#### 3. Panel data

LPO 8852: Regression II

Sean P. Corcoran

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2025

# Matching and weighting recap

Matching and weighting approaches seek to construct a comparison group where the conditional independence assumption is satisfied:

$$Y(0), Y(1) \perp \!\!\!\perp D|X$$

That is, conditional on X (or a one-number summary like the propensity score), potential outcomes are independent of treatment status D. If this holds, we can use mean outcomes of the matched or weighted comparison group as a stand-in for the treated group counterfactual.

$$\underbrace{E[Y(0)|D=1,X]}_{\text{unobserved}} = \underbrace{E[Y(0)|D=0,X]}_{\text{matched comparison group}}$$

### Matching and weighting recap

#### Challenges:

- The conditional independence assumption (selection on observables) is strong! In most settings we have to be concerned about selection on unobservables.
- Constructing weights or matched samples is somewhat of an art, and results may be sensitive to model specification.
- We are typically comparing outcomes at one point in time (e.g., post "treatment").
- Matching/weighting designed for binary treatments (or at least a small number of categorical treatments). What if the "treatment" is continuous (e.g., class size)?

Last update: September 25, 2025

| Coran | Lecture 3 3 / 110

Panel data: definitions and Stata commands

#### Panel data

Panel, longitudinal, or "cross-sectional time series" data consist of observations on cross-sectional units (e.g., students, schools, hospitals, neighborhoods, counties, states) at multiple points in time.

- N cross-sectional (panel) units and T time periods ( $T \ge 2$ )
- A balanced panel has exactly N × T observations (T time observations for all N panel units)
- An unbalanced panel has  $T_i$  observations for panel unit i, where  $T_i$  is not the same for all i

Differs from a *pooled cross-section*, although panel data methods can often be used with this type of data.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202

### Panel data - long

Panel data in *long* format, N students in T=4 years:

| studentID | year | readscore  | mathscore | incomecat |  |
|-----------|------|------------|-----------|-----------|--|
| 1         | 1999 | 75         | 82        | 3         |  |
| 1         | 2000 | 78         | 84        | 4         |  |
| 1         | 2001 | 80         | 90        | 4         |  |
| 1         | 2002 | <i>7</i> 8 | 91        | 3         |  |
| 2         | 1999 | 91         | 92        | 2         |  |
| 2         | 2000 | 94         | 92        | 2         |  |
| 2         | 2001 | 80         | 85        | 2         |  |
| 2         | 2002 | 87         | 83        | 2         |  |
| 3         | 1999 | 62         | 50        | 5         |  |
| 3         | 2000 | 70         | 47        | 5         |  |
| 3         | 2001 | 75         | 55        | 4         |  |
| 3         | 2002 | 73         | 60        | 5         |  |

#### Panel data - wide

Panel data in wide format, N students in T=4 years:

| studentID | read99 | math99 | inc99 | read00 | math00 | inc00 | read01 |  |
|-----------|--------|--------|-------|--------|--------|-------|--------|--|
| 1         | 75     | 82     | 3     | 78     | 84     | 4     | 80     |  |
| 2         | 91     | 92     | 2     | 94     | 92     | 2     | 80     |  |
| 3         | 62     | 50     | 5     | 70     | 47     | 5     | 75     |  |
| 4         |        |        |       |        |        |       |        |  |

100 0050 (6 )

Lecture

Last update: September 25, 2025

## Panel data - reshape long

Moving between *long* and *wide* format in Stata with reshape, beginning with *wide* data:

- i() contains the time invariant variables (e.g., ID, gender)
- j() specifies the time variable to be created (e.g., year)
- The list of time varying variables are "stubs" that end in the j suffix

reshape long stubnames, i(varlist) j(varname)

- If j() consists of string rather than numeric values, use the string option
- Example time-varying variable names: score98, score99, score00
  (Stata will have problems with 00 as a j() value if string option is not used).

### Panel data - reshape wide

Moving between *long* and *wide* format in Stata with reshape, beginning with *long* data:

- i() contains the time invariant variables (e.g., ID, gender)
- j() specifies the time variable (e.g., year)
- The list of time varying variables are "stubs" that will end in the j suffix, once converted to wide

reshape wide stubnames, i(varlist) j(varname)

- After reshaping, Stata allows you to revert back easily without losing information. E.g., after the above command just type reshape long
- Most panel regression commands expect the data to be in long format.

Last update: September 25, 2025

LPO 8852 (Corcoran) Lecture 3 9/110

### In-class example 1

Illustration of reshape commands using Census\_states\_1970\_2000 data:

- Cross sectional unit: state
- Time variable: year (decennial Census years)
- Time-varying variables: median household income, unemployment rate

### Stata panel commands

Stata has many useful xt commands for working with panel data. Typically these require that you first declare the data to be a panel using xtset:

- xtset panelvar timevar
- The panelvar must be numeric. If it is not, you can use encode: encode panelvar, gen(panelvar2)
- It is possible to tell Stata in the xtset options what units of time the data represent—e.g., years, quarters, minutes (may be useful for some purposes—I don't usually do this)
- xtset alone will report back the current panel settings

Last update: September 25
LPO 8852 (Corcoran) Lecture 3 11/110

### Stata panel commands

Other useful Stata panel data commands for description:

- xtdescribe—to see patterns of participation/data availability
- xtsum—for descriptive statistics that show between- and within-unit variation
- xttab—for one-way tabulations with separate counts within and between units
- xttrans—for transition probabilities (movement between categories of a categorical variable)
- xtline and xtline, overlay—for separate line graphs by panel unit (see in-class example)

### Stata panel commands

Other useful Stata commands when working with panels:

- duplicates report varnames—to affirm that there is one only observation per unit per time period (e.g., id year)
- isid varnames—same: affirms that combinations of varnames uniquely identify the observations

I PO 8852 (Corcoran)

Lecture 3

Last update: September 25, 2025

#### xtsum

Decomposition of variation in xtsum:

$$s_w^2 = \frac{1}{NT - 1} \sum_{i} \sum_{t} (X_{it} - \bar{X}_i)^2$$
$$s_b^2 = \frac{1}{N - 1} \sum_{i} (\bar{X}_i - \bar{X})^2$$
$$s_o^2 = \frac{1}{NT - 1} \sum_{i} \sum_{t} (X_{it} - \bar{X})^2$$

Note  $\bar{X}$  is the grand mean of X. Can also write:

$$s_w^2 = \frac{1}{NT - 1} \sum_{i} \sum_{t} (X_{it} - \bar{X}_i + \bar{X})^2$$

because adding a constant  $(\bar{X})$  will not affect  $s_w^2$ . (This formulation is used below).

Last update: September 25, 2025 14 / 110

#### xtdescribe and xtsum

Distribution of T i:

#### . xtdescribe

3 3 3 3 3 3 3 Freq. Percent Cum. | Pattern

| Freq. | Percent | Cum.   | Pattern |
|-------|---------|--------|---------|
| 3     | 100.00  | 100.00 | 111     |
| 3     | 100.00  |        | xxx     |

min

#### . xtsum y

| variable |         | mean Std. d |          | min      | max      | Observations |   |  |
|----------|---------|-------------|----------|----------|----------|--------------|---|--|
| у        | overall | 48.33333    | 15.05822 | 14       | 64       | N =          | 9 |  |
|          | between |             | 12.2202  | 35       | 59       | n =          | 3 |  |
|          | within  |             | 10.71214 | 27.33333 | 64.33333 | T =          | 3 |  |

LPO 8852 (Corcoran) Lecture 3 Lectur

#### xtsum

xtsum shows the min and max of:

- X<sub>it</sub>: overall
- $\bar{X}_i$ : between
- $(X_{it} \bar{X}_i + \bar{X})$ : within

Note: on xtsum, see also https://www.stata.com/support/faqs/statistics/decomposed-variances-in-xtsum/

