Модель и алгоритмы системы оценки качества дорожного покрытия по показаниям акселерометра

Выполнил: студент гр. М18-ИВТ-3

Шляпников С. М.

Научный руководитель: к.т.н., доцент

Гай В. Е.

Цель работы

Разработка нового подхода к решению задачи классификации качества дорожного покрытия с использованием акселерометра

Задачи исследования

- Выполнить обзор существующих методов, выявить их достоинства и недостатки
- Создать информационную модель оценки качества дорожного покрытия
- Разработать метод сбора и обработки данных
- Разработать метод классификации неровностей
- Спроектировать архитектуру программной реализации
- Провести вычислительный эксперимент

Актуальность работы

^{1.} Научный центр безопасности дорожного движения МВД России 2. Левада-центр, август, 2017

Этапы решения задачи

- 1. Сбор данных на устройстве пользователя с использованием акселерометра
- 2. Обработка данных на удаленном сервере
- 3. Отображение итогового результата на веб-сайте

- Обработка полученных данных
- Предварительная оценка качества дорожного покрытия
- Сопоставление данных, собираемых устройством пользователя

Обработка полученных данных

Предварительная оценка качества дорожного покрытия

Состояние	Значение ускорения а, м/с²
Хорошее	9.0 <= a <= 10.6
Мелкие неровности	7.5 <= a < 9.0; 10.6 < a <= 12.1
Большие выбоины	a > 7.5; a > 12.1

Предварительная оценка качества дорожного покрытия

Сопоставление данных, собираемых устройством пользователя

Обработка данных на удаленном сервере

- Сопоставление множественных данных
- Извлечение признаков
- Классификация

Обработка данных на удаленном сервере Сопоставление множественных данных

Обработка данных на удаленном сервере Извлечение признаков

Обработка данных на удаленном сервере Извлечение признаков

Оконное преобразование Фурье

$$S(\omega, b_k) = \int_{-\infty}^{\infty} s(t)\omega * (t - b_k)e^{-j\omega t}dt$$

Обработка данных на удаленном сервере Извлечение признаков

Обработка данных на удаленном сервере Классификация

Обработка данных на удаленном сервере

Классификация

Отображение итоговых результатов на веб-сайте

Архитектура мобильного приложения (Android)

Вычислительный эксперимент

Скорость:

- До 20 км/ч
- От 20 до 25 км/ч
- От 50 до 60 км/ч
- От 80 до 90 км/ч

Длина:

- 3 метра
- 5 метров
- 7 метров

Шумы:

- Искажение 3% сигнала
- Искажение 5% сигнала
- Искажение 10% сигнала

Влияние скорости на качество классификации

Влияние длины интервала (V = 50-60 км/ч) на качество классификации

Влияние шума на качество классификации

Заключение

- Выполнен обзор существующих решений
- Создана информационную модель оценки качества дорожного покрытия
- Разработан метод сбора и обработки данных
- Разработан метод классификации неровностей
- Спроектирована архитектуру программной реализации
- Проведен вычислительный эксперимент, подтверждающий работособотоспособность предложенного метода

Публикации

С. М. Шляпников, В. Е. Гай «Модель и алгоритмы системы оценки качества дорожного покрытия по показаниям акселерометра». Материалы XXVI Международной научно-технической конференции «Информационные системы и технологии», 2020.

Спасибо за внимание!