The Matrix and his happy fellows

HOMEWORK 6

DUE DATE: 6/20

請根據6/10上課的詳解以及範例程式碼來完成工作。請注意P.8-9的更動

Vector and Matrix

http://en.wikipedia.org/wiki/Matrix_multiplication

Matrix / Vector multiplication

4x3 = 3 column, each column has 4 elements

Implement following classes

- Base template class:
 - Column vector class for Nx1
 - One column with N elements
 - Matrix class for N x M
 - ▶ M columns with N elements per column
- And derived template classes
 - ▶ Vec1, Vec2, Vec3, Vec4
 - Mat1x1, Mat1x3, Mat1x4, Mat3x1, Mat4x1, Mat3x3, Mat3x4, Mat4x3, Mat4x4

Implement following functions

Vector

Matrix

- Constructors
- dotProduct(Vector &),
- crossProduct(Vector &)
- - Constructors
 - ▶ Transpose()
 - ▶ Inverse()

Implement following operators

- Operation*
 - ▶ Matrix * Matrix
 - ▶ For example:
 - ▶ Mat1x1 = Mat1x4 * Mat4x1
 - Mat1x3 = Mat1x3 * Mat3x3
 - **...**
 - Vector (+ -) Vector, Matrix (+ -) Matrix
 - ► Element-wise operation
 - Vector (* /) Scalar, Matrix (*/) Scalar

cout << vector << endl (5, 3, 4) cout << matrix43 << endl Matrix 4x3: col[0]: (2, 5, 6, 4) col[1]: (4, 3, 8, 2) col[2]: (3, 2, 4, 1)

$$A = [1 \ 0 \ 3], B = [2 \ 3 \ 7]$$
 $A+B = [3 \ 3 \ 10]$
 $A-B = [-1 \ -3 \ -4]$
 $A*B = [2 \ 0 \ 21]$
 $A/B = [1/2 \ 0/3 \ 3/7]$

Operation<</p>

不考慮向量為行向量或是列向量

Vector.dotProduct() 内積

Algebraic definition [edit]

The dot product of two vectors $\mathbf{A} = [A_1, A_2, ..., A_n]$ and $\mathbf{B} = [B_1, B_2, ..., B_n]$ is defined as:^[1]

$$\mathbf{A} \cdot \mathbf{B} = \sum_{i=1}^{n} A_i B_i = A_1 B_1 + A_2 B_2 + \dots + A_n B_n$$

where Σ denotes summation notation and n is the dimension of the vector space. For instance, in three-dimensional space, the dot product of vectors [1, 3, -5] and [4, -2, -1] is:

$$[1, 3, -5] \cdot [4, -2, -1] = (1)(4) + (3)(-2) + (-5)(-1)$$
$$= 4 - 6 + 5$$
$$= 3.$$

T dotProduct(Vector& in)

A.dotProduct(B) means A • B

不考慮向量為行向量或是列向量

Vector.crossProduct()

The cross product is defined by the formula^{[3][4]}

$$\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \ \mathbf{n}$$

where θ is the angle between \mathbf{a} and \mathbf{b} in the plane containing them (hence, it is between 0° and 180°), $\|\mathbf{a}\|$ and $\|\mathbf{b}\|$ are the magnitudes of vectors \mathbf{a} and \mathbf{b} , and \mathbf{n} is a unit vector perpendicular to the plane containing \mathbf{a} and \mathbf{b} in the direction given by

the right-hand rule (illustrated). If the vectors \mathbf{a} and \mathbf{b} are parallel (i.e., the angle θ between them is either 0° or 180°), by the above formula, the cross product of \mathbf{a} and \mathbf{b} is the zero vector $\mathbf{0}$.

Vector crossProduct(Vector& in) A.crossProduct(B) means A x B

這個運算不影響自己,傳回新物件的實體

Matrix Transpose()

$$\bullet \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad 1. \ (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

1.
$$(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$$

The operation of taking the transpose is an involution (self-inverse).

$$3. (\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$$

Matrix Inverse() only for NxN matrix

In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular or nondegenerate) if there exists an nby-n square matrix **B** such that

$$AB = BA = I_n$$

where I_n denotes the *n*-by-*n* identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix **B** is uniquely determined by **A** and is called the *inverse* of **A**, denoted by A^{-1} .

http://en.wikipedia.org/wiki/Transpose http://en.wikipedia.org/wiki/Invertible_matrix 這兩個矩陣運算都不影響自 己,並回傳新物件的實體

NOTE: How to create a dynamic 2D array?

```
int** ary = new int*[sizeY];
for(int i = 0; i < sizeY; ++i)
    ary[i] = new int[sizeX];
...
for(int i = 0; i < sizeY; ++i)
    delete [] ary[i];
delete [] ary;</pre>
```


sizeX = 5 and sizeY = 4

NOTE: How to create a Matrix from column Vec

cout << matrix43 << endl

Matrix 4x3: col[0]: (2, 5, 6, 4) col[1]: (4, 3, 8, 2) col[2]: (3, 2, 4, 1) 4 2 1

END