Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №6

З дисципліни «Методи наукових досліджень» Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами

> ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Микитенко В.О. Номер заліковки: 9119

> > ПЕРЕВІРИВ: ac. Регіда П. Г.

Мета роботи: Провести трьохфакторний експеримент і отримати адекватну модель — рівняння регресії, використовуючи **рототабельний** композиційний план.

Завдання до лабораторної роботи:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1;+; -; 0 для 1, 2, 3.
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу: yi = f(x1, x2, x3) + random(10)-5,

де f(x1, x2, x3) вибирається по номеру в списку в журналі викладача.

- 4. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 5. Зробити висновки по виконаній роботі. Алгоритм отримання адекватної моделі рівняння регресії
- 1) Вибір рівняння регресії (лінійна форма, рівняння з урахуванням ефекту взаємодії і з урахуванням квадратичних членів);
- 2) Вибір кількості повторів кожної комбінації (m = 2);
- 3) Складення матриці планування експерименту і вибір кількості рівнів (N)
- 4) Проведення експериментів;
- 5) Перевірка однорідності дисперсії. Якщо не однорідна повертаємося на п. 2 і збільшуємо т на 1);
- 6) Розрахунок коефіцієнтів рівняння регресії. При розрахунку використовувати **натуральні** значення x1, x2 и x3.
- 7) Перевірка нуль-гіпотези. Визначення значимих коефіцієнтів;
- 8) Перевірка адекватності моделі рівняння оригіналу. При неадекватності повертаємося на п.1, змінивши при цьому рівняння регресії;

	аолиця варіантів											
	№ варіанту	x ₁		x ₂		X ₃		f(x ₁ , x ₂ , x ₃)				
		min	max	min	max	min	max					
	118	-20	30	5	40	5	10	0,6+8,0*x1+8,8*x2+9,2*x3+4,7*x1*x1+0,1*x2*x2+1,1*x3*x3+6,3*x1*x2+0,4*x1*x3+1,3*x2*x3+2,9*x1*x2*x3				

