Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

3BIT

про виконання лабораторної роботи №6 з дисципліни: «Напівпровідникова електроніка» Тема роботи: «Дослідження тиристорів»

Виконав студент 3-го курсу групи ДП-91		
Ремез Сергій Олександрович		
	(підпис)	(дата здачі)
Перевірив Королевич Любомир Миколайович		
	(підпис)	(дата здачі)

1. МЕТА РОБОТИ

Теоретичне вивчення структури і принципу роботи тиристорів. Експериментальне дослідження характеристик і визначення основних параметрів тиристора.

2. ЗАВДАННЯ

- 1. Вивчити устрій і фізичні принципи роботи тиристорів, ознайомитись з їх паспортними характеристиками
- 2. Зібрати установку для дослідження тиристорів.
- 3. Зняти вихідні вольт-амперні характеристики тиристора при різних струмах управління: сімейство $U_{AK} = f(I_A)$ [для $I_v = const$].
- 4. Зняти характеристику управління тиристора залежність анодної напруги вмикання від струму управляючого електрода: $U_{\rm gw} = \varphi_i(I_{\rm y})$.
- 5. *Провести температурні дослідження: зняти вольт-амперну характеристику і характеристику управління при температурі +70°C.
- 6. За отриманими даними побудувати графіки ВАХ і характеристик управління та визначити основні параметри тиристора.
- 7. Провести аналіз результатів досліджень і зробити висновки з роботи.

3. СХЕМА ВИМІРЮВАННЯ

Рис. 1. Схема вимірювання ВАХ тиристора

 mA_1 — міліамперметр зі шкалами 0.3-1.5-3.0 мА для вимірювання I_y ;

 mA_2 — міліамперметр зі шкалами 1.5...15 мА для вимірювання струму анода;

V — вольтметр постійного струму (електронний);

 E_1 — джерело живлення на 10...30 В;

 E_2 — джерело живлення на 100...300 В;

K — ключ однополюсний (або звичайний роз'єднувальний контакт);

 R_1, R_4 — реостати по 1000 Ом (чи використовуються регулювальні потенціометри вбудовані в блоки живлення);

 R_2 = 2...10 кОм; R_3 = 6...20 кОм — навантажувальні резистори.

4. ОБРОБКА ДАНИХ

Експериментальні дані наведені у розділі Додатки. За отриманими значеннями напруги та струму побудуємо сімейство прямих гілок та зворотну гілку ВАХ.

Рис. 2. Сімейство прямих гілок ВАХ тиристора

Рис. 3. Зворотна гілка ВАХ тиристора

З рисунку 2 можемо знайти напругу вмикання (при кожному значення струму керування). Знайдемо залежність анодної напруги вмикання (напруга, за якої тиристор із закритого стану переходить у відкритий за нульового струму керування) від струму керування (або іншими словами пускова характеристика).

Рис.4. Пускова характеристика

Аналізуючи залежність на рис. 4, робимо висновок, що зі зростанням струму керування напруга вмикання на тиристорі буде зменшуватись.

Одним з основних параметрів можна вважати якість тиристорів. Для того, щоб її дослідити, побудуємо залежність відношення опорів закритого і відкритого станів від струму керування.

Опір і похибку можемо знайти за наступними формулами:

$$r_{o} = \frac{(U_{2} - U_{1})}{(I_{2} - I_{1})} \tag{1}$$

$$\Delta r_{\partial} = \pm \sqrt{\left(\frac{\partial r_{\partial}}{\partial U_{1}} \cdot \Delta U_{1}\right)^{2} + \left(\frac{\partial r_{\partial}}{\partial U_{2}} \cdot \Delta U_{2}\right)^{2} + \left(\frac{\partial r_{\partial}}{\partial I_{1}} \cdot \Delta I_{1}\right)^{2} + \left(\frac{\partial r_{\partial}}{\partial I_{2}} \cdot \Delta I_{2}\right)^{2}} = \pm \frac{\sqrt{\left(I_{2} - I_{1}\right)^{2} \cdot \left(\left(-\Delta U_{1}\right)^{2} + \left(\Delta U_{2}\right)^{2}\right) + \left(U_{2} - U_{1}\right)^{2} \cdot \left(\left(\Delta I_{1}\right)^{2} + \left(-\Delta I_{2}\right)^{2}\right)}}{\left(I_{2} - I_{1}\right)^{2}}.$$

$$(2)$$

Для побудови відношення опорів закритого і відкритого станів від струму керування знайдемо опір відкритого стану. Для цього знайдемо опір кривих при $I_{\kappa ep} = 540\,\text{мкA}, I_{\kappa ep} = 560\,\text{мкA}, I_{\kappa ep} = 580\,\text{мкA}, \text{ а розраховані значення занесемо у таблицю 1.}$

$I_{\kappa ep}$, [MKA]	$r_{_{\mathit{ciokp}}}$, [кОм]	$\Delta r_{ei\partial\kappa p}$, [кОм]	$\overline{r}_{\!\scriptscriptstyle ei\partial\kappa p}$, [кОм]	$\Delta \overline{r}_{ei\partial\kappa p}$, [кОм]
540	0,14	0,035		
560	0,03	0,035	0,0933	0,0204
580	0,11	0,035		

Таблиця 1. Опір тиристора у відкритому стані та похибка

Аналогічним чином ми можемо визначити опір в закритому стані. Для цього беремо точки лінійних ділянок кожної гілки ВАХ на рис. 2. За розрахованими значеннями динамічного опору побудуємо залежність відношення опору тиристора у закритому стані до опору у відкритому стані від струму керування (покажемо на рис. 5).

Рис. 5. Залежність відношення опору тиристора у закритому стані до опору у відкритому стані від струму керування.

5. ВИСНОВКИ

В ході лабораторної роботи ми дослідили структуру і принцип роботи тиристорів. Ми побудували та проаналізували сімейство прямих гілок ВАХ тиристора. В ході аналізу було побудовано пускову характеристику, яка показує, що зростання струму керування сприяє підвищенню значень напруги вмикання. Аналіз графіків, позначених рис. 2 та рис. 4 показує, що при значеннях струму керування 540 мкА, 560 мкА та 580 мкА тиристор знаходиться у відкритому стані, що й дозволило нам визначити опір у відкритому стані. Аналогічно до розрахунку опору у відкритому стані знайдено опори у закритому стані та побудовано залежність, наведену на рис. 5, яка свідчить, що стрімке падіння відбувається при струмі керування у 220 мкА, повільно графік спадає при більшому струмі керування. Як бачимо на рис. 5 при збільшенні струму керування похибка зменшується, і навпаки, при малому струмі похибка дуже велика.

додаток а

Пряма гілка							
	$I_{\kappa ep} =$	= 0 мкА	-	$I_{\kappa ep}=20~\mathrm{mkA}$			
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	U, B	I, MA	Δ_U , B	Δ_I , MA
5	0,12	0,25	0,00375	1	0,14	0,075	0,00375
6	0,18	0,25	0,00375	2	0,2	0,075	0,00375
7	0,2	0,25	0,00375	3	0,3	0,075	0,00375
8	0,22	0,25	0,00375	4	0,4	0,25	0,00375
9	0,24	0,25	0,00375	7	0,52	0,25	0,00375
10	0,28	0,25	0,00375	9	0,56	0,25	0,00375
11	0,31	0,75	0,00375	12	0,6	0,75	0,00375
12	0,4	0,75	0,00375	13	0,62	0,75	0,00375
13	0,44	0,75	0,00375	14	0,68	0,75	0,00375
14	0,5	0,75	0,00375	15	0,7	0,75	0,00375
15	0,55	0,75	0,00375	16	0,74	0,75	0,00375
16	0,62	0,75	0,00375	17	0,78	0,75	0,0075
17	0,68	0,75	0,00375	18	0,84	0,75	0,0075
18	0,74	0,75	0,00375	19	0,88	0,75	0,0075
19	0,8	0,75	0,0075	20	0,92	0,75	0,0075
20	0,88	0,75	0,0075	22	0,96	0,75	0,0075
21	0,92	0,75	0,0075	23	1,12	0,75	0,0075
22	0,98	0,75	0,0075	25	1,22	0,75	0,0075
23	1,05	0,75	0,0075	27	1,42	0,75	0,0075
24	1,14	0,75	0,0075	29	1,52	0,75	0,015
25	1,2	0,75	0,0075	30	1,62	0,75	0,015
26	1,32	0,75	0,0075				
27	1,42	0,75	0,0075				
28	1,53	0,75	0,015				
29	1,6	0,75	0,015				
	$I_{\kappa ep} =$	40 мкА			$I_{\kappa ep} = 6$	0 мкА	
U, B	I, MA	Δ_U , B	Δ_I , MA	U, B	I , MA	Δ_U , B	Δ_I , MA
2	0,1	0,075	0,00375	1	0,16	0,075	0,00375
4	0,2	0,25	0,00375	3,1	0,2	0,25	0,00375
6	0,3	0,25	0,00375	5,2	0,3	0,25	0,00375
9	0,4	0,25	0,00375	8	0,4	0,25	0,00375
11,8	0,5	0,75	0,00375	10	0,5	0,25	0,00375
13,5	0,6	0,75	0,00375	12,8	0,6	0,75	0,00375
16	0,7	0,75	0,00375	14,6	0,7	0,75	0,00375
19	0,8	0,75	0,0075	17	0,8	0,75	0,0075
21	0,9	0,75	0,0075	19	0,9	0,75	0,0075
23,5	1	0,75	0,0075	21	1	0,75	0,0075

