Zápisky z lineární algebry - Ultimátní průvodce

Jan Ráček

23.září2025

Abstrakt

Tento dokument obsahuje přehledné a srozumitelné vysvětlení lineární algebry pro programátory. Všechny koncepty jsou vysvětleny pomocí přirovnání a vizualizací. Každá matematická operace je doplněna o její "programátorský význam".

Obsah

1	Zob	orazení (funkce)
		Základní definice
	1.2	Důležité pojmy
	1.3	Inverzní zobrazení
		Složení zobrazení
	1.5	Příklady zobrazení na číselných množinách
	1.6	Zbytkové třídy modulo m
	1.7	Shrnutí
2	Ma	tematická indukce a kombinatorika
		Princip matematické indukce
	2.2	Základní kombinatorické principy
	2.3	Princip inkluze a exkluze
	2.4	Kombinatorické vzorce
	2.5	Shrnující tabulka

Přednáška 1 - Úvod do matic

1 Zobrazení (funkce)

1.1 Základní definice

Definice (Zobrazení). Zobrazení (neboli funkce) z množiny M do množiny N je předpis f: $M \to N$, $který každému prvku <math>m \in M$ přiřadí právě jeden prvek $n \in N$. Zapisujeme n = f(m).

Poznámka (Programátorská analogie). Zobrazení je jako funkce v programování:

```
function f(m: M): N {
    return n; // právě jedna hodnota pro každý vstup
}
```

Definice (Vzor a obraz). Pro zobrazení $f: M \to N$ a prvek $m \in M$, $n \in N$:

- Prvek m se nazývá **vzor** (angl. preimage)
- Prvek n = f(m) se nazývá **obraz** (angl. image)
- Množina $f^{-1}(n) = \{x \in M \mid f(x) = n\}$ se nazývá vzor prvku n

M (definiční obor) N (obor hodnot)

$$f(m_1) = n_1, f(m_2) = n_2, f(m_3) = n_2$$

1.2 Důležité pojmy

Definice (Definiční obor a obor hodnot). • **Definiční obor** $D(f) \subseteq M$: $m \in M$, pro které je f(m) definováno

• Obor hodnot $W(f) \subseteq N$: množina všech $n \in N$, pro které existuje $m \in M$ s f(m) = n

Definice (Prosté zobrazení (injektivní)). Zobrazení $f: M \to N$ je **prosté**, pokud:

$$m_1 \neq m_2 \implies f(m_1) \neq f(m_2)$$

Definice (Na zobrazení (surjektivní)). Zobrazení $f: M \to N$ je na, pokud W(f) = N.

Definice (Bijektivní zobrazení). Zobrazení je bijektivní, pokud je zároveň prosté a na.

Typ zobrazení	Matematická podmínka	Programátorská analogie
Prosté	Žádné dva vstupy nemají stejný výstup	Hash funkce bez kolizí
Na	Každý prvek v N má vzor	Funkce pokrývající celý cílový typ
Bijektivní	Obě podmínky zároveň	Perfect hash function

1.3 Inverzní zobrazení

Věta (Inverzní zobrazení). Pro bijektivní zobrazení $f: M \to N$ existuje **inverzní zobrazení** $f^{-1}: N \to M$ takové, že:

- $f^{-1}(f(m)) = m \text{ pro } v \check{s} e chna \ m \in M$
- $f(f^{-1}(n)) = n \text{ pro v} \check{s}echna \ n \in N$

Příklad (Inverzní funkce). • f(x) = 2x, $f^{-1}(x) = x/2$

- $f(x) = x^3$, $f^{-1}(x) = \sqrt[3]{x}$
- $f(x) = e^x$, $f^{-1}(x) = \ln x$

Poznámka (Programátorská analogie). Inverzní zobrazení je jako dešifrovací funkce:

function encrypt(data: string): string { ... }
function decrypt(encrypted: string): string { ... }

decrypt(encrypt(data)) == data // vždy platí

1.4 Složení zobrazení

Definice (Složené zobrazení). Pro zobrazení $f: M \to N$ a $g: N \to P$ definujeme **složené** zobrazení $g \circ f: M \to P$ předpisem:

$$(g \circ f)(m) = g(f(m))$$

$$(g \circ f)(m) = g(f(m))$$

Definice (Identita). *Identita na množině* M *je zobrazení* $\mathrm{id}_M: M \to M$ *definované předpisem:*

$$id_M(m) = m$$
 pro všechna $m \in M$

Věta (Vlastnosti identity). Pro libovolné zobrazení $f: M \to N$ platí:

- $f \circ id_M = f$
- $id_N \circ f = f$

1.5 Příklady zobrazení na číselných množinách

Příklad (Aritmetické operace jako zobrazení). • *Sčítání:* $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f(x,y) = x + y$

• Násobení: $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ g(x,y) = x \cdot y$

Příklad (Řešení rovnic). *Pro pevné* $b, c \in \mathbb{R}$:

• Rovnice x + b = c má řešení x = c - b (vždy existuje)

• Rovnice $x \cdot b = c$ má řešení x = c/b (existuje právě $když \ b \neq 0$)

Poznámka (Programátorská analogie). Řešení rovnic je jako hledání inverzní operace:

```
// Sčítání a jeho inverze
function add(a: number, b: number): number { return a + b; }
function subtract(c: number, b: number): number { return c - b; }

// Násobení a jeho inverze (s podmínkou)
function multiply(a: number, b: number): number { return a * b; }
function divide(c: number, b: number): number | null {
    return b !== 0 ? c / b : null;
}
```

1.6 Zbytkové třídy modulo m

Definice (Zbytková třída). Pro pevné $m \in \mathbb{N}$ definujeme na \mathbb{Z} relaci ekvivalence:

$$a \equiv b \pmod{m} \iff m \mid (a - b)$$

Zbytková třída čísla a je množina:

$$[a]_m = \{b \in \mathbb{Z} \mid b \equiv a \pmod{m}\}\$$

Definice (Množina zbytků).

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

Každé celé číslo je kongruentní s právě jedním prvkem \mathbb{Z}_m .

Příklad (Aritmetika modulo 7).

$$3+5=8 \equiv 1 \pmod{7}$$

 $3 \cdot 5 = 15 \equiv 1 \pmod{7}$
 $2^{-1} = 4 \pmod{protože} \ 2 \cdot 4 = 8 \equiv 1 \pmod{7}$

Věta (Tělesa modulo prvočíslo). *Je-li p prvočíslo, pak* \mathbb{Z}_p *tvoří těleso. To znamená:*

- $Každ\acute{a}$ rovnice $ax \equiv b \pmod{p}$ má pro $a \not\equiv 0$ právě jedno řešení
- Každý nenulový prvek má inverzní prvek vzhledem k násobení

Poznámka (Programátorská analogie). *Aritmetika modulo je jako práce s cyklickými datovými typy:*

```
// Hodiny: aritmetika modulo 12
function addHours(current: number, hours: number): number {
    return (current + hours) % 12;
}

// Hash tabulky: aritmetika modulo velikosti tabulky
function hash(key: string, tableSize: number): number {
    return computeHash(key) % tableSize;
}
```

1.7 Shrnutí

Koncept	Matematický zápis	Vlastnosti
Zobrazení	$f:M\to N$	Přiřazuje každému $m \in M$ právě jedno $n \in N$
Prosté	$m_1 \neq m_2 \Rightarrow f(m_1) \neq f(m_2)$	Žádné kolize
Na	W(f) = N	Pokrývá celý cílový obor
Bijektivní	$\operatorname{Prost\acute{e}} + \operatorname{na}$	Existuje inverze
Složení	$(g \circ f)(m) = g(f(m))$	Asociativní
Identita	$\mathrm{id}_M(m)=m$	Neutrální prvek pro skládání

Literatura

 \bullet Petr Olšák: Úvod do algebry, zejména lineární, ISBN 978-80-01-03775-1

Přednáška 2 - Matematická indukce a kombinatorika

2 Matematická indukce a kombinatorika

2.1 Princip matematické indukce

Definice (Přirozená čísla). *Množina přirozených čísel* \mathbb{N} *obsahuje číslo* 1 a pro každé $n \in \mathbb{N}$ také obsahuje n + 1. Formálně:

- $1 \in \mathbb{N}$
- Pokud $n \in \mathbb{N}$, pak $n+1 \in \mathbb{N}$

Poznámka. Představte si to jako rekurzivní funkci v programování: máme základní případ (1) a rekurzivní krok (přidání 1).

Věta (Princip matematické indukce). *Pokud množina* $M \subseteq \mathbb{N}$ *splňuje:*

- 1. $1 \in M$ (základní krok)
- 2. Pokud $n \in M$, pak $n + 1 \in M$ (indukční krok)

 $Pak M = \mathbb{N}.$

Poznámka (Programátorská analogie). Matematická indukce je jako dokazování, že funkce pracuje správně pro všechny vstupy:

```
// Základní případ: funguje pro n=1
if (n == 1) return true;

// Indukční krok: pokud funguje pro n, funguje i pro n+1
if (funguje(n)) then funguje(n+1) musí také platit
```

Příklad (Důkaz pomocí matematické indukce). *Tvrzení:* Každou matici lze převést na horní stupňovitý tvar pomocí Gaussových operací.

Definice (Horní stupňovitý tvar). *Matice je v horním stupňovitém tvaru pokud:*

- Každý nenulový řádek má před prvním nenulovým prvkem více nul než předchozí řádek
- Nulové řádky jsou na konci

Příklad horního stupňovitého tvaru:

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

 $Důkaz \ matematickou \ indukcí$. **Základní případ** (n = 1): Jednořádková matice je vždy v horním stupňovitém tvaru.

