Exercice 1. Calculer les limites suivantes :

1.
$$(a_n)_{n\in\mathbb{N}^*}$$
 définie par : $a_n = \left(4 - \frac{3}{n}\right)(1 - 3\sqrt{n})$

2.
$$(b_n)_{n\in\mathbb{N}^*}$$
 définie par : $b_n = \frac{(-1)^n + \cos(n)}{n}$.

3.
$$(c_n)_{n\in\mathbb{N}}$$
 définie par : $c_n = -\sin(n) + 9^n$

4.
$$(d_n)_{n\in\mathbb{N}}$$
 définie par : $d_n = (-1)^n - n$.

5.
$$(e_n)_{n\in\mathbb{N}}$$
 définie par : $e_n = \frac{8^n}{7.99^n}$

6.
$$(f_n)_{n\in\mathbb{N}}$$
 définie par : $f_n=0, 7^n\sin(n!)$.

7.
$$(g_n)_{n \in \mathbb{N}}$$
 définie par : $g_n = \frac{9n^2 + 12n + 4}{8n^2 + 6n + 2}$

8.
$$(h_n)_{n\in\mathbb{N}}$$
 définie par : $h_n = \frac{3n+1}{n^2+6}$.

9.
$$(i_n)_{n\in\mathbb{N}}$$
 définie par : $i_n = \frac{-5n^2 + 6n + 2}{1 - n}$.

10.
$$(j_n)_{n\in\mathbb{N}}$$
 définie par : $j_n = n - \sqrt{n}$.

Exercice 2. On considère une suite (u_n) vérifiant pour tout entier naturel n:

$$1 \leqslant u_n \leqslant u_{n+1} \leqslant 6.$$

Démontrer que la suite (u_n) est convergente. On ne cherchera pas à trouver la limite de cette suite.

Exercice 3. On considère une suite (v_n) vérifiant pour tout entier naturel n:

$$0 < v_{n+1} \leqslant v_n < 5.$$

Démontrer que la suite (v_n) est convergente. On ne cherchera pas à trouver la limite de cette suite.