VINS MONO COMMENTED

1.0.0

Generated by Doxygen 1.8.13

Contents

Chapter 1

readme

part of camodocal

Google Ceres is needed.

Calibration:

Use intrinsic_calib.cc to calibrate your camera.

Undistortion:

See Camera.h for general interface:

- liftProjective: Lift points from the image plane to the projective space.
- spaceToPlane: Projects 3D points to the image plane (Pi function)

2 readme

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

camodocal::Camera
camodocal::CataCamera
camodocal::EquidistantCamera
camodocal::OCAMCamera
camodocal::PinholeCamera
camodocal::CameraCalibration
camodocal::CameraFactory
CameraPoseVisualization
camodocal::Chessboard
camodocal::ChessboardCorner
camodocal::ChessboardQuad
${\it camodocal} :: Comprehension Error < CameraT > \dots \dots \dots \dots \dots ? \\$
CostFunction
MarginalizationFactor
camodocal::CostFunctionFactory
Estimator
FeatureManager
FeaturePerFrame
FeaturePerld
FileSystemHelper
GlobalSFM
ImageFrame
InitialEXRotation
IntegrationBase
LocalParameterization
camodocal::EigenQuaternionParameterization
PoseLocalParameterization
MarginalizationInfo
camodocal::CataCamera::Parameters
camodocal::EquidistantCamera::Parameters
camodocal::OCAMCamera::Parameters
camodocal::PinholeCamera::Parameters
camodocal::ReprojectionError1 < CameraT >

4 Hierarchical Index

ımodocal::ReprojectionError2 $<$ CameraT $>$ $\dots\dots\dots$	
modocal::ReprojectionError3< CameraT >	. ??
eprojectionError3D	. ??
esidualBlockInfo	. ??
FMFeature	. ??
zedCostFunction	
IMUFactor	??
ProjectionFactor	??
ProjectionTdFactor	??
modocal::StereoReprojectionError< CameraT >	. ??
nreadsStruct	. ??
cToc	. ??
modocal::Transform	. ??
$ility$:: $uint_{L} < N > \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. ??
ility	. ??
ctor	
Spline	??

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

camodocal::Camera
Base class for all camera model
camodocal::CameraCalibration
camodocal::CameraFactory
CameraPoseVisualization
camodocal::CataCamera
camodocal::Chessboard
camodocal::ChessboardCorner
camodocal::ChessboardQuad
camodocal::ComprehensionError< CameraT >
camodocal::CostFunctionFactory
camodocal::EigenQuaternionParameterization
camodocal::EquidistantCamera
Estimator
FeatureManager
FeaturePerFrame
FeaturePerId?
FileSystemHelper
GlobalSFM ?
ImageFrame
IMUFactor
InitialEXRotation
IntegrationBase
MarginalizationFactor
MarginalizationInfo
MotionEstimator
camodocal::OCAMCamera
camodocal::CataCamera::Parameters
camodocal::EquidistantCamera::Parameters
camodocal::OCAMCamera::Parameters
camodocal::PinholeCamera::Parameters
camodocal::Camera::Parameters
Nested class for camera parameters
camodocal::PinholeCamera
Posel ocalParameterization

6 Class Index

ProjectionFactor	??
ProjectionTdFactor	
amodocal::ReprojectionError1 < CameraT >	??
amodocal::ReprojectionError2 < CameraT >	??
amodocal::ReprojectionError3 < CameraT >	
ReprojectionError3D	??
ResidualBlockInfo	
SFMFeature	??
Spline	??
amodocal::StereoReprojectionError< CameraT >	??
ThreadsStruct	??
<u> </u>	??
amodocal::Transform	??
Jtility::uint_< N >	??
Itility	25

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

camera_model/include/camodocal/calib/ CameraCalibration.h	??
camera_model/include/camodocal/camera_models/Camera.h	??
camera_model/include/camodocal/camera_models/ CameraFactory.h	??
camera_model/include/camodocal/camera_models/ CataCamera.h	??
camera_model/include/camodocal/camera_models/ CostFunctionFactory.h	??
camera_model/include/camodocal/camera_models/ EquidistantCamera.h	??
	??
-	??
-	??
camera_model/include/camodocal/chessboard/ ChessboardCorner.h	??
	??
= ·	??
= 01 0	??
= 01 0	??
= 0, 0,	??
_ 1 _0 1	??
camera_model/src/camera_models/Camera.cc	
	??
	??
=	??
— · · · · · · · · · · · · · · · · · · ·	??
	??
	??
vins_estimator/src/factor/marginalization_factor.h	??
_ · · · · · · · · · · · · · · · · · · ·	??
	??
_ ' '	??
=	??
	??
_	??
vins_estimator/src/initial/solve_5pts.h	??
	??
-	??
_ , ,	??
vins estimator/src/utility/visualization.h	??

8 File Index

Chapter 5

Class Documentation

5.1 camodocal::Camera Class Reference

base class for all camera model

#include <Camera.h>

Inheritance diagram for camodocal::Camera:

Classes

class Parameters

nested class for camera parameters

Public Types

 enum ModelType { KANNALA_BRANDT, MEI, PINHOLE, SCARAMUZZA } enumerate variable of camera model

Public Member Functions

virtual ModelType modelType (void) const =0

virtual type of function modelType

virtual const std::string & cameraName (void) const =0

virtual type of funtion cameraName

virtual int imageWidth (void) const =0

virtual type of function imageWidth

virtual int imageHeight (void) const =0

virtual type of function imageHeight

virtual cv::Mat & mask (void)

virtual function of image Mask

virtual const cv::Mat & mask (void) const

virtual function of image Mask

virtual void estimateIntrinsics (const cv::Size &boardSize, const std::vector< std::vector< cv::Point3f > >
 &objectPoints, const std::vector< std::vector< cv::Point2f > > &imagePoints)=0

virtual function of camera intrinsics

virtual void estimateExtrinsics (const std::vector< cv::Point3f > &objectPoints, const std::vector< cv::Point2f > &imagePoints, cv::Mat &rvec, cv::Mat &tvec) const

calculate extrinsics with unit intrinsics

virtual void liftSphere (const Eigen::Vector2d &p, Eigen::Vector3d &P) const =0

Lift points from the image plane to the sphere.

virtual void liftProjective (const Eigen::Vector2d &p, Eigen::Vector3d &P) const =0

Lift points from the image plane to the projective space.

virtual void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p) const =0

Projects 3D points to the image plane (Pi function)

- virtual void undistToPlane (const Eigen::Vector2d &p_u, Eigen::Vector2d &p) const =0
- virtual cv::Mat initUndistortRectifyMap (cv::Mat &map1, cv::Mat &map2, float fx=-1.0f, float fy=-1.0f, cv::
 Size imageSize=cv::Size(0, 0), float cx=-1.0f, float cy=-1.0f, cv::Mat rmat=cv::Mat::eye(3, 3, CV_32F)) const =0
- virtual int parameterCount (void) const =0

pure virtual function of parameter count

virtual void readParameters (const std::vector< double > ¶meters)=0

pure virtual function of reading parameters

virtual void writeParameters (std::vector< double > ¶meters) const =0

pure virtual function of writing parameters

• virtual void writeParametersToYamlFile (const std::string &filename) const =0

pure virtual function of writing parameters to YAML file

virtual std::string parametersToString (void) const =0

pure virtual of converting parameters to string

• double reprojectionDist (const Eigen::Vector3d &P1, const Eigen::Vector3d &P2) const

Calculates the reprojection distance between points.

double reprojectionError (const std::vector< cv::Point3f >> &objectPoints, const std::vector< std::vector< cv::Point2f >> &imagePoints, const std::vector< cv::Mat > &rvecs, const std::vector< cv::Mat >> &tvecs, cv::OutputArray perViewErrors=cv::noArray()) const

calculate average reprojection error of all points in all frames (total error divede by total points) with 3D points and 2D points

double reprojectionError (const Eigen::Vector3d &P, const Eigen::Quaterniond &camera_q, const Eigen::
 — Vector3d &camera_t, const Eigen::Vector2d &observed_p) const

calculate reprojection error of one 3D point with camera pose P & Q

void projectPoints (const std::vector < cv::Point3f > &objectPoints, const cv::Mat &rvec, const cv::Mat &tvec, std::vector < cv::Point2f > &imagePoints) const

project 3D points to 2d plane

Protected Attributes

cv::Mat m_mask image mask

5.1.1 Detailed Description

base class for all camera model

5.1.2 Member Function Documentation

5.1.2.1 estimateExtrinsics()

calculate extrinsics with unit intrinsics

Parameters

objectPoints	3D points on object
imagePoints	2D point on image plane
rvec	rotation vector
tvec	transformation vector

References liftProjective().

Referenced by camodocal::CataCamera::estimateIntrinsics(), and camodocal::EquidistantCamera::estimate \leftarrow Intrinsics().

Here is the caller graph for this function:

5.1.2.2 projectPoints()

project 3D points to 2d plane

Parameters

objectPoints	
rvec	
tvec	
imagePoints	

reserve space for imagePoints according to objectPoints

convert from rotation vector to rotation matrix

References spaceToPlane().

Referenced by reprojectionError().

Here is the caller graph for this function:

5.1.2.3 reprojectionDist()

```
double camodocal::Camera::reprojectionDist ( const Eigen::Vector3d & P1, const Eigen::Vector3d & P2) const
```

Calculates the reprojection distance between points.

Parameters

P1	first 3D point coordinates
P2	second 3D point coordinates

Returns

euclidean distance in the plane

References spaceToPlane().

5.1.2.4 reprojectionError() [1/2]

calculate average reprojection error of all points in all frames (total error divede by total points) with 3D points and 2D points

Parameters

objectPoints	3D coordinates of object points
imagePoints	2D coordinates of image points
rvecs	rotation vectors
tvecs	transformation vectors
perViewErrors	

Returns

.

count of image frames

current points in all image frames

check whether preVireError needed to be computed

imageCount * 1

using getMat() to convert from cv::OutputArray to cv::Mat

project points of frame i to image plane

calculate repeojection error of frame i()

calculate average reprojection error of frame i

return average reprojection error

References projectPoints().

