Budgeted stream-based active learning via adaptive submodular maximization

Kaito Fujii and Hisashi Kashima (Kyoto University)

Overview

- Stream-based active learning is reduced to online adaptive stochastic optimization problem.
- Policy-adaptive submodularity, a new property of stochastic functions, is proposed.
- Constant-factor competitive algorithms are proposed.

Adaptive Stochastic Optimization

The learner can query the labels of unlabeled instances.

- ullet V a set of unlabeled instances, ${\cal Y}$ a set of possible labels.
- A prior distribution $p(\phi)$ on oracle $\phi: V \to \mathcal{Y}$ is given.

Look for the optimal policy, not the optimal subset.

Maximize the expected value of the objective function.

• The objective function $f: 2^V \times \mathcal{Y}^V \to \mathbb{R}_{\geq 0}$ returns quality of a set of selected instances with ϕ (the labels of all instances).

where $E(\pi, \phi)$ is the instances selected by policy π under ϕ .

Online Adaptive Stochastic Optimization

In stream-based active learning, unlabeled instances arrive sequentially.

Select *k* instances to be labeled out of *n* unlabeled instances arriving in random order.

- stream setting: a limited amount of memory is available.
- secretary setting: irrevocable decision at each arrival.

Policy-Adaptive Submodularity

Diminishing return property of the gain of any policy.

Instances $A = \{v_1, \dots, v_l\}$, Observations $\psi = \{(v_1, y_1), \dots, (v_l, y_l)\}$

- The expected marginal gain of an instance v $\Delta(\mathbf{v}|\psi) = \mathbb{E}_{\phi \sim p(\phi|\psi)}[f(A \cup \{v\}, \phi) f(A, \phi)]$
- The expected marginal gain of a policy π $\Delta(\pi|\psi) = \mathbb{E}_{\phi\sim p(\phi|\psi)}[f(A\cup E(\pi,\phi),\phi)-f(A,\phi)]$

Many existing adaptive submodular functions satisfy it.

- Generalized binary search[Golovin-Krause'10]
 - maximum Gibbs error criterion [Cuong+'13]
- EC² [Golovin+'10]

ALuMA [Gonen+'10]

 In cases where labels of instances are independent

Algorithms

stream setting $(2 - \sqrt{3})(1 - 1/e) \approx 0.16$ -competitive

Select the instance of the largest expected marginal gain from each segment.

Apply the classical secretary algorithm to each segment.

Experiments

- Datasets: WDBC (596 instances, 32 dimensions), MNIST (14780 instances, 10 dimensions (reduced by PCA))
- Algorithms:
 Compare our proposed methods (online versions of the noise-tolerant ALuMA algorithm [Gonen+'11, Chen-Krause'13])
 with existing heuristics (random, uncertainty sampling)
- Settings: pool-based, stream and secretary settings.
- Test classifier: linear SVM for all methods.

