Graph Algorithms

Edge Coloring

The Input Graph

 \star A simple and undirected graph G=(V,E) with n vertices in V, m edges in E, and maximum degree Δ .

Matchings

 \star A matching, $M\subseteq E$, is a set of edges such that any 2 edges from the set do not intersect.

$$- \forall_{(u,v)\neq(u',v')\in M} (u\neq u',u\neq v',v\neq u',v\neq v').$$

 \star A perfect matching, $M \subseteq E$, is a matching that covers all the vertices.

$$- \forall_{u \in V} \exists \{(u, v) \in M\}.$$

Example: Matching

Example: Maximal Matching

Example: Maximum Size Matching

Example: Perfect Matching

Edge Covering

* An edge covering, $EC \subseteq E$, is a set of edges such that any vertex in V belongs to at least one of the edges in EC.

$$- \forall_{v \in V} \exists_{e \in EC} (e = (u, v)).$$

Example: Edge Covering

Example: Minimal Edge Covering

Example: Minimum Size Edge Covering

Graph Algorithms

Matching and Edge Covering

Definition An isolated vertex is a vertex with no neighbors.

Proposition: EC + M = n for G with no isolated vertices.

Proof outline: Show that $EC + M \ge n$ and $EC + M \le n$ which imply EC + M = n.

$EC + M \ge n$

- \star Construct a matching M'.
- \star Consider the edges of EC in any order.
- \star Add an edge to M' if it does not intersect any edge that is already in M'.
- \star The rest of the edges in EC connect a vertex from M' to a vertex that is not in M'.
- \star Therefore, the number of edges in EC is the number of edges in M' plus n-2M' additional edges.

$EC + M \ge n$

$$EC = M' + (n - 2M')$$

$$= n - M'$$

$$\geq n - M \quad (* \text{ since } M \geq M' *)$$

$$\Rightarrow EC + M \geq n.$$

$EC + M \le n$

- \star Construct an edge covering EC'.
- \star EC' contains all the edges of the maximum matching M.
- \star For each vertex that is not covered by M, add an edge that contains it to EC'.
- \star Due to the maximality of M, there is no edge that covers 2 vertices that are not covered by M.
- * Therefore, the number of edges in EC' is the number of edges in M plus n-2M additional edges.

$EC + M \le n$

$$EC' = M + (n - 2M)$$

$$= n - M$$

$$\Rightarrow EC \le n - M \quad (* \text{ since } EC' \ge EC *)$$

$$\Rightarrow EC + M \le n.$$

Edge Coloring

Definition I:

- * A disjoint collection of matchings that cover all the edges in the graph.
- * A partition $E = M_1 \cup M_2 \cup \cdots \cup M_{\psi}$ such that M_j is a matching for all $1 \leq j \leq \psi$.

Definition II:

- * An assignment of colors to the edges such that two intersecting edges are assigned different colors.
- * A function $c: E \to \{1, \dots, \psi\}$ such that if $v \neq w$ and $(u, v), (u, w) \in E$ then $c(u, v) \neq c(u, w)$.

Observation: Both definitions are equivalent.

Example: Edge Coloring

Example: Edge Coloring with Minimum Number of Colors

Graph Algorithms 18

The Edge Coloring Problem

The optimization problem: Find an edge coloring with minimum number of colors.

Notation: $\psi(G)$ – the chromatic index of G – the minimum number of colors required to color all the edges of G.

Hardness: A Hard problem to solve.

* It is NP-Hard to decide if $\psi(G) = \Delta$ or $\psi(G) = \Delta + 1$ where Δ is the maximum degree in G.

Bounds on the Chromatic Index

- \star Let Δ be the maximum degree in G.
- \star Any edge coloring must use at least Δ colors.
 - $-\psi(G) \geq \Delta$.
- \star A greedy first-fit algorithm colors the edges of any graph with at most $2\Delta-1$ colors.
 - $\psi(G) \le 2\Delta 1.$
- * There exists a polynomial time algorithm that colors any graph with at most $\Delta+1$ colors.
 - $-\psi(G) \leq \Delta + 1.$

More Bounds on the Chromatic Index

Notation: M(G) – size of the maximum matching in G.

$$\star M(G) \leq \lfloor n/2 \rfloor$$
.

Observation:
$$\psi(G) \geq \left\lceil \frac{m}{M(G)} \right\rceil$$
.

 \star A pigeon hole argument: the size of each color-set is at most M(G).

Corollary:
$$\psi(G) \geq \left\lceil \frac{m}{\lfloor n/2 \rfloor} \right\rceil$$
.

