Topology

Robin Adams

May 27, 2022

Contents

1	Set Theory	4
2	Order Theory	6
3	Real Analysis	10
4	Group Theory	11
5	Topological Spaces	12
6	Closed Set	13
7	Interior	14
8	Closure	15
9	Boundary	16
10	Limit Points	17
11	Basis for a Topology	17
12	Local Basis at a Point	22
13	Convergence	22
14	Locally Finite Sets	24
15	Open Maps	25
16	Continuous Functions	25
17	Homeomorphisms	30
18	The Order Topology	31

19 The nth Root Function	34
20 The Product Topology 20.1 Continuous in Each Variable Separately	34 37
21 The Subspace Topology	37
22 The Box Topology	41
23 T_1 Spaces	43
24 Hausdorff Spaces	44
25 The First Countability Axiom	47
26 Strong Continuity	48
27 Saturated Sets	49
28 Quotient Maps	50
29 Quotient Topology	53
30 Retractions	55
31 Homogeneous Spaces	55
32 Regular Spaces	55
33 Connected Spaces	55
34 Totally Disconnected Spaces	64
35 Paths and Path Connectedness	64
36 The Topologist's Sine Curve	67
37 The Long Line	68
38 Components	69
39 Path Components	7 1
40 Local Connectedness	72
41 Local Path Connectedness	74
42 Weak Local Connectedness	75

43 Quasicomponents	76
44 Open Coverings	77
45 Compact Spaces	77
46 Perfect Maps	84
47 Topological Groups	84
48 The Metric Topology	92
49 Real Linear Algebra	98
50 The Uniform Topology	105
51 Uniform Convergence	108
52 Isometric Imbeddings	109

1 Set Theory

Definition 1 (Cover). Let X be a set and $A \subseteq \mathcal{P}X$. Then A covers X, or is a covering of X, if and only if $\bigcup A = X$.

Definition 2 (Finite Intersection Property). Let X be a set and $A \subseteq \mathcal{P}X$. Then A satisfies the *finite intersection property* if and only if every nonempty finite subset of A has nonempty intersection.

Lemma 3. Let X be a set. Let $A \subseteq \mathcal{P}X$ have the finite intersection property. Then there exists a maximal set \mathcal{D} such that $A \subseteq \mathcal{D} \subseteq \mathcal{P}X$ and \mathcal{D} has the finite intersection property.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbb{F} = \{ \mathcal{D} \mid \mathcal{A} \subseteq \mathcal{D} \subseteq \mathcal{P}X, \mathcal{D} \text{ has the finite intersection property} \}$
- $\langle 1 \rangle 2$. Every chain in \mathbb{F} has an upper bound.
 - $\langle 2 \rangle 1$. Let: \mathbb{C} be a chain in \mathbb{F} .
 - $\langle 2 \rangle 2$. Assume: without loss of generality $\mathbb{C} \neq \emptyset$ Prove: $\bigcup \mathbb{C} \in \mathbb{F}$

PROOF: If $\mathbb{C} = \emptyset$ then \mathcal{A} is an upper bound.

- $\langle 2 \rangle 3. \ \mathcal{A} \subseteq \bigcup \mathbb{C} \subseteq \mathcal{P} X$
- $\langle 2 \rangle 4$. Let: $C_1, \dots, C_n \in \mathbb{C}$ Prove: $C_1 \cap \dots \cap C_n \neq \emptyset$
- $\langle 2 \rangle$ 5. PICK $C_1, \ldots, C_n \in \mathbb{C}$ such that $C_i \in C_i$ for all i.
- $\langle 2 \rangle 6$. Assume: without loss of generality $C_1 \subseteq \cdots \subseteq C_n$
- $\langle 2 \rangle 7. \ C_1, \ldots, C_n \in \mathcal{C}_n$
- $\langle 2 \rangle 8$. C_n satisfies the finite intersection property.
- $\langle 2 \rangle 9. \ C_1 \cap \cdots \cap C_n \neq \emptyset$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: By Zorn's Lemma.

П

Lemma 4. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Then any finite intersection of elements of \mathcal{D} is an element of \mathcal{D} .

Proof:

- $\langle 1 \rangle 1$. Let: $D_1, D_2 \in \mathcal{D}$
- $\langle 1 \rangle 2$. $\mathcal{D} \cup \{D_1 \cap D_2\}$ has the finite intersection property.

PROOF: Any finite intersection of members of $\mathcal{D} \cup \{D_1 \cap D_2\}$ is a finite intersection of members of \mathcal{D} .

 $\langle 1 \rangle 3. \ \mathcal{D} = \mathcal{D} \cup \{D_1 \cap D_2\}$

Proof: By maximality of \mathcal{D} .

 $\langle 1 \rangle 4. \ D_1 \cap D_2 \in \mathcal{D}.$

Lemma 5. Let X be a set. Let $\mathcal{D} \subseteq \mathcal{P}X$ be maximal with respect to the finite intersection property. Let $A \subseteq X$. If A intersects every member of \mathcal{D} then $A \in \mathcal{D}$.

```
PROOF: \langle 1 \rangle 1. \ \mathcal{D} \cup \{A\} has the finite intersection property. \langle 2 \rangle 1. \ \text{Let:} \ D_1, \dots, D_n \in \mathcal{D} PROVE: D_1 \cap \dots \cap D_n \cap A \neq \emptyset \langle 2 \rangle 2. \ D_1 \cap \dots \cap D_n \in \mathcal{D} PROOF: Lemma 4. \langle 2 \rangle 3. \ D_1 \cap \dots \cap D_n \cap A \neq \emptyset PROOF: Since A intersects every member of \mathcal{D}. \langle 1 \rangle 2. \ \text{Q.E.D.} PROOF: By maximality of \mathcal{D}. \Box

Definition 6 (Graph). Let f: A \to B. The graph of f is the set \{(x, f(x)) \mid x \in A\} \subseteq A \times B.
```

2 Order Theory

Definition 7 (Preorder). Let X be a set. A *preorder* on X is a binary relation \leq on X such that:

Reflexivity For all $x \in X$, we have $x \leq x$

Transitivity For all $x, y, z \in X$, if $x \le y$ and $y \le z$ then $x \le z$.

Definition 8 (Preordered Set). A preordered set consists of a set X and a preorder \leq on X.

Proposition 9. Let X and Y be linearly ordered sets. Let $f: X \rightarrow Y$ be strictly monotone and surjective. Then f is a poset isomorphism.

Proof:

```
\langle 1 \rangle 1. f is injective.
   \langle 2 \rangle 1. Let: x, y \in X
   \langle 2 \rangle 2. Assume: f(x) = f(y)
   \langle 2 \rangle 3. \ x \not< y
      PROOF: By strong motonicity.
   \langle 2 \rangle 4. \ y \not < x
      PROOF: By strong motonicity.
   \langle 2 \rangle 5. \ x = y
      PROOF: By trichotomy.
\langle 1 \rangle 2. f^{-1} is monotone.
   \langle 2 \rangle 1. Let: x, y \in X
   \langle 2 \rangle 2. Assume: x \leq y
   \langle 2 \rangle 3. \ f^{-1}(x) \not> f^{-1}(y)
      PROOF: By strong motonicity.
   \langle 2 \rangle 4. \ f^{-1}(x) < f^{-1}(y)
      PROOF: By trichotomy.
```

Definition 10 (Interval). Let X be a preordered set and $Y \subseteq X$. Then Y is an *interval* if and only if, for all $a, b \in Y$ and $c \in X$, if $a \le c \le b$ then $c \in Y$.

Definition 11 (Linear Continuum). A linearly ordered set L is a *linear continuum* if and only if:

- 1. every nonempty subset of L that is bounded above has a supremum
- 2. L is dense

Proposition 12. Every interval in a linear continuum is a linear continuum.

Proof:

- $\langle 1 \rangle 1$. Let: L be a linear continuum and I an interval in L.
- $\langle 1 \rangle 2$. Every nonempty subset of I that is bounded above has a supremum in I.
 - $\langle 2 \rangle 1$. Let: $X \subseteq I$ be nonempty and bounded above by $b \in I$.

```
\langle 2 \rangle 2. Let: s be the supremum of X in L. Proof: Since L is a linear continuum. \langle 2 \rangle 3. s \in I \langle 3 \rangle 1. Pick a \in X Proof: Since X is nonempty (\langle 2 \rangle 1). \langle 3 \rangle 2. a \leq s \leq b \langle 3 \rangle 3. s \in I Proof: Since I is an interval (\langle 1 \rangle 1). \langle 2 \rangle 4. s is the supremum of X in I \langle 1 \rangle 3. I is dense. \langle 2 \rangle 1. Let: x, y \in I with x < y \langle 2 \rangle 2. Pick z \in L with x < z < y Proof: Since L is dense. \langle 2 \rangle 3. z \in I Proof: Since L is an interval. \Box
```

Definition 13 (Ordered Square). The ordered square I_o^2 is the set $[0,1]^2$ under the dictionary order.

Proposition 14. The ordered square is a linear continuum.

```
Proof:
```

```
\langle 1 \rangle 1. Every nonempty subset of I_o^2 bounded above has a supremum.
   \langle 2 \rangle 1. Let: X \subseteq I_o^2 be nonempty and bounded above by (b,c)
   \langle 2 \rangle 2. Let: s = \sup \pi_1(X)
      PROOF: The set \pi_1(X) is nonempty and bounded above by b.
   \langle 2 \rangle 3. Case: s \in \pi_1(X)
       \langle 3 \rangle 1. Let: t = \sup\{y \in [0,1] \mid (s,y) \in X\}
          Proof: This set is nonempty and bounded above by c.
       \langle 3 \rangle 2. (s,t) is the supremum of X.
   \langle 2 \rangle 4. Case: s \notin \pi_1(X)
      PROOF: In this case (s,0) is the supremum of X.
\langle 1 \rangle 2. I_o^2 is dense.
   \langle 2 \rangle 1. Let: (x_1, y_1), (x_2, y_2) \in I_o^2 with (x_1, y_1) < (x_2, y_2)
   \langle 2 \rangle 2. Case: x_1 < x_2
       \langle 3 \rangle 1. PICK x_3 with x_1 < x_3 < x_2
       \langle 3 \rangle 2. \ (x_1, y_1) < (x_3, y_1) < (x_2, y_2)
   \langle 2 \rangle 3. Case: x_1 = x_2 and y_1 < y_2
      \langle 3 \rangle 1. Pick y_3 with y_1 < y_3 < y_2
       \langle 3 \rangle 2. \ (x_1, y_1) < (x_1, y_3) < (x_2, y_2)
```

Proposition 15. If X is a well-ordered set then $X \times [0,1)$ under the dictionary order is a linear continuum.

Proof:

 $\langle 1 \rangle 1$. Every nonempty set $A \subseteq X \times [0,1)$ bounded above has a supremum.

```
\langle 2 \rangle 1. Let: A \subseteq X \times [0,1) be nonempty and bounded above
```

 $\langle 2 \rangle 2$. Let: x_0 be the supremum of $\pi_1(A)$

 $\langle 2 \rangle 3$. Case: $x_0 \in \pi_1(A)$

 $\langle 3 \rangle 1$. Let: y_0 be the supremum of $\{ y \in [0,1) \mid (x_0,y) \in A \}$

 $\langle 3 \rangle 2$. (x_0, y_0) is the supremum of A.

 $\langle 2 \rangle 4$. Case: $x_0 \notin \pi_1(A)$

PROOF: In this case $(x_0, 0)$ is the supremum of A.

 $\langle 1 \rangle 2$. $X \times [0,1)$ is dense.

$$\langle 2 \rangle 1$$
. Let: $(x_1, y_1), (x_2, y_2) \in X \times [0, 1)$ with $(x_1, y_1) < (x_2, y_2)$

 $\langle 2 \rangle 2$. Case: $x_1 < x_2$

 $\langle 3 \rangle 1$. PICK y_3 such that $y_1 < y_3 < 1$

$$\langle 3 \rangle 2$$
. $(x_1, y_1) < (x_1, y_3) < (x_2, y_2)$

 $\langle 2 \rangle 3$. Case: $x_1 = x_2$ and $y_1 < y_2$

 $\langle 3 \rangle 1$. PICK y_3 such that $y_1 < y_3 < y_2$

$$\langle 3 \rangle 2. \ (x_1, y_1) < (x_1, y_3) < (x_2, y_2)$$

Lemma 16. For all $a, b, c, d \in \mathbb{R}$ with a < b and c < d, we have $[a, b) \cong [c, d)$

PROOF: The map $\lambda t.c + (t-a)(d-c)/(b-a)$ is an order isomorphism.

Proposition 17. Let X be a linearly ordered set. Let a < b < c in X. Then $[a, c) \cong [0, 1)$ if and only if $[a, b) \cong [b, c) \cong [0, 1)$.

PROOF

$$\langle 1 \rangle 1$$
. If $[a, c) \cong [0, 1)$ then $[a, b) \cong [b, c) \cong [0, 1)$

 $\langle 2 \rangle 1$. Assume: $f: [a,c) \cong [0,1)$ is an order isomorphism

$$\langle 2 \rangle 2$$
. $[a,b) \cong [0,1)$

Proof:

$$[a,b) \cong [0,f(b))$$
 (by the restriction of f)
 $\cong [0,1)$ (Lemma 16)

 $\langle 2 \rangle 3. \ [b,c) \cong [0,1)$

PROOF: Similar.

 $\langle 1 \rangle 2$. If $[a,b) \cong [b,c) \cong [0,1)$ then $[a,c) \cong [0,1)$

Proof:

$$[a,c) = [a,b) * [b,c)$$

 $\cong [0,1) * [0,1)$
 $\cong [0,1/2) * [1/2,1)$ (Lemma 16)
 $= 1$

Proposition 18 (CC). Let X be a linearly ordered set. Let $x_0 < x_1 < \cdots$ be a strictly increasing sequence in X with supremum b. Then $[x_0, b) \cong [0, 1)$ if and only if $[x_i, x_{i+1}) \cong [0, 1)$ for all i.

PROOF:

 $\langle 1 \rangle 1$. If $[x_0, b) \cong [0, 1)$ then $[x_i, x_{i+1}) \cong [0, 1)$ for all i.

```
PROOF: By Lemma 16 \langle 1 \rangle 2. If [x_i, x_{i+1}) \cong [0, 1) for all i then [x_0, b) \cong [0, 1) \langle 2 \rangle 1. Assume: [x_i, x_{i+1}) \cong [0, 1) for all i \langle 2 \rangle 2. PICK an order isomorphism f_i : [x_i, x_{i+1}) \cong [1/2^i, 2/2^{i+1}) for each i. PROOF: By Lemma 16 \langle 2 \rangle 3. The union of the f_is is an order isomorphism [x_0, b) \cong [0, 1)
```

3 Real Analysis

Definition 19. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences (a_n) such that $a_n = 0$ for all but finitely many n.

4 Group Theory

Definition 20. Given a group G and sets $A, B \subseteq G$, let $AB = \{ab \mid a \in A, b \in B\}$.

Definition 21. Given a group G and a set $A \subseteq G$, let $A^{-1} = \{a^{-1} \mid a \in A\}$.

5 Topological Spaces

Definition 22 (Topology). A topology on a set X is a set $\mathcal{T} \subseteq \mathcal{P}X$ such that:

- $X \in \mathcal{T}$.
- For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$.
- For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$.

We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 23 (Topological Space). A topological space X consists of a set X and a topology on X.

Definition 24 (Discrete Space). For any set X, the *discrete* topology on X is $\mathcal{P}X$.

Definition 25 (Indiscrete Space). For any set X, the *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 26 (Finite Complement Topology). For any set X, the *finite complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is finite}\} \cup \{\emptyset\}$.

Definition 27 (Countable Complement Topology). For any set X, the *countable complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is countable}\} \cup \{\emptyset\}$.

Definition 28 (Finer, Coarser). Suppose that \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supseteq \mathcal{T}$, we say that \mathcal{T}' is *finer* than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is *strictly* finer than \mathcal{T} . We also say that \mathcal{T} is *coarser* than \mathcal{T}' , or *strictly* coarser, in these two respective situations. We say \mathcal{T} is *comparable* with \mathcal{T}' if either $\mathcal{T}' \supseteq \mathcal{T}$ or $\mathcal{T} \supseteq \mathcal{T}'$.

Lemma 29. Let X be a topological space and $U \subseteq X$. Then U is open if and only if, for all $x \in U$, there exists an open set V such that $x \in V \subseteq U$.

```
Proof:  \begin{array}{l} \langle 1 \rangle 1. \ \Rightarrow \\ \text{Proof: Take } V = U \\ \langle 1 \rangle 2. \ \Leftarrow \\ \text{Proof: We have } U = \bigcup \{V \text{ open in } X \mid V \subseteq U\}. \end{array}
```

Lemma 30. Let X be a set and \mathcal{T} a nonempty set of topologies on X. Then $\bigcap \mathcal{T}$ is a topology on X, and is the finest topology that is coarser than every member of \mathcal{T} .

```
Proof:
```

```
\langle 1 \rangle 1. \ X \in \bigcap \mathcal{T}
```

PROOF: Since X is in every member of \mathcal{T} .

 $\langle 1 \rangle 2$. $\bigcap \mathcal{T}$ is closed under union.

- $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \bigcap \mathcal{T}$
- $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $\mathcal{U} \subseteq T$
- $\langle 2 \rangle$ 3. For all $T \in \mathcal{T}$ we have $\bigcup \mathcal{U} \in T$
- $\langle 2 \rangle 4. \bigcup \mathcal{U} \in \bigcap \mathcal{T}$
- $\langle 1 \rangle 3$. $\bigcap \mathcal{T}$ is closed under binary intersection.
 - $\langle 2 \rangle 1$. Let: $U, V \in \bigcap \mathcal{T}$
 - $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $U, V \in T$
 - $\langle 2 \rangle 3$. For all $T \in \mathcal{T}$ we have $U \cap V \in T$
- \square $\langle 2 \rangle 4. \ U \cap V \in \bigcap \mathcal{T}$

Lemma 31. Let X be a set and \mathcal{T} a set of topologies on X. Then there exists a unique coarsest topology that is finer than every member of \mathcal{T} .

PROOF: The required topology is given by

 $\bigcap \{T \in \mathcal{PP}X \mid T \text{ is a topology on } X \text{ that is finer than every member of } \mathcal{T}\} ,$

The set is nonempty since it contains the discrete topology. \square

Definition 32 (Neighbourhood). A *neighbourhood* of a point x is an open set that contains x.

6 Closed Set

Definition 33 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* if and only if $X \setminus A$ is open.

Lemma 34. The empty set is closed.

PROOF: Since the whole space X is always open. \square

Lemma 35. The topological space X is closed.

PROOF: Since \emptyset is open. \square

Lemma 36. The intersection of a nonempty set of closed sets is closed.

PROOF: Let \mathcal{C} be a nonempty set of closed sets. Then $X \setminus \bigcap \mathcal{C} = \bigcup \{X \setminus C \mid C \in \mathcal{C}\}$ is open. \square

Lemma 37. The union of two closed sets is closed.

PROOF: Let C and D be closed. Then $X\setminus (C\cup D)=(X\setminus C)\cap (X\setminus D)$ is open.

Proposition 38. Let X be a set and $C \subseteq PX$ a set such that:

- 1. $\emptyset \in \mathcal{C}$
- 2. $X \in \mathcal{C}$
- 3. For all $A \subseteq C$ nonempty we have $\bigcap A \in C$

4. For all $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.

Then there exists a unique topology \mathcal{T} such that \mathcal{C} is the set of closed sets, namely

$$\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$$

Proof:

- $\langle 1 \rangle 1$. Let: $\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$
- $\langle 1 \rangle 2$. \mathcal{T} is a topology
 - $\langle 2 \rangle 1. \ X \in \mathcal{T}$

Proof: Since $\emptyset \in \mathcal{C}$

- $\langle 2 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 3 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 3 \rangle 2$. Case: $\mathcal{U} = \emptyset$

Proof: In this case $\bigcup \mathcal{U} = \emptyset \in \mathcal{T}$ since $X \in \mathcal{C}$

 $\langle 3 \rangle 3$. Case: $\mathcal{U} \neq \emptyset$

PROOF: In this case $X \setminus \bigcup \mathcal{U} = \bigcap \{X \setminus U \mid U \in \mathcal{U}\} \in \mathcal{C}$.

 $\langle 2 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$

PROOF: Since $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V) \in \mathcal{C}$.

 $\langle 1 \rangle 3$. C is the set of all closed sets in T

Proof:

$$C$$
 is closed in \mathcal{T}
 $\Leftrightarrow X \setminus C \in \mathcal{T}$

$$\Leftrightarrow C \in \mathcal{C}$$

 $\langle 1 \rangle 4$. If \mathcal{T}' is a topology and \mathcal{C} is the set of closed sets in \mathcal{T}' then $\mathcal{T}' = \mathcal{T}$

PROOF: We have

$$U \in \mathcal{T}$$

\$\Rightarrow X \ U \in \mathcal{C}\$
\$\Rightarrow X \ U\$ is closed in \$\mathcal{T}'\$

Proposition 39. If U is open and A is closed then $U \setminus A$ is open.

PROOF: $U \setminus A = U \cap (X \setminus A)$ is the intersection of two open sets. \square

Proposition 40. If U is open and A is closed then $A \setminus U$ is closed.

PROOF: $A \setminus U = A \cap (X \setminus U)$ is the intersection of two closed sets. \square

7 Interior

Definition 41 (Interior). Let X be a topological space and $A \subseteq X$. The *interior* of A, Int A, is the union of all the open subsets of A.

Lemma 42. The interior of a set is open.

PROOF: It is a union of open sets. \square Lemma 43. $\operatorname{Int} A \subseteq A$ PROOF: Immediate from definition. \Box **Lemma 44.** If U is open and $U \subseteq A$ then $U \subseteq \operatorname{Int} A$ PROOF: Immediate from definition. **Lemma 45.** A set A is open if and only if A = Int A. PROOF: If A = Int A then A is open by Lemma 42. Conversely if A is open then $A \subseteq \operatorname{Int} A$ by the definition of interior and so $A = \operatorname{Int} A$. 8 Closure **Definition 46** (Closure). Let X be a topological space and $A \subseteq X$. The *closure* of A, \overline{A} , is the intersection of all the closed sets that include A. This intersection exists since X is a closed set that includes A (Lemma 35). Lemma 47. The closure of a set is closed. PROOF: Dual to Lemma 42. Lemma 48. $A\subseteq \overline{A}$ PROOF: Immediate from definition. **Lemma 49.** If C is closed and $A \subseteq C$ then $\overline{A} \subseteq C$. PROOF: Immediate from definition. **Lemma 50.** A set A is closed if and only if $A = \overline{A}$. Proof: Dual to Lemma 45. **Theorem 51.** Let X be a topological space, $A \subseteq X$ and $x \in X$. Then $x \in \overline{A}$ if and only if every neighbourhood of x intersects A. PROOF: We have $x \in \overline{A}$ $\Leftrightarrow \forall C. C \text{ closed } \land A \subseteq C \Rightarrow x \in C$ $\Leftrightarrow \forall U.U \text{ open } \wedge A \cap U = \emptyset \Rightarrow x \not\in U$

 $\Leftrightarrow \forall U.U \text{ open } \land x \in U \Rightarrow U \text{ intersects } A$

Proposition 52. If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

П

PROOF: This holds because \overline{B} is a closed set that includes A. \square

Proposition 53.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof:

 $\langle 1 \rangle 1. \ \overline{A} \subseteq \overline{A \cup B}$

PROOF: By Proposition 52.

 $\langle 1 \rangle 2. \ \overline{B} \subseteq \overline{A \cup B}$

PROOF: By Proposition 52.

 $\langle 1 \rangle 3. \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$

- $\langle 2 \rangle 1$. Let: $x \in \overline{A \cup B}$
- $\langle 2 \rangle 2$. Assume: $x \notin \overline{A}$ PROVE: $x \in \overline{B}$
- $\langle 2 \rangle 3$. Pick a neighbourhood U of x that does not intersect A
- $\langle 2 \rangle 4$. Let: V be any neighbourhood of x
- $\langle 2 \rangle$ 5. $U \cap V$ is a neighbourhood of x
- $\langle 2 \rangle 6$. $U \cap V$ intersects $A \cup B$

PROOF: From $\langle 2 \rangle 1$ and Theorem 51.

 $\langle 2 \rangle 7$. $U \cap V$ intersects B

PROOF: From $\langle 2 \rangle 3$

- $\langle 2 \rangle 8$. V intersects B
- $\langle 2 \rangle 9$. Q.E.D.

PROOF: We have $x \in \overline{B}$ from Theorem 51.

9 Boundary

Definition 54 (Boundary). The *boundary* of a set A is the set $\partial A = \overline{A} \cap \overline{X \setminus A}$.

Proposition 55.

Int
$$A \cap \partial A = \emptyset$$

PROOF: Since $\overline{X \setminus A} = X \setminus \text{Int } A$. \square

Proposition 56.

$$\overline{A} = \operatorname{Int} A \cup \partial A$$

Proof:

$$\begin{split} \operatorname{Int} A \cup \partial A &= \operatorname{Int} A \cup (\overline{A} \cap \overline{X \setminus A}) \\ &= (\operatorname{Int} A \cup \overline{A}) \cap (\operatorname{Int} A \cup \overline{X \setminus A}) \\ &= \overline{A} \cap X \\ &= \overline{A} \end{split}$$

Proposition 57. $\partial A = \emptyset$ if and only if A is open and closed.

PROOF: If $\partial A = \emptyset$ then $\overline{A} = \text{Int } A$ by Proposition 56.

Proposition 58. A set U is open if and only if $\partial U = \overline{U} \setminus U$.

Proof:

$$\partial U = \overline{U} \setminus U$$

$$\Leftrightarrow \overline{U} \setminus \text{Int } U = \overline{U} \setminus U \qquad (Propositions 55, 56)$$

$$\Leftrightarrow \text{Int } U = U \qquad \Box$$

10 Limit Points

Definition 59 (Limit Point). Let X be a topological space, $a \in X$ and $A \subseteq X$. Then a is a *limit point*, *cluster point* or *point of accumulation* for A if and only if every neighbourhood of a intersects A at a point other than a.

Lemma 60. The point a is an accumulation point for A if and only if $a \in \overline{A \setminus \{a\}}$.

PROOF: From Theorem 51.

Theorem 61. Let X be a topological space and $A \subseteq X$. Let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.

Proof:

 $\langle 1 \rangle$ 1. For all $x \in \overline{A}$, if $x \notin A$ then $x \in A'$ PROOF: From Theorem 51.

 $\langle 1 \rangle 2$. $A \subseteq \overline{A}$

Proof: Lemma 48.

 $\langle 1 \rangle 3. \ A' \subseteq \overline{A}$

PROOF: From Theorem 51.

П

Corollary 61.1. A set is closed if and only if it contains all its limit points.

Proposition 62. In an indiscrete topology, every point is a limit point of any set that has more than one point.

PROOF: Let X be an indiscrete space. Let A be a set with more than one point and x be a point. The only neighbourhood of x is X, which must intersect A at a point other than x. \square

Lemma 63. Let X be a topological space and $A \subseteq B \subseteq X$. Then every limit point of A is a limit point of B.

PROOF: Immediate from definitions.

11 Basis for a Topology

Definition 64 (Basis). If X is a set, a *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ called *basis elements* such that

- 1. For all $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology *generated* by \mathcal{B} to be $\mathcal{T} = \{U \in \mathcal{P}X \mid \forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U\}.$

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1. \ X \in \mathcal{T}$

PROOF: For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B \subseteq X$ by condition

- $\langle 1 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in \bigcup \mathcal{U}$
 - $\langle 2 \rangle 3$. Pick $U \in \mathcal{U}$ such that $x \in U$
 - $\langle 2 \rangle 4$. PICK $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since $U \in \mathcal{T}$ by $\langle 2 \rangle 1$ and $\langle 2 \rangle 3$.

- $\langle 2 \rangle 5. \ x \in B \subseteq \bigcup \mathcal{U}$
- $\langle 1 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $U, V \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in U \cap V$
 - $\langle 2 \rangle 3$. Pick $B_1 \in \mathcal{B}$ such that $x \in B_1 \subseteq U$
 - $\langle 2 \rangle 4$. PICK $B_2 \in \mathcal{B}$ such that $x \in B_2 \subseteq V$
 - $\langle 2 \rangle$ 5. PICK $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$ PROOF: By condition 2.

 $\langle 2 \rangle 6. \ x \in B_3 \subseteq U \cap V$

Lemma 65. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the set of all unions of subsets of \mathcal{B} .

Proof:

- $\langle 1 \rangle 1$. For all $U \in \mathcal{T}$, there exists $\mathcal{A} \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{A}$
 - $\langle 2 \rangle 1$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $\mathcal{A} = \{ B \in \mathcal{B} \mid B \subseteq U \}$
 - $\langle 2 \rangle 3. \ U \subseteq \bigcup \mathcal{A}$
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle$ 2. PICK $B \in \mathcal{B}$ such that $x \in B \subseteq U$ PROOF: Since \mathcal{B} is a basis for \mathcal{T} .
 - $\langle 3 \rangle 3. \ x \in B \in \mathcal{A}$
 - $\langle 2 \rangle 4. \bigcup \mathcal{A} \subseteq U$

PROOF: From the definition of \mathcal{A} ($\langle 2 \rangle 2$).

- $\langle 1 \rangle 2$. For all $\mathcal{A} \subseteq \mathcal{B}$ we have $\bigcup \mathcal{A} \in \mathcal{T}$
 - $\langle 2 \rangle 1. \ \mathcal{B} \subseteq \mathcal{T}$

PROOF: If $B \in \mathcal{B}$ and $x \in B$, then there exists $B' \in \mathcal{B}$ such that $x \in B' \subseteq B$, namely B' = B.

 $\langle 2 \rangle 2$. Q.E.D.

Proof: Since \mathcal{T} is closed under union.

Г

Corollary 65.1. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the coarsest topology that includes \mathcal{B} .

PROOF: Since every topology that includes $\mathcal B$ includes all unions of subsets of $\mathcal B$. \square

Lemma 66. Let X be a topological space. Suppose that C is a set of open sets such that, for every open set U and every point $x \in U$, there exists $C \in C$ such that $x \in C \subseteq U$. Then C is a basis for the topology on X.

PROOF:

 $\langle 1 \rangle 1$. For all $x \in X$, there exists $C \in \mathcal{C}$ such that $x \in C$

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 2$. For all $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$, there exists $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$

PROOF: Since $C_1 \cap C_2$ is open.

 $\langle 1 \rangle 3$. Every open set is open in the topology generated by \mathcal{C}

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 4$. Every union of a subset of \mathcal{C} is open.

Proof: Since every member of \mathcal{C} is open.

П

Lemma 67. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively on the set X. Then the following are equivalent.

