10042865 Results

SEQ ID NO: 28

Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	2824	100.0	533	5	ABB98414	Abb98414 Human NOV
2	1794	63.5	529	5	AAO22794	Aao22794 Protein o
3	1786	63.2	529	5	AAE28617	Aae28617 Human UGT
4	1786	63.2	529	6	ADA11076	Ada11076 Human cDN
5	1784	63.2	533	4	ABG05523	Abg05523 Novel hum
6	1771.5	62.7	528	3	AAY78933	Aay78933 Human UDP
7	1770	62.7	524	3	AAY78934	Aay78934 Human UDP
8	1753.5	62.1	540	4	ABG05525	Abg05525 Novel hum
9	1751.5	62.0	530	7	ADC39065	Adc39065 Novel hum
10	1741.5	61.7	530	2	AAW47126	Aaw47126 Uridine d
11	1741.5	61.7	530	7	ADE58009	Ade58009 Human Pro
12	1732.5	61.3	530	3	AAY78935	Aay78935 Human UDP
13	1732.5	61.3	530	6	ABJ19806	Abj19806 Androgen-
14	1716	60.8	529	4	AAE02188	Aae02188 Human bre
15	1709	60.5	532	4	ABG05524	Abg05524 Novel hum

```
RESULT 6
AAY78933
     AAY78933 standard; protein; 528 AA.
XX
AC
     AAY78933;
XX
DT
     05-JUN-2000 (first entry)
XX
DE
     Human UDP-glucuronosyltransferase 2B4 amino acid sequence.
XX
KW
     UDP-glucuronosyltransferase 2B4; UGT2B4; polymorphism; metabolism; SNPs;
KW
     drug interaction; detect; human; single nucleotide polymorphism.
XX
os
     Homo sapiens.
XX
PN
     W0200006776-A1.
XX
PD
     10-FEB-2000.
XX
PF
     22-JUL-1999;
                    99WO-US016675.
XX
PR
     28-JUL-1998;
                    98US-0094391P.
XX
PΑ
     (AXYS-) AXYS PHARM INC.
XX
ΡI
     Galvin M, Miller A, Penny L, Riedy M;
XX
DR
     WPI; 2000-195321/17.
DR
     N-PSDB; AAZ95199.
XX
PT
     Novel human UDP-glucuronosyltransferase sequence, polymorphisms for
PT
     genotyping individuals to predict rate of metabolism of substrates and
PT
     for identifying potential drug interactions.
XX
PS
     Disclosure; Page 36-37; 72pp; English.
XX
     This sequence represents the human UDP-glucuronosyltransferase 2B4
CC
     (UGT2B4) amino acid sequence. UDP-glucuronosyltransferase (UGTs) are a
CC
     family of enzymes that catalyse the glucuronic acid conjugation of a wide
CC
     range of endogenous and exogenous substrates. The UGT2B gene subfamily
CC
CC
     encode steroid metabolizing isoforms in the liver. Alteration of the
     expression or function of UGTs may effect drug metabolism. The invention
CC
CC
    relates to non-chromosomal nucleic acid molecules, which comprise human
    UGT2B sequence polymorphisms (see AAZ95051-Z95110). Probes which detect
```

```
the UGT2B locus polymorphisms can be used to detect altered UGT2B
    metabolism of a substrate in an individual. The nucleic acid molecules
CC
    comprising a human UGT2B sequence polymorphism can be used in screening
    assays for genotyping individuals, also to predict their rate of
    metabolism of UGT2B substrate, potential drug-drug interactions and
    adverse side effects. The polymorphisms can be used as single nucleotide
    polymorphisms (SNPs) for detecting genetic linkage related to phenotypic
    variation in activity or expression of UGT2B protein. The polymorphism
    containing nucleic acid molecules may also be used for generating
    genetically modified non-human animals and for obtaining site specific
CC
    gene modification in cell lines
XX
    Sequence 528 AA;
  Query Match 62.7%; Score 1771.5; DB 3; Length 528; Best Local Similarity 66.2%; Pred. No. 1.3e-173;
  Matches 355; Conservative 54; Mismatches 116; Indels
          1 MAMKWTSVLLLIQLSYYSSSGSCGNVPLWPMEYSPWMNIKTILDKLMQISHEVTVLTLSA 60
            1 MSMKWTSALLLIQLSCYFSSGSCGKVLVWPTEFSHWMNIKTILDELVQRGHEVTVLASSA 60
Db
         61 SILVDPNITSVTKFEVYSISVIKDDFAGFFFTQQITKWIHDLPKHIFWFKCVPFKNILWE 120
Qy
         || || | | || || :|: | :| | || || :|: || 61 SISFDPNSPSTLKFEVYPVSLTKTEFED-IIKQLVKRWA-ELPKDTFWSYFSQVQEIMWT 118
Db
        121 YSGYTEKFFKDVVLNKKLMTNLQESRSDVVHANAIGPFGELLAELLKISFVYSLHFSPGY 180
Qу
            119 FNDILRKFCKDIVSNKKLMKKLQESRFDVVLADAVFPFGELLAELLKIPFVYSLRFSPGY 178
Db
Ov
        181 TFEKYSGGFLLPPSYGAVILSELSGSMTFMETVRNIIYVFYFDFWFOTFDMKKGDOFYSE 240
             179 AIEKHSGLLFPPSYVPVVMSELSDQMTFIERVKNMIYVLYFEFWFQIFDMKKWDQFYSE 238
Db
        241 VLGKSCFLSEIMGKAEMWLIRNYWYLEFPRPLLPNFEFVVRLYCKPVNPLPKEKMEEFAO 300
0v
            Db
        239 VLGRPTTLSETMAKADIWLIRNYWDFQFPHPLLPNVEFVGGLHCKPAKPLPKE-MEEFVO 297
Qу
        301 SSDEDG-VVFSLESAVQNLTEEKADLITSALAQIPQKVM-KF-GRKPNTLRSNTQWHRWI 357
            298 SSGENGVVVFSLGSMVSNTSEERANVIASALAKIPQKVLWRFDGNKPDTLGLNTRLYKWI 357
Db
        358 PQNECLILDHPQTKAFITYGGTNSIYEMIYRGVPSMGIPLFADQHDNIAHMKAKGAAVIL 417
Qу
            358 PQND--LLGHPKTRAFITHGGANGIYEAIYHGIPMVGVPLFADQPDNIAHMKAKGAAVSL 415
Db
        418 DLSTKSSTDLLDISVFVSLFLSFRYKESVMKLSRIQHDQPVKPLDRAVFWIEFVMRHKGA 477
Qy
            416 DFHTMSSTDLL--NALKTVINDPLYKENAMKLSRIHHDOPVKPLDRAVFWIEFVMRHKGA 473
Oy
        478 KHLRVAARDLTWFQYHSLDVIGFLLACVATVTFIITKCCLFCFWKFTRKVKKEKRD 533
            Db
        474 KHLRVAAHDLTWFQYHSLDVTGFLLACVATVIFIITK-CLFCVWKFVRTGKKGKRD 528
```

