

Data Sheet

VT8235M Version CD South Bridge

Revision 2.03 March 16, 2005

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2002-2005 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8235M may only be used to identify products of VIA Technologies.

is a registered trademark of VIA Technologies.

AMD-K7™ and Athlon™ are registered trademarks of Advanced Micro Devices.

Celeron™, Pentium™, Pentium III™, Pentium III™, Pentium 4™, MMX™ and Intel™ are registered trademarks of Intel Corporation. Windows XP™, Windows 2000™, Windows ME™, Windows 98™ and Plug and Play™ are registered trademarks of Microsoft Corporation.

PCI™ is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corporation.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 940 Mission Court

Fremont, CA 94539

USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Web: http://www.viatech.com Taipei Office:

1st Floor, No. 531

Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC (886-2) 2218-5452 Tel: Fax: (886-2) 2218-5453

Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.21	9/27/02	Fixed pin names of PCREQA/B and PCGNTA/B in pin descriptions	DH
1.22	10/24/02	Fixed register references in MSCK and MSDT pin descriptions	DH
		Fixed VLVREF voltage for V-Link 8x mode	
		Removed references to nonexistent ports 72-73	
1.3	11/20/02	Updated LAN I/O Rx23-20[10], 27-24[15-11], 6F[2-0], 70[6-0], 74[4-0], 83, 84, 86	DH
1.31	12/11/02	Fixed IORDY signal name polarity in pin diagram; fixed minor typos in pin lists	DH
		Added strap description in VAD7 pin description; Fixed Func 0 Rx7C[3-0], 98[7,3]	
		Fixed VIA logo in page heading starting on page 6	
1.4	12/17/02	Fixed first two feature bullets to indicate current north bridge products	DH
		Improved DPSLP# pin description; Fixed GPO22-23, 28-29 pin descriptions	
		Fixed note in VCC pin description; Improved bit description for D17 F0 RxE5[3]	
1.41	1/3/03	Updated Port 61 (bits 7-6 and 3-2) and Port 92 (bits 7-6 and 3)	DH
		Device 16 Function 0-3 USB – added Rx83-80; renamed F3 Rx48-49	
		Device 17 Function 1 IDE – fixed Rx4E register name; removed RxFD	
		Fixed Rx3C[3-0] of Device 17 Function 1, 5, 6 and Device 18 Function 0	
		Fixed Rx2C-2F of Device 17 Function 5-6 and RxB of Function 6	
1.42	1/3/03	Fixed Device Ids in table 5 function summary for USB 2.0 and LAN	DH
1.43	2/5/03	Changed Device 17 Function 0 Rx50[0] to reserved	DH
1.44	2/5/03	Updated feature bullets to indicated compatibility with ACPI 2.0	DH
1.5	2/25/03	Updated figure 1 block diagram; Updated defaults in GPI pin description table	DH
		Added strap on SDCS1# in ballout & pin lists and added to strap pin description table	
		Updated Device 16 Function 0-3 Rx83 default; Removed PMIO Rx5C[1]	
		Device 17 Function 0 – fixed Rx50[1] bit name, 95[2] bit description	
1.51	3/3/03	Fixed EEDI and EEDO pin directions; added register cross references to GPIOC-E	DH
1.52	3/18/03	Updated GPI/GPO pin default states	DH
		Fixed PMIO Rx30[1] cross-reference to Device 17 Function 0 Rx84	
1.6	4/15/03	Fixed IDE Rx3D default, fixed D17 F0 Rx8C[7-4],8D[4]; updated PMIO Rx10[3-0]	DH
		Fixed incorrect JEDEC-spec reference in mechanical specification diagram	
1.7	4/29/03	Added "Version CD" to product name to differentiate from "Version CE"	DH
		Fixed VT8233A Version CE / VT8235ML South Bridge part # references	
1.71	6/9/03	Updated Dev 17 Func 0 Rx59[3-2], PMIO RxB-8[31-24], Dev 17 Func 1 Rx4C	DH
1.72	6/30/03	Changed pins W22 and AD17 to NC	DH
1.73	9/17/03	Removed power requirements table; Updated PMIO Rx5-4[12:10]	AL
1.74	3/3/04	Moved straps to separate table; Updated IO Trap registers Rx5C[0]	VL
		Updated Dev18 Func 0 Rx06[7:5], 07[7:3], 08[0], 09[0], 0C[4], 0D[1:0], 23-20[7], 43-	
		40[11], 6E[5:3], 6F[5:3]	
1.75	4/20/04	Updated top marking on Mechanical Specification section; Fixed Pin AD7, AE7 IO	VL
		Prosperity	
1.76	5/10/04	Updated Device18 Function 0 Rx7B	VL
1.77	7/9/04	Added lead-free package diagram to mechanical specification section	VL
1.78	8/11/04	Updated lead-free diagram in mechanical specification	VL
1.79	8/26/04	Updated APIC Fixed IRQ Routing Table in register descriptions	VL
		Fixed incorrect reference in Device17 Function 0 Rx81	
2.0	9/3/04	Changed part to VT8235M Version CD	VL
2.01	11/4/04	Updated Rx48 and Rx49 in Device 17 Function 5 and 6	JE
		Updated bit definition for D17F0 Rx80[5]; Added D17F0 RxEC-EF	
2.02	11/23/04	Updated top marking on mechanical specification	VL
2.03	3/16/05	Added USBREXT signal description and updated copyright notice	DA

TABLE OF CONTENTS

REVISION HISTORY	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	VII
LIST OF TABLES	VII
PRODUCT FEATURES	1
OVERVIEW	4
PINOUTS	6
PIN DESCRIPTIONS	9
V-LINK PIN DESCRIPTIONS	
CPU, APIC AND CPU CONTROL PIN DESCRIPTIONS	
MII, SERIAL EEPROM, LPC AND DMA PIN DESCRIPTIONS	
USB, SMB AND PROGRAMMABLE CHIP SELECT PIN DESCRIPTIONS	
EIDE INTERFACE PIN DESCRIPTIONS	14
SERIAL IRQ AND AC97 PIN DESCRIPTIONS	15
INTERNAL KEYBOARD CONTROLLER AND SPEAKER PIN DESCRIPTIONS	
GENERAL PURPOSE INPUT PIN DESCRIPTIONS	17
GENERAL PURPOSE OUTPUT AND GPIO PIN DESCRIPTIONS	18
POWER MANAGEMENT AND EVENT DETECTION PIN DESCRIPTIONS	19
CLOCK, RESETS, POWER STATUS, POWER AND GROUND PIN DESCRIPTIONS	20
STRAP PIN DESCRIPTIONS	
REGISTERS	22
REGISTER OVERVIEW	
REGISTER DESCRIPTIONS	
Legacy I/O Ports	
DMA Controller I/O Registers	
Interrupt Controller I/O Registers	
Timer / Counter Registers	
CMOS / RTC I/O Registers	
Keyboard / Mouse Wakeup Index / Data Registers	
Keyboard / Mouse Wakeup Registers	
Memory Mapped I/O APIC Registers Indexed I/O APIC Registers	
Configuration Space I/O	
Device 16 Function 0 Registers - USB 1.1 UHCI Ports 0-1	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	50
Device 16 Function 1 Registers - USB 1.1 UHCI Ports 2-3	
PCI Configuration Space Header	51
USB-Specific Configuration Registers	,

