

Modélisation et contrôle numérique de systèmes dynamiques en agronomie Partie 5: Contrôle I

Module de Formation Continue Supagro Montpellier -Cursus Data Science -16-19 Janvier 2018, Montpellier, France

Céline Casenave

¹INRA UMR INRA-SupAgro MISTEA, Montpellier, France

16-19/01/2018

Objectif: contrôler, commander, piloter un système = donner au système le comportement souhaité

Comportements souhaités: par exemple,

- atteinte d'une certaine valeur (régulation). Ex: radiateur.
- poursuite d'une quantité variable. Ex: missile.
- stabilisation/destabilisation d'un système instable/stable. Ex: prolifération de nuisibles.

Contraintes: par exemple,

- contraintes sur les valeurs des entrées (saturations),
- temps de réaction pas trop long,
- oscillations faibles,
- minimisation de la consommation d'énergie, etc.

Entrées u:

- = actionneurs
- = commandes

Entrées u:

- = actionneurs
- = commandes

Sorties y:

- sorties contrôlées, c'est à dire ce que l'on veut contrôler
- sorties mesurées, c'est à dire ce que l'on mesure

Entrées u:

- = actionneurs
- = commandes

Sorties y:

- sorties contrôlées, c'est à dire ce que l'on veut contrôler
- sorties mesurées, c'est à dire ce que l'on mesure

Question: quelle commande *u* choisir pour obtenir le comportement de y souhaité?

expression de u = **loi de commande**

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

Informations visuelles sur la sortie y

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

Informations visuelles sur la sortie y

 \Longrightarrow

Comparaison avec la sortie désirée y*

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

Informations visuelles sur la sortie y

Comparaison avec la sortie désirée v*

Ajustement de la commande u

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

 $\begin{array}{ccc} \text{Informations visuelles} & \Longrightarrow & \text{Comparaison avec} & \Longrightarrow & \text{Ajustement de} \\ \text{sur la sortie y} & \Longrightarrow & \text{Ia sortie désirée y}^* & \Longrightarrow & \text{Ia commande u} \end{array}$

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

 $\begin{array}{ccc} \text{Informations visuelles} & \Longrightarrow & \text{Comparaison avec} \\ \text{sur la sortie y} & \Longrightarrow & \text{Ia sortie désirée y}^* & \Longrightarrow & \text{Ia commande u} \end{array}$

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

 $\begin{array}{ccc} \text{Informations visuelles} & \Longrightarrow & \text{Comparaison avec} & \Longrightarrow & \text{Ajustement de} \\ \text{sur la sortie y} & \Longrightarrow & \text{Ia sortie désirée y}^* & \Longrightarrow & \text{Ia commande u} \end{array}$

Exemple: pilotage d'une voiture

Loi de commande boucle fermée

= Comportement d'un conducteur

 $\begin{array}{ccc} \text{Informations visuelles} & \Longrightarrow & \text{Comparaison avec} \\ \text{sur la sortie y} & \Longrightarrow & \text{Ia sortie désirée y}^* & \Longrightarrow & \text{Ia commande u} \end{array}$

Boucle de régulation naturelle: exemple de la régulation de la température du corps.

Objectif: maintenir un réservoir à un volume V_c constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Objectif: maintenir un réservoir à un volume V_c constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Modèle du réservoir

hauteur d'eau: *h* aire de la base: *b*

$$\frac{dV}{dt} = d$$

Objectif: maintenir un réservoir à un volume V_c constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Modèle du réservoir

hauteur d'eau: h aire de la base: b

$$\frac{d(b \times h)}{dt} = d$$

Objectif: maintenir un réservoir à un volume $V_{\rm C}$ constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Modèle du réservoir

hauteur d'eau: h aire de la base: b

$$b \times \frac{dh}{dt} = d$$

Objectif: maintenir un réservoir à un volume V_c constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Modèle du réservoir

hauteur d'eau: *h* aire de la base: *b*

$$\frac{dh}{dt} = \frac{d}{b}$$

Objectif: maintenir un réservoir à un volume V_c constant.

