UNCLASSIFIED AD NUMBER AD847306 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; NOV 1968. Other requests shall be referred to Army Aberdeen Research and Development Center,

Aberdeen Proving Ground, Maryland. This document contains export-controlled technical

AUTHORITY

USAMC ltr, 31 aug 1971

data.

4D847306

AMSAA

TECHNICAL MEMORANDUM NO. 21

A LINEAR CLOSED LOOP SYSTEM ANALYSIS PROCEDURE
USING LINE PRINTER PLOTS OF
CHARACTERISTIC EQUATION ROOT LOCI

by

Harold H. Burke Robert L. Payne, Jr.

November 1968

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
ARMY MATERIEL SYSTEMS ANALYSIS AGENCY
ABERDEEN PROVING GROUND, MARYLAND

ARMY MATERIEL SYSTEMS ANALYSIS AGENCY TECHNICAL MEMORANDUM NO. 21 NOVEMBER 1968

A LINEAR CLOSED LOOP SYSTEM ANALYSIS PROCEDURE USING LINE PRINTER PLOTS OF CHARACTERISTIC EQUATION ROOT LOCI

> Harold H. Burke Robert L. Payne Jr.

Weapon Systems Division

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland.

RDT&E Project No. 1T523801A098

ABERDEEN PROVING GROUND, MARYLAND

ARMY MATERIEL SYSTEMS ANALYSIS AGENCY

TECHNICAL MEMORANDUM NO. 21

HHBurke/RLPayneJr/pbb Aberdeen Proving Ground, Maryland November 1968

A LINEAR CLOSED LOOP SYSTEM ANALYSIS PROCEDURE USING LINE PRINTER PLOTS OF CHARACTERISTIC EQUATION ROOT LOCI

ABSTRACT

An existing program that determines the root locus of n'th order polynominals has been modified to provide plots of these loci in the complex frequency plane using a standard line printer. A methodology that combines the computational capabilities of this root locus program with a variable scale graphical display of selectable regions of the complex frequency plane is presented. A listing of the Fortran IV source deck of the modified program and two examples are included.

TABLE OF CONTENTS

	. · · · · · · · · · · · · · · · · · · ·	age
	ABSTRACT	3
	LIST OF FIGURES	7
	LIST OF TABLES	9
١	INTRODUCTION	11
11	NATURE OF THE PROBLEM	12
11	GRAPHICAL METHOD	16
١٧	DATA FORMATS	19
٧	EXAMPLES	23
۷۱	CONCLUSIONS	56
	REFERENCES	57
	APPENDIX A-LISTING OF SOURCE DECK	59
	DISTRIBUTION LIST	83

LIST OF FIGURES

		Page
١.	Linear Closed Loop System	12
2.	Example I - Linear Closed Loop Control System Block Diagram	24
3.	Graphical Display, Log Plot, Left Hand Quadrant, Example I	44
4.	Graphical Display, Log Plot, Right Hand Quadrant, Example 1	45
5.	Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example I	46
6.	Graphical Display Linear Expand Plot, Right Hand Quadrant, Example 1	47
7.	Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example 1	48
8.	Graphical Display Linear Expand Plot, Right Hand Quadrant, Example I	49
9.	Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example I	50
10.	Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example I	51
11.	Graphical Display, Log Plot, Left Hand Quadrant, Example 2 .	52
12.	Graphical Display, Log Plot, Right Hand Quadrant, Example 2	53
13.	Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example 2	54
14.	Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example 2	55

LIST OF TABLES

		Page
١.	Input for Example I	25
2.	Mirror of Input, Example I	28-32
3.	Equivalent System Open Loop Polynomials and Roots, Example 1	33
4.	Closed Loop System Polynomials and Roots, Example I	34-40
5.	Tabulation of Open and Closed Loop System Roots, Example I	41-42
6.	Equivalent System Open Loop Polynomials and Roots, Example 2	43

I. INTRODUCTION

The stability of linear closed loop systems is effectively determined through the use of root locus methods (1). For all but the most trivial cases, the polynomial representing the system's characteristic equation is high order. Manual calculation of the roots of this polynomial is laborious and time consuming. A Fortran IV program (2) has been developed to expedite this process. The interpretation of a tabular display even when available is at best cumbersome. The purpose of this memo is to describe the use of a modified version of this basic program which provides selectable scaled graphical displays of the root loci as part of the tabular output.

Main features of the modified program are:

- I. Programmed in Fortran IV. No machine oriented or object language.
 - 2. No complex arithmetic.
 - 3. No special graphical plotting equipment necessary.
 - 4. Order of polynomial may be up to 100.
 - 5. Number of variations of coefficient may be up to 100.

Main features of the graphical display are:

- I. Log plot of third and fourth quadrants of complex frequency plane from 0 to 10,000 radians/second.
- 2. Linear plots of selected regions of the third and fourth quadrants of the complex frequency plane with arbitrary scales.

II. NATURE OF THE PROBLEM

Regardless of the complexity of a closed loop system its transfer function can be reduced to the equivalent form shown in Figure 1. For multiple loop systems, the G's and H's are readily expressed as sums of products of polynomials which are identified with individual elements making up the complete system.

Figure 1. Linear Closed Loop System

where: R(S) = System Input

C(S) = System Output

B(S) = System Feedback

E(S) = System Error

 K_p = Process Gain

 K_c = Controller Gain

The fractions $G_1(S)/G_2(S)$ and $H_1(S)/H_2(S)$ are equivalent transfer functions of the system and are represented by ratios of polynomials which upon expansion can be put in the form

$$\frac{s^{n} + a_{1}s^{n-1} + a_{2}s^{n-2} + \dots + a_{n}}{s^{m+n} + b_{1}s^{m+n-1} + b_{2}s^{m+n-2} + b_{m+n}} = \sum_{u=0}^{n} a_{u} s^{n-u}$$

$$= \sum_{u=0}^{n} a_{u} s^{n-u}$$

$$= \sum_{m\neq n} b_{i} s^{m+n-1}$$

$$= \sum_{i=0}^{n} b_{i} s^{m+n-1}$$

$$= \sum_{i=0}^{n} b_{i} s^{m+n-1}$$

or in factored form

$$\frac{\pi}{u=1} \frac{(S+Z_u)}{u=1}$$

$$\frac{m+n}{\pi} \frac{(S+p_i)}{i=1}$$
(2)

where the a's and b's are real, the poles and zeros (- p_i and - Z_u) can be either real or complex in conjugate pairs and m \geq 1.

The linear closed loop system transfer function is

$$\frac{C(S)}{R(S)} = \frac{K_p G_1(S) H_2(S)}{K_C K_p G_1(S) H_1(S) + G_2(S) H_2(S)}$$
(3)

The linear closed loop system's characteristic equation which determines the roots of the transfer function's denominator is

$$K_C K_p G_1(S) H_1(S) + G_2(S) H_2(S) = 0.$$
 (4)

If we let
$$K_C K_p = + K^*$$

$$G_1(S) H_1(S) = A(S)$$

$$G_2(S) H_2(S) = B(S)$$
(5)

then equation (4) can be written as

$$K^*A(S) + B(S) = 0 \tag{6}$$

and the linear closed loop system transfer function is

$$\frac{C(S)}{R(S)} = \frac{K_p G_1(S) H_2(S)}{K*A(S) + B(S)}$$
(7)

The transfer function for a unit step in R(S) becomes

$$C(S) = K_{p} \frac{n}{\pi} (S + Z_{u})$$

$$\frac{u=1}{S \pi (S + P_{i})}$$

$$i=1$$
(8)

and the time response of the output, c(t) to the unit step is given by

$$c(\dagger) = L^{-1}[C(S)] \tag{9}$$

where L⁻¹() indicates the inverse Laplace transform

Expressing equation (8) in partial fraction form we have

$$C(S) = \frac{K_0}{S} + \sum_{i=1}^{m+n} \frac{K_i}{(S+p_i)}$$
 (10)

where K_{o} and K_{i} are the residues at the respective poles of C(S).

Specifically

$$K_{o} = K_{p} \frac{\pi}{u=1} (Z_{u})$$

$$\frac{m+n}{\pi} (p_{i})$$

$$i=1$$
(11)

$$K_{\ell} = \frac{\left[K_{p} \frac{\pi}{\pi} \left(S + Z_{u}\right)\right]}{u=1}$$

$$\left[S \frac{\pi}{i=1} \left(S + p_{i}\right)\right]$$

$$i \neq \ell$$

$$(12)$$

The inverse transform of (10) is therefore

$$c(t) = K_0 + \sum_{i=1}^{m+n} K_i e^{p_i t}$$
 (13)

If a pole p_ℓ is complex, its corresponding residue, K_ℓ , is also complex. In this case there also exists a term of the form $K = e^{p\ell t}$ where the bar denotes complex conjugate.

We then have

$$(K_{\ell} e^{\rho_{\ell} t} + \overline{K}_{\ell} e^{\overline{\rho}_{\ell} t}) = 2|K_{\ell}|e^{\sigma_{\ell} t} \cos(w_{\ell} t + \phi_{\ell})$$
(14)

where:

$$\begin{aligned}
p_{\ell} &= \sigma_{\ell} + j w_{\ell} \\
\overline{p}_{\ell} &= \sigma_{\ell} - j w_{\ell} \\
\phi_{\ell} &= tan^{-1} \frac{w_{\ell}}{\sigma_{\ell}}
\end{aligned} \tag{15}$$

Thus if j poles are real and m+n-j poles are complex we arrive at the complete time solution for c(t)

$$c(t) = K_{O} + \sum_{i=1}^{j} K_{i} e^{p_{i}t} + \sum_{\ell=j+1}^{K} 2|K_{\ell}| e^{\sigma_{\ell}t} cos(w_{\ell}t + \phi_{\ell})$$
 (16)

where

$$K = \underline{m + n - j}$$

As the value of K* is varied, the roots of the system's characteristic equation change. Since $-\frac{1}{p_i}$ is the time constant for a single pole and $-\sigma_\ell$ is the damping coefficient associated with the frequency w_ℓ , we can see that the locus of p_i and p_ℓ in the complex plane, as K* varies, gives an indication of the stability of the system.

Although the stability of the system for a unit step function is generally adequate the response of the system F(t) to an arbitrary input R(t) can be found by the Duhame; integral

$$F(t) = \int_{0}^{t} R(u) c(t-u) du$$
 (17)

where c(t) is of the form given in equations (13) and (15). A locus of roots as K* varies from K* to K* is called the root locus of the system. From (6) it is seen that when K is not present (no closed loop system), K*=0 and the roots of the characteristic equation are the roots of B(S). When K is present (closed loop system) and the value of K approaches infinity, K* also approaches infinity. The roots of the characteristic equation are the roots of A(S).

III. GRAPHICAL METHOD

The root loci of the system are the trajectories of the roots of equation (6) in the complex plane as K* varies from 0 to ∞ . It will be recalled that since the coefficients of the characteristic equation are real the complex roots appear in conjugate pairs and the loci are symmetric about the σ axis. Hence investigation of the half plane reveals the nature of the entire set of loci. In our plots of the loci, we choose to display only the lower half on the complex frequency plane, i.e., the third and fourth quadrants which make up the left and right hand quadrants respectively. We include two options (1) a log plot and (2) an expanded scale linear plot.

In the log plot separate plots are made of the left and right hand quadrants. Each is partitioned into decades ranging from 0.01 rad/sec 10,000 rad/sec. Figures 3 and 4 show the actual log plots for example 1, to be described later. Figures 5 and 6 show two actual linear expands for example 1, to be described later.

Detailed plotting accuracy is of no concern on the log plots.

Selection of the proper scale will provide the desired accuracy on the linear expand plots. The left hand quadrant coordinates are minus sigma and j-omega. The right hand quadrant coordinates are plus sigma and j-omega. The dimensions of the coordinates in the complex frequency plane are radians/second.

Three different symbols are shown in the complex frequency plane log plot. The definition of these are

- * Roots of B(S)
- O Roots of A(S)
- Roots of K*A(S) + B(S)

Dependent on the proximity of any of the above roots priority is given to plotting first the roots A(S) then the roots of B(S) and finally the roots of K*A(S) + B(S). For all real roots which are located on the plus sigma or minus sigma axis, the roots of A(S) appear on the sigma axis. Any other root that may occur within the stepping increment of a root of A(S) i.e., other roots of A(S), B(S) or K*A(S) + B(S) will appear to the right. The same priority of graphical printout is maintained for the complex roots.

Rewriting (6) gives

$$K*A(S) + B(S) = 0$$
 (6)

Dividing (6) by B(S) and rearranging gives

where -K*A(S) = open loop transfer function of equivalent system [TF]_{oL}

The algebraic sign of the ratio of the lowest powered terms of open loop transfer function, $\underline{A(S)}$ will determine the regions on the \pm sigma axis where the roots of $K*\underline{A(S)}$ are located. For a positive $\underline{A(S)}$ /B(S) the roots of I-[TF] open loop = 0 are located on the zero

angle locus $^{(3)}$ and extend from + infinity on the positive sigma axis to the largest positive root of A(S) or B(S). From this most positive real root the locus of roots are located in the even numbered intervals between the roots of A(S) and B(S) to minus infinity on the sigma axis. For a A(S)/B(S) the roots of K*A(S)+B(S) = 0 are located on the 180° angle locus and extend from the largest positive root of A(S) or B(S) on the Sigma axis leftward to the adjacent root and in the odd numbered intervals between the roots of A(S) and B(S) to minus infinity on the sigma axis.

Inspection of the log plot shown in Figures 3 and 4 demonstrate the real locus for a positive $\frac{A(S)}{B(S)}$, while Figures 5 and 6 demonstrate the real locus for a negative $\frac{B(S)}{A(S)}$. When applying this method a $\frac{B(S)}{B(S)}$

pencilled line parallel to the sigma axis to designate these closed loop root trajectories on the real axis is suggested.

The precise location of these roots is given in the numerically tabulated output. A detailed discussion of the complete input and output will be later. Mention is made here only to indicate that close continuity exists between the numerical and graphical output.

Regions of interest on the complex plane are obvious from the log plots. In order to study segments of the root loci more closely a linear expand plot of the complex frequency plane is used. Similar to the log plot, only one quadrant of the right and left hand planes are shown. The scaling of the linear expand plots is completely arbitrary. The regions of interest are determined from inspection of the log plots. As many regions as desired can be expanded. Figures 5 and 6 are one such linear expand on a specific region of the complex frequency plane.

IV. DATA FORMATS

A. Polynomial Multiplication and Root Locus Method

1. General Description.

- a. Computes the numerator polynomial A, where A is the sum of the products of several sets of polynomials. Each set contains a variable number of polynomials and a variable number of sets form the sum.
- b. Computes the denominator polynomial B, where B is the sum of the products of several sets of polynomials.
 - c. Computes the roots of A.
 - d. Computes the roots of B.
- e. Computes the polynomial K * A + B, where K*varies from K initial to K terminate in increments of Δ K, or particular values of K*may be chosen.
 - f. Computes the roots of the K * A + B polynomials.