	USB I/O Registers	
	Device 16 Function 2 Registers - USB 1.1 UHCI Ports 4-5	
	PCI Configuration Space Header	
	USB-Specific Configuration Registers	
	USB I/O Registers	
	Device 16 Function 3 Registers - USB 2.0 EHCI	
	PCI Configuration Space Header	
	USB-Specific Configuration Registers	
	EHCI USB 2.0 I/O Registers	
	Device 17 Function 0 Registers – Bus Control and Power Management	
	PCI Configuration Space Header	
	ISA Bus Control	
	Miscellaneous Control	
	Function Control Serial IRQ, LPC, and PC/PCI DMA Control	
	Plug and Play Control - PCI	
	GPIO and Miscellaneous Control	
	Programmable Chip Select Control	7(
	ISA Decoding Control	
	Power Management-Specific Configuration Registers	73
	System Management Bus-Specific Configuration Registers	
	SMB GPIO Slave Command Codes	80
	General Purpose I/O Control Registers	
	Watchdog Timer Registers	
	Power Management I/O-Space Registers	
	System Management Bus I/O-Space Registers.	
	Device 17 Function 1 Registers - Enhanced IDE Controller	
	PCI Configuration Space Header	
	IDE-Controller-Specific Configuration Registers	
	IDE Power Management Registers	
	IDE Back Door Registers	
	Device 17 Function 5 Registers - AC97 Audio Controller	
	PCI Configuration Space Header	
	Audio-Specific PCI Configuration Registers.	
	I/O Base 0 Regs – Audio Scatter / Gather DMA	
	Device 17 Function 6 Registers - AC97 Modem Controller	
	PCI Configuration Space Header	
	Modem-Specific PCI Configuration Registers	
	I/O Base 0 Regs – Modem Scatter / Gather DMA	
	Device 18 Function 0 Registers - LAN	120
	PCI Configuration Space Header	
	LAN-Specific PCI Configuration Registers	120
	LAN I/O Registers	122
FUN	NCTIONAL DESCRIPTIONS	133
P	POWER MANAGEMENT	
	Power Management Subsystem Overview	
	Processor Bus States	
	System Suspend States and Power Plane Control	
	General Purpose I/O Ports	
	Power Management Events System and Processor Resume Events	
	Legacy Power Management Timers	
	System Primary and Secondary Events	
	Peripheral Events	
DI D	·	
	ECTRICAL SPECIFICATIONS	
A	ABSOLUTE MAXIMUM RATINGS	137
D	DC CHARACTERISTICS	
R	REGISTER BITS POWERED BY VBAT	138

REGISTER BITS POWERED BY VSUS25	138
PACKAGE MECHANICAL SPECIFICATIONS	139

LIST OF FIGURES

FIGURE 1. PC SYSTEM CONFIGURATION USING THE VT8235M VERSION CD	5
FIGURE 2. BALL DIAGRAM (TOP VIEW)	6
FIGURE 3. POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	
FIGURE 4. SYSTEM BLOCK DIAGRAM USING THE P4X400 NORTH BRIDGE	135
FIGURE 5. MECHANICAL SPECIFICATIONS – 487 PIN BALL GRID ARRAY PACKAGE	
FIGURE 6 LEAD-FREE MECHANICAL SPECIFICATIONS – 487 PIN BALL GRID ARRAY PACKAGE	

LIST OF TABLES

TABLE 1. PIN LIST (NUMERICAL ORDER)	7
TABLE 2. PIN LIST (ALPHABETICAL ORDER)	
TABLE 3. MEMORY MAPPED REGISTERS	
TABLE 4. FUNCTION SUMMARY	22
TABLE 5. SYSTEM I/O MAP	
TABLE 6. REGISTERS	23
TABLE 7. KEYBOARD CONTROLLER COMMAND CODES	
TABLE 8. CMOS REGISTER SUMMARY	42
TABLE 9. APIC FIXED IRQ ROUTING	
TABLE 10. PNP IRO ROUTING TABLE	

VT8235M VERSION CD

LOW COST V-LINK CLIENT HIGHLY INTEGRATED SOUTH BRIDGE

HIGH BANDWIDTH V-LINK CLIENT CONTROLLER
INTEGRATED FAST ETHERNET,
INTEGRATED DIRECT SOUND AC97 AUDIO,
ULTRADMA-133/100/66/33 MASTER MODE EIDE CONTROLLER,
SIX PORT USB 2.0 CONTROLLER, KEYBOARD / MOUSE CONTROLLER,
RTC, LPC, SMBUS, SERIAL IRQ, PLUG AND PLAY, ACPI,
AND PC2001 COMPLIANT ENHANCED POWER MANAGEMENT

PRODUCT FEATURES

• Inter-operable with VIA Host-to-V-Link Host Controller

- Combine with KT400A North Bridge for a complete Athlon system
- Combine with CLE266 North Bridge for a complete VIA C3 / Pentium 3 system
- Combine with P4X400 North Bridge for a complete Pentium 4 system

• High Bandwidth 533 MB/s 8-bit V-Link Client Controller

- Supports 66 MHz V-Link Client interface with total bandwidth of 533 MB/sec
- V-Link operates in 2x, 4x, and 8x modes
- Full duplex commands with separate Strobe / Command
- Request / Data split transaction
- Configurable outstanding transaction queue for V-Link Client accesses
- Auto Client Retry to eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency; all V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow.
- Highly efficient V-Link arbitration with minimum overhead; all V-Link transactions have predictable cycle length with known Command / Data duration
- Auto connect / reconnect capability and dynamic stop for minimum power consumption
- Parity checking to insure correct data transfers

Integrated Peripheral Controllers

- Integrated Fast Ethernet Controller with 1 / 10 / 100 Mbit capability
- Integrated USB 2.0 Controller with three root hubs and six function ports
- Dual channel UltraDMA-133 / 100 / 66 / 33 master mode EIDE controller
- AC-link interface for AC-97 audio codec and modem codec
- HSP modem support
- Integrated DirectSound compatible digital audio controller
- LPC interface for Low Pin Count interface to Super-I/O or ROM

• Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated DMA, timer, and interrupt controller
- Serial IRQ for docking and non-docking applications
- Fast reset and Gate A20 operation

Concurrent PCI Bus Controller

- 33 MHz operation
- Supports up to six PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec (data sent to north bridge via high speed V-Link Interface)
- PCI master snoop ahead and snoop filtering
- Eight DW of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Four lines of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Delay transaction from PCI master accessing DRAM
- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.2 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

• Fast Ethernet Controller

- High performance PCI master interface with scatter / gather and bursting capability
- Standard MII interface to external PHYceiver
- 1 / 10 / 100 MHz full and half duplex operation
- Independent 2K byte FIFOs for receive and transmit
- Flexible dynamically loadable EEPROM algorithm
- Physical, Broadcast, and Multicast address filtering using hashing function
- Magic packet and wake-on-address filtering
- Software controllable power down

UltraDMA-133 / 100 / 66 / 33 Master Mode EIDE Controller

- Dual channel master mode hard disk controller supporting four Enhanced IDE devices
- Transfer rate up to 133MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and UltraDMA-133 interface
- Increased reliability using UltraDMA-133/100/66 transfer protocols
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

Direct Sound Ready AC97 Digital Audio Controller

- AC-Link access to 4 CODECs (AC97 + AMC97 + MC97)
- Multichannel Audio
- Bus Master Scatter / Gather DMA
- Dedicated read and write channels supporting simultaneous stereo playback and record
- Dedicated read and write channels supporting simultaneous modem receive and transmit
- 1 stereo DirectSound channel with source / volume control / mixer
- 1 shared FM / SPDIF PCM read channel
- 1 dedicated channel supporting multi-channel audio
- 32-byte line-bufers for each SGD channel
- Programmable 8bit / 16bit mono / stereo PCM data format support
- AC97 2.1 compliant

• System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Universal Serial Bus Controller

- USB v2.0 and Enhanced Host Controller Interface (EHCI) v1.0 compatible
- USB v1.1 and Universal Host Controller Interface (UHCI) v1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Three root hubs and six function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

• Sophisticated PC2001-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v2.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- 32 general purpose input ports and 32 output ports
- Multiple internal and external SMI sources for flexible power management models
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on external temperature sensing circuit
- I/O pad leakage control

• Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, and audio
- Microsoft Windows XP[™], Windows NT[™], Windows 2000[™], Windows 98[™] and plug and play BIOS compliant

• Built-in NAND-tree pin scan test capability

- 0.22um, 2.5V, low power CMOS process
- Single chip 27 x 27 mm, 1.0 mm ball pitch, 487 pin BGA

OVERVIEW

The VT8235M Version CD South Bridge is a high integration, high performance, power-efficient, and high compatibility device that supports Intel and non-Intel based processor to V-Link bus bridge functionality to make a complete Microsoft PC2001-compliant PCI/LPC system. The VT8235M Version CD includes standard intelligent peripheral controllers:

- a) IEEE 802.3 compliant 10 / 100 Mbps PCI bus master Ethernet MAC with standard MII interface to external PHYceiver.
- b) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT8235M Version CD also supports the UltraDMA-133, 100, 66, and 33 standards to allow reliable data transfer at rates up to 133 MB/sec. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-family compliant.
- c) Universal Serial Bus controller that is USB v2.0 / 1.1 and Universal HCI v2.0 / 1.1 compliant. The VT8235M Version CD includes three root hubs with six function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- d) Keyboard controller with PS2 mouse support.
- e) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- f) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- g) Full System Management Bus (SMBus) interface.
- h) Integrated bus-mastering dual full-duplex direct-sound AC97-link-compatible sound system.
- i) Plug and Play controller that allows complete steerability of all PCI interrupts and internal interrupts / DMA channels to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of onboard peripherals for Windows family compliance.

The VT8235M Version CD also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.2 specification, the VT8235M Version CD supports delayed transactions and remote power management so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Figure 1. PC System Configuration Using the VT8235M Version CD

