

INSTALLATION AND OPERATION

USER MANUAL

WWW.UNICORECOMM.COM

UM982 BDS/GPS/GLONASS/Galileo/QZSS 全系统全频高精度定位定向模块

Copyright© 2009-2022, Unicore Communications, Inc. Data subject to change without notice.

修订记录

修订版	修订记录	日期
R1.0	首次发布	2022-05-19
	表 2-2: 不使用热启动功能时,V_BCKP 需接 VCC;	
	第 3.4 章:新增对 V_BCKP 上下电的要求;	
	第 1.3 章:新增"外部接口"小节;	
	新增第 3.1 小节:推荐的最小设计;	
R1.1	表 2-5: 更新 IO 阈值;	2022-09-09
	3.2 外部天线馈电设计:D1 和 D4 应选用支持 2000MHz	
	以上高频信号的 ESD 二极管;	
	第 5.2 章: 更新湿度卡描述;	
	表 1-1: 更新定向精度(0.1 度/1m 基线)	

权利声明

本手册提供和芯星通科技(北京)有限公司(以下简称为"和芯星通")相应型号产品信息。

和芯星通保留本手册文档,及其所载之所有数据、设计、布局图等信息的一切权利、权益,包括但不限于已有著作权、专利权、商标权等知识产权,可以整体、部分或以不同排列组合形式进行专利权、商标权、著作权授予或登记申请的权利,以及将来可能被授予或获批登记的知识产权。

和芯星通拥有"和芯星通"、"UNICORECOMM"以及本手册下相应产品所属系列名称的注册商标专用权。

本手册之整体或其中任一部分,并未以明示、暗示、禁止反言或其他任何形式对和芯星通拥有的上述权利、权益进行整体或部分的转让、许可授予。

免责声明

本手册所载信息,系根据手册更新之时所知相应型号产品情形的"原样"提供,对上述信息适于特定目的、用途之准确性、可靠性、正确性等,和芯星通不作任何保证或承诺。

和芯星通可能对产品规格、描述、参数、使用等相关事项进行修改,或一经发现手册误载信息后进行勘误,上述情形可能造成订购产品实际信息与本手册所载信息有差异。

如您发现订购产品的信息与本手册所载信息之间存有不符,请您与本公司或当地经销商联系,以获取最新的产品手册或其勘误表。

前言

本手册为用户提供有关和芯星通 UM982 模块的硬件组成信息。

适用读者

本手册适用于对 GNSS 模块有一定了解的技术人员使用。

目录

产品	- 简介	1
1 1	产 县主要特占	2
1.3	模块概览	5
硬件	=组成	6
2.1	机械尺寸	6
2.2	引脚功能描述(图)	8
2.3	电气特性	.11
2.3.	1 最大耐受值	11
2.3.2	2 工作条件	11
2.3.3	3 IO 阈值特性	12
2.3.4	4 天线特性	12
硬件	-设计	.13
3.1	推荐的最小设计	13
3.2	外部天线馈电设计	14
3.3	接地与散热	15
3.4	模块上电与下电	. 15
生产	'要求	.16
包装	<u> </u>	.17
5.1	标签说明	17
5.2		
	1.1 1.2 1.3 硬件 2.1 2.2 2.3 2.3.4 使 3.1 3.2 3.3 3.4 生 包 5.1	1.2 技术指标

1 产品简介

UM982 是和芯星通自主研发的新一代 BDS/GPS/GLONASS/Galileo/QZSS 全系统全频高精度定位定向模组,基于和芯星通自主研发的新一代高精度高性能 GNSS 芯片 — Nebulas IV™设计,主要面向无人机、割草机、精准农业及智能驾考等领域,支持全系统全频点片上 RTK 定位及双天线定向解算,可作为移动站或基站使用。

UM982 可同时跟踪 BDS B1I、B2I、B3I,GPS L1、L2、L5,GLONASS L1、L2,Galileo E1、E5a、E5b,QZSS L1、L2、L5 等多频点信号,支持多系统联合定位和单系统独立定位 模式,用户可灵活配置。UM982 内置先进的抗干扰单元,即使在复杂电磁环境下仍可保证可靠准确的定位精度。

UM982 基于和芯星通 NebulasIV™新一代射频基带一体化 GNSS SoC 芯片,内置双核CPU,并集成高速浮点处理器及 RTK 专用协处理器,采用 22nm 低功耗工艺,支持 1408 个超级通道,可提供更为强大的卫星导航信号处理能力。

UM982 支持丰富的通信接口,包括 UART、I²C^{*}、SPI^{*}。此外,还支持 1PPS、EVENT、CAN^{*}等接口,可满足用户在不同场景下的使用需求。

图 1-1 UM982 高精度定位定向模块示意图

-

^{*} I²C、SPI、CAN 为预留接口,暂不支持

1.1 产品主要特点

- 16 mm x 21 mm x 2.6 mm 表面贴装
- 支持全系统全频点片上 RTK 定位及双天线定向解算
- 支持 BDS B1I/B2I/B3I + GPS L1/L2/L5 + GLONASS L1/L2 + Galileo E1/E5a/E5b + QZSS L1/L2/L5 + SBAS
- Dual-RTK 双 RTK 引擎技术
- 差分输入 RTCM 格式自适应识别
- 双天线输入
- 支持 3 x UART, 1 x I²C^{*}, I x SPI^{*}, 1 x CAN^{*}

1.2 技术指标

表 1-1 技术指标

基本信息					
通道	1408 通道,基于 NebulasIV™				
星座	BDS/GPS/GLONASS/Galileo/QZSS				
	BDS: B1I、B2I、B3I				
	GPS: L1C/A、L2P (Y)/L2C、L5				
主天线频点	GLONASS: L1、L2				
	Galileo: E1、E5a、E5b				
	QZSS: L1、L2、L5				
	BDS: B1I、B2I、B3I				
	GPS: L1C/A、L2C				
从天线频点	GLONASS: L1、L2				
	Galileo: E1、E5b				
	QZSS: L1、L2				
电源					
电压	+3.0 V~3.6 V DC				

3

 功耗	600 mW¹						
性能指标 ²							
	单点定位 (RMS) ³		水平:	水平: 1.5 m			
	+///\CE (N		高程:	高程: 2.5m			
定位精度	DGPS (RMS) ³	3, 4	水平:	0.4 m+1 ppm	1		
			高程:	0.8 m+1 ppm	1		
	RTK (RMS) ^{3, 4}	ļ	水平:	0.8 cm+1 ppi	m 		
		KTK (KM3)		1.5 cm+1 ppi	m 		
观测值精度(RMS) 	BDS	GPS		GLONASS	Galileo		
B1I/L1 C/A/G1/E1 伪距	10 cm	10 cm		10 cm	10 cm		
B1I/L1 C/A/G1/E1 载波相位	1 mm	1 mm		1 mm	1 mm		
B3I/L2P(Y)/L2C/G2 伪距	10 cm	10 cm		10 cm	10 cm		
B3I/L2P(Y)/L2C/G2 载波相位	1 mm	1 mm		1 mm	1 mm		
B2I/L5/E5a/E5b 伪距	10 cm	10 cm		10 cm	10 cm		
B2I/L5/E5a/E5b 载波相位	1 mm	1 mm		1 mm	1 mm		
定向精度 (RMS)	0.1 度/1 m 基	送线					
时间精度 (RMS)	20 ns						
速度精度 ⁵ (RMS)	0.03 m/s						
首次定位时间 ⁶	冷启动<30 s						
初始化时间3	<5 s (典型值)						
初始化可靠性 3	>99.9%						
数据更新率	定位测向20 Hz						
	20 Hz 原始观测量						

¹ 双天线 10Hz PVT + 10Hz RTK + 10Hz Heading

² 该部分内容为针对 UM982 的主天线性能

³测试结果受大气条件、基线长度、GNSS 天线类型、多路径、可见卫星数以及卫星几何构型等影响,可能会有偏差

⁴ 测量使用 1 公里基线和天线性能良好的接收机,不考虑可能的天线相位中心偏移误差

⁵ 开阔天空,无遮挡场景,99%@静态

^{6 -130}dBm @可用星超过 12 颗

差分数据	RTCM 3.X
数据格式	NMEA-0183, Unicore
物理特性	
封装	48 pin LGA
尺寸	21 mm × 16 mm × 2.6 mm
重量	1.82 g ± 0.03 g
环境指标	
工作温度	-40°C~+85°C
存储温度	-55°C~+95°C
湿度	95% 非凝露
振动	GJB150.16A-2009,MIL-STD-810F
冲击	GJB150.18A-2009,MIL-STD-810F
通讯接口	
UART x 3	
I ² C* x 1	
SPI* x 1	Slave
CAN* x 1	与 UART3 复用

^{*} 预留接口,暂不支持

1.3 模块概览

图 1-2 UM982 结构框图

1. 射频部分

接收机通过同轴电缆从天线获取过滤和增强的 GNSS 信号。射频部分将射频输入信号转换成中频信号,并将中频模拟信号转换为 NebulasIV™芯片(UC9810)所需的数字信号。

2. NebulasIV™芯片(UC9810)

NebulasIV™ 芯片是和芯星通公司新一代全系统全频高精度 SoC 芯片。该芯片采用 22 nm 低功耗工艺,支持 1408 个超级通道,内置双核 CPU,并集成高速浮点处理器及 RTK 专用协处理器,单芯片完成高精度基带处理和 RTK 定位定向解算。

3. 外部接口

UM982 包含 UART、I²C*、SPI*、CAN*、PPS、EVENT、RTK_STAT、PVT_STAT、ERR_STAT、RESET_N 等外部接口。

^{*}I²C、SPI、CAN 为预留接口,暂不支持

2 硬件组成

2.1 机械尺寸

表 2-1 尺寸

参数	最小值(mm)	典型值(mm)	最大值(mm)
A	20.80	21.00	21.50
В	15.80	16.00	16.50
С	2.40	2.60	2.80
D	2.78	2.88	2.98
E	0.95	1.05	1.15
F	1.55	1.65	1.75
G	1.17	1.27	1.37
Н	0.70	0.80	0.90
K	1.40	1.50	1.60
M	4.10	4.20	4.30
N	3.70	3.80	3.90
P	2.00	2.10	2.20
R	0.90	1.00	1.10
X	0.72	0.82	0.92
N P R	3.70 2.00 0.90	3.80 2.10 1.00	3.90 2.20 1.10

图 2-1 UM982 机械图

2.2 引脚功能描述(图)

图 2-2 UM982 管脚图

表 2-2 引脚说明

序号	引脚名称	I/O	描述
1	GND	_	地
2	ANT1_IN	I	GNSS 天线信号输入(主天线)
3	GND	_	地
4	GND	_	地
			当模块主电断电时,V_BCKP 给和 RTC 及相关寄存
			器供电。电平要求 2.0V~3.6V。常温@25℃,模块主
5	V_BCKP	1	电断电时,V_BCKP 的工作电流小于 60uA。
			不使用热启动功能时,V_BCKP 需接 VCC,不能接地
			或者悬空。
6	SPIS_CSN	I	从 SPI 片选输入

序号	引脚名称	I/O	描述			
7	SPIS_MOSI	I	从 SPI 数据输入			
8	SPIS_CLK	I	从 SPI 时钟输入			
9	SPIS_MISO	0	从 SPI 数据输出			
10	SPIS_SDRY	0	从 SPI 中断输出			
11	RSV	_	保留管脚,必须悬空			
12	RSV	_	保留管脚,必须悬空			
13	RSV	_	保留管脚,必须悬空			
14	ERR_STAT	0	异常指示,高电平有效。模块系统自检不通过时,输			
14	ERK_STAT	O	出高电平;模块自检通过输出低电平。			
15	PVT_STAT	0	PVT 定位指示,高电平有效。模块能进行定位时输出			
13	PVI_STAT	U	高电平;不定位输出低电平。			
16	RTK_STAT	0	RTK 定位指示,高电平有效。RTK 固定解时输出高电			
10	KIN_SIAI	O	平;其他定位状态或者不定位输出低电平。			
17	RXD1	I	串口 1 接收,LVTTL 电平			
18	TXD1	0	串口 1 发送,LVTTL 电平			
19	RXD2	1	串口 2 接收,LVTTL 电平			
20	TXD2	0	串口 2 发送,LVTTL 电平			
21	SCL	I/O	I ² C 时钟			
22	SDA	I/O	I ² C 数据			
23	VCC	POWER	供电电源(+3.3 V)			
24	VCC	POWER	供电电源(+3.3 V)			
			BIF:Built-in Function(内部功能),建议加通孔测			
25	BIF	_	试点与 10K 上拉电阻,不能悬空/接地/接电源/外设			
			IO			
			BIF:Built-in Function(内部功能),建议加通孔测			
26	BIF	_	试点与 10K 上拉电阻,不能悬空/接地/接电源/外设			
			10			

序号	引脚名称	I/O	描述
27	TXD3	0	串口 3 发送,可复用为 CAN TXD,LVTTL 电平
28	RXD3	1	串口 3 接收,可复用为 CAN RXD,LVTTL 电平
29	RSV	_	保留管脚,必须悬空
30	PPS	0	秒脉冲,输出脉宽和极性可调
31	RSV	_	保留管脚,必须悬空
32	EVENT	1	事件输入信号,频度和极性可调
33	RESET_N	1	系统复位,低电平有效,电平有效时间不少于 5 ms
34	GND	_	地
35	GND	_	地
36	ANT2_IN	I	GNSS 天线信号输入(从天线)
37	GND	_	地
38	RSV	_	保留管脚,必须悬空
39	RSV	_	保留管脚,必须悬空
40	RSV	_	保留管脚,必须悬空
41	GND	_	地
42	RSV	_	保留管脚,必须悬空
43	GND	_	地
44	RSV	_	保留管脚,必须悬空
45	GND	_	地
46	RSV	_	保留管脚,必须悬空
47	RSV	_	保留管脚,必须悬空
48	RSV	_	保留管脚,必须悬空

2.3 电气特性

2.3.1 最大耐受值

表 2-3 最大绝对额定值

参数	符号	最小值	最大值	单位
供电电压(VCC)	VCC	-0.3	3.6	V
输入管脚电压	V _{in}	-0.3	3.6	V
GNSS 主/从天线信号输入	ANT1_IN/ANT2_IN	-0.3	6	V
主/从天线射频输入功率	ANT1_IN/ANT2_IN input		+10	dBm
工/ 外人织剂 频桶八列平	power		110	ubili
存储温度	T _{stg}	-55	95	°C

2.3.2 工作条件

表 2-4 工作条件

参数	符号	最小值	典型值	最大值	单位	条件
供电电压 (VCC) ⁷	VCC	3.0	3.3	3.6	V	
VCC 最大纹波	V_{rpp}	0		50	mV	
工作电流 ⁸	l _{opr}		180	300	mA	VCC = 3.3 V
工作温度	T_{opr}	-40		85	°C	
功耗	Р		600		mW	

⁷ 此范围已经包含了电源纹波,即在考虑纹波的情况下,VCC 供电电压范围还必需在 3.0V~3.6V 之间。

⁸ 由于产品内部装有电容,上电时刻会产生冲击电流。在实际应用场景下,需评估确认冲击电流导致的电压跌落对系统的影响。

2.3.3 IO 阈值特性

表 2-5 IO 阈值特性

参数	符号	最小值	典型值	最大值	单位	条件
输入管脚低电平	V_{in_low}	0		0.6	V	
输入管脚高电平	V_{in_high}	VCC*0.7		VCC+0.2	V	
输出管脚低电平	V_{out_low}	0		0.45	V	I _{out} = 2 mA
输出管脚高电平	V_{out_high}	VCC-0.45		VCC	V	I _{out} = 2 mA

2.3.4 天线特性

表 2-6 天线特性

参数	符号	最小值	典型值	最大值	单位	条件
最佳输入增益	G_{ant}	18	30	36	dB	

3 硬件设计

3.1 推荐的最小设计

图 3-1 UM982 最小参考设计

L1: 推荐使用 0603 封装的 68nH 射频电感

C1: 推荐使用 100nF + 100pF 两个电容并联

C2: 推荐使用 100pF 电容

C3: 推荐使用 $n*10\mu F+1*100nF$ 电容并联,总容值不小于 $30\mu F$

R1: 推荐使用 10kΩ电阻

3.2 外部天线馈电设计

从模块外部给天线提供馈电,可以选用高耐压、大功率的馈电芯片;还可以在馈电电路上增加气体放电管、压敏电阻、TVS管等大功率的防护器件,可有效提高防雷击与防浪涌的能力。

图 3-2 UM982 外部天线馈电参考电路

备注:

① L1 和 L2: 馈电电感,推荐 0603 封装的 68nH 射频电感;

② C1和 C3: 去耦电容,推荐各由 100nF/100pF 两个电容并联;

③ C2和 C4:隔直电容,推荐100pF的电容;

④ D1和 D4: ESD 二极管,应选用支持高频信号(2000MHz以上)的 ESD 防护器件;

⑤ D2 和 D3: TVS 二极管,根据馈电电压、天线耐压等指标选择钳位特性达标的 TVS 管

3.3 接地与散热

图 3-3 UM982 接地与散热焊盘(底视图)

UM982 模块中间矩阵形的 35 个焊盘用于接地与散热,在 PCB 设计时须接到大面积地平面上,以加强模组散热。

3.4 模块上电与下电

VCC

- 模块 VCC 上电起始电平低于 0.4V,且需具有良好的单调性,下冲与振铃保障在 5% VCC 范围内。
- VCC 上电波形,从 10%到 90%的上升时间需在 100us~1ms 范围内。
- 上电时间间隔,模块 VCC 下电低于 0.4V 后,到下一次开始上电,时间间隔需大于 500 ms。

V_BCKP

- 模块 V_BCKP 上电起始电平低于 0.4V,且需具有良好的单调性,下冲与振铃保障在 5% V_BCKP 范围内。
- V_BCKP 上电波形,从 10%到 90%的上升时间需在 100us~1ms 范围内。
- 上电时间间隔,模块 V_BCKP 下电低于 0.4V 后,到下一次开始上电,时间间隔需大于 500ms。

4 生产要求

推荐焊接温度曲线图如下:

图 4-1 焊接曲线图 (无铅)

升温阶段

● 升温斜率: 最大 3°C/s

● 升温温度区间: 50°C-150°C

预热阶段

● 预热阶段时间: 60s-120s

● 预热温度区间: 150°C-180°C

回流阶段

● 超过熔点温度 217°C的时间: 40s-60s

● 焊接峰值温度: 不超过 245℃

冷却阶段

● 降温斜率: 最大 4°C/s

- 为防止模块焊接中出现脱落,请不要将模组设计在板卡背面焊接,且最好不要经历两次焊接循环。
- 焊接温度的设置取决于产品工厂的诸多因素,如主板特性、锡膏类型、锡膏厚度等, 请同时参考相关 IPC 标准以及锡膏的指标。
- 由于有铅焊接温度相对较低,若采用此焊接方式,请优先考虑板卡上的其他元器件。
- 钢网的开孔方式需要满足客户自身产品设计要求以及检验规范,钢网厚度推荐使用0.18mm 以上。

5 包装

5.1 标签说明

图 5-1 标签说明

5.2 包装说明

UM982 模块使用载带、卷盘方式(适用于主流表面贴装设备),包装在真空密封的铝 箔防静电袋中,内附干燥剂防潮。采用回流焊工艺焊接模块时,请严格遵守 IPC 标准对模 块进行温湿度管控,由于载带等包装材料只能承受 55°C的温度,在进行烘烤作业时需要将 模块从包装中取出。

图 5-2 UM982 模块包装示意

- 厚度 0.35mm
- 3.13 英寸卷轮卷装长度: 6.816 米 (前段空包长度: 0.408 米,零件包装长度: 6米,后段空包长度: 0.408米)
- 4.13 英寸卷轮包装零件总颗数:284 颗(前段空包颗数:17 颗,实际包装零件 颗数: 250 颗,后段空包颗数: 17 颗)
- 5. 所有尺寸设计参照 EIA-481-C-2003
- 6. 载带在 250mm 长度以内最大弯曲度不超过 1mm (见下图)

图 5-3 模组载带图纸

表 5-1 包装说明

项目	描述		
模块数量	250 片/卷		
	料盘: 13 英寸		
卷盘尺寸	外径 330±2 mm,内径 180±2 mm,内径宽 44.5±0.5 mm,壁厚 2.0		
	±0.2 mm		
载带	模块间距(中心距): 24 mm		

用户贴片前需要查看包装内湿度卡标识,湿度卡的 30%标识圈颜色正常应显示为蓝色 (如下图 5-4 所示);若湿度卡的 20%标识圈颜色显示为粉色、30%标识圈显示为淡紫色 (如下图 5-5 所示),需按要求进行烘焙后再贴片。UM982 模块的湿度敏感等级为 3,与湿敏等级相关的包装及操作注意事项参照标准 IPC/JEDEC J-STD-033,用户可至网页www.jedec.org 自行下载查看。

图 5-4 湿度卡的 30%标识圈显示为蓝色

图 5-5 湿度卡的 20%标识圈显示为粉红色

UM982 模块在真空密封的铝箔防静电袋中的保存期限(shelf life)为 1 年。

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路 7 号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094

www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicorecomm.com