Digital Logic Design

Ch 2

Combinational Logic

Topics

- Combinational logic definition
- Axioms and Theorems of Boolean algebra
- Realizing Boolean formulas
- Levels of logic expressions
 - Two-level logic
 - Canonical forms
 - Multi-level logic
- Simplifying two-level logic expressions
 - Boolean cubes
 - Karnaugh maps

Combinational logic

Define

- the kind of digital system whose output behavior depends only on the current inputs → each output is defined as a function (combination) of inputs
- memoryless: its outputs are independent of the historical sequence of values presented to it as inputs
- (cf.) sequential logic
- Many ways to describe combination logic
 - Boolean algebra expression
 - wired up logic gates
 - truth tables tabulating input and output combinations
 - graphical maps
 - program statements in a hardware description language

Examples of combinational logic

The equivalence circuit

X	Y	Equal
0	0	1
0	1	0
1	0	0
1	1	1

The tally circuit

X	Y	Zero	One	Two
0	0	1	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1

Binary Adder

X	Υ	Cout	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

< Half-adder>

X	Y	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

< Full-adder>

Laws and theorems of Boolean logic

Basic concept

- Boolean algebra is the mathematical foundation of digital systems
- laws (axioms): the properties to which the operations of Boolean algebra must adhere
- axioms can be used to prove more general laws

Boolean operations

operation order

COMPLEMENT
$$\rightarrow$$
 AND \rightarrow OR

parentheses : change the default order of evaluation

examples: 1)
$$\overline{A} \bullet B + C = ((\overline{A}) \bullet B) + C$$

Axioms of Boolean algebra

- A Boolean algebra consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { '}
 - such that the following axioms hold (Huntington's postulates):
- Axioms

```
A1. the set B contains at least two elements: a, b
```

A2. closure: a + b is in B a • b is in B

A3. commutativity: a + b = b + a $a \cdot b = b \cdot a$

A4. associativity: a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ = a + b + c = $a \cdot b \cdot c$

A5. identity: a + 0 = a $a \cdot 1 = a$

A6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

A7. complementarity: a + a' = 1 $a \cdot a' = 0$

Theorems of Boolean algebra

Operations with 0 and 1 (Unit/Zero properties)

$$1. X + 0 = X$$

$$2. X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

Idempotent theorem:

$$3. X + X = X$$

Theorem of complementarity:

$$5. X + X' = 1$$

6.
$$X + Y = Y + X$$

Associative law:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

$$3D. X \bullet X = X$$

4.
$$(X')' = X$$

5D.
$$X \bullet X' = 0$$

6D.
$$X \bullet Y = Y \bullet X$$

7D.
$$(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$$

= $X \bullet Y \bullet Z$

Theorems of Boolean algebra

Distributive law:

8.
$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$
 8D. $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$

Simplification theorems:

9.
$$X \cdot Y + X \cdot Y' = X$$

10. $X + X \cdot Y = X$
11. $(X + Y') \cdot Y = X \cdot Y$
9D. $(X + Y) \cdot (X + Y') = X$
10D. $X \cdot (X + Y) = X$
11D. $(X \cdot Y') + Y = X + Y$

DeMorgan's law:

12.
$$(X + Y + Z +...)'$$

= $X' \cdot Y' \cdot Z' \cdot ...$

12D.
$$(X \bullet Y \bullet Z \bullet ...)'$$

= $X' + Y' + Z' + ...$

General form:

13.
$$\{f(X1, X2, ..., Xn, 0, 1, +, \bullet)\}' = \{f(X1', X2', ..., Xn', 1, 0, \bullet, +)\}$$

Theorems of Boolean algebra

Duality:

14.
$$(X + Y + Z + ...)^{D}$$

= $X \cdot Y \cdot Z \cdot ...$

14D.
$$(X \bullet Y \bullet Z \bullet ...)^D$$

= $X + Y + Z + ...$

General form:

15.
$$\{f(X_1, X_2, ..., X_n, 0, 1, +, \bullet)\}^D = f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

eorem for multiplying and factoring
16. $(X + Y) \bullet (X' + Z)$
 $X'Y+YZ = X \bullet Z + X' \bullet Y$
16D. $X \bullet Y + X' \bullet Z = (X + Z) \bullet (X' + Y)$

Theorem for multiplying and factoring

16.
$$(X + Y) \bullet (X' + Z)$$

16D.
$$X \bullet Y + X' \bullet Z = X^{**}$$

$$= XX' + \underline{XZ + X'Y + YZ} = X \bullet Z + X' \bullet Y \longrightarrow X \Longrightarrow Z \qquad = (X + Z) \bullet (X' + Y)$$

$$= (X + Z) \bullet (X' + Y)$$

Consensus theorem:

17.
$$X \bullet Y + Y \bullet Z + X' \bullet Z$$

= $X \bullet Y + X' \bullet Z$

17D.
$$(X + Y) \bullet (Y + Z) \bullet (X' + Z)$$

= $(X + Y) \bullet (X' + Z)$

Proof \rightarrow XY+X'Z+YZ = XY+X'Z+(X+X')YZ = XY+X'Z+XYZ+X'YZ = X(Y+YZ)+X'(Z+YZ)

Verifying the Boolean theorems

- Verifying the theorems using the axioms of Boolean algebra
- □ Proving the uniting theorem(9): $X \cdot Y + X \cdot Y' = X$

```
Distributive law (8) X \bullet (Y + Y') = X
Complementarity theorem (5) X \bullet (1) = X
Identity (1D) X = X
```

□ Proving the simplification theorem(10): X + X • Y = X

Identity (1D) $X \bullet 1 + X \bullet Y = X$ Distributive law (8) X(1 + Y) = XIdentity (2) X(1) = XIdentity (1) X = X

Duality vs. DeMorgan's law

Duality

- a dual of a Boolean expression is derived by replacing
 - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
- Any theorem that can be proven is thus also proven for its dual!

$$= - - = - - implies$$

■ A meta-theorem (a theorem about theorems) that allow to derive new theorems: (e.g.) the dual of the uniting theorem(9), $X \cdot Y + X \cdot Y' = X$, is $(X + Y) \cdot (X + Y') = X$. \rightarrow The proof of the dual follows step-by-step, simply using the duals of the laws used in the original proof.

$$(X + Y) \bullet (X + Y') = X?$$

$$X + (Y \bullet Y') = X$$
 Distributive law (8D)
 $X + 0 = X$ Complementarity theorem (5D)
 $X = X$ Identity (1)

Duality vs. DeMorgan's law

DeMorgan's law

- give a procedure for complementing a complex function
- the complemented expression is derived by replacing
 all literals by their complements, 0 by 1, 1 by 0, by + and + by •
- (e.g.) the complement of $Z = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ $\overline{Z} = (\overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}})$ $\overline{Z} = \overline{\overline{ABC}} \bullet \overline{\overline{ABC}} \bullet \overline{\overline{ABC}} \bullet \overline{\overline{ABC}} \bullet \overline{\overline{ABC}}$ $\overline{Z} = (A + B + \overline{C}) (A + \overline{B} + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + C)$

Possible logic functions of two variables

□ There are 16 possible functions of 2 input variables:

Cost of different logic functions

- Different functions are cheaper or more expensive to implement in CMOS technology
 - Each has a cost associated with the number of switches needed
 - 0(F0) and 1(F15): require 0 switches, directly connect output to low/high
 - \blacksquare X(F3) and Y(F5): require **0** switches, output is one of inputs
 - X'(F12) and Y'(F10): require 2 switches for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - \blacksquare X or Y (F7) and X and Y (F1): require 6 switches \rightarrow
 - \blacksquare X = Y (F9) and X \oplus Y (F6): require **16** switches \rightarrow
- □ Thus...
 - A simpler expression for a Boolean function does not necessarily minimize the number of transistors for its realization.
 - Because NOT, NOR, and NAND are the cheapest, they are the functions that we implement the most in practice.

Realizing Boolean formulas: logic gates

NAND

X	Υ	Z
0	0	1
0	1	1
1	0	1
1	1	0

NOR

 \square XOR $X \oplus Y$

$$X \underline{xor} Y = X Y' + X' Y$$

 $X \text{ or } Y \text{ but not both}$
("inequality", "difference")

$$\square$$
 XNOR $X = Y$

$$X \times X \times Y = X \times Y + X' \times Y'$$

 $X \times Y \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times Y + X' \times Y'$
 $X \times Y = X \times$

Realizing Boolean formulas: logic blocks & hierarchy

- Complex logic function can be constructed from more primitive functions by wiring up logic gates
- example : 2-bit adder

2 bit Adder

Time behavior and waveforms

- Waveform: represent signal propagation over time
 - x-axis: the time step
 - y-axis: the logical value
- Unit delay model: considering the delay through any gate as taking exactly one time unit for a simplifying assumption

Minimizing the number of gates & wires

Α	В	С	Ζ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Two-level logic

- Nested levels to express Boolean logics
 - One-level: Z = A + B, F = AB', G = A'B
 - Two-level: Y = F + G = AB' + A'B
- Two-level are sufficient to represent any Boolean expression.
 - Canonical form: standard form to represent a Boolean expression
 - unique algebraic signature of the function
- Two alternative canonical forms
 - sum-of-products: AB' + A'B
 - \square product-of-sums: (A + B')(A' + B)
- Incompletely specified function
 - In the original form, all 2^n possible input combinations must be considered for a function with n inputs.
 - For flexibility, we consider one more set: don't care set

Sum-of-products canonical forms

- □ a.k.a. *minterm expansion* or a *disjunctive normal form* (**DNF**)
- An expression in DNF consists of an ORed list of minterms.

