Statistics One

Lecture 5
Measurement

Two segments

- Reliability & Validity
- Sampling

Lecture 5
Segment 1
Reliability & Validity

Reliability & Validity

- Important concepts/topics
 - Classical test theory
 - Reliability estimates
 - Construct validity

- Classical test theory
 - Raw scores (X) are not perfect
 - They are influenced by bias and chance error
 - In a perfect world, we would obtain a "true score"
 - X = true score + bias + error
 - Also known as "true score theory"

- A measure (X) is considered to be reliable as it approaches the true score
 - The problem is we don't know the true score
 - So, we estimate reliability

- Methods to estimate reliability
 - Test / re-test
 - Parallel tests
 - Inter-item estimates

- Example: Body temperature
 - Infrared meter: "The wand"

Body temperature

- Test / re-test
 - Measure everyone twice
 - X1
 - X2

- Test / re-test
 - The correlation between X1 and X2 is an estimate of reliability
 - However, if the bias is uniform then we won't detect it with the test / re-test method

- Parallel tests
 - Measure body temperature with the wand (X1) and with an oral thermometer (X2)
 - The correlation between X1 and X2 is an estimate of reliability
 - AND, now the bias of the wand will be revealed

- Inter-item
 - Inter-item is the most commonly used method in the social sciences
 - Test / re-test and parallel tests are time consuming
 - Inter-item is therefore more cost efficient

- Inter-item
 - For example, suppose a 20-item survey is designed to measure extraversion
 - Randomly select 10 items to get sub-set A (X1)
 - The other 10 items become sub-set B (X2)
 - The correlation between X1 and X2 is an estimate of reliability

- What is a construct?
 - How do we operationalize a construct?
 - Construct validity
 - Content validity
 - Convergent validity
 - Divergent validity
 - Nomological validity

- What is a construct?
 - An ideal "object" that is not directly observable
 - As opposed to "real" observable objects
 - For example, "intelligence" is a construct

- How do we operationalize a construct?
 - The process of defining a construct to make it observable and quantifiable
 - For example, intelligence tests

- Construct validity
 - Content validity
 - Convergent validity
 - Divergent validity
 - Nomological validity

- An example:
 - Construct: Verbal ability in children

- How to operationalize?
 - A vocabulary test

- Construct validity
 - Content validity
 - Does the test consist of words that children should know?

- Construct validity
 - Convergent validity
 - Does the test correlate with other, established measures of verbal ability?
 - For example, reading comprehension

- Construct validity
 - Divergent validity
 - Does the test correlate less well with measures designed to test a different type of ability?
 - For example, spatial reasoning

- Construct validity
 - Nomological validity
 - Are scores on the test consistent with more general theories, for example, of child development and neuroscience
 - For example, a child with neural damage or disease to brain regions associated with language development should score lower on the test

Reliability & Validity: Review

- Important concepts/topics
 - Classical test theory
 - Reliability estimates
 - Construct validity

© 2012 Andrew Conway