VLSI DESIGN FLOW: RTL TO GDS

Lecture 30 Power Optimizations

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Lecture Plan

Overview of power-driven optimizations

Strategies for Reducing Power Dissipation

 $P_{tot} = C_L V_{DD}^2 \alpha f_{clk} + V_{DD} I_{SC} + V_{DD} I_{leak}$ where,

- V_{DD} = supply voltage
- C_L = load capacitance
- f_{clk} = frequency of the clock in the circuit
- α = activity of the signal

Power saving strategies:

- Reduce supply voltage
- Reduce clock frequency
- Reduce activity of the signal
- Reduce load capacitance

Dynamic Voltage Frequency Scaling (DVFS)

- Utilizes the strategy of reducing supply voltage and clock frequency
- Popular technique employed in processors:
 - > Exploit variations in workload to save energy
 - > Full speed of a processor is utilized by only a few tasks or for a small time duration.
 - For the remaining period, the deadlines can be met at low speed and consuming significantly less energy

Illustration:

- Consider a processor that can perform a task in 10 ms at 1.2 GHz and 1.2 V.
- Let us reduce the clock frequency and the supply voltage to half (600 MHz, 0.6 V),
 - > Task will now complete in double the original time, i.e., 20 ms.
 - \triangleright Will reduce the switching power dissipation by 1/8 ($P_{tot} \propto V_{DD}^2 f_{clk}$)
 - \triangleright Will reduce the energy consumption by 1/4

Power Gating

Utilizes the strategy of eliminating supply voltage

Power Gating:

- Switch off the power supply for a block
- Effective technique to tackle both static and dynamic components of power dissipation.
- Requires a careful circuit design and inserting specially designed circuit elements.

Power Gating: Circuit Elements

Circuit Elements

- Switch Cell
- Retention Cell
- Isolation Cell

Clock Gating

Utilizes the strategy of reducing activity

Assume that there is a set of *N* flip-flops that captures new data conditionally

- Shut off the clock when that condition is false
- Save power in charging/discharging capacitors in the clock network, including flip-flops
- Find enabling condition of clocking

Simple AND of EN and CLK will lead to glitch

Clock Gating: Integrated Clock Gater

Integrated Clock Gater (ICG)

 Logic gate with an enable signal so that clock is propagated when the EN = 1

- Latch (negative sensitive) allows EN to propagate only when CLK is low
- When CLK is high, Latch (LT) output is stable and glitch cannot propagate

Resizing

- Resize cells to reduce power dissipation
 - > For example, we can use smaller cells in the noncritical path of a circuit
 - > Reduce the power dissipation due to the reduced load capacitances

References

S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: *Cambridge University Press*, 2023.

