

Eksamen MA3301 12. desember 2012

Løsningsforslag

Norges teknisk—naturvitenskapelige universitet

Institutt for matematiske fag

1 a) Her er øyeblikksbildene

$$(q_1, \Delta a \underline{\Delta} a), (q_2, \Delta a \underline{a} \underline{a}), (q_1, \Delta a \underline{a} \underline{a}), (h_a, \Delta a \underline{a} \underline{a})$$

b) Her er en kjøring av M på blankt bånd.

$$(q_0, \underline{\Delta}), (q_1, \Delta\underline{\Delta}), (q_2, \Delta a\underline{\Delta}), (q_1, \Delta a a\underline{\Delta}), (q_2, \Delta a a a\underline{\Delta}), \ldots$$

Maskinen stopper ikke, så det tomme ordet er ikke med i språket til M . Den aksepterer derimot enhver innputstreng av formen ax for en vilkårlig streng x . Siden $\Sigma = \{a\}$ er $L(M) = \{a^n \mid n \geq 1\}$.

2 a) Språket L er konkatenasjonen av språkene L_1 og L_2 , der

$$L_1 = \{a^n b^n \mid n \in \mathbb{N}\} \text{ og } L_2 = \{b^m c^m \mid n \in \mathbb{N}\}.$$

Altså er $L = \{a^n b^{n+m} c^m \mid n, m \in \mathbb{N}\}.$

b) Det er kun 2 0-produksjoner, $U\to\Lambda$ og $V\to\Lambda$, men alle variablene er 0-variabler. En gramatikk uten 0-produksjoner er

$$S \to UV, \mid U \mid V,$$

$$U \to aUb \mid ab.$$

$$V \rightarrow bVc \mid bc$$
.

En gramatikk på redusert Chomsky normalfor blir $G_1 = (\{S, U, V, X, Y\}, \{a, b, c\}, S, P_1),$ der P_1 er gitt ved

$$S \to UV, \mid U \mid V,$$

$$U \to aX \mid ab$$
,

$$V \rightarrow bY \mid bc$$
,

$$X \to Ub$$
,

$$Y \to Vc$$
.

Det er kun 2 enhetsproduksjoner, $S \to U$ og $S \to V$. Siden S ikke forekommer på høyre side i noen av produksjonene blir produksjonene i gramatikken G_2 på strikt Chomsky normalform følgende.

$$S \rightarrow UV$$
, $\mid aX \mid ab \mid bY \mid bc$,

$$U \to aX \mid ab$$
,

$$V \rightarrow bY \mid bc$$
,

$$X \to Ub$$
,

$$Y \to Vc$$
.

Et enklere uttrykk med samme språk er $(a+b)^*aba(a+b)^*$, men dette fremkommer så vidt jeg vet ikke ved noen standard metode.

b) Vi fjerner først alle Λ -transisjoner og legger til direkte transisjoner der det er mulig. Da får vi

De Λ -lukkede tilstandsmengdene er $\{S,3\},\,\{3\},\,\{2\},\,\{1\},\,\{4,F\},\,\{F\},\,\emptyset.$ Tabellen blir

	a	b	
$\{S,3\}$	{2}	{3}	
{3}	{2}	{3}	
{2}	{2}	{1}	
{1}	$\{4, F\}$	{3}	
$\{4,F\}$	$\{4,F\}$	$\{4,F\}$	*
$\{F\}$	Ø	Ø	*
Ø	Ø	Ø	

Denne automaten er deterministisk. Tilstandene $\{F\}$ og \emptyset er uoppnåelige, så en deterministisk endelig automat med samme språk er

	a	b	
$\{S,3\}$	{2}	{3}	
{3}	{2}	{3}	
{2}	{2}	{1}	
{1}	$\{4,F\}$	3	
$\{4,F\}$	$\{4,F\}$	$\{4,F\}$	*

	a	b	
0	2	1	
1	2	1	
2	2	3	
3	4	1	
4	4	4	*

Vi døper om tilstandene og får tabellen til høyre.

c) Her kommer en algoritme som bestemmer standardautomaten.

	a	b		a	b		a	b		a	b
0	2	1	A	A	A	A	A	A	A	B	A
1	2	1	A	A	A	A	A	A	A	B	A
2	2	3	A	A	A	A	A	B	B	B	C
3	4	1	A	B	A	$\mid B \mid$	C	A	C	D	A
4	4	4	B	B	B	C	C	C	D	D	D

Dette skjemaet viser at standardautomaten har 4 tilstander. Her er den.

- a) i) Nei. Språket $\{a,b\}^*$ er regulært og inneholder språket $L = \{a^nb^n \mid n \in \mathbb{N}\}$, som ikke er regulært. Det vises ved hjelp av Pumpelemmaet, for dersom $w = xyz \in L \mod |y| > 0$, så må |y| = 2k inneholde like mange a-er som b-er. Dermed kan ikke $xy^nz \in L$ for her blandes a-ene og b-ene.
 - ii) Nei. Det tommespråket ∅ er regulært og inneholder ikke noe ekte delspråk.
 - b) i) Ja. Dette fordi regulære språk er lukket under operasjonene komplement og katenasjon.
 - ii) Ja. Dersom L = L(M) der M er en endelig automat med en begynnelsestilstand S og kun en godkjennende tilstand $F \neq S$, så er $L^R = L(M^R)$ der M^R er automaten vi får ved å bytte om begynnelsestilstanden og slutttilstanden og snu alle pilene i M. Vi kan også se dette ved strukturell induksjon. La $Reg^R \subseteq Reg$ være mengden av regulære språk med den egenskapen at dersom $L \in Reg^R$, så er $L^R \in Reg$. Med andre ord, Reg^R består av alle regulære språk som er slik at det reverserte spåket også er regulært. For å vise at $Reg^R = Reg$ er det tilstrekkelig å vise at Reg^R inneholder språkene \emptyset , $\{\Lambda\}$, $\{\sigma\}$, der σ er en bokstav, samt at Reg^R er lukket under union, konkatenasjon og Kleene stjerne operasjonen. Alt dette er greitt, fordi $\emptyset^R = \emptyset$, $\{\Lambda\}^R = \{\Lambda\}$, $\{\sigma\}^R = \{\sigma\}$, $(L \cup M)^R = L^R \cup M^R$, $(LM)^R = M^R \cup L^R$ og $(L^R)^* = (L^*)^R$.
- **a)** At Turingmaskinen A beregner funksjonen f betyr at vi har $(q_0, \underline{\Delta}x) \vdash_A^* (h_a, \underline{\Delta}f(x))$ for $x \in D$, og for $x \notin D$ så enten stopper ikke maskinen med input X eller den stopper i tilstanden h_r .
 - **b)** At språket M er Turing-avgjørbart betyr at den karakteristiske funksjonen til M er Turing-beregnbar.
 - c) At språket L kan Turing-reduseres til språket $M, L \leq_T M$, betyr ar det finnes en Turing-beregnbar funksjon $f: \Sigma^* \to \Sigma^*$, med $f^{-1}(M) = L$. Dersom M er Turing-avgjørbart, så er også L Turing-avgjørbart.
- a) La e være en koding av Turingmaskiner og strenger. Dersom T er en Turingmaskin og x en streng og T med innput x stopper med konfigurasjonen $(q, u\underline{\sigma}v)$, så vil den universelle Turingmaskinen med innput e(T)e(x) stoppe med konfigurasjonen eller øyeblikksbildet $(h_a, \underline{\Delta}e(u)e(q)e(\sigma)e(v))$. Dersom T ikke stopper så stopper heller ikke U.