		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Main Module			N	Ioment Connection	
Module			Beam-to-E	Beam-to-Beam End Plate Connection	
Connectivity *			Coplanar T	Tension-Compression Flange	
End Plate	Type *		Flushe	ed - Reversible Moment	
Bending Mome	ent (kNm) *			23.0	
Shear Forc	e (kN) *			230.0	
Axial Fore	ce (kN)			239.0	
	Beam Section -	Mechanical I	Properties		
	Beam Sec	tion	U.	B 1016 x 305 x 437	
	Materia	l *	E	E 250 (Fe 410 W)C	
т Ү	Ultimate Strength	F_u (MPa)		410	
	Yield Strength,	F_y (MPa)		230	
$(B-t)$ α	Mass, m (kg/m)	436.9	$I_z \text{ (cm}^4)$	909906.0	
4	Area, $A \text{ (cm}^2)$	55660.0	$I_y(\mathrm{cm}^4)$	23430.0	
ZZ D	D (mm)	1025.9	r_z (cm)	40.4	
R ₁	B (mm)	305.4	r_y (cm)	6.5	
R ₁	t (mm)	26.9	$Z_z \text{ (cm}^3\text{)}$	17739.0	
В	T (mm)	49.0	$Z_y \text{ (cm}^3)$	1534.0	
¥	Flange Slope	90	Z_{pz} (cm ³)	20762.0	
	$R_1 \text{ (mm)}$	30.0	$Z_{py} (\mathrm{cm}^3)$	2469.0	
	$R_2 \text{ (mm)}$	0.0			
	Plate Details - Inp	out and Desig	n Preference		
Thickness	(mm) *		[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,		
	()		50, 56, 63, 75, 80, 90, 100, 110, 120]		
Materi	al *		E 250 (Fe 410 W)C		
Ultimate Streng	th, F_u (MPa)		410		
Yield Strength	Yield Strength, F_y (MPa)			230	
	Bolt Details - Inp	ut and Design	n Preference		
Diameter (mm) *			[8, 12, 14, 16, 18	4, 20, 22, 24, 27, 30, 33, 36, 39, 42,	
Diameter	()		45	5, 48, 52, 56, 60, 64]	
Property	Class *		[3.6, 4.6, 4.8, 5	5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*]	Friction Grip Bolt	

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Bolt Tension	Pre-tensioned
Hole Type	Standard
Slip Factor, (μ_f)	0.3
Weld Details - Input and De	sign Preference
Type of Weld Fabrication	Shop Weld
Material Grade Overwrite, F_u (MPa)	410.0
Beam Flange to End Plate	Groove Weld
Beam Web to End Plate	Fillet Weld
Stiffener	Fillet Weld
Detailing - Design Pr	eference
Edge Preparation Method	Sheared or hand flame cut
Gap Between Beams (mm)	0.0
Are the Members Exposed to Corrosive Influences?	False

		Cre	eated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status	Fail
---------------	------

2.1 Member Capacity

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$ $= \frac{0.6 \times 927.900000000001 \times 26.9 \times 230}{\sqrt{3} \times 1.1 \times 1000}$ $= 1807.92$ [Ref. IS 800:2007, Cl.10.4.3]	Restricted to low shear
Plastic Moment Capacity (kNm)		$M_{dz} = \frac{\beta_b Z_{pz} fy}{\gamma_{m0}}$ $= \frac{1 \times 20762000.0 \times 230}{1.1 \times 10^6}$ $= 4341.15$ [Ref. IS 800:2007, Cl.8.2.1.2]	$egin{array}{ccc} V & < & 0.6 \ V \mathrm{dy} \end{array}$

2.2 Load Consideration

Che	eck	Required	Provided	Remarks
-----	-----	----------	----------	---------

		Cre	eated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 1807.92, 40.0)$	
		$= \min(271.19, 40.0)$	
		= 40	
		$V_u = \max(V_y, \ V_{y_{\min}})$	
Shear Force (kN) *	$V_y = 230.0$	but, $\leq V_{dy}$	Pass
		$= \max(230.0, 40)$	
		but, ≤ 1807.92	
		= 230.0	
		[Ref. IS 800:2007, Cl.10.7]	
Axial Force (kN)		$P_x = 239.0$	OK
		$M_{\rm zmin} = 0.5 M_{dz}$	
		$= 0.5 \times 4341.15$	OK
		=2170.57	
		$M_u = \max(M_z, M_{z\min})$	
D. B. M. (IN.)	14 000	but, $\leq M_{dz}$	D.
Bending Moment (kNm) *	$M_z = 23.0$	$= \max(23.0, 2170.57)$	Pass
		≤ 4341.15	
		= 2170.57	
		[Ref. IS 800:2007, Cl.8.2.1.2]	
		$M_{ue} = M_u + P_{x} \times \left(\frac{D}{2} - \frac{T}{2}\right) \times 10^{-3}$	
		$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	
Effective Bending Moment		=2170.57 +	OK
(kNm)		$239.0 \times \left(\frac{1025.9}{2} - \frac{49.0}{2}\right) \times 10^{-3}$	
		2 2) ^ 10	
		=2287.31	

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.3 Bolt Optimization

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Diameter Optimization	d=8	Fail
Property Class	Bolt Property Class Optimization	3.6	Fail
Hole Diameter (mm)		$d_0 = 8$	OK
No. of Bolt Columns		$n_c = 4$	Fail
No. of Bolt Rows		$n_r = 6$	Fail
Total No. of Bolts		$n = n_r X n_c = 24$	Fail

2.4 Detailing

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$=2.5\times8.0$		
Min. Pitch Distance (mm)	= 20.0	30	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\max} = \min(32t, 300)$		
	$= \min(32 \times 50.0, 300)$		
	$= \min(1600.0, 300)$		
Mary Ditch Distance (mans)	= 300	30	Pass
Max. Pitch Distance (mm)		30	Fass
	Where, $t = \min(50.0, 50.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$g_{\min} = 2.5d$		
	$= 2.5 \times 8.0$		
Min. Gauge Distance	=20.0	30	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$g_{\text{max}} = \min(32t, 300)$ = $\min(32 \times 50.0, 300)$ = $\min(1600.0, 300)$		
Max. Gauge Distance (mm)	= 300 Where, $t = \min(50.0, 50.0)$	30	Pass
	[Ref. IS 800:2007, Cl.10.2.3]		
Min. End Distance (mm)	$e_{\min} = 1.7d_0$ = 1.7 × 8 = 13.6	15	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 50.0 \times \sqrt{\frac{250}{230}} = 625.54$ $e_2 = 12 \times 50.0 \times \sqrt{\frac{250}{230}} = 625.54$ $e_{\text{max}} = \min(e_1, \ e_2) = 625.54$ [Ref. IS 800:2007, Cl.10.2.4.3]	15	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.7d_0$ = 1.7 × 8 = 13.6 [Ref. IS 800:2007, Cl.10.2.4.2]	15	Pass

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$e'_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 50.0 \times \sqrt{\frac{250}{230}} = 625.54$		
Max. Edge Distance (mm)	$e_2 = 12 \times 50.0 \times \sqrt{\frac{250}{230}} = 625.54$	15	Pass
	$e'_{\text{max}} = min(e_1, e_2) = 625.54$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
Cross-centre Gauge Dis-		88	Pass
tance (mm)			

2.5 Critical Bolt Design

Check	Required	Provided	Remarks
Slip Resistance (kN)	$V_{sf} = \frac{V_u}{n}$ $= \frac{230.0}{24}$ $= 9.58$	$V_{dsf} = \frac{\mu_f n_e K_h F_o}{\gamma_{mf}}$ Where $F_o = 0.7 f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 \times 1 \times 1 \times 0.7 \times 330.0 \times 36.6}{1.25 \times 10^3}$ $= 2.03$ [Ref. IS 800:2007, Cl.10.4.3]	Fail

