ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

Поочерёдный и одновременный выбор

Понятие множества и его элементов

Множество — совокупность некоторых объектов, объединённых по определённому признаку

Элемент a принадлежит множеству $A \Leftrightarrow a \in A$. Элемент b не принадлежит множеству $A \Leftrightarrow b \notin A$. В множестве нет элементов $\Leftrightarrow \emptyset$

Подмножество (⊂)

 $A \subset B \Leftrightarrow ext{Если } x \in A$, то $x \in B$

Равенство множеств (=)

Если $x \in A$, то $x \in B$ Если $x \in B$, то $x \in A$

Пересечение множеств ()

 $C = A \cap B$ $x \in C \Rightarrow x \in A$ и $x \in B$

Окончание таблииы

Объединение множеств (∪)

$$A \cup B = C$$

 $x \in C \Leftrightarrow x \in A$ или $x \in B$

Разность множеств (\)

$$C = A \setminus B$$

 $x \in C \Leftrightarrow x \in A$ и $x \notin B$

Дополнение множеств

$$x\in \overline{A} \Leftrightarrow x\not\in A$$

Простейшие комбинаторные задачи: перебор вариантов, правило суммы и произведения

В простейших комбинаторных задачах осуществляют перебор всех возможных комбинаций и строится дерево возможных вариантов

Поочерёдный и одновременный выбор

Правило суммы (одновременный выбор)

Если элемент A можно выбрать m способами, а элемент B — n способами, то A или B можно выбрать m+n способами

Правило произведения (поочерёдный выбор)

Если элемент A можно выбрать m способами, а после этого элемент B-n способами, то A и B можно выбрать $m \cdot n$ способами

В комбинаторных задачах изучаются способы выбора и размещения элементов конечного множества. Такие группы элементов называют соединениями

Формулы числа сочетаний и перестановок. Бином Ньютона

Основные виды соединений без повторений			
Перестановка из <i>п</i> элементов (различают порядком следования элементов)	$P_n = n!$ $n!$ (факториал) = $1 \cdot 2 \cdot 3 \cdot \cdot n$ $0! = 1$		
Размещения из n элементов по m (различаются или порядком, или элементами)	$A_n^m = n(n-1) \cdot \dots \cdot (n-m+1)$ $A_n^m = \frac{n!}{(n-m)!}$		
Сочетания из n элементов по m (отличаются лишь элементами)	$C_n^m=rac{n!}{m!(n-m)!}=rac{A_n^m}{P_m}$, $C_n^0=1.$ Свойство сочетания $C_n^m=C_n^{n-m}$		

Бином Ньютона						
Двучлен вида $a+x$ называют биномом	Треугольник Паскаля					
$(a+x)^0 = 1; (a+x) \neq 0$	1					
$(a+x)^1=a+x$	1	1				
$(a+x)^2 = a^2 + 2ax + x^2$	1	2	1			
$(a+x)^3 = a^3 + 3a^2x + 3ax^2 + x^3$	1	3	3	1		
$(a+x)^4 =$ $= a^4 + 4a^3x + 6a^2x^2 + 4ax^3 + x^4$	1	4	6	4	1	
$(a+x)^5 = a^5 + 5a^4x + 10a^3x^2 + + 10a^2x^3 + 5ax^4 + x^5$	1	5	10	10	5	1

Общая формула бинома Ньютона

$$(a+x)^n = a^n + C_n^1 a^{n-1} x + C_n^2 a^{n-2} x^2 + C_n^3 a^{n-3} x^3 + \dots + C_n^k a^{n-k} x^k + \dots + C_n^{n-1} a x^{n-1} + x^n$$

Общий член разложения $T_{n+1}=C_n^ka^{n-k}x^k$ $(k=0,\ 1,\ 2,\ ...\ n).$ C_n^k называют биномиальными коэффициентами

Свойства биномиальных коэффициентов

Число биномиальных ко-Сумма всех биномиальных эффициентов (а равно п коэффициентов равна 2^n : слагаемых в разложении) $C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = 2^n$ равно n+1Сумма биномиальных Коэффициенты членов, равноудалённых от начала коэффициентов, стоящих на и конца разложения, равны чётных местах, равна сумме между собой: коэффициентов, стоящих на $C_n^k = C_n^{k-1}$ нечётных местах

