KONWEKCJA (WNIKANIE)

- 1. Dotyczy głównie przenoszenia ciepła w warstwie granicznej pomiędzy płynem (cieczą, gazem) a ścianką rurociągu (ciałem stałym).
- 2. Związana jest z ruchem płynów.
- 3. Konwekcyjny ruch ciepła może się odbywać podczas uwarstwionego, burzliwego czy przejściowego przepływu płynu.
- 4. Występuje w przewodach transportujących płyny za pomocą wentylatora lub pompy (konwekcja wymuszona), w przewodach kominowych gdzie różnica temperatur w różnych punktach wywołuje zmianę gęstości płynu (zmianę ciśnień statycznych), co powoduje ruch płynów (konwekcja naturalna), w zbiornikach gdzie wrze lub kondensuje ciecz (konwekcja przy zmianie stanu skupienia).
- 5. Zachodzi zarówno podczas ogrzewania jak i chłodzenia płynów.
- 6. Jest trudna do teoretycznego ujęcia przez związek ruchu płynu z ruchem ciepła. Różny charakter ruchu płynu, zmienna lepkość w różnych temperaturach, różny rozkład prędkości, wiry, kłębienia itp. wpływają na zjawisko konwekcji. Formułuje się tzw. równania kryterialne, wyznaczane na podstawie analizy wymiarowej.

Wnikanie ciepła pomiędzy powierzchnią ścianki a płynem, gazem opisuje **równanie różniczkowe Newtona**:

$$dQ_* = \alpha (T_w - T) \cdot dA$$

gdzie:

Q. – natężenie przepływu ciepła [W],

 α - współczynnik wnikania (przejmowania) ciepła [W/m²·deg],

 T_w – temperatura powierzchni ścianki [K, °C],

T – temperatura płynu [K, °C],

A – powierzchnia ścianki [m²].

KONWEKCJA					
WYMUSZONA $Nu = C \cdot \text{Re}^{a} \cdot \text{Pr}^{b} \cdot (d/L)$ Nu – liczba Nusselta,	NATURALNA $Nu = C \cdot (Gr \cdot Pr)^n$ Nu liezba Nuccelta	PRZY ZMIANIE STANU SKUPIENIA wrzenie			
Re – liczba Reynoldsa, Pr – liczba Prandtla,	Nu – liczba Nusselta, Gr – liczba Grashofa, Pr – liczba Prandtla,	$\alpha = 3.14 \cdot (p/10^5)^{0.15} \cdot (q/A)^{0.7}$ $\alpha = 45.8 \cdot (p/10^5)^{0.5} \cdot \Delta T^{2.33}$ kondensacja $Nu = C \cdot (Ga \cdot \text{Pr} \cdot Ko)^n$ Ga – liczba Galileusza,			
d/L – liczba podobieństwa geometrycznego,		Ko – liczba kondensacji (przemiany fazowej),			

KONWEKCJA WYMUSZONA (SZTUCZNA)

czyli wnikanie przy wymuszonym przepływie ciepła

Opisuje równanie kryterialne:

$$Nu = C \cdot \operatorname{Re}^a \cdot \operatorname{Pr}^b \cdot (d/L)$$

$$Nu = \frac{\alpha \cdot d}{\lambda}$$
 - liczba Nusselta

(charakteryzująca podobieństwo kinetyczne czyli intensywność przepływu ciepła na granicy płyn – ścianka),

 α - współczynnik wnikania ciepła [W/m²·K],

d – średnica przewodu [m],

λ - współczynnik przewodzenia ciepła [W/m·K]

$$\operatorname{Re} = \frac{u \cdot d \cdot \rho}{\eta}$$
 - liczba Reynoldsa

(charakteryzująca podobieństwo hydrodynamiczne),

u – średnia liniowa prędkość przepływu płynu [m/s],

ρ - gestość płynu [kg/m³].