26,5 1,1 0,75 0,0075 23 1,12 0,7 28 1,2 0,75 0,0075 24,8 1,22 0,7	75 0,0075				
26 1,2 0,73 0,0073 24,6 1,22 0,	75 0,0075				
	75 0,0075				
	75 0,0075				
	<u> </u>				
$I_{\kappa ep}=80$ мкА $I_{\kappa ep}=100$ мк					
	Δ_I, \mathbf{M}				
	0,00375				
	0,00375				
4,2 0,32 0,25 0,00375 5 0,34 0,3	25 0,00375				
	25 0,00375				
9,8 0,5 0,25 0,00375 10,2 0,62 0,7	75 0,00375				
	75 0,00375				
14,2 0,72 0,75 0,00375 14 0,82 0,7	75 0,0075				
16,2 0,82 0,75 0,005 15,5 0,92 0,7	75 0,0075				
20 1 0,75 0,005 17,5 1,02 0,7	75 0,0075				
21,7 1,1 0,75 0,0075 19 1,1 0,7	75 0,0075				
23,2 1,22 0,75 0,0075 20,8 1,22 0,7	75 0,0075				
24 1,28 0,75 0,0075 22 1,33 0,	75 0,0075				
25,1 1,39 0,75 0,0075 23 1,42 0,7	75 0,0075				
26,4 1,54 0,75 0,015 24,1 1,56 0,7	75 0,015				
27,5 1,88 0,75 0,015 24,9 1,68 0,7	75 0,015				
28 2,06 0,75 0,015 25,8 2 0,7	75 0,015				
$I_{\kappa ep}=120\mathrm{mKA}$ $I_{\kappa ep}=140\mathrm{mK}$	$I_{\kappa ep} = 140 \mathrm{mKA}$				
	, B Δ_I , MA				
1,1 0,12 0,075 0,00375 2 0,2 0,0					
	25 0,00375				
	25 0,00375				
	25 0,00375				
	25 0,00375				
	25 0,00375				
	75 0,0075				
12,5 0,84 0,75 0,0075 12,1 0,92 0,7	75 0,0075				
14 0,94 0,75 0,0075 14 1,03 0,7	75 0,0075				
15,1 1,04 0,75 0,0075 15 1,12 0,7	75 0,0075				
	75 0,0075				
	75 0,0075				
	75 0,0075				
	75 0,015				
	75 0,015				
	75 0,015				
	75 0,015				

