

Knowledge grows

Development of intrinsic kinetic model for SCR monolith catalysts

Sang Baek Shin (Yara International) Štěpán Špatenka, Sreekumar Maroor (PSE UK) In Seon Kim (PSE Korea)

Yara International

We deliver sustainable solutions for agriculture and the environment

Yara International ASA is a Norwegian chemical company headquartered in Oslo, Norway.

 Established as Norsk Hydro – the world's first producer of mineral nitrogen fertilisers – in 1905, demerged in 2004.

Born in Norway

We have pioneered agricultural growth and production for over 100 years

1900-1905

Birkeland's Invention

Birkeland's discovery that hydroelectric power could be used to extract nitrogen from the air led to Norsk Hydro opening December 2, 1905.

1906-1939

Attracting Royal Attention

New large scale production plants opening and under construction in Notodden and Rjukan respectively are visited by King Chulalongorn of Siam. The plant at Herøya established in 1928. First production of regular NPK fertilizer in 1938.

1940-1959

Extending our Reach

Stockholm is home to a new sales office and the USA becomes a customer. The Glomfjord plant opens using hydroelectric power to upgrade ammonia to calcium nitrate and NPK.

1960-2003

Going Global

Qafco JV established in 1969. Yara acquires companies in the Netherlands, Sweden, Germany, the UK, France, Italy and China and establishes an office in Zimbabwe. Adubos Trevo is acquired in Brazil.

2004-2014

Going Public -**Industry Shaper**

March 25, 2004, Yara is listed on the Oslo Stock Exchange. The tagline 'Knowledge grows' introduced.

Yara offers solutions and work with public and private partners to create profitable and sustainable growth both for shareholders. stakeholders and society at large

2015 ----

Knowledge grows -Providing shared value

Yara's knowledge, products and solutions grow farmers', distributors' and industrial customers' businesses profitably and responsibly while nurturing and protecting the earth's resources, food and environment.

Knowledge grows

Knowledge grows

Today

we have a global impact

WE

Employ more than 13 000 people

Operate in more than **50 countries**

Work with 15 mill. farmers

Sell to about 160 countries

OUR PRODUCTS HELP

Produce 240 mill. tons of grains

Feed 240 mill. people

Deliver fresh air for 50 mill. citizens

NOK 112 Billion (USD 14 Billion)

Our global presence

is growing

R&D units

are located in Europe

Facilities: Catalyst testing rigs, nitrophosphate process pilot plant and fertiliser quality testing laboratories.

Pocklington (UK)

The Yara
Pocklington site is
the global centre
for the
development and
production of the
YaraVita range of
foliar and
micronutrient
fertilizers.

Vlaardingen (Netherlands) Hanninghof (Germany) Sluiskil (Netherlands)

Responsible for Straight N fertilisers like Urea and Ammonium nitrate. Facilities: Pilot plant for particulation and

quality testing laboratories.

Agronomical testing and research, product development, new products, and market support

Kotkaniemi (Finland)

Background & objective

- Yara is a leading producer of complete NOx abatement solutions, including SCR and SNCR systems for industrial and maritime segment
- In order to enhance the SCR business, Yara is developing novel designs of SCR deNOx catalyst monolith
 - By applying model-based approach to reactor design
 - Requires intrinsic reaction kinetics for SCR
- Kinetic experiments on a crushed SCR catalyst were performed by Yara
- Applied gPROMS Advanced Model Library for Fixed-Bed Catalytic Reactors (AML:FBCR) to extract Intrinsic kinetic parameters by considering simultaneously catalytic chemical reactions and all relevant transport phenomena

Reaction scheme for SCR

NOx reduction reactions

- 1) $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$ (standard SCR)
- 2) $6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$
- 3) $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$
- 4) $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$
- 5) NO + NO₂ + 2NH₃ \rightarrow 2N₂ + 3H₂O (fast SCR)

NH₃ oxidation reactions

- 6) $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$
- 7) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$
- 8) $4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$
- 9) $4NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$
- 10) $2NH_3 + 8NO \rightarrow 5N_2O + 3H_2O$
- 11) $6NH_3 + 8NO_2 + 3O_2 \rightarrow 4N_2O + 6H_2O$
- 12) $4NH_3 + 4NO + 3O_2 \rightarrow 4N_2O + 6H_2O$
- 13) $16NH_3 + 12NO + 7O_2 \rightarrow 4N_2O + 24H_2O$

