

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

ELECTRÓNICA RÁPIDA

Projecto e Simulação de Misturadores para Altas Frequências

Guilherme Branco Teixeira n.º 70214 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Grupo n.º 2 de quarta-feira das 11h00 - 12h30

Índice

1	Inti	rodução	1
2	Mis	turador com oscilador local na base	1
	2.1	Dimensionamento dos componentes	1
	2.2	Ganho de transdução de conversão	3
	2.3	Espectros de potência	4
	2.4	Filtro de frequência intermédia	5
	2.5	Componentes da tensão V_{BE} e da corrente I_C	7
	2.6	Acoplador de Wilkinson	9
	2.7	Máscara para fabrico	15
3	Cor	nclusões	19

1 Introdução

Este laboratório tem como objectivo a familiarização com circuitos misturadores para altas frequências com componentes discretos. O projecto do circuito e a sua simulação são dois passos essenciais neste laboratório, tendo como objectivo final o projecto da máscara para fabrico.

As especificações do misturador a construir podem ser consultadas na Tabela 1, tal como as características do substrato plástico para alta frequência da Taconic (TLY -3-0310-CH/CH), sobre o qual o transístor irá ser implantado.

Especificação	Símbolo	Valor
Frequência do oscilador local	foL	1 GHz
Frequência intermédia	fFI	100 MHz
Tensão colector-emissor	Vce	2 V
Corrente colector	lc	55 mA
Resistências nos acessos	RRF, ROL e RIF	50 Ω
Potência disponível do gerador	cia disponível do gerador	
de rádio-frequência	ragkr	-20 dBm
Constante dieléctrica	٤r	3.2
Espessura do substrato	h	0.78 mm
Espessura da metalização	t	0.018 mm
Tangente de perdas	σ	0.007

Tabela 1: Características do misturador e substrato.

2 Misturador com oscilador local na base

2.1 Dimensionamento dos componentes

Numa primeira fase considera-se o circuito da Figura 1 sem filtro de frequência intermédia (FI) e sem malha de adaptação.

Figura 1: Misturador com oscilador local na porta.

PFR pretendido

Pretende-se determinar os valores das tensões de polarização V_{BB} e V_{CC} . Tal como referido na Tabela 1, as características do ponto de funcionamento em repouso (PFR) já estão pré-definidas, como o valor de V_{CE} e I_C . Assim, através de uma I_Probe e fazendo variar os valores de tensão que se pretende calcular, e possível obter os valores que estas tensões assumem quando se obtém o ponto de funcionamento em repouso desejado. Assim,

$$V_{BB} = V_{BE} = 0.72 \text{ V } e V_{CC} = 2 \text{ V},$$
 (2.1)

valores que foram retirados com recurso à seguinte simulação:

Figura 2: Valor do PFR da tensão V_{BE} .

Para determinar os valores referidos anteriormente, a simulação foi realizada com componentes ideais, nomeadamente as bobines de bloqueio e os condensadores de desacoplamento, no entanto, estes terão de ser dimensionados de modo a que os elementos reais realizem as suas funções sem perturbar o funcionamento do circuito.

Recorrendo às equações 2.2 e 2.3, é possível calcular os valores dos condensadores e bobines que respeitem as condições referentes às impedâncias características das linhas de transmissão.

No caso do condensador de desacoplamento DC, C_D , o seu valor tem de cumprir a condição especificada na equação 2.2, pois sabe-se que a impedância dos condensadores de desacoplamento deve ser bastante inferior à impedância característica das linhas de transmissão.

$$|Z_C| = \frac{1}{w_0 C_D} \langle \langle Z_0 \rangle \rightarrow C_D \rangle \frac{1}{w_0 Z_0 \times 0.1} \rightarrow C_D \rangle \frac{1}{5 \times w_0}.$$
 (2.2)

No caso da bobine de bloqueio, L_{CHK} , o seu valor tem de cumprir a condição especificada na equação 2.3, pois sabe-se que a impedância das bobines de bloqueio deve ser bastante superior à impedância característica das linhas de transmissão.

