Muc luc

I.	Phương pháp sinh	1
1.	Sinh nhị phân	
2.	Sinh tổ hợp	
3.	Sinh hoán vị	
II.	Quay lui	
1.	Quay lui nhị phân	
2.	Quay lui tổ hợp	
3.	Quay lui hoán vị	
III.	Duyệt toàn bộ	
1.	Bài toán tối ưu	
2.	Bài toán cái túi	6
IV.	Nhánh cận	7
1.	Bài toán nhánh cận	7
2.	Bài toán cái túi	7
3.	Bài toán người du lịch	8

I. Phương pháp sinh

Nguyên tắc chung:

- Định nghĩa về cấu hình (xâu nhị phân, hoán vị, tổ hợp).
- Cấu hình đầu cấu hình cuối.
- Quan hệ của cấu hình hiện tại với cấu hình kế tiếp.
- Phương pháp:
 - O Giả sử cấu hình hiện tại.
 - Nếu là cấu hình cuối cùng, kết thúc thuật toán.
 - Sinh cấu hình kế tiếp.

1. Sinh nhị phân

- Xâu $X=(x_1,...,x_n), x_i=\{0,1\}$ gọi là xâu nhị phân độ dài n.
- Cấu hình đầu tiên: (0,0,...,0) cấu hình cuối cùng: (1,1,...,1)
- Nếu cấu hình hiện tại X chưa phải là cấu hình cuối cùng thì cấu hình kế tiếp thu được bằng cách cộng thêm 1 (trong hệ cơ số 2 có nhớ) vào cấu hình hiện tai.

Phương pháp:

- Giả sử cấu hình hiện tại là $X = (x_1,...,x_n)$.

- Nếu X là cấu hình cuối cùng, thuật toán kết thúc.
- Gọi x_k là chữ số 0 đầu tiên từ bên phải của X, tức là $X = x_1x_2...x_{k-1}01...1$
- Cấu hình kế tiếp $Y = (y_1,...,y_n)$ được tạo ra như sau:

```
y_i = x_{i,} với 1 \le i \le k-1

y_i = 1 - x_i với k \le i \le n
```

 $V_{ay} Y = x_1 x_2 ... x_{k-1} 10 ... 0$

❖ Viết hàm:

```
void sinh()
{
    for(int i = 1; i <= n; i++) x[i] = 0;
    while(1)
    {
        for(int i = 1; i <= n; i++) cout << x[i];
        cout << endl;
        int i = n;
        while(x[i] == 1 && i > 0)
        {
            x[i] = 0;
            i--;
        }
        if(i == 0) break;
        else x[i] = 1;
    }
}
```

2. Sinh tổ hợp

- Một xâu biểu diễn tổ hợp chập k của n có dạng $X = (x_1, x_2, ..., x_k)$.
- Cấu hình đầu tiên: (1,2,...,k) cấu hình cuối cùng: (n-k+1, n-k+2,..., n).
- Cấu hình $X=(x_1,\ldots,x_k)$ được gọi là đứng trước cấu hình $Y=(y_1,\ldots,y_k)$ nếu tồn tại chỉ số t thỏa mãn: $x_1=y_1,\,x_2=y_2,\,\ldots,\,x_{t-1}=y_{t-1},\,x_t< y_t$
- Phương pháp:
 - Giả sử cấu hình hiện tại là $X = (x_1, x_2, ..., x_k)$.
 - Nếu X là cấu hình cuối cùng, thuật toán kết thúc.
 - Tìm x_i là phần tử đầu tiên tính từ bên phải của X mà $x_i \neq n-k+i$.
 - Thay x_i bởi $x_i + 1$.
 - Thay x_i bằng $x_i + j i$, với j = i + 1, i + 2,..., k.
- ❖ Viết hàm:

```
void sinh()
{
    for(int i = 1; i <= k; i++) x[i] = i;
    while(1)
    {
        for(int i = 1; i <= k; i++) cout << x[i];
        cout << endl;
        int i = k;
        while(x[i] == n - k + i && i > 0) i--;
        if(i == 0) break;
        else
        {
            x[i]++;
            for(int j=i+1; j<=k; j++) x[j] = x[j-1] + 1;
        }
    }
}</pre>
```

3. Sinh hoán vi

- Một xâu biểu diễn hoán vị của n có dạng $X = (x_1, x_2, ..., x_n)$.
- Cấu hình đầu tiên: (1,2,...,n) cấu hình cuối cùng: (n, n-1,..., 1).
- Cấu hình $X = (x_1,...,x_n)$ được gọi là đứng trước cấu hình $Y = (y_1,...,y_n)$ nếu tồn tại chỉ số t thỏa mãn: $x_1 = y_1, x_2 = y_2, ..., x_{t-1} = y_{t-1}, x_t < y_t$.
- Phương pháp:
- Giả sử cấu hình hiện tại là $X = (x_1, x_2, ..., x_n)$.
- Nếu X là cấu hình cuối cùng, thuật toán kết thúc.
- Tìm x_i là phần tử đầu tiên tính từ bên phải của X mà $x_i < x_{i+1}$.
- Tìm x_i nhỏ nhất mà còn lớn hơn x_i trong các số bên phải x_i.
- Đổi chỗ (x_i, x_j) .
- Lật ngược đoạn từ x_{i+1} đến x_n .
- ❖ Viết hàm:

```
void sinh()
{
    for(int i = 1; i <= n; i++) x[i] = i;
    while(1)
    {
       for(int i = 1; i <= n; i++) cout << x[i];
       cout << endl;
       int i = n - 1;</pre>
```

```
while(x[i] > x[i+1] && i > 0) i--;
if(i == 0) break;
else
{
    int j = n;
    while(x[j] < x[i]) j--;
    swap(x[i], x[j]);
    int l = i + 1, r = n;
    while(l <= r)
    {
        swap(x[l], x[r]);
        l++; r--;
    }
}</pre>
```

II. Quay lui

Nguyên tắc chung:

- Định nghĩa về các cấu hình cần liệt kê.
- Các khả năng ứng với phần tử x_i, điều kiện của những khả năng này.
- Làm gì với các khả năng.
- Nếu là phần tử cuối cùng, ghi nhận nghiệm bài toán. Nếu chưa, tiếp tục xác định thành phần thứ i+1.
- 1. Quay lui nhị phân
 - Giả sử cần xác định xâu $X = (x_1,...,x_n)$ biểu diễn các xâu nhị phân độ dài n.
 - Mỗi phần tử x_i có 2 khả năng lựa chọn là 0 hoặc 1. Các giá trị này mặc nhiên được chấp thuận mà không cần thỏa mãn điều kiện gì.
 - Úng với mỗi khả năng j dành cho x_i ta thực hiện: chấp thuận từng khả năng j.
 - Nếu i là thành phần cuối cùng (i = n), ta ghi nhận nghiệm bài toán. Nếu chưa, ta xác đinh tiếp thành phần thứ i + 1.
 - Viết hàm:

```
void Try(int i)
{
    for(int j = 0; j <= 1; j++)
    {
        x[i] = j;
        if(i == n) Result();
        else Try(i + 1);
    }</pre>
```

2. Quay lui tổ hợp

- Giả sử cần xác định xâu $X=(x_1,...,x_k)$ biểu diễn các tổ hợp chập k của n.
- Mỗi phần tử x_i có các khả năng lựa chọn từ $x_{i-1} + 1$ đến n k + i. Các giá trị này mặc nhiên được chấp thuận mà không cần thỏa mãn điều kiện gì.
- Úng với mỗi khả năng j dành cho x_i ta thực hiện: chấp thuận từng khả năng j.
- Nếu i là thành phần cuối cùng (i = k), ta ghi nhận nghiệm bài toán. Nếu chưa, ta xác định tiếp thành phần thứ i + 1.

❖ Viết hàm:

```
void Try(int i)
{
    for(int j=x[i-1]+1; j<=n-k+i; j++)
    {
        x[i] = j;
        if(i == k) Result();
        else Try(i + 1);
    }
}</pre>
```

3. Quay lui hoán vị

- Giả sử cần xác định xâu $X = (x_1,...,x_n)$ biểu diễn hoán vị của n phần tử.
- Mỗi phần tử x_i có n khả năng lựa chọn. Khi $x_i = j$ được lựa chọn thì giá trị này sẽ không được chấp thuận cho các thành phần còn lại.
- Úng với mỗi khả năng j dành cho x_i ta thực hiện: ghi nhận $x_i = j$ nếu j được chấp thuận. Để thực hiện điều này, ta sử dụng mảng unused[]. Nếu unused[i] = True thì ta có thể sử dụng i. Ngược lại, unused[i] = False thì ta không thể chọn giá trị này.
- Nếu i là thành phần cuối cùng (i = n), ta ghi nhận nghiệm bài toán. Nếu chưa, ta xác định tiếp thành phần thứ i + 1. Nếu không còn khả năng nào dành cho x_i ta quay lui lại bước trước đó để thử các khả năng tiếp theo của x_{i-1} .

Viết hàm:

```
void Try(int i)
{
    for(int j = 1; j <= n; j++)
        if(unused[j])
        {
            x[i] = j;
            unused[j] = 0;
            if(i == n) Result();
            else Try(i + 1);
            unused[j] = 1;
        }
}</pre>
```

III. Duyệt toàn bộ

1. Bài toán tối ưu

Tập phương án:
$$D = \{X = (x_1, x_2,..., x_n)\}$$

Xét mọi $X \in D$, tìm X^* để $f(X^*) \rightarrow max$ (min)

- ❖ Thuật toán:
 - B1: Khởi tạo

$$XOPT = \emptyset; FOPT = -\infty (+\infty);$$

- <u>B2</u>: Lặp

```
for(X ∈ D)
{
    S = f(X)
    if(FOPT < S)
    {
        FOPT = S;
        XOPT = X;
    }
}</pre>
```

- <u>B3</u>: Return(FOPT, XOPT)
- 2. Bài toán cái túi

Đề bài: N đồ vât

b: trọng lượng tối đa túi chứa được

 $A = (a_1, a_2, ..., a_n)$: trọng lượng từng đồ vật

 $C = (c_1, c_2, ..., c_n)$: giá trị sử dụng từng đồ vật

Tập phương án: D = $\{X = (x_1, x_2, ..., x_n), x_i \in \{0,1\}, g(X) = \sum_{i=1}^n a_{i^*} x_i \le b\}$

Xét mọi $X \in D$, tìm X^* để $f(X^*) \rightarrow max$: $f(X) = \sum_{i=1}^n c_i * x_i$

Thuật toán:

- <u>B1</u>: Khởi tạo XOPT=∅;FOPT= - ∞;

- <u>B2</u>: Lặp

```
for(X∈D)
{
    W = g(X)
    S = f(X)
    if(W <= b && FOPT < S)
    {
        FOPT = S;
        XOPT = X;
    }
}</pre>
```

- <u>B3</u>: Return(FOPT, XOPT)

IV. Nhánh cận

1. Bài toán nhánh cận

```
Tập phương án: D=\{\ X=(x_1,\,x_2,...,\,x_n)\in A_1\times A_2\times...\times A_n\}
Tìm min\{f(X):X\in D\}
```

- ❖ Ý tưởng:
 - Điều kiện của thành phần thứ k.
 - Cận của phương án.
 - Quay lui thử lại kết quả.
- ❖ Thuật toán:

```
\label{eq:branch_And_Bound(k)} \begin{cases} \\ & \text{for}(a_k \in A_k) \\ & \text{if}(<\text{chấp nhận } a_k>) \\ & \{ \\ & X_k = a_k; \\ & \text{if}(k == n) < \text{Cập nhật ki lục}; \\ & \text{else if}(g(x_1, x_2, ..., x_k) < FOPT) Branch_And_Bound(k+1); \\ & \} \end{cases}
```

- 2. Bài toán cái túi
- ❖ Ý tưởng:

B1: Khởi tạo

- Sắp xếp các đồ vật trong túi thỏa mãn: $\frac{c_1}{a_1} \ge \frac{c_2}{a_2} \ge \cdots \ge \frac{c_n}{a_n}$ FOPT = -\infty; XOPT = \infty; $b_0 = b$; $\delta_0 = 0$; $\underline{B2}$: Lặp $k = 1, 2, \ldots, n$ - Trọng lượng còn lại: $b_k = b - \sum_{i=1}^k a_i * x_i$ - Giá trị đồ vật trong túi: $\delta_k = \sum_{i=1}^k c_i * x_i$ - Cận trên của phương án: $g_k = \delta_k + b_k * \frac{c_{k+1}}{a_{k+1}}$ - Nếu $b_k < 0$ thì dừng và quay lui.

❖ Thuật toán:

B3: Return(FOPT, XOPT)

```
Branch_And_Bound(k)
{
    for(j = 1; j >= 0; j--)
    {
        X<sub>k</sub> = j;
        b<sub>k</sub> = b<sub>k</sub> - a<sub>k</sub>*x<sub>k</sub>;
        δ<sub>k</sub> = δ<sub>k</sub> + c<sub>k</sub>*x<sub>k</sub>;
        if(k == n) < Cập nhật kỉ lục>;
        else if(FOPT < δ<sub>k</sub> + b<sub>k</sub>*c<sub>k+1</sub>/a<sub>k+1</sub>) Branch_And_Bound(k+1);
        b<sub>k</sub> = b<sub>k</sub> + a<sub>k</sub>*x<sub>k</sub>;
        δ<sub>k</sub> = δ<sub>k</sub> - c<sub>k</sub>*x<sub>k</sub>
    }
}
```

3. Bài toán người du lịch

Tập phương án: D =
$$\{X = (x_1, x_2, ..., x_n) \land x_1 = 1 \land x_i \neq x_j\}$$

Tìm X* đề
$$f(X^*) \to \min$$
: $f(X) = \sum_{i=1}^{n-1} C_{x_i x_{i+1}} + C_{x_n x_1}$

- ❖ Ý tưởng:
 - Gọi cmin là chi phí nhỏ nhất của ma trận chi phí.
 - Giả sử đang có hành trình qua k thành phố:

$$x_1 \to x_2 \to \cdots \to x_k$$

- Chi phí: $\delta = \sum_{i=1}^{k-1} c_{x_i x_{i+1}}$
- Hành trình còn lại: cần phải đi qua n k thành phố, rồi quay trở lại thành phố 1. Như vậy, cần đi qua n k + 1 đoạn đường còn lại. Vì mỗi đoạn đường có chi phí không nhỏ hơn cmin nên cận dưới của phương án:

$$g_k = \delta + (n - k + 1)*cmin$$

❖ Thuật toán: