Universidad de Buenos Aires Facultad de Ingeniería

75.29 Teoría de Algoritmos

Trabajo Práctico 3

Integrantes

- Arjovsky, Tomás
- Gavrilov, Seva
- Pereira, Fernando
- Pérez Dittler, Ezequiel

$\mathbf{\acute{I}ndice}$

1.	Clas	ses de	Complejidad	2
2.	Algo	oritmo	s de Aproximación	3
	2.1.	El pro	blema de la mochila (versión 0-1)	3
		2.1.1.	Solución desarrollada y sus características	3
		2.1.2.	Tiempos de ejecución	5
	2.2.	El pro	blema del viajante de comercio	7
		2.2.1.	Desigualdad triangular	7
		2.2.2.	Algoritmo de aproximación	7
		2.2.3.	Tiempos de ejecución y resultados	8
Re	eferei	ncias		11

1. Clases de Complejidad

2. Algoritmos de Aproximación

2.1. El problema de la mochila (versión 0-1)

2.1.1. Solución desarrollada y sus características

En el trabajo práctico anterior se desarrolló un algoritmo que resolvía este problema cuya complejidad era O(n*W). Este tipo de algoritmos es, se dice, pseudo - polinomial, ya que no solo depende del parámetro n sino también de W. Esto implica que a valores relativamente bajos de W, se mantenía polinomial, mas no así cuando W crecía mucho.

Ahora bien, podemos desligarnos del valor de la capacidad de la mochila (W) para construir un algoritmo que corra en tiempo polinomial, y devuelva un resultado que se aproxime a la solución óptima. Para esto, volvemos a usar la programación dinámica, construyendo un algoritmo que permitirá pasar de un orden de complejidad de O(n*W) a $O(n^2*v^*)$ (siendo v^* el máximo valor de entre los asignados a los elementos de entrada). Este orden de complejidad también es pseudo-polinomial, pero ya no depende de la capacidad de la mochila, sino del valor asignado a los elementos. En otras palabras, la capacidad puede ser tan grande como se desee, que no afectará al tiempo de ejecución de nuestro algoritmo solución. El algoritmo se definirá en una sección posterior.

A su vez, si se les asigna valores enteros pequeños a los elementos, el problema puede resolverse en tiempo polinomial, y, cuando los v_i son altos, la ventaja que ofrece este algoritmo es que no tenemos que lidiar específicamente con estos v_i altos, sino que podemos alterarlos ligeramente para que se mantengan pequeños (en base a un factor que veremos a continuación) y obtener una solución que se aproxime a la óptima.

Si detectamos que los valores v_i son muy altos, logramos la aproximación deseada normalizando dichos valores en base a un factor b determinado y utilizándo estos nuevos valores más pequeños en el desarrollo del algoritmo. A saber, definiendo

$$\tilde{v_i} = \lceil v_i/b \rceil \cdot b$$

, y aprovechando que absolutamente todos los valores dependen ahora del factor b, podremos quedarnos simplemente con el valor escalado

$$\hat{v_i} = \lceil v_i/b \rceil$$

.

Eligiendo un b acorde, sabemos que la resolución del problema tanto con los valores normalizados como con los coeficientes escalados, tienen el mismo set de soluciones óptimas, con los valores óptimos difiriendo solamente por un factor b esta diferencia es lo que llamamos aproximación.

Más específicamente, si S es la solución aproximada, y \hat{S} es la solución óptima exacta, obtenemos:

$$(1+\epsilon)\sum_{i\in S} v_i \ge \sum_{i\in \hat{S}} v_i$$

siendo ϵ un factor de precisión que se utilizará para determinar el factor de escala b, el cual detallamos a continuación.

2.1.1.1. Factor de normalización b

Debemos elegir un b acorde, que permita empequeñecer lo suficiente el valor de los elementos de entrada para que el algoritmo corra en tiempo polinomial. Para ello podemos tomar algo que dependa del máximo de estos v_i y de la cantidad de elementos total de entrada. Además, podemos tener en cuenta la precisión de la aproximación a utilizar, tomando como entrada un paramétro ϵ que defina que tan lejos de la solución óptima nos podemos encontrar. Esto implica, por supuesto, que mientras más pequeño sea ϵ , entonces más precisión debemos lograr, y, por ende, el tiempo de ejecución de nuestro algoritmo será mayor.