Issued

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8	1771.5 1770 1741.5 1732.5 1375.5 998 779 777.5	62.7 62.7 61.7 61.3 48.7 35.3 27.6	528 524 530 530 454 288 531	4 4 3 4 4 5	US-09-356-806-8 US-09-356-806-40 US-09-180-852-2 US-09-356-806-113 US-09-813-918-2 US-09-813-918-3 PCT-US92-00282-6 PCT-US92-00282-4	Sequence 8, Appli Sequence 40, Appl Sequence 2, Appli Sequence 113, Appl Sequence 2, Appli Sequence 3, Appli Sequence 6, Appli
9	777	27.5	533	5	PCT-US92-00282-3	Sequence 4, Appli Sequence 3, Appli

10	737.5	26.1	531	5	PCT-US92-00282-5	Sequence 5, Appli
11	689.5					Sequence 7, Appli
12	568.5	20.1	245	4		Sequence 18, Appl
13	543	19.2	197	4		Sequence 4, Appli
14	311	11.0	98	5	PCT-US92-00282-26	Sequence 26, Appl
15	281	10.0	515	3	US-08-942-012B-32	Sequence 32, Appl
Result		000				
No.	Saoro	Query	Tanath	DD	TD	-
NO.	Score	Match	Length	DB	ID	Description
1	1756	62.2	529	6	097951	007051 5
2	1745			6		097951 macaca fasc
3	1734				-	Q9gld9 macaca mula
4	1730	61.3			·	Q9tsl6 macaca fasc
5	1700.5	60.2	528		• · · · · · · · · · · · · · · · · · · ·	Q9gle0 macaca mula Q8wn97 macaca fasc
6	1554.5	55.0			Q8R084	Q8r084 mus musculu
7	1554.5	55.0	532	11		Q8k154 mus musculu
8	1545.5	54.7	528	11	•	Q8vif9 cavia porce
9	1481	52.4			• · · ·	Q8vif8 cavia porce
10	1473	52.2	529	11		Q8bjl9 mus musculu
11	1465.5	51.9	530	11		08k169 mus musculu
					_	
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	1786	63.2	529	1	IDD7 HIMAN	D16660 have seed as
2	1771.5	62.7	528	1	UDB7_HUMAN UDB4_HUMAN	P16662 homo sapien P06133 homo sapien
3	1741.5	61.7	530	1	UDBH HUMAN	075795 homo sapien
4		61.7	529	1	UDB9 MACFA	002663 macaca fasc
5	1732.5	61.3	530	1	UDBF HUMAN	P54855 homo sapien
6	1723.5	61.0	528	1	UDBA HUMAN	P36537 homo sapien
7	1721.5	61.0	528	1	UDBJ MACFA	Q9xt55 macaca fasc
8	1716	60.8	529	1	UDBB_HUMAN	075310 homo sapien
9	1683	59.6	529	1	UDBS_HUMAN	Q9by64 homo sapien
10	1677.5	59.4	530	1	UDBK_MACFA	077649 macaca fasc
11	1563.5	55.4	523	1	UDBG_RABIT	019103 oryctolagus
12	1553	55.0	531	1	UDBD_RABIT	P36512 oryctolagus
13	1545.5	54.7	529	1	UDB1_RAT	P09875 rattus norv
14	1540.5	54.6	530	1	UDBE_RABIT	P36513 oryctolagus
15	1508.5	53.4	530	1	UDBC_RAT	P36511 rattus norv
16	1461.5	51.8	530	1	UDB5_MOUSE	P17717 mus musculu
17	1445.5	51.2	530	1	UDB2_RAT	P08541 rattus norv
18 19	1437.5	50.9	530	1	UDB3_RAT	P08542 rattus norv
19	1413.5	50.1	530	1	UDB6_RAT	P19488 rattus norv
SEQ I	D NO	: 27				
Result		Query				
No.	Score	Match :	Length :	DB	ID	Description
1	1606	100.0	1606		AX675577	AX675577 Sequence
2	1606	100.0	1606		AX921811	AX921811 Sequence
3	973	60.6	1855		AX336329	AX336329 Sequence
4 5	973 973	60.6 60.6	1855		AX336696	AX336696 Sequence
5 6	973 973	60.6	1855 1855		AX409473	AX409473 Sequence
7	966.6	60.6	1766		HUMUDPGTA BC030974	J05428 Human 3,4-c
8	966.6	60.2	1854		BD229166	BC030974 Homo sapi
9	966.6	60.2	1854		AR349418	BD229166 Genotype AR349418 Sequence
10	962.4	59.9	1639		AX548042	AX548042 Sequence
11	958.6	59.7	2107		AR168316	AR168316 Sequence
12	958.6	59.7	2107		HSU59209	U59209 Homo sapien
13	953.8	59.4	1753		AF016310	AF016310 Macaca fa
14	950.6	59.2	1976	6	BD229238	BD229238 Genotype
15	950.6	59.2	1976	6	AR349490	AR349490 Sequence
						-

```
RESULT 6
 HUMUDPGTA
 LOCUS
           HUMUDPGTA
                                 1855 bp
                                          mRNA
                                                 linear PRI 03-AUG-1993
 DEFINITION
           Human 3,4-catechol estrogen UDP-glucuronosyltransferase mRNA,
           complete cds.
ACCESSION
           J05428
 VERSION
           J05428.1 GI:340079
KEYWORDS
           3,4-catechol estrogen UDP-glucuronosyltransferase.
 SOURCE
           Homo sapiens (human)
  ORGANISM Homo sapiens
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
           1 (bases 1 to 1855)
           Ritter, J.K., Sheen, Y.Y. and Owens, I.S.
  AUTHORS
  TITLE
           Cloning and expression of human liver UDP-qlucuronosyltransferase
           in COS-1 cells. 3,4-catechol estrogens and estriol as primary
           substrates
  JOURNAL
           J. Biol. Chem. 265 (14), 7900-7906 (1990)
  MEDLINE
           90243659
   PUBMED
           2159463
COMMENT
           Original source text: Human liver, cDNA to mRNA, clone 63-11.
           Draft entry and computer-readable sequence for [1] kindly submitted
           by I.S.Owens, 22-FEB-1990.
FEATURES
                   Location/Qualifiers
     source
                   1. .1855
                   /organism="Homo sapiens"
                   /mol_type="mRNA"
                   /db_xref="taxon:9606"
     CDS
                   /note="UDP-glucuronosyltransferase (EC 2.4.1.17)"
                   /codon_start=1
                   /protein_id="AAA36793.1"
                   /db_xref="GI:340080"
                   translation="MSVKWTSVILLIQLSFCFSSGNCGKVLVWAAEYSHWMNIKTILD/
                   ELIQRGHEVTVLASSASILFDPNNSSALKIEIYPTSLTKTELENFIMOOIKRWSDLPK
                   DTFWLYFSQVQEIMSIFGDITRKFCKDVVSNKKFMKKVQESRFDVIFADAIFPCSELL
                   AELFNIPFVYSLSFSPGYTFEKHSGGFIFPPSYVPVVMSELTDQMTFMERVKNMIYVL
                   YFDFWFEIFDMKKWDQFYSEVLGRPTTLSETMGKADVWLIRNSWNFQFPHPLLPNVDF
                   VGGLHCKPAKPLPKEMEDFVQSSGENGVVVFSLGSMVSNMTEERANVIASALAQIPOK
                   VLWRFDGNKPDTLGLNTRLYKWIPQNDLLGHPKTRAFITHGGANGIYEAIYHGIPMVG
                   IPLFADQPDNIAHMKARGAAVRVDFNTMSSTDLLNALKRVINDPSYKENVMKLSRIQH
                   DQPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVIGFLLVCVATVIFIV
                   TKCCLFCFWKFARKAKKGKND"
ORIGIN
  Ouerv Match
                       60.6%; Score 973; DB 9; Length 1855;
 Best Local Similarity
                       78.3%; Pred. No. 1e-212;
 Matches 1265; Conservative
                             0; Mismatches 320; Indels
                                                        30; Gaps
                                                                    7:
Qy
          1 ATGGCTATGAAATGGACTTCAGTCCTTCTGTTGATACAGCTGAGCTATTACTCTAGCTCT 60
             15 ATGTCTGTGAAATGGACTTCAGTAATTTTGCTAATACAACTGAGCTTTTGCTTTAGCTCT 74
Db
          61 GGGAGTTGTGGAAATGTGCCGCTGTGGCCCATGGAATATAGTCCTTGGATGAATATAAAG 120
Ov
            75 GGGAATTGTGGAAAGGTGCTGGTGTGGGCAGCAGAATACAGCCATTGGATGAATATAAAG 134
Db
         121 ACAATCCTGGATAAACTTATGCAGATAAGTCATGAGGTGACTGTTCTAACATTGTCAGCT 180
Qу
            135 ACAATCCTGGATGAGCTTATTCAGAGAGGTCATGAGGTGACTGTACTGGCATCTTCAGCT 194
Db
Qy
        181 TCCATTCTTGTTGATCCCAACATAACATCTGTTACTAAATTTGAGGTTTATTCTATATCT 240
            195 TCCATTCTTTTTGATCCCAACAACTCATCCGCTCTTAAAATTGAAATTTATCCCACATCT 254
        241 GTAATTAAAGATGATTTTGCAGGGTTTTTTTTCACACAACAGATTACTAAATGGATACAT 300
Qy
             255 TTAACTAAAACTGAGTT---GGAGAATTTCATCATGCAACAGATTAAGAGATGGTCA--- 308
Db
        301 GATCTTCCAAAACATATTTTGGTTTAAATGTGTTCCCTTCAAGAATATTCTTTGGGAA 360
Qу
```

