Autómatas finito no determinista AFND

Contenido

Introducción

Definición formal

Equivalencia entre AFND y expresiones regulares

Ejercicios

Equivalencia entre AFND y AFD

λ-clausura

Método para pasar de un AFND a un AFD (con transiciones λ)

Autómata finito no determinista AFND

- En un AFND puede existir cero, una o más transiciones por cada par (estado símbolo de alfabeto).
- Un AFND tiene la capacidad de estar en varios estados a la vez. Esta capacidad a menudo se expresa como la posibilidad de que el autómata "conjeture" algo acerca de su entrada.
- En cada momento, el AFND puede realizar varias transiciones diferentes entre las que deberá optar; podría incluso no optar por ninguna.
- El AFND puede realizar transiciones de un estado a otro sin leer ningún símbolo de entrada, mediante las denominadas transiciones-λ (o transiciones-ε)
- ■Tanto los AFD como los AFND pueden reconocer lenguajes generados por expresiones regulares; los AFND usan un menor número de estados. Un AFD puede estar contenido en su correspondiente AFND.

Un autómata finito es no determinista si:

No ∃ f(q,a) para algún a∈∑ desde algún q ∈Q

■ \exists mas de una f(q,a) desde $q \in Q$ con $a \in \Sigma$

∃ f(q,λ)

Introducción al AFND

Un **AFND** que acepta cadenas del $\Sigma = \{0, 1\}$ terminadas en **01**.

El estado q_0 es el estado inicial y podemos pensar que el autómata estará en este estado (quizás entre otros estados) siempre que no haya "conjeturado" que ya ha comenzado a leer el 01 final.

Siempre es posible que el siguiente símbolo no sea el comienzo de la cadena 01 final, incluso aunque dicho símbolo sea 0. Por tanto, el estado q_0 puede hacer una transición a sí mismo tanto con un 0 como con un 1.

Introducción al AFND

Un AFND que acepta cadenas del $\Sigma = \{0, 1\}$ terminadas en 01.

Sin embargo, si el siguiente símbolo es 0, este AFND también conjetura que el 01 final ha comenzado; por tanto, un arco etiquetado con 0 lleva del estado q_0 al estado q_1

Existen dos arcos etiquetados con 0 que salen de q_0 . El AFND tiene la opción de pasar al estado q_0 o al estado q_1 , y de hecho va hacia ambos.

Introducción al AFND

Un AFND que acepta cadenas del $\Sigma = \{0, 1\}$ terminadas en 01.

En el estado q_1 , el AFND comprueba si el siguiente símbolo es un 1, y si lo es, pasa al estado q_2 y acepta la entrada.

Observemos que no existe un arco que salga de q_1 etiquetado con 0, y tampoco hay arcos que salgan del estado q_2 . En estas situaciones, el hilo de la existencia del AFND correspondiente a dichos estados simplemente "muere", aunque pueden continuar existiendo otros hilos.

Procesamiento de cadenas en un AFND

Veamos ahora cómo nuestro AFND procesa la cadena 00101

Definición formal de un AFND

Un **AFND** se define como una quíntupla:

AFND =
$$(\Sigma, Q, \delta, q_0, F)$$

donde:

- **S** es el alfabeto de entrada.
- Q es el conjunto finito y no vacío de los estados del Autómata.
- δ es la función de transición, se define:

$$\delta: Q \times (\sum U \{\lambda\}) \rightarrow P(Q)$$

P(Q) es el conjunto de las partes de Q (conjunto de todos los subconjuntos que se pueden formar con elementos de Q). En la entrada se permite la palabra vacía (transitar entre estados sin ninguna entrada), y se permite transitar a más de un estado (conjunto de estados) desde el mismo estado.

 $q_0 \in Q$ es el estado inicial

F ε Q es el conjunto de estados finales de aceptación ($F \neq 0$)

Ejemplo

Dado el siguiente AFND:

$$AFND = (\sum_{i} Q_{i} f_{i}, q_{0}, F)$$

AFND =
$$(\sum, Q, f, q_0, F)$$
 $\sum = \{a, b\}$ $Q = \{q_0, q_1, q_2, q_3\}$ $F = \{q_3\}$

Y con la función **f** dada en la siguiente tabla:

f	а	b
->q ₀	$\{q_1, q_2\}$	λ
q_1	λ	$\{q_1, q_3\}$
q_2	q_2	q_3
*q ₃	q_3	λ

Hallar la expresión regular que reconoce este AFND, dibujar el diagrama de estados.

