The Composition Theorem for Differential Privacy

Peter Kairouz, Sewoong Oh, and Pramod Viswanath E-mails: {kairouz2, swoh, pramodv}@illinois.edu

University of Illinois at Urbana Champaign, USA

Statistical Data Privacy

Privacy via plausible deniability:

have you ever used illegal drugs?

say yes

answer truthfully

(ε, δ) -differential privacy:

Composition attacks:

how much privacy is lost in the end?

$$\left(\sum_{i=1}^k \varepsilon_i, \sum_{i=1}^k \delta_i\right)$$

what if we allow for some slack $\tilde{\delta} > 0$?

If $(\varepsilon_i = \varepsilon, \delta_i = \delta)$, then $(k\varepsilon^2 + \varepsilon\sqrt{k\log(1/\tilde{\delta})}, k\delta + \tilde{\delta})$

Connections to Hypothesis Testing

Privacy region of a privatization mechanism:

 \blacksquare fix a privatization mechanism q

 H_0 database is D_0 H_1 database is D_1

Operational Definition of Differential Privacy [Kairouz, Oh, Viswanath '15]

q is (ε, δ) -differentially private $\iff \mathcal{R}_q \subseteq \mathcal{R}_{\varepsilon, \delta}$ $P_{\text{FA}} + e^{\varepsilon} P_{\text{MD}} \geq 1 - \delta$ $e^{\varepsilon} P_{\text{FA}} + P_{\text{MD}} \geq 1 - \delta$

The Optimality of the Randomized Response Mechanism

Data processing inequality & its converse:

The Data Processing Inequality and its Converse [Kairouz, Oh, Viswanath '15]

$$D-q_1(D)-q_2(D) \iff \mathcal{R}_{q_2} \subseteq \mathcal{R}_{q_1}$$

■ precisely, if $\mathcal{R}_{q_2} \subseteq \mathcal{R}_{q_1}$ then there exists a coupling of $q_1(D)$ and $q_2(D)$ such that (a) $D-q_1(D)-q_2(D)$ or equivalently (b) $q_2(D) = T(q_1(D))$

The randomized response mechanism:

The Optimality of the Randomized Response Mechanism

The randomized response $q_{\varepsilon,\delta}$ dominates over all (ε,δ) -differentially private mechanisms.

Composition under the randomized response mechanism:

k composition of (0.4, 0.1)-differential private mechanisms

■ this gives the exact evolution of privacy

The Composition Theorem

Optimal privacy under composition of homogenous mechanisms:

The Composition Theorem I [Kairouz, Oh, Viswanath '15]

The k-fold composition of (ε, δ) -differentially private mechanisms satisfies $(\tilde{\varepsilon}_{\tilde{\delta}}, k\delta + \tilde{\delta})$ -differential privacy with

$$\tilde{\varepsilon}_{\tilde{\delta}} = \min \left\{ k \varepsilon, k \varepsilon^2 + \sqrt{k \varepsilon^2 \log(e + 1/\tilde{\delta})} \right\}$$

■ significant improvement over $(k\varepsilon, k\delta)$ -guarantee when $\varepsilon \to 0$

Comparisons with the state-of-the-art results:

30-fold composition of (0.1, 0.001)-differentially private mechanisms

Optimal privacy under composition of heterogeneous mechanisms:

The Composition Theorem II [Kairouz, Oh, Viswanath '15]

For any $\varepsilon_{\ell} > 0$, $\delta_{\ell} \in [0,1]$ for $\ell \in \{1,\ldots,k\}$, and $\tilde{\delta} \in [0,1]$, the class of $(\varepsilon_{\ell},\delta_{\ell})$ -differentially private mechanisms satisfy $(\tilde{\varepsilon}_{\tilde{\delta}},1-(1-\tilde{\delta})\prod_{\ell=1}^{k}(1-\delta_{\ell}))$ -differential privacy under k-fold adaptive composition, for $\tilde{\varepsilon}_{\tilde{\delta}} =$

$$\min \left\{ \sum_{\ell=1}^{k} \varepsilon_{\ell} , \ k\overline{\varepsilon}^{2} + \sqrt{2 k \overline{\varepsilon}^{2} \log \left(e + \sqrt{k} \overline{\varepsilon} / \widetilde{\delta} \right)} \right\},$$

where $\overline{\varepsilon}^2 = \frac{1}{k} \sum_{\ell=1}^k \varepsilon_\ell^2$ for $\varepsilon \leq 1/2$.

Going Forward

Computational Complexity [Vadhan, Murtagh '15]

- "Optimality of non-interactive randomized response", arXiv:1407.1546
- "Extremal Mechanisms for Local Differential Privacy", arXiv:1407.1338