What can I improve Apprenticeship learning as DNN? (with experiments)

Jeong Gwan Lee

KAIST

(Korea Advanced Institute of Science and Technology)

Batch, Off-Policy and Model-Free Apprenticeship Learning

Klein, Edouard, Matthieu Geist, and Olivier Pietquin. "Batch, off-policy and model-free apprenticeship learning." European Workshop on Reinforcement Learning. Springer, Berlin, Heidelberg, 2011.

IRL set-up

The true reward function belongs to some hypothesis space

$$\mathcal{H}_{\phi} = \{\theta^T \phi(s), \theta \in \mathbb{R}^p\}, |\phi_i(s)| \le 1, \forall s \in S, 1 \le i \le p.$$

$$R^*(s) = (\theta^*)^T \phi(s)$$

parameters, weights. features; state representation; input.

$$R(s) = f_N(...(f_2(f_1(x, \theta_1), \theta_2), ...), \theta_N)$$

 f_i : DNN layer with activation function.

Reward estimator

$$\phi(s) = f_N(...(f_2(f_1(x, \theta_1), \theta_2), ...), \theta_N)$$

 f_i : DNN layer with activation function.

Feature expect. estimator

IRL set-up

For any reward function belonging to $\mathcal{H}_{\phi} = \{\theta^T \phi(s), \theta \in \mathbb{R}^p\}$, Value function V(s) can be expressed,

$$V^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} \frac{\theta^{T} \phi(s_{t})}{(s_{t})} | s_{0} = s, \pi] = \theta^{T} E[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | s_{0} = s, \pi]$$

1.(reward esti.) DNN, Non-linearity, so, might not make feature expectation?

2. (feature extractor) $\phi(s_t)$ might be "the feature output just before softmax" in classification? \rightarrow Depending on the input.

Feature expectation is,

$$\mu^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | s_{0} = s, \pi]$$

$$|V^{\pi E}(s_0) - V^{\tilde{\pi}}(s_0)| = |\theta^T(\mu^{\pi E}(s_0) - \mu^{\tilde{\pi}}(s_0))| \le ||\mu^{\pi E}(s_0) - \mu^{\tilde{\pi}}(s_0)||_2$$

IRL Algorithm

- 1. Starts with some initial policy $\pi^{(0)}$ and compute $\mu^{\pi^{(0)}}(s_0)$. Set j=1;
- 2. Compute $t^{(j)} = \max_{\theta: \|\theta\|_2 \le 1} \min_{k \in \{0, j-1\}} \theta^T(\mu^{\pi_E}(s_0) \mu^{\pi^{(k)}}(s_0))$ and let $\theta^{(j)}$ be the value attaining this maximum. At this step, one searches for the reward function which maximizes the distance between the value of the expert at s_0 and the value of any policy computed so far (still at s_0). This optimization problem can be solved using a quadratic programming approach or a projection algorithm Π ;
- 3. if $t^{(j)} \leq \epsilon$, terminate. The algorithm outputs a set of policies $\{\pi^{(0)}, \dots, \pi^{(j-1)}\}$ among which the user chooses manually or automatically the closest to the expert (see \square for details on how to choose this policy). Notice that the last policy is not necessarily the best (as illustrated in Section \square);
- 4. solve the MDP with the reward function $R^{(j)}(s) = (\theta^{(j)})^T \phi(s)$ and denote $\pi^{(j)}$ the associated optimal policy. Compute $\mu^{\pi^{(j)}}(s_0)$;
- 5. set $j \leftarrow j + 1$ and go back to step 2.

IRL Algorithm

1. Starts with some initial policy $\pi^{(0)}$ and compute $\mu^{\pi^{(0)}}(s_0)$. Set j=1;

2. Compute $t^{(j)} = \max_{\theta:\|\theta\|_2 \le 1} \min_{k \in \{0,j-1\}} \theta^T(\mu^{\pi_E}(s_0) - \mu^{\pi^{(k)}}(s_0))$ and let $\theta^{(j)}$ be the value attaining this maximum. At this step, one searches for the reward function which maximizes the distance between the value of the expert at s_0 and the value of any policy computed so far (still at s_0). This optimization problem can be solved using a quadratic programming approach or a projection algorithm [1];

[1] Abbeel, Pieter, and Andrew Y. Ng. "Apprenticeship learning via inverse reinforcement learning." *Proceedings of the twenty-first international conference on Machine learning*. ACM, 2004.

