Math 55a, Assignment #6, October 24, 2003

Problem 1. (Problem 8 on Page 35 and Problem 9 on Page 59 of Rudin's book)

(a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 3x_2 \text{ and } x_3 = 7x_4\}.$$

Find a basis of U (over \mathbb{R}).

(b) Prove that if T is a linear map from \mathbb{R}^4 to \mathbb{R}^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$$
,

then T is surjective.

Problem 2. (Quotient vector spaces) Let V be a vector space over a field $\mathbb F$ and W be an $\mathbb F$ -vector subspace of V. Let \sim be the equivalence relation on V defined as follows. Two elements v_1 and v_2 of V are equivalent (in notations, $v_1 \sim v_2$) if and only if $v_1 - v_2$ belongs to W. Let Q be the set of equivalence classes (in notations, $Q = V / \sim$). Let [v] be the equivalence class in V containing the element v of V (i.e., [v] is the set of all elements of V which are equivalent to v). Define addition in Q by $[v_1] + [v_2] = [v_1 + v_2]$ and scalar multiplication by a[v] = [av] for $a \in \mathbb F$ and $v, v_1, v_2 \in V$.

- (a) Show that the above procedure yields a vector space Q over \mathbb{F} (which is called the *quotient vector space* of V by the subspace W).
- (b) Define the map $T: V \to Q$ by T(v) = [v]. Show that T is a linear map from V to Q over \mathbb{F} (in notations, $T \in \mathcal{L}(V, Q)$) or more precisely $T \in \mathcal{L}_{\mathbb{F}}(V, Q)$). (T is the called the *projection* onto the quotient space.)
- (c) Show that the range of T is Q and the null space of T is precisely W.
- (d) Let U be an \mathbb{F} -vector subspace of V. Show that $T^{-1}(T(U)) = U + W$. By applying to $T|_{U}$ and T_{U+W} the formula that the dimension of the domain vector space is equal to the sum of the dimension of the null space and that of the range of a linear map, verify the formula that

$$\dim_{\mathbb{F}} U + \dim_{\mathbb{F}} W = \dim_{\mathbb{F}} (U \cap W) + \dim_{\mathbb{F}} (U + W).$$

Problem 3. (Extension of the field of definition of a vector space from \mathbb{R} to \mathbb{C}) Let V be a vector space over the real number field \mathbb{R} . Show that V can be made into a vector space over \mathbb{C} (with scalar multiplication by real numbers compatible with the given \mathbb{R} -vector space structure of V) if and only if there exists an \mathbb{R} -linear map T from V to itself such that $T^2 = -\mathrm{id}_V$, where T^2 means $T \circ T$ and id_V means the identity map of V. In such a case, show that $\dim_{\mathbb{R}} V = 2 \dim_{\mathbb{C}} V$. (Hint: T is given by the scalar multiplication by $\sqrt{-1}$.)

Problem 4. (More general extension of fields of definition of vector spaces) Let $P(x) = \sum_{j=0}^{n} a_j x^j$ be an *irreducible* polynomial of degree n > 1 whose coefficients are rational numbers. Let $\theta \in \mathbb{C}$ be a root of P(x). Let \mathbb{F} be the set of all complex numbers of the form $\frac{R(\theta)}{Q(\theta)}$, where R(x) and Q(x) are any polynomials with coefficients in \mathbb{Q} and $Q(\theta) \neq 0$.

- (a) Show that \mathbb{F} is a field when its addition and multiplication are inherited from \mathbb{C} (in other words, \mathbb{F} is a subfield of \mathbb{C}).
- (b) When scalar multiplication is defined as ordinary multiplication in \mathbb{C} , show that \mathbb{F} is a vector space over \mathbb{Q} and its dimension $\dim_{\mathbb{Q}} \mathbb{F}$ is equal to n.
- (c) Let V be a vector space over \mathbb{Q} . Show that V can be made into a vector space over \mathbb{F} (with scalar multiplication by rational numbers compatible with the given \mathbb{Q} -vector space structure of V) if and only if there exists a \mathbb{Q} -linear map T from V to itself such that $\sum_{j=0}^{n} a_j T^j = 0$ in $\mathcal{L}_{\mathbb{Q}}(V,V)$, where T^j means the composite map formed from j copies of T and $\mathcal{L}_{\mathbb{Q}}(V,V)$ means the algebra of all \mathbb{Q} -linear maps from V to itself. In such a case, show that $\dim_{\mathbb{Q}} V = n \dim_{\mathbb{F}} V$.

