

Korelasi Antara 2 Variabel

Tim Dosen Data dan Pustaka

Pokok Bahasan

- 1. Kekuatan dan arah korelasi
- 2. Mengestimasi korelasi data kategori
- 3. Mengestimasi korelasi data kontinum
- 4. Perbedaan antara korelasi dengan hubungan sebab-akibat (causal inference)

Definisi Korelasi

Hubungan antara 2 variabel X dan Y

Dalam simbol notasi standar:

X disebut sebagai variabel independent

Y disebut sebagai variabel dependent

Ukuran yang digunakan untuk mengetahui derajat hubungan disebut koefisien korelasi

Pola Hubungan

Ukuran Korelasi/ Koefisien Korelasi

		Korelasi tinggi
	Korelasi rendah	
-1	0	1

Interpretasi nilai koefisien korelasi

Interval Koefisien	Tingkat Hubungan	
0,00 - 0,199	Sangat rendah	
0,20 - 0,399	Rendah	
0,40 - 0,599	Sedang	
0,60 - 0,799	Kuat	
0,80 - 1,000	Sangat kuat	

Berlaku juga untuk nilai minus

Uji Korelasi

Koefisien Korelasi Pearson Product Moment

Syarat:

- 1. Data berskala minimal interval (data kontinyu)
- 2. Data berdistribusi normal

$$r = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{\sqrt{\left[n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left[n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]}}$$

Makna Koefisien Korelasi Pearson

Tanda (-) dan (+) hanya menunjukkan arah hubungan

- (+) Jika nilai variabel X naik maka nilai pada variabel Y juga akan naik, *Atau* Jika nilai variabel X turun maka nilai pada variabel Y juga akan turun
- (-) Jika nilai variabel X naik maka nilai pada variabel Y akan turun, *Atau* Jika nilai variabel X turun maka nilai pada variabel Y akan naik

Korelasi PEARSON PRODUCT MOMENT

X (10.000)	Y	X ²	Y ²	XY
18	17	324	289	306
23	20	529	400	460
28	23	784	529	644
32	27	1074	729	864
41	32	1681	1024	1312
59	46	3481	2116	2714
86	63	7396	3969	5418
99	74	9801	5476	7326
ΣΧ	ΣΥ	Σ X ²	Σ X ²	ΣΧΥ
386	302	25020	14532	19044

Hitung berapa koefisien korelasi Pearson pada data tabel di samping ini

Interpretasikan makna hasil koefisien korelasi tersebut

Korelasi Parsial

Ukuran hubungan linier antara variabel secara parsial (dengan mengganggap variabel lain tetap) misalnya:

Korelasi antara Y dan X₂, dengan X₁ dibuat tetap dilambangkan

dengan $r_{yx2.x1}$

Jika korelasi sederhana melibatkan satu variabel dependent dan satu variabel independent, maka korelasi parsial melibatkan lebih dari satu variabel independent dan satu variabel dependent.

Koefisien Korelasi Parsial

$$r_{yx2.x1} = \frac{r_{yx2} - r_{yx1}r_{x1x2}}{\sqrt{(1 - r_{yx1}^2)(1 - r_{x1x2}^2)}}$$

dimana:

 r_{yx2} = korelasi antara y dan x_2

 r_{yx1} = korelasi antara y dan x_1

 r_{x1x2} = korelasi antara x_1 dan x_2

Korelasi Berganda

Hubungan yang terjadi antara variabel depedent dengan lebih dari 1 variabel independent.

Misalnya: korelasi antara Y dengan X_1 dan X_2

$$R_{yx_{1}x_{2}} = \sqrt{\frac{r^{2}_{yx_{1}} + r^{2}_{yx_{2}} - 2r_{yx_{1}}r_{yx_{2}}r_{x_{1}x_{2}}}{1 - r^{2}_{x_{1}x_{2}}}}$$

dimana:

 r_{yx2} = korelasi antara y dan x_2

 r_{vx1} = korelasi antara y dan x_1

 r_{x1x2} = korelasi antara x_1 dan x_2

Bahan Diskusi

Apa perbedaan korelasi parsial dengan korelasi ganda?