IRL Algorithm – Projection method

3.1. A simpler algorithm

The algorithm described above requires access to a QP (or SVM) solver. It is also possible to change the algorithm so that no QP solver is needed. We will call the previous, QP-based, algorithm the maxmargin method, and the new algorithm the projection method. Briefly, the projection method replaces step 2 of the algorithm with the following:

- Set $\bar{\mu}^{(i-1)} = \bar{\mu}^{(i-2)} + \frac{(\mu^{(i-1)} \bar{\mu}^{(i-2)})^T (\mu_E \bar{\mu}^{(i-2)})}{(\mu^{(i-1)} \bar{\mu}^{(i-2)})^T (\mu^{(i-1)} \bar{\mu}^{(i-2)})} (\mu^{(i-1)} \bar{\mu}^{(i-2)})$ (This computes the orthogonal projection of μ_E onto the line through $\bar{\mu}^{(i-2)}$ and $\mu^{(i-1)}$.)
- Set $w^{(i)} = \mu_E \bar{\mu}^{(i-1)}$
- Set $t^{(i)} = \|\mu_E \bar{\mu}^{(i-1)}\|_2$

[1] Abbeel, Pieter, and Andrew Y. Ng. "Apprenticeship learning via inverse reinforcement learning." *Proceedings of the twenty-first international conference on Machine learning*. ACM, 2004.

IRL Algorithm

3. if $t^{(j)} \leq \epsilon$, terminate. The algorithm outputs a set of policies $\{\pi^{(0)}, \dots, \pi^{(j-1)}\}$ among which the user chooses manually or automatically the closest to the expert (see $\boxed{1}$ for details on how to choose this policy). Notice that the last policy is not necessarily the best (as illustrated in Section $\boxed{4}$);

LSPI(Least Square Policy Iteration)^[2]: LSTD-Q + Policy Evaluation

4. solve the MDP with the reward function $R^{(j)}(s) = (\theta^{(j)})^T \phi(s)$ and denote $\pi^{(j)}$ the associated optimal policy. Compute $\mu^{\pi^{(j)}}(s_0)$;

LSTD- μ

[2]Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy iteration." *Journal of machine learning research* 4.Dec (2003): 1107-1149.

IRL Algorithm

- 1. Initialize $\mu^{E}(s_0) = \pi^{(0)} = \mu^{(0)}(s_0)$
- 2. Projection method

$$\bar{\mu}^{(0)} = \mu^{(0)}(s_0)$$
 $\theta^{(1)} = \mu^E(s_0) - \bar{\mu}^{(0)}$ $t^{(1)} = \|\mu^E(s_0) - \bar{\mu}^{(0)}\|_2$

- 3. if $t^{(j)} \leq \epsilon$, terminate.
- 4. Solve MDP using LSPI, get $\mu^{\pi^{(1)}}(s_0)$ using LSTD- μ .

$$R^{(1)}(s) = (\theta^{(1)})^T \phi(s) \xrightarrow{\text{LSPI}} \pi^{(1)} \xrightarrow{\text{LSTD-}\mu} \mu^{\pi^{(1)}}(s_0)$$

2. Projection method

$$\bar{\mu}^{(1)} = \frac{\text{Set } \bar{\mu}^{(i-1)} =}{\bar{\mu}^{(i-2)} + \frac{(\mu^{(i-1)} - \bar{\mu}^{(i-2)})^T (\mu_E - \bar{\mu}^{(i-2)})}{(\mu^{(i-1)} - \bar{\mu}^{(i-2)})} (\mu^{(i-1)} - \bar{\mu}^{(i-2)})} \qquad \theta^{(2)} = \mu^E(s_0) - \bar{\mu}^{(1)} \qquad t^{(2)} = \left\| \mu^E(s_0) - \bar{\mu}^{(1)} \right\|_2$$

- 3. if $t^{(j)} \leq \epsilon$, terminate.
- 4. Solve MDP using LSPI, get $\mu^{\pi^{(2)}}(s_0)$ using LSTD-mu.

