A Meta-Analysis Approach for Feature Selection in Network Traffic Research

Daniel C. Ferreira, Félix Iglesias Vázquez, Gernot Vormayr, Maximilian Bachl, <u>Tanja Zseby</u>

Institute of Telecommunications TU Wien

Network Traffic Analysis

Feature Selection:

Select most suitable features

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \end{bmatrix}$$

Well-chosen Features → Simplified Analysis

Agree to Disagree

Source: Iglesias, Zseby: "Analysis of network traffic features for anomaly detection"; Machine Learning, **101** (2015), 1; 59 - 84.

Why a Meta Analysis?

- Meta-Analysis common in other disciplines
 - Structures the state of art
 - Combines existing results
 - Identifies agreements/disagreements in the community
 - Provides basis for gap analysis
- Provides information about
 - Availability of data and tools
 - Parameter settings
 - Validation Methods
 - Terminology and notation
- → Supports reproducibility and comparability

Data Structure

Example: Features

- Base features
- Operations on base features
- Flow keys

Standard IPFIX Information Element

Example: Data Set

```
"data": {
"datasets": [
    "dataset_name": "mawi-2015",
    "availability": "public", ←
                                         Dataset available
    "format": "packet",
    "types": "ip",
    "generation": "captured",
    "generation_year": 2015,
    "covered_period": "minutes",
    "details": ["raw", "no_payload"],
    "subsets": ["01-01-2015","15-04-2015","31-07-2015"]
```

Example: Algorithms

```
"algorithms": [
     "name": "fuzzy clustering",
     "subname": "gustafson-kessel",
     "learning": "unsupervised",
     "role": "main".
     "type": "clustering",
     "metric/decision_criteria": "mahalanobis",
     "tools": [
          "tool": "matlab_fuzzyclusteringtoolbox",
          "detail": "none",
          Link to tools provided
     "source": "referenced", <
     "parameters_provided": false 👡
                                         Parameters not
 },
                                         provided
```


Initial Results

71 Papers from years 2005 to 2017

Analysis Chain

Initial Results

- Flow Definitions
 - 64.6% of papers that define a flow-key use classical 5-tuple {sIP, dIP, sPort, dPort, Protocol}
 - 70.8% use bi-directional flows
 - 83.1% use flow-based features
- Data Sets
 - 46.5% use at least one public data set
- Most Common Features
 - Number of papers that use a specific base feature
 - Number of papers weighted with their citations log₁₀(citations)

Most Recurrent Base Features

Features		Features	
(recurrences)	score ¹	(citations)	$score^2$
octetTotalCount	5.8	octetTotalCount	4.6
packetTotalCount	3.9	ipTotalLength	3.9
flowDurationMilliseconds	3.1	destination Transport Port	3.5
ipTotalLength	2.7	source Transport Port	3.0
destination Transport Port	2.5	flowDurationMilliseconds	2.6
destinationIPv4Address	2.4	packetTotalCount	2.3
sourceIPv4Address	2.3	destinationIPv4Address	2.3
source Transport Port	2.0	sourceIPv4Address	2.3
protocolIdentifier	2.0	protocolIdentifier	2.2
_interPacketTime μs	2.0	_server_to_client	2.2
_server_to_client	1.5	_client_to_server	2.2
_client_to_server	1.5	_interPacketTime <i>µs</i>	1.8

Summary

- Meta Analysis for Network Traffic Analysis
 - Supports comparability and reproducibility
 - Focus on feature selection, but much more information collected
- JSON files
 - Structured, searchable state of art
 - Fast extraction of relevant information from papers
- Initial results
 - Most common features
 - Flow definitions
 - Usage of public data sets
- Data allows for many further analysis opportunities

Discussion

- Manual data curation → Errors
 - Involve authors (check and correct)
- Analysis just shows "preferred" features, methods
 - → not necessarily the best!
- Incentives to fill data base
 - Conferences can require to add accepted papers
 - Students can add data when exploring state of art
 - Searchable data base may increase citations for papers included
- All data, documentation, paper data base available at: www.cn.tuwien.ac.at/meta

Thank you!

Contact: tanja.zseby@tuwien.ac.at