PINOUTS Figure 2. Ball Diagram (Top View) 7 10 12 14 15 20 21 22 23 24 25 2 3 4 5 8 9 13 17 18 19 26 6 CBE 2# GPIO 11 GPIO 12 AGP BZ# MTX D1 MTX CLK USB OC0# USB GND USB GND USB GND USB GND USB VCC USB VCC USB VCC EE CS# GND AD17 GND RDY# GPIO 13 MTX D2 MTX ENA M CRS USB OC1# USB GND USB P4– USB GND USB P2-USB GND USB P0-USB GND GND UPLL USB VCC USB VCC USB VCC **GPIO** EE DI FRM# AD19 GND GND AD16 В MRX DV EE CK USB OC2# USB GND USB GND USB GND USB GND USB GND USB GND USB REXT USB VCC REQ GPIO **VGATE** MD CK MTX MTX $\mathop{\rm COL}^{\rm M}$ USB GND USB VCC USB I RDY# SERR# PERR# STOP# AD18 D3 VCC MII VCC MII VCC25 VSUS USB VCC UPLL REQ 0# GPIO 10 GPIO 14 MRX D2 MRX D1 MII VCC USB GND USB GND USB GND USB CLK USB VCC REQ 2# GNT 1# AD15 PAR D PÅR VCC 33 USB OC3# GNT 2# RAM VCC RAM GND MRX D0 MII VCC MII VCC MII VCC2 USB OC5# USB GND USB P3+ USB GND USB P1+ GND UPLL VAD 5 VAD GND AD11 AD13 AD14 **GND** GND **GND** VCC 33 USB GND USB GND USB GND USB GND VAD 9 VBE VAD 0 CBE VCC VK VAD GND VCC VCC **GND** VCC VCC AD9 AD12 AD10 VCC VK VAD 11 VAD 10 VAD DN **G6** 7 9 10 11 12 15 17 19 G20 AD6 AD4 AD8 GND 8 13 14 16 18 AD7 STB STB# REQ 3# VCC VK VAD 12 UP VCC GPIO Н GND **GND** AD5 AD2 AD0 Pins LAN Pins USB Pins STB# DN CMD VAD VL VREF VAD AD3 AD1 AD21 VCC VCC VAD 15 VAD VAD AD20 AD22 AD23 GND VCC K K11 12 13 14 15 K16 V-Link VCC CÓMP VCC 33 VCC VK VCC VK CBE 3# REQ VBE AD24 AD25 PCI Pins L10 **GND** GND GND **GND** GND **GND** L17 Pins **GND GND** CĽK 1# VCC 33 VCC VK VCC VK VCC VK VCC VK VCC VK VCC VK GNT AD27 AD26 AD28 M M **GND** GND GND **GND** GND GND M REQ5# VCC VK VCC VK VCC VK VCC VK VCC VK GND AD29 AD31 AD30 N **GND** GND GND **GND** GND GND N INT B# INT C# VCC 33 INT GNT5# GPO7 VCC 33 PLL GND VRD SLP VID SEL DP SLP# GND **GND GND** GND GND PCI RST# STP CLK# VCC 33 PCI CLK INT D# AC RST# VCC **GND** CPU NMI GHI# INIT# R R GND GND **GND** GND **GND** R R **GND** R AC SDI0 AC BTCK VSUS 25 APIC IGN NE# VCC VCC T AC97 Pins T10 T17 Pins INTR SMI# A20M# GND GND GND GND GND GND D0 AC SDI1 APIC CLK VCC U VCC VCC SLP# FERR# U11 12 13 15 U16 U TPO 14 APIC D1 KB CK PD AC SDI3 GND KB/MS Pins **GND GND** VCC Pri A1 A2 MS DT BAT LOW# PD VREF PD COMP PD PME# W PM IDE W **GND GND** Pins DAK# CPU MISS VCC 33 PD DRO PD A0 PD IOW# SUS ST# PD PD RING# THRM# LPC Pins X-Bus Pins Pins Y Sec IDE Pins 33 IOR# RDY SUS A# $_{0}^{\mathrm{GPO}}$ VSUS 33 VCC 33 PD D15 PD D0 PD D1 PD D14 GND 7 8 9 10 11 12 13 14 15 17 18 19 AA20 **GND** AA6 16 SMB ALRT# SMB CK1 VSUS 33 VCC 33 VCC 33 VCC PD D12 PD D13 GND VCC VCC GND GND VCC VCC GND **GND GND** GND AB CPU STP# SMB DT1 GPI 1 VSUS 33 VSUS 33 GPIO E SA19 XD $_{0}^{\mathrm{XD}}$ SD COMP VCC 33 VCC 33 SD IOW# SDCS1# PD D11 PD SDA1 IOR# GND GND GND GND **GND** LID# OSC strap D3 strap PWR BTN# IN TRUD# RTC X1 RSM RST# GPIO D IO RDY SA18 SOE# XD $_{4}^{XD}$ SD RDY SDD1 SA01 SD VREF SDD5 SA05 SDD9 SA09 SDD10 SA10 SDD13 SA13 SD SDCS3# PD PD L REQ# AD2 IOW# strap strap DAK# strap D10 GPIO A PWR OK# GPIO C $_{3}^{XD}$ SDD7 SA07 SDD12 SA12 SDD15 SA15 SPKR **SA17** MEM XD SDA0 PD **GND** GND **GND GND** BÅT FRM# AD1 DRO D6 strap strap SUS B# PWR GD XD 5 XDSDD3 SA03 SDD6 SA06 SDD8 SA08 SDD11 SA11 SDD14 SA14 SD IOR# IRQ 15 SDD0 SDD2 SA02 SDA2 SA16 ROMCS PD D8 AD3 TEST AD0 #/strap strap

