Daten Import & Daten Management & Kollaboratives Arbeiten mit GitHub II

rstatsZH - Data Science mit R

Lars Schöbitz

Mar 18, 2025

Lernziele (für diese Woche)

- 1. Die Lernenden können Daten aus Dateien im CSV und XLSX-Format importieren, die sich in Unterverzeichnissen des Stammverzeichnisses, und auf GitHub, befinden.
- 2. Die Lernenden können den Unterschied zwischen drei Arten von Daten erörten: (1) unverarbeitete Rohdaten; (2) verarbeitete, analysefähige Daten, und (3) Daten, die einer Veröffentlichung zugrunde liegen.
- 3. Die Lernenden können die Anwendung der Git Befehle clone, commit, push beschreiben.
- 4. Die Lernenden können die Begriffe local und remote Repository unterscheiden.

Git Befehle

Repository

Commit message

Repository

Commit message

Commit message Repository erstellen Daten hinzfügen commit commit .gitignore .gitignore README.md README.md daten.csv Repository

Commit message Repository erstellen Daten hinzfügen commit commit .gitignore .gitignore .gitignore README.md README.md README.md daten.csv daten.csv analyse.qmd Repository

Faktoren in R

Variablen Typen Numerisch

Diskrete Variablen

- nicht negative
- zählbare
- ganze Zahlen
- z.B. Anzahl Schüler, Würfelwurf

Stetige (kontinuierliche) Variablen

- unendliche Anzahl von Werten
- zwischen zwei Werten
- auch Datums/Uhrzeitwerte
- z.B. Länge, Gewicht, Grösse

Nicht numerisch

Kategoriale Variablen

- endliche Anzahl von Werten
- eindeutige Gruppen (z.B. EU Länder)
- ordinal, wenn diese eine logische Reihenfolge/Rangordnung aufweisen (z.B. Wochentage)

ordinal skalierte Daten in R

- ordinal skalierte Daten sind kategoriale Daten, die eine logische Reihenfolge aufweisen
- in R werden Text-Daten standardmässig als character gespeichert
- Beurteilungen: sehr gut, gut, mittel, schlecht, sehr schlecht
- die Reihenfolge von Text Daten ist aplhabetisch

```
df |>
         arrange(beurteilung)
# A tibble: 5 \times 2
          beurteilung
  name
  <chr>
          <chr>
1 Bob
          qut
2 Charlie mittel
3 Diana
          schlecht
4 Alice
          sehr gut
          sehr schlecht
5 Eve
```

ordinal skalierte Daten in R

- in R können wir ordinal skalierte Daten mit dem factor Datentyp speichern
- die Level geben die Reihenfolge der Kategorien an
- die Umwandlung beeinflusst das Verhalten der Daten in Tabellen und Diagrammen

```
# Faktor Level werden in einem Vektor definiert
beurteilung_level <- c("sehr schlecht", "schlecht", "mittel", "gut", "sehr gut")

df |>
    # Die Spalte wird in einen Faktor umgewandelt
    mutate(beurteilung = factor(beurteilung, levels = beurteilung_level)) |>
    # Die Tabelle wird nach der Reihenfolge sortiert
    arrange(beurteilung)
```

Ich bin dran: Faktoren in R

Zurücklehnen und genießen!

Pause machen

Bitte steh auf und beweg dich. Lasst eure E-Mails in Frieden ruhen.

Ihr seid dran: 02-faktoren-ihr.qmd

- 1. Öffne posit.cloud in deinem Browser (verwende dein Lesezeichen).
- 2. Öffne den rstatszh-k010 Arbeitsbereich (Workspace) für den Kurs.
- 3. Klicke auf Start neben md-04-uebungen.
- 4. Suche im Dateimanager im Fenster unten rechts die Datei 02-faktorenihr.qmd und klicke darauf, um sie im Fenster oben links zu öffnen.
- 5. Folge den Anweisungen in der Datei.

Daten einlesen

Rechteckige Daten in R einlesen

CSV & XLSX

readr

readxl

- read csv() durch Kommas getrennte
 read excel() liest xls oder xlsx Dateien Werte
- read_csv2() durch Semicolon getrennte Werte (<u>Tipp für das Konvertieren von xlsx als</u> CSV)
- read_tsv() durch Tab getrennte Werte
- read_delim() liest Dateien mit beliebigem Trennzeichen

Daten aus CSV-Dateien lesen

Import von unbearbeiteten Rohdaten

i 1,203 more rows

```
1 befragung <- read csv("raw/KTZH 00001341 00002759 frage7a1.csv")</pre>
 1 befragung
# A tibble: 1,213 × 5
  geschlecht alter
                       gemeinde groesse bezirk name antwort
  <chr>
             <chr>
                                       <chr>
                       <chr>
                                                   <chr>
 1 weiblich 55 bis 59 Winterthur
                                       Winterthur viel zu hoch
 2 männlich 70 bis 74 Winterthur
                                       Winterthur eher zu hoch
                                       Hinwil
 3 weiblich 55 bis 59 10001 bis 20000
                                                  eher zu hoch
                                       Hinwil
 4 weiblich 35 bis 39 20001 bis 50000
                                                  eher zu hoch
                                       Meilen
 5 weiblich 50 bis 54 5001 bis 10000
                                                  eher zu hoch
 6 männlich 35 bis 39 <1000
                                       Andelfingen gerade angemessen
                                       Pfäffikon
 7 weiblich 45 bis 49 10001 bis 20000
                                                  viel zu hoch
 8 männlich 30 bis 34 <1000
                                       Winterthur eher zu hoch
 9 weiblich 50 bis 54 5001 bis 10000
                                       Winterthur eher zu hoch
10 weiblich
             +08
                       20001 bis 50000
                                       Uster
                                                  eher zu hoch
```

Daten als CSV-Datei schreiben

- transformiere Daten
- exportiere verarbeitete, analysereife Daten

```
antwort levels <- c("viel zu hoch", "eher zu hoch", "gerade angemessen",
                       "eher zu tief", "viel zu tief")
    befragung fct <- befragung |>
        mutate(antwort = factor(antwort, levels = antwort levels))
  5
   befragung fct
# A tibble: 1,213 × 5
  geschlecht alter
                       gemeinde groesse bezirk name antwort
  <chr> <chr>
                       <chr>
                                       <chr>
                                                   <fct>
 1 weiblich 55 bis 59 Winterthur
                                       Winterthur viel zu hoch
 2 männlich 70 bis 74 Winterthur
                                       Winterthur eher zu hoch
 3 weiblich 55 bis 59 10001 bis 20000 Hinwil
                                                   eher zu hoch
                                       Hinwil
 4 weiblich 35 bis 39 20001 bis 50000
                                                   eher zu hoch
 5 weiblich 50 bis 54 5001 bis 10000
                                       Meilen
                                                   eher zu hoch
 6 männlich 35 bis 39 <1000
                                       Andelfingen gerade angemessen
 7 weiblich 45 bis 49 10001 bis 20000
                                       Pfäffikon
                                                   viel zu hoch
 8 männlich 30 bis 34 <1000
                                       Winterthur eher zu hoch
 9 weiblich 50 bis 54 5001 bis 10000
                                       Winterthur eher zu hoch
10 weiblich
                       20001 bis 50000
             +0.8
                                       Uster
                                                   eher zu hoch
# i 1,203 more rows
 1 write csv(befragung fct, "daten/processed/ktzh-befragung-zufriedenheit.csv")
```

