EXAMEN FINAL

CISE III - 25 Enero 1999

(Tiempo: 2horas 30 minutos)

- Publicación de calificaciones: 1 de febrero a las 18 h. en el sótano -1 del módulo C4
- Alegaciones: 2 de febrero
- Calificaciones definitivas: 3 de febrero al 18 h. sótano -1 del módulo C4

Problema 1 (2,5 puntos).

- a) Dibujar la característica entrada-salida, Vo=f(Vi), del circuito de la figura. Indicar claramente los diferentes estados de funcionamiento del diodo y los dos amplificadores operacionales y los márgenes de valores de Vi en los que son válidos estos estados. Los amplificadores operacionales son ideales con $v_{sat}=\pm Vcc$.
- **b)** Dibujar la evolución temporal de Vo para $V_i = \frac{3}{2}V_{cc} \sin{(2\pi 100 \text{ t})}$ (Voltios). A.O. con $v_{sat} = \pm Vcc$.

Problema 2 (2,5 puntos).

Considerar el Amplificador Operacional ideal con v_{sat}=± Vcc.

- a) Dibujar la evolución temporal de las tensiones V_1 y V_2 del circuito de la figura. Las condiciones iniciales para t=0 son: V_1 = V_{cc} y V_2 =0.
- **b**) Calcular la frecuencia de las señales del apartado anterior y sus amplitudes en función de los parámetros del circuito.

Problema 3 (2.5 puntos).

Mediante un regulador de tensión ajustable LM317 se realiza una fuente de corriente como la de la figura.

- a) Calcular IL.
- ${f b}$) Dar los valores de V_{adj} , Vo y V_L .
- c) Calcular el rendimiento del regulador. Suponer que la corriente de entrada por Vi es aproximadamente igual a la corriente de salida por Vo y que Vi=5 V.
- d) La resistencia Rs se sustituye por una RT que varia con la temperatura de la siguiente manera:

$$R_{T} = R_{o} + \Delta R \Delta T$$

$$R_{o} = R_{T} (T = 0^{o} C) = 2 \Omega$$

$$\Delta R = 10 \frac{m\Omega}{{}^{o}C}$$

y se conecta el circuito anterior a un amplificador para medir ΔT . Dar la expresión de $V_T(T)$ y calcular V_T para T=0°C y T=100°C.

Problema 4 (2,5 puntos).

En el circuito de la figura se utiliza un Amplificador Operacional MC1458C de Motorola que tiene las siguientes características típicas:

Voff (mV)	Ioff (nA)	IB (nA)	R _i (M W)	A ₀	R ₀ (W)	CMRR (dB)	SR (V/ms)	f _T (MHz)
2	20	80	2	2x10 ⁵	75	90	0,5	1

- a) Calcular la expresión de Vo en función de Vi si se considera el AO ideal. Observar que Vcc=12V. Dibujar Vo(t) si a la entrada tenemos una señal senoidal de 2V de amplitud y de frecuencia 1kHz.
- **b**) Calcular la expresión y el valor del error en la tensión de salida, Vo, debido a la tensión de offset, Voff. Tomar $200k\Omega//67k\Omega$ $50k\Omega$.
- c) Calcular la expresión y el valor del error en la tensión de salida, Vo, debido a las corrientes de offset y polarización, Ioff y I_B.Tomar $200k\Omega//67k\Omega$ $50k\Omega$.
- **d**) Obtener la amplitud máxima que puede tener una señal senoidal a la entrada de frecuencia 20 kHz para no obtener una señal a la salida distorsionada por el Slew Rate, SR.

El Amplificador Operacional MC1458C se utiliza para realizar el circuito pasa alto de la figura siguiente.

e) Calcular la función de transferencia, Vo/Vi, en función de R y C, suponiendo el AO ideal. Dibujar el diagrama de Bode del módulo de la función de transferencia anterior para $R=22k\Omega$ y C=4,7nF. Dar los valores numéricos de las magnitudes más importantes.