

Flervariabelanalys för civilingenjörer MA505G-0100

2019-06-08, kl. 08:15-13:15

Hjälpmedel: Endast skrivmateriel. Formelblad delas ut tillsammans med skrivningen.

Betygskriterier: Skrivningens maxpoäng är 60. Samtliga uppgifter bedöms utifrån kriterier för problemlösning och redovisning. För betyg 3/4/5 räcker det med 4 poäng inom vart och ett av huvudområdena differentialkalkyl, integralkalkyl och vektoranalys samt 30/40/50 poäng totalt. Detaljerna framgår av separat dokument publicerat på Blackboard.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg, rita tydliga figurer och svara exakt. Redovisa inte mer än en uppgift per blad. Lämna in bladen i uppgiftsordning.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Andreas Bergwall.

Lycka till!

Grundläggande uppgifter (6p/uppgift)

- 1. Låt $f(x,y) = x^2 \ln(xy)$. Sett från punkten (1,2), i vilken av riktningarna (2,1) och (1,-2) växer f(x,y) snabbast?
- 2. Visa att $(\pi/2,0)$ är en lokal extrempunkt till $f(x,y) = \sin(x) + \cos(xy)$ och bestäm punktens karaktär.
- 3. Beräkna $\iint_D 2x\sqrt{1+y^2} \, dx dy \, d\ddot{a}r \, D = \{(x,y) : x^2 \le y \le 1, \, 0 \le x \le 1\}.$
- 4. Bestäm tröghetmomentet för ett halvklot K med radie 1 med avseende på halvklotets symmetriaxel. Densiteten antas vara $\rho = 1$.

Anm: Tröghetsmomentet med avseende på z-axeln är $\iiint_K (x^2 + y^2) dx dy dz$.

5. Beräkna det arbete som kraftfältet $\mathbf{F}=(y^2,z^2,x^2)$ uträttar på en partikel som färdas ett varv längs randkurvan till ytan

$$\Gamma: \quad z = x + 1, \quad x^2 + y^2 < 1.$$

Välj själv orientering på $\partial \Gamma$.

Anm: Arbetet ges av $\int_{\partial \Gamma} \mathbf{F} \cdot d\mathbf{r}$.

Kom ihåg att illustrera relevanta definitionsmängder, integrationsområden och orienteringar med tydliga figurer.

Fördjupade uppgifter (10p/uppgift)

- 6. Bestäm största och minsta värdet av $f(x,y) = xy^2 + x^2 x$ då $x^2 + y^2 \le 2$.
- 7. Låt K vara den homogena kropp som begränsas av ytorna $z=x^2+y^2$ och x+z=0. Bestäm K:s volym och x-koordinaten för K:s tyngdpunkt.

Anm: Om V är K:s volym så ges tyngdpunktens x-koordinat av

$$x_t = \frac{1}{V} \iiint_K x \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

8. Beräkna flödet av vektorfältet $\boldsymbol{u}=(3x-y,yz,x+z)$ genom den del av cylinderytan $x^2+y^2=4$ som uppfyller att $-1\leq z\leq 1$. Flödet ska räknas positivt bort från z-axeln.

Kom ihåg att illustrera relevanta definitionsmängder, integrationsområden och orienteringar med tydliga figurer.

Kommentarer till Flervariabelanalys för civilingenjörer 20190608

1. Jämför riktningsderivatorna av f i punkten (1,2) med avseende på riktningarna $\mathbf{v}_1 = (2,1)/\sqrt{5}$ och $\mathbf{v}_2 = (1,-2)/\sqrt{5}$. Eftersom grad f(1,2) = (1,-1/2) så är

$$f'_{v_1}(1,2) = (1, -\frac{1}{2}) \cdot (2,1) \cdot \frac{1}{\sqrt{5}} = \frac{3}{2} \cdot \frac{1}{\sqrt{5}},$$

$$f'_{v_2}(1,2) = (1, -\frac{1}{2}) \cdot (1, -2) \cdot \frac{1}{\sqrt{5}} = 2 \cdot \frac{1}{\sqrt{5}}.$$

Den sistnämnda är störst, så f växer snabbast i riktningen (1, -2).

Det är svårt att med säkerhet hävda att så är fallet bara genom att rita en figur och studera vilken av vektorerena (2,1) och (1,-2) som verkar avvika minst från (1,-1/2).

2. Kontrollera först att grad $f(\pi/2,0) = (0,0)$. Detta betyder *inte* att $(\pi/2,0)$ är en lokal extrempunkt, bara att det är en stationär punkt. Men denna kontroll är viktig. Varför?

Bestäm sedan den kvadratiska formen

$$Q(h,k) = f_{xx}''(\frac{\pi}{2},0)h^2 + 2f_{xy}''(\frac{\pi}{2},0)hk + f_{yy}''(\frac{\pi}{2},0)k^2 = -h^2 - \pi^2 k^2 / 4.$$

Eftersom Q(h,k) < 0 för alla $(h,k) \neq (0,0)$ så är Q(h,k) negativt definit, och då är $(\pi/2,0)$ en lokal maxpunkt.

3. Det är lättast att integrera m.a.p. x först. Observera därför att D lika väl kan beskrivas av olikheterna $0 \le x \le \sqrt{y}$, $0 \le x \le 1$. Detta ändrar inte på D, det är bara en mer passande beskrivning av D.

Integralen är alltså

$$\int_0^1 \left(\int_0^{\sqrt{y}} 2x \, dx \right) \sqrt{1 + y^2} \, dy = \int_0^1 y \sqrt{1 + y^2} \, dy = \frac{1}{3} (2\sqrt{2} - 1).$$

4. Halvklotet $x^2+y^2+z^2\leq 1,\,z\geq 0$, har z-axeln som symmetriaxel. Rymdpolära koordinater funkar bra, särskilt om man först utnyttjar symmetrier:

$$\begin{split} &\iiint_K (x^2+y^2) \,\mathrm{d}x \mathrm{d}y \mathrm{d}z = \frac{2}{3} \iiint_K (x^2+y^2+z^2) \,\mathrm{d}x \mathrm{d}y \mathrm{d}z \\ &= \frac{2}{3} \iiint_{[0,1] \times [0,\pi/2] \times [0,2\pi]} r^4 \sin\theta \,\mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi = \frac{4\pi}{15}. \end{split}$$

Gör man variabelbytet direkt så åker man på att integrera $\sin^3 \theta$.

Det går också bra med upprepad integration i kombination med planpolära koordinater. Med en inre dubbelintegral får vi:

$$\iiint_{K} (x^{2} + y^{2}) \, dx dy dz = \int_{0}^{1} \left(\iint_{x^{2} + y^{2} \le 1 - z^{2}} (x^{2} + y^{2}) \, dx dy \right) \, dz$$

$$= \int_{0}^{1} \left(\iint_{[0,\sqrt{1 - z^{2}}] \times [0,2\pi]} r^{2} \cdot r \, dr d\varphi \right) \, dz = \int_{0}^{1} \left(\left[\frac{r^{4}}{4} \right]_{0}^{\sqrt{1 - z^{2}}} \right) \cdot 2\pi \, dz$$

$$= \frac{\pi}{2} \int_{0}^{1} (1 - z^{2})^{2} \, dz = \frac{4\pi}{15}.$$

Med en inre enkelintegral får vi

$$\iiint_K (x^2 + y^2) \, dx dy dz = \iint_{x^2 + y^2 \le 1} \left(\int_0^{\sqrt{1 - x^2 - y^2}} (x^2 + y^2) \, dz \right) \, dx dy$$
$$= \iint_{x^2 + y^2 \le 1} (x^2 + y^2) \sqrt{1 - x^2 - y^2} \, dx dy = \iint_{x^2 + y^2 \le 1} (r^2 \sqrt{1 - r^2} \cdot r \, dr d\theta d\varphi)$$

där man sedan kan göra variabelbytet $t = 1 - r^2$.

5. Vi har rot $\mathbf{F} = (-2z, -2x, -2y) \neq \mathbf{0}$ så \mathbf{F} är inte ett potentialfält.

Lösning med Stokes sats: Om γ orienteras moturs sett "uppifrån", och om Γ ges den "övre" normalriktningen, så är γ positivt orienterad rand Γ . Det betyder att det orienterade ytelementet kan väljas som $\mathbf{n} \, \mathrm{d}S = (-1,0,1) \, \mathrm{d}x \, \mathrm{d}y$.

På Γ är rot $\mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S = 2x + 2 - 2y$. Stokes sats och symmetrier i x- och y-led ger att arbetet är

$$\iint_{\Gamma} \operatorname{rot} \boldsymbol{F} \cdot \boldsymbol{n} \, dS = \iint_{x^2 + y^2 \le 1} 2 \, dx dy = 2 \cdot (\text{enhetscirkelns area}) = 2\pi.$$

Lösning med parametrisering: $\mathbf{r}(t) = (\cos t, \sin t, \cos t + 1), \ 0 \le t \le 2\pi$, är en parametrisering av γ genomlupen moturs sett "uppifrån". Det orienterade bågelementet är då d $\mathbf{r} = (-\sin t, \cos t, -\sin t) \,\mathrm{d}t$ så

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} (-\sin^3 t + (\cos t + 1)^2 \cos t - \cos^2 t \sin t) dt = \int_0^{2\pi} 2\cos^2 t dt = 2\pi.$$

Integralen blir inte så svår om man är med på att vid integrering av udda potenser av $\sin t$ och $\cos t$ över en hel period så får man alltid noll.

6. Största och minsta värde finns eftersom f är kontinuerlig och $D = \{(x, y) : x^2 + y^2 \le 2\}$ är kompakt. Optimum finns i inre stationär punkt eller i randpunkt.

