VI-SLAM 系统初始化闭式可解性分析

张谦

2020年3月12日

目录

1	系统模型	2
	1.1 几何关系	2
	1.2 基本原理	5
2	可解性分析: Unbiased Case	6
	2.1 Planar Case	6
	2.2 Linear Case	6
	2.3 图像帧数小于等于 2	6
	2.4 图像帧数等于 3	6
	2.5 图像帧数大于等于 4	6
	2.6 Constant Acceleration	6
3	可解性分析: Biased Case	6
	3.1 图像帧数小于等于 3	6
	3.2 图像帧数等于 4	6
	3.3 图像帧数大于等于 5	6
4	Gyroscope Bias 估计	6
5	Modified MK 闭式解	6

1 系统模型

由 VI-SLAM 系统可观性分析可知,在给定视觉和 IMU 观测后,body 系的全局平移和重力方向旋转 yaw 角不可观,body 系的速度、重力和绝对尺度是可观的。分析 VI-SLAM 系统初始化时的闭式可解性,亦即分析在一段时间内,在不同条件下可观变量的可解性:(1)运动轨迹和状态;(2)地图点数量和观测图像上的分布;(3)相机图像帧数。

1.1 几何关系

为简化分析,不考虑相机和 IMU 之间的外参,即假设相机和 IMU 位姿重合。在该系统中,四元数表示旋转采用 Hamilton 形式。坐标系约定:全局坐标系用 G 表示,Camera 坐标系用 C 表示,IMU 坐标系用 I 表示,地图点用 f 表示;相机、IMU 和地图点表示在某个坐标系下,则该坐标系符号写在对应变量符号的左上角,变量标识写在变量符号的右下角,例如 G 表示 IMU 系(body 系)原点在全局坐标系中的位置(平移),G v I 表示 IMU 系在全局坐标系下的速度,G 农 I 表示从全局坐标系旋转到 IMU 系的单位四元数,由于采用 Hamilton 形式,旋转均是由 I 系到 G 系旋转,与 JPL 表示方式相反; G p I 表示第 I 个地图点在 I 系下的坐标。

图 1: 几何关系

陀螺仪测量 $I\omega_m$ 和加速度计测量 $I\mathbf{a}_m$ 模型为:

$${}^{I}\omega_{m}(t) = {}^{I}\omega(t) + \mathbf{b}_{g}(t) + \mathbf{n}_{g}(t)$$
(1)

$${}^{I}\mathbf{a}_{m}(t) = \mathbf{C}^{T}({}^{G}\mathbf{q}_{I}(t))({}^{G}\mathbf{a}_{I}(t) - {}^{G}\mathbf{g}) + \mathbf{b}_{a}(t) + \mathbf{n}_{a}(t)$$

$$(2)$$

其中 C(q) 表示四元数对应的旋转矩阵。在分析可解性时,若不考虑噪声影响,则有,

$${}^{I}\omega_{m}(t) = {}^{I}\omega(t) + \mathbf{b}_{g}(t) \tag{3}$$

$${}^{G}\mathbf{a}_{I}(t) = \mathbf{C}({}^{G}\mathbf{q}_{I}(t))({}^{I}\mathbf{a}_{m}(t) - \mathbf{b}_{a}(t)) + {}^{G}\mathbf{g}$$

$$\tag{4}$$

现分析时间段 $[t_{in},t_{fin}]$ 内的可解性,如图1所示,从 t_{in} 到 $t\in[t_{in},t_{fin}]$ 时刻的平移几何关系可表示为,

