15 - Altri Fatti Notevoli del Calcolo Differenziale

Proposizione 15.1: Punti in cui una funzione convessa e G-derivabile ha derivata nulla sono di minimo assoluto

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ convesso.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f:A \to \mathbb{R}$ una funzione convessa e G-derivabile in \mathbf{x}_0 .

Si supponga che $f'(\mathbf{x}_0) = \mathbf{0}_{X^*}$.

Allora, \mathbf{x}_0 è di minimo assoluto per f.

Dimostrazione

Sia $\mathbf{x} \in A$; si provi che $f(\mathbf{x}) \geq f(\mathbf{x}_0)$.

Essendo f G-derivabile in \mathbf{x}_0 con derivata ivi nulla per ipotesi, si ha in particolare che

$$f'(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0)=0$$
, ossia

$$\lim_{\lambda o 0} rac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} = 0.$$

Per ogni $\lambda \in]0;1]$, si ha

$$\frac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} = \frac{f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{x}_0) - f(\mathbf{x}_0)}{\lambda}$$

$$\leq rac{\lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{x}_0) - f(\mathbf{x}_0)}{\lambda}$$

$$=rac{\lambda f(\mathbf{x}) - \lambda f(\mathbf{x}_0)}{\lambda} = f(\mathbf{x}) - f(\mathbf{x}_0)$$

Segue allora per confronto che

Per convessità di f, essendo $\lambda \in \left]0;1\right]$

$$\lim_{\lambda o 0^+}rac{f(\mathbf{x}_0+\lambda(\mathbf{x}-\mathbf{x}_0))-f(\mathbf{x}_0)}{\lambda}\leq \lim_{\lambda o 0^+}f(\mathbf{x})-f(\mathbf{x}_0)=f(\mathbf{x})-f(\mathbf{x}_0);$$

essendo anche $\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} = 0$ per quanto visto prima, si ha allora

$$f(\mathbf{x}) - f(\mathbf{x}_0) \geq 0.$$

ho Proposizione 15.2: Caratterizzazione delle funzioni convesse di classe C^1

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ aperto e convesso.

Sia $f:A \to \mathbb{R}$ una funzione di classe C^1 .

Sono equivalenti le seguenti affermazioni:

- 1. f è convessa;
- 2. $f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} \mathbf{x})$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

\bigcap Dimostrazione (1. \Rightarrow 2.)

Si supponga f convessa.

Siano $\mathbf{x}, \mathbf{y} \in A$; si provi che $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$.

f è G-derivabile in ${\bf x}$ essendo di classe C^1 per ipotesi; dunque,

$$\lim_{\lambda o 0} rac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} = f'(\mathbf{x})(\mathbf{y} - \mathbf{x}).$$

Per ogni $\lambda \in]0;1]$, si ha

$$egin{aligned} rac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x}_0)}{\lambda} &= rac{f(\lambda \mathbf{y} + (1 - \lambda)\mathbf{x}) - f(\mathbf{x})}{\lambda} \ &\leq rac{\lambda f(\mathbf{y}) + (1 - \lambda)f(\mathbf{x}) - f(\mathbf{x})}{\lambda} & ext{Per convessità di } f ext{, essendo } \lambda \in]0;1] \ &= rac{\lambda f(\mathbf{x}) - \lambda f(\mathbf{x}_0)}{\lambda} &= f(\mathbf{y}) - f(\mathbf{x}) \end{aligned}$$

Segue allora per confronto che

$$\lim_{\lambda o 0^+}rac{f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x}_0)}{\lambda}\leq \lim_{\lambda o 0^+}f(\mathbf{y})-f(\mathbf{x})=f(\mathbf{y})-f(\mathbf{x});$$

essendo anche $\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$ per quanto visto prima, si ha allora

 $f(\mathbf{y}) - f(\mathbf{x}) \ge f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$, che corrisponde a ciò che si voleva mostrare.

ho Dimostrazione (2. \Rightarrow 1.)

Si supponga $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

Siano $\mathbf{x}_1,\mathbf{x}_2\in A$, e sia $\lambda\in[0;1]$; si provi che $f(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1))\leq \lambda f(\mathbf{x}_2)+(1-\lambda)f(\mathbf{x}_1).$

Se $\lambda=0$ oppure $\lambda=1$, la disuguaglianza è chiaramente verificata. Si supponga $\lambda\in]0;1[.$

Si hanno le seguenti disuguaglianze:

$$\begin{split} f(\mathbf{x}_1) &\geq f\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) + f'\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big)\big(\mathbf{x}_1 - \mathbf{x}_1 - \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) & \text{Per ipotesi} \\ &= f\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) + f'\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big)\big(-\lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) \\ &= f\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) - \lambda f'\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big)(\mathbf{x}_2 - \mathbf{x}_1) & \text{Per linearità di } f'\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) \end{split}$$

da cui segue che $f'ig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)\geq rac{fig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)-f(\mathbf{x}_1)}{\lambda}$, dividendo ambo i membri per $\lambda>0$;

$$egin{aligned} f(\mathbf{x}_2) &\geq fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig(\mathbf{x}_2 - \mathbf{x}_1 - \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) \\ &= fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig((1 - \lambda)(\mathbf{x}_2 - \mathbf{x}_1)ig) \\ &= fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + (1 - \lambda)f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig(\mathbf{x}_2 - \mathbf{x}_1) \end{aligned}$$

da cui segue che $f'ig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)\leq rac{f(\mathbf{x}_2)-fig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)}{1-\lambda}$, dividendo ambo i membri per $1-\lambda>0$.

Si ha dunque la catena di disuguaglianze

$$rac{fig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)-f(\mathbf{x}_1)}{\lambda} \leq f'ig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig) \leq rac{f(\mathbf{x}_2)-fig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)}{1-\lambda}$$
;

confrontando il primo e il terzo membro si ottiene

$$\frac{f\big(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)\big)-f(\mathbf{x}_1)}{\lambda} \leq \frac{f(\mathbf{x}_2)-f\big(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)\big)}{1-\lambda}$$

$$\implies (1-\lambda)\big(f\big(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)\big)-f(\mathbf{x}_1)\big) \leq \lambda\big(f(\mathbf{x}_2)-f\big(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)\big)\big) \qquad \text{Moltiplicando entrambi i membri per} \\ \lambda>0 \text{ e per } 1-\lambda>0$$

$$\implies f\big(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)\big) \leq \lambda f(\mathbf{x}_2)+(1-\lambda)f(\mathbf{x}_1)$$

La tesi è dunque acquisita.