CALCOLO DELLE PROBABILITA' Appello del 10/1/2019

Nome:	COGNOME:
1)	Con riferimento ad una partita di calcio (regolare) fra le squadre A e B:
(a)	determinare la partizione generata dagli eventi $E_1 = \text{`A vince l'incontro'}$ $E_2 = \text{`L'incontro termina in parità'}$ $E_3 = \text{`Deposite l'incontro si sognano 3 reti'}$
(b)	E_3 = 'Durante l'incontro si segnano 3 reti'; verificare la coerenza dell'assegnazione di probabilità $P(E_1) = 0,4$, $P(E_2) = 0,3$, $P(E_3) = 0,4$;
	stabilire se è coerente prolungare P sull'evento aggiuntivo F = 'A vince segnando al più 3 reti' ponendo $P(F)$ = 0.05. Determinare inoltre, se esiste, il massimo valore di $P(F)$ per cui il prolungamento di P su F è coerente.
2)	L'urna A contiene 5 palline bianche e 15 rosse, l'urna B contiene 10 palline bianche e 10 rosse. Si effettua una sequenza di estrazioni con reimbussolamento da una delle due urne, scelta con un meccanismo aleatorio che assegna probabilità $3/4$ alla scelta dell'urna A. Posto E_i = "esce bianca all'i-esima estrazione":
	Calcolare $P(E_2 \wedge E_6 \mid \bar{E}_2 \vee E_5)$, $P(E_2 \vee E_6 \mid E_2 \wedge E_5)$, $P(\bar{E}_2 \vee \bar{E}_6 \mid \bar{E}_2 \vee E_5)$; in ogni coppia di estrazioni successive, di cui la prima è dispari, Tizio guadagna $1 \in S$ se la pallina dell'estrazione dispari e di quella (pari) successiva hanno lo stesso colore. Determinare la speranza matematica del guadagno di Tizio nelle prime 10 estrazioni.
(c)	Stabilire la correlazione fra gli eventi 'Nelle prime 2 estrazioni Tizio guadagna 1 €' e 'Le estrazioni vengono effettuate dall'urna B'.
3)	La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici $(0,0)$, $(1,1)$, $(-1,1)$ con densità proporzionale a $g(x,y) = e^{-y}$. Calcolare:
	le densità marginali; 40
(b)	E(X).

P1=0,4, P2=P3=0, P5=0,3, P4=1-P1-P2-P3-P5=0,3 La soluzione sopra, rispetta i vincali Zi Pi=1, Pizo => la Passegnata è coerente C) Dato F= A vince regnando al più 3 reti. Riesce che: 01 = A vince, 2-1 03-0=>F co2 = A vince, ma NON 2-1 pé 3-0 1 F + Ø (F=F o F) cos= Brance, 2-1 03-0'=> F 04 = Brance, ma non 2-1, ne 3-0'=> F = 204 = si pareggia => F Quindi: 7 co; (= co1): coi=>F I wi (=wz): winF + On winF + Ø. => Fè l'agicam. semidifendente de 176. · Ver il teorema (descritto in teoria): mia Parente mu Po dati F* = V co; F* = V co co=>F; F* = V co On pooling P'di Pnu AL (Po) U {F} è covente Size P(F) & [P(F*); P(F*) Succede che: Fx = cos; F = cos+coz P(F*)=P1; P(F*)=P1+P2=0,4 Quindi P'(F) & [Ps; 0,4] Quindi: il valore Max di P'(F) e 0, 4. P'(F)=0,05 Frotrebbe andon bene, MA ATTENZIONE serché: The City=> F, allora $P1 \le 0.05$, quindi P1 = 0.05 + 8Dopo Ce osservarioni ottengo del sustema al sunto to)

DeHorgan @ P(EzvEs)=1-P(EzvEs)=1-P(EznEs) P(EZZES) = P(EXZEZ)= Desint. $= \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{13}{64}$ = 1 - 13 = 51 P(EZIEG/EZVES) = 11 . 64 = . 204 · P(EzvEG/EZAEG) Visto she Ez NES => Ez => Ez VEG Breefer dell'implicatione e P(E2VE0/E2NES) = P(12/12) = 1 De Morgan · P(F2V E6 / E2 VES) = 1 - P(E2 NEG/ E2 VES) $= 1 - \frac{11}{204} = \frac{193}{204}$ b) Tirio quadagna IE re [(Ezin Ezi) v (Ezin Ezi)] (i+5) 10 estrazioni = 5 coppie di estrazioni P quadagno V capia di estrazioni è dato da:

Indicatore generico dell'evento: Esce

Copia bianca O

(Ezi-1 ^ Ezi) v (Ezi-1 ^ Ezi) esce capia nossa. $E(G) = \sum_{i=1}^{\infty} E(|E_{z_i-1}AE_{z_i})v(E_{z_{i-1}}AE_{z_i})| = 0$ Ginearita

Successed (IFI)=P(F)
$$= (E_{2i-3} \wedge E_{2i}) \vee (E_{2i-3} \wedge E_{2i})$$

Successed (IFI)=P(F) $= (F_{2i-3} \wedge E_{2i}) \vee (E_{2i-3} \wedge E_{2i})$

Scambalakista $= \sum_{i=1}^{n} [P(E_{3i}E_{2}) + P(E_{3i}AE_{2})]$

P($= \sum_{i=1}^{n} A \setminus E_{2i}) = P(E_{3i}AE_{2})$

Scambalakista $= \sum_{i=1}^{n} [P(E_{3i}E_{2}) + P(E_{3i}AE_{2})]$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= P(E_{3i}AE_{2i}) + P(E_{3i}AE_{2i})$

Scambalakista $= \sum_{i=1}^{n} P(E_{3i}AE_{2i}) + P(E_{3i}AE_{2i})$

F($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} P(E_{3i}AE_{2i}) + P(E_{3i}AE_{2i})$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

C) Velle summe lestrat. Tieno quadaqua $= \sum_{i=1}^{n} A \setminus E_{2i}$

C) Velle summe lestrat. Tieno quadaqua $= \sum_{i=1}^{n} A \setminus E_{2i}$
 $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Basica vengore effethiate da utera $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Basica codi:

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

Scambalakista.

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i}$

P($= \sum_{i=1}^{n} A \setminus E_{2i}$) $= \sum_{i=1}^{n} A \setminus E_{2i$

Studio guindi la correlazione: $P(G=1/B)=\frac{1}{2}<\frac{38}{64}=P(G=1)$ -> (G=1) e B sono correlati negativamente Exercizio 3) al Joglio seguente

 $E(x) = \int x(e^{x} - e^{-1}) dx + \int x(e^{-x} - e^{-1}) dx$. $J_3 = \int (xe^{x} - xe^{-x})dx = \int xe^{x}dx - \int xe^{-x}dx$ $= \left[e^{\times}(x-1) \right]^{0} - e^{-1} \left[\frac{x^{2}}{2} \right]^{0}$ $= 1 + 2e^{\frac{1}{4}}e^{-\frac{1}{2}} = \frac{5 - 2e}{2e}$ J4 = f (xe-x -xe-1)dx = fxe-xdx - fxe-1dx $= \left[-e^{-x} (x+1) \right]^{\frac{1}{2}} - e^{-1} \left[\frac{x^2}{2} \right]^{\frac{1}{2}}$ = $(-2e^{-1})$ - (-1) - e^{-1} $\left(\frac{1}{2}\right)$ = $1 - 2e^{-1}$ - $\frac{1}{2e}$ = $\frac{2e - 5}{2e}$