- Between and within variation do not exactly sum to overall
- One reason: they are bias corrected (multiplied by  $\sqrt{n/n-1}$ )
- ullet With unbalanced panels,  $s_b$  is calculated using mean of panel means, not  $ar{X}$  (may not be the same)

#### xtsum

Simulated data, two groups (N=250 each): within vs. between variation



## In-class example 2

Illustration of xt commands using State\_school\_finance\_panel data:

- Cross sectional unit: state
- Time variable: year (annual 1990-2010)
- Time-varying variables: various school finance measures

# Panel data and unobserved heterogeneity

### Panel data - advantages

### Why use panel data?

- Can help us answer questions not possible with a cross-section or time-series approach
- Can generate measures not possible with cross-sectional or time series data (e.g., growth, work spells, turnover)
  - ► If 50% of women are working in year t, does this reflect 50% of women working at any given point, or 50% of women who work all the time?
- Allows us to address selection bias due to unobserved heterogeneity that is fixed over time ("fixed effects")

#### Selection bias revisited

Lecture 1: interpretation of regression coefficients as causal is often complicated by selection bias. Example:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

with  $E(u_i|X_i) \neq 0$  because we believe potential outcomes are not independent of X. We can attempt to mitigate selection bias through the inclusion of additional covariates or matching/weighting, but this only solves the problem if adjusting for these observables eliminates OVB.

In practice we are often more concerned about selection on unobservables.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2029

## Unobserved heterogeneity

Suppose there are **unobserved**, **fixed differences** across units  $(C_i)$  that affect the outcome and are (potentially) correlated with the explanatory variable of interest  $(X_i)$ :

$$Y_i = \beta_0 + \beta_1 X_i + C_i + u_i$$

 $C_i$  could represent the effects of ability, health, motivation, intelligence, county of birth, parental resources, managerial quality, organizational culture, state/local policies or regulations, etc.

There are several analytic strategies that exploit panel data to remove the bias associated with  $C_i$ .

# First difference model

### First difference model

Suppose we have two time periods (T=2) for each cross-sectional unit i, and assume the linear model above applies in both periods:

$$Y_{i2} = \beta_0 + \beta_1 X_{i2} + C_i + u_{i2}$$
$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + C_i + u_{i1}$$

Now subtract period 1 from period 2 for the "first difference":

$$\Delta Y_i = \beta_1 \Delta X_i + \Delta u_i$$
$$Y_i^* = \beta_1 X_i^* + u_i^*$$

Because  $C_i$  is time-invariant, it <u>differences out</u> of the model. Notice the constant  $\beta_0$  also differences out.

#### First difference model

 $\beta_1$  can be identified from the first difference model using OLS as long as the usual OLS assumptions apply to it:

- The new error term  $u_i^* = \Delta u_i$  (change in the error over time) is uncorrelated with the new explanatory variable,  $X_i^* = \Delta X_i$  (change in the observed X over time).
- This requires that we have no cross-period correlations between u and X: this is called strict exogeneity.
- The X<sub>i</sub> must vary over time for at least some i, else they difference out too.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2025

### In-class example 3

Example using panel of Texas elementary schools:

- use Texas\_elementary\_panel\_2004\_2007.dta
- xtset campus year
- xtdescribe
- rename ca311tar avgpassing
- egen avgclass = rowmean(cpctg01a-cpctgmea)
- reg avgpassing avgclass if year==2007 (cross-sectional regression for 2007)

Note: avgclass is the mean class size across grades in a school, and avgpassing is the school average passing rate across all grades and subjects.

### In-class example 3

Having declared the dataset as a panel, Stata recognizes the d. prefix as a "difference operator":

- reg d.avqpassing d.avqclass if year == 2007, noconstant
- This is the first difference regression, using 2007 only (and its <u>lag</u> in the calculation of *d.avgpassing* and *d.avgclass*)
- d. can be used after xtset or tsset (time series set)
- Note suppression of the constant. In theory the constant term differences out (see earlier slide). In practice there is no harm in estimating with a constant, which would capture a year-on-year trend.

Last update: September 25, 202
LPO 8852 (Corcoran)
Lecture 3
27 / 110

## In-class example 3

A few things to note in example 3:

- Change in coefficient on class size: does it make sense?
- Change in sample size (re: unbalanced panel due to missing values)

A few things to think about:

- Is strict exogeneity likely to hold in this circumstance?
- Where is the identifying variation coming from?
- How much variation is there in the *change* in passing rates  $(\Delta Y)$  and class size  $(\Delta X)$ ?
- Do outliers dominate the variation in changes?

gen davgpassing = d.avgpassing

/\* create variable containing FD that can be described \*/

### In-class example 3

The first difference model is easily generalizable to multiple years (T > 2).

- · Each year of data is differenced with the prior year
- 1st period is sacrificed
- Must continue to think about OLS assumptions, e.g. strict exogeneity

reg d. avqpassing d. avqclass, noconstant table year if e(sample)

\* note 1st year of data is not used

# Fixed effects or "within" model

## One-way fixed effects

Alternatively, in the *(one-way) fixed effects* model, we could treat the  $C_i$  as parameters to be estimated (the "fixed effects"):

$$Y_{it} = \beta_0 + \beta_1 X_{it} + C_i + u_{it}$$

Effectively we are allowing for a *unique intercept* for every cross-sectional unit i. This is feasible to estimate since each i is observed multiple times.

Note on notation: in practice we cannot estimate  $\beta_0$  and intercepts for all the N cross-sectional units (re: collinearity). Often you will see fixed effects models (more precisely) written without the  $\beta_0$  (next slide).

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202

### One-way fixed effects: notation

You may see the fixed effects model written something like this:

$$Y_{it} = \beta_1 X_{it} + \sum_{i=1}^n \mathbf{1}(i=j)\gamma_i + u_{it}$$

Where  $\mathbf{1}(i=j)$  is an indicator function that equals 1 when i=j. The n  $\gamma_i$ s are the fixed effect coefficients to be estimated. More often, it is written more concisely as:

$$Y_{it} = \beta_1 X_{it} + \gamma_i + u_{it}$$

where it is understood that the  $\gamma_i$  represent the n fixed effect coefficients to be estimated

### "Least squares dummy variables" estimation

Now we are estimating  $\beta_0$ ,  $\beta_1$ , and (N-1) fixed effect coefficients. This can be done by including N-1 dummy variables in the regression, one for each cross sectional unit (omitting one). This is sometimes called the "least squares dummy variable" (LSDV) model:

- reg avgpassing avgclass i.campus
- For this example limit to year>=2006 and houston==1 so that the number of schools is manageable.

Note omission of first cross-sectional unit effect with i.campus. Interpretation of the  ${\it N}-1$  fixed effects are relative to this (arbitrary) omitted unit. You can control which unit effect is omitted if desired. See in-class example.

Last update: September 25, 202
LPO 8852 (Corcoran)
Lecture 3 33/110

### "Least squares dummy variables" estimation

There are a number of reasons why you might not want to do it this way:

- Could be time-consuming and harder on memory with very large datasets (re: you are creating dummy variables for each unique i)
- Soaks up degrees of freedom; may result in the number of regressors exceeding the number of observations
- Often we are not interested in the estimates of the fixed effects themselves, so there is no need to see/report them.
- Exception: recent "school effects" and "teacher effects" studies work explicitly with fixed effects estimates  $(\hat{C}_i)$ —but more on this later

#### Within transformation

Suppose that panel data are available with multiple observations per i and the model is:

$$Y_{it} = \beta_1 X_{it} + C_i + u_{it}$$
  $t = 1, ..., T$   $\forall i$ 

Within each panel unit i, take the average over t on both sides and subtract the unit average from each it observation:

$$\bar{Y}_i = \beta_1 \bar{X}_i + C_i + \bar{u}_i$$

$$Y_{it} - \bar{Y}_i = \beta_1 (X_{it} - \bar{X}_i) + (u_{it} - \bar{u}_i)$$

This is called "de-meaning" or the "within" transformation (sometimes denoted  $\ddot{Y}_i$ ) or "absorbing" the fixed effect. Notice that the intercepts  $C_i$  "difference out." This can only happen if the  $C_i$  are truly *time invariant*.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2029

### Within transformation

Under certain assumptions, an OLS regression of the de-meaned Y on the de-meaned X will yield unbiased and consistent estimates of  $\beta_1$ .

$$Y_{it} - \bar{Y}_i = \beta_1 (X_{it} - \bar{X}_i) + (u_{it} - \bar{u}_i)$$

$$Y_{it}^* = \beta_1 X_{it}^* + u_{it}^*$$

This is also known as the fixed effects or "within" regression, and extends to more than one explanatory variable  $(X_1,...,X_k)$ .

Explanatory variables  $X_j$  that are time *invariant* fall out of the model. (They all equal their within-group mean, so the within-transformation equals zero). Common examples: gender, race or ethnicity, birthplace...

## Within transformation (FWL)

Another way to see the equivalency between LSDV and the within transformation is by applying the Frisch-Waugh-Lovell (FWL) theorem. FWL says the estimated coefficient on  $X_1$  in a regression of Y on  $X_1$  and  $X_2$  will be the same as the coefficient resulting from the following:

- lacktriangle Regress  $X_1$  on  $X_2$  and get the residuals
- $\bigcirc$  Regress Y on  $X_2$  and get the residuals
- Regress the residuals in (2) on the residuals in (1)

Intuition: the residuals in (1) represent the part of  $X_1$  that is unexplained by  $X_2$ . The residuals in (2) represent the part of Y that is unexplained by  $X_2$ . Part (3) is the bivariate relationship between "what's leftover".

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2029

# Within transformation (FWL)

Suppose we have the following one-way fixed effects model with one covariate *X*:

$$Y_{it} = \beta_1 X_{it} + \gamma_i + u_{it}$$

Regress  $X_{it}$  on a set of dummy variables  $(D_i)$  for the i units:

$$X_{it} = \sum_{i=1}^{n} D_i \alpha_i + v_{it}$$

The  $\hat{\alpha}_i$  are just the unit means  $\bar{X}_i$ . So the residuals  $\hat{v}_{it}$  are:

$$\hat{v}_{it} = X_{it} - \bar{X}_i$$

These are the "part of X that is unexplained by the fixed effects." They are within variation.

Last update: September 25, 2

## Within transformation (FWL)

Regress  $Y_{it}$  on a set of dummy variables  $(D_i)$  for the i units:

$$Y_{it} = \sum_{i=1}^{n} D_i \delta_i + w_{it}$$

The  $\hat{\delta}_i$  are just the unit means  $\bar{Y}_i$ . So the residuals  $\hat{w}_{it}$  are:

$$\hat{w}_{it} = Y_{it} - \bar{Y}_i$$

These are the "part of Y that is unexplained by the fixed effects." So, regressing  $\hat{w}_{it}$  on  $\hat{v}_{it}$  means you are regressing:

$$Y_{it} - \bar{Y}_i = \beta_1(X_{it} - \bar{X}_i) + u_{it}$$

You will get the same estimate for  $\beta_1$ !

LPO 88E2 (Corcoran)

Last update: September 25, 2025

### Within transformation: illustrated

From Huntington-Klein chapter 16: relationship between exercise and colds



### Within transformation: illustrated

Huntington-Klein Figure 16.4: intensity of reminders and healthy eating score, raw data (r=0.111)



LPO 8852 (Corcoran)

Last update: September 25, 202

### Within transformation: illustrated

Huntington-Klein Figure 16.5: four individuals differ in their mean y and x. If we use only the *between* variation, there is a clear negative relationship (r = -0.440)



#### Within transformation: illustrated

Huntington-Klein Figure 16.6: remove between variation and focus on within. Data plotted again with person means centered at zero.



LPO 8852 (Corcoran)

Lecture 3

Last update: September 25, 202

### Within transformation: illustrated

Huntington-Klein Figure 16.7: overlay the "within" plots to see all of the within variation. The correlation is more positive (r = 0.363).



See also the animated gif FEanimation on Github

LPO 8852 (Corcoran)

Last update: September 25, 2025 44 / 110

# Fixed effects or "within" model in Stata

### Within transformation: xtreg

The fixed effects or "within" regression model can be estimated using OLS using xtreg:

- xtreg avgpassing avgclass, fe
- Note xtset must have been declared, <u>or</u> specify the cross-sectional unit in the options, e.g. i(campus)
- While the fixed effects are not estimated directly, can "back out" a prediction:  $\hat{C}_i = \bar{Y}_i \bar{X}_i \hat{\beta}_1$
- predict schlfe, u

Note the estimated fixed effects from xtreg are not the same as the dummy coefficients from the LSDV model. See the do file *Simulated panel data* for an illustration.

### Within transformation: areg

The areg command also absorbs fixed effects by de-meaning within group:

- areg avgpassing avgclass, absorb(campus)
- As with xtreg the fixed effect coefficients are not estimated/reported
- Here again can "back out" the fixed effects using predict. For example: predict schlfe, d
- $\bullet$  The intercept is not specific to any omitted group, but rather the intercept that makes the prediction calculated at the means of the X equal to  $\bar{Y}$

See also new absorb() option in Stata 19 regression commands.

Last update: September 25, 2025

LPO 8852 (Corcoran) Lecture 3 47/110

### Within transformation: areg

- areg is intended for applications where the number of cross-sectional units or categories is fixed (e.g., states) and does not grow as the sample size gets larger. Many panel applications are the latter, so use of xtreg is advised. See later notes on standard error calculations.
- The R<sup>2</sup>, RMSE, standard errors, etc., in areg are the same as the LSDV using reg. The model F statistic is different, however. It only tests the joint significance of the X (excluding the fixed effects).

### Within transformation: transforming the dataset

The command xtdata, fe can be used to transform your dataset using the within-transformation. However, this is rarely done (in my experience) since it transforms *all* of the variables in your dataset. xtreg will do the transformation on the fly without altering your dataset.

LPO 8852 (Corcoran)

Lecture :

Last update: September 25, 2025 49 / 110

#### Fixed effects model in Stata

Compare xtreg, areg and first difference when T=2

xtreg avqpassing avqclass3, fe

areg avqpassing avqclass3, absorb(campus)

reg d.avqpassing d.avqclass3, noconstant

Also compare to regress with absorb—new option in Stata:

reg avqpassinq avqclass3, absorb(campus)

#### Fixed effects model in Stata

A few notes about xtreg, fe

- FE is more efficient (smaller standard errors) than first differencing if the error terms are serially uncorrelated and T>2
- Assumes no correlation in u across units of panel i (some tests for this using user-written xtscd, xttest3)
- The estimates of the fixed effects themselves (C<sub>i</sub>) are unbiased but inconsistent in large samples. (Why? As the number of panel units grows (N → ∞) the number of parameters to estimate also grows).
- xtreg has not historically allowed svy specification (for complex sampling designs) but can use pweights and cluster() option. See also the mixed (or xtmixed) command for an alternative.

LPO 8852 (Corcoran)

Lectur

Last update: September 25, 2025

#### Fixed effects model in Stata

Stata actually fits the following model with xtreg:

$$(Y_{it} - \bar{Y}_i + \bar{Y}) = \beta_0 + \beta_1(X_{it} - \bar{X}_i + \bar{X}) + (u_{it} - \bar{u}_i + \bar{u})$$

Where the values with a bar but no subscript are the grand means. This includes an intercept which is the average of the fixed effects  $(C_i)$ .

