User Manual

for S32K14X PWM Driver

Document Number: UM2PWMASR4.2 Rev0002 R1.0.2

Rev. 1.0

Contents

Section number Title **Page** Chapter 1 **Revision History** Chapter 2 Introduction 2.1 2.3 About this Manual 20 2.4 **Chapter 3** Driver 3.1 3.2 Hardware Resources. 23 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2 3.8.2.1 3.8.2.2 3.8.3 Configure logic channel in PwmChannel 36 3.8.4

Section number	Title	Page	
3.10.1.1	Define PWM_VENDOR_ID	38	
3.10.1.2	Define PWM_MODULE_ID	38	
3.10.1.3	Define PWM_AR_RELEASE_MAJOR_VERSION	38	
3.10.1.4	Define PWM_AR_RELEASE_MINOR_VERSION	38	
3.10.1.5	Define PWM_AR_RELEASE_REVISION_VERSION	39	
3.10.1.6	Define PWM_SW_MAJOR_VERSION	39	
3.10.1.7	Define PWM_SW_MINOR_VERSION	39	
3.10.1.8	Define PWM_SW_PATCH_VERSION	39	
3.10.1.9	Define PWM_DUTY_CYCLE_100	39	
3.10.1.10	Define PWM_E_PARAM_CONFIG	40	
3.10.1.11	Define PWM_E_UNINIT	40	
3.10.1.12	Define PWM_E_PARAM_CHANNEL	40	
3.10.1.13	Define PWM_E_PERIOD_UNCHANGEABLE	41	
3.10.1.14	Define PWM_E_ALREADY_INITIALIZED	41	
3.10.1.15	Define PWM_E_PARAM_POINTER	42	
3.10.1.16	Define PWM_E_PARAM_NOTIFICATION	42	
3.10.1.17	Define PWM_E_PARAM_NOTIFICATION_NULL	43	
3.10.1.18	Define PWM_E_DUTYCYCLE_RANGE	43	
3.10.1.19	Define PWM_E_COUNTERBUS	44	
3.10.1.20	Define PWM_E_CHANNEL_OFFSET_VALUE	44	
3.10.1.21	Define PWM_E_OPWMB_CHANNEL_OFFSET_DUTYCYCLE_RANGE	44	
3.10.1.22	Define PWM_E_PARAM_INSTANCE	45	
3.10.1.23	Define PWM_E_OPWMT_CHANNEL_TRIGGER_RANGE	45	
3.10.1.24	Define PWM_E_OUTPUT_STATE	46	
3.10.1.25	Define PWM_E_UNEXPECTED_ISR	46	
3.10.1.26	Define PWM_E_PARAM_PHASESHIFT_RANGE	47	
3.10.1.27	Define PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE	47	
3.10.1.28	Define PWM_E_PARAM_SYNCHRONOUS_MODIFIED_COMBINE	48	
3.10.1.29	Define PWM_E_TRIGGER_MASK	48	

Section number	Title	Page	
3.10.1.30	Define PWM_E_NOT_DISENGAGED	49	
3.10.1.31	Define PWM_E_POWER_STATE_NOT_SUPPORTED	49	
3.10.1.32	Define PWM_E_TRANSITION_NOT_POSSIBLE	49	
3.10.1.33	Define PWM_E_PERIPHERAL_NOT_PREPARED	50	
3.10.1.34	Define PWM_INIT_ID	50	
3.10.1.35	Define PWM_DEINIT_ID	50	
3.10.1.36	Define PWM_SETDUTYCYCLE_ID	51	
3.10.1.37	Define PWM_SETPERIODANDDUTY_ID	51	
3.10.1.38	Define PWM_SETOUTPUTTOIDLE_ID	52	
3.10.1.39	Define PWM_GETOUTPUTSTATE_ID	52	
3.10.1.40	Define PWM_DISABLENOTIFICATION_ID	52	
3.10.1.41	Define PWM_ENABLENOTIFICATION_ID	53	
3.10.1.42	Define PWM_GETVERSIONINFO_ID	53	
3.10.1.43	Define PWM_SETPOWERSTATE_ID	53	
3.10.1.44	Define PWM_GETCURRENTPOWERSTATE_ID	54	
3.10.1.45	Define PWM_GETTARGETPOWERSTATE_ID	54	
3.10.1.46	Define PWM_PREPAREPOWERSTATE_ID	54	
3.10.1.47	Define PWM_GETCHANNELSTATE_ID	55	
3.10.1.48	Define PWM_FORCEOUTPUTTOZERO_ID	55	
3.10.1.49	Define PWM_SETCOUNTERBUS_ID	55	
3.10.1.50	Define PWM_SETCHANNELOUTPUT_ID	56	
3.10.1.51	Define PWM_SETTRIGGERDELAY_ID	56	
3.10.1.52	Define PWM_BUFFERTRANSFERENDIS_ID	57	
3.10.1.53	Define PWM_SETCLOCKMODE_ID	57	
3.10.1.54	Define PWM_SYNCUPDATE_ID	57	
3.10.1.55	Define PWM_SETPERIODANDDUTY_NO_UPDATE_ID	58	
3.10.1.56	Define PWM_SETDUTYCYCLE_NO_UPDATE_ID	58	
3.10.1.57	Define PWM_SETPHASESHIFT_ID	58	
3.10.1.58	Define PWM_SETPHASESHIFTNOUPDATE_ID	59	

Section number	Title	Page
3.10.1.59	Define PWM_ENABLETRIGGER_ID	59
3.10.1.60	Define PWM_DISABLETRIGGER_ID	59
3.10.1.61	Define PWM_RESETCOUNTERENABLE_ID	60
3.10.1.62	Define PWM_RESETCOUNTERDISABLE_ID	60
3.10.1.63	Define PWM_MASKOUTPUT_ID	61
3.10.1.64	Define PWM_UNMASKOUTPUT_ID	61
3.10.1.65	Define PWM_DISABLERELOADNOTIF_ID	61
3.10.1.66	Define PWM_ENABLERELOADNOTIF_ID	62
3.10.1.67	Define PWM_FLEXIO_USED	62
3.10.1.68	Define PWM_FTM_USED	62
3.10.1.69	Define PWM_FLEXIO_0_CH_0_1_USED	63
3.10.1.70	Define PWM_FLEXIO_0_CH_2_3_USED	63
3.10.1.71	Define PWM_FLEXIO_0_CH_0_1_ISR_USED	63
3.10.1.72	Define PWM_FLEXIO_0_CH_2_3_ISR_USED	63
3.10.1.73	Define PWM_FLEXIO_0_PIN_0_USED	64
3.10.1.74	Define PWM_FLEXIO_0_PIN_1_USED	64
3.10.1.75	Define PWM_FLEXIO_0_PIN_2_USED	64
3.10.1.76	Define PWM_FLEXIO_0_PIN_3_USED	64
3.10.1.77	Define PWM_FLEXIO_0_PIN_4_USED	65
3.10.1.78	Define PWM_FLEXIO_0_PIN_5_USED	65
3.10.1.79	Define PWM_FLEXIO_0_PIN_6_USED	65
3.10.1.80	Define PWM_FLEXIO_0_PIN_7_USED	65
3.10.1.81	Define PWM_FTM_0_USED	66
3.10.1.82	Define PWM_FTM_1_USED	66
3.10.1.83	Define PWM_FTM_2_USED	66
3.10.1.84	Define PWM_FTM_3_USED	66
3.10.1.85	Define PWM_FTM_4_USED	66
3.10.1.86	Define PWM_FTM_5_USED	67
3.10.1.87	Define PWM_FTM_6_USED	67

6

Section number	Title	Page	
3.10.1.88	Define PWM_FTM_7_USED	67	
3.10.1.89	Define PWM_FTM_0_CH_0_CH_1_ISR_USED	67	
3.10.1.90	Define PWM_FTM_0_CH_2_CH_3_ISR_USED	68	
3.10.1.91	Define PWM_FTM_0_CH_4_CH_5_ISR_USED	68	
3.10.1.92	Define PWM_FTM_0_CH_6_CH_7_ISR_USED	68	
3.10.1.93	Define PWM_FTM_0_OVF_ISR_USED	68	
3.10.1.94	Define PWM_FTM_0_FAULT_ISR_USED	69	
3.10.1.95	Define PWM_FTM_1_CH_0_CH_1_ISR_USED	69	
3.10.1.96	Define PWM_FTM_1_CH_2_CH_3_ISR_USED	69	
3.10.1.97	Define PWM_FTM_1_CH_4_CH_5_ISR_USED	69	
3.10.1.98	Define PWM_FTM_1_CH_6_CH_7_ISR_USED	70	
3.10.1.99	Define PWM_FTM_1_OVF_ISR_USED	70	
3.10.1.100	Define PWM_FTM_1_FAULT_ISR_USED	70	
3.10.1.101	Define PWM_FTM_2_CH_0_CH_1_ISR_USED	70	
3.10.1.102	Define PWM_FTM_2_CH_2_CH_3_ISR_USED	71	
3.10.1.103	Define PWM_FTM_2_CH_4_CH_5_ISR_USED	71	
3.10.1.104	Define PWM_FTM_2_CH_6_CH_7_ISR_USED	71	
3.10.1.105	Define PWM_FTM_2_OVF_ISR_USED	71	
3.10.1.106	Define PWM_FTM_2_FAULT_ISR_USED	72	
3.10.1.107	Define PWM_FTM_3_CH_0_CH_1_ISR_USED	72	
3.10.1.108	Define PWM_FTM_3_CH_2_CH_3_ISR_USED	72	
3.10.1.109	Define PWM_FTM_3_CH_4_CH_5_ISR_USED	72	
3.10.1.110	Define PWM_FTM_3_CH_6_CH_7_ISR_USED	73	
3.10.1.111	Define PWM_FTM_3_OVF_ISR_USED	73	
3.10.1.112	Define PWM_FTM_3_FAULT_ISR_USED	73	
3.10.1.113	Define PWM_FTM_4_CH_0_CH_1_ISR_USED	73	
3.10.1.114	Define PWM_FTM_4_CH_2_CH_3_ISR_USED	74	
3.10.1.115	Define PWM_FTM_4_CH_4_CH_5_ISR_USED	74	
3.10.1.116	Define PWM_FTM_4_CH_6_CH_7_ISR_USED	74	

Section number	Title	Page	
3.10.1.117	Define PWM_FTM_4_OVF_ISR_USED	74	
3.10.1.118	Define PWM_FTM_4_FAULT_ISR_USED	75	
3.10.1.119	Define PWM_FTM_5_CH_0_CH_1_ISR_USED	75	
3.10.1.120	Define PWM_FTM_5_CH_2_CH_3_ISR_USED	75	
3.10.1.121	Define PWM_FTM_5_CH_4_CH_5_ISR_USED	75	
3.10.1.122	Define PWM_FTM_5_CH_6_CH_7_ISR_USED	76	
3.10.1.123	Define PWM_FTM_5_OVF_ISR_USED	76	
3.10.1.124	Define PWM_FTM_5_FAULT_ISR_USED		
3.10.1.125	Define PWM_FTM_6_CH_0_CH_1_ISR_USED	76	
3.10.1.126	Define PWM_FTM_6_CH_2_CH_3_ISR_USED	77	
3.10.1.127	Define PWM_FTM_6_CH_4_CH_5_ISR_USED	77	
3.10.1.128	Define PWM_FTM_6_CH_6_CH_7_ISR_USED	77	
3.10.1.129	Define PWM_FTM_6_OVF_ISR_USED	77	
3.10.1.130	Define PWM_FTM_6_FAULT_ISR_USED	78	
3.10.1.131	Define PWM_FTM_7_CH_0_CH_1_ISR_USED	78	
3.10.1.132	Define PWM_FTM_7_CH_2_CH_3_ISR_USED	78	
3.10.1.133	Define PWM_FTM_7_CH_4_CH_5_ISR_USED	78	
3.10.1.134	Define PWM_FTM_7_CH_6_CH_7_ISR_USED	79	
3.10.1.135	Define PWM_FTM_7_OVF_ISR_USED	79	
3.10.1.136	Define PWM_FTM_7_FAULT_ISR_USED	79	
3.10.1.137	Define PWM_FTM_CHANNEL	79	
3.10.1.138	Define PWM_FLEXIO_CHANNEL	80	
3.10.1.139	Define PWM_FTM_CHANNELS_NO	80	
3.10.1.140	Define PWM_FTM_CHANNELS_MAX_U8	80	
3.10.1.141	Define PWM_FTM_MODULE_NO	80	
3.10.1.142	Define PWM_FLEXIO_MODULE_NO	81	
3.10.1.143	Define PWM_FLEXIO_CHANNEL_NO	81	
3.10.1.144	Define PWM_FLEXIO_CHANNELS_MAX_U8	81	
3.10.1.145	Define PWM_HW_CHANNELS_NO_U8	81	

Section number	Title	Page	
3.10.1.146	Define PWM_FTM_MODULE_CHANNELS_NO	82	
3.10.1.147	Define PWM_FTM_MODULE_FAULT_NO	82	
3.10.1.148	Define PWM_DEV_ERROR_DETECT	82	
3.10.1.149	Define PWM_DUTY_PERIOD_UPDATED_ENDPERIOD	82	
3.10.1.150	Define PWM_DUTYCYCLE_UPDATED_ENDPERIOD	83	
3.10.1.151	Define PWM_FAULT_SUPPORTED	83	
3.10.1.152	Define PWM_INDEX	83	
3.10.1.153	Define PWM_NOTIFICATION_SUPPORTED	84	
3.10.1.154	Define PWM_PRECOMPILE_SUPPORT	84	
3.10.1.155	Define PWM_FTM_ENABLE_EXT_TRIGGERS	84	
3.10.1.156	Define PWM_SET_DUTY_CYCLE_API	84	
3.10.1.157	Define PWM_SET_OUTPUT_TO_IDLE_API	85	
3.10.1.158	Define PWM_SET_PERIOD_AND_DUTY_API	85	
3.10.1.159	Define PWM_SET_CLOCK_MODE_API	85	
3.10.1.160	Define PWM_VERSION_INFO_API	85	
3.10.1.161	Define PWM_GET_CHANNEL_STATE_API	86	
3.10.1.162	Define PWM_GET_OUTPUT_STATE_API	86	
3.10.1.163	Define PWM_FORCE_OUTPUT_TO_ZERO_API	86	
3.10.1.164	Define PWM_DE_INIT_API	87	
3.10.1.165	Define PWM_SET_PHASE_SHIFT_API	87	
3.10.1.166	Define PWM_SET_PHASE_SHIFT_NO_UPDATE_API	87	
3.10.1.167	Define PWM_ENABLE_TRIGEER_API	87	
3.10.1.168	Define PWM_DIABLE_TRIGEER_API	88	
3.10.1.169	Define PWM_RESET_COUNTER_API	88	
3.10.1.170	Define PWM_ENABLE_MASKING_OPERATIONS	88	
3.10.1.171	Define PWM_SYNC_UPDATE_API	88	
3.10.1.172	Define PWM_UPDATE_DUTY_SYNCHRONOUS	89	
3.10.1.173	Define PWM_SET_DUTY_CYCLE_NO_UPDATE_API	89	
3.10.1.174	Define PWM_SET_PERIOD_AND_DUTY_NO_UPDATE_API	89	

Section number		Title	Page
	3.10.1.175	Define PWM_ENABLE_PHASE_SHIFT	89
3.10.2	Enum Refe	erence	90
	3.10.2.1	Enumeration Pwm_ChannelClassType	90
	3.10.2.2	Enumeration Pwm_OutputStateType	90
	3.10.2.3	Enumeration Pwm_EdgeNotificationType	91
	3.10.2.4	Enumeration Pwm_PrescalerType	91
	3.10.2.5	Enumeration Pwm_GlobalStateType	92
	3.10.2.6	Enumeration Pwm_AlignmentType	92
	3.10.2.7	Enumeration Pwm_PowerStateRequestResultType	93
	3.10.2.8	Enumeration Pwm_PowerStateType	93
	3.10.2.9	Enumeration Pwm_DataUdateType	94
3.10.3	Structs Ref	ference	94
	3.10.3.1	Structure Pwm_FlexIO_ChannelConfigType	94
	3.10.3.2	Structure Pwm_FlexIO_IpConfigType	95
	3.10.3.3	Structure Pwm_Ftm_ChannelConfigType	96
	3.10.3.4	Structure Pwm_Ftm_ModuleConfigType	97
	3.10.3.5	Structure Pwm_Ftm_IpConfigType	98
	3.10.3.6	Structure Pwm_IpConfigType	99
	3.10.3.7	Structure Pwm_IpChannelConfigType	99
	3.10.3.8	Structure Pwm_ChannelConfigType	100
	3.10.3.9	Structure Pwm_ConfigType	101
3.10.4	Types Refe	erence	102
	3.10.4.1	Typedef Pwm_FlexIO_ChannelType	
	3.10.4.2	Typedef Pwm_FlexIO_TimerType	103
	3.10.4.3	Typedef Pwm_NotifyType	103
	3.10.4.4	Typedef Pwm_ChannelType	103
	3.10.4.5	Typedef Pwm_PeriodType	
	3.10.4.6	Typedef Pwm_ChannelIpType	104
3.10.5	Function R	reference	104

Section number	Title	Page
3.10.5.1	Function Pwm_Init	104
3.10.5.2	Function Pwm_DeInit	106
3.10.5.3	Function Pwm_SetPeriodAndDuty	106
3.10.5.4	Function Pwm_SetDutyCycle	108
3.10.5.5	Function Pwm_SetOutputToIdle	
3.10.5.6	Function Pwm_DisableNotification	110
3.10.5.7	Function Pwm_EnableNotification.	111
3.10.5.8	Function Pwm_GetChannelState	112
3.10.5.9	Function Pwm_GetOutputState	113
3.10.5.10	Function Pwm_ForceOutputToZero	114
3.10.5.11	Function Pwm_SetClockMode	114
3.10.5.12	Function Pwm_GetVersionInfo	115
3.10.5.13	Function Pwm_DisableTrigger	115
3.10.5.14	Function Pwm_EnableTrigger	117
3.10.5.15	Function Pwm_MaskOutputs	118
3.10.5.16	Function Pwm_UnMaskOutputs	119
3.10.5.17	Function Pwm_ResetCounter	
3.10.5.18	Function Pwm_ResetCounterEnable	121
3.10.5.19	Function Pwm_ResetCounterDisable	121
3.10.5.20	Function Pwm_SetDutyCycle_NoUpdate	121
3.10.5.21	Function Pwm_SetPeriodAndDuty_NoUpdate	123
3.10.5.22	Function Pwm_SetPhaseShift	124
3.10.5.23	Function Pwm_SetPhaseShift_NoUpdate	126
3.10.5.24	Function Pwm_SyncUpdate	127
3.10.5.25	Function Pwm_SetPowerState	127
3.10.5.26	Function Pwm_GetCurrentPowerState	128
3.10.5.27	Function Pwm_GetTargetPowerState	129
3.10.5.28	Function Pwm_PreparePowerState	130
3.10.6 Variables	Reference	131

Sec	tion r	number Title	Page		
3.11	Symbo	olic Names Disclaimer	131		
		Chapter 4 Tresos Configuration Plug-in			
4.1	Config	guration elements of PWM	133		
4.2	Form I	IMPLEMENTATION_CONFIG_VARIANT	133		
4.3	Form F	PwmConfigurationOfOptApiServices	134		
	4.3.1	PwmDeInitApi (PwmConfigurationOfOptApiServices)	134		
	4.3.2	PwmGetOutputState (PwmConfigurationOfOptApiServices)			
	4.3.3	PwmSetDutyCycle (PwmConfigurationOfOptApiServices)	135		
	4.3.4	PwmSetOutputToIdle (PwmConfigurationOfOptApiServices)			
	4.3.5	PwmSetPeriodAndDuty (PwmConfigurationOfOptApiServices)	135		
	4.3.6	PwmVersionInfoApi (PwmConfigurationOfOptApiServices)	136		
	4.3.7	PwmGetChannelStateApi (PwmConfigurationOfOptApiServices)	136		
	4.3.8	PwmForceOutputToZeroApi (PwmConfigurationOfOptApiServices)	137		
	4.3.9	PwmSetDutyCycle_NoUpdate (PwmConfigurationOfOptApiServices)			
	4.3.10	PwmSetPeriodAndDuty_NoUpdate (PwmConfigurationOfOptApiServices)			
	4.3.11	PwmSetPhaseShift (PwmConfigurationOfOptApiServices)	138		
	4.3.12	PwmSetPhaseShiftNoUpdate (PwmConfigurationOfOptApiServices)	138		
	4.3.13	PwmEnableTrigger (PwmConfigurationOfOptApiServices)	138		
	4.3.14	PwmDiableTrigger (PwmConfigurationOfOptApiServices)	139		
	4.3.15	PwmSwResetCounter (PwmConfigurationOfOptApiServices)			
4.4	Form PwmGeneral.				
	4.4.1	PwmDevErrorDetect (PwmGeneral)	140		
	4.4.2	PwmDutycycleUpdatedEndperiod (PwmGeneral)	140		
	4.4.3	PwmNotificationSupported (PwmGeneral)	141		
	4.4.4	PwmEnableDualClockMode (PwmGeneral)	141		
	4.4.5	PwmPeriodUpdatedEndperiod (PwmGeneral)	141		
	4.4.6	PwmIndex (PwmGeneral)	142		
	4.4.7	PwmFaultSupport (PwmGeneral)	142		

Sed	ction n	umber	Title	Page
	4.4.8	PwmFtml	EnableExtTrigger (PwmGeneral)	143
	4.4.9	PwmEnab	blePhaseShift (PwmGeneral)	143
	4.4.10	PwmMult	tiChannelSynch (PwmGeneral)	143
	4.4.11	EnableMa	askingOperations (PwmGeneral)	144
	4.4.12	PwmLow	PowerStatesSupport (PwmGeneral)	144
	4.4.13	PwmPow	erStateAsynchTransitionMode (PwmGeneral)	144
4.5	Form C	CommonPu	ıblishedInformation	145
	4.5.1	ArRelease	eMajorVersion (CommonPublishedInformation)	145
	4.5.2	ArRelease	eMinorVersion (CommonPublishedInformation)	146
	4.5.3	ArRelease	eRevisionVersion (CommonPublishedInformation)	146
	4.5.4	ModuleId	(CommonPublishedInformation)	147
	4.5.5	SwMajor	Version (CommonPublishedInformation)	147
	4.5.6	SwMinor	Version (CommonPublishedInformation)	147
	4.5.7	SwPatchV	Version (CommonPublishedInformation)	148
	4.5.8	VendorA	piInfix (CommonPublishedInformation)	148
	4.5.9	VendorId	(CommonPublishedInformation)	149
4.6	Form F	wmChann	149	
	4.6.1	Form Pwi	mChannel	
		4.6.1.1	PwmChannelId (PwmChannel)	151
		4.6.1.2	PwmHwIP (PwmChannel)	151
		4.6.1.3	PwmFtmChannel (PwmChannel)	151
		4.6.1.4	PwmFlexIOChannel (PwmChannel)	152
		4.6.1.5	PwmPeriodInTicks (PwmChannel)	152
		4.6.1.6	PwmPeriodDefault (PwmChannel)	152
		4.6.1.7	PwmChannelClass (PwmChannel)	153
		4.6.1.8	PwmPolarity (PwmChannel)	153
		4.6.1.9	PwmDutycycleDefault (PwmChannel)	154
		4.6.1.10	PwmIdleState (PwmChannel)	154
		4.6.1.11	PwmNotification (PwmChannel)	155

Section number		Title	Page		
	4.6.1.12	PwmMcuClockReferencePoint (PwmChannel)	155		
4.6.2	Form Pwr	nFlexIOModule	156		
	4.6.2.1	PwmFlexIOModule (PwmFlexIO)	156		
	4.6.2.2	Form PwmFlexIOChannels.	157		
		4.6.2.2.1 PwmFlexIOChannelId (PwmFlexIOChannels)	157		
		4.6.2.2.2 PwmFlexIOTimer (PwmFlexIOChannels)	158		
4.6.3	Form Pwn	Form PwmFtmModule			
	4.6.3.1	FtmModule (PwmFtmModule)	159		
	4.6.3.2	PwmPrescaler (PwmFtmModule)	160		
	4.6.3.3	PwmPrescaler_Alternate (PwmFtmModule)	160		
	4.6.3.4	PwmClockRef (PwmFtmModule)	160		
	4.6.3.5	PwmClockSelection (PwmFtmModule)	161		
	4.6.3.6	PwmChanEdgeAlignment (PwmFtmModule)	161		
	4.6.3.7	PwmUpdatedEndPeriod (PwmFtmModule)	162		
	4.6.3.8	PwmUpdatedMiddlePeriod (PwmFtmModule)	162		
	4.6.3.9	PwmReloadFrequency (PwmFtmModule)	163		
	4.6.3.10	PwmDeadTimeCount (PwmFtmModule)	164		
	4.6.3.11	DeadTimePrescaler (PwmFtmModule)	164		
	4.6.3.12	PwmBDMEnable (PwmFtmModule)	165		
	4.6.3.13	PwmFtmFaultFunctionality (PwmFtmModule)	165		
	4.6.3.14	Form PwmFtmChannels	166		
		4.6.3.14.1 PwmFtmChannelId (PwmFtmChannels)	167		
		4.6.3.14.2 ChannelEdgeSetup (PwmFtmChannels)	168		
		4.6.3.14.3 ChannelCombDeadTimeEn (PwmFtmChannels)	169		
		4.6.3.14.4 PwmPhaseShift (PwmFtmChannels)	169		
	4.6.3.15	Form PwmFtmChannelFaultSettings	170		
		4.6.3.15.1 PwmFilterValue (PwmFtmChannelFaultSettings)	170		
		4.6.3.15.2 PwmDisableOutputOnFault0 (PwmFtmChannelFaultSettings)	170		
		4.6.3.15.3 PwmDisableOutputOnFault1 (PwmFtmChannelFaultSettings)	171		

Section number	Title		
	4.6.3.15.4	PwmDisableOutputOnFault2 (PwmFtmChannelFaultSettings)	171
	4.6.3.15.5	PwmDisableOutputOnFault3 (PwmFtmChannelFaultSettings)	172
	4.6.3.15.6	PwmFtmFaultOutputState (PwmFtmModule)	172
	4.6.3.15.7	Form PwmFtmChannelFault0Settings	172
		4.6.3.15.7.1 PwmFault0Polarity (PwmFtmChannelFault0Settings)	173
		4.6.3.15.7.2 PwmEnableFault0Filter (PwmFtmChannelFault0Setti	ngs) 173
		4.6.3.15.7.3 PwmFault0Notification (PwmFtmChannelFault0Setti	ngs)174
	4.6.3.15.8	Form PwmFtmChannelFault1Settings	174
		4.6.3.15.8.1 PwmFault1Polarity (PwmFtmChannelFault1Settings)	174
		4.6.3.15.8.2 PwmEnableFault1Filter (PwmFtmChannelFault1Setti	ngs) 175
		4.6.3.15.8.3 PwmFault1Notification (PwmFtmChannelFault1Setti	ngs)175
	4.6.3.15.9	Form PwmFtmChannelFault2Settings	176
		4.6.3.15.9.1 PwmFault2Polarity (PwmFtmChannelFault2Settings)	176
		4.6.3.15.9.2 PwmEnableFault2Filter (PwmFtmChannelFault2Setti	ngs) 176
		4.6.3.15.9.3 PwmFault2Notification (PwmFtmChannelFault2Setti	ngs)177
	4.6.3.15.10	Form PwmFtmChannelFault3Settings	177
		4.6.3.15.10.1 PwmFault3Polarity (PwmFtmChannelFault3Settings)	178
		4.6.3.15.10.2 PwmEnableFault3Filter (PwmFtmChannelFault3Setti	ngs) 178
		4.6.3.15.10.3 PwmFault3Notification (PwmFtmChannelFault3Setti	ngs)178
4.6.3.16	Form PwmI	External Trigger Settings	179
	4.6.3.16.1	$PwmEnable External Trigger Channel 0 \ (PwmExternal Trigger Settings) \\$	179
	4.6.3.16.2	PwmEnableExternalTriggerChannel1 (PwmExternalTriggerSettings)	180
	4.6.3.16.3	$PwmEnable External Trigger Channel 2\ (PwmExternal Trigger Settings)$	180
	4.6.3.16.4	$PwmEnable External Trigger Channel 3\ (PwmExternal Trigger Settings)$	180
	4.6.3.16.5	$PwmEnable External Trigger Channel 4\ (PwmExternal Trigger Settings)$	181
	4.6.3.16.6	$PwmEnable External Trigger Channel 5 \ (PwmExternal Trigger Settings) \\$	181
	4.6.3.16.7	$PwmEnable External Trigger Channel 6 \ (PwmExternal Trigger Settings) \\$	182
	4.6.3.16.8	$PwmEnable External Trigger Channel 7\ (PwmExternal Trigger Settings)$	182
	4.6.3.16.9	PwmEnableInitializationTrigger (PwmExternalTriggerSettings)	182

User Manual, Rev. 1.0

NXP Semiconductors 15

Chapter 1 Revision History

Table 1-1. Revision History

	Revision	Date	Author	Description
Ī	1.0	26/04/2019	NXP MCAL Team	Updated version for ASR 4.2.2S32K14XR1.0.2

Chapter 2 Introduction

This User Manual describes NXP Semiconductors AUTOSAR Pulse Width Modulation (PWM) for S32K14X .

AUTOSAR PWM driver configuration parameters and deviations from the specification are described in PWM Driver chapter of this document. AUTOSAR PWM driver requirements and APIs are described in the AUTOSAR PWM driver software specification document.

2.1 Supported Derivatives

The software described in this document is intented to be used with the following microcontroller devices of NXP Semiconductors .

Table 2-1. S32K14X Derivatives

All of the above microcontroller devices are collectively named as S32K14X.

2.2 Overview

AUTOSAR (**AUTomotive Open System ARchitecture**) is an industry partnership working to establish standards for software interfaces and software modules for automobile electronic control systems.

About this Manual

AUTOSAR

- paves the way for innovative electronic systems that further improve performance, safety and environmental friendliness.
- is a strong global partnership that creates one common standard: "Cooperate on standards, compete on implementation".
- is a key enabling technology to manage the growing electrics/electronics complexity. It aims to be prepared for the upcoming technologies and to improve cost-efficiency without making any compromise with respect to quality.
- facilitates the exchange and update of software and hardware over the service life of the vehicle.

2.3 About this Manual

This Technical Reference employs the following typographical conventions:

Boldface type: Bold is used for important terms, notes and warnings.

Italic font: Italic typeface is used for code snippets in the text. Note that C language modifiers such "const" or "volatile" are sometimes omitted to improve readability of the presented code.

Notes and warnings are shown as below:

Note

This is a note.

2.4 Acronyms and Definitions

Table 2-2. Acronyms and Definitions

Term	Definition	
FlexIO	Flexible I/O	
FTM	Flexible Timer	
API	Application Programming Interface	
AUTOSAR	Automotive Open System Architecture	
ASM	Assembler	
BSMI	Basic Software Make file Interface	
BSW	Basic Software	
CAN	Controller Area Network	
DEM	Diagnostic Event Manager	

Table continues on the next page...

User Manual, Rev. 1.0

Table 2-2. Acronyms and Definitions (continued)

Term	Definition	
DET	Development Error Tracer	
C/CPP	C and C++ Source Code	
ECU	Electronic Control Unit	
ISR	Interrupt Service Routine	
MCU	Micro Controller Unit	
N/A	Not Applicable	
os	Operating System	
PB Variant Post Build Variant		
PC Variant Pre Compile Variant		
PWM	Pulse Width Modulation	
RAM	Random Access Memory	
ROM	Read-only Memory	
VLE	Variable Length Encoding	

2.5 Reference List

Table 2-3. Reference List

#	Title	Version
1	Specification of PWM Driver	AUTOSAR Release 4.2.2
2	S32K14X Reference Manual	Reference Manual, Rev. 9, 9/2018
3	S32K142 Mask Set Errata for Mask 0N33V (0N33V)	30/11/2017
4	S32K144 Mask Set Errata for Mask 0N57U (0N57U)	30/11/2017
5	S32K146 Mask Set Errata for Mask 0N73V (0N73V)	30/11/2017
6	S32K148 Mask Set Errata for Mask 0N20V (0N20V)	25/10/2018
7	S32K118 Mask Set Errata for Mask 0N97V (0N97V)	07/01/2019

Reference List

Chapter 3 Driver

3.1 Requirements

Requirements for this driver are detailed in the AUTOSAR 4.2 Rev0002PWM Driver Software Specification document (See Table Reference List).

3.2 Driver Design Summary

The AUTOSAR PWM Driver Specification defines the functionality, API and the configuration of the AUTOSAR Basic Software module PWM Driver. Each PWM channel is linked to a hardware channel capable of implementing PWM functionality, which belongs to the microcontroller.

The driver provides functions for initialization and control of the microcontroller internal PWM stage (pulse width modulation). The PWM module generates pulses with variable pulse width. It allows the selection of the duty cycle and the signal period time.

The S32K1XX microcontroller contains FlexIO module and FTM module.

3.3 Hardware Resources

Table 3-1. PWM Hardware channels availability for S32K1XX family

Derivatives	FlexIO module	FlexIO timer available	FlexIO channel available
All Derivatives	FlexIO_0	Timer_0, Timer_1, Timer_2, Timer_3	Channel_0, Channel_1, Channel_2, Channel_3, Channel_4, Channel_5, Channel_6, Channel_7

Table 3-2. PWM Hardware channels availability for S32K142 family

Package	FTM module	FTM channel available	FTM fault input available
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_2
LQFP-48	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3	FTM_2_FLT_1
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5	FTM_3_FLT_1
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
LQFP-64	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
1050 400	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
LQFP-100	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3

Table 3-3. PWM Hardware channels availability for S32K144 family

Package FTM module	FTM channel available	FTM fault input available
--------------------	-----------------------	---------------------------

Table continues on the next page...

25

Table 3-3. PWM Hardware channels availability for S32K144 family (continued)

	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_2
LQFP-48	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3	FTM_2_FLT_1
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5	FTM_3_FLT_1
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
LQFP-64	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
LQFP-100,	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
MAPBGA-100	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3

Table 3-4. PWM Hardware channels availability for S32K146 family

Package	FTM module	FTM channel available	FTM fault input available

Table continues on the next page...

Hardware Resources

Table 3-4. PWM Hardware channels availability for S32K146 family (continued)

		_	
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
LQFP-64	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_4	FTM_4_CH_5, FTM_4_CH_6	N/A
	FTM_5	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_3, FTM_5_CH_5	N/A
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
LQFP-100, MAPBGA-100	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_4	FTM_4_CH_2, FTM_4_CH_5, FTM_4_CH_6	FTM_4_FLT_0, FTM_4_FLT_1
	FTM_5	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_3, FTM_5_CH_5	FTM_5_FLT_0, FTM_5_FLT_1
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
LQFP-144	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3

Table continues on the next page...

Table 3-4. PWM Hardware channels availability for S32K146 family (continued)

FTM	 	, ,	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
FTM		FTM_4_CH_0, FTM_4_CH_1, FTM_4_CH_2, FTM_4_CH_3, FTM_4_CH_4, FTM_4_CH_5, FTM_4_CH_6, FTM_4_CH_7	FTM_4_FLT_0, FTM_4_FLT_1
FTM	 	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_2, FTM_5_CH_3, FTM_5_CH_4, FTM_5_CH_5, FTM_5_CH_6, FTM_5_CH_7	FTM_5_FLT_0, FTM_5_FLT_1

Table 3-5. PWM Hardware channels availability for S32K148 family

Package	FTM module	FTM channel available	FTM fault input available
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
LQFP-100, MAPBGA-100	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_4	FTM_4_CH_2, FTM_4_CH_5, FTM_4_CH_6	FTM_4_FLT_0, FTM_4_FLT_1
	FTM_5	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_3, FTM_5_CH_5	FTM_5_FLT_0, FTM_5_FLT_1
	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
LQFP-144	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3

Table continues on the next page...

Hardware Resources

Table 3-5. PWM Hardware channels availability for S32K148 family (continued)

	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_4	FTM_4_CH_0, FTM_4_CH_1, FTM_4_CH_2, FTM_4_CH_3, FTM_4_CH_4, FTM_4_CH_5, FTM_4_CH_6, FTM_4_CH_7	FTM_4_FLT_0, FTM_4_FLT_1
	FTM_5	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_2, FTM_5_CH_3, FTM_5_CH_4, FTM_5_CH_5, FTM_5_CH_6, FTM_5_CH_7	FTM_5_FLT_0, FTM_5_FLT_1
	FTM_6	FTM_6_CH_0, FTM_6_CH_1, FTM_6_CH_2, FTM_6_CH_3, FTM_6_CH_4, FTM_6_CH_5, FTM_6_CH_7	FTM_6_FLT_0, FTM_6_FLT_1
	FTM_7	FTM_7_CH_0, FTM_7_CH_1, FTM_7_CH_2, FTM_7_CH_3, FTM_7_CH_5, FTM_7_CH_7	FTM_7_FLT_0, FTM_7_FLT_1
LQFP-176	FTM_0	FTM_0_CH_0, FTM_0_CH_1, FTM_0_CH_2, FTM_0_CH_3, FTM_0_CH_4, FTM_0_CH_5, FTM_0_CH_6, FTM_0_CH_7	FTM_0_FLT_0, FTM_0_FLT_1, FTM_0_FLT_2, FTM_0_FLT_3
	FTM_1	FTM_1_CH_0, FTM_1_CH_1, FTM_1_CH_2, FTM_1_CH_3, FTM_1_CH_4, FTM_1_CH_5, FTM_1_CH_6, FTM_1_CH_7	FTM_1_FLT_0, FTM_1_FLT_1, FTM_1_FLT_2, FTM_1_FLT_3
	FTM_2	FTM_2_CH_0, FTM_2_CH_1, FTM_2_CH_2, FTM_2_CH_3, FTM_2_CH_4, FTM_2_CH_5, FTM_2_CH_6, FTM_2_CH_7	FTM_2_FLT_0, FTM_2_FLT_1, FTM_2_FLT_2, FTM_2_FLT_3
	FTM_3	FTM_3_CH_0, FTM_3_CH_1, FTM_3_CH_2, FTM_3_CH_3, FTM_3_CH_4, FTM_3_CH_5, FTM_3_CH_6, FTM_3_CH_7	FTM_3_FLT_0, FTM_3_FLT_1, FTM_3_FLT_2, FTM_3_FLT_3
	FTM_4	FTM_4_CH_0, FTM_4_CH_1, FTM_4_CH_2, FTM_4_CH_3, FTM_4_CH_4, FTM_4_CH_5, FTM_4_CH_6, FTM_4_CH_7	FTM_4_FLT_0, FTM_4_FLT_1
	FTM_5	FTM_5_CH_0, FTM_5_CH_1, FTM_5_CH_2, FTM_5_CH_3, FTM_5_CH_4, FTM_5_CH_5, FTM_5_CH_6, FTM_5_CH_7	FTM_5_FLT_0, FTM_5_FLT_1
	FTM_6	FTM_6_CH_0, FTM_6_CH_1, FTM_6_CH_2, FTM_6_CH_3, FTM_6_CH_4, FTM_6_CH_5, FTM_6_CH_6, FTM_6_CH_7	FTM_6_FLT_0, FTM_6_FLT_1
	FTM_7	FTM_7_CH_0, FTM_7_CH_1, FTM_7_CH_2, FTM_7_CH_3, FTM_7_CH_4, FTM_7_CH_5, FTM_7_CH_6, FTM_7_CH_7	FTM_7_FLT_0, FTM_7_FLT_1

User Manual, Rev. 1.0

29

3.4 Deviation from Requirements

The driver deviates from the AUTOSAR PWM Driver software specification in some places.

There are also some additional requirements (on top of requirements detailed in AUTOSAR PWM Driver software specification) which need to be satisfied for correct operation.

Table 3-6. Deviations Status Column Description

Term	Definition		
N/A	Not available		
N/T	Not testable		
N/S	Out of scope		
N/I	Not implemented		
N/F	Not fully implemented		

Below table identifies the AUTOSAR requirements that are not fully implemented, implemented differently, or out of scope for the driver.

Table 3-7. Driver Deviations Table

Requirement	Status	Description	Notes
PWM065	N/A	The Pwm SWS shall not define the code file structure.	N/A
PWM075c	N/I	Pwm_Lcfg.c shall include Pwm.h and Pwm_Memmap.h.	Link time configuration not supported.
PWM075e	N/I	Pwm.c shall include Pwm.h, Pwm_MemMap.h, Det.h and SchM_Pwm.h.	SchM_Pwm.h is included by lower layer of the driver.
PWM075g	N/A	Pwm_Irq.c shall include Pwm_MemMap.h and Pwm.h.	Due to layer separation, implementation of Pwm driver does not include a Pwm_lrq.c file. The interrupts are handled in distinct files by each separate hardware module used
PWM093	N/S	The users of the Pwm module shall not call the function Pwm_Init during a running operation.	N/A
PWM116	N/I	The Pwm module's environment shall not call any function of the Pwm module before having called Pwm_Init.	N/A
PWM120a	N/I	For pre-compile and link time configuration variants, a NULL pointer shall be passed to the initialization routine.	Applicable if only one variant is used.
SWS_Pwm_001 62	N/S	The Pwm Driver shall support synchronuous and asynchronous power state transitions, depending on the value of the configuration	eMIOS Hw does not support asynchronous power state transitions

Table continues on the next page...

User Manual, Rev. 1.0

Table 3-7. Driver Deviations Table (continued)

Requirement	Status	Description	Notes
		parameter PwmPowerStateAsynchTransitionMode.	
SWS_Pwm_001 64	N/S	In case the configuration parameter PwmPowerStateAsynchTransitionMode is set to TRUE, the preparation process shall continue in background after the relative API returns and its completion shall be notified by means of the configured callback.	eMIOS Hw does not support asynchronous power state transitions

3.5 FlexIO specific implementation details

FlexIO for supporting multiple modules

In this current implementation, FlexIO is supported for list of modules below:

- PWM
- SPI
- I2C
- LIN
- ...

All modules are integrated configuration in MCL, so users must configure MCL module to use PWM functionality. Refer to section Configure PwmFlexIOModule for details.

Function calling:

User should follow these guides to run if configured FlexIO for PWM functionality:

- Include MCL generated configuration file (e.g. CDD_Mcl_Cfg.h, CDD_Mcl_PBCfg.c) along with PWM configuration file destination.
- Add '#include "Mcl.h" in code.
- In main function, call Mcl_Init() function first.
- Call Pwm_Init() function after Mcl_Init().

3.6 FTM specific implementation details

The phase shift functionality

PWM phase shift provides a group of channels which have difference phase for each specific channels. Current implementation supports two types of phase shift.

- The traditional phase shift bases on Modified Combine mode of FTM. This mode implements PWM Class PWM_FIXED_PERIOD_SHIFTED, which the period and phase shift value is fixed, the duty cycle can be variable. In order to configure this mode, parameter PwmGeneral/PwmEnablePhaseShift should be enable first. The reference channel needs to be configured with ChannelEdgeSetup as PHASE_SHIFTED_SYNCED or PHASE_SHIFTED_COMPLEMENTARY.
- The second type of phase shift bases on Combine mode of FTM. This mode supports full-bridge phase shift controller. Other than normal PWM channels, duty cycle in this mode is always fixed to 50% while period and phase shift value can be variable. To have channels operate in this mode, PwmSetPhaseShift or/and PwmSetPhaseShiftNoUpdate should be enabled first. The ChannelEdgeSetup of reference channel need to be COMBINED_SYNCED or COMBINED_COMPLEMENTARY.

NOTE

The phase shift mode bases on Combine mode does not support notification. Therefore when PwmSetPhaseShift or/and PwmSetPhaseShiftNoUpdate is enabled, channel reference to COMBINED_SYNCED or COMBINED_COMPLEMENTARY should not be assigned any notification.

3.7 Driver limitations

In this current implementation, there are some limitations for FlexIO driver due to hardware supports:

- FlexIO compare registers are not buffered so they are written directly, therefore the
 update of duty cycle and period will be immediate. Option
 PwmDutycycleUpdatedEndperiod and PwmPeriodUpdatedEndperiod is not
 supported for FlexIO.
- FlexIO notification only support for rising edge. Other cases are not supported, including falling edges and both edges notification.
- FlexIO does not support functionality of Pwm_SetOutputToIdle. With function Pwm_GetOutputState, calling this function for FlexIO PWM channel will always return PWM_LOW.
- FlexIO does not support for Dutycycle: (0)0%, (0x8000)100% and Period: 0U, When user call this function with parameter 0% or 100% duty cycle, 0 preriod, it will generate a spike pulse.

