Appl. No. 10/790,983 Amdt. sent June 13, 2006 Amendment under 37 CFR 1.116 Expedited Procedure Examining Group 2811

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

2

1	1. (Previously presented): A method for manufacturing a semiconductor			
2	power device, comprising:			
3	identifying an active region on a semiconductor die, the active region having a			
4	central portion, a first peripheral portion disposed about a periphery of said central portion, and			
5	second peripheral portion disposed about a peripheral region of said first peripheral portion;			
6	identifying a first region in said central portion of said active region;			
7	identifying a second region in said first peripheral portion of said active region;			
8	identifying a third region in said second peripheral portion;			
9	fabricating active cells in accordance with a first cell design in said first region;			
10	fabricating active cells in accordance with a second cell design in said second			
11	region, wherein an operational current density of said active cells fabricated according to said			
12	second cell design is greater than that of said active cells fabricated according to said first cell			
13	design, and			
14	fabricating active cells in accordance with a third cell design in said third region,			
15	wherein the operational current density of said active cells fabricated according to said third cell			
16	design is greater than that of said active cells fabricated according to said second cell design.			
1	2. (Original): The method of claim 1 wherein said first cell design and said			
2	second cell design include cell dimensions such that a cell density of said first region is different			
3	from that of said second region.			
1	3. (Original): The method of claim 1 wherein said first cell design includes			

at least one physical dimension different from that included in said second cell design.

Appl. No. 10/790,983 Amdt. sent June 13, 2006 Amendment under 37 CFR 1.116 Expedited Procedure Examining Group 2811

1

2

14.

accordance with the method of claim 1.

(Original): The method of claim 3 wherein said physical dimension 1 4. 2 includes a channel width. 5. (Original): The method of claim 4 wherein said physical dimension 1 includes a cell die area. 2 6. 1 (Original): The method of claim 1 wherein said first cell design includes a . 2 material composition for cells that is different from that of said second cell design. 1 7. (Previously presented): The method of claim 1 wherein said first cell design differs from said second cell design with respect to cell density. 2 (Original): The method of claim 1 wherein said first cell design differs 1 8. 2 from said second cell design with respect to source resistance. 9. (Original): The method of claim 1 wherein said first cell design differs 1 2 from said second cell design with respect to transconductance. 1 10. (Original): The method of claim 1 wherein said first cell design differs from said second cell design with respect to gain. 2 1 (Original): The method of claim 1 wherein said first cell design differs 11. 2 from said second cell design with respect to threshold voltage. 12. (Original): The method of claim 1 wherein said first cell design and said 1 second cell design are field effect transistors. 2 (Original): The method of claim 1 wherein said first cell design and said 1 13. 2 second cell design are memory cells.

(Previously presented): A semiconductor power device fabricated in

Appl. No. 10/790,983 Amdt. sent June 13, 2006 Amendment under 37 CFR 1.116 Expedited Procedure Examining Group 2811

1		15.	(Previously presented): The method of claim 1 wherein said first cell	
2	design differs from said second cell design with respect to pitch of gate stripes of each cell			
3	design.			
		16.	(Canceled).	
1		17.	(Currently amended): A method for manufacturing a semiconductor	
2	power device, comprising:			
3		identi	fying an active region on a semiconductor die;	
4	identifying a first region in said active region;			
5	identifying a second region in said active region;			
6		identi	fying a third region in said active region;	
7		provid	ling a first cell design by which active cells in said first region will be	
8	fabricated;			
9		provid	ling a second cell design by which active cells in said second region will be	
10	fabricated; and			
11		provid	ling a third cell design by which active cells in said third region will be	
12	fabricated,			
13		where	in an operational current density of second active cells fabricated according	
14	to said second cell design is greater than that of first active cells fabricated according to said first			
15	cell design,			
16		where	in the operational current density of third active cells fabricated according	
17	to said third cell design is greater than that of said second active cells fabricated according to			
18	said second cell design when the third active cells and the second active cells are powered under			
19	the same biasing conditions condition.			