化学 まとめノート(テスト直前確認用)

第2章 電池と電気分解

1節 雷池

A. 電池の原理

- 電池(化学電池): 物質の化学エネルギーを電気エネルギーとして取り出す装置。酸化還元反応を利用する。
- ダニエル電池:
 - 負極(-): Zn → Zn²⁺ + 2e⁻(酸化)
 - 正極(+): Cu²+ + 2e⁻ → Cu (還元)
 - 全体の反応: Zn + Cu²+ → Zn²+ + Cu
 - 素焼き板: 両水溶液の混合を防ぎ、イオンを通過させる。
 - 負極活物質: Zn
 - 正極活物質: Cu²+ (または CuSO₄)
- イオン化傾向:金属が水溶液中で陽イオンになろうとする性質。
 - 。 イオン化列: Li K Ca Na Mg Al Zn Fe Ni Sn Pb (H₂) Cu Hg Ag Pt Au (左ほど大きい)
- 標準電極電位:水素電極を基準(0V)とした電位。電位が低いほど陽イオンになりやすい。
 - 電池の起電力 = 正極活物質の標準電極電位 負極活物質の標準電極電位

B. 実用電池

- 一次電池: 放電すると起電力が低下し、回復できない電池。(例: マンガン乾電池、アルカリマンガン乾電池)
 - マンガン乾電池:
 - 負極: Zn
 - 正極: MnO₂
 - 電解液: ZnCl₂, NH₄Cl
 - アルカリマンガン乾電池:
 - 負極: Zn
 - 正極: MnO₂
 - 電解液: KOH
- 二次電池(蓄電池): 外部から電流を流すと起電力を回復できる電池(充電)。(例: 鉛蓄電池、 リチウムイオン電池)
 - 鉛蓄雷池:
 - 負極: Pb
 - 正極: PbO₂
 - 電解液: H₂SO₄
 - 放電時: Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O
 - 充電時: 逆の反応
 - リチウムイオン電池:
 - 負極: LiC。
 - 正極: LiCoO2
 - 電解液: 有機溶媒中のリチウム塩
 - 小型軽量で高電圧。
- 燃料電池: 燃料(還元剤)と酸素(酸化剤)を供給し、電気エネルギーを取り出す装置。

- 例(リン酸形):
 - 負極: H₂ → 2H⁺ + 2e⁻
 - 正極: O₂ + 4H⁺ + 4e⁻ → 2H₂O
 - 全体の反応: 2H₂ + O₂ → 2H₂O
- 特徴:変換効率が高い、環境負荷が小さい。

2節 電気分解

A. 電気分解

- 電気分解: 電解質の水溶液や融解塩に直流電流を流し、強制的に酸化還元反応を起こさせること。
- 陽極: 電源の正極に接続。酸化反応が起こる。
- 陰極: 電源の負極に接続。還元反応が起こる。
- 水溶液の電気分解:
 - 陰極での反応:
 - イオン化傾向の小さい金属イオン (Cu²+, Ag+など): 金属が析出
 - イオン化傾向の大きい金属イオン (K⁺, Na⁺など): H₂O (またはH⁺)が還元され H₂ 発生
 - 陽極での反応 (Pt, C電極の場合):
 - ハロゲン化物イオン (Cl-, l-など): ハロゲン単体が発生
 - その他 (SO₄²⁻, NO₃-など): H₂O (またはOH⁻)が酸化され O₂発生
 - 陽極での反応 (Pt, Au以外の金属電極の場合): 電極自身が酸化されて溶け出す。
- 塩化銅(II)水溶液の電気分解 (C電極):
 - 陰極: Cu²+ + 2e⁻ → Cu
 - o 陽極: 2Cl⁻ → Cl₂ + 2e⁻
- 水の電気分解 (Pt電極):
 - NaOH水溶液:
 - 陰極: 2H₂O + 2e⁻ → H₂ + 2OH⁻
 - 陽極: 4OH- → O2 + 2H2O + 4e-
 - 希硫酸:
 - 陰極: 2H⁺ + 2e⁻ → H₂
 - 陽極: 2H₂O → O₂ + 4H⁺ + 4e⁻
 - 全体の反応: 2H₂O → 2H₂ + O₂
- 水酸化ナトリウムの製造 (イオン交換膜法): NaCI水溶液の電気分解
 - 陰極: 2H₂O + 2e⁻ → H₂ + 2OH⁻
 - o 陽極: 2Cl⁻ → Cl₂ + 2e⁻
- 銅の電解精錬:
 - 陽極: 粗銅板 (Cu → Cu²+ + 2e- など)
 - 陰極: 純銅板 (Cu²+ + 2e⁻ → Cu)
 - 電解液: 硫酸酸性CuSO₄水溶液
 - 陽極泥: Au, Agなどイオン化傾向の小さい金属
- アルミニウムの溶融塩電解:
 - 原料: ボーキサイトから得たAl₂O₃ (アルミナ)
 - 融剤: 氷晶石 (Na₃AlF₀)
 - 陰極: Al³+ + 3e⁻ → Al
 - 陽極: C + 2O²⁻ → CO₂ + 4e⁻ (または C + O²⁻ → CO + 2e⁻)