Inre stationära punkter: Systemet $f'_x = f'_y = 0$ har tre lösningar: $(0, \pm 1)$ och (1/2, 0). Alla ligger i D:s inre och funktionsvärdena är $f(0, \pm 1) = 0$ och f(1/2, 0) = -1/4.

Randpunkter: Sätt in $y^2 = 2 - x^2$ i funktionsuttrycket så fås $g(x) = x - x^3 + x^2$ som nu ska optimeras då $-\sqrt{2} \le x \le \sqrt{2}$. g har två stationära punkter, x = -1/3 och x = 1. I dessa har vi funktionsvärdena $f(-1/3, \pm \sqrt{17}/3) = -5/27$ och f(1,1) = 1. I ändpunkterna är värdena $f(\pm \sqrt{2}, 0) = 2 \mp \sqrt{2}$.

Jämförelse av erhållna värden visar att $f(-\sqrt{2},0) = 2 + \sqrt{2}$ är största värde och f(1/2,0) = -1/4 minsta värde.

Randundersökningen kan också göras utifrån principen att i intressanta punkter så kommer grad f och gradienten till $x^2 + y^2$ att vara parallella.

7. För att kunna ställa upp korrekta integraler måste man allra först kolla var ytorna skär varandra:

$$-x = x^2 + y^2 \Leftrightarrow (x + \frac{1}{2})^2 + y^2 = \frac{1}{4}.$$

Om D är det plana området innanför denna cirkel så är K:s volym

$$V = \iint_D (-x - (x^2 + y^2)) \, dx dy = \iint_D (\frac{1}{4} - (x + \frac{1}{2})^2 - y^2) \, dx dy$$
$$= \frac{\pi}{16} - \iint_D ((x + \frac{1}{2})^2 + y^2) \, dx dy.$$

Byt till polära koordinater, $x + (1/2) = r \cos \varphi$, $y = r \sin \varphi$, så fås

$$V = \frac{\pi}{16} - \iint_{[0,1/2] \times [0,2\pi]} r^3 \, dr d\varphi = \frac{\pi}{16} - \frac{1}{64} \cdot 2\pi = \frac{\pi}{32}.$$

Härnäst ska x integreras över hela kroppen. Det blir lite risiga räkningar. Ett knep kan vara att först göra variabelbytet u = x + 1/2, v = y. Då blir integrationsområdet $u^2 + v^2 \le 1/4$ istället. Fördelen är att alla termer i integranden som är udda funktioner av u eller v då kan strykas eftersom integralen av dem är 0.

Samma idé, men utan ett extra variabelbyte, kan genomföras på följande sätt: Skriv x som (x+1/2)-1/2 och utnyttja att symmetrin då finns kring x=-1/2 (det görs i näst sista likheten nedan). Om man är observant så upptäcker man

att samma integral som för volymen V återkommer:

$$Vx_{t} = \iiint_{K} x \, dx dy dz = \iint_{D} x \left(\int_{x^{2}+y^{2}}^{-x} dz \right) \, dx dy$$

$$= \iint_{D} x \left((-x - (x^{2} + y^{2})) \, dx dy \right)$$

$$= \iint_{D} \left((x + \frac{1}{2}) - \frac{1}{2} \right) \left(\frac{1}{4} - (x + \frac{1}{2})^{2} - y^{2} \right) \, dx dy$$

$$= \iint_{D} \left(-\frac{1}{2} \right) \left(\frac{1}{4} - (x + \frac{1}{2})^{2} - y^{2} \right) \, dx dy = -\frac{1}{2} V.$$

Utan att veta V kan man alltså se att $x_t = -1/2$.

8. Den givna ytan är en cylinderyta, alltså ett "rör".

Lösning med Gauss sats: Slut ytan genom att lägga till lock (z=1) och botten (z=-1) med uppåt- respektive nedåtriktad normal. Då innesluts en cylinderkropp K och flödet ut ur den är

$$\iiint_K \operatorname{div} \mathbf{u} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_K (4+z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = 4 \cdot (K:\text{s volym}) = 32\pi.$$

Här uttnyttjades också symmetrin i z-led.

På locket/botten är $\boldsymbol{u} \cdot \boldsymbol{n} = \pm x + 1$. Symmetrin i x-led ger att x-termen inte bidrar. Flödet genom var och en av dessa ytor är alltså lockets/bottens area 4π .

Flödet genom enbart cylinderytan är alltså $32\pi - 2 \cdot 4\pi = 24\pi$.

Lösning med parametrisering: $\mathbf{n} = (x, y, 0)/2$ är enhetsnormal riktad bort från z-axeln. Alltså är $\mathbf{u} \cdot \mathbf{n} = (3x^2 - xy + y^2z)/2$ på den givna ytan. Av symmetriskäl kommer enbart första termen att bidra. Dessutom ger integrering av $3(x^2 + y^2)/4$ samma resultat. På ytan är $x^2 + y^2 = 4$. Flödet är alltså

$$\iint_{Y} 3 \, \mathrm{d}S = 3 \cdot (Y:S \text{ area}) = 24\pi.$$