

PHYSICS Chapter 16

2th
SECONDARY

ESTÁTICA I

¿QUÉ ESTUDIA LA ESTÁTICA?

• El equilibrio mecánico de los cuerpos y las fuerzas

¿Qué es el equilibrio mecánico?

Cuando los cuerpos no presentan ninguna forma de aceleración.

EQUILIBRIO DE TRASLACIÓN

Primera condición de equilibrio mecánico

Un cuerpo esta en equilibrio si la suma de todas las fuerzas (fuerza resultante) es nula.

$$\overrightarrow{F_R} = \overrightarrow{ON}$$

En forma práctica:

$$\sum F(\to) = \sum F(\leftarrow) \qquad \sum F(\uparrow) = \sum F(\downarrow)$$

$$\sum F(\uparrow) = \sum F(\downarrow)$$

Si el anillo se encuentra en equilibrio. Determine el módulo de la fuerza F que se muestra.

RESOLUCIÓN

De la primera condición de equilibrio

$$\sum F(\to) = \sum F(\leftarrow)$$

$$20 N + 10 N + F = 80 N$$

 $30 N + F = 80 N$

$$F = 50 N$$

Si el anillo se encuentra en equilibrio, determine el módulo de la fuerza F que se muestra.

RESOLUCIÓN

De la primera condición de equilibrio

$$1^{\circ} \sum F(\to) = \sum F(\leftarrow)$$

$$45 N + F = F_0 \dots (\alpha)$$

$$2^{\circ} \sum F(\uparrow) = \sum F(\downarrow)$$

$$F_0 = 120 N$$

Reemplazando en (α)

$$45 N + F = 120 N$$

$$F = 75 N$$

Se muestra un cilindro de 40 kg de masa sostenido por una cuerda, determine el módulo de la tensión en la cuerda.

$$(g=10 \text{ m/s}^2)$$

RESOLUCIÓN

1° Se realiza el DCL del cilindro.

2° De la primera condición de equilibrio:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_g$$

$$T = m. g$$

$$T = (40kg)(10 \text{ m/s}^2)$$

$$T = 400 N$$

Si la polea es ideal determine el módulo de la tensión en la cuerda (1). $(g=10m/s^2)$

RESOLUCIÓN

Del DCL de la polea:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T_1 = 2T$$
 (α)

Del DCL del bloque:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_g$$
$$T = 40 N$$

Reemplazando en (α)

$$T_1 = 2(40N)$$

 $T_1 = 80 N$

Si el módulo de la tensión de la cuerda (1) es de 80 N, determine el módulo de la tensión de la cuerda (2) y el módulo de la fuerza de gravedad sobre el bloque. Considere que la polea es ideal. $(g=10m/s^2)$

RESOLUCIÓN

Del DCL de la polea ideal:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T_1 = 2T_2$$
$$80N = 2T_2$$

$$T_2 = 40 N$$

Del DCL del bloque:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$2T_2 = F_g$$
$$2(40) = F_g$$

Determine la fuerza que aplica la persona sabiendo que el bloque de 80 kg se encuentra equilibrado. Considere poleas ideales. (g=10m/ s^2)

RESOLUCIÓN

Del DCL del bloque:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_g$$

T = 800N

Del DCL de la polea móvil:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$2T_1 = T$$

$$2T_1 = 800N$$

$$T_1 = 400 N$$

La fuerza que aplica la persona es la misma que la fuerza de tensión T_1

Si las poleas en el sistema que se encuentra en equilibrio son ideales, determine el módulo de la tensión en la cuerda (1). $(g=10m/s^2)$

RESOLUCIÓN

Del DCL del bloque:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_g$$
$$T = 120N$$

Del DCL de la polea (A)

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$2T_2 = T$$
 $2T_2 = 120N$
 $T_2 = 60N$

Del DCL de la polea (B)

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$2T_1 = T_2$$

$$2T_1 = 60N$$

$$T_1 = 30 N$$

8

La polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde que con una cuerda o cable que se hace pasar por el canal para hacer cambiar la dirección del movimiento en máquinas y mecanismos, por ejemplo, por sí sola la persona no podría sostener en el aire a este gran bloque, sin embargo, con este sistema de poleas le es posible. Determine el módulo de la fuerza que ejerce para mantenerlo en equilibrio. Considere poleas ideales. ($q=10m/s^2$)

01

RESOLUCIÓN

Del DCL del bloque:

$$T = F_g$$

$$T = 1200N$$

$$2T_1 = T$$

$$2T_1 = 1200 N$$

$$T_1 = 600 N$$

Del DCL de la polea (B):

$$2T_2 = T_1$$

$$2T_2 = 600 N$$

$$T_2 = 300 N$$

Del DCL de la polea (C):

$$2T_3 = T_2$$

$$2T_3 = 300 N$$

$$T_3 = 150 N$$

La fuerza del joven es la misma que la fuerza de tensión T_3

 $F=T_3=150\,N$

Se agradece su colaboración y participación durante el tiempo de la clase.