Лістинг програми

```
from math import fabs
from random import randrange
import numpy as np
from numpy.linalg import solve
from scipy.stats import f, t
m = 3
n = 15
x1 \min = -20
x1 \text{ max} = 30
x2 \min = 5
x2 max = 40
x3 \min = 5
x3 max = 10
coef 1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
while True:
    def function(x 1, x 2, x 3, c):
```

```
y = 0.6 \times c[0] + 8.0 \times x \times 1 \times c[1] + 8.8 \times x \times 2 \times c[2] + 9.2 \times x \times 3 \times c[3] + 4.7 \times c[3]
x 1 * x 1*c[4] + 0.1 * x 2 * x 2*c[5] +\
             1.1 * x_3 * x_3*c[6] + 6.3 * x_1 * x_2*c[7] + 0.4 * x_1 * x_3*c[8] +
1.3 * x_2 * x_3*c[9] + 2.9 * x_1 * x_2
             * x \ 3*c[10] + randrange(0, 10) - 5
        return y
    x01 = (x1 max + x1 min) / 2
    x02 = (x2 max + x2 min) / 2
    x03 = (x3 max + x3 min) / 2
    x1 delt = x1 max - x01
    x2 \text{ delt} = x2 \text{ max} - x02
    x3 \text{ delt} = x3 \text{ max} - x03
    xn = [[-1, -1, -1, +1, +1, +1, -1, +1, +1, +1],
           [-1, -1, +1, +1, -1, -1, +1, +1, +1, +1]
           [-1, +1, -1, -1, +1, -1, +1, +1, +1, +1]
           [-1, +1, +1, -1, -1, +1, -1, +1, +1, +1]
           [+1, -1, -1, -1, -1, +1, +1, +1, +1, +1]
           [+1, -1, +1, -1, +1, -1, -1, +1, +1, +1]
           [+1, +1, -1, +1, -1, -1, -1, +1, +1, +1]
           [+1, +1, +1, +1, +1, +1, +1, +1, +1, +1]
           [-1.73, 0, 0, 0, 0, 0, 2.9929, 0, 0],
           [+1.73, 0, 0, 0, 0, 0, 2.9929, 0, 0],
           [0, -1.73, 0, 0, 0, 0, 0, 2.9929, 0],
           [0, +1.73, 0, 0, 0, 0, 0, 2.9929, 0],
           [0, 0, -1.73, 0, 0, 0, 0, 0, 2.9929],
           [0, 0, +1.73, 0, 0, 0, 0, 0, 2.9929],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    x1 = [x1 \text{ min}, x1 \text{ min}, x1 \text{ min}, x1 \text{ min}, x1 \text{ max}, x1 \text{ max}, x1 \text{ max}, x1 \text{ max}, -1.73
* x1 delt + x01, 1.73 * x1 delt + x01,
          x01, x01, x01, x01, x01]
    x2 = [x2 min, x2 min, x2 max, x2 max, x2 min, x2 min, x2 max, x2 max, x02,
x02, -1.73 * x2 delt + x02, 1.73 *
          x2 \text{ delt} + x02, x02, x02, x02]
    x3 = [x3 min, x3 max, x3 min, x3 max, x3 min, x3 max, x3 min, x3 max, x03,
x03, x03, x03, -1.73 * x3 delt + x03,
           1.73 * x3 delt + x03, x03
    x1x2, x1x3, x2x3, x1x2x3 = [0] * n, [0] * n, [0] * n
    x1kv, x2kv, x3kv = [0] * n, [0] * n, [0] * n
    for i in range (15):
        x1x2[i] = x1[i] * x2[i]
        x1x3[i] = x1[i] * x3[i]
        x2x3[i] = x2[i] * x3[i]
        x1x2x3[i] = x1[i] * x2[i] * x3[i]
        x1kv[i] = x1[i] ** 2
        x2kv[i] = x2[i] ** 2
        x3kv[i] = x3[i] ** 2
    list for a = list(zip(x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3, x1kv, x2kv,
x3kv))
    print("")
    print ("Матриця планування з натуралізованими коефіцієнтами X")
    print("
                            X2
                                                      X1X2
                                                                                X2X3
               X1
                                          X3
X1X2X3
             X1X1"
                                  X3X3")
                    X2X2
    for i in range(n):
        for j in range(len(list for a[0])):
             print("{:^12.3f}".format(list for a[i][j]), end='')
        print("")
    # вивід матриці планування
    Y = [[function(list_for_a[j][0], list_for_a[j][1], list_for_a[j][2], coef_1)]
for i in range(m)] for j in range(15)]
    print("")
```

```
print ("Матриця планування Y")
                                         Y3")
    print("
                Y1
    for i in range(n):
        print(end='')
        for j in range(len(Y[0])):
            print("{:^12.3f}".format(Y[i][j]), end='')
        print("")
    # середні у
    aver_y = []
    for i in range(len(Y)):
        aver_y.append(np.mean(Y[i], axis=0))
    print("")
    print("Середні значення відгуку за рядками")
    for i in range(n):
        print("{:.3f}".format(aver y[i]))
    # розрахунок дисперсій
    dispersions = []
    for i in range(len(Y)):
        a = 0
        for k in Y[i]:
            a += (k - np.mean(Y[i], axis=0)) ** 2
        dispersions.append(a / len(Y[i]))
    def find kn(num):
        aa = 0
        for o in range(n):
            aa += aver y[o] * list for a[o][num <math>- 1] / n
        return aa
    def a(first, second):
        aaa = 0
        for p in range(n):
            aaa += list_for_a[p][first - 1] * list_for a[p][second - 1] / n
        return aaa
    my = sum(aver y) / n
    mx = []
    for i in range (10):
        number lst = []
