دراسة الدوال و تمثيلها باستعمال دوال مرجعية

$a \neq 0$ حيث $f: x \rightarrow ax^2$ حيث الدالة عبد المثل ميانيا الدالة

$$f(x) = 2x^2$$

نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة بـ *

$$f$$
 ندرس تغیرات $D_f = \mathbb{R}$

 $[0;+\infty[$ دالة زوجية و منه اقتصار دراستها على f

$$x \neq y$$
 حیث $[0; +\infty]$ حین $x \neq x$ لیکن

$$\frac{f(x)-f(y)}{x-y} = 2(x+y)$$

$$x \neq y$$
 حيث $[0; +\infty[$ من $x \neq y$ حيث

 $[0;+\infty[$ إذن f تزايدية على

	L	L -	 -
\boldsymbol{x}	$-\infty$	0	$+\infty$
f		0-	\

$$y=2x^2$$
 معادلة C_f هي C_f متماثل بالنسبة لمحور الأراتيب C_f

 $0 \prec 2x^2 \prec 2x$ فان $0 \prec x \prec 1$ إذا كان $\left[0;1
ight[$ هذا يعني أن جزء C_f على (Δ) : y = 2x تحت المستقيم $2x^2 \succ 2x$ فان $x \succ 1$ اذا کان $]1;+\infty[$ هذا يعني أن جزء C_f على

 (Δ) : y = 2x فوق المستقيم

			بمر	ول الق	جدو
X	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
f(x)	0	$\frac{1}{2}$	2	$\frac{9}{2}$	8

شلجم رأسه O يقبل محور الأراتيب C_f كمحور تماثل

$$f(x) = \frac{-1}{2}x^2$$
 بالمثل أدرس الدالة $f(x) = \frac{-1}{2}$

 $oldsymbol{v}$ **ب- الحالة العامة** نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة بـ $a \neq 0$ حيث $f(x) = ax^2$

إذا كان $a \succ 0$ فان

х	$-\infty$	0	+∞
f		• 0 —	

شلجم رأسه O يقبل محور الأراتيب كمحور تماثل C_{f}

شلجم رأسه O يقبل محور الأراتيب كمحور تماثل $C_{_{I}}$

$$g(x) = \frac{1}{2}x^2$$
 $f(x) = x^2$ تمرین

$$m(x) = -2x^2 \qquad h(x) = 3x^2$$

m و g و h و g و f اعط جدول تغيرات f

2- في نفس المعلم المتعامد الممنظم C_m و C_g و C_g و أنشىئ

 $x \rightarrow ax^2 + bx + c$ دراسة الدالة -2

 $(O;\vec{i}\;;\vec{j}\;)$ متجهة في مستوى منسوب الى معلم M'(X;Y) و M'(X;y) نقطتين و $u(\alpha;eta)$ متجهة في مستوى منسوب الى معلم $u(\alpha;eta)$ و $u(\alpha;eta)$

$$\left\{ egin{aligned} X = x + \alpha \ Y = y + \beta \end{aligned}
ight.$$
 تکافئ $\left\{ egin{aligned} X - \alpha = x \ Y - \beta = y \end{aligned}
ight.$ تکافئ $\left\{ egin{aligned} MM' = \vec{u} \end{array} \right.$ تکافئ $\left\{ egin{aligned} t \left(M \right) = M' \end{array} \right.$

$$f(x) = 2x^2 - 4x - 3$$
 مثال لندرس f حیث f

$$f(x) = 2(x-1)^2 - 5$$
الشـكل القانوني لـ $f(x)$ هو

$$y+5=2(x-1)^2$$
 معادلة $y=2(x-1)^2-5$ هي $O(\vec{i};\vec{j})$ هي C_f في المعلم المتعامد

نعتبر M'(X;Y) و M(x;y) و لتكن u(1;-5) نقطتين نعتبر u(1;-5)

 $x \to 2x^2$ ليكن (C) منحنى الدالة

t لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X - 1 = x \\ Y + 5 = y \end{cases}$$
تکافئ $t(M) = M'$

$$y = 2x^2$$
 تكافئ $M(x; y) \in (C)$

$$Y + 5 = 2(X - 1)^2$$
 تکافئ

$$M'(X;Y) \in (C_f)$$
 تکافئ

t إذن $\left(C_f
ight)$ هو صورة $\left(C_f
ight)$ بالإزاحة

وحيث أن (C) شلجم رأسه O(0;0) و محور تماثله

t(O) = O'محور الاراتيب فان C_f شلجم رأسه

x=1 أي O'(1;-5) و محور تماثله المستقيم ذا المعادلة

 $[0;+\infty[$ وحيث أن الدالة $x \to 2x^2$ تزايدية على

و تناقصية على $\left[-\infty;0
ight]$ فان الدالة f تزايدية على

]– ∞ ;1] و تناقصية على $[1;+\infty[$

		لتغيرات	جدول اا
\mathcal{X}	$-\infty$	1	$+\infty$
f		-5	

	· ·	منحنى	نباء الد	إنث
\boldsymbol{x}	0	1	2	3
f(x)	-3	-5	-3	3

$$f\left(x\right)=-x^2+2x+3$$
 مثاك كل القانوني لـ $f\left(x\right)=-(x-1)^2+4$ هو $f\left(x\right)=-(x-1)^2+4$ مثال الشكل القانوني لـ $f\left(x\right)=-(x-1)^2+4$ مثال الشكل القانوني لـ $f\left(x\right)=-(x-1)^2+4$

$$y-4=-(x-1)^2$$
 معادلة $y=-(x-1)^2+4$ هي $(O;\vec{i}\;;\vec{j}\;)$ هي (C_f) في المعلم المتعامد (C_f) هي نعتبر (C_f) نعتبر (C_f) نعتبر (C_f) و لتكن (C_f) و لتكن (C_f) و لتكن (C_f) نعتبر (C_f) نعتبر (C_f)

$$x \to -x^2$$
 ليكن (C) منحنى الدالة

$$t$$
 لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X-1=x \\ Y-4=y \end{cases}$$
 تکافئ $t(M)=M'$

$$y = -x^2$$
 تكافئ $M(x; y) \in (C)$

$$Y - 4 = -(X - 1)^2$$
 تكافئ

$$M'(X;Y) \in (C_f)$$
 تکافئ

$$t$$
 إذن $\left(C_f
ight)$ هو صورة $\left(C_f
ight)$ بالإزاحة

وحيث أن C) شلجم رأسه Oig(0;0ig) و محور

تماثله محور الاراتيب فان $\left(C_f
ight)$ شـلجم رأسـه

و محور تماثله المستقيم O'(1;4) أي t(O) = O'

x=1 ذا المعادلة

و حيث أن الدالة $x \to -x^2$ تناقصية على f تناقصية على و تزايدية على $]-\infty;0]$ و تزايدية على $[1;+\infty[$

جدول التغيرات

		عدير. ح	
\mathcal{X}	$-\infty$	1	$+\infty$
f		4	-

إنشاء المنحني

$$x=3$$
 أو $x=-1$ تكافئ $f(x)=0$

	\ /			
\boldsymbol{x}	0	1	2	4
f(x)	3	4	3	-5

$a \neq 0$ حيث $x \rightarrow ax^2 + bx + c$ الحالة العامة

نشاط

$$a \neq 0$$
 و $(a;b;c) \in \mathbb{R}^3$ حیث $f(x) = ax^2 + bx + c$ و $f(x) = ax^2 + bx + c$

f أعط الشكل القانوني لـ f

بين أن المنحنى (C_f) هو صورة المنحنى (C) الممثل للدالة $x o ax^2$ بالإزاحة (C_f) هو صورة المنحنى (C_f)

$$\left(C_f
ight)$$
 و استنتج طبیعة $ec{u}igg(rac{-b}{2a};figg(rac{-b}{2a}igg)igg)$

a عط جدول تغيرات وفق العدد

 $a \neq 0$ و $(a;b;c) \in \mathbb{R}^3$ حيث $f(x) = ax^2 + bx + c$ و $g(a;b;c) \in \mathbb{R}^3$ حيث و دودية من الدرجة الثانية المعرفة على

f و $\beta=f(lpha)$ هذه الكتابة تسمى الشكل القانوني للدالة $\alpha=rac{-b}{2a}$ و $\alpha=rac{-b}{2a}$ هذه الكتابة تسمى الشكل القانوني للدالة $\alpha=\frac{-b}{2a}$

