02代码实现教程

- 02 线性模型
 - loss function
 - loss 指预测与原值差的平方的和
 - cost 指一组loss的相应的整体,可以做以下处理
 - MSE
 - MAE
- 03 梯度下降
 - 梯度下降属于优化的一种方法
 - 用求导求出当前的点的梯度
 - 随机梯度下降
 - 拿部分样本的损失函数进行更新
 - 引入随机性
 - 但是不能进行并行计算
 - 因此引入batch 的概念
- 04 反向传播
 - 要计算损失关于输入的倒数(从后往前),才能进行更新
 - 但不同的神经元有不同的梯度
 - 因此每一层可以从后往前追溯相应的梯度,就可以最终算出loss/cost 关于变量的 梯度
 - 最后就可以进行参数的更新
 - pytorch
 - 数据类型 tensor
 - 元素组成
 - data
 - grad
 - 也是一个tensor类型
 - 相关步骤
 - 函数
 - loss
 - 及构建计算图
 - l.backward()
 - 计算后就会释放
- 05 pytorch 进行线性回归

- 基本步骤
 - 数据集准备
 - 用类设计相关模型
 - 构造损失函数及优化器
 - 设置训练的周期
- 需要使用mini batch
 - 重点转换为模型的构建
 - loss 要变成标量
- function(*args)
 - 输入的函数的变量数量未知,会自动变为元组,*kargs
- 06逻辑回归
 - 图像的训练,可以使用CIFARCIFAR-10
 - 饱和函数
 - 超过阈值变化很小
 - 可以将数值控制在0-1之间
 - 即sigmoid函数
 - •
 - loss
 - KL散度
 - 交叉熵
 - 比较两个分布大小的方法
 - 如果预测与实际的分布差别小,那么训练就成功了
- 07 多维数据输入
 - 进行降维操作
- 08 加载数据集
 - batch 大计算速度快
 - epoch batch literation
 - 数据是否打乱顺序 shuffle
 - 加载数据的方法
 - 一次性将所有数据存入内存中
 - 即直接在class的init中直接加载
 - 将文件名作为列表导入
 - 1

• 2

- 09 多分类问题
 - 运用softmax进行数据的归一化