$$G_{\mathbf{p}_{I}}(t) = G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \iint_{t_{in}}^{t} G_{\mathbf{a}_{I}}(\tau) d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \iint_{t_{in}}^{t} (\mathbf{C}(G_{\mathbf{q}_{I}}(\tau))(I_{\mathbf{a}_{m}}(\tau) - \mathbf{b}_{a}(\tau)) + G_{\mathbf{g}})d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \frac{1}{2}G_{\mathbf{g}}\Delta t^{2} + \iint_{t_{in}}^{t} \mathbf{C}(G_{\mathbf{q}_{I}}(\tau))(I_{\mathbf{a}_{m}}(\tau) - \mathbf{b}_{a}(\tau))d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \frac{1}{2}G_{\mathbf{g}}\Delta t^{2} + \mathbf{C}(G_{\mathbf{q}_{I}}(t_{in}))\mathbf{C}^{T}(G_{\mathbf{q}_{I}}(t_{in})) \iint_{t_{in}}^{t} \mathbf{C}(G_{\mathbf{q}_{I}}(\tau))(I_{\mathbf{a}_{m}}(\tau) - \mathbf{b}_{a}(\tau))d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \frac{1}{2}G_{\mathbf{g}}\Delta t^{2} + \mathbf{C}(G_{\mathbf{q}_{I}}(t_{in})) \iint_{t_{in}}^{t} \mathbf{C}^{T}(G_{\mathbf{q}_{I}}(t_{in}))\mathbf{C}(G_{\mathbf{q}_{I}}(\tau))(I_{\mathbf{a}_{m}}(\tau) - \mathbf{b}_{a}(\tau))d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \frac{1}{2}G_{\mathbf{g}}\Delta t^{2} + \mathbf{C}(G_{\mathbf{q}_{I}}(t_{in})) \iint_{t_{in}}^{t} \mathbf{C}(I_{in}G_{I}(\tau))(I_{\mathbf{a}_{m}}(\tau) - \mathbf{b}_{a}(\tau))d\tau^{2}$$

$$= G_{\mathbf{p}_{I}}(t_{in}) + G_{\mathbf{v}_{I}}(t_{in})\Delta t + \frac{1}{2}G_{\mathbf{g}}\Delta t^{2}$$

$$+ \mathbf{C}(G_{\mathbf{q}_{I}}(t_{in}))(\iint_{t_{in}}^{t} \mathbf{C}(I_{in}G_{I}(\tau))^{I}\mathbf{a}_{m}(\tau) d\tau^{2} - \iint_{t_{in}}^{t} \mathbf{C}(I_{in}G_{I}(\tau))\mathbf{b}_{a}(\tau)d\tau^{2})$$
(5)

假设在积分区间内,加速度计 bias 为常量,则有,

$${}^{G}\mathbf{p}_{I}(t) = {}^{G}\mathbf{p}_{I}(t_{in}) + {}^{G}\mathbf{v}_{I}(t_{in})\Delta t + \frac{1}{2}{}^{G}\mathbf{g}\,\Delta t^{2}$$

$$+ \mathbf{C}({}^{G}\mathbf{q}_{I}(t_{in}))(\iint_{t_{in}}^{t} \mathbf{C}({}^{I_{in}}\mathbf{q}_{I}(\tau)){}^{I}\mathbf{a}_{m}(\tau)\,d\tau^{2} - \iint_{t_{in}}^{t} \mathbf{C}({}^{I_{in}}\mathbf{q}_{I}(\tau))d\tau^{2}\mathbf{B})$$

$$= {}^{G}\mathbf{p}_{I}(t_{in}) + {}^{G}\mathbf{v}_{I}(t_{in})\Delta t + \frac{1}{2}{}^{G}\mathbf{g}\,\Delta t^{2} + \mathbf{C}({}^{G}\mathbf{q}_{I}(t_{in}))({}^{I_{in}}\mathbf{S}_{I}(t) - {}^{I_{in}}\Gamma_{I}(t)\,\mathbf{B})$$

$$(6)$$

其中

$$^{I_{in}}\mathbf{S}_{I}(t) = \iint_{t_{in}}^{t} \mathbf{C}(^{I_{in}}\mathbf{q}_{I}(\tau))^{I}\mathbf{a}_{m}(\tau) d\tau^{2}$$

$$(7)$$

$$I_{in}\Gamma_I(t) = \iint_{t_{in}}^t \mathbf{C}(I_{in}\mathbf{q}_I(\tau))d\tau^2$$
(8)