Table 1. Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name
A01		GND	C24	P	USBVCC	H01	Ю	AD05	U24	О	TPO	AD04		RTCX1
A02		GND	C25	P	USBVCC	H02	IO	AD02	U25		SLP#	AD05	I	
A03		TRDY#	C26	P		H03	IO	AD00	U26		FERR#	AD06		GPIOD / GPIO30
A04 A05		CBE2# AD17	D01 D02		CBE1# AD15	H04 H22	I IO	REO3# VAD12	V01 V02	IO	ACSDI3 /IO21/PCS1# /SB# KBDT / KBRC	AD07 AD08	I	LREO# LAD2
A05 A06		GPIO11	D02		PAR	H23	P	GND	V02 V03		KBCK / A20G	AD08	10	IOW#
A07		GPIO12 / INTE# / PCGNTA	D03	I	REQ2#	H24	o	UPSTB	V03	P	GND	AD10		IORDY / GPI19
A08		AGPBZ# / GPI6	D05	О	GNT1#	H25	P	GND	V22	P	GND			SA18 / O18 / strap
A09		MRXD3	D06	I	REQ0#	H26	0	UPSTB#	V23	О	APICD1	AD12	О	SOE# / strap
A10		MRXERR	D07	IO	GPIO10	J01	IO		V24	O	PDCS1#	AD13	IO	XD7
A11		MTXD1	D08 D09	IO	GPIO14 / INTG#	J02 J03	IO IO		V25		PDA1	AD14	IO	XD4 SDRDY
A12 A13		MTXCLK EECS#	D10	I	MRXD2 MRXD1	J03 J04	0	GNT3#	V26 W01		PDA2 MSDT / IRQ12	AD15 AD16		SDRDY SDD01 / SA01
A14		EEDO EEDO	D10	P	MIIVCC	J22	Ю	VAD14	W01 W02	IO	MSCK / IRQ12	AD10	-	
A15		USBOC0#	D12	P	MIIVCC	J23	P	VLVREF	W03	I	PME#	AD18	Ю	SDD05 / SA05
A16	P	USBGND	D13	P	MIIVCC25	J24	I	DNCMD	W04	I		AD19	Ю	SDD09 / SA09
A17		USBP4+	D14	I	USBOC4#	J25		VAD03	W22	-	NC PD COMP			SDD10 / SA10
A18		USBGND	D15	P	VSUSUSB	J26 K01		VAD02 AD20	W23	I				SDD13 / SA13
A19 A20		USBP2+ USBGND	D16 D17	P IO	USBGND USBP5-	K01 K02	IO		W24 W25	O	PDCS3# GND	AD22 AD23		SDDACK# SDCS3# / strap
A20 A21		USBP0+	D17	P	USBGND	K02	IO		W26		PDDACK#			PDD09
A22		USBGND	D19		USBP3-	K04	P	GND	Y01	I	CPUMISS / GPI17			PDD05
A23	P	VCCUPLL	D20	P	USBGND	K22	Ю	VAD15	Y02	I	RING# / GPI3	AD26	Ю	PDD10
A24		USBVCC	D21	Ю	USBP1-	K23	I	VLCOMP	Y03	Ō	SUSST1# / GPO3			SMBCK2 /
A25		USBVCC	D22 D23	P	VCCUPLL	K24	IO		Y04	I	THRM# / GPI18	AE02	O	
A26 B01		USBVCC GND	D23 D24	I P	USBCLK USBVCC	K25 K26	Ю	UPCMD VAD07	Y22 Y23	I	PDDRQ PDA0	AE03 AE04	I P	
B01		GND	D24 D25	IO		L01			Y24	ő	PDIOR#	AE04 AE05		GPIOA / GPIO24
B03		DEVSEL#	D26		VPAR	L02		AD24	Y25		PDIOW#	AE06		GPIOC / GPIO25
B04		FRAME#	E01	Ю	AD11	L03	Ю		Y26	I	PDRDY	AE07	О	LFRM#
B05		AD16	E02	IO	AD13	L04	I	REO4#	AA01		EXTSMI# / GPI2	AE08		LAD1
B06		AD19	E03	Ю	AD14	L23	P	GND	AA02	0		AE09	O	SPKR / strap
B07 B08	10	GPIO9 / PCREQB GPIO13 / INTF# / PCGNTB	E04 E06	0	GNT2# GNT0#	L24 L25	I P	VCLK GND	AA03 AA04	OD P	GPO0 VSUS33	AE10	IO	SERIRQ SA17 / O17 / strap
B08 B09	10	MDIO	E06	P	RAMVCC	L25 L26			AA04 AA22		PDD15	AE11 AE12	10	MEMR#
B10		MRXCLK	E07	P	RAMGND	M01		AD27	AA23	P	GND	AE13		
B11	О	MTXD2	E09	P	GND	M02	Ю	AD26	AA24	Ю	PDD00	AE14		XD3
B12	0	MTXENA	E10	Ι	MRXD0	M03		AD28	AA25	Ю	PDD01	AE15	I	SDDRQ
B13		MCRS	E11	P	MIIVCC	M04	0	GNT4#			PDD14	AE16		GND
B14		EEDI USBOC1#	E12 E13	P P	MIIVCC MIIVCC25	N01 N02	IO	AD29 AD31	AB01	O		AE17		SDD04 / SA04
B15 B16		USBGND	E13	I	MIIVCC25 USBOC5#	N02	IO	AD31 AD30	AB02 AB03		SMBALRT# SMBCK1	AE18 AE19		SDD07 / SA07 GND
B17		USBP4-	E15	I	USBOC3#	N04	I	REQ5# / GPI7	AB04	P	VSUS33			SDD12 / SA12
B18		USBGND	E16	P	GND	P01	Ī	INTA#	AB22	P	GND	AE21		SDD15 / SA15
B19	Ю	USBP2-	E17		USBP5+	P02	I	INTB#	AB23		PDD12	AE22	P	GND
B20		USBGND	E18	P	USBGND	P03	I	INTC#	AB24		PDD02	AE23	O	
B21		USBP0-	E19	Ю	USBP3+	P04		GNT5# / GPO7	AB25		GND PDD13	AE24	I	
B22 B23		USBGND GNDUPLL	E20 E21	P IO	USBGND USBP1+	P22 P23	P P	PLLVCC PLLGND	AB26 AC01	I		AE25 AE26	P IO	GND PDD06
B23	P	USBVCC	E21	P	GNDUPLL	P24		VRDPSLP / GPIO29	AC01		SMBDT1	AF01	0	
B25		USBVCC	E23	P	GND	P25	OD	VIDSEL / GPIO28	AC03	I	GPI1	AF02	ŏ	
B26	P	USBVCC	E24	Ю	VAD05	P26	OD	DPSLP# / GPIO23	AC04	P	VSUS33	AF03	О	RTCX2
C01	I	SERR#	E25	P	GND	R01		INTD#	AC05	P	VSUS33	AF04	I	
C02		PERR#	E26 F01	IO IO	VAD04 AD10	R02 R03	0	PCIRST# ACRST#	AC06 AC07	IO O	GPIOE / GPIO31 CPUSTP# / GPO5	AF05		PCKRUN#
C03 C04		STOP# IRDY#	F01		AD10 AD09	R03		GND	AC07		GND	AF06 AF07		PCISTP# / GPO6
C04		REQ1#	F03		AD12	R22		PCICLK	AC09					LAD3 LAD0
C06		AD18	F04		CBE0#	R23		NMI	AC10					TEST
C07		GPIO15 / INTH#	F18	P	USBGND	R24	OD	GHI# / GPIO22	AC11	Ю	SA19 / O19 / strap		Ю	MEMW#
C08	I	VGATE / GPIO8 / PCREQA	F19	P	USBGND	R25		INIT#	AC12		OSC	AF11		SA16 / O16 / strap
C09		MDCK	F20		USBGND	R26		STPCLK#	AC14			AF12		ROMCS#/KBCS#/
C10 C11		MRXDV MTXD3	F21 F23		USBGND VADOO	T01 T02	I	ACSYNC ACSDIN0	AC14			AF13 AF14		
C11		MTXD0	F24		VAD09 VBE0#	T03			AC15 AC16		SDCOMP GND			SDD00 / SA00
C12		MCOL	F25		VAD00	T04		VSUS25	AC17	P	GND	AF16		SDD00 / SA00 SDD02 / SA02
C14		EECK	F26		VAD01	T22		APICD0	AC20		GND			SDD03 / SA03
C15	I	USBOC2#	G01		AD07	T23		INTR	AC21	О	SDIOW#	AF18	Ю	SDD06 / SA06
C16		USBGND	G02		AD06	T24		SMI#	AC22	O		AF19		SDD08 / SA08
C17	P	USBGND	G03		AD04	T25		A20M#	AC24		SDCS1# / strap			SDD11 / SA11
C18		USBGND USBGND	G04 G22		AD08 VAD11	T26 U01		IGNNE# ACSDOUT			PDD04 PDD11	AF21		SDD14 / SA14 SDIOR#
C19 C20	P P	USBGND	G22 G23		VAD11 VAD10	U02	Ĭ	ACSDI2 /IO20/PCS0#			PDD03	AF22 AF23		SDIOR# SDA2 / strap
C20		USBGND	G23		VAD10 VAD13	U03	I	ACSDIN1			SMBDT2 / GPIO26	AF24		IRQ15
C22		USBGND	G25		DNSTB	U04	P	VSUS25	AD02		PWRBTN#			PDD07
C23		USBREXT	G26	I	DNSTB#	U23	I	APICCLK	AD03		INTRUD# / GPI16			PDD08

GND pins (28 pins): F6,11, G5, L11-16, M11-16, N5,11-16, P11-16, R11-16, V21, W21, AA5, AB5,12-13,18-19 VCC pins (19 pins): F9-10,14-15, H5, J5,21, K5,21, T5,21, U5,21-22, V5, AB8-9,16-17 VCCVK pins (17 pins): F5,7-8,12-13,16-17, L5, M5, P5,21, R5,21, W5, Y5,21, AA21, AB6-7,10-11,14-15,20-21 VCCVK pins (17 pins): F22, G21, H21, L21-22, M21-26, N21-26

Table 2. Pin List (Alphabetical Order)

