

Calcolo differenziale — Compito di pre-esonero 25 Dicembre 2023 — Compito n. 00116

Istruzioni: le prime due caselle $(\mathbf{V} \ / \ \mathbf{F})$ permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:					_
C					
Cognome:					
Matricolae					

	1A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4 B	4 C	4D
V																
\mathbf{F}																
\mathbf{C}																

- 1) Dire se le seguenti affermazioni sono vere o false.
- 1A)

$$\lim_{x \to 0} \frac{\sin^2(5x)}{1 - \cos(2x)} = \frac{25}{8}.$$

1B)

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \frac{1}{4}.$$

1C)

$$\lim_{x \to -\infty} \frac{e^x x^2}{3 x^3 + 2^x} = 0.$$

1D) $\lim_{x \to +\infty} (1 + e^{-7x})^{e^{11x}} = +\infty.$

2) Sia

$$f(x) = \begin{cases} 7x^2 + x(e^{3x} - 1) & \text{se } x \ge 0, \\ \frac{\sin(7x^3)}{x} & \text{se } x < 0. \end{cases}$$

- **2A)** La funzione f(x) è continua in x = 0.
- **2B)** La funzione f(x) è derivabile in x = 0.
- **2C)** Non esiste $\xi < 0$ tale che $f'(\xi) = 0$.
- **2D)** Esiste $0 < \xi < 1$ tale che $f'(\xi) = e^3 + 6$.

3) Sia

$$f(x) = \begin{cases} 2x^2 & \text{se } x \ge 0, \\ 4 - 3x^2 & \text{se } x < 0. \end{cases}$$

- **3A)** La funzione f(x) è decrescente su $(0, +\infty)$.
- **3B)** La funzione f(x) è crescente su $(-\infty,0)$.
- **3C)** La funzione f(x) è crescente su \mathbb{R} .
- **3D)** Si ha $f(\mathbb{R}) = \mathbb{R}$.
- 4) Dire se le seguenti affermazioni sono vere o false.
- 4A)

$$T_3(\sin(3x);0) = 3x - \frac{9}{2}x^3$$
.

4B)

$$T_3(x^2(e^{5x}-1);0) = x^3.$$

4C)

$$\frac{1 - \cos(4x^2)}{x^2} = 8x^2 + o(x^2).$$

4D)

$$e^{4x} - 1 - \sin(4x) = 4x + o(x)$$
.

Docente

- ☐ Garroni [A, F]
 - \Box Orsina [$\overset{\circ}{G}$, $\overset{\circ}{Z}$]

$$f(x) = \frac{(x^2 + 7)(x + 6)}{x - 6}.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad e \qquad \lim_{x \to -\infty} f(x).$$

b) Calcolare

$$\lim_{x \to 6^+} f(x)$$
, e $\lim_{x \to 6^-} f(x)$.

- $\lim_{x\to 6^+} f(x)\,,$ c) Dimostrare che esiste il minimo di f(x) su $(6,+\infty)$. d) Dimostrare che $f((-\infty,6))=\mathbb{R}$.

Cognome	Nome	Matricola	Compito 00116
---------	------	-----------	---------------

$$f(x) = (x^2 - 2x - 23) e^x.$$

- a) Calcolare i limiti di f(x) a più infinito e meno infinito.
 b) Calcolare T₂(x; 0).
 c) Determinare i punti stazionari di f(x) su R, studiandone la natura.
 d) Determinare massimi e minimi relativi ed assoluti di f(x) sull'intervallo [4,6].

Soluzioni del compito 00116

1) Dire se le seguenti affermazioni sono vere o false.

1A)

$$\lim_{x \to 0} \frac{\sin^2(5x)}{1 - \cos(2x)} = \frac{25}{8}.$$

Falso: Ricordando che quando t tende a zero si ha $\sin(t) \approx t$, e $1 - \cos(t) \approx t^2/2$, si ha

$$\lim_{x \to 0} \frac{\sin^2(5 \, x)}{1 - \cos(2 \, x)} = \lim_{x \to 0} \frac{(5 \, x)^2}{(2 \, x)^2 / 2} = \lim_{x \to 0} \frac{2 \cdot 5^2}{2^2} = \frac{25}{2} \neq \frac{25}{8} \, .$$

1B)

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \frac{1}{4}.$$

Vero: Scriviamo $\log(x-4) = \log(1+(x-5))$. Pertanto, ricordando che quando t tende a zero si ha $\log(1+t) \approx t$ e $\tan(t) \approx t$, si ha

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \lim_{x \to 5} \frac{x-5}{4(x-5)} = \frac{1}{4}.$$

1C)

$$\lim_{x \to -\infty} \frac{e^x x^2}{3 x^3 + 2^x} = 0.$$

Vero: Ricordando che

$$\lim_{x \to -\infty} e^x = 0, \qquad e \qquad \lim_{x \to -\infty} 2^x = 0,$$

$$\lim_{x \to -\infty} \frac{e^x x^2}{3 x^3 + 2^x} = \lim_{x \to -\infty} e^x \frac{x^2}{x^3} \frac{1}{3 + \frac{2^x}{x^3}} = \lim_{x \to -\infty} e^x \frac{1}{x} \frac{1}{3 + \frac{2^x}{x^3}} = 0 \cdot 0 \cdot \frac{1}{3 + 0} = 0.$$

1D)

$$\lim_{x \to +\infty} (1 + e^{-7x})^{e^{11x}} = +\infty.$$

Vero: Ricordando che

$$\lim_{t\to +\infty} \left(1+\frac{1}{t}\right)^t = \mathrm{e}\,,$$

e che

$$\lim_{x \to +\infty} \frac{e^{11x}}{e^{7x}} = \lim_{x \to +\infty} e^{4x} = +\infty,$$

si ha

$$\lim_{x \to +\infty} (1 + e^{-7x})^{e^{11x}} = \lim_{x \to +\infty} \left(1 + \frac{1}{e^{7x}} \right)^{e^{11x}} = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{e^{7x}} \right)^{e^{7x}} \right]^{\frac{e^{11x}}{e^{7x}}} = [e]^{+\infty} = +\infty.$$

$$f(x) = \begin{cases} 7x^2 + x(e^{3x} - 1) & \text{se } x \ge 0, \\ \frac{\sin(7x^3)}{x} & \text{se } x < 0. \end{cases}$$

2A) La funzione f(x) è continua in x = 0.

Vero: Si ha

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[7x^2 + x \left(e^{3x} - 1 \right) \right] = 0 + 0 \cdot 0 = 0,$$

 \mathbf{e}

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin(7x^{3})}{x} = \lim_{x \to 0^{-}} x^{2} \frac{\sin(7x^{3})}{x^{3}} = 0 \cdot 7 = 0.$$

Dato che i due limiti sono uguali, esiste

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

e quindi la funzione è continua in x = 0.

2B) La funzione f(x) è derivabile in x = 0.

Vero: Si ha

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{7h^2 + h(e^{3h} - 1) - 0}{h} = \lim_{h \to 0^+} [7h + e^{3h} - 1] = 0 + 0 = 0,$$

 ϵ

$$\lim_{h\to 0^-} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0^-} \frac{\frac{\sin(7\,h^3)}{h}-0}{h} = \lim_{h\to 0^-} \frac{\sin(7\,h^3)}{h^2} = \lim_{h\to 0^+} h \frac{\sin(7\,h^3)}{h^3} = 0 \cdot 7 = 0 \,.$$

Dato che i due limiti sono uguali (e finiti) la funzione f(x) è derivabile in x = 0, e si ha f'(0) = 0.

2C) Non esiste $\xi < 0$ tale che $f'(\xi) = 0$.

Falso: Per gli esercizi **2A**) e **2B**) la funzione f(x) è continua e derivabile su $(-\infty, 0]$. Inoltre, f(0) = 0 e (ad esempio)

$$f(-\sqrt[3]{\pi}) = \frac{\sin(-7\pi)}{-\sqrt[3]{\pi}} = 0.$$

Per il teorema di Rolle, applicato all'intervallo $[-\sqrt[3]{\pi}, 0]$, esiste ξ in tale intervallo tale che $f'(\xi) = 0$.

2D) Esiste $0 < \xi < 1$ tale che $f'(\xi) = e^3 + 6$.

Vero: Per gli esercizi **2A)** e **2B)** la funzione f(x) è continua e derivabile in [0,1], ed è tale che f(0) = 0 e $f(1) = e^3 + 6$. Per il teorema di Lagrange, esiste ξ in (0,1) tale che

$$f'(\xi) = \frac{f(1) - f(0)}{1 - 0} = e^3 + 6$$
.

$$f(x) = \begin{cases} 2x^2 & \text{se } x \ge 0, \\ 4 - 3x^2 & \text{se } x < 0. \end{cases}$$

Disegno non in scala

3A) La funzione f(x) è decrescente su $(0, +\infty)$.

Falso: Dato che per $x \ge 0$ si ha $f(x) = 2x^2$, si ha

$$f'(x) = 4x$$
, $\forall x > 0$.

Dato che $f'(x) \ge 0$ per ogni x > 0, la funzione f(x) è crescente su $(0, +\infty)$.

