回帰分析

回帰モデルの考え方と推定

村田 昇

講義の内容

・ 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の考え方

回帰分析

• ある変量を別の変量で説明する関係式を構成する

• 関係式: 回帰式 (regression equation)

- 説明される側:目的変数,被説明変数,従属変数,応答変数

- 説明する側: 説明変数, 独立変数, 共変量

• 説明変数の数による分類

- 一つの場合: **単回帰** (simple regression)

- 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

• 説明変数: $x_1, ..., x_p$ (p 次元)

• 目的変数: y(1次元)

• 回帰式: y を $x_1,...,x_p$ で説明するための関係式

$$y = f(x_1, \dots, x_p)$$

• 観測データ: n 個の $(y, x_1, ..., x_p)$ の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として**1次関数** を考える

ある定数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合:線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式: $x_i^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換: $\log x_i, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではないことに注意

回帰係数

• 線形回帰式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_D x_D$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- β₀: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis)
 - 未知の回帰係数をデータから決定する分析方法
 - 決定された回帰係数の統計的な性質を診断

回帰の確率モデル

- 回帰式の不確定性
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル: データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合, 平均 0, 分散 σ^2 の正規分布を仮定
- 推定 (estimation): 観測データから回帰係数を決定

回帰係数の推定

残差

- 残差 (residual): 回帰式で説明できない変動
- 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_n)^\mathsf{T}$ を持つ回帰式の残差

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_D x_{iD})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares)

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator)

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数、誤差、回帰係数のベクトル

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- y, ϵ は n 次元ベクトル
- β は p+1 次元ベクトル

行列・ベクトルによる表現

• 確率モデル

$$y = X\beta + \epsilon$$

• 残差平方和

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の条件

• 解 **β** では残差平方和の勾配は零ベクトル

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \mathbf{0}$$

演習

問題

• 残差平方和 $S(\beta)$ をベクトル β で微分して解の条件を求めなさい

解答例

• 残差平方和を展開しておく

$$S(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^{\mathsf{T}} (y - X\boldsymbol{\beta})$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - (X\boldsymbol{\beta})^{\mathsf{T}} y + (X\boldsymbol{\beta})^{\mathsf{T}} X \boldsymbol{\beta}$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} y + \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{\beta}$$

• ベクトルによる微分を行うと以下のようになる

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = -(\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}})\boldsymbol{\beta}$$
$$= -2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta}$$

• したがって β の満たす条件は以下となる

$$-2X^{\mathsf{T}}y + 2X^{\mathsf{T}}X\beta = 0 \qquad \sharp \ ^{\flat})$$
$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

補足

• 成分ごとの計算は以下のようになる

$$\frac{\partial S}{\partial \beta_j}(\beta) = -2\sum_{i=1}^n \left(y_i - \sum_{k=0}^p \beta_k x_{ik} \right) x_{ij} = 0$$
ただし、 $x_{i0} = 1$ $(i = 1, \dots, n)$, $j = 0, 1, \dots, p$

$$\sum_{i=1}^n x_{ij} \left(\sum_{k=0}^p x_{ik} \beta_k \right) = \sum_{i=1}^n x_{ij} y_i \quad (j = 0, 1, \dots, p)$$
 x_{ij} は行列 X \mathcal{O} (i, j) 成分であることに注意

正規方程式

正規方程式

• 正規方程式 (normal equation)

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

- X^TX: Gram 行列 (Gram matrix)
 - (p+1)×(p+1) 行列(正方行列)
 - 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立

これらは同値条件

解析の上での良くない条件

- 説明変数が1次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values)

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\text{\tiny $\hat{\mathfrak{g}}$ \tiny 0 }\text{\tiny $\hat{\mathfrak{g}}$ \tiny $\hat{\mathfrak{g}}$$

- 最小二乗推定量 ŷ の幾何学的性質
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の線形部分空間
 - -X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - $-\hat{y}$ はy の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

 $\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{y}} = 0$

図 1: n = 3, p + 1 = 2 の場合の最小二乗法による推定

線形回帰式と標本平均

- $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\mathsf{T}$: i 番目の観測データの説明変数
- 説明変数および目的変数の標本平均

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

• $\hat{\beta}$ が最小二乗推定量のとき以下が成立

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

演習

問題

- 最小二乗推定量について以下を示しなさい
 - 残差の標本平均が0となる

目的変数や残差のベクトルについて以下を示せばよい

$$\mathbf{1}^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{\hat{y}}) = \mathbf{1}^{\mathsf{T}} \boldsymbol{\hat{\epsilon}} = 0$$

ただし $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ とする

- 回帰式が標本平均を通る

$$\bar{y} = (1, \bar{\boldsymbol{x}}^{\mathsf{T}}) \boldsymbol{\hat{\beta}}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - \hat{y} = y - X\hat{\beta}$$
$$= y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

