理工学基礎実験レポート

実験日	2020年 6月 26日(金)(午前)
実験題目	A-3 応力およびひずみの測定

学科	物理		クラス	N	学籍番号	61908697
報告者	氏名	佐々木良輔				

共同実験者	

レポート提出日	2020年	7月	2 日	4 時 00 分
再レポート提出日	2020年	月	日	時 分

室温	
湿度	
気圧	

1. 目的

いくつかの材料について引張試験を行い、応力とひずみの関係や機械的特性を理解する.

2. 理論

2.1 応力

物体に荷重を加えると、それに釣り合うように物体内に内力が発生する。この内力の単位面積あたりの量が応力である。図のように内力の方向と作用面 (面積 F_0) が垂直なとき、これを垂直応力と呼び、その値は

$$\sigma = \frac{P}{F_0} \tag{1}$$

である.一方,図のように内力の方向と作用面が水平なとき,これをせん断応力と呼び,その値は

$$\tau = \frac{P}{F_0} \tag{2}$$

である.

2.2 ひずみ

荷重によって物体が変形した際、その単位量あたりの量をひずみと呼ぶ、図のように内力の方向と作用面が垂直なとき、垂直ひずみと呼び、その値は

$$\epsilon = \frac{\lambda}{l_0} \tag{3}$$

である.一方,図のように内力の方向と作用面が水平なとき,これをせん断ひずみと呼び,その値は

$$\epsilon = \frac{S}{l_0} \tag{4}$$

である.

2.3 応力-ひずみ線図

図に軟鋼の応力-ひずみ線図を示す。応力が比例限度 P より小さい範囲で応力とひずみは比例関係にある。応力がある値以上になると、材料は塑性変形し、その荷重の限界値を弾性限度 E_ϵ と呼ぶ。さらに応力を増やしていくと、応力が一定のままひずみが突然増大する。この現象を降伏と呼び、降伏が始まる点を降伏点 A と呼ぶ。その後、応力は最大値を取り、徐々に減少し破断する。応力の最大値を引張強さ M とよび、破断する点を破断強さ C とよぶ。応力ひずみ線図は材料によって異なった経過を示す。

2.4 ひずみゲージ

ひずみゲージとは、材料に貼り付け、材料と共にひずむことで材料のひずみを正確に測定する素子である。 電気抵抗線ひずみゲージでは、針金のひずみに伴う電気抵抗の変化により、ひずみを測定する。 針金の長さを l、抵抗を R とし、ひずみに伴いこれが Δl 、 ΔR 変化したとき、ゲージ率 α_0 は

$$\alpha_0 = \frac{\frac{\Delta R}{R}}{\frac{\Delta l}{l}} \tag{5}$$

で表され、一般には $\alpha_0 \simeq 2.0 \sim 2.1$ である.

3. 方法

3.1 試験片

試験片の形状は JIS 規格に準拠する. 試験片の材料は

- S20C, 焼鈍材
- A1070

である. 試験片には 10 mm ごとに標点が刻まれ、実験前後の標点での直径をノギスで、標点の座標を読み取り顕微鏡で記録した.

3.2 ひずみゲージの接着

試験片の一部を紙やすりで軽くやすり、アルコールで洗浄した後、専用の接着剤で接着した。

3.3 引張試験

試験片を引張試験機のチャックに取り付けた。この際、試験片の掴み部がチャックから少し出るようにした。試験片を取り付けた状態でのクロスヘッドの位置を 0 とする。その後、鋼では 2000 N、アルミニウムでは 200 N ずつ荷重を増やし、各荷重でのひずみやストロークを記録した。また、ある程度の範囲で記録したら、その後は自動モードで荷重とストロークを記録した。

4. 結果

4.1 鋼材

鋼材は大きな音を立てて破断し、その破断面は凹凸のある円形だった.

4.1.1 破断伸び, 絞り

表 1, 表 2 に試験前後の直径,標点座標,標点間距離を示す.両端の標点の距離 $l_0=40.06~\mathrm{mm}$,初期断面積 $A_0=50.27~\mathrm{mm}^2$ なので,破断伸び $\delta=40.24~\%$,絞り $\phi=54.44~\%$ である.図 1 に試験後の直径と伸びの関係を示す.

表 1 試験前の直径,標点座標,標点間距離

標点番号	直径 / mm	標点座標 / mm	標点間距離 / mm
1	8.00	50.09	-
2	8.00	60.21	10.12
3	8.00	70.25	10.04
4	8.00	80.17	9.92
5	8.00	90.15	9.98

表 2 試験後の直径,標点座標,標点間距離

標点番号	直径 / mm	標点座標 / mm	標点間距離 / mm
1	7.30	70.02	-
2	7.05	82.60	12.580
3	6.90	95.79	13.190
破面	5.40	106.00	-
4	6.70	115.00	19.21
5	7.40	126.20	11.20

図1 試験後の直径と伸びの関係(鋼)

4.1.2 ひずみ, 応力

図 2 に鋼材の公称応力ひずみ線図を示す. ただし, ひずみの値はストロークから算出したものである. 各荷重でのストローク, ひずみ, 応力などは付録の表 A.1 に示す.

