

Grafos computacionales Redes Neuronales

Gamaliel Moreno Chávez

gamalielmch@uaz.edu.mx

Enero-julio 2021

Contenido

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

1 Grafos computacionales

- 2 Caso escalar
 - Propagación hacia adelante
 - Propagación hacia atras
 - Operación de un nodo
- 3 Caso vectorial

Grafos computa-cionales

Caso escalar Propagación hacia adelan

Propagación hacia adelante Propagación hacia atras Operación de un nodo

- Cálculo de $J(\theta)$ y $\nabla_{\theta}J(\theta)$ es complejo: Concatenación de productos matriz-vector, extensiones para el sesgo y funciones de activación no linenales constribuyen a complejidad.
- En redes modernas, capas varían (función de activación, tipo, tamaño), lo que aumenta complejidad.
- Redes clásicas: $J(\theta)$ y $\nabla_{\theta}J(\theta)$ calculados de previo y plasmados en código fijo para el caso concreto de J.
- Marcos de trabajo (TensorFlow, Torch, ...) son flexibles: tipos de capas y funciones de activación se cambian fácilmente.
- ¿cómo se pueden hacer los cálculos eficientemente?
- ¿cómo puedo agregar mis propios tipos de capas?

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

- Cálculo analítico y código correspondiente es complejo, tarda tiempo, y es poco reutilizable.
- Cálculo numérico del gradiente:
 - es excesivamente caro
 - \blacksquare diferencias divididas requieren la evaluiación de J 1 o 2 veces por cada parámetro escalar θ
 - es muy fácil y rápido de implementar
 - se usa para verificar cálculo analítico
- Alternativa: grafos computacionales:
 - Similar a la diferenciación automática
 - Aplican regla de la cadena para descomponer cálculo complejo en paso sencillos
 - Compromiso entre los métodos numéricos y los métodos analíticos
 - Altamente flexibles

Grafos computacionales

Caso escalar Propagación

hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

■ idea:

- 1 Partir evaluación de una función en pasos elementales
- Cada paso es un nodo del grafo
- 3 Relación entre pasos se expresa con aristas del grafo
- Explicaremos conceptos con ejemplo:

$$f(x,\theta) = \frac{1}{1 + e^{-\theta x}}$$

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras
Operación de un nodo

Grafos computacionales

Caso escalar Propagación hacia adelante Propagación

hacia atras Operación de un nodo

Caso vectorial

- Buscamos ahora $dy/d\theta$ y dy/dx
- Esto se interpreta como el cambio en la salida debido a un cambio en la entrada
- La regla de la cadena subyace el cálculo nodo por nodo:

$$\frac{\partial y}{\partial \theta} = \underbrace{\frac{\partial y}{\partial f_4} \cdot \frac{\partial f_4}{\partial f_3} \cdot \frac{\partial f_3}{\partial f_2} \cdot \frac{\partial f_2}{\partial f_1} \cdot \frac{\partial f_2}{\partial \theta}}_{b3}$$

Lo calculamos de atrás hacia adelante

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras Operación de

un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante

Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante

Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación

hacia atras Operación de

un nodo

Caso vectorial

 $b_5 = b_4 \frac{\partial f_1}{\partial \theta}$

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

- Obsérvese que claculamos $dy/d\theta$ y dy/dx
- con eso, podemos adaptar las entradas en un proceso de descenso de gradiente:

$$\theta' \leftarrow \theta - \lambda \frac{\partial \mathbf{y}}{\partial \theta}$$

$$\mathbf{x}' \leftarrow \mathbf{x} - \lambda \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

- Estos cambios en θ y x asegurarían que $y = f(x', \theta') \le f(x\theta)$
- La iteración de este proceso llevará hasta el mínimo (si λ está bien elegido)

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de

un nodo

- Comportamiento de nodos en escalares
 - Múltiples entradas y una salida
 - Una entrada y múltiples salidas
 - Múltiples entradas y múltiples salidas
- Generalización a vectores y matrices

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Grafos computa-

Caso escalar

Propagación hacia adelante Propagación hacia atras

Operación de un nodo

Usando notación vectorial

Grafos computacionales

Caso escalar

hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

■ El nodo anterior se simplifica usando notación vectorial

$$\mathbf{x} = [x_1 \quad x_2 \cdots x_n]^T$$

 $\mathbf{y} = [y_1 \quad y_2 \cdots y_m]^T = [f_1(\mathbf{x}) \quad f_2(\mathbf{x}) \cdots f_m(\mathbf{x})]$

$$\nabla_{\mathbf{x}} J = \begin{bmatrix} \frac{\partial J}{\partial x_{1}} \frac{\partial J}{\partial x_{2}} \cdots \frac{\partial J}{\partial x_{n}} \end{bmatrix}^{T} \quad \nabla_{\mathbf{y}} J = \begin{bmatrix} \frac{\partial J}{\partial y_{1}} \frac{\partial J}{\partial y_{2}} \cdots \frac{\partial J}{\partial y_{m}} \end{bmatrix}^{T}$$

$$\mathbf{D}_{\mathbf{x}} \mathbf{f} = \begin{bmatrix} \nabla_{\mathbf{x}}^{T} f_{1}(\mathbf{x}) \\ \nabla_{\mathbf{x}}^{T} f_{2}(\mathbf{x}) \\ \vdots \\ \nabla_{\mathbf{x}}^{T} f_{m}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}$$

Operación de un nodo, vectorial

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Operación de un nodo, vectorial

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Consideraciones prácticas

Grafos computacionales

Caso escalar

hacia adelante Propagación hacia atras Operación de un nodo

- $D_x^T f$ es el jacobiano de f respecto x
- La ecuación $\nabla_x J = \mathbf{D}_x^T \mathbf{f} \nabla_y J$ integra todas las posibles influencias de cada salida y cada entrada, y aplica la regla de la cadena para ello.
- on frecuencia sólo existen algunas dependencias y el Jacobiano $D_x^T f$ es disperso (tiene muchos ceros).
 - Si y_i solo depende de x_i entonces el Jacobiano es diagonal.
- En la práctica se calcula $\nabla_x J$, que es lo que se retropropaga a los nodos precedentes.
- Por eso el nombre: retro-propagación (backpropagation)

Generalización

Grafos computacionales

Caso escalar

hacia adelante Propagación hacia atras Operación de un nodo

- \blacksquare Observe que f(x) puede ser cualquier función
- f(x) agrupa varios cálculos en un nodo
- Granularidad según complejidad deseada para cada nodo
- Resumiendo: cada nodo tiene tres tareas:
 - propagar entrada a salida
 - almacenar valores temporales para calcular gradientes
 - calcula gradiente de J respecto a entradas del nodo, combinando información del gradiente J respecto a las salidas y derivadas/gradientes de salidas respecto a entradas
- Esto último es conceptual. En la práctica se resume el cálculo
- Si x o y fuese matrices, se analiza cada elemento de la matriz por separado, $\nabla_x J$ o $\nabla_v J$ serían matrices.

Ejemplo: Sigmoide

Grafos computacionales

Caso escalar

hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

 α $\frac{1}{1+e^{-\alpha}}$ β

- Entrada: α
- Salida: β
- Cálculo en propagación hacia adelante: $\frac{1}{1+e^{-\alpha}}$
- Cálculo en propagación hacia atrás:

$$\frac{\partial \beta}{\partial \alpha} = \frac{e^{-\alpha}}{(1+e-\alpha)^2} = \frac{e^{-\alpha}}{(1+e-\alpha)} + \frac{1}{(1+e-\alpha)}$$
$$= \frac{1+e^{-\alpha}-1}{(1+e-\alpha)}\beta = \left(\frac{1+e^{-\alpha}}{1+e^{-\alpha}} - \frac{1}{1+e^{-\alpha}}\right) = (1-\beta)\beta$$

■ Basta con almacenar β para calcular $d\beta/d\alpha$

Ejemplo: Neurona totalmente conectada con

sesao

Grafos computacionales

Caso escalar

hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{w}^T \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} & \alpha & 1 \\ 1 + e^{-\alpha} & y \end{bmatrix}$$

