TH Quiz 4 (Indian Buffet Process)

Due April 19, 2020 (11:59 pm)

1. Assume $\pi_1 \sim Poisson(\alpha_1)$ and $\pi_2 \sim Poisson(\alpha_2)$. Show that:

$$(\pi_1 + \pi_2) \sim Poisson(\alpha_1 + \alpha_2).$$

- 2. An Indian Buffet Process with parameter $\alpha = 4$ is running.
 - (a) $Z_{n,k}$ indicates the presence of k'th feature (dish) in n'th sample (customer). Find probability distribution for number of non-zero elements in the 1'st, 2'nd, and 20'th rows of Z.
 - (b) Implement IBP with $\alpha = 4$, run it for 1000 times (terminate after 20 customers entered) and then calculate $\sum_i Z_{1,i}$, $\sum_i Z_{2,i}$ and $\sum_i Z_{20,i}$. Plot the histogram of observed draws for these random variables in a chart. Do the results approve your calculations?
- 3. An improved version of IBP is introduced as two parameter IBP. The generative process of two parameter IBP is as follows:
 - First customer orders π_1 dishes; where $\pi_1 \sim Poisson(\alpha)$.
 - For all (n > 1), n'th customer do two things:
 - Taste each existing dish with probability $\frac{m_k}{\beta+n-1}$; where β is the second parameter and m_k is number of previous customers who have tasted k'th dish.
 - Order π_n new dishes; where $\pi_n \sim Poisson(\frac{\alpha\beta}{\beta+n-1})$
 - (a) Find probability distribution for the number of non zero elements in k'th row of Z matrix.
 - (b) Find probability distribution for total number of dishes after n customers visit this buffet.
 - (c) Implement two parameter IBP. Your implementation must include visualization of Z matrix for the first 50 customers. Run your implementation for all combinations of $\alpha \in \{5, 10, 20\}$ and $\beta \in \{1, 2, 4\}$. Visualize the results (Z matrices).
 - (d) Try to interpret effects of each parameter on the results.