- 1. $\mathcal{T} \subseteq \mathcal{T}'$
- 2. For all $B \in \mathcal{B}$ and $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 2$. Let: $B \in \mathcal{B}$ and $x \in B$
 - $\langle 2 \rangle 3. \ B \in \mathcal{T}$

Proof: Corollary 65.1.

 $\langle 2 \rangle 4. \ B \in \mathcal{T}'$

Proof: By $\langle 2 \rangle 1$

 $\langle 2 \rangle$ 5. There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

PROOF: Since \mathcal{B}' is a basis for \mathcal{T}' .

- $\langle 1 \rangle 2$. $2 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$

Prove: $U \in \mathcal{T}'$

 $\langle 2 \rangle 3$. Let: $x \in U$

PROVE: There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq U$

```
\langle 2 \rangle4. PICK B \in \mathcal{B} such that x \in B \subseteq U
PROOF: Since \mathcal{B} is a basis for \mathcal{T}.
\langle 2 \rangle5. PICK B' \in \mathcal{B}' such that x \in B' \subseteq B
PROOF: By \langle 2 \rangle1.
\langle 2 \rangle6. x \in B' \subseteq U
```

Theorem 68. Let X be a topological space, $A \subseteq X$ and $x \in X$. Let \mathcal{B} be a basis for X. Then $x \in \overline{A}$ if and only if, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

PROOF

 $\langle 1 \rangle 1$. If $x \in A$ then, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. PROOF: This follows from Theorem 51 since every element of \mathcal{B} is open (Corollary 65.1).

 $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. Then $x \in \overline{A}$.

 $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

 $\langle 2 \rangle 2$. Let: U be an open set that contains x Prove: U intersects A.

 $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

 $\langle 2 \rangle 4$. B intersects A.

PROOF: From $\langle 2 \rangle 1$.

 $\langle 2 \rangle$ 5. U intersects A.

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: By Theorem 51.

Definition 69 (Lower Limit Topology on the Real Line). The *lower limit topology on the real line* is the topology on \mathbb{R} generated by the basis consisting of all half-open intervals of the form [a,b).

We write \mathbb{R}_l for the topological space \mathbb{R} under the lower limit topology.

We prove this is a basis for a topology.

Proof:

 $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an interval [a,b) such that $x \in [a,b)$. PROOF: Take [a,b) = [x,x+1).

 $\langle 1 \rangle 2$. For any open intervals [a,b), [c,d) if $x \in [a,b) \cap [c,d)$, then there exists an interval [e,f) such that $x \in [e,f) \subseteq [a,b) \cap [c,d)$

PROOF: Take $[e, f) = [\max(a, c), \min(b, d)).$

٦

Definition 70 (K-topology on the Real Line). Let $K = \{1/n \mid n \in \mathbb{Z}^+\}$.

The K-topology on the real line is the topology on \mathbb{R} generated by the basis consisting of all open intervals (a,b) and all sets of the form $(a,b) \setminus K$.

We write \mathbb{R}_K for the topological space \mathbb{R} under the K-topology.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an open interval (a,b) such that $x \in (a,b)$. PROOF: Take (a,b) = (x-1,x+1).
- $\langle 1 \rangle$ 2. For any basic open sets B_1 , B_2 if $x \in B_1 \cap B_2$, then there exists a basic open set B_3 such that $x \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Case: $B_1 = (a, b), B_2 = (c, d)$

PROOF: Take $B_3 = (\max(a, c), \min(b, d))$.

 $\langle 2 \rangle 2$. CASE: $B_1 = (a, b)$ or $(a, b) \setminus K$, $B_2 = (c, d)$ or $(c, d) \setminus K$, and they are not both open intervals.

PROOF: Take $B_3 = (\max(a, c), \min(b, d)) \setminus K$.

Lemma 71. The lower limit topology and the K-topology are incomparable.

Proof:

 $\langle 1 \rangle 1$. The interval [10, 11) is not open in the K-topology.

PROOF: There is no open interval (a,b) such that $10 \in (a,b) \subseteq [10,11)$ or $10 \in (a,b) \setminus K \subseteq [10,11)$.

 $\langle 1 \rangle 2$. The set $(-1,1) \setminus K$ is not open in the lower limit topology.

PROOF: There is no half-open interval [a,b) such that $0 \in [a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in [a,b)$.

Definition 72 (Subbasis). A *subbasis* S for a topology on X is a set $S \subseteq PX$ such that $\bigcup S = X$.

The topology generated by the subbasis S is the set of all unions of finite intersections of elements of S.

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1$. The set $\mathcal B$ of all finite intersections of elements of $\mathcal S$ forms a basis for a topology on X.

 $\langle 2 \rangle 1$. $| \mathcal{B} = X$

PROOF: Since $S \subseteq B$.

 $\langle 2 \rangle 2$. \mathcal{B} is closed under binary intersection.

PROOF: By definition.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: By Lemma 65.

We have simultaneously proved:

Proposition 73. Let S be a subbasis for the topology on X. Then the set of all finite intersections of elements of S is a basis for the topology on X.

Proposition 74. Let X be a set. Let S be a subbasis for a topology T on X. Then T is the coarsest topology that includes S.

PROOF: Since every topology that includes $\mathcal S$ includes every union of finite intersections of elements of $\mathcal S$. \square

12 Local Basis at a Point

Definition 75 (Local Basis). Let X be a topological space and $a \in X$. A (local) basis at a is a set \mathcal{B} of neighbourhoods of a such that every neighbourhood of a includes some member of \mathcal{B} .

Lemma 76. If there exists a countable local basis at a point a, then there exists a countable local basis $\{B_n \mid n \geq 1\}$ such that $B_1 \supseteq B_2 \supseteq \cdots$.

PROOF: Given a countable local basis $\{C_n \mid n \geq 1\}$, take $B_n = C_1 \cap \cdots \cap C_n$. \square

13 Convergence

Definition 77 (Convergence). Let X be a topological space. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X and $l\in X$. Then the sequence $(a_n)_{n\in\mathbb{N}}$ converges to the limit l, $a_n\to l$ as $n\to\infty$, if and only if, for every neighbourhood U of l, there exists N such that, for all $n\geq N$, we have $a_n\in U$.

Lemma 78. Let X be a topological space. Let $A \subseteq X$ and $l \in X$. If there is a sequence of points in A that converges to l then $l \in \overline{A}$.

PROOF:

- $\langle 1 \rangle 1$. Let: (a_n) be a sequence of points in A that converges to l.
- $\langle 1 \rangle 2$. Let: *U* be a neighbourhood of *l*.
- $\langle 1 \rangle 3$. PICK N such that, for all $n \geq N$, we have $a_n \in U$.
- $\langle 1 \rangle 4. \ a_N \in U \cap A$
- $\langle 1 \rangle$ 5. Q.E.D.

Proof: Theorem 51.

П

Proposition 79. Let X be a topological space. Let \mathcal{B} be a basis for the topology on X. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \ge N$, we have $a_n \in B$.

Proof:

 $\langle 1 \rangle 1$. If $a_n \to l$ as $n \to \infty$ then, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \ge N$, we have $a_n \in B$.

PROOF: Since every element of \mathcal{B} is open (Corollary 65.1).

- $\langle 1 \rangle 2$. If, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$, then $a_n \to l$ as $n \to \infty$.
 - $\langle 2 \rangle 1$. Assume: for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of l.
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $l \in B \subseteq U$
 - $\langle 2 \rangle 4$. PICK N such that, for all $n \geq N$, we have $a_n \in B$ PROOF: From $\langle 2 \rangle 1$.
 - $\langle 2 \rangle 5$. For all $n \geq N$ we have $a_n \in U$

Lemma 80. If a sequence (a_n) is constant with $a_n = l$ for all n, then $a_n \to l$ as $n \to \infty$.

Proof: Immediate from definitions.

Theorem 81. Let X be a linearly ordered set. Let (s_n) be a monotone increasing sequence in X with a supremum s. Then $s_n \to s$ as $n \to \infty$.

PROOF:

 $\langle 1 \rangle 1$. Assume: s is not least in X.

PROOF: Otherwise (s_n) is the constant sequence s and the result follows from Lemma 80.

 $\langle 1 \rangle 2$. Let: U be a neighbourhood of s.

 $\langle 1 \rangle 3$. PICKa < s such that $(a, s] \subseteq U$

 $\langle 1 \rangle 4$. Pick N such that $a < a_N$.

 $\langle 1 \rangle 5$. For all $n \geq N$ we have $a_n \in (a, s]$

 $\langle 1 \rangle 6$. For all $n \geq N$ we have $a_n \in U$.

Theorem 82. If $\sum_{i=0}^{\infty} a_i = s$ and $\sum_{i=0}^{\infty} b_i = t$ then $\sum_{i=0}^{\infty} (ca_i + b_i) = cs + t$.

PROOF:
$$\sum_{i=0}^{N} (ca_i + b_i) = c \sum_{i=0}^{N} a_i + \sum_{i=0}^{N} b_i \to cs + t \text{ as } n \to \infty.$$

Theorem 83 (Comparison Test). If $|a_i| \leq b_i$ for all i and $\sum_{i=0}^{\infty} b_i$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Proof:

 $\langle 1 \rangle 1$. $\sum_{i=0}^{\infty} |a_i|$ converges

PROOF: The partial sums $\sum_{i=0}^{N} |a_i|$ form an increasing sequence bounded above by $\sum_{i=0}^{\infty} b_i$.

 $\langle 1 \rangle 2$. Let: $c_i = |a_i| + a_i$ for all $i \langle 1 \rangle 3$. $\sum_{i=0}^{\infty} c_i$ converges

PROOF: Each c_i is either $2|a_i|$ or 0. So the partial sums $\sum_{i=0}^N c_i$ form an increasing sequence bounded above by $2\sum_{i=0}^{\infty} b_i$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $a_i = c_i - |a_i|$.

Corollary 83.1. If $\sum_{i=0}^{\infty} |a_i|$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Theorem 84 (Weierstrass M-test). Let X be a set and $(f_n : X \to \mathbb{R})$ be a sequence of functions. Let

$$s_n(x) = \sum_{i=0}^n f_i(x)$$

for all n, x. Suppose $|f_i(x)| \leq M_i$ for all $i \geq 0$ and $x \in X$. If the series $\sum_{i=0}^{\infty} M_i$ converges, then the sequence (s_n) converges uniformly to

$$s(x) = \sum_{i=0}^{\infty} f_i(x) .$$

 $\langle 1 \rangle 1$. Let: $r_n = \sum_{i=n+1}^{\infty} M_i$ for all n $\langle 1 \rangle 2$. Given $0 \leq n < k$, we have $|s_k(x) - s_n(x)| \leq r_n$

$$|s_k(x) - s_n(x)| = |\sum_{i=n+1}^k f_i(x)|$$

$$\leq \sum_{i=n+1}^k |f_i(x)|$$

$$\leq \sum_{i=n+1}^k M_i$$

$$\leq r_n$$

 $\langle 1 \rangle 3$. Given $n \geq 0$ we have $|s(x) - s_n(x)| \leq r_n$

PROOF: By taking the limit $k \to \infty$ in $\langle 1 \rangle 2$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $r_n \to 0$ as $n \to \infty$.

14 Locally Finite Sets

Definition 85 (Locally Finite). Let X be a topological space and $\{A_{\alpha}\}$ a family of subsets of X. Then A is locally finite if and only if every point in X has a neighbourhood that intersects A_{α} for only finitely many α .

Theorem 86 (Pasting Lemma). Let X and Y be topological spaces and f: $X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

- $\langle 1 \rangle 1$. Let X and Y be topological spaces and $f: X \to Y$. Let A and B be closed subsets of X such that $X = A \cup B$. Suppose $f \upharpoonright A$ and $f \upharpoonright B$ are continuous. Then f is continuous.
 - $\langle 2 \rangle 1$. Let: $C \subseteq Y$ be closed.

 - $\langle 2 \rangle 2. \ h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$ $\langle 2 \rangle 3. \ f^{-1}(C) \text{ and } g^{-1}(C) \text{ are closed in } X.$

PROOF: Theorems 96 and 146.

 $\langle 2 \rangle 4$. $h^{-1}(C)$ is closed in X.

Proof: Lemma 37.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: Theorem 96.

 $\langle 1 \rangle 2$. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

PROOF: From $\langle 1 \rangle 1$ by induction.

- $\langle 1 \rangle 3$. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.
 - $\langle 2 \rangle$ 1. Let: $x \in X$ Prove: f is continuous at x
 - $\langle 2 \rangle 2$. PICK a neighbourhood U of x that intersects A_{α} for only finitely many α .
- $\langle 2 \rangle$ 3. $f \upharpoonright U$ is continuous PROOF: By $\langle 1 \rangle$ 2. $\langle 2 \rangle$ 4. Q.E.D. PROOF: Lemma 106.

The following example shows that we cannot remove the assumption of local finiteness.

Example 87. Define $f: [-1,1] \to \mathbb{R}$ by: f(x) = 1 if x < -1, f(x) = 0 if x > 1. Let $C_n = [-1,-1/n]$ for $n \ge 1$, and D = [0,1]. Then $[-1,1] = \bigcup_{n=1}^{\infty} C_n \cup D$ and f is continuous on each C_n and each D, but f is not continuous on [-1,1].

15 Open Maps

Definition 88 (Open Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is an *open map* if and only if, for every open set U in X, the set f(U) is open in Y.

Lemma 89. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for the topology on X. If f(B) is open in Y for all $B \in \mathcal{B}$, then f is an open map.

PROOF: From Lemma 65.

Proposition 90. Let X and Y be topological spaces. Let \mathcal{B} be a basis for the topology on X. Let $f: X \to Y$. Suppose that, for all $B \in \mathcal{B}$, we have f(B) is open to Y. Then f is an open map.

PROOF: For any $A \subseteq \mathcal{B}$, we have $f(\bigcup A) = \bigcup_{B \in \mathcal{B}} f(B)$ is open in Y. The result follows from Lemma 65. \square

16 Continuous Functions

Definition 91 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* if and only if, for every open set V in Y, the set $f^{-1}(V)$ is open in X.

Proposition 92. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for Y. Then f is continuous if and only if, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.

PROOF:

 $\langle 1 \rangle 1$. If f is continuous then, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. PROOF: Since every element of B is open (Lemma 65).

- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.
 - $\langle 2 \rangle 2$. Let: V be open in Y.
 - $\langle 2 \rangle 3$. PICK $\mathcal{A} \subseteq \mathcal{B}$ such that $V = \bigcup \mathcal{A}$

Proof: By Lemma 65.

 $\langle 2 \rangle 4$. $f^{-1}(V)$ is open in X.

Proof:

$$f^{-1}(V) = f^{-1}\left(\bigcup \mathcal{A}\right)$$
$$= \bigcup_{B \in \mathcal{A}} f^{-1}(B)$$

П

Proposition 93. Let X and Y be topological spaces and $f: X \to Y$. Let S be a subbasis for Y. Then f is continuous if and only if, for all $S \in S$, we have $f^{-1}(S)$ is open in X.

PROOF:

- $\langle 1 \rangle 1$. If f is continuous then, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. PROOF: Since every element of S is open.
- $\langle 1 \rangle 2$. Suppose that, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X.
 - $\langle 2 \rangle 2$. Let: $S_1, \ldots, S_n \in \mathcal{S}$
 - $\langle 2 \rangle 3.$ $f^{-1}(S_1 \cap \cdots \cap S_n)$ is open in A

PROOF: Since $f^{-1}(S_1 \cap \cdots \cap S_n) = f^{-1}(S_1) \cap \cdots \cap f^{-1}(S_n)$.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: By Propositions 92 and 73.

Proposition 94. Let X and Y be topological spaces and $f: X \to Y$. Let S be a basis for Y. Then f is continuous if and only if, for all $V \in S$, we have $f^{-1}(V)$ is open in X.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. PROOF: Since every element of \mathcal{S} is open.
- $\langle 1 \rangle 2$. Suppose that, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X.
 - $\langle 2 \rangle 2$. For every set B that is the finite intersection of elemets of \mathcal{S} , we have $f^{-1}(B)$ is open in X.

PROOF: Because $f^{-1}(V_1 \cap \cdots \cap V_n) = f^{-1}(V_1) \cap \cdots \cap f^{-1}(V_n)$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: From Propositions 73 and 92.

Definition 95 (Continuous at a Point). Let X and Y be topological spaces. Let $f: X \to Y$ and $x \in X$. Then f is *continuous at* x if and only if, for every neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subseteq V$.

Theorem 96. Let X and Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For all $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$
- 3. For all $B \subseteq Y$ closed, we have $f^{-1}(B)$ is closed in X.
- 4. f is continuous at every point of X.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $A \subseteq X$
 - $\langle 2 \rangle 3$. Let: $x \in \overline{A}$

PROVE: $f(x) \in \overline{f(A)}$

- $\langle 2 \rangle 4$. Let: V be a neighbourhood of f(x)
- $\langle 2 \rangle 5$. $f^{-1}(V)$ is a neighbourhood of x
- $\langle 2 \rangle 6$. Pick $y \in A \cap f^{-1}(V)$

PROOF: By Theorem 51.

- $\langle 2 \rangle 7. \ f(y) \in V \cap f(A)$
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: By Theorem 51.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: B be closed in Y
 - $\langle 2 \rangle 3$. Let: $x \in \overline{f^{-1}(B)}$

PROVE:
$$x \in f^{-1}(B)$$

 $\langle 2 \rangle 4. \ f(x) \in B$

Proof:

$$f(x) \in f(\overline{f^{-1}(B)})$$

$$\subseteq \overline{f(f^{-1}(B))} \qquad (\langle 2 \rangle 1)$$

$$\subseteq \overline{B} \qquad (Proposition 52)$$

$$= B$$

- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. Let: V be open in Y
 - $\langle 2 \rangle 3$. $Y \setminus V$ is closed in Y

```
\langle 2 \rangle 4. f^{-1}(Y \setminus V) is closed in X
```

- $\langle 2 \rangle 5$. $X \setminus f^{-1}(V)$ is closed in X
- $\langle 2 \rangle 6.$ $f^{-1}(V)$ is open in X
- $\langle 1 \rangle 4. \ 1 \Rightarrow 4$

PROOF: For any neighbourhood V of f(x), the set $U = f^{-1}(V)$ is a neighbourhood of x such that $f(U) \subseteq V$.

 $\langle 1 \rangle 5. \ 4 \Rightarrow 1$

- $\langle 2 \rangle 1$. Assume: 4
- $\langle 2 \rangle 2$. Let: V be open in Y
- $\langle 2 \rangle 3$. Let: $x \in f^{-1}(V)$
- $\langle 2 \rangle 4$. V is a neighbourhood of f(x)
- $\langle 2 \rangle$ 5. Pick a neighbourhood U of x such that $f(U) \subseteq V$
- $\langle 2 \rangle 6. \ x \in U \subseteq f^{-1}(V)$
- $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By Lemma 29.

Theorem 97. A constant function is continuous.

PROOF: Let X and Y be topological spaces. Let $b \in Y$, and let $f: X \to Y$ be the constant function with value b. For any open $V \subseteq Y$, the set $f^{-1}(V)$ is either X (if $b \in V$) or \emptyset (if $b \notin V$). \square

Theorem 98. If A is a subspace of X then the inclusion $j: A \to X$ is continuous.

PROOF: For any V open in X, we have $j^{-1}(V) = V \cap A$ is open in A. \square

Theorem 99. The composite of two continuous functions is continuous.

PROOF: Let $f: X \to Y$ and $g: Y \to Z$ be continuous. For any V open in Z, we have $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in X. \Box

Theorem 100. Let $f: X \to Y$ be a continuous function and A be a subspace of X. Then the restriction $f \upharpoonright A : A \to Y$ is continuous.

PROOF: Let V be open in Y. Then $(f \upharpoonright A)^{-1}(V) = f^{-1}(V) \cap A$ is open in A. \square

Theorem 101. Let $f: X \to Y$ be continuous. Let Z be a subspace of Y such that $f(X) \subseteq Z$. Then the corestriction $f: X \to Z$ is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: V be open in Z.
- $\langle 1 \rangle 2$. PICK U open in Y such that $V = U \cap Z$.
- $\langle 1 \rangle 3. \ f^{-1}(V) = f^{-1}(U)$
- $\langle 1 \rangle 4$. $f^{-1}(V)$ is open in X.

Theorem 102. Let $f: X \to Y$ be continuous. Let Z be a space such that Y is a subspace of Z. Then the expansion $f: X \to Z$ is continuous.

PROOF: Let V be open in Z. Then $f^{-1}(V) = f^{-1}(V \cap Y)$ is open in X. \square

Theorem 103. Let X and Y be topological spaces. Let $f: X \to Y$. Suppose \mathcal{U} is a set of open sets in X such that $X = \bigcup \mathcal{U}$ and, for all $U \in \mathcal{U}$, we have $f \upharpoonright U: U \to Y$ is continuous. Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: V be open in Y
- $\langle 1 \rangle 2. \ f^{-1}(V) = \bigcup_{U \in \mathcal{U}} (f \upharpoonright U)^{-1}(V)$
- $\langle 1 \rangle 3$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in U.
- $\langle 1 \rangle 4$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in X. PROOF: Lemma 145.

Proposition 104. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is continuous if and only if $\mathcal{T}' \subseteq \mathcal{T}$.

PROOF: Immediate from definitions.

Proposition 105. Let $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Then f is continuous on the right at a if and only if f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. If f is continuous on the right at a then f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.
 - $\langle 2 \rangle 1$. Assume: f is continuous on the right at a.
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of f(a)
 - $\langle 2 \rangle 3$. PICK b, c such that $f(a) \in (b,c) \subseteq V$.
 - $\langle 2 \rangle 4$. Let: $\epsilon = \min(c f(a), f(a) b)$
 - $\langle 2 \rangle$ 5. Pick $\delta > 0$ such that, for all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$
 - $\langle 2 \rangle 6$. Let: $U = [a, a + \delta)$
 - $\langle 2 \rangle 7. \ f(U) \subseteq V$
- $\langle 1 \rangle 2$. If f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$ then f is continuous on the right at a.
 - $\langle 2 \rangle 1$. Assume: f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. PICK a neighbourhood U of a such that $f(U) \subseteq (f(a) \epsilon, f(a) + \epsilon)$
 - $\langle 2 \rangle 4$. PICK b, c such that $a \in [b, c) \subset U$
 - $\langle 2 \rangle 5$. Let: $\delta = c a$
- $\langle 2 \rangle 6$. For all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$

Lemma 106. Let $f: X \to Y$. Let Z be an open subspace of X and $a \in Z$. If $f \upharpoonright Z$ is continuous at a then f is continuous at a.

Proof:

 $\langle 1 \rangle 1$. Let: V be a neighbourhood of f(x)

- $\langle 1 \rangle 2$. PICK a neighbourhood W of x in Z such that $f(W) \subseteq V$
- $\langle 1 \rangle 3$. W is a neighbourhood of x in X such that $f(W) \subseteq V$ PROOF: Lemma 145.

Proposition 107. Let $f: A \to B$ and $g: C \to D$ be continuous. Define $f \times g: A \times C \to B \times D$ by

$$(f \times g)(a,c) = (f(a),g(c)) .$$

Then $f \times g$ is continuous.

PROOF: $\pi_1 \circ (f \times g) = f \circ \pi_1$ and $\pi_2 \circ (f \times g) = g \circ \pi_2$ are continuous by Theorem 99. The result follows by Theorem 135.

Proposition 108. Let X and Y be topological spaces and $f: X \to Y$ be continuous. If $a_n \to l$ as $n \to \infty$ in X then $f(a_n) \to f(l)$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1$. Let: V be a neighbourhood of f(l)
- $\langle 1 \rangle 2$. Pick a neighbourhood U of l such that $f(U) \subseteq V$
- $\langle 1 \rangle 3$. PICK N such that, for all $n \geq N$, we have $a_n \in U$
- $\langle 1 \rangle 4$. For all $n \geq N$ we have $f(n) \in V$

17 Homeomorphisms

Definition 109 (Homeomorphism). Let X and Y be topological spaces. A Homeomorphism f between X and Y, $f: X \cong Y$, is a bijection $f: X \to Y$ such that both f and f^{-1} are continuous.

Lemma 110. Let X and Y be topological spaces and $f: X \to Y$ a bijection. Then the following are equivalent:

- 1. f is a homeomorphism.
- 2. f is continuous and an open map.
- 3. f is continuous and a closed map.
- 4. For any $U \subseteq X$, we have U is open if and only if f(U) is open.

PROOF: Immediate from definitions. \square

Proposition 111. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is a homeomorphism if and only if $\mathcal{T} = \mathcal{T}'$.

PROOF: Immediate from definitions.

Definition 112 (Topological Property). Let P be a property of topological spaces. Then P is a *topological* property if and only if, for any spaces X and Y, if P holds of X and $X \cong Y$ then P holds of Y.

Definition 113 (Topological Imbedding). Let X and Y be topological spaces and $f: X \to Y$. Then f is a topological imbedding if and only if the corestriction $f: X \to f(X)$ is a homeomorphism.

Proposition 114. Let X and Y be topological spaces and $a \in X$. The function $i: Y \to X \times Y$ that maps y to (a, y) is an imbedding.

Proof:

- $\langle 1 \rangle 1$. *i* is injective
- $\langle 1 \rangle 2$. *i* is continuous.

PROOF: For U open in X and V open in Y, we have $i^{-1}(U \times V)$ is V if $a \in U$, and \emptyset if $a \notin U$.

 $\langle 1 \rangle 3. \ i: Y \to i(Y)$ is an open map.

PROOF: For V open in Y we have $i(V) = (X \times V) \cap i(Y)$.

18 The Order Topology

Definition 115 (Order Topology). Let X be a linearly ordered set with at least two points. The *order topology* on X is the topology generated by the basis \mathcal{B} consisting of:

- all open intervals (a, b);
- all intervals of the form $[\bot, b)$ where \bot is least in X;
- all intervals of the form $(a, \top]$ where \top is greatest in X.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B$.
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Case: x is greatest in X.
 - $\langle 3 \rangle 1$. Pick $y \in X$ with $y \neq x$
 - $\langle 3 \rangle 2. \ x \in (y, x] \in \mathcal{B}$
 - $\langle 2 \rangle 3$. Case: x is least in X.
 - $\langle 3 \rangle 1$. Pick $y \in X$ with $y \neq x$
 - $\langle 3 \rangle 2. \ x \in [x,y) \in \mathcal{B}$
 - $\langle 2 \rangle 4$. Case: x is neither greatest nor least in X.
 - $\langle 3 \rangle 1$. Pick $a, b \in X$ with a < x and x < b
 - $\langle 3 \rangle 2. \ x \in (a,b) \in \mathcal{B}$
- $\langle 1 \rangle 2$. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$

```
\langle 2 \rangle 1. Let: B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2
\langle 2 \rangle 2. Case: B_1 = (a, b), B_2 = (c, d)
  PROOF: Take B_3 = (\max(a, c), \min(b, d)).
\langle 2 \rangle 3. Case: B_1 = (a, b), B_2 = [\bot, d)
  PROOF: Take B_3 = (a, \min(b, d)).
\langle 2 \rangle 4. Case: B_1 = (a, b), B_2 = (c, \top]
  PROOF: Take B_3 = (\max(a, c), b).
\langle 2 \rangle 5. Case: B_1 = [\bot, b), B_2 = [\bot, d)
  PROOF: Take B_3 = [\bot, \min(b, d)).
\langle 2 \rangle 6. Case: B_1 = [\bot, b), B_2 = (c, \top]
  PROOF: Take B_3 = (c, b).
```

Lemma 116. Let X be a linearly ordered set. Then the open rays form a subbasis for the order topology on X.

```
Proof:
```

```
\langle 1 \rangle 1. Every open ray is open.
   \langle 2 \rangle 1. For all a \in X, the ray (-\infty, a) is open.
      \langle 3 \rangle 1. Let: x \in (-\infty, a)
      \langle 3 \rangle 2. Case: x is least in X
         PROOF: xin[x, a) = (-\infty, a).
      \langle 3 \rangle 3. Case: x is not least in X
          \langle 4 \rangle 1. Pick y < x
          \langle 4 \rangle 2. \ x \in (y, a) \subseteq (-\infty, a)
   \langle 2 \rangle 2. For all a \in X, the ray (a, +\infty) is open.
      Proof: Similar.
\langle 1 \rangle 2. Every basic open set is a finite intersection of open rays.
  PROOF: We have (a,b)=(a,+\infty)\cap(-\infty,b), [\bot,b)=(-\infty,b) and (a,\top]=
   (a, +\infty).
```

Definition 117 (Standard Topology on the Real Line). The standard topology on the real line is the order topology on \mathbb{R} generated by the standard order.

Lemma 118. The lower limit topology is strictly finer than the standard topology on \mathbb{R} .

PROOF:

```
\langle 1 \rangle 1. Every open interval is open in the lower limit topology.
  PROOF: If x \in (a, b) then x \in [x, b) \subseteq (a, b).
\langle 1 \rangle 2. The half-open interval [0,1) is not open in the standard topology.
  PROOF: There is no open interval (a, b) such that 0 \in (a, b) \subseteq [0, 1).
```

Lemma 119. The K-topology is strictly finer than the standard topology on \mathbb{R} .

PROOF:

```
\langle 1 \rangle1. Every open interval is open in the K-topology. PROOF: Corollary 65.1.
```

 $\langle 1 \rangle 2.$ The set $(-1,1) \setminus K$ is not open in the standard topology.

PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in (a,b)$.

Lemma 120. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Then $C = \{x \in X \mid f(x) \leq g(x)\}$ is closed.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in X \setminus C$
- $\langle 1 \rangle 2$. f(x) > g(x)

PROVE: There exists a neighbourhood U of x such that $U \subseteq X \setminus C$

 $\langle 1 \rangle 3$. Case: There exists y such that g(x) < y < f(x) Proof: Take $U = g^{-1}((-\infty, y)) \cup f^{-1}(y, +\infty)$.

 $\langle 1 \rangle 4$. Case: There is no y such that g(x) < y < f(x)

PROOF: Take $U = g^{-1}((-\infty, f(x))) \cup f^{-1}(g(x), +\infty)$.

Proposition 121. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Define $h: X \to Y$ by $h(x) = \min(f(x), g(x))$. Then h is continuous.

PROOF: By the Pasting Lemma applied to $\{x \in X \mid f(x) \leq g(x)\}$ and $\{x \in X \mid g(x) \leq f(x)\}$, which are closed by Lemma 120.

Proposition 122. Let X and Y be linearly ordered sets in the order topology. Let $f: X \to Y$ be strictly monotone and surjective. Then f is a homeomorphism.

Proof:

П

 $\langle 1 \rangle 1$. f is bijective.

Proof: Proposition 9.

- $\langle 1 \rangle 2$. f is continuous.
 - $\langle 2 \rangle 1$. For all $y \in Y$ we have $f^{-1}((y, +\infty))$ is open.
 - $\langle 3 \rangle 1$. Let: $y \in Y$
 - $\langle 3 \rangle 2$. PICK $x \in X$ such that f(x) = y

Proof: Since f is surjective.

