# COMP 680 Statistics for Computing and Data Science Week 13: Beyong Linear Models

Su Chen, Assistant Teaching Professor, Rice D2K Lab



- Beyond Linearity
- Regularization
- Splines and GAM
- Monparametric Models
- Code Demo



## The Truth is probably NOT Linear

- But often the linearity assumption is good enough.
  - "all models are wrong, some are useful."



Beyond Linearity Regularization Splines and GAM Nonparametric Models Code Demo

# The Truth is probably NOT Linear

- But often the linearity assumption is good enough
  - "all models are wrong, some are useful."
- When linearity is clearly not enough:
  - polynomial regression
  - spline models
  - generalized additive models (GAM)
  - local regression
  - fully non-parametric models

# Outline

- Beyond Linearity
- Regularization
- Splines and GAN
- 4 Nonparametric Models
- Code Demo



Week 13

#### Motivation

- High dimensional data
  - but OLS solution is **not available for** p > n



#### Motivation

- High dimensional data
  - but OLS solution is **not available for** p > n
- Prediction accuracy:
  - when p is large, need to control the variance
  - trade bias with variance to decrease MSE



#### Motivation

- High dimensional data
  - but OLS solution is **not available for** p > n
- Prediction accuracy:
  - when p is large, need to control the variance
  - trade bias with variance to decrease MSE
- Model Interpretability:
  - penalize large models and large slopes
  - automatically perform variable selection

## Shrinkage Estimate

- We fit a model involving all p covariates
- But the estimated slopes are shrunken towards 0 relative to OLS.
- This shrinkage is known as regularization
  - penalize "large"  $\beta$  by shrinking them reduce variance
  - shrink some  $\beta$  to exactly 0 variable selection

## Ridge Regression

• Recall that OLS estimates  $\hat{eta}^{OLS}$  using the values that minimize

$$RSS = \sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

eyond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

## Ridge Regression

Recall that OLS estimates \( \hat{\beta}^{OLS} \) using the values that minimize

$$RSS = \sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

• In contrast, the ridge regression coefficient estimates  $\hat{eta}^R$  are the values that minimize

$$\sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \|\beta\|_{L_2}^2,$$

where  $\lambda \geq 0$  is a tuning parameter, to be determined separately

4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4 B 가 4

# Ridge Regression

 As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.



ond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

# Ridge Regression

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term,  $\lambda \|\beta\|_{L^2}^2$ , called a shrinkage penalty , is small when  $\beta_1, \dots, \beta_p$  are close to zero, and so it has the effect of shrinking the estimates of  $\beta_i$  towards zero.

# Ridge Regression

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term,  $\lambda \|\beta\|_{L^2}^2$ , called a shrinkage penalty , is small when  $\beta_1, \dots, \beta_p$  are close to zero, and so it has the effect of shrinking the estimates of  $\beta_i$  towards zero.
- The tuning parameter  $\lambda$  serves to control the relative impact of these two terms on the regression coefficient estimates.

# Ridge Regression

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term,  $\lambda \|\beta\|_{L^2}^2$ , called a shrinkage penalty , is small when  $\beta_1, \dots, \beta_p$  are close to zero, and so it has the effect of shrinking the estimates of  $\beta_i$  towards zero.
- The tuning parameter  $\lambda$  serves to control the relative impact of these two terms on the regression coefficient estimates.
- Selecting a good value for  $\lambda$  is critical!

eyond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

# Ridge Solution Path





#### Example from ISLR

#### Details of Previous Figure

• In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of  $\lambda$ .



nd Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### Details of Previous Figure

- In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of  $\lambda$ .
- The right-hand panel displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying  $\lambda$  on the x-axis, we now display  $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$ , where  $\hat{\beta}$  denotes the vector of least squares coefficient estimates

#### Details of Previous Figure

- In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of  $\lambda$ .
- The right-hand panel displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying  $\lambda$  on the x-axis, we now display  $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$ , where  $\hat{\beta}$  denotes the vector of least squares coefficient estimates.
- The notation  $\|\beta\|_2$  denotes the  $L^2$  norm of a vector, and is defined as  $\|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$ .

◆ロト ◆個ト ◆意ト ◆意ト ・意・ 少久で

- Disadvantage of Ridge regression
  - shrink slopes towards 0 but not exactly 0
  - final model still include all p covariates
  - does not perform variable selection

- Disadvantage of Ridge regression
  - shrink slopes towards 0 but not exactly 0
  - final model still include all p covariates
  - does not perform variable selection
- The Lasso coefficients,  $\hat{\beta_{\lambda}}^L$ , minimize the quantity

$$\sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda ||\beta||_{L1}.$$

(미) (함) (본) (본) (본)

- Disadvantage of Ridge regression
  - shrink slopes towards 0 but not exactly 0
  - final model still include all p covariates
  - does not perform variable selection
- The Lasso coefficients,  $\hat{\beta_{\lambda}}^L$ , minimize the quantity

$$\sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda ||\beta||_{L1}.$$

Lasso uses an L1 penalty while Ridge uses an L2 penalty.

4□ > 4團 > 4 를 > 4 를 > 3 를 - 50 Q €

 As with ridge regression, the Lasso also shrinks the coefficient estimates towards zero.



- As with ridge regression, the Lasso also shrinks the coefficient estimates towards zero.
- However, the L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter  $\lambda$  is sufficiently large.



- As with ridge regression, the Lasso also shrinks the coefficient estimates towards zero.
- However, the L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter  $\lambda$  is sufficiently large.
- Therefore, Lasso performs variable selection automatically when estimating the model

- As with ridge regression, the Lasso also shrinks the coefficient estimates towards zero.
- However, the L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter  $\lambda$  is sufficiently large.
- Therefore, Lasso performs variable selection automatically when estimating the model
  - yields sparse models that is, models that involve only a subset of the variables

- As with ridge regression, the Lasso also shrinks the coefficient estimates towards zero.
- However, the L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter  $\lambda$  is sufficiently large.
- Therefore, Lasso performs variable selection automatically when estimating the model
  - yields sparse models that is, models that involve only a subset of the variables
- Same as in ridge regression, selecting a good value of  $\lambda$  for the lasso is critical!

4□ > 4□ > 4 = > 4 = > = 990

leyond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### Lasso Solution Path





#### Example from ISLR

#### The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?



eyond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

$$\hat{\beta}^{R} = \arg\min\left[\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2\right]$$

this is equivalent to an optimization with constrain:

minimize
$$_{\beta} \sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to  $\sum_{j=1}^{p} \beta_j^2 \leq s$ 

i.e. there is a 1-1 correspondence of  $\lambda$  and s that produce the same solution!

#### The Variable Selection Property of the Lasso

Use two covariates as example for visualization purpose:

minimize<sub>$$\beta$$</sub>  $\sum_{i=1}^{n} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2})^2$ 

Ridge penalty: 
$$\lambda(\beta_1^2 + \beta_2^2)$$
  $\Longrightarrow$  min RSS subject to  $\beta_1^2 + \beta_2^2 \le s$ 

Lasso penalty:  $\lambda(|\beta_1| + |\beta_2|) \implies \min RSS$  subject to  $|\beta_1| + |\beta_2| < s$ 

Week 13 **COMP 680** 

15 / 39

#### The Intuition



#### What about Inference

- Notice the Ridge and Lasso solutions are no longer MLE
  - ullet no more sampling distributions of  $\hat{eta}^R$  or  $\hat{eta}^L$
  - no more p-values and CI ???



#### What about Inference

- Notice the Ridge and Lasso solutions are no longer MLE
  - ullet no more sampling distributions of  $\hat{eta}^{R}$  or  $\hat{eta}^{L}$
  - no more p-values and Cl ????
- Lasso selected variables have nothing to do with statistical significance!
  - in practice of course there is still some agreement
  - cares more about prediction than what is the "true" model

#### What about Inference

- Notice the Ridge and Lasso solutions are no longer MLE
  - ullet no more sampling distributions of  $\hat{eta}^R$  or  $\hat{eta}^L$
  - no more p-values and Cl ????
- Lasso selected variables have nothing to do with statistical significance!
  - in practice of course there is still some agreement
  - cares more about prediction than what is the "true" model
- Post selection inference is an active area of research:
  - can we recover true signals if we have infinity amount of data
  - what if number of variables increases with sample size

#### Connection to Bayesian Methods

Solutions are posterior mode with corresponding prior on  $\beta$ :

