logica

- logica sillogistica
 - sintassi
 - dimostrazioni
 - * dirette
 - · leggi di conversione:
 - · sillogismi perfetti:
 - * indirette
 - \cdot contradditori:
- logica proposizionale
- ulletrisoluzione proposizionale

logica sillogistica

sintassi

A(x,y): Tutti gli x sono y.
 E(x,y): Nessun x è y.
 I(x,y): Qualche x è y.
 O(x,y): Qualche x non è y.

Figure 1: termini logici

termini non logici:

- Abbiamo un insieme finito (vocabolario) V di termini non logici (e.g. "uomo", "mortale", eccetera) e tale che A, E, I, O non sono in V.

Un modello $M = (\Delta, \iota)$ per un vocabolario V è dato da:

- Un insieme non vuoto Δ di individui ("dominio del discorso");
- Una funzione ι che associa ogni termine non logico $x \in V$ a un insieme non vuoto $\iota(x) \subseteq \Delta, \ \iota(x) \neq \emptyset.$
 - Sia $V = \{uomo, mortale, mammifero, dio\}$.
 - Un possibile modello $\mathfrak{M}=(\Delta,\iota)$ per V può essere costruito come:
 - $\Delta = \{ Socrate, Fuffi, Polly, Zeus \};$
 - $\iota(uomo) = \{Socrate\};$
 - ι(mortale) = {Socrate, Fuffi, Polly};
 - ι(mammifero) = {Socrate, Fuffi, Zeus};
 - $\iota(dio) = \{Zeus\}.$

Dato un modello $\mathfrak{M}=(\Delta,\iota)$ e una formula ϕ della nostra logica, diciamo che \mathfrak{M} soddisfa ϕ (e scriviamo $\mathfrak{M}\models\phi$) se ϕ è vera in \mathfrak{M} . Più precisamente, per $x,y\in V,x\neq y$:

- $\mathfrak{M} \models \mathbf{A}(x, y)$ se e solo se $\iota(x) \subseteq \iota(y)$ (tutti gli x sono y);
- $\mathfrak{M} \models \mathbf{E}(x, y)$ se e solo se $\iota(x) \cap \iota(y) = \emptyset$ (nessun $x \ni y$);
- $\mathfrak{M} \models \mathbf{I}(x,y)$ se e solo se $\iota(x) \cap \iota(y) \neq \emptyset$ (qualche $x \grave{e} y$);
- $\mathfrak{M} \models \mathbf{O}(x, y)$ se e solo se $\iota(x) \not\subseteq \iota(y)$ (qualche x non è y).

Se Σ è un insieme di formule, scriviamo $\mathfrak{M}\models \Sigma$ se $\mathfrak{M}\models \phi$ per tutti gli $\phi\in \Sigma$.

- $\mathfrak{M} \models \mathbf{A}(\text{uomo}, \text{mammifero}), \text{ perchè}$ $\iota(\text{uomo}) \subseteq \iota(\text{mammifero});$
- M ⊭ A(mortale, mammifero), perchè
 ι(mortale) ⊈ ι(mammifero);
- $\mathfrak{M} \models \mathbf{E}(\mathsf{dio}, \mathsf{mortale}), \mathsf{perch} \ \iota(\mathsf{mortale}) \cap \iota(\mathsf{dio}) = \emptyset;$
- M ⊭ E(mortale, mammifero), perchè Fuffi ∈ ι(mortale) ∩ ι(mammifero);
- M ⊨ I(mortale, mammifero), perchè Socrate ∈ ι(mortale) ∩ ι(mammifero);
- $\mathfrak{M} \not\models \mathbf{I}(\mathsf{mortale}, \mathsf{dio}), \mathsf{perchè} \ \iota(\mathsf{mortale}) \cap \iota(\mathsf{dio}) = \emptyset;$
- $\mathfrak{M} \models \mathbf{O}$ (mammifero, mortale), perchè Zeus $\in \iota$ (mammifero), Zeus $\notin \iota$ (mortale);
- $\mathfrak{M} \not\models \mathbf{O}(\mathsf{dio}, \mathsf{mammifero})$, perchè $\iota(\mathsf{dio}) \subseteq \iota(\mathsf{mammifero})$.