Entrée u: débit d > 0 d'une pompe qui puise dans la nappe fréatique pour alimenter le réservoir

Modèle du réservoir

hauteur d'eau: *h* aire de la base: *b*

volume d'eau: $V = b \times h$

$$\frac{dh}{dt} = \frac{d}{b}$$

Condition initiale: h(0) = 0

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$\frac{dh}{dt} = \frac{d}{b}$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$\int_0^T \frac{dh}{dt}(s)ds = \int_0^T \frac{d(s)}{b}ds$$

(simulation avec
$$b = 9$$
, $V_c = 90$, $d_{max} = 2$)

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$h(T) - h(0) = \int_0^T \frac{d_{max}}{b} ds$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$h(T) = T \frac{d_{max}}{b}$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$T = \frac{h(T) \times b}{d_{max}}$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d}{b}$$

avec
$$h(0) = 0$$

Commande boucle ouverte

débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec:

$$T = \frac{V_c}{d_{max}}$$

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d + p - c}{b}$$

avec h(0) = 0débit de précipitations: pdébit de prélevement des agriculteurs: c

Commande boucle ouverte débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec
$$T = \frac{V_c}{d_{max}}$$
.

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d + p - c}{b}$$

avec h(0) = 0débit de précipitations: pdébit de prélevement des agriculteurs: c

Commande boucle ouverte débit maximum: d_{max}

$$d(t) = \begin{cases} d_{max} \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$$

avec
$$T = \frac{V_c}{d_{max}}$$
.

(simulation avec b = 9, $V_c = 90$, $d_{max} = 2$) Non robuste aux perturbations

Exemple d'illustration Remplissage d'un réservoir pour l'irrigation

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d + p - c}{b}$$

avec h(0) = 0débit de précipitations: pdébit de prélevement des agriculteurs: c

Commande boucle fermée

$$d = \alpha b(h_c - h)$$

avec
$$h_c = \frac{V_c}{b}$$
 et $\alpha > 0$.

Exemple d'illustration Remplissage d'un réservoir pour l'irrigation

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d + p - c}{b}$$

avec h(0) = 0débit de précipitations: pdébit de prélevement des agriculteurs: c

Commande boucle fermée

$$d = \alpha b(h_c - h)$$
avec $h_c = \frac{V_c}{b}$ et $\alpha > 0$.

 \Rightarrow Dynamique boucle fermée: $\frac{dh}{dt} = \alpha(h_C - h) + \frac{p-c}{h}$

Exemple d'illustration Remplissage d'un réservoir pour l'irrigation

Modèle du réservoir

$$\frac{dh}{dt} = \frac{d+p-c}{b}$$

avec h(0) = 0débit de précipitations: pdébit de prélevement des agriculteurs: c

Commande boucle fermée

$$d = \alpha b(h_c - h)$$

$$d = \frac{V_c}{V_c} \text{ at } \alpha > 0$$

avec
$$h_c = \frac{V_c}{b}$$
 et $\alpha > 0$.

(simulation avec
$$b = 9$$
, $V_c = 90$, $d_{max} = 2$)

 \Rightarrow Dynamique boucle fermée: $\frac{dh}{dt} = \alpha(h_c - h) + \frac{p-c}{b}$

Comment trouver une loi de commande? Different types de lois de commande

Lois de commande statiques:

$$u = f(y^* - y^m)$$

2 lois de commande classiques:

• loi de commande "bang-bang" ou "tout ou rien":

$$u(t) = \begin{cases} u_{max} \text{ si } y^* - y^m(t) > 0 \\ u_{min} \text{ si } y^* - y^m(t) \leqslant 0 \end{cases}$$

• Loi de commande proportionnelle:

$$u(t) = u_c + K_p(y^* - y^m(t))$$

Comment trouver une loi de commande? Different types de lois de commande

Lois de commande statiques:

$$u = f(y^* - y^m)$$

Lois de commande dynamiques:

$$\frac{du}{dt} = f(u, y^* - y^m)$$

Exemple:

Loi de commande Proportionnel Intégrale Dérivée (PID):

$$u(t) = u_{c} + K_{p}(y^{*} - y^{m}(t)) + K_{i} \int_{0}^{t} (y^{*} - y^{m}(s)) ds + K_{d} \frac{d(y^{*} - y^{m})}{dt}(t)$$

Comment trouver une loi de commande? Different types de lois de commande

Lois de commande statiques:

$$u=f(y^*-y^m)$$

$$u=f(x,y^*)$$

Lois de commande dynamiques:

$$\frac{du}{dt} = f(u, y^* - y^m)$$

$$\frac{du}{dt} = f(u, x, y^*)$$

Retour de sortie

Retour d'état

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

Réaction

biomasse: B / substrat: S

$$S \xrightarrow{B} E$$

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

entrée

Réaction

biomasse: B / substrat: S

$$S \xrightarrow{B} B$$

Taux de croissance:

$$\mu(S) = \frac{\mu^* S}{K_S + S + \frac{S^2}{K_I}}$$

avec
$$1-4\frac{\kappa_{S}}{\kappa_{I}}<0$$

Débits d'entrée et de sortie

$$Q_{in} = Q_{out} = Q$$

Réacteur alimenté par un milieu de concentration *S*ⁱⁿ en *S* et sans bactéries

 $\frac{Q}{S}(S+B)$

Exemple: culture de micro-organismes Problématique

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

Problème: contrôler S en utilisant la commande Q

Valeur à atteindre: S^*

Exemple: culture de micro-organismes Problématique

Croissance d'une population de micro-organismes B sur un substrat S dans un réacteur continu à volume V constant.

Problème: contrôler *S* en utilisant

la commande Q

Valeur à atteindre: S^*

Modèle:

biomasse: B / substrat: S

$$\begin{cases}
\frac{dB}{dt} = \mu(S)B - \frac{Q}{V}B \\
\frac{dS}{dt} = -k\mu(S)B + \frac{Q}{V}(S^{in} - S)
\end{cases}$$

avec
$$\mu(S) = rac{\mu^* S}{\mathcal{K}_S + S + rac{S^2}{\mathcal{K}_I}}$$

Question 1: quelle est la valeur Q^* de Q telle qu'un point d'équilibre stable du système soit donné par (S_{eq}, B_{eq}) avec $S_{eq} = S^*$?

Question 1: quelle est la valeur Q^* de Q telle qu'un point d'équilibre stable du système soit donné par (S_{eq}, B_{eq}) avec $S_{eq} = S^*$?

Mais avant

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

Question 1: quelle est la valeur Q^* de Q telle qu'un point d'équilibre stable du système soit donné par (S_{eq}, B_{eq}) avec $S_{eq} = S^*$?

Mais avant

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

⇒ Calcul des points d'équilibre stables du système!

Solutions de:

$$\begin{cases}
\frac{dB}{df} = 0 \\ \frac{dS}{df} = 0
\end{cases}
\iff (S) \begin{cases}
(\mu(S) - \frac{Q}{V})B = 0 \\
-k\mu(S)B + \frac{Q}{V}(S^{in} - S) = 0
\end{cases}$$

En supposant que Q > 0 (donc non nul) on a:

$$(S) \iff \begin{cases} B = 0 \\ \frac{Q}{V}(S^{in} - S) = 0 \end{cases} \text{ ou } \begin{cases} \mu(S) = \frac{Q}{V} \\ \mu(S)(S^{in} - S - kB) = 0 \end{cases}$$
$$\iff \begin{cases} B = 0 \\ S = S^{in} \end{cases} \text{ ou } \begin{cases} \mu(S) = \frac{Q}{V} \\ B = \frac{S^{in} - S}{k} \end{cases}$$