#### Fixed effects model in Stata

#### Other useful output from xtreg:

| . xtreg avgpassing avgclass3, fe                                                         |                            |                                |                |                      |                     |                        |  |
|------------------------------------------------------------------------------------------|----------------------------|--------------------------------|----------------|----------------------|---------------------|------------------------|--|
| Fixed-effects<br>Group variable                                                          | Number of                  | f obs =<br>f groups =          |                |                      |                     |                        |  |
| R-sq: within<br>betweer<br>overal                                                        | Obs per                    | group: min =<br>avg =<br>max = | 1.9            |                      |                     |                        |  |
| corr(u_i, xb)                                                                            | = -0.1079                  |                                |                | F(1,169)<br>Prob > F | =                   |                        |  |
| avgpassing                                                                               | Coef.                      | Std. Err.                      | t              | P> t                 | [95% Conf.          | Interval]              |  |
| avgclass3<br>_cons                                                                       | 2390704<br>76. 80355       | . 294385<br>6. 032673          | -0.81<br>12.73 | 0.418<br>0.000       | 820216<br>64. 89445 | . 3420752<br>88. 71265 |  |
| sigma_u 11.942612<br>sigma_e 7.1632112<br>rho .7334221 (fraction of variance due to u_i) |                            |                                |                |                      |                     |                        |  |
| F test that a                                                                            | ll u_i=0:<br>effects model | F(179, 169)                    | = 5            | . 27                 | Prob >              | F = <b>0.0000</b>      |  |

Last update: September 25, 2025
LPO 8852 (Corcoran) Lecture 3 53/110

### Fixed effects model in Stata

### Other useful output from xtreg:

- F-test for joint significance of fixed effects (null hypothesis H<sub>0</sub> is that all fixed effects are zero). If rejected, fixed effects model is a reasonable assumption and regular OLS may provide inconsistent estimates. In practice, rarely rejected.
- R<sup>2</sup> within: variance "explained" by within-group deviations from group means
- $R^2$  between: variance in group means  $\bar{Y}_i$  "explained" by the group mean X's:  $\bar{X}_i$
- ullet sigma\_u estimate of the standard deviation in fixed effects ( $C_i$ )

# Fixed effects model: assumptions

### Fixed effects model: assumptions for inference

- **FE.1:** linear model  $Y_{it} = \beta_1 X_{it1} + ... + \beta_k X_{itk} + C_i + u_{it}$
- FE.2: cross-sectional units are a random sample
- **FE.3**:  $X_{it}$  varies over time for some i, no perfect collinearity
- FE.4: ∀t, E(u<sub>it</sub>|X<sub>i</sub>, C<sub>i</sub>) = 0 or the expected value of u given X in all time periods is zero (strict exogeneity)
- **FE.5**:  $Var(u_{it}|X_i, C_i) = Var(u_{it}) = \sigma_u^2$  homoskedasticity
- **FE.6:** for  $t \neq s$  errors are uncorrelated:  $Cov(u_{it}, u_{is}|X_i, C_i) = 0$ . No serial correlation.

Under FE.1-FE.4, fixed effects model (and first difference model) is unbiased. Adding FE.5-FE.6, fixed effects model is BLUE. If FE.6 holds, fixed effects is more efficient than the first difference model. Can relax homoskedasticity assumption and calculate robust standard errors.

### Fixed effects model: assumptions for inference

Note: the econometric theory described here is for "short" panels, with N large relative to T. If the opposite is true in your context, use FE model with caution (see Wooldridge chapter 14, Cameron & Trivedi).

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202 57 / 110

### Fixed effects model: practical considerations

#### Fixed effects considerations:

- Where is the identification coming from?
- How much variation is there within panel units? When small, one risks imprecise estimates
- For stats on within- and between- school variation can use xtsum (described earlier), xttab and xttrans for categorical variables
- Example:

xtsum avgpassing avgclass

### Panel data models: on standard errors

With panel data it is hard to assume that errors are independent across observations. You have multiple observations from the same cross-sectional unit and there is likely to be something omitted from the model that is correlated across observations.

- Should almost always use clustered standard errors with FE (at the same level as FE): vcecluster varname
- Note areg by default uses traditional OLS standard errors, although this can be adjusted
- With xtreg, using robust standard errors is equivalent to clustering on the cross-sectional unit, since Stata takes the panel structure into account.

 LPO 8852 (Corcoran)
 Lecture 3
 59 / 110

# Two- and multi-way fixed effects models

## Two-way fixed effects model

The two-way fixed effects model adds another dimension of fixed effects (often time periods). Notation is analagous to the one-way model shown earlier:

$$Y_{it} = \beta_1 X_{it} + \gamma_i + \theta_t + u_{it}$$

where it is understood that the  $\gamma_i$  represent the n unit fixed effect coefficients to be estimated and the  $\theta_t$  represent the T time effect coefficients to be estimated.

LPO 8852 (Corcoran)

Lecture :

Last update: September 25, 2025

### Two-way fixed effects model

There is no explicit command for two-way models, rather can just include dummies (e.g., for each time period).

xtreg avgpassing avgclass i.year, fe

- \* the i.year syntax introduces (T-1) time effects test \_Iyear\_2006 \_Iyear\_2007
- \* joint test that time effects = 0

Alternatively, could use reghdfe or new regress with absorb reghdfe augpassing augclass, absorb(campus year) reg augpassing augclass, absorb(campus year)

As with one-way fixed effects model, requires variation across units within time periods  $\it t$ .

## Two-way fixed effects model

The generalized difference-in-differences model is a two-way fixed effects model (covered in Lecture 4):

$$Y_{it} = \beta_0 + \beta_1(treat_i \times post_t) + \theta_t + \gamma_i + \delta X_{it} + u_{it}$$

There are cross-sectional unit fixed effects  $(\gamma_i)$  which represent separate intercepts for each unit and time effects  $(\theta_t)$  which represent common variation over time within group.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2025

### Estimation with multiple fixed effects

Above we used xtreg or areg with dummy variables for a second "fixed effect" (time). This works fine if your second fixed effect has a reasonable number of categories. What if all of your fixed effects have a large number of groups?

Example: regressing measure of between-country trade in a given sector on a measure of tariffs in place, with fixed effects for country, industry, and year. With 40 years, 160 countries, and 1,000 industries, there would be 1,200 parameters to estimate (and the output would be overwhelming). areg could absorb one of these (e.g., industry) but not the others.

#### In Stata:

reghdfe trade tariff, absorb(industry country year)
reg trade tariff, absorb(industry country year)

### Estimation with multiple fixed effects

What is happening behind the scenes here? With one-way fixed effects, areg and xtreg do a simple within-transformation. By FWL:

- Residualize Y: find the part of Y that is unexplained by the fixed effects
- Residualize X: find the part of X that is unexplained by the fixed effects
- This amounts to de-meaning Y and X

With multiple fixed effects the idea is the same, but it turns out this is more complicated to carry out.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202

### Estimation with multiple fixed effects

We want to find the part of Y and X that are orthogonal to <u>all</u> of the fixed effects. You could residualize one FE at a time, but the second residualization will "undo" part of the first one.

reghdfe and regress with absorb use an iterative procedure that repeats residualization until the residuals converge to zero. These commands use advanced algorithms to do this very quickly.

# More on fixed effects designs

### Comparison of models

It is important to be attentive to where the variation in each type of FE model is coming from:

- Fixed effects ("within") model: uses deviations from group (i) means, e.g., mean "pre" vs. mean "post"
- First differences model: uses variation in successive time periods, e.g., just prior to and just after a "treatment" (a change in x)
- Long differences is like first differences, but there is a long time span between observations. Here outcomes may be compared well before and well after a "treatment".

To evaluate these in your situation, need some idea of the speed in which X affects Y

## Comparison of models



Source: Nichols (2007). Figure shows one panel (i)'s pre to post change following a treatment (t > 4). Notice the within-panel unit change differs depending on whether FE, FD, or LD is used.

