MATH 335 lecture 15

Chris Camano: ccamano@sfsu.edu

October 18, 2022

Definition 1. Let G be a group and pick any element $a \in G$ then:

$$\langle a \rangle = \{a^k, k \in \mathbb{Z}\}$$

Where negative exponents correlate with composition over the group operator with the inverse. This sub group is called the cyclic subgroup generated by a. A cyclic subgroup always has at least two generators since $< a > = < a^{-1} >$

It could be the case as well that there exists a generator that generates the entire group to begin with: If

$$G = \langle a \rangle$$

Then we say G is a cyclic group.

Proposition 1. \mathbb{Z} is a cyclic group since $\mathbb{Z}=<1>$. In general for the group \mathbb{Z} $a^k=ka$ since addition consectuive times is the same as multiplication over n times. This cyclic group is infinite. When a cyclic group is infinite it is always \mathbb{Z}

For each positive integer n \mathbb{Z}_n is also a cyclic group since we have the property that under a modular operator we observe cyclic behavior as the equivilance classes loop back to the identity at every multiple of n. this is to say:

$$\mathbb{Z}_n = <[1]>$$

Not every group is cyclic, for eexample all symmetry groups are not cyclic.

Theorem 1. Every cyclic group is abelian

Let G be a cyclic group, this is to say that G is generated by one element in G, g: let $a, b \in G$ these two elements are some powers of the generator g meaning:

$$a = g^k$$
 $b = g^l$

$$ab = g^l g^l = g^{k+l} = g^l g^k = ba$$

Theorem 2. Every subgroup of a cyclic group is cyclic

Proof. Let G be a cyclic group so $G=\langle g>$ let $H\leq G$ If $H=\{e$ then H is cyclic because $H=\langle e>$ Let $H\neq \{e$ Then for some positive integer k, $g^k\in H$ since all elements of G are of the form g^k Suppose $g^l\in H,butl<0$ so $g^{-l}\in H$

Let d be the smallest postive integer so that $g^d \in H$ by the well ordering property.

Claim: $H = \langle g^d \rangle$

We first show that $\langle g^d \rangle \subset H$:

$$\langle g^d \rangle = \{g^{dk}, k \in \mathbb{Z}\}$$

 g^d is in H and H is a subgroup which means that compositions over g^d composed with itself is an element of H by the closure of the group operator.

We now show that $H \subset \langle g^d \rangle$

let $a \in H$ so we know that $a = g^n, n \in Z$ We then need to show that d divides n which is akin to proving that there is no remainder when we divide n by d. by division algorithm show:

$$n = qd + r$$
 $0 \le r < d$

if r =0 we are done, so lets suppose r;0, then: suppose $g^n \in H$ then with our realtion we have:

$$g^n = g^{qn+r} = g^{d^q}g^r$$
$$g^{d^q} \in H$$

by definition of H since we have $g^r \in H$ and $g^{d^q} \in H$ we know that $g^{d^q}g^r \in H$ since we are composing two elements that are both in H. r is assumed to be positive but is less than d, but d is the smallest integer meaning this cannot be the case.

Definition 2. All subgroups of \mathbb{Z} is of the form:

$$\langle n \rangle = n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$$

Definition 3. Let G be a group and $a \in G$ then the smalles positive integer n such that: $a^n = e$ is called the order of a denoted as |a|

Proposition 2. Let G be a group, $a \in G$ such taht |a| = n:

Then

$$\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$$

Proof. The first direction of the proof is the following:

$$a^m = e, t = ms, s \in \mathbb{Z}$$

and we want to show that:

$$a^t = e$$

this is equivilant tos aying:

$$a^{t}a^{mk} = (a^{m})^{s} = (e)^{s}$$