

=> d his

(FILE 'HOME' ENTERED AT 12:17:37 ON 22 SEP 2000)

FILE 'REGISTRY' ENTERED AT 12:17:41 ON 22 SEP 2000
E CITRIC ACID/CN
L1 5 S E3,E10,E21,E27,E32
E 8-HYDROXYQUINOLINE/CN
L2 1 S E3
L3 2 S E14-15
SEL NAME L1
SEL NAME L2
SEL NAME L3

FILE 'CA' ENTERED AT 12:22:51 ON 22 SEP 2000
L4 47648 S L1 OR E1-11
L5 11515 S L2 OR E12-27
L6 58 S L3 OR E28-31
L7 207 S L4 AND L5
L8 1 S L6-7 AND TITRA?
L9 12 S L6-7 AND (H3BO3 OR BORON OR BORIC OR BORATE)
L10 13 S L8-9

=> d l10 bib,ab 1-13

L10 ANSWER 1 OF 13 CA COPYRIGHT 2000 ACS

AN 132:20747 CA

TI Surface regeneration of biosensors using a combination of solutions based on interaction-specific optimized processes

IN Andersson, Karl; Hamalainen, Markku; Malmqvist, Magnus; Roos, Hakan

PA Biacore AB, Swed.

SO PCT Int. Appl., 133 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9963333	A1	19991209	WO 1999-SE921	19990531
	W: AU, JP, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,				
	PT, SE				
	AU 9946658	A1	19991220	AU 1999-46658	19990531

PRAI US 1998-87402 19980529

WO 1999-SE921 19990531

AB Surface regeneration of affinity biosensors and characterization of biomols. assocd. therewith by multivariate technique employing cocktails of regeneration agents to optimize regeneration of biosensor surface and/or characterize biomols. assocd. therewith. Kits and stock solns. For use in the context of this invention, as well as assocd. Computer algorithms are also disclosed. Stock solns. of regeneration cocktails are prep'd. and combined. Solns. are acidic, basic, ionic, org., detergent and chelating agent contg. Biosensors for various

affinity bindings are regenerated by the method; the affinity reactions are used for optimizing the regeneration process. Immuno-reactions, nucleic acid hybridization, avidin/streptavidin-biotin, hormone-hormone receptor interactions are performed with Biocore instruments and CM5 sensor chips.

RE.CNT 5

RE

- (1) Andersson, K; Anal Chem 1999, V71(13), P2475 CA
- (2) Behringwerke AG; EP 0781999 A 1997
- (3) Loefaaas, S; WO 9826288 A 1998
- (4) Marconi Gec Ltd; GB 2270976 A 1994
- (5) Yagishita, A; JP 63229359 A 1988

L10 ANSWER 2 OF 13 CA COPYRIGHT 2000 ACS

AN 129:177239 CA

TI Compositions and methods for removal of chemical residues from metal or dielectric surfaces or chemical mechanical polishing of copper surfaces

IN Small, Robert J.

PA EKC Technology, Inc., USA

SO PCT Int. Appl., 45 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 8

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9836045	A1	19980820	WO 1998-US2794	19980214
	W: CN, ID, JP, KR, SG				
	RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,				
NL, PT, SE					
	US 5981454	A	19991109	US 1997-801911	19970214
	EP 909311	A1	19990421	EP 1998-906398	19980214
	R: AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, IE, FI				
PRAI	US 1997-801911	19970214			
	US 1993-78657	19930621			
	US 1995-443265	19950517			
	US 1997-826257	19970327			
	WO 1998-US2794	19980214			

OS MARPAT 129:177239

AB The title compns. comprise an aq. soln. with pH 3.5-7 and contg. A monofunctional, difunctional or trifunctional org. acid and a buffering amt. of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base. A compn. for final concn. 13% and pH 7 comprised diglycolamine 55, gallic acid 10, hydroxylamine 30, and water 5%.