且 $^{I_{in}}\mathbf{S}_{I}(t)$ 和 $^{I_{in}}\Gamma_{I}(t)$ 可由加速度计和陀螺仪提供的测量积分得到。

先假设有 N 个地图点被同时观测到, ${}^{G}\mathbf{p}_{f_{i}}, i=1,\ldots,N$,表示在第 t 时刻的相机坐标系下为 ${}^{I_{t}}\mathbf{p}_{f_{i}}$,则有,

$${}^{G}\mathbf{p}_{f_{i}} = {}^{G}\mathbf{p}_{I}(t) + \mathbf{C}({}^{G}\mathbf{q}_{I}(t_{in}))\mathbf{C}({}^{I_{in}}\mathbf{q}_{I}(t)){}^{I_{t}}\mathbf{p}_{f_{i}}$$

$$(9)$$

若上式中 $t = t_{in}$,则有,

$${}^{G}\mathbf{p}_{f_{i}} = {}^{G}\mathbf{p}_{I}(t_{in}) + \mathbf{C}({}^{G}\mathbf{q}_{I}(t_{in}))^{I_{in}}\mathbf{p}_{f_{i}}$$

$$(10)$$

将(6)和(10)带入(9),得到,

$$^{G}\mathbf{p}_{I}(t_{in}) + \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))^{I_{in}}\mathbf{p}_{f_{i}} = {}^{G}\mathbf{p}_{I}(t_{in}) + {}^{G}\mathbf{v}_{I}(t_{in})\Delta t + \frac{1}{2}{}^{G}\mathbf{g}\,\Delta t^{2} + \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))(^{I_{in}}\mathbf{S}_{I}(t) - {}^{I_{in}}\Gamma_{I}(t)\,\mathbf{B}) + \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))\mathbf{C}(^{I_{in}}\mathbf{q}_{I}(t))^{I_{t}}\mathbf{p}_{f_{i}}$$

$$\Leftrightarrow \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))^{I_{in}}\mathbf{p}_{f_{i}} = {}^{G}\mathbf{v}_{I}(t_{in})\Delta t + \frac{1}{2}{}^{G}\mathbf{g}\,\Delta t^{2} + \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))(^{I_{in}}\mathbf{S}_{I}(t) - {}^{I_{in}}\Gamma_{I}(t)\,\mathbf{B}) + \mathbf{C}(^{G}\mathbf{q}_{I}(t_{in}))\mathbf{C}(^{I_{in}}\mathbf{q}_{I}(t))^{I_{t}}\mathbf{p}_{f_{i}}$$

$$(11)$$

两边同时乘以 $\mathbf{C}^T({}^G\mathbf{q}_I(t_{in}))$,得到,

$$\mathbf{C}^{I_{in}}\mathbf{p}_{f_{i}} = \mathbf{C}^{T}({}^{G}\mathbf{q}_{I}(t_{in}))({}^{G}\mathbf{v}_{I}(t_{in})\Delta t + \frac{1}{2}{}^{G}\mathbf{g}\Delta t^{2} + \mathbf{C}({}^{G}\mathbf{q}_{I}(t_{in}))({}^{I_{in}}\mathbf{S}_{I}(t) - {}^{I_{in}}\Gamma_{I}(t)\mathbf{B})) + \mathbf{C}({}^{I_{in}}\mathbf{q}_{I}(t)){}^{I_{t}}\mathbf{p}_{f_{i}}$$

$$\Leftrightarrow \mathbf{C}({}^{I_{in}}\mathbf{q}_{I}(t)){}^{I_{t}}\mathbf{p}_{f_{i}} = {}^{I_{in}}\mathbf{p}_{f_{i}} - {}^{I_{in}}\mathbf{v}_{I}\Delta t - \frac{1}{2}{}^{I_{in}}\mathbf{g}\Delta t^{2} - {}^{I_{in}}\mathbf{S}_{I}(t) + {}^{I_{in}}\Gamma_{I}(t)\mathbf{B}$$
(12)

其中

$$^{I_{in}}\mathbf{v}_{I} = \mathbf{C}^{T}(^{G}\mathbf{q}_{I}(t_{in}))^{G}\mathbf{v}_{I}(t_{in})$$

$$(13)$$

$$^{I_{in}}\mathbf{g} = \mathbf{C}^{T}(^{G}\mathbf{q}_{I}(t_{in}))^{G}\mathbf{g}$$
(14)

假设在时间段 t_{in}, t_{fin} 内,共有 M 帧图像: $t_1 = t_{in} < t_2 < \cdots < t_M = t_{fin}$,且 N 个地图点均被这 M 帧图像观测到。为简化书写,利用如下简写:

$$\mathbf{P}_{j}^{i} \triangleq \mathbf{C}(^{I_{in}}\mathbf{q}_{I}(t_{j}))^{I_{t_{j}}}\mathbf{p}_{f_{i}}
\mathbf{P}^{i} \triangleq ^{I_{in}}\mathbf{p}_{f_{i}}
\mathbf{V} \triangleq ^{I_{in}}\mathbf{v}_{I}
\mathbf{G} \triangleq ^{I_{in}}\mathbf{g}
\Gamma_{j} \triangleq ^{I_{in}}\Gamma_{I}(t_{j})
\mathbf{S}_{j} \triangleq ^{I_{in}}\mathbf{S}_{I}(t_{j})$$
(15)

其中 $i=1,2,\ldots,N$; $j=1,2,\ldots,M$ 。另外,用 μ^i_j 表示 \mathbf{P}^i_j 的单位向量,则有 $\mathbf{P}^i_j=\lambda^i_j\mu^i_j$ 。不失一般性,可令 $t_{in}=0$,则有 $\Delta t=t$ 。几何关系式(12)在每个图像帧时刻 t_j ,可表示为

$$\mathbf{P}^{i} - \mathbf{V}t_{j} - \frac{1}{2}\mathbf{G}t_{j}^{2} + \Gamma_{j}\mathbf{B} - \lambda_{j}^{i}\mu_{j}^{i} = \mathbf{S}_{j}$$

$$(16)$$

另外当 j=1 时, $t_j=t_1=t_{in}=0$,则有 $\mathbf{P}^i=\mathbf{P}^i_1=\lambda^i_1\mu^i_1$ 。几何关系(16)可进一步表示为,

$$-\mathbf{V}t_j - \frac{1}{2}\mathbf{G}t_j^2 + \Gamma_j \mathbf{B} + \lambda_1^i \mu_1^i - \lambda_j^i \mu_j^i = \mathbf{S}_j$$
(17)

对于第 t_1 帧和第 t_j 帧,第 1 个地图点和第 i 个地图点,有如下几何关系:

$$\lambda_1^1 \mu_1^1 - \lambda_j^1 \mu_j^1 = \lambda_1^i \mu_1^i - \lambda_j^i \mu_j^i \tag{18}$$

综合几何关系(17)和(18),可最终得到如下关系式子,

$$\begin{cases}
-\mathbf{V}t_{j} - \frac{1}{2}\mathbf{G}t_{j}^{2} + \Gamma_{j}\mathbf{B} + \lambda_{1}^{1}\mu_{1}^{1} - \lambda_{j}^{1}\mu_{j}^{1} = \mathbf{S}_{j} \\
\lambda_{1}^{1}\mu_{1}^{1} - \lambda_{j}^{1}\mu_{j}^{1} - \lambda_{1}^{i}\mu_{1}^{i} + \lambda_{j}^{i}\mu_{j}^{i} = \mathbf{0}_{3}
\end{cases}$$
(19)

其中 $j=2,3,\ldots,M;\;\;i=2,3,\ldots,N$ 。分析 VI-SLAM 系统初始化的闭式可解性,亦即分析在几何关系(19)下,变量 $\mathbf{P}^i_j,\mathbf{V},\mathbf{G},\mathbf{B}$ 的可解性。其中(19)可提供 3*(M-1)*N 个方程,未知变量有 M*N+6 维(不考虑 bias)或 M*N+9 维(只考虑加速度计 bias)。

