Processus discrets

Partiel

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prises en compte.]

Dans la suite $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace de probabilité fixé et muni d'une filtration $(\mathcal{F}_n)_{n \geq 0}$. Sauf indication explicite tout processus adapté ou martingale sont réfères à la filtration $(\mathcal{F}_n)_{n \geq 0}$.

Exercice 1.

a) Soit X une v.a. positive et intégrable et $\mathcal G$ une sous-tribu de $\mathcal F$. Montrer que pour tout a>0

$$\mathbb{P}(X \geqslant a | \mathcal{G}) \leqslant \frac{\mathbb{E}[X | \mathcal{G}]}{a}.$$

b) Soit $X \sim \mathcal{N}(0,1)$. Calculer $\mathbb{E}[X^3|X^2]$.

Exercice 2. Soit $\mathcal{G} \subseteq \mathcal{F}$ une sous-tribu de \mathcal{F} et A un événement tel que $A \notin \mathcal{G}$. Soit $\mathcal{H} = \sigma(\mathcal{G}, A)$ c-à-d la plus petite tribu qui contienne \mathcal{G} et $\sigma(A) = \{\emptyset, \Omega, A, A^c\}$. On admettra que tout $Z \in \mathcal{H}$ s'écrit dans la forme $Z = Y_1 \mathbb{I}_A + Y_2 \mathbb{I}_{A^c}$ où Y_1, Y_2 sont des v.a. \mathcal{G} -mesurables. Montrer que, pour tout $X \in L^1(\mathcal{F})$:

$$\mathbb{E}[X|\mathcal{H}] = \frac{\mathbb{E}[X \, \mathbb{I}_A | \mathcal{G}]}{\mathbb{E}[\mathbb{I}_A | \mathcal{G}]} \, \mathbb{I}_A + \frac{\mathbb{E}[X \, \mathbb{I}_{A^c} | \mathcal{G}]}{\mathbb{E}[\mathbb{I}_{A^c} | \mathcal{G}]} \, \mathbb{I}_{A^c}.$$

Par simplicité on peut supposer que $0 < \mathbb{E}[\mathbb{I}_A | \mathcal{G}] < 1$ p.s.

Exercice 3.

- a) Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{E}[X_n]=0$ et $\mathbb{E}[X_n^2]=c<+\infty$. Soit $S_n=X_1+\cdots+X_n$. Montrer que $(S_n^2-c\ n)_{n\geqslant 1}$ est une martingale par rapport à la filtration naturelle des $(X_n)_{n\geqslant 1}$.
- b) Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. indépendantes, intégrables et de moyenne nulle. Montrer que le processus $M_n = \sum_{k=1}^n X_1 \cdots X_k$ est une martingale par rapport à la filtration naturelle des $(X_n)_{n\geqslant 1}$.
- c) Montrer que si $(X_n)_{n\geqslant 1}$ et $(Y_n)_{n\geqslant 1}$ sont deux sous-martingales et si $Z_n = \max(X_n, Y_n)$ alors $(Z_n)_{n\geqslant 1}$ est une sous-martingale.
- d) Soit $T: \Omega \to \mathbb{N} \cup \{+\infty\}$ un temps d'arrêt et $(X_n)_{n\geqslant 0}$ un processus adapté. Soit $X_n^T = X_{n\wedge T}$ le processus arrêté en T. Montrer qu'il existe un processus prévisible et positif $(H_n)_{n\geqslant 1}$ tel que

$$X_n^T = X_0 + (H \cdot X)_n = X_0 + \sum_{k=1}^n H_k \Delta X_k \quad \text{pour tout } n \geqslant 0.$$

Exercice 4.

a) Soit $(X_n)_{n\geqslant 0}$ un processus adapté à valeurs dans \mathbb{R} . Montrer que $T=\inf\{n\geqslant 0\colon X_n\geqslant 10\}$ est un temps d'arrêt.

b) Montrer que si $(T_n: \Omega \to \mathbb{N} \cup \{+\infty\})_{n \geqslant 1}$ est une suite de temps d'arrêt alors la variable aléatoire $T = \sup_{n \geqslant 1} T_n$ est un temps d'arrêt.

Exercice 5. Soit $(X_n)_{n\geqslant 1}$ une suite iid de v.a. de loi $\mathbb{P}(X_n=-1)=\mathbb{P}(X_n=+1)=1/2$. On considère la marche aléatoire simple $S_n=1+X_1+\cdots+X_n$ qui démarre de 1 et $T=\inf\{n\geqslant 0:S_n=0\}$ le premier temps d'atteinte de 0. Le but de l'exercice est de montrer que T est fini p.s. mais non intégrable.

- a) Soit $(S_n^T)_{n\geqslant 0}$ le processus arrêté en T. Montrer que $(S_n^T)_{n\geqslant 0}$ converge p.s.
- b) En déduire que T est fini p.s. (indication: montrer que $S_n^T S_{n+1}^T$ tend vers 0 p.s.)
- c) La suite $(S_n^T)_{n\geq 0}$ converge-t-elle dans L^1 ?
- d) Montrer que T n'est pas intégrable (indication: raisonner par l'absurde)

Exercice 6. Soient $(X_n)_{n\geqslant 0}$ et $(Y_n)_{n\geqslant 0}$ deux martingales et T un temps d'arrêt fini p.s. On définit le processus $(Z_n)_{n\geqslant 0}$ par

$$Z_n = X_n \mathbb{I}_{n \leqslant T} + Y_n \mathbb{I}_{n > T}$$

- a) Montrer que si $X_T = Y_T$ p.s alors $(Z_n)_{n \ge 0}$ est une martingale.
- b) Montrer que si $\mathbb{P}(X_T=Y_T)<1$ alors il existe $n\geqslant 0$ tel que $\mathbb{P}(X_n< Y_n,\, T=n)>0$ ou $\mathbb{P}(X_n>Y_n,\, T=n)>0$.
- c) En déduire que si $(Z_n)_{n\geqslant 0}$ est une martingale alors $X_T=Y_T$ p.s.