Circuitos Lógicos Sequenciais Flip Flop

Prof. Rogério Moreira

CIRCUITO COMBINACIONAL

CIRCUITO SEQUENCIAL

FLIP-FLOPS

Os flip-flops são os circuitos seqüenciais mais elementares e possuem a capacidade de armazenar a informação neles contida. Representam a unidade elementar de memória de 1 bit (binary digit), ou seja, funcionam como um elemento de memória por armazenar níveis lógicos temporariamente. São chamados de biestáveis porque possuem dois estados lógicos estáveis, geralmente representados por "0" e "1".

TIPOS DE FLIP-FLOPS

- 1) RS ASSÍNCRONO
- 2) RS SÍNCRONO
- 3) JK (síncrono)
- 4) JK com entradas assíncronas
- 5) JK Mestre-Escravo
- 6) T
- 7) D

S	R	Q
0	0	Qa
0	1	0
1	0	1
1	1	Χ

S	R	Q
0	0	Qa
0	1	0
1	0	1
1	1	Χ

Figura 4.5 -Formas de onda para aplicação do vetor de entrada (R=1;S=0) seguido do vetor (R=0;S=0) no latch RS.

Figura 4.6 -Formas de onda para aplicação do vetor de entrada (R=0;S=1) seguido do vetor (R=0;S=0) no latch RS.

Figura 4.7 - Diagrama de estados para o latch RS.

Exemplo de aplicação

FIGURA 5.9

(a) A trepidação de um contato mecânico gera múltiplas transições na tensão; (b) latch NAND usado para eliminar as múltiplas transições na tensão.

Exemplo de aplicação

\mathbf{C}	R	S	Q_{t+1}	comentário
0	X	X	Qt	mantém estado anterior
1	0	0	Qt	mantém estado anterior
1	0	1	1	estado set
1	1	0	0	estado reset
1	1	1	_	proibido

Figura 4.10 -Diagrama de estados para o latch RS controlado.

Entradas			Salda	
S	R CLK		Q	
0	0	1	Q ₀ (Não muda)	
1	0	Ť l	1	
0	1	†	0	
1	1	1	Ambíguo	

Q₀ é o nível de saída anterior a[↑] de CLK. ↓ de CLK não produz mudança em Q. (b)

Exemplo 4.3: desenhar as formas de onda para as saídas do latch RS abaixo, a partir das formas de onda fornecidas para as entradas C, R e S.

	En	tradas	Saída		
S	R	CLK	Q		
0	0	1	Q ₀ (não muda)		
1	0	1	1		
0	1	1	0		
1	1	1	Ambíguo		

J	K	Qf
0	0	Qa
0	1	0
1	0	1
1	1	Qa

J	K	CLK	Q		
0	0	1	Q ₀ (não muda)		
1	0	<u>†</u>	1		
0	1		0		
1	1	<u> </u>	Q ₀ (comuta)		

(a)

J	K	CLK	Q
0	0	\	Q ₀ (não muda)
1	0	1	1
0	1	\downarrow	0
1	1	\downarrow	Q ₀ (comuta)

FLIP-FLOP JK com Entradas Assíncronas

FLIP-FLOP JK com Entradas Assíncronas

J	K	CLK	PRE	CLR	Q
0	0	+	1	1	Q (não muda)
0	1	+	1	1	0 (reset síncrono)
1	0	+	1	1	1 (set síncrono)
1	1	+	1	1	Q (toggle síncrono ou comutação síncrona)
Х	Х	Х	1	1	Q (não muda)
Х	Х	Х	1	0	0 (clear assíncrono)
Х	Х	Х	0	1	1 (preset assíncrono)
Х	Х	Х	0	0	(Inválido)

FLIP-FLOP TIPO T (TOGGLE)

J	K	T	Qf	
0	0	0	Qa	
0	1	não existe	1	
1	0	não existe	1	
1	1	1	Q a	

FLIP-FLOP TIPO D (DATA ou DELAY)

J	K	D	Qf
0	0	não existe	1
0	1	0	0
1	0	1	1
1	1	não existe	1

FLIP-FLOP TIPO D

FIGURA 5.26

- (a) Flip-flop D disparado apenas nas bordas de subida do clock;
- (b) Formas de onda.

Transferência simultânea de dados em paralelo

Garantia de pulsos completos

FIGURA 5.39 Um sinal assíncrono em A pode produzir pulsos parciais em X.

Garantia de pulsos completos

FIGURA 5.40

Um flip-flop *D* disparado por borda é usado para sincronizar a habilitação da porta AND com a borda de descida do clock.

- Detectando sequencia de entrada
 - Garantindo que saída Y só irá para nível lógico alto se A for acionado antes de B.

FLIP-FLOP TIPO D EM CI

SN54HC74...J OR W PACKAGE SN74HC74...D, DB, N, NS, OR PW PACKAGE (TOP VIEW)

FUNCTION TABLE

	INP	OUTI	PUTS		
PRE	CLR	CLK	D	α	Q
L	Н	Х	Χ	Н	L
Н	L	X	Χ	L	Н
L	L	X	Χ	H [†]	н†
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Χ	Q ₀	\overline{Q}_0

†This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

FLIP-FLOP TIPO D EM CI

SN54HC374 . . . J OR W PACKAGE SN74HC374 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW)

<u> —</u> "Г	\Box		
OE [1	ı	20	Vcc
1Q 🛮 2	2	19] 8Q
1D [] 3	3	18] 8D
2D 🛮 4	1	17] 7D
2Q 🛮 5	5	16] 7Q
3Q 🛮 6	6	15] 6Q
3D 🛚 7	7	14] 6D
4D 🛮 8	3	13] 5D
4Q 🛮 9	9	12] 5Q
GND [1	10	11	CLK

FUNCTION TABLE (each flip-flop)

INPUTS			OUTPUT
ŌĒ	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	X	Χ	Z

To Seven Other Channels

ATMEGA328 - PINAGEM

(PCINT14/RESET) PC6 □	1	28 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PD0 □	2	27 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 □	3	26 PC3 (ADC3/PCINT11)
(PCINT18/INT0) PD2 □	4	25 PC2 (ADC2/PCINT10)
(PCINT19/OC2B/INT1) PD3 □	5	24 PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 □	6	23 PC0 (ADC0/PCINT8)
VCC □	7	22 GND
GND □	8	21 AREF
(PCINT6/XTAL1/TOSC1) PB6 □	9	20 AVCC
(PCINT7/XTAL2/TOSC2) PB7 □	10	19 PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5 □	11	18 PB4 (MISO/PCINT4)
(PCINT22/OC0A/AIN0) PD6 □	12	17 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 □	13	16 ☐ PB2 (SS/OC1B/PCINT2)
(PCINT0/CLKO/ICP1) PB0 □	14	15 PB1 (OC1A/PCINT1)

ATMEGA328 - PINAGEM

ATMEGA328 - PINAGEM

Figure 14-2. General Digital I/O(1)

WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk_{FO}, SLEEP, and PUD are common to all ports.

Figure 14-3. Synchronization when Reading an Externally Applied Pin value

