1 9/5 Matrices, vectors, and their applications

Algebra: study of objects and operations on them.

Linear algebra: object: matrices and vectors. operations: addition, multiplication etc.

Algorithms/Geometric intuition/sets and maps

 $m \times n$ matrix: numbers forming a rectangular grid, m rows and n columns. Motivation: coefficients of a system of linear equations. Data tables in statistics.

(i, j)-th entry of a matrix.

Vectors: matrices with one row/column. Motivation: coordinates in plane and space.

Operations: (1) Addition. (2) Scalar multiplication. (3) Matrix-vector multiplication. (4) Transpose.

Example:
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Ax , $A(Ax)$.

Example: Averaging over columns. Covariance? Other statistical concepts?

Laws: The usual laws one may expect. e.g. A(x+y) = Ax + Ay, $(A+B)^T = A^T + B^T$, $(A^T)^T = A$. Note: $A(Bx) \neq B(Ax)$!

Zero and one matrix. Standard vectors.

Example: Rotation by 60 degrees (or $\pi/3$).

Consequence: Matrix is completely determined by its action on the standard vectors! Matrix-matrix multiplication.

Example: 2×2 case.

The concept of linear combination. Relationship with matrix-vector multiplication.

Example: Rotation and Translation.

Example: Random walk on graphs.

2 9/8 Linear equations

Review:

- Matrix multiplications
- Transposes
- Standard vectors
- Identity Matrix
- Rotation matrix

• Stochastic matrix

Linear systems as matrix equations. Coefficient matrix and augmented matrices

Elementary row operations: swap, multiply, add. Property: reversible, and preserves solution set.

Row echelon form: The first non-zero entry (called pivot) of each row is to the right of the previous. Reduced row echelon form: The first non-zero entry is 1 and is the only non-zero entry in that column. Uniqueness under row operations.

Algorithm (Gaussian elimination):

- Write augmented matrix.
- Use row operations, turn it into reduced echelon form.
- General solution from RREF (Example: $x_1 + 2x_2 + x_3 + x_4 = 3$, $x_1 + 3x_3 x_4 = 8$).

		Pivot at last col.	No pivot at last col.
Structure of solutions:	All coefficient col. have pivot	None	Inf
	Some coeff. col. have no pivot	None	One
Examples of the 4 cases.			

True or false:

- A system of 3 linear equations with 6 variables can not have just one solution.
- A system of 3 linear equations with 6 variables must have infinitely many solutions.

Counting: number of arbitrary constants and the number of pivots. Rank and dimension.

Explicit algorithm from RREF to general solutions.

3 9/12 Linear equations cont.

3.1 Review

- Augmented matrix, row operations.
- RREF.
- Condition for no/one/infinitely many solutions.
- General solution: write basic variables in terms of free variables, or the vector form.

3.2 Gaussian elimination

Augment matrices to REF or RREF through finitely many elementary row operations.

For r=1, 2, ... n:

Find the left-most non-zero entry among the $r, r+1, \ldots n$ rows. If there aren't any, terminate. Exchange rows to move this entry to the r-th row.

Multiply the r-th row and add it to the $r+1, \ldots$ rows to eliminate all entries on the left-most non-zero column.

To Further turn it into a RREF (backward pass):

Multiply to each non-zero row to make the first entry 1.

For each non-zero row, multiply and add it to each of the rows above it to turn the entries on pivot columns 0.

Reason for distinguish forward/backward passes: forward pass is a permutation matrix with a lower triangular matrix with 1 on the diagonals, backward pass is a upper triangular matrix. Row pivoting.

Example:
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 2 & 4 & 7 \\ 2 & 0 & 1 & 0 \end{pmatrix}$$
. RREF? General solution?

3.3 Uniqueness of RREF

Key idea: read the RREF from matrix using linear combinations of rows or columns!

Appendix E uses columns. One can also use rows as follows: Let R be the space of linear combination (span) of the row vectors. The last non-zero row in RREF is the one in R with the most number of 0 entries on the left and the first non-zero entry 1. Let the index of the first non-zero entry be c_1 . The preceding row in RREF is the one in R with c_1 -th entry 0, first non-zero entry 1, and the most possible number of 0 on the left, etc.

3.4 Rank and nullity

Rank of A: num. of pivots in A=num. of non-zero rows in REF of A=num of basic variables in Ax = bNullity of A: num of non-pivot columns in A=num. of columns of A-rank of A=num of free variables in Ax = b

True or false:

- The rank of $[A \ B]$ must be no smaller than the sum of the ranks of A and B.
- The nullity of $[A \ B]$ must be no smaller than the sum of the ranks of A and B.
- The RREF of a square matrix of no nullity must be the identity matrix
- The nullity of A is non-zero iff some row of A is a linear combination of the others.
- $[A \ B]$ has the same rank as B iff the columns of A are linear combinations of the columns of B.

Structure of the general solution in terms of rank or nullity:

```
If rank(A) < rank([A, b]):
```

No solution.

Else:

If nullity(A) = 0:

One solution.

Else:

Infinitely many solutions.

Example:
$$\begin{pmatrix} a & b & c \\ e & f & g \end{pmatrix}$$
.

4 9/15 Span

Review:

- Augmented matrix and row operations
- REF, RREF, pivot
- free and basic variables
- Rank and Nullity

Linear combination: S is a set of matrices of the same size, v is called a linear combination of S iff there exist finitely many matrices $A_1
ldots A_n$ in S, and scalars $a_1,
ldots a_n$, so that $v = \sum_k a_k A_k$.

Span: The span of a set is the set of all linear combinations of that set. S is called a generating set of the set Span(S).

Example: span of the standard vectors.

Span closed under addition and scalar multiplication.

Transitivity.

b is in the span of columns of A iff Ax = b has a solution. \mathbb{R}^n : all vectors of n entries. Span is \mathbb{R}^n iff matrix is full rank iff ...

Example: use linear equation to detect spans.

Implication on the rank of the matrices while adding columns.

Algorithm for minimal generating set. Example.

True or false:

Row operation changes the span of the column vectors.

A matrix is in REF, then the span of the columns are the span of some standard vectors.

5 9/18 Linear dependency

5.1 Review

Notation: when A and B has the same number of rows, by $[A \ B]$ we mean a larger matrix formed by stacking them together horizontally.

relationship between matrices, system of equations Ax = b, and the column vectors:

The followings are equivalent:

- Ax = b has a solution (is **consistent**).
- b lies in the **span** of the columns vectors of A.

- The span of the columns of A is the same as the span of the columns of A and b.
- $rank([A \ b]) = rank(A)$.
- Nullity($[A \ b]$) = Nullity(A) + 1.
- In the **RREF** of $[A \ b]$, the last column does not contain a **pivot**.

Examples.

The followings are equivalent:

- Ax = b has a solution (is **consistent**) for all b.
- The span of the columns vectors of A is \mathbb{R}^m .
- $\operatorname{rank}(A) = m$.
- Nullity(A) = n m.
- In the **RREF** of A, every row contain a **pivot**.
- The **RREF** of A does not contain zero rows.

Examples.

5.2 Linear dependence/independence

A set S is called **linearly independent**, if for any sequence of distinct elements $x_1, \ldots x_k \in S$, $c_1x_1 + \ldots c_kx_k = 0$ implies that $c_1 = c_2 = \cdots = 0$. If a set is not linearly independent it is linearly dependent.

 $a_1
dots a_n$ are linearly dependent if and only if $[a_1
dots a_n]x = 0$ has one (hence infinitely many) non-zero solutions. (hence $[a_1
dots a_n]x = b$ has infinitely many solutions for some b, hence has free variables, hence the nullity of A is non-zero).

Example: 1 or 2 vectors.

Linear dependency in standard vectors.

Linear dependency in RREF.

Linear dependency in vector form of the general solution.

5.3 Number of rows and columns

m > n: column vectors may or may not be linearly dependent, but can never span \mathbb{R}^m .

m < n: column vectors may or may not span \mathbb{R}^m , but can never be linearly independent.

m=n: column vectors span \mathbb{R}^m iff they are linearly independent.

5.4 Adding and removing vectors

If S is linearly independent, any subset of S is linearly independent and has a smaller span, $S \cap \{v\}$ is linearly independent iff v is in the span of S.

If S is linearly dependent, so is any set larger than S.

Examples.

******Optional*****

Row vectors under row operation.

Rank=num. of linearly independent column vectors.

Vertical stacks of matrices.