η - współczynnik lepkości dynamicznej płynu [Pa·s]

Re charakteryzuje rodzaj przepływu płynu przez rurociąg:

Re< 2100 – przepływ laminarny (uwarstwiony),

2100<Re<3000 - przepływ przejściowy,

Re> 3000 - przepływ burzliwy

$$Pr = \frac{c \cdot \eta}{\lambda}$$
 - liczba Prandtla

(charakteryzująca pod względem właściwości fizykochemicznych płynu),

c – ciepło właściwe płynu [J/kg·K],

L – długość przewodu [m]

d/L _ simpleks geometryczny (liczba podobieństwa geometrycznego),

Jeśli przekrój nie jest kołowy to należy wyznaczyć średnicę zastępczą d_e. np. de dla kwadratu=a, dla prostokata

 $(a/b\approx1)$ =2a; (a/b=0,25)=1,6a; (a/b=0,1)=1,82a; (a/b=0,33)=1,5a; (a/b=0,2)=1,67a; (a/b=0,5)=1,33a

$$d_e = \frac{4 \cdot S(pole \ powierzchni)}{B(obwód)} \qquad r_h = \frac{S(pole \ powierzchni)}{B(obwód)}$$

Zakładamy:

burzliwy przepływ płynu Re>3000 L/d>50 wpływ simpleksu geometrycznego jest pomijalny, gazy i ciecze posiadają małą lepkość (η<2η_{wody})

$$Nu = C \cdot Re^a \cdot Pr^b$$

wtedy, współczynnik C=0,023 zaś wykładniki a=0,8 b=0.4

zatem:

$$Nu = 0.023 \cdot \mathrm{Re}^{0.8} \cdot \mathrm{Pr}^{0.4}$$
 równanie Mc Adamsa

W przypadku gazów liczba Prandtla w dużym zakresie ciśnień i temperatury jest wielkością stałą, zależną jedynie od ilości atomów w cząsteczce:

gazy jednoatomowe - 0,67

dwuatomowe - 0,72

trójatomowe – 0,8

cztero- i więcej atomowe - 0,1

np. dla gazu dwuatomowego:

$$Nu = 0.023 \cdot \text{Re}^{0.8} \cdot 0.72^{0.4} = 0.021 \cdot \text{Re}^{0.8}$$

2

Zakładamy:

<u>burzliwy przepływ płynu Re>3000</u> gazy i ciecze posiadają małą lepkość (η<2η_{wody}) L/d<50

wówczas obliczając współczynnik wnikania ciepła należy uwzględnić współczynnik poprawkowy:

dla rury prostej

 $lpha=arepsilon\cdotlpha$ gdzie: $arepsilon=1+(d/L)^{0,7}$ jest to współczynnik poprawkowy uwzględniający wzrost średniej wartości lpha w wyniku występowania efektów wlotowych,

dla wężownic

 $\alpha_r = \varepsilon_r \cdot \alpha$ gdzie: $\varepsilon_r = 1 + 3,54 (d/D)$ d – średnica wewnętrzna przewodu, D – średnica zwoju wężownicy

burzliwy przepływ płynu Re>3000 ciecze o dużej lepkości (η>2η_{wody}) wtedy:

$$C = 0.027 \cdot (\eta/\eta_w)^{0.14}$$

 η - współczynnik lepkości płynu w średniej temperaturze rdzenia strumienia [Pa \cdot s],

 η_w - współczynnik lepkości płynu w średniej temperaturze powierzchni ścianki [Pa·s],

wówczas wykładniki potęgowe wynoszą: a=0,8 b=0,33 zatem:

$$Nu = 0.027 \cdot \text{Re}^{0.8} \cdot \text{Pr}^{0.33} \cdot (\eta/\eta_w)^{0.14}$$
 równanie Sider-Tate'a

