

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

grade 100%

Week 4 Quiz

✓ Correct

ATTERIOR COLOR			
LATEST SUBMISSION GRADE 100%			
	Using Image Generator, how do you label images? It's based on the directory the image is contained in You have to manually do it TensorFlow figures it out from the contents It's based on the file name	1/1 point	
2.	What method on the Image Generator is used to normalize the image? Rescale_image normalize rescale normalize_image	1/1 point	
	How did we specify the training size for the images? The training_size parameter on the training generator The target_size parameter on the validation generator The target_size parameter on the training generator The training_size parameter on the validation generator	1/1 point	
	✓ Correct		
4.	When we specify the input_shape to be (300, 300, 3), what does that mean? There will be 300 horses and 300 humans, loaded in batches of 3 Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers Every Image will be 300x300 pixels, with 3 bytes to define color There will be 300 images, each size 300, loaded in batches of 3	1/1 point	
	✓ Correct		
	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here? No risk, that's a great result You're overfitting on your training data You're underfitting on your validation data You're overfitting on your validation data	1/1 point	
	✓ Correct		
	Convolutional Neural Networks are better for classifying images like horses and humans because: In these images, the features may be in different parts of the frame There's a wide variety of horses There's a wide variety of humans All of the above	1/1 point	

7.	After reducing the size of the images, the training results were different. Why?	1 / 1 point
	There was less information in the images	
	○ The training was faster	
	There was more condensed information in the images	
	We removed some convolutions to handle the smaller images	
	✓ Correct	