(19)
$$\frac{1}{3} = (3_1, 3_2, ..., 3_n)$$

a) $E((\frac{2}{2} \times_i (3_i - E_{3i}))^2) = E(\frac{2}{2} \times_i \times_j (3_i - E_{3i}) \cdot (3_i - E_{3i})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3j})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i})) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i \times_j E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i E((3_i - E_{3i}) (3_j - E_{3i}) = \frac{2}{3_i} \times_i E((3_i$

(20) 31, 32, ..., 3n meg. ~
$$N(q, 6^2)$$
 $\lambda - \frac{1}{h} \stackrel{?}{\underset{n}{\overset{?}{\stackrel{?}{?}}}}_{n} - uneer mopus parenp.$
 $E \lambda = \frac{1}{h} \stackrel{?}{\underset{n}{\overset{?}{?}}}_{n} E_{3n} = E_{3i} = Q.$
 $D \lambda = \frac{1}{h^2} \stackrel{?}{\underset{n}{\overset{?}{?}}}_{n} D_{3n} = \frac{6^2}{h}$

3 Havier $\lambda \sim N(q, \frac{6^2}{h})$.

Aux 2000 goerarorres nokajart, 10 E(2,2) =0, 07 kigga
будет спедовать, что соv(1x 2;) - E(1x 2;) - E2x E2; - E(2x 2;) =0 и т.к. 7: ишенот порин распр, по они будут педовисиния в
4 T.K. 7: WILLOT respect pacop, so one Sygyr regolucion 6
coboxynteocra.
$E\left(2\kappa 2_{3}\right) = E\left(\frac{2}{2}C\kappa i 3_{i}C_{3t}3_{t}\right) = \frac{2}{i,tz_{i}}C\kappa i C_{3t}E\left(3i3_{t}\right) =$
$= \sum_{i, + z_i} C_{\kappa_i} C_j = 3i \cdot E_{3i} =$
9 9 9 9
Durient orin regaber 6 coboxymerocin
Orkyga culgyer, ro $\beta = \frac{5^2}{n-1} \chi_{n-1}^2 - univer parpegamenue$ × u kbagpar e $n-1$ creneriosa chooogu
a constant constant constant

(23) p	= 0,515	n = 1000	00	m = 5000		
Tax can n	benezes	4 0/				10.000
Tax kap n	- laneaco	4 pe:		copabegu.	warey.	ryag.
$x_i = \frac{m_0}{r_0}$	- h P = -	3				
\np	>(1-P)		-3	12	-3	
P(m = m.)	= 1- 91	×1) = 1 -	$\int \frac{1}{\sqrt{2\pi}}$	e 2 d+=1-	1, 35.10 =	0,9986
			-00			H

24 $P\{|\frac{2n}{n}-\frac{7}{2}| > 0,1\} \leq 0,1$ $E(3i) = \frac{1+2+3+4+5+6}{6} = \frac{7}{2}$ $E_{3i}^2 = \frac{1+4+9+16+25+36}{6} = \frac{7}{2}$ 91 $D_{3i} = \frac{91}{6} - \frac{49}{4} = \frac{70}{24} = \frac{35}{12}$ Ucnausya ujeret pauvryro npegeuvryro reopency:

3n - n E 3i Law

7 ~ N(0,1) $P(|\frac{3n}{n} - \frac{7}{2}| \ge 0, 1) \xrightarrow{n \to \infty} P(|\frac{2}{3}, \frac{3}{n}| \ge 0, 1)$ P(17) > 0,1 (n) < 0,1 $P(|\eta| = \sqrt{\frac{2}{\sqrt{2\pi}}} e^{-\frac{t^2}{2}}$ B creyr pab-ba D3; = 0,15h = 1,643 78926 Orber: n = 790.