

ELEC-E8121: Networked Control of Multi-agent Systems

Communication structure design

Dominik Baumann

Office number: 2569, Maarintie 8

dominik.baumann@aalto.fi

Mar. 26, 2025

In the previous lecture...

We

- Described the synchronization problem
- Designed synchronizing controllers
- Derived the synchronization condition
- Analyzed whether or not agents are synchronizable

Follow-up from last week

■ In the last lecture, we defined the Laplacian as

$$L = \begin{pmatrix} \ell_{11} & \ell_{12} \\ \ell_{21} & L_{22} \end{pmatrix}$$

- I then claimed that it can be shown that the eigenvalues of $\tilde{L}_{22} = L_{22} \mathbb{1}\ell_{12}$ are equal to the eigenvalues $\lambda_2(L), \ldots, \lambda_N(L)$
- I have uploaded a new version of the slides from Lecture 5 where I added a proof of this in the appendix
- We can go through this proof at the end of this lecture for those who are interested

Learning outcomes

By the end of this lecture, you should be able to

- Describe the problem of designing communication structures for networked controllers
- Design communication structures for networked controllers
- Describe design objectives of controllers for vehicle platooning
- Name conditions for controllers and communication structures that meet these objectives

Reference

Chapter 5 of J. Lunze. Networked Control of Multi-Agent Systems. Edition MoRa, 2019

Introduction

- In a networked system, we may have various communication structures
- We know that for synchronization and consensus, we need a spanning tree
- In this lecture, we discuss more in detail what communication structure is required to ensure a satisfactory overall system behavior
- We here consider leader-follower problems and platooning as a concrete example

General goals of our control design

- G1 Stability. The overall system should be asymptotically stable
- **G2 Asymptotic set-point following.** All agents should asymptotically reach the reference point (set by the leader)
- G3 Quick transient behavior. The transient behavior should be as short as possible

Problem

How does the behavior of the agents within the overall system depend upon the agent dynamics and the communication structure?

- Just trying out possible solutions is challenging:
 - Number of possible communication structures increases exponentially with the number of agents
 - The dynamical order of the overall system increases linearly with the number of agents
 - Also potential scenarios like combinations of initial states and set-points increases with the number of agents
- → We need a more principled approach

Principled solution

- When there are many parameters, we often try to cast problems as optimization problems
- In this problem, we would have integer variables (is there a communication link or not), and continuous variables representing the local controllers of agents
- ightarrow The complexity of such mixed-integer programming problems again increases exponentially with the number of agents...
 - To circumvent this, we introduce an abstract model of the multi-agent system
- We have controlled agents $\bar{\Sigma}^i$, consisting of the agent P^i and a local controller K^i
- Each agent introduces a delay (Agent 1 sends information at time k, Agent 2 receives it at time k + 1, Agent 3 at time k + 2, ...)
- We can then represent the model as a directed graph where the delay measures are the labels on the edges
- We can then rephrase the problem as searching the shortest path in a weighted directed graph

High-level algorithm

Input
$$P^{i} = (\Phi^{i}, \Gamma^{i}, C^{i}, K^{i}), i = 0, 1, ..., N$$
, Goals **G1**, **G2**, **G3**

- Step 1 Design of local controllers. Design the local controllers K^i such that the controlled agents $\bar{\Sigma}^i$ achieve **G1** and **G2**
- Step 2 Communication structure design. Determine the communication structure $A_{\mathcal{G}}$ such that the overall system achieves **G3**

Output Networked controller

Communication structure

- As before, we represent the communication structure with a directed graph $G = (\mathcal{V}, \mathcal{E})$ with nodes \mathcal{V} and edges \mathcal{E}
- We define Node 0 to be the leader P^0
- We assume a normalized adjacency matrix $\hat{A}_{\mathcal{G}}$, i.e.,

$$\sum_{i=0, j \neq i}^{N} \hat{a}_{ij} = 1, \quad i = 1, 2, \dots, N$$

- We consider cycle-free graphs
- We assume that the agents are ordered such that $\hat{A}_{\mathcal{G}}$ is lower triangular (i.e., $\hat{a}_{ij} = 0$ if $i \leq j$)
- We further require that a spanning tree exists, which implies $\hat{a}_{10} = 1$ and for any i, we have some j such that $\hat{a}_{ij} \neq 0$

Which of the following is the best communication structure?

