(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 April 2002 (18.04.2002)

PCT

(10) International Publication Number WO 02/31111 A2

(51) International Patent Classification7:

- (21) International Application Number: PCT/US01/27760
- (22) International Filing Date: 11 October 2001 (11.10.2001)
- (25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

09/687,527

12 October 2000 (12.10.2000) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

09/687,527 (CIP)

Filed on

12 October 2000 (12.10.2000)

- (71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TANG, Y. Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). ZHOU, Ping [US/US]; 7595 Newcastle Drive, Cupertino, CA 95014 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). ZHANG, Jie [CN/US]; 4930 Poplar Terrace, Campbell, CA 95008 (US). ZHAO, Qing, A. [CN/US]; 1556 Kooser Road, San Jose, CA 95118 (US). REN, Feiyan [US/US]; 7703 Oak Meadow Court, Cupertino, CA 95014 (US). XUE, Aidong, J. [CN/US]; 1621 S. Mary Avenue, Sunnyvale, CA 94087 (US). YANG, Yonghong [CN/US]; 4230 Ranwick Court, San Jose, CA 95118

(US). WEHRMAN, Tom [US/US]; CCSR Mol Pharm 3210, 269 W. Campus Drive, Stanford, CA 94305 (US). DRMANAC, Radoje, T. [US/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

- (74) Agent: ELRIFI, Ivor, R., Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo PC, One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/311111 AZ

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

10

15

20

25

30

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize

one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

5

10

15

20

25

30

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-446. The polypeptides sequences are designated SEQ ID NO: 447-892. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-446 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-446. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-446 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-446. The sequence information can be a segment of any one of SEQ ID NO: 1-446 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-446.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

5

10

15

20

25

30

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-446 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-446 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-446; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-446; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-446. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-446; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 447-892; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a

nucleotide sequence set forth in SEQ ID NO: 1-446; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

5

10

15

20

25

30

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the

polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other

substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

25 4.1 **DEFINITIONS**

10

15

20.

30

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the

natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

5

10

15

20

25

30

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or

synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-446.

15

20

25

30

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular

Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-446. The sequence information can be a segment of any one of SEQ ID NO: 1-446 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-446. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

10

15

20

25

30

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3 x 25). The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

5

10

15

20

25

30

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by

comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

10

15

20

25

30

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells

chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include

an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers.

5

15

20

25

30

Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

5

10

15

20

25

30

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence

(e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

5

10

15

20

25

30

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1-446; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 447-892; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO: 447-892. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-446; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 447-892; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d)

a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 447-892. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

5

10

15

20

25

30

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1-446 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1-446 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO: 1-446 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least

about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

5

10

15

20

30

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1-446, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the invention are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-446, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-446 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-446, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

5

10

15

20

25

30

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., *DNA* 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith,

Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

5

10

15

20

25

30

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-446, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et

al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY).
Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a
polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-446 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-446 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

15

20

25

30

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

10

15

20

25

30

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced

or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE NUCLEIC ACIDS

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1-446, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO: 447-892 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO: 1-446 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-446), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

10

15

20

25

30

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v). 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or

genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

15

20

25

30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO: 1-446). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is

complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-446 (see, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, polynucleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; o and Maher (1992) Bioassays 14: 807-15.

10

15

20

25

30

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

25

· 30

5

10

15

20

4.5 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

10

15

20

25

30

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition,

Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

5

10

15

20

25

30

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the

control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic. engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No.

PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

5 4.6 POLYPEPTIDES OF THE INVENTION

10

15

20

25

30.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 447-892 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 1-446 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEO ID NO: 1-446 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEO ID NO: 447-892 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 447-892 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 447-892.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide

sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

5

10

15

20

25

30

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic

sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

5

10

15

20

25

30

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 447-892.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

5

10

15

20

25

30

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl

5

10

15

20

25

30

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

ether, or propyl ether; or immunoaffinity chromatography.

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes,

dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the 10 sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic 15 Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference), the GeneAtlas software (Molecular Simulations 20 Inc. (MSI), San Diego, CA) (Sanchez and Sali (1998) Proc. Natl. Acad. Sci., 95, 13597-13602; Kitson DH et al, (2000) "Remote homology detection using structural modeling - an evaluation" Submitted; Fischer and Eisenberg (1996) Protein Sci. 5, 947-955), Neural Network Signal V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark), and the Kyte-Doolittle hydrophobocity prediction 25 algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

5

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a

fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

5

10

15

20

25

30

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction in vivo. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, e,g., cancer as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs

between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

10

15

20

25 .

30

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

5

15

20

25

30

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

25

30

5

10

15

20

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals,

can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

5

10

15

20

25

30

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the

polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

5

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

30

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

10

15

20

25

30

5

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

30

10

15

20

25

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent

stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

5

10

15

20

25

30

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells.

Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium.

Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for

generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

10

15

20

25

30

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds*. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and

cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation,

those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

20 4.10.6 TISSUE GROWTH ACTIVITY

5

10

15

25

30

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of

bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

20

25

30

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as

stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

30

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and

disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of

an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In

addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β2 microglobulin protein or an MHC class II alpha
5 chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

15

20

25

30

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation,

those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

10

15

20

25

30

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present

invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

5

10

15

20

25

30

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polypucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of

cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

15

10

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

25

20

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

30

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, color cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without

necessarily eradicating the cancer.

20

25

30

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl 10 (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), 15 Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-

97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide

to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules.

4.10.13 DRUG SCREENING

Examples of toxins include, but are not limited, to ricin.

5

10

15

20

25

30

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science* 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis

methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

20

25

30

10

15

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (*i.e.*, increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population

expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

5

10

15

20

25

30

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this

invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

5

10

15

20

25

30

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;

(iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;

- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
 - (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;

15

20

25

30

- (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or in vivo, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set

forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

10

15

20

25

30

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of

the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

5

10

15

20

25

30

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

5

10

15

20

25

30

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An

exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

15 4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

5

10

20

25

30

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2. G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming

growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

5

10

15

20

25

30

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the

present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

10

15

20

25

30

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated

from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

5

10

15

20

25

30

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or

other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

10

15

20

25

30

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene

glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

5

10

15

20

25

30

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable

polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

10

15

20

25

30

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with

inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

5

10

15

20

25

30

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not

increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

10

15

20

25

30

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole

weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

5

10

15

20

25

30

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by

periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

10

15

- 20

25

30

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic

indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

30

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be

prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

5

10

15

20

25

30

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 447-892, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for

targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

4.13.1 POLYCLONAL ANTIBODIES

10

15

20

25

30

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents.

Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

4.13.2 MONOCLONAL ANTIBODIES

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly

myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

10

15

20

25

30

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal. The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a nonimmunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

4.13.3 HUMANIZED ANTIBODIES

10

15

20

25

30

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the

imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

5

25

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al.(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature

Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's 5 endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human 10 DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human 15 immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the 20 antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in

30

culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

4.13.5 F_{ab} FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F_{(ab')2} fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an F_{(ab')2} fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

4.13.6 BISPECIFIC ANTIBODIES

5

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the

correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

5

10

15

20

25

30

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB

derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

5

10

15

20

25

30

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific

antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

4.13.7 HETEROCONJUGATE ANTIBODIES

5

Heteroconjugate antibodies are also within the scope of the present invention.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such

antibodies have, for example, been proposed to target immune system cells to unwanted cells

(U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO

92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by

forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

4.13.9 IMMUNOCONJUGATES

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

30

5

10

15

20

25

4.14 COMPUTER READABLE SEQUENCES

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media"

refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO: 1-446 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-446 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important

proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

5

10

15

20

25

30

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more. amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

10 In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple 15 helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense -Olmno, J. Neurochem: 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been 20 demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

25

30

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with

nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

5

10

15

20

25

30

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the

following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

5

10

15

20

25

30

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-446, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

(a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and

(b) determining whether the agent binds to said protein or said nucleic acid. In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and

detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

5

10

15

20

25

30

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein

encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

10

15

20

25

30

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the

ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO: 1-446. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from any of the nucleotide sequences SEQ ID NO: 1-446 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

5

10

15

20

25

30

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound

to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

10

15

20

25

30

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/μl) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 μl/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 µl added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support.

Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may

also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

15, 4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The

results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, CviII, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

5

10

15

20

25

30

The restriction endonuclease CviII normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (CviII**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviII** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviII** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 µg instead of 2-5 µg); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type

of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5. EXAMPLES

30 5.1 EXAMPLE 1

5

10

15

20

25

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences

5.2 EXAMPLE 2

5

10

15

20

25

Assemblage of Novel Nucleic Acids

The nucleic acids of the present invention, designated as SEQ ID NO: 1-446 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST, gb pri, UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTXY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and gc-zip-2 (Hyseq, Inc.). The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-446. The corresponding polypeptide sequences are SEQ ID NO: 447-892.

Table 1 shows the various tissue sources of SEQ ID NO: 1-446.

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-446 (i.e. SEQ ID NO: 447-892) were obtained by a BLASTP (version 2.0al 19MP-WashU) search against Genpept, Geneseq and SwissProt databases using BLAST algorithm. The nearest neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1-446. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologues with identifiable functions for SEQ ID NO: 1-446 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-446 (i.e. SEQ ID NO: 447-892) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

10

15

20

25

30

Using the Pfam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-446 (i.e. SEQ ID NO: 447-892) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAtlas[™] software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models for the polypeptides encoded by SEQ ID NO: 1-446 (i.e. SEQ ID NO: 447-892). Models were generated by (1) PSI-BLAST which is a multiple alignment sequence profile-based searching developed by Altschul et al, (Nucl. Acids. Res. 25, 3389-3408 (1997)), (2) High Throughput Modeling (HTM) (Molecular Simulations Inc. (MSI) San Diego, CA,) which is an automated sequence and structure searching procedure (http://www.msi.com/), and (3) SeqFold[™] which is a fold recognition method described by Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)). This analysis was carried out, in part, by comparing the polypeptides of the invention with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures as templates. Table 5 shows, "PDB ID", the Protein DataBase (PDB) identifier given to template structure; "Chain ID", identifier of the subcomponent of the PDB template structure; "Compound Information", information of the PDB template structure and/or its subcomponents; "PDB Function Annotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of

the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas[™] software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA, 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for proteins with different lengths so that a unified cutoff can be used to select good models as follows:

10 Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

15

20

25

30

The PFM score, produced by GeneAtlas™ software (MSI), is a composite scoring function that depends in part on the compactness of the model, sequence identity in the alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in Table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good model. A SeqFold™ score of more than 50 is considered significant. A good model may also be determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al, as reference, were obtained for the polypeptide sequences. Table 6 shows the position of the last amino acid of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

Table 7 correlates each of SEQ ID NO: 1-446 to a specific chromosomal location.

Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-446, and their corresponding priority nucleotide sequences in the priority application USSN 09/687,527, herein incorporated by reference in its entirety.

TABLE 1

		r 	270 77 10
Tissue	RNA/Tissue	Library	SEQ ID NO:
Origin	Source	Name	
adult brain	GIBCO	AB3001	31 35-36 52-53 57-59 63-64 69 73-74 86-87 102 109 138
			140 148 151 153 163 177 179 194 235 240 250 276
adult brain	GIBCO	ABD003	2 6-8 10 13 20-22 35-36 38-39 43 45 51-54 58 60 64 68-
			69 73-74 76 86-87 90 93-94 97 100 109 117 120-123
			127-128 131 137-138 140 145 148-149 151 155 159 163-
į			164 166-167 170 172 174 179 181 187 189 196 199 207
}	Ì	i	209 211-212 232 238 245 259 262-263 267 269 276-277
			305 324 337 341 418
adult brain	Clontech	ABR001	34 40 93 97 130 155 160 190 276 307 341 436
adult brain	Clontech	ABR006	15 30 61 65 68 70 74 88 95 99 106 109 113 129 134 138
			148-149 151 154 160 179 190 200 207 210 219 228 231
•			240 248 250 267 275 284 315 317 335 355 373 401 415
			426-428
adult brain	Clontech	ABR008	1 3-5 8-10 22 26 28-29 33-34 37 42 46 51 55-56 58 62-
İ			63 65 67-69 72 81 84-85 90 93 97-99 112-114 119 121-
		1	122 126-127 129 132 134-135 137 143-144 149-151 153-
	j	ļ	156 160 162 172 174 182-183 187 190-191 194-196 202
			204-205 207 209-210 212 217 225-228 231 234 237-238
			241-243 245 254 259-260 262 268 270 272-274 276 278-
			279 282 290 293-294 299 302 304 306 311 315-316 324
		1	329 334 336 341-343 355 358-363 373-374 376-377 379
	ł	1	381-382 393 401-402 415 422 432 434-436
adult brain	Clontech	ABR011	52 155 160 315
adult brain	BioChain	ABR012	64 67 164 284
adult brain	BioChain	ABR013	356
adult brain	Invitrogen	ABR014	58 122 128 174 212 231 248 260
adult brain	Invitrogen	ABR015	6-7 58 63 72 80 122-123 269
adult brain	Invitrogen	ABR016	20-21 36 58 93 131 167 217 285
adult brain	Invitrogen	ABT004	13 33 36 58 63 75 93 95 99 102 107 120-121 123 127
addit brain	mvidogen	ABIOO	143 149 154-155 160 166 179 185 189 202 208 210 212
]		219 222 228 235 237-238 250 259 269 272-274 276 279-
			280 282 294 306 312-313 317-318 324-325 329 402 436
cultured	Stratagene	ADP001	34-37 55 60 67 80 86-87 106 109 158 179-180 222 242
preadipocytes	Sualagene	ADFOOL	270 280 414
adrenal gland	Clontech	ADR002	8 19-21 25 36 42 44-45 47 55 59 62 68 72-73 84 87-88
aurenai gianu	Cioniecii	ADROUZ	114 121 127 144 149 152 179 181 202 204 217 225 248
			263 292-293 321 357 415 433
adult heart	GIBCO	AHR001	6-9 15 19-21 30 33-36 39 43 45 49-51 53-55 57-59 61-64
aduit neart	GIBCO	Ankou	67-70 73 75 80 84 86-87 95 97-98 100 103-104 109 112
			114-115 117-118 125-126 128 131 134 136-137 139-140
			145-146 149-152 158 162-163 174-175 177-179 181
			184-186 193 196 200 202 205 207-210 213-220 228 241
			243 245 248-249 255 263 269 276 278-279 287 289 291
	07700	1777001	296-297 299 302 305 308 330-332 382 393 402 425 432
adult kidney	GIBCO	AKD001	6-8 10 12 15 20-22 25-26 28-30 33-34 36-37 39 43 45 48
			53-55 57-58 60 62-64 67-68 70-73 75-76 80-81 84 86-88
	1		90 94-97 102-104 107 109 112 114-116 118 120-124
			126-129 131 134 140 145 147 149 151-153 158 160-165
		}	174-179 181-182 187-190 194-196 198 202 206 210-212
	Į.	}	217-231 234-236 238 240 245-247 250-254 262-263 267
	 	L	269-271 284 300 341 417 432
adult kidney	Invitrogen	AKT002	3-4 6-9 13 23 28-29 34 36 61-63 68 70 76 95 97-99 115
1	1	l	120-121 124 127-128 135 156-157 161 163 172 177 182
L	<u> </u>	<u> </u>	189 200 212 219 225 228 233 243-244 248 254-255 266

Tissue	RNA/Tissue	Library	SEQ ID NO:
Origin	Source	Name	
	077.00		271-274 281 303 316 321 323 334 347 400 417
adult lung	GIBCO	ALG001	6-8 34 40 53 58-59 64 67-68 73 76 109 112 118 129 134
	}		136-137 153 159 163-164 175 179 187 191 193-194 196
111-	Clontech	4737001	200 208 235-236 240 243 251 255 263 275 317
lymph node	Clontech	ALN001	37 39 56 62-63 67 99 104 149 152 163-164 174 196 217
young liver	GIBCO	ALV001	228 236 240 255 260 284 415 20-21 33 54-55 59-61 72 76 88 95 100 115 121 123 125
young nver	GIBCO	ALVUUI	127 137 141 149 158 170 172 179 186 194 196 200 209-
	1		210 221-222 226-227 240 244-245 251 256 258 263 269
			432
adult liver	Invitrogen	ALV002	30 36 39 51-52 69 75 84 88 119-121 123 127 145 185
addit 11,701	invita og on	11002	189 202 207 209-210 235 243 250 254 268-269 291 312
		1	325 342 352 409 432
adult liver	Clontech	ALV003	26 80
adult ovary	Invitrogen	AOV001	2-4 6-10 12 15 19-23 25-26 28-30 32-34 36-39 42-43 47
			51-54 56 59-65 67-68 71-73 75-76 78 84-88 90-94 97-98
	}		102-104 108-110 113-114 116-117 119-121 123-128 131
			136-142 145 149-150 152-153 155-156 159-164 172-176
l		l .	178-181 183-184 187-189 191 193-196 200-202 207 209
	•	ŀ	212-213 217 219-220 222 228 231-238 240-241 243-247
			250 253-255 257-259 262-263 265-267 269-270 272-274
			280 283-284 294 302 306-311 319-320 322 330 333 335-
			336 341 350 409 415 417 431 436
adult placenta	Invitrogen	APL001	43 59 77 181 209
placenta	Invitrogen	APL002	10 22 24 34 36 73 77 121 285 300
adult spleen	GIBCO	ASP001	6-7 10 12 16-17 20-23 30 35 48 51 55 59 62-64 67 72 76
			86-87 97 103-104 121 124 126 129 134 153 155 163-164
			180-181 187 194 196 202 206 210 212 220 228 236 262
			270 284 286-287 289 300 324 400 417
adult testis	GIBCO	ATS001	5 9 13 19-21 34 39 49-50 59 62 64 69 72 90 94-95 102
			115 117-118 127 139 141 145 149 151-153 163 174-175
bladder	Taniharan	DI DOOL	179 181 196 201 206-207 211 220 242 250 259 267 270
bone marrow	Invitrogen Clontech	BLD001 BMD001	38 42 51 67 73 93 95 98 107 127 135 166 181 268 316 2 6-7 9 11-12 19-21 23 33-34 36 38 43 45 47 52 59 61-62
boile marrow	Ciontech	PMD001	64 66 72-73 76 78 80 88 96 99-100 103-104 106 108
			111-112 119 121 125 127-128 130 134-135 138 141 145
	}	1	152-153 163-175 179 181 191 196 198-200 202-203 228
			233-234 236 257 261 263 275 288 356 415 431-432 434-
			435 437-438
bone marrow	Clontech	BMD002	8-10 20-25 27 36-37 39-40 45 51-54 56-57 60-61 65-66
			72 76 83-84 98 100 103-104 113 118-119 126 128 131-
		1	132 134 151 168-169 171-172 174 176 181 186 200 202-
		<u> </u>	203 215 228 241-245 248 261 263 265 269-270 278-279
			289 298-300 309 319 321 334-335 342 350 356 400 407
		L	429 433-438 440
bone marrow	Clontech	BMD004	40 64 279
adult colon	Invitrogen	CLN001	27 48 58 100 122 128 157 179 185 212 246-247 317 355
		<u> </u>	384
mixture of 16	various	CTL016	103-104 323
tissues/	vendors*		1
mRNA*s		L	
mixture of 16	various	CTL021	64 179 260 323 445
tissues/	vendors*	1	·
mRNA*s			
adult cervix	BioChain	CVX001	3-4 6-7 9-10 12-13 20-23 25-26 30 36-37 39-40 43 45 47
	L	<u> </u>	51 53-54 56 58-59 61 63-64 66-67 71-72 75-76 78 84 90-

Tissue	RNA/Tissue	Library	SEO ID NO:
_ Origin_	Source	Name	52Q 22 110.
	†		92 94 97 100 103-104 110 114 118-120 123 128 131 136
			138 140-141 149 153 157-158 163 170 174 179 181 184
			186 196 198-199 202 208 212 225 231 238 240 257 267
		Ì	270 285 288 295 301 305 311 335 338 340 356 364-365
			383 394 415 425
diaphragm	BioChain	DIA002	215
endothelial	Stratagene	EDT001	2 5-13 19-23 28-30 32-37 39 42-43 45 52-53 55-60 62-65
cells		1	68-69 73 76 80-81 84 86-88 91-92 94-96 98 103-104 106
	,		109-110 114-115 119-122 124 126-128 131-132 134-137
		l	139-141 153 161 163-165 167 170 172 175 177-180 182
:			185-187 190 193 196 198 202 206-207 211 216-219 222-
•	i		224 232 237-238 240 243-244 246-247 252 255 258 262-
			263 270 272-274 284 289-290 292 299 315 318 341 380
_			415 417-418
esophagus	BioChain	ESO002	64 196 279
fetal brain	Clontech	FBR001	55 85 395
fetal brain	Clontech	FBR004	91-92 199-200 316
fetal brain	Clontech	FBR006	5 12 14 28-29 31 33-34 37 43 46 58 61-63 65 68 73-74
		1	81 88 93 95 97 103-104 112 119-120 122-123 126-128
		1	132 136 144 147 149 156 159 164 166 172 174-175 191
			204 207 217 226-227 232 234 237-238 241-242 254 259-
			262 270 272-274 292-293 300 302 317 341-342 362 366-
			368 373-374 379 381 401-402 415 422 425-426 443-444
fetal brain	Clontech	FBRS03	112
fetal brain	Invitrogen	FBT002	5 10 22 31 33-34 42 52 55 58 64 66 73 75 84 98 107 109
	1		120 122-123 127 133-134 136 138 140 147 155-156 160
		1	166 180 185 190 196 209 238 254 260 270 294 313 317-
			318 324 326-329 334 341
fetal heart	Invitrogen	FHR001	64 67-69 86-87 90 202 206 213-215 217 225 245 272-
	 	<u> </u>	274 285 292-293 336 434-435 437-438
fetal kidney	Clontech	FKD001	30 57 62 64 88 163 171 198 200 238 261 437-438
fetal kidney	Clontech	FKD002	146 156 176 255
fetal kidney	Invitrogen	FKD007	122 316
fetal lung	Clontech	FLG001	37 78 90 112 269 354
fetal lung	Invitrogen	FLG003	5 12 48 51 69 104 120 128 137 177 194 202 212 216 250
C . 11	01 . 1	77 0004	256 295 318 322 365 385
fetal lung	Clontech	FLG004	63 76 126
fetal liver-	Columbia	FLS001	1-15 18-50 52-58 60-113 115 118-120 122-124 126-128
spleen	University		131-132 134 136 142 144-145 149 153 158-159 162-165
			168 172 176-187 189 191-194 196 200-206 209 216-217
			219-220 222 226-227 232 235 245-247 255 259 261 272-
			274 284 289-293 296-298 300 309 323 337 351 361 363
Cat-1 linear	C-11:-	T7 0000	375 394 400 406-407 410 415 419 431-432 436
fetal liver-	Columbia University	FLS002	5 9-12 15 20-26 28-31 34-35 38-41 44 47 49-50 53-55 64
spleen	University		67-69 71-75 78-79 81 85-89 91-92 95 98-99 103-104 106
			108-110 113 116-118 121 123-124 126 128 131 134 141-
		ļ	142 145 149 158 163-164 168 172 178-179 181-184 187
		1	189 191-192 198-199 201-202 204 206 209 216-217 219- 222 232 236 238 241 251 254 263 268 272-275 277 280
			286 289 300 303 308 320 322 336-337 341 350-351 369
			1
fetal liver-	Columbia	EI COO2	378-380 398 408-410 420-421 431-435
spleen	University	FLS003	1 12 36 61 74 78 88 111 125 174 221 291 378 433
fetal liver		F7 1/001	10 13 22 31 33 36 41 60 69 84 114 120-121 126 164 219
ICIAI IIVEI	Invitrogen	FLV001	221 238 269 312 315 323 418
fetal liver	Clontech	FLV002	261 313
Terat HACI	Cionicon	I LL V UUZ	201 313

Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
fetal liver	Clontech	FLV004	16-17 36 53 68 80 86-87 132 171 179 183 204 221 272- 274 292-293 336 369 400 409 432 437-438
fetal muscle	Invitrogen	FMS001	28-29 31 36 45 48 62 67 74 102 107 122 181 196 208 215 218 245 258 264 279-280 292 294 296-297 323-324 335 368 385-386 434-435
fetal muscle	Invitrogen	FMS002	5 23 38 51 61 85 90 102 108 151 174 183 187 189 204 210 212 219 260 278-280 292-293 309 341-342 359 362 373 436 441-442
fetal skin	Invitrogen	FSK001	8 11 23 30 36 45 48 51 53 58 60 64 67 70 73 81 84 86-87 90 95 100 102-104 106 114 116 118 121 127-128 132 134 143 148 157-159 168 172 174 178-179 181 183 185 189 194 205 207-208 235 238 241 243 246-247 250 258 264 268-271 280 285 288 294 299 308-309 316-317 338 352 354 387-389 395-396 402-405 434-435
fetal skin	Invitrogen	FSK002	8 31 39 67 79 86-87 90 97 118 168 174 181 203 207 216 219 222 226-227 229 248 251 269 299 319 341 373 388 396 415 422 432 434-435
fetal spleen	BioChain	FSP001	67 203 238
umbilical cord	BioChain	FUC001	15 20-21 33 36 38-39 51 54 59-60 63 67 71 73 76 79 90 97-98 103-104 109 117-118 120 128 134 137 140 149-152 159 164 172 181 189-190 192 194 196 213 225 228-229 238 241 263 266 280 282 289 305 323 331 344-345 368 372 406 427
fetal brain	GIBCO	HFB001	3-4 8-10 12 15 18-22 30-31 33-34 36 43 45 47 52 55 57-59 62-63 65 68-70 74 76 78 80 84 86-87 93-94 97-98 103-104 112 114-123 131-164 172 177-178 184-185 206 209 219 222 226-227 240 244-245 249 267 276 284 294-295 300 432
infant brain	Columbia University	IB2002	5 8-9 13 15-17 20-21 25-26 28-29 31 33 36 43 51-56 59 67-70 73 80 84 86-88 90 93 95 98 107 109-110 114 117-118 121 123-124 126-127 129 134-136 138 145 147-148 150-151 154-155 160 162 165-166 170 172 176 179 181-183 186-188 196 200 209 212 219 222 229 231-232 240 243 259-260 262-263 268-269 280 287 290 294 299 306 312-313 316 324 334 350 354 360 402 417 427 432
infant brain	Columbia University	IB2003	5 10-11 22 40 42 46 51-52 54 56 62 65 70 93 97-98 102 117 121 123 128 134-135 140 151 154 160 165 183 208 219 243 259 269 294 299 306 316-317 324 341 354 436
infant brain	Columbia University	IBM002	93 95 123 140 181
infant brain	Columbia University	IBS001	54 73 93 123 176 188 220 255-256 331
lung, fibroblast	Stratagene	LFB001	6-7 32 35 55 60 64 71 103-104 109-110 118 123 128 137 140 145 161 163 175 187 193 217 225 236 243 264 337 377 416
lung tumor	Invitrogen	LGT002	3-4 6-7 10-12 14-15 20-22 27 34 36 38-39 42 48 51-52 54-56 58-60 63 66 68-69 71 73 76 78 80 84 86-89 95 98 103-104 109 114 116-118 120 123-124 127-128 131 135 137 141 145 153 157 163 172 178-179 182 186-187 191-194 196 199 201 206 210 218-224 226-228 233 235-236 243 251 253 255 261 265 270-271 280 289-290 296-297 300 303 310 312 324 332 334-335 351 353 365 376 417 427 431
Lymphocytes	ATCC	LPC001	6-7 9 16-17 25 28-29 33 36 53 55 57 64 66 78 84 86-87 94-95 97 104 114 125 139 149 153 170 172 174 177 186 191 195 200 219 228 232-233 243 254 256 292-293 302

Tissue	RNA/Tissue	Library	SEQ ID NO:
Origin	Source	Name	
			310 342 345 378 398 400 411-413
Leukocyte	GIBCO	LUC001	6-8 12 16-17 19-21 23 25 28-30 33-34 36 38 40 42-43 45
,,,,			49-51 55-56 58-66 68 71 75-76 78 80 84 86-88 94-95 97-
			100 102-104 111-116 119-120 124-125 128-129 131
		1	138-139 141 145 147 149 152-153 158-159 161 163-164
	-	1	172 175-179 181-182 184-185 187 189 193-197 200 203
			206-207 209-211 216-217 219-220 222 233-245 250 255
			262-263 265-267 270 275 284 286 298 300 307 351 361
		1	397 415 431 436
Leukocyte	Clontech	LUC003	51 62 68 70 73 80 95 97 117 163 181 206 228 267 310
			415
melanoma	Clontech	MEL004	9 15 20-21 34 51-52 61 64 68 71 76 80-81 106 119 122
from cell line			124 163 172 186-187 196 223-224 226-227 258 262 291
ATCC #CRL	•		302 341 396 415
1424			
mammary	Invitrogen	MMG001	8 10 13 15 22 28-29 33-34 36-37 42 51-52 55 58 60 62-
gland			63 72-73 84-85 88 90 95 98 102 114 118-122 127 132
			134-135 137-138 140 143 145 149 151-152 165-166 168
		i	175 178-180 184-185 189 196 202 209-210 212 217 219
			222 235 238 244 246-247 250-251 257 268-269 271-274
]	290 295 299-304 319-320 324 330 334 337-339 341-342
			352 369 371 415
induced	Stratagene	NTD001	9 36 45 68 73 76 97 106 112 119 126 132 137-139 160
neuron cells	Ĭ	1	179 264 306 341 376 401
retinoic acid-	Stratagene	NTR001	36 118 134 221 261 401 418
induced			
neuronal cells			
neuronal cells	Stratagene	NTU001	33 36 46 68 72 81 91-92 98 102 112 160 182 190-191
		ļ	198 222 258 261 271 314 316 342 418 423
pituitary	Clontech	PIT004	20-21 36 55 65 68 137-138 148 162-163 170 196 341
gland		j	356 430
placenta	Clontech	PLA003	12 30 67 194 302 417 436
prostate	Clontech	PRT001	9-10 22-23 29 36 38 43 112 118 128 136-137 140 151
	•		163 177 185 189 209 233 250 255 268 282 335 346 354
			415 434-435
rectum	Invitrogen	REC001	27 42 60 69-70 98 103-104 123 149 165 172 235 251 302
			318 324 372 379 390 432
salivary gland	Clontech	SAL001	6-7 9 33 48 53 62 157 164 170 177 190 194 257 268 287
			312 322 365 391-392
skin fibroblast	ATCC	SFB001	63 112
skin fibroblast	ATCC	SFB003	112
small	Clontech	SIN001	9-10 12 22 30 33 36 40 45 52 55 72 78 84 90 95 114 117
intestine		}	119 123-124 127 129 134 136 149-151 163 176 181-182
	<u> </u>		193 196 206 232 236 251 287 318 324 334 350 432 439
skeletal	Clontech	SKM001	3-4 6-7 20-21 64 103-104 120 153 176-177 179 187 191
muscle		1	215 278-279 330 386
skeletal	Clontech	SKMS04	42
muscle	<u> </u>	 	·
spinal cord	Clontech	SPC001	9 12 33-34 36 38-39 45 53 56 58 61 64 66 78 86-87 90
		1	98 126 151 157-158 160 178-179 181 185 196 206 210
	Į.	ł	217 245 250 262 267 270 276 282 298 347 355 370 415
		<u> </u>	424
adult spleen	Clontech	SPLc01	25 125 136 138 168 171 176 275 416
stomach	Clontech	STO001	69 73 94 97 100 141 177 231 233 237 245 339 372 402
L 		 	415
thalamus	Clontech	THA002	58 72 78 93 127 133 138 160 184 190 259 269 282 415

Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
thymus	Clontech	THM001	6-7 9 12 16-17 19 33 42 59 61 64 76 78 91-92 104 139 153 158 161 163 168 172 174-175 177 179 189 198 202 222 231 237 239 243 272-274 299 321 332 356 394
thymus	Clontech	THMc02	6-7 9 12 14 16-17 19 28-29 37-38 47 51 53-54 62-63 73 83 88 91-92 109 113 126 133 151 156 158 163 171 176 179 181 185 190 194 198 200 206 219 226-228 231-232 234 239 242-243 259 261 265 272-274 290 309 356 373-374 397-399 434-435 437-438
thyroid gland	Clontech	THR001	3-4 6-7 9-10 12 20-22 25-26 30 36 39-40 42 47 53-54 59-60 62 64 68-69 71 76 85 88 94-95 98 104 106 108-109 113 116 118-121 124-126 131-132 137 153 158-159 163-164 168 170 174 180 189-191 194 196 199 202 207 209 211 217 221-222 232 236-238 240 244 248 250 254-255 257 259 269-271 280 298 302-303 310 320 326 337-338 347 356 371 377 415 417-419 436
trachea	Clontech	TRC001	6-7 36 59 78 127 152 190 240 251 257 270 272-274 281 299 301 348-349 351 365
uterus	Clontech	UTR001	3-4 59 118 123 137 177 217 219 244 270 306 311 316 340 357 372 431

* The 16 tissue/mRNAs and their vendor sources are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) Normal adult kidney mRNA (Invitrogen), 3) Normal fetal brain mRNA (Invitrogen), 4) Normal adult liver mRNA (Invitrogen), 5) Normal fetal kidney mRNA (Invitrogen), 6) Normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) Human bone marrow mRNA (Clontech), 10) Human leukemia lymphoblastic mRNA (Clontech), 11) Human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human so\spinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

TABLE 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
447	AAB87354	Homo sapiens	22-MAY-2001 31-AUG-2000 Human gene 13 encoded secreted protein HFVJP07, SEQ ID NO:95.	731	100
448	X97490	Mus musculus	PNG protein	739	96
449	AK001950	Homo sapiens	FLJ11088 fis, clone PLACE1005287, weakly similar to INNER CENTROMERE PROTEIN.	1157	100
450	AK001950	Homo sapiens	FLJ11088 fis, clone PLACE1005287, weakly similar to INNER CENTROMERE PROTEIN.	790	73
451	AB044385	Homo sapiens	mRNA for transmembrane molecule with thrombospondin module, complete cds.	4492	99
452	BC005361	Homo sapiens	proteasome (prosome, macropain) subunit, alpha type, 4, clone MGC:12467 IMAGE:3685931, mRNA, complete cds.	1334	100
453	BC005361	Homo sapiens	proteasome (prosome, macropain) subunit, alpha type, 4, clone MGC:12467 IMAGE:3685931, mRNA, complete cds.	1098	100
454	AK001930	Homo sapiens	FLJ11068 fis, clone PLACE1004918, weakly similar to L-LACTATE DEHYDROGENASE M CHAIN (EC 1.1.1.27).	1742	100
455	AF151042	Homo sapiens	HSPC208	740	100
456	AL365512	Homo sapiens	human gene mapping to chomosome 22.	2511	99
457	AF279307	Homo sapiens	function 1B (ASF1B) mRNA, complete cds.	1075	99
458	AF212243	Homo sapiens	mRNA, complete cds.	1104	100
459	AAY13360	Homo sapiens	25-JUN-1999 16-SEP-1998 Amino acid sequence of protein PRO269.	2350	100
460	AAB65692	Homo sapiens	27-MAR-2001 26-MAY-2000 Novel protein kinase, SEQ ID NO: 220.	2758	96
461	AK001061	Homo sapiens	FLJ10199 fis, clone HEMBA1004850.	1305	100
462	AF042380	Homo sapiens	adaptor protein (Grf40) mRNA, complete cds.	1785	100
463	AF042380	Homo sapiens	adaptor protein (Grf40) mRNA, complete cds.	809	100
464	AL137422	Homo sapiens	cDNA DKFZp761A1623 (from clone DKFZp761A1623); partial cds.	410	98
465	AF220193	Homo sapiens	hypothalamus protein HT007 mRNA, complete cds.	1039	100
466	AAB60505	Homo sapiens	24-APR-2001 21-JUL-2000 Human cell cycle and proliferation protein CCYPR-53, SEQ ID NO:53.	3419	100
467	AAB69556	Homo sapiens	27-APR-2001 10-MAR-2000 Human Repro-EN-1.0 protein.	3315	99
468	AL365512	Homo sapiens	human gene mapping to chomosome 22.	2294	99
469	AAB90821	Homo sapiens	15-JUN-2001 02-OCT-2000 Human shear stress-response protein SEQ ID NO: 150.	3011	99
470	AF195821	Homo sapiens	(TNG2) mRNA, complete cds.	562	100
471	AK000399	Homo sapiens	FLJ20392 fis, clone KAIA4653.	2281	99
472	AK001240	Homo sapiens	FLJ10378 fis, clone NT2RM2002004, weakly similar to LA PROTEIN HOMOLOG.	1654	100

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	<u> </u>			Identity
473	Y11339	Homo sapiens	for GalNAc alpha-2, 6-sialyltransferase I, long form.	3182	100
474	AAY90296	Homo sapiens	24-OCT-2000 11-JAN-2000 Human peptidase, HPEP-13 protein sequence.	936	100
475	AAY90296	Homo sapiens	24-OCT-2000 11-JAN-2000 Human peptidase, HPEP-13 protein sequence.	2087	99
476	AJ250193	Mus musculus	muscle protein 637	730	72
477	AK001706	Homo sapiens	FLJ10844 fis, clone NT2RP4001353.	959	100
478	AAB56847	Homo sapiens	13-MAR-2001 08-MAR-2000 Human prostate cancer antigen protein sequence SEQ ID NO:1425.	749	100
479	AB049952	Homo sapiens	mRNA for mitochondrial ribosomal protein S18a, complete cds.	1074	100
480	AK011757	Mus musculus	putative	589	100
481	BC012167	Homo sapiens	Similar to RIKEN cDNA 3110030K20 gene, clone MGC:20409 IMAGE:4637888, mRNA, complete cds.	899	99
482	AF038129	Ovis aries	polyubiquitin	771	100
483	AK012782	Mus musculus	putative	2562	92
484	AK001214	Homo sapiens	FLJ10352 fis, clone NT2RM2001152.	2770	100
485	AK021681	Homo sapiens	FLJ11619 fis, clone HEMBA1004131, moderately similar to SEPTIN 2 HOMOLOG.	2337	100
486	AJ252060	Homo sapiens	for TRABID protein (TRABID gene).	3796	100
487	AL137301	Homo sapiens	cDNA DKFZp434N1429 (from clone DKFZp434N1429); partial cds.	261	60
488	BC007588	Homo sapiens	Similar to RIKEN cDNA 2310012N15 gene, clone IMAGE:3342825, mRNA, partial cds.	1328	92
489	AB015335	Homo sapiens	mRNA, partial cds.	617	100
490	AAY66765	Homo sapiens	05-APR-2000 02-JUN-1999 Membrane- bound protein PRO1384.	1251	99
491	AC005154	Homo sapiens	clone RP4-777O23 from 7p14-p15, complete sequence.	994	100
492	AF155140	Homo sapiens	testicular RNA helicase mRNA, complete cds.	1902	99
493	AK001760	Homo sapiens	FLJ10898 fis, clone NT2RP5003492.	2575	99
494	BC007396	Homo sapiens	clone IMAGE:3834655, mRNA, partial cds.	1428	100
495	AK001374	Homo sapiens	FLJ10512 fis, clone NT2RP2000658.	2604	100
496	AK001374	Homo sapiens	FLJ10512 fis, clone NT2RP2000658.	1902	97
497	AK000507	Homo sapiens	FLJ20500 fis, clone KAT09159.	1189	100
498	AK000650	Homo sapiens	FLJ20643 fis, clone KAT02633.	1490	99
499	AK001766	Homo sapiens	FLJ10904 fis, clone OVARC1000013, weakly similar to APOPTOTIC PROTEASE ACTIVATING FACTOR 1.	2403	100
500	AF233224	Homo sapiens	protein FBS (FBS) mRNA, complete cds.	1698	100
501	BC005030	Homo sapiens	clone MGC:12628 IMAGE:3690254, mRNA, complete cds.	1853	100
502	AK001449	Homo sapiens	FLJ10587 fis, clone NT2RP2004042.	3440	100
503	AF326206	Homo sapiens	transcription factor mRNA, complete cds.	2149	99
504	AF220191	Homo sapiens	hypothalamus protein HSMNP1 mRNA, complete cds.	1099	100
505	AF155096	Homo sapiens	antigen mRNA, partial cds.	2008	98
506	BC008250	Homo sapiens	Similar to RIKEN cDNA 0610025L15	1332	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			gene, clone MGC:9282 IMAGE:3872059, mRNA, complete cds.		
507	AAY90287	Homo sapiens	24-OCT-2000 11-JAN-2000 Human peptidase, HPEP-4 protein sequence.	2514	100
508	BC000802	Homo sapiens	Similar to ribosomal protein S9, clone MGC:5482 IMAGE:3452221, mRNA, complete cds.	976	99
509	BC010011	Homo sapiens	Similar to RIKEN cDNA 4931428D14 gene, clone MGC:15407 IMAGE:4309613, mRNA, complete cds.	1691	97
510	AK010605	Mus musculus	putative	1023	99
511	AK020026	Mus musculus	putative	799	97
512	AB051853	Homo sapiens	gene for rho-GTPase activating protein, complete cds.	1119	100
513	J04695	Mus musculus	alpha-2 type IV collagen	4444	87
514	AL512733	Homo sapiens	cDNA DKFZp762P093 (from clone DKFZp762P093).	1380	100
515	AF284752	Homo sapiens	(GK004) mRNA, complete cds.	654	100
516	AK001055	Homo sapiens	FLJ10193 fis, clone HEMBA1004763.	767	100
518	AB037669	Homo sapiens	mRNA for L-type amino acid transporter 2, complete cds.	2790	100
519	AC007059	Homo sapiens	19, cosmid R26549, complete sequence.	4163	100
520	AF119863	Homo sapiens	PRO2160	483	100
521	AF151063	Homo sapiens	HSPC229	984	100
522	BC012123	Homo sapiens	golgi phosphoprotein 3, clone MGC:20187 IMAGE:4558305, mRNA, complete cds.	1528	100
523	BC002717	Homo sapiens	Similar to chorionic somatomammotropin hormone 1 (placental lactogen), clone MGC:3714 IMAGE:3631916, mRNA, complete cds.	1128	100
524	AAB36522	Homo sapiens	07-MAR-2001 13-APR-2000 Human CLASP related protein sequence SEQ ID NO:4.	3431	99
525	AAB08763	Homo sapiens	02-JAN-2001 29-FEB-2000 A human leukocyte and blood related protein (LBAP).	608	99
526	BC001810	Homo sapiens	enolase 1, (alpha), clone MGC:2414 IMAGE:2906988, mRNA, complete cds.	2206	99
527	AAY87267	Homo sapiens	11-MAY-2000 25-JUN-1999 Human signal peptide containing protein HSPP- 44 SEQ ID NO:44.	1790	100
528	AK002043	Homo sapiens	FLJ11181 fis, clone PLACE1007460.	682	100
529	AK001795	Homo sapiens	FLJ10933 fis, clone OVARC1000605.	891	100
530	AF182412	Homo sapiens	(MDS025) mRNA, complete cds.	1104	98
531	AF345564	Homo sapiens	FKSG76	1327	99
532	AK008759	Mus musculus	putative	1314	96
533	BC010543	Homo sapiens	clone MGC:17544 IMAGE:3462146, mRNA, complete cds.	1093	100
534	AK023510	Homo sapiens	FLJ13448 fis, clone PLACE1002993.	1257	100
535	AL110245	Homo sapiens	cDNA DKFZp434F011 (from clone DKFZp434F011); partial cds.	301	91
536	U04520	Homo sapiens	IV collagen alpha 5 chain (COL4A5) gene, exon 51 and complete cds, alternatively spliced.	3630	100
537	AK000516	Homo sapiens	FLJ20509 fis, clone KAT09623.	1088	100

SEQ ID	Accession	Species	Description	Score	%
NO:	No.		Description.	Score	Identity
538	AK000516	Homo sapiens	FLJ20509 fis, clone KAT09623.	788	100
539	AC004865	Homo sapiens	clone RP4-728D4, complete sequence.	3759	100
540	AF286162	Homo sapiens	4-phosphate Adaptor Protein-1 mRNA, complete cds.	1570	99
541	AL591714	Homo sapiens	human gene mapping to chomosome 20.	821	100
542	AX179297	Homo sapiens	21615 ADH	1243	100
543	AL136844	Homo sapiens	cDNA DKFZp434G1730 (from clone DKFZp434G1730); complete cds.	1583	100
544	AK001371	Homo sapiens	FLJ10509 fis, clone NT2RP2000617.	3677	100
545	AK000213	Homo sapiens	FLJ20206 fis, clone COLF1582.	2343	100
546	AK008020	Mus musculus	putative	1919	71
547	AF119870	Homo sapiens	PRO2266	616	100
548	AK000763	Homo sapiens	FLJ20756 fis, clone HEP01556.	3152	100
549	AK023550	Homo sapiens	FLJ13488 fis, clone PLACE1003915, weakly similar to PROBABLE ARGINYL-TRNA SYNTHETASE, CYTOPLASMIC (EC 6.1.1.19).	1215	99
550	AK023550	Homo sapiens	FLJ13488 fis, clone PLACE1003915, weakly similar to PROBABLE ARGINYL-TRNA SYNTHETASE, CYTOPLASMIC (EC 6.1.1.19).	2069	99
551	AC002126	Homo sapiens	from chromosome 19-cosmids R30102:R29350:R27740 containing MEF2B, genomic sequence, complete sequence.	449	100
552	BC012182	Homo sapiens	clone MGC:20469 IMAGE:4554554, mRNA, complete cds.	1582	99
553	AL136528	Homo sapiens	DNA sequence from clone RP5- 1092A11 on chromosome 1p36.2-36.33 Contains the gene for KIAA0495 protein, the TP73 (tumor protein p73) gene, a gene containing a WD repeat domain, ESTs, STSs, GSSs and CpG Islands, complete sequence.	271	100
554	AF334161	Homo sapiens	finger protein mRNA, complete cds.	1561	98
555	AJ277587	Homo sapiens	mRNA for Spir-1 protein (Spir-1 gene).	3012	99
556	AY014283	Homo sapiens	mRNA, complete cds.	1066	100
557	AF090938	Homo sapiens	HQ0628 PRO0628 mRNA, complete cds.	278	100
558	AF161511	Homo sapiens	HSPC162	480	100
559	AF039942	Homo sapiens	transcription factor Zhangfei (ZF) mRNA, complete cds.	1382	100
560	AF271782	Homo sapiens	mRNA, complete cds.	1280	100
561	AF107495	Homo sapiens	and putative FWP002 mRNA, complete cds.	783	100
562	AK015086	Mus musculus	putative	183	70
563	AL353936	Homo sapiens	cDNA DKFZp761K1423 (from clone DKFZp761K1423).	533	100
564	X87241	Homo sapiens	mRNA for hFat protein.	19971	99
565	BC004896	Homo sapiens	Similar to ribosomal protein, mitochondrial, L5, clone MGC:3400 IMAGE:3529006, mRNA, complete cds.	1494	100
. 566	AB062594	Bos taurus	putative	704	87
567	AL136683	Homo sapiens	cDNA DKFZp564D0478 (from clone DKFZp564D0478); complete cds.	1034	100
568	AAY87355	Homo sapiens	11-MAY-2000 25-JUN-1999 Human	952	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			signal peptide containing protein HSPP- 132 SEQ ID NO:132.	T	lucation
569	BC008967	Homo sapiens	clone IMAGE:3010666, mRNA, partial cds.	1024	100
570	AK022754	Homo sapiens	FLJ12692 fis, clone NT2RM4002623, weakly similar to ASPARTYL-TRNA SYNTHETASE (EC 6.1.1.12).	2425	99 ·
571	AF083106	Homo sapiens	type 1 (SIRT1) mRNA, complete cds.	3929	100
572	AK000017	Homo sapiens	FLJ20010 fis, clone ADKA03268.	611	100
573	AF308801	Homo sapiens	protein sorting protein 16 (VPS16) mRNA, complete cds.	2541	99
574	BC001686	Homo sapiens	methionine adenosyltransferase II, alpha, clone MGC:2907 IMAGE:3010820, mRNA, complete cds.	1315	98
575	AK000675	Homo sapiens	FLJ20668 fis, clone KAIA585.	1474	100
576	X68242	Homo sapiens	mRNA for Hin-1.	757	100
577	BC001245	Homo sapiens	Similar to uncharacterized bone marrow protein BM036, clone MGC:4957 IMAGE:3460193, mRNA, complete cds.	1504	99
578	BC009782	Homo sapiens	hypothetical protein dJ122O8.2, clone MGC:13493 IMAGE:4092710, mRNA, complete cds.	432	98
579	AL133109	Homo sapiens	cDNA DKFZp566N1047 (from clone DKFZp566N1047); partial cds.	3416	99
580	AF161494	Homo sapiens	HSPC145	1562	100
581	AAY22465	Homo sapiens	29-SEP-1999 17-DEC-1998 Human hippocampal sel-10 protein sequence.	216	23
582	AF312864	Homo sapiens	mRNA, complete cds.	627	100
583	AAY70236	Homo sapiens	06-JUN-2000 20-AUG-1999 Human RNA-associated protein-17 (RNAAP- 17).	2310	100
584	AF240769	Macaca mulatta	VAMP-2	584	100
585	AAB98084	Homo sapiens	16-AUG-2001 26-OCT-2000 Human protein sequence SEQ ID NO:110.	2482	99
586	AK002058	Homo sapiens	FLJ11196 fis, clone PLACE1007688, weakly similar to LA PROTEIN HOMOLOG.	2551	99
587	AK000500	Homo sapiens	FLJ20493 fis, clone KAT08512.	834	100
588	AF251296	Homo sapiens	mRNA, complete cds.	1299	100
589	AF169149	Homo sapiens	(CABP1) mRNA, complete cds.	1172	99
590	M96859	Homo sapiens	dipeptidyl aminopeptidase like protein mRNA, complete cds.	2246	52
591	AAB88489	Homo sapiens	23-MAY-2001 07-JUL-2000 Human membrane or secretory protein clone PSEC0265.	967	100
592	AB063495	Mus musculus	Spred-1	2205	92
593	AF155661	Homo sapiens	dehydrogenase (PDH) mRNA, complete cds.	3050	100
594	AAY90962	Homo sapiens	05-SEP-2000 12-OCT-1999 Human G713 protein sequence SEQ ID NO:5.	1403	99
595	AF315378	Rattus norvegicus	suppressor of profilin/p41 of actin- related complex 2/3	1975	98
596	AB036693	Homo sapiens	for RAB9-like protein, complete cds.	1067	100
597	AF359284	Homo sapiens	mRNA, complete cds.	5004	99
598	AK001877	Homo sapiens	FLJ11015 fis, clone PLACE1003302,	2746	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			highly similar to ZINC FINGER PROTEIN 83.		Auchary
599	AAB71913	Homo sapiens	09-MAY-2001 16-AUG-2000 Human ISOM-5.	1516	100
600	L27867	Rattus norvegicus	neurexophilin	1448	98
601	AC004991	Homo sapiens	clone RP5-1186C1 from 7q21.2-q31.1, complete sequence.	311	100
602	AF057019	Dictyostelium discoideum	interaptin	146	26
603	AF247177	Mus musculus	sphingosine-1-phosphate phosphohydrolase	523	36
604	BC007704	Homo sapiens	clone MGC:10277 IMAGE:3952366, mRNA, complete cds.	746	100
605	U18920	Homo sapiens	chromosome 17q12-21 mRNA, clone pOV-3, partial cds.	455	81
606	U48363.	Mus musculus	alpha-NAC, muscle-specific form gp220	810	30
607	AF014008	Bos taurus	myocardial vascular inhibition factor	490	100
608	AL136604	Homo sapiens	cDNA DKFZp564F2122 (from clone DKFZp564F2122); complete cds.	2716	96
609	AK007689	Mus musculus	putative	289	100
610	AAB57020	Homo sapiens	13-MAR-2001 08-MAR-2000 Human prostate cancer antigen protein sequence SEQ ID NO:1598.	384	100
611	AAB20328	Homo sapiens	29-MAY-2001 14-SEP-2000 Human protein phosphatase and kinase protein-7.	798	100
612	BC007618	Homo sapiens	clone MGC:15730 IMAGE:3355289, mRNA, complete cds.	2163	100
613	AAZ94941	Homo sapiens	01-AUG-2000 29-SEP-1999 Human carbohydrate-associated protein CRBAP- 1 cDNA.	654	100
614	M91669	Homo sapiens	Bullous pemphigoid autoantigen BP180 gene, 3' end.	8016	99
615	AF116649	Homo sapiens	PRO0566	248	100
616	AK001837	Homo sapiens	FLJ10975 fis, clone PLACE1001383, weakly similar to ZINC-FINGER PROTEIN UBI-D4.	2198	100
617	AF116672	Homo sapiens	PRO1905	553	99
618	BC011707	Homo sapiens	nuclear receptor binding factor-2, clone MGC:19778 IMAGE:3687848, mRNA, complete cds.	1471	100
619	AL133606	Homo sapiens	cDNA DKFZp434A2017 (from clone DKFZp434A2017); partial cds.	5012	100
620	AAY58618	Homo sapiens	11-APR-2000 11-JUN-1999 Protein regulating gene expression PRGE-11.	1778	100
621	AF276707	Homo sapiens	carcinoma susceptibility protein (HCCA3) mRNA, complete cds.	1211	100
622	AF161554	Homo sapiens	HSPC069	3072	98
623	AAY73327	Homo sapiens	24-FEB-2000 04-MAY-1999 HTRM clone 052927 protein sequence.	1668	100
624	AAP60958	Homo sapiens	09-AUG-1991 20-JAN-1986 Sequence of human endogenous benzodiazepineoid(EBZD) polypeptide.	564	100
625	AK010262	Mus musculus	putative	1767	94
626	AK001317	Homo sapiens	FLJ10455 fis, clone NT2RP1001014.	2539	99
627	M80899	Homo sapiens	novel protein AHNAK mRNA, partial	6618	99

SEQ ID	Accession	Species	Description	Score	1 %
NO:	No.				Identity
			sequence.		
628	AAB21018	Homo sapiens	19-DEC-2000 28-JAN-2000 Human nucleic acid-binding protein, NuABP-22.	2629	99
629	L19183	Homo sapiens	MAC30 mRNA, 3' end.	901	97
630	BC000540	Homo sapiens	DKFZP434H132 protein, clone MGC:3034 IMAGE:3163610, mRNA, complete cds.	739	100
631	BC002857	Homo sapiens	clone MGC:3442 IMAGE:3636594, mRNA, complete cds.	1033	100
632	AAW78188	Homo sapiens	13-APR-1999 11-JUN-1998 Human secreted protein encoded by gene 63 clone HPMCC16.	1300	100
633	AK000587	Homo sapiens	FLJ20580 fis, clone REC00516.	848	100
634	AF116637	Homo sapiens	PRO1489	266	100
635	BC011495	Mus musculus	RIKEN cDNA 1110060018 gene	1242	89
636	AL157473	Homo sapiens	cDNA DKFZp761L0424 (from clone DKFZp761L0424).	2160	99
637	AF005067	Homo sapiens	mRNA, complete cds.	1415	65
638	AL117532	Homo sapiens	cDNA DKFZp434E192 (from clone DKFZp434E192); partial cds.	3706	100
639	AF251441	Homo sapiens	motif and leucine zipper containing kinase AZK mRNA, complete cds.	4234	100
640	BC010493	Homo sapiens	clone MGC:16982 IMAGE:3048997, mRNA, complete cds.	2496	99
641	AK017531	Mus musculus	putative	795	50
642	BC000204	Homo sapiens	ribosomal protein S3A, clone MGC:3109 IMAGE:3350750, mRNA, complete cds.	1367	100
643	AF226076	Homo sapiens	(CHRAC15) mRNA, complete cds.	651	100
644	AK023267	Homo sapiens	FLJ13205 fis, clone NT2RP3004534, highly similar to Mouse oncogene (ect2) mRNA.	4129	99
645	AE006465	Homo sapiens	sequence section 4 of 8.	1605	100
646	AF272973	Homo sapiens	mRNA, complete cds.	1411	100
647	AF237982	Homo sapiens	7alpha-hydroxylase (CYP39A1) mRNA, complete cds.	2478	100
648	AK023139	Homo sapiens	FLJ13077 fis, clone NT2RP3001944, moderately similar to HYPOTHETICAL 47.6 KD PROTEIN C16C10.5 IN CHROMOSOME III.	1754	100
649	AF315591	Homo sapiens	2 (PUMH2) mRNA, complete cds.	2985	94
650	AF302691	Mus musculus	myelin expression factor-3-like protein	943	77
651	AL136592	Homo sapiens	cDNA DKFZp7611172 (from clone DKFZp7611172); complete cds.	1393	99
652	AAB58279	Homo sapiens	14-MAR-2001 08-MAR-2000 Lung cancer associated polypeptide sequence SEQ ID 617.	678	100
653	AF104927	Homo sapiens	ligase (TTLL1) mRNA, complete cds.	2260	100
654	AL163792	Arabidopsis thaliana	putative protein	587	49
655	AF233395	Homo sapiens	protein type 7 (SIRT7) mRNA, complete cds.		100
656	AF233223	Homo sapiens	protein FBG2 (FBG2) mRNA, complete cds.	1602	100
657	AF317549	Homo sapiens	finger protein 268 (ZNF268) mRNA, complete cds.	2885	99
658	AK025426	Homo sapiens	FLJ21773 fis, clone COLF7849.	1172	100

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	Species	Description	Score	Identity
659	AL049548	Homo sapiens	DNA sequence from clone 398G3 on chromosome 6q25.1-25.3. Contains the	771	100
			3'part of the gene for the ortholog of rat		
			CPG2, part of a novel gene, ESTs, STSs		
		 	and GSSs, complete sequence.		
660	AK000947	Homo sapiens	FLJ10085 fis, clone HEMBA1002161, moderately similar to MYOSIN HEAVY	931	100
			CHAIN, CARDIAC MUSCLE BETA ISOFORM.		
661	AAY48487	Homo sapiens	08-DEC-1999 20-MAR-1998 Human	432	36
001	AA140407	Tiomo sapiens	breast tumour-associated protein 32.	732	30
662	AE003564	Drosophila	CG13295 gene product	377	29
	1.200000	melanogaster	Sold production	***	
663	AB049955	Homo sapiens	mRNA for mitochondrial ribosomal	313	100
• .		•	protein S21, complete cds.		
664	BC005357	Homo sapiens	Similar to RIKEN cDNA 1700073K01	418	100
		1	gene, clone MGC:12458		
			IMAGE:3511019, mRNA, complete cds.		
665	L08240	Homo sapiens	MG81 mRNA, partial cds.	3398	99
666	AK022732	Homo sapiens	FLJ12670 fis, clone NT2RM4002301.	1551	99
667	AAY57900	Homo sapiens	23-MAR-2000 28-MAY-1999 Human	996	100
	<u> </u>		transmembrane protein HTMPN-24.		
668	BC005805	Homo sapiens	clone MGC:1003 IMAGE:2988344,	862	100
			mRNA, complete cds.		
669	AF151073	Homo sapiens	HSPC239	1535	100
670	AF151073	Homo sapiens	HSPC239	1209	100
671	AK000197	Homo sapiens	FLJ20190 fis, clone COLF0714.	1754	100
672	AJ010071	Homo sapiens	TOM1-like protein.	2444	99
673	AJ010071	Homo sapiens	TOM1-like protein.	1236	97
674	BC004395	Homo sapiens	Similar to apolipoprotein L, clone MGC:10978 IMAGE:3636011, mRNA,	1700	100
			complete cds.		
675	AC016526	Homo sapiens	14 clone RP11-361H10 map 14q24.3,	2554	99
	,		complete sequence.	<u> </u>	
676	AJ279246	Homo sapiens	NPHS2 gene for podocin, exon 1 and joined CDS.	1939	100
677	AL136628	Homo sapiens	cDNA DKFZp564C182 (from clone	732	100
			DKFZp564C182); complete cds.	''-	***
678	AF116636	Homo sapiens	PRO1488	362	100
679	AF116694	Homo sapiens	PRO2219	414	100
680	AK001867	Homo sapiens	FLJ11005 fis, clone PLACE1002996.	859	100
681	AK027746	Homo sapiens	FLJ14840 fis, clone OVARC1001916.	1531	99
682	AK026486	Homo sapiens	FLJ22833 fis, clone KAIA4266.	623	100
683	AK001421	Homo sapiens	FLJ10559 fis, clone NT2RP2002618,	1650	100
	-		weakly similar to PROTEIN ARGININE	ľ	
		1	N-METHYLTRANSFERASE 2 (EC	İ	
			2.1.1).		
684	AK000521	Homo sapiens	FLJ20514 fis, clone KAT09756.	1313	100
685	X59869	Homo sapiens	TCF-1 mRNA for T cell factor 1 (splice form A).	1375	99
686	AK002135	Homo sapiens	FLJ11273 fis, clone PLACE1009338.	1419	100
687	AAY57896	Homo sapiens	23-MAR-2000 28-MAY-1999 Human	733	100
			transmembrane protein HTMPN-20.		
688	AF189692	Homo sapiens	Cdc42 effector protein SPEC2 mRNA,	452	100
	<u> </u>		complete cds.	<u> </u>	
689	AJ401269	Bos taurus	polyadenylate-binding protein 1	2439	99

SEQ ID	Accession	Species	Description	Score	%
NO:	No.		2 documents	500.0	Identity
690	AK016776	Mus musculus	putative	1801	69
691	AB038523	Homo sapiens	for MBIP, complete cds.	1772	100
692	AK000241	Homo sapiens	FLJ20234 fis, clone COLF5673.	2398	100
693	AJ245719	Homo sapiens	for brk kinase substrate (BKS gene).	2154	100
694	AAB97378	Homo sapiens	17-AUG-2001 08-NOV-2000 Human	1533	100
	121237370	Trombo Suproms	kringle domain containing protein 1.	1333	100
695	AB038523	Homo sapiens	for MBIP, complete cds.	1552	99
696	AK026105	Homo sapiens	FLJ22452 fis, clone HRC09667.	2419	100
697	AAB00187	Homo sapiens	08-FEB-2001 15-MAR-2000 Breast	635	45
٠,	721200107	Trome suprems	cancer protein BCN1.	033	"
698	AAY99425	Homo sapiens	08-AUG-2000 01-SEP-1999 Human	1343	100
			PRO1558 (UNQ766) amino acid	10.10	
			sequence SEQ ID NO:306.	l	
699	AK009886	Mus musculus	putative	1329	75
700	AK016154	Mus musculus	putative	1166	79
701	AF151072	Homo sapiens	HSPC238	843	100
702	AB045180	Homo sapiens	mRNA for toll-like receptor 9, complete	5466	100
		Tromo depress	cds.	1	1
703	AAB58961	Homo sapiens	27-MAR-2001 08-MAR-2000 Breast and	460	98
			ovarian cancer associated antigen protein	'''	
			sequence SEQ ID 669.		
704	BC007556	Homo sapiens	Similar to TEA domain family member	2365	100
			2, clone MGC:15481 IMAGE:2967735,		
			mRNA, complete cds.	1	
705	AAB74726	Homo sapiens	12-JUN-2001 14-AUG-2000 Human	1601	48
		•	membrane associated protein MEMAP-	ŀ	
:	1		32.		
706	AF217413	Homo sapiens	3 isoform gene, complete cds,	4450	100
			alternatively spliced.		
707	AAG01129	Homo sapiens	06-OCT-2000 21-FEB-2000 Human	230	77
			secreted protein, SEQ ID NO: 5210.		
708	AK024066	Homo sapiens	FLJ14004 fis, clone Y79AA1002351.	1791	100
709	AF259799	Homo sapiens	acid transporter system A2 (ATA2)	2560	100
			mRNA, complete cds.		
710	AJ250839	Homo sapiens	for serine/threonine protein kinase.	2227	100
711	AK027057	Homo sapiens	FLJ23404 fis, clone HEP18862.	410	91
712	AF116652	Homo sapiens	PRO0813	1023	100
713	AF208845	Homo sapiens	BM-003	861	65
714	AK001123	Homo sapiens	FLJ10261 fis, clone HEMBB1000975.	3127	100
715	BC002571	Homo sapiens	clone MGC:2481 IMAGE:3143135,	1419	99
			mRNA, complete cds.	<u> </u>	
716	BC004169	Homo sapiens	Similar to RIKEN cDNA 3110001A18	1266	100
			gene, clone MGC:2714	l	
		<u> </u>	IMAGE:2821548, mRNA, complete cds.		
717	AK026147	Homo sapiens	FLJ22494 fis, clone HRC11131.	1152	99
718	AJ400877	Homo sapiens	gene, CEGP1 gene, C11orf14 gene,	1094	99
	Į		Cllorfl5 gene, Cllorfl6 gene and		
		 	Cllorf17 gene.	L	
719	AJ400877	Homo sapiens	gene, CEGP1 gene, C11orf14 gene,	575	100
	i		Cllorf15 gene, Cllorf16 gene and]
	<u> </u>	 	Cllorf17 gene.		
720	AJ400877	Homo sapiens	gene, CEGP1 gene, C11orf14 gene,	379	97
	[Cllorfl5 gene, Cllorfl6 gene and		
		ļ <u></u>	Cllorf17 gene.		L
721	AK021919	Homo sapiens	FLJ11857 fis, clone HEMBA1006807,	1851	99
	1	L	moderately similar to Homo sapiens	L	<u> </u>

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	<u> </u>			Identity
700		<u> </u>	mRNA for SPOP.	552	<u> </u>
722	AAB93876	Homo sapiens	protein sequence SEQ ID NO:13784.		39
723	BC005827	Homo sapiens	H2B histone family, member Q, clone MGC:1729 IMAGE:2989788, mRNA, complete cds.		93
724	BC010929	Homo sapiens	clone MGC:13522 IMAGE:4291498, mRNA, complete cds.	932	99
725	BC010929	Homo sapiens	clone MGC:13522 IMAGE:4291498, mRNA, complete cds.	1446	100
726	AAU00875	Homo sapiens	04-JUL-2001 30-AUG-2000 Human cancer related protein 10.	2015	100
727	AK004371	Mus musculus	putative	1096	89
728	AK000846	Homo sapiens	FLJ20839 fis, clone ADKA02346.	1379	100
729	AF090939	Homo sapiens	HQ0641 PRO0641 mRNA, complete cds.	275	100
730	AF201950	Homo sapiens	protein mRNA, complete cds.	399	100
731	AF129756	Homo sapiens	gene, partial cds; and CLIC1, DDAH, G6b, G6c, G5b, G6d, G6e, G6f, BAT5, G5b, CSK2B, BAT4, G4, Apo M, BAT3, BAT2, AIF-1, 1C7, LST-1, LTB, TNF, and LTA genes, complete cds.	691	99
732	Z26593	Homo sapiens	rearranged mRNA for T-cell receptor alpha chain.	573	97
733	.BC004366	Homo sapiens	clone MGC:10334 IMAGE:3641657, mRNA, complete cds.		100
734	AK001243	Homo sapiens	FLJ10381 fis, clone NT2RM2002055.	2326	100
735	BC008947	Homo sapiens	Similar to RIKEN cDNA 1200008O12 gene, clone MGC:3422 IMAGE:3028566, mRNA, complete cds.	2319	99
736	AK000702	Homo sapiens	FLJ20695 fis, clone KAIA2502.	1554	100
737	AF090937	Homo sapiens	HQ0618 PRO0618 mRNA, complete cds.	492	100
738	BC005357	Homo sapiens	Similar to RIKEN cDNA 1700073K01 gene, clone MGC:12458 IMAGE:3511019, mRNA, complete cds.	597	99
739	BC005357	Homo sapiens	Similar to RIKEN cDNA 1700073K01 gene, clone MGC:12458 IMAGE:3511019, mRNA, complete cds.	603	99
740	AL390216	Homo sapiens	cDNA DKFZp762K222 (from clone DKFZp762K222).	1120	100
741	AK006724	Mus musculus	putative	1077	80
742	AK000615	Homo sapiens	FLJ20608 fis, clone KAT05987.	1038	98
743	AK000615	Homo sapiens	FLJ20608 fis, clone KAT05987.	778	98
744	AAY99669	Homo sapiens	03-NOV-2000 23-NOV-1999 Human GTPase associated protein-20.	1013	99
745	AL137516	Homo sapiens	cDNA DKFZp564M2178 (from clone DKFZp564M2178); partial cds.	3506	99
746	BC006006	Homo sapiens	Similar to RIKEN cDNA 1810046J19 gene, clone MGC:14832 IMAGE:4283597, mRNA, complete cds.		100
747	AB002819	Perilla frutescens	actin	142	96
748	AJ271290	Homo sapiens	for facilitative glucose transporter GLUT11 (SLC2A11 gene).	866	99
749	AK000157	Homo sapiens	FLJ20150 fis, clone COL08263.	1559	99

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	Species	Description	Score	1
750	AF231410	Homo sapiens	sperm protein ropporin mRNA, complete cds.	205	Identity 87
751	AB044755	Homo sapiens	mRNA for basic-helix-loop-helix protein, complete cds.	1723	100
752	AK001610	Homo sapiens	FLJ10748 fis, clone NT2RP3001819,	1852	100
			weakly similar to RING CANAL PROTEIN.	1032	100
753	AF208864	Homo sapiens	ARF	688	99
754	AF209931	Homo sapiens	protein mRNA, partial cds.	1222	96
755	AF064604	Homo sapiens	protein mRNA, partial cds.	1350	93
756	AK000042	Homo sapiens	FLJ20035 fis, clone COL00213.	2029	100
757	AF208864	Homo sapiens	ARF	688	99
758	AK016624	Mus musculus	putative	847	84
759	AF332890	Homo sapiens	zinc finger FEZL	1561	99
760	AK000602	Homo sapiens	FLJ20595 fis, clone KAT08558.	764	100
761	AAB73227	Homo sapiens	11-MAY-2001 11-AUG-2000 Human phosphatase NP_060232_h.	2733	99
762	AF016903	Homo sapiens	precursor mRNA, partial cds.	8478	100
763	BC002912	Homo sapiens	clone MGC:11279 IMAGE:3944940, mRNA, complete cds.	1512	98
764	AB035179	Homo sapiens	for HES6, complete cds.	1143	98
765	AK000506	Homo sapiens	FLJ20499 fis, clone KAT09034.	3811	99
766	AAG71494	Homo sapiens	31-JUL-2001 06-OCT-2000 Human olfactory receptor polypeptide, SEQ ID NO: 1175.		98
767	BC001005	Homo sapiens	cytochrome c oxidase subunit VIIc, clone MGC:8432 IMAGE:2821167, mRNA, complete cds.	329	100
768	AF104260	Homo sapiens	mRNA, partial cds.	1327	51
769	AF116709	Homo sapiens	PRO2605	642	100
770 ·	AF176330	Homo sapiens	(PCBP4) mRNA, complete cds.	2041	100
771	AF169226	Homo sapiens	conserved domain protein 1 (ACDP1) mRNA, complete cds.	972	100
772	Z83851	Homo sapiens	DNA sequence from clone 989H11 on chromosome 22q13.1-13.2. Contains part of a novel gene, ESTs, GSSs and four putative CpG islands, complete sequence.	474	100
773	AK000130	Homo sapiens	FLJ20123 fis, clone COL06041.	998	100
774	AC004908	Homo sapiens	clone RP5-855D21, complete sequence.	171	91
775	X68879	Homo sapiens	EMX1 mRNA.	819	100
776	AAR78692	Homo sapiens	15-MAR-1996 24-DEC-1993 Human skeletal muscle stress protein, p20.	832	100
777	AF042831	Homo sapiens	transcription factor FREAC-10 (FKHL18) mRNA, partial cds.	615	100
778	AK001050	Homo sapiens	FLJ10188 fis, clone HEMBA1004693.	1312	100
779	AL096817	Homo sapiens	DNA sequence from clone RP1-102H19 on chromosome 6q15-16.1. Contains an HSP60 (TCP-1/cpn60 chaperonin family) pseudogene, three novel genes, ESTs, STSs and GSSs, complete sequence.	320	100
781	AF202922	Homo sapiens	(LRP16) mRNA, complete cds.	1511	95
782	AL365514	Homo sapiens	human gene mapping to chomosome 22.	2255	100
783	AF023859	Papio hamadryas	cyclophilin A	538	95
784	X03491	Mus musculus	57 kd keratin (aa 1-524)	2099	80

