Exercise 1.

考虑线性空间 $(F, V, +, \cdot)$ 。叙述线性相关、线性无关、秩、极大线性无关组等概念。

思考题 设 \mathbb{F}_q 是有限域,则线性空间 \mathbb{F}_q^n 中有多少向量?有多少个一维线性子空间?

解:

- 线性相关:设 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p \in V, c_1, c_2, \cdots, c_p \in F.$ 若有 c_1, c_2, \cdots, c_p 不全为0,使 $\sum_{i=1}^p c_i \mathbf{v}_i = \mathbf{0}$,则有线性相关,即其中有某向量 \mathbf{v}_i 可以由其它向量线性组合合成;若 c_1, c_2, \cdots, c_p 全为0,则它们之间线性无关。
- 极大线性无关:设 V_0 为 V的一个线性无关组,当且仅当从 $V-V_0$ 中任意取一个向量 \mathbf{v} 出来,都使得 $V_0+\mathbf{v}$ 为一个线性相关组时, V_0 可称为线性空间 $(F,V,+,\cdot)$ 的最大线性无关组。
- 秩: 极大线性无关组中向量的个数。

思考题:

线性空间 \mathbb{F}_{a}^{n} 中有 q^{n} 个向量。

线性空间中有 q^n-1 个非零向量,均能作为基生成一个一维线性子空间;而一个一维线性子空间可以有 q-1 个不同的基。因此,一共可以生成 $\frac{q^n-1}{q-1}$ 个一维线性子空间。

Exercise 2.

- ①写出 [7,4,3] 汉明码的重量谱。
- ②写出 [15,11,3] 汉明码的检验矩阵 H;

把 H 经过初等行变换或列置换,化成 $[P\ I]$ 的形式,写出 [15,11,3] 的一个生成矩阵。

解: ① [7,4,3] 汉明码的校验矩阵为:

化为 [P I] 的形式:

码字 $Hc^T = \mathbf{0} \Rightarrow [P \ I] \cdot [uv]^T = \mathbf{0}$,则 Pu = v,即可求校验部分。

得到码字为

0000 0000	1000 111
0001 101	1001 010
0010 011	1010 100
0011 110	1011 001
0100 110	1100 001
0101 011	1101 100
0110 101	1110 010
0111 000	1111 111

码重量谱

$$A(x) = 1 + 7x^3 + 7x^4 + x^7$$

也可以通过行初等变换得到 $H = [P \ I]$ 的形式,重量谱是相同的。

②给出校验矩阵 H 为

化为 [P I] 的形式为:

变换得到 G: