Given n numbers x_1, x_2, \dots, x_n , consider the problem of computing $d[i, j] = x_i + x_{i+1} + \dots + x_j$, for all i<=j. A naïve algorithm by computing each d[i, j]

independently will take $\Theta(n^3)$ time. Derive an efficient way to solve this problem in $O(n^2)$ time.

【 98 年中央資工所 】

Ans.

7022.4,4

dei,j] = xi + xi++ --+ xj, for all i=j

72 7:05

for $i \leftarrow 1$ to $n \in 1$ $d(i), i] = x_i;$ for $len \leftarrow 2$ to $n \in 2$

for $i \in 1$ to n-lent $\{i \in j = i + len - i\}$

dci,j] = dci,i] + dci+1,j];

3

3