ELEC 343 Electromechanics

Spring 2019

Instructor: Dr. Juri Jatskevich

Class Webpage: http://courses.ece.ubc.ca/elec343

Module 3 (Read Chap. 3):

Part 1: Brushed DC Motors Fundamentals and Steady-State Analysis

Learning Objectives & Important Topics and Concepts

- Construction of DC machines, fundamentals
- Induced voltage and torque
- Equivalent circuit
- · Basic types of dc machines, their characteristics
- Starting

1

DC Machines

ELEC 343, S-19 M-3

Range of Sizes

- Miniature dc motors mW range
- Fractional HP (1HP = 746W)
- Medium Size 1 ... 500 HP
- Large DC Machines 500 HP and up

Applications

- Very popular and easy to use in various applications
- Tools, robotics, toys, medical, automotive & other industries

General Properties

- Very easy to control!
- Good torque-speed performance
- Brushes is a weak point of design
 - Limits the application
 - Limits the lifetime
 - Maintenance

Small Motors

Gear-head Motors 2

Motor (Machine) Speed

Transmitting power through the mechanical shaft

Source (Prime Mover)

Load

Commonly used units of speed

$$\omega$$
 - [rad/sec]

$$m = \frac{\omega}{2\pi} [rev/sec]$$

$$n = 60 \frac{\omega}{2\pi} = \frac{30}{\pi} \omega \text{ [rev/min]}$$

RPM = >Most commonly used

3

Mechanical Speed and Torque ELEC 343, S-19 M-3

Electric Motor

Mechanical Load

Electromagnetic torque T_e

Useful mechanical torque on the shaft T_m

Torque balance
$$T_e = J \frac{d\omega_r}{dt} + T_m + T_{mech_loss}$$

Total moment of inertia (motor and load combined)
$$J = J_{dc_machine} + J_{mech_load}$$
, $[kg \cdot m^2]$

Mechanical loss (friction)
$$T_{mech_loss} = T_{fric} = D_m \omega_r$$

DC Machine Motoring and Generating

Mechanical load torque is applied in the direction opposite to rotation

Mechanical Power Flow
$$\longrightarrow$$
 I_a Electrical System

Prime Mover

 T_m , ω_m
 V_t Load

Mechanical torque is applied in the direction of rotation

$$P_{in} = \omega_m T_m = P_m$$

$$V_t I_a = P_{out}$$

5

Electromechanical Interaction

- Current-carrying conductor in magnetic field
 - => mechanical force
- Conductor moves in magnetic field
 - => voltage induced, emf

6

Force & Torque

Consider a conductor frame (single-coil)

Lorentz Force $F = lBi_a$

Torque
$$T_e = 2RlBi_a\cos(\theta)$$

= $ABi_a\cos(\theta) = \Phi_pi_a\cos(\theta)$

NOTE: Maximum torque is when $a-axis\perp B$

and
$$T_e \sim \Phi_p i_a$$

d - axis (direct axis)

Field axis

7

ELEC 343, S-19 M-3

Induced Voltage

Consider a conductor frame (single-coil)

Faraday's Law
$$e = \frac{d\Phi}{dt}$$

$$\Phi = BA\sin(\theta) = B2Rl\sin(\theta)$$

Let us rotate the frame with speed $\, \omega \,$

$$\theta = \omega t$$

$$\Phi = BA\sin(\omega t) = \Phi_p\sin(\omega t)$$

$$e = \frac{d\Phi}{dt} = \omega \Phi_p \cos(\omega t)$$
 \Rightarrow $e \sim \omega \Phi_p$

ELEC 343, S-19 M-3

Conductor Frame (1-turn coil)

Consider a conductor frame placed on a rotor between magnetic poles

9

ELEC 343, S-19 M-3

Elementary DC Machine

Consider a two-pole case

Voltage Equations

$$v_{f} = r_{f}i_{f} + \frac{d\lambda_{f}}{dt}$$

$$v_{a} = r_{a}i_{a} + \frac{d\lambda_{a}}{dt}$$
Flux linkages

Flux linkages

$$\lambda_f = L_{ff}i_f + L_{fa}i_a$$
$$\lambda_a = L_ai_a + L_{af}i_f$$

Approximate the mutual inductance

$$L_{af} = L_{fa} = -L\cos(\theta_r)$$

Commutation of Elementary DC Machine

Induced voltage

$$v_a = r_a i_a + \frac{d\lambda_a}{dt}$$

Assume

$$i_a=0$$
 and $\theta_r=\omega_r t$
$$\lambda_a=L_a i_a+L_{af} i_f$$

 $e_a = \omega_r L i_f \sin(\theta_r)$

11

More Realistic DC Machine

Resulted Winding Connection

ELEC 343, S-19 M-3

More Realistic DC Machine

 $f_{1} \bigotimes_{a_{1}} f_{2} \bigotimes_{a_{1}} f_{3} \bigoplus_{a_{1}} f_{4} \bigoplus_{a_{$

