日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 6月 9日

出 願 番 号 Application Number:

特願2004-171001

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-171001

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

株式会社クラレ

Applicant(s):

2005年 6月15日

特許庁長官 Commissioner, Japan Patent Office 【書類名】 特許願 【整理番号】 K02520AP00 平成16年 6月 9日 【提出日】 特許庁長官殿 【あて先】 CO8L 29/04 【国際特許分類】 【発明者】 岡山県倉敷市酒津1621番地 株式会社クラレ内 【住所又は居所】 【氏名】 谷本 征司 【発明者】 【住所又は居所】 岡山県倉敷市酒津1621番地 株式会社クラレ内 【氏名】 藤原 直樹 【特許出願人】 【識別番号】 000001085 【氏名又は名称】 株式会社クラレ 【代表者】 和久井 康明 【電話番号】 086-425-3026 【手数料の表示】 【予納台帳番号】 008198 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書
 !

 【物件名】
 要約書
 !

【書類名】特許請求の範囲

【請求項1】

エボキシ基を有するビニルモノマー単位(A)を少なくとも20重量%含有する重合体およびビニルアルコール系重合体(B)からなり、重量比(A)/(B)が2/100~200/100であり、(B)に結合した(A)の重量割合が(A)の全重量に対して50%以上であり、かつ動的光散乱法による平均粒子径が500nm以下である樹脂の水性分散液。

【請求項2】

ビニルアルコール系重合体(B)が、分子内に炭素数4以下のαーオレフィン単位を1~20モル%含有し、けん化度80モル%以上のビニルアルコール系重合体である請求項1記載の水性分散液。

【請求項3】

αーオレフィン単位がエチレン単位である請求項2記載の水性分散液。

【請求項4】

ビニルアルコール系重合体(B)が、1、2ーグリコール結合を1、9モル%以上含有し、けん化度70モル%以上のビニルアルコール系重合体である請求項1記載の水性分散液。

【請求項5】

ビニルアルコール系重合体(B)が、分子内に炭素数 4 以下の α ーオレフィン単位を 1 ~ 2 0 モル % 含有し、かつ α ーオレフィン単位の含有量を X モル % とするとき、 1 , 2 ー グリコール結合を (1.7-X/40) ~ 4 モル % 含有するビニルアルコール系重合体である請求項 1 記載の水性分散液。

【請求項6】

請求項1~5のいずれかに記載の水性分散液(a)に耐水化剤(b)を配合した組成物

【請求項7】

耐水化剤(b)が、多価カルボン酸である請求項6記載の組成物。

【請求項8】

請求項1~7のいずれかに記載の水分散液または組成物を乾燥して得た樹脂粉末。

【書類名】明細書

【発明の名称】水性分散液および組成物

【技術分野】

[0001]

本発明は、室温下での乾燥においても、耐水性および透明性に優れた皮膜を形成し、かつ貯蔵安定性に優れたポリビニルアルコール系水性分散液および組成物に関する。

【背景技術】

[0002]

従来、ビニルアルコール系重合体(以下ビニルアルコール系重合体をPVAと略記する ことがある)は各種バインダー、接着剤あるいは表面処理剤として広く使用されており、 造膜性および強度において他の水溶性樹脂の追随を許さぬ優れた性能を有することが知ら れている。しかしながら、PVAは水溶性であるため、耐水性、特に低温で乾燥する場合 の耐水性が悪いという欠点があり、従来、この欠点を改良するために種々の方法が検討さ れてきた。例えばPVAをグリオキザール、グルタルアルデヒドあるいはジアルデヒドデ ンプン、水溶性エポキシ化合物、メチロール化合物等で架橋させる方法が知られている。 しかしながら、この方法でPVAを十分耐水化するためには100℃以上、特に120℃ 以上の高温で長時間熱処理することが必要である。また低温下での乾燥により耐水化する ためには、例えばpH2以下というような強酸性条件を用いることも知られているが、こ の場合にはPVA水溶液の粘度安定性が悪く、使用中にゲル化する等の問題点を有してい る上、耐水性が不十分であるという欠点を有している。さらに、カルボキシル基含有PV Aをポリアミドエピクロルヒドリン樹脂で架橋させる方法、アセトアセチル基含有PVA をグリオキザール等の多価アルデヒド化合物で架橋させる方法等も知られているが、これ らの方法でも、耐水性が不十分であり、PVA水溶液の粘度安定性が悪い等の問題点を有 している。

[0003]

また、エポキシ基を有するビニルモノマー単位を 0.5~10重量%含有する重合体エマルジョンに PVA を配合したエマルジョン接着剤も知られているが(特許文献 1)、このエマルジョン接着剤は、エポキシ基を有するビニルモノマー単位の含有量が少量であり、後述する比較例 6 に示すとおり、室温で乾燥する場合、充分な耐水性および透明性を付与することができない。

また、PVAを乳化剤とし、エポキシ基を有するビニルモノマー単位を 0.3~5 重量 % 含有する酢酸ビニル系重合体を分散質とする水性接着剤も知られているが(特許文献 2)、この水性接着剤についても、エポキシ基を有するビニルモノマー単位の含有量が少量であり、後述する比較例 7 に示すとおり、室温で乾燥する場合、充分な耐水性を付与することができないし、透明性も悪い。

