Jiagi Li Stat 462 HW4 1. ê= Y- Î = Y-HY = =(I-H)Y Var(E) = Var[(I-H)Y] = (I-H) Var(E) (I-H) = (I-H) 02 1 (I-H) T Since H is symmetric and idempotent, H=HT and HH=H is true Since I is symmetric, (I-H) is also symmetric and idempotent, which means (I-H)= (I-H) and (I-H)(I-H)=(I-H) then, we have: Var(ê) = (I-H) 02 I (I-H) = 02 (I-H)(I-H) = 02 (I-H) $2 \quad X^T X \hat{\beta} = X^T y$

 -		_					_								_
}	2	D	-1	1	2	4		A.	=	1	2	0	-1	-1	
2	4	ð	-2	1	0	0		β2		2	4	0	-2	-1	
				1	-1	-2]								0	
									П						

=)
$$\beta = -\frac{1}{3}$$
 =) Since β_2 is unbounded here.
 $\beta_1 = -\frac{1}{3} - 2\beta_2$ we will have infinitely many solutions.
 β_2 unbounded