※ 主に定義や諸性質について参考にしました

入力: 単純グラフ G

出力: 待ち行列数 qn(G) を与えるレイアウト (\prec, φ)

グラフのスタック数と待ち行列数

- G = (V, E): $\not D = (V, E)$
- ≺: V 上のとある全順序

互いに素な辺対 $vw, xy \in E$ に対する形容「交差」と「入れ子」

- o $v \prec x \prec w \prec y$ もしくは $x \prec v \prec y \prec w$ を満たすとき vw と xy は互いに交差しているという
- o $v \prec x \prec y \prec w$ もしくは $x \prec v \prec w \prec y$ を満たすとき vw と xy は入れ子にあるという
- ※ 互いに素な辺対: $\{v,w\} \cap \{x,y\} = \emptyset$.
- ※ 便宜で $v \prec w$ かつ $x \prec y$ とする

k-スタック・レイアウトとk-待ち行列レイアウト %k は適当な自然数 $(k \in \mathbb{N})$

レイアウト (\prec, φ) : V 上の全順序 \prec と割当て関数 $\varphi: E \to [k]$ の対

- % 任意の $k \in \mathbb{N}$ に関して $[k] := \{1,\ldots,k\} = \{i \in \mathbb{N} \mid i \leq k\}$
- ullet 化-スタック・レイアウト: 割当て $\varphi: E \to [k]$ が次を満たすレイアウト (\prec, φ) $\forall (vw, xy) \in \binom{E}{2} \left[\varphi(vw) = \varphi(xy) \text{ なら } vw \succeq xy \text{ は交差しない} \right].$
- k-待ち行列レイアウト:
 - $\forall (vw, xy) \in \binom{E}{2} \left[\varphi(vw) = \varphi(xy) \text{ なら } vw \succeq xy \text{ は入れ子でない} \right]$

フルフトグラフのキューレイアウトの例

グラフのスタック数 $\mathsf{sn}(G)$ と待ち行列数 $\mathsf{qn}(G)$

- -- ちょっと雰囲気すぎて残念すぎる もう少し鍛錬が必要
- G のスタック数 sn(G) := min {k | G の k-スタック・レイアウト}.
- \circ 待ち行列数 qn(G) も同様に定義される

(彩色問題からのオマージュ)

この制約は「キューはインデックスが小さい順に使いましょう」

用意するキューの個数の上限は完全グラフの待ち行列数 (qn(Kn)) より

待ち行列数を求める 01-整数計画

minimize $\sum_i q_i$

 $q_{i+1} - q_i \ge 0$ $x_{ij} + x_{ji} = 1$

 $x_{ij} + x_{jk} - x_{ik} \le 1$

 $\sum_{i \in [q]} y_{i,uv} = x_{uv}$

 $\sum_{i \in [q]} y_{i,vu} = x_{vu}$

 $(i,j,k) \in \{(i,j,k) \in V^3 \mid i \neq j \land j \neq k \land w \neq i\}$

 $\{u,v\}\in E$ $(i, uv) \in [q] \times E$

 $i \in \left[q := \left\lceil \frac{n}{2} \right\rceil \right]$

 $\{i,j\}\in \binom{V}{2}$

 $y_{i,uv} + y_{i,vu} \le q_i$ $y_{i,uv} + y_{i,wz} \le (x_{uw} + x_{wv} + x_{vz}) + 3(x_{wu} + x_{vw} + x_{zv}) - 2$

 $y_{i,uv} + y_{i,wz} \le (x_{wu} + x_{uz} + x_{zv}) + 3(x_{uw} + x_{zu} + x_{vz}) - 2$

 $y_{i,uv} + y_{i,zw} \le (x_{uz} + x_{zv} + x_{vw}) + 3(x_{zu} + x_{vz} + x_{wv}) - 2$

 $y_{i,uv} + y_{i,zw} \le (x_{zu} + x_{uw} + x_{wv}) + 3(x_{uz} + x_{wu} + x_{vw}) - 2$

 $y_{i,vu} + y_{i,wz} \le (x_{vw} + x_{wu} + x_{uz}) + 3(x_{vw} + x_{wu} + x_{zu}) - 2$