ЭЛЕМЕНТЫ СТАТИСТИКИ

Числовые характеристики рядов данных

Ранжирование ряда чисел. Чтобы вычислять статистические характеристики, ряд чисел, полученных в результате сбора данных, надо ранжировать, т. е. расположить числа в порядке неубывания (каждое следующее число не меньше предыдущего)

Числовые характеристики рядов данных

Размах (R) — разница между наибольшим и наименьшим значением ряда чисел. Размах находят, если необходимо определить, как велик разброс данных в ряду

Среднее значение ряда чисел (среднее арифметическое) — частное от деления суммы этих чисел на количество слагаемых.

Среднее значение — это значение величины, которое получается, если сумма всех наблюдаемых значений распределяется поровну между единицами наблюдения

Мода (*Mo***)** — число, которое встречается в данном ряду чаще всего

Медиана — так называемое серединное значение ранжированного ряда чисел:

Ряд чисел может иметь более одной моды или не иметь её совсем. Моду ряда чисел находят, когда хотят выяснить некоторый типичный показатель

- а) если количество чисел
 в ряду нечётное, то медиана это число, записанное посередине;
- б) если количество чисел в ряду чётное, то медиана это среднее арифметическое двух чисел, стоящих посередине

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Вероятности событий

Классическое определение вероятности

Вероятность P(A) случайного события A – это отношение числа событий, которые способствуют событию A, к общему количеству пространства элементарных собы-

тий:
$$P(A) = \frac{m}{n}$$
,

где n — число всех событий пространства; m — число событий пространства, способствующих событию A.

Событие	Его вероятность $P(A)$
Невозможно	P(A)=0
Случайно	0 < P(A) < 1
Вероятно	P(A)=1

Статистическое определение вероятности

Статистическая вероятность P(A)

Событие A — предел, к которому

приближается относительная частота $\frac{m}{n}$

 $(n-\kappa)$ количество всех испытаний серии, $m-\kappa$ количество испытаний, в которых происходит событие A).

Появление события A при неограниченном увеличении числа всех испытаний:

$$P(A) = \lim_{n \to \infty} \frac{m}{n}$$

U — площадь фигуры на плоскость; S(U) — площадь фигуры U; A — часть фигуры U ($A \subset U$); S(A) — площадь фигуры A. Событие A — попадание точек U в фигуру A

Примеры использования вероятностей и статистики при решении прикладных задач

Операции над событиями

Определение

Теоретикомножественная иллюстрация

Противоположное событие

Событие \overline{A} называется противоположным событию A, если оно происходит тогда и только тогда, когда не происходит событие A. Вероятность противоположного события: $P(\overline{A}) = 1 - P(A)$

U — достоверное событие P(U) = 1

Сумма событий

Суммой (или объединением) событий A и B называется событие A+B (или $A \cup B$), которое происходит тогда и только тогда, когда происходит событие A или событие B

Произведение событий

Произведением (или пересечением) событий A и B называется событие $A \cdot B$ (или $A \cap B$), которое происходит тогда и только тогда, когда происходят оба события A и B

 $A \cdot B$ или $A \cap B$

Несовместные события

Два события A и B называются несовместными, если их произведение является невозможным событием, т. е. $A \cdot B = \emptyset$ (или $A \cap B = \emptyset$)

Окончание таблицы

Определение

Теоретикомножественная иллюстрация

Вероятность суммы двух несовместных событий

Если события A и B несовместные, то P(A+B) = P(A) + P(B)

Вероятность сложных событий

Теоремы сложения вероятностей

События A и B совместимы

нет

да

$$P(A+B) = P(A) + P(B)$$

$$P(A+B) = P(A) + P(B)$$
 $P(A+B) = P(A) + P(B) - P(A \cdot B)$

Следствия сложения вероятностей

Сумма вероятностей событий $A_1, A_2, ..., A_n$, которые образуют полную группу и попарно несовместимы, равна 1:

$$P(A_1) + P(A_2) + ... + P(A_n) = 1$$

Сумма вероятностей противоположных событий равна 1: $P(A) + P(\overline{A}) = 1$