**Data Visualization and Pre-processing ASSIGNMENT 2** 

| DATE         | 26 SEPTEMBER 2022.                                        |
|--------------|-----------------------------------------------------------|
| TEAM ID      | PNT2022TMID38677                                          |
| PROJECT NAME | Fertilizers Recommendation System for Disease Prediction. |
| NAME         | S.Dhatchayani                                             |

## 1.Download the dataset

## 2.Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plot
import seaborn as sns
data-pd.read_csv('Churn_Modelling.csv')
```

## 3. perform below visualization

- Univarient
- Bi-varient
- Multi-variant





# 4.Perform the descriptive statistics on the database



## 5. Handle the missing values



## 6. Find the outliers and replace the outliers



7. Check the categorical columns and perform encoding



8. Split the dataset into independent and dependent variables.

```
x = deta.iloc[:,0:10]
y = deta.iloc[:,10]
print(x.shepe)
print(y.shepe)
(7667, 10)
```

9. Scale the independent variable



10. Split the data into training and testing.

```
from sklearn.model_malection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_min=0.25,random_malect=0)
print("x_train.shape: ",x_train.shape)
print("y_train.shape: ',x_train.shape)
print("y_test.shape: ',x_test.shape)

x_train.shape: ($750, 2856)
y_train.shape: ($750,)
x_test.shape: ($250,)
x_test.shape: ($250,)
y_train.shape: ($250,)
y_test.shape: ($250,)
```