Exercise 8.3

Solve the following pair of equations in x and y graphically.

1.

$$x + y = 0$$
 ----- (i)

2x - y + 3 = 0 ---- (ii)

$$-y = -2x - 3$$
$$y = 2x + 3$$

Х	y	
For Equation (i) $x + y = 0$		
-1	1	
1	-1	
For Equ. (ii) $2x - y + 3 = 0$		
-1	1	
0	3	

As the lines intersect at (-1, 1). So, Solution is (-1, 1)

2.

$$x - y + 1 = 0$$
 ----- (i)
 $-y = -x - 1$

$$y = x + 1$$

x - 2y = -1 ---- (ii) -2y = -1 - x

$$-2y = -1 - x$$
$$y = \frac{x+1}{2}$$

As the lines intersect at (-1, 0). So, Solution is (-1, 0)

$$2x + y = 0$$
 ----- (i)
 $y = -2x$
 $y = -2x$

$$y = -2x$$

x + 2y	z = 2 (ii)
2 <i>y</i>	= 2 - x
ν	$=\frac{2-x}{}$

Х	y		
F	For Equ. (i) $2x + y = 0$		
-1	2		
1	-2		
F	or Equ. (ii) $x + 2y = 2$		
-1	$\frac{2+1}{2} = \frac{3}{2} = 1.5$		
1	$\frac{2-1}{2} = \frac{1}{2} = 0.5$		

As the lines intersect at $\left(-\frac{2}{3}, \frac{4}{3}\right)$. So, Solution is $\left(-\frac{2}{3}, \frac{4}{3}\right)$

$$x + y - 1 = 0$$
 ----- (i)
 $v = 1 - x$

$$x - y + 1 = 0$$
 ----- (ii)
 $-y = -x - 1$
 $y = x + 1$

Х	y	
For Equ. (i) $x + y - 1 = 0$		
0	1	
1	0	
Fo	r Equ. (ii) $x - y + 1 = 0$	
0	1	
1	2	
As th	ne lines intersect at (0, 1), S	

As the lines intersect at (0, 1). So, Solution is (0, 1)

5.

$$2x + y - 1 = 0$$
 ----- (i)
 $y = 1 - 2x$

$$x = -y$$
 ---- (ii)

X	y	
For Equ. (i) $2x + y - 1 = 0$		
-1	3	
1	-1	
Fo	r Equ. (ii) $x - y + 1 = 0$	
-1	1	
1	-1	

As the lines intersect at (1, -1). So, Solution is (1, -1)