3.8 Driver usage and configuration tips

Basically, PWM driver should be configured in 3 steps:

- Choose PWM module/channel to be used and its interrupt in PwmHwConfiguration.
- Configure PWM module/channel in PwmModule tab.
- Configure logic channel in PwmChannel.

3.8.1 Configure PwmHwConfiguration

Figure 3-1. Tresos Plugin snapshot for PwmHwConfiguration form.

PwmHwConfiguration form allows user to choose modules or channels to be used in configuration with PwmIsUsed selection, also provides options to use interrupt service for each module/channel in PwmInterruptEnable selection.

3.8.2 Configure PwmModule

This part contains guide to configure 2 modules available for S32K1XX: FlexIO and FTM.

3.8.2.1 Configure PwmFtmModule

Configuration IP hardware specific shall be done with the flow similar to hardware structure. For FTM, hardware structure is PWM FTM module -> PWM FTM channel.

• Configure FTM module in PwmFtmModule form

Figure 3-2. Tresos Plugin snapshot for PwmFtmModule form.

• Configure FTM channel in PwmFtmChannel form

User Manual, Rev. 1.0

Figure 3-3. Tresos Plugin snapshot for PwmFtmChannel form.

3.8.2.2 Configure PwmFlexIOModule

Configuration FlexIO hardware specific shall be done with the following guides:

In MCL modules:

• In MclGeneral section, Enable node :Mcl FlexIO Support.

Figure 3-4. Tresos Plugin snapshot for MclGeneral form.

• In MclConfigSet section, user can choose DOZEN or DBGE enable bit option

Figure 3-5. Tresos Plugin snapshot for MclConfigSet/FlexioGeneral form.

• Then, user need to call Mcl_Init() function before Pwm_Init() When using FlexIO module

In PWM modules:

• In PwmFlexIO module.

Figure 3-6. Tresos Plugin snapshot for PwmFlexIO form.

 In PwmFlexIOChannels section, user must choose FlexIO channel, FlexIO timer for PWM channel

Figure 3-7. Tresos Plugin snapshot for PwmFlexIOChannels form.

3.8.3 Configure logic channel in PwmChannel

This list contains logical channel working as object of PWM APIs. Each logic channel refers to PWM hardware channel which has been configured from PWM modules through above steps.

Figure 3-8. Tresos Plugin snapshot for PwmChannel form.

Select the hardware channel that needs to be referenced to, the period, the duty cycle...

3.8.4 Implement errata

For errata e10856 implementation, PWM module should be configured as follow to handle errata successfully:

- In PwmGeneral, option PwmNotificationSupported and Fault Support Enable (PwmFaultSupport) should be set both to enable TOF and fault notification.
- In PwmFtmModule selected to implement errata, the option Pwm Fault Funtionality and Clear Mode (PwmFtmFaultFunctionality) should be chosen between AUTOMATIC_FOR_EVEN_CHANNELS and AUTOMATIC_FOR_ALL_CHANNELS. TOF_ISR and FAULT_ISR of selected FTM module will be generated automatically on, and functions of both ISRs will be available.

3.9 Runtime Errors

None.

3.10 Software specification

The following sections contains driver software specifications.

3.10.1 Define Reference

Constants supported by the driver are as per AUTOSAR PWM Driver software specification Version 4.2 Rev0002 .

3.10.1.1 Define PWM VENDOR ID

Table 3-8. Define PWM_VENDOR_ID Description

Name	PWM_VENDOR_ID
Initializer	43

3.10.1.2 Define PWM_MODULE_ID

Table 3-9. Define PWM_MODULE_ID Description

Name	PWM_MODULE_ID
Initializer	121

3.10.1.3 Define PWM_AR_RELEASE_MAJOR_VERSION

Table 3-10. Define PWM_AR_RELEASE_MAJOR_VERSION Description

Name	PWM_AR_RELEASE_MAJOR_VERSION
Initializer	4

3.10.1.4 Define PWM_AR_RELEASE_MINOR_VERSION

Table 3-11. Define PWM_AR_RELEASE_MINOR_VERSION Description

Name	PWM_AR_RELEASE_MINOR_VERSION
Initializer	2

3.10.1.5 Define PWM_AR_RELEASE_REVISION_VERSION

Table 3-12. Define PWM_AR_RELEASE_REVISION_VERSION Description

Name	PWM_AR_RELEASE_REVISION_VERSION
Initializer	2

3.10.1.6 Define PWM_SW_MAJOR_VERSION

Table 3-13. Define PWM_SW_MAJOR_VERSION Description

Name	PWM_SW_MAJOR_VERSION
Initializer	1

3.10.1.7 Define PWM_SW_MINOR_VERSION

Table 3-14. Define PWM_SW_MINOR_VERSION Description

Name	PWM_SW_MINOR_VERSION
Initializer	0

3.10.1.8 Define PWM_SW_PATCH_VERSION

Table 3-15. Define PWM_SW_PATCH_VERSION Description

Name	PWM_SW_PATCH_VERSION
Initializer	4

3.10.1.9 Define PWM DUTY CYCLE 100

100% duty cycle.

Details:

User Manual, Rev. 1.0

Value used to map a duty cycle of 100% on a 16 bit variable.

Table 3-16. Define PWM_DUTY_CYCLE_100 description

Name	PWM_DUTY_CYCLE_100
Initializer	((uint16) 0x8000U)

3.10.1.10 Define PWM_E_PARAM_CONFIG

Error signaling that Pwm_Init service was called with wrong parameter.

Details:

Errors and exceptions that will be detected by the PWM driver.

<u>Implements</u>: Pwm_ErrorIds_define AUTOSAR

Table 3-17. Define PWM_E_PARAM_CONFIG description

Name	PWM_E_PARAM_CONFIG
Initializer	0x10U

3.10.1.11 Define PWM_E_UNINIT

Error signaling that an API service was called before module initialization.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-18. Define PWM_E_UNINIT Description

Name	PWM_E_UNINIT
Initializer	0x11U

3.10.1.12 Define PWM_E_PARAM_CHANNEL

Error signaling that an API service was called with an invalid channel identifier.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-19. Define PWM_E_PARAM_CHANNEL Description

Name	PWM_E_PARAM_CHANNEL
Initializer	0x12U

3.10.1.13 Define PWM_E_PERIOD_UNCHANGEABLE

Error signaling incorrect usage of PWM channel service on a channel configured with fixed period.

Details:

Errors and exceptions that will be detected by the PWM driver.

<u>Implements</u>: Pwm_ErrorIds_define AUTOSAR

Table 3-20. Define PWM_E_PERIOD_UNCHANGEABLE Description

Name	PWM_E_PERIOD_UNCHANGEABLE
Initializer	0x13U

3.10.1.14 Define PWM_E_ALREADY_INITIALIZED

Error signaling that Pwm_Init service was called while the PWM driver was already initialised.

Details:

Will be reported to DET when Pwm_Init service was called while the PWM driver was already initialised.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-21. Define PWM_E_ALREADY_INITIALIZED Description

Name	PWM_E_ALREADY_INITIALIZED
Initializer	0x14U

3.10.1.15 Define PWM E PARAM POINTER

Error signaling that an invalid parameter pointer is passed to Pwm_GetVersionInfo function.

Details:

Errors and exceptions that will be detected by the PWM driver.

<u>Implements</u>: Pwm_ErrorIds_define AUTOSAR

Table 3-22. Define PWM_E_PARAM_POINTER Description

Name	PWM_E_PARAM_POINTER
Initializer	0x15U

3.10.1.16 Define PWM_E_PARAM_NOTIFICATION

Invalid polarity selected for edge notification.

Details:

Will be generated when an invalid polarity, edge notification is requested for one PWM channel.

Due to the limitations that are present in the eMIOS implementation, not all the polarity notifications combinations can be supported.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-23. Define PWM_E_PARAM_NOTIFICATION Description

Name	PWM_E_PARAM_NOTIFICATION
Initializer	0x30U

3.10.1.17 Define PWM_E_PARAM_NOTIFICATION_NULL

Error signaling that a NULL function is configured as notification callback.

Details:

Will be generated when a NULL function is configured as notification callback for one PWM channel and Pwm EnableNotification is called for that channel.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-24. Define PWM_E_PARAM_NOTIFICATION_NULL Description

Name	PWM_E_PARAM_NOTIFICATION_NULL
Initializer	0x31U

3.10.1.18 Define PWM_E_DUTYCYCLE_RANGE

Error signaling that Pwm_SetDutyCycle or Pwm_SetPeriodAndDuty service was called with invalid duty cycle range.

Details:

Generated when Pwm_SetDutyCycle or Pwm_SetPeriodAndDuty are called with a value for duty cycle out of valid range [0x0000, 0x8000].

<u>Implements</u>: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-25. Define PWM_E_DUTYCYCLE_RANGE Description

Name	PWM_E_DUTYCYCLE_RANGE
Initializer	0x32U

3.10.1.19 Define PWM_E_COUNTERBUS

Generated when Pwm_SetCounterBus is called with an invalid bus.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Note: In current implementation, this definition is not used.

Table 3-26. Define PWM_E_COUNTERBUS Description

Name	PWM_E_COUNTERBUS
Initializer	0x33U

3.10.1.20 Define PWM_E_CHANNEL_OFFSET_VALUE

Generated when the configured offset for the OPWMB channel is more than the period of the associated MCB channel.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-27. Define PWM_E_CHANNEL_OFFSET_VALUE Description

Name	PWM_E_CHANNEL_OFFSET_VALUE
Initializer	0x34U

3.10.1.21 Define PWM E OPWMB CHANNEL OFFSET DUTYCYCLE RANGE

Generated when the requested offset value plus the current requested duty cycle leads to programming event B over the Period value leading to unexpected behavior of the PWM signal.

Details:

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Errors and exceptions that will be detected by the PWM driver.

Note: In current implementation, this definition is not used.

Table 3-28. Define PWM_E_OPWMB_CHANNEL_OFFSET_DUTYCYCLE_RANGE Description

Name	PWM_E_OPWMB_CHANNEL_OFFSET_DUTYCYCLE_RANGE
Initializer	0x35U

3.10.1.22 Define PWM_E_PARAM_INSTANCE

Generated when the module id is more than the number of module that supported by this platform.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-29. Define PWM_E_PARAM_INSTANCE Description

Name	PWM_E_PARAM_INSTANCE
Initializer	(0x36U)

3.10.1.23 Define PWM_E_OPWMT_CHANNEL_TRIGGER_RANGE

Generated when the configured trigger value for the OPWMT channel is equal or greater than the period of the channel.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Note: In current implementation, this definition is not used.

Table 3-30. Define PWM_E_OPWMT_CHANNEL_TRIGGER_RANGE Description

Name	PWM_E_OPWMT_CHANNEL_TRIGGER_RANGE
Initializer	0x37U

3.10.1.24 Define PWM_E_OUTPUT_STATE

Generated when the output state value for the SetChannelOutput of the channel.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Note: In current implementation, this definition is not used.

Table 3-31. Define PWM_E_OUTPUT_STATE Description

Name	PWM_E_OUTPUT_STATE
Initializer	0x38U

3.10.1.25 Define PWM_E_UNEXPECTED_ISR

Error signaling that an unexpected PWM interrupt has been triggered:

- 1. When the driver is not initialized.
- 2. For a hardware channel that is not used by any logic channel.
- 3. For a logic channel that has no notification configured.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-32. Define PWM_E_UNEXPECTED_ISR Description

Name	PWM_E_UNEXPECTED_ISR
Initializer	0x39U

3.10.1.26 Define PWM_E_PARAM_PHASESHIFT_RANGE

Generated when requested phase shift value is greater than 0x4000 (50%).

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-33. Define PWM_E_PARAM_PHASESHIFT_RANGE Description

Name	PWM_E_PARAM_PHASESHIFT_RANGE
Initializer	0x3AU

3.10.1.27 Define PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE

Generated when given channel is other than combine channel edge setup (COMBINED SYNCED and COMBINED COMPLEMENTARY).

Details:

User Manual, Rev. 1.0

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-34. Define PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE Description

Name	PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE
Initializer	0x3BU

3.10.1.28 Define PWM E PARAM SYNCHRONOUS MODIFIED COMBINE

Generated when given channel is Modified Combine channel edge setup (PHASE_SHIFTED_SYNCED and PHASE_SHIFTED_COMPLEMENTARY).

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define Non-AUTOSAR

Table 3-35. Define PWM_E_PARAM_SYNCHRONOUS_MODIFIED_COMBINE Description

Name	PWM_E_PARAM_SYNCHRONOUS_MODIFIED_COMBINE
Initializer	0x3CU

3.10.1.29 Define PWM_E_TRIGGER_MASK

Generated when bit mask is not compatible with hardware register.

Details:

Errors and exceptions that will be detected by the PWM driver.

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-36. Define PWM_E_TRIGGER_MASK Description

Name	PWM_E_TRIGGER_MASK
Initializer	0x3DU

3.10.1.30 Define PWM_E_NOT_DISENGAGED

Generated when Pwm_SetPowerState is called while the PWM module is still in use.

Details:

Errors and exceptions that will be detected by the PWM driver

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-37. Define PWM_E_NOT_DISENGAGED Description

Name	PWM_E_NOT_DISENGAGED
Initializer	0x16U

3.10.1.31 Define PWM_E_POWER_STATE_NOT_SUPPORTED

The requested power state is not supported by the PWM module.

Details:

Errors and exceptions that will be detected by the PWM driver

<u>Implements</u>: Pwm_ErrorIds_define AUTOSAR

Table 3-38. Define PWM_E_POWER_STATE_NOT_SUPPORTED Description

Name	PWM_E_POWER_STATE_NOT_SUPPORTED
Initializer	0x17U

3.10.1.32 Define PWM_E_TRANSITION_NOT_POSSIBLE

Generated The requested power state is not reachable from the current one.

Details:

Errors and exceptions that will be detected by the PWM driver

<u>Implements</u>: Pwm_ErrorIds_define AUTOSAR

Table 3-39. Define PWM_E_TRANSITION_NOT_POSSIBLE Description

Name	PWM_E_TRANSITION_NOT_POSSIBLE
Initializer	0x18U

3.10.1.33 Define PWM_E_PERIPHERAL_NOT_PREPARED

Generated when Pwm_SetPowerState has been called without having called the API.

Details:

Errors and exceptions that will be detected by the PWM driver

Implements: Pwm_ErrorIds_define AUTOSAR

Table 3-40. Define PWM_E_PERIPHERAL_NOT_PREPARED Description

Name	PWM_E_PERIPHERAL_NOT_PREPARED
Initializer	0x19U

3.10.1.34 Define PWM_INIT_ID

API service ID of Pwm_Init function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-41. Define PWM_INIT_ID Description

Name	PWM_INIT_ID
Initializer	0x00U

3.10.1.35 Define PWM_DEINIT_ID

API service ID of Pwm_DeInit function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-42. Define PWM_DEINIT_ID Description

Name	PWM_DEINIT_ID
Initializer	0x01U

3.10.1.36 Define PWM_SETDUTYCYCLE_ID

API service ID of Pwm_SetDutyCycle function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-43. Define PWM_SETDUTYCYCLE_ID Description

Name	PWM_SETDUTYCYCLE_ID
Initializer	0x02U

3.10.1.37 Define PWM_SETPERIODANDDUTY_ID

API service ID of Pwm_SetPeriodAndDuty function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-44. Define PWM_SETPERIODANDDUTY_ID Description

Name	PWM_SETPERIODANDDUTY_ID
Initializer	0x03U

3.10.1.38 Define PWM_SETOUTPUTTOIDLE_ID

API service ID of Pwm_SetOutputToIdle function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-45. Define PWM_SETOUTPUTTOIDLE_ID Description

Name	PWM_SETOUTPUTTOIDLE_ID
Initializer	0x04U

3.10.1.39 Define PWM GETOUTPUTSTATE ID

API service ID of Pwm_GetOutputState function.

Details:

Parameter used to identify the service when reporting and error to DET.

Note: In the current implementation this API does NOT reflect the state of the PWM output signal and the returned value is always PWM_LOW.

Table 3-46. Define PWM_GETOUTPUTSTATE_ID Description

Name	PWM_GETOUTPUTSTATE_ID
Initializer	0x05U

3.10.1.40 Define PWM_DISABLENOTIFICATION_ID

API service ID of Pwm_DisableNotification function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-47. Define PWM_DISABLENOTIFICATION_ID Description

Name	PWM_DISABLENOTIFICATION_ID
Initializer	0x06U

3.10.1.41 Define PWM_ENABLENOTIFICATION_ID

API service ID of Pwm_EnableNotification function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-48. Define PWM_ENABLENOTIFICATION_ID Description

Name	PWM_ENABLENOTIFICATION_ID
Initializer	0x07U

3.10.1.42 Define PWM_GETVERSIONINFO_ID

API service ID of Pwm_GetVersionInfo function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-49. Define PWM_GETVERSIONINFO_ID Description

Name	PWM_GETVERSIONINFO_ID
Initializer	U80x0

3.10.1.43 Define PWM_SETPOWERSTATE_ID

API service ID of Pwm_SetPowerState function.

Details:

Parameters used when raising an error/exception

Table 3-50. Define PWM_SETPOWERSTATE_ID Description

Name	PWM_SETPOWERSTATE_ID
Initializer	0x09U

3.10.1.44 Define PWM_GETCURRENTPOWERSTATE_ID

API service ID of Pwm_GetCurrentPowerState function.

Details:

Parameters used when raising an error/exception

Table 3-51. Define PWM_GETCURRENTPOWERSTATE_ID Description

Name	PWM_GETCURRENTPOWERSTATE_ID
Initializer	0x0AU

3.10.1.45 Define PWM_GETTARGETPOWERSTATE_ID

API service ID of Pwm_GetTargetPowerState function.

Details:

Parameters used when raising an error/exception

Table 3-52. Define PWM_GETTARGETPOWERSTATE_ID Description

Name	PWM_GETTARGETPOWERSTATE_ID
Initializer	0x0BU

3.10.1.46 Define PWM_PREPAREPOWERSTATE_ID

API service ID of Pwm_PreparePowerState function.

55

Details:

Parameters used when raising an error/exception

Table 3-53. Define PWM_PREPAREPOWERSTATE_ID Description

Name	PWM_PREPAREPOWERSTATE_ID
Initializer	0x0CU

3.10.1.47 Define PWM_GETCHANNELSTATE_ID

API service ID of Pwm_GetChannelState function.

Details:

Parameters used when raising an error/exception

Table 3-54. Define PWM_GETCHANNELSTATE_ID Description

Name	PWM_GETCHANNELSTATE_ID
Initializer	0x20U

3.10.1.48 Define PWM FORCEOUTPUTTOZERO ID

API service ID of Pwm_ForceOutputToZero function.

Details:

Parameters used when raising an error/exception

Table 3-55. Define PWM_FORCEOUTPUTTOZERO_ID Description

Name	PWM_FORCEOUTPUTTOZERO_ID
Initializer	0x21U

3.10.1.49 Define PWM_SETCOUNTERBUS_ID

API service ID of Pwm_SetCounterBus function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-56. Define PWM_SETCOUNTERBUS_ID Description

Name	PWM_SETCOUNTERBUS_ID
Initializer	0x22U

3.10.1.50 Define PWM_SETCHANNELOUTPUT_ID

API service ID of Pwm_SetChannelOutput function.

Details:

Parameter used to identify the service when reporting and error to DET.

 Table 3-57.
 Define PWM_SETCHANNELOUTPUT_ID Description

Name	PWM_SETCHANNELOUTPUT_ID
Initializer	0x23U

3.10.1.51 Define PWM_SETTRIGGERDELAY_ID

API service ID of Pwm_SetTriggerDelay function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-58. Define PWM_SETTRIGGERDELAY_ID Description

Name	PWM_SETTRIGGERDELAY_ID
Initializer	0x24U

3.10.1.52 Define PWM_BUFFERTRANSFERENDIS_ID

API service ID of Pwm_BufferTransferEnableDisable function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-59. Define PWM_BUFFERTRANSFERENDIS_ID Description

Name	PWM_BUFFERTRANSFERENDIS_ID
Initializer	0x26U

3.10.1.53 Define PWM SETCLOCKMODE ID

API service ID of Pwm_SetClockMode function.

Details:

Parameters used when raising an error/exception

Table 3-60. Define PWM_SETCLOCKMODE_ID Description

Name	PWM_SETCLOCKMODE_ID
Initializer	0x27U

3.10.1.54 Define PWM_SYNCUPDATE_ID

API service ID of Pwm_SyncUpdate function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-61. Define PWM_SYNCUPDATE_ID Description

Name	PWM_SYNCUPDATE_ID
Initializer	0x28U

3.10.1.55 Define PWM_SETPERIODANDDUTY_NO_UPDATE_ID

API service ID of Pwm_SetPeriodAndDuty_NoUpdate function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-62. Define PWM_SETPERIODANDDUTY_NO_UPDATE_ID Description

Name	PWM_SETPERIODANDDUTY_NO_UPDATE_ID
Initializer	0x29U

3.10.1.56 Define PWM_SETDUTYCYCLE_NO_UPDATE_ID

API service ID of Pwm_SetDutyCycle_NoUpdate function.

Details:

Parameter used to identify the service when reporting and error to DET.

Table 3-63. Define PWM_SETDUTYCYCLE_NO_UPDATE_ID Description

Name	PWM_SETDUTYCYCLE_NO_UPDATE_ID
Initializer	0x2AU

3.10.1.57 Define PWM_SETPHASESHIFT_ID

API service ID of Pwm_SetPhaseShift function

59

Details:

Parameters used when raising an error/exception

Table 3-64. Define PWM_SETPHASESHIFT_ID Description

Name	PWM_SETPHASESHIFT_ID
Initializer	0x2CU

3.10.1.58 Define PWM_SETPHASESHIFTNOUPDATE_ID

API service ID of Pwm_SetPhaseShift_NoUpdate function

Details:

Parameters used when raising an error/exception

Table 3-65. Define PWM_SETPHASESHIFTNOUPDATE_ID Description

Name	PWM_SETPHASESHIFTNOUPDATE_ID
Initializer	0x2DU

3.10.1.59 Define PWM_ENABLETRIGGER_ID

API service ID of Pwm_EnableTrigger function

Details:

Parameters used when raising an error/exception

Table 3-66. Define PWM_ENABLETRIGGER_ID Description

Name	PWM_ENABLETRIGGER_ID
Initializer	0x2EU

3.10.1.60 Define PWM_DISABLETRIGGER_ID

API service ID of Pwm_DisableTrigger function

Details:

Parameters used when raising an error/exception

Table 3-67. Define PWM_DISABLETRIGGER_ID Description

Name	PWM_DISABLETRIGGER_ID
Initializer	0x2FU

3.10.1.61 Define PWM_RESETCOUNTERENABLE_ID

API service ID of Pwm_ResetCounterEnable function.

