Chapter 8

Some Special Functions Selected Exercise

SUNG JAE HYUK

Junior in Korea university Majoring in computer science & mathematics Email: okaybody10@korea.ac.kr

List of Exercise

1	Lemma .																4
1	Exercise																5
2	Exercise																7
3	Exercise																8
11	Exercise																9
13	Exercise																10
14	Exercise																11
22	Exercise																12

Lemma 1. Let $P_n(x)$ be set of polynomials of degree 3n+1. Suppose f(x) = e^{-1/x^2} for $x \neq 0$, then

$$\lim_{x \to 0} g\left(\frac{1}{x}\right) f(x) = 0$$

where $g \in P_n(x)$.

Proof. Let $x = \frac{1}{t}$. It is easy to show that

$$\lim_{x \to 0} g\left(\frac{1}{x}\right) f(x) = 0$$

if and only if

$$\lim_{t\to\infty}g(t)f\left(\frac{1}{t}\right)=\lim_{t\to-\infty}g(t)f\left(\frac{1}{t}\right)=0$$

using $\varepsilon - \delta$ argument.

So, we will show that $\lim_{t\to\infty} g(t)f\left(\frac{1}{t}\right) = L$.

As $\lim_{t\to\infty}\left\{t^{3n+2}-g(t)\right\}=\infty$, there exists C>0 such that $|g(t)|\leq C\,t^{3n+2}$ for all t>0.

$$\begin{split} |g(t)| & \leq C\,t^{3n+2} \Leftrightarrow -C\,t^{3n+2} \leq g(t) \leq C\,t^{3n+2} \\ & \Leftrightarrow -C\,t^{3n+2}e^{-t^2} \leq g(t)f\left(\frac{1}{t}\right) \leq C\,t^{3n+2}e^{-t^2} \\ & \Rightarrow \lim_{t \to \infty} -C\,t^{3n+2}e^{-t^2} \leq \lim_{t \to \infty} g(t)f\left(\frac{1}{t}\right) \leq \lim_{t \to \infty} C\,t^{3n+2}e^{-t^2} \end{split}$$

By squeeze theorem, $\lim_{t\to\infty}g(t)f\left(\frac{1}{t}\right)=0$. The case $t\to-\infty$ is analogous, and proof is completed.

Exercise 1. Define

$$f(x) = \begin{cases} e^{-1/x^2} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Prove that f has derivatives of all orders at x = 0, and that $f^{(n)}(0) = 0$ for $n = 1, 2, 3, \ldots$

Proof. Let $f(x) = e^{-1/x^2}$ for all $x \neq 0$, and f(0) = 0. Then, we are enough to show that

$$f^{(n)}(x) = \begin{cases} f(x)Q_n(x) & (x > 0) \\ 0 & (x = 0) \end{cases}$$

where $P_n(x)$ a polynomial function of degree n, and $Q_n(x) = P_{3n}\left(\frac{1}{x}\right)$ fulfills the recursive definition

$$Q_0(x) = 1$$

$$Q_n(x) = \frac{2}{x^3} Q_{n-1}(x) + Q'_{n-1}(x)$$

Let us use mathematical induction.

It is easy to show when n = 1.

Assume n = k is true.

Then, $f^{(k+1)}(x)$ is well-defined for $x \neq 0$.

More Specifically,

$$f^{(k+1)}(x) = \left\{ e^{-1/x^2} \right\}' Q_k(x) + e^{-1/x^2} \left\{ Q_k(x) \right\}'$$

$$= \frac{2}{x^3} e^{-1/x^2} Q_k(x) + e^{-1/x^2} Q'_k(x)$$

$$= e^{-1/x^2} \left\{ \frac{2}{x^3} Q_k(x) + Q'_k(x) \right\}$$

$$= e^{-1/x^2} Q_{k+1}(x)$$

$$= f(x) Q_{k+1}(x)$$

So if we show $f^{(k+1)}(0) = 0$, then we can say that $f^{(k+1)}$ is also differentiable for $x \in \mathbb{R}$.

By definition,

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{f^{(k)}(x)}{x} \qquad (\because f^{(k)}(0) = 0)$$

$$= \lim_{x \to 0} f(x) \frac{Q_k(x)}{x}$$

$$= \lim_{x \to 0} f(x) P_{3k+1} \left(\frac{1}{x}\right) \qquad (\because Q_k(x) = P_{3k} \left(\frac{1}{x}\right))$$

$$= 0 \qquad (\because \text{By Lemma 1})$$

Hence $f^{(k+1)}(0) = 0$, $f^{(k+1)}$ is also differentiable for $x \in \mathbb{R}$. By the principle of mathematical induction, f(x) is infinitely differentiable for $x \in \mathbb{R}$. **Exercise 2.** Let a_{ij} be the number in the *i*th row and *j*th column of the array

so that

$$a_{ij} = \begin{cases} 0 & (i < j), \\ -1 & (i = j), \\ 2^{j-i} & (i > j). \end{cases}$$

Prove that

$$\sum_{i} \sum_{j} a_{ij} = -2, \qquad \sum_{j} \sum_{i} a_{ij} = 0.$$

Proof. First, fix i, and define $\sum_{j} a_{ij} = b_i$. By definition, $a_{ij} = 0$ if i < j, we are enough to calculate the value for $i \ge j$. As $a_{ij} = 2^{j-i}$ if i > j,

$$b_i = \sum_{i=1}^{i-1} 2^{j-i} - 1 = \frac{2^{1-i}(2^{i-1} - 1)}{2 - 1} - 1 = -2^{1-i}.$$

Thus

$$\sum_{i} \sum_{j} a_{ij} = \sum_{i} b_{i} = \sum_{i} -2^{1-i} = -2.$$

In the same way, fix j, and define $\sum_i a_{ij} = c_j$. Then,

$$c_j = \sum_{i=j+1}^{\infty} 2^{j-i} - 1 = \frac{1/2}{1 - 1/2} - 1 = 1 - 1 = 0.$$

Thus,

$$\sum_{j} \sum_{i} a_{ij} = \sum_{j} c_j = 0.$$

Exercise 3. Prove that

$$\sum_{i} \sum_{j} a_{ij} = \sum_{j} \sum_{i} a_{ij}$$

if $a_{ij} \ge 0$ for all i and j (the case $+\infty = +\infty$ may occur).

Proof. First, x

Exercise 11. Suppose $f \in \mathcal{R}$ on [0, A] for all $A < \infty$, and $f(x) \to 1$ as $x \to +\infty$. Prove that

$$\lim_{t \to 0} t \int_0^\infty e^{-tx} f(x) \, dx = 1 \qquad (t > 0).$$

Proof. Note that $f \in \mathcal{R}$ on [0, A] for all $A < \infty$, so we don't guarantee about existence of $\int_A^\infty f(x)dx$.

Also we can guarantee about $\int_0^A |f(x)| dx$, let assume this value k. Since $h(x) = e^{-tx}$ be strictly increasing function for every t > 0,

$$\left| \int_0^A e^{-tx} f(x) dx \right| \le \int_0^A e^{-tx} |f(x)| dx \le e^{-tA} \int_0^A |f(x)| dx = ke^{-tA}$$

by Theorem 6.12(b), 6.13.

By above, we can easily know that

$$\lim_{t \to 0} t \int_0^A e^{-tx} f(x) dx = 0,$$

so if we show that $\lim_{t\to 0} \int_A^\infty e^{-tx} f(x) dx$ exists, which value is 1, proof is completed.

Let $\varepsilon > 0$ given.

Since $f(x) \to 1$ as $x \to \infty$, there exists t s.t. $|f(x) - 1| \le \varepsilon$ for all $x \ge t$. Letting A = t, then $1 - \varepsilon \le f(x) \le 1 + \varepsilon$ for all x > A, and $f \in \mathcal{R}$ on [0, A]. Also $h(x) = e^{-tx}$ goes to 0 as $x \to \infty$ for t > 0, $\int_a^\infty Kte^{-tx}dx$ well defined, and value is Ke^{-ta} . Thus $1 - \varepsilon \le f(x) \le 1 + \varepsilon$ for every x > A,

$$(1 - \varepsilon)e^{-tA} \le \int_{A}^{\infty} te^{-tx} f(x) dx \le \overline{\int_{A}^{\infty}} te^{-tx} f(x) dx \le (1 + \varepsilon)e^{-tA}$$
 (1)

Letting $t \to 0$, e^{-tA} goes to 1, so left and right side on equation (1) goes to $1 - \varepsilon$ and $1 + \varepsilon$, respectively.

This shows that $\int_a^b te^{-tx} f(x)dx = 1$, and completes the proof.

Exercise 13. Put f(x) = x if $0 \le x < 2\pi$, and apply Parseval's theorem to conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Proof.

Exercise 14. If $f(x) = (\pi - |x|)^2$ on $[-\pi, \pi]$, prove that

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx$$

and deduce that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Proof.

Exercise 22. If α is real and -1 < x < 1, prove Newton's binomial theorem

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^{n}.$$

Hint: Denote the right side by f(x). Prove that the series converges. Prove that

$$(1+x)f'(x) = \alpha f(x)$$

and solve this differential equation.

Show also that

$$(1-x)^{-\alpha} = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha)}{n! \, \Gamma(\alpha)} x^n$$

if -1 < x < 1 and $\alpha > 0$.

Proof.