また、水性媒体中において、エポキシ樹脂にカルボキシル基などの官能基を有するPVAを反応させて得たエマルジョン(特許文献3)、およびこのエマルジョンに耐水化剤を配合した水性コーティング剤(特許文献4)も知られているが、ここで使用するエポキシ樹脂の使用量はPVA100重量部に対し500~50000重量部と多量であるため、比較例8に示すとおり、充分な貯蔵安定性を付与することができないし、透明性も悪い。

また、PVAを乳化剤とする水性エマルジョンにエポキシ化合物を配合した組成物も知られているが(特許文献 5)、このエマルジョンは比較例 9 に示すとおり、エポキシ化合物の使用量が多く、さらにPVAに結合したエポキシ化合物の重量割合がエポキシ化合物の全重量に対して 5 0 重量%を下回るため、室温で乾燥する場合、充分な耐水性および貯蔵安定性を付与することができないし、さらに透明性も悪い。

【特許文献1】特開平8-48958号公報(特許請求の範囲)

【特許文献 2】 特開平 1 0 - 3 6 8 0 1 号公報 (特許請求の範囲、 [0 0 0 8] 、 [0 0 1 3])

【特許文献3】特開2000-239350号公報(特許請求の範囲、[0012]) 【特許文献4】特開2000-290538号公報(特許請求の範囲、【0012】

【特許文献 5 】 特開平 1 0 - 2 1 9 0 6 8 号公報 (特許請求の範囲、 [0 0 2 4]) 【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明は、上記の従来技術の欠点を解消したものであり、室温下での乾燥においても耐水性および透明性に優れる皮膜が得られ、かつ貯蔵安定性に優れたPVA系水性分散液およびその組成物を提供することを目的とするものである。

【課題を解決するための手段】

[0005]

上記目的は、エポキシ基を有するビニルモノマー単位(A)を少なくとも20重量%含有する重合体およびビニルアルコール系重合体(B)からなり、重量比(A)/(B)が2/100~200/100であり、(B)に結合した(A)の重量割合が(A)の全重量に対して50%以上であり、かつ動的光散乱法による平均粒子径が500nm以下である樹脂の水性分散液を提供することによって達成される。

また、上記目的は、上記の水性分散液に耐水化剤を配合した組成物を提供することによってより好適に達成される。

【発明の効果】

[0006]

本発明によれば、室温下での乾燥においても耐水性および透明性に優れる皮膜が得られ、かつ貯蔵安定性にも極めて優れた水性分散液を得ることができる。また、本発明の水性分散液に耐水化剤を含有させることによって、さらに耐水性、貯蔵安定性が向上する。

【発明を実施するための最良の形態】

[0007]

本発明において、エポキシ基を有するビニルモノマーとしては、アリルグリシジルエー テル、メタリルグリシジルエーテル、1,2-エポキシー5-ヘキセン、1,2-エポキ シー7ーオクテン、1,2ーエポキシー9ーデセン、8ーヒドロキシー6,7ーエポキシ ー1-オクテン、8-アセトキシー6,7-エポキシー1-オクテン、N-(2,3-エ ポキシ) プロピルアクリルアミド、N-(2,3-エポキシ) プロピルメタクリルアミド 、 4 ーアクリルアミドフェニル グリシジルエーテル、 3 ーアクリルアミドフェニル グリシ ジルエーテル、4ーメタクリルアミドフェニルグリシジルエーテル、3ーメタクリルアミ ドフェニル グリシジルエーテル、N- グリシドキシメチルア クリルアミド、N- グリシド キシメチルメタクリルアミド、N-グリシドキシエチルアクリルアミド、N-グリシドキ シエチルメタクリルアミド、N-グリシドキシプロピルアクリルアミド、N-グリシドキ シプロピルメタクリルアミド、N-グリシドキシブチルアクリルアミド、N-グリシドキ ジブチルメタクリルアミド、4ーアクリルアミドメチルー2,5ージメチルーフェニルグ リシジルエーテル、4ーメタクリルアミドメチルー2,5ージメチルーフェニルグリシジ ルエーテル、アクリルアミドプロピルジメチル(2,3一エポキシ)プロピルアンモニウ ムクロリド、メタクリルアミドプロピルジメチル(2,3一エポキシ)プロピルアンモニ ウムクロリド、メタクリル酸グリシジルなどが挙げられるが、特にメタクリル酸グリシジ ルが好ましく用いられる。

[0008]

本発明においては、上記エポキシ基を有するビニルモノマー単位(A)を少なくとも全モノマーに対し20重量%含有する重合体(C)を使用することが重要である。エポキシ基を有するビニルモノマー単位の含有量が20重量%未満では、目的とする室温下での乾燥において耐水性および透明性に優れた皮膜が得られないし、また貯蔵安定性にも優れた水性分散液を得ることができない。エポキシ基を有するビニルモノマー単位(A)の好適な含有量は $50\sim100$ 重量%、最適には $80\sim100$ 重量%である。エポキシ基を有するビニルモノマーと共重合する単量体しては、エポキシ基を有するビニルモノマーと共重

合するものであれはとくに制限されないが、エチレン、プロピレン、nープテン、イソプ チレンなどのαーオレフィン、アクリル酸およびその塩、アクリル酸メチル、アクリル酸 エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、ア クリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル 酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類、メタクリル酸および その塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタク リル酸iープロピル、メタクリル酸nープチル、メタクリル酸iーブチル、メタクリル酸 t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オ クタデシルなとのメタクリル酸エステル類、アクリルアミド、Nーメチルアクリルアミド 、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルア ミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチ ルアミンおよびその塩またはその4級塩、N-メチロールアクリルアミドおよびその誘導 体などのアクリルアミド誘導体、メタクリルアミド、Nーメチルメタクリルアミド、Nー エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリ ルアミドプロビルジメチルアミンおよびその塩またはその 4 級塩、Nーメチロールメタク リルアミドおよびその誘導体などのメタクリルアミド誘導体、メチルピニルエーテル、エ チルビニルエーテル、nープロピルビニルエーテル、iープロピルビニルエーテル、nー ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシ ルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類、アクリロニトリ ル、メタクリロニトリルなどのニトリル類、塩化ビニル、フッ化ビニルなどのハロゲン化 ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン、酢酸アリル、 塩化アリルなどのアリル化合物、マレイン酸およびその塩またはそのエステルまたはその 無水物、ビニルトリメトキシシランなどのビニルシリル化合物、酢酸イソプロペニルなど が挙げられる。

[0009]

本発明に用いられるPVA(B)のけん化度について特に制限はないが、本発明の目的達成のためには、好ましくは50 モル%以上、さらに好ましくは60 モル%以上、最適には70 モル%以上である。けん化度があまり低すぎると、PVAが本来有する性質である水溶性が低下する恐れがある。またPVA(B)の重合度についても特に制限はないが、本発明の目的達成のためには、好ましくは100 ~8000、さらに好ましくは200 ~3000、最適には250 ~2500である。重合度があまり小さすぎると、PVAの分散安定剤としての機能が充分発揮されない恐れがある。

[0010]

本発明において、PVA(B)は、ビニルエステル系単量体を重合し、得られた重合体をけん化することによって得ることができる。ビニルエステル系単量体を重合する方法としては、溶液重合法、塊状重合法、懸濁重合法、乳化重合法など、従来公知の方法が適用できる。重合触媒としては、重合方法に応じて、アゾ系触媒、過酸化物系触媒、レドックス系触媒などが適宜選ばれる。けん化反応は、従来公知のアルカリ触媒または酸触媒を用いる加アルコール分解、加水分解などが適用でき、この中でもメタノールを溶剤とし苛性ソーダ(NaOH)触媒を用いるけん化反応が簡便であり最も好ましい。

[0011]

ビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、バルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどが挙げられるが、とりわけ酢酸ビニルが好ましい。

[0012]

また、本発明において用いられるPVA(B)は、本発明の主旨を損なわない範囲で他の単量体単位を含有しても差し支えない。このような単量体として、上記したエポキシ基を有するビニルモノマーと共重合する単量体として例示したものと同様のもの、例えば、

αーオレフィンなとが挙げられる。

[0013]

PVA(B)として、分子内に炭素数4以下の α ーオレフィン単位を $1\sim20$ モル%含有するビニルアルコール系重合体(α ーオレフィン変性PVAと略記することがある)を用いることは好ましい態様のひとつである。該PVAを用いることで耐水性がさらに向上する。 α ーオレフィン変性PVAは、ビニルエステルと炭素数4以下の α ーオレフィンとの共重合体をけん化することにより得ることができる。ここで炭素数4以下の α ーオレフィン単位としては、エチレン、プロピレン、プチレン、イソプチレン単位が挙げられるが、エチレン単位が好ましく用いられる。

エチレン単位を代表とする α ーオレフィン単位の含有量は、 $1\sim20$ モル%であることが好適であり、より好ましくは1. 5 モル%以上、さらに好ましくは2 モル%以上であり、また好ましくは1 5 モル%以下、さらに好ましくは1 5 モル%以下である。エチレン単位を代表とする α ーオレフィン単位がこの範囲にある時、より優れた耐水性を付与することができる。

$\{0\ 0\ 1\ 4\ \}$

この重合体の製法としては、例えば、1, 2- グリコール結合量が上記の範囲内の値になるように、ビニレンカーボネートをビニルエステルおよびエチレンと共重合した後、けん化する方法、エチレンとビニルエステル系単量体を共重合する際に、重合温度を通常の条件より高い温度、例えば $75\sim200$ Cとして加圧下に重合した後、けん化する方法などが挙げられる。後者の方法において、重合温度は好ましくは $5\sim190$ Cであり、さらに好ましくは $100\sim160$ Cである。

[0015]

この場合、1, 2- グリコール結合の含有量は、(1.7-X/40) モル%以上であることが好ましく、より好ましくは(1.75-X/40)モル%以上、さらに好ましくは(1.8-X/40)モル%以上であり、最適には(1.9-x/40)モル%以上である。また、1,2- グリコール結合の含有量は4 モル%以下であることが好ましく、さらに好ましくは3.5 モル%以下、最適には3.2 モル%以下である。ここで1,2- グリコール結合の含有量は1 NMR スペクトルの解析から求められる。

[0016]

さらに、本発明においては、PVA(B)として、1, 2-グリコール結合を1. 9 モル%以上有するPVA(高1, 2-グリコール結合含有PVAと略記することがある)を用いることも好ましい態様のひとつである。該PVAを用いることでPVA(B) に結合するエポキシ基を有するビニルモノマー単位(A)の割合が増加する。

