チューリングマシン

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- ① 序論: Introduction
- ② Turing マシン: Turing Machine
- ③ 句構造文法: Phase Structure Grammar
- 4 列挙: Enumeration
- ⑤ 停止問題・決定問題: Halting and Decision Problem

更に強力なオートマトンが必要?: Do we need more powerful automata?

- PDA では、 $\{a^nb^nc^n|n\in N\}$ を受理できない
 - スタックの制約から
 - 二つのスタックならば可能 → 自由に読み書きできるリストと 同等
- 自由に読み書きできる「メモリ」をモデル化したい
- Church-Turing のテーゼ (thesis)
 - 計算できる関数とは、その関数を計算する Turing マシンが存在 する関数である。
 - 計算できる、つまりアルゴリズムがあることと、Turing マシン が同等
 - 例外は知られていない

Alan Turing (1912 – 1954)

- もともとは数学者
- 第2次世界大戦中に、暗号解読に従事
- Manchester Mark | などの開発に従事
- Turing Test: 人工知能と人を見分ける
- 数理生物学や化学反応にも関心
 - Turing pattern など
- 「イミテーション・ゲーム」

https://www.britannica.com/biography/Alan-Turing

Turing マシン

- 読み書きできる左右に無限長のテープ
- \$は、テープの空白(何も書いていない)を表す特別な記号
 - テープへは無限に書くことができる
 - \$は、その外側には何も書いていないことを表す記号
- テープヘッドは左右に動くことができる

両方に無限に長いテープ

離散数学・オートマトン 5/28

$M = \langle Q, \Gamma, \Sigma, \delta, q_0, \$, F \rangle$

- Q: 内部状態の有限集合
- Γ: テープ上のアルファベット
- Σ ⊂ Γ: 入力アルファベット
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathsf{L}, \mathsf{R}\}$
 - テープへ書き込み可能: 文字を読んだ場所に文字を上書きする
 - {L, R} は、テープヘッドの左右への移動
- $q_0 \in Q$: 初期状態
- ullet $\S \in \Gamma \setminus \Sigma$: テープ上の空白記号: スペース記号とは異なる
- F⊆Q: 受理状態の集合

例 2.1: $L = \{a^n b^n c^n | n \in N\}$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$F = \{q_6\}$$

$$\Gamma = \{a, b, c, x, y, z, \$\}$$

$$\Sigma = \{a, b, c\}$$

動作: 状態の右側の文字を読むことに注意

 q_0 aabbcc $\vdash xq_1$ abbcc $\vdash xaq_1$ bbcc $\vdash xayq_2bcc \vdash xaybq_2cc$ ここまでで、a、b、 $\vdash xayq_3bzc \vdash xaq_3ybzc$ cを一つづつx、v、 $\vdash xq_3$ aybzc $\vdash q_3$ xaybzc zに置き換え 全ての、a、b、cを $\vdash xq_0aybzc$ x、y、zに置き換え $\vdash \cdots \vdash \mathsf{x} q_3 \mathsf{x} \mathsf{y} \mathsf{y} \mathsf{z} \mathsf{z}$ $\vdash xxq_0yyzz \vdash xxyq_4yzz$ $\vdash xxyyq_4zz \vdash xxyyzq_5z$ $\vdash xxyyzzq_5 \vdash xxyyzzq_6$

動作失敗

$$q_0$$
aabbc $\vdash xq_1$ abbc $\vdash xaq_1$ bbc $\vdash xayq_2$ bc $\vdash xaybq_2$ c $\vdash xayq_3$ bz $\vdash xaq_3$ ybz $\vdash xq_3$ aybz $\vdash xq_0$ aybz $\vdash xq_1$ ybz $\vdash xq_0$ aybz $\vdash xxyyq_2$ z $\vdash xxyyzq_2 \vdash xxyyzq_2$

入力の受理と関数

- 例 2.1 を少し拡張
- q₆ に到達したら
 - 右端の\$を1に置き換える
 - 全ての文字を \$ で置き換え、左端に 1 と書く
 - 動作失敗したら右端の \$ を 0 で置き換える
 - 全ての文字を \$ で置き換え、左端に 0 と書く
- 正しい入力は判定し、0または1を返す関数に対応した Turing マシン