$$R^{(2)}(s) = (\theta^{(2)})^T \phi(s) \xrightarrow{\text{LSPI}} \pi^{(2)} \xrightarrow{\text{LSTD-}\mu} \mu^{\pi^{(2)}}(s_0)$$

IRL Algorithm — LSPI(Least Square Policy Iteration)

Approximate Q
$$\widehat{Q}^{\pi} = \mathbf{\Phi} w^{\pi} \qquad \mathbf{\Phi} = \begin{pmatrix} \phi(s_1, a_1)^{\mathsf{T}} & & \\ & \ddots & \\ & \phi(s, a)^{\mathsf{T}} & \\ & \ddots & \\ & \phi(s_{|\mathcal{S}|}, a_{|\mathcal{A}|})^{\mathsf{T}} \end{pmatrix}$$

Find w^{π}

$$w^{\pi} = \left(\mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} (\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi})\right)^{-1} \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$$

$$w^{\pi} = A^{-1}b$$

$$\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} (\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi})$$
 and $b = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$

[2]Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy iteration." *Journal of machine learning research* 4.Dec (2003): 1107-1149.

IRL Algorithm – LSPI(Least Square Policy Iteration)

$$\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} (\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi})$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \Big(\phi(s, a) - \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \phi(s', \pi(s')) \Big)^{\mathsf{T}}$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \Big[\phi(s, a) \Big(\phi(s, a) - \gamma \phi(s', \pi(s')) \Big)^{\mathsf{T}} \Big]$$

$$b = \Phi^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') R(s, a, s')$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \left[\phi(s, a) R(s, a, s') \right] .$$

Random action sampling! not follow policy.

$$D = \left\{ (s_i, a_i, r_i, s_i') \mid i = 1, 2, \dots, L \right\}$$

$$\widetilde{\mathbf{A}} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) \left(\phi(s_i, a_i) - \gamma \phi(s_i', \pi(s_i')) \right)^{\mathsf{T}} \right]$$

$$\widetilde{b} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) r_i \right],$$

```
# Intializaiton
state = env.reset()

# Collect samples
for j in range(TRANSITION):
    if isRender:
        env.render()
    action = env.action_space.sample()
    next_state, reward, done, info = env.step(action)
    memory.add([state, action, reward, next_state, done])
    state = next_state
    if done:
        break
```

IRL Algorithm — LSPI(Least Square Policy Iteration)

```
// Learns \widehat{Q}^{\pi} from samples
LSTDQ (D, k, \phi, \gamma, \pi)
                  D: Source of samples (s, a, r, s')
                  k: Number of basis functions
                      : Basis functions
                      : Discount factor
                      : Policy whose value function is sought
         \widetilde{\mathbf{A}} \leftarrow \mathbf{0}  // (k \times k) matrix
         \widetilde{b} \leftarrow \mathbf{0} // (k \times 1) vector
         for each (s, a, r, s') \in D
                 \widetilde{\mathbf{A}} \leftarrow \widetilde{\mathbf{A}} + \phi(s, a) \Big( \phi(s, a) - \gamma \phi \big( s', \pi(s') \big) \Big)^{\mathsf{T}}
                  \widetilde{b} \leftarrow \widetilde{b} + \phi(s, a)r
         \widetilde{w}^{\pi} \leftarrow \widetilde{\mathbf{A}}^{-1}\widetilde{b}
                                                                                                   Q^{\pi} = \Phi w^{\pi}
         return \widetilde{w}^{\pi}
```

```
LSPI (D, k, \phi, \gamma, \epsilon, \pi_0)
                                                             // Learns a policy from samples
               D: Source of samples (s, a, r, s')
               k : Number of basis functions
                      : Basis functions
                      : Discount factor
               \epsilon: Stopping criterion
               \pi_0: Initial policy, given as w_0 (default: w_0 = 0)
       \pi' \leftarrow \pi_0
                                                                     // w' \leftarrow w_0
       repeat

\begin{array}{ll}
\pi \leftarrow \pi' & // w \leftarrow w' \\
\pi' \leftarrow \mathbf{LSTD}Q \ (D, \ k, \ \phi, \ \gamma, \ \pi) & // w' \leftarrow \mathbf{LSTD}Q \ (D, \ k, \ \phi, \ \gamma, \ w)
\end{array}

       until (\pi \approx \pi')
                                                                   // until (||w-w'|| < \epsilon)
                                                                     // return w
       return \pi
```

[2]Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy iteration." *Journal of machine learning research* 4.Dec (2003): 1107-1149.

LSTD- μ

Compute $\mu^{\pi^{(j)}}(s_0)$ LSTD- μ : to estimate feature expectation of intermediate policies

$$\mu_i^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t \phi_i(s_t) | s_0 = s, \pi].$$
 $\approx V^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t R(s_t) | s_0 = s, \pi]$

$$\mathcal{H}_{\psi} = \{\hat{V}_{\xi}(s) = \sum_{i=1}^{q} \xi_i \psi_i(s) = \xi^T \psi(s), \xi \in \mathbb{R}^q \}$$

$$\xi_{i}^{*} = \left(\sum_{t=1}^{n} \psi(s_{t})(\psi(s_{t}) - \gamma \psi(s'_{t}))^{T}\right)^{-1} \sum_{t=1}^{n} \psi(s_{t}) \phi_{i}(s_{t})$$

$$V^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t R(s_t) | s_0 = s, \pi]$$

LSTD-Q

$$\widehat{Q}^{\pi} = \mathbf{\Phi} w^{\pi}$$

$$\boldsymbol{w}^{\pi} = \left(\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Delta}_{\mu} (\boldsymbol{\Phi} - \gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi})\right)^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Delta}_{\mu} \mathcal{R}$$
$$\boldsymbol{w}_{i}^{*} = \left(\sum_{t=1}^{n} \phi(s_{t}, a_{t}) \left(\phi(s_{t}, a_{t}) - \gamma \phi(s'_{t}, \pi(s'_{t}))\right)^{T}\right)^{-1} \sum_{t=1}^{n} \phi(s_{t}, a_{t}) r(s_{t}, a_{t})$$

a set of transitions $\{(s_t, r_t, s_{t+1})_{1 \leq t \leq n}\}$ sampled according to the policy π

$$(\hat{\mu}^{\pi}(s_0))^T = \psi(s_0)^T (\Psi^T \Delta \Psi)^{-1} \Psi^T \Phi$$

$$\begin{aligned} & \textbf{for each } (s, a, r, s') \in D \\ & \widetilde{\mathbf{A}} \leftarrow \widetilde{\mathbf{A}} + \phi(s, a) \Big(\phi(s, a) - \gamma \phi \big(s', \pi(s') \big) \Big)^{\mathsf{T}} \\ & \widetilde{b} \leftarrow \widetilde{b} + \phi(s, a) r \end{aligned}$$

LSTD- μ

Compute $\mu^{\pi^{(j)}}(s_0)$ LSTD- μ : to estimate feature expectation of intermediate policies

$$\mu_i^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t \phi_i(s_t) | s_0 = s, \pi].$$
 $\approx V^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t R(s_t) | s_0 = s, \pi]$

$$\mathcal{H}_{\psi} = \{\hat{V}_{\xi}(s) = \sum_{i=1}^{q} \xi_i \psi_i(s) = \xi^T \psi(s), \xi \in \mathbb{R}^q \}$$

$$\xi_{i}^{*} = \left(\sum_{t=1}^{n} \psi(s_{t})(\psi(s_{t}) - \gamma \psi(s'_{t}))^{T}\right)^{-1} \sum_{t=1}^{n} \psi(s_{t}) \phi_{i}(s_{t})$$

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \middle| s_0 = s, \pi\right]$$

LSTD-Q

$$\widehat{Q}^{\pi} = \mathbf{\Phi} w^{\pi}$$

$$\boldsymbol{w}^{\pi} = \left(\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Delta}_{\mu} (\boldsymbol{\Phi} - \gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi})\right)^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Delta}_{\mu} \mathcal{R}$$
$$\boldsymbol{w}_{i}^{*} = \left(\sum_{t=1}^{n} \phi(s_{t}, a_{t}) \left(\phi(s_{t}, a_{t}) - \gamma \phi(s'_{t}, \pi(s'_{t}))\right)^{T}\right)^{-1} \sum_{t=1}^{n} \phi(s_{t}, a_{t}) r(s_{t}, a_{t})$$

