1

DC Amplifier

Buereddy Varuni*

A DC amplifier has an open loop gain of 1000 and two poles, a dominant one at 1kHz and a high frequency one whose location can be controlled. It is required to connect this amplifier in a negative feedback loop that provides a DC closed loop gain of 10 and a maximally flat response.

1. Find the required value of *H*.

Solution: Table 1 summarises the given information. The open loop gain can be expressed as

$$G(s) = \frac{G_0}{\left(1 + \frac{s}{n_1}\right)\left(1 + \frac{s}{n_2}\right)}$$
(1.1)

$$\implies G(0) = G_0 \tag{1.2}$$

The closed loop gain

$$T(s) = \frac{G(s)}{1 + G(s)H}$$
 (1.3)

$$\implies T(0) = \frac{G_0}{1 + G_0 H} \tag{1.4}$$

Substituting from Table 1,

$$\frac{1000}{1 + 1000H} = 10\tag{1.5}$$

$$\implies H = 0.099 \tag{1.6}$$

Parameter	Value
de open loop gain G_0	1000
dominant pole p_1	1000Hz
insignificant pole	p_2
dc closed loop gain $T(0)$	10

TABLE 1: 1

$$G_0 = 1000 (1.7)$$

Therefore.,
$$G(s) = \frac{1000}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})}$$
 (1.8)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

2. Find p_2 .

Solution: From (1.3) and (1.1),

$$T(s) = \frac{p_1 p_2 G_0}{s^2 + (p_1 + p_2)s + (HG_0 + 1)p_1 p_2}$$
(2.1)

$$=\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{2.2}$$

$$\omega_{n} = \sqrt{(HG_{0} + 1)p_{1}p_{2}}$$

$$\zeta = \frac{p_{1} + p_{2}}{2\sqrt{(HG_{0} + 1)p_{1}p_{2}}}$$
(2.3)

using the standard forumulation for a second order system. Also, for maximally flat response, the quality factor

$$Q = \frac{1}{2\zeta} = \frac{1}{\sqrt{2}}$$
 (2.4)

$$\implies \zeta = \sqrt{2} \tag{2.5}$$

$$\implies \frac{p_1 + p_2}{2\sqrt{(HG_0 + 1)p_1p_2}} = \sqrt{2} \qquad (2.6)$$

$$\implies \sqrt{\frac{p_1}{p_2}} + \sqrt{\frac{p_2}{p_1}}$$

$$= 2\sqrt{2(HG_0 + 1)} \quad (2.7)$$

The above equation is of the form

$$x + \frac{1}{x} = 2a \tag{2.8}$$

$$\implies x = a \pm \sqrt{a^2 - 1} \tag{2.9}$$

Substituting

$$x = \sqrt{\frac{p_2}{p_1}} \tag{2.10}$$

$$a = \sqrt{2(HG_0 + 1)},\tag{2.11}$$

$$p_2 = p_1 \left\{ \sqrt{2 \left(HG_0 + 1 \right)} \pm \sqrt{2 \left(HG_0 + 1 \right) - 1} \right\}^2$$
(2.12)

The following code computes the values

codes/ee18btech11005/ee18btech11005 1.py

3. Obtain G(s) and T(s)

Solution: Substituting the value of p_2 in (1.1) and (2.1),

$$G(s) = \frac{1000}{(1 + \frac{s}{2\pi 10^3})(1 + \frac{s}{1.244x10^6})}$$

$$T(s) = \frac{10}{0.128x10^{-11}s^2 + 1.599x10^{-6}s + 1}$$
(3.2)

4. Verify from the Bode plot of above closed loop transfer function that it has maximally flat response.

Solution: The following code generates the bode plot of the transfer function in Fig. 4.

codes/ee18btech11005/ee18btech11005_2.py

Fig. 4

5. Find the step response of T(s)

Solution: The following code generates the desired response of in Fig. 5.

codes/ee18btech11005/ee18btech11005_3.py

6. Design a circuit that represents the above transfer function.

Solution: The circuit can be designed using an operational amplifiers having negative feedback. Consider the circuit shown in figure 6:1. Assume the gain of all the amplifiers are large. And assume no zero state response. Take the parameters in s-domain.

