Serial No.: 09/721,326

In the Claims:

3

Art Unit: 2662

1. (currently amended) A method of providing information to at least one a second passenger vehicle located on a pathway in an area where signal coverage is not available from an information source, to create an information network, the method comprising steps of:

transmitting an information signal containing the information with a transmitter located at the information source;

receiving the information signal with a first transmitter/receiver unit located on a <u>first</u> passenger vehicle that is within a signal coverage area of the information source and that is located on the pathway; and

re-transmitting the information signal with the first transmitter/receiver unit to a receiver located on the at least one second passenger vehicle located on the pathway; and

altering one of a direction of travel and velocity of the second passenger vehicle in response to information received by the receiver

wherein the information signal is transmitted from the first transmitter/receiver unit along the pathway.

2. (currently amended) A method of providing information to from at least one a second passenger vehicle located on a pathway from a source to create an information network and not within a signal coverage area of a destination, the method comprising steps of:

transmitting an information signal containing the information with a transmitter located on the at the source least one passenger vehicle on the pathway;

receiving the information signal with a first transmitter/receiver unit located on a <u>first</u> passenger vehicle, located on the pathway that is within the signal coverage area of the destination; and

re-transmitting the information signal with the first transmitter/receiver unit to a receiver located at the destination on the second passenger vehicle; and

storing data when the second passenger vehicle becomes disconnected from the information network so that the information can be provided when the second passenger vehicle is reconnected to the information network

Serial No.: 09/721,326 4 Art Unit: 2662

wherein the information signal is transmitted from the transmitter to the first transmitter/receiver unit along the pathway.

- 3. (currently amended) The method as claimed in either one of claims 1 and 2, further comprising repeating the steps of receiving and re-transmitting the information signal along the pathway with an additional transmitter/receiver unit to provide the signal between the first transmitter/receiver unit and the at least one second passenger vehicle.
- 4. (original) The method as claimed in claim 3, wherein the additional transmitter/receiver unit is located on a fixed platform.
- 5. (currently amended) The method as claimed in claim 3, wherein the additional transmitter/receiver unit is located on another a third passenger vehicle located on the pathway.
- 6. (currently amended) The method as claimed in claim 5, wherein at least two of the passenger vehicles are located on the a pathway and are traveling in the same direction.
- 7. (currently amended) The method as claimed in claim 5, wherein at least two of the passenger vehicles are located on the <u>a</u> pathway and are traveling in opposite directions.
- 8. (currently amended) The method as claimed in claim 3, wherein the additional transmitter/receiver unit is located on another a third passenger vehicle that is located on a parallel pathway.
- 9. (canceled)
- 10. (currently amended) The method as claimed in claim 3, wherein the first and second passenger vehicles are located on a first pathway and wherein the additional transmitter/receiver unit is located on another a third passenger vehicle that is located on a second pathway that intersects the first pathway.

11. (canceled)

12. (canceled)

13. (currently amended) The method as claimed in claim 5, further comprising a step of monitoring the passenger vehicles and information signals along the <u>a</u> pathway with a pathway station.

14. (currently amended) The method as claimed in claim 5, further including a step of providing the information signal to the at least one second passenger vehicle located in an area where the is an insufficient number of available passenger vehicles to provide the information signal, with a supplemental communication system.

15. (currently amended) A system that provides information to and from a second passenger vehicle which is in an area where signal coverage is otherwise not available from an information source, comprising:

a transmitter unit, located at the information source, that transmits the information signal;

a first transmitter/receiver unit located on a first passenger vehicle that is located on a pathway within a signal coverage area of the information source, that receives the information signal and that re-transmits the information signal;

a directional <u>multibeam</u> antenna, coupled to the <u>first</u> transmitter/receiver unit, that re-transmits the information signal <u>in a plurality of directions</u>, at least one of the <u>plurality of directions</u> being along the pathway; and

a receiver, located on the second passenger vehicle that is located on the pathway, the receiver adapted to receive the information signal.

