

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 401/04, 413/04, A61K 31/47, 31/42, C07D 261/20, 231/14, 401/14, 413/14, 403/04	A1	(11) International Publication Number: WO 98/57951 (43) International Publication Date: 23 December 1998 (23.12.98)
(21) International Application Number: PCT/US98/12680		(74) Agent: VANCE, David, H.; The Du Pont Merck Pharmaceutical Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).
(22) International Filing Date: 18 June 1998 (18.06.98)		
(30) Priority Data: 08/878,884 19 June 1997 (19.06.97) US		(81) Designated States: AU, BR, CA, CN, CZ, EE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, UA, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).		
(72) Inventors: LAM, Patrick, Y.; 6 Ridgeway Drive, Chadds Ford, PA 19317 (US). CLARK, Charles, G.; 4 Glenview Place, Cherry Hill, NJ 08034 (US). DOMINGUEZ, Celia; 963 Cedar Cliff Court, Westlake Village, CA 91320 (US). FEVIG, John, Matthew; 987 Church Road, Lincoln University, PA 19352 (US). HAN, Qi; 2609 Marhill Drive, Wilmington, DE 19810 (US). LI, Renhua; 1209 Crestover Drive, Wilmington, DE 19803 (US). PINTO, Donald, Joseph-Phillip; 39 Whitson Road, Newark, DE 19702 (US). PRUITT, James, Russell; 237 Skycrest Drive, Landenberg, PA 19350 (US). QUAN, Mimi, Lifen; 113 Venus Drive, Newark, DE 19711 (US).		Published <i>With international search report.</i>

(54) Title: NOVEL GUANIDINE MIMICS AS FACTOR Xa INHIBITORS

(57) Abstract

The present application describes nitrogen containing heteroaromatics and derivatives thereof of formula (I) or pharmaceutically acceptable salt forms thereof, wherein rings D-E represent guanidine mimics, which are useful as inhibitors of factor Xa.

(I)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

TITLE

Novel Guanidine Mimics as Factor Xa Inhibitors

5

FIELD OF THE INVENTION

This invention relates generally to novel guanidine mimics which are inhibitors of trypsin-like serine protease enzymes, especially factor Xa, pharmaceutical compositions containing the same, and methods of using the same as
10 anticoagulant agents for treatment and prevention of thromboembolic disorders.

BACKGROUND OF THE INVENTION

WO 96/28427 describes benzamidine anticoagulants of the
15 formula:

wherein Z¹ and Z² are O, N(R), S or OCH₂ and the central ring may be phenyl or a variety of heterocycles. The presently claimed compounds do not contain the Z¹ linker or the
20 substitution pattern of the above compounds.

WO 95/13155 and PCT International Application US 96/07692 describe isoxazoline and isoxazole fibrinogen receptor antagonists of the formula:

25

wherein R¹ may be a basic group, U-V may be a six-membered aromatic ring, W-X may be a variety of linear or cyclic groups, and Y is an oxy group. Thus, these compounds all
30 contain an acid functionality (i.e., W-X-C(=O)-Y). In

contrast, the presently claimed compounds do not contain such an acid functionality.

EP 0,513,387 depicts active oxygen inhibitors which are oxazoles or thiazoles of the formula:

5

wherein X is O or S, R² is preferably hydrogen, and both R¹ and R³ are substituted cyclic groups, with at least one being phenyl. The presently claimed invention does not relate to these types of oxazoles or thiazoles.

WO 95/18111 addresses fibrinogen receptor antagonists, containing basic and acidic termini, of the formula:

15

wherein R¹ represents the basic termini, U is an alkylene or heteroatom linker, V may be a heterocycle, and the right hand portion of the molecule represents the acidic termini. The presently claimed compounds do not contain the acidic termini of WO 95/18111.

In U.S. Patent No. 5,463,071, Himmelsbach et al depict cell aggregation inhibitors which are 5-membered heterocycles of the formula:

25

wherein the heterocycle may be aromatic and groups A-B-C- and F-E-D- are attached to the ring system. A-B-C- can be a wide variety of substituents including a basic group attached to an aromatic ring. The F-E-D- group, however, would appear to be an acidic functionality which differs from the present invention. Furthermore, use of these compounds as inhibitors of factor Xa is not discussed.

Baker et al, in U.S. Patent No. 5,317,103, discuss 5-HT₁ agonists which are indole substituted five-membered heteroaromatic compounds of the formula:

5

wherein R¹ may be pyrrolidine or piperidine and A may be a basic group including amino and amidino. Baker et al, however, do not indicate that A can be a substituted ring system like that contained in the presently claimed heteroaromatics.

Baker et al, in WO 94/02477, discuss 5-HT₁ agonists which are imidazoles, triazoles, or tetrazoles of the formula:

15

wherein R¹ represents a nitrogen containing ring system or a nitrogen substituted cyclobutane, and A may be a basic group including amino and amidino. But, Baker et al do not indicate that A can be a substituted ring system like that contained in the presently claimed heteroaromatics.

Tidwell et al, in *J. Med. Chem.* 1978, 21(7), 613-623, describe a series of diarylamidine derivatives including 3,5-bis(4-amidinophenyl)isoxazole. This series of compounds was tested against thrombin, trypsin, and pancreatic kallikrein. The presently claimed invention does not include these types of compounds.

Activated factor Xa, whose major practical role is the generation of thrombin by the limited proteolysis of prothrombin, holds a central position that links the intrinsic and extrinsic activation mechanisms in the final common pathway of blood coagulation. The generation of thrombin, the

final serine protease in the pathway to generate a fibrin clot, from its precursor is amplified by formation of prothrombinase complex (factor Xa, factor V, Ca^{2+} and phospholipid). Since it is calculated that one molecule of factor Xa can generate 138 molecules of thrombin (Elodi, S., Varadi, K.: *Optimization of conditions for the catalytic effect of the factor IXa-factor VIII Complex: Probable role of the complex in the amplification of blood coagulation.* Thromb. Res. 1979, 15, 617-629), inhibition of factor Xa may be more efficient than inactivation of thrombin in interrupting the blood coagulation system.

Therefore, efficacious and specific inhibitors of factor Xa are needed as potentially valuable therapeutic agents for the treatment of thromboembolic disorders. It is thus desirable to discover new factor Xa inhibitors.

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to provide novel guanidine mimics which are useful as factor Xa inhibitors or pharmaceutically acceptable salts or prodrugs thereof.

It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

It is another object of the present invention to provide a method for treating thromboembolic disorders comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of formula (I):

I

or pharmaceutically acceptable salt or prodrug forms thereof, wherein D, E, and M are defined below, are effective factor Xa inhibitors.

5

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[1] Thus, in a first embodiment, the present invention provides novel compounds of formula I:

10

I

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein;

15 ring D is selected from $-\text{CH}_2\text{N}=\text{CH}-$, $-\text{CH}_2\text{CH}_2\text{N}=\text{CH}-$, a 5-6 membered aromatic system containing from 0-2 heteroatoms selected from the group N, O, and S;

20 ring D is substituted with 0-2 R, provided that when ring D is unsubstituted, it contains at least one heteroatom;

ring E contains 0-2 N atom and is substituted by 0-1 R

25 R is selected from Cl, F, Br, I, OH, C_{1-3} alkoxy, NH_2 , $\text{NH}(\text{C}_{1-3}$ alkyl), $\text{N}(\text{C}_{1-3}$ alkyl) $_2$, CH_2NH_2 , $\text{CH}_2\text{NH}(\text{C}_{1-3}$ alkyl), $\text{CH}_2\text{N}(\text{C}_{1-3}$ alkyl) $_2$, $\text{CH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_2\text{CH}_2\text{NH}(\text{C}_{1-3}$ alkyl), and $\text{CH}_2\text{CH}_2\text{N}(\text{C}_{1-3}$ alkyl) $_2$;

M is selected from the group:

30

J is O or S;

5

J^a is NH or NR^{1a};

Z is selected from a bond, C₁₋₄ alkylene, (CH₂)_rO(CH₂)_r, (CH₂)_rNR³(CH₂)_r, (CH₂)_rC(O)(CH₂)_r, (CH₂)_rC(O)O(CH₂)_r,

(CH₂)_rOC(O)(CH₂)_r, (CH₂)_rC(O)NR³(CH₂)_r,
 (CH₂)_rNR³C(O)(CH₂)_r, (CH₂)_rOC(O)O(CH₂)_r,
 (CH₂)_rOC(O)NR³(CH₂)_r, (CH₂)_rNR³C(O)O(CH₂)_r,
 (CH₂)_rNR³C(O)NR³(CH₂)_r, (CH₂)_rS(O)_p(CH₂)_r,
 5 (CH₂)_rSO₂NR³(CH₂)_r, (CH₂)_rNR³SO₂(CH₂)_r, and
 (CH₂)_rNR³SO₂NR³(CH₂)_r, provided that Z does not form a N-
 N, N-O, N-S, NCH₂N, NCH₂O, or NCH₂S bond with ring M or
 group A;

10 R^{1a} and R^{1b} are independently absent or selected from
 -(CH₂)_r-R^{1'}, -CH=CH-R^{1'}, NCH₂R^{1''}, OCH₂R^{1''}, SCH₂R^{1''},
 NH(CH₂)₂(CH₂)_tR^{1'}, O(CH₂)₂(CH₂)_tR^{1'}, and S(CH₂)₂(CH₂)_tR^{1'};

15 alternatively, R^{1a} and R^{1b}, when attached to adjacent carbon atoms, together with the atoms to which they are attached form a 5-8 membered saturated, partially saturated or saturated ring substituted with 0-2 R⁴ and which contains from 0-2 heteroatoms selected from the group consisting of N, O, and S;

20 alternatively, when Z is C(O)NH and R^{1a} is attached to a ring carbon adjacent to Z, then R^{1a} is a C(O) which replaces the amide hydrogen of Z to form a cyclic imide;

25 R^{1'} is selected from H, C₁₋₃ alkyl, F, Cl, Br, I, -CN, -CHO,
 (CF₂)_rCF₃, (CH₂)_rOR², NR²R^{2a}, C(O)R^{2c}, OC(O)R²,
 (CF₂)_rCO₂R^{2c}, S(O)_pR^{2b}, NR²(CH₂)_rOR², CH(=NR^{2c})NR²R^{2a},
 NR²C(O)R^{2b}, NR²C(O)NHR^{2b}, NR²C(O)₂R^{2a}, OC(O)NR^{2a}R^{2b},
 C(O)NR²R^{2a}, C(O)NR²(CH₂)_rOR², SO₂NR²R^{2a}, NR²SO₂R^{2b}, C₃₋₆
 30 carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

35 R^{1''} is selected from H, CH(CH₂OR²)₂, C(O)R^{2c}, C(O)NR²R^{2a},
 S(O)R^{2b}, S(O)₂R^{2b}, and SO₂NR²R^{2a};

R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

5 R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, phenethyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

10 R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

15 R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

20 alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} and containing from 0-1 additional heteroatoms selected from the group consisting 25 of N, O, and S;

30 R³, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

35 R^{3a}, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

R^{3b} , at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

5 R^{3c} , at each occurrence, is selected from C₁₋₄ alkyl, and phenyl;

A is selected from:

10 C₃₋₁₀ carbocyclic residue substituted with 0-2 R^4 , and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^4 ;

B is selected from: H, Y, and X-Y;

15 X is selected from C₁₋₄ alkylene, -CR²(CR²R^{2b})(CH₂)_t-, -C(O)-, -C(=NR¹)-, -CR²(NR¹"R²)-, -CR²(OR²)-, -CR²(SR²)-, -C(O)CR²R^{2a}-, -CR²R^{2a}C(O), -S(O)_p-, -S(O)_pCR²R^{2a}-, -CR²R^{2a}S(O)_p-, -S(O)₂NR²-, -NR²S(O)₂-, -NR²S(O)₂CR²R^{2a}-, -CR²R^{2a}S(O)₂NR²-, -NR²S(O)₂NR²-, -C(O)NR²-, -NR²C(O)-, -C(O)NR²CR²R^{2a}-, -NR²C(O)CR²R^{2a}-, -CR²R^{2a}C(O)NR²-, -CR²R^{2a}NR²C(O)-, -NR²C(O)O-, -OC(O)NR²-, -NR²C(O)NR²-, -NR²-, -NR²CR²R^{2a}-, -CR²R^{2a}NR²-, O, -CR²R^{2a}O-, and -OCR²R^{2a}-,

25 Y is selected from:

(CH₂)_rNR²R^{2a}, provided that X-Y do not form a N-N, O-N, or S-N bond,

30 C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a} , and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4a} ;

35 R^4 , at each occurrence, is selected from H, =O, (CH₂)_rOR², F, Cl, Br, I, C₁₋₄ alkyl, -CN, NO₂, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, NR²C(O)NR²R^{2a}, CH(=NR²)NR²R^{2a}, CH(=NS(O)₂R⁵)NR²R^{2a}, NHC(=NR²)NR²R^{2a}, C(O)NHC(=NR²)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, NR²SO₂R⁵, S(O)_pR⁵, (CF₂)_rCF₃, NCH₂R¹", OCH₂R¹",

$\text{SCH}_2\text{R}^{1''}$, $\text{N}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$, $\text{O}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$, and
 $\text{S}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$;

alternatively, one R^4 is a 5-6 membered aromatic heterocycle
5 containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S;

provided that if B is H, then R^4 is other than tetrazole,
10 $\text{C}(\text{O})$ -alkoxy, and $\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$;

R^{4a} , at each occurrence, is selected from H, =O, $(\text{CH}_2)_r\text{OR}^2$,
 $(\text{CH}_2)_r\text{-F}$, $(\text{CH}_2)_r\text{-Br}$, $(\text{CH}_2)_r\text{-Cl}$, I, C_{1-4} alkyl, -CN, NO_2 ,
 $(\text{CH}_2)_r\text{NR}^2\text{R}^{2a}$, $(\text{CH}_2)_r\text{NR}^2\text{R}^{2b}$, $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^{2c}$, $\text{NR}^2\text{C}(\text{O})\text{R}^{2b}$,
 $\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$, $\text{C}(\text{O})\text{NH}(\text{CH}_2)_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$,
15 $\text{CH}(\text{=NR}^2)\text{NR}^2\text{R}^{2a}$, $\text{NHC}(\text{=NR}^2)\text{NR}^2\text{R}^{2a}$, $\text{SO}_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{SO}_2\text{NR}^2\text{R}^{2a}$,
 $\text{NR}^2\text{SO}_2\text{-C}_{1-4}$ alkyl, $\text{C}(\text{O})\text{NHSO}_2\text{-C}_{1-4}$ alkyl, $\text{NR}^2\text{SO}_2\text{R}^5$, $\text{S}(\text{O})_p\text{R}^5$,
and $(\text{CF}_2)_r\text{CF}_3$;

alternatively, one R^{4a} is a 5-6 membered aromatic heterocycle
20 containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S and substituted with 0-1 R^5 ;

R^{4b} , at each occurrence, is selected from H, =O, $(\text{CH}_2)_r\text{OR}^3$, F,
Cl, Br, I, C_{1-4} alkyl, -CN, NO_2 , $(\text{CH}_2)_r\text{NR}^3\text{R}^{3a}$,
25 $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^3$, $(\text{CH}_2)_r\text{C}(\text{O})\text{OR}^{3c}$, $\text{NR}^3\text{C}(\text{O})\text{R}^{3a}$, $\text{C}(\text{O})\text{NR}^3\text{R}^{3a}$,
 $\text{NR}^3\text{C}(\text{O})\text{NR}^3\text{R}^{3a}$, $\text{CH}(\text{=NR}^3)\text{NR}^3\text{R}^{3a}$, $\text{NH}^3\text{C}(\text{=NR}^3)\text{NR}^3\text{R}^{3a}$, $\text{SO}_2\text{NR}^3\text{R}^{3a}$,
 $\text{NR}^3\text{SO}_2\text{NR}^3\text{R}^{3a}$, $\text{NR}^3\text{SO}_2\text{-C}_{1-4}$ alkyl, $\text{NR}^3\text{SO}_2\text{CF}_3$, $\text{NR}^3\text{SO}_2\text{-phenyl}$,
 $\text{S}(\text{O})_p\text{CF}_3$, $\text{S}(\text{O})_p\text{-C}_{1-4}$ alkyl, $\text{S}(\text{O})_p\text{-phenyl}$, and $(\text{CF}_2)_r\text{CF}_3$;

R^5 , at each occurrence, is selected from CF_3 , C_{1-6} alkyl,
phenyl substituted with 0-2 R^6 , and benzyl substituted
with 0-2 R^6 ;

R^6 , at each occurrence, is selected from H, OH, $(\text{CH}_2)_r\text{OR}^2$, F,
35 Cl, Br, I, C_{1-4} alkyl, CN, NO_2 , $(\text{CH}_2)_r\text{NR}^2\text{R}^{2a}$,
 $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^{2b}$, $\text{NR}^2\text{C}(\text{O})\text{R}^{2b}$, $\text{NR}^2\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$, $\text{CH}(\text{=NH})\text{NH}_2$,
 $\text{NHC}(\text{=NH})\text{NH}_2$, $\text{SO}_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{SO}_2\text{NR}^2\text{R}^{2a}$, and $\text{NR}^2\text{SO}_2\text{C}_{1-4}$ alkyl;

n is selected from 0, 1, 2, and 3;

m is selected from 0, 1, and 2;

5 p is selected from 0, 1, and 2;

r is selected from 0, 1, 2, and 3;

s is selected from 0, 1, and 2; and,

10

t is selected from 0 and 1.

[2] In a preferred embodiment, the present invention provides
15 novel compounds, wherein:

D-E is selected from the group:

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-
yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-
20 7-yl; 1,6-diaminoisoquinolin-7-yl; 1-amino-3-hydroxy-
isoquinolin-7-yl; 1-amino-4-hydroxy-isoquinolin-7-yl; 1-
amino-5-hydroxy-isoquinolin-7-yl; 1-amino-6-hydroxy-
isoquinolin-7-yl; 1-amino-3-methoxy-isoquinolin-7-yl; 1-
amino-4-methoxy-isoquinolin-7-yl; 1-amino-5-methoxy-
25 isoquinolin-7-yl; 1-amino-6-methoxy-isoquinolin-7-yl; 1-
hydroxy-isoquinolin-7-yl; 4-aminoquinazol-6-yl; 2,4-
diaminoquinazol-6-yl; 4,7-diaminoquinazol-6-yl 4,8-
diaminoquinazol-6-yl; 1-aminophthalaz-7-yl; 1,4-
30 diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-
diaminophthalaz-7-yl; 4-aminopterid-6-yl; 2,4-
aminopterid-6-yl; 4,6-diaminopterid-6-yl; 8-amino-1,7-
naphthyrid-2-yl; 6,8-diamino-1,7-naphthyrid-2-yl; 5,8-
35 diamino-1,7-naphthyrid-2-yl; 4,8-diamino-1,7-naphthyrid-
2-yl; 3,8-diamino-1,7-naphthyrid-2-yl; 5-amino-2,6-
naphthyrid-3-yl; 5,7-diamino-2,6-naphthyrid-3-yl; 5,8-
diamino-2,6-naphthyrid-3-yl; 1,5-diamino-2,6-naphthyrid-
3-yl; 5-amino-1,6-naphthyrid-3-yl; 5,7-diamino-1,6-
naphthyrid-3-y; 5,8-diamino-1,6-naphthyrid-3-yl; 2,5-

diamino-1,6-naphthyrid-3-yl; 3-aminoindazol-5-yl; 3-hydroxyindazol-5-yl; 3-aminobenzisoxazol-5-yl; 3-hydroxybenzisoxazol-5-yl; 3-aminobenzisothiazol-5-yl; 3-hydroxybenzisothiazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

5

M is selected from the group:

10

Z is selected from $(CH_2)_rC(O)(CH_2)_r$, $(CH_2)_rC(O)O(CH_2)_r$,
 $(CH_2)_rC(O)NR^3(CH_2)_r$, $(CH_2)_rS(O)_p(CH_2)_r$, and
 5 $(CH_2)_rSO_2NR^3(CH_2)_r$; and,

Y is selected from one of the following carbocyclic and
 10 heterocyclic systems which are substituted with 0-2 R^{4a};
 phenyl, piperidinyl, piperazinyl, pyridyl,
 pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
 15 pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
 isothiazolyl, pyrazolyl, imidazolyl, oxadiazole,
 thiadiazole, triazole, 1,2,3-oxadiazole, 1,2,4-
 20 oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-
 thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-
 thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-
 triazole, 1,3,4-triazole, benzofuran, benzothiophuran,
 indole, benzimidazole, benzoxazole, benzthiazole,
 indazole, benzisoxazole, benzisothiazole, and
 isoindazole;

Y may also be selected from the following bicyclic heteroaryl
 ring systems:

K is selected from O, S, NH, and N.

5

[3] In a more preferred embodiment, the present invention provides novel compounds, wherein;

D-E is selected from the group:

10 1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 1-hydroxy-isoquinolin-7-yl; 4-aminoquinazol-6-yl; 2,4-diaminoquinazol-6-yl; 15 4,7-diaminoquinazol-6-yl; 4,8-diaminoquinazol-6-yl; 1-aminophthalaz-7-yl; 1,4-diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-diaminophthalaz-7-yl; 4-aminopterid-6-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-yl; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 3-aminobenzisothiazol-5-yl; 1-20 amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

M is selected from the group:

Z is selected from $(CH_2)_rC(O)(CH_2)_r$ and $(CH_2)_rC(O)NR^3(CH_2)_r$;
and,

5

Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a};
phenyl, piperidinyl, piperazinyl, pyridyl,
pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, pyrazolyl, imidazolyl, oxadiazole,
thiadiazole, triazole, 1,2,3-oxadiazole, 1,2,4-
oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-
thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-

thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-triazole, 1,3,4-triazole, benzofuran, benzothiofuran, indole, benzimidazole, benzoxazole, benzthiazole, indazole, benzisoxazole, benzisothiazole, and isoindazole.

5

[4] In an even more preferred embodiment, the present invention provides novel compounds, wherein;

10

D-E is selected from the group:

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 1-aminophthalaz-7-yl; 1,4-diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-diaminophthalaz-7-yl; 4-aminopterid-6-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-yl; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

15

M is selected from the group:

25 A is selected from:

C₅-6 carbocyclic residue substituted with 0-2 R⁴, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a};

5 phenyl, piperidinyl, piperazinyl, pyridyl,
pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, pyrazolyl, imidazolyl, benzimidazolyl,
oxadiazole, thiadiazole, triazole, 1,2,3-oxadiazole,
10 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole,
1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole,
1,3,4-thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-
triazole, and 1,3,4-triazole;

15 R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl,
benzyl, C₅₋₆ carbocyclic residue substituted with 0-2
R^{4b}, and 5-6 membered heterocyclic system containing from
1-4 heteroatoms selected from the group consisting of N,
O, and S substituted with 0-2 R^{4b};

20 R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl,
benzyl, phenethyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-2 R^{4b};

25 R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy,
C₁₋₆ alkyl, benzyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
containing from 1-4 heteroatoms selected from the group
30 consisting of N, O, and S substituted with 0-2 R^{4b};

R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy,
C₁₋₆ alkyl, benzyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
35 containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-2 R^{4b};

alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a ring selected from imidazolyl, morpholino, piperazinyl, pyridyl, and pyrrolidinyl, substituted with 0-2 R^{4b};

5

R⁴, at each occurrence, is selected from H, =O, OR², CH₂OR², F, Cl, C₁₋₄ alkyl, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c}, CH₂C(O)R^{2c}, C(O)NR²R^{2a}, CH(=NR²)NR²R^{2a}, CH(=NS(O)₂R⁵)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, S(O)₂R⁵, and CF₃

10

provided that if B is H, then R⁴ is other than tetrazole, C(O)-alkoxy, and C(O)NR²R^{2a};

15

R^{4a}, at each occurrence, is selected from H, =O, (CH₂)_rOR², F, Cl, C₁₋₄ alkyl, NR²R^{2a}, CH₂NR²R^{2a}, NR²R^{2b}, CH₂NR²R^{2b}, (CH₂)_rC(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, C(O)NH(CH₂)₂NR²R^{2a}, NR²C(O)NR²R^{2a}, SO₂NR²R^{2a}, S(O)₂R⁵, and CF₃; and,

20

R^{4b}, at each occurrence, is selected from H, =O, (CH₂)_rOR³, F, Cl, C₁₋₄ alkyl, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, CH₂C(O)R³, C(O)OR^{3c}, C(O)NR³R^{3a}, CH(=NR³)NR³R^{3a}, SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂-phenyl, S(O)₂CF₃, S(O)₂-C₁₋₄ alkyl, S(O)₂-phenyl, and CF₃.

25

[5] In a further preferred embodiment, the present invention provides novel compounds wherein:

D-E is selected from the group:

30

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-y; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl.

[6] In an even further preferred embodiment, the present invention provides a novel compound selected from:

5 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

10 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

15 1-(4'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

20 1-(Isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

25 3-(1'-Amino-isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

30 3-(Isoquinol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

35 3-(Isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

40 3-(2'-Aminobenzimidazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline;

45 3-(3'-Aminoindazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline;

50 3-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

3-(1-Amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole;

40 3-(4-amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole;

45 3-(isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole;

50 1-(Quinol-2-ylmethyl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(Quinol-2-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3-Aminoindazole-5-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-phenyl)pyrid-2-ylaminocarbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[isoquinol-7-yl)aminocarbonyl]pyrazole;

15 1-(1'-Aminoisooquinol-7'-yl)-3-ethyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

20 1-(2',4'-Diaminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

25 1-(4'-Aminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

30 1-(1'-Aminoisooquinol-7'-yl)-3-methyl-5-[4-(N-pyrrolidinylcarbonyl)phenylaminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

40 1-(1'-Aminophthalazin-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

45 3-(3'-Aminobenzisoxazol-5'-yl)-5-[[5-[(2'-aminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methylsulfonylaminomethyl)isoxazoline;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-isopropylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]-2-fluorophenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[2-methoxy-4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-isopropylimidazol-1'-yl)-2-fluorophenyl]amino-carbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]amino-carbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2'-ethylimidazol-1'-ylphenyl]aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-isopropylimidazol-1'-ylphenyl)aminocarbonyl]pyrazole;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-methylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-nitro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-dimethyl-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-pyrrolidino-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-methylsulfonyl)phenyl]pyrimid-2-yl]aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(4-(2'-methylimidazol-1'-yl)phenyl)aminocarbonyl]tetrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl)aminocarbonyl]tetrazole;

40 1-(1'-Amino-isoquinol-7'-yl)-5-[(2'-aminosulfonyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

45 1-(1'-Amino-isoquinol-7'-yl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'aminosulfonylphenyl)pyrimidin-2-yl]aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(2'-methylimidazol-1'-yl)phenyl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(1'-methylimidazol-2'-yl)-2-fluorophenyl)amino-carbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(2'-aminoimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)amino-carbonyl]pyrazole;

10 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate;

15 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid;

20 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxamide;

25 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-(hydroxymethyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-[dimethylaminomethyl]-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

40 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate;

45 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylic acid;

50 1-(1',2',3',4'-Tetrahydroisoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

55 1-(1'-Amino-isoquinol-7'-yl)-3-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylpyrazole;

1-(4'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

55 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-(N-pyrrolidinocarbonyl)-phenyl)carbonylamino]pyrazole;

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

5 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

10 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

15 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(5-(2'-'-methylsulfonylphenyl)pyrid-2-yl)carbonylamino]pyrazole;

20 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

25 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

30 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-aminosulfonyl-3-chloro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

35 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-aminosulfonyl-3-methyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

40 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

45 1-(1'-Amino-isoquinol-7'-yl)-3-ethyl-5-[(2'-'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 1-(1'-Amino-isoquinol-7'-yl)-3-ethyl-5-[(2'-'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(1'-Amino-isoquinol-7'-yl)-3-ethyl-5-[(2'-'-methylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[4-(N-pyrrolidinocarbonyl-1-yl)phenylaminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[4-(imidazol-1'-yl)phenylaminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[3-fluoro-4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-methylsulfonyl-1,1')-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-1,1')-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl-aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(5-(2'-aminosulfonylphenyl)pyrid-2-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(5-(2'-methylsulfonylphenyl)pyrimid-2-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-yl)phenyl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-1,1')-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-1,1')-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(N-pyrrolidinocarbonyl)phenylaminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-yl)phenyl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl]pyrazole;

1-(3'-Aminomethylnaphth-2'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-hydroxymethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-methylaminomethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-bromomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-pyridiniummethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-N-pyrrolidinylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-imidazol-1"-yl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[((2'-(4"-t-butoxycarbonyl)piperazin-1"-ylmethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[((2'-(N,N-dimethylamino)pyridiniummethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-piperazin-1"-ylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-N-methylmorpholiniummethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-(N-methyl-N-methoxyamino)-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole; and,

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[4'-(2''-dimethylaminomethylimidazol-1''-yl)-2'-fluorophenyl)aminocarbonyl]pyrazole;

or a pharmaceutically acceptable salt thereof.

30 In a second embodiment, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt form thereof.

35 In a third embodiment, the present invention provides a novel method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt form thereof.

DEFINITIONS

40 The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting

materials. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

The term "substituted," as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens on the atom are replaced. Keto substituents are not present on aromatic moieties.

The present invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14.

When any variable (e.g., R⁶) occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R⁶, then said group may optionally be substituted with up to two R⁶ groups and R⁶ at each occurrence is selected independently from the definition of R⁶. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such

substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

As used herein, "C₁₋₆ alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, examples of which include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, pentyl, and hexyl; "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate, and the like.

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7-membered monocyclic or bicyclic or 7- to 13-membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which

results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be
5 quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1. As used herein, the term "aromatic
10 heterocyclic system" is intended to mean a stable 5- to 7-membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heterotams independently selected from the group consisting of N, O and S. It is preferred that the total
15 number of S and O atoms in the aromatic heterocycle is not more than 1.

Examples of heterocycles include, but are not limited to, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl,
20 benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazaliny, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl,
25 imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl,
30 oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl; 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxythiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl,
35 pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridoazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl,

4*H*-quinolizinyl, quinoxaliny1, quinuclidinyl,
tetrahydrofuranyl, tetrahydroisoquinolinyl,
tetrahydroquinolinyl, 6*H*-1,2,5-thiadiazinyl, 1,2,3-
thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-
thiadiazolyl, thianthrenyl, thiazolyl, thienyl,
thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl,
triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl,
1,3,4-triazolyl, and xanthenyl. Preferred heterocycles
include, but are not limited to, pyridinyl, furanyl, thienyl,
pyrrolyl, pyrazolyl, pyrrolidinyl, imidazolyl, indolyl,
benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, benzotriazolyl,
benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also
included are fused ring and spiro compounds containing, for
example, the above heterocycles.

The phrase "pharmaceutically acceptable" is employed
herein to refer to those compounds, materials, compositions,
and/or dosage forms which are, within the scope of sound
medical judgment, suitable for use in contact with the tissues
of human beings and animals without excessive toxicity,
irritation, allergic response, or other problem or
complication, commensurate with a reasonable benefit/risk
ratio.

As used herein, "pharmaceutically acceptable salts" refer
to derivatives of the disclosed compounds wherein the parent
compound is modified by making acid or base salts thereof.
Examples of pharmaceutically acceptable salts include, but are
not limited to, mineral or organic acid salts of basic
residues such as amines; alkali or organic salts of acidic
residues such as carboxylic acids; and the like. The
pharmaceutically acceptable salts include the conventional
non-toxic salts or the quaternary ammonium salts of the parent
compound formed, for example, from non-toxic inorganic or
organic acids. For example, such conventional non-toxic salts
include those derived from inorganic acids such as
hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric,
nitric and the like; and the salts prepared from organic acids
such as acetic, propionic, succinic, glycolic, stearic,
lactic, malic, tartaric, citric, ascorbic, pamoic, maleic,

hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

5 The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a
10 stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in *Remington's Pharmaceutical Sciences*, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are intended to include any covalently bonded carriers which release the active parent drug according to formula (I) *in vivo* when such prodrug is administered to a mammalian subject. Prodrugs of a compound of formula (I) are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or *in vivo*, to the parent compound. Prodrugs include compounds of formula (I) wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug or compound of formula (I) is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino, or free sulfhydryl group, respectively.
25 Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I), and the like.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

SYNTHESIS

The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or by variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (*Protective Groups In Organic Synthesis*, Wiley and Sons, 1991). All references cited herein are hereby incorporated in their entirety herein by reference.

One general synthesis of compounds of Formula I where ring M is N-linked is shown in Scheme 1a. Q, B' and R^f are protected functional groups that can be converted to R, B and R^{1a} respectively. D-E can also be called P1, the sidechain that fits into the S1 pocket of fXa. The compounds can also be obtained by changing the sequences of the reaction steps as described in Scheme 1a. For N-linked M ring, the appropriate heterocyclic aniline is treated under conditions described in "The Chemistry of Heterocyclic Compounds, Weissberger, A. and Taylor, E. C. Ed., John Wiley & Sons" or as described later in

the synthesis section to give N-linked ring M. Further modifications and deprotections give N-linked ring M with R, Z-A-B and R^{1a} substitutents.

5

SCHEME 1a

For Nitrogen-linked heterocycle M.

In Scheme 1b is shown how to obtain compounds wherein
10 ring M is C-linked and is either five- or six-membered. The
aniline from Scheme 1a is diazotized with nitrous acid and
treated with NaBr to give the heterocyclic bromide. Treatment
with n-BuLi followed by DMF gives an aldehyde which can be
converted to ring M as described in "The Chemistry of
15 Heterocyclic Compounds, Weissberger, A. and Taylor, E. C. Ed.,
John Wiley & Sons" or as will be described. Other precursor
functional groups like acid, cyanide, methylketone, etc. can
also be used to form the ring M. Further modifications and
deprotections can yield five-membered ring M substituted with
20 R, Z-A-B and R^{1a}. The corresponding C-linked six-membered
ring M can be obtained by converting the above bromide with n-
butyl lithium and triisopropyl borate to give the heterocyclic
boronic acid. Suzuki coupling with the appropriate
heterocyclic bromide, followed by modifications and
25 deprotections gives the C-linked six-membered ring M with R,
Z-A-B and R^{1a} substitutents.

SCHEME 1b

For carbon-linked heterocycle M.

5

Scheme 2a shows the synthesis of 2-aminoisoquinoline P1 in which the groups R^{1a} and Z-A-B are attached to the pyrazole C-3 and C-5 respectively. Synthesis begins with 7-aminoisoquinoline (*J. Chem. Soc.* **1951**, 2851). Diazotization and reduction with stannous chloride converts the aryl amine to a hydrazine (*J. Org. Chem.* **1956**, 21, 394) which condenses with a R^{1a} and Z-H substituted keto-oximes to furnish pyrazoles with high regioselectivity (*J. Heterocycl. Chem.*

1993, 30, 307). Coupling of the resultant Z-H substituted pyrazoles with fragment A-B' is accomplished using standard procedures for Z as a carboxylic, amino or sulfonic moiety. For Z as a carboxylate the coupling is accomplished using 5 Weinreb's procedure (*Tetr. Lett.* **1977, 48,** 4171) with primary amines of the type H₂N-A-B'. 1-Amination of the isoquinoline is accomplished via formation of the N-oxide followed by treatment with tosyl chloride and then ethanolamine (U.S. Patent No. 4,673,676). Alternatively, the amination 10 transformation may be accomplished via treatment of the isoquinoline N-oxides with phosphoryl chloride. Subsequent displacement of the resultant 1-chloro substituent is done with appropriate reagents. Deprotection of groups on fragment Z-A-B' gives final product.

15

SCHEME 2a

5 In Scheme 2b is illustrated the preparation of 5-amino
substituted 1,6-naphthrydine compounds. Compounds of this
type can be prepared from 3-nitro-1,6-naphthrydine (*Tetr.*
1989, **45**, 2693). Reduction to the corresponding amine will
allow for transformation to the desired 5-membered nitrogen
10 containing heterocycle with R^f and $Z-H$ substitution.
Introduction of a 5-amino moiety may be accomplished through
the 5-chloro compound (*Chem. Pharm. Bull.* **1969**, **17**, 1045) as
previously described in Scheme 2a. Suitable protection of the
amino substituent is employed before introduction of fragment
15 $A-B'$. Conversion to the final product may be accomplished in
an analogous fashion to that described in Scheme 2a.

SCHEME 2b

5 In Scheme 2c is shown how to prepare isoquinolines, which contain a 1,5-diamine substituent, from 7-aminoisoquinoline by suitable protection of the amine as an amide, directed nitration, and deprotection of the amine a 5-nitro-7-aminoisoquinoline may be obtained. The desired 5-membered
10 nitrogen containing heterocycle with R^f and Z-H substitution may be synthesized as previously shown in Scheme 2a. The addition of fragment A-B' and the 1-aminoisoquinoline portion would be accomplished as described earlier. The transformation of A-B', R^f , and the 4-nitro substituent to A-B, R^{1a} , and a 4-amino group, respectively, is accomplished by
15 previously outlined methods.

SCHEME 2c

In Scheme 2d is shown how to prepare isoquinolines which contain 1,4-diamine substitution. From 7-aminoisoquinoline, the desired 5-membered nitrogen containing heterocycle with R^f and Z-H substitution may be synthesized as previously shown in Scheme 2a. Nitration to the isoquinoline 4 position may be accomplished using standard conditions to afford a 4-nitro moiety. The addition of fragment A-B' and the 1-aminoisoquinoline portion can be accomplished as described earlier. The transformation of A-B', R^f, and the 4-nitro substituent to A-B, R^{1a}, and a 4-amino group, respectively, is accomplished by previously outlined methods.

SCHEME 2d

15

Scheme 3 illustrates the preparation of an intermediate for 3-aminobenzisoxazole and 3-aminoindazole. Compounds of this general type can be obtained from a fluorocyanobenzaldehyde prepared from commercially available 2-fluoro-5-methylbenzonitrile by first bis-bromination in a nonprotic solvent in the presence of AIBN or other suitable free radical initiator at a temperature ranging from ambient temperature to the reflux temperature of the selected solvent or under a UV light. The bis-bromo compound may then be converted to an aldehyde using a protic solvent in strong acidic or basic conditions at ambient temperature or higher. The aldehyde or the acid equivalent can then be converted to

various C-linked ring M by methods which will be described later.

SCHEME 3

5

Scheme 4 outlines the formation of C-linked aminobenzisoxazoles. The aminobenzisoxazole P1 can be obtained by first treating the oxime of acetone with potassium t-butoxide in an aprotic polar solvent, followed by the addition of the fluorocyanophenylheterocycle H and then treatment with a protic solvent under strongly acidic conditions (*J. Heterocycl. chem.* **1989**, *26*, 1293). Coupling and deprotection as described previously gives 3-aminobenzisoxazoles of Formula I.

SCHEME 4

20

Scheme 5 outlines the formation of the C-linked 3-aminoindazoles of Formula I. Protection of the aldehyde as propylene ketal by standard conditions followed by refluxing with hydrazine in ethanol gives 3-aminoindazole ketal.

Protection of the amino group with CBZCl and deprotection of the ketal with HCl/MeOH gives the aldehyde. The aldehyde or the acid equivalent can be converted to various C-linked

heterocycles as described later. Coupling and deprotection as described previously gives 3-aminoindazoles of Formula I.

SCHEME 5

5

Scheme 6 illustrates the preparation of

10 aminobenzimidazole aldehyde which can be carried onto the C-linked or N-linked heterocycles by the methods described later in the synthesis section. Cyclization of 3,4-diaminobenzoate to give cbz- protected 2-aminobenzimidazole followed by DIBAL reduction and oxidation gives the desired aldehyde.

15

SCHEME 6

5 Scheme 7 illustrates the preparation of N-linked
amino benzisoxazoles, aminoindazoles, diaminoquinazolines and
aminoquinazolines of Formula I. Compounds of this type can be
made from the aniline derivative prepared from commercially
available 2-fluoro-5-nitrobenzonitrile using tin(II) chloride
10 or other compatible reducing agents in a protic or an aprotic
solvent with or without a miscible co-solvent at from ambient
temperature to reflux temperature of the selected solvent

The N-linked 3-aminobenzisoxazoles and 3-aminoindazoles
can be obtained as described previously. The N-linked
15 aminoquinazoline and diaminoquinazoline P1's can be obtained
by condensing the fluorocyan compound with formamidine
acetate or guanidine hydrochloride (*J. Heterocycl. Chem.* **1988**,
25, 1173).

SCHEME 7

5 Scheme 8 illustrates the preparation of 1-amino-2-benzopyrazine $P1$ heterocyclic intermediates leading to compounds of Formula I. Compounds of this general type can be obtained from an aminostilbene prepared from commercially available 2-cyano-4-nitrotoluene by first condensing the
 10 nitrotoluene with benzaldehyde or one of its analogs in an alcoholic solvent in the presence of an alkoxide base at a temperature ranging from -10 °C to the reflux temperature of the selected solvent. The nitrostilbene may then be reduced to aminostilbene by reaction with tin(II) chloride or another
 15 compatible reducing agent in a protic solvent with or without a miscible co-solvent at ambient temperature or higher. The aniline may then be carried on to the N -linked or C -linked heterocycles H by the methods previously described.

SCHEME 8

5 Scheme 8 also further outlines transformation of the N-linked and C-linked (not shown) heterocyclic stilbenes to give
 10 1-aminophthalazines of Formula I. Oxidative cleavage of the
 15 stilbene double bond according to the method of Narasimhan et
 al (*Synth. Commun.* **1985**, *15*(9), 769) or Sheu et al (*J. Am Chem. Soc.* **1990**, *112*, 879) or their equivalent should give an
 aldehyde. The aldehyde can be treated with hydrazine neat or
 in a polar or apolar solvent at ambient temperature or up to
 the reflux temperature of the solvent selected to cause ring
 closure. Group Z-H can then be coupled with group H₂N-A-B
 according to the methods outlined in Scheme 2a.

The N-linked and C-linked heterocyclic 2-cyanobenzaldehydes prepared in Scheme 8 can also be used as convenient starting materials for the preparation of N-linked 1,3-diaminoisoquinoline intermediate of Scheme 9 and C-linked (not shown) 1,3-diaminoisoquinoline intermediate of Scheme 9 by appropriate adaptation of the chemistry outlined below. The 2-cyanobenzaldehyde can be reduced to the benzylic alcohol by a hydride reducing agent, preferably sodium borohydride, then treated with a sulfonylchloride, methane sulfonyl chloride as suggested by Scheme 9 or an equivalent, using a trialkylamine base and a dry chlorocarbon solvent with cooling. The mesylate and biscyano intermediates can also be

converted to the corresponding 1-aminoisoindole P1 and 1-amino-3,4-dihydroisoquinoline P1 respectively.

SCHEME 9

5

Scheme 10 illustrates another approach to preparing the N-linked and C-linked heterocyclic benzylic alcohols
10 intermediates. These compounds may be obtained from 2-cyano-4-nitro-toluene by photochemical benzylic bromination with N-bromosuccinimide in carbon tetrachloride with a sun lamp and at reflux in the presence of a catalytic amount of a radical initiator such as AIBN or dibenzoylperoxide. The benzylic bromide is then readily displaced with potassium acetate under phase transfer conditions using 18-crown-6 as the phase transfer agent along with water and a non-miscible organic co-solvent with or without heating. The resulting acetate is then hydrolyzed with aqueous acid or by transesterification
15 with anhydrous acid in an alcoholic solvent to give a benzylic alcohol. Depending upon the further demands of the chemistry involved in heterocycle formation step(s) the benzylic alcohol may be protected according to the methodology recommended by Greene and Wuts. The nitro group of the resulting product can
20

then be reduced to the aniline according to the methods outlined above for Scheme 8 and then carried on to N-linked and C-linked heterocyclic benzylic alcohols of Scheme 10. It should be recognized that these benzylic alcohols can be 5 readily transformed into the benzylic sulfonate ester intermediates of Scheme 9 or oxidized to the benzaldehyde of Scheme 8 by methods known to the skilled practitioner.

SCHEME 10

10

The compounds of the present invention in which the D-E residue is isoquinazolin-1-one can be prepared as described in Scheme 11. For compounds which are N-linked to heterocycle M, the reaction of 5-nitroisatoic anhydride with formamide at 150°C affords 7-nitroisoquinazolin-1-one which can be reduced to the corresponding 7-aminoisoquinazolin-1-one by a variety of reducing agents. Diazotization, reduction to the hydrazine and N-heterocycle formation can be carried out to afford the isoquinazolin-1-one N-linked to the appropriate heterocycle. For compounds which are C-linked to heterocycle M, the reaction of 5-bromoanthranilic acid with formamide at 150°C affords the 7-bromoisoquinazolin-1-one. This bromide can be converted into an aldehyde or acetyl group which can be then converted into the appropriate C-linked heterocycle.

SCHEME 11

5 The compounds of the present invention in which the D-E residue is isoquinolin-1-one can be prepared as described in Scheme 12. For compounds which are N-linked to heterocycle M, oxidation of 7-nitroisoquinoline to its corresponding N-oxide followed by sequential treatment with acetic anhydride and
10 then hydroxide will produce the desired 7-nitroisoquinolin-1-one. This transformation can be carried out with other reagents as well. Reduction of the nitro group and subsequent formation of the N-heterocycle will afford the isoquinolin-1-one N-linked to the appropriate heterocycle. For compounds
15 which are C-linked to heterocycle M, analogous chemistry can be used to prepare desired 7-bromoisoquinolin-1-one, which can then be converted into the appropriate aldehyde or acetyl group for subsequent conversion to the C-linked heterocycle. One method for conversion of the bromide to an acetyl group
20 employs palladium catalysed coupling with (ethoxyvinyl)tributyltin followed by acid hydrolysis of the intermediate vinyl ether residue.

SCHEME 12

5 Compounds wherein D-E is 3-aminobenzisothiazole are exemplified by synthesis on the pyrazole core as shown in Scheme 13. The 4-fluoro-3-cyano-pyrazole intermediate as described previously can be used. Displacement of the fluoro substituent via nucleophilic aromatic substitution methodology
10 with a thio nucleophile followed by the standard Weinreb coupling methodology should afford the desired coupled thiobenzyl intermediate. The nitrile can be converted to the amidine via standard conditions. Oxidation of the sulfide to the sulfoxide with MCPBA followed by the standard closure adopted by Wright et al for the isothiazolones with trichloroacetic anhydride should afford the desired amino-
15 isothiazolones.

