Algoritmo Prim


```
W = \{1\}
                           (1, 2)
W = \{1, 2\}
                           (2, 4)
W=\{1, 2, 4\}
                           (4,5)
W=\{1, 2, 4, 5\}
```

$$W=\{1, 2, 4, 5$$
 (5,8)

$$W=\{1, 2, 4, 5, 8\}$$
 (5,7)

$$W=\{1, 2, 4, 5, 8, 7\}$$

$$W=\{1, 2, 4, 5, 8, 7, 9, 10, 3, 6\}$$
 $V \leftarrow \{1..n\}$

```
arbolExpansion Prim(G, T)
```

{ G : grafo

T: conjunto de arcos del árbol de coste mínimo}

var locales

W: < conjunto de vértices >;

u,w: vértices;

Inicio

T <- {}

u <- 1

 $W \leftarrow \{u\}$

mientras W<> V hacer

<Encontrar v de V-W tal que (u,v) sea mínimo> W <- W+{∇}

T <- T+{(u,v)}

fin_mientras

fin arbolExpansion

Algoritmo Kruskal

$$\{(1,3), (1,2), (2,4), (1,5), (2,3), (3,4), (5,6), (4,5), (1,6)\}$$

1	1324	1324	1324	132456
2				
3				
4				
5	5 6	5	5 6	
6		6		

Algoritmo Dijkstra


```
int F[N];
double matPesos[N][N];

typedef struct
{
   int ultimo;
   double distancia;
} EstadoVertice;

EstadoVertice D[N];
```

Paso	(S) Node Fil strong	v	D[2]	D[3]	D[4]	D[5]	D[6]
Inicial	eritera 1 A	Auto a	3	4	ero / Tab	8	
1	1, 2	2	3	4		8	
2	1, 2, 3	3	3	4		7 [3]	
3	1, 2, 3, 5	5	3	4	14 [5]	7	10 [5]
4	1, 2, 3, 5, 6	6	3	4	12 [6]	7	10
5	1, 2, 3, 5, 6, 4	4	3	4	12	7	10

Ejemplo, el camino mínimo de v_1 a v_6 es 10, la secuencia de vértices que hacen el camino mínimo: v_1 - v_3 - v_5 - v_6 .