SnapShot: Axon Guidance II

Alex L. Kolodkin¹ and R. Jeroen Pasterkamp²

²Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands

Axon guidance protein		Chemotrophic effect	Ligand-binding receptor	Receptor processing	Coreceptor	Receptor signaling
ВМР	SE	Repulsion	BMP-RIB, BMP-RII	-	-	COFILIN, LIMK1, PI3K, SMAD1, SMAD6
DRAXIN	SE	Repulsion	DCC	-	-	-
EPHRINA	GPI	Repulsion	ЕРНА	ADAM10	-	α2-CHIMAERIN, EPHEXIN-1, NCK1/2, RAC1, RHOA, SPAR, VAV2/3
EPHRINB	TM	Repulsion	ЕРНВ	MMP2/9	-	NCK1, PAK, p120GAP, RHOA, ROCK, VAV2/3
ЕРНА	TM	Repulsion Attraction	EPHRINA EPHRINA	ADAM10 -	P75 RET	FYN -
ЕРНВ	TM	Repulsion	EPHRINB	ADAM10, PS1	-	CDC42, DOCK180, GRB4, NCK2, PAK, RAC1
FGF	SE	Attraction	FGFR1	-	-	-
NETRIN	SE	Attraction	DCC	ADAM10, PS1	APP, HSPG, ROBO1	CDC42, DOCK180, ENA/VASP, ERK1/2, FAK, FYN, NCK1, N- WASP, PAK, PI3K, PIP2, PKC, RAC1, RHOA, TRIO, TRP
		Attraction	NEOGENIN	-	-	-
		Repulsion	UNC5	-	(DCC)	FAK, SHP2, SRC
RGM	GPI	Repulsion	NEOGENIN	TACE, PS1	UNC5	FAK, LARG, LMO4, MYOIIA, p120GAP, PKC, RAS, RHOA
PLEXINA	TM	Repulsion	SEMA1a	-	-	PEBBLE, RHO, p190RHOGAP
SEMA1	ТМ	Repulsion	PLEXINA	-	ОТК	14-3-3ε, GYC76C, MICAL, NERVY, PKA
SEMA2	SE	Repulsion	PLEXINB	-	-	RAC, RHO
		Attraction	PLEXINB	-	-	-
SEMA3	SE	Repulsion	PLEXINA1-4	CALPAIN1	NRP1/2, CAMs, RTKs, ROBO	AKT, COFILIN, CDK5, CRMP, FARP, FYN, GSK3β, LIMK1, PI3K, RAC1, RAP1, RAS, RND
		Attraction	-	-	NRP1/2, CAMs	FAK, SRC
SEMA3E	SE	Repulsion	PLEXIND1	-	-	AKT, GSK3β, PI3K, RAS, RND2
SLIVIAGE		Attraction	PLEXIND1	-	VEGFR2, NRP1	AKT, GSK3β, PI3K
SEMA4	TM	Repulsion	PLEXINB1-2	PC	ERBB2	AKT, CRMP, GSK3β, LARG, PAK, PI3K, PLCγ, PDZ-RHOGEF, PTEN, RAC1, RAS, RHOA, RND, ROCK, SHP2
SEMA5	TM	Repulsion	PLEXINA1, A3	-	CSPG	-
		Attraction	-	-	HSPG	-
SEMA6	TM	Repulsion	PLEXINA1, A2, A4	-	NrCAM	-
		Attraction	PLEXINA1, NrCAM	-	-	-
SLIT	SE	Repulsion	ROBO	ADAM10	HSPG	CDC42, CROSSGAP, DOCK, RAC1, RHOA, SOS, SRGAP
SHH	SE	Repulsion	BOC	-	-	ILK, PKC, SMOOTHENED
		Repulsion	-	-	-	14-3-3, PKA
0555	0-	Attraction	BOC	-	-	FYN, SRC, SMOOTHENED
SFRP	SE	Attraction	Frizzled	-	-	Gα
WNT	SE	Attraction	Frizzled	-	CELSR3, VANGL2, ROR	aPKC, PAR3, PAR6
		Repulsion	Frizzled	-	CELSR3, VANGL2	-
		Repulsion	RYK	PS1	-	SRC, TRP

SnapShot: Axon Guidance II

Alex L. Kolodkin¹ and R. Jeroen Pasterkamp²

¹Department of Neuroscience, HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21212, USA

²Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands

Axon guidance proteins were originally identified owing to their ability to guide axons in the central and peripheral nervous system. These guidance cues can repel or attract growing axons, and many can serve both functions. They guide axons through interactions with specialized receptor complexes on the neuronal growth cone, and they include both secreted and membrane-associated proteins. Guidance cue-receptor interactions trigger intracellular signal transduction pathways that ultimately impinge upon the growth cone cytoskeleton. In addition to axon guidance, these cues also function to mediate intermediate target navigation, axon sorting within nerves, topographic mapping, target recognition, and circuit organization.

Listed in this table are proteins that function in neurons to mediate long- and short-range axon guidance, along with their (co-)receptors and downstream signaling molecules. Receptors and signaling proteins listed here have been studied at the functional level in neurons, many in vivo. In addition to posttranslational proteolytic processing indicated here, other processes, including regulated receptor endocytosis, clustering, and localized receptor distribution along axons, play critical roles in axon guidance. Owing to space limitations, the effects of axon guidance proteins on neurite growth, branching, and pruning are not included here. We have also limited this table to consideration of "classical" axon guidance proteins; however, neurotrophins essential for neuronal survival and differentiation have also been implicated in regulating neuronal process morphology and guidance. Finally, we have left for future consideration the critical and complex roles played by cell adhesion molecules and extracellular matrix components in selective neuronal process bundling (fasciculation), permissive and nonpermissive growth, and neuronal process self-avoidance.

Abbreviations

CAM, cell adhesion molecule; GPI, glycophosphatidylinositol; PC, proprotein convertase; RTK, receptor tyrosine kinase; SE, secreted; TM, transmembrane.

REFERENCES

Bashaw, G.J., and Klein, R. (2012). Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, a001941.

Charron, F., and Tessier-Lavigne, M. (2007). The Hedgehog, TGF-beta/BMP and Wnt families of morphogens in axon guidance. Adv. Exp. Med. Biol. 621, 116-133.

Lai Wing Sun, K., Correia, J.P., and Kennedy, T.E. (2011). Netrins: versatile extracellular cues with diverse functions. Development 138, 2153–2169.

Pasterkamp, R.J. (2012). Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605-618.

Salinas, P.C. (2012). Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb. Perspect. Biol. 4, a008003.

Tran, T.S., Kolodkin, A.L., and Bharadwaj, R. (2007). Semaphorin regulation of cellular morphology. Annu. Rev. Cell Dev. Biol. 23, 263-292.

Ypsilanti, A.R., Zagar, Y., and Chédotal, A. (2010). Moving away from the midline: new developments for Slit and Robo. Development 137, 1939–1952.

Zipursky, S.L., and Sanes, J.R. (2010). Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353.

Zou, Y. (2012). Does planar cell polarity signaling steer growth cones? Curr. Top. Dev. Biol. 101, 141-160.