このような1、2ーグリコール結合の含有量の高いPVAの製造方法としては特に制限はなく、公知の方法が使用可能である。一例として、1、2ーグリコール結合量が上記の範囲内の値になるようにビニレンカーボネートをビニルエステルと共重合する方法、ビニルエステルの重合温度を通常の条件より高い温度、例えば75~200℃として加圧下に重合する方法などが挙げられる。後者の方法においては、重合温度は95~190℃であることが特に好ましい。また加圧条件としてよることが好ましく、100~180℃であることが特に好ましい。また加圧条件としては、重合系が沸点以下になるように選択することが重要であり、好適には0.2MPa以上である。また上限は5MPa以下が好適であり、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、2 回りが過である。上記の重合法が好適である。このようにしてきるが表面合法、窓ったとの方法によりけん化することにより1、2ーグリコール結合の含有量の高いPVAが得られる。PVAの1、2ーグリコール結合の含有量の高いPVAが得られる。PVAの1、2ーグリコール結合量が上記がよりによります。

モル%以上であることが好適であり、より好ましくは1.95モル%以上、さらに好ましくは2.0モル%以上、最適には2.1モル%以上である。また、1,2ーグリコール結合の含有量は4モル%以下であることが好ましく、さらに好ましくは3.5モル%以下、最適には3.2モル%以下である。ここで、1,2ーグリコール結合の含有量はNMRスペクトルの解析から求められる。

[0017]

本発明において、重合体(C)中のエポキシ基を有するビニルモノマー単位(A)とP VA(B) の重量比(A)/(B)は2/100~200/100であることが重要であり、より好ましくは3/100~180/100、最適には7/100~70/100である。重量比(A)/(B)があまり小さすぎると、耐水性を十分に付与できない。一方、(A)と(B)の重量比(A)/(B)があまり高すぎると、得られるP VA 系水性分散液の貯蔵安定性が低下する。重合体(C)とP VA (B)の重量比(C)/(A)はとくに制限されないが、2/100~300/100の範囲から選ぶのが好適である。

[0018]

本発明において、重合体(C)中のエポキシ基を有するビニルモノマー単位(A)がPVA(B)と結合している割合 $\{$ (A)の全重量に対する(B)に結合した(A)の重量割合 $\}$ (以下(A)の結合割合と記す)が50%以上であることも重要であり、好ましくは60%以上、より好ましくは70%以上、最適には80%以上である。(A)の結合割合がこの範囲を満足する場合、優れた耐水性、透明性、貯蔵安定性を付与することができる。ここで、重合体(C)中のエポキシ基を有するビニルモノマー単位(A)の結合割合は、後述の実施例 1 に記載の方法により測定される。

[0019]

本発明の水性分散液の樹脂の粒子径は、動的光散乱法による測定値が500nm以下であることが重要であり、好ましくは400nm以下、より好ましくは300nm以下、最適には200nm以下である。平均粒子径が500nmをこえた場合、耐水性は充分付与されないし、また貯蔵安定性も低下する懸念が生じる。下限値はとくに限定されないが、20nm以上、さらには50nm以上が好適である。動的光散乱法による測定は、例えば、大塚電子(株)製のレーザーゼータ電位計ELS-8000等により行うことができる。水性分散液の樹脂の粒子径は、(A)と(B)の重量比、さらには水性分散液の製造条件(重合温度、重合時間、単量体、重合開始剤、分散剤の添加時期、連鎖移動剤の使用量など)を適宜選択することによって調整される。

[0020]

本発明の水性分散液の製法としては、特に制限されないが、例えばPVA(B)の水溶液を分散剤に用い、エポキシ基を有するビニルモノマーを一時又は連続的に添加し、過酸化水素、過硫酸アンモニウムおよび過硫酸カリウム等の過酸化物系重合開始剤等の重合開始剤を添加し、乳化重合する方法が挙げられる。前記重合開始剤は還元剤と併用し、レドックス系で用いられる場合もある。その場合、通常、過酸化水素は酒石酸、酒石酸ナトリウム、Lーアスコルビン酸、ロンガリットなどと共に用いられる。また、過硫酸アンモニウム、過硫酸カリウムは亜硫酸水素ナトリウム、炭酸水素ナトリウムなどとともに用いられる。中でも過酸化水素を用いた場合に、上記した(A)の結合割合が増加するため好適に用いられる。

[0021]

このようにして得られた水性分散液は、重合後そのまま用いることもできるし、また乾燥、好適には噴霧乾燥して粉末化し、それをそのまま、または使用時に再乳化して用いることもできる。乾燥して得られる粉末は、粉末同士のブロッキングがなく、また再乳化する際凝集も見られず再分散性に優れている。噴霧乾燥には、流体を噴霧して乾燥する通常の噴霧乾燥が使用できる。噴霧の形式により、ディスク式、ノズル式、衝撃波式などがあるが、いずれの方法でも良い。また、熱源としても、熱風や加熱水蒸気等が用いられる。乾燥条件は、噴霧乾燥機の大きさや種類、水性樹脂分散液の濃度、粘度、流量等によって適宜選択すればよい。乾燥温度は、100℃~150℃が適当であり、この乾燥温度の範

囲内で、十分に乾燥した粉末が得られるように、他の乾燥条件を設定することが望ましい

[0022]

本発明においては、上記水性水分散液(または乾燥粉末)(a)に、耐水化剤(b)を配合し、組成物として用いることも好ましい態様のひとつである。耐水化剤を用いることで耐水性をより向上させることが可能となる。

[0023]

耐水化剤(b)としては特に制限されないが、アミン化合物、チオール化合物、ジシアンジアミド、酸無水物、イミダゾール類および多価カルボン酸から選はれる少なくとも一種の硬化剤である。中でも多価カルボン酸が安全性の観点から好適に用いられる。

アミン化合物としては、エチレンジアミン、1,2ープロピレンジアミン、1,3ープ ロビレンジアミン、1,4ープチレンジアミン、ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、 トリエチレントリアミン、テトラエチレンペンタミン、ジプロピレントリアミン、ジメチ ルアミノプロピルアミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン類、メン センジアミン、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、N - 3 - アミノプロピルシクロヘキシルアミン、1 , 4 - ジアミノシクロヘキサン、2 , 4 ージアミノシクロヘキサン、ビス(アミノシクロヘキシル)メタン、1,3一ビス(アミ ノシクロヘキシルプロパン)、ビス(3ーメチルー4ーアミノシクロヘキシル)メタン、 1,4-ビス(エチルアミノ)シクロヘキサン等の脂環族ポリアミン類、m-キシリレン シアミン、pーキシリレンシアミン、4-(1-アミノエチル) アニリン、メタフェニレ ンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ビス(3ーエチ ルー4ーアミノー5ーメチルフェニルメタン)、1,4ービス[2-(3,5ージメチル - 4 - アミノフェニル)プロピル**]** ベンゼン等の芳香族ポリアミン類、N-アミノエチル ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン等のヘテロ環族ポリアミン 類などのポリアミン系硬化剤、これらポリアミン類とダイマー酸などのジカルボン酸を定 法によって反応させて得られるポリアミドポリアミン硬化剤などが挙げられる。

[0024]

アミン化合物として、第3アミンも使用できる。第3アミンとしては、特に制限はないが、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデカンなどが主に用いられる。

チオール化合物としては、メルカプト基を2つ以上有する化合物であれば特に制限はない。このような化合物としては、例えば油化シェルエポキシ(株)製Capcure3-800、CapcureWR-6、EpomateQX-11、EpomateQX-40、旭電化工業(株)製アデカハードナーEH316、アデカハードナーEH317等が挙げられる。

酸無水物としては、ドデセニル無水コハク酸、ボリアジピン酸無水物ボリアゼライン酸無水物、ボリセバシン酸無水物、ボリ(エチルオクタデカンニ酸)無水物、ボリ(フェニルへキサデカンニ酸)無水物等の脂肪族酸無水物、メチルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロへキセンジカルボン酸無水物等の脂環族酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメリテート等の芳香族酸無水物等が挙げられる。

イミダゾール化合物も特に制限されないが、2-メチルイミダゾール、2-エチル-4 -メチルイミダゾール、2-フェニルイミダゾールなどが挙げられる。

多価カルボン酸としては、酒石酸、クエン酸、エリソルビン酸、L―アスコルビン酸、乳酸、グルコン酸、DL―リンゴ酸などが挙げられ、酒石酸、クエン酸等が好ましく用いられる。

[0025]

水性分散液(a)と耐水化剤(b)との重量配合比率 [(a)/(b)] (固形分換算)は特に制限されないが、通常、99.9/0. $1\sim50/50$ であり、好ましくは99.5/0. $5\sim70/30$ である。(a)/(b)が99.9/0.1を超える場合には耐水性向上効果が見られない場合があり、50/50未満の場合には組成物の貯蔵安定性が低下する懸念がある。

[0026]

本発明の水性分散液または組成物には、必要に応じて溶媒、各種添加剤、他の水溶性樹脂あるいは高分子水性分散体等を含有させることができる。溶媒としては水が好ましく用いられるが、これに各種アルコール、ケトン、ジメチルホルムアミド、ジメチルスルホキシド等の溶媒を併用して用いることもでき、また添加剤としては、各種消泡剤、各種分散剤、ノニオン性あるいはアニオン性界面活性剤、シランカップリング剤、pH調節剤あるいは炭化カルシウム、クレー、タルク、小麦粉などの充填剤等が挙げられる。水溶性樹脂としてはカルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、ボリ(メタ)アクリル酸、ボリヒドロキシ(メタ)アクリレートまたはその共重合体、ボリアクリルアミド等の(メタ)アクリル系重合体、ボリビニルピロリドンまたはその共重合体等が挙げられる。高分子水性分散体としてはアクリル重合体及び共重合体、エチレン一で酸ビニル共重合体、ビニルエステル系重合体及び共重合体、スチレンーブタジエン共重合体等の水性分散体が挙げられる。

[0027]

以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、以下の実施例において「%」および「部」は特に断りのない限り、「重量%」および「重量部」を意味する。

【実施例】】

[0028]