16. (currently amended) The system as claimed in claim 15, wherein the first passenger is located on the pathway and in an area where there is an another, already existing communication channel.

CON1 E3

Art Unit: 2662

17. (currently amended) The system as claimed in claim 15, further including:

an additional transmitter/receiver unit is located on another <u>a third</u> passenger vehicle, that receives and re-transmits the information signal to provide the information signal between the source and the second passenger vehicle; and

wherein the additional transmitter/receiver unit includes an additional directional antenna that re-transmits the information signal along the pathway.

- 18. (previously presented) The system as claimed in claim 17, wherein the passenger vehicles are ground vehicles.
- 19. (previously presented) The system as claimed in claim 17, wherein the passenger vehicles are aircraft.
- 20. (previously presented) The system as claimed in claim 17, wherein at least two of the passenger vehicles are traveling in the same direction along the pathway.
- 21. (previously presented) The system as claimed in claim 17, wherein at least two of the passenger vehicles are traveling in opposite directions along the pathway.
- 22. (previously presented) The system as claimed in claim 17, wherein at least two of the passenger vehicles are located on parallel pathways.
- 23. (canceled)
- 24. (currently amended) The system as claimed in claim 17, wherein the another third passenger vehicle is located on a second pathway that intersects the pathway.
- 25. (canceled)
- 26. (canceled)

Art Unit: 2662

27. (currently amended) The system as claimed in claim 17, wherein the another third passenger vehicle is not located on a pathway.

- 28. (previously presented) The system as claimed in claim 17, further comprising a supplemental communication network that communicates directly with the second passenger vehicle that is located in an area where there are insufficient other passenger vehicles available to provide the information signal to the second passenger vehicle.
- 29. (previously presented) The system as claimed in claim 17, further comprising: at least one pathway station that monitors the passenger vehicles along the pathway; and

a pathway control station, coupled to the pathway station and to an existing communications network, that controls communication between the pathway station and the existing communication network.

30 (currently amended) A method of providing information to passenger vehicles, comprising steps of:

transmitting an information signal containing the information from an information source to a first transmitter/receiver unit located on a first passenger vehicle located on a first predetermined pathway;

receiving the information signal with the first transmitter/receiver unit; re-transmitting the information signal with the first transmitter/receiver unit; repeating the steps of receiving and re-transmitting the information signal with another transmitter/receiver unit located on a third passenger vehicle; and

receiving the information signal with a receiver that is located on a second passenger vehicle located on a second predetermined pathway; and

wherein the information signal includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle; and

wherein the step of re-transmitting the information signal with the first transmitter/receiver unit does not include re-transmitting the first portion of information.

- 31. (previously presented) The method as claimed in claim 30, wherein the first and second passenger vehicles are located on first and second predetermined pathways, which are parallel pathways.
- 32. (canceled)
- 33. (canceled)
- 34. (canceled)
- 35. (previously presented) The method as claimed in claim 30, wherein the first and second passenger vehicles are located on first and second predetermined pathways, which are pathways that intersect.
- 36. (canceled)
- 37. (canceled)
- 38. (canceled)
- 39. (canceled)
- 40. (currently amended) The method as claimed in claim 30 149, wherein the step of retransmitting the information signal includes re-transmitting the information signal along the first predetermined vehicular pathway to the third passenger vehicle that is located on the first predetermined vehicular pathway.

Serial No.: 09/721,326 9

41. (previously presented) The method as claimed in claim 40, wherein the step of retransmitting the information signal includes re-transmitting the information signal along the first predetermined pathway using a directional antenna coupled to the first transmitter/receiver unit.

