

Judg die o fry 2001 mag et the printydown with jed diet die hazite han S bettern followith in somethy down, bour their printies bested a thin jugate secondar my great and just a jugate och about schorer and just a jugate och about schorer and just a jugate og fram grander at la promise pary stagt a shown

Skriti markovski modeli v finančnih časovnih vrstah

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

13. december 2018

Martin Praček Mentor: izr. prof. dr. Damjan Škulj

Markovski model

- Markovska lastnost je lastnost slučajnega procesa v diksretnem času, da je njegova vrednost v času t odvisna le od njegove vrednosti v času t-1.
- Ločimo v celoti opazovan in delno opazovan ter
- Avtonomen in kotroliran sistem.

Delitev markovskih modelov

V celoti opazovan Markovska veriga Avtonomen Kontorliran

Le delno opazovan Skriti markovski model Markovski proces odločanja Delno opazovalen proces odločanja

Skriti markovski model

Skriti markovski model je statistični markovski model, kjer predpostavljamo, da je modelirani sistem markovski proces z skritimi stanji.

Gre torej za tip modela, kjer lahko razberemo rezultat, ne moremo pa ugotoviti, kakšna je bila funkcija, ki nam ga je dala.

Zahteve

- Markovska lastnost
- Enakomerno porazdeljeni časi signalov O_t , ki jih poda resnični svet
- Sistem ima N stanj, vsako določa slučajna spremenjivka S

- Slučajnih spremenljivk skritih skoraj v nobenem času ne poznamo, poznamo pa slučajni proces Q, ki predstavlja signale
- Porazdelitveni zakon vsakega stanja i označimo z $b_i(x)$
- lacktriangle Vektor začetnih stanj je π
- Prehodna matrika A, ki je neodvisna od časa

Porazdelitveni zakon

- Gaussova mešanica
- $\bullet b_i = \sum_{j=1}^M c_{ij} N(x; \mu_j, \sigma_j^2)$
- Število porazdelitev M
- Matrika Γ, $μ_{ij}$ predstavlja pričakovano vrednost porazdelitve j v stanju i
- Matrika Σ , kjer σ_{ij} predstavlja varianco porazdelitve j v stanju i
- Matrika C, koeficienti c_{ii} iz Gaussove mešanice

Osnovanje modela

Da bomo lahko delali z našim modelom, moramo najprej izvesti t.i. trening modela.

- Razvrščanje v skupine (k-means clustering)
- Akaikov informacijski kriterij

Izračun $P(O|\lambda)$

Z λ označimo vse ostale parametre $\lambda = (\pi, A, C, \Gamma, \Sigma)$. Za učinkovit izračun le teh si pomagamo z iterativnim postopkom, podobnim sistemu EM, naprej-nazaj.

$$\alpha_1(i) = \pi_i b_i(O_1) = \pi_i b_i = \sum_{k=1}^{M} c_{ik}$$

$$\downarrow \downarrow$$

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Trening modela

Da bomo lahko $P(O|\lambda)$ maksimizirali, potrebujemo začetne ocene parametrov. Za to ne poznamo analitičnega postopka, lahko pa lokalno maksimiziramo, z naprimer, Baum-Welchovim algoritmom. Pri tem nas ne skrbijo ocene za A ter π , kjer moramo paziti le na neničelnost le teh. Več problemov nam povzročajo C, Σ in Γ .

C, Σ in Γ

Za dobro začetno oceno si lahko pomagamo z razvrščanjem v skupine. Za C to pomeni, da bo element $c_{ij}=1/M$ za vsak par ij, kjer je M število skupin. Pričakovane vrednosti in variance nato pridobimo iz vrednosti teh skupin.

Lokalno maksimiziranje

Za potrebe lokalne maksimizacije določimo dodatne funkcije:

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(O_{t})\beta_{t+1}(j)}{P(O|\lambda)}$$
$$\gamma_{t}(i) = \frac{\alpha_{t}(i)\beta_{t}(i)}{P(O|\lambda)}$$
$$\gamma_{t}(j,k) = \gamma_{t}(j)\frac{c_{jk}N(x;\mu_{jk},\sigma_{jk}^{2})}{\sum_{m=1}^{M}c_{jm}N(x;\mu_{jm},\sigma_{im}^{2})}$$

Lokalno maksimiziranje

Prek dodatnih funkcij definiramo iteracijske postopke za naše spremenljivke:

$$\overline{\pi_i} = \gamma_1(i)$$

$$\overline{a_{ij}} = \frac{\sum_{t=1}^{T-1} \xi_t}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\overline{c_{jk}} = \frac{\sum_{t=1}^{T} \gamma_t(j, k)}{\sum_{t=1}^{T} \sum_{m=1}^{M} \gamma_t(j, m)}$$

$$\overline{\mu_{jk}} = \frac{\sum_{t=1}^{T} \gamma_t(j, k) O_t}{\sum_{t=1}^{T} \gamma_t(j, k)}$$

Tako definiramo večfazni iterativni proces, pri katerem popravljamo vrednosti parametrov do konvergence.

Začetno stanje in Viterbijev algoritem

Za delo s tem algoritmom moramo definirati $\delta_t(i)$, ki za vsako stanje i vrne največjo verjetnost vzdolž poti v času t. Prek $\delta_t(i)$ nato induktivno izvedemo algoritem.

Viterbijev algoritem nam vrne p*, ki je največja verjetnost in q_T* , ki nam pove stanje v času T, ki nam to verjetnost vrne.

Uporaba

Suite ill in fit jo 1888 may de la popular some the plet that the specific have a before a full that the specific have a before if the that the trade of the specific have been been about the specific have been any appeal should be that a popular of a specific for a better that a specific for the specific have the state of the specific product for the specific and the specific for specifi

V dolgi predstavitvi se bom bolj posvetil sami finančni analizi, ki sem jo tokrat zaenkrat pustil pri miru. V prihodnje bom tudi sam poizkusil določiti skriti markovski model na svojem setu podatkov.

Viri

- I. MacDonald, W. Zucchini. Hidden Markov and Other Models for Discrete-valued Time Series. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis. (1997)
- 2 D.Roman, G. Mitra, N. Spagnolo. Hidden Markov models for financial optimization problems. IMA Journal of Management Mathematics. 21 (2010).