# 1 Problem 1-2: A New Order

Let G be an undirected graph on N vertices where each vertex has degree at most 2.

# 1.1 (a)

Suppose that we perform a BFS of G. Let  $v_1, \ldots, v_N$  be the vertices of G in the order they are visited in the search. Prove or disprove: every edge in G is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$  for some i.

This hold true by the following proofs. We first prove that in this BFS search, every layer has at most 2 vertices. Secondly, we prove that the labeling of each edge is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$  for some i.

**Lemma 1.1.** If G be an undirected graph on N vertices where each vertex has degree at most 2, then every layer  $L_i$  in a BFS has at most 2 vertices.

*Proof.* **Proof By Induction:** On i,  $L_i = \{$  number of vertices in layer  $L_i$  at distance  $i\}$ 

Base Case: i = 0

i=0.  $L_0=\{v_0\}, v_0$  only vertex in layer  $L_0$ . This base case holds because there is only one vertex in  $L_0$ 

Base Case: i = 1



This case holds true because  $v_0$  has a degree of 2 and layer  $L_1$  has 2 vertices.

### Case 2:



This case holds true because  $v_0$  has a degree of 1 and layer  $L_1$  has 1 vertices.

## Induction Hypotheses:

 $\forall i \leq k \quad L_i = \{ \text{Has at most 2 vertices} \}$ 

### **Induction Step:**

For k + 1 we want to show  $L_{k+1} = \{$  Has at most 2 vertices $\}$ 

#### Case 1:

Layer  $L_k$  has 1 vertex and it has 1 child.



Layer  $L_{k+1}$  has one vertex, and thus Case 1 holds true.

## Case 2:

Layer  $L_k$  has 2 vertices and only one vertex has 1 child.



Layer  $L_{k+1}$  has one vertex, and thus Case 2 holds true.

#### Case 3:

Layer  $L_k$  has 2 vertices and each vertex has 1 child.



Layer  $L_{k+1}$  has 2 vertices, and thus Case 3 holds true.

#### Case 4:

Layer  $L_k$  has 2 vertices and each vertex has 0 children.

A BFS search will never reach  $L_{k+1}$  because there are no additional vertices to search.

**Lemma 1.2.** If a BFS is performed on G, let  $v_1, \ldots, v_N$  be the vertices of G in the order they are visited in the search. Every edge in G is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$  for some i.

*Proof.* **Proof By Induction:** On i, every edge in G is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$ .

Base Case: i = 0

i=0.  $L_0=\{s\}$ , s only vertex in layer  $L_0$ . This base case holds because there is only one vertex in  $L_0$  and thus s would be labeled as  $v_0$ .

Base Case: i = 1





This case holds true because s would be labeled as  $v_0$ , t will be labeled as  $v_1$ , and u will be labeled as  $v_2$ . The edges are  $(v_0, v_1)$  and  $(v_0, v_2)$ . This is shown below.



Case 2:



This case holds true because s would be labeled as  $v_0$  and t will be labeled as  $v_1$ . The edge is  $(v_0, v_1)$ . This is shown below.



## Induction Hypotheses:

 $\forall i \leq k$  Every edge in G is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$  for some i.

### **Induction Step:**

For k+1 we want to show that every edge in G is of the form  $(v_k, v_{k+1})$  or  $(v_k, v_{k+2})$ 

By Lemma 1.1, each Layer can have at most 2 vertices. Thus, we will only consider up to 2 vertices for this proof by induction.

#### Case 1:

There is one vertex labeled as  $v_k$  and it has 1 child.



The vertex t would be labeled as  $v_{k+1}$  since it is the next vertex to be searched. The edge is  $(v_k, v_{k+1})$ . Thus Case 1 holds true.



Case 2:

At some layer, there are 2 vertices  $v_{k-1}$  and  $v_k$  and only 1 vertex has 1 child.



The vertex t would be labeled as  $v_{k+1}$  since it is the next vertex to be searched in BFS. The edge is  $(v_{k-1}, v_{k+1})$ . Thus Case 2 holds true.



Case 3:

At some layer, there are 2 vertices  $v_{k-1}$  and  $v_k$  and each vertex has 1 child.



The vertex s would be searched before vertex t because it was identified before t because the parent of s was identified prior to the parent of t. The vertices s and t would be labeled as  $v_{k+1}$  and  $v_{k+2}$  respectively since they are the next vertices to be searched in BFS. The edges are  $(v_{k-1}, v_{k+1})$  and  $(v_k, v_{k+2})$ . Thus Case 3 holds true.



#### Case 4

At some layer, there are 2 vertices  $v_{k-1}$  and  $v_k$  and each vertex has 1 child, and there is an edge between the children.



The vertex s would be searched before vertex t because it was identified before t because the parent of s was identified prior to the parent of t. The vertices s and t would be labeled as  $v_{k+1}$  and  $v_{k+2}$  respectively since they are the next vertices to be searched in BFS. The fact that there is an edge between s and t doesn't matter. The edges are  $(v_{k-1}, v_{k+1})$ ,  $(v_k, v_{k+2})$ , and  $(v_{k+1}, v_{k+2})$ . Thus Case 4 holds true.



#### Case 5:

At some layer, there are 2 vertices and each vertex has 0 children.

A BFS search will conclude at this layer because there are no further children to search.

# 1.2 (b)

Suppose that we perform a DFS of G. Let  $v_1, \ldots, v_N$  be the vertices of G in the order they are visited in the search. Prove or disprove: every edge in G is of the form  $(v_i, v_{i+1})$  or  $(v_i, v_{i+2})$  for some i.

This claim does not prove true and I will disprove it using a proof by contradiction.

#### **Proof by Contradiction:**

*Proof.* Based on lemma 1.1, the only vertex that can have two children is the start node. Assume a start node with two children and that the left child has k descendants, where k > 1. Additionally, assume that each of these k descendants does not have an edge to a descendent of the right child of the start node.

The start node will be labeled as  $v_0$ . The left child will be labeled as  $v_1$  since it is the first child to be searched. Following the DFS, all of  $v_1$ 's descendants will be searched. Thus, the last descendant to be searched from the left child will be labeled as  $v_k$ . Thus the left subtree will be labeled  $v_1, \ldots, v_k$ .

The next child to be searched will be the right child of the start node. This vertex will be labeled  $v_{k+1}$ . Thus, there is an edge in G of the form  $(v_0, v_{k+1})$  where k > 1. This concludes the proof by contradiction.

### Example:

7

# Before DFS Search:



# After DFS Search:

