Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 13 • INDICATIONS Suites numériques

Exercice 13.1

Soient $p, q \in]0, 1[$.

Soient $a_0, a_1 \in]0, 1[$ tels que $a_0 + a_1 = 1$.

1. Déterminer le terme général de la suite $(p_n)_n$ définie par

$$egin{cases} p_0\coloneqq a_0\ orall n\in\mathbb{N},\quad p_{n+1}\coloneqq (1-p-q)p_n+q. \end{cases}$$

- **2.** Déterminer le terme général de $(1 p_n)_n$ en fonction de a_1 .
- **3.** On suppose que |1 p q| < 1. Déterminer les limites des suites

$$(p_n)_n$$
 et $(1-p_n)_n$.

indication

Il s'agit d'une suite arithmético-géométrique.

On peut aussi raisonner de manière plus élémentaire, par récurrence, en montrant que

$$\forall n \in \mathbb{N}, \quad p_n = (1 - p - q)^n a_0 + q \sum_{i=0}^{n-1} (1 - p - q)^j.$$

résultat

1.
$$p_n = \frac{q}{p+q} + (1-p-q)^n \left(a_0 - \frac{q}{p+q}\right).$$

2.
$$1-p_n = \frac{p}{p+q} + (1-p-q)^n \left(a_1 - \frac{p}{p+q}\right)$$

3.
$$p_n \longrightarrow \frac{q}{p+q}$$
 et $1-p_n \longrightarrow \frac{p}{p+q}$.

Exercice 13.2

Déterminer les fonctions $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ telles que

$$\forall x \in \mathbb{R}_+, \quad (f \circ f)(x) = 6x - f(x).$$

1

indication

On définit, pour $x \in \mathbb{R}_+$, la suite $(y_n)_n$ telle que

$$\begin{cases} y_0 = x \\ \forall n \in \mathbb{N}, \quad y_{n+1} = f(y_n). \end{cases}$$

La suite $(y_n)_n$ vérifie une relation de récurrence linéaire du second ordre donc on détermine son terme général.

On n'oubliera pas que f est à valeurs positives.

résultat

$$f: \left| \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & 2x. \end{array} \right|$$

Exercice 13.3

Montrer que la suite de terme général

$$u_n := \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$

(pour $n \in \mathbb{N}$) converge.

Exercice 13.4

On pose, pour $n \in \mathbb{N}^*$, $u_n \coloneqq \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

- **1.** Montrer que $(u_n)_n$ converge.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad u_{2n} < \frac{u_n}{2} + \frac{1}{2\sqrt{n}}.$$

3. Déterminer la limite de $(u_n)_n$.

—— indication

- **1.** Calculer $u_{n+1} u_n$ montrer que $(u_n)_n$ est décroissante.
- **2.** Calculer en coupant u_{2n} en deux parties.
- 3. Encadrer la limite, d'une part par la définition de $(u_n)_n$, d'autre part par la question précédente.

résultat -

$$u_n \longrightarrow 0$$
.

2

Exercice 13.5

On pose, pour tout $n \in \mathbb{N}$,

$$u_n \coloneqq rac{1}{2^{2n}}inom{2n}{n} \quad ext{et} \quad v_n \coloneqq (n+1){u_n}^2.$$

Montrer que $(u_n)_n$ converge et déterminer sa limite.

indication

- lack Montrer que $(u_n)_n$ converge par monotonie.
- lack De même, montrer que $(v_n)_n$ converge.
- lack Déterminer la limite de $(u_n)_n$ en exploitant la convergence de $(v_n)_n$.

résultat -

$$u_n \longrightarrow 0$$
.

Exercice 13.6

1. Montrer que

$$\forall x > 0, \quad x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x.$$

2. Étudier la nature de la suite $(u_n)_n$ telle que

$$\forall n \in \mathbb{N}^*, \quad u_n := \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right).$$

indication -

- 1. On peut réaliser des études de fonctions. L'une s'établit directement par convexité.
- **2.** On pose $v_n := \ln(u_n)$ et on étudie la suite $(v_n)_n$, avant de conclure pour $(u_n)_n$ par passage à l'exponentielle.

résultat -

$$u_n \longrightarrow e^{\frac{1}{2}}.$$

Exercice 13.7

1. Soit $x \in \mathbb{R}$. On pose, pour $n \in \mathbb{N}^*$,

$$u_n(x) := \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \cdots + \lfloor nx \rfloor}{n^2}.$$

3

Étudier la nature de $(u_n(x))_{n\in\mathbb{N}^*}$.

2. Quelle propriété de $\mathbb R$ peut-on redémontrer à l'aide de $\mathbf 1$.?

indication

- **1.** Minorer $n^2 u_n$ par $\sum_{k=1}^n k$.
- **2.** Pour $x \in \mathbb{R}$, $(u_n(x))_n$ est une suite d'éléments de \mathbb{Q} , convergeant vers x.

Exercice 13.8

Soit $m \in \mathbb{R}_+^*$. Soit $\sigma \in \mathbb{R}$. Soit $(v_n)_{n \geqslant 0}$ telle que

$$\begin{cases} v_0 = 0 \\ \forall n \in \mathbb{N}, \quad v_{n+1} = m^2 v_n + \sigma^2 m^n. \end{cases}$$

- 1. Déterminer le terme général de la suite $(v_n)_n$.
- **2.** Soit $p \in]0,1[$. On prend $m=\frac{1-p}{p}$.

Déterminer la nature de $(v_n)_n$ en fonction de p.

indication

1. Conjecturer v_n à l'aide de v_{n-1} , v_{n-2} , ..., jusqu'à faire apparaître $v_0 = 0$. Vérifier la conjecture par récurrence.

On peut aussi, en considérant $u_n := \frac{v_n}{m^n}$, déterminer le terme général de $(u_n)_n$ (suite arithméticogéométrique).

2. La disjonction de cas en p se déduit de la disjonction de cas en m (m < 1, m = 1 et m > 1).

résultat

1.
$$\begin{cases} v_0 = 0 \\ \forall n \in \mathbb{N}^*, \quad v_n = \sigma^2 m^{n-1} \sum_{k=0}^{n-1} m^k. \end{cases}$$

Exercice 13.9

Soit $(u_n)_n \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $u_n \longrightarrow 0$. Montrer que

$$\forall a > 1, \quad \sum_{k=0}^{n} \frac{u_{n-k}}{a^k} \longrightarrow 0.$$

- indication –

Raisonner avec ε et N_{ε} tel que $a^{-N_{\varepsilon}}\leqslant \varepsilon$. Couper la somme en deux avec N_{ε} .