Resulted Winding Connection

13

ELEC 343, S-19 M-3

DC Machine Construction

DC machine with field winding

Permanent Magnet (PM)
DC machine

14

Cutaway View of a Two-Pole DC Machine

15

ELEC 343, S-19 M-3

Equivalent Circuit

 \boldsymbol{v}_f - is the field voltage

 $oldsymbol{i}_f$ - is the field current

 r_f - field winding resistance

 $L_{\scriptscriptstyle f}$ - field winding inductance

 \boldsymbol{v}_a - applied terminal voltage

 $oldsymbol{i}_a$ - is the armature current

 $L_{\boldsymbol{a}}$ - armature winding inductance

 ${\it r_a}$ - armature winding + brush resistance

 $oldsymbol{e}_a$ - Induced back emf (voltage)

Dynamic Equivalent Circuit

Field Winding Equations

$$v_f = r_f i_f + \frac{d\lambda_f}{dt}$$

$$\lambda_f = N_f \Phi_p = L_f i_f$$

Armature Equations

$$v_a = r_a i_a + L_a \frac{di_a}{dt} + e_a$$

$$e_a = k_1 \omega_r \Phi_p$$

Electromagnetic Torque $T_e=k_2\Phi_{\,n}i_a$

Power balance
$$T_e\omega_r=k_2\Phi_pi_a\omega_r=e_ai_a=k_1\omega_r\Phi_pi_a$$

17

Equivalent Circuit

ELEC 343, S-19 M-3

Recall flux
$$\Phi_p = \frac{\lambda_f}{N_f} = \frac{L_f}{N_f} I_f$$
 oltage

Induced voltage

$$e_a = k\Phi_p \omega_r = k \frac{L_f}{N_f} i_f \omega_r \qquad T_e = k\Phi_p i_a = k \frac{L_f}{N_f} i_f i_a$$

$$T_e = k\Phi_p i_a = k \frac{L_f}{N_f} i_f i_a$$

Define
$$L_{a\!f}=krac{L_f}{N_f}$$
 - is the mutual inductance between field and rotating armature winding

$$L_{af} = \frac{N_a N_f}{\Re}$$

Re-define expression for back emf and torque

$$e_a = L_{af}i_f\omega_r = k_v\omega_r$$
 $T_e = L_{af}i_fi_a = k_ti_a$

$$T_e = L_{af} i_f i_a = k_t i_a$$

Machine voltage/torque constant for PM machine

$$k_{v} = k_{t} = L_{af} i_{f}$$

Steady-State

Field Winding Equations

$$\begin{aligned} V_f &= R_f I_f \\ \lambda_f &= N_f \Phi_p = L_f I_f \end{aligned}$$

Armature Equations

$$V_a = r_a I_a + E_a$$

$$E_a = \omega_r k_v = \omega_r L_{af} i_f$$

Electromagnetic torque
$$T_e = L_{a\!f} I_f I_a = k_t I_a$$

Torque balance
$$T_e = T_m + T_{mech_loss}$$

19

Example 1: No Load Test PM Motor

Assume you know
$$R_{a}$$

Measure
$$I_a, V_a, \omega_r$$

$$V_{a} = R_{a}I_{a} + E_{a}$$

$$P_{e} = I_{a}E_{a} = \omega_{r}T_{e}$$

$$T_{e} = T_{friction} = \omega_{r}D_{m}$$

$$T_e = k_v I_a$$

$$E_a = k_v \omega_r$$

$$k_t = k_v$$
 Torque / voltage machine constant

Example 2: PM DC Motor

Consider a small PM DC Motor with the following parameters:

 $V_{t_rated} = 6V$, $I_{no_load} = 0.15A$, $R_a = 7\Omega$, and torque constant $K_t = 0.014$ [Vs/rad]. Find no-load speed n_{nl} [rpm], back emf E_a , and friction torque T_{fric} at $V_t = 6V$

$$V_{t} = R_{a}I_{a} + E_{a} = R_{a}I_{a} + K_{t} \cdot \omega$$

$$\omega_{n\ell} = \frac{V_{t} - R_{a}I_{a}}{K_{t}} = \frac{6 - 7 \cdot 0.15}{0.014} = 353.57 \, \text{rad/sec}$$

$$N_{n\ell} = \frac{30}{\pi} \, \omega_{n\ell} = 3,376.4 \, \text{rpm}$$

$$R_{ack} = m_{s} \, E_{a} = K_{t} \cdot \omega = 0.014 \cdot 353.57 = 4.95 \, V$$

$$Electromagnetic \, torque$$

$$T_{e} = K_{t} \cdot I_{a} = 0.014 \cdot 0.15 = 0.0021 \, N \cdot m$$

$$T_{e} = \frac{P_{e}}{\omega} = \frac{I_{a} \cdot E_{a}}{\omega} = \frac{0.15 \cdot 4.95}{353.57} = 0.0021 \, N \cdot m$$

21

Basic Types of DC Machines ELEC 343, S-19 M-3

Basic DC Machines

Truic = Te = 0.0021 N.m

Shunt or Series field windings are possible

Separately Excited DC Machine

Shunt DC Machine

Series DC Machine

- Field winding is designed for up to rated armature voltage
- Field winding has large number of turns
- Field current is small compared to armature current

- Field winding is designed for up to rated armature current
- Field winding has small number of turns
- Field current is the same as the armature current

22

Basic Types of DC Machines

Compound DC Machines

• Both Shunt and Series field windings are present

Short-Shunt Compound DC Machine

Long-Shunt Compound DC Machine

23

Parameters of DC Machine

ELEC 343, S-19 M-3

• Locked-Rotor Test (DC Measurements)

$$R_f = \frac{V_f}{I_f}$$

$$R_a = \frac{V_t}{I_a}$$

(armature + brush combined resistance at no speed!)

Parameters of DC Machine

No Load Test for PM Motors (Friction vs. Speed)

Assume you know $\,R_{a}^{}$

Measure I_a, V_t, ω_m

$$T_e = K_a \Phi_p I_a = K_t I_a$$

$$E_a = K_a \Phi_p \omega_m = K_v \omega_m$$

$$K_t = K_v \quad \text{Torque / voltage machine constant}$$

$$V_{t} = R_{a}I_{a} + E_{a}$$

$$P_{e} = I_{a}E_{a} = \omega_{m}T_{e}$$

$$T_{e} = T_{fric}(\omega_{m}) = \omega_{m}D_{m}$$

Measure Friction Torque-Speed Characteristic

25

ELEC 343, S-19 M-3

Parameters of DC Machine

Stopping Transient for Determining Inertia

Assume you know
$$T_{fric}(\omega_m)$$

Measure & Record $I_a, V_t, \omega_{\scriptscriptstyle m}$

$$T_e = T_m + T_{fric}(\omega_m) + J \frac{d\omega_m}{dt}$$

$$E_a = K_a \Phi_p \omega_m = K_v \omega_m$$

$$T_{fric}(\omega_m) = -J \frac{\Delta \omega_m}{\Delta t} = -J \frac{\Delta E_a}{K_v \Delta t}$$

Parameters of DC Machine

• Open-Circuit Test (Generated Voltage vs. Speed)

$$E_{a} = K_{a} \Phi_{p} \omega_{m} = K_{a} \frac{L_{f}}{N_{f}} I_{f} \omega_{m}$$

$$= L_{af} I_{f} \omega_{m}$$

$$E_{a_nom}$$

$$E_{a_nom}$$

ELEC 343, S-19 M-3

Parameters of DC Machine

Open-Circuit Test (Generated Voltage vs. Field Currents)

DC Machines Characteristics:

Speed Regulation (for Motors)

$$SR = \frac{\omega_{m,no_load} - \omega_{m,load}}{\omega_{m,load}} 100\% = \frac{n_{no_load} - n_{load}}{n_{load}} 100\%$$

Speed-Torque Characteristic

Voltage Regulation (for Generators)

$$VR = \frac{V_{t,oc} - V_{t,load}}{V_{t,load}} 100\% = \frac{V_{no_load} - V_{nom}}{V_{nom}} 100\%$$

Load-Voltage Characteristic

Separately Excited

Field Winding Equations

Armature Equations

ELEC 343, S-19 M-3

$$R_f = r_f + r_{rh}$$

$$V_f = R_f I_f$$

$$\lambda_f = N_f \Phi_p = L_f I_f$$

$$V_a = r_a I_a + E_a$$

$$E_a = \omega_r L_{af} i_f$$

Electromagnetic torque $T_e = L_{af} I_f I_a$

Torque balance
$$T_e = T_m + T_{mech_loss}$$

Separately-Excited DC Motor Motor

$$V_{a} = R_{a}I_{a} + E_{a}$$

$$E_{a} = L_{af}I_{f}\omega_{r}$$

$$T = L_{af}I_{f}I_{a}$$

Speed-Torque Characteristic

$$\omega_r = \frac{E_a}{L_{af}I_f} = \frac{V_a - I_a R_a}{L_{af}I_f}$$

$$\omega_r = \frac{V_a}{L_{af}I_f} - \frac{R_a}{(L_{af}I_f)^2}T$$

31

Shunt DC Motor

ELEC 343, S-19 M-3

$$\omega_r = \frac{V_a}{L_{af}I_f} - \frac{R_a}{(L_{af}I_f)^2}T$$

$$L_{af}I_f = \frac{L_{af}V_a}{R_f + R_{fc}}$$

$$\omega_r = \frac{R_{f,total}}{L_{af}} - \frac{R_a R_{f,total}^2}{\left(L_{af} V_a\right)^2} T$$

Series DC Motor

 $V_{t} = I_{a}(R_{a} + R_{sr} + R_{ae}) + L_{af}I_{a}\omega_{m}$

$$I_a = \frac{V_a}{R_a + R_{sr} + R_{ae} + L_{af}\omega_m}$$

$$I_{a} = \frac{V_{a}}{R_{a} + R_{sr} + R_{ae} + L_{af}\omega_{m}} \qquad T = \frac{L_{af}V_{a}^{2}}{(R_{a} + R_{sr} + R_{ae} + L_{af}\omega_{m})^{2}}$$

$$T_e = L_{af} I_a^2$$

33

ELEC 343, S-19 M-3

Starting Considerations

Consider a 1.2kW, 120V, Shunt DC Motor with Ra = 2Ω , and Ia_max = 20A

Rated current
$$I_{a,rated} = \frac{1200}{120} = 10A$$

$$\text{Starting current } I_{a,start} = \frac{V_a - E_a}{R_a} = \frac{120 - 0}{2} = 60 \text{A} \qquad \text{Too high ! => } \\ \text{Burn the motor !}$$

- 1. Use additional starting resistor in series with armature
- 2. Use reduced voltage
- 3. Use Power Electronic Drive & Controller

ELEC 343, S-19 M-3

Part 2: Brushed DC Motor Drives and Dynamics

Important Topics & Concepts

- Basic types of dc motor drives
- DC to DC choppers (Chap. 3.8)
- AC to DC controlled rectifiers
- Dynamic (State) equations of the separately-excited motor
- Possible model & implementation/solution
- Dynamic (State) equations of the PM motor
- Possible model & implementation/solution

35

ELEC 343, S-19 M-3

Speed/Torque Control of DC Motors

Recall the Separately Excited DC Motor

$$v_{a} = r_{a}i_{a} + k_{v}\omega_{r}$$

$$k_{v} = L_{af}i_{f}$$

$$\omega_{r} = \frac{e_{a}}{L_{af}i_{f}} = \frac{v_{a} - i_{a}R_{a}}{L_{af}i_{f}}$$

$$\omega_{r} = \frac{v_{a} - i_{a}r_{a}}{k_{v}}$$

$$T_{e} = k_{v}i_{a}$$

$$v_f$$
 L_a
 v_f
 L_a
 v_g
 v_g

Control methods:

- 1. Varying the armature resistance
- 2. Varying the field
- 3. Varying the terminal voltage
- 4. Varying the armature current

Solid-State Converters for DC Motors

DC-DC Converters (Choppers) – used with small & large motors

- Voltage Source (VS) (Pulse Width Modulation PWM)
 - One-quadrant
 - Two-quadrant
 - Four-quadrant
- Current Source (CS) (Hysteresis & Delta Modulation)
 - One-quadrant
 - Two-quadrant
 - Four-quadrant

