

tutorialspoint

SIMPLY EASY LEARNING

www.tutorialspoint.com

About the Tutorial

This tutorial explains the various aspects of the Docker Container service. Starting with the basics of Docker which focuses on the installation and configuration of Docker, it gradually moves on to advanced topics such as Networking and Registries. The last few chapters of this tutorial cover the development aspects of Docker and how you can get up and running on the development environments using Docker Containers.

Audience

This tutorial is meant for those who are interested in learning Docker as a container service. This product has spread like wildfire across the industry and is really making an impact on the development of new generation applications. So anyone who is interested in learning all the aspects of Docker should go through this tutorial.

Prerequisites

The prerequisite is that the readers should be familiar with the basic concepts of Windows and the various programs that are already available on the Windows operating system. In addition, it would help if the readers have some exposure to Linux.

Copyright & Disclaimer

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at contact@tutorialspoint.com.

Table of Contents

	About the Tutorial	
	Audience	
	Prerequisites	
	·	
	Copyright & Disclaimer	
	Table of Contents	ii
1.	DOCKER – OVERVIEW	1
2.	DOCKER – INSTALLING DOCKER ON LINUX	3
	Docker Version	10
	Docker Info	11
	Docker for Windows	12
	Docker ToolBox	13
3.	DOCKER – INSTALLATION	15
	Docker for Windows	15
	Docker ToolBox	16
	Working with Docker Toolbox	19
4.	DOCKER – DOCKER HUB	22
5.	DOCKER – IMAGES	26
	Displaying Docker Images	26
	Downloading Docker Images	27
	Removing Docker Images	28
	docker images -q	29
	docker inspect	30
6.	DOCKER – CONTAINERS	31
	Running a Container	31

	Listing of Containers	31
	docker ps -a	32
	docker history	33
7.	DOCKER – WORKING WITH CONTAINERS	34
	docker top	34
	docker stop	35
	docker rm	35
	docker stats	36
	docker attach	37
	docker pausedocker	38
	docker unpausedocker	
	docker kill	
	Docker – Container Lifecycle	
	Docker Container Lifetycle	
8.	DOCKER – DOCKER ARCHITECTURE	42
9.	DOCKER – CONTAINER AND HOSTS	44
	Docker Images	44
	Running a Container	44
	Listing All Containers	45
	Stopping a Container	45
		4.0
10.	DOCKER – CONFIGURING DOCKER	46
	service docker stop	46
	service docker start	46
11.	DOCKER – CONTAINERS AND SHELLS	48
	nsenter	49
12	DOCKER – DOCKER EILE	51

13.	DOCKER – BUILDING DOCKER FILES	53
	docker build	53
14.	DOCKER – PUBLIC REPOSITORIES	56
	docker tag	58
	docker push	59
15.	DOCKER – MANAGING PORTS	61
	docker inspect	63
16.	DOCKER – PRIVATE REGISTRIES	66
17.	DOCKER – BUILDING A WEB SERVER DOCKER FILE	70
18.	DOCKER – INSTRUCTION COMMANDS	73
	CMD Instruction	73
	ENTRYPOINT	74
	ENV	75
	WORKDIR	77
19.	DOCKER – CONTAINER LINKING	79
20.	DOCKER – DOCKER STORAGE	81
	Data Volumes	83
	Changing the Storage Driver for a Container	85
	Creating a Volume	86
	Listing all the Volumes	87
21.	DOCKER – DOCKER NETWORKING	88
	Listing All Docker Networks	88
	Inspecting a Docker network	89
	Creating Your Own New Network	91

22.	DOCKER – SETTING NODE.JS	93
23.	DOCKER – SETTING MONGODB	96
24.	DOCKER – SETTING NGINX	101
25.	DOCKER – DOCKER TOOLBOX	105
	Running in Powershell	106
	Pulling Images and Running Containers	106
	Kitematic	107
26.	DOCKER – SETTING ASP.NET	112
	Prerequisites	112
	Installing the ASP.Net Container	114
27.	DOCKER – DOCKER CLOUD	117
	Getting started	117
	Connecting to the Cloud Provider	118
	Setting Up Nodes	125
	Deploying a Service	127
28.	DOCKER – LOGGING	129
	Daemon Logging	129
	Container Logging	131
29.	DOCKER – DOCKER COMPOSE	132
	Docker Compose – Installation	132
	Creating Your First Docker-Compose File	133
30.	DOCKER – CONTINUOUS INTEGRATION	136
31.	DOCKER – KUBERNETES ARCHITECTURE	140
32.	DOCKER – WORKING OF KUBERNETES	142