$$|Z_L| = w_0 L_{CHK} >> Z_0 \rightarrow L_{CHK} > \frac{Z_0 \times 10}{w_0} \rightarrow L_{CHK} > \frac{500}{w_0}.$$
 (2.3)

Assim, os valores obtidos para os componentes a dimensionar são:

$$C_1 > \frac{1}{5 \times 2\pi \times 1 \times 10^9} = 31.83 \text{ pF}; \ C_2 > \frac{1}{5 \times 2\pi \times 100 \times 10^6} = 318.3 \text{ pF};$$
 (2.4)

$$L_{CH1} > \frac{500}{2\pi \times 1 \times 10^9} = 79.58 \text{ nH}; \ L_{CH2} > \frac{500}{2\pi \times 100 \times 10^6} = 795.8 \text{ nH}.$$
 (2.5)

As condições dos valores do condensador C_1 e da bobine L_{CH1} foram calculadas com um valor de frequência de 100 MHz, correspondente à frequência f_{FI} , pois é esta a frequência esperada nesse ramo do circuito. Já as condições correspondentes ao condensador C_2 e à bobine L_{CH2} foram calculadas com um valor de frequência de 1 GHz, correspondente à frequência f_{OL} , pois é esta a frequência esperada nesse ramo do circuito. Foram escolhidos valores para estes componentes que correspondam a valores de mercado, tal como se pode consultar na Tabela 2.

Tabela 2: Valores utilizados para os condensadores de desacoplamento e bobines de bloqueio.

Componente	Valor
C1	33 pF
C ₂	330 pF
LcH1	82 nH
LCH2	820 nH

Relativamente à função destes componentes, a bobine de bloqueio serve para bloquear variações da fonte para o circuito RF, ou seja, desacoplar a componente AC, mas ao mesmo tempo serve para acoplar a componente DC. Já o condensador de desacoplamento efectua uma função inversa, ou seja, vai isolar a parte DC mas acoplar a componente AC.

2.2 Ganho de transdução de conversão

O circuito, agora com elementos reais, pode ser simulado. de acordo com o que se pode observar na Figura 3.

Figura 3: Circuito inicial com bobines e condensadores reais.

O ganho de transdução de um circuito, G_{TC} , é a relação entre a potência entregue à carga e a potência disponível no gerador. Havendo conversão, é necessário especificar qual a operação que se está a realizar - neste caso efectua-se uma diferença entre OL e RF para se ter FI, ou seja, o valor de f_{OL} é 1 GHz, f_{FI} é 100 MHz e f_{RF} é 900 MHz.

Simulando o circuito de forma a obter o gráfico do ganho de transdução de conversão vem:

Figura 4: Gráfico do ganho de transdução de conversão em função de $P_{\text{OLDISP}}(\omega_{OL})$

Ao observar a Figura 4 é possível determinar o valor de $P_{\text{OLDISP}}(\omega_{OL})$ para qual o ganho de

transdução de conversão é máximo, ou seja, 4.5 dBm. Este é o valor óptimo da potência disponível do oscilador local.

2.3 Espectros de potência

Recorrendo ao circuito projectado anteriormente obteve-se os espectros de potência no porto de RF e no porto de FI. Este espectros foram obtidos utilizando como referência o máximo do ganho de transdução, ou seja, esta simulação foi realizada com um valor fixo de $P_{\text{OLDISP}}(\omega_{OL})$.

Tabela 3: Valor óptimo de $P_{\text{OLDISP}}(\omega_{OL})$ numa situação em que o circuito não tem filtro.

Figura 5: Espectro de potência do porto RF (a) e do porto de FI (b), para um circuito sem filtro de FI.

A partir das figuras anteriores pode-se calcular os valores dos isolamentos OL - RF e OL - FI. O cálculo do isolamento OL - RF corresponde a ir ao porto de RF e ver quanto de OL chega até lá, já o cálculo do isolamento OL - FI corresponde a ir ao porto de FI e ver quanto de OL chega até lá, sendo que idealmente não chegaria nada, o isolamento seria $-\infty$, e o portos seriam perfeitos. Assim, o que se deve fazer é a diferença entre as componentes espectrais respectivas do isolamento que se está a considerar, ou seja, $I_{\text{OLRF}} = P_{\text{OLDISP}}(\omega_{OL}) / P_{\text{RF}}(\omega_{OL})$ e $I_{\text{OLFI}} = P_{\text{OLDISP}}(\omega_{OL}) / P_{\text{FI}}(\omega_{OL})$.

