Project problems

- 1. Using spherical polar co-ordinates (r, θ, ϕ) defined by $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$, write down the explicit Lagrange's equation of motion for a particle of mass m moving in a central potential V(r). Further take $V(r) = \frac{k}{r}$ and describe the nature of the equation of motion and propose a way to solve that equation of motion (If you can explicitly solve it completely, you will be given additional credit).
- 2. a) Write down the equations of motion for the Lagrangian $L=\frac{1}{2}m(\dot{x}^2+\dot{y}^2+\dot{z}^2)-V(r)+\frac{eB}{2c}(x\dot{y}-y\dot{x})$, with $r=\sqrt{x^2+y^2+z^2}$. b) Using the rotated co-ordinate system $x'=xcos\omega t+ysin\omega t,\ y'=-xsin\omega t+ycos\omega t, z'=z$ write down the Lagrangian and the equations of motion. (Additional credits will be given if you can discuss the physical system corresponding to these equations of motion)
- 3. Find the temperature in a thin metal rod of length L, with both the ends insulated (so that there is no passage of heat through the ends) and with initial temperature in the rod $\sin(\pi x/L)$.
- 4. A) One mole of gas obeys Van der Waals equation of state. If the molar internal energy is given by $cT-\frac{a}{V}$ with a,c constants. Calculate the molar heat capacity C_p , C_v .
 - B) A solid object has a density ρ , mass M and coefficient of linear expansion α . Show that at pressure p, the heat capacities are related by $C_p C_v = 3\alpha Mp/\rho$.
 - C) One mole of a monatomic perfect gas initially at temperature T_0 expands from volume V_0 to $2V_0$ (a) at constant temperature, (b) at constant pressure. Calculate the work of expansion and the heat absorbed by the gas in each case.
- 5. A) Derive the equation of motion of a projectile, using the principle of least action.
 - B) A bead slides on a wire in the shape of a cycloid described by equations $x = a(\theta sin\theta)$, $y = a(1 + cos\theta)$ with $0 \le \theta \le 2\pi$. Find the Lagrangian and then the equation of motion .
- 6. The equation of state of a system is given by $pV = \alpha U(T,V)$, where α is a constant and U(T,V) is the specific internal energy. Show that the specific internal energy and specific entropy can be expressed in the form $U = V^{-\alpha}\phi(TV^{\alpha})$; $S = \psi(TV^{\alpha})$, where it is given that $\phi'(x) = x\psi'(x)$.

[Hint: use $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p$ and then finally you have to use Lagrange's method of solving 1st order PDE]

Instruction: You have to submit a report on the problem you have been given. Any independent insights will also be highly appreciated and be given extra credits.