1. DOCKER - OVERVIEW

Docker is a container management service. The keywords of Docker are **develop**, **ship** and **run** anywhere. The whole idea of Docker is for developers to easily develop applications, ship them into containers which can then be deployed anywhere.

The initial release of Docker was in March 2013 and since then, it has become the buzzword for modern world development, especially in the face of Agile-based projects.

Features of Docker

- Docker has the ability to reduce the size of development by providing a smaller footprint of the operating system via containers.
- With containers, it becomes easier for teams across different units, such as development, QA and Operations to work seamlessly across applications.
- You can deploy Docker containers anywhere, on any physical and virtual machines and even on the cloud.
- Since Docker containers are pretty lightweight, they are very easily scalable.

Components of Docker

Docker has the following components

- Docker for Mac It allows one to run Docker containers on the Mac OS.
- Docker for Linux It allows one to run Docker containers on the Linux OS.
- Docker for Windows It allows one to run Docker containers on the Windows OS.
- Docker Engine It is used for building Docker images and creating Docker containers.
- **Docker Hub** This is the registry which is used to host various Docker images.
- **Docker Compose** This is used to define applications using multiple Docker containers.

We will discuss all these components in detail in the subsequent chapters.

The official site for Docker is https://www.docker.com/. The site has all information and documentation about the Docker software. It also has the download links for various operating systems.

2. DOCKER – INSTALLING DOCKER ON LINUX

To start the installation of Docker, we are going to use an Ubuntu instance. You can use Oracle Virtual Box to setup a virtual Linux instance, in case you don't have it already.

The following screenshot shows a simple Ubuntu server which has been installed on Oracle Virtual Box. There is an OS user named **demo** which has been defined on the system having entire root access to the sever.

To install Docker, we need to follow the steps given below.

Step 1: Before installing Docker, you first have to ensure that you have the right Linux kernel version running. Docker is only designed to run on Linux kernel version 3.8 and higher. We can do this by running the following command:

uname

This method returns the system information about the Linux system.

Syntax

uname -a

Options

a – This is used to ensure that the system information is returned.

Return Value

This method returns the following information on the Linux system:

- kernel name
- node name
- kernel release
- kernel version
- machine
- processor
- hardware platform

operating system

Example

```
uname -a
```

Output

When we run above command, we will get the following result:

```
demo@ubuntu:~$ uname -a
Linux ubuntu 4.2.0-27-generic #32~14.04.1-Ubuntu SMP Fri Jan 22 15:32:27 UTC 201
6 i686 i686 i686 GNU/Linux
demo@ubuntu:~$ _
```

From the output, we can see that the Linux kernel version is 4.2.0-27 which is higher than version 3.8, so we are good to go.

Step 2: You need to update the OS with the latest packages, which can be done via the following command:

```
apt-get
```

This method installs packages from the Internet on to the Linux system.

Syntax

```
sudo apt-get update
```

Options

- **sudo** The **sudo** command is used to ensure that the command runs with root access.
- update The update option is used ensure that all packages are updated on the Linux system.

