

TD 3 – Intégrales de fonctions mesurables positives (suite)

ightharpoonup Exercice 1. Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux disjoints et de réunion $A := \bigcup_{n \in \mathbb{N}} A_n$. Soit f mesurable de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ positive. Montrer que

$$\int_A f \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_{A_n} f \, \mathrm{d}\mu.$$

- \triangleright **Exercice 2.** Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n \in \mathbb{N}}$ une suite décroissante de fonctions mesurables positives. Soit $f = \inf_{n \in \mathbb{N}} f_n$.
 - **2.1.** Montrer que :

$$\int_{E} f \, \mathrm{d}\mu \le \lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

2.2. Montrer que si $\exists N \in \mathbb{N}$, t.q. $\int_E f_N d\mu < +\infty$, alors

$$\lim_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu = \int_E f \, \mathrm{d}\mu.$$

ightharpoonup Exercice 3. Soit $(\mathbb{R}_+^*,\mathcal{B}(\mathbb{R}_+^*),\lambda)$ un espace mesuré avec λ la mesure de Lebesgue. On pose :

$$\forall n \in \mathbb{N}, \quad f_n \colon \mathbb{R}_+^* \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto f_n(x) \coloneqq \frac{n e^{-x}}{\sqrt{1 + n^2 x^2}}$$

mesurable de $(\mathbb{R}_+^*, \mathcal{B}(\mathbb{R}_+^*))$ dans $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$. Montrer que

$$\int_{\mathbb{R}_+^*} f_n \, \mathrm{d}\lambda \xrightarrow[n \to +\infty]{} +\infty.$$

Indication : on admettra que $\int_{\mathbb{R}_+^*} \frac{e^{-x}}{x} d\lambda = +\infty$.

ightharpoonup Exercice 4. Soit $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions définies par :

$$\forall n \in \mathbb{N}^*, \quad \forall x \in [0, 1], \quad f_n(x) = \begin{cases} n^{\frac{3}{2}}x & \text{si } x \in [0, \frac{1}{n}], \\ \frac{1}{\sqrt{x}} & \text{si } x \in [\frac{1}{n}, 1]. \end{cases}$$

- **4.1.** Montrer que $\forall n \in \mathbb{N}^*$, f_n est intégrable sur [0,1].
- **4.2.** Etudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}^*}$ vers une fonction f à préciser.
- **4.3.** Calculer $\int_{[0,1]} f \, d\lambda$. On rappelle que λ est la mesure de Lebesgue.