1 Assiomi di separabilitá

Definizione 1.1. Uno spazio topologico X si dice T1 se

$$\forall x, y \in X \ x \neq y \quad \exists U, V \subseteq X \text{ aperti} \quad x \in U \backslash V \text{ e } y \in V \backslash U$$

Proposizione 1.1 (Definizione alternativa).

Sia X uno spazio topologico

$$X \not e T1 \Leftrightarrow i punti sono chiusi$$

Dimostrazione. $\overline{\{x\}} = \{y \in X \mid \text{ tutti gli interni che contengono } y \text{ contengono } x\}$ \Rightarrow Essendo X T1

$$\forall y \in X \ y \neq x \quad \Rightarrow \quad \exists U \subseteq X \text{ aperto che contieney tale che } x \not\in V \quad \Rightarrow \quad y \not\in \overline{\{x\}}$$

 \Leftarrow Sia $y \neq x$ allora $V = X \setminus \{x\}$ e $U = X \setminus \{y\}$ sono aperti in quanto i punti sono chiusi. Dunque U è un aperto che contiene x ma non Y e viceversa V contiene y ma non x.

Osservazione~1. Se τ è una topologia su X,allora τ soddisfaT1 se e solo se τ è più fine della topologia

Esercizio 1.2.

$$X \stackrel{.}{e} T1 \quad \Leftrightarrow \quad \{x\} = \bigcap_{U \in I(x)} U$$

Definizione 1.2. Uno spazio topologico X si dice T2 se

$$\forall x, y \in X \ x \neq y \quad \exists U, V \subseteq X \text{ aperti disgiunti} \quad x \in U \ y \in V$$

Definizione 1.3. Uno spazio topologico che verifica l'assioma T2 prende il nome di spazio di Hausdorff o spazio separato

Proposizione 1.3 (Definizione alternativa).

$$X \stackrel{.}{e} T2 \iff \Delta_X \subseteq X \times X \stackrel{.}{e} chiuso con la topologia di sottospazio$$

dove $\Delta_X = \{(x, x) \mid x \in X\}$ è la diagonale di X

Dimostrazione. \Rightarrow Sia $x \neq y$ allora $(x,y) \notin \Delta_X$.

Siano $U \in I(x)$ e $V \in I(y)$ disgiunti da cui

$$(x,y) \in U \times V \subset (X \times X) \setminus \Delta_X$$

ovvero $U \times V$ è un intorno di (x,y) dunque è aperto

 \Leftarrow Il complementare della diagonale è aperto allora se $x \neq y$

$$\exists U, V \subseteq X$$
 aperti tali che $(x, y) \in U \times V \subseteq (X \times X) \setminus \Delta_X$

inoltre U e V sono disgiunti (se $\exists z \in U \cap V$ allora $(z, z) \in U \times V$ e $(z, z) \in \Delta_X$ ma avevamo supposto che $U \times V$ fosse contenuto nel complementare della diagonale)

Esercizio 1.4.

$$X \stackrel{.}{e} T2 \quad \Leftrightarrow \quad \{x\} = \bigcap_{U \in I(x)} \overline{U}$$

Proposizione 1.5. Sia X uno spazio topologico allora $T2 \Rightarrow T1$

Dimostrazione. Se U,V sono aperti disgiunti tali che $x\in U$ e $y\in V$ allora, in particolare, $x\in U\backslash V$ e $y\in V\backslash U$

Proposizione 1.6. Sottospazi e prodotti arbitrati di T2 (risp. T1) sono ancora T2 (risp. T1)

Dimostrazione. Mostriamo che prodotti di T2 è T2

Consideriamo

$$X = \prod_{\alpha \in A} X_{\alpha}$$
 dove gli X_{α} sono $T2$

Sia $x \neq y$ allora $\exists a \in A$ tale che $x_a = x(a) \neq y(a) = y_a$.

Essendo X_a T2

$$\exists U_a \in I(x_a) \quad \exists V_a \in I(y_a) \quad \text{con } U_a \cap V_a = \emptyset$$

Sia

$$U = \prod_{\alpha \in A} U_{\alpha} \text{ dove } U_{\alpha} = \begin{cases} U_{a} \text{ se } \alpha = a \\ X_{\alpha} \text{ se } \alpha \neq a \end{cases} \qquad V = \prod_{\alpha \in A} V_{\alpha} \text{ dove } V_{\alpha} = \begin{cases} V_{a} \text{ se } \alpha = a \\ X_{\alpha} \text{ se } \alpha \neq a \end{cases}$$

Per come abbiamo definito una base della topologia prodotto U e V sono aperti in X inoltre essi sono disgiunti perchè U_a e V_a sono disgiunti

Osservazione 2. Se ho 2 topologie su X con $\tau_1 \subseteq \tau_2$

$$\tau_1 \stackrel{.}{e} T1(\text{risp. } T2) \implies \tau_2 \stackrel{.}{e} T1(\text{risp. } T2)$$

