Point and Interval Estimation: Some Motivation; I

In point estimation, the goal is to find an estimator $\widehat{\theta}_n$ for θ that has nice properties such as low MSE, low bias and consistency: $\Pr \left(|\widehat{\theta}_n - \theta| \leq \delta \right)$ is large.

However, no matter how large n is, usually $\Pr(\widehat{\theta}_n = \theta) = 0$, e.g., when $\widehat{\theta}_n$ is a continuous rv.

Suppose instead of "hitting" θ exactly, we constructed a random set (e.g., a *confidence interval*)

$$[L(X_1,\ldots,X_n|\alpha),U(X_1,\ldots,X_n|\alpha)]$$

such that

$$\Pr\left(\theta \in [L(X_1, \dots, X_n | \alpha), U(X_1, \dots, X_n | \alpha)]\right) = 1 - \alpha.$$

Here, α is some small number, e.g., 0.05 or 0.01.

Point and Interval Estimation: Some Motivation; II

Ingredients of the Confidence Intervals (CIs)

- ightharpoonup L: lower bound, U: upper bound.
- 1 − α : <u>confidence coefficient</u>
 ≡ probability of coverage ≡ level of the CI.
- lacksquare If L and U are both finite, [L,U] is called a 2-sided interval.
- If |L| or U (but not both) is infinity, the CI is called one-sided. If $L=-\infty$, then the CI is called left-sided. If $U=\infty$, then the CI is called right-sided.
- Note that $[L(X_1, \ldots, X_n | \alpha), U(X_1, \ldots, X_n | \alpha)]$ is a random interval; this is an <u>interval estimatOR</u> of θ .
- When $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$, $[L(x_1, \ldots, x_n | \alpha), U(x_1, \ldots, x_n | \alpha)]$ is the <u>interval estimatE</u> of θ (a particular realization of the random interval estimator).

Large-sample justification of a level $(1-\alpha)$ CI

Let $X_{i,j}$ for $i=1,\ldots,m$ and $j=1,\ldots,n$ be iid from F_{θ} . Let $L_i=L\left(X_{i,1},X_{i,2},\ldots,X_{i,n}\right)$ and $U_i=U\left(X_{i,1},X_{i,2},\ldots,X_{i,n}\right)$.

Write the $X_{i,j}$'s in a matrix and compute $[L_i, U_i]$ for each row:

$$\begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,n} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1} & X_{m,2} & \cdots & X_{m,n} \end{bmatrix}$$

Interpretation: If the "experiment" (X_1,X_2,\ldots,X_n) is independently replicated m times and the CI is computed each time, then the frequency of coverage $\frac{S_m}{m}$ of θ by the random intervals $[L_1,U_1],\ldots,[L_m,U_m]$ tends to $1-\alpha$ as $m\to\infty$.