Solution Section 3.6 – Solving Linear Recurrence Relations

Exercise

Determine which of these are linear and homogeneous recurrence relations with constant coefficients. Also find the degree of those that are

a)
$$a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$$

b)
$$a_n = 2na_{n-1} + a_{n-2}$$

c)
$$a_n = a_{n-1} + a_{n-4}$$

d)
$$a_n = a_{n-1} + 2$$

$$e) \quad a_n = a_{n-1}^2 + a_{n-2}$$

$$f) \quad a_n = a_{n-2}$$

$$g) \quad a_n = a_{n-1} + n$$

$$h) \quad a_n = 3a_{n-2}$$

i)
$$a_n = 3$$

$$j) \quad a_n = a_{n-1}^2$$

$$k) \quad a_n = a_{n-1} + 2a_{n-3}$$

$$l) \quad a_n = \frac{a_{n-1}}{n}$$

Solution

- a) Linear (terms a_i all to the first power), has constant coefficients (3, 4 and 5), and is homogeneous (no terms are functions of just n); has degree 3
- **b)** Linear (terms a_i all to the first power), doesn't have constant coefficients (2n), and is homogeneous
- c) Linear, homogeneous, with constant coefficients; degree 4
- d) Linear with constant coefficients, not homogeneous because of 2
- e) Not linear since a_{n-1}^2
- f) Linear, homogeneous, with constant coefficients; degree 2
- g) Linear but not homogeneous because of the n.
- h) Linear, homogeneous, with constant coefficients; degree 2
- i) Linear with constant coefficients, not homogeneous because of 3

- *j*) Not linear since a_{n-1}^2
- k) Linear, homogeneous, with constant coefficients; degree 3
- *I)* Linear with constant coefficients, not homogeneous

Solve these recurrence relations together with the initial conditions given

a)
$$a_n = 2a_{n-1}$$
 for $n \ge 1$, $a_0 = 3$

b)
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

c)
$$a_n = 4a_{n-1} - 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 6$, $a_1 = 8$

d)
$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = 4$

e)
$$a_n = \frac{a_{n-2}}{4}$$
 for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

f)
$$a_n = a_{n-1} + 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = 6$

g)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 2$, $a_1 = 1$

h)
$$a_n = -6a_{n-1} - 9a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = -3$

i)
$$a_{n+2} = -4a_{n-1} + 5a_n$$
 for $n \ge 0$, $a_0 = 2$, $a_1 = 8$

Solution

a) The characteristic polynomial is $r-2=0 \implies r=2$

The general solution: $a_n = \alpha_1 2^n$

$$3 = \alpha_1 2^0 \quad \rightarrow \quad \alpha_1 = 3$$

Therefore, the solution is $a_n = 3 \cdot 2^n$

b) The characteristic polynomial is $r^2 - 5r + 6 = 0 \implies r = 2, 3$

The general solution: $a_n = \alpha_1 2^n + \alpha_2 3^n$

Therefore, the solution is $a_n = 3 \cdot 2^n - 2 \cdot 3^n$

c) The characteristic polynomial is $r^2 - 4r + 4 = 0 \implies r = 2, 2$

The general solution: $a_n = \alpha_1 2^n + \alpha_2 n \cdot 2^n$

Therefore, the solution is $a_n = 6 \cdot 2^n - 2n \cdot 2^n = (6 - 2n)2^n$

d) The characteristic polynomial is $r^2 - 4 = 0 \implies r = \pm 2$

The general solution: $a_n = \alpha_1 (-2)^n + \alpha_2 2^n$

Therefore, the solution is $a_n = 2^n - (-2)^n$

e) The characteristic polynomial is $r^2 - \frac{1}{4} = 0 \implies r = \pm \frac{1}{2}$

