

RSM02: Terrestrial and Airborne Lidar and Photogrammetry Systems (Summer 2024)

Final Project

Comparative study of a point cloud model: Structure from Motion against Airborne LiDAR Data

Vrushali Jagdale Nurana Akhundzada Hanna Kretz

Research Question:

In which aspects does a
Structure from Motion Point Cloud differ from an
Airborne Lidar Point cloud (2018)
in the case of **Berlin Victory Column**?

Fig. 1: Berlin Victory Column

Study Area

Located in Berlin, Germany
67m-high gilded column
Monument with a deck for city views
Urban characteristics

Workflow

- 1. Generate a point cloud with the Structure from Motion (SfM) method
 - a. Take pictures
 - b. Build point cloud (Metashape Pro)
 - c. Filter point cloud (CloudCompare)
- 2. Prepare LiDAR data
 - a. Download
 - b. Clip
 - c. Filter and clean up (CloudCompare)
- 3. Align and Merge point clouds (CloudCompare)
- 4. Compare Point Clouds

first photoshoot with SONY SLT- A85 camera & tripod

second photoshoot with iPhone & tripod

Align photos with Metashape Pro

only worked when no optional settings were selected

build point cloud with Metashape Pro

Filter point cloud with CloudCompare

Filter point cloud with CloudCompare

Filter point cloud with CloudCompare

- photos should be taken on a cloudy day and from them same perspective
- zoom-in photos aren't alignable
- a camera isn't always the best choice
- optional settings aren't always helpful
- cleaning the sparse point cloud increases quality of dense point cloud

2. Prepare LiDAR data

Require corresponding LiDAR point cloud data for the same area for comparative analysis.

Attempted to obtain this data from the Berlin geoportal website: Geoportal Berlin

382_5824	384_5824 Berry Fore	REINICKE 386_5824	NOOR 388_5824	390_5824	392_5824	VERSOURE STAD 394_5824 WEISS	RANDSIEDE MALGHOW 396_5824	398_5824 _{Hdl} schonn	FAD 588 USEN
8. STANDALPE SCHEFFARTS 1990 1990 1990 1990 1990 1990 1990 199	384 [©] 5822	386_5822 W	GESUI 388_5822	390_5822	392_5822	394_5822 BEF	396_5822 LIN AL SCHÖ	398_5822 HOHEN- NHAUSEN-	400_58
382_5820	384_5820	386_5820	388_5820	MITTE 390_5820	Mitte PZLAL BERG 392_5820	394_5820 FF	396 5820 NNPFUHE	398_5820	400_58
382_5818	CHARLOT 384_5818 _{UR}	386 <u>5818</u>	388_5818	390_5818 FRIEDRICHS	392_5818	394_5818 86	LICHTENBERI 396_5818 Rdinnel	398_5818	400_58

Screen shot from Geoportal Berlin

2. Prepare LiDAR data

The provided data sets do not cover our area of interest.

CloudCompare

Google Maps

3. CloudCompare: Aligning Two Point Clouds

Why align LiDAR data from Structure-from-Motion with airborne LiDAR data?

- Consistency in Geospatial Analysis: Uniform Georeferencing (EPSG 25833)
- Accuracy Improvement :
- 1. SFM: may have scale inaccuracies and errors due to lack of precise georeferencing.
- 2. Airborne LiDAR: may lack the fine detail in certain areas due to its typically lower resolution compared to SfM.

3. CloudCompare: Aligning Two Point Clouds

Top view

3. CloudCompare: Aligning Two Point Clouds

1. Align (points pair picking)

2. Fine registration (ICP: Iterative closest point)

After Aligning —

←Before Aligning

4. Compare Point Clouds

Airborne Lidar Point cloud (2018)

Metric	Value
Point density (points/m³)	0.176198
Average Point-Spacing (m)	0.536582

Structure from Motion Point Cloud

Metric	Value
Point density (points/m³)	26.774172
Average Point-Spacing (m)	0.041043

Detrended Data

...

Structure from Motion Point Cloud

Fitted Plane

Airborne Lidar Point Cloud

SFM Point Cloud

Comparison Metrics

Datasets	Standard Deviation	Inter-Quartile Range (IQR)	Number of Points
SfM	488.117980	438.131118	2022655
Airborne Lidar	820.409822	1186.881067	8881

Universität Potsdam

Conclusion and Limitations

- Locating Lidar data from open source can be challenging.
- Airborne point cloud data demonstrated more accuracy on the top part of the building, while SFM data from the side areas because the images were taken from different angles.

- SfM can capture fine details in small areas, whereas airborne LiDAR covers larger areas with less detail.
- By understanding the strengths of different geospatial data sources and using algorithms like ICP for precise alignment, we can achieve highly accurate and detailed 3D models for various applications.

Literature

- E. Widyaningrum, B.G.H Gorte. Comprehensive Comparison of LiDAR and Image-Based Point Clouds for Large-Scale Mapping, September 2017. https://doi.org/10.5194/isprs-archives-XLII-2-W7-557-2017
- Liao, Jianghua, Zhou, Jinxing and Yang, Wentao. "Comparing LiDAR and SfM digital surface models for three land cover types" *Open Geosciences*, vol.13, no.1, 2021. https://doi.org/10.1515/geo-2020-0257