For the first amplifier..., Applying KCL at

Fig. 5

Fig. 6: 1

node A., Since, the opamp has large gain, potential at node A is assumed to be zero due to virtual short at node A.

$$\frac{0 - V_{in}(s)}{R_1} + \frac{0 - V_1(s)}{R_2} = 0 \tag{6.1}$$

$$\frac{V_{in}(s)}{R_1} = \frac{V_1(s)}{R_2} \tag{6.2}$$

$$\implies V_{in} = -\frac{V_1(s)R_1}{R_2} \qquad (6.3)$$

For the second amplifier.., Applying KCL at node B.., Similarly potential at node B is zero.

$$\frac{-V_1(s)}{R} + \frac{-V_2(s)}{R} - sCV_2(s) + \frac{-V_{out}(s)}{R} = 0$$
(6.4)

$$\frac{-V_1(s)}{R} + \frac{-V_2(s)}{R} - sCV_2(s) = \frac{V_{out}(s)}{R}$$
 (6.5)

$$\frac{-V_1(s)}{R} = V_2(s) \left[sC + \frac{1}{R} \right] + \frac{Vout(s)}{R}$$
 (6.6)

For the third amplifier.., Potential at node C is zero(Due to high gain of amplifier). Applying

KCL at node C.

$$\frac{-V_2(s)}{R} + \frac{-V_3(s)}{R} = 0 ag{6.7}$$

$$\implies V_2(s) = -V_3(s) \tag{6.8}$$

For the Fourth amplifier., Potential at node D is zero. Applying KCL at node D.

$$\frac{-V_3(s)}{R} + sC_1(-V_{out}(s)) = 0 ag{6.9}$$

$$V_3(s) = -sC_1 R V_{out}(s) (6.10)$$

From equation. 6.10 and equation. 6.8..,

$$V_2(s) = sC_1RV_{out}(s)$$
 (6.11)

Substituting the equation.6.6 and equation.6.11,

$$\frac{-V_1(s)}{R} = (s^2 C_1 C R + s C_1) V_{out}(s) + \frac{V_{out}(s)}{R}$$
(6.12)

$$V_1(s) = -(s^2 C_1 C R^2 + s C_1 R + 1) V_{out}(s)$$
(6.13)

from equation.6.3 and equation.6.13.

$$V_1(s) = \frac{R_1}{R_2} (s^2 C_1 C R^2 + s C_1 R + 1) V_{out}(s)$$
(6.1)

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{R_2}{R_1(s^2C_1CR^2 + sC_1R + 1)}$$
 (6.15)

Comparing equation.3.3 and equation.6.15

$$\frac{R_2}{R_1} = 10 \tag{6.16}$$

$$C_1 C R^2 = 0.128 x 10^{-11} (6.17)$$

$$C_1 R = 1.599 x 10^{-6} F (6.18)$$

Let.,
$$R = 1000\Omega$$
 (6.19)

$$\implies C_1 = 1.599x10^{-9} \tag{6.20}$$

and.,
$$C_1CR^2 = 0.128x10^{-11}$$
 (6.21)

$$\implies C = 0.8005x10^{-9}F \tag{6.22}$$

Let..,
$$R_1 = 100\Omega$$
 (6.23)

$$\implies R_2 = 1000\Omega \tag{6.24}$$

From Table.6:1. The Final circuit is shown in figure.6

Parameter	Value
R_1	100 Ω
R_2	1000 Ω
R	1000 Ω
С	0.8005 nF
C_1	1.599 nF

TABLE 6: 1

Fig. 6: 1