EC5.102: Information and Communication

(Lec-2)

Source coding-2

(5-March-2025)

Arti D. Yardi

Email address: arti.yardi@iiit.ac.in

Office: A2-204, SPCRC, Vindhya A2, 1st floor

Summary of the last class

Recap

- Introduction to source coding:
 - Definition
 - Examples
 - Expected length of code L(C)
 - Encoding
 - Decoding
 - Decoding error
- (Informal statement of Source coding theorem): For zero-decoding error (or for "lossless" data compression), we need $L(C) \ge H(X)$.

Types of source codes

- Singular and nonsingular source code
- Unique decodability of a source code
- Prefix or instantaneous source code

Singular and nonsingular source code

• A code is said to be nonsingular if every element of $\mathcal X$ maps into a different string in $\mathcal D^*$, i.e.,

$$\mathbf{x} \neq \mathbf{x}' \Rightarrow C(\mathbf{x}) \neq C(\mathbf{x}')$$
 for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$

• Consider the source code for $\mathcal{X} = \{ a \ b \ c \ d \}$ defined as follows.

$$C(a) = 0 \ 0 \ C(b) = 0 \ 1 \ C(c) = 1 \ 0 \ C(d) = 1 \ 1$$

This code is nonsingular.

• Consider the source code for $\mathcal{X} = \{ a \ b \ c \ d \}$ defined as follows.

$$C(a) = 0$$
 $C(b) = 0$ $C(c) = 0.1$ $C(d) = 1.1$

This code is singular.

- Why is it desirable to have nonsingular code?
- Is it desirable to have nonsingular code? Key idea in SCT!

Unique decodability of a source code

• Consider the following nonsingular source code for $\mathcal{X} = \{ a \ b \ c \ d \}$ defined as follows.

$$C(a) = 0$$
 $C(b) = 1$ $C(c) = 0.1$ $C(d) = 1.1$

- File: a c b a a a d a a b b a a b c d
- Source coded file is given by

- We have used "comma" to separate codewords and this ensures unique decodability.
- Without using comma, source coded file is given by

• Can we get rid of this "comma" and still ensure unique decodability? Yes!

Uniquely decodable source code: Example

• Consider the following nonsingular source code for $\mathcal{X} = \{a \ b \ c \ d\}$ defined as follows.

$$C(a) = 0$$
 $C(b) = 10$ $C(c) = 110$ $C(d) = 111$

- File: a c b a a a d a a b b a a b c d
- Source coded file is given by

- We can decode this file uniquely without using comma!
- We shall next define this formally.

Definition: Uniquely decodable source code

• Concatenation $C(x_1)C(x_2)$ of two codewords $C(x_1)=0$ 0 and $C(x_2)=1$ 1 is

$$C(x_1)C(x_2) = 0 \ 0 \ 1 \ 1$$

• The extension C^* of a code C is the mapping from finite-length strings of \mathcal{X} to to finite-length strings of \mathcal{D} , defined by

$$C(x_1, x_2, ..., x_n) = C(x_1)C(x_2)...C(x_n)$$

- A code is called uniquely decodable if its extension is nonsingular.
- Any encoded string in a uniquely decodable code has only one possible source string producing it.
- However, one may have to look at the entire string to determine even the first symbol in the corresponding source string.

Unique decodability: Example

• Which of the following code is uniquely decodable?

```
1 {0, 10, 11}
```

$$\{0,01\}$$

$$\{0,01,10,11\}$$

- Yes
- Yes
- No
- Yes
- No
- Yes
- Yes

Prefix code or instantaneous source code

- A code is called a prefix code or instantaneous code if no codeword is a prefix of any other codeword.
- For example, the following code is a prefix code.

$$C(a) = 0$$
 $C(b) = 10$ $C(c) = 110$ $C(d) = 111$

• Example:

```
0 1 0 1 1 1 1 1 0 1 0

0, 1 0 1 1 1 1 1 1 0 1 0

0, 1 0, 1 1 1 1 1 1 0 1 0

0, 1 0, 1 1 1 1, 1 1 0 1 0

0, 1 0, 1 1 1, 1 1 0, 1 0
```

- Instantaneous code: We can look down the sequence of code symbols and add commas to separate the codewords without looking at later symbols.
- It is a self-punctuating code!

Classes of source codes

X	Singular	Nonsingular, But Not Uniquely Decodable	Uniquely Decodable, But Not Instantaneous	Instantaneous
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

• Verify each property: Homework

Classes of source codes

Criteria for Optimal Code Design

- Code must be uniquely decodable.
- Code should be a prefix or instantaneous.
 - Prefix Condition: A code is said to satisfy prefix condition if no code word is prefix to another code word.
 - Prefix condition is necessary and sufficient condition for a code to be uniquely decodable and instantaneous.
- Need smaller average codeword length among all prefix codes.
- Huffman codes are uniquely decodable, instantaneous codes with minimum average codeword length. In this sense, they are optimal.

Summary

- Introduction to source coding
 - Definition of source code
 - Optimal source code
 - Types of source code:
 - Singular and nonsingular source code
 - Unique decodability of a source code
 - Prefix or instantaneous source code
 - Criteria for optimal code design