2. Input.

ā. b.	Description Identification Control card (Integers)	Columns 1 - 80 1 - 10	Data Identification of run O for & K N for number of input particular values of K
		11 - 20	Number of polynomial groups to be added in A(s)
		21 - 30	Number of polynomial groups to be added in B(s)
		31 - 40	Problem number
C.	If Δk is used		
		1 - 10	K initial
		11 - 20	ΔΚ

2. Input. (Cont.)

Description	Columns	Data
cl. If Ak is used		
	21 - 30	K terminate
c2. if specific values of	K are used,	
	1 - 10	ĸ
	11 - 20	к ₂
	21 - 30	к ₃
	0	
	0	
	0	
	0	
	0	K _N
	(seven values	per card)
d. Numerator group count (Integers)		
	1 - 10	Number of polynomials in group 1 of . numerator
	11 - 20	Number of polynomials in group 2 of numerator
	0	
	0	
	0	
	Etc.	
	(seven values	per card)

2. Input (Cont.)

	Description	Columns	Data
e.	Denominator group count (integers)		
		-1 - 10	Number of polynomials in group I of denominator
		11 - 20	Number of polynomials in group 2 of denominator
		0	
		0	
		0	
		Etc. (seven va	ilues per card)

f. Polynomials. Seven values per card, with each polynomial starting on a new card. The first value of each polynomial is an interger, with the coefficients in ascending order in floating point:

Load in polynomials in the order in which they appear in the fraction, with the numerator polynomials first.

3. Output.

The output consists of:

- a. Value of K* initial, increment K*, value of K* terminate.
- b. Number of polynomial groups added in A(S).
- c. Number of polynomial groups added in B(S).
- d. Number of polynomials in each group of A(S).
- e. Number of polynomials in each group of B(S).
- f. Coefficients of polynomials in each group of A(S) and B(S).

3. Output (Cont.)

- g. The degree, coefficients and roots of A.
- h. The degree, coefficients and roots of B.
- The degree, coefficients, roots, value of K* for each K* A + B polynomial.

4. Special Considerations.

- a. The maximum order of A or B is 100.
- b. The maximum number of specific values of K is 100.

B. Root Locus Plot Subroutine

I. <u>General Description</u>. This is a subroutine designed to work with the basic polynomial multiplication and root locus program. This subroutine takes the roots of K*A + B calculated by the polynomial root locus program and plots them on the complex frequency plane with the following options:

Log plots of the third and fourth quadrants of the complex frequency plane from 0 to 10,000 rad/sec. Linear expand plots of the third and fourth quadrants of the complex frequency plane with selectable scale. The linear expand plots supplement the log plot. The region covered by any one linear expand plot can be designated by the analyst through the use of data cards. The sigma dimensions are determined by choosing a certain point in either the third or fourth quadrant and picking a percentage of this point to be the distance represented on the sigma axis. (See linear expand output of example). The J-omega dimensions are determined by choosing a certain point on the J-omega axis and picking a percentage of this point to be the distance represented on the J-omega axis.

2. Input.

Description	Co I umns	Data
Control Card Used	1	0 (zero) integer
to call the log	11	0 (zero) integer
plot subroutine	21	0 (zero) integer
	31 - 35	10000(ten Thousand) integer
Control Cards Used		
to call the expand		
option		
Number of Expands Desired	1 - 10	integer
For each linear	1 - 10	J-omega specific Real
Expand, data appears	11 - 20	J-omega percent Real
on one card	21 - 30	Sigma specific Real
	31 - 40	Sigma percent Real

Note: There must be as many data cards as there are number of expands desired.

3. Output.

Depending on the options specified the output consists of:

- a. A list of all of the roots plotted on the log plot.
- b. Two log plots of the roots calculated by the polynomial multiplication and root locus program.
- c. The specified number of linear expand plots of selectable regions in the complex frequency plane.

V. EXAMPLES

Two examples of the use of the techniques described above will be considered. The first is the realization of a typical control system and will be discussed in some detail. The second is included simply to indicate the results for a fairly large order system.

Example 1.

A typical control system is shown in Figure 2.

0.95

0.081 $\frac{464(S + 2.7)}{S^2 + 6S + 400}$ $\frac{-2092(S^2 + 1.2S - 1672)}{S^2 + 6S + 400}$ $\frac{C}{S^2 + 6S + 400}$

The equivalent form of Figure 2 is shown in Figure 1 where $G_1(S)$ $H_1(S)$ = A(S) and $G_2(S)$ $H_2(S)$ = B(S) and K^* = K_pK_c .

The characteristic equation for the system shown in Figure 2 is

3.2 S + 25,600

$$-K*[2092(S^2+1.2S-1672)(S^2+3.2S+25,600) + 491.5S^2(S^2+6S+400)]$$

$$+(0.081)(464)(S+2.7)(S^2+3.2S + 25,600)S$$

$$(0.95)$$
 (464) (S + 2.7) (S² + 3.2S + 25,600)

$$+s(3^2 + 6s + 400) (s^2 + 3.2s + 25,600) = 0$$

Table I shows the input card format for this characteristic equation. Lines I through 20 apply to the polynomial multiplication and root locus method and lines 21 through 28 apply to the root locus plot subroutine.

		Table I. Input	for Example	I
0	2	3	. 331	
0.0	0.01	0.3	331	
3	2			
4	4	3		
3	25600.	3.2	1.	
3	-1672.	1.2	1.	
1	-2092.		•	
3	0.	0.	-491.5	N N
3	400.	6.	1.	CAT I
i	.081		••	7 L C
2	Ο.	464.		MULTIPLICATION LOCUS PROGRAM
2	2.7	1.		
3	25600.	3.2	1.	AL XOT
1	.95		••	POLYNOMIAL AND ROOT
1	464.			ANE
2	2.7	r.		چ
3	25600.	3.2	1.	
2	0.	1.	. •	
3	400.	6.	1.	
3	25600.	3.2	1.	
			•	
0	0	0	10000	
6		J	10000	
100.	100.	-50.	100.	¥
100.	100.	100.	100.	SUS
50.	100.	-50.		
50.	100.	50.	100. 100.	ROOT LOCUS PLOT SUBROUTINE
50.	20.	-5.	100.	7. 1.01
50.	20.	5.	100.	LL.
		- ·	100.	

The tabulated numerical output is shown in Tables 2 through 5. Table 2 mirrors the number of inputs values of K*, $(0 \equiv \Delta K \text{ increment}, N \equiv \text{ number of particular input values of K*})$, the number polynomial groups added in A(S) and B(S), the problem number, K* initial, increment K*, K* terminate, the number of polynomial in each group of A(S) and B(S), and the coefficients of each of these polynomials proceeding from the left most term in the numerator to the final term in the denominator. Each polynomial group appears on a separate sheet. Table 3 defines the equivalent open loop A(S) and B(S) in single polynomial and root form. Table 4 defines K* A(S) + B(S) in polynomial and root form for values of K* between K* initial and K* terminate. Table 5 is a tabulation of K* A(S) + B(S) roots which are to be plotted.

Figures 3 and 4 are the log plots for Example 1. The net sign for the lowest order coefficients is positive as seen in Table 4, hence the zero degree locus is plotted. The roots of A(S) and B(S) are

A(S)
39.918653
-41.162138
-1.7304538 ± j 145.22688

B(S)
-1.3440477
-1.60000000 ± j 159.99200

-21.119976 + j 20.963084

The locus of the K* A(S) + B(S) roots on the sigma axis as K* varys from 0 to 0.3 in increments of 0.010 may be determined by inspection. It appears to the right of 39.918653 and between -1.3440477 and -41.162138. The complex locus has two branches. One branch comes from the complex pair at $-21.119976 \pm j 20.963084$ and the other from the complex pair at $-1.60000000 \pm j 159.99200$.

For K* gains between 0 and 0.3 these two branches lie in the third and fourth quadrants. Inspection of this log plot in conjunction with the open loop roots of A(S) and B(S) given in Table 4 provides insight

into the regions of the complex plane where an expanded scale plot of the root locus is required. The region bounded by $-100.<\sigma<$ 200 and 0<w< 200 is shown in Figures 5 and 6. The locus between sigma equal to -41.162138 and-1.3440477 is shown in detail. The locus between sigma equal to $-21.119976 \pm j$ 20.963084 and the positive sigma axis roots + 39.918653 and plus infinity is shown in detail. The locus in the 100 - 1000 rad/second j-omega decade is shown in a compressed form in this plot. Figures 7 and 8 are another set of expanded scale plots of the region bounded by -100 <o<100 and 0<w100. This scale provides more sensitivity to that portion of the locus which progresses from -21.119976 + 20.963084 to the positive sigma axis. The locus in the 100-1000 rad/ sec j-omega decade is not shown. Figures 9 and 10 are expanded scale plots in the region bounded by -10 < o < 10 and 20 < w < 180. The roots of A(S) and B(S) are in the third (left hand) quadrant while the roots of K*A(S) + B(S) are in the fourth (right hand) quadrant. The migration of these roots as K* is varied is an indication of the requirement for this expanded scale plot of the complex frequency plane.

Example 2

Table 6 is the tabulated numerical output for a more complex multiloop system whose characteristic equation is of 24'th order Figures II and I2 are log plots. The off axis printing on the sigma axis is shown. The net sign of the lowest order coefficients of A(S)/B(S) is negative, hence the 180° locus is plotted. Inspection shows that the locus is between +0.0040482270 and -0.046149160 and then between each alternate root of A(S) or B(S) on the sigma axis. Inspection of Figures II and I2 indicates that several regions of the complex frequency plane are of interest. One such region is the region bounded by -16.0 < σ < 16.0 and 25. < σ < 175. which is shown in Figures I3 and I4.

TABLE 2

	331	
PROBLEK NO. 331	3 PROB.NO.	• 300000000
Mirror of Input, Example 1.	2 POLY.ADDED IN B(S)=	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
POLYNOMIAL MULTIPLICATION AND ROOT LOCUS	DELTAK= 0 POLY.ADDED IN A(S)=	K-INITIAL=CO00000000 INCREMENT K= NUMBER UF POLY. IN GROUP 1 OF NUMERATOR= NUMBER OF POLY. IN GROUP 2 OF NUMERATOR= NUMBER OF POLY. IN GROUP 2 OF DENOMINATOR= NUMBER OF POLY. IN GROUP 3 OF DENOMINATOR= C(1)= 25600,0000000000 C(2)= 3.20000000000 C(3)= 1.00000000000 C(3)= -1672,0000000000 C(3)= -2092,0000000000000000000000000000000000

TABLE 2
Mirror of Input, Example I. (Contd)

(1)= .00000000000 (2)= .00000000000 (1)= .491.5000000000 (2)= .6.0000000000 (3)= 1.00000000000

TABLE 2

Mirror of Input, Example 1. (Contd)

. 081000000	. 0000000000	464.00000000000	2. 7000000000	1.0000000000	25600,0000000000	3.2000000000	1.0000000000
= = =	=======================================	2)=	1)=	21=	11=	2)=	3)=
<u>.</u>	ŭ	<u>.</u>	ວ)	J	3	3

TABLE 2
Mirror of Input, Example 1. (Contd)

TABLE 2

Mirror of Input, Example 1. (Contd)

. 0000000000 1. 0000000000 6. 0000000000 1. 0000000000 3. 2000000000 1. 0000000000

3333333

TABLE 3 Equivalent System Open Loop Polynomials and Roots, Example 1.

COEFFICIENTS ARE GIVEN IN ASCENDING URDER

	+1 -1.4522688E 02	1.0000000E 00	+1 -2.0963084E 01
03	00	10	10
-2.5835000E 03	-1.7304538E 00	4.6784000E 01	-2.1119976E 01
40	00		01
-1.2153800E 04	+1 0.0000000E 00	2.6681746E 04	+1 2.0963084E 01 +1 -1.5999200E 02
	7		77
01	10	90	00
THE COEFFICIENTS OF POLYNOMIAL A (ORDER = 4) 544294E 10 -5.3073203E 07 -5.0262009E	-4.1162138E 0	THE COEFFICIENTS OF POLYNOMIAL B (ORDER = 5) 468096E 07 2.4126095E 07 1.1199558E	-2.1119976E 0 -1.6000000E 0
IAL 07	00	1AL 07	00
S OF POLYNOMIAL -5.3073203E 07	0.0000000E 00 1.4522688E 02	OF POLYNOMIAL 2.4126095E 07	0.0000000E 00 1.5999200E 02
ENTS	¥ 7 7	ENTS	#
THE COEFFICE 8.9544294E 10	3.9918653E 01 +-1.7304538E 00 +	THE COEFFICE 3.0468096E 07	THE ROOTS OF 8 -1.3440477E 00 +1 -1.6000000E 00 +1

TABLE 4
Closed Loop System Polynomials and Roots, Example 1.
POLYNOMIAL MULTIPLICATION AND ROOT LOCUS

1.0000000 00	9976E 01 + 1 -2.0963084E 01	1.0000000 00	1403E 01 + 1 0.0000000E 00	1.0000000E 00	.826E 01 + 1 -4.2304285E 01	1000E 01 1.0000000E 00	1727E 01 + 1 4.6851801E 01	\$000E 01 1.000000E 00	2012E 01 + 1 -4.3733260E 01
0 4.6 784000E	-2.1119976E	2 2.0949000E	-3.0798403E	2 -4.8860000E	1.6364826E	2 -3.0721000E	2.7830727E	2 -5.6556000E	3.9472012E
K*A + B (ORDER = 5) K = 0.0000000E 00 1.1199558E 06 2.6681746E 04	-2.1119976E 01 + 1 2.0963084E 01 -1.6000000E 00 + 1 -1.5999200E 02	K*A + B (ORDER = 5) K = 1.0000000E-02 6.1733575E 05 2.6560208E 04	4.0494673E 00 + I -3.3975966E 01 8.7523407E-01 + I -1.6024308E 02	K*A + B (ORDER = 5) K = 2.0000000E-02 1.1471566E 05 2.6438670E 04	1.6364826E 01 + 1 4.2304285E 01 3.4158963E 00 + 1 -1.5974276E 02	K*A + B (ORDER = 51 K = 3.0000000E-02 -3.8790443E 05 2.6317132E 04	2.7830727E 01 + 1 -4.6851801E 01 5.7166419E 00 + 1 1.5848945E 02	K*A + B (ORDER = 5) K = 4.0000000E-02 -8.9052453E 05 2.6195594E 04	3.9472012E 01 + 1 4.8733260E 01 7.4820644E 00 + 1 -1.5663009E 02
OF POLYNOMIAL 2.4126095E 07	0.0000000E 00 1.5999200E 02	OF POLYNOMIAL 2.3595363E 07	3.3975966E 01 1.6024308E 02	OF POLYNOMIAL 2.3064631E 07	0.0000000E 00 1.5974276E 02	OF POLYNOMIAL 2.2533898E 07	0.0000000E 00 -1.5848945E 02	OF POLYNOMIAL 2.2003166E 07	0.0000000E 00 1.5663009E 02
THE COEFFICIENTS 3.0468096E 07	R00TS OF K*A + B -1.3440477E 00 + I -1.6000000E 00 + I	THE COEFFICIENTS 9.2591104E 08	R00TS OF K+A + B 4.0494673E 00 + I 8.7523407E-01 + I	THE COEFFICIENTS 1.8213540E 09	3.4158963E 00 + I	THE COEFFICIENTS 2.7167969E 09	-3.6373738E 01 + 1 5.7166419E 00 + 1	THE COEFFICIENTS 3.6122399E 09	R00TS OF K+A + B -3.7352153E 01 + I 7.4820644E 00 + I

