CARLSON SCHOOL ONVESSITY OF MINNESOTA
Scalable Machine Learning with Spark MLlib
MSBA 6330 Prof Liu
Slides credits: Bryan Yang, Joseph Bradley, Xiangrui Deng; Cloudera
Carlson School of Management Topics
Introduction to Spark MLlib
 Compare Scalable ML Frameworks MLlib Data types and file formats Transformer, Estimator, and Pipeline
MLlib Feature engineering APIs Evaluation & Hyper Parameter Tuning
Appendix: Algorithms in MLlib
Carlson School of Management
Scalable Machine Learning with Spark MLlib INTRODUCTION TO SPARK MLLIB

Introduction to Spark MLlib

- Spark MLlib is Spark's Scalable ML library
 - Contains common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, and underlying optimization primitives.
 - Is a popular choice for large-scale ML.
 - Support Scala, Python, Java, and R APIs
- · Spark MLlib consists of two packages
 - org.apache.spark.mllib / pyspark.mllib (older APIs based on RDD)
 - RDD-based APIs, expected to be deprecated in Spark 3 (not yet released).
 - org.apache.spark.ml / pyspark.ml (we will focus on this)

 - DataFrame-based APIs, support pipeline
 Feature parity with RDD-based APIs estimated for spark 2.3.x (February 2018)

Why DataFrame-based APIs?

- DataFrame-based APIs (pyspark.ml)
 - DataFrames provide more user-friendly APIs than RDDs
 - DataFrame APIs support practical ML pipelines
 - Support DataFrame Datasources (text, csv, json, parquet, image etc)
 - Support SQL/DataFrame queries
 - Tungsten and Catalyst Optimizations
 - Has reached feature parity with older RDD-based APIs.

https://spark.apache.org/docs/latest/ml-guide.html

Use Cases of Spark MLlib

- 3M Heath Information Systems
 - Use machine learning to predict patient outcomes
- Customer 360° at Toyota
 - Monitoring customer social media interactions
 - Classify incoming social media interactions into buckets of campaign opinions, customer feedback, product feedback, and noise

Source:Apache Spark Survey 2016 By Databricks

Scalable Machine Learning with Spark MLlib COMPARE SCALABLE ML FRAMEWORKS	

Framework	Description
H2O	Open source machine learning project for distributed machine learning much like Apache Spark. Python and R. Uses specialized data format. Hex
Mahout	Providing a number of java-based distributed ML algorithms for Hadoop. Recently shift to become backend-independent, and compatible with Spark, H2O and Flink.
Turi	(formerly known as GraphLab, purchased by Apple) Graph-based high-performance distributed computation framework written in C++. Topic modeling, clustering graph analytics, CF, computer vision etc.
Vowpal Wabbit (VW)	(originally by Yahoo, now Microsoft Research) Open-source fast out-of-core machine learning library.
Spark MLlib	Part of a general purpose high-performance distributed computing platform. Growing rapidly
SciKit-Learn	Popular single-node ML package but can leverage Spark distributed computing by <u>running</u> multiple models in parallel.

Why Spark MLlib?

- It is build on Apache Spark, a fast and general engine for largescale data processing.
- Inherits many merits of Spark:
 - Fast compared to or even better than other libraries specialized in large-scale machine learning
 - Simplicity: a few lines of code can accomplish much.
 - Multi-language support: scala, python, R etc
 - Easy integration with storage systems
 - Unified stack: a special-purpose ML package may be better, but the cost of context switching is high (different language, data formats).

Logistic Regression Performance	
3000	
 Full dataset: 200K images, 160K dense features. 	
 Similar weak scaling. 	
 MLlib within a factor of 2 of VW's wall-clock time. 	
Credit: Xiangrui Deng's slides: MLLib: Scalable Machine Learning on Spark	

Recommender (ALS) - Wall-clock time

System	Wall-clock time (seconds)	
Matlab	15443	
Mahout	4206	
GraphLab	291	
MLlib	4206	

- Dataset: scaled version of Netflix data (9X in size).
- · Cluster: 9 machines.
- MLlib is an order of magnitude faster than Mahout.
- MLlib is within factor of 2 of GraphLab.

Credit: Xiangrui Deng's slides: MLLib: Scalable Machine Learning on Spark

Scalable Machine Learning with Spark MLlib

MLLIB DATA TYPES AND FILE FORMATS

MLlib Data types: Vectors

- label is represented by a double column
 - for binary classification, it should be either 0.0 or 1.0.
 - For multiclass classification, it should be 0.0, 1.0, 2.0, ...
 For regression, it should be float or double types
- features are represented by a vector column
 - In unsupervised learning, only the features column is needed.
- Dense vs Sparse Vectors
 - A dense vector is a regular array of doubles
 - A sparse vector is backed by two parallel arrays: one for indicator of elements that are present, and the other for double values of these elements

other names.
other harnes.
++
label features
++
1 [[0.0,3.0]]
0 [[1.0,2.0]]
++
dense: 1. 0. 0. 0. 0. 0. 3.
(size:7
The second secon
sparse : { indices : 0 6
values: 1, 3,
(

Create Dense & Sparse Vectors

Vectors are defined in Spark Mllib's linalg module

import org.apache.spark.ml.linalg.Vectors
val vector = Array(1.0, 0.0, 3.0)
val dv = Vectors.dense(vector)
// aparse vector: length, arrays of indices and values
val sv1 = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
val sv2 = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0));
val sv2 = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0));

Why Use Sparse Vectors?

• Not only save storage, but also speed up computation

Data Set:
- number of cases: 12 million
- number of features: 500
- sparsity: 10%

Directly provide the rows; useful for demos and testing - define an array of (features) or (label, features), where for	eatures are sparse/dense vecto
- Convert it to Spark DataFrame from pyspark.ml.linals_import_Vectors data = (1.0, 0, Vectors_sparset(, (10, 3.0), (3, -2.0)])),	We use both dense and sparse vectors for illustration purposes. You normally have only one kind
(1.0, Vectors.sparse(4, [(0, 9.0), (3, 1.0)]))] #convert to DataFrame with col names	label features
<pre>df = spark.createDataFrame(data_("label", "features")) improve oxyspandone sparkin.linnla/vectors // defices = sequence of tuples war data = Seq(1.0, Vectors.dame(d. 0, 5.0, 0.0, 3.0)), (1.0, Vectors.dame(d. 0, 5.0, 0.0, 3.0)), (1.0, Vectors.dame(d. 0, 7.0, 0.0, 8.0)), (1.0, Vectors.dame(d. 0, 7.0, 0.0, 8.0)), (1.0, Vectors.dame(d. 0, 5.0, 0.0, 3.0)), //convert die seg to dataFrame with col names</pre>	1.0 (4, [0, 3], [1.0, -2.0]) 0.0 [4.0, 5.0, 0.0, 3.0] 1.0 (6.0, 7.0, 0.0, 8.0) 1.0 (4, [0, 3], [9.0, 1.0])

LIBSVM is a compact text format for encoding data (usu sets) Widely used in MLlib to represent sparse feature vectors The layout is as follows: class_label indext.value1 index2.value2 where the numeric indices represent features, values are separated Mllib expects you to start class labeling from 0	ally representing training data 0 2:1 8:1 4:1 2:1 2:3:1 25:1 0 1:1 9:1 11:1 13:1 18:1 20:1 1 1:1 5:1 15:1 18:1 2:1; 23:1 2 6:1 9:1 12:1 14:1 16:1 24:1 2 8:1 13:1 21:1 22:1 27:1 30:1 3 6:1 8:1 10:1 15:1 17:1 21:1
 Feature indices are one-based in ascending order (1,2,3, etc.); If a feature is not present in the record, it is omitted 	+ label features +
df = spark.read.format("libsvm").load("mllib/sample_libsvm_data.txt")	0.0 (692,[127,128,129 1.0 (692,[158,159,160 1.0 (692,[154,125,126 1.0 (692,[152,153,154
<pre>val df = spark.read.format("libsym").load("mllib/sample libsym data.txt")</pre>	1.0 (692,[151,152,153

Transform an Existing DataFrame

• Spark MLlib provides a VectorAssembler API that combines a given list of columns into a single vector column.

Assembled by a VectorAssembler

- See $\underline{\text{official document}}$ and labs for examples.

Scalable Machine Learning with Spark MLlib

TRANSFORMER, ESTIMATOR, AND **PIPELINE**

Overview of DataFrame-Based APIs

- Machine learning tasks consist of a series of steps
- These steps can be viewed as a **pipeline** through which the data travels
- Training and prediction typically follow the same data processing steps.

http://www.nltk.org/book/ch06.html

MLlib's Abstraction of Data, Models, Algorithms, and Pipelines

- MLlib aims to standardize interface for machine learning pipelines
- MLlib main abstractions are:
 - DataFrame: Spark MLlib's dataset type (with a feature vector column)

 - Transformer: Transforms one DataFrame into another
 Estimator: Runs an algorithm on a data set to fit a model
 Pipeline: Chains multiple steps to define a machine learning workflow

Transformers

- Transformers take a DataFrame as input, and return a new DataFrame
 - Generally append one or more columns to the input DataFrame
 - Abstraction for feature transformation and learned models

 - A feature transformer: e.g., standardize a numerical field.
 A learned model: e.g. read the features column, predict the label for each feature vector, and output a new DataFrame with the predicted label as a new column
- All transformers implement a transform (df) method.
- · When defining the transformer, one often need to provide

 - inputCo1 for the name of the column to be transformed
 outputCo1 for the name of the column for storing the transformed data in the output DataFrame.

Transformer Example from pyspark.ml.feature import Tokenizer sentenceDataFrame = spark.createDataFrame([(0, "Hi I heard about Spark"), (1, "I wish Java could use case classes"), (2, "Logistic, regression, models, are, neat")], ["id", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words tokenized = tokenizer.transform(sentenceDataFrame) tokenized.select("sentence", "words").show(truncate=False) | Isentence | Iwords | | Hi I heard about Spark | [hi, i, heard, about, spark] | | I wish Java could use case classes | [i, wish, java, could, use, case, classes] | | Logistic, regression, models, are, neat | [logistic, regression, models, are, neat] |

Estimators Estimators take a DataFrame as input and produce a learned model - Learning algorithms are implemented as Estimators - A learned model is a Transformer • All estimators implement a fit (df) method, - Estimators are initialized with the specific set of parameters to be used when the algorithm is run fit method runs the algorithm on the provided data (df) - The result is an instance of the learned model (a transformer) for that particular algorithm

Training data

Relationship Between Transformer and Estimator

- · Both have the ability to (eventually) transform data
- The key difference lies in whether "training" is required.
 - Estimator requires training (using the fit method)
 - fit produces a model (which is a transformer)
 - can be thought of a transformer that requires training before use.
 - E.g., scaler.fit(df).transform(df)
 - Transformer does not require training
 - · can be directly used
 - E.g., tokenizer.transform(df)

Pipelines • A Pipeline represents a series of steps in a machine learning workflow - Each pipeline step can be either a transformer or an estimator - A Pipeline takes a DataFrame as input and produces a PipelineModel as output - A pipeline itself is therefore an estimator; a PipelineModel is a transformer • Pipelines simplify the ML workflow: - Without pipeline, you must manually carry out each step for both training and prediction. With pipeline, you can define the sequence of steps once and re-used it for both training and prediction.

With pipeline

Without pipeline

Pipeline Example	
- Pipeline itself is an estimator, thus you must call its $\mathtt{fit}()$ method before using it.	
<pre>from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import HashingTF, Tokenizer</pre>	
# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.	
<pre>tokenizer = Tokenizer(inputCol="text", outputCol="words") hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") lr = LogisticRegression(maxIter=10, regParam=0.001)</pre>	
<pre>pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) # Fit the pipeline to training documents.</pre>	
<pre>model = pipeline.fit(training)</pre>	
<pre># Make predictions on test documents and print columns of interest. prediction = model.transform(test)</pre>	
* Construction of training and test DataFrames are omitted for brevity	
Carlson School of Management	
	-
Scalable Machine Learning with Spark MLlib	
MLLIB FEATURE ENGINEERING API'S	
	_
Carlson School of Management	
Supported Feature Engineering APIs	
Tranformation Description TF-IDF Calculates importance of words in a given completes missing values in a dataset, either	
Converts words in a given body of text to Word2Vec* vectors to enable numerical calculation of	
timator* of branzy continuous reatures, one for each category of the original variable Tokenizer Breaking test into individual terms (words) Encodes a string representation of a	
StopWordsRemover Remove stop words from a seq of strings NGram Takes a seq of strings and computes n-grams StringIndexer* categorical variable into integer values. Requires fitting to data.	
StandardScaler* Scaling and centering for features to VectorAssembler VectorAssembler	

word2vec*	similarity	timator*	of binary continuous features, one for each category of the original variable
Tokenizer	Breaking test into individual terms (words)		Encodes a string representation of a
StopWordsRemover	Remove stop words from a seq of strings	StringIndexer*	categorical variable into integer values.
NGram	Takes a seq of strings and computes n-grams		Requires fitting to data.
StandardScaler*	Scaling and centering for features to standard deviation one and zero mean	VectorAssembler	Aggregates DataFrame columns into a single column containing a vector.
Normalizer	Scales features to have length 1 when viewed as a vector		Class for indexing categorical feature columns in a dataset of vector. Automatically turn a
MinMaxScaler*	Rescaling each feature to a specific range (often [0, 1])	VectorIndexer*	dataset of vectors into one with some continuous features and some categorical
SOLTransformer	Implement transformations defined by SQL		features (depending on maxCategories)
	statement	Incomplete list, for	or more please check the documentation.
* These are estima	ators (thus require fit before use)	https://s	spark.apache.org/docs/latest/ml-features.html

StringIndexer: encode (string) categorical features into numerical features

stringIndexer indexToString

6.0

CA

CA CA

- Many algorithms only take numerical features
 - Need to convert (string) categorical values into numerical values
- StringIndexer(inputCol, outputCol)
- is an estimator that encodes categorical features.
 - Operates on a single column of a Spark DataFrame Need a separate StringIndexer for each categorical column
 Requires fit before transform.
- IndexToString(inputCol, outputCol)
 - is a transformer that transforms an indexed column back to strings using information in the column's meta data.

 Implements .transform()

 - Reverses StringIndexer
- * StringIndexer by default uses frequencyDesc order, e.g., CA has a code of 6 because it is No. 7 ranked by frequency.

StringIndexer & IndexToString Example StringIndexer is often used as a stage of a pipeline. from pyspark.ml.feature import StringIndexer, IndexToString df = spark.createDataFrame([(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")], ["id", "category"] indexer = StringIndexer(inputCol="category", outputCol="cat_indexed") df_indexed = indexer.fit(df).transform(df) index2str = IndexToString(inputCol="cat_indexed", outputCol="cat_restored") df_index2str = index2str.transform(df_indexed) import org.apache.spark.ml.feature.(StringIndexer, IndexToString) val df = spark.createDataFrame(Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")) t.ODE("ia", "category") val indexer = new StringIndexer().setInputCol("category").setOutputCol("cat_indexed") val indexZetr = new IndexToString().setInputCol("cat_indexed").setOutputCol("cat_restored") val df_indexZetr = new IndexToString().setInputCol("cat_indexed").setOutputCol("cat_restored") val df_indexZetr = indexZetr.transform(df_indexed)

VectorAssembler

- · VectorAssember is a transformer that combines a given list of columns into a single vector column.
 - It is useful for combining raw features and features generated by different feature transformers into a single feature vector.
 Vector/seembler accepts all numeric types, boolean type, and vector type.

 - The values of the input columns will be concatenated into a vector in the given order.

<pre>from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler</pre>
<pre>dataset = spark.createDataFrame([(0, 18, 1.0, Vectors.dense([0.0, 10.0, 0.5]), 1.0)], ["id", "hour", "mobile", "userFeatures", "clicked"])</pre>
<pre>assembler = VectorAssembler(inputCols=["hour", "mobile", "userFeatures"], outputCol="features")</pre>
<pre>output = assembler.transform(dataset)</pre>
output.show(truncate=False)

OneHotEncoderEstimator • OneHotEncoderEstimator maps a categorical feature, represented as a label index, to a binary vector. - This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features. - For string type input data, it is common to encode categorical features using StringIndexer first. from pyspark.nl. feature import OneBiotEncoderEstimator df = spark.createbateFame([(0.0), (1.0.), (2.0.), (0.0.), (0.0.), (2.0.))}, categoryIndex double** encoder = OneBiotEncoderEstimator (inputCols=("categoryIndex"),outputCols=("categoryVec")) encoded = encoder.fit(df).transform(df)