The general solution: $a_n = \alpha_1 \left(-\frac{1}{2}\right)^n + \alpha_2 \left(\frac{1}{2}\right)^n = \alpha_1 \left(-2\right)^{-n} + \alpha_2 \left(2\right)^{-n}$

$$\begin{array}{lll} 1=\alpha_1\left(-\frac{1}{2}\right)^0+\alpha_2\left(\frac{1}{2}\right)^0 & \rightarrow & 1=\alpha_1+\alpha_2 \\ 0=\alpha_1\left(-\frac{1}{2}\right)^1+\alpha_2\left(\frac{1}{2}\right)^1 & \rightarrow & 0=-\frac{1}{2}\alpha_1+\frac{1}{2}\alpha_2 \end{array} \Rightarrow \quad \alpha_1=\frac{1}{2}, \quad \alpha_2=\frac{1}{2} \end{array}$$

Therefore, the solution is $a_n = \frac{1}{2} \left(-\frac{1}{2} \right)^n + \frac{1}{2} \left(\frac{1}{2} \right)^n$

$$=\left(\frac{1}{2}\right)^{n+1}-\left(-\frac{1}{2}\right)^{n+1}$$

f) The characteristic polynomial is $r^2 - r - 6 = 0 \implies r = -2$, 3

The general solution: $a_n = \alpha_1 (-2)^n + \alpha_2 3^n$

$$3 = \alpha_{1}(-2)^{0} + \alpha_{2} 3^{0} \rightarrow 3 = \alpha_{1} + \alpha_{2}$$

$$6 = \alpha_{1}(-2)^{1} + \alpha_{2} 3^{1} \rightarrow 6 = -2\alpha_{1} + 3\alpha_{2}$$

$$\Rightarrow \alpha_{1} = \frac{3}{5}, \quad \alpha_{2} = \frac{12}{5}$$

Therefore, the solution is $a_n = \frac{3}{5}(-2)^n + \frac{12}{5}3^n$

g) The characteristic polynomial is $r^2 - 7r + 10 = 0 \implies r = 2, 5$

The general solution: $a_n = \alpha_1 2^n + \alpha_2 5^n$

$$2 = \alpha_1 2^0 + \alpha_2 5^0 \rightarrow 2 = \alpha_1 + \alpha_2$$

$$1 = \alpha_1 2^1 + \alpha_2 5^1 \rightarrow 1 = 2\alpha_1 + 5\alpha_2$$

$$\Rightarrow \alpha_1 = 3, \alpha_2 = -1$$

Therefore, the solution is $a_n = 3 \cdot 2^n - 5^n$

h) The characteristic polynomial is $r^2 + 6r + 9 = 0 \implies r = -3, -3$

The general solution: $a_n = \alpha_1 (-3)^n + \alpha_2 n (-3)^n$

$$3 = \alpha_1 (-3)^0 + \alpha_2 (0)(-3)^0 \rightarrow 3 = \alpha_1$$

$$-3 = \alpha_1 (-3)^1 + \alpha_2 (1)(-3)^1 \rightarrow -3 = -3\alpha_1 + -3\alpha_2$$
 $\Rightarrow \alpha_1 = 3, \alpha_2 = -2$

Therefore, the solution is $\left[a_n = 3 \cdot (-3)^n - 2n(-3)^n \right] = (3-2n)(-3)^n$

i) The characteristic polynomial is $r^2 + 4r - 5 = 0 \implies r = -5, 1$

The general solution: $a_n = \alpha_1 (-5)^n + \alpha_2 1^n = \alpha_1 (-5)^n + \alpha_2$

$$2 = \alpha_1 (-5)^0 + \alpha_2 \rightarrow 2 = \alpha_1 + \alpha_2$$

$$8 = \alpha_1 (-5)^1 + \alpha_2 \rightarrow 8 = -5\alpha_1 + \alpha_2$$

$$\Rightarrow \alpha_1 = -1, \quad \alpha_2 = 3$$

Therefore, the solution is $a_n = -(-5)^n + 3$

Exercise

How many different messages can be transmitted in *n* microseconds using three different signals if one signal requires 1 microsecond for transmittal, the other two signals require 2 microseconds each for transmittal, and a signal in a message is followed immediately by the next signal?

