Realce de imagens — parte 1: operações pontuais SCC0251 – Processamento de Imagens

Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir

Instituto de Ciências Matemáticas e de Computação - USP

2013/1

Sumário

- 🕕 Introdução
- 4 Histogramas
- Transformações
 - Equalização do histograma
 - Fatiamento de níveis de intensidade

Realce de imagens

- Alterar os valores dos pixels de uma imagem, de forma a obter uma nova imagem, de melhor visualização, é chamado frequentemente de realce de imagens (image enhancement).
- O realce de imagens é utilizado principalmente para obter imagens que sejam melhor percebidas pelo sistema visual humano.

Transformação da intensidade (níveis de cinza)

 Alterar os valores de seus pixels individuais com base na intensidade (nível de cinza). Sendo r a intensidade de um pixel e T a transformação:

$$s = T(r),$$

onde s é o valor após a transformação.

Aumento contraste

Processamento no domínio espacial

• As operações no domínio espacial são dadas por

$$g(x,y) = T[f(x,y))],$$

onde f é a imagem de entrada e g a imagem resultante. T é um operador definido sobre uma vizinhança de (x, y).

• Dessa forma, a transformação pode atuar sobre o valor do pixel apenas (vizinhança 1×1) ou sobre outra vizinhança arbitrária.

Histograma

- Informação da frequência de cada intensidade presente na imagem
- Pode ser visto como:
 - uma função h(k), onde $k \in [0, L-1]$, e L é o número de intensidades ou cores possíveis na imagem,
 - 2 um vetor de tamanho L.
- Geralmente visualizado utilizando um gráfico de barras

0	1	1	1	0
0	1	2 1	2	0
0 1	1	1	2	0 2 3 1
1 3	0	0	0	3
3	3	1	1	1

Histograma, Histograma Acumulado e Normalização

- Histograma normalizado: cada posição do histograma é divida pelo total de frequências, de forma que a soma seja unitária.
- Histograma acumulado, ha(k), frequência dos níveis de cinza menores ou iguais a k, para $0 \le k \le L 1$,
- Histograma acumulado normalizado: cada posição de ha(k) é dividida pelo total de frequências ou pelo último elemento de ha().

0	1	1	1	0
0	1	1 2 1	1 2 2	0
1 1 3	1	1	2	0 2 3
1	0	0	0	3
3	3	1	1	1

Histograma

 Permite entender a distribuição da intensidade/cor e comparar com as distribuições de outras imagens

Sumário

- Introdução
- 2 Histogramas
- Transformações
 - Equalização do histograma
 - Fatiamento de níveis de intensidade

Transformação da intensidade (níveis de cinza)

- Para codificar esse tipo de transformação temos que determinar a função T e aplicar pixel a pixel.
- Um exemplo:

Inversão (negativo)

$$T(r) = 255 - r$$

Ajuste de Contraste

- Ajuste de contraste (ou normalização) é uma técnica de realce que tenta melhorar o contraste "esticando" o intervalo de intensidades.
- Altera o intervalo da imagem atual [a, b] para um outro intervalo desejado [c, d], aplicando uma transformação linear:

$$T(r) = (r - a)\left(\frac{d - c}{b - a}\right) + c$$

Operador Logaritmico

- Comprime o intervalo dinâmico (razão entre a maior e a menor intensidades).
- Como resultado, pixels de valor baixo são realçados.

$$T(r) = c \log(1 + |r|)$$

• c é uma constante que pode ser definida com base na intensidade máxima encontrada na imagem:

$$c = \frac{255}{\log(1+R)}$$

O valor 1 é adicionado pois o logaritmo não é definido para 0.

Operador de Potência

- Modifica o intervalo dinâmico com pixels de valor mais alto realçados.
- Devido ao parâmetro γ , é também chamado de Ajuste Gama, usado em dispositivos de visualização (monitores, projetores, etc.)

$$T(r) = cr^{\gamma}$$

- c é uma constante para ponderar o resultado
- \bullet γ é em geral definido entre 0.04 e 25.

Limiarização (Thresholding)

- Modo mais simples de segmentação, baseada na distribuição das intensidades no histograma
- Retorna os pixels na imagem pertencentes a regiões de interesse.

$$T(r) = \begin{cases} 1, & \text{se } r > L \\ 0, & \text{caso contrário} \end{cases}$$

• L é escolhido de forma a separar as regiões de interesse. Há algoritmos que buscam automaticamente por esse valor (Otsu).

- Técnica de modelagem de histograma que permite o mapeamento não-linear entre pixels de entrada e de saída.
- Uma função de transferência define o mapeamento das intensidades de cada pixel na imagem de entrada, para novas intensidades na imagem de saída.

$$D_B = f(D_A)$$

- D_A é a distribuição de intensidade da imagem de origem
- $D_B = f(D_A)$ é a distribuição de intensidade da imagem de destino

- A função de transferência deverá ser monotonicamente crescente.
- Tenta aproximar a distribuição dos níveis de intensidade para uma distribuição uniforme.
- Há casos em que múltiplos valores na imagem de entrada são mapeados para um único valor na imagem de saída (pode ser um problema) — gráfico esquerda.

- Cada pixel na imagem de entrada com densidade numa região $D_A + \Delta_A$ terá o valor do seus pixels alterado para assumir um valor diferente em $D_B + \Delta_B$,
- Uma das formas de se obter a função é utilizar o histograma acumulado,
- Usando ha(r) como função, temos um somatório de 0 até a intensidade atual r

$$s = T(r) = \frac{(L-1)}{MN} ha(r),$$

- $M \times N$ é a resolução (tamanho) da imagem
- ha(r) é o histograma acumulado relativo à intensidade r
- L é o maior valor possível na codificação da imagem (ex: 256)

Fatiamento dos níveis de intensidade

- Há aplicações em que determinados níveis de intensidade são mais importantes:
 - Imagens de satélite: detecção de massas de água
 - Raios-X: realce de falhas
 - Angiogramas: realce do sistema circulatório
- Pode ser feita usando uma transformação, realçando uma faixa de intensidades ou por planos de bits.

Fatiamento dos níveis de intensidade

Realce de intervalo de intervalo de valores

Fatiamento dos níveis de intensidade

Fatiamento bit-a-bit (imagem original e depois cada plano de bits: do menos para o mais significativo)

Bibliografia I

GONZALEZ, R.C.; WOODS, R.E. *
Processamento Digital de Imagens, 3.ed
Capítulo 3.
Pearson, 2010.

