

Aprendizado de Máquina Aula 4.1 - Comitês

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Introdução
- 2 Votação
- 3 Bagging
- 4 Boosting
- 5 Stacking

×

Introdução

Introdução

- Comitês (ensemble) é uma ténica de AM no qual multiplos modelos preditivos são combinados para melhorar a performance em relação ao uso de um único modelo
- Permite explorar diferentes viéses de algoritmos
- Resulta em um modelo mais robusto
- Os modelos que pertencem ao comitê são chamados de modelo base

Diversidade

- Para melhorar a performance é necessário:
 - Os modelos devem ter taxas de erros similares
 - ▶ A taxa de erro de cada modelo deve ser menor do que 0.5
 - ▶ Os erros de cada modelo devem ser independentes
- Em resumo, é necessário combinar modelos que sejam distintos e que possuam boa taxa de performance

Taxa de erro e a performance do comitê

Fonte: Dolawattha, D.M., Premadasa, H.K.S. and Jayaweera, P.M. (2022), "Evaluating sustainability of mobile learning framework for higher education: a machine learning approach", International Journal of Information and Learning Technology, Vol. 39 No. 3, pp. 266-281. https://doi.org/10.1108/IJILT-08-2021-0121

Abordagens

■ Questões:

- ▶ Como combinar os modelos base?
- Como gerar modelos diferentes?

■ Abordagens:

- Votação
- Bagging (Bootstrap Aggregating)
- Boosting
- Stacking

Tipos de comitês

- Homogêneo
 - ► Todos os modelos são relativos a um único algoritmo
- Heterogêneo
 - Os modelos são obtidos a partir de diferentes algoritmos de aprendizado

Votação

Votação

- Votação simples (Hard Voting)
 - ▶ A predição de cada modelo é um voto em uma classe
- Votação ponderada (Soft Voting)
 - Usa a probabilidade/confiança de cada modelo como peso de um voto em uma classe

>

Votação simples (exemplo)

- Problema usando o conjunto de dados Iris:
 - ► Membro 1: virginica
 - ► Membro 2: versicolor
 - Membro 3: versicolor
 - Membro 4: versicolor
 - Membro 5: virginica
- Resultado:
 - Classe virginica: 2 votos
 - Classe versicolor: 3 votos

×

Votação ponderada (exemplo)

- Problema usando o conjunto de dados Iris:
 - Membro 1: virginica: 0.7, versicolor: 0.3
 - Membro 2: virginica: 0.01, versicolor: 0.9
 - ▶ Membro 3: virginica: 0.1, versicolor: 0.8
 - ▶ Membro 4: virginica: 0.4, versicolor: 0.6
 - ▶ Membro 5: virginica: 0.6, versicolor: 0.3

■ Resultado:

- ► Classe virginica: 0.7 + 0.01 + 0.1 + 0.4 + 0.6 = 0.36
- **Classe versicolor**: 0.3 + 0.9 + 0.8 + 0.6 + 0.3 = 0.58

,

Bagging

,

Bootstrap Aggregating (Bagging)

- Amostragem Bootstrap
 - Cria-se multiplos conjuntos usando amostragem aleatória com repetição (Bootstrap)
 - Uma variação consiste em fazer uma amostragem dos atributos preditivos
- Treinamento dos modelos
 - Os modelos são independentes entre si (paralelismo)
 - ▶ É possível avaliar os modelos de base e descartar alguns
- Agregação da predição
 - ▶ Usa a votação para gerar a predição final

Bagging (exemplo)

Fonte: https://www.geeksforgeeks.org/ml-bagging-classifier/

Bagging - Vantagens e desvantagens

- Melhora a performance
- Robustez a *outliers*
- Redução da variância
- Paralelização
- Flexibilidade

- Perda de interpretabilidade
- Computacionalmente caro
- Não recomendado para algoritmos com baixa variância

,

Boosting

Boosting

- Uma técnica de AM para melhorar o desempenho de modelos
- Combina modelos "fracos"para formar um modelo unificado "forte"
- Utiliza um processo iterativo que a cada etapa enfatiza as instâncias mais difíceis
- Ao final é possível ponderar os modelos de acordo com a sua respectiva performance

Etapas (AdaBoosting)

- Atribui o mesmo peso a todas as instâncias
- 2 Induz um modelo "fraco" que seja melhor que o aleatório
- Calcular os erros
- Alterar os pesos aumentar das instâncias erradas e diminuir das corretas
- Induzir um novo modelo "fraco"usando os novos pesos
- Repetir as etapas 2-5 até atingir um critério de parada
- Usa os modelos gerados para fazer a predição

Bagging x Boosting

Bagging

Boosting

Fonte:

https://towardsdatascience.com/

ensemble-learning-bagging-boosting-3098079e5422

×

Stacking

Abordagem de Empilhamento

- Uma abordagem de predição dinâmica que combina a predição de múltiplos modelos
- A estratégia consiste em treinar um modelo meta (meta-modelo) para aprender a combinar as previsões dos modelos base
- Pode capturar as nuances das previsões dos modelos base

Stacking (exemplo)

Meta-modelo

- Cada modelo base gera uma predição
- As predições se tornam atributos preditivos da meta-base
- O meta-modelo aprende a partir destes dados
- A predição do meta-modelo é a predição final

Meta-base (exemplo)

Exemplo	Árvore	Random Forest	SVM	KNN	Naive Bayes	Classe Real
1	0.7	0.6	0.8	0.5	0.4	1
2	0.4	0.8	0.6	0.7	0.3	0
3	0.9	0.2	0.4	0.6	0.9	1
4	0.2	0.3	0.7	0.4	0.2	0
5	0.6	0.7	0.5	0.3	0.8	1

Predição usando Stacking

- Cada modelo base faz sua predição
- Gera o meta-exemplo com estes valores
- O meta-modelo faz a predição do meta-exemplo

Pontos chaves da abordagem

- É uma forma dinâmica de combinar as predições
 - ▶ Não é baseado na votação majoritária
 - Pode usar a atributos preditivos, predição, probabilidade, combinação destes
- Requer cuidado com vazamento de dados de treinamento (data leak)
- A escolha do algoritmo para gerar o meta-modelo é crucial
- Geralmente é utilizado em comitês heterogêneos