主成分分析简介

- □ Principal Component Analysis (PCA)
- □ 主成分分析(Principal Component
- Analysis, 简称PCA)是一种常用的基于变量
 - 协方差矩阵对信息进行处理、压缩和抽提的
 - 有效方法。

Face representation and recognition methods

eigenfaces

As in face recognition applications the transform axes used in PCA also look like "faces", they are referred to as "eigenfaces"!

PCA is useful for classification

PCA might perform badly in classification

动机

许多系统是多要素的复杂系统,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。

因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?

事实上,这种想法是可以实现的,主分量分析方法就是综合处理这种问题的一种强有力的工具。

主分量分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

申请国外研究生条件

全屏

主成分概念首先由 Karl Parson在1901年首先提出,当时只是对非随机变量来讨论的。1933年Hotelling将这个概念推广到随机变量,作了进一步发展。把从混合信号中求出主分量(能量最大的成份)的方法称为主分量分析(PCA),而次分量(Minor Components, MCs)与主分量(Principal Components, PCs)相对,它是混合信号中能量最小的成分,被认为是不重要的或是噪声有关的信号,把

- □ 主分量分析又称主成分分析,也称为经验正 交函数分解或特征向量分析。
- □ 分析对象:以网格点为空间点(多个变量) 随时间变化的样本。
 - □ 主分量分析与回归分析、差别分析不同,它 是一种分析方法而不是一种预报方法。
 - □ 我们希望可以通过某种线性组合的方法使某个变量或者某些变量的解释方差变得比较大,这些具有较大解释方差的变量就称为主分量。

Principal Components are Computed

PC 1 has the highest possible variance (9.88)

基于PCA算法的人脸识别

- □ PCA方法由于其在降维和特征提取方面的有效性,在人脸识别领域得到了广泛的应用。
- □ PCA方法的基本原理是:利用K-L变换抽取人脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到一组投影系数,通过与各个人脸图像比较进行识别。

□利用特征脸法进行人脸识别的过程由训练阶 段和识别阶段两个阶段组成 □ 其具体步骤如下:

:训练阶段

□ 第一步:假设训练集有200个样本,由灰度图组成,每个样本大小为M*N

□ 写出训练样本矩阵:

$$x = (x_1, x_2, ..., x_{200})^T$$

□ 其中向量x_i为由第i个图像的每一列向量堆叠成一列的MN维列向量,即把矩阵向量化,如下图所示:

□ 如:第i个图像矩阵为

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

□则x_i为

。训练阶段

□ 第二步: 计算平均脸

计算训练图片的平均脸:

$$\Psi = \frac{1}{200} \sum_{i=1}^{i=200} x_i$$

:训练阶段

第三步: 计算差值脸

计算每一张人脸与平均脸的差值

$$d_i = x_i - \Psi, i = 1, 2, ..., 200$$

□ 第四步: 构建协方差矩阵

$$C = \frac{1}{200} \sum_{i=1}^{200} d_i d_i^T = \frac{1}{200} A A^T$$

$$A = (d_1, d_2, ..., d_{200})$$

□ 第五步: 求协方差矩阵的特征值和特征向量, 构造特征脸空间

。训练阶段

- $lacksymbol{\square}$ 求出 A^TA 的特征值 λ_i 及其正交归一化特征向量 $\boldsymbol{\nu}_i$
- □ 根据特征值的贡献率选取前p个最大特征向量 及其对应的特征向量
- □ 贡献率是指选取的特征值的和与占所有特征值的和比,即:

$$\varphi = \frac{\sum_{i=1}^{i=p} \lambda_i}{\sum_{i=1}^{i=200} \lambda_i} \ge a$$

□ 一般取*a* = 99% 即使训练样本在前**p**个特征向量集上的投影有**99%**的能量

求出原协方差矩阵的特征向量

$$u_i(i = 1, 2, ..., p)$$

则"特征脸"空间为:

$$w = (u_1, u_2, ..., u_p)$$

训练阶段: 一个关于各特征向量贡献率的例子

主成分	特征值	贡献率/%	累计贡献率/%
Z ₁	4.661	51.791	51.791
z_2	2.089	23.216	75.007
Z 3	1.043	11.589	86.596
Z ₄	0.507	5.638	92.234
Z ₅	0.315	3.502	95.736
Z ₆	0.193	2.14	97.876
Z ₇	0.114	1.271	99.147
Z 8	0.045 3	0.504	99.65
Z ₉	0.0315	0.35	100
No. of the last of			\ \