331 Closed Loop System Polynomials and Roots, Example 1. (Contd.) POLYNOMIAL MULTIPLICATION AND ROOT LOCUS TABLE 4

01 1.0000000E 00	01 + 1 -4.7830316E 01	02 1. U000000E 00	01 + I -4.3289137E 01	02 1.000000E UO	01 + 1 -3.2945263E 01	02 1.000000E 00	C1 + 1 U.000000E 00	05 1.000000E 00	00 + 1 -1.4798418E 02
-8.2391000E	5.1675266E	-1.0822600E	9081515999	-1.34061006	7.7857764E	-1.59896006	8-1558877E	-1.85731006	1.3285547E
K*A + B (ORDER = 5) K = 5.0000000E-02 -1.3931446E 06 2.6074056E 04	5.1675266E 01 + 1 4.7830316E 01 8.5170010E 00 + 1 1.5445648E 02	K*A + B (ORDER = 5) * 6.000000E-02 -1.8957647E 06 2.5952518E 04	6.4519180E 01 + 1 4.3289137E 01 8.8178250E 00 + 1 1.5232117E 02	K*A + B (ORDER = 5) K = 7.0000000E-02 -2.3483848E 06 2.5830980E 04	7.7857764E 01 + 1 3.2945263E 01 8.5664744E 00 + 1 1.5048875E 02	K*A + B (ORDER = 5) K = 8.0000000E-02 -2.9010049E 06 2.5709442E 04	1.0137499E 02 + 1 0.0000000E 00 8.0065400E 00 + 1 -1.4905381E 02	K*A + B (ORDER = 5) K = 9.0000000E-02 -3.4036250E 06 2.5587904E 04	6.4244210E 01 + 1 0.00C0000E 00 1.4609118E 02 + 1 C.0CC0000E 00
THE COEFFICIENTS OF POLYNOMIAL 4.5076828E 09 2.1472434E 07	R00TS OF K*A + B -3.7993535E 01 + 1 0.0000000E 00 8.5170010E 00 + I -1.5445648E 02	THE COEFFICIENTS OF POLYNOMIAL 5.4031258E 09 2.0941702E 07	ROOTS OF K*A + B -3.8448009E 01 + I 0.0000000E 00 8.8178250E 00 + I -1.5232117E 02	THE COEFFICIENTS OF POLYNOMIAL 6.2985687E 09 2.0410970E 07	ROOTS OF K#A + B -3.8787478E 01 + 1 0.0000000E 00 8.5664744E 00 + 1 -1.5048875E 02	THE COEFFICIENTS OF POLYNOMIAL 7.1940116E 09 1.9880238E 07	RUOTS OF K*A + B -3.9050349E 01 + 1 0.0000000E 00 8.0065400E 00 + 1 1.4905381E 02	THE COEFFICIENTS OF POLYNOMIAL 8.0894546E 09 1.9349506E 07	R00TS OF K*A + B -3.9261499E 01 + I 0.0000000E 00 7.3285547E 00 + I 1.4798418E 02

Closed Loop System Polynomials and Roots, Example 1. (Contd.)
POLYNOMIAL MULTIPLICATION AND ROOT LOCUS TABLE 4

00	. 02	00	05	00	05	00	05	00	20
1.0000000	I -1.4720164E	1.00000006	I -1.4662976E	1.0000000	I -1.4620872E	1.00000006	1 -1.4589537E	1.0000000	I -1.4565346E
ο.	•	~	•	A 1	•	2 1	•	2 1	•
E 02	e 90	E 02	E 00	E 02	E 00	E 02	E 00	E 02	E 00
-2.1156600E	6.6421054E	-2.3740100E	5.9977661E	-2.6323600E	5.4135301E	-2,39071006	4.8919037E	-3.1490600E	4.4288H33E
10-:		10-		10-		10-		10-	
9000	88	000	88	9000	000	000	000	0006	00
1.0000000E-01 66366F 04	000E	1.1000000E-01	000E	1.200000E-01 23290E 04	000E	1.3000000E-01 01752E 04	300E	1.4000000E-01 80214E 04	300E
1.0000	0.0000000E	1.1000 2.5344828E	0.000000E	1.2000 .5223290E	0.0000000000000000000000000000000000000	1. 3000 .5101752E	0.0000000E	1°4000 4980214E	C.00C0U00E
2.9	00	2.5	000	2.5	0.0	2.5	0.0	* ~ ~	000
*		¥		¥		×		×	
2,	- ~	6.5	- 2	۶ م	- ~	5 9	7 7	5 3	- ~
# H	1E 01	E 06	16 01 16 02	m	E 21	и м 90	E 01	ية » 9	E 01
DER 2451	5.8581243E 1.7913423E	B (ORDER	5.5277448E 2.0970517E	B (ORDER -4.9114853	5.3041355E 2.3906614E	R (ORDER -5.4141054	5.1405678	B (ORDER -5.9167255	5.0148663E 2.9579242E
B (ORDER -3.906245	191	108	527	CORDER, 911485	304	10RDER	140	B (ORDER	957
÷ 6	×	E +	8 8	60 4	2.5	* * *	% %	# 4°	2.
¥ •		¥ * ¥		*		KeA		X • A	
IAL 07	00	IAL 07	00	IAL 07	00	IAL 07	00	IAL 07	00
OF POLYNOMIAL 1.8818774E 07	00E	OF POLYNOMIAL	100E	OF POLYNOMIAL	100E	OF POLYNOMIAL 1.7226578E 07	37E	POLYNOMIAL	00E
POLY 8187	0.0000000E	2880	0.0000000E	20LY	0.0000000E 1.4620872E	20CY	0.0000000E	OF POLYNOM 1.6695846E	0.0000000E
0F 1	0.0	0F .	0.0	1.7	0 0 0	0F 1	0.00	96. 1.66	0.0
	6		•		•		6		8
COEFFICIENTS 175E 09	* * * 00 00 00	COEFFICIENTS 105E 09	× • • • • • • • • • • • • • • • • • • •	COEFFICIENTS 783E 10	K*A + 00	COEFFICIENTS 226E 10	¥ ♦ ¥ 00 00 00 00 00 00 00 00 00 00 00 00 0	THE COEFFICIENTS 566669E 10	K*A + 000 + + 000 + + + 000 + + 000 + + 000 + + 000 +
EFFI E 09		EFF109		EFF1(EFF10		EFF 10	
000	15 0 1684 054	C0 403	150	C 0 1 8 3 1	1552	C0 226	630	009	S 0 853 833
THE COE	ROOTS OF 3.9433684E 6.6421054E	THE COE!	R00TS DE -3.9577150E 5.9977661E	THE COE!	R00TS OF -3.9698552E 5.4135301E	THE COEF	R001S OF -3.9802630E 4.8919037E	THE COE!	20015 OF -3.9892853E 4.4288833E
80	4 9	•	5.0	-	4.0	-	4	1:	

PROBLEM NO. 331 Closed Loop System Polynomial and Roots, Example I. (Contd.) POLYNOMIAL MULTIPLICATION AND ROOT LOCUS TABLE 4

DE 02 1.0000000E 00	SE 00 + 1 -1.4547988E 02	NE 02 1.0000000E 00	F 00 + I -1.4534184E 02	NE 02 1.000000E 00	1E 00 + I -1.4523480E 07	NE 02 1.0000000E 00	3E 00 + 1 -1.4515121E 02	0E 02 1.0000000E 00	?E 00 + 1 -1.4508556E U2
11 -3.4074100E	4.0182316E	11 -3.6657600E	3.6533814E	11 -3.9241100E	3.3282133E	11 -4.1824600E	3.03731786	11 -4.4408100E	2.7760322E
= 1.500000E-01 2.4858676E 04	0.0000000E 00 0.0000000E 00	= 1.6000000F-01 2.4737138E 04	0.0000000E 00 0.0000000E 00	= 1.700000E-01 2.4615600E 04	0,3000000E 00 0,0000000E 00	= 1.8000000E-01 2.4494062E 04	0.0000000E 00	* 1.9000000E-01 2.4372524E 04	0.000000000000000000000000000000000000
5) K	+ 1	, s	+ +	,	+ +	× 15 3	+ + 1	5) K	+ + 7
K*A + B (ORDER = -6.4193455E 06	4.9148532E 01 3.2352783E 02	K*A + B (ORDER = -6.9219656E 06	4.8331837E 01 3.5097892E 02	K*A + B (ORDER = -7.4245857E 06	4.7651245E 01 3.7820692E 02	K*A + 8 (ORDER = -7.9272058E 06	4.7074705E 01 4.0525562E 02	K*A + B (ORDER = -8.4298259E 06	-4.0208902E 01 4.3215818E 02
OF POLYNOMIAL 1.5165114E 07	0.0000000E 00 1.4547988E 02	0F POLYNOMIAL 1.5634382E 07	0.0000000E 00 1.4534184E 02	OF POLYNOMIAL 1.5103650E 07	0.0000000E 00 1.4523480E 02	OF POLYNOMIAL 1.4572918E 07	0.0000000E 00 1.4515121E 02	0F POLYNOMIAL 1.4042186E 07	0.0000000E 00 1.4508556E 02
THE COEFFICIENTS 1.3462112E 10	R00TS OF K*A + B -3.9971821E 01 + I 4.0182316E 00 + I	THE COEFFICIENTS 1.4357555E 10	ROOTS OF K*A + B -4.0041520E 01 + I 3.6533814E 00 + I	THE COEFFICIENTS 1.5252998E 10	ROOTS OF K*A + B -4.0103495E 01 + I 3.3282133E 00 + I	THE COEFFICIENTS 1.6148441E 10	R00TS OF K*A + B -4.0158964E 01 + I 3.0373178E 00 + I	THE COEFFICIENTS 1.7043884E 10	R00TS OF K*A + B. 4.6579653E 01 + I 2.7760322E 00 + I

TABLE 4
Closed Loop System Polynomials at 4 Roots, Example 1 (Contd.)
POLYNOMIAL MILTIPLICATION AND ROOT LOCUS

00E 02 1.0000050E 00	47E 00 + I -1.4503379E 02	00E 02 1.000000E 00	93E 00 + I -1.4499285E 02	00E 02 1.000000E 00	58E 00 + 1 -1.4496045E 02	00E 02 1.0000000E 00	81E 00 + I -1.4493483E 02	00E 02 1.000000E 00	26E 00 + I -1.4491462E 02
-4.6991600E	2.5403847E	-4.3575100E	2.3270093E	-5.2158600E	2.1330558E	-5.4742100E	1.9561081E	-5.7325600E	1.7941126E 00
2.4250986E 04	0.0000000E 00	= 2.1000000E-01 2.4129449E 04	0.0000000E 00 0.0000000E 00	= 2.2000000E-01 2.4007910E 04	0.0000000E 00 0.0000000E 00	= 2.3000000E-01 2.3886372E 04	0.0000000E 00 0.0000000E 00	= 2.4000000E-01 2.3764834E 04	0.000000000 0.000000000000000000000000
5) K	+ +	5) x	+ +	5) K	+ +	51 K	+ +	5) K	+ +
+ B (ORDER = -8.9324460E 06	-4.0254097E 01 4.5893963E 02	+ 3 (ORDER = -9.4350661E 06	-4.0295196E 01 4.8561955E 02	+ B (ORDER = -9.9376862E 06	-4.0332732E 01 5.1221349E 02	+ B (ORDER = -1.0440306E 07	-4.0367149E 01 5.3873394E 02	+ B (ORDER = -1.0942926E 07	-4.0398821E 01 5.6519108E 02
K.		K*A		* *		X * A	-	¥ *	
HIAL E 07)E 00	MIAL E 07)E 00)M[AL)E 00	OMÍAL 3E 07)E 00	MIAL SE 07)E 00
OF POLYNOMIAL 1.3511454E 07	0. U0000000E 1. 4503379E	OF POLYNOMIAL	0.0000000E 1.4499285E	OF POLYNOMÍAL 1.2449990E O7	0. U0000000E	OF POLYNOMIAL 1.1919258E 07	0.0000000E	OF POLYNOMÍAL 1.1388526E 07	0.0000000E
THE COEFFICIENTS O 1.7939327E 10	ROOTS OF K*A + B 4.6149699E 01 + 1 C 2.5403847E 00 + 1 1	THE COEFFICIENTS C 1.8834770E 10	ROOTS OF K*A + B 4.5772627E 01 + I C 2.3270093E 00 + I I	THE COEFFICIENTS C 1.9730213E 10	ROOTS OF K*A + B 4.5439133E 01 + I C 2.1330558E 00 + I 1	THE COEFFICIENTS C 2.0625656E 10	R00TS OF K*A + B 4.5141995E 01 + I C 1.9561081E 00 + I I	THE COEFFICIENTS C 2.1521099E 10	KOOTS OF K*A + B 4.4875519E 01 + i C 1.7941126E 00 + I I
			4 . 4		70	1.14	4,	, 🔻	4,

TABLE 4
Closed Loop System Polynomials and Roots, Example 1. (Contd.)
POLYNOMIAL "ULTIPLICATION AND ROOT LOCUS

