DORP

Přednáška 1 - Úvod

- Distribuovaná databáze kolekce propojených DB, v počítač síti
- Jedna logická DB

DDBMS

- Každý fragment má svůj DBMS
- Data rozdělené do fragmentů
- Fragmenty mohou být replikované
- Spojení po síti
- Paralelní DBMS
 - o Jeden stroj, více procesorů
- Homogenní na každém místě stejný DBMS
- Nehomog jiný DBMS nebo i datový model

Metodologie návrhu

- Shora dolů na zelené louce
- zdola nahoru integrace již existujících dat
- Architektura
 - o Lokální interní schéma
 - Lokální konceptuální schéma
 - o Globální konceptuální schéma
 - o Externí schéma

Základní problémy

- Fragmentace- Rozdělení
- Alokace uloženo na místě s optimální distribucí
- Replikace kopie fragmentu

Fragmentace

- Vhodné provést analýzu
 - Kvantitativní
 - Frekvence spouštění
 - Výkon
 - Místo kde app běží
 - Kvalitativní
 - Přístupy k relacím, attr, řádkům
- Proč fragmentovat
 - O Data jsou v místě kde se nejčastěji používají
 - Nepotřebná data pro lokální aplikace se v místě neukládají
 - Bezpečnost
 - Paralelizmus
- Měla by být
 - Úplná po dekomponování se každý fragment z původní relace nachází v nějakém fragmentu
 - o Rekonstruovatelná možnost složení původní relace

- Disjunktní prvek by se měl objevit pouze v jedno fragmentu
 - Výjimka vertikální fragmentace
- Horizontální fragmentace řádky selekce
- Vertikální sloupce natural join
- Smíšená oba, vertikálně fragmentovaný horizontální fragment, naopak
 - o Projekce a selekce
- Odvozená horizontální fr.
 - o Zajišťuje že fragmenty používající se často spolu jsou uložené na jednom místě

Alokace dat

- Alternativní strategie vzhledem umístění dat
- Centralizované
- Fragmentované
- Plně replikované
- Selektivně replikované

Přednáška 2- Replikace

- Kopírování
- Celá tabulka / fragmenty výsledky dotazu

Požadavky

- Automaticky synchronizovat kopie
- Propagovat změny
- Ochrana transakční a logické integrity dat
- Replikace z/do heterogenních serverů
- Podpora návrhu aplikací

Výhody

- Lokální aktualizované kopie
- Lokální db minimalizace síťového provozu
- Zvýšení výkonu a dostupnosti

Problémy

- Kolik kopií udržovat ??
- Více kopií -> náročnější úprava dat ale rychlejší dotazy
- Udržení identického stavu
- Sjednocení dat po výpadku v síti

Ceny

- Změna/dotaz ze stejného místa 1z/d
- Změna/dotaz z jiného místa 10z/d
- Frekvence dotazů q / změn u
- Náklady propagace změn Z=10zu1+10zu2
- Optimální 9dq + 9zu >= Z

Formy

- Dle místa kde začíná
 - o Centralizované master-slave pouze jedna kopie je upravovaná

- Distribuované aktualizace může začít kdekoliv
- Dle propagace
 - Synchronní s vkládáním dat
 - o Async pokud nastane událost metoda pull/ push
- Synchronní
 - o Propagace změny v rámci jedné transakce
 - o požadované vlastnosti transakcí platí na všech místech
 - o nevýhoda řádné ukončení transakce až po provedení všech změn
- Asynchronní
 - o Nejprve aktualizace na jednom místě (master, primární kopie)
 - o Po ukončení transakce se propaguje na další kopie
 - Transakce nečeká na ukončení propagace
 - o Možná nekonzistence ale je to rychlejší

Využití

- Sjednocení dat s centrálním serverem
- Rozdělení procesu na více než jeden server
- Sdílení dat mezi více místy

Přednáška 3 – Replikace MSSQL

- Pojmy
 - o Článek základní jednotka replikace
 - O Publikace kolekce článků různá nebo stejná pro různé odběratele
 - o Přihlášení k odběru požadavek na kopii publikace
- typy
 - o Snímková replikace ne časté změny, přijatelná nesych po nějakou dobu
 - Slučovaná replikace
 - zejména pro mobilní offline zpracování
 - upravuje vydavatel i předplatitel
 - modifikuje schéma trigery, PKs, sys tabulky
 - Transakční replikace
 - Průběžná replikace
 - Malá prodleva
 - Předplatitel většinou read only
- Agenti
 - Distribution agent snímková a transakční
 - Snapshot agent všechny typy
 - Merge agent slučovací
 - Log reader transakční
- Typy DB
 - o Odběratel subscriber
 - o Vydavatel publisher
 - Distributor
- Správa
 - Management studio
 - o Replication Programming interface

Přednáška 3 – Oracle DDBMS

- DB linky
- Distribuované dotazy, DML
- Synonyma pro table, type, view, sequence, proc, pack

Replikace

- table, index, view, pack, proc,...
- Multimaster
 - o Rovnocenné uzly
 - Transakce, sync/async
 - o Master group skupina- replikují najednou
- Materializované pohledy snapshots
 - Manuální replikace
 - Časová replikace