 $ec{u}(lpha;eta)$ هو صورة المنحنى C الممثل للدالة $x o ax^2$ بالإزاحة ذا المتجهة *

x=lpha اغ معلم متعامد هو شلجم رأسه $\Omegaig(lpha;etaig)$ و محور تماثله المستقيم خا C_f

 $\alpha = \frac{-b}{2a}$ نضع

$$f$$
 ندرس تغیرات - $D_f = \mathbb{R}^*$

 $]0;+\infty[$ دالة فردية و منه اقتصار دراستها على f

$$\frac{f(x)-f(y)}{x-y} = \frac{-2}{xy}$$
 $x \neq y$ حیث $y \neq 0$; $+\infty$ لیکن $x \neq 0$

$$x \neq y$$
 کیدن $x \neq y$ کیدن $y \neq x$

$$\frac{f(x)-f(y)}{x-y} < 0$$

$$x \neq y$$
 لکل $x \neq y$ من $]0;+\infty[$ حیث $x \neq y$

$$]0;+\infty[$$
 يناقصية على f تناقصية

\mathcal{X}	$-\infty$	0	+∞
f		•	

ملاحظة

 $\frac{2}{x}$ \succ 2 فان $0 \prec x \prec 1$ إذا كان $1 \prec x \prec 1$ فان $2 \prec x \prec 1$ هذا يعني أن جزء $2 \prec x \prec 1$ فوق المستقيم $2 \prec x \prec 1$ فان $2 \prec x \prec 1$ هذا يعني أن جزء $2 \prec x \prec 1$ على $2 \prec x \prec 1$

 (Δ) : y=2 القيم جدول القيم

			<u></u>	,
X	$\frac{1}{2}$	1	2	4
f(x)	4	2	1	2

مدلول مركزه O و مقارباه محورا المعلم C_f

$$f(x) = \frac{-1}{x}$$
 نعتبر الدالة *
$$f \text{ ندرس تغيرات } -$$

$$D_f = \mathbb{R}^*$$

 $0;+\infty[$ دالة فردية و منه اقتصار دراستها على f دالة $x \neq y$ حيث $x \neq y$ حيث $x \neq y$ ديث اليكن $x \neq y$

$$\frac{f(x)-f(y)}{x-y} = \frac{1}{xy}$$

 $]0;+\infty[$ يزايدية على f تزايدية

X	$-\infty$	0	+∞
f			*

هدلول مرکزه ${\cal O}$ و مقارباه محورا المعلم

ب- الحالة العامة

$$f(x) = \frac{a}{x}$$
 نعتبر

إذا كان a > 0 فان

х	$-\infty$	0	+∞
f			•

مدلول مرکزه O و مقارباه محورا المعلم C_f

		فان $a \prec 0$	إذا كان (
\mathcal{X}	$-\infty$	0	$+\infty$
f			

$$c \neq 0$$
 حيث $x \to \frac{ax+b}{cx+d}$ حيث $x \to -4$ حيث $f(x) = \frac{2x+1}{x-1}$ مثال $D_f = \mathbb{R} - \{1\}$ -*

$$f\left(x\right)=2+rac{3}{x-1}$$
 نابجاز القسمة الاقليدية نحصل على أن أن على أن $y-2=rac{3}{x-1}$ أي $y=2+rac{3}{x-1}$ الحلة $y=2+rac{3}{x-1}$ هي $\left(O;\vec{i}\;;\vec{j}\;\right)$ هي المعلم المتعامد $\left(O;\vec{i}\;;\vec{j}\;\right)$ هي