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	<u> </u>			Identity
785	AAB27242	Homo sapiens	27-MAR-2001 10-MAY-2000 Human EXMAD-20 SEQ ID NO: 20.	2327	98
786	AAY99414	Homo sapiens	08-AUG-2000 01-SEP-1999 Human PRO1461 (UNQ742) amino acid sequence SEQ ID NO:269.	2270	100
787	AF043350	Homo sapiens	protein 1 (LSP1) gene, LSP1-5 allele, partial cds.	361	100
788	BC011551	Homo sapiens	clone MGC:19971 IMAGE:4561164, mRNA, complete cds.	1606	88
789	AL050256	Homo sapiens	human gene mapping to chomosome 22.	881	100
790	AY014302	Homo sapiens	gene, exon 2 and complete cds.	1409	100
791	AK000314	Homo sapiens	FLJ20307 fis, clone HEP07254.	5380	99
792	AK023886	Homo sapiens	FLJ13824 fis, clone THYRO1000505.	1377	100
793	AK019547	Mus musculus	putative	265	96
794	AK005789	Mus musculus	putative	475	97
795	AK001783	Homo sapiens	FLJ10921 fis, clone OVARC1000411.	1246	100
796	AK027598	Homo sapiens	FLJ14692 fis, clone NT2RP2005344, weakly similar to PROBABLE CALCIUM-TRANSPORTING ATPASE 5 (EC 3.6.1.38).	3134	99
797	U60269	Homo sapiens	endogenous retrovirus HERV-K(HML6) proviral clone HML6.17 putative polymerase and envelope genes, partial cds, and 3'LTR.	381	100
798	AL137651	Homo sapiens	cDNA DKFZp434O0213 (from clone DKFZp434O0213); partial cds.	1366	100
799	AK000061	Homo sapiens	FLJ20054 fis, clone COL00849.	1751	99
800	AF233588	Homo sapiens	(RIS) mRNA, complete cds.	1353	100
801	S76838	Mus sp.	Dbs	1469	49
802	AB033168	Mus musculus	nuclear protein ZAP	1946	89
803	AB049591	Homo sapiens	related with psoriasis, complete cds.	647	100
804	AF093249	Homo sapiens	isoform 4 (PHRET1) mRNA,	1046	100
805	AL049679	Homo sapiens	alternatively spliced, complete cds. gene from PAC 97K10, chromosome X, similar to heparan-sulphate 6- sulfotransferase.	1527	100
806	AB015329	Homo sapiens	mRNA, partial cds.	1055	97
807	AF077034	Homo sapiens	HSPC010	163	96
808	AF241833	Mus musculus	secretory carrier membrane protein 5	1256	98
809	AK001352	Homo sapiens	FLJ10490 fis, clone NT2RP2000233.	697	100
810	AF138860	Homo sapiens	PRO0843	649	100
811	Z72496	Homo sapiens	MUC5B gene (partial).	18275	100
812	AK000361	Homo sapiens	FLJ20354 fis, clone HEP15013.	3585	99
813	AK001072	Homo sapiens	FLJ10210 fis, clone HEMBA1006344, weakly similar to RADIXIN.	2372	100
814	AK001707	Homo sapiens	FLJ10845 fis, clone NT2RP4001372, weakly similar to IRREGULAR CHIASM C-ROUGHEST PROTEIN PRECURSOR.	2161	100
815	S79854	Homo sapiens	3 iodothyronine deiodinase mRNA, complete cds.	774	100
816	AB036704	Homo sapiens	mRNA for phosphodiesterase 11A, complete cds.	2541	100
817	BC010181	Homo sapiens	clone MGC:20197 IMAGE:4543414, mRNA, complete cds.	387	89
818	AAB68074	Homo sapiens	09-JUL-2001 10-NOV-2000 Amino acid	1960	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
·-·			sequence of a human chordin-like homologue splice variant.		
819	AF227516	Homo sapiens	mRNA, complete cds.	1444	97
820	AF077202	Homo sapiens	HSPC016	100	100
821	AK002945	Mus musculus	putative	615	94
822	AK000047	Homo sapiens	FLJ20040 fis, clone COL00417.	193	97
823	AF119878	Homo sapiens	PRO2353	401	100
824	BC005827	Homo sapiens	H2B histone family, member Q, clone MGC:1729 IMAGE:2989788, mRNA, complete cds.	385	100
825	AAB73230	Homo sapiens	11-MAY-2001 11-AUG-2000 Human phosphatase AA493915 h.	423	97
826	AK000513	Homo sapiens	FLJ20506 fis, clone KAT09493.	707	100
827	AK001021	Homo sapiens	FLJ10159 fis, clone HEMBA1003528.	1471	100
828	AJ002535	Homo sapiens	for obscurin (OBSCN gene).	466	100
829	AJ243662	Homo sapiens	for NICE-1 protein.	566	100
830	AK000268	Homo sapiens	FLJ20261 fis, clone COLF7630.	2659	100
831	AC005396	Arabidopsis thaliana	putative proline-rich protein	113	32
832	AJ249977	Homo sapiens	for AMP-activated protein kinase gamma 3 subunit (AMPK gamma 3 gene).	2518	99
833	AAY44985	Homo sapiens	23-MAY-2000 27-JUL-1999 Human epidermal protein-2.	616	88
834	AJ006692	Homo sapiens	KerB gene.	923	76
835	M88166	Sus scrofa	small proline-rich protein	190	59
836	AK000139	Homo sapiens	FLJ20132 fis, clone COL06441.	2479	100
837	AK000520	Homo sapiens	FLJ20513 fis, clone KAT09741.	805	99
838	AC004744	Homo sapiens	clone GS1-465N13 from 7p15-p21, complete sequence.	293	98
839	AJ002535	Homo sapiens	for obscurin (OBSCN gene).	466	100
840	AAY87354	Homo sapiens	11-MAY-2000 25-JUN-1999 Human signal peptide containing protein HSPP- 131 SEQ ID NO:131.	1546	100
841	AK000054	Homo sapiens	FLJ20047 fis, clone COL00577.	4964	100
842	AAB47129	Homo sapiens	04-JUN-2001 14-SEP-2000 CDIFF-7, Incyte ID No. 2027937CD1.	672	100
843	Z81024	Homo sapiens	mRNA for TCR alpha (TCRAV).	604	90 ·
844	AK001720	Homo sapiens	FLJ10858 fis, clone NT2RP4001555.	3226	99
845	AE000660	Homo sapiens	receptor alpha delta locus from bases 501613 to 752736 (section 3 of 5) of the Complete Nucleotide Sequence.	561	99
846	U61084	Homo sapiens	protein mRNA, complete cds.	1281	97
847	AF161550	Homo sapiens	HSPC065	954	99
848	AK001002	Homo sapiens	FLJ10140 fis, clone HEMBA1003179, moderately similar to PROBABLE TRNA (5-METHYLAMINOMETHYL-2-THIOURIDYLATE)-METH YLTRANSFERASE (EC 2.1.1.61).	896	99
849	AJ406946	Homo sapiens	for keratin associated protein 9.2 (KRTAP9.2 gene).	1079	95
850	AF339106	Mus musculus	forkhead-related transcription factor 2	1480	99
851	AF081797	Mus musculus	high cysteine keratin-associated protein 12.1	469	58
852	AF071081	Mycobacterium tuberculosis	proline-rich mucin homolog	121	36

SEQ ID NO:	Accession No.	Species	Description Sc		% Identity
853	AF116686	Homo sapiens	PRO2116	192	100
854	AF070655	Homo sapiens	F1F0-type ATP synthase subunit g	443	89
855	AAY41710	Homo sapiens	07-DEC-1999 08-MAR-1999 Human	4232	98
000			PRO618 protein sequence.		
856	AAB47276	Homo sapiens	06-AUG-2001 12-JUL-2000 hOAT5.	887	98
857	AF113013	Homo sapiens	PRO0806	345	100
858	X60661	Rattus rattus	potential ligand-binding protein	344	74
859	AF119902	Homo sapiens	PRO2832	406	100
860	AK009462	Mus musculus	putative	1723	100
861	AAB95296	Homo sapiens	26-JUN-2001 28-JUL-2000 Human	4692	99
			protein sequence SEQ ID NO:17523.		i l
862	AB017927	Homo sapiens	mRNA for p53DINP1b, complete cds.	878	100
863	AAB83845	Homo sapiens	23-JUL-2001 30-OCT-2000 Amino acid	1346	54
		•	sequence of a human protein expressed		
			in tumour cells.		
864	AX149579	Homo sapiens	DNA encoding a transmembrane serine	562	98
			protease (Endotheliase 2-S) protein		
865	BC012048	Homo sapiens	clone IMAGE:3502817, mRNA, partial	1225	99
		Ī	cds.		
866	AK000575	Homo sapiens	FLJ20568 fis, clone REC00775.	664	99
867	X76383	Homo sapiens	mRNA for HE3(alpha).	807	100
868	AF286598	Homo sapiens	mRNA, complete cds.	2381	100
869	AK022643	Homo sapiens	FLJ12581 fis, clone NT2RM4001140,	721	92
			weakly similar to HOMEOBOX		
			PROTEIN MSH-D.		
870	AF119891	Homo sapiens	PRO2706	363	100
871	AK009258	Mus musculus	putatiye	1246	80
872	U66412	Mus musculus	adenomatous polyposis coli	133	88
873	AK001162	Homo sapiens	FLJ10300 fis, clone NT2RM2000030.	184	100
874	AL033518	Homo sapiens	DNA sequence from clone RP3-322I12	199	100
			on chromosome 6p21.1-21.31. Contains part of the gene for a novel protein	1	
			similar to C. elegans C05C8.6		i i
			(Tr:016313), STSs and GSSs, complete		
			sequence.		
875	AF116601	Homo sapiens	PRO0128	446	100
876	AF156889	Homo sapiens	homeobox protein 3 isoform b (LHX3)	2148	100
0,0	12 13000	Troine suprems	mRNA, complete cds.		100
877	AK026671	Homo sapiens	FLJ23018 fis, clone LNG00903.	385	100
878	AAY92515	Homo sapiens	10-AUG-2000 06-OCT-1999 Human	2523	99
***			OXRE-12.		
879	AL136818	Homo sapiens	cDNA DKFZp434F1726 (from clone	1736	99
			DKFZp434F1726).	1	
880	AB055311	Homo sapiens	for RanBPM, complete cds.	2172	67
881	AF006465	Mus musculus	B cell antigen receptor Ig beta associated	1286	61
	1.		protein 1	L	
882	AF143956	Mus musculus	coronin-2	1020	72
883	AK008237	Mus musculus	putative	653	84
884	AK008237	Mus musculus	putative	653	84
885	AF221846	Homo sapiens	gastric protein ZG12P mRNA, complete	182	100
	1	<u></u>	cds.		
886	BC001005	Homo sapiens	cytochrome c oxidase subunit VIIc, clone	304	93
J	}		MGC:8432 IMAGE:2821167, mRNA,	1	
			complete cds.	<u> </u>	
887	X01715	Homo sapiens	gene fragment for the acetylcholine	2543	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			receptor gamma subunit precursor (exons 1 and 2).		
888	AK001974	Homo sapiens	FLJ11112 fis, clone PLACE1005925.	955	100
889	AF212016	Homo sapiens	receptor 9 (IL1R9) mRNA, complete cds.	3607	100
890	D88437	Homo sapiens			100
891	AK002298	Mus musculus	putative	833	97
892	X96389	Bos taurus	procollagen I N-proteinase	440	34

TABLE 3

SEQ ID	Accession No.	Description	Results*
NO: 451	PD01719	PRECURSOR GLYCOPROTEIN SIGNAL RE.	PD01719A 12.89 8.200e-17 343- 371
452	BL00388	Proteasome A-type subunits proteins.	BL00388A 23.14 5.875e-40 5-51 BL00388B 31.38 6.538e-29 64- 106 BL00388D 20.71 1.391e-26 147-178 BL00388C 18.79 2.000e- 22 119-141
453	BL00388	Proteasome A-type subunits proteins.	BL00388B 31.38 6.538e-29 33-75 BL00388D 20.71 1.391e-26 116- 147 BL00388C 18.79 2.000e-22 88-110
454	BL00064	L-lactate dehydrogenase proteins.	BL00064C 17.28 8.442e-22 293- 338 BL00064A 21.16 5.574e-12 184-222
459	BL01187	Calcium-binding EGF-like domain proteins pattern proteins.	BL01187B 12.04 1.257e-10 218- 234
460	BL00107	Protein kinases ATP-binding region proteins.	BL00107B 13.31 9.100e-15 199- 215
462	PR00678	PI3 KINASE P85 REGULATORY SUBUNIT SIGNATURE	PR00678H 9.13 1.529e-11 64-87
463	PR00678	PI3 KINASE P85 REGULATORY SUBUNIT SIGNATURE	PR00678H 9.13 1.529e-11 64-87
469	PD00930	PROTEIN GTPASE DOMAIN ACTIVATION.	PD00930B 33.72 6.250e-17 446- 487 PD00930A 25.62 2.841e-13 343-369
472	PR00302	LUPUS LA PROTEIN SIGNATURE	PR00302A 11.32 3.318e-14 222- 240
473	PF00777	Sialyltransferase family.	PF00777C 18.60 9.416e-26 363- 418 PF00777D 22.05 3.681e-11 511-557
476	BL00360	Ribosomal protein S9 proteins.	BL00360B 20.22 5.705e-19 317- 353 BL00360C 17.65 4.857e-18 370-397
479	BL00057	Ribosomal protein S18 proteins.	BL00057 24.94 8.800e-14 81-129
482	BL00299	Ubiquitin domain proteins.	BL00299 28.84 1.000e-40 16-68 BL00299 28.84 1.000e-40 92-144
483	BL00039	DEAD-box subfamily ATP- dependent helicases proteins.	BL00039D 21.67 9.000e-37 321- 367 BL00039A 18.44 3.893e-24 28-67 BL00039C 15.63 8.269e-17 165-189 BL00039B 19.19 4.818e- 14 73-99
485	PR00828	FORMIN SIGNATURE	PR00828B 5.23 8.218e-10 382- 405
489	PR00581	PROSTANOID EP2 RECEPTOR SIGNATURE	PR00581E 3.48 9.875e-10 4-20
490	BL00615	C-type lectin domain proteins.	BL00615A 16.68 8.200e-11 113- 131
492	BL00039	DEAD-box subfamily ATP- dependent helicases proteins.	BL00039D 21.67 4.176e-23 391- 437 BL00039A 18.44 7.065e-16 118-157 BL00039B 19.19 5.395e- 12 158-184 BL00039C 15.63 9.820e-11 241-265
493	BL00479	Phorbol esters / diacylglycerol binding domain proteins.	BL00479B 12.57 9.518e-09 472- 488

SEQ ID NO:	Accession No.	Description	Results*
494	PR00929	AT-HOOK-LIKE DOMAIN SIGNATURE	PR00929B 4.38 1.000e-10 49-61
499	BL00678	Trp-Asp (WD) repeat proteins proteins.	BL00678 9.67 4.000e-10 339-350
500	PF00646	F-box domain proteins.	PF00646A 14.37 4.375e-09 74-88
503	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 3.800e-30 6-45
504	DM00191	w SPAC8A4.04C RESISTANCE SPAC8A4.05C DAUNORUBICIN.	DM00191A 8.16 4.360e-09 210- 223
506	PR00060	RIBOSOMAL PROTEIN L16 SIGNATURE	PR00060A 10.94 6.023e-09 117- 130
507	PF00646	F-box domain proteins.	PF00646A 14.37 9.036e-10 13-27
508	BL00632	Ribosomal protein S4 proteins.	BL00632 23.79 2.821e-12 104-147
510	BL01191	Ribosomal protein S3Ae proteins.	BL01191A 15.57 1.000e-40 13-64 BL01191B 13.33 1.000e-40 89- 140
512	PD00930	PROTEIN GTPASE DOMAIN ACTIVATION.	PD00930B 33,72 6.063e-25 162- 203 PD00930A 25.62 8.297e-15 41-67
513	BL00604	Synaptophysin / synaptoporin proteins.	BL00604F 5.96 7.718e-10 567-612
515	BL01152	Hypothetical hesB/yadR/yfhF family proteins.	BL01152C 25.93 1.900e-29 81- 128 BL01152B 20.12 6.121e-11 48-74
516	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 1.000e-09 27-42
518	BL00218	Amino acid permeases proteins.	BL00218D 21.49 3.797e-11 243- 288 BL00218B 21.44 1.621e-10 75-107 BL00218E 23.30 3.520e- 10 324-364
523	PR00836	SOMATOTROPIN HORMONE FAMILY SIGNATURE	PR00836B 16.59 2.895e-16 101- 120 PR00836D 13.05 1.621e-13 195-210 PR00836A 14.40 2.800e- 13 79-93 PR00836C 11.95 4.913e-13 179-196
526	BL00164	Enolase proteins.	BL00164B 16.22 1.000e-40 98- 141 BL00164C 15.66 1.000e-40 144-194 BL00164G 12.13 1.000e- 40 380-419 BL00164F 10.48 3.813e-39 313-349 BL00164D 21.97 2.588e-38 220-263 BL00164A 11.58 1.529e-27 32-55 BL00164E 8.80 9.100e-20 287- 302
529	BL00790	Receptor tyrosine kinase class V proteins.	BL00790R 16.20 3.516e-09 21-65
530	PR00288	PUROTHIONIN SIGNATURE	PR00288B 13.09 9.870e-09 3-17
536	DM00250	kw ANNEXIN ANTIGEN PROLINE TUMOR.	DM00250B 13.84 8.541e-09 426- 450
540	BL00495	Apple domain proteins.	BL00495G 12.47 8.920e-09 80- 109
542	PR00080	ALCOHOL DEHYDROGENASE SUPERFAMILY SIGNATURE	PR00080C 17.16 4.750e-12 147- 167
551	PR00926	MITOCHONDRIAL CARRIER PROTEIN SIGNATURE	PR00926F 17.75 1.964e-20 4-27

SEQ ID NO:	Accession No.	Description	Results*
552	BL00795	Involucrin proteins.	BL00795C 17.06 2.286e-12 103- 148 BL00795C 17.06 5.208e-12 102-147 BL00795C 17.06 8.953e- 10 99-144 BL00795C 17.06 1.000e-09 114-159 BL00795C 17.06 1.400e-09 97-142 BL00795C 17.06 3.200e-09 104- 149 BL00795C 17.06 4.100e-09 101-146 BL00795C 17.06 4.800e- 09 100-145
556	PF00628	PHD-finger.	PF00628 15.84 6.806e-09 77-92
559	PR00041	CAMP RESPONSE ELEMENT BINDING (CREB) PROTEIN SIGNATURE	PR00041E 7.20 7.072e-12 219-240
564	BL01119	Copper-fist domain proteins.	BL01119B 18.30 2.385e-09 3818- 3836
568	BL00814	Adrenodoxin family, iron-sulfur binding region proteins.	BL00814B 23.55 9.372e-22 127- 165 BL00814A 15.33 3.769e-15 100-118
570	PF00152	tRNA synthetases class II.	PF00152D 21.30 4.774e-29 434- 473 PF00152C 28.03 7.107e-25 110-147
571	PR00608	CLASS II CYTOCHROME C SIGNATURE	PR00608A 13.74 7.000e-09 78- 102
574	BL00376	S-adenosylmethionine synthetase proteins.	BL00376A 10.62 1.000e-40 19-74 BL00376D 18.36 1.000e-40 157- 201 BL00376C 11.94 3.571e-38 122-157 BL00376B 14.91 3.500e- 19 99-116
579	BL00415	Synapsins proteins.	BL00415N 4.29 6.058e-12 328- 372
580	BL00475	Ribosomal protein L15 proteins.	BL00475B 8.20 6.769e-09 46-56 BL00475D 16.25 9.578e-09 151- 173
581	BL00678	Trp-Asp (WD) repeat proteins proteins.	BL00678 9.67 4.000e-13 241-252
583	PD02784	PROTEIN NUCLEAR RIBONUCLEOPROTEIN.	PD02784B 26.46 3.629e-13 96- 139 PD02784C 20.76 6.894e-09 228-274
584	BL00417	Synaptobrevin proteins.	BL00417B 18.48 1.000e-40 59- 113 BL00417A 7.74 3.700e-34 31-59
585	BL01013	Oxysterol-binding protein family proteins.	BL01013D 26.81 9.578e-17 267- 311 BL01013C 9.97 6.308e-13 91-101 BL01013B 11.33 3.717e- 12 65-76
586	PR00302	LUPUS LA PROTEIN SIGNATURE	PR00302A 11.32 3.647e-13 99- 117
589	BL00018	EF-hand calcium-binding domain proteins.	BL00018 7.41 1.000e-12 209-222
590	BL00708	Prolyl endopeptidase family serine proteins.	BL00708B 24.91 2.235e-15 619- 650
593	BL01032	Protein phosphatase 2C proteins.	BL01032H 11.25 1.000e-10 446- 459 BL01032C 6.14 4.474e-09 175-185
596	BL01115	GTP-binding nuclear protein ran	BL01115A 10.22 3.600e-16 8-52

SEQ ID Accession No.		Description	Results*			
		proteins.				
597	BL00226	Intermediate filaments proteins,	BL00226D 19.10 4.450e-18 113- 160			
598	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 2.800e-14 139-152 PD00066 13.92 2.800e-14 195-208 PD00066 13.92 5.200e-14 167-180 PD00066 13.92 5.500e-13 363-376 PD00066 13.92 1.857e-12 223-236 PD00066 13.92 2.714e-12 419-432 PD00066 13.92 9.143e-12 279-292 PD00066 13.92 9.143e-12 307-320			
		·	PD00066 13.92 4.913e-11 251-264 PD00066 13.92 1.346e-10 335-348 PD00066 13.92 2.200e-09 391-404			
599	BL00194	Thioredoxin family proteins.	BL00194 12.16 5.500e-14 176-189 BL00194 12.16 4.913e-13 64-77			
604	PD00289	PROTEIN SH3 DOMAIN REPEAT PRESYNA.	PD00289 9.97 9.550e-11 62-76			
607	BL00960	BTG1 family proteins.	BL00960C 12.68 3.647e-26 23-45			
609	PR00366	ENDOTHELIN RECEPTOR SIGNATURE	PR00366A 14.10 4.222e-09 5-25			
611	BL00383	Tyrosine specific protein phosphatases proteins.	BL00383E 10.35 6.368e-09 93- 104			
612	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290B 13.17 8.773e-10 266- 284			
614	BL00415	Synapsins proteins.	BL00415C 7.09 3.182e-09 415- 445			
616	PF00628	PHD-finger.	PF00628 15.84 5.125e-11 451-466			
619	BL00322	Histone H3 proteins.	BL00322B 13.68 8.514e-10 933- 986			
622	PD02411	PROTEIN TRANSCRIPTION REGULATION NUCLEAR.	PD02411 21.89 4.214e-15 183-217			
624	BL00880	Acyl-CoA-binding protein.	BL00880 17.52 1.000e-40 96-146			
628	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 7.300e-17 383-396 PD00066 13.92 3.400e-14 439-452 PD00066 13.92 4.000e-14 355-368 PD00066 13.92 8.000e-13 327-340 PD00066 13.92 9.500e-13 411-424			
631	BL00226	Intermediate filaments proteins.	BL00226D 19.10 4.667e-11 121- 168			
632	PD01613	RIBOSOME FACTOR PROTEIN RECYCLIN.	PD01613 23.39 6.121e-17 169-215			
636	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 9.500e-10 842- 857			
637	PF00855	PWWP domain proteins.	PF00855 13.75 3.872e-17 1078- 1095			
638	PR00671	INHIBIN BETA B CHAIN SIGNATURE	PR00671C 4.18 9.671e-10 549- 569			
639	BL00240	Receptor tyrosine kinase class III proteins.	BL00240F 17.74 7.645e-11 157- 205 BL00240G 28.45 1.818e-10 204-257			
642	BL01191	Ribosomal protein S3Ae proteins.	BL01191A 15.57 1.000e-40 13-64 BL01191B 13.33 1.000e-40 89- 140 BL01191C 16.50 1.000e-40 180-232			

SEQ ID NO:	Accession No.	Description	Results*
643	PR00950	FLAGELLAR BIOSYNTHETIC PROTEIN FLHB SIGNATURE	PR00950B 14.12 6.571e-09 92- 115
644	BL00741	Guanine-nucleotide dissociation stimulators CDC24 family sign.	BL00741B 14.27 7.808e-09 558- 581
646	PD02059	CORE POLYPROTEIN PROTEIN GAG CONTAINS: P.	PD02059B 24.48 7.211e-09 125- 160
647	BL00086	Cytochrome P450 cysteine heme- iron ligand proteins.	BL00086 20.87 7.395e-13 404-436
649	PF00806	Pumilio-family RNA binding domain proteins (aka PUM-HD, Pumilio homol.	PF00806B 11.32 4.176e-12 766- 776 PF00806C 7.81 5.263e-11 838-847 PF00806C 7.81 7.632e- 09 694-703
650	PR00221	CAULIMOVIRUS COAT PROTEIN SIGNATURE	PR00221H 12.82 7.614e-09 298- 312
651	PF00023	Ank repeat proteins.	PF00023A 16.03 9.571e-11 50-66
654	BL01279	Protein-L-isoaspartate(D-aspartate) O-methyltransferase signa.	BL01279A 24.27 6.967e-10 90- 138
657	BL00028	Zinc finger, C2H2 type, domain proteins. Histone deacetylase family.	BL00028 16.07 1.000e-14 351-368 BL00028 16.07 4.706e-14 267-284 BL00028 16.07 7.882e-14 71-88 BL00028 16.07 5.500e-13 183-200 BL00028 16.07 5.500e-13 127-144 BL00028 16.07 2.174e-12 491-508 BL00028 16.07 2.957e-12 323-340 BL00028 16.07 8.043e-12 463-480 BL00028 16.07 9.217e-12 435-452 BL00028 16.07 2.038e-11 211-228 BL00028 16.07 3.769e-11 15-32 BL00028 16.07 4.115e-11 379-396 BL00028 16.07 8.615e-11 295-312 BL00028 16.07 8.962e-11 99-116 BL00028 16.07 5.200e-10 155-172 BL00028 16.07 9.100e-10 43-60 BL00028 16.07 9.100e-10 239-256 PF00850E 8.88 4.750e-12 52-78 PF00850D 14.76 8.696e-11 17-41 PF00850G 22.75 5.382e-10 115-
660	PR00193	MYOSIN HEAVY CHAIN SIGNATURE	157 PR00193A 15.41 6.294e-22 114- 134
661	BL00478	LIM domain proteins.	BL00478B 14.79 5.500e-13 11-26
665	PF00566	Probable rabGAP domain proteins.	PF00566B 11.92 6.100e-09 330- 336
676	BL01270	Band 7 protein family proteins.	BL01270D 20.87 1.509e-21 232- 270 BL01270B 18.74 4.136e-16 164-203 BL01270A 9.40 8.953e- 13 124-137 BL01270E 13.03 8.500e-12 270-299
685	PD02448	TRANSCRIPTION PROTEIN DNA-BINDIN.	PD02448A 9.37 3.927e-09 159- 198
686	PR00625	DNAJ PROTEIN FAMILY SIGNATURE	PR00625D 11.93 7.828e-10 61-72
689	PF00658	Poly-adenylate binding protein, unique domain proteins.	PF00658B 28.57 1.000e-40 105- 152 PF00658C 16.33 8.500e-36 421-458
696	PF00566	Probable rabGAP domain proteins.	PF00566A 12.64 1.409e-11 210-

SEQ ID NO:	Accession No.	Description	Results*
			220
698	BL01100	NNMT/PNMT/TEMT family of methyltransferases proteins.	BL01100E 12.25 9.277e-09 171- 215
699	BL00569	Myelin basic protein.	BL00569A 16.70 3.632e-09 147- 190
702	PR00019	LEUCINE-RICH REPEAT SIGNATURE	PR00019A 11.19 7.261e-10 679-693 PR00019B 11.36 7.300e-10 676-690 PR00019B 11.36 8.650e-10 520-534 PR00019B 11.36 4.240e-09 122-136 PR00019B 11.36 4.240e-09 307-321 PR00019A 11.19 4.333e-09 417-431 PR00019A 11.19 8.000e-09 222-236
703	BL00025	P-type 'Trefoil' domain proteins.	BL00025 17.17 9.217e-21 53-74
704	BL00554	TEA domain proteins.	BL00554A 11.66 1.000e-40 62- 107 BL00554C 12.10 1.000e-40 326-379 BL00554D 12.30 1.000e- 40 389-444 BL00554B 10.31 8.875e-39 262-303
706	PR00878	CHOLINESTERASE SIGNATURE	PR00878F 5.37 4.780e-13 503-516
709	BL00594	Aromatic amino acids permeases proteins.	BL00594A 16.75 5.688e-10 76- 120
710	BL00107	Protein kinases ATP-binding region proteins.	BL00107A 18.39 3.647e-20 136- 167 BL00107B 13.31 6.727e-13 205-221
711	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 3.250e-35 14-53
713	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 4.857e-09 6-23
715	PR00111	ALPHA/BETA HYDROLASE FOLD SIGNATURE	PR00111A 11.49 4.200e-11 123- 139
721	PF00651	BTB (also known as BR-C/Ttk) domain proteins.	PF00651 15.00 2.895e-11 213-226
722	BL00069	Glucose-6-phosphate dehydrogenase proteins.	BL00069C 16.11 7.723e-09 19-50
723	PR00621	HISTONE H2B SIGNATURE	PR00621A 12.25 8.714e-23 38-57 PR00621B 4.91 5.034e-21 57-78
724	BL00919	Deoxyribonuclease I proteins.	BL00919F 14.41 9.010e-09 108- 143
725	BL00919	Deoxyribonuclease I proteins.	BL00919F 14.41 9.010e-09 108- 143
726	BL00790	Receptor tyrosine kinase class V proteins.	BL00790I 20.01 2.375e-12 192- 223
727	BL01115	GTP-binding nuclear protein ran proteins.	BL01115A 10.22 3.089e-10 23-67
731	BL00983	Ly-6 / u-PAR domain proteins.	BL00983C 12.69 4.981e-09 83-99
732	DM00031	IMMUNOGLOBULIN V REGION.	DM00031B 15.41 1.797e-09 79-
740	PF00078	Reverse transcriptase (RNA-dependent DNA polymerase).	PF00078A 8.82 9.438e-09 803-811
744	BL01020	SAR1 family proteins.	BL01020C 15.35 7.038e-20 71-
745	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 3.000e-13 727-740 PD00066 13.92 1.000e-12 671-684

SEQ ID NO:	Accession No.	Description	Results*
			PD00066 13.92 5.286e-12 699-712 PD00066 13.92 6.143e-12 428-441 PD00066 13.92 9.571e-12 456-469
747	PR00190	ACTIN SIGNATURE	PR00190F 7.80 7.506e-09 33-53
748	BL00216	Sugar transport proteins.	BL00216B 27.64 4.512e-16 127- 177
749	PF00622	Domain in SPIa and the RYanodine Receptor.	PF00622B 21.00 9.795e-09 166- 188
750	DM01513	CAMP-DEPENDENT PROTEIN KINASE REGULATORY CHAIN.	DM01513A 13.61 1.491e-09 10-51
751	BL00038	Myc-type, 'helix-loop-helix' dimerization domain proteins.	BL00038B 16.97 4.750e-14 84- 105 BL00038A 13.61 4.750e-11 57-73
753	BL01019	ADP-ribosylation factors family proteins.	BL01019A 13.20 4.882e-24 47-87
754	PD00930	PROTEIN GTPASE DOMAIN ACTIVATION.	PD00930B 33.72 7.000e-17 23-64
757	BL01019	ADP-ribosylation factors family proteins.	BL01019A 13.20 4.882e-24 47-87
759	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 6.400e-13 279-296
761	DM01724	kw ALLERGEN POLLEN CIMI HOL-LI.	DM01724 8.14 9.526e-09 192-212
762	DM00758	AGRIN.	DM00758 13.12 8.250e-14 341- 357
763	PR00421	THIOREDOXIN FAMILY SIGNATURE	PR00421B 11.40 7.400e-09 29-39
764	BL00038	Myc-type, 'helix-loop-helix' dimerization domain proteins.	BL00038A 13.61 5.667e-10 34-50
766	PR00245	OLFACTORY RECEPTOR SIGNATURE	PR00245A 18.03 2.373e-13 26-48
770	PF00013	KH domain proteins family of RNA binding proteins.	PF00013 5.78 7.300e-09 32-44
775	BL00027	'Homeobox' domain proteins.	BL00027 26.43 1.600e-29 85-128
776	BL01031	Heat shock hsp20 proteins family profile.	BL01031C 17.68 7.000e-13 100- 125 BL01031B 15.78 4.300e-11 72-93
777	BL00657	Fork head domain proteins.	BL00657B 22.27 4.789e-37 63- 106 BL00657A 19.39 1.600e-32 18-60
782	BL00491	Aminopeptidase P and proline dipeptidase proteins.	BL00491C 12.15 8.800e-18 363- 378 BL00491D 8.33 2.946e-12 392-406 BL00491B 5.42 5.320e- 12 341-354
783	BL00170	Cyclophilin-type peptidyl-prolyl cis-trans isomerase signatur.	BL00170C 18.49 3.571e-32 35-80
784	BL00226	Intermediate filaments proteins.	BL00226D 19.10 6.143e-40 418-465 BL00226B 23.86 5.696e-35 251-299 BL00226C 13.23 2.174e-23 317-348 BL00226A 12.77 3.571e-12 150-165 BL00226B 23.86 1.113e-10 202-250 BL00226B 23.86 5.395e-09 379-427 BL00226B 23.86 9.163e-09 397-445

SEQ ID NO:	Accession No.	Description	Results*
785	PF00624	Flocculin repeat proteins.	PF00624I 9.10 8.875e-10 96-126
786	BL00021	Kringle domain proteins.	BL00021D 24.56 3.942e-22 376- 418 BL00021B 13.33 4.214e-14 217-235
790	BL00027	'Homeobox' domain proteins.	BL00027 26.43 7.750e-34 207-250
791	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 7.000e-14 984-997 PD00066 13.92 1.500e-13 898-911 PD00066 13.92 5.000e-13 956-969 PD00066 13.92 4.429e-12 809-822 PD00066 13.92 3.400e-09 928-941
796 	BL01228	Hypothetical cof family proteins.	BL01228D 17.44 7.150e-11 232- 257
800	PR00449	TRANSFORMING PROTEIN P21 RAS SIGNATURE	PR00449A 13.20 7.577e-10 21-43
801	BL00741	Guanine-nucleotide dissociation stimulators CDC24 family sign.	BL00741B 14.27 5.250e-10 748- 771
802	PR00918	CALICIVIRUS NON- STRUCTURAL POLYPROTEIN FAMILY SIGNATURE	PR00918A 13.76 2.500e-I1 1636- 1657
811	BL01185	C-terminal cystine knot proteins.	BL01185D 23.45 8.043e-19 4238- 4291 BL01185C 15.86 9.852e-15 3615-3654
813	BL00660	Band 4.1 family domain proteins.	BL00660C 23.36 4.774e-17 217- 261 BL00660A 31.50 2.091e-16 45-98 BL00660B 17.33 1.396e-09 131-171
814	DM00179	w KINASE ALPHA ADHESION T-CELL.	DM00179 13.97 8.435e-09 17-27
815	BL01205	Iodothyronine deiodinases proteins.	BL01205A 28.90 1.581e-25 12-44
816	BL00126	3'5'-cyclic nucleotide phosphodiesterases proteins.	BL00126C 22.07 1.000e-28 245- 286 BL00126E 35.22 6.878e-22 372-427 BL00126D 25.50 1.857e- 18 300-339 BL00126A 27.56 4.545e-18 179-216 BL00126B 15.20 2.385e-14 219-231
818	BL01208	VWFC domain proteins.	BL01208B 15.83 5.667e-11 51-66 BL01208B 15.83 7.750e-10 270- 285
821	BL01107	Ribosomal protein L27e proteins.	BL01107B 16.28 1.000e-40 46-90 BL01107A 12.03 7.529e-34 3-46
824	PR00621	HISTONE H2B SIGNATURE	PR00621A 12.25 8.714e-23 38-57 PR00621B 4.91 7.207e-21 57-78
827	PR00211	GLUTELIN SIGNATURE	PR00211B 0.86 8.083e-09 102- 123
829	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 9.924e-11 19-34
830	BL00226	Intermediate filaments proteins.	BL00226B 23.86 4.600e-33 244- 292 BL00226D 19.10 8.054e-29 410-457 BL00226C 13.23 8.125e- 22 309-340 BL00226A 12.77 4.960e-14 139-154
833	PR00021	SMALL PROLINE-RICH PROTEIN SIGNATURE	PR00021A 4.31 2.440e-10 2-15 PR00021B 7.29 3.647e-09 24-34
834	PR00876	NEMATODE METALLOTHIONEIN	PR00876B 7.66 5.014e-09 143- 157

SEQ ID NO:	Accession No.	Description	Results*
		SIGNATURE	
835	PR00021 .	SMALL PROLINE-RICH PROTEIN SIGNATURE	PR00021A 4.31 7.366e-16 19-32 PR00021A 4.31 8.291e-09 3-16
836	PF01062	Putative membrane protein.	PF01062F 17.08 1.000e-40 277- 331 PF01062E 16.81 8.603e-26 214-258 PF01062D 18.73 8.636e- 26 123-167 PF01062A 16.52 6.339e-22 20-60 PF01062B 15.58 6.906e-18 62-92 PF01062C 15.18
841	BL00232	Cadherins extracellular repeat proteins domain proteins.	5.135e-12 92-123 BL00232B 32.79 5.579e-22 18-66 BL00232B 32.79 9.169e-18 236- 284 BL00232B 32.79 6.803e-14 340-388 BL00232C 10.65 8.500e- 13 234-252 BL00232B 32.79 2.098e-12 120-168 BL00232C 10.65 3.415e-12 16-34 BL00232B 32.79 9.451e-12 451-499
842	PR00021	SMALL PROLINE-RICH PROTEIN SIGNATURE	PR00021A 4.31 5.333e-15 4-17
843	DM00031	IMMUNOGLOBULIN V REGION.	DM00031B 15.41 6.108e-10 91- 125
844	BL01242	Formamidopyrimidine-DNA glycosylase proteins.	BL01242F 17.92 7.722e-14 177- 211 BL01242G 25.36 3.084e-10 237-281
846	BL00903	Cytidine and deoxycytidylate deaminases zinc-binding region s.	BL00903 12.93 5.821e-09 91-101
848	BL00564	Argininosuccinate synthase proteins.	BL00564A 19.93 6.114e-09 7-44
849	BL00273	Heat-stable enterotoxins proteins.	BL00273 12.24 7.638e-10 140-153 BL00273 12.24 8.875e-10 47-60
850	BL00657	Fork head domain proteins.	BL00657A 19.39 9.438e-21 74- 116
855	BL00021	Kringle domain proteins.	BL00021B 13.33 3.143e-18 586- 604 BL00021D 24.56 3.613e-17 749-791
860	BL00798	Aldo/keto reductase family proteins.	BL00798F 23.30 1.000e-40 238- 287 BL00798E 20.32 8.759e-31 177-215 BL00798B 16.01 3.172e- 22 36-61 BL00798D 7.65 1.375e- 15 94-111 BL00798A 14.97 2.565e-15 8-23 BL00798C 11.15 2.800e-15 70-83
861	DM01117	2 kw TRANSPOSASE WITHIN TRANSPOSITION VASOTOCIN.	DM01117B 13.11 8.333e-09 495- 530
862	PR00930	HIGH MOBILITY GROUP PROTEIN (HMGY) SIGNATURE	PR00930E 5.98 6.143e-09 49-62
863	PD00919	CALCIUM-BINDING PRECURSOR SIGNAL R.	PD00919B 9.47 4.822e-09 171- 186
864	BL00021	Kringle domain proteins.	BL00021D 24.56 3.647e-33 490- 532
865	PR00910	LUTEOVIRUS ORF6 PROTEIN SIGNATURE	PR00910A 2.51 4.889e-10 56-69
868	PR00833	POLLEN ALLERGEN POA PI SIGNATURE	PR00833H 2.30 8.500e-10 282- 297 PR00833H 2.30 6.769e-09 325-340

SEQ ID NO:	Accession No.	Description	Results*
869	BL00032	'Homeobox' antennapedia-type protein.	BL00032B 10.83 1.281e-11 99- 138
876	BL00027	'Homeobox' domain proteins.	BL00027 26.43 3.500e-25 177-220
877	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 9.557e-13 134- 149 PR00049D 0.00 2.500e-12 136-151 PR00049D 0.00 2.500e- 12 137-152 PR00049D 0.00 4.000e-12 138-153 PR00049D 0.00 4.000e-12 139-154 PR00049D 0.00 4.000e-12 140- 155 PR00049D 0.00 4.000e-12 141-156 PR00049D 0.00 4.000e- 12 142-157 PR00049D 0.00 4.000e-12 143-158 PR00049D 0.00 4.000e-12 144-159 PR00049D 0.00 4.000e-12 146-161 PR00049D 0.00 4.000e- 12 147-162 PR00049D 0.00 4.000e-12 148-163 PR00049D 0.00 7.126e-11 132-147 PR00049D 0.00 9.244e-11 149- 164 PR00049D 0.00 1.643e-10 135-150 PR00049D 0.00 8.714e-10 133-148 PR00049D 0.00 2.831e-09 130-145 PR00049D 0.00 5.576e-09 150-
000	DECOCOA	Di	165
880 881	PF00624 PF00624	Flocculin repeat proteins. Flocculin repeat proteins.	PF00624I 9.10 9.646e-09 409-439 PF00624I 9.10 9.646e-09 448-478
882	PR00320	G-PROTEIN BETA WD-40 REPEAT SIGNATURE	PR00320B 12.19 3.571e-10 1121- 1136 PR00320A 16.74 9.206e-10 1171-1186 PR00320C 13.01 1.000e-09 1121-1136 PR00320A 16.74 1.878e-09 1121-1136 PR00320C 13.01 3.700e-09 1171- 1186 PR00320B 12.19 5.950e-09 1171-1186
883	BL00904	Protein prenyltransferases alpha subunit repeat proteins proteins.	BL00904D 1.47 6.945e-10 197- 238
.884	BL00904	Protein prenyltransferases alpha subunit repeat proteins proteins.	BL00904D 1.47 6.945e-10 179- 220
887	PR00254	NICOTINIC ACETYLCHOLINE RECEPTOR SIGNATURE	PR00254D 15.50 1.857e-18 97- 116 PR00254A 11.23 2.588e-14 27-44 PR00254C 11.36 3.045e-13 79-92 PR00254B 12.97 5.179e-13 61-76
889	PD02870	RECEPTOR INTERLEUKIN-I PRECURSOR.	PD02870B 18.83 7.571e-19 101- 134 PD02870C 24.41 4.643e-10 146-181
890	BL00237	G-protein coupled receptors proteins.	BL00237A 27.68 9.500e-25 148- 188 BL00237D 11.23 5.235e-15 381-398 BL00237C 13.19 1.360e- 14 319-346 BL00237B 5.28 8.875e-11 276-288

SEQ ID NO:	Accession No.	Description	Results*
892	PD01719	PRECURSOR GLYCOPROTEIN SIGNAL RE.	PD01719A 12.89 8.132e-18 59-87

^{*} Results include: Accession number, sub type, Ematrix p-value, and the position of signature sequence.

PCT/US01/27760

TABLE 4

SEQ ID NO:	Pfam Model	Description	E-value	Score
451	tsp_1	Thrombospondin type 1 domain	4.9e-13	56.8
452	proteasome	Proteasome A-type and B-type	2.1e-49	177.6
453	proteasome	Proteasome A-type and B-type	1.5e-39	144.8
454	ldh	lactate/malate dehydrogenase, NAD binding do	1.4e-20	80.1
536	Collagen	Collagen triple helix repeat (20 copies)	1.4e-71	251.2
540	PH	PH domain	7.9e-14	54.2
542	adh_short	short chain dehydrogenase	1.1e-70	248.3
545	UPF0066	Uncharacterised protein family UPF0066	8.1e-38	139.1
546	Peptidase_M48	Peptidase family M48	0.013	-49.3
550	tRNA-synt_1d	tRNA synthetases class I (R)	1.3e-11	17.9
551	mito_carr	Mitochondrial carrier protein	1.3e-20	81.9
554	zf-CCCH	Zinc finger C-x8-C-x5-C-x3-H type	1.2e-09	45.5
559	bZIP	bZIP transcription factor	6e-05	22.9
564	cadherin	Cadherin domain	0	1932.1
565	TGS	TGS domain	0.071	5.1
568	fer2	2Fe-2S iron-sulfur cluster binding domain	2.3e-06	34.6
570	tRNA-synt_2	tRNA synthetases class II (D, K and N)	3.6e-33	123.6
571	SIR2	Sir2 family	1e-97	338.1
574	S-AdoMet syntD2	S-adenosylmethionine synthetase, cent	1.5e-98	340.9
576	OTU	OTU-like cysteine protease	0.006	13.2
579	R3H	R3H domain	5.5e-14	59.9
580	Ribosomal L15	Ribosomal protein L15 amino terminal re	4.3e-13	56.9
581	WD40	WD domain, G-beta repeat	1.2e-20	82.1
583	птт	RNA recognition motif.	5.3e-05	30.1
584	synaptobrevin	Synaptobrevin	5e-36	133.1
585	Oxysterol_BP	Oxysterol-binding protein	7.5e-34	125.9
589	efhand	EF hand	3.4e-26	100.5
590	DPPIV N term	Dipeptidyl peptidase IV (DPP IV) N-termi	3.5e-173	588.7
592	WHI	WH1 domain	0.0045	7.1
593	PP2C	Protein phosphatase 2C	1.3e-74	261.3
595	WD40	WD domain, G-beta repeat	3.1e-16	67.4
596	ras	Ras family	2.6e-86	300.1
597	filament	Intermediate filament protein	1.5e-06	28.4
598	zf-C2H2	Zinc finger, C2H2 type	1.4e-106	367.4
599	thiored	Thioredoxin	8.9e-46	156.1
603	PAP2	PAP2 superfamily	0.0057	10.0
604	PDZ	PDZ domain (Also known as DHR or GLGF)	3.4e-23	90.5
606	NAC	NAC domain	1.6e-26	101.5
607	Anti_proliferat	BTG1 family	5.2e-22	86.5
609	Ribosomal S27e	Ribosomal protein S27	8.4e-30	112.4
611	DSPc	Dual specificity phosphatase, catalytic doma	2.4e-06	23.2
612	ig	Immunoglobulin domain	9e-10	36.5
613	Gal-bind_lectin	Galactoside-binding lectin 1.9e-07		20.0
614	Collagen	Collagen triple helix repeat (20 copies) 9e-41		148.9
616	PHD	PHD-finger	4.9e-20	80.0
618	bZIP	bZIP transcription factor	0.0062	15.8
620	AP endonucleas1	AP endonuclease family 1	0.021	10.3
622	SET	SET domain	2e-54	194.2
623	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	1.3e÷10	38.7
624	ACBP	Acyl CoA binding protein	4.4e-57	203.1

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE 5

	PDB annotation	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS NSEC1; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE
IABLE 5	Compound	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;	ALPHA SPECTRIN; CHAIN: A, B, C;	SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;
	SeqFold score	77.81		72.53								
	PMF		0.19		0.10	0.35	-0.08	-0.06	-0.08	0.12	-0.06	-0.14
	Verify score		0.10		-0.44	-0.04	0.04	0.03	0.14	-0.09	0.06	0.12
	PSI- BLAST	5.4e-07	3.6e-15	3.6e-15	3.6e-17	1.8e-15	60-96	1.4e-09	3.6e-09	3.6e-09	1.3e-10	9e-11
	End	388	349	364	374	412	291	273	301	338	374	380
	Start AA	188	133	154	149	227	142	149	177	192	240	263
	Chain TO	Y	4	4	В	В	V	V	∢	4	₹	A
	PDB CD	lavi	lcun	Icun	1dn1	1dn1	lez3	lez3	lez3	lez3	lez3	lez3
	S B S	449	449	449	449	449	449	449	449	449	449	449
												_

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMG	SeqFold	Compound	PDB annotation
	3	3	¥¥	AA	DLASI	acole.	arone.	acore		
t	lqqe	4	112	388	1.1e-15			71.23	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	PROTEIN TRANSPORT HELLX-TURN- HELLX TPR-LIKE REPEAT, PROTEIN TRANSPORT
449	lquu	4	144	408	1.8e-24	-0.03	0.35		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
449	lquu	4	154	407	1.8e-24			74.70	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
449	1sig		118	308	7.2e-07	-0.31	0.16		RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION
449	1sig		141	440	3.6e-12			78.55	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION
449	lavi	V	159	357	5.4e-11			72.01	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION
449	lcun	4	122	307	7.2e-13	90.0	0.40		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN
449	lcun	4	133	360	1.6e-15	0.10	0.84		ALPHÁ SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED- COILS, STRUCTURAL PROTEIN
449	Icun	Ą	154	370	1.66-15			64.60	ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN
449	lcun	4	82	17.2	9e-10	-0.38	0.01		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN
	1dn1	æ	173	381	3.6e-14	-0.24	0.05		SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	ENDOCYTOSIS/EXOCYTOSIS NSEC1; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT
449	1e94	ш	66	294	1.8e-05	-0.36	0.23		HEAT SHOCK PROTEIN HSLV;	CHAPERONE HSLV; HSLU CHAPERONE,

	T					- 1	ī. , T		Fi	땬		
PDB annotation	HSLVU, CLPQY, AAA-ATPASE, ATP- DEPENDENT 2 PROTEOLYSIS, PROTEASOME	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	CONTRACTILE PROTEIN TRIPLE-HELIX COLLED COLL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION	LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS NSEC1; PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI-
Compound	CHAIN: A, B, C, D; HEAT SHOCK PROTEIN HSLU; CHAIN: E, F;	SYNTAXIN-1A; CHAIN: A, B, C;	SYNTAXIN-1A; CHAIN: A, B, C;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	APOLIPOPROTEÍN A-1; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C,	ALPHA SPECTRIN; CHAIN: A, B, C;	SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN:
SeqFold score				67.33		66.85	71.14	77.81		72.53		
PMF score		-0.13	-0.13		0.43				0.19		0.10	0.35
Verify score		0.07	0.06		-0.13				0.10		-0.44	-0.04
PSI- BLAST		1.8e-09	5.4e-11	3.6e-13	7.2e-23	7.2e-23	1.6e-10	5.4e-07	3.6e-15	3.6e-15	3.6e-17	1.8e-15
End		349	374	400	377	399	372	388	349	364	374	412
Start AA		226	246	112	134	154	29	188	133	154	149	227
Chain 10		∀	4	∢	4	4		4	∢	4	В	В
8 a		lez3	lez3	lqqe	1quu	Iquu	lsig	lavi	lcun	lcun	1dn1	1dn1
SEQ El	Ö	449	449	449	449	449	449	450	450	450	450	450

SEQ EQ	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
									B;	SUBUNIT
450	lez3	4	142	291	60-96	0.04	-0.08		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE
450	lez3	A	149	273	1.4e-09	0.03	-0.06		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA DEOTEIN 224 THEFF HE IY BINDI H
450	lez3	4	171	301	3.6e-09	0.14	-0.08		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSISEXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE
450	lez3	<	192	338	3.6e-09	-0.09	0.12		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE
450	lez3	4	240	374	1.3e-10	90.0	-0.06		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE
450	lez3	₹.	263	380	9e-11	0.12	-0.14		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE
450	Iqqe	V.	112	388	1.1e-15			71.23	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT
450	lquu	4	144	408	1.8e-24	-0.03	0.35		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
450	lquu	4	154	407	1.8e-24			74.70	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
450	lsig		118	308	7.2e-07	-0.31	0.16		RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMA70, RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION
450	lsig		141	440	3.6e-12			78.55	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION
450	lavl	4	159	357	5.40-11			72.01	APOLIPOPROTEIN A-J; CHAIN: A, B, C, D;	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION
450	Icun	A	122	307	7.2e-13	90.0	0.40		ALPHA SPECTRIN; CHAIN: A, B,	STRUCTURAL PROTEIN TWO REPEATS OF

SEQ BOS BOS BOS BOS BOS BOS BOS BOS BOS BOS	EDB CII	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
									Ċ	SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED- COILS, STRUCTURAL PROTEIN
450	lcun	A	133	360	1.6e-15	0.10	0.84		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED-COLLS, STRUCTURAL PROTEIN
450	lcun	V	154	370	I.6e-15			64.60	ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COLLED- COLLS, STRUCTURAL PROTEIN
450	loun	4	82	27.1	9e-10	-0.38	0.01		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED-COILS, STRUCTURAL PROTEIN
450	1dn1	В	173	381	3.6e-14	-0.24	0.05		SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT
450	1e94	ш	66	294	1.8e-05	-0.36	0.23		HEAT SHOCK PROTEIN HSLV; CHAIN: A, B, C, D; HEAT SHOCK PROTEIN HSLU; CHAIN: E, F;	CHAPERONE HSLV; HSLU CHAPERONE, HSLVU, CLPQY, AAA-ATPASE, ATP-DEPENDENT 2 PROTEOLYSIS, PROTEASOME
450	lez3	¥	226	349	1.8e-09	0.07	-0.13		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE
450	lez3	4	246	374	5.4e-11	90.0	-0.13		SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE
450	lqqe	¥	112	400	3.6e-13			67.33	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	PROTEIN TRANSPORT HELLX-TURN- HELLX TPR-LIKE REPEAT, PROTEIN TRANSPORT
450	lquu	Ą	134	377	7.2e-23	-0.13	0.43		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
450	1գոո	A	154	399	7.2e-23			66.85	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN
450	lsig		29	372	I.6e-10			71.14	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION

	PDB U3	Chain ID	Start	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
	9wga	V	889	842	1.6e-15	0.02	-0.19		LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	
1 12	lryp	ပ	2	237	8e-73	0.76	1.00		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
1	qçıı	ပ	2	240	1.6e-75	0.83	1.00		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
J	lryp	ပ	2	243	1.6e-75			245.13	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q.	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
I	1800	Ω	16	193	1.8e-43	0.39	1:00		PROTEASOME COMPONENT Y7; CHAIN: A, O; PROTEASOME COMPONENT Y13; CHAIN: B, P; PROTEASOME COMPONENT PRE6; CHAIN: C, Q; PROTEASOME COMPONENT PUP2; CHAIN: D, R; PROTEASOME COMPONENT PRE5; CHAIN: E, S; PROTEASOME COMPONENT C1; CHAIN: F, T; PROTEASOME COMPONENT ALPH4; CHAIN: G, U; PROTEASOME COMPONENT PUP1; CHAIN: H, Y; PROTEASOME COMPONENT PUP3; CHAIN: I, W; PROTEASOME COMPONENT C11; CHAIN: 1, X; PROTEASOME COMPONENT PRE2; CHAIN: K, Y; PROTEASOME COMPONENT C11; CHAIN: 1, X; PROTEASOME COMPONENT PRE2; CHAIN: K, Y; PROTEASOME COMPONENT C11; CHAIN: 1, X; PROTEASOME	HYDROLASE MACROPAIN SUBUNIT Y1, PROTEINASE YSCE SUBUNIT 7, MACROPAIN SUBUNIT 713, PROTEINASE YSCE SUBUNIT 13, MACROPAIN SUBUNIT PRE6, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PUP2, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PRE5, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT CI, PROTEINASE YSCE SUBUNIT 1, MACROPAIN SUBUNIT MACROPAIN SUBUNIT PUP1, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PUP1, MACROPAIN SUBUNIT PUP1, ROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PUP1, ROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PUP1, ROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PUP3, MULTICATALYTIC MACROPAIN SUBUNIT CI1, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PRE2,

S a S	PDB UD	Chain ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
<u> </u>									CHAIN. I., Z; PROTEASOME COMPONENT PRE4; CHAIN: M, 1; PROTEASOME COMPONENT PRE3; CHAIN: N, 2;	PROTEINASE YSCE SUBUNIT MULTICATALYTIC ENDOPEPTIDASE COMPLEX SUBUNIT C5; MACROPAIN SUBUNIT PRE4, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PRE3, PROTEINASE YSCE SUBUNIT PROTEINASE YSCE SUBUNIT PROTEINASE YSCE SUBUNIT PROTEINASE YSCE SUBUNIT HYDROLASE
452	Ipma	4	-	506	3.2e-44	0.55	1.00		PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	PROTEASE PROSOME, MULTICATALYTIC PROTEASE, MCP, MACROPAIN; PROTEASE, PROTEASOME, HYDROLASE
452	lpma	∢	m	506	3.2e-44			105.95	PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	PROTEASE PROSOME, MULTICATALYTIC PROTEASE, MCP, MACROPAIN; PROTEASE, PROTEASOME, HYDROLASE
452	Ілур	а	_	506	1.3e-44	0.67	1.00		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
452	Ілур	æ	-	216	1.3e-44			107.59	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
452	1лур	ပ	2	206	4.8e-51	0.73	1.00		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
452	Ілур	U	2	209	5.4e-54	0.48	1.00		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
452	lryp	ပ	2	212	5.4e-54			172.82	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2

_		 						_								_	_									_			_
PDB annotation	DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S	PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING.	HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE	MULIICATALYTIC PROTEINASE, 20S	DEGRADATION, ANTIGEN PROCESSING,	A THE THE STATE OF	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S	PROTEASOME, PROTEIN 2	DEGRADATION, ANTIGEN PROCESSING,	HYDROLASE, PROTEASE	HYDROLASE MACROPAIN SUBUNIT Y7,	PROTEINASE YSCE SUBUNIT 1,	VSCE STIBILITY 13 MACRODAIN STIBILITY	PREG PROTEINASE VSCE SHRIMT	MACROPAIN STRIMIT PIED	PROTEINASE YSCE SUBUNIT	MACROPAIN SUBUNIT PRES,	PROTEINASE YSCE SUBUNIT	MACROPAIN SUBUNIT CI, PROTEINASE	YSCE SUBUNIT I, MACROPAIN SUBUNIT	MACROPAIN STRUMENT PITE	PROTEINASE YSCE SUBUNIT	MACROPAIN SUBUNIT PUP3,	MULTICATALYTIC MACROPAIN SUBUNIT	C11, PROTEINASE YSCE SUBUNIT 11,	PROTEINASE YSCE SUBUNIT	MULTICATALYTIC ENDOPEPTIDASE
Compound		20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P,	ð		20S PROTEASOME; CHAIN: A, B,	C, D, E, F, G, H, I, J, K, L, M, N, O, P,	9	a i ratito maconimican	C. D. E. F. G. H. I. J. K. L. M. N. O. P.	0			PROTEASOME COMPONENT Y7;	COMPONENT VI? CHAIN B.	DEOTE A COMP COMPONENT	PREF. CHAIN: C O: PROTFASOME	COMPONENT PIRO: CHAIN: D. R.	PROTEASOME COMPONENT	PRE5; CHAIN: E, S; PROTEASOME	COMPONENT CI; CHAIN: F, T;	PROTEASOME COMPONENT C7-	ALPHA; CHAIN: G, U;	PI ID1: CHAIN: H V: PROTFASOME	COMPONENT PUP3: CHAIN: I. W.	PROTEASOME COMPONENT C11;	CHAIN: J, X; PROTEASOME	COMPONENT PRE2; CHAIN: K, Y;	CHAIN: L, Z; PROTEASOME	COMPONENT PRE4; CHAIN: M, 1;
SeqFold score								21.0	245.13																				
PMF score		00'1			1.00								1.00																
Verify score	-	9.76			0.83		-						0.39													_			
PSI- BLAST		8e-73			1.6e-75		-	,	1.0e-/2				I.8e-43				_									_			
End		237			240			3,5	243				193																
Start		2			2				7				16																
Chain ED		၁			၁			,	— ပ				D																
804 81		lryp		_	lryp			1	lryp				1g0u																
S B S		453	, 		453				453				453							_									

PDB annotation	COMPLEX SUBUNIT CS; MACROPAIN SUBUNIT PRE4, PROTEINASE YSCE SUBUNIT MACROPAIN SUBUNIT PRE3, PROTEINASE YSCE SUBUNIT PROTEASOME, UBIQUITIN, DEGRADATION, PROTEASE, NTN-	PROTEASE PROSOME, MULTICATALYTIC PROTEASE, MCP, MACROPAIN; PROTEASE, PROTEASOME, HYDROLASE	PROTEASE PROSOME, MULTICATALYTIC PROTEASE, MCP, MACROPAIN; PROTEASE, PROTEASOME, HYDROLASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE	MULTICATALYTIC PROTEINASE MULTICATALYTIC PROTEINASE, 20S PROTEASOME, PROTEIN 2 DEGRADATION, ANTIGEN PROCESSING, HYDROLASE, PROTEASE
Compound	PROTEASOME COMPONENT PRE3; CHAIN: N, 2;	PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,	20S PROTEASOME; CHAIN: A, B, C, D, E, F, G, H, I, I, K, L, M, N, O, P, Q,
SeqFold score			105.95		107.59			172.82
PMF score		1.00		1.00		1.00	1.00	
Verify score		9:0		0.67		0.73	0.48	
PSI- BLAST		3.2e-44	3.2e-44	1.3e-44	1.3e-44	4.8e-51	5.46-54	5.4e-54
End		206	206	206	216	206	209	212
Start		1	en .	-	-	2	2	2
Chain TO		4	4	g	g	O	v	O
PDB CD		lpma	Ipma	lryp	Ігур	lryp	Ігур	lryp
S E S		453	453	453	453	453	453	453

SEQ ES	PDB UD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
454	la5z		185	360	6.4e-53	0.23	0.93		L-LACTATE DEHYDROGENASE; CHAIN: NULL;	OXIDOREDUCTASE OXIDOREDUCTASE, GLYCOLYSIS, HYPERTHERMOPHILES, THERMOTOGA 2 MARITIMA, PROTEIN STABILITY
454	1f0y	A	184	347	1.6e-18	-0.35	0.62		L-3-HYDROXYACYL-COA DEHYDROGENASE; CHAIN: A, B;	OXIDOREDUCTASE HCDH; ABORTIVE TERNARY COMPLEX
454	11db		177	378	9.6e-48	0.20	1.00		OXIDOREDUCTASE(CHOH(D)-	
									NAD(A)) APO-*L-*LACTATE DEHYDROGENASE (E.C.1.1.27)	
									LUB 4	
454	lldn	4	1171	368	1.6e-52	0.12	1.00		OXIDOREDUCTASE(CHOH(D)-	
									DEHYDROGENASE (E.C.1.1.1.27)	
_									COMPLEXED WITH NADH, ILDN	
									3 OXAMATE, AND FRUCTOSE-1,6-	
									BISPHOSPHATE 1LDN 4	
454	1110		175	379	9.6e-52			51.38	OXIDOREDUCTASE(CHOH(D)-	
									NAD(A)) L-*LACTATE	
									COMPLEY WITH 11104	
									COMPLEA WILL ILLC 4	
									(/FBP\$) AND CO=2+== 11 I.C.\$	
137			107	37.6	0 62.67	000	24.0		OVIDOBEDITOTA SECONDACIO	
454	olli		791	0/0	70-20.6	0.00	7.		NAD(A)) L-*LACTATE	
									DEHYDROGENASE (E.C.1.1.1.27)	
									COMPLEX WITH 1LLC 4	
									FRUCTOSE-1,6-BISPHOSPHATE	
									(/FBP\$) AND CO=2+== 1LLC 5	
454	PIII	Ą	189	368	3.2e-47	0.01	0.90		OXIDOREDUCTASE(CHOH (D)-	
									NAD (A)) L-LACTATE	
					-				DEHYDROGENASE (E.C.1.1.1.27)	
									(T-STATE) MUTANT ILLD 3 WITH	
-									CYS 199 REPLACED BY SEK	
									(C1998) COMPLEX WITH NADH	
454	2aak		16	171	4.8e-44	0.02	-0.13		UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION UBC1;
									ENCYME; CHAIN: NOLL;	UBIQUITIN COMPUGATION, LIGASE

PDB annotation				OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE, BETA OXIDATION, SCHAD, CATALYTIC ACTIVITY: 2 L-3- HYDROXYACYL_COA + NAD(+) = 3- OXOACYL_COA + NADH	OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE, BETA OXIDATION, SCHAD, CATALYTIC ACTIVITY: 2 L-3. HYDROXYACYL-COA + NAD(+) = 3. OXOACYL-COA + NADH		·	
Compound	OXIDOREDUCTASE(NAD(A)- CHOH(D)) MALATE DEHYDROGENASE (E.C.1.1.1.37) 2CMD 3	OXIDOREDUCTASE(CHOH(D)- NAD(A)) APO-LACTATE DEHYDROGENASE (E.C.1.1.1.27), ISOENZYME C=4= 2LDX 4	f(D)- 1.1.27),	L-3-HYDROXYACYL COA DEHYDROGENASE; CHAIN: A, B, C; C;	. A, B,	OXIDOREDUCTASE, CHOH DONOR, NAD ACCEPTR LACTATE DEHYDROGENASE H=4= AND S-\$LAC-/NAD\$==+== COMPLEX 5LDH 4 (E.C.1.1.1.27) 5LDH 5	OXIDOREDUCTASE, CHOH DONOR, NAD ACCEPTR LACTATE DEHYDROGENASE H=4= AND S-\$LAC-/NAD\$==+== COMPLEX SLDH 4 (E.C.1.1.1.27) SLDH 5	OXIDOREDUCTASE(CHOH(D)- NAD(A)) M=4= APO-*LACTATE DEHYDROGENASE (E.C.1.1.1.27) 6LDH 4
SeqFold score		81.97				80.62		74.66
PMF score	0.48		1.00	0.46	0.35		1.00	
Verify score	60.0		0.08	-0.46	0.01		0.02	
PSI- BLAST	3.2e-47	9.66-59	9.6e-59	8e-18	8e-18	8e-60	8e-60	1.6e-57
End	378	378	374	347	347	376	375	378
Start AA	182	164	168	184	184	164	185	164
Chain ID				4	ပ			
PDB ID	2cmd	2ldx	2ldx	3hdh	3hdh	Sidh	Sldh	eldh
SEQ EQ	454	454	454	454	454	454	454	454

					_					 		
· PDB annotation		•				LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2.2 TANDEM 3-HELIX COILED- COILS, STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	CONTRACTILE PROTEIN TRIPLE-HELIX COLLED COLL, CONTRACTILE PROTEIN	GLYCOPROTEIN GLYCOPROTEIN	BLOOD COAGULATION FACTOR STUART FACTOR, BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN	KINASE KINASE, SIGNAL
Compound		OXIDOREDUCTASE(CHOH(D)- NAD(A)) M=4= APO-*LACTATE DEHYDROGENASE (E.C.1.1.27) 6LDH 4	OXIDOREDUCTASE(CHOH(D)- NAD+(A)) LACTATE DEHYDROGENASE (E.C.1.1.27) COMPLEX WITH NADH 9LDT 3 AND OXAMATE 9LDT 4	OXIDOREDUCTASE(CHOH(D)- NAD+(A)) LACTATE DEHYDROGENASE (E.C.1.1.27) COMPLEX WITH NADH 9LDT 3 AND OXAMATE 9LDT 4		APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C,	SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	LAMININ; CHAIN: NULL;	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	CALCIUM/CALMODULIN-
SeqFold	score	·	78.35			54.33	58.19		56.88			114.93
PMF	score	1.00		1.00				-0.12		-0.18	0.00	
Verify	score	0.26		0.19		-		-0.00		0.05	0.09	
PSI-	BLAST	1.6e-57	1.4e-61	1.4e-61		5.4e-05	1.8e-07	9e-09	5.4e-09	4.8e-15	1.6e-12	1.4e-89
End	ΨV	378	377	375		219	222	186	222	243	247	318
Start	AA	172	164	172		21	25	20	16	28	171	2
Chain	A		V	A		V	∢	æ	Ą		1	
PDB		eldh	9ldt	9ldt		lavi	lcun	1dn1	lquu	1klo	lxka	1a06
SEQ	АŠ	454	454	454		458	458	458	458	459	459	460

							
	TRANSDUCTION, CALCIUM/CALMODULIN	KINASE KINASE, SIGNAL TRANSDUCTION, CALCIUM/CALMODULIN			PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION	PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION	COMPLEX (KINASE/INHIBITOR) CDK6; P19INK4D; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE
	DEPENDENT PROTEIN KINASE; CHAIN: NULL;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;	TRANSFERASE(PHOSPHOTRANS FERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA ((S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM	TRANSFERASE(PHOSPHOTRANS FERASE) SC-AMPS-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN- DEPENDENT KINASE INHIBITOR;
				110.33		102.26	88.87
		1.00	1.00		1.00		
		0.37	0.63		0.46		
		1.4e-89	; 0	O	1.1e-57	1.1e-57	8e-47
AA		310	330	334	291	292	304
		4	~		_	_	7
		_	ш	ш			4
		1a06	lapm	lapm	Iaq1	laqı	1bi8
Ö		460	460	460	460	460	460
	AA ATTENTION OF THE PROPERTY O	DEPENDENT PROTEIN KINASE; CHAIN: NULL;	AA A A A A A A A A	AA 2.00 DEPENDENT PROTEIN KINASE; 1806 4 310 1.4e-89 0.37 1.00 CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE; 1807 1.4e-89 0.37 1.00 CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE; 1808 1809	1806 4 310 1.46-89 0.37 1.00 CALCIUM/ULL, DEPENDENT PROTEIN KINASE; CHAIN: NULL, C	146-89	1806