Model

In general, we adopt the same model as we did before,

$$x_{k+1}^{i} = \Phi^{i} x_{k}^{i} + \Gamma^{i} u_{k}^{i}$$
$$y_{k}^{i} = C^{i} x_{k}^{i}$$

- We could now again use a proportional controller
- → We already saw that this does not work for the platooning example
- Let's go directly for the PI-controller

$$u_{k}^{i} = -K_{I}^{i} \sum_{\kappa=0}^{K} (y_{\kappa}^{i} - y_{\kappa}^{s,i}) - K_{P}^{i} (y_{k}^{i} - y_{\kappa}^{s,i}),$$

where

$$y_k^{s,i} = \sum_{i=0}^{i-1} \hat{a}_{ij} y_k^j$$

Unified model

■ Defining $e_k^i := y_k^{s,i} - y_k^i$, we can rewrite this model as

$$\bar{x}_{k+1}^{i} = \underbrace{\begin{pmatrix} \Phi^{i} & K_{\mathbf{I}}^{i} \Gamma^{i} \\ 0 & 0 \end{pmatrix}}_{\Phi^{0,i}} \bar{x}_{k}^{i} + \underbrace{\begin{pmatrix} K_{\mathbf{P}}^{i} \Gamma^{i} \\ 1 \end{pmatrix}}_{\Gamma^{0,i}} \mathbf{e}_{k}^{i}$$

$$y_{k}^{i} = \underbrace{\begin{pmatrix} C^{i} & 0 \end{pmatrix}}_{C^{0,i}} \bar{x}_{k}^{i}$$

Here, we defined the extended state

$$ar{x}_k^i = egin{pmatrix} x_k^i \ \sum\limits_{\kappa=0}^k e_\kappa^i \end{pmatrix}$$

Model in terms of the reference trajectory

- For analysis purposes, it is convenient to rewrite the model in terms of the reference trajectory
- We had the equation

$$\bar{x}_{k+1}^i = \Phi^{0,i} \bar{x}_k^i + \Gamma^{0,i} e_k^i$$

■ Inserting $e_{k}^{i} = y_{k}^{s,i} - y_{k}^{i} = y_{k}^{s,i} - C^{0,i}\bar{x}_{k}^{i}$, we get

$$\bar{x}_{k+1}^{i} = \underbrace{(\Phi^{0,i} - \Gamma^{0,i}C^{0,i})}_{\bar{\Phi}^{i}} \bar{x}_{k}^{i} + \underbrace{\Gamma^{0,i}}_{\bar{\Gamma}^{i}} y_{k}^{s,i}$$
$$y_{k}^{i} = \underbrace{C^{0,i}}_{\bar{c}^{i}} \bar{x}_{k}^{i}$$

13/38

ELEC-E8121: Networked Control of Multi-agent Systems

Set-point following

Let us assume that the local controllers are designed such that the controlled agents are stable and have integrator dynamics

Lemma: set-point following in cycle-free networked systems

Consider controlled agents $\bar{\Sigma}^i$ under the assumption above. The overall system satisfies the control goals **G1** and **G2** if the communication graph \mathcal{G} is cycle-free and includes a spanning tree with root node 0.

Proof by induction

- The first agent directly gets the reference trajectory and is asymptotically stable, i.e., we have $\lim_{k\to\infty} |y_k^1 y_k^{\text{ref}}| = 0$
- **Assume this holds for the first** n **agents. We need to prove it also holds for** n+1
- We assumed a lower triangular adjacency matrix. Thus,

$$y_k^{s,n+1} = \sum_{j=1}^n \hat{a}_{n+1,j} y_k^j + \hat{a}_{n+1,0} y_k^{\text{ref}}$$

 \blacksquare Because of the induction assumption, all agents until n are synchronized. Thus,

$$\lim_{k \to \infty} \left| y_k^{s,n+1} - y_k^{\text{ref}} \right| = \lim_{k \to \infty} \left| \sum_{j=0}^n \hat{a}_{n+1,j} y_k^{\text{ref}} - y_k^{\text{ref}} \right|$$
$$= \lim_{k \to \infty} \left| \left(\sum_{j=0}^n \hat{a}_{n+1,j} - 1 \right) y_k^{\text{ref}} \right| = 0$$