SCHEME 13

5 Compounds in which the M-heterocycle is thiazole can be prepared according to the procedures described in Scheme 14. The appropriate Q-D-E bromide can be converted into a beta-keto ester in several ways. One preferred method involves transmetallation with an alkylolithium reagent followed by
10 quenching with DMF to afford the corresponding aldehyde. Addition of ethyl diazoacetate in the presence of tin (II) chloride affords the beta-keto ester directly. Other methods are available for this conversion, one of which involves Reformatsky reaction of the aldehyde followed by oxidation to
15 the beta-keto ester.

SCHEME 14

5 A second method for converting the bromide into a beta-keto ester involves palladium catalysed coupling with (ethoxyvinyl)tributyltin followed by acidic hydrolysis to afford the corresponding acetyl derivative. Many methods exist for conversion of the acetyl derivative to the beta-keto ester, one preferred method involves reacting the acetyl derivative with a dialkyl carbonate in the presence of a base such as sodium hydride or lithium diisopropylamide. The beta-keto ester can be converted into the corresponding thiazole derivatives by bromination with NBS followed by cyclization with an appropriate thiourea or thioamide in a solvent such as ethanol or tetrahydrofuran. A one pot method for this conversion involves treating the beta-keto ester with hydroxytosyloxyiodobenzene in acetonitrile, which forms an intermediate alpha-tosyloxy-beta-keto ester, followed by addition of a thiourea or thioamide to effect cyclization to the corresponding thiazole. Manipulation of the ester group

10

15

20

of these thiazoles can then afford the compounds containing an appropriate Z-A-B group. Where Z=CONH, standard methods of peptide coupling with an appropriate amine can be employed, such as reaction of the ester with an aluminum reagent derived 5 from the amine. Where Z=COCH₂, formation of the acid chloride by standard methods can be followed by addition of an appropriate zinc reagent. The R^{1a} group on the thiazole ring can also be manipulated to provide a variety of different groups. For example, when thiourea is used as the cyclization 10 partner, a 2-aminothiazole is produced. This amino group can be readily diazotized and displaced with the appropriate copper halide to afford 2-halothiazoles. The halogen atom can then be readily displaced by a variety of carbon, nitrogen, oxygen and sulfur nucleophiles to produce a wide variety of 15 alkyl, aryl, heteroatom, and heterocyclic derivatives of R^{1a}.

The tetrazole compounds of this invention where Z is -CONH- can be prepared as exemplified in Scheme 15. An appropriately substituted amine (D-ENH₂) is acylated with ethyl oxaryl chloride. The resulting amide can be converted to the 20 tetrazole either by the methods described by Duncia (*J. Org. Chem.* **1991**, 2395-2400) or Thomas (*Synthesis* **1993**, 767-768, 1993). The amide can be converted to the iminoyl chloride first and the reacted with NaN₃ to form the 5-carboethoxytetrazole (*J. Org. Chem.* **1993**, 58, 32-35 and 25 *Bioorg. & Med. Chem. Lett.* **1996**, 6, 1015-1020). The 5-carboethoxytetrazole is then coupled with an appropriate amine (BANH₂) by the method described by Weinreb (*Tetr. Lett.* **1977**, 48, 4171-4174). Final deprotection as described before yields the desire product.

30

SCHEME 15

5 The tetrazole compounds of this invention where Z is -CO- can also be prepared via iminoyl chloride (*Chem. Ber.* **1961**, 94, 1116 and *J. Org. Chem.* **1976**, 41, 1073) using an appropriately substituted acyl chloride as starting material. The ketone-linker can be reduced to compounds where Z is
10 alkyl.

The tetrazole compounds of this invention where Z is -SO₂NH-, -S-, -S(O), SO₂- can be prepared as exemplified in Scheme 16. Appropriately substituted thioisocyanate is reacted with sodium azide to give the 5-thiotetrazole (*J. Org. Chem.* **1967**, 32, 3580-3592). The thio-compound can be alkylated (*J. Org. Chem.* **1978**, 43, 1197-1200) and then oxidized to the sulfoxide and sulfone. The thio-compound can also be converted to the sulfonyl chloride and the reacted with an amine to give the desired sulfonamide. The tetrazole compounds of this invention where Z is -O- can be prepared via the same method described in Scheme 16 by using appropriately substituted isocyanate as the starting material.

SCHEME 16

5 The tetrazole compounds of this invention where Z is
 -NH-, -NHCO-, -NHSO₂- can be prepared from 5-aminotetrazole,
 which can be prepared by Smiles Rearrangement as shown in
 Scheme 17. The thio-compound prepared as described in Scheme
 3 is alkylated with 2-chloroacetamide. The resulting compound
 10 is then refluxed in ethanolic sodium hydroxide to give the
 corresponding 5-amino-tetrazole (*Chem. Pharm. Bull.* **1991**, *39*,
 3331-3334). The resulting 5-amino-tetrazole can then be
 alkylated or acylated to form the desired products.

15

SCHEME 17

20 The N-linked imidazole ring M can be synthesized by the
 synthetic route shown in Scheme 18. Alkylation of D-E-NH₂
 with 2-bromoethylacetate followed by reaction with Gold's
 reagent in the presence of a base, such as NaOMe or LDA, form
 imidazole ring M.

SCHEME 18

5

Additional imidazole derivatives can be made by the general procedures as described in Scheme 18a. Here, P is a protective group for amino group. E is a substituted group or groups. G is an aromatic ring (six, six-six or five-six ring). R₁ and/or R₂ is H, a substituted alkyl group, or either V or a precursor of $(\text{CH}_2)_n\text{V}$. V is nitro, amino, thio, hydroxy, sulfone, sulfonic ester, sulfoxide, ester, acid, or halide. n is 0 and 1. U is aldehyde, ester, acid, amide, amino, thiol, hydroxy, sulfonic acid, sulfonic ester, sulfonyl chloride, or methylene halide. Z, A, and B are the same as those described for formula I.

10

15

SCHEME 18a

5 A general procedure to make 2,4,5-trisubstituted or 4,5-disubstituted imidazole derivatives is described in Scheme
10 18b. The starting ester **b** can be obtained by acylation of
 N,O-dimethylhydroxylamine with ethyl malonyl chloride. After
 metalation with a lithium reagent, compound **a** can react with **b**
15 to give compound **c**. Compound **c** can also be directly made from
 coupling reaction of **a** with zinc reagent of ethyl malonyl
 chloride. Compound **c** can be brominated with NBS to form
 compound **d**, which can react with excess NH_3 and R_1CO_2H to
 afford compound **e**. The ester group in **e** can be transferred to
15 other functionalities, which can be further reacted to give
 compound **f**.

Scheme 18b

5 The general procedure to make C-linked imidazole ring M
is described in Scheme 19. Aldehyde D-E-CHO from Scheme 1 can
be converted into cyano compound by treatment with
hydroxyamine and then dehydration with POCl_3 . The amidine can
be obtained from cyano compound by Pinner reaction, which can
10 be cyclized with alpha-halo ester, ketone or aldehyde to form
imidazole ring M.

SCHEME 19

15

Pyrazole ring M of the general Formula I such as those
described in Scheme 1 can be prepared by the condensation of
an appropriately substituted hydrazine with a variety of
20 diketo esters. Condensations of this type typically afford a

mixture of pyrazole regioisomers which can be effectively separated via silica gel column chromatography (Scheme 20).

Hydrolysis of the esters followed by coupling with an appropriate amine can afford the desired amide intermediate.

5 Various substituents on the pyrazole can then be manipulated to afford a variety of benzo, heterocyclic and bicyclic compounds.

SCHEME 20

10

The above methodology when applied to diketo derivatives also affords a mixture of pyrazole regioisomers. These can be

15 further manipulated to afford the compounds of Formula I as shown in Scheme 21.

SCHEME 21

5 When ketoimides are used for condensations with hydrazines the corresponding pyrazole amino esters regioadducts are obtained (Scheme 22). Conversion of these 10 intermediates to the final compounds of formula I can then be accomplished by the protection of the amino functionality with a suitable protecting group commonly known to those in the art or by derivatization (e.g. sulfonamide) then following the general synthetic strategy to prepare the compounds of this invention.

15

SCHEME 22

The pyrazole ester intermediate can be further manipulated to the ketones by the cuprate methodology described by Knochel et al (Scheme 23). Alternatively the ester can be reduced to either the alcohol or aldehyde via methods known to those in the art followed by either a reductive amination with an appropriate amine to an alkyl amine or by converting the alcohol to a leaving group which in turn can be displaced with a number of nucleophiles to provide the intermediates which on further manipulations should afford the compounds of this invention.

SCHEME 23

15

Thio compounds such as those described in Scheme 24 can be easily prepared by the conversion of 5-hydroxy pyrazole to its thiol by treatment with Lawesson's reagent in refluxing toluene.

20

SCHEME 24

5 Compounds of this invention wherein the pyrazole ring M is replaced with a 1,2,3-triazole can be prepared as outlined in Scheme 25.

SCHEME 25

15 The compounds of this invention where the ring M is 1,2,4-triazole can be easily obtained by the methodology of Huisgen et. al. (*Liebigs Ann. Chem.* **1962**, 653, 105) by the cycloaddition of nitriliminium species (derived from the

treatment of triethylamine and chloro hydrazone) and an appropriate nitrile dipolarophile as in Scheme 26.

SCHEME 26

5

This methodology provides a wide variety of 1,2,4 triazoles with a varied substitution pattern at the 1,3 and 5 positions. Alternatively the 1,2,4 triazoles can also be prepared by the methodology of Zecchi et al (*Synthesis* **1986**, 9, 772) via an aza Wittig condensation (Scheme 27).

SCHEME 27

15

R_2 = alkyl or aryl

Alternatively the 1,2,4 triazoles can also be prepared via the methodology of Sauer et al (*Tetr. Lett.* **1968**, 325) by the photolysis of a cyclic carbonate with an appropriate nitrile (Scheme 28).

SCHEME 28

25

For compounds of this invention the esters can be converted to the amide intermediates via the Weinreb methodology (*Tetr. Lett.* 1977, 48, 4171), i.e., the condensation of an appropriate amine aluminum complex with the 5 ester (Scheme 29).

SCHEME 29

10

Isoxazoline ring M of formula I wherein the 4 and 5 positions are substituted can be prepared following the 1,3-dipolar cycloaddition methodology outlined in Scheme 30. An appropriate benzhydroximoyl chloride or heterocyclic oximinoylchloride or oxime when subjected to 1,3-dipolar cycloaddition protocol with a suitable 1,2-disubstituted olefin as a dipolarophile should afford a mixture of regioisomers. Separation of the regioisomers by column chromatography followed by the sequence of reactions as described previously should then afford the compounds of choice. Optically active isoxazolines can also be obtained by enzymatic resolution on the regioisomeric esters or by the use of an appropriate chiral auxilliary on the dipolarophile as described by Olsson et al (*J. Org. Chem.* 1988, 53, 2468).

25

SCHEME 30

5 In the case of compounds with general formula I wherein Z
 is an amide the cycloaddition process described in Scheme 30
 utilizes an appropriately substituted crotonate ester. The
 crotonate esters can be obtained from commercial sources or
 can be obtained from ethyl-4-bromocrotonate by nucleophilic
 10 displacement reactions shown in Scheme 31.

SCHEME 31

15 Trisubstituted olefins as dipolarophiles can be obtained
 from ethylpropiolate by the cuprate chemistry (Scheme 32)
 according to the method described by Deslongchamps et al
 (*Synlett* 1994, 660).

20

SCHEME 32

Compounds of this invention with 1,3,4-triazole ring M can be easily obtained via the methodology of Moderhack et al (*J. Prakt. Chem.* 1996, 338, 169) as in Scheme 33.

5

SCHEME 33

This reaction involves the condensation of a carbazide
10 with an appropriately substituted commercially available thio-isocyanate to the cyclic thiourea derivative as described previously. Alkylation or nucleophilic displacement reactions on the thiono intermediate then affords a thio alkyl or aryl intermediate which can be hydrolysed, oxidized and
15 decarboxylated to the 5-H-2-thio-triazole intermediate which can be effectively converted to the compounds of this invention. Alternatively the thiono urea intermediate can be oxidized directly to the 2-H-triazole which can then be converted to the ester and then subjected to a variety of

reactions shown above to obtain the compounds of this invention. The esters can also be converted to the amine via the Hoffmann rearrangement and this methodology provides a variety of analogs similar to those shown previously. The 5 cyclic thiono urea intermediate can also be oxidized to the sulfonyl chloride by methods shown previously. This in turn can provide the sulfonamides shown in Scheme 34.

SCHEME 34

10

Scheme 35 describes the general synthesis for pyrazoles which have thio and oxidized sulfur derivatives. An 15 appropriately substituted amine is alkylated with ethyl bromoacetate and hydrolyzed to the glycine derivative. Preparation of the N-nitroso compound was easily achieved with sodium nitrite (*J. Chem. Soc.* **1935**, 899). Cyclization to the syndone using acetic anhydride (*J. Chem. Soc.* **1935**, 899) was 20 following by the introduction of the sulfide unit using a sulfoxide as solvent and acetyl chloride as a activating reagent (*Tetrahedron* **1974**, 30, 409). Photolytic cleavage of the sydnone in the presence of an acetylenic compound the 1,3,5 trisubstituted pyrazole as the major regioisomer (*Chem. Ber.*

1979, 112, 1206). These can be carried on, as described before, to the final compounds containing the sulfide, sulfoxide or sulfone functionality.

5

SCHEME 35

Scheme 36 shows one possible synthesis of isoxazoles.

10 Substituted benzaldehydes are reacted with hydroxyl amine then chlorinated to give the hydroxyiminoyl chloride according to the procedure of (*J. Org. Chem.* **1980**, 45, 3916). Preparation of the nitrile oxide in situ with triethylamine and cycloaddition with a substituted alkyne gives a mixture of regioisomeric isoxazoles as shown by H. Kawakami (*Chem. Lett.* **1987**, 1, 85). Preparation of the disubstituted alkyne is achieved by nucleophilic attack of the alkynyl anion on an electrophile as shown by Jungheim et al (*J. Org. Chem.* **1987**, 57, 4007).

15 Alternatively, one could make the hydroxyiminoyl chloride of the R^{1a} piece and react it with an appropriately substituted alkyne to give another set of regioisomeric isoxazoles which can be separated chromatographically.

SCHEME 36

5 An alternate procedure which produces only one
regioisomer is described in Scheme 37. The methylated form of
V can be deprotonated and silylated. Chlorination with carbon
tetrachloride or fluorination with difluorodibromomethane
under triethylborane catalysis give the geminal dihalo
10 compound as shown by Sugimoto (*Chem. Lett.* **1991**, 1319).
Cuprate-mediated conjugate addition-elimination give the
desired alkene as in Harding (*J. Org. Chem.* **1978**, 43, 3874).

15 Alternatively, one can acylate with an acid chloride to
form a ketone as in Andrews (*Tetr. Lett.* **1991**, 7731) followed
by diazomethane to form the enol ether. Each of these
compounds can be reacted with a hydroximinoyl chloride in the
presence of triethylamine to give one regioisomeric isoxazole
as shown by Stevens (*Tetr. Lett.* **1984**, 4587).

20

SCHEME 37

Where Y = OMe, Cl or F
V = NO_2 , SO_2NR_2 or CO_2Me , synthetic precursor to -Z-A-B

When core substituent R^{1a} is CH₂-R^{1'}, the synthesis is shown in Scheme 38. After being treated with LDA, the ketone starting material reacts with PhSSO₂Ph to give the phenylthiolated compound which reacts with hydrazine in acetic acid to form pyrazole derivative. The pyrazole ester reacts with an amine or aniline (previously treated with AlMe₃) to provide amide. Oxidation of the sulfide with mCPBA gives the corresponding sulfone. Deprotonation of the sulfone with base, followed by trapping with an electrophile(E-X) and treatment with SmI₂ provided the desired compound after deprotection.

SCHEME 38

Scheme 39 shows other methods of synthesis for R^{1a}=CH₂R^{1'} or COR^{1'}. Protection of the hydroxyl group of hydroxyacetone with a benzyl halide and treatment with a base and CO(CO₂Et)₂ gives the tricarbonyl compound. Refluxing with NH₂OMe•HCl in pyridine and ethanol in the presence of molecular sieve 3Å gives the oxime. Cyclization of oxime with D-E-NHNH₂ provided pyrazole, which can be converted into the corresponding amide by reacting with an amine or aniline (previously activated with AlMe₃). Debenzylation by catalytic hydrogenation

provides the alcohol. The alcohol is converted into the tosylate with TsCl, followed by replacement with a nucleophile to provide the desired compound. The alcohol can also be oxidized to the corresponding aldehyde or acid, or further converted to ester or amide.

SCHEME 39

10

Scheme 40 shows the synthesis of pyrazole ring with a chloride group. Chlorination of pyrazole starting material obtained previously in Scheme 2a with NCS formed chloropyrazole. The chloropyrazole can be reacted with an aniline in the presence of AlMe₃ followed by amination as described in Scheme 2a to give the desired product.

SCHEME 40

5 Scheme 41 describes the synthesis of compounds wherein M is a benzene ring and V is a nitro, protected sulfonamide or ester group and precursor of group Z of Formula I. The V group is placed on an appropriately substituted phenol either via nitration as shown by Poirier et al. (*Tetrahedron* **1989**, 10, 45(5), 1415), sulfonylation as shown by Kuznetsov (*Akad. Nauk SSSR Ser. Khim* **1990**, 8, 1888) or carboxylation by Sartori et al. (*Synthesis* **1988**, 10, 763). Bromination with triphenylphosphine and bromine (*J. Am. Chem. Soc.* **1964**, 86, 964) gives the desired bromide. Suzuki coupling with the 10 appropriate boronic acid provides the desired substituted 15 pyridine.

Scheme 41

25 Schemes 42-45 describe the synthesis of compounds wherein M is pyridine. Each scheme represents a different substitution pattern for the pyridine ring. In Scheme 42, a suitably protected aldehyde is subjected to base-catalyzed condensation with an activated ester to give after deprotection the desired aldehyde. Refluxing with ammonium chloride as shown by Dornow and Ische (*Chem. Ber.* **1956**, 89,

876) provides the pyridinol which is brominated with POBr_3 (Tjeenk et al. *Rec. Trav. Chim.* **1948**, 67, 380) to give the desired 2-bromopyridine. Suzuki coupling with the appropriate boronic acid provides the desired substituted pyridine.

5

Scheme 42

10 Treatment of an appropriately substituted 5-ethoxyoxazole with an alkene as shown by Kondrat'eva et al. (*Dokl. Akad. Nauk SSSR* **1965**, 164, 816) provides a pyridine with the V substituent at the para position. Bromination at the 3-position as shown by van der Does and Hertog (*Rec. Trav. Khim. Pays-Bas* **1965**, 84, 951) followed by palladium-catalyzed 15 boronic acid coupling provides the desired substituted pyridine.

20

Scheme 43

Scheme 44 describes a synthesis of a third substitution pattern on a pyridine ring. The appropriate tricarbonyl compound which can be prepared by methods described in Scheme 5 42 is treated with ammonium chloride to form the pyridinol which is subsequently brominated. Palladium-catalyzed coupling provides the desired substituted pyridine.

Scheme 44

10

Scheme 45 takes a suitably substituted dicarbonyl compound and by chemistry illustrated in Schemes 42 and 44, 15 reacts it with ammonium chloride. Bromination gives the 3-bromopyridine which upon palladium-catalyzed coupling provides the desired substituted pyridine.

Scheme 45

20

Schemes 46-48 describe the synthesis of compounds wherein M is pyridazine. Each scheme represents a different 25 substitution pattern for the pyridine ring. In Scheme 46 an activated ester is reacted with an appropriately substituted

α -keto aldehyde and hydrazine as shown by Schmidt and Druey (*Helv. Chim. Acta* **1954**, *37*, 134 and 1467). Conversion of the pyridazinone to the bromide using POBr_3 and palladium-catalyzed coupling provides the desired substituted pyridazine.

5 pyridazine.

Scheme 46

10

In Scheme 47, glyoxal can react under basic conditions with an activated ketone and subsequently brominated/dehydrobrominated to give the desired ketoaldehyde. Alternatively, a protected ketone can react with an activated aldehyde, undergo bromination/dehydrobromination, be deprotected and oxidized to give the regioisomeric ketoaldehyde. Cyclization as shown by Sprio and Madonia (*Ann. Chim.* **1958**, *48*, 1316) with hydrazine followed by palladium-catalyzed coupling provides the desired substituted pyridazine.

15

20

Scheme 47

25

By analogy to Scheme 47, in Scheme 48, an aldehyde can be reacted with an activated ketone, brominated, dehydrobrominated and deprotected to give the desired diketone.

Alternatively, a regioisomeric ketone can be placed through the same reaction sequence to produce an isomeric keto aldehyde. Reaction with hydrazine followed by palladium-catalyzed coupling provides the desired substituted pyridazine.

5

Scheme 48

10

Schemes 49 and 50 describe the synthesis of compounds wherein M is pyrimidine. Each scheme represents a different substitution pattern for the pyrimidine ring. In Scheme 49, a condensation with an appropriately substituted acid chloride and an activated ester followed by conjugate reduction by tin hydride (Moriya et al. *J. Org. Chem.* **1986**, 51, 4708) gives the desired 1,4 dicarbonyl compound. Cyclization with formamidine or a substituted amidine followed by bromination gives the desired regioisomeric pyrimidine. Palladium-catalyzed coupling provides the desired substituted pyrimidine.

15

20

Scheme 49

5 Using similar chemistry, Scheme 50 shows how an amidine
can be condensed with a 1,3-dicarbonyl compound and
subsequently brominated in the 5-position (*J. Het. Chem.* **1973**,
10, 153) to give a specific regioisomeric bromopyrimidine.
Palladium-catalyzed coupling provides the desired substituted
10 pyrimidine.

Scheme 50

15

Using the same ketoaldehyde from Scheme 50, cyclization
with an appropriately substituted 1,2-diamine (*Chimia* **1967**,
21, 510) followed by aromatization (*Helv. Chim. Acta* **1967**, 50,
1734) provides a regioisomeric mixture of pyrazines as
20 illustrated in Scheme 51. Bromination of the hydrobromide
salt (U.S. Patent No. 2,403,710) yields the intermediate for

the palladium-catalyzed coupling step which occurs as shown above.

Scheme 51

5

Schemes 52 and 53 describe the synthesis of compounds wherein M is a 1,2,3-triazine. In Scheme 52, a vinyl bromide is palladium coupled to a molecule containing the substituent R^{1b}. Allylic bromination followed by azide displacement provide the cyclization precursor. Triphenylphosphine-mediated cyclization (*J. Org. Chem.* **1990**, *55*, 4724) give the 1-aminopyrazole which is subsequently brominated with N-bromosuccinimide. Lead tetraacetate mediated rearrangement as shown by Neunhoeffer et al. (*Ann.* **1985**, 1732) provides the desired regioisomeric 1,2,3-triazine. Palladium-catalyzed coupling provides the substituted triazine.

20

Scheme 52

In Scheme 53, an alkene is allylically brominated and the bromide is displaced to give a regioisomer of the azide in Scheme 52. Following the same reaction sequence as shown above, cyclization provides the 1-aminopyrazole. Bromination followed by lead tetraacetate mediated rearrangement give the

1,2,3-triazine. Palladium-catalyzed coupling provides the other desired triazine.

Scheme 53

5

Schemes 54 and 55 describe the synthesis of compounds wherein M is a 1,2,4-triazine. In Scheme 54, a nitrile is converted using hydrazine to give the amidrazone which is condensed with a α -ketoester to give the triazinone as shown by Paudler and Lee (*J. Org. Chem.* **1971**, *36*, 3921).
 Bromination as shown by Rykowski and van der Plas (*J. Org. Chem.* **1987**, *52*, 71) followed by palladium-catalyzed coupling provides the desired 1,2,4-triazine.

Scheme 54

20

25

In Scheme 55, to achieve the opposite regioisomer the reaction scheme shown above is modified by the substituting a protect α -ketoester. This allows the most nucleophilic nitrogen to attack the ester functionality setting up the opposite regiochemistry. Deprotection and thermal cyclization gives the triazinone which is brominated as shown above.

Palladium-catalyzed coupling provides the other desired 1,2,4-triazine.

Scheme 55

5

Scheme 56 describes the synthesis of compounds wherein M is a 1,2,3,4-tetrazine. Lithiation of a vinyl bromide, transmetallation with tin, palladium catalyzed carbonylation and hydrazone formation provides a diene for a subsequent Diels-Alder reaction as shown by Carboni and Lindsey (*J. Am. Chem. Soc.* **1959**, *81*, 4342). Reaction with dibenzyl azodicarboxylate followed by catalytic hydrogenation to debenzylate and decarboxylate should give after bromination the desired 1,2,3,4-tetrazine. Palladium-catalyzed coupling provides the desired substitution.

Scheme 56

20

Compounds of this invention where B is either a carbocyclic or heterocyclic residue as defined in Formula I are coupled to A as shown generically and by specific example in Scheme 57, either or both of A and B may be substituted

with 0-2 R⁴. W is defined as a suitable protected nitrogen, such as NO₂ or NHBOC; a protected sulfur, such as S-tBu or SMOM; or a methyl ester. Halogen-metal exchange of the bromine in bromo-B with n-butyl lithium, quenching with triisopropyl borate and acidic hydrolysis should give the required boronic acid, B'-B(OH)₂. The W-A-Br subunit may be already linked to ring M before the Suzuki coupling reaction. Deprotection can provide the complete subunit.

10

Scheme 57

Scheme 58 describes a typical example of how the A-B subunit can be prepared for attachment to ring M. 4-Bromoaniline can be protected as Boc-derivative and then coupled to 2-(t-butylamino)sulfonylphenylboronic acid under Suzuki conditions. 2-(t-Butylamino)sulfonylphenylboronic acid can be prepared by the method described by Rivero (*Bioorg. Med. Chem. Lett.* **1994**, 189). Deprotection with TFA can provide the aminobiphenyl compound. The aminobiphenyl can then be coupled to the core ring structures as described below.

25

Scheme 58

For N-substituted heterocycles, Scheme 59 shows how the boronic acid can be formed by a standard literature procedure (Ishiyama, T.; Murata, M.; and Miyaura, N. *J. Org. Chem.* **1995**, *60*, 7508-7510). Copper-promoted C-N bond coupling of the boronic acid and heterocycle can be performed as described (Lam, P.Y.S.; et. al., *Tet. Lett.* **1998**, *39*, 2941-2944). It is preferable to use boroxine or unhindered borate as the boron source. The acid obtained can be condensed with H-A-B' and after deprotection yields the desired product.

10

SCHEME 59

15 A synthetic route for making aminobenzisoxazole derivatives with an imidazole core is shown in Scheme 60. Palladium(0)-catalyzed cross-coupling reaction of an alkoxydiboron (pinacol diborate) with a haloarene (see, Ishiyama et al, *J. Org. Chem.* **1995**, *60*, 7508-7510) should afford an arylborate intermediate, which can be hydrolyzed with 4M HCl (10 eq.) in a minimum amount of THF at room temperature to give arylboronic acid. 4-Imidazolecarboxylic

acid can be converted to 4-trifluoromethylimidazole by reacting with SF₄ (3 eq.) and HF (7.5 eq.) in a shaker tube at 40 °C. Copper(II)-catalyzed coupling reaction of arylboronic acid with 4-trifluoromethylimidazole in the presence of 5 pyridine (5 eq.) and 4Å molecular sieves in THF should provide 1-aryl-4-trifluoromethylimidazole. Lithiation of the imidazole with n-BuLi, followed by quenching with methylchloroformate, can give 1-aryl-4-trifluoromethyl-1H-imidazole-5-methylcarboxylate. Nucleophilic replacement of 10 fluorobenzene with pre-mixed potassium tert-butoxide and acetone oxime followed by treatment with 20% HCl in ethanol can form 1-aminobenzisoxazole-4-trifluoromethyl-1H-imidazole-5-methylcarboxylate. The ester may then be converted to an amide by a Weinreb coupling reaction. Alternatively, after 15 the saponification of the ester in aqueous NaOH in THF, the resulting acid can be converted to the corresponding acyl chloride upon treatment with SOCl₂ or oxalyl chloride, followed by reacting with aniline containing an o-substituent to form an amide. Fluorobenzene can similarly be converted to 20 aminobenzisoxazole derivative by treatment with pre-mixed potassium tert-butoxide and acetone oxime, followed by reaction with 20% HCl in ethanol. The ester can also be saponified in aqueous NaOH in THF to give an acid, which then can be coupled with aniline to give amide via a coupling 25 reagent (ex. PyBrop) under basic conditions.

SCHEME 60

o-Fluorobenzonitrile derivatives with imidazole core can
5 be converted to 1-aminoquinazoline-1H-imidazole derivatives by treatment with formamidine salt in pyridine and ethanol (Scheme 61).

SCHEME 61

5 Scheme 62 illustrates the preparation of bicyclic core intermediates leading to compounds with indazole and indole cores. Compounds of the general type can be obtained by the method outlined in *Chem. Ber.* (1926) 35-359. The pyrazole N-oxide can be reduced by any number of methods including
10 triphenylphosphine in refluxing toluene followed by the hydrolysis of the nitrile substituent to a carboxylic acid with basic hydrogen peroxide to give indazole intermediate which may be coupled in the usual way to give indazole product. Indole intermediate may be obtained via the Fischer
15 Indole Synthesis (*Org. Syn. Col. Vol. III* 725) from an appropriately substituted phenylhydrazine and acetophenone. Further elaboration using standard synthetic methods including the introduction of a 3-formyl group by treatment with POCl₃
20 in DMF, the optional protection of the indole NH with the Sem group (TMSCH₂CH₂OCH₂Cl, NaH, DMF) and oxidation of the aldehyde to a carboxylic acid which is now ready for transformation to indole product.

SCHEME 62

5 When B is defined as X-Y, the following description
 applies. Groups A and B are available either through
 commercial sources, known in the literature or readily
 synthesized by the adaptation of standard procedures known to
 practitioners skilled in the art of organic synthesis. The
 10 required reactive functional groups appended to analogs of A
 and B are also available either through commercial sources,
 known in the literature or readily synthesized by the
 adaptation of standard procedures known to practitioners skilled
 in the art of organic synthesis. In the tables that follow
 15 the chemistry required to effect the coupling of A to B is
 outlined.

**Table A: Preparation of Amide, Ester, Urea, Sulfonamide and
 Sulfamide linkages between A and B.**

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y :
1	A-NHR ² as a substituent	C1C(O)-Y	A-NR ² -C(O)-Y

2	a secondary NH as part of a ring or chain	ClC(O)-Y	A-C(O)-Y
3	A-OH as a substituent	ClC(O)-Y	A-O-C(O)-Y
4	A-NHR ² as a substituent	ClC(O)-CR ² R ^{2a} -Y	A-NR ² -C(O)-CR ² R ^{2a} -Y
5	a secondary NH as part of a ring or chain	ClC(O)-CR ² R ^{2a} -Y	A-C(O)-CR ² R ^{2a} -Y
6	A-OH as a substituent	ClC(O)-CR ² R ^{2a} -Y	A-O-C(O)-CR ² R ^{2a} -Y
7	A-NHR ³ as a substituent	ClC(O)NR ² -Y	A-NR ² -C(O)NR ² -Y
8	a secondary NH as part of a ring or chain	ClC(O)NR ² -Y	A-C(O)NR ² -Y
9	A-OH as a substituent	ClC(O)NR ² -Y	A-O-C(O)NR ² -Y
10	A-NHR ² as a substituent	ClSO ₂ -Y	A-NR ² -SO ₂ -Y
11	a secondary NH as part of a ring or chain	ClSO ₂ -Y	A-SO ₂ -Y
12	A-NHR ² as a substituent	ClSO ₂ -CR ² R ^{2a} -Y	A-NR ² -SO ₂ -CR ² R ^{2a} -Y
13	a secondary NH as part of a ring or chain	ClSO ₂ -CR ² R ^{2a} -Y	A-SO ₂ -CR ² R ^{2a} -Y
14	A-NHR ² as a substituent	ClSO ₂ -NR ² -Y	A-NR ² -SO ₂ -NR ² -Y
15	a secondary NH as part of a ring or chain	ClSO ₂ -NR ² -Y	A-SO ₂ -NR ² -Y
16	A-C(O)Cl	HO-Y as a substituent	A-C(O)-O-Y

17	A-C(O)Cl	NHR ² -Y as a substituent	A-C(O)-NR ² -Y
18	A-C(O)Cl	a secondary NH as part of a ring or chain	A-C(O)-Y
19	A-CR ² R ^{2a} C(O)Cl	HO-Y as a substituent	A-CR ² R ^{2a} C(O)-O-Y
20	A-CR ² R ^{2a} C(O)Cl	NHR ² -Y as a substituent	A-CR ² R ^{2a} C(O)-NR ² -Y
21	A-CR ² R ^{2a} C(O)Cl	a secondary NH as part of a ring or chain	A-CR ² R ^{2a} C(O)-Y
22	A-SO ₂ Cl	NHR ² -Y as a substituent	A-SO ₂ -NR ² -Y
23	A-SO ₂ Cl	a secondary NH as part of a ring or chain	A-SO ₂ -Y
24	A-CR ² R ^{2a} SO ₂ Cl	NHR ² -Y as a substituent	A-CR ² R ^{2a} SO ₂ -NR ² -Y
25	A-CR ² R ^{2a} SO ₂ Cl	a secondary NH as part of a ring or chain	A-CR ² R ^{2a} SO ₂ -Y

The chemistry of Table A can be carried out in aprotic solvents such as a chlorocarbon, pyridine, benzene or toluene, at temperatures ranging from -20 °C to the reflux point of the solvent and with or without a trialkylamine base.

Table B: Preparation of ketone linkages between A and B.

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y :
1	A-C(O)Cl	BrMg-Y	A-C(O)-Y
2	A-CR ² R ^{2a} C(O)Cl	BrMg-Y	A-CR ² R ^{2a} ₂ C(O)-Y
3	A-C(O)Cl	BrMgCR ² R ^{2a} -Y	A-C(O)CR ² R ^{2a} -Y
4	A-CR ² R ^{2a} C(O)Cl	BrMgCR ² R ^{2a} -Y	A-CR ² R ^{2a} C(O)CR ² R ^{2a} -Y

The coupling chemistry of Table B can be carried out by a variety of methods. The Grignard reagent required for Y is prepared from a halogen analog of Y in dry ether, dimethoxyethane or tetrahydrofuran at 0°C to the reflux point of the solvent. This Grignard reagent can be reacted directly under very controlled conditions, that is low temeprature (-20°C or lower) and with a large excess of acid chloride or with catalytic or stoichiometric copper bromide-dimethyl sulfide complex in dimethyl sulfide as a solvent or with a variant thereof. Other methods available include transforming the Grignard reagent to the cadmium reagent and coupling according to the procedure of Carson and Prout (Org. Syn. Col. Vol. 3 (1955) 601) or a coupling mediated by Fe(acac)₃ according to Fiandanese et al. (*Tetr. Lett.* **1984**, 4805), or a coupling mediated by manganese (II) catalysis (Cahiez and Laboue, *Tetr. Lett.* **1992**, 33(31), 4437).

Table C: Preparation of ether and thioether linkages between A and B

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y :
1	A-OH	Br-Y	A-O-Y
2	A-CR ² R ^{2a} -OH	Br-Y	A-CR ² R ^{2a} O-Y
3	A-OH	Br-CR ² R ^{2a} -Y	A-OCR ² R ^{2a} -Y
4	A-SH	Br-Y	A-S-Y
5	A-CR ² R ^{2a} -SH	Br-Y	A-CR ² R ^{2a} S-Y
6	A-SH	Br-CR ² R ^{2a} -Y	A-SCR ² R ^{2a} -Y

The ether and thioether linkages of Table C can be
 5 prepared by reacting the two components in a polar aprotic
 solvent such as acetone, dimethylformamide or
 dimethylsulfoxide in the presence of a base such as potassium
 carbonate, sodium hydride or potassium t-butoxide at
 temperature ranging from ambient temperature to the reflux
 10 point of the solvent used.

**Table D: Preparation of -SO- and -SO₂- linkages from
thioethers of Table 3.**

Rxn. No.	if the starting material is :	and it is oxidized with Alumina (wet) / Oxone (Greenhalgh, Synlett, (1992) 235) the product is :	and it is oxidized with m-chloroper- benzoic acid (Satoh et al., Chem. Lett. (1992) 381), the product is :
1	A-S-Y	A-S(O)-Y	A-SO ₂ -Y
2	A-CR ² R ^{2a} S-Y	A-CR ² R ^{2a} S(O)-Y	A-CR ² R ^{2a} SO ₂ -Y
3	A-SCR ² R ^{2a} -Y	A-S(O)CR ² R ^{2a} -Y	A-SO ₂ CR ² R ^{2a} -Y

15 The thioethers of Table C serve as a convenient starting material for the preparation of the sulfoxide and sulfone analogs of Table D. A combination of wet alumina and oxone can provide a reliable reagent for the oxidation of the

thioether to the sulfoxide while m-chloroperbenzoic acid oxidation will give the sulfone.

Other features of the invention will become apparent in the course of the following descriptions of exemplary

5 embodiments which are given for illustration fo the invention and are not intended to be limiting thereof.

EXAMPLES

Example 1

10 **1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole, mesylate salt**

7-Aminoisouquinoline (6.26 g, 43.4 mmol) (*J. Chem. Soc.* 1951, 2851) is added to 40 mL of concentrated hydrochloric acid at 0°C. Sodium nitrite (3.0 g, 43.4 mmol) is dissolved in 15 mL water, cooled to 0°C, and added dropwise to the isoquinoline solution. The reaction is stirred for 30 min at 0°C. Stannous chloride dihydrate (29.3 g, 130.2 mmol, 3 eq) is dissolved in 25 mL concentrated hydrochloric acid, the solution cooled to 0°C, and added dropwise to the isoquinoline solution. The reaction is placed in the refrigerator overnight. The next day the precipitate is isolated by filtration, washed with 100 mL ice cold brine followed by 100 mL of a 2:1 petroleum ether/ethyl ether solution. The brown solid is dried under dynamic vacuum overnight. The tin double salt of the isoquinoline (9.0 g, 26 mmol) is suspended in 100 mL glacial acetic acid and ethyl 2,4-dioxopentanoate oxime (4.0 g, 21.3 mmol) added dropwise. The reaction was brought to reflux overnight. The next day the acetic acid was evaporated and to the residue was added 100 mL water, cooled to 0°C and neutralized with solid sodium bicarbonate. The solution was extracted with ethyl acetate (6x50 mL), dried over sodium sulfate, and evaporated to give the title compound as a brownish solid (5.15 g, 86% yield) which was >85% of the desired pyazole regioisomer. The material may be purified by silica gel flash chromatography eluting with 5% methanol in chloroform: ^1H NMR (CDCl_3) δ 1.24 (t, 3H, $J=7.1$ Hz, OCH_2CH_3), 2.40 (s, 3H, pyrazole CH_3), 4.24 (q, 2H, $J=7.1$ Hz, OCH_2CH_3),

6.89 (s, 1H, pyrazole H), 7.70 (d, 1H, J=5.9 Hz, H4), 7.75
(dd, 1H, J=8.8 Hz, J=2.2 Hz, H6), 7.89 (d, 1H, J=8.8 Hz, H5),
8.05 (d, 1H, J=2.0 Hz, H7), 8.58 (s, 1H, J=5.9 Hz, H3), 9.29
(s, 1H, H1), MS (ES+): 282.1 (M+H)⁺ (100%), C₃₀H₂₉N₅O₃S

5 539.65.

To a solution of 2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4-ylamine (2.19 g, 7.19 mmol) in 100 mL of anhydrous dichloromethane under an atmosphere of nitrogen was added dropwise trimethyl aluminium (10.9 mL, 21.6 mmol, 2M in hexane). The solution was stirred for 30 min at ambient temperature. Ethyl 1-(isoquinolyn-7'-yl)-3-methyl-5-pyrazole carboxylate (2.02 g, 7.19 mmol) in 70 mL of anhydrous dichloromethane was added dropwise and the reaction warmed to 40°C and allowed to stir for 15 hours. The reaction was quenched with 50 mL 1N hydrochloric acid at 0°C, diluted with 50 mL water and made basic with solid sodium carbonate. The phases are separated and the aqueous extracted with dichloromethane (3x30 mL), dried over sodium sulfate, and evaporated to give the amide (3.50 g, 90% yield) as a brown solid and of sufficient purity for the next step. The material may be purified by silica gel flash chromatography eluting with 5% methanol in chloroform. MS (ES+): 540.22 (M+H)⁺ (100%). The amide was dissolved in 60 mL acetone to which was added meta-chloroperbenzoic acid (70%) (1.86 g, 7.55 mmol) and the reaction allowed to stir overnight at ambient temperature. The next day the solvent was removed under reduced pressure and the residue taken up in 100 mL each of ethyl acetate and saturated sodium bicarbonate. The phases are separated and the organic dried over sodium sulfate, and evaporated to give the N-oxide as a pale red solid in quantitative yield and of sufficient purity for the next step. MS (ES+): 556.20 (M+H)⁺ (15%); 578.21 (M+Na)⁺ (100%).

The N-oxide was dissolved in 110 mL of anhydrous pyridine and tosyl chloride (1.64 g, 8.63 mmol) was added in three equal portions and the reaction allowed to stir at ambient temperature overnight. The pyridine was removed under reduced pressure and to the residue was added 45 mL ethanolamine and the reaction stirred at ambient temperature for 2 days. The

reaction was poured onto cracked ice and the solids isolated by filtration and dried under vacuum to yield 2.33 g (65% yield) of a mixture of 1-aminoisoquinoline (major) and 4-aminoisoquinoline (minor) products as a tan solid. MS (ES+) 5 555.22 ($M+H$)⁺ (100%), HRMS (FAB+) for C₃₀H₃₀N₆O₃S calc. ($M+H$)⁺ 555.217836; found 555.21858.

To 20 mL of trifluoroacetic acid was added the 1-aminoisoquinoline compound and the reaction brought to reflux overnight. The next day the solvent was removed under reduced pressure and the residue made basic with aqueous sodium carbonate cooled to 0°C, extracted with ethyl acetate (3 x 40 mL), dried over sodium sulfate, and evaporated. The tan solid was purified by silica gel flash column chromatography eluting with 15% MeOH/CHCl₃ to give 1.60 g (76% yield) of the title 10 compound as a light tan solid. MS (ES+) 499.14 ($M+H$)⁺ (100%), HRMS (FAB+) for C₂₆H₂₂N₆O₃S calc. ($M+H$)⁺ 499.155236; found 15 499.153551.

The product was then treated with one equivalent of methane sulfonic acid in THF. Evaporation of the solvent gave 20 Example 1, MS (ES+) 499.0 ($M+H$)⁺ (100%), mp 195°C.

Example 2

1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole mesylate

25

The title compound was prepared analogously to Example 1. MS (ES+) 498.0 ($M+H$)⁺ (100%), mp 175°C.

Example 3

30 **1-(4'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole**

The title compound was prepared analogously to Example 1. MS (ES+) 499.0 ($M+H$)⁺ (100%), mp 204°C.

35

Example 4

1-(Isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole

The title compound was prepared analogously to Example 1.
MS (ES+) 484.1 (M+H)⁺ (100%).

5

Example 5

3-(1'-Amino-isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline

The title compound was prepared analogously to Example 1.
10 MS (ES+) 502.3 (M+H)⁺ (100%).

15

Example 6

3-(Isoquinol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline

The title compound was prepared analogously to Example 1.
MS (ES+) 487.3 (M+H)⁺ (100%).

25

Example 7

3-(Isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline

The title compound was prepared analogously to Example 1.
MS (ES+) 487.3 (M+H)⁺ (100%).

30

Example 8

3-(2'-Aminobenzimidazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline

To a solution of methyl 3,4-diaminobenzoate (7.50 g) in methanol (225 mL) was added N,N'-dicarbobenzyloxy methyl isothiourea (16.20 g). The reaction mixture was brought to reflux for 4 h. Heat was removed and the mixture was allowed to cool. The stirring was continued at rt for overnight. The precipitate was filtered and washed with ether (40 mL) and air dried to give 2-benzyloxycarbonylamino-5-methoxycarbonylbenzimidazole (9.80 g) as a purple solid. ESI mass spectrum z (rel. intensity) 326 (M+H. 100).

A suspension of benzimidazole (1.58 g) in methylene chloride (40 mL) was cooled to -78°C. DIBAL (1.0 M in CH₂Cl₂, 21.87 mL) was added via syringe. The reaction mixture was stirred at -78°C for 1.5 h. and slowly warmed up to rt. The 5 reaction was quenched with methanol (2 mL), HCl (5%, 2 mL). The solvent was removed and the residue partitioned between ethyl acetate (60 mL) and water (60 mL), washed with water (2x40mL), brine (40 mL); dried over sodium sulfate, to give 2-benzylloxycarbonylamino-5-hydroxymethylbenzimidazole (1.2 g).
10 ESI mass spectrum z(rel. intensity) 298 (M+H, 100).

To a solution of pyridine (3.83 g) in methylene chloride (30 mL) was added CrO₃ (2.42 g). The mixture was stirred at rt for 45 minutes followed by addition of a solution of 2-benzylloxycarbonylamino-5-hydroxymethylbenzimidazole (1.2 g) in 15 methylene chloride (20 mL) and DMF (10 mL). The reaction mixture was stirred at rt for 2.5 h.. Two thirds of the solvent was removed and the residue was partitioned between ethyl acetate and sodium bicarbonate (sat.), washed with KHSO₄ (5% in H₂O), water and brine; dried over sodium sulfate to 20 give aldehyde (0.95 g). ESI mass spectrum z (rel. intensity) 296 (M+H, 100).

To a solution of aldehyde (0.50 g) in ethanol was added a solution of hydroxyamine hydrochloride (0.15 g) in water(5 mL) and a solution of sodium acetate (0.28 g) in water (5 mL).
25 The reaction nixture was stirred at rt overnight. Next day, ethanol was removed and the white precipitate was filtered, washed with water and air dried to give the oxime (0.50 g).
ESI mass spectrum z (rel. intensity) 311 (M+H, 100).

