Applications linéaires

1 Applications linéaires

1.1 Proportionnalité

Exercice 1 (Dilution) Quelle quantité d'alcool à 70° dois-je mette dans 1L l'alcool a 90° pour diluer 75°?

1.2 Calcul matriciel

Exercice 2 (Des calculs de produits) Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$$

Exercice 3 (Commutant) Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 4 (Annulateur) On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Calculer AB, AC. Que constate-t-on? La matrice A peut-elle être

inversible? Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$ telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice 5 (Produit non commutatif) Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice 6 (Matrices stochastiques en petite taille) On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si la somme des coefficients sur chaque colonne de A est égale à 1. Démontrer que le produit de deux matrices stochastiques est une matrice stochastique si n = 2. Reprendre la question si $n \leq 1$.

Exercice 7 (Puissance *n*-ième, par récurrence) Calculer la puissance *n*-ième des matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

Exercice 8 (Puissance *n*-ième - avec la formule du binôme) Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 9 (Puissance *n*-ième - avec un polynôme annulateur) 1. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 - 3X + 2$.

2. Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Exercice 10 (Inverser une matrice sans calculs!) 1. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

Montrer que $A^2 = 2I_3 - A$, en déduire que A est inversible et calculer A^{-1} .

- 2. Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$. Calculer $A^3 A$. En déduire que A est inversible puis déterminer A^{-1} .
- 3. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer $A^2 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice 11 (Inverse avec calculs!) Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}.$$

Exercice 12 (Matrice nilpotente) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \ge 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

1.3 Applications linéaires

Exercice 13 (Applications linéaires ou non?) Dire si les applications suivantes sont des applications linéaires :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (x + y, x 2y, 0);$
- $2. \ f: \mathbb{R}^2 \to \mathbb{R}^3, \ (x,y) \mapsto (x+y, x-2y, 1) \, ;$
- 3. $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 y^2;$
- 4. $f: \mathbb{R}[X] \to \mathbb{R}^2, P \mapsto (P(0), P'(1)).$

Exercice 14 (Définie par une base) On considère dans \mathbb{R}^2 les trois vecteurs u=(1,1), v=(2,-1) et w=(1,4).

2

- 1. Démontrer que (u, v) est une base de \mathbb{R}^2 .
- 2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(u) = (2,1), f(v) = (1,-1) et f(w) = (5,a)?

Exercice 15 (Du local au global...) Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que $f^{n_x}(x) = 0$. Montrer qu'il existe un entier n tel que $f^n = 0$.

1.4 Dualité

Exercice 16 (Application linéaire définie sur les matrices) Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

2 Images et noyaux

Exercice 17 (Noyau et image) Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x,y) = (x + y, x - y, x + y).$$

Déterminer le noyau de f, son image. f est-elle injective? surjective?

Exercice 18 (Application linéaire donnée par l'image d'une base) Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(e_1) = -2e_1 + 2e_3$$
, $u(e_2) = 3e_2$, $u(e_3) = -4e_1 + 4e_3$.

- 1. Déterminer une base de ker u. u est-il injectif? peut-il être surjectif? Pourquoi?
- 2. Déterminer une base de Im u. Quel est le rang de u?
- 3. Montrer que $E = \ker u \bigoplus \operatorname{Im} u$.

Exercice 19 (Noyau prescrit?) Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; x = y = z = t\}$. Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 20 (A noyau fixé) Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,0,0) et v=(1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Exercice 21 (Application linéaire à contraintes) Montrer qu'il existe un unique endomorphisme f de \mathbb{R}^4 tel que, si (e_1, e_2, e_3, e_4) désigne la base canonique, alors on a

- 1. $f(e_1) = e_1 e_2 + e_3$ et $f(2e_1 + 3e_4) = e_2$.
- 2. $\ker(f) = \{(x, y, z, t) \in \mathbb{R}^4, \ x + 2y + z = 0 \text{ et } x + 3y t = 0\}.$

Exercice 22 (Espace vectoriel des polynômes de dimension infinie)

1. Montrer que l'application $\phi \mid_{P \mapsto (P(0), P')}^{\mathbb{K}[X]} = \mathbb{K} \times \mathbb{K}[X]$ est un isomorphisme.

2. En déduire que $\mathbb{K}[X]$ est de dimension infinie.

3 Matrices par blocs

Exercice 23 (*, Trace du produit tensoriel de deux matrices) Pour $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_p(\mathbb{R})$, on définit le produit tensoriel de A et B par

$$A \otimes B = \left(\begin{array}{ccc} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \dots & a_{n,n}B \end{array}\right).$$

Quelle est la taille de la matrice $A \otimes B$? Démontrer que $tr(A \otimes B) = tr(A)tr(B)$.

Exercice 24 (**, Matrices de Walsh) La suite de matrices de Walsh, $(W_n)_{n\in\mathbb{N}}$, est définie par :

$$W_0 = (1)$$
 et $\forall n \in \mathbb{N} : W_{n+1} = \begin{pmatrix} W_n & W_n \\ W_n & -W_n \end{pmatrix}$.

Déterminer la taille de W_n et calculer w_n^2 , pour tout $n \in \mathbb{N}$.

Exercice 25 (**, Déterminant d'une matrice triangulaire supérieur par blocs) On définit par blocs une matrice A par $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ où A, B et C sont des matrices carrées de formats respectifs n, p et q avec p+q=n. Montrer que $\det(A)=\det(B)\times\det(C)$.

4 Symétrie et projection

Exercice 26 (Noyau et image) On considère $s \mid \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+2y,-y)$.

- 1. Montrer que s est une symétrie. Préciser ses éléments caractéristiques.
- 2. Démontrer $p = \frac{\text{Id} + s}{2}$ est une projection.

Exercice 27 (Noyau et image) On considère les espaces $F = \{(x, y, z) \in \mathbb{R}^3 | x + 2y + z = 0 \text{ et } 2x + y - z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 | x + y + 2z = 0\}$.

- 1. Déterminer une base de F, puis démontrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2. Soit p la projection sur F parallèlement à G et $(x, y, z) \in \mathbb{R}^3$. Déterminer les coordonnées de p(x, y, z). Déterminer la matrice de p dans la base canonique. Même question avec q la projection sur G parallèlement à F.

Exercice 28 Soit E un espace vectoriel et p, q deux projecteurs de E tels que $p \neq 0, q \neq 0$ et $p \neq q$. Démontrer que (p, q) est une famille libre de $\mathcal{L}(E)$.

Exercice 29 Soient E_1, \ldots, E_n des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_n = E$. On note p_i le projecteur sur E_i parallèlement à $\bigoplus_{j \neq i} E_j$. Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et $p_1 + \cdots + p_n = \operatorname{Id}_E$.