Università degli Studi di Roma "Tor Vergata" Laurea in Informatica

Sistemi Operativi e Reti (modulo Reti) a.a. 2024/2025

Wireless e Reti Mobili (parte1)

dr. Manuel Fiorelli

manuel.fiorelli@uniroma2.it
https://art.uniroma2.it/fiorelli

Wireless e reti mobili: contesto

- più abbonati alla telefonia wireless (mobile) che alla telefonia fissa (via cavo) (10 a 1 nel 2019)!
- più dispositivi connessi alla banda larga mobile che dispositivi connessi alla banda larga fissa (5 a 1 nel 2019)!
 - le reti cellulari 4G/5G abbracciano ora lo stack di protocolli Internet, compreso SDN
- due sfide importanti (ma diverse)
 - wireless: comunicazione su collegamento wireless
 - mobilità: gestione dell'utente mobile che cambia punto di aggancio alla rete

Sommario

Introduzione

Wireless

- Collegamenti wireless e caratteristiche della rete
- WiFi: 802.11 wireless LAN
- Reti cellulari: 4G e 5G
- Bluetooth

Mobilità

- Gestione della mobilità: principi
- Gestione della mobilità: pratica
 - reti 4G/5G
 - Mobile IP
- Mobilità: impatto sui protocolli di livello superiore

- usato in genere per collegare un host wireless alla stazione base (vedi dopo) oppure ad un altro host wireless
- un protocollo ad accesso multiplo regola l'accesso al collegamento
- diversi tassi trasmissivi e massime distanze utile, diverse bande di frequenza

-stazione base

- elemento chiave dell'infrastruttura di rete wireless
- in genere connessa a una rete cablata
- ripetitore (relay) a livello di collegamento – responsabile dell'invio di pacchetti tra reti cablate e host wireless nella sua "area" (associati alla stazione base)
 - es. cell tower nelle reti cellulari, access point nelle LAN 802.11

Caratteristiche dei collegamenti wireless selezionati

modalità infrastruttura

- servizi di rete (es. indirizzamento, instradamento) forniti dalla rete cui gli host wireless sono connessi attraverso la stazione base
- handoff: quando l'host si sposta dall'area di copertura di una stazione base a un'altra cambia il suo punto di collegamento con la rete più ampia

reti ad hoc

- non ci sono stazioni base
- gli host wireless possono trasmettere solo a altri nodi entro la copertura del collegamento
- gli host stessi provvedono ai servizi d'instradamento, di assegnazione degli indirizzi, traduzione dei nomi simil-DNS

Tassonomia delle reti wireless

	hop singolo	hop multipli	
infrastruttura (es., stazione base)	l'host si collega a una stazione base, che lo collega al resto della rete: <i>Wi-Fi, rete cellulare</i>	c'è una stazione base collegata al resto della rete. Tuttavia, un host può dover ritrasmettere (relay) la propria comunicazione attraverso altri nodi wireless per comunicare con la stazione base: alcune reti di sensori e Wi-Fi mesh	
nessuna infrastruttura	senza stazione base, uno dei nodi può coordinare la trasmissione degli altri: <i>Bluetooth</i>	nessuna stazione base, i pacchetti possono dover essere ritrasmessi attraverso diversi nodi wireless prima di giungere a destinazione: mobile ad hoc networks (MANETs) e vehicular ad hoc network (VANET)	

Sommario

Introduzione

Wireless

- Collegamenti wireless e caratteristiche della rete
- WiFi: 802.11 wireless LAN
- Reti cellulari: 4G e 5G
- Bluetooth

Mobilità

- Gestione della mobilità: principi
- Gestione della mobilità: pratica
 - reti 4G/5G
 - Mobile IP
- Mobilità: impatto sui protocolli di livello superiore

Caratteristiche dei collegamenti wireless: attenuazione

- le radiazioni elettromagnetiche si attenuano (attenuation) quando attraversano determinati ostacoli (es., a causa dell'assorbimento e della diffusione)
- anche nello spazio libero l'intensità del segnale si attenua al crescere della distanza percorsa, per effetto della dispersione del segnale: attenuazione di spazio libero (free space path loss)

Caratteristiche dei collegamenti wireless: propagazione su più cammini

Propagazione su più cammini (multipath propagation): una parte del segnale si riflette su oggetti e sul terreno, giungendo a destinazione attraverso percorsi di lunghezza differente e quindi arrivando in momenti leggermente differenti.

