LPC82X 培训资料

串行外设接口SPI

MAY, 2016

内容

- SPI性能概述
- SPI具体应用操作
- SPI低功耗模式唤醒

SPI性能概述

概述

- LPC82x家族所有型号都提供了SPI接口,且包含2个SPI控制器。
- SPI功能可以通过开关矩阵 (switch matrix)来配置安排到所有数字引脚。
 - 建议:引脚PIO0_10和PIO0_11(open-drain pins)不要用于SPI
- 片上ROM提供SPI驱动,即有片上ROM SPI的驱动API可供调用。

特性

- 1-16位的数据帧被直接支持,更大的数据帧可结合软件来实现。
- 主/从模式。
- 支持发送数据到从设备时,无需读取进来的数据。这可用于外接SPI存储器时。
- 可以选择将控制信息随着数据一起写入。这将允许实现多种功能的操作,包括任意长度的数据帧的操作。
- 最多4条片选输入输出信号,且极性可选,使用灵活。
- 收发支持DMA。
- 支持低功耗模式 (sleep/deep sleep/power down mode)唤醒。
- 注意:不支持TI的SSI和National的Microwire模式

功能框图

• 注:SPIO提供4个片选信号SSEL[3:0] ,SPI1提供2个片选信号 SSEL[1:0]

SPI具体应用操作

时钟产生

- 从模式下,SPI的时钟信号SCK由外部主设备提供。
- 主模式下, SPI的时钟信号来自系统时钟, 是可编程的。通过 SPI的时钟分频器产生不同时钟频率=PCLK_SPIn / DIVVAL。

• 时钟产生框图:

片选信号的配置

- SPI模块提供了4个片选信号,从模式为输入,主模式为输出。
- 每个片选信号极性都是可配置的(低有效或高有效)。
- 主模式下, 片选信号由TXCTL和TXDATCTL寄存器配置。
- 从模式下,片选信号的状态随着接收到的数据一起保存在RXDAT寄存器中。

(1) TXDACTL:

Bit	Symbol		Reset value
15:0	TXDAT	Transmit Data. This field provides from 1 to 16 bits of data to be transmitted 0	
16	TXSSELO_N	Transmit Slave select. This field asserts SSELO in master mode the output on the pin is active LOW by default. Remark: The active state of the SSELO pin is configured by bits in the CFG register.	
		SSELO asserted.	
		SSELO not asserted.	

• (2) RXDAT:

Bit	Symbol	Description	Reset value
15:0	RXDAT	Receiver Data. This contains the next piece of received data the number of bits that are used depends on the LEN setting in TXCTL/TXDATCTL.	undefined
16	RXSSELO_N	Slave Select for receive.	undefined

片选信号的连接和驱动

- 从模式下,任何连接到某个引脚的 片选信号SSEL有效都将激活SPI
- 主模式下,所有连接到引脚上的片 选信号SSEL都将按照寄存器里定 义的值输出
- · 当主模式下数据通讯时,至少有一个片选信号SSEL是有效的。

. .

基本操作模式

• 通过SPI时钟信号的极性和相位可配置出4种基本操作模式 Mode0~3。

CPOL	СРНА	SPI Mode	Description	SCK rest state	SCK data change edge	SCK data sample edge
0	0	0	The SPI captures serial data on the first clock transition of the transfer (when the clock changes away from the rest state). Data is changed on the following edge.	Low	Falling	Rising
0	1	1	The SPI changes serial data on the first clock transition of the transfer (when the clock changes away from the rest state). Data is captured on the following edge.	Low	Rising	Falling
1	0	2	Same as mode 0 with SCK inverted.	High	Rising	Falling
1	1	3	Same as mode 1 with SCK inverted.	High	Falling	Rising

10

通讯延时 (Frame Delays)

- 在SPI进行数据通讯过程中,可以加入一些延时,包括:
- Pre_delay: 在SSEL片选信号被确立有效后,数据时钟开始前的延时
- Post_delay: 在数据帧结束后,SSEL片选信号被确立无效前的延时
- Frame_delay: 在SSEL片选信号有效期间,数据帧之间的延时。此延时是在帧通讯结束标志位EOF=1时插入。
- Transfer_delay: 在两次数据传送之间, SSEL信号处于无效状态的最小持续时间(延时)。它是在传送结束标志位EOT=1时插入。
- (参考波形图见接下来页面)