Tabela 4: Valores dos isolamentos numa situação em que o circuito não tem filtro.

sem filtro		
isolamento	valor do isolamento	
OL-RF	(1.786-(-26.804)) = 28.59 dB	
OL-FI	(17.415-(-5.172)) = 22.587 dB	

Como se pode ver, o isolamento OL-FI toma um valor longe do teórico de $-\infty$, ou seja, não existe um bom isolamento.

É também possível a partir dos espectros de potência calcular o valor do ganho de conversão, G_{PC} , que corresponde a $P_{\text{FI}}(\omega_{OL})/P_{\text{RF}}(\omega_{OL})$, ou seja, corresponde a subtrair a componente espectral da

frequência intermédia vista do porto de FI, -5.172 dBm, à potência disponível do gerador de RF, -20 dBm.

Tabela 5: Ganho de conversão numa situação em que o circuito não tem filtro.

2.4 Filtro de frequência intermédia

Tem-se como referência o valor da frequência f_{FI} , ou seja, $\omega_0 = 2\pi f_{FI}$ e um factor de qualidade do filtro de 10. Relativamente ao filtro passa-banda sabe-se que:

$$\omega_0 = \frac{1}{\sqrt{C_0 L_0}} e B = \frac{1}{R_{FI} C_0} e Q = \frac{\omega_0}{B}.$$
 (2.6)

Tendo em conta as expressões na equação 2.6, é possível determinar os componentes que compõem o filtro, Tabela 6.

Tabela 6: Componentes que compõem o filtro de FI.

Componente	Valor Teórico	Valor Experimental
Co	318.3 pF	330 pF
Lo	7.96 nH	8 nH

Mais uma vez, os valores resultantes de cálculos teóricos foram substituídos por valores que correspondem a componentes disponíveis no mercado, como se pode ver na tabela anterior quando se refere o valor experimental.

O circuito resultante após a integração do filtro dimensionado pode ser consultado na Figura 6.

Figura 6: Circuito após a inserção do filtro de FI.

Como se pode observar na Figura 6, a bobine de bloqueio L_{CH2} foi substituída pela bobine que compõe o filtro de FI, pois a bobine L_0 consegue desempenhar a função da bobine de desacoplamento e, ao mesmo tempo, usa-se uma bobine ao invés de duas, tendo assim diminuído as desvantagens causadas pela presença de bobines num circuito. De facto, poder-se-ia utilizar um filtro passa-baixo,

mas o filtro passa-banda tem a vantagem de ter a bobine em paralelo que permite "reciclar" a bobine L_{CH2} .

É possível agora comparar os gráficos do ganho de transdução de conversão, antes e depois de se acrescentar o filtro ao circuito, Figura 7.

Figura 7: Gráfico do ganho de transdução de conversão em função de $P_{\text{OLDISP}}(\omega_{OL})$, com filtro (a vermelho) e sem filtro (a azul).

Como se pode ver, o valor de $P_{\text{OLDISP}}(\omega_{OL})$ que maximiza o ganho de transdução de conversão passou de 4.5 dBm para 4 dBm.

Tabela 7: Valor óptimo de $P_{\text{OLDISP}}\left(\omega_{OL}\right)$ para dois estados diferentes do circuito.

É também possível obter os espectros de potência, à semelhança do que se fez para o caso em que não havia filtro.

Figura 8: Espectro de potência do porto RF (a) e do porto de FI (b), para um circuito com filtro de FI.

A partir das figuras anteriores pode-se calcular os valores dos isolamentos OL - RF e OL - FI.

Tabela 8: Valores dos isolamentos para dois estados diferentes do circuito.

sem filtro		
isolamento	valor do isolamento	
OL-RF	(1.786-(-26.804)) = 28.59 dB	
OL-FI	(17.415-(-5.172)) = 22.587 dB	

com filtro		
isolamento	valor do isolamento	
OL-RF	(-1.845-(-19.762)) = 17.917 dB	
OL-FI	(-11.438-0.707) = -12.145 dB	

O valor do isolamento OL-FI sofreu uma mudança drástica com a introdução do filtro, passando a ser negativo e estar mais próximo de $-\infty$, ou seja, é no momento que se introduz o filtro de FI que se passa a ter isolamento no porto de frequência intermédia, tal como se pretende.