4

zakładamy:

przepływ laminarny Re<2100 niewielka różnica temperatur pomiędzy ścianką a płynem

$$Nu = C \cdot (\text{Re} \cdot \text{Pr} \cdot d/L)^n$$

współczynnik wnikania ciepła oblicza się dla średniego spadku temperatury $T_{\acute{s}r}=\frac{(T_{\acute{s}cianki}+T_{pynu})}{2}$

wartości współczynnika C i wykładnika n zależą od wartości iloczynu $\operatorname{Re-Pr-} d/L$

1) dla Re· Pr· d/L >13 współczynnik C=1,86, zaś n=0,33 stąd:

$$Nu = 1.86 \cdot (\text{Re} \cdot \text{Pr} \cdot d/L)^{0.33}$$

gdy istnieje silna zależność lepkości od temperatury współczynnik C wynosi $1.86 \cdot (\eta/\eta_w)^{0.14}$, zatem:

$$Nu = 1.86 \cdot (\eta/\eta_w)^{0.14} \cdot (\text{Re} \cdot \text{Pr} \cdot d/L)^{0.33}$$

2) dla Re· $\Pr d/L$ <13 współczynnik C wynosi 1,62 zaś n=0,33

$$Nu = 1.62 \cdot (\text{Re} \cdot \text{Pr} \cdot d/L)^{0.33}$$

3) dla Re· Pr· d/L < 4.5

$$Nu = 0.5 \cdot \text{Re} \cdot \text{Pr} \cdot d/L$$

KONWEKCJA NATURALNA

1) wnikanie ciepła w przestrzeni nieograniczonej dla której Pr≥0,5

$$Nu = C \cdot (Gr \cdot Pr)^n$$

gdzie:

$$Nu = \frac{\alpha \cdot l}{\lambda}$$
 - liczba Nusselta,

$$Gr = \frac{g \cdot l^3}{v^2} \cdot \beta \cdot \Delta t = \frac{g \cdot l^3 \cdot \rho^2}{\eta^2} \cdot \beta \cdot \Delta t$$
 - liczba Grashofa

(charakteryzuje oddziaływanie wzajemne sił tarcia wewnętrznego i sił wyporu, spowodowane różnicą gęstości w poszczególnych punktach płynu),

$$Pr = \frac{c \cdot \eta}{\lambda}$$
 - liczba Prandtla.

I – charakterystyczny wymiar liniowy [m],

v – lepkość kinematyczna płynu [m²/s],

β – współczynnik rozszerzalności objętościowej [1/K],

 Δt – różnica temperatur między temperaturą powierzchni ściany a temperaturą ośrodka [K].

wartości współczynnika C i wykładnika n zależą od iloczynu Gr-Pr

nr	Gr∙Pr	С	n	Uwagi
1	$10^{-3} \div 5.10^{2}$	1,18	1/8	ruch laminarny
2	$5.10^2 \div 2.10^7$	0,54	1/4	ruch przejściowy
3	$2 \cdot 10^7 \div 10^{13}$	0,135	1/3	ruch burzliwy

Wszelakie obliczenia dokonuje się dla temperatury warstwy przyściennej obliczanej jako średnia arytmetyczna z temperatury powierzchni ściany i ośrodka:

$$T_m = \frac{T_w + T}{2}$$

Współczynnik rozszerzalności objętościowej gazów oblicza się, jak dla gazów doskonałych, jako odwrotność absolutnej temperatury gazów w warstwie przyściennej:

$$\beta = \frac{1}{T_m}$$

Charakterystyczny wymiar liniowy *l*:

- a) pionowa ściana płaska lub cylindryczna l jest wysokością ściany,
- b) dla kuli i rury poziomej *l* jest ich średnicą,
- c) dla płyty poziomej, zwykle prostokątnej l jest długością mniejszego boku, ale l_{max} wynosi 0,6 m. Większa wartość nie ma wpływu na współczynnik wnikania ciepła α .

Dla płyty poziomej, jeżeli istnieją warunki ułatwiające konwekcję (powierzchnia grzejna skierowana do góry lub chłodząca skierowana w dół) wówczas współczynnik α należy zwiększyć o 30%, natomiast gdy istnieją warunku utrudniające konwekcję należy α zmniejszyć o 30%.

