Atomic Structure DPP-3

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

Remember:
$$\frac{1}{R_H} = 911.5 \text{ Å}$$

- 1. Identify each parameter in the Bohr energy expression $E_n = -k^2 \frac{2\pi^2 mZ^2 e^4}{nh^2}$
- **2.** Calculate the radius of the first allowed Bohr orbit for hydrogen.
- **3.** (a) Calculate the radii of the first two Bohr orbits of Li²⁺
 - (b) Calculate the difference in total energy between these orbits.
 - (c) Calculate the difference in potential energy between these two orbits
- 4. The energy of an electron in the first Bohr orbit for hydrogen is -13.6 eV. Which one(s) of the following is (are) possible excited state(s) for electrons in Bohr orbits of hydrogen?

 (a) -3.4 eV (b) -6.8 eV (c) -1.7 eV (d) + 13.6 eV
- 5. A 25 watt bulb emits monochromatic yellow light of wavelength of 0.57μm. Calculate the rate of emission of quanta per second. (NCERT Problem)
- 6. Electrons are emitted with zero velocity from a metal surface when it is exposed to radiation of wavelength 6800Å. Calculate threshold frequency (v_0) and work function (W_0) of the metal. (NCERT Problem)
- 7. What is the wavelength of light emitted when the electron in a hydrogen atom undergoes transition from an energy level with n = 4 to an energy level with n = 2?

(NCERT Problem)

- 8. What is the maximum number of emission lines when the excited electron of a H atom in n = 6 drops to the ground state? (**NCERT Problem**)
- 9. Bohr model can explain
 - (a) The spectrum of hydrogen atom only
 - (b) spectrum of an atom or ion containing two electrons
 - (c) The spectrum of hydrogen molecules
 - (d) solar spectrum
- 10. The energy expression for an H atom is given by

(a)
$$E_n = hcR \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

(b)
$$E_n = hcR \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

(c)
$$E_n = Rz^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

(d)
$$E_n = -hcR\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

- 11. The radius of the hydrogen atom in the ground state is 0.53 Å. The radius of $_3\text{Li}^{2+}$ in the similar state is
 - (a) 1.06Å
- (b) 0.256Å
- (c) 0.17 Å
- (d) 0.53 Å
- **12.** In an atom, two electrons move round the nucleus in circular orbits of radii R and 4R. The ratio of the time taken by them to complete one revolution is
 - (a) 1:4
- (b) 4:1
- (c) 1:8
- (d) 8:1

- The frequency of revolution of an electron in a circular Bohr orbit is 13.
 - (a) directly proportional to the quantum number n
 - (b) inversely proportional to the quantum number n
 - (c) inversely proportional to n^3
 - (d) directly proportional to n^2

ANSWERS

- **2.** 0.529 Å
- (a) $r_1 = 0.176 \text{Å}$, $r_2 = 0.704 \text{Å}$, (b) $1.41 \times 10^{-17} \text{J}$, (c) $2.83 \times 10^{-17} \text{J}$

- (a) -3.4 eV 5. $7.197 \times 10^{19} \text{s}^{-1}$ 6. $4.41 \times 10^{14} \text{s}^{-1}$, $2.91 \times 10^{-19} \text{J}$
- **7.** 486 nm
- **8.** 15 emission lines
- **9.** (a)
- **10**. (a)
- **11.** (c)
- **12.** (c)

13. (c)