18. 磁力

- 18.1 带电粒子在磁场中的运动
- 18.2 霍尔效应

- 18.3 载流导线在磁场中受的磁力
- 18.4 载流线圈在均匀磁场中受的磁力矩
- 18.5 平行导线间的相互作用力

18.1 带电粒子在磁场中的运动

以速度v运动的电荷q在磁场中所受到的磁力

$$\vec{\mathbf{F}} = q \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

上式称为洛伦兹力公式,它是 1892 年荷兰物理学家洛伦兹(Hendrik Antoon Lorentz, 1853—1928)在建立经典电子论时,作为基本假设提出来的,它已为大量实验所证实.

当一个带电粒子在既有电场又有磁场的区域里运动时,作用在该粒子上的电磁力为 $\vec{\mathbf{F}} = q \, (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$

它是电磁学的基本公式之一。不论粒子的速度多大,也不论场是否恒定,该公式都适用。

- ① 静电场对电荷的作用力与电荷的运动速度无关。 例如,当测量电子束在两平行板之间的偏转时发现,作 用在电子上的力确实是与电子的速度无关的。
- ②洛伦兹力F=qv×B始终垂直于带电粒子的运动速度v,所以与磁力相联系的功恒等于零。洛伦兹力只改变带电粒子的运动方向,而不改变带电粒子的运动速率,即不改变带电粒子的动能。

带电粒子在磁场中的运动

设带电粒子q以初速度 \vec{v} 进入磁感应强度为 \vec{B} 的均匀磁场,以下分三种情况来讨论,在洛伦兹力 $\vec{F} = q \vec{v} \times \vec{B}$ 的作用下,带电粒子的运动。

(1) v // B情况

磁场对带电粒子的作用力为零,粒子仍将以原来的速度/作匀速直线运动。

(2) $\vec{v} \perp \vec{B}$ 情况 (圆周运动)

$$F = qvB = \frac{mv^2}{R}$$

$$R = \frac{mv}{qB}$$

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

回旋频率与带电粒子的 速率及回旋半径无关。

The Nobel Prize in Physics 1939

for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements

Ernest Lawrence (1901 - 1958)

(3) 一般情况(螺旋运动)

 \vec{v} 与 \vec{B} 有一个夹角 θ ,可将 \vec{v} 分解为分别平行和垂直于 \vec{B} 的以下两个分量: $v_{//} = v \cos \theta$ $v_{//} = v \cos \theta$

$$v_{\perp} = v \sin \theta$$

当两个分量同时存在 时,带电粒子的运动轨迹 是一条螺旋线, 其螺距为

$$h = v_{//} T = \frac{2\pi m v_{//}}{qB}$$

带电粒子每回旋一周所前进的距离h与n,无关。

若从磁场中某点A发射出一束很窄的带电粒子流,它们的速率v都很相近,且v与B的夹角 θ 都很小,则尽管 $v_{\perp}=v\sin\theta\approx v\theta$ 会使各个粒子沿不同半径的螺旋线 运动,但 $v_{//}=v\cos\theta\approx v$ 近似相等,由式 $h=v_{//}T=\frac{2\pi m v_{//}}{qB}$

决定的螺距h也近似相等,所以各个粒子经过距离h后 又会重新会聚在一起,这就是磁聚焦。实际中用得更多 的是短线圈产生的非均匀磁场的磁聚焦作用,这种线圈 通常称为磁透镜,它在电子显微镜中起了与光学仪器中 透镜类似的作用。

例18.1 在场强为B的水平匀强磁场中,一质量为m带正电的小球在O静止释放,小球的运动曲线如图所示,重力加速度为g. 试证明:此曲线在最低点的曲率半径为该点到x轴距离的2倍.

解: 小球是在重力场与磁场的复合场中运动, 受到重力和洛伦兹力的作用,但由于速 度的大小与方向均在改变,故其轨迹的确定 并不容易. 我们可进行如下处理:如图 所示,将在0处静止的小球等效地看成在x轴方向有两个大小相同方向相反的速度v,且满足 Bqv = mg.

