International Rectifier

IRLMS6802PbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Lead-Free

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}\,60\%$ less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. The unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-5.6	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.5	A
I _{DM}	Pulsed Drain Current ①	-45	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C	Power Dissipation	1.3	VV
	Linear Derating Factor	0.016	W/°C
E _{AS}	Single Pulse Avalanche Energy⊕	31	mJ
V _{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.005		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.050	Ω	V _{GS} = -4.5V, I _D = -5.1A ②
T IDS(on)				0.100		V _{GS} = -2.5V, I _D = -3.4A ②
V _{GS(th)}	Gate Threshold Voltage	-0.60		-1.2	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9fs	Forward Transconductance	1.5			S	$V_{DS} = -10V, I_D = -0.80A$
lana	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -16V, V_{GS} = 0V$
I _{DSS}				-25	μA	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 12V
Qg	Total Gate Charge		11	16		$I_D = -4.5A$
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = -10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.9	4.3		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = -10V$
t _r	Rise Time		33		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		70		115	$R_G = 6.0\Omega$
t _f	Fall Time		72			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		1079			$V_{GS} = 0V$
Coss	Output Capacitance		220		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		152			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current					MOSFET symbol		
	(Body Diode)			-2.0	A	showing the		
I _{SM}	Pulsed Source Current			45	-45	45	1 ^	integral reverse
	(Body Diode) ①			-45			p-n junction diode.	
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.6A$, $V_{GS} = 0V$ ③		
t _{rr}	Reverse Recovery Time		74	110	ns	$T_J = 25^{\circ}C$, $I_F = -3.0A$		
Q _{rr}	Reverse Recovery Charge		45	67	nC	di/dt = -100A/µs ②		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $\begin{tabular}{ll} \Plag{0.2cm} \Plag{0.$

International Rectifier

IRLMS6802PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLMS6802PbF

 E_{AS} , Single Pulse Avalanche Energy (mJ) I_D TOP -1.3A -2.4A BOTTOM -3.0A 60 40 20 0 L 25 50 75 100 125 150 Starting T_J, Junction Temperature (°C)

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Micro6 (SOT23 6L) Package Outline

Dimensions are shown in milimeters (inches)

NOTES:

- IN LES:

 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

Micro6 (SOT23 6L) Part Marking Information

W= (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

PART NUMBER CODE REFERENCE:

A = IRLM\$1902 B = IRLMS1503 C = IRLMS6702 D = IRLM\$5703 E = IRLMS6802 F = IRLMS4502G= IRLMS2002

H = IRLMS6803

Note: A line above the work week (as shown here) indicates Lead-Free.

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8		
2009	9	7	1
2010	0	24	Χ
		25	Υ
		26	Z

W = (27-52) IF PRECEDED BY ALETTER

()							
	YEAR	Υ	WORK WEEK	W			
	2001	Α	27	Α			
	2002	В	28	В			
	2003	С	29	С			
	2004	D	30	D			
	2005	E					
	2006	F					
	2007	G					
	2008	Н	1	1			
	2009	J	7	1			
	2010	K	50	X			
			51	Υ			
			52	Z			

Micro6 Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES: 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

This product has been designed and qualified for the consumer market. Qualification Standards can be found on IR's Web site.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.01/05