■ This holds because the adjacency matrix is normalized, i.e., rows sum to 1

Implications

- The lemma has two important consequences
 - The controlled agents need to be asymptotically stable and have integrator dynamics. This we can achieve for each agent individually using classical controller design methods
 - Under this condition, any communication structure fulfills G1 and G2 as long as the graph is cycle-free and has a spanning tree
- \rightarrow We still have a lot of freedom in how to design the communication structure

ELEC-E8121: Networked Control of Multi-agent Systems

This freedom we will need to satisfy G3

Delays: series connection

- Transferring information in a networked system introduces a delay
- For a series connection, the delay increases by 1 for each node
- The delay corresponds to the time constant of the physical system and could also include communication delay
- Defining the delay Δ as the time $k \to k+1$, we can say that for N agents in series, the delay until the last agent learns about the reference trajectory is $N\Delta$

Delays: parallel connection

- Parallel connections are a bit more tricky
- We have defined $y_k^{\mathrm{s},i} = \sum_{j=0}^{i-1} \hat{a}_{ij} y_k^j$
- In the example, Node 4 computes $y_k^{s,i}$ as a weighted sum of its inputs
- ightarrow Also the delay gets weighted by \hat{a}_{ij}
- \rightarrow In general, the total delay at Node i for a parallel connection is $\Delta^i + \sum_{j=1}^N \hat{a}_{ij} \Delta^j_{\text{ref}}$, where Δ^j_{ref} is the delay with which Node j receives the reference signal

Exercise: compute the delays for each node

Solution

Communication structure design

We can now collect the individual and cumulative delays in vectors

$$\Delta_{cum} = \begin{pmatrix} \Delta_{ref}^1 \\ \Delta_{ref}^2 \\ \vdots \\ \Delta_{ref}^N \end{pmatrix}, \quad \Delta_{ind} = \begin{pmatrix} \Delta^1 \\ \Delta^2 \\ \vdots \\ \Delta^N \end{pmatrix}$$

■ Defining $\hat{A}_{\mathcal{G}F}$ as the normalized adjacency matrix where we deleted the row for the leader (as the leader does not have any delay), we can write the delay as

$$\begin{split} \Delta_{cum} &= \hat{A}_{\mathcal{G}F} \Delta_{cum} + \Delta_{ind} \\ &= (I - \hat{A}_{GF})^{-1} \Delta_{ind} \end{split}$$

Now, we can formulate the communication structure design as an optimization problem, e.g., minimize the overall delay in the network:

$$\min J(\hat{A}_{GF}) = \min \sum \Delta_{\text{cum}} = \min \mathbb{1}^{\text{T}} (I - \hat{A}_{GF})^{-1} \Delta_{\text{ind}}$$

Solving the optimization problem

- In the simplest case, we could solve the minimization problem by letting the leader directly communicate with all agents
- In practice, we may now need to include constraints (certain agents may not be able to communicate with each other for technical reasons)
- Then, we are left with a static optimization problem
- The dynamics of the agents are not part of the optimization
- → This drastically reduces the complexity

Example: distance control of vehicle platoons

- Modern vehicles often have adaptive cruise controllers (ACC)
- Should keep distance between vehicles in a platoon constant and avoid collisions in (ideally) all possible traffic situations
- Measurements are typically distance to and potentially velocity of the preceding vehicle
- By introducing car-to-car communication, we can extend this to cooperative adaptive cruise controllers (CACC)

Problem setting

- We have the controlled vehicles V^i , consisting of the vehicles P^i and the local controllers K^i
- All vehicles have a local reference velocity $v_k^{s,i}$ as input and measure their current velocity v_k^i
- \blacksquare An additional output for each vehicle is the distance d_k^i from its predecessor
- For ACC, the reference signal is always the velocity of the preceding vehicle, $v_k^{s,i} = v_k^{i-1}$, where $v_k^{s,0} = v_k^{ref}$
- For CACC, the local reference depends on the communication structure:

$$v_k^{\mathrm{s},i} = \sum_{j=0}^{i-1} \hat{a}_{ij} v_k^j$$

→ We could interpret ACC as a networked controller where vehicles can only communicate with their physical neighbors

