Math 670 HW #1

Due 11:59 PM Friday, February 21

- 1. A smooth manifold M is called *orientable* if there exists a collection of coordinate charts $\{(U_{\alpha}, \phi_{\alpha})\}$ so that, for every α, β such that $\phi_{\alpha}(U_{\alpha}) \cap \phi_{\beta}(U_{\beta}) = W \neq \emptyset$, the differential of the change of coordinates $\phi_{\beta}^{-1} \circ \phi_{\alpha}$ has positive determinant.
 - (a) Show that for any n, the sphere S^n is orientable.

Proof. Here we will consider the atlas from the notes, generated by $\{(\mathbb{R}^n,\phi_N),(\mathbb{R}^n,\phi_S)\}$ Notice that because $\phi_N(\mathbb{R}^2)\cap\phi_S(\mathbb{R}^n)=S^2-\{N,S\}$ we can consider the change of coordinates map which is $(\phi_N\circ\phi_S)(\vec{x})=\frac{1}{||\vec{x}||^2}\vec{x}$. Notice that becasue this is a map from \mathbb{R}^n to \mathbb{R}^n the differential is the Jacobian which is just $\frac{1}{||\vec{x}||^2}I$, which has positive determinant.

(b) Prove that, if M and N are smooth manifolds and $f: M \to N$ is a local diffeomorphism at all points of M, then N being orientable implies that M is orientable. Is the converse true?

Proof. Becasue N is orientable, there is an atlas $\{(V_{\beta}, \psi_{\beta})\}$ for N such that any change of variables has differential with positive determinant. Now we will consider an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ for M. Any point $p \in M$, there exists chart (U, ϕ) and (V, ψ) where $p \in \phi(U)$ and $f(p) \in \psi(V)$ and $f: \phi(U) \to \psi(V)$ is a diffeomorphism. Now consider a second chart (U_2, ϕ_2) containing the point p. Now we want to show that the differential of $\phi_2^{-1} \circ \phi$ defined on $U \cap U_2$ has positive determinant. Let (V_2, ψ_2) be a chart containing $f(\phi_2(U_2))$. Notice that from chasing diagrams we have that

$$\phi_2^{-1} \circ \phi = \phi_2^{-1} \circ f^{-1} \circ \psi_2 \circ \psi_2^{-1} \circ \psi \circ \psi^{-1} \circ f \circ \phi$$

on $U \cap U_2$ in which case we can determine that the differential at any point $p \in U \cap U_2$ is e

2. Supply the details for the proof that, if $F: \operatorname{Mat}_{d \times d}(\mathbb{C}) \to \mathcal{H}(d)$ is given by $F(U) = UU^*$ (where U^* is the conjugate transpose [a.k.a., Hermitian adjoint] of U), then the unitary group

$$U(d) = F^{-1}(I_{d \times d})$$

is a submanifold of $\operatorname{Mat}_{d\times d}(\mathbb{C})$ of dimension d^2 . (Hint: it may be helpful to remember that a Hermitian matrix M can always be written as $M = \frac{1}{2}(M + M^*)$.)

Proof. Notice first that $\operatorname{Mat}_{d\times d}(\mathbb{C})$ is a real manifold with dimension $2d^2$. Likewise $\mathcal{H}(d)$ is a real manifold with with dimension d, this can be computed by directly entries that satisfy $M=M^*$, where the diagonal has to be all real entries. Next recall that $T_I\operatorname{Mat}_{d\times d}\cong\operatorname{Mat}_{d\times d}$. We can also use the a defining equation $M=\frac{1}{2}(M+M^*)$ to determine that any curve

 $\alpha(t)$ that satisfies this relation would have a derivative at t=0 equal to $\frac{d}{dt}|_{t=0} \left[\alpha(t)\right] = \frac{d}{dt}|_{t=0} \left[\frac{1}{2}(\alpha(t) + \alpha^*(t))\right] = \frac{1}{2}(\alpha'(0) + \alpha'(t)^*)$ and so $T_I\mathcal{H}(d) \cong \mathcal{H}(d)$

