

Leveraging AI to Improve STEM Engagement for Black & Latine Youth

Presented By: Aisha Cora, Kyle Johnson

Aisha Cora

Kyle Johnson

Unequal Technology Access: The Digital Divide

Digital Divide Definition: The multifaceted gap leading to inequities in socio-technical access.

Alone, physical access to technology is not enough [1]

Students lack representative and experienced mentors

Holistic student-led STEM engagement outreach model [1]

Leveraging AI Tools To Support CS Instruction

Large Language Models (LLM's) Definition: A type of Artificial Intelligence (Al) that is pre-trained on vast amounts of data to be capable of recognizing, interpreting, and generating human text (e.g. ChatGPT).

Inexperienced CS Instructors

- ChatGPT can provide simple step-by-step instructions for beginner programmers
- It has been observed that ChatGPT provides the highest increases in productivity for novice programmers [2]

Experienced CS Instructors

- GPT-4 can generate fully correct programs from a single prompt
- GPT-4 can generate both hardware and software recommendations, which is especially helpful in robotics

Proposed Study & Approach

Proposed Study: We aim to evaluate the capacity for AI tools, like LLMs, to help reduce the digital divide by exploring the limitations/effectiveness as well as the potential hesitations Black and Latine communities may have with integrating LLMs into their classrooms.

Assets-Based Community Cultural Wealth Approach

Design-Based Research

Constructive Grounded Theory Approach

Mentor-Embodied
Community Representation

Near-Peer Mentorship

Hands-On & Service-Learning Based Lessons

Conjecture Map

Conjecture

Leverage
LLMs to
support and
scale
instruction

Tools/Materials:

- Arduino toolkit
- ChatGPT

Task Structures:

- 40 hour Arduino class
- Debugging
- Culturally relevant lessons

Embodiment

Prompting workshop

Participant Structures:

- 1 expert, 1 non-expert near-peer instructors
- 10-15 students, varied skills, same school district

Discourse Structure:

Artifacts
Observable Interactions

Effects/Broader Impacts

Conjecture Map

Conjecture

Leverage
LLMs to
support and
scale
instruction

Tools/Materials:

Embodiment

- Arduino toolkit
- ChatGPT

Task Structures:

- 40 hour Arduino class
- Debugging
- Culturally relevant lessons
- Prompting workshop

Participant Structures:

- 1 expert, 1 non-expert near-peer instructors
- 10-15 students, varied skills, same school district

Discourse Structure:

- Holistic lesson plan
- Student explanations
- Instructors permit ChatGPT use without explicit instruction.

Code files and Arduino

Artifacts

hardware

ChatGPT logs

Pre/Post surveys

Observable Interactions

Improved ChatGPT prompting over time

Reduction of technical questions to instructors

Reduction of hesitancy over time

Effects/Broader Impacts

Conjecture Map

Conjecture

Leverage
LLMs to
support and
scale
instruction

Tools/Materials:

Embodiment

- Arduino toolkit
- ChatGPT

Task Structures:

- 40 hour Arduino class
- Debugging
- Culturally relevant lessons
- Prompting workshop

Participant Structures:

- 1 expert, 1 non-expert near-peer instructors
- 10-15 students, varied skills, same school district

Discourse Structure:

- Holistic lesson plan
- Student explanations
- Instructors permit ChatGPT use without explicit instruction.

Code files and Arduino hardware

Artifacts

ChatGPT logs

Pre/Post surveys

Observable Interactions

Improved ChatGPT prompting over time

Reduction of technical questions to instructors

Reduction of hesitancy over time

Adapting coursework more to student needs

Effects/Broader Impacts

Understanding programming concepts and embedded systems

Applicable Al/LLM skills

Increased confidence

Increase interest in more AI/LLM opportunities

Increase of available near-peer instructors

Thank You For Your Time!

Please contact us if you have any questions:

avelauw@uw.edu

coordinator_uw@avelaccess.org

www.avelaccess.org