2 1.0000000E 00	0 + I -1.4489878E 02	2 1.0000000E 00	0 + 1 -1.4488646E 02	2 1.000000E 00	0 - 1 -1.4487702E 02	2 1.0000000E 00	0 + 1 -1.4486992E 02	2 1.0000000£ 00	0 + i -1.4486475E 02
-5.9909100E 02	1.6453179E 00	-6.2492600E 02	1.5082247E 00	-6.5076100E 02	1.381544€ 00	-6.7659600E 02	1.2641649E 00	-7.0243100E 02	1.1551225E 00
K*A + B {ORDER = 5} K = 2.500000E-01 -1.1445546E 07 2.3643296E 04	-4.0428064E 01 + 1 0.00C0000E 00 5.9159328E 02 + 1 0.00C0000E 00	K*A + B (ORDER = 5) K = 2.6000000E-01 -1.1948167E 07 2.3521758E 04	-4.0455148E 01 + 1 0.0000000E 00 6.1794750E 02 + 1 0.0000000E 00	K*A + B (ORDER = 51 K = 2.700000E-01 -1.2450787E 07 2.3400220E 04	-4.0480303E 01 + 1 0.0000000E 00 6.4425956E 02 + 1 0.0000000E 00	K*A + B (ORDER = 5) K = 2.8000000E-01 -1.2953407E 07 2.3278682E 04	-4.0503728E 01 + 1 0.0000000E 00	K+A + B (ORDER = 5) K = 2.900000E-01 -1.3456027E 07 2.3157144E 04	-4.0525595E 01 + 1 0.0000000E 00 6.9677617E 02 + 1 0.0000000E 00
	0.0000000E 00 1.4489878E 02		0. U. COOOOE 00 1.4488646E 02		0.0000000E 00 1.4487702E 02	0F POLYNOMIAL 9.2655977E 06	0.0000000E 00 1.4486992E 02		0.0000000E 00 1.4486475E 02
THE COEFFICIENTS OF POLYNOMIAL 2.2416542E 10 1.0857794E 07	A00TS OF K*A + B 4.4635150E 01 + 1 1.6453179E 00 + I	THE COEFFICIENTS OF POLYNOMIAL 2.3311985E 10 1.0327062E 07	ROOTS OF K#A + B 4.4417202E 01 + 1 1.5082247E 00 + 1	THE COEFFICIENTS OF POLYNOMIAL 2.4207428E 10 9.7963297E 06	62 ROOTS OF K+A + B 4.4218654E 01 + I 1.381544E 00 + I	THE COEFFICIENTS 2.5102871E 10	ROOTS OF K+A + B 4.4037009E 01 + I 1.2641649E 00 + I	THE COEFFICIENTS OF POLYNOHIAL 2.5.99313E 10 8.7348657E 06	4.3870184E 01 + 1 1.1551225E 00 + 1

PROBLEM NO. 331 Closed Loop System Polynomials and Roots, Example 1. (Contd.) POLYNOMIAL MULTIPLICATION AND ROOT LOCUS TABLE 4

1.000000E 00	1.0535790£ 00 + 1 -1.4486115E 02
-7.2826600E 02	1.0535790£ 00
L K*A + B (ORDER = 5) K = 3.0000000E-01 6 -1.3958647E 07 2.3035606E 04	-4.0546057E 01 + 1 0.0000000E 00 7.2298847E 02 + 1 0.0000000E 00
22	~ ~
-1.3958647E	-4.0546057E 0 7.2298647E 0
THE COEFFICIENTS OF POLYNOHIAL KI	ROOTS OF K+A + B 4.3716425E 01 + I 0.0000000E 00 1.0535790E 00 + I 1.4486115E 02
STNE	•
200	1
THE COEFFIC 2.6893756E 10	4.3716425E 01 + 1 1.0535790E 00 + 1

TABLE 5 Tabulation of Open and Closed System Roots, Example 1.

J-OMEGA

THE FOLLOWING ROOTS ARE PLOTTED

SIGNA

.00000000 .000000000 -145.226876122 .000000000 -20.963064143 -159.991999800	39.00 39.00 39.00 39.00 39.00 39.00 39.00	2841342 3211670 3211670 3211670 3211670 3211670 3452632 4887484 4887484 4887484 6000000 6000000 6000000 6000000 6000000
39.918652815 -41.162138411 -1.730453835 -1.344047696 -21.119976152 -1.600000000	-1.3440476 -21.1199761 -1.6000000 -1.60000000 -3.6753460 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.6754461 -3.769354 -3.7693534 -3.7693534 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266 -3.675266	519179 817825 817825 556474 5566474 5566474 566474 566471 566471 566471 5677 561242 561242 561242 642169 648552 64135 666136 666136

S	
ш	
1	
9	
1	

-40.041520391 48.331836564 3.653381446 350.978920935 -40.103495241 3.328213307 378.206823593 -40.158964097 47.074705241 3.037317836 405.255623183	-145.65945309 -00000000 -000000000 -145.47983461 -000000000 -000000000 -145.341835921 -000000000 -145.234798142 -000000000 -145.151210253 -0000000000 -145.151210253
-40.20901728 -2.76032179 -6.158184400 -6.158184400 -6.254097202 2.540384711 -5.8939628928 -6.295196145 -6.295196145 -6.295196145 -6.295196145 -6.3327009277 -6.332731949 -6.332731949 -6.332731849711 -5.13487711	-145.085543419 -000000000 -0000000000 -145.033791406 -000000000 -0000000000 -144.992853581 -144.960450973
-40.367149172 1.956108118 538.733938362 44.875518566 -40.42806441 1.645317889 54.417202176 -40.455147899 1.508224688 64.417202176 -40.455147899 1.508224688 64.417202176 -40.480302574 1.381544378 64.25955901 44.037009376 -40.503727559	-1***94825743 -000000000 -0000000000 -0000000000 -000000

TABLE 6 Equivalent System Open Loop Polynomials and Roots, Example 2.

COEFFICIENTS ARE GIVEN IN ASCENDING ORDER

1741745E 22 899455E 13 388089E 01	35558	3602128E 20 9949174E 12 8548769E 00	0100000
2.37	0.00 1.37 5.866 -9.91	3.360 1.994 3.854	
	* * * * * *		
7.1031974E 23 1.9097026E 15 4.4817804E 03	4.0482270E-03 -1.8661114E 01 -5.6548983E-01 -1.1383567E 01 8.7784732E 00 -1.2000000E 02	9.5767814E 20 1.0012828E 14 5.5411254E 02 8.7580072E-12	396-0. 176 0. 596-0. 596 0. 366 0. 396 0.0
2.2379228E 24 7.5304025E 16 6.3221235E 05	+1 0.0000007E 00 +1 -1.3795784E 01 +1 -1.5133260E 01 +1 9.9133387E 01 +1 -1.0034827E 02 +1 1.8535922E 02 +1 1.6740767E 02	1.6958813E 21 3.9974714E 15 5.8870857E 04 2.2365276E-09	+1 -8.5130501E-02 +1 -2.1868848E 00 +1 -5.2021278E 01 +1 4.4791865E 01 +1 6.0964654E 01 +1 -1.3136153E 02 +1 1.5927933E 02 +1 -3.2947940E 02
A (ORDER = 20) 9.5684282E 23 2.3363110E 18 7.1958497E 07 1.1650003E-06	-5.0000000E-01 -1.8661114E 01 1.7611750E 01 -1.1383567E 01 8.7784732E 00 -3.1400000E 01 -1.7100326E 00	B (ORDER = 24) 6-4758656E 20 1-2920488E 17 5-9492045E 06 7-3606134E-67	-1.2319939E-02 -1.4701442E 00 -4.2279259E-01 -4.3533614E 01 -6.2707067E-01 -2.7401987E 00 -1.9168424E 00
THE COEFFICIENTS OF POLYNOMIAL 4.0799305E 19 6.1680749E 21 9.5066517E 19 8.7039308E 18 5.5180490E 11 7.7883807E 09 1.2305666E-01 2.8328917E-04	THE ROUTS OF A 0698598E-02 +1 0.0000000E 00 0000000E 00 +1 0.0000000E 00 7611750E 01 +1 1.5133260E 01 6548983E-01 +1 -5.8604508E 01 5000000E 01 +1 0.0000000E 00 1400000E 01 +1 -1.8535922E 02 7100326E 00 +1 -1.6740767E 02	FICTENTS OF POLYNOHIAL 18 2.7125958E 19 19 3.1814755E 18 10 4.7944633E 08 02 1.3359248E-04 17	E ROOTS OF B 160E-01 +1 -2.1047476E-14 442E 00 +1 2.186848E 00 200E 01 +1 7.9241888E-14 514E 01 +1 -4.4791865E 01 567E-01 +1 -6.0964654E 01 536E 00 +1 1.108758E 02 54E 00 +1 1.5927933E 02 699E 01 +1 1.8532335E 02
746 -4.0799 9.5066 5.5180	THE RO -1.0698598E- -3.0000000E 1.7611750E -5.6548983E- -4.5000000E -3.1400000E	THE COEF 4.4350635E 4.7035417E 3.4265212E 2.8002114E- 3.0508488E-	THE ROOTS -4.6149160E-01 -1.4701442E 00 -1.2500000E 01 -4.3533614E 01 -6.2707067E-01 -1.5717536E 00 -1.9168424E 00

				_										_																	•						_																
	;	5	_	_	_	_	_		-		_	_	_ '	_					•	•	•	_		_	_	_	_			_		_	_	_	-	_			_	_	_	_	_	_		_	_	_	_	_	-		
	3	-OHEGA																													-														-								
	Ì	?																					i																														
	3	->10.	-	_	-	_	_	_		- .	-	_	_	-	_			- •	• •		-	_		_	-	-	-			-		-	_	-	-	_	-	i	-	_	-	_	_	_		-	_	_	_	-	-	-	
		•																					1								-																						
																-															-																					i	
																															-														-								_:
TANT	•	•	-	-	-	-	-	-		- •	- 1	-	-	-	_		- •		•	•	-	_		-	-	-	-	• •	•	-		-	_	-	-	-	-	1	-	-	_	-	-	-	-	-		_			-	Ϊ.	ole
OAD																																																					E
9																																													•							1	Ľ
H		_	_	_	_	_	_	_		.	_	_		-	_	١,		. .			_	_		-	_	_	_			_	-	-	_	_	_	_	-		-	_	_	_	-	_	-	_	_	_			_		ant
LEFI	3																																					į							-								90
ANE.	D/SE																																																			1	3
25	RA																																												-								aua
LOG PLOT COMPLEX FREQUENCY PLANE, LEFT HAND QUADRANT		2	_	-	-	-	-	_		-	-	-	-	-	_		- •	-	- •	• •	-	•	-	-	_	_	•	•		-		-	-		-	-	-		-	-	-	-	_	-		-	-	-			-	- :	, Log Plot, Lett Hand Quadrant, Example
REGU																						•																															Let
×																																													-							:	01,
HPLE		001	_	-	_	_	_	_				_	-	-	_			-	٠.	٠.	-	_		_	_	_	_		- .	_			_	-	_	_	_		_	_	_	_	_	_	-	_	_				-	1	Σ
3	•	-																												5	-																						20
																																																					ay,
		•																																				i															Sp
		0001	-	-	-	-	-	-			-	_	-	-	-				•	٠.	-	-		-	-	-	-		- •	-		-	-	-	-	-	_		_	-	-	-	_	-		-	-	- •			-	- 6	<u> </u>
																																													-								5
																																						i															rap
		10000	_	_	_	_	_				_	_	-	_										_	_	_	_			_		_	_	_	_	_	_	i	_	_	_	_	_	_		_	_				-		ر ص
		3																					•																														e a
		ž							1000							0							_																													i	Ę
		HINUS SIGNA	-	_	-	>			0							001						•	0							•	-							-							10.								
		BUS																																																			
		Z																																																			
																																																				•	

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	 		HAND QUADRANT
			FREQUENCY PLANE, RIGHT
	 		1 1 1 100 COMPLEX FREQU
	 		0001
	 0	0001	10000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4. Graphical Display, Log Plot, Right Hand Quadrant, Example L.

-100.00

Figure 5. Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example 1.

Figure 6. Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example 1.

100.00

Figure 7. Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example 1.

Figure 8. Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example 1.

100.001

180.00

Figure 9. Graphical Display, Linear Expand Plot, Left Hand Quadrant, Example 1,

Figure 10. Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example 1.

Figure 12. Graphical Display, Log Plot, Right Hand Quadrant, Example 2.

Figure 13. Graphical Display, Linear Expand Plot, Left Hand Quadrand, Example 2.

Figure 14 Graphical Display, Linear Expand Plot, Right Hand Quadrant, Example 2

VI. CONCLUSIONS

The method described in this memorandum for computing linear system root loci and plotting their trajectories on the complex frequency plane has the following merits.

- 1. Accepts input in the form of sums of products of polynomials.
- 2. Produces a log plot of the entire complex plane in two graphical displays.
- 3. Produces selectable scaled linear plots of regions in the complex frequency plane.
 - 4. Relates the closed loop gain to the graphical display.

REFERENCES

- Truxaí, John G. "Control System Synthesis", McGraw Hill, N. Y. 1955, pp 221-277.
- 2. Digital Computer Program "Polynomial Multiplication and Root Locus", Martin Marietta, Baltimore, Maryland.
- 3. Blakelock, John H. "Automatic Control of Aircraft and Missiles", John Wiley & Sons, Inc., New York, 1965, pp. 306-327.

APPENDIX

LISTING OF SOURCE DECK

POINT(26,21)=ZERO

```
2014
```

```
DO 408 KK=35,65,7
                                                                                      61
       [F(KK.EQ.49) KK=58
                                                                                      62
   408 POINT(24,KK)=DOT
                                                                                      63
       POINT(25,42)=ZERO
                                                                                      64
       POINT (25,58)=ZERO
                                                                                      65
       POINT(26,42)=ONE
                                                                                      66
       POINT(26,58)=ONE
                                                                                      67
       POINT(26,70)#ZERO
       POINT(26,79)=ZERO
                                                                                      69
       POINT(26,86)=ZERO
                                                                                      70
       POINT(27,86)=ZERO
                                                                                      71
       DO 409 KK=26,28
                                                                                      72
   409 POINT(KK,93)=ZERO
                                                                                      73
       DO 420 KK=1,100
                                                                                      74
       IF(KK.EQ.4) KK=98
                                                                                      75
   420 POINT(26,KK)=Q
                                                                                      76
       POINT(26,4)=VEE
                                                                                      77
       POINT (26, 97) = AYE
                                                                                      78
       DO 7681 JACKIE=1,100
                                                                                      79
       DO 7681 JOANN=1,100
                                                                                     80
       SAVE1(JACKIE, JOANN) = 0.0
                                                                                     81
  7681 SAVE2(JACKIE, JOANN)=0.0
                                                                                     82
       NO=1
                                                                                     83
    12 00 5 I = 1,100
                                                                                     84
       A(I) = 0.0
                                                                                     85
  5
       B(1) = 0.0
                                                                                     86
       MI = 0
                                                                                     87
       JZ0=1
                                                                                     88
       K1=1
                                                                                     89
       111-1
                                                                                     90
       READ (5,101) N, IA, IB, IPROB
                                                                                     91
   140 FORMAT(10x, 7HDELTAK=, 110, 5x, 19HFOLY. ADDED IN A(S)=, [10, 5x, 19HFOLY.
                                                                                     92
      *ADDED IN B(S)=,[10,5x,9HPROB,NO.=,[10]
                                                                                     93
                                                                                     94
       IF(IB.NE.O) GO TO 10
       IF( IA.NE.O) GO TO 10
                                                                                     45
       IF( N.NE.O) GO TO 10
                                                                                     96
       IF(IPROB.EQ.10000) GO TO 1016
                                                                                     97
                                                                                     98
  101 FORMAT (7110)
    10 WRITE(6,1)
                                                                                     99
       FORK1=0.0
                                                                                    100
       FORK2 = 0.0
                                                                                    101
       FORK3 = 0.0
                                                                                    102
       WRITE (6 ,102) IPROB
                                                                                    103
  102 FORMAT (1H1, 9X,40HPOLYNOMIAL MULTIPLICATION AND ROOT LOCUS,44X,11
                                                                                    104
      1HPROBLEM NO., 15//)
                                                                                    105
       IF (N) 21, 20, 21
                                                                                    106
   20 READ(5, 103)Y, DY, YT
                                                                                    107
       WRITE(6, 140)N, IA, IB, IPROB
                                                                                    108
       WRITE(6,141)Y,DY,YT
                                                                                    109
  141 FORMAT(1H0,5X,10HK-INIT[AL=F20.10,5X,12HINCREMENT K=,F20.10,5X,12H
                                                                                    110
      *K-TERMINATE=,F20.10)
                                                                                    111
 103
      FORMAT (4F10.0)
                                                                                    112
       GO TO 25
                                                                                    113
m
CO 21 READ(5, 104)(X(I), I=1, N)
                                                                                    114
       WRITE(6,142) (I,X(I),I=1,N)
                                                                                    115
€104 FORMAT(7E10.0)
                                                                                    116
ið?
       READ (5,105)(IGA(I), I = 1, IA)
                                                                                    117
       WRITE(6,143) (I, IGA(I), I=1, IA)
                                                                                    118
  143 FORMAT(10x, 24HNUMBER OF POLY. IN GROUP, 13,14H OF NUMERATOR=,110)
                                                                                    119
  142 FORMAT(10X, 2HX(, I3, 2H)=, F20.10)
                                                                                    120
```

179

180

202 DO 220 I = 1, ISDEG

```
220
       A(1) = SAVE(1)
                                                                                    lol
       IDA = ISDEG
                                                                                    142
       IA = IB
                                                                                    183
       FORK1 = 1.0
                                                                                    104
       DO 230 I=1, IA
                                                                                    185
 230
       IGA(I) = IGB(I)
                                                                                    100
       START DENOMINATOR
                                                                                    137
       GO TO 300
                                                                                    104
       SAVE DENOM.
                                                                                    139
 203
       DO 240 I = 1, ISDEG
                                                                                    1.40
 240
       H(I) = SAVE(I)
                                                                                    1 71
       IDR = ISDEG
                                                                                    192
       WRITE (6,109)
                                                                                    193
 109
       FORMAT (10x,41HCOEFFICIENTS ARE GIVEN IN ASCENDING ORDER////)
                                                                                    1 14
 339
       IF (A(IDA)) 340, 341, 340
                                                                                    145
 341
       IDA = IDA - 1
                                                                                    146
       IF (IDA) 345, 345, 339
                                                                                    1 +7
 345
       WRITE (6,120)
                                                                                    178
 120
       FORMAT (1HO, 10X, 20HPOLYNOMIAL A IS ZERO//)
                                                                                    199
       FORK2 = 1.0
                                                                                    200
       GO TO 410
                                                                                    201
      IF (IDA - 2) 346, 347, 335
                                                                                    202
                                                                                    203
  346 WRITE(6, 121)A(1)
       STAR=STAR1
                                                                                    204
       PRNT=.TRUE.
                                                                                    205
       ANUMB1=A(1)
                                                                                    206
       ANUMBZ=0.0
                                                                                    207
       CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XR, MI, PRNT, STAR, III
                                                                                    208
      *, NO)
                                                                                    209
       FORMAT (1HO,10X,28HPOLYNOMIAL A IS A CONSTANT =,1P1E16.7//)
 121
                                                                                    510
       GO TO 410
                                                                                    211
 347
       ROOT = -A(1) / A(2)
                                                                                    212
       WRITE (6 ,133)A(1), A(2)
                                                                                    213
 133
       FORMAT (10X, 21HTHE COEFFICIENTS OF A/1P2E20.7)
                                                                                    214
       WRITE (6,122)ROOT
                                                                                    215
       STAR=STAR1
                                                                                    216
       PRNT=.TRUE.
                                                                                    217
       ANUMB1=ROOT
                                                                                    218
       ANUMB2=0.0
                                                                                    219
       CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XB, MI, PRNT, STAR, III
                                                                                    220
      *,NO)
                                                                                    221
 122
       FORMAT (1HO,10X,23HROOT OF POLYNOMIAL A 1S,1P1E16.7//)
                                                                                    222
       GO TO 410
                                                                                    223
      WRITE POLYS
                                                                                    224
 335
       IDIA = IDA -1
                                                                                    225
       WRITE (6,107)[D1A,(A(I),[=1,IDA)
                                                                                   226
       K = IDA
                                                                                    227
       DO 800 I = 1, IDA
                                                                                    228
       AS(I) = A(K)
                                                                                    229
 800
                                                                                    230
      K = K-1
       IDP2A=IDA +2
                                                                                    231
       102A= 2 *101A
                                                                                    232
       CALL MULLER (AS, ID1A, ROOTR, ROOTI)
5
                                                                                    233
9
       D0 805 I = 1, ID1A
                                                                                    234
       SAM = 100. + AMAXI(ABS(ROOTR(I)),ABS(RUOTI(I)))
                                                                                    235
       IF (SAM + ABS(ROOTR(I)).EQ. SAM) ROOTR(I)= 0.0
                                                                                   236
       IF (SAM + ABS(ROOTI(I)).EQ. SAM) ROCTI(I) = 0.0
                                                                                   237
  805 CONTINUE
                                                                                   238
 400 WRITE (6,111) (RGOTR(I), ROOTI(I), I=1, ID1A)
                                                                                   239
      CALL ERCHEK(ROOTI, IDIA)
                                                                                   240
                                               64
```

```
241
      PRNT=.TRUE.
                                                                                   242
      STAR=STAR1
                                                                                   243
      DO 2 III=1, ID1A
                                                                                   244
      ANUMB1=ROOTR(III)
                                                                                   245
      ANUMB2=ABS(ROOTI(III))
      CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XB, MI, PRNT, STAR, III
                                                                                   246
                                                                                   247
     *, NO)
                                                                                   248
    2 CONTINUE
                                                                                   249
 410
      IF(B(IDB)) 411, 412, 411
                                                                                   250
      IDB = IDB - 1
 412
      IF (IDB) 445, 445, 410
                                                                                   251
                                                                                   252
 445
      WRITE (6 ,123)
                                                                                   253
      FORMAT (1HO, 10X, 20HPOLYNOMIAL B IS ZERO//)
 123
                                                                                   254
      IF (FORK2)12,450,12
      FORK3 = 1.0
                                                                                   255
 450
                                                                                   256
      GO TO 698
                                                                                   257
      IF (IDB - 2) 451, 452, 499
 411
                                                                                   258
      WRITE (6 , 124)B(IDB)
 451
                                                                                   259
      STAR=STAR2
                                                                                   260
      PRNT=. IRUE.
                                                                                   261
      ANUMB1=B(IDB)
      ANUMB2=0.0
                                                                                   262
      CALL PLOTER(SAVE1,SAVE2,ANUMB1,ANUMB2,POINT,XA,XR,MI,PRNT,STAR,III
                                                                                   263
                                                                                   264
     *,NO)
                                                                                   265
      PRNT=.FALSE.
      STAR=STAR3
                                                                                   266
     FORMAT (1HO, 10X, 28HPOLYNOMIAL B IS A CONSTANT =, 1P1E16.7//)
                                                                                   267
                                                                                   268
      GO TO 698
                                                                                   269
      ROOT = -B(1) / B(2)
 452
      WRITE (6 ,134)B(1), B(2)
                                                                                   270
      FORMAT (10X, 21HTHE COEFFICIENTS OF B/1P2E20.7)
                                                                                   271
                                                                                   272
      WRITE (6 ,125)ROOT
                                                                                   273
      STAR=STAR2
                                                                                   274
      PRNT=.TRUE.
                                                                                   275
      ANUMB1=ROOT
                                                                                   276
      ANUMB2=0.0
                                                                                   277
      CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XB, MI, PRNT, STAR, III
                                                                                   278
     *, NO)
                                                                                   279
      PRNT=.FALSE.
                                                                                   280
      STAR=STAR3
 125 FORMAT (1HO, 10X, 23HROOT OF POLYNOMIAL B IS, 1P1E16.7//)
                                                                                   281
                                                                                   282
      GO TO 698
  107 FORMAT (10X,42HTHE COEFFICIENTS OF POLYNOMIAL A (ORDER = 13,1H)/ (
                                                                                   283
                                                                                   284
     11P6E20.711
                                                                                   285
  499 ID18 = ID8 -1
      WRITE (6,108) ID18,(8(1),1=1,1D8)
                                                                                   286
  108 FORMAT (////10x, 42HTHE COEFFICIENTS OF POLYNOMIAL B (ORDER = 13, 1H
                                                                                   287
                                                                                   288
     1)/ (1P6E20.7))
                                                                                   289
      K = IDB
      DO 801 I = 1.1DB
                                                                                   290
                                                                                   291
      BS(I) = B(K)
                                                                                   292
      K = K-1
 801
      IDP28= ID8 + 2
                                                                                   293
9
9
                                                                                   294
      ID2B = 2 + ID1B
                                                                                   295
      CALL MULLER (BS, ID18, ROOTR, ROOTI)
\infty
      00 806 I = 1, ID18
                                                                                   296
      SAM = 100. * AMAX1(ABS(ROOTR(I)),ABS(ROOTI(I)))
                                                                                   297
                                                                                   298
      IF (SAM + ABS(ROOTR(I)).EQ. SAM) ROOTR(I)= 0.0
                 ARSIDOOTILIII. FO. SAMI POOTILIIE O.O.
                                                                                    299
  806 CONTINUE
                                                                                   300
                                                 65
```

```
500 WRITE (6,112)(ROOTR(I), ROOTI(I), I= 1, ID1B)
                                                                                  301
       CALL ERCHEK(ROOTI, ID1B)
                                                                                  302
       STAR=STAR2
                                                                                  303
      00 3 III=1, ID1B
                                                                                  304
       ANUMB1=ROOTR(III)
                                                                                  305
       ANUMB2=ABS(ROOTI([[[]))
                                                                                  306
       CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XB, MI, PRNT, STAR, III
                                                                                  307
     *, NO)
                                                                                  308
     3 CONTINUE
                                                                                  309
       PRNT=.FALSE.
                                                                                  310
       STAR=STAR3
                                                                                  311
 111 FORMAT (1HO, 11X, 14HTHE ROOTS OF A/ (1P1E20.7,6H
                                                           +1 ,1P1E14.7,1P1
                                                                                  312
      1E20.7,6H
                 +I ,1P1E14.7,1P1E20.7,6H +I ,1P1E14.7))
                                                                                  313
 112 FORMAT (1HO, 11X, 14HTHE ROOTS OF B/ (1P1E20.7, 6H +1 , 1P1E14.7, 1P1
                                                                                  314
      1E20.7,6H
                 +1 ,1P1E14.7,1P1E20.7,6H +1 ,1P1E14.7))
                                                                                  315
  698 IF (FORK2)12,699,12
                                                                                  316
  699 IF (FORK3)12,6991,12
                                                                                  317
 6991 WRITE (6 ,102) IPROB
                                                                                  318
       MSHEET = 5
                                                                                  319
       START K CALCULATIONS
                                                                                  320
       IF (N) 702,702,533
                                                                                  321
       DO 550 I= 1, N
 533
                                                                                  322
       DO 541 J= 1, IDA
                                                                                  323
 541
       ATK(J) = X(I) + A(J)
                                                                                  324
       COMPUTE ROOTS OF K * A + B
C
                                                                                  325
       IDC= MAXO( IDA, IDB)
                                                                                  326
       CALL POLADD (ATK, IDA, B, IDB, CK)
                                                                                  327
       IDS = IDC
                                                                                  328
      IF (CK(IDS))555, 557, 555
 554
                                                                                  329
      IDS = IDS - 1
 557
                                                                                  330
       IF (IDS) 558,558, 554
                                                                                  331
 558
       WRITE (6 ,129)X(1)
                                                                                  332
       FORMAT (1HO, 10X, 35HPOLYNOMIAL K+A + B IS ZERO FOR K =, 1P1E16.7//)
 129
                                                                                  333
       GO TO 550
                                                                                  334
 555
      IF (IDS - 2) 559, 560, 561
                                                                                  335
 559
      WRITE (6,130)CK(IDS), X(I)
                                                                                  336
      FORMAT (1HO, 10x, 35HPOLYNOMIAL K*A + B IS A CONSTANT = ,1P1E15.7, 10
                                                                                  337
      1H FOR K = 191614.7//
                                                                                  338
       GO TO 550
                                                                                  339
       ROOT = -CK(1) / CK(2)
                                                                                  340
       WRITE (6 ,131)ROOT, X(I)
                                                                                  341
      FORMAT (1HO,10X,18HROOT OF K+A+B=,1P1E15.7,1OH FOR K=
                                                                                  342
      14.7//1
                                                                                  343
      GO TO 550
                                                                                  344
      K = IDS
                                                                                  345
 561
       D0 803 J = 1, IDS
                                                                                  346
      CKS(J) = CK(K)
                                                                                  347
      K = K - 1
 803
                                                                                  348
       IDIC = IDS - 1
                                                                                  349
       IDP2C = IDS * 2
                                                                                  350
            - 2 + ID1C
                                                                                  351
       CALL MULLER (CKS, ID1C, ROOTR, ROOTI)
                                                                                  352
      D0 807 J = 1, ID1C
                                                                                  353
9/
      SAM = 100. * AMAX1(ABS(ROOTR(J)),ABS(ROOTI(J)))
                                                                                  354
       IF (SAM + ABS(ROOTR(J)).EQ.SAM)
                                        ROOTR(J) = 0.0
                                                                                  355
                                         ROOTI(J) = 0.0
       IF (SAM + ABS(ROOTI(J)).EQ.SAM)
                                                                                  356
BOT CONTINUE
                                                                                  357
      WRITE (6,808) ID1C, X(I), (CK(J), J=1.IDS)
                                                                                  358
  808 FORMAT (///10x,48HTHE COEFFICIENTS OF POLYNOMIAL K+A + B (ORDER =
                                                                                  359
     113,7H)
                   1P1E16.7/(1P6E20.7))
                                                                                  360
                                              66
```

```
545 WRITE (6,115)(ROOTR(J), ROOTI(J), J=1,1D1C)
                                                                                     361
       CALL ERCHEK(ROOTI, ID1C)
                                                                                     362
       CALL SAVER(ROOTR, ROOTI, ID1C, SAVE1, SAVE2, JZO, K1)
                                                                                     363
  115 FORMAT (1HO,9X,16HROOTS OF K*A + B/(1P1F2O.7,6H + I ,1P1F14.7,1P1
                                                                                     364
      1E20.7.6H + I.1P1E14.7.1P1E20.7.6H + I.1P1E14.7)
                                                                                     165
 5452 MSHEET = MSHEET - 1
                                                                                     366
       IF (MSHEET) 546, 546, 550
                                                                                     367
       WRITE (6 ,102) IPROB
 546
                                                                                     368
       MSHEET = 5
                                                                                     369
 550
       CONTINUE
                                                                                     370
       GO TO 12
                                                                                     371
 702
          705 \quad J = 1, IDA
       DO
                                                                                     312
       ATK(J) = Y * A(J)
 705
                                                                                     373
C
       COMPUTE ROOTS OF K + A + B
                                                                                     374
       IDC= MAXO(IDA, IDB)
                                                                                     375
       CALL POLADD (ATK, IDA, B, IDB, CK)
                                                                                     376
       IDS = IDC
                                                                                     377
 754
       IF (CK(IDS))755, 757, 755
                                                                                     378
 757
       IDS = IDS - 1
                                                                                     374
       IF (IDS) 758, 758, 754
                                                                                     380
 758
       WRITE (6 ,129)Y
                                                                                     381
       GO TO 711
                                                                                     342
       IF (IDS - 2) 759, 760, 761
 755
                                                                                     383
 759
       WRITE (6 ,130)CK(IUS), Y
                                                                                     304
       GO TO 711
                                                                                     385
 760
       ROOT = -CK(1) / CK(2)
                                                                                     386
       WRITE (6 ,131)ROOT, Y
                                                                                     387
       GC TO 711
                                                                                     388
 761
       K = IDS
                                                                                     389
       DO 804 I = 1, IDS
                                                                                     340
       CKS(I) = CK(K)
                                                                                     391
 804
       K = K - 1
                                                                                     392
       IDIC = IDS - 1
                                                                                     393
       IDP2C = IDS + 2
                                                                                     394
            = 2 * ID1C
       ID2C
                                                                                     395
       CALL MULLER (CKS, ID1C, ROOTR, ROOTI)
                                                                                     396
       D0 809 I = 1, ID1C
                                                                                     397
       SAM = 100. * AMAX1(ABS(ROOTR(I)),ABS(ROOTI(I)))
                                                                                     398
       IF (SAM + ABS(ROOTR(I)).EQ. SAM) ROOTR(I) = 0.0
                                                                                     399
       IF (SAM + ABS(ROOTI(I)).EQ. SAM) ROOTI(I) = 0.0
                                                                                    400
  809 CONTINUE
                                                                                    401
       WRITE (6,808) IDIC, Y, (CK(1), I=1, IUS)
                                                                                    402
       WRITE (6,115) (ROOTR(J), ROOTI(J), J=1, [D]C)
                                                                                    41 3
       CALL ERCHEK(ROOTI, ID1C)
                                                                                    404
       CALL SAVER(ROOTR, ROOTI, IDIC, SAVE1, SAVE2, JZO, K1)
                                                                                    405
 711
       Y = Y + DY
                                                                                    406
       IF (Y - YT) 712,712,12
                                                                                    407
       MSHEET = MSHEET - 1
                                                                                    408
       IF (MSHEET) 713, 713, 702
                                                                                    409
 713
      WRITE (6,102) IPROB
                                                                                    410
       MSHEET = 5
                                                                                    411
       GO TO 702
                                                                                    412
od016 CALL PLOTER(SAVE1, SAVE2, ANUMB1, ANUMB2, POINT, XA, XR, MI, PRNT, STAR, 111
                                                                                    413
9
     *,NO)
                                                                                    414
      READ(5, 22)L
                                                                                    415
∞ 22 FORMAT(110)
                                                                                    416
       IF(L.EQ.0) GO TO 1017
                                                                                    417
       CALL EXPAND(L, XA, XB)
                                                                                    418
 1017 RETURN
                                                                                    419
```

