- Równania Bellmana można rozwiązać analitycznie.
- Złożoność obliczeniowa sięga $O(n^3)$ gdzie n oznacza liczbę stanów.
- W przypadku rozwiązywania dużych problemów istnieje wiele metod iteracyjnych:
 - Exhaustive search
 - Programowanie dynamiczne
 - Metody Monte Carlo
 - Temporal Difference Learning

 Kluczowym problemem w przypadku korzystania z metod programowania dynamicznego jest fakt, że do ich rozwiązania konieczna jest znajomość pełnego modelu.

- Kluczowym problemem w przypadku korzystania z metod programowania dynamicznego jest fakt, że do ich rozwiązania konieczna jest znajomość pełnego modelu.
- Oznacza to, że przed rozpoczęciem *planowania* musimy znać zarówno model przejścia P(s, a, s') jak i wszystkie osiągalne nagrody : R(s, a, s').

- Kluczowym problemem w przypadku korzystania z metod programowania dynamicznego jest fakt, że do ich rozwiązania konieczna jest znajomość pełnego modelu.
- Oznacza to, że przed rozpoczęciem *planowania* musimy znać zarówno model przejścia P(s, a, s') jak i wszystkie osiągalne nagrody : R(s, a, s').
- Wykorzystując bezmodelowe metody uczenia jesteśmy w stanie obejść ten problem.

- Kluczowym problemem w przypadku korzystania z metod programowania dynamicznego jest fakt, że do ich rozwiązania konieczna jest znajomość pełnego modelu.
- Oznacza to, że przed rozpoczęciem *planowania* musimy znać zarówno model przejścia P(s, a, s') jak i wszystkie osiągalne nagrody : R(s, a, s').
- Wykorzystując bezmodelowe metody uczenia jesteśmy w stanie obejść ten problem.
- W takim wypadku agent uczy się na podstawie swojego doświadczenia, poprzez powtarzające się interakcje z otoczeniem.

- Podstawową sposobem uczenia bez modelu są Metody Monte Carlo.
- Uczenie opiera się na generowaniu pełnych epizodów agent nie bootstrapuje swojego doświadczenia na podstawie wcześniejszych wyników.

- Podstawową sposobem uczenia bez modelu są Metody Monte Carlo.
- Uczenie opiera się na generowaniu pełnych epizodów agent nie bootstrapuje swojego doświadczenia na podstawie wcześniejszych wyników.
 - Oznacza to, że metody Monte Carlo można stosować jedynie w przypadku skończonych procesów decyzyjnych Markowa.

- Podstawową sposobem uczenia bez modelu są Metody Monte Carlo.
- Uczenie opiera się na generowaniu pełnych epizodów agent nie bootstrapuje swojego doświadczenia na podstawie wcześniejszych wyników.
 - Oznacza to, że metody Monte Carlo można stosować jedynie w przypadku skończonych procesów decyzyjnych Markowa.
 - Ale też oznacza to, że możliwe jest uczenie się problemów, które nie spełniają własności Markowa.

- Idea uczenia MC jest prosta:
 - Wartość funkcji wartości w k-tej iteracji jest równa przeciętnej skumulowanej przyszłej nagrodzie otrzymanej w poprzednich iteracjach.
 - Na mocy prawa wielkich liczb, gdy ilość symulowanych epizodów będzie dążyła do nieskończoności to oszacowanie będzie dążyło do prawdziwej funkcji wartości.

Monte Carlo Prediction

- Ewaluacja dana jest strategia π , należy dokonać jej oceny:
 - Zainicjuj algorytm wybierając dowolne początkowe wartości funkcji wartości, np. $V_0(s) = 0 \ \forall s$.

