第三章: 凸优化基础

——优化论五部曲

Jason 博士

网易微专业 x 稀牛学院

人工智能数学基础微专业

一般优化问题

凸集和凸函数基础

凸优化问题

无约束优化问题

- 自变量为矢量的函数 $f: \mathbb{R}^n \to \mathbb{R}$

$$\min f(\mathbf{x}) \quad \mathbf{x} \in \mathbb{R}^n$$

- 局部最优解常规解法
- 直接法
 - 梯度等于 0,求得驻点,必要时 Hessian 矩阵再进一步判断.
- 迭代法
 - 梯度下降法
 - 牛顿法
 - 拟牛顿法

一般约束优化问题

- 约束优化问题一般形式:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0$ for $i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0$ for $i = 1, 2, \dots, p$ (1)

- 可行域: 满足 $f(\mathbf{x})$ 定义域和约束条件的 \mathbf{x} 的集合. $f_j(\mathbf{x}) = 0$ 表明不等式约束被激活 (active).

一般约束优化问题 (举例)

- 考虑以下约束优化问题

minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 4x_1 + 4 = (x_1 - 2)^2 + x_2^2$$

subject to $c_1(\mathbf{x}) = x_1 - 2x_2 + 6 \ge 0$
 $c_2(\mathbf{x}) = -x_1^2 + x_2 - 1 \ge 0, c_3(\mathbf{x}) = x_1 \ge 0, c_4(\mathbf{x}) = x_2 \ge 0$

补充知识 Ax = b

矩阵乘法

$$\begin{bmatrix}
2 & -1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
1 \\
5
\end{bmatrix}$$

$$\mathbf{A} \in \mathbb{R}^{2 \times 2} \quad \mathbf{x} \in \mathbb{R}^{2}$$

$$(2)$$

$$\underbrace{\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}}_{\mathbf{A} \in \mathbb{R}^{3 \times 3}} \underbrace{\begin{bmatrix} u \\ v \\ w \end{bmatrix}}_{\mathbf{x} \in \mathbb{R}^3} = \underbrace{\begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}}_{\mathbf{b} \in \mathbb{R}^3} \tag{3}$$

Ax = b 的行视图

- 行视图—超平面

$$2x - y = 1$$

$$x + y = 5$$

$$(4)$$

一般优化问题

凸集和凸函数基础

凸优化问题

为什么要凸优化?

- 思考: 对于无约束优化问题,梯度等于 0 这一条件是否可以成为充要条件?

- 思考: 什么样的情况局部最小解可以成为全局最小解?

- 思考: 约束优化问题怎么办? (下次课)

- 思考: 研究凸优化问题对于非凸问题又有什么帮助? (下次课)

凸集 (Convex Sets)(Solid, no holes, and curve outward)

仿射集 (Affine Sets) 和凸集

- 如果一个集合 $C \in \mathbb{R}^n$ 是仿射的,则 C 中两点间的直线也在 C 中,例如 $\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in C$, $\theta \in \mathbb{R}$,即 $\mathbf{A} \mathbf{x} = \mathbf{b}$ 的解

- 一个集合 $C \in \mathbb{R}^n$ 是凸的,则对于任意的 $\mathbf{x}, \mathbf{y} \in C$,有 $\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C$ $0 \le \theta \le 1$

常见的凸集 (1/3)

- 所有 \mathbb{R}^n ,给定任意 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,则有 $\theta \mathbf{x} + (1 \theta) \mathbf{y} \in \mathbb{R}^n$
- 所有 \mathbb{R}^n_+
- 超平面 (Hyperplane): 既是仿射又是凸

$$C = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$$

- 半空间 (Halfspace): 只是凸

向量范数 (补充知识)

• 2-norm:

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = (\mathbf{x}^T \mathbf{x})^{1/2}$$

• 1-norm:

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

• ∞-norm:

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$$

• *p*-norm, $p \ge 1$:

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

常见的凸集 (2/3)

- 范数球,例如 $||\mathbf{x}||_2 \le 1$. 给定任意 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ 且 $||\mathbf{x}||_2 \le 1$, $||\mathbf{y}||_2 \le 1$,则有 $||\theta\mathbf{x} + (1 - \theta)\mathbf{y}||_2 \le \theta ||\mathbf{x}||_2 + (1 - \theta)||\mathbf{y}||_2 \le 1$