 $\langle 3 \rangle 3. \ f^{-1}((y, +\infty)) = (x, +\infty)$

PROOF: By strict monotoncity.

- $\langle 2 \rangle$ 2. For all $y \in Y$ we have $f^{-1}((-\infty, y))$ is open. PROOF: Similar.
- $\langle 1 \rangle 3.$ f^{-1} is continuous.
 - $\langle 2 \rangle 1$. For all $x \in X$ we have $f((x, +\infty))$ is open.

PROOF: $f((x, +\infty)) = (f(x), +\infty)$.

 $\langle 2 \rangle 2$. For all $x \in X$ we have $f((-\infty, x))$ is open.

PROOF: $f((-\infty, x)) = (-\infty, f(x))$.

19 The *n*th Root Function

Proposition 123. For all $n \geq 1$, the function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $f(x) = x^n$ is a homemorphism.

Proof:

- $\langle 1 \rangle 1$. f is strictly monotone.
 - $\langle 2 \rangle 1$. Let: $x, y \in \mathbb{R}$ with $0 \le x < y$
 - $\langle 2 \rangle 2$. $x^n < y^n$

$$y^{n} - x^{n} = (y - x)(y^{n-1} + y^{n-2}x + y^{n-3}x^{2} + \dots + x^{n-1})$$

> 0

- $\langle 1 \rangle 2$. f is surjective.
 - $\langle 2 \rangle 1$. Let: $y \in \mathbb{R}_{>0}$
 - $\langle 2 \rangle 2$. PICK $x \in \mathbb{R}$ such that $y \leq x^n$

PROOF: If $y \le 1$ take x = 1, otherwise take x = y.

 $\langle 2 \rangle 3$. There exists $x' \in [0, x]$ such that $(x')^n = y$

PROOF: By the Intermediate Value Theorem.

 $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 122.

Definition 124. For $n \geq 1$, the *nth root function* is the function $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ that is the inverse of $\lambda x.x^n$.

20 The Product Topology

Definition 125 (Product Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The *product topology* on $\prod_{i\in I} A_i$ is the topology generated by the subbasis consisting of the sets of the form $\pi_i^{-1}(U)$ where $i\in I$ and U is open in A_i .

Proposition 126. The product topology on $\prod_{i \in I} A_i$ is generated by the basis consisting of all sets of the form $\prod_{i \in I} U_i$ where $\{U_i\}_{i \in I}$ is a family such that each U_i is an open set in A_i and $U_i = A_i$ for all but finitely many i.

Proof: From Proposition 73.

Proposition 127. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$.

Proof:

$$\left(\prod_{i\in I} X_i\right) \setminus \left(\prod_{i\in I} A_i\right) = \bigcup_{j\in I} \left(\prod_{i\in I} X_i \setminus \pi_j^{-1}(A_j)\right) \square$$

Proposition 128. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i\in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B} = \{\prod_{i\in I} B_i \mid \forall i\in I.B_i\in \mathcal{B}_i, B_i = A_i \text{ for all but finitely many } i\}$ is a basis for the box topology on $\prod_{i\in I} A_i$.

PROOF:

- $\langle 1 \rangle 1$. Every set in \mathcal{B} is open.
- $\langle 1 \rangle 2$. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.
 - $\langle 2 \rangle 1$. Let: U be open and $a \in U$
 - $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i , such that $U_i = A_i$ except for $i = i_1, \ldots, i_n$, and such that $a \in \prod_{i \in I} U_i \subseteq U$.
 - $\langle 2 \rangle 3$. For $j = 1, \ldots, n$, PICK $B_{i_j} \in \mathcal{B}_{i_j}$ such that $a_{i_j} \in B_{i_j} \subseteq U_{i_j}$
 - $\langle 2 \rangle 4$. Let: $B = \prod_{i \in I} B_i$ where $B_i = A_i$ for $i \neq i_1, \ldots, i_n$
 - $\langle 2 \rangle 5. \ B \in \mathcal{B}$
 - $\langle 2 \rangle 6. \ a \in B \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 66.

Proposition 129. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. Then the projections $\pi_i: \prod_{i\in I} A_i \to A_i$ are open maps.

PROOF: From Lemma 89.

Example 130. The projections are not always closed maps. For example, $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ maps the closed set $\{(x, 1/x) \mid x > 0\}$ to $(0, +\infty)$.

Proposition 131. Let $\{X_i\}_{i\in I}$ be a family of sets. For $i\in I$, let \mathcal{T}_i and \mathcal{U}_i be topologies on X_i . Let \mathcal{P} be the product topology on $\prod_{i\in I} X_i$ generated by the topologies \mathcal{T}_i , and \mathcal{Q} the product topology on the same set generated by the topologies \mathcal{U}_i . Then $\mathcal{P} \subseteq \mathcal{Q}$ if and only if $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i.

Proof:

 $\langle 1 \rangle 1$. If $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i then $\mathcal{P} \subseteq \mathcal{Q}$

Proof: By Corollary 65.1.

- $\langle 1 \rangle 2$. If $\mathcal{P} \subseteq \mathcal{Q}$ then $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i
 - $\langle 2 \rangle 1$. Assume: $\mathcal{P} \subseteq \mathcal{Q}$
 - $\langle 2 \rangle 2$. Let: $i \in I$
 - $\langle 2 \rangle 3$. Let: $U \in \mathcal{T}_i$
 - $\langle 2 \rangle 4$. Let: $U_i = U$ and $U_j = X_j$ for $j \neq i$
 - $\langle 2 \rangle 5. \prod_{i \in I} U_i \in \mathcal{P}$ $\langle 2 \rangle 6. \prod_{i \in I} U_i \in \mathcal{Q}$

 - $\langle 2 \rangle 7. \ U \in \mathcal{U}_i$

PROOF: From Proposition 129.

Proposition 132 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $A_i \subseteq X_i \text{ for all } i \in I. \text{ Then }$

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

Proof:

```
\langle 1 \rangle 1. \ \overline{\prod_{i \in I} A_i} \subseteq \prod_{i \in I} \overline{A_i}
    \langle 2 \rangle 1. For all i \in I we have A_i \subseteq \overline{A_i}
        Proof: Lemma 48.
    \langle 2 \rangle 2. \prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}
    \langle 2 \rangle 3. Q.E.D.
        PROOF: Since \prod_{i \in I} A_i is closed by Proposition 127.
\langle 1 \rangle 2. \prod_{i \in I} \overline{A_i} \subseteq \prod_{i \in I} A_i
    \langle 2 \rangle 1. Let: x \in \prod_{i \in I} \overline{A_i}
    \langle 2 \rangle 2. Let: U be a neighbourhood of x
    \langle 2 \rangle 3. Pick V_i open in X_i such that x \in \prod_{i \in I} V_i \subseteq U with V_i = X_i except for
               i = i_1, \ldots, i_n
    \langle 2 \rangle 4. For i \in I, pick a_i \in V_i \cap A_i
        PROOF: By Theorem 51 and \langle 2 \rangle 1 using the Axiom of Choice.
    \langle 2 \rangle 5. U intersects \prod_{i \in I} A_i
    \langle 2 \rangle 6. Q.E.D.
        PROOF: a \in U \cap \prod_{i \in I} A_i
```

Example 133. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} is \mathbb{R}^{ω}

Proof:

- $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^{\omega}$
- $\langle 1 \rangle 2$. Let: *U* be any neighbourhoods of *a*.
- $\langle 1 \rangle 3$. PICK U_n open in $\mathbb R$ for all n such that $a \in \prod_{n \geq 0} U_n \subseteq U$ and $U_n = \mathbb R$ for all n except n_1, \ldots, n_k
- $\langle 1 \rangle 4$. Let: $b_n = a_n$ for $n = n_1, \ldots, n_k$ and $b_n = 0$ for all other n
- $\langle 1 \rangle 5. \ b \in \mathbb{R}^{\infty} \cap U$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: From Theorem 51.

Proposition 134. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let (a_n) be a sequence in $\prod_{i\in I} X_i$ and $l\in \prod_{i\in I} X_i$. Then $a_n\to l$ as $n\to\infty$ if and only if, for all $i\in I$, we have $\pi_i(a_n)\to\pi_i(l)$ as $n\to\infty$.

PROOF

- $\langle 1 \rangle 1$. If $a_n \to l$ as $n \to \infty$ then, for all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$ PROOF: Proposition 108.
- $\langle 1 \rangle 2$. If, for all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$, then $a_n \to l$ as $n \to \infty$
 - $\langle 2 \rangle 1$. Assume: For all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of l
 - $\langle 2 \rangle 3$. PICK open sets U_i in X_i such that $l \in \prod_{i \in I} U_i \subseteq V$ and $U_i = X_i$ for all i except $i = i_1, \ldots, i_k$
 - $\langle 2 \rangle 4$. For $j = 1, \ldots, k$, PICK N_j such that, for all $n \geq N_j$, we have $\pi_{i_j}(a_n) \in U_j$.
 - $\langle 2 \rangle 5$. Let: $N = \max(N_1, ..., N_k)$
 - $\langle 2 \rangle 6$. For all $n \geq N$ we have $a_n \in V$

Theorem 135. Let A be a topological space and $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $f: A \to \prod_{i\in I} X_i$ be a function. If $\pi_i \circ f$ is continuous for all $i\in I$ then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $i \in I$ and U be open in X_i
- $\langle 1 \rangle 2$. $f^{-1}(\pi_i^{-1}(U))$ is open in A
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 93.

20.1 Continuous in Each Variable Separately

Definition 136 (Continuous in Each Variable Separately). Let $F: X \times Y \to Z$. Then F is continuous in each variable separately if and only if:

- for every $a \in X$ the function $\lambda y \in Y.F(a,y)$ is continuous;
- for every $b \in Y$ the function $\lambda x \in X.F(x,b)$ is continuous.

Proposition 137. Let $F: X \times Y \to Z$. If F is continuous then F is continuous in each variable separately.

PROOF: For $a \in X$, the function $\lambda y \in Y.F(a,y)$ is $F \circ i$ where $i: Y \to X \times Y$ maps y to (a,y). We have i is continuous by Proposition 114, hence $F \circ i$ is continuous by Theorem 99.

Similarly for $\lambda x \in X.F(x,b)$ for $b \in Y$. \square

Example 138. Define $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$F(x,y) = \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Then F is continuous in each variable separately but not continuous.

Proposition 139. Let $f: A \to C$ and $g: B \to D$ be open maps. Then $f \times g: A \times B \to C \times D$ is an open map.

PROOF: Given U open in A and V open in B. Then $(f \times g)(U \times V) = f(U) \times g(V)$ is open in $C \times D$. The result follows from Proposition 90. \square

21 The Subspace Topology

Definition 140 (Subspace Topology). Let X be a topological space and $Y \subseteq X$. The *subspace topology* on Y is $\mathcal{T} = \{U \cap Y \mid U \text{ is open in } X\}$.

We prove this is a topology.

```
\begin{split} &\langle 1 \rangle 1. \ Y \in \mathcal{T} \\ &\text{PROOF: Since } Y = X \cap Y \\ &\langle 1 \rangle 2. \ \text{For all } \mathcal{U} \subseteq \mathcal{T}, \text{ we have } \bigcup \mathcal{U} \in \mathcal{T} \\ &\langle 2 \rangle 1. \ \text{Let: } \mathcal{U} \subseteq \mathcal{T} \\ &\langle 2 \rangle 2. \ \text{Let: } \mathcal{V} = \{V \text{ open in } X \mid V \cap Y \in \mathcal{U} \} \\ &\langle 2 \rangle 3. \ \bigcup \mathcal{U} = (\bigcup \mathcal{V}) \cap Y \\ &\langle 1 \rangle 3. \ \text{For all } U, V \in \mathcal{T}, \text{ we have } U \cap V \in \mathcal{T} \\ &\langle 2 \rangle 1. \ \text{Let: } U, V \in \mathcal{T} \\ &\langle 2 \rangle 2. \ \text{PICK } U', V' \text{ open in } X \text{ such that } U = U' \cap Y \text{ and } V = V' \cap Y \\ &\langle 2 \rangle 3. \ (U \cap V) = (U' \cap V') \cap Y \end{split}
```

Theorem 141. Let X be a topological space and Y a subspace of X. Let $A \subseteq Y$. Then A is closed in Y if and only if there exists a closed set C in X such that $A = C \cap Y$.

PROOF: We have

$$\begin{array}{l} A \text{ is closed in } Y \\ \Leftrightarrow Y \setminus A \text{ is open in } Y \\ \Leftrightarrow \exists U \text{ open in } X.Y \setminus A = Y \cap U \\ \Leftrightarrow \exists C \text{ closed in } X.Y \setminus A = Y \cap (X \setminus U) \\ \Leftrightarrow \exists C \text{ closed in } X.A = Y \cap U \end{array}$$

Theorem 142. Let Y be a subspace of X. Let $A \subseteq Y$. Let \overline{A} be the closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$.

PROOF: The closure of
$$A$$
 in Y is
$$\bigcap \{C \text{ closed in } Y \mid A \subseteq C\}$$
$$= \bigcap \{D \cap Y \mid D \text{ closed in } X, A \subseteq D \cap Y\}$$
 (Theorem 141)
$$= \bigcap \{D \mid D \text{ closed in } X, A \subseteq D\} \cap Y$$
$$= \overline{A} \cap Y$$

Lemma 143. Let X be a topological space and $Y \subseteq X$. Let \mathcal{B} be a basis for the topology on X. Then $\mathcal{B}' = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.

- $\langle 1 \rangle 1$. Every element in \mathcal{B}' is open in Y
- $\langle 1 \rangle 2$. For every open set U in Y and point $y \in U$, there exists $B' \in \mathcal{B}'$ such that $y \in B' \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be open in Y and $y \in U$
 - $\langle 2 \rangle 2$. PICK V open in X such that $U = V \cap Y$
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $y \in B \subseteq V$
 - $\langle 2 \rangle 4$. Let: $B' = B \cap Y$
 - $\langle 2 \rangle 5. \ B' \in \mathcal{B}'$

$$\langle 2 \rangle$$
6. $y \in B' \subseteq U$
 $\langle 1 \rangle$ 3. Q.E.D.
PROOF: By Lemma 66.

Lemma 144. Let X be a topological space and $Y \subseteq X$. Let S be a basis for the topology on X. Then $S' = \{S \cap Y \mid S \in S\}$ is a subbasis for the subspace topology on Y.

PROOF: The set $\{B \cap Y \mid B \text{ is a finite intersection of elements of } \mathcal{S}\}$ is a basis for the subspace topology by Lemma 143, and this is the set of all finite intersections of elements of \mathcal{S}' . \square

Lemma 145. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

Proof:

- $\langle 1 \rangle 1$. PICK V open in X such that $U = V \cap Y$
- $\langle 1 \rangle 2$. U is open in X

PROOF: Since it is the intersection of two open sets V and Y.

Theorem 146. Let Y be a subspace of X and $A \subseteq Y$. If A is closed in Y and Y is closed in X then A is closed in X.

PROOF: Pick a closed set C in X such that $A = C \cap Y$ (Theorem 141). Then A is the intersection of two sets closed in X, hence A is closed in X (Lemma 36). \square

Theorem 147. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i \in I$. Then the product topology on $\prod_{i\in I} A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I} X_i$.

PROOF: The product topology is generated by the subbasis

$$\{\pi_{i}^{-1}(U) \mid i \in I, U \text{ open in } A_{i}\}\$$

$$= \{\pi_{i}^{-1}(V) \cap A_{i} \mid i \in I, V \text{ open in } X_{i}\}\$$

$$= \{\pi_{i}^{-1}(V) \mid i \in I, V \text{ open in } X_{i}\} \cap \prod_{i \in I} A_{i}\$$

and this is a subbasis for the subspace topology by Lemma 144. \square

Theorem 148. Let X be an ordered set in the order topology. Let $Y \subseteq X$ be an interval. Then the order topology on Y is the same as the subspace topology on Y.

- $\langle 1 \rangle 1$. The order topology is finer than the subspace topology.
 - $\langle 2 \rangle 1$. For every open ray R in X, the set $R \cap Y$ is open in the order topology.
 - $\langle 3 \rangle 1$. For all $a \in X$, we have $(-\infty, a) \cap Y$ is open in the order topology.

```
\langle 4 \rangle 1. Case: For all y \in Y we have y < a
  PROOF: In this case (-\infty, a) \cap Y = Y.
```

- $\langle 4 \rangle 2$. Case: For all $y \in Y$ we have a < yPROOF: In this case $(-\infty, a) \cap Y = \emptyset$.
- $\langle 4 \rangle 3$. Case: There exists $y \in Y$ such that $y \leq a$ and $y \in Y$ such that

$$\langle 5 \rangle 1. \ a \in Y$$

PROOF: Because Y is an interval.

$$\langle 5 \rangle 2. \ (-\infty, a) \cap Y = \{ y \in Y \mid y < a \}$$

- $\langle 3 \rangle 2$. For all $a \in X$, we have $(a, +\infty) \cap Y$ is open in the order topology. PROOF: Similar.
- $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemmas 116 and 144 and Proposition 74.

- $\langle 1 \rangle 2$. The subspace topology is finer than the order topology.
 - $\langle 2 \rangle 1$. Every open ray in Y is open in the subspace topology.

PROOF: For any $a \in Y$ we have $(-\infty, a)_Y = (-\infty, a)_X \cap Y$ and $(a, +\infty)_Y =$ $(a,+\infty)_X \cap Y$.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemma 116 and Proposition 74

This example shows that we cannot remove the hypothesis that Y is an interval:

Example 149. The order topology on I_o^2 is different from the subspace topology as a subspace of \mathbb{R}^2 under the dictionary order topology.

PROOF: The set $\{1/2\} \times (1/2,1)$ is open in the subspace topology but not in the order topology. \square

Proposition 150. Let X be a topological space, Y a subspace of X, and Z a subspace of Y. Then the subspace topology on Z inherited from X is the same as the subspace topology on Z inherited from Y.

PROOF: The subspace topology inherited from Y is

$$\{V \cap Z \mid V \text{ open in } Y\}$$

$$=\{U \cap Y \cap Z \mid U \text{ open in } X\}$$

$$=\{U \cap Z \mid U \text{ open in } X\}$$

which is the subspace topology inherited from X. \square

Definition 151 (Unit Circle). The unit circle S^1 is $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ as a subspace of \mathbb{R}^2 .

Definition 152 (Unit 2-sphere). The unit 2-sphere is $S^2 = \{(x,y,z) \mid x^2 + y^2 \}$ $y^2 + z^2 \le 1$ as a subspace of \mathbb{R}^3 .

Proposition 153. Let $f: X \to Y$ be an open map and $A \subseteq X$ be open. Then the restriction $f \upharpoonright A : A \to f(A)$ is an open map.

Proof:

- $\langle 1 \rangle 1$. Let: U be open in A
- $\langle 1 \rangle 2$. *U* is open in *X*

Proof: Lemma 145.

- $\langle 1 \rangle 3$. f(U) is open in Y
- $\langle 1 \rangle 4$. f(U) is open in f(A)

PROOF: Since $f(U) = f(U) \cap f(A)$.

Example 154. This example shows that we cannot remove the hypothesis that A is open.

Let $A = \{(x, y) \in \mathbb{R}^2 \mid (x > 0 \text{ and } y = 1/x) \text{ or } x = y = 0\}$. Then $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ is an open map, but $\pi_1 \upharpoonright A : A \to [0, +\infty)$ is not, because it maps the set $\{0, 0\}$ which is open in A to $\{0\}$ which is not open in $[0, +\infty)$.

Proposition 155. Let Y be a subspace of X. Let $A \subseteq Y$ and $l \in Y$. Then l is a limit point of A in Y if and only if l is a limit point of A in X.

PROOF: Both are equivalent to the condition that any neighbourhood of l in X intersects A in a point other than l. \square

22 The Box Topology

Definition 156 (Box Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The box topology on $\prod_{i\in I} A_i$ is the topology generated by the set of all sets of the form $\prod_{i\in I} U_i$ where $\{U_i\}_{i\in I}$ is a family such that each U_i is open in A_i .

This is a basis since it covers $\prod_{i \in I} A_i$ and is closed under intersection.

Proposition 157. The box topology is finer than the product topology.

PROOF: From Proposition 126.

Corollary 157.1. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$ under the box topology.

PROOF: From Proposition 127.

Proposition 158 (AC). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i \in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B} = \{\prod_{i\in I} B_i \mid \forall i \in I.B_i \in \mathcal{B}_i\}$ is a basis for the box topology on $\prod_{i\in I} A_i$.

- $\langle 1 \rangle 1$. Every set of the form $\prod_{i \in I} B_i$ is open.
- $\langle 1 \rangle 2$. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.
 - $\langle 2 \rangle 1$. Let: *U* be open and $a \in U$
 - $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i and $a \in \prod_{i \in I} U_i \subseteq U$.

 $\langle 2 \rangle 3$. For $i \in I$, PICK $B_i \in \mathcal{B}_i$ such that $a_i \in B_i \subseteq U_i$

PROOF: Using the Axiom of Choice.

$$\langle 2 \rangle 4. \ a \in \prod_{i \in I} B_i \subseteq U$$

 $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 66.

Theorem 159. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i \in I$. Give $\prod_{i \in I} X_i$ the box topology. Then the box topology on $\prod_{i \in I} A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I} X_i$.

PROOF: The box topology is generated by the basis

$$\begin{aligned} &\{\prod_{i\in I} U_i \mid \forall i\in I, U_i \text{ open in } A_i\} \\ &= \{\prod_{i\in I} (V_i\cap A_i) \mid \forall i\in I, V_i \text{ open in } X_i\} \\ &= \{\prod_{i\in I} V_i \mid \forall i\in I, V_i \text{ open in } X_i\} \cap \prod_{i\in I} A_i \end{aligned}$$

and this is a basis for the subspace topology by Lemma 143. \square

Proposition 160 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Give $\prod_{i \in I} X_i$ the box topology. Let $A_i \subseteq X_i$ for all $i \in I$. Then

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

Proof:

 $\langle 1 \rangle 1$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 1$. For all $i \in I$ we have $A_i \subseteq \overline{A_i}$

Proof: Lemma 48.

 $\langle 2 \rangle 2$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}$ $\langle 2 \rangle 3$. Q.E.D.

PROOF: Since $\prod_{i \in I} A_i$ is closed by Corollary 157.1.

- $\langle 1 \rangle 2$. $\prod_{i \in I} \overline{A_i} \subseteq \overline{\prod_{i \in I} A_i}$
 - $\langle 2 \rangle 1$. Let: $x \in \prod_{i \in I} \overline{A_i}$
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of x
 - $\langle 2 \rangle 3$. Pick V_i open in X_i such that $x \in \prod_{i \in I} V_i \subseteq U$
 - $\langle 2 \rangle 4$. For $i \in I$, pick $a_i \in V_i \cap A_i$

PROOF: By Theorem 51 and $\langle 2 \rangle 1$ using the Axiom of Choice.

- $\langle 2 \rangle 5$. U intersects $\prod_{i \in I} A_i$
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: $a \in U \cap \prod_{i \in I} A_i$.

The following example shows that Theorem 135 fails in the box topology.

Example 161. Define $f: \mathbb{R} \to \mathbb{R}^{\omega}$ by f(t) = (t, t, ...). Then $\pi_n \circ f = \mathrm{id}_{\mathbb{R}}$ is continuous for all n. But f is not continuous when \mathbb{R}^{ω} is given the box topology because the inverse image of

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

is $\{0\}$ which is not open.

The following example shows that Proposition 134 fails in the box topology.

Example 162. Give \mathbb{R}^{ω} the box topology. Let $a_n = (1/n, 1/n, \ldots)$ for $n \geq 1$ and $l = (0, 0, \ldots)$. Then $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$ for all i, but $a_n \not\to l$ as $n \to \infty$ since the open set

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

contains l but does not contain any a_n .

Example 163. The set \mathbb{R}^{∞} is closed in \mathbb{R}^{ω} under the box topology. For let (a_n) be any sequence not in \mathbb{R}^{∞} . Let U_n be an open interval around a_n that does not contain 0 if $a_n \neq 0$, and $U_n = \mathbb{R}$ if $a_n = 0$. Then $\prod_{n \geq 0} U_n$ is a neighbourhood of (a_n) that does not intersect \mathbb{R}^{∞} .

23 T_1 Spaces

Definition 164 (T_1 Space). A topological space is T_1 if and only if every singleton is closed.

Lemma 165. A space is T_1 if and only if every finite set is closed.

PROOF: From Lemma 37.

Theorem 166. In a T_1 space, a point a is a limit point of a set A if and only if every neighbourhood of a contains infinitely many points of A.

PROOF:

- $\langle 1 \rangle 1$. If a is a limit point of A then every neighbourhood of a contains infinitely many points of A.
 - $\langle 2 \rangle 1$. Assume: a is a limit point of A.
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of a.
 - $\langle 2 \rangle 3$. Assume: for a contradiction U contains only finitely many points of A.
 - $\langle 2 \rangle 4$. $(U \cap A) \setminus \{a\}$ is closed.

PROOF: By the T_1 axiom.

 $\langle 2 \rangle 5$. $(U \setminus A) \cup \{a\}$ is open.

PROOF: It is $U \setminus ((U \cap A) \setminus \{a\})$.

 $\langle 2 \rangle 6$. $(U \setminus A) \cup \{a\}$ intersects A in a point other than a.

PROOF: From $\langle 2 \rangle 1$.

 $\langle 2 \rangle$ 7. Q.E.D.

 $\langle 1 \rangle 2$. If every neighbourhood of a contains infinitely many points of A then a is a limit point of A.

PROOF: Immediate from definitions.

(To see this does not hold in every space, see Proposition 62.)

Proposition 167. A space is T_1 if and only if, for any two distinct points x and y, there exist neighbourhoods U of x and y of y such that $x \notin V$ and $y \notin U$.

Proof:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is T_1 then, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.

PROOF: This holds because $\{x\}$ and $\{y\}$ are closed.

- $\langle 1 \rangle 3$. Suppose, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$. Then X is T_1 .
 - $\langle 2 \rangle 1$. Assume: For any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle 3$. $\{a\}$ is closed.

PROOF: For all $b \neq a$ there exists a neighbourhood U of b such that $U \subseteq X \setminus \{a\}$.

Proposition 168. A subspace of a T_1 space is T_1 .

Proof: From Proposition 146.

24 Hausdorff Spaces

Definition 169 (Hausdorff Space). A topological space is *Hausdorff* if and only if, for any points x, y with $x \neq y$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$.

Theorem 170. Every Hausdorff space is T_1 .

Proof:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Let: $b \in X$

PROVE: $\overline{\{b\}} = \{b\}$

- $\langle 1 \rangle 3$. Assume: $a \in \{b\}$ and $a \neq b$
- $\langle 1 \rangle 4$. PICK disjoint neighbourhoods U of a and V of b.
- $\langle 1 \rangle 5$. *U* intersects $\{b\}$

PROOF: Theorem 51.

- $\langle 1 \rangle 6. \ b \in U$
- $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint $(\langle 1 \rangle 4)$.

Proposition 171. An infinite set under the finite complement topology is T_1 but not Hausdorff.

PROOF:

- $\langle 1 \rangle 1$. Let: X be an infinite set under the finite complement topology.
- $\langle 1 \rangle 2$. Every singleton is closed.

PROOF: By definition.

- $\langle 1 \rangle 3$. Pick $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 4$. There are no disjoint neighbourhoods U of a and V of b.
 - $\langle 2 \rangle 1$. Let: U be a neighbourhood of a and V a neighbourhood of b.
 - $\langle 2 \rangle 2$. $X \setminus U$ and $X \setminus V$ are finite.
 - $\langle 2 \rangle 3$. Pick $c \in X$ that is not in $X \setminus U$ or $X \setminus V$.
 - $\langle 2 \rangle 4. \ c \in U \cap V$

Proposition 172. The product of a family of Hausdorff spaces is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_i\}_{i \in I}$ be a family of Hausdorff spaces.
- $\langle 1 \rangle 2$. Let: $a, b \in \prod_{i \in I} X_i$ with $a \neq b$
- $\langle 1 \rangle 3$. PICK $i \in I$ such that $a_i \neq b_i$
- $\langle 1 \rangle 4$. Pick U, V disjoint open sets in X_i with $a_i \in U$ and $b_i \in V$
- $\langle 1 \rangle$ 5. $\pi_i^{-1}(U)$ and $\pi_i^{-1}(V)$ are disjoint open sets in $\prod_{i \in I} X_i$ with $a \in \pi_i^{-1}(U)$ and $b \in \pi_i^{-1}(V)$

Ш

Theorem 173. Every linearly ordered set under the order topology is Hausdorff.

Proof

- $\langle 1 \rangle 1$. Let: X be a linearly ordered set under the order topology.
- $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 3$. Assume: w.l.o.g. a < b
- $\langle 1 \rangle 4$. Case: There exists c such that a < c < b

PROOF: The sets $(-\infty, c)$ and $(c, +\infty)$ are disjoint neighbourhoods of a and b respectively.

 $\langle 1 \rangle$ 5. Case: There is no c such that a < c < b

PROOF: The sets $(-\infty, b)$ and $(a, +\infty)$ are disjoint neighbourhoods of a and b respectively.

Theorem 174. A subspace of a Hausdorff space is Hausdorff.

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space and Y a subspace of X.
- $\langle 1 \rangle 2$. Let: $x, y \in Y$ with $x \neq y$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of x and V of y in X.

 $\langle 1 \rangle 4$. $U \cap Y$ and $V \cap Y$ are disjoint neighbourhoods of x and y respectively in Y.

Proposition 175. A space X is Hausdorff if and only if the diagonal $\Delta = \{(x,x) \mid x \in X\}$ is closed in X^2 .

Proof:

X is Hausdorff

$$\begin{array}{l} \Leftrightarrow \forall x,y \in X. \\ x \neq y \Rightarrow \exists V, W \text{ open.} \\ x \in V \land y \in W \land V \cap W = \emptyset \\ \Leftrightarrow \forall (x,y) \in X^2 \setminus \Delta. \\ \exists V, W \text{ open.} \\ (x,y) \subseteq V \times W \subseteq X^2 \setminus \Delta \\ \Leftrightarrow \Delta \text{ is closed} \end{array}$$

Theorem 176. In a Hausdorff space, a sequence has at most one limit.

PROOF

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Assume: for a contradiction $a_n \to l$ as $n \to \infty$, $a_n \to m$ as $n \to \infty$, and $l \neq m$
- $\langle 1 \rangle 3.$ PICK disjoint neighbourhoods U of l and V of m

PROOF: By the Hausdorff axiom.

- $\langle 1 \rangle 4$. PICK M and N such that $a_n \in U$ for $n \geq M$ and $a_n \in V$ for $n \geq N$
- $\langle 1 \rangle 5. \ a_{\max(M,N)} \in U \cap V$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint ($\langle 1 \rangle 3$).