AC-DC Controlled Rectifiers – used with large motors

- Single-Phase
 - Half-wave
 - Full bridge (full wave)
- Three-Phase
 - Half-wave
 - Full bridge (full wave)

37

ELEC 343, S-19 M-3

DC-DC Converters (Choppers)

Assume a dc voltage source wherein the averaged output voltage can be controlled

$$\overline{V}_a = \frac{1}{T} \int_0^T V_a(t) dt$$

One-Quadrant VS DC-DC Converter

Pulse Width Modulation (PWM)

Switch can be realized using:

- Bipolar Junction Transistor (BJT)
- Insulated Gate Bipolar Transistor (IGBT)
- Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

$$\overline{v}_a = \frac{1}{T} \int_0^T v_a(t) dt = \frac{t_1}{t_1 + t_2} V_s$$

39

Two-Quadrant VS DC-DC Converter

Pulse Width Modulation (PWM)

Four-Quadrant VS DC-DC Converter

Pulse Width Modulation (PWM)

$$\overline{v}_a = \frac{1}{T} \int_0^T v_a(t) dt = dV_s$$

41

Current Source DC-DC Converter

Hysteresis Modulation (HM)

The same modulation can be applied to twoand four-quadrant choppers

Thyristor Controlled Rectifiers

Control the Averaged Output Voltage

a) Single-phase, half-wave

$$V_s = \sqrt{2}V_{rms}\sin(\omega t)$$

$$\overline{V_t} = \frac{1}{T} \int_0^T V_t(t) dt = \frac{V_{rms}}{\sqrt{2}\pi} (1 + \cos(\alpha))$$

$$0 \le \alpha \le \pi$$

$$0 \le \overline{V_t} \le \frac{\sqrt{2}}{\pi} V_{rms}$$

43

ELEC 343, S-19 M-3

Thyristor Controlled Rectifiers

Control the Averaged Output Voltage

b) Single-phase, full-wave

$$V_s = \sqrt{2}V_{rms}\sin(\omega t)$$

$$\overline{V_t} = \frac{1}{T} \int_0^T V_t(t) dt = \frac{\sqrt{2}V_{rms}}{\pi} (1 + \cos(\alpha))$$

$$0 \le \alpha \le \pi$$

$$0 \le \overline{V_t} \le \frac{2\sqrt{2}}{\pi} V_{rms}$$

Thyristor Controlled Rectifiers

Control the Averaged Output Voltage d) Three-phase, full-wave

$$V_A = \sqrt{2}V_{rms}\sin(\omega t)$$

$$V_B = \sqrt{2}V_{rms}\sin(\omega t - 120^\circ)$$

$$V_C = \sqrt{2}V_{rms}\sin(\omega t + 120^\circ)$$

$$\overline{V_t} = \frac{1}{T} \int_0^T V_t(t) dt \qquad 0 \le \alpha \le \pi$$

$$0 \le \overline{V_t} \le \frac{3\sqrt{6}}{\pi} V_{rms}$$
45

ELEC 343, S-19 M-3

Closed-Loop Electric Drive System

Dynamic models are needed for analyzing and designing complex electro-mechanical systems!

Dynamic Modeling

Circuit is valid for transient analysis

Voltage Equations

$$\begin{aligned} v_a &= r_a i_a + \frac{d\lambda_a}{dt} + e_a = r_a i_a + e_a + L_a \frac{di_a}{dt} \\ v_f &= r_f i_f + \frac{d\lambda_f}{dt} = r_f i_f + L_f \frac{di_f}{dt} \end{aligned} \qquad \begin{array}{l} \text{Coupling Terms} \\ e_a &= \omega_r L_{af} i_f \\ T_e &= L_{af} i_f i_a \end{array}$$

 $T_e = J \frac{d\omega_r}{A_t} + T_m + D_m \omega_r$

47

Re-Write the Equations to Express Derivatives

State Equations

$$\frac{di_a}{dt} = -\frac{r_a}{L_a}i_a - \frac{1}{L_a}e_a + \frac{1}{L_a}v_a$$

$$\frac{di_f}{dt} = -\frac{r_f}{L_f}i_f + \frac{1}{L_f}v_f$$

$$\frac{d\omega_r}{dt} = -\frac{D_m}{I}\omega_r + \frac{1}{I}(T_e - T_m)$$

Coupling Terms

$$e_a = \omega_r L_{af} i_f$$

$$T_e = L_{af} i_f i_a$$

Are these equations coupled or decoupled?

Are these equations linear or non-linear?

How do we solve these equations?

ELEC 343. S-19 M-3

Implementation of State Equations

$$\frac{di_a}{dt} = -\frac{r_a}{L_a}i_a - \frac{1}{L_a}e_a + \frac{1}{L_a}v_a$$

$$\frac{d\omega_r}{dt} = -\frac{D_m}{J}\omega_r + \frac{1}{J}(T_e - T_m)$$

Try to implement it in Simulink?

Is this a unique implementation?

49

Implementation of State Equations

Re-write the equations

$$v_f = r_f (1 + au_f s) i_f$$
 $v_a = r_a (1 + au_a s) i_a + e_a$
 $v_a = \omega_r L_{af} i_f$
 $v_b = U_{af} i_f$
 $v_b = U_{af} i_f$
 $v_b = U_{af} i_f$
 $v_b = U_{af} i_f$

Define time constants

$$\tau_a = \frac{L_a}{r_a} \qquad \qquad \tau_f = \frac{L_f}{r_f}$$

5-HP Shunt DC Motor Simulink Model

Dynamic Response of a 5-HP DC Motor

Motor parameters:

Va = Vf = 240V, Rf = 240 Ω , Lf = 120H, Ra = 0.6 Ω , La = 0.012H, Laf = 1.8H, J = 1kg*m^2, Dm = 1e-4 N*m*s, Tm = 29.2 N*m

In this computer study:

Zero initial conditions assumed

Step-1: field winding is energized

Step-2: armature is energized

Step-3: load torque is applied

PM DC Motor Dynamics

State Equations

$$\begin{split} \frac{di_a}{dt} &= -\frac{r_a}{L_a}i_a - \frac{1}{L_a}e_a + \frac{1}{L_a}v_a \\ \frac{d\omega_r}{dt} &= -\frac{D_m}{J}\omega_r + \frac{1}{J}(T_e - T_m) \end{split}$$

Coupling Terms

$$e_a = k_v \omega_r$$
 $T_e = k_v i_a$

Are these equations coupled or decoupled?
Are these equations linear or non-linear?
How do we solve these equations?

Standard State-Space Form

$$\frac{d}{dt} \begin{bmatrix} i_a \\ \omega_r \end{bmatrix} = \begin{bmatrix} -\frac{r_a}{L_a} & -\frac{k_v}{L_a} \\ \frac{k_v}{J} & -\frac{D_m}{J} \end{bmatrix} \begin{bmatrix} i_a \\ \omega_r \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} \\ -\frac{1}{J} \end{bmatrix} \begin{bmatrix} v_a \\ T_m \end{bmatrix}$$

$$\frac{d\mathbf{X}}{dt} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{u}$$

53

PM DC Motor Implementations

State Equations

$$\frac{di_a}{dt} = -\frac{r_a}{L_a}i_a - \frac{1}{L_a}e_a + \frac{1}{L_a}v_a$$

$$\frac{d\omega_r}{dt} = -\frac{D_m}{I}\omega_r + \frac{1}{I}(T_e - T_m)$$

Coupling Terms

$$e_a = k_v \omega_r$$
 $T_e = k_v i_a$

Are these equations coupled or decoupled?
Are these equations linear or non-linear?
How do we solve these equations?

ELEC 343. S-19 M-3

Implementation of State Equations

Re-write the equations

$$v_a = r_a (1 + \tau_a s) i_a + e_a$$

$$e_a = k_v \omega_r$$

$$T_e - T_m = (D_m + Js) \omega_r$$

$$T_e = k_v i_a$$

Define time constants

$$\tau_a = \frac{L_a}{r_a} \qquad \tau_f = \frac{L_f}{r_f}$$

55

ELEC 343, S-19 M-3

Simulink Model of a PM DC Motor

Dynamic Response of a 6V PM DC Motor

Motor parameters:

Va = 6V, $Ra = 7\Omega$, La = 120mH, Kv = 0.0141 N*A/m, $J = 1.06e-6 kg*m^2$, Dm = 6.01e-6 N*m*s, Tm = 3.53e-3 N*m

In this computer study:

Zero initial conditions assumed

Step-1: voltage is applied

Step-2: load torque is applied

57