HW6

November 18, 2024

1 STOR 320 Homework 6 Cross Validation

Please submit the solution to gradescope by 11:59 PM, Nov 21, Thursday.

Name: Ivy Nangalia

PID: 730670491

```
[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
import statsmodels.formula.api as smf
import statsmodels.api as sm
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import make_scorer
[3]: ames = pd.read_feather('cleaned_ames.feather')
ames.head()
```

```
[3]:
        LogSalePrice MSSubClass MSZoning LotFrontage LotArea Street
                                                                           Alley
     0
           12.278393
                             20
                                      RL
                                                 141.0
                                                        31770.0
                                                                  Pave NoAccess
     1
           11.561716
                             20
                                      RH
                                                  80.0 11622.0
                                                                  Pave NoAccess
     2
           12.055250
                             20
                                                  81.0 14267.0
                                                                  Pave NoAccess
                                      R.I.
     3
           12.404924
                             20
                                      RL
                                                  93.0
                                                        11160.0
                                                                  Pave NoAccess
     4
                                                  74.0 13830.0
           12.154253
                             60
                                      RL
                                                                  Pave NoAccess
       LotShape LandContour Utilities ... PreCast Stone Stucco VinylSd WdSdng
```

```
0
        IR1
                       Lvl
                               AllPub
                                                   0
                                                                  0
                                                                            0
                                                                                     0
                                                          0
1
                       Lvl
                               AllPub ...
                                                   0
                                                                  0
                                                                            1
                                                                                     0
        Reg
2
        IR1
                       Lvl
                               AllPub ...
                                                   0
                                                          0
                                                                  0
                                                                            0
                                                                                     1
                                                          0
3
                       Lvl
                               AllPub
                                                   0
                                                                  0
                                                                            0
                                                                                     0
        Reg
        IR1
                               AllPub ...
                                                                  0
                                                                            1
                                                                                     0
                       Lvl
```

```
WdShing WdShng YearsSince1950Built YearsSince1950Remod \0 0 0 10 10
```

```
1
         0
                 0
                                       11
                                                               11
2
         0
                 0
                                        8
                                                                8
3
         0
                 0
                                       18
                                                               18
4
         0
                 0
                                       47
                                                               48
```

YearsSince1950GarageBuilt

0	10.0
1	11.0
2	8.0
3	18.0
4	47.0

[5 rows x 105 columns]

1. Load the cleaned Ames dataset. Convert the categorical variables into dummy variables. Display the new ames table. How many columns are there? (5 points)

```
[52]: ames_dummies = pd.get_dummies(ames)
```

2]:		LogSalePrice	LotFrontage	${\tt LotArea}$	MasVnrAr	ea	BsmtFinSF1	${\tt BsmtFinSF2}$	\
	0	12.278393	141.0	31770.0	112	2.0	639.0	0.0	
	1	11.561716	80.0	11622.0	C	0.0	468.0	144.0	
	2	12.055250	81.0	14267.0	108	3.0	923.0	0.0	
	3	12.404924	93.0	11160.0	C	0.0	1065.0	0.0	
	4	12.154253	74.0	13830.0	C	0.0	791.0	0.0	
		BsmtUnfSF To	talBsmtSF X1:	stFlrSF	X2ndFlrSF	·	SaleType_N	ew \	
	0	441.0	1080.0	1656.0	0.0		Fal	se	
	1	270.0	882.0	896.0	0.0)	Fal	se	
	2	406.0	1329.0	1329.0	0.0)	Fal	se	
	3	1045.0	2110.0	2110.0	0.0)	Fal	se	
	4	137.0	928.0	928.0	701.0)	Fal	se	
		SaleType_Oth	SaleType_VWD	SaleTyp	oe_WD Sa	leC	ondition_Abn	orml \	
	0 False False			True		F	alse		
	1	False False False False			True		F	alse	
	2			True		alse			
	3	False	False		True		F	alse	
	4	False	False		True		F	alse	
		SaleCondition	_AdjLand Salo	eConditio	on_Alloca	Sa	leCondition_	Family \	
	0		False		False			False	
	4		P-1		E-1			F-1	

	SaleCondition_AdjLand	SaleCondition_Alloca	SaleCondition_Family
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False

```
SaleCondition_Normal SaleCondition_Partial

True False
True False
True False
True False
True False
```

[5 rows x 382 columns]

```
[49]: print(f"There are {len(ames_dummies.columns)} columns.")
```

There are 382 columns.

