Shortest Paths III: Floyd-Warshall

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 11

OUTLINE

- Algorithms on Weighted Graphs
 - Dijkstra
 - Bellman-Ford
 - Floyd-Warshall
- All-Pairs Shortest Path

Shortest Path Algorithms

- **Dijkstra** provides the shortest path from **one** node to any other nodes in a graph
- Bellman-Ford is similar to Dijkstra but can handle negative costs
- Floyd-Warshall gives shortest paths between all pairs of nodes and can handle negative costs

Shortest Path Algorithms (Contd.)

- Dijkstra provides the shortest path from or any other nodes in a graph
- Bellman-Ford similar to Dijkstra but ale **negative costs**
- Floyd-Warshall gives shorte Detween all pairs of nodes and can handle negative costs

Example: All-Pair-Shortest-Path

Example: All-Pairs-Shortest-Path

How can we produce a matrix that has the actual lowest costs rather than just ∞ ?

	Auckland	Gisborne	Hamilton	Napier	New Plymouth	Palmerston North	Rotorua	Taupo	Wellington	Whanganui
Auckland	$\begin{bmatrix} 0 \end{bmatrix}$	∞	127	∞	∞	∞	∞	∞	∞	∞
Gisborne	∞	0	378	215	∞	∞	∞	∞	∞	∞
Hamilton	127	378	0	∞	239	387	106	∞	∞	∞
Napier	∞	215	∞	0	∞	∞	∞	141	319	∞
New Plymouth	∞	∞	239	∞	0	∞	∞	∞	∞	159
Palmerston North	∞	∞	387	∞	∞	0	∞	242	145	73
Rotorua	∞	∞	106	∞	∞	∞	0	81	∞	∞
Taupo	∞	∞	∞	141	∞	242	81	0	∞	∞
Wellington	∞	∞	∞	319	∞	145	∞	∞	0	208
Whanganui	∞	∞	∞	∞	159	73	∞	∞	208	0

Example: All-Pairs-Shortest-Path

After running Dijkstra's or Bellman-Ford from Auckland, the matrix will look like

this:

	Auckland	Gisborne	Hamilton	Napier	New Plymout	Palmerston N	Rotorua	Taupo	Wellington	Whanganui	
Auckland	0	505	127	455	366	514	233	314	659	525	
Gisborne	∞	0	378	215	∞	∞	∞	∞	∞	∞	
Hamilton	127	378	0	∞	239	387	106	∞	∞	∞	
Napier	∞	215	∞	0	∞	∞	∞	141	319	∞	
New Plymouth	∞	∞	239	∞	0	∞	∞	∞	∞	159	
Palmerston North	∞	∞	387	∞	∞	0	∞	242	145	73	
Rotorua	∞	∞	106	∞	∞	∞	0	81	∞	∞	
Taupo	∞	∞	∞	141	∞	242	81	0	∞	∞	
Wellington	∞	∞	∞	319	∞	145	∞	∞	0	208	
Whanganui	$ \sum_{i=1}^{\infty} $	∞	∞	∞	159	73	∞	∞	208	0]	

Options for All-Pairs-Shortest-Path

- Run Dijkstra's algorithm starting at each of the n vertices: $\Theta(n)$ for iterating through the vertices, and $O(n^2)$ for each Dijkstra run. Total: $O(n^3)$
- Use the Bellman-Ford algorithm n times: $O(n^2m)$ at best, $O(n^4)$ at worst!
- Several algorithms are known; we present one, Floyd's algorithm. Alternative to running Dijkstra from each node.

All Pairs Shortest Path Problem

- Number nodes (say from 0 to n-1) and at each step k, maintain matrix of shortest distances from node i to node j not passing through nodes higher than k. Update at each step to see whether node k shortens current best distance.
- Need triply nested for loops, so runs in $O(n^3)$ time. Better than Bellman Ford $(O(n^2m))$ for dense graphs.

- Definition. In the **all-pairs shortest path problem (APSP)** we are given a weighted (di-)graph (G,c), and must determine for each $u,v\in V(G)$ the weight of a minimum weight path from u to v.
- The solution to the all-pairs shortest path problem can be presented as a distance matrix.

Example 31.2

• For the digraph we have already calculated the all-pairs distance matrix in Example 28.11:

$$\begin{pmatrix} 0 & 1 & 4 & 3 \\ 4 & 0 & 8 & 2 \\ 6 & 2 & 0 & 4 \\ 2 & 3 & 6 & 0 \end{pmatrix}$$

Algorithm 1 Floyd's algorithm.

```
1: function FLOYD(weighted digraph(G, c))
2: array d[0..n-1,0..n-1]
3: d \leftarrow c
4: for x \in V(G) do
5: for u \in V(G) do
6: for v \in V(G) do
7: d[u,v] \leftarrow \min(d[u,v],d[u,x]+d[x,v])
8: return d
```


• This algorithm is based on the dynamic programming principles. At the bottom of the outer for loop, for each $u, v \in V(G), d[u, v]$ is the length of the shortest path from u to v passing through intermediate nodes that have been seen in for x loop.


```
Algorithm 1 Floyd's algorithm.
1: function FLOYD(weighted digraph(G, c))
         array d[0..n-1,0..n-1]
3:
         d \leftarrow c
                                               x = 4
         for x \in V(G) do
4:
                                                u = 8
              for u \in V(G) do
5:
                                              \nu = 2
                   for v \in V(G) do
6:
                        d[u,v] \leftarrow \min(d[u,v],d[u,x]+d[x,v])
7:
8:
         return d
```

$$d[8,2] = \min\{d[8,2], d[8,4] + d[4,2]\}$$

Then minimum weight of a path: $8 - w_1 - w_2 - \cdots - w_n - 2$ such that $w_i \in \{0,1,2,3,4\}$

adj/cost matrix

0	3	-1	∞	∞
2	0	1	2	∞
∞	1	0	4	6
∞	- 2	2	0	- 3
∞	∞	∞	∞	0

$$x = 0$$

0	3	_1	5	∞
2	0	1	2	∞
3	1	0	3	6
0	- 2	-1	0	- 3
∞	∞	∞	∞	0

$$x = 1$$

0	0	-1	2	5
2	0	1	2	7
3	1	0	3	6
0	- 2	-1	0	- 3
∞	∞	∞	∞	0

$$x = 2$$

0	0	- 1	2	-1
2	0	1	2	-1
3	1	0	3	0
0	- 2	- 1	0	-3
∞	∞	8	8	0

$$x = 3$$

Illustrating Floyd's algorithm $d[u,v] = \min(d[u,v],d[u,x]+d[x,v])$ $d[1,2] = \min(d[u,v],d[u,x])$

$$x = 0$$

			2		
0	0	3	<u>_1</u>	∞	∞
1	2	0	0 2	2	∞
2	∞	1	0	4	6
3	∞	- 2	2	0	- 3
4	∞	∞	∞	∞	0

cost matrix

$$d[1,2] = \min(d[1,2], d[1,0] + d[0,2])$$

$$= \min(\infty, 2 + (-1))$$

$$= 1$$

$$d[3,4] = \min(d[3,4], d[3,0] + d[0,4])$$

= \text{min}(-3, \infty + \infty)
= -3

If x = 0, no update for

- $d[0,v] = \min(d[0,v],d[0,0]+d[0,v])$ $= \min(d[0,v],d[0,v]) = d[0,v]$
- $d[u, 0] = \min(d[u, 0], d[u, 0] + d[0, 0])$ $= \min(d[u, 0], d[u, 0]) = d[u, 0]$

Illustrating Floyd's algorithm $d[u,v] = \min(d[u,v],d[u,x]+d[x,v])$ $d[0,3] = \min(d[u,v],d[u,x])$

$$x = 1$$

	0	1	2	3	4
0	0	3	-1	∞	∞
1	2	0	1	2	∞
2	∞	1	0	4	6
3	∞	- 2	2	0	- 3
4	∞	3 0 1 −2 ∞	∞	∞	0

resulting matrix for x = 0

$$d[0,3] = \min(d[0,3], d[0,1] + d[1,3])$$

= $\min(\infty, 3 + 2) = 5$

$$d[2,0] = \min(d[2,0], d[2,1] + d[1,0])$$

= $\min(\infty, 1 + 2) = 3$

$$d[2,3] = \min(d[2,3], d[2,1] + d[1,3])$$

= $\min(4, 1 + 2) = 3$

$$d[3,0] = \min(d[3,0], d[3,1] + d[1,0])$$

= $\min(\infty, -2 + 2) = 0$

$$d[3,2] = \min(d[3,2], d[3,1] + d[1,2])$$

= $\min(2, -2 + 1) = -1$

Illustrating Floyd's algorithm $d[u,v] = \min(d[u,v],d[u,x]+d[x,v])$

$$x = 2$$

	0	1	2	3	4
0	0	3	-1	5	∞
1	2	0	1	2	∞
2	3	1	0	3	6
3	0	- 2	- 1	0	- 3
4	∞	1 3 0 1 −2 ∞	∞	∞	0

resulting matrix for x = 1

$$d[0,1] = \min(d[0,1], d[0,2] + d[2,1])$$

= $\min(3, -1 + 1) = 0$

$$d[0,3] = \min(d[0,3], d[0,2] + d[2,3])$$

= $\min(5, -1 + 3) = 2$

$$d[0,4] = \min(d[0,4], d[0,2] + d[2,4])$$

= $\min(\infty, -1 + 6) = 5$

$$d[1,4] = \min(d[1,4], d[1,2] + d[2,4])$$

= $\min(\infty, 1+6) = 7$

Illustrating Floyd's algorithm $d[u,v] = \min(d[u,v],d[u,x]+d[x,v])$

$$x = 3$$

	0	1	2	3	4
0	0	0	-1	2	5
1	2	0	1	2	7
2	3	1	0	3	6
3	0	- 2	-1	0	- 3
4	∞	∞	$ \begin{array}{c} -1 \\ 1 \\ 0 \\ -1 \\ \infty \end{array} $	∞	0

resulting matrix for x = 2

$$d[0,4] = \min(d[0,4], d[0,3] + d[3,4])$$

$$= \min(5, 2 + (-3)) = -1$$

$$d[1,4] = \min(d[1,4], d[1,3] + d[3,4])$$

$$= \min(7, 2 + (-3)) = -1$$

$$d[2,4] = \min(d[2,4], d[2,3] + d[3,4])$$

$$= \min(6, 3 + (-3)) = 0$$

Example: Here is our Distance Matrix

	1	2	3	4
1				
2				
3				
4				

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

	1	2	3	4
1				
2				
3				
4				

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

Set d(s,s) = 0

	1	2	3	4
1	0			
2		0		
3			0	
4				0

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

Set
$$d(x,y) = cost(x,y)$$

or $+\infty$

	1	2	3	4
1	0			
2		0		
3			0	
4				0

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,y) or $+\infty$, except for d(s,s), which is set to 0.

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

Set $d(1,3) = cost(1,3) = +\infty$

		1	2	3	4
•	1	0	2	8	
	2		0		
	3			0	
	4				0

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,v) or $+\infty$, except for d(s,s), which is set to 0.

Set $d(1,4) = cost(1,4) = +\infty$

	1	2	3	4
1	0	2	+∞	+8
2		0		
3			0	
4				0

Start: Set the distance cost d(x,y) of all pairs of vertices x and y to either cost(x,y) or $+\infty$, except for d(s,s), which is set to 0.

Similarly for the rest of the nodes

	1	2	3	4
1	0	2	+∞	+8
2	+∞	0	-1	+∞
3	1	+∞	0	4
4	+∞	3	+∞	0

k: 1234

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

	1	2	3	4
1	0	2	+8	**
2	+8	0	-1	+8
3	1	+8	0	4
4	+8	3	+8	0

k: 1234

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

	1	2	3	4
1	0	2	+8	**
2	+∞	0	-1	+8
3	1	+8	0	4
4	+∞	3	+8	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,1) > d(1,1) + d(1,1)$$

 $0 > 0 + 0$

	1	2	3	4
1	0	2	8	+8
2	8 (0	-1	+8
3	1	+8	0	4
4	+∞	3	+8	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,2) > d(1,1) + d(1,2)$$

2 > 0 + 2

	1	2	3	4
1	0	2	+∞	+8
2	8	0 (-1	+8
3	1	+8	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,3) > d(1,1) + d(1,3) + \infty > 0 + + \infty$$

	1	2	3	4
1	0	2	(+%)	+8
2	+ (0	-1	+∞
3	1	+8	0	4
4	+8	3	+∞	0

k: 1234

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,4) > d(1,1) + d(1,4) + \infty > 0 + + \infty$$

	1	2	3	4
1	0	2	+8	(+∞)
2	+ (0	-1	*
3	1	+8	0	4
4	+8	3	+8	0

k: **1** 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,1) > d(2,1) + d(1,1) + \infty > +\infty + 0$$

