- Theorem 2.9: use $|\langle x_n,y_n\rangle-\langle x,y\rangle|=|\langle x_n-x,y_n\rangle+\langle x,y_n\rangle-\langle x,y_n\rangle+\langle x,y_n-y\rangle|$ and Cauchy-Schwarz, reverse triangle inequality to show $||y_n|| \to ||y||$.
- **Theorem 2.14**: use linearity of inner product and orthogonal condition.
- Theorem 2.15:
 - Subspace:
 - For $y, z \in A^{\perp}$, $\lambda, \mu \in \mathbb{C}$, show $\forall x \in A, \lambda y + \mu z \in A^{\perp}$.
 - Closed:
 - Show if $(y_n) \subseteq A^{\perp}$, $y_n \to y$, then $y \in A^{\perp}$:
 - Let $x \in A$, then show $|\langle x, y \rangle| \to 0$ by squeezing, triangle inequality and Cauchy-Schwarz.

• Theorem 2.16:

- Let $d = \inf\{\|x z\| : z \in M\}$. Show that $\exists y \in M : \|x y\| = d$:

 - There is sequence $(y_n) \subset M$ with $\|x-y_n\| \to d$. Show that (y_n) is Cauchy:
 $\|y_m-y_n\|^2+\|2x-y_m-y_n\|^2=2\|x-y_m\|^2+2\|x-y_n\|^2$ by parallelogram identity.
 $\frac{y_m+y_n}{2}\in M$, so $\|2x-y_m-y_n\|\geq 2d$.
 - Deduce that $y_n \to y \in M$ and $||x y|| \to d$ by squeezing.
- Uniqueness of *y*:
 - Let ||x y|| = d = ||x y'||.
 - By parallelogram identity, $2\|x-y\|^2 + 2\|x-y'\|^2 = \|2x-y-y'\|^2 + \|y-y'\|^2$.
 - Use that $\frac{y+y'}{2} \in M$ to show ||y-y'|| = 0.
- To show $z = x y \perp M$:
 - For $w \in M$, write $\langle z, w \rangle = |\langle z, w \rangle| \ \lambda$ where $\lambda = e^{i\theta}$, set $u = \lambda w$.
 - Define $f(t) = \|z + tu\|^2$, show t = 0 is minimum of f and so 0 = f'(0), hence $z \in M^{\perp}$.
- To show uniqueness of *z*:
 - Show for $y, y' \in M$ such that $x y \perp M$ and $x y' \perp M$, then $\langle y y', w \rangle = 0$ for any $w \in M$. Set w = y - y' to give y = y'.
- Corollary 2.18: by theorem 2.16.
- Theorem 2.24:
 - Prove for any finite $J \subseteq I$, then take supremum on LHS.
 - Show that

$$\left\|x - \sum_{\alpha \in J} \langle x, u_\alpha \rangle u_\alpha \right\| = \|x\|^2 - \sum_{\alpha \in J} |\langle x, u_\alpha \rangle|^2$$

using equation 2.2 and Pythagorean theorem.