還流冷却器、温度計、窒素吹込口を備えた 2 リットルガラス製重合容器に、イオン交換水 9 0 0 g 、 P V A -1 { 重合度 1 7 0 0 、 けん化度 9 8 . 5 モル%:(株)クラレ製 P V A -1 1 7 1 1 0 0 g を仕込み 9 5 C で完全に溶解した。次に、この P V A 水溶液を冷却し、窒素置換後、 <math>1 3 0 r p m で撹拌しなから、 6 0 C に調整した後、メタクリル酸グリシジル 2 5 g 、酒石酸 + トリウムの 1 0 % + 水溶液を 5 g 仕込んだ。その後、 0 . 5 % 過酸化水素水 5 0 g を 3 時間にわたって連続的に滴下し、乳化重合を行った。 3 時間後、固形分が 1 1 . 9 6 % (メタクリル酸 グリシジルの重合率 9 9 . 7 %)の樹脂の水性分散液が得られた。得られた水性分散液を以下の方法により評価した。

(1)皮膜の耐水性

水性分散液を20 C65 RH下で、ポリエチレンテレフタレート(以下、PETと略称する)フィルム上に流延し、 $7日間、室温下に、乾燥させて<math>500 \mu m$ の乾燥皮膜を得た。この皮膜を直径2.5cmに打ち抜き、それを試料として20 Cの水に24時間浸漬した場合の、皮膜の吸水率、溶出率を求めた。

吸水率(%):{(浸漬後の皮膜吸水重量/浸漬前の皮膜絶乾重量)-1}×100

溶出率 (%): { 1 - (浸漬後の皮膜絶乾重量/浸漬前の皮膜絶乾重量)} ×100

*浸漬前の皮膜絶乾重量;浸漬前の皮膜重量(含水)-{浸漬前の皮膜重量(含水)×皮膜含水率(%)/100}

*皮膜含水率:皮膜(20℃水に浸漬する試料とは別の試料)を、105℃、4時間で絶乾し、皮膜の含水率をあらかじめ求める。

*浸漬後の皮膜絶乾重量:浸漬後の皮膜を105℃、4時間で絶乾した重量。

*浸漬後の皮膜吸水重量:浸漬後の皮膜を水中から引き上げた後、皮膜についた水分をガーゼで拭き取り秤量。

(2) 貯蔵安定性

水性分散液を40℃に1週間放置し、目視により粘度変化を観察し、以下の基準により 評価した。

○変化なし、△流動性あるかやや増粘、Xゲル化・

(3) 粒子径の測定

水性分散液をイオン交換水により0.05%に希釈し、DLS平均粒子径を大塚電子製ELS-8000を用いて測定した。

(4) エポキシ基を有するビニルモノマー単位(A) の結合割合

水性分散液を20℃65%RH下で、PETフィルム上に流延し、7日間乾燥させて厚さ500μmの乾燥皮膜を得た。この皮膜を直径2.5cmに打ち抜いたものを試料として、アセトンにて24時間ソックスレー抽出し、抽出物分から(A)の結合割合を求めた

(A)の結合割合(%) = {1-(抽出物の絶乾重量/皮膜中の(A)の全重量)} X 100

抽出物の皮膜絶乾重量:抽出物を105℃、4時間で絶乾した重量。

(5)透明性

水性分散液を20℃65%RH下で、PETフィルム上に流延し、7日間乾燥させて厚さ500μmの乾燥皮膜を得た。皮膜の透明性を目視により以下の基準で評価した。

○:透明、△:やや白濁、X:白濁

【実施例2】

[0029]

実施例1で用いたPVA-1に代えてPVA-2(重合度1700、けん化度98モル%、エチレン含有量5モル%)を用いた他は、実施例1と同様にして、固形分11.95%の水性分散液を得た。

【実施例3】

[0030]

実施例1で用いたPVA-1に代えてPVA-3(重合度1000、けん化度99.2 モル%、エチレン含有量7モル%)を用いた他は、実施例1と同様にして、固形分11. 9%の水性分散液を得た。

[0031]

比較例1

実施例1で用いたPVA-1水溶液をそのまま評価した。

[0032]

比較例2

実施例3で用いたPVA-3水溶液をそのまま評価した。

【実施例4】

[0033]

還流冷却器、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水900g、PVA—4{重合度1700、けん化度88モル%:(株)クラレ製PVA—217} 100gを仕込み95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、130rpmで撹拌しながら、60℃に調整した後、メタクリル酸グリシジル50g、酒石酸ナトリウムの10%水溶液を5g仕込んだ。その後、0.5%過酸化水素水50gを3時間にわたって連続的に滴下し、乳化重合を行った。3時間後、固形分が14.8%の水性分散液が得られた。得られた水性分散液に固形分100gに対し、耐水化剤として酒石酸の20%水溶液100gを配合し、組成物を調製した。該組成物の評価を実施例1と同様に行い、結果を併せて表1に示す。

【実施例5】

[0034]

還流冷却器、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水1850g、PVA-4 100gを仕込み95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、130rpmで撹拌しながら、60℃に調整した後、メタクリル酸グリシジル150g、酒石酸ナトリウムの10%水溶液を5g仕込んだ。その後、0.5%過酸化水素水50gを3時間にわたって連続的に滴下し、乳化重合を行った。3時間後、固形分が12.5%の水性分散液が得られた。得られた水性分散液の固形分1

00gに対し、耐水化剤として酒石酸の20%水溶液100gを配合し組成物を調製した。該組成物の評価を実施例1と同様に行い、結果を併せて表1に示す。

[0035]

