练习5.2

3. 判断下列矩阵可否对角化

$$(1) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} \qquad (2) \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix} \qquad (3) \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

解 先求特征值,再求特征向量,若有3个线性无关的特征向量,则可对角化.

(1)
$$\begin{vmatrix} \lambda \mathbf{E} - \mathbf{A} \end{vmatrix} = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 6 & 11 & \lambda + 6 \end{vmatrix} = (\lambda + 1)(\lambda + 2)(\lambda + 3),$$

故有 3 个特征值 $\lambda_1 = -1$, $\lambda_2 = -2$, $\lambda_3 = -3$, 可以对角化.

$$\lambda_1 = -1$$
时,解 $(\lambda \pmb{E} - \pmb{A}) \pmb{x} = \pmb{0}$ 得线性无关的特征向量 $\pmb{p}_1 = (1, -1, 1)^{\mathrm{T}}$.

$$\lambda_2=-2$$
 时,解 $(\lambda \pmb{E}-\pmb{A})\pmb{x}=\pmb{0}$ 得线性无关的特征向量 $\pmb{p}_2=(1,-2,4)^{\mathrm{T}}$.

$$\lambda_2=-2$$
 时,解 $(\lambda E-A)x=0$ 得线性无关的特征向量 $p_2=(1,-2,4)$.
$$\lambda_3=-3$$
 时,解 $(\lambda E-A)x=0$ 得线性无关的特征向量 $p_3=(1,-3,9)^{\mathrm{T}}$.

$$\lambda_3 = -3$$
 时,解 $(\lambda E - A)x = 0$ 得线性无关的特征向量 $p_3 = (1, -3, 9)^T$.

取 $P = (p_1, p_2, p_3) = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{pmatrix}$,则可对角化为 $P^{-1}AP = A = \begin{pmatrix} -1 & -2 \\ -3 \end{pmatrix}$.

(2) $|\lambda E - A| = \begin{vmatrix} \lambda - 4 & -6 & 0 \\ 3 & \lambda + 5 & 0 \\ 3 & 6 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$,
故 A 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -2$,可以对角化。

(2)
$$\left| \lambda \boldsymbol{E} - \boldsymbol{A} \right| = \begin{vmatrix} \lambda - 4 & -6 & 0 \\ 3 & \lambda + 5 & 0 \\ 3 & 6 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2),$$

故 \mathbf{A} 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -2$, 可以对角

$$\lambda_{_{\! 1}}=\lambda_{_{\! 2}}=1$$
 时,解 $(\lambda \pmb{E}-\pmb{A})\pmb{x}=\pmb{0}$ 得基础解系: $\pmb{p}_{_{\! 1}}=(-2,1,0)^{\mathrm{T}}$, $\pmb{p}_{_{\! 2}}=(0,0,1)^{\mathrm{T}}$.

$$\lambda_3 = -2$$
 时,解 $(\lambda \pmb{E} - \pmb{A}) \pmb{x} = \pmb{0}$ 得基础解系: $\pmb{p}_3 = (-1,1,1)^{\mathrm{T}}$.

取
$$\mathbf{P} = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \begin{pmatrix} -2 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
,则可对角化为 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$.
$$(3) \ \left| \lambda \mathbf{E} - \mathbf{A} \right| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2) \,,$$

(3)
$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2),$$

故 \mathbf{A} 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$.

 $\lambda_1=\lambda_2=1$ 时,解 $(\lambda \pmb{E}-\pmb{A})\pmb{x}=\pmb{0}$ 得基础解系: $\pmb{p}_1=(-1,-2,1)^{\mathrm{T}}$,只有 1 个线性无关的解向量,故 \pmb{A} 不可对角化.

4. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & \\ & 2 & \\ & & b \end{pmatrix}$$
相似,求 a, b 及可逆阵 \mathbf{P} ,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

解 因为
$$m{A}\sim m{B}=m{\Lambda}$$
,则 $\sum_{i=1}^3 a_{ii}=\sum_{i=1}^3 \lambda_i$, $\left|m{A}
ight|=\left|m{B}
ight|$,即

$$\begin{cases} 1+4+a=2+2+b, \\ 6(a-1)=|\mathbf{A}|=|\mathbf{B}|=4b, \end{cases}$$

解得 a=5 , b=6 . 由题设条件 ${\bf A}\sim {\bf B}={\bf \Lambda}$, 由相似矩阵的性质, ${\bf A}$ 有特征值 $\lambda_1=\lambda_2=2$, $\lambda_3=6$.

当
$$\lambda_1 = \lambda_2 = 2$$
时,由 $(2E - A)x = 0$,因

$$2\boldsymbol{E} - \boldsymbol{A} = egin{pmatrix} 1 & 1 & -1 \ -2 & -2 & 2 \ 3 & 3 & -3 \end{pmatrix} \xrightarrow{r_2 + 2r_1} egin{pmatrix} 1 & 1 & -1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix},$$

得基础解系为 $\alpha_1=(-1,1,0)^{\rm T}$, $\alpha_2=(1,0,1)^{\rm T}$,即为矩阵 ${\bf A}$ 的属于特征值 $\lambda_1=\lambda_2=2$ 的线性无关的特征向量;

$$6\boldsymbol{E}-\boldsymbol{A} = \begin{pmatrix} 5 & 1 & -1 \\ -2 & 2 & 2 \\ 3 & 3 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & -1 \\ 5 & 1 & -1 \\ 3 & 3 & 1 \end{pmatrix} \xrightarrow{r_2 - 5r_1} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix},$$

其基础解系为 $\alpha_3=(1,-2,3)^{\mathrm{T}}$,即为矩阵 \boldsymbol{A} 的属于特征值 $\lambda_3=6$ 的特征向量。