Ejemplo

Dado el siguiente AFND:

$$AFND = (\sum_{i} Q_{i} f_{i} q_{0}, F)$$

AFND =
$$(\sum, Q, f, q_0, F)$$
 $\sum = \{a, b\}$ $Q = \{q_0, q_1, q_2, q_3\}$ $F = \{q_3\}$

Y con la función **f** dada en la siguiente tabla:

f	а	b
->q ₀	$\{q_1, q_2\}$	ф
q_1	ф	$\{q_1, q_3\}$
q_2	q_2	q_3
*q ₃	q_3	ф

Hallar la expresión regular que reconoce este AFND, dibujar el diagrama de estados.

Solución:

Expresión regular:

Equivalencia entre autómata finito y expresión regular

λ

Expresión regular λ

Expresión regular a+

Expresión regular a

Expresión regular a*

Expresión regular a | b

Ejercicios

1) Dado el siguiente AFND:

$$AFND = (\sum_{i} Q_{i} f_{i} q_{0}, F)$$

AFND =
$$(\sum, Q, f, q_0, F)$$
 $\sum = \{a, b\}$ $Q = \{q_0, q_1, q_2, q_3, q_4\}$ $F = \{q_2, q_3, q_4\}$

Y con la función **f** dada en la siguiente tabla:

f	а	b
->q ₀	{ q ₁ , q ₄ }	{ q ₃ }
$q_{\scriptscriptstyle 1}$	{ q ₁ }	{ q ₂ }
*q ₂	ф	ф
*q ₃	ф	ф
*q ₄	ф	{ q ₄ }

Hallar la expresión regular que reconoce este AFND y dibujar el diagrama de estados del AFND.

Dibujar el diagrama de estados del AFD correspondiente a esta expresión regular ¿Cuál diagrama de estados (AFD o AFND) es más conveniente?

Ejercicios

2) Dado el siguiente AFND:

$$AFND = (\sum_{i} Q_{i}, f_{i}, q_{0}, F) \qquad \sum_{i} = \sum_{i} q_{0}(F_{i})$$

AFND =
$$(\sum, Q, f, q_0, F)$$
 $\sum = \{a, b\}$ $Q = \{q_0, q_1, q_2\}$ $F = \{q_0\}$

Y con la función **f** dada en la siguiente tabla:

f	а	b
->*q ₀	{ q ₁ }	ф
q_1	ф	{q ₀ , q ₂ }
q_2	{ q ₀ }	ф

Hallar la expresión regular que reconoce este AFND y dibujar su diagrama de estados.

Dibujar el diagrama de estados del AFD correspondiente a esta expresión regular ¿Cuál diagrama de estados (AFD o AFND) es más conveniente?

Ejercicios

3) Dado el siguiente AFND:

AFND =
$$(\sum, Q, f, q_0, F)$$
 $\sum = \{a, b\}$ $Q = \{q_0, q_1, q_2\}$ $F = \{q_2, q_4\}$

Y con la función **f** dada en la siguiente tabla:

f	а	b
->q ₀	{q ₀ , q ₃ }	$\{q_0, q_1\}$
q_1	ф	{ q ₂ }
*q ₂	{ q ₂ }	{ q ₂ }
q_3	{ q ₄ }	ф
*q ₄	{ q ₄ }	{ q ₄ }

Dibujar el diagrama de estados del AFD correspondiente a esta expresión regular ¿Cuál diagrama de estados (AFD o AFND) es más conveniente?

Equivalencia entre AFND y AFD

Los AFND y AFD tienen el mismo poder computacional, es decir, pueden resolver los mismos problema: reconocer un lenguaje generado por una expresión regular.

Dado un AFND siempre es posible encontrar un AFD que sea equivalente.

Teorema:

Dado un AFND M, existe un AFD M' tal que L(M) = L(M')

Método para pasar de un AFND a un AFD (sin transiciones λ)

- 1. Construir una tabla con columnas una por cada $a \in \Sigma$.
- 2. En la primera fila escribir $\{q_0\}$ y en la columna a escribir $\delta(\{q_0\}, a)$, es decir, todos los estados a los que puedo llegar desde q_0 con entrada a.
- Copiar las casillas de la fila anterior como principio de nuevas filas.
- 4. Para cada fila R pendiente, rellenar la fila R escribiendo en cada columna a $\delta(R,a)$, es decir, todos los estados a los que puedo llegar desde algún estado de R con entrada a.
- Copiar las casillas de la fila anterior como principio de nuevas filas.
- 6. Repetir los pasos 4 y 5 hasta que no queden filas por rellenar.