יוני ט		î	1	_	<u></u>										,,,5	1												٦
INHIBITORY 2 PROTEIN, CDK, INK4, CELL. CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (KINASE/INHIBITOR) CDK6; P19INK4D: CYCL IN DEPENDENT KINAS	CYCLIN DEPENDENT KINASE	INHIBITORY 2 PROTEIN, CDK, INK4, CE	CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (INHIBITOR PROTEIN/KINASE)	INHIBITOR PROTEIN, CYCLIN-	DEPENDENT KINASE, CELL CYCLE 2	CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE	INHIBITOR PROTEIN, CYCLIN-	DEPENDENT KINASE, CELL CYCLE 2	CONTROL, ALPHA/BETA, COMPLEX	THE ANGENT A ST. COV. THE CHEST STATES	TERMINAL SRC KINASE,	PHOSPHORYLATION, 2 STAUROSPORINE,	TRANSFERASE	PHOSPHOTRANSFERASE PROTEIN	PHOSPHOTRANSFERASE PROTEIN	KINASE 1CKI 18	TRANSFERASE STRESS-ACTIVATED	PROTEIN KINASE-3, ERK6, ERK5; P38-	GAMMA, GAMMA, PHOSPHORY LATION, MAP KINASE						
CHAIN: B, D;	CYCLIN-DEPENDENT KINASE 6; CHAIN- A. C. CYCLIN-	DEPENDENT KINASE INHIBITOR;	CHAIN: B, D;		CYCLIN-DEPENDENT KINASE 6;	CHAIN: A; P19INK4D; CHAIN: B;			CYCLIN-DEPENDENT KINASE 6;	CHAIN: A; P19INK4D; CHAIN: B;			O TEDAMAIA CBO VINIA CE.	C-1 EKWINAL SKC KINASE; CHAIN: A;			CASEIN KINASE I DELTA; 1CKI 6	CASEIN KINASE I DELTA; ICKI 6	CHAIN: A, B; 1CKI 7	PHOSPHORYLATED MAP KINASE	P38-GAMMA; CHAIN: A, B;		PHOSPHOTRANSFERASE CAMP-	DEPENDENT PROTEIN KINASE	CATALYTIC SUBUNIT ICMK 3	PUOCEUCTE ANGEED A CE CAMP	DEPENDENT PROTEIN KINASE	CAIALI IIV SUBUNII ICININ J
					92.84								77 17	//:1/			79.57									102 25	103.33	
	66.0								1.00									1.00		0.95			1.00				_	
	0.23			-					0.44									0.30	٠	0.45			0.42					
	8e-47				8e-49				8e-49				200	5.26-33			3.6e-45	3.6e-45		6.4e-44			0				>	
	281				308				282				, 60	C97			300	285		280			330			22.4	334	
	4				2				4				[-			2	4		18			1		_		-	
	V				V				4	·		•		<			٧	A		٧		_	E				<u> </u>	1
	1bi8		:		1blx				Iblx					1038			1cki	1eki		lcm8			lcmk			+		
	460				460				460				,	- 46U			460	460	!	460			460			†		
	CHAIN; B, D;	CYCLIN-DEPENDENT KINASE 6; CYCLIN-DEPENDENT KINASE 6; CHAIN. A. C.	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 10; CYCLIN	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE INHIBITOR; CHAIN: B, D;	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; DEPENDENT KINASE INHIBITOR; CHAIN: B, D;	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, D; 1bix A 2 308 8e-49 92.84 CYCLIN-DEPENDENT KINASE 6;	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; 1bix A 2 308 8e-49 92.84 CYCLIN-DEPENDENT KINASE 6; CHAIN: B; CHAIN: B; CHAIN: B;	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, D; 1bix A 2 308 8e-49 92.84 CYCLIN-DEPENDENT KINASE 6; CHAIN: B; CHAIN: B;	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, D; 1bix A 2 308 8e-49 92.84 CYCLIN-DEPENDENT KINASE 6; CHAIN: B; CHAIN: A; P19INK4D; CHAIN: B;	1bi8	1bi8	1bi8	1bi8	1bi8 A 4 281 86-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, CHAIN: A, P19INK4D; CHAIN: B; CHAIN: A, P19INK4D; CHAIN: B; CHAIN: A, P19INK4D; CHAIN: B; CHAIN: A, P19INK4D; CHAIN: B; CHAIN: A, P19INK4D; CHAIN: B; CHAIN: B, CHAIN: A, P19INK4D; CHAIN: B; CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: CHAIN: B, CHAIN: CHAI	1bi8 A 4 281 86-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B; CHAIN: A; P19INK4D; CHAIN: B; CHAIN: A; P19INK4D; CHAIN: B; CHAIN: A; P19INK4D; CHAIN: B; CHAIN: A; P19INK4D; CHAIN: B; CHAIN: A; CTERMINAL SRC KINASE; CHAIN: A; CHAIN:	1bi8	1bi8	1bi8	1bi8	1bi8	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: CTERMINAL SRC KINASE; CHAIN: A, B, CKIT CHAIN: A, B, ICKIT CH	1bi8 A 4 281 86-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B; CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B; CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B; CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 7 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE 1 IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 7 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 7 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 7 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 6 CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; ICKI 6 CHAIN: B; CKIT CHAIN: A; B1 CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T PHOSPHORYLATED MAP KINASE IDELTA; CKIT T	1bi8 A 4 281 86-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, CHAIN: CHAIN: B, CHAIN: C	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, CHAIN: CHAIN: B, CHAIN: CH	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: B, CHAIN: A, B, 1CKI 7 CHAIN:	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: A, D; DENTAL CKI 6 CHAIN: A, D; DENTAL CKI 6 CHAIN: A, D; CKI 7 CASEIN KINASE I DELTA; I CKI 6 CHAIN: A, D; CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7 CHAIN: A, CKI 7	1bi8 A 4 281 8e-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: C, PIPINK4D; CHAIN: B, C, CHAIN: C, PIPINK4D; CHAIN: B, C, CHAIN: C, PIPINK4D; CHAIN: B, C, CHAIN: C, CASEIN KINASE I DELTA; I CKI 6 CHAIN: A, B, I CKI 7 CHAIN: A, B	1bi8 A 4 281 86-47 0.23 0.99 CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE 6; CHAIN: B, D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, P19INK4D; CHAIN: B, CYCLIN-DEPENDENT KINASE 6; CHAIN: A, B, LCKI 7 CHAIN: B, LCKI 7 CH

ound PDB annotation		<u>ረ</u> 4	HOSPHOTRANS FPENDENT	(E.C.2.7.1.37)	ATALYTIC		HOSPHOTRANS EPENDENT	(E.C.2.7.1.37)	VIALYTIC			NINE-PROTEIN HOMODIMER	HA; CHALIN; C,		FIBROBLAST GROWTH FACTOR	RECEPTOR 1; TRANSFERASE, TYROSINE-	PHOSPHORYI ATION RECEPTOR	PHOSPHOTRANSFERASE		FIBROBLAST GROWTH FACTOR	RECEPTOR 1; TRANSFERASE, TYROSINE-	PROTEIN KINASE, ATP-BINDING, 2	PHOSPHORYLATION, RECEPTOR,	Ī	DEPENDENT PROTEIN KINASE CDK2; TRANSFERASE,	DIVISION, MITOSIS, PHOSPHORYLATION			ATP-BINDING, 2 CELL CYCLE, CELL	Ì	AL KINASE; TRANSFERASE INK3; TRANSFERASE,
d Compound		(E.C.2.7.1.37) 1CMK 4	TRANSFERASE(PHOSPHOTRANS FERASE) CAMP. DEPENDENT	PROTEIN KINASE (E.C.2.7.1.37)	(CAPK) ICTP 3 (CATALYTIC	SUBUNIT) ICTP 4	TRANSFERASE(PHOSPHOTRANS FERASE) CAMP-DEPENDENT	PROTEIN KINASE (E.C.2.7.1.37)	(CAPK) ICTP 3 (CATALYTIC	SUBUNIT) ICTP 4	SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: A,	B; SERINE/THREONINE-PROTEIN	KINASE FAK-ALFHA; CHAIN: C, D;	FGF RECEPTOR 1; CHAIN: A, B;				-	FGF RECEPTOR 1; CHAIN: A, B;						HUMAN CYCLIN-DEPENDENT		HUMAN CYCLIN-DEPENDENT	KINASE 2; CHAIN: NULL;			C-JUN N-TERMINAL KINASE;
SeqFold	score		100.65											86.13					80.44								116.60		_		
	score						1.00				1.00													١	1.00					_	0.30
Verify	score						0.43				89.0														0.40						0.09
PSI-	BLAST		0	•			0				3.2e-61			1.6e-31		_			1.1e-36						4.8e-60		4.8e-60				3.2e-46
End	AA		316				325				281			286					285						291		292				736
Start	¥		_				-				2			2					_								-				-
Chain	2		H				E				၁			Ą					В												
PDB	9		1ctp				lctp				1f3m			1fgk					1fgk	,					lbcl		The				1jnk
SEQ	ВŞ		460				460				460			460					460						460		460				460

		RASE, JEONINE				VATED	SE, MAP ROTEIN	VATED SF. MAP	ROTEIN		COGEN	2 KINASE	INDING		COGEN	20110171	Z KINASE, INDING		CINASE,	TNA CE	True,	e, titin,	E, TITIN,
PDB annotation	PROTEIN 2 KINASE	TRANSFERASE INK3; TRANSFERASE, INK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE MITOGEN ACTIVATED	PROTEIN KINASE; TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE: TRANSFERASE, MAP	KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	KINASE RABBIT MUSCLE	PHOSPHORYLASE KINASE; GLYCOGEN	METABOLISM, TRANSFERASE, SERINF/THREONINE-PROTEIN 2 KINASE	ATP-BINDING, CALMODULIN-BINDING	KINASE RABBIT MUSCLE	PHOSPHORYLASE KINASE; GLYCOGEN	METABOLISM, IKANSFEKASE,	SEKUNE/LHKEONINE-PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	TRANSFERASE MAP KINASE,	SERINE/THREONINE PROTEIN KINASE, TRANSFERASE	TRANSFERASE MAP KINASE, SEDINE THE EQNINE BEOTEIN KINASE	TRANSFERASE	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION
	PROTE	TRANS JNK3 M PROTE	KINASI	KINASI	KINASI	TRANS	PROTE KINASI KINASI	TRANS	KINASI	KINASI	PHOSP	MEIAL	ATP-BI	KINASI	PHOSP	META	ATP-BI	TRANS	TRANS	TRANS	TRANS	SERINI	SERINE
Compound		C-JUN N-TERMINAL KINASE; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	TWITCHIN; CHAIN: A, B;	MAP KINASE P38; CHAIN: NULL;		MAP KINASE P38; CHAIN: NULL;		PHOSPHORYLASE KINASE;	CHAIN: NULL;			PHOSPHORYLASE KINASE;	CHAIN: NULL;			ERK2; CHAIN: NULL;		ERK2; CHAIN: NULL;	-	TITIN; CHAIN: A, B;	TITIN; CHAIN: A, B;
SeqFold score		86.64		112.15				81.51		110.57										96.66		113.99	
PMF score			1.00		1.00	0.99								1.00				00.1					1.00
Verify score			0.50		0.36	0.15			-		•			0.70				0.45				i	0.58
PSI- BLAST		3.2e-46	4.8e-70	6.4e-71	6.4e-71	9.6e-50		9.6e-50		1.6e-84				1.6e-84				9.6e-46		9.6e-46		4.8e-58	4.8e-58
End		316	307	342	311	306		349		284				281			·	302		327		344	281
Start AA			-	1	2	2		2		-	· 			2				15		7		-	2
Chain ID				<	∢																	٧	V
en G		1jnk	lkoa	Ikob	lkob	1p38	<u> </u>	1p38		lok				lohk				1pme		Ipme		1tki	1tki
SEQ NO NO		460	460	460	460	460		460		460	<u> </u>		·	460				460		460		460	460

PDB annotation	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2, ERK2; TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, 2 ERK2	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2, ERK2; TRANSFERASE, SERINE/THREONINE- PROTEIN KINASE, MAP KINASE, 2 ERK2	COMPLEX (SH3 DOMAIN/VIRAL ENHANCER) SRC-HOMOLOGY 3 DOMAIN; COMPLEX (SH3 DOMAIN/VIRAL ENHANCER), PROTO-ONCOGENE, 2 TRANSFERASE, TYROSINE-PROTEIN KINASE, PHOSPHORYLATION, 3 AIDS, MYRISTYLATION, GTP-BINDING, ATP-BINDING, SH3 DOMAIN, 4 SH2 DOMAIN, PPII HELIX, PXXP MOTIF	PHOSPHOTRANSFERASE C-SRC, P60-SRC, SRC, TYROSINE KINASE, PHOSPHORYLATION, SH2, SH3, 2 PHOSPHOTYROSINE, PROTO-ONCOGENE, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE C-SRC, P60-SRC, SRC, TYROSINE KINASE, PHOSPHORYLATION, SH2, SH3, 2 PHOSPHOTYROSINE, PROTO-ONCOGENE, PHOSPHOTRANSFERASE	TRANSFERASE PROTO-ONCOGENE TYROSINE KINASE; PROTO-ONCOGENE, TRANSFERASE, TYROSINE-PROTEIN KINASE, 2 PHOSPHORYLATION, ATP- BINDING, MYRISTYLATION, SH3 DOMAIN, 3 COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	
Compound	EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;	EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;	FYN TYROSINE KINASE; CHAIN: A, C; HIV-1 NEF PROTEIN; CHAIN: B, D;	TYROSINE-PROTEIN KINASE SRC; CHAIN: NULL;	TYROSINE-PROTEIN KINASE SRC; CHAIN: NULL;	PHOSPHOTRANSFERASE FYN; CHAIN: A; 3BP-2; CHAIN: B;	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2
SeqFold score	101.77				·		
PMF		1.00	1.00	1.00	1.00	1.00	0.99
Verify score		0.44	-0.14	0.22	-0.02	-0.08	-0.03
PSI- BLAST	6.4e-49	6.4c-49	86-19	9.6e-45	4.8e-17	1.4e-19	1.8e-17
End	325	314	328	184	327	328	327
Start	7	т П	276	2	273	273	268
Chain ID			4			₹	4
PDB ID	3erk	3erk	lefn	1fmk	1fmk	lfyn	1gbr
SEQ Si es	460	460	462	462	462	462	462

l .	PDB TI	Chain	Start	End	PSI.	Verify	PIMF	SeqFold	Compound	PDB annotation
		3	5	ΑA	TOWNS .	31036	31036	3000		
									(GRB2, N-TERMINAL IGBR 3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	
	1gfc		272	330	4:8e-21			63.10	ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR- BOUND PROTEIN 2 (GRB2) 1GFC 3 (C-TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN STRUCTURE) 1GFC 4	
	lgfc		275	330	4.8e-21	-0.00	1.00		ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR- BOUND PROTEIN 2 (GRB2) IGFC 3 (C-TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN STRUCTURE) IGFC 4	
	1ghu		95	149	5.4e-27			70.86	GRB2; CHAIN: NULL;	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2
	1ghu	i	58	148	5.4e-27	0.92	1.00	•	GRB2; CHAIN: NULL;	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2
	1ghu		28	148	9.6e-12	1.21	1.00		GRB2; CHAIN: NULL;	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2
	.Eg.	4	-	155	1.3e-28	0.81	1.00		GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
	irgi	∢	-	216	1.3e-28			161.93	GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
	.Eg.	¥	270	330	8e-22	0.33	1.00		GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
	11¢	4	2	149	9e-31			88.47	P56=LCK= TYROSINE KINASE; ILCK 7 CHAIN: A; ILCK 8 TAIL	COMPLEX (KINASE/PEPTIDE)

_							_				_
PDB annotation			COMPLEX (KINASE/PEPTIDE)	TYROSINE KINASE TYROSINE KINASE- INHIBITOR COMPLEX, DOWN- REGULATED KINASE, 2 ORDERED ACTIVATION LOOP	HORMONE/GROWTH FACTOR GRB2-SH2; SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR GRB2-SH2; SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	TRANSFERASE ALPHA BETA FOLD	SIGNAL TRANSDUCTION PROTEIN SRC- HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE- BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	SIGNAL TRANSDUCTION PROTEIN SRC- HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE- BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19		COMPLEX (SIGNAL
Compound		PHOSPHOPEPTIDE TEGQ(PHOSPHO)YQPQPA; 1LCK 14 CHAIN: B; 1LCK 15	P56—LCK— TYROSINE KINASE; ILCK 7 CHAIN: A; ILCK 8 TAIL PHOSPHOPEPTIDE TEGQ(PHOSPHO)YQPQPA; ILCK 14 CHAIN: B: ILCK 15	HAEMATOPÓETIC CELL KINASE (HCK); CHAIN: A;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	LCK KINASE; CHAIN: A;	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	PHOSPHOTRANSFERASE FYN PROTO-ONCOGENE TYROSINE KINASE (E.C.2.7.1.112) ISHF 3 (SH3 DOMAIN) ISHF 4	GROWTH FACTOR RECEPTOR
SeqFold	score	_			97.37				58.54		
PMF	score	_	1.00	1.00		1.00	-0.20	66.0		1.00	1.00
Verify	score		89.0	0.29		1.03	90.0	-0.19	-	-0.31	0.92
PSI-	BLAST		9e-31	8e-44	1.8e-24	1.8e-24	1.4e-08	3.2e-20	3.2e-20	1.46-19	1.8e-27
End	AA		136	184	156	148	184	329	329	328	148
Start	AA		4	_	\$2	28	147	272	272	273	88
Chain	e e		V	<	ш	щ	4	∢	٧	∢	Ξ
PDB	A		11ck	1qcf	Iqg1	lggl	lapc	lsem	lsem	1shf	1zfp
SEQ	АŸ		462	462	462	462	462	462	462	462	462
											_

SEQ PI ID II NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
		•							BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I;	TRANSDUCTION/PEPTIDE) GRB2-SH2; 2-ABZ-GLU-TYR(PO3H2)-LE-ASN-GLN-NH2, WITH 2-ABZ SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE)
462 2s	2shp	A	4	228	1.8e-10	0.16	0.49		SHP-2; CHAIN: A, B;	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN
462 2s	2shp	∢	28	188	1.6e-14	0.14	1.00		SHP-2; CHAIN: A, B;	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN
462 4h	4hck		274	327	1.3e-17	0.18	1.00		HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE
462 lg	1ghu		95	149	5.4e-27			102.39	GRB2; CHAIN: NULL;	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2
462 1g	1ghu		88	148	5.4e-27	0.92	1.00		GRB2; CHAIN: NULL;	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2
462 1g	lgri	∢	-	212	1.6e-40	0.85	1.00		GRÓWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
462 1g	[E6]	4	-	212	1.6e-40			230.39	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
462 lg	lgri	<	_	212	3.2e-37	0.76	1.00		GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
462 Iq	lggl	ы	54	156	1.8e-24			101.17	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	HORMONE/GROWTH FACTOR GRB2-SH2; SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR
462 lq	lggl	D)	28	148	1.8e-24	1.03	1.00		GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN:	HORMONE/GROWTH FACTOR GRB2-SF2; SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX

PDB annotation	(SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR			PPII HELLX, PXXP MOTIF	PHOSPHOTRANSFERASE C-SRC, P60-SRC; SRC, TYROSINE KINASE, PHOSPHORYLATION, SH2, SH3, 2	PHOSPHOTYROSINE, PROTO-ONCOGENE, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE C-SRC, P60-SRC;	PHOSPHORYLATION, SH2, 2 PHOSPHOTYROSINE, PROTO-ONCOGENE, PHOSPHOTYRANSFERASE		TRANSFERASE, TROJO-ONCOGENE, TRANSFERASE, TROGOTEN THAN ET A DISCOULABLY A TROM A TR	BINDING MYRISTYLATION, SH3	DOMAIN, 3 COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	
Сотроила	1;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I;	FYN TYROSINE KINASE; CHAIN: A, C; HIV-1 NEF PROTEIN; CHAIN: B, D;	200 - 1 Com - 1 Com Com Com Com Com Com Com Com Com Com	TYROSINE-PROTEIN KINASE SRC; CHAIN: NULL;		TYROSINE-PROTEIN KINASE	ישבטין ישנים, ישנים,	PHOSPHOTRANSFERASE FYN;	CITAIN: A, 3Df-2, CITAIN: B,		-	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR
SeqFold score													
PMF. score		1.00	1.00		1.00		1.00		1.00			-	0.99
Verify score		0.92	-0.14		0.22		-0.02		-0.08				-0.03
PSI- BLAST		1.8e-27	8e-19		9.6e-45		4.8e-17		1.4e-19	_			1.8e-17
End		148	328		184		327		328				327
Start AA		88	276	_	8		273		273				268
Chain ID		ш	₹						4			_	∢
PDB UD		1zfp	lefn		Agi T		1fmk		Ifyn				lgbr
SEQ EQ		462	463		463		463		463				463

			SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	COMPLEX (KINASE/PEPTIDE)
RECEPTOR-BOUND PROTEIN 2 (GRB2, N-TERMINAL IGBR 3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR- BOUND PROTEIN 2 (GRB2) 1GFC 3 (C-TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN STRUCTURE) 1GFC 4	ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR- BOUND PROTEIN 2 (GRB2) 1GFC 3 (C-TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN STRUCTURE) 1GFC 4	GRB2; CHAIN: NULL;	GRB2; CHAIN: NULL;	GRB2; CHAIN: NULL;	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	P56—LCK— TYROSINE KINASE;
	63.10		98.07				161.93		88.47
		1.00		1.00	1.00	1.00		1.00 1.00	
		-0.00		0.92	1.21	0.81		0.33	
	4.86-21	4.8e-21	5.4e-27	5.4e-27	9.6e-12	1.3e-28	1.3e-28	8e-22	9e-31
	330	330	149	148	148	155	216	330	149
}	272	275	99	58	58	-	_	270	2
						V.	¥.	V	Ą
	1gfc	1gfc	1ghu	1ghu	1ghu	1gri	1gri	1gri	lick
	463	463	463	463	463	463	463	463	463
		RECEPTOR-BOUND PROTEIN 2 GRB2, N-TERMINAL IGBR 3 SH3	1gfc 272 330 4.8e-21 63.10 1gfc 275 330 4.8e-21 -0.00 1.00	1gfc 272 330 4.8e-21 63.10 ADAPITOR PROTEIN 2	Secretor-Bound Protein 2 Cheb 2 Cheb 3 Cheb 3 Cheb 3 Cheb 3 Cheb 3 Cheb 4 C	Light See 148 See 1.00 1.00 Charachina Ch	Light Se-27 130 4.8e-21 G.3.10 ADAPTOR PROTEIN 2	Ight 272 330 4.86-21 63.10 63.10 CONTAINING SISTA DOMANIN) CONVELEXED WITH SOS-A PEPTIDE I GBR 4 (NMR, 29 STRUCTURES) I GBR 5 CONTAINING SISTA AND SH3 CONTAINING SIS	Igra 277 330 4.8e-21 G3.10 ADAPTOR PROTEIN 2 Igra 277 330 4.8e-21 G3.10 ADAPTOR PROTEIN 2 Igra 277 330 4.8e-21 G3.10 ADAPTOR PROTEIN 2 Igra 275 330 4.8e-21 -0.00 1.00 CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR-BOLLOW PROTEIN 2 (CHEMINAL SH3 DOMAIN) Igra A 1 155 1.3e-28 0.81 1.00 GROWTH FACTOR BOUND Igra A 1 216 1.3e-28 0.81 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 8e-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 86-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 86-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 330 86-22 0.33 1.00 GROWTH FACTOR BOUND Igra A 270 370 370 370 370 370 370 370 370 370 370

				INASE-	RB2-SH2; OMAIN, COMPLEX DE),	RB2-SH2; OMAIN, COMPLEX DE),	(LD	EPTIDE- UANINE OR ISEM	EPTIDE- UANINE OR 1SEM	
PDB annotation			ASE/PEPTIDE)	TYROSINE KINASE TYROSINE KINASE- INHIBITOR COMPLEX, DOWN- REGULATED KINASE, 2 ORDERED ACTIVATION LOOP	HORMONE/GROWTH FACTOR GRB2-SH2, SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR GRB2-SH2, SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	TRANSFERASE ALPHA BETA FOLD	SIGNAL TRANSDUCTION PROTEIN SRC- HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE- BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	SIGNAL TRANSDUCTION PROTEIN SRC- HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE- BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	
a.			COMPLEX (KINASE/PEPTIDE)	TYROSINE KINASE TYROSINE INHIBITOR COMPLEX, DOWN- REGULATED KINASE, 2 ORDEI ACTIVATION LOOP	HORMONE/GROWTH FACTOR SIGNAL TRANSDUCTION, SH2 PHOSPHOTYROSYL PEPTIDE, (SIGNAL TRANSDUCTION/PEP HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR SIGNAL TRANSDUCTION, SH2 PHOSPHOTYROSYL PEPTIDE, (SIGNAL TRANSDUCTION/PEP HORMONE/GROWTH FACTOR	TRANSFERASE	SIGNAL TRANS HOMOLOGY 3 (BINDING PROT NUCLEOTIDE E	SIGNAL TRANS HOMOLOGY 3 (BINDING PROT NUCLEOTIDE E	
Compound		ILCK 7 CHAIN: A; ILCK 8 TAIL PHOSPHOPEPTIDE TEGQ(PHOSPHO)YQPQPA; ILCK 14 CHAIN: B; ILCK 15	P56—LCK— TYROSINE KINASE; 1LCK 7 CHAIN: A; 1LCK 8 TAIL PHOSPHOPEPTIDE TEGQ(PHOSPHO)YQPQPA; 1LCK 14 CHAIN: B; 1LCK 15	HAEMATOPOETIC CELL KINASE (HCK); CHAIN: A;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	LCK KINASE; CHAIN: A;	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	PHOSPHOTRANSFERASE FYN PROTO-ONCOGENE TYROSINE KINASE (E.C.2.7.1.112) ISHF 3 (SH3 DOMAIN) ISHF 4
SeqFold	-	<u> </u>			97.37				58.54	
PMF	31036	<u>.</u>	1.00	1.00		1.00	-0.20	66.0		1.00
Verify	3036		99.0	0.29		1.03	90.0	-0.19		-0.31
PSI.			9e-31	8e-44	1.8e-24	1.8e-24	1.4e-08	3.2e-20	3.2e-20	1.4e-19
	Ψ¥		136	184	156	148	184	329	329	328
Start	£		4	_	54	28	147	272	272	273
Chain	1	,	V	ď	ш	ப	4	¥	V	4
PDB	3		llck	lqcf	lggl	lggl	lanc	1sem	lsem	lshf
SEQ	ÿ		463	463	463	463	463	463	463	463

PDB annotation	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) GRB2-SH2; 2- ABZ-GLU-TYR(PO3H2)-ILE-ASN-GLN-NH2, WITH 2-ABZ SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE)	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN	TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2	SRC HOMOLOGY 2 DOMAIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; SRC HOMOLOGY 2 DOMAIN, GRB2, SH2	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 1GR1 14	HORMONE/GROWTH FACTOR GRB2-SH2; SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR GRB2-SH2; SIGNAL TRANSDUCTION, SH2 DOMAIN,
Compound	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I;	SHP-2; CHAIN: A, B;	SHP-2; CHAIN: A, B;	HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	GRB2; CHAIN: NULL;	GRB2; CHAIN: NULL;	GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	GROWTH FACTOR BOUND PROTEIN 2; 1GRI 5 CHAIN: A, B; 1GRI 6	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; SHC-DERIVED PEPTIDE; CHAIN: I;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E;
SeqFold score					102.39			230.39		101.17	
PMF	1.00	0.49	1.00	1.00		1.00	1.00		1.00		1.00
Verify score	0.92	0.16	0.14	0.18		0.92	0.85		0.76		1.03
PSI- BLAST	1.8e-27	1.8e-10	1.6e-14	1.3e-17	5.4e-27	5.4e-27	1.6e-40	1.6e-40	3.2e-37	1.8e-24	1.8e-24
End	148	228	188	327	149	148	212	212	212	156	
Start	28	4	85	274	2 6	88	-		_	54	28
Chain ID	ħ	∢	4				∢	⋖	4	ங	ш
808 C1	lzfp	2shp	2shp	4hck	1ghu	1ghu	ig.	1gri	i r g	lggi	lqgl
SEQ B SE	463	463	463	463	463	463	463	463	463	463	463

																_		
PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), HORMONE/GROWTH FACTOR	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) GRB2-SH2; 2- ABZ-GLU-TYR(PO3H2)-ILE-ASN-GLN-NH2, WITH 2-ABZ SIGNAL TRANSDUCTION, SH2 DOMAIN, PHOSPHOTYROSYL PEPTIDE, 2 COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE)	PHOSPHOTRANSFERASE RHOGAP	DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL	TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE,	TPASE ACTIVATING PROTEIN, GAP,	SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL	TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN: PHOSPHOTRANSFERASE	TPASE ACTIVATING PROTEIN, GAP,	CDC42, 2 PHOSPHOINOSITIDE 3-KINASE,	SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP	DOMAIN; PHOSPHOT RANSFERASE;	CDC42_2 PHOSPHOINOSTTIDE 3-KINASE	SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL	TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP,
SHC-DERIVED PEPTIDE; CHAIN: I;	GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I;	PHOSPHATIDYLINOSITOL 3-	KINASE; CHAIN: A, B;		PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;				PHOSPHATIDYLINOSITOL 3- KINASE: CHAIN: A. B:			•	PHOSPHATIDYLINOSITOL 3-	KINASE; CHAIN: A, B;				PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;
					79.76											_		77.88
	1.00	0.74			•				0.34				0.1					
	0.92	0.20							0 .0				0.38					
	1.8e-27	3.6e-37			3.6e-37				6.4e-17	•			1.8e-37					1.8e-37
	148	504	•		519				516				504					522
	28	329			330				368				329					330
	ш	▼			⋖				V		-		В					В
	12fр	Mdal			1pbw				1pbw				Ipbw					1pbw
	463	469			469				469				469					469
		SHC-DERIVED PEPTIDE; CHAIN: 1,	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; CHAIN: I;	12fp E	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR 12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; BINDING PROTEIN; CHAIN: E; BEPERMAL GROWTH FACTOR RECEPTOR BECEPTOR BECOME BEC	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR RECEPTOR RECEPTOR PEPTIDE; CHAIN: I;	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR FACTO	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR FA	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: I;	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I; EPIDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I; EPIDEMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN: GHAIN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PEPTIDE; CHAIN: A, B; EPIDEMA A 330 519 3.6e-37 79.76 PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B; EPIDEMA A 368 516 6.4e-17 -0.01 0.34 PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B; EPIDEMA A 368 516 6.4e-17 -0.01 0.34 RINASE; CHAIN: A, B; EPIDEMA A 368 516 6.4e-17 -0.01 0.	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPDERJAAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; EPDERJAAL GROWTH FACTOR RECEPTOR DERIVED PEPTIDE; CHAIN: I; 12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E, EPDERMAL GROWTH FACTOR RECEPTOR RECEPTOR RECEPTOR RECEPTOR PROTEIN; CHAIN: I;	1zfp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; BENDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN; CHAIN: E; BENDERMAL GROWTH FACTOR RECEPTOR-DERIVED PEPTIDE; CHAIN: I; CHAIN: A, B; C	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN: CIALN: E; EPIDERMAL GROWTH FACTOR RECEPTOR BINDING PROTEIN: CIALN: E; EPIDERMAL GROWTH FACTOR RECEPTOR PROTEIN: CHAIN: I; CHAIN:	12fp E 58 148 1.8e-27 0.92 1.00 GROWTH FACTOR RECEPTOR BINDING PROTEIN; CIALNI: E; PENDEMAL GROWTH FACTOR RECEPTOR RECEPTOR BECEPTOR 12fp E 58 148 1.86-27 0.92 1.00 GROWTH FACTOR RECEPTOR RECEPTOR RECEPTOR RECEPTOR RECEPTOR PROTEIN: C.AADN: E. EPIDERAL GROWTH FACTOR RECEPTOR PROTEIN: C.AADN: E. EPIDERAL GROWTH FACTOR RECEPTOR DEPTIDE; C.HAIN: I,	12fp E 58 148 1.8e-27 0.92 1.00 BINDING BROTEIN; CHAIN: E, EPIDEBAAL GROWTH FACTOR RECEPTOR BROMON GROTEIN; CHAIN: E, EPIDEBAAL GROWTH FACTOR RECEPTOR RECEPTOR BROMON GROWTH FACTOR RECEPTOR BROMON GROWTH FACTOR RECEPTOR BROMON GROWTH FACTOR RECEPTOR BROMON GROWTH FACTOR RECEPTOR GROWTH FACTOR GRO			

SEQ NO:	PDB UD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
										CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION
	1pbw	g	368	516	6.4e-17	0.04	0.39		PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION
	lrgp		313	502	3.6e-39			97.19	RHOGAP; CHAIN: NULL;	G-PROTEIN CDC42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, GAP, SIGNAL-TRANSDUCTION
	1rgp		319	487	3.6e-39	0.13	1.00	:	RHOGAP; CHAIN: NULL;	G-PROTEIN; G-PROTEIN, GAP, SIGNAL- TRANSDUCTION
	lrgp		367	523	1.6e-25	-0.11	0.82	-	RHOGAP; CHAIN: NULL;	G-PROTEIN, CDÇ42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, GAP, SIGNAL-TRANSDUCTION
	ltx4	4	316	523	1.8e-38			102.49	PSO-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATN/PROTO- ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP, COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
	ltx4	4	319	487	1.8e-38	0.24	1.00		PSO-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATN/PROTO- ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
	ltx4	4	367	523	1.6e-27	-0.09	0.83		PSO-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATN/PROTO- ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
	1fjg	I	270	396	3.2e-47	0.43	1.00		16S RIBOSOMAL RNA; CHAIN: A; FRAGMENT OF MESSENGER RNA; CHAIN: X; 30S RIBOSOMAL PROTEIN S2; CHAIN: B; 30S	RIBOSOME 30S RIBOSOMAL SUBUNIT, RIBOSOME, ANTIBIOTIC, STREPTOMYCIN, 2 SPECTINOMYCIN, PAROMOMYCIN

		_				
PDB annotation			COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION
Compound	RIBOSOMAL PROTEIN S3; CHAIN: C; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S4; RIBOSOMAL PROTEIN S6; CHAIN: F; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S8; CHAIN: I; 30S RIBOSOMAL PROTEIN S10; CHAIN: G; 30S RIBOSOMAL PROTEIN S11; CHAIN: K; 30S RIBOSOMAL PROTEIN S12; CHAIN: L; 30S RIBOSOMAL PROTEIN S11; CHAIN: M; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: Q; 30S RIBOSOMAL PROTEIN S16; CHAIN: R; 30S RIBOSOMAL PROTEIN S15; CHAIN: Q; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S18; CHAIN: T; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T; 30S RIBOSOMAL PROTEIN THX; CHAIN: V		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;
SeqFold score						
PMF score			0.33	0.45	66'0	0.36
Verify score	1		-0.28	-0.20	0.20	0.16
PSI- BLAST			1.8e-12	3.6e-12	6.4e-19	1.6e-19
End	·	-	107	107	147	125
Start			28	28	70	2
Chain 19			∢	ပ	4	A
EDB CD			1a9n	1a9n	1406	140b
SEQ EQ			477	477	477	477

0,	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
Ξÿ	3	3	{	AA	DLA31	score	Score	Score		
	Idoe	V	en en	901	9.6e-15	0.28	0.37		RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT
477	1dce	4	50	148	3.2e-09	-0.15	0.71		RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT
477	1ds9	∢	12	128	3.2e-14	-0.12	0.09		OUTER ARM DYNEIN; CHAIN: A;	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA
477	Тутв	∢	28	119	7.2e-11	0.09	0.34		GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	TRANSCRIPTION RNA11P; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPI1, GTPASE-ACTIVATING PROTEIN, GAP, RNA1P, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY
477	2bnh		27	118	3.6e-11	-0.06	0.37		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS
479	1ពីន	æ	59	130	1.6e-21	0.55	0.99		16S RIBOSOMAL RNA; CHAIN: A; FRAGMENT OF MESSENGER RNA; CHAIN: X; 30S RIBOSOMAL PROTEIN S; CHAIN: B; 30S RIBOSOMAL PROTEIN S; CHAIN: C; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S6; CHAIN: F; 30S RIBOSOMAL PROTEIN S6; CHAIN: F; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S7;	RIBOSOME 30S RIBOSOMAL SUBUNIT, RIBOSOME, ANTIBIOTIC, STREPTOMYCIN, 2 SPECTINOMYCIN, PAROMOMYCIN

PDB annotation	÷	RIBOSOME 30S RIBOSOMAL SUBUNIT, PROTEIN-RNA COMPLEX
Compound	PROTEIN SS, CHAIN: H; 30S RIBOSOMAL PROTEIN S9; CHAIN: I; 30S RIBOSOMAL PROTEIN S19; CHAIN: J; 30S RIBOSOMAL PROTEIN S11; CHAIN: K; 30S RIBOSOMAL PROTEIN S12; CHAIN: L; 30S RIBOSOMAL RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: M; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: Q; 30S RIBOSOMAL PROTEIN S16; CHAIN: P; 30S RIBOSOMAL PROTEIN S17; CHAIN: Q; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T; 30S RIBOSOMAL PROTEIN T; S130S RIBOSOMAL PROTEIN T; CHAIN: S, 30S	16S RBOSOMAL RNA; CHAIN: A; 30S RBOSOMAL PROTEIN S2; CHAIN: B; 30S RBOSOMAL PROTEIN S2; CHAIN: C; 30S RBOSOMAL PROTEIN S4; D; 30S RBOSOMAL PROTEIN S5; CHAIN: E; 30S RBOSOMAL PROTEIN S6; CHAIN: F; 30S RBOSOMAL PROTEIN S7; CHAIN: H; 30S RBOSOMAL PROTEIN S9; CHAIN: H; 30S RBOSOMAL PROTEIN S1; CHAIN: J; 30S RBOSOMAL PROTEIN S1; CHAIN: J; 30S RBOSOMAL PROTEIN S1; CHAIN: L; 30S RBOSOMAL
SeqFold score		
PMF score		0.62
Verify score		-0.52
PSI- BLAST		9.6e-18
End		130
Start AA		48
Chain ID		K
PDB ID		1 fka
SEQ 113		479

171

S E S	PDB CD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
5									CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: P; 30S RIBOSOMAL PROTEIN S17; CHAIN: O; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T	
479	lglx	ပ	82	130	3.2e-13	0.38	1.00		30S RBOSOMAL PROTEIN S6; CHAIN: A, F; 30S RBOSOMAL PROTEIN S15; CHAIN: B, G; 30S RIBOSOMAL PROTEIN S18; CHAIN: C, H; 16S RIBOSOMAL RNA; CHAIN: D, I; 16S RIBOSOMAL RNA; CHAIN: E, J;	RIBOSOME RIBOSOMAL PROTEINS S15, S6, S18, S30 RIBOSOMAL SUBUNIT, RNA, 2 RIBOSOME
480	Ifqv	В	20	114	1.1e-34	0.33	1.00		SKP?; CHAIN: A, C, E, G, I, K, M, O; SKPI; CHAIN: B, D, F, H, J, L, N, P;	LIGASE CYCLIN A/CDK2-ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE
480	1fs1	В	20	114	4.8e-34	0.13	0.95		CYCLIN A/CDK2-ASSOCIATED P19; CHAIN: A, C; CYCLIN A/CDK2-ASSOCIATED P45; CHAIN: B, D;	LIGASE SKP2 F-BOX; SKP1; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE
480	1682	В	20		6.4e-37	0.11	1.00		SKP2; CHAIN: A, C, SKP1; CHAIN: B, D;	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCNE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE
480	lvcb	æ	20	115	7.2e-29	0.45	1.00		ELONGIN B; CHAIN: A, D, G, J; ELONGIN C; CHAIN: B, E, H, K; VHL; CHAIN: C, F, I, L;	TRANSCRIPTION TUMOR SUPPRESSOR, CANCER, UBIQUITIN, BETA SANDWICH, 2 TRANSCRIPTION, TRANSCRIPTIONAL ELONGATION
480	1vcb	В	20	115	7.2e-29			123.71	ELONGIN B; CHAIN: A, D, G, J;	TRANSCRIPTION TUMOR SUPPRESSOR,

PDB Chain Start End PSI- Verify D AA AA BLAST score	Start End PSI- Verify AA AA BLAST score	End PSI- Verify AA BLAST score	PSI- Verify BLAST score	Verify score			PMF score	SeqFold score	Compound ELONGIN C; CHAIN: B, E, H, K; VHI.; CHAIN: C, F, I, L;	PDB annotation CANCER, UBIQUITIN, BETA SANDWICH, 2 TRANSCRIPTION, TRANSCRIPTIONAL
1vcb B 20 115 8e-28 0.45	115 8e-28	115 8e-28	8e-28		0.45		1.00		ELONGIN B; CHAIN: A, D, G, J; ELONGIN C; CHAIN: B, E, H, K; VHL; CHAIN: C, F, J, L;	ELONGATION TANSCRIPTION TUMOR SUPPRESSOR, CANCER, UBIQUITIN, BETA SANDWICH, 2 TRANSCRIPTION, TRANSCRIPTIONAL ELONGATION
1c3t A 1 71 1.6e-26 0.76					0.76		1.00		ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIOUITIN
163t A 1 76 9e-38 0.68	1 76 9e-38	76 9e-38	9e-38		9.08		1.00		1D8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
163t A 1 76 9e-38				9e-38		3		106.98	ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
163t A 77 152 8e-29 0.68 1	152 8e-29 0.68	152 8e-29 0.68	8e-29 0.68	89.0		-	1.00		ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
1c3t A 77 152 9e-38 0.68 1	77 152 9e-38 0.68	152 9e-38 0.68	9e-38 0.68	89:0			1.00		ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
1tbe B 1 71 3.2e-28 1.19	1.19	1.19	1.19	1.19			00'1		UBIQUITIN TETRAUBIQUITIN ITBE 3	
1tbe B 1 72 5.4e-35 0.97 1	5.4e-35 0.97	5.4e-35 0.97	5.4e-35 0.97	0.97	 	1	1.00		UBIQUITIN TETRAUBIQUITIN 1TBE 3	
1tbe B 1 72 5.4e-35	1 72	<u> </u>	<u> </u>	5.4e-35		j		102.16	UBIQUITIN TETRAUBIQUITIN ITBE 3	
1tbe B 77 148 1.4e-27 0.97	77 148 1.4e-27	148 1.4e-27	1.4e-27		26.0		1.00		UBIQUITIN TETRAUBIQUITIN 1TBE 3	
1tbe B 77 148 5.4e-35 0.97 1.	148 5.4e-35 0.97	148 5.4e-35 0.97	5.4e-35 0.97	76.0		-	1.00		UBIQUITIN TETRAUBIQUITIN ITBE 3	

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMG	SeqFold	Compound	PDB annotation
e Š	8	8	¥	¥¥	BLAST	score	score	score		
482	Iubi			11.	3.2e-28	1.28	9:1		CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	
482	lubi		_	9/	7.2e-36	1.07	1.00		CHROMOSOMAL PROTEIN UBIQUITIN IUBI 3	
482	lubi		_	9/	7.2e-36			110.47	CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	
482	lubi		11	152	1.6e-30	1.07	1.00		CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	
482	lubi		11	152	7.2e-36	1.07	1.00		CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	
482	1ud7	4	_	71	8e-27	0.76	1.00	-	UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
482	1ud7	4	1	9/	1.3e-35	96.0	1.00		UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
482	1ud7	٧	-	9/	1.3e-35			106.97	UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
482	1ud7	¥	77	152	1.3e-35	96.0	9.1		UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
482	1nd7	Ą	11	152	3.2e-29	96.0	1.00		UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
483	1040	A	197	385	I.1e-16	60.0	68.0		DNA NUCLEOTIDE EXCISION REPAIR ENZYME UVRB; CHAIN: A:	REPLICATION DNA NUCLEOTIDE EXCISION REPAIR, UVRABC, HELICASE, 2 HYPERTHERMOSTABLE PROTEIN
483	1d2m	A	197	385	1.4e-16	-0.10	0.77		EXCINUCLEASE ABC SUBUNIT B; CHAIN: A;	HYDROLASE UVRB; MULTIDOMAIN PROTEIN
483	149x	4	134	378	3.6e-40	-0.16	0.78		EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	GENE REGULATION APO PROTEIN
483	1d9x	A	167	395	1.4e-18	-0.19	96.0		EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	GENE REGULATION APO PROTEIN
483	1fuk	4	242	401	3.2e-45	0.39	1.00		EUKARYOTIC INITIATION FACTOR 4A; CHAIN: A;	TRANSLATION YEAST INITIATION FACTOR 4A, EIF4A; HELICASE, INITIATION FACTOR 4A, DEAD-BOX PROTEIN
483	1fuu	Ą	∞	226	1.3e-57	0.93	0.I	:	YEAST INITIATION FACTOR 4A; CHAIN: A, B;	TRANSLATION EUKARYOTIC INITIATION FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN
483	1 fuu	В	8	401	0	0.62	1.09		YEAST INITIATION FACTOR 4A;	TRANSLATION EUKARYOTIC INITIATION

		×				0			ي بر	್ಲ		٠	ڪ ا	 				-	Γ		,				
uo		FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN	HELICASE HELICASE, RNA, HEPATITIS, HCV, ATPASE, NTPASE	HELICASE HELICASE, RNA, HEPATITIS, HCV, ATPASE, NTPASE	GENE REGULATION EIF4A; TRANSLATION INITIATION, SACCHAROMYCES CEREVISIAE, DEAD BOX 2 PROTEIN FAMILY	HELICASE RNA HELICASE, HEPATITIS C VRUS, HCV, UNWINDING MECHANISM	NK CELL NK CELL, RECEPTOR, C-TYPE	LECTIN, C-TYPE LECTIN-LIKE, NKD	COLLAGEN BINDING PROTEIN IX-BP; IX-BP: COAGH ATION FACTOR IX-BINDING	HETERODIMER, VENOM, HABU 2 SNAKE,	ALY, Jen	COLLAGEN BINDING PROTEIN IX-BP; IX-	BP; COAGULATION FACTOR IX-BINDING	HETERODIMER, VENOM, HABU 2 SNAKE,	EIN,	MEMBRANE PROTEIN C-TYPE LECTIN-			SIGNALING PROTEIN HEPATIC LECTIN		CEPTOR	ACTIVATION INDUCER MOLECULE (AIM), FA 1 HFMATOPOIETIC CELL RECEPTOR	TIN-LIKE, 2		COAGULATION FACTOR BINDING IXX- BP COAGULATION FACTOR BINDING, C-
PDB annotation		HELICA	SE, RNA PASE	SE, RNA PASE	N EFF4A ITIATION S CEREV AMILY	ILICASE	, RECEP	ECTIN-L	NG PROT N FACTC	ENOM, F	JPERFA) NG PROJ	NG PRO	N FACTO	ENOM, P	NG PRO	EIN C-T			EIN HEP	N CRD	CELL RE	CER MO	PELEC		CTOR B
PDB		A; IF4A,	HELICA ASE, NTI	HELICA ASE, NTI	TION INI	RNA H	NK CELL	-TYPE L	N BINDI	IMER, V	ECTIN SI N BINDI	N BINDI	ULATIO	IMER, V	N BINDE	NE PROT	IAINS		G PROTI	ELECTI	OIETIC	ON IND	TE, C-T		LATION FA
		FACTOR 4 PROTEIN	HELICASE HELICASE, I HCV, ATPASE, NTPASE	HELICASE HELICASE, F HCV, ATPASE, NTPASE	GENE REGULATION EIF4A; TRANSLATION INTIATION SACCHAROMYCES CEREVI BOX 2 PROTEIN FAMILY	HELICASI VIRUS, HC	NK CELL	LECTIN, C	COLLAGE	HETEROD	C-TYPE LECTIN SUPERFAMILY, COLLAGEN BINDING PROTEIN	COLLAGE	BP; COAG	HETERODIMER, VENOM, HABL C.TVPF I ECTIN STIPEPEA MIT V	COLLAGEN BINDING PROTEIN	MEMBRA	LIKE DOMAINS		SIGNALIN	H1; C-TYPE LECTIN CRD	HEMATOPOLETIC CELL RECEPTOR	ACTIVATI FA 1 HFN	LEUCOCYTE, C-TYPE LECTIN-LIKE,	NKD, KLR	COAGULA BP COAG
							F	_				\vdash					<u> </u>	 :1;							
		·	IN: A, B;	IN: A, B;	ATION A;	IN: NOE.			OR IX-	OR IX-	CHAIN	OR IX-	CHAIN	OK IX-	CILCUIT.	HA	2	A SUBUL	EIN	A;	ANTIGE				ORS IX
Compound			SE; CHA	SE; CHA	ON INITE	SE; CHA	: NULL;		ON FACT	ON FACT	OTEIN B	ON FAC	OTEIN A	ON FACT	d Mari	1-A: ALP	IAIN: A;	-A: BEI	COPROT	CHAIN:	VATION	Ą:			ON FACT
		CHAIN: A, B;	HCV HELICASE; CHAIN: A, B;	HCV HELICASE; CHAIN: A, B;	TRANSLATION INITIATION FACTOR 4A; CHAIN: A;	RNA HELICASE; CHAIN: NULL	CD94; CHAIN: NULL;		COAGULATION FACTOR IX- BINDING PROTFIN A: CHAIN: A:	COAGULATION FACTOR IX-	BINDING PROTEIN B; CHAIN: B;	COAGULATION FACTOR IX-	BINDING PROTEIN A; CHAIN: A;	COAGULATION FACTOR IX- BINDING PROTFIN B: CHAIN: B:	NIT OF IT	FLAVOCETIN-A: ALPHA	SUBUNIT; CHAIN: A;	FLAVOCETIN-A: BETA SUBUNTT; CHAIN: B	ASIALOGLYCOPROTEIN	RECEPTOR 1; CHAIN: A;	EARLY ACTIVATION ANTIGEN	CD69; CHAIN: A;			COAGULATION FACTORS IXX- BINDING PROTEIN; CHAIN: A, B,
		СНА	HCV	HCV	TRA	RNA	600		COA	8 8		8 0		S S		FLA		CHA CHA	ASIA	REC	EAR	9 0 —			COA
SeqFold	21026						84.94		54.46																52.61
PMF	3000		0.01	6 .00	1.00	0.04	T.					0.29				0.95			8.1		98.0				
Verify	30016		0.26	-0.24	0.54	-0.22						0.23				0.23			69.0		0.52				
PSI- RI AST	TOWN O		1.6e-09	1.6e-09	3.2e-54	9e-58	5.4e-27		1.6e-34		_	1.6e-34				6.4e-33			6.4e-33		1.1e-27				6.4e-32
End	AA		377	377	225	368	220		210			217				220			217		219			,	218
Start	4		262	262	∞	41	66		101			102				101			102		100				101
Chain	3		4	В	¥.				V			∀				В			V		V				٧
PDB	3		lhei	lhei	1qde	80hm	1b6e		1bj3			16j3				1638			1dv8		1e87				lixx
SEQ	ÿ		483	483	483	483	490		490			490				490			490		490				490

		, -		.						
PDB annotation	TYPE LECTIN, GLA-DOMAIN 2 BINDING, C-TYPE CRD MOTIF, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING IXX- BP COAGULATION FACTOR BINDING, C- TYPE LECTIN, GLA-DOMAIN 2 BINDING, C-TYPE CRD MOTIF, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING IXX- BP COAGULATION FACTOR BINDING, C- TYPE LECTIN, GLA-DOMAIN 2 BINDING, C-TYPE CRD MOTIF, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING IXX-BP COAGULATION FACTOR BINDING, CTYPE LECTIN, GLA-DOMAIN 2 BINDING, C-TYPE CRD MOTIF, LOOP EXCHANGED DIMER	PANCREATIC STONE INHIBITOR, LECTIN	PANCREATIC STONE INHIBITOR, LECTIN	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP; PANCREATIC STONE INHIBITOR, LITHOSTATHINE	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP; PANCREATIC STONE INHIBITOR, LITHOSTATHINE	COMPLEX (NK RECEPTOR/MHC CLASS I) H-2 CLASS I HISTOCOMPATIBILITY ANTIGEN, B2M; NK-CELL SURFACE GLYCOPROTEIN YE1/48, NK CELL, INHIBITORY RECEPTOR, MHC-1, C-TYPE LECTIN-LIKE, 2 HISTOCOMPATIBILITY, B2M, LY49, LY-49	ANTIFREEZE PROTEIN RECOMBINANT SEA RAVEN PROTEIN, SOLUTION BACKBONE FOLD, C-2 TYPE LECTIN,
Compound	C, D, E, F;	COAGULATION FACTORS DXX- BINDING PROTEIN; CHAIN: A, B, C, D, E, F;	COAGULATION FACTORS DXX- BINDING PROTEIN; CHAIN: A, B, C, D, E, F,	COAGULATION FACTORS IX/X- BINDING PROTEIN; CHAIN: A, B, C, D, E, F;	LITHOSTATHINE; CHAIN: NULL	LITHOSTATHINE; CHAIN: NULL	LITHOSTATHINE; CHAIN: A;	LITHOSTATHINE; CHAIN: A;	MHC CLASS I H-2DD HEAVY CHAIN; CHAIN: A; BETA-2- MICROGLOBULIN; CHAIN: B; HIV ENVELOPE GLYCOPROTEIN 120 PEPTIDE; CHAIN: P; LY49A; CHAIN: C, D;	SEA RAVEN TYPE II ANTIFREEZE PROTEIN; CHAIN: A;
SeqFold score			59.42	·		54.29	59.45			
PMF score		0.22		0.76	1.00			0.72	0.74	0.65
Verify score		0.00		0.33	0.61			0.44	0.35	0.32
PSI- BLAST		6.4e-32	1.6e-33	1.6e-33	4.8e-34	4.8e-34	8e-35	8e-35	7.2e-29	4.8e-30
End		217	220	220	219	220	220	219	219	216
Start		102	101	102	102	102	68	16	97	96
Chain ID		4	m	g p			4	4	U	A
PDB ED		lix X	xx xx	lixx	11:1	11.1	1qdd	Iqdd	1403	2afp
SEQ E SEQ		490	490	490	490	490	490	490	490	490

PDB annotation	A SECONDARY OF THE PROPERTY AND A PR	ANTIFREEZE PROTEIN	REPLICATION DNA NUCLEOTIDE EXCISION REPAIR, UVRABC, HELICASE, 2 HYPERTHERMOSTABLE PROTEIN	HYDROLASE UVRB; MULTIDOMAIN PROTEIN	GENE REGULATION APO PROTEIN	GENE REGULATION APO PROTEIN	TRANSLATION YEAST INITIATION FACTOR 4A, EIF4A; HELICASE, INITIATION FACTOR 4A, DEAD-BOX PROTEIN	TRANSLATION EUKARYOTIC INITIATION FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN	TRANSLATION EUKARYOTIC INITIATION FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN	GENE REGULATION EIF44; TRANSLATION INITIATION, SACCHAROMYCES CEREVISIAE, DEAD BOX 2 PROTEIN FAMILY	SERINE/THREONINE PROTEIN KINASE TRANSFERASE, SERINE/THREONINE- PROTEIN KINASE, 2 PROTO-ONCOGENE, ZINC, ATP-BINDING, PHORBOL-ESTER BINDING	PHOSPHOTRANSFERASE	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
Compound			DNA NUCLEOTIDE EXCISION REPAIR ENZYME UVRB; CHAIN: A;	EXCINUCLEASE ABC SUBUNIT B; CHAIN: A;	EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	EUKARYOTIC INITIATION FACTOR 4A; CHAIN: A;	YEAST INITIATION FACTOR 4A; CHAIN: A, B;	YEAST INITIATION FACTOR 4A; CHAIN: A, B;	TRANSLATION INITIATION FACTOR 4A; CHAIN: A;	RAF-1; CHAIN: NULL;	PROTEIN KINASE C DELTA TYPE; IPTQ 4	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;
SeqFold score				_									
PMF score			0.24	0.54	0.16	0.59	1.00.	1.00	1.00	1.00	90.0	0.03	0.94
Verify score			-0.19	0.21	-0.39	-0.03	0.64	0.53	0.54	0.58	-0.71	-0.06	0.01
PSI- BLAST			1.4e-18	1.1e-18	3.6e-43	6.4e-22	3.2e-50	1.4e-54	0	3.2e-52	0.0036	0.0072	3.2e-27
End	AA		461	461	481	469	478	304	478	302	487	497	220
Start			274	274	222	274	312	111	 	111	462	462	112
Chain			A	Ą	∢	4	4	4	В	V			4
PDB ID			1c40	1d2m	1d9x	x6p1	1fuk	1fuu	1fuu	1qde	lfaq	Iptq	lalh
SEQ	NO:		492	492	492	492	492	492	492	492	493	493	494

PDB Chain Start End PSI- Verify ID AA AA BLAST score 1a1h A 140 222 32e-27	Start End PSI- AA AA BLAST 140 222 32e-27	Start End PSI- AA AA BLAST	BLAST		Sco		PMF	SeqFold score	Compound OGSR ZINC FINGER PEPTIDE:	PDB annotation COMPLEX (ZINC FINGER/DNA) COMPLEX
77.57°C 7777 0517 W	77-97'S 777 041	77-27'6	3.ze-2/		·		,	G://	CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEA (ZINC FINGER DIAK) COMPLEA (ZINC FINGER, DNA-BINDING PROTEIN
1alh A 140 238 1.4e-20 0.05	140 238 1.4e-20 0.05	238 1.4e-20 0.05	1.4e-20 0.05	0.02			0.30		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
Imey C 111 192 4.8e-39 -0.40 (111 192 4.8e-39 -0.40	192 4.8e-39 -0.40	4.8e-39 -0.40	-0.40		-	99.0		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1mey C 139 220 4.8e-39 0.33	139 220 4.8e-39 0.33	220 4.8e-39 0.33	4.8e-39 0.33	0.33		-	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1mey C 139 221 4.8e-39	139 221	221		4.8e-39				88.65	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1mey C 195 239 9.6e-22 -0.11 0.	195 239 9.6e-22 -0.11	239 9.6e-22 -0.11	9.66-22 -0.11	-0.11		0	0.42		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
6,4e-42 -0.21	82 164 6.4e-42 -0.21	164 6.4e-42 -0.21	6,4e-42 -0.21	-0.21		0	0.81		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1mey G 110 136 1.6e-12 -0.38 0	110 136 1.6e-12 -0.38	136 1.6e-12 -0.38	1.6e-12 -0.38	-0.38		P	0.04		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)

			,	· · · · · · · · · · · · · · · · · · ·				
PDB annotation		COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TRANSCRIPTION FACTOR IIIA; CHAIN: A, 5S RNA GENE; CHAIN: E, F;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	TFIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5
SeqFold	score			55.53			68.71	79.21
PMF	score	96.0	0.39		0.45	0.03		
Verify	score	0.11	-0.16		0.23	-0.26		
PSI-	BLAST	1.6e-13	3.2e-16	3.2e-16	6.4e-12	3.6e-25	4.8e-28	1.8e-31
End	AA	220	224	224	228	221	254	221
	¥	193	112	139	185	113	81	113
Chain	A	_ව	∢	⋖	∢	∢	¥.	ပ
PDB		Imey	145	£11.	£11	1466	1476	lubd
SEQ	e ë	494	494	494	494	494	494	494

· PDB annotation		TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)
Compound		INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI, CHAIN: C, ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ADR1; CHAIN: NULL;	ADR1; CHAIN: NULL;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold	score						55.92		
	score		00:1	0.49	0.31	69.0		0.87	0.16
Verify	score		-0.02	-0.40	-0.35	-0.02		-0.08	-0.25
PSI-	BLASI		1.8e-31	3.2e-23	8e-26	1.6e-12	1.6e-12	9e-29	4.8e-20
End	AA		221	238	220	222	226	221	235
Start	¥		116	611	88	140	168	113	123
Chain	3		υ	Ü	ပ			4	A
PDB			1ubd	lubd	lubd	2adr	2adr	2gli	2gli
SEQ	ΑŞ		494	494	494	494	494	494	494

				 						_
PDB annotation	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLJ, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETAI, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL
Compound	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;
SeqFold score			76.87							69.42
PMF score	0.24	90:0		0.96	0.04	96.0	1.00	0.88	1.00	
Verify score	-0.22	-0.24		-0.02	-0.15	0.15	0.27	0.12	0.33	
PSI- BLAST	8e-15	3.2e-26	9e-29	9.6e-61	4.8e-44	3.6e-20	1.4e-64	1.6e-62	9.6e-74	9.6e-74
End AA	239	222	222	434	459	432	353	432	350	371
Start AA	185	40	74	781	214	35	42	127	34	34
Chain 19	4	∢	4	Ą	Ą	4	∢	a	æ	В
PDB ID	2gli	2gli	2gli	lerj	lerj	lerj	lerj	lgot	lgot	lgot
S e S	494	494	494	499	499	499	499	499	499	499

	П		·		-			· · · · · · · · · · · · · · · · · · ·	
PDB annotation	TRANSDUCTION	EXCHANGE FACTOR B2-1, SEC7 HOMOLOG B2-1; EXCHANGE FACTOR, INTEGRIN BINDING PROTEIN	EXCHANGE FACTOR B2-1, SEC7 HOMOLOG B2-1; EXCHANGE FACTOR, INTEGRIN BINDING PROTEIN	LIGASE CYCLIN A/CDK2-ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE SKP2 F-BOX; SKP1; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCNE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	EXCHANGE FACTOR ARF NUCLEOTIDE- BINDING SITE OPENER; EXCHANGE FACTOR, SEC7, ARNO, ARF FUNCTIONAL CLASS: GUANINE 2 NUCLEOTIDE EXCHANGE FACTOR	EXCHANGE FACTOR ARF NUCLEOTIDE- BINDING SITE OPENER; EXCHANGE FACTOR, SEC7, ARNO, ARF FUNCTIONAL CLASS: GUANINE 2 NUCLEOTIDE EXCHANGE FACTOR	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
Compound		CYTOHESIN-1; CHAIN: NULL;	CYTOHESIN-1; CHAIN: NULL;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;	CYCLIN A/CDK2-ASSOCIATED P19; CHAIN: A, C; CYCLIN A/CDK2-ASSOCIATED P45; CHAIN: B, D;	SKP?, CHAIN: A, C, SKPI; CHAIN: B, D;	ARNO; CHAIN: NULL;	ARNO; CHAIN: NULL;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;
SeqFold score		98.84					107.50		
PMF score			1.00	0.03	0.29	0.15		1.00	0.09
Verify score			0.58	-0.30	-0.43	-0.20		0.16	-0.28
PSI- BLAST		1.1e-65	1.1e-65	1.6e-10	1.1e-08	1.4e-12	3.2e-65	3.2e-65	4.8e-25
End		319	311	113	108	147	319	311	223
Start AA		130	134	69	71	. 69	126	127	145
Chain ID				4	A	∢			A
PDB UD		1bc9 .	1bc9	1fqv	1631	162	1pbv	1pbv	laih
S E E		200	200	200	200	200	200	500	503

PDB annotation		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA- BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA- BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Compound		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold	score							93.44	
_	score	0.80	0.53	0.43	1.00	1.00	1.00		1.00
Verify	score	-0.19	-0.20	0.03	-0.04	0.39	0.27		0.05
PSI-	BLAST	4.8e-23	1.1e-25	1.6e-43	1.6e-46	3.2e-50	8e-51	4.8e-51	4.8e-51
End	ΑA	397	398	223	251	279	307	308	335
Start	¥	339	339	144	171	198	226	226	254
Chain	<u> </u>	4	V	ပ	ပ	ပ	ပ	ပ	υ ·
PDB		lalh	lalh	Imey	Imey	Imey	lmey	lmey	lmey
SEQ	ВŞ	503	503	503	503	503	503	503	503

PDB annotation		COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX (TRANSCRIPTION
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO-
SeqFold	score					95.64			
PMF	score	1.00	1.00	0.96	0.75		0.94	0.52	0.99
Verify	score	90.0-	-0.36	-0.47	90.0-		-0.22	0.20	0.18
\vdash	BLAST	4.8e-51	1.6e-51	1.1e-37	4.8e-37	3.6e-71	1.6e . 36	1.6e-30	1.6e-35
End	₹	363	391	398	316	372	393	251	279
Start	¥¥	282	310	338	172	196	255	152	179
Chain	e	U	ပ	ს	V	V	4	U	၁
PDB		Imey	Imey	1теу	1466	Itf6	1t6	lubd	1ubd
SEO	ВŞ	503	503	503	503	503	503	. 203	203

PDB annotation	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION; 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN,
Сотроипд	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score			77.59		•	
PMF score		0.69		1.00	0.33	1.00
Verify score		0.05		0.14	-0.36	-0.35
PSI- BLAST		9e-41	3.6e-53	5.4e-50	3.6e-53	1.8e-47
End AA		279	308	307	364	391
Start AA		180	200	203	224	280
Chain ID		ပ	v	ပ	ပ	၁
PDB CD		lubd	lubd	lubd	Iubd	lubd
SEQ B SEQ		503	503	503	503	503

Compound PDB annotation	DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)		ADENO-COMPLEX (TRANSCRIPTION RUS P5 REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)		-		OTEIN GLII; CHAIN: C, D; CHAIN: C, D; COMPLEX (DNA-BINDING PROTEIN/DNA)	OTEIN GLII; COMPLEX (DNA-BINDING PROTEINDNA) CHAIN: C, D; FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)		Transfer and the Contract of t
		YY1; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	This photon by the 11.
SeqFold score						78.17				
PMF score		1.00	0.78	0.93	1.00		1.00	1.00	1.00	200
Verify score		-0.09	-0.48	0.01	0.35		0.12	0.04	0.05	3
PSI- BLAST		1.3e-34	4.8e-28	1.1e-39	3.2e-34	1.4e-66	3.6e-64	1.4e-66	3.6e-62	10.
End		391	397	281	306	337	337	364	392	200
Start		290	318	162	179	861	198	226	254	243
Chain ID		ပ	ပ	₹	<	₹	4	∢	<	_
PDB ID		Inbd	lubd	2gli	2gli	2gli	2gli	2gli	2gli	:100
SEQ NO. B. S.		503	503	503	503	503	503	503	503	503

	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
503	2gli	4	290	397	1.1e-27	-0.28	0.43		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)
_							-			
	la7t	V	31	161	4.8e-18	0.04	-0.15		METALLO-BETA-LACTAMASE; CHAIN: A, B;	HYDROLASE CLASS B BETA- LACTAMASE; HYDROLASE (BETA- LACTAMASE), METALLO BETA- LACTAMASE, ZINC
t	la7t	∢	37	196	3.6e-19	0.30	0.78		METALLO-BETA-LACTAMASE; CHAIN: A, B;	HYDROLASE CLASS B BETA- LACTAMASE; HYDROLASE (BETA- LACTAMASE), METALLO BETA- LACTAMASE, ZINC
i	1dd6	∢	47	197	7.2e-25	-0.03	0.42		IMP-1 METALLO BETA- LACTAMASE; CHAIN: A, B;	HYDROLASE METALLO BETA- LACTAMASE INHIBITOR, MERCAPTOCARBOXYLATE 2 INHIBITOR, IMP-1 METALLO BETA-LACTAMASE
	le5d	∢	2	243	3.2e-28	0.15	-0.18		RUBREDOXIN:OXYGEN OXIDOREDUCTASE; CHAIN: A, B	OXIDOREDUCTASE OXIDOREDUCTASE, OXYGENREDUCTASE, DIIRON-CENTRE, 2 FLAVOPROTEINS, LACTAMASE-FOLD
 	1qh5	A	24	254	4.8e-49			16:18	HYDROXYACYLGLUTATHIONE ITYDROLASE; CHAIN: A, B;	HYDROLASE GLYOXALASE II; METALLO- HYDROLASE
	1qh5	A	33	253	4.8c-49	0.37	1.00		HYDROXYACYLGLUTATHIONE HYDROLASE; CHAIN: A, B;	HYDROLASE GLYOXALASE II; METALLO- HYDROLASE
	Isml	A	37	201	1.1e-24	0.44	0.88		PENICILINASE; CHAIN: A;	HYDROLASE METALLO-BETA- LACTAMASE, ANTIBIOTIC RESISTANCE, BINUCLEAR 2 ZINC, HYDROLASE
 	2bc2	۲ [:]	24	861	6.4e-20	0.07	-0.12		METALLO BETA-LACTAMASE II; CHAIN: A, B;	HYDROLASE HYDROLASE, BETA- LACTAMASE, ANTIBIOTIC, METALLOENZYME
 	2bc2	4	37	197	3.6e-27	0.20	0.18		METALLO BETA-LACTAMASE II; CHAIN: A, B;	HYDROLASE HYDROLASE, BETA- LACTAMASE, ANTIBIOTIC, METALLOENZYME
	1dm9	4	107	170	3.2e-05	-0.60	0.05		HYPOTHETICAL 15.5 KD PROTEIN IN MRCA-PCKA CHAIN: A, B	STRUCTURAL GENOMICS HEAT SHOCK PROTEINS, PROTEIN-RNA INTERACTIONS, RIBOSOME, 2 STRUCTURAL GENOMICS
\vdash	1fjg	D	20	171	1.1e-43	-0.31	0.18		16S RIBOSOMAL RNA; CHAIN: A; FRAGMENT OF MESSENGER	RIBOSOME, 30S RIBOSOMAL SUBUNIT, RIBOSOME, ANTIBIOTIC,

STREPTOMYCIN, 2 SPECTINOMYCIN, PAROMOMYCIN,	RIBOSOME 30S RIBOSOMAL SUBUNIT, PROTEIN-RNA COMPLEX
RNA; CHAIN: X; 30S RIBOSOMAL PROTEIN S2; CHAIN: B; 30S C; 30S RIBOSOMAL PROTEIN S4; C; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S5; CHAIN: E; 30S RIBOSOMAL PROTEIN S6; CHAIN; F; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S8; CHAIN: H; 30S RIBOSOMAL PROTEIN S10; CHAIN: J; 30S RIBOSOMAL PROTEIN S11; CHAIN: K; 30S RIBOSOMAL PROTEIN S12; CHAIN: I; 30S RIBOSOMAL PROTEIN S13; CHAIN: M; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: R; 30S RIBOSOMAL PROTEIN S17; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: R; 30S RIBOSOMAL PROTEIN S17; CHAIN: S; 30S RIBOSOMAL PROTEIN S16; CHAIN: T; 30S RIBOSOMAL PROTEIN S17; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T; 30S RIBOSOMAL PROTEIN THX; CHAIN: V	16S RBOSOMAL RNA; CHAIN: A; 30S RBOSOMAL PROTEIN S2; CHAIN: B; 30S RBOSOMAL PROTEIN S3; CHAIN: C; 30S RBOSOMAL PROTEIN S4; CHAIN: D; 30S RBOSOMAL PROTEIN S5; CHAIN: E; 30S RBOSOMAL PROTEIN S6; CHAIN: F; 30S RBOSOMAL PROTEIN S5; GAIN: E; 30S RBOSOMAL PROTEIN S6; CHAIN: F; 30S RBOSOMAL PROTEIN S7; CHAIN: G; 30S RBOSOMAL PROTEIN S8;
	0.15
• .	-0.47
	8e-36
	171
	54
	Q
	lfka
	208
	RNA, CHAIN: X; 30S RIBOSOMAL ROTTEN S2; CHAIN: B; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S1; CHAIN: G; 30S RIBOSOMAL ROTEIN S1; CHAIN: K; 30S RIBOSOMAL PROTEIN S1; CHAIN: J; 30S RIBOSOMAL PROTEIN S1; CHAIN: K; 30S RIBOSOMAL PROTEIN S1; CHAIN: J; 30S RIBOSOMAL PROTEIN S1; CHAIN: J; 30S RIBOSOMAL PROTEIN S1; CHAIN: J; 30S RIBOSOMAL PROTEIN S1; CHAIN: D; 30S RIBOSOMAL PROTEIN S1; CHAIN: C; 30S RIBOSOMAL PROTEIN S1; CHAIN: S; 30S RIBOSOMAL PROTEIN S1; CHAIN: V; 30S RIBOSOMAL PROTEIN S1; CHAIN: V; 30S RIBOSOMAL PROTEIN S1; 30S RIBOSOMAL PROTEIN S1; CHAIN: V; 30S RIBOSOMAL PROTEIN S1; CHAIN: V; 30S RIBOSOMAL PROTEIN S1; CHAIN: V; 30S RIBOSOMAL

