安徽大学 2022 — 2023 学年第 1 学期

《 线性代数 A 》 考试试卷 (A 卷) (闭卷 满分 100 分 时间 120 分钟)

		考场登记表序号
手中		一、选择题(每小题3分,共15分)
姓名	SK SK	1. 若 n 阶矩阵 $A 与 B$ 等价,则(
	超 装 订订	2. 若向量组(I) $\alpha_1, \alpha_2, \cdots \alpha_r$ 可由向量组(II) $\beta_1, \beta_2, \cdots \beta_s$ 线性表示,则() A. 若向量组(I)线性无关,则 $r \le s$ B. 若向量组(I)线性相关,则 $r > s$ C. 若向量组(II)线性无关,则 $r \le s$ D. 若向量组(II)线性相关,则 $r > s$
专	参 題 勿	3. 若非齐次方程组 $AX = \beta$ (A 为 n 阶方阵, $\beta \neq 0$)有三个不同的解,且 A 的伴随矩阵 $A^* \neq 0$,则导出组 $AX = 0$ 的基础解系() A. 不存在 B. 只含有一个非零解向量 C. 含有两个线性无关的解向量 D. 含有三个线性无关的解向量
年级	**************************************	4. 若 A 为 n 阶非零方阵,且 $A^3 = 0$,则以下选项正确的是() A. $E - A$ 不可逆, $E + A$ 不可逆 B. $E - A$ 不可逆, $E + A$ 可逆 C. $E - A$ 可逆, $E + A$ 不可逆 D. $E - A$ 可逆, $E + A$ 可逆
然/然		5. 若矩阵 $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $A = B$ () A. 合同且相似 B. 合同但不相似 D. 既不合同也不相似

- 二、填空题(每小题3分,共15分)
- 6. A、B为 3 阶方阵,且|A|=3,|B|=2, $|A^{-1}+B|=2$,则 $|A+B^{-1}|=$ _______.
- 7. 已知 3 阶方阵 A 的特征值互不相同,且满足 |A|=0,则 A 的秩等于_______.

8. 向量
$$\alpha_1 = (1 \ 1 \ 1)^T$$
, $\alpha_2 = (1 \ 0 \ k)^T$, $\alpha_1 \alpha_2^T$ 相似于 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 $k =$ _______.

9. 若
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
,矩阵 B 满足 $BA = B + 2I$,则 $B =$ ______.

10. 若 3 阶矩阵 A 的特征值分别 1, -1, 2, 则 $\left|2A^*\right| =$ ________.

三、计算题(每小题10分,共60分)

12. 求
$$\begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ 3 & -1 & 2 \end{pmatrix}$$
的逆矩阵.

13. 设矩阵
$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, 方程组 $AX = \beta$ 有解但不唯一,求 a 及方程组通解.

14. 化向量组 $\alpha_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ 为标准正交向量组.

15. 已知三阶实对称矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
,求正交矩阵 P 及对角矩阵 Λ ,使得 $P^{-1}AP = \Lambda$.

16. 求实数t的范围,使得二次型 $tx_1^2 + 2x_1x_3 + 2x_2^2 + tx_3^2$ 为正定二次型.

四、证明题(每小题5分,共10分)

- 17. 证明:任意方阵可以表示为一个对称矩阵和一个反对称矩阵的和.
- 18. 设矩阵 A 为n 阶正定矩阵,I 为同阶单位阵. 证明 |A+I| > 1.