Details:

Parameters used when raising an error/exception.

Table 3-68. Define PWM_RESETCOUNTERENABLE_ID Description

Name	PWM_RESETCOUNTERENABLE_ID
Initializer	0x30U

3.10.1.62 Define PWM_RESETCOUNTERDISABLE_ID

API service ID of Pwm_ResetCounterDisable function.

Details:

Parameters used when raising an error/exception.

Table 3-69. Define PWM_RESETCOUNTERDISABLE_ID Description

Name	PWM_RESETCOUNTERDISABLE_ID
Initializer	0x31U

3.10.1.63 Define PWM_MASKOUTPUT_ID

API service ID of Pwm_MaskOutputs function.

Details:

Parameters used when raising an error/exception

Table 3-70. Define PWM_MASKOUTPUT_ID Description

Name	PWM_MASKOUTPUT_ID
Initializer	0x32U

3.10.1.64 Define PWM_UNMASKOUTPUT_ID

API service ID of Pwm_UnMaskOutputs function.

Details:

Parameters used when raising an error/exception.

Table 3-71. Define PWM_UNMASKOUTPUT_ID Description

Name	PWM_UNMASKOUTPUT_ID
Initializer	0x33U

3.10.1.65 Define PWM DISABLERELOADNOTIF ID

 $API\ service\ ID\ of\ Pwm_Disable Reload Notification\ function.$

Details:

User Manual, Rev. 1.0

Parameters used when raising an error/exception

Table 3-72. Define PWM_DISABLERELOADNOTIF_ID Description

Name	PWM_DISABLERELOADNOTIF_ID
Initializer	0x34U

3.10.1.66 Define PWM_ENABLERELOADNOTIF_ID

API service ID of Pwm_EnableReloadNotification function.

Details:

Parameters used when raising an error/exception

Table 3-73. Define PWM_ENABLERELOADNOTIF_ID Description

Name	PWM_ENABLERELOADNOTIF_ID
Initializer	0x35U

3.10.1.67 Define PWM_FLEXIO_USED

Macros used to indicate that FlexIO modules is used in current configuration.

Table 3-74. Define PWM_FLEXIO_USED Description

Name	PWM_FLEXIO_USED
Initializer	(STD_OFF)

3.10.1.68 Define PWM_FTM_USED

Macros used to indicate that Ftm modules is used in current configuration.

Table 3-75. Define PWM_FTM_USED Description

Name	PWM_FTM_USED
Initializer	(STD_OFF)

63

3.10.1.69 Define PWM FLEXIO 0 CH 0 1 USED

Macros used to lock for PWM mode for FlexIO modules in current configuration.

Table 3-76. Define PWM_FLEXIO_0_CH_0_1_USED Description

Name	PWM_FLEXIO_0_CH_0_1_USED
Initializer	(0U)

3.10.1.70 Define PWM_FLEXIO_0_CH_2_3_USED

Macros used to lock for PWM mode for FlexIO modules in current configuration.

Table 3-77. Define PWM FLEXIO 0 CH 2 3 USED Description

Name	PWM_FLEXIO_0_CH_2_3_USED
Initializer	(0U)

3.10.1.71 Define PWM_FLEXIO_0_CH_0_1_ISR_USED

Macros used to enable ISR for FlexIO module 0.

Table 3-78. Define PWM_FLEXIO_0_CH_0_1_ISR_USED Description

Name	PWM_FLEXIO_0_CH_0_1_ISR_USED
Initializer	(0U)

3.10.1.72 Define PWM_FLEXIO_0_CH_2_3_ISR_USED

Macros used to enable ISR for FlexIO module 0.

Table 3-79. Define PWM_FLEXIO_0_CH_2_3_ISR_USED Description

Name	PWM_FLEXIO_0_CH_2_3_ISR_USED
Initializer	(0U)

3.10.1.73 Define PWM_FLEXIO_0_PIN_0_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-80. Define PWM_FLEXIO_0_PIN_0_USED Description

Name	PWM_FLEXIO_0_PIN_0_USED
Initializer	(0U)

3.10.1.74 Define PWM FLEXIO 0 PIN 1 USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-81. Define PWM_FLEXIO_0_PIN_1_USED Description

Name	PWM_FLEXIO_0_PIN_1_USED
Initializer	(0U)

3.10.1.75 Define PWM_FLEXIO_0_PIN_2_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-82. Define PWM_FLEXIO_0_PIN_2_USED Description

Name	PWM_FLEXIO_0_PIN_2_USED
Initializer	(0U)

3.10.1.76 Define PWM_FLEXIO_0_PIN_3_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-83. Define PWM_FLEXIO_0_PIN_3_USED Description

Name	PWM_FLEXIO_0_PIN_3_USED
Initializer	(0U)

User Manual, Rev. 1.0

3.10.1.77 Define PWM FLEXIO 0 PIN 4 USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-84. Define PWM_FLEXIO_0_PIN_4_USED Description

Name	PWM_FLEXIO_0_PIN_4_USED
Initializer	(0U)

3.10.1.78 Define PWM_FLEXIO_0_PIN_5_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-85. Define PWM_FLEXIO_0_PIN_5_USED Description

Name	PWM_FLEXIO_0_PIN_5_USED
Initializer	(0U)

3.10.1.79 Define PWM_FLEXIO_0_PIN_6_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-86. Define PWM_FLEXIO_0_PIN_6_USED Description

Name	PWM_FLEXIO_0_PIN_6_USED
Initializer	(0U)

3.10.1.80 Define PWM_FLEXIO_0_PIN_7_USED

Macros used to check confict Pinout for FlexIO module 0.

Table 3-87. Define PWM_FLEXIO_0_PIN_7_USED Description

Name	PWM_FLEXIO_0_PIN_7_USED
Initializer	(0U)

User Manual, Rev. 1.0

3.10.1.81 Define PWM FTM 0 USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-88. Define PWM_FTM_0_USED Description

Name	PWM_FTM_0_USED
Initializer	(0U)

3.10.1.82 Define PWM_FTM_1_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-89. Define PWM_FTM_1_USED Description

Name	PWM_FTM_1_USED
Initializer	(0U)

3.10.1.83 Define PWM_FTM_2_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-90. Define PWM_FTM_2_USED Description

Name	PWM_FTM_2_USED
Initializer	(0U)

3.10.1.84 Define PWM_FTM_3_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-91. Define PWM_FTM_3_USED Description

Name	PWM_FTM_3_USED
Initializer	(0U)

3.10.1.85 Define PWM_FTM_4_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-92. Define PWM_FTM_4_USED Description

Name	PWM_FTM_4_USED
Initializer	(0U)

3.10.1.86 Define PWM_FTM_5_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-93. Define PWM_FTM_5_USED Description

Name	PWM_FTM_5_USED
Initializer	(0U)

3.10.1.87 Define PWM_FTM_6_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-94. Define PWM_FTM_6_USED Description

Name	PWM_FTM_6_USED
Initializer	(0U)

3.10.1.88 Define PWM_FTM_7_USED

Macros used to lock for PWM mode FTM modules in current configuration.

Table 3-95. Define PWM_FTM_7_USED Description

Name	PWM_FTM_7_USED
Initializer	(0U)

3.10.1.89 Define PWM_FTM_0_CH_0_CH_1_ISR_USED

Macros used to enable FTM Notification ISR code.

User Manual, Rev. 1.0

Table 3-96. Define PWM_FTM_0_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_0_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.90 Define PWM_FTM_0_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-97. Define PWM_FTM_0_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_0_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.91 Define PWM_FTM_0_CH_4_CH_5_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-98. Define PWM_FTM_0_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_0_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.92 Define PWM_FTM_0_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-99. Define PWM_FTM_0_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_0_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.93 Define PWM_FTM_0_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-100. Define PWM_FTM_0_OVF_ISR_USED Description

Name	PWM_FTM_0_OVF_ISR_USED
Initializer	(0U)

3.10.1.94 Define PWM_FTM_0_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-101. Define PWM_FTM_0_FAULT_ISR_USED Description

Name	PWM_FTM_0_FAULT_ISR_USED
Initializer	(0U)

3.10.1.95 Define PWM FTM 1 CH 0 CH 1 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-102. Define PWM_FTM_1_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_1_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.96 Define PWM_FTM_1_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-103. Define PWM_FTM_1_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_1_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.97 Define PWM FTM 1 CH 4 CH 5 ISR USED

Macros used to enable FTM Notification ISR code.

User Manual, Rev. 1.0

Table 3-104. Define PWM_FTM_1_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_1_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.98 Define PWM_FTM_1_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-105. Define PWM_FTM_1_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_1_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.99 Define PWM_FTM_1_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-106. Define PWM_FTM_1_OVF_ISR_USED Description

Name	PWM_FTM_1_OVF_ISR_USED
Initializer	(0U)

3.10.1.100 Define PWM_FTM_1_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-107. Define PWM_FTM_1_FAULT_ISR_USED Description

Name	PWM_FTM_1_FAULT_ISR_USED
Initializer	(0U)

3.10.1.101 Define PWM_FTM_2_CH_0_CH_1_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-108. Define PWM_FTM_2_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_2_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.102 Define PWM FTM 2 CH 2 CH 3 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-109. Define PWM_FTM_2_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_2_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.103 Define PWM_FTM_2_CH_4_CH_5_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-110. Define PWM_FTM_2_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_2_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.104 Define PWM FTM 2 CH 6 CH 7 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-111. Define PWM_FTM_2_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_2_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.105 Define PWM_FTM_2_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-112. Define PWM_FTM_2_OVF_ISR_USED Description

Name	PWM_FTM_2_OVF_ISR_USED
Initializer	(0U)

3.10.1.106 Define PWM_FTM_2_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-113. Define PWM_FTM_2_FAULT_ISR_USED Description

Name	PWM_FTM_2_FAULT_ISR_USED
Initializer	(0U)

3.10.1.107 Define PWM FTM 3 CH 0 CH 1 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-114. Define PWM_FTM_3_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_3_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.108 Define PWM_FTM_3_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-115. Define PWM_FTM_3_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_3_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.109 Define PWM FTM 3 CH 4 CH 5 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-116. Define PWM_FTM_3_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_3_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.110 Define PWM_FTM_3_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-117. Define PWM_FTM_3_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_3_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.111 Define PWM_FTM_3_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-118. Define PWM_FTM_3_OVF_ISR_USED Description

Name	PWM_FTM_3_OVF_ISR_USED
Initializer	(0U)

3.10.1.112 Define PWM_FTM_3_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-119. Define PWM_FTM_3_FAULT_ISR_USED Description

Name	PWM_FTM_3_FAULT_ISR_USED
Initializer	(0U)

3.10.1.113 Define PWM_FTM_4_CH_0_CH_1_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-120. Define PWM_FTM_4_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_4_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.114 Define PWM_FTM_4_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-121. Define PWM_FTM_4_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_4_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.115 Define PWM_FTM_4_CH_4_CH_5_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-122. Define PWM_FTM_4_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_4_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.116 Define PWM_FTM_4_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-123. Define PWM_FTM_4_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_4_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.117 Define PWM_FTM_4_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-124. Define PWM_FTM_4_OVF_ISR_USED Description

Name	PWM_FTM_4_OVF_ISR_USED
Initializer	(0U)

3.10.1.118 Define PWM_FTM_4_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-125. Define PWM_FTM_4_FAULT_ISR_USED Description

Name	PWM_FTM_4_FAULT_ISR_USED
Initializer	(0U)

3.10.1.119 Define PWM FTM 5 CH 0 CH 1 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-126. Define PWM_FTM_5_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_5_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.120 Define PWM_FTM_5_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-127. Define PWM_FTM_5_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_5_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.121 Define PWM_FTM_5_CH_4_CH_5_ISR_USED

Macros used to enable FTM Notification ISR code.

User Manual, Rev. 1.0

Table 3-128. Define PWM_FTM_5_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_5_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.122 Define PWM_FTM_5_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-129. Define PWM_FTM_5_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_5_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.123 Define PWM_FTM_5_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-130. Define PWM_FTM_5_OVF_ISR_USED Description

Name	PWM_FTM_5_OVF_ISR_USED
Initializer	(0U)

3.10.1.124 Define PWM_FTM_5_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-131. Define PWM_FTM_5_FAULT_ISR_USED Description

Name	PWM_FTM_5_FAULT_ISR_USED
Initializer	(0U)

3.10.1.125 Define PWM_FTM_6_CH_0_CH_1_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-132. Define PWM_FTM_6_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_6_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.126 Define PWM_FTM_6_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-133. Define PWM_FTM_6_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_6_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.127 Define PWM_FTM_6_CH_4_CH_5_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-134. Define PWM_FTM_6_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_6_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.128 Define PWM_FTM_6_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-135. Define PWM_FTM_6_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_6_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.129 Define PWM_FTM_6_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-136. Define PWM_FTM_6_OVF_ISR_USED Description

Name	PWM_FTM_6_OVF_ISR_USED
Initializer	(0U)

3.10.1.130 Define PWM_FTM_6_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-137. Define PWM_FTM_6_FAULT_ISR_USED Description

Name	PWM_FTM_6_FAULT_ISR_USED
Initializer	(0U)

3.10.1.131 Define PWM FTM 7 CH 0 CH 1 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-138. Define PWM_FTM_7_CH_0_CH_1_ISR_USED Description

Name	PWM_FTM_7_CH_0_CH_1_ISR_USED
Initializer	(0U)

3.10.1.132 Define PWM_FTM_7_CH_2_CH_3_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-139. Define PWM_FTM_7_CH_2_CH_3_ISR_USED Description

Name	PWM_FTM_7_CH_2_CH_3_ISR_USED
Initializer	(0U)

3.10.1.133 Define PWM FTM 7 CH 4 CH 5 ISR USED

Macros used to enable FTM Notification ISR code.

Table 3-140. Define PWM_FTM_7_CH_4_CH_5_ISR_USED Description

Name	PWM_FTM_7_CH_4_CH_5_ISR_USED
Initializer	(0U)

3.10.1.134 Define PWM_FTM_7_CH_6_CH_7_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-141. Define PWM_FTM_7_CH_6_CH_7_ISR_USED Description

Name	PWM_FTM_7_CH_6_CH_7_ISR_USED
Initializer	(0U)

3.10.1.135 Define PWM_FTM_7_OVF_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-142. Define PWM_FTM_7_OVF_ISR_USED Description

Name	PWM_FTM_7_OVF_ISR_USED
Initializer	(0U)

3.10.1.136 Define PWM_FTM_7_FAULT_ISR_USED

Macros used to enable FTM Notification ISR code.

Table 3-143. Define PWM_FTM_7_FAULT_ISR_USED Description

Name	PWM_FTM_7_FAULT_ISR_USED
Initializer	(0U)

3.10.1.137 Define PWM_FTM_CHANNEL

Symbolic name for FTM channels.

Table 3-144. Define PWM_FTM_CHANNEL Description

Name	PWM_FTM_CHANNEL
Initializer	((Pwm_ChannelIpType) 0)

3.10.1.138 Define PWM_FLEXIO_CHANNEL

Symbolic name for FTM channels.

Table 3-145. Define PWM_FLEXIO_CHANNEL Description

Name	PWM_FLEXIO_CHANNEL
Initializer	((Pwm_ChannelIpType) 1)

3.10.1.139 Define PWM_FTM_CHANNELS_NO

Defines the maximum number of FTM channels in all existing configurations.

Table 3-146. Define PWM_FTM_CHANNELS_NO Description

Name	PWM_FTM_CHANNELS_NO
Initializer	Dependent on derivative

3.10.1.140 Define PWM_FTM_CHANNELS_MAX_U8

Defines the number of FTM channels used in all existing configurations.

Table 3-147. Define PWM_FTM_CHANNELS_MAX_U8 Description

Name	PWM_FTM_CHANNELS_MAX_U8
Initializer	(8U)

3.10.1.141 Define PWM FTM MODULE NO

This define specifies the number of FTM Modules available in all existing configuration.

Table 3-148. Define PWM_FTM_MODULE_NO Description

lame	PWM_FTM_MODULE_NO
------	-------------------

Table continues on the next page...

User Manual, Rev. 1.0

Table 3-148. Define PWM_FTM_MODULE_NO Description (continued)

nitializer	Dependent on derivative
------------	-------------------------

3.10.1.142 Define PWM_FLEXIO_MODULE_NO

This define specifies the number of FlexIO modules available in all existing configuration.

Table 3-149. Define PWM_FLEXIO_MODULE_NO Description

Name	PWM_FLEXIO_MODULE_NO
Initializer	(1U)

3.10.1.143 Define PWM_FLEXIO_CHANNEL_NO

Defines the maximum number of channels available to be configured in all existing FlexIO modules.

Table 3-150. Define PWM_FLEXIO_CHANNEL_NO Description

Name	PWM_FLEXIO_CHANNEL_NO
Initializer	(0U)

3.10.1.144 Define PWM_FLEXIO_CHANNELS_MAX_U8

Defines the maximum number of channels available to be configured in all existing FlexIO modules.

Table 3-151. Define PWM_FLEXIO_CHANNELS_MAX_U8
Description

Name	PWM_FLEXIO_CHANNELS_MAX_U8
Initializer	(8U)

Define PWM HW CHANNELS NO U8 3.10.1.145

Defines the maximum number of hardware channels configurable on this platform.

Table 3-152. Define PWM HW CHANNELS NO Description

Name	PWM_HW_CHANNELS_NO_U8
Initializer	(32U)

3.10.1.146 Define PWM FTM MODULE CHANNELS NO

Define specifies the number of channels per each module.

Table 3-153. Define PWM FTM MODULE CHANNELS NO Description

Name	PWM_FTM_MODULE_CHANNELS_NO
Initializer	(8U)

3.10.1.147 Define PWM FTM MODULE FAULT NO

This define specifies the number of fault channels per module.

Table 3-154. Define PWM FTM MODULE FAULT NO **Description**

Name	PWM_FTM_MODULE_FAULT_NO
Initializer	(4U)

3.10.1.148 Define PWM DEV ERROR DETECT

Switch for enabling the development error detection.

Table 3-155. Define PWM_DEV_ERROR_DETECT Description

Name	PWM_DEV_ERROR_DETECT
Initializer	(STD_ON)

3.10.1.149 Define PWM_DUTY_PERIOD_UPDATED_ENDPERIOD

Switch for enabling the update of the period parameter at the end of the current period.

Table 3-156. Define PWM_DUTY_PERIOD_UPDATED_ENDPERIOD Description

Name	PWM_DUTY_PERIOD_UPDATED_ENDPERIOD
Initializer	(STD_ON)

3.10.1.150 Define PWM_DUTYCYCLE_UPDATED_ENDPERIOD

Switch for enabling the update of the duty cycle parameter at the end of the current period.

Table 3-157. Define PWM_DUTYCYCLE_UPDATED_ENDPERIOD Description

Name	PWM_DUTYCYCLE_UPDATED_ENDPERIOD
Initializer	(STD_ON)

3.10.1.151 Define PWM_FAULT_SUPPORTED

Switch for enabling the fault functionality.

Table 3-158. Define PWM_FAULT_SUPPORTED Description

Name	PWM_FAULT_SUPPORTED
Initializer	(STD_OFF)

3.10.1.152 Define PWM_INDEX

Specifies the InstanceId of this module instance.

Details:

Specifies the InstanceId of this module instance. If only one instance is present it shall have the Id 0. Not used in the current implementation

Table 3-159. Define PWM_INDEX Description

Name	PWM_INDEX
Initializer	(0U)

3.10.1.153 Define PWM NOTIFICATION SUPPORTED

Switch to indicate that the notifications are supported.

Table 3-160. Define PWM_NOTIFICATION_SUPPORTED Description

Name	PWM_NOTIFICATION_SUPPORTED
Initializer	(STD_ON)

3.10.1.154 Define PWM_PRECOMPILE_SUPPORT

PWM pre-compile switch.

Table 3-161. Define PWM_PRECOMPILE_SUPPORT Description

Name	PWM_PRECOMPILE_SUPPORT
Initializer	(STD_OFF)

3.10.1.155 Define PWM_FTM_ENABLE_EXT_TRIGGERS

Switch to indicate that PWM_FTM_ENABLE_EXT_TRIGGERS is supported.

Table 3-162. Define PWM_FTM_ENABLE_EXT_TRIGGERS Description

Name	PWM_FTM_ENABLE_EXT_TRIGGERS
Initializer	(STD_OFF)

3.10.1.156 Define PWM_SET_DUTY_CYCLE_API

Switch to indicate that Pwm_SetDutyCycle API is supported.

Table 3-163. Define PWM_SET_DUTY_CYCLE_API Description

Name	PWM_SET_DUTY_CYCLE_API
Initializer	(STD_ON)

3.10.1.157 Define PWM_SET_OUTPUT_TO_IDLE_API

Switch to indicate that Pwm_SetOutputToIdle API is supported.

Table 3-164. Define PWM_SET_OUTPUT_TO_IDLE_API Description

Name	PWM_SET_OUTPUT_TO_IDLE_API
Initializer	(STD_ON)

3.10.1.158 Define PWM SET PERIOD AND DUTY API

Switch to indicate that Pwm_SetPeriodAndDuty API is supported.

Table 3-165. Define PWM_SET_PERIOD_AND_DUTY_API Description

Name	PWM_SET_PERIOD_AND_DUTY_API
Initializer	(STD_ON)

3.10.1.159 Define PWM SET CLOCK MODE API

Switch to indicate that Pwm_SetClockMode API is supported. This API will allow selection of the prescaler from two configured values.

Table 3-166. Define PWM_SET_CLOCK_MODE_API Description

Name	PWM_SET_CLOCK_MODE_API
Initializer	(STD_ON)

3.10.1.160 Define PWM_VERSION_INFO_API

Switch to indicate that Pwm_GetVersionInfo API is supported.