定义如下变量和矩阵:考虑加速度计 bias 未知变量,

$$\mathbf{X} \triangleq \left[\mathbf{G}^{T}, \mathbf{V}^{T}, \mathbf{B}^{T}, \lambda_{1}^{1}, \dots, \lambda_{1}^{N}, \dots, \lambda_{M}^{1}, \dots, \lambda_{M}^{N}\right]^{T}$$
(20)

不考虑 bias 未知变量,

$$\mathbf{X} \triangleq \left[\mathbf{G}^{T}, \mathbf{V}^{T}, \lambda_{1}^{1}, \dots, \lambda_{1}^{N}, \dots, \lambda_{M}^{1}, \dots, \lambda_{M}^{N}\right]^{T}$$
(21)

IMU 测量相关积分变量,

$$\mathbf{S} \triangleq \left[\mathbf{S}_2^T, \mathbf{0}_{1\times 3}, \dots, \mathbf{0}_{1\times 3}, \mathbf{S}_3^T, \mathbf{0}_{1\times 3}, \dots, \mathbf{0}_{1\times 3}, \mathbf{S}_M^T, \mathbf{0}_{1\times 3}, \dots, \mathbf{0}_{1\times 3}\right]^T$$
(22)

几何关系矩阵,

其中 $\mathbf{T}_j \triangleq -\frac{t_j^2}{2} \mathbf{I}_3$ 和 $\mathbf{K}_j \triangleq -t_j \mathbf{I}_3$ 。

根据以上定义,对于 M 帧图像和 N 个地图点的几何关系式(19)可表示为

$$\Xi \mathbf{X} = \mathbf{S} \tag{24}$$

假设重力的大小已知,即 $|\mathbf{G}| = g$,则对方程组(24)添加如下约束,

$$|\Pi \mathbf{X}|^2 = g^2 \tag{25}$$

其中 $\Pi \triangleq [\mathbf{I}_3, \mathbf{0}_3, \dots, \mathbf{0}_3]$ 。

至此,VI-SLAM 系统初始化的闭式可解性分析,将基于方程组(24)和(25)。通过分析矩阵 Ξ 的零空间 $\mathcal{N}(\Xi)$,可得到变量 \mathbf{X} 的可解情况。

1.2 基本原理

关于 VI-SLAM 系统解的个数,有如下结论:

Theorem1: (a) 当矩阵 Ξ 的零空间 $\mathcal{N}(\Xi)$ 为空时,有且仅有 1 个解; (b) 当零空间 $dim(\mathcal{N}(\Xi)) = 1$,且对于任意 $\mathbf{n} \in \mathcal{N}(\Xi)$, $|\Pi \mathbf{n}| \neq 0$ 时,有 2 个解; (c) 其他情况,有无数解。

证明如下: (*i*) 对于结论 (a),显然地利用高斯消元法解方程组,可得到唯一解; (*ii*) 当 $dim(\mathcal{N}(\Xi)) = 1$ 时,线性方程组(24)有解: $\mathbf{X}(\gamma) = \Xi^{-1}\mathbf{S} + \gamma\mathbf{n}$ (左右乘以 Ξ 可验证),其中 Ξ^{-1} 为 Ξ 的伪逆, \mathbf{n} 为零空间 $\mathcal{N}(\Xi)$ 的列向量, $\gamma \in \mathbb{R}$ 为一个未知标量。 γ 可由式子(25)解得: 当 $|\Pi\mathbf{n}| \neq 0$ 时, $|\Pi\mathbf{X}(\gamma)|^2 = g^2$ 是关于 γ 的二次多项式,因此有两个解 γ_1 和 γ_2 ,对应有两个解 γ_2 ,对应有两个解 γ_3 和 γ_4 和 γ_5 对应有两个解 γ_3 和 γ_4 和 γ_5 对应有两个解 γ_5 和 γ_5 和 γ_5 和 γ_5 对应有两个解 γ_5 和 γ_5 和 γ_5 对应有两个解 γ_5 和 γ_5 和