Last update: September 25, 2025

### Fixed effects models in other applications

Fixed effects models are not exclusively used with panel data in which cross-sectional units i are observed in multiple time periods. They are also used with grouped or clustered data. For example:

- Family fixed effects, where the family is the cross-sectional unit and siblings are the group members (akin to the time dimension)
- School fixed effects with student-level data, where each school has its own intercept
- Individual fixed effects within person-level data.

### Fixed effects models in other applications

Fixed effects models are not exclusively used with panel data in which cross-sectional units *i* are observed in multiple time periods. They are also used with grouped or clustered data. For example:

- Family fixed effects, where the family is the cross-sectional unit and siblings are the group members (akin to the time dimension)
- School fixed effects with student-level data, where each school has its own intercept
- Individual fixed effects within person-level data.

Last update: September 25, 2029
LPO 8852 (Corcoran) Lecture 3 71/110

### Fixed effects models in other applications

The researcher needs to provide a convincing rationale for why the unobserved confounding variable should be considered fixed across multiple observations (e.g., siblings, years)

- Why did a mother's employment status change between siblings?
- Why did only 1 of 2 siblings participate in Head Start?
- Why did a student switch from a traditional school to a charter school?
- Why did an elementary school receive a new principal?

# Fixed effects models: advantages and disadvantages

#### Advantages:

- $\bullet$  Unobserved  $C_i$  can be correlated with the explanatory variables
- Slopes estimated using within-group (i) variation in X, Y

#### Disadvantages:

- Cannot estimate slope coefficients for time-invariant X
- Fixed effects "remove" a lot of the variation in Y
- The "within" model is less efficient (higher standard errors)
- There may be more measurement error (and attenuation bias, see Lecture 7) when relying on within-group changes vs. levels
- Group intercepts use up a lot of degrees of freedom

Last update: September 25, 2025
LPO 8852 (Corcoran) Lecture 3 73/110

# Jack et al., (2023)

Pandemic Schooling Mode and Student Test Scores: Evidence from US School Districts

- Data: district level test scores (passing rates) for 2016-2019 and 2021, plus district demographic data and other county-level controls.
- Instruction mode from the COVID-19 School Data Hub (public): schooling mode classified as in person, remote, or hybrid.

The authors are interested in the effects of schooling mode (X) on passing rates (Y). What would be problematic about estimating a cross-sectional regression with these data for 2021? What might the advantages of a panel be?

# Jack et al., (2023)

TABLE 2-PAIRWISE CORRELATIONS BETWEEN IN-PERSON LEARNING ON DISTRICT DEMOGRAPHIC AND PANDEMIC VARIABLES

|                    |        | elation<br>d effects) |        | elation<br>ed effects) | Correlation<br>zone fixe | n (commute<br>d effects) |
|--------------------|--------|-----------------------|--------|------------------------|--------------------------|--------------------------|
| Previous pass rate | 0.440  | (0.066)               | 0.611  | (0.062)                | 0.598                    | (0.053)                  |
| Share Black        | -0.465 | (0.039)               | -0.752 | (0.043)                | -0.757                   | (0.041)                  |
| Share Hispanic     | -0.442 | (0.067)               | -0.328 | (0.063)                | -0.296                   | (0.061)                  |
| Share FRPL         | -0.160 | (0.048)               | -0.255 | (0.048)                | -0.365                   | (0.046)                  |
| Share ELL          | -1.290 | (0.121)               | -0.879 | (0.104)                | -0.764                   | (0.099)                  |
| Avg. case rate     | 0.803  | (0.199)               | 0.367  | (0.107)                | 0.115                    | (0.051)                  |
| Repub. vote share  | 0.010  | (0.000)               | 0.010  | (0.000)                | 0.009                    | (0.001)                  |

Notes: This table shows the pairwise correlations of the share of days in person during the 2020-2021 school year with district demographic and pandemic characteristics. We present the correlations of the sample overall, without fixed effects included ("no fixed effects"), with state-year fixed effects ("state fixed effects"), and with commuting zone fixed effects ("commute zone fixed effects"). The share in person measures the share of time during the 2020-2021 school year that the district offered full-time in-person instruction (rather than hubrid or virtual instruction). "Provious nace rate" represents the average nace rate on state

# Jack et al., (2023)



# Jack et al., (2023)

They use a fixed effects regression:

$$pass_{ict} = \alpha + \beta_1(\%inperson_{it}) + \beta_2(\%hybrid_{it}) + \gamma_{ct} + \delta_t + \nu_i + \Pi X_{ict} + u_{ict}$$

- i is school district, t is year, and c is county
- %inperson and %hybrid are the percentage of time the district spent in person and in hybrid modes
- $\delta_t$  are the time fixed effects (year)
- ν<sub>i</sub> are the school district fixed effects
- ullet The  $\gamma_{ct}$  are effects for county specific trends—this is a twist on the time FE that allow you to capture separate local time trends

Last update: September 25, 20: 90 8852 (Corcoran) Lecture 3 77 / 110

# Jack et al., (2023)

|                                   |           | Math      |           |           | ELA       |           |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                   | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       |
|                                   | Pass rate |
| Panel A. Main specifications      |           |           |           |           |           |           |
| % in-person                       | 0.140     | 0.134     | 0.128     | 0.0813    | 0.0828    | 0.0872    |
|                                   | (0.0137)  | (0.0147)  | (0.0156)  | (0.0102)  | (0.0105)  | (0.0105)  |
| % hybrid                          | 0.0776    | 0.0722    | 0.0743    | 0.0608    | 0.0537    | 0.0537    |
|                                   | (0.0143)  | (0.0148)  | (0.0161)  | (0.0116)  | (0.00949) | (0.00994  |
| Observations                      | 11,041    | 11,041    | 11,041    | 11,064    | 11,064    | 11,064    |
| Commute zone × year               | No        | Yes       | No        | No        | Yes       | No        |
| County × year                     | No        | No        | Yes       | No        | No        | Yes       |
| Panel B. Demographic interactions |           |           |           |           |           |           |
| % in-person × 2021                | 0.0960    | 0.156     | 0.0872    | 0.0686    | 0.0784    | 0.0729    |
|                                   | (0.0174)  | (0.0196)  | (0.0388)  | (0.0138)  | (0.0123)  | (0.0276)  |
| % hybrid × 2021                   | 0.0379    | 0.0907    | 0.0280    | 0.0381    | 0.0409    | 0.0360    |
| *                                 | (0.0169)  | (0.0205)  | (0.0388)  | (0.0129)  | (0.0123)  | (0.0279)  |
| % Black × % in-person × 2021      | 0.0943    |           |           | 0.0193    |           |           |
|                                   | (0.0398)  |           |           | (0.0240)  |           |           |
| % Black × % hybrid × 2021         | 0.0855    |           |           | 0.0508    |           |           |
|                                   | (0.0472)  |           |           | (0.0279)  |           |           |
| % Hispanic × % in-person × 2021   |           | -0.135    |           |           | -0.0178   |           |
|                                   |           | (0.0680)  |           |           | (0.0482)  |           |
| % Hispanic × % hybrid × 2021      |           | -0.0564   |           |           | 0.0247    |           |
|                                   |           | (0.0734)  |           |           | (0.0421)  |           |
| % FRPL × % in-person × 2021       |           |           | 0.0810    |           |           | 0.00025   |
|                                   |           |           | (0.0582)  |           |           | (0.0371)  |
| % FRPL × % hybrid × 2021          |           |           | 0.0689    |           |           | 0.0153    |
| · ·                               |           |           | (0.0605)  |           |           | (0.0380)  |
| Observations                      | 11,041    | 11,041    | 9,620     | 11,064    | 11,064    | 9,643     |
| Commute zone × vear               | Yes       | Yes       | Yes       | Yes       | Yes       | Yes       |

sions are weighted by district enrollment and include district fixed effects, spar fixed effects, state-year fixed effects

# Bonus slides: random effects models

## Random effects

An alternative conceptualization of  $C_i$  is as a random effect, uncorrelated with  $X_{it}$ .

