

planetmath.org

Math for the people, by the people.

modus ponens

Canonical name ModusPonens

Date of creation 2013-03-22 16:50:48 Last modified on 2013-03-22 16:50:48

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 19

Author CWoo (3771)
Entry type Definition
Classification msc 03B22
Classification msc 03B05
Classification msc 03B35

Synonym rule of detachment

Synonym detachment

Synonym modus ponendo ponens

Modus ponens is a rule of inference that is commonly found in many logics where the binary logical connective \rightarrow (sometimes written \Rightarrow or \supset) called logical implication are defined. Informally, it states that

from A and
$$A \to B$$
, we may infer B.

Modus ponens is also called the *rule of detachment*: the theorem b can be "detached" from the theorem $A \to B$ provided that A is also a theorem.

An example of this rule is the following: From the premisses "It is raining", and "If it rains, then my laundry will be soaked", we may draw the conclusion "My laundry will be soaked".

Two common ways of mathematically denoting modus ponens are the following:

$$\frac{A \quad A \to B}{B}$$
 or $\{A, A \to B\} \vdash B$.

One formal way of looking at modus ponens is to define it as a partial function $\vdash: F \times F \to F$, where F is a set of formulas in a language L where a binary operation \to is defined, such that

- 1. $\vdash (A, B)$ is defined whenever $A, B \in F$ and $B \equiv (A \rightarrow C)$ for some $C \in L$, and
- 2. when this is the case, $C \in F$ and $\vdash (A, B) := C$;
- 3. \vdash is not defined otherwise.

Remark. With modus ponens, one can easily prove the converse of the deduction theorem (see http://planetmath.org/DeductionTheoremthis link). Another easily proven fact is the following:

If
$$\Delta \vdash A$$
 and $\Delta \vdash A \to B$, then $\Delta \vdash B$, where Δ is a set of formulas.

To see this, let A_1, \ldots, A_n be a deduction of A from Δ , and B_1, \ldots, B_m be a deduction of $A \to B$ from Δ . Then $A_1, \ldots, A_n, B_1, \ldots, B_m, B$ is a deduction of B from Δ , where B is inferred from A_n (which is A) and B_m (which is $A \to B$) by modus ponens.