図2 鋼材の公称応力ひずみ線図

図 2 のように (0.0068,120) 付近が比例限度だとわかる. ヤング率 E は比例限度までの傾きなので

$$E = \frac{119.4 \text{ MPa}}{6789.8 \times 10^{-6}} \div 10^3 = 17.59 \text{ GPa}$$

である. 一方, ひずみゲージの値を用いると, 表 A.3 から荷重が $4000~N,\,6000~N$ のときの $\frac{\Delta\sigma}{\Delta\epsilon_1}$ の 平均を取り

$$E = 206.5 \text{ GPa}$$

である. 鋼材のヤング率, 上降伏点, 下降伏点, 引張強さ, 破断強さを表 3 に示す.

表 3 鋼材の諸量

名称	数值
ー ヤング率 E(ストローク)	17.95 GPa
ヤング率 $E($ ひずみゲージ $)$	$206.5~\mathrm{GPa}$
上降伏点	$328.3~\mathrm{MPa}$
下降伏点	$234.8~\mathrm{MPa}$
引張強さ	$412.6~\mathrm{MPa}$
破断強さ	252.1 MPa

4.2 アルミニウム

アルミニウムは静かに破断し、その破断面は尖っており、円形ではなかった.

4.2.1 破断伸び, 絞り

表 4, 表 5 に試験前後の直径, 標点座標, 標点間距離を示す. 両端の標点の距離 $l_0=40.04$ mm, 初期断面積は直径の平均を用いて $A_0=50.64$ mm 2 なので, 破断伸び $\delta=43.78$ %, 絞り $\phi=93.83\sim98.26$ % である. 図 3 に試験後の直径と伸びの関係を示す.

表 4 試験前の直径,標点座標,標点間距離

標点番号	直径 / mm	標点座標 / mm	標点間距離 / mm
1	8.05	50.13	-
2	8.05	60.20	10.07
3	8.00	70.19	9.99
4	8.05	80.23	10.04
5	8.00	90.17	9.94

表 5 試験後の直径,標点座標,標点間距離

標点番号	直径 / mm	標点座標 / mm	標点間距離 / mm
1	7.4	100.08	-
2	7.25	112.26	12.18
3	7.1	124.88	12.62
破面	$1\sim 2$	138.00	-
4	6.75	144.79	19.91
5	7.5	157.65	12.86

図3 試験後の直径と伸びの関係 (アルミニウム)

4.3 ひずみ, 応力

図にアルミニウムの公称応力ひずみ線図を示す。 ただし、 ひずみの値はストロークから算出したものである。 各荷重でのストローク、 ひずみ応力などは表 A.2 に示す。 表 A.4 から、 $\frac{\Delta\sigma}{\Delta\epsilon_2}$ は 1000 N を超えたあたりで減少し始めているので、 そこを比例限度とする。 よって荷重が 400 N、 600 N、 800 N 1000 N のときの $\frac{\Delta\sigma}{\Delta\epsilon_2}$ の平均を取ることでヤング率 E は

E = 12.97 GPa

と求まる. 一方, ひずみゲージの値を用いた場合は

E = 59.00 GPa

と求まる. 図 5 に図 4 の一部を拡大したグラフを示す. 図 5 にはオフセット法の補助線を加えてある. ただし, ひずみ 0 で有限の応力を持つことはありえないので, 補正している. 図 5 から 0.2 % 耐力は 38.02 MPa であるとわかる. 表 6 にアルミニウムのヤング率,0.2 % 耐力, 引張強さ, 破断強さを示す.

図 4 アルミニウムの公称応力ひずみ線図

図5 公称応力ひずみ線図の一部

表 6 アルミニウムの諸量

名 称	数值
ー ヤング率 E(ストローク)	12.97 GPa
ヤング率 $E($ ひずみゲージ $)$	$59.00~\mathrm{GPa}$
0.2~% 耐力	$38.02~\mathrm{GPa}$
引張強さ	$68.94~\mathrm{MPa}$
破断強さ	1.817 MPa

5. 考察

5.1 鋼材とアルミニウムの共通点・相違点

鋼材とアルミニウムの共通点として以下のような点が挙げられる.

- • 比例限度のひずみは鋼材の場合 0.066 %, アルミニウムの場合 0.042 % と小さい. すなわち,
 フックの法則に従う範囲が小さい.
- 引張強さ付近ではひずみを変化させても応力の変化が小さい.
- 引張強さから破断強さかけて、急激に応力が小さくなっていく.
- 図 2, 図 4 のようにどちらも降伏現象が発生している.
- 図 1, 図 3 のようにどちらも伸びが大きい点で直径が細くなっている. このことは体積が保存していることを考えれば自然である.
- どちらも破断面を含む区間が大きく伸び、他の区間の伸びは比較的小さい. 材料の直径に不均一性があると、直径が小さい部分に大きな応力が掛かるので、その部分が絞られ更に応力が集中する. したがって、試験片のわずかに直径が小さい部分が大きく絞られ、他の部分の絞りは小さくなる. そして最も絞りが大きい部分が破断する.

一方で相違点として以下のような点が挙げられる.

- ▼アルミニウムの降伏点は鋼材のそれに比べて小さく、降伏後に応力が変化しない区間がほぼ 存在しない。
- アルミニウムの引張強さは鋼材の17%程度で弱い.
- アルミニウムの破断強さは実験開始時の応力よりも小さい. このことから不可逆な構造の変化が生じていることが推測できる
- 鋼材は音を立てて急激に破断したのに対し、アルミニウムは静かに破断した。
- 鋼材の破断面は円形だが、アルミニウムは円形でない。

5.2 S20C, 焼鈍材の特徴 [1][6]

鉄鋼は以下のような分類がある.

- 一般構造用圧延鋼材 JIS 規格で強度が規定されている.機械部品などに用いられる. (例:SS400)
- 機械構造用炭素鋼鋼材 JIS 規格で強度と組成が規定されている. SXXC という記号で識別され, 0.XX % の炭素を 含有する. (例:S45C)
- 炭素工具鋼鋼材焼入れと焼きなましを行う鋼材.硬度が高く工具などに用いられる.(例:SK4)
- 高炭素クロム軸受鋼鋼材 ベアリングなどに用いるため、耐摩耗性が高い. (例:SUJ2)

S20C は機械構造用炭素鋼鋼材の一種であり炭素含有率が $0.18\sim0.23~\%$ 程度である.

焼鈍材とは熱処理として焼きなましを行った材料のことである。焼きなましを行うことで徐々に結晶が冷やされ、内部のひずみや格子欠落が減少する。したがって展延性が向上する。[7] 対して、焼入れを行うと、展延性が損なわれる代わりに硬度や強度が向上する。

5.3 A1070 の特徴 [5]

アルミニウム合金には以下のような分類がある.

• A1000 系

最もアルミニウムの純度が高く、耐食性や電気、熱伝導性に優れる. 電気器具や容器などに用いられる. (例:A1070)

• A2000 系

Al-Cu 合金系, ジュラルミン合金と呼ばれ, 強度が高いが耐食性や表面処理性に難がある. 航空機や機械部品に用いられる. (例:A2024)

• A5000 系

Al-Mg 合金系, 比較的強度が高く耐食性や表面処理性も高い. 建材や構造材に用いられる. (例:A5052)

• A7000 系

Al-Zn-Mg 合金系, アルミニウム合金の中では最も強度いが, 耐食性に難あり. 航空機や鉄道車両に用いられる. (例:A7075)

A1070 は A1000 系の合金であり、99.7 % 以上の純度を持つ.

5.4 測定値の工学的使用法

5.4.1 降伏応力について

S20C などの軟鋼の場合, 降伏応力を超える応力を加えると応力は下降伏点まで下がり, 急激にひずみが大きくなることがわかる. すなわち, 降伏応力以上の応力を掛けることは, 材料の大幅で不可逆な変形を意味する. したがって, 設計の際には材料に掛かる応力が降伏応力以下になるように設計を行う必要があり, また十分な安全率をとるべきである.

5.4.2 0.2 % 耐力について

0.2~% 耐力とは 0.2~% の塑性変形が発生する点であるといえる. なぜならば, 塑性変形した金属から荷重を除去すると, 塑性変形した状態からヤング率の傾斜に沿ってひずみが減少する. つまり 0.2~% 耐力の応力を受け塑性変形した金属は, 荷重を除去してもオフセット線にそってひずみが減少し, 結果 0.2~% のひずみが残るのである. アルミニウムなどの材料では, 降伏点が明確に表れないので, その代わりとなる指標を元に設計する必要があり, この指標として 0.2~% 耐力が用いられる.

5.4.3 引張強さについて

引張強さはその材料が破損しない最大の応力である。引張強さ以上の応力を材料が受けた場合、 その材料は破断するため、設計の際には材料に掛かる応力が引張強さ以下になるように設計を行う 必要があり、また十分な安全率をとるべきである。

5.4.4 伸び, 絞りについて[2]

伸び、絞りが高いことは延性、展性が高いことを意味する. 延性、展性が高いと部分的な荷重を分散するため、建築などにおいて重要な指標になる. また、延性、展性が高い材料はプレスやしぼり加工などに適する.

5.5 カップアンドコーン破壊 [3]

カップアンドコーン破壊の破断面は図6のようになっている。図7,図8にカップアンドコーン破壊のモデルを示す。金属材料中に不純物が存在すると、応力によってその境界面から空隙が生じる。この空隙が成長、周囲の空隙と連結することで断面の凹凸が形成される。また、空隙がある程度成長すると、一部にせん断応力が集中し図8のように繋がった部分でせん断破壊が生じる。せん断応力は45度方向に最も大きいので、カップの縁に相当する部分が形成される。

また A1070 のような不純物の少ない材料では空隙が成長せずカップアンドコーン破壊は起きない.

図 6 カップアンドコーン破壊の破断面 [3]

図 7 カップアンドコーン破壊のモデル [3]

図 8 カップアンドコーン破壊のモデル [3]

5.6 降伏点について [4]

鋼鉄で結晶が欠陥した部分(転移)では、電子同士の斥力が小さくなっているため、炭素などの不 純物が集まり安定な状態になっている。この状態をコットレル固着と呼ぶ。ある上降伏点の応力を 加えるとコットレル固着にあった転移が動き出す。この状態では力は全て転移をコレットル固着か ら剥がすために使われるため、応力が低下する。したがって、下降伏点が生じる.

5.7 誤差要因

ストロークの値は、引張試験機自体の剛性や、コレットの滑り、ロードセルの変形などを考慮していない。 よって実際の変位よりも大きなひずみが算出されていると考えられる.

6. 結論

応力とひずみの関係や機械的特性について知見を得た. また, 材料力学の考え方を部分的に知ることができた.

参考文献

- [1] reference17.pdf. https://www.nikko-yozai.co.jp/wp/wp-content/themes/nikko/pdf/reference/reference17.pdf. (Accessed on 07/02/2020).
- [2] 引張試験テキスト. http://ms-laboratory.jp/zai/tensile/tensile.htm. (Accessed on 07/02/2020).
- [3] 第4章 破壞 (fracture). http://ms-laboratory.jp/strength/4_1/4_1.htm. (Accessed on 07/02/2020).
- [4] 降伏点とは何か?上・下降伏点が表れる理由、表れない材料- 理数白書. https://www.risuuhakusyo.com/kouhukuten. (Accessed on 07/02/2020).
- [5] misumi. アルミニウム合金の種類と特徴 技術情報 misumi-vona【ミスミ】. https://jp.misumi-ec.com/tech-info/categories/surface_treatment_technology/st01/c1701.html. (Accessed on 07/02/2020).
- [6] misumi. 金属材料の種類と用途 1 技術情報 misumi-vona【ミスミ】. https://jp.misumi-ec.com/tech-info/categories/technical_data/td05/a0116.html. (Accessed on 07/02/2020).
- [7] 東研サーモテック. 焼きなまし(annealing) 東研サーモテック | 金属熱処理、dlc・pvd コーティングの先進企業. https://tohkenthermo.co.jp/technology/annealing/#:~:text=%E4%BA%8B%E4%BE%8B%E7%B4%B9%E4%BB%8B-,%E5%AE%8C%E5%85%A8%E7%84%BC%E3%81%8D%E3%81%AA%E3%81%BE%E3%81%97,%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%

E3%81%A7%E8%B5%B7%E3%81%93%E3%82%8A%E3%81%BE%E3%81%99%E3%80%82. (Accessed on 07/02/2020).

付録 A 実験データ

表 A.1: 実験データ (鋼材)

		 ひずみ:	$\times 10^{-6}$		
荷重 / N	ストローク / mm	ひずみゲージ ϵ_1		公称応力 / MPa	真応力 / MPa
2000	0.063	271	1.573.E+03	39.79	39.80
4000	0.152	490	3.794.E + 03	79.58	79.62
2000	0.090	288	2.247.E + 03	39.79	39.80
6000	0.272	662	6.790.E + 03	119.4	119.4
2000	0.151	284	3.769.E + 03	39.8	39.80
8000	0.492	868	1.228.E + 04	159.2	159.3
2000	0.305	301	7.614.E + 03	39.79	39.80
10000	0.705	1075	1.760.E + 04	198.9	199.2
11000	0.790	1170	1.972.E + 04	218.8	219.1
12000	0.896	1270	2.237.E + 04	238.7	239.0
13000	0.997	1370	2.489.E + 04	258.6	259.0
14000	1.095	1475	2.733.E + 04	278.5	278.9
15000	1.190	1580	2.971.E + 04	298.4	298.9
16000	1.289	1695	3.218.E + 04	318.3	318.8
16500	1.329	1760	3.318.E + 04	328.3	328.8
11800	1.334	1250	3.330.E + 04	234.8	235.0
11900	1.4	1315	3.495.E + 04	236.7	237.1
12000	1.5	1650	3.744.E + 04	238.7	239.1
11800	1.6	14800	3.994.E + 04	234.8	238.2
12000	1.7	15600	4.244.E + 04	238.7	242.5
11800	1.8	15800	4.493.E + 04	234.8	238.5
12500	1.9	15800	4.743.E + 04	248.7	252.6
13000	2	17650	4.993.E + 04	258.6	263.2
13350	2.1	19730	5.242.E + 04	265.6	270.8
13800	2.2	21630	5.492.E + 04	274.5	280.5
14000	2.3	23626	5.741.E + 04	278.5	285.1
14400	2.4	25500	5.991.E + 04	286.5	293.8

#= / >	-1	ひずみ ×10 ⁻⁶		ひずみ×10 ⁻⁶	
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1	ストローク ϵ_2	公称応力 / MPa	真応力 / MPa
14000	2.5	27665	6.241.E+04	278.5	286.2
14025	2.5		6.241.E + 04	279.0	
15334	2.6		6.490.E + 04	305.1	
15587	2.7		6.739.E + 04	310.1	
15833	2.8		6.989.E + 04	315.0	
16068	2.9		7.239.E+04	319.7	
16284	3.0		7.488.E+04	324.0	
16486	3.1		7.738.E+04	328.0	
16676	3.2		7.987.E + 04	331.8	
16854	3.3		8.237.E + 04	335.3	
17024	3.4		8.487.E + 04	338.7	
17186	3.5		8.736.E + 04	341.9	
17342	3.6		8.986.E + 04	345.0	
17491	3.7		9.236.E + 04	348.0	
17634	3.8		9.485.E + 04	350.8	
17772	3.9		9.735.E + 04	353.6	
17904	4.0		9.985.E + 04	356.2	
18030	4.1		1.023.E + 05	358.7	
18153	4.2		1.048.E + 05	361.1	
18269	4.3		1.073.E + 05	363.5	
18382	4.4		1.098.E + 05	365.7	
18490	4.5		1.123.E + 05	367.9	
18593	4.6		1.148.E + 05	369.9	
18693	4.7		1.173.E + 05	371.9	
18788	4.8		1.198.E + 05	373.8	
18880	4.9		1.223.E + 05	375.6	
18969	5.0		1.248.E + 05	377.4	
19053	5.1		1.273.E + 05	379.0	
19134	5.2		1.298.E + 05	380.7	
19211	5.3		1.323.E + 05	382.2	
19286	5.4		1.348.E + 05	383.7	
19357	5.5		1.373.E + 05	385.1	
19426	5.6		1.398.E + 05	386.5	
19491	5.7		1.423.E + 05	387.8	

## / NI	ひずみ×10 ⁻⁶		1) 15 pt 13 pt	一
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1 ストローク ϵ_2	公称応力 / MPa €2	真応力 / MPa
19554	5.8	1.448.E+05	5 389.0	
19615	5.9	1.473.E + 05	390.2	
19673	6.0	1.498.E + 05	391.4	
19728	6.1	$1.523.\mathrm{E}{+05}$	392.5	
19781	6.2	1.548.E + 05	393.5	
19831	6.3	1.573.E + 05	394.5	
19880	6.4	1.598.E + 05	395.5	
19927	6.5	1.623.E + 05	396.4	
19972	6.6	1.647.E + 05	397.3	
20013	6.7	1.672.E + 05	398.2	
20054	6.8	1.697.E + 05	399.0	
20093	6.9	1.722.E + 05	399.7	
20131	7.0	1.747.E + 05	5 400.5	
20166	7.1	1.772.E + 05	5 401.2	
20201	7.2	1.797.E + 05	5 401.9	
20233	7.3	1.822.E + 05	5 402.5	
20264	7.4	1.847.E + 05	5 403.1	
20294	7.5	1.872.E + 05	5 403.7	
20323	7.6	1.897.E + 05	5 404.3	
20350	7.7	1.922.E + 05	5 404.8	
20375	7.8	1.947.E + 05	405.3	
20400	7.9	1.972.E + 05	405.9	
20423	8.0	1.997.E + 05	5 406.3	
20446	8.1	$2.022.\mathrm{E}{+05}$	5 406.8	
20468	8.2	2.047.E + 05	407.2	
20487	8.3	2.072.E + 05	407.6	
20507	8.4	2.097.E + 05	5 408.0	
20525	8.5	2.122.E + 05	5 408.3	
20542	8.6	2.147.E + 05	5 408.7	
20558	8.7	2.172.E + 05	5 409.0	
20574	8.8	2.197.E + 05	5 409.3	
20590	8.9	2.222.E + 05	5 409.6	
20604	9.0	2.247.E + 05	5 409.9	
20616	9.1	2.272.E + 05	5 410.1	

