

Assignment 1

Data Exploration and Classification

Semester 1 2024

Student Name: Thuan Nguyen

Student ID: 23194073

PAPER NAME: Foundations of Data Science

PAPER CODE: COMP615

Due Date: Sunday 14 April 2024 (midnight)

TOTAL MARKS: 100

INSTRUCTIONS:

- 1. The following actions may be deemed to constitute a breach of the General Academic Regulations Part 7: Academic Discipline,
 - Communicating with or collaborating with another person regarding the Assignment
 - Copying from any other student work for your Assignment
 - Copying from any third-party websites unless it is an open book Assignment
 - Uses any other unfair means
- 2. Please email DCT.EXAM@AUT.AC.NZ if you have any technical issues with your Assessment/Assignment/Test submission on Canvas immediately
- 3. Attach your code for all the datasets in the appendix section.

Table of Contents

PAPER NAME: Foundations of Data Science	1
Task 1: INTRODUCTION	3
Task 2: DATA EXPLORATION	4
Part 1: Initial Information about dataset	4
Task 3: CLASSIFICATION MODELS	17
Task 4: RESULT AND DISCUSSION	24
References	25

Table of figures

Figure 1: Dataset information	5
Figure 2: Dataset information.	5
Figure 3: Dataset information.	6
Figure 4: Dataset information.	6
Figure 5: Dataset information.	7
Figure 6: Dataset information.	7
Figure 7: Dataset Information	8
Figure 8: Dataset first few rows.	8
Figure 9: Summary Statistics for numerical features	9
Figure 10: duplicated rows	10
Figure 11: duplicated rows	11
Figure 12: duplicated rows	12
Figure 13: Visualization method for detecting outliers.	13
Figure 14: Statistical method for detecting outliers.	13
Figure 15: Dataset shown in Excel.	14
Figure 16: Distribution for numerical data.	14
Figure 17: Visualization for categorical data	15
Figure 18: correlation heatmap for relationship between continuous features	16
Figure 19: Duplicates after handle	17
Figure 20: Dataset after handling wrong imputing value.	17
Figure 21: Distribution for continuous data	18
Figure 22: Distribution for discrete data	18
Figure 23: Distribution for categorical data	19
Figure 24: Original Tree	20
Figure 25: Max depth and leaf node on Cross-validated Accuracy	20

Student ID Number:

Figure 26:Adjusted Decision Tree	Error! Bookmark not defined.
Figure 27: features importance.	22
Figure 28: model performance	Error! Bookmark not defined.
Figure 29: Confusion Matrix	23

Task 1: INTRODUCTION

The global obesity epidemic continues to escalate, posing significant health risks and economic burdens across the population. There are some key facts from WHO ("Obesity and overweight," 2024):

,

- In 2022, 1in 8 people in the world were living with obesity.
- Worldwide adult obesity has more than doubled since 1990, and adolescent obesity has quadrupled.
- In 2022, 2.5 billion adult (18 years old and older) were overweight.

This project uses 'Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico' which includes demographic details (age, height, weight), dietary habits, physical activity levels, sedentary behaviour, and obesity level to investigate the intricate relationship between various lifestyles factors and obesity level.

Because the aetiology of obesity is complicated and involves behavioural, genetic, and environmental variables, necessitates a multifaceted approach to understanding. However, this project primarily aims to investigate how different lifestyles choice contributes to varying obesity level among individuals.

Based on the aim of the project, there are one question that need to be answer:

• What dietary habits and daily living habits are significantly affected obesity levels?

Assumption for the research:

- Data completeness: The dataset is assumed to be complete with no missing value in any of the critical fields used for analysis.
- Normality: For certain statistical analyses, it may be assumed that the continuous variables (age, weight, and height) follow a normal distribution.
- Accurate reporting: it is assumed that all participants accurately reported their dietary intake and daily living habits.
- Independence of observation: observation should be independent within the dataset, which means each entry value assumed to represent and independent individual.

Task 2: DATA EXPLORATION

Let explore the dataset to understand completely about each attribute. Because this research is about dietary and lifestyles habits, so features related to that purposed will be focused on.

Part 1: Initial Information about dataset.

Below are questions of the survey used for initial recollection of information: (Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru, and Mexico). This table is necessary to understand deeply about each feature, how they are collected, what question it answer, which can be used for further analysis or decision making.

Figure 1: Dataset information.

