LABORATORY JOURNAL

Contents

Saturday, 30 May 2020	3
Ideas for Fourier Dimension Technique	3
Fourier Dimension Counterexample	4

Saturday, 30 May 2020

Important To Do List

- Formally prove the space *X* given by the norms in (4) is complete.
- Try and understand the probabistic smoothness calculations given in Lemma 7.4 of [5]. Once this is done, we can try adapting it to our more general situation.

Maybe Do

- Today I found an interesting survey on the Fourier Dimension [1].
 If I find the time I should read through it more thoroughly to get some intuition.
- I also found a survey on the application of the probabilistic method and the Baire category theorem in Harmonic analysis [4]. I feel this method is very exploitable in the types of problems I currently deal with, so if only for culture, this should be a useful read.

My main goals today were to finish up the slides, for my talk on Fourier dimension in pattern avoidance problems at the 2020 Ottawa Math Conference. I have essentially completed these slides; all that remains is to polish them up, and practice giving the presentation. My main goal during the presentation is to show that viewing avoiding sets Z geometrically leads to interesting questions, that the geometric quantities we consider lead to important consequences, and that the Fourier dimension question I am currently considering is interesting to study. I also thought about an idea which seemed to prevent adapting our result obtained by the 'queuing approach' in [3] to Thomas Körner's Baire category approach in [5], as well as finding a counterexample in a paper which removes the trivial case of [3] from the Fourier dimension case.

Ideas for Fourier Dimension Technique

Thomas Körner's paper [5] relies on Baire category arguments to construct generic measures μ supported on a subset of T avoiding

JACOB DENSON LAB NOTES

where $\beta = (n-1)^{-1}$, and $\{B(\xi)\}$ is

some fixed sequence of positive numbers such that $B(\xi) \to \infty$ as $|\xi| \to \infty$.

solutions to *m*-term linear equations, such that for each $\xi \in \mathbf{Z}$,

$$|\widehat{\mu}(\xi)| \le A(\xi).^1 \tag{1}$$

There $\{A(\xi)\}$ is a sequence given for each $\xi \in \mathbf{Z}$ by the formula consisting of finite measures μ on \mathbf{T} such that the quantity $A(\xi) = B(\xi)|\xi|^{-\beta/2}\log(1+|\xi|)^{1/2}$,

$$\|\mu\|_{X} = \sup_{\xi \in \mathbf{Z}} \frac{|\widehat{\mu}(\xi)|}{A(\xi)}.$$
 (2)

is finite. Then any measure in X satisfies (1) up to a multiplicative constant, and X is a Banach space, which enables one to use Baire-category techniques. A problem occurs in our Fourier dimension paper because I believe we can only construct finite measures μ such that for each $\varepsilon > 0$,

$$|\widehat{\mu}(\xi)| \lesssim_{\varepsilon} |\xi|^{\varepsilon - \beta/2}. \tag{3}$$

Such a measure does not satisfy quite as rigid an inequality as (1), instead having to satisfy infinitely many inequalities, and as such I do not believe we can find a Banach space norm which encapsulates (3).

However, today I thought of an idea which might prove fruitful. For any measure μ satisfying (3) for each $\varepsilon > 0$, the quantities

$$\|\mu\|_{\varepsilon} = \sup_{\xi \in \mathbf{Z}} |\widehat{\mu}(\xi)| |\xi|^{\beta/2 - \varepsilon} \tag{4}$$

will be finite for all $\varepsilon>0$. If we let X denote the family of all finite measures which satisfy (4) for all $\varepsilon>0$, then the collection of seminorms $\{\|\cdot\|_{\varepsilon}:\varepsilon>0\}$ might give X the structure of a Frechét space. Since Frechét spaces are complete metric spaces, we can still apply Baire category arguments here. I haven't formally thought this through, so I'll add this to my to-do list later.

Fourier Dimension Counterexample

In [2], I found a result which construct two disjoint, Borel sets $A, B \subset T$, with $\dim_{\mathbf{F}}(A), \dim_{\mathbf{F}}(B) < 1$, but for such that $A \cup B = T$. The result of Theorem 1 of [3] is trivial when $\dim_{\mathbf{M}}(Z) < d$, for if π : $(\mathbf{T}^d)^n \to \mathbf{T}^d$ is given by projection onto the first d coordinates, then $\mathbf{T}^d - \pi(Z)$ has full Hausdorf dimension and avoids Z. If $Z = A \times \{0\}$, then $\mathbf{T} - \pi(Z) = B$, which is not full dimensional, so things are more complicated when dealing with Fourier dimension. I found this result in [1], which might be a useful survey to read through completely in order to get a better grasp on how the Fourier dimension behaves.

Bibliography

- [1] Jörg Schmeling Fredrik Ekström. A survey on the fourier dimension. 2017.
- [2] Jörg Schmeling Fredrik Ekström, Tomas Persson. On the Fourier dimension and a modification. 2015.
- [3] Joshua Zahl Jacob Denson, Malabika Pramanik. Large sets avoiding rough patterns. 2019.
- [4] J.P. Kahane. Probabilities and Baire's theory in harmonic analysis. 2000.
- [5] Thomas W. Körner. Fourier transforms of measures and algebraic relations on their supports. *Annales de L'Institut Fourier*, 2009.