L10 ANSWER 3 OF 13 CA COPYRIGHT 2000 ACS

AN 129:50838 CA

TI Aqueous compositions containing ***8*** -
hydroxyquinoline zinc for wood preservation

IN Soeda, Masahito; Ota, Michitaka

PA Nippon Steel Chemical Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 10139606	A2	19980526	JP 1996-296430	19961108

AB Title compns., which show antiseptic, antifouling, and antimicrobial effect, contain 0.4-20 wt.% water-sol. acids and 0.2-10 wt.% ***8*** - ***hydroxyquinoline*** Zn (I) at mol ratio of 1-20. An aq. soln. contg. 1 wt.% I and 1.3% maleic acid was applied to wood to show no wood wt. Loss after 8 mo. Corrosion of nail soaked into the solns. was inhibited by addn. of Hibiron KE 150 (anticorrosive).

L10 ANSWER 4 OF 13 CA COPYRIGHT 2000 ACS

AN 124:248686 CA
TI Hydroxyquinoline compound with dicitratoboric acid
AU Sergeeva, G. S.; Cherepanova, T. A.; Luttseva, M. A.; Burnashova, N. N.
CS Chitin. Politekh. Inst., Chita, Russia
SO Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. (1995), 38(3), 32-5
CODEN: IVUKAR; ISSN: 0579-2991
DT Journal
LA Russian
AB The reaction of ***H₃BO₃*** with ***citric*** ***acid*** (H₂cit) and ***8*** - ***hydroxyquinoline*** (L) in aq. soln. Gave HL[B(cit)₂].2H₂O. The complex was characterized by IR spectra and thermal anal. and its antimicrobial activity was detd.

L10 ANSWER 5 OF 13 CA COPYRIGHT 2000 ACS

AN 117:33535 CA
TI Zinc monoglycerolate. A slow-release source of therapeutic zinc: solubilization by endogenous ligands
AU Fairlie, D. P.; Whitehouse, M. W.; Taylor, R. M.
CS Dep. Pathol., Univ. Adelaide, Adelaide, 5001, Australia
SO Agents Actions (1992), 36(1-2), 152-8
CODEN: AGACBH; ISSN: 0065-4299
DT Journal
LA English
AB A combination of 65Zn-tracer detns., oxidative analyses for glycerol, and a bioassay for uncomplexed Zn²⁺ have shown that: (i) zinc monoglycerolate (ZMG) dissolves in aq. salt solns./physiol. media by dissociation into zinc ions and glycerol, but the rate and extent of ZMG dissolution depend upon pH, and/or concn. and complexing efficiency of zinc-ligands; (ii) under physiol. conditions certain ligands present in skin and blood (e.g. citrate, lactate, albumin, histidine, glutathione and other thiols and, to a lesser extent, amino acids) accelerate ZMG dissolution; and (iii) there is a general correlation between the conditional stability constants (pH 7.3, 25°C) of zinc-ligand complexes and the ability of given ligands to (a) solubilize ZMG in vitro and (b) mask the irritancy of Zn²⁺ in vivo. These observations indicate a mechanism for the transformation of ZMG applied transdermally or s.c., to bioactive zinc (anti-arthritis nutritional supplement, etc.).

L10 ANSWER 6 OF 13 CA COPYRIGHT 2000 ACS

AN 110:150929 CA
TI Method and anhydrous concentrate for preparing aqueous solutions containing chromogenic materials and peroxides

IN Ben-Michael, Abraham
 PA Savyon Diagnostics Ltd., Israel
 SO Eur. Pat. Appl., 8 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 271713	A2	19880622	EP 1987-116654	19871111
	EP 271713	A3	19890712		
	R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE				
	NO 8704540	A	19880616	NO 1987-4540	19871102
	JP 63199270	A2	19880817	JP 1987-284425	19871112
	FI 8705051	A	19880616	FI 1987-5051	19871116
	DK 8706117	A	19880616	DK 1987-6117	19871120

PRAI IL 1986-80964 19861215

AB A substantially anhyd. concd. chromogen soln. is provided which is stable for considerable periods even in admixt. with a peroxide and can be used to prep. an aq. working soln., e.g. for diagnostic purposes, whose activity is comparable to that of a freshly prep'd. working soln. 4-Chloro-1-naphthol (2000 mg) was dissolved in 200 mL DMSO and stirred for 2 h. H₂O₂ (500 .mu.L) was then added and the mixt. was stirred for an addnl. 2 h. The resulting soln. was stable for >3 mo at 37.degree., 9 mo at 25.degree., and 24 mo at 4.degree.. A working soln. was prep'd. by addn. of 4 vols. of distd. water.

