CS & IT ENGING

Algorithm

Algorithms

Lecture No. 17

Topic

Multi stage graph problem

Topics to be Covered

Topic

Topic

Travelling salesman problem

Floyd Warshall

Detecting optimal sub structure:

Directed graph-

Cost matrix =
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 4 & 2 \\ \hline 3 & 1 & 2 & 0 & 5 \\ 4 & 3 & 4 & 1 & 0 \end{bmatrix}$$

$$T(1, \{2,3,4\}) = \min \begin{cases} (1,2) + T(2, \{3,4\}) \\ (1,3) + T(3, \{2,4\}) \\ (1,4) + T(4, \{2,3\}) \end{cases}$$

$$T(2, \{3,4\}) = \min \begin{cases} (2,3) + T(3, \{4\}) \\ (2,4) + T(4, \{3\}) \end{cases}$$

$$T(3, \{2,4\}) = \min \begin{cases} (3,2) + T(2, \{4\}) \\ (3,4) + T(4, \{2\}) \end{cases}$$

$$T(4, \{2,3\}) = \min \begin{cases} (4,2) + T(2, \{3\}) \\ (4,3) + T(3, \{2\}) \end{cases}$$

$$T(1, \{2,3,4\}) = \min \begin{cases} (1,2) + T(2, \{3,4\}) \\ (1,3) + T(3, \{2,4\}) \\ (1,4) + T(4, \{2,3\}) \end{cases}$$

$$T(2, \{3,4\}) = \min \begin{cases} (2,3) + T(3, \{4\}) \\ (2,4) + T(4, \{3\}) \end{cases}$$

$$T(3, \{2,4\}) = \min \begin{cases} (3,2) + T(2, \{4\}) \\ (3,4) + T(4, \{2\}) \end{cases}$$

$$T(4, \{2,3\}) = \min \begin{cases} (4,2) + T(2, \{3\}) \\ (4,3) + T(3, \{2\}) \end{cases}$$

$$T(3, \{4\}) = (3,4) + T(4,\emptyset)$$

$$T(4, \{3\}) = (4,3) + T(3,\emptyset)$$

$$T(2, \{4\}) = (2,4) + T(4,\emptyset)$$

$$T(1, \{2,3,4\}) = \min \begin{cases} (1,2) + T(2, \{3,4\}) = 5 \\ (1,3) + T(3, \{2,4\}) = 9 \\ (1,4) + T(4, \{2,3\}) = 7 \end{cases}$$

$$T(2, \{3,4\}) = \min \begin{cases} (2,3) + T(3, \{4\}) = 12 \\ (2,4) + T(4, \{3\}) = 4 \end{cases}$$

$$T(3, \{2,4\}) = \min \begin{cases} (3,2) + T(2, \{4\}) = 7 \\ (3,4) + T(4, \{2\}) = 10 \end{cases}$$

$$T(4, \{2,3\}) = \min \begin{cases} (4,2) + T(2, \{3\}) = 9 \\ (4,3) + T(3, \{2\}) = 4 \end{cases}$$

$$T(3, \{4\}) = (3,4] + T(4,\emptyset) = (8)$$

$$T(4, \{3\}) = (4,3) + T(3,\emptyset) = (2)$$

$$T(2, \{4\}) = (2,4) + T(4,\emptyset) = 5$$

Minimum is 5; To travel from 1 to {2,3,4} and come back 1 - minimum cost is 5.

Bottom up dynamic programming algorithm Recursive equation:

$$T(i, s) = \min_{j \in S} ((i, j) + T(j, S - \{j\})); S \neq \emptyset$$
$$= (i, 1); S = \emptyset$$

Bottom up dynamic programming algorithm Recursive equation:

$$T(i, s) = \min_{j \in S} ((i, j) + T(j, S - \{j\})); S \neq \emptyset$$

= (i, 1); S = \infty

$$V = \{1,2,3,4\}$$

Time complexity = $O(n \ 2^n) << O(n!)$ Space complexity = $O(n^2 \ 2^n)$

Topic: All Pairs Shortest Path – Floyd Warshall

Relationship between single source shortest path and all pairs shortest path-

Topic: All Pairs Shortest Path – Floyd Warshall

• You could run single source shortest path from every vertex then will become all pairs shortest path.

To implement SSSP (Time)	All pair shortest path (time)
Dijkstra Algo – O (E log V)	$O(V.E \log V)$ = $O(V.V^2 \log V)$ = $O(V^3 \log V)$
Bellman ford Algo – O (VE)	$O(V^{2} E)$ = $O(V^{2} \cdot V^{2}) = O(V^{4})$

Topic: All Pairs Shortest Path – Floyd Warshall

$$V = \{1,2,3,4\}$$

And i, $j \in V$

$$D_{ij}^{k}$$
 = "path" = min $\begin{cases} D_{ij}^{(k-1)} \\ D_{ik}^{(k-1)} \end{cases}$ + $D_{kj}^{(k-1)}$

$O^0 =$	1	2	3	4
1	0	11	1	6
2	11	0	7	3
3	0 11 1 6	7	0	2
4	6	3	2	0

Example:

Distance of the path in which might use 1 or might not use 1.

$$(2,3) = min(7), 2 \rightarrow 1 \rightarrow 3) = 7$$

 $(2,4) = min(3, 2 \rightarrow 1 \rightarrow 4) = 3$
 $(3,4) = min(2, 3 \rightarrow 1 \rightarrow 4) = 2$

$$D^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 11 & 1 & 6 \\ 2 & 11 & 0 & 7 & 3 \\ 3 & 1 & 7 & 0 & 2 \\ 4 & 6 & 3 & 2 & 0 \end{bmatrix}$$

$$D^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 11 & 1 & 6 \\ 2 & 11 & 0 & 7 & 3 \\ 3 & & 7 & 0 & 2 \\ 4 & & 3 & & 0 \end{bmatrix}$$

$$(1,3) = (1,1 \to 2 + 2 \to 3) = 1$$

$$(1,4) = (6,1 \to 2 + 2 \to 4) = 6$$

$$(3,4) = (2,3 \to 2 + 2 \to 4) = 2$$

$$(1,2) = (11, 1 \rightarrow 3 + 3 \rightarrow 2) = 8$$

$$(1,4) = (6, 1 \rightarrow 3 + 3 \rightarrow 4) = 3$$

$$(2,4) = (3, 2 \rightarrow 3 + 3 \rightarrow 4) = 3$$

$$(1,2) = (8, 1 \rightarrow 4 + 4 \rightarrow 2) = 6$$

$$(1,3) = (1, 1 \rightarrow 4 + 4 \rightarrow 3) = 1$$

$$(2,3) = (7, 2 \rightarrow 4 + 4 \rightarrow 3) = 5$$

Subproblem:

= n matrices/vertices × size of each one is n²

 $= n (n^2)$

= $O(n^3)$ – no. of problems

Total time complexity = $O(n^3)$

Space complexity = $O(n^2)$ ---at any point of time only 2 matrices are used \checkmark

Algorithm:

```
FLOYD_WARSHALL (w) {
                                                             T(n) = O(n^3)
           n = w.rows // vertices
    (1)
           D^0 = w \checkmark
                                                             S(n) = O(n^2) \rightarrow D^0, D^1, D^2, D^3, ..., D^n
    (2)
           for k = 1 to n // vertices
    (3)
           Let D^{(k)} = (d_{ij}^k) be a n \times n matrix
    (4)
           for i = 1 to n
    (5)
               for j = 1 to n
    (6)
                   d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)
    (7)
           return D<sup>(n)</sup>
    (8)
```


THANK - YOU