Contact Information

- Stephan Heinemann
- SMS: +1 (250) 891-5446
- Email: stephan.heinemann@hotmail.com
- Bookings, Questions

Instrument Flying

- Review Instruments and Human Limitations
- Definition and Motivation
- Basic Instrument Flying
- Full Panel, Partial Panel, Unusual Attitudes
- Basic Radio and Satellite Navigation
- Summary and Questions
- Pre-Flight Briefing

Review Human Limitations

- How do visual, vestibular and kinesthetic senses provides us with cues for orientation?
- Explain the mnemonic IMSAFE and how individual components affect our flying performance?
- How does hypoxia affect our flying performance and what can be contributing factors?

Definition and Motivation

- Flying by reference to instruments only
- Human senses are prone to miss-interpretation
- Instrument flying overcomes human limitations
- Essential skill for higher ratings and flight in IMC

Basic Analog Instruments

- Control Instruments Pilot Input (Attitude & Power)
- Performance Instruments Aircraft Response
- Attitude plus Power equals Performance
- Navigation Instruments Lateral and Vertical

Glass Cockpit Instrumentation

Radial Scan

- Adjust attitude and power for estimated performance
- Scan performance instruments for actual response
- Re-adjust and trim controls, and scan systematically

Attitudes and Movements

Review Instruments

- Which are the standard instruments that are driven by gyroscopes and how do gyroscopic instruments they operate?
- What errors can be expected with gyroscopic instruments and how do they occur?
- Which are the standard instruments that rely on air pressure and how do they operate?
- What errors can be expected with pressure instruments and how do they occur?

Selective Radial Scan – Definition

- Each maneuver requires particular performance
- Scanning pattern should prioritize accordingly
- Selective scan should not lead to fixation

Selective Radial Scan – Method

- What information do I need?
- Which instruments give me the needed information?
- Is the information reliable?

Selective Radial Scan – Method

- Which instruments need to remain constant?
- Which instruments need to **change** and at what **rate**?
- Which instrument lag can be expected?

Straight and Level Flight

- Attitude plus Power equals Performance
- Remember the power curve for adjustments
- Scan altimeter and heading indicator more frequently

Climbing and Descending

- Climbing attitude, power, trim (APT)
- Descending power, attitude, trim (PAT)
- Scan airspeed and heading indicator more frequently

Leveling Off

- Scan altimeter and heading indicator more frequently when approaching desired altitude
- Increase airspeed indicator scan during transition to straight and level flight

Turns

- Perform standard rate one turns at 3 %s
- Establish and adjust bank angle at IAS / 10 + 7
- Lead the desired heading using half bank angle

Safety Considerations

- Check airspace clear with instructor before maneuvers
- Particularly ensure clear during instrument turns
- Student: "All clear left (right)?"
- Instructor: "All clear left (right)!"

Full Panel – Summary / Quiz

- What instrument *directly* indicates an immediate attitude change?
- How do the altimeter and airspeed indicators indirectly indicate nose-up / down attitude changes? Why do these instrument not serve as primary indicators for attitude changes?
- How does apparent precession affect the heading indicator and how it has to be corrected?

Partial Panel

- Attitude and heading indicator not available
- Indirect attitude and more attention to TC / TBI and MC
- Focus on timing in turns due to magnetic dip errors

Magnetic Dip

- Magnetic dip is the reason for dip errors (acceleration / deceleration, turning)
- Magnetic dip shifts the pivot point away from the magnet's center of gravity

Acceleration/Deceleration Errors

- Accelerate North Decelerate South (ANDS)
- Opposite behavior on the southern hemisphere
- More pronounced on easterly / westerly headings
- Less pronounced on northerly / southerly headings

Turning Errors

- Undershoot North Overshoot South (UNOS)
- Opposite behavior on the southern hemisphere
- More pronounced on northerly and southerly turns
- Less pronounced on easterly and westerly turns

Partial Panel – Straight and Level

- Maintain coordinated and straight with TC and crosscheck MC occasionally
- Scan altimeter and VSI more frequently (level)

Partial Panel – Climbs and Descents

- Maintain coordinated and straight with TC
- Scan airspeed indicator more frequently (stable)

Partial Panel – Leveling Off

- Maintain coordinated and straight with TC
- Scan altimeter more frequently (desired altitude)
- Increase airspeed indicator scan during transition

Partial Panel – Turns

- Scan altimeter and airspeed indicator more frequently
- Timed rate one turns 3 1/s
- · 360° → 120s, 180° → 60s, 90° → 30s, 45° → 15s

Partial Panel – Summary Quiz

- What instruments are not available in a partial panel and what type of error might be the cause?
- During a turn from south to east you notice what type of magnetic compass error and why?
- Mentally perform a straight climb with partial panel and describe all observations and required actions.
- Mentally perform a 90° coordinated rate one turn with partial panel and describe all observations and required actions.