PDB annotation		RIBOSOME 30S RIBOSOMAL SUBUNIT, LOW RESOLUTION MODEL	HYDROLASE LIPASE	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP,
Compound	CHAIN: H; 30S RIBOSOMAL PROTEIN S9; CHAIN: I; 30S RIBOSOMAL PROTEIN S10; CHAIN: J; 30S RIBOSOMAL PROTEIN S11; CHAIN: K; 30S RIBOSOMAL PROTEIN S12; CHAIN: L; 30S RIBOSOMAL PROTEIN S13; CHAIN: M; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: P; 30S RIBOSOMAL PROTEIN S19; CHAIN: Q; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T	CENTRAL FRAGMENT OF 16 S RNA; CHAIN: A; END FRAGMENT OF 16 S RNA; CHAIN: B; S4 RIBOSOMAL PROTEIN; CHAIN: C; D; S6 RIBOSOMAL PROTEIN; CHAIN: E; S7 RIBOSOMAL ROTEIN; CHAIN: F; S8 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: H; S1 RIBOSOMAL PROTEIN; CHAIN: I; S20	LIPASE, GASTRIC; CHAIN: A, B;	PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;
SegFold score				
PMF score		0.21	0.04	1.00
Verify score		-0.43	-0.74	0.31
PSI- BLAST		3.2e-33	600.0	1.4e-24
End		171	158	227
Start			113	29
Chain		U	A	A
PDB ID		1947	Ihlg	lpbw
Se Se	je i	208	510	512

	ເນື	re ²	?	m ^c	ti)	r.f	වු	و
	CDC42, 2 PHOSPHONOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	G-PROTEIN CDC42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, GAP, SIGNAL- TRANSDUCTION	G-PROTEIN CDC42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, GAP, SIGNAL-
otation	OSITIDE MAIN, 3	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP CDC42, 2 PHOSPHOINOSITIDE 3-KIN SH3 DOMAIN, SH2 DOMAIN, 3 SIGN TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP CDC42, 2 PHOSPHOINOSITIDE 3-KIN SH3 DOMAIN, SH2 DOMAIN, 3 SIGN TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP CDC42, 2 PHOSPHOINOSITIDE 3-KIN SH3 DOMAIN, SH2 DOMAIN, 3 SIGN TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP CDC42, 2 PHOSPHOINOSITIDE 3-KIN SH3 DOMAIN, SH2 DOMAIN, 3 SIGN TRANSDUCTION	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3-KINAS SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSDUCTION	G-PROTEIN CDC42 GTPASE-ACTIVA: PROTEIN; G-PROTEIN, GAP, SIGNAL. TRANSDUCTION	G-PROTEIN CDC42 GTPASE-ACTIVA PROTEIN; G-PROTEIN, GAP, SIGNAL
PDB annotation	SPHOING SH2 DO ON	NSFERA SPHOTE ATING P SPHOING SH2 DO ON	NSFERA SPHOTE ATING P SPHOIN(SH2 DO ON	NSFERA SPHOTE ATING P SPHOIN(SH2 DO ON	NSFERA SPHOTI ATING P SPHOIN(SHZ DO ON	NSFERA SPHOTT ATING P SPHOING SH2 DO ON	DC42 GT ROTEIN ON	DC42 GT ROTEIN
	CDC42, 2 PHOSPISH3 DOMAIN, SH TRANSDUCTION	PHOSPHOTRANSI DOMAIN; PHOSPI IPASE ACTIVATI CDC42, 2 PHOSPH SH3 DOMAIN, SH	PHOSPHOTRANSI DOMAIN; PHOSPI TPASE ACTIVATI CDC42, 2 PHOSPH SH3 DOMAIN, SH: TRANSDUCTION	PHÓSPHOTRANSI DOMAIN; PHOSPI IPASE ACTIVATI CDC42, 2 PHOSPH SH3 DOMAIN, SH	PHOSPHOTRANSI DOMAIN; PHOSPI TPASE ACTIVATI CDC42, 2 PHOSPH SH3 DOMAIN, SH TRANSDUCTION	PHOSPHOTRANSI DOMAIN; PHOSPI TPASE ACTIVATI CDC42, 2 PHOSPH SH3 DOMAIN, SH TRANSDUCTION	G-PROTEIN CDC4 PROTEIN; G-PRO TRANSDUCTION	OTEIN C EIN; G-F
	CDC4 SH3 L TRAN	PHOS DOM, TPAS CDC4 SH3 L	PHOS DOM, TPAS CDC4 SH3 L	PHOS DOM, TPAS CDC4 SH3 I	PHOS DOM, TPAS CDC4 SH3 I	PHOS DOM, TPAS CDC4 SH3 I	G-PR PROT TRAN	G-PR PROT
		.3-	د ر .	-6-	-B-1	-E -		
Compound		NOSITOI A, B;	: NULL;	: NULL;				
Com		PHOSPHATIDYLINOSITOL 3-KINASE; CHAIN: A, B;	PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;	RHOGAP; CHAIN: NULL;	RHOGAP; CHAIN: NULL;			
:		PHOSPH KINASE;	PHOSPH KINASE;	PHOSPH KINA SE,	PHOSPH KINASE,	PHOSPH KINASE,	RHOGAI	RHOGA
SeqFold score		83.39				84.44	112.26	
PMF score			1.00	1.00	1.00			1.00
Verify. score	:		0.47	0.36	0.50			0.45
PSI- BLAST		5.4e-43	5.4e-43	1.4e-24	1.8e-44	1.8e-44	3.6e-51	1.6e-39
End		229	229	727	235	235	223	234
Start		53	34	53	23	53	16	16
Chain ID		¥	Y	В	g	8		
PDB CD		1pbw	1pbw	Ipbw	Ipbw	1pbw	1rgp	lrgp
SEQ EQ		512	512	512	512	512	512	512

SEQ NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
										TRANSDUCTION
512	Irgp		16	234	3.6e-51	0.65	1.00		RHOGAP, CHAIN: NULL;	G-PROTEIN CDC42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, GAP, SIGNAL-TRANSDUCTION
512	15x4	4	19	234	1.3e-39	0.44	1.00		P50-RHOGAP; CHAIN: A;	COMPLEX(GTPASE ACTIVATIV/PROTO-
									TRANSFORMING PROTEIN	ONCOGENE) GTPASE-ACTIVATING
									RHOA; CHAIN: B;	PROTEIN RHOGAP; COMPLEX (GTPASE
										ACTIVATION/PROTO-ONCOGENE),
										GTPASE, 2 TRANSITION STATE, GAP
512	Itx4	¥	61	234	1.4e-52			111.48	P50-RHOGAP; CHAIN: A;	COMPLEX(GTPASE ACTIVATN/PROTO-
									TRANSFORMING PROTEIN	ONCOGENE) GTPASE-ACTIVATING
									KHOA; CHAIN: B;	PROTEIN KHOGAF; COMPLEX (GIFASE
										GTPASE, 2 TRANSITION STATE, GAP
512	1tx4	4	21	234	1.4e-52	19.0	1.00		P50-RHOGAP; CHAIN: A;	COMPLEX(GTPASE ACTIVATIN/PROTO-
									TRANSFORMING PROTEIN	ONCOGENE) GTPASE-ACTIVATING
									RHOA; CHAIN: B;	PROTEIN RHOGAP; COMPLEX (GTPASE
										ACTIVATION/PROTO-ONCOGENE),
										GITAGE, Z INAMOIIION SIAIE, CAL
613	Š.	<	222	\$13	3 60.16	67.0	01.0		NICOTINATE	TRANSFERA SE DIMITCI EOTIDE-RINDING
	SAN T	τ	7	3	2000	2	}		MONONUCLEOTIDE:5,6- CHAIN:	MOTIF, PHOSPHORIBOSYL TRANSFERASE
513	11500	٩	123	407	00-11	0.81	00.0		AT KAI INE PROTFASE: 1KAP 4	ZINC METALLOPROTEASE P
3	dayı	•	*	Ã	-	5	}		CHAIN: P: 1KAP 5 TETRAPEPTIDE	AERUGINOSA ALKALINE PROTEASE:
									(GLY SER ASN SER); IKAP 9	IKAP 6 CALCIUM BINDING PROTEIN
									CHAIN: I; IKAP 10	1KAP 19
513	Ikap	4	225	169	7.2e-17			86.44	ALKALINE PROTEASE; IKAP 4	ZINC METALLOPROTEASE P.
									CHAIN: P; 1KAP 5 TETRAPEPTIDE	AERUGINOSA ALKALINE PROTEASE;
									(GLY SER ASN SER); IKAP 9	IKAP 6 CALCIUM BINDING PROTEIN
									CHAIN: I; 1KAP 10	IKAP 19
513	Ikap	Ъ	237	654	7.2e-17	0.77	-0.18		ALKALINE PROTEASE; 1KAP 4	ZINC METALLOPROTEASE P.
	•								CHAIN: P; IKAP 5 TETRAPEPTIDE	AERUGINOSA ALKALINE PROTESE;
									CHAIN: I: IKAP 10	IKAP 19
513	lkan	۵	30	391	9e-15	0.77	-0.18		ALKALINE PROTEASE: 1KAP 4	ZINC METALLOPROTEASE P.
	Ì								CHAIN: P; IKAP 5 TETRAPEPTIDE	AERUGINOSA ALKALINE PROTEASE;
									(GLY SER ASN SER); 1KAP 9	IKAP 6 CALCIUM BINDING PROTEIN

PDB annotation	1KAP 19	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE		COMPLEX (NUCLEOCAPSID PROTEIN/RNA) NUCLEOCAPSID PROTEIN, COMPLEX (NUCLEOCAPSID PROTEIN/RNA), 2 STEM-LOOP RNA	COMPLEX (NUCLEOCAPSID PROTEIN/RNA) NUCLEOCAPSID PROTEIN, COMPLEX (NUCLEOCAPSID PROTEIN/RNA), 2 STEM-LOOP RNA	COMPLEX (NUCLEOCAPSID PROTEIN/RNA) NUCLEOCAPSID PROTEIN, COMPLEX (NUCLEOCAPSID PROTEIN/RNA), 2 STEM-LOOP RNA	COMPLEX (NUCLEOCAPSID PROTEIN/RNA) NUCLEOCAPSID PROTEIN, COMPLEX (NUCLEOCAPSID PROTEIN/RNA), 2 STEM-LOOP RNA		COMPLEX (NUCLEOCAPSID PROTEIN/DNA) (12-53)NCP7; COMPLEX (NUCLEOCAPSID PROTEIN/DNA), NUCLEIC ACID, 2 RETROVIRUS, VIRUS MORPHOGENESIS, ZINC FINGER	COMPLEX (NUCLEOCAPSID PROTEIN/DNA) (12-53)NCP7; COMPLEX (NUCLEOCAPSID PROTEIN/DNA), NUCLEIC ACID, 2 RETROVIRUS, VIRUS
Compound	CHAIN: I; 1KAP 10	OMPK36; CHAIN: A, B, C;	OUTER MEMBRANE PROTEIN PHOSPHOPORIN (PHOE) 1PHO 3	NUCLEOCAPSID PROTEIN; CHAIN: A; SL3 STEM-LOOP RNA; CHAIN: B;	NUCLEOCAPSID PROTEIN; CHAIN: A; SL3 STEM-LOOP RNA; CHAIN: B;	NUCLEOCAPSID PROTEIN; CHAIN: A; SL3 STEM-LOOP RNA; CHAIN: B;	NUCLEOCAPSID PROTEIN; CHAIN: A; SL3 STEM-LOOP RNA; CHAIN: B;	NUCLEOCAPSID PROTEIN HIV-1 NUCLEOCAPSID PROTEIN (MN ISOLATE) (NMR, 20 STRUCTURES) 1AAF 3	DNA (ACGCC); CHAIN: D; NUCLEOCAPSID PROTEIN 7; CHAIN: A;	DNA (ACGCC); CHAIN: D; NUCLEOCAPSID PROTEIN 7; CHAIN: A;
SeqFold score										
PMF score		-0.20	-0.20	0.19	0.48	-0.06	0.01	-0.07	0.18	0.81
Verify score		0.50	0.81	-0.04	0.31	0.11	0.11	0.29	0.16	0.29
PSI- BLAST		7.2e-21	1.1e-21	8e-11	1.3e-18	8e-12	4.8e-13	1.6e-18	1.3e-10	9.6e-17
End AA		322	555	152	182	8	122	182	152	180
Start		6	188	103	124	50	99	124	101	134
Chain ID		V		4	4	V	V		∢	V
EDB ED		losm	1pho	lait	lalt	lalt	lalt	laaf	1bj6	1bj6
SEQ EQ		513	513	517	517	517	517	517	517	517

CEO	aud	Chain	Stort	End	PSI-	Vorify	PMR	Senfold	Commonned	PDR annotation
ja ģ	e	e	¥	¥¥	BLAST	score	score	score		
										MORPHOGENESIS, ZINC FINGER
517	1bj6	٧	58	26	1.6e-10	-0.20	0.03		DNA (ACGCC); CHAIN: D;	COMPLEX (NUCLEOCAPSID PROTFIN/DNA) (12-53)NCP2: COMPLEX
									CHAIN: A;	(NUCLEOCAPSID PROTEIN/DNA),
										NUCLEIC ACID, 2 RETROVIRUS, VIRUS MORPHOGENESIS, 21NC FINGER
417	1hi6	V	77	122	9 Ke-13	600	0.28		DNA (ACGCC): CHAIN: D:	COMPLEX (NUCLEOCAPSID
-	ofor	ξ.		77	2.00.0		3		NUCLEOCAPSID PROTEIN 7;	PROTEIN/DNA) (12-53)NCP7; COMPLEX
									CHAIN: A;	(NUCLEOCAPSID PROTEIN/DNA),
										MORPHOGENESIS, ZINC FINGER
517	lnc8		100	127	3.2e-05	-0.10	0.00		NUCLEOCAPSID PROTEIN;	NUCLEOCAPSID PROTEIN
									CHAIN: NULL;	NUCLEOCAPSID PROTEIN, HIV-2, RNA RECOGNITION, ZINC FINGER
517	lnc8		129	156	1.6e-06	-0.29	0.04		NUCLEOCAPSID PROTEIN;	NUCLEOCAPSID PROTEIN
-		-							CHAIN: NULL;	NUCLEOCAPSID PROTEIN, HIV-2, RNA RECOGNITION ZINC FINGER
517	Inc8		73	001	6.4e-06	-0.06	0.12		NUCLEOCAPSID PROTEIN;	NUCLEOCAPSID PROTEIN
									CHAIN: NULL;	NUCLEOCAPSID PROTEIN, HIV-2, RNA
1										William Paris I was a second
519	lmey	ŋ	219	249	0.0056	-0.23	0.34		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
	,								CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA INTERACTION,
									PROTEIN; CHAIN: C, F, G;	PROTEIN DESIGN, 2 CRYSTAL STRITCTIBE COMPLEX (ZINC
										FINGER/DNA)
523	laxi	V	59	516	3.2e-52	0.59	1.00		GROWTH HORMONE; CHAIN: A;	COMPLEX (HORMONE/RECEPTOR) HGH;
									CHAIN: B:	(HORMONE/RECEPTOR)
523	laxi	¥	29	217	3.2e-52			243.17	GROWTH HORMONE; CHAIN: A;	COMPLEX (HORMONE/RECEPTOR) HGH;
									GROW I H HOMMONE KECEF LOK; CHAIN: B;	HORBY; COMPLEX (HORMONE/RECEPTOR)
523	1bp3	V	27	216	1.6e-61	0.28	1.00		GROWTH HORMONE; CHAIN: A;	HORMONE/GROWTH FACTOR HORMONE, RECEPTOR HORMONE/GROWTH FACTOR
						,			B;	
523	1bp3	∢_	27	216	1.6e-61			271.68	GROWTH HORMONE; CHAIN: A; PROLACTIN RECEPTOR; CHAIN:	HORMONE/GROWTH FACTOR HORMONE, RECEPTOR, HORMONE/GROWTH FACTOR

	_	1			г	 , -		r	_				
PDB annotation		HORMONE HUMAN SOMA TOTROPIN 1HGU 7 HORMONE 1HGU 11	HORMONE HUMAN SOMATOTROPIN 1HGU 7 HORMONE 1HGU 11	COMPLEX (HORMONE/RECEPTOR) CYTOKINE, HORMONE, RECEPTOR, HEMATOPOIETIC, 2 COMPLEX (HORMONE/RECEPTOR)	COMPLEX (HORMONE/RECEPTOR) CYTOKINE, HORMONE, RECEPTOR, HEMATOPOIETIC, 2 COMPLEX (HORMONE/RECEPTOR)	COMPLEX (MHCVVRAL PEPTIDE/RECEPTOR) HLA-A2 HEAVY CHAIN; CLASS I MHC, T-CELL RECEPTOR, VIRAL PEPTIDE, 2 COMPLEX (MHC/VIRAL PEPTIDE/RECEPTOR		MMUNE SYSTEM HUMAN TCR/PEPTIDE/MHC COMPLEX, HLA-A2, HTLV-1, TAX, TCR, T 2 CELL RECEPTOR, IMMUNE SYSTEM		LYASE 2-PHOSPHO-D-GLYCERATE HYDROLASE; LYASE, GLYCOLYSIS	LYASE 2-PHOSPHO-D-GLYCERATE HYDROLASE; LYASE, GLYCOLYSIS	LYASE (CARBON-OXYGEN) 2-PHOSPHO- D-GLYCERATE DEHYDRATASE; 1PDZ 6	LYASE (CARBON-OXYGEN) 2-PHOSPHO- D-GLYCERATE DEHYDRATASE; 1PDZ 6
Сотроива	B;	HUMAN GROWTH HORMONE; 1HGU 5 CHAIN: NULL; 1HGU 6	HUMAN GROWTH HORMONE; 1HGU 5 CHAIN: NULL; 1HGU 6	GROWTH HORMONE; CHAIN: A; GROWTH HORMONE BINDING PROTEIN; CHAIN: B, C;	GROWTH HORMONE; CHAIN: A; GROWTH HORMONE BINDING PROTEIN; CHAIN: B, C;	HLA-A 0201; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDE; CHAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN:	T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) 1HNG 3	MHC CLASS I HLA-A; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDE P6A; CHAIN: C; HMAN T-CELL RECEPTOR; CHAIN: D; HLA-A 0201; CHAIN: E;		ENOLASE; CHAIN: A, B;	ENOLASE; CHAIN: A, B;	ENOLASE; 1PDZ 4 CHAIN: NULL; 1PDZ 5	ENOLASE; 1PDZ 4 CHAIN: NULL; 1PDZ 5
SeqFold score			264.37		272.96					509.15			563.45
PMF score		1.00		1.00		 0.24	0.23	0.25			1.00	1.00	
Verify score		0.14		0.42		0.26	0.25	0.19			0.90	1.07	
PSI- BLAST		1.6e-60	1.6e-60	4.8e-62	4.8e-62	0.0083	0.00018	0.0083		0	0	0	0
End AA		216	216	216	216	100	115	100		431	.429	431	432
Start AA		28	28	27	27	15	24	15		2	S.	2	2
Chain ID				٧	A	 α	∢	Д		4	A		
10B 10		1hgu	Ihgu	Ihwg	lhwg	lao7	Ihng	Iqm		lone	lone	Ipdz	1pdz
SE B B	į	523	523	523	523	525	525	525		526	526	526	526

	11)	IION,	8 2	ME	ING				7 ZIN	
tation	TRANSFERASE RECEPTOR TYROSINE KINASE, PROTEIN INTERACTION MODULE, 2 DIMERIZATION DOMAIN, TRANSFERASE	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE-PROTEIN 3 KINASE	TRANSFERASE PPAT, KDTB; COENZYME A BIOSYNTHESIS	TRANSFERASE DINUCLEOTIDE-BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	OTEIN EMBRANE C PORIN, ARREL,	OTEIN EMBRANE C PORIN, ARREL,		INTEGRAL MEMBRANE PROTEIN PORIN MATRIX PORIN, OMPF PORIN; 20MF 7 PORIN, MEMBRANE PROTEIN 20MF 12	
PDB annotation	TRANSFERASE RECEPTOR TYRO KINASE, PROTEIN INTERACTION MODULE, 2 DIMERIZATION DOM TRANSFERASE	ANSDUCTIO TOR, SIGNA	TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EF RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE-PROT KINASE	ASE PPAT, K HESIS	ASE DINUCI DSPHORIBOS	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN; 2 BETA-BARREL, TRANSMEMBRANE	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE		MEMBRANE NRIN, OMPF I MBRANE PR	
	TRANSFERASE KINASE, PROTE MODULE, 2 DIN TRANSFERASE	SIGNAL TRA EPH RECEPT OLIGOMER	TYROSINE RECEPTOR PHOSPHOR TRANSDUC	TRANSFERASE PP A BIOSYNTHESIS	TRANSFER MOTIF, PHO	OUTER MEMBRANE OSMOPORIN; OUTEI PROTEIN, NON-SPEC OSMOPORIN, 2 BETA	OUTER MEMBRANE OSMOPORIN; OUTE PROTEIN, NON-SPE OSMOPORIN, 2 BET TRANSMEMBRANE		INTEGRAL MATRIX PORIN, ME	
pu	IYROSINE	i, C, D, E, F, G,	CEPTOR 2;	EINE FERASE;	E:5,6- CHAIN:	B, C,	B, C,	E PROTEIN HOE) 1PHO 3	TER SIN F; 20MF 5 F 6	
Compound	EPHA4 RECEPTOR TYROSINE KINASE; CHAIN: A;	EPHB2; CHAIN: A, B, C, D, E, F, G, H;	EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	PHOSPHOPANTETHEINE ADENYLYLTRANSFERASE; CHAIN: A, B;	NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	OMPK36; CHAIN: A, B, C;	OMPK36; CHAIN: A, B, C;	OUTER MEMBRANE PROTEIN PHOSPHOPORIN (PHOE) 1PHO 3	MATRIX PORIN OUTER MEMBRANE PROTEIN F; 20MF 5 CHAIN: NULL; 20MF 6	
SeqFold score		H #	<u> </u>	P	224			0 2	220	
PMF	0.46	0.1	0.95	0.36	-0.20	-0.20	-0.20	-0.20	-0.20	
Verify score	0.05	0.74	0.72	-0.13	0.52	0.38	0.74	0.83	0.82	
PSI- BLAST	5.4e-05	1.8e-06	90-96	8e-33	7.2e-13	7.2e-20	1.3e-19	5.4e-15	9e-12	
End	62	62	62	157	525	392	631	629	629	
Start	14	4	E	7	166	72	301	316	282	
Chain ID	4	∢	-	∢	•	ď	4			
PDB UD	190x	1b4f	1888	156t	1d0s	losm	losm	1pho	2omf	
SEQ B Si Si Si Si Si Si Si Si Si Si Si Si Si S	529	529	529	531	536	536	536	536	536	

SEQ B Sign	PDB ID	Chain ID	Start	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
537	1a26		51	160	7.2e-06	-0.24	0.05		POLY (ADP-RIBOSE) POLYMERASE; CHAIN: NULL;	TRANSFERASE PARP-CF, POLY(ADP- RIBOSE) TRANSFERASE, POLY TRANSFERASE, GLYCOSYLTRANSFERASE, NAD(+) 2 ADP- RIBOSYLTRANSFERASE
538	1a26		51	160	7.2e-06	-0.24	0.05		POLY (ADP-RIBOSE) POLYMERASE; CHAIN: NULL;	TRANSFERASE PARP-CF, POLY(ADP- RIBOSE) TRANSFERASE, POLY TRANSFERASE, GLYCOSYLTRANSFERASE, NAD(+) 2 ADP- RIBOSYLTRANSFERASE
540	1fao	A		91	5.4e-19	-0.06	0.27		DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	SIGNALING PROTEIN DAPPI, PHISH, BAM32, PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN
540	1fao	4	7	98	4.8e-11	0.51	0.33		DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN
540	1fb8	¥	-	91	1.8e-19	0.35	0.46		DÚÁL ADÁPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN
540	1108	4	7	98	4.8e-11	00:0	0.13		DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN
540	lfgy	∢	2	16	1.6e-15	29.0	0.54		GRPI; CHAIN: A;	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND

PDB Chain ID ID		Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
	_	1							PH DOMAIN
Ifgy A 2	2		96	9.6e-15	0.57	0.07		GRP1; CHAIN: A;	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN
1 pls	-		56	1.36-17	0.74	0.21		PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	,
ipis 2	2		96	6.4e-11	0.30	0.07		PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	
lpms 1		·	88	1.8e-14	0.89	0.25		SOS 1; CHAIN: NULL;	SIGNAL TRANSDUCTION SON OF SEVENLESS; PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDUCTION
let7 A 35	35		137	0.0051	-0.04	10:0		NITRITE REDUCTASE; CHAIN: A;	OXIDOREDUCTASE CU-NIR; GREEK KEY BETA BARREL DOMAIN
lael A 3	m	1.	245	3.6e-67			117.73	TROPINONE REDUCTASE-I; CHAIN: A, B;	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE
lael · A 4	4		245	3.6e-67	0.61	1.00		TROPINONE REDUCTASE-I; CHAIN: A, B;	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE
lael B 3	3	Н	245	1.1e-71			134.35	TROPINONE REDUCTASE-I;	OXIDOREDUCTASE OXIDOREDUCTASE,

		·										
PDB annotation	TROPANE ALKALOD BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE	OXIDOREDUCTASE NAD-DEPENDENT OXIDOREDUCTASE, SHORT-CHAIN ALCOHOL 2 DEHYDROGENASE, PCB DEGRADATION	OXIDOREDUCTASE NAD-DEPENDENT OXIDOREDUCTASE, SHORT-CHAIN ALCOHOL 2 DEHYDROGENASE, PCB DEGRADATION	LYASE EPIMERASE, DEHYDRATASE, DEHYDROGENASE, LYASE	OXIDOREDUCTASE SHORT-CHAIN DEHYDROGENASE, OXIDOREDUCTASE	OXIDOREDUCTASE SHORT-CHAIN DEHYDROGENASE, OXIDOREDUCTASE	LYASE DEHYDRATASE, NADP, GDP- MANNOSE, GDP-FUCOSE	ISOMERASE EPIMERASE, SHORT-CHAIN DEHYDROGENASE, GALACTOSEMIA	OXIDOREDUCTASE INHA; 1ENY 6	DEHYDROGENASE DEHYDROGENASE, 17-BETA-HYDROXYSTEROID
Compound	CHAIN: A, B;	TROPINONE REDUCTASE-I; CHAIN: A, B;	TROPINONE REDUCTASE-I; CHAIN: A, B;	CIS-BIPHENYI2,3- DIHYDRODIOI2,3- DEHYDROGENASE; CHAIN: NULL;	CIS-BIPHENYL-2,3- DIHYDRODIOL-2,3- DEHYDROGENASE; CHAIN: NULL;	DTDP-GLUCOSE 4,6- DEHYDRATASE; CHAIN: A, B;	CARBONYL REDUCTASE; CHAIN: A, B, C, D;	CARBONYL REDUCTASE; CHAIN: A, B, C, D;	GDP-MANNOSE 4,6- DEHYDRATASE; CHAIN: A;	UDP-GALACTOSE 4-EPIMERASE; CHAIN: A, B;	ENOYL-ACYL CARRIER PROTEIN (ACP) REDUCTASE; 1ENY 4 CHAIN: NULL; 1ENY 5	17-BETA-HYDROXYSTEROID- DEHYDROGENASE; CHAIN: NULL;
SeqFold score					82.09	•		117.07			66.42	57.21
PMF		1.00	1.00	1.00		0.41	1.00		6.93	69:0		
Verify score		0.37	69.0	0.57		0.14	29.0		0.07	0.05		
PSI- BLAST		1.1e-65	1.1e-71	7.2e-65	7.2e-65	7.2e-05	5.4e-71	5.4e-71	0.0018	0.00036	3.6e-61	3.2e-28
End		244	245	245	245	150	243	245	180	135	242	243
Start AA		4	4	m	m	7	E .	en en	7	7	-	v.
Chain U		m ·	В			<	٧	4	۷ .	4		
PDB UD		laci	lael	1bdb	1bdb	1bxk	lcyd	lcyd	1db3	1ek6	leny	1fds
SEQ EQ		542	542	542	542	542	542	542	542	542	542	542

			1			_						
PDB annotation	OXIDOREDUCTASE SHORT-CHAIN DEHYDROGENASE/REDUCTASE, BIL.E ACID CATABOLISM	OXIDOREDUCTASE SHORT-CHAIN DEHYDROGENASE/REDUCTASE, BILE ACID CATABOLISM				OXIDOREDUCTASE SEPIAPTERIN REDUCTASE, TETRAHYDROBIOPTERIN, OXIDOREDUCTASE		ISOMERASE ROSSMANN FOLD, SHORT HYDROGEN BONDS, SDR HOMOLOG, ISOMERASE	OXIDOREDUCTASE ENOYL REDUCTASE, OXIDOREDUCTASE	OXIDOREDUCTASE NAPHTHOL REDUCTASE, OXIDOREDUCTASE	OXIDOREDUCTASE NAPHTHOL REDUCTASE; OXIDOREDUCTASE	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO
Compound	7 ALPHA-HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	7 ALPHA-HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	OXIDOREDUCTASE(CHOH (D)- NAD(P)+ (A)) D-GLYCERATE DEHYDROGENASE (APO FORM) (E.C.1.1.29) 1GDH 3	OXIDOREDUCTASE 3-ALPHA, 20- BETA-HYDROXYSTEROID DEHYDROGENASE (E.C.1.1.53) IHDC 3 COMPLEXED WITH CARBENOXOLONE 1HDC 4	OXIDOREDUCTASE 3-ALPHA, 20- BETA-HYDROXYSTEROD DEHYDROGENASE (E.C.1.1.53) IHDC 3 COMPLEXED WITH CARBENOXOLONE 1HDC 4	SEPIAPTERIN REDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE QUINONE OXIDOREDUCTASE COMPLEXED WITH NADPH 1QOR 3	SULFOLIPID BIOSYNTHESIS (SQD1) PROTEIN; CHAIN: A;	ENOYL-REDUCTASE; CHAIN: A, B, C, D, E, F, G, H;	TRIHYDROXYNAPHTHALENE REDUCTASE; CHAIN: A, B;	TRUHYDROXYNAPHTHALENE REDUCTASE; CHAIN: A, B;	TROPINONE REDUCTASE-II; CHAIN: A, B;
SeqFold score		113.82			110.09	57.85		!		106.51		114.97
PMF score	1.00		0.51	1.00			0.99	0.27	1.00		1.00	
Verify score	0.72		0.12	0.45			0.55	-0.26	0.63		0.72	
PSI- BLAST	1.1e-63	1.Ie-63	0.0014	3.2e-66	3.2e-66	1.8e-57	3.6e-07	0.00054	1.3e-63	3.6e-66	3.6e-66	5.4e-71
End	242	245	28	244	245	241	83	154	245	245	245	245
Start	3	3	4	2	2	-	٠ .	7	2		3	1
Chain ID	4	∢	4	¥	V		Ą	4	Ą	V	A	A
PDB UD	1fmc	1fmc	1gdh	1hdc	lhdc	Ioaa	lqor	lqrr	lqsg	lybv	lybv	2ae2
SEQ D	542	542	542	542	542	542	542	542	542	542	542	542

PDB annotation	PSEUDOTROPINE, SHORT-CHAIN DEHYDROGENASE	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO PSEUDOTROPINE, SHORT-CHAIN DEHYDROGENASE	-(0	-	EE: LIGASE ARGRS, ARGININE - TRNA LIGASE; LIGASE, AMINOACYL-TRNA SYNTHETASE, PROTEIN BIOSYNTHESIS	r	LIGASE; LIGASE, AMINOACYL-TRNA SYNTHETASE, PROTEIN BIOSYNTHES		⊢		BE: LIGASE ARGRS, ARGININE - TRNA LIGASE, LIGASE, AMINOACYL-TRNA CYNTHETA SE PROTEIN PLOCKATHERIS	\dagger			╁
Compound		TROPINONE REDUCTASE-II; CHAIN: A, B;	OXIDOREDUCTASE (CHOH(D)- NADP+(A)) 6- PHOSPHOGLUCONATE DEHYDROGENASE (6-PGDH) (E.C.1.1.44) 2PGD 3		ARGINYL-TRNA SYNTHETASE; CHAIN: A;	ARGINYL-TRNA SYNTHETASE;	CHAIN: A;	ARGINYL-TRNA SYNTHETASE; CHAIN: A;	ISOLEUCYL-TRNA SYNTHETASE;	CHAIN: A; ISOLEUCYL-TRNA; CHAIN: T;	ARGINYL-TRNA SYNTHETASE; CHAIN: A;	ARGINYI -TRNA SYNTHETASE:	CHAIN: A;	ARGINYL-TRNA SYNTHETASE; CHAIN: A;	ISOLEUCYL-TRNA SYNTHETASE;
SeqFold score		,			-	257.02						257.02	70:16		
PMF		1.00	0.12		00.1			1.00	0.00		1.00			1.00	0.00
Verify score		0.68	-0.61		90.0			0.38	-0.51		90.0			0.38	-0.51
PSI- BLAST		5.4e-71	0.0036		3.2e-75	0		0	1.8e-07		3.2e-75		>	0	1.8e-07
End		245	48		241	403		403	114		241	403	?	403	114
Start AA		En .	18		16	-		16	40		16	-	-	16	40
Chain ID		K			4	A		4	<		4		¢	4	A
PDB TD	1.	2ae2	2pgd		1bs2	1bs2		1bs2	1qu2	,	1bs2	1402	7801	1bs2	1qu2
SEQ D	Ž	542	542		549	549		549	549		550	650	2	550	550

120	PDB Chain ID ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
								CHAIN: T;	JONS, EDITING TRNA SYNTHETASE, 2 DOUBLE-SIEVE
1ek9	∢	95	255	9e-06	-0.22	0.22		OUTER MEMBRANE PROTEIN TOLC; CHAIN: A, B, C;	MEMBRANE PROTEIN INTEGRAL MEMBRANE PROTEIN, ALPHA HELICAL BARREL, BETA BARREL
1qu7	∢	88	146	3.6e-13	0.39	-0.20		METHYL-ACCEPTING CHEMOTAXIS PROTEIN I; CHAIN: A, B;	SIGNALING PROTEIN SERINE, CHEMOTAXIS, FOUR HELICAL-BUNDLE
1dvp	4	401	457	7.2e-06	-0.87	0.46		HEPATOCYTE GROWTH FACTOR-REGULATED TYROSINE CHAIN: A;	TRANSFERASE HRS, HRS, VHS, FYVE, ZINC FINGER, SUPERHELIX
1ptq		421	452	0.0072	-0.82	0.05		PROTEIN KINASE C DELTA TYPE; 1PTQ 4	PHOSPHOTRANSFERASE
Itbn		421	453	0.0054	-0.83	0.07		PROTEIN KINASE C, GAMMA TYPE; CHAIN: NULL;	CALCIUM-BINDING PROTEIN RAT BRAIN PKC-G; CALCIUM-BINDING PROTEIN, PROTEIN KINASE C, PKC, TRANSFERASE
1vfy	4	421	457	5.4e-05	-0.84	0.05		PHOSPHATIDYLINOSITOL-3- PHOSPHATE BINDING FYVE CHAIN: A;	TRANSPORT PROTEIN FYVE DOMAIN, ENDOSOME MATURATION, INTRACELLULAR TRAFFICKING, 2 TRANSPORT PROTEIN
pqzI	В	385	452	9e-05	-0.92	0.22	-	RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP-BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN
1 1,		133	170	3 60 05	0.16	100		VIBIIS EQUINE HEBBES VIBIIS-1	
		72	1/3	5.05-05	-0.10	9.0		(CHC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC4	
lcwv	₹ .	225	337	0.0035	-0.87	90.0		INVASIN; CHAIN: A;	STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENE
Idan	1	3758	3833	3.2e-13	0.02	-0.17		BLOOD COAGULATION FACTOR VIIA; CHAIN: I, H; SOLUBLE TISSUB FACTOR; CHAIN: T, U; D-	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA,

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
Эġ	3	a	₹	AA	bl.A51	score	score	score		
							:		PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
564	ledh	V	6701	1237	1.8e-51			114.54	E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	ledh	4	1043	1237	1.8e-51	0.57	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	ledh	V	1068	1237	4.8e-36	0.49	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	ledh	4	1147	1343	3.6e-38	0.33	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCUM BINDING PROTEIN
564	ledh	4	1149	1347	3.2e-31	0.37	0.77		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	ledh	4	1287	1451	8e-24	0.41	0.49		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELJAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	1edh	4	1367	1554	5.4e-34	0.34	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	1edh	¥	1384	1554	4.8e-33	0.14	0.93		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
564	ledh	V	1459	1662	1.6e-57	0.29	86:0		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN,

			_					•				Τ			_				T			Т				Τ	-		\prod
PDB annotation	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN,	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS I AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN, CALCILM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS I AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAI	CADHERIN DOMAINS 1 AND 2. ECAD12:	CADHERIN, CELL ADHESION PROTEIN,	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADREKIN DOMAINS I AND 2, ECADIZ,	CALCHIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2. ECAD12:	CADHERIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL
Compound		E-CADHERIN; CHAIN: A, B;		E-CADHERIN; CHAIN: A, B;		E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;	,		E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;		,	E-CADHERIN CHAIN A B.		ŧ		E-CADHERIN; CHAIN: A, B;	-		F-CADHERIN: CHAIN: A B:			E-CADHERIN; CHAIN: A, B;
SeqFold																				-									
PMF score		0.87		1.00		0.54			66.0			0.52				0.04			08.0			,	0.43			0.81	1		69.0
Verify score		0.50		0.59		0.37			60.0			0.19				-0.06			0.46	?			0.21			0.03	3		-0.24
PSI- BLAST		3.6e-35	-	6.4e-33		3.6e-38			8e-32			9e-31		_		6.4e-28			720-25				1.6e-20			1 80-28	77-00-1		1.4e-19
End		1760		1760		1874			1874			1972				329			3076	2			2076			2177			2177
Start AA		1578		1596		9/91			1700			1789				183			1806				1915			1001			2015
Chain 19		₹		∢		A			4			▼				٧			4	:			⋖			<	•		A
PDB CD		ledh	-	ledh		ledh			ledh	-		1edh				ledh			10dh				ledh			1691			ledh
Seo B B S		564		564		564			564		,	564				564			564	3			564			1775	<u> </u>		564

PDB annotation	CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN,
Compound		E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score					-				ı	
PMF		0.47	1.00	0.89	1.00	89.0	0.59	0.46	0.89	0.80
Verify score		-0.34	0.30	0.01	0.29	0.42	0.33	0.17	0.08	0.23
PSI- BLAST		4.8e-22	7.2e-25	4.8e-38	3.6e-40	1.6e-34	6.4e-32	4.8e-34	8e-30	1.1e-14
End		2261	2278	2367	2385	2485	2487	2591	2697	454
Start		2094	2100	2188	2191	2302	2319	2427	2529	256
Chain ID		4	A	A	4	A	4	∢	A	∢
PDB ID		ledh	ledh	ledh	1edh	ledh	ledh	ledh	ledh	ledh
SEQ B B		564	564	564	564	564	564	564	564	564

SEQ PI	PDB Chain	in Start		PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
٠	\dashv		VV V						
i									CALCIUM BINDING PROTEIN
1edh	dh A	2609	2803	3.2e-41	0.35	0.43		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2. ECAD12:
									CADHERIN, CELL ADHESION PROTEIN,
1edh	dh	2714	2912	3.6e-38	0.30	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN.
									CALCIUM BINDING PROTEIN
ledh	dh A	2738	2912	9.6e-38	0.45	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS I AND 2, ECADI2;
		1							CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
legh	H A	2818	3017	1.4e-31	0.34	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS 1 AND 2, ECAD12;
									CADHERIN, CELL ADHESION PROTEIN,
ledh	dh A	2819	3017	7.2e-38	0.50	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS 1 AND 2, ECAD12;
									CADHERIN, CELL ADHESION PROTEIN,
									CALCIUM BINDING PROTEIN
1edh	dh A	292	455	3.2e-25	0.31	0.82		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS I AND 2, ECAD12;
									CADHERIN, CELL ADHESION PROTEIN,
_[·	+	1000	0.,0	20	90.0	9		r OANTENN: CHANE A D.	CALCIUM BINDING PROTEIN
ledh	년 	6767	5115	3.06-3/	97.0	3.1		E-CAUTEKIN; CHAIN: A, B;	CADHEDIN FROIGH EFITHELIAL
			_						CADHERIN, CELL ADHESION PROTEIN,
									CALCIUM BINDING PROTEIN
1edh	gh A	2955	3119	3.2e-28	0.13	1.00		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL
									CADHERIN DOMAINS I AND 2, ECADI2;
									CADHERIN, CELL ADHESION PROTEIN,
-	+	1000	7,000	70.47	03.0	1 00		E CANTERNI CHARLA B.	CELL A DIRECTON BROTTEN EDITION 1AT
	<	1000	£77C	4.00-40	2	7.5		p-continual, chair, a, b,	CADHERIN DOMAINS 1 AND 2. ECAD12:
	_	_			,				CADHERIN, CELL ADHESION PROTEIN,
1001	<	2124	3330	3 60.47	0 33	00 0		B.CADHERIN: CHAIN: A B:	CALCIUM BINDING PROTEIN CELL ADHESION PROTEIN EDITHET 1AT
티	1 h	+010	7700	3.05-4/	25.2	7.77		בייריתיי, אייהייי, אייהיייליי	CELE ANTHONOTA INVIENT DI MANAGE

PDB annotation	CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN,
Compound		E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;							
SeqFold score									·	
PMF		0.88	1.00	1.00	1.00	1.00	0.34	86'0	0.70	0.29
Verify score		0.04	0.63	0.26	0.50	-0.00	-0.18	0.38	-0.04	0.01
PSI- BLAST		3.2e-26	7.2e-47	3.2e-18	1.8e-38	6.4e-17	1.1e-18	1.1e-27	6.40-50	3.2e-30
End		3318	3434	3434	3537	3539	3634	559	249	561
Start		3137	3248	3266	3345	3372	3448	375	40	406
Chain ID		V	٧	V	٧	4	e e	<	4	4
PDB UI		ledh	ledh	ledh	ledh	ledh	1edh	1edh	ledh	ledh
SEQ EQ		564	564	564		564	564	564	564	564

															_													
PDB annotation	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHEKIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS I AND 2, ECADI2;	CADHERIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL	CADHERIN DOMAINS 1 AND 2, ECAD12;	CADHERIN, CELL ADHESION PROTEIN,	CALCIUM BINDING PROTEIN	MATRIX CALCITIMENTO MATRIX	GLYCOPROTEIN, 2 REPEAT, SIGNAL,	MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN
Compound		E-CADHERIN; CHAIN: A, B;		E-CADHERIN; CHAIN: A, B;		E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN; A. B.			E-CADHERIN; CHAIN; A. B:			THE C	FIBRILLIN; CHAIN: NOLL;		
SeqFold score																									1			
PMF score		92.0		0.42		0.28			0.95			1.00				0.49			0.88			0.72	!		;	-0.14		
Verify score		0.25		0.12		-0.09	-		0.41			0.46				0.16			0.29			0.41	:		8,0	70.0		
PSI- BLAST		1.6e-26		1.16-25	_	6.46-20			8e-51		•	7.2e-43				6.4e-31			3.6e-40	•		3.2e-27	i		;	3.2e-14		_
End		663		299		814			919			1024				1016			1131			1131			1	3830		
Start AA		474		498		597			720		-	829				928			928			964	;			3750		
Chain ID		4		4		A			V							A						4	:					
PDB CD		ledh		ledh		ledh			ledh			ledh				1edh			legh			ledh		_		lemn		
S E S		564		564		564			564	_		564				564			564			564				564		

PDB annotation	FIBRILLIN-I FRAGMENT, MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD PROTEASE/COFACTOR/LIGAND), BLOOD	CLOTTING CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13							
Compound		BLOOD COAGULATION FACTOR VIIA; CHAIN: I.; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3
SeqFold score																
PMF score		-0.14	0.36	0.05	0.81	0.94	0.83	0.25	0.88	0.37	0.52	0.36	0.05	-0.09	0.05	0.28
Verify score		0.00	0.64	0.35	0.51	0.51	0.58	0.61	0.22	0.37	0.28	0.54	0.24	0.29	0.43	0.00
PSI- BLAST		3.2e-13	96-19	1.1e-06	3.6e-18	0.00048	7.2e-12	9e-11	1.1e-19	5.4e-15	1.6e-05	7.2e-19	8e-07	3.6e-11	0.00014	9e-16
End		3833	1129	1129	1236	1235	1344	1447	1553	247	235	1660	1660	1757	1758	1873
Start		3758	1043	1066	1142	1146	1247	1359	1457	153	156	1565	1594	1675	1680	1770
Chain ID		H														
PDB CI		1fak	Incg	Incg	Incg	Incg	Incg	lncg	Incg	lncg	Incg	lncg	Incg	Incg	lncg	lncg
SEQ NO 10		564	564	564	564	564	564	564	564	564	564	564	564	564	564	564

PDB annotation	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN 1NCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN 1NCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13
Compound	N-CADHERIN; INCG 3																		
SeqFold score										-									
PMF score	0.16	69:0	-0.07	0.18	0.34	90.0	0.51	0.23	0.12	0.30	0.18	0.22	0.48	0.75	0.59	89.0	0.42	0.04	0.01
Verify score	-0.23	0.13	0.38	-0.28	0.11	0.23	0.02	0.38	0.42	0.40	0.26	0.19	0.30	0.25	0.40	0.34	90:0	0.31	0.19
PSI- BLAST	3.2e-06	1.3e-09	1.8e-10	1.4e-14	1.8e-18	1.4e-08	9e-11	1.3e-11	3.2e-09	9e-12	5.4e-20	1.6e-05	9e-14	1.4e-18	3.2e-15	1.le-18	1.6e-05	3.6e-19	0.00064
End	1873	2074	2178	2270	2383	2486	2590	2696	2801	2801	2910	2897	3016	3118	3120	3223	3209	3327	3311
Start	1807	1984	2088	2185	2288	2394	2497	2604	2707	2708	2812	2818	2924	3026	3026	3131	3137	3237	3264
Chain ID																			
PDB ID	lncg	Incg	lncg	lncg	lncg	lncg	lncg	lncg	Incg	Incg	lncg	Incg	Incg	Incg	lncg	Incg	lncg	Incg	lncg
SEQ	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564

PDB annotation	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13
Compound	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3									
SeqFold score																		}	
PMF score	0.48	0.41	0.11	0.09	0.43	0.12	0.55	0.29	0.42	0.46	0.51	9.65	0.72	69.0	0.64	0.93	0.03	0.83	0.23
Verify score	0.22	-0.09	0.46	0.22	0.16	-0.05	90.0	0.10	0.53	0.36	0.41	0.34	0.42	0.20	0.10	0.63	0.39	-0.03	0.07
PSI- BLAST	1.36-19	1.le-10	0.00018	9e-14	3.6e-07	0.0046	1.3e-17	1.6e-17	1.8e-20	3.2e-05	1.3e-17	1.3e-07	1.6e-17	0.0016	1.8e-07	1.8e-11	3.2e-05	1.3e-17	5.4e-13
End	3432	3538	3634	557	699	999	813	915	1023	1009	1131	1131	1237	1237	1344	1448	1449	1554	248
Start AA	3339	3447	3559	465	583	597	718	824	932	936	1043	1067	1133	1174	1239	1359	1387	1457	154
Chain 19											В	В	В	В	æ	В	В	æ	В
EDB ED	lncg	lncg	Incg	Incg	lncg	lncg	Incg	Incg	lncg	Incg	lnci	lnci	Inci	Inci	lnci	lnci	Inci	Inci	lnci
SEQ D	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564

			·	Γ		Г	Γ''		<u> </u>	Γ			ļ				ı -	Γ		
PDB annotation		CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL, ADHESION PROTEIN CADHERIN INCI 13
Compound		N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3					
SeqFold	score																			
PMF	score	0.28	0.17	0.33	0.04	0.09	0.11	61.0	0.35	0.93	0.00	0.00	0.39	0.78	0.37	96.0	0.03	0.95	0.95	0.65
Verify	score	-0.06	0.07	0.55	0.33	0.01	-0.41	-0.32	0.44	0.31	0.19	-0.40	90.0	-0.03	0.47	0.40	0.32	0.56	0.24	0.19
PSI-	BLAS1	5.4e-17	1.6e-07	1.8e-14	3.2e-05	5.4e-13	8e-07	1.6e-05	1.1e-05	3.6e-10	3.6e-09	3.2e-12	7.2e-15	7.2e-18	3.6e-06	9e-10	3.6e-11	1.6e-09	1.4e-12	3.6e-19
End	₽	1660	1662	1760	1763	1874	1874	249	1972	2076	2178	2270	2275	2385	2486	2591	5696	2803	2803	2912
Start	AA	1556	1595	1675	1680	1762	1808	182	1887	1986	2078	2185	2186	2280	2394	2500	2593	2707	2710	2805
Chain	3	æ	В	В	В	В	В	æ	В	В	В	В	В	Д	В	В	В	В	В	В
PDB	3	Inci	lnci	lnci	lnci	Inci	lnci	Inci	Inci	Inci	lnci	lnci	lnci	Inci	Inci	Inci	lnci	Inci	Inci	Inci
SEQ	a ö	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	264	564	564

PDB annotation		CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 11NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN 1NCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CELL ADHESION PROTEIN					
Compound		N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; 1NCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; CHAIN: A;							
SeqFold	score																	,		
PMF	score	0.16	0.62	0.77	0.37	0.55	0.39	0.23	0.72	1.00	0.25	0.95	-0.14	0.65	98.0	0.22	0.37	0.57	0:18	0.99
Verify	score	-0.16	0.35	0.19	0.05	0.56	-0.20	0.31	0.23	0.24	-0.43	0.43	90.0	0.30	0.05	0.24	0.44	0.38	0.03	0.77
PSI-	BLAST	9.ee-06	1.8e-13	1.6e-17	8e-13	3.6e-17	6.4e-05	1.8e-22	1.8e-19	0.0046	1.8e-08	3.6e-10	8e-15	9e-05	8e-16	7.2e-15	4.8e-06	3.6e-19	0.00014	1.6e-38
End	AA	2912	3017	3119	3120	3224	3224	3329	3434	3434	3538	454	141	699	814	919	919	1024	1009	1237
Start	¥	2846	2924	3019	3026	3121	3162	3226	3331	3381	3436	368	40	563	718	816	855	921	936	1062
Chain	A	Д	В	В	æ	В	В	Д	B	æ	В	В	В	В	В	В	В	æ	В	A
PDB	A	Inci	Inci	Inci	Inci	Inci	Inci	Inci	lnci	Inci	Inci	Inci	lnci	Inci	Inci	Inci	Inci	Inci	Inci	lncj
SEQ	a ÿ	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564

wo	02	/21	1	1	1
ww	UZ			1	1

PDB annotation		CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
Compound		N-CADHERIN; CHAIN: A;																		
SeqFold score										-										
PMF score		1.00	96.0	99.0	0.94	-0.06	9.1	96.0	0.25	0.22	0.45	0.22	0.76	0.57	0.82	0.25	0.71	1.00	1.00	1.00
Verify score		0.59	99.0	-0.08	0.30	0.07	0.43	0.38	-0.07	0.51	-0.12	-0.26	-0.08	0.33	0.21	0.27	0.40	0.39	0.30	0.61
PSI- BLAST		1.6e-32	4.8e-24	6.4e-33	6.4e-62	1.1e-29	6.4e-33	1.3e-34	9.6e-34	6.4e-19	1.3e-22	1.6e-22	1.4e-42	1.3e-32	1.3e-36	1.6e-32	1.6e-45	4.8e-43	3.2e-33	1.6e-28
End	Ψ¥	1347	1448	1554	1662	359	1760	1874	1977	2079	2177	2266	2371	2487	2591	2697	2803	2912	3017	3119
Start		1146	1278	1355	1458	156	1571	1680	1777	1910	2008	2091	2185	2293	2400	2504	2606	2707	2818	2927
Chain		A	<	∢	∢	4	V	¥	A	∀	<	∢	₹.	¥	4	∢	V	⋖	∢	4
PDB U		Incj	lncj	lncj	lncj	Incj	Incj	lncj	lncj	Incj	Incj	lncj	Incj	lncj	Incj	Incj	Incj	Incj	lncj	lncj
SEQ	NO:	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564	564

					Г	_	_	_		Γ	ı	_		r		-		ι –	
PDB annotation	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTIMAS	FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD	COAGULATION, 2 PLASMA, SERINE	HYDROLASE, 3 GLYCOPROTEIN	SERINE PROTEASE FVIIA; FVIIA; BLOOD COAGULATION, SERINE PROTEASE	
Compound	N-CADHERIN; CHAIN: A;	FACTOR IXA; CHAIN: C, L.; D. PHE-PRO-ARG; CHAIN: I;				COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L;	(HEAVY CHAIN); CHAIN: H; TREETIDYL INHIBITOR; CHAIN:												
SeqFold score			110.81							-									
PMF	0.34	1.00		1.00	66.0	1.00	09.0	0.37	0.87	0.10	1.00	0.40	0.87	-0.08				-0.01	
Verify score	0.02	0.42		0.38	0.51	0.39	0.17	0.02	0.33	-0.30	60.0	0.11	0.39	0.16				0.10	
PSI- BLAST	1.1e-25	9.6e-53	9.6e-53	8e-30	1.6e-18	4.8e-19	9.6e-34	3.2e-56	1.4e-29	1.3e-22	6.4e-56	1.6e-33	6.4e-31	3.2e-12				4.8e-12	
End	455	3224	3223	3316	3434	3539	561	249	<i>L99</i>	814	919	1010	1131	3883				3833	
Start AA	299	3027	3028	3153	3238	3365	374	40	489	595	719	829	936	3794			•	3762	
Chain The Chain	V.	4	¥	∢	4	<	<	∀	4	V	4	4	¥	7	-	•		٦	
8 8 8 8	Incj	Incj	Incj	lncj	Incj	lncj	Incj	Incj	Incj	Incj	Incj	lncj	Incj	1pfx	-			1qfk	
SEQ NO D	564	564	564	564	564	564	564	564	564	564	264	564	564	564			٠	564	

	_												
PDB annotation		SERINE PROTEASE FVIIA; FVIIA; BLOOD COAGULATION, SERINE PROTEASE	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN;
Compound	່ວ່	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN:
SeqFold score								!					
PMF		-0.19	0.53	66.0	0.82	0.52	0.88	0.65	0.07	0.24	0.41	60:0	0.36
Verify score		0.03	0.47	0.58	0.31	0.41	0.65	-0.04	0.00	0.27	0.33	0.58	0.18
PSI- BLAST		6.4e-15	7.2e-22	1.8e-20	3.2e-07	1.3e-09	1.8e-12	1.3e-22	9e-14	3.6e-18	1.3e-09	1.3e-13	1.6e-08
End		3883	1135	1241	1241	1343	1452	1558	251	1665	1666	1764	1764
Start AA		3795	1043	1147	1149	1265	1363	1457	156	1578	1596	9/91	1700
Chain ID		ы											
EDB CI		1qfk	Isuh	1suh	1suh	lsuh	1suh	lsuh	Isuh	lsuh	Isuh	Isuh	1suh
SEQ Signal Signa		564	564	564	564	564	564	3 64	564	564	564	564	364

PDB annotation	CADHEBIN CALCILIM BINDING CELL	CADHESION ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION									
Compound	NIII I	NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;									
SeqFold score					1									
PMF score			0.07	0.03	0.88	-0.08	0.34	95.0	0.52	0.21	0.47	0.43	-0.15	-0.17
Verify score			-0.13	0.33	0.05	0.02	-0.02	0.17	0.43	0.42	0.29	-0.46	0.37	0.31
PSI- BLAST			1.3e-17	1.3e-07	1.6e-11	1.8e-10	8e-14	7.2e-17	7.2e-18	1.8e-05	1.46-12	4.8e-07	1.3e-09	3.6e-10
End	£		1877	1973	2080	2178	2271	2282	2389	2489	2595	2595	2701	2696
Start			1790	1896	1991	2100	2185	2193	2302	2397	2502	2529	2609	2622
Chain ED														
808 10			Isuh	1suh	lsuh	Isuh	Isuh	1suh	Isuh	1suh	1suh	1suh	1suh	Isuh
SEQ 10	Ö		564	564	564	564	564	564	564	. 564	564	564	564	564

		7											
PDB annotation	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORUIJN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL								
Compound	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;											
SeqFold score									. -				
PMF score	0.88	0.70	0.81	90.0	86.0	0.90	69.0	1.00	69.0	0.22	0.40	0.75	1.00
Verify score	0.34	0.19	0.23	0.09	0.18	-0.04	0.17	09.0	0.28	0.05	0.42	0.50	0.39
PSI- BLAST	9e-13	4.8e-10	7.2e-22	0.0021	3.6e-15	0.00011	3.2e-15	3.6e-20	1.4e-20	4.8e-06	7.2e-21	3.6e-21	0.0046
End	2807	2807	2915	363	3021	3021	3123	3123	3228	3228	3333	3438	3438
Start AA	2711	2738	2812	292	2929	2955	3026	3034	3131	3137	3248	3345	3372
Chain ID													
PDB ID	lsuh	Isuh	Isuh	lsuh	lsuh	lsuh	Isuh	lsuh	Isuh	Isuh	lsuh	Isuh	lsuh
SEQ B SEQ	564	564	564	564	564	564	564	564	564	564	564	564	564

PCT/US01/27760

PDB annotation	ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	LIGASE/RNA THRRS; TRNA (THR); THREONYL-TRNA SYNTHETASE, TRNA(THR), AMP, ZINC, MRNA, 2 AMINOACYLATION, TRANSLATIONAL REGULATION, PROTEIN/RNA				
Сотроинд		EPITHELIAL CADHERIN; CHAIN: NULL;		EPITHELIAL CADHERIN; CHAIN: NULL;		EPITHELIAL CADHERIN; CHAIN: NULL;		EPITHELIAL CADHERIN; CHAIN: NULL;	THREONYL-TRNA SYNTHETASE; CHAIN: A; THREONINE TRNA; CHAIN: B;				
SeqFold score													
PMF score		90.0	0.05	0.12	0.05	09.0	0.57	0.62	0.24	0.29	0.11	1.00	
Verify score		-0.22	-0.21	-0.33	-0.21	0.25	0.35	0.26	-0.10	0.23	-0.51	0.24	
PSI. BLAST		1.6e-18	3.2e-06	1.4e-14	0.0016	0.00011	3.2e-21	1.3e-17	1.6e-07	1.66-19	0.0035	6.4e-67	
End		145	459	265	265	699	818	923	923	1028	666	323	
Start AA		40	406	474	498	585	718	829	856	934	964	65	
Chain TO												4	
PDB U		lsuh	lsuh	lsuh	Isuh	1suh	lsuh	lsuh	lsuh	lsuh	Isuh	1qf6	
S a S		564	564	564	564	564	564	564	564	564	564	565	

 7				1									1	
PDB annotation	RON-SULFUR PROTEIN IRON-SULFUR PROTEIN, PHOTOSYNTHESIS, ELECTRON TRANSPORT TER	ELECTRON TRANSPORT ELECTRON TRANSPORT, EUKARYOTIC, GREEN ALGA, ELECTRON 2 TRANSFER, METALLOPROTEIN	ELECTRON TRANSPORT [2F5- 2S]FERREDOXIN, ADRENODOXIN, ELECTRON TRANSPORT	ELECTRON TRANSPORT [2FE- 2SJFERREDOXIN, ADRENODOXIN, ELECTRON TRANSPORT	FERREDOXIN STRUCTURE FROM MOLMOL, FERREDOXIN	FERREDOXIN STRUCTURE FROM MOLMOL, FERREDOXIN	ELECTRON TRANSPORT [2FE-2S] PROTEIN, CRYSTAL REDUCED WITH DITHIONITE		ELECTRON TRANSPORT C8SS GAPDX; ELECTRON TRANSPORT, GAPDX C8SS, 20 STRUCTURES ALIGNED AND SA HEADER	ELECTRON TRANSPORT [2FE-2S] FERREDOXIN, SOLUTION STRUCTURE, PARAMAGNETISM, 2 NUCLEAR RELAXATION, ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT, IRON-SULFUR	ELECTRON TRANSPORT	T CAT MACADITY AM AND T	LIPID IKANSPOKI APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2
Compound	FERREDOXIN; CHAIN: NULL;	FERREDOXIN; CHAIN: NULL	ADRENODOXIN; CHAIN: A, B;	ADRENODOXIN; CHAIN: A, B;	TERPREDOXIN; CHAIN: A;	TERPREDOXIN; CHAIN: A;	FERREDOXIN I; CHAIN: A, B	ELECTRON TRANSFER (IRON- SULFUR PROTEIN) FERREDOXIN I 1FXI 3	PUTIDAREDOXIN; CHAIN: NULL;	FERREDOXIN; CHAIN: NULL;	FERREDOXIN; CHAIN: NULL	FERREDOXIN; 4FXC 4 CHAIN: NULL 4FXC 5	The state of the s	APOLPOPROTEIN A-1; CHAIN: A, B, C, D;
SeqFold score			87.51		66.15				82.36				1	53.78
PMF score	0.49	0.66		1.00		1.00	0.30	0.22		0.33	0.05	0.52		
Verify score	-0.06	-0.09		0.87		0.20	0.05	-0.08		0.15	0.30	0.02		
PSI- BLAST	4.8e-27	3.2e-28	5.4e-31	5.4e-31	1.8e-28	1.8e-28	4.8e-29	6.4e-29	1.6e-20	8e-28	4.8e-31	8e-29		0.0009
End	991	166	163	163	166	163	166	166	167	164	166	166		202
Start	62	64	63	64	65	99	62	62	64	62	62	62		1
Chain U			4	4	¥ .	4	4	4						∀
EDB ID	1a70	lawd	layf	layf	1691	1b9r	lczp	1fxi	1gpx	1pfd	lroe	4fxc		lavi
S E SE	898	895	998	898	998	899	998	898	268	568	898	998		569

PDB annotation	ATHEROSCLEROSIS, HDL, LCAT-ACTIVATION	LIGASERNA ASPARTATE-TRNA LIGASE, ASPRS; PROTEIN-RNA COMPLEX	LIGASE AMINOACYL TRNA SYNTHETASE	TRANSFERASE DINUCLEOTIDE-BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	ELECTRON TRANSPORT NMR, RUBREDOXIN, GUILLARDIA THETA, ZINC-SUBSTITUTION		TRANSFERASE ADOMET SYNTHETASE, MAT-I, ADENOSYLTRANSFERASE, METHIONINE BINDING		LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-BINDING PROTEIN	TRANSCRIPTION INHIBITOR BETA- PROPELLER	LIGASE CYCLIN A/CDK2-ASSOCIATED
Compound		ASPARTYL TRNA SYNTHETASE; CHAIN: A; ASPARTYL TRNA; CHAIN: B;	ASPARTYL-TRNA SYNTHETASE; CHAIN: A, B;	NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	RUBREDOXIN; CHAIN: A;		METHIONINE ADENOSYLTRANSFERASE, ALPHA FORM; CHAIN: A, B;	VRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) 1CHC 3 (NMR, 1 STRUCTURE) 1CHC 4	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN- CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	RAGI; CHAIN: NULL;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	SKP2; CHAIN: A, C, E, G, I, K, M,
SeqFold score												
PMF score		1.00	1.00	-0.20	60.0		1.00	0.41	0.22	0.18	0.13	0.35
Verify		0.58	0.34	0.28	-0.64		0.71	0.47	60.0-	0.24	0.15	-0.12
PSI- BLAST		0	0	5.4e-09	0.009	·	0	8e-12	0.00036	1.6e-08	4.8e-54	1.8e-05
End	₹	502	503	96	418		257	113	122	121	371	126
Start		_	_	2	371		91	19	58	63	16	81
Chain		∢	4	Ą	V		⋖		4		4	Ą
PDB		1c0a	1851	1d0s	ldx8		Iqm4	1chc	1fbv	lmd	lerj	1fqv
SEQ	Ö	570	570	571	57.1		574	575	575	575	581	581

							
PDB annotation	PROTEIN P45; CYCLIN A/CDK2- ASSOCIATED PROTEIN P19; SKP1, SKP2, F- BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE SKP2 F-BOX; SKP1; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETAI, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX
Compound	O; SKP1; CHAIN: B, D, F, H, J, L, N, P;	CYCLIN A/CDK2-ASSOCIATED P19; CHAIN: A, C; CYCLIN A/CDK2-ASSOCIATED P45; CHAIN: B, D;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*UP*UP*U P*UP*UP*UP. CHAIN: P, Q;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U
SeqFold				96.38			
PMF score		0.65	0.93		0.81	-0.01	0.09
Verify score		-0.37	0.29		0.57	-0.00	-0.10
PSI- BLAST		0.00011	1.6e-54	6.4e-71	6.4e-71	9.66-16	3.2e-25
End AA		120	415	455	455	302	135
Start AA		81	117	123	162	172	2
Chain ID		ď	æ	æ	æ	V	A
PDB 13		1631	lgot	1got	lgot	1b7f	1b7f
SEQ NO:		581	581	281	581	583	583

PDB annotation RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA GENE REGULATION/RNA REGULATION/RNA REGULATION/RNA REGULATION/RNA REGULATION/RNA REGULATION/RNA REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE
RNA-BINDING PROTEINING REGULADOMAIN, RNA COMPLEX DOMAIN, RNA COMPLEX GENE REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA BINDING PROTEIN 1, PAB PROTEIN-RNA COMPLEX, REGULATION/RNA	8 8 8 8 8 8 8 8	GENE BIND PROT
Compound SXL-LETHAL PROTEIN; CHAIN: SXL-LETHAL PROTEIN; CHAIN: R(P*GP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP	C. Y.	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'-
Score		
9 PMF score 0.71 0.71 0.09 0.00 0.00 0.00	0.00	0.47
9core -0.06 -0.21 -0.09	-0.04	-0.29
PSI- BLAST 4.8e-34 6.4e-28 6.4e-28 8e-26	9.6e-16	8e-25
AA 426 426 426 426 432 432 432	288	121
Start AA 179 232 232 66	179	2
Chain B A A A A A A A A A A A A A A A A A A	m	В
PDB DB	lovj	lcvj
SE3 SE3 SE3 SE3 SE3 SE3 SE3 SE3 SE3 SE3	583	583

PDB annotation	REGULATION/RNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA
Compound	R(*AP*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P,
SeqFold score							
PMF score		0.46	-0.13	-0.12	0.03	-0.06	0.31
Verify score		0.10	0.25	0.02	-0.00	0.07	0.21
PSI- BLAST		4.8e-29	4.8e-18	3.2e-24	6.4e-20	4.8e-18	1.16-22
End		412	433	202	402	433	148
Start AA		232	351	99	232	351	99
Chain ID		м		ø	ц	II.	ĮĽ,
PDB UD		lcvj	lcvj	lcvj	lcvj	lovj	1cvj
SEQ B SEQ		583	583	583	583	583	583

										_	<u>ر</u>	-	≥, 		,,		Z,				<u>ځ</u>						T	
PDB annotation			GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE DECIT ATTOMBLA			RNA BINDING PROTEIN RNA-BINDING DOMAIN	RNA BINDING PROTEIN RNA-BINDING DOMAIN	RIBONUCLEOPROTEIN U1A117; RIBONIICI EOPROTEIN RNP DOMAIN	,	NUCLEAR PROTEIN HETEROGENEOUS	NUCLEAR RIBONUCLEOPROTEIN A1,	NUCLEAR PROTEIN, HNRNP, RBD, RRM,	ROTEIN	NUCLEAR PROTEIN HETEROGENEOUS	NUCLEAR RIBONUCLEOPROTEIN A1,	NOCLEAR PROTEIN, HINKINF, KBD, KKIM,	JING, Z ROTFIN	NUCLEAR PROTEIN HETEROGENEOUS	NUCLEAR RIBONUCLEOPROTEIN A1,	NUCLEAR PROTEIN, HINRNP, RBD, RRM,	OING, 2 ROTEIN	RNA BINDING PROTEIN RNA-BINDING	•		RNA BINDING PROTEIN RNA-BINDING DOMAIN	RIBONUCL HOPROTHIN PTB PTB-C198	HETEROGENEOUS NUCLEAR POLYPYRIMIDINE TRACT BINDING
			GENE REGULA BINDING PROJ	PROTEIN-RNA CON	WEGGE TION		RNA BINDING DOMAIN	RNA BINDING DOMAIN	RIBONUCLEOF RIBONITCI FOR	SPLICEOSOME	NUCLEAR PRO	NUCLEAR RIB	NUCLEAR PRO	RIBONUCLEOPROTEIN	NUCLEAR PRO	NUCLEAR RIBO	NUCLEAK PKO	RNP, KNA BINDING, 2 RIBONLICI EOPROTEIN	NUCLEAR PRO	NUCLEAR RIBO	NUCLEAR PRO	RNP, RNA BINDING, 2 RIBONIICI EOPROTEIN	RNA BINDING	DOMAIN		RNA BINDING DOMAIN	RIBONUCLEOP	HETEROGENEOUS NUCLEAR POLYPYRIMIDINE TRACT BIT
Compound		Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E,	F, G, H; KNA (5'- D/* A D* A D* A D* A D* A D* A D* A D	*AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A;	UI SMALL NUCLEAR RIBONICI EOPROTFIN A: CHAIN:	NULL;	HNRNP A1; CHAIN: NULL;				HNRNP AI; CHAIN: NULL;				HNRNP AI; CHAIN: NULL;				HETEROGENEOUS NUCLEAR	RIBONUCLEOPROTEIN DO;	CHAIN: A;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO; CHAIN: A:	POLYPYRIMIDINE TRACT-	BINDING PROTEIN; CHAIN: A;
SeqFold score																								·				
PMF score			0.29				0.49	0.01	0.03		0.12				0.01			********	-0.13				0.15			-0.19	0.03	
Verify score			-0.05				-0.16	-0.03	0.37		-0.25				-0.10				0.07			-	-0.04			0.19	-0.33	
PSI- BLAST			1.4e-20				9.6e-16	8e-19	6.4e-17	•	4.8e-16				8e-30				4.8e-18				3.2e-17			1.6e-18	3.2e-37	
End	AA		405				310	432	328		302				135				210				302			426	428	
Start AA			232				227	345	224		172				2				65				231			350	227	i
Chain ID			Н	-			V	4								•							A			∢	\d	<u> </u>
86 a	-		lcvj				148z	Z8PI	1tht		lhal				1ha1				lhal				1hd1	··		Ibdi	1 _{am} 0	-
SEQ U	NO:		583				583	583	583		583				583				583				583			583	583	}