Relativamente ao isolamento OL-RF, é expectável que o seu valor se mantenha aproximadamente inalterado. Apesar de ter variado 10 dB, esta é uma variação normal.

É também possível a partir dos espectros de potência calcular o valor do ganho de transdução de conversão, G_{PC} .

Tabela 9: Ganho de conversão para dois estados diferentes do circuito.

sem filtro ganho 14.828 dB com filtro ganho 20.707 dB

Como se pode ver, o ganho aumentou em cerca de 6 dB, ou seja, a introdução do filtro foi benéfica em vários níveis.

2.5 Componentes da tensão V_{BE} e da corrente I_C

O circuito foi projectado tendo como base um determinado PFR e pretende-se agora verificar se após a sua projecção se encontra de acordo com o pretendido. Para tal verificou-se o valor da tensão V_{BE} e da corrente I_C numa frequência de 0 GHz, ou seja, para a componente contínua.

Figura 9: Espectros de potência da corrente I_C em função de $P_{\text{OLDISP}(\omega_{OL})}$.

Figura 10: Espectros de potência da corrente V_{BE} em função de $P_{\text{OLDISP}(\omega_{OL})}$.

A corrente I_C para a qual o circuito foi dimensionado é de 55 mA, no entanto verifica-se que o valor verdadeiramente obtido para o PFR é de 73 mA. De facto, isto ocorre porque a corrente I_C é uma função de $P_{\text{OLDISP}}(\omega_{OL})$, ou seja, o circuito é na verdade dimensionado para uma corrente I_{CQ} (a componente contínua) mas depois no misturador passa para I_C . Este fenómeno é inevitável mas trabalha a nosso favor porque faz aumentar o ganho.

Relativamente ao valor de V_{BE} este já não é uma função de $P_{\text{OLDISP}}(\omega_{OL})$ porque o circuito foi polarizado em tensão, ou seja, o seu valor foi forçado. Assim se explica que o valor obtido corresponda ao dimensionado, 0.72 V.

Então, um "problema" que se verifica com os misturadores é que são dimensionados para um dado PFR que depois se revela ser maior.

Pretende-se agora obter as componentes da tensão v_{BE} e da corrente i_C nas frequências f_{OL} , f_{RF} e f_{FI} . Estas componentes foram calculadas para o valor fixo de $P_{\text{OLDISP}}(\omega_{OL})$, nomeadamente o máximo encontrado na Figura 7, 4 dBm.

freq	HB.Vbe POL=4.000	HB.I_Probe1.i POL=4.000
0.0000 Hz	0.720 / 0.000	0.162 / 0.000
100.0 MHz	0.033 / -90.797	0.009 / 18.937
900.0 MHz	0.026 / -110.746	0.017 / -99.371
1.000 GHz	0.394 / -24.734	0.174 / -91.957

Figura 11: Componentes da tensão v_{BE} e da corrente i_C nas frequências $f_{OL},\,f_{RF}$ e $f_{FI}.$

Pode-se também obter o valor do ponto de compressão a -1 dB do ganho de transdução de conversão, ou seja, registar o valor de potência de entrada para qual o ganho diminuiu 1 dB, ou seja, para quando o ganho é 19 dB.

Figura 12: Ponto de compressão a -1 dB do ganho de transdução de conversão.

Como se pode ver, o ponto de compressão a -1 dB é de 20 dBm.

2.6 Acoplador de Wilkinson

Malha de entrada adaptada

Utilizando as equações da Figura 13, é possível, na simulação do circuito, observar as impedâncias de de entrada de RF e de OL, Figura 14.

EqnZinOL=HB.vin[::,3]/HB.I_Probe2.i[::,3]

EqnZinRF=HB.vin[::,2]/HB.I_Probe2.i[::,2]

Figura 13: Equações das impedâncias de entrada de OL (em cima) e RF (em baixo).