2) wnikanie ciepła w przestrzeni ograniczonej

Jest skomplikowane ze względu na małe rozmiary rozpatrywanej powierzchni. Nie można ustalić osobno współczynników α dla ogrzewania i chłodzenia płynu. Natężenie przepływu ciepła oblicza się z równania na przewodzenie ciepła.

$$Q_* = \frac{\lambda_z}{\sigma} \cdot A \cdot \Delta T$$

gdy *Gr · Pr < 10*3

równoważny współczynnik przewodzenia ciepła λ_z jest równy rzeczywistemu współczynnikowi przewodzenia ciepła λ natomiast gdy $\textit{Gr-Pr>10}^3$ stosuje się równanie

$$\frac{\lambda_z}{\lambda} = 0.18 \cdot (Gr \cdot Pr)^{0.25}$$

wartość λ_z oblicza się dla temperatury średniej między temperaturami ściany cieplejszej i zimniejszej. Wymiarem charakterystycznym w liczbie Grashofa jest szerokość komory σ .

WNIKANIE CIEPŁA (KONWEKCJA) PRZY ZMIANIE STANU SKUPIENIA

 Wnikanie przy wrzeniu cieczy. Jest to proces skomplikowany, rozróżnia się m.in. wrzenie w objętościach dużych oraz w objętościach małych np. w rurach. Rozróżnia się m.in. wrzenie pęcherzykowe, błonkowe i inne. Najczęstszym przypadkiem jest wrzenie pęcherzykowe. Wrzenie to pod ciśnieniem atmosferycznym występuje gdy ΔT=5-25K (°C).

Dla **wody** współczynnik α oblicza się z następującego wzoru:

$$\alpha = 3.14 \cdot (p/10^5)^{0.15} \cdot (q/A)^{0.7}$$
$$\alpha = 45.8 \cdot (p/10^5)^{0.5} \cdot \Delta T^{2.33}$$

qdzie:

q/A – natężenie przepływu ciepła na jednostkę powierzchni grzejnej [W/m²],

p – ciśnienie wrzącej cieczy [Pa],

∆T – różnica temperatur między temperaturą powierzchni ścianki a temperaturą wrzącej cieczy [K, °C].

Dla roztworów wodnych i innych cieczy:

$$\alpha' = \varphi \cdot \alpha_{wody}$$

Roztwory wodne	φ	ciecze	φ
10% NaSO ₄	0,94	Metanol	0,53
20% r. cukru	0,87	Etanol	0,45
40% r. cukru	0,84	Izopropanol	0,70
26% r. gliceryny	0,83	n-butanol	0,32
55% r. gliceryny	0,75	Benzen	0,27
9% NaCl	0,86	Toulen	0,36
24% NaCl	0,61	Czterochlorek węgla	0,35

2) wnikanie ciepła przy kondensacji pary Wnikanie ciepła od pary do ścianki, której temperatura jest niższa od temperatury nasycenia.

$$Nu = C \cdot (Ga \cdot Pr \cdot Ko)^n$$

gdzie:

$$Nu = \frac{\alpha \cdot l}{\lambda}$$
 - liczba Nusselta,

$$Ga = \frac{g \cdot l^3}{v^2}$$
 - liczba Galileusza

(charakteryzuje stosunek sił tarcia wewnętrznego do sił ciężkości),

$$Pr = \frac{c \cdot \eta}{\lambda}$$
 - liczba Prandtla,

$$Ko = \frac{r}{c \cdot \Delta T}$$
 - liczba kondensacji

(jest to miara stosunku strumienia cieplnego zużywanego na fazowe przekształcenie substancji do ciepła przechłodzenia jednej z faz w temperaturze nasycenia),

gdzie:

 α - współczynnik wnikania ciepła od kondensującej pary do ścianki [W/m²-K],

g – przyśpieszenie ziemskie [m/s²],

v - współczynnik lepkości kinematycznej kondensatu [m²/s],

c - ciepło właściwe kondensatu [J/kg·K],

η - współczynnik lepkości dynamicznej kondensatu [Pa·s],

r - ciepło kondensacji pary [J/kg],

ΔT – różnica temperatur między temperaturą kondensującej pary a temperaturą powierzchni ścianki [K, °C].