離散数学・オートマトン 11/28

Turing Machine と DAND ゲート $\overline{a \wedge b}$

TM が「計算」できること

動作

$$\begin{aligned} q_S 00 &\vdash 0q_0 0 \vdash 00q_2 \vdash 001q_F \\ q_S 01 &\vdash 0q_0 1 \vdash 01q_2 \vdash 011q_F \\ q_S 10 &\vdash 1q_1 0 \vdash 10q_2 \vdash 101q_F \\ q_S 11 &\vdash 1q_1 1 \vdash 11q_3 \vdash 110q_F \end{aligned}$$

Turing Machine と DAND ゲート $\overline{(a \wedge b)} \wedge \overline{c}$

動作

$$\begin{aligned} q_S 000 &\vdash 0q_0 00 \vdash 00q_2 0 \vdash 000q_5 \vdash 0001q_F \\ q_S 001 &\vdash 0q_0 01 \vdash 00q_2 1 \vdash 001q_4 \vdash 0010q_F \\ q_S 010 &\vdash 0q_0 10 \vdash 01q_2 1 \vdash 010q_5 \vdash 0101q_F \\ q_S 011 &\vdash 0q_0 11 \vdash 01q_2 1 \vdash 011q_4 \vdash 0110q_F \\ q_S 100 &\vdash 1q_1 00 \vdash 10q_2 0 \vdash 100q_5 \vdash 1001q_F \\ q_S 101 &\vdash 1q_1 01 \vdash 10q_2 1 \vdash 101q_4 \vdash 1010q_F \\ q_S 110 &\vdash 1q_1 10 \vdash 11q_3 0 \vdash 110q_5 \vdash 1101q_F \\ q_S 111 &\vdash 1q_1 11 \vdash 11q_3 1 \vdash 111q_5 \vdash 1111q_F \end{aligned}$$

句構造文法: Phase Structure Grammar,

- Turing マシンに対応する文法
- 生成規則

$$P: (N \cup \Sigma)^* N (N \cup \Sigma)^* \to (N \cup \Sigma)^*$$

- 文脈依存であることに注意
 - 左辺が N を必ず含む N または ∑ の列

例 3.1: $L = \{a^n b^n c^n | n \in N\}$

$$\begin{split} N &= \{S, A, B, C, D\} \\ \Sigma &= \{\mathsf{a}, \mathsf{b}, \mathsf{c}\} \end{split}$$

$$\begin{split} S &\to \mathsf{a} A D, \qquad A \to \mathsf{a} A \mathsf{b} B, \qquad A \to C, \\ B \mathsf{b} &\to \mathsf{b} B, \qquad C \mathsf{b} \to \mathsf{b} C, \qquad B D \to D \mathsf{c}, \qquad C D \to \mathsf{b} \mathsf{c} \end{split}$$

導出例

$$S\Rightarrow aAD\Rightarrow aCD\Rightarrow abc$$
 $S\Rightarrow aAD\Rightarrow aaAbBD\Rightarrow aaCbBD\Rightarrow aaCbDc$
 $\Rightarrow aabCDc\Rightarrow aabbcc$
 $S\Rightarrow aAD\Rightarrow aaAbBD\Rightarrow aaaAbBbBD$
 $\Rightarrow aaaCbBbBD\Rightarrow aaabCBbBD$
 $\Rightarrow aaabCbBBD\Rightarrow aaabbCBBD$
 $\Rightarrow aaabbCBDc\Rightarrow aaabbCBCDcc\Rightarrow aaabbbccc$

無限を数える: 正の有理数を列挙する

- 有理数と自然数は同じ数だけ存在する
- 全ての有理数に異なる自然数を対応づけることができる

無限を数える:無理数は列挙できない

• $x \in [0,1)$ が列挙できると仮定

$$1 \leftrightarrow 0.a_{11}a_{12}a_{13}a_{14} \cdots 2 \leftrightarrow 0.a_{21}a_{22}a_{23}a_{24} \cdots 3 \leftrightarrow 0.a_{31}a_{32}a_{33}a_{34} \cdots 4 \leftrightarrow 0.a_{41}a_{42}a_{43}a_{44} \cdots$$

