

Agrégation d'un portefeuille de contrats

Est-il toujours optimal de rassembler les contrats d'assurance vie en fonction de l'âge et de l'ancienneté?

P.O. Goffard¹

¹ Axa France - Institut de Mathématiques de Marseille I2M Aix-Marseille Université

Journée de la Statistique, Juin 2014

Sommaire

Introduction

Le processus d'agrégation du portefeuille

Validation de la méthode d'agrégation

JdS 2014, Rennes 2/19

Contexte de l'étude

Solvabilité II en ligne de mire

- Cadre prudentiel européen unique pour toutes les compagnies d'assurance et de réassurance
- ► Entrée en vigueur au 1^{er} janvier 2016

Calcul des provisions "Best estimate"

- Prise en compte de l'aléa financier et assurantiel pour évaluer les engagemens de l'assureur et de l'assuré
 - → Méthode de Monte Carlo avec 4000 scénarios financiers
 - → Approche contrat par contrat
- Le périmètre Epargne individuelle contient 3m de contrats
 - → Consommation importante de temps et de mémoire

JdS 2014, Rennes 3/19

Executive summary

Qu'est ce qu'un model point?

- ► Choix des variables actives dans la phase de classification
- Méthode de construction d'un contrat représentatif pour chaque groupe de contrat
- ► Implémentation d'un outil SAS déjà utilisé en production à l'heure actuelle

JdS 2014, Rennes 4/19

Modèle de projection des cash flows

Valeur actuelle probable

Moyenne des cash flows actualisés et pondérés par leur probabilité d'occurence.

Provision best estimate

Différence entre les VAP de l'assureur et de l'assuré

- ► Engagements de l'assureur = Prestations
- ► Engagements de l'assuré = Primes périodiques

JdS 2014, Rennes 5/19

Aléa financier

Contrat d'assurance vie de type Epargne

La valeur du cash flow est égale au versement initial investi sur différents supports d'investissement.

$$CF(t) = CF(0) \times exp\left(\int_0^t r_a(s)ds\right),$$

où r_a est un taux d'intérêt instantané. Le cash flow est ensuite actualisé

$$VA(t) = CF(t) \times exp\left(-\int_0^t r_{\delta}(s)ds\right),$$

VA(t) est la valeur actuelle de l'épargne à l'instant t et r_{δ} est le taux d'actualisation instantané.

- $\hookrightarrow r_a$ et r_δ sont des processus stochastiques sous une mesure de probabilité O^f .
- → Engagements futurs nuls pour l'assuré

JdS 2014, Rennes 6/19

Aléa assurantiel

- ► Trois évènements peuvent déclencher un cash flow sortant

 - → L'arrivée à échéance du contrat
- \triangleright τ est l'instant de sortie du cash flow, variable aléatoire de loi f_{τ}
- T est l'instant d'arrivée à échéance du contrat, déterministe
- $\tau \wedge T$ est l'instant aléatoire de sortie du cash flow, de loi

$$dP_{\tau \wedge T}(t) = f_{\tau}(t)d\lambda(t) + \overline{F_{\tau}}(T)\delta_{T}(t).$$

JdS 2014, Rennes 7/1

Calcul du BEL

Les provisions best estimate sont par définition

$$BEL(0,T) = E^{P_{\tau \wedge T} \otimes Q^f}(VA(\tau \wedge T)).$$

• Génération de scénarios financiers sous Q^f .

Soit F un scénario

$$BEL^{F}(0,T) = E^{P_{\tau \wedge T}}(VA(\tau \wedge T)|\mathbf{F})$$

$$= \int_{0}^{T} CF(0) \times exp\left(\int_{0}^{t} (r_{a}(s) - r_{\delta}(s))ds\right) f_{\tau}(t)dt$$

$$+ \overline{F_{\tau}}(T) \times CF(0) \times exp\left(\int_{0}^{T} (r_{a}(s) - r_{\delta}(s))ds\right)$$

JdS 2014, Rennes 8/19

Calcul du BEL

Les provisions best estimate sont par définition

$$BEL(0,T) = E^{P_{\tau \wedge T} \otimes Q^f}(VA(\tau \wedge T)).$$

ightharpoonup Génération de scénarios financiers sous Q^f .

Soit F un scénario

$$BEL^{F}(0,T) = E^{P_{\tau \wedge T}}(VA(\tau \wedge T)|\mathbf{F})$$

$$= \int_{0}^{T} CF(0) \times exp\left(\int_{0}^{t} (r_{a}(s) - r_{\delta}(s))ds\right) f_{\tau}(t)dt$$

$$+ \overline{F_{\tau}}(T) \times CF(0) \times exp\left(\int_{0}^{T} (r_{a}(s) - r_{\delta}(s))ds\right)$$

JdS 2014, Rennes 9/19

Calcul du BEL: Version discrète

$$BEL^{F}(0,T) \approx \left[\sum_{t=0}^{T-1} p(t,t+1) \prod_{k=0}^{t-1} \frac{1 + r_{a}(k,k+1)}{1 + r_{\delta}(k,k+1)} \right] CF(0) + \left[p(T) \prod_{k=0}^{T-1} \frac{1 + r_{a}(k,k+1)}{1 + r_{\delta}(k,k+1)} \right] CF(0).$$

où

- ightharpoonup p(t, t+1) est la probabilité de sortie durant l'année t
- $r_a(t, t+1)$ et $r_\delta(t, t+1)$ sont les taux d'accumulation et d'actualisation durant l'année t

$$BEL^{F}(0,T) \approx \sum_{t=0}^{T-1} p(t,t+1)CF(t) + p(T)CF(T).$$

JdS 2014, Rennes 10/19

Additivité des provisions best estimate

Regroupement de deux contrats ayant les mêmes caractéristiques en un MP.

$$CF_{MP}(0) = \sum_{i=1}^{2} CF_{C_i}(0)$$

et,

$$BEL_{MP}^{F}(0,T) = \sum_{i=1}^{2} BEL_{C_{i}}^{F}(0,T)$$

- ▶ Valeur exacte des provisions best estimate du portefeuille!
 - → L'idée est de se rapprocher de l'additivité

Phase de classification: une approche non paramétrique

$$\mathbf{P} = \{\mathbf{x}_i\}_{i \in 1, \dots, n}$$

Avec

$$\mathbf{x}_i = (p_i(0,1), p_i(1,2), ..., p_i(T-1,T), p_i(T)).$$

- Similaire au problème de la classification des données longitudinales en biostatistique et en sciences sociales
- ▶ Distance euclidienne et CAH consolidée par les KMEANS
- ▶ Pondération des contrats par leur provision mathématique

$$w_{\mathbf{x}} = \frac{CF_{\mathbf{x}}(0)}{\sum_{\mathbf{x}\in\mathcal{P}}^{n} CF_{\mathbf{x}}(0)},$$

JdS 2014, Rennes 12/19

Phase de classification: le résultat

JdS 2014, Rennes 13/19

Phase d'agrégation

- ► METHOD = BARYCENTER
 - → Problème opérationnel!
- ► METHOD = PROXYBARYCENTER
- ► METHOD = NAIVE

JdS 2014, Rennes 14/19

Backtesting: Le portefeuille de travail

Nombre de contrats	Provision Mathématique (euros)
140 790	2 632 880 918

Variable: AGE			
Moyenne	Ecart-type	Minimum	Maximum
49.09	18.57	1	102

Variable: ANCIENNETE				
Moyenne	Ecart-type	Minimum	Maximum	
4.10	1.63	1	7	

Nombre de contrats	Provision best estimate (euros)
664	2 608 515 602

JdS 2014, Rennes 15/19

Backtesting: Performance de la méthode d'agrégation

BEL error (euros) BARYCENTER	BEL error (euros) PROXYBARYCENTER	BEL error (euros) Naive
-10 880	-199 734	1 074 983

Error on the best estimate liabilities

Error on the best estimate liabilities (Zoom) 90+9290+9250+0

Number of model points

JdS 2014, Rennes 16/19

Conclusion et perspectives

Conclusion

- Mise au point d'une méthode d'agrégation adaptée aux portefeuilles de contrats d'assurance sur la vie efficace
 - → Facile à comprendre
 - → Facile à implémenter
 - → Fondée théoriquement et performante concrètement
- Elément clé de la simplification du processus de valorisation du portefeuille de contrat d'assurance vie de type épargne individuelle d'AXA France

Perspectives

- Utilisation d'une distance autre qu'euclidienne dans la phase de classification
- ▶ Pouvoir garantir un niveau d'erreur a priori à partir du nombre de MP

JdS 2014, Rennes 17/19

Backtesting: Choix du nombre de classes

JdS 2014, Rennes 18/19

Backtesting: Précision sur l'ensemble de la projection

JdS 2014, Rennes 19/19