Additional reactions

- 14) $2SO_2 + O_2 \rightarrow 2SO_3$
- 15) $NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4$
- 16) $2NH_3 + SO_3 + H_2O \rightarrow (NH_4)_2SO_4$
- 17) $2NH_4HSO_4 \rightarrow (NH_4)_2SO_4 + H_2SO_4$
- 18) $NH_4HSO_4 + NH_3 \rightarrow (NH_4)_2SO_4$
- 19) $2NH_3 + H_2O + 2NO_2 \rightarrow NH_4NO_3 + NH_4NO_2$
- 20) $2NH_3 + 2NO_2 \rightarrow NH_4NO_3 + N_2 + H_2O$

- The number of reactions to be considered in gPROMS modelling was reduced:
 - Experiments with SO₂ and SO₃ were not performed
 → all reactions involving SOx are excluded.
 - NH₄NO₃ is not being measured and hence reactions involving NH₄NO₃ are excluded.
 - NO₂ could not be introduced in the feed → it was not possible to distinguish between some of the reactions
 - Experiments without NO do not show enough evidence to consider reaction 8 and 9

Reduced reaction scheme

NOx reduction reactions

1)
$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$
 (standard SCR)

2)
$$6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$$

4)
$$2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$$

NH₃ oxidation reactions

6)
$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$

7)
$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

10)
$$2NH_3 + 8NO \rightarrow 5N_2O + 3H_2O$$

12)
$$4NH_3 + 4NO + 3O_2 \rightarrow 4N_2O + 6H_2O$$

Gas phase reactions

1)
$$2NO + O_2 \rightarrow 2NO_2$$

2)
$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

3)
$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$

7 catalytic reactions

3 thermal reactions

Reaction rate equations for gPROMS modelling

- Eley-Rideal mechanism is generally accepted for SCR reactions over V-W-Ti catalyst for temperatures > 200°C: NH₃ is strongly adsorbed on the catalyst surface and reacts with NO in the gas phase.
- Oxygen adsorbs on different active site. Adsorption of NO and NO₂ compete with O₂
- Catalytic reactions:

Catalytic Reaction	Reaction rate
1	$r_{1} = \frac{k_{1} K_{NH_{3}} P_{NH_{3}} K_{O_{2}} P_{O_{2}} P_{NO}}{\left(1 + K_{NH_{3}} P_{NH_{3}}\right) \left(1 + K_{O_{2}} P_{O_{2}} + K_{NO} P_{NO} + K_{NO_{2}} P_{NO_{2}}\right)}$
2	$r_2 = \frac{k_2 \mathbf{K}_{NH_3} \mathbf{P}_{NH_3} \mathbf{P}_{NO}}{\left(1 + \mathbf{K}_{NH_3} \mathbf{P}_{NH_3}\right)}$
4	$r_{4} = \frac{k_{_{4}} K_{_{NH_{3}}} P_{_{NH_{3}}} K_{_{O_{2}}} P_{_{O_{2}}} P_{_{NO_{2}}}}{\left(1 + K_{_{NH_{3}}} P_{_{NH_{3}}}\right) \left(1 + K_{_{O_{2}}} P_{_{O_{2}}} + K_{_{NO}} P_{_{NO}} + K_{_{NO_{2}}} P_{_{NO_{2}}}\right)}$
6	$r_{6} = \frac{k_{6} K_{NH_{3}} P_{NH_{3}} K_{O_{2}} P_{O_{2}}}{\left(1 + K_{NH_{3}} P_{NH_{3}}\right) \left(1 + K_{O_{2}} P_{O_{2}} + K_{NO} P_{NO} + K_{NO_{2}} P_{NO_{2}}\right)}$
7	$r_7 = \frac{k_7 K_{NH_3} P_{NH_3} K_{O_2} P_{O_2}}{\left(1 + K_{NH_3} P_{NH_3}\right) \left(1 + K_{O_2} P_{O_2} + K_{NO} P_{NO} + K_{NO_2} P_{NO_2}\right)}$
10	$r_{10} = \frac{k_{10} K_{NH_3} P_{NH_3} P_{NO}}{\left(1 + K_{NH_3} P_{NH_3}\right)}$
12	$r_{12} = \frac{k_{12} K_{NH_3} P_{NH_3} K_{O_2} P_{O_2} P_{NO}}{\left(1 + K_{NH_3} P_{NH_3}\right) \left(1 + K_{O_2} P_{O_2} + K_{NO} P_{NO} + K_{NO_2} P_{NO_2}\right)}$