Table 3-167. Define PWM_VERSION_INFO_API Description

Name	PWM_VERSION_INFO_API
Initializer	(STD_ON)

3.10.1.161 Define PWM_GET_CHANNEL_STATE_API

Switch to indicate that Pwm_GetChannelState API is supported.

Table 3-168. Define PWM_GET_CHANNEL_STATE_API Description

Name	PWM_GET_CHANNEL_STATE_API
Initializer	(STD_OFF)

3.10.1.162 Define PWM_GET_OUTPUT_STATE_API

Switch to indicate that Pwm_GetOutputState API is supported.

Note

Due to hardware restrictions this service is disabled at compile time.

Table 3-169. Define PWM_GET_OUTPUT_STATE_API Description

Name	PWM_GET_OUTPUT_STATE_API
Initializer	(STD_OFF)

3.10.1.163 Define PWM_FORCE_OUTPUT_TO_ZERO_API

Switch to indicate that Pwm_ForceOutputToZero API is supported.

Table 3-170. Define PWM_FORCE_OUTPUT_TO_ZERO_API Description

Name	PWM_FORCE_OUTPUT_TO_ZERO_API
Initializer	(STD_OFF)

User Manual, Rev. 1.0

87

3.10.1.164 Define PWM_DE_INIT_API

Switch to indicate that Pwm_DeInit API is supported.

Table 3-171. Define PWM_DE_INIT_API Description

Name	PWM_DE_INIT_API
Initializer	(STD_ON)

3.10.1.165 Define PWM_SET_PHASE_SHIFT_API

Switch for enabling Pwm_SetPhaseShift API.

Table 3-172. Define PWM_SET_PHASE_SHIFT_API Description

Name	PWM_SET_PHASE_SHIFT_API
Initializer	(STD_ON)

3.10.1.166 Define PWM SET PHASE SHIFT NO UPDATE API

Switch for enabling Pwm_SetPhaseShift_NoUpdate API.

Table 3-173. Define PWM_SET_PHASE_SHIFT_NO_UPDATE_API Description

Name	PWM_SET_PHASE_SHIFT_NO_UPDATE_API
Initializer	(STD_ON)

3.10.1.167 Define PWM_ENABLE_TRIGEER_API

Switch for enabling Pwm_EnableTrigger API.

Table 3-174. Define PWM_ENABLE_TRIGEER_API Description

Name	PWM_ENABLE_TRIGEER_API
Initializer	(STD_ON)

3.10.1.168 Define PWM DIABLE TRIGEER API

Switch for enabling Pwm_DisableTrigger API.

Table 3-175. Define PWM_DIABLE_TRIGEER_API Description

Name	PWM_DIABLE_TRIGEER_API
Initializer	(STD_ON)

3.10.1.169 Define PWM_RESET_COUNTER_API

Switch to indicate that Pwm_SwResetCounter API is supported.

Table 3-176. Define PWM_RESET_COUNTER_API Description

Name	PWM_RESET_COUNTER_API
Initializer	(STD_ON)

3.10.1.170 Define PWM_ENABLE_MASKING_OPERATIONS

Switch for enabling MaskOutput API.

Table 3-177. Define PWM_ENABLE_MASKING_OPERATIONS Description

Name	PWM_ENABLE_MASKING_OPERATIONS	
Initializer	(STD_ON)	

3.10.1.171 Define PWM_SYNC_UPDATE_API

Switch to indicate that Pwm_SyncUpdate API is supported.

Table 3-178. Define PWM_SYNC_UPDATE_API Description

Name	PWM_SYNC_UPDATE_API
Initializer	(STD_ON)

User Manual, Rev. 1.0

3.10.1.172 Define PWM_UPDATE_DUTY_SYNCHRONOUS

Switch to indicate that the notifications are supported.

Table 3-179. Define PWM_UPDATE_DUTY_SYNCHRONOUS Description

Name	PWM_UPDATE_DUTY_SYNCHRONOUS	
Initializer	(STD_ON)	

3.10.1.173 Define PWM SET DUTY CYCLE NO UPDATE API

Switch to indicate that PwmSetDutyCycle_NoUpdate API is supported.

Table 3-180. Define PWM_SET_DUTY_CYCLE_NO_UPDATE_API Description

Name	PWM_SET_DUTY_CYCLE_NO_UPDATE_API
Initializer	(STD_ON)

3.10.1.174 Define PWM_SET_PERIOD_AND_DUTY_NO_UPDATE_API

Switch to indicate that PwmSetPeriodAndDuty_NoUpdate API is supported.

Table 3-181. Define PWM_SET_PERIOD_AND_DUTY_NO_UPDATE_API Description

Name	PWM_SET_PERIOD_AND_DUTY_NO_UPDATE_API
Initializer	(STD_ON)

3.10.1.175 Define PWM ENABLE PHASE SHIFT

Switch for enabling phase shift feature.

Table 3-182. Define PWM_ENABLE_PHASE_SHIFT Description

Name	PWM_ENABLE_PHASE_SHIFT	
Initializer	(STD_OFF)	

User Manual, Rev. 1.0

3.10.2 Enum Reference

Enumeration of all constants supported by the driver are as per AUTOSAR PWM Driver software specification Version 4.2 Rev0002.

3.10.2.1 Enumeration Pwm_ChannelClassType

PWM channel type.

Details:

Parameter used to identify the service when reporting and error to DET. PWM channel type.

This field will specify what parameters can be altered for the selected channel.

Implements: Pwm_ChannelClassType_enumeration

Table 3-183. Enumeration Pwm_ChannelClassType Values

Name	Initializer	Description
PWM_VARIABLE_PERIOD	0	The period and duty cycle can be altered.
PWM_FIXED_PERIOD	1	Only the duty cycle can be altered.
PWM_FIXED_PERIOD_SHIFTED	2	Only the duty cycle can be altered.

3.10.2.2 Enumeration Pwm_OutputStateType

Output signal level.

Details:

This enumeration specifies the return type of Pwm_GetOutputState.

Note

Due to a hardware limitation, calls to Pwm_GetOutputState will always return PWM_LOW.

Implements: Pwm_OutputStateType_enumeration

Table 3-184. Enumeration Pwm_OutputStateType Values

Name	Initializer	Description
PWM_LOW	0	PWM level is logic low.
PWM_HIGH	1	PWM level is logic high.

3.10.2.3 Enumeration Pwm_EdgeNotificationType

Edge notification type.

Details:

This enumeration defines the type of edge transition that can generate a notification.

Implements: Pwm_EdgeNotificationType_enumeration

Table 3-185. Enumeration Pwm_EdgeNotificationType Values

Name	Initializer	Description
PWM_RISING_EDGE	1	A notification will be generated on the rising edge.
PWM_FALLING_EDGE	2	A notification will be generated on the falling edge.
PWM_BOTH_EDGES		A notification will be generated on any state transition.

3.10.2.4 Enumeration Pwm_PrescalerType

Pre-scaler type.

Details:

This enumeration specifies the input parameter of Pwm_SetClockMode to configure base-clock timers.

Note

Only two types of pre-scalers can be used.

Implements: Pwm_PrescalerType_enumeration

Table 3-186. Enumeration Pwm_PrescalerType Values

Name	Initializer	Description
PWM_PRIMARY_PRESCALER	0	Primary (default) pre-scaler value.
PWM_ALTERNATIVE_PRESCALER	1	Alternative value of the pre-scaler.

3.10.2.5 Enumeration Pwm_GlobalStateType

Enum containing the possible states of the PWM driver.

Table 3-187. Enumeration Pwm_GlobalStateType Values

Name	Initializer	Description
PWM_STATE_UNINIT	0	Return state Uninitialize of PWM driver
PWM_STATE_IDLE	1	Return state Idle of PWM driver

3.10.2.6 Enumeration Pwm_AlignmentType

PWM signal alignment. This parameter is applied at a PWM submodule level and is available only for FTM.

Details:

This field will vary the alignment of the output signals for the specified channel.

- If the selected mode is PWM_EDGE_ALIGNED the signals will be aligned at the starting edge of the PWM period.
- If the selected mode is PWM_CENTER_ALIGNED the signals will be aligned around the middle of the PWM period.

Implements: Pwm_AlignmentType_enumeration

Table 3-188. Enumeration Pwm_AlignmentType Values

Name	Initializer	Description
PWM_EDGE_ALIGNED	0	One signal is generated that is aligned at the starting edge of the PWM period. This is the default generation mode
PWM_CENTER_ALIGNED	1	One signal is generated that is aligned around the middle of the PWM period.
PWM_COMBINE_SYNCED	2	Two channels are combined into two signals with the same polarity but can be phase shifted from the master channel by a configurable deadtime; first channel defines the leading edge of the signal, second channel defines the trailing edge of the signal.

Table continues on the next page...

User Manual, Rev. 1.0

Table 3-188. Enumeration Pwm_AlignmentType Values (continued)

Name	Initializer	Description
PWM_COMBINE_COMPL	3	Two channels are combined into two signals with the same polarity which can be phase shifted from the master channel by a configurable deadtime; first channel defines the leading edge of the signal, second channel defines the trailing edge of the signal.
PWM_PHASE_SHIFT_SINGLE	4	Two channels are paired into one output signal; first channel defines the leading edge of the signal, second channel defines the trailing edge of the signal.
PWM_PHASE_SHIFTED_SYNCED	5	Two channels are paired into two-synced output signals; for both signals the first channel defines the leading edge of the signal, second channel defines the trailing edge of the signal.
PWM_PHASE_SHIFTED_COMPLE MENTARY	6	Two channels are paired into two-complementary output signals; for both signals the first channel defines the leading edge of the signal, second channel defines the trailing edge of the signal.

3.10.2.7 Enumeration Pwm_PowerStateRequestResultType

Output signal level.

Details:

Result of the requests related to power state transitions

Implements: Pwm_PowerStateRequestResultType_enumeration

Table 3-189. Enumeration Pwm_PowerStateRequestResultType Values

Name	Initializer	Description
PWM_SERVICE_ACCEPTED	0	Power state change executed.
PWM_NOT_INIT	1	Module not initialized.
PWM_SEQUENCE_ERROR	2	Wrong API call sequence.
PWM_HW_FAILURE	3	The HW module has a failure which prevents it to enter the required power state.
PWM_POWER_STATE_NOT_SUPP	4	Module does not support the requested power state.
PWM_TRANS_NOT_POSSIBLE	5	Module cannot transition directly from the current power state to the requested power state.

3.10.2.8 Enumeration Pwm_PowerStateType

Output signal level.

Details:

This enum specifies Power state currently active or set as target power state

Implements: Pwm_PowerStateType_enumeration

Table 3-190. Enumeration Pwm_PowerStateType Values

Name	Initializer	Description
PWM_FULL_POWER	0	Pwm full power mode.
PWM_LOW_POWER	1	Pwm low power mode.
PWM_NODEFINE_POWER	2	Pwm no define power mode.

3.10.2.9 Enumeration Pwm_DataUdateType

Details:

This enumeration specifies updating signal immediately or using synchronization.

Implements: Pwm_DataUdateType_enumeration

Table 3-191. Enumeration Pwm_DataUdateType Values

Name	Initializer	Description
PWM_UPDATE_SYNCHRONOUS	0	The signals are updated synchronous.
PWM_UPDATE_ASYNCHRONOUS	1	The signals are updated asynchronous.

3.10.3 Structs Reference

Data structures supported by the driver are as per AUTOSAR PWM Driver software specification Version 4.2 Rev0002.

3.10.3.1 Structure Pwm_FlexIO_ChannelConfigType

FlexIO IP specific channel configuration structure type.

Implements: Pwm_FlexIO_ChannelConfigType_struct

Declaration:

Table 3-192. Structure Pwm FlexIO ChannelConfigType member description

Member	Description
nPwmDefaultPeriod	PWM default period: [0-255] in ticks.
u16PwmDefaultDutyCycle	Default value for duty cycle: [0-0x8000] (0-100%).
nHwChannelld	FlexIO channel ID.
nHwTimerld	FlexIO timer ID.

3.10.3.2 Structure Pwm_FlexIO_lpConfigType

Structure that combine number of FlexIO channels in the PWM configuration.

Implements: Pwm_FlexIO_IpConfigType_struct

Declaration:

Table 3-193. Structure Pwm_FlexIO_lpConfigType member description

Member	Description
u8ChannelNumber	Number of FlexIO channels in the PWM configuration.
pChannelsConfig	Pointer to the array of configured channels for FlexIO.

3.10.3.3 Structure Pwm_Ftm_ChannelConfigType

Ftm IP specific channel configuration structure type.

Figure 3-9. Struct Pwm_Ftm_ChannelConfigType

Implements: Pwm_Ftm_ChannelConfigType_struct

Declaration:

Table 3-194. Structure Pwm_Ftm_ChannelConfigType member description

Member	Description
ePwmPolarity	PWM signal polarity: High or low.
ePwmIdleState	PWM signal idle state: High or low.
u16PwmDefaultDutyCycle	Default value for duty cycle: [0-0x8000] (0-100%).
nHwChannelld	FTM channel ID.
u16PhaseShiftValue	Default value for phase shift: [0-0xFFFE].
eAlingnment	Channel alignment type.

3.10.3.4 Structure Pwm_Ftm_ModuleConfigType

Structure that combine number of FTM channels in the PWM configuration.

Figure 3-10. Struct Pwm_Ftm_ModuleConfigType

Implements: Pwm_Ftm_ModuleConfigType_struct

Declaration:

```
typedef struct
{
    uint32 u32RegConf,
    uint32 u32RegSc,
    uint32 u32AlternateRegSc,
    uint8 u8RegSync,
    uint32 u32RegMode,
    uint32 u32RegDeadtime,
    uint32 u32RegCombine,
    uint32 u32RegCombine,
    uint8 u8FtmHwModuleId,
    uint16 u16RegModVal,
    uint13 u32RegFctrl,
    uint32 u32RegFttpol,
    Pwm_Ftm_FaultNotifyType pfFaultNotification[FTM_MODULE_FAULT_NO],
    uint32 u32RegExtTrigg
} Pwm Ftm ModuleConfigType
```

Table 3-195. Structure Pwm_Ftm_ModuleConfigType member description

Member	Description
u32RegConf	Configuration register value.
u32RegSc	Status and control register value.
u32AlternateRegSc	Alternate status and control register value.
u8RegSync	Synchronize register value.
u32RegMode	Mode selection register value.
u32RegDeadtime	Deadtime register value.
u32RegCombine	Channel combine register value.
u16RegModVal	Default period (MOD) register value.
u32RegFctrl	Fault control register value.
u32RegFltpol	Fault polarity register value.
u8FtmHwModuleId	Id value of the configured FTM module.
pfFaultNotification	Pointer to fault notification function.
u32RegExtTrigg	External trigger register value.

3.10.3.5 Structure Pwm_Ftm_lpConfigType

Structure that combine number of FTM channels in the PWM configuration.

Figure 3-11. Struct Pwm_Ftm_lpConfigType

Implements: Pwm_Ftm_IpConfigType_struct

Declaration:

Table 3-196. Structure Pwm_Ftm_lpConfigType member description

Member	Description
nNumChannels	Number of FTM channels in each module of the current the PWM configuration.
nNumModules	Number of FTM modules in the PWM configuration.
pChannelsConfig	Pointer to the configured channels for FTM.
pModulesConfig	Pointer to the configured modules for FTM.

3.10.3.6 Structure Pwm_lpConfigType

Combined IP specific configuration structure.

Implements: Pwm_IpConfigType_struct

Declaration:

Table 3-197. Structure Pwm_lpConfigType member description

Member	Description
pFlexIOIpConfig	Pointer to FlexIO IPV configuration.
pFtmIpConfig	Pointer to FTM IPV configuration.
' '	Pointer to Array containing IP type and index in the IP configuration table for each PWM channel.

3.10.3.7 Structure Pwm_lpChannelConfigType

PWM channel high level configuration structure.

User Manual, Rev. 1.0

Figure 3-12. Structure Pwm_lpChannelConfigType

Declaration:

```
typedef struct
{
    Pwm_ChannelIpType nChannelIp,
    uint8 u8IdxChannelConfig
} Pwm_IpChannelConfigType;
```

Table 3-198. Structure Pwm_lpChannelConfigType member description

Member Description	
nChannellp	The IP used to implement this specific PWM channel.
u8ldxChannelConfig	Index in the IP specific configuration table.

3.10.3.8 Structure Pwm_ChannelConfigType

PWM channel high level configuration structure.

Figure 3-13. Struct Pwm_ChannelConfigType

Implements: Pwm_ChannelConfigType_struct

Declaration:

```
typedef struct
{
    const Pwm_ChannelClassType ePwmChannelClass,
    const Pwm_NotifyType pfPwmChannelNotification
} Pwm_ChannelConfigType;
```

Table 3-199. Structure Pwm_ChannelConfigType member description

Member Description	
ePwmChannelClass	Channel class type: Variable/Fixed period.
pfPwmChannelNotification	Pointer to notification function.

3.10.3.9 Structure Pwm_ConfigType

PWM high level configuration structure.

Figure 3-14. Struct Pwm_ConfigType

Implements: Pwm_ConfigType_struct

Declaration:

```
typedef struct
{
    const Pwm_ChannelType HwToLogicChannelMap[PWM_HW_CHANNELS_NO_U8],
    const Pwm_IpConfigType IpConfig,
    const Pwm_ChannelType nNumChannels,
    const Pwm_ChannelConfigType(* pPwmChannelsConfig)[]
} Pwm ConfigType;
```

Table 3-200. Structure Pwm_ConfigType member description

Member	Description
HwToLogicChannelMap	Index table to translate HW channels to logical used to process interrupts for notifications.
IpConfig	Combined IP specific configuration structure.
nNumChannels	Number of PWM configured channels.
pPwmChannelsConfig	Pointer to the list of PWM configured channels.

3.10.4 Types Reference

Types supported by the driver are as per AUTOSAR PWM Driver software specification Version 4.2 Rev0002.

3.10.4.1 Typedef Pwm_FlexIO_ChannelType

FlexIO hardware channel type.

Type: uint8

3.10.4.2 Typedef Pwm_FlexIO_TimerType

FlexIO hardware timer type.

Type: uint8

3.10.4.3 Typedef Pwm_NotifyType

Channel notification typedef.

Details:

Pointer to notification handler

Type: void*

3.10.4.4 Typedef Pwm_ChannelType

PWM channel type.

Implements: Pwm_ChannelType_typedef

Type: uint8

3.10.4.5 Typedef Pwm_PeriodType

Channel period typedef.

Implements: Pwm_PeriodType_typedef

Type: uint16

User Manual, Rev. 1.0

3.10.4.6 Typedef Pwm_ChannellpType

IP type used to implement a PWM channel.

Implements: Pwm_ChannelIpType_typedef

Type: uint8

3.10.5 Function Reference

Functions of all functions supported by the driver are as per AUTOSAR PWM Driver software specification Version $4.2\ Rev0002$.

3.10.5.1 Function Pwm_Init

This function initializes the PWM driver.

Details:

The function Pwm_Init shall initialize all internals variables and the used PWM structure of the microcontroller according to the parameters specified in ConfigPtr. If the duty cycle parameter equals:

- 0% or 100%: Then the PWM output signal shall be in the state according to the configured polarity parameter;
- >0% and <100%: Then the PWM output signal shall be modulated according to parameters period, duty cycle and configured polarity.

The function Pwm_SetDutyCycle shall update the duty cycle always at the end of the period if supported by the implementation and configured with PwmDutycycleUpdatedEndperiod.

The driver shall avoid spikes on the PWM output signal when updating the PWM period and duty.

If development error detection for the PWM module is enabled, the PWM functions shall check the channel class type and raise development error

PWM_E_PERIOD_UNCHANGEABLE if the PWM channel is not declared as a variable period type.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

The function Pwm_Init shall disable all notifications. The reason is that the users of these notifications may not be ready. They can call Pwm_EnableNotification to start notifications.

The function Pwm_Init shall only initialize the configured resources and shall not touch resources that are not configured in the configuration file.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection is enabled, calling the routine Pwm_Init while the PWM driver and hardware are already initialized will cause a development error PWM_E_ALREADY_INITIALIZED. The desired functionality shall be left without any action.

If development error detection for the Pwm module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_Init_Activity

Prototype: void Pwm_Init(const Pwm_ConfigType *ConfigPtr);

Table 3-201. Pwm_Init Arguments

Туре	Name	Direction	Description
constPwm_ConfigType*	ConfigPtr	input	Pointer to PWM top configuration structure.

3.10.5.2 Function Pwm_Delnit

This function deinitializes the PWM driver.

Details:

The function Pwm_DeInit shall deinitialize the PWM module.

The function Pwm_DeInit shall set the state of the PWM output signals to the idle state. The function Pwm_DeInit shall disable PWM interrupts and PWM signal edge notifications. The function Pwm_DeInit shall be pre-compile time configurable On/Off by the configuration parameter PwmDeInitApi function prototype. If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_DeInit_Activity

Prototype: void Pwm_DeInit(void);

3.10.5.3 Function Pwm_SetPeriodAndDuty

This function sets the period and the duty cycle for the specified PWM channel.

Details:

The function Pwm_SetPeriodAndDuty shall set the duty cycle of the PWM channel.

If development error detection for the PWM module is enabled, the PWM functions shall check the channel class type and raise development error

PWM_E_PERIOD_UNCHANGEABLE if the PWM channel is not declared as a variable period type.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter Channel Number and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

The PWM module shall comply with the following scaling scheme for the duty cycle:

- 0x0000 means 0%.
- 0x8000 means 100%.
- 0x8000 gives the highest resolution while allowing 100% duty cycle to be represented with a 16 bit value. As an implementation guide, the following source code example is given: AbsoluteDutyCycle = ((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM SWS).

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_SetPeriodAndDuty_Activity

Prototype: void Pwm_SetPeriodAndDuty(Pwm_ChannelType ChannelNumber, Pwm_PeriodType Period, uint16 u16DutyCycle);

Table 3-202. Pwm_SetPeriodAndDuty Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	- PWM channel id.
Pwm_PeriodType	Period	input	- PWM signal period value.

Table continues on the next page...

User Manual, Rev. 1.0 **NXP Semiconductors** 107

Table 3-202. Pwm_SetPeriodAndDuty Arguments (continued)

Туре	Name	Direction	Description
uint16	u16DutyCycle		- PWM duty cycle value 0x0000 for 0% 0x8000 for 100%.

3.10.5.4 Function Pwm_SetDutyCycle

This function sets the duty cycle for the specified PWM channel.