 $y_{i,vu} + y_{i,wz} \le (x_{wv} + x_{vz} + x_{zu}) + 3(x_{vw} + x_{vz} + x_{uv}) - 2$

 $y_{i,vu} + y_{i,zw} \le (x_{vz} + x_{zu} + x_{uw}) + 3(x_{zv} + x_{uz} + x_{wu}) - 2$

 $y_{i,vu} + y_{i,zw} \le (x_{zv} + x_{vw} + x_{wu}) + 3(x_{vz} + x_{wv} + x_{uw}) - 2$

 $(u,v) \in V^2 \setminus \{(v,v) \mid v \in V\}$ $x_{uv} \in \{0, 1\}$

 $y_{i,uv}, y_{i,vu} \in \{0,1\}$

 $(i,\{u,v\}) \in [q] \times E$

辺集合 E のキューへの集合分割の実現に向けて アクティベートの条件と 漏れも重複もないことの条件

 $(i, \{uv, xy\}) \in [q] \times C := \left\{ \{uv, xy\} \in {E \choose 2} \mid uv \cap xy = \varnothing \right\}$

キュー内の交差制約

この2つは変数独立

とりうるすべての全順序 < を考慮したい

論理表をカルノー図しよう

こっちがダメ

i.e., $uv \ge wz$ が同じキューに属せない

 $x_{uv} = 1 \& x_{wz} = 1$ $x_{uw} = 1 \& x_{wv} = 1 \& x_{vz} = 1$ 制約セットに並列できる or $x_{wu} = 1 \& x_{uz} = 1 \& x_{zv} = 1$ $x_{uv}=x_{wz}=x_{uw}=x_{wv}=x_{vz}=1$ ගද්ප්

 $y_{i,uv}$ と $y_{i,xy}$ はいずれか一方しか1にできない $\clubsuit = \{x_{uw}, x_{wv}, x_{vz}\}$

というわけで、とりあえず $y_{i,uv} + y_{i,wz} \le 1 + (\sum_{i \in \clubsuit} x_i - 3)$

 $\divideontimes y_{i,uv},\ y_{i,wz}$ がアクティベートするためには $x_{uv}=1,\ x_{wz}=1$ が前提 でも、 $x_{uv}=0$ or $x_{wz}=0$ のとき左辺の変数いずれも 1 がとれない

つーこって $y_{i,uv} + y_{i,wz} \le 1 + (\sum_{i \in A} x_i - 3)$ $\sum_{i\in \spadesuit} x_i$.

ちょっとナイーブな気がしますが ♣ = 上記 C 内の各辺対ごとに 8 種の制約を与えれば ok... 位相反転!

というわけで書き下し

 $u \prec v$ $y_{i,uv} + y_{i,wz} \le (x_{uw} + x_{wv} + x_{vz}) + 3(x_{wu} + x_{vw} + x_{zv}) - 2$ $w \prec z$ $y_{i,uv} + y_{i,wz} \le (x_{wu} + x_{uz} + x_{zv}) + 3(x_{uw} + x_{zu} + x_{vz}) - 2$ $y_{i,uv} + y_{i,zw} \le (x_{uz} + x_{zv} + x_{vw}) + 3(x_{zu} + x_{vz} + x_{wv}) - 2$ $u \prec v$ $z \prec w$

 $y_{i,uv} + y_{i,zw} \le (x_{zu} + x_{uw} + x_{wv}) + 3(x_{uz} + x_{wu} + x_{vw}) - 2$ $y_{i,vu} + y_{i,wz} \le (x_{vw} + x_{wu} + x_{uz}) + 3(x_{vw} + x_{wu} + x_{zu}) - 2$

 $y_{i,vu} + y_{i,wz} \le (x_{wv} + x_{vz} + x_{zu}) + 3(x_{vw} + x_{vz} + x_{uv}) - 2$ $y_{i,vu} + y_{i,zw} \le (x_{vz} + x_{zu} + x_{uw}) + 3(x_{zv} + x_{uz} + x_{wu}) - 2$

 $v \prec u$ $z \prec w$ $y_{i,vu} + y_{i,zw} \le (x_{zv} + x_{vw} + x_{wu}) + 3(x_{vz} + x_{wv} + x_{uw}) - 2$

 $v \prec u$ $w \prec z$