ANSD, Dakar ISE 1

Optimisation

Chapitre 2 : Optimisation sans contraintes

Dr. Oumar Diop oumar.diop@unchk.edu.sn

24 avril 2025

Généralités

Soient $U \subset \mathbb{R}^n$, $x^* \in U$ et $f: U \longrightarrow \mathbb{R}$. On donne les définitions suivantes.

Définition 1

1. On dit que u^* est un point de minimum global (absolu) de f sur U si

$$f(u) \ge f(u^*), \ \forall u \in U.$$

2. On dit que u^* est un point de minimum local (relatif) de f sur U s'il existe un voisinage V de u^* dans \mathbb{R}^n tel que

$$f(u) \ge f(u^*), \ \forall u \in U \cap V.$$

- 3. On dit que u^* est un point de maximum absolu (resp. relatif) de f sur U si u^* est un point de minimum absolu (resp. relatif) de -f sur U.
- 4. Un point u^* est dit extremum s'il est soit minimum ou maximum.

On considère tout au long de ce séquence, pour le cas particulier $U=\mathbb{R}^n$, le problème d'optimisation suivant

$$\min_{x \in \mathbb{R}^n} f(x). \tag{1}$$

Le problème (1) est appelé minimisation sans contraintes.

Existence

Théorème 2

Soit U un sous ensemble non vide et fermé de \mathbb{R}^n et $f:U\longrightarrow \mathbb{R}$. une fonction continue. On suppose :

- ► Soit U est borné
- ightharpoonup Soit U est non borné et f est une fonction coercive sur U.

Alors il existe au moins un point minimum de f sur U.

Pour la preuve de ce théorème, on distingue deux cas.

- Cas 1 : l'ensemble U étant borné on en déduit qu'il est compact. Puisque f est continue, le théorème de Weierstrass permet de conclure.
- ▶ Cas 2 : Si U n'est pas borné, on considère $a \in U$ et $E = \{x \in U, \ f(x) \le f(a)\}$, E est bien une image réciproque d'un intervalle fermé par f qui est continue. E est alors fermé. Supposons par absurde que E n'est pas borné, alors il existe une suite $(x_n) \in E$ qui diverge $(\|x_k\| \to \infty$ pour $k \to +\infty)$. Comme f est coercive sur U, on en déduit que $f(x_k) \to \infty$ ce qui est absurde car $f(x_k) \le f(a)$. E est alors un ensemble fermé borné donc compact dans \mathbb{R}^n . Alors d'après le théorème de Weierstrass :

$$\exists u^* \in E \text{ tel que } f(u^*) \le f(u), \ \forall u \in E.$$

D'autres part, on a

$$f(u^*) < f(u), \forall u \in U - E,$$

car

$$f(u^*) \le f(a) < f(u), \ \forall u \in U - E.$$

Unicité

Théorème 3

Soit U un sous ensemble convexe de \mathbb{R}^n et $f:U\longrightarrow \mathbb{R}$ une fonction strictement convexe. Alors il existe au plus un point minimum de f sur U.

Pour la preuve de ce théorème, on considère le raisonnement par absurde. Soient u_1 et u_2 deux points de minimum de f sur U avec $u_1 \neq u_2$. Nous avons alors :

$$f(u_1) = f(u_2) \le f(u) \ \forall u \in U.$$

Puisque f est strictement convexe, on a :

$$f\left(\frac{1}{2}u_1 + \frac{1}{2}u_2\right) < \frac{1}{2}f(u_1) + \frac{1}{2}f(u_2) = f(u_1)$$

Corollaire 4

Soit U un sous ensemble fermé et convexe de \mathbb{R}^n et $f:U\longrightarrow \mathbb{R}$ une fonction elliptique. Alors il **existe un unique** point minimum de f sur U.

Condition de minimalité du premier ordre

Proposition 5

Soit U un sous ensemble ouvert de \mathbb{R}^n et $f:U\longrightarrow \mathbb{R}$.

- Si $\bar{x} \in U$ est un minimum local de f et f différentiable en \bar{x} , alors $\nabla f(\bar{x}) = 0$.
- ▶ On suppose que U est un sous ensemble convexe de \mathbb{R}^n et f une application convexe sur U, alors les conditions suivantes sont équivalentes.
 - 1. \bar{x} est un minimum (global) de f sur U
 - 2. \bar{x} est un minimum local de f sur U.
 - 3. Et si f est différentiable en \bar{x} , on a une troisième condition équivalente : $\nabla f(\bar{x}) = 0$.