Maximum en
$$S = \sqrt{K_s K_l}$$
 car $\mu'(S) = \frac{\mu^*}{\left(K_S + S + \frac{S^2}{K_l}\right)^2} \left(K_S - \frac{S^2}{K_l}\right)$

$$\begin{array}{l} \text{Maximum en } S = \sqrt{\textit{K}_{\text{S}}\textit{K}_{\text{I}}} \\ \text{car } \mu'(\textit{S}) = \frac{\mu^*}{\left(\textit{K}_{\text{S}} + \textit{S} + \frac{\textit{S}^2}{\textit{K}_{\text{I}}}\right)^2} \left(\textit{K}_{\text{S}} - \frac{\textit{S}^2}{\textit{K}_{\text{I}}}\right) \end{array}$$

2 solutions si
$$0 \leqslant \frac{Q}{V} < \mu(\sqrt{K_s K_l})$$
 (1 solution si $\frac{Q}{V} = \mu(\sqrt{K_s K_l})$)

2 solutions si
$$0 \leqslant \frac{Q}{V} < \mu(\sqrt{K_s K_l})$$

 $\left(1 \text{ solution si } \frac{Q}{V} = \mu(\sqrt{K_s K_l})\right)$

0 solution si
$$\frac{Q}{V} > \mu(\sqrt{K_s K_l})$$

Résolution de l'équation $\mu(S) = \frac{Q}{V}$:

$$\mu(S) = \frac{Q}{V} \iff \frac{\mu^* S}{K_S + S + \frac{S^2}{K_I}} = \frac{Q}{V}$$

$$\Leftrightarrow \mu^* S = \left(K_S + S + \frac{S^2}{K_I}\right) \frac{Q}{V}$$

$$\Leftrightarrow \left[\frac{Q}{V} K_S + \left(\frac{Q}{V} - \mu^*\right) S + \frac{Q}{V} \frac{S^2}{K_I} = 0\right]$$

• pour $0 < Q < V \frac{\mu^*}{1+2\sqrt{\frac{K_S}{K_I}}} = V \mu(\sqrt{K_S K_I})$, deux solutions (racines)

 S_1 et S_2 telles que $0 \leqslant S_1 \leqslant \sqrt{K_S K_I} \leqslant S_2$

• pour $Q > V \frac{\mu^*}{1+2\sqrt{\frac{K_s}{K_l}}} = V \mu(\sqrt{K_s K_l})$, pas de solution.

Bilan: 3 points d'équilibre :

•
$$E_0 = (B, S) = (0, S^{in})$$
 (lessivage)

•
$$E_1 = (B, S) = (\frac{S^{in} - S_1}{k}, S_1)$$

•
$$E_2 = (B, S) = (\frac{S^{in} - S_2}{k}, S_2)$$

Bilan: 3 points d'équilibre / stabilité locale :

- $E_0 = (B, S) = (0, S^{in})$ (lessivage) stable ssi $\frac{Q}{V} > \mu(S^{in})$
- $E_1 = (B, S) = (\frac{S^{in} S_1}{k}, S_1)$ stable
- $E_2 = (B, S) = (\frac{S^{in} S_2}{k}, S_2)$ instable

Bilan: 3 points d'équilibre / stabilité locale :

•
$$E_0 = (B, S) = (0, S^{in})$$
 (lessivage) stable ssi $\frac{Q}{V} > \mu(S^{in})$

•
$$E_1 = (B, S) = (\frac{S^{in} - S_1}{k}, S_1)$$
 stable

•
$$E_2 = (B, S) = (\frac{S^{in} - S_2}{k}, S_2)$$
 instable

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

Réponse:
$$S^* \in \left[0, \sqrt{K_S K_I}\right] \cup \left\{S^{in}\right\}$$
 puisque seuls E_0 et E_1 sont stables et $0 \leqslant S_1 \leqslant \sqrt{K_S K_I}$

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

Réponse:
$$S^* \in \left[0, \sqrt{K_S K_I}\right] \cup \left\{S^{in}\right\}$$
 puisque seuls E_0 et E_1 sont stables et $0 \leqslant S_1 \leqslant \sqrt{K_S K_I}$

Question 1: quelle est la valeur Q^* de Q telle qu'un point d'équilibre stable du système soit donné par (S_{eq}, B_{eq}) avec $S_{eq} = S^*$?

