Youtube推荐系统论文

论文[pie]是工程界关于深度学习推荐系统比较典型的论文。

目标

- 1. Scale: Highly specialized distributed learning algorithms and efficient serving systems
- 2. Freshness: balancing new contents with well-formed videos
- 3. Noise: robust to particular characteristics of training data

Overview

2层神经网络,第一层产生候选(粗排),一层用来生成排序(精排)。

候选生成

问题建模

生成阶段转换为多分类(**Efficient Extreme Multiclass**)问题。即在时刻t,为用户U(上下文信息C)在视频库V中精准的预测出视频i的类别(每个具体的视频视为一个类别,i即为一个类别)。

$$P(w_t=i|U,C) = rac{e^{v_i u}}{\sum\limits_{j \in V} e^{v_j u}}$$

该模型需要利用embedding来表示用户历史和视频信息,难点在于如何高效的处理海量的**分类**,参考了word2vec有2种方案: 1) <u>negative sampling</u>; 2) <u>hierarchical softmax</u>。论文采用了方案1) 是因为考虑到2) 方案要求类别簇节点之间是无关的,很难在推荐场景试用,同时方案1) 实现更简单。

模型架构

模型采用(watch video, search tokens, geographic enbedding, example age, gender, ...) 等多种维度特征进行forward反馈获得user embedding。 对于计算candidate videos,训练阶段试用negtive sampling替换softmax来加速,serving阶段使用softmax来获得video enbedding跟user embedding计算点积,选择topK作为最终推荐的视频。

example age没有明确定义,简单理解为视频上传之后曝光的时间。gender等属于用户个体特征。

文中还提到了一些label和context选择的技巧。特别是asymmetric co-watch, 采用序列式的方式预测next watch,效果比传统的协同过滤更好。

RANKING

由于经过候选生成阶段的筛选,视频候选只有几百量级,所以候选排序阶段可以引入更多特征进行精细的打分排序。

排序阶段采用和候选生成阶段类似的网络结构,用logistics regresion对视频进行打分。不同的是,排序阶段采用观看时长作为学习目标而非点击率,因为点击率会有很多诱导点击的标题党内容,用户点击后很快会停止观看,所以观看时长是一个更合适表示用户是否感兴趣的指标。

模型

可以看到,ranking阶段 training的最后一层是<u>weighted LR</u>, 来体现期望时长在排序中影响(对数几率odds), serving用的激活函数是exp, 其次是特征工程跟候选阶段不一样。

特征工程

图7中, 从左至右的特征依次是:

- 1. impression video ID embedding: 当前要计算的video的embedding;
- 2. **watched video IDs average embedding**: 用户观看过的最后N个视频embedding的average pooling;
- 3. language embedding: 用户语言的embedding和当前视频语言的embedding;
- 4. **time since last watch**: 自上次观看同channel视频的时间, 类似<u>"attention"</u>, 根据注意力范围生成下一个video的权重;
- 5. **#previous impressions**: 该视频已经被曝光给该用户的次数, 上一次推荐后, 用户没有点击, 那么下一次就应该更换;

从这篇论文基本了解了一个典型的基于深度学习的推荐系统架构。

参考

[PJE] Paul Covington, Jay Adams, Emre Sargin Google, <u>Deep Neural Networks for YouTube Recommendations</u>, <u>https://zhuanlan.zhihu.com/p/52169807</u>