Steel Industry Energy Consumption: A Classification Model Analysis

Robert lannuzzo 3/17/2025

The Data

Features

- **Usage_kWh** Total energy consumption in kilowatt-hours.
- Lagging_Current_Reactive_Power_kVarh Reactive power when current lags the voltage.
- Leading_Current_Reactive_Power_kVarh Reactive power when current leads the voltage.
- CO₂ (tCO₂) Carbon dioxide emissions in metric tons.
- Lagging_Current_Power_Factor Efficiency measure when current lags the voltage.
- Leading_Current_Power_Factor Efficiency measure when current leads the voltage.
- NSM (Number of Seconds from Midnight) Time of day in seconds.
- WeekStatus Encoded as 0 (Weekday) or 1 (Weekend).
- Day_of_week Encoded as an integer (1–7) representing the day
 of the week.

Targets

- Light_Load
- · Medium Load
- · Maximum Load

Exploratory Data Analysis

- We have 9 columns, 3 targets and 35040 data points
- Since we our targets is a set of 3 we have a classification problem and will need to use classification methods

Regression Models

- Regression models assume continuous features and try to fit linear relationships to the data
- We clearly do not have continuous features here (there are only 3 possible outputs)
- MSE scores and R^2 scores for regression models

```
Model MSE R2 Score

0 Ridge 0.264211 0.575153

1 Lasso 0.314652 0.494045

2 PCR 0.286111 0.539937

3 PLS 0.271472 0.563477
```

It is clear these are not performing well

Scatterplot of Key Features

Heatmap of Feature Correlations

- 0.75

- 0.50

- 0.25

- 0.00

- −0.25

-0.50

-0.75

Logistic Regression

- We started with logistic regression and moved on from there
- Decent, but not excellent, accuracy

Logistic Regression Accuracy: 0.7591

Classification Report:

Ctussificatio	precision	recall	f1-score	support
0	0.91	0.90	0.90	3592
1	0.63	0.60	0.61	1984
2	0.58	0.63	0.60	1432
accuracy			0.76	7008
macro avg	0.71	0.71	0.71	7008
weighted avg	0.76	0.76	0.76	7008

Linear Discriminant Analysis

This model performed worse than the logistic regression model

LDA Accur	-				
Ctassiii	Cacion	precision	recall	f1-score	support
	0	0.92	0.88	0.90	3592
	1	0.62	0.54	0.58	1984
	2	0.55	0.71	0.62	1432
accui	racy			0.75	7008
macro	avg	0.70	0.71	0.70	7008
weighted	avg	0.76	0.75	0.75	7008

Quadratic Discriminant Analysis

This model performs even worse than the linear discriminant analysis

QDA Accuracy: Classification				
	precision	recall	f1-score	support
0	0.89	0.87	0.88	3572
1	0.67	0.30	0.41	1937
2	0.50	0.89	0.64	1499
accuracy			0.72	7008
macro avg	0.69	0.68	0.64	7008
weighted avg	0.75	0.72	0.70	7008

K-Nearest Neighbors

We had a good initial accuracy with this model

KNN Accuracy: 0.8770 Classification Report: precision recall f1-score support 0.96 0.96 0.96 3572 1 0.79 0.79 0.79 1937 0.79 0.79 0.79 1499 0.88 7008 accuracy 0.85 0.85 0.85 7008 macro avg weighted avg 0.88 0.88 0.88 7008

K-Nearest Neighbors cont.

- I also tuned the model to find the best K
- We ended up finding that K=7 was the best

```
Best K: {'knn__n_neighbors': 7}
```

Best Accuracy: 0.8827

Here is the full report

```
KNN (k=7) Accuracy: 0.8809 Classification Report:
```

Classification	precision	recall	f1-score	support
0	0.96	0.96	0.96	3572
1	0.80	0.80	0.80	1937
2	0.80	0.80	0.80	1499
accuracy			0.88	7008
macro avg	0.85	0.85	0.85	7008
weighted avg	0.88	0.88	0.88	7008

Decision Tree Model

 Our first tree model did not work as well as KNN (however, it predicts light load very well)

Decision Tree Accuracy: 0.7687

Classification Report (Decision Tree):

	precision	recall	f1-score	support
0	0.98	0.85	0.91	3592
1	0.60	0.61	0.60	1984
2	0.60	0.78	0.68	1432
accuracy			0.77	7008
macro avg	0.73	0.75	0.73	7008
weighted avg	0.79	0.77	0.78	7008

Decision Tree Visualization

Random Forest

This performed better than any model so far

Random Forest Accuracy: 0.9092

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.98	0.98	3592
1	0.86	0.84	0.85	1984
2	0.82	0.84	0.83	1432
accuracy			0.91	7008
macro avg	0.88	0.88	0.88	7008
weighted avg	0.91	0.91	0.91	7008

XGBoost

XGBoost also ran very well

XGBoost Accuracy: 0.9054 Classification Report: precision recall f1-score support 0.98 0.98 0.98 3572 0 1 0.85 0.82 0.83 1937 0.81 0.85 0.83 1499 0.91 7008 accuracy macro avg 0.88 0.88 0.88 7008 weighted avg 0.91 0.91 0.91 7008

Support Vector Machine

- I also waned to look at the SVM model despite Random Forest and XGBoost working out well
- SVM did not perform nearly as well as the aforementioned models

SVM Accuracy: 0.8209

Classification Report (SVM):

0 (4331) 104(13	precision	recall	f1-score	support
0	0.91	0.95	0.93	3592
1	0.75	0.62	0.68	1984
2	0.68	0.77	0.72	1432
accuracy			0.82	7008
macro avg	0.78	0.78	0.78	7008
weighted avg	0.82	0.82	0.82	7008

Principal Component Analysis

- We also explored whether or no reducing the number of components would help our models
- Number of component determination:

PCA continued

We ran a few models with PCA components set to 3

```
SVM Accuracy (Original Data): 0.8126

SVM Accuracy (After PCA, 3 Components): 0.7800

Logistic Regression Accuracy (Original Data): 0.7561

Logistic Regression Accuracy (After PCA, 3 Components): 0.7205
```

 It is clear that PCA is not helping our model accuracy so I decided not run it for every model explored so far

Final Model Performance Comparison

Conclusion & Key Takeaways

- Random Forest & XGBoost performed best
- PCA didn't help due to loss of critical features
- Decision tree & feature importance aid interpretability
- Next steps: Optimize hyperparameters, explore deep learning

Thank You! Questions?

References

 V E, S., Shin, C., & Cho, Y. (2021). Steel Industry Energy Consumption [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C52G8C.