EXHIBIT C

In the matter of

Don Quarles

٧.

United States of America, ex rel. Bureau of Indian Affairs; United States of America, ex rel. Environmental Protection Agency;

Texaco Inc.;

Getty Oil Co.;

Phillips Petroleum Company;

Sun Oil Co.;

Little River Energy Co.;

Yarhola Production Co.;

Spess Oil Company, Inc.; and,

Chambers & Hendrix Oil and Gas, Inc.

Case No. 00-CV-913-E(J)

in the United States District Court for the Northern District of Oklahoma

Supplemental Report

of

J. Berton Fisher, Ph.D., CPG, RPG (TX #0201; MS#0301)
Lithochimeia, Inc.
222 South Kenosha Avenue
Tulsa, Oklahoma 74120
May 30, 2006

Prepared for

The Drummond Law Firm 1500 South Utica Avenue, Suite 400 Tulsa, OK 74104

I. Introduction

This report supplements previous reports filed in this matter. All opinions previously expressed, including their bases, as well as all data and/or documents considered in forming these previously expressed opinions, and all supporting information or other data or documents presented in these prior reports is included in this supplemental report by reference.

Data and other information I have reviewed in forming the opinions expressed in this supplemental report are provided in Section IV of this supplemental report.

II. Bases of Opinions

During the period October 12, 2006 and October 29, 2006 I made an inspection of the Quarles eastern property, the Quarles western property and adjacent areas.

During this inspection, I made visual observations, took photographs, collected samples of soils and, at a limited number of locations, made terrain conductivity surveys.

In addition, I reviewed driller's logs for wells drilled on the Quarles eastern property and the Quarles western property.

The soil samples collected were analyzed for parameters relevant to their contamination by saltwater and/or crude oil.

III. Opinions

My analysis of visual and instrumental observations made, analytical data received, documents I reviewed, my training, my general work experience, and my specific work experience in the analysis of processes used in and waste streams generated by petroleum exploration and production activities, have led me to the following opinions:

Soils on both the Quarles eastern property and Quarles western property and in some areas adjacent to the Quarles eastern property are contaminated by wastes from petroleum production operations, including saltwater and oil.

Fresh groundwater exists within the interval 0-300 feet (bgs) of geologic materials on both the Quarles eastern property and the Quarles western property.

The presence of wastes from petroleum production operations in soils on both the Quarles eastern property and the Quarles western property is a threat to surface waters on, and fresh groundwater beneath, both the Quarles eastern property and the Quarles western property.

I reserve the right to supplement, modify and amend the opinions expressed herein or in prior reports filed in this matter based on the discovery of any new facts or data, or to rebut opinions or evidence provided by other experts in this matter.

Signed:	Date:
John Berton Fisher.	Ph.D., CPG, RPG (TX#0201; MS#0301)

IV. Data and Other Information Considered in Forming the Opinion

EXHIBIT A Quaries Eastern Property and Quaries Western Property Index Maps

EXHIBIT B

Analytical Data Received as of November 7, 2006 for Samples Collected on the Quarles Eastern Property and the Quarles Western Property and Nearby Locations during the Period October 12, 2006 through October 29, 2006

Summary Chemistry

TSS (bbm)	4,092	434	12,573	2,059	5,306	4,811	349	424	1,828	145	537	572	86	515	2,785	2,798	2,330
B (bbm)	0.15	0.05	0.1	0.03	0.17	0.16	0.04	0.03	0.02	0.05	0.04	0.04	0.02	0.05	0.1	0.11	0.05
CI (ppm)	1,899.86	78.36	6,483.00	424.58	2,622.09	2,356.72	22.50	112.82	736.05	20.35	207.93	229,35	12.23	13.83	104.36	1,212.15	951.00
TPH (DRO) (mg/kg)					10,000			8,100			4,900						
ESP (%)	13.1	0.2	29.9	2.2	17.1	17.8	0	4.0	4.6	0	3.5	3.5	O	0	0.4	7.5	8
SAR (%)	11.2	-	90	2.4	14.9	15.7	0.3	<u>-:</u>	4.1	0.4	3.3	e.e.	0.5	0.4	1.1	6.4	6.8
Na (ppm)	844	33	3335	188	1196	1149	6	88	259	o	93	86	2	15	115	465	424
(hs/m)	6,200	658	19,050	3,120	8,040	7,290	419	643	2,770	220	814	866	131	641	3,340	4,240	3,530
Hd	5.9	6.3	7.7	8.3	7.8	7.6	8.1	6.5	8.3	6.5	6.3	5.0	7.0	8.4	6.9	8.1	7.6
Sample	31	32	33	34	35	36	37	43	42	46	44	45	40	41	39	38	15
Description	Drum Well #2A; abandoned well; unplugged; asphaltic cemented soil at wellhead; bare soil on location	Drum Well #1A; flowline junction; evidence of oil release and saltwater release	Drum Well #7; abandoned location; unplugged	Probable salt killed trees	Drum Well #10 (injector) and tank battery; denuded area leading to west from tank battery	Drum Well #10 (injector) and tank battery; denuded area leading to east from tank battery	Unimpacted area off road away from oil and gas activity	Spess well; saltwater release area to west of non- operating well; TPH sample @ wellhead	Spess Pitts "F" 4; composite of altered vegetation area to south of well	Spess Pitts "F" #3; well inoperative, area of vegetation change to south of well ~ 150'X200'	Spess Pitts "F" 2; well inoperative; sample from area of flowline leaks to south of well	Spess Pitts "F" 2; well inoperative; sample from area of flowline leaks to south of well (duplicate sample of 44)	Spess Pitts "F" #1; abandoned well; umpacted background conductivity soil to West and North of well	Spess Pitts "F" #1; abandoned well; sample of soil from pit located to South of well	Spess Pitts #7; sample from area of altered vegetation to south of wellhead	Active well without placard; minor hydrocarbon spill at wellhead; evidence of brine release to west	Spess TR26426 #11; brine spill flowed to north of well; new crushed LS @ well sample from impacted area ~ 100'x20'
Position			N36 24.455 W96 30.820	N36 24,505 W96 30,819	N36 24.510 W96 30.818	N36 24.391 W96 30.827	N36 24,465 W96 30,836		N36 25.849 W96 12.154	3		N36 25.851 W96 12.418	N36 25,957 W96 12,288	N36 25.958 W96 12.156	N36 24.407 W96 30.841	N36 24,460 W96 30,776	N36 24.372 W96 30.888
Location	က	5	8	6	10	10	10	14	16	17	18	18	19	19	25	26	58