CAEC	Feature	Categorical	Do you eat any tood between meals?	no
SMOKE	Feature	Binary	Do you smoke?	no
CH2O	Feature	Continuous	How much water do you drink daily?	no
SCC	Feature	Binary	Do you monitor the calories you eat daily?	no
FAF	Feature	Continuous	How often do you have physical activity?	no
TUE	Feature	Integer	How much time do you use technological devices such as cell phone, videogames, television, computer and others?	no
CALC	Feature	Categorical	How often do you drink alcohol?	no
MTRANS	Feature	Categorical	Which transportation do you usually use?	no
NObeyesdad	Target	Categorical	Obesity level	no

Figure 2: Dataset information.

Below are questions that used for collecting data and its possible answer.

Questions	Possible Answers
¿What is your gender?	• Female
	• Male
¿what is your age?	Numeric value
¿what is your height?	Numeric value in meters
¿what is your weight?	Numeric value in kilograms
¿Has a family member suffered or suffers from overweight?	• Yes
	• No
¿Do you eat high caloric food frequently?	• Yes
	• No
¿Do you usually eat vegetables in your meals?	• Never
	• Sometimes
Figure 3: Dataset information.	• Always
1 igure 3. Dataset information.	
¿How many main meals do you have daily?	• Between 1 y 2
	• Three
	More than three
¿Do you eat any food between meals?	• No
	• Sometimes
	• Frequently
	• Always
¿Do you smoke?	• Yes
	• No
¿How much water do you drink daily?	• Less than a liter
	Between 1 and 2L
	More than 2L

Figure 4: Dataset information.

¿Do you monitor the calories you eat daily?	• Yes
	• No
¿How often do you have physical activity?	• I do not have
	• 1 or 2 days
	• 2 or 4 days
	• 4 or 5 days
¿How much time do you use technological devices such as cell phone,	• 0-2 hours
videogames, television, computer and others?	• 3–5 hours
	More than 5 hours
¿how often do you drink alcohol?	I do not drink
	• Sometimes
	• Frequently
	Always
Figure 5: Dataset information.	
¿Which transportation do you usually use?	Automobile
Zwinch transportation do you astany asc:	
	 Motorbike
	• Bike
	• Public
	Transportation
	 Walking

Figure 6: Dataset information.

From the figure 3, 4,5 and 6, we can see that the author of the dataset convert answer to numerical discrete data. For example: the answer to question 'Do you usually eat vegetables in your meals?', the answer converts to 0(Never), 1(Sometimes), and 2(Always). This also applies to other questions but not all.

Part 2: Original features, instance datatypes, summary statistics

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2111 entries, 0 to 2110
Data columns (total 17 columns):
    Column
                                   Non-Null Count Dtype
    ____
                                   -----
                                   2111 non-null
 0
    Gender
                                                  object
 1
    Age
                                   2111 non-null float64
                                   2111 non-null float64
 2
    Height
 3
                                   2111 non-null float64
    Weight
    family_history_with_overweight 2111 non-null object
 4
                                   2111 non-null object
 5
                                   2111 non-null
                                                 float64
 6
    FCVC
    NCP
 7
                                   2111 non-null
                                                  float64
                                   2111 non-null
                                                  object
 8
    CAEC
 9
    SMOKE
                                   2111 non-null object
                                   2111 non-null float64
 10 CH20
                                   2111 non-null object
 11 SCC
 12 FAF
                                   2111 non-null float64
                                   2111 non-null
 13 TUE
                                                  float64
 14 CALC
                                                  object
                                   2111 non-null
 15 MTRANS
                                   2111 non-null
                                                  object
 16 NObeyesdad
                                   2111 non-null
                                                  object
dtypes: float64(8), object(9)
memory usage: 280.5+ KB
None
```

Figure 7: Dataset Information

From figure 1, the dataset contains 2111 entries and 17 features (columns). All the entries are non-null, which is indicating no missing values across the dataset.

There are two datatypes for all features, 9 features are categorical (object types) and 8 are numerical (float64).

