

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CAND NUMB				
MATHEMATICS								97	09/12
Paper 1 Pure Mat	themat	ics 1 (P	1)				Мау	//June	e 2017
						1	hour	45 mi	nutes
Candidates answe	er on th	ne Quest	ion Pa	per.					
Additional Materia	ıls:	List of F	ormul	ae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1	(i)	Find the coefficient of x in the expansion of $\left(2x - \frac{1}{x}\right)^5$.	[2]
	(ii)	Hence find the coefficient of x in the expansion of $(1 + 3x^2) \left(2x - \frac{1}{x}\right)^5$.	[4]

2

The point A has coordinates (-2, 6). The equation of the perpendicular bisector of the line AB is

	[3
and the coordinates of B .	[3
	and the coordinates of B.

	the equation	COS O	, ,	_				
						•••••		
•••••		•••••	••••••	•••••		•••••		•••••
••••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••
•••••					•••••		•••••	•••••
•••••		••••••	••••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••
•••••			•••••			•••••		
•••••		••••••	•••••	•••••				•••••
•••••	•••••	••••••	••••••	••••••	•••••	•••••	••••••	••••••
•••••		•••••	•••••	••••••	•••••	•••••		•••••
•••••		••••••	••••••	••••••	•••••	•••••	••••••	••••••

4

The diagram shows a circle with radius r cm and centre O. Points A and B lie on the circle and ABCD is a rectangle. Angle $AOB = 2\theta$ radians and AD = r cm.

(i)	Express the perimeter of the shaded region in terms of r and θ .	[3]
		•••••
		•••••
		•••••
		•••••

In the case where $r = 5$ and $\theta = \frac{1}{6}\pi$, find the area of the shaded region.	
	•••••
	••••••
	••••••
	••••••
	•••••
	•••••

5	A curve has equation $y = 3 +$	$\frac{12}{2-x}$.
		$\angle - \lambda$

)	Find the equation of the tangent to the curve at the point where the curve crosses the x -axis. [5]

	per second. Fi	ina the rate of	r change or t	ine y-coordin	atte when x =	
					•••••	
			•••••			
••••••			•••••••	••••••	•••••	•
			•••••	•••••	•••••	
					•••••	
•••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
					•••••	
	•••••		••••••	•••••	•••••	•••••••
	•••••	•••••	•••••		•••••	
		••••••	•••••	••••••	•••••	••••••••••••
					•••••	
			•••••	•••••	•••••	
					••••	
•••••		•••••	••••••	•••••	•••••	

The diagram shows the straight line $x + y = 5$ intersecting the curve $y = \frac{4}{x}$ at the points $A(1, 4)$ and $B(4, 1)$. Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the x -axis. [7]

The first two terms of an arithmetic progression are 16 and 24. Find the least number the progression which must be taken for their sum to exceed 20 000.	
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••

		rogressio							
		•••••	•••••		••••••			•••••	•••••
					•••••			•••••	•••••
••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••••	••••••	••••••
•••••	•••••	••••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	••••••	•••••	•••••	•••••	••••••	•••••		••••••	•••••
	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
								•••••	
	••••••	••••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••

 $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}$, $\overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k}$, where p and q are constants.

(i)	In the case where $p = 2$, use a scalar product to find angle AOB .	[4]
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		••••••
		••••••
		••••••
		••••••
		••••••
		••••••

 •••••
•••••
•••••
•••••

	Find the coordinates of the stationary point of the curve.	
		•••
		••••
		•••
		· • • •
		•••
		••••
		· • • •
		••••
		•••
	d^2v	
i)	Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary	po
		· • • •
		· • • •
		••••

(iii)	Find the values of x at which the line $y = 6$ meets the curve.	[3]
(iv)	State the set of values of k for which the line $y = k$ does not meet the curve.	[1]
		•••••
		••••••
		•••••

	function f is defined by $f(x) = 3\tan(\frac{1}{2}x) - 2$, for $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$.	
(i)	Solve the equation $f(x) + 4 = 0$, giving your answer correct to 1 decimal place.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Find an expression for $f^{-1}(x)$ and find the domain of f^{-1} .	
		•••••

(iii) Sketch, on the same diagram, the graphs of y = f(x) and $y = f^{-1}(x)$. [3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.