Aufgabe 4

Betrachten Sie die folgenden Probleme:

CLIQUE

Gegeben: Ein ungerichteter Graph G=(V,E), eine Zahl $k\in\mathcal{N}$

Frage: Gibt es eine Menge $S \subseteq V$ mit |S| = k, sodass für alle Knoten $u \neq v \in V$ gilt, dass $\{u, v\}$ eine Kante in E ist?

ALMOST CLIQUE

Gegeben: Ein ungerichteter Graph G=(V,E), eine Zahl $k\in\mathcal{N}$

Frage: Gibt es eine Menge $S \subseteq V$ mit |S| = k, sodass die Anzahl der Kanten zwischen Knoten in S genau $\frac{k(k-1)}{2} - 1$ ist?

Zeigen Sie, dass das Problem Almost Clique NP-vollständig ist. Nutzen Sie dafür die NP-Vollständigkeit von Clique.

Hinweis: Die Anzahl der Kanten einer k-Clique sind $\frac{k(k-1)}{2}$.

Exkurs: Cliquenproblem

Das **Cliquenproblem** fragt nach der Existenz einer Clique der Mindestgröße n in einem gegebenen Graphen. Eine Clique ist eine Teilmenge von Knoten in einem ungerichteten Graphen, bei der *jedes Knotenpaar durch eine Kante* verbunden ist.

Exkurs: Almost Clique

Eine Gruppe von Knoten wird Almost Clique genannt, wenn nur eine Kante ergänzt werden muss, damit sie zu einer Clique wird.

You can reduce to this from *CLIQUE*.

Given a graph G=(V,E) and t, construct a new graph G^* by adding two new vertices $\{v_{n+1},v_{n+2}\}$ and connecting them with all of G's vertices but removing the edge $\{v_{n+1},v_{n+2}\}$, i.e. they are not neighbors in G^* . return G^* and t+2.

If *G* has a *t* sized clique by adding it to the two vertices we get an t+2 almost clique in G^* (by adding $\{v_{n+1}, v_{n+2}\}$).

If G^* has a t + 2 almost clique we can look at three cases:

- 1) It contains the two vertices $\{v_{n+1}, v_{n+2}\}$, then the missing edge must be $\{v_{n+1}, v_{n+2}\}$ and this implies that the other t vertices form a t clique in G
- 2) It contains one of the vertices $\{v_{n+1}, v_{n+2}\}$, say w.l.o.g. v_{n+1} , then the missing edge must be inside G, say $e = \{u, v\} \in G$. If we remove u and

 v_{n+1} then the other t vertices, which are in G must form a clique of size t.

3) It does not contain any of the vertices $\{v_{n+1}, v_{n+2}\}$, then it is clear that this group is in G and must contain a clique of size t.

It is also clear that the reduction is in polynomial time, actually in linear time, log-space. $^{\it a}$

ahttps://cs.stackexchange.com/a/76627