Unusual Attitudes Recovery

- Nose-Up Attitude
 - Full Power
 - Forward Pressure
 - Wings Level

- Nose-Down Attitude
 - Power Idle
 - Wings Level
 - Back Pressure

Unusual Attitudes – Summary Quiz

- Which instruments should be disregarded during the recovery from unusual attitudes and why?
- Mentally determine and perform a recovery from an unusual nose-up attitude and state all observations and required actions.
- Mentally determine and perform a recovery from an unusual nose-down attitude and state all observations and required actions.

Review NDB Radio Navigation

- How do Non-directional Radio Beacons (NDBs) support en-route navigation?
- How do we determine whether or not a NDB station is serviceable?
- What errors can be expected when using NDBs?

Motivation

- Navigational Support / Backup and Procedures
- Homing, Tracking, Intercepts, SIDs, STARs

Using the NDB Overview

- 190 to 1750 kHz LF/MF non line-of-sight propagation
- Sensitive to aircraft position and heading
- Indicates relative bearing on the fixed card ADF
- Tune in frequency and Identify station morse code
- Check relative bearing to (BTS) or from (BFS) the station

NDB Homing

- Tune station frequency
- Identify station morse code
- Turn to (RB = 0) station (MB = RB + MH) project onto HI
- Correct heading as necessary to maintain RB
- Chase the arrow

NDB Tracking

- Tune station frequency
- Identify station morse code
- Turn to (RB = 0) / from (RB = 180) station (MB = RB + MH)
- Correct heading as necessary to maintain MB
- Push the arrow (inbound), pull the tail (outbound)

NDB Intercepts

- Tune station frequency
- Identify station morse code
- Turn parallel to desired magnetic bearing (BTS, BFS)
- Crosscheck inbound or outbound intercept
- Push the arrow (inbound), pull the tail (outbound) to desired magnetic bearing using intercept angle (90°)
- Turn onto desired magnetic bearing and continue tracking

NDB Intercept 180 BTS Inbound

NDB Intercept 360 BFS Outbound

Review VOR Radio Navigation

- How do VHF Omnidirectional Radio Ranges (VORs) support en-route navigation?
- How do we determine whether or not a VOR station is serviceable?
- What errors can be expected when using VORs?

Motivation

- Navigational Support / Backup and Procedures
- Tracking, Intercepts, SIDs, STARs

Using the VOR Overview

- **108.1** to **117.95** *MHz* VHF line of sight propagation
- Sensitive to aircraft position but not aircraft heading
- Indicates radial deviation and sector CDI, TO/FROM/OFF
- Tune in frequency and Identify station morse code
- Select desired (magnetic) radial using the OBS

VOR Tracking

- Tune station frequency
- Identify station morse code
- Select OBS radial for centered CDI with TO / FROM indication
- Turn to / from station using found OBS radial inbound / outbound
- Correct for wind depending on method homing or tracking

VOR Intercepts

- Tune station frequency
- Identify station morse code
- Select OBS intercept radial inbound or outbound
- Check CDI left or right and subtract or add intercept angle
- Turn to intercept heading
- Check CDI alive and anticipate turn onto intercept radial

VOR Intercept Radial 360 Inbound

VOR Intercept Radial 180 Outbound

Satellite Navigation

- Modern GNSS receivers provide many functions always consult the applicable user manual
- Direct-To, Flight Planning, Reversal, Radials
- Always ensure correct database and navigation source for your navigation instruments

G530 Direct To Function (1)

G530 Direct To Function (2)

G530 Direct To Function (3)

G530 Direct To Function (4)

G530 Direct To Function (5)

G530 Direct To Function (6)

G530 Flight Planning (1)

G530 Flight Planning (2)

G530 Flight Planning (3)

G530 Flight Planning (4)

G530 Flight Planning (5)

G530 Flight Planning (6)

G530 Flight Planning (7)

G530 Flight Planning (8)

Learn and Practice

- Get NAV/GNNS **simulators** and learn playing with the features *www.garmin.com*
- Knowing the features makes you a more proficient pilot and causes less distraction in the cockpit
- Let NAV/GNNS support you not distract you
- Visual navigation remains your primary means of navigation – always maintain VFR

Satellite Navigation – Summary / Quiz

- What are the most common functions of a GNSS user interface?
- Why has the database of a GNSS receiver to be up-to-date?
- The GNSS user interface can be complex and distracting. What are the consequences for using it as a navigational aid?
- How do we check and predict the GPS integrity?
- Why is it important to always check the correct navigation source?

Pre-Flight Briefing

- Exercise
- Training Area
- Departure and Arrival Procedures
- Weather Briefing / NOTAMs
- Aircraft and Documents
- Time and Fuel Requirements
- Safety Considerations and Responsibilities

Instrument Flying (Ex. 24, LP. ?)

- Objective
- Review
- Motivation
- Howto
- Summary / Questions
- Preflight Briefing