

Fórmulas de Cálculo

Geometría Analítica

Vectores

Vector que une dos puntos $P = (p_1, \dots, p_n)$,

 $Q = (q_1, \ldots, q_n) \in \mathbb{R}^n$

$$\overrightarrow{PQ} = Q - P = (q_1 - p_1, \dots, q_n - p_n)$$

Producto escalar $u = (u_1, \dots, u_n)$,

 $V = (v_1, \cdots, v_n) \in \mathbb{R}^n$

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \ldots + u_n v_n$$

Vectores ortogonales (perpendiculares)

$$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$$

Rectas

Ecuación vectorial de una recta que pasa por el punto *P* con dirección del vector v

$$P + tv$$

Ecuación punto-pendiente de una recta en \mathbb{R}^2 que pasa por el punto (x_0, y_0) con pendiente m

$$y = y_0 + m(x - x_0)$$

Planos

Ecuación general de un plano en \mathbb{R}^3 que pasa por el punto (x_0, y_0, z_0) perpendicular al vector (a, b, c)

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Derivadas de funciones de una variable

Concepto de derivada

Tasa de variación media de una función f(x) en un intervalo $[a, a + \Delta x]$

$$\mathsf{ARC}f[a, a + \Delta x] = \frac{\Delta y}{\Delta x} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

Tasa de variación instantánea (derivada) de una función f(x) en el punto x = a

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

Álgebra de derivadas

Suma (u+v)'=u'+v'

Resta (u-v)'=u'-v'

Producto $(u \cdot v)' = u' \cdot v + u \cdot v'$

Cociente $\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$

Regla de la cadena $(f \circ g)'(x) = f'(g(x))g'(x)$

Rectas secante y tangente

Recta secante a la gráfica de f(x) en los puntos (a, f(a)) y $(a + \Delta x, f(a + \Delta x))$

$$y = f(a) + ARCf[a, a + \Delta x](x - a)$$

Recta tangente a la gráfica de f(x) en el punto (a, f(a))

$$y = f(a) + f'(a)(x - a)$$

Crecimiento, concavidad y extremos

Crecimiento

- $\forall x \in I \ f'(x) \ge 0 \Rightarrow f$ es creciente en I.
- $\forall x \in I \ f'(x) \le 0 \Rightarrow f$ es decreciente en I.

Concavidad

- $\forall x \in I \ f''(x) \ge 0 \Rightarrow f$ es cóncava hacia arriba en I.
- $\forall x \in I \ f''(x) \le 0 \Rightarrow f$ es cóncava hacia abajo en I.

Extremos Si f'(a) = 0 (punto crítico)

- $f''(a) < 0 \Rightarrow f$ tiene un máximo local en x = a.
- $f''(a) > 0 \Rightarrow f$ tiene un mínimo local en x = a.

Aproximación de funciones

Variación de una función

$$\Delta y \approx f'(a) \Delta x$$

Polinomio de Taylor de orden n de f(x) en el punto x = a

$$P_{f,a}^{n}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^{2} + \dots + \frac{f^{n}(a)}{n!}(x-a)^{n}$$

Polinomio de Maclaurin de orden n of f(x)

$$P_{f,0}^n(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \dots + \frac{f^n(0)}{n!}x^n$$

Ecuaciones diferenciales

Ecuación diferencial de primer orden

Ecuación diferencial de primer orden

$$F(x, y, y') = 0$$

Problema del valor inicial

$$F(x, y, y') = 0$$
, EDO de primer orden; $y(x_0) = y_0$, Condición inicial.

Recta tangente y plano normal en el espacio

Recta tangente a una trayectoria en el espacio

$$f(t) = (x(t), y(t), z(t))$$
 en el instante $t = a$

$$(x(a), y(a), z(a)) + t(x'(a), y'(a), z'(a))$$

Plano normal a una trayectoria en el espacio

$$f(t) = (x(t), y(t), z(t))$$
 en el instante $t = a$

$$x'(a)(x-x(a))+y'(a)(y-y(a))+z'(a)(z-z(a))=0$$

Resolución de EDO de primer orden

EDO de variables separables

$$y'g(y) = f(x)$$

Solución:

$$\int g(y)\,dy=\int f(x)\,dx+C.$$

EDO lineal

$$y' + g(x)y = h(x)$$

Solución:

$$y = e^{-\int g(x) dx} \left(\int h(x) e^{\int g(x) dx} dx + C \right).$$

Derivadas de funciones vectoriales

Derivada de una función vectorial

Si $f(t) = (x_1(t), \dots, x_n(t))$ entonces

$$f'(t) = (x'_1(t), \ldots, x'_n(t))$$

Derivadas de funciones de varias variables

Derivadas parciales

Vector gradiente

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Matriz Hessiana

$$\nabla^{2}f = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{pmatrix}$$

Hessiano

$$Hf(P) = |\nabla^2 f(P)|$$

Derivada direccional de f en el punto P en la dirección de v

 $f_{\mathsf{V}}'(P) = \nabla f(P) \frac{\mathsf{V}}{|\mathsf{V}|}$

Regla de la cadena

$$f(g(t))' = \nabla f(g(t))g'(t)$$

Rectas tangente y normal en el plano

Recta tangente a una trayectoria en el plano

f(t) = (x(t), y(t)) en el instante t = a

$$(x(a), y(a)) + t(x'(a), y'(a)) 0$$

(x - x(a))y'(a) - (y - y(a))x'(a) = 0

Recta normal a una trayectoria en el plano

f(t) = (x(t), y(t)) en el instante t = a

$$(x(a), y(a)) + t(y'(a), -x'(a)) 0$$

 $(x - x(a))x'(a) + (y - y(a))y'(a) = 0$

Rectas tangente y normal en el plano

Recta normal a una trayectoria en el plano

f(x, y) = 0 en el punto P = (a, b)

$$P + t\nabla f(P) = (a, b) + t\nabla f(a, b)$$
 or $(x - a)\frac{\partial f}{\partial y}(a, b) - (y - b)\frac{\partial f}{\partial x}(a, b) = 0$

Recta tangente a una trayectoria en el plano

$$f(x, y) = 0$$
 en el punto $P = (a, b)$

$$(x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) = 0$$

Recta normal y plano tangente en el espacio

Recta normal a una superficie en el espacio

$$f(x, y, z) = 0$$
 en el punto $P = (a, b, c)$

$$P + t\nabla f(P) = (a, b, c) + t\nabla f(a, b, c)$$

Plano tangente a una superficie en el espacio

$$f(x, y, z) = 0$$
 en el punto $P = (a, b, c)$

$$(x-a)\frac{\partial f}{\partial x}(a,b,c)+(y-b)\frac{\partial f}{\partial y}(a,b,c)+(z-c)\frac{\partial f}{\partial z}(a,b,c)=0$$

Derivadas implícitas

Derivada implícita de una función f(x, y) = 0

$$y' = \frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$
 and $x' = \frac{-\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$

Derivada parcial implícita de una función f(x, y, z) = 0

$$\frac{\partial z}{\partial x} = \frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} \quad \text{and} \quad \frac{\partial z}{\partial x} = \frac{-\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}$$

Extremos locales y puntos de silla

- 1. Calcular los puntos críticos $\nabla f(P) = 0$.
- 2. En cada punto crítico P calcular el Hessiano:
 - Hf(P) > 0 y $\frac{\partial^2 f}{\partial x^2}(P) > 0 \Rightarrow f$ tiene un mínimo local en P.
 - Hf(P) > 0 y $\frac{\partial^2 f}{\partial x^2}(P) < 0 \Rightarrow f$ tiene un máximo local en P.
 - $Hf(P) < 0 \Rightarrow f$ tiene un punto de silla en P.

Aproximación de funciones

Polinomio de Taylor de segundo orden de f(x, y) en el punto P = (a, b)

$$\begin{split} P_{f,P}^2(x,y) &= f(a,b) + \nabla f(a,b)(x-a,y-b) + \\ &+ \frac{1}{2}(x-a,y-b) \nabla^2 f(a,b)(x-a,y-b) \end{split}$$

Polinomio de Maclaurin de segundo orden de f(x, y)

$$P^2_{f,(0,0)}(x,y) = f(0,0) + \nabla f(0,0)(x,y) + \frac{1}{2}(x,y) \nabla^2 f(0,0)(x,y)$$