Indukční krok: Předpokládejme, že každá matice s n řádky se dá převést na horní stupňovitý tvar. Uvažujme matici s n+1 řádky:

- 1. Najdeme první sloupec s nenulovým prvkem (pivot)
- 2. Vyměníme řádek s pivotem s prvním řádkem
- 3. Vynulujeme sloupec pod pivotem pomocí řádkových operací

Transformace matice:

$$\begin{pmatrix} 0 & 0 & c \\ a & b & d \\ e & f & g \end{pmatrix} \xrightarrow{\text{vyměň řádky}} \begin{pmatrix} a & b & d \\ 0 & 0 & c \\ e & f & g \end{pmatrix} \xrightarrow{\text{vynuluj pod pivotem}} \begin{pmatrix} a & b & d \\ 0 & 0 & c \\ 0 & f' & g' \end{pmatrix}$$

Aplikujeme IP Podmatice
$$n \times m$$

Na zbylou $n \times m$ podmatici aplikujeme indukční předpoklad.

2.2 Základní kombinatorické principy

Definice (Ekvidominantní množiny). Množiny A a B jsou ekvivalentní pokud existuje bijekce (vzájemně jednoznačné zobrazení) $f: A \to B$.

Poznámka. Bijekce = každý prvek z A se zobrazí na jiný prvek v B a naopak. Jako hash funkce bez kolizí.

Věta (Základní kombinatorické principy). 1. Pravidlo součtu: Pokud $A \cap B = \emptyset$, pak $|A \cup B| = |A| + |B|$

- 2. Pravidlo součinu: $|A \times B| = |A| \cdot |B|$
- 3. **Dirichletův princip:** Pokud n prvků rozdělíme do k množin, pak některá množina obsahuje alespoň $\lceil \frac{n}{k} \rceil$ prvků.

Příklad (Dirichletův princip - holubníkový princip). *Máme 10 holubů a 9 holubníků. Některý holubník musí obsahovat alespoň 2 holuby.*

10 holubů, 9 holubníků \Rightarrow některý má \geq 2 holuby

2.3 Princip inkluze a exkluze

Věta (Princip inkluze a exkluze pro 2 množiny). $|A \cup B| = |A| + |B| - |A \cap B|$

Věta (Princip inkluze a exkluze pro 3 množiny). $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

2.4 Kombinatorické vzorce

Definice (Faktoriál). $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \ s \ 0! = 1$

Poznámka. Faktoriál roste extrémně rychle - rychleji než exponenciála!

Definice (Permutace bez opakování). Počet uspořádaných n-tic z n různých prvků: P(n) = n!

Příklad. Kolik způsobů lze seřadit 3 lidi? 3! = 6 způsobů.

Permutace	Pořadí
1	A, B, C
2	A, C, B
3	B, A, C
4	B, C, A
5	C, A, B
6	C, B, A

Definice (Permutace s opakováním). *Pokud máme* k_1 *prvků typu* 1, k_2 *prvků typu* 2, ..., k_m *prvků typu* m, pak:

$$P(k_1, k_2, \dots, k_m) = \frac{(k_1 + k_2 + \dots + k_m)!}{k_1! \cdot k_2! \cdot \dots \cdot k_m!}$$

Příklad. Kolik slov lze vytvořit z písmen "MAMA"? M=2, A=2, celkem 4 písmena:

$$\frac{4!}{2! \cdot 2!} = \frac{24}{4} = 6$$

Definice (Variace). • Bez opakování: $V(k,n) = \frac{n!}{(n-k)!}$ (uspořádané k-tice z n prvků)

• S opakováním: $\overline{V}(k,n) = n^k$

Poznámka (Programátorská analogie). $Variace\ s\ opakováním = počet\ k-ciferných\ čísel\ v\ číselné\ soustavě\ o\ základu\ n.$

Příklad (Počet podmnožin). Počet všech podmnožin n-prvkové množiny je 2^n . Každou podmnožinu lze reprezentovat jako binární vektor délky n.

Bit A	Bit B	Bit C	$Podmno\check{z}ina$
0	0	0	Ø
0	0	1	$\{C\}$
0	1	0	$\{B\}$
0	1	1	$\{B,C\}$
1	0	0	$\{A\}$
1	0	1	$\{A,C\}$
1	1	0	$\{A,B\}$
1	1	1	$\{A,B,C\}$

2.5 Shrnující tabulka

Kombinatorický koncept	Vzorec	Příklad	Programátorská analogie
Permutace bez opakování	n!	Seřazení n prvků	array.sort()
Permutace s opakováním	$\frac{n!}{k_1!k_2!k_m!}$	Anagrams	string.permutations()
Variace bez opakování	$\frac{k_1!k_2!k_m!}{n!}$ $\frac{n!}{(n-k)!}$ n^k	Výběr výboru s funkcemi	combinations with order
Variace s opakováním	n^k	PIN kódy	nested loops
Kombinace	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	Loterie	subset selection