1.1 Alcune propietà di T2

Proposizione 1.7. Sia Y uno spazio T2 e $f: X \to Y$ una funzione continua, allora il grafico di f è chiuso ovvero

$$\Gamma_f = \{(x, f(x)) \mid x \in X\} \subseteq X \times X \ \ e \ un \ chiuso$$

Dimostrazione. Consideriamo la funzione

$$F: X \times Y \to Y \times Y \quad (x,y) \to (f(x),y)$$

essa è continua per come è stata definita la topologia prodotto e percè f è continua. Osserviamo che $F^{-1}(\Delta_X) = \Gamma_f$ dunque essendo la diagonale un chiuso, anche il grafico lo è \Box

Proposizione 1.8. Sia Y uno spazio T2 e f, $q: X \to Y$ continue allora

$$C = \{x \in X \mid f(x) = g(x)\} \ \ \grave{e} \ \ chiuso$$

Dimostrazione. Consideriamo la funzione

$$F: X \to Y \times Y \quad x \to (f(x), g(x))$$

essa è continua dunque $F^{-1}(\Delta_X)$ è chiuso essendo chiusa la diagonale ma $F^{-1}(\Delta_X) = C$

Corollario 1.9. Sia X uno spazio T2 e $f: X \to X$ continua, allora Fix(f) é chiuso

Dimostrazione. Basta porre $g = id_X$ e usare la proposizione precedente

Proposizione 1.10. Sia Y uno spazio T2 e $f, g: X \to Y$ continue. Sia $Z \subseteq X$ un denso tale che $f(z) = g(z) \ \forall z \in Z$. Allora f = g

Dimostrazione. Per la proposizione precedente $\{f(x) = g(x)\}$ è un chiuso, tale chiuso contiene un denso quindi contine la sua chiusura, ovvero, tutto lo spazio X

Proposizione 1.11. Sia X uno spazio T2 e $\{x_n\}_{n\in\mathbb{N}}$ una successione convergente. Il limite della successione è unico

Dimostrazione. Siano x, y due limiti della successione. Poichè la successione converge a x allora

$$\forall U \in I(x) \exists n_1 \in \mathbb{N} \quad \{x_n\} \subseteq U \quad \forall n \ge n_1$$

inoltre converge anche a y quindi

$$\forall V \in I(y) \exists n_2 \in \mathbb{N} \quad \{x_n\} \subseteq V \quad \forall n \ge n_2$$

quindi vale

$$\exists n_0 = \max\{n_1, n_2\} \quad \{x_n\} \subseteq V \cap U \quad \forall n \ge n_0$$

dunqe $\forall U \in I(x) \, \forall V \in I(y)$ accade $U \cap V \neq \emptyset$ ma ciò viola l'assioma T2

Definizione 1.4 (T3).

Uno spazio topologico X si dice T3 se

$$\forall C \subseteq X$$
 chisuo $\forall x \in X \setminus C$ $\exists U, V$ aperti disgiunti $x \in U$ $C \subseteq V$

Definizione 1.5. X è uno spazio topologico regolare se soddisfa T1 e T3

Definizione 1.6. Uno spazio topologico X si dice T4 se

$$\forall C, D \subseteq X$$
 chiusi disgiunti $\exists U, V \subseteq X$ aperti disgiunti $C \subseteq U$ $D \subseteq V$

Definizione 1.7. X è uno spazio topologico normale se soddisfa T1 e T4

Osservazione 3. Possiamo riformulare la condizione in T4 come segue:

Per ogni coppia di chiusi C, D, $\exists U \in X$ tale che

$$C \subseteq U \subseteq \overline{U} \subseteq X \backslash D$$

Infatti, in queste ipotesi U è un aperto che contenente C e $X \setminus \overline{U}$ è un aperto contenente D, inoltre i 2 aperti sono, in modo ovvio, disgiunti.

Se X è T4 allora $U \subseteq X \setminus V$ essendo U, V disgiunti.

Inoltre poichè $X \setminus V$ è un chiuso contenente U, contiene anche la sua chiusura dunque

$$U\subseteq \overline{U}\subseteq X\backslash V$$

concludiamo osservando che $D \subseteq V$ implica $X \setminus V \subseteq X \setminus D$

Possiamo fare un ragionamento analogo anche con T3

Proposizione 1.12. Sottospazi e prodotti di T3 sono T3

Dimostrazione. Mostriamo che sottospazi di T3 sono T3 l'altra è analoga a quella fatta nel caso di T2.

Sia X uno spazio vettoriale T3.

Siano $Z \subseteq X$ (con topologia di sottospazio), $z \in Z$ e $C \subseteq Z$ chiuso.

Dalla definizione di topologia di sottospazio

$$C$$
 chiuso $\Rightarrow \exists D \subseteq X$ chiuso $C = Z \cap D$

Ora essendo X T3

Proposizione 1.13. Un sottospazio chiuso di T4 è un T4

Dimostrazione. Sia X uno spazio T4 e $Z \subseteq X$ un chiuso.

Siano $C, D \subseteq Z$ chiusi disgiunti .

Dalla definizione di topologia di sottospazio

$$\exists C_1 \subseteq X \text{ chiusi} \quad C = C_1 \cap Z$$

$$\exists D_1 \subseteq X \text{ chiusi} \quad D = D_1 \cap Z$$

Ora essendo Z un chiuso di X e poichè l'intersezione di 2 chiusi è un chiuso: C e D sono chiusi disgiunti di X dunque

$$\exists U_1, V_1 \subseteq X$$
 aperti disgiunti $C \subseteq U_1$ $D \subseteq V_1$

Ora poichè $C \subseteq Z$ vale in particolare $C \subseteq U_1 \cap Z$ e similmente $D \subseteq V_1 \cap Z$.

Ora
$$U = U_1 \cap Z$$
 e $V = V_1 \cap Z$ sono aperti disgiunti di Z otteniamo che Z è $T4$

Osservazione 4. In generale, sottospazi e prodotti di T4 non sono T4.

Proposizione 1.14. $metrizzabile \Rightarrow normale$

Dimostrazione. Sia (X, d) uno spazio metrico, per provare che X è normale basta dimostrare che è T4 infatti X è T2 quindi T1.

Ricordiamo come avevamo definito la funzione distanza da un sotto
insieme Z (27 Settembre Esercizio 0.2)

$$d_Z(x) = \inf_{z \in Z} d(x, z)$$

essa è continua e $\overline{Z} = d_Z^{-1}(\{0\})$ (27 Settembre Esercizio 0.5). Siano C, D chiusi disgiunti.

Definiamo

$$f: X \to [0,3] \quad x \to \frac{3d_C(x)}{d_C(x) + d_D(x)}$$

tale funzione, essendo composizione di funzione continue è continua ed inoltre è ben definita: $C \cap D = \emptyset$ implica $d_C(x) \neq d_D(x)$.

$$U = f^{-1}([0,1))$$
 $C = \overline{C} = f^{-1}(0) \subseteq U$
 $V = f^{-1}((2,3])$ $D = \overline{D} = f^{-1}(3) \subseteq V$

Ora poichè C e D sono disgiunti anche U e V.

Essendo gli intervalli [0,1) e (2,3] aperti in [0,3] (con la topologia di sottospazio) U e V sono aperti

Osservazione 5.

metrizzabile
$$\Rightarrow (T4 + T1) \Rightarrow (T3 + T1) \Rightarrow T2 \Rightarrow T1$$

in modo equivalente

metrizzabile \Rightarrow normale \Rightarrow regolare \Rightarrow Hussdorff \Rightarrow T1

Infatti se X è T1 allora i punti sono chiusi.

Mostriamo che, in generale, le implicazioni opposte non sono vere. (quelle che mancano nella prossima lezione)

Resta da provare che è T4, siano C, D chiusi disgiunti.

• Normale $\not\Rightarrow$ metrizzabile . Sia \mathbb{R}_S la retta di Sorgenfray. \mathbb{R}_S ,come sappiamo, non è metrizzabile). \mathbb{R}_S è T1 in quanto ha una topologia meno fine di quella euclidea e $T2 \Rightarrow T1$.

$$\forall c \in C \quad c \in \mathbb{R} \backslash D$$
 che è aperto quindi $\exists c' \in \mathbb{R} \quad [c, c') \subseteq \mathbb{R} \backslash D$

Dunque

$$C \subseteq U = \bigcup_{c \in C} [c, c') \text{ con } U \text{ aperto}$$

Similmente possiamo fare con D ottenendo

$$D \subseteq V = \bigcup_{d \in D} [d, d') \text{ con } V \text{ aperto}$$

Mostriamo che $U \cap V = \emptyset$ ovvero che $[c,c') \cap [d,d') = \emptyset \ \forall c \in C \ d \in D$ Essendo C e D disgiunti in particolare $c \neq d$, assumiamo senza perdere di generalità che c < d.

$$c \in \mathbb{R} \backslash D \quad \Rightarrow \quad [c,c') \cap D = \emptyset \quad \Rightarrow \quad c' \leq d$$

- Regolare $\not\Rightarrow$ normale
- $T2 \not\Rightarrow$ regolare
- $T1 \not\Rightarrow T2$. Sia X uno spazio infinito con la topologia cofinita. X è T1 per l'osservazione 1, osserviamo che in X non esistono aperti disgiunti. Siano U, V aperti disgiunti allora $U \subseteq X \setminus V$ dunque U è finito essendo $X \setminus V$ finito. $X \setminus U$ è un chiuso (complementare di un aperto) ma è infinito, ciò è assurdo. Nella topologia cofinita i chiusi sono finiti