Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Practice Problem Sheet 1

- 1. Find the infimum and supremum of the set $S = \{\frac{m}{|m|+n} : n \in \mathbb{N}, m \in \mathbb{Z}\}.$
- 2. Let $\{a_n\}$ be a sequence of real numbers such that each of the subsequences $\{a_{2n}\}$, $\{a_{2n-1}\}$ and $\{a_{3n}\}$ converges. Show that $\{a_n\}$ is convergent.
- 3. If b > 0, then show that $\lim_{n \to \infty} \sqrt[n]{b} = 1$.
- 4. For $a \in [0,3]$, let $x_1 = a$ and $x_{n+1} = \frac{1}{4}(x_n^2 + 3)$ for all $n \geq 2$. Examine the convergence of the sequence $\{x_n\}$ for different values of a. Also, find $\lim x_n$ whenever it exists.
- 5. Given $a, b \in \mathbb{R}$, let $x_1 = a, x_2 = b$ and $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for $n \ge 3$. Show that $\{x_n\}$ is a Cauchy sequence and show that $\lim_{n \to \infty} x_n = \frac{1}{3}(a+2b)$.
- 6. Let $\{a_n\}$ be a sequence of real numbers. Define the sequence $\{s_n\}$ by $s_n = \frac{1}{n} \sum_{i=1}^n a_i$. If $\{a_n\}$ converges to a, then show that the sequence $\{s_n\}$ also converges to a. But converse is not true.
- 7. Show that the sequence defined below is bounded monotonically increasing sequence and converges to $\sqrt{3}$

1

$$a_1 = 1, a_{n+1} = \left(\frac{3 + a_n^2}{2}\right)^{1/2}.$$

8. Check if the following sequences are Cauchy sequences or not

(a)
$$a_n = \sum_{k=1}^n \frac{1}{k!}$$

(b)
$$a_1 = 1, a_{n+1} = \left(1 + \frac{(-1)^n}{2^n}\right) a_n, n \in \mathbb{N}.$$

Solutions for Practice Problem Sheet 1

- 1. S is bounded above by 1 and bounded below by -1, sup = 1 and inf = -1.
- 2. Let $a_{2n} \to a$, $a_{2n-1} \to b$ and $a_{3n} \to c$. Clearly, $\{a_{6n}\}$ is a subsequence of $\{a_{2n}\}$ and $\{a_{3n}\}$. Hence, $a_{6n} \to a$ and $a_{6n} \to c$. This implies a = c. Again, $\{a_{3(2n-1)}\}$ is a subsequence of $\{a_{2n-1}\}$ and $\{a_{3n}\}$. Hence, $a_{3(2n-1)} \to c$ and $a_{3(2n-1)} \to b$. This implies b = c. Hence, a = b = c. Now show that if the subsequences $\{a_{2n}\}$ and $\{a_{2n-1}\}$ both converge to the same limit, then $\{a_n\}$ is also converges to the same limit.
- 3. First assume that b > 1. Let $a_n = b^{\frac{1}{n}} 1$. As b > 1, $a_n > 0$ for all $n \in \mathbb{N}$. Further,

$$b = (1 + a_n)^n \ge 1 + na_n.$$

Then $0 \le a_n \le \frac{b-1}{n}$. Thus $a_n \to 0$, i.e., $b^{\frac{1}{n}} \to 1$ as $n \to \infty$. Now if b < 1, then take $c = \frac{1}{b}$ and it is easy to show the result.

4. If $\{x_n\}$ converges, then $\ell = \lim x_n$ satisfies $\ell^2 - 4\ell + 3 = 0$. Hence $\ell = 1$ or $\ell = 3$. We have $x_{n+1} - x_n = \frac{1}{4}(x_n^2 - x_{n-1}^2)$ for all n > 1. Also $x_2 - x_1 = \frac{1}{4}(a-1)(a-3)$.

Case 1: If a = 3, then $x_n = 3$ for all $n \in \mathbb{N}$, and hence $\{x_n\}$ converges to 3.

Case 2: If 1 < a < 3, then $x_2 < x_1$ and we get $x_{n+1} < x_n$ for all $n \in \mathbb{N}$. Also in this case $x_n > 1$ for all $n \in \mathbb{N}$. (Because $x_{n+1} - 1 = \frac{1}{4}(x_n^2 - 1)$ for all $n \in \mathbb{N}$ and $x_1 > 1$.) Hence $\{x_n\}$ converges to 1. Note that $x_n \not\to 3$ as $\lim x_n = \inf\{x_n : n \in \mathbb{N}\} \le x_1 = a < 3$.

Case 3: If $0 \le a \le 1$, then $x_2 \ge x_1$ and we get $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. Also in this case $x_n \le 1$ for all $n \in \mathbb{N}$. Hence $\{x_n\}$ converges to 1.

5. We have $x_{n+2} - x_{n+1} = (-\frac{1}{2})(x_{n+1} - x_n)$ for all $n \in \mathbb{N}$, so that $|x_{n+2} - x_{n+1}| = \frac{1}{2}|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. It follows that $\{x_n\}$ is a Cauchy sequence in \mathbb{R} and therefore $\{x_n\}$ converges.

Again, $x_{n+1} - x_n = (-\frac{1}{2})(x_n - x_{n-1}) = \dots = (-\frac{1}{2})^{n-1}(x_2 - x_1)$ for all $n \in \mathbb{N}$. This yields $x_n - x_1 = (x_n - x_{n-1}) + \dots + (x_2 - x_1) = [(-\frac{1}{2})^{n-2} + \dots + 1](x_2 - x_1) = \frac{2}{3}[1 - (-\frac{1}{2})^{n-1}](b-a)$. If $\ell = \lim x_n$, then $\ell - a = \frac{2}{3}(b-a)$ and so $\ell = \frac{1}{3}(a+2b)$.

6. $|s_n - a| = \frac{1}{n} \sum_{i=1}^n |a_i - a| = \frac{1}{n} \sum_{i=1}^N |a_i - a| + \frac{1}{n} \sum_{i=N+1}^n |a_i - a|$. Then proof follows by using the convergence of the sequence $\{a_n\}$.

Let $a_n = (-1)^n$, then $\{a_n\}$ is divergent. Then $\frac{1}{n} \sum_{i=1}^n a_i = 0$, if n is even and $\frac{1}{n} \sum_{i=1}^n a_i = -\frac{1}{n}$, if n is odd. Now $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i = 0$.

7. Using induction, one can show that $a_n \leq \sqrt{3}$. Using this one can show that

$$a_{n+1}^2 - a_n^2 = \frac{3}{2} - \frac{a_n^2}{2} \ge 0.$$

8. (a) Without loss of generality we can assume that m > n hence

$$\mid a_m - a_n \mid < \sum_{k>n} \frac{1}{k!} < \sum_{k>n} \frac{1}{2^k} < \frac{1}{2^{n-1}} < \epsilon, \forall n > N.$$
 Hence the sequence is Cauchy.

(b) Using AM - GM inequality,

$$a_n \le \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \cdots \left(1 + \frac{1}{2^n}\right) \le \left(\frac{1}{n} \left(n + \sum_{i=1}^n \frac{1}{2^i}\right)\right)^n \le \left(1 + \frac{1}{n}\right)^n < 3.$$

Therefore, $|a_{n+1} - a_n| < \frac{3}{2^n}$ and now using triangle inequality, for m > n

$$|a_m - a_n| \le |a_m - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_n|.$$

Using the above estimate we can show that $\{a_n\}$ is Cauchy.