Extra credit problems

Math 427

- 0. Find a mistake or misprint in the book. (The score depends on the type of mistake.)
- 1. Describe all the motions of the Manhattan plane.
- 2. Construct a metric space \mathcal{X} and a distance-preserving map $f \colon \mathcal{X} \to \mathcal{X}$ that is not a motion of \mathcal{X} .
- 3. Note that the following quantity

$$\tilde{\measuredangle}ABC = \begin{bmatrix} \pi & \text{if} & \measuredangle ABC = \pi, \\ -\measuredangle ABC & \text{if} & \measuredangle ABC < \pi. \end{bmatrix}$$

can serve as the angle measure; that is, the axioms hold if one changes everywhere \measuredangle to $\tilde{\measuredangle}.$

- (a) Show that \angle and $\tilde{\angle}$ are the only possible angle measures on the plane.
- (b) Show that without Axiom IIIc, this is not longer true.
- 4. Show that a composition of three reflections in the sides of a nondegenerate triangle does not have a fixed point.
- 5. Lines ℓ and m are tangent to two circles of radiuses r and R on such a way the circles are on one side of ℓ and on different sides of m. Let A and B be tangential points of ℓ and Q be the point of intersection ℓ and m. Show that

$$QA \cdot QB = R \cdot r.$$

- 6. Given a line segment with a marked midpoint, make a ruler-only construction a line thru a given point P parallel to the segment.
- 7. Let ABC be a nondegenerate triangele and $A' \in (BC)$, $B' \in (CA)$, $C' \in (AB)$ be the points such that

$$2 \cdot \measuredangle AA'B \equiv 2 \cdot \measuredangle BB'C \equiv 2 \cdot \measuredangle CC'A \equiv \frac{2}{3} \cdot \pi.$$

Show that the triangle formed by the lines (BB'), (CC'), and (AA'), is congruent to $\triangle ABC$.

8. Give a ruler-and-compass construction of an inscribed quadrilateral with given sides.

- 9. A circle Γ and its center O are given. Let ℓ be a line that passes thru O and P be a point on Γ . Make a ruler-only construction of a line thru P that is perpendicular to ℓ .
- 10. Let A and C be two different points a circle Γ with the center O. For any third point P of the circle let X and Y be the midpoints of the segments [AP] and [CP]. Finally, let H be the orthocenter of the triangle OXY. Prove that the position of the point H does not depend on the choice of P.
- 11. Two points A and B lie on one side of a line ℓ . Two points M and N are chosen on ℓ such that AM + BM is minimal and AN = BN. Show that points A, B, M and N lie on one circle.
- 12. Suppose D and E lie on the same side from (AC), $(AE) \parallel (CD)$, and AB = BC. Let K be the intersection of the bisectors of the angles EAB and BCD. Prove that $(BK) \parallel (AE)$.