Problem 5. (Dual vector spaces and tensor products of vector spaces) Let \mathbb{F} be a field and V be an \mathbb{F} -vector space. The dual vector space of V is defined as the space $\mathcal{L}_{\mathbb{F}}(V,\mathbb{F})$ of all \mathbb{F} -linear maps from V to \mathbb{F} when \mathbb{F} is regarded as an \mathbb{F} -vector space of dimension 1. Let W be an \mathbb{F} -vector space. Let

$$T: V \times W \to \mathcal{L}_{\mathbb{F}} \left(\mathcal{L}_{\mathbb{F}} \left(V, \mathbb{F} \right), W \right)$$

be defined by

$$(T(v, w))(f) = f(v) \cdot w$$
 for $v \in V, w \in W$, and $f \in \mathcal{L}_{\mathbb{F}}(V, \mathbb{F})$.

Denote T(v, w) by $v \otimes w$.

- (a) Show that $v \otimes (aw) = (av) \otimes w = a(u \otimes w)$ for $v \in V$, $w \in W$, and $a \in \mathbb{F}$.
- (b) (Basis of tensor product) Let v_1, \dots, v_m be an \mathbb{F} -basis of V and w_1, \dots, w_n be an \mathbb{F} -basis of W. Show that the set

$$\{v_i \otimes w_j \mid 1 \le i \le m, 1 \le j \le n\}$$

of mn elements of $\mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V,\mathbb{F}),W)$ forms an \mathbb{F} -basis of $\mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V,\mathbb{F}),W)$. (The \mathbb{F} -vector space $\mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V,\mathbb{F}),W)$ is called the *tensor product* of V and W and is denoted by $V\otimes W$ or more precisely by $V\otimes_{\mathbb{F}}W$. This is one of a number of equivalent ways to define the tensor product of two vector spaces.)

- (c) (Alternative definition of tensor product) Let $\mathcal{B}il_{\mathbb{F}}(V,W,\mathbb{F})$ denote the set of all \mathbb{F} -bilinear maps f from $V \times W$ to \mathbb{F} (i.e., for any fixed $w \in W$ the map $v \mapsto f(v,w)$ belongs to $\mathcal{L}_{\mathbb{F}}(V,\mathbb{F})$ and for any fixed $v \in V$ the map $w \mapsto f(v,w)$ belongs to $\mathcal{L}_{\mathbb{F}}(W,\mathbb{F})$). The set $\mathcal{B}il_{\mathbb{F}}(V,W,\mathbb{F})$ is a \mathbb{F} -vector space with the usual operations of addition of \mathbb{F} -valued functions and and multiplication of an \mathbb{F} -valued function by a scalar. Show that there exists a unique \mathbb{F} -linear map $\Xi: V \otimes W \to \mathcal{L}_{\mathbb{F}}(\mathcal{B}il_{\mathbb{F}}(V,W,\mathbb{F}),\mathbb{F})$ such that $\Xi(v \otimes w) = f(v,w)$ for $f \in \mathcal{B}il_{\mathbb{F}}(V,W,\mathbb{F})$. Verify that Ξ is bijective.
- (d) (Linear maps between tensor products) Let V' and W' be \mathbb{F} -vector spaces and $R \in \mathcal{L}_{\mathbb{F}}(V, V')$ and $S \in \mathcal{L}_{\mathbb{F}}(W, W')$. Define a map $R \otimes_{\mathbb{F}} S$ from $V \otimes W$ to $V' \otimes W'$ as follows, when we use the definitions $V \otimes W = \mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V, \mathbb{F}), W)$ and $V' \otimes W' = \mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V', \mathbb{F}), W')$. For $f \in \mathcal{L}_{\mathbb{F}}(V, \mathbb{F})$ and $f' \in \mathcal{L}_{\mathbb{F}}(V', \mathbb{F})$ and $v' \in V'$,

$$((R \otimes_{\mathbb{F}} S)(v, w))(f') = f'(Rv) S(w).$$

Show that $R \otimes_{\mathbb{F}} S$ is an \mathbb{F} -linear map from $V \otimes W$ to $V' \otimes W'$.

