Chapitre 3:

circuits combinatoires

Le Demi-Additionneur

Le Demi Additionneur à un bit est un circuit qui permet d'additionner 2 chiffres binaires sans retenue rentrante

Lorsqu'on fait l'addition de 2 chiffres binaires A et B on obtient la somme S et une retenue R.

$$A + B = S$$
 retenue R
 $S = /ab + a/b = a$ xor b
 $R = ab$

A	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Le Demi-Additionneur

Le Demi Additionneur à un bit est un circuit qui permet d'additionner 2 chiffres binaires sans retenue rentrante

Lorsqu'on fait l'addition de 2 chiffres binaires A et B on obtient la somme S et une retenue R.

A + B = S retenue R

$$S = \overline{A} B + A \overline{B}$$

$$S = A \oplus B$$

$$R = A B$$

A	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

L'Additionneur complet

L'Additionneur complet à un bit est un circuit qui permet d'additionner 2 chiffres binaires avec une retenue rentrante Lorsqu'on fait l'addition de 2 nombres binaires, on travaille par rangées,

on additionne les chiffres 2 à 2 selon leurs poids (de droite à gauche).

A la fin de chaque addition on obtient une somme et une retenue sortante,

cette retenue s'ajoutera à la somme de la rangée précédente et deviendra une retenue rentrante.

L'Additionneur complet

L' Il n'y a jamais de retenue rentrante sur la première rangée (bits de poids faibles)

Pour cette rangée on a donc un demi-additionneur, pour toutes les autres on aura des additionneurs complets

R(a,b,c) = ab + bc + ac

ab	00	01	11	10
С,				
0	0	1	0	
1		0	[1]	0

A	В	С	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
		1	1	1

S(a,b,c) = /a(/bc + b/c) + a(bc + /b/c)

$$S(a,b,c) = /a(b x or c) + a(b x or c) = a x or b x or c$$

$$a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}$$

$$\overline{a \oplus b} = \overline{a} \cdot \overline{b} + a \cdot b$$

ab	00	01	11	10
С,				
0		1		1
1	1		1	

$$S = \overline{a}\overline{b}c + \overline{a}b\overline{c} + abc + abc + a\overline{b}\overline{c}$$

$$S = \bar{a}(\bar{b}c + b\bar{c}) + a(bc + \bar{b}\bar{c})$$

$$S = \overline{a}(b \oplus c) + a(\overline{b \oplus c})$$

$$S = a \oplus b \oplus c$$

A	В	С	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}$$

$$\overline{a \oplus b} = \overline{a} \cdot \overline{b} + a \cdot b$$

ab	00	01	11	10
С,				
0				
1				

В	С	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 1 0	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0

ab	00	01	11	10
С,				
0			1 !	
1		(i		1.
			•	

$$R = AB + AC + BC$$

A	В	С	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = a \oplus b \oplus c$$

$$R = AB + AC + BC$$

Circuits fonctionnels

Un circuit fonctionnel est un composant portant le nom de la fonction qu'il représente.

Il possède les entrées et les sorties de cette fonction

Pour réaliser un additionneur à 4 bits il faut connecter 4 additionneurs à un bit, un demi- additionneur et trois additionneurs complets.

La connexion se fait par les retenues Ci = Ri-1

Ce circuits fait l'addition de deux nombres

A3 A2 A1 A0

et B3 B2 B1 B0

Le résultat est S3 S2 S1 S0

et la retenue finale est R3

Pour réaliser un additionneur à 4 bits il faut connecter 4 additionneurs à un bit,

un demi- additionneur et trois additionneurs complets.

La connexion se fait par les retenues Ci = Ri-1

Ce circuits fait l'addition de deux nombres

A3 A2 A1 A0

et B3 B2 B1 B0

Le résultat est S3 S2 S1 S0

et la retenue finale est R3

Les R_i sont les retenues sortantes

Les C_i sont les retenues rentrantes

$$C_i = R_{i-1}$$

$$A_1 + B_1 + C_1 = S_1$$
 retenue R_1 $C_2 = R_1$

$$A_2 + B_2 + C_2 = S_2$$
 retenue R_2

$$C_3$$
 C_2 C_1
 A_3 A_2 A_1 A_0
 $+$ B_3 B_2 B_1 B_0
 $=$ S_3 S_2 S_1 S_0
 R_3 R_2 R_1 R_0

Pour réaliser un additionneur à 4 bits il faut connecter 4 additionneurs à un bit, un demi- additionneur et trois additionneurs complets.

