

Introduction

SNMP

En 1988, l'**IAB** (Internet Activities Board) approuva le développement du protocole **SNMP** (Simple **Network M**anagement **P**rotocol).

L'IAB imposa que SNMP utilise une base d'objets gérables. Donc une **SMI** (Structure of Management Information) et une **MIB** (Management Information **B**ase) communes devaient être définies et utilisés.

En 1989, SNMP a été adopté par de nombreux constructeurs et est devenu à ce jour un standard très répandu de gestion réseau.

Pr. Boubker REGRAGUI

Le: 16/11/2009

NTO .

Architecture du protocole SNMP

Modèle OSI

Le modèle OSI décompose le réseau en sept niveaux « couches ».

- Les couches qui se rapportent au *matériel* ont pour rôle de faire suivre physiquement les données et d'en assurer la sécurisation et la synchronisation au sein du réseau.
- Les couches orientés *transport* régissent le transport et la distribution des données (routage et commutation).
- Les couches qui se rapportent aux *applications* ont pour rôle d'établir la session et d'y mettre fin, d'assurer le transfert des données et de présenter les données à l'utilisateur.

Pr. Boubker REGRAGUI

Le: 16/11/2009

N°:4

N	Modèle OSI	Modèle TCP/IP	
7	Application		
6	Présentation	SNMP	
5	Session		
4	Transport	UDP	
3	Réseau	IP	
2	Liaison	Interface Réseau	
1	Physique	interface Reseau	

M.I.B. (Management Information Base)

Représentation des données dans SNMP

- ♥ Chaque groupe d'objet a un nom, une syntaxe et un codage
 - ➤ Nom est représenté comme **Identificateur** d'objet qui est un nom administratif

Un identificateur d'objet est une suite de valeurs entières, positives ou nulles, qui parcourt une arborescence.

Pr. Boubker REGRAGUI

Le: 16/11/2009

Nº - 1

M.I.B. (Management Information Base)

Représentation des données dans SNMP

- Schaque groupe d'objet a un nom, une syntaxe et un codage
 - > Syntaxe utilisée ASN.1 (Abstract Syntaxe Notation 1)

L'ASN1 est un langage formel, défini sous forme de grammaire. Il permet de définir les structures de données indépendamment de la représentation et de la limitation interne des machines. Dans l'environnement de gestion, l'ASN1 est utilisé pour définir

- ✓ Les structures des PDU échangées par le protocole de gestion
- ✓ Les objets gérés
- Quelques types
 - ✓ Integer : valeurs entières
 - ✓ Octet String : entre 0 et 255
 - ✓ Object Identifier : type de donnée de type ASN.1

/ Null

Pr. Boubker REGRAGUI

Le: 16/11/2009

Nº: 12

Ajout de sysContact et sysLocation				
Numéro	Objet	Nombre de sous-objets	Description	
1	System	7	Informations générales concernants l'objet à travers le système.	
2	Interfaces	23	Informations concernant chaque interface IP de l'agent	
3	Address Translation	3	La table de translation d'adresses qui réalise la correspondance entre l'adresse MAC et l'adresse IP	
4	IP	38	Compteurs IP	
5	ICMP	26	Compteurs ICMP	
6	TCP	19	Compteurs TCP	
7	UDP	7	Compteurs UDP	
8	EGP	18	Compteurs EGP	
9	СМОТ	0	Compteurs pour CMOT (protocole OSI équivalent à SNMP)	
10	Transmission	0	Modes de transmission et protocoles d'accès de chaque interface. Remplacera <i>at</i>	
11	SNMP	30	Statistiques du trafic SNMP.	

M.I.B. (Management Information Base)

La gestion des anomalies

La gestion des anomalies utilise la notion d'alarme (traps) qui doit être émise pour avertir le superviseur d'une situation anormale nécessitant une action plus ou moins rapide et corrective. Pour mettre en place ce type de fonctionnalité, la MIB RMON possède un groupe **Alarm** qui permet de définir une alarme sur n'importe quel *compteur* de la MIB II et de la MIB RMON. Associé à ce groupe **Alarm**, on trouve le groupe **Event** qui permet de définir le type d'action que l'on associe au déclenchement de l'alarme.

Pr. Boubker REGRAGUI

Le: 16/11/2009

Nº - 25

Architecture du protocole SNMP

La gestion des stations

Lorsqu'un dysfonctionnement se produit (augmentation de l'activité, avalanche de broadcasts,...), il est nécessaire pour localiser et corrige le problème et de connaître le ou les équipements responsables.

Pour cela, la MIB RMON possède 3 groupes qui sont :

Host, HostTopN, Matrix

Pr. Boubker REGRAGUI

Le: 16/11/2009

N°: 26

Architecture du protocole SNMP

Le groupe Matrix

Ce groupe contient une table où chaque ligne correspond à un couple d'adresses MAC qui ont au moins échangé un paquet. Les objets associés à chaque couple sont le nombre d'octets, le nombre de paquets et le nombre d'erreurs.

L'entrée dans la table se fait par les adresses MAC et le type d'objet désiré.

Pr. Boubker REGRAGUI

Le: 16/11/2009

NTO - 20

Architecture du protocole SNMP

Analyse du trafic:

Lorsque le problème est détecté et les équipements en cause identifiés, il est souvent intéressant de connaître le type d'application utilisée par ces équipements.

Les groupes *Packet Capture* et *Filter* permettent de définir les captures de trafic désirées.

La **MIB RMON** permet aussi un déclenchement automatique de capture de trafic lorsqu'une alarme programmée dans le groupe **Alarm** est validée.

Pr. Boubker REGRAGUI

Le: 16/11/2009

N°:30

<u> </u>		Architecture d	lu protocole SNMP
	Groupe Statistics	Groupe History	Groupe Alarm
	Contient toutes les informations associées au fonctionnement d'un réseau local Ethernet. (performances temps réel) - Nombre d'octets sur le réseau - Nombre de paquets - Répartition par taille de paquets - Multicasts - Broadcasts - CRC/Align - Jabbers - Fragments (Runts) - OversizePackets - UndersizePackets - Collisions	Définition de campagnes de collectes permettant d'avoir des informations sur des indicateurs réseau. (performances temps différé) - Nombre d'octets - Nombre de paquets - Broadcasts - Multicasts - CRC/AllignErrors - UndersizePackets - OversizePackets - Fragments (Runts) - Jabbers - Collisions - Estimation de l'utilisation en % du réseau pendant la collecte	Définition des alarmes ex: Activité réseau > 40% pendant 1 minute. - Objet concerné - Variation ou valeur absolue - Intervalle de mesure - mode de déclenchement (seuil en montée, descente) - Valeur du seuil en montée - Valeur du seuil en descente - Pointeur vers la table d'actions (Groupe EVENT)
Qr. B	oubker REGRAGUI Le: 16/11/2009		N°:31

Groupe Host	Groupe HostTopN	Groupe Matrix
Contient les informations	Définition d'études	Confient les
de trafics associées à	permettant d'avoir une liste	
chaque nœud Ethernet	d'équipements classée	de trafic entre deu.
découvert.	suivant un indicateur de	équipements
	trafic.	Ethernet
- paquets émis		
- paquets reçus	ex : Les 5 équipements qui	- Flux échangé en
- octets émis	ont émis le plus de paquets	octets
- octets reçus	broadcasts pendant 1 min.	- Flux échangé en
- paquets erreurs émis	·	paquets
- paquets broadcasts émis	- Paquets reçus	- Flux d'erreurs
- paquets Multicasts émis	- Paquets émis	
l · ·	- Octets reçus	
	- Octets émis	
	- Paquets erreur émis	
	- Broadcasts émis	
	- Multicasts émis	
	- Nombre d'équipements	
	désirés	
	- durée de la mesure	

Groupe Filter	Groupe Packet Capture	Groupe Even
Définition des filtres sur les captures de paquets ex : filtrage du trafic SNMP - Position du filtre dans le paquet - Valeur du filtre - Masque associé au filtre - Masque complémentaire - Masque associé à l'état du paquet - Masque complémentaire - Mode de capture (paquets correspondant au filtre ou paquets complémentaires) - Evénement déclenchant l'ouverture du canal - Evènement déclenchant la fermeture du canal - Nombre de paquets capturés - Evènement généré quand un paquet est capturé	Gestion de l'enregistrement des paquets capturés par le Groupe Filter - No de canal utilisé - Etat du Buffer (disponible ou plein) - Action quand le Buffer est plein - Nombre d'octets enregistrés pour chaque paquet - Nombre d'octets remontés par SNMPGET - Offset sur les paquets remontés - Taille désirée pour le Buffer - Nombre de Paquets capturés	Définition des acti associées aux alarmes générées - communauté des Traps SNMP - Aucune action - Emission d'un Tr SNMP - Enregistrement dans la table Log - Table Log + Emission d'un Tra

Architecture du protocole SNMP

Les PROXIES

Le principe important à retenir de cet Agent RMON évolutif est que l'on donne de l'intelligence à un agent SNMP réputé instrumental à la base. Mais désormais cet agent peut agir éventuellement sans l'aide de son manager et faire une collecte d'informations et une réaction sur cette collecte d'une manière autonome.

