UE11 Topologie Quizz 1

$\label{eq:correction} \begin{tabular}{ll} Correction. \\ \textit{Vrai. A priori une intersection infinie d'ouverts peut ne pas être ouverte, mais ici cet intersection est vide, donc ouverte \\ \end{tabular}$
Vrai \square Faux \square $]0,1[\times]0,1[\times\{0\}\subset\mathbb{R}^3$ CORRECTION. Faux, tout boule centrée en un point de cet ensemble contient des points de troisième coordonnée non nulle, donc hors de l'ensemble
3) Soit X un espace métrique, et $A \subset B \subset X$.
Vrai \Box Faux \Box $\bar{A} \subset \bar{B}$ Correction. Vrai : \bar{B} est un fermé qui contient B , donc A , donc il contient le plus petit fermé qui contient A .
Vrai \square Faux \square $\partial A \subset \partial B$ Correction. Faux : Considérer par exemple [0, 1] et [0, 2]
(•) Vrai \square Faux \square Un ensemble discret est d'intérieur vide. Correction. Vrai pour les espaces métriques avec lesquels on a l'habitude de travailler, comme $\mathbb R$ (muni de la distance canonique) : une partie discrète de $\mathbb R$ ne peut contenir aucune boule ouverte, elle est donc d'intérieur vide. Mais faux en général : on peut considérer par exemple l'espace métrique $X = \mathbb N$, qui est discret, mais aussi ouvert comme espace métrique, donc d'intérieur égal à lui-même. Autre contre-exemple : dans n'importe quel ensemble muni de la métrique discrète, toute partie est à la fois discrète et ouverte, donc d'intérieur égal à elle-même.
4) Suites
Vrai \square Faux \square Une suite convergente sur $\mathbb R$ est bornée Correction. $Vrai$
Vrai \square Faux \square Une suite bornée sur $\mathbb R$ est convergente CORRECTION. Faux, exemple $(-1)^n$
$(ullet)$ Vrai \square Faux \square Une suite sur $\mathbb R$ peut admettre une infinité de valeurs d'adhérence Correction. Vrai, considérer par exemple une énumération des rationnels, tout réel est valeur d'adhérence de la suite.
Vrai \square Faux \square Une partie K finie d'un espace métrique est toujours compacte. Correction. Vrai : une suite dans K visite nécessairement une infinité de fois au moins l'un des points de K . On peut aussi considérer un recouvrement par des ouverts, il suffit pour chaque point d'en

garder un qui contient le point en question, on obtient ainsi un recouvrement par N ouverts au plus, où N est le cardinal de l'ensemble.
Vrai \square Faux \square Une partie finie d'un espace métrique est toujours complète .
Correction. Vrai : toute suite de Cauchy est stationnaire sur l'un des points de l'ensemble au delà d'un certain rang
Vrai \Box Faux \Box L'image réciproque d'un compact par une application continue est compacte.
Correction.
Faux : considérer par exemple la fonction $f: \mathbb{R} \longrightarrow e^x$, on a $f^{-1}([0,1]) =]-\infty, 0]$, qui n'est pas compact car non borné.