Scalable Machine Learning with Spark MLlib

EVALUATION & HYPER PARAMETER

TUNING

Evaluation and Cross Validation in Spark MLlib

• ml.evaluation.MulticlassClassificationEvaluator (predictionCol='prediction', labelCol='label', metricName='fi');

• Other metric include: weightedPrecision | weightedRecall|accuracy

• ml.evaluation.BinaryClassificationEvaluator (rawPredictionCol='rawPrediction', labelCol='label', metricName='areaUnderROC')

• The other methic's *reaconderROC'

• ml.tunning.CrossValidator (estimator, estimatorParamMaps, evaluator, numFolds=3)

• K-fold cross validation

• CrossValidator is also an estimator, which implements the fit method.

from pyppark.ml.tuning import ParamGridBuilder

for pyppark.ml.tuning import ParamGridBuilder

grid = ParamGridBuilder().adGrid(it.maxIter, [0, 1]).build()

evaluator = BinaryClassificationEvaluator()

ov = CrossValidator(estimator=ir, estimatorParamMaps=grid, evaluator=evaluator)

cvMbddl = cv.fit(datase)

evaluator.evaluate(cvMbdel.transform(dataset))

Cross-validation over a grid of parameters is expensive. In this case, it will train 2 (grid size) x 3 (3-fold) = 6 models

Hyper Parameter Tuning: TrainValidationSplit

- Cross-validation is a well-established method for choosing parameters which is more statistically sound.
- Spark provides another hyper-parameter tuning estimator called TrainValidationSplit that is less expensive but also may not produce reliable results
- ml.tuning.<u>TrainValidationSplit</u>(estimator, estimatorPara mMaps, evaluator, trainRatio=0.75,parallelism=1)
 - TrainValidationSplit only evaluates each combination of parameters once, as opposed to k times in the case of CrossValidation.
 - It does the split of the dataset for you based on the trainRatio.

A Decision Tree Pipeline with Cross Validation and Feature Engineering from pyspark.al.linalg import Vectors from pyspark.al.linalg import Vectors from pyspark.al.lingure Pipeline from pyspark.al.lingure from

A Decision Tree Pipeline with Cross Validation and Feature Engineering (cont.) # Search through decision tre's madepth parameter for best model parametrial Parametridulister() addorid(dfree.madepth, [2],44]).bulld() # Search through decision tre's madepth parameter for best model parametrial Parametrial

	Carlson School of Mana
Scalable Machi	ine Learning with Spark MLlib
APPEN	DIX: ALGORITHMS IN MLLIB
	Carlson School of Mana
Algorithms a	and Tools in MLlib (pyspark.ml)
Algoritims a	ind 10013 in Wellb (pyspark.mi)
Module	Algorithms
.classification	logistic regression, SVM (linearSVC), Naive Bayes, Multilayer Perceptron
.tree	Decision Tree, Random Forest, Gradient Boosted Trees
.regression	linear regression, ridge regression, Lasso Regression, Accelerated Failure Time Survival Regression, Generalized Linear Regression
.recommendation	
.clustering	k-means, Bisecting k-means, Gaussian Mixture, LDA, etc
.fpm	FPGrowth (for mining freq itemsets), PrefixSpan (for mining freq sequential
	patterns)
	http://spark.apache.org/docs/latest/api/python/pyspark.ml.html
	Carlson School of Mana
Algorithms a	and Tools in MLlib (pyspark.ml)
	,,,,,
Module	Algorithms
.linalg	(Dense/Sparse) Vector, (Dense/Sparse) Matrix, etc
.feature	HashTF, IDF, Word2Vec, Normalizer, StandardScaler, ChiSqSelector, PCA, Tokenizer, Binarizer, MinMaxScaler, OneHotEncoder, StringIndexer, VectorIndexer,
	SQLTransformer, and several more.
.stat	ChiSquareTest, Correlation, Summarizer (2.4), KolmogorovSmirnovTest
.evaluation .param	BinaryClassificationEvaluator, MulticlassEvaluator, RegressionEvaluator Param, Params
.tuning	ParamGridBuilder, CrossValidator, TrainValidationSplit
. 3	,