Vertex Coloring vs. Edge Coloring

- * Matching is an easy problem while Independent Set is a hard problem.
- * Edge Coloring is a hard problem while Vertex Coloring is a very hard problem.

Graph Algorithms 22

Coloring the Edges the Star Graph S_n

- \star In a star graph $\Delta = n 1$.
- * Each edge must be colored with a different color

$$\Rightarrow \psi(S_n) = \Delta.$$

Coloring the Edges of the Cycle C_n

- \star In any cycle $\Delta=2$.
- * For even n=2k, edges alternate colors and 2 colors are enough $\Rightarrow \psi(C_{2k}) = \Delta$.
- * For odd n=2k+1, at least 1 edge is colored with a third color $\Rightarrow \psi(C_{2k+1}) = \Delta + 1$.

Complete Bipartite Graphs

Bipartite graphs: $V = A \cup B$ and each edge is incident to one vertex from A and one vertex from B.

Complete bipartite graphs $K_{a,b}$: There are a vertices in A, b vertices in B, and all possible $a \cdot b$ edges exist.

Graph Algorithms 26

27

Graph Algorithms 28

Coloring the Edges of Complete Bipartite Graphs

- $\star \Delta = \max\{a,b\}$ in the complete bipartite graph $K_{a,b}$.
- \star Let the vertices be $v_0, \ldots, v_{a-1} \in A$ and $u_0, \ldots, u_{b-1} \in B$.
- ★ Assume $a \leq b$.
- ★ Color the edges in $b = \Delta$ rounds with the colors $0, \ldots, \Delta 1$.
- * In round $0 \le i \le \Delta 1$, color edges $(v_j, u_{(j+i) \mod b})$ with color i for $0 \le j \le a$.

Complete Graphs – Even *n*

- $\star \psi(K_n) = n 1 = \Delta$ for an even n.
 - n-1 disjoint perfect matchings each of size n/2.
 - -m = (n-1)(n/2) in a complete graph with n vertices.

Complete Graphs – $n = 2^k$ power of 2^k

- \star If k=1 color the only edge with $1=\Delta$ color.
- * If k > 1, partition the vertices into two $K_{n/2}$ cliques A and B each with 2^{k-1} vertices.
- \star Color the complete bipartite $K_{n/2,n/2}$ implied by the partition $V=A\cup B$ with n/2 colors.
- * Recursively and in parallel, color both cliques A and B with $n/2-1=\Delta(K_{n/2})$ colors.
- \star All together, $n-1=\Delta$ colors were used.

Coloring the edges of K_8

Coloring the edges of K_8

Coloring the edges of K_8

Complete Graphs – Odd n

- $\star \psi(K_n) = n = \Delta + 1$ for an odd n.
 - $-\psi(K_n) \leq \psi(K_{n+1}) = n$ because n+1 is even.
 - $-\psi(K_n) \ge \frac{(n(n-1)/2)}{((n-1)/2)} = n$ because there are $\frac{n(n-1)}{2}$ edges in K_n and the size of the maximum matching is $\frac{n-1}{2}$.

Coloring the Edges of Odd Complete Graphs

- \star Arrange the vertices as a regular n-polygon.
- \star Color the n edges on the perimeter of the polygon using n colors.
- * Color an inside edge with the color of its parallel edge on the perimeter of the polygon.

Coloring the Edges of Odd Complete Graphs

Correctness: The coloring is legal:

- ★ Parallel edges do not intersect.
- * Each edge is parallel to exactly one perimeter edge.

Number of colors: $\psi(K_{2k+1}) = 2k + 1 = \Delta + 1$.

Coloring the Edges of Even Complete Graphs – Algorithm I

- \star Let the vertices be $0, \ldots, n-1$.
- * Color the edges of K_{n-1} on the vertices $0, \ldots, n-2$ using the polygon algorithm.
- * For $0 \le x \le n-2$, color the edge (n-1,x) with the only color missing at x.

Coloring the Edges of Even Complete Graphs – Algorithm I

Correctness: The coloring is legal:

- * The coloring of K_{n-1} implies a legal coloring for all the edges except those incident to vertex n-1.
- \star Exactly 1 color is missing at a vertex $x \in \{0, \dots, n-2\}$.
- * This is the color of the perimeter edge opposite to it.
- \star The n-1 perimeter edges are colored with different colors.

Number of colors: $\psi(K_{2k}) = 2k - 1 = \Delta$.

Coloring the Edges of Even Complete Graphs – Algorithm II

- \star Let the vertices be $0, \ldots, n-1$.
- * In round $0 \le x \le n-2$, color the following edges with the color x:
 - -(n-1,x).
 - $-(((x-1) \bmod (n-1)), ((x+1) \bmod (n-1))).$
 - $-(((x-2) \bmod (n-1)), ((x+2) \bmod (n-1))).$

:

- $(((x-(\frac{n}{2}-1)) \mod (n-1), ((x+(\frac{n}{2}-1)) \mod (n-1))).$

Correctness and number of colors: The same as Algorithm I since both algorithms are equivalent!

Coloring the Edges of Even Complete Graphs – Algorithm II

Coloring the Edges of Even Complete Graphs – Algorithm III

- ★ Let $0 \le i < j \le n-1$ be 2 vertices.
- ★ Case j = n 1: color the edge (i, j) with the color i.
- \star Case i+j is even: color the edge (i,j) with the color $\frac{i+j}{2}$.
- \star Case i+j is odd and i+j < n-1: color the edge (i,j) with the color $\frac{i+j+(n-1)}{2}$.
- **\star** Case i+j is odd and $i+j \geq n-1$: color the edge (i,j) with the color $\frac{i+j-(n-1)}{2}$.

Correctness and number of edges: The same as Algorithm I and Algorithm II since all three algorithms are equivalent!

Coloring the Edges of Even Complete Graphs – Algorithm III

Greedy First Fit Edge Coloring

Algorithm: Color the edges of G with $2\Delta - 1$ colors.

- * Consider the edges in an arbitrary order.
- * Color an edge with the first available color among $\{1,2,\ldots,2\Delta-1\}.$

Correctness: At the time of coloring, at most $2\Delta - 2$ colors are not available. By the pigeon hole argument there exists an available color.

Complexity

- \star *m* edges to color.
- $\star O(\Delta)$ to find the available color for any edge.
- \star Overall, $O(\Delta m)$ complexity.

Coloring the Vertices of the Line Graph L(G)

- * Coloring the edges of G is equivalent to coloring the vertices of the line graph L(G) of G.
- * If the maximum degree in G is Δ then the maximum degree in L(G) is $\Delta(L(G)) = 2\Delta 2$.
- * The greedy coloring of the edges of G with $2\Delta-1$ colors is equivalent to the greedy coloring of the vertices of L(G) with $\Delta(L(G))+1=2\Delta-1$ colors.

Coloring the Vertices of the Line Graph ${\cal L}(G)$

Subgraphs Definitions

- * For colors x and y, let G(x, y) be the subgraph of G containing all the vertices of G and only the edges whose colors are x or y.
- * For a vertex w, let $G_w(x, y)$ be the connected component of G(x, y) that contains w.

Observation

 $\star G(x, y)$ is a collection of even size cycles and paths.

Exchanging Colors Tool

* Exchanging between the colors x and y in the connected component $G_w(x,y)$ of G(x,y) results with another legal coloring.

Coloring the edges of Bipartite Graphs with Δ Colors

- \star Color the edges with the colors $\{1,2,\ldots,\Delta\}$ following an arbitrary order. Let (u,v) be the next edge to color.
- * At most $\Delta 1$ edges containing u or v are colored \Rightarrow one color c_u is **missing** at u and one color c_v is **missing** at v.
- \star If $c_u = c_v$ then color the edge (u, v) with the color $c_u = c_v$.

Coloring the Edges of Bipartite Graphs with Δ Colors

- \star Assume $c_u \neq c_v$.
- \star Let $G_u(c_u, c_v)$ be the connected component of the subgraph of G containing only edges colored with c_u and c_v .
- $\star G_u(c_u, c_v)$ is a path starting at u with a c_v colored edge.

Coloring the Edges of Bipartite Graphs with Δ Colors

- \star The colors in $G_u(c_u, c_v)$ alternate between c_v and c_u .
- * The first edge in the path starting at u is colored $c_v \Rightarrow$ any edge in the path that starts at the side of u must be colored with c_v .
- $\star v$ does not belong to $G_u(c_u, c_v)$ because c_v is missing at v.

Coloring the Edges of Bipartite Graphs with Δ Colors

- \star Exchange between the colors c_u and c_v in $G_u(c_u, c_v)$.
- $\star c_v$ is missing at both u and v: color the edge (u,v) with the color c_v .

Complexity

- \star *m* edges to color.
- $\star O(\Delta)$ to find the missing colors at u and v.
- \star O(n) to change the colors in $G_u(c_u, c_v)$.
- \star Overall, O(nm) complexity.