这样,沿x 轴正方向的速度产生的洛伦兹力与小球的重力平衡,小球的运动就可以分解为沿x 轴正方向速度为v 的匀速直线运动与在 Oxy 平面内的匀速圆周运动 (如图所示),其作圆周运动的轨道半径 $r=\frac{mv}{Bq}$.

由运动的轨迹可知, 当小球运动到最低点 A 时,

其距
$$x$$
 轴的距离 $h = 2r = \frac{2mv}{Bq}$.

此时小球的速度为 $v_A = 2v$,其受力情况如图 所示,根据向心力的公式

$$F_{\rm Fl}=m\,rac{v_A^2}{
ho},$$
 故 $f_{\rm fl}=mg=m\,rac{v_A^2}{
ho},$ 且 $Bqv=mg,$ 所以 $Bqv=m\,rac{4v^2}{
ho},$

所以
$$\rho = \frac{4mv}{Bq} = 4r = 2h.$$

即此曲线在最低点的曲率半径为该点到 x 轴距离的 2 倍.

可见,通过从静止中"生"出两个等大反向的速度,将一个复杂的运动分解成了两个简单的速度,使题目的解决变得简单.

在物理的解题方法中"无中生有"的思想本质上属于 等效法. 例如在没有电荷的地方假想存在两个等量异种的电 荷,或将静止看成两个等大反向的速度等等, 其主要目的是 通过对模型在某一性质上的等价来简化解题的过程.

磁约束

(b)

物质结构系列

下一百年世界各种能源消耗变化图

横坐标是年份,纵坐标是功率,单位是太瓦。从2010年到2110年,世界总能源消耗增加两倍到51太瓦左右。传统化石能源将下降,但仍占据相当重要地位,主要新增能源来自核能和风能。

若原子核 A X的结合能为 E_{B} ,则 $\varepsilon = E_{B}/A$

为每个核子的平均结合能,称为比结合能。由自然界 中各种原子核的ε-A曲线可见, 轻核和较重原子核的比 结合能都比较小, 56Fe附近中等核的比结合能比较大。 所以,当重核分裂或轻核聚合成中等核时,都会释放出 核能来。前者称为核裂变,后者称为核聚变。

范艾仑带

绚丽多彩的极光

在地磁两极附近,由于磁感线与地面垂直,外层空间入射的带电粒子可直接射入高空大气层内,它们和空气分子碰撞产生的辐射,就形成了极光。

南极上空的绿色极光带 (张建松摄)

国际空间站上拍到的犹如长蛇状的北极光弧 (源自: NASA/SPL/BARCROFT MEDIA LTD)

北欧拉普兰德上空射线状的灿烂极光 (源自https://ecophiles.com/)

阿拉斯加上空的蓝色极光 (源自www.mimski.com/)

美国阿卡迪亚国家公园上空的红色极光 (Michael Melford摄)

费尔班上空的彩色极光 (Jim Henderson摄)

18.2 霍尔效应

1879年美国物理学家霍耳发现: 对应图中沿Z方向有电势差。

判断载流子种类,测量载流子浓度,测磁场等。

霍耳电阻
$$R_H = \frac{U_H}{I} = \frac{B}{nab} \propto B$$

量子霍耳效应

1980年克里青发现,

在极低温、强磁场下

$$R_H \not \sim B$$

$$R_H = \frac{R_K}{m}, \quad m = 1, 2, 3,$$

克里青(Klitzing)常量 $R_K = \frac{h}{e^2} = 25812.80\Omega$

 R_K 的测量准确到 10^{-10}

$$1990年定义 1\Omega = \frac{R_K}{25812.80}$$

分数量子霍耳效应

崔琦和施特默(Störmer)发现在更强的磁 场下, m 可以是分数, 如: 1/3、1/5、1/2、1/4 等,这称为分数量子霍耳效应。 劳夫林(Laughlin)成功地给出了理论解释。 该效应表明,有携带分数电荷的准粒子存在。 整数和分数量子霍耳效应及其理论解释是我 们认识宏观量子现象的一次重要突破。克里青 获得了1985年诺贝尔物理学奖。劳夫林、施特 默和崔琦获得了1998年诺贝尔物理学奖。

