Math 180 Homework 1

Jiaping Zeng

10/5/2020

- 4.1.2 Which of the following statements about graphs G and H are true? Substantiate your answers!
 - (ii) G and H are isomorphic if and only if there exists a bijection $f: E(G) \to E(H)$. **False**, by counter example: let $G = (V, E) = (\{1\}, \emptyset)$ and $H = (V', E') = (\{1, 2\}, \emptyset)$; then there exists a bijection $f: E \to E'$ but G and H are not isomorphic.
 - (iii) If there exists a bijection $f:V(G)\to V(H)$ such that every vertex $u\in V(G)$ has the same degree as f(u), then G and H are isomorphic. True,
 - (iv) If G and H are isomorphic, then there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u), then G and H are isomorphic.
 - (v) If G and H are isomorphic, then there exists a bijection $f: E(G) \to E(H)$. **True**; since G and H are isomorphic, by definition, there exists a bijection $f: V(G) \to V(H)$ such that $\{x,y\} \in E(G) \Leftrightarrow \{f(x),f(y)\} \in E(H)$ for distinct $x,y \in V(G)$.
 - (vi) G and H are isomorphic if and only if there exists a map $f: V(G) \to V(H)$ such that for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
 - (vii) Every graph on n vertices is isomorphic to some graph on the vertex set $\{1, 2, \ldots, n\}$.
 - (viii) Every graph on $n \ge 1$ vertices is isomorphic to infinitely many graphs.
- 4.1.4 Show that a graph G with n vertices is assymetric if and only if n! distinct graphs on the set V(G) are isomorphic to G.
- 4.1.6 How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges?
- 4.2.1
- 4.2.2
- 4.3.5
- 4.3.6
- 4.3.6

P0

P1 1.

2.

3.

4.