Analysefertige Daten einlesen

Was ist aus unserem Faktor geworden?

```
befragung fct <- read csv("daten/processed/ktzh-befragung-zufriedenheit.csv")</pre>
 1 befragung fct
# A tibble: 1,213 × 5
  geschlecht alter
                       gemeinde groesse bezirk name antwort
  <chr>
             <chr>
                       <chr>
                                       <chr>
                                                   <chr>
 1 weiblich 55 bis 59 Winterthur
                                       Winterthur viel zu hoch
 2 männlich 70 bis 74 Winterthur
                                       Winterthur eher zu hoch
 3 weiblich 55 bis 59 10001 bis 20000
                                       Hinwil
                                                   eher zu hoch
                                       Hinwil
 4 weiblich 35 bis 39 20001 bis 50000
                                                   eher zu hoch
 5 weiblich 50 bis 54 5001 bis 10000
                                       Meilen
                                                   eher zu hoch
 6 männlich 35 bis 39 <1000
                                       Andelfingen gerade angemessen
 7 weiblich 45 bis 49 10001 bis 20000
                                       Pfäffikon
                                                   viel zu hoch
 8 männlich 30 bis 34 <1000
                                       Winterthur eher zu hoch
 9 weiblich 50 bis 54 5001 bis 10000
                                       Winterthur eher zu hoch
10 weiblich
             +08
                       20001 bis 50000
                                                   eher zu hoch
                                       Uster
# i 1,203 more rows
```

Wo ist der Faktor?

Wie speichern wir Faktoren?

- In R können Daten als .rds Datei gespeichert werden
- rds Dateien speichern die Struktur der Daten
- Faktoren und andere Datenstrukturen bleiben erhalten

```
write rds(befragung fct, "folien/daten/processed/ktzh-befragung-zufriedenheit.rds")
    befragung rds <- read rds("daten/processed/ktzh-befragung-zufriedenheit.rds")</pre>
    befragung rds
# A tibble: 1,213 × 5
   geschlecht alter
                       gemeinde groesse bezirk name antwort
   <chr>
                       <chr>
                                        <chr>
             <chr>
                                                    <fct>
 1 weiblich 55 bis 59 Winterthur
                                        Winterthur viel zu hoch
                                                   eher zu hoch
 2 männlich 70 bis 74 Winterthur
                                        Winterthur
 3 weiblich 55 bis 59 10001 bis 20000
                                        Hinwil
                                                    eher zu hoch
 4 weiblich 35 bis 39 20001 bis 50000
                                        Hinwil
                                                    eher zu hoch
 5 weiblich 50 bis 54 5001 bis 10000
                                        Meilen
                                                    eher zu hoch
 6 männlich
            35 bis 39 <1000
                                        Andelfingen gerade angemessen
 7 weiblich
            45 bis 49 10001 bis 20000
                                        Pfäffikon
                                                    viel zu hoch
 8 männlich
            30 bis 34 <1000
                                        Winterthur eher zu hoch
 9 weiblich
             50 bis 54 5001 bis 10000
                                        Winterthur
                                                   eher zu hoch
10 weiblich
                       20001 bis 50000
              +08
                                        Uster
                                                    eher zu hoch
# i 1,203 more rows
```

Daten zusammenfassen

• für eine Visualisierung oder Tabelle in einer veröffentlichten Arbeit

```
befragung sum alter <- befragung rds |>
        group by(alter, antwort) |>
        summarise(antwort anzahl = n()) |>
        mutate(antwort prozent = antwort anzahl / sum(antwort anzahl) * 100)
  1 befragung sum alter
# A tibble: 52 \times 4
# Groups:
            alter [13]
   alter antwort
                               antwort anzahl antwort prozent
   <chr>
         <fct>
                                        <int>
                                                         <dbl>
 1 18 bis 24 viel zu hoch
                                                         18.2
                                            12
 2 18 bis 24 eher zu hoch
                                                         36.4
                                            24
 3 18 bis 24 gerade angemessen
                                                         43.9
                                           29
 4 18 bis 24 viel zu tief
                                                        1.52
 5 25 bis 29 viel zu hoch
                                                         25
                                           15
                                                         33.3
 6 25 bis 29 eher zu hoch
                                           20
 7 25 bis 29 gerade angemessen
                                           23
                                                         38.3
 8 25 bis 29 eher zu tief
                                                         3.33
 9 30 bis 34 viel zu hoch
                                                         14.1
10 30 bis 34 eher zu hoch
                                           25
                                                         39.1
# i 42 more rows
```

Daten visualisieren

• in einer Veröffentlichung

Daten exportieren

- Daten, die einer Veröffentlichung zugrunde liegen
- als CSV-Datei
- erhöht die Wiederverwendbarkeit

Daten Management

Beispiele für Begriffe, die bei der Datenverwaltung verwendet werden.

Begriff	Ordnername	Erklärung	Dateiformat
unbearbeitete	data/raw	Daten, die nicht bearbeitet wurden und	often XLSX,
Rohdaten		in ihrer <mark>ursprünglichen Form und Datei</mark>	also CSV,
		bleiben	JSON, and
			others

Daten Management

Beispiele für Begriffe, die bei der Datenverwaltung verwendet werden.

Begriff	Ordnername	Erklärung	Dateiformat
unbearbeitete Rohdaten	data/raw	Daten, die nicht bearbeitet wurden und in ihrer <mark>ursprünglichen Form und</mark> Datei bleiben	often XLSX, also CSV, JSON, and others
verarbeitete, analysefähige Daten	data/processed	Daten, die zur Vorbereitung einer Analyse verarbeitet werden und in ihrer neuen Form als neue Datei gespeichert werden	CSV, RDS, JSON

Daten Management

Beispiele für Begriffe, die bei der Datenverwaltung verwendet werden.

Begriff	Ordnername	Erklärung	Dateiformat
unbearbeitete Rohdaten	data/raw	Daten, die nicht bearbeitet wurden und in ihrer ursprünglichen Form und Datei bleiben	often XLSX, also CSV, JSON, and others
verarbeitete, analysefähige Daten	data/processed	Daten, die zur Vorbereitung einer Analyse verarbeitet werden und in ihrer neuen Form als neue Datei gespeichert werden	CSV, RDS, JSON
Daten, die einer Veröffentlichung zugrunde liegen	data/final	Daten, die das Ergebnis einer Analyse sind (z. B. deskriptive Statistik oder Datenvisualisierung) und in einem Bericht angezeigt werden, dann aber auch in ihrer neuen Form als neue Datei exportiert werden	CSV

Pause machen

Bitte steh auf und beweg dich. Lasst eure E-Mails in Frieden ruhen.

Ihr seid dran: 03-daten-import-ihr.qmd

- 1. Öffne posit.cloud in deinem Browser (verwende dein Lesezeichen).
- 2. Öffne den rstatszh-k010 Arbeitsbereich (Workspace) für den Kurs.
- 3. Klicke auf Continue neben md-04-uebungen.
- 4. Suche im Dateimanager im Fenster unten rechts die Datei 03-datenimport-ihr.qmd und klicke darauf, um sie im Fenster oben links zu öffnen.
- 5. Folge den Anweisungen in der Datei.

Zeitpuffer: Modul 4

- 1. Die Lernenden können Daten aus Dateien im CSV und XLSX-Format importieren, die sich in Unterverzeichnissen des Stammverzeichnisses, und auf GitHub, befinden.
- 2. Die Lernenden können den Unterschied zwischen drei Arten von Daten erörten: (1) unverarbeitete Rohdaten; (2) verarbeitete, analysefähige Daten, und (3) Daten, die einer Veröffentlichung zugrunde liegen.
- 3. Die Lernenden können die Anwendung der Git Befehle clone, commit, push beschreiben.
- 4. Die Lernenden können die Begriffe local und remote Repository unterscheiden.

Welche Konzepte kann ich nochmals erklären?

Zusatzaufgaben Modul 4

Modul 4 Dokumentation

<u>rstatszh-k010.github.io/website/module/md-</u> <u>04.html</u>

Zusatzaufgaben Abgabedatum

- Abgabedatum: Montag, 24. März
- Korrektur- und Feedbackphase bis zu: Donnerstag, 27. März

Danke

Folien erstellt mit revealjs und Quarto:

https://quarto.org/docs/presentations/revealjs/

Access slides als PDF auf GitHub

Alle Materialien sind lizenziert unter <u>Creative Commons</u> <u>Attribution Share Alike 4.0 International</u>.