

Pseudo-nMOS Logic Dynamic Logic Pass Transistor Logic

CMOS VLSI Design 4th Ed.

10: Circuit Families

Introduction

- What makes a circuit fast?
 - I = C dV/dt $\rightarrow t_{pd} \propto (C/I) \Delta V$
 - low capacitance
 - high current
 - small swing
- ☐ Logical effort is proportional to C/I
- pMOS are the enemy!
 - High capacitance for a given current
- ☐ Can we take the pMOS capacitance off the input?
- ☐ Various circuit families try to do this...

10: Circuit Families

CMOS VLSI Design 4th Ed.

3

Pseudo-nMOS

- ☐ In the old days, nMOS processes had no pMOS
 - Instead, use pull-up transistor that is always ON
- ☐ In CMOS, use a pMOS that is always ON
 - Ratio issue
 - Make pMOS about ¼ effective strength of

10: Circuit Families

CMOS VLSI Design 4th Ed.

Pseudo-nMOS Design

- ☐ Ex: Design a k-input AND gate using pseudo-nMOS. Estimate the delay driving a fanout of H
- □ G =
- □ F=
- □ P =
- □ N =
- □ D =

Pseudo-nMOS
In₁ -1 - Y
H

10: Circuit Families

CMOS VLSI Design 4th Ed.

7

Pseudo-nMOS Power

- \square Pseudo-nMOS draws power whenever Y = 0
 - Called static power $P = I_{DD}V_{DD}$
 - A few mA/ gate * 1M gates would be a problem
 - Explains why nMOS went extinct
- ☐ Use pseudo-nMOS sparingly for wide NORs
- ☐ Turn off pMOS when not in use

10: Circuit Families

CMOS VLSI Design 4th Ed.

Ratio Example

- ☐ The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- ☐ Find static power drawn by the ROM

$$I_{\text{on-p}}$$
 = 36 $\mu\text{A},\,V_{\text{DD}}$ = 1.0 V

□ Solution:

$$P_{\text{pull-up}} = P_{\text{otatio}} = P_{\text{otatio}}$$

10: Circuit Families

CMOS VLSI Design 4th Ed.

Dual-Rail Domino

- ☐ Domino only performs noninverting functions:
 - AND, OR but not NAND, NOR, or XOR
- ☐ Dual-rail domino solves this problem
 - Takes true and complementary inputs
 - Produces true and complementary outputs

sig_h	sig_l	Meaning
0	0	Precharged
0	1	'0'
1	0	'1'
1	1	invalid

10: Circuit Families

CMOS VLSI Design 4th Ed.

17

Example: AND/NAND

- ☐ Given A_h, A_I, B_h, B_I
- \Box Compute Y_h = AB, Y_I = \overline{AB}
- ☐ Pulldown networks are conduction complements

10: Circuit Families

CMOS VLSI Design 4th Ed.

Example: XOR/XNOR

■ Sometimes possible to share transistors

10: Circuit Families

CMOS VLSI Design 4th Ed.

19

Leakage

- ☐ Dynamic node floats high during evaluation
 - Transistors are leaky $(I_{OFF} \neq 0)$
 - Dynamic value will leak away over time
 - Formerly miliseconds, now nanoseconds
- ☐ Use keeper to hold dynamic node
 - Must be weak enough not to fight evaluation

10: Circuit Families

CMOS VLSI Design 4th Ed.

Charge Sharing Dynamic gates suffer from charge sharing $V_x = V_y =$

Noise Sensitivity

- Dynamic gates are very sensitive to noise
 - Inputs: $V_{IH} \approx V_{tn}$
 - Outputs: floating output susceptible noise
- Noise sources
 - Capacitive crosstalk
 - Charge sharing
 - Power supply noise
 - Feedthrough noise
 - And more!

10: Circuit Families

CMOS VLSI Design 4th Ed.

23

Power

- Domino gates have high activity factors
 - Output evaluates and precharges
 - If output probability = 0.5, α = 0.5
 - Output rises and falls on half the cycles
 - Clocked transistors have α = 1
- ☐ Leads to very high power consumption

10: Circuit Families

CMOS VLSI Design 4th Ed.

Domino Summary

- ☐ Domino logic is attractive for high-speed circuits
 - 1.3 2x faster than static CMOS
 - But many challenges:
 - Monotonicity, leakage, charge sharing, noise
- ☐ Widely used in high-performance microprocessors in 1990s when speed was king
- ☐ Largely displaced by static CMOS now that power is the limiter
- ☐ Still used in memories for area efficiency

10: Circuit Families

CMOS VLSI Design 4th Ed.

25

Pass Transistor Circuits

- ☐ Use pass transistors like switches to do logic
- ☐ Inputs drive diffusion terminals as well as gates
- ☐ CMOS + Transmission Gates:
 - 2-input multiplexer
 - Gates should be restoring

10: Circuit Families

CMOS VLSI Design 4th Ed.

Pass Transistor Summary

- ☐ Researchers investigated pass transistor logic for general purpose applications in the 1990's
 - Benefits over static CMOS were small or negative
 - No longer generally used
- ☐ However, pass transistors still have a niche in special circuits such as memories where they offer small size and the threshold drops can be managed

10: Circuit Families

CMOS VLSI Design 4th Ed.