Here we want to use the level set theorem. So we will show that $I \in \mathcal{H}(d)$ is a regular point. Notice that F(I) = I. To show I is regular we will show that the differential $dF_I : T_I \operatorname{Mat}_{d \times d} \to T_I \mathcal{H}(d)$ is surjective. Consider a smooth curve $\alpha(t)$ through I with velocity v in $\operatorname{Mat}_{d \times d}$. This would give us the curve $\beta(t) = F \circ \alpha(t) = \alpha(t)\alpha(t)^*$. Where the derivative at t = 0 is $\frac{d}{dt}|_{t=0} [\beta(t)] = \alpha'(0)\alpha(0)^* + \alpha(0)\alpha'(0)^* = v + v^*$. This shows that for any $v \in T_I \mathcal{H}(d) \cong \mathcal{H}(d)$ we have that the tangent vector $\frac{1}{2}v$ would map to the tangent vector v. This shows that dF_I is surjective.

So from the level set theorem we have that $F^{-1}(I) = \{UU^* = 1\} = U(d)$ is a submanifold of dimension d^2 .

3. Let M be a compact manifold of dimension n and let $f: M \to \mathbb{R}^n$ be a smooth map. Prove that f must have at least one critical point.

Proof. First notice that $f(M) \subseteq \mathbb{R}^n$ is compact because f is continuous and M is compact. This means the image f(M) is closed and bounded. Let q be a point of the boundary of f(M), and p and point that maps to q. Notice that this means that there is a direction v in the tangent space $T_q\mathbb{R}^n$ that would point out of f(M), meaning any curve $\beta(t)$ through q with velocity v would leave f(M). So v is not in the image of the differential df_p and so the differential is not surjective. And so p is a critical point.

- 4. Prove that, if X, Y, and Z are smooth vector fields on a smooth manifold M and $a, b \in \mathbb{R}$, $f, g \in C^{\infty}(M)$, then
 - (a) [X, Y] = -[Y, X] (anticommutivity)

(b) Proof.
$$[X,Y] = XY - YX = -(YX - XY) = -[X,Y]$$

- (c) [aX + bY, Z] = a[X, Z] + b[Y, Z] (linearity)
- (d) Proof. Let $a, b \in \mathbb{R}$ then notice that because $\mathcal{X}(M)$ is a \mathbb{R} -module and XY is well defined (as a distributive product on vector fields that gives back a differential operator) we have that [aX + bY, Z] = (aX + bY)Z Z(aX + bY) = aXZ + bYZ aZX bZY = a[X, Z] + b[Y, Z]
- (e) [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0 (Jacobi identity)

Proof.

$$\begin{split} & [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = [XY - YX,Z] + [YZ - ZY,X] + [ZX - XZ,Y] \\ & = (XY - YX)Z - Z(XY - YX) + (YZ - ZY)X - X(YZ - ZY) + (ZX - XZ)Y - Y(ZX - XZ) \\ & = XYZ - YXZ - ZXY - ZYX + YZX - ZYX - XYZ - XZY + ZXY - XZY - YZX - YXZ \\ & = 0 \end{split}$$

(f) [fX, gY] = fg[X, Y] + f(Xg)Y - g(Yf)X.

2

Proof. This follows from the fact that X is a first order differential operator, and so we can utilize the product rule in the case X(gY(h)) = X(g)Y(h) + gX(Y(h)) where $h \in C^{\infty}(M)$ and so we can simply write X(gY) = (Xg)Y + gXY which gives us

$$[fX, gY] = fX(gY) - gY(fX)$$

$$= f(Xg)Y + fgXY - g(Yf)X - gfYX$$

$$= fg[X, Y] + f(Xg)Y - g(Yf)X$$