SPAM VS. HAM

Machine Learning

By Juliane Tess

From Teacher to Analyst...

Bachelors in Theatre Arts

Teacher & Studio Director

Studio Owner?

Next step = creative outlet + love of math

Entity: Data Science Program

Over the course of 33 weeks...

```
Operation == "MIRROR_Y"
Irror_mod.use_x = False
Irror_mod.use_y = True
Irror_mod.use_z = False
Operation == "MIRROR_Z"
Irror_mod.use_x = False
```

- Hard, tech skills: duse y = False
 - Coding languages, such as, Python, R, SQL
 - Data Wrangling and Visualization (Tableau, Excel, etc.)
 - Project Management
 - Big Data ob.select = 0
 context.selected_ob
 - Machine Learning and Modeling
- Soft skills

```
ypes.Operator):

X mirror to the selector

ject.mirror_mirror_x"

or X"
```

Significance

- High demand and large user base
- As of 2020, among most popular digital activities in US
- Mobile most popular
- E-mail newsletters used by B2B & B2C marketers

(Source: Statista)

(Source: EmailMonday)

Significance (cont.)

1

Reduce exploitation of users and their data

Anti-malware tool

2

Reduce Fraud

3

Reduce lost revenue

SPAM VS. HAM

CASE STUDY

Utilized dataframe with the length of 5572

- 4825 = ham
- 747 = spam

```
1. Remove Punctuations
In [12]: sample_sms = 'Sample message!...'
         no punc = [char for char in sample sms if char not in string.punctuation]
         no_punc = ''.join(no_punc)
         print(no_punc)
         Sample message
         2. Remove Stopwords
In [13]: stopwords.words('english')[0:5]
Out[13]: ['i', 'me', 'my', 'myself', 'we']
         3. Split words into individual
In [14]: no_punc.split()
Out[14]: ['Sample', 'message']
         4. Lowercase Words
In [15]: lower_sms = [word.lower() for word in no_punc.split() if word.lower() not in stopwords.words('english')]
In [16]: lower_sms
Out[16]: ['sample', 'message']
         5. Combine all into a function to apply to dataframe later:
In [17]: def text_clean(sample_sms):
             no punc = [char for char in sample sms if char not in string.punctuation]
             no_punc = ''.join(no_punc)
             return [word.lower() for word in no_punc.split() if word.lower() not in stopwords.words('english')]
In [18]: sms2 = sms['message'].head().apply(text_clean)
In [19]: sms2.head()
Out[19]: 0 [go, jurong, point, crazy, available, bugis, n...
                                 [ok, lar, joking, wif, u, oni]
             [free, entry, 2, wkly, comp, win, fa, cup, fin...
                 [u, dun, say, early, hor, u, c, already, say]
         4 [nah, dont, think, goes, usf, lives, around, t...
         Name: message, dtype: object
```

PREPROCESS:

```
In [37]: pipeline = Pipeline([
            ('bow', CountVectorizer(analyzer=text_clean)),
            ('tfidf', TfidfTransformer()),
            ('classifier', MultinomialNB()),
In [38]: pipeline.fit(x_train,y_train)
Out[38]:
               Pipeline
           ▶ CountVectorizer
           ▶ TfidfTransformer
            ▶ MultinomialNB
In [39]: predictions = pipeline.predict(x_test)
In [40]: print(classification_report(predictions,y_test))
                                 recall f1-score
                                                       1027
                          1.00
                                    0.95
                                             0.98
                           0.65
                                    1.00
                                                         88
                                                       1115
                          0.83
                                   0.98
                                             0.88
                                                       1115
            macro avg
                                    0.96
                                                       1115
```

```
In [41]: print("Score:", pipeline.score(x_test, y_test))

Score: 0.957847533632287

• This means the model is accurate approximately 95% of the time.
```

MACHINE LEARNING: TRAIN TEST SPLIT

Goal: to accurately predict which of the messages are spam and which are ham

Project Limitations

- Stem/Lemmatization
 - NLTK has lots of built-in tools and great documentation on a lot of methods of normalization. These tools—such as Porter Stemmer-–are not always great for using with abbreviations or shorthand (a.k.a. slang), as was prevalent within the data frame chosen for the case study.

Machine Learning Limitations: Email Spam Filtering

- Difficult to mine effectively-represented features
- Lack of security strategy against attack
 - Ex: causative or exploratory, targeted or indiscriminate
- Algorithm shortcomings:
 - Need for knowledge from expert in a particular field
 - Dimensionality
 - High computational cost
- Other open research problems

(Source: ScienceDirect)

Future Recommendations: Deep Learning

Future of email spam filters

Deep Learning Advantage

Number of available training data increasing

Use intricate and huge models

Deep Learning Imperfections

Thank you for your consideration!

QUESTIONS?

Please feel free to click on the hyperlink for my LinkedIn or find me on Slack.

SLACK