Gas phase reactions:

Gas phase reaction	Reaction rate
1	$r_1 = k_1^{T_{rof}} e^{\frac{E_1 \left[\frac{1}{T} - \frac{1}{T_{rof}}\right]}{R \left[\frac{1}{T} - \frac{1}{T_{rof}}\right]}} C_{NO}^2 C_{O_2}^n$
2	$r_2 = k_2^{T_{ref}} e^{\frac{E_2}{R} \left[\frac{1}{T} - \frac{1}{T_{ref}} \right]} C_{NH_3}^1 C_{O_2}^0$
3	$r_3 = k_3^{T_{ref}} e^{\frac{E_3}{R} \left[\frac{1}{T} \frac{1}{T_{ref}} \right]} C_{NH_3}^1 C_{O_2}^0$

Reduced reaction scheme:

NOx reduction reactions

- 1) $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$ (standard SCR)
- 2) $6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$
- 4) $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$

NH₃ oxidation reactions

- 6) $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$
- 7) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$
- 10) $2NH_3 + 8NO \rightarrow 5N_2O + 3H_2O$
- 12) $4NH_3 + 4NO + 3O_2 \rightarrow 4N_2O + 6H_2O$

Gas phase reactions

- 1) $2NO + O_2 \rightarrow 2NO_2$
- 2) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$
- 3) $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$

Experimental setup

gPROMS model for experimental setup

 Model setup in gPROMS ModelBuilder using PSE's Advanced Model Library for Fixed-Bed Catalytic Reactors (AML:FBCR).

Example of results

Temperature profile in the whole experimental rig

gPROMS AML:FBCR

Advanced Model Library for Fixed-Bed Catalytic Reactors

- Fundamental models
 - Catalyst pellet (1-D)
 - Tube (2-D)
 - Cooling side
 - 'Utility models'
 - distribution, aggregation
- Multiple operation modes
 - Gas-phase or liquid-phase fluid
 - Homogeneous and inhomogeneous catalyst
 - Axial and radial flow beds
 - Multitubular designs
- Hybrid gPROMS-CFD multitubular modelling

AML-FBCR Catalyst Bed - Radial Flow

🧱 👺 Catalyst Pellets Section Axial Ra..

🚰 👺 Catalyst Pellets Section Axial Ra..

Catalyst Pellets Section Radial i...

AML-FBCR Catalyst Bed - Axial Flow

Catalyst Pellets Section 1D Adia...

Catalyst Pellets Section

Catalyst Section

(8)

AML-FBCR Basics

Aggregator

Distributor

Dummy Section

gPROMS AML:FBCR

Advanced Model Library for Fixed-Bed Catalytic Reactors

 2-D mass and energy balances allow realistic predictions of temperature and concentration profiles inside the bed

gPROMS AML:FBCR Catalyst pellet model

• 2 different AML:FBCR models employed:

	1-D distributed pellet model	Lumped pellet model
Fidelity	Simultaneous multicomponent diffusion and reactions Prediction of temperature and composition profiles inside pellets.	Simplified lumped approach with average reaction rate Requires catalyst effectiveness factor calculation
Complexity for catalyst bed model	Additional dimension to a 2-D bed model (→3-D model)	Not adding any more complexity to a 2-D bed model
Usability for modelling of catalyst monolith	Requires distributed model of catalyst layer in addition to a 3D model of a channel (e.g. when using CFD, it requires using porous volume zones to represent the catalyst)	Allows considering catalytic reaction as a surface reaction (e.g. when using CFD, only surface zones are needed to represent the catalyst)

gPROMS AML:FBCR Catalyst pellet model

When is lumped pellet model applicable?