Korelasi Spearman

Korelasi spearman digunakan untuk menganalisis hubungan pada variabel dengan skala data minimal ordinal.

Bisa juga merupakan uji alternatif dari uji korelasi Pearson. Data dengan skala kontinyu juga dapat dihitung menggunakan formula Korelasi Spearman.

Koefisien Korelasi Spearman

$$r = 1 - \frac{6\sum_{i} d_{i}^{2}}{n(n^{2} - 1)}$$

dimana:
$$\sum d_i^2 = \sum_{i=1}^n [R(X_i) - R(Y_i)]^2$$

Contoh soal:

Terdapat 2 orang juri yang diminta untuk menilai dalam lomba memasak makanan.

Jumlah makanan yang dilombakan 10. Hasil penilaian juri dalam bentuk score tercantum pada tabel.

Hitunglah koefisien korelasi Spearman pada kasus tersebut!

Makanan	Juri I	Juri II	
1	9	6	
2	6	7	
3	5	6	
4	7	8	
5	4	5	
6	3	4	
7	2	2	
8	8	9	
9	7	8	
10	6	6	

Makanan	Juri I (X _i)	Juri II (Y _i)	Rangking (X _i)	Rangking (Y _i)	D_{i}	d _i ²
1	9	8	10	8	-2	4
2	6	7	5.5	6	0.5	0.25
3	5	6	4	4.5	0.5	0.25
4	7	8	7.5	8	0.5	0.25
5	4	5	3	3	0	0
6	3	4	2	2	0	0
7	2	2	1	1	0	0
8	8	9	9	10	1	1
9	7	8	7.5	8	0.5	0.25
10	6	6	5.5	4.5	-1	1
Jumlah					0	7

$$r = 1 - \frac{(6)(7)}{10(10^2 - 1)} = 1 - 0.04 = 0.96$$

Coefficient Contingency C

Coefficient contingency untuk mengukur keeratan hubungan antara 2 variabel dengan skala data nominal. Data nominal diubah dalam bentuk tabel kontingensi.

Coeficient contingency bernilai antara 0 - 1. Dimana semakin koefisien menuju nilai 1 semakin kuat hubungan antara kedua variabel.

Rumus Coeficient Contingency C

$$C = \sqrt{\frac{\chi^2}{N + \chi^2}}$$

dimana: χ^2 = Chi-square yang dihitung dari tabel kontingensi N = jumlah data

Cara Menghitung Nilai χ^2

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Contoh penghitungan nilai chi-square ada di link berikut

Korelasi vs Hubungan Causalitas (sebab akibat)

Apakah sama antara korelasi dengan hubungan sebab akibat.

Korelasi antara musim hujan dengan jumlah kecelakaan lalu lintas.

Artinya setiap hujan deras maka kecelakaan lalu lintas juga akan terjadi. Pada waktu yang sama terdapat 2 variabel yang muncul secara bersamaan. Namun apakah kemudian hujan deras merupakan mempunyai hubungan kausalitas dengan kecelakaan lalu lintas.

Silakan didiskusikan.

correlation does not imply causation

Requirement for causal relationship

Necessary Condition:

- 1. Empirical association (korelasi)
- 2. Appropriate time order: sebab (faktor independen) ada sebelum dampak ada (faktor dependen)
- 3. Nonspuriousness: bukan terjadi karena variabel lain

Important Condition:

- 1. Mechanism
- 2. Context

Contoh:

- Media violence would increase aggression only among individuals who were already predisposed to aggression
- children reacted more aggressively after observing men committing violent acts than after observing women committing these same acts.

Spurious relationship

Spurious relationship

View the movie

Money Train

Commit

violent crime

Japanese passenger cars sold in the US

correlates with

Suicides by crashing of motor vehicle

Correlation: 93.57% (r=0.935701)

Data sources: U.S. Bureau of Transportation Statistics and Centers for Disease Control & Prevention