To a solution of 2-benzylloxycarbonylamino-5-oximebenzimidazole (0.31 g) in THF (50 mL) was added methyl acrylic acid (0.11 g), to this mixture was added bleach (5.25%, 2.4 mL) dropwise at 0°C under stirring. After addition of bleach, the stirring was continued at rt overnight. Most of the solvent was removed and the mixture 35 was partitioned between ethyl acetate and water. The organic was separated and washed with water, brine; dried over sodium sulfate. The resulting solid was recrystallized using methylene chloride/hexane (1:1) to give isoxazoline (0.25 g)

as a pure compound. ESI mass spectrum z (rel. intensity) 395 (M+H, 100).

To a solution of isoxazoline (100 mg) in DMF (5 mL) was added triethylamine (39 mg), (2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4-yl)amine (115 mg) and BOP (168 mg). The reaction mixture was stirred at 55°C overnight. Next day, the mixture was partitioned between ethylacetate (25 mL) and water (25 mL), washed with HCl (5%, 4 x 10 mL), sodium bicarbonate (5%, 2 x 10 mL), water (2 x 10 mL) and brine (10 mL); dried over sodium sulfate, filtered and concentrated to leave 3-(2-benzyloxycarbonylamino-5-yl)-5-[(2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl]-5-methylisoxazoline (120 mg). ESI mass spectrum z (rel. intensity) 681 (M+H, 100).

3-(2-Benzylloxycarbonylamino-5-yl)-5-[(2'-*tert*.butylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline (100 mg) was dissolved in TFA (4 mL). The resulting solution was brought to reflux for 3 h., cooled to room temperature, stripped off TFA, partitioned between ethylacetate and sodium bicarbonate (5%), washed with water, dried over sodium sulfate, filtered and concentrated. Prep. TLC gave pure title compound (35 mg). ESI mass spectrum z (rel. intensity) 491 (M+H, 100), mp 162°C.

Example 9

25 **3-(3'-Aminooindazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline**

To a solution of 2-fluoro-5-methylbenzonitrile (13.50 g) in CCl₄ (500 mL) was added NBS (35.60 g) and benzoylperoxide (2.40 g). The reaction mixture was brought to reflux for 16 h. Heat was removed and allow it to cool. The mixture was filtered through silic gel, filtrate was concentrated to give a 5:1 mixture (25 g) of 2-fluoro-5-bis-bromomethylbenzonitrile and 2-fluoro-5-bromomethylbenzonitrile.

35 The mixture (25 g) was dissolved in formic acid (85% in water, 200 mL). The resulting solution was refluxed for 4.5 h. After allowing the reaction mixture to cool to room temperature, most of the formic acid was stripped off, sodium

bicarbonate was added to quench the remaining acid, it was partitioned between ethylacetate and sodium bicarbonate (sat.), washed with water and brine, dried over sodium sulfate, filtered and concentrated, flash chromatography (10% EtOAc in hexane) to give 3-cyano-4-fluorobenzaldehyde (12 g) as a white crystal. ^1H NMR (CDCL_3) δ 10.0 (s, 1H), 8.15-8.24 (m, 2H), 7.42 (t, 1H) ppm; CI mass spectrum z (rel. intensity) 150 ($\text{M}+\text{H}$, 100).

To a solution of 3-cyano-4-fluorobenzaldehyde (1.49 g) in benzene was added 1,3-propanediol (0.91 g) and toluenesulfonic acid (0.20 g). The mixture was brought to reflux for 3 hr. with a water trap. After cooling, it was partitioned between ethylacetate and water, washed with sodium bicarbonate (15% in water), water, brine and water; dried over sodium sulfate, filtered and concentrated to give ketal (1.80 g); ^1H NMR (CDCL_3) δ 7.69-7.80 (m, 2H), 7.20 (t, 1H), 5.48 (s, 1H), 4.24-4.30 (m, 2H), 3.95-4.04 (m, 2H), 2.12-2.28 (m, 1H), 1.45-1.52 (m, 1H) ppm; CI mass spectrum z (rel. intensity) 207 ($\text{M}+\text{H}$, 100).

To a solution of ketal (0.6 g) in n-butanol (10 mL) was added hydrazine monohydrate (1.45 g). The reaction mixture was brought to reflux for 3 hr, cooled to room temperature, quenched with pH 5 buffer solution, partitioned between methylene chloride and water. The organic phase was separated and washed with NH_4Cl (sat.), 3x H_2O , dried over sodium sulfate, filtered and concentrated to give ketal (0.45 g). CI mass spectrum z (rel. intensity) 220 ($\text{M}+\text{H}$, 100).

To a solution of ketal (0.42 g) in methylene chloride was added TEA (1.6 mL) and di-tert-butyl-dicarbonate (2.4 g). The mixture was stirred at room temperature overnight. The mixture was partitioned between methylene chloride and water, washed with pH 5 buffer solution, water and brine; dried over sodium sulfate and concentrated to give 1-tert-butoxycarbonyl-3-tert-butoxyaminoindazole-5-aldehydedioxane (0.55 g). CI mass spectrum z (rel. intensity) 420 ($\text{M}+\text{H}$, 100).

To a solution of indazole (0.55 g) in acetone (10 mL) was added toluene sulfonic acid (100 mg). The reaction mixture was stirred at rt for 2 h. Acetone was removed and the

residue was partitioned between ethyl acetate and water, washed with 2xH₂O, brine and dried over sodium sulfate. Flash chromatography gave 1-tert-butoxycarbonyl-3-tert-butoxycarbonylamino-5-hydrogencarbonylindazole (0.3 g). CI mass spectrum z (rel. intensity) 362 (M+H, 100).

To a solution of indazole (0.30 g) in ethanol (6 mL) was added a solution of hydroxyamine hydrochloride (0.07 g) in water (1 mL) and another solution of sodium acetate (0.14 g) in water (1 mL). The mixture was stirred at rt overnight. Ethanol was removed and the resulting solid was filtered, washed with water and air dried to give aldoxime.

To a solution of aldoxime (0.22 g) in THF was added 2-methyacrylic acid (0.06 g) followed by dropwise addition of bleach (1.4 mL) at 0°C with vigorous stirring. After the addition, reaction mixture was slowly warmed to rt and stirred at rt overnight. Partitioned between ethylacetate and HCl (5%), washed with 3xH₂O, dried over sodium sulfate, filtered and concentrated, flash chromatography to give isoxazoline (0.14 g).

To a solution of isoxazoline (0.14 g) in DMF (6 mL) was added 2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-ylamine (0.14 mg), TEA (0.05 g) and BOP reagent (0.2 g). The mixture was stirred at 50°C overnight; partitioned between ethylacetate and water, washed with brine, 4x water, dried over sodium sulfate, filtered, concentrated and flash chromatographed to give an isoxazoline (0.06 g). ESI mass spectrum z (rel. intensity) 747 (M+H, 100).

The isoxazoline (0.06 g) was dissolved in TFA (5 mL). The resulting solution was brought to reflux for 1.5 h. The mixture was stripped off TFA, partitioned between ethylacetate and sodium bicarbonate (5%), washed with 2x water, dried over sodium sulfate, filtered and concentrated. Prep. TLC afforded example 9 (5 mg). ESI mass spectrum z (rel. intensity) 491 (M+H, 100), mp 157-159°C.

35

Example 10

3-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline

To a solution of 3-cyano-4-fluorobenzaldehyde (2.50 g) in ethanol (40 mL) was added a solution of hydroxyamine (1.46 g) in water (10 mL), a solution of sodium acetate (2.75 g) in water (10 mL). The mixture was stirred at rt, overnight. Ethanol was removed and the white precipitate was filtered, washed with water and air dried to leave 3-cyano-4-fluorobenzaldehydeoxime (2.05 g). CI mass spectrum z (rel. intensity) 165 (M+H, 100).

To a solution of 3-cyano-4-fluorobenzaldoxime (2.50 g) in THF (100 mL) was added 2-methylacrylic acid (1.64 g). The mixture was cooled to 0 °C on an ice bath followed by dropwise addition of NaOCl (5.25% in water) (37 mL) with vigouros stirring. After the addition, the reaction mixture was slowly warmed up to rt and stirred at rt overnight. The mixture was partitioned between ethylacetate and HCl (5% in water), washed with brine, 2xH₂O, dried over sodium sulfate, filtered and concentrated. The resulting solid was recrystallized to give 3-(4-fluoro-3-cyanophenyl-1-yl)-5-methyl-5-hydroxycarbonylisoxazoline (3.30 g) as a pure compound. ¹H NMR(DMSO-d₆) δ 13.6 (br, 1H), 8.20 (dd, 1H), 8.10 (td, 1H), 3.84 (d, 1H), 3.41 (d, 1H), 1.57 (s, 3H) ppm; ESI mass spectrum z (rel. intensity) 247 (M-H, 100).

To a solution of acetone oxime (2.60 g) in DMF (10 mL) was added potassium *tert*-butoxide (1.0 M in THF, 2.6 mL) via syringe. The mixture was stirred at rt 10 minutes, a solution of 3-(4-fluoro-3-cyanophenyl-1-yl)-5-methyl-5-hydroxycarbonylisoxazoline (0.5 g) in DMF (5 mL) was added. The reaction mixture was stirred at rt overnight. HCl (5% in water) was added to quench the reaction solution, partitioned between ethylacetate and water, washed with 2xH₂O, brine, 2xH₂O, dried over sodium sulfate, filtered and concentrated to leave isoxazoline (0.51 g) as white crystals. ¹H NMR(CDCl₃) δ 9.09 (br, 1H), 7.86 (dd, 1H), 7.78 (d, 1H), 7.59 (d, 1H), 3.87 (d, 1H), 3.27 (d, 1H), 2.19 (s, 3H), 2.05 (s, 3H), 1.78 (s, 3H) ppm. CI mass spectrum z (rel. intensity) 302 (M+H, 100).

To a solution of isoxazoline (0.51 g) in ethanol (10 mL) was added HCl (20% in water, 3 mL). The mixture was brought

to reflux for 1.5 h. Ethanol was removed and the residue was partitioned between ethyl acetate and water, washed with 2x water, dried over sodium sulfate, filtered and concentrated to 3-(3-aminobenzisoxazol-5-yl)-5-methyl-5-

5 ethoxycarbonylisoxazoline (0.42 g) as white solid. ^1H NMR (CDCl_3) δ 7.90 (s, 1H), 7.79 (d, 1H), 7.35, (d, 1H), 4.25 (q, 2H), 3.95 (d, 1H), 3.49 (s, 2H), 3.25 (d, 1H), 1.73, (s, 3H), 1.30 (s, 3H). CI mass spectrum z (rel. intensity) 290 ($\text{M}+\text{H}$, 100).

10 To a solution of isoxazoline (0.42 g) in THF (10 mL) was added NaOH (10% in water) (10 mL). The mixture was stirred at 60°C for 1.5 h, cooled to rt and HCl (10% in water) was added dropwise until pH 4-5. The mixture was partitioned between ethylacetate and water, washed with 2x H_2O , dried over sodium sulfate, filtered and concentrated to give isoxazoline acid (0.32 g) as a pure compound. ^1H NMR (DMSO-d_6) δ 13.25 (br, 1H), 8.20 (s, 1H), 7.83 (d, 1H), 7.58 (d, 1H), 6.58 (s, 2H), 3.82 (d, 1H), 3.00 (d, 1H), 1.60 (s, 3H) ppm. ESI mass spectrum z (rel. intensity) 262 ($\text{M}+\text{H}$, 100).

20 To a solution of isoxazoline acid (52 mg) in DMF (2 mL) was added TEA (26 mg), 2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4-ylamine (79 mg) and BOP reagent (115 mg). The reaction mixture was stirred at 50°C overnight. Partitioned between ethylacetate and water, washed with 2x H_2O brine and 2x H_2O , dried over sodium sulfate, filtered and flash chromatographed to elute amide (45 mg). ESI mass spectrum z (rel. intensity) 547 ($\text{M}+\text{H}$, 100); mp 144°C.

25 The amide (40 mg) was dissolved in TFA (2 mL). The resulting solution was brought to reflux for 1.5 h., stripped off TFA and flash chromatographed to give the title compound (22 mg) as a pure compound. ESI mass spectrum z (rel. intensity) 492 ($\text{M}+\text{H}$, 100), mp 164°C.

Example 11

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

To a solution of 2-fluoro-5-nitrobenzonitrile (2.0 g) in ethylacetate (50 mL) was added stannous chloride dihydrate (27.0 g). The mixture was brought to reflux for 1.5 h and allowed to cool. The mixture was partitioned between ethyl acetate and sodium bicarbonate (sat. in water). The aqueous phase was extracted with ethyl acetate four times. The organic phase was washed with 4xH₂O, dried over sodium sulfate, filtered and concentrated to leave 4-fluoro-3-cyanoaniline (1.40 g). CI mass spectrum z (rel. intensity) 10 137 (M+H, 100).

4-Fluoro-3-cyanoaniline (1.4 g) was added to 10 mL of concentrated hydrochloric acid at 0°C. Sodium nitrite (0.71 g) was dissolved in water (3 mL), cooled to 0°C, and added dropwise to the 4-fluoro-3-cyanoaniline solution. The 15 reaction was stirred at 0°C for 30 minutes. Stannous chloride dihydrate (6.95 g) was dissolved in HCl (conc., 4 mL). The solution was cooled to 0°C, and added dropwise to the 4-fluoro-3-cyanoaniline solution. The reaction was placed in the refrigerator overnight. Next day, the precipitate was 20 isolated by filtration, washed with ice cold brine (30 mL), followed by a 2:1 petroleum ether/ethylether (30 mL) solution. The yellow solid was dried under vacuum overnight to leave 4-fluoro-3-cyanophenylhyrazine tin chloride (2.5 g).

To a suspension of 4-fluoro-3-cyanophenylhyrazine tin 25 chloride (0.9 g) in acetic acid (15 mL) was added the oxime (0.5 g). The reaction was brought to reflux overnight. The next day the acetic acid was evaporated and the residue was partitioned between ethylacetate and sodium bicarbonate (sat.). The aqueous was extracted by ethylacetate (4x20 mL). 30 The organic phase was washed with water, brine, dried over sodium sulfate, filtered and concentrated. Flash chromatography gave ethyl 1-(4-fluoro-3-cyanophenyl)-3-methyl-5-pyrazole carboxylate (0.7 g) as pure compound. CI mass spectrum z (rel. intensity) 274 (M+H, 100).

35 To a solution of acetone oxime (70 mg) in DMF (6 mL) was added potassium tert-butoxide (1.0M in THF, 1.1 mL). The reaction was stirred at rt for 15 minutes. A solution of ethyl 1-(4-fluoro-3-cyanophenyl)-3-methyl-5-pyrazole

carboxylate (0.2 g) in DMF (3 mL) was added to the oxime solution. The reaction was stirred at rt overnight. The next day the reaction was partitioned between ethylacetate and ammonium chloride (sat. in water), washed with brine, 4xH₂O, dried over sodium sulfate, filtered and concentrated. Flash chromatography gave 1-(4-isopropylideneaminoxy-3-cyanophenyl)-3-methyl-5-pyrazole carboxylate (0.18 g). CI mass z (rel. intensity) 327 (M+H, 100).

To a solution of 1-(4-isopropylideneaminoxy-3-cyanophenyl)-3-methyl-5-pyrazole carboxylate (0.18 g) in ethanol (5 mL) was added HCl (20%, 3 mL). The reaction was brought to reflux for 2.5 h, ethanol was evaporated and the residue was partitioned between ethylacetate and water, washed with 2xH₂O, dried over sodium sulfate, filtered and concentrated to give 1-(3-aminobenzisoxazole-5-yl)-3-methyl-5-pyrazole carboxylate (0.14 g). CI mass spectrum z (rel. intensity) 287 (M+H, 100).

To a solution of ethyl 1-(3-aminobenzisoxazole-5-yl)-3-methyl-5-pyrazole carboxylate (0.14 g) in THF (5 mL) was added NaOH (10% in water, 5 mL). The reaction was stirred at 60°C for 2 h, THF was evaporated, HCl (10% in water) was added dropwisely until the pH was between 4-5, partitioned between ethylacetate and water, washed with brine, dried over sodium sulfate, filtered and concentrated to give 1-(3-aminobenzisoxazole-5-yl)-3-methyl-5-pyrazole carboxylic acid (0.11 g). ESI mass spectrum z (rel. intensity) 259 (M+H, 100).

To a solution of the pyrazole carboxylic acid (55 mg) in DMF (5 mL) was added TEA (33 mg), 2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4ylamine (97 mg) and BOP reagent (141 mg). The reaction was stirred at 50°C overnight. The next day the reaction was partitioned between ethylacetate and water, washed with brine, 4xH₂O, dried over sodium sulfate, filtered, concentrated and flash chromatography to give amide (85 mg). ESI mass spectrum z (rel. intensity) 567 (M+Na, 100).

The amide was dissolved in TFA (3 mL). The resulting solution was brought to reflux for 1 h. TFA was evaporated, flash chromatographed to give the title compound (60 mg) as a

white solid. ESI mass spectrum z (rel. intensity) 489 (M+H, 100). mp 186°C.

Example 12-14

5 3-(1-Amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-
4-yl)aminocarbonyl]-1,2,3-triazole (Example 12), 3-(4-amino-
isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-
yl)aminocarbonyl]-1,2,3-triazole (Example 13), and 3-
10 (isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-
yl)aminocarbonyl]-1,2,3-triazole (Example 14)

To a solution of 7-aminoisoquinoline (7.0 g) in TFA (35 mL) at 0°C was added sodium nitrite (4.02 g) portionwise over a period of 30 minutes. The reaction was stirred at 0°C to 15 room temperature for 1.5 h. Water (3.5 mL) was added followed by portionwise addition of sodium azide (3.48 g) at 0°C over a period of 30 minutes. After the addition, the reaction was slowly warmed up to room temperature and stirred for 1 h. Two third of TFA was evaporated and the residue was cooled to 20 0°C. Sodium bicarbonate (sat. in water) was added dropwisely to the residue until the pH was about 8-9. After extraction with methylene chloride (4x60mL), the organic phase was combined, washed with water, brine, dried over sodium sulfate, filtered and concentrated to leave 7-azidoisoquinoline (7.5 g) 25 as a dark brown solid. CI mass spectrum z (rel. intensity) 171 (M+H, 100).

7-Azidoisoquinoline (7.20 g) was suspended in toluene (80 mL). Propargylaldehyde di-ethyl acetal (6.50 g) was added to the 7-azidoisoquinoline suspension. The reaction was stirred 30 at room temperature overnight. The next day the solvent was evaporated and the residue was put on flash chromatography to give a mixture (10.25 g) of regioisomeric triazole aldehyde di-ethyl acetal in a 3:2 ratio by NMR. The mixture was further purified by recrystallization to give 1,2,3-triazole 35 (6.50 g) as a pale yellow solid. CI mass spectrum z (rel. intensity) 299 (M+H, 100).

The acetal (1.5 g) was dissolved in TFA (50% in water, 15 mL). The resulting solution was stirred at room temperature

overnight. The next day the solvent was evaporated and the residue was partitioned between ethyl acetate and sodium bicarbonate (sat. in water), washed with water, brine, dried over sodium sulfate, filtered and concentrated to give 5 aldehyde (1.0 g) as a white solid. CI mass spectrum z (rel. intensity) 225 (M+H, 100).

To a solution of aldehyde (1.0 g) in methanol (25 mL) was added sodium cyanide (0.44 g), manganese (IV) oxide (6.30 g) and acetic acid (0.27 g). The reaction was stirred at room 10 temperature overnight. The next day the reaction was filtered through celite, the pad was washed with a solution of methanol in methylene chloride (50%). The filtrate was concentrated and partitioned between ethylacetate and sodium bicarbonate (sat. in water), washed with water, dried over sodium sulfate, 15 filtered and concentrated to give the carboxylate (0.75 g) as a pure compound. CI mass spectrum z (rel. intensity) 255 (M+H, 100).

To a solution of 2'-*tert*-butylaminosulfonyl-[1,1']-biphenyl-4-ylamine (132 mg) in methylene chloride (8 mL) was 20 added AlMe₃ (2.0 M in hexane, 0.6 mL). The resulting solution was stirred at room temperature for 20 minutes. A solution of carboxylate (100 mg) in methylene chloride (5 mL) was added. The reaction was stirred at room temperature overnight. The 25 next day the solvent was removed and HCl (10% in water, 5 mL) was added. The residue then was basified by the addition of sodium carbonate, partitioned between ethyl acetate and water, washed with sodium bicarbonate (sat. in water), water, dried over sodium sulfate, filtered and concentrated. Flash chromatography purification gave amide (110 mg) as a pure 30 compound. ESI mass spectrum z (rel. intensity) 549 (M+Na, 100).

The amide (20 mg) was dissolved in TFA (2 mL). The resulting solution was stirred at 80°C for 1 h. TFA was evaporated and the residue was purified on a flash 35 chromatography to give 3-(isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole (Example 14) as a pure compound. ESI mass spectrum z (rel. intensity) 471 (M+H, 100), mp 230 °C.

To a suspension of triazole (80 mg) in methylene chloride (8 mL) was added MCPBA (50 mg). The reaction was stirred at reflux for 1 h. The mixture became a clear solution and was cooled to room temperature. The solvent was removed and the residue partitioned between ethylacetate and sodium bicarbonate (sat. in water), washed with water, dried over sodium sulfate, filtered and concentrated to give the desired isoquinoline-N-oxide (65 mg). To a solution of isoquinolne-N-oxide (65 mg) in pyridine (5 mL) was added TsCl (60 mg). The resulting solution was stirred at room temperature overnight. The next day the solvent was stripped off to dryness, ethanol amine (3 mL) was added. The reaction was stirred at room temperature overnight. The next day, the reaction mixture was partitioned between ethylacetate and water, the equeous phase was extracted with ethyl acetate (3x15 mL). The extracts were combined, concentrated and flash chromatographed to give the tert-butylaminosulfonyl compound (50 mg). The tert-butylaminosulfonyl compound (50 mg) was refluxed in TFA (4 mL) for 1h and the TFA stripped off. The residue was partitioned between ethylacetate and sodium bicarbonate (sat. in water), washed with water, dried over sodium sulfate, filtered and concentrated, prep. TLC to give Example 12: 3-(1-amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl]-1,2,3-triazole) (20 mg). ESI mass spectrum z (rel. intensity) 486 (M+H, 100), mp 250 °C, and Example 13: 3-(4-amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl]-1,2,3-triazole (6 mg). ESI mass spectrum z (rel. intensity) 486 (M+H, 100), mp 245°C.

30

Example 15**1-(Quinol-2-ylmethyl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole**

The title compound was prepared analogously to Example 35 12. ESI mass spectrum z (rel. intensity) 484 (M+H, 100), mp 169°C

Example 16

1-(Quinol-2-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

5 The title compound was prepared analogously to Example
12. ESI mass spectrum z (rel. intensity) 484 (M+H, 100), mp
181°C.

Example 17

10 **1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole**

15 The title compound was prepared analogously to Example
12. ESI mass spectrum z (rel. intensity) 488 (M+H, 100), mp
203°C.

Example 18

1-(3-Aminoindazole-5-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

20 The title compound was prepared analogously to Example
12. ESI mass spectrum z (rel. intensity) 488 (M+H, 100), mp
197°C.

25 **Example 19**

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-phenyl)pyridy-2-ylaminocarbonyl]pyrazole

30 The title compound was prepared analogously to Example
12. ESI mass spectrum z (rel. intensity) 490 (M+H, 100), mp
188°C.

Example 20

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[isoquinol-7-yl)aminocarbonyl]pyrazole

The title compound was prepared analogously to Example 12. ESI mass spectrum z (rel. intensity) 385 (M+H, 100), mp 210°C.

5

Example 21

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

The title compound was prepared analogously to Example 10 12. ESI mass spectrum z (rel. intensity) 513 (M+H, 100), mp 201°C.

15
Example 22

1-(1'-Aminoisoquinol-7'-yl)-3-isopropyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

The title compound was prepared analogously to Example 12. ESI mass spectrum z (rel. intensity) 527 (M+H, 100), mp 165°C.

20

Example 23

1-(2',4'-Diaminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

25 The title compound was prepared analogously to Example 12. ESI mass spectrum z (rel. intensity) 515 (M+H, 100), mp 215°C.

30
Example 24

1-(4'-Aminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

The title compound was prepared analogously to Example 35 12. ESI mass spectrum z (rel. intensity) 500 (M+H, 100), mp 205°C.

Example 25

1-(1'-Aminoisoquinol-7'-yl)-3-methyl-5-[4-(N-pyrrolidinylcarbonyl)phenylaminocarbonyl]pyrazole, trifluoroacetic acid salt

5

Standard trimethylaluminum (Weinreb protocol) coupling of 4-carboxamidopyrrolidinophenyl-aniline with ethyl-N1-pyrazole(isoquinol-7-yl)-3-methyl-5-carboxylate, acidic workup and purification via silica gel column chromatography afforded 10 the desired coupled product in 50% yield. ^1H NMR (CDCl_3) δ : 9.20 (s, 1H), 8.89 (bs, 1H), 8.72 (d, 1H), 8.04 (s, 1H), 7.84 (d, 1H), 7.75 (dd, 1H), 7.66 (d, 1H), 7.45 (d, 2H), 7.37 (d, 2H), 6.80 (s, 1H), 3.60 (t, 2H), 3.39 (t, 2H), 2.40 (s, 1H), 1.84 (m-4H) ppm; ESI mass spectrum m/z (rel intensity) 426 (M+H, 100).

15 The isoquinoline product was then converted to the desired product following oxidation (MCPBA) and rearrangement (pTsCl/pyridine; ethanolamine) described previously. ^1H NMR (DMSO d_6) δ : 8.70 (s, 1H), 7.98 (bs, 2H), 7.75 (dd, 4H), 7.46 (d, 2H), 7.27 (d, 1H), 7.09 (s, 1H), 3.30 (b, 4H), 2.34 (s, 3H), 7.78 (b, 4H) ppm; ESI mass spectrum m/z (rel intensity) 441 (M+H, 100).

Example 26

25 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'--
methylsulfonyl-3-fluoro-[1,1']-biphen-4-
yl)aminocarbonyl]pyrazole**

30 Preparation of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid.

Method A:

35 To a suspension of 4-fluoro-3-cyanophenylhydrazine tin chloride (20 g, 53.6 mmol) in ethanol (150 mL) was added 1,1,1-trifluoro-2,4-pentanedione (8.18 g, 53.6 mmol). The reaction was brought to reflux overnight. The next day the ethanol was evaporated and the residue partitioned between ethyl acetate and HCl (1 N). The aqueous phase was extracted with ethyl acetate (4x 20 mL). The organic phase is washed

with water, brine, dried over sodium sulfate, filtered and concentrated. Flash chromatography gave 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-methylpyrazole (8 g, 56% yield) as pure compound: MS (CI): 270 (M+H)⁺ (100%).

5 To a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-methylpyrazole (4.0 g, 14.9 mmol) in CCl₄ (75 mL) was added NBS (5.3 g, 29.7 mmol) and benzoylperoxide (0.2 g, 1.49 mmol). The reaction was brought to reflux overnight. The next day the CCl₄ was evaporated and the 10 residue was partitioned between ethyl acetate and sodium bicarbonate (sat.). The organic phase was washed with water, brine, dried over sodium sulfate, filtered and concentrated. Flash chromatography gave 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-bromomethylpyrazole (2.6 g, 50% yield) as 15 pure compound: MS (CI): 348 (M+H)⁺ (100%).

To a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-bromomethylpyrazole (0.6 g, 1.72 mmol) in DMSO (10 mL) was added copper (I) oxide (0.52 g, 3.62 mmol) and water (3 mL). The reaction was stirred at 60 °C 20 overnight. The next day the reaction mixture was filtered through celite. The filtrate was partitioned between ethyl acetate and water. The organic was washed three times with water, brine, dried over sodium sulfate, filtered and concentrated to leave 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-hydroxymethyl pyrazole (0.45 g, 92% yield) 25 as pure compound: MS (CI): 286 (M+H)⁺ (100%).

To a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-hydroxymethylpyrazole (0.45 g, 1.58 mmol) in acetonitrile (10 mL) was added catalytic amount of ruthenium 30 chloride at 0 °C followed by addition of a solution sodium periodate (0.71 g, 3.32 mmol) in water. The reaction was stirred at 0 °C to room temperature overnight. The next day the acetonitrile was evaporated and the residue was 35 partitioned between ethyl acetate and water, washed with brine, dried over sodium sulfate, filtered and concentrated to give 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-hydroxycarbonylpyrazole (0.27 g, 57% yield) as pure compound: MS (ES-): 298 (M-H)⁻ (40%).

Method B:

To a suspension of 4-fluoro-3-cyanophenylhyrazine tin chloride (17 g, 50 mmol) in acetic acid (200 mL) was added 5 4,4,4-trifluoro-1-(2-furyl)-2,4-butanedione (10.3 g, 50 mmol). The reaction was brought to reflux overnight. The next day the acetic acid was evaporated and the residue was partitioned between ethyl acetate and water, washed with HCl (1N), water and brine, dried over sodium sulfate, filtered and 10 concentrated, flash chromatography to give 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-(2-furyl) pyrazole (7.0 g, 44% yield) as pure compound. MS (CI): 322 (M+H)⁺ (100%).

To a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-(2-furyl)pyrazole (4.0 g, 12.5 mmol) in 15 acetonitrile (30 mL) was added carbon tetrachloride (30 mL), ruthenium chloride (0.4 g) and a solution of sodium periodate (11.9 g, 56.1 mmol) in water (45 mL). The reaction is stirred at room temperature overnight. The next day the reaction mixture was filtered through celite. The filtrate was 20 concentrated and partitioned between ethyl acetate and HCl (1N). The organic phase was washed with water, dried over sodium sulfate, filtered and concentrated to give 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-hydroxycarbonyl pyrazole (2.4 g, 64% yield) as pure compound. MS (ES-): 298 (M-H)⁻ 25 (40%).

Preparation of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole.

30 To a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-hydroxycarbonylpyrazole (0.2 g, 0.67 mmol) in methylene chloride (10 mL) was added oxalyl chloride (0.84 g, 6.7 mmol) and one drop of DMF. The resulting solution was stirred at room temperature overnight. The next day the 35 solvent is evaporated and the residue is redissolved in methylene chloride and to the solution was added (2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)amine hydrochloride (0.2 g, 0.67 mmol) and DMAP (0.25 g, 2.01 mmol). The reaction

was stirred at room temperature overnight. The next day, methylene chloride was evaporated and the residue was partitioned between ethyl acetate and HCl (1N), washed with HCl (1N), sodium bicarbonate (sat.), brine and water, dried over sodium sulfate, filtered and concentrated to leave 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl] pyrazole (0.32 g, 87% yield) as pure compound. MS (ESI): 547 (M+H) (100%).

10 Preparation of 1-(3'-aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

To a solution of acetone oxime (86 mg, 1.18 mmol) in DMF (6 mL) was added sodium *t*-butoxide (1 M in THF, 1.18 mL). The mixture was stirred at room temperature for half hour followed by addition of a solution of 1-(4-fluoro-3-cyanophenyl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole (0.22 g, 0.39 mmol) in DMF (4 mL). The reaction was stirred at room temperature for 5 hours. The reaction mixture was then partitioned between ethyl acetate and HCl (5%), washed with HCl (5%), four times with water, brine, dried over sodium sulfate, filtered and concentrated. Flash chromatography (30% ethyl acetate/hexane) gave 1-(4-isopropylideneaminoxy-3-cyanophenyl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole (0.19 g, 81% yield) as pure compound: MS (ESI): 600 (M+H) (100%).

1- (4-Isopropylideneaminoxy-3-cyanophenyl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole (0.19 g, 0.32 mmol) was dissolved in ethanol (4 mL) and to the solution was added HCl (20%, 4 mL). The reaction mixture was stirred at 80 °C for three hours. The reaction mixture was cooled to room temperature. The white precipitate was filtered and recrystallized in methanol to give the title compound (0.14 g, 80% yield): MS (ESI): 501 (M+H) (100%).

Example 27

1-(1'-Aminophthalazin-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole

Preparation of 3-nitro-6-styrylbenzamide.

5 A mixture of 2-cyano-4-nitrotoluene (10 g, 6.17 mmol), benzaldehyde (6.51 g, 6.17 mmol) and potassium carbonate (20 g) in MeOH (200 mL) was heated at reflux for 10 min. The mixture was cooled to ambient temperature over 30 min, whereupon precipitation of the product was complete. The 10 product was isolated by filtration and washed successively with 1N HCl, water and MeOH then air dried. There was obtained 13.0 g of the benzamide (mp 269.8 °C) as evident from the lack of a nitrile adsorption in the IR and the appearance of peaks at 3357.1, 3193.6 (-NH₂) and 1648.7 cm⁻¹ (H₂NC(=O)-); 15 LRMS (M-NO)⁺ m/z = 238.

Preparation of 3-amino-6-styrylbenzamide.

The nitro compound prepared above (13 g, 48.41 mmol) and SnCl₂•H₂O (54.7 g, 240 mmol) were combined in EtOH and heated 20 at reflux for 1.5 h. The EtOH was removed by distillation in vacuo then 30% NaOH added. Extraction of this suspension with EtOAc followed by washing the organic extract with brine, drying (MgSO₄) and evaporation gave the product aniline (13.39 g); LRMS (M+H)⁺ m/z = 239.

25

Preparation of 3-hydrazino-6-styrylbenzamide.

The aniline (13 g, 54.6 mmol) from above was dissolved in conc. HCl (90 mL) and cooled to 0 °C. A solution of NaNO₂ (3.94 g) in water (45 mL) was added dropwise over 10 min and 30 the diazotization mixture left to stir at 0-5 °C for 1 h. After this time SnCl₂•H₂O (39 g) in water (170 mL) was added dropwise to the cold mixture over 30 min then allowed to thaw to ambient temperature over 3 h. The solid product was isolated by filtration, then the filter cake was washed with 35 water several times and air-dried to give the hydrazine contaminated with Sn (II) salts (10.9 g).

Preparation of ethyl 3-methyl-1-(3-amido-4-styrylphenyl)-1H-pyrazole-5-carboxylate.

The phenylhydrazine prepared above (3.2 g) and ethyl 2-N-(methoxy)imino-4-oxopentanoate (2.46 g, 13.18 mmol) in AcCN (30 mL) and AcOH (5 mL) were heated at reflux for 4 h. The reaction was cooled and diluted with EtOAc then washed repeatedly with satd. NaHCO₃ solution until the washings were basic. The mixture was evaporated and the dark oil left to stand until crystallization was complete. The solidified mass was triturated with 8:2 AcCN:water then filtered and air-dried. There was obtained 1.38 g of pyrazole; mp 162.6 °C; LRMS (M+H)⁺ m/z = 376.

Preparation of ethyl 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-carboxylate.

Ethyl 3-methyl-1-(3-amido-4-styrylphenyl)-1H-pyrazole-5-carboxylate (8.36 g, 22.3 mmol) in pyridine (50 mL) was cooled to 0 °C and methanesulfonyl chloride (7.67 g, 66.9 mmol) added dropwise over 10 min. The ice bath was removed and the reaction left to stir for 18 h. The reaction mixture was evaporated and the residue suspended in 1N HCl (200 mL) and MeOH (60 mL). The mixture was stirred vigourously for 15 min then filtered, washed with water and air-dried. There was obtained 6.23 g of nitrile; mp 128.3 °C.

Preparation of 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-carboxylic acid.

The ethyl ester (7.17 g, 20 mmol) in MeOH (100 mL) with 50% NaOH solution (10 mL) was stirred for 2 h at ambient temperature. After this time TLC (2:1 EtOAc:Hexane) indicated that all of the starting ester was consumed. Water (100 mL) was added and the solution acidified (pH = 1) by the addition of conc. HCl. The precipitated product was removed by filtration then washed with water and air-dried. There was obtained 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-carboxylic acid (5.9 g); mp 225.9 °C.

To 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-carboxylic acid (5.6 g, 17 mmol) in CHCl₃ (60 mL) and oxalyl

chloride (3 mL) was added a few drops DMF. The reaction bubbled vigorously and after 20 min, when the reaction had subsided, the solvent was removed by distillation *in vacuo* and pumped on for several hours to remove the last traces of HCl.

5 Complete conversion to the acid chloride was demonstrated by TLC (2:1 EtOAc:Hexane) by converting a small sample to the ethyl ester by treatment with EtOH and comparison with a previously prepared sample.

To the acid chloride (17 mmol) in CHCl₃ (100 mL) and 10 pyridine (170 mmol) was added 4-(2'-N-*t*-butylsulfamido)phenyl)aniline (5.2 g, 17.1 mmol). The reaction was stirred for 1 h at ambient temperature, then diluted with 1:1 EtOAc:n-BuCl (300 mL) and washed with 1N HCl until washings were acidic. The organic solution was dried and 15 evaporated to give 8.12 g of 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-(N-(4-(2'-*t*-butylsulfamido)phenyl)phenyl)carboxyamide; mp 130.3 °C; LRMS (M+Na)⁺ m/z = 638.2.

20 Preparation of 3-methyl-1-(3-cyano-4-formylphenyl)-1H-pyrazole-5-(N-(4-(2'-*t*-butylsulfamido)phenyl)phenyl)-carboxyamide.

A MeOH (200 mL) solution of 3-methyl-1-(3-cyano-4-styrylphenyl)-1H-pyrazole-5-(N-(4-(2'-*t*-butylsulfamido)phenyl)phenyl)carboxyamide was cooled to -78 °C and saturated with a stream of ozone. The solution was then purged with a stream of N₂ for 10 min and dimethylsulfide (3 mL) added. The mixture was allowed to come to ambient temperature than evaporated to dryness. The residue was 25 dissolved in EtOAc, washed with water (4 X) dried (MgSO₄) and evaporated. There was obtained 3.97 g of the aldehyde; LRMS (M+Na)⁺ m/z = 564.0.

Preparation of Example 27.

35 The above prepared carboxyamide (0.42 g, 0.78 mmol) with hydrazine hydrate (0.15 g, 3 mmol) and AcOH (0.28 g, 4.68 mmol) in benzene (25 mL) were heated at reflux under a Dean Stark trap for 18 h. The benzene solution was cooled to

ambient temperature and washed with water (3 x) and dried (MgSO₄) then evaporated. The residue was applied to a short column of flash silica and eluted with 1:1:0.078 EtOAc:Hexane:MeOH. The desired phthalazine product (0.1 g) was obtained in a mixture with 3-methyl-1-(3-amido-4-(formylhydrazone)phenyl)-1H-pyrazole-5-(N-(4-(2'-t-butylsulfamido)phenyl)phenyl)carboxyamide.

This mixture was heated at reflux with trifluoroacetic acid (10 mL) for 1 h, then evaporated. The mixture was separated by reverse phase hplc on a C18 column by eluting with a gradient of 20 % AcCN:Water with 0.05% TFA to 100% AcCN with 0.05% TFA over 30 min. At 9.83 min 3-methyl-1-(3-amido-4-(formylhydrazone)phenyl)-1H-pyrazole-5-(N-(4-(2'-sulfamido)phenyl)phenyl)carboxyamide (14 mg) was eluted; HRMS (M+H)⁺ found: 518.1634, calc.: 518.1610. At 10.76 min the target compound, example 27 (2.8 mg) was eluted; HRMS (M+H)⁺ found: 500.1511, calc.: 500.1505.

Example 28

3-(3'-Aminobenzisoxazol-5'-yl)-5-[[5-[(2'-aminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methylsulfonylaminomethyl)isoxazoline

Preparation of 3-(3-cyano-4-fluorophenyl)-5-(azidomethyl)-5-(carbomethoxy)isoxazoline

3-Cyano-4-fluorobenzaldehyde (5.00 g) and hydroxyamine hydrochloride (2.90 g, 1.25 Eq) were dissolved in ethanol (100 mL) and pyridine (100 mL). The mixture was stirred at RT under N₂ for 45 minutes. The solvents were removed and the brown oil was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over MgSO₄, and concentrated to give 3-cyano-4-fluorobenzaldehydeoxime (5.03 g). CI mass spectrum z (rel. intensity) 165 (M+H, 100).

Sodium azide (10.7 g) was added to a solution of methyl (2-bromomethyl)acrylate (20.0 g) in DMSO (200 mL). The mixture was stirred at RT under N₂ for 2 h. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over

MgSO₄, and concentrated to give methyl (2-azidomethyl)acrylate (14.1 g).

To a solution of 3-cyano-4-fluorobenzaldoxime (4.30 g) in CH₂Cl₂ (150 mL) was added methyl (2-azidomethyl)acrylate (4.33 g). The mixture was cooled to 0°C in an ice bath followed by dropwise addition of NaOCl (66 mL of 0.67 M aqueous solution) with vigorous stirring. After the addition, the reaction mixture was slowly warmed up to RT (2 h). The mixture was washed with water and brine, dried over sodium sulfate, and concentrated. The resulting solid was purified by chromatography on silica gel with CH₂Cl₂ to give 3-(3-cyano-4-fluorophenyl)-5-(azidomethyl)-5-(carbomethoxy)isoxazoline (2.45 g) as a pure compound. ¹H NMR (CDCl₃) δ 7.97 (m, 1H), 7.88 (m, 1H), 7.31 (t, 1H), 3.87 (s, 3H), 3.87-3.46 (m, 4H) ppm; NH₃-CI mass spectrum z (rel. intensity) 321 [(M+NH₄)⁺, 100].

Preparation of 3-(3-cyano-4-fluorophenyl)-5-(aminomethyl)-5-(carbomethoxy)isoxazoline, hydrochloride salt.

To a solution of 3-[3-cyano-4-fluorophenyl]-5-(azidomethyl)-5-(carbomethoxy)isoxazoline (2.14 g) in THF (50 mL) was added triethylphosphite (1.45 mL). The mixture was refluxed under N₂ for 5 h. The THF was removed, and the residue was dissolved in EtOAc and washed with water and brine. It was dried over MgSO₄ and concentrated to a yellow oil. This oil was then dissolved in 4N HCl in dioxane (30 mL) and refluxed for 4 h. The reaction mixture was cooled, and ether was added. The precipitate formed was filtered and dried to give 1.15 g of the hydrochloride salt. ¹H NMR (DMSO) δ 8.36 (bs, 2H), 8.21 (m, 1H), 8.09 (m, 1H), 7.68 (t, 1H), 4.02-3.80 (m, 2H), 3.78 (s, 3H), 3.70-3.37 (m, 2H) ppm; ESI mass spectrum z (rel. intensity) 279.9 (M+H, 100).

Preparation of 3-(3-cyano-4-fluorophenyl)-5-(methylsulfonylaminomethyl)-5-(carbomethoxy)isoxazoline.

To a solution of 3-(3-cyano-4-fluorophenyl)-5-(aminomethyl)-5-(carbomethoxy)isoxazoline hydrochloride salt (1.15 g) in CH₂Cl₂ (50 mL) was added triethylamine (1.27 mL)

and methanesulfonyl chloride (0.31 mL). The mixture was stirred at RT under N₂ for 1 h. The solvent was diluted with CH₂Cl₂ and washed with water, 1N aqueous HCl, and saturated aqueous NaHCO₃. It was dried over MgSO₄ and concentrated to a yellow solid (1.13 g). ¹H NMR (CDCl₃) δ 7.92 (m, 2H), 7.30 (t, 1H), 4.82 (t, 1H), 3.84 (s, 3H), 3.76-3.60 (m, 4H), 3.03 (s, 3H) ppm; ESI mass spectrum z (rel. intensity) 377.9 (M+H, 100).

10 Preparation of 3-(3-cyano-4-fluorophenyl)-5-(methysulfonylaminomethyl)-5-(hydroxycarbonyl)isoxazoline.

To a solution of 3-(3-cyano-4-fluorophenyl)-5-(methysulfonylaminomethyl)-5-(carbomethoxy)isoxazoline (1.13 g) in THF (50 mL) was added LiOH (3.50 mL of 1N aqueous solution). The mixture was stirred at RT under N₂ for 1/2 h. The solvent was removed, the resulting material was diluted with water and acidified with concentrated HCl. It was then extracted with EtOAc, and the organic solution was dried over MgSO₄ and concentrated to a light yellow foam (0.98 g). ¹H NMR (DMSO-d₆) δ 8.17 (m, 2H), 7.56 (t, 1H), 3.98-3.79 (m, 2H), 3.69 (bs, 2H), 3.01 (s, 3H) ppm; ESI mass spectrum z (rel. intensity) 339.8 (M-H, 100).

25 Preparation of 3-(3-cyano-4-fluorophenyl)-5-[5-[(2'-t-butylaminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methysulfonylaminomethyl)isoxazoline.

To a solution of 3-(3-cyano-4-fluorophenyl)-5-(methysulfonylaminomethyl)-5-(hydroxycarbonyl)isoxazoline (0.33 g) in CH₃CN (15 mL) was added oxalyl chloride (0.22 mL), followed by a few drops of DMF. The mixture was refluxed under N₂ for 1 h. The solvent was removed, toluene was added and then removed to dryness. The resulting solid was dried under vacuum. It was then dissolved in CH₂Cl₂ (20 mL) and [2-(t-butylaminosulfonyl)phenyl]-2-aminopyridine (0.30 g) was added followed by DMAP (0.30 g). The resulting mixture was stirred at RT under N₂ for 16 h. It was diluted with CH₂Cl₂ and washed with water and brine, dried over MgSO₄, and concentrated. The resulting solid was purified by

chromatography on silica gel with 1:1 EtOAc/CH₂Cl₂ to give 0.11 g of the desired product. ¹H NMR (CDCl₃) δ 9.43 (s, 1H), 8.40 (d, 1H), 8.25 (d, 1H), 8.17 (dd, 1H), 7.98-7.83 (m, 3H), 7.62-7.50 (m, 2H), 7.35-7.24 (m, 2H), 5.81 (t, 1H), 4.06 (s, 1H), 3.82 (m, 4H), 3.02 (s, 3H), 1.07 (s, 9H) ppm; ESI mass spectrum z (rel. intensity) 629.0 (M+H, 100).

Preparation of 3-(3'-Aminobenzisoxazol-5'-yl)-5-[[5-[(2'-aminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methylsulfonylaminomethyl)isoxazoline

To a solution of acetone oxime (28.0 mg) in DMF (2 mL) was added potassium *tert*-butoxide (1.0 M in THF, 0.44 mL) via syringe. The mixture was stirred at RT for 15 minutes, a solution of 3-(3-cyano-4-fluorophenyl)-5-[[5-[(2'-*t*-butylaminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methylsulfonylaminomethyl)isoxazoline (0.16 g) in DMF (2 mL) was added. The reaction mixture was stirred at RT overnight. Aqueous NH₄Cl was added to quench the reaction solution. The mixture was poured into water and extracted with EtOAc. The organic solution was washed with brine, dried over MgSO₄, and concentrated to an oil.

This oil was dissolved in ethanol (8 mL) and methanol (2 mL). Aqueous HCl (18%, 2 mL) was added. The mixture was heated at 80°C for 2 h. The solvents were removed and the residue was dissolved in CH₃CN and purified by HPLC (C18 reverse phase, eluted with 0.05% of TFA in H₂O/CH₃CN) to give 50 mg of white solid as TFA salt. ESI mass spectrum z (rel. intensity) 641.9 (M+H, 100).

The above solid was refluxed with 5 mL of TFA under N₂ for 1/2 h. The solvents were removed and the residue was dissolved in CH₃CN and purified by HPLC (C18 reverse phase, eluted with 0.05% of TFA in H₂O/CH₃CN) to give 31 mg of white solid as TFA salt. ¹H NMR (DMSO-d₆) δ 9.43 (s, 1H), 8.40 (d, 1H), 9.82 (s, 1H), 8.34 (d, 1H), 8.25 (s, 1H), 8.12-8.02 (m, 2H), 7.95-7.84 (m, 2H), 7.70-7.51 (m, 2H), 7.38 (m, 2H), 3.98-3.50 (m, 4H), 2.98 (s, 3H) ppm. ESI mass spectrum z (rel. intensity) 585.8 (M+H, 100).

Example 29

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole

5 Preparation of 2-fluoro-4-morpholinoaniline.

A solution of 2,4-difluoronitrobenzene (10.0 mL) and morpholine (17.4 mL) in THF (100 mL) was stirred at RT under N₂ for 2 h. The solvent was removed and the residue was partitioned between EtOAc and water. The organic layer was washed brine, dried over MgSO₄, and concentrated. The resulting solid was purified by chromatography on silica gel with 20-50% EtOAc in hexane to give 18.1 g of 4-fluoro-2-morpholinonitrobenzene and 1.81 g of 2-fluoro-4-morpholinonitrobenzene. ESI mass spectrum z (rel. intensity) 15 227.1 (M+H, 100).

2-Fluoro-4-morpholinonitrobenzene (1.80 g) was dissolved in methanol (100 mL) and 10% Pd/C (94 mg) was added. The mixture was placed in a hydrogenator (45 psi) for 2.5 h. The reaction mixture was filtered through celite and washed with methanol. The filtrate was concentrated to give 1.51 g solid. 20 ¹H NMR (CDCl₃) δ 6.76-6.54 (m, 3H), 3.84 (t, 4H), 3.45 (bs, 2H), 3.02 (t, 4H) ppm. ESI mass spectrum z (rel. intensity) 197.1 (M+H, 100).

25 Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-4-morpholinophenyl)-aminocarbonyl]pyrazole.

The title compound was prepared from 1-(3-cyano-4-fluorophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid and 30 2-fluoro-4-morpholinoaniline as a TFA salt by the same procedures described in Example 26. ¹H NMR (DMSO-d₆) δ 9.39 (s, 1H), 8.06 (d, 1H), 7.77-7.48 (m, 4H), 6.81-6.75 (m, 2H), 3.77 (t, 4H), 3.15 (t, 4H) ppm. ESI mass spectrum z (rel. intensity) 491.2 (M+H, 100).

35

Example 30

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-isopropylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.03 (s, 1H), 8.08 (d, 1H), 8.00 (d, 2H), 7.79-7.56 (m, 7H), 3.28 (m, 1H), 1.39 (d, 6H) 5 ppm. ESI mass spectrum z (rel. intensity) 496.3 (M+H, 100).

Example 31

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.48 (s, 1H), 8.08 (d, 1H), 8.00 (d, 2H), 7.79-7.56 (m, 7H), 3.00 (q, 2H), 1.29 (t, 3H) 10 ppm. ESI mass spectrum z (rel. intensity) 482.2 (M+H, 100).

Example 32

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

Preparation of 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]aniline.

To a solution of 4-fluoronitrobenzene (7.87 g) and 2-imidazole-carboxaldehyde (5.90 g) in DMF (60 mL) was added K₂CO₃ (9.26 g). The mixture was heated at 80°C under N₂ for 25 16 h. The mixture was poured into water, and the precipitate was filtered to give 6.70 g of yellow solid. The filtrate was then extracted with EtOAc, and the organic layer was washed brine, dried over MgSO₄, and concentrated to a yellow solid (5.40 g). Both batch were identified as the 4-[(2'-carboxaldehyde)imidazol-1'-yl]nitrobenzene. ESI mass spectrum z (rel. intensity) 218 (M+H, 100).

A mixture of 4-[(2'-carboxaldehyde)imidazol-1'-yl]nitrobenzene (3.00 g) and dimethylamine (32 mL of 40% aqueous solution) in methanol (50 mL) was stirred at RT under N₂ for 1/2 h. NaBH₄ (1.56 g) was added portion wise. After the addition was completed, the reaction mixture was heated at 35 56°C for 2 h. Brine was added to the reaction mixture, it was

then extracted with CH₂Cl₂. The organic solution was washed with brine, dried over MgSO₄, and concentrated to give 1.96 g of 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]nitrobenzene. ESI mass spectrum z (rel. intensity) 247.2 (M+H, 100).

5 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]nitrobenzene (1.96 g) was dissolved in methanol (100 mL) and 10% Pd/C (0.20 g) was added. The mixture was placed in a hydrogenator (30 psi) for 12 h. The reaction mixture was filtered through celite and washed with methanol. The filtrate was
10 concentrated. It was then purified by chromatography on silica gel with 20% methanol in CH₂Cl₂ to give 1.30 g of 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]aniline. ¹H NMR (CDCl₃) δ 7.25 (dd, 2H), 7.03 (d, 2H), 6.72 (d, 2H), 3.82 (bs, 2H), 3.36 (s, 2H), 2.24 (s, 6H) ppm. ESI mass spectrum z
15 (rel. intensity) 217.2 (M+H, 100).

Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

20 The title compound was prepared from 1-(3-cyano-4-fluorophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid and 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]aniline as a TFA salt by the same procedures described in Example 26. ¹H NMR (acetone-d₆) δ 10.39 (s, 1H), 8.07 (d, 1H), 7.93 (d, 2H), 7.76
25 (m, 1H), 7.56 (m, 5H), 7.36 (d, 1H), 4.59 (s, 2H), 3.00 (s, 6H), ppm. ESI mass spectrum z (rel. intensity) 511.2 (M+H, 100).

Example 33

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

Preparation of 4-(2'-methoxymethyl)imidazol-1'-yl]aniline
35 4-[(2'-Carboxaldehyde)imidazol-1'-yl]nitrobenzene (3.00 g) was dissolved in methanol (50 mL). NaBH₄ (1.56 g) was added portion wise. After the addition was completed, the reaction mixture was stirred at RT under N₂ for 12 h. The methanol was removed and water was added. The precipitate

formed was filtered and dried to give 1.90 g of 4-[(2'-hydroxymethyl)imidazol-1'-yl]nitrobenzene. ^1H NMR (DMSO-d₆) δ 8.39 (d, 2H), 7.91 (d, 2H), 7.58 (s, 1H), 7.06 (s, 1H), 5.60 (t, 1H), 4.48 (d, 2H). AP mass spectrum z (rel. intensity) 5 220.1 (M+H, 100).

4-[(2'-hydroxymethyl)imidazol-1'-yl]nitrobenzene (1.70 g) was dissolved in CH₂Cl₂. Triethylamine (1.62 mL) was added followed by methanesulfonyl chloride (0.76 mL). The mixture was stirred at RT under N₂ for 2.5 h. The solvent was 10 removed. The residue was dissolved in methanol (100 mL) and NaOMe (10 mL of 20% solution in methanol) was added. The reaction mixture was stirred at RT under N₂ for 12 h. The solvent was removed. The residue was partitioned between water and CH₂Cl₂. The organic solution was washed with brine, 15 dried over MgSO₄, and concentrated to give 1.60 g of 4-[(2'-methoxymethyl)imidazol-1'-yl]nitrobenzene. ^1H NMR (CDCl₃) δ 8.39 (d, 2H), 7.72 (d, 2H), 7.20 (s, 2H), 4.45 (s, 2H), 3.42 (s, 3H). ESI mass spectrum z (rel. intensity) 234.1 (M+H, 100).

4-[(2'-Methoxymethyl)imidazol-1'-yl]nitrobenzene (1.78 g) was dissolved in methanol (100 mL) and 10% Pd/C (0.20 g) was added. The mixture was placed in a hydrogenator (40 psi) for 20 h. The reaction mixture was filtered through celite and washed with methanol. The filtrate was concentrated. It was 25 then purified by chromatography on silica gel with 5% methanol in CH₂Cl₂ to give 0.67 g of 4-[(2'-methoxymethyl)imidazol-1'-yl]aniline. ^1H NMR (CDCl₃) δ 7.18 (d, 2H), 7.06 (d, 2H), 6.71 (d, 2H), 4.36 (s, 2H), 3.96 (bs, 2H), 3.35 (s, 3H) ppm. ESI mass spectrum z (rel. intensity) 204.2 (M+H, 100).

30

Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole.

The title compound was prepared from 1-(3-cyano-4-fluorophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid and 35 4-[(2'-methoxymethyl)imidazol-1'-yl]aniline as a TFA salt by the same procedures described in Example 26. ^1H NMR (acetone-d₆) δ 10.39 (s, 1H), 8.08 (d, 1H), 7.97 (d, 2H), 7.76 (m, 2H),

7.69 (m, 3H), 7.57 (m, 2H), 4.75 (s, 2H), 3.36 (s, 3H), ppm.
ESI mass spectrum z (rel. intensity) 498.2 (M+H, 100).

Example 34

5 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-[(2'-
dimethylaminomethyl)imidazol-1'-yl]-2-
fluorophenyl]aminocarbonyl]pyrazole**

Preparation of 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]-2-
10 fluoroaniline.

2-Imidazole-carboxaldehyde (1.00 g) and dimethylamine (10 mL of 40% aqueous solution) in methanol (10 mL) was stirred at RT under N₂ for 1/2 h. NaBH₄ (1.18 g) was added portion wise. After the addition was completed, the reaction mixture was
15 heated at 56°C for 2 h. Brine was added to the reaction mixture, it was then extracted with CH₂Cl₂. The organic solution was washed with brine, dried over MgSO₄, and concentrated to 2-(dimethylaminomethyl)imidazole as a yellow oil. ¹H NMR (CDCl₃) δ 6.97 (s, 2H), 3.61 (s, 2H), 2.28 (s,
20 6H) ppm.

The above oil was dissolved in DMF (10 mL) and KO-t-Bu (10.5 mL of 1M solution in THF) was added. The mixture was stirred at RT under N₂ for 1/2 h. It was then added dropwise to a solution of 2,4-difluoronitrobenzene (1.14 mL) in DMF (10 mL). The resulting mixture was stirred at RT under N₂ for 2 h. The mixture was poured into water and extracted with EtOAc. The organic layer was washed brine, dried over MgSO₄, and concentrated to a yellow oil. The resulting material was purified by chromatography on silica gel with EtOAc to give
25 1.11 g of a 1:5 mixture of 2-fluoro-4-[(2'-dimethylaminomethyl)imidazol-1'-yl]nitrobenzene and 4-fluoro-2-[(2'-dimethylaminomethyl)imidazol-1'-yl]nitrobenzene. ESI mass spectrum z (rel. intensity) 265.2 (M+H, 100).

The above mixture was dissolved in methanol (100 mL) and
30 10% Pd/C (0.15 g) was added. The mixture was placed in a hydrogenator (40 psi) for 8 h. The reaction mixture was filtered through celite and washed with methanol. The filtrate was concentrated. The two regioisomers were then

separated by HPLC (C18 reverse phase, eluted with 0.05% TFA in H₂O/CH₃CN) to give 80 mg of 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]-2-fluoroaniline and 0.48 g of 2-[(2'-dimethylaminomethyl)imidazol-1'-yl]-4-fluoroaniline.

5 ESI mass spectrum z (rel. intensity) 235.2 (M+H, 100).

Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole.

10 The title compound was prepared from 1-(3-cyano-4-fluorophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid and 4-[(2'-dimethylaminomethyl)imidazol-1'-yl]-2-fluoroaniline as a TFA salt by the same procedures described in Example 26. ¹H NMR (acetone-d₆) δ 9.95 (s, 1H), 8.20-8.09 (m, 2H), 7.78 (m, 1H), 7.59 (m, 4H), 7.44 (d, 1H), 7.36 (d, 1H), 4.68 (s, 2H), 3.05 (s, 6H), ppm. ESI mass spectrum z (rel. intensity) 529.2 (M+H, 100).

Example 35

20 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[[(2'-methoxy-4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole**

Preparation of 2-methoxy-4-(2'-methylimidazol-1'-yl)aniline.

25 A solution of 5-fluoro-2-nitrophenol (2.03 g) and 2-methylimidazole (2.14 g) in CH₃CN (50 mL) was stirred at reflux under N₂ for 16 h. The solvent was removed and the residue was purified by chromatography on silica gel with 0-10% MeOH in CH₂Cl₂ to give 2.21 g of 5-(2'-methylimidazol-1'-yl)-2-nitrophenol. ESI mass spectrum z (rel. intensity) 220.1 (M+H, 100).

30 5-(2'-Methylimidazol-1-yl)-2-nitrophenol (1.16 g) was dissolved in DMF (30 mL). To this solution was added K₂CO₃ (0.92 g) and iodomethane (0.33 mL) and the reaction mixture was stirred at RT under N₂ for 6 h. The reaction mixture was poured into 100 mL water and extracted with EtOAc (4 x 50 mL), dried over MgSO₄, and concentrated to give 0.25 g of 2-

methoxy-4-(2'-methylimidazol-1'-yl)nitrobenzene. ESI mass spectrum z (rel. intensity) 234.2 (M+H, 100).

2-Methoxy-4-(2'-methylimidazol-1'-yl)nitrobenzene (0.25 g) was dissolved in methanol (20 mL) and 10% Pd/C (29.3 mg) was added. The mixture was placed on a hydrogenator (40 psi) for 4 h. The reaction mixture was filtered and washed with methanol. The filtrate was concentrated to give 0.27 g of the title compound. ^1H NMR (CDCl_3) δ 2.32 (s, 3H, CH_3), 3.86 (s, 3H, OCH_3), 3.95 (bs, 2H, NH_2), 6.68 (t, 1H, $J=1.8$ Hz, aromatic H), 6.72 (m, 2H, aromatic H), 6.95 (d, 1H, $J=1.4$ Hz, imidazole H), 6.99 (d, 1H, $J=1.1$ Hz, imidazole H) ppm. ESI mass spectrum z (rel. intensity) 204.2 (M+H, 100).

Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methoxy-4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole.

The title compound was prepared from 1-(3-cyano-4-fluorophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid and 2-methoxy-4-(2'-methylimidazol-1'-yl)aniline as a TFA salt by the procedures described in Example 26. ^1H NMR (DMSO) δ 2.53 (s, 3H, CH_3), 3.82 (s, 3H, OCH_3), 7.17 (dd, 1H, $J=10.0$ Hz, $J=1.5$ Hz, aromatic H), 7.35 (d, 1H $J=1.4$, aromatic H), 7.58 (d, 1H, $J=8.8$, aromatic H), 7.60 (s, 1H, pyrazole H), 7.65 (d, 1H, $J=1.5$, aromatic H), 7.76 (d, 1H, $J=1.8$, imidazole H), 7.87 (d, 1H, $J=1.8$, imidazole H), 7.90 (bs, 1H, NH), 8.11 (d, 1H $J=1.4$, aromatic H), 10.15 (bs, 1H, $\text{CF}_3\text{CO}_2\text{H}$) ppm. ESI mass spectrum z (rel. intensity) 498.3 (M+H, 100).

Example 36

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(4-(2'-isopropylimidazol-1'-yl)-2-fluorophenyl)amino-carbonyl]pyrazole

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone- d_6) δ 10.02 (s, 1H), 8.28 (t, 1H), 8.11 (d, 1H), 7.82-7.56 (m, 7H), 3.33 (m, 1H), 1.40 (d, 6H) ppm. ESI mass spectrum z (rel. intensity) 514.2 (M+H, 100).

Example 37

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole

5

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 9.99 (s, 1H), 8.27 (t, 1H), 8.10 (d, 1H), 7.80-7.57 (m, 7H), 3.04 (q, 2H), 1.30 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 500.2 (M+H, 100).

10

Example 38

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole

15

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 9.63 (s, 1H), 8.28 (t, 1H), 7.98 (d, 1H), 7.72-7.48 (m, 6H), 7.03 (s, 1H), 3.04 (q, 2H), 2.73 (q, 2H), 1.31 (tt, 6H) ppm. ESI mass spectrum z (rel. intensity) 460.2 (M+H, 100).

20

Example 39

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

25

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO) δ 10.82 (s, 1H), 8.02-7.75 (m, 5H), 7.62-7.48 (m, 4H), 7.04 (s, 1H), 4.59 (s, 2H), 3.30 (s, 3H) ppm. ESI mass spectrum z (rel. intensity) 458.3 (M+H, 100).

30

Example 40

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

35

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (CD₃OD) δ 7.89 (d, 1H), 7.82 (d, 2H),

7.58 (dd, 2H), 7.50-7.48 (m, 3H), 7.28 (d, 5H), 6.96 (s, 1H), 4.35 (s, 2H), 2.81 (s, 6H), 2.78 (q, 2H), 1.37 (t, 3H) ppm.
ESI mass spectrum z (rel. intensity) 471.3 (M+H, 100).

5

Example 41

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-methyl)benzimidazol-1'-yl]phenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion
10 as TFA salt. ^1H NMR (acetone-d₆) δ 10.10 (s, 1H), 8.09 (d, 2H), 7.99 (d, 1H), 7.93 (d, 1H), 7.76-7.67 (m, 3H), 7.57-7.30 (m, 5H), 7.00 (s, 1H), 2.76 (q, 2H), 1.31 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 478.2 (M+H, 100).

15

Example 42

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-ethylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion
20 as TFA salt. ^1H NMR (acetone-d₆) δ 10.10 (s, 1H), 7.98 (m, 3H), 7.64 (m, 5H), 7.50 (d, 1H), 6.98 (s, 1H), 3.02 (q, 2H), 2.75 (q, 2H), 1.30 (tt, 6H) ppm. ESI mass spectrum z (rel. intensity) 442.2 (M+H, 100).

25

Example 43

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2,5-difluorophenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion
30 as TFA salt. ^1H NMR (acetone-d₆) δ 9.80 (s, 1H), 8.30-8.24 (m, 1H), 7.99 (d, 1H), 7.85-7.63 (m, 4H), 7.51 (d, 1H), 7.06 (s, 1H), 4.40 (bs, 2H), 2.70 (q, 2H), 2.68 (s, 3H), 1.26 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 464.2 (M+H, 100).

35

Example 44

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 9.08 (s, 1H), 7.94 (d, 1H), 7.64 (m, 2H), 7.47 (d, 1H), 6.92 (s, 1H), 6.78 (m, 2H), 5 4.07 (bs, 2H), 3.77 (t, 4H), 3.14 (t, 4H), 2.70 (q, 2H), 1.28 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 451.2 (M+H, 100).

Example 45

10 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-isopropylimidazol-1'-ylphenyl)aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 10.15 (s, 1H), 7.98 (m, 15 3H), 7.70-7.59 (m, 5H), 7.48 (d, 1H), 6.99 (s, 1H), 3.26 (m, 1H), 2.74 (q, 2H), 1.39 (d, 6H), 1.30 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 456.3 (M+H, 100).

Example 46

20 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-methylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 9.67 (s, 1H), 8.25 (t, 1H), 7.98 (dd, 1H), 7.71-7.48 (m, 6H), 7.04 (s, 1H), 2.72 (q, 2H), 2.69 (s, 3H), 1.31 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 446.2 (M+H, 100).

Example 47

30 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-amino-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.02 (s, 1H), 8.01 (d, 1H), 35 7.99 (s, 1H), 7.58 (m, 3H), 7.49 (t, 1H), 7.26 (tt, 2H), 7.17 (s, 1H), 7.06 (s, 1H), 6.91 (s, 1H), 6.82 (d, 1H), 2.71 (q, 2H), 1.28 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 540.2 (M+Na, 100).

Example 48

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-nitro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

5

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.91 (s, 1H), 8.01 (m, 1H), 7.92 (m, 1H), 7.70 (s, 1H), 7.62 (m, 2H), 7.47 (m, 4H), 7.36 (m, 2H), 7.04 (s, 1H), 6.50 (bs, 2H), 2.71 (q, 2H), 1.25 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 548.2 (M+H, 100).

Example 49

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole

15

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 10.13 (s, 1H), 8.00-7.95 (m, 3H), 7.68-7.61 (m, 5H), 7.48 (d, 1H), 6.99 (s, 1H), 2.74 (q, 2H), 2.67 (s, 3H), 1.29 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 428.2 (M+H, 100).

Example 50

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-dimethyl-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole

25

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (acetone-d₆) δ 9.31 (bs, 1H), 8.27 (d, 1H), 7.99 (d, 1H), 7.72 (dd, 1H), 7.51 (m, 2H), 7.36 (d, 1H), 6.94 (s, 1H), 4.70 (bs, 2H), 3.53 (bs, 4H), 2.73 (q, 2H), 2.62 (s, 6H), 1.92 (bs, 4H), 1.30 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 488.0 (M+H, 100).

Example 51

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-pyrrolidino-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 9.90 (s, 1H), 7.90 (s, 1H), 7.46 (m, 2H), 7.18 (d, 1H), 6.93 (s, 1H), 6.83 (m, 2H), 3.38 (m, 4H), 3.19 (bs, 4H), 2.64 (q, 2H), 1.78 (m, 8H), 1.24 (t, 5H) ppm. ESI mass spectrum z (rel. intensity) 513.9 (M+H, 100).

Example 52

10 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (CDCl₃) δ 8.35 (m, 1H), 8.06 (m, 1H), 7.68 (s, 1H), 7.57 (dd, 1H), 7.43 (d, 1H), 7.25 (m, 2H), 6.85 (s, 1H), 4.64 (bs, 2H), 3.61 (t, 2H), 3.40 (t, 2H), 2.76 (q, 2H), 1.90 (m, 4H), 1.28 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 463.0 (M+H, 100).

Example 53

20 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.32 (s, 1H), 8.01-7.94 (m, 2H), 7.63-7.44 (m, 5H), 7.40-7.23 (m, 4H), 7.15 (dd, 1H), 7.01 (s, 1H), 2.67 (q, 2H), 1.25 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 542.9 (M+Na, 100).

Example 54

30 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[5-[(2'-methylsulfonyl)phenyl]pyrimid-2-yl]aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 11.34 (s, 1H), 8.68 (s, 2H), 8.13 (dd, 1H), 7.96 (d, 1H), 7.80 (m, 2H), 7.64 (m, 2H), 7.10 (s, 1H), 3.05 (s, 3H), 2.70 (q, 2H), 1.29 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 525.9 (M+Na, 100).

Example 55

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[[2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]pyrazole

5

The title compound was prepared in an analogous fashion as TFA salt. ^1H NMR (DMSO-d₆) δ 10.33 (s, 1H), 8.07 (d, 1H), 7.96 (s, 1H), 7.78-7.61 (m, 3H), 7.55-7.47 (m, 2H), 7.41 (d, 1H), 7.21 (s, 1H), 7.04 (s, 1H), 2.90 (s, 3H), 2.70 (q, 2H), 1.28 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 541.9 (M+Na, 100).

Example 56

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[5-[(2'-aminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion as mesylate salt. ^1H NMR (CD₃OD) δ 8.51 (dd, 1H), 8.36 (d, 1H), 8.15 (d, 1H), 7.93 (d, 1H), 7.81 (d, 1H), 7.70 (m, 3H), 7.48 (m, 2H), 7.32 (s, 1H), 2.83 (q, 2H), 1.39 (t, 3H) ppm. ESI mass spectrum z (rel. intensity) 502.0 (M-H, 100).

Example 57

1-(3'-Aminobenzisoxazol-5'-yl)-5-[[[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-tetrazole carboxylate.

To a suspension of 2-fluoro-5-nitrobenzonitrile (5.20 g) in ethanol (150 mL) was added 5% Pd/C (1.00 g). The reaction was placed on a hydrogenator (50 psi) for 10 minutes. The reaction mixture was filtered through celite and the filtrate evaporated to give 4.25 g of 5-amino-2-fluorobenzonitrile. ^1H NMR (CDCl₃) δ 3.75 (bs, 2H, NH₂), 6.83 (m, 2H, aromatic H), 6.99 (m, 1H, aromatic H). GC mass spectrum z (rel. intensity) 137 (M+H, 100).

To a solution of 5-amino-2-fluorobenzonitrile (3.75 g) and Et₃N (4.22 mL) in CH₂Cl₂ (100 mL) was added ethyloxalyl

chloride (3.08 mL) in a dropwise fashion over 10 minutes. The reaction was stirred at RT under N₂ for 1.5 h. The reaction mixture was washed with water (2 x 50 mL) and brine (1 x 50 mL), filtered through phase separatory paper and evaporated.

5 The residue was dissolved in 20 mL of CH₂Cl₂ and 100 mL of hexane was added. The solution was allowed to stand at RT for the weekend. The precipitate was filtered, rinsed with hexane, and dried under vacuum to give 5.43 g of 1-(3-cyano-4-fluorophenyl)-oxoacetic acid ethyl ester. ¹H NMR (CDCl₃) δ 10 1.44 (t, 3H, J=7.2 Hz, OCH₂CH₃), 4.44 (q, 2H, J=7.0 Hz, OCH₂CH₃), 7.26 (t, 1H, J=3.8 Hz, aromatic H), 7.82 (m, 1H, aromatic H), 8.04 (m, 1H, aromatic H), 8.97 (bs, 1H, NH). DCI mass spectrum z (rel. intensity) 237.1 (M+H, 6.6), 254.0 (M+Na, 100).

15 A solution of triphenylphosphine (10.89 g) in CCl₄ (100 mL) was stirred at 0° C for 30 minutes. 1-(3-Cyano-4-fluorophenyl)-oxoacetic acid ethyl ester (4.86 g) in CCl₄ (50 mL) was added and the reaction was stirred at reflux under N₂ for 16 h. The reaction was cooled to RT and the precipitate 20 was filtered off. The filtrate was evaporated and dissolved in CH₃CN (200 mL). Sodium azide (1.34 g) was added and the reaction stirred at RT under N₂ for 16 h. The solvent was evaporated and the residue was taken up in EtOAc (100 mL). The organic solution was washed with water (2 x 50 mL) and 25 brine (1 x 50 mL), dried over MgSO₄, and evaporated. The crude material was purified by silica gel chromatography eluting with CH₂Cl₂ to give 1.85 g of the title compound. ¹H NMR (CDCl₃) δ 1.44 (t, 3H, J=7.1 Hz, OCH₂CH₃), 4.50 (q, 2H, J=7.1 Hz, OCH₂CH₃), 7.47 (t, 1H, J=3.8 Hz, aromatic H), 7.81 30 (m, 1H, aromatic H), 7.87 (m, 1H, aromatic H).

Preparation of 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole.

35 To a solution of [(2'-methylaminosulfonyl)-3-fluoro-[1,1']-biphen-4-yl]amine (0.23 g) in anhydrous CH₂Cl₂ (15 mL) was added trimethylaluminum (1.60 mL, 2M in heptane). The reaction was stirred at RT under N₂ for 15 minutes. A

solution of ethyl 1-(3-cyano-4-fluorophenyl)-5-tetrazole carboxylate (0.20 g) in anhydrous CH₂Cl₂ (10 mL) was added and the reaction was stirred at RT under N₂ for 16 h. The reaction was quenched with 5 mL of 1N HCl and diluted with 5 CH₂Cl₂ (30 mL). The organic solution was washed with water (2 x 25 mL) and brine (1 x 25 mL), filtered through phase separatory paper, and evaporated to give 0.21 g of 1-(3'-cyano-4'-fluorophenyl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole. ESI mass spectrum 10 z (rel. intensity) 479.1 (M-H, 100).

To a solution of acetone oxime (59.3 mg) in 5 mL of anhydrous DMF was added potassium tert-butoxide (1.20 mL, 1M in THF) and the mixture stirred at RT under N₂ for 15 minutes. A solution of 1-(3'-cyano-4'-fluorophenyl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole (0.19 g) in 10 mL of anhydrous DMF was added and the reaction was stirred at RT under N₂ for 16 h. The reaction was quenched with saturated aqueous NH₄Cl, poured into 50 mL of water, and extracted with EtOAc (3 x 50 mL). The combined organic solution was washed with water (2 x 25 mL) and brine (1 x 25 mL), dried over MgSO₄, and evaporated. The crude material was purified by silica gel chromatography eluting with 2% MeOH in CH₂Cl₂ to give 0.11 g of a white solid. To a suspension of this solid (0.10 g) in 25 10 mL of EtOH was added 4 mL of 18% aqueous HCl. The solution was stirred at 80° C under N₂ for 1 h, then cooled to RT. The resulting precipitate was filtered and dried under vacuum to give 71.7 mg of 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole. ¹H NMR (DMSO-d₆) δ 2.93 (s, 3H, CH₃), 6.66 (bs, 2H, NH₂), 7.25 (d, 1H, J=9.8 Hz, aromatic H), 7.41 (t, 2H, J=8.0 Hz, aromatic H), 7.70 (m, 3H, aromatic H), 7.77 (t, 1H, J=6.2 Hz, aromatic H), 7.89 (d, 1H, J=9.0 Hz, aromatic H), 8.09 (d, 1H, J=6.6 Hz, aromatic H), 8.20 (s, 1H, aromatic H), 11.26 (s, 1H, NH). ESI mass spectrum z (rel. intensity) 492.1 (M-H, 100).

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole (58.2 mg)

was dissolved in 20 mL of MeOH and a solution of methanesulfonic acid (1.18 mL, 0.1M in THF) was added. The reaction was stirred at RT under N₂ for 2 h and evaporated. The residue was dissolved in water and evaporated to give 55.6 mg of the title compound as the mesylate salt. ¹H NMR (DMSO-d₆) δ 2.37 (s, 3H, CH₃SO₃H), 2.93 (s, 3H, CH₃), 7.26 (d, 1H, J=7.6 Hz, aromatic H), 7.40 (d, 1H, J=9.2 Hz, aromatic H), 7.42 (d, 1H, J=11.1 Hz, aromatic H), 7.72 (m, 3H, aromatic H), 7.78 (m, 1 H, aromatic H), 7.89 (dd, 1H, J=9.0 Hz, J=2.0 Hz, aromatic H), 8.10 (d, 1H, J=7.9 Hz, aromatic H), 8.21 (d, 1H, J=1.9 Hz, aromatic H), 11.27 (s, 1H, CH₃SO₃H). APCI mass spectrum z 494.1 (M+H). HRMS (Q-TOF) calc. 494.104677, obs. 494.105900.

15

Example 58**1-(3'-Aminobenzisoxazol-5'-yl)-5-[[4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]tetrazole**

The title compound was prepared in an analogous fashion as the TFA salt. ¹H NMR (DMSO-d₆) δ 6.65 (bs, 2H, NH₂, 7.62 (d, 2H, J=9.1 Hz, aromatic H), 7.70 (d, 1H, J=8.8 Hz, aromatic H), 7.75 (d, 1H, J=2.2 Hz, aromatic H), 7.86 (d, 1 H, J=2.2 Hz, imidazole H), 7.93 (dd, 1H, J=9.0 Hz, J=2.0 Hz, imidazole H), 8.00 (d, 2H, J=9.1 Hz, aromatic H), 8.19 (d, 1H, J=2.2 Hz, aromatic H), 11.72 (s, 1H, CF₃CO₂H). ESI mass spectrum z (rel. intensity) 402.2 (M+H, 100).

30

Example 59**1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole**

The title compound was prepared in an analogous fashion as the TFA salt. ¹H NMR (DMSO-d₆) δ 6.65 (bs, 2H, NH₂), 7.27 (bs, 2H, NH₂), 7.30 (d, 1H, J=7.3 Hz, aromatic H), 7.38 (d, 2H, J=8.4 Hz, aromatic H), 7.59 (m, 2H, aromatic H), 7.71 (d, 1 H, J=9.1 Hz, aromatic H), 7.77 (d, 2H, J=8.4 Hz, aromatic H), 7.90 (d, 1H, J=8.8 Hz, aromatic H), 8.20 (s, 1H, aromatic

H), 11.49 (s, 1H, CF₃CO₂H). ESI mass spectrum z (rel. intensity) 474.9 (M-H, 100).

Example 60

5 **1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl)aminocarbonyl]tetrazole**

The title compound was prepared in an analogous fashion as the TFA salt. ¹H NMR (DMSO-d₆) δ 1.83 (m, 4H, CH₂), 3.39 (t, 2H, J=6.2 Hz, CH₂), 3.45 (t, 2H, J=6.4 Hz, CH₂), 6.65 (bs, 2H, NH₂), 7.39 (d, 1H, J=8.5 Hz, aromatic H), 7.47 (dd, 1H, J=11.0 Hz, J=1.8 Hz, aromatic H), 7.70 (d, 2H, J=8.7 Hz, aromatic H), 7.86 (dd, 2H, J=9.2 Hz, J=1.8 Hz, aromatic H), 8.20 (d, 1H, J=1.8 Hz, aromatic H), 11.25 (s, 1H, CF₃CO₂H).
10 ESI mass spectrum z (rel. intensity) 436.8 (M+H, 100). HRMS (Q-TOF) calc. 437.148590, obs. 437.149700.

Example 61

20 **1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2-(N-pyrrolidino)-4-(N-pyrrolidinocarbonyl)phenyl)aminocarbonyl]tetrazole**

The title compound was prepared in an analogous fashion as the TFA salt. ¹H NMR (DMSO-d₆) δ 1.84 (m, 8H, CH₂), 3.17 (m, 4H, CH₂), 3.41 (m, 4H, CH₂), 6.95 (d, 1H, J=7.7 Hz, aromatic H), 7.02 (s, 1H, aromatic H), 7.46 (t, 1H, J=8.4 Hz, aromatic H), 7.71 (d, 2H, J=8.7 Hz, aromatic H), 7.86 (dd, 2H, J=8.8 Hz, J=1.8 Hz, aromatic H), 8.20 (d, 1H, J=2.2 Hz, aromatic H), 10.69 (s, 1H, CF₃CO₂H). ESI mass spectrum z (rel. intensity) 488.1 (M+H, 100).
30

Example 62

35 **1-(1'-Amino-isoquinol-7'-yl)-5-[[[2'-aminosulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole, trifluoroacetate salt**

Preparation of Ethyl 1-(isoquinol-7'-yl)-5-tetrazole carboxylate.

7-Aminoisoquinoline (4.81 g, 33.4 mmol) (*J. Chem. Soc.* 1951, 2851) was dissolved in 100 mL of dichloromethane under a nitrogen atmosphere. Triethylamine (5.60 mL, 40.2 mmol, 1.2 eq.) was added to the isoquinoline solution. Ethyl 5 oxalylchloride (4.10 mL, 36.7 mmol, 1.1 eq.) was added dropwise over 30 minutes and the reaction was stirred for 60 min. at ambient temperature. The solution was diluted with 100 mL of dichloromethane, washed with water (2 x 50 mL) and brine (1 x 50 mL), filtered through phase separatory paper, 10 and evaporated to give a pale yellow solid. This solid was dissolved in 50 mL of dichloromethane and hexanes (100 mL) was added. The resulting precipitate was isolated by filtration and dried under vacuum to give [(isoquinol-7'-yl)amino]- 15 oxoacetic acid, ethyl ester as an off-white solid (7.60 g, 93% yield). ^1H NMR (CDCl_3) δ 1.47 (t, 3H, $J=7.1$ Hz, OCH_2CH_3), 4.47 (q, 2H, $J=7.2$ Hz, OCH_2CH_3), 7.63 (d, 1H, $J=5.5$ Hz, aromatic H), 7.78 (dd, 1H, $J=8.9$ Hz, $J=2.0$ Hz, aromatic H), 7.86 (d, 1H, $J=8.8$ Hz, aromatic H), 8.50 (d, 1H, $J=1.9$ Hz, aromatic H), 8.52 (d, 1H, $J=5.8$ Hz, aromatic H), 9.13 (bs, 1H, NH), 9.27 (s, 1H, aromatic H). $\text{C}_{13}\text{H}_{12}\text{N}_2\text{O}_3$ 244.25

A solution of triphenylphosphine (17.65 g, 67.3 mmol, 2 eq.) in 500 mL of carbon tetrachloride was stirred at 0° C for 60 minutes. [(Isoquinol-7'-yl)amino]-oxoacetic acid, ethyl ester (8.15 g, 33.4 mmol) was added and heated at reflux for 25 16 hours. The solution was cooled to ambient temperature and the precipitate was filtered off. The filtrate was evaporated to dryness and dissolved in 125 mL of acetonitrile. Sodium azide (2.17 g, 33.4 mmol) was added and the reaction mixture was stirred for 16 hours at ambient temperature. The solvent 30 was evaporated and the resulting residue was dissolved in 200 mL of ethyl acetate. The ethyl acetate solution was washed with water (2 x 100 mL) and brine (1 x 50 mL), dried over magnesium sulfate, and evaporated. The crude material was purified by silica gel flash chromatography eluting with 1:1 35 ethyl acetate to hexane to give the title compound as an off-white solid (3.85 g, 43% yield). ^1H NMR (CDCl_3) δ 1.23 (t, 3H, $J=7.7$ Hz, OCH_2CH_3), 4.39 (q, 2H, $J=7.1$ Hz, OCH_2CH_3), 7.98 (d, 1H, $J=5.5$ Hz, aromatic H), 8.07 (dd, 1H, $J=8.8$ Hz, $J=2.2$

Hz, aromatic H), 8.24 (d, 1H, $J=8.7$ Hz, aromatic H), 8.55 (d, 1H, $J=1.4$ Hz, aromatic H), 8.69 (d, 1H, $J=5.5$ Hz, aromatic H), 9.47 (s, 1H, aromatic H). C₁₃H₁₁N₅O₂ 269.26

5 Preparation of 1-(1'-Amino-isoquinol-7'-yl)-5-[(2'-aminosulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole, trifluoroacetate salt.

To a solution of (2'-*tert*-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)amine (0.40 g, 1.24 mmol) in 15 mL of anhydrous dichloromethane under nitrogen was added trimethyl aluminum (3.00 mL, 6.00 mmol, 2M in heptane). The solution was stirred for 15 minutes at ambient temperature. Ethyl 1-(isoquinol-7'-yl)-5-tetrazole carboxylate (0.35 g, 1.30 mmol) in 15 mL of anhydrous dichloromethane was added slowly and the reaction mixture was allowed to stir for 16 hours at ambient temperature. The reaction was quenched with 5 mL 1N hydrochloric acid and diluted with 20 mL dichloromethane. The phases were separated and the dichloromethane phase was washed with water (2 x 20 mL) and brine (1 x 20 mL), dried over magnesium sulfate, and evaporated. The crude material was purified by silica gel flash chromatography eluting with 0-30% ethyl acetate in dichloromethane to give 1-(isoquinol-7'-yl)-5-[(2'-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]tetrazole as a pale yellow solid (0.23 g, 33% yield). ¹H NMR (CDCl₃) δ 1.05 (s, 9H, *tert*-butyl), 7.29 (d, 3H, $J=1.6$ Hz, aromatic H), 7.42 (dd, 1H, $J=11.3$ Hz, $J=1.8$ Hz, aromatic H), 7.52 (td, 1H, $J=4.0$ Hz, $J=1.4$ Hz, aromatic H), 7.56 (td, 1H, $J=7.4$ Hz, $J=1.5$ Hz, aromatic H), 7.81 (d, 1H, $J=5.8$ Hz, aromatic H), 7.89 (dd, 1H, $J=8.8$ Hz, $J=2.2$ Hz, aromatic H), 8.07 (d, 1H, $J=8.8$ Hz, aromatic H), 8.16 (dd, 1H, $J=7.7$ Hz, $J=1.5$ Hz, aromatic H), 8.31 (bs, 1H, NH), 8.34 (t, 1H, $J=8.0$ Hz, aromatic H), 8.72 (d, 1H, $J=5.9$ Hz, aromatic H), 9.42 (s, 1H, aromatic H), 9.47 (bs, 1H, NH). MS (ES+): 546.3 (M+H)⁺. C₂₇H₂₄FN₇O₃S 545.57

35 1-(Isoquinol-7'-yl)-5-[(2'-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]tetrazole (0.12 g, 0.220 mmol) was dissolved in 50 mL of dichloromethane. *meta*-Chloroperbenzoic acid ($\geq 60\%$) (90.1 mg, 0.313 mmol, 1.4 eq) was

added and the reaction mixture was refluxed for 4 hours. The solution was poured into 20 mL of saturated sodium bicarbonate. The phases were separated and the aqueous layer was extracted with dichloromethane (2 x 25 mL). The combined 5 organic solution was washed with water (2 x 20 mL) and brine (1 x 25 mL), filtered through phase separatory paper, and evaporated to give the N-oxide as an off-white solid. MS (ES+): 584.2 (M+Na)⁺. The N-oxide was dissolved in 10 mL of anhydrous pyridine and tosyl chloride (63.3 mg, 0.332 mmol) 10 was added. The reaction was stirred at ambient temperature for 3 hours. The pyridine was removed under reduced pressure and to the residue was added 10 mL ethanolamine and the reaction mixture was stirred at ambient temperature for 3 hours. The reaction mixture was poured onto cracked ice and 15 extracted with ethyl acetate (3 x 50 mL). The combined organic solution was washed with brine (1 x 50 mL), dried over magnesium sulfate, and evaporated to give a yellow foam. This foam was dissolved in 20 mL of dichloromethane and evaporated to give the 1-aminoisoquinoline product as a pale yellow solid 20 (0.07 g, 57% yield). ¹H NMR (CDCl₃) δ 1.06 (s, 9H, *tert*-butyl), 4.01 (bs, 1H, NH), 5.42 (bs, 2H, NH₂), 7.13 (d, 1H, J=5.8 Hz, aromatic H), 7.26 (m, 2H, aromatic H), 7.38 (dd, 1H, J=11.4 Hz, J=1.8 Hz, aromatic H), 7.50 (td, 1H, J=7.3 Hz, J=1.5 Hz, aromatic H), 7.58 (td, 1H, J=7.3 Hz, J=1.5 Hz, aromatic H), 7.78 (dd, 1H, J=8.7 Hz, J=2.2 Hz, aromatic H), 7.88 (d, 1H, J=8.8 Hz, aromatic H), 8.05 (d, 1H, J=5.9 Hz, aromatic H), 8.16 (d, 1H, J=8.1 Hz, aromatic H), 8.18 (s, 1H, aromatic H), 8.30 (t, 1H, J=8.2 Hz, aromatic H). MS (ES+) 561.2 (M+H)⁺. C₂₇H₂₅FN₈O₃S 560.59

30 The 1-aminoisoquinoline compound was dissolved in 5 mL of trifluoroacetic acid and the reaction brought to reflux for 90 minutes. The solvent was removed and the residue was dissolved in acetonitrile and purified by HPLC (C18 reverse phase, eluting with acetonitrile and water with 0.05% 35 trifluoroacetic acid added). Evaporation of the solvents gave the title compound as a white solid (45.4 mg, 59% yield). ¹H NMR (DMSO-d₆) δ 7.22 (d, 1H, J=8.0 Hz, aromatic H), 7.34 (d, 3H, J=6.9 Hz, aromatic H), 7.44 (bs, 1H, NH), 7.62 (m, 4H,

aromatic H), 7.82 (d, 1H, $J=7.0$ Hz, aromatic H), 8.02 (d, 1H, $J=6.6$ Hz, aromatic H), 8.18 (d, 1H, $J=8.8$ Hz, aromatic H), 8.28 (d, 1H, $J=8.4$ Hz, aromatic H), 8.96 (bs, 1H, NH), 11.38 (bs, 1H, CF₃CO₂H). MS (APCI+) 505.3 (M+H)⁺. HRMS (ES+) for C₂₃H₁₇FN₈O₃S calc. (M+H)⁺ 505.1206; found 505.1221.

Example 63

1-(1'-Amino-isoquinol-7'-yl)-5-[[[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole, mesylate salt

10

The title compound was prepared in an analogous fashion as the mesylate salt. ¹H NMR (DMSO-d₆) δ 2.30 (s, 3H, CH₃), 2.94 (s, 3H, CH₃), 7.26 (d, 1H, $J=9.9$ Hz, aromatic H), 7.36 (d, 1H, $J=8.7$ Hz, aromatic H), 7.42 (d, 2H, $J=5.8$ Hz, aromatic H), 7.65 (t, 1H, $J=7.7$ Hz, aromatic H), 7.72 (d, 1H, $J=7.7$ Hz, aromatic H), 7.77 (d, 1H, $J=5.9$ Hz, aromatic H), 8.08 (d, 1H, $J=6.6$ Hz, aromatic H), 8.20 (d, 1H, $J=8.8$ Hz, aromatic H), 8.32 (dd, 1H, $J=5.8$ Hz, $J=1.8$ Hz, aromatic H), 8.98 (bs, 1H, NH), 11.42 (bs, 1H, CH₃SO₃H). MS (APCI) 504.2 (M+H)⁺. HRMS (Q-TOF) for C₂₄H₁₈FN₇O₃S calc. (M+H)⁺ 504.125413; found 504.124200.

Example 64

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'aminosulfonylphenyl)pyrimidin-2-yl]aminocarbonyl]pyrazole

The pyrazole carboxylic acid obtained in example 11 was subjected to the standard acid chloride coupling protocol with amino-2'-t-butylaminosulfonylphenyl-pyrimidin-2-yl to afford 30 the coupled pyrimidyl amide precursor. This compound was then treated with acetoneoxime (NaH/DMF) followed by acid hydrolysis as per example 11 to afford the amino benzisoxazole derivative. Removal of the tert-butyl group by treatment with TFA (1 mL) at 100°C followed by purification via reverse 35 phasew preparation HPLC (acetonitrile/water: 2%TFA) and lyophilization afforded the titled compound as colorless crystals. ESI mass spectrum m/z (relative intensity) 545 (M+H, 100).