Solution

The model is the recurrence relation $a_n = a_{n-1} + a_{n-2} + a_{n-2} = a_{n-1} + 2a_{n-2}$ with $a_0 = a_1 = 1$

The characteristic polynomial is $r^2 - r - 2 = 0$

So, the roots are -1, and 2

The general solution: $a_n = \alpha_1 (-1)^n + \alpha_2 2^n$

Plugging in initial conditions gives

$$1 = \alpha_1 \left(-1\right)^0 + \alpha_2 \, 2^0 \quad \rightarrow \quad 1 = \alpha_1 + \alpha_2$$

$$1 = \alpha_1 (-1)^1 + \alpha_2 2^1 \rightarrow 1 = -\alpha_1 + 2\alpha_2 \implies \alpha_1 = \frac{1}{3}, \quad \alpha_2 = \frac{2}{3}$$

Therefore, the solution is in *n* microseconds $a_n = \frac{1}{3}(-1)^n + \frac{2}{3}2^n$ messages can be transmitted.

Exercise

In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

Solution

Let t_n be the number of ways like to tile a $2 \times n$ board with 1×2 and 2×2 pieces. To obtain the recurrence relation, imagine what tiles are placed at the left-hand end of the board. We can place a 2×2 tile there, leaving a $2 \times (n-2)$ board to be tiled, which of course can be done in t_{n-2} ways.

We can place a 1×2 tile at the edge, oriented vertically, leaving $2\times (n-1)$ board to be tiled, which of course can be done in t_{n-1} ways.

Finally, we can place two 1×2 tiles horizontally, one above the other, leaving a $2\times (n-2)$ board to be tiled, which of course can be done in t_{n-2} ways. These 3 possibilities are disjoint.

Therefore, our recurrence relation is $t_n = t_{n-1} + 2t_{n-2}$

The initial conditions are $t_0 = t_1 = 1$, since there is only one way to tile as 2×0 board and 2×1 board.

This recurrence relation has characteristic roots -1 and 2.

So, the general solution is $t_n = \alpha_1 (-1)^n + \alpha_2 2^n$

Plugging in initial conditions gives

gging in initial conditions gives
$$1 = \alpha_1 (-1)^0 + \alpha_2 2^0 \rightarrow 1 = \alpha_1 + \alpha_2$$

$$1 = \alpha_1 (-1)^1 + \alpha_2 2^1 \rightarrow 1 = -\alpha_1 + 2\alpha_2$$

$$\Rightarrow \alpha_1 = \frac{1}{3}, \quad \alpha_2 = \frac{2}{3}$$

Therefore, the solution is $a_n = \frac{1}{3}(-1)^n + \frac{2}{3} \cdot 2^n$

$$=\frac{(-1)^n}{3} + \frac{2^{n+1}}{3}$$

Exercise

Find the solution to $a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3}$ for $n \ge 3$, $a_0 = 3$, $a_1 = 6$ and $a_2 = 0$

Solution

$$a_n - 2a_{n-1} - a_{n-2} + 2a_{n-3} = 0$$

The characteristic polynomial is $r^3 - 2r^2 - r + 2 = 0$

That implies to:
$$r^2(r-2)-(r-2)=(r-2)(r^2-1)=0$$

So, the roots are 1, -1, and 2

The general solution:

$$a_n = \alpha_1 1^n + \alpha_2 (-1)^n + \alpha_3 2^n$$

= $\alpha_1 + \alpha_2 (-1)^n + \alpha_3 2^n$

Plugging in initial conditions gives

$$3 = \alpha_1 + \alpha_2 (-1)^0 + \alpha_3 2^0 \rightarrow 3 = \alpha_1 + \alpha_2 + \alpha_3$$

$$6 = \alpha_1 + \alpha_2 (-1)^1 + \alpha_3 2^1 \rightarrow 6 = \alpha_1 - \alpha_2 + 2\alpha_3$$

$$\Rightarrow \alpha_1 = 6, \quad \alpha_2 = -2, \quad \alpha_3 = -1$$

$$0 = \alpha_1 + \alpha_2 (-1)^2 + \alpha_3 2^2 \rightarrow 0 = \alpha_1 + \alpha_2 + 4\alpha_3$$

Therefore, the solution is $a_n = 6 - 2(-1)^n - 2^n$

Exercise

Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9$, $a_1 = 10$ and $a_2 = 32$

Solution

This is a third-degree recurrence relation.

The characteristic polynomial is $r^3 - 7r - 6 = 0$

By the rational root test, the possible rational roots are $\pm \left\{ \frac{6}{1} \right\} = \pm \left\{ 1, 2, 3, 6 \right\}$

We find that r = -1 (using calculator).

$$r^3 - 6r^2 + 12r - 8 = (r+1)(r+2)(r-3) = 0$$

So, the roots are -2, -1, and 3.

The general solution:

$$a_n = \alpha_1 (-2)^n + \alpha_2 (-1)^n + \alpha_3 3^n$$

Plugging in initial conditions gives

$$a_0 = 9 = \alpha_1 (-2)^0 + \alpha_2 (-1)^0 + \alpha_3 3^0 \rightarrow 9 = \alpha_1 + \alpha_2 + \alpha_3$$

$$a_1 = 10 = \alpha_1 (-2)^1 + \alpha_2 (-1)^1 + \alpha_3 3^1 \rightarrow 10 = -2\alpha_1 - \alpha_2 + 3\alpha_3$$

$$a_2 = 32 = \alpha_1 (-2)^2 + \alpha_2 (-1)^2 + \alpha_3 3^2 \rightarrow 32 = 4\alpha_1 + \alpha_2 + 9\alpha_3$$

The solution to the system of equations is $\alpha_1 = -3$, $\alpha_2 = 8$ and $\alpha_3 = 4$

Therefore, the specific solution is $a_n = -3(-2)^n + 8(-1)^n + 4 \cdot 3^n$

Find the solution to $a_n = 5a_{n-2} - 4a_{n-4}$ with $a_0 = 3$, $a_1 = 2$, $a_2 = 6$ and $a_3 = 8$

Solution

This is a fourth-degree recurrence relation.

The characteristic polynomial is $r^4 - 5r^2 - 4 = 0$

That implies to:
$$(r^2-1)(r^2-4)=(r-1)(r+1)(r-2)(r+2)=0$$

So, the roots are 1, -1, 2, -2

The general solution:
$$a_n = \alpha_1 + \alpha_2 (-1)^n + \alpha_3 2^n + \alpha_4 (-2)^n$$

Plugging in initial conditions gives

$$\begin{split} 3 &= \alpha_1 + \alpha_2 \left(-1 \right)^0 + \alpha_3 \, 2^0 + \alpha_4 \left(-2 \right)^0 \quad \rightarrow \quad 3 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \\ 10 &= \alpha_1 + \alpha_2 \left(-1 \right)^1 + \alpha_3 \, 2^1 + \alpha_4 \left(-2 \right)^1 \quad \rightarrow \quad 10 = \alpha_1 - \alpha_2 + 2\alpha_3 - 2\alpha_4 \\ 6 &= \alpha_1 + \alpha_2 \left(-1 \right)^2 + \alpha_3 \, 2^2 + \alpha_4 \left(-2 \right)^2 \quad \rightarrow \quad 6 = \alpha_1 + \alpha_2 + 4\alpha_3 + 4\alpha_4 \\ 8 &= \alpha_1 + \alpha_2 \left(-1 \right)^3 + \alpha_3 \, 2^3 + \alpha_4 \left(-2 \right)^3 \quad \rightarrow \quad 8 = \alpha_1 - \alpha_2 + 8\alpha_3 - 8\alpha_4 \end{split}$$

The solution to the system of equations is $\alpha_1 = \alpha_2 = \alpha_3 = 1$ and $\alpha_4 = 0$

Therefore, the solution is $a_n = 1 + (-1)^n + 2^n$

Exercise

Find the recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$ with $a_0 = -5$, $a_1 = 4$ and $a_2 = 88$

Solution

This is a third-degree recurrence relation.

