CHAPTER 2: Error Detection and Correction Codes Lecture 6

Binary Hamming error-correcting codes

Let us construct a code \mathcal{C} that

- is binary with code alphabet $\{0,1\}$
- has fixed length n codewords $\mathbf{x} = x_1 \cdots x_n$
- is single-error correcting
- provides user-friendly error-correcting
- \bullet uses m independent linear parity checks

$$\sum_{j=1}^{n} a_{ij} x_j \equiv 0 \pmod{2} \quad \text{where} \quad i = 1, \dots, m \quad \text{and} \quad a_{ij} \in \{0, 1\}$$

We need to choose

- C
- an encoding scheme
- a correcting scheme
- a decoding scheme

The m parity checks

$$\sum_{j=1}^{n} a_{ij} x_j \equiv 0 \pmod{2} \quad \text{where} \quad i = 1, \dots, m \quad \text{and} \quad a_{ij} \in \{0, 1\}$$

can be expressed as $H\mathbf{x}^T = \mathbf{0}$ (in \mathbb{Z}_2) where H is the $m \times n$ parity check matrix with entries a_{ij} .

Let \mathcal{C} be the null space of H:

$$\mathbf{x} \in \mathcal{C}$$
 if and only if $H\mathbf{x}^T = \mathbf{0}$

Let $C = \{ \mathbf{x} \in \mathbb{Z}_2^n : H\mathbf{x}^T = \mathbf{0} \}$ be the null space of H.

Define the syndrome $S(\mathbf{y}) = H\mathbf{y}^T$.

- $S(\mathbf{x}) = \mathbf{0}$ if and only if $\mathbf{x} \in \mathcal{C}$
- S(y) tells us when y has an error
- In fact, we can get S(y) to tell us where y has an error!

Let \mathbf{x} be a codeword of $\mathcal{C} = \{\mathbf{x} \in \mathbb{Z}_2^n : H\mathbf{x}^T = \mathbf{0}\}$. Consider a word \mathbf{y} with a single error $(\mathbf{x} \leadsto \mathbf{y})$, in position i. Then $\mathbf{y}^T = \mathbf{x}^T + \mathbf{e}_i$, so

$$S(\mathbf{y}) = H\mathbf{y}^T = H(\mathbf{x}^T + \mathbf{e}_i) = H\mathbf{x}^T + H\mathbf{e}_i = \mathbf{0} + H\mathbf{e}_i = H\mathbf{e}_i$$

Now, $H\mathbf{e}_i$ is the *i*th column of H, so we can make error-correcting easy by defining the *i*th column of H to be the binary expression for i. Then $S(\mathbf{y}) = H\mathbf{e}_i$ tells us the position i of the (single) error:

If $S(\mathbf{y})^T = 0000$, then there are no errors If $S(\mathbf{y})^T = 0001$, then the error is in position 1 If $S(\mathbf{y})^T = 0010$, then the error is in position 2 If $S(\mathbf{y})^T = 0011$, then the error is in position 3 etc.

Codes defined in this way are called binary Hamming-type codes.

Example

The binary Hamming-type code for n=7, m=3 has parity check matrix

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

This is the parity check matrix for the binary Hamming (7,4) code. The number 4 refers to k = n - m = 7 - 3.

Note that we need $2^m - 1 \ge n$, or $2^m \ge n + 1$. If $2^m \ge n + 1$, then the code is the binary Hamming (n, k) code.

Error-correcting with binary Hamming-type codes

The binary Hamming-type code for n=5, m=3 has parity check matrix

The word y = 00111 has a single error.

To find this error, we calculate the syndrome $S(\mathbf{y})$:

$$S(\mathbf{y}) = H\mathbf{y}^{T} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

This corresponds to the binary number 010, namely 2.

We therefore correct bit number 2 in y, and get the codeword 01111.

Encoding/decoding with binary Hamming-type codes

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} n = 5 \\ m = 3 \end{array}$$

We see that the m=3 columns 1, 2, and 4 are leading whereas columns 3 and 5 are non-leading.

Therefore when solving $H\mathbf{x}^T = \mathbf{0}$ for $\mathbf{x} = x_1 \cdots x_5$, x_3 and x_5 are free parametric variables and together determine x_1 , x_2 , x_4 .

We can use x_3 and x_5 as information bits and x_1 , x_2 , x_4 as check bits.

The binary Hamming-type codes are systematic, with

- k = n m = 2 information bits,
- m=3 check bits (in columns $1,2,4,\ldots,2^{m-1}$ in general), and
- $2^k = 4$ codewords.

Encoding/decoding with binary Hamming-type codes

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} n = 5 \\ m = 3 \end{array}$$

To encode a message $\mathbf{w} = w_1 \cdots w_k$ where k = n - m:

- Substitute w into the k parametric variables of x
- Solve $H\mathbf{x}^T = \mathbf{0}$ to find the m check (leading) variables
- x is the resulting codeword.

To decode a codeword $\mathbf{x} = x_1 \cdots x_n$:

- Extract the sequence of parametric variable values.
- This gives the decoded message.

Example

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} n = 5 \\ m = 3 \end{array}$$

To encode $\mathbf{w} = 01$, set $x_3 = 0$ and $x_5 = 1$ in $\mathbf{x} = x_1 \cdots x_5$. Now solve $H\mathbf{x}^T = \mathbf{0}$:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \\ x_4 \\ 1 \end{pmatrix} = \mathbf{0} \quad \text{or} \quad \begin{aligned} x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_4 + 1 & = 0 \end{aligned}$$

We see that $x_1 = x_4 = 1$ and $x_2 = 0$. The encoded message is therefore $\mathbf{x} = 10011$.

To decode x = 10011, just extract the non-leading entries: 01

Binary Hamming (n, k) codes

- Binary
- Block codes with codeword length n
- Systematic
- k information bits
- m=n-k check bits (in positions $1,2,4,\ldots,2^{m-1}$)
- 2^k codewords
- $2^m = n + 1$ (not true for all Binary Hamming-type codes)
- To encode, write message as information bits of \mathbf{x}^T & solve $H\mathbf{x}^T = \mathbf{0}$
- To correct, calculate syndrome $S(\mathbf{x})$ to find error position
- To decode, extract message from information bits of \mathbf{x}^T

Binary Hamming (n, k) codes

• Parameters:

m	$k = 2^m - m - 1$	n = k + m	$R = \frac{k}{n}$
3	4	7	0.57
4	11	15	0.73
5	26	31	0.84
6	57	63	0.90
7	120	127	0.94
8	247	255	0.97
9	502	511	0.98
10	1013	1023	0.99

Exercise

For the Hamming (7,4) code,

- (a) encode 1001
- (b) correct and decode 0110001