B. 電気分解の法則

● ファラデーの電気分解の法則:電極で変化する物質の量は、流した電気量に比例する。

- 電気量 (C) = 電流 (A) × 時間 (s)
- ファラデー定数 (F): 電子1molあたりの電気量。F = 9.65 × 10⁴ C/mol
- 流れた電子の物質量 (mol) = 電気量 (C) / ファラデー定数 (C/mol)

第1編 物質の状態と平衡

第1章 物質の状態

1節 物質の三態

- 状態変化とエネルギー:
 - 融解: 固体→液体 (融点、融解熱)
 - 凝固:液体→固体(凝固点、凝固熱)
 - 蒸発:液体→気体(沸点、蒸発熱)
 - 凝縮: 気体→液体 (凝縮熱)
 - 純物質の融解中・沸騰中は温度一定。
- 粒子の熱運動: 粒子は絶えず不規則に運動している。温度が高いほど激しい。
- 絶対温度 (K): T (K) = t (°C) + 273
 - 絶対零度: -273°C (0K) 熱運動が停止する理論上の最低温度。
- 分子間力:分子間にはたらく引力。
 - ファンデルワールスカ:全ての分子間に働く弱い引力。分子量が大きいほど強い。
 - 水素結合: 電気陰性度の大きなF, O, N原子と、それに結合したH原子との間に生じる 比較的強い結合。(例: H₂O, HF, NH₃)
- 状態変化と分子間力・化学結合:
 - 沸点・融点: 分子間力や化学結合が強いほど高くなる。
 - 結合力の強さ: 共有結合 ≧ イオン結合・金属結合 ≫ 水素結合 > ファンデルワールスカ
 - 分子結晶 (ヨウ素、ドライアイスなど): 融点・沸点が低い。
 - 共有結合の結晶 (ダイヤモンド、ケイ素など): 融点・沸点が極めて高い。
 - イオン結晶、金属結晶: 融点・沸点が比較的高い。

2節 気体・液体間の状態変化

- 気体の圧力 (Pa): 気体分子が器壁に衝突する力。1 atm = 1.013 × 10⁵ Pa = 760 mmHq
- 気液平衡: 密閉容器中で、蒸発速度と凝縮速度が等しくなった状態。
- 蒸気圧 (飽和蒸気圧): 気液平衡にあるときの蒸気の圧力。
 - 温度が高いほど大きい。
 - 液体の量や気体の体積によらず一定 (温度が一定なら)。
- → 沸騰:液体の蒸気圧が外圧 (大気圧)と等しくなったとき、液体の内部からも蒸発が起こる現象。
 - 沸点: 外圧が高いほど高くなる。低いほど低くなる。
- 状態図: 温度と圧力に対する物質の状態を示した図。
 - 三重点: 固体・液体・気体が共存する点。
 - 臨界点: 気体と液体の区別がつかなくなる点。これ以上の温度・圧力では超臨界流体となる。
 - 水の融解曲線は右下がり(圧力を上げると融点が下がる)。多くの物質は右上がり。

第2章 気体の性質

1節 気体の法則

- ボイルの法則: 温度一定のとき、一定物質量の気体の体積Vは圧力Pに反比例する。
 - PV = k₁ (一定) または P₁V₁ = P₂V₂
- シャルルの法則: 圧力一定のとき、一定物質量の気体の体積Vは絶対温度Tに比例する。
 - o V/T = k₂ (一定) または V₁/T₁ = V₂/T₂
- ボイル・シャルルの法則:一定物質量の気体の体積Vは、圧力Pに反比例し、絶対温度Tに比例する。
 - o PV/T = k₃ (一定) または P₁V₁/T₁ = P₂V₂/T₂

2節 気体の状態方程式

- ▼ボガドロの法則: 同温・同圧・同体積の気体は、種類によらず同数の分子を含む。
- 標準状態: 0°C (273K), 1.013 × 10⁵ Pa。1molの気体の体積は22.4L。
- 気体定数 (R): R = 8.31 × 10³ Pa•L/(K•mol)
- 気体の状態方程式: PV = nRT
 - P: 圧力 (Pa)
 - V: 体積 (L)
 - n: 物質量 (mol)
 - R: 気体定数
 - T: 絶対温度 (K)
- 気体の分子量 (M): M = wRT/PV (w: 気体の質量 (g))
- 理想気体: 分子自身の体積がなく、分子間力がはたらかないと仮定した仮想的な気体。状態 方程式が常に成り立つ。
- 実在気体:実際に存在する気体。分子自身の体積があり、分子間力がはたらく。
 - 高温・低圧の条件では理想気体に近いふるまいをする。
 - 低温・高圧では理想気体からのずれが大きい。

このまとめノートがテスト勉強の一助となれば幸いです。頑張ってください!