COM1033 FOUNDATIONS OF COMPUTING II

Jim S. Lam

February 7, 2024

Contents

1	Vec	tors	
	1.1	Vector	Definition
			Operations
		1.2.1	Addition
		1.2.2	Scalar Multiplication
		1.2.3	Dot Product / Scalar Product
		1.2.4	Linear Combination
		1.2.5	Linear Dependence
		1.2.6	Exercises

1 Vectors

1.1 Vector Definition

Let $n \in \mathbb{N}$ and n > 0.

The set of all vectors is the cartesian product of \mathbb{R} by n times, which is a set of ordered n-tuples of real numbers.

$$\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}$$

1.2 Vector Operations

1.2.1 Addition

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{pmatrix} a+d \\ b+e \\ c+f \end{pmatrix}$$

1.2.2 Scalar Multiplication

$$\lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda b \\ \lambda c \end{pmatrix}$$

1.2.3 Dot Product / Scalar Product

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} d \\ e \\ f \end{pmatrix} = (a \cdot d) + (b \cdot e) + (c \cdot f)$$

1.2.4 Linear Combination

Let $\lambda_1, \lambda_2, ..., \lambda_n$ be *n* scalars, and $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ be *n* vectors.

$$\vec{w} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + \dots + \lambda_n \vec{v_n}$$

 \vec{w} is a linear combination of $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ using the scalars $\lambda_1, \lambda_2, ..., \lambda_n$.

1.2.5 Linear Dependence

Let there be n vectors of the same dimension.

If the null vector \vec{o} can be expressed as linear combination of the n vectors as defined, using non null scalars.

In other words, the n vectors are linearly dependent if:

$$\vec{w} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + ... + \lambda_n \vec{v_n} \mid \exists \lambda_1, \lambda_2, ..., \lambda_n \neq 0, 0, ..., 0$$

1.2.6 Exercises

Question 1: Sum the following vectors $\in \mathbb{R}^3$:

$$\vec{v_1} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$$

Calculate the product $\lambda \vec{v_1}$ with $\lambda=2$

$$\lambda \vec{v_1} = \begin{pmatrix} 6\\10\\-8 \end{pmatrix}$$

Question 2

$$\vec{u} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$
$$\vec{u}\vec{v} = 3 \cdot 2 + 5 \cdot 2 + -4 \cdot 4$$
$$= 6 + 10 - 16$$
$$= 0$$

Question 3

$$\vec{v_1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \quad \vec{v_2} = \begin{pmatrix} 0\\2\\2 \end{pmatrix} \quad \vec{v_3} = \begin{pmatrix} 1\\6\\5 \end{pmatrix} \tag{1}$$

when:
$$\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -1$$
 (2)

$$\lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + \lambda_3 \vec{v_3} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (3)

Question 4:

Let $v_1, v_2, ..., v_n$ be n linearly independent vectors. Consider the set of scalers $\lambda_1, \lambda_2, ..., \lambda_n$ such that $\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n = 0$. Find alternative sets of the scalers.

Just multiply all the scalars by a common scaling factor, let's say μ

Question 5:

 a_3 is on the same line