Referenced by camodocal::CataCamera::estimateIntrinsics(), and camodocal::EquidistantCamera::estimate \leftarrow Intrinsics().

Here is the caller graph for this function:

5.1.2.5 reprojectionError() [2/2]

calculate reprojection error of one 3D point with camera pose P & Q

Parameters

Р	3D coordinates of point
camera_q	quaternion of camera pose
camera_t	translation of camera pose
observed⇔	corresponding image point
_p	

Returns

:

References spaceToPlane().

The documentation for this class was generated from the following files:

- · camera model/include/camodocal/camera models/Camera.h
- camera_model/src/camera_models/Camera.cc

5.2 camodocal::CameraCalibration Class Reference

Public Member Functions

- CameraCalibration (Camera::ModelType modelType, const std::string &cameraName, const cv::Size &imageSize, const cv::Size &boardSize, float squareSize)
- · void clear (void)
- void addChessboardData (const std::vector< cv::Point2f > &corners)
- bool calibrate (void)
- int sampleCount (void) const
- std::vector< std::vector< cv::Point2f >> & imagePoints (void)
- const std::vector< std::vector< cv::Point2f > > & imagePoints (void) const
- std::vector< std::vector< cv::Point3f >> & scenePoints (void)
- const std::vector< std::vector< cv::Point3f > > & scenePoints (void) const
- CameraPtr & camera (void)
- · const CameraConstPtr camera (void) const
- Eigen::Matrix2d & measurementCovariance (void)
- const Eigen::Matrix2d & measurementCovariance (void) const
- cv::Mat & cameraPoses (void)
- · const cv::Mat & cameraPoses (void) const
- void drawResults (std::vector< cv::Mat > &images) const
- · void writeParams (const std::string &filename) const
- bool writeChessboardData (const std::string &filename) const
- bool readChessboardData (const std::string &filename)
- · void setVerbose (bool verbose)

The documentation for this class was generated from the following files:

- · camera_model/include/camodocal/calib/CameraCalibration.h
- · camera_model/src/calib/CameraCalibration.cc

5.3 camodocal::CameraFactory Class Reference

Public Member Functions

• CameraPtr generateCamera (Camera::ModelType modelType, const std::string &cameraName, cv::Size imageSize) const

generate Camera object according to modelType

CameraPtr generateCameraFromYamlFile (const std::string &filename)

generate camera object according to YAML file

Static Public Member Functions

static boost::shared_ptr< CameraFactory > instance (void)
 Get point of cameraFactory.

5.3.1 Member Function Documentation

5.3.1.1 generateCamera()

generate Camera object according to modelType

Parameters

modelType	camera model	
cameraName	camera name	
imageSize	image Size	

Returns

: shared ptr of camera

References camodocal::Camera::Parameters::cameraName(), camodocal::Camera::Parameters::imageHeight(), and camodocal::Camera::Parameters::imageWidth().

5.3.1.2 generateCameraFromYamlFile()

generate camera object according to YAML file

Parameters

filename name of YAML file

Returns

: shared_ptr of camera

References camodocal::PinholeCamera::Parameters::readFromYamlFile(), camodocal::EquidistantCamera:: \leftarrow Parameters::readFromYamlFile(), camodocal::OCAMCamera::Parameters::readFromYamlFile(), and camodocal \leftarrow ::CataCamera::Parameters::readFromYamlFile().

Here is the call graph for this function:

5.3.1.3 instance()

Get point of cameraFactory.

Returns

: shared_ptr of CameraFactory

The documentation for this class was generated from the following files:

- · camera_model/include/camodocal/camera_models/CameraFactory.h
- camera_model/src/camera_models/CameraFactory.cc

5.4 Camera Pose Visualization Class Reference

Public Member Functions

- CameraPoseVisualization (float r, float g, float b, float a)
- void **setImageBoundaryColor** (float r, float g, float b, float a=1.0)
- void **setOpticalCenterConnectorColor** (float r, float g, float b, float a=1.0)
- void **setScale** (double s)
- · void setLineWidth (double width)
- void add_pose (const Eigen::Vector3d &p, const Eigen::Quaterniond &q)
- void reset ()
- void publish_by (ros::Publisher &pub, const std_msgs::Header &header)
- void add_edge (const Eigen::Vector3d &p0, const Eigen::Vector3d &p1)
- void add_loopedge (const Eigen::Vector3d &p0, const Eigen::Vector3d &p1)

Public Attributes

std::string m_marker_ns

The documentation for this class was generated from the following files:

- · vins_estimator/src/utility/CameraPoseVisualization.h
- · vins_estimator/src/utility/CameraPoseVisualization.cpp

5.5 camodocal::CataCamera Class Reference

#include <CataCamera.h>

Inheritance diagram for camodocal::CataCamera:

Collaboration diagram for camodocal::CataCamera:

Classes

class Parameters

Public Member Functions

• CataCamera (const std::string &cameraName, int imageWidth, int imageHeight, double xi, double k1, double k2, double p1, double p2, double gamma1, double gamma2, double u0, double v0)

Constructor from the projection model parameters.

• CataCamera (const Parameters ¶ms)

Constructor from the projection model parameters.

• Camera::ModelType modelType (void) const

virtual type of function modelType

const std::string & cameraName (void) const

virtual type of funtion cameraName

• int imageWidth (void) const

virtual type of function imageWidth

· int imageHeight (void) const

virtual type of function imageHeight

void estimateIntrinsics (const cv::Size &boardSize, const std::vector < cv::Point3f > > &object ←
Points, const std::vector < std::vector < cv::Point2f > > &imagePoints)

virtual function of camera intrinsics

• void liftSphere (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to the unit sphere.

• void liftProjective (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to its projective ray.

void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p) const

Project a 3D point (x,y,z) to the image plane in (u,v)

- void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p, Eigen::Matrix< double, 2, 3 > &J) const
- void undistToPlane (const Eigen::Vector2d &p_u, Eigen::Vector2d &p) const

Projects an undistorted 2D point p_u to the image plane.

void distortion (const Eigen::Vector2d &p_u, Eigen::Vector2d &d_u) const

Apply distortion to input point (from the normalised plane)

void distortion (const Eigen::Vector2d &p_u, Eigen::Vector2d &d_u, Eigen::Matrix2d &J) const

Apply distortion to input point (from the normalised plane) and calculate Jacobian.

- void initUndistortMap (cv::Mat &map1, cv::Mat &map2, double fScale=1.0) const
- cv::Mat initUndistortRectifyMap (cv::Mat &map1, cv::Mat &map2, float fx=-1.0f, float fy=-1.0f, cv::Size imageSize=cv::Size(0, 0), float cx=-1.0f, float cy=-1.0f, cv::Mat rmat=cv::Mat::eye(3, 3, CV_32F)) const
- int parameterCount (void) const

pure virtual function of parameter count

- const Parameters & getParameters (void) const
- void setParameters (const Parameters ¶meters)
- void readParameters (const std::vector< double > ¶meterVec)

pure virtual function of reading parameters

- void writeParameters (std::vector< double > ¶meterVec) const pure virtual function of writing parameters
- void writeParametersToYamlFile (const std::string &filename) const

pure virtual function of writing parameters to YAML file

std::string parametersToString (void) const

pure virtual of converting parameters to string

Static Public Member Functions

template<typename T >
 static void spaceToPlane (const T *const params, const T *const q, const T *const t, const Eigen::Matrix<
 T, 3, 1 > &P, Eigen::Matrix< T, 2, 1 > &p)

Additional Inherited Members

5.5.1 Detailed Description

C. Mei, and P. Rives, Single View Point Omnidirectional Camera Calibration from Planar Grids, ICRA 2007

5.5.2 Member Function Documentation

5.5.2.1 distortion() [1/2]

```
void camodocal::CataCamera::distortion ( const Eigen::Vector2d & p_u, Eigen::Vector2d & d_u) const
```

Apply distortion to input point (from the normalised plane)

Parameters

p⊷	undistorted coordinates of point on the normalised plane
_ <i>u</i>	

Returns

to obtain the distorted point: $p_d = p_u + d_u$

Referenced by liftProjective(), liftSphere(), spaceToPlane(), and undistToPlane().

Here is the caller graph for this function:

5.5.2.2 distortion() [2/2]

Apply distortion to input point (from the normalised plane) and calculate Jacobian.

Parameters

	undistorted coordinates of point on the normalised plane
_u	

Returns

to obtain the distorted point: $p_d = p_u + d_u$

 $References\ camodocal:: Camera:: Parameters:: image Height(),\ camodocal:: Camera:: Parameters:: image Width(),\ and\ space ToPlane().$

Here is the call graph for this function:

5.5.2.3 liftProjective()

Lifts a point from the image plane to its projective ray.

Parameters

ſ	р	image coordinates
ſ	Р	coordinates of the projective ray

Implements camodocal::Camera.

References distortion().

5.5.2.4 liftSphere()

Lifts a point from the image plane to the unit sphere.

Parameters

р	image coordinates
P	coordinates of the point on the sphere

Implements camodocal::Camera.

References distortion().

Here is the call graph for this function:

5.5.2.5 spaceToPlane()

Project a 3D point (x,y,z) to the image plane in (u,v)

Parameters

Р	3D point coordinates
р	return value, contains the image point coordinates

Implements camodocal::Camera.

References distortion().

Referenced by distortion().

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.6 undistToPlane()

Projects an undistorted 2D point p_u to the image plane.

Parameters

p⊷	2D point coordinates
_u	

Returns

image point coordinates

Implements camodocal::Camera.

References distortion().

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/CataCamera.h
- camera_model/src/camera_models/CataCamera.cc

5.6 camodocal::Chessboard Class Reference

Public Member Functions

- Chessboard (cv::Size boardSize, cv::Mat &image)
- void findCorners (bool useOpenCV=false)
- const std::vector< cv::Point2f > & getCorners (void) const
- · bool cornersFound (void) const
- · const cv::Mat & getImage (void) const
- · const cv::Mat & getSketch (void) const

The documentation for this class was generated from the following files:

- · camera model/include/camodocal/chessboard/Chessboard.h
- camera model/src/chessboard/Chessboard.cc

5.7 camodocal::ChessboardCorner Class Reference

Public Member Functions

· float meanDist (int &n) const

Public Attributes

- cv::Point2f pt
- int row
- · int column
- bool needsNeighbor
- · int count
- ChessboardCornerPtr neighbors [4]

The documentation for this class was generated from the following file:

• camera_model/include/camodocal/chessboard/ChessboardCorner.h

5.8 camodocal::ChessboardQuad Class Reference

Public Attributes

- · int count
- int group_idx
- · float edge len
- ChessboardCornerPtr corners [4]
- ChessboardQuadPtr neighbors [4]
- · bool labeled

The documentation for this class was generated from the following file:

· camera model/include/camodocal/chessboard/ChessboardQuad.h

5.9 camodocal::ComprehensionError< CameraT > Class Template Reference

Public Member Functions

- EIGEN_MAKE_ALIGNED_OPERATOR_NEW ComprehensionError (const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p)
- template<typename T >
 bool operator() (const T *const intrinsic params, const T *const q, const T *const t, T *residuals) const

Public Attributes

- Eigen::Vector3d m observed P
- Eigen::Vector2d m_observed_p
- Eigen::Matrix2d m_sqrtPrecisionMat

The documentation for this class was generated from the following file:

• camera_model/src/camera_models/CostFunctionFactory.cc

5.10 camodocal::CostFunctionFactory Class Reference

Public Member Functions

- ceres::CostFunction * generateCostFunction (const CameraConstPtr &camera, const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p, int flags) const
- ceres::CostFunction * generateCostFunction (const CameraConstPtr &camera, const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p, const Eigen::Matrix2d &sqrtPrecisionMat, int flags) const
- ceres::CostFunction * **generateCostFunction** (const CameraConstPtr &camera, const Eigen::Vector2d &observed_p, int flags, bool optimize_cam_odo_z=true) const
- ceres::CostFunction * generateCostFunction (const CameraConstPtr &camera, const Eigen::Vector2d &observed_p, const Eigen::Matrix2d &sqrtPrecisionMat, int flags, bool optimize_cam_odo_z=true) const
- ceres::CostFunction * generateCostFunction (const CameraConstPtr &camera, const Eigen::Vector3d &odo_pos, const Eigen::Vector3d &odo_att, const Eigen::Vector2d &observed_p, int flags, bool optimize ← _cam_odo_z=true) const
- ceres::CostFunction * generateCostFunction (const CameraConstPtr &camera, const Eigen::Quaterniond &cam_odo_q, const Eigen::Vector3d &cam_odo_t, const Eigen::Vector3d &odo_pos, const Eigen::Vector3d &odo_att, const Eigen::Vector2d &observed_p, int flags) const
- ceres::CostFunction * generateCostFunction (const CameraConstPtr &cameraLeft, const CameraConstPtr &cameraRight, const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p_left, const Eigen
 ::Vector2d &observed_p_right) const

Static Public Member Functions

static boost::shared ptr< CostFunctionFactory > instance (void)

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/CostFunctionFactory.h
- · camera model/src/camera models/CostFunctionFactory.cc

5.11 camodocal::EigenQuaternionParameterization Class Reference

Inheritance diagram for camodocal::EigenQuaternionParameterization:

Collaboration diagram for camodocal::EigenQuaternionParameterization:

Public Member Functions

- virtual bool **Plus** (const double *x, const double *delta, double *x_plus_delta) const
- virtual bool ComputeJacobian (const double *x, double *jacobian) const
- · virtual int GlobalSize () const
- virtual int LocalSize () const

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/gpl/EigenQuaternionParameterization.h
- camera_model/src/gpl/EigenQuaternionParameterization.cc

5.12 camodocal::EquidistantCamera Class Reference

#include <EquidistantCamera.h>

Inheritance diagram for camodocal::EquidistantCamera:

Collaboration diagram for camodocal::EquidistantCamera:

Classes

class Parameters

Public Member Functions

- EquidistantCamera (const std::string &cameraName, int imageWidth, int imageHeight, double k2, double k3, double k4, double k5, double mu, double mv, double u0, double v0)
 - Constructor from the projection model parameters.
- EquidistantCamera (const Parameters ¶ms)
 - Constructor from the projection model parameters.
- Camera::ModelType modelType (void) const
 - virtual type of function modelType
- const std::string & cameraName (void) const
 - virtual type of funtion cameraName

· int imageWidth (void) const

virtual type of function imageWidth

· int imageHeight (void) const

virtual type of function imageHeight

void estimateIntrinsics (const cv::Size &boardSize, const std::vector < cv::Point3f > > &object ←
Points, const std::vector < std::vector < cv::Point2f > > &imagePoints)

virtual function of camera intrinsics

• virtual void liftSphere (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to the unit sphere.

• void liftProjective (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to its projective ray.

void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p) const

Project a 3D point (x,y,z) to the image plane in (u,v)

• void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p, Eigen::Matrix< double, 2, 3 > &J) const Project a 3D point to the image plane and calculate Jacobian.

• void undistToPlane (const Eigen::Vector2d &p u, Eigen::Vector2d &p) const

Projects an undistorted 2D point p_u to the image plane.

- void initUndistortMap (cv::Mat &map1, cv::Mat &map2, double fScale=1.0) const
- cv::Mat initUndistortRectifyMap (cv::Mat &map1, cv::Mat &map2, float fx=-1.0f, float fy=-1.0f, cv::Size imageSize=cv::Size(0, 0), float cx=-1.0f, float cy=-1.0f, cv::Mat rmat=cv::Mat::eye(3, 3, CV_32F)) const
- int parameterCount (void) const

pure virtual function of parameter count

- · const Parameters & getParameters (void) const
- void setParameters (const Parameters ¶meters)
- void readParameters (const std::vector< double > ¶meterVec)

pure virtual function of reading parameters

void writeParameters (std::vector< double > ¶meterVec) const

pure virtual function of writing parameters

void writeParametersToYamlFile (const std::string &filename) const

pure virtual function of writing parameters to YAML file

std::string parametersToString (void) const

pure virtual of converting parameters to string

Static Public Member Functions

• template<typename T >

static void **spaceToPlane** (const T *const params, const T *const q, const T *const t, const Eigen::Matrix < T, 3, 1 > &P, Eigen::Matrix < T, 2, 1 > &p)

Additional Inherited Members

5.12.1 Detailed Description

J. Kannala, and S. Brandt, A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses, PAMI 2006

5.12.2 Member Function Documentation

5.12.2.1 liftProjective()

Lifts a point from the image plane to its projective ray.

Parameters

р	image coordinates
P	coordinates of the projective ray

Implements camodocal::Camera.

Referenced by liftSphere().

Here is the caller graph for this function:

5.12.2.2 liftSphere()

Lifts a point from the image plane to the unit sphere.

Parameters

р	image coordinates
Р	coordinates of the point on the sphere

Implements camodocal::Camera.

References liftProjective().

Here is the call graph for this function:

5.12.2.3 spaceToPlane() [1/2]

Project a 3D point (x,y,z) to the image plane in (u,v)

Parameters

Р	3D point coordinates	
р	return value, contains the image point coordinates	

Implements camodocal::Camera.

Referenced by undistToPlane().

Here is the caller graph for this function:

5.12.2.4 spaceToPlane() [2/2]

Project a 3D point to the image plane and calculate Jacobian.

Parameters

Р	3D point coordinates	
p	return value, contains the image point coordinates	

5.12.2.5 undistToPlane()

Projects an undistorted 2D point p_u to the image plane.

Parameters

p⊷	2D point coordinates
_u	

Returns

image point coordinates

Implements camodocal::Camera.

 $References\ camodocal:: Camera:: Parameters:: image Height(),\ camodocal:: Camera:: Parameters:: image Width(),\ and\ space ToPlane().$

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/EquidistantCamera.h
- camera_model/src/camera_models/EquidistantCamera.cc

5.13 Estimator Class Reference

Collaboration diagram for Estimator:

Public Types

- enum SolverFlag { INITIAL, NON_LINEAR }
- enum MarginalizationFlag { MARGIN_OLD = 0, MARGIN_SECOND_NEW = 1 }

Public Member Functions

- void setParameter ()
- void processIMU (double t, const Vector3d &linear_acceleration, const Vector3d &angular_velocity)
- void processImage (const map< int, vector< pair< int, Eigen::Matrix< double, 7, 1 >>>> &image, const std msgs::Header &header)
- void setReloFrame (double _frame_stamp, int _frame_index, vector< Vector3d > &_match_points, Vector3d _relo_t, Matrix3d _relo_r)
- · void clearState ()
- bool initialStructure ()
- bool visualInitialAlign ()
- bool relativePose (Matrix3d &relative_R, Vector3d &relative_T, int &I)
- · void slideWindow ()
- void solveOdometry ()
- void slideWindowNew ()
- void slideWindowOld ()
- void optimization ()
- · void vector2double ()
- void double2vector ()
- bool failureDetection ()

Public Attributes

- SolverFlag solver_flag
- MarginalizationFlag marginalization_flag
- Vector3d g
- MatrixXd Ap [2]
- MatrixXd backup_A
- VectorXd bp [2]
- VectorXd backup_b
- Matrix3d ric [NUM_OF_CAM]
- · Vector3d tic [NUM OF CAM]
- Vector3d Ps [(WINDOW_SIZE+1)]

