Contents

Lexical Anaylser

1

Lexical Anaylser

Design a lexical analyser to process floating point values

- 123.456E78
- How is the value zero represented in floating point?
 - 0
 - .0
 - 0.
 - 0.0 unambiguous
- Can define
 - DIGIT = [0123456789].
 - * [regex option]
 - TOKEN
 - * lexical tokens
 - * SIGN = "+"|"-".
 - * DIGIT SEQUENCE = DIGIT {DIGIT}.
 - · {0 or more}
 - * EXPONENT = ("e"|"E")[SIGN]{DIGIT SEQUENCE}.
 - · (groups)
 - * FLOAT = [SIGN] {DIGIT SEQUENCE} ("."{DIGIT SEQUENCE} [EXPONENT] | EXPONENT).

	d	d		d	d	Е	-	d	d
1	2	2	3	4	4	5	6	7	7

	-	d	d	•	d
1	8	2	2	3	4

	d	Е	d
1	2	5	7

- 2. Digits before the decimal point
- 3. Decimal point
- 4. Digits after the decimal point
- 5. Exponent
- 6. Sign before exponent
- 7. Digits of the exponent
- 8. Sign before number
- $input \ alphabet = \{d, s, e, ., \dashv\}$
 - d = digit
 - s = +/- sign
 - e = e/E = exponent
 - $-\ .\ = \operatorname{decimal}$
 - $\dashv = \text{end marker}$
 - * Any input that isn't in the input language
- *states* = {1, 2, 3, 4, 5, 6, 7, 8}

All blank table entries represent exits to an error routine

	d	s	e		\dashv
1	2	8			
2	2		5	3	
3	4				
4	4		5		"Yes"
5	7	6			
6	7				
7	7				"Yes"
8	2				

This is a reduced table - no extrenuous states

• 12.34E5

- -12.34E5 = 1234E3
 - * NUMBER 1234
 - * EXPONENT 3
- Floating point value is $number*10^{exponent}$
 - \$1234*10^{3}
- 2. Digits before the decimal point
- 3. Decimal point
- 4. Digits after the decimal point
- 5. Exponent
- 6. Sign before exponent
- 7. Digits of the exponent
- 8. Sign before number

	d	s	e		4
1	2A	8			
2	2B		5A	3	
3	4A				
4	4B		5B		"Yes1"
5	7A	6			
6	7B				
7	$7\mathrm{C}$				" $Yes2$ "
8	2C				

- Variables
 - NUMBER, EXPONENT, SIGN, EXPONENT SIGN, COUNT
 - * COUNT keeps track of the number of times we've multipled by 10
 - · How much the exponent needs adjusting when finished
 - * (EXPONENT)SIGN; 1=PLUS; -1=MINUS;
- Before taking a transition from one state to another, perform the associated action routine and advance the input
 - 1 -> 2A(perform action routing) -> advance the input -> remove state 2A
- 2A

```
- SIGN <- 1
- NUMBER <- value(digit)</pre>
```

• 2B

- NUMBER <- NUMBER*10 + value(digit)</pre>

• 2C

- NUMBER <- value(digit)</pre>

• 3, 5A

- COUNT <- 0

• 5B

- NO ACTION

This is already done at 3 or $5 \texttt{A} \ 5 \texttt{B}$ is after the decimal point, i.e. after 3

• 4A, 4B

```
- NUMBER <- NUMBER*10 + value(digit)</pre>
```

- COUNT <- COUNT+1

States ${\bf 4}$ are after the decimal point Exponents have to be decreased by one

• 6

- if SIGN=+ then
- EXPONENT SIGN <- 1 else
- EXPONENT SIGN <- -1

• 7A

- EXPONENT SIGN <- 1
- EXPONENT <- value(digit)</pre>

Got here without seeing the sign

• 7B

- EXPONENT <- value(digit)</pre>

Got here with seeing the sign

• 7C

- EXPONENT SIGN <- 1
- EXPONENT <- EXPONENT*10 + value(digit)</pre>

nth digit, so fix sign

- 8
 - if SIGN=+ then
 - SIGN=1 else
 - SIGN=-1

 $note: {\tt SIGN} \ {\tt is} \ {\tt SIGN=+} \ {\tt is} \ {\tt the} \ {\tt SIGN} \ {\tt from} \ {\tt the} \ {\tt symbol} \ {\tt table}$

- Yes1
 - NUMBER <- NUMBER*SIGN
 - EXPONEONT <- EXPONENT*EXPONENT SIGN
- Yes2
 - NUMBR <- NUMBER*SIGN
 - EXPONEONT <- EXPONENT*(EXPONENT SIGN-COUNT)</pre>