

Probability and Stochastic Processes

Convergence of Sequences of Random Variables, Limit Theorems

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

25 November 2024

Convergence of Sequences of Random Variables

Objective

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let *X* be another random variable defined w.r.t. \mathscr{F} . We allow *X* to take $\pm \infty$.

Objective

To define the following forms of convergence.

- 1. Pointwise convergence; notation: $X_n \stackrel{\text{pointwise}}{\longrightarrow} X$.
- 2. Almost-sure convergence; notation: $X_n \stackrel{\text{a.s.}}{\longrightarrow} X$.
- 3. Mean-squared convergence; notation: $X_n \stackrel{\text{m.s.}}{\longrightarrow} X$.
- 4. Convergence in probability; notation: $X_n \stackrel{p}{\longrightarrow} X$.
- 5. Convergence in distribution; notation: $X_n \stackrel{d}{\longrightarrow} X$.

Pointwise Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let X be another random variable defined w.r.t. \mathscr{F} . We allow X to take $\pm \infty$.

Definition (Pointwise Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X pointwise if

$$\forall \omega \in \Omega, \qquad \lim_{n \to \infty} X_n(\omega) = X(\omega).$$

Notation:

$$X_n \stackrel{\text{pointwise}}{\longrightarrow} X$$
.

$$\Omega = [0, 1]$$
, $\mathscr{F} = \mathscr{B}([0, 1])$, $\mathbb{P} = \lambda$.

For each $n \in \mathbb{N}$, let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise.} \end{cases}$$

Identify the limit random variable X to which the above sequence converges pointwise.

Convergence in Distribution

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let *X* be another random variable defined w.r.t. \mathscr{F} . We allow *X* to take $\pm \infty$.

Definition (Convergence in Distribution)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in distribution if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \qquad \forall x \in C_{F_X},$$

where C_{F_X} denotes the points of continuity of F_X .

Notation:

$$X_n \stackrel{\mathrm{d}}{\longrightarrow} X$$
.

Let $X_n = U$ for all $n \in \mathbb{N}$, with $U \sim \mathrm{Unif}([0,1])$.

Let X = 1 - U.

Show that does not converge to X pointwise, but $X_n \stackrel{d}{\longrightarrow} X$.

Convergence in Probability

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let X be another random variable defined w.r.t. \mathscr{F} . We allow X to take $\pm \infty$.

Definition (Convergence in Probability)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in probability if

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \varepsilon\}) = 0.$$

Notation:

$$X_n \stackrel{\mathrm{p}}{\longrightarrow} X$$
.

Mean-Squared Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let X be another random variable defined w.r.t. \mathscr{F} . We allow X to take $\pm \infty$.

Definition (Mean-Squared Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in mean-squared sense if

$$\lim_{n\to\infty}\mathbb{E}[(X_n-X)^2]=0.$$

Notation:

$$X_n \xrightarrow{\text{m.s.}} X$$
.

Almost-Sure Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let *X* be another random variable defined w.r.t. \mathscr{F} . We allow *X* to take $\pm \infty$.

Definition (Almost-Sure Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X almost surely if

$$\mathbb{P}\left(\left\{\omega\in\Omega: \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

Notation:

$$X_n \xrightarrow{\text{a.s.}} X$$
.

Question:

How do we know that
$$\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\in\mathscr{F}$$
?

Recap of Limits

Recall the following definition of limits of sequences of real numbers: Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit of a Sequence of Real Numbers

We say that $x \in \mathbb{R} \cup \{\pm \infty\}$ is the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad |x_n - x| < \varepsilon \quad \forall n \geq N_{\varepsilon}.$$

Recap of Limits

Recall the following definition of limits of sequences of real numbers: Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit of a Sequence of Real Numbers

We say that $x \in \mathbb{R} \cup \{\pm \infty\}$ is the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad |x_n - x| < \varepsilon \quad \forall n \geq N_{\varepsilon}.$$

Equivalently,

$$\forall q \in \mathbb{Q}, \ q > 0, \quad \exists N_q \in \mathbb{N} \quad \text{such that} \quad |x_n - x| < q \quad \forall n \geq N_q.$$

Limit of a Sequence of Random Variables

$$\forall q \in \mathbb{Q}, \ q>0, \quad \exists N_q(\omega) \in \mathbb{N} \quad \text{such that} \quad |X_n(\omega)-X(\omega)| < q \quad \forall n \geq N_q(\omega).$$

Limit of a Sequence of Random Variables

$$\forall q \in \mathbb{Q}, \ q>0, \quad \exists N_q(\omega) \in \mathbb{N} \quad \text{such that} \quad |X_n(\omega)-X(\omega)| < q \quad \forall n \geq N_q(\omega).$$

$$|X_n(\omega) - X(\omega)| < q \quad \forall n \ge N_q(\omega) \Longleftrightarrow \omega \in \bigcap_{n=N_q(\omega)}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\}$$

Limit of a Sequence of Random Variables

$$\forall q \in \mathbb{Q}, \ q>0, \quad \exists N_q(\omega) \in \mathbb{N} \quad \text{such that} \quad |X_n(\omega)-X(\omega)| < q \quad \forall n \geq N_q(\omega).$$

$$|X_n(\omega) - X(\omega)| < q \quad \forall n \ge N_q(\omega) \iff \omega \in \bigcap_{n = N_q(\omega)}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\}$$

$$\exists N_q \in \mathbb{N} \iff \omega \in \bigcup_{k = 1}^{\infty} \bigcap_{n = k}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\}$$

Limit of a Sequence of Random Variables

$$orall q \in \mathbb{Q}, \ q>0, \quad \exists N_q(\omega) \in \mathbb{N} \quad ext{such that} \quad |X_n(\omega)-X(\omega)| < q \quad orall n \geq N_q(\omega).$$

$$\begin{aligned} |X_n(\omega) - X(\omega)| &< q \quad \forall n \geq N_q(\omega) \Longleftrightarrow \omega \in \bigcap_{n = N_q(\omega)}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\} \\ &\exists N_q \in \mathbb{N} \quad \Longleftrightarrow \quad \omega \in \bigcup_{k = 1}^{\infty} \bigcap_{n = k}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\} \\ &\forall q \in \mathbb{Q}, q > 0 \quad \Longleftrightarrow \quad \omega \in \bigcap_{q \in \mathbb{Q}: k = 1}^{\infty} \bigcap_{n = k}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\} \end{aligned}$$

In summary, we have

$$\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\} = \bigcap_{\substack{q \in \mathbb{Q}: \\ q > 0}} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \{\omega' \in \Omega : |X_n(\omega') - X(\omega')| < q\}.$$

A Figure to Remember

Figure: Implications of various forms of convergence.

• $\Omega = [0, 1], \mathscr{F} = \mathscr{B}([0, 1]), \mathbb{P} = \lambda.$ For each $n \in \mathbb{N}$, let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise.} \end{cases}$$

Identify the limits RV *X* and forms of convergence.

• $\Omega = [0,1], \mathscr{F} = \mathscr{B}([0,1]), \mathbb{P} = \lambda.$ $X_1 = \mathbf{1}_{[0,1]}$ $X_2 = \mathbf{1}_{[0,\frac{1}{2}]}, \quad X_3 = \mathbf{1}_{\left[\frac{1}{2},1\right]}$ $X_4 = \mathbf{1}_{\left[0,\frac{1}{4}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4},\frac{1}{2}\right]}, \quad X_6 = \mathbf{1}_{\left[\frac{1}{2},\frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4},1\right]}$ and so on.
Identify the limit and forms of convergence.

• $X_n = \mathcal{N}\left(0, \frac{1}{n}\right)$ for each $n \in \mathbb{N}$. Identify the limit and the forms of convergence.

• $\mathbb{P}(\{X_n=1\}) = \frac{1}{n^2} = 1 - \mathbb{P}(\{X_n=0\})$ for all $n \in \mathbb{N}$. Identify the limit and the forms of convergence.

Limit Theorems

Limit Theorems

Objective

To put down the formal statements of

- 1. Laws of large numbers:
 - 1.1 Weak law of large numbers (an instance of convergence in probability).
 - 1.2 Strong law of large numbers (an instance of almost-sure convergence).
- 2. Central limit theorem (an instance of convergence in distribution).

