QCI

Day 1: The classical computing paradigm

Introductions!

About me

Tanay Biradar

About me

Tanay Biradar

Bay Area, California

About me

Tanay Biradar

Bay Area, California

CS, speedcubing, 中文

Introduce yourselves!

Name

Where you're from

Interests

Classical Computing

Storing information

Storing information

Transistors → circuits

Storing information

Transistors → circuits

Logic gates

Bit

Smallest unit of information

8 bits = 1 byte

1000 bytes = 1 kB

10^6 bytes = 1MB

Representing the Bit

booleans: on/off, 0/1, true/false

Representing the Bit

booleans: on/off, 0/1, true/false

Coin, magnets

Representing the Bit

booleans: on/off, 0/1, true/false

Coin, magnets

Switches

The Transistor

Computer circuits

Made of semiconductors

Made of semiconductors Function as electronic switches

Made of semiconductors Function as electronic switches Billions on modern chips

Logic gates

Computing with switches

4 single-bit gates

Identity

$$f(x) = x \qquad 0 \longrightarrow 0$$

$$1 \longrightarrow 1$$

Negation

$$f(x) = \neg x \qquad {}^{0} \bigcirc \qquad {}^{0} \bigcirc \qquad {}^{0}$$

Constant-0

Constant-1

Multi-bit gates

Understand, don't memorize

AND gate

AND gate

$$0 \ 0 \rightarrow 1$$

$$0.1 \rightarrow 0$$

$$10 \rightarrow 0$$

$$11 \rightarrow 1$$

OR gate

OR gate

$$0 0 \rightarrow 0$$

$$0\ 1 \rightarrow 1$$

$$10 \rightarrow 1$$

$$11 \rightarrow 1$$

XOR gate

XOR gate

$$0 0 \rightarrow 0$$

$$10 \rightarrow 1$$

 $1.1 \rightarrow 0$

NAND gate

NAND gate

$$0 \ 0 \rightarrow 1$$

$$0\ 1 \rightarrow 1$$

$$10 \rightarrow 1$$

$$11 \rightarrow 0$$

Exercises

(0 OR 1) AND 1

(0 OR 1) AND 1 NOT((1 XOR 1) OR 0) (0 OR 1) AND 1

NOT((1 XOR 1) OR 0)

0 NAND 0

0 XOR (0 NAND 1)

0 XOR (0 NAND 1) 1 OR (1 AND XOR(0 OR (0 NAND NOT(1))))

Programming Exercise

Write a function

myFunc(s: str) -> bool

that computes a running XOR

myFunc("0101")

myFunc("0101")

myFunc("0101") $0 XOR 1 \rightarrow 1$

```
myFunc ("0101")
0 \text{ XOR } 1 \rightarrow 1
101
```

myFunc("101")

myFunc ("101") $1 XOR 0 \rightarrow 1$

```
myFunc ("101")
1 \times 100 \times 100 \times 1000
```

myFunc("11")

myFunc("11") $1 \times 1 \times 1 \rightarrow 0$

```
myFunc("11")
1 XOR 1 \rightarrow 0
0
```

Sample Solution

```
def myFunc(s) -> bool: # recursive implementation
  a, b = s[0] == '1', s[1] == '1'

if len(s) > 2:
    temp = '1' if (a ^ b) else '0' # perform xor
    s = list(s[1:len(s)]) # XOR result -> 0th string item
    s[0] = temp
    return myFunc(''.join(s))
else: # base case
    return '1' if (a ^ b) else '0'
```

Challenge: Solve XOR iteratively

Next time: Quantum Mechanics & Quantum Computing

Questions?

Thank you!

References

- https://en.wikipedia.org/wiki/Bit
- https://en.wikipedia.org/wiki/Transistor
- https://www.youtube.com/watch?v=F_Riqjdh2oM
- https://en.wikipedia.org/wiki/Logic_gate