W każdym kroku k:

- Wygeneruj epizod na podstawie strategii π : $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$
- Dla każdego ze stanów s ∈ S należących do wygenerowanego epizodu, gdy odwiedzasz go za pierwszym razem:
 - Uaktualnij licznik odwiedzin stanu s:

$$n_s = n_s + 1$$

• Uaktualnij przeciętną wartość funkcji wartości:

$$V_k(s) = V_{k-1}(s) + \frac{1}{n_s} (R_k(s) - V_{k-1}(s))$$

W każdym kroku k:

Wygeneruj epizod na podstawie strategii

$$\pi$$
: s₀, a₀, r₁, ..., s_{T-1}, a_{T-1}, r_T

- Dla każdego ze stanów s ∈ S należących do wygenerowanego epizodu, za każdym razem gdy go odwiedzasz:
 - Uaktualnij licznik odwiedzin stanu s:

$$n_s = n_s + 1$$

Uaktualnij przeciętną wartość funkcji wartości:

$$V_k(s) = V_{k-1}(s) + \frac{1}{n_s} (R_k(s) - V_{k-1}(s))$$

• Obie metody zbiegną $V(s) \to V_{\pi}(s)$ gdy $n_s \to \infty$.

• W przypadku poszukiwania optymalnej strategii π_* za pomocą metod Monte Carlo konieczna jest modyfikacja podejścia do rozwiązywanego problemu:

Źródło: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/DP.pdf

• Zachłanna iteracja po funkcji V(s) jest niemożliwa; wymaga znajomości modelu:

$$\pi' = \operatorname{argmax}_{a} \sum_{s,r} P(s, a, s')(r + V_{\pi}(s'))$$

• Zachłanna iteracja po funkcji V(s) jest niemożliwa; wymaga znajomości modelu:

$$\pi' = \underset{a \in A}{\operatorname{argmax}} \sum_{s,r} P(s, a, s')(r + V_{\pi}(s'))$$

• Konieczne jest wykorzystanie funkcji Q(s, a):

$$\pi' = \operatorname*{argmax}_{a \in A} Q(s, a)$$

Monte Carlo Control z Eksploracją punktów startowych

- 1. Zainicjuj algorytm wybierając dowolne początkowe wartości funkcji wartości, np. $Q_0(s,a)=0 \ \forall s,a$, wektor odwiedzin part stan i akcja: $N(s,a)=0 \ \forall s,a$ i dowolną strategię π .
- 2. W każdej iteracji k:
 - Wylosuj początkową parę $s_0 \in S$, $a_0 \in A$
 - Wygeneruj epizod na podstawie strategii π : s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T .
 - Przyjmij wartość skumulowanej przyszłej nagrody R=0
 - Dla każdego t = T 1, T 2, ..., 1, 0:
 - Przypisz nową wartość $R = \beta R + r_{t+1}$
 - Jeżeli para s_t , a_t nie występuje w s_0 , a_0 , r_1 , ..., s_{t-1} , a_{t-1} (jest pierwszym wystąpieniem):
 - Uaktualnij licznik odwiedzin pary s_t, a_t:

$$N(s_t, a_t) = N(s_t, a_t) + 1$$

• Uaktualnij funkcję wartości akcji:

$$Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)} (R - Q(s_t, a_t))$$

• Popraw zaproponowaną strategię zachowując się zachłannie:

$$\pi(s) = \underset{a \in A}{\operatorname{argmax}} Q(s, a)$$

3. Gdy $n \to \infty$ to $\pi \approx \pi_*$

Przykład

Frozen Lake cd.

- Celem agenta jest przejść z punktu S do Punktu G.
- Agent może iść po lodzie (pola oznaczone literą F), musi unikać wpadnięcia do przerębli (pola oznaczone jako H).
- Lód jest śliski; idąc przed siebie z pewnym prawdopodobieństwem p może się poślizgnąć i przesunąć w lewo lub w prawo w stosunku do swojej wyjściowej pozycji.

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Źródło: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/DP.pdf

- Problematyczny jest też fakt zapewnienia odpowiedniej ilości epizodów na podstawie których możliwe będzie oszacowanie Q(s,a).
 - Eksploracja
 - Eksploatacja

- Problematyczny jest też fakt zapewnienia odpowiedniej ilości epizodów na podstawie których możliwe będzie oszacowanie Q(s,a).
 - Eksploracja
 - Eksploatacja
- Tradycyjny algorytm zachłanny bardzo szybko zacznie eksploatować rozwiązanie suboptymalne.