inferenze quadrato delle opposizioni:

- If A is true, then E is false, I is true, O is false;
- If E is true, then A is false, I is false, O is true;
- If I is true, then E is false, A and O are indeterminate;
- If O is true, then A is false, E and I are indeterminate;
- If A is false, then O is true, E and I are indeterminate;
- If E is false, then I is true, A and O are indeterminate;
- If I is false, then A is false, E is true, O is true;
- If O is false, then A is true, E is false, I is true

${f dimostrazioni}$

$\mathbf{dirette}$

leggi di conversione:

- C1: $E(x,y) \Rightarrow E(y,x)$
- C2: $A(x,y) \Rightarrow I(x,y)$
- C3: $I(x,y) \Rightarrow I(y,x)$

indirette

contradditori:

- $\overline{A(x,y)} = O(x,y)$

- $\frac{E(x,y)}{E(x,y)} = I(x,y)$ $\frac{I(x,y)}{O(x,y)} = E(x,y)$ $\frac{I(x,y)}{O(x,y)} = A(x,y)$
- $\overline{\overline{\phi}} = \phi$

sillogismi perfetti:

- **PS1**: $A(y,z) \wedge A(x,y) \Rightarrow A(x,z)$
- **PS2**: $E(y,z) \wedge A(x,y) \Rightarrow E(x,z)$
- **PS3**: $A(y,z) \wedge I(x,y) \Rightarrow I(x,z)$
- **PS4**: $E(y,z) \wedge I(x,y) \Rightarrow O(x,z)$

logica proposizionale

Definizione

Una formula P è **soddisfacibile** se esiste una valutazione della variabili v tale che v(P)=1, cioè se esiste una riga della sua tavola di verità nella quale la formula ha valore 1. In questo caso si dice che la valutazione v soddisfa la formula P e si scrive anche $v \models P$.

Una formula è una **tautologia** se per ogni valutazione delle variabili v si ha v(P)=1, cioè se in ogni riga della tavola di verità di P la formula ha valore 1. In questo caso si scrive anche $\models P$.

Una formula è una **contraddizione** o insoddisfacibile se per ogni valutazione delle variabili v si ha v(P)=0, cioè se in ogni riga della tavola di verità di P la formula ha valore 0.

Forma normale disgiuntiva

Definizione

Un **letterale** è una variabile o la negazione di una variabile. Lo indicheremo in generale con $\ell.$

Una formula è in forma normale disgiuntiva (DNF) se è della forma

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{ij} \right)$$

dove per ogni $i=1,\ldots,n$ e $j=1,\ldots,m_i$ (con $n\geq 1$ e $m_i\geq 1$) gli ℓ_{ij} sono letterali.

Esempio

 $(X \wedge \neg Y) \vee (\neg Z \wedge X \wedge Y)$ è una formula in DNF (dove $n=2, \ m_1=2$ e $m_2=3)$.

CNF

Definizione

Analogamente diciamo che una formula è in forma normale congiuntiva se è una congiunzione di disgiunzioni di letterali.

Esempio

La formula $(X \vee \neg Y) \wedge (\neg Y \vee Z)$ è in CNF.

La formula $\neg Y \land (X \lor Z)$ è in CNF.

Le formule $\neg Y \land X \land Z$ e $\neg Y \lor Z \lor \neg Z$ sono in CNF (e anche in DNF).

Esempio

L'implicazione invece non è commutativa $A \to B \not\equiv B \to A$ e neanche associativa $A \to (B \to C) \not\equiv (A \to B) \to C$.

Contronominale: $A \to B \equiv \neg B \to \neg A$. Questa equivalenza si usa spesso nelle dimostrazioni: se voglio dimostrare che da A segue B posso provare a ipotizzare la negazione di B e concludere che da tale ipotesi segue la negazione di A. Se poi aggiungo che $A \land \neg A \equiv \bot$ ottengo le dimostrazioni per assurdo

Implicazione materiale: le formule $A \to B$ e $\neg A \lor B$ sono logicamente equivalenti:

A	В	$A \rightarrow B$	$\neg A \lor B$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

Esempio

Doppia negazione: $\neg \neg A \equiv A$

Leggi di De Morgan: Le formule $\neg(A \lor B)$ e $\neg A \land \neg B$ sono logicamente equivalenti.

Α	В	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Analogamente si ha che $\neg(A \land B) \equiv \neg A \lor \neg B$. Inoltre vale

$$A \wedge B \equiv \neg(\neg A \vee \neg B)$$

 $A \vee B \equiv \neg(\neg A \wedge \neg B)$

Esempio

Assorbimento:

$$X \lor (X \land Y) \equiv X$$

 $X \land (X \lor Y) \equiv X$

Legge distributiva: Vale la distributività di \land rispetto a \lor e anche il viceversa.

$$X \vee (Y \wedge Z) \equiv (X \vee Y) \wedge (X \vee Z)$$

$$X \wedge (Y \vee Z) \equiv (X \wedge Y) \vee (X \wedge Z)$$

Generalizzando si ha che vale:

$$\begin{array}{lll} (X_1 \vee X_2) \wedge (Y_1 \vee Y_2) & \equiv & (X_1 \wedge Y_1) \vee (X_1 \wedge Y_2) \vee (X_2 \wedge Y_1) \vee (X_2 \wedge Y_2) \\ (X_1 \wedge X_2) \vee (Y_1 \wedge Y_2) & \equiv & (X_1 \vee Y_1) \wedge (X_1 \vee Y_2) \wedge (X_2 \vee Y_1) \wedge (X_2 \vee Y_2) \end{array}$$

Definizione

Una formula P è una α -formula se ha la forma $A \wedge B$ oppure $\neg (A \vee B)$ oppure $\neg (A \rightarrow B)$. I ridotti di una α -formula sono definiti dalla seguente tabella:

	ridotti		
$A \wedge B$	Α	В	
$\neg (A \lor B)$	$\neg A$	$\neg B$	
$\neg (A \rightarrow B)$	Α	$\neg B$	

Proposizione

Ogni α -formula è equivalente alla congiunzione dei suoi ridotti.

Definizione

Una formula P è una β -**formula** se ha la forma $A \vee B$ oppure $\neg (A \wedge B)$ oppure $A \to B$. I ridotti di una α -formula sono definiti dalla seguente tabella:

	ridotti		
$A \lor B$	Α	В	
$\neg (A \land B)$	$\neg A$	$\neg B$	
$A \rightarrow B$	$\neg A$	В	

Proposizione

Ogni β -formula è equivalente alla disgiunzione dei suoi ridotti.

Proposizion

Ogni formula P è di uno dei seguenti tipi:

- P è un letterale;
- P è una doppia negazione, cioè $P = \neg \neg Q$;
- P è una α -formula;
- P è una β-formula.

Definizione

Una coppia di letterali $X, \neg X$ si dice **complementare**.

Chiaramente una coppia complementare di letterali non è soddisfacibile. In generale vale che:

Proposizione

Un insieme di letterali è soddisfacibile se e solo se non contiene coppie complementari.

Definizione

Un ramo di un tableau è **chiuso** se la foglia contiene una coppia complementare. Un tableau è **chiuso** se ogni ramo è chiuso.

Definizione

Un **tableau** per una formula P è un albero T i cui nodi sono etichettati con insiemi di sottoformule di P.

Denotiamo con E(n) l'etichetta del nodo n.

L'albero si costruisce per passi successivi.

Al passo 0 abbiamo un albero T_0 formato da un solo nodo con etichetta $\{P\}$.

Se al passo i-1 abbiamo costruito un albero T_{i-1} , al passo i costruiamo l'albero T_i guardando le foglie dell'albero T_{i-1} :

• Se nelle foglie ci sono solo letterali, allora la costruzione termina e T_{i-1} sarà l'albero finale.

- supponiamo che nell'etichetta E(n) della foglia n ci sia una formula G che non è un letterale. Allora si possono avere i seguenti casi:
 - Se G è una doppia negazione $G=\neg\neg G_1$, allora l'albero T_i si costruisce aggiungendo un nodo n_1 come successore di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\}.$$

Se G è una α formula con ridotti G_1 e G_2 , allora l'albero T_i si costruisce aggiungendo un nodo n_1 come successore di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1, G_2\}$$

Se G è una β formula con ridotti G_1 e G_2 , allora l'albero T_i si costruisce aggiungendo due nod n_1 e n_2 come successori di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\},\,$$

$$E(n_2) = (E(n) \setminus \{G\}) \cup \{G_2\}.$$

To convert a <u>propositional formula</u> to <u>conjunctive normal form</u>, perform the following two steps:

- Push negations into the formula, repeatedly applying <u>De Morgan's Law</u>, until all negations only apply to atoms. You obtain a formula in <u>negation normal form</u>.
 - ¬(p ∨ q) to (¬p) ∧ (¬q)
 - $\neg(p \land q)$ to $(\neg p) \lor (\neg q)$
- Repeatedly apply the <u>distributive law</u> where a disjunction occurs over a conjunction. Once this is not possible anymore, the formula is in CNF.
 - $\bullet \ [\mathsf{p} \ \lor \ (\mathsf{q} \ \land \ \mathsf{r}) \] \ \mathsf{to} \ [(\mathsf{p} \ \lor \ \mathsf{q}) \ \land \ (\mathsf{p} \ \lor \ \mathsf{r})]$

To obtain a formula in disjunctive normal form, simply apply the distribution of \land over \lor in step 2.

risoluzione proposizionale

Definizione

Una clausola è una disgiunzione di letterali.

Definizione

La clausola vuota (denotata con \square) è l'insieme vuoto di letterali.

Semantica delle clausole

Adattando la nozione di valutazione agli insiemi di clausole abbiamo:

Definizione

Sia S un insieme di clausole. Una valutazione è una funzione $v: Var \to \{0,1\}$. Per definire quando v soddisfa S (in simboli $v \vDash S$) procediamo nel seguente modo:

- Se $X \in Var$ allora $v \models X$ se v(X) = 1 e $v \models \neg X$ se v(X) = 0;
- per ogni clausola $C\in S$, con $C=\{L_1,\ldots,L_n\}$ si ha $v\vDash C$ se esiste $i\in\{1,\ldots,n\}$ tale che $v\vDash L_i$;
- $v \models S$ se per ogni $C \in S$ si ha $v \models C$.

Nei casi particolari della clausola vuota e dell'insieme vuoto di clausole

La clausola vuota \square è sempre insoddisfacibile.

Ogni insieme di clausole che contiene

è insoddisfacibile.

L'insieme vuoto di clausole \emptyset è soddisfatto da ogni interpretazione.

Definizione

Due insiemi di clausole S e S' sono logicamente equivalenti ($S \equiv S'$) se sono soddisfatti dalle stesse valutazioni.

 S^\prime è una conseguenza logica di S se ogni valutazione che soddisfa S soddisfa anche $S^\prime.$

Proposizione

Una clausola è una tautologia se e solo se contiene un letterale e la sua negazione.

Sia S' l'insieme ottenuto da S cancellando una tautologia. Allora $S \equiv S'$.

Esempio

 $S = \{\{X,Y,\neg Z\},\{X,\neg Y\},\{X,\neg X,Y\}\} \text{ è logicamente equivalente a } S' = \{\{X,Y,\neg Z\},\{X,\neg Y\}\}. \text{ Controllare che le formule } (X\vee Y\vee \neg Z)\wedge(X\vee \neg Y)\wedge(X\vee \neg X\vee Y)\text{ e } (X\vee Y\vee \neg Z)\wedge(X\vee \neg Y)\text{ sono logicamente equivalenti.}$

Definizione

Siano C_1 e C_2 due clausole tali che esista un letterale $L \in C_1$ e $\neg L \in C_2$. Allora il **risolvente** R di C_1 e C_2 (rispetto al letterale L) è la clausola

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\neg L\}).$$

Diciamo anche che R si ottiene per **risoluzione** da C_1 e C_2 .

Esempio

Se $C_1 = \{\neg X, \neg Y, Z\}$ e $C_2 = \{Y, H, Z\}$ allora $R = \{\neg X, Z, H\}$ è il risolvente di C_1 e C_2 rispetto a Y.

Proposizione: correttezza della risoluzione

Il risolvente R è conseguenza logica della congiunzione $\{\mathit{C}_1,\mathit{C}_2\}$.

Dimostrazione.

Sia v una valutazione tale che $v \models C_1$ e $v \models C_2$. Questo vuol dire che esistono $M \in C_1$ e $N \in C_2$ tali che v(M) = v(N) = 1. Se fosse M = L e $N = \overline{L}$ non potrebbe essere v(M) = v(N) = 1, quindi almeno uno tra M e N appartiene a R e quindi R è soddisfacibile.

Si ha quindi che

$$\{C_1, C_2\} \equiv \{C_1, C_2, R\}.$$

Nota che se $R=\square$ allora si ha $\{C_1,C_2\}\equiv\{C_1,C_2,\square\}$ che è insoddisfacibile e quindi:

Se da C_1 e C_2 ottengo \square tramite risoluzione, allora l'insieme $\{C_1,C_2\}$ è insoddisfacibile.

Definizione

Una clausola C è derivabile **per risoluzione** da un insieme di clausole S se esiste una sequenza C_1,\ldots,C_n di clausole tale che $C_n=C$ e per ogni $i=1,\ldots,n-1$ si ha che $C_i\in S$ oppure C_i si ottiene per risoluzione da clausole di S e da qualche C_j con j< i.

In questo caso scriviamo

 $S \vdash_R C$

Definizione

Una **refutazione** di S è una derivazione della clausola vuota \square da S. S è refutabile se $S \vdash_R \square$.

Teorema

 $S \vdash_R \square$ se e solo se S è insoddisfacibile.

Definizione

Se C e G sono due clausole e $C \subseteq G$ (ma $C \neq G$) allora diciamo che C sussume G (o che G è sussunta da C).

Proposizione

Sia S' l'insieme ottenuto cancellando da S tutte le clausole G sussunte da altre clausole $C \in S$. Allora $S' \equiv S$.

Procedura di Davis-Putnam

 E' un algoritmo che semplifica un insieme finito di clausole al fine di determinare se è soddisfacibile oppure no.

Definizione

Se X è una variabile, si dice che una clausola è X-esonerata se non contiene né X né $\neg X$.

Dato un insieme di clausole S, gli X-risolventi di S sono tutte le clausole che si ottengono da S facendo la risoluzione rispetto a X e $\neg X$.

Sia S l'insieme di clausole considerato.

Iniziamo con il togliere da S tutte le tautologie e le clausole sussunte. Poi trasformiamo S con una sequenza di passi.

Procedura di Davis-Putnam

Da S otteniamo un insieme S_1 nel seguente modo:

- \bullet Si eliminano da S tutte le tautologie e tutte le clausole sussunte.
- Si sceglie una variabile X (detta il **pivot**) che occorre nella clausola più corta. Nel caso di parità di lunghezza si applica l'ordine alfabetico.
- $\bullet\,$ Si aggiungono a S_1 tutte le clausole X-esonerate di S.
- ullet Si rimuovono da S_1 tutte le eventuali tautologie e le clausole sussunte.

Dopo questo primo passo la variabile X non sarà presente in $\mathcal{S}_1.$

Nota che se in S ci sono solo clausole che contengono X o solo clausole che contengono $\neg X$, allora in S_1 tali clausole non saranno presenti.

Per quanto detto finora, S_1 è soddisfacibile se e solo se S è soddisfacibile.

Teorema

Sia S un insieme di clausole nelle variabili X_1,\ldots,X_n . Allora dopo t passi $(con\ t \le n)$ l'insieme S_t è costituito solo dalla clausola vuota, oppure è vuoto. Nel primo caso S è insoddisfacibile, nel secondo caso è soddisfacibile.