Performance requirements for platooning

- R1 Stability of the overall system
 - For this, we need that each individual vehicle is stable
- R2 Asymptotic synchronization

$$\lim_{k\to\infty}\left|v_k^{\text{ref}}-v_k^i\right|=0,\quad i=0,1,\ldots,N$$

R3 Time-headway spacing (inter-vehicle distance should increase if velocity increases)

$$d_k^{\text{ref},i} = \alpha^i + \beta^i v_k^i, \quad i = 1, 2, \dots, N$$

R4 Collision avoidance

$$d_k^i \geq \alpha^i \quad \forall k \geq 0, \quad i = 1, 2, \dots, N$$

R5 Continuous progression (no backward driving)

$$v_k^i \geq 0 \quad \forall k \geq 0, \quad i = 0, 1, \dots, N$$

Discussion of the requirements

- Requirements R1 and R2 are basically the same as the control objectives G1 and G2
- ightarrow We can satisfy them using the PI-controller we already introduced
- Here, we will focus mainly on R3 to R5
- We will see that **R3** is directly related to **G3**, i.e., the communication structure design
- **R4** and **R5** are additional specifications, that extend the control objectives we stated before

R3: time-headway spacing

■ We want to achieve that, for all $k \ge 0$ and all vehicles

$$\mathbf{d}_{k}^{i} = \alpha^{i} + \beta^{i} \mathbf{v}_{k}^{i}$$

■ If we assume that it is satisfied at k = 0, we only need that

$$d_{k+1}^i = d_k^i + \beta^i (v_{k+1}^i - v_k^i) \quad \forall k > 0$$

■ We know that $d_k^i = s_k^{i-1} - s_k^i$. Therefore,

$$d_{k+1}^i pprox d_k^i + (v_k^{i-1} - v_k^i)T_{\mathrm{s}}$$

Thus, we need

$$v_{k+1}^i = v_k^i + \frac{1}{\beta^i} (v_k^{i-1} - v_k^i) T_s$$

→ This we can achieve with an ACC already!

Impact of delays

- We already discussed that the network structure introduces a delay
- In an acceleration maneuver, it takes some time until following vehicles become aware of the change and increase their speed
- Thus, the distance between vehicles will increase during the transient
- In a braking maneuver, the distance will decrease, which might lead to an accident
- For reaching asymptotic time-headway spacing with ACC, we need $\beta^i = \Delta^i$ for all vehicles

R3 with CACC

- What happens if $\Delta^i > \beta^i$? Can we improve the situation with CACC?
- If we already know in advance that the leader is braking, not only when we see the delayed response of the preceding vehicle, we might be able to react faster
- Let us investigate the asymptotic distance between vehicles
- As the entire system is stable, we have $\lim_{k\to\infty} v_k^0 = \bar{v}$
- Then, we can look at the distance of vehicle *i* from the leader:

$$\lim_{k\to\infty} d_k^{i,0} = \sum_{j=1}^i \alpha^j + \Delta^{i,0} \bar{v}$$

 \blacksquare For the distance between Vehicles *i* and i-1, we can now write

$$\lim_{k\to\infty}\tilde{\mathbf{d}}_k^i=\lim_{k\to\infty}(\mathbf{d}_k^{i,0}-\mathbf{d}_k^{i-1,0})=(\Delta^{i,0}-\Delta^{i-1,0})\bar{\mathbf{v}}$$

 \rightarrow We need $\Delta^{i,0} - \Delta^{i-1,0} = \beta^i$

Delay for CACC

We discussed delays for different communication structures and found that

$$\Delta^{i,0} = \Delta^i + \sum_{j=0}^{i-1} \hat{a}_{ij} \Delta^{j,0}$$

Thus, we have

$$\lim_{k\to\infty} \tilde{\boldsymbol{a}}_k^i = \underbrace{\left(\Delta^i - \Delta^{i-1} + \sum_{j=0}^{i-1} \hat{\boldsymbol{a}}_{ij} \Delta^{j,0} - \sum_{j=0}^{i-2} \hat{\boldsymbol{a}}_{i-1,j} \Delta^{j,0}\right)}_{\frac{1}{k}\beta^i} \bar{\boldsymbol{v}}$$