Ridge prior: Gaussian

$$g(eta_j) = rac{1}{\sqrt{2\pi} au} \exp\left(rac{eta_j^2}{2 au^2}
ight)$$



Lasso prior: Laplace  $g(\beta_j) = \frac{1}{2b} \exp\left(\frac{|\beta_j|}{b}\right)$ 



#### In Practice

- Standardize covariates!
  - why?
  - most software does automatically



ond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### In Practice

- Standardize covariates!
  - why?
  - most software does automatically
- How to choose λ?
  - hyper-parameter tuning in ML
  - choose a grid of  $\lambda$  values, and compute validation/cross-validation error for each value of  $\lambda$  choose the smallest validation error

d Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### In Practice

- Standardize covariates!
  - why?
  - most software does automatically
- How to choose λ?
  - hyper-parameter tuning in ML
  - choose a grid of  $\lambda$  values, and compute validation/cross-validation error for each value of  $\lambda$  choose the smallest validation error
- Ridge or Lasso?
  - neither will universally dominate the other
  - Lasso wins when true regression function is sparse!

ond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### In Practice

- Standardize covariates!
  - why?
  - most software does automatically
- How to choose λ?
  - hyper-parameter tuning in ML
  - choose a grid of  $\lambda$  values, and compute validation/cross-validation error for each value of  $\lambda$  choose the smallest validation error
- Ridge or Lasso?
  - neither will universally dominate the other
  - Lasso wins when true regression function is sparse!
- Can be applied to any model fitting using optimization:
  - GLM, spline models, GAM...
  - all parametric ML models...



eyond Linearity **Regularization** Splines and GAM Nonparametric Models Code Demo

#### Lasso with CV





#### Example from ISLR

#### Outline

- Beyond Linearity
- Regularization
- Splines and GAM
- Monparametric Models
- Code Demo



21 / 39

## Polynomial Regression

Introduce nonlinearity by adding polynomial terms

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \epsilon_i$$



## Polynomial Regression

Introduce nonlinearity by adding polynomial terms

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \epsilon_i$$

- Degree of the polynomial controls the flexibility of the model
  - degree of freedom  $\approx$  number of parameters

## Polynomial Regression

Introduce nonlinearity by adding polynomial terms

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \epsilon_i$$

- Degree of the polynomial controls the flexibility of the model
  - degree of freedom  $\approx$  number of parameters
- How to select the degree of polynomial?
  - Stat approach ANOVA test to compare nested models
  - ML approach treat as a tuning parameter

**◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ - 臺 - 釣९♡** 

# Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i, & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i, & \text{if } x_i \ge c \end{cases}$$

# Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i, & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i, & \text{if } x_i \ge c \end{cases}$$

Better to add constraints to the polynomials, e.g. continuity.

# Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i, & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i, & \text{if } x_i \ge c \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity
  - piece together local polynomials smoothly

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 の Q ○



# **Cubic Splines**

• A cubic spline with knots at  $\xi_k$ ,  $k = 1, 2, \dots, K$  is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.



### **Cubic Splines**

- A cubic spline with knots at  $\xi_k$ ,  $k = 1, 2, \dots, K$  is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.
- We can represent this model with truncated power basis functions:

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$$

where the  $b_k$  are basis functions

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

## Cubic Spline Basis

• The  $b_k$  are basis functions

$$b_1(x_i) = x_i$$

$$b_2(x_i) = x_i^2$$

$$b_3(x_i) = x_i^3$$

$$b_{k+3}(x_i) = (x_i - \xi_k)_+^3, \quad k = 1, 2, \dots, K$$

# Cubic Spline Basis

• The  $b_k$  are basis functions

$$b_1(x_i) = x_i$$

$$b_2(x_i) = x_i^2$$

$$b_3(x_i) = x_i^3$$

$$b_{k+3}(x_i) = (x_i - \xi_k)_+^3, \quad k = 1, 2, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$



#### More Constrains

- Natural Cubic Splines
  - extrapolates linearly beyond the boundary knots
  - cubic spline with K knots = K + 4 df
  - natural spline with K knots = K df

yond Linearity Regularization **Splines and GAM** Nonparametric Models Code Demo

#### More Constrains

- Natural Cubic Splines
  - extrapolates linearly beyond the boundary knots
  - cubic spline with K knots = K + 4 df
  - natural spline with K knots = K df
- How many knots and where?
  - choose number of knots = choose flexibility
  - some ad-hoc: fixed intervals, percentiles of X, etc.

ond Linearity Regularization Splines and GAM Nonparametric Models Code Demo

#### More Constrains

- Natural Cubic Splines
  - extrapolates linearly beyond the boundary knots
  - cubic spline with K knots = K + 4 df
  - natural spline with K knots = K df
- How many knots and where?
  - choose number of knots = choose flexibility
  - some ad-hoc: fixed intervals, percentiles of X, etc.
- Smoothing splines
  - choose knot at each data point  $x_i$
  - add smoothing penalty to control df

• Consider a regression model  $y_i = g(x_i) + \epsilon_i$  where we solve for:

$$\hat{g} = \operatorname*{arg\,min}_{g \in \mathbb{S}} \left( \sum_{i=1}^n (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt \right)$$

• Consider a regression model  $y_i = g(x_i) + \epsilon_i$  where we solve for:

$$\hat{g} = \operatorname*{arg\,min}_{g \in \mathbb{S}} \left( \sum_{i=1}^n (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt \right)$$

- Minimize RSS tries to make g(x) match the data at each  $x_i$ 
  - notice g is restricted to be smooth

• Consider a regression model  $y_i = g(x_i) + \epsilon_i$  where we solve for:

$$\hat{g} = \operatorname*{arg\,min}_{g \in \mathbb{S}} \left( \sum_{i=1}^n (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt \right)$$

- Minimize RSS tries to make g(x) match the data at each  $x_i$ 
  - notice g is restricted to be smooth
- Add a roughness penalty to control how wiggly g(x) is

4□ > 4□ > 4 = > 4 = > 9 < ○</p>

• Consider a regression model  $y_i = g(x_i) + \epsilon_i$  where we solve for:

$$\hat{g} = \operatorname*{arg\,min}_{g \in \mathbb{S}} \left( \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt \right)$$

- Minimize RSS tries to make g(x) match the data at each  $x_i$ 
  - notice g is restricted to be smooth
- Add a roughness penalty to control how wiggly g(x) is

• 
$$\lambda \rightarrow 0$$
?

4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q (C)

• Consider a regression model  $y_i = g(x_i) + \epsilon_i$  where we solve for:

$$\hat{g} = \operatorname*{arg\,min}_{g \in \mathbb{S}} \left( \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt \right)$$

- Minimize RSS tries to make g(x) match the data at each  $x_i$ 
  - notice g is restricted to be smooth
- Add a roughness penalty to control how wiggly g(x) is
  - $\lambda \rightarrow 0$ ?
  - $\lambda \to \infty$ ?

 The solution is a natural cubic spline, with a knot at every unique value of x<sub>i</sub>



yond Linearity Regularization **Splines and GAM** Nonparametric Models Code Demo

# **Smoothing Splines**

- The solution is a natural cubic spline, with a knot at every unique value of x<sub>i</sub>
- The roughness penalty controls the df!
  - df << number of knots</li>
  - avoid the knot-selection issue
  - a single  $\lambda$  to be chosen

ond Linearity Regularization **Splines and GAM** Nonparametric Models Code Demo

# **Smoothing Splines**

- The solution is a natural cubic spline, with a knot at every unique value of x<sub>i</sub>
- The roughness penalty controls the df!
  - df << number of knots</li>
  - avoid the knot-selection issue
  - ullet a single  $\lambda$  to be chosen
- Most software can specify df rather than  $\lambda$ 
  - ML approach: treat  $\lambda$  as a tuning parameter
  - same regularization idea



eyond Linearity Regularization **Splines and GAM** Nonparametric Models Code Demo

# Generalized Additive Models (GAM)

Allow nonlinearity in GLM but still additive in covariates:

$$g(\mathbb{E}[Y|X]) = \beta_0 + f_1(X_{i1}) + f_2(X_{i2}) + \cdots + f_p(X_{ip})$$



ond Linearity Regularization **Splines and GAM** Nonparametric Models Code Demo

# Generalized Additive Models (GAM)

• Allow nonlinearity in GLM but still additive in covariates:

$$g(\mathbb{E}[Y|X]) = \beta_0 + f_1(X_{i1}) + f_2(X_{i2}) + \cdots + f_p(X_{ip})$$