令
$$\mathbf{P} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$
,则有 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

 \mathbf{M} 先求 \mathbf{A} 的特征值与特征向量. 医

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)^2 (\lambda - 5),$$

故 ${m A}$ 的特征值为 ${m \lambda}_1={m \lambda}_2=-1$, ${m \lambda}_3=5$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 5 \end{pmatrix},$$

从而 $\mathbf{A} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}$,得

$$\mathbf{A}^{k} = \mathbf{P} \mathbf{\Lambda}^{k} \mathbf{P}^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{k} \\ & (-1)^{k} \\ & & 5^{k} \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 5^{k} + 2(-1)^{k} & 5^{k} - (-1)^{k} & 5^{k} - (-1)^{k} \\ 5^{k} - (-1)^{k} & 5^{k} + 2(-1)^{k} & 5^{k} - (-1)^{k} \\ 5^{k} - (-1)^{k} & 5^{k} - (-1)^{k} & 5^{k} + 2(-1)^{k} \end{pmatrix}.$$

7. 设n 阶实对称矩阵 A 的特征值仅为 0 和 1,证明: $A^2 = A$.

证 因为 A 为实对称矩阵,从而可以对角化.设 A 的特征值中有 r 个 1, n-r 个 0, $\Lambda = \operatorname{diag}(\underbrace{1,\cdots,1}_r,\underbrace{0,\cdots,0}_{n-r})$,则 $\Lambda^2 = \Lambda$,且存在可逆矩阵 P,使得 $P^{-1}AP = \Lambda$,故

$$A^2 = (P\Lambda P^{-1})^2 = P\Lambda^2 P^{-1} = A.$$

8. $\forall A$ 为实反对称矩阵,证明: A 的特征值为零或纯虑数.

9. 设m 阶矩阵 A 和n 阶矩阵 B 均可对角化,证明: m+n 阶矩阵 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$ 也可对角化.

证 依题设,存在可逆矩阵 $oldsymbol{P}_m$, $oldsymbol{Q}_n$ 及对角矩阵 $oldsymbol{\Lambda}_m$, $oldsymbol{\Lambda}_n$,使得

$$oldsymbol{P}_m^{-1}oldsymbol{A}oldsymbol{P}_m = oldsymbol{\Lambda}_m$$
 , $Q_n^{-1}oldsymbol{B}oldsymbol{Q}_n = oldsymbol{\Lambda}_n$,

故

$$\begin{pmatrix} \boldsymbol{P}_m^{-1} & \boldsymbol{O} \\ O & \boldsymbol{Q}_n^{-1} \end{pmatrix} \!\! \begin{pmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} \!\! \begin{pmatrix} \boldsymbol{P}_m & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{Q}_n \end{pmatrix} = \! \begin{pmatrix} \boldsymbol{\Lambda}_m & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\Lambda}_n \end{pmatrix},$$

且
$$\begin{bmatrix} \mathbf{P}_m^{-1} & \mathbf{O} \\ O & \mathbf{Q}_n^{-1} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_m & \mathbf{O} \\ \mathbf{O} & Q_n \end{bmatrix}^{-1}$$
,故 $\begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{B} \end{bmatrix}$ 也可对角化.

10. 设 A 为非零矩阵,且存在正整数 m ,使得 $A^m = O$,证明: A 的特征值全为零且 A 不可对角化.

证 设入为 \boldsymbol{A} 的特征值, \boldsymbol{x} 为其对应的特征向量,则有 $\boldsymbol{A}\boldsymbol{x}=\lambda\boldsymbol{x}$,从而 λ^m 为 \boldsymbol{A}^m 的特征值, \boldsymbol{x} 为其对应的特征向量,即 $\boldsymbol{A}^m\boldsymbol{x}=\lambda^m\boldsymbol{x}=\boldsymbol{O}\boldsymbol{x}=\boldsymbol{0}$,得 $\lambda^m=0$,故 $\lambda=0$.此时,因 $R(\boldsymbol{A})\geq 1$,方程组 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ 至多有n-1个线性无关的解向量,故 \boldsymbol{A} 不存在n个线性无关的解向量,不可对角化.

- 11. 判断下列命题是否正确:
 - (1) 若 $\mathbf{A} \sim \mathbf{B}$, 则对任意的实数 t, 有 $t\mathbf{E} \mathbf{A} \sim t\mathbf{E} \mathbf{B}$;
 - (2) 设 $\mathbf{A} \sim \mathbf{B}$,则它们一定相似于同一对角矩阵;
 - (3) 设 \mathbf{A} 为 4 阶矩阵, $R(\mathbf{A}) = 3$, $\lambda = 0$ 是 \mathbf{A} 的 3 重特征值,则 \mathbf{A} 一定不能相似于对角矩阵.

 $m{R}$ (1) 正确. 若 $m{A} \sim m{B}$,即存在可逆矩阵 $m{P}$,使得 $m{P}^{-1}m{A}m{P} = m{B}$,从而对任意的实数 t,有 $tm{E} - m{B} = tm{P}^{-1}m{P} - m{P}^{-1}m{A}m{P} = m{P}^{-1}(tm{E} - m{A})m{P}$,故 $tm{E} - m{A} \sim tm{E} - m{B}$.

(2) 错误. 任一矩阵 \mathbf{A} 一定相似于它自身,但 \mathbf{A} 不一定相似于对角矩阵,只有当 \mathbf{A} 存在 n 个线性无关

的特征向量时才相似于对角矩阵.

(3) 正确. 由 R(A) = 3 可知 Ax = 0 的基础解系仅有 1 个解向量,即 $\lambda = 0$ 仅有 1 个线性无关的特征向量,从而 A 不存在 4 个线性无关的特征向量,A 不能对角化.

