Решение задач

Задание 1. Ниже в таблице представлены значения переменных: X, Z, Y.

X	-2	2	1	-1	0
Z	2	0	0	-1	-1
Y	2	6	3	2	10

1. Без использования Python получите оценки коэффициентов в регрессии Y на X с помощью общей формулы получения оценок коэффициентов, подходящей как для парной, так и для множественной регрессии. Представьте промежуточные расчеты, выпишите полученный вектор оценок коэффициентов и запишите спецификацию модели, подставив эти оценки в уравнение Для начала запишем матрицу X:

$$X = \begin{pmatrix} 1 & -2 \\ 1 & 2 \\ 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$X^{T}X = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}$$

$$(X^{T}X)^{-1} = \frac{1}{50} \times \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix}$$

$$X^{T}Y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & 2 & 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 6 \\ 3 \\ 2 \\ 10 \end{pmatrix} = \begin{pmatrix} 23 \\ 9 \end{pmatrix}$$

$$(X^{T}X)^{-1}X^{T}Y = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix} \times \begin{pmatrix} 23 \\ 9 \end{pmatrix} = \begin{pmatrix} 4.6 \\ 0.9 \end{pmatrix}$$

2. Без использования Python получите оценки коэффициентов в регрессии Y на X и Z с помощью общей формулы получения оценок коэффициентов, подходящей как для парной, так и для множественной регрессии. Представьте промежуточные расчеты, выпишите полученный вектор оценок коэффициентов и запишите спецификацию модели, подставив эти оценки в уравнение

$$X = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$
$$X^{T}X = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 10 & -3 \\ 0 & -3 & 6 \end{pmatrix}$$
$$det(X^{T}X) = 5 \times 10 \times 6 - (-3) \times (-3) \times 5 = 255$$

$$(X^T X)^{-1} = \frac{1}{255} \times \begin{pmatrix} 51 & 0 & 0 \\ 0 & 30 & 15 \\ 0 & 15 & 50 \end{pmatrix}$$

$$X^{T}Y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & 2 & 1 & -1 & 0 \\ 2 & 0 & 0 & -1 & -1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 6 \\ 3 \\ 2 \\ 10 \end{pmatrix} = \begin{pmatrix} 23 \\ 9 \\ -8 \end{pmatrix}$$

$$(X^T X)^{-1} X^T Y = \frac{1}{255} \times \begin{pmatrix} 51 & 0 & 0 \\ 0 & 30 & 15 \\ 0 & 15 & 50 \end{pmatrix} \times \begin{pmatrix} 23 \\ 9 \\ -8 \end{pmatrix} = \begin{pmatrix} 4.6 \\ 0.588 \\ -1.039 \end{pmatrix}$$

Задание 2. Ниже представлены результаты анализа разложения вариации по линейной парной регрессионной модели, построенной по выборке из 15 наблюдений.

Analysis of Variance Table

Response: y

df sum_sq mean_sq f PR(>F)

x 0.6526 ...

Residual ... 56.116 ...

Восстановим пропуски в таблице:

- df для x = k = 1
- \bullet df для Residual = n-k-1 = 15-2 = 13
- mean_sq для Residual = $\frac{56.116}{13} \approx 4.317$

•
$$f = \frac{mean_sq(x)}{mean_sq(Residual)} = \frac{mean_sq(x)}{4.317} = 0.6526$$

Следовательно, mean sq для $x = 4.317 \times 0.6526 \approx 2.817$

• Paccчитаем p-value, помнив о том, что нас интересует односторонняя альтернатива. В Python можно рассчитать следующим образом:

from scipy.stats import f
f.sf(0.6526, 1, 13)

В итоге получили 0.434, что говорит о том, что \mathbb{R}^2 неотличим от 0.

$$R^2 = \frac{2.817}{56.116 + 2.817} \approx 0.048$$

Analysis of Variance Table

Response: y

df sum_sq mean_sq f PR(>F)

x 1 2.817 2.817 0.6526 0.434

Residual 13 56.116 4.316

Задание 3.

На данных по 44 городам построена модель, обясняющая динамику уровня преступности за последние 10 лет. change_in_crime_rate — прирост преступности в %, change_in_pop — прирост численности населения, %; kids — процент детей; free_lunch — процент бесплатных школьных обедов; income_change — прирост доходов домохозяйств.

Восстановим пропуски в таблице:

Coefficients:

	c	oef	std. err	t	Pr> t	[0.025 0.975]
Intercept	-22.	3548	12.3097	-1.816	0.0771	-47.253; 2.544
change_in_pop	hange_in_pop 0.3188		0.2052	1.533	0.1333	-0.096; 0.734
kids	1.	1128	0.2869	3.879	0.0004	0.532; 1.693
free_lunch	-0.	3681	0.0973	-3.783	0.0005	-0.565;-0.171
income_change	-0.	1944	0.3681	-0.528	0.6004	-0.939; 0.551
	df	sum_sq	mean_sq	f	PR(>F)	
change_in_pop	1	803.2	803.2	24.99	.000	
kids	1	1380.1	1380.1			
free_lunch	1	3186.6	3186.6			
income_change	1	60.6	60.6			
Residual	39	8476.0	217.3			

$$R^2 = \frac{803.2 + 1380.1 + 3186.6 + 60.6}{803.2 + 1380.1 + 3186.6 + 60.6 + 8476} = 0.39$$

То есть, данная модель лучше, чем модель на константу.