Finite Elements: examples 2

Colin Cotter

March 7, 2016

1. Let $(T_1, P_k, \mathcal{N}_{k,1})$ and $(T_2, P_k, \mathcal{N}_{k,2})$ be degree k Lagrange elements defined on two different triangles T_1 and T_2 . Show that there exists an affine (translation plus linear transformation) map $g: T_1 \to T_2$ such that $g^*N_{i,2} = N_{i,1}$ where $N_{i,1} \in \mathcal{N}_{k,1}$ and $N_{i,2} \in \mathcal{N}_{k,2}$ are corresponding pairs of dual basis functions and

$$(g^*N_{i,2})[u(x)] = N_{i,2}[u(g(x))].$$

- 2. Suppose that Ω is any bounded domain, k, m > 0 integers with $k \leq m$, and $1 \leq p < \infty$. Show that $W_p^m(\Omega) \subset W_p^k(\Omega)$.
- 3. Suppose that Ω is any bounded domain, k > 0 an integer, and $1 \le p_0 \le p_1 \le \infty$ are integers. Show that $W_{p_1}^k(\Omega) \subset W_{p_0}^k(\Omega)$.
- 4. Let α be an arbitrary multi-index, $\psi \in C^{|\alpha|}(\Omega)$. Show that $D_w^{\alpha}\psi = D^{\alpha}\psi$.
- 5. Let Δ be the triangle with vertices (x_i, y_j) , (x_{i+1}, y_j) , (x_i, y_{j+1}) , with $x_i = hi$, $y_j = hj$. Define a transformation g from the reference element K with vertices (0,0), (1,0) and (0,1) to K, and show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy = \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0, 0) + \bar{u}(1, 0) \right|^2 d\xi d\eta,$$

where $\bar{u} = u \circ g$, ξ and η are the coordinates on K, and \mathcal{I}_{Δ} is the interpolation operator from $H^2(\Delta)$ onto linear polynomials defined on Δ .

6. From the previous question, apply integration by parts repeatedly and use the Schwarz inequality to obtain

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le C \int_{K} \left| \frac{\partial^2 \bar{u}}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 \bar{u}}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

Hence show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le Ch^2 \int_{\Delta} \left| \frac{\partial^2 u}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 u}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

7. Consider a triangulation \mathcal{T} of points x_i and y_j arranged in squares as above, with each square subdivided into two right-angled triangles. Explain how to use this result to obtain

$$||u - \mathcal{I}_{\mathcal{T}}||_E \le ch|u|_{H^2(\Omega)},$$

where

$$||f||_E = \int_{\Omega} \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 dx dy, \quad |u|_{H^2(\Omega)}^2 = \int_{\Omega} \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + \left(\frac{\partial^2 u}{\partial xy}\right)^2 + \left(\frac{\partial^2 u}{\partial y^2}\right)^2 dx dy.$$

8. Let \mathcal{T} be a triangulation of a polygonal domain $\Omega \in \mathbb{R}^2$. Let f be a P_k Lagrange finite element function on \mathcal{T} . Show that the weak first derivatives of f exist.

1