- a. Catalytic reaction is very slow → concentration profiles inside catalyst are uniform
 (It could be the case at lower temperatures, but is it at higher?!)
- b. Catalytic reaction is very fast → all reactions take place in very thin catalyst layer at the surface (It could be the case at higher temperatures, but is it at lower?!)
 - Units of reaction rates are effectively in [mol/s/m²cat,external] instead of [mol/s/kgcat]
- c. When Fick diffusion applies and effectiveness factor can be predicted reasonably well:
 - Effective diffusivity of all components is similar <u>AND</u> reactions are pseudo-first order (i.e. only one reactant is limiting, concentration of others is constant)

In studied system: contents of reactants is <0.2%, similar diffusivities of main reactants in N_2 , but pseudo-first order does not apply at all conditions

@1bar, 350°C: $D_{NH3,N2} = 0.83 \text{cm}^2/\text{s}$ $D_{NO,N2} = 0.87 \text{cm}^2/\text{s}$ $D_{NO2,N2} = 0.70 \text{cm}^2/\text{s}$ $D_{N20,N2} = 0.54 \text{cm}^2/\text{s}$ $D_{H20,N2} = 0.95 \text{cm}^2/\text{s}$

- → Lumped model needs to be applied with caution
- Applied approach → use <u>lumped model</u> with effectiveness factor for obtaining the intrinsic kinetics, then validate the results using reactor model with <u>distributed pellet model</u>

Parameter estimation

Estimated parameters

- Kinetic parameters
 - Rate constants: k, E
 - Adsorption constants: K_{ads}, ΔH_{ads}

$$\mathbf{k}_{j} = \mathbf{k}_{j}^{T_{ref}} e^{\frac{-E_{j}}{R} \left[\frac{1}{T} - \frac{1}{T_{ref}} \right]} \quad j = 1, 2, 3, 4, 6, 7, 10, 12$$

$$\mathbf{K}_{i} = \mathbf{K}_{i}^{T_{ref}} e^{\frac{-\Delta H_{i}}{R} \left[\frac{1}{T} - \frac{1}{T_{ref}} \right]} \quad i = NH_{3}, O_{2}, NO, NO_{2}$$

- Catalyst pellet tortuosity
 - Typically estimated from experiments with different sizes of pellets of known well-defined shape
 - However, crushed catalyst is a mixture of shapes:

Ideal shape	Characteristic length
	R/3
	R/2
	R = thickness/2

- → Estimated pellet tortuosity will depend on assumed average shape
- → it needs to be verified using experiments at fixed geometry

(e.g. monolith catalyst or catalyst pellets of a well-defined shape)

Parameter estimation

Lumped pellet model

- Effectiveness factor model
 - Thiele modulus

$$\phi(z,r) = L \sqrt{\frac{k^{effective}(z,r)\rho_{cat}}{D_{NH_3,m}\left(\frac{\varepsilon_{cat}}{\tau}\right)}}$$

Pellet characteristic length

$$L = \frac{R_{cat}}{L_{par}}$$

Pseudo-first order constant w.r.t. NH₃

$$k^{effective}(z,r) = \frac{\sum_{j=1}^{NR} -r_j^s(z,r) v_{NH_{3,j}}}{C_{NH_3}^s(z,r)}$$

• Effectiveness factor
$$\eta(z,r) = \frac{\tanh(\phi(z,r))}{\phi(z,r)}$$

(all variables local, i.e. at given axial and radial position in the bed)

- \rightarrow Uncertain parameters in above equations for crushed catalyst: τ , L_{par}, (R_{cat})
 - · However, they are all correlated, hence only one of them can be estimated.

$$R_{cat} \, \frac{\sqrt{\tau}}{L_{par}} = const.$$

Parameter estimation results – example:

Comparison to data at different temperatures

Varying granule size

Experimental data set				
Pellet size [mm]	0.1-0.8			
Catalyst mass [g]	0.3			
NO feed [ppm]	1500			
NH ₃ feed [ppm]	1500			
Gas load [L/min]	4.8			
O ₂ feed [%]	3.0			

