Functional Programming

Functional Programming Week1: call by value vs call by name: Conditionals: Blocks, Scopes and first functional program: Tail recursion: Week 2: Currying: Classes: Substitution and Extensions: 1. Substitution: 2. Extension methods (1): 3. Operators: Week3: Abstract classes: Object definition: Programs: Traits: Cons List: A complete definition with **Generics**: Generic functions: Pure Object Orientation: Week 4: Decomposition: Solution: Pattern Matching: Lists and more pattern matching: Enum: Type Bounds: Variance: Week 5: List methods: Simple merge sort implementation: Filtering and mapping: Reductions: Structural Induction:

Week1:

call by value vs call by name:

Call-by-value: evaluate the parameters *then* execute the function on these values.

e.g:

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4) // evaluated 2+2 BEFORE executing sumOfSquares
square(3) + square(4)
3 * 3 + square(4)
9 + square(4)
9 + 4 * 4
9 + 16
25
```

Call-by-value has the advantage that it evaluates every function argument only once.

Call-by-name: Apply the function to unreduced arguments.

e.g:

```
sumOfSquares(3, 2+2)
square(3) + square(2+2) // executing sumeOfSquare before evaluating 2+2
3 * 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
9 + 4 * (2+2)
9 + 4 * 4
```

Call-by-name has the advantage that a function argument is not evaluated if the corresponding parameter is unused in the evaluation of the function body.

e.g:

```
def loop : Int = loop
def f(a:Int , b : Int ) : Int = a // Call-by-value
f(1,loop) // does not terminate
def f(a:Int, b : ⇒ Int) : Int = a // Call-by-Name ( ⇒ )
f(1,loop) // terminates
```

Both strategies reduce to the same final values as long as

- ▶ the reduced expression consists of pure functions, and
- both evaluations terminate.

Conditionals:

```
def abs(x: Int) = if x \ge 0 then x else -x
```

if-then-else in Scala is an expression (has a value) not a statement.

Blocks, Scopes and first functional program:

Sgrt with Newton's method:

```
def sqrt(x: Double) = {
    def sqrtIter(guess: Double, x: Double): Double =
        if isGoodEnough(guess, x) then guess
        else sqrtIter(improve(guess, x), x)
   def improve(guess: Double, x: Double) =(guess + x / guess) /
    def isGoodEnough(guess: Double, x: Double) = abs(square(guess) - x) < 0.001
   sqrtIter(1.0, x)
}
```

sqrtIter , improve and isGoodEnough should not be outside sqrt because:

- they pollute the global scope. they should not be accessible to the user of the sqrt code given they are specific to sqrt .

the {} could be removed for more clarity.

Tail recursion:

```
def gcd(a: Int, b: Int): Int = if b = 0 then a else gcd(b, a % b)
                                gcd(14, 21)
                                \rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
                                \rightarrow if false then 14 else gcd(21, 14 % 21)
                                \rightarrow gcd(21, 14 % 21)
                                \rightarrow gcd(21, 14)
                                \rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
                                \rightarrow gcd(14, 7)
gcd(14,21) = gcd(21,14) = gcd(14,7) = gcd(...,...) = ... = 7: flat structure, gcd only calls
gcd => tail recursion.
    def factorial(n: Int): Int = if n = 0 then 1 else n * factorial(n - 1)
```

factorial(4) → if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> → 4 * factorial(3) → 4 * (3 * factorial(2)) → 4 * (3 * (2 * factorial(1))) → 4 * (3 * (2 * (1 * factorial(0))) → 4 * (3 * (2 * (1 * 1)))

factorial calls factorial and multiplies, nested structure > not tail recursion

To tell the compiler than a function is tail recursive:

```
import scala.annotation.tailrec
@tailrec
def gcd(a: Int, b: Int): Int = ...
```

Week 2:

Higher order functions:

Def: Functions that take other functions as parameters and return functions. example:

```
def sum( f : Int \Rightarrow Int )( a : Int , b : Int ) : Int
```

- takes as argument: the function f: Int ⇒ Int.
- returns: a function that has 2 arguments a:Int,b:Int and returns Int

Function types: A⇒B is the type of a function that takes an argument of type A and returns a result of type B. e.g: Int⇒Int maps integers to integers.

Anonymous Functions:

```
(x: Int, y: Int) \Rightarrow x + y
```

Use case:

```
def sumCubes(a: Int, b: Int) = sum(x \Rightarrow x * x * x, a, b) // type of function is inferred by the compiler
```

Currying:

Suppose we have this header for sum : def sum(f : Int⇒Int , a : Int , b : Int)

```
def sumInts(a: Int, b: Int) = sum(x \Rightarrow x, a, b)
def sumCubes(a: Int, b: Int) = sum(x \Rightarrow x * x * x, a, b)
def sumFactorials(a: Int, b: Int) = sum(fact, a, b)
```

Notice that a and b get passed unchanged from sumInts to sum .

O: Can we do it shorter?

```
def sum(f: Int ⇒ Int): (Int, Int) ⇒ Int =
    def sumF(a: Int, b: Int): Int =
        if a > b then 0
        else f(a) + sumF(a + 1, b)
sumF

def sumInts = sum(x ⇒ x)
def sumCubes = sum(x ⇒ x * x * x)
def sumFactorials = sum(fact)
```

is now a function that takes 1 argument ($_f$) and returns a function that takes 2 arguments $_a$ and $_b$.

We can still do shorter:

```
def sum(f: Int \Rightarrow Int)(a: Int, b: Int): Int = if a > b then 0 else f(a) + sum(f)(a + 1, b)
```

Q: What is the type of sum?

```
A: (Int \Rightarrow Int) \Rightarrow ((Int, Int) \Rightarrow Int) equivalent to (Int \Rightarrow Int) \Rightarrow (Int, Int) \Rightarrow Int
```

Note that function types associate to the right so it is equivalent to:

```
Int ⇒ Int ⇒ Int is equivalent to Int ⇒ (Int ⇒ Int)
```

Classes:

we can define classes in Scala:

```
class Rational(x: Int, y: Int):
    def numer = x // numer and denom here are functions (recalculated each call)
    def denom = y

// adding operations
    def addRational(r: Rational, s: Rational):
        Rational = Rational(r.numer * s.denom + s.numer * r.denom.r.denom *
```

```
// overriding toString
  override def toString = s"$numer/$denom" // s means formatted string
  // what is after a $ is evaluated

val x = Rational(1, 2) // x: Rational = Rational@2abe@e27
  x.numer // 1
  x.denom // 2
  val y = Rational(5, 7)
  val z = Rational(3, 2)
  x.add(y).add(z)
```

Classes are very similar to Java.

Suppose that numer and denom need more calculations, like the following:

```
class Rational(x: Int, y: Int):
    private def gcd(a: Int, b: Int): Int =
        if b = 0 then a else gcd(b, a % b)
    def numer = x / gcd(x, y) // these are recalcaled at each call
    def denom = y / gcd(x, y) // BAD IDEA

// BETTER IDEA : VARIABLES :
    val numer = x / gcd(x, y)
    val denom = y / gcd(x, y)
```

It is possible to use this.(..) like is Java.

Substitution and Extensions:

1. Substitution:

Suppose that we have a class definition:

```
class C(x1, ..., xm){ ... def f(y1, ..., yn) = b ... }
```

Q: How is the following expression evaluated? $c(v_1, ..., v_m).f(w_1, ..., w_n)$

A: Three substitutions happen written:

```
[w1/y1, ..., wn/yn][v1/x1, ..., vm/xm][C(v1, ..., vm)/this] b
```

- Substitution of y1, ..., yn of f by the arguments w1, ..., wn .
- Substitution of the x1, ..., xm of the class C by the class arguments v1, ..., vm.
- Substitution of the self reference this by the value of the object c(v1, ..., vn).

2. Extension methods (1):

Having to define all methods that belong to a class inside the class itself can lead to very large classes, and is not very modular.

Methods that do not need to access the internals of a class can alternatively be

For instance, we can add min and abs methods to class Rational like this:

```
extension (r: Rational):

def min(s: Rational): Boolean = if s.less(r) then s else r

def abs: Rational = Rational(r.numer.abs, r.denom)
```

• Extension methods **CANNOT** access internals (private) or this.(..).

3. Operators:

- \blacktriangleright We write x + y, if x and y are integers, but
- ► We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference with **operators**.