■ primer nodo extiende vector \mathbf{x} con 1 para poder aplicar el sesgo \mathbf{w}_0 (primer componente de \mathbf{w})

$$\alpha = \begin{pmatrix} w_0 \\ +w_1x_1 \\ +w_2x_2 \\ \vdots \\ +w_nx_n \end{pmatrix} \Rightarrow \boldsymbol{D}_{\boldsymbol{w}}^{\boldsymbol{\tau}}\alpha = \nabla_{\boldsymbol{w}}\alpha = \begin{bmatrix} 1 \\ \boldsymbol{x} \end{bmatrix}$$

$$m{D}_{m{x}}^{m{T}} lpha =
abla_{m{x}} lpha = m{w} = egin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

Ejemplo: Neurona totalmente conectada con sesgo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de

un nodo Caso

vectorial

Ejemplo: Neurona totalmente conectada con sesgo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Caso

vectorial

Ejemplo: Neurona totalmente conectada con sesgo

Grafos computa-

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Compuertas

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

Los nodos de un grafo computacional se comportan como compuertas

A continuación se analizarán algunos casos comunes

Compuertas

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

- Los nodos de un grafo computacional se comportan como compuertas
- A continuación se analizarán algunos casos comunes

Suma

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Caso vectorial

■ La suma distribuye el gradiente a todas las entradas

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

- El nodo z = max(x, y) produce el máximo de variables de entrada
- la pregunta es ¿qué hace la derivada?
- la interpretación es la siguiente
 - si x > y, entonces z = x y por tanto $\frac{\partial z}{\partial x} = 1$ y $\frac{\partial z}{\partial y} = 0$
 - si x < y, entonces z = y y por tanto $\frac{\partial z}{\partial x} = 0$ y $\frac{\partial z}{\partial y} = 1$
- La compuerta *max* enruta entonces el gradiente por aquella entrada con el máximo valor
- Esto se generaliza fácilmente a vectores componente por componente.

Máximo

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Conmutadores

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

- Los distintos tipos de producto intercambian de algún modo u otro las entradas en la propagación hacia atrás.
 - Solo en algunos casos es posible calcular el jacobiano
- A continuación analizaremos cuatro casos:
 - Producto de dos escalares z = xy
 - Producto interno de dos vectores $z = \mathbf{x}^T \mathbf{y}$
 - Producto externo de dos vectores $\mathbf{Z} = \mathbf{x} \mathbf{y}^T$
 - Producto de dos matrices **Z** = **XY**

Producto escalar

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Producto interno de dos vectores

Grafos computacionales

Caso escalar

Propagación hacia adelante Propagación hacia atras Operación de un nodo

Producto interno de dos vectores

- El producto externo produce una matriz a la salida
- Supongamos $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{y} \in \mathbb{R}^m$

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1m} \\ z_{21} & z_{22} & \cdots & z_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nm} \end{bmatrix} = \mathbf{x} \mathbf{y}^T = \begin{bmatrix} x_1 y_1 & x_1 y_2 & \cdots & x_1 y_m \\ x_2 y_1 & x_2 y_2 & \cdots & x_2 y_m \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1 & x_n y_2 & \cdots & x_n y_m \end{bmatrix}$$

Propagación hacia adelant Propagación hacia atras Operación de un nodo

Grafos computa-

cionales Caso

escalar

Caso vectorial

■ siguendo el principio de múltiples salidas (elementos de Z)

$$\frac{\partial J}{\partial x_k} = \sum_{i} \sum_{j} \frac{\partial J}{\partial z_{ij}} \frac{\partial z_{ij}}{\partial x_k} = \sum_{i} \sum_{j} \frac{\partial J}{\partial z_{ij}} \frac{\partial (x_i y_j)}{\partial x_k}$$

donde solo los términos con i = k sobreviven

$$\frac{\partial J}{\partial x_k} = \sum_{i} \frac{\partial J}{\partial z_{kj}} y_j \Rightarrow \nabla_{\mathbf{x}} J = \nabla_{\mathbf{z}} J \mathbf{y}$$

Gracias