7117

END

```
CCC
                                                                                      421
                                                                                      422
                                                                                      423
                                                                                      424
       SUBROUTINE POLMPY (A,N,B,M,C)
                                                                                      425
       DIMENSION A(1),B(1),C(1)
                                                                                      426
       K = M+N
                                                                                      427
       DO 5 I=1.K
                                                                                      428
       C(1) = 0.0
 5
                                                                                      429
       DO 10 I=1,N
                                                                                      430
       L = 1-1
                                                                                      431
       DO 10 J=1,M
                                                                                      432
       L = L+1
                                                                                      433
 10
       C(L) = C(L) + A(I) + B(J)
                                                                                      434
       RETURN
                                                                                      435
       END
                                                                                      436
CCC
                                                                                      437
                                                                                      438
                                                                                      439
                                                                                      440
       SUBROUTINE POLADD (A,N,B,M,C)
                                                                                      441
       DIMENSION A(1),B(1),C(1)
                                                                                      442
       IF (N-M) 1,1,2
                                                                                      443
 1
       NK = N
                                                                                      444
       GO TO 5
                                                                                      445
 2
       NK = M
                                                                                      446
 5
       00 10 I=1,NK
                                                                                      447
 10
       C(1) = A(1) + D(1)
                                                                                      448
       NK = NK+1
                                                                                      449
       IF (N-M) 11,25,15
                                                                                      450
      DO 20 I=NK.M
 11
                                                                                      451
 20
      C(1) = B(1)
                                                                                      452
 25
      RETURN
                                                                                      453
 15
      DO 30 I=NK,N
                                                                                      454
 30
      C(I) - A(I)
                                                                                     455
      RETURN
                                                                                     456
      END
                                                                                      457
0000
                                                                                     458
                                                                                     459
                                                                                     460
                                                                                     461
      SUBROUTINE MULLER(COE, N1, ROOTR, ROOTI)
                                                                                HPRS 462
       DIMENSION COE(1), ROOTR(1), ROOTI(1)
                                                                                     453
      N2=N1+1
                                                                                HPRS 464
      N4=0
                                                                                HPRS 465
      I=N1+1
                                                                                HPRS 466
   19 IF(COE(1))9,7,9
                                                                                HPRS 467
    7 N4=N4+1
                                                                                HPRS 468
      ROOTR(N4)=0.
                                                                                HPRS 469
      ROOTE (N4)=0.
                                                                                HPRS 470
      I=I-1
                                                                                HPRS 471
      IF(N4-N1)19,37,19
                                                                                HPRS 472
    9 CONTINUE
                                                                                HPRS 473
  10 AXR=0.8
                                                                                HPRS 474
      AXI=O.
                                                                                HPRS 475
      L=1
                                                                                HPRS 476
      N3=1
                                                                                HPRS 477
      ALPIR-AXR
                                                                                HPRS 478
      ALP11=AX1
                                                                                HPRS 479
      M=1
                                                                                HPRS 480
```

-	·			
)	G0T099	HPRS	481
	11	BET1R=TEMR	HPRS	482
		BET1 I = TEMI	HPRS	483
		AXR=0.85	HPRS	484
		ALP2R=AXR	HPRS	485
		ALP2I=AXI	HPRS	486
		M=2	HPRS	
	4.76%	G0T099	HPRS	
	12	BET2R=TEMR	HPRS	
	1024	BET21-TENI		
		AXR=0.9	HPRS	
			HPRS	
		ALP3R=AXR	HPRS	100
		ALP31=AX1	HPRS	
		M=3	HPRS	
	1000	G0T099	HPRS	10.0
	13	BET3R=TEMR	HPRS	
	10,740	BET3I=TEMI	HPRS	
	14	TE1=ALP1R-ALP3R	HPRS	498
		TE2=ALP11-ALP3I	HPRS	499
		TES=ALP3R-ALP2R	HPRS	500
		TE6=ALP31-ALP21	HPRS	501
		TEH=TE5+TE5+TE6+TE6	HPRS	502
		TE3=(TE1+TE5+TE2+TE6)/TEM	HPRS	503
		TE4=(TE2+TE5-TE1+TE6)/TEM	HPRS	504
		TE7=TE3+1.	HPRS	505
		TE9=TE3+TE3-TE4+TE4		506
		TE10=2.*TE3*TE4	HPRS	507
		DE15=TE7+BET3R-TE4+BET3I	HPRS	508
		DE16=TE7+BET31+TE4+BET3R	HPRS	509
		TE11=TE3+BET2R-TE4+BET2I+BET1R-DE15	HPRS	510
		TE12=TE3+BET21+TE4+BEY2R+BET11-DE16		511
		TE?=TE9-1.	HPRS	512
		TE1=TE9+BET2R-TE10+BET21	HPRS	
	1000	TE2=TE9+BET2I+TE10+BET2R	HPRS	
		TE13=TE1-BETIR-TE7+BET3R+TE10+BET31	HPRS	
		TE14=TE2-BET11-TE7+BET31-TE10+BET3R	HPRS	
		TE15=DE15+TE3-DE16+TE4	HPRS	
		TE16=DE15+TE4+DE16+TE3	HPRS	
		TE1=TE13+TE13-TE14+TE14-4.+(TE11+TE15-TE12+TE16)	HPRS	
		TE2=2.+TE13+TE14-4.+(TE12+TE15+TE11+TE16)		
		TEM = SQRT (TE1+TE1+TE2+TE2)	HPRS	100
		IF(TE1)113,113,112	HPRS	
	113		HPRS	
	145	TE4 = SQRT (.5 + (TEM - TE1))	HPRS	
		TE3=.5+TE2/TE4 GO TO 111	HPRS	
	112		HPRS	
	112		HPRS	
	110	IF(TE2)110,200,200	HPRS	100
		TE3-TE3	HPRS	
		TE4=.5*TE2/TE3	HPRS	
	111	TE7=TE13+TE3	HPRS	
		TE8=TE14+TE4	HPRS	
		TE9=TE13-TE3	HPRS	
	0	TE10=TE14-TE4	HPRS	
		TE1=2.*TE15	HPRS	
	87	TE2=2.+TF16	HPRS	
	32	IF(TE7+TE7+TE8+TE8-TE9+TE9-TE10+TE10)204,204,205	HPRS	
	204	TE7=TE9		537
		TER=TE10		538
	205	TEM=TE7+TF7+TE8+TE8	HPRS	
		TE3=(TE1+TE7+TE2+TE8)/TEM	HPRS	540

is a	TE4=(TE2+TE7-TE1+TE8)/TEM AXR=ALP3R+TE3+TE5-TE4+TE6 AXI=ALP3I+TE3+TE6+TE4+TE5	HPRS HPRS HPRS	541 542 543
	ALP4R-AXR	HPRS	544
	ALP4I=AXI M=4	HPRS	545
	60 TO 99	HPRS HPRS	546
15	N6-1	111 113	54 H
38	IF (ABS (HELL) + ABS (BELL) - 1.E-20) 18,18,16	August 1	549
16	TET - ABS (ALP3R - AXR) + ABS (ALP31 - AXI)	195 25	550
	IF (TET / (ABS (AXR) + ABS (AXI)) - 1.E-7)18,18,17		551
	N3=N3+1 ALP1R=ALP2R		552 553
1100	ALP11-ALP2I		554
	ALP2R-ALP3R	5.5	555
	ALP21-ALP31		556
	ALP3R=ALP4R		557
	ALP3I=ALP4I		558
	BET1R=BET2R BET1I=BET2I		551
	BET2R=BET3R		561
CONT	BET21=BET31		562
	BET3R=TEHR		563
	BET31=TEM1	1.53	564
200	IF(N3-100)14,18,18 N4=N4+1	A PROPERTY.	565
10	ROOTR(N4)=ALP4R		566
	ROOTI(N4)=ALP4I	1100	568
	M3=0		569
	IF(N4-N1)30,37,37		570
	RETURN		571
	IF (ABS (ROOTI(N4)) - 1.E-5)10,10,31 GO TO(32,10),L		572 573
	AXR-ALPIR		574
	AXI =-ALPII	HAT PIECE	575
W. 194	ALP11=-ALP11		576
	##=5 [전문][1] - 레인티아이스		577
22	GO TO 99 BET1R=TEMR	100	578 579
	SET11-TEMI		580
111012	AXR-ALPZR	-37	581
286, 31.2	AXI=-ALP2I		582
	ALP2I=-ALP2I		583
	M=6 GO TO 99		584 585
34	BET2R-TEHR	Bear.	586
Med 9	BET21=TEMI	ALC: N	587
	AXR-ALP3R		588
	AXI=-ALP3I		589
	ALP3I=-ALP3I L=2		590 591
	N=3		592
-1 99			593
7	TENI-0.0		594
5877	D01001=1,N%		595
2	TE1=TEMR+AKR-TEMI+AXI TEMI=TEMI+AKR+TEMR+AXI		596 597
	TEMR= TE1+COE(I+1)		598
	HELL-TEMR	•	599
	BELL-TEHI		600
	70		

```
601
   42 IF(N4)102,103,102
                                                                                     602
  102 D01011=1.N4
                                                                                     603
      TEM1=AXR-ROOTR(I)
                                                                                     604
      TEM2=AXI-ROOTI(I)
                                                                                     605
      TE1=TEM1+TEM1+TEM2+TEM2
                                                                                     606
      TE2=(TEMR+TEM1+TEM1+TEM2)/TE1
                                                                                     607
      TEM I=(TEM I + TEM 1-TEMR + TEM 2)/TE1
  101 TEMR=TE2
  103 GO TO(11,12,13,15,33,34),M
                                                                                     610
      END
                                                                                     611
                                                                                     612
C
                                                                                     613
C
                                                                                     614
C
                                                                                     615
      SUBROUTINE ERCHEK(X, 1)
                                                                                     616
      DIMENSION X(100)
                                                                                     617
      DATA ERRLIM/O.1E-8/
                                                                                     618
      00 10 J=1.1
                                                                                     619
   10 IF(ABS(X(J)).LT.ERRLIM) X(J)=0.0
                                                                                     620
      RETURN
                                                                                     621
       END
                                                                                     622
CCC
                                                                                      623
                                                                                      624
                                                                                      625
C
                                                                                      626
       SUBROUTINE EXPAND(ILOVE, X, Y)
                                                                                      627
       DIMENSION X2(2000), Y2(2000) , X(2000), Y(2000)
                                                                                      628
       DIMENSION X1(2000), Y1(2000), Z(125), Z1(87)
                                                                                      629
       INTEGER SPOT(130,50), DASH, Q, BLANK, POINT(130, 100)
                                                                                      630
       DATA Q/1HI/, DASH/1H-/,BLANK/1H /
       DATA APLUS/0.0/, BPLUS/0.0/, AMINUS/0.0/, BMINUS/0.0/
                                                                                      631
                                                                                      632
       COMMON /INFO4/ Q, BLANK, DASH
                                                                                      633
       COMMON /BOB/POINT
                                                                                      634
       COMMON /PAYNE/AM, AP, BM, BP
                                                                                      635
       COMMON /PJ/X1,Y1
                                                                                      636
       EQUIVALENCE(X1(1),Z(1)),(Y1(1),Z1(1))
                                                                                      637
       EQUIVALENCE (SPOT(1,1),POINT(1,1)),([1,[2)
       EQUIVALENCE (AP. APLUS), (AM. AMINUS), (BM. BMINUS), (BP. BPLUS)
                                                                                      638
                                                                                      639
       DO 40 J=1. ILOVE
                                                                                      640
       DO 50 M=1,2000
                                                                                      641
       X1(M)=0.0
                                                                                      642
    50 Y1(H)=0.0
                                                                                      643
       DO 51 M=1,130
                                                                                      644
       DO 51 N=1,50
                                                                                      645
    51 SPOT(M,N)=BLANK
                                                                                      646
       DO 52 M=1,130
                                                                                      647
       SPOT(M, 1)=DASH
                                                                                      648
    52 SPOT(M, 50)=DASH
                                                                                      649
       DO 53 M=1,50
                                                                                      650
       SPOT(1.M)=Q
                                                                                      651
    53 SPOT(126,M)=Q
                                                                                      652
       DO 54 M=1,2000
                                                                                      653
       X2(M)=0.0
                                                                                      654
    54 Y2(H)=0.0
                                                                                      655
       READ(5,10) OMEGA, ENCRMT, SIGMA, DELTA
                                                                                      656
\infty
       OMEGA=ABS ( OMEGA)
                                                                                      657
       FORMAT(4F10-0)
                                                                                      658
       A=ENCRMT
                                                                                      659
       PERCHT-A+0.01
                                                                                      660
       B=OMEGA
                                               71
```