Coloring the Edges of Any Graph with $\Delta + 1$ Colors

- * Color the edges with the colors $\{1, 2, ..., \Delta + 1\}$ following an arbitrary order. Let (v_0, v_1) be the next edge to color.
- * At most $\Delta 1$ edges containing v_0 or v_1 are colored \Rightarrow one color c_0 is missing at v_0 and one color c_1 is missing at v_1 .

Coloring the edges of Any Graph with $\Delta+1$ Colors

 \star If $c_0=c_1$ then color the edge (v_0,v_1) with the color $c_0=c_1$.

Coloring the Edges Any Graph with $\Delta+1$ Colors

- \star Assume $c_0 \neq c_1$.
- * Construct a sequence of distinct colors $c_0, c_1, c_2, \ldots, c_{j-1}, c_j$ and a sequence of edges $(v_0, v_1), (v_0, v_2), \ldots, (v_0, v_j)$.
 - Color c_i is missing at v_i for $0 \le i \le j$.
 - c_i is the color of the edge (v_0, v_{i+1}) for $1 \leq i \leq j$.

$$V_1(C_1)$$

$$V_0(C_0)$$

Constructing the Sequence

- \star The edge (v_0, v_1) and the colors c_0, c_1 are initially defined.
- * Assume the colors $c_0, c_1, \ldots, c_{j-1}$ and the edges $(v_0, v_1), (v_0, v_2), \ldots, (v_0, v_j)$ are defined:
 - c_i is missing at v_i for $0 \le i \le j-1$.
 - c_i is the color of the edge (v_0, v_{i+1}) for $1 \le i \le j-1$.
- \star Let c_j be a color missing at v_j .
- * If there exists an edge (v_0, v_{j+1}) colored with c_j , where $v_{j+1} \notin \{v_1, \ldots, v_j\}$, then continue constructing the sequence with the defined c_j and v_{j+1} .

The Process Terminates

 \star Since v_0 has only Δ neighbors, the construction process stops with one of the following cases:

Case I: There is no edge (v_0, v) colored with c_j .

Case II: For some $2 \le k < j$: $c_j = c_{k-1}$ \Rightarrow the edge (v_0, v_k) is colored with c_j .

Case I

 \star The color c_j is missing at v_0 .

Case I

* Shift colors: Color (v_0, v_i) with c_i for $1 \le i \le j-1$.

Case I

 $\star c_j$ is missing at both v_0 and v_j : color (v_0, v_j) with c_j .

Case II

* For some $2 \le k < j$: $c_j = c_{k-1}$ $\Rightarrow (v_0, v_k)$ is colored with c_j .

Case II

- \star Shift colors: color (v_0, v_i) with c_i for $1 \leq i \leq k-1$.
- ★ The edge (v_0, v_k) is not colored.
- $\star c_j$ is missing at both v_k and v_j .

Case II

- * Consider the sub-graph $G(c_0, c_j)$ of G containing only the edges colored with c_0 and c_j .
- \star $G(c_0, c_j)$ is a collection of paths and cycles; v_0, v_k, v_j are end-vertices of paths in $G(c_0, c_j)$.
- * Not all of the 3 vertices v_0, v_k, v_j are in the same connected component of $G(c_0, c_j)$.
- Case II.I v_0 and v_k are in different connected components of $G(c_0, c_j)$.
- Case II.II v_0 and v_j are in different connected components of $G(c_0, c_j)$.

 $\star v_0, v_k$ are in different connected components of $G(c_0, c_j)$.

Graph Algorithms

 \star Exchange between c_0 and c_j in the v_k -path in $G(c_0, c_j)$.

 $\star c_0$ is missing at both v_0 and v_k : color (v_0, v_k) with c_0 .

* v_0, v_j are in different connected components of $G(c_0, c_j)$.

- * Shift colors: Color (v_0, v_i) with c_i for $k \leq i \leq j-1$.
- \star The edge (v_0, v_i) is not colored.

- * The shift process does not involve c_0 and $c_j \Rightarrow v_0$ and v_j are still in different connected components of $G(c_0, c_j)$.
- $\star c_j$ is missing at v_j and c_0 is missing in v_0 .

 \star Exchange between c_0 and c_j in the v_j -path in $G(c_0, c_j)$.

Graph Algorithms

 $\star c_0$ is missing at both v_0 and v_j : color (v_0, v_j) with c_0 .

Complexity

 \star m edges to color.

- $\star O(\Delta^2)$ to find v_1, \ldots, v_j .
- $\star O(n)$ to exchange colors.
- \star Overall, $O(nm + \Delta^2 m)$ complexity.