Eksamen på Økonomistudiet. Sommeren 2012

MATEMATIK B

1. årsprøve

Mandag den 11. juni 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 S-1B ex

EKSAMEN I MATEMATIK B

Mandag den 11. juni 2012

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \left(\begin{array}{ccc} 1 & s & 0 \\ s & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

- (1) Udregn determinanten det (A(s)), og godtgør dernæst, at matricen A(s) er regulær for ethvert $s \in \mathbf{R}$.
- (2) Bestem den inverse matrix $(A(s))^{-1}$ til A(s) for et vilkårligt $s \in \mathbf{R}$.
- (3) Udregn det karakteristiske polynomium $P_{A(s)}$ for et vilkårligt $s \in \mathbf{R}$, og godtgør dernæst, at

$$\forall s \in \mathbf{R} : P_{A(s)} = P_{A(-s)}.$$

- (4) Bestem egenværdierne for matricen A(0).
- (5) Bestem egenrummene for matricen A(0).
- (6) Bestem en diagonalmatrix D og en ortogonal matrix Q, så

$$D = Q^{-1}A(0)Q$$
.

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0\}$$

og funktionen $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = \ln(x) + \frac{y}{x} - \frac{1}{2}y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D$, og afgør dernæst om det fundne stationære punkt er et maksimums-, et minimums- eller et sadelpunkt for f.
- (4) Bestem værdimængden R(f) for funktionen f.

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + (1+3t^2)x = 6t^2e^{-t}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0) = 5$.
- (3) Bestem differentialkvotienten

$$\frac{d\tilde{x}}{dt}(0)$$
.

Opgave 4. Vi betragter funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som givet ved

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^3y + 2y^4 - 5x^4$$

- (1) Vis, at funktionen f er homogen, og bestem homogenitetsgraden.
- (2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (3) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (4) Vis, at det stationære punkt er et sadelpunkt for funktionen f. Bestem desuden værdimængden R(f) for f.
- (5) Vis, at de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f er homogene funktioner, og bestem deres homogenitetsgrad.