Return Value

None

Example

```
sudo apt-get update
```


Output

When we run the above command, we will get the following result:

```
Hit http://us.archive.ubuntu.com trusty-backports/universe Sources
Hit http://us.archive.ubuntu.com trusty-backports/multiverse Sources
Hit http://us.archive.ubuntu.com trusty-backports/main i386 Packages
Hit http://us.archive.ubuntu.com trusty-backports/restricted i386 Packages
Hit http://us.archive.ubuntu.com trusty-backports/universe i386 Packages
Hit http://us.archive.ubuntu.com trusty-backports/multiverse i386 Packages
Hit http://us.archive.ubuntu.com trusty-backports/main Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/universe Translation-en
Hit http://us.archive.ubuntu.com trusty Release
Hit http://us.archive.ubuntu.com trusty/main Sources
Hit http://us.archive.ubuntu.com trusty/restricted Sources
Hit http://us.archive.ubuntu.com trusty/universe Sources
Hit http://us.archive.ubuntu.com trusty/multiverse Sources
Hit http://us.archive.ubuntu.com trusty/main i386 Packages
Hit http://us.archive.ubuntu.com trusty/restricted i386 Packages
Hit http://us.archive.ubuntu.com trusty/universe i386 Packages
Hit http://us.archive.ubuntu.com trusty/multiverse i386 Packages
Hit http://us.archive.ubuntu.com trusty/main Translation-en
Hit http://us.archive.ubuntu.com trusty/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty/universe Translation-en
Ign http://us.archive.ubuntu.com trusty/main Translation-en_US
Ign http://us.archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://us.archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://us.archive.ubuntu.com trustu/universe Translation-en US
Fetched 3,906 kB in 21s (184 kB/s)
Reading package lists... Done
demo@ubuntu:~Š
```

This command will connect to the internet and download the latest system packages for Ubuntu.

Step 3: The next step is to install the necessary certificates that will be required to work with the Docker site later on to download the necessary Docker packages. It can be done with the following command:

sudo apt-get install apt-transport-https ca-certificates

```
demo@ubuntudemo:~$ sudo apt-get install apt-transport-https ca-certificates
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:
 apt-transport-https ca-certificates
2 upgraded, 0 newly installed, 0 to remove and 105 not upgraded.
Need to get 215 kB of archives.
After this operation, 8,192 B disk space will be freed.
Get:1 http://us.archive.ubuntu.com/ubuntu/ trusty-updates/main apt-transport-ht
ps amd64 1.0.1ubuntu2.15 [25.0 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu/ trusty-updates/main ca-certificates
11 20160104ubuntu0.14.04.1 [190 kB]
Fetched 215 kB in 1s (152 kB/s)
Preconfiguring packages ...
(Reading database ... 57694 files and directories currently installed.)
Preparing to unpack .../apt-transport-https_1.0.1ubuntu2.15_amd64.deb ...
Unpacking apt-transport-https (1.0.1ubuntu2.15) over (1.0.1ubuntu2.11) ...
Preparing to unpack .../ca-certificates_20160104ubuntu0.14.04.1_all.deb ...
Unpacking ca-certificates (20160104ubuntu0.14.04.1) over (20141019ubuntu0.14.04
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Setting up apt-transport-https (1.0.1ubuntu2.15) ...
Setting up ca-certificates (20160104ubuntu0.14.04.1) ...
Processing triggers for ca-certificates (20160104ubuntu0.14.04.1) ...
Updating certificates in /etc/ssl/certs... 19 added, 19 removed; done.
Running hooks in /etc/ca-certificates/update.d....done.
demo@ubuntudemo:~$
```

Step 4: The next step is to add the new GPG key. This key is required to ensure that all data is encrypted when downloading the necessary packages for Docker.

The following command will download the key with the ID 58118E89F3A912897C070ADBF76221572C52609D from the **keyserver** hkp://ha.pool.sks-keyservers.net:80 and adds it to the **adv** keychain. Please note that this particular key is required to download the necessary Docker packages.


```
demo@ubuntudemo:~$ sudo apt-key adv \ --keyserver hkp://ha.pool.sks-keyservers.
et:80 \ --recv-keys 58118E89F3A912897C070ADBF76221572C52609D
Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homed
r /tmp/tmp.KcaZ3WlmGt --no-auto-check-trustdb --trust-model always --keyring /e
c/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg --keyserver hkp://ha.
ool.sks-keyservers.net:80 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D
gpg: requesting key 2C52609D from hkp server ha.pool.sks-keyservers.net
gpg: key 2C52609D: public key "Docker Release Tool (releasedocker) <docker@dock
r.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
demo@ubuntudemo:~$
```

Step 5: Next, depending on the version of Ubuntu you have, you will need to add the relevant site to the **docker.list** for the **apt package manager**, so that it will be able to detect the Docker packages from the Docker site and download them accordingly.

- Precise 12.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-precise main
- Trusty 14.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-trusty main
- Wily 15.10 deb https://apt.dockerproject.org/repo ubuntu-wily main
- Xenial 16.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-xenial main

Since our OS is Ubuntu 14.04, we will use the Repository name as "deb https://apt.dockerproject.org/repo ubuntu-trusty main"

And then, we will need to add this repository to the **docker.list** as mentioned above.

```
echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main" | sudo tee /etc/apt/sources.list.d/docker.list
```

```
demo@ubuntudemo:~$ echo "deb https://apt.dockerproject.org/repo ubuntu-trusty
in" | sudo tee /etc/apt/sources.list.d/docker.list
deb https://apt.dockerproject.org/repo ubuntu-trusty main
demo@ubuntudemo:~$ _
```

Step 6: Next, we issue the **apt-get update command** to update the packages on the Ubuntu system.


```
HIT HELP-77US.archive.ubuncu.com trusty-backports/muitiverse 1500-lackayes
Hit http://us.archive.ubuntu.com trusty-backports/main Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/universe Translation-en
Hit http://us.archive.ubuntu.com trusty Release
Hit http://us.archive.ubuntu.com trusty/main Sources
Hit http://us.archive.ubuntu.com trusty/restricted Sources
Hit http://us.archive.ubuntu.com trusty/universe Sources
Hit http://us.archive.ubuntu.com trusty/multiverse Sources
Hit http://us.archive.ubuntu.com trusty/main amd64 Packages
Hit http://us.archive.ubuntu.com trusty/restricted amd64 Packages
Hit http://us.archive.ubuntu.com trusty/universe amd64 Packages
Hit http://us.archive.ubuntu.com trusty/multiverse amd64 Packages
Hit http://us.archive.ubuntu.com trusty/main i386 Packages
Hit http://us.archive.ubuntu.com trusty/restricted i386 Packages
Hit http://us.archive.ubuntu.com trusty/universe i386 Packages
Hit http://us.archive.ubuntu.com trusty/multiverse i386 Packages
Hit http://us.archive.ubuntu.com trusty/main Translation-en
Hit http://us.archive.ubuntu.com trusty/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty/universe Translation-en
Ign http://us.archive.ubuntu.com trusty/main Translation-en_US
Ign http://us.archive.ubuntu.com trusty/multiverse Translation-en US
Ign http://us.archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://us.archive.ubuntu.com trusty/universe Translation-en_US
Fetched 3,333 kB in 36s (90.8 kB/s)
Reading package lists... Done
demo@ubuntudemo:~$
```

Step 7: If you want to verify that the package manager is pointing to the right repository, you can do it by issuing the **apt-cache command**.

```
apt-cache policy docker-engine
```

In the output, you will get the link to https://apt.dockerproject.org/repo/


```
1.8.2-0~trustu 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.8.1-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.8.0-0~trusty 0
       500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.7.1-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.7.0-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.6.2-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.6.1-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.6.0-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
     1.5.0-0~trusty 0
        500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packa
demo@ubuntudemo:~$
```

