Dennis Mao, Julian Rodemann, Michael Kobl

Besprechung 13.06.2022/15.06.2022

Aufgabe 1

Sei der Messraum $(\mathbb{R}, \mathcal{B})$ sowie die messbare Funktion $f : \mathbb{R} \to \mathbb{R}$ mit

$$f(\omega) = \omega \mathbb{1}_{\{1,\dots,N\}}(\omega)$$

für ein festes $N \in \mathbb{N}$ gegeben. Berechnen Sie für das Lebesguemaß λ und das Zählmaß μ_Z

$$\int_{[0,n]} f \mathrm{d}\lambda \quad \text{und} \quad \int_{[0,n]} f \mathrm{d}\mu_Z \quad \text{für } n \in \mathbb{N}, \ n \leq N.$$

Aufgabe 2

Es sei der Meßraum $(\mathbb{R}, \mathcal{B})$ gegeben sowie die meßbaren Funktionen $f : \mathbb{R} \to \mathbb{R}$ mit

$$\omega \mapsto f(\omega) = \omega \mathbb{1}_{\mathbb{N}}(\omega)$$

und $g: \mathbb{R} \to \mathbb{R}$ mit

$$\omega \mapsto g(\omega) = \omega^2 \mathbb{1}_{[0,1]}(\omega).$$

Berechnen Sie für das Lebesguemaß λ und das Zählmaß μ_Z

a)
$$\int_{[0,n]} f d\lambda \text{ und } \int_{[0,n]} f d\mu_Z \text{ für } n \in \mathbb{N}$$

b)
$$\int g d\lambda \text{ und } \int g d\mu_Z.$$

Aufgabe 3

Berechnen Sie Erwartungswert und Varianz der Exponentialverteilung:

$$X \sim Exp(\lambda), \ f_X(x;\lambda) = \lambda e^{-\lambda x} I_{[0,\infty)}(x), \qquad (\lambda > 0)$$

Besprechung von ausgewählter Themen aus der Vorlesung.