Parity Plots: NO and NH₃

Surface reaction vs. 1-D pellet model Parity plots: NH₃

Standard deviation plot = ± 50 ppm

1-D pellet model

500

1000

1500

Experimental Measurement

2000

2500

Surface reaction vs. 1-D pellet model Comparison of estimated parameters

141		Optimal 95% Confidence		5% Confidence	Optimal	95% Confidence Interval		
	Parameter	Est	imate		Interval	Estimate	interval	
		Surface reaction model			tion model	1-D pellet model		
	$k_{_{1}}^{T_{ref}}$ (T _{ref} = 400 °C)	8.2378E-04		8.4816E-05		8.9436E-04	9.8381E-05	
	$k_{_2}^{T_{ref}}$ (T _{ref} = 400 °C)	6.3373E-06		1.4046E-06		6.5450E-06	1.4231E-06	
	$k_{_4}^{T_{ref}}$ (T _{ref} = 400 °C)	9.8026E-02			2.5067E-02	6.9919E-01	6.7037E-01	
	$k_{_{6}}^{T_{ref}}$ (T _{ref} = 400 °C)	1.3743E-03			2.6983E-04	1.4310E-03	2.7378E-04	
	$k_{_{7}}^{T_{ref}}$ (T _{ref} = 400 °C)	7.6008E-05		4.2972E-05		6.5711E-05 4.1310E-0		
	$k_{_{10}}^{T_{ref}}$ (T _{ref} = 450 °C)	8.0206E-07		1.6711E-07		7.9037E-07	1.6267E-07	
	$k_{_{12}}^{T_{ref}}$ (T _{ref} = 450 °C)	5.0465E-05		8.7675E-06		5.5904E-05	1.0083E-05	
	$ \ln \left(\frac{1}{K_{NH_3}^{T_{ref}}} \right) (T_{ref} = 400) $	°C)	3.6960		0.3192	3.7363	0.2783	
	$\ln\left(\frac{1}{K_{O_2}^{T_{ref}}}\right) (T_{ref} = 400$	$\frac{1}{K_{O_2}^{T_{ref}}}\right) (T_{ref} = 400 ^{\circ}C)$		1	1.0396	5.7047	1.0460	
	$\Delta H_{_{N\!H_3}}$	-1	-124215		17545	-110456	13818	
	$\Delta {H}_{O_2}$		0		Value fixed by user	o	Value fixed by user	

NOx reduction reactions

- 1) $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$ (standard SCR)
- 2) $6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$
- 4) $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$

NH₃ oxidation reactions

- 6) $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$
- 7) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$
- 10) $2NH_3 + 8NO \rightarrow 5N_2O + 3H_2O$
- 12) $4NH_3 + 4NO + 3O_2 \rightarrow 4N_2O + 6H_2O$
- Conclusion: developed lumped pellet model is applicable for NH₃ and NO conversion. Some inaccuracy can be expected for NO₂ conversion.

Monolith experiments for kinetic model validation

 2.5cm and 5cm long mini-monolith catalysts are used.

Application of kinetic model for new catalyst design

• Monolith catalyst simulation shows that adjusting the size and the aspect ratio of elongated channel allows to achieve lower ΔP and higher NO conversion than conventional square channel

Concluding remarks

- PSE reviewed Yara's experimental plan and data and suggested modifications to the experimental setup and additional experiments with focus on validation of reaction kinetics
- Original reaction scheme was reduced based on analysis of experimental data
- Reaction rate expressions were identified from literature.
- Kinetic parameter estimation was performed using gPROMS AML:FBCR
- 1D-pellet model and surface reaction model were compared.
 - Surface reaction model with predicted effectiveness factor seems to be adequate for prediction of NOx conversion
- Kinetic model was validated by the comparison with mini-monolith experiments
- Project enabled Yara to obtain a new patent for a novel SCR monolith catalyst design

List of experiments

- 55 kinetic experiments were conducted under varying operating conditions:
 - Space velocity
 - Gas load
 - Granule size
 - Reactant concentration level at NH₃/NO ratio of 1
 - NH₃ concentration
 - NO concentration
 - O₂ concentration
- 4 experiments without catalyst
 - investigate (non-catalytic) gas-phase reactions
- Temperature varied from 200°C to 450°C in all experiments

Normal 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 4.8 0.1-0.2 0.3 1500 1500 6.6 0.1-0.2 0.3 1500 1500 6.6 0.1-0.2 0.3 1500 1500 6.6 0.1-0.2 0.3 1500 1500 6.6 0.1-0.2 0.3 1500 1500 9.6 0.1-0.2 0.3 1500 1500 9.6 0.1-0.2 0.2 1500 1500 9.6 0.1-0.2 0.4 1500 1500 6.4 0.1-0.2 0.5 1500 1500 8.0 0.1-0.2 0.5 1500 1500 8.0 0.1-0.2 0.5 1500 1500 8.0 0.1-0.2 0.5 1500 1500 4.8 0.1-0.2 0.5 1500 1500 4.8 0.1-0.2 0.5 1500 1500 4.8 0.1-0.2 0.5 1500 1500 4.8 0.1-0.2 0.5 0.1-0.2 0.5 0.1-0.2 0.5 0.1-0.2 0.5 0.1-0.2	02	Gas load	NH3	NO	Catalyst mass	Particle size	Factor	Run#
S.V.1	[%]	[L/min]	[ppmv]	[ppmv]	[g]	[mm]	ractor	Kull #
S.V.1	13.0	4.8	1500	1500	0.3	0.1-0.2	Normal	1
S.V.1	13.0	3.6	1500	1500	0.3	0.1-0.2		2
S.V.1	13.0							3
S	13.0						S.V.1	
S.V.2	13.0							
7 8 S.V.2 0.1-0.2 0.3 1500 1500 4.8 9 10 0.1-0.2 0.3 1500 1500 4.8 11 0.1-0.2 0.3 1500 1500 8.4 11 0.1-0.2 0.3 1500 1500 9.6 12 0.1-0.2 0.3 1500 1500 3.2 13 14 Gas load 0.1-0.2 0.4 1500 1500 5.6 15 16 0.1-0.2 0.4 1500 1500 5.6 4.8 15 16 0.1-0.2 0.6 1500 1500 8.0 6.4 17 18 Granule 0.1-0.2 0.6 1500 1500 4.8 19 9.2-0.3 0.3 1500 1500 4.8 4.8 19 9.2-0.3 0.3 1500 1500 4.8 1.0 4.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 <td>3.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	3.0							-
8 9 S.V.2	3.0							
9								
10	3.0						S.V.2	
11	3.0							
12	3.0							
13	3.0							
14	3.0							
15	3.0							
16	3.0	6.4	1500	1500	0.4	0.1-0.2	Gas load	14
17	3.0	8.0	1500	1500	0.5	0.1-0.2		15
18	3.0	9.6	1500	1500	0.6	0.1-0.2		16
19	3.0	4.8	1500	1500	0.3	0.2-0.3		17
19	3.0	4.8	1500	1500	0.3	0.3-0.4	Cenaula	18
20	3.0	4.8	1500	1500		0.4-0.5		19
21	3.0						size	
Reactant	3.0	4.8						21
Reactant conc. level	3.0							
24	3.0						Reactant	
Description	3.0						1	
26	3.0						conc. iever	
No conc.	3.0							
28 0.1-0.2 0.3 2000 1500 4.8 29 0.1-0.2 0.3 1500 500 4.8 30 NH3 conc. 0.1-0.2 0.3 1500 1000 4.8 31 0.1-0.2 0.3 1500 1000 4.8 32 0.1-0.2 0.3 1500 1500 4.8 34 0.1-0.2 0.3 1500 1500 4.8 35 0.1-0.2 0.3 1500 1500 4.8 36 Reproducibility test 0.1-0.2 0.3 1500 1500 4.8 37 modified run #15 0.1-0.2 0.3 1500 1000 8.4 37 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 150 4.8 40 Without NH3 0.1-0.2 0.3 1500 4.8 41 Without NH3 0.							NO sons	
NH3 conc.	3.0						NO CONC.	
NH3 conc. 0.1-0.2 0.3 1500 1000 4.8	3.0							
31	3.0							-
32	3.0						NH3 CONC.	
33 O2 conc.	3.0							
34 O2 conc. 0.1-0.2 0.3 1500 1500 4.8 35 0.1-0.2 0.3 1500 1500 4.8 36 Reproducibility test 0.1-0.2 0.3 1500 1500 4.8 37 modified run #15 0.1-0.2 0.5 1250 1500 8.0 38 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 48 modified case #247 0.1-0.2 0.3 1500 1500 12.0 48 modified case #233 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #237 0.1-0.2 0.3 1500 1500 12.0 500 modified case #239 0.3-0.4 0.3 2000 2000 12.0 500 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 12.0 500 1	0.0							
34 0.1-0.2 0.3 1500 1500 4.8 35 0.1-0.2 0.3 1500 1500 4.8 36 Reproducibility test 0.1-0.2 0.3 1500 1500 8.0 37 modified run #15 0.1-0.2 0.5 1250 1500 8.0 38 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 1500 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 <	6.0		1500	1500		0.1-0.2	O2 conc	
36 Reproducibility test 0.1-0.2 0.3 1500 1000 8.4 37 modified run #15 0.1-0.2 0.5 1250 1500 8.0 38 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47	9.0	4.8	1500	1500	0.3	0.1-0.2		34