左から X^T を乗じる

$$X^{\mathsf{T}} \mathbf{y} - X^{\mathsf{T}} X (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} \mathbf{y} = X^{\mathsf{T}} \mathbf{y} - X^{\mathsf{T}} \mathbf{y} = 0$$

- 行列 X の 1 列目が 1 であることより明らか
- 説明変数の標本平均をデザイン行列で表す

$$\mathbf{1}^{\mathsf{T}}X = n(1, \bar{\boldsymbol{x}}^{\mathsf{T}})$$

• したがって以下が成立する

$$n(1, \bar{\mathbf{x}}^{\mathsf{T}})\hat{\boldsymbol{\beta}} = \mathbf{1}^{\mathsf{T}} X \hat{\boldsymbol{\beta}}$$
$$= \mathbf{1}^{\mathsf{T}} \hat{\mathbf{y}} = \mathbf{1}^{\mathsf{T}} \mathbf{y}$$
$$= n\bar{\mathbf{y}}$$

残差の分解

最小二乗推定量の残差

• 観測値と推定値 β による予測値の差

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル

$$\hat{\boldsymbol{\epsilon}} = \mathbf{y} - \hat{\mathbf{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- $\bar{\mathbf{y}} = \bar{\mathbf{y}}\mathbf{1} = (\bar{\mathbf{y}}, \bar{\mathbf{y}}, \dots, \bar{\mathbf{y}})^{\mathsf{T}}$: 標本平均のベクトル
- いろいろなばらつき
 - $S_v = (y \bar{y})^T (y \bar{y})$: 目的変数のばらつき
 - $S = (y \hat{y})^{\mathsf{T}} (y \hat{y})$: 残差のばらつき $(\hat{\boldsymbol{\epsilon}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}})$
 - $S_r = (\hat{\mathbf{y}} \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} \bar{\mathbf{y}})$: あてはめ値 (回帰) のばらつき
- 3 つのばらつき (平方和) の関係

$$(\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \bar{\mathbf{y}}) = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$S_{v} = S + S_{r}$$

演習

問題

- 以下の関係式を示しなさい
 - あてはめ値と残差のベクトルが直交する

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

- 残差平方和の分解が成り立つ

$$S_v = S + S_r$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})y$$

左からŷを乗じる

$$\hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \hat{\boldsymbol{\beta}}^{\mathsf{T}} X^{\mathsf{T}} (I - X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}} X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}}) \mathbf{y} = 0$$

• 以下の関係を用いて展開すればよい

$$y-ar{y}=y-\hat{y}+\hat{y}-ar{y}$$
ただし $ar{y}=ar{y}1$

• このとき以下の項は0になる

$$(\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) - \bar{\mathbf{y}} \mathbf{1}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = 0$$

決定係数

回帰式の寄与

• ばらつきの分解

$$S_y$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 $(R^2$ 値)

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正している

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• データの一部

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.60	0.00	24.53	0.00	SSE	2.80	1010.10	72.00	8.80
2022-08-02	31.60	0.00	24.78	0.00	SSE	2.50	1008.80	71.00	9.80
2022-08-03	31.50	0.00	21.24	0.00	SSE	2.30	1005.10	75.00	7.30
2022-08-04	24.60	18.00	3.46	0.00	NE	2.70	1006.00	89.00	10.00
2022-08-05	23.80	0.00	7.65	0.00	NE	2.90	1006.10	83.00	9.80
2022-08-06	25.20	0.00	17.06	0.00	SSE	2.40	1008.10	73.00	10.00
2022-08-07	27.60	0.00	14.45	0.00	SSE	2.20	1009.30	80.00	8.30
2022-08-08	29.80	0.00	22.52	0.00	S	4.50	1008.50	75.00	4.80
2022-08-09	30.90	0.00	25.50	0.00	S	5.50	1006.90	69.00	6.80
2022-08-10	30.50	0.00	25.99	0.00	S	5.30	1007.20	70.00	6.00
2022-08-11	29.50	0.00	22.90	0.00	S	5.40	1007.50	75.00	6.00
2022-08-12	28.30	2.00	15.36	0.00	S	5.80	1007.50	81.00	9.80

- 気温を説明する5種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

図 2: 散布図

図 3: モデル 1

図 4: モデル 2

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 寄与率による比較

	モデル	決定係数	自由度調整済み決定係数
1	気温 = F(気圧)	0.064	0.031
2	気温 = F(日射)	0.641	0.628
3	気温 = F(気圧, 日射)	0.741	0.722
4	気温 = F(気圧, 日射, 湿度)	0.758	0.731
5	気温 = F(気圧, 日射, 雲量)	0.760	0.733

次回の予定

- 第1回:回帰モデルの考え方と推定
- 第2回:モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

図 5: モデル 3

図 6: モデルの比較