1) dla rury pionowej:

$$\alpha = 1,15 \cdot \sqrt[4]{\frac{\lambda^3 \cdot \rho^2 \cdot r \cdot g}{H \cdot \eta \cdot \Delta T}}$$

H – wysokość rury [m],

2) dla rury poziomej (kondensacja na zewnątrz rury):

$$\alpha = 0.725 \cdot \sqrt[4]{\frac{\lambda^3 \cdot \rho^2 \cdot r \cdot g}{d \cdot \eta \cdot \Delta T}}$$

d – średnica zewnętrzna rury [m],

Wartości liczbowe parametrów fizycznych kondensatu t.j. $\lambda,\,\rho,\,\eta$ podstawia się dla temperatury błonki kondensatu T_m .

$$T_m = \frac{T_w + T_s}{2}$$

 T_w – temperatura powierzchni ścianki,

T_s – temperatura nasycenia,

Wartość liczbową ciepła kondensacji r oblicza się dla T_s.

PRZENIKANIE

W przemyśle ruch ciepła zachodzi równocześnie dwoma lub trzema sposobami, najczęściej odbywa się przez **przewodzenie** i **konwekcję**. Mechanizm transportu ciepła łączący wymienione sposoby ruchu ciepła nazywa się **PRZENIKANIEM CIEPŁA**.

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ

Przepływ ciepła przez ściankę jest ustalony $\frac{dQ}{dt} = Q_* = const$

Przepływ ciepła odbywa się w trzech stadiach:

1. wnikanie ciepła od ośrodka do ścianki płaskiej,

$$Q_{*_1} = \alpha_1 \cdot A \cdot (T_1 - T_{w_1})$$
 pr. Newtona

2. przewodzenie ciepła przez ściankę,

$$Q_{*2} = \frac{\lambda \cdot A}{\sigma} \cdot (T_{w1} - T_{w2}) \text{ pr. FOURIERA}$$

3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

$$Q_{*3} = \alpha_2 \cdot A \cdot (T_{w2} - T_2)$$
 PR. NEWTONA

Ponieważ ruch ciepła jest ustalony $Q_{*_1} = Q_{*_2} = Q_{*_3}$ można równania dodać stronami, Natężenie przepływu ciepła na drodze przenikania można, zatem wyrazić następująco:

$$Q_* = \frac{1}{\frac{1}{\alpha_1} + \frac{\sigma}{\lambda} + \frac{1}{\alpha_2}} \mathbf{A} \cdot (\mathbf{T}_1 - \mathbf{T}_2) \quad [\mathbf{W}]$$

gdzie:

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{\sigma}{\lambda} + \frac{1}{\alpha_2}} \left[\frac{W}{m^2 \cdot \deg} \right] - \text{współczynnik przenikania ciepła}$$

deg (z ang. degree)- stopień °C, K

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ WIELOWARSTWOWĄ

Natężenie przepływu ciepła:

$$Q_* = K \cdot A \cdot (T_1 - T_2)$$
 [W]

gdzie:

$$K = \frac{1}{\frac{1}{\alpha_1} + \sum_{i=1}^{n} \frac{\sigma}{\lambda} + \frac{1}{\alpha_2}} \left[\frac{W}{m^2 \cdot \deg} \right]$$

PRZENIKANIE PRZEZ ŚCIANKĘ CYLINDRYCZNĄ

Natężenie przepływu ciepła:

$$Q_* = K_d \cdot \pi \cdot L \cdot (T_1 - T_2) \text{ [W]}$$

gdzie:

$$K_d = \frac{1}{\frac{1}{\alpha_1 \cdot 2r_1} + \sum_{i=1}^n \frac{1}{2\lambda_i} \ln \frac{r_{i+1}}{r_i} + \frac{1}{\alpha_2 \cdot 2r_2}} \quad \left[\frac{W}{m \cdot \deg} \right]$$

ZADANIA

ZADANIE 1

Kanałem o przekroju prostokątnym 200x300 mm przepływa powietrze z prędkością liniową 15m/s. Obliczyć współczynnik wnikania ciepła od powietrza do ścianek kanału, jeżeli temperatura powietrza wynosi 40°C. W tej temperaturze ρ =1,092 kg/m³, η =19,12 10⁻⁶ Pas, λ =0,0265 W/m·K a Pr=0,71

ZADANIE 2

W wężownicy o średnicy zwoju 0,7m, długości 2m, zwiniętej z rury 57/50mm jest chłodzony alkohol metylowy. Obliczyć współczynnik wnikania ciepła, jeżeli średnia temperatura alkoholu wynosi 500C, zaś liniowa prędkość przepływu wynosi 1,2m/s. Parametry fizyczne metanolu w temp. 50° C: ρ =765·kg/m³, η =3,96·10⁻⁴ Pas, λ =0,207 W/m·K i c=2,554 kJ/(kg·K).

ZADANIE 3

Rurą o średnicy 150mm i długości 3m przepływa woda z prędkością liniową 0,9m/s. Średnia temperatura wody jest równa 65°C. Obliczyć współczynnik wnikania ciepła. Parametry fizyczne wody w temp.65°C: $\eta=435,4\cdot10^{-6}$ Pa·s, $\lambda=0,663$ W/m·K, $\rho=980,6$ kg/m³ i c=4,184 kJ/(kg·K).

ZADANIE 4

Rurami o średnicy wewnętrznej 82,5mm przepływa glikol etylenowy z prędkością liniową równą 0,7 m/s. Temperatura średnia glikolu etylenowego wynosi 60°C. Porównać wartości liczbowe współczynnika α w przypadku gdy:

a) glikol jest ogrzewany, a średnia temperatura ściany wynosi 80°C, b) glikol jest chłodzony, a średnia temperatura ściany wynosi 40°C. Dane: λ =0,263 W/m·K, ρ =1085 kg/m³ i c=2,562 kJ/(kg·K).

Współczynnik lepkości dyn<u>amicznej wynosi:</u>

T °C	η [Pa·s]
40	9,13·10 ⁻³
60	4,95·10 ⁻³
80	3,02·10 ⁻³

Lepkość wody w 60°C wynosi 0,472·10⁻³ [Pa·s].

Obliczyć współczynnik wnikania ciepła na drodze konwekcji naturalnej od poziomego przewodu parowego o średnicy zewnętrznej 133mm do otaczającego powietrza. Temperatura zewnętrznej powierzchni rury jest równa 80°C a temperatura powietrza 20°C. Dane: $v=18,58\cdot10^{-6}$ m²/s, $\lambda=0,0272$ W/m·K, Pr=0,71.

ZADANIE 6

W dużym zbiorniku ogrzewamy wodę za pomocą wężownicy parowej. Wężownica zwinięta jest z rury o średnicy zewnętrznej 76mm. Temp. zewnętrznej powierzchni wężownicy równa jest około 100°C, zaś temperatura wody w zbiorniku wynosi 80°C. Obliczyć współczynnik wnikania ciepła od wężownicy do wody (konwekcja naturalna).

Dane: η =308,9·10⁻⁶ Pa·s, λ =0,678 W/m·K, ρ =965,3 kg/m³, c=4,202 kJ/(kg·K) i β =7,0·10⁻⁴ K⁻¹.

ZADANIE 7

W aparacie o dużej objętości wrze woda pod ciśnieniem $p=1,48\cdot10^5 N/m^2$. Obliczyć współczynnik wnikania ciepła dla wody, jeżeli temperatura powierzchni ścianki aparatu po stronie wrzącej wody: $T_w=120^{\circ}C$. Temperatura wrzenia wody pod w/w ciśnieniem wynosi $T=111^{\circ}C$.