Db	309 GACCTTCCAAAAGATACATTTTGGTTATATTTTTCACAAGTACAGGAAATCATGTCAATA 368
Qy	361 TATTCTGGTTATACTGAGAAGTTCTTTAAAGATGTAGTTTTGAACAAGAAACTTATGACA 420
Db	369 TTTGGTGACATAACTAGAAAGTTCTGTAAAGATGTAGTTTCAAATAAGAAATTTATGAAA 428
Qy	421 AACCTACAAGAATCAAGGTCTGATGTCGTTCATGCAAATGCCATTGGTCCCTTTGGAGAG 480
Db	429 AAAGTACAAGAGTCAAGATTTGACGTCATTTTTGCAGATGCTATTTTTCCCTGTAGTGAG 488
Qy	481 CTGCTGGCTGAGCTATTAAAAATATCCTTTGTGTACAGTCTCCACTTCTCTCCTGGCTAC 540
Db	489 CTGCTGGCTGAGCTATTTAACATACCCTTTGTGTACAGTCTCAGCTTCTCCTGGCTAC 548
Qy Db	541 ACATTTGAGAAATACAGTGGAGGATTTCTACTTCCACCTTCCTATGGAGCTGTTATTCTG 600
Qy	549 ACTTTTGAAAAGCATAGTGGAGGATTTATTTTCCCTCCTTCCT
Db	
Qy	661 TATTTTGACTTTTGGTTCCAAACATTTGATATGAAGAAGGGAGACCAGTTTTACAGTGAA 720
Db	
Qy	721 GTTCTAGGTAAGTCATGTTTTTTATCTGAGATAATGGGAAAAGCTGAAATGTGGCTCATT 780
Db	
Qy	781 CGAAACTACTGGTATTTGGAATTTCCTCGCCCACTCTTACCTAATTTTGAATTTGTTGTA 840
Db	789 CGAAACTCCTGGAATTTTCAGTTTCCTCATCCACTCTTACCAAATGTTGATTTTGTTGGA 848
Qy	841 AGACTCTACTGCAAACCTGTCAACCCCCTGCCTAAGGAGAAAATGGAAGAATTTGCCCAG 900
Db	849 GGACTCCACTGCAAACCTGCCAAACCCCTGCCTAAGGAAATGGAAGACTTTGTACAG 905
Qy	901 AGCTCTGATGAAGACGGTGTTGTGTTTTCTCTGGAGTCAGCTGTGCAAAACCTTACA 957
Db	906 AGCTCTGGAGAAAATGGTGTTGTGGTGTTTTCTCTGGGGTCAATGGTCAGTAACATGACA 965
Qy Db	958 GAAGAAAAAGCTGATCTTATCACTTCGGCCCTGGCTCAGATTCCACAAAAAGTCATGAAG 1017
Qу	966 GAAGAAAGGCCAACGTAATTGCATCAGCCCTGGCCCAGATCCCACAAAAGGTTCTGTGG 1025 1018TTCGGAAGGAAACCAAATACCTTAAGATCCAATACTCAGTGGCATAGGTGGATC 1071
Db	1026 AGATTGATGGGATAAACCAGATACCTAAGATCCAATACTCAGTGGATAGTGGATC 10/1
Qy	1072 CCACAGAATGAATGTCTTATCCTAGATCATCCCCAAACCAAAGCCTTTATAACTTATGGT 1131
Db	
Qy	1132 GGAACAAATAGCATCTATGAGATGATCTACCGTGGAGTCCCTTCCATGGGCATTCCTTTG 1191
Db	
Qy	1192 TTTGCGGACCAACATGATAACATTGCTCACATGAAGGCCAAGGGAGCAGCTGTTATATTG 1251
Db	1200 TTTGCCGATCAACCTGATAACATTGCTCACATGAAGGCCAGGGGAGCAGCTGTTAGAGTG 1259
Qу	1252 GACTTGAGCACAAAGTCAAGTACAGATTTGCTCGATATATCTGTGTTCGTATCTTTATTT 1311
Db	1260 GACTTCAACACAATGTCGAGTACAGACTTGCTGAATGCATTGAAGAGAGAG
Qy	1312 TTATCCTTCAGATATAAAGAGAGTGTTATGAAATTATCAAGAATTCAACATGATCAACCA 1371
Db	1320 CCTTCATATAAAGAGAATGTTATGAAATTATCAAGAATTCAACATGATCAACCA 1373
Qy	1372 GTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCC 1431

```
Db
                 1374 GTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCT 1433
                 1432 AAACACCTTCGAGTTGCAGCCCGTGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTG 1491
  Qу
                 Db
  Qу
                 1492 ATTGGGTTTCTGCTGGCCTGTGTGGCAACTGTGACATTTATCATCACAAAGTGTTGTCTG 1551
                          Db
                 1494 ATTGGGTTCCTGCTGTGTGTGGCAACTGTGATATTTATCGTCACAAAATGTTGTCTG 1553
  Qу
                 1552 TTTTGTTTCTGGAAGTTTACTAGAAAAGTGAAGAAGGAAAAAAGGGATTAGTTAT 1606
                          Db
                 1554 TTTTGTTTCTGGAAGTTTGCTAGAAAAGCAAAGAAGGGAAAAAATGATTAGTTAT 1608
  RESULT 12
  HSU59209
  LOCUS
                      HSU59209
                                                              2107 bp
                                                                                             linear
                                                                                mRNA
                                                                                                            PRI 02-JUL-1998
  DEFINITION
                     Homo sapiens C19steroid specific UDP-glucuronosyltransferase mRNA,
                      complete cds.
  ACCESSION
                      U59209
  VERSION
                     U59209.1 GI:3287472
  KEYWORDS
                     UGT2B17G.
  SOURCE
                     Homo sapiens (human)
     ORGANISM
                     Homo sapiens
                     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
  REFERENCE
                     1 (bases 1 to 2107)
     AUTHORS
                     Beaulieu, M., Levesque, E., Hum, D.W. and Belanger, A.
     TITLE
                     Isolation and characterization of a novel cDNA encoding a human
                     UDP-glucuronosyltransferase active on C19 steroids
     JOURNAL
                     J. Biol. Chem. 271 (37), 22855-22862 (1996)
    MEDLINE
                     96394358
      PUBMED
                     8798464
 REFERENCE
                     2 (bases 1 to 2107)
                     Hum, D.W., Belanger, A., Beaulieu, M. and Levesque, E.
    AUTHORS
    TITLE
                     Direct Submission
                     Submitted (23-MAY-1996) Laboratory of Molecular Endocrinology,
    JOURNAL
                     Centre Hospitalier de l'universite Laval, 2705 Boul. Laurier,
                     Ste-Foy, Quebec G1V 4G2, Canada
 FEATURES
                                   Location/Qualifiers
         source
                                    1. .2107
                                    /organism="Homo sapiens"
                                    /mol type="mRNA"
                                    /db xref="taxon:9606"
                                    /cell_type="LNCap"
                                    /tissue_type="prostate"
         CDS
                                    52. .1644
                                    /note="UGT2B17"
                                    /codon start=1
                                   /product="C19steroid specific UDP-glucuronosyltransferase"
                                   /protein_id="AAC25491.1"
                                   /db xref="GI:3287473"
                                   translation="MSLKWMSVFLLMQLSCYFSSGSCGKVLVWPTEYSHWINMKTILE/
                                   ELVQRGHEVIVLTSSASILVNASKSSAIKLEVYPTSLTKNDLEDFFMKMFDRWTYSIS
                                   {\tt LAELLNIPFLYSLRFSVGYTVEKNGGGFLFPPSYVPVVMSELSDQMIFMERIKNMIYM}
                                   {\tt LYFDFWFQAYDLKKWDQFYSEVLGRPTTLFETMGKAEMWLIRTYWDFEFPRPFLPNVD}
                                   FVGGLHCKPAKPLPKEMEEFVQSSGENGIVVFSLGSMISNMSEESANMIASALAQIPQ
                                   KVLWRFDGKKPNTLGSNTRLYKWLPQNDLLGHPKTKAFITHGGTNGIYEAIYHGIPMV
                                   GIPLFADQHDNIAHMKAKGAALSVDIRTMSSRDLLNALKSVINDPIYKENIMKLSRIH
                                   HDQPVKPLDRAVFW1EFVMRHKGAKHLRVAAHNLTW1QYHSLDV1AFLLACVATM1FM
                                   ITKCCLFCFRKLAKTGKKKKRD"
ORIGIN
   Query Match
                                          59.7%; Score 958.6; DB 9; Length 2107; 77.3%; Pred. No. 2.1e-209;
   Best Local Similarity
   Matches 1249; Conservative
                                                   0; Mismatches 339; Indels
                                                                                                                                6:
                    1 ATGGCTATGAAATGGACTTCAGTCCTTCTGTTGATACAGCTGAGCTATTACTCTAGCTCT 60
Qу
                       111 | 1 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 11 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 11
                  52 ATGTCTCTGAAATGGATGTCAGTCTTTCTGCTGATGCAGCTCAGTTGTTACTTTAGCTCT 111
Db
```

