

Lecture 11: Fisher Information, Asymptotic Normality of MLE;

课程 □ Unit 3 Methods of Estimation □ Method of Moments

6. Asymptotic Normality of the ML ☐ Estimator - Example Problems

6. Asymptotic Normality of the ML Estimator - Example Problems

Fisher Information and Asymptotic Normality of the MLE

1/1 point (graded)

Consider the statistical model $(\mathbb{R},\{\mathbf{P}_{ heta}\}_{ heta\in\mathbb{R}})$ associated to the statistical experiment $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathbf{P}_{ heta^*}$, where $heta^*$ is the true parameter. Assume that the conditions of the theorem for the convergence of the MLE hold. Which of the following statements about the Fisher information $\mathcal{I}(\theta)$ is true?

- ullet The Fisher information $\mathcal{I}\left(heta^{*}
 ight)$ at the true parameter gives a good approximation for $heta^{*}$.
- The Fisher information $\mathcal{I}\left(\theta^{*}\right)$ at the true parameter determines the asymptotic mean of the random variable $\hat{\theta}_{n}^{\mathrm{MLE}}$).
- The Fisher information $\mathcal{I}\left(heta^{*}\right)$ at the true parameter determines the asymptotic variance of the random variable $\hat{ heta}_{n}^{\mathrm{MLE}}$. \Box

Solution:

As stated in the theorem,

$$\sqrt{n}\,(\hat{ heta}_n^{ ext{MLE}}- heta^*)$$

converges to a normal random variable $\mathcal{N}(0,\mathcal{I}(\theta^*)^{-1})$. Hence, the Fisher information determines the asymptotic variance, and so the third choice is correct.

提交

你已经尝试了1次(总共可以尝试2次)

Answers are displayed within the problem

Asymptotic Normality of the MLE

1/1 point (graded)

Consider the statistical model $(\{0,1\},\{\operatorname{Ber}\,(\theta)\}_{\theta\in(0,1)})$. Let $\ell(\theta)$ denote the **log-likelihood of one observation** of this model. You observe samples $X_1,\ldots,X_n\sim \mathrm{Ber}\,(heta^*)$ and construct the MLE $\hat{ heta}_n^{\mathrm{MLE}}$ for $heta^*$. By the theorem for the convergence of the MLE (you are allowed to assume that all necessary conditions for this theorem hold), this implies that

for some constant σ^2 that depends on θ^* . The quantity σ^2 is referred to as the **asymptotic variance** . Use the theorem for the convergence of the MLE to find the expression for σ^2 .

What is σ^2 ? Express your answer in terms of $T:=\theta^*$.

Type **T** for T, using the variable T to stand for θ^* .

$$\sigma^2 = egin{bmatrix} exttt{T*(1-T)} & exttt{ Answer: T*(1-T)} \ & T \cdot (1-T) \ & T$$

STANDARD NOTATION

Solution:

We have that for this model the Fisher information is $\mathcal{I}(\theta) = \frac{1}{\theta} + \frac{1}{(1-\theta)} = \frac{1}{\theta(1-\theta)}$. Applying the theorem for the convergence of the MLE,

$$\sqrt{n} \, (\hat{ heta}_n^{ ext{MLE}} - heta^*) \, rac{(d)}{n
ightarrow \infty}
ightarrow \, \mathcal{N} \left(0, \mathcal{I}(heta^*)^{-1}
ight)$$

Hence,

$$\sigma^2 = \mathcal{I}(heta^*)^{-1} = heta^* \left(1 - heta^*
ight).$$

Remark: Alternatively, the asymptotic variance can be computed directly from the MLE, which is given, in the Bernoulli case, by the sample mean \overline{X}_n .

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 11: Fisher Information, Asymptotic Normality of MLE; Method of Moments / 6. Asymptotic Normality of the ML Estimator - Example Problems