。训练阶段

- □ 第六步
 - □ 将每一幅人脸与平均脸的差值脸矢量投影到"特征脸"空间,即

$$\Omega_i = w^T d_i (i = 1, 2, ..., 200)$$

识别: 分类

一般的识别阶段 (确定测试样本与哪一类的训练样本最近,不考虑拒识)

□ 第一步:将待识别的人脸图像 Γ 与平均脸的差值脸投影到特征空间,得到其特征向量表示:

$$\Omega^{\Gamma} = w^{T} (\Gamma - \Psi)$$

- □ 第二步: 将每一训练样本按照第一步的方式进行 投影
- □ 第三步: 找出距离待识别的人脸图像最近的训练 样本,将训练样本的类别作为待识别的人脸图像 的类别

2D-PCA

□ 2D-PCA是在基本PCA算法上的改进,主要不同是协方差矩阵构造方法不同。

山训练阶段复杂度更低

□ 分类正确率很多情况下更高(例如人脸识别问题)

2D-PCA

二二维主分量分析:直接对二维矩阵基础上的主分量分析方法

□ 1设训练样本集合为:

$$\left\{s_{j}^{i} \in R^{m \cdot n}, i = 1, 2, ..., N, J = 1, 2, ..., K\right\}$$

$$\downarrow :$$

i表示第i个人,即类别数,

j表示第i个人的第j幅图像

N表示识别的人数,

K表示每个人包含K幅图像,

M表示样本总数且M=NK

□ 2 计算所有训练样本的平均图像

$$S = \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{K} S_{j}^{i}$$

:训练阶段

□ 3计算样本的协方差矩阵:

$$G = \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{K} \left(S_{j}^{i} - S \right)^{T} \left(S_{j}^{i} - S \right)$$

 \Box 4求出协方差矩阵的特征值,选取其中最大特征值 $u_1...u_p$ 对应的正交特征向量 $X_1...X_p$ 作为投影向量。

用投影矩阵Y的总离散度作为准则函数J(U)来衡量投影空间U的优劣:

$$J(U) = tr(S_u)$$

□ Su是投影矩阵Y的协方差矩阵, $tr(S_u)$ 是 S_u 的迹, 且:

$$S_U = U^T E \{ [x - E(x)]^T [x - E(x)] \} U$$

□选取的特征向量为

$$U = (X_1, X_2, ..., X_p) = \arg\max[J(U)],$$

 $X_i^T X_j = 0; i \neq j; i, j = 1, 2, ..., p$

:训练阶段

5 训练样本 $\{s_j^i, i=1,2,...,N, j=1,2,...,K\}$ 向 $X_1...X_p$ 空间投影得到:

$$Y_j^i = [S_j^i X_i, ..., S_j^i X_p] = [Y_j^i(1), ..., Y_j^i(p)] \in R^{m*p}$$

识别阶段

□ 1测试样本 $W \in R^{m^*n}$ 向 $X_1...X_p$ 空间投影后得到样本W的特征矩阵 Y_t 和主成分分量 $Y_j^i(1),...,Y_j^i(p)$:

$$Y_{t} = [Y_{j}^{i}(1),...,Y_{j}^{i}(p)] = [WX_{1},...,WX_{p}]$$

识别阶段

□ 2根据测试样本投影特征矩阵与所有训练样本投影特征矩阵之间的最小距离来判断测试样本所属的类别。定义如下的距离度量准则:

$$p(Y_{j}^{i}, Y_{t}) = \sum_{n=1}^{p} ||Y_{j}^{i}(n) - Y_{t}(n)||^{2}$$

口 其中 $\|Y_j^i(n) - Y_t(n)\|^2$ 表示两个特征向量之间的欧氏距离。

识别阶段

□ 3 若

$$p(Y_d^q, Y_t) = \min_i \min_j p(Y_j^i, Y_t)$$

则 Y_t 属于第q个人

部分相关参考文献:
1. Yong Xu, David Zhang, Jing-Yu Yang, A feature extraction method for use with bimodal biometrics, Pattern recognition, 43(3) 1106-1115, 2010.
2. Yong Xu, David Zhang, Jian Yang, Jing-Yu Yang, An approach for directly extracting features from matrix data and its application in face recognition, Neurocomputing,71,1857-1865, 2008.
3. Yong Xu, David Zhang, Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme,Opt. Eng. 49, 037002 (2010) doi:10.1117/1.3359514.
4. Yong Xu, Jing-Yu Yang, Zhong Jin, A novel method for Fisher discriminant Analysis. Pattern Recognition, 37 (2), 381-384, 2004