To see this is not always true in spaces that are T_1 but not Hausdorff:

Proposition 177. Let X be an infinite set under the finite complement topology. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence with all points distinct. Then for every $l\in X$ we have $a_n\to l$ as $n\to\infty$.

PROOF: Let U be any neighbourhood of l. Since $X \setminus U$ is finite, there must exist N such that, for all $n \geq N$, we have $a_n \in U$. \square

Proposition 178. Let X be a topological space. Let Y a Hausdorff space. Let $A \subseteq X$. Let $f, g : \overline{A} \to Y$ be continuous. If f and g agree on A then f = g.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \overline{A}$
- $\langle 1 \rangle 2$. Assume: $f(x) \neq g(x)$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods V of f(x) and W of g(x).
- $\langle 1 \rangle 4$. Pick $y \in f^{-1}(V) \cap g^{-1}(W) \cap A$

PROOF: Since $f^{-1}(V) \cap g^{-1}(W)$ is a neighbourhood of x and hence intersects A.

- $\langle 1 \rangle 5. \ f(y) = g(y) \in V \cap W$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that V and W are disjoint $(\langle 1 \rangle 3)$.

Proposition 179. Let $\{X_i\}_{i\in I}$ be a family of Hausdorff spaces. Then $\prod_{i\in I} X_i$ under the box topology is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_i\}_{i \in I}$ be a family of Hausdorff spaces.
- $\langle 1 \rangle 2$. Let: $a, b \in \prod_{i \in I} X_i$ with $a \neq b$
- $\langle 1 \rangle 3$. PICK $i \in I$ such that $a_i \neq b_i$
- $\langle 1 \rangle 4$. PICK U, V disjoint open sets in X_i with $a_i \in U$ and $b_i \in V$
- $\langle 1 \rangle$ 5. $\pi_i^{-1}(U)$ and $\pi_i^{-1}(V)$ are disjoint open sets in $\prod_{i \in I} X_i$ with $a \in \pi_i^{-1}(U)$ and $b \in \pi_i^{-1}(V)$

Proposition 180. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X with $\mathcal{T} \subseteq \mathcal{T}'$ If \mathcal{T} is Haudorff then \mathcal{T}' is Haudorff.

PROOF: Immediate from definitions.

25 The First Countability Axiom

Definition 181 (First Countability Axiom). A topological space X satisfies the *first countability axiom*, or is *first countable*, if and only if every point has a countable local basis.

Lemma 182 (Sequence Lemma (CC)). Let X be a first countable space. Let $A \subseteq X$ and $l \in \overline{A}$. Then there exists a sequence in A that converges to l.

Proof:

- $\langle 1 \rangle 1$. PICK a countable local basis $\{B_n \mid n \in \mathbb{Z}^+\}$ at l such that $B_1 \supseteq B_2 \supseteq \cdots$. PROOF: Lemma 76.
- $\langle 1 \rangle 2$. For all $n \geq 1$, PICK $a_n \in A \cap B_n$. PROVE: $a_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 3$. Let: U be a neighbourhood of A
- $\langle 1 \rangle 4$. PICK N such that $B_N \subseteq U$
- $\langle 1 \rangle 5$. For $n \geq N$ we have $a_n \in U$

PROOF: $a_n \in B_n \subseteq B_N \subseteq U$

Theorem 183 (CC). Let X be a first countable space and Y a topological space. Let $f: X \to Y$. Suppose that, for every sequence (x_n) in X and $l \in X$, if $x_n \to l$ as $n \to \infty$, then $f(x_n) \to f(l)$ as $n \to \infty$. Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $A \subseteq X$
- $\langle 1 \rangle 2$. Let: $a \in A$

Prove: $f(a) \in \overline{f(A)}$

```
\langle 1 \rangle3. PICK a sequence (x_n) in A that converges to a. PROOF: By the Sequence Lemma. \langle 1 \rangle4. f(x_n) \rightarrow f(a) \langle 1 \rangle5. f(a) \in \overline{f(A)} PROOF: By Lemma 78. \langle 1 \rangle6. Q.E.D. PROOF: By Theorem 96.
```

Example 184 (CC). The space \mathbb{R}^{ω} under the box product is not first countable.

PROOF: Let $\{B_n \mid n \geq 0\}$ be a countable set of neighbourhoods of $\vec{0}$. We will construct a neighbourhood of $\vec{0}$ that does not include any of these. For $n \geq 0$, pick a neighbourhood U_n of 0 such that $U_n \subset \pi_n(B_p)$. Then $\prod_{n=0}^{\infty} U_n$ is a neighbourhood of $\vec{0}$ that does not include any B_n . \square

Example 185. If J is an uncountable set then \mathbb{R}^J is not first countable.

Proof

- $\langle 1 \rangle 1$. Let: $\{B_n \mid n \geq 0\}$ be any countable set of neighbourhoods of $\vec{0}$.
- $\langle 1 \rangle 2$. For $n \geq 0$, PICK a basis element $\prod_{\alpha \in J} U_{n\alpha}$ that contains $\vec{0}$ and is included in B_n .

PROOF: Using the Axiom of Countable Choice.

```
\langle 1 \rangle 3. For n \geq 0,
LET: J_n = \{ \alpha \in J \mid U_{n\alpha} \neq \mathbb{R} \}
```

 $\langle 1 \rangle 4$. Pick $\beta \in J$ such that $\beta \notin J_n$ for any n.

PROOF: Since each J_n is finite so $\bigcup_n J_n$ is countable.

 $\langle 1 \rangle 5$. $\pi_{\beta}((-1,1))$ is a neighbourhood of $\vec{0}$ that does not include any B_n .

Example 186. The space \mathbb{R}_l is first countable.

PROOF: For any $a \in \mathbb{R}$, the set $\{[a, a+1/n) \mid n \geq 1\}$ is a countable local basis.

Example 187. The ordered square is first countable.

PROOF: For any $(a,b) \in I_o^2$ with $b \neq 0,1$, the set $\{(\{a\} \times (b-1/n,b+1/n)) \cap I_o^2 \mid n \geq 1\}$ is a countable local basis.

26 Strong Continuity

Definition 188 (Strongly Continuous). Let X and Y be topological spaces and $f: X \to Y$ be a function. Then f is *strongly continuous* if and only if, for every subset $U \subseteq Y$, we have U is open in Y if and only if $f^{-1}(U)$ is open in X.

Proposition 189. Let X and Y be topological spaces and $f: X \to Y$ be a function. Then f is strongly continuous if and only if, for every subset $C \subseteq Y$, we have C is closed in Y if and only if $f^{-1}(C)$ is closed in X.

PROOF: Since $X \setminus f^{-1}(C) = f^{-1}(Y \setminus C)$. \square

Proposition 190. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If f and g are strongly continuous then so is $g \circ f$.

PROOF: Since $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. \Box

Proposition 191. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If $g \circ f$ is continuous and f is strongly continuous then g is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $V \subseteq Z$ be open.
- $\langle 1 \rangle 2$. $f^{-1}(g^{-1}(V))$ is open in X.

PROOF: Since $g \circ f$ is continuous.

 $\langle 1 \rangle 3.$ $f^{-1}(V)$ is open in Y.

Proof: Since g is strongly continuous.

П

Proposition 192. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If $g \circ f$ is strongly continuous and f is strongly continuous then g is strongly continuous.

PROOF: For $V \subseteq Z$, we have V is open iff $f^{-1}(g^{-1}(V))$ is open iff $g^{-1}(V)$ is open.

27 Saturated Sets

Definition 193. Let X and Y be sets and $p: X \to Y$ a surjective function. Let $C \subseteq X$. Then C is *saturated* with respect to p if and only if, for all $x, y \in X$, if $x \in C$ and p(x) = p(y) then $y \in C$.

Proposition 194. Let X and Y be sets and $p: X \rightarrow Y$ a surjective function. Let $C \subseteq X$. Then the following are equivalent:

- 1. C is saturated with respect to p.
- 2. There exists $D \subseteq Y$ such that $C = p^{-1}(D)$
- 3. $C = p^{-1}(p(C))$.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: C is saturated with respect to p.
 - $\langle 2 \rangle 2$. $C \subseteq p^{-1}(p(C))$

Proof: Trivial.

- $\langle 2 \rangle 3. \ p^{-1}(p(C)) \subseteq C$
 - $\langle 3 \rangle 1$. Let: $x \in p^{-1}(p(C))$
 - $\langle 3 \rangle 2. \ p(x) \in p(C)$

28 Quotient Maps

Definition 195 (Quotient Map). Let X and Y be topological spaces and $p: X \to Y$. Then p is a *quotient map* if and only if p is surjective and strongly continuous.

```
1. p is a quotient map.
```

- 2. p is continuous and maps saturated open sets to open sets.
- 3. p is continuous and maps saturated closed sets to closed sets.

```
Proof:
\langle 1 \rangle 1. \ 1 \Rightarrow 2
   \langle 2 \rangle 1. Assume: p is a quotient map.
   \langle 2 \rangle 2. Let: U be a saturated open set in X.
   \langle 2 \rangle 3. \ p^{-1}(p(U)) is open in X.
       PROOF: Since U = p^{-1}(p(U)) be Proposition 194.
   \langle 2 \rangle 4. p(U) is open in Y.
       PROOF: From \langle 2 \rangle 1.
\langle 1 \rangle 2. \ 1 \Rightarrow 3
   PROOF: Similar.
\langle 1 \rangle 3. \ 2 \Rightarrow 1
   \langle 2 \rangle 1. Assume: p is continuous and maps saturated open sets to open sets.
   \langle 2 \rangle 2. Let: U \subseteq Y
   \langle 2 \rangle 3. Assume: p^{-1}(U) is open in X
   \langle 2 \rangle 4. p^{-1}(U) is saturated.
       Proof: Proposition 194.
   \langle 2 \rangle 5. U is open in Y.
\langle 1 \rangle 4. \ 3 \Rightarrow 1
   PROOF: Similar.
```

Corollary 196.1. Every surjective continuous open map is a quotient map.

Corollary 196.2. Every surjective continuous closed map is a quotient map.

Example 197. The converses of these corollaries do not hold.

Let $A = \{(x,y) \mid x \geq 0\} \cup \{(x,y) \mid y = 0\}$. Then $\pi_1 : A \to \mathbb{R}$ is a quotient map, but not an open map or a closed map.

We prove that π_1 maps saturated open sets to open sets:

- $\langle 1 \rangle 1$. Let: $\pi_1^{-1}(U)$ be a saturated open set in A Prove: U is open in $\mathbb R$
- $\langle 1 \rangle 2$. Let: $x \in U$
- $\langle 1 \rangle 3. \ (x,0) \in \pi_1(U)^{-1}$
- $\langle 1 \rangle 4$. PICK W, V open in \mathbb{R} such that $(x,0) \subseteq W \times V \subseteq \pi_1(U)^{-1}$
- $\langle 1 \rangle 5. \ x \in W \subseteq U$

It is not an open map because it maps $((-1,1)\times(1,2))\cap A$ to [0,1).

It is not a closed map because it maps $\{(x, 1/x) \mid x > 0\}$ to $(0, +\infty)$.

Proposition 198. Let $p: X \to Y$ be a quotient map. Let $A \subseteq X$ be saturated with respect to p. Let $q: A \to p(A)$ be the restriction of p.

- 1. If A is either open or closed in X then q is a quotient map.
- 2. If p is either an open map or a closed map then q is a quotient map.

Proof:

- $\langle 1 \rangle 1$. Let: $p: X \rightarrow Y$ be a quotient map.
- $\langle 1 \rangle 2$. Let: $A \subseteq X$ be saturated with respect to p.
- $\langle 1 \rangle 3$. Let: $q: A \rightarrow p(A)$ be the restriction of p.
- $\langle 1 \rangle 4$. q is continuous.

PROOF: Theorem 100.

- $\langle 1 \rangle 5$. If A is open in X then q is a quotient map.
 - $\langle 2 \rangle 1$. Assume: A is open in X.
 - $\langle 2 \rangle 2$. q maps saturated open sets to open sets.
 - $\langle 3 \rangle 1$. Let: $U \subseteq A$ be saturated with respect to q and open in A
 - $\langle 3 \rangle 2$. U is saturated with respect to p
 - $\langle 4 \rangle 1$. Let: $x, y \in X$
 - $\langle 4 \rangle 2$. Assume: $x \in U$
 - $\langle 4 \rangle 3$. Assume: p(x) = p(y)
 - $\langle 4 \rangle 4. \ x \in A$

PROOF: From $\langle 3 \rangle 1$ and $\langle 4 \rangle 2$.

 $\langle 4 \rangle 5. \ y \in A$

PROOF: From $\langle 1 \rangle 2$ and $\langle 4 \rangle 3$

 $\langle 4 \rangle 6. \ q(x) = x(y)$

PROOF: From $\langle 1 \rangle 3$, $\langle 4 \rangle 3$, $\langle 4 \rangle 4$, $\langle 4 \rangle 5$.

 $\langle 4 \rangle 7. \ y \in U$

PROOF: From $\langle 3 \rangle 1$, $\langle 4 \rangle 2$, $\langle 4 \rangle 6$

 $\langle 3 \rangle 3$. U is open in X

Proof: Lemma 145, $\langle 2 \rangle 1$, $\langle 3 \rangle 1$.

 $\langle 3 \rangle 4$. p(U) is open in Y

Proof: Proposition 196, $\langle 1 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$

```
\langle 3 \rangle 5. q(U) is open in p(A)
         PROOF: Since q(U) = p(U) = p(U) \cap p(A).
   \langle 2 \rangle 3. Q.E.D.
      Proof: By Proposition 196.
\langle 1 \rangle 6. If A is closed in X then q is a quotient map.
   PROOF: Similar.
\langle 1 \rangle 7. If p is an open map then q is a quotient map.
   \langle 2 \rangle 1. Assume: p is an open map
   \langle 2 \rangle 2. q maps saturated open sets to open sets.
      \langle 3 \rangle 1. Let: U be open in A and saturated with respect to q
      \langle 3 \rangle 2. PICK V open in X such that U = A \cap V
      \langle 3 \rangle 3. p(V) is open in Y
      \langle 3 \rangle 4. \ \ q(U) = p(V) \cap p(A)
         \langle 4 \rangle 1. \ q(U) \subseteq p(V) \cap p(A)
            PROOF: From \langle 3 \rangle 2.
         \langle 4 \rangle 2. \ p(V) \cap p(A) \subseteq q(U)
             \langle 5 \rangle 1. Let: y \in p(V) \cap p(A)
             \langle 5 \rangle 2. Pick x \in V and x' \in A such that p(x) = p(x') = y
             \langle 5 \rangle 3. \ x \in A
                Proof: By \langle 1 \rangle 2.
             \langle 5 \rangle 4. \ x \in U
                PROOF: From \langle 3 \rangle 2
   \langle 2 \rangle 3. Q.E.D.
      Proof: By Proposition 196.
\langle 1 \rangle 8. If p is a closed map then q is a quotient map.
   PROOF: Similar.
```

Example 199. This example shows we cannot remove the hypotheses on A and p.

Define $f:[0,1] \to [2,3] \to [0,2]$ by f(x)=x if $x \le 1$, f(x)=x-1 if $x \ge 2$. Then f is a quotient map but its restriction f' to $[0,1) \cup [2,3]$ is not, because ${f'}^{-1}([1,2])$ is open but [1,2] is not.

For a counterexample where A is saturated, see Example 205.

Proposition 200. Let $p: A \twoheadrightarrow C$ and $q: B \twoheadrightarrow D$ be open quotient maps. Then $p \times q: A \times B \rightarrow C \times D$ is an open quotient map.

PROOF: From Corollary 196.1, Proposition 139 and Theorem 135.

Theorem 201. Let $p: X \to Y$ be a quotient map. Let Z be a topological space and $f: Y \to Z$ be a function. Then

- 1. $f \circ p$ is continuous if and only if f is continuous.
- 2. $f \circ p$ is a quotient map if and only if f is a quotient map.

```
\langle 1 \rangle 1. If f \circ p is continuous then f is continuous. Proof: Proposition 191. \langle 1 \rangle 2. If f is continuous then f \circ p is continuous. Proof: Theorem 99. \langle 1 \rangle 3. If f \circ p is a quotient map then f is a quotient map. Proof: Proposition 192. \langle 1 \rangle 4. If f is a quotient map then f \circ p is a quotient map. Proof: From Proposition 190. \Box
```

Proposition 202. Let X and Y be topological spaces. Let $p: X \to Y$ and $f: Y \to X$ be continuous maps such that $p \circ f = \mathrm{id}_Y$. Then p is a quotient map.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } V \subseteq Y \\ \langle 1 \rangle 2. \text{ Assume: } p^{-1}(V) \text{ is open in } X. \\ \langle 1 \rangle 3. \ f^{-1}(p^{-1}(V)) \text{ is open in } Y. \\ \text{PROOF: Because } f \text{ is continuous.} \\ \langle 1 \rangle 4. \ V \text{ is open in } Y. \\ \text{PROOF: Because } f^{-1}(p^{-1}(V)) = V. \\ \sqcap
```

29 Quotient Topology

Definition 203 (Quotient Topology). Let X be a topological space, Y a set and $p: X \to Y$ be a surjective function. Then the *quotient topology* on Y is the unique topology on Y with respect to which p is a quotient map, namely $\mathcal{T} = \{U \in \mathcal{P}Y \mid p^{-1}(U) \text{ is open in } X\}.$

We prove this is a topology.

Definition 204 (Quotient Space). Let X be a topological space and \sim an equivalence relation on X. Let $p:X \twoheadrightarrow X/\sim$ be the canonical surjection. Then X/\sim under the quotient topology is called a *quotient space*, *identification space* or *decomposition space* of X.

Here is a counterexample showing we cannot remove all the hypotheses of Proposition 198 except that A is saturated.

Example 205. Let $X = (0, 1/2] \cup \{1\} \cup \{1 + 1/n : n \ge 2\}$ as a subspace of \mathbb{R} . Define R to be the equivalence relation on X where xRy iff (x = y or |x-y| = 1), so we identify 1/n with 1+1/n for all $n \geq 2$. Let Y be the resulting quotient space X/R in the quotient topology and $p:X \to Y$ the canonical surjection.

Let $A = \{1\} \cup (0, 1/2] \setminus \{1/n : n \ge 2\} \subseteq X$. Then A is saturated under p but the restriction q of p to A is not a quotient map because it maps the saturated open set $\{1\}$ to $\{1\}$ which is not open in p(A).

Proposition 206. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$. If f and g are quotient maps then so is $g \circ f$.

Proof: From Proposition 190.

Example 207. The product of two quotient maps is not necessarily a quotient

Let $X = \mathbb{R}$ and X^* the quotient space formed by identifying all positive integers. Let $p: X \to X^*$ be the canonical surjection.

We prove $p \times \mathrm{id}_{\mathbb{Q}} : X \times \mathbb{Q} \to X^* \times \mathbb{Q}$ is not a quotient map.

```
Proof:
\langle 1 \rangle 1. For n \geq 1,
          Let: c_n = \sqrt{2}/n
\langle 1 \rangle 2. For n \geq 1,
          Let: U_n = \{(x,y) \in X \times \mathbb{Q} \mid n-1/4 < x < n+1/4, (y+n > x + y) \}
                     c_n \text{ and } y + n > -x + c_n \text{ or } (y + n < x + c_n \text{ and } y + n < -x + c_n)
\langle 1 \rangle 3. For n \geq 1, we have U_n is open in X \times \mathbb{Q}
\langle 1 \rangle 4. For n \geq 1, we have \{n\} \times \mathbb{Q} \subseteq U_n
\langle 1 \rangle5. Let: U = \bigcup_{n=1}^{\infty} U_n
\langle 1 \rangle6. U is open in X \times \mathbb{Q}
\langle 1 \rangle7. U is saturated with respect to p \times id_{\mathbb{O}}
\langle 1 \rangle 8. Let: U' = (p \times id_{\mathbb{Q}})(U)
\langle 1 \rangle 9. Assume: for a contradiction U' is open in X^* \times \mathbb{Q}
\langle 1 \rangle 10. \ (1,0) \in U'
\langle 1 \rangle 11. PICK a neighbourhood W of 1 in X^* and \delta > 0 such that W \times (-\delta, \delta) \subseteq U'
\langle 1 \rangle 12. \ p^{-1}(W) \times (-\delta, \delta) \subseteq U
\langle 1 \rangle 13. PICK n such that c_n < \delta
\langle 1 \rangle 14. \ n \in p^{-1}(W)
(1)15. PICK \epsilon > 0 such that \epsilon < \delta - c_n and \epsilon < 1/4 and (n - \epsilon, n + \epsilon) \subseteq p^{-1}(W)
\langle 1 \rangle 16. \ (n - \epsilon, n + \epsilon) \times (-\delta, \delta) \subseteq U
\langle 1 \rangle 17. PICK a rational y such that c_n - \epsilon/2 < y < c_n + \epsilon/2
```

Proposition 208. Let X be a topological space and \sim an equivalence relation on X. Then $X/\sim is\ T_1$ if and only if every equivalence class is closed in X.

Proof: Immediate from definitions.

Proof: This contradicts $\langle 1 \rangle 16$.

 $\langle 1 \rangle 18. \ (n + \epsilon/2, y) \notin U$

 $\langle 1 \rangle 19$. Q.E.D.

30 Retractions

Definition 209 (Retraction). Let X be a topological space and $A \subseteq X$. A retraction of X onto A is a continuous map $r: X \to A$ such that, for all $a \in A$, we have r(a) = a.

Proposition 210. Every retraction is a quotient map.

PROOF: Proposition 202 with f the inclusion $A \hookrightarrow X$. \square

31 Homogeneous Spaces

Definition 211 (Homogeneous). A topological space X is homogeneous if and only if, for any points $a, b \in X$, there exists a homeomorphism $\phi : X \cong X$ such that $\phi(a) = b$.

32 Regular Spaces

Definition 212 (Regular Space). A topological space X is *regular* if and only if, for any closed set A and point $a \notin A$, there exist disjoint open sets U, V such that $A \subseteq U$ and $a \in V$.

33 Connected Spaces

Definition 213 (Separation). A *separation* of a topological space X is a pair of disjoint open sets U, V such that $U \cup V = \emptyset$.

Definition 214 (Connected). A topological space is *connected* if and only if it has no separation; otherwise it is *disconnected*.

Proposition 215. A topological space X is connected if and only if the only sets that are both open and closed are X and \emptyset .

Immediate from defintions.

Lemma 216. If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other.

- $\langle 1 \rangle 1$. Let: $A, B \subseteq Y$
- $\langle 1 \rangle 2$. If A and B form a separation of Y then A and B are disjoint and nonempty, $A \cup B = Y$, and neither of A and B contains a limit point of the other.
 - $\langle 2 \rangle 1$. Assume: A and B form a separation of Y
 - $\langle 2 \rangle 2$. A and B are disjoint and nonempty and $A \cup B = Y$ PROOF: From $\langle 2 \rangle 1$ and the definition of separation.
 - $\langle 2 \rangle 3$. A does not contain a limit point of B

```
\langle 3 \rangle 1. Assume: for a contradiction l \in A and l is a limit point of B in X.
      \langle 3 \rangle 2. l is a limit point of B in Y
        Proof: Proposition 155.
      \langle 3 \rangle 3. \ l \in B
        \langle 4 \rangle 1. B is closed in Y
           PROOF: Since A is open in Y and B = Y \setminus A from \langle 2 \rangle 1.
         \langle 4 \rangle 2. Q.E.D.
           PROOF: Corollary 61.1.
      \langle 3 \rangle 4. Q.E.D.
         PROOF: This contradicts the fact that A \cap B = \emptyset (\langle 2 \rangle 1).
  \langle 2 \rangle 4. B does not contain a limit point of A
     Proof: Similar.
\langle 1 \rangle3. If A and B are disjoint and nonempty, A \cup B = Y, and neither of A and
       B contains a limit point of the other, then A and B form a separation of
       Y.
   \langle 2 \rangle 1. Assume: A and B are disjoint and nonempty, A \cup B = Y, and neither
                        of A and B contains a limit point of the other.
  \langle 2 \rangle 2. A is open in Y
     \langle 3 \rangle 1. B is closed in Y
         \langle 4 \rangle 1. Let: l be a limit point of B in Y
         \langle 4 \rangle 2. l is a limit point of B in X
           Proof: Proposition 155.
         \langle 4 \rangle 3. \ l \notin A
            Proof: By \langle 2 \rangle 1
         \langle 4 \rangle 4. \ l \in B
           PROOF: By \langle 2 \rangle 1 since A \cup B = Y
         \langle 4 \rangle5. Q.E.D.
           PROOF: Corollary 61.1.
      \langle 3 \rangle 2. Q.E.D.
        PROOF: Since A = Y \setminus B.
   \langle 2 \rangle 3. B is open in Y
     PROOF: Similar.
```

Example 217. Every set under the indiscrete topology is connected.

Example 218. The discrete topology on a set X is connected if and only if $|X| \leq 1$.

Example 219. The finite complement topology on a set X is connected if and only if either $|X| \le 1$ or X is infinite.

Example 220. The countable complement topology on a set X is connected if and only if either $|X| \leq 1$ or X is uncountable.

Example 221. The rationals \mathbb{Q} are disconnected. For any irrational a, the sets $(-\infty, a) \cap \mathbb{Q}$ and $(a, +\infty) \cap \mathbb{Q}$ form a separation of \mathbb{Q} .

Lemma 222. Let X be a topological space. If C and D form a separation of X, and Y is a connected subspace of X, then either $Y \subseteq C$ or $Y \subseteq D$.

PROOF: Otherwise $Y \cap C$ and $Y \cap D$ would form a separation of Y. \square

Theorem 223. The union of a set of connected subspaces of a space X that have a point in common is connected.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a set of connected subspaces of the space X that have the point a in common.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of $\bigcup \mathcal{A}$
- $\langle 1 \rangle 3$. Assume: without loss of generality $a \in C$
- $\langle 1 \rangle 4$. For all $A \in \mathcal{A}$ we have $A \subseteq C$

Proof: Lemma 222.

- $\langle 1 \rangle 5$. $D = \emptyset$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 2$.

П

Theorem 224. Let X be a topological space and A a connected subspace of X. If $A \subseteq B \subseteq \overline{A}$ then B is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of B.
- $\langle 1 \rangle 2$. Assume: without loss of generality $A \subseteq C$

Proof: Lemma 222.

- $\langle 1 \rangle 3. \ B \subset C$
 - $\langle 2 \rangle 1$. Let: $x \in B$
 - $\langle 2 \rangle 2. \ x \in \overline{A}$
 - $\langle 2 \rangle 3$. Either $x \in A$ or x is a limit point of A.

PROOF: Theorem 61.

 $\langle 2 \rangle 4$. Either $x \in A$ or x is a limit point of C.

Proof: Lemma 63, $\langle 1 \rangle 2$.

 $\langle 2 \rangle 5. \ x \in C$

Proof: Lemma 216.

- $\langle 1 \rangle 4. \ D = \emptyset$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

Theorem 225. The image of a connected space under a continuous map is connected.

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be a surjective continuous map where X is connected.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of Y.
- $\langle 1 \rangle 3$. $f^{-1}(C)$ and $f^{-1}(D)$ form a separation of X.

Theorem 226. The product of a family of connected spaces is connected.

- $\langle 1 \rangle 1$. The product of two connected spaces is connected.
 - $\langle 2 \rangle 1$. Let: X and Y be connected spaces.
 - $\langle 2 \rangle 2$. Pick $a \in X$ and $b \in Y$

PROOF: We may assume X and Y are nonempty since otherwise $X \times Y = \emptyset$ which is connected.

 $\langle 2 \rangle 3$. $X \times \{b\}$ is connected.

Proof: It is homeomorphic to X.

 $\langle 2 \rangle 4$. For all $x \in X$ we have $\{x\} \times Y$ is connected.

PROOF: It is homeomorphic to Y.

 $\langle 2 \rangle 5$. For any $x \in X$

Let: $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$ $\langle 2 \rangle 6$. For all $x \in X$, T_x is connected.

PROOF: Theorem 223 since $(x,b) \in (X \times \{b\}) \cap (\{x\} \times Y)$.

 $\langle 2 \rangle 7$. $X \times Y$ is connected.

PROOF: Theorem 223 since $X \times Y = \bigcup_{x \in X} T_x$ and (a, b) is a point in every

 $\langle 1 \rangle 2$. The product of a finite family of connected spaces is connected.

Proof: From $\langle 1 \rangle 1$ by induction.

- $\langle 1 \rangle 3$. The product of any family of connected spaces is connected.
 - $\langle 2 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of connected spaces.
 - $\langle 2 \rangle 2$. Let: $X = \prod_{\alpha \in J} X_{\alpha}$
 - $\langle 2 \rangle 3$. Pick $a \in X$

PROOF: We may assume $X \neq \emptyset$ as the empty space is connected.

 $\langle 2 \rangle 4$. For every finite subset K of J,

Let:
$$X_K = \{x \in X \mid \forall \alpha \in J \setminus K.x_\alpha = a_\alpha\}$$

 $\langle 2 \rangle$ 5. For every finite $K \subseteq J$, we have X_K is connected.

PROOF: From $\langle 1 \rangle 2$ since $X_K \cong \prod_{\alpha \in K} X_K$.

- $\langle 2 \rangle 6$. Let: $Y = \bigcup_K X_K$
- $\langle 2 \rangle 7$. Y is connected

PROOF: Theorem 223 since a is a common point.

- $\langle 2 \rangle 8. \ X = \overline{Y}$
 - $\langle 3 \rangle 1$. Let: $x \in X$
 - $\langle 3 \rangle 2$. Let: $U = \prod_{\alpha \in J} U_{\alpha}$ be a basic neighbourhood of x where $U_{\alpha} = X_{\alpha}$ for all α except $\alpha \in K$ for some finite $K \subseteq J$
 - $\langle 3 \rangle 3$. Let: $y \in X$ be the point with $y_{\alpha} = x_{\alpha}$ for $\alpha \in K$ and $y_{\alpha} = a_{\alpha}$ for all other α
 - $\langle 3 \rangle 4. \ y \in U \cap X_K$
 - $\langle 3 \rangle 5. \ y \in U \cap Y$
- $\langle 2 \rangle 9$. X is connected.

PROOF: Theorem 224.

Example 227. The set \mathbb{R}^{ω} is disconnected under the box topology. The set of bounded sequences and the set of unbounded sequences form a separation.

Proposition 228. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X. If $\mathcal{T} \subseteq \mathcal{T}'$ and (X, \mathcal{T}') is connected then (X, \mathcal{T}) is connected.

PROOF: If U and V form a separation of (X, \mathcal{T}) then they form a separation of (X, \mathcal{T}') . \square

Proposition 229. Let X be a topological space and (A_n) a sequence of connected subspaces of X. If $A_n \cap A_{n+1} \neq \emptyset$ for all n then $\bigcup_n A_n$ is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of $\bigcup_n A_n$
- $\langle 1 \rangle 2$. Assume: without loss of generality $A_0 \subseteq C$

Proof: Lemma 222.

 $\langle 1 \rangle 3$. For all n we gave $A_n \subseteq C$

Proof:

- $\langle 2 \rangle 1$. Assume: $A_n \subseteq C$
- $\langle 2 \rangle 2$. Pick $x \in A_n \cap A_{n+1}$
- $\langle 2 \rangle 3. \ x \in C$
- $\langle 2 \rangle 4$. $A_{n+1} \subseteq C$

Proof: Lemma 222.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: The result follows by induction.

- $\langle 1 \rangle 4$. $D = \emptyset$
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

П

Proposition 230. Let X be a topological space. Let $A, C \subseteq X$. If C is connected and intersects both A and $X \setminus A$ then C intersects ∂A .

PROOF: Otherwise $C \cap A^{\circ}$ and $C \setminus \overline{A}$ would form a separation of C. \square

Example 231. The space \mathbb{R}_l is disconnected. For any real x, the sets $(-\infty, x)$ and $[x, +\infty)$ form a separation.

Proposition 232. Let X and Y be connected spaces. Let A be a proper subset of X and B a proper subset of Y. Then $(X \times Y) \setminus (A \times B)$ is connected.

Proof:

- $\langle 1 \rangle 1$. Pick $a \in X \setminus A$ and $b \in Y \setminus B$
- $\langle 1 \rangle 2$. For $x \in X \setminus A$ we have $(X \times \{b\}) \cup (\{x\} \times Y)$ is connected.

PROOF: Theorem 223 since (x, b) is a common point.

 $\langle 1 \rangle 3$. For $y \in Y \setminus B$ we have $(X \times \{y\}) \cup (\{a\} \times Y)$ is connected. PROOF: Theorem 223 since (a, y) is a common point.

 $\langle 1 \rangle 4$. $(X \times Y) \setminus (A \times B)$ is connected.

PROOF: Theorem 223 since it is the union of the sets in $\langle 1 \rangle 2$ and $\langle 1 \rangle 3$ with (a,b) as a common point.

Proposition 233. Let $p: X \to Y$ be a quotient map. If Y is connected and $p^{-1}(y)$ is connected for all $y \in Y$, then X is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of X.
- $\langle 1 \rangle 2$. C is saturated.
 - $\langle 2 \rangle 1$. Let: $x \in C$, $y \in X$ with p(x) = p(y) = a, say
 - $\langle 2 \rangle 2. \ y \notin D$

PROOF: Otherwise $p^{-1}(a) \cap C$ and $p^{-1}(a) \cap D$ form a separation of $p^{-1}(a)$.

 $\langle 2 \rangle 3. \ y \in C$

 $\langle 1 \rangle 3$. D is saturated.

PROOF: Similar.

 $\langle 1 \rangle 4$. p(C) and p(D) form a separation of Y.

Proposition 234. Let X be a connected space and Y a connected subspace of X. Suppose A and B form a separation of $X \setminus Y$. Then $Y \cup A$ and $Y \cup B$ are both connected.

Proof:

- $\langle 1 \rangle 1$. $Y \cup A$ is connected.
 - $\langle 2 \rangle 1$. Assume: for a contradiction C and D form a separation of $Y \cup A$
 - $\langle 2 \rangle 2$. Assume: without loss of generality $Y \subseteq C$
 - $\langle 2 \rangle 3$. PICK open sets A_1, B_1, C_1, D_1 in X with

$$A = A_1 \setminus Y$$
$$B = B_1 \setminus Y$$

$$C = C_1 \cap (Y \cup A)$$

$$D = D_1 \cap (Y \cup A)$$

- $\langle 2 \rangle 4$. $B_1 \cup C_1$ and $A_1 \cap D_1$ form a separation of X
- $\langle 1 \rangle 2$. $Y \cup B$ is connected.

PROOF: Similar.

П

Theorem 235. Let L be a linearly ordered set under the order topology. Then L is connected if and only if L is a linear continuum.

Proof:

- $\langle 1 \rangle 1$. If L is a linear continuum then L is connected.
 - $\langle 2 \rangle 1$. Let: L be a linear continuum under the order topology.
 - $\langle 2 \rangle 2$. Assume: for a contradiction C and D form a separation of L.
 - $\langle 2 \rangle 3$. Pick $a \in C$ and $b \in D$.
 - $\langle 2 \rangle 4$. Assume: without loss of generality a < b.
 - $\langle 2 \rangle$ 5. Let: $S = \{ x \in L \mid a < x \text{ and } [a, x) \subseteq C \}$
 - $\langle 2 \rangle 6$. S is nonempty.

PROOF: Since $a \in C$ and C is open.