```
extension (x: Rational):

def + (y: Rational): Rational = x.add(y)
```

Precedence rules:

```
(all letters)
|
^
&
< >
= !
:
+ -
* / %
(all other special characters)
```

(all other special characters) having the highest priority.

Week3:

Abstract classes:

```
abstract class IntSet:

def incl(x: Int): IntSet // ABSTRACT MEMBERS : no implementation provided

def contains(x: Int): Boolean

// incl returns the union of {x} and this set
```

Like in Java, abstract classes cannot be instantiated.

We will try to implement a set as a binary tree.

A set can either be:

1. A tree for the **empty set**.

2. A tree consisting of **one** integer with two subtrees.


```
class Empty() extends IntSet:
    def contains(x: Int): Boolean = false
    def incl(x: Int): IntSet = NonEmpty(x, Empty(), Empty())

class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet:
    def contains(x: Int): Boolean =
        if x < elem then left.contains(x)
        else if x > elem then right.contains(x) else true

    def incl(x: Int): IntSet =
        if x < elem then NonEmpty(elem, left.incl(x), right)
        else if x > elem then NonEmpty(elem, left, right.incl(x))
    else this
end NonEmpty
```

1. Persistence:

Note that we the sets are immutable, we always return a new tree while **reusing some subtrees**.(blue one in the following e.g)

A data structure that is creating by maintaining the old one is called **persistent**.

2. Dynamic binding:

```
class Empty() extends IntSet:
    ...
    def union(other : Inset): Intset = other
class NonEmpty((elem: Int, left: IntSet, right: IntSet)) extends Inset :
    ...
    def union(other : Inset ): Intset =
lelf.union(right).union(that).incl(elem)

// Why does this terminate ? Union is called with strictly smaller sets each
time so union( "an empty set " ) will be called at some point.
```

Note that a call to union doesn't execute the same function if s is Empty or NonEmpty. That is called Dynamic **binding**. (Polymorphism)

Object definition:

In the IntSet example, one could argue that there is really **only a single** empty IntSet .

This defines a **singleton** object named Empty. No other Empty instance can be (or needs to be) created.

```
object Empty extends IntSet:
def contains(x: Int): Boolean = false
def incl(x: Int): IntSet = NonEmpty(x, Empty, Empty) end Empty
```

Companion object:

If a class and object with the same name are given in the same sourcefile, we call them companions. Example:

```
class IntSet ...
object IntSet:
   def singleton(x: Int) = NonEmpty(x, Empty, Empty)
```

Similar to Java, static nested class.

How is naming a class and an object the same name possible ? Scala has **two** namespaces , one for objects and the other for classes.

Programs:

Like Java , scale source files can have a main methods

```
object Hello:
    def main(args: Array[String]): Unit = println("hello world!")
// written Shorter as the following :
@main def birthday(name: String, age: Int) =
println(s"Happy birthday, $name! $age years old already!")
```

to run: scala Hello

Traits:

Java Interface but stronger: they can have parameters and can contain fields and concrete methods.

```
trait Planar:
    def height: Int
    def width: Int
    def surface = height * width
    class Square extends Shape, Planar, Movable ...
```


---> : can be converted (viewed) as

Cons List:

A fundamental data structure in many functional languages is the **immutable** linked list.

It is constructed from two building blocks:

- 1. Nil :the empty list
- 2. Cons :a cell containing an element and the remainder of the list

```
trait IntList ...
class Cons(val head: Int, val tail: IntList) extends IntList ...
// NOTE THE USE OF val
// this defines at the same time a parameter and a field of a class
class Nil() extends IntList ...
```

A IntList is either a Nil() or a Cons(x,xs).

A complete definition with Generics:

```
trait List[T]:
    def isEmpty: Boolean
    def head: T
    def tail: List[T]

class Cons[T](val head: T, val tail: List[T]) extends List[T]:
    def isEmpty = false

class Nil[T] extends List[T]:
    def isEmpty = true
    def head = throw new NoSuchElementException("Nil.head")
    def tail = throw new NoSuchElementException("Nil.tail")
```

Generic functions:

```
def singleton[T](elem: T) = Cons[T](elem, Nil[T])
// We can then write:
singleton[Int](1)
singleton[Boolean](true)
```

Pure Object Orientation:

Def: A pure object-oriented language is one in which every value is an object.

Q: Is Scala a pure OO language?

At first primitive types and functions seem like exceptions.

Primitive types are in fact not implemented as Class. (E.g scala.Int : 32bits, scala.Boolean as Java Boolean), for reasons of efficiency.

But they are not *conceptually* treated differently. In fact one can implement them using classes :

```
package idealized.scala
abstract class Boolean extends AnyVal:
    def ifThenElse[T](t: ⇒ T, e: ⇒ T): T
    def && (x: ⇒ Boolean): Boolean = ifThenElse(x, false)
    def || (x: ⇒ Boolean): Boolean = ifThenElse(true, x)
    def unary_!: Boolean = ifThenElse(false, true)
    def = (x: Boolean): Boolean = ifThenElse(x, x.unary_!)
    def ≠ (x: Boolean): Boolean = ifThenElse(x.unary_!, x)
...
end Boolean
object true extends Boolean:
def ifThenElse[T](t: ⇒ T, e: ⇒ T) = t
object false extends Boolean:
def ifThenElse[T](t: ⇒ T, e: ⇒ T) = e
```

Here is how to implement Scala.Int.

Functions: In scala functions are objects with apply methods

The function type $A \Rightarrow B$ is just an abbreviation for the class scala. Function1[A, B], which is defined as follows.

```
package scala
trait Function1[A, B]:
def apply(x: A): B
```

Example:

```
f = (x:Int) \Rightarrow x * x
// is expended to
f = new Function1[Int, Int]:
```

This anonymous class can itself expend to

```
{ class $anonfun() extends Function1[Int, Int]:
def apply(x: Int) = x * x
$anonfun()
f(7) // expends to
f.apply(7)
```

Week 4:

Decomposition:

```
Suppose you want to write a small interpreter for arithmetic
  Expr
   / \
               expressions.
               Sum(Number(1), Number(2)).eval = 3
Number Sum
   trait Expr :
       def eval(e: Expr): Int =
           if e.isNumber then e.numValue
           else if e.isSum then eval(e.leftOp) + eval(e.rightOp)
           else throw Error("Unknown expression " + e)
```

- isNumber , isSum gets quickly gets tedious when adding other datatypes.
 There's no static guarantee you use the right accessor functions. You might hit an Error case if you are not careful.

Non solution :Type Tests and Type casts

```
USe def isInstanceOf[T]: Boolean to type test and def asInstanceOf[T]: T to Cast.
```

Their use in Scala is discouraged, because there are better alternatives

Solution 1: Object Oriented Decomposition

```
trait Expr:
def eval: Int
class Number(n: Int) extends Expr:
   def eval: Int = n
class Sum(e1: Expr, e2: Expr) extends Expr:
   def eval: Int = e1.eval + e2.eval
```

- ▶ 00 decomposition mixes data with operations on the data.
- ►Good for encapsulation and data abstraction.
- Dependencies between classes => Increases Complexity.
- It makes it easy to add new kinds of data but hard to add new kinds of operations

OO decomposition only works well if operations are on a single object. NOT for expressions of type $\begin{bmatrix} a * b + a * c \Rightarrow a * (b + c) \end{bmatrix}$

Solution : Pattern Matching :

```
def eval(e: Expr): Int = e match
case Number(n) ⇒ n // pattern ⇒ expression
case Sum(e1, e2) ⇒ eval(e1) + eval(e2)
```

A MatchError exception is thrown if no pattern matches the value of the selector.

To be able to do pattern matching Number and sum should be case classes.