Figura 14: Valores das impedâncias de entrada de OL (à direita) e RF (à esquerda).

Ao observar a Figura 14, é possível verificar que não há oscilações no valor de $Z_{\text{in}_{OL}}$ com a variação de $P_{\text{OLDISP}}(\omega_{OL})$. Verificando a Figura 7, o valor de $P_{\text{OLDISP}}(\omega_{OL})$ que corresponde ao máximo do ganho de transdução é 4 dBm. No entanto, nesta situação, ficar-se-ia com uma componente real negativa de $Z_{\text{in}_{RF}}$, sendo então necessário encontrar outro máximo do ganho de transdução, que corresponda a uma componente real positiva para $Z_{\text{in}_{RF}}$.

Figura 15: Gráfico do ganho de transdução de conversão em função de $P_{\text{OLDISP}}(\omega_{OL})$, sem filtro (a vermelho), com filtro (a roxo).

O novo valor encontrado para $P_{\text{OLDISP}}(\omega_{OL})$ na Figura 15 é de 3.5 e, como se pode verificar na Figura 14, representa um valor de $Z_{\text{in}_{RF}}$ cuja componente real é positiva, 2.191 -j14.026 Ω .

Recorrendo à ferramenta SmithChart do ADS é possível determinar que adaptação se deve realizar na malha de entrada. Em primeiro lugar é necessário normalizar o valor da impedância de entrada de RF, ou seja, dividir o seu valor pela impedância característica (50 Ω), de onde se obtém o valor 0.04382 - j0.28052, como se pode observar na Figura 16.

Figura 16: Cálculo da malha de adaptação.

Assim, foram alcançado novos valores para os componentes L_{CH1} e C_1 , que são apresentados na tabela seguinte.

Tabela 10: Valores dos elementos que compõem a malha adaptada.

Componente	Valor Teórico	Valor Experimental
C1	3.86 pF	3.9 pF
LcH1	2.223 nH	2.2 nH

Com esta alteração o gráfico de transdução sofreu alterações, como se pode observar na Figura 17.

Figura 17: Gráfico do ganho de transdução em função de $P_{\text{OLDISP}}(\omega_{OL})$ sem filtro (a vermelho), com filtro e sem malha de adaptação (a roxo), e com filtro e com malha de adaptação (a azul).

É possível verificar que, quando $P_{\text{OLDISP}}(\omega_{OL})$ é 0 dBm, obtém-se um ganho de transdução desejável, 0 dB. Pode-se também verificar que os valores das impedâncias de entrada de RF e OL mantêm-se estáveis, ou seja, não se verificam grandes oscilações.

POL	ZinRF	ZinOL
-5.000 -4.500 -4.500 -3.500 -3.500 -2.500 -1.500 -1.500 -0.500 -1.500 -1.500 -0.500 -1.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500	6 812 - 30 810 6 900 - 30 495 7 002 - 30 046 7 104 - 22 414 7 183 - 26 52 7 285 - 27 978 8 827 - 280 98 8 827 - 300 38 10 104 - 31 207 11 893 - 32 358 14 339 - 33 402 21 405 - 34 227 22 406 - 34 227 23 407 - 30 34 33 399 - 25 23 24 34 27 - 15 370 31 399 - 25 27 29 32 16 662 27 29 - 13 377 25 531 - 10 682	8.884 - 26.144 8.914 - 26.967 8.950 - 25.964 8.992 - 26.824 9.030 - 26.595 9.037 - 25.651 9.016 - 24.642 9.011 - 24.263 9.021 - 23.647 9.031 - 23.454 9.120 - 23.454 9.120 - 23.454 9.120 - 23.254 9.120

Figura 18: Valores das Impedâncias de entrada de OL (â direita) e RF (à esquerda) após da adaptação da malha de entrada.

Também para este caso em que se tem o filtro com a malha de entrada foram calculados os valores dos isolamentos OL - RF e OL - FI e do ganho de transdução de conversão.

Como se pode ver, o valor de $P_{\text{OLDISP}}(\omega_{OL})$ que maximiza o ganho de transdução de conversão passou de 4 dBm para 5 dBm.

