حل روابط بازگشتی ناهمگن

تعریف روابط بازگشتی غیرهمگن با ضرایب ثابت:

رابطهٔ بازگشتی درجهٔ k زیر غیر همگن است:

$$a_n = c_1 a_{n-1} + ... + c_k a_{n-k} + f(n)$$

اگر A_n در رابطهٔ بازگشتی همگن (1) صدق کند و B_n در رابطه بازگشتی غیرهمگن صدق کند آنگاه A_n

نیز در رابطهٔ غیرهمگن صدق می کند. زیرا: $A_n + B_n$

$$c_1 = (A_{n-1} + B_{n-1}) + \dots + c_k (A_{n-k} + B_{n-k}) + f(n) = (c_1 A_{n-1} + \dots + c_k A_{n-k})$$
$$+ (c_1 B_{n-1} + \dots + c_k B_{n-k} + f(n)) = A_n + B_n$$

در این حالت A_n را جواب قسمت همگن رابطه و B_n را یک جواب خاص آن گویند. مثلاً اگر

و چون
$$f_n=2-2n^2$$
و چون ، $a_n=3$ ، قرار میدهیم ، قرار میدهیم ، قرار میدهیم

$$B_n = p n^2 + qn + r$$

حال داريم:

$$pn^{2} + qn + r = 3(p(n-1)^{2} + q(n-1) + r) + 2 - 2n^{2}$$

در نتیجه، برای این که این رابطه یک اتحاد برای n باشد، داریم: D=3 , C=3 , B=1 ، در ایسن

صورت، 2 + 3n + 2 و خواهیم داشت:

$$a_n = A_n + B_n = t_1 3^n + n^2 + 2$$

با فرض $a_0=0$ داریم: $t_1=1$ پس:

$$a_n = 3^n + n^2 + 3n + 2$$

- شبکه ملی مدارس ایران

حل روابط بازگشتی غیرهمگن:

اگر رابطهٔ بازگشتی غیرهمگن را به صورت زیر داشته باشیم:

$$a_n = c_1 a_{n-1} + c_2 a_{n-1} + \dots + c_k a_{n-k} + b^n P(n)$$
 (1)

که در آن b ثابت است و P(n) چند جملهای، از درجهٔ b بر حسب n باشد، برای ایــن رابطــه، مــشابه روابط بازگشتی همگن معادلهٔ سرشتنما به صورت زیر تعریف می شود:

$$\left(x^{k} - c_{1}x^{k-1} - c_{2}x^{k-2} - \mathbf{L} - c^{k}\right)(x-b)^{d+1} = 0$$
(2)

با داشتن این معادله و به دست آوردن ریشههای $\left(x_i\right)$ آن مشابه قبل، جوابهای این معادله به صورت ترکیب خطی x_i^n بیان می شود. (تحقیق این موضوع به عهدهٔ شما.) به طور کلی ریشههای معادلهٔ سرشتنمای یک رابطهٔ بازگشتی مشخص کنندهٔ جوابهای رابطهٔ بازگشتی است. با داشتن این معادله سرشتنما بـرای روابط بازگشتی بسیاری از این روابط با روشی مشابه روابط بازگشتی همگن، به راحتی قابل حل است.

مثال .

الف. رابطه بازگشتی
$$a_n = 2a_{n-1} + (n+5) 3^n$$
 را حل کنید.

ب. رابطهٔ بازگشتی
$$a_n = 2a_{n-1} + n$$
 را حل کنید.

حل.

الف. معادلهٔ سرشتنمای ایس رابطه به صورت $(x-2)(x-3)^2=0$ در می آید، پس

$$a_n = t_1 2^n + t_2 3^n + t_3 n 3^n$$

که با توجه به حالتهای اولیه داده شده، می توان t_i ها را به دست آورد.

ب. معادلهٔ سرشتنما $(x-2)(x+1)^2=0$ است، پس داریم:

$$a_n = t_1 2^n + t_2 + t_2 n$$

در حالت کلی معادلهٔ سرشتنمای رابطه بازگشتی زیر:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + b_1^n P_1(n) + b_2^n P_2(n) + \dots$$
 (3)

به صورت:

$$\left(x^{k} - c_{1}x^{k-1} - c_{2}x^{k-2} - \mathbf{L} - c_{k}\right) (x - b_{1})^{d_{1}+1} (x - b_{2})^{d_{2}+1} \mathbf{L} = 0$$

است.

مثال . رابطهٔ بازگشتی $a_n = 2a_{n-1} + n + 2^n$ را حل کنید.

حل . معادلهٔ سرشت نمای آن به صورت $(x-2)(x-1)^2(x-2)$ است. پس:

$$a_n = t_1 + t_2 n + t_3 2^n + t_4 n 2^n$$

و مثلاً اگر $a_0=0$ داریم:

$$a_n = -2 - n + 2^{n+1} + n 2^n$$

بدین ترتیب بسیاری از روابط بازگشتی با ضرایب ثابت حل میشوند.

<mark>حال با حل مس</mark>ألهای کاربر<mark>دی به روشی دیگر در حل</mark> روابط بازگشتی توجه می*ک*نیم:

مثال. (بیست و یکمین المپیاد جهانی ریاضی) : $\frac{A}{2}$ و $\frac{A}{2}$ را دو رأس روبدروی یـک 8 ضـلعی منـتظم

E می گیریم، قورباغهای از رأس A آغاز به جهیدن می کند و هربار به رأس مجاور می پرد. ولی وقتی به رأس می گیریم، قورباغه با E برسد. ثابت رسید، همان جا متوقف می شود. a_n را تعداد مسیرهایی می گیریم که قورباغه با a_n جهش از a_n برسد. ثابت کنید:

$$a_{2n}=rac{1}{\sqrt{2}}ig(x^{n-1}-y^{n-1}\,ig)$$
 که در آن $y=2-\sqrt{2}$ و $x=2+\sqrt{2}$

a سلعی زیر را در نظر می گیریم. فرض کنید b_n تعداد مسیرهایی باشد که قورباغه در آنها با a می رسد a با به a می رسد یا به a می رسد a با به a می رسد یا به a می رسد a با به a برصد. اگر قورباغه بخواهد از a به a برود، در دو جهش اول یا به a می رسد یا به a می رسد یا به a می رسد یا به a برسیده یا به a بازگردد a بازگردد a بازگردد و به دو طریق می تواند به a برسید، بنابراین a برسید، ب

Olympiad.roshd.ir

 $a_n=2b_{n-2}+2a_{n-2}$ پس ای حالتهای زوج دو رابطهٔ بازگشتی $a_{2n-1}=0$ و لازم است. پس

دارد، وروش وجود دارد، $b_n = 2b_{n-2} + a_{n-2}$

روش اول. از تفاضل دو رابطه بدست می آید:

$$b_{n-2} = a_{n-2} - a_{n-4}$$

و در نتیجه با گذاشتن در رابطهٔ اولی داریم:

$$a_n = 4a_{n-2} - 2a_{n-4}$$

حال اگر $c_n=4c_{n-1}-2c_{n-2}$ در نظر بگیریم، رابطهٔ همگین $c_n=4c_{n-1}-2c_{n-2}$ بدست می آید که با توجه به حالتهای اولیهٔ $c_1=0$ و $c_1=0$ خواهیم داشت (با تشکیل معادلهٔ سرشتنما و حل می آید):

$$a_{2n} = c_n = \frac{1}{\sqrt{2}} \left(\left(2 + \sqrt{2} \right)^{n-1} - \left(2 - \sqrt{2} \right)^{n-1} \right)$$

– شبکه ملی مدارس ایران

حال مشابه مثالهای قبل به دلیل اینکه $2-\sqrt{2}$ < 1 می توان تحقیق کرد:

$$f_n = \frac{(2 + \sqrt{2})^{n-1}}{\sqrt{2}}$$
 (4)

روش دوم. این روش با آنچه تا به حال گفتیم متفاوت است. ما به این روش در حل این مسأله بـسنده

مي کنيم:

$$a_n = 2a_{n-2} + 2b_{n-2}$$

$$b_n = a_{n-2} + 2b_{n-2}$$

:حال اگر بردار V_m را به صورت $V_m = \begin{pmatrix} a_{2m} \\ c_{2m} \end{pmatrix}$ تعریف کنیم، باید داشته باشیم

$$V_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, T = \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}$$

برای تعیین بردار V_m با این حالت خاصیت مقادیر ویژهٔ ماتریس T را تعیین میکنیم. ایی مقادیر ریشههای معادلهٔ مفسر ماتریس می باشند :

$$\begin{vmatrix} 2-1 & 2 \\ 1 & 2-1 \end{vmatrix} = 1^2 - 41 + 2 = 0$$

و بنابراین: $u_1=2+\sqrt{2}$ و $u_1=2+\sqrt{2}$ و $u_1=2+\sqrt{2}$ و بنابراین: $u_2=2-\sqrt{2}$ و $u_1=2+\sqrt{2}$ و بنابراین: $u_1=2+\sqrt{2}$ و بنابراین: $u_1=1$ و بن

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$

بنابراین V_I یک ترکیب خطی از u_1 و u_2 است. یعنی:

 $V_1 = \lambda_1 u_1 + \lambda_2 u_2$

$$\Rightarrow V_m = T^{(m-1)}V_1 = I_1^{m-1}u_1 + I_2^{m-1}u_2 = \begin{pmatrix} a_{2m} \\ b_{2m} \end{pmatrix}$$

و بدين ترتيب:

$$\Rightarrow a_{2m} = \frac{1}{\sqrt{2}} \left[\left(2 + \sqrt{2} \right)^{m-1} + \left(2 - \sqrt{2} \right)^{m-1} \right]$$