L10 ANSWER 7 OF 13 CA COPYRIGHT 2000 ACS

AN 110:100138 CA
 TI Electroless bath for ternary nickel-phosphorus alloys
 IN Degen, Horst; Scharwaechter, Klaus
 PA Collardin, Gerhard, G.m.b.H., Fed. Rep. Ger.
 SO Eur. Pat. Appl., 16 pp.
 CODEN: EPXXDW

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 289838	A2	19881109	EP 1988-106083	19880416
	EP 289838	A3	19891108		
	R: AT, BE, DE, FR, GB, IT, SE				
	DE 3713734	A1	19881117	DE 1987-3713734	19870424
	JP 63286582	A2	19881124	JP 1988-103752	19880425

PRAI DE 1987-3713734 19870424

OS MARPAT 110:100138

AB The ternary alloys are deposited at 75-95.degree. in 30-240 min from aq. solns. contg. Ni ions and NaH₂PO₂ or other reducing agent as well as org. complex formers, stabilizers, accelerators, wetting agents, and brighteners. The Ni-W-P alloys are deposited from aq. solns. (pH 4.5-9.5) contg. Ni²⁺ 2.0-6.0, WO₄²⁻ 6.5-17.5, NaH₂PO₂ 15-40, and optionally ***H₃BO₃*** 30-60, (NH₄)₂SO₄ 60-65, or NH₄Cl 40-60 g/L with Ni²⁺:WO₄²⁻ mol ratio 1:(1.5-3.25). The Ni-Co-P alloys are deposited from similar aq. solns. contg. Ni²⁺ 2.5-8.0, Co²⁺ 2.5-8.0 g/L instead of WO₄²⁻, NaH₂PO₂, and optional components with Ni²⁺:Co²⁺ mol ratio 1:(0.5-2). All solns. and/or its alkali metal salts, and optionally a sulfonic acid R₁SO₃H and/or its alkali metal salts, where

R is H, OH, Cl, Me, CO₂H, and C(OH)(CO₂H)CH₂CO₂H; R₁ and R₂ are independently H, OH, and CH₂CO₂H; x is an integer ≥ 5; R₃ is H and CO₂H; and R₄ is CH₂CH, CH₂CHCH₂, and CH₂C(Me)CH₂. The alloy deposits on substrates are heat-treated in N at 250-400° for 1-2.5 h. Thus, Ni-Co-P and Ni-W-P alloy coatings on steel were obtained from the baths contg. different org. acids.

L10 ANSWER 8 OF 13 CA COPYRIGHT 2000 ACS

AN 109:51285 CA

TI Fatty acids or hydroxycarboxylic acids in integral multilayered analysis

elements for calcium determination in body fluids

IN Tanaka, Mitsutoshi; Katsuyama, Shunkai

PA Fuji Photo Film Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 63075563	A2	19880405	JP 1986-217938	19860918
AB In an integral multilayered anal. element consisting of a transparent, non-water permeable support layer, a reagent layer contg. Ca-binding, optically detectable indicator and a porous spreading layer in that order for Ca detn., fatty acids or their salts or hydroxycarboxylic acids or their salts are incorporated into layers above the reagent layer to avoid interference by albumin and other proteins. A multilayered test element consisted of a transparent polyethylene terephthalate film, a reagent layer contg. deionized gelatin, nonylphenoxy polyethoxyethanol, ***boric*** acid, o-cresolphthalein complexion and ***8*** -***hydroxyquinoline*** -5-sulfonic acid, an adhesive layer contg. deionized gelatin, nonylphenoxy polyethoxyethanol and TiO ₂ particles, a PET fabric layer, and a layer contg. Na polystyrene sulfonate, nonylphenoxy polyethoxyethanol, and Na oleate.				

L10 ANSWER 9 OF 13 CA COPYRIGHT 2000 ACS

AN 108:81823 CA

TI Bath preparations containing carboxylic acid and alkali metal salts

IN Takeshita, Kenjiro; Shiraishi, Naonori; Ito, Yasuo

PA Kankyo Tech K. K., Japan

SO Jpn. Kokai Tokkyo Koho, 2 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 62195321	A2	19870828	JP 1986-38032	19860221
AB A bath prepns. contains NaHCO ₃ , Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ in addn. to a carboxylic acid (***citric*** ***acid*** , tartaric acid, etc.) or ***oxin*** -5-sulfonic acid which prevents sedimentation of Al ³⁺ and alkali salt. A bath prepns. was prepnd. consisting of NaHCO ₃ 30-70, Na ₂ SO ₄ 5-15, K alum 5-40, succinic acid 1-5, tartaric acid 5-30, and ***H ₃ BO ₃ *** 1-3% by wt.				

L10 ANSWER 10 OF 13 CA COPYRIGHT 2000 ACS

AN 108:67929 CA

TI The effect of oxy acids and other compounds on atomic-absorption determination of magnesium in nonferrous alloys

AU Pilipyuk, Ya. S.; Ishchenko, V. B.; Soloshonok, V. V.; Pyatnitskii, I. V.

CS Kiev. Gos. Univ., Kiev, USSR

SO Ukr. Khim. Zh. (Russ. Ed.) (1987), 53(8), 847-51
CODEN: UKZHAU; ISSN: 0041-6045

DT Journal

LA Russian

AB The interfering effects were studied of acids, elements, reagents, and acidity on at. absorption detn. of Mg in nonferrous alloys using propane-butane-air flames. It is recommended that the sample should be dissolved by HNO₃ (in the presence of .1toreq.0.1% Sn, HNO₃ + HCl can be used). For samples contg. significant amts. of Cr, Sn, and Si, dissoln. by HNO₃ contg. ***boron*** fluoride is recommended. The successive detn. of Mg in the soln. should be done at const. acidity. As liberating agents, Sr or La nitrates should be used at 1 mg/mL. When the content of Al in the soln. was <0.01 mg/mL and the total salt content >0.5 g/50 mL, the suitable liberating agents included hydroxycarboxylic acids, Complexon III, and hydroxyquinoline. Mg should be detd. in alloys by using the std. addn. method since the effects of the matrix components are quite complex. The above recommendations were used for the detn. of Mg in brasses, bronzes, Zn-, Cu-, and Al-base alloys.

L10 ANSWER 11 OF 13 CA COPYRIGHT 2000 ACS

AN 106:98981 CA

TI Enzyme assays

IN Ben-Michael, Abraham

PA Savyon Diagnostics Ltd., Israel

SO Brit. UK Pat. Appl., 9 pp.

CODEN: BAXXDU

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	GB 2170600	A1	19860806	GB 1986-2197	19860129
	GB 2170600	B2	19890607		
	IL 74205	A1	19900118	IL 1985-74205	19850131
	DE 3601686	A1	19860821	DE 1986-3601686	19860117
	DE 3601686	C2	19930722		
	US 4849342	A	19890718	US 1986-823367	19860128
	FR 2576910	A1	19860808	FR 1986-1314	19860130
	FR 2576910	B1	19890728		
	JP 61181399	A2	19860814	JP 1986-19173	19860130
PRAI	IL 1985-74205		19850131		

AB Chem. compns. for stabilizing mixts. of chromogens and peroxides for enzyme assays contain I-V (R₁, R₂, R₃, R₄ = H, OH, lower alkyl, etc.; X = N, O, C, S; R₅, R₆, R₇, R₈ = H, lower alkenyl, NH₂, (un)substituted Ph, etc; R₉, R₁₀ = OH, lower alkenyl; R₁₁ = alkenyl; R₁₂ = (un)substituted azulene; R₁₃ = H, C₆H₄OH; Y, Z = O, N, S; R₁₄, R₁₅, R₁₆, R₁₇ = H, OH, lower alkyl). Reagent compns. contg. various ratios of water-miscible org. solvents to aq. buffers suitable for

intracellular and/or extracellular enzyme assays are presented. A reagent compn. for the detection of horseradish peroxidase in free soln. and in cell-bound form contains ***8*** - ***hydroxy-quinoline*** hemisulfate (stabilizer) 100, 4-chloro-1-naphthol (chromogen) 500, acetanilide 80, pyrophosphate 80, and nitrate 800 mg in 1 L of Tris buffer-DMSO mixt. where DMSO = 30-40% by vol.

L10 ANSWER 12 OF 13 CA COPYRIGHT 2000 ACS

AN 68:26557 CA

TI Determination of aluminum with ***8-hydroxy-quinoline*** .II. Precipitation in ammoniacal cyanide-EDTA solution

AU Claassen, A.; Bastings, L.; Visser, Jan

CS N. V. Philip's Gloeilampenfabrieken, Eindhoven, Neth.

SO Analyst (London) (1967), 92(1009), 618-21

CODEN: ANALAO

DT Journal

LA English

AB A general titrimetric method for detn. of 2-20 mg. of Al is described.***Citric*** ***acid***, NH₄OH, KCN, and Na₂SO₃ are added to the Al soln. followed by EDTA (di-Na salt) (I) and ***8*** - ***hydroxyquinoline***. The ppt. is filtered, washed, dissolved in HCl, and ***titrated*** with KBr. With l.toreq.0.1, 0.1-0.25, 0.25-0.5, or 0.5-1.0 g. Al, KCN 3, 3, 5, and 10 g. and 1, 2.5, 5, and 10 g. Na₂SO₃, resp., must be used to complex Al. The amt. of I (a min. be 10 times the wt. of Cd, Mn, Pb, Zn, and the rare earths plus 20 times the wt. of alk. earths and Mg present. For borosilicate glass (National Bureau of Standards 93), 1.02% Al is found for a certified value of 1.03%. Be, Bi, Ga, Hf, In, Nb, Sb (III), Sc, Th, U, V, Sr, and >1 mg. F- interfere. Interference by Cr and Ti can be prevented by procedure modifications.

L10 ANSWER 13 OF 13 CA COPYRIGHT 2000 ACS

AN 66:44330 CA

TI Preservative medium for cut flowers

IN Biggs, Percival R.

SO U.S., 3 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 3287104	-----	19661122	US	19631029

AB Title compns. contain 1000 to 2000 parts of sucrose, 10 to 20 parts of K₂SO₄, 5 to 50 parts of KH₂PO₄, traces of ***H₃BO₃*** , 4 to 17 parts of Na benzoate, 4 to 20 parts of Na₂S₂O₅, 4 to 20 parts of ***citric*** ***acid*** , and 4 to 17 parts of ***8*** - ***hydroxyquinoline*** K sulfate. For example, 20 parts of such a concentrate was added to 570 parts of H₂O. These components serve as a nutrient, as a source of K⁺, SO₄²⁻, and PO₄³⁻, for controlling the pH, as a source of B, as a fermentation and mold inhibitor, and for keeping the soln. clear. Such solns. are from 1.2 to 30 times as effective as plain H₂O, depending on the kind of cut flowers. Twenty-four well known flowers were used in the evaluation. An example of a useful compn. is as follows; 206 parts of sucrose, 2 parts of K₂SO₄, 3 parts of KH₂PO₄, 1.25 parts of Na benzoate, 1.5 parts of ***citric***

acid , 0.01 part of ***H3BO3***, 1.75 parts of Na2S2O5, and
1.6 parts of ***8*** -***hydroxyquinoline*** K sulfate.

=> log y

STN INTERNATIONAL LOGOFF AT 12:27:21 ON 22 SEP 2000