Details:

The function Pwm_SetDutyCycle shall set the duty cycle of the PWM channel.

The function Pwm_SetDutyCycle shall set the PWM output state according to the configured polarity parameter, when the duty cycle = 0% or 100%. The function Pwm_SetDutyCycle shall modulate the PWM output signal according to parameters period, duty cycle and configured polarity, when the duty cycle > 0% and < 100%.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM E PARAM CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

The PWM module shall comply with the following scaling scheme for the duty cycle:

- 0x0000 means 0%.
- 0x8000 means 100%.
- 0x8000 gives the highest resolution while allowing 100% duty cycle to be represented with a 16 bit value. As an implementation guide, the following source code example is given: AbsoluteDutyCycle = ((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_SetDutyCycle_Activity

Prototype: void Pwm_SetDutyCycle(Pwm_ChannelType ChannelNumber, uint16 u16DutyCycle);

Table 3-203. Pwm SetDutyCycle Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.
uint16	u16DutyCycle	_	PWM duty cycle value 0x0000 for 0% 0x8000 for 100%.

3.10.5.5 Function Pwm_SetOutputToldle

This function sets the generated PWM signal to the idle value configured.

Details:

The function Pwm_SetOutputToIdle shall set immediately the PWM output to the configured Idle state.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

After the call of the function Pwm_SetOutputToIdle, variable period type channels shall be reactivated either using the API Pwm_SetPeriodAndDuty() to activate the PWM channel with the new passed period or API Pwm_SetDutyCycle() to activate the PWM channel with the old period.

After the call of the function Pwm_SetOutputToIdle, fixed period type channels shall be reactivated using only the API Pwm_SetDutyCycle() to activate the PWM channel with the old period.

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_SetOutputToIdle_Activity

Prototype: void Pwm SetOutputToIdle(Pwm ChannelType ChannelNumber);

Table 3-204. Pwm_SetOutputToldle Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	- pwm channel id.

3.10.5.6 Function Pwm_DisableNotification

This function disables the user notifications.

Details:

If development error detection for the PWM module is enabled:

• The PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

All functions from the PWM module except Pwm_Init, Pwm_DeInit and Pwm_GetVersionInfo shall be re-entrant for different PWM channel numbers. In order to keep a simple module implementation, no check of PWM088 must be performed by the module. The function Pwm_DisableNotification shall be pre-compile time configurable On/Off by the configuration parameter: PwmNotificationSupported.

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_DisableNotification_Activity

Prototype: void Pwm_DisableNotification(Pwm_ChannelType ChannelNumber);

Table 3-205. Pwm_DisableNotification Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.

3.10.5.7 Function Pwm_EnableNotification

This function enables the user notifications.

NOTE

Notification is not supported for Center Aligned channels. If reference channel is configured with PWM_CENTER_ALIGNED as PwmChanEdgeAlignment then notification should not use with this channel and PwmNotification callback function should be NULL as well. Pwm_EnableNotification should not be called with this channel.

Details:

The function Pwm_EnableNotification shall enable the PWM signal edge notification according to notification parameter. If development error detection for the PWM module is enabled:

• The PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: void.

Implements: Pwm_EnableNotification_Activity

Prototype: void Pwm_EnableNotification(Pwm_ChannelType ChannelNumber,

Pwm_EdgeNotificationType Notification);

Table 3-206. Pwm_EnableNotification Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.
Pwm_EdgeNotificationType	Notification	input	Notification type to be enabled.

3.10.5.8 Function Pwm_GetChannelState

This function returns the duty cycle of the channel passed as parameter.

Details:

The function Pwm_GetChannelState shall return the duty cycle of the channel. In case the channel is idle, the returned value will be zero.

Return: uint16 - duty cycle of the requested channel.

Implements: Pwm_GetChannelState_Activity

Prototype: uint16 Pwm_GetChannelState(Pwm_ChannelType ChannelNumber);

Table 3-207. Pwm_GetChannelState Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.

3.10.5.9 Function Pwm_GetOutputState

This function returns the signal output state.

Details:

The function Pwm_GetOutputState shall read the internal state of the PWM output signal and return it as defined in the diagram below (see PWM_SWS).

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Due to real time constraint and setting of the PWM channel (project dependant), the output state can be modified just after the call of the service Pwm GetOutputState.

If development error detection for the PWM module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: Pwm_OutputStateType PWM signal output logic value.

Implements: Pwm_GetOutputState_Activity

Prototype: Pwm_OutputStateType Pwm_GetOutputState(Pwm_ChannelType ChannelNumber);

Table 3-208. Pwm_GetOutputState Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.

Table 3-209. Pwm_GetOutputState Return Values

Name	Description	
PWM_LOW	- The output state of PWM channel is low.	
PWM_HIGH	- The output state of PWM channel is high.	

3.10.5.10 Function Pwm_ForceOutputToZero

This function forces of the output of a given FTM channel to logic 0.

Details:

This API sets output state of a FTM channel depending on the value of bForce parameter and the configured polarity of the given channel.

Return: void.

Implements: Pwm_ForceOutputToZero_Activity

Prototype: void Pwm_ForceOutputToZero(Pwm_ChannelType ChannelNumber, boolean bForce);

Table 3-210. Pwm_ForceOutputToZero Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.
boolean	bForce		Boolean value of the expected new state of the output pin (channel).

3.10.5.11 Function Pwm_SetClockMode

Implementation specific function to change the peripheral clock frequency..

Details:

This function is called to select one of the two possible prescalers: PWM_PRIMARY_PRESCALER or PWM_ALTERNATIVE_PRESCALER

Return: None.

Prototype: void Pwm_SetClockMode(Pwm_PrescalerType ePrescaler);

Table 3-211. Pwm_SetClockMode Arguments

Туре	Name	Direction	Description
Pwm_PrescalerType	ePrescaler		One of the two possible prescalers: PWM_PRIMARY_PRESCALER or PWM_ALTERNATIVE_PRESCALER

3.10.5.12 Function Pwm_GetVersionInfo

This function returns PWM driver version details.

Details:

The function Pwm_GetVersionInfo shall return the version information of this module. The version information includes: Module Id, Vendor Id, Vendor specific version number.

Return: void.

<u>Implements</u>: Pwm_GetVersionInfo_Activity

Prototype: void Pwm_GetVersionInfo(Std_VersionInfoType *pVersioninfo);

Table 3-212. Pwm_GetVersionInfo Arguments

Туре	Name	Direction	Description
Std_VersionInfoType *	pVersioninfo		Pointer to Std_VersionInfoType output variable.

3.10.5.13 Function Pwm_DisableTrigger

This function disable trigger generation for specific source

Details:

Corresponding bits with trigger source as bellow:

- Bit 0 Channel 2 Trigger Enable
- Bit 1 Channel 3 Trigger Enable
- Bit 2 Channel 4 Trigger Enable
- Bit 3 Channel 5 Trigger Enable
- Bit 4 Channel 0 Trigger Enable
- Bit 5 Channel 1 Trigger Enable
- Bit 6 Initialization Trigger Enable
- Bit 8 Channel 6 Trigger Enable
- Bit 9 Channel 7 Trigger Enable

.

If development error detection for the PWM module is enabled, the PWM functions shall check u32TriggerMask to make sure it has to be compatible with hardware register. Development error PWM_E_TRIGGER_MASK will be raised if this condition is not passed

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter u8TriggerHostId and raise development error PWM_E_PARAM_INSTANCE if the parameter u8TriggerHostId is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_DisableTrigger_Activity

Prototype: void Pwm_DisableTrigger(uint8 u8TriggerHostId, uint16 u16TriggerMask);

Table 3-213. Pwm_DisableTrigger Arguments

Туре	Name	Direction	Description
uint8	u8TriggerHostId	input	Hardware module
uint16	u16TriggerMask	-	bit mask will be set to enable trigger with corresponding sources.

3.10.5.14 Function Pwm_EnableTrigger

This function enable trigger generation for specific source

Details:

Corresponding bits with trigger source as bellow:

- Bit 0 Channel 2 Trigger Enable
- Bit 1 Channel 3 Trigger Enable
- Bit 2 Channel 4 Trigger Enable
- Bit 3 Channel 5 Trigger Enable
- Bit 4 Channel 0 Trigger Enable
- Bit 5 Channel 1 Trigger Enable
- Bit 6 Initialization Trigger Enable
- Bit 8 Channel 6 Trigger Enable
- Bit 9 Channel 7 Trigger Enable

If development error detection for the PWM module is enabled, the PWM functions shall check u32TriggerMask to make sure it has to be compatible with hardware register. Development error PWM_E_TRIGGER_MASK will be raised if this condition is not passed

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter u8TriggerHostId and raise development error PWM_E_PARAM_INSTANCE if the parameter u8TriggerHostId is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_EnableTrigger_Activity

Prototype: void Pwm_EnableTrigger(uint8 u8TriggerHostId, uint16 u16TriggerMask);

Table 3-214. Pwm_EnableTrigger Arguments

Туре	Name	Direction	Description
uint8	u8TriggerHostId	input	Hardware module
uint16	u16TriggerMask	_	bit mask will be set to enable trigger with corresponding sources.

3.10.5.15 Function Pwm_MaskOutputs

This function force channels output to their inactive state

Details:

Corresponding bits with channel will be masked:

- Bit 0 Channel 0 Output Mask
- Bit 1 Channel 1 Output Mask
- Bit 2 Channel 2 Output Mask
- Bit 3 Channel 3 Output Mask
- Bit 4 Channel 4 Output Mask
- Bit 5 Channel 5 Output Mask
- Bit 6 Channel 6 Output Mask
- Bit 7 Channel 7 Output Mask

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter u8ModuleId and raise development error PWM_E_PARAM_INSTANCE if the parameter u8ModuleId is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

User Manual, Rev. 1.0

Return: void.

Implements: Pwm_MaskOutputs_Activity

Prototype: void Pwm_MaskOutputs(uint8 u8ModuleId, uint8 u8ChannelMask);

Table 3-215. Pwm MaskOutputs Arguments

Туре	Name	Direction	Description
uint8	u8ModuleId	input	Hardware module
uint8	u8ChannelMask	_	Bit mask will be set to enable trigger with corresponding channel.

3.10.5.16 Function Pwm_UnMaskOutputs

This function puts channels output to normal operation state

Details:

Corresponding bits with channel will be masked:

- Bit 0 Channel 0 Output Mask
- Bit 1 Channel 1 Output Mask
- Bit 2 Channel 2 Output Mask
- Bit 3 Channel 3 Output Mask
- Bit 4 Channel 4 Output Mask
- Bit 5 Channel 5 Output Mask
- Bit 6 Channel 6 Output Mask
- Bit 7 Channel 7 Output Mask

.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter u8ModuleId and raise development error PWM E PARAM INSTANCE if the parameter u8ModuleId is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

User Manual, Rev. 1.0

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_UnMaskOutputs_Activity

Prototype: void Pwm UnMaskOutputs(uint8 u8ModuleId, uint8 u8ChannelMask);

Table 3-216. Pwm_UnMaskOutputs Arguments

Туре	Name	Direction	Description
uint8	u8ModuleId	input	Hardware module
uint8	u8ChannelMask	•	Bit mask will be set to enable trigger with corresponding channel.

3.10.5.17 Function Pwm_ResetCounter

This function shall reset the HW counter of the PWM timer

If development error detection for the Pwm module is enabled, the PWM functions shall check the parameter u8ModuleId and raise development error PWM_E_PARAM_INSTANCE if the parameter u8ModuleId is invalid.

If development error detection for the Pwm module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return pwm level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_ResetCounter_Activity

Prototype: void Pwm_ResetCounter(uint8 u8ModuleId);

Table 3-217. Pwm_ResetCounter Arguments

Туре	Name	Direction	Description
uint8	u8ModuleId	input	Hardware module

3.10.5.18 Function Pwm ResetCounterEnable

This function shall enable the PWM timer HW counter reset by Pwm_SyncUpdate() function.

Details:

Return: void.

Implements: Pwm_ResetCounterEnable_Activity

Prototype: void Pwm_ResetCounterEnable(uint8 u8ModuleId);

Table 3-218. Pwm_ResetCounterEnable Arguments

Туре	Name	Direction	Description
uint8	u8ModuleId	Input	Hardware module.

3.10.5.19 Function Pwm_ResetCounterDisable

This function shall disable the PWM timer HW counter reset by Pwm_SyncUpdate() function.

Details:

Return: void.

Implements: Pwm_ResetCounterDisable_Activity

Prototype: void Pwm_ResetCounterDisable(uint8 u8ModuleId);

Table 3-219. Pwm_ResetCounterDisable Arguments

Туре	Name	Direction	Description
uint8	u8ModuleId	Input	Hardware module.

3.10.5.20 Function Pwm_SetDutyCycle_NoUpdate

This function sets the values of duty cycle for the specified PWM channel but without updating the PWM output.

Details:

The function Pwm_SetDutyCycle_NoUpdate shall set the duty cycle of the PWM channel to the corresponding hardware buffers without updating the wave form on the output pin. This feature will allow a pre-buffering of new PWM duty cycle values for several channel, which can all be updated synchronous by calling Pwm_SyncUpdate.

If development error detection for the PWM module is enabled, the PWM functions shall check the channel class type and raise development error

PWM_E_PERIOD_UNCHANGEABLE if the PWM channel is not declared as a variable period type.

If development error detection for the PWM module is enabled, the PWM functions shall check the hardware channel operation mode, if given channel is Modified Combine channel edge setup, (PHASE_SHIFTED_SYNCED and PHASE_SHIFTED_COMPLEMENTARY), development error PWM_E_PARAM_SYNCHRONOUS_MODIFIED_COMBINE will be raised.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

The PWM module shall comply with the following scaling scheme for the duty cycle:

- 0x0000 means 0%.
- 0x8000 means 100%.
- 0x8000 gives the highest resolution while allowing 100% duty cycle to be represented with a 16 bit value. As an implementation guide, the following source code example is given: AbsoluteDutyCycle = ((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_SetDutyCycle_NoUpdate_Activity

Prototype: void Pwm_SetDutyCycle_NoUpdate(Pwm_ChannelType ChannelNumber, uint16
u16DutyCycle);

Table 3-220. Pwm_SetDutyCycle_NoUpdate Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.
uint16	u16DutyCycle	•	PWM duty cycle value 0x0000 for 0% 0x8000 for 100%.

3.10.5.21 Function Pwm_SetPeriodAndDuty_NoUpdate

This function sets the values of the period and the duty cycle for the specified PWM channel into the hardware buffers but without updating the PWM output..

Details:

The function Pwm_SetPeriodAndDuty_NoUpdate shall set the period and duty cycle of the PWM channel to the corresponding hardware buffers without updating the wave form on the output pin. This feature will allow a pre-buffering of new PWM duty cycle values for several channel, which can all be updated synchronous by calling Pwm_SyncUpdate.

If development error detection for the PWM module is enabled, the PWM functions shall check the channel class type and raise development error

PWM_E_PERIOD_UNCHANGEABLE if the PWM channel is not declared as a variable period type.

If development error detection for the PWM module is enabled, the PWM functions shall check the hardware channel operation mode, if given channel is Modified Combine channel edge setup, (PHASE_SHIFTED_SYNCED and

PHASE_SHIFTED_COMPLEMENTARY), development error

PWM_E_PARAM_SYNCHRONOUS_MODIFIED_COMBINE will be raised.

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

The PWM module shall comply with the following scaling scheme for the duty cycle:

- 0x0000 means 0%.
- 0x8000 means 100%.
- 0x8000 gives the highest resolution while allowing 100% duty cycle to be represented with a 16 bit value. As an implementation guide, the following source code example is given: AbsoluteDutyCycle = ((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_SetPeriodAndDuty_NoUpdate_Activity

Prototype: void Pwm_SetPeriodAndDuty_NoUpdate(Pwm_ChannelType ChannelNumber, PeriodType
Period, uint16 u16DutyCycle);

Table 3-221. Pwm_SetPeriodAndDuty_NoUpdate Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	ChannelNumber	input	PWM channel id.
Pwm_PeriodType	Period	input	PWM signal period value
uint16	u16DutyCycle		PWM duty cycle value 0x0000 for 0% 0x8000 for 100%.

3.10.5.22 Function Pwm_SetPhaseShift

This function set phase shift value and also force duty cycle to 50%

Details:

In order to have Phase-Shifted Full-Bridge controller, Pwm_SetPhaseShift is introduced. This function bases on FTM Combine mode with Cn and C(n+1) combine to generate leading edge and trailing edge. Pwm_SetPhaseShift allows to set both phase shift value and period, the duty value is fixed to 50%.

If development error detection for the PWM module is enabled, the PWM functions shall check phase shift parameter to make sure it is not greater than 50% duty (0x4000). Development error PWM_E_PARAM_PHASESHIFT_RANGE will be raised if above condition is not passed.

If development error detection for the PWM module is enabled, development error PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE will be raised when given channel other than combine channel edge setup (COMBINED_SYNCED and COMBINED_COMPLEMENTARY)

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_SetPhaseShift_Activity

Prototype: void Pwm_SetPhaseShift(Pwm_ChannelType u8ChannelNumber, Pwm_PeriodType nPeriod,
uint16 u16PhaseShift);

Table 3-222. Pwm_SetPhaseShift Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	u8ChannelNumber	input	PWM channel id.
Pwm_PeriodType	nPeriod	input	PWM signal period value
uint16	u16PhaseShift	input	Phase shift value

3.10.5.23 Function Pwm_SetPhaseShift_NoUpdate

This function set phase shift value and also force duty cycle to 50%. The output will take effect after Pwm_SyncUpdate be called.

Details:

In order to have Phase-Shifted Full-Bridge controller, Pwm_SetPhaseShift_NoUpdate is introduced. This function bases on FTM Combine mode with Cn and C(n+1) combine to generate leading edge and trailing edge. Pwm_SetPhaseShift_NoUpdate allows to set both phase shift value and period, the duty value is fixed to 50%.

If development error detection for the PWM module is enabled, the PWM functions shall check phase shift parameter to make sure it is not greater than 50% duty (0x4000). Development error PWM_E_PARAM_PHASESHIFT_RANGE will be raised if above condition is not passed.

If development error detection for the PWM module is enabled, development error PWM_E_CHANNEL_PHASE_SHIFT_WITHOUT_COMBINE will be raised when given channel other than combine channel edge setup (COMBINED_SYNCED and COMBINED_COMPLEMENTARY)

If development error detection for the PWM module is enabled, the PWM functions shall check the parameter ChannelNumber and raise development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is invalid.

If development error detection for the PWM module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).
- Return PWM level low for the function Pwm_GetOutputState.

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

Return: void.

Implements: Pwm_SetPhaseShift_NoUpdate_Activity

Prototype: void Pwm_SetPhaseShift_NoUpdate(Pwm_ChannelType u8ChannelNumber, Pwm_PeriodType nPeriod, uint16 u16PhaseShift);

User Manual, Rev. 1.0

Table 3-223. Pwm_SetPhaseShift_NoUpdate Arguments

Туре	Name	Direction	Description
Pwm_ChannelType	u8ChannelNumber	input	PWM channel id.
Pwm_PeriodType	nPeriod	input	PWM signal period value
uint16	u16PhaseShift	input	Phase shift value

3.10.5.24 Function Pwm_SyncUpdate

Details:

This function is called to update pending data from buffer.

Return: None.

Prototype: void Pwm_SyncUpdate(uint8 ModuleId, uint16 u16SubmoduleMask);

Table 3-224. Pwm_SyncUpdate Arguments

Туре	Name	Direction	Description
uint8	ModuleId	Input	FTM hardware module ID
uint16	u16SubmoduleMask	Input	PWM submodule mask value

3.10.5.25 Function Pwm_SetPowerState

Function to enters the already prepared power state.

Details:

This API configures the Pwm module so that it enters the already prepared power state, chosen between a predefined set of configured ones.

If development error detection for the Pwm module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection for the Pwm module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: Std_ReturnType.

Implements: Pwm_SetPowerState_Activity

<u>Prototype</u>: Std_ReturnType Pwm_SetPowerState (Pwm_PowerStateRequestResultType* pResult)

Table 3-225. Pwm_SetPowerState Arguments

Туре	Name	Direction	Description
Pwm_PowerStateRequestResu ltType*	pResult		- Pointer to a variable to store the result of this function

3.10.5.26 Function Pwm_GetCurrentPowerState

Get the current power state of the Pwm HW unit.

Details:

This API returns the current power state of the Pwm HW unit.

If development error detection for the Pwm module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection for the Pwm module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: Std_ReturnType.

Implements: Pwm_GetCurrentPowerState_Activity

Prototype: Std_ReturnType Pwm_GetCurrentPowerState (Pwm_PowerStateType* pCurrentPowerState, Pwm_PowerStateRequestResultType* pResult)

Table 3-226. Pwm_SetPowerState Arguments

Туре	Name	Direction	Description
Pwm_PowerStateType*	pCurrentPowerState,	l -	- The current power mode of the Pwm HW Unit is returned in this parameter
Pwm_PowerStateRequestResultT ype*	pResult		- Pointer to a variable to store the result of this function

3.10.5.27 Function Pwm_GetTargetPowerState

Get the target power state of the Pwm HW unit.

Details:

This API returns the target power state of the Pwm HW unit...

If development error detection for the Pwm module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection for the Pwm module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: Std_ReturnType

Implements: Pwm_GetTargetPowerState_Activity

<u>Prototype</u>: Std_ReturnType Pwm_GetTargetPowerState (Pwm_PowerStateType* pTargetPowerState, Pwm_PowerStateRequestResultType* pResult)

Table 3-227. Pwm_SetPowerState Arguments

Туре	Name	Direction	Description
Pwm_PowerStateType*	pTargetPowerState		- The Target power mode of the Pwm HW Unit is returned in this parameter.
Pwm_PowerStateRequestResu ltType*	pResult		- Pointer to a variable to store the result of this function

3.10.5.28 Function Pwm_PreparePowerState

Starts the needed process to allow the Pwm HW module to enter the requested power state.

Details:

This API starts the needed process to allow the Pwm HW module to enter the requested power state..

If development error detection for the Pwm module is enabled, when a development error occurs, the corresponding PWM function shall:

- Report the error to the Development Error Tracer.
- Skip the desired functionality in order to avoid any corruptions of data or hardware registers (this means leave the function without any actions).

If the PwmDevErorDetect switch is enabled, API parameter checking is enabled. The detailed description of the detected errors can be found in chapter Error classification and chapter API specification (see PWM_SWS).