```
\langle 2 \rangle7. S is bounded above by b.
   PROOF: Since b \notin C.
\langle 2 \rangle 8. Let: s = \sup S
\langle 2 \rangle 9. \ s \in S
   \langle 3 \rangle 1. Let: y \in [a, s)
           Prove: y \in C
   \langle 3 \rangle 2. Pick z with y < z \in S
      PROOF: By minimality of s.
   \langle 3 \rangle 3. \ y \in [a,z) \subseteq C
\langle 2 \rangle 10. Case: s \in C
   \langle 3 \rangle 1. Pick x such that s < x and [s, x) \subseteq C
      PROOF: Since C is open and s is not greatest in L because s < b.
   \langle 3 \rangle 2. \ x \in S
      PROOF: Since [a, x) = [a, s) \cup [s, x) \subseteq C.
   \langle 3 \rangle 3. Q.E.D.
      PROOF: This contradicts the fact that s is an upper bound for S.
\langle 2 \rangle 11. Case: s \in D
   \langle 3 \rangle 1. Pick x < s such that (x, s] \subseteq D
   \langle 3 \rangle 2. Pick y with x < y < s
      Proof: Since L is dense.
   \langle 3 \rangle 3. \ y \in C
      Proof: From \langle 2 \rangle 9.
   \langle 3 \rangle 4. \ y \in D
      PROOF: From \langle 3 \rangle 1.
   \langle 3 \rangle 5. Q.E.D.
   \langle 3 \rangle 6. Let: L be a linear continuum under the order topology.
   \langle 3 \rangle7. Assume: for a contradiction C and D form a separation of L.
   \langle 3 \rangle 8. Pick a \in C and b \in D.
   \langle 3 \rangle 9. Assume: without loss of generality a < b.
   \langle 3 \rangle 10. Let: S = \{ x \in L \mid a < x \text{ and } [a, x) \subseteq C \}
   \langle 3 \rangle 11. S is nonempty.
      PROOF: Since a \in C and C is open.
   \langle 3 \rangle 12. S is bounded above by b.
      PROOF: Since b \notin C.
   \langle 3 \rangle 13. Let: s = \sup S
   \langle 3 \rangle 14. \ s \in S
      \langle 4 \rangle 1. Let: y \in [a, s)
               Prove: y \in C
      \langle 4 \rangle 2. Pick z with y < z \in S
         PROOF: By minimality of s.
      \langle 4 \rangle 3. \ y \in [a, z) \subseteq C
   \langle 3 \rangle 15. Case: s \in C
      \langle 4 \rangle 1. Pick x such that s < x and [s, x) \subseteq C
         PROOF: Since C is open and s is not greatest in L because s < b.
```

PROOF: Since $[a, x) = [a, s) \cup [s, x) \subseteq C$.

 $\langle 4 \rangle 2. \ x \in S$

 $\langle 4 \rangle 3$. Q.E.D.

PROOF: This contradicts the fact that s is an upper bound for S.

- $\langle 3 \rangle 16$. Case: $s \in D$
 - $\langle 4 \rangle 1$. PICK x < s such that $(x, s] \subseteq D$
 - $\langle 4 \rangle 2$. Pick y with x < y < s

PROOF: Since L is dense.

 $\langle 4 \rangle 3. \ y \in C$

PROOF: From $\langle 2 \rangle 9$.

 $\langle 4 \rangle 4. \ y \in D$

PROOF: From $\langle 3 \rangle 1$.

 $\langle 4 \rangle$ 5. Q.E.D.

Proof: This contradicts $\langle 2 \rangle 2$.

- $\langle 1 \rangle 2$. If L is connected then L is a linear continuum.
 - $\langle 2 \rangle 1$. Assume: L is connected.
 - $\langle 2 \rangle 2$. Every nonempty subset of L that is bounded above has a supremum.
 - $\langle 3 \rangle 1$. Let: X be a nonempty subset of L bounded above by b.
 - $\langle 3 \rangle 2$. Assume: for a contradiction X has no supremum.
 - $\langle 3 \rangle 3$. Let: *U* be the set of upper bounds of *X*,
 - $\langle 3 \rangle 4$. *U* is nonempty.

PROOF: Since $b \in U$.

- $\langle 3 \rangle 5$. *U* is open.
 - $\langle 4 \rangle 1$. Let: $x \in U$
 - $\langle 4 \rangle 2$. PICK an upper bound y for X such that y < x
 - $\langle 4 \rangle 3$. Either x is greatest in L and $(y, x] \subseteq U$, or there exists z > x such that $(y, z) \subseteq U$
- $\langle 3 \rangle 6$. Let: V be the set of lower bounds of U.
- $\langle 3 \rangle 7$. V is nonempty.

PROOF: Since $X \subseteq V$

- $\langle 3 \rangle 8$. V is open.
 - $\langle 4 \rangle 1$. Let: $x \in V$
 - $\langle 4 \rangle 2$. PICK $y \in X$ with x < y

PROOF: x cannot be an upper bound for X, because it would be the supremum of X.

- $\langle 4 \rangle 3$. Either x least in L and $[x,y) \subseteq V$, or there exists z < x such that $(z,y) \subseteq V$
- $\langle 3 \rangle 9. \ L = U \cup V$
 - $\langle 4 \rangle 1$. Let: $x \in L \setminus U$
 - $\langle 4 \rangle 2$. PICK $y \in X$ such that x < y
 - $\langle 4 \rangle 3$. For all $u \in U$ we have $x < y \le u$
 - $\langle 4 \rangle 4. \ x \in V$
- $\langle 3 \rangle 10. \ U \cap V = \emptyset$

PROOF: Any element of $U \cap V$ would be a supremum of X.

- $\langle 3 \rangle 11$. *U* and *V* form a separation of *L*.
- $\langle 3 \rangle 12$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

 $\langle 2 \rangle 3$. L is dense.

- $\langle 3 \rangle 1$. Let: $x, y \in L$ with x < y
- $\langle 3 \rangle 2$. There exists $z \in L$ such that x < z < y

PROOF: Otherwise $(-\infty, y)$ and $(x, +\infty)$ would form a separation of L.

Corollary 235.1. The real line \mathbb{R} is connected.

Corollary 235.2. Every interval in \mathbb{R} is connected.

Corollary 235.3. The ordered square is connected.

Theorem 236 (Intermediate Value Theorem). Let X be a connected space. Let Y be a linearly ordered set under the order topology. Let $f: X \to Y$ be continuous. Let $a, b \in X$ and $r \in Y$. Suppose f(a) < r < f(b). Then there exists $c \in X$ such that f(c) = r.

PROOF: Otherwise $f^{-1}((-\infty,r))$ and $f^{-1}((r,+\infty))$ would form a separation of X. \square

Proposition 237. Every function $f:[0,1] \to [0,1]$ has a fixed point.

Proof

- $\langle 1 \rangle 1$. Let: $g: [0,1] \to [-1,1]$ be the function g(x) = f(x) xProve: there exists $x \in [0,1]$ such that g(x) = 0
- $\langle 1 \rangle 2$. Assume: without loss of generality $g(0) \neq 0$ and $g(1) \neq 0$
- $\langle 1 \rangle 3. \ \ g(0) > 0$
- $\langle 1 \rangle 4. \ g(1) < 0$
- $\langle 1 \rangle$ 5. There exists $x \in (0,1)$ such that g(x) = 0

PROOF: By the Intermediate Value Theorem.

Proposition 238. Give \mathbb{R}^{ω} the box topology. Let $x, y \in \mathbb{R}^{\omega}$. Then x and y lie in the same component if and only if x - y is eventually zero, i.e. there exists N such that, for all $n \geq N$, we have $x_n = y_n$.

- $\langle 1 \rangle 1$. The component containing 0 is the set of sequences that are eventually zero.
 - $\langle 2 \rangle 1$. Let: B be the set of sequences that are eventually zero.
 - $\langle 2 \rangle 2$. B is path-connected.
 - $\langle 3 \rangle 1$. Let: $x, y \in B$
 - $\langle 3 \rangle 2$. Pick N such that, for all $n \geq N$, we have $x_n = y_n = 0$
 - $\langle 3 \rangle 3$. Let: $p:[0,1] \to \mathbb{R}^{\omega}, \ p(t)=(1-t)x+ty$ Prove: p is continuous.
 - $\langle 3 \rangle 4$. Let: $t \in [0,1]$ and $\prod_j U_j$ be a basic open neighbourhood of p(t), where each U_i is open in \mathbb{R}
 - $\langle 3 \rangle$ 5. PICK δ such that, for all n < N and all $s \in [0,1]$, if $|s-t| < \delta$ then $p(s)_n \in U_n$
 - $\langle 3 \rangle 6$. For all $s \in [0,1]$, if $|s-t| < \delta$ then $p(s) \in \prod_j U_j$
 - $\langle 2 \rangle 3$. B is connected.

```
Proof: Proposition 244.
   \langle 2 \rangle 4. If C is connected and B \subseteq C then B = C.
       \langle 3 \rangle 1. Assume: C is connected and B \subseteq C
       \langle 3 \rangle 2. Assume: for a contradiction x \in C \setminus B
       \langle 3 \rangle 3. For n \geq 1,
              Let: c_n = 1 if x_n = 0, c_n = n/x_n otherwise
       \langle 3 \rangle 4. Let: h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega} be the function h(x) = (c_n x_n)_{n \geq 1}
       \langle 3 \rangle 5. h is a homeomorphism of \mathbb{R}^{\omega} with itself.
      \langle 3 \rangle 6. h(x) is unbounded.
          PROOF: For any b > 0, pick N > b such that x_N \neq 0. Then h(x)_N > b.
       \langle 3 \rangle 7. h^{-1}(\{\text{bounded sequences}\}) \cap C and h^{-1}(\{\text{unbounded sequences}\}) \cap C
               form a separation of C
       \langle 3 \rangle 8. Q.E.D.
         PROOF: This contradicts \langle 3 \rangle 1.
\langle 1 \rangle 2. Q.E.D.
   PROOF: Since \lambda x.x - y is a homeomorphism of \mathbb{R}^{\omega} with itself.
```

34 Totally Disconnected Spaces

Definition 239 (Totally Disconnected). A topological space X is *totally disconnected* if and only if the only connected subspaces are the singletons.

Example 240. Every discrete space is totally disconnected.

Example 241. The rationals \mathbb{Q} are totally disconnected.

35 Paths and Path Connectedness

Definition 242 (Path). Let X be a topological space and $a, b \in X$. A path from a to b is a continuous function $p : [0,1] \to X$ such that p(0) = a and p(1) = b.

Definition 243 (Path Connected). A topological space is *path connected* if and only if there exists a path between any two points.

Proposition 244. Every path connected space is connected.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a path connected space.
- $\langle 1 \rangle 2$. Assume: for a contradiction C and D form a separation of X.
- $\langle 1 \rangle 3$. Pick $a \in C$ and $b \in D$.
- $\langle 1 \rangle 4$. Pick a path $p : [0,1] \to X$ from a to b.
- $\langle 1 \rangle$ 5. $p^{-1}(C)$ and $p^{-1}(D)$ form a separation of [0,1].
- $\langle 1 \rangle 6$. Q.E.D.

Proof: This contradicts Corollary 235.2.

An example that shows the converse does not hold:

Example 245. The ordered square is not path connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $p:[0,1] \to I_0^2$ is a path from (0,0) to (1,1).
- $\langle 1 \rangle 2$. p is surjective.

PROOF: By the Intermediate Value Theorem.

 $\langle 1 \rangle 3$. For $x \in [0,1]$, PICK a rational $q_x \in p^{-1}((x,0),(x,1))$

PROOF: Since $p^{-1}((x,0),(x,1))$ is open and nonempty by $\langle 1 \rangle 2$.

 $\langle 1 \rangle 4$. For $x, y \in [0, 1]$, if $x \neq y$ then $q_x \neq q_y$

PROOF: We have $p(q_x) \neq p(q_y)$ because ((x,0),(x,1)) and ((y,0),(y,1)) are disjoint.

 $\langle 1 \rangle 5$. $\{q_x \mid x \in [0,1]\}$ is an uncountable set of rationals.

 $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that the rationals are countable.

Proposition 246. The continuous image of a path connected space is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: X be a path connected space, Y a topological space, and $f: X \to Y$ be continuous and surjective.
- $\langle 1 \rangle 2$. Let: $a, b \in Y$
- $\langle 1 \rangle 3$. Pick $c, d \in X$ with f(c) = a and f(d) = b
- $\langle 1 \rangle 4$. PICK a path $p:[0,1] \to X$ from c to d.
- $\langle 1 \rangle 5$. $f \circ p$ is a path from a to b in Y.

Proposition 247 (AC). The product of a family of path-connected spaces is path-connected.

Proof:

- $\langle 1 \rangle 1$. Let: $\{X_{\alpha}\}_{{\alpha} \in J}$ be a family of path-connected spaces.
- $\langle 1 \rangle 2$. Let: $a, b \in \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 3$. For $\alpha \in J$, PICK a path $p_{\alpha} : [0,1] \to X_{\alpha}$ from a_{α} to b_{α} PROOF: Using the Axiom of Choice.

 $\langle 1 \rangle 4$. Define $p:[0.1] \to \prod_{\alpha \in J} X_{\alpha}$ by $p(t)_{\alpha} = p_{\alpha}(t)$

- $\langle 1 \rangle 5$. p is a path from a to b.

PROOF: Theorem 135.

Proposition 248. The continuous image of a path-connected space is pathconnected.

Proof:

 $\langle 1 \rangle 1$. Let: $f: X \to Y$ be continuous and surjective where X is path-connected.

```
\langle 1 \rangle 2. Let: a, b \in Y
```

- $\langle 1 \rangle 3$. Pick $a', b' \in X$ with f(a') = a and f(b') = b.
- $\langle 1 \rangle 4$. PICK a path $p : [0,1] \to X$ from a' to b'.
- $\langle 1 \rangle 5$. $f \circ p$ is a path from a to b.

Proposition 249. Let X be a topological space. The union of a set of path-connected subspaces of X that have a point in common is path-connected.

Proof:

- $\langle 1 \rangle 1.$ Let: ${\mathcal A}$ be a set of path-connected subspaces of X with the point a in common.
- $\langle 1 \rangle 2$. Let: $b, c \in \bigcup A$
- $\langle 1 \rangle 3$. PICK $B, C \in \mathcal{A}$ with $b \in B$ and $c \in C$.
- $\langle 1 \rangle 4$. PICK a path p in B from b to a.
- $\langle 1 \rangle$ 5. PICK a path q in C from a to c.
- $\langle 1 \rangle$ 6. The concatenation of p and q is a path from b to c in $\bigcup A$.

Proposition 250. Let $A \subseteq \mathbb{R}^2$ be countable. Then $\mathbb{R}^2 \setminus A$ is path-connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}^2 \setminus A$
- $\langle 1 \rangle 2$. PICK a line l in \mathbb{R}^2 with a on one side and b on the other.
- $\langle 1 \rangle$ 3. For every point x on l, Let: p_x be the path in \mathbb{R}^2 consisting of a line from a to x then a line from x to b
- $\langle 1 \rangle 4$. For $x \neq y$ we have p_x and p_y have no points in common except a and b
- $\langle 1 \rangle$ 5. There are only countably many x such that a point of A lies on p_x .
- $\langle 1 \rangle$ 6. There exists x such that p_x is a path from a to b in $\mathbb{R}^2 \setminus A$.

Proposition 251. Every open connected subspace of \mathbb{R}^2 is path-connected.

PROOF:

- $\langle 1 \rangle 1$. Let: U be an open connected subspace of \mathbb{R}^2 .
- $\langle 1 \rangle 2$. For all $x_0 \in U$,

Let: $PC(x_0) = \{ y \in U \mid \text{there exists a path from } x \text{ to } y \}$

- $\langle 1 \rangle 3$. For all $x_0 \in U$, the set $PC(x_0)$ is open and closed in U.
 - $\langle 2 \rangle 1$. Let: $x_0 \in U$
 - $\langle 2 \rangle 2$. $PC(x_0)$ is open in U
 - $\langle 3 \rangle 1$. Let: $y \in PC(x_0)$
 - $\langle 3 \rangle 2$. Pick $\epsilon > 0$ such that $B(y, \epsilon) \subseteq U$

PROOF: Since U is open.

 $\langle 3 \rangle 3. \ B(y, \epsilon) \subseteq PC(x_0)$

PROOF: For all $z \in B(y, \epsilon)$, pick a path from x_0 to y then concatenate the straight line from y to z.

 $\langle 2 \rangle 3$. $PC(x_0)$ is closed in U

```
\langle 3 \rangle2. PICK \epsilon > 0 such that B(y, \epsilon) \subseteq U

\langle 3 \rangle3. PICK z \in PC(x_0) \cap B(y, \epsilon)

\langle 3 \rangle4. y \in PC(x_0)

PROOF: Pick a path from x_0 to z then concatenate the straight line from
```

z to y. $\langle 1 \rangle 4$. $PC(x_0) = U$ PROOF: Proposition 215.

٦

Example 252. If A is a connected subspace of X, then A° is not necessarily connected.

Take two closed circles in \mathbb{R}^2 that touch at one point. The interior of this space is two open circles, and these two circles form a separation.

Example 253. If A is a connected subspace of X then ∂A is not necessarily connected.

We have [0,1] is connected but $\partial[0,1] = \{0,1\}$ is not.

 $\langle 3 \rangle 1$. Let: $y \in U$ be a limit point of $PC(x_0)$

Example 254. If A is a subspace of X and A° and ∂A are connected, then A is not necessarily connected.

We have $\mathbb{Q}^{\circ} = \emptyset$ and $\partial \mathbb{Q} = \mathbb{R}$ are connected but \mathbb{Q} is not connected.

36 The Topologist's Sine Curve

Definition 255 (The Topologist's Sine Curve). Let $S = \{(x, \sin 1/x) \mid 0 < x \le 1\}$, The *topologist's sine curve* is the closure \overline{S} of S in \mathbb{R}^2 .

Proposition 256. The topologist's sine curve is connected.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \ \ \text{Let:} \ \ S = \{(x, \sin 1/x) \mid 0 < x \leq 1\} \\ \langle 1 \rangle 2. \ \ S \ \ \text{is connected.} \\ \text{Proof:} \ \ \text{Theorem 225.} \\ \langle 1 \rangle 3. \ \ \overline{S} \ \ \text{is connected.} \\ \text{Proof:} \ \ \text{Theorem 224.} \\ \square \end{array}
```

Proposition 257. The topologist's sine curve is $\{(x, \sin 1/x) \mid 0 < x \le 1\} \cup (\{0\} \times [-1.1]).$

PROOF: Sketch proof: Given a point (0.y) with $-1 \le y \le 1$, pick a such that $\sin a = y$. Then $((1/a, y), (1/(a + 2\pi), y), (1/(a + 4\pi), y), \ldots)$ is a sequence in S that converges to (0, y).

Conversely, let (x,y) be any point not in $S \cup (\{0\} \times [-1,1])$. If x < 0 or y > 1 or y < -1 then we can easily find a neighbourhood that does not intersect $S \cup (\{0\} \times [-1,1])$. If x > 0 and $-1 \le y \le 1$, then we have $y \ne \sin 1/x$. Hence pick a neighbourhood that does not intersect S.

Proposition 258. Every closed subset of \mathbb{R} that is bounded above has a greatest element.

PROOF: It has a supremum, which is a limit point of the set and hence an element. \square

Proposition 259 (CC). The topologist's sine curve is not path connected.

Proof:

- $\langle 1 \rangle 1$. Assume: For a contradction $p:[0,1] \to \overline{S}$ is a path from (0,0) to $(1,\sin 1)$.
- $\langle 1 \rangle 2$. $\{ t \in [0,1] \mid p(t) \in \{0\} \times [-1,1] \}$ is closed.

PROOF: Since p is continuous and $\{0\} \times [-1, 1]$ is closed.

- $\langle 1 \rangle 3$. Let: b be the largest number in [0,1] such that $p(b) \in \{0\} \times [-1,1]$. Proof: Proposition 258.
- $\langle 1 \rangle 4$. Let: $x : [b,1] \to \overline{S}$ be the function $\pi_1 \circ p$
- $\langle 1 \rangle$ 5. Let: $y:[b,1] \to \overline{S}$ be the function $\pi_2 \circ p$
- (1)6. PICK a sequence t_n in (b,1] such that $t_n \to b$ and $y(t_n) = (-1)^n$ for all n $\langle 2 \rangle 1$. Let: $n \geq 1$
 - $\langle 2 \rangle 2$. Pick u with 0 < u < x(1/n) and $\sin(1/u) = (-1)^n$
 - $\langle 2 \rangle 3$. PICK t_n with $b < t_n < 1/n$ and $x(t_n) = u$

PROOF: By the Intermediate Value Theorem

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts Proposition 108 since y is continuous and $y(t_n)$ does not converge.

Corollary 259.1. The closure of a path-connected subspace of a space is not necessarily path-connected.

37 The Long Line

Definition 260 (The Long Line). The long line is the space $\omega_1 \times [0,1)$ in the dictionary order under the order topology, where ω_1 is the first uncountable ordinal.

Lemma 261. For any ordinal α with $0 < \alpha < \omega_1$ we have $[(0,0),(\alpha,0)) \cong [0,1)$

```
\langle 1 \rangle 1. \ [(0,0),(1,0)) \cong [0,1)
```

PROOF: The map π_2 is a homeomorphism.

 $\langle 1 \rangle 2$. If $[(0,0),(\alpha,0)) \cong [0,1)$ then $[(0,0),(\alpha+1,0)) \cong [0,1)$

Proof: Proposition 17.

- $\langle 1 \rangle 3$. If λ is a limit ordinal with $\lambda < \omega_1$ and $[(0,0),(\alpha,0)) \cong [0,1)$ for all α with $0 < \alpha < \lambda \text{ then } [(0,0),(\lambda,0)) \cong [0,1)$
 - $\langle 2 \rangle 1$. Let: λ be a limit ordinal $< \omega_1$
 - $\langle 2 \rangle 2$. Assume: $[(0,0),(\alpha,0)) \cong [0,1)$ for all α with $0 < \alpha < \lambda$
 - $\langle 2 \rangle 3$. Pick a sequence of ordinals $\alpha_0 < \alpha_1 < \cdots$ with limit λ PROOF: Since λ is countable.

```
\langle 2 \rangle4. [(\alpha_i, 0), (\alpha_{i+1}, 0)) \cong [0, 1) for all i PROOF: Lemma 16. \langle 2 \rangle5. Q.E.D. PROOF: By Proposition 18. \langle 1 \rangle4. Q.E.D. PROOF: By transfinite induction.
```

Proposition 262 (CC). The long line is path-connected.

```
Proof:
```

Proposition 263. Every point in the long line has a neighbourhood homeomorphic to an interval in \mathbb{R} .

PROOF: For any (α, i) in the long line, the neighbourhood $[(0,0), (\alpha+1,0))$ satisfies the condition by Lemma 261.

Proposition 264. The long line L is not second countable.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{B} be a basis for L.
- $\langle 1 \rangle 2$. For $\alpha < \omega_1$, Pick $B_\alpha \in \mathcal{B}$ such that $(\alpha, 1/2) \in B_\alpha \subseteq ((\alpha, 0), (\alpha + 1, 0))$
- $\langle 1 \rangle 3$. \mathcal{B} is uncountable.

PROOF: The mapping $\alpha \mapsto B_{\alpha}$ is an injection $\omega_1 \to \mathcal{B}$.

Corollary 264.1. The long line cannot be imbedded into \mathbb{R}^n for any n.

38 Components

Proposition 265. Let X be a topological space. Define the relation \sim on X by $a \sim b$ if and only if there exists a connected subspace $A \subseteq X$ with $a, b \in A$. Then \sim is an equivalence relation on X.

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For any $a \in X$ we have $\{a\}$ is a connected subspace that contains a. $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: Trivial.

 $\langle 1 \rangle 3$. \sim is transitive.

```
\begin{array}{l} \langle 2 \rangle 1. \text{ Let: } a,b,c \in X \\ \langle 2 \rangle 2. \text{ Assume: } a \sim b \text{ and } b \sim c \\ \langle 2 \rangle 3. \text{ Pick connected subspaces } A \text{ and } B \text{ with } a,b \in A \text{ and } b,c \in B \\ \langle 2 \rangle 4. \ A \cup B \text{ is a connected subspace that contains } a \text{ and } c \\ \text{Proof: Theorem 223.} \\ \Box
```

Definition 266 ((Connected) Component). Let X be a topological space. The (connected) components of X are the equivalence classes under the above \sim .

Lemma 267. Let X be a topological space. If $A \subseteq X$ is connected and nonempty then there exists a unique component C of X such that $A \subseteq C$.

Proof:

```
\langle 1 \rangle 1. Pick a \in A

\langle 1 \rangle 2. Let: C be the \sim-equivalence class of a.

\langle 1 \rangle 3. A \subseteq C

Proof: For all x \in A we have x \sim a.

\langle 1 \rangle 4. If C' is a component and A \subseteq C' then C = C'

Proof: Since we have a \in C'.
```

Theorem 268. Let X be a topological space. The components of X are connected disjoint subspaces of X whose union is X such that each nonempty connected subspace of X intersects only one of them.

Proof:

 $\langle 1 \rangle 1$. Every component of X is connected.

PROOF: For $a \in X$, the \sim -equivalence class of a is $\bigcup \{A \subseteq X \mid A \text{ is connected}, a \in A \}$

A} which is connected by Theorem 223.

 $\langle 1 \rangle 2$. The components form a partition of X.

PROOF: Immediate from the definition.

- $\langle 1 \rangle 3.$ Every nonempty connected subspace of X intersects a unique component of X.
 - $\langle 2 \rangle 1$. Let: $A \subseteq X$ be connected and nonempty.
 - $\langle 2 \rangle 2$. Let: C be the component such that $A \subseteq C$ Proof: Lemma 267.
 - $\langle 2 \rangle 3$. A intersects C
 - $\langle 2 \rangle 4$. If A intersects the component C' then C' = C
 - $\langle 3 \rangle 1$. Let: C' be a component that intersects A
 - $\langle 3 \rangle 2$. Pick $b \in A \cap C'$
 - $\langle 3 \rangle 3. \ A \subseteq C'$

PROOF: For all $x \in A$ we have $x \sim b$.

