Lógica CC 2024/2025

1.1 Sintaxe do Cálculo Proposicional clássico

1. De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} .

```
a) (\neg (p_1 \lor p_2))
```

b)
$$((\neg p_5) \to (\neg p_{100}))$$

c)
$$((p_3 \land p_1) \lor ($$

d)
$$((p_0 \land (\neg p_0)) \rightarrow \bot)$$

e) (⊥)

$$\mathbf{f}) \ (((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot)))$$

- 2. Represente as seguintes frases através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar *frases atómicas*:
 - a) Sou preso se tenho cão, mas também sou preso se não tenho cão.
 - b) Não é verdade que neve sempre que está frio.
 - c) Uma condição necessária para que uma sucessão seja convergente é que seja limitada.
 - d) Uma condição suficiente para um número ser ímpar é que seja primo e não seja 2.
- 3. Encontre exemplos de frases que possam ser representadas através das fórmulas seguintes.

a)
$$(p_1 \to ((\neg p_2) \lor p_3))$$

b)
$$((\neg (p_1 \land p_2)) \lor p_3)$$

c)
$$(p_1 \leftrightarrow (\neg p_2))$$

d)
$$(((p_1 \rightarrow p_2) \land p_1) \rightarrow p_2)$$

4. Para cada uma das seguintes fórmulas φ do Cálculo Proposicional:

i)
$$p_{2024}$$
. ii) $\neg \bot \lor \bot$. iii) $p_0 \to (\neg p_0 \to \neg p_1)$:

- a) Calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \wedge p_1/p_1]$ e $\varphi[p_{2025}/p_{2024}]$.
- b) Indique o conjunto das suas subfórmulas.
- 5. Defina por recursão estrutural as seguintes funções (na alínea c) $BIN = \{\land, \lor, \rightarrow, \leftrightarrow\}$):
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi)$ = número de ocorrências de parêntesis em φ .
 - **b)** $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi)$ = número de ocorrências de vars. proposicionais em φ .
 - c) $b: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $b(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}.$
 - d) $_{-}[\perp/p_{7}]: \mathcal{F}^{CP} \to \mathcal{F}^{CP}$ (recorde que $\varphi[\perp/p_{7}]$ representa o resultado de substituir em φ todas as ocorrências de p_{7} por \perp).

Lógica CC 2024/2025

6. Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:

- a) $v(\varphi) \ge \#var(\varphi)$.
- **b)** $p(\varphi) \ge \#b(\varphi)$.
- c) $v(\varphi) \ge v(\varphi[\bot/p_7]).$
- **d)** $b(\varphi) = b(\varphi[\bot/p_7]).$
- e) se $b(\varphi) \neq \emptyset$ então $p(\varphi) > 0$. f) se $p_7 \notin var(\varphi)$ então $\varphi[\bot/p_7] = \varphi$.
- 7. Seja $\varphi \in \mathcal{F}^{CP}$. O *tamanho* de φ (notação: $|\varphi|$) define-se por recursão do seguinte modo: (i) |p| = 1, para cada variável proposicional p; (ii) $|\bot| = 1$; (iii) $|\neg \varphi| = 1 + |\varphi|$; (iv) $|\varphi \square \psi| = 1 + |\varphi| + |\psi|$, para cada conetivo binário \square .
 - a) Qual das fórmulas $\neg\neg\neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior tamanho?
 - **b)** Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $|\varphi| = 3$ e $|\psi| > 3$
 - **c)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $|\varphi| \ge #subf(\varphi)$.
- 8. Seja $\varphi \in \mathcal{F}^{CP}$. A complexidade lógica de φ (notação: $cl(\varphi)$) define-se por recursão do seguinte modo: (i) cl(p) = 0, para cada variável proposicional p; (ii) $cl(\bot) = 0$; (iii) $cl(\neg \varphi) = 1 + cl(\varphi)$; (iv) $cl(\varphi \Box \psi) = 1 + \max(cl(\varphi), cl(\psi))$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior complexidade lógica?
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $cl(\varphi) < |\varphi|$.
- 9. Seja $C \subseteq \{\bot, \neg, \lor, \land, \rightarrow, \leftrightarrow\}$. Para $\varphi \in \mathcal{F}^{CP}$, defina-se o predicado $\mathscr{C}(\varphi)$ do seguinte modo: $\mathscr{C}(\varphi)$ sse todo o conectivo que ocorre em φ é um elemento de C. Seja $\Gamma_C = \{\varphi \in \mathcal{F}^{CP} \mid \mathscr{C}(\varphi)\}$. Neste exercício vamos fixar $C = \{\neg, \lor\}$.
 - a) Dê uma definição indutiva do conjunto Γ_C .
 - **b)** Enuncie o Teorema da Indução Estrutural para Γ_C .
 - c) Defina por recursão estrutural a função $f: \Gamma_C \to \mathcal{P}(\Gamma_C)$ tal que $f(\varphi)$ é o conjunto das subfórmulas de φ .
 - **d)** Prove que: para todo $\varphi \in \Gamma_C$, se \vee não ocorre em φ , então $\#f(\varphi) 1$ é o número de ocorrências de \neg em φ .
- 10. Seja Γ o subconjunto de \mathcal{F}^{CP} definido indutivamente por:
 - (i) Para cada variável proposicional $p, p \in \Gamma$.
 - (ii) Para cada variável proposicional $p, \neg p \in \Gamma$.
 - (iii) Se $\varphi, \psi \in \Gamma$ então $\varphi \lor \psi \in \Gamma$.
 - a) Indique, justificando, fórmulas em Γ .
 - **b)** Enuncie o Teorema da Indução Estrutural para Γ.
 - **c**) Prove que: para todo $\varphi \in \Gamma$, \bot não ocorre em φ .
 - **d)** Defina por recursão estrutural a função $f: \Gamma \to \mathbb{N}_0$ tal que $f(\varphi)$ é o número de ocorrências de \neg em φ .
 - **e**) Recorde a definição de Γ_C dada no exercício anterior. Seja $C = \{\neg, \lor\}$. Diga se $\Gamma \subseteq \Gamma_C$ e se $\Gamma_C \subseteq \Gamma$.