Qу	6	1 GGGAGTTGTGGAAATGTGCCGCTGTGGCCCATGGAATATAGTCCTTGGATGAATATAAAG 120
Db	11:	2 GGGAGTTGTGGAAAGGTGCTGGTGTGGCCCACAGAATACAGCCATTGGATAAATATGAAG 171
QУ		1 ACAATCCTGGATAAACTTATGCAGATAAGTCATGAGGTGACTGTTCTAACATTGTCAGCT 180
Db		2 ACAATCCTGGAAGAGCTTGTTCAGAGGGGTCATGAGGTGATTGTGTTGACATCTTCGGCT 231
Qy 		1 TCCATTCTTGTTGATCCCAACATAACATCTGTTACTAAATTTGAGGTTTATTCTATATCT 240
Db		2 TCTATTCTTGTCAATGCCAGTAAATCATCTGCTATTAAATTAGAAGTTTATCCTACATCT 291
Qy Db		CTAATTAAAGATGATTTTGCAGGGTTTTTTTTCACACAACAGATTACTAAATGGATACAT 300
Qy		GATCTTCCAAAACATATTTTGGTTTAAATGTGTTCCCTTCAAGAATATTCTTTGGGAA 360
Db		
Qy		TATTCTGGTTATACTGAGAAGTTCTTTAAAGATGTAGTTTTGAACAAGAAACTTATGACA 420
Db	409	
Qy	421	AACCTACAAGAATCAAGGTCTGATGTCGTTCATGCAAATGCCATTGGTCCCTTTGGAGAG 480
Db	469	AAACTACAAGAGTCAAAATTTGATGTCCTTCTGGCAGATGCCGTTAATCCCTGTGGTGAG 528
QУ	481	CTGCTGGCTGAGCTATTAAAAATATCCTTTGTGTACAGTCTCCACTTCTCTCCTGGCTAC 540
Db		CTGCTGGCTGAACTACTTAACATACCCTTTCTGTACAGTCTCCGCTTCTCTGTTGGCTAC 588
Qу		ACATTTGAGAAATACAGTGGAGGATTTCTACTTCCACCTTCCTATGGAGCTGTTATTCTG 600
Db Qy		ACAGTTGAGAAGAATGGTGGAGGATTTCTGTTCCCTCCTTCCT
Db		TCAGAATTAAGTGGTTCGATGACATTCATGGAGACAGTAAGAAATATTATATATGTGTTT 660
Qу		TATTTTGACTTTTGGTTCCAAACATTTGATATGAAGAAGGGAGACCAGTTTTACAGTGAA 720
Db		
Qy	721	GTTCTAGGTAAGTCATGTTTTTTATCTGAGATAATGGGAAAAGCTGAAATGTGGCTCATT 780
Db	769	
Qу	781	CGAAACTACTGGTATTTGGAATTTCCTCGCCCACTCTTACCTAATTTTGAATTTGTTGTA 840
Db		CGAACCTATTGGGATTTTGAATTTCCTCGCCCATTCTTACCAAATGTTGATTTTGTTGGA 888
Qy		AGACTCTACTGCAAACCTGTCAACCCCTGCCTAAGGAGAAAATGGAAGAATTTGCCCAG 900
Db		GGACTTCACTGTAAACCAGCCAAACCCTTGCCTAAGGAAATGGAAGAGTTTGTGCAG 945
Qy Db		AGCTCTGATGAAGACGGTGTTGTGTTTTCTCTGGAGTCAGCTGTGCAAAACCTTACA 957
Qу		AGCTCTGGAGAAAATGGTATTGTGGTGTTTTCTCTGGGGTCGATGATCAGTAACATGTCA 1005 GAAGAAAAAGCTGATCTTATCACTTCGGCCCTGGCTCAGATTCCACAAAAAGTCATGAAG 1017
Db		GAAGAAAGTGCCAACATGATTGCATCAGCCCTGGCTCAGATTCCACAAAAAGTCATGAAG 1017
Qу		TTCGGAAGGAAACCAAATACCTTAAGATCCAATACTCAGTGGCATAGGTGGATC 1071
Db		
Qy		CCACAGAATGAATGTCTTATCCTAGATCATCCCCAAACCAAAGCCTTTATAACTTATGGT 1131
		11 1111111 1111 1 1111111 111111111 1111