La connexion se fait par les retenues

$$C_i = R_{i-1}$$

Ce circuits fait l'addition de deux nombres

$$A_3 A_2 A_1 A_0$$
 et $B_3 B_2 B_1 B_0$

Le résultat est $S_3S_2S_1S_0$ et la retenue

finale est R₃

Un décodeur est un circuit combinatoire qui a n entrées et 2ⁿ sorties dont une seule est égale à 1

L'exemple suivant représente un décodeur 2x4

Un décodeur est un circuit combinatoire qui a n entrées et 2ⁿ sorties dont une seule est égale à 1

un décodeur 3x8 à l'aide de 2x4 a1 Dec B=0 3x8 C=0 /a/b/c В /a/bc Dec /ab/c Α 2x4 /abc a/b/c В a/bc Dec Ab/c 2x4 C abc

un décodeur 4x16 à l'aide de 3x8

Le DEC 4x16 aura comme entrées a b c d

On utilisera 2 DEC 3x8 qui auront comme entrées communes b c de et 16 sorties (2x8)

a sera utilisé pour valider l'un ou l'autre des 2 DEC 3x8

 $V1 = \overline{a}$ et V2 = a

Si a = 0 alors V1 = 1 c'est le premier DEC qui sera actif

Si a = 1 alors V2 = 1 c'est le deuxième DEC qui sera actif

donc une seule sortie parmi les 16 sera égale à 1

(celle du DEC validé)

$1) \quad \underline{P = n}$

Chaque sortie du décodeur correspond à un minterme. On fera la somme logique (OR) de toutes les sorties du décodeur correspondant au min termes pour lesquels la fonction est égale à 1.

Exemple: n = 3 et P = 3

 $S(abc) = \overline{a}\overline{b}\overline{c} + \overline{a}bc + a\overline{b}c$

A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

2) <u>p < n</u>

P variables seront les entrées du décodeur. Les (n-p) variables restantes seront à l'extérieur du décodeur. La fonction sera formée par la combinaison des sorties du décodeur et des variables extérieures.

Exemple: n = 3 et P = 2

 $F(abc) = \overline{a}\overline{b}\overline{c} + \overline{a}bc + a\overline{b}c$

Exemple 2 : n = 4 et p = 2

 $F(abcd) = a\overline{b}cd + \overline{a}bd(c + c) + a\overline{c}(d + d)$

Si on sort les variables a et b, les entrées du DEC 2 X 4 seront c et d.

c et d sont indissociables, Il faut donc faire apparaitre c et d dans chaque terme.

Exemple 2 : $\underline{n=3}$ et $\underline{P=2}$

$$F(abc) = abcd + \bar{a}bd + a\bar{c}$$

Si on sort les variables a et b, les entrées du DEC 2 X 4 seront c et d c et d sont indissociables, Il faut donc faire apparaitre c et d dans chaque terme.

$$F(abc) = a \overline{b} c d + \overline{a} b d(c + \overline{c}) + a \overline{c} (d + \overline{d})$$

$$F(abc) = a \overline{b} c d + \overline{a} b c d + \overline{a} b \overline{c} d + a \overline{c} \overline{d} + a \overline{c} \overline{d}$$

$$F(abc) = c d (a \overline{b} + \overline{a} b) + \overline{c} d (\overline{a} b + a) + a \overline{c} \overline{d}$$

$$F(abc) = c d (a \oplus b) + \overline{c} d (\underline{a + b}) + a \overline{c} \overline{d}$$

$$c d$$

Exemple 3 : n = 4 et p = 2

Si un terme ne contient ni \mathbf{c} ni \mathbf{d} on utilise uniquement les variables extérieures Par exemple F(a b c d) = a b + b \overline{c} d + \overline{a} c

Le premier terme (a b) ne contient ni c ni d donc on le laisse tel quel.

Le deuxième terme (a c) contient c mais pas d donc on le transforme :

$$/a c = /a c (\overline{d} + d)$$

 $F(abcd) = ab + b\bar{c}d + /ac\bar{d} + /ac\bar{d}$

 $F(a b c d) = a b + b \overline{c}d + /a c \overline{d} + /a c \underline{d}$

Le Multiplexeur

Un multiplexeur est un circuit combinatoire qui a 2º entrées , une sortie et n lignes de sélection

Réaliser un MUX 16x1(24x1) à l'aide de MUX 8x1(23x1)

Le MUX 16x1 doit avoir **16 entrées** , une sortie et **4 lignes de sélection a b c d** .

On utilisera 2 MUX 8x1 qui auront chacun une sortie et 3 lignes de sélection communes b c d et un MUX 2x1 qui aura comme ligne de sélection a

Si **a** = **0** alors **S** = **S1**

Si **a = 1** alors **S = S2**

1/p = n

Chaque entrée du MUX représentera une valeur de la fonction

Exemple : n = 3 et P = 3

$$F(abc) = \overline{a} \, \overline{b} \, \overline{c} + \overline{a} \, b \, c + a \, \overline{b} \, c$$

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

$$e_0 = 1$$
 $e_1 = 0$
 $e_2 = 0$
 $e_3 = 1$
 $e_4 = 0$
 $e_5 = 1$
 $e_6 = 0$
 $e_7 = 0$

<u>P < n</u>

Exemple : N = 4 et p = 2

F(abcd) = ad + bd + cd + abc
On prendra c d comme lignes de

sélection a b c d et a b resteront à

l'extérieur

F(abcd) = ad(c+/c) + bd(c+/c) + cd +

abc(d+/d)

F(abcd) = acd + a/cd + bcd + b/cd + cd

+ abcd + abc/d

 $F = cd(a+b+1+ab) + \overline{c}d(a+b) + c\overline{d}(ab)$

 $F = cd + \overline{c}d(a+b) + c\overline{d} (ab)$

