GPS-raw data project

DSPLab IT-6 mguPI

2009

Глава 1

Расчет времен передачи и доступа к элементам платы

1.1 SRAM и GPS

Частота работы платы $50 \mathrm{Mhz}{=}20 \mathrm{ns}$

Операции доступа к памяти:

Название цикла	Время	Тактов кварца	Реальное время
выставить адрес выставить WE/OE выставить данные снять WE/OE	0ns 40ns 45ns 5ns	0 2 3 1	0ns 40ns 60ns 20ns
Итого		6	$120 \mathrm{ns}$

GPS микросхема MAX2769 работает на частоте $16.368 \mathrm{Mhz}$. Каждый такт выдается 4 бита: 2-синфазных и 2 квадратурных. Реальная частота $8.184 \mathrm{Mhz}$ (для получения 1 байта = 8 бит данных). В пересчете на время получаем:

$$8.184Mhz = 122.18964ns = 1byte (1.1)$$

$$2^{18} = 256 Kbytes$$
 (ширина адресной шины в SRAM) (1.2)

Время заполнения памяти (256 Кбайт):

$$122.18964 * 2^{18} = 0.0320313sec (1.3)$$

Скорость выдачи данных чипом GPS:

122.18964sec*1Mb = 0.1281251 Mb/sec (1Мб вычитывается за 0.13 секунды) (1.4)

$$\frac{1Mb}{0.1281251sec} = 7.8 \quad Mb/sec \tag{1.5}$$

1.2 RS-232

$$\frac{2^{18}}{(\frac{115200bits/sec}{8bits})} = 18.2sec \quad \text{(время передачи 256К6 данных)} \tag{1.6}$$

1.3 Архитектура

Архитектура hardware части включает в себя несколько блоков: RS-232 порт, микросхему GPS, арбитр управления и контроллер памяти.

Рис. 1.1: Архитектура hardware-части