Graph Traversal

You are given a two-dimensional $m \times n$ grid of square cells. Two cells are adjacent if they share a common horizontal or vertical edge (not just a corner). A wall exists between every adjacent pair of cells. You generate a bhulbhulaiya out of the grid by randomly removing some of the walls. Then, you are given two distinct cells in the bhulbhulaiya. Your task is to find out a path to join the given cells. Your bhulbhulaiya should be such that between every pair of (distinct) cells, there exists a unique path, that is, the path-finding problem in the bhulbhulaiya is always uniquely solvable. The following figure gives an example of a 7×8 bhulbhulaiya and the path from the source cell S = (4,5) to the destination (target) cell T = (4,4).

Both these problems (bhulbhulaiya generation and path finding) can be solved using suitable graph-traversal algorithms. Consider an undirected graph G=(V,E), where V is the set of mn cells of the grid. A vertex (i,j) is adjacent only to the four cells $(i\pm 1,j\pm 1)$ (a cell at an edge or at a corner has less than four neighbors). The edge set E of the graph contains < 2mn cells (the exact size is |E| = (m-1)n + m(n-1) = 2mn - m - n, because the horizontal walls form an $(m-1) \times n$ array, whereas the vertical walls form an $m \times (n-1)$ array). A BFS/DFS traversal on E0 runs in E1 or E2 color of the graph E3 calculated above, you do not need the graph E3 explicitly (that is, in the adjacency-matrix or in the adjacency-list format). Given any vertex E4, E5, its neighbors (there are at most four of them) can be easily calculated.

Part 1: Initialize a bhulbhulaiya

A bhulbhulaiya consists of the following items.

- The row-dimension m.
- The column-dimension n.
- An $(m-1) \times n$ array H of horizontal walls, where H[i][j] stores the information whether the wall between the cells (i, j) and (i+1, j) is present in the bhulbhulaiya or removed from the bhulbhulaiya.
- An $m \times (n-1)$ array V with V[i][j] storing the information (presence/absence) of the vertical wall between the cells (i, j) and (i, j + 1).
- An $m \times n$ array P of parent pointers, where P[u][v] is meant to store the pair (i, j) of indices if (u, v) is a child of (i, j) in the DFS tree to be created in Part 3.

Define a suitable structure to store the above fields pertaining to a bhulbhulaiya. Given m, n, one can initialize a bhulbhulaiya by creating the three arrays H, V, P. To start with, all walls are kept, and all parents are stored as an invalid index like (-1, -1). Write a function initbhul(m, n) to create and return an initialized grid.

Part 2: Print a bhulbhulaiya (and a path in it)

Write a function prnbhul(M) to print a bhulbhulaiya in the format illustrated in the sample output. An existent wall is shown as a horizontal/vertical line, and a removed wall as blank. In Parts 1 and 3, each cell is shown as empty. In Part 4, you need to show a path between the source and target cells S and T. So this print function would take an "optional" second argument which specifies a path in the bhulbhulaiya.

Part 3: Generate a random bhulbhulaiya

Make a random DFS traversal in G in order to create a uniquely connected bhulbhulaiya from an initialized $m \times n$ grid. Notice that G is never explicitly supplied to you. It will remain only in your head. You need it only for finding the neighbors of a cell.

Write a recursive DFS() function to traverse G in the depth-first fashion. If you are at vertex (i, j), locate its unvisited neighbors in a random sequence. For each unvisited neighbor (u, v) of (i, j), a recursive call is made. You should remove the wall between (i, j) and (u, v) before this recursive call. Moreover, (u, v) becomes a child of (i, j) in the DFS tree, so set the parent pointer P[u][v] to the pair (i, j).

Write a function genbhul(B) to create a random bhulbhulaiya in B (assumed initialized). This function chooses a random cell R = (r, s) to start the DFS traversal. It makes the outermost call of the recursive DFS function on this vertex R (this becomes the root of the DFS tree).

Notice that for a proper running of the DFS traversal, you need to appropriately manage a *visited* array which in this case is two-dimensional of size $m \times n$.

Part 4: Find paths in the bhulbhulaiya

Assume that you have generated a uniquely connected $m \times n$ bhulbhulaiya using the DFS traversal of Part 3. Randomly choose two different cells S = (u, v) (the king starts at the source) and T = (x, y) (the queen hides at the target). There is a unique path in the bhulbhulaiya, that connects S and T. This path can be obtained by running a second traversal (DFS/BFS) from S on the DFS tree consisting of the removed walls. You instead follow a different approach.

Following the parent pointers stored in Part 3, generate the unique path from S to the root R of the DFS tree. Likewise, obtain the unique path from T to R. Do some cut and paste on these two paths in order to obtain the desired S-T path in the bhulbhulaiya. Write a function *findrani* to implement this idea.

The main() function

- Read m and n from the user.
- Initialize (Part 1) and print (Part 2) an $m \times n$ bhulbhulaiya B (showing all the walls).
- Call *genbhul* on *B* (Part 3) to generate a random uniquely connected bhulbhulaiya in *B*. Print the bhulbhulaiya (with some of the walls removed).
- Generate two distinct cells S and T. Find the unique S-T path in B (Part 4). Print the bhulbhulaiya along with the discovered path.

Note: By adding the line

```
srand((unsigned int)time(NULL));
```

at the beginning of your *main* function, you can generate different bhulbhulaiyas in different runs of your program.

Sample output

m = 10n = 20

+++ Initial bhulbhulaiya

+++ Random bhulbhulaiya generated

+++ Path from S = (1,9) to T = (9,14)

	+	+-	+						+				+	+	+	+				+
×				х		Х	х	Х		Х	х	Х				х				х
x						х			+ +	S	х	х				× +				X
х	х		x	Х	х	х	х		J	Х	Х	Х	Х	ı	X		х	х		x
x		6.3	x	х	х		х	х	x	Х						x	х		х	X
х			x	х	Х	Х	х		х	Х		ľ				x				Ī
х	Ī	1	X	Х		X	x		+					×	х	×				
х	Ī			х	x	х			1				X	х		+				_
х	1			х	х	х	х	х	x		Х	X	Х		ľ					ĺ
x	1	Ī	x		х		х	x	х	Х	X		×	Х	1	 				Ī
x	х	T	x						х											