- Vector3d Vs [(WINDOW_SIZE+1)]
- Matrix3d Rs [(WINDOW_SIZE+1)]
- Vector3d Bas [(WINDOW_SIZE+1)]
- Vector3d **Bgs** [(WINDOW_SIZE+1)]
- · double td
- Matrix3d back R0
- Matrix3d last R
- Matrix3d last_R0
- Vector3d back P0
- Vector3d last P
- Vector3d last P0
- std_msgs::Header Headers [(WINDOW_SIZE+1)]
- IntegrationBase * pre_integrations [(WINDOW_SIZE+1)]
- Vector3d acc 0
- Vector3d gyr_0
- vector< double > dt_buf [(WINDOW_SIZE+1)]
- vector< Vector3d > linear_acceleration_buf [(WINDOW_SIZE+1)]
- vector< Vector3d > angular_velocity_buf [(WINDOW_SIZE+1)]
- int frame_count
- int sum_of_outlier
- · int sum_of_back
- int sum_of_front
- · int sum of invalid
- FeatureManager f_manager
- MotionEstimator m_estimator
- InitialEXRotation initial_ex_rotation
- · bool first imu
- · bool is valid
- · bool is key
- · bool failure_occur
- vector< Vector3d > point_cloud
- vector< Vector3d > margin_cloud
- vector< Vector3d > key_poses
- · double initial_timestamp
- double para Pose [WINDOW SIZE+1][SIZE POSE]
- double para_SpeedBias [WINDOW_SIZE+1][SIZE_SPEEDBIAS]
- double para_Feature [NUM_OF_F][SIZE_FEATURE]
- double **para_Ex_Pose** [NUM_OF_CAM][SIZE_POSE]
- double para_Retrive_Pose [SIZE_POSE]
- double para_Td [1][1]
- double para_Tr [1][1]
- int loop_window_index
- MarginalizationInfo * last_marginalization_info
- vector< double * > last_marginalization_parameter_blocks
- map< double, ImageFrame > all_image_frame
- IntegrationBase * tmp_pre_integration
- · bool relocalization info
- · double relo_frame_stamp
- · double relo_frame_index
- int relo_frame_local_index
- vector< Vector3d > match_points
- double relo_Pose [SIZE_POSE]
- Matrix3d drift_correct_r
- Vector3d drift correct t
- Vector3d prev_relo_t

- Matrix3d prev_relo_r
- Vector3d relo_relative_t
- · Quaterniond relo_relative_q
- · double relo_relative_yaw

The documentation for this class was generated from the following files:

- · vins_estimator/src/estimator.h
- · vins_estimator/src/estimator.cpp

5.14 FeatureManager Class Reference

Public Member Functions

- FeatureManager (Matrix3d _Rs[])
- void setRic (Matrix3d _ric[])
- · void clearState ()
- int getFeatureCount ()
- bool addFeatureCheckParallax (int frame_count, const map< int, vector< pair< int, Eigen::Matrix< double, 7, 1 >>>> &image, double td)
- void debugShow ()
- vector< pair< Vector3d, Vector3d >> getCorresponding (int frame_count_I, int frame_count_r)
- void setDepth (const VectorXd &x)
- void removeFailures ()
- void clearDepth (const VectorXd &x)
- VectorXd getDepthVector ()
- void **triangulate** (Vector3d Ps[], Vector3d tic[], Matrix3d ric[])
- void **removeBackShiftDepth** (Eigen::Matrix3d marg_R, Eigen::Vector3d marg_P, Eigen::Matrix3d new_R, Eigen::Vector3d new_P)
- · void removeBack ()
- void removeFront (int frame_count)
- void removeOutlier ()

Public Attributes

- list< FeaturePerId > feature
- int last_track_num

The documentation for this class was generated from the following files:

- · vins_estimator/src/feature_manager.h
- vins_estimator/src/feature_manager.cpp

5.15 FeaturePerFrame Class Reference

Public Member Functions

FeaturePerFrame (const Eigen::Matrix< double, 7, 1 > &_point, double td)

Public Attributes

- double cur_td
- Vector3d point
- Vector2d uv
- · Vector2d velocity
- double **z**
- · bool is_used
- · double parallax
- MatrixXd A
- VectorXd b
- double dep_gradient

The documentation for this class was generated from the following file:

· vins estimator/src/feature manager.h

5.16 FeaturePerId Class Reference

Public Member Functions

- FeaturePerId (int _feature_id, int _start_frame)
- int endFrame ()

Public Attributes

- · const int feature_id
- int start_frame
- vector< FeaturePerFrame > feature_per_frame
- · int used num
- · bool is outlier
- bool is_margin
- double estimated_depth
- int solve_flag
- Vector3d gt_p

The documentation for this class was generated from the following files:

- · vins_estimator/src/feature_manager.h
- vins_estimator/src/feature_manager.cpp

5.17 FileSystemHelper Class Reference

Static Public Member Functions

• static int createDirectoryIfNotExists (const char *path)

The documentation for this class was generated from the following file:

vins_estimator/src/utility/utility.h

5.18 GlobalSFM Class Reference

Public Member Functions

• bool **construct** (int frame_num, Quaterniond *q, Vector3d *T, int I, const Matrix3d relative_R, const Vector3d relative_T, vector< SFMFeature > &sfm_f, map< int, Vector3d > &sfm_tracked_points)

The documentation for this class was generated from the following files:

- · vins_estimator/src/initial/initial_sfm.h
- · vins_estimator/src/initial/initial_sfm.cpp

5.19 ImageFrame Class Reference

Collaboration diagram for ImageFrame:

Public Member Functions

• ImageFrame (const map< int, vector< pair< int, Eigen::Matrix< double, 7, 1 >>>> &_points, double _t)

Public Attributes

- map< int, vector< pair< int, Eigen::Matrix< double, 7, 1 >>>> points
- double t
- Matrix3d R
- · Vector3d T
- IntegrationBase * pre_integration
- bool is_key_frame

The documentation for this class was generated from the following file:

• vins_estimator/src/initial/initial_alignment.h

5.20 IMUFactor Class Reference

Inheritance diagram for IMUFactor:

Collaboration diagram for IMUFactor:

Public Member Functions

- **IMUFactor** (IntegrationBase *_pre_integration)
- virtual bool Evaluate (double const *const *parameters, double *residuals, double **jacobians) const

Public Attributes

• IntegrationBase * pre_integration

5.20.1 Member Function Documentation

5.20.1.1 Evaluate()

ROS_BREAK();

The documentation for this class was generated from the following file:

vins_estimator/src/factor/imu_factor.h

5.21 InitialEXRotation Class Reference

Public Member Functions

bool CalibrationExRotation (vector< pair< Vector3d, Vector3d >> corres, Quaterniond delta_q_imu, Matrix3d &calib ric result)

The documentation for this class was generated from the following files:

- · vins estimator/src/initial/initial ex rotation.h
- · vins_estimator/src/initial/initial_ex_rotation.cpp

5.22 IntegrationBase Class Reference

Public Member Functions

- IntegrationBase (const Eigen::Vector3d &_acc_0, const Eigen::Vector3d &_gyr_0, const Eigen::Vector3d &_linearized_bg)
- void push_back (double dt, const Eigen::Vector3d &acc, const Eigen::Vector3d &gyr)
- void repropagate (const Eigen::Vector3d &_linearized_ba, const Eigen::Vector3d &_linearized_bg)
- void midPointIntegration (double _dt, const Eigen::Vector3d &_acc_0, const Eigen::Vector3d &_gyr
 _0, const Eigen::Vector3d &_acc_1, const Eigen::Vector3d &_gyr_1, const Eigen::Vector3d &delta_
 p, const Eigen::Quaterniond &delta_q, const Eigen::Vector3d &delta_v, const Eigen::Vector3d &linearized
 _ba, const Eigen::Vector3d &linearized_bg, Eigen::Vector3d &result_delta_p, Eigen::Quaterniond &result_
 delta_q, Eigen::Vector3d &result_delta_v, Eigen::Vector3d &result_linearized_ba, Eigen::Vector3d &result
 _linearized_bg, bool update_jacobian)
- void propagate (double dt, const Eigen::Vector3d & acc 1, const Eigen::Vector3d & gyr 1)
- Eigen::Matrix < double, 15, 1 > evaluate (const Eigen::Vector3d &Pi, const Eigen::Quaterniond &Qi, const Eigen::Vector3d &Vi, const Eigen::Vector3d &Bai, const Eigen::Vector3d &Bgi, const Eigen::Vector3d &Pj, const Eigen::Quaterniond &Qj, const Eigen::Vector3d &Vj, const Eigen::Vector3d &Baj, const Eigen::Vector3d &Bgj)

Public Attributes

- · double dt
- Eigen::Vector3d acc_0
- Eigen::Vector3d gyr_0
- Eigen::Vector3d acc_1
- Eigen::Vector3d gyr_1
- const Eigen::Vector3d linearized_acc
- · const Eigen::Vector3d linearized gyr
- Eigen::Vector3d linearized_ba
- Eigen::Vector3d linearized_bg
- Eigen::Matrix< double, 15, 15 > jacobian
- Eigen::Matrix< double, 15, 15 > covariance
- Eigen::Matrix< double, 15, 15 > step_jacobian
- Eigen::Matrix< double, 15, 18 > step_V
- Eigen::Matrix< double, 18, 18 > noise
- double sum dt
- Eigen::Vector3d delta_p
- · Eigen::Quaterniond delta_q
- Eigen::Vector3d delta v
- std::vector< double > dt_buf
- std::vector< Eigen::Vector3d > acc_buf
- std::vector< Eigen::Vector3d > gyr_buf

The documentation for this class was generated from the following file:

• vins_estimator/src/factor/integration_base.h

5.23 MarginalizationFactor Class Reference

Inheritance diagram for MarginalizationFactor:

Collaboration diagram for MarginalizationFactor:

Public Member Functions

- MarginalizationFactor (MarginalizationInfo *_marginalization_info)
- virtual bool **Evaluate** (double const *const *parameters, double *residuals, double **jacobians) const

Public Attributes

• MarginalizationInfo * marginalization_info

The documentation for this class was generated from the following files:

- · vins_estimator/src/factor/marginalization_factor.h
- vins_estimator/src/factor/marginalization_factor.cpp