        for j in range(n):
            number lst.append(list_for_a[j][i])
        mx.append(sum(number lst) / len(number lst))
    det 1 = [
        [1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7], mx[8],
mx[9]],
        [mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6), a(1, 7),
a(1, 8), a(1, 9), a(1, 10)],
        [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6), a(2, 7),
a(2, 8), a(2, 9), a(2, 10)],
        [mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6), a(3, 7),
a(3, 8), a(3, 9), a(3, 10)],
        [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6), a(4, 7),
a(4, 8), a(4, 9), a(4, 10)],
        [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6), a(5, 7),
a(5, 8), a(5, 9), a(5, 10)],
        [mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6), a(6, 7),
a(6, 8), a(6, 9), a(6, 10)],
        [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6), a(7, 7),
a(7, 8), a(7, 9), a(7, 10)],
        [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6), a(8, 7),
a(8, 8), a(8, 9), a(8, 10)],
        [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6), a(9, 7),
```

```
a(9, 8), a(9, 9), a(9, 10)],
        [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6),
a(10, 7), a(10, 8), a(10, 9), a(10, 10)]
    det_2 = [my, find_kn(1), find_kn(2), find_kn(3), find_kn(4), find_kn(5),
find_kn(6), find_kn(7), find_kn(8),
             find kn(9), find kn(10)]
    beta = solve(det 1, det 2)
    print("")
    print("Отримане рівняння регресії")
    print("{:.3f} + {:.3f} * X1 + {:.3f} * X2 + {:.3f} * X3 + {:.3f} * X1X2 +
\{:.3f\} * x1x3 +\n + \{:.3f\} * x2x3 + "
          "\{:.3f\} * X1X2X3 + \{:.3f\} * X11^2 + \{:.3f\} * X22^2 + \{:.3f\} * X33^2 =
y".format(beta[0], beta[1], beta[2],
beta[3], beta[4], beta[5],
beta[6], beta[7], beta[8],
beta[9], beta[10]))
    y i = [0] * n
    print("")
    print ("Експериментальні значення")
    for k in range(n):
        y i[k] = beta[0] + beta[1] * list for a[k][0] + beta[2] *
list for a[k][1] + beta[3] * list for <math>a[k][2] + 
                 beta[4] * list for a[k][3] + beta[5] * list for a[k][4] +
beta[6] * list_for a[k][5] + beta[7] * \
                 list_for_a[k][6] + beta[8] * list for a[k][7] + beta[9] *
list for a[k][8] + beta[10] * 
                 list for a[k][9]
    for i in range(n):
        print("{:.3f}".format(y_i[i]))
    print("")
    print("\033[1m\033[30m\033[43m{}\033[0m".format("Перевірка за критерієм
Кохрена"))
    Gp = max(dispersions) / sum(dispersions)
    GT = 0.3346
    print("Gp =", Gp)
    if Gp < GT:
        print("\033[1m\033[30m\033[42mGp={} < GT={} - Дисперсія
однорідна \ 033[0m".format(round(Gp, 3), GT))
    else:
        print("\033[1m\033[30m\033[41m{}\033[0m".format("Дисперсія
неоднорідна"))
    print("")
    print("\033[1m\033[30m\033[43m{}\033[0m".format("Перевірка значущості
коефіцієнтів за критерієм Стьюдента"))
    sb = sum(dispersions) / len(dispersions)
    sbs = (sb / (n * m)) ** 0.5
    F3 = (m - 1) * n
    coef_1 = []
    coef 2 = []
    d = 11
    res = [0] * 11
    for j in range(11):
        pract_t = 0
        for i in range (15):
            if j == 0:
                pract t += aver y[i] / 15
            else:
                pract t += aver y[i] * xn[i][j - 1]
            res[j] = beta[j]
        if fabs(pract t / sbs) < t.ppf(q=0.975, df=F3):
```

```
coef 2.append(beta[j])
            res[j] = 0
            d = 1
        else:
            coef 1.append(beta[j])
    print("Значущі коефіцієнти регресії", [round(i, 3) for i in coef 1])
   print("Heshayymi koediniehtu perpecii", [round(i, 3) for i in coef 2])
    st_y = []
    for i in range(n):
       st y.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i] +
res[4] * x1x2[i] + res[5] *
                    x1x3[i] + res[6] * x2x3[i] + res[7] * x1x2x3[i] + res[8] *
x1kv[i] + res[9] *
                    x2kv[i] + res[10] * x3kv[i])
   print("")
    print("Значення з отриманими коефіцієнтами")
    for i in range(n):
       print("{:.3f}".format(st y[i]))
    print("")
   print("\033[1m\033[30m\033[43m{}\033[0m".format("Перевірка адекватності за
критерієм Фішера"))
    Sad = m * sum([(st y[i] - aver y[i]) ** 2 for i in range(n)]) / (n - d)
    Fp = Sad / sb
   F4 = n - d
   print("Fp =", Fp)
    if Fp < f.ppf(q=0.95, dfn=F4, dfd=F3):
        print("\033[1m\033[30m\033[42m{}\033[0m".format("При рівні значимості
0.05 рівняння регресії адекватне"))
       break
    else:
        print("\033[1m\033[30m\033[41m{}\033[0m".format("При рівні значимості
0.05 рівняння регресії неадекватне"))
```