Cette solution a donné naissance au principe de proxy-agent ou sous-agent SNMP qui travaillera dans une station de travail sous l'agent SNMP. En fait cela permet de faire de la délégation d'administration

L'agent proxy sert également de passerelle entre une station d'administration SNMP et un agent "non-SNMP" qui utilise un protocole propriétaire. Il occupe alors un rôle de traducteur.

Pr. Boubker REGRAGUI

Le: 16/11/2009

N°:37

Command	Error Status	Error Index	Meaning	Action	Echanges de donnée
GetRequest	noError	0	Command successfully processed		
	noSuchName	Offset of first variable in error	Object does exist is aggregate type Wrong access code	Verify object name and type Verify object is readable	
	tooBig	0	Response PDU too large	Shorten VarBindList	
	genErr	Offset of first variable in error	Agent instrumentation routine failed	Eliminate variable from VarBindList	
GetNextRequest noErro	noError	0	Command successfully processed	None	
	noSuchName	Offset of first variable in error	Next object does not exist Wrong access code	Verify object name Verify object is readable	
	tooBig	0	Response PDU too large	Shorten VarBindList	
	genErr	Offset of first variable in error	Agent instrumentation routine failed	Eliminate variable from VarBindList	0: noError, 1: tooBig.
SetRequest	noError	0	Command successfully processed	None	
	noSuchName Offset of first exist and type	Verify object is	3 : badValue,		
	badValue	Offset of first variable in error	Incorrect ASN.1 type, length or value	Correct ASN.1 encoding of variable	4 : readOnly,
	genErr	Offset of first variable in error	Agent instrumentation routine failed	Eliminate variable from VarBindList	5 : genError.
oubker REGRAGU	tooBig	0 11/2009	Response PDU too large	Shorten VarBindList	N° : 58

Les valeurs du Generic Trap:

Echanges de données

Nom	Numéros SNMP	Signification
coldStart	0	l'agent se réinitialise et les objets peuvent changer (changement de configuration)
warmStart	1	l'agent se réinitialise mais les objets ne sont pas modifiés (pas de changement de configuration)
linkDown	2	une des interfaces de l'agent est tombée (la première variable dans la liste <i>variable-bindings</i> identifie l'interface)
linkUp	3	une des interfaces de l'agent est à nouveau opérationnelle (la première variable dans la liste variable-bindings identifie l'interface)
authenticationFailure	4	un message SNMP a été reçu d'une entité SNMP et il y a eu un problème d'authentification en fonction du nom de communauté et des droits d'accès qui lui sont accordés.
egpNeighborLoss	5	un EGP peer (EGP = Exterior Gateway Protocol) est tombé (la première variable dans la liste variable-bindings contient l'adresse IP).
entrepriseSpecific	6	certains événements dépendent de l'agent et ne sont donc pas standardisés, dans ce cas le numéro du trap est donné dans le champ specific-trap.

Avantages

Avantages

L'avantage majeur dans le fait d'utiliser SNMP est qu'il est de conception **simple**. Le résultat flagrant de cette simplicité est une administration de réseau simple à implémenter et **rapide**.

Un autre avantage de SNMP est qu'il est vraiment **très répandu** aujourd'hui.

L'expansion est un autre avantage de SNMP. De par sa simplicité de conception, il est facile de mettre à jour le protocole pour qu'il réponde aux besoins des utilisateurs futurs. Il est également modulable : on n'a pas besoin d'installer les commandes qui nous semblent trop coûteuses.

Enfin, SNMP est basé sur le protocole de transport UDP ce qui nécessite **moins** de ressources et de connexions simultanées qu'avec TCP.

Et enfin, c'est une solution peu chère.

Pr. Boubker REGRAGUI

Le: 16/11/2009

Nº: 64

Inconvénients

Inconvénients

Le premier défaut de SNMP est qu'il contient quelques gros **trous de sécurité** à travers lesquels des intrus peuvent accéder aux informations transitant sur le réseau. (implémenter des mécanismes de sécurité en ce qui concerne le caractère privé des données, l'authentification et le contrôle d'accès).

Puisque SNMP se trouve au dessus de UDP, il n'y a **pas de reprise sur erreur, ni de contrôle de flux**. La requête ou la réponse peut être égarée.

SNMP est un protocole **bavard**. Cette surcharge de trafic n'est pas trop gênante sur un réseau local mais devient embarrassante via le réseau public. (Ce qui rend CMIP plus adapté aux grands réseaux).

Pr. Boubker REGRAGUI

Le: 16/11/2009

NTO . CE