•

	Ob	1126	CCCCAGAATGACCTTCTTGGTCATCCCAAAACCAAAGCTTTTATAACTCATGGT	1170
(Ĵλ	1132	GGAACAAATAGCATCTATGAGATGATCTACCGTGGAGTCCCTTCCATGGGCATTCCTTTG	1191
I	Ob	1180	GGAACCAATGGCATCTATGAGGCGATCTACCATGGGATCCCTATGGTGGGCATTCCCTTG	1239
(ДХ	1192	TTTGCGGACCAACATGATAACATTGCTCACATGAAGGCCAAGGGAGCAGCTGTTATATTG	1251
1)b	1240	TTTGCGGATCAACATGATAACATTGCTCACATGAAAGCCAAGGGAGCAGCCCTCAGTGTG	1299
Ç	ŊΥ	1252	GACTTGAGCACAAAGTCAAGTACAGATTTGCTCGATATATCTGTGTTCGTATCTTTATTT	1311
I)b	1300	GACATCAGGACCATGTCAAGTAGAGATTTGCTCAATGCATTGAAGTCAGTCATT	1353
Ç) y	1312	TTATCCTTCAGATATAAAGAGAGTGTTATGAAATTATCAAGAATTCAACATGATCAACCA	1371
Ι)b	1354	AATGACCCTATCTATAAAGAGAATTCATGAAATTATCAAGAATTCATCATCATCATCACCG	1413
Ç	ŊΥ	1372	${\tt GTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCC}$	1431
Г	ď	1414		1473
Ç	ľΥ	1432	AAACACCTTCGAGTTGCAGCCCGTGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTG	1491
D	Ъ	1474	AAGCACCTTCGGGTCGCAGCCCACAACCTCACCTGGATCCAGTACCACTCTTTGGATGTG	1533
Q	У	1492	ATTGGGTTTCTGCTGGCCTGTGTGGCAACTGTGACATTTATCATCACAAAGTGTTGTCTG	1551
D	b	1534		1593
Q	У	1552	TTTTGTTTCTGGAAGTTTACTAGAAAAGTGAAGAAGGAAAAAAGGGATTAGTTAT 1606	
D	b	1594		

Result No.	Score	Query Match	Length	DB	ID	Description
1 2 3 4 5 6	1606 973 973 973 973 973	100.0 60.6 60.6 60.6 60.6	1606 1855 1855 1855 1855	6 6 6 9	ABN85391 ABL68501 ABL68868 ABN95622 ADD71099 AAD45991	Abn85391 Human NOV Abl68501 Kidney ca Abl68868 Kidney ca Abn95622 Gene #212 Add71099 Human UDP Aad45991 Human UGT
7 8 9 10 11 12 13 14	969.8 966.6 962.4 960.6 958.6 950.6 950.6	60.4 60.2 59.9 59.8 59.7 59.7 59.2 59.2	1714 1854 1639 1859 2107 3005 1829 1976 2090	8 3 6 5 2 9 9	ADA11075 AAZ95200 AAL41490 AAS69710 AAV15900 ADC39064 ADE53677 AAZ95206 ABK84210	Adal1075 Human cDN Aaz95200 Human UDP Aal41490 Drug meta Aas69710 DNA encod Aav15900 Uridine d Adc39064 Novel hum Ade53677 Human pro Aaz95206 Human UDP Abk84210 Human cDN