Sum-of-products canonical forms

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

Α	В	C	minter	ms
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7

short-hand notation for minterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$

= $m1 + m3 + m5 + m6 + m7$
= $A'B'C + A'BC + AB'C + ABC' + ABC'$

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC' + C$

Product-of-sums canonical forms

- □ a.k.a, *maxterm expansion* or a *conjunctive normal form* (CNF)
- An expression in CNF consists of an ANDed list of maxterms

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Product-of-sums canonical forms

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

0 0 0 A+B+C M	0
0 0 1 A+B+C' M	1
0 1 0 A+B'+C M	2
0 1 1 A+B'+C' M	3
1 0 0 A'+B+C M	4
1 0 1 A'+B+C' M	5
1 1 0 A'+B'+C M	6
1 1 1 A'+B'+C' M	7

short-hand notation for maxterms of 3 variables

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

S-o-P, P-o-S and DeMorgan's law

- Sum-of-products
 - \Box F' = A'B'C' + A'BC' + AB'C'
- Apply DeMorgan's
 - (F')' = (A'B'C' + A'BC' + AB'C')'
 - \blacksquare F = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums
 - $\Gamma' = (A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C')$
- Apply DeMorgan's
 - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - \blacksquare F = A'B'C + A'BC + ABC' + ABC'

4 alternative two-level implementations of F

Conversion between canonical forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in DNF
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in CNF
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- DNF of F to DNF of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- CNF of F to CNF of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Incompletely specified functions

- Example: binary coded decimal (BCD) increment by 1
 - BCD digits encode the decimal digits 0 9
 in the bit patterns 0000 1001

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:

$$Z = m0 + m2 + m4 + m6 + m8$$

$$+ d10 + d11 + d12 + d13 + d14 + d15$$

$$= \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$$

- Z = M1 M3 M5 M7 M9 • D10 • D11 • D12 • D13 • D14 • D15 = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]
- For realization of Z, don't care terms will be eventually assigned 0 or 1 in a way to simplify the circuit of Z as much as possible.

L	CII	101	10 1	J y	T I	un	CLI	OII
	Α	В	С	D	W	X	Υ	Ζ
	0	0	0	0	0	0	0	1
	0	0	0	1	0	0	1	0
	0	0	1	0	0	0	1	1
	0	0	1	1	0	1	0	0
	0	1	0	0	0	1	0	1
	0	1	0	1	0	1	1	0
	0	1	1	0	0	1	1	1
	0	1	1	1	1	0	0	0
	1	0	0	0	1	0	0	1
	1	0	0	1	0	0	0	0
	1	0	1	0	X	X	X	X
	1	0	1	1	X	X	X	X
	1	1	0	0	X	X	X	X
	1	1	0	1	X	X	X	X
	1	1	1	0	X	X	X	X
	1	1	1	1	X	X	X	X

Simplification: 2-level combinational logic

- □ Finding a minimal S-of-P or P-of-S realization
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

Essence of Boolean simplification

Key tool to simplification: the **Uniting** theorem

$$\rightarrow$$
 AB' + AB = A (B' + B) = A

- Essence of simplification of two-level logic with uniting
 - Find two element subsets of the ON-set where only one variable changes its value
 - This single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

Boolean cubes

abbreviated as **n-cube**

- Visual technique for identifying when the uniting theorem can be applied
- □ truth table with n input variables = <u>n-dimensional cube</u>

1-cube 0 1 X

Mapping truth tables onto Boolean cubes

- The uniting theorem combines two faces of a cube into one larger face
- Adjacency plane
 - circled elements of the on-set that are directly adjacent
 - each adjacency plane corresponds to a product term

Example:

		ı _		G	
Α	В	G		J	
0	0	1	01 💬	11	Two 0-dimensional faces (nodes)
0	1	0	В		combine into an 1-dimensional face (<i>line</i>)
1	0	1	00	10	
1	1	0		A	 A varies within face, B does not.
ON-	set =	solid	nodes	D /	This face represents the literal B '.
OFF	-set =	= emį	oty nodes	B.	
DC-s	set =	x'd n	odes		

Three variable example

Three 1-dimensional adjacency planes

Binary full-adder carry-out logic

Α	В	C_{in}	C _{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times.