Pre_delay/Post_delay参考波形图

Pre- and post-delay: CPHA = 0, Pre_delay = 2, Post_delay = 1

Pre- and post-delay: CPHA = 1, Pre_delay = 2, Post_delay = 1

Frame_delay参考波形图

Frame delay: CPHA = 0, Frame_delay = 2, Pre_delay = 0, Post_delay = 0

Frame delay: CPHA = 1, Frame_delay = 2, Pre_delay = 0, Post_delay = 0

Transfer_delay参考波形图

• 注:在Transfer_delay=0,即无延时插入时,片选信号无效状态本身有至少一个SPI clock的延时

从模式数据通讯错误

- RX overrun: 从模式时,若有新的数据接收到,但接收数据寄存器 RXDAT中的数据还没被读取,则出现RX overrun问题。此时, SPI会产生一个中断信号,若使能了中断,则可对其进行相应处理。
- TX underrun: 从模式时,若需要发送数据,但发送数据寄存器 TXDAT中还没有数据写入,则出现TX underrun问题。此时,SPI 会产生一个中断信号,若使能了中断,则可对其进行相应处理。

Bit	Symbol	Value	Description	Reset value
			Determines whether an interrupt occurs when a receiver overrun occurs.	
2	RXOVEN	0	No interrupt will be generated when a receiver overrun occurs.	0
		1	An interrupt will be generated if a receiver overrun occurs.	
			Determines whether an interrupt occurs when a transmitter underrun occurs.	
3	TXUREN	0	No interrupt will be generated when the transmitter underruns.	0
		1	An interrupt will be generated if the transmitter underruns.	

主模式数据通讯停滞(stall)状态

Receiver stall: CPHA = 0, Frame_delay = 0, Pre_delay = 0, Post_delay = 0, 2 clock stall

Receiver stall: CPHA = 1, Frame_delay = 0, Pre_delay = 0, Post_delay = 0, 2 clock stall

Transmitter stall: CPHA = 0, Frame_delay = 0, Pre_delay = 0, Post_delay = 0, 2 clock stall

• 数据接收停滞

- 条件:RX overrun出现时,即主模式时,若有新的数据接收到,但接收数据寄存器RXDAT中的数据还没被读取,则出现此状态。
- 表现:停滞状态出现在当前数据最后一位的时钟采样沿之前。

• 数据发送停滞

- 条件:主模式时,对于mode 0 和2,若仍需要发送数据帧(非最后一帧),则出现此状态。
- 表现:在当前数据最后一个时钟沿之前,时钟信号SCK不能回到空闲状态,直到下一个数据的第一位(bit)出现在MOSI数据线上。
- 注:对于mode 1和3,不会出现数据发送停滞状态。

数据通讯的DMA支持

· SPI的数据接收和发送都支持DMA模式。

DMA channel #	Request input
6	SPIO_RX_DMA
7	SPIO_TX_DMA
8	SPI1_RX_DMA
9	SPI1_TX_DMA

数据通讯速率(位率)

- 主模式
 - -受限于系统时钟频率,最大位率可达30 Mbit/s (当系统时钟频率为 30Mhz)。
- 从模式
 - -通讯速率(位率)和供电电压VDD,由外部设备和PCB走线引入的延时有关。
 - -若不考虑外部设备和PCB走线引入的延时,则
 - 当3.0 V <= VDD <= 3.6 V , 最大位率可达约18Mbit/s
 - 当1.8 V <= VDD < 3.0 V , 最大位率可达约14Mbit/s
- 注:以上数据都是对于连接到除了open-drain引脚以外的其他数字引脚有效。

SPI低功耗模式唤醒

低功耗模式唤醒

• 睡眠模式下,任何触发SPI中断的信号都可以唤醒芯片,相关配置如下:

配置SPI为主模式或从模式 第一步 使能NVIC寄存器中的SPI中断 第二步 使能SPI中断使能寄存器INTENSET中的中断 第三步

低功耗模式唤醒

• 深度睡眠/掉电模式下,只能支持SPI从模式的唤醒(因为SPI clock关闭了),相关配置如下:

第一步

• 配置SPI为从模式。(注:SPI的SCK时钟信号必须连到一个引脚并外接到一个主设备)

第二步

• 使能STARTERP1寄存器中的SPI唤醒中断。

第三步

• 在PDAWAKE寄存器中,配置所有唤醒后需要正常工作的外设模块。

第四步

• 使能NVIC寄存器中的SPI中断

第五步

使能SPI中断使能寄存器INTENSET中的中断作为唤醒事件 (比如:片选信号SSEL的变化,有数据被接收到了等等)

SECURE CONNECTIONS FOR A SMARTER WORLD