- Strategia ϵ -zachłanna (ϵ -greedy)
- Najprostszy algorytm pozwalający na zachowanie ciągłej eksploatacji w trakcie uczenia się.
- \bullet Zapewnia, że każda z dopuszczalnych m akcji będzie wybierana z niezerowym prawdopodobieństwem.
 - $Zp = 1 \epsilon$ wybierz akcję zachłannie.
 - W przeciwnym wypadku wybieraj losowo.

• Strategia ϵ -zachłanna (ϵ -greedy)

$$\pi(a|s) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon, gdy \ a_* = \underset{a \in A}{\operatorname{argmax}} \ Q(s, a) \\ \frac{\epsilon}{m}, w \ przeciwnym \ wypadku \end{cases}$$

On-policy

• Zoptymalizuj strategię π bazując na doświadczeniu próbkowanym na podstawie tej właśnie strategii. ("ucz się na swoich błędach")

Off-policy

• Zoptymalizuj strategię π bazując na doświadczeniu próbkowanym z innych strategii μ . ("ucz się na czyichś błędach")

- 1. Zainicjuj algorytm wybierając dowolne początkowe wartości funkcji wartości, np. $Q_0(s,a)=0 \ \forall s,a$, wektor odwiedzin part stan i akcja: $N(s,a)=0 \ \forall s,a$ i dowolną ϵ -zachłanną strategię π .
- 2. W każdej iteracji k:
 - Wygeneruj epizod na podstawie strategii π : s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T .
 - Przyjmij wartość skumulowanej przyszłej nagrody R=0
 - Dla każdego t = T 1, T 2, ..., 1, 0:
 - Przypisz nową wartość $R = \beta R + r_{t+1}$
 - Jeżeli para s_t , a_t nie występuje w s_0 , a_0 , r_1 , ..., s_{t-1} , a_{t-1} (jest pierwszym wystąpieniem):
 - Uaktualnij licznik odwiedzin pary s_t, a_t:

$$N(s_t, a_t) = N(s_t, a_t) + 1$$

• Uaktualnij funkcję wartości akcji:

$$Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)} (R - Q(s_t, a_t))$$

• Popraw zaproponowaną strategię zachowując się zachłannie:

$$\pi(a|s) \leftarrow \begin{cases} 1 - \epsilon + \epsilon/|A(S_t)| & gdy \ a = \underset{a \in A}{\operatorname{argmax}} \ Q(s, a) \\ \epsilon/|A(S_t)| & gdy \ a \neq \underset{a \in A}{\operatorname{argmax}} \ Q(s, a) \end{cases} \quad \forall a \in A(S_t)$$

3. Gdy $n \to \infty$ to $\pi \approx \pi_*$

Przykład

Frozen Lake cd.

- Celem agenta jest przejść z punktu S do Punktu G.
- Agent może iść po lodzie (pola oznaczone literą F), musi unikać wpadnięcia do przerębli (pola oznaczone jako H).
- Lód jest śliski; idąc przed siebie z pewnym prawdopodobieństwem p może się poślizgnąć i przesunąć w lewo lub w prawo w stosunku do swojej wyjściowej pozycji.

Eksploracja i eksploatacja

- On-policy
 - Zoptymalizuj strategię π bazując na doświadczeniu próbkowanym na podstawie tej właśnie strategii. ("ucz się na swoich błędach")
- Off-policy
 - Zoptymalizuj strategię π bazując na doświadczeniu próbkowanym z innych strategii μ . ("ucz się na czyichś błędach")

- Jednym z problemów związanych z uczeniem bezmodelowym jest to, że agent musi nauczyć zachowywać się optymalnie zgodnie z pewną optymalną strategią a zarazem eksplorować środowisko.
- W jaki sposób połączyć te dwa cele?

• W przypadku uczenia on policy konieczny był pewien kompromis, zamiast zachowywać się zgodnie z zadaną deterministyczną strategią π agent korzystał z ϵ -zachłannej strategii π' , takiej że $\pi'(a|s) > 0 \ \forall \ A(s)$.