Four nodes (0-dimensional) are combined into three lines (1-dimensional)

Higher dimensional cubes

- Sub-cubes of higher dimension than 1
- □ Example: 2-dimensional adjacency plane in a 3-cube

$$F(A,B,C) = \Sigma m(4,5,6,7)$$

On-set forms a square i.e., a cube of dimension 2

represents an expression in one variable i.e., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

Four nodes (dimension 0) are combined into four lines (dimension 1), which are then combined into one 2-dimensional sub-cube (square)

$$AB'C'+ABC'+AB'C+ABC$$

$$= AB + AB' + AC + AC'$$

$$= A$$

m-cubes in n-dimensional Boolean space

- □ In a 3-cube (three variables):
 - O-dimensional plane, i.e., a single node, yields a term in 3 literals
 - example : 101 = AB'C
 - 1-dimensional plane, i.e., a **line** of two nodes, yields a term in 2 literals
 - = example : 100 101 = AB'
 - 2-dimensional plane, i.e., a squire plane of four nodes, yields a term in 1 literal
 - example : 110 111 = A
 - 3-dimensional plane, i.e., a **cube** of eight nodes, yields 0 literal meaning a constant logic "1"
- □ In general, an m-dimensional adjacency plane within an n-dimensional cube (m < n) yields a term with n m literals

Karnaugh maps

- The cube notation provides visual clues as to where the uniting theorem is applied to elements of on-set.
- But, humans have the difficulty of visualizing adjacencies in more than 3 dimensional cubes.
- Karnaugh maps alternative reformulation of the truth table
 - for expressions at least up to six variables
 - wrap-around at edges
 - On-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

BA	0	1
0	1	1
1	0	3

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh maps (K-Maps)

Numbering scheme based on <u>Gray-code</u>

 \blacksquare e.g., 00, 01, 11, 10 (for every advancement, a single bit changes) 110

only a single bit changes in code for adjacent map cells

K-map for six (=3+3) variables is possible How about 7 or 8 variables?

100

000

001

011

010

13 = 1101 = ABC'D

Adjacencies in K-Maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh map examples

2-variable maps

$$\blacksquare$$
 F = AB' + AB = A

Α	В	F
0	0	0
0	1	0
1	0	1
1	1	1

$$\Box$$
 G = A'B' + AB' = B'

Karnaugh map examples

- 3-variable maps
 - full adder

Д	. В	C_{ii}	n C _{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$AB + Bc_{in} + AC_{in}$$

- F(A,B,C) = Σ m(0,4,5,7)

$$AC + B'C' + B'$$

obtain the complement of the function by covering 0s with subcubes (see next page)

More K-Map examples

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

Complement of F(A,B,C) = m(0,4,5,7)F' simply replace 1's with 0's and vice versa

$$F'(A,B,C) = \sum m(1,2,3,6) = BC' + A'C$$

Karnaugh map: 4-variable example

 \neg F(A,B,C,D) = Σ m(0,2,3,5,6,7,8,10,11,14,15)

$$F = C + A'BD + B'D'$$

find the smallest number of the largest possible subcubes to cover the On-set (fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- \Box f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 - without don't cares

$$f = A'D + B'C'D$$

Karnaugh maps: don't cares

$$\Box$$
 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

В

$$f = A'D + C'D$$

without don't cares

with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as

1s or 0s
depending on which is more
advantageous

Multilevel Logic

- Comparison with 2-level logic
 - gain: reduce the number of wires, gates and inputs to each gate
 - lose: add up more combined delay due to the increased levels of logic

Example

2-level logic

$$Z = ADF + AEF + BDF + BEF + CDF + CEF + G$$

→ six 3-input AND gates, one 7-input OR gate

multilevel logic

$$Z = (AD + AE + BD + BE + CD + CE)F + G$$

$$Z = [(A + B + C)D + (A + B + C)E]F + G$$

$$Z = (A + B + C)(D + E)F + G$$

→ one 3-input OR gate, two 2-input OR gates, one 3-input AND gate

Chapter review

- Variety of primitive logic building blocks
 - NOT, AND, OR, NAND, NOR, XOR and XNOR gates
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Two-level logic
 - canonical forms: sum-of-products and product-of-sums
 - incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
 - Boolean cubes
 - K-Map