If development error detection for the Pwm module is enabled, if any function (except Pwm_Init) is called before Pwm_Init has been called, the called function shall raise development error PWM_E_UNINIT.

Return: Std_ReturnType.

<u>Implements</u>: Pwm_PreparePowerState_Activity

<u>Prototype</u>: Std_ReturnType Pwm_PreparePowerState (Pwm_PowerStateType nPowerState, Pwm_PowerStateRequestResultType* pResult)

Table 3-228. Pwm_SetPowerState Arguments

Туре	Name	Direction	Description
Pwm_PowerStateType	nPowerState	•	- The target power state intended to be attained.
Pwm_PowerStateRequestResu ltType*	pResult		- Pointer to a variable to store the result of this function

3.10.6 Variables Reference

Variables supported by the driver are as per AUTOSAR PWM Driver software specification Version $4.2\ Rev0002$.

3.11 Symbolic Names Disclaimer

All containers having the symbolic name tag set as true in the Autosar schema will generate defines like:

#define <Container_ID>

For this reason it is forbidden to duplicate the name of such containers across the MCAL configuration, or to use names that may trigger other compile issues (e.g. match existing #ifdefs arguments).

Symbolic Names Disclaimer

Chapter 4 Tresos Configuration Plug-in

This chapter describes the Tresos configuration plug-in for the PWM Driver. The most of the parameters are described below.

4.1 Configuration elements of PWM

Included forms:

- IMPLEMENTATION_CONFIG_VARIANT
- PwmConfigurationOfOptApiServices
- PwmGeneral
- CommonPublishedInformation
- PwmChannelConfigSet

4.2 Form IMPLEMENTATION CONFIG VARIANT

Figure 4-1. Tresos Plugin snapshot for IMPLEMENTATION_CONFIG_VARIANT form.

Table 4-1. Attribute IMPLEMENTATION_CONFIG_VARIANT detailed description

Property	Value
Label	Config Variant
Default	VariantPreCompile
Range	VariantPreCompile VariantPostBuild

4.3 Form PwmConfigurationOfOptApiServices

Figure 4-2. Tresos Plugin snapshot for PwmConfigurationOfOptApiServices form.

4.3.1 PwmDelnitApi (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_DeInit() from the code.

Table 4-2. Attribute PwmDelnitApi (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.3.2 PwmGetOutputState (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_GetOutputState() from the code.

Table 4-3. Attribute PwmGetOutputState (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
READONLY	false

4.3.3 PwmSetDutyCycle (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetDutyCycle() from the code.

Table 4-4. Attribute PwmSetDutyCycle (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.3.4 PwmSetOutputToldle (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetOutputToIdle() from the code.

Table 4-5. Attribute PwmSetOutputToldle (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

User Manual, Rev. 1.0

4.3.5 PwmSetPeriodAndDuty (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetPeriodAndDuty () from the code.

Table 4-6. Attribute PwmSetPeriodAndDuty (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.3.6 PwmVersionInfoApi (PwmConfigurationOfOptApiServices)

Switch to indicate that the Pwm_GetVersionInfo is supported

Table 4-7. Attribute PwmVersionInfoApi (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.3.7 PwmGetChannelStateApi (PwmConfigurationOfOptApiServices)

Switch to indicate that the Pwm_GetChannelState is supported

Table 4-8. Attribute PwmGetChannelStateApi (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom

Table continues on the next page...

User Manual, Rev. 1.0

Table 4-8. Attribute PwmGetChannelStateApi (PwmConfigurationOfOptApiServices) detailed description (continued)

Property	Value
Symbolic Name	false
Default	false

4.3.8 PwmForceOutputToZeroApi (PwmConfigurationOfOptApiServices)

Switch to indicate that the Pwm_ForceOutputToZero API is supported

Table 4-9. Attribute PwmForceOutputToZeroApi (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.9 PwmSetDutyCycle_NoUpdate (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetDutyCycle_NoUpdate API is supported

Table 4-10. Attribute PwmSetDutyCycle_NoUpdate (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.10 PwmSetPeriodAndDuty_NoUpdate (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetPeriodAndDuty_NoUpdate() from the code.

User Manual, Rev. 1.0

Form PwmConfigurationOfOptApiServices

Table 4-11. Attribute PwmSetPeriodAndDuty_NoUpdate (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.11 PwmSetPhaseShift (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetPhaseShift() from the code.

Table 4-12. Attribute PwmSetPhaseShift (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.12 PwmSetPhaseShiftNoUpdate (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_SetPhaseShift_NoUpdate() from the code.

Table 4-13. Attribute PwmSetPhaseShiftNoUpdate (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.13 PwmEnableTrigger (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_EnableTrigger() from the code.

Table 4-14. Attribute Pwm_EnableTrigger (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.14 PwmDiableTrigger (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_DisableTrigger() from the code.

Table 4-15. Attribute PwmDiableTrigger (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.3.15 PwmSwResetCounter (PwmConfigurationOfOptApiServices)

Add/remove the service Pwm_ResetCounterEnable and Pwm_ResetCounterDisable from the code.

Table 4-16. Attribute PwmSwResetCounter (PwmConfigurationOfOptApiServices) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

User Manual, Rev. 1.0

Form PwmGeneral

4.4 Form PwmGeneral

Figure 4-3. Tresos Plugin snapshot for PwmGeneral form.

4.4.1 PwmDevErrorDetect (PwmGeneral)

Switch to enable/disable the development error detection.

Table 4-17. Attribute PwmDevErrorDetect (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.4.2 PwmDutycycleUpdatedEndperiod (PwmGeneral)

Switch to enable the update of the duty cycle parameter at the end of the current period.

LIMITATION

Curent implementation supports the update of the duty cycle parameter only at the end of the current period.

Table 4-18. Attribute PwmDutycycleUpdatedEndperiod (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.4.3 PwmNotificationSupported (PwmGeneral)

Switch to indicate that the notifications are supported.

Table 4-19. Attribute PwmNotificationSupported (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.4.4 PwmEnableDualClockMode (PwmGeneral)

Switch to enable dual clock support.

Table 4-20. Attribute PwmEnableDualClockMode (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	true

4.4.5 PwmPeriodUpdatedEndperiod (PwmGeneral)

Switch to enable the update of the period parameter at the end of the current period.

LIMITATION

Form PwmGeneral

Curent implementation supports the update of the period parameter only at the end of the current period.

Table 4-21. Attribute PwmPeriodUpdatedEndperiod (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
Symbolic Name	false
Default	true
READONLY	true

4.4.6 PwmIndex (PwmGeneral)

Specify the InstanceId of this module instance. If only one instance is present it will have the Id 0.

LIMITATION

In the current implementation this parameter is not used.

Table 4-22. Attribute PwmIndex (PwmGeneral) detailed description

Property	Value
Туре	INTEGER
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	0
Invalid	Range <=4294967295 >=0

4.4.7 PwmFaultSupport (PwmGeneral)

This enables the fault functionality.

Table 4-23. Attribute PwmFaultSupport (PwmGeneral) detailed description

Property	Value
Label	Fault Support Enable
Type	BOOLEAN

Table continues on the next page...

143

Table 4-23. Attribute PwmFaultSupport (PwmGeneral) detailed description (continued)

Property	Value
Origin	Custom
Symbolic Name	false
Default	false

4.4.8 PwmFtmEnableExtTrigger (PwmGeneral)

This enables external trigger generation.

Table 4-24. Attribute PwmFtmEnableExtTrigger (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.4.9 PwmEnablePhaseShift (PwmGeneral)

This enables Phase Shift feature.

Table 4-25. Attribute PwmEnablePhaseShift (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.4.10 PwmMultiChannelSynch (PwmGeneral)

Enable/Disable the option to set the duty cycle synchronous for several channels

Table 4-26. Attribute PwmEnablePhaseShift (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN

Table continues on the next page...

Form PwmGeneral

Table 4-26. Attribute PwmEnablePhaseShift (PwmGeneral) detailed description (continued)

Property	Value
Origin	Custom
Symbolic Name	false
Default	false

4.4.11 EnableMaskingOperations (PwmGeneral)

Add/remove the service Pwm_MaskOutputs and Pwm_UnMaskOutputs from the code.

Table 4-27. Attribute EnableMaskingOperations (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	Custom
Symbolic Name	false
Default	false

4.4.12 PwmLowPowerStatesSupport (PwmGeneral)

If enables, hardware offers low power mode and adds all power state management related APIs (PWM_SetPowerState, PWM_GetCurrentPowerState, PWM_GetTargetPowerState, PWM_PreparePowerState, PWM_Main_PowerTransitionManager), indicating if the hardware offers low power state management.

Table 4-28. Attribute PwmLowPowerStatesSupport (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
Symbolic Name	false
Default	false

4.4.13 PwmPowerStateAsynchTransitionMode (PwmGeneral)

Enable/disable support of the PWM Driver to the asynchronous power state transition.

Table 4-29. Attribute PwmPowerStateAsynchTransitionMode (PwmGeneral) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
Symbolic Name	false
Default	false

4.5 Form CommonPublishedInformation

Common container, aggregated by all modules. It contains published information about vendor and versions.

Figure 4-4. Tresos Plugin snapshot for CommonPublishedInformation form.

4.5.1 ArReleaseMajorVersion (CommonPublishedInformation)

Major version number of AUTOSAR specification on which the appropriate implementation is based on.

Table 4-30. Attribute ArReleaseMajorVersion (CommonPublishedInformation) detailed description

Property	Value
Label	AUTOSAR Major Version
Туре	INTEGER_LABEL
Origin	Custom

Table continues on the next page...

User Manual, Rev. 1.0

Form CommonPublishedInformation

Table 4-30. Attribute ArReleaseMajorVersion (CommonPublishedInformation) detailed description (continued)

Property	Value
Symbolic Name	false
Default	4
Invalid	Range
	>=4 <=4
	<=4

4.5.2 ArReleaseMinorVersion (CommonPublishedInformation)

Minor version number of AUTOSAR specification on which the appropriate implementation is based on.

Table 4-31. Attribute ArReleaseMinorVersion (CommonPublishedInformation) detailed description

Property	Value
Label	AUTOSAR Minor Version
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	2
Invalid	Range >=2 <=2

4.5.3 ArReleaseRevisionVersion (CommonPublishedInformation)

Revision version number of AUTOSAR specification on which the appropriate implementation is based on.

Table 4-32. Attribute ArReleaseRevisionVersion (CommonPublishedInformation) detailed description

Property	Value
Label	AUTOSAR Release Revision Version
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	2

Table continues on the next page...

User Manual, Rev. 1.0

Table 4-32. Attribute ArReleaseRevisionVersion (CommonPublishedInformation) detailed description (continued)

Property	Value
Invalid	Range >=2 <=2

4.5.4 Moduleld (CommonPublishedInformation)

Module ID of this module from Module List.

Table 4-33. Attribute Moduleld (CommonPublishedInformation) detailed description

Property	Value
Label	Module Id
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	121
Invalid	Range >=121 <=121

4.5.5 SwMajorVersion (CommonPublishedInformation)

Major version number of the vendor specific implementation of the module. The numbering is vendor specific.

Table 4-34. Attribute SwMajorVersion (CommonPublishedInformation) detailed description

Property	Value
Label	Software Major Version
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	1
Invalid	Range >=1
	<=1

User Manual, Rev. 1.0

4.5.6 SwMinorVersion (CommonPublishedInformation)

Minor version number of the vendor specific implementation of the module. The numbering is vendor specific.

Table 4-35. Attribute SwMinorVersion (CommonPublishedInformation) detailed description

Property	Value
Label	Software Minor Version
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	0
Invalid	Range >=0 <=0

4.5.7 SwPatchVersion (CommonPublishedInformation)

Patch level version number of the vendor specific implementation of the module. The numbering is vendor specific.

Table 4-36. Attribute SwPatchVersion (CommonPublishedInformation) detailed description

Property	Value
Label	Software Patch Version
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	2
Invalid	Range >=2 <=2

4.5.8 VendorApiInfix (CommonPublishedInformation)

In driver modules which can be instantiated several times on a single ECU, BSW00347 requires that the name of APIs is extended by the VendorId and a vendor specific name. This parameter is used to specify the vendor specific name. In total, the implementation specific name is generated as follows:

<ModuleName>_>VendorId>_<VendorApiInfix><Api name from SWS>. E.g. assuming

that the VendorId of the implementor is 123 and the implementer chose a VendorApiInfix of "v11r456" a api name Can_Write defined in the SWS will translate to Can_123_v11r456Write. This parameter is mandatory for all modules with upper multiplicity > 1. It shall not be used for modules with upper multiplicity =1.

Table 4-37. Attribute VendorApilnfix (CommonPublishedInformation) detailed description

Property	Value
Label	Vendor Api Infix
Туре	STRING_LABEL
Origin	Custom
Symbolic Name	false
Default	
Enable	false

4.5.9 Vendorld (CommonPublishedInformation)

Vendor ID of the dedicated implementation of this module according to the AUTOSAR vendor list.

Table 4-38. Attribute Vendorld (CommonPublishedInformation) detailed description

Property	Value
Label	Vendor Id
Туре	INTEGER_LABEL
Origin	Custom
Symbolic Name	false
Default	43
Invalid	Range >=43 <=43

4.6 Form PwmChannelConfigSet

This container contains the Channel configuration parameter of the PWM driver.

Included forms:

- Form PwmChannel
- Form PwmFlexIOModule
- Form PwmFtmModule

Figure 4-5. Tresos Plugin snapshot for PwmChannelConfigSet form.

4.6.1 Form PwmChannel

Configuration of an individual PWM channel.

Is included by form: Form PwmChannelConfigSet

Figure 4-6. Tresos Plugin snapshot for PwmChannel form.

Below is a detailed description of the configurable parameters of each PWM channel.

Figure 4-7. Tresos Plugin snapshot for PwmChannel form with parameter details.

4.6.1.1 PwmChannelld (PwmChannel)

Channel Id of the PWM channel. This value will be assigned to the symbolic name derived of the PwmChannel container short name.

Table 4-39. Attribute PwmChannelld (PwmChannel) detailed description

Property	Value
Туре	INTEGER
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	true

4.6.1.2 PwmHwIP (PwmChannel)

Hardware IP to be used for current PWM channel.

- FlexIO FlexIO Hardware IP will be used. Please select a FlexIO configured channel from PwmFlexIOChannel combo below.
- FTM FTM Hardware IP will be used. Please select an eMios configured channel from PwmFTMChannel combo below.

Table 4-40. Attribute PwmHwIP (PwmChannel) detailed description

Property	Value
Label	PWM Hardware IP
Туре	ENUMERATION
Origin	Custom
Symbolic Name	false
Default	FTM
Range	FlexIO FTM

4.6.1.3 PwmFtmChannel (PwmChannel)

Select the FTM channel on which the functionality of the current PWM channel will be implemented.

Table 4-41. Attribute PwmFtmChannel (PwmChannel) detailed description

Property	Value
Туре	REFERENCE
Origin	Custom
POSTBUILDVARIANTVALUE	true

4.6.1.4 PwmFlexIOChannel (PwmChannel)

Select the FlexIO channel on which the functionality of the current PWM channel will be implemented.

Table 4-42. Attribute PwmFlexIOChannel (PwmChannel) detailed description

Property	Value
Туре	REFERENCE
Origin	Custom
POSTBUILDVARIANTVALUE	true

4.6.1.5 PwmPeriodInTicks (PwmChannel)

By default period unit is measured in seconds. Enable this check to set default period unit in ticks.

Table 4-43. Attribute PwmPeriodInTicks (PwmChannel) detailed description

Property	Value
Label	Default Period In Ticks
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	true

4.6.1.6 PwmPeriodDefault (PwmChannel)

Default period value used at initialization. The measure unit are in ticks. Valid values [0, 0xFFFE = 65534]

153

Table 4-44. Attribute PwmPeriodDefault (PwmChannel) detailed description

Property	Value
Label	Default Period
Туре	FLOAT
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	1.25e-4
Invalid	Range <=65534 >=0

4.6.1.7 PwmChannelClass (PwmChannel)

Class of PWM Channel.

Table 4-45. Attribute PwmChannelClass (PwmChannel) detailed description

Property	Value
Туре	ENUMERATION
Origin	AUTOSAR_ECUC
Symbolic Name	false
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
OPTIONAL	true
Default	PWM_FIXED_PERIOD
Range	PWM_FIXED_PERIOD PWM_VARIABLE_PERIOD PWM_FIXED_PERIOD_SHIFTED

4.6.1.8 PwmPolarity (PwmChannel)

Define the starting polarity of each PWM channel.

NOTE

• If user use FlexIO module ,the node "PwmPolarity" will be disable.

Table 4-46. Attribute PwmPolarity (PwmChannel) detailed description

Property	Value
Туре	ENUMERATION
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	PWM_HIGH
Range	PWM_HIGH PWM_LOW

4.6.1.9 PwmDutycycleDefault (PwmChannel)

Default value for duty cycle used for Initialization 0, represents 0% 0x4000, represents 50% 0x8000, represents 100%.

Table 4-47. Attribute PwmDutycycleDefault (PwmChannel) detailed description

Property	Value
Туре	INTEGER
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	16384
Invalid	Range <=32768 >=0

4.6.1.10 PwmldleState (PwmChannel)

This parameter represents the state of the Pin when the output is set to Idle.

NOTE

• If user use FlexIO module ,the node "PwmIdleState" will be disable.

Table 4-48. Attribute PwmldleState (PwmChannel) detailed description

Property	Value
Туре	ENUMERATION
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	PWM_LOW
Range	PWM_HIGH PWM_LOW

4.6.1.11 PwmNotification (PwmChannel)

User callback function NOTE: please use NULL or NULL_PTR without any quotes. If the used string is different from NULL or NULL_PTR it will be used as the configured function name.

NOTE

Notification is not supported for Center Aligned channels. If reference channel is configured with PWM_CENTER_ALIGNED as PwmChanEdgeAlignment then notification should not use with this channel and PwmNotification callback function should be NULL as well.

Table 4-49. Attribute PwmNotification (PwmChannel) detailed description

Property	Value
Туре	FUNCTION-NAME
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
POSTBUILDVARIANTVALUE	true
OPTIONAL	true
Symbolic Name	false
Default	NULL

4.6.1.12 PwmMcuClockReferencePoint (PwmChannel)

Reference to the PWM clock source configuration, which is set in the MCU driver configuration.

User Manual, Rev. 1.0

Table 4-50. Attribute PwmMcuClockReferencePoint (PwmChannel) detailed description

Property	Value
Туре	REFERENCE
Origin	AUTOSAR_ECUC

4.6.2 Form PwmFlexIOModule

Configuration of a FlexIO module available on the platform.

Figure 4-8. Tresos Plugin snapshot for PwmFlexIO form.

Below is a detailed description of the configurable parameters of each FlexIO module.

Figure 4-9. Tresos Plugin snapshot for PwmFlexIO form with parameter details.

4.6.2.1 PwmFlexIOModule (PwmFlexIO)

Selects one of the FlexIO modules available on the platform.

Table 4-51. Attribute PwmFlexIOModule (PwmFlexIO) detailed description

Property	Value
Label	FlexIO Hardware Module
Туре	ENUMERATION
Origin	Custom
Symbolic Name	false

4.6.2.2 Form PwmFlexIOChannels

Configuration of an individual PWM FlexIO channel.

Is included by form: Form PwmFlexIOModule

Figure 4-10. Tresos Plugin snapshot for PwmFlexIOChannels form.

Below is a detailed description of the configurable parameters of each FlexIO channel.

PwmFlexIOChannels

Figure 4-11. Tresos Plugin snapshot for PwmFlexIOChannels form with parameter details.

4.6.2.2.1 PwmFlexIOChannelId (PwmFlexIOChannels)

Select one of the FlexIO channels available on the platform.

Table 4-52. Attribute PwmFlexIOChannelld (PwmFlexIOChannels) detailed description

Property	Value
Label	Channel number
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Range	Channel_0 Channel_1 Channel_2 Channel_3 Channel_4 Channel_5 Channel_6 Channel_7

4.6.2.2.2 PwmFlexIOTimer (PwmFlexIOChannels)

Select one of the FlexIO timer sources available on the platform.

Table 4-53. Attribute PwmFlexIOTimer (PwmFlexIOChannels) detailed description

Property	Value
Label	Timer source
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Range	Timer_0 Timer_1 Timer_2 Timer_3

4.6.3 Form PwmFtmModule

Configuration of a FTM module available on the platform.

Is included by form : Form PwmChannelConfigSet

Figure 4-12. Tresos Plugin snapshot for PwmFtmModule form.

Below is a detailed description of the configurable parameters of each FTM module.

Figure 4-13. Tresos Plugin snapshot for PwmFtmModule form with parameter details.

4.6.3.1 FtmModule (PwmFtmModule)

Select one of the 8 sub-modules available on the current FTM module.

Table 4-54. Attribute FtmModule (PwmFtmModule) detailed description

Property	Value
Label	Ftm Hardware Module
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false

4.6.3.2 PwmPrescaler (PwmFtmModule)

PwmPrescaler. AUTOSAR Requirements: not specified.

Table 4-55. Attribute PwmPrescaler (PwmFtmModule) detailed description

Property	Value
Label	Prescaler
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	PRESC_1
Range	PRESC_1 PRESC_2 PRESC_4 PRESC_8 PRESC_16 PRESC_32 PRESC_64 PRESC_18

4.6.3.3 PwmPrescaler_Alternate (PwmFtmModule)

PwmPrescaler_Alternate. AUTOSAR Requirements: not specified.

Table 4-56. Attribute PwmPrescaler_Alternate (PwmFtmModule) detailed description

Property	Value
Label	Prescaler
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	PRESC_1
Range	PRESC_1 PRESC_2 PRESC_4 PRESC_8 PRESC_16 PRESC_32 PRESC_64 PRESC_128

4.6.3.4 PwmClockRef (PwmFtmModule)

Reference to the FTM clock source configuration, which is set in the MCU driver configuration.

Table 4-57. Attribute PwmClockRef (PwmFtmModule) detailed description

Property	Value
Туре	REFERENCE
Origin	Custom

4.6.3.5 PwmClockSelection (PwmFtmModule)

FTM Module clock selection.

- PWM_NO_CLOCK: No input clock is given to FTM. FTM count is not operational.
- PWM_SYSTEM_CLOCK: System clock is given to FTM.
- PWM_EXTERNAL_CLOCK: An fixed frequency clock is given to FTM.
- PWM_FIXED_FREQ_CLOCK: An external clock is given to FTM.