- $f_i$  can be linear, polynomial, spline...
- nonlinear terms only for numerical covariates
- Coefficients no longer interpretable
  - fitted function values are (partial plot)

<ロ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □

# Generalized Additive Models (GAM)

• Allow nonlinearity in GLM but still additive in covariates:

$$g(\mathbb{E}[Y|X]) = \beta_0 + f_1(X_{i1}) + f_2(X_{i2}) + \cdots + f_p(X_{ip})$$

- $f_j$  can be linear, polynomial, spline...
- nonlinear terms only for numerical covariates
- Coefficients no longer interpretable
  - fitted function values are (partial plot)
- Relax additive assumption?
  - bivariate smoothers
  - low-order interactions

←□ → ←□ → ← = → ← = → へへ ○

#### Outline

- Beyond Linearity
- Regularization
- Splines and GAN
- 4 Nonparametric Models
- Code Demo



33 / 39

Week 13 COMP 680

### Kernel Density Estimate

Nonparametric method to estimate a density function:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

- K is the kernel function: uniform, triangular, Gaussian...
- h is the bandwidth

## Kernel Density Estimate

• Nonparametric method to estimate a density function:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

- K is the kernel function: uniform, triangular, Gaussian...
- h is the bandwidth
- "Smoothed out" histogram
  - converges faster

# Kernel Density Estimate

• Nonparametric method to estimate a density function:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

- K is the kernel function: uniform, triangular, Gaussian...
- h is the bandwidth
- "Smoothed out" histogram
  - converges faster
- In practice, need to choose a kernel and a bandwidth
  - some asymptotic guideline
  - software default choice

## Kernel Regression

Want to estimate the regression function as the conditional mean:

$$f(x) = \mathbb{E}[Y|X = x]$$

with observed data  $(x_i, y_i)$  for  $i = 1, 2, \dots n$ .



# Kernel Regression

• Want to estimate the regression function as the conditional mean:

$$f(x) = \mathbb{E}[Y|X=x]$$

with observed data  $(x_i, y_i)$  for  $i = 1, 2, \dots n$ .

Kernel regression with kernel K and bandwidth h:

$$\hat{f}(x) = \sum_{i=1}^{n} \omega_i(x) y_i$$
, where  $\omega_i(x) = \frac{K(\frac{x-x_i}{h})}{\sum_{k=1}^{n} K(\frac{x-x_k}{h})}$ 

## Kernel Regression

Want to estimate the regression function as the conditional mean:

$$f(x) = \mathbb{E}[Y|X=x]$$

with observed data  $(x_i, y_i)$  for  $i = 1, 2, \dots n$ .

Kernel regression with kernel K and bandwidth h:

$$\hat{f}(x) = \sum_{i=1}^{n} \omega_i(x) y_i$$
, where  $\omega_i(x) = \frac{K(\frac{x-x_i}{h})}{\sum_{k=1}^{n} K(\frac{x-x_k}{h})}$ 

K and h play the similar role in KDE

eyond Linearity Regularization Splines and GAM **Nonparametric Models** Code Demo

# Local Regression

- Locally Weighted Scatterplot Smoothing
  - fit linear regression locally by weighted least squares
  - (weighted) nearest neighbor regression as a special case



eyond Linearity Regularization Splines and GAM **Nonparametric Models** Code Demo

### Local Regression

- Locally Weighted Scatterplot Smoothing
  - fit linear regression locally by weighted least squares
  - (weighted) nearest neighbor regression as a special case





#### Example from ISLR

nd Linearity Regularization Splines and GAM **Nonparametric Models** Code Demo

### Summary

- With GAM in your statistics toolbox, you are able to:
  - model any type of response variable in the GLM family:
    - continuous: Gaussian, Gamma, Beta
    - counts: Poisson, Negative Binomial
    - binary: Binomial
    - categorical: Multinomial
  - include both numerical and categorical predictors
  - include a mix of linear and nonlinear effects
    - how do you decide?
  - include interaction terms to relax additive assumption
    - interpretation is key
  - apply regularization with Ridge or Lasso penalty



eyond Linearity Regularization Splines and GAM **Nonparametric Models** Code Demo

#### Which means...

You are now officially a supermodeler. Bravo!!!





- Beyond Linearity
- Regularization
- Splines and GAN
- Monparametric Models
- G Code Demo



39 / 39

Week 13 COMP 680