Tabela 11: Valor óptimo de $P_{\text{OLDISP}}(\omega_{OL})$ para três estados diferentes do circuito.

De seguida apresentam-se os espectros de potência, à semelhança do que se fez para o caso em que não havia filtro.

Figura 19: Espectro de potência do porto RF (a) e do porto de FI (b), para um circuito com filtro de FI e com malha de entrada adaptada.

A partir das figuras anteriores pode-se calcular os valores dos isolamentos OL - RF e OL - FI.

Tabela 12: Valores dos isolamentos para três estados diferentes do circuito.

sem filtro		
isolamento valor do isolament		
OL-RF	(1.786-(-26.804)) = 28.59 dB	
OL-FI	(17.415-(-5.172)) = 22.587 dB	

com filtro	
isolamento	valor do isolamento
OL-RF	(-1.845-(-19.762)) = 17.917 dB
OL-FI	(-11.438-0.707) = -12.145 dB

	com filtro e com malha de entrada	
iso	olamento	valor do isolamento
	OL-RF	(2.480-(-22.435)) = 24.915 dB
	OL-FI	(-12.622-7.628) = -20.25 dB

A diferença registada no valor do isolamento OL - FI não é tão grande comparativamente à diferença registada com a introdução do filtro. No entanto, a adaptação da malha fez aumentar ainda mais o isolamento, tendendo cada vez para $-\infty$.

O valor do isolamento OL-RF continua de acordo com o esperado, ou seja, sem grande oscilações em torno do valor obtido sem filtro.

É também possível a partir dos espectros de potência calcular o valor do ganho de transdução de conversão, G_{PC} .

Tabela 13: Ganho de conversão para três estados diferentes do circuito.

sem filtro ganho 14.828 dB com filtro ganho 20.707 dB com filtro e com malha de entrada ganho 27.628 dB

Como se pode observar, a adaptação da malha de entrada fez aumentar o ganho em cerca de 7 dB.

Acoplamento de Wilkinson

Após a adaptação na malha de entrada, substituiu-se o elemento Pwr Split por um acoplador de Wilkinson, que foi dimensionado para a frequência f_{RF} .

Figura 20: Acoplador de Wilkinson correspondente a um bloco Pwr Split.

De modo a obter um power splitter que trabalhe na frequência de 900 MHz (f_{RF}) , os componentes apresentados na Figura 20 foram dimensionados de acordo com as Equações 2.7, 2.8 e 2.9.

$$L_s = \frac{Z_0}{2\pi f_{RF}} \tag{2.7}$$

$$C_{p_2} = 2C_{p_1} = \frac{2}{2\pi f_{RF} Z_0} \tag{2.8}$$

$$R_0 = 2Z_0 (2.9)$$

Os valores obtidos através das Equações 2.7, 2.8 e 2.9, e os valores usados no circuito para os componentes do acoplador de Wilkinson estão representados na tabela seguinte.

Tabela 14: Valores dos elementos que compõem o acoplador de Wilkinson.

Componente	Valor Teórico	Valor Experimental
C _{P1}	3.537 pF	3.6 pF
CP2	7.074 pF	6.8 pF
Ls	8.842 nH	8.7 nH
Ro	100 Ω	100 Ω

Após se colocar os componentes e obter o circuito total (filtro de FI, malha de entrada adaptada e acoplador de Wilkinson), representado na Figura 21, é possível obter o gráfico da do ganho de transdução, Figura 22.

Figura 21: Circuito final do misturador.

Figura 22: Gráfico do ganho de transdução em função de $P_{\text{OLDISP}}(\omega_{OL})$, sem acoplador de Wilkinson (a azul) e com acoplador de Wilkinson (a vermelho).

Como se pode observar na Figura 22, percebe-se que após a introdução do acoplador de Wilkinson no circuito, este perdeu ganho, no entanto continua a ter valores satisfatórios, tal como um máximo do ganho de transdução de 24.072 dBm para um valor de $P_{\text{OLDISP}}(\omega_{OL})$ de 2 dBm. Para valores de $P_{\text{OLDISP}}(\omega_{OL})$ aproximadamente entre 0.5 dBm e 6 dBm, tem-se um ganho de transdução maior que 0 dBm.