Time-headway spacing with CACC

- We can now design the communication structure (i.e., the normalized adjacency matrix $\hat{A}_{\mathcal{G}}$) such that all vehicles satisfy **R3** even if for some i we have $\Delta^i > \beta^i$
- The design implies that

$$\Delta^{i,0} = \sum_{j=1}^{i} \beta^{j}$$

■ Using this and $\Delta^{i,0} = \Delta^i + \sum_{j=0}^{i-1} \hat{a}_{jj} \Delta^{j,0}$ from before, we can write

$$\sum_{j=1}^{i} \beta^{j} - \Delta^{i} \stackrel{!}{=} \sum_{j=1}^{i-1} \hat{a}_{ij} \Delta^{j,0}, \quad i = 1, 2, \dots, N$$

■ Then, we end up with two conditions for the delays:

$$eta^1 = \Delta^1$$
 $eta^i \le \Delta^i \le \sum_{j=1}^i eta^j, \quad i = 2, 3, \dots, N$

Time-headway spacing with CACC

- From these equations, we can get an algorithm for designing the adjacency matrix
- We start with $\hat{a}_{10} = 1$
- Next, we set

$$\hat{a}_{i\ell^{i}} = rac{\sum_{j=\ell^{i}}^{i}eta^{j} - \Delta^{i}}{eta^{\ell^{i}}}, \quad i = 2, 3, \dots, N$$
 $\hat{a}_{i,\ell^{i}-1} = 1 - \hat{a}_{i\ell^{i}}, \qquad \qquad i = 2, 3, \dots, N$
 $\hat{a}_{ij} = 0, \qquad \qquad j \neq \ell^{i}, j \neq \ell^{i} - 1$

lacktriangle Where we choose the indices ℓ^i such that we satisfy

$$0 \le \sum_{j=\ell^i}^{l} \beta^j - \Delta^i \le \beta^{\ell^i}, \quad i = 2, 3, \dots, N$$

- ightarrow We can satisfy the conditions using only two communication links to each vehicle
- The last inequality tells us from which other vehicle each vehicle needs information

Collision avoidance and positive velocities

- We can define the vehicle model as one with two outputs: the current velocity and the distance to the vehicle in front of it
- Both should be positive at all times
- This is captured by the notion of externally positive systems

Definition: externally positive systems

A linear system is said to be *externally positive* if for zero initial state its output is non-negative for every non-negative input:

$$u_k \geq 0, \ k \geq 0 \implies y_k \geq 0, \ k \geq 0.$$

- If each vehicle is externally positive with respect to the output v_k^i , it is also externally positive with respect to \tilde{d}_k^i
- If we use ACC and all vehicles are externally positive, we satisfy R4 and R5
- For CACC, the condition is a bit more involved: we need that also the transfer function of the platoon represents an externally positive system

Example: platoon with identical vehicles

- Let's try to design a suitable controller and communication structure for a platoon with identical vehicles
- For identical vehicles, we can assume $\beta^i = \beta$ and $\Delta^i = \Delta$ for all i
- We assume $\beta < \Delta \leq 2\beta$
- → We need CACC to make this happen
- Before, we stated that to satisfy R3, we need

$$0 \le \sum_{j=\ell^i}^i \beta^j - \Delta^i \le \beta^{\ell^i}, \quad i = 2, 3, \dots, N$$

■ For our example, choosing $\ell^i = i - 1$, this translates to

$$0 \le 2\beta - \Delta \le \beta$$

Example: platoon with identical vehicles

■ We then get the local reference signals

$$v_k^{s,1} = v_k^0$$

 $v_k^{s,i} = \hat{a}_1 v_k^{i-1} + \hat{a}_2 v_k^{i-2}, \quad i = 2, 3, \dots, N$

Where the coefficients are

$$\hat{a}_1 = \hat{a}_{i,i-1} = 2 - \frac{\Delta}{\beta}$$
 $\hat{a}_2 = \hat{a}_{i,i-2} = \frac{\Delta}{\beta} - 1$

- Note that this satisfies also our normalization condition: $\hat{a}_1 + \hat{a}_2 = 1$
- Given a proper controller, this suffices to meet all our control objectives

Example: platoon with identical vehicles

Learning outcomes

By the end of this lecture, you should be able to

- Describe the problem of designing communication structures for networked controllers
- Design communication structures for networked controllers
- Describe design objectives of controllers for vehicle platooning
- Name conditions for controllers and communication structures that meet these objectives

Feedback

Feedback

Please leave some feedback for today's lecture: https://presemo.aalto.fi/nmas

