Iniciada	quarta, 24 de junho de 2020 às 10:01
Estado	Terminada
Terminada em	quarta, 24 de junho de 2020 às 12:06
Tempo gasto	2 horas 5 minutos
Nota	2,661 num máximo de 20,000 (13 %)

Parcialmente correta

Nota: 0,556 em 5,000

Considere a função real de duas variáveis reais definida por $\,f(x,y)=3\cdot\sqrt{y^2+x^2}.$

a) Determine as derivadas parciais da função em ordem a x e a y

$$rac{\partial f}{\partial x}(x,y)=$$
 3

Your last answer was interpreted as follows: $\boldsymbol{3}$

Incorrect answer.

$$rac{\partial f}{\partial y}(x,y)=$$
 3

Your last answer was interpreted as follows: 3

Incorrect answer.

b) Determine a equação da reta tangente à curva C de interseção da superfície de equação z=f(x,y) com o plano x=3 no ponto P(x,y)=(3,1).

i) Qual é o declive da reta tangente à curva C no ponto P? $m_t =$

ii) A equação da reta tangente é dada por: $x=3 \, \wedge \, z=$

c) A temperatura de uma placa de metal aquecida é dada por $T(x,y)=3\cdot\sqrt{y^2+x^2}$.

Determine a taxa de variação de T em relação à distância no ponto no ponto $\dot{P}(x,y)=(3,1)$ na direção:

Your last answer was interpreted as follows: $3 \cdot i$

Incorrect answer.

Your last answer was interpreted as follows: $3 \cdot j$

The variables found in your answer were: [j]

Incorrect answer.

iii) do vetor que faz um ângulo de 30° com a direção positiva do eixo dos xx = 4

Your last answer was interpreted as follows: 4

Incorrect answer.

$$\text{d) Se } z = \frac{3 \cdot \sqrt{y^2 + x^2}}{3}, \ \ x = \rho \cos(\theta), \ \ y = \rho \sin(\theta) \Rightarrow \frac{\partial^2 z}{\partial \theta^2} + \frac{\partial z}{\partial \rho} = \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2$$

False

Your last answer was interpreted as follows: false

Correct answer, well done.

e) O domínio da função f não é um círculo fechado!

False

Your last answer was interpreted as follows: false

Incorrect answer.

A correct answer is $\frac{3 \cdot x}{\sqrt{y^2 + x^2}}$, which can be typed in as follows: (3*x)/sqrt(y^2+x^2)

A correct answer is $\frac{3 \cdot y}{\sqrt{y^2 + x^2}}$, which can be typed in as follows: (3*y)/sqrt(y^2+x^2)

A correct answer is $\frac{3}{\sqrt{10}}$, which can be typed in as follows: 3/sqrt(10)

A correct answer is $\frac{3 \cdot y}{\sqrt{10}} + \frac{27}{\sqrt{10}}$, which can be typed in as follows: (3*y)/sqrt(10)+27/sqrt(10)

A correct answer is $\frac{9}{\sqrt{10}}$, which can be typed in as follows: 9/sqrt(10)

A correct answer is $\frac{3}{\sqrt{10}}$, which can be typed in as follows: 3/sqrt(10)

A correct answer is $\frac{3^{\frac{3}{2}}}{2 \cdot \sqrt{10}} + \frac{3}{2 \cdot \sqrt{10}}$, which can be typed in as follows: $3^{(5/2)/(2*sqrt(10))} + 3/(2*sqrt(10))$

A correct answer is **false**.

A correct answer is **true**.

Incorreta

Nota: 0,000 em 4,000

Considere o sistema de funções $\(\displaystyle \mathbf{SF}=\left\{ {\sin \left(4\cdot x \right)},{\cos \left(4\cdot x \right) } \right\} \right).$ a) Calcule o Wronskiano do sistema de funções SF.			
\(\displaystyle \mathrm{det}\left (W \right)=\)			
b) SF constitui um Sistema Fundamental de Soluções (SFS) de uma equação diferencial de ordem 2, linear e homogénea?			
False			
Your last answer was interpreted as follows: \(\mathbf{false}\)			
c) As funções de SF são soluções da equação diferencial \(\displaystyle y''+{4}y=0\).			
True			
Your last answer was interpreted as follows: \(\mathbf{true} \)			
d) Determine a solução geral da equação diferencial \(\displaystyle y''+{16}y=0\).			
\(\displaystyle y=c_1\ast\)			
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			

Incorrect answer.

Incorrect answer.

Incorrect answer.

A correct answer is \(-4\cdot \sin ^2\left(4\cdot x\right)-4\cdot \cos ^2\left(4\cdot x\right) \), which can be typed in as follows: - $(4*\sin(4*x)^2)-4*\cos(4*x)^2$

A correct answer is \(\mathbf{true}\\).

A correct answer is \(\mathbf{false} \).

A correct answer is \(\sin \left($4 \cdot x \cdot y$) \), which can be typed in as follows: $\sin(4*x)$

A correct answer is $(\c x \mid 4\c x \mid)$, which can be typed in as follows: $\cos(4*x)$

Incorreta

Nota: 0,000 em 3,000 a) A Equação diferencial é uma EDP!

True

Your last answer was interpreted as follows: \(\mathbf{true}\)

b) Para \(\displaystyle A(x,y)=yx^2\), determine a solução particular da equação diferencial que satisfaz a a condição inicial \(\displaystyle y(0)= {3}\).

 $\(\displaystyle\ y=f(x)\Leftrightarrow\)\]$ 3 * e^(1/3 * x * (x-9))

The variables found in your answer were: $\ (\left| x \right|)$

c) Para A(x,y)=x a equação diferencial é linear de 1ª ordem!

False

Your last answer was interpreted as follows: \(\mathbf{false}\)

d) Para A(x,y)=x, determine a solução geral da equação diferencial.

y=f(x;c) x ^(-1) + %c

Your last answer was interpreted as follows: $(x^{-1}+{it \c})$

Nota: introduzir a constante com %c

Incorrect answer.

Incorrect answer.

Incorrect answer.

Your answer should be an equation, but is not.

Incorrect answer.

Incorrect answer.

Your answer should be an equation, but is not.

A correct answer is \(\mathbf{false} \).

A correct answer is \(y=3\cdot e^{\frac{x^3}{3}-3\cdot x} \), which can be typed in as follows: $y = 3*\%e^(x^3/3-3*x)$

A correct answer is \(\mathbf{true} \).

A correct answer is \(y=e^ {- 3\cdot x}\cdot \left(\frac{\left(3\cdot x-1\right)}{cdot x-1}) \), which can be typed in as follows: $y = e^{-(3*x)*(((3*x-1)*e^{(3*x)})/9+c)}$

<

Parcialmente correta

Nota: 2,105 em 5,000

A figura seguinte representa uma 1ª versão da **Taça do Mundo de Hóquei em Patins que Portugal ganhou pela 15ª vez no dia 4 de julho de 2019 em Barcelona**. O sólido é composto por 4 partes, a saber:

- Calote esférica de raio (r=2) seccionada por um cone de raio $(r=\sqrt{3})$ e altura (h=1);
- Paraboloide de altura \(h=4\) e largura máxima de raio \(r=2\);
- Cilindro de raio (r=1) e altura (h=1);
- Cilindro de raio (r=2) e altura (h=0.5).

a) Associando os conjuntos seguintes a três sistemas de coordenadas 3D, complete-os de forma a definir corretamente o sólido \ (\displaystyle S=S_1\cup S_2 \cup S_3\cup S_4 \):

 $\(\displaystyle\ r = \)$ 2

Correct answer, well done.

 $\(\displaystyle\theta_2 =\)$ -1

Your last answer was interpreted as follows: $\ (-1\)$

Incorrect answer.

\(\displaystyle \phi_2 =\) sqrt(3)

```
Your last answer was interpreted as follows: \(\sqrt{3}\)
    Incorrect answer.
\ S_2=\left( (x,y,z)\right) \ S_2=\left( (x
\( displaystyle f(x,y) = \)
\ S_3=\left( \right) \right) \right) \right) \right) \right) \right) \right) \right) \right]
\( | x = ) 
                                      Your last answer was interpreted as follows: \( 1 \)
    Correct answer, well done.
\( displaystyle \theta_2 = \) 2 *pi
                                      Your last answer was interpreted as follows: \( 2\cdot \pi \)
    Correct answer, well done.
\(\displaystyle\ z_1 =\) 4
                                      Your last answer was interpreted as follows: \( 4 \)
    Correct answer, well done.
\( | x = )  2
                                      Your last answer was interpreted as follows: \( 2 \)
    Correct answer, well done.
\( displaystyle \theta_1 = \) 0
                                      Your last answer was interpreted as follows: \( 0 \)
    Correct answer, well done.
\( displaystyle z_1 = \)  5
```

Your last answer was interpreted as follows: \(5 \)	
Correct answer, well done.	
b) Determine o volume que ocupa o espumante Terras do Demo dentro desta taça (capacidade da taça) e a massa da base da taça sabendo que a sua densidade é \(\displaystyle \rho(x,y,z)={2}\)	
Nota: por uma questão de simplificação dos cálculos para o cálculo do volume do espumante, considere que a espessura da taça é desprezável.	
i) $\(\text{Sisplaystyle V}(S) = V(S_2) + V(S_3) + V(S_4) \)$	
$\(\text{displaystyle V(S_2) =})$	
$\(\c)$ \(\(\displaystyle V(S_3)+V(S_4) =\)	
ii) \(\displaystyle M(S_1) = \)	
c) Defina \(S_2\) em coordenadas cilíndricas completando o conjunto seguinte:	
$\$ (\displaystyle S_2=\left \{ (\rho,\theta,z): \rho_1\leq \rho\le \rho_2\wedge \theta_1\leq \theta\leq \theta_2 \wedge z_1 \leq z \leq z_2 \right \}\)	1
\(\displaystyle \rho_1 =\) -2	•
Your last answer was interpreted as follows: \(-2 \)	
Incorrect answer.	
\(\displaystyle \rho_2 =\) 2	
Your last answer was interpreted as follows: \(2 \)	
Correct answer, well done.	
\(\displaystyle \theta_1 =\)	
Your last answer was interpreted as follows: \(-1 \)	
Incorrect answer.	
\\\displaystyle\theta 2 =\) 5.5	

Your last answer was interpreted as follows: 5.5

This answer is invalid. Your answer contains floating point numbers, that are not allowed here. You need to type in numbers as fractions. For example, you should type 1/3 not 0.3333, which is after all only an approximation to one third.

 $\label{eq:continuous} $$ \(\displaystyle\ z_1 = \) -2 $$ Your\ last\ answer\ was\ interpreted\ as\ follows: \(\ -2\ \) $$ Incorrect\ answer. $$ \(\displaystyle\ z_2 = \) 2 $$ Your\ last\ answer\ was\ interpreted\ as\ follows: \(\ 2\ \) $$$

Incorrect answer.

A correct answer is $\ (2\)$, which can be typed in as follows: 2

A correct answer is \(2\cdot \pi \), which can be typed in as follows: 2*%pi

A correct answer is $(\frac{2\cdot (2\cdot 1)}{3})$, which can be typed in as follows: (2*%pi)/3

A correct answer is (y^2+x^2) , which can be typed in as follows: y^2+x^2

A correct answer is $\ (1)$, which can be typed in as follows: 1

A correct answer is \(2\cdot \pi \), which can be typed in as follows: 2*%pi

A correct answer is (4), which can be typed in as follows: 4

A correct answer is $\ (2\)$, which can be typed in as follows: 2

A correct answer is $\ (\ 0\)$, which can be typed in as follows: 0

A correct answer is $\ (5\)$, which can be typed in as follows: 5

A correct answer is $\ (8\cdot)$, which can be typed in as follows: 8*%pi

A correct answer is $\ (3\cdot)$, which can be typed in as follows: 3*%pi

A correct answer is $\ (\frac{16\cdot (16\cdot (16*\%pi)/3)}{)}$, which can be typed in as follows: (16*%pi)/3

A correct answer is (0), which can be typed in as follows: 0

A correct answer is $\ (2\)$, which can be typed in as follows: 2

A correct answer is (0), which can be typed in as follows: 0

A correct answer is \(2\cdot \pi \), which can be typed in as follows: 2*%pi

A correct answer is \(\rho^2 \), which can be typed in as follows: rho^2

A correct answer is (4), which can be typed in as follows: 4

Não respondida Nota: 3,000

Considere o PVI de ordem 2 definido por: $ \label{left} $$ \c PVI de ordem 2 definido por: $$ (\bigg \c PVI de ordem 2 definido por: $$ ($		
a) Determine a solução particular de P.		
\(\displaystyle y=y(t)\Leftrightarrow \)		
b) Transforme o problema diferencial P num PVI de ordem 1, isto é, com um sistema de duas equações diferenciais de ordem 1.		
$\label{left (wathrm{Q} right) left{(begin{matrix} \left f(t,u,v) \right v'=g(t,u,v) \end{matrix} right. \\ mat$		
$\(\displaystyle f(t,u,v)= \)$		
\(\displaystyle g(t,u,v)=\)		

A correct answer is \(y=\frac{e^{2\cdot t}}{2} + \frac{e^{-2\cdot t}}{2} \), which can be typed in as follows: $y = e^{(2*t)/2} + e^{-(2*t)/2}$

A correct answer is (v), which can be typed in as follows: v

A correct answer is $\ (4\ \text{dot } u\)$, which can be typed in as follows: 4*u

«

PREVIOUS ACTIVITY

<u>Links para os exames de AM2 e Defesa de Trabalhos</u>

NEXT ACTIVITY

Submissão de rascunhos e página de consulta permitida no exame da época normal