Weak Law of Large Numbers

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Theorem (Weak Law of Large Numbers)

Let X_1, X_2, \ldots be a sequence of i.i.d. RVs with common, finite expectation $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \stackrel{p}{\longrightarrow} \mu$$
,

i.e.,

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}\left(\left\{\omega \in \Omega : \left| \frac{\mathcal{S}_n}{n} - \mu \right| > \varepsilon \right\}\right) = 0.$$

Strong Law of Large Numbers

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Theorem (Strong Law of Large Numbers)

Let X_1, X_2, \ldots be a sequence of i.i.d. RVs with common, finite expectation $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \stackrel{p}{\longrightarrow} \mu$$
,

i.e.,

$$\mathbb{P}\left(\left\{\omega\in\Omega: \lim_{n\to\infty}\frac{S_n(\omega)}{n}=\mu\right\}\right)=1.$$

Central Limit Theorem

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Theorem (Central Limit Theorem)

Let X_1, X_2, \ldots be a sequence of i.i.d. RVs with common, finite expectation $\mathbb{E}[X_1] = \mu$ and common, finite variance σ^2 . Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1),$$

i.e.,

$$\forall x \in \mathbb{R}, \qquad \lim_{n \to \infty} \mathbb{P}\left(\left\{rac{S_n - n\mu}{\sqrt{n\sigma^2}} \le x
ight\}\right) = \int_{-\infty}^x rac{1}{\sqrt{2\pi}} e^{-t^2/2} \, \mathrm{d}t.$$

Suppose X is a continuous random variable that has PDF f_X .

Let $g: \mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

Suppose X is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Suppose X is a continuous random variable that has PDF f_X .

Let $g: \mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Example: $X \sim \mathcal{N}(0, 1)$,

$$g(x) = 10 e^{-5(x-100)^4}, \quad x \in \mathbb{R}.$$

Suppose X is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Example: $X \sim \mathcal{N}(0, 1)$,

$$g(x) = 10 e^{-5(x-100)^4}, \quad x \in \mathbb{R}.$$

- g attains maximum at x = 100
- *X* takes values around 100 with very small probability.

Suppose X is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Suppose X is a continuous random variable that has PDF f_X .

Let $g: \mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Solution:

- Sample $Y_1, Y_2, \ldots \stackrel{\text{i.i.d.}}{\sim} f_Y$,
- Choose f_Y to have same support as f_X and so that it is simple to sample from on a computer
- Let

$$J_n = rac{1}{n} \sum_{r=1}^n rac{g(Y_r) f_X(Y_r)}{f_Y(Y_r)}, \qquad n \in \mathbb{N}.$$

Suppose *X* is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) \, \mathrm{d}x$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Suppose X is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) \, \mathrm{d}x$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Solution:

According to SLLN,

$$J_n \xrightarrow{\text{a.s.}}$$

Suppose X is a continuous random variable that has PDF f_X .

Let $g:\mathbb{R} \to \mathbb{R}$ be a given function.

Suppose that our interest is to evaluate the value of $\mathbb{E}[g(X)] = \int g(x) f_X(x) \, \mathrm{d}x$.

What If

What if f_X is too difficult to sample from, or g(X) has a very large variance?

Solution:

• According to SLLN,

$$J_n \stackrel{\mathrm{a.s.}}{\longrightarrow} \mathbb{E}\left[rac{g(Y_1)f_X(Y_1)}{f_Y(Y_1)}
ight] = \int g(x)f_X(x) \, \mathrm{d}x.$$

Going back to the example:

Example: $X \sim \mathcal{N}(0, 1)$,

$$g(x) = 10 e^{-5(x-100)^4}, \qquad x \in \mathbb{R}.$$

We want to compute $\mathbb{E}[g(X)]$.

Going back to the example:

Example: $X \sim \mathcal{N}(0, 1)$,

$$g(x) = 10 e^{-5(x-100)^4}, \qquad x \in \mathbb{R}.$$

We want to compute $\mathbb{E}[g(X)]$.

Solution:

- Choose $f_{Y} = \mathcal{N}(100, 1)$
- Sample $Y_1, \ldots, Y_n \sim f_Y$
- Set

$$J_n = \frac{1}{n} \sum_{i=1}^n \frac{g(Y_n) f_X(Y_n)}{f_Y(Y_n)}.$$

• SLLN guarantees that $J_n \stackrel{\mathrm{a.s.}}{\longrightarrow} \mathbb{E}[g(X)]$