ZADANIE 8

W przestrzeni międzyrurkowej poziomego wymiennika ciepła w rurze kondensuje para wodna o ciśnieniu $6.5\cdot10^5$ Pa. Średnica zewnętrzna rury wewnętrznej jest równa 89 mm, zaś temperatura jej powierzchni po stronie kondensującej pary wynosi 158° C. Obliczyć współczynnik wnikania ciepła od kondensującej pary do powierzchni rury. Temperatura kondensacji pary pod ciśnieniem $6.5\cdot10^5$ Pa wynosi $T_s=162^{\circ}$ C. Parametry fizyczne kondensatu w temp. 160° C: $\eta=171,6\cdot10^{-6}$ Pa·s, $\lambda=0,680$ W/m·K, $\rho=907,6$ kg/m³. Ciepło kondensacji pary w temperaturze 162° C wynosi r=2075,8 kJ/kg.

ZADANIE 9

Wewnętrzna powierzchnia warstwy izolacyjnej posiada temperaturę 10° C, natomiast powierzchnia zewnętrzna oddaje ciepło do otoczenia (temp. otoczenia jest równa - 20° C) na drodze konwekcji. Grubość warstwy izolacyjnej wynosi 50 mm a jej współczynnik przewodzenia ciepła jest równy $\lambda=0,05$ W/m·K. Obliczyć współczynnik wnikania ciepła wiedząc, że temperatura zewnętrznej powierzchni wynosi 0° C.

Szyba okienna o grubości 0,5 cm i współczynniku λ równym 0,78 W/m·deg po stronie wewnętrznej powierzchni ma kontakt z powietrzem o temperaturze 25°C. Współczynnik wnikania po tej stronie wynosi 15 W/m²·deg. Powietrze po stronie zewnętrznej ma temperaturę -20°C, a współczynnik α po stronie zewnętrznej wynosi 50 W/m²·deg. Obliczyć temperatury zewnętrznej i wewnętrznej powierzchni szyby.

ZADANIE 11

Okno składa się z dwóch szyb o grubości 5 mm, oddzielonych przestrzenią powietrzną o grubości 10 mm. Współczynnik przewodzenia ciepła szkła λ wynosi 0,78 W/m·deg a powietrza 0,025 W/m·deg. Współczynnik wnikania ciepła α_1 wynosi 10 W/m²·deg a wnikania ciepła α_2 jest równy 50 W/m²·deg.

- 1) obliczyć gestość strumienia ciepła gdy ΔT=60 deg,
- 2) porównać ten wynik z ciepłem traconym w przypadku okna z jedną szybą,
- 3) porównać ten wynik w przypadku okna bez przestrzeni powietrznej, przyjąć grubość szyby równą 10 mm,

ZADANIE 12

W skraplaczu rurkami o średnicy 32/38 mm przepływa woda chłodząca, zaś w przestrzeni międzyrurowej kondensuje para wodna. Współczynniki wnikania ciepła od kondensującej pary do zewnętrznej powierzchni rur oraz od wewnętrznej powierzchni rur do wody wynoszą odpowiednio: α_1 =10000 W/m²·deg i α_2 =4200 W/m²·deg. Współczynnik przewodzenia ciepła stali wynosi 45 W/m·deg. Obliczyć współczynnik przenikania ciepła K. Następnie obliczyć współczynnik przenikania ciepła K₁, jeżeli rurki skraplacza są pokryte wewnątrz warstwą kamienia kotłowego o grubości 1mm (λ kamienia kotłowego wynosi 0,8 W/m·deg).

ZADANIE 13

Określić współczynnik przenikania ciepła od roztworu przepływającego zaizolowaną rurą do otaczającego powietrza. Rura stalowa o średnicy 125/133mm zaizolowana jest z zewnątrz warstwą waty szklanej o grubości 80mm.