凸集的性质

- **凸集的交集是凸集,**例如: $S = \{||\mathbf{x}|| \le 1, \mathbf{x} \ge 0\}$
- 证明: 假定 S_1, \dots, S_k 是凸集,给定 $\mathbf{x}, \mathbf{y} \in \cap_{i=1}^k S_i$,则有

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in S_i, \quad i = 1, \dots, k$$

因此,

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \bigcap_{i=1}^k S_i$$

- 注意: 凸集的并集不一定是凸集

常见的凸集 (3/3)

- 多面体 (Polyhedron): 有限个半空间和半平面的交集

$$\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \le \mathbf{b}, \, \mathbf{C}\mathbf{x} = \mathbf{d}\}$$

其中 $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{d} \in \mathbb{R}^p$

凸函数

- 一个函数 $f: \mathbb{R}^n \to \mathbb{R}$ 被称为凸函数,如果
 - $1 \operatorname{dom}(f)(f 的定义域) 是凸集$
 - 2 对于任何 $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$ 和 $0 \le \theta \le 1$,有

$$f(\theta \mathbf{x} + (1 - \theta) \mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta) f(\mathbf{y})$$

- 几何解释

凸函数的一阶二阶条件

- 一阶充要条件 (不好用): $f(\mathbf{x}_1) \geq f(\mathbf{x}) + \nabla^T f(\mathbf{x}) (\mathbf{x}_1 \mathbf{x})$ 对于所有 \mathbf{x}_1, \mathbf{x} 均成立. 作业:证明凸函数局部最优解就是全局最优解 (提示:用凸函数定义)
- 二阶充要条件 (好用): 如果函数 f 二阶可导,则凸函数充要条件:

$$\mathbf{H}(\mathbf{x}) \succeq \mathbf{0}$$

常见的凸函数 (1/2)

一元函数举例

- ax + b convex and also concave
- x^2 convex
- $e^{\alpha x}$ convex
- $-\log x$ convex on x>0
- $x \log x$ convex on $x \ge 0$

常见的凸函数 (2/2)

二元函数举例

- $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$ convex and also concave
- $f(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x} + 2\mathbf{q}^T \mathbf{x} + \mathbf{r}$ 是 convex 当且仅当 $\mathbf{P} \succeq \mathbf{0}$ $f(\mathbf{x}) = ||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}$

保凸运算

保凸

- -f 凸,则 $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ 凸,例如 $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2$
- g 凸, h 凸, 扩展的 h 非递减,则 $f(\mathbf{x}) = h(g(\mathbf{x}))$ 凸. 例如 $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$ 凸, $g(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2$, $h(x) = x^2$ 在 $x \ge 0$ 的部分非递减.
- $-f_1, \dots, f_m$ 凸, $w_1, \dots, w_m \ge 0$,则 $\sum_{i=1}^m w_i f_i$ 凸.例如 $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2 + \gamma \|\mathbf{x}\|_2^2$ 凸, $\gamma \ge 0$
- 逐点最大: f_1, \dots, f_m 凸,则 $f(\mathbf{x}) = \max \{f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\}$ 凸. $f(\mathbf{x}, \mathbf{y})$ 对于每个 $\mathbf{y} \in \mathcal{A}$ 凸,则 $\sup_{\mathbf{v} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y})$ 凸.

凸函数和凸集的关系

α 水平集 (sublevel set)

- 一元函数 f 的 α 水平集为

$$S_{\alpha} = \{x \mid f(x) \le \alpha\}$$

- 则有 f 凸函数 $\Rightarrow S_{\alpha}$ 对于每个 α 是凸集,反之不成立.

convex f and convex S_{α}

non-convex f but convex S_{α}

一般优化问题

凸集和凸函数基础

凸优化问题

凸优化问题标准形式 (Game Over)

- 凸优化问题

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \le 0$ for $i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0$ for $i = 1, 2, \dots, p$ (5)

