Алгебра.

B. A. Петров lektorium.tv

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр"значит "перенос из одной части уравнения в другую а "мукабалт— "приведение подобных".

Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M, 0 \in M)$ с аксиомами:

 A_1) a+b=b+a — коммутативность сложения

$$A_2$$
) $(a + b) + c = a + (b + c)$ — ассоциативность сложения

$$A_3$$
) $a + 0 = a = 0 + a$ — нейтральный элемент

$$A_4$$
) $\exists -a : a + (-a) = 0$ — существование противоположного

Определение 3. Кольцо — набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.

Accoulumuвное кольцо — кольцо с M_2 .

Кольцо с единицей — кольцо с M_3 .

Tело — кольцо с M_2 , M_3 .

 Π оле — кольцо с M_1 , M_2 , M_3 , M_4 .

 Π олукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Лемма (Тождество Якоби). $u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0$

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u \cdot v;av+bu+u \times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

 Π емма. $0 \cdot a = 0$

Определение 4. Кольцо без делителей нуля называетсся областью (целостности).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. *Подкольцо* — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость соглассуются автоматически.

Утверждение 1. Если R — подкольцо области целостности S, то R — область целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b\in\mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

3амечание 1. Замкнутое относительно сложения **И** умножения подмножество — подкольцо. Пример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

1 Теория делимости

Пусть R — область целостности.

Определение 9. a делит b или же $a \mid b$ значит, что $\exists c \in R : b = ac$.