

Exercise 12

Question 3:

Given AP is a tangent at A and OA is radius through A and PA and PB are the tangent segments to circle with centre O.

Therefore, OA is perpendicular to AP , similarly, OB is perpendicular to BP .

:. ∠OAP = 90°

And ∠OBP = 90°

So, ∠OAP = ∠OBP = 90°

 $\therefore \angle OBP + \angle OAP = (90^{\circ} + 90^{\circ}) = 180^{\circ}$

Thus, the sum of opposite angles of quad. ΔOBP is 180°

 \therefore \triangle OBP is a cyclic quadrilateral

Question 4:

Given: From an external point P, tangent PA and PB are drawn to a circle with centre O. CD is the tangent to the circle at a point E and PA = 14cm.

Since the tangents from an external point are equal, we have PA = PB,

Also, CA = CE and DB = DE

Perimeter of Δ PCD = PC + CD + PD

= (PA - CA) + (CE + DE) + (PB - DB)

= (PA - CE) + (CE + DE) + (PB - DE)

= (PA + PB) = 2PA = (2 \times 14) cm = 28 cm Hence, Perimeter of Δ PCD = 28 cm

******* END *******