a set of transitions $\{(s_t, r_t, s_{t+1})_{1 \leq t \leq n}\}$ sampled according to the policy π

$$(\hat{\mu}^{\pi}(s_0))^T = \psi(s_0)^T (\Psi^T \Delta \Psi)^{-1} \Psi^T \Phi$$

$$\begin{aligned} & \textbf{for each } (s, a, r, s') \in D \\ & \widetilde{\mathbf{A}} \leftarrow \widetilde{\mathbf{A}} + \phi(s, a) \Big(\phi(s, a) - \gamma \phi \big(s', \pi(s') \big) \Big)^{\mathsf{T}} \\ & \widetilde{b} \leftarrow \widetilde{b} + \phi(s, a) r \end{aligned}$$

LSTD- μ as off-policy manner

$$\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} (\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi})$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \Big(\phi(s, a) - \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \phi(s', \pi(s')) \Big)^{\mathsf{T}}$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \Big[\phi(s, a) \Big(\phi(s, a) - \gamma \phi(s', \pi(s')) \Big)^{\mathsf{T}} \Big]$$

$$b = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') R(s, a, s')$$

$$= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \Big[\phi(s, a) R(s, a, s') \Big] .$$

$$D = \left\{ (s_i, a_i, r_i, s_i') \mid i = 1, 2, \dots, L \right\}$$

$$\widetilde{\mathbf{A}} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) \left(\phi(s_i, a_i) - \gamma \phi(s_i', \pi(s_i')) \right)^{\mathsf{T}} \right]$$

$$\widetilde{b} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) r_i \right],$$

Random action sampling! not following policy.

Additional degree of freedom($a_0 = a$) allows off-policy learning.(LSTD-Q) LSTD-Q (Q-function) \rightarrow LSTD- μ (state-action feature expectation)

Implementation & Experiment

Critical Problem 1

Figure 16: Inverted pendulum (LSPI): Average balancing steps.

[Left figure]Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy iteration." *Journal of machine learning research* 4.Dec (2003): 1107-1149.

Experiment Setting

Classic control Control theory problems from the classic RL literature.

CartPole

Épisode 1

state dimension: 4

of actions: 2

Baseline 2

Experiment Setting

- 1. Initialize $\mu^{E}(s_0) = \pi^{(0)} = \mu^{(0)}(s_0)$
- 2. Projection method

$$\bar{\mu}^{(0)} = \mu^{(0)}(s_0)$$
 $\theta^{(1)} = \mu^E(s_0) - \bar{\mu}^{(0)}$ $t^{(1)} = \|\mu^E(s_0) - \bar{\mu}^{(0)}\|_2$ 30 iteration for one LSPI

- 3. if $t^{(j)} \leq \epsilon$, terminate.
- 4. Solve MDP using LSPI, get $\mu^{\pi^{(1)}}(s_0)$ using LSTD- μ .

$$R^{(1)}(s) = (\theta^{(1)})^T \phi(s)$$
 LSPI $\pi^{(1)}$ USTD- μ $\mu^{\pi^{(1)}}(s_0)$ Baseline 1

2. Projection method

$$\bar{\mu}^{\,(1)} = \begin{array}{c} \text{Set } \bar{\mu}^{(i-1)} = \\ \bar{\mu}^{(i-2)} + \frac{(\mu^{(i-1)} - \bar{\mu}^{(i-2)})^T (\mu_E - \bar{\mu}^{(i-2)})}{(\mu^{(i-1)} - \bar{\mu}^{(i-2)})^T (\mu^{(i-1)} - \bar{\mu}^{(i-2)})} (\mu^{(i-1)} - \bar{\mu}^{(i-2)}) \\ \end{array} \\ \theta^{(2)} = \mu^E(s_0) - \bar{\mu}^{\,(1)} \qquad t^{(2)} = \left\| \mu^E(s_0) - \bar{\mu}^{\,(1)} \right\|_2$$

- 3. if $t^{(j)} \leq \epsilon$, terminate.
- 4. Solve MDP using LSPI, get $\mu^{\pi^{(2)}}(s_0)$ using LSTD-mu.

$$R^{(2)}(s) = (\theta^{(2)})^T \phi(s) \xrightarrow{\text{LSPI}} \pi^{(2)} \xrightarrow{\text{LSTD-}\mu} \mu^{\pi^{(2)}}(s_0)$$