Caratteristiche dei collegamenti wireless: propagazione su più cammini

Propagazione su più cammini (multipath propagation): una parte del segnale si riflette su oggetti e sul terreno, arrivando a destinazione in momenti leggermente diversi

Tempo di coerenza

- quantità di tempo in cui il bit è presente nel canale per essere ricevuto
- influenza la massima velocità di trasmissione possibile, poiché i tempi di coerenza non possono sovrapporsi

Caratteristiche dei collegamenti wireless: interferenze da parte di altre sorgenti

- frequenze wireless standard (es. 2,4 GHz usata da Wi-Fi e Bluetooth) condivise da altri dispositivi (es. telefoni cordless)
- rumore elettromagnetico ambientale (es. prodotto da motori, forni a microonde)
- per evitare queste interferenze, standard 802.11 recenti usando banda 5 GHz

Caratteristiche dei collegamenti wireless: interferenze da parte di altre sorgenti

- rapporto segnale-rumore (signal-to-noise ratio, SNR)
 - un SNR più grande facilita il ricevente nell'estrazione del segnale trasmesso (ma ricevuto degradato per l'attenuazione e i cammini molteplici) dal rumore di fondo
- tasso di errore sui bit (Bit error rate, BER)
 - semplificando: probabilità che un bit sia ricevuto in errore

Caratteristiche dei collegamenti wireless: interferenze da parte di altre sorgenti

- Bilanciamento di SNR e BER
 - per un dato schema di modulazione: aumentare la potenza -> aumentare lo SRN -> diminuisce il BER
 - trasmissioni a potenza maggiore implicano un maggiore consumo di energia (critico per dispositivi a batteria) e possono andare a interferire con altre trasmissioni
 - per un dato SNR, una tecnica di modulazione con più elevato tasso di trasmissione dei bit avrà un BER più alto
 - lo SNR può cambiare con la mobilità: adattare dinamicamente il livello fisico (tecnica di modulazione, tasso di trasmissione)

----- QAM256 (8 Mbps)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)

Caratteristiche dei collegamenti wireless: terminali nascosti

Problema del terminale nascosto

- B, A possono comunicare
- B, C possono comunicare
- A, C non possono comunicare tra loro ma possono causare (senza saperlo!) interferenza presso la destinazione B

Anche l'attenuazione causa "terminali

- B, A possono comunicare
- B, C possono comunicare
- A, C non possono comunicare ma causano interferenza presso B

Sommario

Introduzione

Wireless

- Collegamenti wireless e caratteristiche della rete
- WiFi: 802.11 wireless LAN
- Reti cellulari: 4G e 5G
- Bluetooth

Mobilità

- Gestione della mobilità: principi
- Gestione della mobilità: pratica
 - reti 4G/5G
 - Mobile IP
- Mobilità: impatto sui protocolli di livello superiore

Accesso multiplo a divisione di codice (Code Division Multiple Access, CDMA)

- Un "codice" unico viene assegnato a ciascun utente (code set partitioning)
 - tutti gli utenti condividono la stessa frequenza, ma ciascun utente ha una propria sequenza "chipping" (cioè il "codice") per codificare i dati
 - consente a più utenti di "coesistere" e trasmettere simultaneamente con un'interferenza minima (se i codici sono "ortogonali", cioè con prodotto scale nullo, ovvero $\vec{c^1} \cdot \vec{c^2} = 0$)

Tratteremo CDMA in maniera "semplificata", facendo una serie di assunzioni:

- rappresentare i bit 0 e 1 rispettivamente con i valori -1 e +1
- segnali provenienti dai diversi mittenti ricevuti con la stessa intensità
- sincronizzazione

Sotto queste assunzioni:

- **codifica:** il bit di dati d_i viene codificato come $d_i\vec{c}$: un singolo bit di dati viene codificato con M bit quanto è lungo il codice. Pertanto, il segnale codificato ha un tasso maggiore del segnale di dati originale.
- decodifica: raggruppa i bit ricevuti a M a M, quindi calcola il prodotto scalare tra ciascun gruppo e il codice del mittente di interesse, successivamente diviso per M

CDMA codifica/decodifica

... cosa accade se due nodi trasmettono simultaneamente?

CDMA: due trasmittenti

trasmittente 1

trasmittente 2

interferenza additiva tra i due segnali trasmessi

usando le stesso codice del trasmittente 1, il ricevitore recupera i dati originali del mittente 1 dai dati sommati del canale!