The characteristic polynomial is $r^3 - 6r^2 + 12r - 8 = 0$

By the rational root test, the possible rational roots are $\pm 1, \pm 2, \pm 4, \pm 8$

We find that r = 2 (using calculator).

$$r^3 - 6r^2 + 12r - 8 = (r - 2)^3 = 0$$

Hence the only root is 2, with multiplicity 3.

The general solution: $\underline{a_n} = \alpha_1 2^n + \alpha_2 n \cdot 2^n + \alpha_3 n^2 \cdot (-2)^n$

Plugging in initial conditions gives

Therefore, the solution:
$$a_n = -5 \cdot 2^n + \frac{1}{2} n \cdot 2^n + \frac{13}{2} n^2 \cdot (-2)^n$$
$$= -5 \cdot 2^n + n \cdot 2^{n-1} + 13n^2 \cdot (-2)^{n-1}$$

Find the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with $a_0 = 5$, $a_1 = -9$ and $a_2 = 15$

Solution

This is a third-degree recurrence relation.

The characteristic polynomial is $r^3 + 3r^2 + 3r + 1 = 0$

$$r^3 + 3r^2 + 3r + 1 = 0 = (r+1)^3 = 0$$

Hence the only root is -1, with multiplicity 3.

The general solution: $a_n = \alpha_1 (-1)^n + \alpha_2 n \cdot (-1)^n + \alpha_3 n^2 \cdot (-1)^n$

Plugging in initial conditions gives

$$\begin{array}{c} \left|\underline{5} = a_0 = \underline{\alpha_1}\right| \\ a_1 = -9 = -\alpha_1 - \alpha_2 - \alpha_3 \quad \rightarrow \quad \alpha_2 + \alpha_3 = 9 - \alpha_1 = 4 \\ a_2 = 15 = \alpha_1 + 2\alpha_2 + 4\alpha_3 \quad \rightarrow \quad 2\alpha_2 + 4\alpha_3 = 15 - \alpha_1 = 10 \\ \rightarrow \begin{cases} \alpha_2 + \alpha_3 = 4 \\ 2\alpha_2 + 4\alpha_3 = 10 \end{cases} \Rightarrow \begin{array}{c} \underline{\alpha_2 = 3} \\ \underline{\alpha_3 = 1} \end{array}$$

Therefore, the specific solution is $a_n = 5(-1)^n + 3n \cdot (-1)^n + n^2 \cdot (-1)^n$ = $(n^2 + 3n + 5)(-1)^n$

Find the general form of the solutions of the recurrence relation $a_n = 8a_{n-2} - 16a_{n-4}$

Solution

This is a fourth-degree recurrence relation.

The characteristic polynomial is $r^4 - 8r^2 + 16 = (r^2 - 4)^2$

$$(r^2-4)^2 = (r-2)^2 (r+2)^2 = 0$$

The roots are -2 and 2, each with multiplicity 2.

The general solution:

$$a_n = \alpha_1 2^n + \alpha_2 n \cdot 2^n + \alpha_3 (-2)^n + \alpha_4 n \cdot (-2)^n$$

Exercise

What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?

Solution

There are 4 distinct roots, so t = 4. The multiplicities are 4, 3, 2, and 1.

The general solution:

$$a_{n} = \left(\alpha_{1,0} + \alpha_{1,1}n + \alpha_{1,2}n^{2} + \alpha_{1,3}n^{3}\right) + \left(\alpha_{2,0} + \alpha_{2,1}n + \alpha_{2,2}n^{2}\right)(-2)^{n} + \left(\alpha_{3,0} + \alpha_{3,1}n\right)3^{n} + \alpha_{4,0}(-4)^{n}$$

Exercise

What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots -1, -1, -1, 2, 2, 5, 5, 7?

Solution

There are 4 distinct roots, so t = 4. The multiplicities are 3, 2, 2, and 1.

The general solution:

$$a_n = \left(\alpha_{1,0} + \alpha_{1,1}n + \alpha_{1,2}n^2\right)\left(-1\right)^n + \left(\alpha_{2,0} + \alpha_{2,1}n\right)2^n + \left(\alpha_{3,0} + \alpha_{3,1}n\right)5^n + \alpha_{4,0}7^n$$