IRL + MC approach

$$t^{(i)} = \left\| \mu^E(s_0) - \bar{\mu}^{(i-1)} \right\|_2$$

$$\mathcal{H}_{\phi} = \{\theta^T \phi(s), \theta \in \mathbb{R}^p\}, |\phi_i(s)| \leq 1, \forall s \in S, 1 \leq i \leq p.$$

Reward Basis Feature Dimension(p): 9

#Expert Trajectory: 100

IRL + LSTD-mu

$$\mathcal{H}_{\phi} = \{\theta^T \phi(s), \theta \in \mathbb{R}^p\}, |\phi_i(s)| \leq 1, \forall s \in S, 1 \leq i \leq p.$$

Reward Basis Feature Dimension(p): 9

#Expert Trajectory: 100

Merit : Fast! ($x8 \sim x16$)

Expert Trajectory,

$$T_i = \{(s_t, a_t, s_{t+1})_{1 \le t \le Done}\}$$

Expert Trajectories,

$$T_{collection} = \{T_i, 1 \le i \le n\}$$

Supervised Action Estimator? (not DQN but quite similar)

$$s_t(input) \rightarrow a_t(output)$$
?

Deep Action Network(DAN)

IRL + MC approach + Deep Action Network

Deep Action Network

4(input) - 20(fc1) - 9(fc2) - 2(output)

Reward Basis Feature Dimension(p): 9

#Expert Trajectory: 100

IRL vs. IRL_DAN

What I tried, (Deep Reward Network)

DeepActionNetwork

Now, we know a_t (only for s_t)

$$s_t \rightarrow a_t \rightarrow s_{t+1} \rightarrow a_{t+1} \dots$$

$$Dataset = \{(s_{i,t}, a_{i,t}, s_{i,t+1})_{i \in Traj, 1 \le t \le Done}\}$$

$$q(s,a) = r(s,a) + \gamma \ q(s',\pi(s'))$$
 (by Bellman equation)
$$r(s,a) = q(s,a) - \gamma \ q(s',\pi(s'))$$

$$r(s,a) = q(s,a) - \gamma \ \max_{a} q(s',a')$$
 known

Cartpole is a little tricky to apply DRN since all reward is 1 until "done".

Next steps, (in order of importance)

- 1. Fix LSPI problem(oscillation)
- 2. Analyze Deep Reward Network
- 3. IRL + DQN (as MDP solver) or apply other Deep RL
- 4. Other simulator (CartPole might be easy)
- 5. Fully connected layer → CNN (input : env.render())
- 6. Projection method → Quadratic programming
- 7. Apply deep features for LSTD-mu

Backup slide

```
Find Best Agent iteration: 20/30
99's agent #############9.41
mu_diff [0.61039731 0.56565781 0.79287856 0.95013813 0.87483152 0.6577403
 0.69860213 0.55918665 1.27960358]
threshold: 1.050349088643595
threshold_gap: -0.004185
iteration: 100
Find Best Agent iteration: 0/30
Find Best Agent iteration: 20/30
100's agent #############25.49
mu_diff [-35.94200319 -26.17849604 -5.04567943 -27.03646621 -10.881589
 -15.69293346 -29.36636834 -23.92220604 -21.39544313]
threshold: 1.049606184474631
threshold_gap: -0.000743
iteration: 101
Find Best Agent iteration: 0/30
Find Best Agent iteration: 20/30
101's agent #############11.3
mu_diff [ 4.99395696 3.37577399 -21.34116135 4.38247295 2.92195305
   2.58690356 2.79950747 1.75200989 3.47019326]
threshold: 0.9351382856972915
threshold_gap: -0.114468
iteration: 102
Find Best Agent iteration: 0/30
Find Best Agent iteration: 20/30
102's agent ##############9.94
mu_diff [-1.19435403 -0.47307715 0.10268988 -0.54256935 -0.51734355 -1.09139626
 -2.11042581 -2.67381087 -0.23387989
threshold: 0.8565909493870978
threshold_gap: -0.078547
iteration: 103
Find Best Agent iteration: 0/30
```

Backup slide

Add # expert trajectory experiment!

Add DRN experiment! 영상 찍기