- 则有 $f_0(\mathbf{x})$ 是凸函数,可行域是凸集
 - 目标函数是凸的
 - 不等式约束函数必须是凸的
 - 等式约束函数必须是仿射的
- 在一个凸集上极小化一个凸的目标函数
- 最优值 (目标函数在可行域上的最小值):

$$p* = \min \left\{ f_0(\mathbf{x}) : f_i(\mathbf{x}) \le 0, h_i(\mathbf{x}) = 0 \right\}$$

- $-p*=+\infty$ 不可行(可行域是空集)
- $p* = -\infty$,unbounded below (存在可行点使得 $f_0(x) \to -\infty$)
- $f_0(\mathbf{x}^*) = p^*$

凸优化问题的重要结论

凸优化问题局部最优 = 全局最优

- 局部最优 **x**,存在 R > 0,对于所有可行点 **z**,且有 $||\mathbf{x} \mathbf{z}||_2 \le R$,满足 $f_0(\mathbf{x}) \le f_0(\mathbf{z})$
- 全局最优 \mathbf{x} ,对所有可行点 \mathbf{z} ,有 $f_0(\mathbf{x}) \leq f_0(\mathbf{z})$
- 反证法: 作业
- 特别对于无约束有问题
 - 梯度等于 0
 - 迭代法

典型的凸优化问题

- 线性规划 (Linear Programming)

minimize
$$\mathbf{c}^T \mathbf{x} + d$$

subject to $\mathbf{G} \mathbf{x} \le \mathbf{h}$
 $\mathbf{A} \mathbf{x} = \mathbf{b}$ (6)

- 二次规划 (Quadratic Programming)(P 半正定)

minimize
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{c}^{T}\mathbf{x} + d$$
subject to
$$\mathbf{G}\mathbf{x} \leq \mathbf{h}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
(7)

- QCQP(P 和 Q_i 均半正定)

minimize
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{c}^{T}\mathbf{x} + d$$
subject to
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}_{i}\mathbf{x} + \mathbf{r}_{i}^{T}\mathbf{x} + s_{i} \leq 0, \quad i = 1, \dots, m, \ \mathbf{A}\mathbf{x} = \mathbf{b}$$

案例 1: 凸优化问题转成标准型

- 给定下列问题

minimize
$$\frac{1}{2}||\mathbf{w}||_{2}^{2} + C\sum_{i=1}^{m} \xi_{i}$$
subject to
$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \ i = 1, \cdots, m$$
$$\xi_{i} \geq 0$$
 (8)

其中 $\mathbf{w} \in \mathbb{R}^n$, $\boldsymbol{\xi} = [\xi_1, \dots, \xi_m]^T \in \mathbb{R}^m$, $b \in \mathbb{R}$. 定义 k = m + n + 1 - 变量

$$\mathbf{x} \in \mathbb{R}^k = \left[egin{array}{c} \mathbf{w} \ oldsymbol{\xi} \ b \end{array}
ight]$$

- 定义
$$\mathbf{X} \in \mathbb{R}^{m imes n} = \left[egin{array}{c} \mathbf{x}_1^T \\ \mathbf{x}_m^T \end{array}
ight]$$
, $\mathbf{y} \in \mathbb{R}^m = \left[egin{array}{c} y_1 \\ \vdots \\ y_m \end{array} \right]$

案例 1: 凸优化问题转成标准型

- QP

minimize
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{c}^{T}\mathbf{x} + d$$

subject to
$$\mathbf{G}\mathbf{x} \le \mathbf{h}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 (9)

- 定义

$$\mathbf{P} \in \mathbb{R}^{k \times k} = \begin{bmatrix} \mathbf{I} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{c} \in \mathbb{R}^k = \begin{bmatrix} 0 \\ C \cdot \mathbf{1} \\ 0 \end{bmatrix}$$

$$\mathbf{G} \in \mathbb{R}^{2m \times k} = \begin{bmatrix} -\operatorname{diag}\left(\mathbf{y}\right)\mathbf{X} & -\mathbf{I} & -\mathbf{y} \\ 0 & -\mathbf{I} & 0 \end{bmatrix}, \mathbf{h} \in \mathbb{R}^{2m} = \begin{bmatrix} -\mathbf{1} \\ 0 \end{bmatrix}$$

本章参考资料

Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.