		B=B*PERCNT			
		APLUS=B+OMEGA		10명 회에 계대 전략하면 하지 않는데	
	MAG	AMINUS=OMEGA-B			
		C=APLUS			
	605	D=ANINUS			
	100	[1-1		and the second second	
		DO 41 L=1,2000			163
		IF(Y(L).LT.D)GO TO 41			
		IF(Y(L).GT.C)GO TO 41			
3	23	X1(11)=X(L)			
7		Ŷ1(11)=Ŷ(L)	TORRING TO THE STATE OF THE STA		
	: 1348	11=11+1		STATE OF STA	
	41	CONTINUE			
	41	A-DELTA			
	100	PERCNT-A+0.01			
10	201				
	202	B-SIGNA	and the second second		
•	403	B=B+PERCNT			
		BPLUS=SIGMA+B			
1		BMINUS=SIGNA-B			
		C-BPLUS	a professional and the state of		
		D=BMINUS			
		12=1			
•	910	DO 42 L=1,2000			
		IF(C.GT.0.0) GO TO 60			
		IF(X1(L).GT.D) GO TO 42			
		IF(X1(L).LT.C) GO TO 42			
		60 TO 25		AND A STATE OF THE PARTY OF THE	
	60	IF(X1(L).GT.C) GO TO 42			
	-	IF(X1(L).LT.D) 60 TO 42	and the state of the same		
	26	X2(12)=X1(L)			
	23				
		Y2(12)=Y1(L)			1
		12=12+1			
	42	CONTINUE		SECTION AND PROPERTY OF THE PR	
		CALL SPLIT (X2, Y2, SPOT, APL	US, AM INUS, BPLUS, BMIN	US1	
	40	CONTINUE		Care Care Control of the Care Care Care Care Care Care Care Car	
		RETURN			
		END	1207-1207 (1988)	A STANSON TO SELECT OF THE SECOND	
				The state of the s	
					BYB
		SUBROUTINE SPLITIX, Y, SPOT	,APLUS, AMINUS, BPLUS,	BMINUS)	
		DIMENSION X1(2000), Y1(200			
		DIMENSION X(2000), Y(2000)			
		INTEGER SPOT(130,50)			
	EA.	COMMON /PJ/X1, Y1			
		EQUIVALENCE(X1(1),Z(1)),(V1(1).71(11)		
		A-APLUS			
		B-AMINUS			
		C=A-B			
		D-BPLUS			
		Ę-BMINUS			4.
).	. 19	G-ABS(D)			gris.
		H-ABS(E)			
-		F=G-H			
		DELTA-C/124.0	The second of the second of	AND THE RESERVE	
		D1FF=F/50.0			
		DO 11 J=1,124			
	-14/	Z(J)=A			

\circ			Z(125)=B		21
			IF(D.LT.O.O)DIFF=-DIFF	*	53
			DO 12 J=1,49		23
			Z1(J)=D		24
		12	D=D-DIFF	Landania de la la companya de la companya del companya del companya de la company	25
			21(50)=E	[일 : [일 2일 시 : [] [] [] [] [] [] [] [] [] [26
			GALL BRAKUP(Z,X,Y,SPOT,Z1)	2017 C. B. C. B.	27
			RETURN		28
1.6			END		29
	C				30
					11
	C				32
	CCC				33
	- 17		SUBROUTINE BRAKUP(YY, X, Y, SPOT, XX)		34
			LOGICAL SKIP, SKIP1		35
			INTEGER SPOT(130,50),		36
			DATA STAR/1H#/		37
			DIMENSION X(2000), Y(2000), YY(125), XX		38
			COMMON /PAYNE/AH, AP, BM, BP		39
			EQUIVALENCE(AP, APLUS), (AM, AMINUS), (B		40
			SKIP=.FALSE.		41
			SKIP1FALSE.		42
			DO 43 J=1,2000		43
			00 43 I=1,125		44
			IF(Y(J).NE.0.0) GO TO 30		45
			IF(X(J).NE.O.O) GO TO 30		46
			L=J+1		47
			M=J+6		48
			DO 60 N=L.M		49
			IF(N.GT.2000) GO TO 60		50
			IF(Y(N).NE.O.O) GO TO 30		51
			IF(X(N).NE.O.O) GO TO 30		52
E		60	CONTINUE		53
			GO TO 40		54
		30	IF(SKIP) GO TO 20		55
			IF(Y(J).LT.YY(I)) GO TO 20		56
			YPT=1		57
			SKIP=.TRUE.		58
		20	IF(SKIP1)GO TO 48		59
		-	IF(1.GT.50) GO TO 43		60
			IF(BPLUS.GT.O.O) GO TO 10		61
			[F(X(J).GT.XX(I)) GO TO 43		52
			GO TO 11		63
		10	[F(X(J).LT.XX(1)) GO TO 43		64
			IF(BPLUS.LT.O.O) XPT=I		65
			IF(BPLUS.GE.O.) XPT=51-1		56
			SKIP1=.TRUE.		57
			IFI.NOT.SKIPIGO TO 43		68
		50	1=125		59
	1		SPOT(YPT, XPT)=STAR		10
			SKIPFALSE.		71
			SKIP1=. FALSE.		72
	4	48	IF(SKIP)GO TO 50		73
	1		CONTINUE		74
	1		CALL RITEIT(SPOT)		75
	∞		RETURN	The state of the s	76
	5		END		77
	C				78
	C				79
	C				80
				20	- 0

```
C
                                                                                   781
      SUBROUTINE RITEIT(SPOT)
                                                                                   782
      COMMON /PAYNE/AM, AP, BM, BP
                                                                                   783
     EQUIVALENCE (AP, APLUS), (AM, AMI "), (BM, BMINUS), (BP, BPLUS)
                                                                                   784
      INTEGER SPOT(130,50)
                                                                                   785
       IF(BP.LT.BM) GO TO 40
                                                                                   786
      A-BP
                                                                                   787
      B=BM
                                                                                   788
      WRITE(6,1)
                                                                                   789
    1 FORMAT(1H1,40X,43HCOMPLEX FREQUENCY PLANE, RIGHT HAND QUADRANT )
                                                                                   790
      GO TO 30
                                                                                   791
   40 A=BM
                                                                                   792
      B=BP
                                                                                   793
      WRITE(6,2)
                                                                                   744
    2 FORMAT(1H1,40X,43HCOMPLEX FREQUENCY PLANE, LEFT HAND QUADRANT )
                                                                                   795
   30 WRITE(6,12)AP, AM
                                                                                   796
   12 FORMAT(114X,15H<-----J-OMEGA,/1X,F8.2,112X,F8.2)
                                                                                   797
      WRITE(6,14)B
                                                                                   798
   14 FORMAT(124x,5HSIGMA,/126x,1HI,/126x,1HV,/121x,F8.2)
                                                                                   799
      WRITE(6,11) SPOT
                                                                                   800
   11 FORMAT(1X,130A1)
                                                                                   801
      WRITE(6, 15)A
                                                                                   802
   15 FORMAT(60X, 27HLINEAR EXPAND PLOT(RAD/SEC) ,34X, F8.2)
                                                                                   803
      RETURN
                                                                                   804
      END
                                                                                   805
C
                                                                                   806
                                                                                   807
      SUBROUTINE SAVER(ROOTR, ROOTI, IDIC, SAVE1, SAVE2, JZO, K1)
                                                                                   808
      DIMENSION SAVE1(100,100), SAVE2(100,100), ROOTR(100), ROOTI(100)
                                                                                   809
      IF(K1)30,9,10
                                                                                   810
    9 K1=1
                                                                                   811
   10 ID1=ID1C
                                                                                   812
      ID1C=ID1C+(K1-1)
                                                                                   813
      IF4 ID1C.GE. 1001G0 TO 30
                                                                                   814
   50 DO 40 IZAP=K1, ID1C
                                                                                   815
      IZA=IZAP-(K1-1)
                                                                                   816
      SAVEL(JZO, IZAP)=ROOTR(IZA)
                                                                                   817
      SAVE2(JZO, IZAP)=ROOTI(IZA)
                                                                                   818
   40 CONTINUE
                                                                                   819
      K1=ID1C+1
                                                                                   820
      GO TO 20
                                                                                   821
   30 JZO=JZO+1
                                                                                   822
      IDIC=IDI
                                                                                   823
      GO TO 9
                                                                                   824
   20 RETURN
                                                                                   825
      END
                                                                                   826
                                                                                   827
                                                                                   828
                                                                                  829
                                                                                   830
      SUBROUTINE PLOTER(SAVEL, SAVEZ, ANUMBI, ANUMBZ, POINT, XA, XB, MI, PRNT,
                                                                                  832
      DIMENSION SAVE1(100,100), SAVE2(100,100), XA(20GG), XB(2000)
                                                                                   833
      INTEGER POINT(130,100), DASH, BLANK, STAR
                                                                                   834
      LOGICAL PRNT
                                                                                  835
      IF(PRNT) GO TO 43
                                                                                  836
      DO 40 NAB=1,100
                                                                                  837
      DO 40 NBB=1,100
                                                                                  838
      IF(SAVE1(NAB, NBB))41,42,41
                                                                                  839
   42 IF(SAVE2(NAB, NBB))41,40,41
                                                                                  840
```

```
41 ANUMBI=SAVEI(NAB, NBB)
                                                                                           841
            ANUMB2=SAVE2(NAB, NBB)
                                                                                           842
            ANUMB2=ABS(ANUMB2)
                                                                                           843
         43 AZZ=ANUMB2
                                                                                           844
            AZZ=AZZ*100000.0
                                                                                           845
            NZZ=AZZ
                                                                                           846
            IF(NZZ.EQ.0) G0 TO 45
                                                                                           847
        50 NBB=NBB+1
                                                                                           848
         45 CALL EXCUTE(ANUMBI, ANUMB2, POINT, XA, XB, MI, NO, STAR)
                                                                                           849
            IF(PRNT)RETURN
                                                                                           650
        40 CONTINUE
                                                                                          851
        70 CALL WRITIT(XA,XB)
                                                                                           H52
            CALL PREPAR(POINT)
                                                                                          853
            RETURN
                                                                                          854
            END
                                                                                          855
     0000
                                                                                          856
                                                                                          857
                                                                                          H58
                                                                                          859
            SUBROUTINE EXCUTE(ANUMB1.ANUMB2.POINT.XA.XB.MI.NO.STAR)
                                                                                          860
            LOGICAL SKIP1, SKIP2
                                                                                          861
            LOGICAL LESS
                                                                                          862
            DIMENSION XA(2000), XB(2000)
                                                                                          863
            INTEGER POINT(130,100), DASH, BLANK, STAR
                                                                                          864
            DATA
                         K1/10/, K2/100/, K3/1000/, K4/10000/, NEGONE/-1/
                                                                                          865
            LESS=. FALSE.
                                                                                          866
            1=0
                                                                                          867
            J=0
                                                                                          868
            CALL MEMORY (ANUMBI, ANUMB2, NO, XA, XB)
                                                                                          869
            IF(ABS(ANUMB1).GT.10000.0) GO TO 50
                                                                                          870
            IF(ABS(ANUMB2).GT.10000.0) GO TO 50
                                                                                          871
            IF(ABS(ANUMB1).EQ. 0.0) GO TO 500
                                                                                          872
IF(ABS(ANUMB2).EQ.O.O; GO TO 500
                                                                                          873
            IF(ABS(ANUMB2).LT.0.001) GO TO 50
                                                                                          874
            IF(ABS(ANUMB1).LT.O.OO1) GO TO 50
                                                                                          875
       500 CALL SCALE1(K1,K2,K3,K4,NEGONE,1,ANUMB1,ICONS,LESS,SKIP1)
                                                                                          876
            CALL SCALEZ(K1,K2,K3,K4,J,JCONS,ANUMB2,SKIP2)
                                                                                          877
            CALL WPOINT(J, JCONS, L, ANUMB2, SKIP2)
                                                                                          878
            CALL SPOINT(I, ANUMBI, LESS, ICONS, L, POINT, SKIPI, NO, XA, XB, STAR)
                                                                                          879
        50 RETURN
                                                                                          880
            END
                                                                                          881
     CCC
                                                                                          882
                                                                                          883
                                                                                          884
                                                                                          885
           SUBROUTINE SCALEI(KI, K2, K3, K4, NEGONE, I, ANUMBI, ICONS, LESS, SKIPI)
                                                                                          886
           LOGICAL LESS
                                                                                          887
           LOGICAL SKIP1
                                                                                          888
           SKIP1 -- FALSE.
                                                                                          889
           ICONS=1
                                                                                          890
           I=1
                                                                                          891
           AKEEP-ANUMB 1
                                                                                          892
       21 NUMB1 = ANUMB1
                                                                                          893
           NUMB- [ABS (NUMB1)
                                                                                          894
           IF(RUMB.EQ.O:GOTO 12
                                                                                          895
            IF(NUAB1)31,40,40
                                                                                          846
           IF(NIMB1.GE.10)GOTO 11
        40
                                                                                          897
           GO TO 50
                                                                                          898
                                                                                          899
           XXX=-NUMB1
                                                                                          900
```