The Nobel Prize in Physics 1985

for the discovery of the quantized Hall effect

Klaus von Klitzing (1943 -)

The Nobel Prize in Physics 1998

for their discovery of a new form of quantum fluid with fractionally charged excitations

Robert B. Laughlin (19950 -)

Horst L. Störmer (1949 -)

Daniel C. Tsui (1939 -)

崔琦教授是继李政道、杨振宁、丁肇中、李远哲和朱棣文之后,第六位获得诺贝尔奖的华裔科学家。

18.3 载流导线在磁场中受的磁力

$$d\vec{F} = dNq\vec{v} \times \vec{B}$$

$$= nq\vec{v} \times \vec{B}\Delta Sdl$$

$$= \vec{J} \times \vec{B}dV$$

$$I = J\Delta S$$

$$d\vec{F} = Id\vec{l} \times \vec{B}$$
 安培公式

在历史上, 它是由安培通过实验确定的。

整个电流受力

$$\vec{F} = \int_{(l)} Id\vec{l} \times \vec{B}$$

安培
André-Marie Ampère
1775~1836
法国物理学和化学家

例18.2 在均匀磁场 \vec{B} 中放置一半径为R的半圆形导线,电流强度为I,导线两端连线与磁感应强度方向夹角 $\alpha = 30^{\circ}$,求此段圆弧电流受的磁力.

18.4 载流线圈在均匀磁场中受的磁力矩

$$d\vec{F}_1 = Id\vec{l}_1 \times B_t \vec{t} = -IdhB_t \vec{n}$$

$$d\vec{F}_2 = Id\vec{l}_2 \times B_t \vec{t} = IdhB_t \vec{n}$$

$$d\vec{M} = l\vec{t} \times (-ldhB_t\vec{n}) = ldS\vec{n} \times B_t\vec{t}$$

作用于线圈的力矩是作用于 所有电流元对的力矩之和

$$\vec{M} = \int d\vec{M} = IS\vec{n} \times B_t \vec{t} = \vec{m} \times B_t \vec{t}$$

这为
$$\vec{m} \times B_n \vec{n} = 0$$

所以
$$\vec{M} = \vec{m} \times \vec{B}$$

 $\uparrow \stackrel{\rightarrow}{n} \times \stackrel{\rightarrow}{t}$

线圈的磁矩和电偶极矩的对比

18.5 平行导线间的相互作用力

$$\begin{split} B_1 &= \frac{\mu_0 I_1}{2\pi d} \\ \mathbf{d} F_{21} &= I_2 \mathbf{d} l_2 B_1 \\ \mathbf{d} F_{21} &= \frac{\mu_0 I_1 I_2}{2\pi d} \mathbf{d} l_2 \\ \mathbf{d} F_{12} &= \frac{\mu_0 I_1 I_2}{2\pi d} \mathbf{d} l_1 \end{split}$$

单位长度导线所受作用力的大小为

$$f = \frac{dF_{21}}{dl_2} = \frac{dF_{12}}{dl_1} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

当两导线中的电流沿同方向时,该作用力是吸引力;当电流沿反方向时是排斥力。

如果两导线中的电流相等, $I_1 = I_2 = I$,则有

$$f = \frac{\mu_0 I^2}{2\pi d} \qquad \overrightarrow{\mathbf{z}} \qquad I = \sqrt{\frac{2\pi d f}{\mu_0}}$$

若取d = 1 m, $f = 2 \times 10^{-7} \text{ N/m}$, 则有I = 1 A. 2际上,这就是国际单位制中关于电流强度的单位"安培"的定义:一恒定电流,若保持在处于真空中相距1 m的两无限长而圆截面可忽略的平行直导线内,则在两导线间产生的力在每米长度上等于 $2 \times 10^{-7} \text{ N}$ 。

第18章结束