(e) (Extension of field of definition) Let \mathbb{F} be a subfield of a field \mathbb{K} . If the \mathbb{F} -vector space W is also a \mathbb{K} -vector space, show that the scalar multiplication defined by $(a,T) \mapsto aT$, in the sense that (aT)(f) = af for $a \in \mathbb{K}$ and $f \in \mathcal{L}_{\mathbb{F}}(\mathcal{L}_{\mathbb{F}}(V,\mathbb{F}), W)$, makes $V \times_{\mathbb{F}} W$ a \mathbb{K} -vector space. Verify that the map from V to $V \otimes_{\mathbb{F}} \mathbb{K}$ defined by $v \mapsto v \otimes 1$ for $v \in \mathbb{V}$ is injective and is \mathbb{F} -linear, where 1 is the multiplicative identity

element of \mathbb{K} . (We use this map to identify V as an \mathbb{F} -vector subspace of $V \otimes_{\mathbb{F}} \mathbb{K}$.)

(f) (Almost complex structure) Let U be a vector space over \mathbb{R} . Let ρ the \mathbb{R} linear map from $U \otimes_{\mathbb{R}} \mathbb{C}$ to itself which sends $u \otimes \sqrt{-1}$ to $-(u \otimes \sqrt{-1})$ for $u \in U$. (We call ρ the conjugation map.) Show that U can be made into a vector space over \mathbb{C} (with scalar multiplication by real numbers compatible with the given \mathbb{R} -vector space structure of U) if and only if there exists a \mathbb{C} -vector subspace W of the \mathbb{C} -vector space $U \otimes_{\mathbb{R}} \mathbb{C}$ such that \mathbb{C} -vector space $U \otimes_{\mathbb{R}} \mathbb{C}$ is equal to $W + \rho(W)$ and $W \cap \rho(W) = \{0\}$. (Hint: For the "if" part, consider the projection map $\pi: U \otimes_{\mathbb{R}} \mathbb{C} \to W$ defined by $(w+w') \mapsto w$ for $w \in W$ and $w' \in \rho(W)$ and verify that $\pi|_U: U \to W$ is bijective and \mathbb{R} -linear when U is naturally regarded as an \mathbb{R} -vector subspace of $U \otimes_{\mathbb{R}} \mathbb{C}$ according to (e). For the "only if" part, let $J: U \otimes_{\mathbb{R}} \mathbb{C} \to U \otimes_{\mathbb{R}} \mathbb{C}$ be the \mathbb{C} -linear map defined by $u \otimes c \mapsto (\sqrt{-1}u) \otimes c$ for $u \in U$ and $c \in \mathbb{C}$ and set T to be the null space of $J-\sqrt{-1}$ id, where id is the identity map of $U \otimes_{\mathbb{R}} \mathbb{C}$.) Terminology: Given an \mathbb{R} -vector space U, a decomposition $U_{\mathbb{R}} \otimes \mathbb{C} = T \oplus \overline{T}$ is called an almost complex structure of U where T is a \mathbb{C} -vector subspace of $U_{\mathbb{R}} \otimes \mathbb{C}$ and T means the image $\rho(T)$ of T under the conjugation map ρ .

Problem 6. Let \mathbb{F} be a field and for $1 \leq k \leq n$ let V_k be a finite dimensional \mathbb{F} -vector space. Let $T_k: V_k \to V_{k+1}$ be an \mathbb{F} -linear map for $1 \leq k \leq n-1$ such that $T_{k+1} \circ T_k = 0$ for $1 \leq k \leq n-2$. Let R_k be the range of T_k and K_k be the null space of T_k for $1 \leq k \leq n-1$. Let $K_n = V_n$ and $R_0 = \{0\}$. Let H_k be the quotient vector space K_k/R_{k-1} for $1 \leq k \leq n$. Prove that

$$\sum_{k=1}^{n} (-1)^k \dim_{\mathbb{F}} H_k = \sum_{k=1}^{n} (-1)^k \dim_{\mathbb{F}} V_k.$$

Problem 7. (Five-lemma) Let \mathbb{F} be a field. In the diagram below, V_j and W_j are \mathbb{F} -vector spaces and θ_j and φ_k and ψ_k are \mathbb{F} -linear maps for $1 \leq j \leq 5$ and $1 \leq k \leq 4$.

