Universidad Nacional de Ingeniería Facultad de Ciencias

encias Semestre: 2024-II

Escuela Profesional de Matemática

Práctica Dirigida N° 1

Curso: Álgebra lineal I CM1B2

Sea E un \mathbb{K} -espacio vectorial

- 1. Muestre que V, con la suma y producto definidos, es un \mathbb{K} —espacio vectorial
 - a) Dado \mathcal{X} conjunto, sean $V = P(\mathcal{X})$ conjunto potencia y $\mathbb{K} = \mathbb{Z}_2$. $+ : B + C := (B \setminus C) \cup (C \setminus B)$ $\cdot : 0 \cdot B := \emptyset, \ 1 \cdot B = B$
 - b) Sean $V = (0, +\infty)$ y $\mathbb{K} = \mathbb{Q}$ $\boxplus : a \boxplus b := a.b$ $\boxdot : q \boxdot a := a^q$
 - c) Sean $V = \mathbb{K}^n$, $v \in V$ y \mathbb{K} un cuerpo $\oplus : x \oplus y := x + y - v$ $\odot : r \odot x := r.(x - v) + v$
- 2. Determinar si los siguientes conjuntos son subespacios de V un $\mathbb{K}-$ espacio vectorial.
 - a) $S = \{a(i+1) | a \in \mathbb{R}\}, \text{ con } V = \mathbb{C}, \mathbb{K} = \mathbb{R} \text{ ó } \mathbb{K} = \mathbb{C}.$
 - b) $S = \{Z \in V \mid \sum_{i=1}^{n} Z_{i,i} = 0, Z_{1,n} = 0\}, \text{ con } V = M_{n \times n}(\mathbb{K}).$
 - c) $S = \{ f \in V \mid f'' + 3f' = 0 \}$, con $V = C^{\infty}(\mathbb{R})$ y $\mathbb{K} = \mathbb{R}$.
 - d) $S = \{(a_1, \dots a_n) \in \mathbb{K}^n \mid a_1.a_2 = 0\}$
- 3. Sea $S,T\subseteq\mathbb{R}^4$ subespacios tales que

$$S = span(\{(1,2,1,0),\, (1,-1,0,1)\})$$

$$T = \{ x \in \mathbb{R}^4 \, | \, x_1 - x_2 - 3x_3 = 0 \}$$

Hallar U subespacio tq $S \cap T \subsetneq U \subsetneq T$.

4. Dados $\mathcal{X}, \mathcal{Y} \subseteq E$. Mostrar que

$$span(\mathcal{X} \cup \mathcal{Y}) = span(\mathcal{X}) + span(\mathcal{Y})$$

¿Se cumple que si $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$, entonces $span(\mathcal{X} \cap \mathcal{Y}) = span(\mathcal{X}) \cap span(\mathcal{Y})$?

5. Dados F_1 , F_2 subespacios vectoriales de E. Si existe $a \in E$ tal que $a + F_1 \subseteq F_2$, mostrar que $F_1 \subseteq F_2$

6. Determinar los $k \in \mathbb{R}$ para los cuales los conjuntos son l.i.

Miercoles, 04 de septiembre de 2024

- a) $\{(1,2,k),(1,1,1).(0,1,1-k)\}\subseteq \mathbb{R}^3$
- b) $\{(k,1,0),(3,-1,2),(k,2,-2)\}\subset\mathbb{R}^3$
- c) $\{k, x^2 + x, x^2 k, k^2, x\} \subseteq \mathbb{R}[x]$
- $d) \ \left\{ \left(\begin{array}{cc} 1 & k \\ -1 & 2 \end{array} \right), \left(\begin{array}{cc} k & 1 \\ 0 & 2k \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \right\}$
- $e) \{exp(x), kx, sen(x)\} \subseteq \mathcal{F}(\mathbb{R}, \mathbb{R})$
- 7. Muestre que
 - a) Si B es una base de E tal que $B = B_1 \cap B_2$ y $B_1 \cap B_2 = \emptyset$ entonces $E = span(B_1) \oplus span(B_2)$
 - b) Si $E = F_1 \oplus F_2$, B_1 y B_2 son bases de F_1 y F_2 resp. entonces $B_1 \cap B_2 = \emptyset$ y $B_1 \cup B_2$ es una base de E.
- 8. Sea $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, considerando $U = \{ f \in E \mid f(x) = ax^2 + bx + c, a, b, c \in \mathbb{R} \},$ $V = \{ f \in E \mid f(-1) = f(0) = f(1) = 0 \}.$ Mostrar que $U \oplus V = E$.
- 9. Determinar T subespacio de E tal que $S \oplus T = E$
 - a) $S = span\{(1,0,1,0), (1,2,0,1), (2,2,1,1)\}$
 - $b)\ S=\{Z\in\mathbb{R}^{n\times n}\,|\,traz(Z)=0\}.$
 - c) $S = span\{3, 1 + x^2\}, E = \mathbb{R}_4[x].$
 - d) $S = span\{1, x\}, E = \mathcal{F}(\mathbb{R}, \mathbb{R}).$
- 10. Sean U, W, S subespacios de E. Mostrar que $E = U \oplus W \oplus S$ si y solo si dim(E) = dim(U) + dim(W) + dim(S)
- 11. Sea S subespacio de E. Mostrar que
 - a) Si $[v_1], \dots, [v_n]$ son l.i. en $\frac{E}{S}$ entonces v_1, \dots, v_n son l.i. en E.
 - b) Si $W \oplus S = E$ y w_1, \dots, w_m son l.i. en $W \Rightarrow [w_1], \dots, [w_m]$ son l.i. en $\frac{E}{S}$.
- 12. Sean $S_1, S_2 \subseteq E$ subespacios. Muestre que si $E = S_1 + S_2$ y $F = S_1 \cap S_2$ entonces $E/F = S_1/F \oplus S_2/F$.

- 13. Sea $E = \mathbb{R}_3[x] = span(\{1, x, x^2, x^3\})$ y el subespacio $S = span(\{3+2x+x^2, -2-3x+x^3, 1-x+x^2+x^3\})$
 - a) Determinar una base de E/S
 - b) Determinar la expresión de $[1 + x + x^2]$ como combinacion lineal en una base de E/S.
- 14. Sea $\{v_1, \dots, v_n\}$ una base de E y $a \in \mathbb{R}^n \setminus \{0\}$, Mostrar que

$$F := \left\{ v = \sum_{i=1}^{n} x_i v_i \mid \sum_{i=1}^{n} a_i x_i = 0 \right\}$$

F es un subespacio de E y dim(E) = n-1

- 15. Determinar la dimensión de los siguientes subespacios
 - a) $U = \{X \in M_{3\times 2}(\mathbb{R}) \mid AX = 0\}$, donde $A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$
 - b) $U = \{f \in \mathbb{R}[x] | f \in span\{1, x, x^2, x^3\}, f(2) = f(-1)\}$
 - c) $U = span\{(1, k, 1), (-1, k, 1), (0, 1, k)\},\$ con $k \in \mathbb{K} = \mathbb{R}$
 - d) $U := \{x \in \mathbb{R}^3 \mid Ax \in span(\{(1,2)\})\},\$ donde $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}.$
 - e) $U = \{X \in M_{n \times n}(\mathbb{R}) \,|\, X_{ij} = -X_{ji}\}$
- 16. Dado $A \in M_{n \times n}(\mathbb{R})$ invertible y $b \in \mathbb{R}^n$ no nulo. Mostrar que es posible intercambiar alguna columna de A con b y reobtener una matriz invertible.
- 17. Dado S subespacio de E, con $[v_1], \dots, [v_n]$ una base de E/S. Se define la función $\phi: E \to S \times E/S$ como, dado $v \in E$, $\phi(v) = (v \sum_{i=1}^n \alpha_i v_i, [v])$, donde $\alpha_1, \dots \alpha_n$ cumplen que $[v] = \sum_{i=1}^n \alpha_i [v_i]$

- a) Mostrar que ϕ esta bien definido
- b) Mostrar que ϕ es lineal
- c) Determinar la imagen y núcleo de ϕ
- 18. Indique y justifique si es verdadero (V) o falso (F) las siguientes afirmaciones: Sea V un \mathbb{K} -espacio vectorial
 - a) Dados $v, w \in V$ y $k \in \mathbb{K}$, se cumple que $span\{v, w\} = span\{v, w + k.v\}$
 - b) Dados $u, v, w \in V$. Si u, v, w son l.i. entonces u + v, u v, u + w es l.i.
 - c) Dado F subespacio de V, existe W subespacio de V tal que $W+F=\{0\}$
 - d) Dado $v \in V$ y $\alpha \in \mathbb{K}$. Si $\alpha . v = 0$ entonces $\alpha = 0$ o v = 0
 - e) Dado $v, w \in V$ y $\alpha, \beta \in \mathbb{K}$. Existe $T: V \to \mathbb{K}$ aplicación lineal tal que $T(v) = \alpha, T(w) = \beta$.
- 19. Determinar cuales de las aplicaciones son lineales
 - a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x) = (x_2 2x_2 + \sqrt{2}x_3, x_1 \frac{1}{2}x_3)$
 - b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x) = (x_1 + x_2, |x_1|)$
 - c) $f: \mathbb{C} \to \mathbb{C}$, $f(x) = \overline{z}$, con \mathbb{C} un \mathbb{K} —
 espacio vectorial con $\mathbb{K} = \mathbb{C}$ o $\mathbb{K} = \mathbb{R}$
 - d) $f: \mathbb{C} \to \mathbb{C}$, f(x) = iz, con \mathbb{C} un \mathbb{K} esp. vectorial con $\mathbb{K} = \mathbb{C}$ o $\mathbb{K} = \mathbb{R}$
 - e) $f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$, $f(A) = A_{11}A_{22} - A_{12} - A_{21}$
- 20. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ aplicación lineal tal que f(1,1,0) = 2, f(0,1,1) = -2 y f(1,1,1) = 0. Determinar el núcleo de f y f(1,0,0) + f(0,2,2).