5.24 MarginalizationInfo Class Reference

Public Member Functions

- int localSize (int size) const
- int globalSize (int size) const
- void addResidualBlockInfo (ResidualBlockInfo *residual_block_info)
- void preMarginalize ()
- void marginalize ()
- std::vector< double * > getParameterBlocks (std::unordered_map< long, double *> &addr_shift)

Public Attributes

- std::vector< ResidualBlockInfo * > factors
- int **m**
- int **n**
- std::unordered_map< long, int > parameter_block_size
- · int sum_block_size
- std::unordered map< long, int > parameter_block_idx
- std::unordered_map< long, double * > parameter_block_data
- std::vector< int > keep_block_size
- std::vector< int > keep_block_idx
- std::vector< double * > keep_block_data
- Eigen::MatrixXd linearized_jacobians
- Eigen::VectorXd linearized_residuals
- const double eps = 1e-8

The documentation for this class was generated from the following files:

- · vins_estimator/src/factor/marginalization_factor.h
- vins_estimator/src/factor/marginalization_factor.cpp

5.25 MotionEstimator Class Reference

Public Member Functions

• bool solveRelativeRT (const vector< pair< Vector3d, Vector3d >> &corres, Matrix3d &R, Vector3d &T)

The documentation for this class was generated from the following files:

- vins_estimator/src/initial/solve_5pts.h
- · vins estimator/src/initial/solve 5pts.cpp

5.26 camodocal::OCAMCamera Class Reference

#include <ScaramuzzaCamera.h>

Inheritance diagram for camodocal::OCAMCamera:

Collaboration diagram for camodocal::OCAMCamera:

Classes

class Parameters

Public Member Functions

• OCAMCamera (const Parameters ¶ms)

Constructor from the projection model parameters.

· Camera::ModelType modelType (void) const

virtual type of function modelType

· const std::string & cameraName (void) const

virtual type of funtion cameraName

· int imageWidth (void) const

virtual type of function imageWidth

· int imageHeight (void) const

virtual type of function imageHeight

void estimateIntrinsics (const cv::Size &boardSize, const std::vector < std::vector < cv::Point3f > > &object ←
 Points, const std::vector < std::vector < cv::Point2f > > &imagePoints)

virtual function of camera intrinsics

void liftSphere (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to the unit sphere.

• void liftProjective (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to its projective ray.

void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p) const

Project a 3D point (x,y,z) to the image plane in (u,v)

• void undistToPlane (const Eigen::Vector2d &p_u, Eigen::Vector2d &p) const

Projects an undistorted 2D point p_u to the image plane.

- void initUndistortMap (cv::Mat &map1, cv::Mat &map2, double fScale=1.0) const
- cv::Mat initUndistortRectifyMap (cv::Mat &map1, cv::Mat &map2, float fx=-1.0f, float fy=-1.0f, cv::Size imageSize=cv::Size(0, 0), float cx=-1.0f, float cy=-1.0f, cv::Mat rmat=cv::Mat::eye(3, 3, CV_32F)) const
- · int parameterCount (void) const

pure virtual function of parameter count

- · const Parameters & getParameters (void) const
- void setParameters (const Parameters ¶meters)
- void readParameters (const std::vector< double > ¶meterVec)

pure virtual function of reading parameters

- void writeParameters (std::vector< double > ¶meterVec) const
 - pure virtual function of writing parameters
- void writeParametersToYamlFile (const std::string &filename) const
 - pure virtual function of writing parameters to YAML file
- std::string parametersToString (void) const
 - pure virtual of converting parameters to string

Static Public Member Functions

- template<typename T >
 static void spaceToPlane (const T *const params, const T *const q, const T *const t, const Eigen::Matrix<
 T, 3, 1 > &P, Eigen::Matrix< T, 2, 1 > &p)
- template<typename T >
 static void spaceToSphere (const T *const params, const T *const q, const T *const t, const Eigen::Matrix<
 T, 3, 1 > &P, Eigen::Matrix< T, 3, 1 > &P_s)
- template<typename T >
 static void LiftToSphere (const T *const params, const Eigen::Matrix< T, 2, 1 > &p, Eigen::Matrix< T, 3, 1 > &P)
- template<typename T >
 static void SphereToPlane (const T *const params, const Eigen::Matrix< T, 3, 1 > &P, Eigen::Matrix< T, 2, 1 > &p)

Additional Inherited Members

5.26.1 Detailed Description

Scaramuzza Camera (Omnidirectional) https://sites.google.com/site/scarabotix/ocamcalib-toolbox

5.26.2 Member Function Documentation

5.26.2.1 liftProjective()

Lifts a point from the image plane to its projective ray.

Parameters

1	מ	image coordinates
1	Р	coordinates of the projective ray

Implements camodocal::Camera.

Referenced by liftSphere().

Here is the caller graph for this function:

5.26.2.2 liftSphere()

Lifts a point from the image plane to the unit sphere.

Parameters

р	image coordinates	
Р	coordinates of the point on the sphere	1

Implements camodocal::Camera.

References liftProjective().

Here is the call graph for this function:

5.26.2.3 spaceToPlane()

Project a 3D point (x,y,z) to the image plane in (u,v)

Parameters

Р	3D point coordinates
р	return value, contains the image point coordinates

Implements camodocal::Camera.

Referenced by undistToPlane().

Here is the caller graph for this function:

5.26.2.4 undistToPlane()

Projects an undistorted 2D point p_u to the image plane.

Parameters

Returns

image point coordinates

Implements camodocal::Camera.

 $References\ camodocal:: Camera:: Parameters:: image Height(),\ camodocal:: Camera:: Parameters:: image Width(),\ and\ space ToPlane().$

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- camera model/include/camodocal/camera models/ScaramuzzaCamera.h
- camera_model/src/camera_models/ScaramuzzaCamera.cc

5.27 camodocal::CataCamera::Parameters Class Reference

Inheritance diagram for camodocal::CataCamera::Parameters:

Collaboration diagram for camodocal::CataCamera::Parameters:

Public Member Functions

- **Parameters** (const std::string &cameraName, int w, int h, double xi, double k1, double k2, double p1, double p2, double gamma1, double gamma2, double u0, double v0)
- double & xi (void)
- · double & k1 (void)
- double & k2 (void)
- · double & p1 (void)
- double & p2 (void)
- · double & gamma1 (void)
- double & gamma2 (void)
- double & u0 (void)
- double & v0 (void)
- · double xi (void) const
- · double k1 (void) const
- · double k2 (void) const
- double **p1** (void) const
- double **p2** (void) const
- double gamma1 (void) const
- double gamma2 (void) const
- double u0 (void) const
- double v0 (void) const
- bool readFromYamlFile (const std::string &filename)

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

void writeToYamlFile (const std::string &filename) const

write parameters to YAML or XML file;

• Parameters & operator= (const Parameters & other)

Friends

• std::ostream & operator<< (std::ostream &out, const Parameters ¶ms)

Additional Inherited Members

5.27.1 Member Function Documentation

5.27.1.1 readFromYamlFile()

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

Parameters

filename of YAML or XML file

Implements camodocal::Camera::Parameters.

Referenced by camodocal::CameraFactory::generateCameraFromYamlFile().

Here is the caller graph for this function:

5.27.1.2 writeToYamlFile()

write parameters to YAML or XML file;

Parameters

filename of YAML of XML file

Implements camodocal::Camera::Parameters.

References camodocal::Camera::Parameters::m_cameraName, camodocal::Camera::Parameters::m_image ← Height, and camodocal::Camera::Parameters::m_imageWidth.

Referenced by camodocal::CataCamera::writeParametersToYamlFile().

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/CataCamera.h
- camera_model/src/camera_models/CataCamera.cc

5.28 camodocal::EquidistantCamera::Parameters Class Reference

Inheritance diagram for camodocal::EquidistantCamera::Parameters:

 $Collaboration\ diagram\ for\ camodocal :: Equidistant Camera :: Parameters:$

Public Member Functions

- Parameters (const std::string &cameraName, int w, int h, double k2, double k3, double k4, double k5, double mu, double mv, double u0, double v0)
- · double & k2 (void)
- · double & k3 (void)
- double & k4 (void)
- double & k5 (void)
- · double & mu (void)
- double & mv (void)
- double & u0 (void)
- double & v0 (void)
- · double k2 (void) const
- · double k3 (void) const
- · double k4 (void) const
- · double k5 (void) const
- · double mu (void) const
- double mv (void) const
- double u0 (void) const
- double v0 (void) const
- bool readFromYamlFile (const std::string &filename)

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

void writeToYamlFile (const std::string &filename) const

write parameters to YAML or XML file;

Parameters & operator= (const Parameters & other)

Friends

std::ostream & operator<< (std::ostream &out, const Parameters ¶ms)

Additional Inherited Members

5.28.1 Member Function Documentation

5.28.1.1 readFromYamlFile()

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

Parameters

filename | filename of YAML or XML file

Implements camodocal::Camera::Parameters.

 $Referenced \ by \ camodocal:: Camera Factory:: generate Camera From Yaml File().$

Here is the caller graph for this function:

5.28.1.2 writeToYamlFile()

write parameters to YAML or XML file;

Parameters

filename of YAML of XML file

Implements camodocal::Camera::Parameters.

References camodocal::Camera::Parameters::m_cameraName, camodocal::Camera::Parameters::m_image
Height, and camodocal::Camera::Parameters::m_imageWidth.

 $Referenced\ by\ camodocal:: Equidistant Camera:: write Parameters To Yaml File().$

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/EquidistantCamera.h
- $\hbox{-} {\it camera_model/src/camera_models/EquidistantCamera.cc}\\$

5.29 camodocal::OCAMCamera::Parameters Class Reference

Inheritance diagram for camodocal::OCAMCamera::Parameters:

Collaboration diagram for camodocal::OCAMCamera::Parameters:

Public Member Functions

- double & C (void)
- · double & D (void)
- double & E (void)
- double & center_x (void)
- double & center_y (void)
- double & poly (int idx)
- double & inv_poly (int idx)
- · double C (void) const
- double **D** (void) const
- double **E** (void) const
- double center_x (void) const
- double center_y (void) const
- double poly (int idx) const

- · double inv_poly (int idx) const
- bool readFromYamlFile (const std::string &filename)

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

- void writeToYamlFile (const std::string &filename) const write parameters to YAML or XML file;
- Parameters & operator= (const Parameters & other)

Friends

std::ostream & operator<< (std::ostream &out, const Parameters ¶ms)

Additional Inherited Members

5.29.1 Member Function Documentation

5.29.1.1 readFromYamlFile()

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

Parameters

filename of YAML or XML file

Implements camodocal::Camera::Parameters.

Referenced by camodocal::CameraFactory::generateCameraFromYamlFile().

Here is the caller graph for this function:

5.29.1.2 writeToYamlFile()

write parameters to YAML or XML file;

Parameters

filename of YAML of XML file

Implements camodocal::Camera::Parameters.

References camodocal::Camera::Parameters::m_cameraName, camodocal::Camera::Parameters::m_image ← Height, and camodocal::Camera::Parameters::m_imageWidth.

Referenced by camodocal::OCAMCamera::writeParametersToYamlFile().

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- camera model/include/camodocal/camera models/ScaramuzzaCamera.h
- camera_model/src/camera_models/ScaramuzzaCamera.cc

5.30 camodocal::PinholeCamera::Parameters Class Reference

 $Inheritance\ diagram\ for\ camodocal:: Pinhole Camera:: Parameters:$

Collaboration diagram for camodocal::PinholeCamera::Parameters:

Public Member Functions

· Parameters ()

Construct a new Pinhole Camera:: Parameters:: Parameters object.

- Parameters (const std::string &cameraName, int w, int h, double k1, double k2, double p1, double p2, double fx, double fy, double cx, double cy)
- · double & k1 (void)
- · double & k2 (void)
- · double & p1 (void)
- · double & p2 (void)
- double & fx (void)
- double & fy (void)
- double & cx (void)
- · double & cy (void)
- · double xi (void) const
- double k1 (void) const
- double k2 (void) const
- double **p1** (void) const
- double p2 (void) const
- double fx (void) const
- double fy (void) const
- double cx (void) const
- double cy (void) const
- bool readFromYamlFile (const std::string &filename)

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

• void writeToYamlFile (const std::string &filename) const

write parameters to YAML or XML file;

• Parameters & operator= (const Parameters &other)

override operator "=" to make it work as normal "="

Friends

std::ostream & operator << (std::ostream &out, const Parameters ¶ms)
 override operator "<<" to output Parameters with ostream

Additional Inherited Members

5.30.1 Member Function Documentation

5.30.1.1 operator=()

override operator "=" to make it work as normal "="

Parameters

other	other parameters object
-------	-------------------------

Returns

: other parameters object

References camodocal::Camera::Parameters::m_cameraName, camodocal::Camera::Parameters::m_image \leftarrow Height, and camodocal::Camera::Parameters::m_imageWidth.

5.30.1.2 readFromYamlFile()

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

Parameters

filename | filename of YAML or XML file

Implements camodocal::Camera::Parameters.

References camodocal::Camera::Parameters::m_cameraName, camodocal::Camera::Parameters::m_image \leftarrow Height, and camodocal::Camera::Parameters::m_imageWidth.

Referenced by camodocal::CameraFactory::generateCameraFromYamlFile().

Here is the caller graph for this function:

5.30.1.3 writeToYamlFile()

write parameters to YAML or XML file;

Parameters

filename of YAML of XML file

Implements camodocal::Camera::Parameters.

 $References \quad camodocal:: Camera:: Parameters:: m_camera Name, \quad camodocal:: Camera:: Parameters:: m_image {\leftarrow} \\ Height, \ and \ camodocal:: Camera:: Parameters:: m_image Width.$

Referenced by camodocal::PinholeCamera::writeParametersToYamlFile().

Here is the caller graph for this function:

5.30.2 Friends And Related Function Documentation

```
5.30.2.1 operator <<
```

override operator "<<" to output Parameters with ostream

Parameters

out	
params	

Returns

.

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/camera_models/PinholeCamera.h
- camera_model/src/camera_models/PinholeCamera.cc

5.31 camodocal::Camera::Parameters Class Reference

nested class for camera parameters

#include <Camera.h>

Inheritance diagram for camodocal::Camera::Parameters:

Public Member Functions

- EIGEN_MAKE_ALIGNED_OPERATOR_NEW Parameters (ModelType modelType)

 Construct a new Parameters object.
- Parameters (ModelType modelType, const std::string &cameraName, int w, int h)

 Construct a new Parameters object.
- ModelType & modelType (void)

return modelType of current camera object

std::string & cameraName (void)

return name of current camera object

int & imageWidth (void)

return image width of current camera object

int & imageHeight (void)

return image height of current camera object

ModelType modelType (void) const

return modelType of current camera object (const data member)

const std::string & cameraName (void) const

return name of current camera object(const data member)

· int imageWidth (void) const

return image width of current camera object(const data member)

• int imageHeight (void) const

return image height of current camera object (const data member)

• int nIntrinsics (void) const

return number of camera intrinsics(const data member)

virtual bool readFromYamlFile (const std::string &filename)=0

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

• virtual void writeToYamlFile (const std::string &filename) const =0

write parameters to YAML or XML file;

Protected Attributes

- ModelType m_modelType
- int m_nIntrinsics
- std::string m cameraName

camera name

• int m_imageWidth

image width in pixels

• int m_imageHeight

image height in pixels

5.31.1 Detailed Description

nested class for camera parameters

5.31.2 Constructor & Destructor Documentation

Construct a new Parameters object.

Parameters

modelType | model of current camera object

References m_nIntrinsics.

5.31.2.2 Parameters() [2/2]

Construct a new Parameters object.

Parameters

modelType	model of current camera object
cameraName	name of current camera object
W	image width of current camera object
h	image height of current camera object

References m_nIntrinsics.

5.31.3 Member Function Documentation

```
5.31.3.1 cameraName() [1/2]
```

return name of current camera object

Returns

:

Return values

References m_cameraName.

Here is the caller graph for this function:


```
5.31.3.2 cameraName() [2/2]
```

```
const std::string & camodocal::Camera::Parameters::cameraName ( void \quad ) \ const
```

return name of current camera object(const data member)

Returns

:

Return values

```
cameraName std::string type
```

References m cameraName.

```
5.31.3.3 imageHeight() [1/2]
```

return image height of current camera object

Returns

.

Return values

imageHeight | image height in pixels, int type

References m_imageHeight.

Referenced by camodocal::PinholeCamera::distortion(), camodocal::CataCamera::distortion(), camodocal:: \leftarrow OCAMCamera::estimateIntrinsics(), camodocal::PinholeCamera::estimateIntrinsics(), camodocal::CataCamera \leftarrow ::estimateIntrinsics(), camodocal::EquidistantCamera::estimateIntrinsics(), camodocal::CameraFactory::generate \leftarrow Camera(), camodocal::OCAMCamera::imageHeight(), camodocal:: \leftarrow EquidistantCamera::imageHeight(), camodocal::CataCamera::imageHeight(), camodocal::OCAMCamera::undist \leftarrow ToPlane(), and camodocal::EquidistantCamera::undistToPlane().

Here is the caller graph for this function:


```
5.31.3.4 imageHeight() [2/2]
```

```
\label{lem:camodocal::Camera::Parameters::imageHeight (} \\ \text{void ) const}
```

return image height of current camera object (const data member)

Returns

:

Return values

```
imageHeight | image height in pixels, int type
```

References m_imageHeight.

```
5.31.3.5 imageWidth() [1/2]
```

```
int & camodocal::Camera::Parameters::imageWidth ( void \quad )
```

return image width of current camera object

Returns

.

Return values

imageWidth | image width in pixels, int type

References m_imageWidth.

Referenced by camodocal::PinholeCamera::distortion(), camodocal::CataCamera::distortion(), camodocal:: \leftarrow OCAMCamera::estimateIntrinsics(), camodocal::PinholeCamera::estimateIntrinsics(), camodocal::CataCamera \leftarrow ::estimateIntrinsics(), camodocal::CataCamera::estimateIntrinsics(), camodocal::CameraFactory::generate \leftarrow Camera(), camodocal::OCAMCamera::imageWidth(), camodocal::PinholeCamera::imageWidth(), camodocal:: \leftarrow EquidistantCamera::imageWidth(), camodocal::CataCamera::imageWidth(), camodocal::OCAMCamera::undist \leftarrow ToPlane(), and camodocal::EquidistantCamera::undistToPlane().

Here is the caller graph for this function:


```
5.31.3.6 imageWidth() [2/2]
```

return image width of current camera object(const data member)

Returns

:

Return values

```
imageWidth | image width in pixels, int type
```

References m_imageWidth.

5.31.3.7 modelType() [1/2]

return modelType of current camera object

Returns

.

Return values

modelType | modelType of current camera object

 $Referenced \ by \ camodocal::OCAMCamera::modelType(), \ camodocal::PinholeCamera::modelType(), \ camodocal::Camodocal::PinholeCamera::modelType(), \ camodocal::Camodocal::PinholeCamera::modelType(), \ camodocal::Camodo$

Here is the caller graph for this function:


```
5.31.3.8 modelType() [2/2]
```

return modelType of current camera object (const data member)

Returns

:

Return values

modelType

modelType of current camera object

5.31.3.9 nIntrinsics()

return number of camera intrinsics(const data member)

Returns

:

Return values

```
nIntrinsics | number of intrinsics, int type
```

References m_nIntrinsics.

5.31.3.10 readFromYamlFile()

read parameters from YAML or XML file, (pure virtual function which must be override in son classes, following virtual function with '=0' are all pure virtual function)

Parameters

filename of YAML or XML file

Implemented in camodocal::CataCamera::Parameters, camodocal::OCAMCamera::Parameters, camodocal:: \leftarrow EquidistantCamera::Parameters, and camodocal::PinholeCamera::Parameters.

5.31.3.11 writeToYamlFile()

write parameters to YAML or XML file;

Parameters

filename of YAML of XML file

Implemented in camodocal::CataCamera::Parameters, camodocal::OCAMCamera::Parameters, camodocal:: \leftarrow EquidistantCamera::Parameters, and camodocal::PinholeCamera::Parameters.

5.31.4 Member Data Documentation

5.31.4.1 m_nIntrinsics

```
int camodocal::Camera::Parameters::m_nIntrinsics [protected]
```

number of camera Intrinsics, for pinhole camera model are four distortion parameters: k1, k2, p1, p2 four projection parameters: fx, fy, cx, cy

Referenced by nIntrinsics(), and Parameters().

The documentation for this class was generated from the following files:

- · camera model/include/camodocal/camera models/Camera.h
- camera_model/src/camera_models/Camera.cc

5.32 camodocal::PinholeCamera Class Reference

Inheritance diagram for camodocal::PinholeCamera:

Collaboration diagram for camodocal::PinholeCamera:

Classes

class Parameters

Public Member Functions

· PinholeCamera ()

Construct a new Pinhole Camera:: Pinhole Camera object.

• PinholeCamera (const std::string &cameraName, int imageWidth, int imageHeight, double k1, double k2, double p1, double p2, double fx, double cx, double cy)

Constructor from the projection model parameters.

• PinholeCamera (const Parameters ¶ms)

Constructor from the projection model parameters.

Camera::ModelType modelType (void) const

virtual type of function modelType

· const std::string & cameraName (void) const

virtual type of funtion cameraName

· int imageWidth (void) const

virtual type of function imageWidth

· int imageHeight (void) const

virtual type of function imageHeight

void estimateIntrinsics (const cv::Size &boardSize, const std::vector < cv::Point3f > > &object ←
Points, const std::vector < std::vector < cv::Point2f > > &imagePoints)

virtual function of camera intrinsics

• virtual void liftSphere (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to the unit sphere.

void liftProjective (const Eigen::Vector2d &p, Eigen::Vector3d &P) const

Lifts a point from the image plane to its projective ray.

void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p) const

Project a 3D point (x,y,z) to the image plane in (u,v)

- void spaceToPlane (const Eigen::Vector3d &P, Eigen::Vector2d &p, Eigen::Matrix< double, 2, 3 > &J) const
- void undistToPlane (const Eigen::Vector2d &p_u, Eigen::Vector2d &p) const

Projects an undistorted 2D point p_u to the image plane.

void distortion (const Eigen::Vector2d &p_u, Eigen::Vector2d &d_u) const

Apply distortion to input point (from the normalised plane)

- void distortion (const Eigen::Vector2d &p_u, Eigen::Vector2d &d_u, Eigen::Matrix2d &J) const Apply distortion to input point (from the normalised plane) and calculate Jacobian.
- void initUndistortMap (cv::Mat &map1, cv::Mat &map2, double fScale=1.0) const
- cv::Mat initUndistortRectifyMap (cv::Mat &map1, cv::Mat &map2, float fx=-1.0f, float fy=-1.0f, cv::Size imageSize=cv::Size(0, 0), float cx=-1.0f, float cy=-1.0f, cv::Mat rmat=cv::Mat::eye(3, 3, CV_32F)) const
- int parameterCount (void) const

pure virtual function of parameter count

- · const Parameters & getParameters (void) const
- void setParameters (const Parameters ¶meters)
- void readParameters (const std::vector< double > ¶meterVec)

pure virtual function of reading parameters

void writeParameters (std::vector< double > ¶meterVec) const

pure virtual function of writing parameters

void writeParametersToYamlFile (const std::string &filename) const

pure virtual function of writing parameters to YAML file

• std::string parametersToString (void) const

pure virtual of converting parameters to string

Static Public Member Functions

template<typename T >
 static void spaceToPlane (const T *const params, const T *const q, const T *const t, const Eigen::Matrix<
 T, 3, 1 > &P, Eigen::Matrix< T, 2, 1 > &p)

Additional Inherited Members

5.32.1 Constructor & Destructor Documentation

```
5.32.1.1 PinholeCamera() [1/2]
```

Constructor from the projection model parameters.

Construct a new Pinhole Camera:: Pinhole Camera object.

Parameters

cameraName	name of camera
imageWidth	width of current image
imageHeight	height of current image
k1	distortion parameter
k2	distortion parameter
p1	distortion parameter
p2	distortion parameter
fx	projection parameter
fy	projection parameter
CX	projection parameter
су	projection parameter

5.32.1.2 PinholeCamera() [2/2]

Constructor from the projection model parameters.

Construct a new Pinhole Camera:: Pinhole Camera object.

Parameters

params PinholeCamera::Parameters object

5.32.2 Member Function Documentation

5.32.2.1 distortion() [1/2]

```
void camodocal::PinholeCamera::distortion ( const Eigen::Vector2d & p\_u, Eigen::Vector2d & d\_u) const
```

Apply distortion to input point (from the normalised plane)

Parameters

p⊷	undistorted coordinates of point on the normalised plane
и	

Returns

to obtain the distorted point: $p_d = p_u + d_u$

Referenced by liftProjective(), spaceToPlane(), and undistToPlane().

Here is the caller graph for this function:

5.32.2.2 distortion() [2/2]

Apply distortion to input point (from the normalised plane) and calculate Jacobian.

Parameters

p⊷	undistorted coordinates of point on the normalised plane
и	

Returns

to obtain the distorted point: p_d = p_u + d_u

 $References\ camodocal:: Camera:: Parameters:: image Height(),\ camodocal:: Camera:: Parameters:: image Width(),\ and\ space ToPlane().$

Here is the call graph for this function:

5.32.2.3 liftProjective()

Lifts a point from the image plane to its projective ray.

Parameters

	р	image coordinates
ĺ	Р	coordinates of the projective ray

Implements camodocal::Camera.

References distortion().

Referenced by liftSphere().

Here is the call graph for this function:

Here is the caller graph for this function:

5.32.2.4 liftSphere()

Lifts a point from the image plane to the unit sphere.

Parameters

р	image coordinates
Р	coordinates of the point on the sphere

Implements camodocal::Camera.

References liftProjective().

Here is the call graph for this function:

5.32.2.5 spaceToPlane()

Project a 3D point (x,y,z) to the image plane in (u,v)

Parameters

Р	3D point coordinates
р	return value, contains the image point coordinates

Implements camodocal::Camera.

References distortion().

Referenced by distortion().

Here is the call graph for this function:

Here is the caller graph for this function:

5.32.2.6 undistToPlane()

Projects an undistorted 2D point p_u to the image plane.

Parameters

p⊷	2D point coordinates
_u	

Returns

image point coordinates

Implements camodocal::Camera.

References distortion().

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- $\bullet \ camera_model/include/camodocal/camera_models/PinholeCamera.h$
- camera_model/src/camera_models/PinholeCamera.cc

5.33 PoseLocalParameterization Class Reference

Inheritance diagram for PoseLocalParameterization:

Collaboration diagram for PoseLocalParameterization:

The documentation for this class was generated from the following files:

- vins_estimator/src/factor/pose_local_parameterization.h
- vins_estimator/src/factor/pose_local_parameterization.cpp

5.34 ProjectionFactor Class Reference

Inheritance diagram for ProjectionFactor:

Collaboration diagram for ProjectionFactor:

Public Member Functions

- ProjectionFactor (const Eigen::Vector3d &_pts_i, const Eigen::Vector3d &_pts_j)
- virtual bool **Evaluate** (double const *const *parameters, double *residuals, double **jacobians) const
- void check (double **parameters)

Public Attributes

- Eigen::Vector3d pts_i
- Eigen::Vector3d pts_j
- Eigen::Matrix< double, 2, 3 > tangent_base

Static Public Attributes

- static Eigen::Matrix2d sqrt_info
- static double sum_t

The documentation for this class was generated from the following files:

- vins_estimator/src/factor/projection_factor.h
- · vins_estimator/src/factor/projection_factor.cpp

5.35 ProjectionTdFactor Class Reference

Inheritance diagram for ProjectionTdFactor:

Collaboration diagram for ProjectionTdFactor:

Public Member Functions

- **ProjectionTdFactor** (const Eigen::Vector3d &_pts_i, const Eigen::Vector3d &_pts_j, const Eigen::Vector2d &_velocity_i, const double _td_i, const double _td_j, const double _row← _i, const double _row_j)
- virtual bool **Evaluate** (double const *const *parameters, double *residuals, double **jacobians) const
- void check (double **parameters)

Public Attributes

- Eigen::Vector3d pts_i
- Eigen::Vector3d pts_j
- Eigen::Vector3d velocity_i
- Eigen::Vector3d velocity_j
- double td_i
- double td_j
- Eigen::Matrix< double, 2, 3 > tangent_base
- double row_i
- double row_j

Static Public Attributes

- static Eigen::Matrix2d sqrt_info
- static double sum_t

The documentation for this class was generated from the following files:

- · vins estimator/src/factor/projection td factor.h
- · vins estimator/src/factor/projection td factor.cpp

5.36 camodocal::ReprojectionError1 < CameraT > Class Template Reference

Public Member Functions

- EIGEN_MAKE_ALIGNED_OPERATOR_NEW ReprojectionError1 (const Eigen::Vector3d &observed_←
 P, const Eigen::Vector2d &observed_p)
- ReprojectionError1 (const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p, const Eigen::Matrix2d &sqrtPrecisionMat)
- ReprojectionError1 (const std::vector< double > &intrinsic_params, const Eigen::Vector3d &observed_P, const Eigen::Vector2d &observed_p)
- template<typename T >
 bool operator() (const T *const intrinsic_params, const T *const q, const T *const t, T *residuals) const
- template<typename T >
 bool operator() (const T *const q_cam_odo, const T *const t_cam_odo, const T *const p_odo, const T
 *const att odo, T *residuals) const

Public Attributes

- std::vector< double > m intrinsic params
- Eigen::Vector3d m_observed_P
- Eigen::Vector2d m observed p
- Eigen::Matrix2d m_sqrtPrecisionMat

The documentation for this class was generated from the following file:

· camera model/src/camera models/CostFunctionFactory.cc

5.37 camodocal::ReprojectionError2 < CameraT > Class Template Reference

Public Member Functions

- EIGEN_MAKE_ALIGNED_OPERATOR_NEW ReprojectionError2 (const std::vector< double > &intrinsic_params, const Eigen::Vector2d &observed_p)
- template<typename T >
 bool operator() (const T *const T, const T *const T, const T *const point, T *residuals) const

The documentation for this class was generated from the following file:

• camera_model/src/camera_models/CostFunctionFactory.cc

5.38 camodocal::ReprojectionError3 < CameraT > Class Template Reference

Public Member Functions

- EIGEN_MAKE_ALIGNED_OPERATOR_NEW ReprojectionError3 (const Eigen::Vector2d &observed_p)
- ReprojectionError3 (const Eigen::Vector2d &observed_p, const Eigen::Matrix2d &sqrtPrecisionMat)
- ReprojectionError3 (const std::vector< double > &intrinsic_params, const Eigen::Vector2d &observed_p)
- ReprojectionError3 (const std::vector< double > &intrinsic_params, const Eigen::Vector2d &observed_p, const Eigen::Matrix2d &sqrtPrecisionMat)
- ReprojectionError3 (const std::vector< double > &intrinsic_params, const Eigen::Vector3d &odo_pos, const Eigen::Vector3d &odo_att, const Eigen::Vector2d &observed_p, bool optimize_cam_odo_z)
- ReprojectionError3 (const std::vector< double > &intrinsic_params, const Eigen::Quaterniond &cam_← odo_q, const Eigen::Vector3d &cam_odo_t, const Eigen::Vector3d &odo_pos, const Eigen::Vector3d &odo← _att, const Eigen::Vector2d &observed_p)
- template<typename T >
 - bool **operator()** (const T *const intrinsic_params, const T *const q_cam_odo, const T *const t_cam_odo, const T *const p_odo, const T *const att_odo, const T *const point, T *residuals) const
- template<typename T >
 - $bool\ \textbf{operator()}\ (const\ T\ *const\ q_cam_odo,\ const\ T\ *const\ t_cam_odo,\ const\ T\ *const\ point,\ T\ *residuals)$
- template<typename T >
 - bool **operator()** (const T *const q_cam_odo, const T *const t_cam_odo, const T *const p_odo, const T *const att odo, const T *const point, T *residuals) const
- template<typename T >
 bool operator() (const T *const point, T *residuals) const

The documentation for this class was generated from the following file:

camera_model/src/camera_models/CostFunctionFactory.cc

5.39 ReprojectionError3D Struct Reference

Public Member Functions

- ReprojectionError3D (double observed u, double observed v)
- template<typename T >
 bool operator() (const T *const camera_R, const T *const camera_T, const T *point, T *residuals) const

Static Public Member Functions

• static ceres::CostFunction * Create (const double observed x, const double observed y)

Public Attributes

- · double observed_u
- double observed v

The documentation for this struct was generated from the following file:

vins_estimator/src/initial/initial_sfm.h

5.40 ResidualBlockInfo Struct Reference

Public Member Functions

- ResidualBlockInfo (ceres::CostFunction *_cost_function, ceres::LossFunction *_loss_function, std ← ::vector < double *> _parameter_blocks, std::vector < int > _drop_set)
- · void Evaluate ()
- int localSize (int size)

Public Attributes

- ceres::CostFunction * cost_function
- ceres::LossFunction * loss_function
- std::vector< double * > parameter_blocks
- std::vector< int > drop_set
- double ** raw_jacobians
- std::vector< Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > > jacobians
- · Eigen::VectorXd residuals

The documentation for this struct was generated from the following files:

- vins_estimator/src/factor/marginalization_factor.h
- · vins_estimator/src/factor/marginalization_factor.cpp

5.41 SFMFeature Struct Reference

Public Attributes

- · bool state
- int id
- vector< pair< int, Vector2d > observation
- double position [3]
- double depth

The documentation for this struct was generated from the following file:

vins_estimator/src/initial/initial_sfm.h

5.42 Spline Class Reference

Inheritance diagram for Spline:

Collaboration diagram for Spline:

Public Types

- enum BC_type { FIXED_1ST_DERIV_BC, FIXED_2ND_DERIV_BC, PARABOLIC_RUNOUT_BC }
- enum Spline_type { LINEAR, CUBIC }
- typedef std::vector< std::pair< double, double >> base
- typedef base::const_iterator const_iterator

Public Member Functions

- const_iterator begin () const
- const_iterator end () const
- void clear ()
- size_t size () const
- size_t max_size () const
- size_t capacity () const

- · bool empty () const
- void addPoint (double x, double y)
- void setLowBC (BC_type BC, double val=0)
- void **setHighBC** (BC_type BC, double val=0)
- void setType (Spline_type type)
- double operator() (double xval)

The documentation for this class was generated from the following file:

· camera model/include/camodocal/chessboard/Spline.h

5.43 camodocal::StereoReprojectionError< CameraT > Class Template Reference

Public Member Functions

EIGEN_MAKE_ALIGNED_OPERATOR_NEW StereoReprojectionError (const Eigen::Vector3d &observed ← P, const Eigen::Vector2d &observed p I, const Eigen::Vector2d &observed p r)

```
    template<typename T >
        bool operator() (const T *const intrinsic_params_I, const T *const intrinsic_params_r, const T *const T
```

The documentation for this class was generated from the following file:

• camera_model/src/camera_models/CostFunctionFactory.cc

5.44 ThreadsStruct Struct Reference

Public Attributes

- std::vector< ResidualBlockInfo * > sub_factors
- Eigen::MatrixXd A
- · Eigen::VectorXd b
- std::unordered map< long, int > parameter_block_size
- std::unordered_map< long, int > parameter_block_idx

The documentation for this struct was generated from the following file:

· vins_estimator/src/factor/marginalization_factor.h

5.45 TicToc Class Reference

Public Member Functions

- void **tic** ()
- double toc ()

The documentation for this class was generated from the following file:

vins_estimator/src/utility/tic_toc.h

5.46 camodocal::Transform Class Reference

Public Member Functions

- Transform (const Eigen::Matrix4d &H)
- Eigen::Quaterniond & rotation (void)
- · const Eigen::Quaterniond & rotation (void) const
- double * rotationData (void)
- · const double *const rotationData (void) const
- Eigen::Vector3d & translation (void)
- const Eigen::Vector3d & translation (void) const
- double * translationData (void)
- const double *const translationData (void) const
- Eigen::Matrix4d toMatrix (void) const

The documentation for this class was generated from the following files:

- camera_model/include/camodocal/sparse_graph/Transform.h
- camera_model/src/sparse_graph/Transform.cc

5.47 Utility::uint_< N > Struct Template Reference

The documentation for this struct was generated from the following file:

· vins_estimator/src/utility/utility.h

5.48 Utility Class Reference

Classes

struct uint_

Public Member Functions

- * template < size_t N, typename Lambda , typename IterT > void **unroller** (const Lambda &f, const IterT &iter, uint_ < N >)
- template<typename Lambda , typename IterT >
 void unroller (const Lambda &f, const IterT &iter, uint_< 0 >)

Static Public Member Functions

- template<typename Derived >
 static Eigen::Quaternion< typename Derived::Scalar > deltaQ (const Eigen::MatrixBase< Derived >
 &theta)
- template<typename Derived >
 static Eigen::Matrix< typename Derived::Scalar, 3, 3 > skewSymmetric (const Eigen::MatrixBase< Derived > &q)
- template<typename Derived >
 static Eigen::Quaternion< typename Derived::Scalar > positify (const Eigen::QuaternionBase< Derived >
 &g)
- template<typename Derived >
 static Eigen::Matrix< typename Derived::Scalar, 4, 4 > Qleft (const Eigen::QuaternionBase< Derived > &q)
- template<typename Derived >
 static Eigen::Matrix< typename Derived::Scalar, 4, 4 > Qright (const Eigen::QuaternionBase< Derived >
 &p)
- static Eigen::Vector3d R2ypr (const Eigen::Matrix3d &R)
- $\label{eq:const_policy} \begin{array}{ll} \bullet & \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}{>} \\ \mathsf{static} \ \mathsf{Eigen} \\ \vdots \\ \mathsf{Matrix}{<} \ \mathsf{typename} \ \mathsf{Derived}{>} \\ \mathsf{\$ypr}) \end{array}$
- static Eigen::Matrix3d g2R (const Eigen::Vector3d &g)
 template<typename T >
- template<typename I >
 static T normalizeAngle (const T &angle_degrees)

The documentation for this class was generated from the following files:

- · vins_estimator/src/utility/utility.h
- · vins_estimator/src/utility/utility.cpp

Chapter 6

File Documentation

6.1 camera_model/include/camodocal/camera_models/Camera.h File Reference

```
#include <boost/shared_ptr.hpp>
#include <eigen3/Eigen/Dense>
#include <opencv2/core/core.hpp>
#include <vector>
```

Include dependency graph for Camera.h:

This graph shows which files directly or indirectly include this file:

Classes

· class camodocal::Camera

base class for all camera model

• class camodocal::Camera::Parameters

nested class for camera parameters

90 File Documentation

Typedefs

- typedef boost::shared_ptr< Camera > camodocal::CameraPtr
 cameraPtr
- typedef boost::shared_ptr< const Camera > camodocal::CameraConstPtr
 CameraConstPtr.

6.1.1 Detailed Description

Author

```
yuntianli (yuntianlee91@hotmail.com)
```

Version

0.1

Date

2019-08-18

Copyright

Copyright (c) 2019

6.2 camera_model/src/camera_models/Camera.cc File Reference

base class of all other camera class

6.2.1 Detailed Description

base class of all other camera class

Author

yuntianli (yuntianlee91@hotmail.com)

Version

0.1

Date

2019-08-18

Copyright

Copyright (c) 2019

92 File Documentation