Pin#	Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Name
	OD A20M#	K04	P	GND	E13		MIIVCC25		IO	SA19 / O19 / strap	F19	P	USBGND
T03	I ACBITCLK	L23	P	GND	B10	I	MRXCLK	AE23	0	SDA0 / strap	F20	P	USBGND
R03	O ACRST#	L25	P	GND	E10	I	MRXD0	AC22	ŏ	•	F21	P	
T02	I ACSDIN0	R04	P	GND	D10	I	MRXD1	AF23	О	SDA2 / strap	A15	I	USBOC0#
U03	I ACSDIN1	V04	P	GND	D09	I	MRXD2	AC15			B15	I	USBOC1#
U02	I ACSDI2 /IO20/PCS0#	V22	P	GND	A09	I	MRXD3	AC23		SDCS1# / strap	C15	I	USBOC2#
V01 U01	I ACSDI3 /IO21/PCS1# /SLPB# O ACSDOUT	AA23	P P	GND GND	C10 A10	I	MRXDV MRXERR	AD23		SDCS3# / strap SDD00 / SA00	E15 D14	I I	USBOC3# USBOC4#
T01	O ACSYNC	AB22	P	GND	W02		MSCK / IRQ1			SDD00 / SA00 SDD01 / SA01	E14	I	USBOC5#
H03	IO AD00	AB25	P	GND	W01		MSDT / IRQ12			SDD02 / SA02	B21	Ю	USBP0-
J02	IO AD01	AC08	P	GND	A12	I	MTXCLK	AF17	Ю	SDD03 / SA03	A21	Ю	USBP0+
H02	IO AD02	AC09	P	GND	C12	O		AE17		SDD04 / SA04	D21	Ю	
J01 G03	IO AD03 IO AD04	AC16	P	GND	A11		MTXD1			SDD05 / SA05	E21	IO	
H01	IO AD04 IO AD05	AC17 AC20	P P	GND GND	B11 C11		MTXD2 MTXD3	AF18		SDD06 / SA06 SDD07 / SA07	B19 A19	IO IO	
G02	IO AD06	AE16	P	GND	B12		MTXENA			SDD07 / SA07 SDD08 / SA08	D19		USBP3-
G01	IO AD07	AE19	P	GND	W22	-	NC	AD19		SDD09 / SA09	E19	IO	
G04	IO AD08	AE22	P	GND	AD17	_	NC			SDD10 / SA10	B17		USBP4-
F02	IO AD09	AE25	P	GND		OD	NMI			SDD11 / SA11	A17		USBP4+
F01	IO AD10	B23	P	GNDUPLL	AC12	I	OSC	AE20		SDD12 / SA12	D17		USBP5-
E01	IO AD11	E22	P	GNDUPLL CNITO#	D03		PAR PCK DI DI			SDD13 / SA13	E17		USBP5+
F03 E02	IO AD12 IO AD13	E06 D05	0	GNT0# GNT1#	AF05 R22	I	PCKRUN# PCICLK	AF21 AE21		SDD14 / SA14 SDD15 / SA15	C23 A24	Al P	USBREXT USBVCC
E03	IO AD13	E04	ŏ	GNT1# GNT2#	R02		PCIRST#	AD22		SDD1373A13 SDDACK#	A24 A25	P	USBVCC
D02	IO AD15	J04	ŏ	GNT3#	AF06		PCISTP# / GPO6	AE15		SDDRQ	A26	P	USBVCC
B05	IO AD16	M04	O	GNT4#	Y23	О	PDA0	AF22	О	SDIOR#	B24	P	USBVCC
A05	IO AD17	P04	0	GNT5# / GPO7	V25		PDA1	AC21		SDIOW#	B25	P	USBVCC
C06	IO AD18	AE03	I	GPI0	V26		PDA2	AD15			B26	P	USBVCC
B06 K01	IO AD19 IO AD20	AC03 B07	IO	GPI1 GPIO9 / PCREQB	W23 V24	I	PDCOMP PDCS1#	AE10 C01		SERIRQ SERR#	C24 C25	P P	USBVCC USBVCC
J03	IO AD21	D07		GPIO9/PCKEQB GPIO10	W24		PDCS1# PDCS3#			SLP#	C25	P	USBVCC
K02	IO AD22	A06	Ю	GPIO11			PDD00	AB02		SMBALRT#	D24	P	USBVCC
K03	IO AD23	A07	Ю	GPIO12/INTE#/PCGA	AA25	Ю	PDD01			SMBCK1	F25	Ю	
L02	IO AD24	B08	Ю	GPIO13/INTF#/PCGB				AE01		SMBCK2 / GPIO27	F26	Ю	
L03	IO AD25	D08		GPIO14 / INTG#			PDD03	AC02		SMBDT1	J26	IO	
M02 M01	IO AD26 IO AD27	C07	IO	GPIO15 / INTH# GPIOA / GPIO24			PDD04	AD01		SMBDT2 / GPIO26 SMI#	J25 E26	IO IO	
M03	IO AD27 IO AD28	AE05 AE06		GPIOA / GPIO24 GPIOC / GPIO25			PDD05 PDD06	T24 AD12	OD O		E26 E24		VAD04 VAD05
N01	IO AD29			GPIOD / GPIO30	AF25		PDD07	AE09		SPKR / strap	K24		VAD06
N03	IO AD30			GPIOE / GPIO31			PDD08	C03		STOP#	K26		VAD07
N02	IO AD31			GPO0			PDD09	R26		STPCLK#	D25	Ю	VAD08
A08	I AGPBZ#/GPI6			IGNNE#			PDD10	AA02		SUSA# / GPO1	F23	IO	
U23 T22	I APICCLK O APICD0			INIT#			PDD11	AF02	0	SUSB# / GPO2 SUSC#	G23	IO	
V23	O APICD0 O APICD1	P01 P02	I I	INTA# INTB#			PDD12 PDD13	AF01 AB01	0	SUSCLK / GPO4	G22 H22	IO	VAD11 VAD12
W04	I BATLOW#/GPI5	P03	I	INTC#			PDD14	Y03	o		G24		VAD12 VAD13
F04	IO CBE0#	R01	Ì	INTD#			PDD15	AF09	I	TEST	J22		VAD14
D01	IO CBE1#	T23	OD	INTR	W26	О	PDDACK#	Y04	I	THRM# / GPI18	K22	Ю	VAD15
A04	IO CBE2#	AD03	I	INTRUD# / GPI16	Y22	I	PDDRQ	U24	0		AE04		VBAT
L01	IO CBE3#	AC10	IO	IOR#	Y24		PDIOR#	A03		TRDY#	F24		VBE0#
Y01 AC07	I CPUMISS / GPI17 O CPUSTP# / GPO5	AD10 AD09	IO	IORDY / GPI19 IOW#	Y25 Y26	I	PDIOW# PDRDY	K25 H24		UPCMD UPSTB	L26 A23		VBE1# VCCUPLL
B03	IO DEVSEL#	C04	IO	IRDY#	C02		PERR#	H24 H26		UPSTB#	D22	P	
J24	I DNCMD	AE24	I	IRO14	P23		PLLGND	D23		USBCLK	L24	Ī	
G25	I DNSTB	AF24	Ι	IRQ15	P22	P	PLLVCC	A16	P	USBGND	C08		VGATE/GPIO8/PCRA
G26						_		A18		USBGND			VIDSEL / GIO28
	OD DPSLP# / GPIO23			KBDT / KBRC	AD02		PWRBTN#	A20		USBGND	K23		VLCOMP
C14 A13	O EECK O EECS#			LAD0 LAD1	AF04 AE02	I	PWRGD PWROK#	A22		USBGND	J23 D26		VLVREF VPAR
B14	O EEDI			LADI LAD2	E08		RAMGND	B16 B18		USBGND USBGND	P24		VRDPSLP/GPIO29
A14	I EEDO			LAD2 LAD3	E07	P	RAMVCC	B20	P		T04		VSUS25
	IO EXTSMI# / GPI2	AE07		LFRM#	D06	Ī	REQ0#	B22		USBGND	U04		VSUS25
U26	I FERR#	AC01	I	LID# / GPI4	C05	I	REO1#	C16		USBGND	AA04	P	VSUS33
B04	IO FRAME#	AD07	I	LREQ#	D04	I	REQ2#	C17		USBGND	AB04		VSUS33
	OD GHI# / GPIO22 P GND	C13		MCOL MCPS	H04	I	REO3#	C18		USBGND	AC04		VSUS33
A01 A02	P GND P GND	B13 C09	O	MCRS MDCK	L04 N04	I	REQ4# REQ5# / GPI7	C19 C20		USBGND USBGND	AC05 D15		VSUS33 VSUSUSB
B01	P GND			MDIO	Y02	I	RING# / GPI3	C20	P		AC14		
B02	P GND			MEMR#	AF12		ROMCS#/KBCS#/str	C22		USBGND	AC13		
E09	P GND	AF10	Ю	MEMW#	AD05	I	RSMRST#	D16	P	USBGND	AF14	Ю	XD2
E16	P GND	D11	P	MIIVCC			RTCX1	D18		USBGND	AE14		
E23	P GND	D12	P	MIIVCC			RTCX2	D20		USBGND	AD14		
E25 H23	P GND P GND	E11 E12	P P	MIIVCC			SA16 / O16 / strap SA17 / O17 / strap	E18 E20	P	USBGND USBGND	AF13 AE13		
H25	P GND P GND	D13	P	MIIVCC MIIVCC25			SA1 / / O1 / / strap SA18 / O18 / strap	F18		USBGND	AD13	10	XD7
1143	I JIID			WIII V C C 25			N/21 W/21 4 4 5 4 D5	12.12			נועה	LIU.	ADI

CSRD pins (28 pins): F6,11, G5, L11-16, M11-16, N5,11-16, P11-16, R11-16, V21, W21, AA5, AB5,1 VCC pins (19 pins): F9-10,14-15, H5, J5,21, K5,21, T5,21, U5,21-22, V5, AB8-9,16-17 VCC33 pins (25 pins): F5,7-8,12-13,16-17, L5, M5, P5,21, R5,21, W5, Y5,21, AA21, AB6-7,10-11,14-15,20-21 VCCVK pins (17 pins): F22, G21, H21, L21-22, M21-26, N21-26 (28 pins): F6,11, G5, L11-16, M11-16, N5,11-16, P11-16, R11-16, T11-16, V21, W21, AA5, AB5,12-13,18-19

PIN DESCRIPTIONS

V-Link Pin Descriptions

V-Link Interface									
Signal Name	Pin #	I/O	Signal Description						
VAD[15:0]	K22, J22, G24, H22, G22, G23, F23, D25, K26, K24, E24, E26, J25, J26, F26, F25	Ю	Address / Data Bus. Bits 0-7 are implemented and bits 8-15 are reserved for future use. VAD[7:0] are used to send strap information to the chipset north bridge. At power up VAD7 reflects the state of a strap on SDCS3#, VAD[6:4] reflect the state of straps on pins SDA[2:0] and VAD[3:0] reflect the state of straps on pins SA[19:16]. The specific interpretation of these straps is north bridge chip design dependent.						
VPAR	D26	Ю	Parity. If the VPAR function is implemented in a compatible manner on the north bridge, this pin should be connected to the north bridge VPAR pin (P4X333, P4X400, P4X800, KT400). If VPAR is not implemented in the north bridge chip or is incompatible with the 8235 (4x V-Link north bridges) connect this pin to an 8.2K pullup to 2.5V (Pro266, Pro266T, KT266, KT266A, KT333, P4X266, PN266, KN266, KM266, P4M266, P4N266). See app note AN222 for details.						
VBE[1:0]#	L26, F24	Ю	Byte Enables. VBE0# is used with VAD[7-0] and VBE1# is used with VAD[15-8] (VBE1# and VAD[15-8] are reserved for future use).						
VCLK	L24	I	V-Link Clock.						
UPCMD	K25	О	Command from Client-to-Host.						
DNCMD	J24	I	Command from Host-to-Client.						
UPSTB	H24	О	Strobe from Client-to-Host.						
UPSTB#	H26	О	Complement Strobe from Client-to-Host.						
DNSTB	G25	I	Strobe from Host-to-Client.						
DNSTB#	G26	I	Complement Strobe from Host-to-Client.						
VLCOMP	K23	ΑI	V-Link Compensation.						

CPU, APIC and CPU Control Pin Descriptions

CPU Interface									
Signal Name	Pin #	I/O	Signal Description						
A20M#	T25	OD	r and						
			Logical combination of the A20GATE input (from internal or external keyboard controller) and Port 92 bit-1 (Fast_A20).						
FERR#	U26	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the						
			CPU. Internally generates interrupt 13 if active. Output voltage swing is programmable tot 1.5V or 2.5V by Device 17 Function 0 Rx67[2].						
IGNNE#	T26	OD	Ignore Numeric Error. This pin is connected to the CPU "ignore error" pin.						
INIT#	R25	OD	Initialization. The VT8235M Version CD asserts INIT# if it detects a shut-down special						
			cycle on the PCI bus or if a soft reset is initiated by the register						
INTR	T23	OD							
			interrupt request is pending and needs service.						
NMI	R23	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The						
			VT8235M Version CD generates an NMI when PCI bus SERR# is asserted.						
SLP#	U25	OD	Sleep. Used to put the CPU to sleep.						
SMI#	T24	OD	System Management Interrupt. SMI# is asserted by the VT8235M Version CD to the						
			CPU in response to different Power-Management events.						
STPCLK#	R26	OD	Stop Clock. STPCLK# is asserted by the VT8235M Version CD to the CPU to throttle the						
			processor clock.						