Tomando esto en cuenta, definimos $b = (\epsilon/n) \cdot max_i v_i$

2.1.1.2. Nuevo algoritmo

Para este nuevo algoritmo también se utilizará la programación dinámica. Como vimos anteriormente, un problema que dependa de la capacidad de la mochila, siendo ésta muy grande, genera un set de subproblemas enorme, por lo tanto, y sumado al manejo de valores que describimos anteriormente (el hecho de que podemos modificarlos para hacerlos más pequeños y trabajar con ellos), nos da la pauta de que deberíamos manejar un set de subproblemas que dependa de los valores asignados a los elementos y no de la capacidad remanente de la mochila.

Por ende, nuestro valor óptimo ahora dependerá de nuestra cantidad de elementos i, y de un valor V ($\overline{opt}(n,V)$), y dará como resultado la capacidad de mochila W más pequeña que se necesita para poder obtener el valor V. Tendremos subproblemas para toda nuestra cantidad de elementos $i=0\dots n$ y todos los valores hasta llegar a la suma total de los mismos $V=0\dots\sum_i v_i$. Definiendo el máximo de los valores asignados como v^* , sabemos que $\sum_i v_i \leq nv^*$, por lo que nuestra matriz de subproblemas será, a lo sumo, de $n \times nv^*$, por ende, estamos hablando de un orden de complejidad $O(n^2v^*)$. Siendo que lo que guardamos en la matriz es el valor de W más pequeño para obtener el V particular, el problema queda solucionado al encontrar el valor de V máximo para el cual el valor óptimo w hallado sea menor o igual a la capacidad de la mochila original del problema W.

Con este orden de complejidad, manteniendo pequeño los valores asignados a los elementos como ya detallamos, podremos lograr un tiempo polinomial.

Los casos que se toman en cuenta para dividir en sub-problemas son los siguientes, siendo S la solución óptima final:

- \blacksquare Si $n \notin S \Rightarrow \overline{opt}(n, V) = \overline{opt}(n-1, V)$
- Si $n \in S \Rightarrow \overline{opt}(n, V) = w_n + \overline{opt}(n 1, max(0, V v_n))$

2.1.1.3. Algoritmo de aproximación final

Teniendo en cuenta todo lo detallado hasta aquí, el algoritmo de aproximación desarrollado consiste en construir todos los valores $\hat{v}_i = \lceil v_i/b \rceil$ siendo su factor escalado $b = (\epsilon/n) \cdot max_iv_i$, lo cual se logra en tiempo polinomial, y ejecutar el algoritmo de la sección anterior con estos nuevos valores \hat{v}_i de cada elemento.

Ahora bien, como el algoritmo a utilizar es de orden $O(n^2v^*)$, debemos determinar $v^* = max_i\hat{v}_i$ para obtener el orden de nuestra aproximación. Sabemos que el elemento de valor máximo en la instancia original del problema (v_j) también será el elemento de valor máximo en la instancia del problema escalada por b, por lo que $max_i\hat{v}_i = \hat{v}_j = \lceil v_j/b \rceil = n\epsilon^{-1} = v^*$. Reemplazando correspondientemente, el orden de complejidad de nuestro algoritmo de aproximación será $O(n^3\epsilon^{-1})$, por lo que es polinomico para todo valor de ϵ fijo mayor a 0.

2.1.2. Tiempos de ejecución

Como vimos en el análisis anterior, el tiempo de ejecución varía tanto con la cantidad de elementos como con la precisión que queremos darle a la aproximación. Podemos ver en el siguiente gráfico la diferencia de tiempos en base a la precisión:

Figura 1: n = 50, w_i creciendo

Podemos destacar que el tiempo de ejecución no aumenta en base a la capacidad de la mochila, lo cual es una de las principales diferencias con la solución que se encontró en el trabajo práctico anterior.

Además, vemos una gran diferencia entre los tiempos de ejecución dependiendo de la precisión. En efecto, esta diferencia de precisión trae aparejado una diferencia en los valores óptimos que se encuentran. La idea de trabajar con estos algoritmos será entonces ver cuánto podemos resignar de aproximación al valor óptimo para dar con un tiempo de ejecución acorde a lo deseado.