Art Unit: 2662

- 42. (previously presented) The method as claimed in claim 41, wherein the step of retransmitting the information signal includes re-transmitting the information signal with a multibeam antenna in a plurality of directions, at least one of the plurality of directions being along the first predetermined pathway.
- 43. (previously presented) The method as claimed in claim 40, further comprising a step of monitoring the passenger vehicles and information signals along the first predetermined pathway with a first pathway station.
- 44. (previously presented) The method as claimed in claim 43, wherein the step of monitoring includes monitoring the passenger vehicles and information signals along the first predetermined pathway with a second pathway station, and assuming control of at least some of the passenger vehicles with the second pathway station to prevent overloading of the first pathway station.
- 45. (previously presented) The method as claimed in claim 30, further comprising a step of providing the information in the information signal for access by a passenger associated with at least one of the passenger vehicles.
- 46. (currently amended) The method as claimed in claim 30, further comprising a step of altering a heading direction of travel of the second passenger vehicle based on information received by the receiver.
- 47. (previously presented) The method as claimed in claim 30, wherein the steps of transmitting and re-transmitting the information signal include transmitting and re-transmitting a signal that is digitally encoded with the information.

48. (Canceled)

49. (currently amended) The method as claimed in claim 3, further comprising a step of providing the information in the information signal for access by a passenger associated with the at least one second passenger vehicle.

50. (previously presented) The method as claimed in claim 3, wherein the step of retransmitting the information signal includes re-transmitting the information signal with a directional antenna coupled to the first transmitter/receiver unit.

- 51. (currently amended) The method as claimed in claim 3, wherein the step of retransmitting the information signal includes re-transmitting the information signal with a multibeam antenna in a plurality of directions, at least one of the plurality of directions being along the a pathway on which the first and second passenger vehicles are located.
- 52. (previously presented) The method as claimed in claim 3, wherein the steps of transmitting and re-transmitting the information signal include transmitting and re-transmitting a signal that is digitally encoded with the information.
- 53. (currently amended) The method as claimed in claim 3 2, further comprising a step of altering a heading direction of travel of the at least one second passenger vehicle in response to information received by the receiver.
- 54. (currently amended) The method as claimed in claim 5, further comprising a step of providing the information for access by a first passenger associated with the another third passenger vehicle.
- 55. (currently amended) The method as claimed in claim 54, further comprising a step of providing the information for access by a second passenger associated with the at least one second passenger vehicle.

Serial No.: 09/721,326

56. (previously presented) The method as claimed in claim 55, wherein the information signal includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle, and wherein the step of re-transmitting the information signal with the additional transmitter/receiver unit does not include re-transmitting the first portion of information.

- 57. (currently amended) The method as claimed in claim 13, wherein the step of monitoring the passenger vehicles and information signals along the pathway with a pathway station includes monitoring the passenger vehicles and information signals along the pathway with an additional pathway station; and assuming control of at least some of the passenger vehicles with the additional pathway station to prevent overloading of the pathway station.
- 58. (previously presented) The system as claimed in claim 17, wherein the transmitter includes a directional antenna adapted to transmit the information signal along the pathway.
- 59. (currently amended) The system as claimed in claim 17, wherein the second passenger vehicle and the another passenger vehicle each <u>includes</u> an interface adapted to receive the information in the information signal and <u>to</u> provide the information for access by a passenger associated with second passenger vehicle and the <u>another a third</u> passenger vehicle, respectively.
- 60. (previously presented) The system as claimed in claim 17, wherein the information signal is digitally encoded with the information.
- 61. (previously presented) The system as claimed in claim 17, wherein the information signal includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle, and wherein the information signal re-transmitted from the first passenger vehicle does not include the first portion of information.

62. Canceled

63. (currently amended) The system as claimed in claim 18 17, wherein the information includes weather information.

- 64. (currently amended) The system as claimed in claim 18 17, wherein the information includes traffic information.
- 65. (currently amended) The system as claimed in claim 18 17, wherein the information includes information regarding at least one of a location and a heading of at least one of the passenger vehicles.
- 66. (currently amended) The system as claimed in claim 18 17, wherein at least one of the passenger vehicles is configured to allow a passenger to alter alters a heading direction of travel of the passenger vehicle in response to the information.
- 67. (previously presented) The system as claimed in claim 29, further comprising an additional pathway station that assumes control of at least some of the passenger vehicles to prevent overloading of the pathway station.
- 68 (currently amended) A system that provides information to and from passenger vehicles, the system comprising:
- a transmitter located at an information source, that transmits an information signal including the information;
- a first transmitter/receiver unit located on a first passenger vehicle located on a first predetermined pathway, the first transmitter/receiver unit being adapted to receive and retransmit the information signal;
- a second transmitter/receiver unit located on a second passenger vehicle, the second transmitter/receiver unit being adapted to receive and re-transmit the information signal; and