RESULT 8 AAZ95200

```
ID
   AAZ95200 standard; DNA; 1854 BP.
XX
```

AC AAZ95200; XX

DT05-JUN-2000 (first entry) XX

DE Human UDP-glucuronosyltransferase 2B7 nucleotide sequence. XX

UDP-glucuronosyltransferase 2B7; UGT2B7; polymorphism; metabolism; SNPs; drug interaction; detect; human; single nucleotide polymorphism; ds. KW KW XX

OS Homo sapiens.

```
XX
 PN
      WO200006776-A1.
 xx
 PD
      10-FEB-2000.
 хx
 PF
      22-JUL-1999;
                   99WO-US016675.
 XX
 PR
      28-JUL-1998; 98US-0094391P.
 XX
 PΑ
      (AXYS-) AXYS PHARM INC.
 XX
     Galvin M, Miller A, Penny L, Riedy M;
 ΡI
 XX
 DR
     WPI; 2000-195321/17.
 DR
     P-PSDB; AAY78934.
 XX
     Novel human UDP-glucuronosyltransferase sequence, polymorphisms for
 PT
 PT
     genotyping individuals to predict rate of metabolism of substrates and
 PT
     for identifying potential drug interactions.
 XX
 PS
     Disclosure; Page 41-44; 72pp; English.
 XX
 CC
     This sequence represents the human UDP-glucuronosyltransferase 2B7
 CC
     (UGT2B7) gene. UDP-glucuronosyltransferase (UGTs) are a family of enzymes
 CC
     that catalyse the glucuronic acid conjugation of a wide range of
 CC
     endogenous and exogenous substrates. The UGT2B gene subfamily encode
     steroid metabolizing isoforms in the liver. Alteration of the expression
 CC
 CC
     or function of UGTs may effect drug metabolism. The invention relates to
     non-chromosomal nucleic acid molecules, which comprise human UGT2B
 CC
     sequence polymorphisms (see AAZ95051-Z95110). Probes which detect the
     UGT2B locus polymorphisms can be used to detect altered UGT2B metabolism
 CC
     of a substrate in an individual. The nucleic acid molecules comprising a
 CC
     human UGT2B sequence polymorphism can be used in screening assays for
 CC
     genotyping individuals, also to predict their rate of metabolism of UGT2B
CC
     substrate, potential drug-drug interactions and adverse side effects. The
     polymorphisms can be used as single nucleotide polymorphisms (SNPs) for
CC
CC
     detecting genetic linkage related to phenotypic variation in activity or
CC
     expression of UGT2B protein. The polymorphism containing nucleic acid
CC
     molecules may also be used for generating genetically modified non-human
     animals and for obtaining site specific gene modification in cell lines
CC
XX
SO
     Sequence 1854 BP; 572 A; 338 C; 392 G; 552 T; 0 U; 0 Other;
  Query Match 60.2%; Score 966.6; DB 3; Length 1854; Best Local Similarity 78.1%; Pred. No. 4.2e-241;
  Matches 1261; Conservative
                             0; Mismatches 324; Indels 30; Gaps
Ov
           1 ATGGCTATGAAATGGACTTCAGTCCTTCTGTTGATACAGCTGAGCTATTACTCTAGCTCT 60
             Db
          15 ATGTCTGTGAAATGGACTTCAGTAATTTTGCTAATACAACTGAGCTTTTGCTTTAGCTCT 74
Qу
          61 GGGAGTTGTGGAAATGTGCCGCTGTGGCCCATGGAATATAGTCCTTGGATGAATATAAAG 120
             Db
          75 GGGAATTGTGGAAAGGTGCTGGTGTGGGCAGCAGAATACAGCCATTGGATGAATATAAAG 134
         121 ACAATCCTGGATAAACTTATGCAGATAAGTCATGAGGTGACTGTTCTAACATTGTCAGCT 180
Qу
             135 ACAATCCTGGATGAGCTTATTCAGAGAGGTCATGAGGTGACTGTACTGGCATCTTCAGCT 194
Db
         181 TCCATTCTTGTTGATCCCAACATAACATCTGTTACTAAATTTGAGGTTTATTCTATATCT 240
Qу
             Db
         195 TCCATTCTTTTTGATCCCAACAACTCATCCGCTCTTAAAATTGAAATTTATCCCACATCT 254
         241 GTAATTAAAGATGATTTTGCAGGGTTTTTTTTCACACAACAGATTACTAAATGGATACAT 300
Qу
              255 TTAACTAAAACTGAGTT---GGAGAATTTCATCATGCAACAGATTAAGAGATGGTCA--- 308
Db
Qy
         301 GATCTTCCAAAACATATATTTTGGTTTAAATGTGTTCCCTTCAAGAATATTCTTTGGGAA 360
            309 GACCTTCCAAAAGATACATTTTGGTTATATTTTTCACAAGTACAGGAAATCATGTCAATA 368
Db
```