	$I_{\kappa ep}=160\mathrm{MKA}$				$I_{\kappa ep}=180\mathrm{mKA}$			
U, B	I, MA	Δ_U , B	Δ_I , MA	U, B	I, MA	Δ_U , B	Δ_I , MA	
0,9	0,12	0,075	0,00375	1	0,06	0,075	0,00375	
1,9	0,22	0,075	0,00375	1,5	0,2	0,075	0,00375	
3,6	0,38	0,25	0,00375	2,5	0,3	0,075	0,00375	
5,5	0,54	0,25	0,00375	3,5	0,4	0,25	0,00375	
6,9	0,64	0,25	0,00375	4,9	0,52	0,25	0,00375	
8,2	0,74	0,25	0,00375	5,8	0,6	0,25	0,00375	
9,9	0,88	0,25	0,0075	6,8	0,7	0,25	0,00375	
11,5	1	0,75	0,0075	8	0,82	0,25	0,0075	
12,9	1,12	0,75	0,0075	9	0,9	0,25	0,0075	
14,5	1,26	0,75	0,0075	10,9	1,06	0,75	0,0075	
15,5	1,36	0,75	0,0075	12	1,17	0,75	0,0075	
17	1,52	0,75	0,015	13	1,28	0,75	0,0075	
18	1,64	0,75	0,015	14	1,38	0,75	0,0075	
19	1,76	0,75	0,015	15	1,5	0,75	0,0075	
0,9	0,12	0,075	0,00375	16	1,64	0,75	0,015	
1,9	0,22	0,075	0,00375	17	1,78	0,75	0,015	
				18	1,94	0,75	0,015	
				18,5	2,12	0,75	0,015	
	$I_{\kappa ep} = 2$	200 мкА		$I_{\kappa ep}=220\mathrm{mkA}$				
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , мА	U, B	I, MA	Δ_U , B	Δ_I , мА	
1,1	0,2	0,075	0,00375	1,1	0,2	0,075	0,00375	
1,9	0,26	0,075	0,00375	2,4	0,36	0,075	0,00375	
2,9	0,36	0,075	0,00375	3	0,44	0,075	0,00375	
4	0,5	0,25	0,00375	4	0,56	0,25	0,00375	
5	0,6	0,25	0,00375	5,2	0,7	0,25	0,00375	
6	0,72	0,25	0,00375	6,1	0,8	0,25	0,0075	
7,1	0,82	0,25	0,0075	7,2	0,92	0,25	0,0075	
8	0,9	0,25	0,0075	8,5	1,02	0,25	0,0075	
9	0,98	0,25	0,0075	9,2	1,12	0,25	0,0075	
10	1,1	0,25	0,0075	10,1	1,22	0,75	0,0075	
11	1,2	0,75	0,0075	11,1	1,34	0,75	0,0075	
11,9	1,28	0,75	0,0075	12	1,44	0,75	0,0075	
13	1,4	0,75	0,0075	12,9	1,54	0,75	0,015	
14	1,52	0,75	0,015	14	1,74	0,75	0,015	
15	1,66	0,75	0,015	15	1,96	0,75	0,015	
16	1,86	0,75	0,015	15,2	2,04	0,75	0,015	
16,9	2,1	0,75	0,015					
$I_{\kappa ep}=240~\mathrm{MKA}$					$I_{\kappa ep}=20$	60 мкA		
U, B	I, MA	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	

1,5	0,28	0,075	0,00375	1	0,14	0,025	0,00375
2,4	0,4	0,075	0,00375	1,9	0,14	0,075	0,00375
4	0,58	0,25	0,00375	3	0,18	0,075	0,00375
5,2	0,7	0,25	0,00375	4	0,38	0,25	0,00375
6	0,86	0,25	0,0075	5,2	0,62	0,25	0,00375
8,1	1,1	0,25	0,0075	6,5	0,94	0,25	0,0075
10	1,3	0,25	0,0075	7,5	1,06	0,25	0,0075
10,8	1,4	0,75	0,0075	8,9	1,2	0,25	0,0075
12	1,42	0,75	0,0075	10	1,36	0,25	0,0075
	,	•	,	11	1,52	0,75	0,015
				12,8	1,98	0,75	0,015
	$I_{\kappa ep} = 2$	280 мкА			$I_{\kappa ep} = 30$	00 мкА	
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	U, B	I, MA	Δ_U , B	Δ_I , MA
0,9	0,22	0,025	0,00375	1	0,28	0,025	0,00375
1,9	0,4	0,075	0,00375	2	0,44	0,075	0,00375
3,2	0,6	0,25	0,00375	3	0,56	0,075	0,00375
4	0,68	0,25	0,00375	3,8	0,7	0,25	0,00375
5,1	0,86	0,25	0,0075	5,1	0,94	0,25	0,0075
6,1	1	0,25	0,0075	6	1,06	0,25	0,0075
7	1,1	0,25	0,0075	7	1,18	0,25	0,0075
8	1,22	0,25	0,0075	8	1,32	0,25	0,0075
9	1,32	0,25	0,0075	9	1,5	0,25	0,0075
10	1,48	0,25	0,0075	10	1,7	0,25	0,015
11	1,68	0,75	0,015	10,2	1,88	0,75	0,015
11,8	1,96	0,75	0,015				
	$I_{\kappa ep} = 3$	320 мкА	_	$I_{\kappa ep}=340\mathrm{mkA}$			
U, B	I, MA	Δ_U , B	Δ_I , MA	U, B	I, MA	Δ_U , B	Δ_I , MA
1	0,34	0,025	0,00375	0,8	0,28	0,025	0,00375
2	0,5	0,075	0,00375	1,3	0,4	0,075	0,00375
3	0,66	0,075	0,00375	2	0,52	0,075	0,00375
3,9	0,8	0,25	0,0075	2,4	0,6	0,075	0,00375
5	1	0,25	0,0075	2,8	0,66	0,075	0,00375
6	1,14	0,25	0,0075	3,1	0,72	0,25	0,00375
7	1,3	0,25	0,0075	3,6	0,8	0,25	0,0075
8	1,44	0,25	0,0075	4	0,86	0,25	0,0075
9	1,68	0,25	0,015	5,3	1,06	0,25	0,0075
9,2	1,84	0,25	0,015	6,6	1,24	0,25	0,0075
				7,1	1,32	0,25	0,0075
				7,6	1,4	0,25	0,0075
				8,2	1,56	0,25	0,015
				8,7	1,76	0,25	0,015
				8,8	1,88	0,25	0,015

	$I_{\kappa ep} = 3$	360 мкА			$I_{\kappa ep} = 38$	80 мкА	
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA
0,8	0,3	0,025	0,00375	0,6	0,3	0,025	0,00375
1,6	0,5	0,075	0,00375	1,2	0,46	0,075	0,00375
2,2	0,66	0,075	0,00375	1,7	0,58	0,075	0,00375
2,8	0,78	0,075	0,0075	2,4	0,74	0,075	0,00375
3,6	0,92	0,25	0,0075	2,9	0,84	0,075	0,0075
4,2	1,02	0,25	0,0075	3,4	0,94	0,25	0,0075
4,7	1,1	0,25	0,0075	4	1,06	0,25	0,0075
5,6	1,24	0,25	0,0075	4,6	1,16	0,25	0,0075
6,2	1,34	0,25	0,0075	5,1	1,28	0,25	0,0075
7	1,5	0,25	0,0075	5,6	1,4	0,25	0,0075
7,2	1,64	0,25	0,015	6	1,5	0,25	0,0075
7,4	1,84	0,25	0,015	6,3	1,76	0,25	0,015
	$I_{\kappa ep} = 4$	400 мкА			$I_{\kappa ep} = 42$	20 мкА	
U, B	I, MA	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA
0,4	0,26	0,025	0,00375	0,8	0,46	0,025	0,00375
0,9	0,46	0,025	0,00375	1,8	0,74	0,075	0,00375
1,5	0,6	0,075	0,00375	2,2	0,88	0,075	0,0075
1,9	0,72	0,075	0,00375	2,7	0,96	0,075	0,0075
2,4	0,84	0,075	0,0075	3,3	1,14	0,25	0,0075
3,1	1	0,25	0,0075	3,6	1,24	0,25	0,0075
3,8	1,16	0,25	0,0075	3,9	1,32	0,25	0,0075
4,4	1,3	0,25	0,0075	4,1	1,45	0,25	0,0075
5	1,46	0,25	0,0075	4,3	1,68	0,25	0,015
5,3	1,68	0,25	0,015				
	$I_{\kappa ep} = 4$	440 мкА			$I_{\kappa ep} = 40$	60 мкА	1
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA
0,6	0,38	0,025	0,00375	0,2	0,08	0,025	0,00375
1,6	0,8	0,075	0,0075	0,5	0,36	0,025	0,00375
2	0,9	0,075	0,0075	0,8	0,62	0,025	0,00375
2,3	1,02	0,075	0,0075	1,1	0,72	0,075	0,00375
2,8	1,2	0,075	0,0075	1,3	0,78	0,075	0,0075
3,4	1,42	0,25	0,0075	1,55	0,86	0,075	0,0075
3,5	1,64	0,25	0,015	1,71	0,92	0,075	0,0075
				1,9	0,98	0,075	0,0075
				2,3	1,12	0,075	0,0075
				2,5	1,2	0,075	0,0075
				2,75	1,36	0,075	0,0075

