Control of an Omnidirectional Mobile Base with Multiple Spherical Robots

Vaibhav N. Kadam¹ Leena Vachhani¹ Abhishek Gupta²

¹Systems and Control Engineering Group Indian Institute of Technology, Bombay

²Mechanical Engineering Department Indian Institute of Technology, Bombay

February 12, 2020

Outline

Introduction and Motivation

Assembly of three spherical robots

Kinematic model

Experimental Results

Circular Trajectory tracking

Waypoint Navigation

Conclusion

Introduction

- ► Mobile base are widely used for different types of robots such as human assisting robots, surveillance and reconnaissance etc
- ► The major requirement of these robots is to maneuveur easily through indoor cluttered environment.
- Mobile base with omnidirectional wheels have the advantage of unrestricted maneuverability.
- ▶ We investigate the use of spherical robots as omnidirectional wheels.

Introduction

- ► A three link assembly with snap joint for each robot is designed.
- ▶ In order to co-ordinate three robots, kinematics model is developed and experiments using PI controller for waypoint navigation and circular path is demonstrated.

Assembly of three spheros

- Sphero mini is a programmable COTS spherical robot based on Internal driving unit. It has a IMU sensor and LEDs for status indication and the robot can be operated using Bluetooth communication.
- The Mobile base is 3D printed to hold the spherical robots using a snap fit. These robots here are used as wheels

Figure: Sphero mini

Figure: Three link assembly of Mobile base

Kinematics of Mobile base

Following are the representation used.

- Linear velocities of base is v_x and v_v.
- Angular velocity of base be ω_z and the angle of rotation be θ .
- R is the distance from center of mobile base to spherical robot.
- The linear velocities of individual spheros are v1. v2 and v3.
- The angles θ_1 , θ_2 , θ_3 are the heading angles of the spheros with respect to the x axis.

$$v_1 = (v_x - v_x \sin(\theta))\hat{i} + (v_y + v_y \cos(\theta))\hat{j}$$
. (1)

$$v_2 = (v_x - v_x \cos(60 - \theta))\hat{i} + (v_y - v_y \sin(60 - \theta))\hat{j}.$$

$$v_3 = (v_x + v_x)\hat{i} + (v_y)\hat{j}.$$
 (3)

$$\theta_1 = \arctan \frac{v_y - R\omega_z \cos(\theta)}{v_x - R\omega_z \sin(\theta)}.$$
 (4)

$$\theta_2 = \arctan \frac{v_y - R\omega_z \sin(60 - \theta)}{v_x - R\omega_z \cos(60 - \theta)}.$$
 (5)

$$\theta_3 = \arctan \frac{v_y}{v_x + R\omega_z}$$
 (6)

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 - \sin(\theta) & 1 + \cos(\theta) \\ 1 - \cos(60 - \theta) & 1 + \sin(60 - \theta) \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$
(7)

Experimental Setup

- We put θ = 30° R = 0.1 m. The spheros does not have magnetometer so Yaw angles are calculated by sensor fusion of accelerometer and gyro data.
- The spheros communicate to the Laptop using Bluetooth communication, the position of the mobile base is acquired using the vicon motion capture systems
- For implementation ROS interface is used which runs different software nodes for generating waypoints/leader points to PI controller with position feedback from vicon.
- Kinematic model gets input as $v_x v_y$ and θ and generates v_1 , v_2 , v_3 from equation (7)
- The heading angles of spherical wheels is computed using equations (4), (5), (6)

Figure: Experimental setup

Circular Trajectory tracking

As seen above the mobile base has following the circular path generated by the reference leader points.

Experimental Results

└─Waypoint Navigation

Waypoint Navigation

Similarly the mobile base reaches the different waypoints given.

RMSE for circular trajectory

- The maximum RMSE 0.0156 m.
- Thus experiments shows that the designed mobile base has omnidirectional maneuverability.

Figure: RMSE for Circular Trajectory

Conclusion and Future work

- ► The mobile base is successfully able to maneuver circular path and perform waypoint navigation using kinematic model for the spherical robots as wheels.
- ➤ The developed mobile base has promising applications as an autonomous robot navigating in indoor cluttered environment with unrestricted maneuverability.
- ▶ The future work involves developing controllers for trajectory optimization with unrestricted maneuverability. Investigation of using three link assembly in overcoming small obstacles or gaps is another future direction.