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \underbrace{C_i + e_{it}}_{Y_{it}}$$

Think of  $v_{it}$  as a *composite* error consisting of a between-group component  $(C_i)$  common to all observations within the group, and a within-group component  $(e_{it})$ . It is assumed  $C_i$  and  $e_{it}$  are independent of one another and:

$$C_i \sim N(0, \sigma_c^2)$$
  
 $e_{it} \sim N(0, \sigma_c^2)$ 

This is the random effects or random intercepts model.

#### Random effects

If  $C_i$  is uncorrelated with  $X_{it}$ , then the composite error term  $v_{it}$  is uncorrelated with  $X_{it}$ . (We already assume  $e_{it}$  is uncorrelated with  $X_{it}$ ). This means the OLS estimator for  $\beta_1$  will be unbiased and consistent.

Note: estimation of this model does *not* involve estimating the  $C_i$ 's as parameters as was done in the LSDV model. These are now part of the error term

LPO 8852 (Corcoran

Lecture

Last update: September 25, 2025

#### Random effects

The composite error term  $v_{it}$  is not, however, i.i.d.:

$$Corr(v_{it}, v_{is}) = \rho = \frac{\sigma_c^2}{\sigma_c^2 + \sigma_e^2} \text{ for } s \neq t$$

The common error for observations in group i ( $C_i$ ) results in correlation between the composite error in period t ( $v_{it}$ ) and in period s ( $v_{is}$ ).

This means OLS is consistent but not efficient, and that traditional standard error formulas assuming i.i.d. errors are incorrect. The ratio above  $(\rho)$  is called the **intra-class correlation**.

Estimation using GLS (details later): xtreg, re.

# Success for All example

- Success for All is a whole-school literacy intervention.
- Borman et al. (2005) conducted a randomized evaluation of SFA in 2001-02 and 2002-03 (21 treatment schools and 20 control).
- This was a cluster-randomized design with randomization at the school level.
- The data used by Murnane & Willett (ch7\_sfa.dta) include grade 1 only. The outcome of interest is wattack, the student's score on a "Word-Attack" test.

Next slide: an "unconditional" model with no  $X_{it}$  estimates variance components  $\sigma_c^2$  and  $\sigma_e^2$  and the intra-class correlation  $\rho$ . This provides a sense of the degree of between- vs. within-group variance in the outcome.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202

# Random effects with xtreg

| . Std. Err.<br>6 1.447118 | Z<br>329.99   |          | [95% Conf.                  |                                                                                       |
|---------------------------|---------------|----------|-----------------------------|---------------------------------------------------------------------------------------|
| . Std. Err.               | Z             | 12121    | [95% Conf.                  | . Interval                                                                            |
|                           |               | DNIAL    |                             |                                                                                       |
| med)                      |               |          |                             |                                                                                       |
|                           |               |          | max =                       | 13                                                                                    |
|                           |               |          |                             | 56.                                                                                   |
|                           |               | Obs per  |                             | _                                                                                     |
|                           |               | Number   | of groups =                 | 4:                                                                                    |
| ssion                     |               | Number o | of obs =                    | 2,334                                                                                 |
|                           | nid)<br>ssion | ssion    | Number of Number of Obs per | Number of obs = Number of groups =  Obs per group:  avg = avg = max =  Wald chi2(0) = |

This example: Success for All impact evaluation (from Murnane & Willett).  $\sigma_c^2 = 8.87^2 = 78.7$  and  $\sigma_e^2 = 17.73^2 = 314.35$ .  $\rho = 0.200$ .

#### loneway

loneway (one-way ANOVA) is another handy command for estimating variance components and ICC. (Note the difference in  $\sigma_c$  and  $\rho$  from xtreg, re. With unbalanced panels, these will differ slightly).

|                   | One-way Anal                                 | ysis of Vari           | ance for    |       | ck: word                     |       |                 |
|-------------------|----------------------------------------------|------------------------|-------------|-------|------------------------------|-------|-----------------|
|                   |                                              |                        |             | NUI   | R-squar                      |       | 2,334<br>0.2185 |
| Sou               | rce                                          | SS                     | df          | MS    |                              | F     | Prob > F        |
| Between<br>Within |                                              | 201450.43<br>720466.21 | 40<br>2,293 |       | . 2607<br>20244              | 16.03 | 0.0000          |
| Total             |                                              | 921916.63              | 2,333       | 395.  | 16358                        |       |                 |
|                   | Intraclass<br>correlation                    | Asy.<br>S.E.           | [95%        | Conf. | Interval                     | 1     |                 |
|                   | 0.20993                                      | 0.04402                | 0.1         | 2366  | 0.2962                       | 1     |                 |
|                   | Estimated SD<br>Estimated SD<br>Est. reliabi | within schi            | d           |       | 9.13720<br>17.7257<br>0.9376 | 6     |                 |

LPO 8852 (Corcoran) Lecture 3

Last update: September 25, 2025 5 / 110

# Random effects with xtreg

| Number of groups =      |      |           | : schid              | roup variable |
|-------------------------|------|-----------|----------------------|---------------|
| Obs per group:          |      |           |                      | -sq:          |
| min =                   |      |           |                      | within -      |
| avg =                   |      |           |                      | between -     |
| max -                   |      |           | 0.1820               | overall -     |
| Wald chi2(2) = 3        |      |           |                      |               |
| Prob > chi2 = 0         |      | 1)        | = 0 (assumed         | orr(u_i, X)   |
|                         | 2    | Std. Err. | Coef.                | wattack       |
| z P> z  [95% Conf. Inte |      |           |                      |               |
|                         | 1.50 | 2.297268  | 3.440921             | sfa           |
| 50 0.134 -1.061642 7.5  | 1.50 |           | 3.440921<br>.4851754 | sfa<br>ppvt   |

This regression: includes the treatment indicator (sfa) and one covariate (ppvt). Note changes in  $\sigma_c$  and  $\sigma_e$ ,  $\rho$ . The residual variability is reduced with the inclusion of X's.

### Random effects

## Class size and passing rates in TX class size example:

| . xtreg avgpas                   | ssing avgclass                      | s, re i(camp         | us)             |           |        |              |                 |
|----------------------------------|-------------------------------------|----------------------|-----------------|-----------|--------|--------------|-----------------|
| Random-effects<br>Group variable |                                     | ion                  |                 |           | of obs |              | 16,062<br>4,326 |
| R-sq:                            |                                     |                      |                 | Obs per   | group: |              |                 |
| within -                         |                                     |                      |                 |           |        | nin =        | 1               |
| between :                        |                                     |                      |                 |           |        | vg =         | 3.7             |
| overall -                        | - 0.0060                            |                      |                 |           | D      | ax -         | 4               |
|                                  |                                     |                      |                 | Wald ch   | 12(1)  | -            | 2.74            |
| corr(u_i, X)                     | = 0 (assumed                        | i)                   |                 | Prob >    | chi2   | -            | 0.0978          |
| avgpassing                       | Coef.                               | Std. Err.            | z               | P> z      | [95%   | Conf.        | Interval]       |
| avgclass<br>_cons                | 0442893<br>76.21828                 | .0267548<br>.5503649 | -1.66<br>138.49 | 0.098     |        | 1277<br>1959 |                 |
| sigma_u<br>sigma_e<br>rho        | 12.391941<br>6.4870883<br>.78490199 | (fraction            | of varia        | nce due t | o u_i) |              |                 |

