AIR QUALITY ANALYSIS AND PREDICTION IN TAMIL NADU

PROJECT REPORT PHASE- 2 SUBMITTED BY, MICHEAL RAJ.F REG NO:9617211060308

INTRODUCTION

Air pollution is one of the greatest environmental risk to health. By reducing air pollution levels, countriescan reduce the burden of disease from stroke, heart disease, lung cancer, and both chronic and acute respiratory diseases, including asthma.

Here we are studied about the air quality analysis methods in Tamil Nadu

Content for Project Phase 2:

For analyzing data, we need some libraries. In this section, we are importing all the required libraries like pandas NumPy, matplotlib, plotly, seaborn, and word cloud that are required for data analysis. Check the below code to import all the required libraries

Data Source:

A good data source for credit card fraud detection should be accurate, complete, Covering the geographic area of interest, Accessible.

Dataset Link

https://tn.data.gov.in/resource/location-wise-daily-ambient-air-quality-tamil-nadu-year-2014

EXPLORATORY DATA ANALYSIS

Exploratory data analysis is performed on the raw data. The insights gained from the analysis helps to identify the pre- processing tasks that need to be performed to form the dataset for building the air quality prediction model.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

from sklearn.preprocessing import
LabelEncoder
from sklearn.model_selection import
train_test_split
from sklearn.linear_model import
LinearRegression
from sklearn.tree import
DecisionTreeRegressor
```

```
from sklearn.ensemble import
RandomForestRegressor
from sklearn import metrics
from sklearn.metrics import
mean_absolute_error, mean_squared_error, r2_s
core
from sklearn.metrics import
accuracy_score,confusion_matrix
df=pd.read_csv('../input/india-air-
quality-
data/data.csv',encoding='unicode_escap
e')
# Reading the dataset
Data Understanding
df.head()
# Loading the dataset
output
```

		st n - c o	samp ling_ date	state	locati on	agen cy	type	so2	no2	rspm	spm	locati on_m onito ring_ statio n	pm2_ 5	date	
--	--	------------------------	-----------------------	-------	--------------	------------	------	-----	-----	------	-----	---	-----------	------	--

	d e												
0	1 5 0. 0	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	NaN	Resid ential , Rural and other Areas	4.8	17.4	NaN	NaN	NaN	NaN	1990- 02-01
1	1 5 1. 0	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	NaN	Indus trial Area	3.1	7.0	NaN	NaN	NaN	NaN	1990- 02-01
2	1 5 2. 0	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	NaN	Resid ential , Rural and other Areas	6.2	28.5	NaN	NaN	NaN	NaN	1990- 02-01
3	1 5 0. 0	Marc h - M031 990	Andh ra Prade sh	Hyde rabad	NaN	Resid ential , Rural and other Areas	6.3	14.7	NaN	NaN	NaN	NaN	1990- 03-01
4	1 5 1. 0	Marc h - M031 990	Andh ra Prade sh	Hyde rabad	NaN	Indus trial Area	4.7	7.5	NaN	NaN	NaN	NaN	1990- 03-01

df.shape

As we can see that there are 4,35,742 rows and 13 columns in the dataset

(435742, 13)

```
df.info()
```

Checking the over all information on the dataset.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to
435741

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype					
0	stn_code	291665 non-null	object					
1	sampling_date	435739 non-null	object					
2	state	435742 non-null	object					
3	location	435739 non-null	object					
4	agency	286261 non-null	object					
5	type	430349 non-null	object					
6	so2	401096 non-null	float64					
7	no2	419509 non-null	float64					
8	rspm	395520 non-null	float64					
9	spm	198355 non-null	float64					
10	location_monitoring_station	408251 non-null	object					
11	pm2_5	9314 non-null	float64					
12	date	435735 non-null	object					
<pre>dtypes: float64(5), object(8)</pre>								
memory usage: 43.2+ MB								

In [7]:

df.isnull().sum()

There are a lot of missing values
present in the dataset

Out[7]:

stn_code	144077
sampling_date	3
state	0
location	3
agency	149481
type	5393
so2	34646
no2	16233
rspm	40222
spm	237387
location_monitoring_station	27491
pm2_5	426428
date	7
da	

dtype: int64

In [8]:

df.describe()

Checking the descriptive stats of the numeric values present in the data like mean, standard deviation, min values and max value present in the data

Out[8]:

	so2	no2	rspm	spm	pm2_5
count	401096.000000	419509.000000	395520.000000	198355.000000	9314.000000
mean	10.829414	25.809623	108.832784	220.783480	40.791467
std	11.177187	18.503086	74.872430	151.395457	30.832525
min	0.000000	0.000000	0.000000	0.000000	3.000000
25%	5.000000	14.000000	56.000000	111.000000	24.000000
50%	8.000000	22.000000	90.000000	187.000000	32.000000
75%	13.700000	32.200000	142.000000	296.000000	46.000000

max 909.000000 876.000000 6307.033333 3380.000000 504.000000	nax	909.000000	876.000000		3380.000000	504.000000	
--	-----	------------	------------	--	-------------	------------	--

In [9]:

df.nunique()

These are all the unique values present in the dataframe

		Out[9]:
stn_code	803	
sampling_date	5485	
state	37	
location	304	
agency	64	
type	10	
so2	4197	
no2	6864	
rspm	6065	
spm	6668	
<pre>location_monitoring_station</pre>	991	
pm2_5	433	
date	5067	
dtype: int64		

df.columns

These are all the columns present in the dataset.

Out[10]:

In [10]:

stn_code (station code) sampling_date (date of sample collection) state (Indian State) location (location of sample collection) agency type (type of area) so2 (sulphur dioxide concentration) no2 (nitrogen dioxide concentration) rspm (respirable suspended particulate matter concentration) spm (suspended particulate matter) location_monitoring_station pm2_5 (particulate matter 2.5) date (date)

Data Visualization

In [11]:

sns.pairplot(data=df)

Out[11]:

<seaborn.axisgrid.PairGrid at 0x7fd7799bb690>


```
df['type'].value_counts()
# Viewing the count of values present
in the type column
```

```
Out[14]:
Residential, Rural and other Areas
                            179014
Industrial Area
                             96091
Residential and others
                             86791
Industrial Areas
                             51747
Sensitive Area
                              8980
Sensitive Areas
                              5536
RIRUO
                              1304
Sensitive
                              495
Industrial
                              233
Residential
                              158
Name: type, dtype: int64
                                                  In [15]:
plt.figure(figsize=(15, 6))
plt.xticks(rotation=90)
df.type.hist()
plt.xlabel('Type')
plt.ylabel('Frequencies')
plt.plot()
# The visualization shows us the count
of Types present in the dataset.
```

Out[15]:

CONCLUTION

In conclusion, ambient air pollution is a health hazard. It is a global challenge, as evidence shows that adverse effects still exist even at relatively low air pollutant concentrations, and so no threshold values for classical air pollutants can be established based on the available data.