A continuación se presenta la diferencia de valores encontrados con estas dos precisiones y la comparación con el valor óptimo:

Problema	Valor Optimo	Solucion Aproximada con $e = 0.1$	Solucion Aproximada con $e = 0.5$
1	8373	8384 (+11)	8414 (+41)
2	5847	5850 (+3)	5882 (+35)
3	5962	5970 (+8)	6017 (+55)
4	4888	4893 (+5)	4925 (+37)
5	4889	4895 (+6)	4930 (+41)
6	8181	8194 (+13)	8233 (+52)
7	6033	6041 (+8)	6085 (+52)
8	6865	6874 (+9)	6911 (+46)
9	7082	7091 (+9)	7136 (+54)
10	7605	7612 (+7)	7641 (+36)
11	9533	9550 (+17)	9613 (+79)
12	7654	7662 (+8)	7717 (+63)
13	9577	9588 (+11)	9642 (+65)
14	11287	11299 (+12)	11377 (+90)

Cuadro 1: Diferencias entre valores optimos dependiendo de la precisión de la aproximación

Es notable la diferencia que existe entre los valores obtenidos por cada una de las soluciones. Es por esto que se acentúa la importancia de decidir entre proximidad al valor óptimo y tiempo de ejecución para este tipo de algoritmos. En base a esto podemos decir que mientras más pequeña sea la precisión elegida, más cerca de la solución exacta estará, por lo que la diferencia con el valor óptimo será menor, el tiempo de ejecución para encontrar estos nuevos valores se disparará (dejará de ser polinomial) y nos encontraríamos en un escenario mucho más parecido a la complejidad pseudo-polinomial que trabajamos en el trabajo anterior, debido a la relación del orden del problema con el parámetro ϵ .

2.2. El problema del viajante de comercio

El problema del viajante es de complejidad NP-completo cuya solución tiene un orden temporal de $O(n^22^n)$ y un orden espacial de $O(n2^n)$.

Dada la complejidad de algoritmo y las limitaciones físicas de las computadoras, es posible encontrar la solución al problema para un numero reducido de ciudades (alredededor de 20 ciudades).

Para ello se existen métodos que aproximan la solución, aplicando algunas condiciones que permitan tomar decisiones para encontrar el camino mínimo.

2.2.1. Desigualdad triangular

En muchas situaciones prácticas, la manera menos costosa de ir de u a w es ir directamente, sin pasos intermedios. Es decir, cortar una parada intermedia nunca aumenta el costo. Formalmente se dice que la función de costo c satisface la **desigualdad triangular** si para todo vértices u, v, $w \in V$ se cumple

$$c(u, w) \le c(u, v) + c(v, w)$$

La desigualdad triangular se satisface naturalmente en varias aplicaciones. Por ejemplo, si los vértices del gráfico son puntos en el plano y el coste de viajar entre dos vértices es la distancia euclidiana entre ellos, entonces se satisface la desigualdad triangular. (Cormen et al. 2009)

2.2.2. Algoritmo de aproximación

Aplicando la desigualdad triangular descripta anteriormente, se calcula un árbol recubridor mínimo cuyo peso da un límite inferior del costo de un tour óptimo del viajante de comercio. Luego, se utiliza el árbol recubridor mínimo para crear un recorrido cuyo costo no sea más del doble del peso mínimo del árbol recubridor, siempre y cuando se satisfaga la desigualdad triangular. (Cormen et al. 2009)

Un pseudocódigo para calcular en forma aproximada el ciclo hamiltoniano mínimo es el siguiente:

```
función TSP (G)
  T = árbol recubridor mínimo de G
  raiz = raíz del recorrido (origen)
  camino = visitar los nodos de T comenzando por la raíz
  retornar camino
```

El algoritmo para encontrar el árbol recubridor mínimo puede ser el de Prim o Kruskal. Se implementó el algoritmo de Kruskal.

El algoritmo de Kruskal se puede describir de la siguiente manera

```
función kruskal(G):
   para cada vértice v de G.V:
      crear un conjunto que contenga a v

E = aristas de G ordenadas por peso creciente
```

```
T = árbol T vacío

para cada arista e de E:
    si C(e.origen) != C(e.destino):
        agregar la arista e al árbol T
        unir los conjuntos C(e.origen) y C(e.destino)

retornar T
```

Para operar los conjuntos se utilizó una estructura de conjuntos disjuntos que posee los siguientes métodos:

Buscar Busca el conjunto al que pertenece un vértice dado. Si el vértice no se encuentra en ningún conjunto, crea uno para ese elemento.