Para um valor de $P_{\text{OLDISP}}(\omega_{OL})$ de 2 dBm, correspondente ao valor óptimo, foi obtido o espectro de potências.

Tabela 15: Valor óptimo de $P_{\text{OLDISP}}(\omega_{OL})$ numa situação em que o circuito não tem filtro.

Com filtro e com malha de entrada
POLDISP(WOL)
5 dBm

Figura 23: Espectro de potência do porto RF (a) e do porto de FI (b), para um circuito com filtro de FI, com malha de entrada adaptada e com acoplador de Wilkinson.

A partir das figuras anteriores pode-se calcular os valores dos isolamentos OL - RF e OL - FI.

Tabela 16: Valores dos isolamentos para quatro estados diferentes do circuito.

sem filtro	
isolamento	valor do isolamento
OL-RF	(1.786-(-26.804)) = 28.59 dB
OL-FI	(17.415-(-5.172)) = 22.587 dB

com filtro	
isolamento valor do isolamento	
OL-RF	(-1.845-(-19.762)) = 17.917 dB
OL-FI	(-11.438-0.707) = -12.145 dB

	com filtro e com malha de entrada	
	isolamento	valor do isolamento
I	OL-RF	(2.480-(-22.435)) = 24.915 dB
[OL-FI	(-12.622-7.628) = -20.25 dB

com filtro, com malha de entrada e acoplador de wilkinson	
isolamento	valor do isolamento
OL-RF	(-6.116-(-19.596)) = 13.48 dB
OL-FI	(-17.079-4.072) = -21.151 dB

O valor do isolamento OL - FI não apresentou grandes variações face ao valor anterior, ficando o isolamento final do porto de FI a -21.151 dB, um valor claramente melhor do que obtido inicialmente sem filtro, 22.587 dB. Assim se percebe como introduzir o filtro de frequência intermédia, adaptar a malha de entrada e colocar um acoplador de Wilkinson pode melhor o isolamento.

É também possível a partir dos espectros de potência calcular o valor do ganho de conversão, G_{PC} .

Tabela 17: Ganho de conversão para quatro estados diferentes do circuito.

ganho	
ganho	
14.828 dB	

com filtro	
ganho	
20.707 dB	

com filtro e com malha de entrada		
ganho		
27.628 dB		

com filtro, com malha de entrada e acoplador de Wilkinson	
ganho	
24.072 dB	

Verifica-se que o ganho diminuiu em 3 dB face ao valor registado anteriormente. Esta diminuição é expectável, uma vez que não existem acopladores ideais e, no mínimo, todos têm 3 dB de perdas. Relativamente ao valor óptimo de $P_{\text{OLDISP}}(\omega_{OL})$, este sofreu um *shift* de 3 dB, pelo mesmo motivo. De notar, no entanto, que se esperava que o *shift* fosse no sentido contrário, ou seja, que $P_{\text{OLDISP}}(\omega_{OL})$ passasse para 8 dB, não se encontrando uma explicação para o fenómeno.

2.7 Máscara para fabrico

De modo a obter a máscara para fabrico do circuito é necessário em primeiro lugar obter, através da ferramenta Tune, o comportamento desejado do circuito, e posteriormente substituir os componentes por MGAP.

Linhas e Descontinuidades

Em primeiro lugar atribui-se a todas as linhas uma largura de 0.5mm e um comprimento de 1mm, usando depois a ferramenta Tune se necessário.

De referir que, ao contrário do trabalho laboratorial anterior, colocam-se linhas pequenas mas não faz diferença porque a frequência de trabalho é pequena quando comparada com o valor do comprimento de onda. Foram então predefinidos valores para as linhas - largura de 0.5 mm e comprimento de 1 mm.

Usando os elementos MLIN, MCROS e MTEE para substituir as linhas e descontinuidades com os valores predefinidos anteriormente, é possível simular o circuito e perceber que esta simulação não obtem resultados satisfatórios.

Recorreu-se à ferramenta Tune para regular os valores de comprimento das linhas e após um conjunto de ajustes realizados aos seus valores foi possível determinar os comprimentos das linhas que permitem obter o ganho de transdução desejado. o resultado desta simulação pode ser observado na Figura 24.