Example 65**1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4'-(2''-methylimidazol-1''-yl)phenyl]aminocarbonyl]pyrazole, TFA salt**

5

To a suspension of NaH (4.8 g, 120 mmol, prewashed with THF (3 x 5 mL) in THF (100 mL) was added a solution of 1-fluoro-4-nitrobenzene (14.1 g, 100 mmol) and 2-methylimidazole (8.2 g, 100 mmol) in THF (50 mL) at 0 °C. The mixture was refluxed for 16 hours and cooled to room temperature. To it was added EtOAc (200 mL) and water (100 mL). The organic layer was separated, washed with water and brine, dried over MgSO₄, and concentrated to give the crude nitro compound. A solution of the nitro intermediate in MeOH (200 mL) was treated with hydrogen gas in a balloon in the presence of 5% Pd on carbon (1.5 g) at room temperature for 24 hours. The mixture was filtered and the filtrate was concentrated to give 4-(2'-methylimidazol-1'-yl)aniline (16.5 g, 95.4% for the two steps) as a pale yellow solid. ¹H NMR (CDCl₃) δ 7.05 (dd, J = 6.4 Hz, J = 2.1 Hz, 2H), 6.98 (d, J = 1.1 Hz, 1H), 6.93 (d, J = 1.1 Hz, 1H), 6.73 (dd, J = 6.4 Hz, J = 2.1 Hz, 2H), 3.85 (bs, 2H), 2.31 (s, 3H); MS(CI) m/z 174 (M+H, 100).

To a solution of 1-(4'-fluoro-3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (2 g, 6.39 mmol) in CH₃CN (30 mL) was added SOCl₂ (5.1 g, 42.8 mmol) and the resulting solution was refluxed for 2 hours. The mixture was concentrated on an evaporator and the residue was dissolved in MeOH (20 mL). The resulting solution was refluxed for 30 minutes, and then concentrated and purified by silica gel chromatography with CH₂Cl₂ to give methyl 1-(4'-fluoro-3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (1.93 g, 92%). ¹H NMR (CDCl₃) δ 7.78 (dd, J = 5.6 Hz, J = 2.6 Hz, 1H), 7.73 (dd, J = 8.4 Hz, J = 3.4 Hz, 1H), 7.36 (t, J = 8.4 Hz, 1H), 7.30 (s, 1H), 3.88 (s, 3H); ¹⁹F NMR (CDCl₃) δ -63.01, -104.60; MS(CI) m/z 331 (M+NH₄, 100).

To a solution of acetone oxime (0.67 g, 9.2 mmol) in DMF (20 mL) was added potassium tert-butoxide (1.0 M in THF, 9.2 mL) and the mixture was stirred at room temperature for 15 minutes. To it was added a solution of methyl 1-(4'-fluoro-5 3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (1.92 g, 6.15 mmol) in DMF (20 mL) and the resulting mixture was stirred at room temperature for 20 hours and quenched with water (10 mL). The mixture was extracted with EtOAc (100 mL) and the EtOAc layer was washed with brine (10 mL x 5), dried over MgSO₄, concentrated, and purified by silica gel chromatography eluted with 80% CH₂Cl₂ in hexane to give methyl 1-(4'-isopropylideneaminoxy-3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (1.53 g, 68%) as a white solid. ¹H NMR (CDCl₃) δ 7.69 (d, J = 9.1 Hz, 1H), 7.66 (d, J = 2.2 Hz, 1H), 7.60 (dd, J = 9.1 Hz, J = 2.5 Hz, 1H), 7.26 (s, 1H), 3.85 (s, 3H), 2.19 (s, 3H), 2.08 (s, 3H); ¹⁹F NMR (CDCl₃) δ -62.88; MS(ES+) m/z 367 (M+H, 100).

To a solution of methyl 1-(4'-isopropylideneaminoxy-3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (1.53 g, 4.18 mmol) in MeOH (13 mL) and CH₂Cl₂ (6 mL) was added 18% HCl (13 mL) and the mixture was refluxed for 3 hours and then concentrated to remove organic solvents. The resulting aqueous solution was neutralized with 2N NaOH to pH 7 and extracted with EtOAc. The EtOAc layer was washed with brine, dried over MgSO₄, and concentrated to give methyl 1-(3'-aminobenzisoxozol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (1.32 g, 96%) as a white solid. ¹H NMR (CD₃OD) δ 7.89 (d, J = 2.1 Hz, 1H), 7.63 (dd, J = 8.8 Hz, 30 J = 2.2 Hz, 1H), 7.50 (d, J = 8.8 Hz, 1H), 7.40 (s, 1H), 3.79 (s, 3H); ¹⁹F NMR (CD₃OD) δ -64.36; MS(ES+) m/z 327 (M+H, 100).

A solution of methyl 1-(3'-aminobenzisoxozol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic ester (260 mg, 0.8 mmol) in THF (10 mL) was treated with 2N NaOH (10 mL) at room temperature for 16 hours. The mixture was acidified with conc. HCl to pH 3 and extracted with EtOAc. The EtOAc layer

was dried over Na₂SO₄ and concentrated to give 1-(3'-aminobenzisoxozol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (240 mg, 96%). ¹H NMR (CD₃OD) δ 7.90 (d, J = 1.9 Hz, 1H), 7.62 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.35 (s, 1H); ¹⁹F NMR (CD₃OD) δ -64.32; MS(ES+) m/z 311 (M-H, 100).

To a solution of 1-(3'-aminobenzisoxozol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (240 mg, 0.77 mmol) in DMF (5 mL) was added 4-(2'-methylimidazol-1'-yl)aniline (133 mg, 0.77 mmol), DMAP (99.5 mg, 0.79 mmol), and PyBrop (372 mg, 0.79 mmol). The resulting mixture was stirred at 60 °C for 16 hours, and quenched with EtOAc (100 mL) and water (20 mL). The EtOAc layer was washed with 1N HCl (10 mL), 1N NaOH (10 mL), water (10 mL), and brine (10 mL x 3), dried over MgSO₄, and concentrated. The residue was purified by HPLC (CH₃CN-H₂O-0.05% TFA) to give the title compound (281 mg, 63%) as a white solid. ¹H NMR (CD₃OD) δ 7.97 (d, J = 0.8 Hz, 1H), 7.89 (d, J = 9.1 Hz, 2H), 7.65 (dd, J = 9.1 Hz, J = 2.2 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.58 (d, J = 2.2 Hz, 1H), 7.52 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.45 (s, 1H), 2.54 (s, 3H); ¹³C NMR (CD₃OD) δ 163.74, 160.46, 158.79, 146.51, 141.45, 140.03, 135.89, 131.89, 129.10, 127.59, 124.51, 122.77, 122.39 (TFA-CF₃), 120.04, 119.62, 118.22, 110.87, 108.24, 11.29; ¹⁹F NMR (CD₃OD) δ -64.21, -77.51 (TFA); MS(ES+) m/z 468.2 (M+H, 100); HRMS: calcd. 468.1396; obs. 468.1381; Anal. (C₂₂H₁₆N₇O₂F₃+1.33TFA+0.11HCl+1.4H₂O): C, H, N, F, Cl.

30

Example 66

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4'-(2''-methylimidazol-1''-yl)-2'-fluorophenyl]aminocarbonyl]pyrazole, TFA salt

35 To a solution of 4-bromo-2-fluoroaniline (19.2 g, 100 mmol) in THF (100 mL) at 0 °C was slowly added LiN(TMS)₂ (1M in THF, 200 mL) over 30 minutes. After the resulting solution was warmed to room temperature, a solution of di-tert-butyl

dicarbonate (21.8 g, 100 mmol) in THF (50 mL) was slowly added, stirred for 15 minutes, and filtered through a pad of silica gel. The filtrate was concentrated and recrystallized from hexane to give 4-bromo-2-fluoro-1-tert-
5 butoxycarbonylaniline (27.7 g, 95%). ^1H NMR (CDCl_3) δ 8.00 (t, $J = 8.8$ Hz, 1H), 7.25-7.20 (m, 2H), 6.66 (bs, 1H), 1.52 (s, 9H); ^{19}F NMR (CDCl_3) δ -130.42; MS(ES+) m/z 290/292 (M+H, 100).

10 To a solution of 4-bromo-2-fluoro-1-tert-
butoxycarbonylaniline (2.9 g, 10 mmol) in THF (20 mL) at -78
°C was slowly added n-BuLi (2.5 M, 10 mL). After the solution
was stirred at that temperature for 30 minutes, $\text{B}(\text{OMe})_3$ (4.68
15 g, 45 mmol) was added and the resulting mixture was warmed to
room temperature over 2 hours. The mixture was concentrated
and the residue was dissolved in EtOAc (150 mL) and water (50
mL), acidified with 1N HCl to pH 4 and filtered through a pad
of Celite. The organic layer was separated, washed with water
and brine, dried over Na_2SO_4 , concentrated, and purified by
20 silica gel chromatography eluted with gradient solvents
(CH_2Cl_2 to EtOAc) to give 3-fluoro-4-tert-butoxycarbonylamino-
phenylboronic acid (1.45 g, 56.9%) as a white solid. ^1H NMR
(CD_3OD) δ 7.80 (s, 1H), 7.47 (d, $J = 8.4$ Hz, 1H), 7.40 (d, $J =$
12.8 Hz, 1H), 1.52 (s, 9H); ^{19}F NMR (CD_3OD) δ -132.66;
25 MS(ES-) m/z 254 (M-H, 100).

To a solution of 3-fluoro-4-tert-butoxycarbonylamino-
phenylboronic acid (1.1 g, 4.35 mmol) in THF (10 mL) was added
2-methylimidazole (0.36 g, 4.33 mmol), pyridine (3.4 g, 43
30 mmol), $\text{Cu}(\text{OAc})_2$ (0.79 g, 4.33 mmol), and 4Å molecular sieves.
After being stirred at room temperature for 16 hours, the
resulting mixture was diluted with EtOAc (100 mL) and filtered
through a pad of silica gel. The filtrate was concentrated
and treated with 3M HCl in EtOAc (10 mL) at room temperature
35 for 1 hour, and then water (20 mL) was added. The aqueous
layer was neutralized with 1N NaOH to pH 8 and extracted with
EtOAc. The organic layer was dried over Na_2SO_4 and
concentrated to give 2-fluoro-4-(2'-methylimidazol-1'-

yl)aniline (0.4 g, 48.5% for the two steps). ^1H NMR (CD₃OD) δ 7.25 (dd, J = 12.1 Hz, J = 1.8 Hz, 1H), 7.20 (d, J = 1.4 Hz, 1H), 7.17 (dd, J = 8.5 Hz, J = 1.8 Hz, 1H), 7.09 (d, J = 1.5 Hz, 1H), 6.91 (t, J = 8.8 Hz, 1H), 3.74 (s, 3H); ^{19}F NMR (CD₃OD) δ -135.71; MS(ES+) m/z 192 (M+H, 100);

To a solution of 1-(3'-aminobenzisoxazol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (130 mg, 0.42 mmol) in DMF (15 mL) was added 2-fluoro-4-(2'-methylimidazol-1'-yl)aniline (80 mg, 0.42 mmol), diisopropylethylamine (0.2 mL), PyBrop (194 mg, 0.42 mmol), and 4Å molecular sieves. The resulting mixture was stirred at room temperature for 30 minutes and at 75 °C for 16 hours and EtOAc (100 ml) was added. The mixture was filtered through a pad of Celite, and the filtrate was washed with 1N HCl (5 mL x 2), 1N NaOH (5 mL x 2), water (10 mL), and brine (5 mL x 4), dried over MgSO₄, and concentrated. The residue was purified by silica gel TLC plates eluted with 10% MeOH in EtOAc, followed by further purification by HPLC (CH₃CN-H₂O-0.05% TFA) to give the title compound (75 mg, 37%) as a white solid. ^1H NMR (CD₃OD) δ 8.09 (t, J = 8.4 Hz, 1H), 7.97 (d, J = 1.9 Hz, 1H), 7.66 (dd, J = 8.8 Hz, J = 2.2 Hz, 1H), 7.67 (d, J = 2.1 Hz, 1H), 7.58 (d, J = 2.2 Hz, 1H), 7.55 (dd, J = 9.1 Hz, J = 2.1 Hz, 1H), 7.50 (d, J = 9.1 Hz, 1H), 7.46 (s, 1H), 7.40 (d, J = 8.8 Hz, 1H), 2.56 (s, 3H); ^{13}C NMR (CD₃OD) δ 163.76, 160.43, 159.05, 157.17, 154.67, 146.80, 143.78, 139.61, 135.74, 129.10, 127.30, 124.48, 123.35, 121.03, 120.08, 119.77, 118.23, 115.47, 115.23, 110.92, 108.65, 11.33; ^{19}F NMR (CD₃OD) δ -64.21, -77.62 (TFA), -121.45; MS(ES+) m/z 486.2 (M+H, 100); Anal. (C₂₂H₁₅N₇O₂F₄+1.3TFA+1H₂O): C, H, N, F.

Example 67

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4'-(1''-methylimidazol-2''-yl)-2''-fluorophenyl]aminocarbonyl]pyrazole, TFA salt

To a solution of 1N-methylimidazole (1.64 g, 20 mmol) in THF (40 mL) at -78 °C was added nBuLi (2.5 M, 9.6 mL) and the

resulting solution was stirred at -78 °C for 30 minutes. After Bu₃SnCl (7.18 g, 22 mmol) was added, the resulting mixture was slowly warmed to room temperature over 2 hours and was stirred for an additional 16 hours. To 4-bromo-2-fluoro-1-tert-butoxycarbonylaniline (0.58 g, 2 mmol) and Pd(PPh₃)₄ (92 mg, 0.08 mmol) was added the above solution (15 mL) and the resulting mixture was degassed and filled with nitrogen three times. The mixture was refluxed under nitrogen for 18 hours, and was cooled to room temperature. After saturated aqueous KF (10 mL) was added, the resulting mixture was stirred for 1 hour and filtered through a pad of Celite. The filtrate was washed with water and brine, dried over MgSO₄, concentrated, and purified by silica gel chromatography with EtOAc to give 2-fluoro-4-(1'-methylimidazol-2'-yl)-1-tert-butoxycarbonylaniline (0.35 g, 60%) as a white solid. ¹H NMR (CDCl₃) δ 8.19 (t, J = 8.0 Hz, 1H), 7.42 (dd, J = 12.1 Hz, J = 1.8 Hz, 1H), 7.36 (d, J = 9.1 Hz, 1H), 7.10 (d, J = 1.1 Hz, 1H), 6.96 (s, 1H), 6.80 (bs, 1H), 3.75 (s, 3H), 1.54 (s, 9H); ¹⁹F NMR (CDCl₃) δ -132.59; MS(ES+) m/z 292.2 (M+H, 100).

20

To a solution of 2-fluoro-4-(1'-methylimidazol-2'-yl)-1-tert-butoxycarbonylaniline (0.33 g, 1.13 mmol) in EtOAc (10 mL) was added 3M HCl (5 mL) and the resulting solution was stirred at room temperature for 30 minutes. The solution was cooled to 0 °C, neutralized with 50% NaOH to pH 8, and extracted with EtOAc (50 mL x 3). The EtOAc layer was concentrated and purified by silica gel chromatography eluted with 5% MeOH in EtOAc to give 2-fluoro-4-(1'-methylimidazol-2'-yl)aniline (0.18 g, 83%). ¹H NMR (CD₃OD) δ 7.54 (d, J = 2.2 Hz, 1H), 7.51 (d, J = 2.2 Hz, 1H), 7.37 (dd, J = 11.8 Hz, J = 2.2 Hz, 1H), 7.27 (dd, J = 8.4 Hz, J = 2.2 Hz, 1H), 6.97 (t, J = 8.8 Hz, 1H), 3.88 (s, 3H) ¹⁹F NMR (CD₃OD) δ -136.77 (dd, J = 90.1 Hz, J = 9.1 Hz); MS(ES+) m/z 192 (M+H, 100).

35

To a solution of 1-(3'-aminobenzisoxazole-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (30 mg, 0.096 mmol) in DMF (2 mL) was added 2-fluoro-4-(1'-methylimidazol-2'-yl)aniline (20.4 mg, 0.106 mmol), diisopropylethylamine (0.2

mL), and PyBrop (49.4 mg, 0.106 mmol). The resulting mixture was stirred at 60 °C for 16 hours and quenched with EtOAc (75 mL) and water (5 mL). The EtOAc layer was washed with 1N HCl (5 mL), 1N NaOH (5 mL), and brine (5 mL x 4), dried over MgSO₄, and concentrated. The residue was purified on silica gel TLC plates with 10% MeOH in EtOAc, followed by further purification by HPLC (CH₃CN-H₂O-0.05% TFA) to give the title compound (19 mg, 40.8%) as a white solid. ¹H NMR (CD₃OD) δ 8.21 (t, J = 8.1 Hz, 1H), 7.99 (dd, J = 2.2 Hz, J = 0.6 Hz, 1H), 7.70-7.66 (m, 3H), 7.64 (d, J = 2.2 Hz, 1H), 7.57 (dt, J = 8.3 Hz, J = 1.0 Hz, 1H), 7.52 (dd, J = 8.8 Hz, J = 0.5 Hz, 1H), 7.48 (s, 1H), 3.93 (s, 3H); ¹³C NMR (CD₃OD) δ 163.78, 160.43, 159.02, 156.71, 154.22, 144.84, 143.78 (CF₃), 139.64, 135.73, 129.09, 127.05, 126.51, 126.08, 120.52, 120.08, 118.23, 117.99, 110.93, 108.71, 36.16; ¹⁹F NMR (CD₃OD) δ -64.21, -77.58 (TFA), -123.46; MS(ES+) m/z 486.2 (M+H, 100).

Example 68

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4'-(2''-aminoimidazol-1''-yl)phenyl]aminocarbonyl]pyrazole, TFA salt

To a solution of 2-aminoimidazole sulfate (2.24 g, 17 mmol) in DMF (30 mL) was added 4-bromo-1-nitrobenzene (3.4 g, 17 mmol), K₂CO₃ (4.69 g, 34 mmol) and 18-crown-6 (50 mg), and the resulting mixture was stirred at 80 °C for 16 hours. The mixture was cooled to room temperature, and was diluted with EtOAc (150 mL) and water (50 mL). The organic layer was washed with brine (20 mL x 5), dried over MgSO₄, and concentrated to give 4-(2'-amino-imidazol-1'-yl)nitrobenzene (3.23 g, 98%). ¹H NMR (CD₃OD) δ 8.38 (d, J = 9.1 Hz, 2H), 7.73 (d, J = 9.1 Hz, 2H), 6.90 (d, J = 1.9 Hz, 1H), 6.66 (d, J = 1.9 Hz, 1H); MS(ES+) m/z 205 (M+H, 100).

A solution of 4-(2'-amino-imidazol-1'-yl)nitrobenzene (0.5 g, 2.45 mmol) in methanol (15 mL) was treated with hydrogen in a balloon in the presence of 5% Pd on carbon (70 mg) at room temperature for 16 hours and then filtered. The filtrate was concentrated to give 4-(2'-amino-imidazol-1'-

yl)aniline (0.35 g, 82%). ^1H NMR (CD_3OD) δ 7.08 (dd, $J = 6.6$ Hz, $J = 2.2$ Hz, 2H), 6.77 (dd, $J = 6.6$ Hz, $J = 2.2$ Hz, 2H), 6.64 (d, $J = 1.8$ Hz, 1H), 6.58 (d, $J = 1.8$ Hz, 1H); MS(ES+) m/z 175 ($\text{M}+\text{H}$, 100).

5

To a solution of 1-(3'-aminobenzisoxazol-5-yl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (110 mg, 0.35 mmol) in DMF (5 mL) was added freshly prepared 4-(2'-amino-imidazol-1'-yl)aniline (110 mg, 0.63 mmol), iPrNET₂ (1 mL), PyBrop (260 mg, 0.56 mmol), and 4Å molecular sieves. The resulting mixture was stirred at room temperature for 16 hours and quenched with EtOAc (100 mL). The mixture was filtered and the filtrate was washed with brine (5 mL x 5) and 1N HCl ((10 mL x 3)). The combined HCl layers were neutralized with 50% NaOH to pH 14 and extracted with EtOAc. The EtOAc layer was dried over Na_2SO_4 , concentrated, and purified by HPLC ($\text{CH}_3\text{CN}-\text{H}_2\text{O}-0.05\%$ TFA) to give the title compound (81 mg, 50%) as a white solid. ^1H NMR (CD_3OD) δ 7.77 (d, $J = 1.5$ Hz, 1H), 7.49 (dd, $J = 8.8$ Hz, $J = 2.2$ Hz, 1H), 7.33 (d, $J = 8.4$ Hz, 1H), 7.18 (s, 1H), 7.16 (dd, $J = 6.6$ Hz, $J = 2.2$ Hz, 2H), 7.12 (d, $J = 2.5$ Hz, 1H), 7.07 (d, $J = 2.5$ Hz, 1H), 6.96 (dd, $J = 6.6$ Hz, $J = 2.2$ Hz, 2H); ^{19}F NMR (CD_3OD) δ -64.23, -77.76 (TFA); MS(ES+) m/z 469 ($\text{M}+\text{H}$, 100).

25

Example 69

**1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4'-(2''-
N,N-dimethylaminomethylphenyl)-2'-
fluorophenyl]aminocarbonyl]pyrazole, TFA salt**

To a solution of 2-formylphenylboronic acid (5 g, 33.3 mmol) in THF (80 mL) was added 4-bromo-2-fluoroaniline (4.2 g, 22.2 mmol) and Na_2CO_3 (2M, 80 mL) and then was bubbled with nitrogen for 10 minutes. After $\text{Pd}(\text{PPh}_3)_4$ (1.54 g, 1.33 mmol) was added, the resulting mixture was refluxed under nitrogen for 4 hours. The THF layer was separated, filtered through a pad of silica gel, and washed with THF to give 80 mL solution of 4(2'-formylphenyl)-2-fluoroaniline in THF. MS(CI) m/z 233 ($\text{M}+\text{NH}_4$, 100%). To the filtrate (15 mL from total 80 mL) was

added Me₂NH•HCl (0.68 g, 8.33 mmol) and the resulting mixture was refluxed for 2 hours. The mixture was cooled to room temperature, and to it was added MeOH (5 mL) and then NaBH₄ (0.32 g, 8.33 mmol). After being stirred at 50 °C for 1 hour, 5 the mixture was cooled to room temperature again and quenched with 1N HCl to pH 1. The aqueous layer was separated, neutralized with 50% NaOH to pH 12, and extracted with EtOAc. The EtOAc layer was dried over MgSO₄, concentrated, and purified by silica gel chromatography eluted with EtOAc to 10 give 4-(2'-N,N-dimethylaminomethylphenyl)-2-fluoroaniline (0.89 g, 87.5%). ¹H NMR (CDCl₃) δ 7.49 (dd, J = 8.8 Hz, J = 1.8 Hz, 1H), 7.31-7.21 (m, 3H), 7.14 (dd, J = 12.1 Hz, J = 1.8 Hz, 1H), 6.97 (dd, J = 8.1 Hz, J = 1.5 Hz, 1H), 6.80 (t, J = 8.8 Hz, 1H), 3.76 (bs, 2H), 3.34 (s, 2H), 2.17 (s, 6H); ¹⁹F NMR (CDCl₃) δ -136.19; MS(ES+) m/z 245.2 (M+H, 100).

To a solution of 1-(4'-fluoro-3'-cyanophenyl)-3-trifluoromethyl-5-pyrazolecarboxylic acid (0.299 g, 1 mmol) in CH₃CN (20 mL) was added SOCl₂ (0.74 g, 6 mmol). The resulting 20 mixture was refluxed for 2 hours and then concentrated. To a solution of the residue in THF (25 mL) was added 4-(2'-N,N-dimethylaminomethylphenyl)-2-fluoroaniline (0.29 g, 1.19 mmol) and N,N-diisopropylethylamine (1 mL). The resulting solution was stirred at room temperature for 16 hours and quenched with 25 EtOAc (100 mL) and 1N HCl (50 mL). The organic layer was separated and washed with 1N NaOH (20 mL) and brine, dried over MgSO₄, concentrated, and purified on silica gel TLC plates eluted with 10% MeOH in CH₂Cl₂ to give 1-(4'-fluoro-3'-cyanophenyl)-3-trifluoromethyl-5-[4'-(2''-N,N-dimethylaminomethylphenyl)-2'-fluorophenyl]aminocarbonyl]pyrazole (0.31 g, 59%). ¹H NMR (CDCl₃) δ 8.18 (t, J = 8.4 Hz, 1H), 8.06 (bs, 1H), 7.87-7.79 (m, 2H), 7.50 (dd, J = 8.8 Hz, J = 1.5 Hz, 1H), 7.42-7.30 (m, 5H), 7.24 (d, J = 7.0 Hz, 1H), 7.19 (s, 1H), 3.33 (s, 2H), 30 2.19 (s, 6H); ¹⁹F NMR (CDCl₃) δ -62.85, -104.83, -135.2; 35 MS(ES+) m/z 526.3 (M+H, 100).

To a solution of acetone oxime (0.129 g, 1.77 mmol) in DMF (5 mL) was added potassium tert-butoxide (1.0 M in THF, 1.77 mL), and the mixture was stirred at room temperature for 15 minutes. To it was then added a solution of 1-(4'-fluoro-
5 3'-cyanophenyl)-3-trifluoromethyl-5-[4'-(2''-N,N-dimethylaminomethylphenyl)-2'-fluorophenyl]aminocarbonylpyrazole (0.31 g, 0.59 mmol) in DMF (5 mL), and the resulting mixture was stirred at room
10 temperature for 20 hours and quenched with water (10 mL). The mixture was extracted with EtOAc (100 mL), and the EtOAc layer was washed with brine (10 mL x 5), dried over MgSO₄, and concentrated to give a residue. The residue was treated with 4M HCl in dioxane (10 mL) under reflux for 2 hours and concentrated. The resulting residue was dissolved in EtOAc
15 and water, and the EtOAc layer was dried over Na₂SO₄, concentrated, and purified on silica gel TLC plates eluted with 5% MeOH in CH₂Cl₂, followed by purification by HPLC (CH₃CN-H₂O-0.05% TFA) to give the title compound (37 mg, 11% for the two steps) as a white solid. ¹H NMR (CD₃OD) δ 7.99 (dd, J = 2.2 Hz, J = 0.5 Hz, 1H), 7.83 (t, J = 8.1 Hz, 1H), 7.68 (dd, J = 8.8 Hz, J = 2.0 Hz, 1H), 7.63-7.61 (m, 1H), 7.57-7.54 (m, 1H), 7.52 (dd, J = 8.8 Hz, J = 0.6 Hz, 1H), 7.45 (s, 1H), 7.42-7.40 (m, 1H), 7.24 (dd, J = 11.2 Hz, J = 1.9 Hz, 1H), 7.15 (dd, J = 8.2 Hz, J = 1.2 Hz, 1H), 4.71 (s, 2H), 2.63 (s, 6H); ¹³C NMR (CD₃OD) δ 162.33, 159.00, 142.07, 138.89, 138.40, 134.41, 130.78, 130.47, 129.96, 128.80, 127.76, 127.32, 125.99, 125.40, 124.24, 124.11, 118.73, 116.92, 116.80, 116.71, 109.43, 106.93, 57.68, 41.77; ¹⁹F NMR (CD₃OD) δ -64.20, -77.57 (TFA), -123.93; MS(ES+) m/z 539.2 (M+H,
20 30 100).

Example 70

Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate

35

Preparation of ethyl 4-(2-furyl)-2,4-dioxobutyrate.

To a suspension of sodium hydride (5.4 g of 60% dispersion in mineral oil, 136 mmol, mineral oil was removed

by washing twice with hexanes) in 100 mL of tetrahydrofuran at ambient temperature was added diethyl oxalate (12.3 mL, 91 mmol). To this mixture was added 2-acetylfuran (5.0 g, 45 mmol) as a solution in 25 mL of tetrahydrofuran. The 5 resulting mixture was stirred at 70°C for 1 h. The reaction was cooled to room temperature and then 10% HCl was added slowly until the solution was acidic. The tetrahydrofuran was removed *in vacuo* and the residue was taken up in ethyl acetate. The organics were washed with brine, dried ($MgSO_4$) 10 and concentrated to afford 5.5 g (58%) of the title compound which was used without purification.

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-(2-furyl)pyrazole-3-carboxylate.

15 To ethyl 4-(2-furyl)-2,4-dioxobutyrate (3.5 g, 16.7 mmol) in 50 mL of glacial acetic acid was added 4-fluoro-3-cyanophenylhydrazine tin chloride (6.3 g, 16.7 mmol). The reaction was stirred at 100°C for 4 h. The reaction was allowed to cool to room temperature and the acetic acid was 20 removed *in vacuo*. The residue was diluted with ethyl acetate and the organics were washed with saturated aq $NaHCO_3$ and brine, dried ($MgSO_4$) and concentrated. The residue was purified by recrystallization from hexane/ethyl acetate to afford 2.5 g (46%) of the title compound. LRMS (ES+): 326.1 25 ($M+H$)⁺.

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-pyrazole-3-carboxylate-5-carboxylic acid.

30 To a solution of ethyl 1-(3-cyano-4-fluorophenyl)-5-(2-furyl)pyrazole-3-carboxylate (1.30 g, 4.0 mmol) in 8:8:12 carbon tetrachloride/acetonitrile/water was added sodium periodate (3.85 g, 18 mmol) and ruthenium (III) chloride monohydrate (20 mg, 0.09 mmol). The resulting biphasic 35 reaction was stirred vigorously at ambient temperature for 24 h. The reaction was quenched with 10% aq HCl and diluted with ethyl acetate. The organics were washed with brine, dried ($MgSO_4$), filtered through a pad of Celite and concentrated.

The residue was dissolved in 1:1 hexanes/ethyl acetate and extracted with sat'd aq Na₂CO₃ (2 times). The combined aqueous extracts were acidified and extracted with ethyl acetate. The ethyl acetate extracts were washed with brine, 5 dried (MgSO₄) and concentrated to afford 0.70 g (58%) of the title compound as a solid. LRMS (AP+): 304.1 (M+H)⁺.

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-*tert*-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

To a solution of ethyl 1-(3-cyano-4-fluorophenyl)-pyrazole-3-carboxylate-5-carboxylic acid (0.44 g, 1.45 mmol) in 10 mL of methylene chloride was added oxalyl chloride (0.19 mL, 2.18 mmol) and 2 drops of dimethylformamide. The reaction 15 was stirred at ambient temperature for 6 h and then the volatiles were removed *in vacuo*. The residue was dissolved in 10 mL of methylene chloride and then there was added 4-dimethylaminopyridine (0.53 g, 4.35 mmol). The reaction was stirred for 10 min and then there was added (2'-*tert*-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)amine hydrochloride (0.47 g, 1.45 mmol). The resulting mixture was allowed to stir at ambient temperature for 16 h. The reaction was diluted with ethyl acetate and the organics were washed with 10% aq HCl, sat'd aq NaHCO₃ and brine, dried (MgSO₄), 25 filtered through a pad of silica gel and concentrated to afford 0.35 g (40%) of the title compound as a solid. LRMS (ES-): 606.1 (M-H)⁻.

Preparation of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-*tert*-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

To a solution of acetone oxime (40 mg, 0.52 mmol) in 2 mL of DMF at ambient temperature was added potassium *tert*-butoxide (1.2 mL of a 1.0 M solution in tetrahydrofuran, 1.2 mmol). The reaction was stirred for 15 min and then ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-*tert*-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (243 mg, 0.40 mmol) was added as a solution in 3 mL of DMF.

The resulting mixture was allowed to stir at ambient temperature for 18 h. The reaction was partitioned between ethyl acetate and sat'd aq ammonium chloride and the organics were washed with brine, dried (MgSO_4), and concentrated. The residue was purified by flash chromatography (elution with 2:1 hexanes/ethyl acetate) to afford 0.15 g (57%) of the title compound. LRMS (AP-): 658.9 ($\text{M}-\text{H}$)⁻.

Preparation of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

To a solution of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-tert-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (0.14 g, 0.21 mmol) in 5 mL of absolute ethanol was added 4 mL of 6N HCl. The reaction was stirred at 80°C for 1 h and then was cooled to room temperature. The reaction was diluted with ethyl acetate and the organics were washed with water and brine, dried (MgSO_4) and concentrated. The residue was dissolved in 5 mL of trifluoroacetic acid and stirred at 80°C for 30 min. The reaction was cooled and concentrated and the residue was purified by prep HPLC (C18 reverse phase column, elution with a $\text{H}_2\text{O}/\text{CH}_3\text{CN}$ gradient with 0.5% TFA) and lyophilized to afford 34 mg (29 %) of the compound of Example 70 as a white powder.

LRMS (AP+): 565.2 ($\text{M}+\text{H}$)⁺.

Example 71

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid

To a solution of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (0.20 g, 0.32 mmol) in 10 mL of 1:1 methanol/water was added potassium hydroxide (20 mg, 0.35 mmol). The reaction was stirred at 60°C for 2 h and then was cooled to room temperature and acidified with 10% aq HCl. The mixture was diluted with ethyl acetate, washed with brine, dried (MgSO_4) and concentrated. A portion of the

residue (25 mg) was dissolved in 5 mL of trifluoroacetic acid and stirred at 80°C for 30 min. The reaction was cooled and concentrated and the residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 5 0.5% TFA) and lyophilized to afford 10 mg (40 %) of the compound of Example 71 as a white powder. LRMS (ES+): 537.2 (M+H)⁺.

Example 72

10 **1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxamide**

To a solution of 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-tert-butylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid (0.15 g, 0.25 mmol) in 50 mL of acetonitrile at 0°C was added triethylamine (0.05 mL, mmol) and iso-butyl chloroformate (0.03 mL, mmol). This mixture was stirred for 30 min and then there was added methanolic ammonia (0.50 mL of a 2.0 M solution of ammonia in 20 methanol, mmol). The reaction was allowed to stir with warming to room temperature for 18 h. The volatiles were removed *in vacuo* and the residue was diluted with ethyl acetate. The organics were washed with sat'd aq NaHCO₃ and brine, dried (MgSO₄) and concentrated. A portion of the 25 residue (25 mg) was dissolved in 5 mL of trifluoroacetic acid and stirred at 80°C for 30 min. The reaction was cooled and concentrated and the residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) and lyophilized to afford 12 mg (50 %) of the 30 compound of Example 72 as a white powder. LRMS (ES+): 536.2 (M+H)⁺.

Example 73

35 **Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate**

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

To a solution of ethyl 1-(3-cyano-4-fluorophenyl)-5-pyrazole-3-carboxylate-5-carboxylic acid (4.55 g, 15 mmol) in 100 mL of methylene chloride was added oxalyl chloride (2.0 mL, 22.5 mmol) and 2 drops of dimethylformamide. The reaction was stirred at ambient temperature for 6 h and then the volatiles were removed *in vacuo*. The residue was dissolved in 100 mL of methylene chloride and then there was added 4-dimethylaminopyridine (5.5 g, 45 mmol). The reaction was stirred for 10 min and then there was added 2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-amine hydrochloride (4.52 g, 15 mmol). The resulting mixture was allowed to stir at ambient temperature for 16 h. The reaction was diluted with ethyl acetate and the organics were washed with 10% aq HCl, sat'd aq NaHCO₃ and brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography (elution with 3:1 hexane/ethyl acetate) to afford 1.55 g (18%) of the title compound as a solid. LRMS (AP+): 551.2 (M+H)⁺.

Preparation of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

To a solution of acetone oxime (0.26 g, 3.6 mmol) in 20 mL of DMF at ambient temperature was added potassium *tert*-butoxide (8.3 mL of a 1.0 M solution in tetrahydrofuran, 8.3 mmol). The reaction was stirred for 15 min and then ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (1.53 g, 2.77 mmol) was added as a solution in 10 mL of DMF. The resulting mixture was allowed to stir at ambient temperature for 18 h. The reaction was partitioned between ethyl acetate and sat'd aq ammonium chloride and the organics were washed with brine, dried (MgSO₄), and concentrated. The residue was purified by flash chromatography (elution with 2:1 hexanes/ethyl acetate) to afford 1.28 g (77%) of the title compound. LRMS (ES-): 602.2 (M-H)⁻.

Preparation of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate.

5 To a solution of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (1.3 g, 2.1 mmol) in 40 mL of absolute ethanol was added 40 mL of 6N HCl. The reaction was stirred at 80°C for 1 h and then was cooled to
10 room temperature. The reaction was diluted with ethyl acetate and the organics were washed with water and brine, dried (MgSO₄) and concentrated. A portion (100 mg) of the residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) and lyophilized to
15 afford 30 mg of the compound of Example 73 as a white powder.
LRMS (ES+): 564.2 (M+H)⁺.

Example 74

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid

20 To a solution of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate (0.43 g, 0.76 mmol) in 20 mL of 1:1 methanol/water was added potassium hydroxide (50 mg, 0.84 mmol). The reaction was stirred at 60°C for 2 h and then was cooled to room temperature and acidified with 10% aq HCl. The mixture was diluted with ethyl acetate, washed with brine, dried (MgSO₄) and concentrated. A 25 mg portion of the residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) and lyophilized to afford 10 mg of the compound of Example 74 as a white powder. LRMS (ES-): 534.1 (M-H)⁻.

Example 75

1-(3'-Aminobenzisoxazol-5'-yl)-3-(hydroxymethyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

To a solution of 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid (0.41 g, 0.77 mmol) in tetrahydrofuran at -20°C was added triethylamine (0.12 mL, 0.84 mmol) and iso-butyl chloroformate (0.11 mL, 0.84 mmol). This mixture was stirred for 30 min and then there was added sodium borohydride (60 mg, 1.54 mmol) in a minimal amount of water. The reaction mixture was stirred with slow warming to room temperature for 1 h and then was quenched with 10% aq HCl. After diluting with ethyl acetate, the organics were washed with brine, dried (MgSO_4) and concentrated *in vacuo* to afford 0.29 g of the title compound. A portion (25 mg) of the residue was purified by prep HPLC (C18 reverse phase column, elution with a $\text{H}_2\text{O}/\text{CH}_3\text{CN}$ gradient with 0.5% TFA) and lyophilized to afford 10 mg of the compound of Example 75 as a white powder. MS (AP $^+$): 522.2 ($\text{M}+\text{H}$) $^+$.

Example 76

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-[dimethylaminomethyl]-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole, trifluoroacetic acid salt

To a solution of 1-(3'-aminobenzisoxazol-5'-yl)-3-hydroxymethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole (0.10 g, 0.19 mmol) in 25 mL of acetonitrile was added 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3 (1H)-one (Dess-Martin periodinane) (0.19 g, 0.44 mmol) in 10 mL of acetonitrile and 2 drops of acetic acid. The resulting mixture was stirred at ambient temperature for 1 h. The reaction was poured into sat'd aq NaHCO_3 and extracted with methylene chloride. The organics were washed with water and brine, dried (MgSO_4) and concentrated *in vacuo*. The residue was dissolved in 10 mL of methanol and then there was added dimethylamine hydrochloride (0.07 g, 0.9 mmol) and sodium cyanoborohydride (0.011 g, 0.18 mmol). The resulting mixture was allowed to stir at ambient temperature for 18 h. The methanol was removed *in vacuo* and the residue was quenched

with 5 mL of 10% aq HCl. The mixture was extracted with ether to remove unreacted starting materials. The aqueous layer was then made basic and extracted with ethyl acetate. The ethyl acetate layer was washed with brine, dried (MgSO_4) and concentrated *in vacuo*. The residue was purified by prep HPLC (C18 reverse phase column, elution with a $\text{H}_2\text{O}/\text{CH}_3\text{CN}$ gradient with 0.5% TFA) and lyophilized to afford 10 mg (8%) of the compound of Example 76 as a white powder. MS (ES $+$): 549.2 ($\text{M}+\text{H}$) $^+$.

10

Example 77

Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate

15 Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-(2-furyl)pyrazole-4-carboxylate.

To a solution of ethyl 3-(2-furyl)-3-ketopropionate (2.1 g, 11.5 mmol) in 20 mL of benzene was added dimethylformamide dimethylacetal (2.3 mL, 17.3 mmol). The resulting solution 20 was stirred at 80°C for 2 h. The reaction was cooled, filtered through a pad of silica gel and concentrated *in vacuo*. A portion of the residue (0.60 g, 2.54 mmol) was dissolved in 20 mL of glacial acetic acid and then there was added 4-fluoro-3-cyanophenylhydrazine tin chloride (1.05 g, 25 2.8 mmol). The reaction mixture was stirred at 100°C for 4 h. The reaction was allowed to cool to room temperature and the acetic acid was removed *in vacuo*. The residue was diluted with ethyl acetate and the organics were washed with saturated aq NaHCO_3 and brine, dried (MgSO_4) and concentrated. The 30 residue was purified by flash chromatography (elution with gradient of 6:1-> 3:1 hexanes/ethyl acetate) to afford 0.32 g (39%) of the title compound. LRMS (ES $+$): 326.2 ($\text{M}+\text{H}$) $^+$.

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-pyrazole-4-carboxylate-5-carboxylic acid.

To a solution of ethyl 1-(3-cyano-4-fluorophenyl)-5-(2-furyl)pyrazole-4-carboxylate (0.3 g, 0.92 mmol) in 6:6:9 carbon tetrachloride/acetonitrile/water was added sodium

periodate (0.89 g, 4.15 mmol) and ruthenium (III) chloride monohydrate (20 mg, 0.09 mmol). The resulting biphasic reaction was stirred vigorously at ambient temperature for 6 h. An additional portion of sodium periodate was added (0.45 g, 2.08 mmol) and the reaction was allowed to stir an additional 16 h. The reaction was quenched with 10% aq HCl and diluted with ethyl acetate. The organics were washed with brine, dried (MgSO_4), filtered through a pad of Celite and concentrated to afford 0.28 g (100%) of the title compound as a solid, which was sufficiently pure to be used without purification. LRMS (ES-): 302.0 ($\text{M}-\text{H}$)⁻.

Preparation of ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-5-carboxylate.

To a solution of ethyl 1-(3-cyano-4-fluorophenyl)-pyrazole-4-carboxylate-5-carboxylic acid (0.28 g, 0.92 mmol) in 10 mL of methylene chloride was added oxalyl chloride (0.19 mL, 2.18 mmol) and 2 drops of dimethylformamide. The reaction was stirred at ambient temperature for 6 h and then the volatiles were removed *in vacuo*. The residue was dissolved in 10 mL of methylene chloride and then there was added 4-dimethylaminopyridine (0.34 g, 2.76 mmol). The reaction was stirred for 10 min and then there was added (2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)amine hydrochloride (0.28 g, 0.92 mmol). The resulting mixture was allowed to stir at ambient temperature for 16 h. The reaction was diluted with ethyl acetate and the organics were washed with 10% aq HCl, sat'd aq NaHCO_3 and brine, dried (MgSO_4), filtered through a pad of silica gel and concentrated to afford 0.4 g (80%) of the title compound as a solid. LRMS (ES+): 573.1 ($\text{M}+\text{Na}$)⁺.

Preparation of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate.

To a solution of acetone oxime (70 mg, 0.94 mmol) in 5 mL of DMF at ambient temperature was added potassium *tert*-

butoxide (1.1 mL of a 1.0 M solution in tetrahydrofuran, 1.1 mmol). The reaction was stirred for 15 min and then ethyl 1-(3-cyano-4-fluorophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate (200 mg, 0.36 mmol) was added as a solution in 4 mL of DMF. The resulting mixture was allowed to stir at ambient temperature for 18 h. The reaction was partitioned between ethyl acetate and sat'd aq ammonium chloride and the organics were washed with brine, dried (MgSO_4), filtered through a pad of silica gel and concentrated to afford 0.14 g (65%) of the title compound, which was sufficiently pure to be used without purification. LRMS (ES+): 626.2 ($\text{M}+\text{Na}$)⁺.

Preparation of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate.

To a solution of ethyl 1-(4-isopropylideneaminoxy-3-cyanophenyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate (0.14 g, 0.21 mmol) in 5 mL of absolute ethanol was added 4 mL of 6N HCl. The reaction was stirred at 80°C for 1 h and then was cooled to room temperature. The reaction was diluted with ethyl acetate and the organics were washed with water and brine, dried (MgSO_4) and concentrated. The residue was purified by prep HPLC (C18 reverse phase column, elution with a $\text{H}_2\text{O}/\text{CH}_3\text{CN}$ gradient with 0.5% TFA) and lyophilized to afford 40 mg (30 %) of the compound of Example 77 as a white powder. LRMS (AP+): 564.3 ($\text{M}+\text{H}$)⁺.

30

Example 78

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylic acid

To a solution of ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate (30 mg, 0.053 mmol) in 10 mL of 1:1 methanol/water was added potassium hydroxide (20 mg, 0.36 mmol). The reaction was stirred at 60°C for 1 h and

then was cooled to room temperature and concentrated. The residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) and lyophilized to afford 18 mg (64%) of the compound of Example 5 78 as a white powder. LRMS (ES-) : 534.1 (M-H)⁻.

Example 79

1-(1',2',3',4'-tetrahydroisoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole
mesylate

10

The title compound is prepared in an analogous fashion.
MS (ES+) 488.0 (M+H)⁺ (100%).

15

Example 80

1-(1'-Amino-isoquinol-7'-yl)-3-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methyl-pyrazole mesylate

20

The title compound is prepared in an analogous fashion.
MS (ES+) 513.0 (M+H)⁺ (100%).

Example 81

1-(4'-amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole mesylate

25

The title compound is prepared in an analogous fashion.
MS (ES+) 498.0 (M+H)⁺ (100%).

Example 82

30

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

35

Preparation of 1-(isoquinol-7-yl)-3-trifluoromethyl-5-pyrazole-carboxylic acid.

An acetic acid (500 mL) solution of the 7-hydrazino-isoquinoline-tin salt (50.93 g (146 mmol) (prepared as discussed in Example 1) and 4,4,4-trifluoromethyl-1-(2-furyl)-

1,3-butanedione (20.1 g, 97.57 mmol) were gently refluxed overnight. The reaction was cooled and concentrated to a small volume. The mixture was quenched with sat. sodium bicarbonate (100 mL) and the organics were extracted with 5 ethyl acetate (4X100 mL), dried (MgSO_4), and evaporated to a brown oil. Chromatography on silica gel (hexane:ethylacetate 1:1) afforded the desired pyrazole compound (40 g). $^1\text{H NMR}$ (CDCl_3) δ : 8.33 (s, 1H), 8.15 (d, 2H), 7.87 (dd, 1H), 7.51 (s, 1H), 7.08 (s, 4H), 6.44 (m, 1H), 6.32 (d, 1H) ppm. ESI (+ve) 10 mass spectrum analysis m/z (relative intensity) 330 ($\text{M}+\text{H}$, 100).

The product from above (40 g, 121 mmol) was dissolved in acetone (1L). The solution was gently heated to 60°C, followed by the addition of KMnO_4 (141 g, 890 mmol) 15 portionwise while maintaining the internal temperature of the reaction to 60°C. Care should be taken to prevent the reaction from taking off. The reaction was judged to be completed by TLC within 10 min. The solution was cooled and gradually quenched with a saturated sodium bisulfite solution 20 (1L). The clear solution was extracted with ethyl acetate (3X200 mL) to remove by-products. The aqueous layer was carefully adjusted to pH 4 whereby the desired compound precipitated out and was filtered and dried over nitrogen (35 g obtained). $^1\text{H NMR}$ (DMSO d_6) δ : 9.50 (bs, 1H), 8.64 (bs, 1H), 8.44 (s, 1H), 8.14 (m, 1H), 8.00 (m, 2H), 7.60 (s, 1H) ppm. 25 ESI (-ve) mass spectrum analysis m/z (relative intensity) 306 ($\text{M}-\text{H}$, 100).

Preparation of 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-
30 5-[(2'-methylsulfonyl-[1,1']-biphen-4-
yl)carbonylamino]pyrazole trifluoroacetate.

The product is prepared in an analogous fashion as
Example 1. MS (ES+) 551.8 ($\text{M}+\text{H}$)⁺ (100%); mp 173 °C.

35

Example 83

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-
N-pyrrolidinocarbonyl)-phenyl]carbonylamino]pyrazole
trifluoroacetate

The title compound is prepared in an analogous fashion.
MS (ES+) 512.9 (M+H)⁺ (100%); mp 225 °C.

5

Example 84

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

10 The title compound is prepared in an analogous fashion.
MS (ES+) 570.1 (M+H)⁺ (100%).

15

Example 85

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

20

The title compound is prepared in an analogous fashion.
MS (ES+) 553.1 (M+H)⁺ (100%).

25

Example 86

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

30

The title compound is prepared in an analogous fashion.
MS (ES+) 571.1 (M+H)⁺ (100%); mp 248-250 °C.

35

Example 87

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(5-(2'-methylsulfonylphenyl)pyrid-2-yl)carbonylamino]pyrazole bistrifluoroacetate

40

The title compound is prepared in an analogous fashion.

MS (ES+) 553.1 (M+H)⁺ (100%).

Example 88

1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

5 The title compound is prepared in an analogous fashion.

MS (ES+) 517.3 (M+H)⁺ (100%); mp 175-177 °C.

Example 89

1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

The title compound is prepared in an analogous fashion.

MS (AP+) 516.2 (M+H)⁺ (100%); mp 203 °C.

15

Example 90

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-chloro-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

20

The title compound is prepared in an analogous fashion.

MS (ES+) 587.1 (M+H)⁺ (100%); mp 194 °C.

Example 91

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-methyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

The title compound is prepared in an analogous fashion.

30 MS (ES+) 567.3 (M+H)⁺ (100%).

Example 92

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole trifluoroacetate

35

The title compound is prepared in an analogous fashion.

MS (ES+) 567.2 (M+H)⁺ (100%); mp 166 °C.

Example 93

1-(1'-Aminoisquinol-7'-yl)-3-ethyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
5 trifluoroacetate

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 527 (M+H, 100).mp 173
°C.

10

Example 94

1-(1'-Aminoisquinol-7'-yl)-3-ethyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole mesylate

15 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 512 (M+H, 100).mp 185
°C.

15

Example 95

20 1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 527 (M+H, 100).

25

Example 96

1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
trifluoroacetate

30

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 541 (M+H, 100).

35

Example 97

1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 526 (M+H, 100). mp 175
°C.

5

Example 98

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

10

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 531 (M+H, 100); mp 161
°C.

15

Example 99

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

20

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 530 (M+H, 100); mp 135
°C.

Example 100

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[4-(N-pyrrolidinocarbonyl-1-yl)phenylaminocarbonyl]pyrazole mesylate

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 455 (M+H, 100).

30

Example 101

1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[4-(imidazol-1'-yl)phenylaminocarbonyl]pyrazole bistrifluoroacetate

35

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 464 (M+H, 100); mp 115
°C.

Example 102

**1-(1'-Aminoisquinol-7'-yl)-3-trifluoromethyl-5-[3-fluoro-4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole
bistrifluoroacetate**

5 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 496 (M+H, 100); mp 115
°C.

Example 103

10 **1-(1'-Aminoisquinol-7'-yl)-3-trifluoromethyl-5-[4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole
bistrifluoroacetate**

15 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 478 (M+H, 100); mp 148
°C.

Example 104

20 **1-(1'-Aminoisquinol-7'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole
bistrifluoroacetate**

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 496 (M+H, 100).

25

Example 105

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

30

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 488 (M+H, 100).

Example 106

35 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole**

The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 561 (M+H, 100); mp 155
°C.

5 **Example 107**

**1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[2-fluoro-
4-(N-pyrrolidinocarbonyl)phenyl-aminocarbonyl]pyrazole
trifluoroacetate**

10 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 503 (M+H, 100); mp 150
°C.

15 **Example 108**

**1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(5-(2'-
aminosulfonylphenyl)pyrid-2-yl)aminocarbonyl]pyrazole
bistrifluoroacetate**

20 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 544 (M+H, 100); mp 222
°C.

25 **Example 109**

**1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(5-(2'-
methylsulfonylphenyl)pyrimid-2-yl)aminocarbonyl]pyrazole
trifluoroacetate**

30 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 544 (M+H, 100); mp 175
°C.

35 **Example 110**

**1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-
yl)phenyl)aminocarbonyl]pyrazole bistrifluoroacetate**

35 The title compound was prepared in an analogous fashion.
ESI mass spectrum z (rel. intensity) 411 (M+H, 100); mp 142
°C.

Example 111

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl]pyrazole

bistrifluoroacetate

The title compound was prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 483 (M+H, 100); mp 201 °C.

Example 112

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

Example 113

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion.

25 ESI mass spectrum z (rel. intensity) 559 (M+H, 100).

Example 114

1-(3'-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(N-pyrrolidinocarbonyl)phenylaminocarbonyl]pyrazole

30

The title compound was prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 502 (M+H, 100); mp 166 °C.

35

Example 115

1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-yl)phenyl)aminocarbonyl]pyrazole

The title compound was prepared in an analogous fashion.
 ESI mass spectrum z (rel. intensity) 410 (M+H, 100); mp 301
 $^{\circ}\text{C}$.

Example 116

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl)pyrazole trifluoroacetate

The title compound was prepared in an analogous fashion.
10 ESI mass spectrum z (rel. intensity) 482 (M+H, 100); mp 190
°C.

Example 117

1-(3'-Aminomethylnaphth-2'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole

3-Hydrazino-2-naphthoic acid: To 3-amino-2-naphthoic acid (15 g, 66.8 mmol) in conc. HCl (100 ml) and water (100 ml) at 0 °C was added NaNO₂ (9.22 g, 69 mmol) in 1 g portions while maintaining the reaction temperature below 0 °C. After 30 min below 0 °C, SnCl₂•H₂O (75 g) was added in portions over 20 min. The ice bath was removed and stirred at ambient temperature for 1 h. Reaction was filtered and the filter cake washed with water and air dried. The crude material containing tin (II) salts was used as is and gave a mp > 300 °C.

5-(Furan-2-yl)-3-trifluoromethyl-1-(3-carboxynaphth-2-yl)-1H-pyrazole: A mixture of 1,1,1-trifluoro-4-(furan-2-yl)-2,4-butadione (4.2 g, 20.4 mmol) and the hydrazine prepared above (6.66 g) in MeOH (150 ml) and TFA (2.32 g, 20.4 mmol) was stirred at ambient temperature for 5 days. The reaction was evaporated and redissolved in EtOAc and washed with 1N HCl. The EtOAc solution was dried (MgSO_4) and evaporated to give 5.0 g of material. The desired product was isolated by MPLC on 300 g of flash silica gel using a gradient of 1% MeOH in CHCl_3 to 3% MeOH in CHCl_3 . Fractions were collected in 25 mL

portions with fractions 1-100 eluted with 1% MeOH in CHCl₃, fractions 101-300 eluted with 2% MeOH in CHCl₃ and fractions 301-500 eluted with 3% MeOH in CHCl₃. The title compound (1.52 g) was recovered from fractions 201-500; LRMS (M+H)⁺

5 m/z: 373.2.

5-(Furan-2-yl)-3-trifluoromethyl-1-(3'-hydroxymethylnaphth-2'-yl)-1H-pyrazole: To 1.52 g of 5-(furan-2-yl)-3-trifluoromethyl-1-(3'-carboxynaphth-2'-yl)-1H-pyrazole (4.1 mmol) in THF (100 ml) at 0 °C was added N-methylmorpholine (4.5 mmol, 0.46 g) followed by isobutylchloroformate (4.5 mmol, 0.62 g). The reaction was maintained at 0 °C for 1 h then filtered into a solution of NaBH₄ (12.3 mmol, 0.47 g) in water (50 ml) at 0 °C. The THF was removed by evaporation, then the residue partitioned between EtOAc and 1N HCl. The EtOAc layer was dried and evaporated to give 1.57 g of the benzyl alcohol; LRMS (M+Na)⁺ m/z: 381.1.

5-(Furan-2-yl)-3-trifluoromethyl-1-(3'-azidomethylnaphth-2'-yl)-1H-pyrazole: To 5-(furan-2-yl)-3-trifluoromethyl-1-(3'-hydroxymethylnaphthal-2'-yl)-1H-pyrazole (4.4 mmol, 1.57 g) and N-methylmorpholine (4.8 mmol, 0.49 g) in CH₂Cl₂ (100 ml) at 0 °C was added methanesulfonyl chloride (4.8 mmol, 0.55 g) in CH₂Cl₂ (20 ml). The reaction was allowed to thaw to ambient temperature over 5 h. The reaction was then washed with cold 1N HCl, dried (MgSO₄) and evaporated to give 1.82 g of the mesylate. This material was immediately dissolved in DMF (20 ml) and sodium azide (13.2 mmol, 0.92 g) added. The reaction was stirred for 18 h, then diluted with brine and extracted with EtOAc. The EtOAc extract was washed with brine (5 x's), dried (MgSO₄) and evaporated to give 1.37 g of crude product. This material was purified to homogeneity by MPLC on a 360 g column of flash silica by eluting with 10: 1 hexane: EtOAc. Fractions were collected in 25 ml portions and 0.75 g of 5-(furan-2-yl)-3-trifluoromethyl-1-(3'-azidomethylnaphth-2'-yl)-1H-pyrazole was recovered from fractions 68-100; LRMS (M+H)⁺ m/z: 384.0, (M+Na)⁺ m/z: 406.1.

3-Trifluoromethyl-1-(3'-azidomethylnaphth-2'-yl)-1H-pyrazole-

5-carboxylic acid: To an acetone (50 ml) solution of 5-(furan-2-yl)-3-trifluoromethyl-1-(3'-azidomethylnaphth-2'-yl)-1H-pyrazole (1.98 mmol, 0.75 g) heated to 60 °C was added

5 dropwise KMnO₄ (13.8 mmol, 2.2 g) in water (40 ml). After TLC (5: 1 Hexane: EtOAc) indicated that all of the starting material was consumed (ca. 4 h) the reaction was cooled to ambient temperature and filtered through a pad of Celite®. The pad was washed thoroughly with acetone then the combined 10 filtrate was condensed to remove the acetone. The remaining water suspension was made basic with 1N NaOH (pH 11) and the resulting solution washed with Et₂O. The basic solution was acidified with 1N HCl (pH 2) and extracted with EtOAc. The extracts were dried and evaporated to give the title acid 15 (0.54 g); LRMS (M-H)⁻ m/z: 360.

1-(3'-Azidomethylnaphth-2'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-

yl)aminocarbonyl]pyrazole: 1-(3'-azidomethylnaphth-2'-yl)-3-

20 trifluoromethyl-1H-pyrazole-5-carboxylic acid (1.5 mmol, 0.54 g) in CH₂Cl₂ (25 ml) was stirred with 1.5 ml of a 2M solution of oxalyl chloride in CH₂Cl₂ (3 mmol) and a 2 drops of DMF for 18 h. The reaction was evaporated and pumped on for several hours to remove the last traces of reagent to give 0.59 g of 25 acid chloride. The acid chloride was combined with 2-fluoro-4-(2-methanesulfonylphenyl)aniline (1.7 mmol, 0.50 g) and DMAP (4.5 mmol, 0.55 g) in CH₂Cl₂ (25 ml) and stirred at ambient temperature for 18 h. The reaction mixture was evaporated and applied to a column of flash silica gel (200 g) and eluted 30 with 3: 1 hexane: EtOAc. There was obtained 0.19 g of the title compound; LRMS (M-H)⁻ m/z: 607.

1-(3'-Aminomethylnaphth-2'-yl)-3-trifluoromethyl-5-[(2'-

methylsulfonyl-3-fluoro-[1,1']-biphen-4-

35 **yl)aminocarbonyl]pyrazole:** 3-Trifluoromethyl-1-(3'-azidomethylnaphth-2'-yl)-1H-pyrazole-5-(N-(3-fluoro-2-methylsulfonyl-[1,1']-biphen-4-yl)carboxyamide (0.31 mmol, 0.19 g) and SnCl₂•H₂O (1.25 mmol, 0.28 g) in MeOH (20 ml) was

stirred at ambient temperature 18 h. The reaction was evaporated , taken up in 1N NaOH (50 ml) , then extracted with EtOAc. The extracts were dried ($MgSO_4$) and evaporated. Purification of the final product was by hplc utilizing 5 gradient elution with a mixture of water:acetonitrile with 0.05% trifluoroacetic acid on a reverse phase C18 (60 Å) column gave a pure sample of the title compound; LRMS ($M+H$)⁺ m/z: 583 .

10 **Example 118**

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-
2'-hydroxymethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
trifluoroacetate

15 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 510 ($M-H$) .

20 **Example 119**

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-
2'-methylaminomethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 525 ($M+H$, 100) .

25 **Example 120**

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-bromomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
trifluoroacetate

30 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 493 ($M+H$, 100) .

35 **Example 121**

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-
2'-pyridiniummethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole
trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 573 (M+H, 100).

Example 122

5 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate**

10 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 511 (M+H, 100).

Example 123

15 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-N-pyrrolidinylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate**

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 565 (M+H, 100).

20 **Example 124**

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-imidazol-1"-yl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

25 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 562 (M+H, 100).

Example 125

30 **1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[((2'-(4"-t-butoxycarbonyl)piperazin-1"-ylmethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate**

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 680 (M+H, 100).

35

Example 126

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-(N,N-dimethylamino)pyridiniummethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

5

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 616 (M+H, 100).

Example 127

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-piperazin-1"-ylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

15 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 580 (M+H, 100).

Example 128

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-N-methylmorpholiniummethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 695 (M+H, 100).

25

Example 129

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-morpholinomethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

30

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 581 (M+H, 100).

Example 130

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-(N-methyl-N-methoxyamino)-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 555 (M+H, 100).

Example 131

5 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 493 (M+H, 100).

10

Example 132

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole trifluoroacetate

15 The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 494 (M+H, 100).

Example 133

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 575 (M+H, 100).

25

Example 134

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole bis-trifluoroacetate

30

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 473.3 (M+H, 100).

Example 135

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole bis-trifluoroacetate

The title compound is prepared in an analogous fashion. ESI mass spectrum z (rel. intensity) 499.3 (M+H, 100).

Example 136

5 **1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[4'-(2''-
dimethylaminomethylimidazol-1''-yl)-2'-'
fluorophenyl]aminocarbonyl]pyrazole bis-trifluoroacetate**

The title compound is prepared in an analogous fashion. ESI
10 mass spectrum z (rel. intensity) 489.3 (M+H, 100).

Table 1

Ex	D-E	Ring H	R ^{1a}	A-B	MS
1	1'-Amino-isoquinol-7'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	499
2	1'-Amino-isoquinol-7'-yl	pzl-a	Me	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	498
3	4'-amino-isoquinol-7'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	499
4	isoquinol-7'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	484
5	1'-Amino-isoquinol-7'-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	502
6	isoquinol-5'-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	487
7	isoquinol-7'-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	487
8	2'-amino-benzimidazol-5'-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	491
9	3'-aminoindazol-5-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	491
10	3'-amino-benzisoxazol-5-yl	isox	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	492
11	3'-amino-benzisoxazol-5-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	489
12	1'-Amino-isoquinol-7'-yl	trz	-	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	486

13	4'-amino-isoquinol-7'-yl	trz	-	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	486
14	isoquinol-7'-yl	trz	-	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	476
15	quinol-2'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	484
16	quinol-2'-yl	pzl-b	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	484
17	3'-amino-indazol-5-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	488
18	3'-aminoindazol-5-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	488
19	3'-amino-benzisoxazol-5-yl	pzl-a	Me	5-(2'-NH ₂ SO ₂ -phenyl)pyrid-2-yl	490
20	3'-amino-benzisoxazol-5-yl	pzl-a	Me	isoquin-7-yl	385
21	1'-Amino-isoquinol-7'-yl	pzl-a	Et	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	513
22	1'-Amino-isoquinol-7'-yl	pzl-a	i-Pr	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	527
23	2',4'-diamino-quinazol-7'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	515
24	4'-amino-quinazol-7'-yl	pzl-a	Me	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	500
25	1'-Amino-isoquinol-7'-yl	pzl-a	Me	4-(N-pyrrolidinyl-carbonyl)phenyl	441
26	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	501
27	1'-Amino-phthalazin-7'-yl	pzl-a	CH ₃	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	500
28	3'-amino-benzisoxazol-5'-yl	isox	CH ₃ SO ₂ NH-CH ₂	5-(2'-NH ₂ SO ₂ -phenyl)pyrid-2-yl	586
29	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-4-morpholinophenyl	491
30	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-iPr-imidazol-1'-ylphenyl	496
31	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-Et-imidazol-1'-ylphenyl	482

32	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-(CH ₃) ₂ NCH ₂ -imidazol-1'-ylphenyl	511
33	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-CH ₃ OCH ₂ -imidazol-1'-ylphenyl	498
34	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-2'-(CH ₃) ₂ NCH ₂ -imidazol-1'-ylphenyl	529
35	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-CH ₃ O-2'-CH ₃ -imidazol-1'-ylphenyl	498
36	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-2'-iPr-imidazol-1'-ylphenyl	514
37	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-2'-Et-imidazol-1'-ylphenyl	500
38	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-F-2'-Et-imidazol-1'-ylphenyl	460
39	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-CH ₃ OCH ₂ -imidazol-1'-ylphenyl	458
40	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-(CH ₃) ₂ NCH ₂ -imidazol-1'-ylphenyl	471
41	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-CH ₃ -benzimidazol-1'-ylphenyl	478
42	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-Et-imidazol-1'-ylphenyl	442
43	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2,5-diF-2'-Et-imidazol-1'-ylphenyl	464
44	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-F-4-morpholinophenyl	451
45	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-iPr-imidazol-1'-ylphenyl	456
46	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-F-2'-CH ₃ -imidazol-1'-ylphenyl	446
47	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	3-NH ₂ -2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	540
48	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	3-NO ₂ -2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	548
49	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2'-CH ₃ -imidazol-1'-ylphenyl	428

50	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-(CH ₃) ₂ N-4-(N-pyrrolidinocarbonyl)phenyl	488
51	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-pyrrolidino-4-(N-pyrrolidinocarbonyl)phenyl	514
52	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	2-F-4-(N-pyrrolidinocarbonyl)phenyl	463
53	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	542
54	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	5-(2'-CH ₃ SO ₂ -phenyl)pyrimid-2-yl	525
55	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	542
56	3'-amino-benzisoxazol-5'-yl	pzl-a	Et	5-(2'-NH ₂ SO ₂ -phenyl)pyrid-2-yl	502
57	3'-amino-benzisoxazol-5'-yl	tzl	-	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	494
58	3'-amino-benzisoxazol-5'-yl	tzl	-	2'-CH ₃ -imidazol-1'-ylphenyl	402
59	3'-amino-benzisoxazol-5'-yl	tzl	-	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	475
60	3'-amino-benzisoxazol-5'-yl	tzl	-	2-F-4-(N-pyrrolidinocarbonyl)phenyl	437
61	3'-amino-benzisoxazol-5'-yl	tzl	-	2-pyrrolidino-4-(N-pyrrolidinocarbonyl)phenyl	488
62	1'-Amino-isouquinol-7'-yl	tzl	-	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	505
63	1'-Amino-isouquinol-7'-yl	tzl	-	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	504
64	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	5-(2'-NH ₂ SO ₂ -phenyl)pyrimid-2-yl	545
65	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-CH ₃ -imidazol-1'-ylphenyl	468
66	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-2'-CH ₃ -imidazol-1'-ylphenyl	486
67	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-1'-CH ₃ -imidazol-2'-ylphenyl	486

68	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-NH ₂ -imidazol-1'-ylphenyl	469
69	1'-Amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2'-(CH ₃) ₂ NCH ₂ -3-F-[1,1']-biphen-4-yl	539
70	1'-Amino-benzisoxazol-5'-yl	pzl-a	CO ₂ Et	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	565
71	1'-Amino-benzisoxazol-5'-yl	pzl-a	CO ₂ H	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	537
72	1'-Amino-benzisoxazol-5'-yl	pzl-a	CONH ₂	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	536
73	1'-Amino-benzisoxazol-5'-yl	pzl-a	CO ₂ Et	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	564
74	1'-Amino-benzisoxazol-5'-yl	pzl-a	CO ₂ H	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	534
75	1'-Amino-benzisoxazol-5'-yl	pzl-a	CH ₂ OH	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	522
76	1'-Amino-benzisoxazol-5'-yl	pzl-a	(CH ₃) ₂ N-CH ₂	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	549
77	1'-Amino-benzisoxazol-5'-yl	pzl-c	CO ₂ Et	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	564
78	1'-Amino-benzisoxazol-5'-yl	pzl-c	CO ₂ H	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	534
79	1',2',3',4'-tetrahydroisoquinol-7'-yl	pzl-a	CH ₃	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	488
80	1'-Amino-isoquinol-7'-yl	pzl-b	CH ₃	2'-CH ₃ NHSO ₂ -[1,1']-biphen-4-yl	513
81	4'-amino-isoquinol-7'-yl	pzl-a	CH ₃	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	498
82	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	552
83	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2-F-4-(N-pyrrolidinocarbonyl)phenyl	513
84	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	570
85	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	553

86	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	571
87	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	5-(2'-CH ₃ SO ₂ -phenyl)pyrid-2-yl	553
88	1'-Amino-isoquinol-7'-yl	pzl-a	CH ₃	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	517
89	1'-Amino-isoquinol-7'-yl	pzl-a	CH ₃	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	516
90	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-NH ₂ SO ₂ -3-Cl-[1,1']-biphen-4-yl	587
91	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-NH ₂ SO ₂ -3-CH ₃ -[1,1']-biphen-4-yl	567
92	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-CH ₃ NHSO ₂ -[1,1']-biphen-4-yl	567
93	1'-Amino-isoquinol-7'-yl	pzl-a	Et	2'-CH ₃ NHSO ₂ -[1,1']-biphen-4-yl	527
94	1'-Amino-isoquinol-7'-yl	pzl-a	Et	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	512
95	1'-Amino-isoquinol-7'-yl	pzl-a	n-Pr	2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	527
96	1'-Amino-isoquinol-7'-yl	pzl-a	n-Pr	2'-CH ₃ NHSO ₂ -[1,1']-biphen-4-yl	541
97	1'-Amino-isoquinol-7'-yl	pzl-a	n-Pr	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	526
98	1'-Amino-isoquinol-7'-yl	pzl-a	Et	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	531
99	1'-Amino-isoquinol-7'-yl	pzl-a	Et	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	530
100	1'-Amino-isoquinol-7'-yl	pzl-a	Et	N-pyrrolidinocarbonyl	455
101	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	4-(imidazol-1'-yl)phenyl	464
102	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	3-F-2'-CH ₃ -imidazol-1'-ylphenyl	496
103	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2'-CH ₃ -imidazol-1'-ylphenyl	478

104	1'-Amino-isoquinol-7'-yl	pzl-a	CF ₃	2-F-2'-CH ₃ -imidazol-1'-ylphenyl	496
105	3'-amino-benzisoxazol-5'-yl	pzl-a	CH ₃	2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	488
106	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	561
107	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-4-(N-pyrrolidinocarbonyl)phenyl	503
108	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	5-(2'-NH ₂ SO ₂ -phenyl)pyrid-2-yl	544
109	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	5-(2'-CH ₃ SO ₂ -phenyl)pyrimid-2-yl	544
110	3'-amino-benzisoxazol-5'-yl	pzl-a	CH ₃	pyrid-3'-yl-phenyl	411
111	3'-amino-benzisoxazol-5'-yl	pzl-a	CF ₃	2-F-pyrid-2'-yl-phenyl	483
112	3'-amino-indazol-5'-yl	pzl-a	CF ₃	3-F-2'-NH ₂ SO ₂ -[1,1']-biphen-4-yl	560
113	3'-amino-indazol-5'-yl	pzl-a	CF ₃	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	559
114	3'-amino-indazol-5'-yl	pzl-a	CF ₃	2-F-4-(N-pyrrolidinocarbonyl)phenyl	502
115	3'-amino-indazol-5'-yl	pzl-a	CH ₃	pyrid-3'-yl-phenyl	410
116	3'-amino-indazol-5'-yl	pzl-a	CF ₃	2-F-pyrid-2'-yl-phenyl	482
117	3'-aminomethyl-naphthal-2'-yl	pzl-a	CF ₃	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	583
118	3'-amino-benzisoxazol-5-yl	pzl-a	CF ₃	3-F-2'-HOCH ₂ -[1,1']-biphen-4-yl	510 (M-H)
119	3'-amino-benzisoxazol-5-yl	pzl-a	CF ₃	3-F-2'-(N-methylaminomethyl)-[1,1']-biphen-4-yl	525
120	3'-amino-benzisoxazol-5-yl	pzl-a	CF ₃	3-F-2'-bromomethyl-[1,1']-biphen-4-yl	574
121	3'-amino-benzisoxazol-5-yl	pzl-a	CF ₃	3-F-2'-(N-pyridiniummethyl)-[1,1']-biphen-4-yl	573
122	3'-amino-benzisoxazol-5-yl	pzl-a	CF ₃	3-F-2'-aminomethyl-[1,1']-biphen-4-yl	511

123	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(N-pyrrolidinylmethyl)-[1,1']-biphen-4-yl	565
124	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(N-imidazol-1-ylmethyl)-[1,1']-biphen-4-yl	562
125	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(1"N-(4"N-t-butoxycarbonyl)-piperazinylmethyl)-[1,1']-biphen-4-yl	680
126	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(N-(4"-N,N-dimethylamino)-pyridiniummethyl)-[1,1']-biphen-4-yl	616
127	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(1"N-piperazinylmethyl)-[1,1']-biphen-4-yl	580
128	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(1"N-methyl-1"N-morpholinium)-methyl)-[1,1']-biphen-4-yl	695
129	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(N-morpholinomethyl)-[1,1']-biphen-4-yl	581
130	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-(N-methyl-N-methoxy)-aminomethyl)-[1,1']-biphen-4-yl	555
131	3'-amino-benzisoxazol-5-yl	trz	-	3-F-2'-CH ₃ SO ₂ -[1,1']-biphen-4-yl	493
132	3'-amino-benzisoxazol-5-yl	trz	-	3-F-2'-H ₂ NSO ₂ -[1,1']-biphen-4-yl	494
133	3'-amino-benzisoxazol-5-yl	pzl-a	CF3	3-F-2'-CH ₃ NHSO ₂ -[1,1']-biphen-4-yl	575
134	3'-amino-benzisoxazol-5-yl	tzl	-	2'-(CH ₃) ₂ NCH ₂ -3-F-[1,1']-biphen-4-yl	473
135	3'-amino-benzisoxazol-5-yl	pzl-a	CH ₃ CH ₂	2'-(CH ₃) ₂ NCH ₂ -3-F-[1,1']-biphen-4-yl	499
136	3'-amino-benzisoxazol-5-yl	pzl-a	CH ₃ CH ₂	2-F-(2'-(CH ₃) ₂ NCH ₂ -imidazol-1'-yl)phenyl	489

The following tables contain representative examples of the present invention. Each entry in each table is intended to be paired with each formulae at the start of the table. For example, example 1 in Table 2 is intended to be paired 5 with each of formulae a₁-y₉.

Table 2

- g₁ R^{1a}=CH₃
- g₂ R^{1a}=CF₃
- g₃ R^{1a}=SCH₃
- g₄ R^{1a}=SOCH₃
- g₅ R^{1a}=SO₂CH₃
- g₆ R^{1a}=Cl
- g₇ R^{1a}=Br
- g₈ R^{1a}=CO₂CH₃
- g₉ R^{1a}=CH₂OCH₃

- h₁ R^{1a}=CH₃
- h₂ R^{1a}=CF₃
- h₃ R^{1a}=SCH₃
- h₄ R^{1a}=SOCH₃
- h₅ R^{1a}=SO₂CH₃
- h₆ R^{1a}=Cl
- h₇ R^{1a}=Br
- h₈ R^{1a}=CO₂CH₃
- h₉ R^{1a}=CH₂OCH₃

- i₁ R^{1a}=CH₃
- i₂ R^{1a}=CF₃
- i₃ R^{1a}=SCH₃
- i₄ R^{1a}=SOCH₃
- i₅ R^{1a}=SO₂CH₃
- i₆ R^{1a}=Cl
- i₇ R^{1a}=Br
- i₈ R^{1a}=CO₂CH₃
- i₉ R^{1a}=CH₂OCH₃

- j₁ R^{1a}=CH₃
- j₂ R^{1a}=CF₃
- j₃ R^{1a}=SCH₃
- j₄ R^{1a}=SOCH₃
- j₅ R^{1a}=SO₂CH₃
- j₆ R^{1a}=Cl
- j₇ R^{1a}=Br
- j₈ R^{1a}=CO₂CH₃
- j₉ R^{1a}=CH₂OCH₃

- k₁ R^{1a}=CH₃
- k₂ R^{1a}=CF₃
- k₃ R^{1a}=SCH₃
- k₄ R^{1a}=SOCH₃
- k₅ R^{1a}=SO₂CH₃
- k₆ R^{1a}=Cl
- k₇ R^{1a}=Br
- k₈ R^{1a}=CO₂CH₃
- k₉ R^{1a}=CH₂OCH₃

- l₁ R^{1a}=CH₃
- l₂ R^{1a}=CF₃
- l₃ R^{1a}=SCH₃
- l₄ R^{1a}=SOCH₃
- l₅ R^{1a}=SO₂CH₃
- l₆ R^{1a}=Cl
- l₇ R^{1a}=Br
- l₈ R^{1a}=CO₂CH₃
- l₉ R^{1a}=CH₂OCH₃

- m₁ R^{1a}=CH₃
- m₂ R^{1a}=CF₃
- m₃ R^{1a}=SCH₃
- m₄ R^{1a}=SOCH₃
- m₅ R^{1a}=SO₂CH₃
- m₆ R^{1a}=Cl
- m₇ R^{1a}=Br
- m₈ R^{1a}=CO₂CH₃
- m₉ R^{1a}=CH₂OCH₃

- n₁ R^{1a}=CH₃
- n₂ R^{1a}=CF₃
- n₃ R^{1a}=SCH₃
- n₄ R^{1a}=SOCH₃
- n₅ R^{1a}=SO₂CH₃
- n₆ R^{1a}=Cl
- n₇ R^{1a}=Br
- n₈ R^{1a}=CO₂CH₃
- n₉ R^{1a}=CH₂OCH₃

- o₁ R^{1a}=CH₃
- o₂ R^{1a}=CF₃
- o₃ R^{1a}=SCH₃
- o₄ R^{1a}=SOCH₃
- o₅ R^{1a}=SO₂CH₃
- o₆ R^{1a}=Cl
- o₇ R^{1a}=Br
- o₈ R^{1a}=CO₂CH₃
- o₉ R^{1a}=CH₂OCH₃

- p₁ R^{1a}=CH₃
- p₂ R^{1a}=CF₃
- p₃ R^{1a}=SCH₃
- p₄ R^{1a}=SOCH₃
- p₅ R^{1a}=SO₂CH₃
- p₆ R^{1a}=Cl
- p₇ R^{1a}=Br
- p₈ R^{1a}=CO₂CH₃
- p₉ R^{1a}=CH₂OCH₃

- q₁ R^{1a}=CH₃
- q₂ R^{1a}=CF₃
- q₃ R^{1a}=SCH₃
- q₄ R^{1a}=SOCH₃
- q₅ R^{1a}=SO₂CH₃
- q₆ R^{1a}=Cl
- q₇ R^{1a}=Br
- q₈ R^{1a}=CO₂CH₃
- q₉ R^{1a}=CH₂OCH₃

- r₁ R^{1a}=CH₃
- r₂ R^{1a}=CF₃
- r₃ R^{1a}=SCH₃
- r₄ R^{1a}=SOCH₃
- r₅ R^{1a}=SO₂CH₃
- r₆ R^{1a}=Cl
- r₇ R^{1a}=Br
- r₈ R^{1a}=CO₂CH₃
- r₉ R^{1a}=CH₂OCH₃

s_1 $R^{1a}=CH_3$
 s_2 $R^{1a}=CF_3$
 s_3 $R^{1a}=SCH_3$
 s_4 $R^{1a}=SOCH_3$
 s_5 $R^{1a}=SO_2CH_3$
 s_6 $R^{1a}=Cl$
 s_7 $R^{1a}=Br$
 s_8 $R^{1a}=CO_2CH_3$
 s_9 $R^{1a}=CH_2OCH_3$

t_1 $R^{1a}=CH_3$
 t_2 $R^{1a}=CF_3$
 t_3 $R^{1a}=SCH_3$
 t_4 $R^{1a}=SOCH_3$
 t_5 $R^{1a}=SO_2CH_3$
 t_6 $R^{1a}=Cl$
 t_7 $R^{1a}=Br$
 t_8 $R^{1a}=CO_2CH_3$
 t_9 $R^{1a}=CH_2OCH_3$

u_1 $R^{1a}=CH_3$
 u_2 $R^{1a}=CF_3$
 u_3 $R^{1a}=SCH_3$
 u_4 $R^{1a}=SOCH_3$
 u_5 $R^{1a}=SO_2CH_3$
 u_6 $R^{1a}=Cl$
 u_7 $R^{1a}=Br$
 u_8 $R^{1a}=CO_2CH_3$
 u_9 $R^{1a}=CH_2OCH_3$

v_1 $R^{1a}=CH_3$
 v_2 $R^{1a}=CF_3$
 v_3 $R^{1a}=SCH_3$
 v_4 $R^{1a}=SOCH_3$
 v_5 $R^{1a}=SO_2CH_3$
 v_6 $R^{1a}=Cl$
 v_7 $R^{1a}=Br$
 v_8 $R^{1a}=CO_2CH_3$
 v_9 $R^{1a}=CH_2OCH_3$

w_1 $R^{1a}=CH_3$
 w_2 $R^{1a}=CF_3$
 w_3 $R^{1a}=SCH_3$
 w_4 $R^{1a}=SOCH_3$
 w_5 $R^{1a}=SO_2CH_3$
 w_6 $R^{1a}=Cl$
 w_7 $R^{1a}=Br$
 w_8 $R^{1a}=CO_2CH_3$
 w_9 $R^{1a}=CH_2OCH_3$

$x_1 \text{ R}^{1a}=\text{CH}_3$
 $x_2 \text{ R}^{1a}=\text{CF}_3$
 $x_3 \text{ R}^{1a}=\text{SCH}_3$
 $x_4 \text{ R}^{1a}=\text{SOCH}_3$
 $x_5 \text{ R}^{1a}=\text{SO}_2\text{CH}_3$
 $x_6 \text{ R}^{1a}=\text{Cl}$
 $x_7 \text{ R}^{1a}=\text{Br}$
 $x_8 \text{ R}^{1a}=\text{CO}_2\text{CH}_3$
 $x_9 \text{ R}^{1a}=\text{CH}_2\text{OCH}_3$

$y_1 \text{ R}^{1a}=\text{CH}_3$
 $y_2 \text{ R}^{1a}=\text{CF}_3$
 $y_3 \text{ R}^{1a}=\text{SCH}_3$
 $y_4 \text{ R}^{1a}=\text{SOCH}_3$
 $y_5 \text{ R}^{1a}=\text{SO}_2\text{CH}_3$
 $y_6 \text{ R}^{1a}=\text{Cl}$
 $y_7 \text{ R}^{1a}=\text{Br}$
 $y_8 \text{ R}^{1a}=\text{CO}_2\text{CH}_3$
 $y_9 \text{ R}^{1a}=\text{CH}_2\text{OCH}_3$

Ex#	A	B
5	1 phenyl	2-(aminosulfonyl)phenyl
	2 phenyl	2-(methylaminosulfonyl)phenyl
	3 phenyl	1-pyrrolidinocarbonyl
	4 phenyl	2-(methylsulfonyl)phenyl
	5 phenyl	4-morpholino
	6 phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	7 phenyl	4-morpholinocarbonyl
	8 2-pyridyl	2-(aminosulfonyl)phenyl
	9 2-pyridyl	2-(methylaminosulfonyl)phenyl
10	10 2-pyridyl	1-pyrrolidinocarbonyl
	11 2-pyridyl	2-(methylsulfonyl)phenyl
	12 2-pyridyl	4-morpholino
	13 2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	14 2-pyridyl	4-morpholinocarbonyl
	15 3-pyridyl	2-(aminosulfonyl)phenyl
	16 3-pyridyl	2-(methylaminosulfonyl)phenyl
15	17 3-pyridyl	1-pyrrolidinocarbonyl
	18 3-pyridyl	2-(methylsulfonyl)phenyl
	19 3-pyridyl	4-morpholino
	20 3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	21 3-pyridyl	4-morpholinocarbonyl
20	22 2-pyrimidyl	2-(aminosulfonyl)phenyl
	23 2-pyrimidyl	2-(methylaminosulfonyl)phenyl
	24 2-pyrimidyl	1-pyrrolidinocarbonyl
	25 2-pyrimidyl	2-(methylsulfonyl)phenyl
	26 2-pyrimidyl	4-morpholino
25	27 2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	28 2-pyrimidyl	4-morpholinocarbonyl
	29 5-pyrimidyl	2-(aminosulfonyl)phenyl
	30 5-pyrimidyl	2-(methylaminosulfonyl)phenyl
	31 5-pyrimidyl	1-pyrrolidinocarbonyl
	32 5-pyrimidyl	2-(methylsulfonyl)phenyl

33	5-pyrimidyl	4-morpholino
34	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
35	5-pyrimidyl	4-morpholinocarbonyl
36	2-Cl-phenyl	2-(aminosulfonyl)phenyl
5	37	2-(methylaminosulfonyl)phenyl
	38	1-pyrrolidinocarbonyl
	39	2-(methylsulfonyl)phenyl
10	40	4-morpholino
	41	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	42	4-morpholinocarbonyl
	43	2-F-phenyl
	44	2-(aminosulfonyl)phenyl
15	45	2-(methylaminosulfonyl)phenyl
	46	1-pyrrolidinocarbonyl
	47	2-(methylsulfonyl)phenyl
	48	4-morpholino
	49	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
20	50	4-morpholinocarbonyl
	51	2,5-diF-phenyl
	52	2-(aminosulfonyl)phenyl
	53	2,5-diF-phenyl
	54	2-(methylaminosulfonyl)phenyl
	55	1-pyrrolidinocarbonyl
	56	2-(methylsulfonyl)phenyl
25	57	4-morpholino
	58	2,5-diF-phenyl
	59	2-(aminosulfonyl)phenyl
	60	2-(methylaminosulfonyl)phenyl
	61	1-pyrrolidinocarbonyl
30	62	2-(methylsulfonyl)phenyl
	63	4-morpholinocarbonyl
	64	2-(N-pyrrolidinyl-methyl)phenyl
	65	2-(N-piperidinyl-methyl)phenyl
35	66	2-(N-morpholino-methyl)phenyl
	67	2-(N,N'-methyloxymorpholinium-methyl)phenyl
	68	2-(N-pyridinium-methyl)phenyl
	69	2-(N,N'-dimethylamino)-pyridinium-
	70	methyl)phenyl
40	71	2-(N-azatanyl-methyl)phenyl
	72	2-(N-azetidinyl-methyl)phenyl
	73	2-(N-piperazinyl-methyl)phenyl
	74	2-(N-imidazolyl-methyl)phenyl
45	75	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	76	2-(N-methoxy-N-methylamino-methyl)phenyl
	77	2-(N-pyridonyl-methyl)phenyl
	78	2-(N-(N',N'-dimethylhydrazinyl-
	79	methyl)phenyl
	80	2-(amidinyl)phenyl
	81	2-(N-guanidinyl)phenyl
	82	2-(imidazolyl)phenyl
50	83	2-(imidazolidinyl)phenyl
	84	2-(2-imidazolidinyl-sulfonyl)phenyl
	85	2-(2-pyrrolidinyl)phenyl
	86	2-(2-piperidinyl)phenyl
55		2-(amidinyl-methyl)phenyl
		2-(2-imidazolidinyl-methyl)phenyl
		2-(N-(2-aminoimidazolyl)-methyl)phenyl
		2-dimethylaminoimidazol-1-yl
		2-(3-aminophenyl)
		2-(3-pyrrolidinylcarbonyl)
		2-glycinoyl
		2-(imidazol-1-ylacetyl)
		2-(N-pyrrolidinyl-methyl)phenyl

87	2-pyridyl	2-(N-piperidinyl-methyl)phenyl
88	2-pyridyl	2-(N-morpholino-methyl)phenyl
89	2-pyridyl	2-(N,N'-methylmorpholinium-methyl)phenyl
90	2-pyridyl	2-(N-pyridinium-methyl)phenyl
5	91 2-pyridyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
92	2-pyridyl	2-(N-azatanyl-methyl)phenyl
93	2-pyridyl	2-(N-azetidinyl-methyl)phenyl
94	2-pyridyl	2-(N-piperazinyl-methyl)phenyl
10	95 2-pyridyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
96	2-pyridyl	2-(N-imidazolyl-methyl)phenyl
97	2-pyridyl	2-(N-methoxy-N-methylamino-methyl)phenyl
98	2-pyridyl	2-(N-pyridonyl-methyl)phenyl
15	99 2-pyridyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
100	2-pyridyl	2-(amidinyl)phenyl
101	2-pyridyl	2-(N-guanidinyl)phenyl
102	2-pyridyl	2-(imidazolyl)phenyl
103	2-pyridyl	2-(imidazolidinyl)phenyl
20	104 2-pyridyl	2-(2-imidazolidinyl-sulfonyl)phenyl
105	2-pyridyl	2-(2-pyrrolidinyl)phenyl
106	2-pyridyl	2-(2-piperidinyl)phenyl
107	2-pyridyl	2-(amidinyl-methyl)phenyl
108	2-pyridyl	2-(2-imidazolidinyl-methyl)phenyl
25	109 2-pyridyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
110	2-pyridyl	2-dimethylaminoimidazol-1-yl
111	2-pyridyl	2-(3-aminophenyl)
112	2-pyridyl	2-(3-pyrrolidinylcarbonyl)
30	113 2-pyridyl	2-glycinoyl
114	2-pyridyl	2-(imidazol-1-ylacetyl)
115	3-pyridyl	2-(N-pyrrolidinyl-methyl)phenyl
116	3-pyridyl	2-(N-piperidinyl-methyl)phenyl
117	3-pyridyl	2-(N-morpholino-methyl)phenyl
35	118 3-pyridyl	2-(N,N'-methylmorpholinium-methyl)phenyl
119	3-pyridyl	2-(N-pyridinium-methyl)phenyl
120	3-pyridyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
121	3-pyridyl	2-(N-azatanyl-methyl)phenyl
122	3-pyridyl	2-(N-azetidinyl-methyl)phenyl
40	123 3-pyridyl	2-(N-piperazinyl-methyl)phenyl
124	3-pyridyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
125	3-pyridyl	2-(N-imidazolyl-methyl)phenyl
126	3-pyridyl	2-(N-methoxy-N-methylamino-methyl)phenyl
45	127 3-pyridyl	2-(N-pyridonyl-methyl)phenyl
128	3-pyridyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
129	3-pyridyl	2-(amidinyl)phenyl
130	3-pyridyl	2-(N-guanidinyl)phenyl
50	131 3-pyridyl	2-(imidazolyl)phenyl
132	3-pyridyl	2-(imidazolidinyl)phenyl
133	3-pyridyl	2-(2-imidazolidinyl-sulfonyl)phenyl
134	3-pyridyl	2-(2-pyrrolidinyl)phenyl
135	3-pyridyl	2-(2-piperidinyl)phenyl
136	3-pyridyl	2-(amidinyl-methyl)phenyl
55	137 3-pyridyl	2-(2-imidazolidinyl-methyl)phenyl
138	3-pyridyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl

	139	3-pyridyl	2-dimethylaminoimidazol-1-yl
	140	3-pyridyl	2-(3-aminophenyl)
	141	3-pyridyl	2-(3-pyrrolidinylcarbonyl)
	142	3-pyridyl	2-glycinoyl
5	143	3-pyridyl	2-(imidazol-1-ylacetyl)
	144	2-pyrimidyl	2-(N-pyrrolidinyl-methyl)phenyl
	145	2-pyrimidyl	2-(N-piperidinyl-methyl)phenyl
	146	2-pyrimidyl	2-(N-morpholino-methyl)phenyl
	147	2-pyrimidyl	2-(N,N'-methylmorpholinium-methyl)phenyl
10	148	2-pyrimidyl	2-(N-pyridinium-methyl)phenyl
	149	2-pyrimidyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
	150	2-pyrimidyl	2-(N-azatanyl-methyl)phenyl
15	151	2-pyrimidyl	2-(N-azetidinyl-methyl)phenyl
	152	2-pyrimidyl	2-(N-piperazinyl-methyl)phenyl
	153	2-pyrimidyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	154	2-pyrimidyl	2-(N-imidazolyl-methyl)phenyl
	155	2-pyrimidyl	2-(N-methoxy-N-methylamino-methyl)phenyl
20	156	2-pyrimidyl	2-(N-pyridonyl-methyl)phenyl
	157	2-pyrimidyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
	158	2-pyrimidyl	2-(amidinyl)phenyl
	159	2-pyrimidyl	2-(N-guanidinyl)phenyl
	160	2-pyrimidyl	2-(imidazolyl)phenyl
25	161	2-pyrimidyl	2-(imidazolidinyl)phenyl
	162	2-pyrimidyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	163	2-pyrimidyl	2-(2-pyrrolidinyl)phenyl
	164	2-pyrimidyl	2-(2-piperidinyl)phenyl
	165	2-pyrimidyl	2-(amidinyl-methyl)phenyl
30	166	2-pyrimidyl	2-(2-imidazolidinyl-methyl)phenyl
	167	2-pyrimidyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	168	2-pyrimidyl	2-dimethylaminoimidazol-1-yl
	169	2-pyrimidyl	2-(3-aminophenyl)
35	170	2-pyrimidyl	2-(3-pyrrolidinylcarbonyl)
	171	2-pyrimidyl	2-glycinoyl
	172	2-pyrimidyl	2-(imidazol-1-ylacetyl)
	173	2-Cl-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
	174	2-Cl-phenyl	2-(N-piperidinyl-methyl)phenyl
	175	2-Cl-phenyl	2-(N-morpholino-methyl)phenyl
40	176	2-Cl-phenyl	2-(N,N'-methylmorpholinium-methyl)phenyl
	177	2-Cl-phenyl	2-(N-pyridinium-methyl)phenyl
	178	2-Cl-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
	179	2-Cl-phenyl	2-(N-azatanyl-methyl)phenyl
45	180	2-Cl-phenyl	2-(N-azetidinyl-methyl)phenyl
	181	2-Cl-phenyl	2-(N-piperazinyl-methyl)phenyl
	182	2-Cl-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	183	2-Cl-phenyl	2-(N-imidazolyl-methyl)phenyl
	184	2-Cl-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
50	185	2-Cl-phenyl	2-(N-pyridonyl-methyl)phenyl
	186	2-Cl-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
	187	2-Cl-phenyl	2-(amidinyl)phenyl
	188	2-Cl-phenyl	2-(N-guanidinyl)phenyl
55	189	2-Cl-phenyl	2-(imidazolyl)phenyl
	190	2-Cl-phenyl	2-(imidazolidinyl)phenyl

	191	2-Cl-phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	192	2-Cl-phenyl	2-(2-pyrrolidinyl)phenyl
	193	2-Cl-phenyl	2-(2-piperidinyl)phenyl
	194	2-Cl-phenyl	2-(amidinyl-methyl)phenyl
5	195	2-Cl-phenyl	2-(2-imidazolidinyl-methyl)phenyl
	196	2-Cl-phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	197	2-Cl-phenyl	2-dimethylaminoimidazol-1-yl
	198	2-Cl-phenyl	2-(3-aminophenyl)
	199	2-Cl-phenyl	2-(3-pyrrolidinylcarbonyl)
10	200	2-Cl-phenyl	2-glycinoyl
	201	2-Cl-phenyl	2-(imidazol-1-ylacetyl)
	202	2-F-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
	203	2-F-phenyl	2-(N-piperidinyl-methyl)phenyl
	204	2-F-phenyl	2-(N-morpholino-methyl)phenyl
15	205	2-F-phenyl	2-(N,N'-methylmorpholinium-methyl)phenyl
	206	2-F-phenyl	2-(N-pyridinium-methyl)phenyl
	207	2-F-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
	208	2-F-phenyl	2-(N-azatanyl-methyl)phenyl
20	209	2-F-phenyl	2-(N-azetidinyl-methyl)phenyl
	210	2-F-phenyl	2-(N-piperazinyl-methyl)phenyl
	211	2-F-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	212	2-F-phenyl	2-(N-imidazolyl-methyl)phenyl
	213	2-F-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
25	214	2-F-phenyl	2-(N-pyridonyl-methyl)phenyl
	215	2-F-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
	216	2-F-phenyl	2-(amidinyl)phenyl
	217	2-F-phenyl	2-(N-guanidinyl)phenyl
30	218	2-F-phenyl	2-(imidazolyl)phenyl
	219	2-F-phenyl	2-(imidazolidinyl)phenyl
	220	2-F-phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	221	2-F-phenyl	2-(2-pyrrolidinyl)phenyl
	222	2-F-phenyl	2-(2-piperidinyl)phenyl
35	223	2-F-phenyl	2-(amidinyl-methyl)phenyl
	224	2-F-phenyl	2-(2-imidazolidinyl-methyl)phenyl
	225	2-F-phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	226	2-F-phenyl	2-dimethylaminoimidazol-1-yl
	227	2-F-phenyl	2-(3-aminophenyl)
40	228	2-F-phenyl	2-(3-pyrrolidinylcarbonyl)
	229	2-F-phenyl	2-glycinoyl
	230	2-F-phenyl	2-(imidazol-1-ylacetyl)
	231	2,5-diF-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
	232	2,5-diF-phenyl	2-(N-piperidinyl-methyl)phenyl
45	233	2,5-diF-phenyl	2-(N-morpholino-methyl)phenyl
	234	2,5-diF-phenyl	2-(N,N'-methylmorpholinium-methyl)phenyl
	235	2,5-diF-phenyl	2-(N-pyridinium-methyl)phenyl
	236	2,5-diF-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
50	237	2,5-diF-phenyl	2-(N-azatanyl-methyl)phenyl
	238	2,5-diF-phenyl	2-(N-azetidinyl-methyl)phenyl
	239	2,5-diF-phenyl	2-(N-piperazinyl-methyl)phenyl
	240	2,5-diF-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	241	2,5-diF-phenyl	2-(N-imidazolyl-methyl)phenyl
55	242	2,5-diF-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	243	2,5-diF-phenyl	2-(N-pyridonyl-methyl)phenyl

244	2,5-diF-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
245	2,5-diF-phenyl	2-(amidinyl)phenyl
246	2,5-diF-phenyl	2-(N-guanidinyl)phenyl
5	247	2,5-diF-phenyl 2-(imidazolyl)phenyl
	248	2,5-diF-phenyl 2-(imidazolidinyl)phenyl
	249	2,5-diF-phenyl 2-(2-imidazolidinyl-sulfonyl)phenyl
	250	2,5-diF-phenyl 2-(2-pyrrolidinyl)phenyl
10	251	2,5-diF-phenyl 2-(2-piperidinyl)phenyl
	252	2,5-diF-phenyl 2-(amidinyl-methyl)phenyl
	253	2,5-diF-phenyl 2-(2-imidazolidinyl-methyl)phenyl
	254	2,5-diF-phenyl 2-(N-(2-aminoimidazolyl)-methyl)phenyl
	255	2,5-diF-phenyl 2-dimethylaminoimidazol-1-yl
15	256	2,5-diF-phenyl 2-(3-aminophenyl)
	257	2,5-diF-phenyl 2-(3-pyrrolidinylcarbonyl)
	258	2,5-diF-phenyl 2-glycinoyl
	259	2,5-diF-phenyl 2-(imidazol-1-ylacetyl)

Table 3

<u>Ex#</u>	<u>A</u>	<u>B</u>
1	phenyl	2-(aminosulfonyl)phenyl
2	phenyl	2-(methylaminosulfonyl)phenyl
3	phenyl	1-pyrrolidinocarbonyl
5	4 phenyl	2-(methylsulfonyl)phenyl
	5 phenyl	4-morpholino
	6 phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	7 phenyl	4-morpholinocarbonyl
	8 2-pyridyl	2-(aminosulfonyl)phenyl
10	9 2-pyridyl	2-(methylaminosulfonyl)phenyl
	10 2-pyridyl	1-pyrrolidinocarbonyl
	11 2-pyridyl	2-(methylsulfonyl)phenyl
	12 2-pyridyl	4-morpholino
	13 2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
15	14 2-pyridyl	4-morpholinocarbonyl
	15 3-pyridyl	2-(aminosulfonyl)phenyl
	16 3-pyridyl	2-(methylaminosulfonyl)phenyl
	17 3-pyridyl	1-pyrrolidinocarbonyl
	18 3-pyridyl	2-(methylsulfonyl)phenyl
20	19 3-pyridyl	4-morpholino
	20 3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	21 3-pyridyl	4-morpholinocarbonyl
	22 2-pyrimidyl	2-(aminosulfonyl)phenyl
	23 2-pyrimidyl	2-(methylaminosulfonyl)phenyl
25	24 2-pyrimidyl	1-pyrrolidinocarbonyl
	25 2-pyrimidyl	2-(methylsulfonyl)phenyl
	26 2-pyrimidyl	4-morpholino
	27 2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	28 2-pyrimidyl	4-morpholinocarbonyl
30	29 5-pyrimidyl	2-(aminosulfonyl)phenyl
	30 5-pyrimidyl	2-(methylaminosulfonyl)phenyl
	31 5-pyrimidyl	1-pyrrolidinocarbonyl
	32 5-pyrimidyl	2-(methylsulfonyl)phenyl
	33 5-pyrimidyl	4-morpholino
35	34 5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	35 5-pyrimidyl	4-morpholinocarbonyl
	36 2-Cl-phenyl	2-(aminosulfonyl)phenyl
	37 2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
	38 2-Cl-phenyl	1-pyrrolidinocarbonyl
40	39 2-Cl-phenyl	2-(methylsulfonyl)phenyl
	40 2-Cl-phenyl	4-morpholino
	41 2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	42 2-Cl-phenyl	4-morpholinocarbonyl
	43 2-F-phenyl	2-(aminosulfonyl)phenyl
45	44 2-F-phenyl	2-(methylaminosulfonyl)phenyl
	45 2-F-phenyl	1-pyrrolidinocarbonyl
	46 2-F-phenyl	2-(methylsulfonyl)phenyl
	47 2-F-phenyl	4-morpholino
	48 2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
50	49 2-F-phenyl	4-morpholinocarbonyl
	50 2,5-diF-phenyl	2-(aminosulfonyl)phenyl
	51 2,5-diF-phenyl	2-(methylaminosulfonyl)phenyl
	52 2,5-diF-phenyl	1-pyrrolidinocarbonyl
	53 2,5-diF-phenyl	2-(methylsulfonyl)phenyl
55	54 2,5-diF-phenyl	4-morpholino
	55 2,5-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl

56	2,5-diF-phenyl	4-morpholinocarbonyl
57	phenyl	2-(N-pyrrolidinyl-methyl)phenyl
58	phenyl	2-(N-piperidinyl-methyl)phenyl
59	phenyl	2-(N-morpholino-methyl)phenyl
5	60 phenyl	2-(N,N'-methylmorpholinium-methyl)phenyl
61	phenyl	2-(N-pyridinium-methyl)phenyl
62	phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
10	63 phenyl	2-(N-azatanyl-methyl)phenyl
64	phenyl	2-(N-azetidinyl-methyl)phenyl
65	phenyl	2-(N-piperazinyl-methyl)phenyl
66	phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
67	phenyl	2-(N-imidazolyl-methyl)phenyl
15	68 phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
69	phenyl	2-(N-pyridonyl-methyl)phenyl
70	phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
20	71 phenyl	2-(amidinyl)phenyl
72	phenyl	2-(N-guanidinyl)phenyl
73	phenyl	2-(imidazolyl)phenyl
74	phenyl	2-(imidazolidinyl)phenyl
75	phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
76	phenyl	2-(2-pyrrolidinyl)phenyl
77	phenyl	2-(2-piperidinyl)phenyl
25	78 phenyl	2-(amidinyl-methyl)phenyl
79	phenyl	2-(2-imidazolidinyl-methyl)phenyl
80	phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
81	phenyl	2-dimethylaminoimidazol-1-yl
30	82 phenyl	2-(3-aminophenyl)
83	phenyl	2-(3-pyrrolidinylcarbonyl)
84	phenyl	2-glycinoyl
85	phenyl	2-(imidazol-1-ylacetyl)
86	2-pyridyl	2-(N-pyrrolidinyl-methyl)phenyl
87	2-pyridyl	2-(N-piperidinyl-methyl)phenyl
35	88 2-pyridyl	2-(N-morpholino-methyl)phenyl
89	2-pyridyl	2-(N,N'-methylmorpholinium-methyl)phenyl
90	2-pyridyl	2-(N-pyridinium-methyl)phenyl
91	2-pyridyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
40	92 2-pyridyl	2-(N-azatanyl-methyl)phenyl
93	2-pyridyl	2-(N-azetidinyl-methyl)phenyl
94	2-pyridyl	2-(N-piperazinyl-methyl)phenyl
95	2-pyridyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
96	2-pyridyl	2-(N-imidazolyl-methyl)phenyl
45	97 2-pyridyl	2-(N-methoxy-N-methylamino-methyl)phenyl
98	2-pyridyl	2-(N-pyridonyl-methyl)phenyl
99	2-pyridyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
50	100 2-pyridyl	2-(amidinyl)phenyl
101	2-pyridyl	2-(N-guanidinyl)phenyl
102	2-pyridyl	2-(imidazolyl)phenyl
103	2-pyridyl	2-(imidazolidinyl)phenyl
104	2-pyridyl	2-(2-imidazolidinyl-sulfonyl)phenyl
105	2-pyridyl	2-(2-pyrrolidinyl)phenyl
55	106 2-pyridyl	2-(2-piperidinyl)phenyl
107	2-pyridyl	2-(amidinyl-methyl)phenyl

	108	2-pyridyl	2-(2-imidazolidinyl-methyl)phenyl
	109	2-pyridyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	110	2-pyridyl	2-dimethylaminoimidazol-1-yl
	111	2-pyridyl	2-(3-aminophenyl)
5	112	2-pyridyl	2-(3-pyrrolidinylcarbonyl)
	113	2-pyridyl	2-glycinoyl
	114	2-pyridyl	2-(imidazol-1-ylacetyl)
	115	3-pyridyl	2-(N-pyrrolidinyl-methyl)phenyl
	116	3-pyridyl	2-(N-piperidinyl-methyl)phenyl
10	117	3-pyridyl	2-(N-morpholino-methyl)phenyl
	118	3-pyridyl	2-(N,N'-methylmorpholinium-methyl)phenyl
	119	3-pyridyl	2-(N-pyridinium-methyl)phenyl
	120	3-pyridyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
15	121	3-pyridyl	2-(N-azatanyl-methyl)phenyl
	122	3-pyridyl	2-(N-azetidinyl-methyl)phenyl
	123	3-pyridyl	2-(N-piperazinyl-methyl)phenyl
	124	3-pyridyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	125	3-pyridyl	2-(N-imidazolyl-methyl)phenyl
20	126	3-pyridyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	127	3-pyridyl	2-(N-pyridonyl-methyl)phenyl
	128	3-pyridyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
	129	3-pyridyl	2-(amidinyl)phenyl
25	130	3-pyridyl	2-(N-guanidinyl)phenyl
	131	3-pyridyl	2-(imidazolyl)phenyl
	132	3-pyridyl	2-(imidazolidinyl)phenyl
	133	3-pyridyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	134	3-pyridyl	2-(2-pyrrolidinyl)phenyl
30	135	3-pyridyl	2-(2-piperidinyl)phenyl
	136	3-pyridyl	2-(amidinyl-methyl)phenyl
	137	3-pyridyl	2-(2-imidazolidinyl-methyl)phenyl
	138	3-pyridyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	139	3-pyridyl	2-dimethylaminoimidazol-1-yl
35	140	3-pyridyl	2-(3-aminophenyl)
	141	3-pyridyl	2-(3-pyrrolidinylcarbonyl)
	142	3-pyridyl	2-glycinoyl
	143	3-pyridyl	2-(imidazol-1-ylacetyl)
	144	2-pyrimidyl	2-(N-pyrrolidinyl-methyl)phenyl
40	145	2-pyrimidyl	2-(N-piperidinyl-methyl)phenyl
	146	2-pyrimidyl	2-(N-morpholino-methyl)phenyl
	147	2-pyrimidyl	2-(N,N'-methylmorpholinium-methyl)phenyl
	148	2-pyrimidyl	2-(N-pyridinium-methyl)phenyl
	149	2-pyrimidyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
45	150	2-pyrimidyl	2-(N-azatanyl-methyl)phenyl
	151	2-pyrimidyl	2-(N-azetidinyl-methyl)phenyl
	152	2-pyrimidyl	2-(N-piperazinyl-methyl)phenyl
	153	2-pyrimidyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
50	154	2-pyrimidyl	2-(N-imidazolyl-methyl)phenyl
	155	2-pyrimidyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	156	2-pyrimidyl	2-(N-pyridonyl-methyl)phenyl
	157	2-pyrimidyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
55	158	2-pyrimidyl	2-(amidinyl)phenyl
	159	2-pyrimidyl	2-(N-guanidinyl)phenyl

	160	2-pyrimidyl	2-(imidazolyl)phenyl
	161	2-pyrimidyl	2-(imidazolidinyl)phenyl
	162	2-pyrimidyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	163	2-pyrimidyl	2-(2-pyrrolidinyl)phenyl
5	164	2-pyrimidyl	2-(2-piperidinyl)phenyl
	165	2-pyrimidyl	2-(amidinyl-methyl)phenyl
	166	2-pyrimidyl	2-(2-imidazolidinyl-methyl)phenyl
	167	2-pyrimidyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	168	2-pyrimidyl	2-dimethylaminoimidazol-1-yl
10	169	2-pyrimidyl	2-(3-aminophenyl)
	170	2-pyrimidyl	2-(3-pyrrolidinylcarbonyl)
	171	2-pyrimidyl	2-glycinoyl
	172	2-pyrimidyl	2-(imidazol-1-ylacetyl)
	173	2-Cl-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
15	174	2-Cl-phenyl	2-(N-piperidinyl-methyl)phenyl
	175	2-Cl-phenyl	2-(N-morpholino-methyl)phenyl
	176	2-Cl-phenyl	2-(N,N'-methyloxymorpholinium-methyl)phenyl
	177	2-Cl-phenyl	2-(N-pyridinium-methyl)phenyl
	178	2-Cl-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
20	179	2-Cl-phenyl	2-(N-azatanyl-methyl)phenyl
	180	2-Cl-phenyl	2-(N-azetidinyl-methyl)phenyl
	181	2-Cl-phenyl	2-(N-piperazinyl-methyl)phenyl
	182	2-Cl-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
25	183	2-Cl-phenyl	2-(N-imidazolyl-methyl)phenyl
	184	2-Cl-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	185	2-Cl-phenyl	2-(N-pyridonyl-methyl)phenyl
	186	2-Cl-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
30	187	2-Cl-phenyl	2-(amidinyl)phenyl
	188	2-Cl-phenyl	2-(N-guanidinyl)phenyl
	189	2-Cl-phenyl	2-(imidazolyl)phenyl
	190	2-Cl-phenyl	2-(imidazolidinyl)phenyl
	191	2-Cl-phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
35	192	2-Cl-phenyl	2-(2-pyrrolidinyl)phenyl
	193	2-Cl-phenyl	2-(2-piperidinyl)phenyl
	194	2-Cl-phenyl	2-(amidinyl-methyl)phenyl
	195	2-Cl-phenyl	2-(2-imidazolidinyl-methyl)phenyl
	196	2-Cl-phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
40	197	2-Cl-phenyl	2-dimethylaminoimidazol-1-yl
	198	2-Cl-phenyl	2-(3-aminophenyl)
	199	2-Cl-phenyl	2-(3-pyrrolidinylcarbonyl)
	200	2-Cl-phenyl	2-glycinoyl
	201	2-Cl-phenyl	2-(imidazol-1-ylacetyl)
45	202	2-F-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
	203	2-F-phenyl	2-(N-piperidinyl-methyl)phenyl
	204	2-F-phenyl	2-(N-morpholino-methyl)phenyl
	205	2-F-phenyl	2-(N,N'-methyloxymorpholinium-methyl)phenyl
	206	2-F-phenyl	2-(N-pyridinium-methyl)phenyl
50	207	2-F-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
	208	2-F-phenyl	2-(N-azatanyl-methyl)phenyl
	209	2-F-phenyl	2-(N-azetidinyl-methyl)phenyl
	210	2-F-phenyl	2-(N-piperazinyl-methyl)phenyl
55	211	2-F-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	212	2-F-phenyl	2-(N-imidazolyl-methyl)phenyl

	213	2-F-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	214	2-F-phenyl	2-(N-pyridonyl-methyl)phenyl
	215	2-F-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
5	216	2-F-phenyl	2-(amidinyl)phenyl
	217	2-F-phenyl	2-(N-guanidinyl)phenyl
	218	2-F-phenyl	2-(imidazolyl)phenyl
	219	2-F-phenyl	2-(imidazolidinyl)phenyl
10	220	2-F-phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	221	2-F-phenyl	2-(2-pyrrolidinyl)phenyl
	222	2-F-phenyl	2-(2-piperidinyl)phenyl
	223	2-F-phenyl	2-(amidinyl-methyl)phenyl
	224	2-F-phenyl	2-(2-imidazolidinyl-methyl)phenyl
15	225	2-F-phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	226	2-F-phenyl	2-dimethylaminoimidazol-1-yl
	227	2-F-phenyl	2-(3-aminophenyl)
	228	2-F-phenyl	2-(3-pyrrolidinylcarbonyl)
	229	2-F-phenyl	2-glycinoyl
20	230	2-F-phenyl	2-(imidazol-1-ylacetyl)
	231	2,5-diF-phenyl	2-(N-pyrrolidinyl-methyl)phenyl
	232	2,5-diF-phenyl	2-(N-piperidinyl-methyl)phenyl
	233	2,5-diF-phenyl	2-(N-morpholino-methyl)phenyl
	234	2,5-diF-phenyl	2-(N,N'-methylmorpholinium-methyl)phenyl
25	235	2,5-diF-phenyl	2-(N-pyridinium-methyl)phenyl
	236	2,5-diF-phenyl	2-(N-4-(N,N'-dimethylamino)-pyridinium-methyl)phenyl
	237	2,5-diF-phenyl	2-(N-azatanyl-methyl)phenyl
	238	2,5-diF-phenyl	2-(N-azetidinyl-methyl)phenyl
30	239	2,5-diF-phenyl	2-(N-piperazinyl-methyl)phenyl
	240	2,5-diF-phenyl	2-(N,N'-BOC-piperazinyl-methyl)phenyl
	241	2,5-diF-phenyl	2-(N-imidazolyl-methyl)phenyl
	242	2,5-diF-phenyl	2-(N-methoxy-N-methylamino-methyl)phenyl
	243	2,5-diF-phenyl	2-(N-pyridonyl-methyl)phenyl
35	244	2,5-diF-phenyl	2-(N-(N',N'-dimethylhydrazinyl-methyl)phenyl
	245	2,5-diF-phenyl	2-(amidinyl)phenyl
	246	2,5-diF-phenyl	2-(N-guanidinyl)phenyl
	247	2,5-diF-phenyl	2-(imidazolyl)phenyl
40	248	2,5-diF-phenyl	2-(imidazolidinyl)phenyl
	249	2,5-diF-phenyl	2-(2-imidazolidinyl-sulfonyl)phenyl
	250	2,5-diF-phenyl	2-(2-pyrrolidinyl)phenyl
	251	2,5-diF-phenyl	2-(2-piperidinyl)phenyl
	252	2,5-diF-phenyl	2-(amidinyl-methyl)phenyl
45	253	2,5-diF-phenyl	2-(2-imidazolidinyl-methyl)phenyl
	254	2,5-diF-phenyl	2-(N-(2-aminoimidazolyl)-methyl)phenyl
	255	2,5-diF-phenyl	2-dimethylaminoimidazol-1-yl
	256	2,5-diF-phenyl	2-(3-aminophenyl)
	257	2,5-diF-phenyl	2-(3-pyrrolidinylcarbonyl)
	258	2,5-diF-phenyl	2-glycinoyl
50	259	2,5-diF-phenyl	2-(imidazol-1-ylacetyl)

Table 4

- g₁ R^{1a}=CH₃
- g₂ R^{1a}=CF₃
- g₃ R^{1a}=SCH₃
- g₄ R^{1a}=SOCH₃
- g₅ R^{1a}=SO₂CH₃
- g₆ R^{1a}=Cl
- g₇ R^{1a}=Br
- g₈ R^{1a}=CO₂CH₃
- g₉ R^{1a}=CH₂OCH₃

- h₁ R^{1a}=CH₃
- h₂ R^{1a}=CF₃
- h₃ R^{1a}=SCH₃
- h₄ R^{1a}=SOCH₃
- h₅ R^{1a}=SO₂CH₃
- h₆ R^{1a}=Cl
- h₇ R^{1a}=Br
- h₈ R^{1a}=CO₂CH₃
- h₉ R^{1a}=CH₂OCH₃

- i₁ R^{1a}=CH₃
- i₂ R^{1a}=CF₃
- i₃ R^{1a}=SCH₃
- i₄ R^{1a}=SOCH₃
- i₅ R^{1a}=SO₂CH₃
- i₆ R^{1a}=Cl
- i₇ R^{1a}=Br
- i₈ R^{1a}=CO₂CH₃
- i₉ R^{1a}=CH₂OCH₃

- j₁ R^{1a}=CH₃
- j₂ R^{1a}=CF₃
- j₃ R^{1a}=SCH₃
- j₄ R^{1a}=SOCH₃
- j₅ R^{1a}=SO₂CH₃
- j₆ R^{1a}=Cl
- j₇ R^{1a}=Br
- j₈ R^{1a}=CO₂CH₃
- j₉ R^{1a}=CH₂OCH₃

- k₁ R^{1a}=CH₃
- k₂ R^{1a}=CF₃
- k₃ R^{1a}=SCH₃
- k₄ R^{1a}=SOCH₃
- k₅ R^{1a}=SO₂CH₃
- k₆ R^{1a}=Cl
- k₇ R^{1a}=Br
- k₈ R^{1a}=CO₂CH₃
- k₉ R^{1a}=CH₂OCH₃

- l₁ R^{1a}=CH₃
- l₂ R^{1a}=CF₃
- l₃ R^{1a}=SCH₃
- l₄ R^{1a}=SOCH₃
- l₅ R^{1a}=SO₂CH₃
- l₆ R^{1a}=Cl
- l₇ R^{1a}=Br
- l₈ R^{1a}=CO₂CH₃
- l₉ R^{1a}=CH₂OCH₃

s_1 $R^{1a}=CH_3$
 s_2 $R^{1a}=CF_3$
 s_3 $R^{1a}=SCH_3$
 s_4 $R^{1a}=SOCH_3$
 s_5 $R^{1a}=SO_2CH_3$
 s_6 $R^{1a}=Cl$
 s_7 $R^{1a}=Br$
 s_8 $R^{1a}=CO_2CH_3$
 s_9 $R^{1a}=CH_2OCH_3$

t_1 $R^{1a}=CH_3$
 t_2 $R^{1a}=CF_3$
 t_3 $R^{1a}=SCH_3$
 t_4 $R^{1a}=SOCH_3$
 t_5 $R^{1a}=SO_2CH_3$
 t_6 $R^{1a}=Cl$
 t_7 $R^{1a}=Br$
 t_8 $R^{1a}=CO_2CH_3$
 t_9 $R^{1a}=CH_2OCH_3$

u_1 $R^{1a}=CH_3$
 u_2 $R^{1a}=CF_3$
 u_3 $R^{1a}=SCH_3$
 u_4 $R^{1a}=SOCH_3$
 u_5 $R^{1a}=SO_2CH_3$
 u_6 $R^{1a}=Cl$
 u_7 $R^{1a}=Br$
 u_8 $R^{1a}=CO_2CH_3$
 u_9 $R^{1a}=CH_2OCH_3$

v_1 $R^{1a}=CH_3$
 v_2 $R^{1a}=CF_3$
 v_3 $R^{1a}=SCH_3$
 v_4 $R^{1a}=SOCH_3$
 v_5 $R^{1a}=SO_2CH_3$
 v_6 $R^{1a}=Cl$
 v_7 $R^{1a}=Br$
 v_8 $R^{1a}=CO_2CH_3$
 v_9 $R^{1a}=CH_2OCH_3$

w_1 $R^{1a}=CH_3$
 w_2 $R^{1a}=CF_3$
 w_3 $R^{1a}=SCH_3$
 w_4 $R^{1a}=SOCH_3$
 w_5 $R^{1a}=SO_2CH_3$
 w_6 $R^{1a}=Cl$
 w_7 $R^{1a}=Br$
 w_8 $R^{1a}=CO_2CH_3$
 w_9 $R^{1a}=CH_2OCH_3$

x_1 $R^{1a}=CH_3$
 x_2 $R^{1a}=CF_3$
 x_3 $R^{1a}=SCH_3$
 x_4 $R^{1a}=SOCH_3$
 x_5 $R^{1a}=SO_2CH_3$
 x_6 $R^{1a}=Cl$
 x_7 $R^{1a}=Br$
 x_8 $R^{1a}=CO_2CH_3$
 x_9 $R^{1a}=CH_2OCH_3$

y_1 $R^{1a}=CH_3$
 y_2 $R^{1a}=CF_3$
 y_3 $R^{1a}=SCH_3$
 y_4 $R^{1a}=SOCH_3$
 y_5 $R^{1a}=SO_2CH_3$
 y_6 $R^{1a}=Cl$
 y_7 $R^{1a}=Br$
 y_8 $R^{1a}=CO_2CH_3$
 y_9 $R^{1a}=CH_2OCH_3$

Ex#	A	B
5	1 phenyl	2-((Me) ₂ N-methyl)phenyl
	2 phenyl	2-((Me)NH-methyl)phenyl
	3 phenyl	2-(H ₂ N-methyl)phenyl
	4 phenyl	2-HOCH ₂ -phenyl
	5 2-F-phenyl	2-((Me) ₂ N-methyl)phenyl
10	6 2-F-phenyl	2-((Me)NH-methyl)phenyl
	7 2-F-phenyl	2-(H ₂ N-methyl)phenyl
	8 2-F-phenyl	2-HOCH ₂ -phenyl
	9 phenyl	2-methylimidazol-1-yl
	10 phenyl	2-ethylimidazol-1-yl
15	11 phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
	12 phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	13 phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	14 2-F-phenyl	2-methylimidazol-1-yl
	15 2-F-phenyl	2-ethylimidazol-1-yl
20	16 2-F-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
	17 2-F-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	18 2-F-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	19 2-C1-phenyl	2-methylimidazol-1-yl
	20 2-C1-phenyl	2-ethylimidazol-1-yl
25	21 2-C1-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
	22 2-C1-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	23 2-C1-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	24 2-(Me) ₂ N-phenyl	2-methylimidazol-1-yl
	25 2-(Me) ₂ N-phenyl	2-ethylimidazol-1-yl
30	26 2-(Me) ₂ N-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
	27 2-(Me) ₂ N-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	28 2-(Me) ₂ N-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	29 phenyl	N-methylimidazol-2-yl
	30 phenyl	4-methylimidazol-5-yl
31	phenyl	5-CF ₃ -pyrazol-1-yl

	32	2-F-phenyl	N-methylimidazol-2-yl
	33	2-F-phenyl	4-methylimidazol-5-yl
	34	2-F-phenyl	5-CF ₃ -pyrazol-1-yl
	35	phenyl	guanidino
5	36	phenyl	2-thiazolin-2-ylamine
	37	phenyl	N-methyl-2-imidazolin-2-yl
	38	phenyl	N-methyl-1,4,5,6- tetrahydropyrimid-2-yl
	39	phenyl	N-methylimidazol-2-ylthiol
10	40	phenyl	t-butoxycarbonylamine
	41	phenyl	(N-pyrrolidino)formylimino
	42	phenyl	(N-pyrrolidino)formyl-N- methanesulfamoyl)imino
	43	2-F-phenyl	guanidino
15	44	2-F-phenyl	2-thiazolin-2-ylamine
	45	2-F-phenyl	N-methyl-2-imidazolin-2-yl
	46	2-F-phenyl	N-methyl-1,4,5,6- tetrahydropyrimid-2-yl
	47	2-F-phenyl	N-methylimidazol-2-ylthio
20	48	2-F-phenyl	t-butoxycarbonylamine
	49	2-F-phenyl	(N-pyrrolidino)formylimino
	50	2-F-phenyl	(N-pyrrolidino)formyl-N- methanesulfamoyl)imino
	51	2-CH ₃ O-phenyl	(N-pyrrolidino)formylimino
25	52	2-CH ₃ O-phenyl	(N-pyrrolidino)formyl-N- (methanesulfamoyl)imino

Table 5

<u>Ex#</u>	<u>A</u>	<u>B</u>
1	phenyl	2-((Me) ₂ N-methyl)phenyl
2	phenyl	2-((Me)NH-methyl)phenyl
3	phenyl	2-(H ₂ N-methyl)phenyl
5	4 phenyl	2-HOCH ₂ -phenyl
5	2-F-phenyl	2-((Me) ₂ N-methyl)phenyl
6	2-F-phenyl	2-((Me)NH-methyl)phenyl
7	2-F-phenyl	2-(H ₂ N-methyl)phenyl
8	2-F-phenyl	2-HOCH ₂ -phenyl
10	9 phenyl	2-methylimidazol-1-yl
10	phenyl	2-ethylimidazol-1-yl
11	phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
12	phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
13	phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
15	14 2-F-phenyl	2-methylimidazol-1-yl
15	2-F-phenyl	2-ethylimidazol-1-yl
16	2-F-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
17	2-F-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
18	2-F-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
20	19 2-C1-phenyl	2-methylimidazol-1-yl
20	2-C1-phenyl	2-ethylimidazol-1-yl
21	2-C1-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
22	2-C1-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
23	2-C1-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
25	24 2-(Me) ₂ N-phenyl	2-methylimidazol-1-yl
25	2-(Me) ₂ N-phenyl	2-ethylimidazol-1-yl
26	2-(Me) ₂ N-phenyl	2-((Me) ₂ N-methyl)imidazol-1-yl
27	2-(Me) ₂ N-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
28	2-(Me) ₂ N-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
30	29 phenyl	N-methylimidazol-2-yl
30	30 phenyl	4-methylimidazol-5-yl
31	phenyl	5-CF ₃ -pyrazol-1-yl
32	2-F-phenyl	N-methylimidazol-2-yl
33	2-F-phenyl	4-methylimidazol-5-yl
35	34 2-F-phenyl	5-CF ₃ -pyrazol-1-yl
35	phenyl	guanidino
36	phenyl	2-thiazolin-2-ylamine
37	phenyl	N-methyl-2-imidazolin-2-yl
38	phenyl	N-methyl-1,4,5,6-tetrahydropyrimid-2-yl
40	39 phenyl	N-methylimidazol-2-ylthiol
40	40 phenyl	t-butoxycarbonylamine
41	phenyl	(N-pyrrolidino)formylimino
42	phenyl	(N-pyrrolidino)formyl-N-methanesulfamoyl)imino
45	43 2-F-phenyl	guanidino
44	2-F-phenyl	2-thiazolin-2-ylamine
45	2-F-phenyl	N-methyl-2-imidazolin-2-yl
46	2-F-phenyl	N-methyl-1,4,5,6-tetrahydropyrimid-2-yl
50	47 2-F-phenyl	N-methylimidazol-2-ylthio
48	2-F-phenyl	t-butoxycarbonylamine
49	2-F-phenyl	(N-pyrrolidino)formylimino
50	2-F-phenyl	(N-pyrrolidino)formyl-N-methanesulfamoyl)imino

51 2-CH₃O-phenyl
52 2-CH₃O-phenyl

(N-pyrrolidino)formylimino
(N-pyrrolidino)formyl-N-
(methanesulfamoyl)imino

Table 6

g_1 R⁴=OCH₃
 g_2 R⁴=CO₂CH₃
 g_3 R⁴=CH₂OCH₃
 g_4 R⁴=CH₃
 g_5 R⁴=CF₃
 g_6 R⁴=Cl
 g_7 R⁴=F

h_1 R⁴=OCH₃
 h_2 R⁴=CO₂CH₃
 h_3 R⁴=CH₂OCH₃
 h_4 R⁴=CH₃
 h_5 R⁴=CF₃
 h_6 R⁴=Cl
 h_7 R⁴=F

i_1 R⁴=OCH₃
 i_2 R⁴=CO₂CH₃
 i_3 R⁴=CH₂OCH₃
 i_4 R⁴=CH₃
 i_5 R⁴=CF₃
 i_6 R⁴=Cl
 i_7 R⁴=F

j_1 R⁴=OCH₃
 j_2 R⁴=CO₂CH₃
 j_3 R⁴=CH₂OCH₃
 j_4 R⁴=CH₃
 j_5 R⁴=CF₃
 j_6 R⁴=Cl
 j_7 R⁴=F

m_1 $R^4=OCH_3$
 m_2 $R^4=CO_2CH_3$
 m_3 $R^4=CH_2OCH_3$
 m_4 $R^4=CH_3$
 m_5 $R^4=CF_3$
 m_6 $R^4=Cl$
 m_7 $R^4=F$

n_1 $R^4=OCH_3$
 n_2 $R^4=CO_2CH_3$
 n_3 $R^4=CH_2OCH_3$
 n_4 $R^4=CH_3$
 n_5 $R^4=CF_3$
 n_6 $R^4=Cl$
 n_7 $R^4=F$

o_1 $R^4=OCH_3$
 o_2 $R^4=CO_2CH_3$
 o_3 $R^4=CH_2OCH_3$
 o_4 $R^4=CH_3$
 o_5 $R^4=CF_3$
 o_6 $R^4=Cl$
 o_7 $R^4=F$

p_1 $R^4=OCH_3$
 p_2 $R^4=CO_2CH_3$
 p_3 $R^4=CH_2OCH_3$
 p_4 $R^4=CH_3$
 p_5 $R^4=CF_3$
 p_6 $R^4=Cl$
 p_7 $R^4=F$

q_1 $R^4=OCH_3$
 q_2 $R^4=CO_2CH_3$
 q_3 $R^4=CH_2OCH_3$
 q_4 $R^4=CH_3$
 q_5 $R^4=CF_3$
 q_6 $R^4=Cl$
 q_7 $R^4=F$

r_1 $R^4=OCH_3$
 r_2 $R^4=CO_2CH_3$
 r_3 $R^4=CH_2OCH_3$
 r_4 $R^4=CH_3$
 r_5 $R^4=CF_3$
 r_6 $R^4=Cl$
 r_7 $R^4=F$

s_1 $R^4=OCH_3$
 s_2 $R^4=CO_2CH_3$
 s_3 $R^4=CH_2OCH_3$
 s_4 $R^4=CH_3$
 s_5 $R^4=CF_3$
 s_6 $R^4=Cl$
 s_7 $R^4=F$

t_1 $R^4=OCH_3$
 t_2 $R^4=CO_2CH_3$
 t_3 $R^4=CH_2OCH_3$
 t_4 $R^4=CH_3$
 t_5 $R^4=CF_3$
 t_6 $R^4=Cl$
 t_7 $R^4=F$

u

v

w₁ R⁴=OCH₃
w₂ R⁴=CO₂CH₃
w₃ R⁴=CH₂OCH₃
w₄ R⁴=CH₃
w₅ R⁴=CF₃
w₆ R⁴=Cl
w₇ R⁴=F

x₁ R⁴=OCH₃
x₂ R⁴=CO₂CH₃
x₃ R⁴=CH₂OCH₃
x₄ R⁴=CH₃
x₅ R⁴=CF₃
x₆ R⁴=Cl
x₇ R⁴=F

y₁ R⁴=OCH₃
y₂ R⁴=CO₂CH₃
y₃ R⁴=CH₂OCH₃
y₄ R⁴=CH₃
y₅ R⁴=CF₃
y₆ R⁴=Cl
y₇ R⁴=F

z₁ R⁴=OCH₃
z₂ R⁴=CO₂CH₃
z₃ R⁴=CH₂OCH₃
z₄ R⁴=CH₃
z₅ R⁴=CF₃
z₆ R⁴=Cl
z₇ R⁴=F

aa₁ R⁴=OCH₃
aa₂ R⁴=CO₂CH₃
aa₃ R⁴=CH₂OCH₃
aa₄ R⁴=CH₃
aa₅ R⁴=CF₃
aa₆ R⁴=Cl
aa₇ R⁴=F

bb₁ R⁴=OCH₃
bb₂ R⁴=CO₂CH₃
bb₃ R⁴=CH₂OCH₃
bb₄ R⁴=CH₃
bb₅ R⁴=CF₃
bb₆ R⁴=Cl
bb₇ R⁴=F

cc₁ R⁴=OCH₃
cc₂ R⁴=CO₂CH₃
cc₃ R⁴=CH₂OCH₃
cc₄ R⁴=CH₃
cc₅ R⁴=CF₃
cc₆ R⁴=Cl
cc₇ R⁴=F

dd₁ R⁴=OCH₃
dd₂ R⁴=CO₂CH₃
dd₃ R⁴=CH₂OCH₃
dd₄ R⁴=CH₃
dd₅ R⁴=CF₃
dd₆ R⁴=Cl
dd₇ R⁴=F

5	Ex #	A	B
1		phenyl	2-(aminosulfonyl)phenyl
2		phenyl	2-(methylaminosulfonyl)phenyl
3		phenyl	1-pyrrolidinocarbonyl
4		phenyl	2-(methylsulfonyl)phenyl
10	5	phenyl	4-morpholino
	6	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	7	phenyl	4-morpholinocarbonyl

	8	2-pyridyl	2-(aminosulfonyl)phenyl
	9	2-pyridyl	2-(methylaminosulfonyl)phenyl
	10	2-pyridyl	1-pyrrolidinocarbonyl
	11	2-pyridyl	2-(methylsulfonyl)phenyl
5	12	2-pyridyl	4-morpholino
	13	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	14	2-pyridyl	4-morpholinocarbonyl
	15	3-pyridyl	2-(aminosulfonyl)phenyl
	16	3-pyridyl	2-(methylaminosulfonyl)phenyl
10	17	3-pyridyl	1-pyrrolidinocarbonyl
	18	3-pyridyl	2-(methylsulfonyl)phenyl
	19	3-pyridyl	4-morpholino
	20	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	21	3-pyridyl	4-morpholinocarbonyl
15	22	2-pyrimidyl	2-(aminosulfonyl)phenyl
	23	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
	24	2-pyrimidyl	1-pyrrolidinocarbonyl
	25	2-pyrimidyl	2-(methylsulfonyl)phenyl
	26	2-pyrimidyl	4-morpholino
20	27	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	28	2-pyrimidyl	4-morpholinocarbonyl
	29	5-pyrimidyl	2-(aminosulfonyl)phenyl
	30	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
	31	5-pyrimidyl	1-pyrrolidinocarbonyl
25	32	5-pyrimidyl	2-(methylsulfonyl)phenyl
	33	5-pyrimidyl	4-morpholino
	34	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	35	5-pyrimidyl	4-morpholinocarbonyl
	36	2-Cl-phenyl	2-(aminosulfonyl)phenyl
30	37	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
	38	2-Cl-phenyl	1-pyrrolidinocarbonyl
	39	2-Cl-phenyl	2-(methylsulfonyl)phenyl
	40	2-Cl-phenyl	4-morpholino
	41	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
35	42	2-Cl-phenyl	4-morpholinocarbonyl
	43	2-F-phenyl	2-(aminosulfonyl)phenyl
	44	2-F-phenyl	2-(methylaminosulfonyl)phenyl
	45	2-F-phenyl	1-pyrrolidinocarbonyl
	46	2-F-phenyl	2-(methylsulfonyl)phenyl
40	47	2-F-phenyl	4-morpholino
	48	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	49	2-F-phenyl	4-morpholinocarbonyl
	50	2,5-diF-phenyl	2-(aminosulfonyl)phenyl
	51	2,5-diF-phenyl	2-(methylaminosulfonyl)phenyl
45	52	2,5-diF-phenyl	1-pyrrolidinocarbonyl
	53	2,5-diF-phenyl	2-(methylsulfonyl)phenyl
	54	2,5-diF-phenyl	4-morpholino
	55	2,5-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
	56	2,5-diF-phenyl	4-morpholinocarbonyl

Table 7

g_1 R⁴=OCH₃
 g_2 R⁴=CO₂CH₃
 g_3 R⁴=CH₂OCH₃
 g_4 R⁴=CH₃
 g_5 R⁴=CF₃
 g_6 R⁴=Cl
 g_7 R⁴=F

h_1 R⁴=OCH₃
 h_2 R⁴=CO₂CH₃
 h_3 R⁴=CH₂OCH₃
 h_4 R⁴=CH₃
 h_5 R⁴=CF₃
 h_6 R⁴=Cl
 h_7 R⁴=F

i_1 R⁴=OCH₃
 i_2 R⁴=CO₂CH₃
 i_3 R⁴=CH₂OCH₃
 i_4 R⁴=CH₃
 i_5 R⁴=CF₃
 i_6 R⁴=Cl
 i_7 R⁴=F

j_1 R⁴=OCH₃
 j_2 R⁴=CO₂CH₃
 j_3 R⁴=CH₂OCH₃
 j_4 R⁴=CH₃
 j_5 R⁴=CF₃
 j_6 R⁴=Cl
 j_7 R⁴=F

$m_1 R^4 = OCH_3$
 $m_2 R^4 = CO_2CH_3$
 $m_3 R^4 = CH_2OCH_3$
 $m_4 R^4 = CH_3$
 $m_5 R^4 = CF_3$
 $m_6 R^4 = Cl$
 $m_7 R^4 = F$

$n_1 R^4 = OCH_3$
 $n_2 R^4 = CO_2CH_3$
 $n_3 R^4 = CH_2OCH_3$
 $n_4 R^4 = CH_3$
 $n_5 R^4 = CF_3$
 $n_6 R^4 = Cl$
 $n_7 R^4 = F$

$o_1 R^4 = OCH_3$
 $o_2 R^4 = CO_2CH_3$
 $o_3 R^4 = CH_2OCH_3$
 $o_4 R^4 = CH_3$
 $o_5 R^4 = CF_3$
 $o_6 R^4 = Cl$
 $o_7 R^4 = F$

$p_1 R^4 = OCH_3$
 $p_2 R^4 = CO_2CH_3$
 $p_3 R^4 = CH_2OCH_3$
 $p_4 R^4 = CH_3$
 $p_5 R^4 = CF_3$
 $p_6 R^4 = Cl$
 $p_7 R^4 = F$

$q_1 R^4 = OCH_3$
 $q_2 R^4 = CO_2CH_3$
 $q_3 R^4 = CH_2OCH_3$
 $q_4 R^4 = CH_3$
 $q_5 R^4 = CF_3$
 $q_6 R^4 = Cl$
 $q_7 R^4 = F$

$r_1 R^4 = OCH_3$
 $r_2 R^4 = CO_2CH_3$
 $r_3 R^4 = CH_2OCH_3$
 $r_4 R^4 = CH_3$
 $r_5 R^4 = CF_3$
 $r_6 R^4 = Cl$
 $r_7 R^4 = F$

$s_1 R^4 = OCH_3$
 $s_2 R^4 = CO_2CH_3$
 $s_3 R^4 = CH_2OCH_3$
 $s_4 R^4 = CH_3$
 $s_5 R^4 = CF_3$
 $s_6 R^4 = Cl$
 $s_7 R^4 = F$

$t_1 R^4 = OCH_3$
 $t_2 R^4 = CO_2CH_3$
 $t_3 R^4 = CH_2OCH_3$
 $t_4 R^4 = CH_3$
 $t_5 R^4 = CF_3$
 $t_6 R^4 = Cl$
 $t_7 R^4 = F$

w_1 $R^4=OCH_3$	x_1 $R^4=OCH_3$	y_1 $R^4=OCH_3$	z_1 $R^4=OCH_3$
w_2 $R^4=CO_2CH_3$	x_2 $R^4=CO_2CH_3$	y_2 $R^4=CO_2CH_3$	z_2 $R^4=CO_2CH_3$
w_3 $R^4=CH_2OCH_3$	x_3 $R^4=CH_2OCH_3$	y_3 $R^4=CH_2OCH_3$	z_3 $R^4=CH_2OCH_3$
w_4 $R^4=CH_3$	x_4 $R^4=CH_3$	y_4 $R^4=CH_3$	z_4 $R^4=CH_3$
w_5 $R^4=CF_3$	x_5 $R^4=CF_3$	y_5 $R^4=CF_3$	z_5 $R^4=CF_3$
w_6 $R^4=Cl$	x_6 $R^4=Cl$	y_6 $R^4=Cl$	z_6 $R^4=Cl$
w_7 $R^4=F$	x_7 $R^4=F$	y_7 $R^4=F$	z_7 $R^4=F$

aa_1 $R^4=OCH_3$	bb_1 $R^4=OCH_3$	cc_1 $R^4=OCH_3$	dd_1 $R^4=OCH_3$
aa_2 $R^4=CO_2CH_3$	bb_2 $R^4=CO_2CH_3$	cc_2 $R^4=CO_2CH_3$	dd_2 $R^4=CO_2CH_3$
aa_3 $R^4=CH_2OCH_3$	bb_3 $R^4=CH_2OCH_3$	cc_3 $R^4=CH_2OCH_3$	dd_3 $R^4=CH_2OCH_3$
aa_4 $R^4=CH_3$	bb_4 $R^4=CH_3$	cc_4 $R^4=CH_3$	dd_4 $R^4=CH_3$
aa_5 $R^4=CF_3$	bb_5 $R^4=CF_3$	cc_5 $R^4=CF_3$	dd_5 $R^4=CF_3$
aa_6 $R^4=Cl$	bb_6 $R^4=Cl$	cc_6 $R^4=Cl$	dd_6 $R^4=Cl$
aa_7 $R^4=F$	bb_7 $R^4=F$	cc_7 $R^4=F$	dd_7 $R^4=F$

5	Ex#	A	B
1	phenyl		2-((Me) ₂ N-methyl)phenyl
2	phenyl		2-((Me)NH-methyl)phenyl
3	phenyl		2-(H ₂ N-methyl)phenyl
4	phenyl		2-HOCH ₂ -phenyl
10	5	2-F-phenyl	2-((Me) ₂ N-methyl)phenyl
6	2-F-phenyl		2-((Me)NH-methyl)phenyl

	7	2-F-phenyl	2-(H ₂ N-methyl)phenyl
	8	2-F-phenyl	2-HOCH ₂ -phenyl
	9	phenyl	2-methylimidazol-1-yl
	10	phenyl	2-ethylimidazol-1-yl
5	11	phenyl	2-(Me) ₂ N-methyl)imidazol-1-yl
	12	phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	13	phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	14	2-F-phenyl	2-methylimidazol-1-yl
	15	2-F-phenyl	2-ethylimidazol-1-yl
10	16	2-F-phenyl	2-(Me) ₂ N-methyl)imidazol-1-yl
	17	2-F-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	18	2-F-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	19	2-C1-phenyl	2-methylimidazol-1-yl
	20	2-C1-phenyl	2-ethylimidazol-1-yl
15	21	2-C1-phenyl	2-(Me) ₂ N-methyl)imidazol-1-yl
	22	2-C1-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	23	2-C1-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	24	2-(Me) ₂ N-phenyl	2-methylimidazol-1-yl
	25	2-(Me) ₂ N-phenyl	2-ethylimidazol-1-yl
20	26	2-(Me) ₂ N-phenyl	2-(Me) ₂ N-methyl)imidazol-1-yl
	27	2-(Me) ₂ N-phenyl	2-CH ₃ SO ₂ -imidazol-1-yl
	28	2-(Me) ₂ N-phenyl	2-CH ₃ OCH ₂ -imidazol-1-yl
	29	phenyl	N-methylimidazol-2-yl
	30	phenyl	4-methylimidazol-5-yl
25	31	phenyl	5-CF ₃ -pyrazol-1-yl
	32	2-F-phenyl	N-methylimidazol-2-yl
	33	2-F-phenyl	4-methylimidazol-5-yl
	34	2-F-phenyl	5-CF ₃ -pyrazol-1-yl
	35	phenyl	guanidino
30	36	phenyl	2-thiazolin-2-ylamine
	37	phenyl	N-methyl-2-imidazolin-2-yl
	38	phenyl	N-methyl-1,4,5,6-
	39	phenyl	tetrahydropyrimid-2-yl
35	40	phenyl	N-methylimidazol-2-ylthiol
	41	phenyl	t-butoxycarbonylamine
	42	phenyl	(N-pyrrolidino)formylimino
	43	2-F-phenyl	(N-pyrrolidino)formyl-N-
40	44	2-F-phenyl	methanesulfamoyl)imino
	45	2-F-phenyl	guanidino
	46	2-F-phenyl	2-thiazolin-2-ylamine
	47	2-F-phenyl	N-methyl-2-imidazolin-2-yl
45	48	2-F-phenyl	N-methyl-1,4,5,6-
	49	2-F-phenyl	tetrahydropyrimid-2-yl
	50	2-F-phenyl	N-methylimidazol-2-ylthio
	51	2-CH ₃ O-phenyl	t-butoxycarbonylamine
50	52	2-CH ₃ O-phenyl	(N-pyrrolidino)formylimino
			(N-pyrrolidino)formyl-N-
			(methanesulfamoyl)imino

Utility

The compounds of this invention are useful as anticoagulants for the treatment or prevention of thromboembolic disorders in mammals. The term "thromboembolic disorders" as used herein includes arterial or venous cardiovascular or cerebrovascular thromboembolic disorders, including, for example, unstable angina, first or recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary and cerebral arterial thrombosis, cerebral embolism, kidney embolisms, and pulmonary embolisms. The anticoagulant effect of compounds of the present invention is believed to be due to inhibition of factor Xa or thrombin.

The effectiveness of compounds of the present invention as inhibitors of factor Xa was determined using purified human factor Xa and synthetic substrate. The rate of factor Xa hydrolysis of chromogenic substrate S2222 (Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nm. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, K_i .

Factor Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. The Michaelis constant, K_m , for substrate hydrolysis was determined at 25°C using the method of Lineweaver and Burk. Values of K_i were determined by allowing 0.2-0.5 nM human factor Xa (Enzyme Research Laboratories, South Bend, IN) to react with the substrate (0.20 mM-1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate K_i values:

$$(v_0 - v_s) / v_s = I / (K_i (1 + S/K_m))$$

where:

v_o is the velocity of the control in the absence of inhibitor;

v_s is the velocity in the presence of inhibitor;

5 I is the concentration of inhibitor;

K_i is the dissociation constant of the enzyme:inhibitor complex;

S is the concentration of substrate;

K_m is the Michaelis constant.

10 Using the methodology described above, a number of compounds of the present invention were found to exhibit a K_i of $\leq 15 \mu M$, thereby confirming the utility of the compounds of the present invention as effective Xa inhibitors.

The antithrombotic effect of compounds of the present invention can be demonstrated in a rabbit arterio-venous (AV) shunt thrombosis model. In this model, rabbits weighing 2-3 kg anesthetized with a mixture of xylazine (10 mg/kg i.m.) and ketamine (50 mg/kg i.m.) are used. A saline-filled AV shunt device is connected between the femoral arterial and the 20 femoral venous cannulae. The AV shunt device consists of a piece of 6-cm tygon tubing which contains a piece of silk thread. Blood will flow from the femoral artery via the AV-shunt into the femoral vein. The exposure of flowing blood to a silk thread will induce the formation of a significant 25 thrombus. After forty minutes, the shunt is disconnected and the silk thread covered with thrombus is weighed. Test agents or vehicle will be given (i.v., i.p., s.c., or orally) prior to the opening of the AV shunt. The percentage inhibition of thrombus formation is determined for each treatment group.

30 The ID50 values (dose which produces 50% inhibition of thrombus formation) are estimated by linear regression.

The compounds of formula (I) may also be useful as inhibitors of serine proteases, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, 35 these compounds are indicated for use in the prevention or treatment of physiological reactions, blood coagulation and inflammation, catalyzed by the aforesaid class of enzymes. Specifically, the compounds have utility as drugs for the

treatment of diseases arising from elevated thrombin activity such as myocardial infarction, and as reagents used as anticoagulants in the processing of blood to plasma for diagnostic and other commercial purposes.

5 Some compounds of the present invention were shown to be direct acting inhibitors of the serine protease thrombin by their ability to inhibit the cleavage of small molecule substrates by thrombin in a purified system. *In vitro* inhibition constants were determined by the method described
10 by Kettner et al. in *J. Biol. Chem.* **265**, 18289-18297 (1990), herein incorporated by reference. In these assays, thrombin-mediated hydrolysis of the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX) was monitored spectrophotometrically. Addition of an inhibitor to the assay
15 mixture results in decreased absorbance and is indicative of thrombin inhibition. Human thrombin (Enzyme Research Laboratories, Inc., South Bend, IN) at a concentration of 0.2 nM in 0.10 M sodium phosphate buffer, pH 7.5, 0.20 M NaCl, and 0.5% PEG 6000, was incubated with various substrate
20 concentrations ranging from 0.20 to 0.02 mM. After 25 to 30 minutes of incubation, thrombin activity was assayed by monitoring the rate of increase in absorbance at 405 nm which arises owing to substrate hydrolysis. Inhibition constants were derived from reciprocal plots of the reaction velocity as
25 a function of substrate concentration using the standard method of Lineweaver and Burk. Using the methodology described above, some compounds of this invention were evaluated and found to exhibit a K_i of less than 15 μm , thereby confirming the utility of the compounds of the present
30 invention as effective Xa inhibitors.

The compounds of the present invention can be administered alone or in combination with one or more additional therapeutic agents. These include other anti-coagulant or coagulation inhibitory agents, anti-platelet or platelet inhibitory agents, thrombin inhibitors, or thrombolytic or fibrinolytic agents.

The compounds are administered to a mammal in a therapeutically effective amount. By "therapeutically"

effective amount" it is meant an amount of a compound of Formula I that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to prevent or ameliorate the thromboembolic disease condition or 5 the progression of the disease.

By "administered in combination" or "combination therapy" it is meant that the compound of Formula I and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination 10 each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect. Other anticoagulant agents (or coagulation inhibitory 15 agents) that may be used in combination with the compounds of this invention include warfarin and heparin, as well as other factor Xa inhibitors such as those described in the publications identified above under Background of the Invention.

20 The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include, but are not limited to, the various known non-steroidal anti- 25 inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicylic acid or ASA), and piroxicam 30 are preferred. Other suitable anti-platelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still other suitable platelet inhibitory agents 35 include IIb/IIIa antagonists, thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

The term thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. A number of thrombin inhibitors are known to one of skill in the art and these inhibitors are contemplated to be used in combination with the present compounds. Such inhibitors include, but are not limited to, boroarginine derivatives, boropeptides, heparins, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N-acetyl and peptide derivatives of boronic acid, such as C-terminal a-aminoboronic acid derivatives of lysine, ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. Boropeptide thrombin inhibitors include compounds described in Kettner et al., U.S. Patent No. 5,187,157 and European Patent Application Publication Number 293 881 A2, the disclosures of which are hereby incorporated herein by reference. Other suitable boroarginine derivatives and boropeptide thrombin inhibitors include those disclosed in PCT Application Publication Number 92/07869 and European Patent Application Publication Number 471,651 A2, the disclosures of which are hereby incorporated herein by reference.

The term thrombolytics (or fibrinolytic) agents (or thrombolytics or fibrinolytics), as used herein, denotes agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including pharmaceutically acceptable salts or prodrugs thereof. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in European Patent Application No. 028,489, the disclosure of which is hereby

incorporated herein by reference herein. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

5 Administration of the compounds of Formula I of the invention in combination with such additional therapeutic agent, may afford an efficacy advantage over the compounds and agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side
10 effects, thereby providing an increased margin of safety.

The compounds of the present invention are also useful as standard or reference compounds, for example as a quality standard or control, in tests or assays involving the inhibition of factor Xa. Such compounds may be provided in a
15 commercial kit, for example, for use in pharmaceutical research involving factor Xa. For example, a compound of the present invention could be used as a reference in an assay to compare its known activity to a compound with an unknown activity. This would ensure the experimenter that the assay
20 was being performed properly and provide a basis for comparison, especially if the test compound was a derivative of the reference compound. When developing new assays or protocols, compounds according to the present invention could be used to test their effectiveness.

25 The compounds of the present invention may also be used in diagnostic assays involving factor Xa. For example, the presence of factor Xa in an unknown sample could be determined by addition of chromogenic substrate S2222 to a series of solutions containing test sample and optionally one of the
30 compounds of the present invention. If production of pNA is observed in the solutions containing test sample, but no compound of the present invention, then one would conclude factor Xa was present.

35 Dosage and Formulation

The compounds of this invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations),

5 pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

10 The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the thromboembolic disorder.

15 By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 1.0 to 20 mg/kg/day. Intravenously, the most preferred doses will range from about 20 1 to about 10 mg/kg/minute during a constant rate infusion. Compounds of this invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.

30 Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form 5 of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined 10 with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can 15 be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable 20 binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include 25 sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

The compounds of the present invention can also be 30 administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

35 Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol,

polyhydroxyethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 100 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition,

parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

5 Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

10 Capsules

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.

15 Soft Gelatin Capsules

A mixture of active ingredient in a digestable oil such as soybean oil, cottonseed oil or olive oil may be prepared and injected by means of a positive displacement pump 20 into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules should be washed and dried.

Tablets

Tablets may be prepared by conventional procedures so 25 that the dosage unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase 30 palatability or delay absorption.

Injectable

A parenteral composition suitable for administration by injection may be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. 35 The solution should be made isotonic with sodium chloride and sterilized.

Suspension

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

Where the compounds of this invention are combined with other anticoagulant agents, for example, a daily dosage may be about 0.1 to 100 milligrams of the compound of Formula I and about 1 to 7.5 milligrams of the second anticoagulant, per kilogram of patient body weight. For a tablet dosage form, the compounds of this invention generally may be present in an amount of about 5 to 10 milligrams per dosage unit, and the second anti-coagulant in an amount of about 1 to 5 milligrams per dosage unit.

Where the compounds of Formula I are administered in combination with an anti-platelet agent, by way of general guidance, typically a daily dosage may be about 0.01 to 25 milligrams of the compound of Formula I and about 50 to 150 milligrams of the anti-platelet agent, preferably about 0.1 to 1 milligrams of the compound of Formula I and about 1 to 3 milligrams of antiplatelet agents, per kilogram of patient body weight.

Where the compounds of Formula I are administered in combination with thrombolytic agent, typically a daily dosage may be about 0.1 to 1 milligrams of the compound of Formula I, per kilogram of patient body weight and, in the case of the thrombolytic agents, the usual dosage of the thrombolyic agent when administered alone may be reduced by about 70-80% when administered with a compound of Formula I.

Where two or more of the foregoing second therapeutic agents are administered with the compound of Formula I, generally the amount of each component in a typical daily dosage and typical dosage form may be reduced relative to the usual dosage of the agent when administered alone, in view of the additive or synergistic effect of the therapeutic agents when administered in combination.

Particularly when provided as a single dosage unit, the potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of Formula I and a second therapeutic agent are combined in a single dosage unit they are formulated such that although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient may be enteric coated. By enteric coating one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. One of the active ingredients may also be coated with a material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the art, once armed with the present disclosure.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the

scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTER
PATENT OF UNITED STATES IS:

1. A compound of formula I:

5

I

or a stereoisomer or pharmaceutically acceptable salt thereof,
 wherein;

10

ring D is selected from $-\text{CH}_2\text{N}=\text{CH}-$, $-\text{CH}_2\text{CH}_2\text{N}=\text{CH}-$, a 5-6
 membered aromatic system containing from 0-2 heteroatoms
 selected from the group N, O, and S;

15 ring D is substituted with 0-2 R, provided that when ring D is
 unsubstituted, it contains at least one heteratom;

ring E contains 0-2 N atom and is substituted by 0-1 R

20 R is selected from Cl, F, Br, I, OH, C_{1-3} alkoxy, NH_2 , $\text{NH}(\text{C}_{1-3}$
 alkyl), $\text{N}(\text{C}_{1-3}$ alkyl) $_2$, CH_2NH_2 , $\text{CH}_2\text{NH}(\text{C}_{1-3}$ alkyl),
 $\text{CH}_2\text{N}(\text{C}_{1-3}$ alkyl) $_2$, $\text{CH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_2\text{CH}_2\text{NH}(\text{C}_{1-3}$ alkyl), and
 $\text{CH}_2\text{CH}_2\text{N}(\text{C}_{1-3}$ alkyl) $_2$;

25 M is selected from the group:

J is O or S;

5

J^a is NH or NR^{1a};

Z is selected from a bond, C₁₋₄ alkylene, (CH₂)_rO(CH₂)_r, (CH₂)_rNR³(CH₂)_r, (CH₂)_rC(O)(CH₂)_r, (CH₂)_rC(O)O(CH₂)_r,

(CH₂)_rOC(O)(CH₂)_r, (CH₂)_rC(O)NR³(CH₂)_r,
 (CH₂)_rNR³C(O)(CH₂)_r, (CH₂)_rOC(O)O(CH₂)_r,
 (CH₂)_rOC(O)NR³(CH₂)_r, (CH₂)_rNR³C(O)O(CH₂)_r,
 (CH₂)_rNR³C(O)NR³(CH₂)_r, (CH₂)_rS(O)_p(CH₂)_r,
 5 (CH₂)_rSO₂NR³(CH₂)_r, (CH₂)_rNR³SO₂(CH₂)_r, and
 (CH₂)_rNR³SO₂NR³(CH₂)_r, provided that Z does not form a N-
 N, N-O, N-S, NCH₂N, NCH₂O, or NCH₂S bond with ring M or
 group A;

10 R^{1a} and R^{1b} are independently absent or selected from
 -(CH₂)_r-R^{1'}, -CH=CH-R^{1'}, NCH₂R^{1''}, OCH₂R^{1''}, SCH₂R^{1''},
 NH(CH₂)₂(CH₂)_tR^{1'}, O(CH₂)₂(CH₂)_tR^{1'}, and S(CH₂)₂(CH₂)_tR^{1'};

15 alternatively, R^{1a} and R^{1b}, when attached to adjacent carbon atoms, together with the atoms to which they are attached form a 5-8 membered saturated, partially saturated or saturated ring substituted with 0-2 R⁴ and which contains from 0-2 heteroatoms selected from the group consisting of N, O, and S;

20 alternatively, when Z is C(O)NH and R^{1a} is attached to a ring carbon adjacent to Z, then R^{1a} is a C(O) which replaces the amide hydrogen of Z to form a cyclic imide;

25 R^{1'} is selected from H, C₁₋₃ alkyl, F, Cl, Br, I, -CN, -CHO,
 (CF₂)_rCF₃, (CH₂)_rOR², NR²R^{2a}, C(O)R^{2c}, OC(O)R²,
 (CF₂)_rCO₂R^{2c}, S(O)_pR^{2b}, NR²(CH₂)_rOR², CH(=NR^{2c})NR²R^{2a},
 NR^{2c}C(O)R^{2b}, NR^{2c}C(O)NHR^{2b}, NR^{2c}C(O)₂R^{2a}, OC(O)NR^{2a}R^{2b},
 C(O)NR²R^{2a}, C(O)NR²(CH₂)_rOR², SO₂NR²R^{2a}, NR²SO₂R^{2b}, C₃₋₆
 30 carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

35 R^{1''} is selected from H, CH(CH₂OR²)₂, C(O)R^{2c}, C(O)NR²R^{2a},
 S(O)R^{2b}, S(O)₂R^{2b}, and SO₂NR²R^{2a};

R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

5 R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, phenethyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

10 R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

15 R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

20 25 alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} and containing from 0-1 additional heteroatoms selected from the group consisting of N, O, and S;

30 R³, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

35 R^{3a}, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

R^{3b}, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

5 R^{3c}, at each occurrence, is selected from C₁₋₄ alkyl, and phenyl;

A is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4

10 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

B is selected from: H, Y, and X-Y;

15 X is selected from C₁₋₄ alkylene, -CR²(CR^{2b})_t-, -C(O)-, -C(=NR¹)-, -CR²(NR¹R²)-, -CR²(OR²)-, -CR²(SR²)-, -C(O)CR²R^{2a}-, -CR²R^{2a}C(O), -S(O)_p-, -S(O)_pCR²R^{2a}-, -CR²R^{2a}S(O)_p-, -S(O)₂NR²-, -NR²S(O)₂-, -NR²S(O)₂CR²R^{2a}-, -CR²R^{2a}S(O)₂NR²-, -NR²S(O)₂NR²-, -C(O)NR²-, -NR²C(O)-, 20 -C(O)NR²CR²R^{2a}-, -NR²C(O)CR²R^{2a}-, -CR²R^{2a}C(O)NR²-, -CR²R^{2a}NR²C(O)-, -NR²C(O)O-, -OC(O)NR²-, -NR²C(O)NR²-, -NR²-, -NR²CR²R^{2a}-, -CR²R^{2a}NR²-, O, -CR²R^{2a}O-, and -OCR²R^{2a};

25 Y is selected from:

(CH₂)_rNR²R^{2a}, provided that X-Y do not form a N-N, O-N, or S-N bond,

C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a}, and 5-10 membered heterocyclic system containing from 1-4

30 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4a};

R⁴, at each occurrence, is selected from H, =O, (CH₂)_rOR², F, Cl, Br, I, C₁₋₄ alkyl, -CN, NO₂, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, NR²C(O)NR²R^{2a}, CH(=NR²)NR²R^{2a}, CH(=NS(O)₂R⁵)NR²R^{2a}, NHC(=NR²)NR²R^{2a}, C(O)NHC(=NR²)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, NR²SO₂R⁵, S(O)_pR⁵, (CF₂)_rCF₃, NCH₂R¹-, OCH₂R¹-,

$\text{SCH}_2\text{R}^{1''}$, $\text{N}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$, $\text{O}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$, and
 $\text{S}(\text{CH}_2)_2(\text{CH}_2)_t\text{R}^{1'}$,

alternatively, one R^4 is a 5-6 membered aromatic heterocycle
5 containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S;

provided that if B is H, then R^4 is other than tetrazole,
10 $\text{C}(\text{O})$ -alkoxy, and $\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$;

R^{4a} , at each occurrence, is selected from H, =O, $(\text{CH}_2)_r\text{OR}^2$,
 $(\text{CH}_2)_r\text{-F}$, $(\text{CH}_2)_r\text{-Br}$, $(\text{CH}_2)_r\text{-Cl}$, I, C_{1-4} alkyl, -CN, NO_2 ,
 $(\text{CH}_2)_r\text{NR}^2\text{R}^{2a}$, $(\text{CH}_2)_r\text{NR}^2\text{R}^{2b}$, $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^{2c}$, $\text{NR}^2\text{C}(\text{O})\text{R}^{2b}$,
 $\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$, $\text{C}(\text{O})\text{NH}(\text{CH}_2)_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$,
15 $\text{CH}(\text{=NR}^2)\text{NR}^2\text{R}^{2a}$, $\text{NHC}(\text{=NR}^2)\text{NR}^2\text{R}^{2a}$, $\text{SO}_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{SO}_2\text{NR}^2\text{R}^{2a}$,
 $\text{NR}^2\text{SO}_2\text{-C}_{1-4}$ alkyl, $\text{C}(\text{O})\text{NSO}_2\text{-C}_{1-4}$ alkyl, $\text{NR}^2\text{SO}_2\text{R}^5$, $\text{S}(\text{O})_p\text{R}^5$,
and $(\text{CF}_2)_r\text{CF}_3$;

alternatively, one R^{4a} is a 5-6 membered aromatic heterocycle
20 containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S and substituted with 0-1 R^5 ;

R^{4b} , at each occurrence, is selected from H, =O, $(\text{CH}_2)_r\text{OR}^3$, F,
Cl, Br, I, C_{1-4} alkyl, -CN, NO_2 , $(\text{CH}_2)_r\text{NR}^3\text{R}^{3a}$,
25 $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^3$, $(\text{CH}_2)_r\text{C}(\text{O})\text{OR}^{3c}$, $\text{NR}^3\text{C}(\text{O})\text{R}^{3a}$, $\text{C}(\text{O})\text{NR}^3\text{R}^{3a}$,
 $\text{NR}^3\text{C}(\text{O})\text{NR}^3\text{R}^{3a}$, $\text{CH}(\text{=NR}^3)\text{NR}^3\text{R}^{3a}$, $\text{NH}^3\text{C}(\text{=NR}^3)\text{NR}^3\text{R}^{3a}$, $\text{SO}_2\text{NR}^3\text{R}^{3a}$,
 $\text{NR}^3\text{SO}_2\text{NR}^3\text{R}^{3a}$, $\text{NR}^3\text{SO}_2\text{-C}_{1-4}$ alkyl, $\text{NR}^3\text{SO}_2\text{CF}_3$, $\text{NR}^3\text{SO}_2\text{-phenyl}$,
 $\text{S}(\text{O})_p\text{CF}_3$, $\text{S}(\text{O})_p\text{-C}_{1-4}$ alkyl, $\text{S}(\text{O})_p\text{-phenyl}$, and $(\text{CF}_2)_r\text{CF}_3$;

R^5 , at each occurrence, is selected from CF_3 , C_{1-6} alkyl,
30 phenyl substituted with 0-2 R^6 , and benzyl substituted
with 0-2 R^6 ;

R^6 , at each occurrence, is selected from H, OH, $(\text{CH}_2)_r\text{OR}^2$, F,
35 Cl, Br, I, C_{1-4} alkyl, CN, NC_2 , $(\text{CH}_2)_r\text{NR}^2\text{R}^{2a}$,
 $(\text{CH}_2)_r\text{C}(\text{O})\text{R}^{2b}$, $\text{NR}^2\text{C}(\text{O})\text{R}^{2b}$, $\text{NR}^2\text{C}(\text{O})\text{NR}^2\text{R}^{2a}$, $\text{CH}(\text{=NH})\text{NH}_2$,
 $\text{NHC}(\text{=NH})\text{NH}_2$, $\text{SO}_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{SO}_2\text{NR}^2\text{R}^{2a}$, and $\text{NR}^2\text{SO}_2\text{C}_{1-4}$ alkyl;

n is selected from 0, 1, 2, and 3;

m is selected from 0, 1, and 2;

5 p is selected from 0, 1, and 2;

r is selected from 0, 1, 2, and 3;

s is selected from 0, 1, and 2; and,

10

t is selected from 0 and 1.

2. A compound according to Claim 1, wherein:

15

D-E is selected from the group:

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 1-amino-3-hydroxyisoquinolin-7-yl; 1-amino-4-hydroxy-isoquinolin-7-yl; 1-amino-5-hydroxy-isoquinolin-7-yl; 1-amino-6-hydroxy-isoquinolin-7-yl; 1-amino-3-methoxy-isoquinolin-7-yl; 1-amino-4-methoxy-isoquinolin-7-yl; 1-amino-5-methoxy-isoquinolin-7-yl; 1-amino-6-methoxy-isoquinolin-7-yl; 1-hydroxy-isoquinolin-7-yl; 4-aminoquinazol-6-yl; 2,4-diaminoquinazol-6-yl; 4,7-diaminoquinazol-6-yl; 4,8-diaminoquinazol-6-yl; 1-aminophthalaz-7-yl; 1,4-diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-diaminophthalaz-7-yl; 4-aminopterid-6-yl; 2,4-aminopterid-6-yl; 4,6-diaminopterid-6-yl; 8-amino-1,7-naphthyrid-2-yl; 6,8-diamino-1,7-naphthyrid-2-yl; 5,8-diamino-1,7-naphthyrid-2-yl; 4,8-diamino-1,7-naphthyrid-2-yl; 3,8-diamino-1,7-naphthyrid-2-yl; 5-amino-2,6-naphthyrid-3-yl; 5,7-diamino-2,6-naphthyrid-3-yl; 5,8-diamino-2,6-naphthyrid-3-yl; 1,5-diamino-2,6-naphthyrid-3-yl; 5-amino-1,6-naphthyrid-3-yl; 5,7-diamino-1,6-naphthyrid-3-yl; 5,8-diamino-1,6-naphthyrid-3-yl; 2,5-diamino-1,6-naphthyrid-3-yl; 3-aminoindazol-5-yl; 3-

hydroxyindazol-5-yl; 3-aminobenzisoxazol-5-yl; 3-hydroxybenzisoxazol-5-yl; 3-aminobenzisothiazol-5-yl; 3-hydroxybenzisothiazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

5

M is selected from the group:

10

Z is selected from $(CH_2)_rC(O)(CH_2)_r$, $(CH_2)_rC(O)O(CH_2)_r$,
 $(CH_2)_rC(O)NR^3(CH_2)_r$, $(CH_2)_rS(O)_p(CH_2)_r$, and
 5 $(CH_2)_rSO_2NR^3(CH_2)_r$; and,

Y is selected from one of the following carbocyclic and
 10 heterocyclic systems which are substituted with 0-2 R^{4a};
 phenyl, piperidinyl, piperazinyl, pyridyl,
 pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
 15 pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
 isothiazolyl, pyrazolyl, imidazolyl, oxadiazole,
 thiadiazole, triazole, 1,2,3-oxadiazole, 1,2,4-
 oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-
 20 thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-
 thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-
 triazole, 1,3,4-triazole, benzofuran, benzothiofuran,
 indole, benzimidazole, benzoxazole, benzthiazole,
 indazole, benzisoxazole, benzisothiazole, and
 isoindazole;

Y may also be selected from the following bicyclic heteroaryl
 ring systems:

K is selected from O, S, NH, and N.

5

3. A compound according to Claim 2, wherein:

D-E is selected from the group:

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 1-hydroxy-isoquinolin-7-yl; 4-aminoquinazol-6-yl; 2,4-diaminoquinazol-6-yl; 4,7-diaminoquinazol-6-yl; 4,8-diaminoquinazol-6-yl; 1-aminophthalaz-7-yl; 1,4-diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-diaminophthalaz-7-yl; 4-aminopterid-6-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-yl; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 3-aminobenzisothiazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

M is selected from the group:

Z is selected from $(CH_2)_rC(O)(CH_2)_r$ and $(CH_2)_rC(O)NR^3(CH_2)_r$;
and,

5

Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a} ;
phenyl, piperidinyl, piperazinyl, pyridyl,
pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, pyrazolyl, imidazolyl, oxadiazole,
thiadiazole, triazole, 1,2,3-oxadiazole, 1,2,4-

10

oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-

thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-triazole, 1,3,4-triazole, benzofuran, benzothiofuran, indole, benzimidazole, benzoxazole, benzthiazole, indazole, benzisoxazole, benzisothiazole, and isoindazole.

5

4. A compound according to Claim 3, wherein:

10 D-E is selected from the group:

1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 1-aminophthalaz-7-yl; 1,4-diaminophthalaz-7-yl; 1,5-diaminophthalaz-7-yl; 1,6-diaminophthalaz-7-yl; 4-aminopterid-6-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-yl; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl;

15

20 M is selected from the group:

A is selected from:

25 C₅-6 carbocyclic residue substituted with 0-2 R⁴, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a};

phenyl, piperidinyl, piperazinyl, pyridyl,
pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
5 pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, pyrazolyl, imidazolyl, benzimidazolyl,
oxadiazole, thiadiazole, triazole, 1,2,3-oxadiazole,
1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole,
10 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole,
1,3,4-thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,5-
triazole, and 1,3,4-triazole;

R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl,
benzyl, C₅₋₆ carbocyclic residue substituted with 0-2
15 R^{4b}, and 5-6 membered heterocyclic system containing from
1-4 heteroatoms selected from the group consisting of N,
O, and S substituted with 0-2 R^{4b};

R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl,
20 benzyl, phenethyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-2 R^{4b};

25 R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy,
C₁₋₆ alkyl, benzyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-2 R^{4b};

30 R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy,
C₁₋₆ alkyl, benzyl, C₅₋₆ carbocyclic residue substituted
with 0-2 R^{4b}, and 5-6 membered heterocyclic system
containing from 1-4 heteroatoms selected from the group
35 consisting of N, O, and S substituted with 0-2 R^{4b};

alternatively, R² and R^{2a}, together with the atom to which
they are attached, combine to form a ring selected from

imidazolyl, morpholino, piperazinyl, pyridyl, and pyrrolidinyl, substituted with 0-2 R^{4b};

R⁴, at each occurrence, is selected from H, =O, OR², CH₂OR²,
 5 F, Cl, C₁₋₄ alkyl, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c}, CH₂C(O)R^{2c},
 C(O)NR²R^{2a}, CH(=NR²)NR²R^{2a}, CH(=NS(O)₂R⁵)NR²R^{2a}, SO₂NR²R^{2a},
 NR²SO₂-C₁₋₄ alkyl, S(O)₂R⁵, and CF₃

provided that if B is H, then R⁴ is other than tetrazole,
 10 C(O)-alkoxy, and C(O)NR²R^{2a};

R^{4a}, at each occurrence, is selected from H, =O, (CH₂)_rOR², F,
 Cl, C₁₋₄ alkyl, NR²R^{2a}, CH₂NR²R^{2a}, NR²R^{2b}, CH₂NR²R^{2b},
 (CH₂)_rC(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, C(O)NH(CH₂)₂NR²R^{2a},
 15 NR²C(O)NR²R^{2a}, SO₂NR²R^{2a}, S(O)₂R⁵, and CF₃; and,

R^{4b}, at each occurrence, is selected from H, =O, (CH₂)_rOR³, F,
 Cl, C₁₋₄ alkyl, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, CH₂C(O)R³,
 C(O)OR^{3c}, C(O)NR³R^{3a}, CH(=NR³)NR³R^{3a}, SO₂NR³R^{3a},
 20 NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂-phenyl, S(O)₂CF₃,
 S(O)₂-C₁₋₄ alkyl, S(O)₂-phenyl, and CF₃.

5. A compound according to Claim 4, wherein: the
 25 compounds are selected from:

D-E is selected from the group:

30 1-aminoisoquinolin-7-yl; 1,3-diaminoisoquinolin-7-yl; 1,4-diaminoisoquinolin-7-yl; 1,5-diaminoisoquinolin-7-yl; 1,6-diaminoisoquinolin-7-yl; 8-amino-1,7-naphthyrid-2-yl; 5-amino-1,6-naphthyrid-3-yl; 5-amino-2,6-naphthyrid-3-yl; 3-aminobenzisoxazol-5-yl; 1-amino-3,4-dihydroisoquinolin-7-yl; and, 1-aminoisoindol-6-yl.

35

6. A compound according to Claim 1, wherein the compound is selected from:

1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

5 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

10 1-(4'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

15 1-(Isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

20 3-(1'-Amino-isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

25 3-(Isoquinol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

30 3-(Isoquinol-7'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylisoxazoline;

35 3-(2'-Aminobenzimidazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline;

40 3-(3'-Aminoindazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-methylisoxazoline

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 3-(1-Amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole;

55 3-(4-amino-isoquinol-7-yl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-1,2,3-triazole;

1-(Quinol-2-ylmethyl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(Quinol-2-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3-Aminoindazole-5-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-aminosulfonyl-(phenyl)pyrid-2-ylaminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[isoquinol-7-yl]aminocarbonyl]pyrazole;

5 1-(1''-Aminoisoquinol-7''-yl)-3-ethyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

10 1-(1''-Aminoisoquinol-7''-yl)-3-isopropyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(2',4'-Diaminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

20 1-(4'-Aminoquinazol-6'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

25 1-(1''-Aminoisoquinol-7''-yl)-3-methyl-5-[4-(N-pyrrolidinylcarbonyl)phenylaminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

35 1-(1'-Aminophthalazin-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

40 3-(3'-Aminobenzisoxazol-5'-yl)-5-[[5-[(2'-aminosulfonyl)phenyl]pyrid-2-yl]aminocarbonyl]-5-(methylsulfonylaminomethyl)isoxazoline;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-isopropylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

60 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

65 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

70 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]-2-fluorophenyl]aminocarbonyl]pyrazole;

75 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[[(2'-methoxy-4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-isopropylimidazol-1'-yl)-2-fluorophenyl]amino-carbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]amino-carbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-methoxymethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-[(2'-dimethylaminomethyl)imidazol-1'-yl]phenyl]aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-ethylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-ethylimidazol-1'-yl)-2,5-difluorophenyl]aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-fluoro-4-morpholinophenyl)aminocarbonyl]pyrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-methylimidazol-1'-yl)-2-fluorophenyl]aminocarbonyl]pyrazole;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-amino-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-nitro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-dimethyl-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-pyrrolidino-4-(N-pyrrolidinocarbonyl)phenyl]-aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl]aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[5-[(2'-methylsulfonyl)phenyl]pyrimid-2-yl]aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[[[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-5-[[[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-5-[[4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]tetrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl)aminocarbonyl]tetrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2-(N-pyrrolidino)-4-(N-pyrrolidinocarbonyl)phenyl)aminocarbonyl]tetrazole;

45 1-(1'-Amino-isoquinol-7'-yl)-5-[[[(2'-aminosulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole;

50 1-(1'-Amino-isoquinol-7'-yl)-5-[[[(2'-methylsulfonyl)-3-fluoro-[1,1']-biphen-4-yl]aminocarbonyl]tetrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'aminosulfonylphenyl)pyrimidin-2-yl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(2'-methylimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(2'-methylimidazol-1'-yl)-2-fluorophenyl]-aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(1'-methylimidazol-2'-yl)-2-fluorophenyl]amino-carbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[4-(2'-aminoimidazol-1'-yl)phenyl]aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)amino-carbonyl]pyrazole;

5 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate;

10 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylic acid;

15 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxamide;

20 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-3-carboxylate;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-(hydroxymethyl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-[dimethylaminomethyl]-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

35 Ethyl 1-(3'-aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylate;

40 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole-4-carboxylic acid;

45 1-(1',2',3',4'-Tetrahydroisoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

50 1-(1'-Amino-isoquinol-7'-yl)-3-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]-5-methylpyrazole;

1-(4'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2-fluoro-4-(N-pyrrolidinocarbonyl)-phenyl)carbonylamino]pyrazole;

1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

5 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

10 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

15 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(5-(2'-methylsulfonylphenyl)pyrid-2-yl)carbonylamino]pyrazole;

20 1-(1'-Amino-isoquinol-7'-yl)-3-methyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

25 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-methyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

30 1-(1'-Amino-isoquinol-7'-yl)-3-trifluoromethyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)carbonylamino]pyrazole;

35 1-(1'-Aminoisquinol-7'-yl)-3-ethyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

40 1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

45 1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-methylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 1-(1'-Aminoisquinol-7'-yl)-3-propyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(1'-Aminoisquinol-7'-yl)-3-ethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(1'-Aminoisquinol-7'-yl)-3-ethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(1'-Aminoisoquinol-7'-yl)-3-ethyl-5-[4-(N-pyrrolidinocarbonyl-1-yl)phenylaminocarbonyl]pyrazole;

5 1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[4-(imidazol-1'-yl)phenylaminocarbonyl]pyrazole;

10 1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[3-fluoro-4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole;

15 1-(1'-Aminoisoquinol-7'-yl)-3-trifluoromethyl-5-[4-(2-methylimidazol-1'-yl)phenylaminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[2-fluoro-4-(N-pyrrolidinocarbonyl)phenyl-aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(5-(2'-methylsulfonylphenyl)pyrid-2-yl)aminocarbonyl]pyrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-yl)phenyl)aminocarbonyl]pyrazole;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl]pyrazole;

50 1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminoindazol-5'-yl)-3-methyl-5-[(4-(pyrid-3'-yl)phenyl)aminocarbonyl]pyrazole;

60 1-(3'-Aminoindazol-5'-yl)-3-trifluoromethyl-5-[(4-(pyrid-3'-yl-3-fluorophenyl)aminocarbonyl]pyrazole;

1-(3'-Aminomethylnaphth-2'-yl)-3-trifluoromethyl-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-hydroxymethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-methylaminomethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-bromomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-pyridiniummethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-aminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

30 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-N-pyrrolidinylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

35 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-imidazol-1"-yl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

40 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[((2'-(4'-t-butoxycarbonyl)piperazin-1"-ylmethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

45 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[((2'-(N,N-dimethylamino)pyridiniummethyl)-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

50 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-piperazin-1"-ylmethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

55 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-morpholinomethyl-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(3-fluoro-2'-(N-methyl-N-methoxyamino)-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-methylsulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole;

5 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-aminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]triazole;

10 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-5-[(2'-methylaminosulfonyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole;

15 1-(3'-Aminobenzisoxazol-5'-yl)-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]tetrazole;

20 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[(2'-dimethylaminomethyl-3-fluoro-[1,1']-biphen-4-yl)aminocarbonyl]pyrazole; and,

25 1-(3'-Aminobenzisoxazol-5'-yl)-3-ethyl-5-[4'-(2''-dimethylaminomethylimidazol-1''-yl)-2'-fluorophenyl)aminocarbonyl]pyrazole;

or pharmaceutically acceptable salt thereof.

25 7. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to one of Claims 1-6 or a pharmaceutically acceptable salt thereof.

30 8. A method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to one of Claims 1-6 or a pharmaceutically acceptable salt thereof.

INTERNATIONAL SEARCH REPORT

In International Application No
PCT/US 98/12680

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07D401/04	C07D413/04	A61K31/47	A61K31/42	C07D261/20
	C07D231/14	C07D401/14	C07D413/14	C07D403/04	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 39380 A (3-DIMENSIONAL PHARMACEUTICALS INC.) 12 December 1996 see claims ---	1-5, 7, 8
A	WO 96 40679 A (RHONE POULENC RORER PHARMACEUTICALS INC.) 19 December 1996 see claims ---	1-5, 7, 8
A	EP 0 554 829 A (FUJISAWA PHARMACEUTICAL CO) 11 August 1993 see claims ---	1-5, 7, 8
A	DE 195 30 996 A (BOEHRINGER MANNHEIM GMBH) 27 February 1997 see the whole document ---	1-5, 7, 8
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

24 September 1998

Date of mailing of the international search report

02/10/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Henry, J

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 98/12680

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,A	WO 97 23212 A (DU PONT MERCK PHARMA) 3 July 1997 see claims -----	1-5,7,8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 98/ 12680

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 8
because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claim 8
is directed to a method of treatment of the human/animal
body, the search has been carried out and based on the alleged
effects of the compound/composition.
2. Claims Nos.: not applicable
because they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claim Nos.: not applicable

In view of the extremely broad Markush claims, the search was executed with due regard to the PCT search guidelines (PCT/GL/2, C-III, paragraph 2.1, 2.3 read in conjunction with 3.7) and Rule 33.3 PCT, i.e. the international search was executed with particular emphasis on the inventive concept, represented by the following subject matter: Compounds of claim 6 and of examples 1-136 and, in so far as possible and reasonable, was complete in that it covered the entire subject-matter to which the claims are directed.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/12680

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9639380	A	12-12-1996		US 5612378 A AU 6157396 A		18-03-1997 24-12-1996
WO 9640679	A	19-12-1996		US 5612353 A AU 6166996 A CA 2223403 A EP 0853618 A NO 975762 A PL 323780 A US 5731315 A		18-03-1997 30-12-1996 19-12-1996 22-07-1998 06-02-1998 27-04-1998 24-03-1998
EP 0554829	A	11-08-1993		AU 663149 B AU 3217493 A CA 2088835 A CN 1075959 A HU 9500347 A IL 104311 A JP 5246997 A MX 9300579 A US 5550147 A US 5670533 A ZA 9300077 A		28-09-1995 12-08-1993 06-08-1993 08-09-1993 28-09-1995 13-07-1997 24-09-1993 30-09-1993 27-08-1996 23-09-1997 04-08-1993
DE 19530996	A	27-02-1997		AU 6926496 A WO 9708165 A EP 0846115 A		19-03-1997 06-03-1997 10-06-1998
WO 9723212	A	03-07-1997		AU 1335897 A HR 960597 A		17-07-1997 30-04-1998