Until 利用MSI块的时序电路设计

张英涛

计算机科学与技术学院

哈尔滨工业大学

11. 用MSI块设计时序电路

- 计数器芯片 (74161,74163,74160,7490)
- 寄存器芯片 (74194)
 - 74161: 模16,可预置,异步清零计数器
 - 74163: 模16,可预置,同步清零计数器
 - 74160: 模10,可预置,同步清零计数
 - 7490: 二-五-十进制计数器
 - 74194: 4-bit 双向移位寄存器(SI/PI, PO)

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

1. 计数器芯片——74161、

74163、74160、7490

(1) 74161——模16,可 预置,异步清零计数器

CLK	CLRN	LDN	ENT	ENP	功能
X	0	X	X	X	Clear
1 1	1	0	X	×	Load
×	1	1	0	1	Hold
×	1	1	1	0	Hold
<u> </u>	1	1	1	1	模16 计数, RCO=1 if Q _D Q _C Q _B Q _A =1111

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

模10 计数器 If $Q_DQ_CQ_BQ_A=1010$, Then CLRN=0 ① 反馈归零法 $Q_A Q_B Q_C Q_D$ **CLRN CP LDN** 661 " ENT ENP ABCD $Q_DQ_CQ_BQ_A$ 0000 0001 0010 0011 0100 1001 1000 0111 0110 0101

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

模256 同步加法计数器

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

(2) 74163——模16,可预置,同步清零计数器

模10 计数器

If $Q_DQ_CQ_BQ_A = 1001$, then CLRN = 0, When CP^{\dagger} , $Q_DQ_CQ_BQ_A = 0000$

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

(3) 74160——模10,可预置,同步清零计数器

模60 计数器——置数归零法

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

(4) 7490 ——二-五-十进制计数器

CP	$\mathbf{R}_0(1)$	$\mathbf{R}_0(2)$	$S_9(1)$	$S_9(2)$	$Q_3 Q_2 Q_1 Q_0$
X	1	1	0	×	0 0 0 0
X	1	1	×	0	0 0 0 0
X	×	X	1	1	1 0 0 1
ļ	×	0	×	0	计数
ļ	0	X	0	×	计数
Ţ	0	X	×	0	计数
į	×	0	0	X	计数

S的优先 级较高

Reset (0, asynchronous): $R_0(1) R_0(2) = 1$; $S_9(1) S_9(2) = 0$

Set (9, asynchronous): $S_9(1) S_9(2) = 1$

CP_A↓, Q₀: M₁计数

CP_B , Q₃Q₂Q₁: M₂ 计数

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

应用: ① 8421-BCD 码模10计数器

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

② 模-6 二进制计数器

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

③ 模-8 计数器

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

④ 模-45 计数器

分析:

- 2 个芯片
- ■低位芯片输出 =1001, 高位芯片计数器加1;
- 高位芯片输出 $Q_2Q_1Q_0=100$, 低芯片输出 =0101, 所有芯片清除.

- ■低位芯片输出 =1001, 高位芯片计数器加1;
- 高位芯片输出 $Q_2Q_1Q_0=100$, 低芯片输出 =0101, 所有芯片清除.

方案 2:

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

利用74161设计

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6.模1000 计数器
- 7. 设计 7-节拍发生器

利用T1193(模16可逆计数器芯片)和T1085(4-bit数码比较器)设计模10计数器.

⑥ 模1000 计数器

利用74161设计

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

利用T1193(模16可逆计数器芯片)和T1085(4-bit数码比较器)设计模10计数器.

⑦设计如图所示 7-节拍发生器

利用74161设计

- 1. 模10计数器(反馈归零法 、置数归零法)
- 2. 模256同步加法计数器

利用74163

- 1. 设计模10计数器
- 2. 和74138设计8-节拍生成器

利用74160设计

1. 模60计数器

利用7490设计

- 1. 8421-BCD 码模10计数 器
- 2. 模-6 二进制计数器
- 3. 模-8 计数器
- 4. 模-45 计数器
- 5. 5421-BCD 码计数器
- 6. 模1000 计数器
- 7. 设计 7-节拍发生器

利用T1193(模16可逆计数器)和T1085(4-bit 数码比较器)设计模10计数器.

例:

设计模10 计数器.

给定: 模16可逆计数器芯片 T1193 4-bit 数码比较器芯片 T1085

模16可逆计数器

Vc							
16	15	14	13	12	11	10	9
	A	C_{r}	OB	O	LD	C	D
T1193							
]	1119	3			
В	Q_B				\mathbf{Q}_{C}	$\mathbf{Q}_{\mathbf{D}}$	

		功能		
输入	C _r L _D DCBA CP ₊ CP ₋	清零 装入 初始数据 加 加 减		
输出	$\mathbf{Q_{D}^{\sim}Q_{A}}$ $\mathbf{O_{B}^{\sim}O_{C}}$	计数器借位,进位		

数据比较器

分析:

- 将 "10" (n) 作为 T1085的输入($A_3 \sim A_0$), 其它输入($B_3 \sim B_0$)连接到计数器的当前输出.
- 如果计数器的输出 $Q_DQ_CQ_BQ_A = n$,

则 T1085的输出: $Q_{A=B}=1$,且对计数器进行清零.

应用:

产品分装控制电路

11. 用MSI块设计时序电路

■ 计数器芯片 (74161,74163,74160,7490)

- 寄存器芯片 (74194)

用寄存器芯片设计时序电路

74194 —— 4-bit 双向移位寄存器(串行输入/并行输入,并行输出)

74194

		功能
Input	$\overline{\mathbf{C}}_{\mathbf{r}}$ \mathbf{D}_{0} , \mathbf{D}_{1} , \mathbf{D}_{2} , \mathbf{D}_{3} $\mathbf{D}_{\mathbf{R}}$ $\mathbf{D}_{\mathbf{L}}$ $\mathbf{M}_{\mathbf{A}}$, $\mathbf{M}_{\mathbf{B}}$ \mathbf{CP}	清零 并行输入 右移输入 左移输入 模式控制 时钟
Output	$Q_AQ_BQ_CQ_D$	输出

M_B M_A 工作模式 0 0 保持 0 1 右移 1 0 左移 1 1 并入

利用74194设计

- 1. 4-bit 右移扭环形计数器
- 2. 8-bit 双向移位寄存器
- 3. 7-bit 串/并信号转换器

应用: ① 4-bit 右移扭环形计数器

利用74194设计

1. 4-bit 右移扭环形计数器

2. 8-bit 双向移位寄存器

3. 7-bit 串/并信号转换器

应用: ② 8-bit 双向移位寄存器

利用74194设计

- 1. 4-bit 右移扭环形计数器
- 2. 8-bit 双向移位寄存器

3. 7-bit 串/并信号转换器

分析:

CR=0,清零, $:F_7=0$ $:M_BM_A=11$,并行输入

CP1,
$$F_7 F_6 F_5 F_4 F_3 F_2 F_1 F_0 = 11111110 D_6$$

$$: F_7 = 1 : M_B M_A = 10, 左移$$

CP 2, $F_7 F_6 F_5 F_4 F_3 F_2 F_1 F_0 = 111110 D_6 D_5$

CP7,
$$F_7F_6F_5F_4F_3F_2F_1F_0 = 0$$
 D_6D_5 D_4 D_3 D_2 D_1 D_0 $\therefore F_7 = 0$ \therefore M_B $M_A = 11$,并行输入

串/并信号转换器

11. 用MSI块设计时序电路

- 计数器芯片 (74160,74161,74163,7490)
- 寄存器芯片 (74194)