Preparação para exame

12.º Ano de Escolaridade | Turma G-K

Progressões Aritméticas e Geométricas

A saber...

- Uma sucessão (u_n) é uma progressão aritmética se definida por recorrência é tal que $u_1 = a \wedge u_{n+1} = u_n + r$, sendo a o valor do primeiro termo e r a razão, com $a, r \in \mathbb{R}$.
 - 1. a sucessão (u_n) é uma progressão aritmética se $u_{n+1} u_n = r, \forall n \in \mathbb{N}, \text{ com } r \in \mathbb{R}$
 - 2. a constante r chama-se razão da progressão aritmética
 - 3. o termo geral da progressão aritmética é $u_n = u_1 + (n-1) \times r, \forall n \in \mathbb{N}$
 - 4. a soma dos n primeiros termos consecutivos da progressão aritmética é dada por $S_n = \frac{u_1 + u_n}{2} \times n$
- Uma sucessão (u_n) é uma progressão geométrica se definida por recorrência é tal que $u_1 = a \wedge u_{n+1} = u_n \times r$, sendo a o valor do primeiro termo, com $r \in \mathbb{R}$ e $u_1 \neq 0$ e $r \neq 0$
 - 1. a sucessão (u_n) é uma progressão geométrica se $\frac{u_{n+1}}{u_n}=r, \forall n\in\mathbb{N},$ com $r\in\mathbb{R}$ e $u_1\neq 0$ e $r\neq 0$
 - 2. a constante r chama-se razão da progressão geométrica
 - 3. o termo geral da progressão geométrica é $u_n = u_1 \times r^{n-1}, \forall n \in \mathbb{N}$
 - 4. a soma dos n primeiros termos consecutivos da progressão geométrica é dada por $S_n = u_1 \times \frac{1 r^n}{1 r}$, com $r \neq 1$
- 1. Considera a sucessão (u_n) definida por $u_n = \frac{n+2}{3}$.
 - 1.1. Mostra que a sucessão (u_n) é uma progressão aritmética e indica a sua razão.
 - 1.2. Determina a soma dos primeiros cem termos da progressão aritmética.
 - 1.3. Calcula $S = u_{35} + u_{36} + u_{37} + \dots + u_{125}$.
 - 1.4. Sendo $S_n = u_1 + u_2 + u_3 + ... + u_n$ a soma dos primeiros n termos consecutivos da progressão aritmética, mostra que:
 - 1.4.1. $S_n = \frac{n^2 + 5n}{6}$, usando a expressão da soma de n termos consecutivos de uma progressão aritmética.
 - 1.4.2. $S_n = \frac{n^2 + 5n}{6}$, usando o método de indução matemática.
- 2. Considera a sucessão (v_n) definida por $v_1 = -2 \wedge v_{n+1} = v_n + 2, n \in \mathbb{N}$.
 - 2.1. Calcula os quatro primeiros termos da sucessão (v_n) .
 - 2.2. Mostra que a sucessão (v_n) é uma progressão aritmética e indica a sua razão.
 - 2.3. Sem calcular a expressão do termo geral, determina o termo v_{500} .
 - 2.4. Determina o termo geral da progressão aritmética.
 - 2.5. Determina a soma dos primeiros mil termos da progressão aritmética (v_n) .
 - 2.6. Calcula $S = v_{50} + v_{51} + v_{52} + \dots + v_{571}$.
 - 2.7. Sabe-se que $S_n = 9700$, sendo $S_n = v_1 + v_2 + v_3 + ... + v_n$ a soma dos primeiros n termos consecutivos da progressão aritmética. Determina o valor de n.
 - 2.8. Sendo $S_n = v_1 + v_2 + v_3 + ... + v_n$ a soma dos primeiros n termos consecutivos da progressão aritmética, mostra que:
 - 2.8.1. $S_n = n^2 3n$, usando a expressão da soma de n termos consecutivos de uma progressão aritmética.
 - 2.8.2. $S_n = n^2 3n$, usando o método de indução matemática.

- 3. De uma progressão aritmética (a_n) sabe-se que $a_{100} = 199$ e $a_{500} = 999$. Determina o primeiro termo e a razão e escreve a expressão do termo geral da progressão aritmética.
- 4. Considera a sucessão (u_n) definida por $u_n = \frac{1}{5} \times 2^{n+3}$.
 - 4.1. Mostra que a sucessão (u_n) é uma progressão geométrica e indica a sua razão.
 - 4.2. Determina a soma dos primeiros dez termos da progressão geométrica (u_n) .
 - 4.3. Calcula $S = u_4 + u_5 + u_6 + ... + u_{10}$.
 - 4.4. Sendo $S_n=u_1+u_2+u_3+\ldots+u_n$ a soma dos primeiros n termos consecutivos da progressão geométrica, mostra que:
 - 4.4.1. $S_n = \frac{2^{n+4}-16}{5}$, usando a expressão da soma de n termos consecutivos de uma progressão geométrica.
 - 4.4.2. $S_n = \frac{2^{n+4}-16}{5}$, usando o método de indução matemática.
- 5. Considera a sucessão (v_n) definida por $v_1 = \frac{1}{2} \wedge v_{n+1} = \frac{v_n}{4}, n \in \mathbb{N}$.
 - 5.1. Calcula os quatro primeiros termos da sucessão (v_n) .
 - 5.2. Mostra que a sucessão (v_n) é uma progressão geométrica e indica a sua razão.
 - 5.3. Sem calcular a expressão do termo geral, determina o termo v_{10} .
 - 5.4. Determina o termo geral da progressão geométrica (v_n) .
 - 5.5. Determina a soma dos primeiros vinte termos da progressão geométrica (v_n) .
 - 5.6. Sendo $S_n = v_1 + v_2 + v_3 + ... + v_n$ a soma dos primeiros n termos consecutivos da progressão geométrica, mostra que:
 - 5.6.1. $S_n = \frac{2-2^{1-2n}}{3}$, usando a expressão da soma de n termos consecutivos de uma progressão geométrica.
 - 5.6.2. $S_n = \frac{2-2^{1-2n}}{3}$, usando o método de indução matemática.
 - 5.7. Calcula a soma de todos os termos da progressão geométrica.
- 6. De uma progressão geométrica (b_n) sabe-se que $b_{10} = \frac{1}{512}$ e $b_{13} = \frac{1}{4096}$. Determina o primeiro termo e a razão e escreve a expressão do termo geral da progressão geométrica.
- 7. De uma progressão geométrica (u_n) , sabe-se que a razão é positiva e que $u_8 = \frac{3}{128}$ e $u_{12} = \frac{3}{2048}$.

Determina a soma dos dez primeiros termos consecutivos da progressão, isto é, $S_{10} = u_1 + u_2 + u_3 + \ldots + u_{10}$.

- 8. Sabe-se que (a_n) é uma progressão aritmética de razão 3. Justifica que a sucessão (b_n) definida por $b_n = 2^{-3a_n}, n \in \mathbb{N}$ é uma progressão geométrica e indica a razão.
- 9. Prova que o produto de duas progressões geométricas é ainda uma progressão geométrica de razão igual ao produto das respetivas razões.
- 10. Prova que as sucessões definidas por um termo geral do tipo $v_n = a \times b^{cn+d}, n \in \mathbb{N}, a, b, c \in \mathbb{R} \setminus \{0\}, d \in \mathbb{R},$ são progressões geométricas de razão b^c .