CDMA: due trasmittenti

trasmittente 1

trasmittente 2

Perché funziona?

$$\frac{1}{M}\overrightarrow{Z_i^*} \cdot \overrightarrow{c^1}$$

$$= \frac{1}{M} \left(\left(\left(d_i^1 \cdot \overrightarrow{c^1} \right) + \left(d_i^2 \cdot \overrightarrow{c^2} \right) \right) \cdot \overrightarrow{c^1} \right)$$

$$= \frac{1}{M} \left(\left(d_i^1 \cdot \overrightarrow{c^1} \right) \cdot \overrightarrow{c^1} + \left(d_i^2 \cdot \overrightarrow{c^2} \right) \cdot \overrightarrow{c^1} \right)$$

$$= \frac{1}{M} \left(d_i^1 \cdot \left(\overrightarrow{c^1} \cdot \overrightarrow{c^1} \right) + d_i^2 \cdot \left(\overrightarrow{c^2} \cdot \overrightarrow{c^1} \right) \right)$$

$$= \frac{1}{M} \left(d_i^1 M + d_i^2 O \right) = d_i^1$$

Sommario

Introduzione

Wireless

- Collegamenti wireless e caratteristiche della rete
- WiFi: 802.11 wireless LAN
- Reti cellulari: 4G e 5G
- Bluetooth

Mobilità

- Gestione della mobilità: principi
- Gestione della mobilità: pratica
 - reti 4G/5G
 - Mobile IP
- Mobilità: impatto sui protocolli di livello superiore

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Anno	Max data rate	Raggio	Frequenza
802.11b	1999	11 Mbps	30 m	2.4 GHz
802.11g	2003	54 Mbps	30m	2.4 GHz
802.11n (WiFi 4)	2009	600 Mbps	70m	2.4, 5 GHz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 GHz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 GHz
802.11af	2014	35 – 560 Mbps	1 Km	Bande televisive inutilizzate (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 MHz

 Tutti usano CSMA/CA per l'accesso multiplo ed hanno versioni con stazione base e rete ad hoc

Architettura delle LAN 802.11

- Gli host wireless comunicano con la stazione base
 - stazione base = punto di accesso, access point (AP)
- Basic Service Set (BSS) (detto anche "cella") in modalità infrastruttura contiene:
 - host wireless
 - punto di accesso (AP): stazione base
 - · modalità ad hoc: solo host

Wireless and Mobile Networks: 7-27

802.11: Canali

- spettro diviso in canali a frequenze differenti
 - AP admin sceglie le frequenze per il punto di accesso
 - possibili interferenze: il canale può essere lo stesso scelto dall'AP vicino!

- Canali non sovrapposti: separati da 4 o più canali
- Ne esistono 3
 - Possibilità di installare 3 AP nello stesso posto per avere un tasso aggregato pari al triplo del tasso di trasmissione nominale

802.11: Associazione

- host in arrivo: deve essere associato con un AP
 - scansiona i canali, in ascolto per i frame beacon inviati periodicamente dall'AP e contenenti il nome dell'AP (SSID) e l'indirizzo MAC
 - sceglie l'AP con cui associarsi
 - può autenticarsi
 - quindi tipicamente invia un messaggio di richiesta DHCP nella sottorete attraverso l'AP per ottenete un indirizzo IP nella sottorete

802.11: scansione passiva e attiva

- (1) frame beacon inviati dagli AP
- (2) invio di un frame di richiesta di associazione da H1 all'AP selezionato
- (3) invio di un frame di risposta di associazione dall'AP selezionato a H1

scansione attiva:

- (1) frame sonda di richiesta inviato in broadcast da H1
- (2) frame sonda di risposta inviato dagli AP
- (3) invio di un frame di richiesta di associazione da H1 all'AP selezionato
- (4) invio di un frame di risposta di associazione dall'AP selezionato a H1

IEEE 802.11: accesso multiplo

- evitare collisioni: 2⁺ nodi che trasmettono simultaneamente
- 802.11: CSMA ascolta il canale prima di trasmettere
 - non si verifica una collisione con la trasmissione rilevata di un altro nodo in corso
- 802.11: non rileva le collisioni!
 - difficile rilevare le collisioni: intensità del segnale trasmesso, debolezza del segnale ricevuto a causa dell'attenuazione
 - in ogni caso, non potrebbe rilevare tutte le collisioni: terminale nascosto, attenuazione
 - obiettivo: evitare le collisioni: CSMA/CollisionAvoidance

IEEE 802.11 Protocollo MAC: CSMA/CA

802.11 mittente fisicamente o in modo virtuale usando i valori di duration (vedi dopo)

1 se percepisce il canale inattivo per **DIFS** (Distributed Interframe Space) allora trasmette il frame per intero (no CD)

