Building ML Models

Week 2: Intro to Math

Overview

- Intro to Math
- Building a Math Library

Administrivia

Administrivia

- Week 1 solution posted to <u>GitHub</u>
- Slack: we're working on it
 - We've added everyone we could to the Slack, create an account with your UMich email if you haven't already
 - If you still don't have access, email one of us (kevincal@umich.edu, iheitman@umich.edu)
 - Hopefully next week we can fully transition to Slack

Intro to Math

Gradient Descent

- Last week: perceptrons
- How does the perceptron "learn?"
 - Continuously adjust weights
 - Minimize loss (error)
- How??

Gradient Descent - Basics

Gradient Descent – Basics

Gradient Descent – Basics

Gradient Descent - Basics

- Think back to calculus with the derivative
 - Instantaneous rate of change, or slope
 - Steep slope = high f'(x)
 - \circ Flat? f'(x) = 0
- Subtract slope = move closer to f'(x) = 0

Gradient Descent - Multivariate

- Expand to 3 dimensions
 - Rate of change in z?
 - Hard to get with (x,y)
 - Derivative in one dimension
- Take the derivative with respect to x or y

Gradient Descent – Multi-Derivative

$$\frac{\partial f}{\partial x} = f_x, \frac{\partial f}{\partial y} = f_y$$

Gradient Descent – Multi-Derivative

$$f(x,y) = x^2 + y^2$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

Gradient Descent - ML

Prediction for ANNs

- Train on labeled (for now) data, inputs & outputs
- Need some way to eval fitness / accuracy

Mean Squared Error

o "MSE"

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Gradient Descent – ML

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- y vs y-hat
 - y: true y-values in dataset, "target"
 - y-hat: predicted y-values
- This is a function of y, y-hat, components

Gradient Descent - ML

$$\hat{y} = i_1 \cdot w_i, \ i \in \{1, 2, 3\}$$

$$\Delta w_i = \frac{\partial}{\partial w_i} MSE(y, \hat{y}), \ i \in {1, 2, 3}$$

Building a Math Library

Implementation Details - Base Class

- One base class, expression
 - Represents a single variable, like x
- Other classes are derived from the expression base class

Implementation Details - Derived Class

- Each derived class represents some math operation (+, -, etc.)
- Implement 3 functions
- __init__: store the expression(s) passed into the __init__call
- eval: evaluate the result of evaluating the values passed in (usually some sort of recursive call to eval)
- diff: evaluate the result of differentiating the values passed in
- An example has been given to you in the form of the addition class

Let's Code It!

- GitHub Link
- Google Colab Link (make a copy of the file)