CIS 475 - INTRODUCTION TO CRYPTOGRAPHY EXAM 2 - Spring 2021 75 minutes

Provide solutions to any two problems listed below.

1. In the ELGAMAL public key crypto system with P =227, Bob uses the smallest odd generator g for Z_p^* , and the secret exponent a = 8. Compute the values of g and the public half mask H. One morning Bob receives a ciphertext from Alice containing the sequence (85,53), where the half mask is the first element and cipher is the second. What is the ASCII character that Alice sent to Bob? Show all your work including the modular inverse computation.

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	æ	096	
001	0	SOH	033	1	065	A	097	α
002	•	STX	034	**	066	В	098	ь
003	♥	ETX	035	#	067	C	099	С
004	♦	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&r	070	F	102	f
007	(beep)	BEL	039	1	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	I	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	- 1	077	M	109	m
014	,r	SO	046		078	N	110	n
015	.⇔	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	р
017		DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	MARCO	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	х
025	į	EM	057	9	089	Y	121	У
026	·	SUB	058	:	090	Z	122	z
027	←	ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	i
029	(cursor left)	GS	061		093	1	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	~
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

- 2. In the ELGAMAL ELLIPTIC CURVE crypto system, Bob uses the curve $y^2 = x^3 + 3x 1$ modulo q = 23. As his generator Bob uses the point G = (2,6) and as the secret multiplier he used the constant N = 4. This determines Bob's half mask $H_B = 4*G = (14,5)$. Bob then published his public keys (q, a, b, G, H_B) . One evening Bob receives from Alice the pair of points C = (5,1) and $H_A = (21,13)$, where C is the cipher and C is the half mask.
 - a. Show how Bob recovers the full mask F from the half mask H_A . What is the value of F?
 - b. Show how Bob recovers the plaintext M form C and F. What is the value of M?
- 3. Bob wants to use Goldwasser Micali crypto system and wants to generate public keys and private keys.
 - a. Help Bob in generating these keys for prime p = 2173. Basically what are private and public keys.
 - b. Also help Alice encrypt the Ascii character z (lower case). Basically what is the cipher that Alice will send Bob.