Step 8: Issue the **apt-get update command** to ensure all the packages on the local system are up to date.

```
Hit http://us.archive.ubuntu.com trusty-backports/main Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty-backports/universe Translation-en
Hit http://us.archive.ubuntu.com trusty Release
Hit http://us.archive.ubuntu.com trusty/main Sources
Hit http://us.archive.ubuntu.com trusty/restricted Sources
Hit http://us.archive.ubuntu.com trusty/universe Sources
Hit http://us.archive.ubuntu.com trusty/multiverse Sources
Hit http://us.archive.ubuntu.com trusty/main amd64 Packages
Hit http://us.archive.ubuntu.com trusty/restricted amd64 Packages
Hit http://us.archive.ubuntu.com trusty/universe amd64 Packages
Hit http://us.archive.ubuntu.com trusty/multiverse amd64 Packages
Hit http://us.archive.ubuntu.com trusty/main i386 Packages
Hit http://us.archive.ubuntu.com trusty/restricted i386 Packages
Hit http://us.archive.ubuntu.com trusty/universe i386 Packages
Hit http://us.archive.ubuntu.com trusty/multiverse i386 Packages
Hit http://us.archive.ubuntu.com trusty/main Translation-en
Hit http://us.archive.ubuntu.com trusty/multiverse Translation-en
Hit http://us.archive.ubuntu.com trusty/restricted Translation-en
Hit http://us.archive.ubuntu.com trusty/universe Translation-en
Ign http://us.archive.ubuntu.com trusty/main Translation-en_US
Ign http://us.archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://us.archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://us.archive.ubuntu.com trusty/universe Translation-en_US
Fetched 30.2 kB in 15s (1,980 B/s)
Reading package lists... Done
demo@ubuntudemo:~$
```


Step 9: For Ubuntu Trusty, Wily, and Xenial, we have to install the linux-image-extra-* kernel packages, which allows one to use the **aufs storage driver**. This driver is used by the newer versions of Docker.

It can be done by using the following command:

```
sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual
```

```
Found linux image: /boot/vmlinuz-4.2.0-27-generic
Found initrd image: /boot/initrd.img-4.2.0-27-generic
Found linux image: /boot/vmlinuz-3.13.0-105-generic
Found initrd image: /boot/initrd.img-3.13.0-105-generic
Found memtest86+ image: /memtest86+.elf
Found memtest86+ image: /memtest86+.bin
Setting up linux-image-extra-3.13.0-105-generic (3.13.0-105.152) \dots
run-parts: executing /etc/kernel/postinst.d/apt-auto-removal 3.13.0-105-generi
/boot/vmlinuz-3.13.0-105-generic
run-parts: executing /etc/kernel/postinst.d/initramfs-tools 3.13.0-105-generic
boot/vmlinuz-3.13.0-105-generic
update-initramfs: Generating /boot/initrd.img-3.13.0-105-generic
run-parts: executing /etc/kernel/postinst.d/update-notifier 3.13.0-105-generic
boot/vmlinuz-3.13.0-105-generic
run-parts: executing /etc/kernel/postinst.d/zz-update-grub 3.13.0-105-generic
oot/vmlinuz-3.13.0-105-generic
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.2.0-27-generic
Found initrd image: /boot/initrd.img-4.2.0-27-generic
Found linux image: /boot/vmlinuz-3.13.0-105-generic
Found initrd image: /boot/initrd.img-3.13.0-105-generic
Found memtest86+ image: /memtest86+.elf
Found memtest86+ image: /memtest86+.bin
Setting up linux-image-generic (3.13.0.105.113) ...
Setting up linux-image-extra-virtual (3.13.0.105.113) ...
demo@ubuntudemo:~$
```

Step 10: The final step is to install Docker and we can do this with the following command:

```
sudo apt-get install -y docker-engine
```

Here, **apt-get** uses the install option to download the Docker-engine image from the Docker website and get Docker installed.

The Docker-engine is the official package from the Docker Corporation for Ubuntu-based systems.


```
Selecting previously unselected package liberror-perl.
Preparing to unpack .../liberror-perl_0.17-1.1_all.deb ...
Unpacking liberror-perl (0.17-1.1) ...
Selecting previously unselected package git-man.
Preparing to unpack .../git-man_1%3a1.9.1-1ubuntu0.3_all.deb ...
Unpacking git-man (1:1.9.1-1ubuntu0.3) ...
Selecting previously unselected package git.
Preparing to unpack .../git_1%3a1.9.1-1ubuntu0.3_amd64.deb ...
Unpacking git (1:1.9.1-1ubuntu0.3) ...
Selecting previously unselected package cgroup-lite.
Preparing to unpack .../cgroup-lite_1.9_all.deb ...
Unpacking cgroup-lite (1.9) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Processing triggers for ureadahead (0.100.0-16) ...
ureadahead will be reprofiled on next reboot
Setting up libltdl7:amd64 (2.4.2-1.7ubuntu1) ...
Setting up libsystemd-journal0:amd64 (204-5ubuntu20.20) ...
Setting up aufs-tools (1:3.2+20130722-1.1) ...
Setting up docker-engine (1.12.3-0~trusty) ...
docker start/running, process 22612
Setting up liberror-perl (0.17-1.1) ...
Setting up git-man (1:1.9.1-1ubuntu0.3) ...
Setting up git (1:1.9.1-1ubuntu0.3) ...
Setting up cgroup-lite (1.9) ...
cgroup-lite start/running
Processing triggers for libc-bin (2.19-Oubuntu6.7) ...
Processing triggers for ureadahead (0.100.0-16) ...
demo@ubuntudemo:~$
```

