5

10

15

20

25

CLAIMS

1. Process for the preparation of an enantiomerically enriched β^2 -amino acid of formula 1

wherein R^2 , R^3 and R^4 each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR^5 , CO_2R^6 , $C(O)R^7$, SR^8 , NR^9R^{10} , $OC(O)R^{11}$ wherein R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} each independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero)aryl and wherein R^2 and R^3 , R^2 and R^4 or R^3 and R^4 may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β^2 -amino acid ester of formula 2

$$R^{1}O_{2}C$$
 R^{2}
 R^{4}
 R^{3}
 R^{3}
 R^{4}

wherein R^1 stands for an optionally substituted alkyl and wherein R^2 , R^3 and R^4 are as defined above and collecting the resulting enantiomerically enriched β^2 -amino acid of formula 1.

2. Process for the preparation of an enantiomerically enriched β^2 -amino acid ester of formula 2

wherein R¹ stands for an optionally substituted alkyl and wherein R², R³ and R⁴ each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR⁵, CO₂R⁶, C(O)R⁷, SR⁸, NR⁹R¹⁰, OC(O)R¹¹ wherein R⁵, R⁶, R⁷, R⁸, R⁹ R¹⁰ and R¹¹ each independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero)aryl and

5

25

wherein R^2 and R^3 , R^2 and R^4 or R^3 and R^4 may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β^2 -amino acid ester of formula 2, wherein R^1 , R^2 , R^3 and R^4 are as defined above and collecting the remaining enantiomerically enriched β^2 -amino acid ester of formula 2.

- 3. Process according to claim 1 or claim 2, wherein the stereoselective hydrolytic enzyme is an enzyme from the enzyme classification group EC 3.1.1, 3.4.21, 3.4.22 or 3.4.23.
- 10 4. Process according to any one of claims 1-3, wherein the stereoselective hydrolytic enzyme has an E-ratio > 5.
 - 5. Process according to any one of claims 2-4, wherein the collected remaining enantiomerically enriched β^2 -amino acid ester is further hydrolysed in a manner known per se.
- 15 6. Process according to any one of claims 1-5, wherein the β^2 -amino acid ester of formula 2 is prepared by reduction of the corresponding nitrile of formula 3

wherein R¹, R², R³ and R⁴ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

7. Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R² and R³ are as defined above and wherein R⁴ stands for H is prepared by reduction of the corresponding nitrile of formula 4,

wherein R¹, R² and R³ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

8. Process according to any one of claims 1-5, wherein the β^2 -amino acid ester of formula 2, wherein R⁴ stands for H and R¹, R² and R³ are as defined above

10

15

is prepared by reduction of the corresponding nitrile of formula 4, wherein R^1 , R^2 and R^3 are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

- 9. Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R²,
 5 R³ and R⁴ are as defined in claim 6 is prepared from the corresponding nitrile
 of formula 4, wherein R¹, R² and R³ are as defined above by introduction of R⁴
 via nucleophilic 1,4-addition using a suitable nucleophile.
 - 10. Process according to any one of claims 7-9, wherein the nitrile of formula 4, wherein R¹, R² and R³ are as defined above is prepared by condensation of a ketone or aldehyde of formula 6

$$O = R^{2}$$

$$R^{3} \qquad (6)$$

wherein R² and R³ are as defined above and a nitrile of formula 7

$$NC$$
 CO_2R^1 (7)

wherein R¹ is as defined above, in the presence of a suitable base or a dehydrating reagent.

11. Process according to any one of claims 1-5, wherein the β²-amino acid ester of formula 2, wherein R¹, R², R³ and R⁴ are as defined in anyone of claims 1-5 is prepared by reacting NH₃ or an NH₃-analogue with the 2-substituted acrylic acid ester of formula 5

$$R^{1}O_{2}C$$
 R^{3} (5)

wherein R¹, R², R³ and R⁴ are as defined above.

12. Process according to any one of claims 1-11, wherein the enantiomerically enriched β^2 -amino acid (ester) prepared according to a process of any one of claims 1-11 is further converted into a pharmaceutically active ingredient.

WO 2005/085462 PCT/EP2005/002103

-19-

13. Process according to claim 12, wherein the pharmaceutically active ingredient is formulated into a pharmaceutical composition comprising the pharmaceutically active ingredient and an excipient.