Figura 24: Gráfico do ganho de transdução em função de $P_{\mathrm{OLDISP}}\left(\omega_{OL}\right)$ após a utilização da ferramenta Tune.

Como se pode observar na Figura 24, apenas foi possível atingir um ganho de transdução de 20.978 dB, o facto de se substituir linhas ideais por microfitas reais é o maior responsável pela diferença entre o ganho de transdução obtido após a inserção do acoplador de Wilkinson e o ganho obtido agora.

O circuito usado para esta simulação, que contêm também os valores definitivos dos comprimentos das microfitas utilizadas está representado na Figura 25.

Figura 25: Circuito final com linhas e descontinuidades simuladas por microfitas.

Condensadores, Bobines e Transistor

Para substituir os condensadores e bobines por elementos MGAP foi, em primeiro lugar, realizada uma pesquisa para determinar quais os componentes a utilizar (pós-fabrico) como bobines e condensadores. As Figuras 26, 28, 29, 27 e 30 apresentam as dimensões de componentes que podem ser usados como as bobines e condensadores projectados para o circuito.

Figura 26: Dimensões do componente C0402-C0G da KEMET, utilizado para o condensador de 330 pF.

 $Figura~27:~Dimens\~oes~do~componente~GJM1555C1H6R8CB01~da~muRata,~utilizado~para~o~condensador~de~6.8~pF.$

Dimensions	
Length L	1.0mm±0.05mm
Width W	0.5mm±0.05mm
Thickness T	0.5mm±0.05mm
Electrode e	0.15 to 0.35mm
Electrode Gap g (mln.)	0.3mm

Figura 28: Dimensões do componente GRM1555C1H3R9CZ01 da JAMECO, utilizado para o condensador de 3.9 pF.

Figura 29: Dimensões do componente CDR31BP369BDYM-T&R da KEMET, utilizado para o condensador de 3.6 pF.

Figura 30: Dimensões de componentes pertencentes à LQW15A_00 Series da muRata usado para as bobines.

Os elementos MGAP têm duas dimensões - largura e espaço. Para determinar que valores atribuir a estes parâmetros é necessário manipular as dimensões fornecidas nas Figuras 26, 28, 29, 27 e 30. Para calcular a variável S (espaço) foi utilizada a equação 2.10.

$$S = L - 2e \tag{2.10}$$

Pode-se então definir as dimensões dos elementos MGAP para cada componente do circuito, valores estes dimensionados na tabela apresentada de seguida.

Tabela 18: Dimensões dos elementos MGAP para cada componente do circuito.

	Valor	S	W
Condensadores	330 pF	0.5 mm	0.5 mm
	6.8 pF	0.7 mm	0.5 mm
	3.9 pF	0.3 mm	0.5 mm
	3.6 pF	0.5 mm	1.25 mm
Bobines	8.7 nH	0.8 mm	0.6 mm
	8.2 nH	0.8 mm	0.6 mm
	2.2 nH	0.8 mm	0.6 mm

Com todos os componentes dimensionados é possível observar o circuito pré-layout, Figura 31. É possível reparar que a disposição do circuito foi modificada de modo a que o layout não apresentasse sobreposições.

O *layout* extraído do programa ADS pode ser observado na Figura 32, no entanto, na Figura 33 <u>é</u> possível observar o *layout* com informações detalhadas sobre a disposição dos componentes do circuito.

falta ainda fazer as brincadeiras com o colocar la elementos

Figura 31: Circuito que serve de base para a máscara de fabrico.

Figura 32: Máscara para fabrico do Misturador.

3 Conclusões

Foi projectado e simulado um misturador preparado para trabalhar a altas frequências utilizando a tecnologia de microfita. Tentou-se alcançar as especificações da Tabela 1, como o ponto de funcionamento em repouso (à parte do pormenor visto anteriormente de não se ter controlo sobre o valor de I_C).

Ao utilizar o ADS e as suas ferramentas, concluiu-se que é um programa de grande utilidade, e que o seu potencial é enorme para projectar circuitos que trabalhem em altas frequências.

Figura 33: Máscara para fabrico com indicações de montagem.