Group Meeting

刘广熠

Contents

- Review of Transformer
- Review of BERT
- VLBERT @ ICLR 2020

Review of Transformer

Reference: The Illustrated Transformer

Transformer

Self-Attention

ATTENTION HEAD #0

 Z_0

ATTENTION HEAD #1

•••

ATTENTION HEAD #7

 \mathbb{Z}_7

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Positional encoding

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm model}}) \quad \text{For any fixed offset k, } PE_{(pos+k)} \text{ is a linear function of } PE_{(pos)} \\ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm model}}) \\$

Review of BERT

Reference: The Illustrated BERT, ELMo, and co.

	Transformer	BERT _{Base}	BERT _{Large}
# of Encoders	6	12	24
# of Attention Heads	8	12	16
Hidden size	512	768	1024

[CLS]: Classification

Segment: 区分不同的句子

Position: 表示位置

与Transformer不同, 是学习来的

Pretraining tasks

- MLM: Masked Language Model
- NSP: Next Sentence prediction

MLM

0.1% Aardvark Use the output of the Possible classes: . . . masked word's position All English words 10% Improvisation to predict the masked word ... 0% Zyzzyva FFNN + Softmax 512 3 **BERT** Randomly mask 15% of tokens Let's stick [MASK] in this skit to Input skit stick to improvisation in this [CLS]

NSP

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

VL-BERT: Pre-training of Generic Visual-Linguistic Representations

Weijie Su^{1,2*}, Xizhou Zhu^{1,2*}, Yue Cao², Bin Li¹, Lewei Lu², Furu Wei², Jifeng Dai²

¹University of Science and Technology of China

²Microsoft Research Asia
{jackroos,ezra0408}@mail.ustc.edu.cn,binli@ustc.edu.cn
{yuecao,lewlu,fuwei,jifdai}@microsoft.com

Token Embedding:

[CLS]: Classification

[SEP]: 句子分隔符

[IMG]: 图像标识

[END]: 图像结束符

Segment Embedding:

VQA: Question – A, Answer – B, Image – C Image Caption: Caption – A, Image – C

Sequence Position Embedding:

A learnable sequence position embedding

Visual Feature Embedding:

Non-visual elements: features extracted on the whole input image.

Visual elements corresponding to an Rol: features extracted by applying a Fast R-CNN detector, where the feature vector prior to the output layer of each Rol is utilized as the visual feature embedding

Pretraining Tasks

- Masked Language Modeling with Visual Clues
 - Each word in the input sentence(s) is randomly masked (at a probability of 15%).
- Masked Rol Classification with Linguistic Clues
 - Each Rol in image is randomly masked out (with 15% probability).
 - the pixels laid in the masked Rol are set as zeros before applying Fast R-CNN

Fine-tuning

- Input:
 - <Caption, Image> and <Question, Answer, Image>
- Output:
 - [CLS] sentence-image-relation level prediction
 - Output features of words or Rols are for word-level or Rol-level prediction

(a) Input and output format for Visual Commonsense Reasoning (VCR) dataset

(b) Input and output format for Visual Question Answering (VQA) dataset

(c) Input and output format for Referring Expression task on RefCOCO+ dataset