			2,9	1,5	0,075	0,0075
Ī			2,95	1,64	0,075	0,015

	$I_{\kappa ep} = 480 \text{ MKA}$				$I_{\kappa ep} = 50$	00 мкА	
U, B	I , MA	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA
0,5	0,32	0,025	0,00375	0,5	0,38	0,025	0,00375
0,7	0,66	0,025	0,00375	0,8	0,76	0,025	0,0075
1	0,78	0,025	0,0075	1,1	0,92	0,075	0,0075
1,3	0,9	0,075	0,0075	1,45	1,06	0,075	0,0075
1,55	0,98	0,075	0,0075	1,75	1,2	0,075	0,0075
1,9	1,12	0,075	0,0075	1,9	1,34	0,075	0,0075
2,25	1,36	0,075	0,0075	2	1,68	0,075	0,015
2,38	1,56	0,075	0,015				
2,4	1,62	0,075	0,015				
$I_{\kappa ep}=520$ мкА			$I_{\kappa ep}=540~\mathrm{MKA}$				
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA	U, B	I, MA	Δ_U , B	Δ_I , MA
0,1	0,3	0,025	0,00375	0,4	0,32	0,025	0,00375
0,4	0,5	0,025	0,00375	0,5	0,4	0,025	0,00375
0,55	0,72	0,025	0,00375	0,58	0,62	0,025	0,00375
0,8	0,9	0,025	0,0075	0,64	1,02	0,025	0,0075
1,1	1,08	0,075	0,0075	0,7	1,22	0,025	0,0075
1,25	1,18	0,075	0,0075	0,72	1,4	0,025	0,0075
1,4	1,3	0,075	0,0075	0,74	1,62	0,025	0,015
1,45	1,62	0,075	0,015				
	$I_{\kappa ep} = 5$	560 мкА		$I_{\kappa ep} = 580 \mathrm{mkA}$			
U, B	I , MA	Δ_U , B	Δ_I , MA	U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA
0,43	0,3	0,025	0,00375	0,52	0,5	0,025	0,00375
0,52	0,5	0,025	0,00375	0,59	0,82	0,025	0,0075
0,57	0,68	0,025	0,00375	0,64	1,24	0,025	0,0075
0,62	0,96	0,025	0,0075	0,66	1,68	0,025	0,015
0,65	1,16	0,025	0,0075				
0,68	1,64	0,025	0,015				

	Зворотна гілка					
$I_{\kappa ep} = 0 \text{ MKA}$						
U, B	<i>I</i> , мА	Δ_U , B	Δ_I , MA			
0,5	0,04	0,025	0,015			
1	0,1	0,025	0,015			
1,5	0,14	0,075	0,015			
2	0,22	0,075	0,015			
2,5	0,32	0,075	0,015			
4	0,78	0,25	0,015			
5	1,2	0,25	0,015			
5,2	1,46	0,25	0,015			
5,6	1,66	0,25	0,015			
6	1,86	0,25	0,015			
6,5	2,2	0,25	0,015			
7	2,56	0,25	0,015			
7,5	2,78	0,25	0,015			
8,2	3,25	0,25	0,038			
9	3,8	0,25	0,038			
9,5	4,1	0,25	0,038			
12	6,2	0,75	0,038			
13	7	0,75	0,038			
15	8,6	0,75	0,075			
17,5	11,6	0,75	0,075			