Binary classification performances measure cheat sheet Damien François - v1.0 - 2009 (damien.francois@uclouvain.be)

Confusion matrix for two possible outcomes p (positive) and n(negative)

Actual Total false true positive postive Predicted false true n negative negative total N'

Classification accuracy (TP + TN) / (TP + TN + FP + FN)Error rate (FP + FN) / (TP + TN + FP + FN)

Paired criteria

Precision: (or Positive predictive value) Combined criteria proportion of predicted positives which are actual positive TP / (TP + FP)

Recall: proportion of actual positives which are predicted positive TP / (TP + FN)

Sensitivity: proportion of actual positives which are predicted positive TP / (TP + FN)

Specificity: proportion of actual negative which are predicted negative TN / (TN + FP)

True positive rate: proportion of actual positives which are predicted positive

TP / (TP + FN)

True negative rate: proportion of actual negative which are predicted negative

TN / (TN + FP)

Positive likelihood: likelihood that a predicted positive is an actual positive sensitivity / (1 - specificity)

Negative likelihood: likelihood that a predicted negative is an actual negative specificity / (1 - sensitivity)

BCR: Balanced Classification Rate $\frac{1}{2}$ (TP / (TP + FN) + TN / (TN + FP)) BER: Balanced Error Rate, or HTER: Half Total Frror Rate: 1 - BCR

F-measure harmonic mean between precision and recall

> 2 (precision . recall) / (precision + recall)

F_B-measure weighted harmonic mean between precision and recall $(1+\beta)^2$ TP / $((1+\beta)^2$ TP + β^2 FN + FP)

The harmonic mean between specificity and sensitivity is also often used and sometimes referred to as F-measure.

Youden's index: arithmetic mean between sensitivity and specificity sensitivity - (1 - specificity)

Matthews correlation correlation between the actual and predicted (TP . TN - FP . FN) / $((TP+FP) (TP+FN) (TP + FP) (TN+FN))^{1/2}$ comprised between -1 and 1

Discriminant power normalised likelihood index $sart(3) / \pi$. (log (sensitivity / (1 - specificity)) + log (specificity / (1 - sensitivity))) $\langle 1 = poor, \rangle 3 = good, fair otherwise$

Graphical tools

ROC curve receiver operating characteristic curve : 2-D curve parametrized by one parameter of the classification algorithm, e.g. some threshold in the « true postivie rate , false positive rate » space AUC The area under the ROC is between 0 and 1

(Cumlative) Lift chart plot of the true positive rate as a function of the proportion of the population being predicted positive, controlled by some classifier parameter (e.g. a threshold)

Relationships

sensitivity = recall = true positive rate specificity = true negative rate BCR = $\frac{1}{2}$. (sensitivity + specificity) BCR = 2. Youden's index - 1 F-measure = F_1 measure Accuracy = 1 - error rate

References

Sokolova, M. and Lapalme, G. 2009. A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45, 4 (Jul. 2009), 427-437.

Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research **7** (2006) 1–30

Let $D = \{(x_i, y_i)\}$ be a set of Absolute error input/output pairs and f a function such that for i = 1..n,

$$y_i = f(x_i) + \epsilon_i$$

Squared error

SSE Sum of Squared Errors, or RSS Residual Sum of Squares

MSE Mean Squared Error $\frac{1}{n}\sum_{i}\epsilon_{i}^{2}$

RMSE Root Mean Squared Error $\sqrt{\frac{1}{n}\sum_{i}\epsilon_{i}^{2}}$

NMSE Normalised Mean Squared Error $\frac{SSE}{var(\{y_i\})}$

where var is the empirical variance in the sample.

R-squared

$$1 - \frac{SSE}{var(y_i)}$$

where var is the empirical variance in the sample

MAD Mean Absolute Deviation $\frac{1}{n}\sum |\epsilon_i|$ MAPE Mean Absolute Percentage Error

Predicted error

PRESS Predicted REsidual Sums of Sauares $\frac{1}{n} ||diag(XX^T)(XX^T - I)Y||_2^2$ where X is a matrix built by stacking the x_i in rows. Y is the vector of y_i

GCV Generalised Cross Validation $\frac{\frac{1}{n}\|(I - X(X^TX + nI)^{-1}X^T)Y\|^2}{(\frac{1}{n}Trace(I - X(X^TX + nI)^{-1}X^T)^2}$ where X is a matrix built by stacking the x_i in rows. Y is the vector of y_i

Information criteria

AIC Akaike Information Criterion $n \log MSE + 2k$ where k is the number of parameters in the model

BIC Bayesian Information Criterion $n \log MSE + k \cdot \log n$ where k is the number of parameters in the model

Robust error measures

Median Squared error $median(\epsilon_i^2)$

 α -trimmed MSE

$$\frac{1}{\#I} \sum_{i \in I} \epsilon_i^2$$

where I is the set of residuals ϵ_i where α percents of the largest values are discarded.

M-estimators

$$\frac{1}{n}\sum_{i}\rho(\epsilon_{i})$$

where \rho is a non-negative function with a mininmum in 0, like the parabola, the Hubber function, or the bisguare function.

Graphical tool

Plot of predicted value against actual value. A perfect model places all dots on the diagonal.

Resampling methods

LOO - Leave-one-out: build the model on n-1 data elements and test on the remaining one. Iterate n times to collect all ϵ_i and compute mean error.

X-Val - Cross validation. Randomly split the data in two parts, use the first one to build the model and the second one to test it. Iterate to get a distribution of the test error of the model.

K-Fold - Cut the data into K parts. Build the model on the K-1 first parts and test on the Kth one. Iterate from 1 to K to get a distribution of the test error of the model.

Bootstrap - Draw a random subsample of the data with replacement. Compute the error on the whole dataset minus the training error of the model and Iterate to get a distribution of such values. The mean of the distribution is the optimism. The bootstrap error estimate is the training error on the whole dataset plus the optimism.