```
trait Expr
case class Number(n: Int) extends Expr
case class Sum(e1: Expr, e2: Expr) extends Expr
```

Lists and more pattern matching:

- ▶ the empty list Nil, and
- ▶ the construction operation :: (pronounced cons):

x :: xs gives a new list with the first element x, followed by the elements of xs

```
val fruit: List[String] = List("apples", "oranges", "pears")
fruit = "apples" :: ("oranges" :: ("pears" :: Nil)) // similar
```

Right associativity convention: Operators ending in ":" associate to the right.

A :: B :: C is interpreted as A :: (B :: C).

All operations on lists can be expressed in terms of the following three:

- head the first element of the list
- tail the list composed of all the elements except the first.
- isEmpty true if the list is empty, false otherwise .

example of using lists and pattern matching:

```
def isort(xs: List[Int]): List[Int] = xs match
    case List() ⇒ List()
    case y :: ys ⇒ insert(y, isort(ys))

def insert(x: Int, xs: List[Int]): List[Int] = xs match
    case List() ⇒ List(x)
    case y :: ys ⇒ if x > y then y :: insert(x,ys) else x :: xs
```

Enum:

```
Here's our case class hierarchy for expressions again:
trait Expr
object Expr:
case class Var(s: String) extends Expr
case class Number(n: Int) extends Expr
case class Sum(e1: Expr, e2: Expr) extends Expr
```

This is so common is scala that there's a shorthand for that.

```
enum Expr:
case Var(s: String)
case Number(n: Int)
case Sum(e1: Expr, e2: Expr)
case Prod(e1: Expr, e2: Expr)
```

There's more to Enumeration , they can take parameters and can define methods.

```
enum Direction(val dx: Int, val dy: Int):
    case Right extends Direction( 1, 0)
    case Up extends Direction( 0, 1)
    case Left extends Direction(-1, 0)
    case Down extends Direction( 0, -1)

def leftTurn = Direction.values((ordinal + 1) % 4)
end Direction

val r = Direction.Right
val u = x.leftTurn // u = Up
val v = (u.dx, u.dy) // v = (1, 0)
```

Type Bounds:

assertPos should return the set itself if all elements are positive and throw otherwise.

```
def assertAllPos(s: IntSet): IntSet
```

The above definition doesn't show that assertAllPos of an Empty returns an Empty and assertAllPos of NonEmpty returns an NonEmpty . There's better:

```
def assertAllPos[S <: IntSet](r: S): S = ...</pre>
```

Here, <: IntSet is an upper bound of the type parameter S.

```
s <: т means: S is a subtype of T, and
```

▶ s >: T means: S is a **supertype** of T, or T is a subtype of S.

We can *mix* them: [s >: NonEmpty <: IntSet]

The Liskov Substitution Principle

If A <: B, then everything one can to do with a value of type B one should also be able to do with a value of type A.

Variance:

```
Given: NonEmpty <: IntSet is List[NonEmpty] <: List[IntSet] ? yes. When A <: B \Rightarrow C[A] <: C[B] We Call C[T] covariant.
```

Does this work for all types ? let's consider Arrays (mutable)

```
val a: Array[NonEmpty] = Array(NonEmpty(1, Empty(), Empty()))
val b: Array[IntSet] = a // TYPE ERROR HEERE
b(0) = Empty() // CAN DO WITH ARRAY[INTSET] BUT NOT WITH ARRAY[NONEMPTY]
val s: NonEmpty = a(0)
```

Type Error Line 2: Array[NonEmpty] not a subtype of Array[Inset].

Why? Because otherwise it would contradict *Liskov Principle* **not** all you can do with <code>Array[Inset]</code>, you can do with <code>Array[NonEmpty]</code>. (Line 3,4)

Say c[T] is a parameterized type and A, B are types such that A < B.

```
• C[A] <: C[B] C is covariant (e.g List )
```

- C[A] >: C[B] C is contravariant
- neither C[A] nor C[B] is a subtype of the other C is **nonvariant** (e.g Array)

```
class C[+A] { ... } C is covariant
class C[-A] { ... } C is contravariant
class C[A] { ... } C is nonvariant
```

Function types:

```
A1 \Rightarrow B1 <: A2 \Rightarrow B2 because A2 <: A1 \text{ and } B1 <: B2.
```

Covariant in return type. Variant in input type

```
trait Function1[-T, +U]:
def apply(x: T): U
```

Week 5:

List methods:

```
xs.length , xs(n) \Leftrightarrow xs.apply(n) , xs.reverse , xs.updated(n, x) , xs.indexOf(x) (returns -1 if x not in xs), xs.contains(x) .
```

Creating new Lists	All of the following are LINEAR
xs.last	The list's last element, exception if xs is empty.
xs.take(n)	A list consisting of the first n elements of xs , or xs itself if it is shorter than n.
xs.drop(n)	The rest of the collection after taking n elements.
xs ++ ys	Concatenation. def $++$ (ys: List[T]): List[T] = xs match case Nil \Rightarrow ys case x :: xs1 \Rightarrow x :: (xs1 $++$ ys)
xs(n)	(or, written out, xs.apply(n)). The element of xs at index n.`
splitAt(n)	pair Of: (xs[1 to n] , xs[n to xs.length])

Simple merge sort implementation:

lt : $(T, T) \Rightarrow Boolean$ is a comparison function.

Pairs:

```
val label = pair._1
val value = pair._2
val (label, value) = pair
```

Filtering and mapping:

methods	all LINEAR
xs.filter(p)	Elements of xs verifying p.
xs.filterNot	Same as $xs.filter(x \Rightarrow !p(x))$;
xs.partition(p)	Same as (xs.filter(p), xs.filterNot(p)), but computed in a single traversal of the list xs
xs.takeWhile(p)	The longest prefix of list $\times s$ consisting of elements that all satisfy the predicate $\ \ P$.
xs.dropWhile(p)	The remainder of the list xs after any leading elements satisfying p have been removed.
xs.span(p)	Same as (xs.takeWhile(p), xs.dropWhile(p)) but computed in a single traversal of the list xs.
xs.map	create a with f to all elements of xs.

Reductions:

Combining elements of lists with a given operator.

```
In more generality: List(x1, ..., xn).reduceLeft(op) = x1.op(x2). ... .op(xn)
```

In the same way there's reduceRight:

```
List(x1, ..., x{n-1}, xn).reduceRight(op) = x1.op(x2.op( ... (x{n-1}).op(xn))
```

FoldLeft:

```
def reduceLeft(op: (T, T) ⇒ T): T = this match
    case Nil ⇒ throw IllegalOperationException("Nil.reduceLeft")
    case x :: xs ⇒ xs.foldLeft(x)(op)

// takes an accumulator

def foldLeft[U](z: U)(op: (U, T) ⇒ U): U = this match
    case Nil ⇒ z
    case x :: xs ⇒ xs.foldLeft(op(z, x))(op)
```


FoldRight:

```
def reduceRight(op: (T, T) ⇒ T): T = this match
    case Nil ⇒ throw UnsupportedOperationException("Nil.reduceRight")
    case x :: Nil ⇒ x
    case x :: xs ⇒ op(x, xs.reduceRight(op))

// takes an accumulator
def foldRight[U](z: U)(op: (T, U) ⇒ U): U = this match
    case Nil ⇒ z
    case x :: xs ⇒ op(x, xs.foldRight(z)(op))
```


FoldLeft is tailrec so more efficient.

FoldLeft/FoldRight are very useful:

Structural Induction:

We would like to verify that concatenation is associative, and that it admits the empty list Nil as neutral element to the left and to the right:

```
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
```

We will use Structural Induction: To prove a property P(xs) for all lists xs,

- show that P(Nil) holds (base case),
- for a list xs and some element x, show the induction step: if P(xs) holds, then xs also holds

recall the implementation of # :

```
extension [T](xs: List[T])

def ++ (ys: List[T]) = xs match

case Nil ⇒ ys

case x :: xs1 ⇒ x :: (xs1 ++ ys)
```

two facts:

```
1. Nil ++ ys = ys
2. (x :: xs1) ++ ys = x :: (xs1 ++ ys)
```

Proof: Induction on xs

• base case : Nil

```
(Nil ++ ys) ++ zs = ys ++ zs by 1st clause
Nil ++ ( ys ++ zs ) = ys ++ zs also by 1st clause
```

• Inductive step: suppose (xs ++ ys) ++ zs = xs ++ (ys ++ zs) holds, prove it on x :: xs

on LHS:

```
((x :: xs) ++ ys) ++ zs
= (x :: (xs ++ ys)) ++ zs // by 2nd clause of ++
= x :: ((xs ++ ys) ++ zs) // by 2nd clause of ++
= x :: (xs ++ (ys ++ zs)) // by induction hypothesis
on RHS:
(x :: xs) ++ (ys ++ zs)
= x :: (xs ++ (ys ++ zs)) // by 2nd clause of ++
```