TD 4 graphes: coloration

I. Echauffement

1. Trouver le nombre chromatique $\chi(G)$ du graphe G suivant :

2. Appliquer l'algorithme glouton pour déterminer une coloration. Est-elle minimale ?

II. Gestion de personnel

Le secrétariat d'une entreprise emploie 6 personnes P1, P2, P3, P4, P5 et P6. Dans le tableau suivant, à compléter par symétrie, les croix indiquent les paires de personnes qui ne peuvent pas cohabiter dans un même bureau pour cause d'incompatibilité d'humeur.

	P1	P2	Р3	P4	Ρ5	P6
P1		X	X		X	
P2			\mathbf{X}	\mathbf{X}	\mathbf{X}	X
P3					\mathbf{X}	X
P4						X
P5						X
P6						

On se propose de déterminer le nombre minimum de bureaux permettant une répartition des 6 personnes qui tienne compte de toutes les incompatibilités d'humeur.

- 1. Justifier du fait qu'une solution du problème est une partition de P (P = l'ensemble des personnes) satisfaisant des conditions à préciser.
- 2. Formulation équivalente du problème à l'aide du graphe des contraintes : le graphe des contraintes est le graphe G0=(P,U) avec $(Pj,Pk)\in U$ si et seulement si Pj et Pk ne peuvent pas cohabiter dans le même bureau ; représenter G0.
- 3. Une partie Π de P est un stable si et seulement si pour tout Pj,Pk \in Π : (Pj,Pk) \notin U. Donner une formulation équivalente du problème en termes de stables dans le graphe des contraintes.
- 4. Déterminer une coloration du graphe en utilisant l'algorithme glouton puis celui de Welsh et Powell.
- 5. La coloration trouvée correspond-t-elle à la réponse cherchée ? Justifier.

III. Carte

On veut colorier la carte ci-dessous avec un nombre minimum de couleurs. Pour cela :

- 1. déterminer une représentation sous forme de graphe du problème
- 2. quel est le nombre chromatique de ce graphe ? (le déterminer en réfléchissant !)
- 3. trouver une coloration du graphe en utilisant l'algorithme glouton puis celui de Welsh et Powell.