Přednáška 4- Integrace dat

- Proces přistupování dat z několika/různých zdrojů jako v jedné DB

Problémy

- Existující struktura jež nelze měnit
- Nekompatibilita mezi DBs
 - Lexikální jiné pojmenování sloupců
 - o Interpretace dat v jiných jednotkách atd
 - Sémantická

Přístupy

- Federativní
 - o Zdroje jsou nezávislé transformace dotazů a odpovědí
 - o Je třeba implementovat spojení mezi každými dvěma zdroji
- Datové sklady
 - o kopie dat, transformovaná do unifikovaného formátu, periodicky
 - o globální schéma
 - o buďto periodické updaty
 - o nebo znovu vytvoření ze zdrojových db
- Mediátor jako datový sklad ale neukládá data

Adaptéry / wrapery

- Vychází z klasifikace očekávaných dotazů vytváří šablony dotazů
- Metody zjednodušení kombinace šablon

Uživatelsky definované funkce UDF

- Pohledy neumožní pracovat s parametry, funkce ano
- Lze na ně odkazovat ve from
- Přímé tabulkové UDF jeden select
- Vícepříkazuvé UDF- více selectů

Přednáška 5 – Distribuované dotazy (Zpracování)

- Cena přístupu k řádku = 1
- Cena přenosu řádku = 10
- Transformace SQL dotazu do posloupnosti DB operací nad fragmenty
- Optimalizátor nalezne nejlepší místo pro zpracování dotazu a pořadí přenesení

Dekompozice dotazu

- Vytvoření listu pro každou relaci
- Kořen výsledek
- 1. Normalizace
 - a. where do konjuktní/ disjunktní normální formy
 - b. dle and a or
- 2. Zjednodušení redundantní podmínky
 - a. Využití pravidel boolovské algebry
- 3. Vyjádří se jako algebraický dotaz
 - a. Operátory redukující počet by měli být provedeny co nejdříve
 - b. A zároveň od nejjednoduššího k nejtěžšímu
 - c. Vyhnout se crossjoinu
 - d. Semijoin redukce
 - e. Pravidla
 - i. Kumulativa
 - ii. Asociativa
 - iii. Konjunktivní selekce lze transformovat na kaskádu selekcí

Lokalizace dat

- Bere v úvahu distribuci dat
- Nahrazení globální relace na listech stromu jejich vyjádřením pomocí fragmentů
- Redukce
 - o Pro primární horiz fragmentaci
 - Vertikální frag
 - o Odvozenou frag
 - Hybridní frag

Přednáška 7 – Objektově relační DB

Klady relačních DB

- Dotazovací schopnosti
- Rozsáhlé soubory s jednoduchou strukturou tabulky
- Většina HW platforem
- Brány mezi jednotlivými DB systémy

Nedostatky relačních DB

- Nevhodné pro bohatost datových typů

OO datový model

- Dlouho názory že vytlačí relační Db
- Bohatost typů objektů
- Větší složitost z hlediska struktury a vztahů

Požadavky na OO DBS

- Podpora perzistence, paralelizmus, zotavení, kladení dotazů
- Podpora
 - o Indentifikace objektů
 - Zapouzření
 - o Dědičnost
 - Typy, třídy
 - o Polymorfizmus

Objektově relační DBS

- Kompromis
- Možnost pozvolné migrace
- Doplnění relačního modelu o práci s dat strukturami z programovacích jazyků
- Možnost ukládání objektů do relační databáze
- Bin objekty (audio, video), prostorová data
- Rozšiřitelnost
 - o Možnost přidání dat. Typů pro efektivní vyhledávání

Rozšíření relačního modelu

- Strukturované typy atributů hodnotou může být celá relace
- Reference sdílení řádku mezi tabulkami
- Metody
- Identifikátory řádků
- Array, muiltiset, list, set
- Typ ROW
- UDT
 - Typ tabulky
 - Nebo typ atributu v tabulce

Přednáška 9 – Návrh datového skladu

- Pro podporu rozhodování
- Data mining
- OLAP
- Reporting, querying
- ETL

Zpracování dat v datovém skladu

- Warehouse manager
 - Zajištění konzistence dat
 - Vytvoření indexů, agregace
 - o Zálohy dat
- Query manager zpracování dotazů
- Metadata management
 - o Info o struktuře
 - o Info o původních strukturách a jejich transformace
 - o O agregacích

Metodologie návrhu

- Corporate Information Factory Inmon
 - o Začíná vytvořením dat modelu pro celý podnik a pak vytvoření datamartů
 - o Potencionální konzistentní a úplný pohled na data
- Business Dimensional lifecycle
 - o Začíná identifikací analytických témat a příslušných business procesů
 - o Tržiště se integrují do skladu
 - o Použití nové techniky dimenzionální modelování
 - Rozdělení na etapy
 - o První tržiště v plánovaném čase

Dimenzionální modelování

- Hvězdicové schéma
- Střed má složený klíč tabulka faktů
- Okolní tabulky tvoří dimenze
- Kroky
 - Vybrat business process
 - o Vybrat granularitu v tabulce faktů
 - o Vybrat dimenze
 - o Identifikuje fakta
 - o Identifikuje atributy dimenzí

0