PDB annotation	PROTEIN, RNP, RNA, SPICING, 2 TRANSLATION	RIBONUCLEOPROTEIN PTB, PTB-C198, HETEROGENEOUS NUCLEAR POLYPYRIMIDINE TRACT BINDING PROTEIN, RNP, RNA, SPICING, 2 TRANSLATION	RNA-BINDING DOMAIN RNA-BINDING DOMAIN, ALTERNATIVE SPLICING	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2.SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	TRANSPORT PROTEIN VAMP 2; MEMBRANE FUSION PROTEIN COMPLEX, TRANSPORT PROTEIN	TRANSPORT PROTEIN VAMP 2; MEMBRANE FUSION PROTEIN COMPLEX, TRANSPORT PROTEIN	COMPLEX (NUCLEAR PROTEIN'RNA) COMPLEX (NUCLEAR PROTEIN'RNA), RNA, SNRNP, RIBONUCLEOPROTEIN	RNA BINDING PROTEINRNA NESTED DOUBLE PSEUDOKNOT RNA STRUCTURE	RIBONUCLEOPROTEIN UIA117;
Compound		POLYPYRIMIDINE TRACT- BINDING PROTEIN; CHAIN: A;	SEX-LETHAL PROTEIN; CHAIN: NULL;	SEX-LETHAL; CHAIN: A, B, C;	SEX-LETHAL; CHAIN: A, B, C;	SYNAPTOBREVIN 2; CHAIN: A, E, I; SYNTAXIN 1A; CHAIN: B, F, J; SNAP-25B; CHAIN: C, G, K; SNAP-25B; CHAIN: D, H, L;	SYNAPTOBREVIN 2; CHAIN: A, E, I; SYNTAXIN 1A; CHAIN: B, F, J; SNAP-25B; CHAIN: C, G, K; SNAP-25B; CHAIN: D, H, L;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B, D;	UIA PROTEIN; CHAIN: A; HDV RIBOZYME SELF-CLEAVED; CHAIN: B;	UI SMALL NUCLEAR
SeqFold score							106.16			
PMF score		0.23	1.00	0.07	0.58	0.90		0.35	0.33	0.22
Verify score		-0.28	0.26	-0.57	-0.12	-0.41		-0.04	-0.18	-0.17
PSI- BLAST		9.66-18	9.6e-16	8e-24	3.2e-32	3.2e-26	3.2e-26	5.4e-05	1.8e-05	7.2e-05
End AA		304	308	125	419	93	93	304	276	276
Start		19	231.	7	231	25	25	211	211	211
Chain ID		∢		∢	∢	4	4	g g	4	
PDB CI		1qm9	2sxi	3sxl	3sxl	1sfc	1sfc	1a9n	1cx0	1tht
SEQ EQ		583	583	583	583	584	584	989	989	586

	OMAIN,	ENEOUS EIN A1, BD, RRM,		EIN/RNA)	AN,	INDING TION BITOR, SEX 3 SOME	DIAC, JRY,	DIAC,)RY,	CALCIUM-
PDB annotation	RIBONUCLEOPROTEIN, RNP DOMAIN, SPLICEOSOME	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN		COMPLEX (RIBONUCLEOPROTEIN/RNA)	NUCLEAR PROTEIN UI SNRNP A PROTEIN; RNA BINDING DOMAIN, NUCLEAR PROTEIN	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INFIBITOR, TRANSLATIONAL INFIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	MUSCLE PROTEIN CTNC, CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCIUM-BINDING PROTEIN CALCIUM- BINDING PROTEIN, CALCIUM-
:	SPLICEOSOME	NUCLEA NUCLEA NUCLEA RNP, RN,		COMPLE	NUCLEA PROTEIN NUCLEA	RNA BIN DOMAIN MOTIF, F TRANSI DETERM DOSAGE	MUSCLE MUSCLE CALCIUI	MUSCLE MUSCLE CALCIUI	CALCIU
Compound	RIBONUCLEOPROTEIN A; CHAIN: NULL;	HNRNP A1; CHAIN: NULL;	RIBONUCLEOPROTEIN PROTEIN FROM UI SMALL NUCLEAR RIBONUCLEOPROTEIN (SNRNP UI) INGC 3 (V-TERMINAL FRAGMENT, RESIDUES I - 95) MUTANT WITH GLN 85 INRC 4 REPLACED BY CYS (Q85C) INRC 5	U1A SPLICEOSOMAL PROTEIN; 1URN 5 CHAIN; A, B, C; 1URN 6 RNA 21MER HAIRPIN (5'- (AP*AP*UP*CP*CP*AP*UP* 1URN 11 CHAIN; P, Q, R 1URN 13	UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN: NULL;	SEX-LETHAL; CHAIN: A, B, C;	TROPONIN C; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	CALPAIN; CHAIN: A, B;
SeqFold score			,				116.57		56.61
PMF		0.15	0.70	0.89	0.19	0.03		1.00	
Verify score		-0.08	-0.48	0.25	-0.23	-0.15		0.55	
PSI- BLAST		0.0018	5.4e-05	1.8e-05	0.00072	0.0054	6.4e-44	6.4e-44	3.6e-22
End		283	276	276	298	276	727	226	192
Start AA		215	211	210	215	215	70	66	17
Chain TD			∢	4		A			¥
PDB ED		lha1	Inc	Ium	2ula	3sxl	laj4	1aj4	laj5
S B S		586	586	586	586	586	589	589	589

				-																			
PDB annotation				CALCIUM-BINDING PROTEIN CALMODULIN APO TR2C-DOMAIN; 1CMF 9	HYDROLASE CALCIUM-ACTIVATED NEUTRAL PROTEINASE, CALPAIN 2; CALCIUM-ACTIVATED NEUTRAL	PROTEINASE; CYSTEINE PROTEASE, CALMODULIN, PAPAIN, CATALYTIC	TRIAD, 2 ZYMÓGEN ACTIVATION, CALCIUM, C2 DOMAIN, PROTEASE, ZYMOGEN 3 CAI PAIN	HYDROLASE CALCIUM-ACTIVATED	NEUTRAL PROTEINASE; CALCIUM-	CALPAIN, CALCIUM, PAPAIN-LIKE	HYDROLASE CALCIUM-ACTIVATED	NEUTRAL PROTEINASE; CALCIUM-	ACTIVATED NEUTRAL PROTEINASE; M- CALPAIN, CALCIUM, PAPAIN-LIKE	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION DISORDER	CALCIUM-REGULATED MUSCLE	CONTRACTION MUSCLE CONTRACTION,	HAND 2 OBEN CONFORMATION	REGULATORY DOMAIN, CALCIUM-	REGULATED 3 MUSCLE CONTRACTION	CALCIUM-REGULATED MUSCLE	CALCIUM-BINDING, TROPONIN, E-F	HAND, 2 OPEN CONFORMATION	REGULATORY DOMAIN, CALCIUM- REGULATED 3 MUSCLE CONTRACTION
Compound		CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALMODULIN (VERTEBRATE); ICMF 6 CHAIN: NULL; ICMF 7	M-CALPAIN; CHAIN: A; CALPAIN; CHAIN: B;			M-CALPAIN; CHAIN: A; CALPAIN;	CHAIN: B;		M-CALPAIN; CHAIN: A; CALPAIN;	CHAIN: B;		CALMODULIN; CHAIN: A;	TROPONIN C; CHAIN: NULL;					TROPONIN C; CHAIN: NULL;			
SeqFold	score			69.28											127.75			-					
PMF	score		1.00		66.0			96.0			66'0			1.00						1.00			
Verify	score		0.43		0.12			0.18			0.47			0.37						0.16		,	
PSI-	DLAS1		6.4e-59	7.2e-21	5.4e-22			3.6e-21			3.6e-22			3.2e-57	1.4e-45					1.4e-45			
End	AA		226	727	182			180			186			225	227					225			
Start	AA		42	155	84			84			82			19	70					24			
Chain	3				∢			V			e e	_		Ą									
PDB			Ioll	lcmf	1df0			Idkv			1dkv			lext	Itcf					ltcf			
SEO	ΒŞ		289	589	589			589			589			289	589					685			

PCT/US01/27760

WO 02/31111

PDB annotation		IN: CALCIUM-BINDING PROTEIN EF-HAND 1TNX 14	ROTEIN	ROTEIN	EIN	OF THE		PROTEIN/PEPTIDE)	RS20; CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)		<u> </u>		HAIN: A, HYDROLASE HYDROLASE	ATE DEGRADATION	S; ICLE LIPASE ESTERASE, SUBSTRATE/PRODUCT-BOUND ICLE 9	; TOXIN BINDING PROTEIN TWO
Compound		TROPONIN C; 1TNX 4 CHAIN: NULL; 1TNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 110P 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CALCIUM BINDING PROTEIN CALMODULIN (/TR=2=C\$ EDA GMENT COMPRISING	RESIDUES 78 - 148 ITRC 3 OF THE INTACT MOLECULE) 1TRC 4	CALMODULIN; CHAIN: A; RS20; CHAIN: B;		CALMODULIN; CHAIN: A; RS20; CHAIN: B;	SCALLOP MYOSIN; CHAIN: A, B, C;	CHLOROPEROXIDASE L; CHAIN: A, B, C;	CHLOROPEROXIDASE F; CHAIN: NULL;	CARBOXYLESTERASE; CHAIN: A, B;	2-HYDROXY-6-0XO-6- PHENYLHEXA-2,4-DIENOATE CHAIN: A;	CHOLESTEROL ESTERASE; ICLE 4 CHAIN: A, B; ICLE 5	TOLB PROTEIN; CHAIN: A;
SeqFold	score	116.06	125.84		67.46				139.36	90.57						
PMF	score			1.00			1.00				0.28	0.52	0.43	0.11	0.07	0.07
Verify	score			0.64			0.42				-0.16	-0.31	-0.04	-0.06	-0.36	0.13
-ISI-	BLAST	1.1e-41	1.6e-46	1.6e-46	3.6e-21	·	1.6e-57		1.6e-57	3.6e-40	1.6e-07	4.8e-09	8e-12	9.66-08	1.6e-56	0.0036
End	ΑA	225	722	225	227		727		227	227	771	771	775	776	780	453
Start	ΑA	0,	19	94	160		99		97.	79	529	528	556	551	483	171
Chain	e A				∢		4		∢	O	4		4	V	¥	A
PDB	A	Itax	Itop	ltop	Itro		Ivrk		lvrk	1wdc	1a88	1a8s	lano	104x	lcle	lorz
SEQ	АŞ	685	685	589	589		589		589	589	290	290	290	290	290	290

S B S	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
290	1dx4	4	461	764	1.6e-65	-0.37	0.28		ACETYLCHOLINESTERASE; CHAIN: A;	HYDROLASE (SERINE ESTERASE) HYDROLASE (SERINE ESTERASE), HYDROLASE, SERINE ESTERASE, 2 SYNAPSE, MEMBRANE, NERVE, MUSCLE, SIGNAL, NEUROTRANSMITTER 3 DEGRADATION, GLYCOPROTEIN, GFI- ANCHOR, ALTERNATIVE SPLICING
590	lea5	V	463	760	1.3e-68	-0.22	0.17		ACETYLCHOLINESTERASE; CHAIN: A;	CHOLINESTERASE SERINE HYDROLASE, NEUROTRANSMITTER CLEAVAGE, CATALYTIC 2 TRIAD, ALPHA/BETA HYDROLASE
590	lehy	A	713	0/1	9800000	-0.38	0.16		SOLUBLE EPOXIDE HYDROLASE; CHAIN: A, B, C, D;	HYDROLASE HYDROLASE, ALPHA/BETA HYDROLASE FOLD, EPOXIDE DEGRADATION, 2 EPICHLOROHYDRIN
290	levq	V	519	774	1,6e-36	-0.11	0.87		SERINE HYDROLASE; CHAIN: A;	HYDROLASE ALPHA/BETA HYDROLASE FOLD
290	1fj2	A	712	992	3.6e-06	0.16	0.35		ACYL PROTEIN THIOESTERASE 1; CHAIN: A, B;	HYDROLASE ALPHA/BETA HYDROLASE, SERINE HYDROLASE, SAD, ANOMALOUS 2 DIFFRACTION
290	ljkm	4	529	768	1.6e-22	0.17	99.0		BREFELDIN A ESTERASE; CHAIN: A, B;	SERINE HYDROLASE SERINE HYDROLASE, DEGRADATION OF BREFELDIN A, ALPHA/BETA 2 HYDROLASE FAMILY
290	11pp		483	780	4.8e-55	-0.29	0.03		HYDROLASE LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL LIPASE) COMPLEXED WITH 1LPP 3 HEXADECANESULFONATE 1LPP 4 1LPP 71	
290	lmaa	A	463	09/	9.6e-70	-0.22	0.21		ACETYLCHOLINESTERASE; CHAIN: A, B, C, D;	HYDROLASE MACHE; HYDROLASE, SERINE ESTERASE, ACETYLCHOLINESTERASE, TETRAMER, 2 HYDROLASE FOLD, GLYCOSYLATED PROTEIN
290	lqe3	∢	462	779	1.6e-67	-0.26	0.33		PARA-NITROBENZYL ESTERASE; CHAIN: A;	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE DIRECTED EVOLUTION
590	1qfm	4	174	111	9.66-80	-0.00	0.90		PROLYL OLIGOPEPTIDASE; CHAIN: A;	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL

PCT/US01/27760

	TA-2	PTIDASE, ILYL TA-2	PTIDASE,	LYL TA-2	LYL TA-2 DROLASE	LYL TA-2 DROLASE	LYL TA-2 DROLASE	TA-2 DROLASE A,	TA-2 DROLASE A, LIGAND OGNITION, LIGAND	TA-2 DROLASE A, LIGAND OGNITION, LIGAND OGNITION, RIN	TA-2 DROLASE I, LIGAND OGNITION, LIGAND OGNITION, RIN	TA-2 DROLASE A, LIGAND OGNITION, CLIGAND OGNITION, HI, VASP. DING
PDB annotation	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER	HYDROLÁSE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA- 2 PROPELLER	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMNOPEPTIDASE, 2 SERRATIA, IMINOPEPTIDASE	LIGOPEPTIDASE, AMNESIA, LPHA/BETA-HYDROLASE, BE: ROPELLER YDROLASE ALPHA BETA HYI OLD, PROLINE, PROLYL MINOPEPTIDASE, 2 SERRATIA MINOPEPTIDASE	LIGOPEPTIDASE, AMNESIA, LPHA/BETA-HYDROLASE, BE: ROPELLER YDROLASE ALPHA BETA HYI OLD, PROLINE, PROLYL MINOPEPTIDASE, 2 SERRATIA MINOPEPTIDASE	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMMOPEPTIDASE, 2 SERRATIA, MINOPEPTIDASE SIGNALING PROTEIN PROTEIN-LIGAND COMPLEX, POLYPROLINE RECOGNITION, BETA TURN	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMINOPEPTIDASE, 2 SERRATIA, MINOPEPTIDASE COMPLEX, POLYPROLINE RECOGNITION, BETA TURN SIGNALING PROTEIN PROTEIN-LIGAND COMPLEX, POLYPROLINE RECOGNITION, BETA TURN BETA TURN BETA TURN BETA TURN	OLIGOPEPTIDASE, AMNESIA, ALPHABETA-HYDROLASE, BETA- PROPELLER HYDROLASE ALPHA BETA HYDRO HYDROLASE ALPHA BETA HYDRO HYDROLASE, 2 SERRATIA, AMINOPEPTIDASE, 2 SERRATIA, IMMOPEPTIDASE SIGNALING PROTEIN PROTEIN-LIG COMPLEX, POLYPROLINE RECOGN BETA TURN SIGNALING PROTEIN PROTEIN-LIG COMPLEX, POLYPROLINE RECOGN BETA TURN SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-PROPELLER HYDROLASE ALPHA BETA HYDRO FOLD, PROLNE, PROLYL AMINOPEPTIDASE, 2 SERRATIA, IMMOPEPTIDASE SIGNALING PROTEIN PROTEIN-LIG COMPLEX, POLYPROLINE RECOGN BETA TURN SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD	OLIGOPEPTIDASE, AMNESIA, ALPHABETA-HYDROLASE, BETA-2 PROPELLER HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMINOPEPTIDASE, 2 SERRATIA, MINOPEPTIDASE SIGNALING PROTEIN PROTEIN-LIGAND COMPLEX, POLYPROLINE RECOGNITION, BETA TURN SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD SIGNALING PROTEIN VASP-
Compound	O A	PROLYL OLIGOPEPTIDASE; HY CHAIN: A; OI	PROLYL OLIGOPEPTIDASE; H CHAIN: A; PO OI OI		PROLYL AMINOPEPTIDASE; PF CHAIN: A; FG FG FINAL A; FG FINAL A; FG FINAL A FINA	3)	3)	.3)				
			PROLYL OLI CHAIN: A;		PROLYL AM CHAIN: A;	PROLYL AMINOPEPT CHAIN: A; HYDROLASE(CARBO ESTERASE) LIPASE (TRIACYLGLYCEROL HYDROLASE 1THG 3	PROLYL AM CHAIN: A; HYDROLASI ESTERASE) I TRACYLGL HYDROLASI	PROLYL AMINOPEP CHAIN: A; HYDROLASE(CARB ESTERASE) LIPASE TRIACYLGI/YCEROI HYDROLASE ITHG: HYDROLASE ITHG: GLGF-DOMAIN PRO CHAIN: A; METABO GLUTAMATE RECEI MGLURS; CHAIN: B;	CHAIN: A; CHAIN: A; CHAIN: A; HYDROLASI ESTERASE) I TRIACYLGL HYDROLASI GLGF-DOMA CHAIN: A; M GLUTAMAT MGLURS; CF GLGF-DOMA CHAIN: A; M GLUTAMAT MGLURS; CF MGLURS; CF	PROLYL AMINOPEP CHAIN: A; HYDROLASE(CARB ESTERASE) LIPASE TRIACYLGLYCEROI HYDROLASE ITHG: HYDROLASE ITHG: GLGF-DOMAIN PRO GLUTAMATE RECEI MGLURS; CHAIN: B; GLGF-DOMAIN PRO GLUTAMATE RECEI MGLURS; CHAIN: B; GLGF-DOMAIN PRO GLUTAMATE RECEI MGLURS; CHAIN: B; GLGF-DOMAIN PRO GLUTAMATE RECEI MGLURS; CHAIN: B; GLGF-DOMAIN PRO CHAIN: A; METABO GLUTAMATE RECEI MGLURS; CHAIN: B; GLGF-DOMAIN PRO CHAIN: A;	CHAIN: A; CHAIN: A; HYDROLASI ESTERASE) I TRIACYLGL HYDROLASI ESTERASE) I TRIACYLGL HYDROLASI CHAIN: A; M GLUTAMATI MGLUTAMATI MGLUTAMATI MGLUTAMATI MGLUTAMATI MGLUTAMATI GLGF-DOMA CHAIN: A; GLGF-DOMA CHAIN: A;	CHAIN: A; CHAIN: A; HYDROLASI ESTERASE) I TRIACYLGL HYDROLASI ESTERASE) I TRIACYLGL HYDROLASI CHAIN: A; M GLUTAMATI MGLURS; CI GLGF-DOMA CHAIN: A; M GLUTAMATI MGLURS; CI GLGF-DOMA CHAIN: A; M GLUTAMATI MGLURS; CI GLGF-DOMA CHAIN: A; MGLURS; CI GL
PMF SeqFold score score		125.95	4		20	20 11	20 11	20 11 4	20 11 22	20 11 22	20 11 4 90 77 90	20 11 14 99 77 99 99
Verily PN score sco			9 0.94	_	0.05							
		4	4 0.09	_	7 -0.02		 	 	 	 		
BLAST		5.4e-84	5.4e-84		6.4e-07	6.4e-07	6.4e-07	6.4e-07 1.6e-57 1.8e-19	6.4e-07 1.6e-57 1.8e-19	6.4e-07 1.6e-57 1.8e-19 0.0018	6.4e-07 1.6e-57 1.8e-19 0.00032 1.8e-18	6.4e-07 1.6e-57 1.8e-19 0.00032 1.8e-18
Y Y		782	778		669	477	477	774	121 113	699 7774 121 113	699 7774 113 113	699 774 113 113 121 121 121
AA		27	08		520	520	520	520 473 17	473 473 47	473 473 17 11	473 473 17 11 11	473 473 11 11 11 10
Chain 19		V	∢	_	₹	4	4	4 A	4 4	4 4 4	4 4 4 4	4 4 4 4
E08 e1		lqfin	lqfm		lqtr	lqtr lthg	1qtr 1thg	lthg Ithg	lthg lddv	lthg lddv lddv	lthg lddv lddw lddw	lqtr lddv lddw lddw lddw
S a S		290	290		590	590	590	590	590	590 592 592 592	590 592 592 592 592	590 592 592 592 592 592

_	ລ	္	_	•					×	×
	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION		COMPLEX (GTPASE-ACTIVATING/GTP- BINDING) COMPLEX (GTPASE- ACTIVATING/GTP-BINDING), GTPASE ACTIVATION	ASE, PORT	ASE, PORT	ASE, PORT	ASE, PORT	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS
tion	COMPLEX (GTP-BINDING/TRANSDUC BETA1, TRANSDUCIN BETA SUBUNIT GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUC BETA1, TRANSDUCIN BETA SUBUNIT GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION		IVATIN PASE- NG), G	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COM EFFECTORS	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COM EFFECTORS
PDB annotation	COMPLEX (GTP-BINDING/ BETA1, TRANSDUCIN BET GAMMA1, TRANSDUCIN G SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), HETEROTRUMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/ BETA1, TRANSDUCIN BET GAMMA1, TRANSDUCIN G SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), (HETEROTRIMER 2 SIGNAL TRANSDUCTION		COMPLEX (GTPASE-ACTIVATI BINDING) COMPLEX (GTPASE- ACTIVATING/GTP-BINDING), G ACTIVATION	EIN TO PORT,	PORT,	PORT,	PORT,	EIN GT IN-PRO	EIN GI
PDB	GTP-BINSDU INSDU IRANSI SOMPL RANSD IMER 2	GTP-B NSDU RANSI COMPL RANSD IMER 2		GTPAS OMPLI IG/GTP	T PROT	T PROT	T PROT	T PROT	PROTE	PROTE
	COMPLEX (GTP-I BETA1, TRANSDI GAMMA1, TRANS SUBUNIT; COMPI BINDING/TRANS HETEROTRIMER	COMPLEX (GTP-I BETA1, TRANSDI GAMMA1, TRANS SUBUNIT; COMPI BINDING/TRANS HETEROTRIMER		COMPLEX (G BINDING) COI ACTIVATING ACTIVATION	TRANSPOR NUCLEAR 1 PROTEIN	TRANSPOR NUCLEAR 1 PROTEIN	TRANSPOR NUCLEAR 1 PROTEIN	TRANSPOR NUCLEAR 1 PROTEIN	SIGNALING I PROTEINS, P EFFECTORS	IALING FEINS,
	COM BETA GAM SUBI BIND HETI	COM BETA GAM SUB(BINE HETI TRAI		COM BINE ACT	TRAJ NUC PRO	TRA NUC PRO	NUC	TRA NUC PRO	SIGN PROT EFFE	PRO' EFFE
:	ERA; i: B;	ERA; 4: B;		;	;;	ž.	;;	ż.	AP-1A; INE EIN	VP-1A; SNE EIN
pu	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;		PSO-RHOGAP; CHÁIN: A, B, C; CDC42HS; CHAIN: D, E, F;	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN			
Compound	ĞT-ALPHA/GI-ALPHA C CHAIN: A; GT-BETA; CF GT-GANMA; CHAIN: G;	GT-ALPHA/GI-ALPHA C CHAIN: A; GT-BETA; CF GT-GAMMA; CHAIN: G;		PSO-RHOGAP; CHAIN: A, E CDC42HS; CHAIN: D, E, F;	PROT	PROT	PROT	3 PROT	D PRO OTO-O SONINE IN: B;	D PRO OTO-O
5	PHA/G] : A; GI MMA;	PHA/G : A; GI MMA;		IOGAP; HS; CH	GTP-BINDINC CHAIN: A, B;	GTP-BINDINC CHAIN: A, B;	GTP-BINDINC CHAIN: A, B;	GTP-BINDINC CHAIN: A, B;	RAS-RELATED PRC CHAIN: A; PROTO- SERINE/THREONIN KINASE CHAIN: B;	ELATE !: A; PR E/THRI
	GT-AL CHAIN GT-GA	GT-AL CHAIN GT-GA		P50-RF CDC42	GTP-B CHAIN	GTP-B CHAIN	GTP-B CHAIN	GTP-B CHAIN	RAS-R CHAIN SERIN KINAS	RAS-R CHAIN SERIN
SeqFold score	80.19			80.47	19:501		101.37		95.03	
PMF S	<u>∞</u>	0.87		∞	1	1.00	1	1.00	6	1.00
		···	_						-	
Verify score		0.27				4.0 4.		0.52		0.62
PSI- BLAST	1.3e-80	1.3e-80		3.6e-56	1.8e-59	1.8e-59	1.1e-59	1.1e-59	3.2e-65	3.2e-65
End	356	356		173	200	178	200	178	172	174
Start AA	2	41		. ·	3	7	1	2	9	9
Chain 10	æ				<	4	m	Д	4	4
PDB UD		got B		lam4 D	1byu 4	1byu /	1byu E	1byu E	lcly A	lcly A
	1801		<u>.</u> .			-	 			
SEQ NO.	595	595		965	969	969	969	296	986	986

		•	_	<u> </u>		OL	Eľ.	F6,	٠,	·	j SDP,	, α		
_		TEIN, GTI	NALING	TEIN, GT	NALING	EIN-PROT COILED-(S G-PROT	, ARF, AR	IRIN BETA AR	RIN BETA AR	-BINDINC N, RAP2, 0	i, GTPASE MILY, RA	i, GTPASE MILY, RA	
PDB annotation		IN G PRO STIC	ty, 2 SIG	IN G PRO	11, 2 SIG	IN PROTI RALLEL	OCYTOSI SICULAR	EIN, RAS FIC	ARYOPHE E, NUCLE PTOR	ARYOPHE E, NUCLE PTOR	TEIN GTH FROTEI	BINDINC I, RHO FA	BINDINC I, RHO FA	
PDB		G PROTE SIS, KINI	LOGRAPI	G PROTE SIS, KIN	COGRAFI	G PROTE , ANTIPA	OSIS/EX(LAB6, VE ING	N G PROT NE TRAFI	PASE KA L GTPASI RT RECE	TPASE KA L GTPASI RT RECE	ING PRO SMALL (ING GTP- PROTEIN AMILY	ING GTP PROTEIN AMILY	
		SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC	CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC	CKINI ALLUGKAFHI, 2 MGNALING PROTEIN	SIGNALING PROTEIN PROTEIN-PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	ENDOCYTOSIS/EXOCYTOSIS G-PROTEIN, GTPASE, RAB6, VESICULAR TRAFFICKING	G PROTEIN G PROTEIN, RAS, ARF, ARF6, MEMBRANE TRAFFIC	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR	GTP-BINDING PROTEIN GTP-BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, RAS SUPER 2 FAMILY	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, RAS SUPER 2 FAMILY	
		4 P21/H-		4 P21/H-		AING IAIN: A;		TOR 6;	TIN , D;	ИТ. ,О,	,			-RAS ITH O IPLJ 3 I P3-1- - IPLJ 4 O)-
Compound	9.	PROTEIL		PROTED ;		ANSFORN 0-181); CF	HAIN: A;	TON FAC	C; IMPOR CHAIN: B	C; IMPOR CHAIN: B	VULL;	OLL;	ott;	TEIN C-H TANT W ED BY PR GED WITH L)ETHYL B,G-IMED
Com	KINASE CHAIN: B;	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A;		TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A;		HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	RAB6 GTPASE; CHAIN: A;	ADP-RIBOSYLATION FACTOR 6; CHAIN: A;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B, D;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B, D;	RAP2A; CHAIN: NULL;	RACI; CHAIN: NULL;	RACI; CHAIN: NULL;	ONCOGENE PROTEIN C-H-RAS P21 PROTEIN MUTANT WITH GLY 12 REPLACED BY PRO 1PLJ: (G12P) COMPLEXED WITH P3-1- (2-NITROPHENYL)ETHYL- 1PLJ 4 GUANOSINE-5'-(B,G-IMIDO)-
	KINASI	TRANS RAS-1;	•	TRANS RAS-1;		HIS-TA PROTEI PKN; CI	RAB6	ADP-RIBO CHAIN: A;	RAN; C BETA S	RAN; C BETA S	RAP2A	RACI;	RACI;	ONCOC P21 PRO GLY 12 (G12P) (2-NITE GUAN(
SeqFold score		101.74				91.18				116.07	101.06	93.80		53.73
PMF score				1.00			1.00	0.13	1.00				1.00	
Verify score				0.90			0.86	0.22	69:0				0.57	
PSI- BLAST		1.1e-65		1.1e-65		8e-58	1.8e-60	6.4e-15	1.3e-60	1.3e-60	9.6e-59	3.2e-59	3.2e-59	96-49
End AA		174	-	175		175	172	141	181	181	175	177	177	174
Start AA		9		7		2	و د	7	9	9	9	Ŕ	∞	∞
Chain ID		¥		A		4	V V	A	∢	V				
PDB CI		1ctq		lctq		lcxz	1d5c	1e0s	libr	libr	Ikao	1mh1	1mh1	1plj
SEQ	į	969		965		965	965	296	969	965	965	969	596	965

		COMPLEX (SMALL GTPASENUCLEAR PROTEIN) COMPLEX (SMALL GTPASENUCLEAR PROTEIN), SMALL	GTPASE, 2 NUCLEAR TRANSPORT	COMPLEX (SMALL GTPASE/NUCLEAR PROTEIN) COMPLEX (SMALL	GTPASE/NUCLEAR PROTEIN), SMALL	GIPASE, 2 NUCLEAR I KANSPORI	COMPLEX(GIPASE ACTIVATIV/PROTO-	PROTEIN RHOGAP; COMPLEX (GTPASE	ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP	COMPLEX (GTP-BINDING/EFFECTOR)	RAS-RELATED PROTEIN RAB3A;	COMPLEX (GIP-BINDING/EFFECTOR), G	SYNAPTIC EXOCYTOSIS RAB PROTEIN	RAB3A, RABPHILIN	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RFI ATED PROTFIN RABJA:	COMPLEX (GTP-BINDING/EFFECTOR), G	PROTEIN, EFFECTOR, RABCDR, 2	SYNAPTIC EXOCYTOSIS, RAB PROTEIN,	HYDROLASE CDC42/CDC42GAP:	CDC42/CDC42GAP; TRANSITION STATE,	G-PROTEIN, GAP, CDC42, ALF3., HYDROLASE	HYDROLASE G PROTEIN, VESICULAR	TRAFFICKING, GTP HYDROLYSIS, RAB 2	PROTEIN, NEUROTRANSMITTER	HYDROL ASE G PROTFIN VESICILLAR	TRAFFICKING, GTP HYDROLYSIS, RAB 2	PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE
	TRIPHOSPHATE 1PLJ 5	RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D;		RAN; CHAIN: A, C; NUCLEAR	NUP358; CHAIN: B, D;		PSO-RHOGAP; CHAIN: A;	RHOA; CHAIN: B;		RAB-3A; CHAIN: A; RABPHILIN-	3A; CHAIN: B;				RAB-3A; CHAIN: A; RABPHILIN-	, c. mar. b,			GTP BINDING PROTEIN (G25K):	CHAIN: A; GTPASE ACTIVATING	PROTEIN (RHG); CHAIN: B;	RAB3A; CHAIN: A;	-		RAB3A: CHAIN: A:		
21016		117.23					86.19			110.73									83.18						116.82		
31016				1.00											1.00							1.00					
31036				0.61											0.57							0.72					
TOWN		7.2e-60		7.2e-60			9e-57			8e-65			•		8e-65				1.6e-57			1.1e-65			1 10-65	3	
ΑA		192		178			173			180					178				184			175			174	:	
ŧ		5		9			٠ <u>. </u>			3					4			-	9	,	_	3			Ţ		
3		ပ		ပ			eg e			4	•				4				A	:		V				٠	
_		dırı		Ę		1	_			╁					pqz1				t			T			t		
		296		596			965			596					965				╁			+			\top		
	- W	TRIPHOSPHATE IPLJ 5	March Marc	TRPHOSPHATE IPLJ S	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR	Image C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; Image C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; NUP358; CHAIN	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; NUP358; CHAIN: B, D	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUTS 8; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUTS 8; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUTS 9; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUTS 95; CHAIN: B, D;	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 173 9e-57 86.19 P50-RHOGAP; CHAIN: B; RHOA; CHAIN: B, RHOA; CHAIN: B, RHOA; CHAIN: B, RHOA; CHAIN: B,	Image C 5 192 7.2e-60 117.23 RAN; CHAIN; A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN; B, D; PORE COMPLEX PROTEIN RHOA; CHAIN; B; PORE CHAIN; B; PORE COMPLEX PROTEIN PORE COM	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN; A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN; B, D; NUP358; CHAIN; B; NUP3	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUT938; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUT938; CHAIN: B, D; Itx4 B 5 173 9e-57 86.19 P50-RHOGAP; CHAIN: B, D; Izbd A 3 180 8e-65 110.73 RAB-3A; CHAIN: B, B; Izbd A 3 180 8e-65 110.73 RAB-3A; CHAIN: B, B;	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; NUP358; CHAIN: B; N	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: A, C; NUCLEAR Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B, D; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B; Imp C 6 178 7.2e-60 0.61 1.00 RAN; CHAIN: B; Imp C 6 178 7.2e-60 1.10.73 RAB-3A; CHAIN: B; Imp C 6 178 1.2e-60 0.61 1.00 RAB-3A; CHAIN: B; Imp C 6 178 1.2e-60 1.00 RAB-3A; CHAIN: B; Imp C 6 178 1.00 RAB-3A; CHAIN: B; Imp C 7.00 RAB-3A; CHAIN	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; NUP358; CHAIN: B; N	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; NUP358; CHAIN: B; N	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR	Imp C 5 192 7.26-60 117.23 RAN; CIAMP. A.C. MUCLEAR PORE COMPLEX PROTEIN NUP358, CHAIN: B, D; Ilv4 B 5 173 96-57 86.19 PSO-RHOGAP; CHAIN: A; RAB-3A; CHAIN: B, CHAIN: CHAI	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C. MUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D; RAN; CHAIN: B; Image C 5 192 7.2e-60 I 17.23 RAN; CHAIN: A, C; MUCLEAR RAN; CHAIN: A, C; MUCLEAR RAN; CHAIN: A, C; MUCLEAR RAN; CHAIN: B, D; RAN; CHAIN: B, CHA	Imp C 5 192 7.2e-60 117.23 RAN'; CHAIN: A, C, NUCLEAR PORE COMPLEX PROTEIN NUP38; CHAIN: B, D; NUP38; CHAIN: A; RABPHILIN- 12bd A 178 8e-65 0.57 1.00 RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B; NUP38; CHAIN: A; RABPHILIN- 3A; CHAIN: B; NUP38; CHAIN: B; NUP38; CHAIN: A; CHA	Imp C 5 192 7.2e-60 117.23 RAN; CHAIN: A, C; NUCLEAR	Image	Image	Image Color State Stat	Image Color State Stat	Imp C 5 192 7.2e-60 I 117.23 RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN I I I I I I I I I	

PDB annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZÎNC FINGER/DNA) ZÎNC FINGER, PROTEIN-DNA ÎNTERACTION, PROTEÎN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZÎNC FÎNGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION,
Compound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E, CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
SeqFold score			109.88					
PMF score	1.00	1.00		1.00	1.00	1.00	1.00	0.01
Verify score	0.49	0.49		0.61	0.01	0.35	0.42	-0.37
PSI- BLAST	6.4e-47	9e-49	96-49	4.8e-48	6.4c-49	6.4e-50	3.2e-50	4.8e-28
End	227	227	228	255	283	311	339	99
Start AA	146	146	146	174	202	230	258	2
Chain D	U	ပ	U	ပ	U	ပ	U	ပ
en en	Imey	lmey	lmey	Imey	lmey	lmey	Imey	lmey
SE SE	298	298	598	865	598	865	598	865

PDB annotation	PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Compound	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold score						•		
PMF		1.00	1.00	1.00	1.00	0.93	0.37	1.00
Verify score		0.38	0.59	0.37	0.12	0.12	-0.30	0.19
PSI- BLAST		1.6e-50	1.4e-50	3.2e-50	1.6e-50	6.4e-38	6.4e-41	8e-45
End		367	423	451	479	487	143	171
Start		286	342	370	398	426	63	06
Chain ID		ပ	U	ပ	ပ	ပ	ပ	ပ
PDB UI		Imey	Imey	Imey	Imey	lmey	lmey	lmey
SEQ EQ		598	598	865	598	598	298	298

l .	208 CD	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
-	1466	<	175	320	1.6e-37	-0.05	1.00		TFIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INTIATION, ZINC FINGER PROTEIN
	1476	4	314	482	4.8e-38			115.02	TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
	1tf6	¥	343	487	4.8e-37	-0.04	1.00		TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
i .	1116	4	49	208	4.8e-34	-0.12	0.78	,	TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
	Iubd	U	144	255	1.8e-56	0.26	1.00		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR BLEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
	lubd	ပ	146	256	1.8e-56			93.55	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
1	lubd	ပ	182	283	3.2e-34	0.36	1:00		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN,

			FOR EIN,	OR EIN,	TOR EIN,	TOR EIN,	OR EIN,
		۳,	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INTIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITATION, INTIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION
otation		DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATION, INITIATION, THE ELEMENT, YYI, ZINC 2 FINGER PR DINA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITI ELEMENT, YY1, ZINC 2 FINGER PR DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITI ELEMENT, YY1, ZINC 2 FINGER PR DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATION, THE ELEMENT, YYI, ZINC 2 FINGER PR DINA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITI ELEMENT, YYI, ZINC 2 FINGER PR DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION
PDB annotation		DNA-PROTEIN RECOGNITIOI COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-Y/ TRANSCRIPTION INITIATION ELEMENT, YY1, ZINC 2 FING DNA-PROTEIN RECOGNITION COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YATRANSCRIPTION INITIATION ELEMENT, YY1, ZINC 2 FINGI DNA-PROTEIN RECOGNITION COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YA TRANSCRIPTION INITIATION ELEMENT, YY1, ZINC 2 FING DNA-PROTEIN RECOGNITION COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-Y/ TRANSCREPTION INITIATION ELEMENT, YYI, ZINC 2 FING DNA-PROTEIN RECOGNITION COMPLEX (TRANSCREPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-Y, TRANSCRIPTION INITIATION ELEMENT, YY1, ZINC 2 FING DNA-PROTEIN RECOGNITION COMPLEX (TRANSCRIPTION REGILATIONDNA)
		DNA-PROTEIN RECC COMPLEX (TRANSC REGULATION/DNA)	COMPLEX (TRANSC REGULATION/DNA) TRANSCRETION IN ELEMENT, YY1, ZIN DNA-PROTEIN REC COMPLEX (TRANSC REGULATION/DNA)	COMPLEX (TRANSC REGULATION/DNA) TRANSCRPTION IN ELEMENT, YY1, ZIN DNA-PROTEIN RECC COMPLEX (TRANSC REGULATION/DNA)	COMPLEX (TRANSC REGULATIONDNA) TRANSCRIPTION IN ELEMENT, YY1, ZIN DNA-PROTEIN RECC COMPLEX (TRANSC REGULATIONDNA)	COMPLEX (TRANSC REGULATIONDNA) TRANSCRPTION INI ELEMENT, YYI, ZIN DNA-PROTEIN REC COMPLEX (TRANSC REGULATIONDNA)	COMPLEX (TRANSC REGULATION/DNA) TRANSCREPTION IN ELEMENT, YY1, ZIN DNA-PROTEIN REC COMPLEX (TRANSC REGULATION/DNA)
		COMP REGU	REGU TRAN ELEM DNA-I COMP REGU	REGU TRAN TRAN ELEM DNA-I COMP	REGU TRAN TRAN ELEM DNA-I COMP	COMP REGU TRAN ELEM DNA-1 COMP	COMP REGU TRAN ELEM DNA-I COMP REGU
			ئز	<u>ئز</u> ا	זנ	· :	ند
punc			US PS	US PS US PS SNT DN/	DENO- US P5 ENT DN/	DENO- US PS SNT DN/	DENO- US P5 SNT DN/
Compound			IN: C; AI FED VIR R ELEM B;	IN: C; A) TED VIR R ELEMI B;	IN: C; AI	IN: C; AI TED VIR R ELEMI B;	IN: C; AI
			YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
plo	<u> </u>		> 4 A D	> 4 A D	> 4 % D	> 4 4 Q	> 4 A D
S	score						
PMF	score		1.00	1.00	1.00	1.00	1.00
Verify	score		0.30	-0.28	-0.09	-0.06	0.17
PSI-	bLA31		1.8e-55	6.4e-35	3.6e-55	1.16-35	1.3e-56
End	ΑA		311	311	340	339	367
Start	¥		200	210	228	238	256
Chain	=		υ	υ .	ပ	U	ပ
PDB	3		Jubd	lubd	Inbd	1ubd	lubd
SEQ	ЭŞ		598	598	598	598	598

u	v ANG 1; N, INITATOR SER PROTEIN, IN, 3	N ANG 1; N, INITATOR SER PROTEIN, NV, 3	A ANG 1; N, INITATOR SER PROTEIN, N, 3	N ANG 1; N, INITATOR SER PROTEIN, N, 3	A ANG 1; NY, INITATOR SER PROTEIN, NY, 3	ANG 1:
PDB annotation	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITATION, INITATOR ELEMENT, YY1, ZINC, FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGIT ATION/DNA) YING-YANG 1:
Compound	YYI; CHAIN: C; ADENO-CASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-CASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO-CASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; T CHAIN: A, B;	YYI; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-
SeqFold score						
PMF	1.00	1.00	1.00	1.00	0.95	0.19
Verify score	0.26	0.05	0.11	0.25	0.04	-0.53
PSI- BLAST	9e-55	3.6e-53	8e-35	3.6e-51	9.6e-35	1.6e-28
End	423	451	451	480	479	143
Start	312	341	350	368	378	38
Chain ID	U	υ ·	O	U	U	ပ
PDB TD	1ubd	Jubd	lubd	lubd	lubd	lubd
SEQ EQ EQ	865	865	865	298	865	598

PDB annotation	ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)	COMPLEX (DŊA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER,
	ELEI DNA CON REG	CON REG TRA ELEI DNA CON	CON REG TRA TRA DNA CON	CONTRACTOR SERVICES	CON FIVE CON	COM	CON	CO FIVE CO	CON FIVE CON	CON
Compound	CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GL'11; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold score					98.70					
PMF score		1.00	1.00	1.00		0.70	1.00	1.00	1.00	0.95
Verify score		-0.35	0.01	0.23		-0.32	0.30	0.15	0.22	0.13
PSI- BLAST		1.4e-29	3.6e-49	1.8e-68	1.8e-68	3.6e-73	1.6e-34	1.4e-70	5.4e-68	4.8e-34
End		171	661	257	257	369	394	425	481	481
Start		17	06	118	118	174	266	286	342	350
Chain ID		v	U	∢	∢	¥.	4	A	⋖	∀
PDB ID		lubd	lubd	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ NO NO		298	298	298	298	298	598	298	298	298

PDB Chain Start End D AA AA	Start AA	 	End		PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
					\perp	1				COMPLEX (DNA-BINDING PROTEIN/DNA)
2gii A 370 488 7.2e-40 -0.14	370 488 7.2e-40	488 7.2e-40	7.2e-40		φ 1.	4	0.34		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
2gli A 378 487 3.2e-29 -0.15	378 487 3.2e-29	487 3.2e-29	3.2e-29	<u> </u>	-0.15		0.35		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
2gii A 63 198 8e-30 0.23	63 198 8e-30	198 8e-30	8 8e-30		0.23		0.54		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
2gli A 71 201 3.6e-50 0.03	71 201 3.6e-50	201 3.6e-50	3.6e-50		0.03		0.94		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
1a8i 36 260 4.8e-24	260	260		4.8e-24				55.20	PROTEIN DISULFIDE OUTDOREDUCTASE; CHAIN:	OXIDOREDUCTASE OXIDOREDUCTASE, PDI, THIOREDOXIN FOLD
la81 51 259 4.8e-24 0.19	259 4.8e-24	259 4.8e-24	4.8e-24		0.19		0.47		NOLE, OXDOREDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE OXIDOREDUCTASE, PDI, THIOREDOXIN FOLD
1a8y 31 266 5.4e-22 0.23	266 5.4e-22	266 5.4e-22	6 5.4e-22		0.23		0.21		CALSEQUESTRIN; CHAIN: NULL	CALCIUM-BINDING PROTEIN CALSEQUESTRIN, CALCIUM-BINDING PROTEIN, SARCOPLASMIC 2 RETICULUM, RABBIT SKELETAL MUSCLE
1bjx 10 49 0.00013 -0.36	49 0.00013	49 0.00013	0.00013		-0.36		0.30		PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;	ELECTRON TRANSPORT ELECTRON TRANSPORT, REDOX-ACTIVE CENTER, ISOMERASE, 2 ENDOPLASMIC RETICULUM
logg A 41 136 3.2e-22 0.65	41 136 3.2e-22	136 3.2e-22	3.2e-22		0.65		0.13		THIOREDOXIN; CHAIN: A; REF-1 PEPTIDE; CHAIN: B;	COMPLEX (ELECTRON TRANSPORT/PEPTIDE) COMPLEX, ELECTRON TRANSPORT/PEPTIDE
Idby A 155 264 9.6e-28	155 264	264	 	9.6e-28				60.83	CH2; CHAIN: A;	OXIDOREDUCTASE THIOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN
1dby A 162 260 9.6e-28 0.66	162 260 9.6e-28	260 9.6e-28	9.6e-28	<u> </u>	99.0		0.99		CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A;	OXIDOREDUCTASE THIOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN
Idby A 2 39 9e-05 -0.02	2 39 9e-05	39 9e-05	9e-05	Ħ	-0.02		0.47		CHLOROPLAST THIOREDOXIN M	OXIDOREDUCTASE THIOREDOXIN M,

_																_
PDB annotation		THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN	OXIDOREDUCTASE THOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN	OXIDOREDUCTASE DIMER, THIOREDOXIN, X-RAY CRYSTALLOGRAPHY, OXIDOREDUCTASE	OXIDOREDUCTASE DIMER, THIOREDOXIN, X-RAY CRYSTALLOGRAPHY, OXIDOREDUCTASE	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT	ELECTRON TRANSPORT ELECTRON TRANSPORT, REDOX-ACTIVE CENTER, ISOMERASE, 2 ENDOPLASMIC RETICULUM	ELECTRON TRANSPORT ELECTRON TRANSPORT, REDOX-ACTIVE CENTER, ISOMERASE, 2 ENDOPLASMIC RETICULUM	TRANSCRIPTION SPLICEOSOMAL PROTEIN, SNRNP, THIOREDOXIN, TRANSCRIPTION	ELECTRON TRANSPORT ALPHABETA OPEN-TWISTED PROTEIN, THIOL- DISULFIDE	ELECTRON TRANSPORT ALPHA/BETA
Compound		CH2; CHAIN: A;	CHI,OROPLAST THIOREDOXIN M CH2; CHAIN: A;	THIOREDOXIN; CHAIN: NULL;	THIOREDOXIN; CHAIN: NULL;	THIOREDOXIN F; CHAIN: A, B;	THIOREDOXIN F; CHAIN: A, B;	THIOREDOXIN F; CHAIN: A;	THIOREDOXIN M; CHAIN: A, B;	THIOREDOXIN M; CHAIN: A, B;	THIOREDOXIN M; CHAIN: A, B;	PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;	PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;	SPLICEOSOMAL PROTEIN US- 15KD; CHAIN: A;	THIOREDOXIN; CHAIN: A;	THIOREDOXIN; CHAIN: A;
SeqFold	score											68.70				
PMF	score		0.64	0.48	0.58	0.47	0.72	0.55	0.95	0.10	0.99		0.96	0.31	1.00	0.01
Verify	score		0.81	0.20	0.26	-0.01	0.36	0.40	0.62	-0.50	0.46	}	0.42	0.39	0.53	-0.08
PSI-	BLAST		9.6e-26	1.6e-22	8e-25	9.6e-19	6.4e-21	9.6e-19	4.8e-29	0.00018	6.4e-27	3.2e-23	3.2e-23	1.4e-21	3.2e-27	0.00014
End	¥¥		136	261	136	257	132	257	259	38	146	267	267	275	259	38
Start	¥¥		45	153	41	148	39	148	164	2	42	152	165	159	157	2
Chain	£		4			▼	¥	4	₹	Ą	٧			₹ .	∢	A
PDB	A		1dby	lerv	lerv	1f9m	1f9m	Ifaa	1fb6	1fb6	1fb6	lmek	1mek	1qgv	1quw	lquw
SEO	ΑŞ		599	599	599	599	599	599	599	599	599	599	599	665	599	599

			R, 3	R, 3	R, 3	R, 3	2;	4 2;	12;	
i	IIOL.	HA/BETA IOL-	L 2 3, Y FACTO	L 2 3, Y FACTO	L 2 3, Y FACTO	L 2 3, TY FACTO	OREDOXII ITHX 16	OREDOXID (THX 16	OREDOXID (THX 16	X, HCH1, ECTRON
PDB annotation	TEIN, TE	ORT ALP TEIN, TE	SE, DNA LEOTIDY UENCIN CESSIVI ASE/ELE	SE, DNA LEOTIDY UENCING CESSIVI	SE, DNA LEOTIDY UENCIN CESSIVI ASE/ELE	SE, DNA LEOTIDY UENCIN CESSIVI ASE/ELE	ORT THE	ORT THI	ORT THI	ORT HTF FASE, EL
PDB a	TED PRO	TRANSP TED PRC	LYMERA DN, NUCI ASE, SEQ XIN, PRO HYDROI	LYMERA DN, NUCI ASE, SEQ XIN, PRO HYDROI T/DNA)	LYMERA DN, NUC ASE, SEQ XIN, PRO HYDROI T/DNA)	LYMERA ON, NUC ASE, SEQ XIN, PRO HYDROI T/DNA)	TRANSP DO-RED	TRANSP DO-RED	TRANSP DO-RED	TRANSP OREDUC
	OPEN-TWISTED PROTEIN, THIOL- DISULFIDE	ELECTRON TRANSPORT ALPHA/BETA OPEN-TWISTED PROTEIN, THIOL- DISULFIDE	T7 DNA POLYMERASE, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASE, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX (HYDROLASE/ELECTRON TRANSPORT/DNA)	T7 DNA POLYMERASB, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASB, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX (HYDROLASE/ELECTRON TRANSPORT/DNA)	T7 DNA POLYMERASE, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASE, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX (HYDROLASE/ELECTRON TRANSPORT/DNA)	T7 DNA POLYMERASE, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASE, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX (HYDROLASE/ELECTRON TRANSPORT/DNA)	ELECTRON TRANSPORT THIOREDOXIN 2; 1THX 7 OXIDO-REDUCTASE 1THX 16	ELECTRON TRANSPORT THIOREDOXIN 2; 1THX 7 OXIDO-REDUCTASE 1THX 16	ELECTRON TRANSPORT THIOREDOXIN 2; ITHX 7 OXIDO-REDUCTASE 1THX 16	ELECTRON TRANSPORT HTRX, HCHI, CHI; OXIDOREDUCTASE, ELECTRON TRANSPORT
		ДОД								
_		ζ: Α;	HAIN: A	HAIN: A K: B; DN	HAIN: A	HAIN: A	5 CHAIN	S CHAIN	S CHAIN	AIN: NUI
Compound		N, CHAD	GRASE; C N; CHAII	RASE; C N, CHAII	RASE; C	RASE; C N; CHAII	N; ITHX 5	N; ITHX	N; ITHX	N H; CH
0		THIOREDOXIN; CHAIN: A;	DNA POLYMERASE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;	DNA POLYMERASE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;	DNA POLYMERASE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;	DNA PÖLYMERÁSE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;	THIOREDOXIN; ITHX 5 CHAIN: NULL; ITHX 6	THIOREDOXIN; ITHX 5 CHAIN: NULL; ITHX 6	THIOREDOXIN; ITHX 5 CHAIN: NULL; ITHX 6	THIOREDOXIN H; CHAIN: NULL;
		THIO	CHAI	THIO	DNA THIO CHAI	CHAL	THIO	NGEL	OH I	THIO
SeqFold score			63.78				55.58			61.47
PMR score		0.34		0.93	0.10	0.63		1.00	0.05	
Verify score		0.28		0.61	-0.58	0.53		0.87	-0.23	
PSI- BLAST		3.2e-26	3.2e-29	3.2e-29	0.00018	8e-27	1.1e-21	1.1e-21	9e-96	1.6e-23
End		139	263	259	35	132	264	263	39	265
Start		45	156	158	2	42	153	158	2	153
Chain 19		4	ø	Д	æ.	æ				
EGE CI		lquw	1 <i>t7</i> p	1t7p	1t7p	1t7p	Ithx	1thx	Ithx	ltof
SEQ EQ	Ž	599	665	665	599	599	599	599	599	599

	X, HCH1, CTRON	X, HCH1, 3CTRON				ON FACTOR, TOKINE 2 VA)	ED 35 KDA < BUNDLE	IAIN, NNOS,	TDE :ALIZATION	TDE	LG, DHR3 CTION, SH3	LG, DHR3 CTION, SH3	VGER
PDB annotation	ELECTRON TRANSPORT HTRX, HCHI CHI; OXIDOREDUCTASE, ELECTRON TRANSPORT	ELECTRON TRANSPORT HTRX, HCHI CHI; OXIDOREDUCTASE, ELECTRON TRANSPORT				COMPLEX (TRANSCRIPTION FACTOR/DNA) TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, CYTOKINE 2 ACTIVATION, COMPLEX (TRANSCRIPTION FACTOR/DNA)	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	OXIDOREDUCTASE BETA-FINGER
Compound		t: NULL;	ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2 2TRXA 3	ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2 2TRXA 3	ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2 2TRXA 3	STAT3B; CHAIN: A; 18-MER DESOXYOLIGONUCLEOTIDE; F CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B, C; S	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: PB;		HUMAN DISCS LARGE PROTEIN; S CHAIN: NULL; I	TEIN;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: A;
SeqFold score			89.99						71.82			66.26	
PMF	0.94	0.03		1.00	0.96	0.05	0.09	0.29		1.00	1.00		0.87
Verify score	0.81	-0.19		0.53	0.67	-0.30	-0.63	0.42		0.62	0.80		0.79
PSI- BLAST	1.6e-23	3.2e-24	3.2e-29	3.2e-29	3.2e-27	6.4e-07	1.6e-08	4.8e-15	9.6e-25	9.6e-25	3.2e-22	3.2e-22	1.6e-13
End AA	262	135	264	259	132	201	216	127	121	104	104	108	123
Start	161	40	153	158	39	62	65	∞	_	е П	02	∞	11
Chain 1D			⋖	¥	V	4	4	A	4	∢			A
PDB ID	ltof	Itof	2trx	2trx	2trx	1bg1	lez3	1589	1be9	1be9	Ipdr	1pdr	Iqau
SEQ B B	599	599	599	665	599	602	602	604	604	604	604	604	604

d Compound PDB annotation	ALPHA-1 SYNTROPHIN MEMBRANE PROTEIN/OXIDOREDUCTASE (RESIDUES 77-171); CHAIN: A; BETA-FINGER, HETERODIMER NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: B;			HYDROLASE PDZ DOMAIN, HUMAN BAS, TYPE 1); CHAIN: A; PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	HYDROLASE PDZ DOMAIN, HUMAN BAS, TYPE 1); CHAIN: A; PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	ULTRABITHORAX HOMEOTIC TRANSCRPTION/DNA ULTRABITHORAX; PROTEIN IV; CHAIN: A; PBX PROTEIN; DNA BINDING, HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DEVELOPMENT, 2 SPECIFICITY DNA (5'- CHAIN: C; DNA (5'- CHAIN: D;	TEIB; CHAIN: NULL; TRANSCRIPTION INITIATION PFTFIBN; N-TERMINAL DOMAIN, TFIB, TRANSCRIPTION INITIATION FACTOR	PROTEIN-TYROSINE HYDROLASE PTPIB; HYDROLASE, PHOSPHATASE 1B; CHAIN: A: PHOSPHORYLATION, LIGAND, INHIBITOR		LAR; CHAIN: A, B; HYDROLASE TYROSINE PHOSPHATEASE, 1.AR PROTEIN
SeqFold score									,	
PMF	1.00	1.00	1.00	1.00	1.00	0.23	0.16	0.07	0.00	0.04
Verify score	1.10	1.16	1.28	0.91	1.22	-0.52	-0.56	-0.22	-0.59	0.02
PSI- BLAST	1.1e-20	1.8e-24	4.8e-24	3.2e-22	1.8e-22 ·	0.0072	0.0085	6.4e-29	1.6e-31	3.2e-35
End		66	66	102	66	93	31	146	148	147
Start	01	13	6	13	13	43	5	2	2	6
Chain ID	V	4	V V	4	4	4		A		V
PDB ED	Iqav	1qlc	1qlc	3pdz	3pdz	1b8i	lpft	1c83	lgwz	Har
SEQ EQ	604	604	604	604	604	809	609	611	611	611

			NOI1	OTEIN	AL ON,	P-2;	6 6	Z S	SION,		æ
=	SE	ICITY SE	RECEPTOR DI; RECEPTOR, PHOSPHATASE, SIGNAL TRANSDUCTION, ADHESION, 2 HYDROLASE	HYDROLASE VHR; HYDROLASE, PROTEIN DUAL-SPECIFICITY PHOSPHATASE	HYDROLASE DI; HYDROLASE, SIGNAL IRANSDUCTION, RECEPTOR, GLYCOPROTEIN, 2 PHOSPHORYLATION, SIGNAL	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGION C REGION, IMMUNOGLOBULIN	T SION, C	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) TCR VAPLHA VBETA DOMAIN; T-CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTYPIC, 2
PDB annotation	PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	RECEPTOR DI; RECEPTOR, PHOSPHATASE, SIGNAL TR ADHESION, 2 HYDROLASE	HYDROLASE VHR; HYDROLASE, PH DUAL-SPECIFICITY PHOSPHATASE	HYDROLASE DI; HYDROLASI TRANSDUCTION, RECEPTOR, GLYCOPROTEIN, 2 PHOSPHOI SIGNAL	TYROSINE PHOSPHATASE SYP, SHP TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN	COMPLEX (MAMUNOGLOBULIN/AUTOANT (COMPLEX (MAMUNOGLOBULIN/AUTOANT RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	Y INSECT	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGIO IMMUNOGLOBULIN	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN, V REGION, C REGION, HINGE REGION	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) T VAPLHA VBETA DOMAIN; T-CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTYPIC, 2
FD	ATASE, M. ASE	ASE DUA ATASE, M ASE	RECEPTOR DI; RECEPTOR PHOSPHATASE, SIGNAL TI ADHESION, 2 HYDROLASE	ASE VHR ECIFICIT	ASE DI; UCTION, ROTEIN,	TYROSINE PHOSPHATASE TYROSINE PHOSPHATASE SIGNALING, SH2 PROTEIN	COMPLEX (MMUNOGLOBULIN/A (COMPLEX (IMMUNOGLOBULIN/A RHEUMATOID FACTOI ANTIBODY COMPLEX	MMUNIT DING, HO	IMMUNOGLOBULIN IMMUNOGLOBULIN	IMMUNOGLOBULIN INT. IMMUNOGLOBULIN, V R REGION, HINGE REGION	X OGLOBU VBETA I OR, STRA
	PHOSPHATA!	HYDROLASE PHOSPHATAS HYDROLASE	RECEPTO PHOSPH ADHESIO	HYDROI DUAL-SI	HYDROI TRANSD GLYCOP SIGNAL	TYROSIN TYROSIN SIGNALI	COMPLEX (IMMUNOC COMPLEX (IMMUNOC RHEUMAT	INSECT	IMMUNC IMMUNC IMMUNC	IMMUNC IMMUNC REGION	COMPLEX (IMMUNO) VAPLHA V RECEPTO! ANTICLON
			OSINE N: A, B;	UAL- SE	OSINE HAIN:		Z ii			Ω	AIN: L,
Compound		TULL;	RECEPTOR PROTEIN TYROSINE PHOSPHATASE MU; CHAIN: A, B;	HUMAN VHI-RELATED DUAL- SPECIFICITY PHOSPHATASE CHAIN: A, B;	RECEPTOR PROTEIN TYROSINE PHOSPHATASE ALPHA; CHAIN: A, B;	, B;	IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;	N. A, B;	IGGZA INTACT ANTIBODY MAB231; CHAIN: A, B, C, D	IGGI INTACT ANTIBODY MAB61.1.3; CHAIN: A, B, C, D	KB5-C20 T-CELL ANTIGEN RECEPTOR; CHAIN: A, B; ANTIBODY DESIRE-1; CHAIN: L, H;
Com		PYSTI; CHAIN: NULL;	TOR PROT TATASE N	V VHI-RE ICITY PH(A, B;	TOR PROT	SHP-2; CHAIN: A, B;	EA; CHAD	HEMOLIN; CHAIN: A, B;	NTACT A I; CHAIN	IGGI INTACT ANTIBODY MAB61.1.3; CHAIN: A, B, (KB5-C20 T-CELL ANTIGE RECEPTOR; CHAIN: A, B; ANTIBODY DESIRE-1; CH H;
		PYST1;	RECEP! PHOSP!	HUMAN VHI SPECIFICITY CHAIN: A, B;	RECEPT PHOSPH A, B;	SHP-2; (IGM/LA	HEMOL	IGG2A I MAB23	IGG1 IN MAB61.	KB5-C2 RECEPT ANTIBC H;
SeqFold score		56.76			·] 	97.76	85.83	82.67	
PMF score			60.0	96.0	69:0	0.19	0.18				-0.18
Verify score			0.25	0.75	-0.20	-0.22	-0.27				0.00
PSI- BLAST		1.6e-24	4.8e-34	3.6e-19	1.6e-29	1.1e-32	6.4e-17	1.6e-51	3.2e-20	6.4e-21	6.4e-13
End		149	147	138	147	147	. 188	380	380	379	364
Start		9	_	E .	'n		4	1	_	-	561
Chain 10			V	<	⋖	4	1	4	æ	В	ı
PDB ID		lmkp	Irpm	lvhr	lyfo	2shp	1adq	1bih	ligt	ligy	1kb5
SEQ B	ğ	611	611	611	611	611	612	612	612	612	612

PDB annotation	(IMMUNOGLOBULIN/RECEPTOR)			GALECTIN GALECTIN, GALAPTIN, LECTIN, IGE-BINDING PROTEIN	GALECTIN GALECTIN, GALAPTIN, LECTIN, IGE-BINDING PROTEIN	LECTIN S-LECTIN GALECTIN; S-LECTIN, CARBOHYDRATE BINDING, COMPLEX (LECTIN/SACCHARIDE)	LECTIN GALAPTIN, LECTIN, GALECTIN, CARBOHYDRATE BINDING	LECTIN GALAPTIN, LECTIN, GALECTIN, CARBOHYDRATE BINDING	SUGAR BINDING PROTEIN GALECTIN, LECTIN, BETA-GALACTOSE-BINDING, SUGAR BINDING 2 PROTEIN	SUGAR BINDING PROTEIN GALECTIN, LECTIN, BETA-GALACTOSE-BINDING, SUGAR BINDING 2 PROTEIN		·	SERINE ESTERASE CHARCOT-LEYDEN CRYSTAL PROTEIN; CHARCOT-LEYDEN CRYSTAL PROTEIN, SERINE ESTERASE	GALECTIN 16 KD LECTIN, C-16 GALECTIN
Compound		IMMUNOGLOBULIN IMMUNOGLOBULIN GI (IGG1) (MCG) WITH A HINGE DELETION IMCO 3	IMMUNOGLOBULIN FAB FRAGMENT FROM HUMAN IMMUNOGLOBULIN IGGI (LAMBDA, HIL) 8FAB 3	GALECTIN-3; CHAIN: NULL;	GALECTIN-3; CHAIN: NULL;	GALECTIN-1; CHAIN: A, B;	GALECTIN-7; CHAIN: A, B;	GALECTIN-7; CHAIN: A, B;	CONGERIN I; CHAIN: A;	CONGERIN I; CHAIN: A;	LECTIN LECTIN (HUMAN L-14-II) COMPLEXED WITH LACTOSE 1HLC 3	LECTIN LECTIN (HUMAN L-14-II) COMPLEXED WITH LACTOSE 1HLC 3	LYSOPHOSPHOLIPASE; CHAIN: NULL;	BETA-GALACTOSIDE-BINDING LECTIN; CHAIN: A, B;
SeqFold score		87.85		19.99			73.96					52.58		
PMF score		-	0.21		1.00	69.0		1.00	1.00	0.99	1.00		1.00	1.00
Verify score			-0.29		9.65	0.73		19.0	0.42	0.44	0.62		0.80	0.45
PSI- BLAST		3.2e-24	3.2e-17	6.4e-40	6.4e-40	3.2e-24	9.6e-38	9.6e-38	3.6e-23	6.4e-21	1.3e-30	1.3e-30	8e-32	3.2e-29
End		378	188	125	123	117	125	124	122	124	123	125	123	124
Start AA		_	5	_	3	-	-	2	_	2	-	-	-	_
Chain TO		H	ď			∢	4	A	V	4	4	<		4
නු ය		Ішсо	8fab	la3k	la3k	1a78	1bkz	lbkz	1011	151	lhlc	1hlc	lici	lqmj
Og a s		612	612	613	613	613	613	613	613	613	613	613	613	613

SEQ ED	FDB ED	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
613	1slt	∀	-	124	1.4e-33	0.40	1.00		LECTIN S-LECTIN (A VERTEBRATE 14 KDA BETA- GALACTOSIDE BINDING 1SLT 3 PROTEIN) COMPLEX WITH N- ACETYLLACTOSAMINE 1SLT 4	
614	1a2y	V	1024	1102	0.0054	-0.07	0.13		MONOCLONAL ANTIBODY D1.3; CHAIN: A, B; LYSOZYME; CHAIN:	COMPLEX (IMMUNOGLOBULIN/HYDROLASE)
									ij	(IMMUNOGLOBULIN/HYDROLASE),
									,	MMUNOGLOBULIN V 2 REGION, SIGNAL,
										HYDROLASE, GLYCOSIDASE, BACTERIOLYTIC 3 ENZYME, EGG WHITE
614	la7q	T	1024	1102	0.0036	0.17	0.04		MONOCLONAL ANTIBODY D1.3;	IMMUNOGLOBULIN IMMUNOGLOBULIN,
I		6	7001	1100	0.000	0.30	0.01		CVTOCHROME COYDASE.	COMPLEX
914	Iari	۵_	10Z4	7011	0.0072	00	17:0		CHAIN: A, B; ANTIBODY FV	(OXIDOREDUCTASE/ANTIBODY)
									FRAGMENT; CHAIN: C, D;	CYTOCHROME AA3, COMPLEX IV,
										FERROCYTOCHROME C, COMPLEX
		-					•			ELECTRON TRANSPORT 2
										TRANSMEMBRANE, CYTOCHROME
										OXIDASE, ANTIBODY COMPLEX
614	1bvk	4	1024	1102	102 0.0072	0.49	0.13		HULYS11; CHAIN: A, B, D, E;	COMPLEX (HUMANIZED
									LYSOZYME; CHAIN: C, F;	ANTIBODY/HYDROLASE) MURAMIDASE;
										HUMANIZED ANTIBODY, ANTIBODY
										COMPLEX, FV, ANTI-LYSOZYME, Z
										ANTIBODY/HYDROLASE)
614	lehd	<	430	462	0.0014	2.14	0.05		AGGLUTININ ISOLECTIN VI;	PLANT PROTEIN TWO HOMOLOGOUS
;;		•	430	707	20000	2 1.4	0 03		ACCI ITTININ ISOI ECTIN	SLIGAR BINDING PROTEIN UDA: LECTIN
\$10	Sia	₹	2	<u> </u>	00000	i	3		VIVAGGLUTININ ISOLECTIN V;	HEVEIN DOMAIN, UDA, SUPERANTIGEN
_									CHAIN: A;	
614	len2	¥	430	463	0.0018	1.47	0.12		AGGLUTININ ISOLECTIN	SUGAR BINDING PROTEIN UDA; LECTIN,
									I/AGGLUTININ ISOLECTIN V/	HEVEIN DOMAIN, UDA, SUPERANTIGEN, SACCHARIDE BINDING
614	1391	1	1024	1102	0.0036	0.28	0.19		COMPLEX(ANTIBODY-ANTIGEN)	

SE SE	PDB U	Chain ID	Start	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
2									FV FRAGMENT (IGGI, KAPPA) (LIGHT AND HEAVY VARIABLE DOMAINS 11HL 3 NON- COVALENTLY ASSOCIATED) OF MONOCLONAL ANTI-HEN EGG 11HL 4 LYSOZYME ANTIBODY D11.15 COMPLEX WITH PHEASANT EGG 11HL 5 LYSOZYME 11HL 6	
614	tj.h	1	1024	1108	0.0072	0.28	0.13		ANTIBODY A6; CHAIN: L, H; INTERFERON-GAMMA RECEPTOR ALPHA CHAIN; CHAIN: I;	COMPLEX (ANTIBODY/ANTIGEN) CYTOKINE RECEPTOR, COMPLEX (ANTIBODY/ANTIGEN), 2 TRANSMEMBRANE, GLYCOPROTEIN
614	losm	V	1268	1486	1.36-11	0.52	-0.19		OMPK36; CHAIN: A, B, C;	OUTER MEMBRANE PROTEIN OSMOPORIN, OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE
614	losm	V	821	1045	7.2e-12	0.62	-0.20		OMPK36; CHAIN: A, B, C;	OUTER MEMBRANE PROTEIN OSMOPORIN, OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE
614	1pho		1291	1474	1.8e-12	0.64	-0.20		OUTER MEMBRANE PROTEIN PHOSPHOPORIN (PHOE) 1PHO 3	
614	1wt	V	1024	1102	0.009	0.31	0.78		IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN 1WTL 3 (BENCE-JONES PROTEIN) 1WTL 4	
614	2omf		1290	1486	9e-10	0.70	-0.19		MATRIX PORIN OUTER MEMBRANE PROTEIN F; 20MF 5 CHAIN: NULL; 20MF 6	INTEGRAL MEMBRANE PROTEIN PORIN MATRIX PORIN, OMPF PORIN; 20MF 7 PORIN, MEMBRANE PROTEIN 20MF 12
616	lalh	A	316	372	1.1e-15	0.11	-0.20		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN

								_
PDB annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATIONDNA)	LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED- COILS, STRUCTURAL PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC
Compound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; SS RNA GENE; CHAIN: E, F;	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A, DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;
SeqFold score			50.15	58.88	77.55	:		97.73
PMF score	-0.20	-0.20				1.00	1.00	
Verify score	0.28	0.02				0.47	0.59	
PSI- BLAST	4.8e-11	3.2e-14	3.2e-07	0.0014	6e-36	2e-45	4e-44	2e-45
End	342	368	202	201	473	387	415	416
Start	316	316	-	ı	1981	306	334	334
Chain ED	_S	A	A	Ą	Ą	ပ	:	၁
PDB UI	lmey	11f3	lavl	lcun	lalh	Imey	Imey	lmey
SEQ	616	616	618	819	879	628	628	628