 $\langle 3 \rangle 4$. C = C'

PROOF: By uniqueness in $\langle 2 \rangle 2$.

Proposition 269. Every component of a space is closed.

Proof:

- $\langle 1 \rangle 1$. Let: X be a topological space and C a component of X.
- $\langle 1 \rangle 2$. \overline{C} is connected.

Proof: Theorem 224.

 $\langle 1 \rangle 3. \ C = \overline{C}$

Proof: Lemma 222.

 $\langle 1 \rangle 4$. C is closed.

Proof: Lemma 50.

Proposition 270. If a topological space has finitely many components then every component is open.

Proof: Each component is the complement of a finite union of closed sets. \square

39 Path Components

Proposition 271. Let X be a topological space. Define the relation \sim on X by: $a \sim b$ if and only if there exists a path in X from a to b. Then \sim is an equivalence relation on X.

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For $a \in X$, the constant function $[0,1] \to X$ with value a is a path from a to a.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: If $p:[0,1] \to X$ is a path from a to b, then $\lambda t.p(1-t)$ is a path from b to a.

 $\langle 1 \rangle 3$. \sim is transitive.

PROOF: Concatenate paths.

П

Definition 272 (Path Component). Let X be a topological space. The *path components* of X are the equivalence relations under \sim .

.

Theorem 273. The path components of X are path-connected disjoint subspaces of X whose union is X such that every nonempty path-connected subspace of X intersects exactly one path component.

Proof:

 $\langle 1 \rangle 1$. Every path component is path-connected.

PROOF: If a and b are in the same path component then $a \sim b$, i.e. there exists a path from a to b.

 $\langle 1 \rangle 2$. The path components are disjoint and their union is X.

PROOF: Immediate from the definition.

- $\langle 1 \rangle 3.$ Every non-empty path-connected subspace of X intersects exactly one path component.
 - $\langle 2 \rangle 1$. Let: A be a nonempty path-connected subspace of X.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3$. A intersects the \sim -equivalence class of a.
 - $\langle 2 \rangle 4$. Let: C be any path component that intersects A.
 - $\langle 2 \rangle$ 5. Pick $b \in A \cap C$
 - $\langle 2 \rangle 6$. $a \sim b$

PROOF: Since A is path-connected.

 $\langle 2 \rangle$ 7. C is the \sim -equivalence class of a.

Proposition 274. Every path component is included in a component.

PROOF

- $\langle 1 \rangle 1$. Let: X be a topological space and C a path component of X.
- $\langle 1 \rangle 2$. C is path-connected.

PROOF: Theorem 273.

 $\langle 1 \rangle 3$. C is connected.

Proof: Proposition 244.

 $\langle 1 \rangle 4$. C is included in a component.

Proof: Lemma 267.

40 Local Connectedness

Definition 275 (Locally Connected). Let X be a topological space and $a \in X$. Then X is *locally connected* at a if and only if every neighbourhood of a includes a connected neighbourhood of a.

The space X is *locally connected* if and only if it is locally connected at every point.

Example 276. The real line is both connected and locally connected.

Example 277. The space $\mathbb{R} \setminus \{0\}$ is disconnected but locally connected.

Example 278. The topologist's sine curve is connected but not locally connected.

Example 279. The rationals $\mathbb Q$ are neither connected nor locally connected.

Theorem 280. A topological space X is locally connected if and only if, for every open set U in X, every component of U is open in X.

- $\langle 1 \rangle 1.$ If X is locally connected then, for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 1$. Assume: X is locally connected.

- $\langle 2 \rangle 2$. Let: U be open in X.
- $\langle 2 \rangle 3$. Let: C be a component of U.
- $\langle 2 \rangle 4$. Let: $a \in C$
- $\langle 2 \rangle$ 5. Let: V be a connected neighbourhood of a such that $V \subseteq U$
- $\langle 2 \rangle 6. \ V \subseteq C$

Proof: Lemma 267.

 $\langle 2 \rangle 7$. Q.E.D.

Proof: Lemma 29.

- $\langle 1 \rangle 2$. If, for every open set U in X, every component of U is open in X, then X is locally connected.
 - $\langle 2 \rangle 1$. Assume: for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle 3$. Let: U be a neighbourhood of a
 - $\langle 2 \rangle 4$. The component of U that contains a is a connected neighbourhood of a included in U.

Example 281. The ordered square is locally connected.

PROOF: Every neighbourhood of a point includes an interval around that point, which is connected by Theorem 235.

Example 282. Let X be the set of all rational points on the line segment $[0,1] \times \{0\}$, and Y the set of all rational points on the line segment $[0,1] \times \{1\}$. Let A be the space consisting of all line segments joining the point (0,1) to a point of X, and all line segments joining the point (1,0) to a point of Y. Then A is path-connected but is not locally connected at any point,

Proposition 283. Let X and Y be topological spaces and $p: X \rightarrow\!\!\!\!\rightarrow Y$ be a quotient map. If X is locally connected then so is Y.

Proof:

- $\langle 1 \rangle 1$. Let: *U* be an open set in *Y*.
- $\langle 1 \rangle 2$. Let: C be a component of U.
- $\langle 1 \rangle 3. \ p^{-1}(C)$ is a union of components of $p^{-1}(U)$
 - $\langle 2 \rangle 1$. Let: $x \in p^{-1}(C)$
 - $\langle 2 \rangle 2$. Let: D be the component of $p^{-1}(U)$ that contains x.
 - $\langle 2 \rangle 3$. p(D) is connected.

PROOF: Theorem 225.

 $\langle 2 \rangle 4. \ p(D) \subseteq C.$

PROOF: From $\langle 1 \rangle 2$ since $p(x) \in p(D) \cap C$ $(\langle 2 \rangle 1, \langle 2 \rangle 2)$.

 $\langle 2 \rangle 5$. $D \subseteq p^{-1}(C)$

 $\langle 1 \rangle 4. \ p^{-1}(C)$ is open in $p^{-1}(U)$

Proof: Theorem 280.

 $\langle 1 \rangle 5$. C is open in U

PROOF: Since the restriction of p to $p:p^{-1}(U) woheadrightarrow U$ is a quotient map by Proposition 198.

```
\langle 1 \rangle6. Q.E.D. PROOF: Theorem 280.
```

41 Local Path Connectedness

Definition 284 (Locally Path-Connected). Let X be a topological space and $a \in X$. Then X is *locally path-connected* at a if and only if every neighbourhood of a includes a path-connected neighbourhood of a.

The space X is *locally path-connected* if and only if it is locally path-connected at every point.

Theorem 285. A topological space X is locally path-connected if and only if, for every open set U in X, every path component of U is open in X.

Proof

- $\langle 1 \rangle 1$. If X is locally path-connected then, for every open set U in X, every path component of U is open in X.
 - $\langle 2 \rangle 1$. Assume: X is locally path-connected.
 - $\langle 2 \rangle 2$. Let: *U* be open in *X*.
 - $\langle 2 \rangle 3$. Let: C be a path component of U.
 - $\langle 2 \rangle 4$. Let: $a \in C$
 - $\langle 2 \rangle$ 5. Let: V be a path-connected neighbourhood of a such that $V \subseteq U$
 - $\langle 2 \rangle 6. \ V \subseteq C$

Proof: Lemma 267.

 $\langle 2 \rangle$ 7. Q.E.D.

Proof: Lemma 29.

- $\langle 1 \rangle 2$. If, for every open set U in X, every component of U is open in X, then X is locally connected.
 - $\langle 2 \rangle 1.$ Assume: for every open set U in X, every component of U is open in X.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle$ 3. Let: U be a neighbourhood of a
 - $\langle 2 \rangle 4$. The component of U that contains a is a connected neighbourhood of a included in U.

Theorem 286. If a space is locally path connected then its components and its path components are the same.

PROOF

- $\langle 1 \rangle 1$. Let: X be a locally path connected space.
- $\langle 1 \rangle 2$. Let: C be a component of X.
- $\langle 1 \rangle 3$. Let: $x \in C$
- (1)4. Let: P be the path component of x Prove: P = C
- $\langle 1 \rangle 5. \ P \subseteq C$

```
PROOF: Proposition 274.  \begin{array}{l} \langle 1 \rangle 6. \text{ Let: } Q \text{ be the union of the other path components included in } C \\ \langle 1 \rangle 7. \ C = P \cup Q \\ \text{PROOF: Proposition 274.} \\ \langle 1 \rangle 8. \ P \text{ and } Q \text{ are open in } C \\ \langle 2 \rangle 1. \ C \text{ is open.} \\ \text{PROOF: Theorem 280.} \\ \langle 2 \rangle 2. \ \text{Q.E.D.} \\ \text{PROOF: Theorem 285.} \\ \langle 1 \rangle 9. \ Q = \emptyset \\ \text{PROOF: Otherwise } P \text{ and } Q \text{ would form a separation of } C. \\ \hline \end{array}
```

Example 287. The ordered square is not locally path connected, since it is connected but not path connected.

Proposition 288. Let X be a locally path-connected space. Then every connected open subspace of X is path-connected.

Proof:

- $\langle 1 \rangle 1$. Let: U be a connected open subspace of X.
- $\langle 1 \rangle 2$. Let: P be a path component of U.
- $\langle 1 \rangle 3$. Let: Q be the union of the other path components of U.
- $\langle 1 \rangle 4$. P and Q are open in U.

PROOF: Theorem 285.

 $\langle 1 \rangle 5. \ Q = \emptyset$

PROOF: Otherwise P and Q form a separation of U.

42 Weak Local Connectedness

Definition 289 (Weakly Locally Connected). Let X be a topological space and $a \in X$. Then X is weakly locally connected at a if and only if every neighbourhood of a includes a connected subspace that includes a neighbourhood of a

Proposition 290. Let X be a topological space. If X is weakly locally connected at every point then X is locally connected.

- $\langle 1 \rangle 1$. Assume: X is weakly locally connected at every point.
- $\langle 1 \rangle 2$. Let: U be open in X.
- $\langle 1 \rangle 3$. Let: C be a component of U.
- $\langle 1 \rangle 4$. C is open in X.
 - $\langle 2 \rangle 1$. Let: $x \in C$
 - $\langle 2 \rangle 2.$ Pick a connected subspace D of U that includes a neighbourhood V of x.

```
\langle 2 \rangle3. D \subseteq C
PROOF: Lemma 267.
\langle 2 \rangle4. x \in V \subseteq C
\langle 2 \rangle5. Q.E.D.
PROOF: Lemma 29.
\langle 1 \rangle5. Q.E.D.
PROOF: Theorem 280.
```

Example 291. The 'infinite broom' (Munkres p.163) is an example of a space that is weakly locally connected at a point p but not locally connected at p.

43 Quasicomponents

Proposition 292. Let X be a topological space. Define \sim on X by $x \sim y$ if and only if there exists no separation U and V of X such that $x \in U$ and $y \in V$. Then \sim is an equivalence relation on X.

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: Since the two sets that make up a separation are disjoint.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: Immediate from the defintion.

- $\langle 1 \rangle 3$. \sim is transitive.
 - $\langle 2 \rangle 1$. Assume: $x \sim y$ and $y \sim z$
 - $\langle 2 \rangle 2.$ Assume: for a contradiction there is a separation U and V of X with $x \in U$ and $z \in V$
 - $\langle 2 \rangle 3. \ y \in U \text{ or } y \in V$
 - $\langle 2 \rangle 4$. Q.E.D.

PROOF: Either case contradicts $\langle 2 \rangle 1$.

Definition 293 (Quasicomponents). For X a topological space, the *quasicomponents* of X are the equivalence classes under \sim .

Proposition 294. Let X be a topological space. Then every component of X is included in a quasicomponent of X.

Proof:

- $\langle 1 \rangle 1$. Let: C be a component of X.
- $\langle 1 \rangle 2$. Let: $x, y \in C$

Prove: $x \sim y$

- $\langle 1 \rangle 3.$ Assume: for a contradiction there exists a separation U and V of X with $x \in U$ and $y \in V$
- $\langle 1 \rangle 4$. $C \cap U$ and $C \cap V$ form a separation of C.
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

Proposition 295. In a locally connected space, the components and the quasi-components are the same.

Proof:

- $\langle 1 \rangle 1$. Let: X be a locally connected space and Q a quasicomponent of X.
- $\langle 1 \rangle 2$. PICK a component C of X such that $C \subseteq Q$
- $\langle 1 \rangle 3$. Let: D be the union of the components of X
- $\langle 1 \rangle 4$. C and D are open in X.

PROOF: Theorem 280.

 $\langle 1 \rangle$ 5. D cannot contain any points of Q.

PROOF: If it did, then C and D would form a separation of X and there would be points $x, y \in Q$ with $x \in C$ and $y \in D$.

 $\langle 1 \rangle 6. \ C = Q$

44 Open Coverings

Definition 296 (Open Covering). Let X be a topological space. An *open* covering of X is a covering of X whose elements are all open sets.

45 Compact Spaces

Definition 297 (Compact). A topological space is *compact* if and only if every open covering has a finite subcovering.

Lemma 298. Let X be a topological space and Y a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X has a finite subcovering.

- $\langle 1 \rangle 1.$ If Y is compact then every covering of Y by sets open in X has a finite subcovering.
 - $\langle 2 \rangle 1$. Assume: Y is compact.
 - $\langle 2 \rangle 2$. Let: \mathcal{U} be a covering of Y by sets open in X.
 - $\langle 2 \rangle 3$. $\{ U \cap Y \mid U \in \mathcal{U} \}$ is an open covering of Y.
 - $\langle 2 \rangle 4$. PICK a finite subcovering $\{U_1 \cap Y, \dots, U_n \cap Y\}$
 - $\langle 2 \rangle 5$. $\{U_1, \ldots, U_n\}$ is a finite subcovering of \mathcal{U} .
- $\langle 1 \rangle$ 2. If every covering of Y by sets open in X has a finite subcovering then Y is compact.
 - $\langle 2 \rangle 1$. Let: \mathcal{U} be an open covering of Y.
 - $\langle 2 \rangle 2$. Let: $\mathcal{V} = \{ V \text{ open in } X \mid V \cap Y \in \mathcal{U} \}.$
 - $\langle 2 \rangle 3$. \mathcal{V} is a covering of Y by sets open in X.
 - $\langle 2 \rangle 4$. PICK a finite subcovering $\{V_1, \ldots, V_n\}$
 - $\langle 2 \rangle 5$. $\{V_1 \cap Y, \dots, V_n \cap Y\}$ is a finite subcovering of \mathcal{U} .

Proposition 299. Every closed subspace of a compact space is compact.

PROOF

- $\langle 1 \rangle 1$. Let: X be a compact space and $Y \subseteq X$ be closed.
- $\langle 1 \rangle 2$. Let: \mathcal{U} be a covering of Y by sets open in X.
- $\langle 1 \rangle 3$. $\mathcal{U} \cup \{X \setminus Y\}$ is an open covering of X.
- $\langle 1 \rangle 4$. Pick a finite subcovering \mathcal{U}_0
- $\langle 1 \rangle$ 5. $\mathcal{U}_0 \cap \mathcal{U}$ is a finite subset of \mathcal{U} that covers Y.

Theorem 300. The continuous image of a compact space is compact.

Proof

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be continuous and surjective.
- $\langle 1 \rangle 2$. Let: V be an open covering of Y
- $\langle 1 \rangle 3$. $\{p^{-1}(V) \mid V \in \mathcal{V}\}$ is an open covering of X.
- $\langle 1 \rangle 4$. Pick a finite subcovering $\{p^{-1}(V_1), \dots, p^{-1}(V_n)\}$
- $\langle 1 \rangle 5. \{V_1, \ldots, V_n\} \text{ covers } Y.$

Theorem 301. Let A and B be compact subspaces of X and Y respectively. Let N be an open set in $X \times Y$ that includes $A \times B$. Then there exist open sets U and V in X and Y respectively such that $A \subseteq U$, $B \subseteq V$ and $U \times V \subseteq N$.

- $\langle 1 \rangle 1$. For all $x \in A$, there exist neighbourhoods U of x and V of B such that $U \times V \subseteq N$.
 - $\langle 2 \rangle 1$. Let: $x \in A$
 - $\langle 2 \rangle 2.$ For all $y \in B,$ there exist neighbourhoods U of x and V of y such that $U \times V \subseteq N$
 - $\langle 2 \rangle 3$. {V open in Y | \exists neighbourhood U of $x, U \times V \subseteq N$ } covers B.
 - $\langle 2 \rangle 4$. PICK a finite subcover $\{V_1, \ldots, V_n\}$
 - $\langle 2 \rangle 5$. For $i = 1, \ldots, n$, PICK a neighbourhood U_i of x such that $U_i \times V_i \subseteq N$
 - $\langle 2 \rangle 6$. Let: $U = U_1 \cap \cdots \cap U_n$
 - $\langle 2 \rangle 7$. Let: $V = V_1 \cup \cdots \cup V_n$
 - $\langle 2 \rangle 8$. *U* is a neighbourhood of *x*.
 - $\langle 2 \rangle 9$. V is a neighbourhood of B.
 - $\langle 2 \rangle 10. \ U \times V \subseteq N$
- $\langle 1 \rangle 2$. {U open in $X \mid \exists$ neighbourhood V of $B.U \times V \subseteq N$ } covers A.
- $\langle 1 \rangle 3$. PICK a finite subcover $\{U_1, \ldots, U_n\}$
- $\langle 1 \rangle 4$. For $i = 1, \ldots, n$, PICK a neighbourhood V_i of B such that $U_i \times V_i \subset N$
- $\langle 1 \rangle 5$. Let: $U = U_1 \cup \cdots \cup U_n$
- $\langle 1 \rangle 6$. Let: $V = V_1 \cap \cdots \cap V_n$
- $\langle 1 \rangle 7$. U and V are open.
- $\langle 1 \rangle 8. \ A \subseteq U$
- $\langle 1 \rangle 9. \ B \subseteq V$
- $\langle 1 \rangle 10. \ U \times V \subseteq N$

Corollary 301.1 (Tube Lemma). Let X and Y be topological spaces with Y compact. Let $a \in X$ and N be an open set in $X \times Y$ that includes $\{a\} \times Y$. Then there exists a neighbourhood W of a such that N includes the tube $W \times Y$.

Theorem 302. Let X be a topological space. Then X is compact if and only if every set of closed sets that has the finite intersection property has nonempty intersection.

PROOF: The following are equivalent.

- 1. X is compact.
- 2. Every open covering of X has a finite subcovering.
- 3. For any set \mathcal{C} of closed sets, if $\{X \setminus C \mid C \in \mathcal{C}\}$ covers X then there is a finite subset \mathcal{C}_0 such that $\{X \setminus C \mid C \in \mathcal{C}_0\}$ covers X
- 4. For any set \mathcal{C} of closed sets, if $\bigcap \mathcal{C} = \emptyset$ then there is a finite subset \mathcal{C}_0 with empty intersection.
- 5. Any set of closed sets with the finite intersection property has nonempty intersection.

Corollary 302.1. Let X be a topological space and $C_1 \supseteq C_2 \supseteq \cdots$ a nested sequence of nonempty closed sets. Then $\bigcap_n C_n$ is nonempty.

Proposition 303. Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X with $\mathcal{T} \subseteq \mathcal{T}'$. If \mathcal{T}' is compact then \mathcal{T} is compact.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$ cover X
- $\langle 1 \rangle 2. \ \mathcal{U} \subseteq \mathcal{T}'$
- $\langle 1 \rangle 3$. A finite subset of \mathcal{U} covers X.

Corollary 303.1. If \mathcal{T} and \mathcal{T}' are two compact Hausdorff topologies on the same set X, then either $\mathcal{T} = \mathcal{T}'$ or \mathcal{T} and \mathcal{T}' are incomparable.

PROOF: From the Proposition and Proposition 180. \square

Example 304. Any set under the finite complement topology is compact.

Proposition 305. Let X be a topological space. A finite union of compact subspaces of X is compact.

Proof:

- $\langle 1 \rangle 1$. Let: A and B be compact subspaces of X.
- $\langle 1 \rangle 2$. Let: $\mathcal U$ be a set of open sets in X that covers $A \cup B$
- $\langle 1 \rangle 3$. PICK a finite subset \mathcal{U}_1 that covers A.

Proof: Lemma 298.

```
\langle 1 \rangle 4. PICK a finite subset \mathcal{U}_2 that covers B.
```

Proof: Lemma 298.

 $\langle 1 \rangle 5$. $\mathcal{U}_1 \cup \mathcal{U}_2$ is a finite subset that covers $A \cup B$.

 $\langle 1 \rangle 6$. Q.E.D.

Proof: Lemma 298.

П

Proposition 306. Let A and B be disjoint compact subspaces of the Hausdorff space X. Then there exist disjoint open sets U and V that include A and B respectively.

PROOF: From Theorem 301 with $N = X^2 \setminus \{(x, x) \mid x \in X\}$. \square

Corollary 306.1. Every compact subspace of a Hausdorff space is closed.

Theorem 307. Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff then f is a homeomorphism.

Proof:

- $\langle 1 \rangle 1$. Let: $C \subseteq X$ be closed.
- $\langle 1 \rangle 2$. C is compact.

Proof: Proposition 299.

 $\langle 1 \rangle 3$. f(C) is compact.

PROOF: Theorem 300.

 $\langle 1 \rangle 4$. f(C) is closed.

Proof: Corollary 306.1.

 $\langle 1 \rangle 5$. Q.E.D.

Proof: Lemma 110.

Proposition 308. Let X be a compact space, Y a Hausdorff space, and f: $X \to Y$ a continuous map. Then f is a closed map.

Proof:

- $\langle 1 \rangle 1$. Let: $C \subseteq X$ be closed.
- $\langle 1 \rangle 2$. C is compact.

Proof: Proposition 299.

 $\langle 1 \rangle 3$. f(C) is compact.

PROOF: Theorem 300.

 $\langle 1 \rangle 4$. f(C) is closed.

Proof: Corollary 306.1.

П

Proposition 309. If Y is compact then the projection $\pi_1: X \times Y \to X$ is a closed map.

- $\langle 1 \rangle 1$. Let: $A \subseteq X \times Y$ be closed.
- $\langle 1 \rangle 2$. Let: $x \in X \setminus \pi_1(A)$

```
\langle 1 \rangle3. PICK a neighbourhood U of x such that U \times Y \subseteq (X \times Y) \setminus A PROOF: By the Tube Lemma.
```

- $\langle 1 \rangle 4. \ x \in U \subseteq X \setminus \pi_1(A)$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: So $X \setminus \pi_1(A)$ is open by Lemma 29.

Theorem 310. Let X be a topological space and Y a compact Hausdorff space. Let $f: X \to Y$ be a function. Then f is continuous if and only if the graph of f is closed in $X \times Y$.

Proof:

- $\langle 1 \rangle 1$. Let: G_f be the graph of f.
- $\langle 1 \rangle 2$. If f is continuous then G_f is closed.
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $(x,y) \in (X \times Y) \setminus G_f$
 - $\langle 2 \rangle$ 3. PICK disjoint neighbourhoods U and V of y and f(x) respectively.
 - $\langle 2 \rangle 4.$ $f^{-1}(V) \times U$ is a neighbourhood of (x, y) disjoint from G_f .
- $\langle 1 \rangle 3$. If G_f is closed then f is continuous.
 - $\langle 2 \rangle 1$. Assume: G_f is closed.
 - $\langle 2 \rangle 2$. Let: $x \in X$ and V be a neighbourhood of f(x).
 - $\langle 2 \rangle 3$. $G_f \cap (X \times (Y \setminus V))$ is closed.
 - $\langle 2 \rangle 4$. $\pi_1(G_f \cap (X \times (Y \setminus V)))$ is closed.

Proof: Proposition 309.

- $\langle 2 \rangle$ 5. Let: $U = X \setminus \pi_1(G_f \cap (X \times (Y \setminus V)))$
- $\langle 2 \rangle 6$. U is a neighbourhood of x
- $\langle 2 \rangle 7. \ f(U) \subseteq V$

Theorem 311. Let X be a compact topological space. Let $(f_n : X \to \mathbb{R})$ be a monotone increasing sequence of continuous functions and $f : X \to \mathbb{R}$ a continuous function. If (f_n) converges pointwise to f, then (f_n) converges uniformly to f.

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. For all $x \in X$, there exists N such that, for all $n \geq N$, we have $|f_n(x) f(x)| < \epsilon$
- $\langle 1 \rangle 3$. For $n \geq 1$,

LET:
$$U_n = \{ x \in X \mid |f_n(x) - f(x)| < \epsilon \}$$

- $\langle 1 \rangle 4$. For $n \geq 1$, we have U_n is open in X.
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Let: $\delta = \epsilon |f_n(x) f(x)|$
 - $\langle 2 \rangle 3$. PICK a neighbourhood U of x such that $f(U) \subseteq B(f(x), \delta/2)$
 - $\langle 2 \rangle 4$. PICK a neighbourhood V of x such that $f_n(V) \subseteq B(f_n(x), \delta/2)$
 - $\langle 2 \rangle 5.$ $f(U \cap V) \subseteq U_n$

PROOF: For $y \in U \cap V$ we have $|f_n(y) - f(y)| \le |f_n(y) - f_n(x)| + |f_n(x) - f(x)| + |f(x) - y(y)|$ $< \delta/2 + |f_n(x) - f(x)| + \delta/2$

 $\langle 1 \rangle 5$. $\{ U_n \mid n \geq 1 \}$ covers X

PROOF: From $\langle 1 \rangle 2$

- $\langle 1 \rangle 6$. Pick N such that $X = U_N$
 - $\langle 2 \rangle 1$. PICK n_1, \ldots, n_k such that U_{n_1}, \ldots, U_{n_k} cover X.
 - $\langle 2 \rangle 2$. Let: $N = \max(n_1, \ldots, n_k)$
 - $\langle 2 \rangle 3$. For all i we have $U_{n_i} \subseteq U_N$

PROOF: Since (f_n) is monotone increasing.

- $\langle 2 \rangle 4. \ X = U_N$
- $\langle 1 \rangle$ 7. For all $x \in X$ and $n \ge N$ we have $|f_n(x) f(x)| < \epsilon$

An example to show that we cannot remove the hypothesis that X is compact:

Example 312. Let X = (0,1), $f_n(x) = -x^n$ and f(x) = 0 for $x \in X$ and $n \ge 1$. Then $f_n \to f$ pointwise and (f_n) is monotone increasing but the convergence is not uniform since, for all $N \ge 1$, there exists $x \in (0,1)$ such that $-x^N < -1/2$.

An example to show that we cannot remove the hypothesis that (f_n) is monotone increasing:

Example 313. Let X = [0,1], $f_n(x) = 1/(n^3(x-1/n)^2+1)$ and f(x) = 0 for $x \in X$ and $n \ge 1$. Then X is compact and $f_n \to f$ pointwise but the convergence is not uniform since, for all $N \ge 1$, there exists $x \in [0,1]$ such that $f_N(x) = 1$, namely x = 1/N.

Theorem 314. Let X be a compact Hausdorff space. Let A be a chain of closed connected subsets of X. Then $\bigcap A$ is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction C and D form a separation of $\bigcap A$.
- $\langle 1 \rangle 2$. PICK disjoint open sets U and V that include C and D respectively. PROOF: Proposition 306.
- $\langle 1 \rangle 3$. $\{A \setminus (U \cup V) \mid A \in A\}$ is a set of closed sets with the finite intersection property.
 - $\langle 2 \rangle 1$. For all $A \in \mathcal{A}$ we have $A \setminus (U \cup V)$ is closed.
 - $\langle 2 \rangle 2$. For all $A_1, \ldots, A_n \in \mathcal{A}$ we have $(A_1 \cap \cdots \cap A_n) \setminus (U \cup V)$ is nonempty. PROOF:
 - $\langle 3 \rangle 1$. Let: $A_1, \ldots, A_n \in \mathcal{A}$
 - $\langle 3 \rangle 2$. Assume: without loss of generality $A_1 \subseteq A_2, \ldots, A_n$ Proof: Since \mathcal{A} is a chain.
 - $\langle 3 \rangle 3$. $A_1 \setminus (U \cup V)$ is nonempty

PROOF: Otherwise $(A_1 \cap \cdots \cap A_n \cap U)$ and $(A_1 \cap \cdots \cap A_n \cap V)$ would form a separation of A_n .

```
\langle 1 \rangle 4. \bigcap \mathcal{A} \setminus (U \cup V) is nonempty.
   PROOF: Theorem 302.
\langle 1 \rangle 5. Q.E.D.
    PROOF: This contradicts \langle 1 \rangle 1 since \bigcap AA \setminus (U \cup V) = \bigcap A \setminus (C \cup D).
Theorem 315 (Tychonoff Theorem (AC)). The product of a family of compact
spaces is compact.
Proof:
\langle 1 \rangle 1. Let: \{X_{\alpha}\}_{{\alpha} \in J} be a family of compact spaces.
\langle 1 \rangle 2. Let: X = \prod_{\alpha \in J} X_{\alpha}
\langle 1 \rangle 3. For any \mathcal{A} \subseteq \mathcal{P}X, we have \bigcap_{A \in \mathcal{A}} \overline{A} \neq \emptyset
    \langle 2 \rangle 1. Let: \mathcal{A} \subseteq \mathcal{P}X
    \langle 2 \rangle 2. Pick \mathcal{D} \supseteq \mathcal{A} that is maximal with respect to the finite intersection
             property.
       PROVE: \bigcap_{D \in \mathcal{D}} \overline{D} \neq \emptyset
PROOF: Lemma 3.
    \langle 2 \rangle 3. For \alpha \in J, PICK x_{\alpha} \in X_{\alpha} such that x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \pi_{\alpha}(D)
       PROOF: Theorem 302 since \{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} is a set of closed sets in X_{\alpha}
       with the finite intersection property.
    \langle 2 \rangle 4. Let: x = (x_{\alpha})_{\alpha \in J}
             PROVE: x \in \bigcap_{D \in \mathcal{D}} \overline{D}
    \langle 2 \rangle5. For any \beta \in J and neighbourhood U of x_{\beta} in X_{\beta}, we have \pi_{\beta}^{-1}(U)
             intersects every element of \mathcal{D}
        \langle 3 \rangle 1. Let: \beta \in J
        \langle 3 \rangle 2. Let: U be a neighbourhood of x_{\beta} in X_{\beta}.
        \langle 3 \rangle 3. Let: D \in \mathcal{D}
        \langle 3 \rangle 4. \ x_{\beta} \in \pi_{\beta}(D)
           PROOF: From \langle 2 \rangle 3
        \langle 3 \rangle 5. U intersects \pi_{\beta}(D).
        \langle 3 \rangle 6. \pi_{\beta}^{-1}(U) intersects D.
    \langle 2 \rangle 6. For any \beta \in J and neighbourhood U of x_{\beta} in X_{\beta}, we have \pi_{\beta}^{-1}(U) \in \mathcal{D}
       Proof: Lemma 5.
    \langle 2 \rangle7. Every basic neighbourhood of x is an element of \mathcal{D}
       Proof: Lemma 4.
    \langle 2 \rangle 8. Every basic neighbourhood of x intersects every element of \mathcal{D}
        PROOF: Since \mathcal{D} satisfies the finite intersection property.
    \langle 2 \rangle 9. For all D \in \mathcal{D} we have x \in \overline{D}
\langle 1 \rangle 4. Q.E.D.
```

PROOF: Theorem 302.

46 Perfect Maps

Definition 316 (Perfect Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is a perfect map if and only if f is a closed map, continuous, surjective and $p^{-1}(y)$ is compact for all $y \in Y$.

Proposition 317. Let X be a topological space, Y a compact space, and $p: X \to Y$ a closed map such that, for all $y \in Y$, we have $p^{-1}(y)$ is compact. Then X is compact.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a set of closed sets in X with the finite intersection property.
- $\langle 1 \rangle 2$. $\mathcal{B} = \{ p(A_1 \cap \cdots \cap A_n) \mid A_1, \dots, A_n \in \mathcal{A} \}$ is a set of closed sets in Y with the finite intersection property.

PROOF: Since p is a closed map.

 $\langle 1 \rangle 3$. Pick $y \in \bigcap \mathcal{B}$

Proof: Theorem 302 since Y is compact.

- $\langle 1 \rangle 4$. $\{A \cap p^{-1}(y) \mid A \in \mathcal{A}\}$ is a set of closed sets in $p^{-1}(y)$ with the finite intersection property.
- $\langle 1 \rangle$ 5. Pick $x \in \bigcap_{A \in \mathcal{A}} (A \cap p^{-1}(y))$ Proof: Theorem 302 since $p^{-1}(y)$ is compact.

 $\langle 1 \rangle 6. \ x \in \bigcap \mathcal{A}$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 302.

47 Topological Groups

Definition 318 (Topological Group). A topological group G consists of a T_1 space G and continuous maps $\cdot: G^2 \to G$ and $()^{-1}: G \to G$ such that $(G,\cdot,()^{-1})$ is a group.

Example 319. 1. The integers \mathbb{Z} under addition are a topological group.

- 2. The real numbers $\mathbb R$ under addition are a topological group.
- 3. The positive reals under multiplication are a topological group.
- 4. The set $\{z \in \mathbb{C} \mid |z| = 1\}$ under multiplication and given the topology of S^1 is a topological group.
- 5. For any $n \geq 0$, the general linear group $GL_n(\mathbb{R})$ is a topological group under matrix multiplication, considered as a subspace of \mathbb{R}^{n^2} .

Lemma 320. Let G be a T_1 space and $\cdot: G^2 \to G$, $(\)^{-1}: G \to G$ be functions such that $(G, \cdot, (\)^{-1})$ is a group. Then G is a topological group if and only if the function $f: G^2 \to G$ that maps (x, y) to xy^{-1} is continuous.

```
PROOF: From Theorem 99.
\langle 1 \rangle 2. If f is continuous then G is a topological group.
   \langle 2 \rangle 1. Assume: f is continuous.
  \langle 2 \rangle 2. ()<sup>-1</sup> is continuous.
     PROOF: Since x^{-1} = f(e, x).
   \langle 2 \rangle 3. · is continuous.
     PROOF: Since xy = f(x, y^{-1}).
Lemma 321. Let G be a topological group and H a subgroup of G. Then H is
a topological group under the subspace topology.
Proof:
\langle 1 \rangle 1. H is T_1.
  PROOF: From Proposition 168.
\langle 1 \rangle 2. multiplication and inverse on H are continuous.
  PROOF: From Theorem 100.
Lemma 322. Let G be a topological group and H a subgroup of G. Then \overline{H} is
a subgroup of G.
Proof:
\langle 1 \rangle 1. Let: x, y \in \overline{H}
       Prove: xy^{-1} \in \overline{H}
\langle 1 \rangle 2. Let: U be any neighbourhood of xy^{-1}
\langle 1 \rangle 3. Let: f: G^2 \to G, f(a,b) = ab^{-1}
\langle 1 \rangle 4. f^{-1}(U) is a neighbourhood of (x,y)
\langle 1 \rangle5. PICK neighbourhoods V, W of x and y respectively such that f(V \times W) \subseteq
\langle 1 \rangle 6. Pick a \in V \cap H and b \in W \cap H
  PROOF: Theorem 51.
\langle 1 \rangle 7. \ ab^{-1} \in U \cap H
\langle 1 \rangle 8. Q.E.D.
  PROOF: By Theorem 51.
Proposition 323. Let G be a topological group and \alpha \in G. Then the maps
l_{\alpha}, r_{\alpha}: G \to G defined by l_{\alpha}(x) = \alpha x, r_{\alpha}(x) = x\alpha are homeomorphisms of G
with itself.
PROOF: They are continuous with continuous inverses l_{\alpha^{-1}} and r_{\alpha^{-1}}. \sqcup
Corollary 323.1. Every topological group is homogeneous.
PROOF: Given a topological group G and a, b \in G, we have l_{ba^{-1}} is a homeo-
```

 $\langle 1 \rangle 1$. If G is a topological group then f is continuous.

morphism that maps a to b.

Proposition 324. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. For all $\alpha \in G$, the map $\overline{f_{\alpha}}$ that sends xH to αxH is a homeomorphism $G/H \cong G/H$.

Proof:

 $\langle 1 \rangle 1$. $\overline{f_{\alpha}}$ is well-defined.

PROOF: If $xy^{-1} \in H$ then $(\alpha x)(\alpha y)^{-1} = xy^{-1} \in H$.

 $\langle 1 \rangle 2$. $\overline{f_{\alpha}}$ is continuous.

PROOF: Theorem 201 since $\overline{f_{\alpha}} \circ p = p \circ f_{\alpha}$ is continuous, where $p: G \twoheadrightarrow G/H$ is the canonical surjection.

 $\langle 1 \rangle 3$. $\overline{f_{\alpha}}^{-1}$ is continuous.

Proof: Similar since $\overline{f_{\alpha}}^{-1} = \overline{f_{\alpha^{-1}}}$.

Corollary 324.1. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. Then G/H is homogeneous.

Proposition 325. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. If H is closed in G then G/H is T_1 .

Proof:

- $\langle 1 \rangle 1$. Let: $p:G \twoheadrightarrow G/H$ be the canonical surjection
- $\langle 1 \rangle 2$. Let: $x \in G$
- $\langle 1 \rangle 3. \ p^{-1}(xH) = f_x(H)$
- $\langle 1 \rangle 4$. $p^{-1}(xH)$ is closed in G

PROOF: Since H is closed and f_x is a homemorphism of G with itself.

 $\langle 1 \rangle 5$. $\{xH\}$ is closed in G/H

Proposition 326. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. Then the canonical surjection $p: G \twoheadrightarrow G/H$ is an open map.

Proof:

- $\langle 1 \rangle 1$. Let: $U \subseteq G$ be open.
- $\langle 1 \rangle 2. \ p^{-1}(p(U)) = \bigcup_{h \in H} r_h(U)$
- $\langle 1 \rangle 3. \ p^{-1}(p(U))$ is open.
- $\langle 1 \rangle 4$. p(U) is open.

À.

Proposition 327. Let G be a topological group and H a closed normal subgroup of G. Then G/H is a topological group under the quotient topology.

Proof:

 $\langle 1 \rangle 1$. G/H is T_1

Proof: Proposition 325.

- $\langle 1 \rangle 2$. The map $\overline{m}: (xH, yH) \mapsto xy^{-1}H$ is continuous.
 - $\langle 2 \rangle 1.$ $p^2 : G^2 \to (G/H)^2$ is a quotient map.

Proof: Propositions 200, 326.

 $\langle 2 \rangle 2$. $\overline{m} \circ p^2$ is continuous.

PROOF: As it is $p^2 \circ m$ where $m: G^2 \to G$ with $m(x,y) = xy^{-1}$

Lemma 328. Let G be a topological group and $A, B \subseteq G$. If either A or B is open then AB is open.

PROOF: If A is open we have $AB = \bigcup_{b \in B} r_b(A)$. Similarly if B is open. \square

Definition 329 (Symmetric Neighbourhood). Let G be a topological group. A neighbourhood V of e is *symmetric* if and only if $V = V^{-1}$.

Lemma 330. Let G be a topological group. Let V be a neighbourhood of e. Then V is symmetric if and only if, for all $x \in V$, we have $x^{-1} \in V$.

PROOF:

 $\langle 1 \rangle 1$. If V is symmetric then, for all $x \in V$, we have $x^{-1} \in V$

PROOF: Immediate from defintions.

- $\langle 1 \rangle 2$. If, for all $x \in V$, we have $x^{-1} \in V$, then V is symmetric.
 - $\langle 2 \rangle 1$. Assume: for all $x \in V$ we have $x^{-1} \in V$
 - $\langle 2 \rangle 2. \ V \subseteq V^{-1}$

PROOF: If $x \in V$ then there exists $y \in V$ such that $x = y^{-1}$, namely $y = x^{-1}$

 $\langle 2 \rangle 3. \ V^{-1} \subseteq V$

PROOF: Immediate from $\langle 2 \rangle 1$.

Lemma 331. Let G be a topological group. For every neighbourhood U of e, there exists a symmetric neighbourhood V of e such that $V^2 \subseteq U$.

Proof:

- $\langle 1 \rangle 1$. Let: U be a neighbourhood of e.
- $\langle 1 \rangle 2$. PICK a neighbourhood V' of e such that $V'V' \subseteq U$ PROOF: Such a neighbourhood exists because multiplication

PROOF: Such a neighbourhood exists because multiplication in G is continuous.

 $\langle 1 \rangle$ 3. PICK a neighbourhood W of e such that $WW^{-1} \subseteq V'$

PROOF: Such a neighbourhood exists because the function that maps (x, y) to xy^{-1} is continuous.

- $\langle 1 \rangle 4$. Let: $V = WW^{-1}$
- $\langle 1 \rangle$ 5. V is a neighbourhood of e
 - $\langle 2 \rangle 1. \ e \in V$

Proof: Since $e \in W$ so $e = ee^{-1} \in V$.

 $\langle 2 \rangle 2$. V is open

Proof: Lemma 328.

- $\langle 1 \rangle 6$. V is symmetric
 - $\langle 2 \rangle 1$. For all $x \in V$ we have $x^{-1} \in V$
 - $\langle 3 \rangle 1$. Let: $x \in V$

```
\langle 3 \rangle 2. PICKy, z \in W such that x = yz^{-1}
       \langle 3 \rangle 3. \ x^{-1} = zy^{-1}
      \langle 3 \rangle 4. \ x^{-1} \in V
      \langle 3 \rangle 5. \ x \in V^{-1}
   \langle 2 \rangle 2. Q.E.D.
      Proof: Lemma 330
\langle 1 \rangle 7. \ V^2 \subseteq U
   PROOF: We have V^2 \subseteq (V')^2 \subseteq U
Proposition 332. Every topological group is Hausdorff.
Proof:
\langle 1 \rangle 1. Let: G be a topological group.
\langle 1 \rangle 2. Let: x, y \in G with x \neq y
\langle 1 \rangle 3. Let: U = G \setminus \{x[^{-1}y]\}
\langle 1 \rangle 4. Pick a symmetric neighbourhood V of e such that VV \subseteq U
   \langle 2 \rangle 1. U is open
      PROOF: Since G is T_1.
   \langle 2 \rangle 2. \ e \in U
      PROOF: Since x \neq y
   \langle 2 \rangle 3. Q.E.D.
      PROOF: Lemma 331.
\langle 1 \rangle 5. Vx and Vy are disjoint neighbourhoods of x and y respectively.
   \langle 2 \rangle 1. Vx is open
      PROOF: Since Vx = r_x(V)
   \langle 2 \rangle 2. Vy is open
      PROOF: Similar.
   \langle 2 \rangle 3. \ Vx \cap Vy = \emptyset
       \langle 3 \rangle 1. Assume: for a contradiction z \in Vx \cap Vy
       \langle 3 \rangle 2. Pick a, b \in V such that z = ax = by
       \langle 3 \rangle 3. \ xy^{-1} \in VV
          PROOF: Since xy^{-1} = a^{-1}b
       \langle 3 \rangle 4. \ xy^{-1} \in U
       \langle 3 \rangle 5. Q.E.D.
          PROOF: From \langle 1 \rangle 3.
```

Proposition 333. Every topological group is regular.

Proof:

- $\langle 1 \rangle 1.$ Let: G be a topological group.
- $\langle 1 \rangle 2$. Let: $A \subseteq G$ be a closed set and $a \notin A$.
- $\langle 1 \rangle 3$. Let: $U = G \setminus Aa^{-1}$
- $\langle 1 \rangle 4.$ PICK a symmetric neighbourhood V of e such that $VV \subseteq U$
 - $\langle 2 \rangle 1$. *U* is open

PROOF: Since $Aa^{-1} = r_{a^{-1}}(A)$ is closed.

```
\langle 2 \rangle 2. \ e \in U
```

PROOF: Since $a \notin A$.

 $\langle 2 \rangle 3$. Q.E.D.

Proof: Lemma 331.

 $\langle 1 \rangle 5$. VA and Va are disjoint open sets with $A \subseteq VA$ and $a \in Va$

 $\langle 2 \rangle 1$. VA is open

Proof: Lemma 328

 $\langle 2 \rangle 2$. Va is open

Proof: Lemma 328

 $\langle 2 \rangle 3. VA \cap Va = \emptyset$

- $\langle 3 \rangle 1$. Assume: for a contradiction $z \in VA \cap Va$
- $\langle 3 \rangle 2$. Pick $b, c \in V$ and $d \in A$ with z = bd = ca
- $\langle 3 \rangle 3. \ da^{-1} \in U$

PROOF: Since $da^{-1} = b^{-1}c \in VV \subseteq U$

 $\langle 3 \rangle 4$. Q.E.D.

Proof: This contradicts $\langle 1 \rangle 3$

Proposition 334. Let G be a topological group and H a subgroup of G. Give G/H the quotient topology. If H is closed in G then G/H is regular.

Proof:

- $\langle 1 \rangle 1$. Let: $p: G \twoheadrightarrow G/H$ be the canonical surjection.
- $\langle 1 \rangle 2$. Let: A be a closed set in G/H and $aH \in (G/H) \setminus A$.
- $\langle 1 \rangle 3$. Let: $B = p^{-1}(A)$
- $\langle 1 \rangle 4$. B is a closed saturated set in G.
- $\langle 1 \rangle 5. \ B \cap aH = \emptyset$
- $\langle 1 \rangle 6. \ B = BH$
- $\langle 1 \rangle 7.$ PICK a symmetric neighbourhood V of e such that VB does not intersect Va
 - $\langle 2 \rangle 1$. Let: $U = G \setminus Ba^{-1}$
 - $\langle 2 \rangle 2$. Pick a symmetric neighbourhood V of e such that $VV \subseteq U$
 - $\langle 3 \rangle 1$. *U* is open

PROOF: Since $Ba^{-1} = r_{a^{-1}}(B)$ is closed.

 $\langle 3 \rangle 2. \ e \in U$

PROOF: If $e \in Ba^{-1}$ then $a \in B$

 $\langle 3 \rangle 3$. Q.E.D.

Proof: Lemma 331

 $\langle 2 \rangle 3. \ VB \cap Va = \emptyset$

PROOF: If vb = v'a for $v, v' \in V$ and $b \in B$ then we have $ba^{-1} = v^{-1}v' \in Ba \cap VV \subseteq Ba \cap U$.

- $\langle 1 \rangle 8$. p(VB) and p(Va) are disjoint open sets
 - $\langle 2 \rangle 1$. p(VB) and p(Va) are open.

Proof: Proposition 326.

 $\langle 2 \rangle 2$. $p(VB) \cap p(Va) = \emptyset$

PROOF: If vbH = v'aH for $v, v' \in V$, $b \in B$ then v'a = vbh for some $h \in H$. Hence $v'a \in Va \cap VBH = Va \cap VB$.

```
\langle 1 \rangle 9. \ A \subseteq p(VB)
\langle 1 \rangle 10. \ aH \in p(Va)
```

Proposition 335. Let G be a topological group. The component of G that contains e is a normal subgroup of G.

- $\langle 1 \rangle 1$. Let: C be the component of G that contains e.
- $\langle 1 \rangle 2$. For all $x \in G$, xC is the component of G that contains x.
 - $\langle 2 \rangle 1$. Let: $x \in G$
 - $\langle 2 \rangle 2$. Let: D be the component of G that contains x.
 - $\langle 2 \rangle 3. \ xC \subseteq D$

PROOF: Since xC is connected by Theorem 225.

 $\langle 2 \rangle 4$. $D \subseteq xC$

PROOF: Since $x^{-1}D \subseteq C$ similarly.

- $\langle 1 \rangle 3$. For all $x \in G$, Cx is the component of G that contains x. PROOF: Similar.
- $\langle 1 \rangle 4$. For all $x \in C$ we have xC = Cx = C
- $\langle 1 \rangle 5$. For all $x \in C$ we have $x^{-1}C = C$
- $\langle 1 \rangle 6$. For all $x \in C$ we have $x^{-1} \in C$
- $\langle 1 \rangle 7$. For all $x, y \in C$ we have $xy \in C$

PROOF: Since xyC = xC = x.

 $\langle 1 \rangle 8$. For all $x \in G$ we have xC = Cx.

PROOF: From $\langle 1 \rangle 2$ and $\langle 1 \rangle 3$.

Lemma 336. Let G be a topological group. Let A be a closed set in G and B a compact subspace of G such that $A \cap B = \emptyset$. Then there exists a symmetric neighbourhood U of e such that $AU \cap BU = \emptyset$.

Proof:

- $\langle 1 \rangle 1$. For all $b \in B$ there exists a symmetric neighbourhood V of e such that $bV^2\cap A=\emptyset$
 - $\langle 2 \rangle 1$. Let: $b \in B$
 - $\langle 2 \rangle 2$. Let: $W = b^{-1}(G \setminus A)$
 - $\langle 2 \rangle 3$. W is a neighbourhood of e and $bW \cap A = \emptyset$
 - $\langle 2 \rangle 4$. PICK a symmetric neighbourhood V of e such that $V^2 \subseteq W$
- $\langle 1 \rangle 2$. $\{bV^2 \mid b \in B, V \text{ is a symmetric neighbourhood of } e, bV^2 \cap A = \emptyset \}$ is an open cover of B
- $\langle 1 \rangle 3$. PICK a finite subcover $b_1 V_1^2, \ldots, b_n V_n^2$, say.
- $\langle 1 \rangle 4$. Let: $U = V_1 \cap \cdots \cap V_n$
- $\langle 1 \rangle 5$. $BU^2 \cap A = \emptyset$
- $\langle 1 \rangle 6. \ AU \cap BU = \emptyset$

PROOF: If $av \in BU$ where $a \in A$ and $v \in V$ then $a = avv^{-1} \in BU^2 \cap A$.

Proposition 337 (AC). Let G be a topological group. Let A be a closed set in G, and B a compact subspace of G. Then AB is closed.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in G \setminus AB$
- $\langle 1 \rangle 2. \ A^{-1}x \cap B = 0$
- $\langle 1 \rangle 3$. $A^{-1}x$ is closed.
- (1)4. PICK a symmetric neighbourhood U of e such that $A^{-1}xU \cap BU = \emptyset$
- $\langle 1 \rangle 5$. xU^2 is open

Proof: Lemma 328.

Proof: Lemma 328.
$$\langle 1 \rangle 6. \ x \in xU^2 \subseteq G \setminus AB$$

Corollary 337.1. Let G be a topological group and $H \leq G$. Let $p: G \twoheadrightarrow G/H$ be the quotient map. If H is compact then p is a closed map.

PROOF: For A closed in G, we have $p^{-1}(p(A)) = AH$ is closed, and so p(A) is closed. \square

Corollary 337.2. Let G be a topological group and $H \leq G$. If H and G/H are compact then G is compact.

PROOF: From Proposition 317 since, for all $aH \in G/H$, we have $p^{-1}(aH) = aH$ is compact because it is homemorphic to H. \square

48 The Metric Topology

Definition 338 (Metric). Let X be a set. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that:

- 1. For all $x, y \in X$, $d(x, y) \ge 0$
- 2. For all $x, y \in X$, d(x, y) = 0 if and only if x = y
- 3. For all $x, y \in X$, d(x, y) = d(y, x)
- 4. (Triangle Inequality) For all $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$

We call d(x, y) the distance between x and y.

Definition 339 (Open Ball). Let X be a metric space. Let $a \in X$ and $\epsilon > 0$. The *open ball* with *centre a* and *radius* ϵ is

$$B(a,\epsilon) = \{x \in X \mid d(a,x) < \epsilon\} .$$

Definition 340 (Metric Topology). Let X be a metric space. The *metric topology* on X is the topology generated by the basis consisting of all the open balls.

We prove this is a basis for a topology.

PROOF

 $\langle 1 \rangle 1$. For every point a, there exists a ball B such that $a \in B$ PROOF: We have $a \in B(a,1)$.

- $\langle 1 \rangle 2$. For any balls B_1 , B_2 and point $a \in B_1 \cap B_2$, there exists a ball B_3 such that $a \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Let: $B_1 = B(c_1, \epsilon_1)$ and $B_2 = B(c_2, \epsilon_2)$
 - $\langle 2 \rangle 2$. Let: $\delta = \min(\epsilon_1 d(c_1, a), \epsilon_2 d(c_2, a))$ Prove: $B(a, \delta) \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 3$. Let: $x \in B(a, \delta)$
 - $\langle 2 \rangle 4. \ x \in B_1$

Proof:

$$d(x, c_1) = d(x, a) + d(a, c_1)$$

$$< \delta + d(a, c_1)$$

$$\le \epsilon_1$$

 $\langle 2 \rangle 5. \ x \in B_2$

PROOF: Similar.

Proposition 341. Let X be a metric space and $U \subseteq X$. Then U is open if and only if, for every $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$.

PROOF

 $\langle 1 \rangle 1$. If U is open then, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$. $\langle 2 \rangle 1$. Assume: U is open.

- $\langle 2 \rangle 2$. Let: $x \in U$
- $\langle 2 \rangle 3$. Pick $a \in X$ and $\delta > 0$ such that $x \in B(a, \delta) \subseteq U$
- $\langle 2 \rangle 4$. Let: $\epsilon = \delta d(a, x)$ Prove: $B(x, \epsilon) \subseteq U$
- $\langle 2 \rangle 5$. Let: $y \in B(x, \epsilon)$
- $\langle 2 \rangle 6. \ d(y,a) < \delta$

Proof:

$$d(y, a) \le d(a, x) + d(x, y)$$
$$< \delta + d(x, y)$$
$$= \epsilon$$

 $\langle 2 \rangle 7. \ y \in U$

 $\langle 1 \rangle 2$. If, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$, then U is open. PROOF: Immediate from definitions.

Definition 342 (Discrete Metric). Let X be a set. The *discrete metric* on X is defined by

 $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$

Proposition 343. The discrete metric induces the discrete topology.

PROOF: For any (open) set U and point $a \in U$, we have $a \in B(a,1) \subseteq U$. \square

Definition 344 (Standard Metric on \mathbb{R}). The *standard metric* on \mathbb{R} is defined by d(x,y) = |x-y|.

Proposition 345. The standard metric on \mathbb{R} induces the standard topology on \mathbb{R} .

Proof:

 $\langle 1 \rangle 1$. Every open ball is open in the standard topology on \mathbb{R} .

PROOF: $B(a, \epsilon) = (a - \epsilon, a + \epsilon)$

- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $\epsilon > 0$ such that $B(a, \epsilon) \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. PICK an open interval b, c such that $a \in (b,c) \subseteq U$
 - $\langle 2 \rangle 3$. Let: $\epsilon = \min(a b, c a)$
- $\langle 2 \rangle 4$. $B(a, \epsilon) \subseteq U$

Definition 346 (Metrizable). A topological space X is *metrizable* if and only if there exists a metric on X that induces the topology.

Definition 347 (Bounded). Let X be a metric space and $A \subseteq X$. Then A is *bounded* if and only if there exists M such that, for all $x, y \in A$, we have $d(x, y) \leq M$.

Definition 348 (Diameter). Let X be a metric space and $A \subseteq X$. The diameter of A is

$$\operatorname{diam} A = \sup_{x,y \in A} d(x,y) .$$

Definition 349 (Standard Bounded Metric). Let d be a metric on X. The standard bounded metric corresponding to d is the metric \overline{d} defined by

$$\overline{d}(x,y) = \min(d(x,y),1)$$
.

We prove this is a metric.

Proof:

```
PROOF:  \langle 1 \rangle 1. \ \overline{d}(x,y) \geq 0  PROOF: Since d(x,y) \geq 0  \langle 1 \rangle 2. \ \overline{d}(x,y) = 0 \text{ if and only if } x = y  PROOF: \overline{d}(x,y) = 0 if and only if d(x,y) = 0 if and only if x = y  \langle 1 \rangle 3. \ \overline{d}(x,y) = \overline{d}(y,x)  PROOF: Since d(x,y) = d(y,x)  \langle 1 \rangle 4. \ \overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)  PROOF:  \overline{d}(x,y) + \overline{d}(y,z) = \min(d(x,y),1) + \min(d(y,z),1)   = \min(d(x,y) + d(y,z), d(x,y) + 1, d(y,z) + 1, 2)   \geq \min(d(x,z),1)   = \overline{d}(x,z)
```

Lemma 350. In any metric space X, the set $\mathcal{B} = \{B(a, \epsilon) \mid a \in X, \epsilon < 1\}$ is a basis for the metric topology.

Proof:

 $\langle 1 \rangle 1$. Every element of \mathcal{B} is open.

PROOF: From Lemma 65.

- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. PICK $\epsilon > 0$ such that $B(a, \epsilon) \subseteq U$
 - $\langle 2 \rangle 3. \ B(a, \min(\epsilon, 1/2)) \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 66.

Proposition 351. Let d be a metric on the set X. Then the standard bounded metric \overline{d} induces the same metric as d.

PROOF: This follows from Lemma 350 since the open balls with radius <1 are the same under both metrics. \Box

Lemma 352. Let d and d' be two metrics on the same set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce. Then $\mathcal{T} \subseteq \mathcal{T}'$ if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$$
.

Proof:

 $\langle 1 \rangle 1$. If $\mathcal{T} \subseteq \mathcal{T}'$ then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$

PROOF: From Proposition 341 since $x \in B_d(x, \epsilon) \in \mathcal{T}'$.

- $\langle 1 \rangle 2$. If, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$, then $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 1$. Assume: For all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 3$. For all $x \in U$ there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq U$.
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle 2$. PICK $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq U$

Proof: Proposition 341

 $\langle 3 \rangle 3$. PICK $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$

PROOF: By $\langle 2 \rangle 1$

 $\langle 3 \rangle 4. \ B_{d'}(x,\delta) \subseteq U$

 $\langle 2 \rangle 4. \ U \in \mathcal{T}'$

Proof: Proposition 341.

П

Proposition 353. \mathbb{R}^2 under the dictionary order topology is metrizable.

PROOF: Define $d: \mathbb{R}^2 \to \mathbb{R}$ by

$$d((x,y),(x,z)) = \max(|y-z|,1)$$

$$d((x,y),(x',y')) = 1 if x \neq x' \square$$

$$\langle 1 \rangle 1. \ x \in \bigcap_{i=1}^{N} \pi_i^{-1}() \subseteq B_D(a,\epsilon)$$

Proposition 354. Let $d: X^2 \to \mathbb{R}$ be a metric on X. Then the metric topology on X is the coarsest topology such that d is continuous.

- $\langle 1 \rangle 1$. d is continuous.
 - $\langle 2 \rangle 1$. Let: $a, b \in X$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. Let: $\delta = \epsilon/2$
 - $\langle 2 \rangle 4$. Let: $x, y \in X$
 - $\langle 2 \rangle$ 5. Assume: $\rho((a,b),(x,y)) < \delta$
 - $\langle 2 \rangle 6$. $|d(a,b) d(x,y)| < \epsilon$
 - $\langle 3 \rangle 1. \ d(a,b) d(x,y) < \epsilon$

Proof:

$$d(a,b) \le d(a,x) + d(x,y) + d(y,b)$$

$$\le d(x,y) + 2\rho((a,b),(x,y))$$

$$< d(x,y) + 2\delta$$

$$= d(x,y) + \epsilon$$

 $\langle 3 \rangle 2. \ d(a.b) - d(x,y) > -\epsilon$

PROOF: Similar.

 $\langle 2 \rangle$ 7. Q.E.D.

 $\langle 1 \rangle 2$. If \mathcal{T} is any topology under which d is continuous then \mathcal{T} is finer than the metric topology.

Proof: Since $B(a, \epsilon) = d_a^{-1}((-\infty, \epsilon))$

Proposition 355. Let X be a metric space with metric d and $A \subseteq X$. The restriction of d to A is a metric on A that induces the subspace topology.

Proof:

- $\langle 1 \rangle 1$. The restriction of d to A is a metric on A.
- $\langle 1 \rangle 2.$ Every open ball under $d \upharpoonright A$ is open under the subspace topology.

PROOF: $B_{d \upharpoonright A}(a, \epsilon) = B_d(a, \epsilon) \cap A$.

- $\langle 1 \rangle 3$. If U is open in the subspace topology and $x \in U$, then there exists a $d \upharpoonright A$ -ball B such that $x \in B \subseteq U$.
 - $\langle 2 \rangle 1$. PICK V open in X such that $U = V \cap A$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq V$
 - $\langle 2 \rangle 3$. Take $B = B_{d \uparrow A}(x, \epsilon)$

Corollary 355.1. A subspace of a metrizable space is metrizable.

Proposition 356. Every metrizable space is Hausdorff.

Proof

- $\langle 1 \rangle 1$. Let: X be a metric space
- $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 3$. Let: $\epsilon = d(a,b)/2$
- $\langle 1 \rangle 4$. Let: $U = B(a, \epsilon)$ and $V = B(b, \epsilon)$
- $\langle 1 \rangle$ 5. U and V are disjoint neighbourhoods of a and b respectively.

Proposition 357 (CC). The product of a countable family of metrizable spaces is metrizable.

Proof:

- $\langle 1 \rangle 1$. Let: (X_n, d_n) be a sequence of metric spaces.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. each d_n is bounded above by 1.

Proof: By Proposition 351.

 $\langle 1 \rangle 3$. Let: D be the metric on \mathbb{R}^{ω} defined by $D(x,y) = \sup_{i} (d_i(x_i,y_i)/i)$.