NOTE

Clock selection and timer frequency are dependent on the value of the clock that is configured in MCU and referenced by / PwmClockRef. Make sure that the correct reference is used for the configured clock.

Table 4-58. Attribute PwmClockSelection (PwmFtmModule) detailed description

Property	Value
Label	FTM Module clock selection
Type	ENUMERATION
Origin	Custom
Symbolic Name	false
Default	PWM_SYSTEM_CLOCK
Range	PWM_SYSTEM_CLOCK PWM_FIXED_FREQ_CLOCK PWM_EXTERNAL_CLOCK PWM_NO_CLOCK

4.6.3.6 PwmChanEdgeAlignment (PwmFtmModule)

This list will change the PWM generation mode for this FTM sub-module. This in a Non-AUTOSAR feature.

Table 4-59. Attribute PwmChanEdgeAlignment (PwmFtmModule) detailed description

Property	Value	
Label	Ftm Module's Channels Alignment	
Type	ENUMERATION	
POSTBUILDVARIANTVALUE	true	
Origin	Custom	
Symbolic Name	false	
Default	PWM_EDGE_ALIGNED	
Range	PWM_EDGE_ALIGNED PWM_CENTER_ALIGNED	

4.6.3.7 PwmUpdatedEndPeriod (PwmFtmModule)

Switch to enable update parameter at the end of the current period.

NOTE

This function enabled if PwmDutycycleUpdatedEndperiod is set and PWM_CENTER_ALIGNED is set.

Table 4-60. Attribute PwmUpdatedEndPeriod (PwmFtmModule) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	true

4.6.3.8 PwmUpdatedMiddlePeriod (PwmFtmModule)

Switch to enable update parameter at the middle of the current period.

NOTE

This function enabled if PwmDutycycleUpdatedEndperiod is set and PWM_CENTER_ALIGNED is set.

Table 4-61. Attribute PwmUpdatedMiddlePeriod (PwmFtmModule) detailed description

Property	Value
Туре	BOOLEAN
Origin	AUTOSAR_ECUC
SCOPE	LOCAL
Symbolic Name	false
Default	false

4.6.3.9 PwmReloadFrequency (PwmFtmModule)

Define the number of enabled reload opportunities should happen until an enabled reload opportunity becomes a reload point.

NOTE

This function enabled if PwmDutycycleUpdatedEndperiod is set.

Table 4-62. Attribute PwmReloadFrequency (PwmFtmModule) detailed description

Property	Value
Label	Prescaler
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	LDFQ_EACH1
Range	LDFQ_EACH1 LDFQ_EACH2 LDFQ_EACH3 LDFQ_EACH4 LDFQ_EACH5 LDFQ_EACH6 LDFQ_EACH7 LDFQ_EACH8 LDFQ_EACH9 LDFQ_EACH10 LDFQ_EACH11 LDFQ_EACH12 LDFQ_EACH13 LDFQ_EACH14 LDFQ_EACH15 LDFQ_EACH16 LDFQ_EACH17 LDFQ_EACH18 LDFQ_EACH19 LDFQ_EACH19 LDFQ_EACH20

Table 4-62. Attribute PwmReloadFrequency (PwmFtmModule) detailed description

Property	Value
	LDFQ_EACH21
	LDFQ_EACH22
	LDFQ_EACH23
	LDFQ_EACH24
	LDFQ_EACH25
	LDFQ_EACH26
	LDFQ_EACH27
	LDFQ_EACH28
	LDFQ_EACH29
	LDFQ_EACH30
	LDFQ_EACH31
	LDFQ_EACH32

4.6.3.10 PwmDeadTimeCount (PwmFtmModule)

DeadTime Counter used to create a phase offset between the output of two consecutive FTM channels used complementary modes. Complementary channels behave as a single channel with two outputs which may have a deadtime between them. For channels which are configured as independent this value has no effect.

NOTE

When PwmDeadTimeCount is enable and difference than zero, all channels should be configured with ChannelEdgeSetup as COMBINED_COMPLEMENTARY or PHASE_SHIFTED_COMPLEMENTARY. Deadtime insertion with COMBINED_SYNCED or PHASE_SHIFTED_SYNCED may cause to odd channel (n+1) not work.

Table 4-63. Attribute PwmDeadTimeCount (PwmFtmModule) detailed description

Property	Value
Label	Deadtime Counter
Туре	INTEGER
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
OPTIONAL	true
Default	0
Invalid	Range <=63 >=0

4.6.3.11 DeadTimePrescaler (PwmFtmModule)

DeadTime counter prescaler.

Table 4-64. Attribute DeadTimePrescaler (PwmFtmModule) detailed description

Property	Value
Label	DeadTime Counter Prescaler
Туре	ENUMERATION
POSTBUILDVARIANTVALUE	true
OPTIONAL	true
Origin	Custom
Symbolic Name	false
Default	PRESC_1
Range	PRESC_1 PRESC_4 PRESC_16

4.6.3.12 PwmBDMEnable (PwmFtmModule)

Selects the Debug mode.

Note

On FTM, PIT, STM base platforms. If the chip is in BDM mode and A5 core configure is set, then counter is stopped due to hardware restriction.

Table 4-65. Attribute PwmBDMEnable (PwmFtmModule) detailed description

Property	Value
Label	Pwm Background Debug Mode configuration
Туре	ENUMERATION
Origin	Custom
Symbolic Name	false
POSTBUILDVARIANTVALUE	true
Default	CNT_STOPED_FLAG_SET
Range	CNT_STOPED_FLAG_SET CNT_STOPED_OUTPUTS_SAFE CNT_STOPED_OUTPUTS_FROZEN CNT_ON_OUTPUTS_ON

4.6.3.13 PwmFtmFaultFunctionality (PwmFtmModule)

Selects the fault control mode.

- FLTCTRL_DISABLED: Fault control disabled for all channels.
- AUTOMATIC_FOR_EVEN_CHANNELS: Fault control enabled for even channels (0, 2, 4..) with automatic fault clear.
- AUTOMATIC_FOR_ALL_CHANNELS: Fault control enabled for all channels with automatic fault clear.

NOTE

For any automatic fault clear modes, a Fault Notification function should be defined. In automatic modes, the hardware shall be configured into manual fault clearing and automatic fault clearing shall be implemented by software.

Table 4-66. Attribute PwmFtmFaultFunctionality (PwmFtmModule) detailed description

Property	Value
Label	Pwm Fault Funtionality and Clear Mode
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	FLTCTRL_DISABLED
Range	FLTCTRL_DISABLED AUTOMATIC_FOR_EVEN_CHANNELS AUTOMATIC_FOR_ALL_CHANNELS

4.6.3.14 Form PwmFtmChannels

Configuration of an individual PWM FTM channel.

Is included by form: Form PwmFtmModule

Figure 4-14. Tresos Plugin snapshot for PwmFtmChannels form.

Below is a detailed description of the configurable parameters of each FTM channel.

Figure 4-15. Tresos Plugin snapshot for PwmFtmChannels form with parameter details.

4.6.3.14.1 PwmFtmChannelld (PwmFtmChannels)

Channel Id of the FTM channel of the current. This value will be assigned to the symbolic name derived of the PwmChannel container short name.

Table 4-67. Attribute PwmFtmChannelld (PwmFtmChannels) detailed description

Property	Value
Label	Ftm Hardware Channel
Туре	ENUMERATION
Origin	Custom

Table continues on the next page...

Table 4-67. Attribute PwmFtmChannelld (PwmFtmChannels) detailed description (continued)

Property	Value
POSTBUILDVARIANTVALUE	true
Symbolic Name	false

4.6.3.14.2 ChannelEdgeSetup (PwmFtmChannels)

- INDEPENDENT: Single PWM output will be generated using only one FTM HW Channel.
- PHASE_SHIFTED_SINGLE: Single phase shifted PWM output will be generated using two FTM HW Channels.
- COMBINED_SYNCED: Two phase-synced PWM outputs will be generated using two FTM HW Channels.
- COMBINED_COMPLEMENTARY: Two phase-complementary PWM outputs will be generated using two FTM HW Channels; The deadtime insertion is applicable to ensures that no two complementary signals (channels (n)and (n+1)) drive the active state at the same time
- PHASE_SHIFTED_SYNCED: Two phase-shifted synchronous PWM outputs will be generated using two FTM HW Channels
- PHASE_SHIFTED_COMPLEMENTARY: Two phase-shifted complementary PWM outputs will be generated using two FTM HW Channels. The deadtime insertion is applicable to ensures that no two complementary signals (channels (n)and (n+1)) drive the active state at the same time.

NOTE

Due to limitation of hardware, if a channel is configured with PHASE_SHIFTED_SINGLE, the port pin associate to odd channel (n+1) is configured as PWM output, then PWM pulse will generate at this pin, that is not as expectation of PHASE_SHIFTED_SINGLE behavior . Therefore, the port pin associate to odd channel should not be configured as PWM output.

Table 4-68. Attribute ChannelEdgeSetup (PwmFtmChannels) detailed description

Property	Value
Label	Edge configuration setting for current channel
Туре	ENUMERATION
Origin	Custom
POSTBUILDVARIANTVALUE	true

Table continues on the next page...

168

Table 4-68. Attribute ChannelEdgeSetup (PwmFtmChannels) detailed description (continued)

Property	Value
Symbolic Name	false
Default	INDEPENDENT
Range	INDEPENDENT PHASE_SHIFTED_SINGLE COMBINED_SYNCED COMBINED_COMPLEMENTARY PHASE_SHIFTED_SYNCED PHASE_SHIFTED_COMPLEMENTARY

4.6.3.14.3 ChannelCombDeadTimeEn (PwmFtmChannels)

Switch to enable/disable Deadtime for combine channels.

Table 4-69. Attribute ChannelCombDeadTimeEn (PwmFtmChannels) detailed description

Property	Value
Label	Enable Deadtime on combined channels
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.14.4 PwmPhaseShift (PwmFtmChannels)

Phase shift value (in tick) for channel in PHASE_SHIFTED_SINGLE/PHASE_SHIFTED_SYNCED/PHASE_SHIFTED_COMPLEMENTARY

Table 4-70. Attribute PwmPhaseShift (PwmFtmChannels) detailed description

Property	Value
Label	Phase Shift Ticks
Туре	INTEGER
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	0
Invalid	Range 65553 >=0

4.6.3.15 Form PwmFtmChannelFaultSettings

Global Fault configuration. AUTOSAR Requirements: not specified.

Is included by form: Form PwmFtmModule

Figure 4-16. Tresos Plugin snapshot for PwmFtmChannelFaultSettings form.

4.6.3.15.1 PwmFilterValue (PwmFtmChannelFaultSettings)

Value used for debouncing Fault inputs.

Table 4-71. Attribute PwmFilterValue (PwmFtmChannelFaultSettings) detailed description

Property	Value
Label	Pwm Fault Filter Value
Туре	INTEGER
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	0
Invalid	Range <=15 >=0

4.6.3.15.2 PwmDisableOutputOnFault0 (PwmFtmChannelFaultSettings)

Disable the PWM output on detection of fault on fault channel 0. AUTOSAR Requirements: not specified.

Table 4-72. Attribute PwmDisableOutputOnFault0 (PwmFtmChannelFaultSettings) detailed description

Property	Value
Label	Disable Channel Output On Fault 0
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.3 PwmDisableOutputOnFault1 (PwmFtmChannelFaultSettings)

Disable the PWM output on detection of fault on fault channel 1. AUTOSAR Requirements: not specified.

Table 4-73. Attribute PwmDisableOutputOnFault1 (PwmFtmChannelFaultSettings) detailed description

Property	Value
Label	Disable Channel Output On Fault 1
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.4 PwmDisableOutputOnFault2 (PwmFtmChannelFaultSettings)

Disable the PWM output on detection of fault on fault channel 2. AUTOSAR Requirements: not specified.

Table 4-74. Attribute PwmDisableOutputOnFault2 (PwmFtmChannelFaultSettings) detailed description

Property	Value
Label	Disable Channel Output On Fault 2
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.5 PwmDisableOutputOnFault3 (PwmFtmChannelFaultSettings)

Disable the PWM output on detection of fault on fault channel 3. AUTOSAR Requirements: not specified.

Table 4-75. Attribute PwmDisableOutputOnFault3 (PwmFtmChannelFaultSettings) detailed description

Property	Value
Label	Disable Channel Output On Fault 3
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.6 PwmFtmFaultOutputState (PwmFtmModule)

Specify the fault state for the PWM channel output during fault conditions.

- SAFE_VALUES: outputs will be placed into safe values when fault events in ongoing (defined by polarity).
- TRISTATE: outputs will be tri-stated when fault event is ongoing.

AUTOSAR Requirements: not specified.

Table 4-76. Attribute PwmFtmFaultOutputState (PwmFtmModule) detailed description

Property	Value
Label	Channel Output on Fault
Type	ENUMERATION
Origin	Custom
Symbolic Name	false
Default	SAFE_VALUES
Range	SAFE_VALUES TRISTATE

4.6.3.15.7 Form PwmFtmChannelFault0Settings

Global Configuration for Fault 0.

Is included by form: Form PwmFtmChannelFaultSettings

Note

Ftm Fault0 Settings can only be activated by checking "Disable Channel Output On Fault 0" in Form PwmFtmChannelFaultSettings tab.

Figure 4-17. Tresos Plugin snapshot for PwmFtmChannelFault0Settings form.

4.6.3.15.7.1 PwmFault0Polarity (PwmFtmChannelFault0Settings)

Set polarity for Fault 0 Input Pin (Checking the box means fault will be active LOW, else fault will be active HIGH). AUTOSAR Requirements: not specified.

Table 4-77. Attribute PwmFault0Polarity (PwmFtmChannelFault0Settings) detailed description

Property	Value
Label	Set polarity for Fault 0 Input Pin
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.7.2 PwmEnableFault0Filter (PwmFtmChannelFault0Settings)

Enable a debounce filter for Fault 0 Input pin. AUTOSAR Requirements: not specified.

Table 4-78. Attribute PwmEnableFault0Filter (PwmFtmChannelFault0Settings) detailed description

Property	Value	
Label	Enable a debounce filter for Fault 0	
Туре	BOOLEAN	
Origin	Custom	
POSTBUILDVARIANTVALUE	true	
Symbolic Name	false	
Default	false	

4.6.3.15.7.3 PwmFault0Notification (PwmFtmChannelFault0Settings)

User callback function.

NOTE

Please use NULL or NULL_PTR without any quotes. If the used string is different from NULL or NULL_PTR it will be used as the configured function name.

Table 4-79. Attribute PwmFault0Notification (PwmFtmChannelFault0Settings) detailed description

Property	Value
Туре	FUNCTION-NAME
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	NULL

4.6.3.15.8 Form PwmFtmChannelFault1Settings

Global Configuration for Fault 1.

Is included by form: Form PwmFtmChannelFaultSettings

Note

Ftm Fault1 Settings can only be activated by checking "Disable Channel Output On Fault 1" in Form PwmFtmChannelFaultSettings tab.

Figure 4-18. Tresos Plugin snapshot for PwmFtmChannelFault1Settings form.

4.6.3.15.8.1 PwmFault1Polarity (PwmFtmChannelFault1Settings)

Set polarity for Fault 1 Input Pin (Checking the box means fault will be active LOW, else fault will be active HIGH). AUTOSAR Requirements: not specified.

Table 4-80. Attribute PwmFault1Polarity (PwmFtmChannelFault1Settings) detailed description

Property	Value
Label	Set polarity for Fault 1 Input Pin
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.8.2 PwmEnableFault1Filter (PwmFtmChannelFault1Settings)

Enable a debounce filter for Fault 1 Input pin. AUTOSAR Requirements: not specified.

Table 4-81. Attribute PwmEnableFault1Filter (PwmFtmChannelFault1Settings) detailed description

Property	Value
Label	Enable a debounce filter for Fault 1
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.8.3 PwmFault1Notification (PwmFtmChannelFault1Settings)

User callback function.

NOTE

Please use NULL or NULL_PTR without any quotes. If the used string is different from NULL or NULL_PTR it will be used as the configured function name.

Table 4-82. Attribute PwmFault1Notification (PwmFtmChannelFault1Settings) detailed description

Property	Value
Туре	FUNCTION-NAME
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false

Table continues on the next page...

User Manual, Rev. 1.0

Table 4-82. Attribute PwmFault1Notification (PwmFtmChannelFault1Settings) detailed description (continued)

Property	Value
Default	NULL

4.6.3.15.9 Form PwmFtmChannelFault2Settings

Global Configuration for Fault 2.

Is included by form : Form PwmFtmChannelFaultSettings

Note

Ftm Fault2 Settings can only be activated by checking "Disable Channel Output On Fault 2" in Form PwmFtmChannelFaultSettings tab.

Figure 4-19. Tresos Plugin snapshot for PwmFtmChannelFault2Settings form.

4.6.3.15.9.1 PwmFault2Polarity (PwmFtmChannelFault2Settings)

Set polarity for Fault 2 Input Pin (Checking the box means fault will be active LOW, else fault will be active HIGH). AUTOSAR Requirements: not specified.

Table 4-83. Attribute PwmFault2Polarity (PwmFtmChannelFault2Settings) detailed description

Property	Value
Label	Set polarity for Fault 2 Input Pin
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.9.2 PwmEnableFault2Filter (PwmFtmChannelFault2Settings)

Enable a debounce filter for Fault 2 Input pin. AUTOSAR Requirements: not specified.

Table 4-84. Attribute PwmEnableFault2Filter (PwmFtmChannelFault2Settings) detailed description

Property	Value
Label	Enable a debounce filter for Fault 2
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.9.3 PwmFault2Notification (PwmFtmChannelFault2Settings)

User callback function.

NOTE

Please use NULL or NULL_PTR without any quotes. If the used string is different from NULL or NULL_PTR it will be used as the configured function name.

Table 4-85. Attribute PwmFault2Notification (PwmFtmChannelFault2Settings) detailed description

Property	Value	
Туре	FUNCTION-NAME	
Origin	Custom	
POSTBUILDVARIANTVALUE	true	
Symbolic Name	false	
Default	NULL	

4.6.3.15.10 Form PwmFtmChannelFault3Settings

Global Configuration for Fault 3.

Is included by form : Form PwmFtmChannelFaultSettings

Note

Ftm Fault3 Settings can only be activated by checking "Disable Channel Output On Fault 3" in Form PwmFtmChannelFaultSettings tab.

Figure 4-20. Tresos Plugin snapshot for PwmFtmChannelFault3Settings form.

4.6.3.15.10.1 PwmFault3Polarity (PwmFtmChannelFault3Settings)

Set polarity for Fault 3 Input Pin (Checking the box means fault will be active LOW, else fault will be active HIGH). AUTOSAR Requirements: not specified.

Table 4-86. Attribute PwmFault3Polarity (PwmFtmChannelFault3Settings) detailed description

Property	Value	
Label	Set polarity for Fault 3 Input Pin	
Туре	BOOLEAN	
Origin	Custom	
POSTBUILDVARIANTVALUE	true	
Symbolic Name	false	
Default	false	

4.6.3.15.10.2 PwmEnableFault3Filter (PwmFtmChannelFault3Settings)

Enable a debounce filter for Fault 3 Input pin. AUTOSAR Requirements: not specified.

Table 4-87. Attribute PwmEnableFault3Filter (PwmFtmChannelFault3Settings) detailed description

Property	Value
Label	Enable a debounce filter for Fault 3
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.15.10.3 PwmFault3Notification (PwmFtmChannelFault3Settings)

User callback function.

NOTE

Please use NULL or NULL_PTR without any quotes. If the used string is different from NULL or NULL_PTR it will be used as the configured function name.

Table 4-88. Attribute PwmFault3Notification (PwmFtmChannelFault3Settings) detailed description

Property	Value
Туре	FUNCTION-NAME
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	NULL

4.6.3.16 Form PwmExternalTriggerSettings

Global Trigger configuration.

Is included by form: Form PwmFtmModule

Figure 4-21. Tresos Plugin snapshot for PwmExternalTriggerSettings form.

4.6.3.16.1 PwmEnableExternalTriggerChannel0 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 0.

Table 4-89. Attribute PwmEnableExternalTriggerChannel0 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 0

Table continues on the next page...

User Manual, Rev. 1.0

Table 4-89. Attribute PwmEnableExternalTriggerChannel0 (PwmExternalTriggerSettings) detailed description (continued)

Property	Value
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.2 PwmEnableExternalTriggerChannel1 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 1.

Table 4-90. Attribute PwmEnableExternalTriggerChannel1 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 1
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.3 PwmEnableExternalTriggerChannel2 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 2.

Table 4-91. Attribute PwmEnableExternalTriggerChannel2 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 2
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.4 PwmEnableExternalTriggerChannel3 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 3.

Table 4-92. Attribute PwmEnableExternalTriggerChannel3 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 3
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.5 PwmEnableExternalTriggerChannel4 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 4.

Table 4-93. Attribute PwmEnableExternalTriggerChannel4 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 4
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.6 PwmEnableExternalTriggerChannel5 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 5.

Table 4-94. Attribute PwmEnableExternalTriggerChannel5 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 5
Туре	BOOLEAN

Table continues on the next page...

User Manual, Rev. 1.0

NXP Semiconductors

181

Table 4-94. Attribute PwmEnableExternalTriggerChannel5 (PwmExternalTriggerSettings) detailed description (continued)

Property	Value
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.7 PwmEnableExternalTriggerChannel6 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 6.

Table 4-95. Attribute PwmEnableExternalTriggerChannel6 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 6
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.8 PwmEnableExternalTriggerChannel7 (PwmExternalTriggerSettings)

Enable the generation of the channel trigger on Trigger channel 7.

Table 4-96. Attribute PwmEnableExternalTriggerChannel7 (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable External Trigger Channel 7
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

4.6.3.16.9 PwmEnableInitializationTrigger (PwmExternalTriggerSettings)

Enable the generation of the trigger when the FTM counter is equal to the CNTIN register.

Table 4-97. Attribute PwmEnableInitializationTrigger (PwmExternalTriggerSettings) detailed description

Property	Value
Label	Enable Initialization Trigger
Туре	BOOLEAN
Origin	Custom
POSTBUILDVARIANTVALUE	true
Symbolic Name	false
Default	false

User Manual, Rev. 1.0

User Manual, Rev. 1.0

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

Document Number UM2PWMASR4.2 Rev0002 R1.0.2 Revision 1.0