2. L1 Distance Calculation (5 points)

- Define the L1 distance between two rows as the sum of the absolute values of the differences for all features. Calculate the L1 distance between the first and second rows of the dataset.
- For Boolean variables, you can treat True as 1 and False as 0.

```
[5]: slice = ames_dummies[:2]
# convert boolean to int
slice = slice.astype(int)
L1 = np.sum(np.abs(slice.iloc[0] - slice.iloc[1]))
L1
```

[5]: 23031

3. Feature Matrix and Target Vector Creation (10 points)

- Create a feature matrix X by dropping the LogSalePrice column from the dataset. Create a target vector y using the LogSalePrice column. (5 points)
- Randomly split X and y into training and test sets with a 70/30 split. Name the training set X_train and y_train, and the test set X_test and y_test. Use random seed as 42. (5 points)

4. Rescaling the Feature Matrix (5 points)

 Rescale the values of X_train using a scaler (e.g., StandardScaler). Use the same scaling rule to transform X_test. Name the transformed sets X_train_scaled and X_test_scaled.

```
[7]: scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    print(f"{X_train_scaled.shape}, {X_test_scaled.shape}")
```

```
(1935, 381), (830, 381)
```

5. Simple L1 Prediction Model (10 points)

- Implement a simple prediction model: For each row in X_test_scaled, find the closest row in X_train_scaled in terms of L1 distance. Use the corresponding y value from y_train as the prediction.
- Create predictions for all observations in X_test_scaled and name the prediction array y_predict.

```
[8]: y_predict = []
for i in range(len(X_test_scaled)):
    L1_distances = np.sum(np.abs(X_train_scaled - X_test_scaled[i]), axis=1)
    closest_index = np.argmin(L1_distances)
    y_predict.append(y_train.iloc[closest_index])
y_predict = np.array(y_predict)
```

6. Calculate Out-of-Sample R-squared (OSR2) (5 points)

• Calculate the OSR2 (out-of-sample R-squared) for the predictions from Problem 5.

```
[10]: print(f"OSR2: {OSR2(y_train, y_test, y_predict)}")
```

OSR2: 0.7396347150902295

7. Flexible L1 Prediction Model (10 points)

- Modify the prediction rule: For each row in X_test_scaled, find the five closest rows
 in X_train_scaled in terms of L1 distance and use the average y value of these five
 observations as the prediction.
- Create predictions for all observations in X_test_scaled and name the prediction array y_predict.

```
[11]: y_predict = []
for i in range(len(X_test_scaled)):
    L1_distances = np.sum(np.abs(X_train_scaled - X_test_scaled[i]), axis=1)
    closest_indices = np.argsort(L1_distances)[:5]
    y_predict.append(np.mean(y_train.iloc[closest_indices]))
y_predict = np.array(y_predict)
```

8. Calculate OSR2 for the Modified Model (5 points)

• Calculate the OSR2 for the predictions from Problem 7.

```
[12]: print(f"OSR2: {OSR2(y_train, y_test, y_predict)}")
```

OSR2: 0.7969887360628379

9. KNN Model Using Sklearn (10 points)

The above idea is called K-Nearest Neighbors. The K-Nearest Neighbors (KNN) algorithm is a non-parametric method used for regression and classification. It predicts the target for a new observation by averaging the target values of its k nearest training samples. This method is effective for capturing local structures in the data, which can lead to more flexible predictions compared to global linear models.

- Use the KNeighborsRegressor(n_neighbors=k, metric='cityblock') function in sklearn to build a KNN model with k=5. metric='cityblock' represents the L1 norm distance. (5 points)
- Print the OSR2 of the model. Is your OSR2 the same as the OSR2 in Problem 8? (5 points)

```
[13]: KNN = KNeighborsRegressor(n_neighbors=5, metric="cityblock")
   KNN.fit(X_train_scaled, y_train)
   y_predict = KNN.predict(X_test_scaled)
   print(f"OSR2: {OSR2(y_train, y_test, y_predict)}")
```

OSR2: 0.7969887360628379

The OSR2 is the same as the one in Problem 8.

