UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

EXERCISE 1

- 1. Use the Mean Value Theorem to establish the following inequalities
 - (a) $x < \sin^{-1} x < \frac{x}{\sqrt{1-x^2}}$ for 0 < x < 1.
 - (b) $e^a(x-a) < e^x e^a < e^x(x-a)$ if a < x.
 - (c) $e^x > x + 1 \ \forall x > 0$.
- 2. (a) Does the function $f(x) = x^3$ satisfy the hypothesis of the Mean Value Theorem on the interval [-10, 10]? Justify your answer.
 - (b) If so, determine the point c which is quaranteed by the Mean Value Theorem.
- 3. Use the sign of the derivative to establish the inequality $\ln(1+x) > x \frac{x^2}{2}, \forall x > 0$
- 4. Find the values for which the function $y = 2x^3 9x^2 + 12x$ is
 - (a) increasing;
 - (b) decreasing.
- 5. By considering the derivative of the function $f:[-1,-1]\to\mathbb{R}$ defined by $f(x)=\frac{x}{x^2-x+1}$, show that f^{-1} exists and find $(f^{-1})'\left(\frac{3}{7}\right)$
- 6. By considering the derivative of the function $f:[-1,1]\to\mathbb{R}$ defined by $f(x)=\frac{2x}{x^2+1}$, show that f^{-1} exists and find $(f^{-1})'\left(\frac{4}{5}\right)$.
- 7. (a) Show that the function $f(x) = x^3 x^2 + 1$, $x > \frac{2}{3}$ has an inverse.
 - (b) If g is the inverse of f, find g'(1).
- 8. If g is the inverse of $f(x) = \ln x + \tan^{-1} x$, find $g'(\frac{\pi}{4})$