Art Unit: 2662

a receiver that receives the information signal re-transmitted by the second transmitter/receiver unit, the receiver being located on a third passenger vehicle that is located on a second predetermined pathway;

wherein the information signal includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle; and

wherein the information signal re-transmitted from the first passenger vehicle does not include the first portion of information.

- 69. (currently amended) The system as claimed in claim 68 150, wherein the second predetermined pathway is the first predetermined pathway.
- 70. (currently amended) The system as claimed in claim 68 150, wherein the first and second predetermined pathways are parallel pathways.
- 71. (currently amended) The system as claimed in claim 68 150, wherein the second predetermined pathway intersects the first predetermined pathway.
- 72. (currently amended) The system as claimed in claim 68 150, wherein the passenger vehicles are airplanes.
- 73. (previously presented) The system as claimed in claim 72, wherein the first predetermined pathway is disposed above the second predetermined pathway.
- 74. (previously presented) The system as claimed in claim 72, wherein the first predetermined pathway is disposed below the second predetermined pathway.
- 75. (previously presented) The system as claimed in claim 68, wherein the passenger vehicles are ground vehicles.

- 77. (currently amended) The system as claimed in claim 75 68, wherein the information includes weather information.
- 78. (currently amended) The system as claimed in claim 75 68, wherein the information includes at least one of a heading and a position of at least one of the passenger vehicles.
- 79. (currently amended) The system as claimed in claim 68 150, further comprising a pathway station that monitors the passenger vehicles and information signals along the first and second predetermined pathways.
- 80. (previously presented) The system as claimed in claim 79, further comprising an additional pathway station that that monitors the passenger vehicles and information signals along the first and second predetermined pathways assumes control of at least one of the passenger vehicles to prevent overloading of the pathway station.
- 81. (previously presented) The system as claimed in claim 79, further comprising a pathway control station, coupled to the pathway station and to another communications network, that controls communication between the pathway station and the another communication network.
- 82. (previously presented) The system as claimed in claim 68, wherein the passenger vehicles are marine vehicles.
- 83. (currently amended) The system as claimed in claim 68, wherein the third passenger vehicle is located on the a first predetermined pathway.
- 84. (currently amended) The system as claimed in claim 68, wherein at least one of the first and second transmitter/receiver units includes a directional antenna that transmits the

information signal along the <u>a</u> first predetermined pathway <u>on which the third passenger</u> vehicle is located to the receiver.

85. (previously presented) The system as claimed in claim 68, wherein at least one of the passenger vehicles includes an interface adapted to provide the information in the information signal for access by a passenger associated with the passenger vehicle.

86. (currently amended) The system as claimed in claim 68, wherein the transmitter includes a directional antenna that transmits the information signal along the <u>a</u> first predetermined pathway <u>on which the first passenger vehicle is located</u>.

87. (canceled)

88. (previously presented) The system as claimed in claim 68, wherein the first passenger vehicle is an aircraft and the second passenger vehicle is a ground vehicle.

89. (previously presented) The system as claimed in claim 88, wherein the first transmitter/receiver unit includes an omni-directional antenna that re-transmits the information signal to the receiver.

90. (previously presented) A method for providing information from a source to a second passenger vehicle, the method comprising steps of:

transmitting an information signal that includes the information from the source; receiving the information signal with a first transmitter/receiver unit located on a first passenger vehicle;

providing the information for access by a passenger associated with the first passenger vehicle;

re-transmitting the information signal with the first transmitter/receiver unit; repeating the steps of receiving the information signal and re-transmitting the information signal with at least one additional transmitter/receiver unit to provide the

information signal between the first transmitter/receiver unit and a receiver located on the second passenger vehicle;

receiving the information signal with the receiver; and providing the information signal for access by a passenger associated with the second passenger vehicle.

- 91. (previously presented) The method as claimed in claim 90, wherein the step of retransmitting the information signal includes re-transmitting the information signal along a first pathway, the first and second passenger vehicles being located on the first pathway.
- 92. (previously presented) The method as claimed in claim 91, wherein the step of transmitting the information signal includes transmitting the information signal with a directional antenna.
- 93. (previously presented) The method as claimed in claim 91, wherein the step of retransmitting the information signal includes re-transmitting the information signal with a multibeam antenna in a plurality of directions, at least one of the plurality of directions being along the pathway.
- 94. (previously presented) The method as claimed in claim 90, wherein the first and second passenger vehicles are located on a pathway, and further comprising a step of monitoring the passenger vehicles and information signals along the pathway.
- 95. (previously presented) The method as claimed in claim 90, wherein the at least one additional transmitter/receiver unit is located on a corresponding at least one additional passenger vehicle.
- 96. (previously presented) The method as claimed in claim 90, further comprising a step of altering a heading of the second passenger vehicle based on the information.

Serial No.: 09/721,326 17

97. (previously presented) The method as claimed in claim 90, wherein the information signal includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle, and wherein the step of re-transmitting the information signal with the first transmitter/receiver unit does not include re-transmitting the first portion of information.

Art Unit: 2662

98. (currently amended) A communication system for providing information from a source to a second passenger vehicle, the communication system comprising:

an information source that transmits an information signal that includes the information;

a first transmitter/receiver unit located on a first passenger vehicle, the first transmitter/receiver unit adapted to receive that receives the information signal transmitted by the source and to re-transmit re-transmits the information signal;

a first passenger interface, coupled to the first transmitter/receiver unit, adapted to present that receives the information signal from the first transmitter/receiver unit and presents the information for access by a passenger associated with the first passenger vehicle;

a receiver located on the second passenger vehicle, the receiver being adapted to receive the information signal;

a second passenger interface, coupled to the receiver, that receives the information signal from the receiver and presents adapted to present the information for access by a passenger associated with the second passenger vehicle; and

at least one additional transmitter/receiver unit adapted to provide the information signal between the first transmitter/receiver unit and the receiver.

- 99. (previously presented) The communication system as claimed in claim 98, wherein the at least one additional transmitter/receiver unit is located on a fixed platform.
- 100. (previously presented) The communication system as claimed in claim 98, wherein the at least one additional transmitter/receiver unit is located on a third passenger vehicle.

18

Art Unit: 2662

- 102. (previously presented) The communication system as claimed in claim 100, wherein the information signal is digitally encoded with the information.
- 103. (previously presented) The communication system as claimed in claim 100, wherein the information includes a first portion of information intended for the first passenger vehicle and a second portion of information intended for the second passenger vehicle; and wherein the information signal re-transmitted by the first transmitter/receiver unit does not include the first portion of information.

- 105. (previously presented) The communication system as claimed in claim 100, wherein the first and second passenger vehicles are located on corresponding first and second predetermined pathways that intersect.
- 106. (previously presented) The communication system as claimed in claim 100, wherein at least one of the passenger vehicles is not located on a pathway.
- 107. (previously presented) The communication system as claimed in claim 100, wherein at least two of the passenger vehicles are located on a pathway and the information signal is transmitted along the pathway between the at least two passenger vehicles, and further comprising a pathway station that monitors the passenger vehicles and information signals transmitted along the pathway.

Serial No.: 09/721,326 19 Art Unit: 2662

108. (previously presented) The communication system as claimed in claim 107, further comprising an additional pathway station that assumes control of at least some of the passenger vehicles, to prevent overloading of the pathway station.

- 109. (previously presented) The communication system as claimed in claim 100, further including a supplemental communication system that provides the information signal to the third passenger vehicle when located in an area where there is an insufficient number of available passenger vehicles to otherwise provide the information signal to the third passenger vehicle.
- 110. (previously presented) The communication system as claimed in claim 100, wherein the first and third passenger vehicles are located on a pathway, and wherein the first transmitter/receiver unit includes a directional antenna that re-transmits the information signal along the pathway.
- 111. (previously presented) The communication system as claimed in claim 110, wherein the directional antenna is a multibeam antenna that re-transmits the information signal in a plurality of directions, at least one of the plurality of directions being along the pathway.
- 112. (previously presented) The communication system as claimed in claim 100, wherein the third passenger vehicle is located on a pathway.
- 113. (previously presented) The communication system as claimed in claim 100, wherein the passenger vehicles are aircraft.
- 114. (previously presented) The communication system as claimed in claim 113, wherein the aircraft are located on pathways disposed above and below one another.
- 115. (previously presented) The communication system as claimed in claim 100, wherein the second passenger vehicle is a ground vehicle and the third passenger vehicle is an aircraft.

Serial No.: 09/721,326

20

Art Unit: 2662

116. (previously presented) The communication system as claimed in claim 115, wherein the at least one additional transmitter/receiver unit includes an omni-directional antenna that transmits the information signal to the receiver.

- 117. (previously presented) The communication system as claimed in claim 100, wherein the passenger vehicles are ground vehicles.
- 118. (previously presented) The communication system as claimed in claim 117, wherein the information includes weather information.
- 119. (previously presented) The communication system as claimed in claim 117, wherein the information includes traffic information.
- 120. (previously presented) The communication system as claimed in claim 117, wherein the information includes information regarding at least one of a heading and a position of at least one of the passenger vehicles.
- 121. (currently amended) The method as claimed in claim 3 1, further comprising a step of storing data when the at least one second passenger vehicle becomes disconnected from the information network so that the information can be provided when the at least one second passenger vehicle is reconnected to the information network.
- 122. (previously presented) The method as claimed in claim 3, wherein transmitting the information signal includes transmitting the information signal at a first frequency, and wherein re-transmitting the information signal includes re-transmitting the information signal at a second frequency.
- 123. (previously presented) The method as claimed in claim 13, wherein the step of monitoring the passenger vehicles includes monitoring a position and a velocity of the passenger vehicles.

124. (previously presented) The method as claimed in claim 13, further comprising steps

of:

transmitting information to the passenger vehicles from the pathway station; and transmitting information from the passenger vehicles to the pathway station.

125. (previously presented) The system as claimed in claim 29, wherein the pathway station is adapted to monitor a position and velocity of the passenger vehicles along the pathway.

126. (previously presented) The system as claimed in claim 29, wherein the pathway station is adapted to send signals to the passenger vehicles and to receive signals from the passenger vehicles.

127. (previously presented) The system as claimed in claim 29, wherein the pathway control station, the pathway station and the passenger vehicles form an information network, and wherein the pathway control station includes a storage medium to store data relating to one of the passenger vehicles when the one passenger vehicle becomes disconnected from the information network so that the information can be provided when the one passenger vehicle is reconnected to the information network.

- 128. (previously presented) The system as claimed in claim 17, wherein the first transmitter/receiver unit is adapted to re-transmit the information signal at a first frequency, and wherein the additional transmitter/receiver unit is adapted to re-transmit the information signal at a second frequency.
- 129. (previously presented) The method as claimed in claim 30, wherein the passenger vehicles form an information network, and further comprising a step of storing data when one passenger vehicle becomes disconnected from the information network so that the information can be provided when the one passenger vehicle is reconnected to the information network.

Art Unit: 2662

130. (previously presented) The method as claimed in claim 30, wherein transmitting the information signal includes transmitting the information signal at a first frequency, and wherein re-transmitting the information signal includes re-transmitting the information signal at a second frequency.

