ_d ed è possibile spostare il primo poligono per risolvere la collisione!

Casi particolari da gestire

- È possibile che r sia parallelo sia ad f che g: guardare il coefficiente angolare di r;
- Complicazioni dovute al modo di rappresentare una retta orientata (raggio).

Riferimenti bibliografici

L.J. Guibas and J. Stolfi
Ruler, Compass and Computer: The Design and Analysis of
Geometric Algorithms

Grazie per l'attenzione!