```
Gender Age Height Weight family_history_with_overweight FAVC FCVC \
0 Female 21.0 1.62 64.0
                                                                                        2.0
                                                                           ves no
                     1.52
                                                                           yes
1 Female 21.0
                               56.0
                                                                                 no
                                                                                         3.0
                     1.80 77.0
1.80 87.0
                                                                           yes
     Male 23.0
                                                                                 no
                                                                                         2.0
                                                                            no no
     Male 27.0
                                                                                         3.0
   Male 22.0 1.78 89.8
                                                                            no no 2.0
                CAEC SMOKE CH2O SCC FAF TUE
                                                                  CALC \
   NCP
0 3.0 Sometimes no 2.0 no 0.0 1.0
                                                                    no

      1
      3.0
      Sometimes
      yes
      3.0
      yes
      3.0
      0.0
      Sometimes

      2
      3.0
      Sometimes
      no
      2.0
      no
      2.0
      1.0
      Frequently

      3
      3.0
      Sometimes
      no
      2.0
      no
      2.0
      0.0
      Frequently

                       no 2.0 no 0.0 0.0 Sometimes
4 1.0 Sometimes
                      MTRANS
                                            NObeyesdad
                                      Normal_Weight
0 Public_Transportation
1 Public_Transportation
                                        Normal_Weight
                                        Normal_Weight
2 Public_Transportation
                     Walking
                                 Overweight_Level_I
4 Public_Transportation Overweight_Level_II
```

Figure 8: Dataset first few rows.

As we can see above (figure 8), there are 16 attributes, demographic details (Age, Height, Weight, family_history_with_overweight), dietary habits (FAVC, FCVC, NCP,...) and lifestyle habits (FAF, TUE,...) which can be considered as factors affected the obesity levels can be considered as predictor attributes, and 'Nobeyesdad' is considered as target that we want to research.

Summary Statistics for numberical features:								
	Age	Height	Weight	FCVC	NCP	\		
count	2111.000000	2111.000000	2111.000000	2111.000000	2111.000000			
mean	24.312600	1.701677	86.586058	2.419043	2.685628			
std	6.345968	0.093305	26.191172	0.533927	0.778039			
min	14.000000	1.450000	39.000000	1.000000	1.000000			
25%	19.947192	1.630000	65.473343	2.000000	2.658738			
50%	22.777890	1.700499	83.000000	2.385502	3.000000			
75%	26.000000	1.768464	107.430682	3.000000	3.000000			
max	61.000000	1.980000	173.000000	3.000000	4.000000			
	CH20	FAF	TUE					
count	2111.000000	2111.000000	2111.000000					
mean	2.008011	1.010298	0.657866					
std	0.612953	0.850592	0.608927					
min	1.000000	0.000000	0.000000					
25%	1.584812	0.124505	0.000000					
50%	2.000000	1.000000	0.625350					
75%	2.477420	1.666678	1.000000					
max	3.000000	3.000000	2.000000					

Figure 9: Summary Statistics for numerical features.

From figure 9:

- The average FCVC score of 2.42 indicates that people eat vegetables on a reasonably frequent basis in general. This component may operate as a barrier against obesity as it is frequently associated with diets that are healthier.
- The average of almost three meals a day suggests that most individuals follow a regular eating schedule.
- Participants are generally well-hydrated, consuming 2.01 litres of water on average per day. This can impact appetite and metabolism, two critical aspects of body weight management.

Part 3: Checking Dataset cleanliness.

	Gender	Age	Height	Weight	<pre>family_history_with_overweight</pre>	FAVC	FCVC	\
97	Female	21.0	1.52	42.0	no	no	3.0	
98	Female	21.0	1.52	42.0	no	no	3.0	
105	Female	25.0	1.57	55.0	no	yes	2.0	
106	Female	25.0	1.57	55.0	no	yes	2.0	
145	Male	21.0	1.62	70.0	no	yes	2.0	
174	Male	21.0	1.62	70.0	no	yes	2.0	
179	Male	21.0	1.62	70.0	no	yes	2.0	
184	Male	21.0	1.62	70.0	no	yes	2.0	
208	Female	22.0	1.69	65.0	yes	yes	2.0	
209	Female	22.0	1.69	65.0	yes	yes	2.0	
282	Female	18.0	1.62	55.0	yes	yes	2.0	
295	Female	16.0	1.66	58.0	no	no	2.0	
309	Female	16.0	1.66	58.0	no	no	2.0	
443	Male	18.0	1.72	53.0	yes	yes	2.0	
460	Female	18.0	1.62	55.0	yes	yes	2.0	
466	Male	22.0	1.74	75.0	yes	yes	3.0	
467	Male	22.0	1.74	75.0	yes	yes	3.0	
496	Male	18.0	1.72	53.0	yes	yes	2.0	
523	Female	21.0	1.52	42.0	no	yes	3.0	
527	Female	21.0	1.52	42.0	no	yes	3.0	
659	Female	21.0	1.52	42.0	no	yes	3.0	
663	Female	21.0	1.52	42.0	no	yes	3.0	
763	Male	21.0	1.62	70.0	no	yes	2.0	
764	Male	21.0	1.62	70.0	no	yes	2.0	
824	Male	21.0	1.62	70.0	no	yes	2.0	
830	Male	21.0	1.62	70.0	no	yes	2.0	
831	Male	21.0	1.62	70.0	no	yes	2.0	
832	Male	21.0	1.62	70.0	no	yes	2.0	
833	Male	21.0	1.62	70.0	no	yes	2.0	
834	Male	21.0	1.62	70.0	no	yes	2.0	
921	Male	21.0	1.62	70.0	no	yes	2.0	
922	Male	21.0	1.62	70.0	no	yes	2.0	
923	Male	21.0	1.62	70.0	no	yes	2.0	

Figure 10: duplicated rows.

	MTRANS	NObeyesdad
97	Public_Transportation	Insufficient_Weight
98	Public_Transportation	Insufficient_Weight
105	Public_Transportation	Normal_Weight
106	Public_Transportation	Normal_Weight
145	Public_Transportation	Overweight_Level_I
174	Public_Transportation	Overweight_Level_I
179	Public_Transportation	Overweight_Level_I
184	Public_Transportation	Overweight_Level_I
208	Public_Transportation	Normal_Weight
209	Public_Transportation	Normal_Weight
282	Public_Transportation	Normal_Weight
295	Walking	Normal_Weight
309	Walking	Normal_Weight
443	Public_Transportation	Insufficient_Weight
460	Public_Transportation	Normal_Weight
466	Automobile	Normal_Weight
467	Automobile	Normal_Weight
496	Public_Transportation	Insufficient_Weight
523	Public_Transportation	Insufficient_Weight
527	Public_Transportation	Insufficient_Weight
659	Public_Transportation	Insufficient_Weight
663	Public_Transportation	Insufficient_Weight
763	Public_Transportation	Overweight_Level_I
764	Public_Transportation	Overweight_Level_I
824	Public_Transportation	Overweight_Level_I
830	Public_Transportation	Overweight_Level_I
831	Public_Transportation	Overweight_Level_I
832	Public_Transportation	Overweight_Level_I
833	Public_Transportation	Overweight_Level_I
834	Public_Transportation	Overweight_Level_I
921	Public_Transportation	Overweight_Level_I
922	Public_Transportation	Overweight_Level_I
923	Public_Transportation	Overweight_Level_I

Figure 11: duplicated rows.

	NCP	CAEC	SMOKE	CH20	SCC	FAF	TUE	CALC	\
97	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
98	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
105	1.0	Sometimes	no	2.0	no	2.0	0.0	Sometimes	
106	1.0	Sometimes	no	2.0	no	2.0	0.0	Sometimes	
145	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
174	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
179	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
184	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
208	3.0	Sometimes	no	2.0	no	1.0	1.0	Sometimes	
209	3.0	Sometimes	no	2.0	no	1.0	1.0	Sometimes	
282	3.0	Frequently	no	1.0	no	1.0	1.0	no	
295	1.0	Sometimes	no	1.0	no	0.0	1.0	no	
309	1.0	Sometimes	no	1.0	no	0.0	1.0	no	
443	3.0	Sometimes	no	2.0	no	0.0	2.0	Sometimes	
460	3.0	Frequently	no	1.0	no	1.0	1.0	no	
466	3.0	Frequently	no	1.0	no	1.0	0.0	no	
467	3.0	Frequently	no	1.0	no	1.0	0.0	no	
496	3.0	Sometimes	no	2.0	no	0.0	2.0	Sometimes	
523	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
527	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
659	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
663	1.0	Frequently	no	1.0	no	0.0	0.0	Sometimes	
763	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
764	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
824	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
830	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
831	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
832	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
833	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
834	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
921	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
922	1.0	no	no	3.0	no	1.0	0.0	Sometimes	
923	1.0	no	no	3.0	no	1.0	0.0	Sometimes	

Figure 12: duplicated rows.

As can see from figure 10,11, and 12, there are plenty of duplicated rows in this dataset, which can skew analysis result, especially for visualization distribution. In another hand, for this circumstance, the number of repeated rows is not too much, compared to whole dataset. It might be caused by computing mistake or noticed one value many times. Because there is no indication that the duplicates are intentional or represent different observations, the best way to handle is removing them.