37 modified run #15 0.1-0.2 0.5 1250 1500 8.0 38 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 1500 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 12.0 49 <td>17.0</td> <td>4.8</td> <td>1500</td> <td>1500</td> <td>0.3</td> <td>0.1-0.2</td> <td></td> <td>35</td>	17.0	4.8	1500	1500	0.3	0.1-0.2		35
38 modified run #25 0.6-0.7 0.3 1750 1750 9.6 39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 1500 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 12.0 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49	3.0	8.4	1000	1500	0.3	0.1-0.2	Reproducibility test	36
39 modified run #24 0.4-0.5 0.3 1250 1250 4.8 40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 12.0 49 modified case #233 0.1-0.2 0.3 1500 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 50	2.0	8.0	1500	1250	0.5	0.1-0.2	modified run #15	37
40 Without NO 0.1-0.2 0.3 0 1500 4.8 41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #227 0.1-0.2 0.3 0 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51<	3.0	9.6	1750	1750	0.3	0.6-0.7	modified run #25	38
41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0	4.8	1250	1250	0.3	0.4-0.5	modified run #24	39
41 Without NH3 0.1-0.2 0.3 1500 0 4.8 42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.3 1500 1500 12.0 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #223 0.4-0.5 0.3 1500 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 50 modified case #234 0.1-0.2 0.3 1500 1500 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0	4.8	1500	0	0.3	0.1-0.2	Without NO	40
42 modified run #33 0.4-0.5 0.3 1500 1500 4.8 43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0	4.8						41
43 changed O2 injection* 0.1-0.2 0.3 1500 1500 4.8 44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 1500 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	5.0							
44 Without O2 0.1-0.2 0.5 2000 2000 4.8 45 Increased gas load 0.1-0.2 0.3 1500 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 0 1500 15.0 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0							
45 Increased gas load 0.1-0.2 0.3 1500 12.0 46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 0 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	0.0							
46 modified case #240 0.1-0.2 0.3 1500 1500 12.0 47 modified case #247 0.1-0.2 0.3 0 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0							
47 modified case #247 0.1-0.2 0.3 0 1500 4.8 48 modified case #223 0.4-0.5 0.3 1500 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	6.0							
48 modified case #223 0.4-0.5 0.3 1500 12.0 49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	9.0							
49 modified case #234 0.1-0.2 0.3 1000 1500 12.0 50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0							
50 modified case #237 0.1-0.2 0.3 1500 1000 12.0 51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0							
51 modified case #209 0.3-0.4 0.3 2000 2000 12.0	3.0							
1 F2 with worth had 04 02 0 2000 2005	13.0							
52 with quartz bed 0.1-0.2 0 2000 2000 4.8	3.0							
53 with quartz bed 0.1-0.2 0 2000 2000 4.8	6.0							
54 with quartz bed 0.1-0.2 0 0 2000 4.8	6.0							
55 with quartz bed 0.1-0.2 0 2000 0 4.8	6.0	4.8	0	2000	0	0.1-0.2	with quartz bed	55

Particle size Catalyst mass NO NH3 Gas load O2

