a.k.a. Discrete Structures

Spring 2011, University of Illinos as taught by Margaret Fleck

notes by Michele R. Esposito

Please, let report any error or type-o at micheleresposito@gmail.com

Contents

1	Logic	3
2	Sets	3
3	Number theory	3
4	Relations	3
5	Functions	4
6	Graphs	4
7	Induction	5
8	Trees	5
9	Big-O	5
10	Algorithms	6
11	Sets of Sets	6
12	Countability	6
12	Planar Cranhs	6

1 Logic

Converse: $p \to q$ becomes $q \to p$. It is not logically equivalent. **Contrapositive:** $p \to q$ becomes $\neg q \to \neg p$. Logically equivalent.

Negation implies: $\neg(p \rightarrow q) \equiv \neg p \lor q$ **De Morgan's Law** $\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q.$

2 Sets

Definition: A set is an unordered collection of objects.

Cardinality: Is how many objects there are in a set: $A = \{1, 3, 4\}$ then |A| = 3.

Cartesian Product: A x B= $\{(x,y)|x \in A \text{ and } y \in B\}$.

Size of set union: $|A \cup B| = |A| + |B|$.

Product rule: if |A| = n, |B| = q then $|A \times B| = nq$.

3 Number theory

Divisibility a divides b if b = an for some integer n. The short hand for a divedes b is a|b.

Prime numbers an integer $q \geq 2$ is prime if the only positive factors of q are q and 1. An integer $q \geq 2$ is composite if it is not prime.

Fundamental Theorem of Arithmetics: Every integer ≥ 2 can be written as the product of one or more prime factors. Except for the order in which you write the factors, this prime factorization is unique.

GCD: Greatest Common Divisor. The shorthand is gcd(a,b). It is done my

taking the prime factors and xracting hte shared factors. **LCM:** Least Common Multiple. $lcm(a,b) = \frac{ab}{gcd(a,b)}$. If two integers share no factors, gcd(a, b) = 1 then they are called **relatively prime**.

Congruence mod k: if k is any positive integer, two integers a and b are congruent mod k (written $a \equiv b(modk)$) if k|(a-b), thus a-b=kn.

4 Relations

A relation R on a set A is a subset of A^2 , thus R is a set of ordered pairs of elements from A.

Reflexive: Every element is related to itself. $\forall x \in A, xRx$. **Irreflexive:** No element is related to itself. $\forall x \in A, x \not Rx$.

Symmetric: $\forall x, y \in A, xRy \rightarrow yRx$.

Antisymmetric: $\forall x, y \in A \text{ with } x \neq y, if xRy, \text{ then } y \not Rx.$

 $\forall x, y \in A, ifxRy \land yRx, \text{ then } x = y.$

Transitive: $\forall a, b, c \in A, aRb \land bRc \rightarrow aRc.$

Partial order: A relation that is transitive, reflexive and antisymmetric.

Linear (total) order: is a partial order in which every pair of elements are

comparable. That is, $\forall x, y, x \geq y \lor y \geq x$.

Strict partial order: is a relation that is irreflexive, antisymmetric and transitive.

Equivalence relation: is a relation that is reflexive, symmetric and transitive. **Equivalence class:** Is the set of all elements related to x. $[x]_R = \{y \in A | xRy\}$.

5 Functions

Onto

Definition: A function $f: A \to B$ is *onto* or *surjective* if its image is its whole co-domain. If every element in the co-domain if mapped in the domain. Or, equivalently,

$$\forall y \in B, \exists x \in A, f(x) = y$$

Say you want to compose the function $f:A\to B$ and $g:B\to C$. Then $gof:A\to C$.

One-To-One

A function is one-to-one or injective if it never assigns two input values to the same output value. Its formal definition is:

$$\forall x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$$

or, by taking the contrapositive,

$$forall x, y \in A, f(x) = f(y) \rightarrow x = y$$

6 Graphs

Graphs are a very general class of objects. A graph consists of a set of nodes V and a set of edges E. Two nodes connected by an edge are called **neighbors** or **adjacent**.

Undirected graph: when edges can be crossed in both directions.

Simple graph: If it has neither multiple edges nor loop edges.

Degrees: the degree of a vertex v, written deg(v) is the number of edges which have v as an endpoint.

Handshaking Theorem: $\sum_{v \in V} deg(v) = 2|E|$.

Complete graph: K_n is a graph in which every vertex is connected to another vertex.

Cycle: C_n . It is a graph that is only a cycle.

