ECE/MAE 5310

Laplace Transfer we Examples P. 1055

Example with numbers

Laplace Transform of (s+2)c(s) = tz(s)

$$(5+2)c(5) = tz(5)$$

$$G(5) = \frac{C(5)}{72(5)} = \frac{1}{5+2}$$

Note that we can easily make the impot what we want it to be. Let's chaose ECS) as a unit step ECS)= 1

then
$$C(G) = 12(G) = 11$$

 $S+2 = 5(G+2)$

That's all well and good but what is clt)?

Laplace Treus form Ex

P.2- of 5

We have spent last two or so weeks reviewing and learning about finding models of physical systems.

We typically want to arrive at a transfer function of general form

$$\frac{C(6)}{IZ(5)} = K \frac{(6+Z_1)(5+Z_2)(5+Z_3)...(5+Z_n)}{(5+P_2)(5+P_3)...(5+P_m)}$$
 where $-Z_n$ are the zeroes where $-P_m$ are the poles a constant $(-C(5))$

If we choose an input (or if the problem forces one on us) we can find the system time response

taking the inverse Laplace transform (Via partial fraction expansion or other method).

Laplace Transfer Examples P. 3 of 5

Example

$$C(5) = \frac{10}{5(5+10)(5+1)} = \frac{A}{5} + \frac{B}{5+10} + \frac{C}{5+1}$$

$$= \frac{1}{5} + \frac{1/9}{5+10} + \frac{-10/9}{5+1}$$

Let's take a qualitative look at this equation. We may get to stay in the complex plane longer if we know what is going on here.

The exponential torms 'time constant' form, $e^{-t/c}$. $e^{-t/1}$ $e^{-t/1}$ $e^{-t/1}$ $e^{-t/1}$ $e^{-t/1}$ The exponential forms e lot and et can be written in

$$\begin{array}{c} \downarrow \\ \chi_1 = 0.15 \end{array} \qquad \begin{array}{c} \downarrow \\ \chi_2 = 1.5 \end{array}$$

Laplace Transform Examples

It instructive to examine the sizes of these p.4-of5 exponential terms as integral numbers of time constants pass

Since the time constants are integer multiples of each other let's choose t = . I (one I constant) (

.2 (two tz constants)

. 3

.

1.0

Then let's look at the relative sizes of the exponential terms

t	0	- 1	- 2	, 3	.4	-5	.6	. 7	.8
et/.		.37		. 05	» OD	.007	. 003		.0003
et/i		•9	.82	×74	ACT TO THE PARTY OF THE PARTY O	.61		,5	.45

Treffect ~ 3% of Tz effect

Laplace Transfer in Exemples

As you can see after 4τ , $(.4s)e^{-.4/.1}$ is very p.50f5 small, and $e^{-.4/1}$ is ~ 30 times as large,

What conclusions can you draw from this fact?

- (1) The effects of the (5+10) term diminish rapidly,
- (2) The transient response is dominated by the C term, 5+1

Let's look at a pole-zero map of our transfer function G(s) in the splane

where are the poles of G(s)? where are the zeroes of G(s)?

Can you form a conclusion about dominant pole locations?