Результат роботи програми

Матриця план	нування з нат	уралізованим	и коефіцієнт	ами Х					
X1	X2	Х3	X1X2	X1X3	X2X3	X1X2X3	X1X1	X2X2	X3X3
-20.000	5.000	5.000	-100.000	-100.000	25.000	-500.000	400.000	25.000	25.000
-20.000	5.000	10.000	-100.000	-200.000	50.000	-1000.000	400.000	25.000	100.000
-20.000	40.000	5.000	-800.000	-100.000	200.000	-4000.000	400.000	1600.000	25.000
-20.000	40.000	10.000	-800.000	-200.000	400.000	-8000.000	400.000	1600.000	100.000
30.000	5.000	5.000	150.000	150.000	25.000	750.000	900.000	25.000	25.000
30.000	5.000	10.000	150.000	300.000	50.000	1500.000	900.000	25.000	100.000
30.000	40.000	5.000	1200.000	150.000	200.000	6000.000	900.000	1600.000	25.000
30.000	40.000	10.000	1200.000	300.000	400.000	12000.000	900.000	1600.000	100.000
-38.250	22.500	7.500	-860.625	-286.875	168.750	-6454.688	1463.062	506.250	56.250
48.250	22.500	7.500	1085.625	361.875	168.750	8142.188	2328.062	506.250	56.250
5.000	-7.775	7.500	-38.875	37.500	-58.312	-291.562	25.000	60.451	56.250
5.000	52.775	7.500	263.875	37.500	395.812	1979.062	25.000	2785.201	56.250
5.000	22.500	3.175	112.500	15.875	71.438	357.188	25.000	506.250	10.081
5.000	22.500	11.825	112.500	59.125	266.062	1330.312	25.000	506.250	139.831
5.000	22.500	7.500	112.500	37.500	168.750	843.750	25.000	506.250	56.250

Матриця планування Ү

Y1	Y2	Y3
-250.900	-246.900	-244.900
-1577.900	-1577.900	-1574.900
-14115.900	-14118.900	-14116.900
-25367.400	-25367.400	-25363.400
7807.100	7804.100	7799.100
10202.100	10195.100	10201.100
30340.100	30340.100	30335.100
48187.600	48180.600	48184.600
-17085.412	-17085.412	-17085.412
42521.900	42522.900	42525.900
-921.650	-926.650	-924.650
8964.165	8963.165	8964.165
2291.836	2292.836	2289.836
5606.516	5603.516	5600.516
3928.600	3931.600	3931.600

Середні значення відгуку за рядками

```
-247.567
```

-1576.900

-14117.233

-25366.067

7803.433

10199.433

30338.433

48184.267

-17085.412

42523.567

-924.317

8963.832

2291.503

5603.516

3930.600

Отримане рівняння регресії

```
-7.939 + 7.982 * X1 + 8.892 * X2 + 12.074 * X3 + 6.306 * X1X2 + 0.405 * X1X3 + 
+ 1.304 * X2X3 + 2.899 * X1X2X3 + 4.698 * X11^2 + 0.097 * X22^2 + 0.896 * X33^2 = y
```

Експериментальні значення

- -246.753
- -1576.710
- -14116.230
- -25365.687
- 7803.273
- 10198.649
- 30338.463
- 48183.672
- -17086.685
- 42524.546
- -924.244
- 8963.466
- 2290.635
- 5604.091
- 3930.602

Перевірка за критерієм Кохрена

Gp = 0.16896551724137934

Gp=0.169 < GT=0.3346 - Дисперсія однорідна

Перевірка значущості коефіцієнтів за критерієм Стьюдента

Значущі коефіцієнти регресії [-7.939, 7.982, 8.892, 12.074, 6.306, 0.405, 1.304, 2.899, 4.698, 0.097, 0.896] Незначущі коефіцієнти регресії []

Значення з отриманими коефіцієнтами

- -246.753
- -1576.710
- -14116.230
- -25365.687
- 7803.273
- 10198.649
- 30338.463
- 48183.672
- -17086.685
- 42524.546
- -924.244
- 8963.466
- 2290.635
- 5604.091
- 3930.602

Перевірка адекватності за критерієм Фішера

Fp = 1.1603158746685944

При рівні значимості 0.05 рівняння регресії адекватне