10. Effect of Large k (5 points)

• Explain what happens when k equals the size of the training set. What is the predicted value in this case?

```
[30]: k = len(X_train_scaled)
   KNN = KNeighborsRegressor(n_neighbors=k, metric="cityblock")
   KNN.fit(X_train_scaled, y_train)
   y_predict = KNN.predict(X_test_scaled)
   print(f"OSR2: {OSR2(y_train, y_test, y_predict)}")
   print(f"y_predict is all the same value. ({y_predict.mean()})")
```

OSR2: 0.0

y_predict is all the same value. (12.047640175621291)

11. Model Bias and Overfitting Discussion (5 points)

• Discuss how the model behaves as k increases. Does the model become more biased or less biased? Does it overfit more or less as k increases?

```
[22]: plt.plot(k_range, OSR2_list)
   plt.xlabel('k')
   plt.ylabel('OSR2')
   plt.title("Effect of k on OSR2 (Model Behavior of Large k)")
   plt.show()
```

Effect of k on OSR2 (Model Behavior of Large k)

As k increases, the model becomes more biased towards the training data, making it worse at predicting the test data since it's overfitting the training data.

12. Parameter Tuning with GridSearchCV (20 points)

- Create a custom function called Mean_Absolute_Price_Error() that converts the predicted log prices back to the original prices and calculates the Mean Absolute Error (MAE) between the predicted prices and true prices. (5 points)
- Use GridSearchCV to tune the k parameter of the KNN model, using the custom Mean_Absolute_Price_Error() function as the metric for model selection. Use 5-fold cross validation. (5 points)
- Plot the MAE for different values of k. (5 points)
- Identify the k value that results in the smallest Mean_Absolute_Price_Error. (5 points)

```
[31]: def Mean_Absolute_Price_Error(y_test, y_predict):
         return np.mean(np.abs(np.exp(y_test) - np.exp(y_predict)))
[35]: param_grid = {"n_neighbors": np.arange(1, 250)}
[36]: gs = GridSearchCV(KNN, param_grid, cv=5,__
      scoring=make_scorer(Mean_Absolute_Price_Error, greater_is_better=False))
     gs.fit(X_train_scaled, y_train)
     optimal_k = gs.best_params_["n_neighbors"]
[36]: GridSearchCV(cv=5,
                  estimator=KNeighborsRegressor(metric='cityblock',
                                                n neighbors=1935),
                  param_grid={'n_neighbors': array([ 1,
                                                          2,
                                                               3,
                                                                    4,
                                                                         5,
                                                                              6,
     7,
          8, 9, 10, 11, 12, 13,
             14, 15, 16, 17, 18, 19, 20, 21,
                                                    22,
                                                         23,
                                                              24,
                                                                   25,
                                                                        26,
             27,
                  28,
                       29, 30,
                                 31,
                                      32,
                                           33, 34,
                                                    35,
                                                         36,
                                                              37,
                                                                   38,
                      42, 43,
                                44,
                                     45,
                                          46, 47,
                                                    48,
                                                         49,
                                                              50,
                                                                   51,
                                                                        52,
             40,
                 41,
             53, 54,
                       55, 56, 57,
                                      58,
                                          59, 60,
                                                    61,
                                                         62,
                                                              63, 64,
                                                                        65,
                       68, 69, 70, 71, 72, 73, 74,
                                                              76, 77, 78,
             66, 67,
                                                         75,
             79, 80,
                       8...
            183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
            196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
            209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
            222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
            235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
            248, 249])},
                  scoring=make scorer(Mean Absolute Price Error,
     greater_is_better=False, response_method='predict'))
[48]: # Plot MAE vs k values
     plt.figure(figsize=(10, 6))
     plt.plot(param_grid["n_neighbors"], -gs.cv_results_["mean_test_score"],_
       ⇔label="Mean Absolute Price Error")
     plt.xlabel("k (Number of Neighbors)")
     plt.axvline(x=optimal_k, color='red', linestyle='--')
     plt.ylabel("Mean Absolute Price Error ($)")
     plt.title("MAE vs k in KNN Regression")
     plt.grid(True)
     plt.show()
```



```
[44]: print(f"Best k value: {gs.best_params_["n_neighbors"]}")
print(f"Best MAE: {-gs.best_score_}")
```

Best k value: 7

Best MAE: 21371.824377847202

13. Refit the Model (5 points)

• Refit the KNN model using the optimal k value from Problem 12. Print the out-of-sample performance (R2) of this final model.

```
[45]: KNN = KNeighborsRegressor(n_neighbors=optimal_k, metric="cityblock")
KNN.fit(X_train_scaled, y_train)
y_predict = KNN.predict(X_test_scaled)
print(f"OSR2: {OSR2(y_train, y_test, y_predict)}")
```

OSR2: 0.7988402219884047