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 202

## Random effects

## Compare to fixed effects: very different slope coefficient estimate.

|                   |            |          | ous)   | , fe i(camp | sing avgclass | . xtreg avgpas |
|-------------------|------------|----------|--------|-------------|---------------|----------------|
| 16,062            | f obs =    | Number o |        | ession      | (within) regr | Fixed-effects  |
| 4,326             | f groups = | Number o |        |             | : campus      | Group variable |
|                   | group:     | Obs per  |        |             |               | R-sq:          |
| 1                 | min -      |          |        |             | 0.0018        | within -       |
| 3.7               | avg =      |          |        |             | 0.0098        | between =      |
| 4                 | max -      |          |        |             | 0.0060        | overall -      |
| 21.30             | 5) =       | F(1,1173 |        |             |               |                |
| 0.0000            | -          | Prob > F |        |             | 0.1189        | corr(u_i, Xb)  |
| Interval]         | [95% Conf. | P> t     | t      | Std. Err.   | Coef.         | avgpassing     |
|                   | 1907678    | 0.000    | -4.62  | .0290105    |               | avgclass       |
| 0770371<br>79.188 | 76.99621   | 0.000    | 139.68 | .5590819    | 78.09211      | _cons          |

## Random vs. fixed effects

- The RE model is biased and inconsistent if the FE assumptions are more appropriate (correlation between X<sub>it</sub> and C<sub>i</sub>).
- If the RE assumptions hold (<u>no</u> correlation between X<sub>it</sub> and C<sub>i</sub>), both RE and FE are *consistent*. They should give "similar" answers in large samples, but the FE model will be *inefficient* (larger standard errors).
- A sufficiently large difference in point estimates suggests the FE assumption is probably correct and RE is inconsistent.
- The Hausman test is a formal test of this.

 Last update: September 25, 20

 LPO 8852 (Corcoran)
 Lecture 3
 89/110

#### Hausman test

First use estimates store to save your fe and re estimates. Name them FE and RE. for example.

```
xtreg avgpassing avglcass, fe i(campus) estimates store FE xtreg avgpassing avgclass, re i(campus) estimates store RE hausman FE RE
```

#### Hausman test

Null hypothesis: RE assumptions hold, both estimators consistent but RE is efficient. Alternative: RE assumptions do *not* hold and the RE estimator is inconsistent. In the TX example we can reject  $H_0$ :

| . hausman FE E | RE             |               |                 |                                                |
|----------------|----------------|---------------|-----------------|------------------------------------------------|
|                | Coeffi         | cients        |                 |                                                |
|                | (b)            | (B)           | (b-B)           | sqrt(diag(V b=V B))                            |
|                | FE             | RE            | Difference      | S.E.                                           |
| avgclass       | 1339024        | 0442893       | 0896131         | .0112156                                       |
| В              | = inconsistent | under Ha, eff | icient under Ho | ; obtained from xtreg<br>; obtained from xtreg |
| Toots Hos      |                |               | not systematic  |                                                |

LDO 99E2 (C-----)

Last update: September 25

### Review of GLS

In a linear regression with known heteroskedasticity, we can transform the original data and apply OLS to the transformed data. E.g.:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

and assume  ${\rm Var}(u_i)=k_i\sigma_u^2$ . The GLS transformation divides the data by  $\sqrt{k_i}$ . Observations with greater variance get *less* weight. The transformed model satisfies homoskedasticity. Note:

$$Var\left(\frac{u_i}{\sqrt{k_i}}\right) = \frac{1}{k_i} Var(u_i)$$

$$= \frac{1}{k_i} k_i \sigma_u^2$$

$$= \sigma_v^2$$

The random effects model with one covariate is:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \underbrace{C_i + e_{it}}_{Y_{it}}$$

GLS estimation again involves a transformation. Let:

$$\theta = 1 - \sqrt{\frac{\sigma_e^2}{\sigma_e^2 + T\sigma_e^2}}$$

(and note the term under the square root looks like but is different from the ICC).  ${\cal T}$  is the number of observations per group, assuming a balanced panel.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2025

## GLS estimation of random effects models

The transformations of  $Y_{it}$  and  $X_{it}$  are:

$$Y_{it} - \theta \bar{Y}_i$$

$$X_{it} - \theta \bar{X}_i$$

and OLS is estimated on the transformed model:

$$Y_{it} - \theta \bar{Y}_i = \beta_0 (1 - \theta) + \beta_1 (X_{it} - \theta \bar{X}_i) + (v_{it} - \theta \bar{v}_i)$$

The transformed  $Y_{it}$  and  $X_{it}$  are *quasi-demeaned*. If  $\theta=1$ , we have the demeaned (within) model.

 $\theta$  is not known so it must first be estimated with consistent estimators for  $\sigma_e^2$  and  $\sigma_c^2$ . Then,  $\hat{\theta}$  is used in OLS estimation ("feasible GLS").

$$\hat{\theta} = 1 - \sqrt{\frac{\hat{\sigma}_e^2}{\hat{\sigma}_e^2 + T\hat{\sigma}_c^2}}$$

Consistent estimators for  $\sigma_c^2$  and  $\sigma_e^2$  can be obtained using pooled OLS or fixed effects residuals.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2025

#### GLS estimation of random effects models

One method for estimating  $\sigma_c^2$  and  $\sigma_e^2$ : note that

$$v_{it} = C_i + e_{it}$$

$$v_{it}v_{is} = (C_i + e_{it})(C_i + e_{is})$$

$$E(v_{it}v_{is}) = \underbrace{E(C_i^2)}_{\sigma_r^2} + \underbrace{E(C_ie_{is})}_{0} + \underbrace{E(C_ie_{it})}_{0} + \underbrace{E(e_{it}e_{is})}_{0}$$

Get the composite residuals  $\hat{v}_{it}$  using pooled OLS. The square of the RMSE in this regression estimates  $\sigma_v^2$ . The within-group (i) covariance in  $\hat{v}_{it}$  (the sample analog of  $E(v_{it}v_{is})$  above) provides a consistent estimate of  $\sigma_c^2$ . Then,  $\hat{\sigma}_e^2 = \hat{\sigma}_v^2 - \hat{\sigma}_c^2$ .

$$\begin{aligned} Y_{it} - \theta \bar{Y}_i &= \beta_0 (1 - \theta) + \beta_1 (X_{it} - \theta \bar{X}_i) + (v_{it} - \theta \bar{v}_i) \\ \theta &= 1 - \sqrt{\frac{\sigma_e^2}{\sigma_e^2 + T \sigma_c^2}} \end{aligned}$$

Notice the transformation subtracts a *fraction* of the within-group mean, where the fraction depends on  $\sigma_a^2$ ,  $\sigma_c^2$ , and T.

- When  $\theta = 0$ , the model reduces to pooled OLS
- When  $\theta = 1$ , the model reduces to fixed effects (within)
- $\bullet$  So, the value of  $\theta$  is indicative of which model RE is closer to

 $\theta$  gets closer to 1 as between-group variation  $\sigma_c^2$  grows relative to within-group variation  $\sigma_e^2$ , and as the number of time periods T grows.

Last update: September 25, 202

LPO 8852 (Corcoran) Lecture 3 97/110

#### GLS estimation of random effects models

#### Can request $\hat{\theta}$ in xtreg, re:



This uses the original unbalanced panel, so  $\hat{\theta}$  varies with group size.

### Can request $\hat{\theta}$ in xtreg, re:

| sigma u           | 11.706021                  |                      |   |           |                     |                    |
|-------------------|----------------------------|----------------------|---|-----------|---------------------|--------------------|
| avgclass<br>_cons | 0484254<br>76.51251        | .0280999<br>.5742248 |   |           | 1035003<br>75.38705 | .006649<br>77.6379 |
| avgpassing        | Coef.                      | Std. Err.            | z | P> z      | [95% Conf.          | Interval           |
|                   | = 0 (assume<br>= .73287384 | d)                   |   |           | 2(1) =<br>ni2 =     |                    |
| overall -         | - 0.0061                   |                      |   |           | max =               |                    |
| between           |                            |                      |   |           | avg =               | 4.                 |
| -sq:              | - 0 0020                   |                      |   | Obs per ( | group:              |                    |
| roup variable     | e: campus                  |                      |   | Number of | groups =            | 3,69               |
|                   |                            |                      |   |           |                     |                    |

This uses the <u>balanced</u> panel, so  $\hat{\theta}$  is constant.