S B S	PDB U	Chain ID	Start	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
									CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
628	lmey	ပ	362	443	2e-42	0.06	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
628	lmey	ပ	390	471	66-38	0.17	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	lubd	ပ	281	387	4e-43	0.20	1.00		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR BLEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
979	Jubd.	U	332	443	6e-52	0.37	1:00	·	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
829	Jubd	ပ	332	444	6e-52			85.61	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
628	lubd	၁	360	471	26-48	0.31	0.99		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR

SEO	PDB	Chain	Start	End	PSI-		PMF	SeqFold	Compound	PDB annotation
	a	3	AA	ΑA	BLASI	score	score	score		
									CHAIN: A, B;	ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
 	2gli	4	273	417	6e-67			97.26	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)
 	2gli	∢	280	417	1.4e-54	-0.11	0.99	Ē	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)
	2gli	4	306	445	6e-67	0.53	1.00		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
 	2gli	4	334	471	1.4e-62	0.20	1.00		ZINC FINGER PROTEIN GLJI; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
-	1445	4	85	196	40-47	69 0	9		RIBOSOME RECYCLING FACTOR:	RIBOSOME THREE-HELIX BLINDLE BETA-
_	}	:	3	1	- A- A-	200			CHAIN: A;	ALPHA-BETA SANDWICH, RIBOSOME
	leh1	V	85	262	4e-39	0.41	1.00		RIBOSOME RECYCLING FACTOR; CHAIN: A;	RIBOSOME TRANSLATION, RIBOSOME, HINGE VARIABILITY
_										
 	lapm	ы		328	66-41			97.88	TRANSFERASE(PHOSPHOTRANS FERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) IAPM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 IAPM 4 REPLACED BY ALA ((S1394\$) COMPLEX WITH THE PEPTIDE IAPM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 IAPM 6	
	laq1		13	309	2e-38			94.94	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION
Н	1b6c	В	1	268	le-65			98.18	FK506-BINDING PROTEIN;	COMPLEX (ISOMERASE/PROTEIN

E0	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
9 ö	9	3	¥	ΑA	BLASI	Score	Score	Score		
									CHAIN: A, C, E, G; TGF-B SUPERFAMILY RECEPTOR TYPE I; CHAIN: B, D, F, H;	KINASE) FKBP12; SERINE/THREONINE- PROTEIN KINASE RECEPTOR R4; COMPLEX (ISOMERASE/PROTEIN
										KINASE), RECEPTOR 2 SERINE/THREONINE KINASE
639	1bi8	V	14	296	2e-41			96.84	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-	COMPLEX (KINASE/INHIBITOR) CDK6; P19INK4D; CYCLIN DEPENDENT KINASE,
• •							_		DEPENDENT KINASE INHIBITOR;	CYCLIN DEPENDENT KINASE RHIBITORY 2 BROTTEIN CRK MK4 CELL
									CIMIN: B, D,	CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELIX
639	1blx	4	_	300	2e-40			94.81	CYCLIN-DEPENDENT KINASE 6;	COMPLEX (INHIBITOR PROTEIN/KINASE)
									CHAIN: A; P19INK4D; CHAIN: B;	INHIBITOR PROTEIN, CYCLIN- DEPENDENT KINASH CHIT CYCLE 2
										CONTROL, ALPHA/BETA, COMPLEX
_										(INHIBITOR PROTEIN/KINASE)
639	lbyg	٧	10	268	8e-74			142.73	C-TERMINAL SRC KINASE;	TRANSFERASE CSK; PROTEIN KINASE, C-
									CHAIN: A;	TERMINAL SRC KINASE,
										PHOSPHOKY LATION, 2 STAUKOSPOKINE, TRANSFERASE
639	1cmk	凹	-	328	6e-41			92.82	PHOSPHOTRANSFERASE CAMP-	
									DEPENDENT PROTEIN KINASE	
									(E.C.2.7.1.37) ICMK 4	
639	lctp	E	-	320	1e-40			95.40	TRANSFERASE(PHOSPHOTRANS	
									FERASE) CAMP-DEPENDENT	
									(CAPK) 1CTP 3 (CATALYTIC	
									SUBUNIT) 1CTP 4	
639	1fgk	٧	2	268	8e-72			146.59	FGF RECEPTOR 1; CHAIN: A, B;	PHOSPHOTRANSFERASE FGFRIK, FIBROBLAST GROWTH FACTOR
				_						RECEPTOR 1; TRANSFERASE, TYROSINE-
						_				PROTEIN MINASE, AT F-BINDING, 2
,										PHOSPHOTICALION, RECEPTOR,
639	1fgk	д	1	267	4e-71			146.30	FGF RECEPTOR 1; CHAIN: A, B;	PHOSPHOTRANSFERASE FGFRIK, FIRRORI AST CROWTH FACTOR
										RECEPTOR I, TRANSFERASE, TYROSINE-

PDB annotation	PROTEIN KINASE, ATP-BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	COMPLEX (TRANSFERASE/SUBSTRATE) TYROSINE KINASE, SIGNAL TRANSDUCTION, PHOSPHOTRANSFERASE, 2 COMPLEX (KINASE/PEPTIDE SUBSTRATE/ATP ANALOG), ENZYME, 3 COMPLEX ANALOG), ENZYME, 3 COMPLEX CTD ANSEED A CESSUTING THE ATTEN	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	OXIDOREDUCTASE FATTY ACID HYDROXYLASE; FATTY ACID MONOOXYGENASE, HEMOPROTEIN, P450 RFMARK		OXIDOREDUCTASE (OXYGENASE)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION
Сотроинд		HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL;	INSULIN RECEPTOR; CHAIN: A; PEPTIDE SUBSTRATE; CHAIN: B;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	CYTOCHROME P450; CHAIN: A, B;	OXIDOREDUCTASE(OXYGENASE) CYTOCHROME P450-TERP 1CPT 3	CYTOCHROME P450 ERYF; 10XA 5 CHAIN: NULL 10XA 6	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold score		99.30	147.38	110.26	97.87	119.02	76.99	82.30	96.26	100.65
PMF score										
Verify score										
PSI- BLAST		26-41	4e-74	8e-45	2e-41	7.2e-63	7.2e-25	7.2e-33	3.6e-50	7.2e-38
End AA		309	282	420	328	469	468	467	512	288
Start		13	-	1		. 22	'n	m	430	122
Chain ID			∀		4	ď			ပ	4
PDB ID		Ihcl	lir3	Ikoa	1kob	1bu7	lcpt	loxa	Imey	1476
SEQ		639	639	639	639	647	647	647	159	657

			 	T	_{tz.}		т		ا ر	
PDB annotation	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRPTION REGULATIONDNA) YING-YANG 1; TRANSCRPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINIDNA)	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2.2 TANDEM 3-HELIX COILED- COILS, STRUCTURAL PROTEIN	CHAPERONE ARCHAEAL PROTEIN	MYOSIN MYOSIN MOTOR	MUSCLE PROTEIN MDE; MUSCLE PROTEIN	CONTRACTILE PROTEIN MYOSIN MOTOR, CONFORMATIONAL CHANGES	CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COIL.
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;	PREFOLDIN; CHAIN: A; PREFOLDIN; CHAIN: B; PREFOLDIN; CHAIN: C;	MYOSIN HEAVY CHAIN; CHAIN: A; MYOSIN REGULATORY LIGHT CHAIN; CHAIN: Y; MYOSIN ESSENTIAL LIGHT CHAIN; CHAIN; Z;	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MYOSIN HEAD; CHAIN: A; MYOSIN HEAD; CHAIN: Y; MYOSIN HEAD; CHAIN: Z;	MYOSIN; CHAIN: NULL;
SeqFold score		80.97	90.74	53.84	·					
PMF score					0.19	0.03	1.00	1.00	1.00	1.00
Verify score					-0.09	0.07	0.19	-0.04	80.0	0.03
PSI- BLAST		1.4e-55	1.8e-69	0.00036	0.0016	0.00011	3.6e-63	1.1e-63	7.2e-63	3.6e-54
End		372	233	199	961	165	176	176	176	176
Start		264	94	-	46	75	∞	10	∞	12
Chain ID		ပ	A	A	¥	V	e e	¥	∢	
PDB ID		1ubd	2gli	lavi	lcun	1fxk	167t	1br1	1dfk	llvk
SEQ EQ	;	657	657	629	629	629	099	099	099	099

PDB annotation	CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COIL	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTIN-BINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTIN-BINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTRACTILE PROTEIN	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN		COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA)		GENE REGULATION/DNA LEF-1 HMG;
Compound	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: A, B, C;	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB) (DNA-BINDING 1HME 3 HMG-BOX DOMAIN B OF RAT HMGI) (NMR, 1 STRUCTURE) 1HME 4	HUMAN SRY; 1HRY 6 CHAIN: A; 1HRY 7 DNA; 1HRY 9 CHAIN: B; 1HRY 10	HUMAN SRY; 1HRY 6 CHAIN: A; 1HRY 7 DNA; 1HRY 9 CHAIN: B; 1HRY 10	DNA-BINDING HIGH MOBILITY GROUP PROTEIN 1 (HMG1) BOX 2, COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	LYMPHOID ENHANCER-BINDING
SeqFold score						55.78			130.26
PMF	1.00	0.99	1.00	1.00	0.84		0.35	09.0	
Verify score	0.04	0.16	-0.01	-0.02	0.18		-0.14	0.15	
PSI- BLAST	1.4e-58	3.6e-52	2e-56	3.6e-57	5.4e-16	1.8e-16	1.8e-16	5.4e-17	1.4e-21
End	176	176	176	176	224	224	224	228	237
Start AA	2	21	18	3	153	152	155	153	152
Chain TO				4		∢	∢		A
EDB CI	llvk	Imnd	lmnd	2mys	Ihme	lhry	lhry	lhsm	2lef
S E S	099	099	099	099	685	685	685	289	885

PDB annotation	LEFI, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGULATION/DNA	GENE REGULATION/DNA LEF-1 HMG; LEF1, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGULATION/DNA	GENE REGULATION/DNA LEF-1 HWG; LEFI, HWG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGULATION/DNA	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX		RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	RNA-BINDING PROTEIN/RNA TRA PRE- MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE
d	LEFI, HMG, TCR-A, FACTOR, DNA BINI COMPLEX (HMG DC REGULATION/DNA	GENE REGULATION LEFI, HMG, TCR-A, FACTOR, DNA BINI COMPLEX (HMG DG REGULATION/DNA	GENE REGULATION LEFI, HMG, TCR-A, FACTOR, DNA BINI COMPLEX (HMG DO REGULATION/DNA	COMPLEX (NUC COMPLEX (NUC RNA, SNRNP,RI	RNA-BINDING PROTEIN/R MRNA; SPLICING REGUL, DOMAIN, RNA COMPLEX		RNA-BINDING PROTEINA MRNA; SPLICING REGUL DOMAIN, RNA COMPLEX	RNA-BINDING PROTEINIF MRNA; SPLICING REGUL DOMAIN, RNA COMPLEX	RNA-BINDING PROTEINI MRNA; SPLICING REGUL DOMAIN, RNA COMPLEX	GENE REGULATION BINDING PROTEIN PROTEIN-RNA CON
Compound	FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	LYMPHOID ENHANCER-BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	LYMPHOID ENHANCER-BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	 U2 RNA HARPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U P*ITP*ITP*ITP*ITP*ITP*ITP*ITP*ITP*ITP*IT	r or or or chair, r, v,	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U P*UP*UP*U)- CHAIN: P, Q;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U P*UP*UP*U)- CHAIN: P, Q;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U P*UP*UP*UP-CHAIN: P, Q;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'-
SeqFold score							:	91.55		
PMF		1.00	1.00	86.0	1.00	1	1.00		1.00	1.00
Verify score	ŀ	0.47	09.0	0.61	0.74		0.92		0.96	0.57
PSI- BLAST		1.8e-13	1.46-21	8e-23	6e-27		1.8e-37	6e-4 <i>7</i>	6e-47	4e-28
End		237	228	219	109		211	211	211	115
Start AA		153	154	139	11		32	32	35	
Chain ID		4	A	Ø	∢		¥	¥	∀	4
PDB ID		2lef	2lef	1a9n	167£		167£	167f	1b7f	lcvj
SEQ ED SO SO SO SO SO SO SO SO SO SO SO SO SO		589	589	689	689		689	689	689	689

PDB annotation		GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA
	4, N, O, P,					0.0	
Compound	*AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTIEN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP *AP*AP*A}-3'); CHAIN: M, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;
SeqFold score		107.38			93.53		
PMF score			1:00	1.00		1.00	1.00
Verify score			1.03	0.97		1.03	1.06
PSI- BLAST		2e-48	2e-48	5.4e-37	8e-42	8e-42	3.6e-31
End		217	217	217	202	198	197
Start AA		34	35	36	34	35	36
Chain ID		V	¥	۲	Д	Д	а
80 a		levj	lcvj	lœj.	Icvj	lcvj	Icvj
S E E	ğ	689	689	689	689	689	689

	-										
PDB annotation	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN/RNA NESTED DOUBLE PSEUDOKNOT RNA STRUCTURE	RNA BINDING PROTEIN RNA-BINDING DOMAIN	RNA BINDING PROTEIN RNA-BINDING DOMAIN	RNA BINDING PROTEIN RNA-BINDING DOMAIN	RIBONUCLEOPROTEIN U14117; RIBONUCLEOPROTEIN, RNP DOMAIN, SPLICEOSOME	STRUCTURAL PROTEIN PROTEIN C23; RNP, RBD, RRM, RNA BINDING DOMAIN, NUCLEOLUS	STRUCTURAL PROTEIN PROTEIN C23; RNP, RBD, RRM, RNA BINDING DOMAIN, NUCLEOLUS	STRUCTURAL PROTEIN PROTEIN C23; RNP, RBD, RRM, RNA BINDING DOMAIN,
Compound	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, E, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	UIA PROTEIN; CHAIN: A; HDV RIBOZYME SELF-CLEAVED; CHAIN: B;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A;	UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN: NULL;	NUCLEOLIN RBDI; CHAIN: A;	NUCLEOLIN RBD1; CHAIN: A;	NUCLEOLIN RBD2; CHAIN: A;
SeqFold score		63.68									
PMF score	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.09	0.75	0.95
Verify score	0.71		0.84	0.90	0.71	1.19	0.97	0.60	0.24	0.32	0.38
PSI- BLAST	2e-33	6e-33	6e-33	6e-25	4e-24	1.4e-26	1.8e-24	2e-23	6e-24	2e-27	le-21
End	189	193	189	221	217	112	216	225	218	116	217
Start AA	35	34	35	138	138	35	138	138	138	18	138
Chain ID	ir.	н	H	4	A	¥	¥		· V	Y	Ą
PDB U	lcvj	lcvj	lcvj	1cx0	1d8z	ld8z	1d9a	1fht	167	167	1fjc
SEQ EQ	689	689	689	689	689	689	689	689	689	689	689

PDB annotation	NUCLEOLUS	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM,	RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	RNA BINDING PROTEIN RNA-BINDING DOMAIN			RIBONUCLEOPROTEIN PTB, PTB-C198, HETEROGENEOUS NUCLEAR POLYPYRIMIDINE TRACT BINDING PROTEIN, RNP, RNA, SPICING, 2 TRANSLATION	RIBONUCLEOPROTEIN PTB, PTB-C198, HETEROGENEOUS NUCLEAR POLYPYRIMIDINE TRACT BINDING PROTEIN, RNP, RNA, SPICING, 2 TRANSLATION	RNA-BINDING DOMAIN RNA-BINDING DOMAIN, ALTERNATIVE SPLICING	RNA-BINDING DOMAIN RNA-BINDING DOMAIN, ALTERNATIVE SPLICING	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX
Compound		HNRNP A1; CHAIN: NULL;		HNRNP A1; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO; CHAIN: A;	REGNUCLEOPROTEIN PROTEIN FROM UI SMALL NUCLEAR REBONUCLEOPROTEIN (SNRNP UI) INRC 3 (N-TERMINAL FRAGMENT, RESIDUES 1 - 95) MUTANT WITH GLN 85 INRC 4	REPLACED BY CYS (Q85C) INRC 5	POLYPYRMIDINE TRACT- BINDING PROTEIN; CHAIN: A;	POLYPYRMIDINE TRACT- BINDING PROTEIN; CHAIN: A;	SEX-LETHAL PROTEIN; CHAIN: NULL;	SEX-LETHAL PROTEIN; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1;
SeqFold score		74.26										
PMF				1.00	1.00	66.0		-0.01	0.87	1.00	1.00	1.00
Verify score				0.53	96.0	0.01		0.05	0.27	0.91	1.34	0.63
PSI- BLAST		1.3e-44		1.3e-44	2e-21	le-21	-	4e-19	4e-44	2e-25	4e-28	6e-29
End		207		211	211	213		251	212	217	115	116
Start AA		29		29	139	138		138	35	138	35	-
Chain ID					A	¥		Ą	¥			4
PDB CD		lha1		Ihal	IbdI	lnrc		1qm9	Iqm9	2sxl	2sxl	2up1
SEQ EN		689		689	689	689		689	689	689	689	689

		1					1	- 1
PDB annotation	(RIBONUCLEOPROTEINDNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	COMPLEX (TRANSFERASE/PEPTIDE)
Compound	CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	SEX-LETHAL; CHAIN: A, B, C;	SEX-LETHAL; CHAIN: A, B, C,	SEX-LETHAL; CHAIN: A, B, C,	C-SRC TYROSINE KINASE:
SeqFold score			79.48		,	78.56		
PMF		1.00		1.00	1.00		1.00	0.63
Verify score		0.51		0.93	0.67		0.93	0.17
PSI- BLAST		1.8e-47	8e-50	8e-50	1.8e-35	2e-43	2e-43	46-05
End		217	219	218	201	204	204	236
Start AA		28	28	35	33	34	35	951
Chain ID		4	∢	V	₹	4	V	
PDB CI		2up1	2up1	2up1	3sxl	3sxl	3sxl	1900
SEQ EQ		689	689	689	689	689	689	603

											_						_					٦
PDB annotation		COMPLEX (TRANSFERASE/PEPTIDE)	COMPLEX (PROTO-ONCOGENE/EARLY PROTEIN) SRC HOMOLOGY 2 DOMAIN:	SH2 DOMAN, SIGNAL TRANSDUCTION, PEPTIDE COMPLEX, 2 COMPLEX (PROTO-ONCOGENE/EARLY PROTEIN)		-			V-SRC SH2 DOMAIN SRC SH2; V-SRC SH2	RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	PHOSPHORYLATION SIGNAL	TRANSPOCTION, I TROSINE KINASE, TRANSFERASE, 2	PHOSPHOTRANSFERASE, PHOSPHORYLATION	SIGNAL TRANSDUCTION PROTEIN	COMPLEX ADDRESS ASE/BEDTINES	PHOSPHOTRANSFERASE, COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	SIGNALING PROTEIN DAPPI, PHISH,	BAM32; PLECKSTRIN, 3- PHOSPHORIOSITINES INOSITIOI	TETRAKISPHOSPHATE 2 SIGNAL	TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, BAM32: PI FCKSTRN 3-	
Compound		CHAIN: A, B; ACE-FORMYL PHOSPHOTYR-GLU-(N,N- DIPENTYL AMINE); CHAIN: C, D;	FYN PROTEIN-TYROSINE KINASE: CHAIN: F:	PHOSPHOTYROSYL PEPTIDE; CHAIN: P	HYDROLASE(SH2 DOMAIN) TYROSINE PHOSPHATASE SYP	(N-TERMINAL SHZ DOMAIN)	(E.C.3.1.3.48) COMPLEXED WITH	1AYA 5	PP60 V-SRC TYROSINE KINASE TRANSFORMING PROTFIN:	CHAIN: NULL;	P55 BLK PROTEIN TYROSINE	KINASE; CHAIN: NOLL;		BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	PSELCK TYROSINE KINASE;	CHAIN: P;	DUAL ADAPTOR OF	PHOSPHOTYROSINE AND 3-	CENTRY: A,		DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3.	
SeqFold	score																					
PMF	score		09.0		0.84	_			0.77		0.28			90.0	69.0		0.01				0.64	
Verify	score		-0.07		0.15				0.18		0.11			-0.14	0.26		0.35				0.51	
PSI-	BLAST		2e-05		8e-10				2e-05		1.8e-05			0.0016	0.00012		4e-06			•	4e-06	
End	¥¥		236		236				236		236			109	236		117				601	
Start			156		156				156		156			23	156		18				23	
Chain	8		ш		4										בן		4				4	
PDB	A		laot		laya				1bkl		1blj			1btn	lcwd		1fao				1fb8	
SEQ	АŞ		692		692				769		692			692	692		692				692	

OL AL APTOR	OMAIN, CTURES			
PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SH2 DOMAIN GRB2; GRB2, SH2 DOMAIN, PROTEIN NMR, SOLUTION STRUCTURES			
CHADI: A;	GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT 1PLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS 1PLS 4 (INS(G105- LEHHHHHHH) (NMR, 25 STRUCTURES) 1PLS 5	PHOSPHOTRANSFERASE V-SRC TYROSINE KINASE TRANSFORMING PROTEIN (PHOSPHOTYROSINE 1SHA 3 RECOGNITION DOMAIN SH2) (E.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPETIDE A (TYR-VAL-PRO-MET-LEU, PHOSPHORYLATED TYR) 1SHA 5	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLIPASE C- GAMMA-I (E.C.3.1.4.11) (C- TERMINAL SH2 2PLD 3 DOMAIN COMPLEXED WITH A 2PLD 4 PHOSPHOPEPTIDE FROM THE PLATELET-DERIVED GROWTH FACTOR 2PLD 5 RECEPTOR (RESIDUES 1018 - 1029: ASP-ASN- ASP-PTYR-ILE-ILE-2PLD 6 PRO- LEU-PRO-ASP-PRO-LYS) (NMR, MINIMIZED AVERAGE STRUCTURE) 2PLD 7
	0.93	0.16	96:0	0.31
	0.10	0.14	0.16	-0.02
	2e-08	1e-06	2e-05	1.8e-06
	236	117	236	236
	156	18	156	156
			∢	A
	1fhs	1pls	1sha	2pid
	269	692	692	692
	CHAM: A;	CHAIN: A; CHAI	1fhs 156 23-6 26-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL; PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE CTERMINUS IPLS 4 (INS(G105-1EHHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	1fhs 156 236 26-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL; PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT 1PLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS 1PLS 4 (INS(G105-1sha A 156 236 26-05 0.16 0.96 TRANSFORMING PROTEIN (PHOSPHOTYROSINE 1SHA 3 RECOGNITION DOMAIN SH2) (E.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPEPTIDE A (TYR-V-BED-TYR) 1SHA 5 PHOSPHORYLATED TYR) 1SHA 5

									_
PDB annotation	COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE)	COMPLEX (PROTO-ONCOGENE/EARLY PROTEIN) SRC HOMOLOGY 2 DOMAIN; SH2 DOMAIN, SIGNAL TRANSDUCTION, PEPTIDE COMPLEX, 2 COMPLEX (PROTO-ONCOGENE/EARLY PROTEIN)		V-SRC SH2 DOMAIN SRC SH2; V-SRC SH2 DOMAIN, PHOSPHOTYROSINE RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	PHOSPHORYLATION SIGNAL TRANSDUCTION, TYROSINE KINASE, TRANSFERASE, 2 PHOSPHOTRANSFERASE, PHOSPHORYLATION	SIGNAL TRANSDUCTION PROTEIN	COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE) PHOSPHOTRANSFERASE, COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPPI, PHISH,
Сопроинд	C-SRC TYROSINE KINASE; CHAIN: A, B; ACE-FORMYL PHOSPHOTYR-GLU-(N.N- DIPENTYL AMINE); CHAIN: C, D;	FYN PROTEIN-TYROSINE KINASE; CHAIN: F; PHOSPHOTYROSYL PEPTIDE; CHAIN: P	HYDROLASE(SH2 DOMAIN) TYROSINE PHOSPHATASE SYP (N-TERMINAL SH2 DOMAIN) IAYA 3 (PTPID, SHPTP2) (E.C.3.1.3.48) COMPLEXED WITH THE PEPTIDE IAYA 4 PDGFR-1009 IAYA 5	PP60 V-SRC TYROSINE KINASE TRANSFORMING PROTEIN; CHAIN: NULL;	P55 BLK PROTEIN TYROSINE KINASE; CHAIN: NULL;	BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	PSGLCK TYROSINE KINASE; CHAIN: L; PHOSPHONOPEPTIDE CHAIN: P;	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	DUAL ADAPTOR OF
SeqFold score									
PMF	0.63	0.60	0.84	0.77	0.28	90:0	69:0	0.01	0.64
Verify score	0.12	-0.07	0.15	0.18	0.11	-0.14	0.26	0.35	0.51
PSI- BLAST	4e-05	2e-05	8e-10	2e-05	1.8e-05	0.0016	0.00012	4e-06	4e-06
End	236	236	236	236	236	109	236	11.7	109
Start AA	156	156	156	156	156	23	156	18	23
Chain ED	A	ĬŽ4	∢				1	4	٨
10B 11D	1a09	laot	laya	15kd	1blj	1btn	lcwd	1180	1fb8
SEQ	692	692	692	692	692	692		692	269

PDB annotation		BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	OR SH2 DOMAIN GRB2; GRB2, SH2 DOMAIN, PROTEIN NMR, SOLUTION STRUCTURES	MITH THE 105-	SRC 3 2) TH 5 SHA 5	AAIN 4-159) 4-759) HE HE ASN- PRO- MR,
Compound		PHOSPHOTYROSINE AND 3- CHAIN: A;	GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHH)) (NMR, 25 STRICTIRES) 191 S.4	PHOSPHOTRANSFERASE V-SRC TYROSINE KINASE TRANSFORMING PROTEIN (PHOSPHOTYROSINE 1SHA 3 RECOGNITION DOMAIN SH2) (E.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPEPTIDE A (TYR-VAL-PRO-MET-LEU, PHOSPHORYLATED TYR) 1SHA 5	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLIPASE C- GAMMA-1 (E.C.3.1.4.11) (C- TERMINAL SH2 2PLD 3 DOMAIN COMPRISING RESIDUES 663 - 759) COMPLEXED WITH A 2PLD 4 PHOSPHOPEPTIDE FROM THE PLATELET-DERIVED GROWTH FACTOR 2PLD 5 RECEPTOR (RESIDUES 1018 - 1029: ASP-ASN-ASP-TYR-LE-ILE-2PLD 6 PRO- LEU-PRO-ASP-PRO-LYS) (NMR, MINIMIZED AVERAGE STRUCTURE) 2PLD 7
SeqFold	Score					
PMF	Score		0.93	0.16	96.0	0.31
Verify	3000		0.10	0.14	0.16	-0.02
PSI-	DEMOI		2e-08	1e-06	2e-05	1.8e-06
End	ΑA		236	117	236	236
Start	A.A		156	18	156	156
Chain	3				<	4
PDB	3		1 fhs	1pls	lsha	2pid
SEQ	ğ		692	692	692	692

PDB annotation		COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE)		-	PROTEIN) SRC HOMOLOGY 2 DOMAIN;	SHZ DOMAIN, SIGNAL TRANSDUCTION, PEPTIDE COMPLEX 2 COMPLEX (PROTO-	ONCOGENE/EARLY PROTEIN)					601	1		RECOGNITION DOMAIN. PP60 2 SRC SH2	DOMAIN	PHOSPHORYLATION SIGNAL	TRANSDUCTION, TYROSINE KINASE,	I KAINSFEKASE, 2 DELOCOBLOTTO A NOCEDD A CE	PHOSPHORYLATION	N: SIGNAL TRANSDUCTION PROTEIN	F		PHOSPHOI KANSFEKASE, COMPLEX	STENATING PROTEIN DAPPI PETSH	BAM32; PLECKSTRIN, 3-	PHOSPHOINOSITIDES, INOSITOL	TRANSDUCTION PROTEIN, ADAPTOR	METCAG
Compound		C-SRC TYROSINE KINASE; CHAIN: A, B; ACE-FORMYL	PHOSPHOTYR-GLU-(N,N- DPENTYL AMINE); CHAIN: C, D;	FYN PROTEIN-TYROSINE	KINASE; CHAIN: F;	CHAIN: P		HYDROLASE(SH2 DOMAIN)	TYROSINE PHOSPHATASE SYP	(N-1 EKWIMAL SHZ DOMAIN)	(E.C.3.1.3.48) COMPLEXED WITH	THE PEPTIDE 1AYA 4 PDGFR-1009	1AYA 5	THE ANGEODY ANG PROTECTION	CHAIN: NULL:	•	P55 BLK PROTEIN TYROSINE	KINASE; CHAIN: NULL;			BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	P56LCK TYROSINE KINASE;	CHAIN: L; PHOSPHONOPEPTIDE	CHAIN: P;	DITAL ADAPTOR OF	PHOSPHOTYROSINE AND 3-	CHAIN: A;		
SeqFold	score		-																							•			_
PMF	score	0.63		09.0				0.84					,	0.73			0.28				90.0	69.0			100	100			
Verify	score	0.12		-0.07				0.15						0.18			0.11				-0.14	0.26		•	0.35	C.O			
PSI-	BLASI	4e-05		2e-05				8e-10						Ze-02			1.8e-05				0.0016	0.00012			40-04	00-5			
End	¥	236		236				236						236			236				109	236			-112	ì			
Start	AA	156		156				156	_		_			156			156			-	23	156			10	9			
Chain	a	∢		4				Ą		_	_	-								_		L		-	1	<			_
PDB	a	1a09		laot				laya			_			lbkl			161				1btn	lcwd			1500	OBIT			_
SEQ	Эġ			693			_	693						693			693				693	693			703	260			_

PDB annotation	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SH2 DOMAIN GRB2; GRB2, SH2 DOMAIN, PROTEIN NMR, SOLUTION STRUCTURES			
Compound	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHHI)) (MAR, 25 STRUCTURES) IPLS 5	PHOSPHOTRANSFERASE V-SRC TYROSINE KINASE TRANSFORMING PROTEIN (PHOSPHOTYROSINE 1SHA 3 RECOGNITION DOMAIN SH2) (B.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPETIDE A (TYR-VAL-PRO-MET-LEU, PHOSPHORYLATED TYR) 1SHA 5	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLPASE C- GAMMA-I (E.C.3.1.4.11) (C- TERMINAL SH2 2PLD 3 DOMAIN COMPLEXED WITH A 2PLD 4 PHOSPHOPEPTIDE FROM THE PLATELET-DERIVED GROWTH FACTOR 2PLD 5 RECEPTOR (RESIDUES 1018 - 1029: ASP-ASN- ASP-PTYR-ILE-LE- 2PLD 6 PRO- LEU-PRO-ASP-PRO-LYS) (NMR, MINIMIZED AVERAGE
SeqFold score		-	·		
PMF	0.64	0.93	0.16	96'0	0.31
Verify score	0.51	0.10	0.14	0.16	-0.02
PSI- BLAST	4e-06	2e-08	1e-06	2e-05	1.8e-06
End	109	236	117	236	236
Start AA	23	156	8 1	156	136
Chain ID	∢			∢	4
EDB OI	1108	1fhs	1pls	Isha	2pid
SEQ NO D	693	693	693	693	693

	-						ċ						2															1
PDB annotation			COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE)		COMPLEX (PROTO-ONCOGENE/EARLY	REQUEIN) SEC HOMOLOGY 2 DUMAIN; SH2 DOMAIN, SIGNAL TRANSDUCTION,	PEPTIDE COMPLEX, 2 COMPLEX (PROTO- ONCOGENE/EARLY PROTEIN)					,	V-SRC SH2 DOMAIN SRC SH2; V-SRC SH2	DOMAIN, PHOSPHOI Y RUSINE RECOGNITION DOMAIN, PP60 2 SRC SH2	DOMAIN	TPANSPHORYLATION SIGNAL TPANSPHORYLATION TYPOSENE KINASE	TRANSFERASE, 2	PHOSPHOTRANSFERASE,	PHOSPHORYLATION	SIGNAL TRANSDUCTION PROTEIN	COMPLEX	PHOSPHOI KANSFEKASE/PEPILLE)	(PHOSPHOTRANSFERASE, COMELEA	SIGNALING PROTEIN DAPPI, PHISH,	BAM32; PLECKSTRIN, 3-	TETRAKISPHOSPHATE 2 SIGNAL	TRANSDUCTION PROTEIN, ADAPTOR	
Compound		STRUCTURE) 2PLD 7	C-SRC TYROSINE KINASE; CHAIN: A, B; ACE-FORMYL	DIPENTYL AMINE); CHAIN: C, D;	FYN PROTEIN-TYROSINE	KINASE; CHAIN: F; PHOSPHOTYROSYL PEPTIDE;	CHAIN: P	HYDROLASE(SH2 DOMAIN)	TYROSINE PHOSPHATASE SYP ON-TERMINAL SH2 DOMAIN)	1AYA 3 (PTP1D, SHPTP2)	(E.C.3.1.3.48) COMPLEXED WITH	THE PEPTIDE 1AYA 4 PDGFR-1009	PP60 V-SRC TYROSINE KINASE	TRANSFORMING FROTEIN; CHAIN: NULL;		P55 BLK PROTEIN TYROSINE	KINASE; CHAIN: NOLL;			BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	P56LCK TYROSINE KINASE;	CHAIN: L; PHOSPHONOPEPTIDE	Challe: F;	DUAL ADAPTOR OF	PHOSPHOI Y KOSINE AND 3-	CIPALY: A,		
SeqFold	score																											
PMF	score		69:0		09.0			0.84					0.77			0.28				90.0	69'0			0.01				
Verify	score		0.12		-0.07			0.15					0.18			0.11				-0.14	0.26			0.35				
PSI-	BLAS1		4e-05		2e-05			8e-10					2e-05			1.8e-05				0.0016	0.00012		-	4e-06				
End	AA		236		236			236					236			236				109	236			1117				
Start	A.A		156		156			156					156			156				23	156			18				
Chain	a		¥		म			A													L			4				
PDB	_		1a09		laot			laya					1bkl			1blj				1btn	Icwd			Ifao	_			
SEO	Эë		693		693			693					693			693				693	693			693				

				_						_			_							
SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHONOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SH2 DOMAIN GRB2; GRB2, SH2 DOMAIN, PROTEIN NMR, SOLUTION STRUCTURES											٠				•				
DÜAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MITTANT IPLS 3 WITH	LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHHH) (NMR, 25	STRUCTURES) IPLS 5	PHOSPHOTRANSFERASE V-SRC TYROSINE KINASE	TRANSFORMING PROTEIN OPHOSPHOTYROSINE 1SHA 3	RECOGNITION DOMAIN SH2)	(E.C.2.7.1.112) COMPLEX WITH ISHA 4 PHOSPHOPEPTIDE A	(TYR-VAL-PRO-MET-LEU, PHOSPHORYI ATED TYR) ISHA 5	PHOSPHORIC DIESTER	HYDROLASE PHOSPHOLIPASE C-	TERMINAL SH2 2PLD 3 DOMAIN	COMPRISING RESIDUES 663 - 759)	COMPLEXED WITH A 2PLD 4	PHOSPHOPEPTIDE FROM THE PI ATEI ET-DERIVED GROWTH	FACTOR 2PLD 5 RECEPTOR	(RESIDUES 1018 - 1029: ASP-ASN-	ASP-PTYR-ILE-ILE- 2PLD 6 PRO- t ftt.pro-asp-pro-i vs) anar	MINIMIZED AVERAGE	020
													•							
0.64	0.93	0.16			96'0					0.31										
0.51	0.10	0.14			0.16					-0.02										
4c-06	2e-08	1e-06			2e-05					T										
109	236	117			236					236										
23	156	18			156					156	}									
<			_		∀		-			\ 				-						
1168	1fhs	lpls	· .		lsha					2nld	<u> </u>									
693	693	693			693					693	}									
	1fb8 A 23 109 4e-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A;	1fb8	1668 A 23 109 4e-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: B, CHAIN: A; CHAIN: A	1fb8	1fb8	1fb8	1668 A 23 109 4e-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; 156 236 2e-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL; PHOSPHORYLATION BOUND PROTEIN-2; CHAIN: NULL; PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE CTERMINUS IPLS 4 (INS(G105-LEHHTHHH)) (NMR, 25 STRUCTURES) IPLS 5 STRUCTURES) IPLS 5 CHAIN-CHAIN-STERASE V-SRC TRANSFERASE V-SRC TRANSFERASE V-SRC TRANSFERASE V-SRC TRANSFORMING PROTEIN CPHOSPHOTYROSINE ISHA 3	1fb8 A 23 109 4e-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; CHAIN: CHAIN: A; CHAIN: A;	1666 A 23 109 46-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; 156 236 26-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL; 10-06 0.14 0.16 PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE CTEMINAL PROMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE CTEMINAL PROMOLOGY DOMAIN SIPLS 4 CINSCORDER SIPLS 5 STRUCTURES) IPLS 5 STRUCTURES) IPLS 5 STRUCTURES) IPLS 5 STRUCTURES) IPLS 6 STRUCTURES) IPLS 6 STRUCTURES) IPLS 7 RECOGNITION DOMAIN SH2) (E.C.2.7.1.112) COMPLEX WITH 15 STA A PROSPHOTYROSINE ISHA 3 STA A PROSPHOTYROSINE ISHA 4 STA A PROSPHOTYROSINE ISHA 4 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A PROSPHOTYROSINE ISHA 5 STA A A PROSPHOTYROSINE ISHA 5 STA A	1fb8 A 23 109 4e-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; 156 236 2e-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: NULL; 10-06 0.14 0.16 PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105-ILEHTHEHHI) (NMR, 25 STRUCTURES) IPLS 5 STRUCTURES) IPLS 5 STRUCTURES IPLS 5 STRUCTURES IPLS 6 CC.2.1.112) COMPLEX WITH ISHA 5 PHOSPHOTYROSINE ISHA 5 HORPHORYLATION DOMAIN SH2) (EC.2.7.1.112) COMPLEX WITH ISHA 5 PHOSPHORYLATION DOMAIN SH2) (FTOR-PRO-MET-LEU, PHOSPHORYLATION DOMAIN STATION DOMAIN STATI	1fb8	1fb8	1fb8 A 23 109 46-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: B, CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN: CHAIN: B, CHAIN:	1fb8 A 23 109 46-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: B, CHAIN: B, CHAIN: CHAIN: CHAIN: A; CHAIN: CH	1168 A 23 109 46-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHADN: A; CHADN: A; CHADN: A; CHADN: A; CHADN: A; CHADN: B, CH	156 46-06 0.51 0.64 DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; 156 25-08 0.10 0.93 GROWTH FACTOR RECEPTOR NULL; 1918 117 16-06 0.14 0.16 PHOSPHORYLATION PLECKSTRIN (IV-TERMINAL LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND) MUTANT IPLS 3 WITH LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND) MUTANT IPLS 3 WITH LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND) MUTANT IPLS 3 WITH LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND) MUTANT IPLS 3 WITH LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND STATEMENT IPLS 3 WITH LEU GILU (HIS)6 ADDED TO THE CENTRIN HOMOLOGY DOMAND STATEMENT IPLS 3 WITH STANSFORMING PROTEIN (PHOSPHOTYROSINE ISHA 3 PHOSPHOTYROSINE ISHA 3 PHOSPHOTYROSINE ISHA 4 PHOSPHORY TIPLS 3 WITH ISHA 4 PHOSPHORY TIPLS 3 DOMAND COMPLEXED WITH A 2PLD 4 PHOSPHORY BORD THE CENTRIN HORSPHORY AND STATEMENT ISHA 4 PHOSPHORY DESTINANT AND STATEMENT ISHA 4 PHOSPHORY DESTINANT AND STATEMENT AND STATEMENT ISHA 4 PHOSPHORY DESTINANT AND STATEMENT ISHA 4 PHOSPHORY DESTINANT AND STATEMENT AND STATEMENT ISHA 4 PHOSPHORY DESTINANT AND STATEMENT 156 46-06 0.51 0.64 DUALADAPTOR OF PHOSPHOTYROSINE AND 3-CHAIN: A; 156 25-08 0.10 0.93 GROWTH FACTOR RECEPTOR NULL; 1518 117 16-06 0.14 0.16 PHOSPHORYLATION P	1168	1168	156 A 23 109 46-06 0.51 0.64 DUAL MAPPTOR OF PHOSPHOTYROSINE AND 3- 156 236 22-08 0.10 0.93 GROWTH FACTOR RECEPTOR BOUND PROTEIN-2; CHAIN: 0.14 0.16 DUAL MOLL; CHAIN: 0.16 DUAL MOLL STRENGER OF PHOSPHOTYROSINE AND 3- 158 117 16-06 0.14 0.16 DUAL MOLL STRENGER OF PHOSPHOTYROSINE AND 1-15 DOMAIN MOTANT IPLS 3 WITH LEU GLU (HIS/6 ADDED TO THE CTERMING IPLS 4 (MIS/G105-1) DOMAIN MOTANT IPLS 3 WITH LEU GLU (HIS/6 ADDED TO THE CTERMING IPLS 4 (MIS/G105-1) DOMAIN MOTANT IPLS 3 WITH LEU GLU (HIS/6 ADDED TO THE CTERMING ISLA 5 DOMAIN MOTANT IPLS 4 (MIS/G105-1) DOMAIN MOTANT IPLS 4 (MI	

270

SEQ BOS	PDB ID	Chain ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Compound	PDB annotation
									STRUCTURE) 2PLD 7	
694	lsfp		94	208	1.6e-17	0.59	0.89		ASFP; CHAIN: NULL;	SPERMADHESIN ACIDIC SEMINAL
								_		PROTEIN; SPERMADHESIN, BOVINE SEMENAL PLASMA PROTEIN ACTURE?
	_							_		SEMINAL LASIMA FROIEIN, ACEDICA
										DOMAIN Y-RAY CRYSTAL 3 STRICTIRE
										GROWTH FACTOR
709	1efr		g	206	2e-19	0.57	89.0		ASFP: CHAIN: NULL:	SPERMADHESIN ACIDIC SEMINAL
* *	dist		۲,	3	61-07		0.00		, con	PROTEIN; SPERMADHESIN, BOVINE
								_		SEMINAL PLASMA PROTEIN, ACIDIC 2
								_		SEMINAL FLUID PROTEIN, ASFP, CUB
										DOMAIN, X-RAY CRYSTAL 3 STRUCTURE,
3		_	5	900	110.14	0.16	0.35		MATOR SEMINAT DI ASMA	COMPLEX (SEMINAL PLASMA
694	Ispp	∢	`	887	1.16-14	Ci.	C.		GI VCOPROTTEIN PSP.1: CHAIN: A:	PROTEIN/SPP) SEMINAL PLASMA
									MATOR CENTRAL DI ACMA	PROTEINS SPERMADHESINS CITE
									CI VCODD OTEN DED. II. CHAIN: B	DOMAIN 3 APCHITECTIBE COMPLEX
					-				del consolem (se m) cirrar a	(SEMINAL PLASMA PROTEIN/SPP)
707	1	_	80	306	06-9b	900	0.43		MATOR SEMINAL PLASMA	COMPLEX (SEMINAL PLASMA
5	dder	¢	₹	3	2	}	?		GLYCOPROTEIN PSP-I: CHAIN: A:	PROTEIN/SPP) SEMINAL PLASMA
									MAIOR SEMINAL PLASMA	PROTEINS, SPERMADHESINS, CUB
									GLYCOPROTEIN PSP-II; CHAIN: B	DOMAIN 2 ARCHITECTURE, COMPLEX
										(SEMINAL PLASMA PROTEIN/SPP)
694	lspp	B	96	204	3.6e-15	0.56	0.45		MAJOR SEMINAL PLASMA	COMPLEX (SEMINAL PLASMA
		1							GLYCOPROTEIN PSP-I; CHAIN: A;	PROTEIN/SPP) SEMINAL PLASMA
									MAJOR SEMINAL PLASMA	PROTEINS, SPERMADHESINS, CUB
	-								GLYCOPROTEIN PSP-II; CHAIN: B	DOMAIN 2 ARCHITECTURE, COMPLEX
								_		(SEMINAL PLASMA PROTEIN/SPP)
694	Ispp	В	66	203.	2e-21	0.43	0.25		MAJOR SEMINAL PLASMA	COMPLEX (SEMINAL PLASMA
									GLYCOPROTEIN PSP-I; CHAIN: A;	PROTEIN/SPP) SEMINAL PLASMA
									MAJOR SEMINAL PLASMA	PROTEINS, SPERMADHESINS, CUB
						-			GLYCOPROTEIN PSP-II; CHAIN: B	DOMAIN 2 ARCHITECTURE, COMPLEX
			.]							(SEMINAL PLASMA PROTEIN/SPP)
869	чгр1	۷	87	243	1.6e-06	-0.06	0.35		GLYCINE N- METHYLTRANSFERASE; CHAIN: A, B, C, D;	TRANSFERASE METHYLTRANSFERASE
				-						

SEO	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
a ş	A	A	¥	ΑA	BLAST	score	score	score		
869	1d2h	4	92	211	3.6e-16	-0.15	0.37		GLYCINE N- METHYLTRANSFERASE; CHAIN: A, B, C, D;	TRANSFERASE METHYLTRANSFERASE
869	Ivid		49	262	1.8e-32			81.95	CATECHOL O. METHYLTRANSFERASE; CHAIN: NULL;	TRANSFERASE (METHYLTRANSFERASE) COMT; TRANSFERASE, METHYLTRANSFERASE, NEUROTRANSMITTER DEGRADATION
869	lvid		20	249	1.8e-32	0.43	0.81		CATECHOL O- METHYLTRANSFERASE; CHAIN: NULL;	TRANSFERASE (METHYLTRANSFERASE) COMT; TRANSFERASE, METHYLTRANSFERASE, NEUROTRANSMITTER DEGRADATION
869	lvid		52	252	9e-19	0.38	0.40		CATECHOL O- METHYLTRANSFERASE; CHAIN: NULL;	TRANSFERASE (METHYLTRANSFERASE) COMT; TRANSFERASE, METHYLTRANSFERASE, NEUROTRANSMITTER DEGRADATION
869	lxva	4	81	246	1.4e-07	-0.04	0.70		GLYCINE N. METHYLTRANSFERASE; CHAIN: A, B;	METHYLTRANSFERASE GNMT, S- ADENOSYL-L-METHIONINE: GLYCINE METHYLTRANSFERASE
869	lxva	٧	92	211	3.6e-16	-0.25	0.35		GLYCINE N- METHYLTRANSFERASE; CHAIN: A, B;	METHYLTRANSFERASE GNMT, S- ADENOSYL-L-METHIONINEV. GLYCINE METHYLTRANSFERASE
-	:		į	٩		,,	2		O TOTTOTATE	THE ANGESTS A CE CASTELLIA TO A CHERT A CENT
90	lvid		36	219	4e-06	0.35	0.57		CATECHOL O- METHYLTRANSFERASE; CHAIN: NULL;	IKANSFEKASE (METHYLIKANSFEKASE) COMT; TRANSFERASE, METHYLTRANSFERASE, NEUROTRANSMITTER DEGRADATION
701	Ibor		62	119	7.2e-05	-0.69	0.05		TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION REGULATION PROTO- ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION
701	lchc		70	128	6e-18	0.02	0:30		VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) 1CHC 3 (NMR, 1 STRUCTURE) 1CHC 4	
192	1chc		74	132	3.6e-15	-0.18	0.27		VIRUS EQUINE HERPES VIRUS-I (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	
701	lrmd		73	124	4e-14	-0.07	0.93		RAGI; CHAIN: NULL;	DNA-BINDING PROTEIN V(D)J

PDB annotation	RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(DJ) RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RL-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITORNUCLEASE) COMPLEX (INHIBITORNUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE)
Compound		RAGI; CHAIN: NULL;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	REGNUCLEÁSE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONÚCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCL EASE INHIBITION;
SeqFold score								
PMF score		0.63	1.00	0.57	0.11	0.94	0.22	0.12
Verify score		0.04	0.11	0.09	0.04	0.31	0.21	0.11
PSI- BLAST		7.2e-10	2e-38	66-39	1.4e-21	2e-42	1.8e-23	9e-22
End		132	595	999	019	728	689	762
Start		76	145	200	236	309	336	414
Chain			V	4	∢	4	¥	A
PDB U		lrmd	la4y	la4y	la4y	la4y	la4y	la4y
SEQ	Ö	701	702	702	702	702	702	702

PDB annotation	COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
Compound	CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B'; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HARPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;
SeqFold score											
PMF score		0.10	0.27	0.42	0.58	0.39	0.12	-0.08	0.78	0.00	0.05
Verify score		-0.02	-0.05	0.04	0.30	0.18	0.20	0.20	0.32	-0.19	0.03
PSI- BLAST		5.4e-20	2e-39	2e-16	2e-16	2e-17	8e-17	1.4e-13	1.8e-17	2e-12	1.2e-20
End		698	535	250	276	374	428	501	551	204	809
Start AA		495	4 2	119	129	206	227	315	397	43	469
Chain ID		V	4	∢	4	¥	4	٧	∢	¥	4
EDB CI		la4y	la4y	la9n	la9n	la9n	la9n	la9n	la9n	la9n	la9n
SEQ B S		702	702	702	702	702	702	702	702	702	702

SEO	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
Αÿ	3	3	₹	¥¥	BLASI	score	score	Score		
702	1a9n	, 4	528	683	1.6e-16	80:0	25.0		U2 RNA HAIRPIN IV; CHAIN: Q. R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	1a9n	∢	574	707	1.8e-17	0.45	0.86		U2 RNA HARPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	la9n	4	629	774	6e-13	0:30	0.04		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	la9n	ပ	611	250	4e-17	-0.19	0.22		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	la9n	ပ	206	374	2e-17	0.13	-0.07		U2 RNA HAIRPIN IV; CHAÎN: Q, R; U2 A'; CHAÎN: A, C; U2 B"; CHAÎN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	la9n	ပ	227	428	4e-17	-0.02	0.31		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	1a9n	ပ	315	501	6e-14	0.09	-0.09		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RBONUCLEOPROTEIN
702	1a9n	၁	469	809	6e-21	0.12	0.19		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	la9n	၁	528	069	le-16	0.24	0.43		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	1a9n	၁	574	707	4e-17	0.47	0.92		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RBONUCLEOPROTEIN
702	1a9n	၁	624	756	2e-17	0.24	-0.05		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN
702	140b	A	12	174	7.2e-23	-0.04	0.18		INTERNALIN B; CHAIN: A;	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION
702	140b	A	122	341	5.4e-20	-0.04	0.23		INTERNALIN B; CHAIN: A;	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION
702	1406	Ą	126	373	6e-25	-0.05	0.03		INTERNALIN B; CHAIN: A;	CELL ADHESION LEUCINE RICH REPEAT,

PDB annotation	CALCIUM BINDING, CELL ADFESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	TRANSFERASE CRYSTAL STRUCTURE,	RAB GERANYLGERANYLTRANSFERASE,	FORMYLMETHIONINE, ALPHA SUBUNIT.	BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYL GERANYL TRANSFERASE.	2.0 A 2 RESOLUTION, N-	FORMYLMETHIONINE, ALPHA SUBUNII, BETA SUBUNIT		TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N-
Compound		INTERNALIN B; CHAIN: A;	RAB	GERANYLGERANYLTRANSFERA	SEALTHA SOBOINTI, CIMIN. A,	GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA	SE ALPHA SUBUNIT; CHAIN: A,	C; RAB GERANYLGERANYLTRANSFERA	SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT, CHAIN: A,										
SeqFold score																					
PMF score		0.15	1.00	0.93	09.0	-0.13	0.05	0.16	0.82	1.00	9.65	-0.17	0.01				0.25				0.10
Verify score		-0.01	0.29	0.14	0.42	90.0	-0.22	-0.00	0.09	0.38	0.27	0.04	-0.17				0.17				0.30
PSI- BLAST		2e-23	7.2e-24	8e-23	1.6e-24	5.4e-25	4e-21	6e-31	1.4e-23	7.2e-24	1.8e-24	5.4e-20	1.2e-12				2e-16		•		5.4e-12
End		425	479	532	552	582	254	711	099	708	801	862	526				439				362
Start		203	304	304	363	401	44	476	482	520	652	289	193				217				247
Chain ID		4	4	V	4	<	¥	A	4	4	4	<	A				V				4
808 CI		qop1	q0p1	140b	140b	140b	140b	1406	140b	140b	140b	140b	1dce		_		1dce		-		Idce
S a S		702	702	702	702	702	702	702	702	702	702	702	702				702				702

	1	 -					<u> </u>	
PDB annotation	FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGEILA	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILB PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS,
Compound	C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	OUTER ARM DYNEIN; CHAIN: A;	OUTER ARM DYNEIN; CHAIN: A;	OUTER ARM DYNEIN; CHAIN: A;
SeqFold score								
PMF score		0.81	0.34	0.53	0.43	0.11	0.27	0.62
Verify score		0.40	-0.03	-0.24	0.38	-0.16	0.12	-0.31
PSI- BLAST		5.4e-10	1.6e-14	3.6e-13	1.8e-11	1.8e-19	5.4e-14	2e-11
End		403	737	599	762	314	447	155
Start		287	519	548	929	124	296	46
Chain ID		A	¥	∢	V	V	∢	A
සු ය		ldce	Idce	Idce	1dce	lds9	lds9	lds9
SEQ EQ		702	702	702	702	702	702	702

					Γ	Т			_			_		1		_				Т		-			Γ	-
PDB annotation		FLAGELLA	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER,	DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS,	FLAGELLA	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA-BETA-ALPHA CYLINDER.	DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE-RICH	REPEAT, BETA-BETA-ALPHA CYLINDER,	DYNEIN, Z CHLAIMYDOMONAS, FLAGELLA	CONTRACTLE PROTEIN LEUCINE-RICH	KEFEAL, BEIA-BEIA-ALTHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS,	FLAGELLA	RNA BINDING PROTEIN TAP (NFX1);	RRM) AND LEUCINE-RICH-REPEAT 2	(LRR)	RNA BINDING PROTEIN TAP (NFX1);	RRM) AND LEUCINE-RICH-REPEAT 2	LIGASE CYCLIN A/CDK2-ASSOCIATED	PROTEIN P45; CYCLIN A/CDK2-	ASSOCIATED PROTEIN P19, SKP1, SKP2, F-	BOX, LKR, LEUCINE-KICH KEPEAT, SCF,	LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED	PROTEIN P45; CYCLIN A/CDK2- ASSOCIATED PROTEIN P19; SKP1, SKP2, F-
Compound			OUTER ARM DYNEIN; CHAIN: A;		OUTER ARM DYNEIN; CHAIN: A;		OUTER ARM DYNEIN; CHAIN: A;		OUTER ARM DYNEIN; CHAIN: A;			OUTER ARM DYNEIN; CHAIN: A;			NUCLEAR RNA EXPORT FACTOR	I; CHAIN: A, B;		NUCLEAR RNA EXPORT FACTOR	I; CHAIN: A, B;	SKP2; CHAIN: A, C, E, G, I, K, M,	O; SKP1; CHAIN: B, D, F, H, J, L, N,	ŗ,			SKP2; CHAIN: A, C, E, G, I, K, M,	O; SKP1; CHAIN: B, D, F, H, J, L, N, P;
SeqFold	score						•	-																		
PMF	Score		0.47		90:00		0.07		0.04			0.15			0.47			0.10		-0.15					0.03	
Verify	score		-0.34		-0.29		-0.15		-0.26			-0.19			-0.01			-0.57		0.18					-0.01	
PSI-	DLASI		1.6e-18		5.4e-15		1.4e-17		3.6e-12			6e-16			1.8e-06			1.8e-06		3.6e-14					1.6e-23	
End	ΑA		634		634		683		683			784			376			376		497					732	
Start	¥		477		484		513		533			627			306			306		263					459	
Chain	3		¥		¥		∢		٧			A			4			В		A	:				A	
PDB	3		6sp1		lds9		1ds9		1ds9			1ds9			1601			1f01		I fav	Ī				lfqv	
SEQ	ΒÖ		702		702		702		702			702			702			702		702	!	_			702	

PDB annotation	BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED PROTEIN P45; CYCLIN A/CDK2- ASSOCIATED PROTEIN P19; SKP1, SKP2, F- BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45, CYCLIN A/CDK2-ASSOCIATED P19, SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45, CYCLIN A/CDK2-ASSOCIATED P19, SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45; CYCLIN A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3,
Compound		SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, I, L, N, P;	SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;				
SeqFold score								
PMF score		-0.07	0.22	-0.14	0.29	90.00	-0.07	0.13
Verify score		0.00	60:0	0.19	0.10	90:0	0.07	0.28
PSI- BLAST		1.8e-09	5.4e-09	3.6e-13	4e-20	1.1e-13	2e-30	1.8e-12
End		801	420	475	909	550	709	705
Start		578	240	263	317	367	479	499
Chain ID		4	4	V	4	K	4	V
PDB ID		1fqv	16.2	162	152	162	16.2	1fs2
S e S		702	702	702	702	702	702	702

		_															_	_		_							_				_					_
PDB annotation	I IBIOI IITIN PROTEIN I IGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED	P45; CYCLIN A/CDK2-ASSOCIATED P19;	SKP1, SKP2, F-BOX, LKKS, LEUCINE-KICH	REFEATS, SCF, 2 UBIQUITIN, E3,	UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED P45: CYCLIN A/CDK2-ASSOCIATED P19:	SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH	REPEATS, SCF, 2 UBIQUITIN, E3,	UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-ASSOCIATED	P45; CYCLIN A/CDK2-ASSOCIATED P19;	SKP1, SKP2, F-BOX, LKKS, LEUCINE-KICH	REFEATS, SCF, 2 UBIQUITIN, E3,	TRANSCRIPTION RNAIP: RANGAP:	GTPASE-ACTIVATING PROTEIN FOR SPII,	GTPASE-ACTIVATING PROTEIN, GAP,	RNA 1P, RANGAP, LRR, LEUCINE- 2 RICH	REPEAT PROTEIN, TWINNING,	HEMIHEDRAL TWINNING, 3	MEROHEDRAL TWINNING, MEROHEDRY	TRANSCRIPTION RNAIP; RANGAP;	GTPASE-ACTIVATING PROTEIN FOR SP11,	GTPASE-ACTIVATING PROTEIN, GAP,	RNA1P, RANGAP, LRR, LEUCINE- 2 RICH	REPEAT PROTEIN, TWINNING,	HEMIHEDRAL TWINNING, 3	MEROHEDRAL TWINNING, MEROHEDRY	TRANSCRIPTION RNAIP; RANGAP;	GTPASE-ACTIVATING PROTEIN FOR SPII,	GIPASE-ACTIVATING PROTEIN, GAP,	RNAIP, RANGAP, LRR, LEUCINE- 2 RICH	REPEAT PROTEIN, TWINNING,	HEMIHEDRAL, TWINNING, 3	MEROHEDRAL TWINNING, MEROHEDRY	TRANSCRIPTION KNAIP; KANGAP;
Compound		SKP2; CHAIN: A, C; SKP1; CHAIN:	B, D;				SKP2; CHAIN: A, C; SKP1; CHAIN: B. D:				SKP2; CHAIN: A, C; SKP1; CHAIN:	B, D;			GTPASE-ACTIVATING PROTEIN	RNA1 SCHPO; CHAIN: A, B;						GTPASE-ACTIVATING PROTEIN	RNA1_SCHPO; CHAIN: A, B;	ı					GTPASE-ACTIVATING PROTEIN	RNA1_SCHPO; CHAIN: A, B;					A GEORGE OF STREET STREET, STREET STREET	GTPASE-ACTIVATING PROTEIN
SeqFold score																																				ļ
PMF score		0.16					0.12				0.07				0.01							0.01							0.13					·	,	0.16
Verify score		0.24					0.08				-0.29				-0.11							0.30							0.10							0.43
PSI- BLAST		5.4e-11					6e-19	٠			4e-20			-	9e-11							1.8e-13							2e-30							2e-19
End	S.	750	}				758				342				428	: -						485							738							774
Start AA		546	2				267				64				230	ì						279							477	_						547
Chain		A					∀				Ą				4	:						V							Ą							A
PDB UD		16,7	!				1fs2				1fs2				lvro	9.						lyrg	·						lyrg							lyrg
SEQ	Ö	707	}				702				702				202	}						702							702							702

Chain TD	n Start AA	End	PSI- BLAST	Verify	PMF	SeqFold score	Compound RNA1 SCHPO: CHAIN: A. B:	PDB annotation GTPASE-ACTIVATING PROTEIN FOR SPII.
					·			GTPASE-ACTIVATING PROTEIN, GAP, RNA IP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY
∢	49	254	6e-19	0.11	0.31		GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	TRANSCRPTION RNAIP; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPII, GTPASE-ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, MEROHEDRAL TWINNING,
V	49	344	4e-18	0.08	0.12		GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	TRANSCRIPTION RNA IP, RANGAP, GTPASE-ACTIVATING PROTEIN FOR SPII, GTPASE-ACTIVATING PROTEIN, GAP, RNA IP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY
₹	88	428	4e-21	60:0	0.19	·	GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	TRANSCRIPTION RNA 1P, RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPI1, GTPASE-ACTIVATING PROTEIN, GAP, RNA IP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY
	504	659	6e-53	0.03	0.75		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS
	313	757	8e-49	0.27	0.87	·	RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS
	315	728	3.6e-26	0.01	0.53		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS
	477	698	3.6e-24	0.02	0.53		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR

PDB annotation	ACETYLATION, LEUCINE-RICH REPEATS	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS	GROWTH FACTOR PNR-2; GROWTH FACTOR, CELL MOTILITY, TUMOR SUPPRESSOR, TREFOIL 2 DOMAIN, SIGNAL	GROWTH FACTOR PNR-2; GROWTH FACTOR, CELL MOTILITY, TUMOR SUPPRESSOR, TREFOIL 2 DOMAIN, SIGNAL	TREFOIL FAMILY OF PEPTIDES PSP REPEAT, GROWTH FACTOR, SIGNAL	TREFOIL FAMILY OF PEPTIDES PSP REPEAT, GROWTH FACTOR, SIGNAL		HYDROLASE BPHD; HYDROLASE, PCB DEGRADATION	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE, DIRECTED EVOLUTION, ORGANIC ACTIVITY, 2 PNB ESTERASE	LIPASE ESTERASE, SUBSTRATE/PRODUCT-BOUND 1CLE 9	LIPASE ESTERASE, SUBSTRATE/PRODUCT-BOUND 1CLE 9	HYDROLYTIC ENZYME DLH; DIENELACTONE HYDROLASE, AROMATIC HYDROCARBON CATABOLISM, 2 SERINE ESTERASE, CARBOXYMETHYLENEBUTENOLIDASE, 3 HYDROLYTIC ENZYME	HYDROLASE (SERINE ESTERASE)
Compound		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	PS2; CHAIN: NULL;	PS2; CHAIN: NULL;	PORCINE PANCREATIC SPASMOLYTIC POLYPEPTIDE; CHAIN: A, B;	PORCINE PANCREATIC SPASMOLYTIC POLYPEPTIDE; CHAIN: A, B;		2-HYDROXY-6-0X0-6- PHENYLHEXA-2,4-DIENOATE CHAIN: A;	PARA-NITROBENZYL ESTERASE; CHAIN: A;	CHOLESTEROL ESTERASE; ICLE 4 CHAIN: A, B; ICLE 5	CHOLESTEROL ESTERASE; ICLE 4 CHAIN: A, B; ICLE 5	DIENELACTONE HYDROLASE; CHAIN: NULL;	ACETYLCHOLINESTERASE;
SeqFold score			61.22		69:09					161.50			
PMF score		0.53		1.00		1.00		0.01	0.87		96.0	0.24	1.00
Verify score		-0.10		0.38		0.17		0.03	0.28		0.23	0.15	0.41
PSI- BLAST		1.2e-45	1.86-17	1.8e-17	1.8e-19	1.8e-19		0.00018	1.3e-97	3.6e-79	3.6e-79	0.009	0
End AA		547	94	98	8	94		296	609	584	563	296	614
Start		29	40	43	2	43) -	181	43	41	19	6/1	40
Chain ID					V V	4		<	4	4	4		A
aga aga		2bnh	lps2	lps2	2psp	2psp		1c4x	1c7j	Icle	1cle	1din	1dx4
SEQ EQ		702	703	703	703	203		706	706	902	902	706	706

PDB annotation	HYDROLASE (SERINE ESTERASE), HYDROLASE, SERINE ESTERASE, 2 SYNAPSE, MEMBRANE, NERVE, MUSCLE, SIGNAL, NEUROTRANSMITTER 3 DEGRADATION, GLYCOPROTEIN, GPI- ANCHOR, ALTERNATIVE SPLICING	CHOLINESTERASE SERINE HYDROLASE, NEUROTRANSMITTER CLEAVAGE, CATALYTIC 2 TRIAD, ALPHABETA HYDROLASE	HYDROLASE ALPHA/BETA HYDROLASE FOLD	HYDROLASE ALPHA/BETA HYDROLASE FOLD	HYDROLASE BILE SALT ACTIVATED LIPASE, ESTERASE, CATALYTIC DOMAIN	SERINE HYDROLASE SERINE HYDROLASE, DEGRADATION OF BREFELDIN A, ALPHA/BETA 2 HYDROLASE FAMILY			HYDROLASE MACHE; HYDROLASE, SERINE ESTERASE, ACETYLCHOLINESTERASE, TETRAMER, 2 HYDROLASE FOLD, GLYCOSYLATED PROTEIN	HYDROLASE MACHE; HYDROLASE, SERINE ESTERASE, ACETYLCHOLINESTERASE, TETRAMER, 2
Compound	CHAIN: A;	ACETYLCHOLINESTERASE; CHAIN: A;	SERINE HYDROLASE; CHAIN: A;	SERINE HYDROLASE; CHAIN: A;	BILE SALT ACTIVATED LIPASE; CHAIN: A;	BREFELDIN A ESTERASE; CHAIN: A, B;	HYDROLASE LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL LIPASE) COMPLEXED WITH 1LPP 3 HEXADECANESULFONATE 1LPP 4 1LPP 71	HYDROLASE LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL LIPASE) COMPLEXED WITH 1LPP 3 HEXADECANESULFONATE 1LPP 4 1LPP 71	ACETYLCHOLINESTERASE; CHAIN: A, B, C, D;	ACETYLCHOLINESTERASE; CHAIN: A, B, C, D;
SeqFold score							167.96			364.47
PMF		1.00	0.43	0.24	1.00	0.49		0.93	1.00	
Verify score		0.22	0.10	-0.08	0.38	0.24		0.32	0.48	
PSI- BLAST		0	5.4e-28	2e-40	0	5.4e-16	3.6e-78	3.6e-78	0	0
End		615	349	372	615	337	584	563	615	615
Start AA		40	179	73	4	180	41	<i>L</i> 9	38	38
Chain ID		4	∢	4	4	4			4	V
808 CO		lea5	levq	levq	1f6w	1jkm	11pp	llpp	Imaa	lmaa
SEQ NO DE		902	902	706	902	902	902	706	706	902

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
АŞ	А	<u>e</u>	¥	Ψ¥	BLAST	score	score	score	-	
										HYDROLASE FOLD, GLYCOSYLATED PROTEIN
902	lqe3	V	40	009	3.6e-93			223.02	PARA-NITROBENZYL ESTERASE; CHAIN: A;	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE DIRECTED EVOLUTION
706	1qe3	4	43	602	3.6e-93	0.28	66.0		PARA-NITROBENZYL ESTERASE; CHAIN: A;	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE DIRECTED EVOLUTION
706	19fm	4	181	342	1.3e-21	0.31	0.31		PROLYL OLIGOPEPTIDASE; CHAIN: A;	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER
706	14fm	4	35	393	2e-54	0.14	0.30		PROLYL OLIGOPEPTIDASE; CHAIN: A;	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA- 2 PROPELLER
706	lqtr	∢	184	284	9e-05	-0.18	0.03		PROLYL AMINOPEPTIDASE; CHAIN: A;	HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMINOPEPTIDASE, 2 SERRATIA, IMINOPEPTIDASE
706	1thg		45	583	5.4e-86			196.76	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (B.C.3.1.1.3) TRIACYLGLYCEROL HYDROLASE 1THG 3	
902	1thg		47	995	5.4e-86	0.40	1.00		HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (B.C.3.1.1.3) TRIACYLGLYCEROL HYDROLASE 1THG 3	
706	2bce		. 39	619	0			302.27	CHOLESTEROL ESTERASE; CHAIN: NULL;	HYDROLASE BILE SALT ACTIVATED LIPASE, BILE SALT STIMULATED HYDROLASE, SERINE ESTERASE, LIPASE
902	2bce		44	615	0	0.43	1.00		CHOLESTEROL ESTERASE; CHAIN: NULL;	HYDROLASE BILE SALT ACTIVATED LIPASE, BILE SALT STIMULATED HYDROLASE, SERINE ESTERASE, LIPASE
710	1906		1.9	322	1 46-84			125.52	CALCHIM/CALMODULIN-	KINASE KINASE. SIGNAL
3	Tago		77	327	10-21-1			757.75		

PDB annotation		TRANSDUCTION, CALCIUM/CALMODULIN	KINASE KINASE, SIGNAL TRANSDUCTION.	CALCIUM/CALMODULIN	TRANSFERASE TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													PROTEIN KINASE CDK2; PROTEIN	KINASE, CELL CYCLE, PHOSPHORY: A TION STATIROSPORINE 2	CELL DIVISION, MITOSIS, INHIBITION	PROTEIN KINASE CDK2; PROTEIN	PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION
Compound		DEPENDENT PROTEIN KINASE; CHAIN: NULL;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE:	CHAIN: NULL;	PROTEIN KINASE CK2/ALPHA- SUBUNIT; CHAIN: NULL;	TRANSFERASE(PHOSPHOTRANS FFRASE) &C-/AMP\$-DEPENDENT	PROTEIN KINASE (E.C.2.7.1.37)	SUBUNIT) ALPHA ISOENZYME	MUTANT WITH SER 139 IAPM 4 REPLACED BY ALA (/S139A\$)	COMPLEX WITH THE PEPTIDE	1APM 5 INHIBITIOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM	6 mmorray converse amount amount am	FERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (F.C.2.7.1.37)	(\$C/APK\$) 1APM 3 (CATALYTIC	MITANT WITH SER 139 1APM 4	REPLACED BY ALA (/S139A\$)	1 APM 5 INFIBITION PK 1/5-24) AND	THE DETERGENT MEGA-8 1APM	CYCLIN-DEPENDENT PROTEIN	KINASE 2; CHAIN: NULL;		CYCLIN-DEPENDENT PROTEIN	Number 2, Certur, Nolls,
SeqFold	score				96.62			·				,,,,,	10.4.07								-	102.35	•
PMG	score		1.00			1.00													1.00				
Verify	score		0.03			0.56													0.14				
PSI-	BLASI		1.4e-84		7.2e-43	0						,	5						3.6e-55			3.6e-55	
End	ΨΨ		311		335	317							455						286			329	
Start	AA A		23		-	13						_	-						20			70	
Chain	a					H						,	ıı										
PDB	<u>a</u>		1a06		1860	lapm							lapm						laq1			laq1	
SEQ	ΑŞ		710		710	710							2					_ • · · · · · · · · · · · · · · · · · ·	710			710	