Qy Db	361 TATTCTGGTTATACTGAGAAGTTCTTTAAAGATGTAGTTTTGAACAAGAAACTTATGACA 420
QУ	421 AACCTACAAGAATCAAGGTCTGATGTCGTTCATGCAAATGCCATTGGTCCCTTTGGAGAG 480
Db	
Qy	481 CTGCTGGCTGAGCTATTAAAAATATCCTTTGTGTACAGTCTCCACTTCTCTCCCTAGC 540
DЪ	
Qу	541 ACATTTGAGAAATACAGTGGAGGATTTCTACTTCCACCTTCCTATGGAGCTGTTATTCTC 600
Db	
Qу	601 TCAGAATTAAGTGGTTCGATGACATTCATGGAGACAGTAAGAAATATTATATATGTGTTT 660
Db	
Qу	661 TATTTTGACTTTTGGTTCCAAACATTTGATATGAAGAAGGGAGACCAGTTTTACAGTGAA 720
Db	009 TACTITIGACTITIGGTTCGAAATATTTGACATGAAGAAGTGGGATCAGTTTTATAGTGAA 728
Qγ	721 GTTCTAGGTAAGTCATGTTTTTTATCTGAGATAATGGGAAAAGCTGAAATGTGGCTCATT 780
Db	729 GIICIAGGAAGACCCACTACATTATCTGAGACAATGGGGAAAGCTGACGTATGGCTTATT 788
Qy Db	781 CGAAACTACTGGTATTTGGAATTTCCTCGCCCACTCTTACCTAATTTTGAATTTGTTGTA 840
Qy	705 CGAAACTCCTGGAATTTTCAGTTTCCATATCCACTCTTACCAAATGTTGATTTTGTTGGA 848
Db	841 AGACTCTACTGCAAACCTGTCAACCCCCTGCCTAAGGAGAAATGGAAGAATTTGCCCAG 900
Qу	849 GGACTCCACTGCAAACCTGCCAAACCCCTGCCTAAGGAAATGGAAGACTTTGTACAG 905 901 AGCTCTGATGAAGACGGTGTTGTGTTTTCTCTGGAGTCAGCTGTGCAAAACCTTACA 957
Db	
Qy	958 GAAGAAAAAGCTGATCTTATCACTTCGGCCCTGGCTCAGATTCCACAAAAACTGATGAAG
Db	
Qy	1018TTCGGAAGGAAACCAAATACCTTAAGATCCAATACTCAGTGGCATACGTGGATG
Db	
Qу	1072 CCACAGAATGAATGTCTTATCCTAGATCATCCCCAAACCAAAGCCTTTATAACTTATGGT 1131
Db	
Qy	1132 GGAACAATAGCATCTATGAGATGATCTACCGTGGAGTCCCTTCCATGGGCATTCCTTTG 1191
Db	1199
Qy 	1192 TTTGCGGACCAACATGATAACATTGCTCACATGAAGGCCAAGGGAGCAGCTGTTATATTG 1251
Db	1110000ATCAACCTGATAACATTGCTCACATGAAGGCCAGGGGAGCAGCTGTTAGAGTG 1259
Qy	1252 GACTTGAGCACAAAGTCAAGTACAGATTTGCTCGATATATCTGTGTTCGTATCTTTATTT 1311
Db	ONOTICAACACAATGICGAGTACAGACTTGCTGAATGCATTGAAGAGAGTAATTAAT
Qy Db	1312 TTATCCTTCAGATATAAAGAGAGTGTTATGAAATTATCAAGAATTCAACATGATCAACCA 1371
Qy	ATATAAAGAGAATGTTATGAAATTATCAAGAATTCAACATGATCAACCA 1373
Db	1372 GTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCC 1431

```
1432 AAACACCTTCGAGTTGCAGCCCGTGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTG 1491
  Qу
               Dh
          1434 AAACACCTTCGGGTTGCAGCCCACGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTG 1493
          1492 ATTGGGTTTCTGCTGGCCTGTGTGGCAACTGTGACATTTATCATCACAAAGTGTTGTCTG 1551
  Οv
               1494 ATTGGGTTCCTGCTGTGTGTGGCAACTGTGATATTTATCGTCACAAAATGTTGTCTG 1553
  Db
 Qу
          1552 TTTTGTTTCTGGAAGTTTACTAGAAAAGTGAAGAAGGGAAAAAAGGGATTAGTTAT 1606
               Db
          1554 TTTTGTTTCTGGAAGTTTGCTAGAAAAGCAAAGAAGGGGAAAAAATGATTAGTTAT 1608
 RESULT 11
 AAV15900
      AAV15900 standard; cDNA; 2107 BP.
 AC
      AAV15900;
 DТ
     26-MAY-1998 (first entry)
 XX
     Uridine diphospho-glucuronosyltransferase 2B17 (UGT2B17) encoding cDNA.
 DE
 XX
 KW
      Uridine diphospho-glucuronosyltransferase 2B17; UGT2B17; catalyse;
      androsterone; androsterone-glucuronic acid; androgen; enzyme; ss.
 KW
 XX
 os
     Homo sapiens.
 XX
 FH
     Key
                    Location/Qualifiers
 FT
     5'UTR
                    1. .51
 FT
                    /*tag= a
 FT
     CDS
                    52. .1644
 FΤ
                    /*tag= b
                    /product= "UGTB17 enzyme"
 FT
 FT
     3'UTR
                    1645. .2107
FΤ
                    /*tag= c
xx
PN
     W09744466-A1.
XX
PD
     27-NOV-1997.
ХX
PF
     16-MAY-1997;
                   97WO-CA000328.
XX
₽R
     17-MAY-1996;
                   96US-00649319.
XX
     (ENDO-) ENDORECHERCHE INC.
PA
XX
ΡI
     Belanger A, Hum DW, Beaulieu M, Levesque E;
XX
DR
     WPI; 1998-018520/02.
DR
     P-PSDB; AAW47126.
XX
    DNA encoding uridine di:phospho:glucuronosyl:transferase 2B17 - which
PT
    catalyses conversion of androsterone to androsterone-glucuronic acid.
PT
XX
PS
    Claim 15; Page 4-6; 53pp; English.
xx
    This cDNA encodes an enzyme uridine di-phosphoglucuronosyltransferase
CC
    2B17 (UGT2B17). This novel enzyme catalyses the conversion of
CC
    androsterone to androsterone-glucuronic acid. The UGT2B17 can be used to
CC
CC
    detect anti-UGT2B17 antibodies. The antibody can be used to detect a
    localised concentration of UGT2B17 or an alteration in androgen activity.
CC
    The UGT2B17 can also be used to alter the concentration of an androgenic
CC
CC
    compound in a tissue, specifically dihydrotestosterone. An isolated
CC
    nucleotide sequence comprising at least 30 consecutive nucleotides from
    the coding region of the 2107 base pair sequence, or its complement can
CC
    be used to block the synthesis of UGT2B17, e.g. an expression disrupting
CC
    sense or antisense fragment, or as a probe for a UGT2B17 coding sequence
```

