Bayesian Learning

Basics of Probability

- *P*(*A*): probability that *A* happens
- P(A|B): probability that A happens, given that B happens (conditional probability)
- Some rules:
 - \circ Complement: $P(A^C) = 1 P(A)$
 - Disjunction: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - o Conjunction: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
 - If *A* and *B* are independent, $P(A \cap B) = P(A)P(B)$
 - \circ Total probability: $P(B) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$

Conditional Probability

- If: the patient has symptom of toothache
- Then: conclude cavity with probability P
- where *P* is the following conditional probability

P(cavity|toothache)

• To compute p(cavity|toothache), we can compute

 $p(cavity \land toothache) / p(cavity)$

Bayes' Rule

By definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

- P(A): prior probability of hypothesis A
- P(A|B): posterior probability of A given evidence B
- P(B|A): likelihood of B given A
- o P(B): prior probability of B

Example: Conditional Probability

- T+ = toothache (positive test)
- T- = normal (negative test)
- C+ = cavity (disease present)
- C- = no cavity (disease absent)

	C+	C-	Total
T+	25	14	39
T-	18	78	96
Total	43	92	135

Example: Conditional Probability

- T+ = toothache (positive test)
- T- = normal (negative test)
- C+ = cavity (disease present)
- C- = no cavity (disease absent)

	C+	C-	Total
T+	0.185	0.104	0.289
T-	0.133	0.578	0.711
Total	0.318	0.682	1

Example: Conditional Probability

- T+ = toothache (positive test)
- T- = normal (negative test)
- C+ = cavity (disease present)
- C- = no cavity (disease absent)

If toothache, then conclude cavity with probability p(C+|T+)=?

	C+	C-	Total
T+	0.185	0.104	0.289
T-	0.133	0.578	0.711
Total	0.318	0.682	1

Argmax/Argmin

argmax stands for the argument of the maximum, that is to say, the set of points of the given argument for which the given function attains its maximum value.

$$\operatorname*{argmax}_{x} f(x) = \{x | \forall y : f(y) \leq f(x)\}$$

$$\operatorname*{argmax}_{x} (-|x|) = \{0\}$$

Maximum A Posteriori

Find the most probable hypothesis given the training data (Maximum A Posteriori hypothesis H_{map})

$$H_{MAP} = \operatorname{argmax}_{H \in \mathbb{H}} P(H|E)$$

$$= \operatorname{argmax}_{H \in \mathbb{H}} \frac{P(H)P(E|H)}{P(E)}$$

$$= \operatorname{argmax}_{H \in \mathbb{H}} P(H)P(E|H)$$

Maximum Likelihood

Sometimes we may assume that all a priori probabilities are equally likely in which case the method is called a **maximum likelihood** or ML method

$$H_{ML} = \operatorname{argmax}_{H \in \mathbb{H}} P(E|H)$$

Example

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Also, 0.008 of the entire population have this cancer.

For a new patient that lab test returns a positive result, should he be diagnosed as having cancer or not?

Evolution of Posterior Probabilities

hypotheses

Evolution of Posterior Probabilities

Evolution of Posterior Probabilities

hypotheses

Classification Using Bayes Rule

Given multiple attribute values, what is the most probable value of the target variable?

$$h_{MAP} = \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} p(h_i|d_1, d_2, \cdots, d_n)$$

$$= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} \frac{p(h_i)p(d_1, d_2, \cdots, d_n|h_i)}{p(d_1, d_2, \cdots, d_n)}$$

$$= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} p(h_i)p(d_1, d_2, \cdots, d_n|h_i)$$

Problem: too much data needed to estimate $p(d_1, d_2, ..., d_n | h_i)$

Classification Using Bayes Rule

• What is the usual way to compute $p(d_1, d_2, ..., d_n | h_i)$?

Chain rule:

$$p(d_1, d_2, \dots, d_n | \mathbf{h}_i) = p(d_1 | \mathbf{h}_i) \times p(d_2 | \mathbf{h}_i, d_1) \times p(d_3 | \mathbf{h}_i, d_1, d_2) \times \dots \times p(d_n | \mathbf{h}_i, d_1, d_2, \dots, d_{n-1})$$

Naïve Bayes Classifier

Naïve Bayes Classifier

- Based on Bayes' rule + assumption of conditional independence
 - assumption often violated in practice
 - o even then, it usually works well

Successful application: classification of text documents

Conditional Independence

•
$$p(d_1, d_2, ..., d_n | \mathbf{h}_i) = p(d_1 | \mathbf{h}_i) \times p(d_2 | \mathbf{h}_i, d_1) \times p(d_3 | \mathbf{h}_i, d_1, d_2) \times ... \times p(d_n | \mathbf{h}_i, d_1, d_2, ..., d_{n-1})$$

 Naïve Bayes (conditionally independence) assumption: attributes are independent, given the class

```
 p(d_{2}|\mathbf{h}_{i},d_{1})=p(d_{2}|\mathbf{h}_{i}) 
 p(d_{3}|\mathbf{h}_{i},d_{1},d_{2})=p(d_{3}|\mathbf{h}_{i}) 
 \dots, 
 p(d_{n}|\mathbf{h}_{i},d_{1},d_{2},\dots,d_{n-1})=p(d_{n}|\mathbf{h}_{i})
```

Naïve Bayes Classifier

$$h_{NB} = \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} \ p(h_i|d_1, d_2, \cdots, d_n)$$

$$= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} \ \frac{p(h_i)p(d_1, d_2, \cdots, d_n|h_i)}{p(d_1, d_2, \cdots, d_n)}$$

$$= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} \ p(h_i)p(d_1, d_2, \cdots, d_n|h_i)$$

$$= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} \ p(h_i) \prod_{j=1}^{n} p(d_j|h_i)$$

Naïve Bayes Classifier

What if the independence assumption is violated, that is,

$$p(d_1, d_2, \dots, d_n | \mathbf{h}_i) \neq p(d_1 | \mathbf{h}_i) \times p(d_2 | \mathbf{h}_i) \times p(d_3 | \mathbf{h}_i) \times \dots \times p(d_n | \mathbf{h}_i)$$
?

 Prediction is still equivalent to Bayes prediction as long as the following weaker condition holds:

```
\underset{h_i \in \mathbb{H}}{\operatorname{argmax}} p(d_1, d_2, \cdots, d_n | h_i) p(h_i)
= \underset{h_i \in \mathbb{H}}{\operatorname{argmax}} p(d_1 | h_i) p(d_2 | h_i) \cdots p(d_n | h_i) p(h_i)
```

Learning a Naïve Bayes Classifier

- We need to estimate $p(h_i)$, $p(d_1|h_i)$, $p(d_2|h_i)$,..., $p(d_n|h_i)$ from data.
- Then $h_{NB} = \operatorname*{argmax}_{h_i \in \mathbb{H}} p(h_i) \prod_{j=1}^n p(d_j | h_i)$

- How to estimate?
 - Simplest: standard estimate from statistics
 - estimate probability from sample proportion
 - e.g., estimate p(A|B) as count (A and B) / count(B)

Naïve Bayes Example

Day	Outlook	Temp.	Humidity	Wind	Play (Tennis)
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

A New Day: Outlook= sunny, Temperature=cool, humidity=high and windy= strong, play tennis?

Naïve Bayes Example

Consider a medical diagnosis problem with three possible diagnoses (well, cold, allergy,) and three symptoms (sneeze, cough, fever)

Diagnoses	Well	Cold	Allergy	Rhinitis
p(h)	0.8	0.05	0.05	0.1
p(sneeze h)	0.1	0.9	0.9	0.8
p(cough h)	0.1	0.8	0.7	0.6
p(fever h)	0.01	0.7	0.4	0.6

If diagnosis is sneeze, cough and ¬fever, what is the conclusion -- well, cold or allergy?

Text Classification using Naïve Bayes

Text Classification

- Given text of newsgroup article, guess which newsgroup it is taken from.
- Naïve Bayes turns out to work well on this application.
- Key issue : how do we represent examples? what are the attributes?

Text Classification

• Class h_j : Binary classification (+/-) or multiple classes possible H (j = 1, 2, ..., k)

How about attributes?

Example

- 1000 training documents that someone has 700 classified as "dislikes" (h₀) and 300 classified as "likes" (h₁).
- Suppose document 1 is "This is a very interesting document"

$$h_{NB} = \max_{h_j \in \{\text{like,dislike}\}} p(h_j) \times p(d_1 = \text{this}|h_j) \times p(d_2 = \text{is}|h_j) \cdots \times p(d_6 = \text{document}|h_j)$$

$$p(like) = 300/1000 = 0.3$$

$$p(dislike) = 1 - p(like) = 0.7$$

• How to estimate $p(d_i|h_i)$?

Comments on Naïve Bayes Learner

- One of the most practical learning methods, along with decision trees, neural networks, etc.
- Requires :
 - Moderate or large training data set
 - Attributes that describe instances should be conditionally independent given the classification.
- Successful applications include diagnosis and text classification.
- It may not estimate probabilities accurately when independence is violated, it still picks correct category