	ૂ ન	ଜ		ပုံ များ						T
PDB annotation	COMPLEX (KINASE/INHIBITOR) CDK6; P19INK4D; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE INHIBITORY 2 PROTEIN, CDK, INK4, CELL, CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN- DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN- DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	TRANSFERASE CSK; PROTEIN KINASE, C- TERMINAL SRC KINASE, PHOSPHORYLATION, 2 STAUROSPORINE, TRANSFERASE	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	TRANSFERASE STRESS-ACTIVATED PROTEIN KINASE-3, ERK6, ERK5; P38-GAMMA, GAMMA, PHOSPHORYLATION, MAP KINASE			PHOSPHOTRANSFERASE PHOSPHOTRANSFERASE
Compound	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN- DEPENDENT KINASE INHIBITOR; CHAIN: B, D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	C-TERMINAL SRC KINASE; CHAIN: A;	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHORYLATED MAP KINASE P38-GAMMA; CHAIN: A, B;	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	CASEIN KINASE-1; 1CSN 4
SeqFold score	87.13	103.01		85.43	70.32				213.80	75.78
PMF			1.00			0.84	1.00	1.00		26.0
Verify score			0.41			-0.11	0.31	0.68		0 33
PSI- BLAST	1.1e-43	3.6e-47	3.6e-47	7.2e-31	4e-51	4e-51	7.2e-45	0	0	4e-52
End	314	335	285	288	312	292	302	317	334	318
Start	21	15	23	15	16	21	37	13	7	17
Chain	4	⋖	ď	Ą	A	V	4	m	ъ	
PDB	1bi8	Iblx	1blx	16ув	1cki	1cki	lcm8	lcmk	lcmk	lcsn
SEQ EQ	710	710	710	710	710	710	710	710	710	710

PDB annotation		·		TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY FRAGMENT, HOMODIMER	TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY FRAGMENT, HOMODIMER	PHOSPHOTRANSFERASE FGFRIK, FIBROBLAST GROWTH FACTOR RECEPTOR 1; TRANSFERASE, TYROSINE- PROTEIN KINASE, ATP-BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE FGFRIK, FIBROBLAST GROWTH FACTOR RECEPTOR 1; TRANSFERASE, TYROSINE- PROTEIN KINASE, ATP-BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE,
Compound		TRANSFERASE(PHOSPHOTRANS FERASE) CAMP-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC SUBUNIT) ICTP 4	TRANSFERASE(PHOSPHOTRANS FERASE) CAMP-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC SUBUNIT) ICTP 4	SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: A, B; SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: C, D;	SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: A, B; SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: C, D;	FGF RECEPTOR 1, CHAIN: A, B;	FGF RECEPTOR 1, CHAIN: A, B;	HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL;	HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL;
SeqFold	score	212.30				99.10	108.19		112.61
PMF	score		1.00	1.00	1.00			1.00	
Verify	score		0.58	0.22	0.22			0.34	
PSI-	BLAST	0	0	1.8e-66	1.8e-58	4e-32	1.1e-37	1.3e-57	1.3e-57
End	AA	325	317	298	284	287	287	286	329
Start	ΨΨ	_	13	21	22	14	٧.	20	20
Chain	e	田	ы	ပ	ပ	¥	Ď.		
PDB	8	1ctp	1ctp	1f3m	1f3m	1fgk	1fgk	Ibel	1hcl
SEQ	ВŞ	710	710	710	710	710	710	710	710

													_
PDB annotation	ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	SERNE/THREONINE-PROTEIN KINASE CSBP, RK, P38; PROTEIN SER/THR- KINASE, SERINE/THREONINE-PROTEIN KINASE	COMPLEX (TRANSFERASE/SUBSTRATE) TYROSINE KINASE, SIGNAL TRANSDUCTION, PHOSPHOTRANSFERASE, 2 COMPLEX (KINA SE/PEPTIDE SUBSTRATE/ATP ANALOG), ENZYME, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE; TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	KINASE RABBIT MUSCLE
Compound		P38 MAP KINASE; CHAIN: NULL;	INSULIN RECEPTOR; CHAIN: A; PEPTIDE SUBSTRATE; CHAIN: B;	C-JUN N-TERMINAL KINASE; CHAIN: NULL;	C-JUN N-TERMINAL KINASE; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	TWITCHIN; CHAIN: A, B;	MAP KINASE P38; CHAIN: NULL;	MAP KINASE P38; CHAIN: NULL;	PHOSPHORYLASE KINASE;
SeqFold score		108.46	91.02		109.60	136.94			142.96			119.99	132.07
PMF				1.00			1.00	1.00		1.00	1.00		
Verify score				0.45			0.33	0.09		0.45	0.34		
PSI- BLAST		3.6e-43	1.6e-31	3.6e-45	3.6e-45	89-99	89-99	9e-70	1.4e-71	1.4e-71	1.4e-50	1.4e-50	7.2e-86
End		377	312	299	360	414	339	282	345	294	311	348	287
Start AA		∞	6	20	4	-	21	6	5	6	20	7	20
Chain ID			< <						¥	∢			
PDB UD		lian	lir3	1jak	Jij.	1koa	1koa	Ikoa	1kob	lkob	1p38	1p38	1phk
SEQ EQ	;	710	710	710	710	710	710	710	710	710	710	710	710

							<u> </u>		
PDB annotation	PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE-PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINETHREONINE-PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	TRANSFERASE MAP KINASE, SERINEJTHREONINE PROTEIN KINASE, TRANSFERASE	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2, ERK2; TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, MAP KINASE, 2 ERK2	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2, ERK2; TRANSFERASE, SERINE/TREONINE- PROTEIN KINASE, MAP KINASE, 2 ERK2	GENE REGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION DOMAIN, TRANSCHPTIONAL 2 REPRESSOR, ZINC-FINGER PROTEIN RAY CRYSTALLOGRAPHY, 3 PROTEIN STRUCTURE, PROMYELOCYTIC LEUKEMIA, GENE REGULATION	GENE REGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION DOMAIN, TRANSCRIPTIONAL 2 REPRESSOR, ZINC-FINGER PROTEIN, X- RAY CRYSTALLOGRAPHY, 3 PROTEIN STRUCTURE, PROMYELOCYTIC
Compound	CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL;	ERK2; CHAIN: NULL;	TITIN; CHAIN: A, B;	TITIN; CHAIN: A, B;	EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;	EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;	PROMYELOCYTIC LEUKEMIA ZINC FINGER PROTEIN PLZF; CHAIN: A;	PROMYELOCYTIC LEUKEMIA ZINC FINGER PROTEIN PLZF; CHAIN: A;
SeqFold score			103.32	108.54		119.69		59.40	
PMIF		1.00			1.00		1:00		1.00
Verify	. –	0.49			0.44		0.44		0.74
PSI- BLAST		7.2e-86	7.2e-43	1.4e-56	1.4e-56	7.2e-45	7.2e-45	4e-21	1.8e-15
End AA		284	331	354	284	342	301	297	294
Start AA		21	17	17	21	_	22	171	172
Chain				A	4			A	A
PDB U		1phk	lpme	1145	1 k i	3erk	3erk	Ibuo	1buo
SEQ BOS BOS BOS BOS BOS BOS BOS BOS BOS BOS		710	710	710	710	710	710	721	721

EQ.	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
									LEUKEMIA, GENE REGULATION
ł .	¥	185	293	4e-21	0.34	0.94		PROMYELOCYTIC LEUKEMIA ZINC FINGER PROTEIN PLZF; CHAIN: A;	GENE REGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION DOMAIN, TRANSCRIPTIONAL 2
									REPRESSOR, ZINC-FINGER PROTEIN, X-RAY CRYSTALLOGRAPHY 3 PROTEIN
				•					STRUCTURE, PROMYELOCYTIC FIIKEMIA GENE REGILI ATION
1	A	19	162	3.6e-22	0.37	0.88		TNF RECEPTOR ASSOCIATED	TNF SIGNALING TRAF2; TNF SIGNALING,
	!	1						FACTOR 2; CHAIN: A, B, C, D, E, F;	TRAF, ADAPTER PROTEIN, CELL
	4	10	163	5 40-22	0 34	050		TIMOR NECROSIS FACTOR	APOPTOSIS TRAF2: LMP1: BETA
	¢	` `	:		}	<u>}</u>		RECEPTOR ASSOCIATED CHAIN:	SANDWICH, PROTEIN-PEPTIDE COMPLEX,
								A, B, C, LATENT MEMBRANE PROTEIN 1: CHAIN: D. E:	SIGNALING PROTEIN
	A	20	164	4e-26	09.0	0.53		TUMOR NECROSIS FACTOR	APOPTOSIS TRAF2; LMP1; BETA
	:	1	:	1			<u>-</u>	RECEPTOR ASSOCIATED CHAIN:	SANDWICH, PROTEIN-PEPTIDE COMPLEX,
								A, B, C, LATENT MEMBRANE	SIGNALING PROTEIN
								PROTEIN 1; CHAIN: D, E;	
	∢	19	162	3.6e-21	0.51	0.88		TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED CHAIN:	APOPTOSIS TRAFF; CD40; B-SANDWICH, PROTEIN-PEPTIDE COMPLEX
								A, B, C; CD 40 PEPTIDE; CHAIN: D, E:	
	A	20	164	4e-28	0.40	98.0		TUMOR NECROSIS FACTOR	APOPTOSIS TRAF2; CD40; B-SANDWICH,
								RECEPTOR ASSOCIATED CHAIN:	PROTEIN-PEPTIDE COMPLEX
								A, B, C; CD 40 FEF I IDE; CITAIN: D, E;	
	4	-	162	1.3e-20	0.23	0.28		TNF RECEPTOR ASSOCIATED FACTOR 3: CHAIN: A B:	APOPTOSIS TNF SIGNALING, TRAF3, CD40-BINDING PROTEIN
	 	19	162	3.6e-22	0.33	0.84		TNF RECEPTOR ASSOCIATED	SIGNALING PROTEIN TRAF2; TNF
								FACTOR 2; CHAIN: A, B, C; CD40	SIGNALING, TRAF, CD40 RECEPTOR,
								RECEPTOR; CHAIN: D, E, F;	ADAPTER PROTEIN, CELL 2 SURVIVAL,
									COILED COIL, SIGNALING PROTEIN
									The state of the s
	æ	36	87	1.3e-25	-0.51	1.0		HISTONE H2A; CHAIN: A, E; HISTONE H2B; CHAIN: B, F;	STRUCTURAL PROTEIN/DNA NUCLEOSOME, NUCLEOSOME CORE
								HISTONE H3; CHAIN: C, G; HISTONE H4: CHAIN: D H: 146	PARTICLE, HISTONE, MICROGRAVITY 2 HISTONE OCTAMER DNA PALINDROME
1									

Compound PDB annotation	LONG DNA; DNA PROTEIN COMPLEX, 3 CHROMATIN, CHROMOSOMAL PROTEIN, HISTONE FOLD, BENT DNA	;; ;; C, G; H; PAIR :1, J;	HISTONE H2A; CHAIN: A; CHROMOSOMAL PROTEIN HISTONE, HISTONE H2B; CHAIN: B; CHROMOSOMAL PROTEIN, NUCLEOSOME H3: CHAIN: D; CORE	RIC OXIDE OXIDOREDUCTASE PDZ DOMAIN, NNOS, AIN: A. NITRIC OXIDE SYNTHASE AIN: B.	PSD-95; CHAIN: A; CRIPT; CHAIN: PEPTIDE RECOGNITION PEPTIDE B: RECOGNITION, PROTEIN LOCALIZATION	ROTEIN; CHAIN: KINASE HCASK, GLGF REPEAT, DHR; PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERING, KINASE	HUMAN DISCS LARGE PROTEIN; SIGNAL TRANSDUCTION HDLG, DHR3 CHAIN: NULL; DOMAIN; REPEAT	HUMAN DISCS LARGE PROTEIN; SIGNAL TRANSDUCTION HDLG, DHR3 CHAIN: NULL; DOMAIN; REPEAT DOMAIN, REPEAT		ROPHIN MEMBRANE PROTEIN/OXIDOREDUCTASE 71); CHAIN: A; BETA-FINGER, HETERODIMER RIC OXIDE SIDUES 1-130);	DENSITY PEPTIDE RECOGNITION PSD-95; PDZ
<u></u>	NUCLEOTIDES LONG DNA; CHAIN: I, J;	HISTONE H3; CHAIN: A, E, HISTONE H4; CHAIN: B, F; HISTONE H2A.Z; CHAIN: C, G; HISTONE H2B; CHAIN: D, H; PALINDROMIC 146 BASE PAIR DNA FRAGMENT; CHAIN: I, J;	HISTONE H2A; CHAIN: A; HISTONE H2B; CHAIN: B; HISTONE H3; CHAIN: C; H H4; CHAIN: D;	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTA PEPTINE: CHAIN: B:	PSD-95; CHAIN: AB;	HCASK/LIN-2 PROTEIN; CHAIN: A, B;	HUMAN DISCS I CHAIN: NULL;	HUMAN DISCS I CHAIN: NULL;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: A;	ALPHA-1 SYNTROPHIN (RESIDUES 77-171); CHAIN: A; NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: B:	POSTSYNAPTIC DENSITY
SeqFold score						Į.					
PMF		0.99	0.96	0.93	0.99	0.98	1.00	1.00	0.92	1.00	0.82
Verify score		-0.24	-0.32	0.35	99.0	0.74	0.34	9.76	0.39	0.55	0.51
PSI- BLAST		3.6e-25	9e-23	1.2e-15	1.8e-12	6e-16	9e-12	le-13	5.4e-07	3.6e-12	1.1e-09
End	{	87	87	66	66	88	16	98	62	83	8
Start		36	37	=	2	5	4	S	2	en en	-
Chain ID		Q	а	4	4	4			<	4	4
PDB UD		9911	1hio	1689	lbe9	Ikwa	1pdr	1pdr	Igau	lqav	1qlc
SEQ	Ö	723	723	724	724	724	724	724	724	724	724

PDB Chain Start End PSI ID AA AA BLAS Iqlc A 3 85 4e-16	Start End AA AA 3 85	Start End AA AA 85	 	PI BIL	PSI- BLAST te-16	Verify score 0.55	PMF score 0.99	Score	Compound POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	FDB annotation SYNTHASE, NMDA RECEPTOR 2 BINDING PEPTIDE RECOGNITION PSD-95; PDZ DOMANN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING
3pdz A 8 85 5.4e-09 1b8q A 11 99 1.2e-15	8 85	85		5.4e-09		0.83	0.93		TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A; NEURONAL NITRIC OXIDE	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OF BINDING OXDOREDUCTASE PDZ DOMAIN, NNOS,
1b8q A 7 114 3.6e-06	7 114	114		3.6e-06	1	0.00	0.71		SYNTHASE, CHAIN: A; HEPTAPEPTIDE, CHAIN: B; NEURONAL NITRIC OXIDE SYNTHASE, CHAIN: A; HEPTAPEPTIDE, CHAIN: B;	NITRIC OXIDE SYNTHASE OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE
1be9 A 4 84 5.4e-11 0 1i16 4 76 3.6e-06 0	4 84 5.4e-11 4 76 3.6e-06	84 5.4e-11 76 3.6e-06	5.4e-11 3.6e-06		9 9	0.74	1.00		PSD-95; CHAIN: A; CRIPT; CHAIN: B; INTERLEUKIN 16; CHAIN: NULL;	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION CYTOKINE LCF; CYTOKINE,
1 A 5 85 6e-16	5 85 66-16	85 6e-16	6e-16	,	j j	0.74	86.0		HCASK/LIN-2 PROTEIN; CHAIN:	LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN KINASE HCASK, GLGF REPEAT, DHR; PDZ DOMAIN NEITBEYN SYNDECAN
1pdr 5 84 3.6e-10 0.51	84 3.6e-10	84 3.6e-10	3.6e-10		0.51		1.00		HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	RECEPTOR, RECORDERS, RECEPTOR, RECEPTOR CLUSTERING, MASSES SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT
1pdr 5 86 1e-13 0.76	86 le-13	86 le-13	le-13		92.0		1.00		HUMAN DISCS LARGE PROTEIN, CHAIN: NULL;	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN, SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT
19au A 7 102 3.6e-05 0.24	7 102 3.6e-05	102 3.6e-05	3.6e-05		0.24		0.15		NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: A;	OXIDOREDUCTASE BETA-FINGER
1qav A 4 82 9e-10 0.80	4 82 96-10	82 9e-10	9e-10		8.0	0	1.00		ALPHA-1 SYNTROPHIN (RESIDUES 77-171), CHAIN: A; NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: B;	MEMBRANE PROTEIN/OXIDOREDUCTASE BETA-FINGER, HETERODIMER
1qic A 3 85 4e-16 0.55	3 85 4e-16	85 4e-16	4e-16		0.5	2	0.99		POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING

		_				_												
PDB annotation	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING		OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	KINASE HCASK, GLGF REPEAT, DHR, PDZ DOMAIN, NEUREXIN, SYNDECAN,	RECEPTOR CLUSTERING, KINASE	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	SIGNAL TRANSDUCTION HDLG, DHR3	DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	OXIDOREDUCTASE BETA-FINGER	MEMBRANE PROTEIN/OXIDOREDUCTASE	BEIA-FINGER, HEIERODIMER		PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	PEPTIDE RECOGNITION PSD-95; PDZ	DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OF BINDING	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE
Compound	TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;		NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	HCASK/LIN-2 PROTEIN; CHAIN: A, B;		HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	HUMAN DISCS LARGE PROTEIN;	CHAIN: NULL;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: A;	ALPHA-1 SYNTROPHIN	(RESIDUES 77-171); CHAIN: A; NEURONAL NITRIC OXIDE	SYNTHASE (RESIDUES 1-130); CHAIN: B;	POSTSÝNAPTIC DENSITY PROTEIN 95; CHAIN: A;	POSTSYNAPTIC DENSITY	PROTEIN 95; CHAIN: A;	TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;
SeqFold score																		
PMF score	0.83		0.93	0.99	0.98		1.00	1.00		0.92	1.00			0.82	0.99		0.93	0.93
Verify score	0.62		0.35	9.68	0.74		0.34	92.0		0.39	0.55			0.51	0.55		0.83	0.35
PSI- BLAST	7.2e-08		1.2e-15	1.8e-12	6e-16		9e-12	le-13		5.4e-07	3.6e-12		-	1.1e-09	4e-16		5.4e-09	1.2e-15
End	98		66	8	88		16	98		62	82			08	85		85	66
Start AA	=		1.1	5	s		4	5		2	3			_	3		∞	=
Chain U	∢		∢	4	4					∢ .	٧			∢	4		4 :	V
FDB ED	3pdz		1689	1be9	lkwa		Ipdr	1pdr		Iqau	Iqav			1qlc	1qlc		3pdz	1b8q
SEQ B Sign	724		725	725	725		725	725		725	725			725	725		725	725

				•								
PDB annotation	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKINE LCF; CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN	KINASE HCASK, GLGF REPEAT, DHR; PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERING, KINASE	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	OXIDOREDUCTASE BETA-FINGER	MEMBRANE PROTEIN/OXIDOREDUCTASE BETA-FINGER, HETERODIMER	PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OF BINDING	COMPLEX (HORMONE/RECEPTOR) HGH; HGHBP; COMPLEX (HORMONE/RECEPTOR)	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN,
Compound	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN 16; CHAIN: NULL;	HCASK/LIN-2 PROTEIN; CHAIN: A, B;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: A;	ALPHA-1 SYNTROPHIN (RESIDUES 77-171); CHAIN: A; NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: B;	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	TYROSINE PHOSPHATASE (PTP- BAS, TYPE I); CHAIN: A;	GROWTH HORMONE; CHAIN: A; GROWTH HORMONE RECEPTOR; CHAIN: B;	GP130; CHAIN: NULL;
SeqFold score											59.70	
PMF	0.71	1.00	0.92	86'0	1.00	1.00	0.15	1.00	66'0	0.83		0.40
Verify score	0.00	0.74	0.64	0.74	0.51	0.76	0.24	0.80	0.55	0.62		0.22
PSI- BLAST	3.6e-06	5.4e-11	3.6e-06	6e-16	3.6e-10	ie-13	3.6e-05	9e-10	4e-16	7.2e-08	4e-05	8e-14
End	114	84	92	\$	84	98	102	82	85	98	226	222
Start AA	7	4	4	'n	'n	'n	7	4	m	12	4	125
Chain ID	∢	A		⋖			∢	∢	<	4	Д	
PDB ID	1589	1be9	1116	lkwa	1pdr	1pdr	lqau	Iqav	1qlc	3pdz	laxi	1bj8
SEQ NO.	725	725	725	725	725	725	725	725	725	725	726	726

PDB U	Chain ID	Start	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
	В	25	225	8e-10			57.30	GROWTH HORMONE; CHAIN: A, PROLACTIN RECEPTOR; CHAIN: B;	HANDMEMBRANE, GLYCOFROLEIN HORMONE/GROWTH FACTOR HORMONE, RECEPTOR, HORMONE/GROWTH FACTOR
_		128	722	8e-13	0.47	0.41		TÍTIN; CHAIN: NULL;	CONNECTIN A71, CONNECTIN; TITIN, CONNECTIN, FIBRONECTIN TYPE III
		127	222	1.6e-10	90.0	0.42		NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814))	
		128	222	4e-12	0.10	0.42		FIBRONECTIN; IFNF 6 CHAIN: NULL; IFNF 7	CELL ADHESION PROTEIN RGD, EXTRACELLULAR MATRIX 1FNF 18
		128	223	1.6e-11	-0.01	0.11		FIBRONECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN CELL. ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN- BINDING, GLYCOPROTEIN
		131	241	1.4e-10	0.18	0.05		FIBRONECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN- BINDING, GLYCOPROTEIN
	Ą	131	222	2e-12	0.19	0.34		FIBRONECTIN; CHAIN: A;	PROTEIN BINDING ED-B, FIBRONECTIN, TYPEIII DOMAIN, ANGIOGENESIS, PROTEIN 2 BINDING
		128	234	1.2e-10	0.05	-0.11		HUMAN TISSUE FACTOR; 2HFT 4 CHAIN: NULL; 2HFT 5	COAGULATION FACTOR
	D	20	161	1.6e-48			63.49	P50-RHOGAP, CHAIN: A, B, C; CDC42HS, CHAIN: D, E, F;	COMPLEX (GTPASE-ACTIVATING/GTP-BINDING) COMPLEX (GTPASE-ACTIVATING/GTP-BINDING), GTPASE ACTIVATION
	A	70	232	5.4e-37			00.69	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN
	В	14	237	5.4e-37			67.40	GTP-BINDING PROTEIN RAN;	TRANSPORT PROTEIN TC4; GTPASE,

			_							
PDB annotation	NUCLEAR TRANSPORT, TRANSPORT PROTEIN	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN PROTEIN-PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR	GTP-BINDING PROTEIN GTP-BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, RAS SUPER 2 FAMILY		COMPLEX (SMALL GTPASENUCLEAR PROTEIN) COMPLEX (SMALL GTPASENUCLEAR PROTEIN), SMALL GTPASE, 2 NUCLEAR TRANSPORT	COMPLEX(GTPASE ACTIVATN/PROTO- ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
Compound	CHAIN: A, B;	RAS-RELATED PROTEIN RAP-14; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A;	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B, D;	RAP2A; CHAIN: NULL;	RAC1; CHAIN: NULL;	ONCOGENE PROTEIN C-H-RAS P21 PROTEIN MUTANT WITH GLY 12 REPLACED BY PRO 1PLJ 3 (G12P) COMPLEXED WITH P3-1- (2-NITROPHENYL.) FITHYL- 1PLJ 4 GUANOSINE-5-(B,G-IMDO)- TRIPHOSPHATE 1PLJ 5	RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D;	PSO-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;
SeqFold		101.19	109.09	67.75	67.32	115.88	75.70	58.99	70.51	62.17
PMF										
Verify score										
PSI- BLAST		5.4e-66	6-67	7.2e-54	1.8e-36	1.le-62	3.6e-56	1.4e-49	1.8e-36	1.6e-50
End AA		193	194	194	861	194	961	193	215	191
Start AA		50	20	17	21	20	19	23	21	20
Chain ID		4	4	4	4				ပ	g
EDB ED		lcly	lotq	lcxz	libr	lkao	1mh1	ipli	Imp	1tx4
SEQ EQ		727	727	727	727	727	727	727	727	727

					 		_						_
PDB annotation		COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP-BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	HYDROLASE CDC42/CDC42GAP; CDC42/CDC42GAP; TRANSITION STATE, G-PROTEIN, GAP, CDC42, ALF3, HYDROLASE	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE				IMMUNE SYSTEM BENCE-JONES; IMMUNOGLOBULIN, AMYLOID, IMMUNE SYSTEM	IMMUNOGLOBULIN IMMUNOGLOBULIN, KAPPA LIGHT-CHAIN DIMER HEADER	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	COMPLEX (HUMANIZED ANTIBODY/HYDROLASE) MURAMIDASE; HUMANIZED ANTIBODY, ANTIBODY COMPLEX, FV, ANTILYSOZYME, 2 COMPLEX (HUMANIZED ANTIBODY/HYDROLASE)	IMMUNE SYSTEM REIV, STABILIZED IMMUNOGLOBULIN FRAGMENT, BENCE-JONES 2 PROTEIN, IMMUNE SYSTEM	IMMUNE SYSTEM REIV, STABILIZED
Compound		RAB-34; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	GTP BINDING PROTEIN (G25K); CHAIN: A; GTPASE ACTIVATING PROTEIN (RHG); CHAIN: B;	RAB3A; CHAIN: A;	CYTOTOXIN TOXIN GAMMA (CARDIOTOXIN) ITGX 3	CARDIOTOXIN CARDIOTOXIN III (NMR, 13 STRUCTURES) 2CRS 3		BENCE-JONES KAPPA I PROTEIN BRE; CHAIN: A, B, C;	IMMUNOGLOBULIN; CHAIN: A, B;	FAB FRAGMENT; CHAIN: L, H, I, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	HULYS11; CHAIN: A, B, D, E; LYSOZYME; CHAIN: C, F;	IG KAPPA CHAIN V-I REGION REI; CHAIN: A, B;	IG KAPPA CHAIN V-I REGION
SeqFold	2000	78.74	65.77	90.71				52.89			51.11	52.07	
PMF	2000				10.0	00.0			96.0	0.94			1.00
Verify	31036				-0.49	-0.25			-0.03	0.13			0.17.
PSI- BIACT	Towns of	5.4e-63	1.6e-50	7.2e-63	0.0031	0.0023		3.6e-47	1.1e-49	3.6e-50	5.4e-47	1.8e-49	1.8e-49
End	AA	199	208	194	86	86		130	126	126	130	129	127
Start	{	13	20	14		55		20	20	20	20	18	20
Chain	3	4	4	4	4			∢	<	ı	₹.	V	Ą
PDB		12bd	2ngr	3rab	Ifgy	2crs		1b0w	156d	1bj1	1bvk	1bww	Ibww
SEQ	βŞ	727	727	727	731	731		732	732	732	732	732	732

ilon		GMENT, BENCE- VE SYSTEM	P COMPLEX 7A RESOLUTION ANTIGEN ANTIGEN FAB								LOBULIN)
PDB annotation		IMMUNOGLOBULIN FRAGMENT, BENCE- IONES 2 PROTEIN, IMMUNE SYSTEM	IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY						•		COMPLEX (HYDROLASE/IMMUNOGLOBULIN)
Compound		REI; CHAIN: A, B;	IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H;	IMMUNOGLOBULIN FV FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 1FGV 3 ANTIBODY 'H52' (HUH52- AA FV) 1FGV 4	IMMUNOGLOBULIN FV FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 IFGV 3 ANTIBODY 'H52' (HUH52- AA FV) 1FGV 4	IMMUNOGLOBULIN FV FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 8 1FVC	IMMUNOGLOBULIN FV FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 8 1FVC 3	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 1FVD 3	IMMUNOGLOBULIN IMMUNOGLOBULIN M (IG-M) FV FRAGMENT 1IGM 3	IMMUNOGLOBULIN IMMUNOGLOBULIN M (IG-M) FV FRAGMENT 11GM 3	N9 NEURAMINIDASE; INMB 4 CHAIN: N; INMB 5 FAB NC10; INMB 9 CHAIN: L, H; INMB 10
SeqFold	3636				54.34		50.75			50.56	52.25
PMF	21036		1.00	0.98		86.0		0.95	68.0		
Verify	30015		0.19	0.27		0.31		90.0	-0.16		
PSI-	DEG 1		3.6e-52	7.2e-51	7.2e-51	1.3e-48	1.3e-48	5.4e-49	3.6e-48	3.6e-48	1.8e-42
End	AA		126	126	129	126	130	126	126	130	130
Start	4		20	50	20	70	70	20	20	20	20
Chain	3		4	u	H	4	V	4	1	ı,	L
PDB	3		1dee	lfgv	1fgv	1fvc	1fvc	1fvd	ligm	Ligan	lnmb
SEQ	Ξġ		732	732	732	732	732	732	732	732	732

מטבעידטידע ד טדור ד מסד מ	KECEPIOK ICK; I-CELL, KECEPIOK,	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL	EMBRANE, GLYCOPROTEIN,	EMBRANE, GLYCOPROTEIN,	EMBRANE, GLYCOPROTEIN,	EMBRANE, GLYCOPROTEIN,	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELLX BUNDLE MEMBRANE PROTEIN FOUR HELIX BUNDLE, ALPHA HELIX	EMBRANE, GLYCOPROTEIN, TOSIS/EXOCYTOSIS D'IAGMIN ASSOCIATED 35 KDA P35A, THREE HELLK BUNDLE INE PROTEIN FOUR HELLK ALPHA HELLK	EMBRANE, GLYCOPROTEIN, TOSIS/EXOCYTOSIS D'AGMIN ASSOCIATED 35 KDA, P35A, THREE HELLX BUNDLE, INE PROTEIN FOUR HELLX ALPHA HELLX	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGIS/EXOCYTOSIS SYNAPTOTAGIS/EXOCYTOSIS RYNAPTOTAGIS/EXOCYTOSIS BY THREE HELLY BUNDLE MEMBRANE PROTEIN FOUR HELK BUNDLE, ALPHA HELK MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE MEMBRANE PROTEIN FOUR HELIX BUNDLE, ALPHA HELIX CALCIUM BINDING CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN
		, E	N WAI, A N FROM N LIGHT- INCE-JONES	N WAI, A N FROM N LIGHT- NCE-JONES N WAT, A N FROM N LIGHT- SINCE-JONES	N WAI, A N FROM N LIGHT- NCE-JONES N WAT, A N FROM N LIGHT- NCE-JONES N FAB HUMANIZED ANTI-CD18 Y 'H52' (HUH52-							3 3 11)
	ALPHA, BEIA T-CELL KECEPTOK CHAIN: A, B;	IN THE STATE OF TH	IMMUNOSICOBOLIN WA1, A VARIABLE DOMAIN FROM MAMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES) PROTEIN) IWTL 4	NAMUNCALOBULIN WA1, A VARIABLE DOMAIN FROM IMMUNCGLOBULIN LIGHT- CHAIN 1WTL 4 IMMUNCGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNCGLOBULIN LIGHT- CHAIN 1WTL 3 (BENCE-JONES PROTEIN) 1WTL 4	MARIONOGLOBULIN WA1, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN FAB	MUNCULOBOLLIN WINDOGLOBULIN WINDOGLOBULIN LAIN WITL 3 (BENC OTEIN) WITL 4 MUNOGLOBULIN WINDOGLOBULIN LAIN WITL 3 (BENC OTEIN) WITL 3 (BENC OTEIN) WITL 4 MUNOGLOBULIN ENSION OF THE ANTISODY WITL ANTIBODY WITL ANTI	IMMUNOGLOBOLIN WA1, A VARIABLE DOMAIN FROM MANUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN FAB IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 ZFGW 3 ANTIBODY 'H52' (HUH' OZ FAB) ZFGW 4 SYNTAXIN-1A; CHAIN: A, B, C;	MANDOLOBOLLIN WAI, VARIABLE DOMAIN FROM CHAMUNOGLOBULIN LIGH CHAIN 1WTL 3 (BENCE-JO PROTEIN) 1WTL 4 IMMUNOGLOBULIN WAT, VARIABLE DOMAIN FROM IMMUNOGLOBULIN BAB IMMUNOGLOBULIN FAB IMMUN	MARIONOGLOBOLLIN WA1, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 4 IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 ZFGW 3 ANTIBODY 'H52' (HUH52- OZ FAB) ZFGW 4 SYNTAXIN-1A; CHAIN: A, B, C; LIGASE(SYNTHETASE) SERYL- TRNA SYNTHETASE (E.C.6.1.11) (SERINE-TRNA LIGASE) 1SES 3 COMPLEXED WITH SERYL- HYDROXAMATE-AMP 1SES 4	MUNOSLOBOLLIN WINDOGLOBOLLIN WINDOGLOBULIN LA MUNOGLOBULIN LA	MANUNCALOBOLLIN WAI, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONE PROTEIN) IWTL 4 IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN FAB FROMENT OF A HUMANIZI VERSION OF THE ANTI-CD18 SEGNENT ANTIBODY 'H52' (HU OZ FAB) 2FGW 4 SSOI PROTEIN; CHAIN: A, B, LIGASE(SYNTHETASE) SERY TRNA SYNTHETASE (E.C.6.1. (SERINE-TRNA LIGASE) 1SES COMPLEXED WITH SERY I- HYDROXAMATE-AMP 1SES / HYDROXAMATE-AMP 1SES COMPLEXED WITH SERY I- HYDROXAMATE-AMP 1SES COMPLEXED WITH SERY I- HYDROXAMATE-AMP 1SES COMPLEXED WITH SERY I- HYDROXAMATE-AMP 1SES COMPLEXED WITH SERY I-	NAMIONOGLOBULIN WAI, A VARIABLE DOMAIN FROM MAMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES) PROTEIN) IWTL 4 IMMUNOGLOBULIN WAI, A VARIABLE DOMAIN FROM IMMUNOGLOBULIN BENCE-JONES PROTEIN) IWTL 4 IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZEI VERSION OF THE ANTI-CDI 8 ZFGW 3 ANTIBODY 'H52' (HUH OZ FAB) ZFGW 4 SSOI PROTEIN; CHAIN: A, B, C SSOI PROTEIN; CHAIN: A, B, C SSOI PROTEIN; CHAIN: A, B, C STNTAXIN-1A; CHAIN: A, B, C STNTAXIN-1A; CHAIN: A, B, C STNTAXIN-1A; CHAIN: A, B, C STNTAXIN-THETASE (E.C.6.1.1. (SERING-TRNA LIGASE) ISES: COMPLEXED WITH SERYL- HYDROXAMATE-AMP 1SES 4 TROPONIN C; CHAIN: NULL; CALMODULIN; CHAIN: NULL;
		IMMI	VARLA IMMU CHAIN PROTI									
	64.90			51.95								
		0.94			0:99	666	0.99	0.09	0.09	0.09	0.09	0.09
		0.20			-0.17	-0.17	-0.17	-0.17	-0.17 0.24 -0.11 0.43	-0.17 0.24 -0.11 0.43	-0.17 0.24 -0.11 0.43	-0.17 -0.11 -0.15
1.4e-4]		7.2e-48	2 20 40	04-97'/	7.2e-51	7.20-51	7.2e-51	7.2c-51 6e-09 2e-05				
128		126	130	671	126	126	126	126 126 145 145	126 126 127 145 182 182 182	126 126 127 145 182 182	126 126 182 87 145	126 126 182 187 145 92
21		20	20	₹	20	70 20	20 20 24	22 24 25	20 20 22 24 23 23 23	23 24 29 20 23	20 20 23 23 23 29 19	20 27 29 19 110 110 110 110 110 110 110 110 110
∢_		4	¥			_ -	- L	J 4 4	Y Y Y	T V	J 4 4 4	7
	lter 	1wd	1wt		2fgw							
		 	 						732 735 735 735 735			

SEQ B B S	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify	PMF	SeqFold	Compound	PDB annotation
										CALMODULIN CERUM TRIC-DOMAIN, RESIDUES I - 75; CERUM-LOADED, CALCIUM-BINDING PROTEIN
738	lavs	4	16	96	3.6e-26			50.15	TROPONIN C; CHAIN: A, B;	MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-ACTIVATED, TROPONIN, E-F HAND 2 CALCIUM- BINDING PROTEIN
738	lcdm	A	21	144	1.8e-45	0.19	96'0		CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	
738	ledm	∢	21	145	1.8e-45			61.02	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	·
738	Icli		21	144)e-50	. 70.0	96'0		CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) 1CLL 3	
738	leli		21	145	9e-50			59.05	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) 1CLL 3	
738	Idtl	4	61	145	3.6e-36	-0.01	0.89		CARDIAC TROPONIN C; CHAIN: A;	STRUCTURAL PROTEIN HELIX-TURN- HELIX
738	lexr	4	61	144	1.8e-47	0.17	96:0		CALMODULIN; CHAIN: A;	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER
738	Itef		91	144	1.4e-39	_		57.73	TROPONIN C; CHAIN: NULL;	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN CONFORMATION REGULATORY DOMAIN, CALCIUM- REGULATED 3 MUSCLE CONTRACTION
738	Itef		21	145	1.4e-39	0.16	0.96		TROPONIN C; CHAIN: NULL;	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F

								_		·			
PDB annotation	HAND, 2 OPEN CONFORMATION REGULATORY DOMAIN, CALCIUM-REGULATED 3 MUSCLE CONTRACTION	CALCIUM-BINDING PROTEIN EF-HAND ITNX 14	CALCIUM-BINDING PROTEIN EF-HAND ITNX 14			CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)		MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCIUM-BINDING PROTEIN CALMODULIN CERIUM TRIC-DOMAIN, RESIDUES 1 - 75; CERIUM-LOADED, CALCIUM-BINDING PROTEIN	MUSCLE PROTEIN MDE; MUSCLE PROTEIN	
Compound		TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 110P 3	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULIN; CHAIN: A; RS20; CHAIN: B;		TROPONIN C; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	CALMODULIN; CHAIN: NULL;	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4
SeqFold score		55.28			53.77		58.84		58.71		52.74		
PMF			0.83	1.00		66:0				1.00		1.00	1.00
Verify score			-0.26	0.40		0.15				-0.00		0.07	0.25
PSI- BLAST		3.6e-36	3.6e-36	7.2e-40	7.2e-40	3.6e-49	3.6e-49		7.2e-37	7.2e-37	3.6e-30	3.6e-33	7.26-47
End		144	145	145	144	144	144		154	154	25	144	144
Start AA		16	21	21	3	18	18		11	61	17	21	21
Chain ID						4	∢					æ	∢
10B E10B		Itnx	Itnx	ltop	Itop	lvrk	lvrk		laj4	laj4	1ak8	1br1	1cdm
SEQ EQ		738	738	738	738	738	738		739	739	739	739	739

		1										
PDB annotation				STRUCTURAL PROTEIN HELIX-TURN- HELLX	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN CONFORMATION REGULATORY DOMAIN, CALCIUM- REGULATED 3 MUSCLE CONTRACTION	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN CONFORMATION REGULATORY DOMAIN, CALCIUM- REGULATED 3 MUSCLE CONTRACTION	CALCIUM-BINDING PROTEIN EF-HAND ITNX 14	CALCIUM-BINDING PROTEIN EF-HAND ITNX 14			CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2
Compound	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CARDIAC TROPONIN C; CHAIN: A;	CALMODULIN; CHAIN: A;	TROPONIN C; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	TROPONIN C; 1TNX 4 CHAIN: NULL; 1TNX 5	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 170P 3	CALMODULIN; CHAIN: A; RS20; CHAIN: B;
SeqFold score	58.78		67.13			65.99		58.78			62.28	
PMF		1.00		89.0	1.00		1.00		0.88	1.00		1.00
Verify score		0.04		-0.08	-0.08		0.15		-0.15	0.29		-0.05
PSI- BLAST	7.2e-47	5.4e-52	5.4e-52	1.3e-32	1.6e-49	1.8e-40	1.8e-40	1.8e-36	1.8e-36	1.8e-40	1.8e-40	1.6e-51
End AA	147	144	154	154	<u>4</u>	154	154	153	144	144	153	144
Start AA	21	21	21	19	19	16	21	16	21	21	3	81
Chain ID	¥			٧	∢							∢
PDB ED	lcdm	Icli	101	1dt	lexr	ltcf	ltef	Itnx	Tto:	Itop	ltop	1vrk
SEQ B SO SO SO SO SO SO SO SO SO SO SO SO SO S	739	739	739	739	739	739	739	739	739	739	739	739

			_		_,						 	_	
- PDB annotation	COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)		DEHALOGENASE DEHALOGENASE, HYDROLASE		PROTEIN TRANSPORT GDP-BINDING, MEMBRANE TRAFFICKIN, NON- MYRISTOYLATED IHUR 16		COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	PROTEIN TRANSPORT GDP-BINDING, MEMBRANE TRAFFICKIN, NON- MYRISTOYLATED IHUR 16		PROTEIN TRANSPORT GDP-BINDING, MEMBRANE TRAFFICKIN, NON-
Compound		CALMODULIN; CHAIN: A; RS20; CHAIN: B;		L-2-HALOACID DEHALOGENASE; CHAIN: NULL;		HUMAN ADP-RIBOSYLATION FACTOR 1; IHUR 5 CHAIN: A, B; IHUR 7		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	HUMAN ADP-RIBOSYLATION FACTOR 1; 1HUR 5 CHAIN: A, B; 1HUR 7		HUMAN ADP-RIBOSYLATION FACTOR 1; 1HUR 5 CHAIN: A, B;
SeqFold score		66.67				145.12		108.82	122.25	102.06	94.14		118.23
PMF score				0.21									
Verify score				-0.08									
PSI- BLAST		1.6e-51		1.4e-20		1.8e-62		1.6e-48	3.6e-37	1.4e-32	7.2e-49		1.3e-48
End		153		224		177		760	572	760	133		198
Start AA		18		2		2		879	408	652	2		2
Chain ID		<				A		ပ	A	U	4		V
80g E1		lvrk		lzm		Ihur	<u> </u>	lmey	9,110	Iubd	Ihur		1hur
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		739		741		744		745	745	745	753		7S7

					_,			 			 	 		
PDB annotation	MYRISTOYLATED IHUR 16		GLICOFROIEIN GLICOFROIEIN	OXIDOREDUCTASE FERROCYTOCHROME C.OXYGEN OXIDOREDUCTASE; OXIDOREDUCTASE, CYTOCHROME(C)- OXYGEN, CYTOCHROME C 2 OXIDASE		GENE REGULATION/DNA HEPATOCYTE NUCLEAR FACTOR 3 FORKHEAD HOMOLOG 2, NMR, STRUCTURE, DYANAMICS, GENESIS, WINGED HELIX PROTEIN, 2 GENE REGULATION/DNA	HNF-3 HOMOLOGUES HFH-2; HNF-3 HOMOLOGUES, WINGED HELIX PROTEIN	PROLINE PEPTIDASE AMPP, PROLINE PEPTIDASE, HYDROLASE, AMINOPEPTIDASE	HYDROLASE PRODUCT COMPLEX, HYDROLASE		COMPLEX (ISOMERASEPEPTIDE) COMPLEX (ISOMERASEPEPTIDE), CYCLOPHILIN A, HIV-1 CAPSID, 2 PSEUDO-SYMMETRY	SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEINASE TRYPSIN-LIKE SERINE PROTEINASE, TETRAMER, HEPARIN, ALLERGY, 2 ASTHMA	COMPLEX (SERINE PROTEASE/INHIBITOR)
Compound	1HUR 7	TAMBET CHARLANET.	LAIMININ; CHAIN: NULL;	CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,		HNF3/FH TRANSCRIPTION FACTOR GENESIS; CHAIN: A; 5'- CHAIN: B; 5'- CHAIN: C;	GENESIS; CHAIN: NULL;	AMINOPEPTIDASE P; CHAIN: NULL;	METHIONINE AMINOPEPTIDASE; CHAIN: A;	CREATINASE CREATINE AMIDINOHYDROLASE (E.C.3.5.3.3) 1CHM 3	CYCLOPHILIN A; CHAIN: A; PEPTIDE FROM THE HIV-1 CAPSID PROTEIN; CHAIN: B;	TRYPSIN; CHAIN: A, B, C, D;	BETA-TRYPTASE; CHAIN: A, B, C, D;	PLASMINOGEN ACTIVATOR; CHAIN: A; GLU-GLY-ARG
SeqFold score		111 46	111.45	65.51		126.34	119.17	276.06	76.10	86.16	140.07	165.49	176.56	170.05
PMF score		-									,			
Verify score														
PSI- BLAST		0 / 0	3.6e-25	7.2e-20		1.6e-22	1.6e-22	0	1.6e-65	1.1e-57	7.2e-56	1.8e-94	96-9 0	3.6e-82
End AA		.,,,,	10/	63		113	108	428	427	421	105	422	423	423
Start AA			919	17			16	_	165	3	-	192	192	111
Chain ID				r		∢			4	4	٧	A	⋖	A
PDB UD			IKG	2000		2hdc	2hfh	laz9	1c24	lchm	lawq	1a0j	1a01	laSi
S E S			762	792		<i></i>	111	782	782	782	783	786	786	786

											_
PDB annotation		(DELTAFEK)DSPAALPHA1; EGRCMK; SERINE PROTEASE, FIBRINOLYTIC ENZYMES, PLASMINOGEN 2 ACTIVATORS	COMPLEX (SERINE PROTEINASE/INHIBITOR)	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	SERINE PROTEASE SERINE PROTEASE, HYDROLASE, COMPLEMENT, FACTOR D, CATALYTIC 2 TRIAD, SELF-REGULATION	SERINE PROTEASE PPE; SERINE PROTEASE, HYDROLASE		BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	HYDROLASE/HYDROLASE INHIBITOR ENTEROKINASE, HEAVY CHAIN; ENTEROKINASE, LIGHT CHAIN; ENTEROPEPTIDASE, TRYPSINOGEN ACTIVATION, 2 HYDROLASE/HYDROLASE INHIBITOR	COMPLEX (PROTEASE/INHIBITOR) TRYPSIN, COAGULATION FACTOR XA, CHIMERA, PROTEASE, PPACK, 2 CHLOROMETHYLKETONE, COMPLEX (PROTEASE/INHIBITOR)	
Compound		CHLOROMETHYL KETONE; CHAIN: I;	ALPHA-THROMBIN; 1AHT 4 CHAIN: L, H; 1AHT 5 HIRUGEN; 1AHT 8 CHAIN: I; 1AHT 9	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO-MAI; CHAIN: P;	COMPLEMENT FACTOR D; CHAIN: NULL;	ELASTASE; CHAIN: P;	HYDROLASE ZYMOGEN (SERINE PROTEINASE) CHYMOTRYPSINOGEN A 1CHG 4	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	ENTEROPEPTIDASE; CHAIN: A; ENTEROPEPTIDASE; CHAIN: B; VAL-ASP-ASP-ASP-LYS PEPTIDE; CHAIN: C;	COAGULATION FACTOR XA- TRYPSIN CHIMERA; CHAIN: A; D- PHE-PRO-ARG- CHLOROMETHYLKETONE (PPACK) WITH CHAIN: I;	HYDROLASE (SERINE
SeqFold	31036		157.47	163.21	157.20	186.12	166.99	170.73	210.66	156.85	174.33
PMF	35016										
Verify	30010										
PSI-	DECEDI		3.6e-77	7.2e-76	1.3e-69	3.6e-90	7.2e-82	3.6e-79	5.4e-88	5.4e-86	1.8e-83
End	ΑA		422	422	422	422	423	423	422	423	423
Start	Ę		192	192	192	192	178	192	192	192	178
Chain	3		н	ပ		а		н	Ø	<	4
808 E	3		laht	laut	1bio	1bra	lchg	Idan	1ekb	Iffy	1gct
SEQ	ğ		786	786	786	786	786		786	786	786

PDB annotation			COMPLEX (PROTEASE/INHIBITOR) RTAP; GLYCOPROTEIN, SERINE PROTEASE, PLASMA, BLOOD COAGULATION, 2 COMPLEX (PROTEASE/INHIBITOR)		COMPLEX (BLOOD COAGULATIONINHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM-BINDING, HYDROLASE, 3 GLYCOPROTEIN	TERNARY COMPLEX (ZYMOGEN) TC, PCPA-TC; TERNARY COMPLEX (ZYMOGEN), SERINE PROTEINASE, C- TERMINAL 2 PEPTIDASE	HYDROLASE MICROPLASMINOGEN, SERINE PROTEASE, ZYMOGEN, CHYMOTRYPSIN 2 FAMILY, HYDROLASE	COAGULATION FACTOR SERINE PROTEINASE, BLOOD COAGULATION, COAGULATION FACTOR	SERINE PROTEASE (TC)-T-PA; SERINE PROTEASE, FIBRINOLYTIC ENZYMES	
PDB			COMPLEX (PROTEASE/INHIBITOR) R. GLYCOPROTEIN, SERINE PROTEASE, PLASMA, BLOOD COAGULATION, 2 COMPLEX (PROTEASE/INHIBITOR)		COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRIST FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM-BINDING, HYDROLASE, 3 GLYCOPROTEIN	TERNARY COMPLEX (ZYMOGI PCPA-TC; TERNARY COMPLEX (ZYMOGEN), SERINE PROTEIN, TERMINAL 2 PEPTIDASE	HYDROLASE MICROPLASMINOGEN, SERINE PROTEASE, ZYMOGEN, CHYMOTRYPSIN 2 FAMILY, HYDROI	COAGULATION FACTOR SERINE PROTEINASE, BLOOD COAGULA' COAGULATION FACTOR	SERINE PROTEASE PROTEASE, FIBRIN	
Compound		PROTEINASE) GAMMA- *CHYMOTRYPSIN *A (E.C.3.4.21.1) (\$P*H 7.0) 1GCT 3	FACTOR XA, CHAIN: H, L; ANTICOAGULANT PEPTIDE; CHAIN: I;	COMPLEX(PROTEINASE/INHIBIT OR) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH INHIBITOR FROM BITTER 1MCT 3 GOURD 1MCT 4	FACTOR IXA, CHAIN: C, L,, D- PHE-PRO-ARG, CHAIN: I,	PROCARBOXYPEPTIDASE A; CHAIN: A, B; PROPROTEINASE B; CHAIN: C; CHYMOTRYPSINOGEN C; CHAIN: D;	PLASMINOGEN; CHAIN: A, B, C, D;	COAGULATION FACTOR IX; CHAIN: A; COAGULATION FACTOR IX; CHAIN: B;	TWO CHAIN TISSUE PLASMINOGEN ACTIVATOR; CHAIN: A, B;	HYDROLASE (SERINE PROTEINASE) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH THE INHIBITOR ITRN 3 DISOPROPYL- FLUOROPHOSPHOFILUORIDATE
SeqFold	score		168.69	159.84	177.73	170.21 -	200.63	174.42	166.93	156.28
	score									
	score									
PSI-	BLASI		1.3e-77	1.4e-95	1.6e-82	5.4e-86	1.8e-95	7.2e-82	1.8e-81	3.6e-93
End	ΑA		423	423	423	423	422	423	423	423
Start	AA		192	192	192	178	176	192	192	192
Chain	3		н	¥.	ပ	Ω	Ą	∢	а	∀
PDB	a		Ikig	lmct	1pfx	lpyt	lqrz	1rfb	Ħ	TH.
SEQ	g ö		786	786	982	786	786	786	982	786

							_					
PDB annotation		HYDROLASE (SERINE PROTEINASE)		SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL		PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	TRANSCRIPTION/DNA ULTRABITHORAX;	TEATROTEIN, DINT BUYDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT, 2 SPECIFICITY	DNA BINDING PROTEIN TTF-1 HD; 1FTT 8	DNA BINDING PROTEIN, HOMEODOMAIN, TRANSCRIPTION FACTOR 1FTT 19		
Compound	(DFP) ITRN 4 HUMAN TRYPSIN, DFP INHIBITED ITRN 6	TRYPSIN; 1TRY 4 CHAIN: NULL; 1TRY 5	HYDROLASE(SERINE PROTEINASE) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH BENZAMIDINE INHIBITOR 2TBS 3	BETA TRYPSIN; CHAIN: NULL;	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 1AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, 1AHD 4 16 STRUCTURES) 1AHD 5	HOMEOBOX PROTEIN HOX-BI; CHAIN: A; PBXI; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	ULTRABITHORAX HOMEOTIC	FROIENTY, CHAMIN. A; HOMBOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5'- CHAIN: C; DNA (5'- CHAIN: D.	THYROID TRANSCRIPTION	FACTOR 1 HOMEODOMAIN; 1FTT 6 CHAIN: NULL; 1FTT 7	DNA-BINDING FUSHI TARAZU PROTEIN (HOMEODOMAIN) (NMR, 20 STRUCTURES) IFTZ 3	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED
SeqFold score		157.71	160.00	153.43	77.65	62.50	66.24		58.48		70.96	11.71
PMF												
Verify												
PSI- BLAST		9e-70	3.6e-93	1.3e-90	3.6e-19	5.4e-14	1.3e-17		1.4e-09		1.3e-17	1.3e-17
End AA		421	423	423	258	253	249		258		259	258
Start		192	192	192	191	181	191		191		190	197
Chain ID					പ	٧	V					
708 ED		ltry	2tbs	Sptp	1shd	1672	1b8i		1##		142	Isan
ğa ş		786	786	786	790	790	790		790		790	790

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Compound	PDB annotation
∃ÿ	3	3	ŧ	AA	DEMOI	31036	3000	31036		
									BY SER AND RESIDUES 1-6 DELETED (C39S,DEL 1-6) ISAN 4 (NMR, 20 STRUCTURES) ISAN 5	
790	9ant	A	196	251	1.8e-18			70.57	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F;	COMPLEX (DNA-BINDING PROTEINDNA) HD; HOMEODOMAIN, COMPLEX (DNA- BINDING PROTEINDNA)
791	1116	∢	877	1048	1.1e-37			105.19	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
161	2gli	A	844	066	1.6e-35			93.63	ZINC FINGER PROTEIN GL11; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDINA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDINA)
800	lam4	Q	18	183	1.6e-42			61.12	PS0-RHOGAP; CHAIN: A, B, C, CDC42HS; CHAIN: D, E, F;	COMPLEX (GTPASE-ACTIVATING/GTP- BINDING) COMPLEX (GTPASE- ACTIVATING/GTP-BINDING), GTPASE ACTIVATION
800	1byu	Ą	16	222	9e-31			63.85	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN
800	1byu	В	12	232	1.3e-31			67.19	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN
800	lcly	∢	61	185	5.4e-61			102.61	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS
800	lctq	V V	61	186	1.1e-60			101.23	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A;	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN
800	lcxz	∢	15	186	1.3e-50			67.32	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	SIGNALING PROTEIN PROTEIN-PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL
800	1ibr	Ą	19	194	3.6e-30			60.45	RAN; CHAIN: A, C; IMPORTIN	SMALL GTPASE KARYOPHERIN BETA,

S E S	PDB UD	Chain ID	Start	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
						:•			BETA SUBUNIT; CHAIN: B, D;	P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR
	1kao		19	186	1.8e-56			113.63	RAP2A; CHAIN: NULL;	GTP-BINDING PROTEIN GTP-BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS
1	1mh1		16	161	7.2e-51			72.92	RACI; CHAIN: NULL;	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, RAS SUPER 2 FAMILY
	1rrp	ပ	18	201	3.6e-30			60.33	RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D;	COMPLEX (SMALL GTPASENUCLEAR PROTEIN) COMPLEX (SMALL GTPASE/NUCLEAR PROTEIN), SMALL GTPASE, 2 NUCLEAR TRANSPORT
	ltx4	æ	18	183	1.8e-47			56.68	PSO-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTTVATN/PROTO- ONCOGENE) GTPASE-ACTTVATING PROTEIN RHOGAP, COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
 	1zbd	4	17	191	5.4e-55			61.51	RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP-BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN
 	2ngr	<	61	198	7.2e-46			68.09	GTP BINDING PROTEIN (G25K); CHAIN: A; GTPASE ACTIVATING PROTEIN (RHG); CHAIN: B;	HYDROLASE CDC42/CDC42GAP; CDC42/CDC42GAP; TRANSITION STATE, G-PROTEIN, GAP, CDC42, ALF3., HYDROLASE
	3rab	<	16	186	1.6e-55			72.05	RAB3A; CHAIN: A;	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE
	1bih	V	45	410	7.2e-33			57.74	HEMOLIN; CHAIN: A, B;	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION
	1111	¥.	41	247	1.3e-11			52.09	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN
└ ─┤	Imco	H	1	409	1.8e-39			65.36	IMMUNOGLOBULIN IMMUNOGLOBULIN GI (IGGI)	

SEQ	PDB CD	Chain	Start	End	PSI- BLAST	Verify	PMF	SeqFold	Compound	PDB annotation
ÖN				ş					OACC) WITH A TIMICE DET TITOM	
									IMCO 3	
814	Infd	댼	190	409	7.2e-10			51.22	NIS ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D;	COMPLEX (IMMUNORECEPTOR/IMMUNOGLOBULIN)
									H57 FAB; CHAIN: E, F, G, H	COMPLEX (IMMUNORECEPTOR/IMMUNOGLOBULIN)
818	1klo		31	197	1.8e-15			67.17	LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
841	1edh	4	143	350	1.8e-52			91.52	E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
843	1a2y	∢	37	141	1.8e-35			58.67	MONOCLONAL ANTIBODY D1.3; CHAIN: A, B; LYSOZYME; CHAIN: C:	COMPLEX (IMMUNOGLOBULIN/HYDROLASE) COMPLEX
										(IMMUNOGLOBULIN/HYDROLASE), IMMUNOGLOBULIN V 2 REGION, SIGNAL,
			,		-		_			BACTERIOLYTIC 3 ENZYME, EGG WHITE
843	1а7q	1	37	141	7.2e-33			59.19	MONOCLONAL ANTIBODY D1.3; CHAIN: L, H;	IMMUNOGLOBULIN IMMUNOGLOBULIN, VARIANT
843	lac6	4	35	143	9e-36			77.29	T-CELL RECEPTOR ALPHA; CHAIN: A, B;	RECEPTOR RECEPTOR, V ALPHA DOMAIN, SITE-DIRECTED MUTAGENESIS, 2 THREE-DIMENSIONAL STRUCTURE, C. VCORDOTTEN, SICKLA
843	lao7	Ω	36	148	9e-39			92.15	HLA-A 0201; CHAIN: A; BETA-2	COMPLEX (MHC/VIRAL
			·						MICROGLOBULIN; CHAIN: B; TAX PEPTIDE: CHAIN: C: T CELI.	PEPTIDE/RECEPTOR) HLA-A2 HEAVY CHAIN: CLASS I MHC, T-CELL, RECEPTOR
					·- · · ·				RECEPTOR ALPHA; CHAIN: D; T	VIRAL PEPTIDE, 2 COMPLEX (MHC/VIRAL
	-								CELL RECEPTOR BETA; CHAIN: E:	PEPTIDE/RECEPTOR
843	lap2	4	37	140	5.4e-35			56.88	MONOCLONAL ANTIBODY C219; CHAIN: A, B, C, D;	IMMUNOGLOBULIN VARIABLE DOMAIN; SINGLE CHAIN FV, MONOCLONAL
		,		-						MANUNOGLOBULIN
843	larl	Ω	35	141	7.2e-35			66.65	CYTOCHROME C OXIDASE;	COMPLEX

									_
PDB annotation	(OXIDOREDUCTASE/ANTIBODY) CYTOCHROME AA3, COMPLEX IV, FERROCYTOCHROME C, COMPLEX (OXIDOREDUCTASE/ANTIBODY), ELECTRON TRANSPORT, 2 TRANSMEMBRANE, CYTOCHROME OXIDASE, ANTIBODY COMPLEX	IMMUNE SYSTEM BENCE-JONES; IMMUNOGLOBULIN, AMYLOID, IMMUNE SYSTEM	T CELL RECEPTOR TCR; T CELL RECEPTOR, MHC CLASS I, HUMAN IMMUNODEFICIENCY VIRUS, 2 MOLECULAR RECOGNITION	COMPLEX (MHC/VIRAL PEPTIDE/RECEPTOR.) HLA A2 HEAVY CHAIN; COMPLEX (MHC/VIRAL PEPTIDE/RECEPTOR.)	COMPLEX (HUMANIZED ANTIBODY/HYDROLASE) MURAMIDASE; HUMANIZED ANTIBODY, ANTIBODY COMPLEX, FV, ANTI-LYSOZYME, 2 COMPLEX (HUMANIZED ANTIBODY/HYDROLASE)	IMMUNE SYSTEM REIV, STABILIZED IMMUNOGLOBULIN FRAGMENT, BENCE- JONES 2 PROTEIN, IMMUNE SYSTEM	IMMUNOGLOBULIN ANTI-DANSYL FV FRAGMENT FV FRAGMENT, IMMUNOGLOBULIN		
Compound	CHAIN: A, B; ANTBODY FV FRAGMENT; CHAIN: C, D;	BENCE-JONES KAPPA I PROTEIN BRE; CHAIN: A, B, C;	T CELL RECEPTOR V-ALPHA DOMAIN; CHAIN: A, B;	HLA-A 0201; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDE; CHAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN: E;	HULYS11; CHAIN: A, B, D, E; LYSOZYME; CHAIN: C, F;	IG KAPPA CHAIN V-1 REGION REI; CHAIN: A, B;	ANTI-DANSYL IMMUNOGLOBULIN IGG2A(S); CHAIN: L, H;	IMMUNOGLOBULIN FV FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 IFGV 3 ANTIBODY 'H52' (HUH52- AA FV) IFGV 4	IMMUNOGLOBULIN FV
SeqFold score		63.94	75.85	60.19	59.82	64.91	56.21	62.71	59.70
PMF score									
Verify score									
PSI- BLAST		1.1e-37	3.6e-39	1.8e-47	9e-39	9e-40	1.8e-30	1.8e-40	1.8e-37
End		143	143	167	143	142	143	141	144
Start AA		35	34	35	35	32	37	35	35
Chain ID		٧	Ą	Q	·A	∢	دا	H	V
PDB CD		1b0w	1b88	1bd2	1bvk	Ibww	1dlf	1fgv	1fvc
SEQ	2	843	843	843	843	843	843	843	843

		_	_					
PDB annotation						COMPLEX (IMMUNOGLOBULIN/RECEPTOR) TCR VAPLHA VBETA DOMAIN; T-CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTYPIC, 2 (IMMUNOGLOBULIN/RECEPTOR)	IMMUNE SYSTEM HUMAN TCR/PEPTIDE/MHC COMPLEX, HLA-A2, HTLV-1, TAX, TCR, T 2 CELL RECEPTOR, IMMUNE SYSTEM	COMPLEX (COAT PROTEIN/IMMUNOGLOBULIN) POLYPROTEIN, COAT PROTEIN, CORE PROTEIN, RNA-DIRECTED RNA 2
Compound		FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 8 1FVC 3	IMMUNOGLOBULIN IMMUNOGLOBULIN M (IG-M) FV FRAGMENT IIGM 3	IMMUNOGLOBULIN IMMUNOGLOBULIN VL DOMAIN (VARIABLE DOMAIN OF KAPPA LIGHT 11VL 3 CHAIN) OF DESIGNED ANTIBODY M29B 11VL 4	COMPLEX(ANTIBODY-ANTIGEN) FV FRAGMENT (GGGI, KAPPA) (LIGHT AND HEAVY VARIABLE DOMAINS 11FL 3 NON- COVALENTLY ASSOCIATED) OF MONOCLONAL ANTI-HEN EGG 1JHL 4 LYSOZYME ANTIHE PHEASANT EGG 1JHL 5 LYSOZYME 11FL 6	KB5-C20 T-CELL ANTIGEN RECEPTOR; CHAIN: A, B; ANTIBODY DESIRE-1; CHAIN: L, H;	MHC CLASS I HLA-A; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDE P6A; CHAIN: C; HMAN T-CELL RECEPTOR; CHAIN: D; HLA-A 0201; CHAIN: E;	HUMAN RHINOVIRUS 14 COAT PROTEIN; CHAIN: 1, 2, 3, 4; FAB 17-IA; CHAIN: L, H
SeqFold	score		57.55	62.40	64.05	76.59	60.03	62.70
	score							
	score	•						
-ISI	BLAST		1.1e-39	3.6e-31	3.6e-33	3.6e-41	1.8e-44	9e-34
End	AA		149	141	143	145	167	145
Start	Ψ¥		35	35	35	35	36	36
Chain	8		L	∢	1	A	Q	1
PDB			ligm	livi	र्सा	1kb5	14m	lrvf
SEQ	eş		843	843	843	843	843	843

	IOL	JTA; A CHAIN,				RASE,	OLASE, CALCIUM MPLEX 'OR)	TA
PDB annotation	POLYMERASE, HYDROLASE, THIOL PROTEASE, MYRISTYLATION, 3 COMPLEX (COAT PROTEIN/IMMUNOGLOBULIN)	IMMUNORECEPTOR ES204 V DELTA; IMMUNORECEPTOR, TCR, DELTA CHAIN, VARIABLE DOMAIN	·	·		LYASE LYASE, AMIDOTRANSFERASE, NH3 DEPENDENT, ATP PYROPHOSPHATASE	COMPLEX (BLOOD COAGULATION/INHIBITOR) COAGULATION/INHIBITOR) SERING PROTEINASE, PLASMA CALCUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	HYDROLASE INFIBITOR ALL-BETA STRUCTURE, HYDROLASE INFIBITOR
	5 % 2 %				-	+ +		H IS
Compound		T CELL RECEPTOR; CHAIN: A, B;	IMMUNOGLOBULIN WAT, A VARLABLE DOMAIN FROM IMMUNOGLOBULIN LIGHT- CHAIN IWTL 3 (BENCE-JONES PROTEIN) IWTL 4	IMUNOGLOBULIN IMMUNOGLOBULIN IMMUNOGLOBULIN VL DOMAIN (VARLABLE DOMAIN OF KAPPA 2INN 3 LIGHT CHAIN) OF MCPC603 MUTANT IN WHICH 2INN 4 COMPLEMENTARITY- DETERMINING REGION 1 HAS BEEN REPLACED BY 2INN 5 THAT FROM MOPC167 2INN 6	IMMUNOGLOBULIN BENCE- *JONES PROTEIN (LAMBDA, VARIABLE DOMAIN) 2RHE 4	NAD SYNTHETASE; CHAIN: A, B;	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO-MAI; CHAIN: P;	BOWMAN-BIRK TRYPSIN INHIBITOR; CHAIN: A
SeqFold score		57.93	59.28	58.49	64.63			
PMF score						0.07	-0.14	-0.15
Verify score	·					0.05	0.16	0.28
PSI- BLAST		1.1e-20	1.6e-38	3.6e-37	1.8e-41	1.6e-20	6e-10	4e-17
End		143	143	143	145	130	142	145
Start		35	35	37	35	2	32	4
Chain ID		∢	₹			A	T)	¥
PDB U		Itvd	Iwt	2imn	2rhe	Insy	laut	1c2a
S e S		843	843	843	843	848	849	849

0	PDB	Chain	Start	End	PSI-	Verify	PMG	SeqFold	Compound	PDB annotation
АŞ	8	a	₹ .	¥¥	BLASI	score	score	score		
									CHAIN: A	HEVEIN-LIKE DOMAINS
849	lehd	∢	18	168	1.4e-07	0.24	0.16		AGGLUTININ ISOLECTIN VI; CHAIN: A	PLANT PROTEIN TWO HOMOLOGOUS HEVEIN-LIKE DOMAINS
849	leis	¥	v	95	2e-08	0.17	0.25		AGGLUTININ ISOLECTIN VI/AGGLUTININ ISOLECTIN V; CHAIN: A;	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA, SUPERANTIGEN
849	leis	Ķ	92	173	80- 9 9	0.31	-0.01		AGGLUTININ ISOLECTIN VI/AGGLUTININ ISOLECTIN V; CHAIN: A;	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA, SUPERANTIGEN
849	lext	٧	16	173	1.2e-12			58.35	TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN
849	lext	4	30	171	4e-10	0.21	0.05		TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN
	1klo		32	173	le-17	0.07	-0.09		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
849	Iklo		4	140	2e-17	0.12	-0.06		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
6	Iklo		4	156	le-17			62.19	LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
6	lnub	¥	42	174	2e-11	0.09	-0.20		BASEMENT MEMBRANE PROTEIN BM-40; CHAIN: A, B;	EXTRACELLULAR MODULE OSTEONECTIN, SPARC, SECRETED
										PROTEIN ACIDIC AND EXTRACELLULAR MODULE, GLYCOPROTEIN, ANTI-
				•						ADHESIVE PROTEIN, 2 COLLAGEN BINDING, SITE-DIRECTED MUTAGENESIS, GLYCOSYLATED 3 PROTEIN MODRES
Τ										
820	1d5v	¥	73	158	1.8e-42	0.32	8.1		S12 TRANSCRPTION FACTOR (FKH-14); CHAIN: A;	GENE REGULATION WINGED HELIX, DNA-RECOGNITION HELIX
850	le17	4	69	148	7.2e-27	-0.04	0.1		AFX; CHAIN: A;	DNA BINDING DOMAIN DNA BINDING DOMAIN, WINGED HELIX
820	2hdc	٧	73	164	9e-41	0.12	9:1		HNF3/FH TRANSCRIPTION	GENE REGULATION/DNA HEPATOCYTE
									FACTOR GENESIS; CHAIN: A; 5'- CHAIN: B: 5'- CHAIN: C:	NUCLEAR FACTOR 3 FORKHEAD HOMOLOG 2, NMR, STRUCTURE
										DYANAMICS, GENESIS, WINGED HELIX PROTEIN, 2 GENE REGULATION/DNA
820	2hdc	¥	73	164	9e-41			74.25	HNF3/FH TRANSCRIPTION FACTOR GENESIS: CHAIN: 4: 5'-	GENE REGULATION/DNA HEPATOCYTE NIICI BAR FACTOR 3 FORKHFAD
									CHAIN: B; 5'- CHAIN: C;	HOMOLOG 2, NMR, STRUCTURE, DYANAMICS, GENESIS, WINGED HELIX PROTEIN 2 GENE PECHT ATTON/DNA
	1									ואים ייים וחשטשים שיושט זי וששו ואים ו

