\triangleright Need to jack up β_1

* How about using a keep-alive resistor?

Darlington with Keep-Alive Resistor R

ac Midband Equivalent of Q₂-R Combination

Simplified Equivalent of Q₂-R Combination

- \triangleright R drains a constant DC current of $\sim 0.7/R$
- This current is supplied by Q_1 , along with I_{B2} $\Rightarrow I_{C1} \uparrow \Rightarrow \beta_1 \uparrow$
- \triangleright However, this technique also changes β_2
- > Analysis:

$$\begin{split} i_b &= Ri/(R + r_{\pi 2}) \\ \Rightarrow i_c &= \beta_2 i_b = \beta_2 Ri/(R + r_{\pi 2}) = g_{m2} r_{\pi 2} Ri/(R + r_{\pi 2}) \\ &= g_{m2} (R||r_{\pi 2}) i = g_{m2} R_{eff} i = \beta_{eff} i \\ \beta_{eff} &= g_{m2} R_{eff} < \beta_2 \qquad (R_{eff} = R||r_{\pi 2}) \end{split}$$

 \triangleright Note: $r_{E2,eff} = R_{eff}/\beta_{eff} = 1/g_{m2} = r_{E2}$ (unchanged)

• npn Cascode:

- > CE, followed by CB
- ➤ Known as *Wideband*Amplifier, due to its

 superior frequency

 response characteristic

ightharpoonup Generally, both Q_1 and Q_2 are biased with the same I_C

 \triangleright Assuming Q_1 - Q_2 have same β :

$$r_{E1} = r_{E2} = r_{E}$$
 and $r_{\pi 1} = r_{\pi 2} = r_{\pi}$

- > This circuit can be analyzed by inspection
- \triangleright R_i = r_{\pi1}
- $> v_0/v_b = +g_{m2}R_L = R_L/r_{E2} (CB Stage)$
- $> v_b/v_i = -r_{E2}/r_{E1} = -1$
 - CE Stage with R_i of Q_2 (= r_{E2}) as its load
- \triangleright Thus, $A_v = v_0/v_i = -R_L/r_{E2}$
- Note that A_v is same as that for a CE stage, however, the bandwidth of this circuit is far superior than a CE stage