Be Ma	est Local Similarity 77.3%; Pred. No. 5.4e-239; atches 1249; Conservative 0; Mismatches 339; Indels 27; Gaps 6;
Qу	1 ATGGCTATGAAATGGACTTCAGTCCTTCTGTTGATACAGCTGAGCTATTACTCTAGCTCT 60
Db	
Qу	61 GGGAGTTGTGGAAATGTGCCGCTGTGGCCCATGGAATATAGTCCTTGGATGAATATAAAG 120
Db	
Qу	121 ACAATCCTGGATAAACTTATGCAGATAAGTCATGAGGTGACTGTTCTAACATTGTCAGCT 180
Db	
Qу	181 TCCATTCTTGTTGATCCCAACATAACATCTGTTACTAAATTTGAGGTTTATTCTATATCT 240
Db	232 TCTATTCTTGTCAATGCCAGTAAATCATCTGCTATTAAATTAGAAGTTTATCCTACATCT 291
Qу	241 GTAATTAAAGATGATTTTGCAGGGTTTTTTTCACACAACAGATTACTAAATGGATACAT 300
Db	292 TTAACTAAAAATGATTTGGAAGATTTTTTTATGAAAATGTTCGATAGATGGACATAT 348
Qу	301 GATCTTCCAAAACATATATTTTGGTTTAAATGTGTTCCCTTCAAGAATATTCTTTGGGAA 360
Db	349 AGTATTTCAAAAAATACATTTTGGTCATATTTTTCACAACTACAAGAATTGTGTTGGGAA 408
Qy	361 TATTCTGGTTATACTGAGAAGTTCTTTAAAGATGTAGTTTTGAACAAGAAACTTATGACA 420
DЪ	409 TATTCTGACTATAATATAAAGCTCTGTGAAGATGCAGTTTTGAACAAGAAACTTATGAGA 468
Qу	421 AACCTACAAGAATCAAGGTCTGATGTCGTTCATGCAAATGCCATTGGTCCCTTTGGAGAG 480
Db	469 AAACTACAAGAGTCAAAATTTGATGTCCTTCTGGCAGATGCCGTTAATCCCTGTGGTGAG 528
ДУ	481 CTGCTGGCTGAGCTATTAAAAATATCCTTTGTGTACAGTCTCCACTTCTCTCCTGGCTAC 540
Db	529 CTGCTGGCTGAACTACTTAACATACCCTTTCTGTACAGTCTCCGCTTCTCTGTTGGCTAC 588
Qy Db	541 ACATTTGAGAAATACAGTGGAGGATTTCTACTTCCACCTTCCTATGGAGCTGTTATTCTG 600
Qу	569 ACAGTIGAGAAGAATGGTGGAGGATTTCTGTTCCCTCCTATGTACCTGTTGTTATG 648
Db	601 TCAGAATTAAGTGGTTCGATGACATTCATGGGGGACAGTAAGAAATATTATATATGTGTTT 660
Qy	649 TCAGAATTAAGTGATCAAATGATTTTCATGGAGAGGATAAAAAATATGATATATAT
Db	661 TATTTTGACTTTTGGTTCCAAACATTTGATATGAAGAAGGGAGACCAGTTTTACAGTGAA 720
Qy	721 GTTCTAGGTAAGTCATGTTTTTTATCTGAGATAATGGGAAAAGCTGAAATGTGGCTCATT 780
Db	
Qy	781 CGAAACTACTGGTATTTGGAATTTCCTCGCCCACTCTTACCTAATTTTGAATTTCTTGTA 840
Db	
Qy	841 AGACTCTACTGCAAACCTGTCAACCCCCTGCCTAAGGAGAAATGGAAGAATTTGCCCAC ROO
Db	
Qу	901 AGCTCTGATGAAGACGGTGTTGTGTTTTCTCTGGAGTCAGCTGTGCAAAACCTTACA 957
Db	

QУ	958	GAAGAAAAAGCTGATCTTATCACTTCGGCCCTGGCTCAGATTCCACAAAAAGTCATGAAG 1017
Db	1006	
Qу	1018	TTCGGAAGGAAACCAAATACCTTAAGATCCAATACTCAGTGGCATAGGTGGATC 1071
Db		AGATTTGATGGCAAGAAGCCAAATACTTTAGGTTCCAATACTCGACTGTATAAGTGGTTA 1125
Qу	1072	CCACAGAATGAATGTCTTATCCTAGATCATCCCCAAACCAAAGCCTTTATAACTTATGGT 1131
Db		
Qy	1132	GGAACAAATAGCATCTATGAGATGATCTACCGTGGAGTCCCTTCCATGGGCATTCCTTTG 1191
Db	1180	GGAACCAATGGCATCTATGAGGCGATCTACCATGGGATCCCTATGGTGGGCATTCCCTTG 1239
QУ	1192	TTTGCGGACCAACATGATAACATTGCTCACATGAAGGCCAAGGGAGCAGCTGTTATATTG 1251
Db	1240	
Qу	1252	GACTTGAGCACAAAGTCAAGTACAGATTTGCTCGATATATCTGTGTTCGTATCTTTATTT 1311
Db	1300	
Qy	1312	TTATCCTTCAGATATAAAGAGAGTGTTATGAAATTATCAAGAATTCAACATGATCAACCA 1371
Db		AATGACCCTATCTATAAAGAGAATATCATGAAATTATCAAGAATTCATCATGATCAACCG 1413
Qу	1372	GTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCC 1431
Db	1414	
Qy	1432	AAACACCTTCGAGTTGCAGCCCGTGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTG 1491
Db	1474	
Qy	1492	ATTGGGTTTCTGCTGGCCTGTGTGGCAACTGTGACATTTATCATCACAAAGTGTTGTCTG 1551
Db	1534 /	
Qy	1552	TTTTGTTTCTGGAAGTTTACTAGAAAAGTGAAGAAGGAAAAAAGGGATTAGTTAT 1606
Db		

Issued

1

Result No.	Score	Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10	966.6 958.6 950.6 930.4 570.4 551.4 459 447.4 446.8 441 412	59.7 59.2 57.9 35.5 34.3 28.6 27.9 27.8	1854 2107 1976 2092 2966 1413 2312 1686 1001 1323 1001	4 4 4 4 4 4 4	US-09-180-852-1 US-09-356-806-112 US-09-356-806-7 US-09-976-594-241 US-09-813-918-1 US-09-356-806-114 US-09-356-806-41 US-09-356-806-41 US-09-356-806-1	Sequence 39, Appl Sequence 1, Appli Sequence 112, App Sequence 7, Appli Sequence 241, App Sequence 1, Appli Sequence 114, App Sequence 41, Appl Sequence 412, App Sequence 1, Appli Sequence 403, App
No. 1 2 3	Score 798.4 784.2 777.8	49.7		DB 14 11 11	ID CD013998 AK050435 AK004971	Description CD013998 90117389 AK050435 Mus muscu AK004971 Mus muscu

	4	713	44.4	1892	11	AK034801	AK034801 Mus muscu
	5	710.4	44.2	1896	11	AK002736	
	6	695.4	43.3	2895	11	AK083294	AK002736 Mus muscu
	-						AK083294 Mus muscu
	7	689.8	43.0	1642	14	CD013996	CD013996 90117309
	8	600.8	37.4	1716	14	CD013997	CD013997 90117357
	9	554.6	34.5	1783	11	AK050327	AK050327 Mus muscu
	10	549.8	34.2	2099	11	AK008601	AK008601 Mus muscu
	11	525	32.7	983	13	BX444042	
	12						BX444042 BX444042
		520.8	32.4	1023	14	CD013994	CD013994 90130114
	13	520.8	32.4	1336	14	CD013995	CD013995 90130122
	14	518.6	32.3	2575	11	BC048920	
С	15	442	27.5				BC048920 Mus muscu
•	13	772	27.5	823	10	BF689099	BF689099 602185172

C.