Student ID Number:

visualization method to detect outliers

Figure 13: Visualization method for detecting outliers.

From figure 13, easily observe that attributes contain potential outliers are Age, Height, Weight, and NCP. Additionally, Age and NCP seems to have a lot more noticeable potential outliers compared to Height and Weight.

Furthermore, it is very hard to approach significant potential outliers and to identify the number of those outliers if only using visualization methods. Thus, using IQR method is more prudent to calculate and reinforce affirmation.

Amount of outliers by using IQR method: Age 168 Height 1 Weight 1 **FCVC** 0 NCP 579 CH20 0 FAF 0 TUE 0 dtype: int64

Figure 14: Statistical method for detecting outliers.

Figure 14 is the result after using the IQR method to calculate. Similar results arise after compare two method. There are four features that contain outliers, whereas the amount of Age and NCP are significant high.

For feature 'Age': from information from figure 9, the highest age occurs is 61 and the lowest is 14, which mean even those value considered as outliers from the result of outliers detecting method, those value still make sense and reflect the real input from people who did the survey.

For features 'NCP': as mentioned above, the values of this attributes are converted to numerical value, from 1 to 4. Therefore, the values also represent real input from the survey.

Therefore, keep all the outliers because it represents true value.

emale	25.19621	1.686306	104.5727	yes	yes	3	3	Sometime	no	1.152736	no	0.319156	1
emale	18.50334	1.683124	126.6738	yes	yes	3	3	Sometime	no	1.115967	no	1.541072	1
emale	26	1.622397	110.7926	yes	yes	3	3	Sometime	no	2.704507	no	0	0.29499
emale	21.85383	1.755643	137.7969	yes	yes	3	3	Sometime	no	2.184707	no	1.978631	0.838957
emale	21.90012	1.843419	165.0573	yes	yes	3	3	Sometime	no	2.406541	no	0.10032	0.479221
emale	18.30662	1.7456	133.0344	yes	yes	3	3	Sometime	no	2.984323	no	1.586525	0.62535
emale	26	1.630927	111.4855	yes	yes	3	3	Sometime	no	2.444125	no	0	0.26579
emale	26	1.629191	104.8268	yes	yes	3	3	Sometime	no	2.654702	no	0	0.555468
emale	21.84971	1.770612	133.9633	yes	yes	3	3	Sometime	no	2.825629	no	1.399183	0.928972
ale	19.79905	1.743702	54.92753	yes	yes	2	3.28926	Sometime	no	2.847264	no	1.680844	2
ale	17.18875	1.771915	55.69504	yes	yes	2	4	Sometime	no	2.884033	no	2	1.340107
ale	22.28502	1.75376	55.87926	yes	yes	2.450218	3.995147	Sometime	no	2.147746	no	2	0.58998
emale	22	1.675446	51.1542	yes	yes	3	3	Frequently	no	2.815293	no	1.978631	1
emale	21.02497	1.666203	49.86979	yes	yes	3	3	Frequently	no	2.593459	no	2	1
emale	22.03833	1.711467	51.96552	yes	yes	2.880161	3	Frequently	no	1.031354	no	2.206738	1.37465
emale	21.24314	1.598019	44.84566	no	no	3	1.72626	Frequently	no	2.444125	no	1.31817	0
emale	22.14243	1.59611	42.84803	no	no	3	2.581015	Frequently	no	2.654702	no	0.902095	0
emale	21.96243	1.57206	43.91984	no	no	3	1.600812	Frequently	no	2.651258	no	0.600817	0
emale	21.49106	1.586952	43.08751	no	no	2.00876	1.73762	Frequently	no	1.792022	no	0.119643	0
emale	22.71794	1.59559	44.58116	no	no	2.596579	1.10548	Frequently	no	1.490613	no	0.345684	0
emale	23.50125	1.6	45	no	no	2.591439	3	Frequently	no	2.074048	no	1.679935	0
emale	18.53508	1.688025	45	no	yes	3	3	Sometime	no	3	yes	2.539762	1.283673
emale	19	1.556211	42.33977	no	yes	3	2.0846	Sometime	no	2.13755	yes	0.196152	0.062488
emale	19	1.564199	42.09606	no	yes	3	1.894384	Sometime	no	2.456581	yes	1.596576	0.9974
emale	20.25453	1.56948	41.32456	no	ves	2.392665	1	Frequently	no	1	no	0	0.738269

Figure 15: Dataset shown in Excel.

From figure 7 above, it is shown that this dataset has no missing value, indicating that authors of this dataset might handled those missing values using imputing method. However, after comparing with values shown in Excel table, those features such as FCVC, NCP, FAF. CH2O, TUE have some continuous values, which is wrong categorised. Because those values generated by converted from categorical survey answer to discrete numerical values, so the values should be discrete values. Assume that the imputing method are done inaccurately, the handle method that suggested to use is round those continuous values to nearest integer values.

Part 4: Original Data Visualization

As mentioned above, noticed that some attributes such as FCVC, NCP, CH2O, FAF, TUE are categorized wrong type. However, those attributes are related to purpose of the research:

PAPER CODE S1 2019

- FCVC: This histogram shown that values are around 2 and 3, suggesting that many participants often consume vegetables regularly.
- NCP: significant peak at 3, indicating that most participants stick with 3 meals a day.
- CH2O: From the distribution, the peak is 2, based on possible answer from the survey, most participants consume 1 to 2 L per day.
- FAF: The physical activity frequency is skewed to lower values, with many participants reporting low to no physical activity.
- TUE: The histogram is similar to FAF, skewed to lower values.

Figure 17: Visualization for categorical data.

From figure 17:

- The dataset appears to have a balanced distribution of genders, which could be good for analysis process because it might reduce bias.
- FAVC: Most participants frequently consume high-caloric foods (88.4%).
- CAEC: Most participants sometimes eat between meals (83.6%), with a smaller number frequently (11.5%). Rare cases always (2.5%) or never eat between meals (2.4%).
- SMOKE: Smoking is not prevalent among the participants (90.9%).
- SCC: Most participants do not monitor their calorie intake (90.5%). Lack of monitoring potentially leads to weight gain.
- CALC: Many participants never consume alcohol (66.4%)
- MTRANS: The predominant mode of transportation is public transportation (74.8%), while walking (2.7%), which can be a significant factor in physical activity levels.

Figure 18: correlation heatmap for relationship between continuous features.

From figure 18:

- Weight and Height are moderate positive correlation (0.46), suggesting that taller individuals tend to weight more.
- Weight and age also show weak positive correlation (0.20), indicating that weight tends to increase with age.
- Height and FAF (physical activity frequency) show weak positive correlation (0.29), indicating that individuals who train more could be taller.
- Age and TUE (time using technology) have moderate negative correlation (0.3), indicating that the older spend less time to use technology.

Part 5: Conclusion

The data and visuals highlight how many different factors contribute to obesity. They stress the significance of lifestyle decisions (food, exercise, mode of transportation) as well as demographic considerations (age, gender) in comprehending and combating obesity. Crucially, the statistics point to specific intervention strategies that might be successful in controlling obesity, like encouraging physical activity and better eating habits. The results further reinforce the necessity for tailored strategies in healthcare and policy development to address obesity, considering the various variables that exist among various populations. These discoveries can direct further investigation, aid in the formulation of public health policies, and educate people about obesity-related health-related issues.

Task 3: CLASSIFICATION MODELS

PART 1: PREPROCESSING

As showing at Part 3 Task 2, this dataset contains duplicates, outliers, and wrong categorized values. Those noises need to be handled for Classification Models, this is crucial step to ensure that the model is effective, efficient, and reliable.

For duplicates, as discussed above, remove those duplicates is necessary. number of duplicated value after remove: 0

Figure 19: Duplicates after handle.

None

For outliers, as discusses above, keep all outliers because those outliers represent valid, real-world information.

For wrong categorized values that might be caused from inaccurately handling technique. Therefore, to fix that, round them to the nearest integer value and convert into integer types is the most feasible option for further analysis and creating model

• 1	types is the most reasible option for further analysis and creating model								
#	Column	Non-Null Count	Dtype						
0	Gender	2087 non-null	object						
1	Age	2087 non-null	float64						
2	Height	2087 non-null	float64						
3	Weight	2087 non-null	float64						
4	family_history_with_overweight	2087 non-null	object						
5	FAVC	2087 non-null	object						
6	FCVC	2087 non-null	int32						
7	NCP	2087 non-null	int32						
8	CAEC	2087 non-null	object						
9	SMOKE	2087 non-null	object						
10	CH2O	2087 non-null	int32						
11	SCC	2087 non-null	object						
12	FAF	2087 non-null	int32						
13	TUE	2087 non-null	int32						
14	CALC	2087 non-null	object						
15	MTRANS	2087 non-null	object						
16	NObeyesdad	2087 non-null	object						
dtyp	es: float64(3), int32(5), object	(9)							
memo	ry usage: 252.7+ KB								