Ejemplo: obtener el AFD equivalente del siguiente AFND:

		0	1
	$\{q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
)	$\{q_1,q_2\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
	$\{q_1,q_3\}$	$\{q_1,q_4\}$	$\{q_1, q_2, q_4\}$
	$\{q_1,q_2,q_3\}$	$\{q_1, q_3, q_4\}$	$\{q_1, q_2, q_3, q_4\}$
	$\{q_1,q_4\}$	$\{q_1\}$	$\{q_1,q_2\}$
	$\{q_1, q_2, q_4\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
	$\{q_1, q_3, q_4\}$	$\{q_1,q_4\}$	$\{q_1, q_2, q_4\}$
	$\{q_1, q_2, q_3, q_4\}$	$\{q_1, q_3, q_4\}$	$\{q_1, q_2, q_3, q_4\}$

Ejercicios. Obtener el AFD equivalente de cada uno de los siguientes AFND:

λ-clausura

Definición λ-clausura:

- \square Se llama **λ-clausura** de **un estado** al conjunto de estados a los que puede evolucionar sin consumir ninguna entrada, lo denotaremos como CL(q) o λ -clausura(q).
- \square *CL*(*q*) se define **recursivamente**:
 - \square El estado q pertenece a la λ-clausura de q, q ∈ CL(q).
 - \square Si el estado $p \in CL(q)$ y hay una transición del estado p al estado r etiquetada con una transición nula (λ) , entonces r también está en CL(q).
- \square Si $P \subseteq Q$ se llama λ -clausura de un conjunto de estados P a:

$$CL(P) = \bigcup_{q \in P} CL(q)$$

Método para pasar de un AFND a un AFD (con transiciones λ)

Algoritmo de construcción de la tabla de transiciones del AFD:

- 1. se crea una nueva tabla *T[estado,símbolo]*, inicialmente vacía.
- 2. se calcula $Q_0 = \lambda$ -clausura(q_0)
- 3. se crea una entrada en T para Q_0 .
- 4. para cada casilla vacía *T[Q,a]*:
 - 1. se asigna $T[Q,a] = \lambda$ -clausura(f(Q,a))
 - 2. si no existe una entrada en T para el estado T[Q,a], se crea la entrada.
- 5. se repite 4 mientras existan casillas vacías.

Ejemplo 1: AFND a AFD con transiciones λ

Comenzamos calculando el estado inicial q_0 que es la λ -clausura o CL del estado inicial del AFND:

$$q_0 = CL(A) = \{A, C\}$$

a continuación calculamos la función de transición (f) para el estado q₀:

$$f(q_0, a) = CL(f(A, a) U f(C, a)) = CL(B, A) = {A, B, C, D} = q_1$$

 $f(q_0, b) = CL(f(A, b) U f(C, b)) = CL(B, E) = {B, D, E} = q_2$

Continuamos calculando la función de transición para los nuevos estados que van surgiendo:

$$f(q_1,a) = CL(f(A, a) \cup f(B, a) \cup f(C, a) \cup f(D, a)) = CL(B, C, A, E) = \{A, B, C, D, E\} = q_3$$

 $f(q_1,b) = CL(f(A, b) \cup f(B, b) \cup f(C, b) \cup f(D, b)) = CL(B, E) = \{B, D, E\} = q_2$

$$f(q_2,a) = CL(f(B, a) \cup f(D, a) \cup f(E, a)) = CL(C, E) = \{C, E\} = q_4$$

 $f(q_2,b) = CL(f(B, b) \cup f(D, b) \cup f(E, b)) = CL(B, E) = \{B, D, E\} = q_2$

$$f(q_3,a) = CL(f(A, a) \cup f(B, a) \cup f(C, a) \cup f(D, a) \cup f(D, a)) = CL(B, C, A, E) = \{A, B, C, D, E\} = q_3$$

 $f(q_3,b) = CL(f(A, b) \cup f(B, b) \cup f(C, b) \cup f(D, b) \cup f(D, b)) = CL(B, E) = \{B, D, E\} = q_2$

$$f(q_4,a) = CL(f(C, a) \cup f(E, a)) = CL(A, E) = \{A, C, E\} = q_5$$

 $f(q_4,b) = CL(f(C, b) \cup f(E, b)) = CL(E) = \{E\} = q_6$

$$f(q5, a) = CL(f(A, a) \cup f(C, a) \cup f(E, a)) = CL(B, A, E) = \{A, B, C, D, E\} = q3$$

 $f(q5, b) = CL(f(A, b) \cup f(C, b) \cup f(E, b)) = CL(B, E) = \{B, D, E\} = q2$

AFD Resultante:

Ejercicio 1: Pasar del AFND al AFD

Solución

	a	b
$\rightarrow Q_0$	Q ₁	Q ₂
Q_1	Q ₃	Q ₂
*Q ₂	Q ₄	Q ₂
*Q ₃	Q ₃	Q ₂
*Q ₄	Q ₅	Q_6
*Q ₅	Q ₅	Q ₂
*Q ₆	Q_6	Q_6