- $y = 0.b_1b_2b_3b_4\cdots(b_i \neq a_{ii})$ は列挙したリストに含まれない • 列挙できるならば、上記リストに含まれている
- 列挙できるという仮定と矛盾
- 対角線論法 (diagonal method)

Gödel ナンバリング

- Turing マシンを列挙する
 - アルファベット、状態を整数と対応付け
 - 遷移関数は、整数から整数への写像
 - Turing マシンも整数に対応させることができる
- $M = \langle Q, \{0,1\}, \Gamma, \Sigma, \delta q_1, \$, F \rangle$
 - $Q = \{q_1, q_2, \cdots\}$
 - $\Gamma = \{x_1, x_2, \cdots\}$
 - $D = \{L, R\} = \{D_1, D_2\}$
- $\delta(q_i, x_j) = (q_k, x_\ell, D_m)$ に対して

 $0^{i}10^{j}10^{k}10^{\ell}10^{m}$

万能 Turing マシン

- Turing マシンの動作を模倣する万能 Turing マシンが存在できる
 - Turing マシンは符号化できる
 - Turing マシンとその入力を受け取り、その動作を模倣する

Turing マシンの停止問題

- Turing マシンを整理
 - テープ上の入力に対して、結果をテープに残す。
 - テープに残ったものが関数の値。
 - テープ上の入力に対する関数と考える
- 必ず停止するか?
- これから問題とするのは
 - 答えはあるのに、計算で答えを求められない問題の存在
 - 答えを得るためのアルゴリズムがない問題の存在

決定問題: decision problem

- 答えが true/false のいずれかである関数・問題: 述語
- 例: $x^2 + y^2 = z^2$ を満たす自然数の組 (x, y, z) は存在するか?
 - \bullet (x,y,z) は列挙可能であるため、順に生成できる
 - $x^2+y^2=z^2$ に代入し、等号が成立する場合に、true を返して、 停止
 - 例えば、(x,y,z)=(3,4,5) を見つけて停止

決定可能:decidable

- ある Turing マシン M が、決定問題 P の具体例 w に対して、答えを出して停止する
 - 前のシートの例は、停止する
- $x^3+y^3=z^3$ を満たす自然数の組 $\{x,y,z\}$ を見つける問題では、前のシートの方法では停止しない
 - Fermat の最終定理: $x^n+y^n=z^n\ (n>2)$ を満たす整数の組 $\{x,y,z\}$ は存在しない

停止問題: Halting Proglem

- ullet 任意の Turing マシン M に対して、入力 w を与えると停止するか
 - これ自体が述語 f(M,w)
- Turing マシンの停止問題は決定不能
 - true/false を決定できない
 - false と停止しないことは違うことに注意

Turing マシンとその入力は列挙できることに注意

$$a_{ij} = egin{cases} 1 & M_i$$
は、入力 x_j に対して停止 $0 & M_i$ は、入力 x_j に対して停止しない

- 停止問題を解く Turing マシン M が存在すると仮定
 - 任意の x_i に対して、 $a_{ii}=0$ のとき、かつそのときだけ停止する Turing マシン M_d に対して、 \tilde{M} が停止を判断できる
 - M_d 自体が、列挙した M_i のいずれか
- M_d $\in M_i$ \subset \subset \subset
 - ullet $a_{jj}=1$ ならば、 M_j は停止するが、 M_d は停止しないことになる
 - ullet $a_{jj}=0$ ならば、 M_j は停止ぜず、 M_d は停止することになる
- \bullet 矛盾するため、 \tilde{M} は存在できない

停止問題が決定不能とは

- 停止問題
 - f(w) の値を決定する
- 停止問題が決定不能
 - \bullet 述語 f(w) の真偽を判定できない場合がある
- ullet 正しく設定された述語 f(w) は、真か偽のいずれかである。
 - しかし、判定できない場合がある
- 数学のような厳密な論理体系にあっても、計算によって証明できない命題が存在し得る