Assume that both rows in the diagram are exact in the sense that

$$\begin{cases} \text{null } \varphi_{j+1} = \text{range } \varphi_j \\ \text{null } \psi_{j+1} = \text{range } \psi_j \end{cases}$$

for $1 \leq j \leq 3$. Assume that the diagram is commutative in the sense that $\psi_j \circ \theta_j = \theta_{j+1} \circ \varphi_j$ for $1 \leq j \leq 4$. Show that, if θ_1 , θ_2 , θ_4 , θ_5 are all bijective, then θ_3 is also bijective.

Problem 8. (Generator of an ideal of polynomials of one variable) Let \mathbb{F} be a field and $P_1(x), \dots, P_k(x)$ be a finite number of (non identically zero) polynomials of positive degree in a single variable x with coefficients in \mathbb{F} . Let \mathcal{I} be the set of all polynomials of the form $\sum_{j=1}^k Q_j(x)P_j(x)$, where $Q_1(x), \dots, Q_k(x)$ are polynomials in x with coefficients in \mathbb{F} . Let R(x) be an element of \mathcal{I} so that the degree of R(x) is the minimum among all elements of \mathcal{I} . Show that any element P(x) of \mathcal{I} can be written as P(x) = Q(x)R(x) for some polynomial Q(x) in x with coefficients in \mathbb{F} . Terminology: \mathcal{I} is an ideal of the ring of polynomials of one variable with coefficients in \mathbb{F} and R(x) is a generator of \mathcal{I} .

Problem 9. (A proof of the fundamental theorem of algebra)

- (a) Let $Q(w) = 1 + \sum_{n=1}^{\infty} \alpha_n w^n$ be a power series with complex coefficients and a positive radius of convergence. Let k be any positive integer. Show that there exists a unique power series $s(w) = 1 + \sum_{n=1}^{\infty} a_n w^n$ with a radius of convergence $\geq R > 0$ such that $(s(w))^k = Q(w)$ for |w| < R.
- (b) Let $c \in \mathbb{C}$ and P(z) be a polynomial in a single variable w with complex coefficients such that with $P(c) \neq 0$. Show that there exist a nonzero complex number A, a positive integer k, and a power series $t(z) = 1 + \sum_{n=1}^{\infty} b_n (z-c)^n$ with complex coefficients and a radius of convergence $\geq R > 0$ such that

$$(z-c)^k (t(z))^k = A\left(\frac{1}{P(z)} - \frac{1}{P(c)}\right)$$

for |z| < R. (Hint: write $P(z) - P(c) = (z - c)^k P_1(z)$ with $P_1(c) \neq 0$ and

$$A\left(\frac{1}{P(z)} - \frac{1}{P(c)}\right) = (z - c)^k \left(1 + \sum_{k=1}^{\infty} \alpha_n (z - c)^n\right)$$

for some nonzero complex number A and apply (a).)

(c) Let P(z) be a polynomial of positive degree in one variable z with complex coefficients. Show that P(z) admits at least one root. (*Hint:* Assume the contrary. Then

$$\left| \frac{1}{P(c)} \right| = \sup_{z \in \mathbb{C}} \left| \frac{1}{P(z)} \right|$$

for some $c \in \mathbb{C}$. By the implicit function theorem for power series (Assignment#5, Problem 1) applied to w = (z - c)t(z), we can find a power series $\sigma(w) = c + \sum_{n=1}^{\infty} \beta_n w^n$ such that $w = (\sigma(w) - c) t(\sigma(w))$. Then

$$w^k = A\left(\frac{1}{P(\sigma(w))} - \frac{1}{P(c)}\right),\,$$

which means that the image of $\frac{1}{P(z)} - \frac{1}{P(c)}$ for z in some neighborhood of c covers some neighborhood of the origin, contradicting that

$$\left| \frac{1}{P(z)} \right| \le \left| \frac{1}{P(c)} \right|$$

for z in any neighborhood of c.)