	1	2	3	4
1	0	2	+8	+8
2	(+ %)	0	-1	+8
3	1	+8	0	4
4	+∞	3	+8	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,2) > d(2,1) + d(1,2)$$

 $0 > +\infty + 2$

	1	2	3	4
1	0	2	*	*
2	(+∞)	0	-1	+8
3	1	*	0	4
4	+∞	3	+∞	0

k: **1** 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,3) > d(2,1) + d(1,3)$$

 $-1 > +\infty + +\infty$

	1	2	3	4
1	0	2	4	*
2	(+∞)	0	(-1)	+∞
3	1	+8	0	4
4	+∞	3	+∞	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,4) > d(2,1) + d(1,4) + \infty > +\infty + +\infty$$

	1	2	3	4
1	0	2	+8	(+∞)
2	(+	0	-1	(+∞)
3	1	+8	0	4
4	+∞	3	+∞	0

k: **1** 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,1) > d(3,1) + d(1,1)$$

 $1 > 1 + +\infty$

	1	2	3	4
1	0	2	+8	+∞
2	+ (0	-1	**
3		+∞	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,2) > d(3,1) + d(1,2) + \infty > 1 + 2 YES!$$

	1	2	3	4
1	0	2	*	+8
2	+8	0	-1	+8
3	1	(+∞)	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,2) > d(3,1) + d(1,2)$$

 $d(3,2) < -1 + 2$

	1	2	3	4
1	0	2	+8	+8
2	+∞	0	-1	+ %
3	1	3	0	4
4	+8	3	+∞	0

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,3) > d(3,1) + d(1,3)$$

 $0 > 1 + +\infty$

	1	2	3	4
1	0	2	(+%)	+∞
2	+8	0	-1	+∞
3	1	3	0	4
4	8	3	+8	0

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,4) > d(3,1) + d(1,4)$$

 $4 > 1 + +\infty$

	1	2	3	4
1	0	2	+8	(+∞)
2	+8	0	-1	+ (
3		3	0	4
4	+8	3	+8	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,1) > d(4,1) + d(1,1) + \infty > +\infty + 0$$

	1	2	3	4
1	0	2	+8	+8
2	+ (0	-1	+8
3	1	3	0	4
4	(+∞)	3	+∞	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,2) > d(4,1) + d(1,2)$$

 $3 > +\infty + 2$

	1	2	3	4
1	0	2	+8	+8
2	+8	0 (-1	+∞
3	1	3	0	4
4	(+∞)	3	+∞	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,3) > d(4,1) + d(1,3) + \infty > +\infty + +\infty$$

	1	2	3	4
1	0	2	(+∞)	+8
2	+8	0	-1	+8
3	1	3	0	4
4	(+∞)	3	(+∞)	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,4) > d(4,1) + d(1,4)$$

 $0 > +\infty + +\infty$

	1	2	3	4
1	0	2	+8	(+∞)
2	+8	0	-1	*
3	1	3	0	4
4	(+∞)	3	+8	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,1) > d(1,2) + d(2,1)$$

 $0 > 2 + +\infty$

	1	2	3	4
1	0	2	+8	+8
2	(+ %)	0	-1	+8
3	1	3	0	4
4	+∞	3	+8	0

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,2) > d(1,2) + d(2,2)$$

2 > 2 + 0

	1	2	3	4
1	0	2	+∞	+8
2	+∞	0	-1	+8
3	1	3	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,3) > d(1,2) + d(2,3) + \infty > 2 - 1$$
 YES!

	1	2	3	4
1	0	2	(+∞)	+8
2	+∞	0	-1	+8
3	1	3	0	4
4	+∞	3	+∞	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,3) > d(1,2) + d(2,3)$$

 $d(1,3) < -2 -1 = 1$

	1	2	3	4
1	0	2	1	+8
2	+∞	0	-1	+8
3	1	3	0	4
4	+∞	3	+8	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,4) > d(1,2) + d(2,4)$$

 $+\infty > 2 + +\infty$

	1	2	3	4
1	0	2	1	+
2	+∞	0 (-1	(+%)
3	1	3	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,1) > d(2,2) + d(2,1) + \infty > 0 + +\infty$$

	1	2	3	4
1	0	2	1	*
2	(+∞)	0	-1	+8
3	1	3	0	4
4	+∞	3	+8	0

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,2) > d(2,2) + d(2,2)$$

 $0 > 0 + 0$

	1	2	3	4
1	0	2	1	*
2	+8	0	-1	+8
3	1	3	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,3) > d(2,2) + d(2,3)$$

-1 > 0 + (-1)

	1	2	3	4
1	0	2	1	**
2	+∞	0	(-1)	+∞
3	1	3	0	4
4	+8	3	+∞	0

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,4) > d(2,2) + d(2,4)$$

 $+\infty > 0 + +\infty$

	1	2	3	4
1	0	2	1	+ 8
2	+∞	0	-1	(+∞)
3	1	3	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,1) > d(3,2) + d(2,1)$$

 $1 > 3 + +\infty$

	1	2	3	4
1	0	2	1	*
2	+∞	0	-1	+∞
3	1	(3)	0	4
4	+∞	3	+8	0

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,2) > d(3,2) + d(2,2)$$

 $3 > 3 + 0$

	1	2	3	4
1	0	2	1	**
2	+∞	0	-1	+∞
3	1	3	0	4
4	+8	3	+∞	0

k: 1 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,3) > d(3,2) + d(2,3)$$

 $0 > 3 + (-1)$

	1	2	3	4
1	0	2	1	+∞
2	+∞	0 (-1	+∞
3	1	3	0	4
4	+8	3	+8	0

k: 1 2 3 4

i: 1 2 **3** 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(3,4) > d(3,2) + d(2,4)$$

 $4 > 3 + +\infty$

	1	2	3	4
1	0	2	1	+8
2	+∞	0	-1	(+∞)
3	1	3	0	4
4	+8	3	+8	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,1) > d(4,2) + d(2,1)$$

 $+\infty > 3 + +\infty$

	1	2	3	4
1	0	2	1	*
2	(+∞)	0	-1	+8
3	1	თ (0	4
4	(+∞)	3	+8	0

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,2) > d(4,2) + d(2,2)$$

 $3 > 3 + 0$

	1	2	3	4
1	0	2	1	*
2	+∞	0	-1	+∞
3	1	3 (0	4
4	+∞	3	+8	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,3) > d(4,2) + d(2,3) + \infty > 3 + (-1) YES$$

	1	2	3	4
1	0	2	1	**
2	+∞	0	-1	+∞
3	1	3	0	4
4	+∞	3	(+∞)	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,3) > d(4,2) + d(2,3)$$

 $d(4,3) < -3 + (-1) = 2$

	1	2	3	4
1	0	2	1	+∞
2	+8	0	-1	+∞
3	1	3	0	4
4	+8	3	2	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,4) > d(4,2) + d(2,4)$$

 $0 > 3 + +\infty$

	1	2	3	4
1	0	2	1) +
2	+∞	0	-1	(+
3	1	3	0	4
4	+∞	3	2	0


```
k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4
d(i,j) > d(i,k) + d(k,j)
d(i,j) \leftarrow d(i,k) + d(k,j)
d(1,4)
```


	1	2	3	4
1	0	2	1	(+∞)
2	+8	0	-1	* (
3	1	3	0	4
4	+8	3	2	0


```
k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4
d(i,j) > d(i,k) + d(k,j)
d(i,j) \leftarrow d(i,k) + d(k,j)
d(1,4)
```


	1	2	3	4
1	0	2	1	(* ×
2	+∞	0	-1	* (
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4 i: 1 2 3 4 j: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

	1	2	3	4
1	0	2	1	(+∞)
2	+8	0	-1	+∞
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,4) > d(1,3) + d(3,4)$$

	1	2	3	4
1	0	2	1	(+∞)
2	+8	0	-1)
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,4) > d(1,3) + d(3,4) + \infty > 1 + 4$$

	1	2	3	4
1	0	2	1	(+∞)
2	+8	0	-1)
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4

i: **1** 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(1,4) > d(1,3) + d(3,4)$$

 $d(1,4) < -5$

	1	2	3	4
1	0	2	1	5
2	+∞	0	-1	* (
3	1	3	0	4
4	+∞	3	2	0


```
k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4
d(i,j) > d(i,k) + d(k,j)
d(i,j) \leftarrow d(i,k) + d(k,j)
d(2,1)
```


	1	2	3	4
1	0	2	1	5
2	(+∞)	0	-1	+∞
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4 d(i,j) > d(i,k) + d(k,j) $d(i,j) \leftarrow d(i,k) + d(k,j)$ d(2,1) > d(2,3)

	1	2	3	4
1	0 (2	1	5
2	(+∞)	0	(-1)	+∞
3	1	3	0	4
4	+∞	3	2	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,1) > d(2,3) + d(3,1)$$

	1	2	3	4
1	0	2	1	5
2	(+%)	0	(-1)	+∞
3	1	3	0	4
4) 8	3	2	0

k: 1 2 3 4

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,1) < -(-1) + 1$$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	+8
3	1	3	0	4
4	+∞	3	2	0


```
k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4
d(i,j) > d(i,k) + d(k,j)
d(i,j) \leftarrow d(i,k) + d(k,j)
d(2,4)
```


	1	2	3	4
1	0	2	1	5
2	0	0	-1	(+∞)
3	1	3	0	4
4	+8	3	2	0

k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4 d(i,j) > d(i,k) + d(k,j) $d(i,j) \leftarrow d(i,k) + d(k,j)$ d(2,4) > d(2,3)

	1	2	3	4
1	0	2	1	5
2	0	0	(-1)	(+∞)
3	1	3) 0	4
4	+8	3	2	0

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,4) > d(2,3) + d(3,4) + \infty > (-1) + 4$$

	1	2	3	4
1	0	2	1	5
2	0	0	(-1)	(+%)
3	1	3) 0	4
4	+8	3	2)0

i: 1 2 3 4

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(2,4) > d(2,3) + d(3,4)$$

 $d(2,4) < -3$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	1	3	0	4
4	+∞	3	2	0


```
k: 1 2 3 4
i: 1 2 3 4
j: 1 2 3 4
d(i,j) > d(i,k) + d(k,j)
d(i,j) \leftarrow d(i,k) + d(k,j)
d(4,1)
```


	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	1	3	0	4
4	(+∞	3	2	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	1	3	0	4
4	(+∞)	3	2	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,1) > d(4,3) + d(3,1)$$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	(1)	3	0	4
4	(+ %	3	2	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,1) > d(4,3) + d(3,1) + \infty > 2 + 1$$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	(1)	3	0	4
4	(+ %	3	2	0

k: 1 2 3 4

i: 1 2 3 **4**

$$d(i,j) > d(i,k) + d(k,j)$$

$$d(i,j) \leftarrow d(i,k) + d(k,j)$$

$$d(4,1) > d(4,3) + d(3,1)$$

 $d(4,1) 2 3$

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	1	3	0	4
4	3	3	2	0

Example: The Final Result

	1	2	3	4
1	0	2	1	5
2	0	0	-1	3
3	1	3	0	4
4	3	3	2	0

Once done, the matrix gives us the shortest path between each pair of nodes

Why Floyd's algorithm Works

- **Theorem**: at the bottom of the outer **for-loop**, for all nodes u and v,
- d[u,v] contains the minimum length of all paths from u to v that are restricted to using only intermediate nodes that have been seen in the outer for-loop.
- When algorithm terminates, all nodes have been seen and d[u,v] is the length of the shortest u-to-v path.

Why Floyd's algorithm Works (Contd.)

- Notation: S_k the set of nodes seen after k passes through this loop; S_k -path one with all intermediate nodes in S_k ; d_k –the corresponding value of d. Induction on the outer **for-loop**:
- Base case: k = 0; $S_0 = \emptyset$, and the result holds.
- Induction hypothesis: It holds after $k \geq 0$ times through the loop.
- Inductive step: To show that $d_{k+1}[u,v]$ after k+1 passes through this loop is the minimum length of an u-to-v S_{k+1} -path.

Why Floyd's algorithm Works (Contd.)

Inductive step:

- Suppose that x is the last node seen in the loop, so $S_{k+1} = S_k \cup \{x\}$.
- Fix an arbitrary pair of nodes $u, v \in V(G)$ and let L be the min-length of an u-to- $v S_{k+1}$ -path, so that obviously $L \leq d_{k+1}[u,v]$.
- To show that also $d_{k+1}[u,v] \leq L$, choose an u-to- $v S_{k+1}$ -path γ of length L.
 - If $x \notin \gamma$, the result follows from the induction hypothesis.
 - If $x \in \gamma$, let γ_1 and γ_2 be, respectively, the u-to-x and x-to-v subpaths. Then γ_1 and γ_2 are S_k -paths and by the inductive hypothesis,

$$L = |\gamma_1| + |\gamma_2| \ge d_k[u, x] + d_k[x, v] \ge d_{k+1}[u, v]$$

Non-negativity of the weights is not used in the proof, and Floyd's algorithm works for negative weights (but negative weight cycles should not be present).

Computing Actual Shortest Paths

- In addition to knowing the shortest distances, the shortest paths are often to be reconstructed.
- The Floyd's algorithm can be enhanced to compute also the predecessor matrix $\Pi = [\pi_{ij}]_{i,j=1,1}^{n,n}$ where vertex $\pi_{i,j}$ precedes vertex j on a shortest path from vertex $i; 1 \leq i, j \leq n$

Computing a sequence $\Pi^{(0)}$, $\Pi^{(1)}$, ..., $\Pi^{(n)}$,

- where vertex $\pi_{i,j}^{(k)}$ precedes the vertex j on a shortest path from vertex i with all intermediate vertices in $V_{(k)}=\{1,2,\ldots,k\}$
- For case of no intermediate vertices: $\pi_{i,j}^{(0)} = \begin{cases} \text{NIL if } i = j \text{ or } c[i,j] = \infty \\ i \text{ if } i \neq j \text{ and } c[i,j] < \infty \end{cases}$

Floyd's Algorithm with Predecessors

Algorithm 1 Floyd's algorithm with Predecessors.

```
1: function FloydPred(weighted digraph(G, c))
2:
         D \leftarrow c
                                              Create initial distance matrix from weights.
        \Pi \leftarrow \Pi^{(0)}
                                               Initialize predecessors from c
         for k from 1 to n do
4:
                for i from 1 to n do
5:
                    for j from 1 to n do
6:
                           if D[i, j] > D[i, k] + D[k, j] then
                                D[i,j] \leftarrow D[i,k] + D[k,j]
                                \Pi[i,j] \leftarrow \Pi[k,j]
9:
```


$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & NIL & 4 & NIL & NIL \\ 5 & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

Offith With Fiedecessors
$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & \infty & -4 \\ 2 & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 4 & 2 & 5 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & 2 & 1 \\ 2 & NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & NIL & NIL & NIL & 5 & NIL \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 5 & 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 5 & 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$\Pi^{(0)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ NIL & 3 & 4 & 5 & 1 \\ 2 & 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 5 & 4 & 3 & 4 & 5 & NIL - \end{bmatrix}$$

Getting Shortest Paths from Π Matrix

• The recursive algorithm using the predecessor matrix $\Pi = \Pi^{(n)}$ to print the shortest path between vertices i and j:

```
Algorithm 1 Getting shortest paths from \Pi matrix.

1: function PrintPath(\Pi, i, j))

2: if i = j then print i

3: else

4: if \pi_{i,j} = \text{NIL} then print "no path from i to j"

5: else

6: PrintPath(\Pi, i, \pi_{i,j})

7: print j
```


Comparison

• Summary of how BFS, Djikstra, Bellman-Ford and Floyd can be used to solve the SSSP and APSP problems for weighted and unweighted graphs and digraphs with or without negative arcs.

	SSSP			APSP		
	weighted	unweighted	Complexity	weighted	unweighted	Complexity
BFS	no	yes	O(m+n)	no	(yes)	$O(mn + n^2)$
Dijkstra	yes	yes	$O((m+n)\log n)$	(yes)	(yes)	$O\big((mn+n^2)\log n\big)$
Bellman- Ford	yes	yes	O(mn)	(yes)	(yes)	$O(mn^2)$
Floyd	yes	yes	$O(n^3)$	yes	yes	$O(n^3)$

Floyd and Bellman-Ford can detect negative weighted cycles.

(yes) – need to run for n times

Notes on Floyd-Warshall's algorithm

- Essentially just three nested loops: $\Theta(n^3)$.
- The outer loop specifies the potential "via" vertex, the inner two loops the end points of the path.
- Generally faster than a Bellman-Ford algorithm repeated n times.
- Not necessarily faster than Dijkstra but handles negative edge weights correctly.

SUMMARY

- Algorithms on Weighted Graphs
 - Dijkstra
 - Bellman-Ford
 - Floyd-Warshall
- All-Pairs Shortest Path

110