Testing Means

previously, Fxam 2 covered:

- Making Ho, H1
- using normal-based z-test
- using normal-based cI
- p-value
- -power

Back to power for one second, look at these sampling dists.

Ho: M = 1

HA: M=5

power = 1 - p

= 1- Type II From Rate

You can increase power by

1. Increasing n
(creates tighter
sampling distributions) FTR Ho

PTRHO PLTYPE II)

2. Increase effect site (Change HA)

Reject & (Type I) ~ Ho probof making

Prob. of

3. Increase 2 (Type I Error)

increase overall rejection

region (z* Will

be deeper in Ho dist

than Ha)

Reject Ho
Power = Plandar Manurale
on Marketine
unanterma

HA True

This is overlap between the 2 distributions.

L= PlReject Ho (Ho True)

what is the first thing you must do when you want to test some Ho. HA (H1)?

- Check assumptions!

- These vary...

"the job done" twice per day. Since Bob's team

made a big switch and hired lots of new grad
engineers, he wants to know if that average
has changed. We have an SRS to check.

AMNIA.	4.75	4.4	3.8	5.2	4.2	
4.7	5.12	4.9	6	2	2.3	
3 *	1,5	2.2	3.8	3.7	6 .5	6.2

can we tern?

o Random samples that are independent

o samples are approx. normal

o population std. dev. is known

OKAY. PH142 IS OUT FOR THE SEMESTER STATISTICS IS BROKE!!! SORRY, BOB!!!

can we fix it?"

$$= \frac{\bar{\chi} - \mu_0}{\sigma / \sqrt{n}}$$

We can estimate or (the parameter) with s (the sample sd). But did we fix it? can we use this under the same instances/assumptiones as before? SHORT NO. df=n-1 Meet Zee's cousin Tee normal Distribution! - The older cousin - The younger one - Chubbier in the tails - 2 parameters (M, o) 3 parameters (u, o, df) - Long skinny tails - When more free, - Tall in the center Assumptions for t-test - Random sample, independent, continuous - underlying population & Normal-looking - No outliers Back to Bob - Plot histogram (R) ← all your possible t-values here -> - calculate t = x-Mo AMM MIS centered > pt() Approximate. - calculate p-value (R) not to ?pt scale - Interpret - conclude

Soon, we will also be testing	hypotheses			
* H ₀ : $\mu_1 = \mu_2$ * H ₀ : A	$ll D_i = 0$			
	therm's e			
"Do the means	" pairwise companions"			
of 2 groups	companions			
equate to each other?"	PAIRED T-TEST			
TWO-SAMPLE T-TEST				
What is the				
first step AGAIN:				
to testing Ho, H1? CHECK	ASSUMPTIONS!!!			
Two Sample	Paired			
- Two SRS's, independent	- subjects/individuals			
-Both populations -Normal	that can be matched			
distribution	- 1 sample t-test			
-similar snapes? Also				
- No outliers suffices				

Bob the builder (One sample t-test)

We wish to test the hypotheses of getting the job done. Does Bob the builder get the job done 2 times per day or not?

```
\begin{split} H_0: \mu &= 2 \\ H_1: \mu &\neq 2 \\ \text{mu\_0} &< -2 \end{split}
```

We have a random sample of independent observations.

```
bob_data <- c(4.75, 4.4, 3.8, 5.2, 4.2, 4.7, 5.12, 4.9, 6, 2, 2.3, 1.5, 2.2, 3.8, 3.7, 6.5, 6.2)
```

The histogram doesn't look too bad? We have enough data (n=17).

```
library(ggplot2)
ggplot(data.frame(bob_data=bob_data), aes(x=bob_data)) +
geom_histogram(binwidth=1.1, col="white", lwd=0.5) +
theme_minimal()

5

4

1

0

2

4

6
```

There is one outlier.

```
ggplot(data.frame(bob_data=bob_data), aes(y=bob_data)) +
geom_boxplot() +
theme_minimal()
```

bob_data

A t-test is robust, so with caution from above, we'll proceed.

"By Hand" Calculation

Meaning: Use R like it is a simple calculator.

[1] 6.045722

By definition, we have degrees of freedom as 1 minus the number of observations.

```
# * THIS IS CONTINUING THE BY HAND CALCULATION

df <- n-1

df
```

[1] 16

Let's see where t lands on our distribution. I am plotting a t-distribution with df = n - 1 = 16.

```
# * THIS IS THE T-DISTRIBUTION WE ARE COMPARING AGAINST

x <- seq(-6.5, 6.5, length=100)
hx <- dt(x, df=n-1)
t_dist <- data.frame(cbind(x,hx))

ggplot(t_dist, aes(x=x, y=hx)) +
    geom_line() +
    geom_vline(xintercept=t, col="cornflowerblue", lwd=2, alpha=0.7) +
    xlab("All the possible t values we can calculate") +
    ylab("Probability density") +
    theme_minimal()</pre>
```


Can you guess what our p-value will be? (Big? Small?) We're going to take the area of being above the blue line on the above distribution as our p-value. (The probability of rejecting H_0 given that H_0 is actually the truth.)

```
# * THIS IS CONTINUING THE BY HAND CALCULATION
p_val <- 2*(1 - pt(q=t, df=df))
p_val</pre>
```

[1] 1.699117e-05

Look at slides to see interpretation of p-value!

Also, question: Would the corresponding confidence interval include or not include $\mu_0 = 2$?

"Using R" Calcuation

Meaning: Use more than just simple $\tt R$ functions.

```
# * THIS IS "USING R"
test <- t.test(x=bob_data, alternative="two.sided", mu=2)
test$p.value</pre>
```

[1] 1.699117e-05