- $\langle 2 \rangle 1$. $D(x,y) \geq 0$
- $\langle 2 \rangle 2$. D(x,y) = 0 if and only if x = y
- $\langle 2 \rangle 3. \ D(x,y) = D(y,x)$
- $\langle 2 \rangle 4$. $D(x,z) \leq D(x,y) + D(y,z)$

Proof:

$$D(x,z) = \sup_{i} \frac{d_i(x_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i) + d_i(y_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i)}{i} + \sup_{i} \frac{d_i(y_i, z_i)}{i}$$

$$= D(x, y) + D(y, z)$$

- $\langle 1 \rangle 4$. Every open ball $B_D(a, \epsilon)$ is open in the product topology.
 - $\langle 2 \rangle 1$. PICK N such that $1/\epsilon < N$
- $\langle 2 \rangle 2$. $B_D(a, \epsilon) = \prod_{i=1}^{\infty} U_i$ where $U_i = B(a_i, i\epsilon)$ if $i \leq N$, and $U_i = X_i$ if i > N
- $\langle 1 \rangle 5$. For any open set U and $a \in U$, there exists $\epsilon > 0$ such that $B_D(a, \epsilon) \subseteq U$.
 - $\langle 2 \rangle 1$. Let: $n \geq 1$, V be an open set in \mathbb{R} and $a \in \pi_n^{-1}(V)$
 - $\langle 2 \rangle 2$. PICK $\epsilon > 0$ such that $B_{d_n}(a, \epsilon) \subseteq V$
 - $\langle 2 \rangle 3. \ B_D(a, \epsilon/n) \subseteq \pi_n^{-1}(V)$

Theorem 358. Let X and Y be metric spaces and $f: X \to Y$. Then f is continuous if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x, y) < \delta$ then $d(f(x), f(y)) < \epsilon$.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $x \in X$ and $\epsilon > 0$
 - $\langle 2 \rangle$ 3. PICK a neighbourhood U of x such that $f(U) \subseteq B(f(x), \epsilon)$ PROOF: Theorem 96.
 - $\langle 2 \rangle 4$. Pick $\delta > 0$ such that $B(x, \delta) \subseteq U$ Proof: Proposition 341.
 - $\langle 2 \rangle 5$. For all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
- $\langle 1 \rangle 2$. If for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$, then f is continuous.
 - $\langle 2 \rangle$ 1. Assume: for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 2$. Let: $x \in X$ and V be a neighbourhood of f(x)
 - $\langle 2 \rangle$ 3. PICK $\epsilon > 0$ such that $B(f(x), \epsilon) \subseteq V$

Proof: Proposition 341.

- $\langle 2 \rangle$ 4. Pick $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$ Proof: By $\langle 2 \rangle$ 1
- $\langle 2 \rangle$ 5. Let: $U = B(x, \delta)$
- $\langle 2 \rangle 6$. U is a neighbourhood of x with $f(U) \subseteq V$

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: Theorem 96.

Г

Proposition 359. Let X be a metric space. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \ge N$, we have $d(a_n, l) < \epsilon$.

PROOF: From Proposition 79.

Proposition 360. Every metrizable space is first countable.

PROOF: In any metric space X, the open balls B(a, 1/n) for $n \ge 1$ form a local basis at a.

Example 361. \mathbb{R}^{ω} under the box topology is not metrizable.

Example 362. If J is uncountable then \mathbb{R}^J under the product topology is not metrizable.

Proposition 363. A compact subspace of a metric space is bounded.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space and $A \subseteq X$ be compact.
- $\langle 1 \rangle 2$. Pick $a \in A$
- $\langle 1 \rangle 3$. $\{B(a,n) \mid n \in \mathbb{Z}^+\}$ covers A
- $\langle 1 \rangle 4$. Pick a finite subcover $\{B(a, n_1), \dots, B(a, n_k)\}$
- $\langle 1 \rangle 5$. Let: $N = \max(n_1, \ldots, n_k)$
- $\langle 1 \rangle 6$. For all $x, y \in A$ we have d(x, y) < 2N

Proof:

$$d(x,y) \le d(x,a) + d(a,y)$$

$$< N + N$$

This example shows the converse does not hold:

Example 364. The space \mathbb{R} under the standard bounded metric is bounded but not compact.

49 Real Linear Algebra

Definition 365 (Square Metric). The square metric ρ on \mathbb{R}^n is defined by

$$\rho(\vec{x}, \vec{y}) = \max(|x_1 - y_1|, \dots, |x_n - y_n|)$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ \rho(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $\rho(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: Immediate from definition.

 $\langle 1 \rangle 3. \ \rho(\vec{x}, \vec{y}) = \rho(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ \rho(\vec{x}, \vec{z}) \leq \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$

PROOF: Since $|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|$.

Proposition 366. The square metric induces the standard topology on \mathbb{R}^n .

Proof

 $\langle 1 \rangle 1$. For every $a \in X$ and $\epsilon > 0$, we have $B_{\rho}(a, \epsilon)$ is open in the standard product topology.

Proof:

$$B_{\rho}(a,\epsilon) = (a_1 - \epsilon, a_1 + \epsilon) \times \cdots \times (a_n - \epsilon, a_n + \epsilon)$$

- $\langle 1 \rangle 2$. For any open sets U_1, \ldots, U_n in \mathbb{R} , we have $U_1 \times \cdots \times U_n$ is open in the square metric topology.
 - $\langle 2 \rangle 1$. Let: $\vec{a} \in U_1 \times \cdots \times U_n$
 - $\langle 2 \rangle 2$. For $i = 1, \ldots, n$, PICK $\epsilon_i > 0$ such that $(a_i \epsilon_i, a_i + \epsilon_i) \subseteq U_i$
 - $\langle 2 \rangle 3$. Let: $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$
- $\langle 2 \rangle 4$. $B_{\rho}(\vec{a}, \epsilon) \subseteq U$

Definition 367. Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the sum $\vec{x} + \vec{y}$ by

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$
.

Definition 368. Given $\lambda \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$, define the scalar product $\lambda \vec{x} \in \mathbb{R}^n$ by

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

Definition 369 (Inner Product). Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the *inner product* $\vec{x} \cdot \vec{y} \in \mathbb{R}$ by

$$(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = x_1 y_1 + \cdots + x_n y_n$$
.

We write \vec{x}^2 for $\vec{x} \cdot \vec{x}$.

Definition 370 (Norm). Let $n \geq 1$. The *norm* on \mathbb{R}^n is the function $\| \| : \mathbb{R}^n \to \mathbb{R}$ defined by

$$\|(x_1,\ldots,x_n)\| = \sqrt{x_1^2 + \cdots + x_n^2}$$

Lemma 371.

$$\|\vec{x}\|^2 = \vec{x}^2$$

PROOF: Immediate from definitions.

Lemma 372.

$$\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$$

PROOF: Each is equal to $(x_1y_1 + x_1z_1, \dots, x_ny_n + x_nz_n)$. \square

Lemma 373.

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$$

Proof:

 $\langle 1 \rangle 1$. Assume: $\vec{x} \neq \vec{0} \neq \vec{y}$

PROOF: Otherwise both sides are 0.

- $\langle 1 \rangle 2$. Let: $a = 1/\|\vec{x}\|$
- $\langle 1 \rangle 3$. Let: $b = 1/\|\vec{y}\|$
- $\langle 1 \rangle 4$. $(a\vec{x} + b\vec{y})^2 \ge 0$ and $(a\vec{x} b\vec{y})^2 \ge 0$
- $\langle 1 \rangle 5$. $|a^2||\vec{x}||^2 + 2ab\vec{x} \cdot \vec{y} + |b^2||\vec{y}||^2 \ge 0$ and $|a^2||\vec{x}||^2 2ab\vec{x} \cdot \vec{y} + |b^2||\vec{y}||^2 \ge 0$
- $\langle 1 \rangle 6$. $2ab\vec{x} \cdot \vec{y} + 2 \ge 0$ and $-2ab\vec{x} \cdot \vec{y} + 2 \ge 0$
- $\langle 1 \rangle 7$. $\vec{x} \cdot \vec{y} \ge -1/ab$ and $\vec{x} \cdot \vec{y} \le 1/ab$
- $\langle 1 \rangle 8. \ \vec{x} \cdot \vec{y} \ge -||\vec{x}|| ||\vec{y}|| \text{ and } \vec{x} \cdot \vec{y} \le ||\vec{x}|| ||\vec{y}||$

Lemma 374 (Triangle Inequality).

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

Proof:

$$\begin{split} \|\vec{x} + \vec{y}\|^2 &= \|\vec{x}\|^2 + 2\vec{x} \cdot \vec{y} + \|\vec{y}\|^2 \\ &\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 \end{split}$$
 (Lemma 373)

Definition 375 (Euclidean Metric). Let $n \geq 1$. The *Euclidean metric* on \mathbb{R}^n is defined by

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$$
.

We prove this is a metric.

 $\langle 1 \rangle 1. \ d(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} - \vec{y} = \vec{0}$.

 $\langle 1 \rangle 3. \ d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ d(\vec{x}, \vec{z}) \leq d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$

Proof:

$$\begin{split} \|\vec{x} - \vec{z}\| &= \|(\vec{x} - \vec{y}) + (\vec{y} - \vec{z})\| \\ &\leq \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\| \end{split} \tag{Lemma 374}$$

Proposition 376. The Euclidean metric induces the standard topology on \mathbb{R}^n .

Proof:

 $\langle 1 \rangle 1$. Let: ρ be the square metric.

- $\langle 1 \rangle 2$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_d(\vec{a}, \epsilon) \subseteq B_\rho(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_d(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 2$. $\sqrt{(x_1 a_1)^2 + \dots + (x_n a_n)^2} < \epsilon$ $\langle 2 \rangle 3$. $(x_1 a_1)^2 + \dots + (x_n a_n)^2 < \epsilon^2$ $\langle 2 \rangle 4$. For all i we have $(x_i a_i)^2 < \epsilon^2$

 - $\langle 2 \rangle$ 5. For all i we have $|x_i a_i| < \epsilon$
 - $\langle 2 \rangle 6. \ \rho(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 3$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_{\rho}(\vec{a}, \epsilon / \sqrt{n}) \subseteq B_d(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_{\rho}(\vec{a}, \epsilon/\sqrt{n})$
 - $\langle 2 \rangle 2$. $\rho(\vec{x}, \vec{a}) < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 3$. For all i we have $|x_i x_a| < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 4$. For all i we have $(x_i x_a)^2 < \epsilon^2/n$
 - $\langle 2 \rangle 5. \ d(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 4$. Q.E.D.

PROOF: By Lemma 352.

Proposition 377. Let $n \geq 0$. For all $c \in \mathbb{R}^n$ and $\epsilon > 0$, the open ball $B(c, \epsilon)$ is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in B(c, \epsilon)$
- $\langle 1 \rangle 2$. Let: $p:[0,1] \to B(c,\epsilon)$ be the function p(t)=(1-t)a+tb

PROOF: We have $p(t) \in B(c, \epsilon)$ for all t because

$$\begin{aligned} d(p(t),c) &= \|(1-t)a + tb - c\| \\ &= \|(1-t)(a-c) + t(b-c)\| \\ &\leq (1-t)\|a - c\| + t\|b - c\| \\ &< (1-t)\epsilon + t\epsilon \end{aligned}$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Proposition 378. Let $n \geq 0$. For all $c \in \mathbb{R}^n$ and $\epsilon > 0$, the closed ball $\overline{B(c, \epsilon)}$ is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in B(c, \epsilon)$
- $\langle 1 \rangle 2$. Let: $p:[0,1] \to B(c,\epsilon)$ be the function p(t)=(1-t)a+tb

PROOF: We have $p(t) \in B(c, \epsilon)$ for all t because

$$d(p(t), c) = \|(1 - t)a + tb - c\|$$

$$= \|(1 - t)(a - c) + t(b - c)\|$$

$$\leq (1 - t)\|a - c\| + t\|b - c\|$$

$$\leq (1 - t)\epsilon + t\epsilon$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Lemma 379. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} |x_i y_i|$ converges.

 $\langle 1 \rangle 1$. For all $N \geq 0$ we have $\sum_{i=0}^N |x_i y_i| \leq \sqrt{\sum_{i=0}^N |x_i|^2} \sqrt{\sum_{i=0}^N |y_i|^2}$ PROOF: By the Cauchy-Schwarz inequality

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\sum_{i=0}^{N} |x_i y_i|$ is an increasing sequence bounded above by $(\sum_{i=0}^{\infty} x_i^2)(\sum_{i=0}^{\infty} y_i^2)$.

Corollary 379.1. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} (x_i + y_i)^2$ con-

PROOF: Since $\sum_{i=0}^{\infty} x_i^2$, $\sum_{i=0}^{\infty} y_i^2$ and $2\sum_{i=0}^{\infty} x_i y_i$ all converge.

Definition 380 (l^2 -metric). The l^2 -metric on

$$\left\{ (x_n) \in \mathbb{R}^{\omega} \mid \sum_{n=0}^{\infty} x_n^2 \text{ converges} \right\}$$

is defined by

$$d(x,y) = \left(\sum_{n=0}^{\infty} (x_n - y_n)^2\right)^{1/2}$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1$. d is well-defined.

Proof: By Corollary 379.1.

- $\langle 1 \rangle 2. \ d(x,y) \ge 0$
- $\langle 1 \rangle 3$. d(x,y) = 0 if and only if x = y
- $\langle 1 \rangle 4$. d(x,y) = d(y,x)
- $\langle 1 \rangle 5. \ d(x,z) \le d(x,y) + d(y,z)$

PROOF: By Lemma 374.

Theorem 381. Addition is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: $\delta = \epsilon/2$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle 5$. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6$. $|(a+b)-(x+y)| < \epsilon$

Proof:

$$\begin{aligned} |(a+b)-(x+y)| &= |a-x|+|b-y| \\ &\leq 2\rho((a,b),(x,y)) \\ &< 2\delta \\ &= \epsilon \end{aligned}$$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 358

Theorem 382. Multiplication is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: $\delta = \min(\epsilon/(|a| + |b| + 1), 1)$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle 5$. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6$. $|ab xy| < \epsilon$

PROOF:

$$\begin{aligned} |ab - xy| &= |a(b - y) + (a - x)b - (a - x)(b - y)| \\ &\leq |a||b - y| + |b||a - x| + |a - x||b - y| \\ &< |a|\delta + |b|\delta + \delta^2 \\ &\leq |a|\delta + |b|\delta + \delta \qquad (\langle 1 \rangle 3) \\ &\leq \epsilon \end{aligned}$$

 $\leq \epsilon$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 358

Theorem 383. The function $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by $f(x) = x^{-1}$ is continuous.

Proof:

 $\langle 1 \rangle 1$. For all $a \in \mathbb{R}$ we have $f^{-1}((a, +\infty))$ is open.

PROOF: The set is

$$(a^{-1}, +\infty) \text{if } a > 0$$
$$(0, +\infty) \text{if } a = 0$$
$$\infty, a^{-1}) \cup (0, +\infty) \text{if } a < 0$$

 $(-\infty,a^{-1})\cup(0,+\infty) \text{if }a<0$ $\langle 1\rangle 2.$ For all $a\in\mathbb{R}$ we have $f^{-1}((-\infty,a))$ is open.

PROOF: Similar.

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: By Proposition 93 and Lemma 116.

Definition 384. For $n \geq 0$, the unit ball B^n is the space $\{x \in \mathbb{R}^n \mid ||x|| \leq 1\}$.

Proposition 385. For all $n \geq 0$, the unit ball B^n is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in B^n$
- $\langle 1 \rangle 2$. Let: $p:[0,1] \to B^n$ be the function p(t)=(1-t)a+tb

PROOF: We have $p(t) \in B^n$ for all t because

$$||(1-t)a + tb|| \le (1-t)||a|| + t||b||$$

$$\le (1-t) + t$$

$$= 1$$

 $\langle 1 \rangle 3$. p is a path from a to b.

Definition 386 (Punctured Euclidean Space). For $n \geq 0$, defined punctured Euclidean space to be $\mathbb{R}^n \setminus \{0\}$.

Proposition 387. For n > 1, punctured Euclidean space $\mathbb{R}^n \setminus \{0\}$ is path connected.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}^n \setminus \{0\}$
- $\langle 1 \rangle 2$. Case: 0 is on the line from a to b
 - $\langle 2 \rangle 1$. PICK a point c not on the line from a to b
 - $\langle 2 \rangle 2$. The path consisting of a straight line from a to c followed by a straight line from c to b is a path from a to b.
- $\langle 1 \rangle 3$. Case: 0 is not on the line from a to b

PROOF: The straight line from a to b is a path from a to b.

Corollary 387.1. For n > 1, the spaces \mathbb{R} and \mathbb{R}^n are not homeomorphic.

PROOF: For any point a, the space $\mathbb{R} \setminus \{a\}$ is disconnected.

Definition 388 (Unit Sphere). For $n \ge 1$, the unit sphere S^{n-1} is the space

$$S^{n-1} = \{ x \in \mathbb{R}^n \mid ||x|| = 1 \} .$$

Proposition 389. For n > 1, the unit sphere S^{n-1} is path connected.

PROOF: The map $g: \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ defined by $g(x) = x/\|x\|$ is continuous and surjective. The result follows by Proposition 246. \square

Proposition 390. Let $f: S^1 \to \mathbb{R}$ be continuous. Then there exists $x \in S^1$ such that f(x) = f(-x).

Proof:

- $\langle 1 \rangle 1$. Let: $g: S^1 \to \mathbb{R}$ be the function g(x) = f(x) f(-x)Prove: There exists $x \in S^1$ such that g(x) = 0
- $\langle 1 \rangle 2$. Assume: without loss of generality g((1,0)) > 0
- $\langle 1 \rangle 3. \ g((-1,0)) < 0$
- $\langle 1 \rangle 4$. There exists x such that g(x) = 0

PROOF: By the Intermediate Value Theorem.

Definition 391 (Topologist's Sine Curve). Let $S = \{(x, \sin 1/x) \mid 0 < x \le 1\}$. The *topologist's sine curve* is the closure \overline{S} of S.

Proposition 392.

$$\overline{S} = S \cup (\{0\} \times [-1, 1])$$

Proposition 393. The topologist's sine curve is connected.

Proof:

- $\langle 1 \rangle 1$. Let: $S = \{(x, \sin 1/x) \mid 0 < x \le 1\}$
- $\langle 1 \rangle 2$. S is connected.

PROOF: Theorem 225.

 $\langle 1 \rangle 3$. \overline{S} is connected.

PROOF: Theorem 224.

Proposition 394 (CC). The topologist's sine curve is not path connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $p:[0,1] \to \overline{S}$ is a path from (0,0) to $(1,\sin 1)$.
- $\langle 1 \rangle 2$. $p^{-1}(\{0\} \times [0,1])$ is closed.
- $\langle 1 \rangle 3$. Let: b be the greatest element of $p^{-1}(\{0\} \times [0,1])$.
- $\langle 1 \rangle 4.$ b < 1

PROOF: Since $p(1) = (1, \sin 1)$.

- $\langle 1 \rangle 5$. PICK a sequence $(t_n)_{n \geq 1}$ in (b,1] such that $t_n \to b$ and $\pi_2(p(t_n)) = (-1)^n$
 - $\langle 2 \rangle 1$. Let: $n \geq 1$
 - $\langle 2 \rangle 2$. PICK u with $0 < u < \pi_1(p(1/n))$ such that $\sin(1/u) = (-1)^n$
 - $\langle 2 \rangle 3$. PICK t_n such that $0 < t_n < 1/n$ and $\pi_1(p(t_n)) = u$

PROOF: One exists by the Intermediate Value Theorem.

 $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts 108.

П

50 The Uniform Topology

Definition 395 (Uniform Metric). Let J be a set. The *uniform metric* $\overline{\rho}$ on \mathbb{R}^J is defined by

$$\overline{\rho}(a,b) = \sup_{j \in J} \overline{d}(a_j, b_j)$$

where \overline{d} is the standard bounded metric on \mathbb{R} .

The uniform topology on \mathbb{R}^J is the topology induced by the uniform metric.

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1$. $\overline{\rho}(a,b) > 0$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. $\overline{\rho}(a,b) = 0$ if and only if a = b

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ \overline{\rho}(a,b) = \overline{\rho}(b,a)$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4. \ \overline{\rho}(a,c) \leq \overline{\rho}(a,b) + \overline{\rho}(b,c)$

Proof:

$$\begin{split} \overline{\rho}(a,c) &= \sup_{j \in J} \overline{d}(a_j,c_j) \\ &\leq \sup_{j \in J} (\overline{d}(a_j,b_j) + \overline{d}(b_j,c_j)) \\ &\leq \sup_{j \in J} \overline{d}(a_j,b_j) + \sup_{j \in J} \overline{d}(b_j,c_j) \\ &= \overline{\rho}(a,b) + \overline{\rho}(b,c) \end{split}$$

Proposition 396. The uniform topology on \mathbb{R}^J is finer than the product topology.

Proof:

 $\langle 1 \rangle 1$. Let: $j \in J$ and U be open in \mathbb{R} PROVE: $\pi_j^{-1}(U)$ is open in the uniform topology. $\langle 1 \rangle 2$. Let: $a \in \pi_j^{-1}(U)$

 $\langle 1 \rangle 3$. Pick $\epsilon > 0$ such that $(a_j - \epsilon, a_j + \epsilon) \subseteq U$

 $\langle 1 \rangle 4. \ B_{\overline{\rho}}(a, \epsilon) \subseteq \pi_j^{-1}(U)$

Proposition 397. The uniform topology on \mathbb{R}^J is coarser than the box topology.

Proof:

 $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^J$ and $\epsilon > 0$

PROVE: $B(a, \epsilon)$ is open in the box topology.

 $\langle 1 \rangle 2$. Let: $b \in B(a, \epsilon)$

 $\langle 1 \rangle 3$. For $j \in J$ we have $|a_j - b_j| < \epsilon$

 $\langle 1 \rangle 4$. For $j \in J$,

Let: $\delta_j = (\epsilon - |a_j - b_j|)/2$ $\langle 1 \rangle 5. \quad \prod_{j \in J} (b_j - \delta_j, b_j + \delta_j) \subseteq B(a, \epsilon)$

Proposition 398. The uniform topology on \mathbb{R}^J is strictly finer than the product topology if and only if J is infinite.

Proof:

 $\langle 1 \rangle 1$. If J is finite then the uniform and product topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle 2$. If J is infinite then the uniform and product topologies are different.

PROOF: The set $B(\vec{0},1)$ is open in the uniform topology but not the product topology.

Proposition 399 (DC). The uniform topology on \mathbb{R}^J is strictly coarser than the box topology if and only if J is infinite.

Proof:

 $\langle 1 \rangle 1$. If J is finite then the uniform and box topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle 2$. If J is infinite then the uniform and box topologies are different.

PROOF: Pick an ω -sequence $(j_1, j_2, ...)$ in J. Let $U = \prod_{j \in J} U_j$ where $U_{j_i} = (-1/i, 1/i)$ and $U_j = (-1, 1)$ for all other j. Then $\vec{0} \in U$ but there is no $\epsilon > 0$ such that $B(\vec{0}, \epsilon) \subseteq U$.

Proposition 400. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} under the uniform topology is \mathbb{R}^{ω} .

PROOF: Given any open ball $B(a, \epsilon)$, pick an integer N such that $1/\epsilon < N$. Then $B(a, \epsilon)$ includes sequences whose nth entry is 0 for all $n \ge N$. \square

Example 401. The space \mathbb{R}^{ω} is disconnected under the uniform topology. The set of bounded sequences and the set of unbounded sequences form a separation.

Proposition 402. Give \mathbb{R}^{ω} the uniform topology. Let $x, y \in \mathbb{R}^{\omega}$. Then x and y are in the same component if and only if x - y is bounded.

PROOF:

- $\langle 1 \rangle 1$. The component containing 0 is the set of bounded sequences.
 - $\langle 2 \rangle$ 1. Let: B be the set of bounded sequences.
 - $\langle 2 \rangle 2$. B is path-connected.
 - $\langle 3 \rangle 1$. Let: $x.y \in B$
 - $\langle 3 \rangle 2$. Pick b > 0 such that $|x_j|, |y_j| \leq b$ for all j
 - $\langle 3 \rangle 3$. Let: $p:[0,1] \to B$ be the function p(t)=(1-t)x+ty Prove: p is continuous.
 - $\langle 3 \rangle 4$. Let: $t \in [0,1]$ and $\epsilon > 0$
 - $\langle 3 \rangle 5$. Let: $\delta = \epsilon/2b$
 - $\langle 3 \rangle 6$. Let: $s \in [0,1]$ with $|s-t| < \delta$
 - $\langle 3 \rangle 7. \ \overline{\rho}(p(s), p(t)) < \epsilon$

Proof:

$$\overline{\rho}(p(s), p(t)) = \sup_{j} \overline{d}((1-s)x_j + sy_j, (1-t)x_j + ty_j)$$

$$\leq |(s-t)x_j + (t-s)y_j|$$

$$\leq |s-t||x_j - y_j|$$

$$< 2b\delta$$

$$= \epsilon$$

 $\langle 2 \rangle 3$. B is connected.

Proof: Proposition 244.

 $\langle 2 \rangle 4$. If C is connected and $B \subseteq C$ then B = C.

PROOF: Otherwise $B \cap C$ and $C \setminus B$ form a separation of C.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\lambda x.x - y$ is a Homeomorphism of \mathbb{R}^{ω} with itself.

51 Uniform Convergence

Definition 403 (Uniform Convergence). Let X be a set and Y a metric space. Let $(f_n: X \to Y)$ be a sequence of functions and $f: X \to Y$ be a function. Then f_n converges uniformly to f as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \ge N$ and $x \in X$, we have $d(f_n(x), f(x)) < \epsilon$.

Example 404. Define $f_n : [0,1] \to \mathbb{R}$ by $f_n(x) = x^n$ for $n \ge 1$, and $f : [0,1] \to \mathbb{R}$ by f(x) = 0 if x < 1, f(1) = 1. Then f_n converges to f pointwise but not uniformly.

Theorem 405 (Uniform Limit Theorem). Let X be a topological space and Y a metric space. Let $(f_n : X \to Y)$ be a sequence of continuous functions and $f : X \to Y$ be a function. If f_n converges uniformly to f as $n \to \infty$, then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in X$ and $\epsilon > 0$
- (1)2. PICK N such that, for all $n \geq N$ and $y \in X$, we have $d(f_n(y), f(y)) < \epsilon/3$
- $\langle 1 \rangle 3$. PICK a neighbourhood U of x such that $f_N(U) \subseteq B(f_N(x), \epsilon/3)$ PROVE: $f(U) \subseteq B(f(x), \epsilon)$
- $\langle 1 \rangle 4$. Let: $y \in U$
- $\langle 1 \rangle 5. \ d(f(y), f(x)) < \epsilon$

Proof:

$$d(f(y), f(x)) \leq d(f(y), f_N(y)) + d(f_N(y), f_N(x)) + d(f_N(x), f(x)) \quad \text{(Triangle Inequality)}$$
$$< \epsilon/3 + \epsilon/3 + \epsilon/3 \qquad (\langle 1 \rangle 2, \langle 1 \rangle 3)$$
$$= \epsilon$$

Proposition 406. Let X be a topological space and Y a metric space. Let $(f_n : X \to Y)$ be a sequence of continuous functions and $f : X \to Y$ be a function. Let (a_n) be a sequence of points in X and $a \in X$. If f_n converges uniformly to f and a_n converges to a in X then $f_n(a_n)$ converges to f(a) uniformly in Y.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. PICK N_1 such that, for all $n \geq N_1$ and $x \in X$, we have $d(f_n(x), f(x)) < \epsilon/2$
- $\langle 1 \rangle 3$. PICK N_2 such that, for all $n \geq N_2$, we have $a_n \in f^{-1}(B(a, \epsilon/2))$

PROOF: Using the fact that f is continuous from the Uniform Limit Theorem.

- $\langle 1 \rangle 4$. Let: $N = \max(N_1, N_2)$
- $\langle 1 \rangle 5$. Let: $n \geq N$
- $\langle 1 \rangle 6. \ d(f_n(a_n), f(a)) < \epsilon$

PROOF:

$$d(f_n(a_n), f(a)) \le d(f_n(a_n), f(a_n)) + d(f(a_n), f(a)) \quad \text{(Triangle Inequality)}$$
$$< \epsilon/2 + \epsilon/2$$
$$= \epsilon \quad (\langle 1 \rangle 2, \langle 1 \rangle 3)$$

Proposition 407. Let X be a set. Let $(f_n : X \to \mathbb{R})$ be a sequence of functions and $f : X \to \mathbb{R}$ be a function. Then f_n converges unifomly to f as $n \to \infty$ if and only if $f_n \to f$ as $n \to \infty$ in \mathbb{R}^X under the uniform topology.

Proof:

- $\langle 1 \rangle 1$. If f_n converges uniformly to f then f_n converges to f under the uniform topology.
 - $\langle 2 \rangle 1$. Assume: f_n converges uniformly to f
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle$ 3. PICK N such that, for all $n \geq N$ and $x \in X$, we have $d(f_n(x), f(x)) < \epsilon/2$
 - $\langle 2 \rangle 4$. For all $n \geq N$ we have $\overline{\rho}(f_n, f) \leq \epsilon/2$
 - $\langle 2 \rangle 5$. For all $n \geq N$ we have $\overline{\rho}(f_n, f) < \epsilon$
- $\langle 1 \rangle 2$. If f_n converges to f under the uniform topology then f_n converges uniformly to f.
 - $\langle 2 \rangle 1$. Assume: f_n converges to f under the uniform topology.
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. PICK N such that, for all $n \geq N$, we have $\overline{\rho}(f_n, f) < \min(\epsilon, 1/2)$
 - $\langle 2 \rangle 4$. Let: $n \geq N$
 - $\langle 2 \rangle 5$. Let: $x \in X$
 - $\langle 2 \rangle 6. \ \overline{\rho}(f_n, f) < \min(\epsilon, 1/2)$

PROOF: From $\langle 2 \rangle 3$.

- $\langle 2 \rangle 7$. $d(f_n(x), f(x)) < \min(\epsilon, 1/2)$
- $d(f_n(x), f(x)) < \epsilon$

52 Isometric Imbeddings

Definition 408. Let X and Y be metric spaces. An isometric imbedding $f: X \to Y$ is a function such that, for all $x, y \in X$, we have d(f(x), f(y)) = d(x, y).

Proposition 409. Every isometric imbedding is an imbedding.

Proof:

- $\langle 1 \rangle 1$. Let: $f: X \to Y$ be an isometric imbedding.
- $\langle 1 \rangle 2$. f is injective.

PROOF: If f(x) = f(y) then d(f(x), f(y)) = 0 hence d(x, y) = 0 hence x = y. $\langle 1 \rangle 3$. f is continuous.

PROOF: For all $\epsilon > 0$, if $d(x, y) < \epsilon$ then $d(f(x), f(y)) < \epsilon$.

 $\langle 1 \rangle 4. \ f: X \to f(X)$ is an open map.

PROOF: $f(B(a, \epsilon)) = B(f(a), \epsilon) \cap f(X)$.