Wheels: W_n is just like C_n except that it has an additional central "hub" node which is connected to all the others.

Isomorphism: An isomorphism from G_1 to G_2 is a bijection $f: V_1 \to V_2$ such that vertices a and b are joined by an edge if and only if f(a) and f(b) are joined by an edge.

Walk: a walk of legth k from bertex a to vertex b is a sequence of vertices and a sequence of edge that connects them.

Closed walk: if the starting and ending verticies are the same. Otherwise is open.

Path: A path is an open walk in which no vertex is used more than one.

Cycle: Is a closed walk with at least three vertices in which no vertex is used more than once except that the starting and ending vertices are the same. **Connected Graph:** A graph is connected if there is a walk between every pair of nodes.

Cut edge: An edge that if its cut will increase the number of connected componets.

Diameter: Is the maximum distance between any pair of nodes in hte graph. **Euler circuits:** When there is a closed walk that uses each edge of the graph exactly once. It is possible whenever the degree of every node in the graph is ever.

Bipartite graph: Is a graph that can be colored with two colors.

7 Induction

Hypercube: A n-cube or a hypercube Q_n os the graph of the of the corners and edges of an n-dimensional cube.

8 Trees

Definition: Finite, non-empty set of nodes plus a set of edges. each edge connects each node to its **parent** node.

Root: A node with no parent.

Child: if x is the parent of y, then y is called a child of x. It z is also a child of x, then y and x are **siblings**.

Leaf node is a node that has no children.

Internal node: a node that does have a children.

Levels: The nodes of a tree can be organized into levels, based on how many edges away from the root htey are.

Height: maximum level of any of its node, or maximum length of a path from the root to a leaf.

m-ary trees: A m-ary tree is the restriction on how many child a node can have.

Heap property: if, for every node X in the tree, the value of X is at least as big as the value in each of X's children.

9 Big-O

Definition: f(x) is O(g(x)) if and only if there are positive real numbers c, k such that $0 \le f(x) \le cg(x), \forall x \ge k$.

Omega f(x): g(x) is $\Omega(f(x))$ if and only if f(x) is O(g(x)). Which means that if $g(x) \succeq f(x)$.

Theta g(x): f(x) is $\Theta(g(x))$ if and only if g(x) is O(f(x)) and f(x) is O(g(x)). Therefore is the equivalence relation.

10 Algorithms

Linear search

Go through the array, find the minimum value.

Average Case: O(n). Best Case: O(n).

Binary search

Given a sorted array, returns the index of the given value.

Running time: $O(\log n)$

Insertion sort

Devide the input array into two pieces and orders it.

Running time: $O(n^2)$.

Mergesort

Mergesort devides the big input list into smaller pieces, and hten it merges them back together. It is a very stable and very predictable algorithm.

Running time: $O(n \log_n)$.

Katatsuba's algorithm

First fast algorithm for multiplying big numbers together. It works by breaking up numbers and them multiplieng them together, using the recurrence $T(n) = 3T(\frac{n}{2}) + O(n)$, which gives you $O(n^{\log_2 3})$.

11 Sets of Sets

Powerset: Is th set containing all subsets of A.

Partition: when we divide a base set A into non-overlapping subsets, the result is called a *partition*.

Binomial Theorem: Let x and y be varibales and let n be any natural number. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

12 Countability

Cardinality: Two sets A and B have the same cartinality (|A| = |B|) if an only if there is a bijection from A to B.

Countable: An infinite set A is *countable* or *countablyinfinite* if there is a bijection from \mathbb{N} onto A.

Cantor Schroeder Bernstein Theorem: $|A| \le |B|$ if and only if there is a one-to-one function from A to B. Then if $|A| \le |B|$ and $|B| \le |A|$, |A| = |B|.

13 Planar Graphs

Definition: A planar graph is a graph which can be drawn in hte plane without any edges crossing.

Degree of a face is the length of its boundary, how many edges it has.

Euler's formula: v - e + f = 2.

Handshaking theorem for faces: sum of the faces degrees is also 2e.

Free tree: Any connected graph with no cycles.

Corollay of Euler's formula: In a graph where $v \ge 3, e \le 3v - 6$.

Subdivision: In a graph G a *subdivision* of another graph F is G just like F except that you've divided up some of F's edges by adding vertces in the middle of them.

Homeomorphic: Two graphs are *homeomorphic* if one is a subdivision of another, or they are both subdivision of some third graph.

Kuratowski's theorem: A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .