Shaping Knowledge Graphs ISWC'24 Tutorial

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

About me...

Main researcher at WESO (Web Semantics Oviedo)
Some books:

"Web semántica" (in Spanish), 2012

"Validating RDF data", 2017

"Knowledge Graphs", 2021

...and software:

SHaclEX (Scala library, implements ShEx & SHACL)

RDFShape (RDF playground)

rudof (RDF & Shapes library in Rust)

http://labra.weso.es

2012

2017 HTML version: http://book.validatingrdf.com

2021, HTML version https://kgbook.org/

Contents

Introduction to Knowledge graphs

Types of Knowledge Graphs:

RDF, Property graphs, Wikibase, RDF-Star

Shaping RDF: ShEx & SHACL

Shaping Other types of Knowledge graphs

Wikibase and Wikidata graphs

Property Graphs

RDF-Star

RDF with nodes as properties

Applications:

Inferring shapes from data, Knowledge Graphs Subsets, etc.

Knowledge Graphs

Current notion of Knowledge Graphs, popular after Google, 2012*

Link: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

Knowledge graphs

Knowledge graph = a **graph of data**intended to accumulate and convey **knowledge** of the real world

whose nodes represent **entities** of interest and

whose **edges** represent **relations** between these entities.

Applications of Knowledge graphs

Improve search results

Question answering

Data governance

Handling heterogenous data

Recommender systems

Chatbots and NLP

. . .

Contents

Introduction to Knowledge graphs

Types of Knowledge Graphs:

RDF, Property graphs, Wikibase, RDF-Star

Shaping RDF: ShEx & SHACL

Shaping other types of Knowledge graphs:

Wikibase and Wikidata graphs

Property Graphs

RDF-Star

Applications:

Inferring shapes from data, Knowledge Graphs Subsets, etc.

Types of Knowledge graphs

Open Knowledge graphs

Cross-domain: Wikidata, Dbpedia, Freebase, YAGO, ...

Domain specific

Academic: Open citations, SciGraph, Microsoft Academic Knowledge Graph, ...

Life sciences: UniProt, PubChem, PDB, ...

Government: EU Knowledge graph, ...

...

Enterprise Knowledge graphs

Web search: Google, Bing...

Commerce: AirBnb, Amazon, eBay, Uber,...

Social networks: Linkedin, Facebook,...

Finance: Banca d'Italia, Bloomberg, Wells Fargo, Capital One,...

Evolution

Timeline with some concepts and technologies...

1990 1995 2000 2005 2010 2015 2020

Knowledge Graphs models

3 popular knowledge graphs models

- RDF based
- Property graphs
- Wikibase graphs

RDF

Resource Description Framework

Lingua franca of the Semantic Web

- 1997 1st public Working draft https://www.w3.org/TR/WD-rdf-syntax-971002, RDF/XML
- 1999 1st W3C Rec https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, RDF Model and Syntax
- 2004 RDF Revised https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, Turtle
- 2008 SPARQL 1.0, https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
- 2014 RDF 1.1 https://www.w3.org/TR/rdf11-concepts/, SPARQL 1.1, JSON-LD
- 2017 SHACL 1.0 https://www.w3.org/TR/2017/REC-shacl-20170720/
- 2024 RDF 1.2 https://www.w3.org/TR/rdf12-concepts Statements about triples (RDF-Star)

RDF graphs

Based on triples

(subject, predicaje, object)

Most nodes are URIs

Interoperability

Simple & flexible

RDF ecosystem

One data model, several syntaxes: Turtle, N-Triples, JSON-LD Vocabularies: RDF Schema, OWL, SKOS, etc.

```
:Metropolis
Turtle
                                                                                                         :City
                                                                                                     rdf:type
                                                                                                                    rdf:type
prefix:
               <http://example.org/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
                                                                                                            :London
                                                                                                                          :country
               <http://www.w3.org/2001/XMLSchema#>
prefix xsd:
                                                                               :Human
               <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
                                                                                            :birthPlace
prefix rdf:
                                                                           rdf:type
                                                                                                         "Tim Berners-Lee"
:timbl
        rdf:type
                      :Human ;
                                                                                                                                :UK
                                                                                           rdfs:label
         :birthPlace :london ;
                                                                                :TimBL
        rdfs:label "Tim Berners-Lee" ;
                                                                                                     "1955-06-08"^^xsd:date
                                                                       :knows
                                                                                           :birthDate
         :birthDate
                     "1955-06-08"^^xsd:date ;
         :employer
                      :CERN ;
         :knows
                      :1
                                                                                                         :Organization
:london rdf:type
                     :City, :Metropolis;
                                                                                         :employer
                                                                     :birthPlace
                                                                                                       rdf:type
         :country
                    :UK .
:CERN
        rdf:type
                      :Organization .
                                                                   :Spain
                                                                                                            :CERN
        :birthPlace :Spain .
:1
```


RDF ecosystem: SPARQL

SPARQL = RDF query language and protocol Enables the creation of SPARQL endpoints

```
select ?person ?date ?country where {
     ?person :birthDate ?date .
     ?person :birthPlace ?p .
     ?p :country ?country
}
```

?person	?date	?country
:timbl	1955-06-08	:UK

RDF1.2 (RDF-Star)

Currently under discussion (https://github.com/w3c/rdf-star-wg/wiki)

Add statements about triples

Reifiers

```
:reifies
:start
1980
:timbl
:employee
:CERN
:end
1984

"Tim Berners Lee"
:reifies
:start
1984

1984
```


Property graphs

Since 2007, very popular model in industry

Neo4j, Amazon Neptune, Oracle, etc

Several query languages: Cypher, Gremlin, PGQL, ...

2024 - GQL has been published

Recent publication of ISO/IEC FDIS 39075

Developed by ISO/IEC JTC1 SC32 WG3: the "SQL" committee

Influenced by Cypher, PGQL, etc.

Property graphs

Graph structure with nodes and relationships (edges) | City, Metropolis | label: London |

Nodes and edges can have:

- Labels

- A set of property-value pairs

Edges can be directed/undirected

Human

label: Tim Berners-Lee
birthDate: 1955

Wikibase graphs

Popularized by Wikidata

Wikibase = software supporting Wikidata

The values can be nodes in the graph

Example:

Tim Berners Lee

http://www.wikidata.org/entity/Q80

Wikibase graphs and SPARQL

Wikibase graphs generate RDF serializations for each item SPARQL endpoint and Query service available


```
select ?name ?date?country where {
  wd:Q80 wdt:P1559 ?name .
  wd:Q80 wdt:P569 ?date .
  wd:Q80 wdt:P19 ?place .
  ?place wdt:P17 ?country
}
```

?name	?date	?country
Tim Berners-lee	1955-06-08	:UK

Try it: https://w.wiki/5yGu

Contents

Introduction to Knowledge graphs

Types of Knowledge Graphs:

RDF, Property graphs, Wikibase, RDF-Star

Shaping RDF: ShEx & SHACL

Shaping other types of Knowledge graphs:

Wikibase and Wikidata graphs

Property Graphs

RDF-Star

Applications:

Inferring shapes from data, Knowledge Graphs Subsets, etc.

Evolution

Timeline with some concepts and technologies...

RDF, the good parts...

RDF as an integration language

RDF as a lingua franca for semantic web and linked data

Basis for knowledge representation

RDF flexibility

Data can be adapted to multiple environments

Reusable data by default

RDF tools

RDF data stores & SPARQL

Several serializations: Turtle, JSON-LD, RDF/XML...

Can be embedded in HTML (Microdata/RDFa)

RDF, the other parts

Consuming & producing RDF

Describing and validating RDF content

SPARQL endpoints are not well documented

Typical documentation = set of SPARQL queries

Difficult to know where to start doing queries

Why describe & validate RDF?

For producers

Developers can understand the contents they are going to produce

They can ensure they produce the expected structure

Advertise and document the structure

Generate interfaces

For consumers

Understand the contents

Verify the structure before processing it

Query generation & optimization

In other technologies...

Technology	Schema
Relational Databases	DDL
XML	DTD, XML Schema, RelaxNG, Schematron
Json	Json Schema
RDF	?
	Fill that gap

Schemas for RDF?

RDF flexibility doesn't want to impose a schema, but...

In practice, there are **implicit schemas**Assumed by producers and consumers
Shapes can make schemas explicit
Handle malformed/incomplete data
Avoid defensive programming

Shapes for consensus building

Initial motivation: clinical data models (FHIR)

Distributed, extensible content models

Distributed by location

Distributed by authority

Extensible content models

Defined shared schemas

Understandable by domain experts

...and machine processable

:Metropolis

Example of a shape

A shape describes

The form of a node (node constraint)

Incoming/outgoing arcs from a node

Possible values associated with those arcs

rdf:type rdf:type :London :country :birthPlace 'Tim Berners-Lee" :UK rdfs:label :TimBL "1955-06-08"^^xsd:date :birthDate :Organization :employer rdf:type :CERN ShEx

:Citv

RDF Node

```
:timbl rdfs:label "Tim Berners-Lee";
    :birthPlace :london;
    :birthDate "1955-06-08"^^xsd:date;
    :employer :CERN .
```

```
<Researcher> {
  rdfs:label xsd:string ;
  :birthPlace @<Place> ? ;
  :birthDate xsd:date ? ;
  :employer @<Organization> * ;
}
```


ShEx & SHACL

2013 RDF Validation Workshop

Conclusions of the workshop:

There is a need of a higher level, concise language for RDF Validation

ShEx initially proposed (v 1.0)

2014 W3c Data Shapes WG chartered

2017 SHACL accepted as W3C recommendation

2017 ShEx 2.0 released as W3C Community group draft

2019 ShEx adopted by Wikidata

2024 IEEE ShEx (work in progress)