MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2008 ROUND 7 TEAM QUESTIONS ANSWERS

A)
$$(____) + (____)i D) ___$$

A) For some integer
$$k$$
, $||i+2i^2+3i^3+4i^4+5i^5+...+(4k+1)i^{4k+1}||=29$,

where II denotes absolute value.

Recall:
$$||a + bi|| = \sqrt{a^2 + b^2}$$

 \sum denotes the sum of the indicated terms

 \prod denotes the product of the indicated terms.

Now for the value of k determined above, evaluate $\frac{\displaystyle\sum_{n=0}^{n=k}i^{2^n}}{\displaystyle\prod_{n=0}^{n=k}i^{2^n}}$ in simplified a+bi form

B) Solve:
$$\frac{2}{1 - \frac{1}{1 - \frac{2}{t}}} \ge t^2 - 4$$

- C) Find the dimensions of a rectangle with maximum area inscribed in an isosceles triangle with sides of length 13, 13 and 10. One side of this rectangle lies on the <u>base</u> of the isosceles triangle.
- D) Solve for <u>all</u> real values of x for which $12x(x-1) = 5 + \sqrt{(4x-7)(3x-1) + 13x}$.
- E) $\triangle ABC$ is inscribed in circle Q. AC = 8 and BC = 6. Let the circle of maximum area with center S be inscribed in region #1 and the circle of maximum area with center T be inscribed in region #2. Compute the $\sin(\angle SQT)$.
- F) $\overline{AB} \perp \overline{BC}$, $\angle BAC$ is trisected by \overline{AD} and \overline{AE} , $\angle BCF$ is bisected by \overline{CG} and m $\angle ADE$: m $\angle AEC = a : b$. If the GCF(a, b) = 1 and $m\angle GCF = 75$, compute (a, b).

