MSO202A COMPLEX ANALYSIS Solutions-1

Exercise Problems:

1. For any $z, w \in \mathbb{C}$, show that (a) $\overline{z+w} = \overline{z} + \overline{w}$, (b) $\overline{zw} = \overline{z} \ \overline{w}$, (c) $\overline{\overline{z}} = z$, (d) $|\overline{z}| = |z|$ and (e) |zw| = |z||w|.

Proof: Easy.

2. Show that $(a)|z+w|^2 = |z|^2 + |w|^2 + 2\text{Re}(z\overline{w})$

Proof: $|z+w|^2 = (z+w)\overline{(z+w)} = |z|^2 + |w|^2 + (z\overline{w} + \overline{z}w) = |z|^2 + |w|^2 + 2\text{Re}(z\overline{w}).$

$$(b)|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

Proof: Follows by applying (a) to $|z+w|^2$ and $|z+(-w)|^2$ and adding.

(c)|z+w|=|z|+|w| if and only if either zw=0 or z=cw for some positive real number c.

Proof: If |z+w| = |z| + |w| and $zw \neq 0$, then from 2(a) we obtain that $\text{Re}(z\overline{w}) = |zw|$. It follows from here that $\text{Im}(z\overline{w}) = 0$. Hence, $z\overline{w}$ is a positive real, say c. Thus $z = c\frac{w}{|w|^2}$. Conversely, if zw = 0, then either z = 0 or w = 0, in which case the equality holds. If z = cw, then |z+w| = (1+c)|w| = |z| + |w|.

Note, the above means that if neither z nor w is 0 and equality holds in the triangle inequality then 0, z, w and z + w are collinear.

3. Let α be any of the *n* th roots of unity except 1. Show that $1+\alpha+\alpha^2+\ldots+\alpha^{n-1}=0$.

Proof: For any $z \neq 1$, we know that $1 + z + z^2 + \ldots + z^k = \frac{z^{k+1}-1}{z-1}$. The result follows by applying the above relation to α different from 1.

4. Express in polar form: (a) 1+i (b) -1-i (c) $\sqrt{3}+i$ (d) $1+\cos\theta+i\sin\theta$. Determine the value of $\operatorname{Arg}(z^2)$ in each of the cases.

Proof:

(a)
$$1 + i = \sqrt{2}e^{i(\pi/4 + 2n\pi)}$$
; $Arg(z) = \pi/4$; $Arg(z^2) = \pi/2$

(b)
$$-1 - i = \sqrt{2}e^{i(-3\pi/4 + 2n\pi)}$$
; $\operatorname{Arg}(z) = -3\pi/4$; $\operatorname{Arg}(z^2) = \pi/2$

(c)
$$\sqrt{3} + i = 2e^{i(\pi/3 + 2n\pi)}$$
; $Arg(z) = \pi/3$; $Arg(z^2) = 2\pi/3$

(d) $1+\cos\theta+i\sin\theta=2\cos^2(\theta/2)+i(2\sin(\theta/2)\cos(\theta/2))=2\cos(\theta/2)e^{i\theta/2};$ Arg $(z^2)=\theta+2n\pi$ such that $-\pi<\theta+2n\pi<\pi$

5. Let z be a nonzero complex number and n a positive integer. If $z = r(\cos \theta + i \sin \theta)$, show that $z^{-n} = r^{-n}(\cos n\theta - \sin n\theta)$.

Proof:
$$z = r(\cos \theta + i \sin \theta)$$
. For $n > 0$, $z^n = r^n(\cos n\theta + i \sin n\theta)$, so $z^{-n} = \frac{1}{z^n} = \frac{1}{r^n(\cos n\theta + i \sin \theta)} = r^{-n}(\cos n\theta - \sin n\theta)$.

6. Find the roots of each of the following in the form x + iy. Indicate the principal root (a) $\sqrt{2i}$, (b) $(-1)^{1/3}$ and (c) $(-16)^{1/4}$.

Proof:

- (a) $2i = 2e^{i(\frac{\pi}{2} + 2k\pi)} \Rightarrow \sqrt{2i} = \sqrt{2}e^{i(\frac{\pi}{4} + k\pi)} = 1 + i$, when k = 0 and is -1 i when k = 1. k = 0 corresponds to the principal root.
- (b) $-1 = e^{i(\pi + 2k\pi)} \Rightarrow (-1)^{\frac{1}{3}} = e^{i(\frac{\pi}{3} + 2k\frac{\pi}{3})}$. When k = 0 this is $\frac{1+i\sqrt{3}}{2}$, which corresponds to the principal root and when k = 1 this is -1, when k = 2 this is $\frac{1-i\sqrt{3}}{2}$.
- (c) $(-16) = 16e^{i(\pi+2k\pi)} \Rightarrow (-16)^{\frac{1}{4}} = 2e^{i(\pi/4+k\pi/2)}$. For k=0 this is $\sqrt{2}(1+i)$, when k=1 this is $\sqrt{2}(-1+i)$, when k=2 this is $\sqrt{2}(-1-i)$, when k=3 this is $\sqrt{2}(1-i)$. When k=0 the corresponding root is the principal root.
- 7. Determine the values of the following:

(a)
$$(1+i)^{20} - (1-i)^{20}$$
.