Condition de minimalité du second ordre

Proposition 6

Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$.

 $ightharpoonup Si \, x \in U$ est un minimum local de f et si f est deux fois différentiable en x, alors

$$\nabla f(\bar{x}) = 0$$
 et $\nabla^2 f(\bar{x})$ est semi définie positive

▶ $Si x \in U$ est un point où f est deux fois différentiable et si :

$$\nabla f(\bar{x}) = 0$$
 et $\nabla^2 f(\bar{x})$ est semi définie positive.

Alors \bar{x} est un minimum local strict de f.

Exercice d'application

Exercice 7

- 1. Vérifiez que l'origine est un point stationnaire, c'est-à-dire un point pour lequel f'(x) = 0 de la fonction $f(x) = x^2 \cos x$. Déterminez s'il s'agit d'un minimum (local), maximum (local) ou point d'inflexion.
- 2. Même question pour les fonctions suivantes

a
$$f(x) = x^2 \sin x$$

b $f(x) = x^2(1 - \cos x)$
c $f(x) = x^2(\cos x - 1)$

Exercice 8

On considère une fonction de deux variables

$$f(x,y) = 2x^3 - y^2 + 2xy + 1$$

- 1. Déterminer les extréma relatifs de f.
- 2. La fonction f est-elle coercive?
- 3. Etudier la convexité de la fonction f.
- 4. La fonction f possède-t-elle un maximum absolu sur \mathbb{R}^2 ? un minimum absolu ?

Exercices

Exercice 9

Soient $p_1=52$ et $p_2=44$ les prix respectifs de deux produits . Soient q_1 et q_2 les quantités respectives de ces produits. Le revenu issu de la vente est donc :

$$R = p_1 q_1 + p_2 q_2.$$

La fonction coût est :

$$C = q_1 + q_1 q_2 + q_2$$

et le bénéfice réalisé est

$$\Pi = R - C$$

Trouver les quantités q_1 et q_2 maximisant le bénéfice.

Exercices

Exercice 10

On considère la fonction f définie sur \mathbb{R}^2 par

$$f(x_1, x_2) = x_1^4 + x_2^4 - 2(x_1 - x_2)^2.$$

1. Montrer qu'il existe $(a_1, a_2) \in \mathbb{R}^2_+$ (et les déterminer) tels que

$$f(x_1, x_2) \ge a_1 \|(x_1, x_2)\|^2 - a_2.$$

pour tous $(x_1, x_2) \in \mathbb{R}^2$, où la notation $\|.\|$ désigne la norme euclidienne de \mathbb{R}^2 . En déduire que le problème

$$\min_{(x_1, x_2) \in \mathbb{R}^2} f(x_1, x_2) \tag{2}$$

possède au moins une solution.

- 2. La fonction f est-elle convexe sur \mathbb{R}^2 ?
- 3. Déterminer les points critiques de f, et préciser leur nature (minimum local, maximum local, point-selle, ...). Résoudre alors le problème (2).

Exercice 11

Soit $a \in \mathbb{R}$. On définit la fonction f_a par

$$f_a(x,y) = x^2 + y^2 + axy - 2x - 2y.$$

- 1. Pour quelles valeurs de a, la fonction f_a est-elle convexe? Et strictement convexe?
- 2. Discuter en fonction des valeurs du paramètre a de l'existence de solutions au problème d'optimisation

$$\min_{(x,y)\in\mathbb{R}^2} f_a(x,y). \tag{3}$$

3. Lorsque $a \in]-2,2[$, résoudre le problème (3).

Exercices

Exercice 12

Déterminer les extréma locaux des fonctions suivantes.

1.
$$x^4 + y^4 - 4(x - y)^2$$

2.
$$x^3 + y^3 - 3xy$$

Exercice 13

Soit la fonction f définie sur \mathbb{R}^3 par $f(x,y,z) = x^4 - 2x^2y + 2y^2 - 2yz + 2z^2 - 4z + 5$.

- 1. Déterminer les points critiques de f.
- 2. Montrer que f(x,y,z) peut s'écrire sous la forme de somme de carrés.
- 3. En déduire les extréma de f sur \mathbb{R}^3 .