EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ

Varianta 10

Filiera teoretică, profilul real, specializarea matematică-informatică.

Filiera vocațională, profilul militar, specializarea matematică-informatică.

BAREM DE CORECTARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I 30 de puncte

1.	$(i\sqrt{2}-1)^2 + 2(i\sqrt{2}-1) + 3 =$	1p
	$=2i^2 - 2i\sqrt{2} + 1 + 2i\sqrt{2} - 2 + 3 =$	2p
	=0	2p
2.	$f(g(x)) = 2(x^2 - a) + a =$	2p
	$=2x^2-a$	1p
	$2x^2 - a > 0 \Leftrightarrow a < 0$	2p
3.	$\sqrt{\left(x-1\right)^2} = x+1$	2p
	x-1 = x+1	1p
	x = 0	2 p
4.	0, 3, 6, 9,, 2010 sunt în progresie aritmetică cu rația 3	2p
	Numărul termenilor este 671	3p
5.	Mijlocul segmentului $[BC]$ este $M(2,1)$	2p
	Ecuația medianei este $y = 4x - 7$	3p
6.	$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) =$	2p
	$=\frac{\sqrt{6}-\sqrt{2}}{4}$	3р

SUBIECTUL II 30 de puncte

1.a)	(x+y=1)	
	$\begin{cases} x+z=-1 \end{cases}$	2p
	y+z=0	
	$S = \left\{ \left(0, 1, -1\right) \right\}$	3 p
b)		
	$\begin{vmatrix} 1 & -2 & 1 \end{vmatrix} = 0$	3 p
	$\begin{vmatrix} -2 & 1 & 0 \end{vmatrix}$	
	Rang $A = 2$	1p
	Sistemul este compatibil, deoarece rang $\overline{A} = 2$	1p

c)	$\begin{vmatrix} 1 & 1 & a \\ 1 & 2a & 1 \\ 2a & 1 & a+1 \end{vmatrix} = -2(2a-1)(a-1)(a+1)$ $a \in \mathbb{R} \setminus \left\{ \pm 1, \frac{1}{2} \right\}$	3p 2p
2.a)	$x_1 = 2 + i \Longrightarrow x_2 = 2 - i$	1p
	Folosind relațiile lui Viète, obținem $x_3 = 3 - x_1 - x_2 = -1$	2p
	m = 1, n = -5	2p
b)	Restul este $r = X(m-3)+1-n$	3p
	m=3 și $n=1$	2p
c)	Presupunând prin absurd că $x_1 \le 0$, rezultă $x_1^3 \le 0, -3x_1^2 \le 0, mx_1 \le 0, -n < 0$	3p
	Adunând cele patru relații se obține $0 = f(x_1) < 0$, contradicție	2p

SUBIECTUL III 30 de puncte

1.a)	f(x)	
	$m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$	2p
	2	
	$n = \lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \frac{x^3 - 3x + 2 - x^3}{\sqrt[3]{\left(x^3 - 3x + 2 \right)^2 + x\sqrt[3]{x^3 - 3x + 2} + x^2}} = 0$	2 p
	$x \to +\infty$ $\sqrt[3]{(x^3 - 3x + 2)^2 + x\sqrt[3]{x^3 - 3x + 2 + x^2}}$	
	Asimptota oblică este $y = x$	1p
b)	$x^{3}-3x+2=(x-1)^{2}(x+2)$	1p
	$\frac{f(x)-f(-2)}{x+2} = \sqrt[3]{\frac{(x-1)^2}{(x+2)^2}}$	1p
	$\lim_{x \to -2} \frac{f(x) - f(-2)}{x + 2} = \infty$	2p
	Deci f nu e derivabilă în −2	1p
c)	$\lim_{x \to +\infty} \frac{\ln f(x)}{\ln x} = \lim_{x \to +\infty} \frac{\ln \left(x^3 - 3x^2 + 2\right)}{\ln x^3} =$	
	$\lim_{x \to 0} \frac{\lim_{x \to 0} f(x)}{\lim_{x \to 0} f(x)} = \lim_{x \to 0} \frac{f(x)}{\lim_{x \to 0} f(x)} = \lim_{x \to 0} \frac{f(x)}{$	2 p
	11177	2
2.a)	Finalizare: limita este egală cu 1	3 p
2.a)	Cu substituția $\sin x = t$ se obține $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{2 - \cos^{2} x} dx = \int_{0}^{1} \frac{dt}{1 + t^{2}} =$	3p
	$= \operatorname{arctg} t \left \frac{1}{0} = \frac{\pi}{4} \right $	2p
b)	Dacă funcția F este o primitivă a funcției f , atunci $F'(x) = \frac{\cos x}{2 - \cos^2 x}$, $\forall x \in \left[0, \frac{\pi}{2}\right]$	2p
	Cum $\cos x \in [-1,1]$, $\forall x \in \mathbb{R}$, rezultă $F'(x) = \frac{\cos x}{2 - \cos^2 x} \ge 0$, $\forall x \in [0, \frac{\pi}{2}]$	2p
	F este strict crescătoare pe $\left[0, \frac{\pi}{2}\right]$	1p
c)	$f(y) = f(2\pi - y)$	1p
II		1

(Cu substituția $x = 2\pi - y$ se obține $I = \int_{0}^{2\pi} (2\pi - y) f(y) dy =$	1p
=	$=2\pi\int\limits_{0}^{2\pi}f(y)dy-I$	1p
2	$\int_{0}^{2\pi} f(y)dy = 0$	1p
	Deci $I = 0$	1p