FINDING THE (AD)OPTIMAL CAT PHOTO

MILESTONE 1 PRESENTATION

Kyra Ballard Andrew Fu Shravan Nageswaran Emily Xie

Harvard University

IACS Capstone, Spring 2020

PROBLEM

- About 6.5M dogs and cats each year enter animal shelters, according to the ASPCA
- But approximately 1.5M of these are put down

That's 1 in 4 pets.

THE QUALITY OF THE PHOTO OF A PET IS CORRELATED TO ITS LIKELIHOOD OF

GOALS

increase adoption rates

decrease euthanasia for shelter cats

SPONSORS

austin pets alive!

adaptimize®

AUSTIN PETS ALIVE!

- Animal shelter based in Texas
- No-kill shelter
- Saved over70,000 animallives since 2008

Austin Pets Alive! is not your average animal shelter. We pioneer innovative lifesaving programs designed to save the animals most at risk of euthanasia.

Adopt

Looking for a furry friend to add to the family? We have thousands of animals that would love to be part of your home.

Foster

Open your heart and home to a pet in need, and be the bridge to a dog or cat's forever home.

Volunteer

Our volunteers make lifesaving possible – become a volunteer today!

ADOPTIMIZE

- Software company
- Primary goals
 - Increase adoption
 - Decrease euthanasia
 - Increase shelter engagement
- Algorithm that optimizes image taking
 - For the best chance of adoption

ADOPTIMIZE

- Dog model process
 - Takes in a video of the animal
 - Selects the optimal shot
 - Automatically edits the image
 - Outputs enhanced optimal image

IMPACT

124% increase in adoption 41% reduction in euthanasia

27% increase in adoption 56% reduction in euthanasia

COLLABORATION INFRASTRUCTURE

- Meetings with sponsors every 1-2 weeks
- Weekly meetings with team members
- Shared Github repository for project
 - Contains code files, data, reports
- Personal and shared copies
 - Separate exploration and functional product
 - Combine working parts

SCOPE OF WORK

in scope

- Model taking cat videos and outputting best frame
 - o Length: <60s</pre>
 - Unobstructed view of a single cat
- Simple web app for mobile devices

out of scope

- Front-end
- Measuring Adoption Rates

CHALLENGES

Behavior Limitations Environment Fur covering face Equipment and Not facing camera Resources camera Unwilling to sit available still

Working with cats is tough...

CHALLENGES

Video Quality

- Filmed in kernels
- Low light environment
- Unstable camera
- Camera quality
 (phone vs. laptop)

Dataset

- Small number of cat videos compared to dogs
- No labeled data
- Ambiguous: what makes a good photo?
- Measuring success

The data initially poses some **challenges...**

GOOD PHOTO?

THE DATA

The Good

- Full body visible
- Looking directly at camera
- Clear, high quality image
- Good lighting

The Bad

- Full body not visible
- Can't distinguish facial features
- Looking away from camera
- Blurry image
- Darker area

HEURISTICS

 Detection of Front-Facing Cat Head and Cat Eyes

• Variance of Laplacian

 Ratio of Cat Head Area to Frame Area

LITERATURE REVIEW: VIOLA-JONES

- Rapid Object Detection using a Boosted Cascade of Simple Features
- Haar-like Features
 - Pre-Compute Integral Image
- AdaBoost on Decision Stumps
- Cascade
- Sliding Windows

Haar-like Features

After post-processing, rectangle features can be calculated with array lookups as opposed to sums

LITERATURE REVIEW: VIOLA-JONES

- Rapid Object Detection using a Boosted Cascade of Simple Features
- Haar-like Features
 - Pre-Compute Integral Image
- AdaBoost on Decision Stumps
- Cascade
- Sliding Windows

High-level view of cascade approach

LITERATURE REVIEW: YOLO

- You Only Look Once: Unified, Real-Time Object Detection
- Simultaneous Box and Class Proposal
- Simplicity: CNN
- Optimized for Speed

Each grid cell is responsible for producing exactly *B*=2 bounding boxes representing existence of any object with center in the cell

LITERATURE REVIEW: YOLO

- You Only Look Once: Unified, Real-Time Object Detection
- Simultaneous Box and Class Proposal
- Simplicity: CNN
- Optimized for Speed

YOLO architecture; note only convolutional and fully connected layers

EDA: GENERAL DATA SENSE

- Initial data cleaning yielded 80 videos
- Duration: Avg: 23 seconds. Min 2 seconds. Max 55 seconds
- FPS: ~60/40 breakdown on 60 fps vs 30

EDA: GENERAL DATA SENSE

EDA: CAT FACE DETECTION

- Ran cat face detection using Haar Cascade
- Subsample of 10 videos
- Every 10th frame per video

EDA: EYE DETECTION

EDA: EYE DETECTION

EDA: MEASURES OF SHARPNESS

Less sharp

More sharp

EDA: MEASURES OF SHARPNESS

EDA: HEAD SIZE RATIOS

EDA: HEAD SIZE RATIOS

NEXT STEPS

- Alternative Heuristics
- YOLO model
- Performance testing (double-blind experiments)

THANK YOU

Questions?