In the next section, we will see how to check for the version of Docker that was installed.

Docker Version

To see the version of Docker running, you can issue the following command:

Syntax

```
docker version
```

Options

• **version** – It is used to ensure the Docker command returns the Docker version installed.

Return Value

The output will provide the various details of the Docker version installed on the system.

Example

sudo docker version

Output

When we run the above program, we will get the following result:

```
demo@ubuntudemo:~$ sudo docker version
Client:
Version:
               1.12.3
API version: 1.24
Go version:
               go1.6.3
Git commit:
               6b644ec
Built:
               Wed Oct 26 21:44:32 2016
OS/Arch:
               linux/amd64
Server:
Version:
               1.12.3
API version: 1.24
Go version:
               go1.6.3
Git commit:
               6b644ec
Built:
               Wed Oct 26 21:44:32 2016
OS/Arch:
               linux/amd64
demo@ubuntudemo:~$ _
```

Docker Info

To see more information on the Docker running on the system, you can issue the following command:

Syntax

docker info

Options

• **info** – It is used to ensure that the Docker command returns the detailed information on the Docker service installed.

Return Value

The output will provide the various details of the Docker installed on the system such as

- Number of containers
- Number of images

- The storage driver used by Docker
- The root directory used by Docker
- The execution driver used by Docker

Example

```
sudo docker info
```

Output

When we run the above command, we will get the following result:

```
Backing Filesystem: extfs
Dirs: 0
Dirperm1 Supported: true
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
Volume: local
Network: bridge null host overlay
Swarm: inactive
Runtimes: runc
Default Runtime: runc
Security Options: apparmor
Kernel Version: 4.2.0-27-generic
Operating System: Ubuntu 14.04.4 LTS
OSTupe: linux
Architecture: x86_64
CPUs: 1
Total Memory: 993.1 MiB
Name: ubuntudemo
ID: ECDA:IFR3:ZCQJ:FNXL:APJR:BT6Y:JJ75:FUE6:DNP5:PD7B:AOAD:YVB4
Docker Root Dir: /var/lib/docker
Debug Mode (client): false
Debug Mode (server): false
Registry: https://index.docker.io/v1/
WARNING: No swap limit support
Insecure Registries:
127.0.0.0/8
demo@ubuntudemo:~$
```

Docker for Windows

Docker has out-of-the-box support for Windows, but you need to have the following configuration in order to install Docker for Windows.

System Requirements

Windows OS	Windows 10 64 bit

Memory	2 GB RAM (recommended)	
--------	------------------------	--

You can download Docker for Windows from: https://docs.docker.com/docker-for-windows/

Docker ToolBox

Docker ToolBox has been designed for older versions of Windows, such as Windows 8.1 and Windows 7. You need to have the following configuration in order to install Docker for Windows.

System Requirements

Windows OS	Windows 7 , 8, 8.1
Memory	2 GB RAM (recommended)
Virtualization	This should be enabled.

You can download Docker ToolBox from: https://www.docker.com/products/docker-toolbox

3. DOCKER-INSTALLATION

Let's go through the installation of each product.

Docker for Windows

Once the installer has been downloaded, double-click it to start the installer and then follow the steps given below.

Step 1: Click on the Agreement terms and then the Install button to proceed ahead with the installation.

End of ebook preview If you liked what you saw... Buy it from our store @ https://store.tutorialspoint