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Lever Arm (mm)	Required $r = [937.4, 39.5, 907.4, 69.5, 348.8, 628.1]$ Note: r_1 is the first row inside tension/top flange, r_2 is the first row inside compression/bottom flange Further row(s) are added in a symmetrical manner with odd rows placed near the tension/top flange and even row placed near the compression/bottom flange respectively. Note: The lever arm is computed by considering		Fail
	the N.A at the centre of the bottom flange. Rows with identical lever arm values mean they are considered acting as bolt group near the tension or compression flange. M_{He}		
Tension Due to Moment (kN)	$T_1 = \frac{M_{ue}}{n_c \times \left(r_1 + \sum_{i=2}^{n_r} \frac{r_i^2}{r_1}\right)}$ $= \frac{2287.31 \times 10^3}{4 \times \left(937.4 + \sum_{i=2}^{6} \frac{r_i^2}{937.4}\right)}$ $= 240.95$ Note: T_1 is the tension in the critical bolt. The critical bolt is the bolt nearest to the tension flange.		OK

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Prying Force (kN)	Required $Q = \frac{l_v}{2l_e} \left[T_e - \frac{\beta \eta f_o b_e t^4}{27 l_e l_v^2} \right]$ $l_v = e - \frac{R_1}{2}$ $= 15 - \frac{30.0}{2} = 0.0 \text{ mm}$ $f_o = 0.7 f_{ub}$ $= 0.7 \times 330.0$ $= 231.0 \text{ N/mm}^2$ $l_e = \min\left(e, 1.1 t \sqrt{\frac{\beta f_o}{f_y}} \right)$ $= \min\left(15, 1.1 \times 50 \times \sqrt{\frac{1 \times 231.0}{230}} \right)$ $= \min(15, 55.12) = 15 \text{ mm}$ $\beta = 1 \text{ (pre-tensioned bolt)}$ $\eta = 1.5$ $b_e = \frac{B}{n_c}$ $= \frac{305.4}{4} = 76.35 \text{ mm}$ $Q = \frac{0.0}{2 \times 15} \times \left[240.95 - \left(\frac{1 \times 1.5 \times 231.0 \times 76.35 \times 50^4}{27 \times 15 \times 0.0^2} \right) \times 10^{-2}$ $Q = nan$		Remarks

		Cre	ated with Osdag®
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Tension Demand (kN)	$T_f = T_1 + Q$ $= 240.95 + nan$ $= nan$	$T_f = 0.90 f_{ub} A_n / \gamma_{mf}$ $< f_{yb} A_{sb} (\gamma_{m1} / \gamma_{m0})$ $= \min \left(0.90 \times 330.0 \times 36.6 / 1.25, \right.$ $190.0 \times 50 \times (1.25/1.1) \right)$ $= \min(8.7, 10.8)$ $= 8.64$ [Ref. IS 800:2007, Cl.10.3.5]	Fail
Combined Capacity, (I.R.)	≤ 1	$\left(\frac{V_{sf}}{V_{df}}\right)^{2} + \left(\frac{T_{f}}{T_{df}}\right)^{2} \le 1.0$ $\left(\frac{9.58}{2.03}\right)^{2} + \left(\frac{nan}{8.64}\right)^{2} = nan$ [Ref. IS 800:2007, Cl.10.3.6]	Fail

2.6 Compression Flange Check

Check	Required	Provided	Remarks
Tension in Bolt Rows (kN)		T = [240.95, 10.15, 233.24, 17.86, 89.66, 161.45]	OK
Reaction at Compression Flange (kN)	$R_c = n_c \sum_{n_r=1}^{n_r} T_{n_r}$ $= 4 \times \sum_{n_r=1}^{6} T_{n_r}$ $= 4 \times 753.31$ $= 3013.24$	$F_c = A_g f_y / \gamma_{m0}$ $= \frac{BT f_y}{\gamma_{m0}}$ $= \frac{305.4 \times 49.0 \times 230}{1.1 \times 1000}$ $= 3128.96$	Pass

			Created with OSdag®	
Company Name		Project Title	beam to beam end plate connection	
Group/Team Name		Subtitle		
Designer		Job Number		
Date	21 /01 /2025	Client		