Dane: współczynnik wnikania ciepła od roztworu do ścianki rury α_1 =600 W/m²·K; współczynnik wnikania ciepła od ścianki rury do powietrza α_2 =10 W/m²·K; współczynniki przewodzenia ciepła stali λ_1 =45 W/m·K, waty szklanej λ_2 =0,09 W/m·K.

W aparacie wrze ciecz w temperaturze 115° C. Płaska ściana aparatu jest wykonana z blachy stalowej o grubości 0,003m i zaizolowana z zewnątrz warstwą wełny żużlowej o grubości 0,06m. Temperatura otoczenia wynosi 18° C. Obliczyć natężenie wymiany ciepła na drodze przenikania blachy. Współczynniki wnikania ciepła od wrzącej cieczy do blachy i od izolacji do otoczenia wynoszą odpowiednio: α_1 =2100 W/m²·deg i α_2 =8 W/m²·deg. Współczynniki przewodzenia ciepła blachy i izolacji są równe odpowiednio: λ_1 =50 W/m·deg i λ_2 =0,034 W/m·deg. Powierzchnia wynosi A=1m².

ZADANIE 15

Współczynnik wnikania ciepła od nieizolowanego kulistego zbiornika o średnicy 0,5m do otoczenia o temperaturze T_o =293 K wynosi α =10 W/m²·K. Zbiornik pokryto warstwą izolacji o grubości σ =0,04 m (λ_{iz} =0,056 W/m·K). Przyjmując temperaturę powierzchni zbiornika T=363 K (w obu przypadkach) oraz, że współczynnik wnikania ciepła nie ulega zmianie po nałożeniu izolacji, obliczyć ile % zmniejszy się gęstość strumienia cieplnego.

ZADANIE 16

Obliczyć gęstość strumienia cieplnego q przenikającego przez czystą powierzchnię ogrzewalną kotła parowego, oraz temperatury na powierzchniach ścianki, jeżeli dane są następujące: temperatura spalin T_1 =1273K, temperatura wrzącej wody T_2 =473 K, współczynnik wnikania ciepła od spalin od ścianki α_1 =100 W/m²·K i od ścianki do wrzącej wody α_2 =5000 W/m²·K oraz współczynnik przewodzenia ciepła materiału ścianki α_2 =50 W/m·K i grubość ścianki α_2 =0,012 m.

a) W czasie eksploatacji powierzchnia ogrzewalna kotła parowego od strony spalin pokryła się warstwą sadzy o grubości σ_1 =0,001 m (λ_1 =0,08 W/m·K) a od strony wody warstwą kamienia kotłowego o grubości σ_3 =0,002 m (λ_3 =0,8 W/m·K). Obliczyć gęstość strumienia cieplnego przez zanieczyszczoną powierzchnię ogrzewalną oraz temperatury na połączeniach poszczególnych warstw T_1 , T_2 , T_3 i T_4 . Porównać wyniki rozwiązania z poprzednią częścią zadania i określić zmniejszenie gęstości strumienia cieplnego w %.

Rurociągiem o średnicach d_w/d_z =90/100 mm płynie ciepły olej. Rurociąg ten pokryto warstwą izolacji o grubości 100 mm. Współczynniki przewodzenia ciepła materiału rury i izolacji wynoszą odpowiednio λ_1 = 40 W/m·K, λ_{iz} = 1,16 W/m·K. Średnia temperatura T_1 = 438 K, temperatura otoczenia T_2 =285 K. Współczynnik wnikania ciepła od oleju do rury α_1 =120 W/m²·K i wnikania ciepła od izolacji do otoczenia α_2 =10 W/m²·K. Określić wartość strumienia cieplnego dla rurociągu bez i z izolacją. Ile powinienem wynosić współczynnik przewodzenia ciepła materiału izolacyjnego, by pokryty nim rurociąg cechował się stratami ciepła nie większymi niż rurociąg bez izolacji. Przyjąć długość rurociągu równą L=1m.