Question 2: Quelles sont les valeurs S^* que l'on peut atteindre avec une valeur Q^* de Q constante et positive?

Réponse:
$$S^* \in \left[0, \sqrt{K_S K_I}\right] \cup \left\{S^{ln}\right\}$$
 puisque seuls E_0 et E_1 sont stables et $0 \leqslant S_1 \leqslant \sqrt{K_S K_I}$

Question 1: quelle est la valeur Q^* de Q telle qu'un point d'équilibre stable du système soit donné par (S_{eq}, B_{eq}) avec $S_{eq} = S^*$?

Réponse:
$$Q^* = V\mu(S^*)$$

Limitation des valeurs atteignables avec la boucle ouverte

• Cas où $S^* = 0.7 < \sqrt{K_S K_I} = 1$

Consigne atteinte

Limitation des valeurs atteignables avec la boucle ouverte

Consigne atteinte

Consigne non atteinte

Debit

120 140

Non robuste aux perturbations

Erreur sur la commande appliquée:

$$D_{\text{r\'eel}} = D_{\text{calc}}(1+\delta)$$

Ici avec $\delta = 0.1$ et $S^* = 0.7 < \sqrt{K_S K_I} = 1$:

Exemple: culture de micro-organismes Commande boucle fermée: action proportionnelle

Loi de la forme:
$$Q(t) = V\mu(S^*) + K_p(S^* - S^m(t))$$

• Cas où
$$S^* = 0.7 < \sqrt{K_S K_I} = 1$$

Consigne atteinte

Exemple: culture de micro-organismes Commande boucle fermée: action proportionnelle

Loi de la forme: $Q(t) = V\mu(S^*) + K_p(S^* - S^m(t))$

• Cas où
$$S^* = 0.7 < \sqrt{K_S K_I} = 1$$

Consigne atteinte

• Cas où
$$S^* = 1.2 > \sqrt{K_S K_I} = 1$$

Consigne atteinte aussi

Exemple: culture de micro-organismes Commande boucle fermée: action proportionnelle

Loi de la forme: $Q(t) = V\mu(S^*) + K_p(S^* - S^m(t))$

Erreur sur la commande avec $\delta = 0.1$ et $S^* = 1.2 > \sqrt{K_S K_I} = 1$:

⇒ Non robuste aux perturbations

Exemple: culture de micro-organismes

Commande boucle fermée: action intégrale

Loi de la forme:
$$Q(t) = V\mu(S^*) + K_p(S^* - S^m(t)) + K_i \int_0^t (S^* - S^m(s))$$

• Cas où
$$S^* = 0.7 < \sqrt{K_S K_I} = 1$$

Consigne atteinte

Exemple: culture de micro-organismes Commande boucle fermée: action intégrale

Loi de la forme:
$$Q(t) = V\mu(S^*) + K_p(S^* - S^m(t)) + K_i \int_0^t (S^* - S^m(s))$$

• Cas où $S^* = 0.7 < \sqrt{K_S K_I} = 1$

Consigne atteinte

Consigne atteinte aussi

Exemple: culture de micro-organismes Commande boucle fermée: action intégrale

Loi de la forme:
$$Q(t) = V\mu(S^*) + K_p(S^* - S^m(t)) + K_i \int_0^t (S^* - S^m(s))$$

Erreur sur la commande avec $\delta = 0.1$ et $S^* = 1.2 > \sqrt{K_S K_I} = 1$:

⇒ Robuste aux perturbations

Exemple: culture de micro-organismes Commande boucle fermée: action dérivée

Loi de la forme:

$$u(t) = u_c + K_p(y^* - y^m(t)) + K_i \int_0^t (y^* - y^m(s)) ds + K_d \frac{d(y^* - y^m)}{dt}$$

Erreur sur la commande avec $\delta = 0.1$ et $S^* = 1.2 > \sqrt{K_S K_I} = 1$:

