

DLI Accelerated Data Science Teaching Kit

Lecture 14.7 - Visualizing Classification: ROC, AUC, Confusion Matrix

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>

Visualizing Classification Performance

Confusion matrix

Predicted

class

Hard to spot trends and patterns

Easier

Figure 2. Representations of confusion matrix for a handwritten digit classification task. (top) standard confusion matrix; (bottom) heat-map confusion matrix. It is much easier to identify underlying patterns in the visual representation; 3 and 8 are often misclassified as each other and 5 is misclassified as many different numbers.

Very Important: Find out what "Positive" Means

Predicted class

		Cat	Dog	Rabbit
Actual class	Cat	5	3	0
	Dog	2	3	1
	Rabbit	0	2	11

5 true positives	3 false negatives
(actual cats that were	(cats that were
correctly classified as cats)	incorrectly marked as dogs)
2 false positives	17 true negatives
(dogs that were	(all the remaining animals,
incorrectly labeled as cats)	correctly classified as non-cats)

Very Important: Find out what "Positive" Means

Terminology and derivations from a confusion matrix

true positive (TP)

eqv. with hit

true negative (TN)

eqv. with correct rejection

false positive (FP)

eqv. with false alarm, Type I error

false negative (FN)

eqv. with miss, Type II error

sensitivity or true positive rate (TPR)

eqv. with hit rate, recall

$$TPR = rac{TP}{P} = rac{TP}{TP + FN}$$

specificity (SPC) or true negative rate (TNR)

$$SPC = \frac{TN}{N} = \frac{TN}{FP + TN}$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

recall (recall)

$$\mathit{recall} = rac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

negative predictive value (NPV)

Visualizing Classification Performance using ROC curve (Receiver Operating Characteristic)

Polonium's ROC Curve

Positive class: malware

Negative class: benign

True Positive Rate % of bad correctly labeled

False Positive Rate (False Alarms) % of good labeled as bad

Measuring Classification Performance using AUC (Area under the curve)

If a machine learning algorithm achieves 0.9 AUC (out of 1.0).

That's a great algorithm, right?

Be Careful with AUC!

DLI Accelerated Data Science Teaching Kit

Thank You