- 131. (previously presented) The method as claimed in claim 43, wherein the step of monitoring the passenger vehicles includes monitoring a position and velocity of the passenger vehicles along the pathway.
- 132. (previously presented) The method as claimed in claim 43, further comprising steps of:

transmitting information to the passenger vehicles from the pathway station; and transmitting information from the passenger vehicles to the pathway station.

- 133. (previously presented) The method as claimed in claim 51, wherein the step of retransmitting the information signal in a plurality of directions includes re-transmitting the information signal in a first direction at a first frequency and re-transmitting the information signal in a second direction at a second frequency.
- 134 (currently amended) The system as claimed in claim 62 15, wherein the multibeam antenna is adapted to transmit the information signal in a first direction at a first frequency and to transmit the information signal in a second direction at a second frequency.
- 135. (previously presented) The system as claimed in claim 79, wherein the pathway station is adapted to monitor a position and velocity of the passenger vehicles along the pathway.
- 136. (previously presented) The system as claimed in claim 79, wherein the pathway station is adapted to send signals to the passenger vehicles and to receive signals from the passenger vehicles.

Serial No.: 09/721,326

23

Art Unit: 2662

137. (previously presented) The system as claimed in claim 81, wherein the pathway control station, the pathway station and the passenger vehicles form an information network, and wherein the pathway control station includes a storage medium that stores data when one passenger vehicle becomes disconnected from the information network so that the information can be provided when the one passenger vehicle is reconnected to the information network.

138. (previously presented) The method as claimed in claim 90, wherein the passenger vehicles form an information network, and further comprising a step of storing data when one passenger vehicle becomes disconnected from the information network so that the information can be provided when the one passenger vehicle is reconnected to the information network.

139. (previously presented) The method as claimed in claim 90, wherein transmitting the information signal includes transmitting the information signal at a first frequency, and wherein re-transmitting the information signal includes re-transmitting the information signal at a second frequency.

140. (previously presented) The method as claimed in claim 93, wherein the step of retransmitting the information signal in a plurality of directions includes re-transmitting the information signal in a first direction at a first frequency and re-transmitting the information signal in a second direction at a second frequency.

141. (previously presented) The method as claimed in claim 94, wherein the step of monitoring the passenger vehicles includes monitoring a position and velocity of the passenger vehicles along the pathway.

142. (previously presented) The method as claimed in claim 94, further comprising steps of:

transmitting information to the passenger vehicles from the pathway station; and

(2h/

transmitting information from the passenger vehicles to the pathway station.

143. (previously presented) The communication system as claimed in claim 100, wherein the first transmitter/receiver unit is adapted to re-transmit the information signal at a first frequency, and wherein the at least one additional transmitter/receiver unit is adapted to retransmit the information signal at a second frequency.

144. (previously presented) The communication system as claimed in claim 107, wherein the pathway station is adapted to monitor a position and a velocity of the passenger vehicles along the pathway.

145. (previously presented) The communication system as claimed in claim 107, wherein the pathway station is adapted to transmit signals to the passenger vehicles and to receive signals from the passenger vehicles.

146. (previously presented) The communication system as claimed in claim 111, wherein the multibeam antenna transmits the information signal in a first direction at a first frequency and transmits the information signal in a second direction at a second frequency.

147. (newly added) The method as claimed in claim 1, wherein the first and second passenger vehicles are located on a pathway, and wherein the step of re-transmitting the information signal with the first transmitter/receiver unit includes re-transmitting the information signal along the pathway.

148. (newly added) The method as claimed in claim 2, wherein the first and second passenger vehicles are located on a pathway, and wherein the step of transmitting the information signal with the transmitter includes transmitting the information signal along the pathway.

Serial No.: 09/721,326 25 Art Unit: 2662

Capil E3 149. (newly added) The method as claimed in claim 30, wherein the first passenger vehicle is located on a first predetermined, vehicular pathway, and wherein the second passenger vehicle is located on a second predetermined vehicular pathway.

150. (newly added) The system as claimed in claim 68, wherein the first passenger vehicle is located on a first predetermined, vehicular pathway, and wherein the second passenger vehicle is located on a second predetermined vehicular pathway.