Full Name: SOLUTIONS

MATHEMATICS Methods Units 1 & 2

Test 4 – Trigonometric Graphs and Equations Chapter 14

Semester 1 2019

Section One - Calculator Free

Time allowed for this section

Working time for this section: 30 minutes
Marks available: 26 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the students

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: Nil

Important note to students

No other items may be used in this section of the assessment. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the assessment room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (4 marks) Find the exact value of $sin75^{\circ}$.

$$5 \cdot 10^{-1} \cdot$$

2. (4 marks) Graph y = 3cos(2x) for $0^{\circ} \le x \le 540^{\circ}$

Vamplitude V poriod V curve/shope V within domain 3. (4 marks)

Given that $sinA = \frac{3}{5}$ and $cosB = \frac{1}{4}$, where A and B are acute, find the exact value of cos(A - B)

$$\cos(A-B) = \cos A \cos B + \sin A \sin B \sqrt{\frac{5}{A}} = \frac{4}{5} \times \frac{1}{4} + \frac{3}{5} \times \frac{15}{4}$$

$$= \frac{4}{3} \times \frac{1}{5} \times \frac{1}{4} = \frac{4}{3} \times \frac{15}{4} = \frac{15}{4} = \frac{15}{4} \times \frac{15}{4} = \frac{15}{4}$$

4. (3 marks)

Show that $\cos 2x = 1 - 2\sin^2 x$

$$\cos 2x = \cos(x+x) /$$

$$= \cos x \cos x - \sin x \sin x$$

$$= \cos^{2}x - \sin^{2}x /$$

$$= 1 - \sin^{2}x - \sin^{2}x /$$

$$= 1 - 2\sin^{2}x /$$

$$= 1 - 2\sin^{2}x /$$

5. (1/2 marks).

Solve the following equations for the given domain.

a) $\cos(x) = \frac{1}{2}$

for $0 \le x \le 2\pi$

X = \frac{1}{3}, \frac{51}{3}

b) $\sqrt[6]{2}\sin^2(2x) - 1 = 0$

for $0^{\circ} \le x \le 360^{\circ}$

5102 (2x) = 1

Sin (2x) = + 1/12/

[4]

25c = 45°, 135°, 225°, 315°

SC = 22.5°, 67.5°, 112.5°, 157.5°

c) $2\sin^2 x - 3\sin x - 2 = 0$ for $[0^\circ, 540^\circ]$

[5]

2x2-3x-2=0/ (2x-4)(2x+1)=0

(x-2)(2x+1)=0/

o. singe=2=0 or 2singe+1=0

one singe=-1/2

x= 240°, 300°, 600°, 660°

End of Section One

Full Name: SGLUTIONS

MATHEMATICS Methods Units 1 & 2

Test 4 – Trigonometric Graphs and Equations Chapter 14

Semester 1 2019

Section Two - Calculator Assumed

Time allowed for this section

Working time for this section: 20 minutes Marks available: 20 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: drawing instruments, templates, notes on one unfolded sheet of A4 paper,

and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (6 marks)

a. Sketch the functions $y = 2\cos x$ and x + 10y + 10 = 0 on the same set of axes and clearly indicate any points of intersection. [4]

b. Hence, graphically solve
$$2\cos x = -\frac{x+10}{10}$$
 for $-2\pi \le x \le 2\pi$. [2]

$$(-4.43, -0.56)$$
 $(\frac{1}{2})$ $(-1.96, -0.80)$ $(\frac{1}{2})$ $(2.23, -1.22)$ $(\frac{1}{2})$ $(3.94, -1.39)$ $(\frac{1}{2})$

2. (4 marks)

A trigonometric function has equation $P = a\cos{(bt + \frac{\pi}{4})}$. Find the values of a and b given that P has a maximum value of 4 and a period of 6π .

period 6T =>
$$f = \frac{2T}{6T} = \frac{1}{3}$$
 ... $b = \frac{1}{3}$

3. (10 marks)

Find the equations of the following trigonometric functions.

a. [4]

$$S(x) = 2\cos(3x) - 1$$

 $\mathbf{f}(\mathbf{x})$

c. [4]

ouphlude is 1 vortical shift + 1/20" right

$$y = \sin \frac{1}{2}(x - 120^{\circ}) + \frac{1}{2}$$

 $y = \sin \left(\frac{2}{3} - 60^{\circ}\right) + \frac{1}{2}$

End of Test