Enunciado de entrega

Promoción

Fecha límite de entrega miércoles 31 de Mayo hasta las 14hs.

Los ejercicios deben ejecutarse sobre el cluster de la cátedra. Se deben entregar (por la plataforma IDEAS a Adrian Pousa):

- a) Los archivos .c con el código fuente de cada ejercicio tanto del algoritmo secuencial como del algoritmo paralelo.
- b) Un informe en PDF que describa brevemente la estrategia de paralelización, el análisis de escalabilidad y las conclusiones.

Para poder realizar el análisis de escalabilidad correspondiente, el informe debe incluir la tabla con los tiempos de ejecución, la tabla con el cálculo de speedup y la tabla con el cálculo de eficiencia.

Las tablas deben tener el siguiente formato:

	Tamaño de problema (N)		
Unidades de procesamiento	N _o	N ₁	N ₂
Secuencial	$V(1,N_0)$	$V(1,N_1)$	V(1,N ₂)
Po	$V(P_0,N_0)$	$V(P_0,N_1)$	$V(P_0,N_2)$
P ₁	$V(P_1,N_0)$	$V(P_1,N_1)$	$V(P_1,N_2)$
P ₂	$V(P_2,N_0)$	$V(P_2,N_1)$	$V(P_2,N_2)$

Por convención, sólo deberá tomarse el tiempo de ejecución de procesamiento de datos mas el tiempo de comunicación/sincronización. El tiempo de ejecución NO debe incluir:

- Alocación y liberación de memoria
- Impresión en pantalla (printf)
- Inicialización de estructuras de datos
- Impresión y verificación de resultados

Los algoritmos deben validarse.

Enunciado:

1. Resolver **secuencialmente** y utilizando la técnica por bloques la multiplicación de matrices cuadradas de *NxN*:

$$C = AB$$

Probar para distintos tamaños de bloque en potencias de 2 y determinar cuál es el bloque que maximiza el rendimiento.

2. Utilizar el tamaño de bloque óptimo del ejercicio 1 para resolver, **secuencialmente y en paralelo**, la siguiente ecuación:

$$R = PromP.(P)$$

Donde:

$$P = MaxD.(ABC) + MinA.(DCB)$$

R, P, A, B, C y D son matrices cuadradas de NxN MaxD y MinA son el valor máximo y mínimo de los elementos de las matrices D y A, respectivamente.

PromR es el valor promedio de los valores de P obtenido luego de resolver la ecuación para P.

Pautas de entrega:

- No realizar simplificaciones matemáticas para las ecuaciones.
- El ejercicio 1 y 2 deben probarse para valores de N = 1024, 2048 y 4096.
- El ejercicio 2 deberá resolverse en el modelo de Memoria Compartida (Pthreads y OpenMP) y en el modelo de Memoria Distribuida (MPI).
- En memoria compartida correr para 4 y 8 hilos
- En memoria distribuida correr para:
 - 4 cores: usando 2 máquinas, 2 procesos en cada máquina
 - o 8 cores: usando 2 máquinas, 4 procesos en cada máquina.
 - 16 cores: usando 2 máquinas, 8 procesos en cada máquina