### TOTIMERSØVING NR 5 FLUIDMEKANIKK

#### **Høst 2014**

Utført av: (alle i gruppa)

### Oppgave 1



En luftstrøm driver en væskefilm opp et skråplan ved en konstant skjærspenning  $\tau_0$  på væskeoverflaten. For å finne hastigheten u til væsken, trenger vi to grensebetingelser for funksjonen u(y). Hvilke to?

Skisser mulige hastighetsprofil u(y) som er slik at

- $\bullet \quad \tau_w = \tau \big|_{v=0} = 0$

# Oppgave 2



Legg et kontrollvolum på innsiden av et rør, og finn sammenhengen mellom trykkgradienten  $\frac{\partial p}{\partial x} \left( = \frac{\Delta p}{L} \right)$  og veggskjærspenningen  $\tau_{_{w}}$ .

Hvilke forutsetninger/antagelser må du gjøre?

Spiller det noen rolle om strømningen er laminær eller turbulent?

# Oppgave 3



Anta at vi nå at hastighetsprofilet endrer seg fra et uniformt innkommende profil til det velkjente parabolske profilet over en lengde

 $L_e$  (utviklingslengden) . Hvorfor klarer vi ikke nå å finne en enkel sammenheng mellom  $\Delta p$  og  $\tau_w$ ?

### Oppgave 4

Et dreneringsrør (perforert plastslange) har lengde  $L=100\,\mathrm{m}\,$  og diameter  $d=5\,\mathrm{cm}\,$ . Det renner 100 liter vann pr. time ut av røret. Hvis vi modellerer røret som et linjesluk, hva blir da styrken m til sluket?

## Oppgave 5

Skisser noen strømlinjer fra kombinasjonen sluk -m i (0,0), kilde +m i (a,0) og kilde +m i (4a,0). (En sirkel skal dukke opp.)

# Oppgave 6

Skisser noen strømlinjer fra kombinasjonen potensialvirvel +K i (0,0), +K i (4a,0) og -K i (a,0). (En sirkel skal igjen dukke opp.)

### Oppgave 7



2D-strømning over en skarpkantet innsnevring skal beregnes numerisk ved å løse Laplaceligningen  $\nabla^2 \psi = 0$ . Det strømmer inn en konstant hastighet  $v_1 = 1$  m/s over høyden  $H_1 = 1$  m, og ved utløpet  $v_2 = 2$  m/s over  $H_2 = 1/2$  m. Finn

grensebetingelsene for strømfunksjonen  $\psi$  over inn- og utløp, og langs veggene.