- W przypadku uczenia on policy konieczny był pewien kompromis, zamiast zachowywać się zgodnie z zadaną deterministyczną strategią π agent korzystał z ϵ -zachłannej strategii π' , takiej że $\pi'(a|s) > 0 \ \forall \ A(s)$.
- Uczenie off policy jest dużo prostsze. Agent uczy się docelowej strategii (target policy) π za pomocą strategii kontrolującej zachowanie (behavior policy) μ takiej że $\pi(a|s)>0 \rightarrow \mu(a|s)>0 \ \forall \ A(s)$
- Zakładamy, że obie strategię pokrywają taką samą przestrzeń (assumption of coverage).

 Problemem jest to, że w ramach uczenia off policy chcemy nauczyć się jednej strategii za pomocą próbek generowanych z innej. Aby było to możliwe musimy wykorzystać technikę znaną jako próbkowanie ważności (importance sampling).

Importance sampling

• Prawdopodobieństwo wystąpienia trajektorii s_{τ} , a_{τ} , $r_{\tau+1}$, ..., s_{T-1} , a_{T-1} , r_{T} w trakcie korzystania ze strategii π :

$$\Pr\{s_{\tau}, a_{\tau}, r_{\tau+1}, \dots, s_{T-1}, a_{T-1}, r_{T} | s_{t}, a_{t} \sim \pi\} = \prod_{t=\tau}^{\tau} \pi(a_{t} | s_{t}) P(s_{t}, a_{t}, s_{t+1})$$

• Relatywne prawdopodobieństwo wystąpienia trajektorii zarówno w strategii celu π jak i strategii zachowania μ (importance sampling ratio):

$$\rho_{\tau:T-1} = \frac{\prod_{t=\tau}^{T} \pi(a_t|s_t) P(s_t, a_t, s_{t+1})}{\prod_{t=\tau}^{T} \mu(a_t|s_t) P(s_t, a_t, s_{t+1})}$$

Importance sampling

Ordinary importance sampling

• Przeskaluj wyniki korzystając z ρ i następnie uśrednij rezultat:

$$V(s) = \frac{\sum_{n \in N(S)} \rho_n R_n}{N(s)}$$

Weighted importance sampling

• Wyznacz średnią ważoną korzystając z ρ :

$$V(s) = \frac{\sum_{n \in N(S)} \rho_n R_n}{\sum_{n \in N(S)} \rho_n}$$

• Gdzie N(s) to licznik odwiedzin stanu.

Importance sampling

Źródło: Richard S. Sutton and Andrew G. Barto, Reinforcement learning, an introduction, second edition

- 1. Zainicjuj algorytm wybierając dowolne początkowe wartości funkcji wartości, np. $Q_0(s, a) = 0 \ \forall s, a$, wektor odwiedzin part stan i akcja: $N(s, a) = 0 \ \forall s, a$ i dowolną strategię π .
- 2. W każdej iteracji *k*:
 - Wygeneruj epizod na podstawie strategii μ : s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T .
 - Przyjmij wartość skumulowanej przyszłej nagrody R=0
 - Przyjmij wagę W = 1
 - Dla każdego $t = T 1, T 2, ..., 1, 0 \text{ gdy } W \neq 0$:
 - Przypisz nową wartość $R = \beta R + r_{t+1}$
 - Jeżeli para s_t , a_t nie występuje w s_0 , a_0 , r_1 , ..., s_{t-1} , a_{t-1} (jest pierwszym wystąpieniem):
 - Uaktualnij licznik odwiedzin pary s_t, a_t:

$$N(s_t, a_t) = N(s_t, a_t) + W$$

Uaktualnij funkcję wartości akcji:

$$Q(s_t, a_t) = Q(s_t, a_t) + \frac{W}{N(s, a)} (R - Q(s_t, a_t))$$

Popraw zaproponowaną strategię zachowując się zachłannie:

$$\pi(a|s) \leftarrow \operatorname{argmax}_{a \in A} Q(s,a)$$

- Jeżeli $a_t \neq \pi(s_t)$ przerwij pętlę (przejdź do kolejnego epizodu).
- $W = \frac{W}{\mu(a_t|s_t)}$
- 3. Gdy $n \to \infty$ to $\pi \approx \pi_*$