		•
Invigilat	tor's Signature':	••
	CS/B.Tech (EE-New)/SEM-4/EE	-402/2010
	2010	
	ELECTROMAGNETIC FIELD THE	DRY
Time Al	llotted: 3 Hours Fu	ll Marks: 70
	The figures in the margin indicate full mark	*e
O41		
Canau	dates are required to give their answers in their as far as practicable.	own words
t	GROUP - A	
	(Multiple Choice Type Questions)	
1. Ch	noose the correct alternatives for any ten of the	te following: $10 \times 1 = 10$
		10 x 1 = 10
1)	The vector identity of $\nabla \times (\nabla \times \overrightarrow{A})$ is	
	a) $\nabla (\nabla . \overrightarrow{A}) - \nabla^2 \overrightarrow{A}$	
	b) $\nabla \cdot (\nabla \times \overrightarrow{A}) - \nabla^2 \overrightarrow{A}$	
	c) $\nabla \times \overrightarrow{A} - \nabla^2 \overrightarrow{A}$	

4155

[Turn over

ii) The expression of $\nabla V(r, \theta)$ in $r - \theta$ co-ordinate is

a)
$$\vec{r} \frac{\partial v}{\partial x} + \vec{r} \frac{\partial v}{\partial y} + \vec{k} \frac{\partial v}{\partial z}$$

b)
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

c)
$$\frac{\partial v}{\partial r} \overrightarrow{u}_r + \frac{\partial v}{rd\theta} + \overrightarrow{u}_\theta$$

d)
$$\frac{\partial v}{\partial r} \overrightarrow{u}_r + \frac{\partial v}{\partial \theta} \overrightarrow{u}_{\theta}$$

iii) In a perfect dielectric, the wavelength of E.M. wave is

a)
$$\lambda = \frac{2\pi}{\sqrt{\mu \epsilon}}$$

b)
$$\lambda = \frac{1}{\sqrt{u \in u}}$$

c)
$$\lambda = \frac{\omega}{\sqrt{\mu \epsilon}}$$

d)
$$\lambda = \frac{2\pi}{\omega\sqrt{\mu\epsilon}}$$
.

where μ = permeability of the medium

- ∈ = permittivity of the medium
- ω = angular frequency.
- iv) Relation among magnetic vectors \overrightarrow{B} , \overrightarrow{M} & \overrightarrow{H} is

a)
$$\vec{B} = \mu_o \vec{H} + \vec{M}$$

b)
$$\vec{B} = \mu \vec{H} + \vec{M}$$

c)
$$\overrightarrow{H} = \mu \overrightarrow{B} + \overrightarrow{M}$$

d)
$$\vec{H} = \frac{\vec{B}}{\mu_o} - \vec{M}$$
.

v)	The potential V due to an	electric	dipole	located	at	a
		4.4				
1.50	distance 'r' from the dipole	` .				

- a) varies directly as r
- b) varies inversely as r
- c) varies inversely as r^2
- d) varies inversely as r^3 .
- vi) The integral $\oint \vec{E} \cdot d\vec{\rho} = 0$, if the electric field \vec{E} is caused by
 - a) a static charge
 - b) a time varying magnetic field
 - c) moving charge
 - d) magnetic dipole.
- vii) One tesla is equal to
 - a) 10 ⁶ gauss
- b) 1 gauss
- c) 10⁻⁴ gauss
- d) 10 4 gauss.
- viii) Electric potential & electric field intensity inside a spherical shell are
 - a) zero & constant respectively
 - b) both inversely proportional to radius
 - c) constant & zero respectively
 - d) zero & zero respectively.

[Turn over

	1.		e de la composición			1001	. ^
		(EE-New)	ICTEM A	/FF.	-A(Y)	/ '/()	
CC /	D Tach	IN'H - NEWI	/ 3P/IVI=4	1 11111	702/	20	
CO/	D. ICCII	(LIZE TACAL)		,			

- ix) The direction of force on a conductor carrying current in the positive Y-axis & placed in magnetic field directed in positive X-axis, will be
 - a) positive Z-axis
- b) negative Z-axis
- c) negative X-axis
- d) negative Y-axis.
- x) A Gaussian surface is
 - a) an open surface
 - b) a closed surface
 - c) a semi-open surface
 - d) all of these.
- xi) Gradient of scalar function results in
 - a) vector function
- b) scalar function
- c) periodic function
- d) peak function.
- xii) Poynting vector has the unit
 - a) $W m^{-2}$

b) Js⁻¹

c) W

d) $J m^{-2}$

4

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Develop an expression of \vec{E} at (0, 0, 5) m due to $Q_1 = 0.35 \,\mu\text{C}$ at (0, 4, 0) $m \,\&\, Q_2 = -0.55 \,\mu\text{C}$ at (3, 0, 0) m.
- 3. Given an electric flux density $\overrightarrow{D} = 2x \overrightarrow{a}_x + 3 \overrightarrow{a}_y$ (C / m²), determine the net flux crossing the surface of a cube 2 m on an adge centered at origin. (the edges of the cube are parallel to the co-ordinate axis).
- 4. Find \overrightarrow{H} on the axis of a circular loop of radius a.
- 5. Find the force per unit length on two long, straight, parallel, conductors, if each carries a current of 10 A in the same direction & the separation distance is 0.2 m.
- 6. Differentiate between magnetic scalar potential & magnetic vector potential.
- 7. State how transformer emf differs from motional emf. Derive the necessary expressions.
 2 + 3

[Turn over

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

8. a) Show that the electric field is conservative. Derive the relation $\vec{E} = -\vec{\nabla} V$. The symbols has usual meaning.

3 + 3

- b) State divergence theorem. Find the divergence of the electric flux density \overrightarrow{D} . Why is the divergence of the magnetic flux density \overrightarrow{B} always zero? 2 + 5 + 2
- 9. a) State & explain Ampere's law of magnetostatics. Explain how this law is modified by introduction of displacement current.

 3 + 5
 - b) Obtain an expression for the energy density in an electrostatic field.
- 10. a) Obtain the Poynting theorem for conservation of energy in electromagnetic fields & discuss the physical meaning of each term in the resulting equation.
 - b) An EM wave travels in free space with electric field component

$$E = \left(10 \overrightarrow{a}_{y} + 5 \overrightarrow{a}_{z}\right) \cos(\omega t + 2y - 4z) \text{ V/m}.$$

Determine:

- (i) ω&λ
- (ii) the magnetic field component
- (iii) the time average power in the wave. 2 + 2 + 3

4155

11. a) Write & interpret two Maxwell's equations relating to \vec{B} .

6

- b) Explain the importance of propagation constant (γ) & charactertic impedance (z_0) of a transmission line.

 State the conditions for lossless & distortionless transmission line.
- c) Why is it desirable to achieve an impedance match in a transmission line?
- 12. a) The parallel conducting disks shown in the figure are separated by 5 mm and contain a dielectric for which $\epsilon_r = 2.2$. Determine the charge densities on the disk.

7

- b) Explain the method of images for solving electrical problems.
- c) Write a note on continuity equation.

3