Proof: $1 + i = \sqrt{2}e^{i\pi/4}$, so $(1+i)^{20} = \sqrt{2}^{20}e^{i5\pi} = \sqrt{2}^{20}$. Similarly, $(1-i)^{20} = \sqrt{2}^{20}$. Thus $(1+i)^{20} - (1-i)^{20} = 0$.

(b)
$$\cos \frac{\pi}{4} + i \cos \frac{3}{4}\pi + \ldots + i^n \cos \frac{2n+1}{4}\pi + \ldots + i^{40} \cos \frac{81}{4}\pi$$
.

Proof: Let $a_n = i^n \cos \frac{2n+1}{4}\pi$ Then $a_{n+2} = -i^n \cos \left(\frac{2n+1}{4}\pi + \pi\right) = a_n$. Thus, $a_0 = a_2 = \dots = a_{40}$ and $a_1 = a_3 = \dots = a_{39}$. So, $a_0 + \dots + a_{40} = 21a_0 + 20a_1 = \frac{\sqrt{2}}{2}(21-20i)$.

8. Find the roots of $z^4 + 4 = 0$. Use these roots to factor $z^4 + 4$ as a product of two quadratics with real coefficients.

Proof: $z = \sqrt{2}e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}, k = 0, 1, 2, 3$. So the roots are $z_0 = 1 + i, z_1 = -1 + i, z_2 = -1 - i, z_3 = 1 - i$. Thus $z^4 + 4 = (z - z_0)(z - z_1)(z - z_2)(z - z_3) = (z^2 - 2z + 2)(z^2 + 2z + 2)$.

9. Determine whether the following sets describe domains (open and connected sets) in \mathbb{C} : (a) Re z > 1 (b) $0 \le \operatorname{Arg} z \le \frac{\pi}{4}$ (c) Im (z) = 1, (d) |z - 2 + i| < 1 (e) |2z + 3| > 4.

Proof:

- (a) Re z > 1. This implies x > 1, the half plane, which is open and connected.
- (b) (b) $0 \le \operatorname{Arg} z \le \frac{\pi}{4}$. This is connected but not open and hence not a domain.
- (c) Im (z) = 1. This is the line y = 1 which is not open and hence not a domain.
- (d) |z-2+i| < 1. Interior of the circle with center (2,-1) and has radius 1. Hence, it is a domain.
- (e) |2z+3| > 4. The exterior of the circle of radius 2 and center (-3/2,0). This is a domain.

Problem for Tutorial:

- 1. Give a geometric description of the following sets:
 - (a) $\{z \in \mathbb{C} : |z+i| \ge |z-i|\}$

Proof: $\{z \in \mathbb{C} : |z+i| = |z-i|\}$ describes the set of points equidistant from -i and i which are just the points on the x-axis. The set $\{z \in \mathbb{C} : |z+i| \ge |z-i|\} = \{x+iy \in \mathbb{C} : |x+i(y+1)|^2 \ge |x+i(y-1)|^2\} = \{x+iy \in \mathbb{C} : y \ge 0\}$, is the upper half plane.

(b) $\{z \in \mathbb{C} : |z - i| + |z + i| = 2\}.$

Proof: Note that the distance between i and -i is 2. Since any three points in $\mathbb C$ should satisfy the triangle inequality. By Ex. 2(c) above, the points z such that |z-i|+|z+i|=2=|(z+i)-(z-i)| is either i,-i or 0,-(z-i),z+i and 2i are collinear. Hence, z+i=c(2i) for some $c\in\mathbb R$. Now, it is easy to see that the only points on the imaginary axis satisfying the relation |z-i|+|z+i|=2 are points lying in between i and -i.

2. Discuss the convergence of the following sequences: (a) (z^n) , (b) $(\frac{z^n}{n!})$, (c) $(i^n \sin \frac{n\pi}{4})$ and (d) $(\frac{1}{n} + i^n)$.

Proof: (a) Recall that, if $\{a_n\}$ converges to l then $\{|a_n|\}$ converges to |l|. So, since $|z|^n$ does not converge for |z| > 1, so does (z^n) whenever |z| > 1. If |z| < 1 then $|z|^n \to 0$ as $n \to \infty$, i.e., given $\epsilon > 0$ there exists a N > 0 such that $||z|^n| < \epsilon$ for all n > N. Hence, we also get $|z^n| \to 0$ as $n \to \infty$, i.e., $\lim_{n \to \infty} z^n = 0$. If z = 1 then $z^n \to 1$. Let |z| = 1 and $z \ne 1$. Suppose $\lim_{n \to \infty} z^n = l \Rightarrow |l| = 1$. Now $z^{n+1} - z^n \to l - l = 0$ while $z^{n+1} - z^n = z^n(1-z) \to l(1-z) \Rightarrow l(1-z) = 0$. Thus l = 0, which is a contradiction. (b) $|\frac{z^n}{n!}|$ converges to 0, using Ratio test for

real sequences applied to $\frac{|z^n|}{n!}$. Hence, we deduce that $\frac{z^n}{n!}$ also converges to 0. (c) and (d) do not converge (look at values taken at n = 4k, 4k + 1, 4k + 2, 4k + 3 to see that they oscillate).

3. Determine if the following series converge or diverge: (a) $\sum_{n=0}^{\infty} \left(\frac{1+i}{4}\right)^n$ (b) $\sum_{n=1}^{\infty} \left(\frac{1}{n+in^2}\right)$

Proof: (a) $\left| \left(\frac{1+i}{4} \right)^n \right| = \left| \left(\frac{1}{2\sqrt{2}} \right)^n \right|$, so by Comparison Test (a) converges.

(b)

$$\left| \left(\frac{1}{n+in^2} \right) \right| = \frac{1}{\sqrt{n^2 + n^4}} = \frac{1}{n\sqrt{1+n^2}} < \frac{1}{n\sqrt{n^2}} = \frac{1}{n^2}$$

so by Comparison Test, since the latter converges so does the given series.

4. Limit at infinity: Let $f: \mathbb{C} \to \mathbb{C}$ be a function. The limit of f at infinity is said to be l if, given any $\epsilon > 0$ there exists a R > 0 such that $|f(z) - l| < \epsilon$ for all z such that |z| > R.

(a) Show that $\lim_{z\to\infty} \frac{1}{z^2} = 0$.

Infinite limit: Let $f: \tilde{D} \to \mathbb{C}$ be a function defined around z_0 (except possibly at z_0). The limit of f at z_0 is said to be ∞ if, given any R > 0 there exists a $\delta > 0$ such that |f(z)| > R for all z such that $0 < |z| < \delta$.

(b) Show that $\lim_{z\to a} \frac{1}{z-a} = \infty$

Proof:(a) Given $\epsilon > 0$, choose $R > 1/\sqrt{\epsilon}$. Then for |z| > R we have $1/|z|^2 < \epsilon$, so $\lim_{z \to \infty} 1/|z|^2 = 0$.

- (b) Given R > 0, let $\delta < 1/R$. Then for $0 < |z a| < \delta$ we have $1/|z a| > 1/\delta > R$, so $\lim_{z \to a} 1/(z a) = \infty$
- 5. Verify if the following functions can be given a value at z=0, so that they become continuous: (a) $f(z)=\frac{|z|^2}{z}$, (b) $f(z)=\frac{z+1}{|z|-1}$, (c) $f(z)=\frac{\bar{z}}{z}$, (d) $\frac{\mathrm{Im}\ (z^2)}{|z|}$, (e) $\frac{\mathrm{Im}\ z}{1-|z|}$.

Proof:

- (a) $\lim_{z \to 0} f(z) = 0$, since $\left| \frac{|z|^2}{z} \right| = \frac{|z|^2}{|z|} = |z|$.
- (b) $|z|-1 \to -1$ as $z \to 0$, so $\frac{1}{|z|-1} \to -1$ as $z \to 0 \Rightarrow (z+1)\frac{1}{|z|-1} \to -1$ as $z \to 0$.
- (c) the limit does not exist, since along the x-axis and y-axis the limit is 1 and -1 respectively.

(d)

$$f(z) = \frac{2xy}{\sqrt{x^2 + y^2}} + i0 \to 0 + i0 = \frac{r^2 \sin 2\theta}{r} + i0 \quad r \to 0,$$

hence assigning f(0) = 0 makes f continuous at z = 0.

(e) we have

$$f(z) = \frac{y}{1 - \sqrt{x^2 + y^2}} + i0 = \frac{r \sin \theta}{1 - r} + i0.$$

Given $\epsilon > 0$, choose $r < \min\{1/2, \epsilon/2\}$. Then we have 1/1 - r < 2 and $\left|\frac{r\sin\theta}{1-r}\right| < 2r < \epsilon$. Hence assigning f(0) = 0 makes f continuous at z = 0.