Figure 20: Dataset after handling wrong imputing value.

Figure 19 shows that those features such as FCVC, NCP, CH2O, FAF, TUE are converted to integer (int32) types, which is believed that more reasonable based on questions survey.

After handling all noises, below are visualizations for clean dataset.

----- Distribution of Continous Numerical Data:

Figure 21: Distribution for continuous data.

Figure 22: Distribution for discrete data.

Student ID Number:

Figure 23: Distribution for categorical data.

PART 2: Create Decision Tree Algorithm.

The purpose of this research is focused on how eating habits and lifestyles habits affect obesity. Therefore, all demographic factors such as Age, Height, weight, and family_history_with_obesity is removed to simplify the features selection process.

Number of tree nodes: 895 Model accuracy score with criterion gini index: 0.60

Figure 24: Original Tree

As can be seen from the figure 24, the original Tree has 895 number of tree nodes and accuracy score is 0.6, which is very complex and very hard to interpret. Therefore, using two parameters which is Max depth and Max leaf nodes to reduce the complexity of the model but keep the accuracy scores at acceptable level.

Below is the plot that visualizes the max depth and max leaf node over accuracy score.

Figure 25: Max depth and leaf node on Cross-validated Accuracy.

Effect of max depth:

• As the max_depth of the decision tree increases, the model accuracy initially improves and then stabilizes or slightly decreases. This suggests that beyond a certain depth, the model may start overfitting the training data.

• The optimal max_depth of this model appears to be around 10, where the model achieves the highest cross-validated accuracy. Because beyond 10, the accuracy is stable.

Effect of max leaf_node:

• The accuracy increases significantly with more leaf nodes up until around 10 leaf nodes, after which the increase in accuracy slows down, and the curve starts to plateau around 14 leaf nodes.

PART 3: FINAL OPTIMISED CLASSIFICATION TREE AND DESCRIBE ITS STRUCTURE

Based on the analysis above, optimal max depth is 10 and optimal max leaf node is 14. Below is final Decision Tree.

Decision tree trained on all the dataset features using max depth=10 and max_leaf_nodes = 14

Number of tree nodes: 27 Model accuracy score with criterion gini index: 0.45

Figure 26: Final Decision Tree and its scores.

complexity and interpretability are effectively addressed by the decision tree model's simplification using max depth and leaf nodes. To better comprehend model decisions and lessen overfitting, the tree's complexity can be reduced (from 895 nodes to 27 nodes) while keeping acceptable accuracy levels (0.45).

Part 4: Find the features important.

	Feature	Importance
3	CAEC	0.258
1	FCVC	0.192
9	CALC	0.171
2	NCP	0.130
10	MTRANS	0.088
8	TUE	0.062
7	FAF	0.050
5	CH20	0.048
0	FAVC	0.000
4	SMOKE	0.000
6	SCC	0.000

Figure 27: features importance summary.

Figure 28: features importance.

Based on figure 27 and figure 28, he highest bar indicates that CAEC (over 25) is the most significant trait, with FCVC come at the second (around 0.19) and third is CALC, which approximately 0.17. In contrast, FAVC, SMOKE and SCC is completely 0.

PART 5: GENERATE AND CAREFULLY EXAMINE THE CONFUSION MATRIX AND EXPLAIN FINDING

According to the figure 28, Obesity_Type_III is the category in which the model performs the best, with an F1-score of 0.90, a recall of 1.00, and a precision of 0.82, indicating good accuracy and completeness. In other word, Obesity_Type_III has very few positives are misclassified as negative and very few negatives misclassified as positives. The Overweight_Level_I class is where the model is least accurate, suggesting that there will be more false positives in this class. The macro and weighted averages for

precision, recall, and F1-score all point to a model's overall accuracy of 0.56, which indicates a modest level of performance overall.

Figure 29: Confusion Matrix

From figure 29, can observe that:

Insufficient_Weight:

- True Positives: 31 (correctly classified as "Insufficient_Weight")
- Misclassified: 56 (sum of all non-diagonal values in the row)

Normal_Weight:

- True Positives: 29 (correctly classified as "Normal_Weight")
- Misclassified: 60 (sum of all non-diagonal values in the row)

Obesity_Type_I:

- True Positives: 34 (correctly classified as "Obesity_Type_I")
- Misclassified: 68 (sum of all non-diagonal values in the row)

Obesity_Type_II:

- True Positives: 69 (correctly classified as "Obesity_Type_II")
- Misclassified: 13 (sum of all non-diagonal values in the row)

Obesity_Type_III:

- True Positives: 106 (correctly classified as "Obesity_Type_III")
- Misclassified: 2 (sum of all non-diagonal values in the row)

Overweight Level I:

- True Positives: 3 (correctly classified as "Overweight_Level_I")

- Misclassified: 80 (sum of all non-diagonal values in the row) Overweight_Level_II:
 - True Positives: 15 (correctly classified as "Overweight_Level_II")
 - Misclassified: 59 (sum of all non-diagonal values in the row)

Below is classification report.

	precision	recall	f1-score	support
Insufficient_Weight	0.60	0.35	0.44	89
Normal_Weight	0.53	0.33	0.40	89
Obesity_Type_I	0.43	0.33	0.38	102
Obesity_Type_II	0.31	0.84	0.45	82
Obesity_Type_III	0.75	0.98	0.85	108
Overweight_Level_I	0.27	0.04	0.06	83
Overweight_Level_II	0.23	0.20	0.22	74
accuracy			0.46	627
macro avg	0.45	0.44	0.40	627
weighted avg	0.46	0.46	0.42	627

Figure 30: Classification report.

According to the figure 28, Obesity_Type_III is the category in which the model performs the best, with an F1-score of 0.85, a recall of 0.98, and a precision of 0.75, indicating good accuracy and completeness. In other word, Obesity_Type_III has very few positives are misclassified as negative and very few negatives misclassified as positives. The Overweight_Level_I class is where the model is least accurate, suggesting that there will be more false positives in this class. The macro and weighted averages for precision, recall, and F1-score all point to a model's overall accuracy of 0.46, which indicates a modest level of performance overall.

Task 4: RESULT AND DISCUSSION

- a) For noise handling and Preprocessing, correcting misclassified values by rounding off and converting them to integer to be appropriately survey questions. That is a hard part and might occurs mistake in handling process.
- b) Performance Metrics and Model Evaluation:
 - Confusion Matrix Analysis (Figure 29): The model performs exceptionally well for 'Obesity_Type_III' with high F1-score, recall, and precision. This indicates that the model is particularly effective in identifying severe cases of obesity, which can be critical in clinical settings.
 - Underperformance in Overweight Categories: The lower performance metrics (recall, precision, F1-score) for 'Overweight_Level_I' suggest that the model struggles to differentiate between borderline cases. This could be due to overlapping characteristics between categories or insufficient distinguishing features.
 - Accuracy Scores: The accuracy score from the original model (0.6) compared to the final optimized model shows an improvement, though the overall performance still points to a modest level of accuracy. This could

be further investigated by looking at class distribution or by employing different algorithms or more sophisticated ensemble techniques. In conclusion, to answer the question that generate at the beginning of the research 'What dietary habits and daily living habits are significantly affected obesity levels?' According to the result from Task 3, eating behaviours such as eating snacks in between meals (CAEC), eating vegetables frequently (FCVC), and consuming high-calorie foods frequently (FAVC) had a significant effect on obesity rates. In a similar vein, daily routines like screen time (TUE) and physical activity (FAF) are important. These results imply that treatments aiming at decreasing obesity should prioritise encouraging physical exercise, decreasing the frequency of snacks, increasing the intake of vegetables, and promoting good eating habits while limiting sedentary behaviours linked to technology use.

References

```
Just a moment... (n.d.). Just a
```

moment... https://www.sciencedirect.com/science/article/pii/S235234091930698
5?via%3Dihub

Obesity and overweight. (2024, March 1). World Health Organization

(WHO). <a href="https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=Kev%20facts.vears%20and%20older)%20were%20overweight#:~:text=Kev%20facts.vears%20and%20older)%20overweight#:~:text=Kev%20facts.vears%20and%20older)%20overweight#:~:text=Kev%20facts.vears%20and%20older)%20overweight#:~:text=Kev%20facts.vears%20and%20a

<u>ht</u>

Student ID Number:	
---------------------------	--

UCI machine learning repository. (n.d.). UCI Machine Learning

 $Repository.\ \underline{https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+}$

 $\underline{based+on+eating+habits+and+physical+condition}$