معادلة
$$C_f$$
 في المعلم المتعامد $\left(O; ec{i}; ec{j}
ight)$ هي

نعتبر M'(X;Y) و M(x;y) و لتكن M(x;y) نقطتين

$$x \to \frac{3}{x}$$
 ليكن (C) منحنى الدالة

$$t$$
 لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X - 1 = x \\ Y - 2 = y \end{cases}$$
تکافئ $t(M) = M'$

$$M'(X;Y) \in (C_f)$$
 تکافئ $Y-2=\frac{3}{X-1}$ تکافئ $y=\frac{3}{x}$ تکافئ $M(x;y) \in (C)$

$$t$$
 إذن $\left(C_f
ight)$ هو صورة ورث بالإزاحة

وحيث أن $\left(C_f\right)$ هذلول مركزه O(0;0) و مقارباه محورا المعلم فان O(0;0) هذلول مركزه y=2 و مقارباه المستقيمان اللذان معادلتهما O'(1;2) و مقارباه المستقيمان اللذان

و حيث أن الدالة $x o rac{3}{x}$ تناقصية على كل من $-\infty$ و $]-\infty$ و أن الدالة $x o rac{3}{x}$ تناقصية على $]-\infty;1]$ و $]-\infty;1[$ کل من

جدول التغيرات

إنشاء المنحنى

$$x = -\frac{1}{2}$$
تكافئ $f(x) = 0$

X	0	1	2	5
f(x)	-1	//	5	$\frac{11}{4}$

$$f(x) = \frac{2x+3}{x+2}$$
 مثال $D_f = \mathbb{R} - \{-2\}$ -*

*- بإنجاز القسمة الاقليدية نحصل على أن

$$f\left(x\right) = 2 + \frac{-1}{x+2}$$

 $y-2=rac{-1}{x+2}$ معادلة C_f في المعلم المتعامد $(O;\vec{i};\vec{j})$ هي $(O;\vec{i};\vec{j})$ هي (C_f) في المعلم المتجهة (C_f) في المعلم المتجهة (C_f) و لتكن (C_f) و لتكن (C_f) و لتكن (C_f) في المعلم المتجهة المتجهة (C_f)

$$x \to \frac{-1}{x}$$
 ليكن (C) منحنى الدالة

t لنبين أن C_f هو صورة C بالإزاحة

$$\begin{cases} X+2=x \\ Y-2=y \end{cases}$$
 تکافئ $t(M)=M'$

$$M'(X;Y) \in (C_f)$$
 تكافئ $Y-2=\frac{-1}{X+2}$ تكافئ $y=\frac{3}{x}$ تكافئ $M(x;y) \in (C)$

t إذن $\left(C_f
ight)$ هو صورة و $\left(C_f
ight)$ بالإزاحة

وحيث أن C هذلول مركزه O(0;0) و مقارباه محورا المعلم فان C هذلول مركزه y=2 و x=-2 أي C(0;0) و مقارباه المستقيمان اللذان معادلتهما C'(-2;2) و C'(-2;2) أي C'(-2;2) و مقارباه المستقيمان اللذان معادلتهما C'(-2;2) أي C'(-2;2) و حيث أن الدالة C'(-2;2) تزايدية على كل من C'(-2;2) و C'(-2;2) فان الدالة C'(-2;2) تزايدية على كل من C'(-2;2) و C'(-2;2)

	1	حدول التغيرات	
$\boldsymbol{\mathcal{X}}$	$-\infty$	- 2 +∞)
f			•

إنشاء المنحني

$$x = -\frac{3}{2}$$
تكافئ $f(x) = 0$

\boldsymbol{x}	-ვ	-2	-1	0	2
f(x)	1	//	1	$\frac{3}{2}$	$\frac{7}{4}$

$c \neq 0$ حيث $x \rightarrow \frac{ax+b}{cx+d}$ حيث

نشاط

$$ad-bc \neq 0$$
 و $c \neq 0$ حيث $f\left(x\right) = \dfrac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{\dfrac{-d}{c}\right\}$ و $c \neq 0$ و $c \neq 0$

$$\mathbb{R} - \left\{ \frac{-d}{c} \right\}$$
 من $f(x) = \beta + \frac{\lambda}{x - \alpha}$ من $\beta \in \mathcal{A}$ حدد α و $\beta \in \mathcal{A}$ من $\beta \in \mathcal{A}$

$$ec{u}(lpha;eta)$$
 هو صورة المنحنى (C_f) الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة t ذات المتجهة (C_f) هو صورة المنحنى و استنتج طبيعة (C_f)

خاصيات

$$ad-bc
eq 0$$
 و $c \neq 0$ حيث $f(x) = \frac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{ \frac{-d}{c} \right\}$ و $c \neq 0$ و $c \neq 0$

$$\mathbb{R}-\left\{rac{-d}{c}
ight\}$$
 توجد أعداد حقيقية α و β و λ حيث α عن α توجد أعداد حقيقية st

$$ec{u}(lpha;eta)$$
 هو صورة المنحنى (C) الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة ذا المتجهة *

منحنى f في معلم متعامد هو هدلول مركزه $\Omega(lpha;eta)$ و مقارباه هما المستقيمان المعرفان بـ C_f

$$y = \beta$$
 و $x = \alpha$

$$\beta = \frac{a}{c}$$
 ملاحظة: $\alpha = \frac{-d}{c}$

cos دالة الجيب sin دالة جيب التمام أ- دالة الجيب أنهام أ- دالة الجيب

تعديف

 $\sin x$ هي الدالة التي تربط كل عدد حقيقي x بجيبه $\sin us$ نكتب $\sin x \to \sin x$ نكتب

خاصية1

نقول ان الدالة $\sin\left(-x\right) = -\sin x$ فردية x لكل x من

 $\sin x = \sin \left(x + 2k\pi
ight)$ گ من $\mathbb R$ من $x + 2k\pi$ * $\sin x = \sin \left(x + 2\pi
ight)$ ومنه $\sin x = \sin \left(x + 2\pi
ight)$

خاصية2

لکل x من $x=\sin\left(x+2\pi
ight)$ نقول ان الدالة $\sin x=\sin\left(x+2\pi
ight)$ دورية و

التأويل الهندسي

 $\left(O; ec{i}; ec{j}
ight)$ نعتبر المعلم المتعامد الممنظم

 (C_{\sin}) نقطة من المنحنى $M(x;\sin x)$ لتكن

 $\left(C_{\sin}
ight)$ وحيث $\sin x = \sin \left(x + 2k\pi\right)$ فان $\sin x = \sin \left(x + 2k\pi\right)$ نقطة من المنحنى

و بعدي $-2k\pi i$ و استنتاج ما تبقى من المنحنى على مجال سعته π مثلا $\left[-\pi;\pi\right]$ و استنتاج ما تبقى من المنحنى في المجالات $\left[-\pi+2k\pi;\pi+2k\pi\right]$ باستعمال الإزاحة ذات المتجهة $2k\pi i$

ملاحظة

sin فردية و منه المنحني متماثل بالنسبة لأصل المعلم

 $\left[-\pi;0
ight]$ على $\left(C_{\sin}
ight)$ على على يكفي تمثيل المنحنى واستنتاج المنحنى يكفي على يكفي تمثيل المنحنى المنحنى واستنتاج المنحنى المنحنى والمنحنى والمن

lلتمثيل المبياني لدالة sin

ب/ دالة جيب التمام cos

تعریف

 $\cos x$ الدالة $\cos \sin us$ هي الدالة التي تربط كل عدد حقيقي $\cos \sin us$ نكتب $\cos x \to \cos x$ نكتب

خاصية1

روجية $\cos\left(-x\right)=\cos x$ من \mathbb{R} من $\cos\left(-x\right)$

 $\cos x = \cos \left(x + 2k\pi
ight)$ $\mathbb Z$ من k من R و لکل k من x و رأينا أن لکل $\cos x = \cos \left(x + 2\pi
ight)$ ومنه

خاصية2

لکل x من $x=\cos(x+2\pi)$ نقول إن الدالة $\cos x=\cos(x+2\pi)$ دور لها

التأويل الهندسي

 $\left(O;\vec{i}\;;\vec{j}\;\right)$ نعتبر المعلم المتعامد الممنظم

 $\left(C_{\cos}
ight)$ لتكن $M\left(x;\cos x
ight)$ نقطة من المنحنى

 $\left(C_{\cos}
ight)$ وحيث $M'\left(x+2k\pi;\sin x
ight)$ فان $\cos x=\cos\left(x+2k\pi
ight)$ نقطة من المنحنى

 $2k\pi \vec{i}$ و بالتالي $M'=2k\pi \vec{i}$ أي M' صورة المتجهة $M'=2k\pi \vec{i}$

و من هذا نستنج أنه يكفي رسم المنحنى (C_{\cos}) على مجال سعته π مثلا $[-\pi,\pi]$ و استنتاج ما تبقى من

 $2k\pi \vec{i}$ المنحنى في المجالات $\left[-\pi+2k\pi;\pi+2k\pi
ight]$ باستعمال الإزاحة ذات المتجهة

ملاحظة

روجية و منه المنحنى (C_{\cos}) متماثل بالنسبة لمحو الاراتيب \cos

 $[-\pi;0]$ على (C_{\cos}) على يكفي تمثيل المنحنى (C_{\cos}) على على $[0;\pi]$ على يكفي تمثيل المنحنى المنحنى

التمثيل المبياني لدالة cos

$$f(x) = x^2 - 2x$$
 ; $g(x) = \frac{-2x - 1}{-2x + 1}$ نعتبر $g(x) = \frac{-2x - 1}{-2x + 1}$ نعتبر حقیقی حیث

- g عدد مجموعة تعريف الدالة 1
- g و f أعط جدول تغيرات لكل دالة من الدالتين f و
 - 3- أ) أنقل الجدول التالي و أتممه

x	-1	$\frac{-1}{2}$	0	$\frac{5}{2}$	3
f(x)					
g(x)					

ب) حدد تقاطع C_f و محور الافاصيل

 $\left(O;\vec{i}\;;\vec{j}\;
ight)$ ج أنشئ المنحنيين C_{g} و و

$$f(x) = x^2 - 2x$$
 ; $g(x) = \frac{-2x - 1}{-2x + 1}$

g نحدد مجموعة تعريف الدالة - 1

$$D_f = \mathbb{R} - \left\{ \frac{1}{2} \right\}$$
 إذن

$$x \neq \frac{1}{2}$$
 لیکن $x \neq 2x + 1 \neq 0$ تکافئ $x \in \mathbb{R}$

$$x \in \mathbb{R}$$
 لیکن

g و f نعطي جدول تغيرات لكل دالة من الدالتين - 2

$$\frac{-b}{2a}$$
 = 1 a = 1 f جدول تعیرات

			24
х	-8	1	$+\infty$
f		-1	*

$$\begin{vmatrix} -2 & -1 \\ -2 & 1 \end{vmatrix} = -4$$
 لدينا g تغيرات g

$$g$$
 جدول تغيرات

		-	-
x	-∞	1/2	+∞
g	-		•

3- أ- نتمم الجدول

x	-1	$\frac{-1}{2}$	0	$\frac{5}{2}$	3
f(x)	3	$\frac{5}{4}$	0	$\frac{5}{4}$	3
g(x)	$\frac{1}{3}$	0	-1	$\frac{3}{2}$	$\frac{7}{5}$

ب نحدد تقاطع C_f و محور الافاصيل

$$x \in \mathbb{R}$$
 لیکن

$$f(x) = 0 \Leftrightarrow x^2 - 2x = 0$$
$$\Leftrightarrow x = 0 \quad ou \quad x = 2$$

يقطع محو الافاصيل في النقطتين ذات الافصولين 0 و 2 على التوالي إذن C_f

$\left(O;\vec{i}\;;\vec{j}\; ight)$ ج انشاء المنحنيين C_g و و رود نفس المعلم المتعامد الممنظم (

تمرین2

لتكن $\,f\,$ و $\,g\,$ الدالتين العدديتين للمتغير الحقيقي $\,x\,$ المعرفتين بـ

$$g(x) = x^2 - 3|x|$$
 $f(x) = \frac{2x-1}{x-1}$

 $\left(O; \vec{i}\;; \vec{j}\;
ight)$ و وليكن C_g وليكن على التوالي في معلم متعامد ممنظم وليكن

 D_f ا- حدد -1

$$g(4)$$
 و $f\left(\frac{1}{2}\right)$ و $g\left(2\right)$ و و $f\left(2\right)$ ب- أحسب

f أعط جدول تغيرات -2

g أ- أدرس زوجية $^{\circ}$

$$\left[\frac{3}{2};+\infty\right]$$
 بين أن g تناقصية على $\left[0;\frac{3}{2}\right]$ و تزايدية على g

 $\mathbb R$ د- أعط جدول تغيرات g على

4- حدد تقاطع $\,C_g\,$ و محور الأفاصيل

 C_g و C_f انشىئ -أ - 5

 $f\left(x\right)=g\left(x\right)$ ب- حدد مبيانيا عدد حلول المعادلة

 $x^2 - 3|x| \ge 0$ ج – حل مبيانيا المتراجحة

الجواب

$$g(x) = x^2 - 3|x|$$
 $f(x) = \frac{2x-1}{x-1}$

 D_f أ- نحدد -2

$$x \in \mathbb{R}$$
 لتكن $x \in D_f$ تكافئ $x \in D_f$ تكافئ $x \in D_f$ تكافئ $x \in D_f$ تكافئ $x \in D_f$ $x \neq 1$ نكافئ $D_f = \mathbb{R} - \{1\}$ نخا $D_f = \mathbb{R} - \{1\}$ نخا $D_f = \mathbb{R} - \{1\}$ و D_f

 $\left|-\infty;\frac{3}{2}\right|$ معامل $\left|\frac{3}{2};+\infty\right|$ هو العدد الموجب 1 و منه الدالة $x \to x^2 - 3x$ تزايدية $x \to x^2 - 3x$

 $\left|\frac{3}{2};+\infty\right|$ اذن g تناقصية على $\left|0;\frac{3}{2}\right|$ و تزايدية على

 \mathbb{R}^- د- نعطي جدول تغيرات g على

$$\left[\frac{3}{2};+\infty\right]$$
 لدينا g تناقصية على $\left[0;\frac{3}{2}\right]$ و تزايدية على g الدينا g تزايدية على $\left[-\infty;-\frac{3}{2}\right]$ و تناقصية على $\left[0;\frac{3}{2}\right]$ و حيث أن g زوجية فان g تزايدية على $\left[0;\frac{3}{2}\right]$

g جدول تغیرات

x	∞-	$-\frac{3}{2}$	0	$\frac{3}{2}$	+∞
g		9/4	V 0	$\frac{9}{4}$	*

ل و محور الأفاصيل -4 نحدد تقاطع C_{g}

 \mathbb{R}^- بما أن g زوجية فانه يكفي تحديد تقاطع C_g و محور الأفاصيل على \mathbb{R}^+ و استنتاج التقاطع على

$$x^2-3x=0$$
 تكافئ $g\left(x\right)=0$: $x\in\mathbb{R}^+$ ليكن $x=3$ أو $x=0$

إذن C_{g} و محور الأفاصيل يتقاطعان في النقط ذات الأفاصيل 0 و 3 - على التوالي

 C_{σ} و C_f ننشئ -أ - 5

$$f(x) = g(x)$$
 ب- نحدد مبيانيا عدد حلول المعادلة

من خلال التمثيل المبياني نلاحظ أن $\,C_{g}\,$ و $\,C_{f}\,$ نلاحظ أن نقط

ومنه للمعادلة f(x) = g(x) ثلاثة حلول

 $|x^2-3|x| \ge 0$ ج – نحل مبيانيا المتراجحة

تكافئ
$$C_g$$
 تكافئ $g(x) \ge 0$ تكافئ $x^2 - 3|x| \ge 0$

 $]-\infty;-3]\cup[3;+\infty[\,\cup\,\{0\}\,$ من خلال التمثيل المبياني يتضح أن C_g فوق محور الأفاصيل أو ينطبقان في $S =]-\infty; -3] \cup [3; +\infty[\cup \{0\}]$ إذن

لتكن f و g الدالتين العدديتين للمتغير الحقيقي x المعرفتين بـ

$$g(x) = \frac{2|x|-1}{|x|-1}$$
 $f(x) = x^2 - x$

 $\left(O; \vec{i}\;; \vec{j}\;
ight)$ و C_g و منحنییهما علی التوالي في معلم متعامد ممنظم ولیکن رو

 D_g أ- حدد -3

$$g\left(\frac{1}{2}\right)$$
 و $g\left(0\right)$ و $f\left(\frac{1}{2}\right)$ و $g\left(2\right)$ و أحسب $f\left(2\right)$

f أ- أعط جدول تغيرات C_f ب- حدد طبيعته المنحنى

دالة زوجية g دالة زوجية 3-

ب- حدد تغیرات g و أعط جدول تغیراتها

$$C_{arrho}$$
 و C_f انشئ -4

f(x) = g(x) ب- حدد مبيانيا عدد حلول المعادلة

الجواب

$$g(x) = \frac{2|x|-1}{|x|-1}$$
 $f(x) = x^2 - x$

$$D_g$$
 أ- نحدد -4

$$x \in \mathbb{R}$$
 ليكن

$$|x|-1 \neq 0$$
 تكافئ $x \in D_g$

$$|x| \neq 1$$
 تكافئ

$$x \neq -1$$
و $x \neq 1$ تكافئ

$$D_g = \mathbb{R} - \{1; -1\}$$
 إذن

$$g\left(\frac{1}{2}\right)$$
 ب- نحسب $f\left(\frac{1}{2}\right)$ و $g\left(2\right)$ و $f\left(2\right)$ و ب- نحسب أ

$$g(2) = \frac{2 \times 2 - 1}{2 - 1} = 3$$
 ; $f(2) = 2^2 - 2 = 4 - 2 = 2$

$$g\left(\frac{1}{2}\right) = \frac{2 \times \frac{1}{2} - 1}{\frac{1}{2} - 1} = 0 \quad ; \quad g(0) = \frac{2 \times 0 - 1}{0 - 1} = 1 \quad ; \quad f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = \frac{-1}{4}$$

$$f$$
 أ- نعطي جدول تغيرات -2 يوم $a=1$ و $a=1$ و $f(x)=x^2-x$ لدينا

 $\overline{C_f}$ ب- حدد طبيعته المنحنى

$$x=rac{1}{2}$$
 شلجم رأسه $A\left(rac{1}{2};-rac{1}{4}
ight)$ و محور تماثلة المستقيم ذا المعادلة C_f

دالة زوجية g دالة زوجية g

$$-x \in \mathbb{R} - \{1; -1\}$$
 لکل $x \in \mathbb{R} - \{1; -1\}$ لکل

$$g(-x) = \frac{2|-x|-1}{|-x|-1} = \frac{2|x|-1}{|x|-1} = g(x)$$

$$x \in \mathbb{R} - \{1;-1\}$$
ليكن

ب- نحدد تغیرات g و نعطی جدول تغیراتها

$$g(x) = \frac{2x-1}{x-1}$$
 ومنه $|x| = x$: $[0;1[\cup]1;+\infty[$ لکل x

$$\begin{bmatrix} 0;1 \end{bmatrix}$$
و حيث $\begin{bmatrix} 1;+\infty \end{bmatrix}$ فان $\begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}=-1 \prec 0$ و حيث $\begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$

[-1;0] و بما أن $[-\infty;-1]$ و بما أن [-1;0] و بما أن [-1;0] و تزايدية على كل من

g جدول تغیرات

х	$-\infty$	-1	0	1	+∞
B			1		

 C_g و C_f ننشئ -4

بما أن $\,g\,$ زوجية فان $\,C_{\,g}\,$ متماثل بالنسبة لمحور الأراتيب

جزئ منحنی B (1;2) علی B (1;2) هو جزئ من هذلول مرکزه C_g علی C_g علی C_g علی $(\Delta_1):y=2$ $\Delta_2:x=1$ شلجم رأسه C_f

 $f\left(x\right)$ - $g\left(x\right)$ ب- نحدد مبيانيا عدد حلول المعادلة C_g و C_f من خلا ل التمثيل المبياني نلاحظ أن يتقاطعان في أربع نقط ومنه المعادلة $f\left(x\right)=g\left(x\right)$ تقبل أربعة حلول