+	ひずみ×10 ⁻⁶		11.45 L / 3.65	
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1 ストローク ϵ_2	公 称応力 / MPa	真応力 / MPa
20629	9.2	2.297.E+05	410.4	
20640	9.3	2.321.E + 05	410.6	
20651	9.4	2.346.E + 05	410.8	
20661	9.5	2.371.E + 05	411.0	
20670	9.6	2.396.E + 05	411.2	
20679	9.7	2.421.E + 05	411.4	
20687	9.8	2.446.E + 05	411.6	
20695	9.9	2.471.E + 05	411.7	
20701	10.0	2.496.E + 05	411.8	
20707	10.1	2.521.E + 05	412.0	
20714	10.2	2.546.E + 05	412.1	
20718	10.3	2.571.E + 05	412.2	
20723	10.4	2.596.E + 05	412.3	
20727	10.5	2.621.E + 05	412.4	
20731	10.6	2.646.E + 05	412.4	
20733	10.7	2.671.E + 05	412.5	
20735	10.8	2.696.E + 05	412.5	
20738	10.9	2.721.E + 05	412.6	
20739	11.0	2.746.E + 05	412.6	
20740	11.1	2.771.E + 05	412.6	
20741	11.2	2.796.E + 05	412.6	
20740	11.3	2.821.E + 05	412.6	
20740	11.4	2.846.E + 05	412.6	
20739	11.5	2.871.E + 05	412.6	
20738	11.6	2.896.E + 05	412.6	
20736	11.7	2.921.E + 05	412.5	
20734	11.8	2.946.E + 05	412.5	
20731	11.9	2.970.E + 05	412.4	
20728	12.0	2.995.E+05	412.4	
20724	12.1	3.020.E + 05	412.3	
20721	12.2	3.045.E + 05	412.2	
20715	12.3	3.070.E + 05	412.1	
20711	12.4	3.095.E + 05	412.0	
20706	12.5	3.120.E+05	411.9	

## / N	7.10 6 /	 ひずみ >	<10 ⁻⁶	八ね広 も / MD	
何里 / N	ストローク / mm	ひずみゲージ ϵ_1	ストローク ϵ_2	公称応力 / MPa	真応力 / MPa
20701	12.6		3.145.E+05	411.8	
20694	12.7		3.170.E + 05	411.7	
20687	12.8		3.195.E + 05	411.6	
20681	12.9		3.220.E + 05	411.4	
20674	13.0		3.245.E + 05	411.3	
20666	13.1		3.270.E + 05	411.1	
20658	13.2		3.295.E + 05	411.0	
20649	13.3		3.320.E + 05	410.8	
20640	13.4		3.345.E + 05	410.6	
20630	13.5		3.370.E + 05	410.4	
20620	13.6		3.395.E + 05	410.2	
20609	13.7		3.420.E + 05	410.0	
20597	13.8		3.445.E + 05	409.8	
20586	13.9		3.470.E + 05	409.5	
20573	14.0		3.495.E + 05	409.3	
20560	14.1		$3.520.\mathrm{E}{+05}$	409.0	
20547	14.2		3.545.E + 05	408.8	
20531	14.3		3.570.E + 05	408.5	
20516	14.4		3.595.E + 05	408.2	
20499	14.5		3.620.E + 05	407.8	
20482	14.6		3.644.E + 05	407.5	
20463	14.7		3.669.E + 05	407.1	
20442	14.8		3.694.E + 05	406.7	
20421	14.9		3.719.E + 05	406.3	
20397	15.0		3.744.E + 05	405.8	
20371	15.1		3.769.E + 05	405.3	
20343	15.2		3.794.E + 05	404.7	
20311	15.3		3.819.E + 05	404.1	
20276	15.4		3.844.E + 05	403.4	
20238	15.5		3.869.E + 05	402.6	
20196	15.6		3.894.E + 05	401.8	
20149	15.7		3.919.E + 05	400.8	
20096	15.8		3.944.E + 05	399.8	
20039	15.9		3.969.E + 05	398.7	

#= / >*	ひずみ×10 ⁻⁶		×10 ⁻⁶	1) 46 mm - 1 - 1 - 2 mm	
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1	ストローク ϵ_2	公称応力 / MPa	真応力 / MPa
19975	16.0		3.994.E+05	397.4	
19906	16.1		4.019.E + 05	396.0	
19831	16.2		4.044.E + 05	394.5	
19748	16.3		4.069.E + 05	392.9	
19661	16.4		4.094.E + 05	391.1	
19566	16.5		4.119.E + 05	389.2	
19465	16.6		4.144.E + 05	387.2	
19356	16.7		4.169.E + 05	385.1	
19241	16.8		4.194.E + 05	382.8	
19120	16.9		4.219.E + 05	380.4	
18991	17.0		4.244.E + 05	377.8	
18854	17.1		4.269.E + 05	375.1	
18711	17.2		4.294.E + 05	372.2	
18558	17.3		4.318.E + 05	369.2	
18398	17.4		4.343.E + 05	366.0	
18231	17.5		4.368.E + 05	362.7	
18054	17.6		4.393.E + 05	359.2	
17868	17.7		4.418.E + 05	355.5	
17672	17.8		4.443.E + 05	351.6	
17468	17.9		4.468.E + 05	347.5	
17252	18.0		4.493.E + 05	343.2	
17025	18.1		4.518.E + 05	338.7	
16789	18.2		4.543.E + 05	334.0	
16539	18.3		4.568.E + 05	329.0	
16276	18.4		4.593.E + 05	323.8	
16001	18.5		4.618.E + 05	318.3	
15711	18.6		4.643.E + 05	312.6	
15403	18.7		4.668.E + 05	306.4	
15080	18.8		4.693.E + 05	300.0	
14735	18.9		4.718.E + 05	293.1	
14367	19.0		4.743.E + 05	285.8	
13970	19.1		4.768.E + 05	277.9	
13533	19.2		4.793.E + 05	269.2	
12671	19.2		4.801.E+05	252.1	

表 A.2: 実験データ (アルミニウム)

## / N	ひずみ×10 ⁻⁶		$\times 10^{-6}$	// / / MD	
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1	ストローク ϵ_2	公称応力 / MPa	真応力 / MPa
200	0.000	138	0.000.E+00	3.949	3.950
400	0.013	198	3.247.E + 02	7.898	7.900
600	0.024	253	5.994.E+02	11.85	11.85
800	0.036	322	8.991.E + 02	15.80	15.80
1000	0.049	418	1.224.E + 03	19.75	19.75
1200	0.065	587	1.623.E + 03	23.70	23.71
1400	0.082	800	2.048.E + 03	27.64	27.67
1600	0.105	1188	2.622.E + 03	31.59	31.63
1600	0.110	1225	2.747.E + 03	31.59	31.63
1720	0.130	1672	3.247.E + 03	33.96	34.02
1800	0.150	2135	3.746.E + 03	35.54	35.62
1880	0.170	2619	4.246.E + 03	37.12	37.22
1920	0.190	3190	4.745.E + 03	37.91	38.03
1970	0.210	3709	5.245.E + 03	38.90	39.04
2115	0.230	4230	5.744.E + 03	41.76	41.94
2050	0.250	4750	6.244.E + 03	40.48	40.67
1959	0.250		6.244.E + 03	38.69	
2362	0.450		1.123.E+04	46.63	
2534	0.650		1.622.E + 04	50.03	
2657	0.850		2.122.E + 04	52.46	
2757	1.050		2.621.E + 04	54.44	
2843	1.250		3.121.E + 04	56.14	
2917	1.450		3.620.E + 04	57.59	
2979	1.650		4.120.E + 04	58.83	
3034	1.850		4.619.E + 04	59.91	
3081	2.050		5.119.E + 04	60.83	
3123	2.250		5.618.E + 04	61.66	
3160	2.450		6.118.E + 04	62.39	
3192	2.650		6.617.E + 04	63.04	
3222	2.850		7.117.E + 04	63.61	
3248	3.050		7.616.E + 04	64.13	
3272	3.250		8.116.E + 04	64.60	

#= / >	ひずみ×10 ⁻⁶		3 5 /	1) * L	
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1 ストローク ϵ_2	公 称応力 / MPa	真応力 / MPa 	
3293	3.450	8.615.E+04	65.02		
3312	3.650	9.115.E+04	65.40		
3330	3.850	9.614.E + 04	65.75		
3346	4.050	1.011.E + 05	66.07		
3360	4.250	1.061.E + 05	66.36		
3374	4.450	1.111.E + 05	66.62		
3386	4.650	1.161.E + 05	66.86		
3397	4.850	1.211.E + 05	67.09		
3408	5.050	1.261.E + 05	67.29		
3418	5.250	1.311.E + 05	67.48		
3426	5.450	1.361.E + 05	67.65		
3434	5.650	1.411.E + 05	67.81		
3442	5.850	1.461.E + 05	67.96		
3448	6.050	1.511.E + 05	68.09		
3454	6.250	1.561.E + 05	68.21		
3460	6.450	1.611.E + 05	68.32		
3465	6.650	1.661.E + 05	68.41		
3469	6.850	1.711.E + 05	68.50		
3473	7.050	1.761.E + 05	68.58		
3477	7.250	1.811.E + 05	68.65		
3480	7.450	1.861.E + 05	68.71		
3483	7.650	1.910.E + 05	68.77		
3485	7.850	1.960.E + 05	68.81		
3487	8.050	2.010.E + 05	68.85		
3489	8.250	2.060.E + 05	68.88		
3490	8.450	2.110.E + 05	68.91		
3491	8.650	2.160.E + 05	68.93		
3491	8.850	2.210.E + 05	68.94		
3492	9.050	2.260.E + 05	68.95		
3492	9.250	2.310.E + 05	68.95		
3491	9.450	2.360.E + 05	68.94		
3491	9.650	2.410.E + 05	68.93		
3490	9.850	2.460.E + 05	68.91		
3489	10.050	2.510.E + 05	68.89		

*** / NI	ひずみ×10 ⁻⁶		<i>\\1</i>	一
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1 ストローク	公称応力 / MPa ϵ_2	真応力 / MPa
3487	10.250	2.560.E-	-05 68.86	
3486	10.450	$2.610.\mathrm{E}$	-05 68.83	
3484	10.650	2.660.E-	-05 68.79	
3481	10.850	2.710.E +	-05 68.74	
3479	11.050	2.760.E +	-05 68.69	
3476	11.250	2.810.E-	-05 68.63	
3472	11.450	2.860.E +	-05 68.56	
3468	11.650	2.909.E +	-05 68.48	
3464	11.850	$2.959.\mathrm{E}$	-05 68.39	
3458	12.050	3.009.E +	-05 68.29	
3451	12.250	3.059.E +	-05 68.15	
3444	12.450	3.109.E +	-05 68.00	
3433	12.650	3.159.E +	-05 67.79	
3421	12.850	3.209.E +	-05 67.55	
3405	13.050	$3.259.\mathrm{E}$ -	-05 67.24	
3386	13.250	3.309.E-	-05 66.87	
3364	13.450	3.359.E-	-05 66.43	
3338	13.650	3.409.E-	-05 65.91	
3308	13.850	3.459.E-	-05 65.31	
3274	14.050	3.509.E-	-05 64.65	
3236	14.250	3.559.E-	-05 63.90	
3194	14.450	3.609.E-	-05 63.07	
3148	14.650	3.659.E-	-05 62.15	
3097	14.850	3.709.E-	-05 61.14	
3041	15.050	3.759.E-	-05 60.04	
2980	15.250	3.809.E-	-05 58.84	
2914	15.450	3.859.E-	-05 57.54	
2842	15.650	3.908.E-	-05 56.12	
2764	15.850	3.958.E-	-05 54.59	
2680	16.050	4.008.E-	-05 52.92	
2589	16.250	4.058.E-	-05 51.13	
2491	16.450	4.108.E-	-05 49.19	
2385	16.650	4.158.E-	-05 47.10	
2270	16.850	4.208.E-	-05 44.83	

芦 番 / N	7 L D _ A / 2020	ひずみ ×10 ⁻⁶		Aを応力 / MD。	古広力 / MD。
荷重 / N 	ストローク / mm	ひずみゲージ ϵ_1	ストローク ϵ_2	公称応力 / MPa	真応力 / MPa
2146	17.050		4.258.E+05	42.37	
2009	17.250		4.308.E + 05	39.67	
1859	17.450		4.358.E + 05	36.70	
1693	17.650		4.408.E + 05	33.44	
1514	17.850		4.458.E + 05	29.90	
1325	18.050		4.508.E + 05	26.17	
1058	18.250		4.558.E + 05	20.89	
666	18.450		4.608.E + 05	13.15	
307	18.650		4.658.E + 05	6.066	
92	18.850		4.708.E + 05	1.818	

表 A.3 実験データ (鋼材)

7,11.0		([2].[2]
荷重 / N	$\frac{\Delta\sigma}{\Delta\epsilon_1}$	$\frac{\Delta\sigma}{\Delta\epsilon_2}$
4000	181.7	17.91
6000	231.3	17.52
8000	193.1	14.02
10000	205.6	15.94
11000	209.4	9.376
12000	198.9	7.519
13000	198.9	7.891
14000	189.5	8.132
15000	189.5	8.389
16000	173.0	8.050
16500	153.0	9.962
11800	183.3	-749.2
11900	30.61	1.208
12000	5.939	0.797
11800	-0.303	-1.594
12000	4.974	1.594
11800	-19.89	-1.594
12500	-	5.579
13000	5.377	3.985
13350	3.348	2.789
13800	4.712	3.586
14000	1.993	1.594
14400	4.246	3.188
14000	-3.676	-3.188

表 A.4 実験データ (アルミニウム)

1 11.5		, ()	<i>N</i>
荷重	Ē / N	$\frac{\Delta\sigma}{\Delta\epsilon_1}$	$\frac{\Delta\sigma}{\Delta\epsilon_2}$
	400	65.82	12.16
(600	71.80	14.38
8	800	57.23	13.18
1	000	41.14	12.16
1	200	23.37	9.883
1	400	18.54	9.302
1	600	10.18	6.875
1	600	0.000	0.000
1	720	5.301	4.744
1	800	3.412	3.163
1	880	3.264	3.163
1	920	1.383	1.581
1	970	1.902	1.977
2	115	5.496	5.732
2	050	-2.468	-2.570