Квантовая теория поля

Листок 5. Фейнмановские диаграммы в 0-мерных теориях.

Обязательные задачи: 1а, 16, 1в, 2а, 26, 3д.

- 1. Пусть B положительно определенная матрица размера $d \times d$, $x = (x_1, \dots, x_d) \in \mathbb{R}^d$. Во всех задачах интегрирование производится по \mathbb{R}^d , если не указано противное.
 - а) Докажите, что

$$\int e^{-\frac{1}{2}(Bx,x)} dx = \sqrt{\frac{(2\pi)^d}{\det B}}.$$

б) Обозначим

$$\langle f(x) \rangle := \sqrt{\frac{\det B}{(2\pi)^d}} \int f(x)e^{-\frac{1}{2}(Bx,x)} dx.$$

Пусть $C:=B^{-1}$. Докажите, что $\langle x_i \rangle =0, \langle x_i x_j \rangle =c_{ij}$. Матрица C называется матрицей ковариаций или пропагатором.

в) Докажите, что

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^{2n} e^{-x^2/2} dx = (2n-1)!!.$$

- 2. Пусть l_1, l_2, \ldots, l_{2n} линейные функции от $x_1, \ldots, x_d \in \mathbb{R}$, а $\langle \cdot \rangle$ то же, что и в предыдущей задаче.
 - а) Докажите формулу Вика:

$$\langle l_1 l_2 \dots l_{2n} \rangle = \sum \langle l_{p_1} l_{q_1} \rangle \dots \langle l_{p_n} l_{q_n} \rangle,$$

где сумма берется по всем возможным спариваниям на множестве $\{1, 2, \dots, 2n\}$.

- б) Применяя формулу Вика, найдите $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^4 e^{-x^2/2} dx$.
- 3. Обозначим

$$Z := h^{-d/2} \int e^{-S(x)/h} dx, \qquad Z_0 := \sqrt{\frac{(2\pi)^d}{\det B}}.$$

а) Докажите «теорему Фейнмана»:

$$\frac{Z}{Z_0} = \sum_{\Gamma \in G_{>3}} \frac{h^{b(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} F(\Gamma)$$

1

(равенство понимается в смысле равенства формальных степенных рядов от h). Здесь

$$S(x) = \frac{b^{ij}}{2} x_i x_j + \sum_{m=3}^{\infty} \frac{b^{i_1 \dots i_m}}{m!} x_{i_1} \dots x_{i_m},$$

 $G_{\geqslant 3}$ — множество классов изоморфности графов с вершинами только валентности $\geqslant 3$ (графу разрешено иметь кратные ребра и петли), $\operatorname{Aut}(\Gamma)$ — группа автоморфизмов графа Γ , $b(\Gamma)$ — количество ребер минус количество вершин графа Γ , а фейнмановская амплитуда $F(\Gamma)$ определяется следующим образом. В каждую m-валентную вершину графа Γ ставится тензор — B_m , и берется свертка этих тензоров матрицей ковариаций по ребрам графа Γ — получившееся число обозначается $F(\Gamma)$. Если граф не связный, то его амплитуда определяется как произведение амплитуд всех компонент связности. Амплитуда пустого графа по определению равна 1. Под автоморфизмом графа понимается перестановка его и вершин, и ребер, сохраняющая графовую структуру. Докажите также следующее небольшое обобщение этого утверждения: если

$$S(x) = \sum_{m=0}^{\infty} \frac{g_m}{m!} b^{i_1 \dots i_m} x_{i_1} \dots x_{i_m}, \quad g_m \in \mathbb{R},$$

ТО

$$\frac{Z}{Z_0} = \sum_{\overline{n}} \left(\prod_m g_m^{n_m} \right) \sum_{\Gamma \in G(\overline{n})} \frac{h^{b(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} F(\Gamma),$$

где $\overline{n}=(n_0,n_1,\ldots)$ — последовательность неотрицательных целых чисел (только конечное число из которых отличаются от 0), а $G(\overline{n})$ — множество классов изоморфности графов с n_0 0-валентными вершинами, n_1 1-валентными вершинами и т.д..

б) Выведите отсюда, что

$$\ln(Z/Z_0) = \sum_{\Gamma \in G_{\geqslant 3}^c} \frac{h^{b(\Gamma)}}{|\mathrm{Aut}(\Gamma)|} F(\Gamma),$$

где $G_{\geqslant 3}^c$ — множество классов изоморфности *связных* графов с вершинами только валентности $\geqslant 3$. Для связного графа Γ число $b(\Gamma)+1$ называется количеством петель графа Γ .

в) Обозначим

$$(\ln(Z/Z_0))_l := \sum_{\overline{n}} \left(\prod_m g_m^{n_m} \right) \sum_{\Gamma \in G_{(l)}^c(\overline{n})} \frac{F(\Gamma)}{|\operatorname{Aut}(\Gamma)|}$$

-l-петлевая часть пертурбативного разложения. Здесь $G^c_{(l)}(\overline{n})$ — множество классов изоморфности связных графов с вершинами требуемых валентностей и l петлями. Докажите, что

$$(\ln(Z/Z_0))_0 = -S(x_0), \qquad (\ln(Z/Z_0))_1 = \frac{1}{2} \ln \frac{\det B}{\det S''(x_0)},$$

где x_0 — невырожденный единственный глобальный максимум функции S(x).

г) Выведите из утверждения 3а теорему Фейнмана для корреляционных функпий:

$$\int l_1(x) \dots l_n(x) e^{-S(x)/h} dx = \sqrt{\frac{(2\pi h)^d}{\det B}} \sum_{\Gamma \in G_{>3}(n)} \frac{h^{b(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} F(\Gamma; l_1, \dots, l_n).$$

Здесь $G_{\geqslant 3}(n)$ — множество классов изоморфности графов с n одновалентными «внешними» вершинами, пронумерованными числами $1,\ldots,n$ и конечным числом ненумерованных «внутренних» вершин валентности $\geqslant 3$, а фейнмановская амплитуда $F(\Gamma; l_1,\ldots,l_n)$ определяется следующим образом. В j-ую внешнюю вершину графа Γ ставится ковектор l_j , в каждую внутреннюю m-валентную вершину графа Γ ставится тензор $-B_m$, и берется свертка этих тензоров матрицей ковариаций по ребрам графа Γ получившееся число обозначается $F(\Gamma; l_1,\ldots,l_n)$.

- д) Убедитесь, что формула Вика частный случай задачи 3г.
- 4. Докажите теорему Кэли: количество деревьев с n пронумерованными вершинами равно n^{n-2} . $\Pi o d c \kappa a s \kappa a$: примените задачу 3в к $S(x) = \frac{x^2}{2} g e^x$.