PDB annotation	HNF-3 HOMOLOGUES HFH-2; HNF-3 HOMOLOGUES, WINGED HELIX PROTEIN	HNF-3 HOMOLOGUES HFH-2; HNF-3 HOMOLOGUES, WINGED HELIX PROTEIN	SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEINASE TRYPSIN-LIKE SERINE PROTEINASE, TETRAMER, HEPARIN, ALLERGY, 2 ASTHMA	COMPLEX (SERINE PROTEASE/INHIBITOR) (DELTAFEK)DSPAALPHA1; EGRCMK; SERINE PROTEASE, FIBRINOLYTIC ENZYMES, PLASMINOGEN 2 ACTIVATORS	COMPLEX (SERINE PROTEINASE/INHIBITOR)	RECEPTOR LRS; RECEPTOR, LDL RECEPTOR, CYSTEINE-RICH MODULE, CALCIUM	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE, PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	SERINE PROTEASE PPE; SERINE PROTEASE, HYDROLASE	LIPID BINDING PROTEIN RECEPTOR,
Compound	GENESIS; CHAIN: NULL;	GENESIS; CHAIN: NULL;	TRYPSIN; CHAIN: A, B, C, D;	TRYPSIN; CHAIN: A, B, C, D;	BETA-TRYPTASE; CHAIN: A, B, C, D;	PLASMINOGEN ACTIVATOR; CHAIN: A; GLU-GLY-ARG CHLOROMETHYL KETONE; CHAIN: I;	ALPHA-THROMBIN; 1AHT 4 CHAIN: L, H; 1AHT 5 HIRUGEN; 1AHT 8 CHAIN: I; 1AHT 9	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: NULL;	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO-MAI; CHAIN: P;	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO-MAI; CHAIN: P;	ELASTASE; CHAIN: P;	LOW DENSITY LIPOPROTEIN
SeqFold score		71.39		176.29	206.34	191.74	189.27		193.08		193.36	
PMF score	0.94		1.00					0.54		0.03		0.74
Verify PMF score	-0.08		0.94					-0.16		0.11		0.30
PSI- BLAST	1.6e-39	1.6e-39	5.4e-98	5.4e-98	. 68-96	1.6e-89	98- 9 9	1.6e-09	1.4e-88	3,6e-13	1.1e-90	2e-10
End AA	158	159	795	795	795	795	795	473	795	517	795	473
Start AA	73	73	561	561	261	551	561	441	561	432	561	441
Chain TD			A	4	<	∢	H		ပ	J	Д	A
PDB U	2hfh	2hfh	1a0j	1a0j	1a01	1 a5i	1aht	iĝi	laut	laut	1bru	lcr8
SEQ No.	850	850	855	855	855	855	855	855	855	855	855	855

PDB annotation		ż.			AIN: A; SIGNALING PROTEIN LIGAND BINDING, AIN: A; CALCIUM BINDING, COMPLEMENT-LIKE REPEAT, 2 RECEPTOR, SIGNALING PROTEIN	AIN: A; SIGNALING PROTEIN LIGAND BINDING, AIN: A; CALCIUM BINDING, COMPLEMENT-LIKE REPEAT, 2 RECEPTOR, SIGNALING PROTEIN		FACTOR BLOOD COAGULATION, SERINE JBLE PROTEASE, COMPLEX, CO-FACTOR, 2 4: T, U; D- RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE NE PROTEASE/COFACTOR/LIGAND) N: C;	FACTOR BLOOD COAGULATION, SERINE JBLE PROTEASE, COMPLEX, CO-FACTOR, 2 4: T, U; D- RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND) N: C;	(HEAVY HYDROLASE/HYDROLASE INHIBITOR SS-GLA PROTEIN-PEPTIDE COMPLEX HAIN); -ARG; -76;
Compound		RECEPTOR RELATED PROTEIN; CHAIN: A;	LOW DENSITY LIPOPROTEIN RECEPTOR RELATED PROTEIN; CHAIN: A:	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	LIPOPROTEIN RECEPTOR RELATED PROTEIN; CHAIN: A;	LIPOPROTEIN RECEPTOR RELATED PROTEIN; CHAIN: A;	THROMBIN; CHAIN: A; DECAPEPTIDE INHIBITOR; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFRCMK) WITH CHAIN: C;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;
SeqFold								190.30		
PMF			0.15	0.18	0.22	-0.12	1.00		0.12	0.16
Verify	2020	J	0.17	-0.43	-0.02	0.32	1.00		-0.39	-0.21
PSI- BLAST			46-11	1.2e-09	6e-11	4e-12	1.6e-92	2e-81	1.4e-14	5.4e-13
End	AA		209	474	476	552	794	795	518	518
Start			479	441	441	514	534	561	430	435
Chain	***		V	∢	∀	Ą	· V	Ħ	1	T
PDB CD	•		lcr8	142j	1421	1421	1d6w	1dan	Idan	Idva
SEQ	Ö		855	855	855	855	855	855	855	855

	g g	K _ K					PTOR; IM	PTOR;	PTOR, JM-	XA,
rtion	HYDROLASE/HYDROLASE INHIBITOR ENTEROKINASE, HEAVY CHAIN; ENTEROKINASE, LIGHT CHAIN; ENTEROPEPTIDASE, TRYPSINOGEN ACTIVATION, 2 HYDROLASE/HYDROLASE INHIBITOR	HYDROLASE/HYDROLASE INHIBITOR ENTEROKINASE, HEAVY CHAIN; ENTEROKINASE, LIGHT CHAIN; ENTEROPEPTIDASE, TRYPSINOGEN ACTIVATION, 2 HYDROLASE/HYDROLASE INHIBITOR					LIPID BINDING PROTEIN LDL RECEPTOR; BETA HAIRPIN, 3-10 HELIX, CALCIUM BINDING	LIPID BINDING PROTEIN LDL RECEPTOR; BETA HAIRPIN, 3-10 HELIX, CALCIUM BINDING	LIPID BINDING PROTEIN LDL RECEPTOR, LIGAND-BINDING DOMAIN, CALCIUM- BINDING, 2 FAMILIAL HYPERCHOLESTEROLEMIA	COMPLEX (PROTEASE/INHIBITOR) TRYPSIN, COAGULATION FACTOR XA, CHIMERA, PROTEASE, PPACK, 2
PDB annotation	rydrolas E, Heavy E, Light Dase, Try 2	IYDROLA: E, HEAVY E, LIGHT DASE, TRY 2	INASE	٠		!	; PROTEIN 1, 3-10 HEL	, 3-10 HEL	FROTEIN ING DOM/ MILIAL STEROLEN	OTEASE/D GULATIO STEASE, P
	HYDROLASE/HYDROLASE INHIB ENTEROKINASE, HEAVY CHAIN; ENTEROKINASE, LIGHT CHAIN; ENTEROPEPTIDASE, TRYPSINOG ACTIVATION, 2 HYDROLASE/HYDROLASE INHIB	HYDROLASE/HYDROLASE INHIB ENTEROKINASE, HEAVY CHAIN; ENTEROKINASE, LIGHT CHAIN; ENTEROPEPTIDASE, TRYPSINOG ACTIVATION, 2 HYDROLASE/HYDROLASE INHIE	SERINE PROTEINASE			:	LIPID BINDING BETA HAIRPIN BINDING	LIPID BINDING BETA HAIRPIN BINDING	LIPID BINDING PROTEIN LD LIGAND-BINDING DOMAIN, BINDING, 2 FAMILIAL HYPERCHOLESTEROLEMIA	COMPLEX (PROTEASE/INHIBITOR) TRYPSIN, COAGULATION FACTOR CHIMERA, PROTEASE, PPACK, 2
	HACEGER	HACE EN HA	SEI				BE	H H H	HACE	8 ¥ 3
punc	SE, CHAIN: A; SE, CHAIN: B; P-ASP-LYS C;	SE, CHAIN: A; SE, CHAIN: B; P-ASP-LYS C;	4 CHAIN: NULL;	INE INE E-TRYPSIN 3	INE INE E-TRYPSIN 3	INE SILON- SA21.5) NON- PLEX WITH R 4	POPROTEIN N: A;	POPROTEIN N: A;	POPROTEIN N: A;	ACTOR XA- A; CHAIN: A; D-
Compound	ENTEROPEPTIDASE; CHAIN: A; ENTEROPEPTIDASE; CHAIN: B; VAL-ASP-ASP-ASP-ASP-LYS PEPTIDE; CHAIN: C;	ENTEROPEPTIDASE; CHAIN: A; ENTEROPEPTIDASE; CHAIN: B; VAL-ASP-ASP-ASP-LYS PEPTIDE; CHAIN: C;	ELASTASE; IELT 4 CHAIN: NULL; IELT 5	HYDROLASE (SERINE PROTEASE) PORCINE E-TRYPSIN (E.C.3.4.21.4) IEPT 3	HYDROLASE (SERINE PROTEASE) PORCINE E-TRYPSIN (E.C.3.4.21.4) IEPT 3	HYDROLASE(SERINE PROTEINASE) EPSILON- THROMBIN (E.C.3.4.21.5) NON- COVALENT COMPLEX WITH IETR 3 MQPA IETR 4	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	LOW-DENSITY LIPOPROTEIN RECEPTOR, CHAIN: A;	COAGULATION FACTOR XA- TRYPSIN CHIMERA; CHAIN: A; D- PHE-PRO-ARG-
SeqFold score	p	225.15	180.46			179.82				180.36
PMF score	1.00			0.99	0.90		0.37	0.31	0.57	
Verify score	1.05			-0.55	-0.55		-0.08	0.41	-0.02	
PSI- BLAST	8e-92	8e-92	3.6e-81	3.6e-17	8e-19	4e-86	1.6e-19	8e-21	1.2e-09	5.4e-89
End	794	795	794	603	604	795	209	550	474	795
Start AA	561	561	561	195	561	561	440	479	443	261
Chain 19	В	Д		¥	₹	н	∢	4	V V	А
PDB ID	lekb	lekb	1elt	lept	lept	letr	153	1f5y	1f8z	lfxy
SEQ NO.	855	855	855	855	855	855	855	855	855	855

					,	, 1	٦ -				
PDB annotation		CHLOROMETHYLKETONE, COMPLEX (PROTEASE/INHIBITOR)		COMPLEX (PROTEASE/INHIBITOR) RTAP; GLYCOPROTEIN, SERINE PROTEASE, PLASMA, BLOOD COAGULATION, 2 COMPLEX (PROTEASE/INHIBITOR)	BINDING PROTEIN LB1; ILDL 7 LDL RECEPTOR CYSTEINE-RICH REPEAT 1LDL 15	BINDING PROTEIN LB1; ILDL 7 LDL RECEPTOR CYSTEINE-RICH REPEAT ILDL 15	BINDING PROTEIN LB2; ILDR 8 LDL RECEPTOR CYSTEINE-RICH REPEAT ILDR 16			COMPLEX (BLOOD COAGULATION/PROENZYME) COMPLEX (BLOOD COAGULATION/PROENZYME), THROMBIN, 2 PRETHROMBIN-2, PLASMA, SERINE PROTEASE	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD
Compound		CHLOROMETHYLKETONE (PPACK) WITH CHAIN: I;	HYDROLASE (SERINE PROTEINASE) GAMMA- *CHYMOTRYPSIN *A (E.C.3.4.21.1) (\$P*H 7.0) IGCT 3	FACTOR XA; CHAIN: H, L; ANTICOAGULANT PEPTIDE; CHAIN: 1;	LOW-DENSITY LIPOPROTEIN RECEPTOR; 1LDL 4 CHAIN; NULL; 1LDL 5	LOW-DENSITY LIPOPROTEIN RECEPTOR; ILDL 4 CHAIN: NULL; ILDL 5	LOW-DENSITY LIPOPROTEIN RECEPTOR, 1LDR 5 CHAIN: NULL; 1LDR 6	COMPLEX(PROTEINASE/INHIBIT OR) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH INHIBITOR FROM BITTER IMCT 3 GOURD IMCT 4	COMPLEX(PROTEINASE/INHIBIT OR) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH INHIBITOR FROM BITTER IMCT 3 GOURD	ALPHA-THROMBIN; CHAIN: L, H; PRETHROMBIN-2; CHAIN: K;	FACTOR IXA; CHAIN: C, L,; D- PHE-PRO-ARG; CHAIN: I;
SeqFold	score		182.37	182.52					180.72	194.09	186.02
PMF	score				0.16	0.09	0.25	1.00			
Verify	score				-0.01	0.51	-0.16	1.06			
PSI-	BLAST		5.4e-85	1.6e-91	1.2e-10	2e-12	4e-09	1.8e-99	1.8e-99	1.8e-89	4e-91
End	AA		795	795	476	552	473	794	795	795	795
Start	AA		552	561	440	514	441	561	561	523	561
Chain	9		A	н				V	∀	×	၁
PDB			lgct	1kig	IPI1	IPII	11dr	Imct	Imct	Imkx	1pfx
SEQ	АŸ		855	855	855	855	855	855	855	855	855

PDB annotation	COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM-BINDING, HYDROLASE, 3 GLYCOPROTEIN	TERNARY COMPLEX (ZYMOGEN) TC, PCPA-TC; TERNARY COMPLEX (ZYMOGEN), SERINE PROTEINASE, C- TERMINAL 2 PEPTIDASE	TERNARY COMPLEX (ZYMOGEN) TC, PCPA-TC; TERNARY COMPLEX (ZYMOGEN), SERINE PROTEINASE, C- TERMINAL 2 PEPTIDASE	HYDROLASE MICROPLASMINOGEN, SERINE PROTEASE, ZYMOGEN, CHYMOTRYPSIN 2 FAMILY, HYDROLASE	HYDROLASE MICROPLASMINOGEN, SERINE PROTEASE, ZYMOGEN, CHYMOTRYPSIN 2 FAMILY, HYDROLASE	COAGULATION FACTOR SERINE PROTEINASE, BLOOD COAGULATION, COAGULATION FACTOR	SERINE PROTEASE (TC)-T-PA; SERINE PROTEASE, FIBRINOLYTIC ENZYMES	COMPLEX (SERINE PROTEASE/INHIBITOR) TRYPSIN INHIBITOR; SERINE PROTEASE, INHIBITOR, COMPLEX, METAL BINDING SITES, 2 PROTEIN ENGINEERING, PROTEASE-SUBSTRATE INTERACTIONS, 3 METALLOPROTEINS	
Compound		PROCARBOXYPEPTIDASE A; CHAIN: A, B; PROPROTEINASE E; CHAIN: C; CHYMOTRYPSINOGEN C; CHAIN: D;	PROCARBOXYPEPTIDASE A; CHAIN: A, B; PROPROTEINASE E; CHAIN: C; CHYMOTRYPSINOGEN C; CHAIN: D;	PLASMINOGEN; CHAIN: A, B, C, D;	PLASMINOGEN; CHAIN: A, B, C, D;	COAGULATION FACTOR IX; CHAIN: A; COAGULATION FACTOR IX; CHAIN: B;	TWO CHAIN TISSUE PLASMINOGEN ACTIVATOR; CHAIN: A, B;	ECOTIN; CHAIN: A; ANIONIC TRYPSIN; CHAIN: B;	HYDROLASE (SERINE PROTEINASE) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH THE INHIBITOR 1TRN 3 DISOPROPYL- FLUOROPHOFLUORIDATE (DFP) 1TRN 4 HUMAN TRYPSIN, DFP INHIBITED 1TRN 6
SeqFold score	- - - -	177.81	176.08	209.13		183.77	195.82		
PMF					1.00			1.00	1.00
Verify score					0.94			1.06	1.04
PSI- BLAST		1.3e-79	1.8e-82	5.4e-93	5.4e-93	le-90	1.3e-79	3.6e-95	1.3e-96
End AA		795	795	795	794	795	795	794	794
Start AA		555	550	540	550	561	561	561	561
Chain ID		ပ	Q	4	4	4	æ	а	∢ .
PDB UI		lpyt	lpyt	1qrz	Iqrz	if.	#	Islw	m m
SEQ BO BO		855	855	855	855	855	855	855	855

					_			-	~ 1	٦			
PDB annotation	SERINE PROTEASE FACTOR II; SERINE PROTEASE, HYDROLASE, THROMBIN, BLOOD COAGULATION		SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL					MAMMALIAN PCB-BINDING PROTEIN MAMMALIAN PCB-BINDING PROTEIN; 1UTR 7 UTEROGLOBIN, CLARA CELL 17 KDA PROTEIN (CC10), 1UTR 18 2 PHOSPHOLIPASE A2 INHIBITOR, CLARA CELL PHOSPHOLIPA-BINDING 1UTR 19 3 PROTEIN, PROGESTERONE BINDING 1UTR 20		OXIDOREDUCTASE ALRI; TIM-BARREL, OXIDOREDUCTASE, NADP	OXIDOREDUCTASE ALRI; TIM-BARREL, OXIDOREDUCTASE, NADP	OXIDOREDUCTASE ALRI; OXIDOREDUCTASE, TIM-BARREL
Compound	THROMBIN; CHAIN: L, H;	HYDROLASE(SERINE PROTEINASE) TRYPSIN (B.C.3.4.21.4) COMPLEXED WITH BENZAMIDINE INHIBITOR 2TBS 3	BETA TRYPSIN; CHAIN: NULL;	BETA TRYPSIN; CHAIN: NULL;		PHOSPHOLIPASE A2 INHIBITOR CLARA CELL 17-KDA PROTEIN 1CCD 3	PHOSPHOLIPASE A2 INHIBITOR CLARA CELL 17-KDA PROTEIN 1CCD 3	STEROID BINDING UTEROGLOBIN (OXIDIZED) 1UTG 4	UTEROGLOBIN; IUTR 5 CHAIN: A, B; IUTR 6		ALDEHYDE REDUCTASE; CHAIN: NULL;	ALDEHYDE REDUCTASE; CHAIN: NULL;	ALDEHYDE REDUCTASE; CHAIN: NULL;
SeqFold score	177.88			176.17								537.02	
PMF		1.00	1.00			0.82	0.53	0.45	0.63		1.00		1.00
Verify score		1.00	1.01			0.17	-0.28	0.01	0.03		0.24		0.87
PSI- BLAST	1.le-75	1.6e-96	1.8e-94	1.8e-94		0.00012	3.6e-12	1.8e-05	0.00012		0	0	0
End	794	794	794	795		91	91	16	91		325	325	325
Start	561	561	561	561	-	30	30	30	30		7	2	2
Chain ID	H							-	4				
PDB ID	luvu	2tbs	Sptp	5ptp		locd	lccd	lutg	lutr		lcwn	lcwn	2alr
S e S	855	855	855	855		858	828	858	828		098	098	980

SEQ EQ	PDB ID	Chain ID	Start	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
860	2alr		2	325	0			505.09	ALDEHYDE REDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE ALRI; OXIDOREDUCTASE, TIM-BARREL
									-	
861	1914		14	115	0.0027	-0.30	0.07		SIGNAL RECOGNITION PARTICLE 9/14 FUSION PROTEIN; CHAIN: NULL;	ALU DOMAIN SRP9/14, ALU BM, RBD; ALU DOMAIN, CRYSTAL STRUCTURE, RNA BINDING, SIGNAL 2 RECOGNITION PARTICLE (SRP), TRANSLATION REGULATION
861	1680	м	14	49	0.0072	-0.63	0.33		SIGNAL RECOGNITION PARTICLE 9 KDA PROTEIN; CHAIN: A, C; SIGNAL RECOGNITION PARTICLE 14 KDA PROTEIN; CHAIN: B, D; 7SL RNA, 5'- 5'- *CHAIN: B, D; 7SL RNA, 5'- *CHAIN: B, D; 7SL RNA, 5'- *CHAIN: B, D; 7SL RNA, 5'- *CHAIN: B, D; 7SL RNA, 5'- *CHAIN: B, D; 7SL RNA, 5'- *CHAIN: B, D; 7SL RNA, S'-	ALU RIBONUCLEOPROTEIN PARTICLE SRP9; SRP14; ALU RIBONUCLEOPROTEIN PARTICLE, PROTEIN RECOGNITION OF AN 2 RNA U-TURN, TRANSLATIONAL CONTROL, ALU RNP ASSEMBLY AND 3 TRANSPORT, ALU RETROPOSITION
863	1du3	æ	379	467	1.1e-08	0.14	0.06		DEATH RECEPTOR 5; CHAIN: A, B, C, G, H, I; TNF-RELATED APOPTOSIS INDUCING LIGAND; CHAIN: D, E, F, J, K, L;	APOPTOSIS TRAIL, DRS, COMPLEX
863	lext	¥	121	258	1.7e-11	0.14	-0.15		TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN
863	lext	4	64	192	1.8e-08	-0.07	90.0		TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN
863	lezg	4	132	212	3.4e-07	0.16	90.0		THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA- HELIX, TMAFP
863	ligr	A	105	253	3.4e-08	0.18	-0.19		INSULIN-LIKE GROWTH FACTOR RECEPTOR 1; CHAIN: A;	HORMONE RECEPTOR HORMONE RECEPTOR, INSULIN RECEPTOR FAMILY
863	Iklo		348	496	5.1e-11	0.07	-0.19		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
863	Iklo		45	506	5.1e-12	0.03	-0.19		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
863	Incf	¥	365	466	3.6e-07	0.23	0.41	,	TUMOR NECROSIS FACTOR RECEPTOR; INCF 4 CHAIN: A, B; INCF 5	SIGNALLING PROTEIN TYPE I RECEPTOR, STNFRI; INCF 8 BINDING PROTEIN, CYTOKINE INCF 19
863	Incf	Ą	64	190	1.8e-10	0.17	-0.15		TUMOR NECROSIS FACTOR	SIGNALLING PROTEIN TYPE I RECEPTOR,

PDB annotation		STNFR1; INCF 8 BINDING PROTEIN, CYTOKINE INCF 19				SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEASE SERINE PROTEINASE, TRYPSIN, HYDROLASE	SERINE PROTEASE HYDROLASE, SERINE PROTEASE	SERINE PROTEASE PPE; SERINE PROTEASE, HYDROLASE		HYDROLASE HUMAN, UPA,	PLASMINOGEN ACTIVATOR, UROKINASE, INHIBITOR 2 COMPLEX	HYDROLASE ANTI-PARALLEL BETA- BARREL	COMPLEX (PROTEASE/INHIBITOR)	CHIMERA, PROTEASE, PPACK, 2	CHLOROMETHYLKETONE, COMPLEX (PROTEASE/INHIBITOR)	COMPLEX (PROTEASE/INHIBITOR) TRYPSIN, COAGULATION FACTOR XA, CHIMERA, PROTEASE, PPACK, 2 CHLOROMETHYLKETONE, COMPLEX
Compound		RECEPTOR; INCF 4 CHAIN: A, B; INCF 5	METALLOTHIONEIN METALLOTHIONEIN ISOFORM II 4MT2 3	METALLOTHIONEIN METALLOTHIONEIN ISOFORM II 4MT2 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	TRYPSIN; CHAIN: A, B, C, D;	TRYPSIN; CHAIN: A, B, C, D;	ALPHA TRYPSIN; CHAIN: A, B;	ELASTASE; CHAIN: P;	HYDROLASE ZYMOGEN (SERINE PROTEINASE) CHYMOTRYPSINOGEN A 1CHG 4	UROKINASE-TYPE	PLASMINOGEN ACTIVATOR; CHAIN: A;	BETA-ACROSIN HEAVY CHAIN; CHAIN: A; BETA-ACROSIN LIGHT CHAIN; CHAIN: L	COAGULATION FACTOR XA-	PHE-PRO-ARG-	CHLOROMETHYLKETONE (PPACK) WITH CHAIN: 1:	COAGULATION FACTOR XA- TRYPSIN CHIMERA; CHAIN: A; D- PHE-PRO-ARG- CHLOROMETHYLKETONE
PMF SeqFold	score					103.88			90.52	103.24				102.23			
PMF	score		-0.19	-0.13	-0.19		96.0	1.00			96.0		0.95				0.55
Verify	score		0.27	0.20	0.02		-0.01	0.22			0.27		0.09				0.02
PSI-	BLAS1	,	3.4e-09	5.1e-08	5.1e-16	3.4e-46	3.4e-46	1.7e-43	5.1e-39	8.5e-35	1.8e-43		5.4e-42	1.7e-45	_		1.7e-45
End	AA		509	586	273	538	538	538	538	537	535		540	539			538
Start	₹		142	532	102	318	394	436	322	306	422		434	318			345
Chain	a				4	∢	4	В	Ь		V		A	V			4
PDB			4mt2	4mt2	9wga	la0j	1a0j	laks	Ibru	lchg	lein		1fiz	1fxy			1fxy
SEQ	a ÿ		863	863	863	864	864	864	864	864	864		864	864			864

PDB annotation	(PROTEASE/INHIBITOR)						HYDROLASE MICROPLASMINOGEN,	CHYMOTRYPSIN 2 FAMILY, HYDROLASE	GROWTH FACTOR 7S NGF; GROWTH FACTOR (BETA-NGF) HYDROLASE -	SERINE PROTEINASE 2 (GAMMA-NGF), INACTIVE SFRINF PROTEINASE (ALPHA-	NGF)	COMPLEX (SERINE	PROTEASE/INHIBITOR) TRYPSIN INHIBITOR: SERINE PROTEASE.	INHIBITOR, COMPLEX, METAL BINDING	SITES, 2 PROTEIN ENGINEERING, PROTEASE-SUBSTRATE INTERACTIONS, 3	METALLOPROTEINS	COMPLEX (SERINE	PROTEASE INHIBITOR: JEYFOLD INTERIOR INHIBITOR: SERINE PROTEASE.	INHIBITOR, COMPLEX, METAL BINDING	SITES, 2 PROTEIN ENGINEERING,	PROTEASE-SUBSTRATE INTERACTIONS, 3 METALLOPROTEINS	
Compound	(PPACK) WITH CHAIN: I:	HYDROLASE (SERINE PROTEINASE) GAMMA- *CHYMOTRYPSIN *A	(E.C.3.4.21.1) (\$P*H 7.0) IGCT 3	COMPLEX(PROTEINASE/INHIBIT OR) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH INHIBITOR FROM BITTER 1MCT 3 GOURD	IMCT 4	COMPLEX(PROTEINASE/INHIBIT OR) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH INHIBITOR FROM BITTER 1MCT 3 GOURD	PLASMINOGEN; CHAIN: A, B, C,	ä	NERVE GROWTH FACTOR; CHAIN: A B G X V Z:			ECOTIN; CHAIN: A; ANIONIC	TRYPSIN; CHAIN: B;				ECOTIN; CHAIN: A; ANIONIC	IKYPSIN; CHAIN: B;				HYDROL ASE(SERINE
SeqFold score		106.80		97.39					96.16			96.11										92.41
PMF score						66.0	1.00					٠					080			-		
Verify score						0.26	0.11							-			0.22					
PSI- BLAST		1.7e-34		3.4e-46		3.4e-46	1.3e-42		1.4e-39			1.7e-44					1.7e-44					1.5e-34
End AA		538		538		538	538		539			538					538					539
Start AA		306		318		381	436		296			331					394					303
Chain ID		4		∢		V	V		G			В					В			_		
80. U		1gct		lmct		Imct	Iqrz		lsgf			Islw					lsiw	-				lton
SEQ	ğ	864	•	864		864	864		864			864					864					864

PCT/US01/27760

SEQ BO	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation
									PROTEINASE) TONIN (E.C. NUMBER NOT ASSIGNED) 1TON 4	
864	1tm	V	318	539	3.4e-45			101.52	HYDROLASE (SERINE PROTEINASE) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH THE INHIBITOR 1TRN 3 DIISOPROPYL- FLUOROPHOSPHOFLUORIDATE (DFP) 1TRN 4 HUMAN TRYPSIN, DFP INHIBITED 1TRN 6	
864	Itm	4	394	538	3.4e-45	0.16	0.93		HYDROLASE (SERINE PROTEINASE) TRYPSIN (E.C.34.21.4) COMPLEXED WITH THE INHIBITOR 1TRN 3 DISOPROPYL- FLUOROPHOSPHOFLUORIDATE (DFP) ITRN 4 HUMAN TRYPSIN, DFP INHIBITED 1TRN 6	
864	2tbs		300	538	3.4e-41			98.98	HYDROLASE(SERINE PROTEINASE) TRYPSIN (E.C.3.4.21.4) COMPLEXED WITH BENZAMIDINE INHIBITOR 2TBS 3	
864	5ptp		318	538	1.7e-43			100.26	BETA TRYPSIN; CHAIN: NULL;	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL
864	Sptp		394	538	1.7e-43	0.16	1.00		BETA TRYPSIN; CHAIN: NULL;	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL
298	lagi		205	302	0.0054	0.21	0.28		ANGIOGENIN; IAGI 4 CHAIN: NULL; IAGI 5	ENDONUCLEASE
298	161i	ď	205	302	0.00036	0.14	0.21		HYDROLASE ANGIOGENIN; CHAIN: A;	HYDROĽASE HYDROLASE (VASCULARIZATION)
298	lmf	4	205	308	0.0054	0.26	89.0		RIBONUCLEASE 4; CHAIN: A, B;	HYDROLASE RNASE 4; HYDROLASE, RIBONUCLEASE, PHOSPHODIESTERASE
898	1d0s	4	232	430	1.4e-21	0.05	-0.17		NICOTINATE MONONUCLEOTIDE:5,6- CHAIN:	TRANSFERASE DINUCLEOTIDE-BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE

			NA, IN,	HORAX;	ATTON				N/DNA) INDING	N/DNA) INDING	IN/DNA) DNA-
otation			PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	TRANSCRIPTION/DNA UL.TRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT, 2 SPECIFICITY	TRANSCRIPTIONDNA HOMEOTIC PROTEIN ENGRALLED, SEGMENTATION POLARITY HOMEODOMAIN, DNA- BINDING PROTEIN, PROTEIN-DNA COMPLEX		:		COMPLEX (DNA BINDING PROTEINDNA) DNA BINDING, COMPLEX (DNA BINDING PROTEIN/DNA)	COMPLEX (DNA BINDING PROTEIN/DNA) DNA BINDING, COMPLEX (DNA BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DN HD; HOMEODOMAIN, COMPLEX (DNA- BINDING PROTEIN/DNA)
PDB annotation			NA HOME(DNA-BIND NA	TION/DNA IN; DNA BI MAIN, HON ENT, 2 SPE	TION/DNA NGRAILED HOMEODO ROTEIN, PR				DNA BIND NG, COMPI NA)	DNA BIND NG, COMPI NA)	DNA-BIND DDOMAIN, ROTEIN/DN
			PROTEIN/DNA COMPLEX, DN PROTEIN/DNA	TRANSCRIPTIONDNA ULTRAB PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC P DEVELOPMENT, 2 SPECIFICITY	TRANSCRU PROTEIN E POLARITY BINDING PI COMPLEX				COMPLEX (DN DNA BINDING, PROTEIN/DNA)	COMPLEX (DN. DNA BINDING, PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDNA) HD; HOMEODOMAIN, COMPLEX (DNA- BINDING PROTEINDNA)
			OX-B1; B; DNA 3;	EOTIC N. B; (5'-	MAIN; IAIN: C;	MAIN	RAZU JIN) IFTZ 3	IN INT PLACED 1-6 1SAN 4 1SAN 5	MAIN; SR);	MAIN; SR);	R; R: C, D,
Compound			PROTEIN H XI; CHAIN: IA CHAIN: I	CHAIN: A; CHAIN: A; PROTEIN ICLE; CHAI	HOMEODO DNA (5'- CF IN: D;	G PROTEIN HOMEODOI	G FUSHI TA MEODOMA UCTURES)	G PROTEIN DIA PROTE IAIN) MUTA ISAN 3 REI RESIDUES 9S,DEL 1-6) UCTURES)	HOMEODOI DNA (20-M	HOMEODOI DNA (20-M	DIA PROTE DNA; CHAI
0		A;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5'- CHAIN: C; DNA (5'- CHAIN: D;	ENGRALLED HOMEODOMAIN; CHAIN: A, B; DNA (5'- CHAIN: C; DNA (5'- CHAIN: D;	DNA-BINDING PROTEIN ENGRAILED HOMEODOMAIN IENH 3	DNA-BINDING FUSHI TARAZU PROTEIN (HOMEODOMAIN) (NMR, 20 STRUCTURES) IFTZ 3	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED BY SER AND RESIDUES 1-6 DELETED (C39S,DEL 1-6) ISAN 4 (NMR, 20 STRUCTURES) ISAN 5	ENGRAILED HOMEODOMAIN; CHAIN: A, B; DNA (20-MER); CHAIN: C, D;	ENGRAILED HOMEODOMAIN; CHAIN: A, B; DNA (20-MER); CHAIN: C, D;	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F:
SeqFold	score										
PMF	score		0.36	0.24	0.48	0.90	0.17	0.04	0.80	0.58	0.11
Verify	score		-0.22	-0.24	90.0	-0.00	-0.06	-0.31	0.13	-0.10	-0.18
-ISI	BLAST		5.1e-28	5.1e-28	1.2e-21	3.4e-21	le-27	8.5e-31	1.7e-21	3.4e-21	5.1e-31
End	AA		156	153	152	149	153	155	152	151	154
Start	ΑA		66	66	86	86	86	101	66	86	66
Chain	A	-~	٧	¥	ø				Α .	æ	∢
PDB	8		1672	168i	1du0	lenh	Z	Isan	2hdd	2hdd	9ant
SEQ	ВŜ		698	698	698	698	698	698	698	698	698

PCT/US01/27760

PDB annotation	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	COMPLEX (DNA-BINDING PROTEIN/DNA) GHF-1; COMPLEX (DNA-BINDING PROTEIN/DNA), PITUITARY, CPHD, 2 POU DOMAIN, TRANSCRIPTION FACTOR	PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	DNA-BINDING PROTEIN ISL-1HD DNA- BINDING PROTEIN, HOMEODOMAIN, LIM DOMAIN	DNA-BINDING PROTEIN ISL-1HD DNA- BINDING PROTEIN, HOMEODOMAIN, LIM DOMAIN	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS 1CTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN
Compound	QCRP2 (LIM1); CHAIN: NULL;	QCRP2 (LIMI); CHAIN: NULL;	QCRP2 (LIM1); CHAIN: NULL;	PIT-1; CHAIN: A, B; DNA; CHAIN: C, D;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	INSULIN GENE ENHANCER PROTEIN ISL-1; CHAIN: NULL;	INSULIN GENE ENHANCER PROTEIN ISL-1; CHAIN: NULL;	AVIAN CYSTEINE RICH PROTEIN; 1CTL 3	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	AVIAN CYSTEINE RICH PROTEIN; 1CTL 3	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2; CHAIN: A;	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2; CHAIN: A;
SeqFold score						50.75	,					
PMF score	0.17	0.58	1.00	0.98	0.99		0.84	0.54	0.07	0.83	0.41	0.65
Verify score	-0.26	-0.24	0.06	0.36	0.38		0.11	0.13	-0.43	-0.22	0.11	0.14
PSI- BLAST	6.8e-14	1.8e-20	7.2e-12	9e-22	9e-11	5.4e-21	5.4e-21	3.6e-18	3.4e-14	1.8e-12	5.4e-18	1.7e-11
End AA	92	92	151	221	223	225	222	87	101	150	& &	88
Start AA	34	36	94	146	163	160	163	34	36	96	34	35
Chain 1D				4	∢						<	4
PDB ID	1a7i	1a7i	1a7i	lau7	1672	lbw5	1bw5	let	lotl	To:	lcx	lcxx
SEQ ID NO:	876	876	876	876	876	876	876	928	928	876	876	876

													1
PDB annotation	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	TRANSCRIPTION/DNA HOMEOTIC PROTEIN ENGRAILED, SEGMENTATION POLARITY HOMEODOMAIN, DNA- BINDING PROTEIN, PROTEIN-DNA COMPLEX	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX, TRANSCRIPTION 2 REGULATION	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX, TRANSCRIPTION 2 REGULATION	DNA BINDING PROTEIN TTF-1 HD; 1FTT 8 DNA BINDING PROTEIN, HOMEODOMAIN, TRANSCRIPTION FACTOR 1FTT 19	METAL-BINDING PROTEIN CRIP, METAL- BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRIP, METAL- BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRIP, METAL- BINDING PROTEIN, LIM DOMAIN PROTEIN	COMPLEX (HOMEODOMAIN/DNA) VND/NK-2 HOMEODOMAIN, VENTRAL NERVOUS SYSTEM HOMEODOMAIN, HOMEOBOX, DNA-BINDING PROTEIN, EMBRYONIC 2 DEVELOPMENT, COMPLEX (HOMEODOMAIN/DNA)	DNA-BINDING PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL-BINDING PROTEIN	TOXIN BINDING PROTEIN TWO	
Compound	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2; CHAIN: A;	ENGRALLED HOMEODOMAIN; CHAIN: A, B; DNA (5'- CHAIN: C; DNA (5'- CHAIN: D;	PAIRED PROTEIN; CHAIN: A, B, C; DNA; CHAIN: D, E, F	PAIRED PROTEIN; CHAIN: A, B, C; DNA; CHAIN: D, E, F	THYROID TRANSCRIPTION FACTOR I HOMEODOMAIN; IFTT 6 CHAIN: NUIL; IFTT 7	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	HOMEOBOX PROTEIN VND; CHAIN: P; DNA; CHAIN: A, B;	OCT-3; 1OCP 5 CHAIN: NULL; 10CP 6	LASP-1; CHAIN: NULL;	TOLB PROTEIN: CHAIN: A:	
SeqFold score													
PMF score	1.00	00:1	1.00	1.00	0.82	0.54	0.81	0.95	0.95	66.0	0.43	0.52	
Verify score	-0.40	0.86	09.0	0.55	0.41	0.02	0.33	-0.18	0.57	0.56	-0.15	0.07	
PSI- BLAST	1.1e-11	3.6e-11	5.4e-15	1.8e-15	9e-11	3.6e-26	5.1e-14	5.4e-11	9e-11	1.3e-21	6.8e-06	0.0018	
End	151	219	222	219	227	105	8	150	225	219	19	1283	
Start AA	94	164	163	163	163	34	34	94	163	163	34	1075	
Chain ID	4	æ	4	æ					<u>α</u> ,			▼	
PDB UD	lcxx	ldu0	181	191	푠	Imi	liml	liml	1nk2	locp	lzfo	Terz	
SEQ D	NO:	876	876	876	928	928	876	876	876	928	928	282	

SEQ PDB ID ID NO:	Chain ID	Start	End	PSI- BLAST	Verify	PMF	SeqFold score	Compound	PDB annotation
									DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD
lorz	٧	1206		3.4e-06	0.58	0.07		TOLB PROTEIN; CHAIN: A;	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD
lerj	4	1012	1315	3.4e-60	0.39	0.55		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
lerj	4	1092	1433	6.8e-57	0.49	0.82		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
1erj	Ą	1186	1483	3.4e-57	0.10	-0.11		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
lerj	4	1234	1574	8.5e-59	60'0	61.0-		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
lerj	V	957	1277	5.1e-54	60'0	92'0		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTION INHIBITOR BETA- PROPELLER
1got	а	1010		1.26-71	09.0	1.00		GT-ALPHA/GI-ALPHÁ CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION
1got	B	949		6.8e-52	0.39	0.27		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION
2mta	н	1178	1250	0.0058	-0.07	0.25		ELECTRON TRANSPORT METHYLAMINE DEHYDRÓGENASE (E.C.1.4.99.3) COMPLEX WITH 2MTA 3 AMICYANIN AND CYTOCHROME C5511 2MTA 4	
1d8d	A	23	400	1.7e-35	-0.61	0.03		FARNESYLTRANSFERASE (ALPHA SUBUNIT), CHAIN: A;	TRANSFERASE FTASE; FTASE; FTASE, PFT, PFTASE, FARNESYLTRANSFERASE,

· ·		······································						
PDB annotation	FARNESYL 2 TRANSFERASE, CAAX, RAS, CANCER	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE FTASE; FTASE; FTASE, PFT, PFTASE, FARNESYLTRANSFERASE, FARNESYL 2 TRANSFERASE, CAAX, RAS, CANCER	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	OXIDOREDUCTASE FERROCYTOCHROME C:OXYGEN OXIDOREDUCTASE; OXIDOREDUCTASE, CYTOCHROME(C)- OXYGEN, CYTOCHROME C 2 OXIDASE	OXIDOREDUCTASE FERROCYTOCHROME C.OXYGEN OXIDOREDUCTASE; OXIDOREDUCTASE, CYTOCHROME(C)-OXYGEN, CYTOCHROME C 2 OXIDASE	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR
Compound	FARNESYLTRANSFERASE (BETA SUBUNIT); CHAIN: B; K-RAS4B PEPTIDE SUBSTRATE; CHAIN: P;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	FARNESYLTRANSFERASE (ALPHA SUBUNIT); CHAIN: A; FARNESYLTRANSFERASE (BETA SUBUNIT); CHAIN: B; K-RAS4B PEPTIDE SUBSTRATE; CHAIN: P;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D;	CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q	HEMOLIN; CHAIN: A, B;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;
SeqFold score		·	•		61.47		77.07	
PMF score		0.37	0.03	0.37		06.0		0.34
Verify score		-0.45	-0.61	-0.45		-0.47		-0.29
PSI- BLAST		1e-20	1.7e-35	1e-20	5.1e-21	5.1e-21	3.4e-41	3.4e-47
End		327	400	327	63	62	446	348
Start AA		57	23	57	17	18	40	144
Chain ID		V	4	V	H	T	A	ပ
EDB CI		Idce	148d	Idce	2000	20cc	1bih	lcvs
SEQ EQ		883	884	884	988	988	688	888

PDB Chain Start End ID ID AA AA	Start AA	End		PSI- BLAST	Verify score	PMF	SeqFold score	Compound	PDB annotation RECEPTOR
levs D 144 348 3.4e-44 -0.39 0.37	348 3.4e-44 -0.39	3.4e-44 -0.39	-0.39		0.3			FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	RECEPTOR. RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR
levs D 30 231 1.4e-30 -0.21 0.	231 1.4e-30 -0.21	1.46-30 -0.21	-0.21	-	o i	90:00		FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR
lev2 E 145 348 5.1e-39 -0.54 0.	348 5.1e-39 -0.54	5.1e-39 -0.54	-0.54		o	0.03		FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD
lev2 G 145 352 5.1e-42 -0.38 0.	352 5.1e-42 -0.38	5.1e-42 -0.38	-0.38		o	0.12		FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD
levt C 141 348 6.8c-43 -0.30 0.	348 6.86-43 -0.30	6.8e-43 -0.30	-0.30		0	0.10		FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD
1fhg A 237 348 6.8e-15 0.22 0	348 6.8e-15 0.22	6.8e-15 0.22	0.22		0	69.0		TELOKIN; CHAIN: A	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREL
1fng A 30 133 5.1e-16 0.34 0	133 5.Te-16 0.34	5.1e-16 0.34	0.34		9	0.10		TELOKIN; CHAIN: A	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD; BETA BARREL
562 1.8e-34 0.55	562 1.8e-34 0.55	1.8e-34 0.55	0.55		ו כו	96.0		TOLL-LIKE RECEPTOR 1; CHAIN: A;	SIGNALING PROTEIN BETA-ALPHA-BETA FOLD PARALLEL BETA SHEET
1fyx A 400 557 1.8e-26 0.01 (557 1.8e-26 0.01	1.8e-26 0.01	0.01	٦	~	0.80		TOLL-LIKE RECEPTOR 2; CHAIN:	SIGNALING PROTEIN BETA-ALPHA-BETA

			JN, C		ror)	Marca	KOLEIN,	OR)		TOR)		KOTEIN,	OK)		ror)	Crew	LEX	(OR)			IN. NEXTMS:	TEIN,	BRAIN, 2	LTERNATIVE	E PKOIEIN	OGLOBULIN		OGLOBULIN)		
PDB annotation			IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN, V REGION, C REGION, HINGE REGION	COMPLEX	(IMMUNOGLOBULIN/RECEPTOR)	IMMUNOGLOBULIN FOLD,	I KAINSMEMBKANE, GLI COPKOI ELN, BECEBTOB 2 SICNAI COMBI EV	RECEPTOR, 2 SIGNAL, COMPLEX (IMMUNOGLOBULIN/RECEPTOR)	COMPLEX	(IMMUNOGLOBULIN/RECEPTOR)	IMMUNOGLOBULIN FOLD,	IKANSMEMBKANE, GLYCOPROTEIN,	RECEPTOR, 2 SIGNAL, COMPLEX (IMMUNOGLOBULIN/RECEPTOR)	COMPLEX	(IMMUNOGLOBULIN/RECEPTOR)	IMMUNOGLOBULIN FOLD,	RECEPTOR, 2 SIGNAL, COMPLEX	(IMMUNOGLOBULIN/RECEPTOR)			MUSCLE PROTEIN CONNECTIN, NEXTMS;	CELL ADHESION, GLYCOPROTÉIN,	TRANSMEMBRANE, REPEAT, BRAIN, 2	IMMUNOGLOBULIN FOLD, ALTERNATIVE	SPLICING, SIGNAL, 3 MUSCLE PROTEIN	(MAMUNORECEPTOR/IMMUNOGLOBULIN)	COMPLEX	(IMMUNORECEPTOR/IMMUNOGLOBULIN)		
		FOLD	IMIN	Ő	8		Z Z		ව්	E E		\$ E	38	ව්			2 E	(IM)			NE SE	CEL	\$				Ś	Œ		
Compound		A;	IGGI INTACT ANTIBODY MAB61.1.3; CHAIN: A, B, C, D	INTERLEUKIN-1 BETA: CHAIN: A:	TYPE 1 INTERLEUKIN-1	RECEPTOR; CHAIN: B;			INTERLEUKIN-1 BETA; CHAIN: A;	TYPE 1 INTERLEUKIN-1	RECEPTOR; CHAIN: B;			INTERLEUKIN-1 BETA; CHAIN: A;	TYPE 1 INTERLEUKIN-1	RECEPTOR; CHAIN: B;			IMMUNOGLOBULIN IMMINOGLOBULIN	(MCG) WITH A HINGE DELETION	TITIN: CHAIN: NULL:				NIS AI PHA-BETA T-CELI	RECEPTOR: CHAIN: A. B. C. D:	H57 FAB; CHAIN: E, F, G, H		MUSCLE PROTEIN TITIN MODIII B M5 (CONNECTIN) 1TNM	3 NWR. MINIMIZED AVERAGE
SeqFold	score		66.45	164.52															80.65											
PMF	score								1.00					1.00							0.12				0.05	3			0.29	
Verify	score		•		1	•			-0.13					-0.18		_				_	-0.13				-0.30	2			-0.49	
PSI-	BLASI		3.4e-30	3.6e-47	:				3.6e-47					5.1e-40					le-32	-	1.7e-16				3.40-15	-			1.7e-16	
End	AA		446	356	3				346				-	350					446		232	}			243	}			232	
Start	¥		36	14	:				46					73					77	-	147				071	È	•		147	
Chain	2		m	~					В					Д					н						0					
PDB	3		ligy	1					lith					1itb					Imco		Inct				126			ļ	Itum	
SEQ	Αġ		889	880	}				889					688					688		880				000	200			688	

PCT/US01/27760

ا این ا	Start End	d PSI-	F. Verify		SeqFold	Compound STRUCTURE) 1TNM 4 1TNM 58	PDB annotation
404		3.6e-65	55 0.01	-0.07		RHODOPSIN; CHAIN: A, B	SIGNALING PROTEIN PHOTORECEPTOR, G PROTEIN-COUPLED RECEPTOR, MEMBRANE PROTEIN, 2 RETINAL PROTEIN, VISUAL PIGMENT
215 313	 	5.1e-09	0.10	-0.06		DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H. I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: I, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
123		6.8e-09	0.10	-0.20		FIBRILLIN; CHAIN: NULL;	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX
105	-	1.7e-09	0.10	-0.07		LOW-DENSITY LIPOPROTEIN RECEPTOR, CHAIN: A;	LIPID BINDING PROTEIN LDL RECEPTOR; BETA HAIRPIN, 3-10 HELIX, CALCIUM BINDING
215 313 5.		5.1e-09	-0.03	0.03		BLOOD COAGULATION FACTOR VIIA; CHAIN: I.; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: I; 5L15; CHAIN: I;	BLOOD CLOTTING COMPLEX(SERINE PROTEASE(COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE(COFACTOR/LIGAND), BLOOD CLOTTING
179 236 3.	 	3.4e-08	0.13	-0.19	-	METALLOTHIONEIN METALLOTHIONEIN ISOFORM II 4MT2 3	
_	_	6.8e-14		-0.19		LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	
172 304 1	П	1.4e-09	0.03	-0.19		LECTIN (AGGLUTININ) WHEAT	

$\overline{}$					_
PDB annotation					
Compound		GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN - 2) 9WGA 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	
SeqFold	score				
PMF	score		-0.19	-0.05	
Verify	score		0.22		
PSI- Verify PMF SeqFold	BLAST		185 3.4e-19 0.22	253 8.5e-18 0.14	
End	¥¥		185	253	
Start	ΑA		m	74	
Chain	<u>e</u>		¥	4	
PDB	A		9wga	9wga	
SEO	e Š		892	892	

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE 6

SEQ ID NO:	Position of Signal Peptide	Maximum Score	Mean Score
447	1-18	0.984	0.928
448	1-30	0.937	0.671
450	1-26	0.976	0.902
452	1-21	0.973	0.927
453	1-16	0.881	0.748
459	1-47	. 0.981	0.720
461	1-40	0.957	0.708
464	1-26	0.908	0.748
465	1-15	0.986	0.828
467	1-18	0.986	0.971
468	1-19	0.916	0.649
469	1-27	0.954	0.804
470	1-37	0.992	0.827
471	1-17	0.949	0.860
472	1-35	0.978 ·	0.702
473	1-35	0.990	0.881
474	1-47	0.990	0.833
477	1-19	0.966	0.845
479	1-20	0.944	0.721
504	1-30	0.937	0.671
523	1-26	0.976	0.902
527	1-23	0.978	0.911
536	1-26	0.982	0.944
564	1-20	0.973	0.927
565	1-16	0.881	0.748
600	1-21	0.985	0.885
645	1-47	0.981	0.720
647	1-23	0.975	0.886
698	1-26	0.908	0.748
702	1-25	0.972	0.930
702	1-35	0.974	0.788
706	1-37	0.969	0.747
715	1-15	0.986	0.828
731	1-13	0.986	0.971
732	1-20	0.978	0.824
742	1-19	0.916	0.649
742	1-13	0.956	0.798
	1-27		0.804
748 766	1-27	0.954 0.949	0.860
	1-17	0.949	0.702
786	1-35		0.702
797		0.989	0.785
805	1-32 1-47	0.980	0.783
815		0.990	
836	1-48	0.969	0.712
840	1-22	0.997	0.951
845	1-19	0.953	0.798
856	1-43	0.973	0.682
858	1-23	0.974	0.873
867	1-25	0.988	0.888
889	1-16	0.964	0.890
891	1-19	0.966	0.845

TABLE 7

SEO ID NO.	Character 11 and 12
SEQ ID NO:	Chromosomal Location
1	2
2	22q12
3	12
4	12
5	13
6	15
7	15
8	11
9	1
10	22cen-q12.3
11	19
12	14
13	19
14	3
15	17q21.3-q22
16	22q13.2
. 17	22q13.2
` 18	16
19	11
20	14q32.33
21	14q32.33
22	22cen-q12.3
24	14q32.1
25	14
26	4
27	17
28	16
29	16
30	6p12
31	10
32	17
33	6
34	8
35	5q35.3
36	17p12-p11.2
37	12
38	18p11.23-p11.21
39	8
40	10
42	12p13
43	8p11
44	12
	7pi5-p14
45	7p13-p14
46	11q24
7/	2p24.1
	10
50	10
51	10pter-q26,12
52	19
53	5 4
54 55	4
55	14
56	17
57	19q13.2

SEQ ID NO:	Chromosomal Location	
58	20q13.12-13.13	
59	2p23.3-q14.3	
60	19	
61	11	
62	19q13.4	
64	4q31.2-q31.3	
66	12	
67	13q34	
68	12p11	
69	1	
70	17	
71	5	
72	14q11.2	
73	19p13.1	
74	14q	
75	3	
76	5	
77	17q22-q24	
78	2	
80	1p36.3-p36.2	
81	17	
82	15	
83	17	
84	15	
86	11p13	
87	11p13	
88	2p23.3-q34	
89	6	
90	Xq22	
91	15q11.2	
92	15q11.2	
93	14	
94	2p23.3-q31.1	
95	6p21.2-21.3	
96	4	
97	5	
98	16	
99	9	
100	1p32-p31	
101	6	
102	2p23.3-q14.3	
103	6q14.3-q15	
104	6q14.3-q15	
105	19p12	
106	16	
107	1	
108	2	
109	18	
110	3p21.1-9	
111	17	
112	20pter-p12.3	
113	11q14	
114	15	
115	3	
116	12q13	
117	8pter-8p23.3	
	227	

118	SEQ ID NO:	Chromosomal Location	
119		4a34_a35	
120 X 12q13 12q13 12q13 122 1p 123 16p13.1 17 125 10cen-q26.11 11 126 11 127 20p13-p12 228 2p11.2 128 2p11.2 129 4q32.1-q32.3 130 4 4 131 14 14 15 15 15 15 15 1		21021	
12 13 14 13 14 13 14 13 14 13 14 13 13 14 13 13 14 13 13 14 13 13 14 13 13 13 14 13 13 13 13 14 15 13 13 13 14 18 13 13 14 18 13 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15		X	
122 1p 123 16p13.1 124 17 125 10cen-q26.11 126 11 127 20p13-p12 128 2p1.2 129 4q22.1-q32.3 130 4 132 6q14.2-q16.1 133 3 3 3 3 3 3 3 3			
123		1n	
124		16n13.1	
125			
126 11 127 20p13-p12 128 2p11.2 129 4q32.1-q32.3 130 4 131 14 132 6q14.2-q16.1 133 3 134 8 135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21-1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 <			
127			
128 2p11.2 129 4q32.1-q32.3 130 4 131 14 132 6q14.2-q16.1 133 3 134 8 135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1			
130		2n11 2	
130	129	4032 1-032 3	
131 14 132 6q14.2-q16.1 133 3 134 8 135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 7q21.2-q31.1 157 157 1q21-q23 158 14 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 1		A	
132 6q14.2-q16.1 133 3 134 8 135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q1.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 <td></td> <td></td>			
133 3 134 8 135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q22-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 175 1 176 3 177 1			
134 8 135 19 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 147 7 7 149 150 151			
135 19 136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 176 3 177 1			
136 1q25 138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
138 17p13.1 139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 6 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 176 3 177 1			
139 12 140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 175 18 176 3 177 1		17-12 1	
140 15 141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
141 9 142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
142 4 143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		. 15	
143 12 144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21-q23 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
144 20 145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
145 21q22.11 146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
146 11 147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 177 1			
147 7 149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		21q22.11	
149 7 150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
150 X 151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
151 15 152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
152 19 153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
153 2 154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
154 7p21-p22 155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
155 7q21.2-q31.1 157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
157 1q21-q23 158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		/pZ1-pZ2	
158 14 159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		/q21.2-q31.1	
159 17q21 160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		1q21-q23	
160 7q31-q32 161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
161 12q22 162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		7/921	
162 14q21.1-q21.3 163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		/(31-432	
163 1 164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1		1/20/1	
164 6 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
164 0 165 17 166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
166 1 167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1	104		
167 2 168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
168 10q24.3 169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
169 15 170 x 171 8 172 18 173 3 175 18 176 3 177 1			
170 x 171 8 172 18 173 3 175 18 176 3 177 1			
171 8 172 18 173 3 175 18 176 3 177 1			
172 18 173 3 175 18 176 3 177 1			
173 3 175 18 176 3 177 1			
175 18 176 3 177 1			
176 3 177 1			
177 1			
	177		

SEQ ID NO:	Chromosomal Location	
178	2q12-q21	
179	16	
180	17	
181	11q12-q13	
182	16	
183	17	
184	15q11.2	
185	12	
186	9q32-q34.1	
187	17q11-q21.3	
188	1	
189	1p34.1-p32	
190	10	
191	6p21	
192	16	
193	2q24.2	
194	4	
195	10cen-q26.11	
196	4q31.2-q31.3	
197	8q24.3	
198	3q26.1-q26.2	
199	16p13.3	
201	6p11.2-p21.1	
202	17q21	
203	2	
204	7	
205	5	
206	14q11-q12	
207	22q13.1-q13.2	
208	20q13.2-q13.3	
209	17	
210	1p36.11-36.23	
211	5	
212	3	
214	17	
216	11	
217	1	
218	1	
219	Xp11.21-Xp11.23	
220	12	
221	2	
222	11cen-11q12.3	
223	6	
224	6	
225	15	
226	22q13.1	
227	22q13.1	
228	22q13.1 22q12	
229	22q12	
230	1q25-q31	
231	4q25-q31 4q25-q27	
232	14	
232	3p25.3-3p24.1	
233	3p25.3-3p24.1 3p25.3-3p23	
234		
235	15	
<u> </u>	220	

SEQ ID NO:	Chromosomal Location	
238	X	
239	5q31.1	
240	17	
242	5q	
243	8q22.2-q23	
244	22	
245	14	
246	17	
247	17	
248	22q12.1	
249	14	
250	9	
251	11q24-q25	
252	17q12	
253	17	
255	2p24.3-p24.1	
256	3p21.3	
257	21q22.3	
258	19p13-q13.4	
259	11	
260	Xq13.1	
261	6	
262	17	
263	12q	
264	4p16.1-p14	
265	10p11.2	
266	4	
267	2p12	
268	11cen-q12.1	
269	3	
270	11	
271	8	
272	11p15.3	
273	11 15 2	
274 275	11p15.3 2p23.3-q21.3	
2/3	ZDZ3.3-QZ1.3	
276	18	
276 277	18 7	
276 277 278	18 7 10q22.3-q23.2	
276 277 278 279	18 7 10q22.3-q23.2 10q22.3-q23.2	
276 277 278 279 280	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22	
276 277 278 279 280 282	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19	
276 277 278 279 280 282 283	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17	
276 277 278 279 280 282 283 284	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3	
276 277 278 279 280 282 283 284 285	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3	
276 277 278 278 279 280 282 283 284 285 286	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3	
276 277 278 279 280 282 283 284 285	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2	
276 277 278 278 279 280 282 283 284 285 286	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1	
276 277 278 278 279 280 282 283 284 285 286 287	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1	
276 277 278 278 279 280 282 283 284 285 286 287 288	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11	
276 277 278 278 279 280 282 283 284 285 286 287 288 289	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22	
276 277 278 278 279 280 282 283 284 285 286 287 288 289 290	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22 4	
276 277 278 278 279 280 282 283 284 285 286 287 288 289 290 291	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22 4 1	
276 277 278 278 279 280 282 283 284 285 286 287 288 289 290 291 292	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22 4 1 1	
276 277 278 278 279 280 282 283 284 285 286 287 288 289 290 291 292 293	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
276 277 278 278 279 280 282 283 284 285 286 287 288 289 290 291 292	18 7 10q22.3-q23.2 10q22.3-q23.2 8p22 19 17 3 6p21.3 14q11.2 1 15 10cen-q26.11 22 4 1 1	

SEQ ID NO:	. Chromosomal Location	
299	19	
300	4q13-q21	
302	22q11.2	
303	9	
304	3p13-q26.1	
305	6q22.2-q22.33	
306	17	
307	17	
308	19p13.1	
309	17	
310	12	
311	17	
313	3	
314	15	
315	15	
316	14	
317	10	
318	2p24.3-p24.1	
319	17	
320	4	
321	5q14	
323	9	
324	3p21	
325	1	
326	q13.1-13.2	
327	17	
329	2p14-p13	
330	19pter-q12	
331	20q11.1-q11.2	
332	10	
333	6q15-q16.1	
335	11q11 22	
337		
338	7p13-p11.2 12q13	
339	11p15.5-p15.4	
340	4	
341	11p15.5	
342	7	
343	22q12.1-q12.3	
344	12q12-q13	
345	18	
346	16	
347	20	
349	12	
350	4	
. 351	6	
352	19	
353	17	
354	15	
355	3	
356	14q24.3	
357	19	
358	11q13.5-q14.1	
359	Xq25-26.1	
360	19	

19 364 5 5 365 365 366 37 367 367 367 368 370 369 369 369 370 371 369 372 374 374 374 375 376 377 376 377 378 378 379 370	SEQ ID NO:	Chromosomal Location	
364 5 365 11p15 366 17 367 10 368 17 369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 385 1q21 384 17 385 1ip15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q1.2 403 29q13.3 395 4 397 14q1.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 407 15 408 3q27			
365 11p15 366 17 367 10 368 17 369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 383 1q21 384 17 385 1p5 390 1g 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 400 22q13.1-q13.2 40 16 402 22q13.3 395 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q12.1.3 407 15		5	
366 17 367 10 368 17 369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 426 3q21 427 15			
367 10 368 17 369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 339 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 4 397 14q11.2 400 22q13.1-q13.2 401 16 402 22q3.1-q13.2 408 3q27 409 22q12.2-13.3 401 16 413 2 417 7q21 418 11q23 420 12q12-q13 417 7q21 418 11q23 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2			
368 17 369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 382 381 17 384 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 400 22q13.4-q13.2 401 16 402 22q13.2-q13.3 406 22q11.2 407 15 408 3q27 409 22q12.2-13.1 411 16 415 12 417 7q21 418 11q23<			
369 14q32 370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 6 379 21p11 380 381 17 383 1q21 384 17 386 2 389 1p15.5 390 19 391 4 492 7p15.3-p21 394 20q13.3 395 4 4399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 </th <th></th> <th></th>			
370 1 372 11 374 11q13 375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 386 2 389 1p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 403 22q13.3 404 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q1.23 407 15 3408 3q27 409 22q1.23 407 15 408 3q27 409 22q1.2-13.1 411 16 415 12 417 7q21			
372 11 374 11q13 375 17 376 16 377 2 378 6 6 379 21p11 380 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 4392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 </th <td></td> <td></td>			
374 11q13 376 16 377 2 378 6 379 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 4397 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 </th <td></td> <td></td>			
375 17 376 16 377 2 378 6 379 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 4392 7p15.3p21 394 20q13.3 395 4 4399 14q11.2 400 22q13.1q13.2 401 16 402 22q13.2q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12			
376 16 377 2 378 6 379 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 4397 14q11.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p1.23-p11.21 434			
377 2 378 6 379 2lpl1 380 X 381 17 383 lq21 384 17 386 2 389 1lpl5.5 390 19 391 4 4392 7p15.3-p21 394 20q13.3 395 4 397 14q1.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21			
378 6 379 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q1.23 407 15 408 3q27 409 2q12.2-13.1 411 16 413 2 417 7q21 418 11q23 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
379 21p11 380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q1.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429			
380 X 381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 4399 14q11.2 400 22q13.2-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21-q212 426 21q21-q212 427 429 15 3q21 425			
381 17 383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 X 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
383 1q21 384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 400 22q13.2-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432			
384 17 386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 435 16 436 17 439 6			
386 2 389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436			
389 11p15.5 390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q1.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		17	
390 19 391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 399 14q1.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
391 4 392 7p15.3-p21 394 20q13.3 395 4 397 14q11.2 398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 X 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
392 7p15.3-p21 394 20q13.3 397 14q11.2 398 4 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
394 20q13.3 395 4 397 14q11.2 398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q2.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
395 4 397 14q1.2 398 4 399 14q1.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
397 14q11.2 398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		4	
398 4 399 14q11.2 400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	397	14q11.2	
400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 X 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
400 22q13.1-q13.2 401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	399	14q11.2	
401 16 402 22q13.2-q13.3 406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		22q13.1-q13.2	
406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	401	16	
406 22q11.23 407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		22q13.2-q13.3	
407 15 408 3q27 409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 X 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	406	22q11.23	
409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	407	15	
409 22q12.2-13.1 411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	408	3q27	
411 16 413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	409		
413 2 415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	411		
415 12 417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6	413		
417 7q21 418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
418 11q23 420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
420 12q12-q13 421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
421 14 422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
422 X 423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
423 12 424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		x	
424 3q21 425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		12	
425 21q21.1-q21.2 429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
429 15 430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6			
430 9q34.3 431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		21421.1-421.2	
431 x 432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		0024 2	
432 2 433 18p11.23-p11.21 434 16 435 16 436 17 439 6		7434.3	
433 18p11.23-p11.21 434 16 435 16 436 17 439 6		<u> </u>	
434 16 435 16 436 17 439 6			
435 16 436 17 439 6	433	10011.23-011.21	
436 17 439 6			
439 6		16	
	439		

Chromosomal Location	
5q14	
2q33-q34	
17	
Xq22.2-q22.3	
5p15.1-p14	
9q34	

TABLE 8

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
1	447	6
2	448	7
3	449	8
4	450	9
5	451	12
6	452	13
7	453	14
8	454	15
9	455	16
10	456	18
11	457	20
12	458	21
13	459	22
14	460	23
15	461	24
16	462	26
17	463	27
18	464	28
19	465	29
20	466	30
21	467	31
22	468	32
23	469	33
24	470	34
25	471	35
26	472	37
27	473	38
28	474	40
29	475	41
30	476	46
31	477	48
32	478	49
33.	479	50
34	480	51
35	481	52
36	482	53
37	483	54
38	484	55
39	485	56
40	486	57
41	487	58
42	488	59
. 43	489	60
44	490	61
45	491	62
46	492	63
47	493	64
48	494	65
49	495	66
50	496	67
51	497	68
52	498	69
53	499	70

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
54	500	71
55	501	72
56	502	73
57	503	74
58	504	75
59	505	76
60	506	77
61	507	78
62	508	79
63	509	80
64	510	82
65	511	83
66	512	84
67	513	85
68	514	86
69	515	88
70	516	89
71	517	90
72	518	91
73	519	92
74	520	93
75	521	94
76	522	95
77	523	96
78	524	97
79	525	98
80	526	99
81	527	100
82	528	101
83	529	102
84	530	103
85	531	104
86	532	105
87	533	106
88	534	107
89	535	108
90	536	109
91	537	110
92	538	111
93	539	112
94	540	113
95	541	114
96	542	115
97	543	116
98	544	117
99	545	118
100	546	119
101	547	120
102	548	121
103	549	124
104	550	125
105	551	126
106	552	127
107	553	128
108	554	129

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
109	555	130
110	556	131
111	557	132
112	558	133
113	559	134
114	560	135
115	561	136
116	562	137
117	563	138
118	564	139
119	565	140
120	566	141
121	567	142
122	568	143
123	569	- 144
124	570	146
125	571	147
126	572	148
127	573	149
128	574	, 150
129	575	151
130	576	152
131	577	153
132	578	154
133	579	155
134	580	156
135	581	157
136	582	158
137	583	160
138	584	161
139	585	162
140	586	163
141	587	164
142	588	165
143	589	166
144	590	167
145	591	168
146	592	169
147	593	170
148	594	171
149	595	172
150	596	173
151	597	174
152	598	175
153	599	176
154	600	177
155	601	178
156	602	179
157	603	180
157	604	181
159	605	182
160		183
	606	
161	607	184
162	608	185
163	609	186

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
164	610	187
165	611	188
166	612	189
167	613	190
168	614	191
169	615	192
170	616	193
171	617	194
172	618	196
173	619	197
174	620	198
175	621	199
176	622	200
177	623	201
178	624	202
179	625	203
180	626	205
181	627	206
182	628	207
183	629	208
184	630	209
185	631	210
186	632	211
187	633	212
188	634	213
. 189	635	214
190	636	215
191 192	637 638	216 217
193	639	217
404	640	219
194 .	641	220
196	642	220
197	643	223
198	644	224
199	645	225
200	646	226
201	647	227
202	648	228
203	649	229
204	650	230
205	651	231
206	652	232
207	653	233
208	654	234
209	655	. 235
210	656	236
211	657	237
212	658	238
213	659	240
214	660	241
215	661	243
216	662	244
217	663	245
218	664	246

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
219	665	247
220	666	248
221	667	249
222	668	250
223	669	251
224	670	252
225	671	253
226	672	254
227	673	255
228	674	256
229	675	257
230	676	258
231	677	259
232	678	260
233	679	261
234	680	262
235	681	263
236	682	264
237	683	265
238	684	266 .
239	685	267
240	686	268
241	687	269
242	688	270
242	689	270
244	690	271
	691	273
245		
246	692	274
247	693	275
248	694	276
249	695	277
250	696	278
251	697	279
252	698	280
253	699	281
254	700	282
255	701	283
256	702	284
257	703	285
258	704	286
259	705	287
260	706	288
261	707	289
262	708	290
263	709	291
264	710	292
265	711	293
266	712	294
267	713	296
268	714	297
269	715	298
270	716	299
271	717	300
272	717	301
1 '7'1')		

В

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
274	720	303
275	721	304
276	722	305
277	723	. 306
278	724	307
279	725	308
280	726	309
281	727	310
282	728	312
283	729	314
284	730	315
285	731	316
286	732	317
287	733	318
288	734	319
289	735	320
290	736	321
291	737	322
292	738	323
293	739	324
294 295	740	325
	741	326
296 297	742 743	327
298	744	328
298	745	330
300	746	331
301	747	332
302	748	333
303	749	334
304	750	335
305	751	337
306	752	338
307	753	339
308	754	340
309	755	341
310	756	342
311	757	343
312	758	344
313	759	345
314	760	346
315	761	347
316	762	348
317	763	350
318	764	351
319	765	352
320	766	353
321	767	354
322	768	355
323	769	356
324	770	357
325	771	358
326	772	359
327	773	360
328	774	361

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
329	775	362
330	776	363
331	777	364
332	778	365
333	779	366
334	780	367
335	781	368
336	782	369
337	783	370
338	784	371
339	785	372
340	786	373
341	787	375
342	788	376
343	789	377
344	790	378
345	791	379
346	792	380
347	793	381
348	794	382
349	795	383
350	796	384
351	797	385
352	798	386
353	799	387
354	800	388
355	801	389
356	802	390
357	803	391
358	. 804	392
359	805	393
360	806	394
361	807	395
362	808	396
363	809	397
364	810	398
365	811	399
366	812	400
367	813	401
368	814	402
369	815	403
370	816	404
371	817	405
372	818	406
373	819	407
374	820	408
375	821	409
376	822	410
377	823	411
378	824	412
379	825	412
380	826	414
381	827	415
382	828	416
383		417
	829	41/

SEQ ID NO: of Full-length	SEQ ID NO: of Full-	SEQ ID NO: in Priority
Nucleotide Sequence	length Peptide Sequence	Application USSN 09/687,527
384	830	418
385	831	419
386	832	420
. 387	833	421
388	834	422
389	835	423
390	836	424
391	837	425
392	838	426
393	839	427
394	840	428
395	841	429
. 396	842	430
397	843	431
398	844	432
399	845	433
400	846	434
401	847	435
402	. 848	436
403	849	438
404	850	439
405	851	440
406	852	441
407	853	442
408	854	443
409	855	444
410	856	445
411	857	446
412	858	447
413	859	448
414	860	449
415	861	450
416	862	451
417	863	452
418	864	453
419	865	454
420	866	455
421	867	456
422	868	457
423	869	458
424	870	459
425	871	. 460
426	872	461
427	873	462
428	874	463
429	875	464
430	876	465
431	877	467
432	878	468
433	879	469
434	880	470
435	881	471
436	882	472
437	883	473
437		474
438	884	<u> </u>

SEQ ID NO: of Full-length Nucleotide Sequence	SEQ ID NO: of Full- length Peptide Sequence	SEQ ID NO: in Priority Application USSN 09/687,527
439	885	475
440	886	476
441	887	477
442	888	478
. 443	889	479
444	890	480
445	891	481
446	892	482

WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-446, a mature protein coding portion of SEQ ID NO: 1-446, an active domain coding portion of SEO ID NO: 1-446, and complementary sequences thereof.

5

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 10 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
 - 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.

15

- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.

- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting30 of:
 - a polypeptide encoded by any one of the polynucleotides of claim 1;
 and

(b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-446.

11. A composition comprising the polypeptide of claim 10 and a carrier.

5

10

20

- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
 - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
 - c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
 - 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
 - a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
 - b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.

17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:

- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
 - b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
 - 19. A method of producing the polypeptide of claim 10, comprising,

5

15

- a) culturing a host cell comprising a polynucleotide sequence selected from SEQ ID NO: 1-446, a mature protein coding portion of SEQ ID NO: 1-446, an active domain coding portion of SEQ ID NO: 1-446, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-446, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).
- 25 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 447-892, the mature protein portion thereof, or the active domain thereof.
- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide 30 array.
 - 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-446.

- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
 - 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 10 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.
 - 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
 - 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

20