Let's finetune a LLaMA 70B with LoRA

hululu.zhu@gmail.com

April 2023

Disclaimer

- This talk is my personal voluntary effort, prepared and conducted during my personal time outside of working hours.
- All content is derived from publicly available sources, and the views expressed herein only represent my personal opinions, and do not reflect the positions of DeepMind®, Google®, or Alphabet®

hululu.zhu@gmail.com

April 2023

Agenda

- [15 mins] Background
 - Generative LLM
 - Finetuning vs Prompt Engineering
 - LLaMA by Meta (Facebook)
 - LoRA
 - Alpaca + LoRA
- [30 mins] Code and Live Demo
- [10 mins] Discussion

Generative LLM, oversimplified intro

What does it do? Predict the next token (e.g. <u>GPT</u>)

Ground Truth: "Paris is a beautiful city"

- X: "Paris is a"
- Y: "beautiful"
- **Model:** "good"
- Optimize: "good" 👎 "beautiful" 👍

- X: "Paris is a beautiful"
- **Y:** "city"
- Model: "place"
 - Optimize: "place" 👎 "city" 👍

See my <u>llm-primer materials</u> for more LLM intro

Finetuning vs Prompting

Finetuning: Change model weights, to adapt to special context or requirement

- E.g. GPT3 is pretrained model
- GPT3.5 (davinci) is finetuned using Supervised Finetune (SFT) to align with experts' style
- ChatGPT further finetuned using Reinforcement Learning Human Feedback (RLHF) to further align with human preference (with an additional reward model)

Prompting: Freeze the model, change text prompts

- E.g. "As a professional football coach, write a report to analyze which team has the best squad"
- Or "please think step by step"

My personal take based on my experience:

In most business and research application domains, Finetuning with high quality data will work better than Prompting.

LLaMa By Meta (Facebook)

- Open sourced large language model (<u>Facebook blog</u>)
 - 4 versions: 7B, 13B, 33B and 65B (GPT3 has 175B)
 - Model application form
 - Not for commercial use
- Why is it a big thing?
 - The best open source LLM as of April 2023, a gift to the academia
 - The 65B LLaMa is better than 175B GPT3 in benchmarks, see paper
 - The weights were leaked, so everyone can have a copy
 - The cost to train such an LLM will be at least 10 million USD or more
 - The cost to tune LLaMa to a high quality model for a use case?
 - \$600! Let's meet Stanford Alpaca

\$600 to reproduce a ChatGPT

- 1. <u>Self instruct</u> to get seed task prompts
- 2. Rely on <u>ChatGPT API</u> to sample prompts and responses
- 3. Use LLaMa 7B to finetune (3 hours on 8x80GB A100s)
- 4. Get a high quality Alpaca 7B

\$600 to reproduce a ChatGPT

- 1. <u>Self instruct</u> to get seed task prompts
- 2. Rely on <u>ChatGPT API</u> to sample prompts and responses
- 3. Use LLaMa 7B to finetune (3 hours on 8x80GB A100s)
- 4. Get a high quality Alpaca 7B

This looks expensive!
What if I only have one 10G GPU?

Supervised
Finetuning

Alpaca 7B

LoRA (Low-Rank Adaptation)

- <u>Transformer Architecture</u>
 - Weights (W) for <u>O/K/V projections</u> in self attention
 - Assume d is hidden dimension size, W is often a dxd matrix, so number of weights are d*d
- Brush up some linear algebra
 - If we have matrix A, shape is d*r (r <<d)
 - And we have B, shape is r*d
 - Shape of Matrix_multiply(A, B) is d*d!
- The summation will add up W (freezed), and the A@B matrix, so we only need to train A, and B
 - Number of weight for A and B are 2 * d * r << d*d

```
d, r = 5, 1
W = np.arange(d * d).reshape((d, d,))
A = np.ones(shape=(d, r))
B = np.ones(shape=(r, d))
print("W", W)
print("A", A)
print("B", B)
 [5 6 7 8 9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
A [[1.]
 [1.]
 [1.]
 [1.]
 [1.]]
B [[1. 1. 1. 1. 1.]]
print(W + A @ B)
[[ 1. 2. 3. 4. 5.]
   6. 7. 8. 9. 10.]
 [11. 12. 13. 14. 15.]
 [16. 17. 18. 19. 20.]
 [21. 22. 23. 24. 25.]]
```

Brush up a little bit linear algebra

- Without LoRA
 - If we want to finetune, we will tune W, which is 5x5=25 weights
- With LoRA
 - We freeze W
 - We only train A and B, each has 5 weights, so we will tune 10 (as compared to 25)
- Training time
 - We will have to go through additional W+A@B calculation
 - The additional A@B might introduce additional cost for parallelism especially for TPU
- Inference time
 - We could cache the A@B to be added to W, so no additional inference cost!

Why would 7B LLaMa fit into 10G GPU?

- If full precision float? 4 bytes per parameter
 - So roughly 4 bytes * 7 billion = ~28G GPU memory needed!!!

So we need the magic <u>LLM.int8</u> quantization!

- Use 1 byte (actually more than 1) instead of 4 bytes
- Empirically, we can fit 7B LLaMa into GPU for only ~7.3G memory!!!
- With LoRA, we may only train <1% the total weights!

And it is time to switch to <u>our demo code</u> today that builds on top of Alpaca-Lora, applied in the use case of Chinese Couplet (对联)

Demo on Chinese Couplet (A100, 9 mins), code

上联	Base LLaMA	LLaMa_LoRA_A100_9mins
春风得意花铺路	沉浸落泥\n上联	月光听声风吹梦
美丽中国魅力北京	美丽中国魅力北京\n上联:	历史浓浅中华梦境
鱼书千里梦	鱼肉烧肉\n	鸟声万里声
日落晚霞临古寺	晚霞临古寺\n上	月映晨雨满梦境

LLaMa + LoRA is just one of the efficient tuning combinations

More LLMs besides LLaMa:

- <u>GPT-Neo</u> and <u>Pythia</u> by EleutherAI
 - Commercial use
- BLOOM by OpenScience
- OPT by Facebook/Meta
- GLM by Tshinghua
- MOSS by Fudan
- <u>UL2</u> by Google
- more

More Parameter Efficient Tuning besides LoRA

- Prefix-Tuning,
- P-Tuning
- P-Tuning v2
- Prompt Tuning
- AdaLoRA
- more