Chemistry 123: Exam 2A

The 60 pts exam consists of 5 questions and students have the whole class period to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1 : Molarity - Acid/Base Reaction Titration is a technique used to determine an unknown of a solution. (12 pts)

- (a) To begin the experiment, 5 mL of 12.00 M NaOH stock solution is diluted to 240 mL. What is the new concentration?
- (b) Given the NaOH(aq) concentration from part a), NaOH(aq) is used to titrate acetic acid (CH₃COOH) by the chemical equation

$$NaOH(aq) + HCN(aq) \rightarrow H_2O(l) + NaCN(aq)$$

Determine what volume of NaOH(aq) solution is needed to react with 0.350g HCN.

(c) Using the NaOH(aq) concentration from part a), you titrate 0.290 g of unknown monoprotic acid, which only releases one hydrogen ion ($\rm H^+$). To completely react all the acid, you used 25.20 mL of NaOH(aq) solution. What is the molar mass of the uknown acid? Hint: Recall the units for molar mass (g/mol).

Problem 2 : Thermal Equilibrium (12 pts)

(a) True/False. If two objects are in contact and reach thermal equilibrium, there is no flow of heat between the two objects.
(b) 450.0g of Fe metal block is heated to 350.0°C and then, dropped into 1,000.g of water at 0°C. The specific heats of water and Fe are 4.184 J/(g °C) and 0.451 J/(g °C), respectively. Determine the final temperature at which the Al and water are in thermal equilibrium. Report to 4 significant figures.
(c) Describe using illustrations and/or equations to show how thermal equilibrium is achieved. Include the initial and final states of the Fe and water.

Problem 3: Hess's Law Given the overall reaction: (12 pts)

$$3 \operatorname{Fe_2O_3(s)} + \operatorname{CO(g)} \rightarrow 2 \operatorname{Fe_3O_4(s)} + \operatorname{CO_2(g)}$$

Given the following data:

$$\mathrm{Fe_2O_3(s)} + 3~\mathrm{CO(g)} \rightarrow 2~\mathrm{Fe(s)} + 3\mathrm{CO_2(g)}~\Delta H = -23.44~\mathrm{kJ/mol}$$

$$\text{Fe}_3\text{O}_4 + \text{CO}(g) \rightarrow 3 \text{ FeO}(s) + \text{CO}_2(g) \Delta H = +21.79 \text{ kJ/mol}$$

$$Fe(s) + CO_2(g) \rightarrow FeO(s) + CO(g) \Delta H = -10.94 \text{ kJ/mol}$$

(a) Determine the enthalpy for the overall reaction :

$$3 \operatorname{Fe_2O_3(s)} + \operatorname{CO(g)} \to 2 \operatorname{Fe_3O_4(s)} + \operatorname{CO_2(g)}$$

- (b) Is the overall reaction exothermic or endothermic?
- (c) Given your answer in part (b), sketch the energy diagram for the overall reaction. Include in your diagram the relative energies of the reactants (Fe₂O₃, CO) and products (Fe₃O₄, CO₂), activation energy (E_A) , and energy difference (ΔE) .

Problem 4: Charles' Law Given a fixed amount of gas at constant pressure. Answer the following questions. (12 pts) (a) Starting from the ideal gas law PV = nRT. Show how you can arrive at Charles' law. Include all steps to receive full credit. (b) If a sample of chlorine gas occupies 100.0mL at 100.°C, what is its volume at 25.0°C? (c) Calculate the temperature (in Celsius) when 3.00L at 21.0°C is compressed to 1.00L. (d) Draw the graph of the relationship between volume (V) and temperature (T) for an ideal gas. Describe the relationship.

Problem 5: Limiting Reagent In a precipitation reaction, lead Chloride (PbCl₂) is produced by mixing NaCl(aq) and Pb(NO₃)₂(aq). The following is the balanced chemical equation. (12 pts) 2 NaCl(aq) + Pb(NO₃)₂(aq) → 2 NaNO₃(aq) + PbCl₂(s)
(a) Given 15.3 g NaCl(aq) and 60.8 g Pb(NO₃)₂, which one is the limiting reagent?

(b) What is the maximum amount of $PbCl_2(s)$ produced in g? This is also known as the theoretical yield.

(c) How much of the excess reagent in g is leftover?

(d) If 34.2 g of $PbCl_2(s)$ is collected, determine the percent yield.

Chemistry 123 : Apppendix 2 - Formulas and Constants

$$\begin{aligned} \text{percent yield} &= \frac{\text{Actual}}{\text{Theoretical}} \times 100\% \\ M_1V_1 &= M_2V_2 \\ P_1V_1 &= P_2V_2 \\ \frac{V_1}{T_1} &= \frac{V_2}{T_2} \\ \frac{V_1}{n_1} &= \frac{V_2}{n_2} \\ q &= mc\Delta T \end{aligned}$$

2 Helium 4.003	Neon 20.180	18 Ar Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	Rn Padon [222]	00 00 09anes son [294]		
	9 Fluorine 18.998	Chorine 35.45	35 Br Bromine 79.904	53 — lodine 126,904	At Astatine [210]	117 5 Ennes sine [293]		
	8 Oxygen 15.999	16 S uffur 32.06	Selenium 78.97	53 E Tellurium 127.60	84 PO Polonium [209]	116 LV Livermorium [293]		
				51 Sb Antimony 121.760			70 Yb xterbium 173.045	
	6 Carbon 12.011	28.085	32 Ge Germanium 72.630	50 Tm 118.710	82 Pb Lead 207.2	114 Flerovium [289]		
	5 Boron 10.81	13 A I Aluminum 26.982	31 Gallium 69.723	49	81 Thallium 204.38	Nhonium [286]		
			30 Zinc zinc 65.38	48 Cd Cadmium 112.414	81 Hg Mercury 200.592	Cn Coperacium [285]		
			29 Comper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]		
			28 Nickel 58.693	Pd Palladium 106.42	79 Platinum 195.084	DS Darmstackiun [281]	65 Tb Ferbium 158.925	97 Bk Berkelium [247]
			27 CO cobalt 58.933	45 Rh Rhodium 102:906	78	109 Meitnerium [278]		
			26 Feb	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 EU Europium 151.964	95 Am Americium [243]
			25 Mn Manganes e 54.938	43 E Fechnetium [97]	75 Re Rhenium 186.207	Bohrium [270]	62 Samarium 150.36	94 Plutonium [244]
				42 MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Nbinim Nobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Unanium 238.029
			22 ———————————————————————————————————	40 Z r zirconium 91.224	72 H4fnium 178.49	Rutherfordium [267]	59 Pr Praseodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967		58 Cerium 140.116	90 Th Thorium 232.038
					* 57 - 70	** 89 - 102	57 La Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Cakium 40.078	Strontium 87.62				
1 Hydrogen 1.008	3 Lithium 6.94	Na Sædium 22.990	19 K	Rubidium 85.468	55 Cestum 132.905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series