结合 **Theorem1** 可通过分析矩阵 Ξ 的零空间 $\mathcal{N}(\Xi)$,得到 VI-SLAM 系统的可解的情况。由于矩阵的每一列乘以一个非零的标量常数,不改变矩阵零空间,为便于分析,将矩阵 Ξ 做如下变形,亦即每一列乘以对应的 λ_j^i 还原为 $\mathbf{P}_i^i = \lambda_i^i \mu_i^i$,得到

$$\Xi' \triangleq \begin{bmatrix} \mathcal{M}_2 & \mathcal{P}_1 & \mathcal{P}_2 & \mathbf{0}_{3N \times N} & \dots & \mathbf{0}_{3N \times N} \\ \mathcal{M}_3 & \mathcal{P}_1 & \mathbf{0}_{3N \times N} & \mathcal{P}_3 & \dots & \mathbf{0}_{3N \times N} \\ \dots & \dots & \dots & \dots & \dots \\ \mathcal{M}_M & \mathcal{P}_1 & \mathbf{0}_{3N \times N} & \mathbf{0}_{3N \times N} & \dots & \mathcal{P}_M \end{bmatrix}$$

$$(26)$$

其中

$$\mathcal{M}_{j} \triangleq \begin{bmatrix} \mathbf{T}_{j} & \mathbf{K}_{j} & \Gamma_{j} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \dots & \dots & \dots \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \end{bmatrix}$$

$$(27)$$

$$\mathcal{P}_{j} \triangleq \begin{bmatrix}
\mathbf{P}_{j}^{1} & \mathbf{0}_{3\times 1} & \mathbf{0}_{3\times 1} & \dots & \mathbf{0}_{3\times 1} \\
\mathbf{P}_{j}^{1} & \mathbf{P}_{j}^{2} & \mathbf{0}_{3\times 1} & \dots & \mathbf{0}_{3\times 1} \\
\mathbf{P}_{j}^{1} & \mathbf{0}_{3\times 1} & \mathbf{P}_{j}^{3} & \dots & \mathbf{0}_{3\times 1} \\
\dots & \dots & \dots & \dots & \dots \\
\mathbf{P}_{j}^{1} & \mathbf{0}_{3\times 1} & \dots & \mathbf{0}_{3\times 1} & \mathbf{P}_{j}^{N}
\end{bmatrix}$$
(28)

由式子(18)可知 $\mathbf{P}_j^i - \mathbf{P}_1^i, i = 1, 2, \dots, N$ 独立于 i,因此令 $\mathcal{X}_j \triangleq \mathbf{P}_j^i - \mathbf{P}_1^i$ 表征 IMU 系的运动状态。为保证矩阵 Ξ' 的每一列不为零,做如下假设:

Assumption1: 对于任意 $i=1,2,\ldots,N,\ j=2,\ldots,M$,有 $\mathbf{P}_{j}^{i}\neq\mathbf{0}_{3\times1}$ 。

接下来,基于上述结论,通过分析矩阵 Ξ' 的零空间,进而分析考虑 bias 和不考虑 bias 时,VI-SLAM 系统的可解性。

- 2 可解性分析: Unbiased Case
- 2.1 Planar Case
- 2.2 Linear Case
- 2.3 图像帧数小于等于 2
- 2.4 图像帧数等于 3
- 2.5 图像帧数大于等于 4
- 2.6 Constant Acceleration
- 3 可解性分析: Biased Case
- 3.1 图像帧数小于等于 3
- 3.2 图像帧数等于 4
- 3.3 图像帧数大于等于 5
- 4 Gyroscope Bias 估计
- 5 Modified MK 闭式解

References

- [1] https://www.zhihu.com/question/22983179
- [2] Meyer CD (2000) Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: SIAM.
- [3] Hesch J A, Kottas D G, Bowman S L, et al. Camera-IMU-based localization: Observability analysis and consistency improvement[J]. The International Journal of Robotics Research, 2014, 33(1): 182-201.
- [4] Huai Z, Huang G. Robocentric visual-inertial odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6319-6326.