Выпуклые множества

Puc. 5.1

Множество¹⁾ $X \subset \mathbf{R}^n$ называется **выпуклым**, если $x(\lambda) = \lambda x^1 + (1-\lambda)x^2 \in X$ при всех $x^1, x^2 \in X$, $\lambda \in [0; 1]$, т. е. если вместе с любыми своими двумя точками множество X содержит и соединяющий их отрезок (рис. 5.1). **Гиперплоскость** $X = \{x: c'x = a\}, c \in \mathbf{R}^n, \alpha \in \mathbf{R},$ **полупространство** $X = \{x: c'x \leq \alpha\}$ являются выпуклыми множествами (рис. 5.2).

Множество $X \subset \mathbf{R}^n$ называется **выпуклым конусом** с вершиной в начале координат, если из того, что $x, y \in X$, следует, что $x + y \in X$, $\lambda x \in X$ для всех $\lambda \ge 0$ (рис. 5.3).

Puc. 5.2

Основные свойства выпуклых множеств:

- 1. Пересечение любого числа выпуклых множеств выпуклое множество.
- 2. Если $X_1, ..., X_k$ выпуклые множества в \mathbf{R}^n ,
- то множество $X = \sum_{i=1}^k \alpha_i X_i =$ $= \left\{ \begin{array}{l} x \in \mathbf{R}^n : x = \sum_{i=1}^k \alpha_i x^i, \quad x^i \in X_i, \ i = \overline{1,k} \end{array} \right\} \quad \text{выпукло} \quad ($ $\alpha_i, \quad i = \overline{1,k}, \text{— любые числа}).$
- 3. Выпуклы сумма и разность выпуклых множеств X_1 и X_2 , т. е. множества $X_1 \pm X_2 = \left\{ x \in \mathbf{R}^n : x = x^1 \pm x^2, \ x^1 \in \in X_1, x^2 \in X_2 \right\}$.
- 4. Замыкание \overline{X} выпуклого множества X также выпукло.

 $^{^{1)}\,\}mathrm{B}$ дальнейшем считаем, если не оговорено противное, что рассматриваемые множества непустые.

Выпуклой оболочкой множества $X \subset \mathbf{R}^n$ называется множество conv $X = \left\{ x : x = \sum_{i=1}^{n+1} \lambda_i x^i, \ x^i \in X, \ \sum_{i=1}^{n+1} \lambda_i = 1, \ \lambda_i \ge 0, \ i = \overline{1, n+1} \right\}$ (рис. 5.4).

Puc. 5.4 Puc. 5.5

Множество convX cosnagaet c пересечением всех выпуклых множеств, содержащих множество X. Выпуклая оболочка множества — множество выпуклое.

Пусть $x^1, ..., x^k \in \mathbf{R}^n$. Множество $X = \text{conv}\{x^1, ..., x^k\}$ называется выпуклым многогранником (рис. 5.5).

При исследовании задач минимизации важную роль играют следующие утверждения.

Теорема 5.1 (об отделимости выпуклых множеств). Если множества $X, Y \subset \mathbf{R}^n$ выпуклы, хотя бы одно из них ограничено и их замыкания не имеют общих точек ($\overline{X} \cap \overline{Y} = \emptyset$), то они строго отделимы, т. е. существуют пвектор $c, c \neq 0$, и число α такие, что для всех $x \in X, y \in Y$ выполняются неравенства $c'x > \alpha$, $c'y < \alpha$ (рис. 5.6). При этом гиперплоскость $c'x = \alpha$ называется разделяющей гиперплоскостью.

Если X, Y- выпуклые множества, не имеющие общих внутренних точек, то они отделимы, т. е. существуют $c, c \neq 0$, и α такие, что $c'x \geq \alpha, \quad c'y \leq \alpha \quad \forall \ x \in X, \ y \in Y$.

Теорема 5.2 (о существовании опорной гиперплоскости). *Если* x^* – *граничная точка выпуклого множества* X, то в этой точке существует опорная гиперплоскость κ X, m. e. nри некотором $c \neq 0$ выполняется неравенство $c'x \leq c'x^*$ \forall $x \in X$ ($c'x = c'x^*$ – **опорная гиперплоскость**).

Выпуклые функции

Функция f(x), определенная и конечная на выпуклом множестве $X \subset \mathbf{R}^n$, называется **выпуклой**, если для любых x^1 , $x^2 \in X$ выполняется неравенство (рис. 5.7)

$$f(\lambda x^{1} + (1 - \lambda)x^{2}) \le \lambda f(x^{1}) + (1 - \lambda)f(x^{2}) \quad \forall \quad \lambda \in [0; 1].$$
 (1)

Выпуклая функция f(x), $x \in X$, называется *строго выпуклой*, если для любых x^1 , $x^2 \in X$, $x^1 \neq x^2$, и $\lambda \in (0; 1)$ выполняется строгое неравенство

(5.1): $f(\lambda x^1 + (1-\lambda)x^2) < \lambda f(x^1) + (1-\lambda)f(x^2)$. У строго выпуклой функции точки A и B не совпадают (рис. 5.7). Функция $f(x) = x^2$, $x \in \mathbf{R}$, строго выпуклая (рис. 5.8).

Приведем несколько критериев выпуклости функций.

а) Для выпуклости функции f(x), определенной на выпуклом множестве X, необходимо и достаточно, чтобы было выпуклым множество $X_f = \{\{x, y\}: x \in X, y \geq f(x)\}$.

Множество X_f называется **надграфиком** функции f(x). К примеру, функция $f(x) = x^2$, $x \in \mathbb{R}$, выпуклая, поскольку ее надграфик — выпуклое множество (рис. 5.8).

