All models are wrong, but some are useful...

An attempt to predict high cholesterol via multiple linear regressions

All models are wrong, but some are useful... maybe not this one

An attempt to predict high cholesterol via multiple linear regressions

- Problem
- Investigation
- Results
- Next Steps

The problem: People hate needles

Context

Cholesterol is a waxy substance found in our blood. High LDL cholesterol increases your risk of heart disease, heart attacks, & stroke. High cholesterol has **no symptoms**, and has been called a **silent** killer

Problem statement

Can we predict high LDL ("bad") Cholesterol based on self-measurable metrics that don't involve needles or require visiting a doctor's office?

A topic that hits close to home...

- Problem
- Investigation
 - Results
 - Next Steps

Risk Factors include...

Risk Factors include...

National Health & Nutrition Examination Survey

National Health & Nutrition Examination Survey

Linear Regression: Ridge Regression

Goal:

Minimize errors (SSE) and maximize predictive power

- Problem
- Investigation
- Results
 - Next Steps

Prediction vs Reality train test 350 300 250 Actual LDL Cholesterol 100 50 140 160 80 100 120 Predicted LDL Cholesterol

Test R²: 0.108

Difference from train R²: 0.038

Test SSE: 3.04

Difference from train SSE 1.36

In other words, we expect our model could account for ~11% of variability seen in LDL Cholesterol

Test R²: 0.108

Difference from train R²: 0.038

Test SSE: 3.04

Difference from train SSE 1.36

In other words, we expect our model could account for ~11% of variability seen in LDL Cholesterol

- Problem
- Investigation
- Results
- Next Steps

Next Steps

Plenty of room for improvement, but linear regression may not be the right tool for the job

Ways we could improve linear regression:

- More Data multiple years
- Smarter feature generation from lifestyle survey (e.g. exercise)
- Transformations of data with 0's (e.g. smoking, alcohol)