0.1 Newtons metode

Gitt en funskjon f(x) si at vi ønsker å finne et tall a slik at f(a) = 0. Ved **Newtons metode** gjør vi denne antakelsen for å en tilnærming a:

La x_1 være skjæringspunktet mellom x-aksen og tangenten til f i x_0 . Vi antar da at $|x_1 - a| < |x_0 - a|$. Sagt med ord antar vi at x_1 gir en bedre tilnærming for a enn det x_0 gjør.

Siden x_1 er skjæringspunktet mellom x-aksen og tangenten til f i x_0 , har vi at 1

$$f'(x_0)(x_1 - x_0) + f(x_0) = 0$$
$$f'(x_0)x_1 = f'(x_0)x_0 - f(x_0)$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

La x_2 være skjæringspunktet mellom x-aksen og tangenten til f i x_1 . Ved å gjenta prosedyren vi brukte for å finne x_1 , kan vi finne x_2 , som vi antar er en enda bedre tilnærming for a enn x_1 . Prosedyren kan vi gjenta fram til vi har funnet en x-verdi som gir en tilstrekkelig² tilnærming til a.

¹Se oppgave??

 $^{^2 \}mathrm{Hva}$ som er en tilstrekkelig tilnærming er det opp til oss selv å bestemme.

0.1 Newtons metode

Gitt en funskjon f(x) si at vi ønsker å finne et tall a slik at f(a) = 0. Gitt x-verdiene x_n og x_{n+1} for $n \in \mathbb{N}$. Ved å bruke formelen

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

antas det at x_{n+1} gir en bedre tilnærming for a enn x_n .

Språkboksen

Newtons metode kalles også Newton-Rhapsos metode.

Når er tilmærmingen god nok?

Newtons metode beskriver en iterasjonsprossess som man håper at nærmer seg en verdi. Hvis meotden lykkes, vil x_{n+1} og x_n etterhvert være veldig like, og slik kan en grense for hvor liten $|x_{n+1} - x_n|$ kan være fungere som et godt mål for når iterasjonsprossessen skal stoppe.

0.2 Trapesmetoden

Gitt en funksjone f(x). Integralet $\int_a^b f \, dx$ kan vi tilnærme ved å

- 1. Dele intervallet [a, b] inn i mindre intervall. Disse kaller vi **delintervall**.
- 2. Finne en tilnærmet verdi for integralet av f på hvert delintervall.
- 3. Summere verdiene fra punkt 2.

I figur 1a har vi 3 like store delintervaller. Hvis vi setter $a=x_0$ og $\Delta x=\frac{b-a}{3},$ betyr dette at

$$x_1 = x_0 + \Delta x$$
 $x_2 = x_0 + 2\Delta x$ $x_3 = x_3 + 3\Delta x = b$

En tilnæret verdi for $\int_a^{x_1} f \, dx$ får vi ved å finne arealet til trapeset med hjørner (husk at $x_0 = a$)

$$(x_0,0)$$
 $(x_1,0)$ $(x_1,f(x_1))$ $(x_0,f(a))$

Dette arealet er gitt ved uttrykket

$$\frac{1}{2}(x_1 - x_0)[f(x_0) + f(x_1)] = \frac{\Delta x}{2}[f(x_0) - f(x_1)]$$

Ved å tilnærme integralet for hvert delintervall på denne måten, kan vi skrive

$$\int_{a}^{b} f \, dx \approx \frac{\Delta x}{2} \sum_{i=0}^{2} \left[f(x_i) + f(x_{i+1}) \right]$$

(a) Tilnærming med 3 delintervaller.

(b) Tilnærming med 20 delintervaller

Figure 1

0.2 Trapesmetoden

Gitt en integrerbar funksjon f. En tilnærmet verdi for $\int_a^b f \, dx$ er da gitt som

$$\int_{a}^{b} f \, dx \approx \frac{\Delta x}{2} \sum_{i=0}^{n} \left[f(x_i) + f(x_{i+1}) \right] \tag{1}$$

hvor

$$n \in \hat{\mathbb{N}}$$

$$a = x_0$$

$$b = x_n$$

$$\Delta x = \frac{b - a}{n + 1}$$

$$x_{n+1} = x_n + i\Delta x$$

Merk

Slik regel 0.2 er formulert, vil $\left[a,b\right]$ være delt inn in+1 delintervaller.