2.7 End Plate Checks

Check	Required	Provided	Remarks
		$H_p = D + 25$	
Height (mm)		=1025.9+25	Pass
		= 1050.9	
		$B_p = B + 25$	
Width (mm)		=305.4+25	Pass
		= 330.4	
		$M_{cr} = T_1 \ l_v - Q \ l_e$	
		$= (240.95 \times 0.0 - nan \times 15) \times 10^{-3}$	
M + 4 G ::: 1G :::		= nan	OV
Moment at Critical Section (kNm)			OK
(KIVIII)		Note: The critical section is at the toe of the weld or	
		the edge of the flange from bolt center-line	
	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$		
Plate Thickness (mm)	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$ $= \sqrt{\frac{4 \times nan \times 10^6}{76 \times (230/1.1)}}$	50	Fail
	= nan		
		$M_p = \left(\frac{b_e t_p^2}{4}\right) \times \frac{f_y}{\gamma_{m0}}$ $= \frac{76 \times 50^2}{4} \times \frac{230}{1.1} \times 10^{-6}$	
Moment Capacity (kNm)	nan	$= \frac{76 \times 50^2}{4} \times \frac{230}{1.1} \times 10^{-6}$	Fail
		= 9.98	

2.8 Longitudinal Stiffener Design

Check	Required	Provided	Remarks
Width (mm)		$W_{st} = B_p - \frac{t}{2}$ $= 330.4 - \frac{26.9}{2}$	Pass
		= 150	
		$L_{\rm st} = 2W_{st}$	
Length (mm)		$= 2 \times 150$	Pass
		= 302	

		Created with OSdag®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Thickness (mm)	t = 26.9	$t_{st} = 28$	Pass
Weld Size (mm)	10	tw = 10	Pass

2.9 $\,$ Weld Design - Beam Web to End Plate Connection

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{u_w} = \min(f_w, f_u)$ $= \min(410.0, 410)$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	$f_{u_w} = 410.0$	Pass
Total Weld Length (mm)		$L_w = 2 \times [D - (2 \times T) - (2 \times R1) - 20]$ $= 2 \times [1025.9 - (2 \times 49.0) - (2 \times 30.0) - 20]$ $= 1694$ Note: Weld is provided on both sides of the web	
Weld Size (mm)	$t_w = \frac{V_u}{f_{uw}kL_w} \times \sqrt{3} \ \gamma_{mw}$ $= \frac{230.0 \times 10^3}{410.0 \times 0.7 \times 1694} \times \sqrt{3} \times 1.25$ $= 1.02$ [Ref. IS 800:2007, Cl.10.5.7]	10	Pass

		Created with OSdag®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Min. Weld Size (mm)	 twmin - based on thickness of the thicker part thicker = max(50.0, 26.9) = 50.0 twmin = 10 twmin - based on thickness of the thinner part thinner = min(50.0, 26.9) = 26.9 twmin ≤ min(10, 26.9) 	$t_w = \max(t_w, t_{w_{\min}})$ = $\max(1.02, 10)$ = 10	Pass
Max. Weld Size (mm)	[Ref. IS 800:2007, Table 21, C $t_{w \text{max}}$ based on thickness of the thinner part $t_{\text{thinner}} = \min(50.0, 26.9)$ $= 26.9$ $t_{w \text{max}} = 26.9$ [Ref. IS 800:2007, Cl.10.5.3.1]	$t_w \le t_{w \max}$ $10 \le 26.9$	Pass
Normal Stress (N/mm2)		$f_a = \frac{H}{0.7t_w L_w}$ $= \frac{239.0 \times 10^3}{0.7 \times 10 \times 1694}$ $= 20.13$ [Ref. IS 800:2007, Cl.10.5.9]	OK

		Created with OSdag®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear Stress (N/mm2)		$q = \frac{V}{0.7t_w L_w}$ $= \frac{230.0 \times 10^3}{0.7 \times 10 \times 1694}$ $= 19.38$ [Ref. IS 800:2007, Cl.10.5.9]	OK
Equivalent Stress (N/mm2)	$f_e = \sqrt{f_a^2 + 3q^2}$ $= \sqrt{20.13^2 + (3 \times 19.38^2)}$ $= 33.87$ [Ref. IS 800:2007, Cl.10.5.10.1.1]	$f_w = \frac{f_u}{\sqrt{3}\gamma_{mw}}$ $= \frac{410.0}{\sqrt{3} \times 1.25}$ $= 189.37$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

		Created with OSCIAG®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

C:3-env-packages.png	C:3-env-packages.png
(a) 3D View	(b) Top View
C:3-env-packages.png	C:3-env-packages.png
(c) Side View	(d) Front View

4 Design Log

2025-01-21 20:14:34 - Osdag - WARNING - The Load(s) defined is/are less than the minimum recommended value [Ref. IS 800:2007, Cl.10.7].