- б) Функция f(x), $x \in \mathbf{R}^n$, выпукла тогда и только тогда, когда выпукла функция $\phi(t) = f(x+tl)$ скалярного аргумента $t \in \mathbf{R}$ при любых $x, l \in \mathbf{R}^n$.
- в) Функция $f \in C^{(1)}({f R}^n)$ выпукла в том и только в том случае, если выполняется неравенство

$$f(x) - f(x^*) \ge (x - x^*)' \frac{\partial f(x^*)}{\partial x}$$
 (2)

для всех $x, x^* \in \mathbf{R}^n$. В случае строгой выпуклости неравенство (2) выполняется как строгое для любых $x, x^* \in \mathbf{R}^n, x \neq x^*$.

г) Если $f \in C^{(2)}(\mathbf{R}^n)$, то для ее выпуклости необходимо и достаточно, чтобы $\partial^2 f(x)/\partial x^2 \ge 0$, $x \in \mathbf{R}^n$ (если $\partial^2 f(x)/\partial x^2 > 0$, $x \in \mathbf{R}^n$, то функция f строго выпукла).

Напомним, что симметричная $n \times n$ -матрица $A = (a_{ij}, i, j = \overline{1,n})$ называется неотрицательной (положительной) и обозначается $A \ge 0$ (A > 0), если знакоположительна (определенно положительна) квадратичная форма: $x'Ax \ge 0$ (x'Ax > 0, $x \ne 0$) при любых $x \in \mathbf{R}^n$. Справедливы следующие утверждения (критерии Сильвестра):

а) Для неотрицательности матрицы A необходимо и достаточно, чтобы все ее главные миноры были неотрицательны:

$$\det A \begin{pmatrix} i_1, \dots, i_s \\ i_1, \dots, i_s \end{pmatrix} \ge 0, \ 1 \le i_1 < i_2 < \dots < i_s \le n; \ s = \overline{1, n}.$$

Минор называется *главным*, если он составлен из строк и столбцов с одинаковыми номерами.

б) Для положительности матрицы A необходимо и достаточно, чтобы все ее последовательные главные миноры D_{s} были положительны, т. е.

$$D_s = \det(a_{ij}, i = \overline{1, s}; j = \overline{1, s}) > 0, s = \overline{1, n}.$$

Аналогично можно записать и следующие критерии:

- а) отрицательности матрицы: $(-1)^s D_s > 0$, $s = \overline{1,n}$;
- б) неположительности матрицы: $(-1)^s \det A \begin{pmatrix} i_1, ..., i_s \\ i_1, ..., i_s \end{pmatrix} \ge 0$, $s = \overline{1, n}$.

Функция f(x), определенная на выпуклом множестве X, называется вогнутой (строго вогнутой), если функция -f(x), $x \in X$, выпукла (строго выпукла).

Основные свойства выпуклых функций:

- 1. Выпуклая функция f(x), $x \in X$, непрерывна в точках относительной внутренности множества X.
- 2. Если функции $f_i(x)$, $i=\overline{1,m}$, $x\in X$, выпуклы, то при любых $\alpha_i\geq 0$, $i=\overline{1,m}$, выпуклы и функции $f(x)=\sum_{i=1}^m\alpha_if_i(x)$, $f(x)=\max\{f_i(x),\ i=\overline{1,m}\}$.
- 3. У выпуклой функции локальный минимум является и глобальным. У строго выпуклой функции минимум может достигаться в единственной точке.
- 4. Множество уровня $\{x: f(x) \le c\}$ выпуклой функции $f(x), x \in \mathbf{R}^n$, или пусто, или выпукло.
- 5. В каждой точке $x \in \mathbf{R}^n$ выпуклая функция f(x) имеет производную по любому направлению $l \in \mathbf{R}^n$:

$$\frac{\partial f(x)}{\partial l} = \lim_{t \to +0} \frac{f(x+tl) - f(x)}{t}.$$

6. Вектор $c \in \mathbf{R}^n$ называется *субградиентом* выпуклой функции f(x), $x \in \mathbf{R}^n$, в точке x^* , если для любых $x \in \mathbf{R}^n$ выполняется неравенство $f(x) - f(x^*) \ge c'(x - x^*)$. Множество субградиентов в точке x^* называется *субдифференциалом* и обозначается $\partial f(x^*)$. В каждой точке субдифференциал — непустой выпуклый компакт (состоит из единственного элемента $\partial f(x)/\partial x$, если f(x) дифференцируема в x). Справедлива формула

$$\frac{\partial f(x)}{\partial l} = \max c'l, \quad c \in \partial f(x).$$

7. Пусть X – выпуклое множество. Вектор $l \in \mathbf{R}^n$, $l \neq 0$, назовем **допустимым направлением** в точке $x \in X$ относительно множества X, если найдется число ε_0 , $\varepsilon_0 > 0$, такое, что $x + \varepsilon l \in X$ при любом $\varepsilon \in [0; \varepsilon_0]$.

Теорема 5.3 (критерий оптимальности). Для того чтобы точка $x^0 \in X$ была точкой минимума выпуклой функции f(x), $x \in X$, необходимо и достаточно, чтобы для любого допустимого направления l в точке x^0 выполнялось неравенство

$$\frac{\partial f(x^0)}{\partial l} \ge 0.$$

Из этого критерия следует, что каждая стационарная точка x^* $\left(\frac{\partial f(x^*)}{\partial x} = 0\right)$ выпуклой гладкой функции f(x) является ее точкой минимума.