	NUMB1=XXX		901
	G0T0 40		902
12	GOTO(1,2,3,4),1		903
	ANUMB1-AKEEP		904
•	ICONS=K1		905
	RK1=K1		906
	ANUMBI=ANUMBI+RK1		907
	1=2,		908
	60T0 21		909
2	ANUMB1-AKEEP		910
	ICONS=K2		911
	RK2=K2	•	912
	ANUMB1=ANUMB1+RK2		913
	I=3		914
	GOTO 21		915
3	ANUMB1=AKEEP		916
	ICONS=K3		917
	RK3=K3		918
	ANUMB1=ANUMB1+RK3		919
	1=4		920
	GOTO 21		921
4	ANUMB1=AKEEP		922
-	ICONS=K4		923
	RK4=K4		924
	ANUMB 1=ANUMB1+RK4		925
	NUMB1=ANUMB1		926
	IF(NUMB1.EQ.O) GO	10 51	927
	GO TO 50		928
11	SKIP1=.TRUE.		929
	GO TO (6,7,8,9), [930
6	ANUMB1=AKEEP		931
	ICONS=K1	•	432
	RK1=K1		933
	ANUMB1=ANUMB1/RK1		934
	1=2		935
	GOTO 21		936
7	ANUMB1-AKEEP		937
	ICONS=K2		938
	RK2=K2		939
	ANUMB1=ANUMB1/RK2		940
	1=3		941
	GOTO 21		942
	ANUMB1=AKEEP		943
•	ICONS=K3		944
	RK3=K3		945
	ANUMB1=ANUMB1/RK3		946
	I=4		947
			948
_	COTO 21		
4	ANUMBI-AKEEP		949
	ICONS=K4		950
	RK4=K4		951
	ANUMB1-ANUMB1/RK4		952
	GO TO 50		953
	I=5		954
50	RETURN		955
*	END		956
	•		957
			958
			959

-

58778

RK4=K4

77

```
0
          IF(KCONS.EQ.1001)GOTO 1001
                                                                                      1081
          IF(KCONS.EQ.10001)GOTO 10001
                                                                                      1082
       11 L=60+IDELTA
                                                                                      1083
          GO TO 40
                                                                                      1084
      101 L=47+IDELTA
                                                                                      1085
          GO TO 40
                                                                                      1086
     1001 L=34+IDELTA
                                                                                      1087
          GO TO 40
                                                                                      1088
       50 L=125
                                                                                      1089
          GO TO 40
                                                                                      1090
    10001 L=34
                                                                                      1091
       40 RETURN
                                                                                      1092
          END
                                                                                      1093
    C
                                                                                      1094
    C
                                                                                      1095
    C
                                                                                      1096
    C
                                                                                      1097
          SUBROUTINE SPOINT(I, ANUMBI, LESS, ICONS, L, POINT, SKIPI, NO, XA, XB, STAR)
                                                                                      1098
          DIMENSION XA(2000), XB(2000)
                                                                                      1099
          INTEGER POINT(130,100), DASH, BLANK, STAR, Q
                                                                                      1100
          INTEGER STAR1, STAR2
                                                                                      1101
          DATA STAR1/1HO/, STAR2/1H+/
                                                                                      1102
          DATA BLANK/1H /.DASH/1H-/.
                                                 Q/1HI/
                                                                                      1103
          LOGICAL SKIPI
                                 .LESS
                                                                                      1104
          AKEEP=ANUMB1
                                                                                     1105
          ANUMB1=ABS(AKEEP)
                                                                                     1106
          KOOL=0
                                                                                     1107
          IF(I.EQ.5)GO TO 1000
                                                                                      1108
          IF(ANUMB1.GE.7.1)KOOL=7
                                                                                      1109
          IF(ANUMB1.GE.5.0)GO TO 1011
                                                                                      1110
          IF(ANUMB1.GE.4.0)GO TO 1111
                                                                                      1111
          IF(ANUMB1.GE.3.1)GO TO 1211
                                                                                     1112
          IF(ANUMB1.GE.2.3)GO TO 1311
                                                                                     1113
          IF(ANUMR1.GE.1.6)GO TO 1411
                                                                                     1114
          IF(ANUMB1.GE.1.0)GO TO 1511
                                                                                     1115
          GO TO 4011
                                                                                     1116
    1011
          IF(ANUMB1.LT.7.1)KOOL=6
                                                                                     1117
    1111
          IF(ANUMB1.LT.5.0)KOOL=5
                                                                                     1118
    1211
          IF(ANUMB1.LT.4.0)KOOL=4
                                                                                     1119
   1311
          IF(ANUMB1.LT.3.1)KOOL=3
                                                                                     1120
   1411
          IF(ANUMB1.LT.2.3)KOOL=2
                                                                                     1121
          IF(ANUMB1.LT.1.6)KOOL=1
   1511
                                                                                     1122
    4011 NCRMNT=8-KOOL
                                                                                     1123
          IF(LESS)GO TO 40
                                                                                     1124
          IF(SKIP1)GO TO 41
                                                                                     1125
          IF(ICONS.EQ.1)GOTO 1
                                                                                     1126
          IFIICONS.EQ.10)GOTO 10
                                                                                     1127
          IF(ICONS.EQ.100)GOTO 100
                                                                                     1128
          IF(ICONS.EQ.1000)GOTO 1000
                                                                                     1129
        1 KOOL=71+KOOL
                                                                                     1130
          60 TO 50
                                                                                     1131
       10 KOOL=64+KOOL
                                                                                     1132
          GO TO 50
                                                                                     1133
   ∞100 KOOL=57+KOOL
                                                                                     1134
          GO TO 50
                                                                                     1135
   9000 KOOL=50+KOOL
                                                                                     1136
          GO TO 50
                                                                                     1137
      41 LCONS=ICONS+1
                                                                                     1138
          SKIP1 =. FALSE.
                                                                                     1139
```

1140

IF(LCONS.EQ.11)GOTO 11

	IF(LCONS.EQ.1011G010 101	1141
	IF(LCONS.EQ.1001)GOTO 1001	1142
11	KOOL=78+KOOL	1143
	GO TO 50	1144
101	K00L=85+K00L	1145
	GO TO 50	1146
1001	K00L=92+K00L	1147
50	LESS=.FALSE.	1148
	IF(POINT(L, KOOL).EQ.DASH) GO TO 51	114
	IF(POINT(L.KOOL).EQ.Q) GO TO 51	1150
14	IF(POINT(L, KOOL).EQ.STAR1) GO TO 15	1151
	IF(POINT(L, KOOL).EQ.STAR2) GO TO 15	1152
	IF(STAR.EQ.STAR1) GO TO 51	
	IF(STAR.EQ.STAR2) GO TO 51	1153
		1154
61	IF(POINT(L.KOOL).NE.BLANK) GO TO 70	1155
21	POINT(L,KOOL)=STAR	1156
	ANUMB 1 = AKEEP	1157
W/CO	GO TO 70	1158
15	L=L+1	1159
	IF(L.EQ.130) GO TO 51	1160
	GO TO 14	1161
40	IF(SKIP1) GO TO 42	1167
	IZ=ICONS+2	1163
	IF(IZ.EQ.3)GOTO 3	1164
	IF(IZ.EQ.12)GOTO 12	1165
	IF(IZ.EQ.102)GOTO 102	1166
	IF(1Z.EQ.1002)G0T0 1002	1167
3	KOOL=21+NCRMNT	1168
•	GO TO 50	
12	KOOL=28+NCRMNT	1169
12		1170
103	GO TO 50	1171
102	KOOL=35+NCRMNT	1172
	GO TO 50	1173
1002	KOOL=42+NCRMNT	1174
	GO TO 50	1175
42	IY=ICONS+3	1176
	SKIP1=.FALSE.	1177
	IF(IY.EQ.13)GOTO 13	1178
	IF(IY.EQ.103)GOTO 103	1179
	IF(IY.EQ.1003)G0T0 1003	1180
	IF(IY.EQ.10003)GOTO 10003	1181
13	KOOL=14+NCRMNT	1162
	GO TO 50	1183
103	KOOL = 7+NCRMNT	1184
	GO TO 50	1185
1003	KOOL=NCRMNT	1186
1003	GO TO 50	
10003	POINT(L, 1)=STAR	1187
10003		1188
7.0	60 10 70	1189
70	RETURN	1190
_	END	1191
<u> </u>		1192
H		1193
3 0		1194
8781		1195
X	SUBROUTINE PREPAR(POINT)	1196
ဂ	INTEGER POINT(130,100), PRT	1197
	DATA PRT /6/	1198
	WRITE(6,1)	1199
		* * * * *

```
WRITE(6,11)
                                                                                       1201
        11 FORMAT(///)
                                                                                       1202
            WRITE(PRT, 14)
                                                                                       1203
        14 FORMATI75X, SHLOG PLOT, /58X, 42HCOMPLEX FREQUENCY PLANE, LEFT HAND QU
                                                                                       1204
           *ADRANT,/75X,9H(RAD/SEC) )
                                                                                       1205
           WRITE(6, 12)
                                                                                       1509
        12 FORMAT(32x,5H10000,9x,4H1000,9x,3H100,10x,2H10,12x,1H1,11x,2H.1,10
                                                                                       1207
           +X,14H.01<---J-OMEGA,/ 18X,11HMINUS SIGMA)
                                                                                       1208
        13 FORMAT(32x,5H10000,9x,4H1000,9x,3H100,10x,2H10,12x,1H1,11x,2H.1,10
                                                                                       1209
           *X,14H.01<---J-OMEGA,/ 18X,11H PLUS SIGMA)
                                                                                       1210
            DO 50 I=1.130
                                                                                       1211
        50 POINT(1,50)=POINT(1,51)
                                                                                       1212
            WRITE(PRT, 10) POINT
                                                                                       1213
        10 FORMAT(1X, 130A1)
                                                                                       1214
           WRITE(o, 13)
                                                                                       1215
            WRITE(PRT, 15)
                                                                                       1216
        15 FORMAT(75X, 8HLOG PLOT, /58X, 43HCOMPLEX FREQUENCY PLANE, RIGHT HAND Q
                                                                                       1217
           *UADRANT, /75X, 9H(RAD/SEC)
                                                                                       1218
           RETURN
                                                                                       1219
            END
                                                                                       1220
     CCC
                                                                                       1221
                                                                                       1222
                                                                                       1223
     C
                                                                                       1224
            SUBROUTINE MEMORY(ANUMB1, ANUMB2, NO, XA, XB)
                                                                                       1225
            DIMENSION XA(2000), XB(2000)
                                                                                       1226
           XA(NO)=ANUMB1
                                                                                       1227
            XB(NO)=ABS(ANUMB2)
                                                                                       1228
           NO=NO+1
                                                                                       1229
           RETURN
                                                                                       1230
                                                                                       1231
           END
                                                                                       1232
C
                                                                                       1233
     C
                                                                                       1234
     C
                                                                                       1235
           SUBROUTINE WRITIT(XA, XB)
                                                                                       1236
           DIMENSION XA(2000), XB(2000)
                                                                                       1237
           WRITE(6,1)
                                                                                       1238
                  FORMAT(1H1)
       1
                                                                                       1239
           WRITE(6,11)
                                                                                       1240
        11 FORMAT(5x, 48HTHE FOLLOWING ROOTS ARE PLOTTED ON THE LOG PLOT,/
                                                                                       1241
           15X,99HROOTS AT THE ORIGIN ARE NOT PRINTED OR PLOTTED, ROOTS ON THE
                                                                                       1242
           * J-OMEGA AXIS ARE NOT PLOTTED.
                                                                                       1243
          2,//16x,5HSIGMA,25x,7HJ-OMEGA,//)
                                                                                       1244
           DO 77 120=1,2000
                                                                                       1245
           XC=XB(IZO)
                                                                                       1246
            IF(XC.GT.O.O) XC=-XC
                                                                                       1247
            IF(XC.NE.O.O) GO TO 22
                                                                                      1248
        20 IF(XA(120))22,40,22
                                                                                      1249
        40 K1=120
                                                                                      1250
           K2=120+12
                                                                                      1251
           DO 50 K=K1.K2
                                                                                      1252
           IF(XA(K).NE.O.O) GO TO 77
                                                                                      1253
        50 IF(XB(K).NE.O.O) GO TO 77
                                                                                      1254
           60 TO 60
                                                                                      1255
        22 WRITE(6,10)XA(120),XC
                                                                                      1256
        10 FORMAT(5x, F20.9, 10x, F20.9)
                                                                                      1257
        77 CONTINUE
                                                                                      1258
        60 RETURN
                                                                                      1259
                                                                                      1260
                                                 81
```

Unclassified
Security Classification

DOCUMENT CONTI			overall report is classified)		
I ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION			
U. S. Army Aberdeen Research and Development Center		Unclassified			
Army Materiel Systems Analysis Agency		26. GROUP			
Aberdeen Proving Ground, Maryland					
3 REPORT TITLE					
A Linear Closed Loop System Analysis Pro- Characteristic Equation Root Loci	cedure Usin	g Line Pri	nter Plots of		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Harold H. Burke, Robert L. Payne, Jr.					
6 REPORT DATE	74. TOTAL NO. OF	PAGES	7b. NO. OF REFS		
November 1968	85		3		
BA CONTRACT OR GRANT NO.	SE. ORIGINATOR'S	REPORT NUME	ER(\$)		
PROJECT NO. RDT&E 1T523801A098	Technical Memorandum No. 21				
c. d.	9b. OTHER REPORT NO(5) (Any other numbers that may be accigned this report)				
This document is subject to special export governments or foreign nationals may be made Officer, U. S. Army Aberdeen Research and Maryland	de only with Development (12. SPONSORING NU. S. Arm	prior app Center, Ab	roval of Commanding erdeen Proving Ground,		
13 ABSTRACT	Washington	n, D. C.	8		

An existing program that determines the root locus of n'th order polynominals has been modified to provide plots of these loci in the complex frequency plane using a standard line printer. A methodology that combines the computational capabilities of this root locus program with a variable scale graphical display of selectable regions of the complex frequency plane is presented. A listing of the Fortran IV source deck of the modified program and two examples are included.

DD . 1473 REPLACES DO PORM 1475, 1 JAN 64, WHICH IS

Unclassified

Security Classification

Unclassified

6

Security Classification							
14.	KEY WORDS	LINK A		LINK B		LINK C	
		ROLE	WT	ROLE	WT	ROLE	wT
	Dook Loove						1
	Root Locus						
	Plot Routine			h			1
	Lincon Control Stability System Amplysia						
	Linear Control Stability System Analysis			ļ			
		1					
1							
					п		
						l.	
							1
I							
i					Ш		
1		l i					
							. 4
1					4		
						1	1
I		i					
1							
							1
ı						Ī	
I							
				i			
				3			
				10 M	2		

Uncl	assified
Security	Classification

(10) k