Unir Une los conjuntos de dos vértices dados.

Se implementó la estructura que posee dos heurísticas. La primera, uniones por ranking, es decir, unir el conjunto pequeño al conjunto más grande. La segunda, compresión del camino, consiste en "aplanar" el árbol en una operación de búsqueda, haciendo que los nodos visitados apunten directamente a la raíz del conjunto. Esto hace más eficiente búsquedas futuras, la operación más recurrente. Las operaciones de ${\tt Buscar}$ y ${\tt Unir}$ tienen un costo de ${\tt log}(n)$ siendo n la cantidad de vértices almacenados en la estructura. (Cormen et al. 2009, chap. 21)

El algoritmo de Kruskal recorre todas las aristas y para cada una de ellas opera con la estructura de datos realizando 2 búsquedas (una por cada vértice que une la arista) y posiblemente una unión de conjuntos. Por lo tanto, el orden temporal del algoritmo es $O(m \log n)$ siendo m la cantidad de aristas y n la cantidad de vértices.

Una vez obtenido el árbol, se realiza un recorrido en profundidad desde el vértice de origen. Este tipo de recorrido tiene una complejidad temporal de O(m+n) y una complejidad espacial de O(n) donde m es la cantidad de aristas y n la cantidad de vértices del grafo.

Por lo tanto, la complejidad temporal del algoritmo es $O(m \log n)$, lo cual es una gran mejora respecto de la complejidad $O(n^2 2^n)$ de solución óptima. Con respecto a la complejidad espacial, el orden de la aproximación de O(n) también es una gran mejora con respecto a la complejidad $O(n2^n)$ de la solución óptima.

Sin embargo, la solución aproximada sólo tiene utilidad si los datos de los grafos satisfacen la desigualdad triangular, donde el costo de la ruta no debería superar al doble de la solución óptima.

2.2.3. Tiempos de ejecución y resultados

Los datos utilizados para 15, 17 y 21 ciudades son los recopilados por John Burkardt, de los cuales varios provienen de TSPLIB95. El resto de los datos fueron generados aleatoriamente y se pueden encontrar en el repositorio con el prefijo ex. Los datos generados aleatoriamente son los mismos del TP N° 2, pero como el algoritmo de aproximación sólo funciona para grafos simétricos unidireccionales, se toma el triángulo inferior de la matriz.

En la Figura 2 se puede visualizar el tiempo de ejecución para 4 ciudades en adelante. Se muestran los valores hasta el conjunto de 10 ciudades. Para más ciudades, el tiempo insumido por el algoritmo de aproximación es prácticamente depreciable comparado con los del algoritmo Bellman–Held–Karp.

Figura 2: Comparativa del tiempo de ejecución del problema del viajante

En el Cuadro 2 se realiza una comparación del costo del tour del viajante obtenido.

Ciudades	Bellman–Held–Karp	Aproximación	Incremento [%]	Azar
4	26	31	19	Si
6	25	38	52	Si
8	39	39	0	Si
10	144	145	0,69	Si
11	200	325	63	Si
12	118	165	40	Si
13	210	235	12	Si
14	171	429	151	Si
15	291	366	26	No
16	165	271	64	Si
17	2085	2352	13	No
18	371	1144	208	Si
19	819	1945	137	Si
20	694	1817	162	Si
21	2707	3803	40	No

Cuadro 2: Espacio utilizado por el problema del viajante

Utilizando un algoritmo de aproximación el costo se incrementa, en promedio, un 65 %. En 4 casos el valor aproximado supera al doble del mínimo. Sin embargo, una consideración a tener en cuenta es que los datos generados aleatoriamente no se corresponden a ninguna distribución de ciudades, por lo que no necesariamente cumple la **desigualdad triangular**.

Los datos que no son generados al azar y que pueden corresponder con ciudades reales son:

15 ciudades Ejemplo de John Burkardt

- 17 ciudades Conjunto de ciudades de Alemania (Martín Gröetschel)
- 21 ciudades Conjunto de ciudades de Alemania (Martín Gröetschel)

Para esos 3 casos, el incremento del costo es de $26\,\%$, por lo que el resultado es mejor cuando tienen relación con datos reales.

Referencias

Cormen, Thomas, Charles Leiserson, Ronald Rivest, and Clifford Stein. 2009. *Introduction to Algorithms*. Third edition. MIT Press.