Факультет компьютерных наук

Алгоритмический трейдинг: высокочастотные, низкочастотные и глобал макро стратегии

Выполнил студент:

Мельников Артём Максимович

Руководитель ВКР:

Злотник Андрей Александрович, Директор института количественных финансов НИУ ВШЭ

Актуальность

Высокочастотный трейдинг (HFT)

Для управления волатильностью криптовалютного рынка необходимы передовые алгоритмы.

2 Своевременное принятие решений зависит от быстрой и точной обработки финансовых данных.

Недостаток публичных исследований в этой области подчеркивает важность дальнейшего изучения этой области применения ML.

Интеграция машинного обучения имеет решающее значение для повышения точности и адаптивности.

Постановка задачи

Разработка МL моделей: Создание и совершенствование различных моделей машинного обучения для прогнозирования трендов на криптовалютном рынке.

3 Сравнение моделей: Проведение комплексных сравнений для оценки эффективности различных моделей в контексте HFT на срезе актуальных данных.

Общий обзор предлагаемой модели

Рис. 5.1: Архитектура высокочастотного ML бота для прогнозирования цен

Обзор данных

Более 10млн сделок в день

—— Полная информация о первых 24 уровнях order book

Постоянно работающий робот-тикер, который получает информацию каждые 3 миллисекунды

Разработка признаков

- Более 50 уникальных признаков
 - Старые проверенные стат методы на orderbook
 - Технические индикаторы рынка
 - Более современные квантовые признаки

Каждый из них на разных временных окнах, чтобы поймать как краткосрочные тренды, так и долгосрочные тенденции

Рис. 6.1: Визуальное представление важности признаков в модели линейной регрессии.

Модели машинного обучения

Основано на ранней остановке

SGD, Adam, RMSprop

Гиперпараметр	Предлагаемый диапазон
Количество слоев	1-4
Количество нейронов в слое	50-50
Скорость обучения	0.1, 0.01, 0.00
Размер партии	16, 32, 64, 128, 25
Коэффициент отсева	0 - 0.5
Функция активации	tanh, relu, sigmoid

LSTM

LSTM отличается своей способностью улавливать долгосрочные зависимости и сложные закономерности в данных временных рядов, что необходимо для высокоточного прогнозирования движения рынка.

XGBoost

Эпохи

Оптимизатор

Благодаря способности эффективно обрабатывать большие массивы данных и высокой точности прогнозирования XGBoost отлично подходит для выявления тонких закономерностей и тенденций в сложных финансовых данных.

Гиперпараметр	Предлагаемый диапазон
Скорость обучения (learning rate)	0.01, 0.05, 0.1, 0.2
Количество деревьев (n _{estimators})	100, 200, 300, 500
Глубина дерева (max _{depth})	3, 6, 9, 12
Min вес в узле (min_child_weight)	1, 3, 5, 7
Коэффициент подвыборки (subsample)	0.6, 0.7, 0.8, 0.9
Регуляризация L1 (alpha)	0, 0.001, 0.005, 0.01
Регуляризация L2 (lambda)	1, 1.5, 2, 3

Метрика

Для нашего исследования в области HFT мы использовали собственную метрику, разработанную по рекомендации профессионала из индустрии, что позволило нам более точно соответствовать отраслевым стандартам.

$$metric(y_{true}, y_{pred}) = \frac{\sum (confusion \ matrix \odot \ weight \ matrix)}{\sqrt{total \ action \ count}}$$

Анализ результатов

В нашем исследовании линейная модель была выбрана в качестве эталона для сравнения эффективности сложных моделей, таких как LSTM и XGB.

Model	Size	Metric	Inference Time (ms)
all zeros	0.070KB	0.0	14.01
ideal model	0.070KB	2825.38	24.89
model_random	0.071KB	-75.91	63.25
linear	2.590KB	9.41	608.06
LSTM	5.000MB	320.36	33969.46
XGB	1.370MB	158.04	5445.39

Таблица 6.3: Final Metrics, Model Sizes, and Inference Times

P&L

Обучали на 6ти днях торгов, потом график по последнему дню

Выводы и проделанная работа

1

Разработка моделей и метрик: Успешная разработка и тонкая настройка моделей LSTM и XGB, а также пользовательской метрики в сотрудничестве с экспертами отрасли для улучшения высокочастотных прогнозов тенденций на криптовалютном рынке.

2

Анализ рынка: Более глубокое понимание волатильности криптовалют, подчеркивающее необходимость адаптивных и надежных моделей. Это исследование также выявило потенциал для анализа рынка в режиме реального времени.

3

Основа будущих исследований: Заложили основу для дальнейшего изучения НГТ, подчеркнув важность постоянного исследования и разработки моделей, особенно в контексте обработки данных в реальном времени и более широких финансовых приложений.

Вопросы

Спасибо за внимание!