比較例3

還流冷却器、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水2900g、PVA-4 100gを仕込み95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、130rpmで撹拌しなから、60℃に調整した後、メタクリル酸グリシジル500g、酒石酸ナトリウムの10%水溶液を5g仕込んだ。その後、0.5%過酸化水素水50gを3時間にわたって連続的に滴下し、乳化重合を行った。3時間後、固形分か19.7%の水性分散液が得られた。得られた水性分散液の固形分100gに対し、耐水化剤として酒石酸の20%水溶液100gを配合し組成物を調製した。該組成物の評価を実施例1と同様に行い、結果を併せて表1に示す。

[0036]

比較例4

[0037]

比較例5

還流冷却器、温度計、窒素吹込口を備えた 2 リットルガラス製重合容器に、イオン交換水 2 9 0 0 g、P V A - 4 1 0 0 gを仕込み 9 5 $\mathbb C$ で完全に溶解した。次に、この P V A 水溶液を冷却、窒素置換後、 1 3 0 r p m で撹拌しなから、 6 0 $\mathbb C$ に調整した後、メタクリル酸 グリシジル 5 0 0 g、ラウリルメルカプタン 2 . 5 g、酒石酸 + トリウムの 1 0 % 水溶液を 5 g 仕込んだ。その後、 0 . 5 % 過酸化水素 水 5 0 g を 3 時間にわたって連続的に滴下し、乳化重合を行った。 3 時間後、固形分が 1 9 . 6 % の水性分散液が得られた。 得られた水性分散液の固形分 1 0 0 g に対し、耐水化剤として酒石酸の 2 0 % 水溶液 1 0 0 g を配合し組成物を調製した。該組成物の評価を実施例 1 と同様に行い、結果を併せて表 1 に示す。

【実施例6】

[0038]

実施例4で用いた酒石酸に代えてエチレンジアミンを同量用いた他は、実施例4と同様にして評価を行った。結果を併せて表1に示す。

【実施例7】

[0039]

【実施例8】

[0040]

実施例1で得られた水性分散液を120℃の熱風中に噴霧して乾燥し、平均粒径20μmの樹脂粉末を得た。得られた粉末同士のブロッキングは見られなかった。また、該粉末を水中に10%濃度で再分散したが、凝集は見られず再分散性は優れていた。得られた再分散液を実施例1と同様に評価した。結果を併せて表1に示す。

[0041]

比較例6

10リットルのオートクレープにP V A − 6 {重合度500、けん化度88モル%、(株) クラレ製PVA-205} の25%水溶液350g、PVA-4の10%水溶液72 1g、アルキルアリルポリエチレンオキシド(エチレンオキシド40モル)の70%水溶 液16.1g、酢酸ナトリウム塩の30%水溶液4.2g、硫酸第一鉄の1%水溶液7. 5g、ホルムアルデヒドスルホキシル酸ナトリウム2g及び水1400gを挿入、希釈し たリン酸を用いてpHを5に調節した。窒素で置換した後に酢酸ビニル2660gを反応 容器に挿入した。次に反応容器にエチレンで圧力を加えて47.7kg/cm²にし、5 0℃で15分間平衡にさせた。そして第三ブチルヒドロベルオキシド15gを水250g に溶解した水溶液及びアスコルビン酸10gを水250gに溶解した水溶液を3.5時間 かけて添加することにより重合を開始した。その後、水700g、PVA-6の25%水 溶液50g、PVA-4の10%水溶液100g、アルキルアリルポリエチレンオキシド (エチレンオキシド40モル%)の70%水溶液5.4g、酢酸ビニル1140g、N-ビニルホルムアミド76g、グリシジルメタクリレート76g、アクリル酸76g及びブ チルアクリレート76gを含む乳化したプレミックスを開始剤と共に3時間かけて添加し た。内温を 7 5 ℃に調整して重合を行い、エチレンの圧力は 8 4 k g / c m ² に昇圧、 2 時間保持した。開始剤を添加後、30リットルの容器に移し減圧下、未反応のエチレンを 除去した。得られた重合体中のグリシジルメタクリレート単位(A)の含有量は1.5重 量%であった。実施例1と同様に評価を行った結果を併せて表1に示す。

[0042]

比較例7

温度計、攪拌機、冷却器、滴下漏斗を備えた4つロフラスコに常温で脱イオン水429.6g、PVA-4 17gを仕込み80℃で2時間かけて溶解した。その後、70℃まで冷却し、酢酸ビニル52.4gおよびグリシジルメタクリレート1gの混合モノマーと、過硫酸カリウム0.1gとを添加した。80℃に昇温し、酢酸ビニル472gおよびグリシジルメタクリレート9gの混合モノマーと脱イオン水30gおよび過硫酸カリウム9gの水溶液とを3時間にわたり滴下した後、さらに80℃で2時間維持し、室温に冷却することによりエマルジョンが得られた。得られた重合体中のグリシジルメタクリレート単位(A)の含有量は1.8重量%であった。該エマルジョンの評価を実施例1と同様に行った結果を併せて表1に示す。

[0043]

比較例8

アミノ基含有ポリピニルアルコール(ビニルホルムアミドと酢酸ビニルを共重合した後けん化して得たポリビニルアルコール:重合度350、けん化度98.5モル%、一級アミノ基含有量1.5モル%、PVA-7)の5%水溶液100gを20℃においてホモミキサーで強攬拌しなから、ビスフェノールA型エポキシ樹脂(エピコート828;油化シェルエポキシ製)100gを加え乳化し、エポキシ樹脂エマルジョンを得た。該エマルジョンの評価を実施例1と同様に行った結果を併せて表1に示す。

[0044]

比較例9

一級アミノ基含有PVA(重合度1000、けん化度97モル%、一級アミノ基含有量2.1モル%、ビニルホルムアミドと酢酸ビニルを共重合した後けん化して得たポリビニルアルコール、PVA—8)5gに水100gを加え、95℃でPVAを加熱溶解した。PVA水溶液を耐圧オートクレーブに仕込み、酢酸ビニル100gを添加して、窒素置換後、エチレンを40kg/cm²まで圧入した。次いで、内温を60℃に上げ、V-50

(和光純薬製) {2,2 'ーアゾビス(2ーメチルプロピオンアミジン)ジヒドロクロライド} の1%水溶液を逐次添加して共重合を行った。共重合は3時間で完了し、固形分濃度53.0%、粘度1120mPa·sの酢酸ピニル-エチレン共重合体エマルジョンを得た。該エマルジョンの100gに対して、エチレングリコールジグリシジルエーテルを5g添加し、水性エマルジョン組成物を調製した。これを用いて、実施例1と同様に行った結果を併せて表1に示す。

[0045]

	水性分散液(a)	枚液(a)							配水化剂 (b)	皮膜耐水性	大柱	貯蔵 安定性	透明性
	(B)	重合度けん化	けん化度(キルギ)	エチレン	1,2-9"1,2-1) (A) / (B) (B)	(A) / (B)	粒子径(nm)	(A)の結合 割合(%)		○ 公 本母 海出○ (%)○ (%)	HH Se		
実施例1	PVA-1	1700	98.5	-	1.6	25/100	120	92	-	250	9.6	0	0
実施例2	PVA-2	1700	86	5	1.5	25/100	110	94	_	160	6.7	0	0
実施例3	PVA-3	1000	99.2	7	1.5	25/100	170	06	l.	98	2.8	0	0
比較例1	PVA-1	1700	98.5	ı	1.6	0/100	ı	1	1	3400	75	0	0
比較例2	PVA-3	1000	99.2	7	1.6	0/100	-	I	-	250	11.2	×	0
実施例4	PVA-4	1700	88	l	1.6	50/100	06	95	酒石酸	360	16.4	0	0
実施例5	PVA-4	1700	88		1.6	150/100	230	78	酒石酸	380	17.1	0	0
比較例3	PVA-4	1700	88	-	1.6	500/100	550	45	酒石酸	510	34	△	0
比較例4	PVA-1	1700	98.5	1	1.6	250/100	240	55	酒石酸	480	32	٥	0
比較例5	PVA-4	1700	88	1	1.6	500/100	450	30	酒石酸	1580	54	۵	0
実施例6	PVA-4	1700	88	1	1.6	50/100	06	95	エチレンジアミン	350	14.5	△	0
実施例7	PVA-5	1700	86	,	2.2	50/100	0/	86	酒石酸	270	æ	0	0
実施例8	PVA-1	1700	98.5		1.6	25/100	120	92	1	260	0	0	0
比較例6	PVA-6 PVA-4	500 1700	88 88	1	1.6	41.7/100	1500	2	1	500	20	٥	×
比較例7	PVA-4	1700	88	ı	1.6	58.8/100	1600	3	1	550	23	۵	×
比較例8	PVA-7	320	98.5		1.6	500/100	2300	-	1	270	13	٥	×
比較例9	PVA-8	100	97	1	1.6	205/100	1600	-	_	350	15	×	×
									1				

【産業上の利用可能性】

[0046]

本発明の水性分散液および組成物は、室温下での乾燥においても耐水性および透明性に優れた皮膜を形成し、同時に貯蔵安定性にも極めて優れているため、紙用オーバーコート

剤、とりわけ高温で熱処理のできない感熱紙オーバーコート剤等に好適に使用される。また、合板二次加工用接着剤等の無機物あるいは有機物用接着剤、セラミックス用バインダー、顔料分散などの分散剤、架橋性エマルジョンの重合安定剤、ゼラチンブレンドあるいは感光性樹脂等の画像形成材料、菌体固定ゲルあるいは酵素固定ゲル等のハイドロゲル用基材、塗料用ビヒクル、無機質材料あるいは有機質材料の処理剤、たとえば表面コート剤にも有効に使用され、さらには、従来水溶性樹脂が使用されていた用途にも広範に使用できる。さらに、フィルム、シート、繊維などの成形物にも使用できる。

【書類名】要約書

【要約】

【課題】 室温下での乾燥においても耐水性および透明性に優れた皮膜を形成し、同時に 貯蔵安定性に優れたポリビニルアルコール系水性分散液および組成物を提供すること。

【解決手段】 エボキシ基を有するビニルモノマー単位(A)を少なくとも20重量%含有する重合体およびビニルアルコール系重合体(B)からなり、重量比(A)/(B)が2/100~200/100であり、(B)に結合した(A)の重量割合が(A)の全重量に対して50%以上であり、かつ動的光散乱法による平均粒子径が500nm以下である樹脂の水性分散液。

【選択図】 なし

0 0 0 0 0 0 1 0 8 5 19900809 新規登録 5 9 2 0 5 0 0 6 5

岡山県倉敷市酒津 1 6 2 1 番地 株式会社クラレ