Тест

Задачи

- 1. Рассеянный исследователь Вовочка 555 дней замерял своё потребление шоколада и число решённых задач по эконометрике. Вовочка оценил по своим данным парную регрессию числа решенных задач на потребление шоколада (регрессию с константой), но потерял все результаты вычислений и не справится без вашей помощи!
 - а) Вовочка запомнил, что 95%-ый доверительный интервал для коэффициента при шоколаде был от 1.72 до 8.28. Помогите ему восстановить оценку $\hat{\beta}_{choc}$ и оценку её стандартного отклонения.
 - Ошибки в модели для этого и следующего пунктов считайте нормальными.
 - б) Помогите Вовочке проверить значимость $\hat{\beta}_{choc}$ на 10% уровне значимости.
 - в) Можно ли было бы считать полученные МНК-оценки коэффициентов несмещёнными и эффективными в случае равномерных от -5 до 5 ошибок? Почему?
 - г) Можно ли было бы считать полученные МНК-оценки коэффициентов несмещёнными и эффективными в случае равномерных от 0 до 5 ошибок? Почему?
- 2. Рассмотрим уравнение линейной регрессии $Y_i = \beta X_i + u_i$. Все предпосылки теоремы Гаусса-Маркова выполнены.
 - а) Найдите МНК оценку коэффициента $\hat{\beta}$.
 - б) Проверьте, является ли эта оценка несмещенной.
 - в) Выведите формулу для несмещённой оценки дисперсии этой оценки.
 - г) По выборке оказалось, что $\hat{\beta}=2.25$ и $se(\hat{\beta})=0.2$. Проинтерпретируйте значение оценки коэффициента.
 - д) Выведите формулу оценки дисперсии для ошибки прогноза \hat{Y}_{N+1} .
- 3. Для модели $X_i=\beta_0+\beta_1Y_i+u_i$ известна МНК-оценка коэффициента $\hat{\beta}_1=-1$. Также для данной регрессии известны N=102, $\sum (Y_i-\bar{Y})^2=10$ и TSS=200.
 - а) Найдите коэффициент детерминации ${\mathbb R}^2$ для этой модели.
 - б) Найдите оценку дисперсии оценки коэффициента $\hat{\beta}_1$.
 - в) Для регрессии $\hat{Y}_i = \hat{\alpha}_0 + \hat{\alpha}_1 X_i$ найдите оценку $\hat{\alpha}_1$.
 - г) Найдите выборочный коэффициент корреляции $\widehat{\mathbb{C}\mathrm{orr}}(X,Y)$.

1. Решения

- 1. Вместо t_{553} -распределения можно использовать нормальное $\mathcal{N}(0;1)$.
 - а) [2] Критическое значение равно $t_{crit}=1.96$. Отсюда находим $\hat{\beta}=5$ и $se(\hat{\beta})=2$
 - б) [1] $t_{obs} = 5/2 = 2.5$. Таблицы не нужны, достаточно помнить, что при уровне значимости $\alpha = 0.05$ критическое значение равно 1.96. При более высоком уровне значимости критическое значение падает. Значит H_0 отвергается.
 - в) [1] Ожидание ошибки равно нулю, дисперсия постоянна, значит условия теоремы Гаусса-Маркова выполнены. Обе оценки являются несмещёнными и эффективными среди линейных несмещённых оценок.
 - г) [2] Ожидание ошибки равно 2.5, дисперсия постоянна, значит условия теоремы Гаусса-Маркова нарушены. Однако при переносе 2.5 из ошибки в константу нарушение исчезает. Оценка наклона: несмещена и эффективна среди линейных несмещённых оценок.

Оценка константы: смещена на 2.5, поэтому оценка не лежит в классе линейных несмещенных оценок, и говорить об её эффективности в этом классе бессмысленно. При этом дисперсия оценки константы равна дисперсии эффективной оценки.

2. Кратко:

a) [1]
$$\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$$

6) [1]
$$\mathbb{E}(\hat{\beta}) = \beta$$

B) [2]
$$\widehat{\mathbb{V}\mathrm{ar}}(\hat{\beta}) = \frac{\hat{\sigma}_u^2}{\sum X_i^2}$$

r) [1] $t_{obs}=11.25$, коэффициент значимо отличен от нуля. Зависимая переменная в среднем в 2.25 раз больше регрессора.

д) [2]
$$\widehat{\mathbb{V}}$$
ar $(\hat{Y}_{N+1} - Y_{N+1}) = \hat{\sigma}_u^2 \left(1 + \frac{X_{N+1}^2}{\sum X_i^2}\right)$

3. Обратите внимание, что Y_i является регрессором.

a) [2]
$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (Y_i - \bar{Y})^2}$$
.

Следовательно, $\sum (X_i - \bar{X})(Y_i - \bar{Y}) = -10$.

Решаем одним махом г) и а)!

$$\widehat{\mathbb{C}orr}(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{10 \cdot 200}} = -\sqrt{5}/10$$

Отсюда:

$$R^2 = 5/100 = 1/20$$

- б) [2] $RSS = 0.95 \cdot 200 = 190.$ Отсюда $\hat{\sigma}_u^2 = 190/100 = 1.9$ и $se^2(\hat{\beta}_1) = 1.9/10 = 0.19.$
- в) [2] В узких кругах широко известно, что корреляции по модулю равна среднему геометрическому оценок в прямой и обратной моделях.

$$R^2 = \hat{\alpha}_1 \cdot \hat{\beta}_1$$

Следовательно, $\hat{\alpha}_1 = -1/20$.

г) [1] уже решили!