3B) La funzione f(x) è crescente su $(-\infty, 0)$.

Vero: Dato che $f(x) = 4 - 3x^2$ per x < 0, si ha

$$f'(x) = -6x$$
, $\forall x < 0$.

Dato che $f'(x) \ge 0$ per ogni x < 0, la funzione f(x) è crescente su $(-\infty, 0)$.

3C) La funzione f(x) è crescente su \mathbb{R} .

Falso: Per dimostrare che f(x) non è crescente è sufficiente osservare che

$$f(-1) = 4 - 3 = 1 > 0 = f(0)$$
.

3D) Si ha $f(\mathbb{R}) = \mathbb{R}$.

Vero: Dato che f(x) è monotona crescente su $(0, +\infty)$, e che f(0) = 0 e

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 x^2 = +\infty,$$

per una generalizzazione del teorema dei valori intermedi si ha

$$(1) f([0,+\infty)) = [0,+\infty).$$

Dato che f(x) è crescente anche su $(-\infty,0)$, e che

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [4 - 3x^2] = -\infty, \qquad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} [4 - 3x^2] = 4,$$

per una generalizzazione del teorema dei valori intermedi si ha

(2)
$$f((-\infty,0)) = (-\infty,4)$$
.

Da (1) e da (2) si ha quindi

$$f(\mathbb{R}) = f((-\infty, 0)) \cup f([0, +\infty)) = (-\infty, 4) \cup [0, +\infty) = \mathbb{R}$$
.

4A)

$$T_3(\sin(3x);0) = 3x - \frac{9}{2}x^3.$$

Vero: Ricordando che

$$\sin(t) = t - \frac{t^3}{6} + o(t^3),$$

si ha, ponendo t = 3x,

$$\sin(3x) = 3x - \frac{(3x)^3}{6} + o(x^3) = 3x - \frac{9}{2}x^3 + o(x^3),$$

da cui segue che

$$T_3(\sin(3x);0) = 3x - \frac{9}{2}x^3.$$

4B)

$$T_3(x^2(e^{5x}-1);0) = x^3.$$

Falso: Ricordando che

$$e^t = 1 + t + o(t).$$

si ha, ponendo t = 5 x,

$$e^{5t} = 1 + 5x + o(x)$$
,

da cui segue che

$$x^{2}(e^{5x}-1) = x^{2}(1+5x+o(x)-1) = x^{2}(5x+o(x)) = 5x^{3}+o(x^{3}),$$

da cui segue che

$$T_3(x^2(e^{5x}-1);0) = 5x^3 \neq x^3.$$

4C)

$$\frac{1 - \cos(4x^2)}{x^2} = 8x^2 + o(x^2).$$

Vero: Ricordando che si ha

$$\cos(t) = 1 - \frac{t^2}{2} + o(t^2),$$

si ha, ponendo $t = 4x^2$,

$$\cos(4x^2) = 1 - \frac{(4x^2)^2}{2} + o((x^2)^2) = 1 - 8x^4 + o(x^4).$$

Pertanto

$$\frac{1 - \cos(4x^2)}{x^2} = \frac{1 - 1 + 8x^4 + o(x^4)}{x^2} = \frac{8x^4 + o(x^4)}{x^2} = 8x^2 + o(x^2).$$

4D)

$$e^{4x} - 1 - \sin(4x) = 4x + o(x)$$
.

Falso: Ricordando che

$$e^t = 1 + t + \frac{t^2}{2} + o(t^2), \quad \sin(t) = t - \frac{t^3}{6} + o(t^3) = t + o(t^2),$$

si ha, ponendo t = 4x,

$$e^{4x} = 1 + 4x + 8x^2 + o(x^2), \quad \sin(4x) = 4x + o(x^2).$$

Pertanto,

$$e^{4x} - 1 - \sin(4x) = 1 + 4x + 8x^2 + o(x^2) - 1 - 4x + o(x^2) = 8x^2 + o(x^2) \neq 4x + o(x)$$
.

$$f(x) = \frac{(x^2+7)(x+6)}{x-6}.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x)$$
, e $\lim_{x \to -\infty} f(x)$.

b) Calcolare

$$\lim_{x \to 6^+} f(x), \qquad e \qquad \lim_{x \to 6^-} f(x).$$

- c) Dimostrare che esiste il minimo di f(x) su $(6, +\infty)$.
- **d)** Dimostrare che $f((-\infty, 6)) = \mathbb{R}$.