2025-01-21 20:14:34 - Osdag - WARNING - [Minimum Factored Load] The external factored bending moment (23.0 kNm) is less than 0.5 times the plastic moment capacity of the beam (4341.15 kNm)

2025-01-21 20:14:34 - Osdag - INFO - The minimum factored bending moment should be at least 0.5 times the plastic moment capacity of the beam to qualify the connection as rigid connection (Annex. F-4.3.1, IS 800:2007)

2025-01-21 20:14:34 - Osdag - INFO - The value of load(s) is/are set at minimum recommended value as per Cl.10.7 and Annex. F, IS $800\cdot2007$

2025-01-21 20:14:34 - Osdag - INFO - Designing the connection for a factored moment of $2170.57~\mathrm{kNm}$

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 8.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 10.0 mm is thinner than the thickest part of the elements being connected

 $2025\text{-}01\text{-}21\ 20\text{:}14\text{:}34\text{-} Osdag\text{-} INFO\text{-} Selecting a plate of higher thickness which is at least } 49.0\ \mathrm{mm}\ thickness between the control of the contr$

		Created with Osdag®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 12.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 14.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 16.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 18.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 20.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 22.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 25.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 28.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 32.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 36.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thickness 49.0 mm th

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 40.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least 49.0 mm thick

2025-01-21 20:14:34 - Osdag - WARNING - [End Plate] The end plate of 45.0 mm is thinner than the thickest part of the elements being connected

2025-01-21 20:14:34 - Osdag - INFO - Selecting a plate of higher thickness which is at least $49.0 \mathrm{\ mm}$ thickness which

 $2025-01-21\ 20:14:34-Osdag-INFO-[Bolt\ Design]\ Bolt\ diameter\ and\ grade\ combination\ ready\ to\ perform\ bolt\ design$

2025-01-21 20:14:34 - Osdag - INFO - The solver has selected 200 combinations of bolt diameter and grade to perform optimum bolt design in an iterative manner

2025-01-21 20:14:34 - Osdag - INFO - [Optimisation] Performing the design by optimising the plate thickness, using the most optimum plate and a suitable bolt diameter approach

 $2025-01-21\ 20:14:34-Osdag-INFO-If\ you\ wish\ to\ optimise\ the\ bolt\ diameter-grade\ combination,\ pass\ a\ higher\ value\ of\ plate\ thickness$

		Created with Osdag®	
Company Name		Project Title	beam to beam end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

using the Input Dock

2025-01-21 20:14:34 - Osdag - INFO - [Flange Strength] The reaction at the compression flange of the beam 3013.24 kN is less than the flange capacity 3128.96 kN. The flange strength requirement is satisfied.

2025-01-21 20:14:34 - Osdag - INFO - [End Plate] The end plate of 50.0 mm passes the moment capacity check. The end plate is checked for yielding due tension caused by bending moment and prying force

2025-01-21 20:14:34 - Osdag - INFO - [Bolt Design] The bolt of 8.0 mm diameter and 3.6 grade passes the tension check

2025-01-21 20:14:34 - Osdag - INFO - Total tension demand on bolt (due to direct tension + prying action) is nan kN and the bolt tension capacity is (8.64 kN)

2025-01-21 20:14:34 - Osdag - INFO - [Bolt Design] The bolt of 8.0 mm diameter and 3.6 grade passes the combined shear + tension check

2025-01-21 20:14:34 - Osdag - INFO - The Interaction Ratio (IR) of the critical bolt is nan

2025-01-21 20:14:34 - Osdag - INFO - : ======= Design Status =========

2025-01-21 20:14:34 - Osdag - INFO - : Overall beam to beam end plate splice connection design is UNSAFE

2025-01-21 20:14:34 - Osdag - INFO -: ======== End Of Design ==========