2 altrimenti, la trasmissione deve essere differita

- sceglie un valore di ritardo casuale, usando binary exponential backoff
- finché il timer non è zero:
 - aspetta che il canale sia libero per DIFS
 - decrementa il timer, al termine di uno slot in cui il canale è libero
- quando il timer raggiunge zero (può accadere solo se il canale è libero), trasmette il frame per intero
- se non riceve un ACK, incrementa l'intervallo di backoff, ripete il punto 2
- se riceve un ACK e ha altri dati trasmettere*, resetta l'intervallo di backoff e ripete il punto 2

802.11 destinatario

se il frame ricevuto è OK

invia un ACK (necessario a causa del problema del terminale nascosto) dopo **SIFS** (Short Inter-frame Spacing)

*può trasmettere una raffica di frammenti ciascuno dopo SIFS (entro un certo limite)

IEEE 802.11 Protocollo MAC: CSMA/CA

Fonte: https://support.huawei.com/enterprise/en/doc/EDOC1100410096/25772fc2

IEEE 802.11 Protocollo MAC: CSMA/CA

Si supponga che due nodi abbiamo frame da trasmettere, ma che entrambi percepiscano il canale occupato dalla trasmissione di un terzo nodo.

In CSMA/CD, i due nodi iniziano a trasmettere non appena percepiscono il canale libero, collidendo...ma il rilevamento delle collisioni interromperebbe presto entrambe le trasmissioni, riducendo lo spreco.

Quando non è possibile implementare il rilevamento delle collisioni, CSMA/CA cerca di evitarle: pertanto, i due nodi entrano in un processo di attesa casuale, che permette a uno dei due nodi iniziare a trasmettere, dando tempo all'altro di rilevarne il segnale e, quindi, congelare il proprio timer (in attesa che il canale diventi nuovamente libero).

Putroppo, le collisioni sono ancora possibili:

- terminale nascosto
- i tempi di attesa scelti dai due nodi sono sufficientemente vicini, per cui il segnale dell'uno non raggiunge l'altro nodo quando questo inizia a trasmettere perché anche il proprio timer si è azzerato

Evitare le collisioni (di più)

idea: consentire al mittente di "prenotare" il canale: si evitano così le collisioni anche durante l'invio di lunghi pacchetti di dati (opzionale, non viene sempre usato)

- il mittente invia prima un piccolo pacchetto request-to-send (RTS) all'AP usando CSMA
 - possono verificarsi collisioni tra i pacchetti RTS (ma sono comunque molto piccoli)
- AP risponde (dopo un SIFS) diffondendo in broadcast il pacchetto clear-to-send CTS in risposta al pacchetto ricevuto
- Il pacchetto CTS è ricevuto da tutti i nodi
 - il mittente invierà (dopo un SIFS) il pacchetto
 - gli altri nodi rimanderanno eventuali trasmissioni

Evitare le collisioni: scambio di pacchetti RTS-CTS

non essere il mittente iniziale)

Indirizzo 3 gioca un ruolo cruciale nell'internetworking tra un BSS e una LAN cablata

R1, che deve inoltrare un datagramma a H1, ne conosce l'indirizzo IP (dal datagramma), pertanto usa ARP per ottenere il suo MAC address: inconsapevole della presenza dell'AP

frame 802.11 WiFi

frame 802.11 WiFi

802.11: mobilità all'interno della stessa sottorete

siccome i due AP sono connessi da uno switch (anziché da un router), H1 rimane nella stessa sottorete: l'indirizzo IP può rimanere lo stesso

switch: con quale AP è associato H1?

- auto-apprendimento: lo switch vedrà frame da H1 e "ricorderà" quale porta può essere usata per raggiungere H1
- Il nuovo AP può inviare un frame Ethernet broadcast con mittente H1, affinché lo switch apprenda la nuova porta per raggiungere H1
- Lo standard 802.11f definisce un protocollo inter-AP che affronta questo e altri problemi

802.11: funzionalità avanzate

Adattamento del tasso trasmissivo

- La stazione base e la stazione mobile cambiano dinamicamente il tasso trasmissivo (tecnica di modulazione a livello fisico) come la stazione mobile si sposta e di conseguenza cambia l'SNR
 - 1. SNR cala BER aumenta quando il nodo si allontana dalla stazione base
 - 2. Quando il BER diventa troppo alto, passa un tasso trasmissivo inferiore ma con BER inferiore

802.11: funzionalità avanzate

Gestione dell'energia

- Nodo ad AP: "Sto per diventare inattivo fino al prossimo frame beacon"
 - AP sa che non deve trasmettere frame a questo nodo
 - il nodo si riattiva prima del successivo frame beacon
- frame beacon: contiene la lista dei nodi che devono ricevere frame in attesa sull'AP
 - il nodo rimane sveglio se devono essere inviati frame da AP a mobile; altrimenti dorme di nuovo fino al prossimo frame beacon