Soluzione:

a) Si ha

$$f(x) = \frac{(x^2 + 7)(x + 6)}{x - 6} = \frac{x^3}{x} \frac{\left(1 + \frac{7}{x^2}\right)\left(1 + \frac{6}{x}\right)}{1 - \frac{6}{x}} = x^2 \frac{\left(1 + \frac{7}{x^2}\right)\left(1 + \frac{6}{x}\right)}{1 - \frac{6}{x}}.$$

Si ha pertanto

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \frac{\left(1 + \frac{7}{x^2}\right) \left(1 + \frac{6}{x}\right)}{1 - \frac{6}{x}} = (+\infty) \cdot \frac{(1+0)(1+0)}{1-0} = +\infty,$$

e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 \frac{\left(1 + \frac{7}{x^2}\right) \left(1 + \frac{6}{x}\right)}{1 - \frac{6}{x}} = (+\infty) \cdot \frac{(1+0)(1+0)}{1-0} = +\infty.$$

b) Osserviamo che quando x tende a 6 da destra il binomio x-6 è positivo, mentre è negativo quando x tende a 6 da sinistra. Pertanto,

$$\lim_{x \to 6^+} \frac{1}{x - 6} = +\infty, \qquad e \qquad \lim_{x \to 6^-} \frac{1}{x - 6} = -\infty.$$

Dato che

$$\lim_{x \to 6} (x^2 + 7)(x + 6) = 43 \cdot 12 = 516 > 0,$$

Si ha

$$\lim_{x \to 6^+} f(x) = 516 \cdot (+\infty) = +\infty, \qquad e \qquad \lim_{x \to 6^-} f(x) = 516 \cdot (-\infty) = -\infty.$$

c) Dal punto a) si ha che

$$\lim_{x \to +\infty} f(x) = +\infty,$$

mentre dal punto **b**) si ha che

$$\lim_{x \to 6^+} f(x) = +\infty.$$

Pertanto, per una generalizzazione del teorema di Weierstrass, esiste il minimo di f(x) sulla semiretta $(6, +\infty)$.

d) Dal punto a) si ha che

$$\lim_{x \to -\infty} f(x) = +\infty,$$

mentre dal punto b) si ha che

$$\lim_{x \to 6^-} f(x) = -\infty.$$

Pertanto, per una generalizzazione del teorema dei valori intermedi si ha $f((-\infty,6)) = \mathbb{R}$.

$$f(x) = (x^2 - 2x - 23) e^x$$
.

- a) Calcolare i limiti di f(x) a più infinito e meno infinito.
- **b)** Calcolare $T_2(x;0)$.
- c) Determinare i punti stazionari di f(x) su \mathbb{R} , studiandone la natura.
- d) Determinare massimi e minimi relativi ed assoluti di f(x) sull'intervallo [4,6].

Soluzione:

a) Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x^2 - 2x - 23) e^x = (+\infty) \cdot (+\infty) = +\infty.$$

Per il limite a meno infinito, poniamo y = -x; allora

$$\lim_{x \to -\infty} f(x) = \lim_{y \to +\infty} ((-y)^2 - 2(-y) - 23) e^{-y} = \lim_{y \to +\infty} \frac{y^2 + 2y - 23}{e^y} = 0,$$

dato che $e^y \otimes y^k$ per ogni k.

b) Derivando, si ha

(1)
$$f'(x) = (2x - 2)e^x + (x^2 - 2x - 23)e^x = (x^2 - 25)e^x,$$

e, derivando ancora,

$$f''(x) = 2x e^x + (x^2 - 25) e^x = (x^2 + 2x - 25) e^x$$
.

Dato che f(0) = -23, che f'(0) = -25 e che f''(0) = -25, si ha

$$T_2(x;0) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 = -23 - 25x - \frac{25}{2}x^2.$$

c) Dalla (1) si ha $f'(x) = (x^2 - 25)e^x$, che si annulla se e solo se $x^2 - 25 = 0$, ovvero se e solo se $x = \pm 5$. Studiando il segno di f'(x) si ha il seguente schema:

da cui si deduce che x=-5 è un punto di massimo relativo, mentre x=5 è di minimo relativo.

d) Dallo studio del segno della derivata prima, si ha che x=4 è di massimo relativo (dato che f'(4) < 0); che x=5 è di minimo relativo (come già sapevamo); che x=6 è di massimo relativo (dato che f'(6) > 0).

Si ha poi

$$f(4) = -15 e^4$$
, $f(5) = -8 e^5$, $f(6) = e^6$.

Osservando che la funzione f(x) è decrescente in [4,5], si ha f(4) > f(5), e quindi

$$\max(\{f(x)\,,\;x\in[4,6]\})=f(6)=\mathrm{e}^6\,,\qquad \min(\{f(x)\,,\;x\in[4,6]\})=f(5)=-8\,\mathrm{e}^5\,.$$