DEPARTMENT OF MATHEMATICS BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI

MA24103 Mathematics-II Tutorial - I (Module I), SP 2025

January 26, 2025

- 1. (a) Show that the Wronskian of $e^{ax}\cos(bx)$ and $e^{ax}\sin(bx)$ where $b\neq 0$, is b^2e^{2ax} .
 - (b) Prove that the Wronskian of functions e^{m_1x} , e^{m_2x} , e^{m_3x} is equal to $(m_1-m_2)(m_2-m_3)(m_3-m_1)e^{(m_1+m_2+m_3)x}$.
 - (c) Show that $y_1(x) = \sin x$ and $y_2(x) = \sin x \cos x$ are linearly independent solutions of y'' + y = 0.
 - (d) Show that the Wronskian of the function x^2 , $x^2 \log(x)$ is non-zero. Can these functions be independent solution of an ordinary differential equation; if so determine this equation.
 - (e) Check whether e^x , xe^x , $\sinh(x)$ are linearly independent or dependent.
 - (f) Check whether e^{ikx} , e^{-ikx} , $\sin(kx)$ are linearly independent or not.
 - (g) Show that any pair of these four functions are linearly independent: e^{ikx} , e^{-ikx} , $\sin(kx)$, $\cos(kx)$.
- 2. Solve the following differential equations:
 - (a) y'' + 3y' 10y = 0.
 - (b) y''' 9y'' + 23y' 15y = 0.
 - (c) $y^{iv} + 8y'' + 16y = 0$.
 - (d) $y^{iv} 8y'' + 16y = 0$.
 - (e) $y'' + 3y' + 4y = x^3 2x$.
 - (f) $y'' 3y' + 2y = e^{3x}$.
 - (g) $y'' 4y' + 4y = e^{2x} + x^3 + \cos(2x)$.
 - (h) $y''' 12y' + 16y = (e^x + e^{-2x})^2$.
 - (i) $y''' 5y'' + 7y' 3y = e^{2x} \cosh(2x)$.
 - (j) $y'' 4y' + 4y = 8x^2e^{2x}\sin(2x)$.
 - (k) $y'' (a+b)y' + aby = e^{ax} + e^{bx}$.
 - (1) $y^{iv} + 3y'' 4y = \cos^2 x \cosh x$.
 - (m) $y''' 7y' 6y = e^{2x}(1+x)$.
 - (n) $y''' 3y'' + 4y' 2y = e^x + \cos x$.
 - (o) $y''' 3y'' + 7y' 5y = e^x + \cos x$.
 - (p) $y'' + 4y = 2\cos^2 x + 10e^x$.
 - (q) $y'' + y = \sin x + (1 + x^2)e^x$.
 - (r) $y'' y = e^{-x}(\sin x + \cos x)$.
 - (s) $y''' 3y'' y' + 3y = x^2 e^x$.
 - (t) $y'' + y' 2y = e^x$.
 - (u) $y'' 6y' + 9 = 1 + x + x^2$.
 - (v) $y'' + 9y = x \cos x$.

- 3. Solve the following Cauchy-Euler equations:
 - (a) $y'' + \frac{1}{x}y' = 12\log x/x^2$.
 - (b) $x^2y'' 4xy' + 6y = 42/x^4$.
 - (c) $x^2y'' + 3xy' + y = 1/(1-x)^2$.
 - (d) $x^2y'' + 2xy' 12y = x^3 \log x$.
 - (e) $x^2y'' 2xy' 4y = x^2 + 2\log x$.
 - (f) $x^2y'' 2y = 2x + 6$.
 - (g) $x^2y'' 3xy' + 3y = 2 + 3\ln x$.
 - (h) $x^4y^{iv} + 6x^3y''' + 2x^2y'' 4xy' + 4y = 10/x^3$.
 - (i) $(3x+1)^2y'' + (3x+1)y' + y = 6x$.
 - (j) $x^2y'' + 2xy' = \cos(\ln x)$.
 - (k) $x^2y'' + 2xy' 2y = x\sin(\ln x)$.
 - (1) $4x^2y'' + 16xy' + 9y = 19\cos(\ln x) + 22\sin(\ln x)$.
- 4. Solve by the method of variation of parameters.
 - (a) y'' + y = x.
 - (b) $y'' + n^2 y = \sec(nx)$.
 - (c) $y'' + 9y = \sec(3x)$.
 - (d) $y'' y = \frac{2}{1+e^x}$.
 - (e) $y'' + y = \tan x$.
 - (f) $y'' + y = \sec x.$
 - (g) $y'' + 2y' + y = e^{-x}$.
 - (h) $y'' 2y' + y = e^x$.
 - (i) $y'' + 4y = 4\tan(2x)$.
 - (j) $t^2y'' t(t+2)y' + (t+2)y = 2t^3$, where $y_1(t) = t$ and $y_2(t) = te^t$ are two linearly independent solutions corresponding to the homogeneous part.