Proč víceúrovňové modely

Aleš Vomáčka

30. 10. 2025

Filozofická fakulta Univerzity Karlovy, STEM

Kdo jsem?

Kdo jsem?

Aleš Vomáčka

Kvantitativní metodologie

Environmentální sociologie

Analytik ve STEM

To jsem já!

Motivace

Motivace

Andrew Gelman

Richard McElreath

Plán

Plán

- 1. Snížení nároků na velikost vzorku
- 2. Meziskupinové a vnitroskupinové efekty
- 3. Technické detaily a FAQ

Zdroj: Chelsea Parlett-Pelleriti

Proč ♥ víceúrovňové modely

Modelový příklad:

Naším cílem je odhadnout podíl obyvatel ČR, kteří byli v posledním roce obětí kriminální činnosti.

Data pochází z reprezentativního dotazníkového šetření s 500 respondenty.

Zkušenost s kriminální činností měřená jako binární proměnná.

Odhad pro celou republiku je přímočarý:

glm(crime_experience ~ 1, family = binomial) # logistický model

Výsledek: $47\%,\ CI_{95}(42\%;51\%)$

Co když ale chceme odhad pro každý kraj?

Problém: Musíme balancovat systematickou a náhodnou chybu odhadu

3 možná řešení

Můžeme předpokládat, že kraje jsou zaměnitelné.

"Slijeme" všechny informace do jednoho odhadu (complete pooling).

```
glm(crime_experience ~ 1,
  family = binomial)
```


Výhoda: Malá náhodná chyba

Nevýhoda: Velká systematická chyba

Můžeme předpokládat, že každý kraje je unikátní.

Pro každý krajský odhad použijeme pouze data z daného kraje (**no pooling**).

glm(crime_experience ~ region,
 family = binomial)

Výhoda: Malá systematická chyba

Nevýhoda: Velká náhodná chyba

Complete pooling $\leftarrow ??? \rightarrow No pooling$

Můžeme předpokládat, že kraje jsou si přibuzné, ale distiktivní (partial pooling).

Každý krajský odhad je založený částečně na informacích o daném kraji a částečně o informacích od zbytku země.

A to dělají víceúrovňové modely!

```
stan glmer(crime experience \sim (1 region), family = binomial)
```


Víceúrovňové modely využívají **partial pooling** - kombinují informace o dané skupině s informacemi o ostatních (podobných) skupinách.

Výsledkem je (malý) nárust systematické chyby, ale (velké) snížení náhodné chyby.

Celková chyba odhadu je menší!

Partial pooling je vlastně způsob, jak dělat **shrinkage** nebo **regularization** (populární v prediktivním modelování.)

Souvisí s tzv. bias-variance tradeoff.

Čím více informací máme o daném krají, tím méně je jeho odhad ovlivněn ostatními.

Čím méně informací o kraji a čím dále od celkového průměru, tím větší vliv budou mít ostatní.

Otázky?

InteRmezzo!

UK election: What is the MRP method of modelling opinion polls?

Multilevel regression with poststratification

How YouGov's MRP model works for the 2024 U.S. presidential and congressional elections

Častý problém:

Může se stát, že odhady jednotlivých regionů budou staženy příliš k celkovému průměru.

Řešení - Přidejte do modelu regionální prediktory (míra nezaměstnatnosti, volební účast)

Modelový příklad:

V oblasti vzdělávání se často vedou debaty o vztahu mezi socioekonomickým zázemím a kognitivním výkonem.

Také se vedou debaty o tom, do jaké míry hrají roli zdroje školy versus zdroje jedince (míchání žáků s různým SES?)

Otázka: Může žákům z chudších rodin pomoc, pokud budou chodit na stejné školy, jako ti majetnější?

Modelový příklad:

Data z 1982 o SES a matematické gramotnosti žáků středních škol v USA.

Výzkumná otázka: Hraje větší roli SES školy nebo SES individuálních žáků?

Víceúrovňové modely umožňují efektivně rozkládat mezi-skupinové a vnitro-skupinové efekty.

Vašem případě:

- Vztah mezi průměrným SES školy a průměrnými mat. znalostmi (meziskupinový)
- 2. Vztah mezi SES a a mat. znalostmi žáků uvnitř školy (vnitroskupinový)

```
Příprava dat - Spočítáme a) průměrný SES každé školy a b) odchylku SES žáka od průměru jeho školy.
```

```
schools |>
mutate(ses_between = mean(ses),
    ses_within = ses - ses_between,
    by = school_id)
```

Příprava dat - Spočítáme a) průměrný SES každé školy a b) odchylku SES žáka od průměru jeho školy.

Alternativně:

datawizard::demean(schools, ~ses, by = ~school id)

Dvě možnosti vytvoření modelu:

Random Intercept model - školy můžou mít různý průměrný SES, ale vztah mezi SES a mat. gramotností žáků je na každé škole stejný.

Jednoduší na výpočet, ale méně realistické.

```
stan_glmer( math ~ ses_within + ses_between + (1 | school_id))
```

Dvě možnosti vytvoření modelu:

Random Slopes model - školy můžou mít různý průměrný SES, a vztah mezi SES a mat. gramotností žáků se může lišit napříč školami.

Výpočetně náročnější, ale realističtější

Meziskupinový SES souvisí s mat. gramotností více, než vnitroskupiný!

Rozdíly v mat. gramotnosti podle SES napříč školami jsou větší, než uvnitř škol.

Optimistická interpretace - i žáci s nízkým SES mohou benefitovat ze smíšených škol.

Negativní interpretace - velké regionální nerovnosti, chodit do chudé školy je velký handikep.

Otázky?

InteRmezzo!

Bohatší *státy* USA volí častěji demokraty,...

ale...

...bohatší *voliči* volí častěji republikány.

Častý problém:

Lidé zapomínají rozkládat mezi- a vnitro-skupinové efekty.

Extrémně časté u panelových dat!

stan glmer(happiness ~ age + (1 respid))

Tento model splácá vnitro- a mezi-skupinový efekt do jednoho odhadu!

```
stan glmer(happiness ~ age + wave + (1 respid))
```

Nedokážeme říct, do jaké míry s věkem roste spokojenost a do jaké míry jsou starší lidé spokojenější.

Technické poznámky

Frekventistické vs Bayesovské modely

Víceúrovňové modely jsou matematicky komplikované.

Frekventistické postupy mají problémy zohlednit standardní chybu náhodných komponent, např. (1| region).

Pokud výpočetní kapacita dovolí, silně doporučuji bayesovský přístup.

Balíčky v R

Frekventistické balíčky:

- lme4 dobrý rozjezdový balíček
- glmmTMB více modelů, efektivnější(?) implementace

Bayesovké balíčky:

- rstanarm dobrý rozjezdový balíček
- brms více modelů, efektivnější implementace

Otázky?

Děkuji za pozornost!