

Agenda

- 1. Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- 5. Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- **20.** Zusammenfassung

Quantenkryptographie

Zusammenfassung

- Einsatz von Kryptographie ist essentiell für die sichere Datenübertragung und den Schutz der Privatsphäre.
 - Es existieren viele etablierte klassische Verfahren.
 - Symmetrische und asymmetrische
 - Asymmetrische Systeme bilden Grundlage für den Schlüsseltausch bei der Anwendung von symmetrischen Krypto-Systemen.
- Verfahren sind in der Regel nur "berechnungssicher".
 - Außer One-Time-Pad, das perfekt sicher ist!

Quantenkryptographie

Zusammenfassung

- Quantencomputer können die heute verwendeten asymmetrischen Systeme brechen.
- Zwei Lösungsvarianten:
 - Einsatz von Post-Quantum-Kryptographie.
 - Algorithmen sind nach wie vor "berechnungssicher".
 - Kein echter Sicherheitsbeweis möglich. Beruhen auf nichtbeweisbaren Annahmen.
 - Einsatz von Quanten Key Distribution.
 - Basiert auf sicherem Schlüsseltausch (Detektion eines Lauschers).
 - Es existieren Sicherheitsbeweise!

Quantenkryptographie

Verschränkung als Ressource

- Verschränkung ist eine universelle Ressource, die kein klassisches Äquivalent besitzt.
 - Verschränkung ist experimentell beherrschbar.
 - Bei Zwei-Qubit-Systemen ist die Verschränkung "gut verstanden".
 - Maximal verschränkte Qubits sind "monogam".
 - Verschränkung stellt eine neue Art von Korrelation dar.
 - Grundlage verschiedener Protokolle.
 - Maximale Verschränktheit kann überprüft werden.
 - CHSH-Ungleichung ist nur eine von vielen sogenannten Bell-Ungleichungen.
 - Für verschränkungsbasierte Protokolle existieren Sicherheitsbeweise.

Quantenkryptographie

Das Ekert-Protokoll

- QKD-Protokoll auf Basis von Verschränkung (Ekert 1991)
 - Es gibt mittlerweile verschiedene Varianten.
- Zur Schlüsselgenerierung werden maximal verschränkte Qubits im folgenden Zustand benutzt

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

- Ressource für Shared Randomness
 - Erzeugung des Schlüssels
 - Schlüssel wird erst bei der Messung generiert!
 - Detektion eines Lauschers basiert auf der Uberprüfung der CHSH-Ungleichung.
- "Klassische" Nachbearbeitung wie bei BB84.

Quantenkryptographie

Literatur zu QKD

- Primärquelle sind die Originalveröffentlichungen.
 - Oft zu finden auf https://arxiv.org/
- Viele Bücher zum Thema Quantum Computing enthalten einführende Kapitel zur QKD.
- Kleine Auswahl an Lehrbüchern speziell zum Thema (QKD):
 - Loepp und Wooters: Protecting Information. From Classical Error Correction to Quantum Cryptography, Cambridge (2006)
 - Kollmitzer et al: Applied Quantum Cryptography, Lecture Notes in Physics, Springer (2010)
 - Ramona Wolf: Quantum Key Distribution. An Introduction with Exercises, Springer (2021)

Quantenkryptographie

Agenda Gesamtkursprogramm

Quantum Computing Forum

Introduction to Quantum Computing with Qiskit (with IBM Quantum...

Quantum Machine Learning (with IBM Quantum Research)

Quantenkryptographie