Last update: September 25, 202:

LPO 8852 (Corcoran) Lecture 3 99/110

## GLS estimation of random effects models

It is useful to consider the error term in the quasi-demeaned model:

$$v_{it} - \theta \bar{v}_i = (1 - \theta)C_i + (e_{it} - \theta \bar{e}_i)$$

Suppose the RE assumption that  $C_i$  is uncorrelated with  $x_{it}$  does *not* hold. As  $\theta \to 1$ , the  $C_i$  component of the error term diminishes in importance, the RE estimator tends toward the FE estimator, and any bias associated with RE tends to zero.

Random effects models can also be estimated using **maximum likelihood** in which case all parameters of the model ( $\beta$ 's,  $\sigma$ 's) are estimated jointly:



Last update: September 25, 2025

LPO 8852 (Corcoran) Lecture 3 101/110

# Getting estimates of random effects $C_i$

As with xtreg, fe, one can obtain the  $\hat{C}_i$  estimates of the group random effects. Unlike fe, these are not coefficient estimates but rather estimated from residuals. The random effects  $\hat{C}_i$  can be calculated in two ways:

- Maximum likelihood (following xtreg, mle): predict
- Empirical Bayes / shrinkage approach: the Best Linear Unbiased Predictors (BLUPs)

Shrinkage approach: multiply  $\hat{C}_i$  by a shrinkage factor  $\hat{R}_i = \frac{\hat{\sigma}_c^2}{\hat{\sigma}_c^2 + \frac{\hat{\sigma}_c^2}{\hat{T}_i}}$ 

where  $T_i$  is the number of observations in group i. Examples on next 3 slides.

# Getting estimates of random effects $C_i$ : MLE

| Fitting consta<br>[teration 0:<br>[teration 1:<br>Fitting full r | log likelih                  | 1:                                |                      |                    |                                    |       |                                                   |
|------------------------------------------------------------------|------------------------------|-----------------------------------|----------------------|--------------------|------------------------------------|-------|---------------------------------------------------|
| Iteration 0:<br>Iteration 1:                                     | log likelih                  |                                   |                      |                    |                                    |       |                                                   |
|                                                                  | log 15ke15h                  |                                   | .523                 |                    |                                    |       |                                                   |
| denima full a                                                    |                              | ood = -53584                      | .523                 |                    |                                    |       |                                                   |
|                                                                  |                              |                                   |                      |                    |                                    |       |                                                   |
| Iteration 0:                                                     | log likelih                  | ood53674                          | .187                 |                    |                                    |       |                                                   |
| Iteration 1:                                                     | log likelih                  | ood = -53583                      | .763                 |                    |                                    |       |                                                   |
| Iteration 2:                                                     | log likelih                  | ood = -53582                      | .969                 |                    |                                    |       |                                                   |
| Steration 3:                                                     | log likelih                  | ood = -53582                      | .969                 |                    |                                    |       |                                                   |
| Random-effects                                                   | ML regressi                  | on                                |                      | Number             | of obs                             | -     | 14,79                                             |
| broup variable                                                   | : campus                     |                                   |                      | Number             | of grou                            | mpa = | 3,69                                              |
| Random effects                                                   | u i ~ Gauss                  | ian                               |                      | Obs per            | groups                             |       |                                                   |
|                                                                  |                              |                                   |                      |                    |                                    | min - |                                                   |
|                                                                  |                              |                                   |                      |                    |                                    |       |                                                   |
|                                                                  |                              |                                   |                      |                    |                                    | ave = | 4.4                                               |
|                                                                  |                              |                                   |                      |                    |                                    | avg = | 4.0                                               |
|                                                                  |                              |                                   |                      |                    |                                    | max - |                                                   |
| 1/1-1/1                                                          |                              |                                   |                      | LR ohiz            | (1)                                |       | 3.1                                               |
| og likelihoo                                                     | 1 = -53582.9                 | 69                                |                      | LR chi2<br>Prob >  | (1)                                | max - |                                                   |
| og likelihood                                                    | 1 = -53582.9<br>Coef.        |                                   | z                    |                    | (1)<br>ch12                        | max - | 3.1                                               |
| avgpassing                                                       | Coef.                        | Std. Err.                         |                      | Prob >             | (1)<br>chi2<br>[95%                | max - | 3.1:<br>0.078                                     |
|                                                                  |                              |                                   | z<br>-1.76<br>132.97 | Prob > P> z  0.078 | (1)<br>chi2<br>[954                | max - | 3.1:<br>0.078<br>Interval                         |
| avgpassing<br>avgclass                                           | Coef.                        | Std. Err.<br>.0281539<br>.5755876 | -1.76                | Prob > P> z  0.078 | (1)<br>chi2<br>[959<br>104<br>75.4 | max = | 3.1:<br>0.078<br>Interval:<br>.005541:<br>77.6638 |
| avgpassing<br>avgclass<br>_cons                                  | Coef.<br>0496391<br>76.53576 | Std. Err.<br>.0281539<br>.5755876 | -1.76                | Prob > P> z  0.078 | (1)<br>chi2<br>[959<br>104<br>75.4 | Conf. | 3.1:<br>0.078                                     |

Last update: September 25, 2025

LPO 8852 (Corcoran) Lecture 3 103 / 110

# Getting estimates of random effects $C_i$ : BLUP



# Getting estimates of $C_i$ : BLUP using xtmixed



Last update: September 25

LPO 8852 (Corcoran) Lecture 3 105 / 110

# Getting estimates of random effects $C_i$

The shrinkage factor is smaller for groups with fewer observations  $(T_i)$ . Their  $\hat{C}_i$  is "shrunk" more toward the overall mean group effect of 0.

- RE estimates generally smaller than FE estimates in absolute value
- True for both MLE and EB estimates of the RE, but especially the EB
- ullet The rank order of the  $\hat{\mathcal{C}}_i$  is usually preserved whether one assumes RE or FE

#### Random vs. fixed effects

When and where random effects are appropriate:

- As a rule, if the FE assumption holds the RE model is inappropriate.
   See the Texas class size example, where the Hausman test rejected
   RF
- RE is appropriate with grouped or clustered data. See the Success for All example: assignment to treatment was random at the school level, so we need not be concerned about correlation between treatment and the error term. However, the errors are not i.i.d.

See Rabe-Hesketh and Skrondal MLM text for more guidance on RE vs. FE decision.

Last update: September 25, 2025
LPO 8852 (Corcoran) Lecture 3 107/110

#### xttest0

The command xttest0 (following xtreg) provides a formal test for the presence of random effects.  $H_0$  in this case is that the variance across panel units is zero, and thus RE is unnecessary.



# Standard errors in panel models

Whether using a FE or RE model, the assumption that errors  $u_{it}$  are i.i.d. is not often satisfied in panel data. With repeat observations on the same cross-sectional unit, it is likely that errors are correlated across observations for the same i

 If Y is over-predicted in one period for a given i, it is likely to be over-predicted in the next period.

LPO 8852 (Corcoran)

Lecture

Last update: September 25, 2029 09 / 110

# Standard errors in panel models

The RE model explicitly models the correlation across observations within group. There is an increasing preference, however, for <u>not</u> doing this and adjusting standard errors for within-panel clustering.

- For "short" panels (large N small T) use cluster-robust standard errors
- The "cluster" is typically the cross-sectional unit, although when the regressor of interest is aggregated at a higher level (e.g., state), can cluster at that level. Theory requires large N and that higher levels nest the cross-sectional units.
- vce(robust) or robust in xtreg assumes data are clustered
- Cluster-robust standard errors from areg are different from those using xtreg, fe. It is recommended that you use xtreg.