Note: Connect each of the above signals to 150 Ω pullup resistors to VCC_CMOS (see Design Guide).

Advanced Programmable Interrupt Controller (APIC) Interface						
Signal Name	Pin #	I/O	Signal Description			
APICD1	V23	О	Internal APIC Data 1. Function 0 Rx58[6] = 1			
APICD0	T22	О	Internal APIC Data 0. Function 0 Rx58[6] = 1			
APICCLK	U23	I	APIC Clock.			

CPU Speed Control Interface										
Signal Name	Pin #	I/O	Signal Description							
VGATE / GPI8 / GPO8 / PCREQA	C8	I	Voltage Gate. Signal from the CPU voltage regulator. High indicates the voltage regulator output is stable. This pin performs the VGATE function if Device 17 Function $0 \text{ Rx}53[7] = 0$, $E5[4] = 1$ and $E4[3] = 0$.							
VIDSEL / GPI2 / GPO2	P25	OD	Voltage Regulator ID Select. Connected to the CPU voltage regulator. Low selects the voltage ID from the CPU; high selects a different fixed voltage ID (the lower voltage used for CPU deep sleep mode). This pin performs the VIDSEL function if Func 0 RxE5[3] = 0.							
VRDSLP/ GPI29 / GPO29	P24	OD	Voltage Regulator Deep Sleep. Connected to the CPU voltage regulator. High selects the proper voltage for deep sleep mode. This pin performs the VRDPSLP function if Function $0 \text{ RxE5}[3] = 0$.							
GHI# / <u>GPI22</u> / GPO22	R24	OD	CPU Speed Select. Connected to the CPU voltage regulator, used to select high speed (L) or low speed (H). This pin performs the GHI# function if Function 0 RxE5[3] = 0.							
DPSLP# / <u>GPI23</u> / GPO23	P26	OD	CPU Deep Sleep. This pin performs the DPSLP# function if Device 17 Function 0 RxE5[3]=0.							
<u>CPUMISS</u> / GPI17	Y1	I	CPU Missing. Used to detect the physical presence of the CPU chip in its socket. High indicates no CPU present. Connect to the CPUMISS pin of the CPU socket. The state of this pin may be read in the SMBus 2 registers. This pin may be used as CPUMISS and GPI17 at the same time.							
AGPBZ# / GPI6	A8	I	AGP Busy. Low indicates that an AGP master cycle is in progress (CPU speed transitions will be postponed if this input is asserted low). Connected to the AGP Bus AGPBZ# pin.							

	PCI Bus Interface									
Signal Name	Pin #	I/O	Signal Description							
AD[31:0]	(see pin list)	IO	Address / Data Bus. Multiplexed address and data. The address is driven with FRAME# assertion and data is driven or received in following cycles.							
CBE[3:0]#	L1, A4, D1, F4	Ю	Command / Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.							
DEVSEL#	B3	Ю	Device Select. The VT8235M Version CD asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT8235M Version CD-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.							
FRAME#	B4	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.							
IRDY#	C4	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.							
TRDY#	A3	IO	Target Ready. Asserted when the target is ready for data transfer.							
STOP#	C3	IO	Stop. Asserted by the target to request the master to stop the current transaction.							
SERR#	C1	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT8235M Version CD can be programmed to generate an NMI to the CPU.							
PAR	D3	Ю	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.							
INTA#	P1,	I	PCI Interrupt Request. The INTA# through INTD# pins are typically connected to the							
INTB#	P2,		PCI bus INTA#-INTD# pins per the table below. INTE-H# are enabled by setting Device							
INTC#	P3,		17, Function 0 Rx5B[1] = 1. BIOS settings must match the physical connection method.							
INTD#	R1		<u>INTA# INTB# INTC# INTD#</u>							
INTE#/ <u>GPI12,</u>			PCI Slot 1 INTA# INTB# INTC# INTD#							
/ GPO12,			PCI Slot 2 INTB# INTC# INTD# INTE#							
/ PCGNTA, INTF# / <u>GPI13,</u> / GPO13,	A7,		PCI Slot 3 INTC# INTD# INTE# INTF# PCI Slot 4 INTD# INTE# INTF# INTG# PCI Slot 5 INTE# INTF# INTG# INTH#							
/ PCGNTB, INTG#/ GPI14,	В8,		PCI Slot 6 INTF# INTG# INTH# INTA#							
/ GPO14, INTH#/ <u>GPI15,</u> / GPO15	D8,									
REQ5# / GPI7,	N4	I	PCI Request. These signals connect to the VT8235M Version CD from each PCI slot (or							
REQ3# / <u>GF17</u> ,	L4	1	each PCI master) to request the PCI bus. To use pin N4 as REQ5#, Function 0 RxE4 must							
REQ3#,	H4		be set to 1 otherwise this pin will function as General Purpose Input 7.							
REQ2#,	D4		be set to 1 otherwise this pin win function as deficial 1 dipose input 7.							
REQ1#,	C5									
REQ0#	D6									
GNT5# / GPO7,	P4	О	PCI Grant. These signals are driven by the VT8235M Version CD to grant PCI access to							
GNT4#,	M4		a specific PCI master. To use pin P4 as GNT5#, Function 0 RxE4 must be set to 1							
GNT3#,	J4		otherwise this pin will function as General Purpose Output 7.							
GNT2#,	E4									
GNT1#,	D5									
GNT0#	E6									
PCIRST#	R2	О	PCI Reset. This signal is used to reset devices attached to the PCI bus.							
PCICLK	R22	I	PCI Clock. This signal provides timing for all transactions on the PCI Bus.							
PCKRUN#	AF5	Ю	PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8235M Version CD drives this signal low when the PCI clock is running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and an applicable VIA North Bridge Design Guide (e.g., KT400, CLE266, or P4X400) for more details.							

MII, Serial EEPROM, LPC and DMA Pin Descriptions

	LAN Controller - Media Independent Interface (MII)							
Signal Name	Pin #	I/O	PU	Signal Description				
MCOL	C13	I	PD	MII Collision Detect. From the external PHY.				
MCRS	B13	I	<u>PD</u>	MII Carrier Sense. Asserted by the external PHY when the media is active.				
MDCK	С9	О	<u>PD</u>	MII Management Data Clock. Sent to the external PHY as a timing reference for MDIO				
MDIO	В9	IO	<u>PD</u>	MII Management Data I/O. Read from the MDI bit or written to the MDO bit.				
MRXCLK	B10	I	<u>PD</u>	MII Receive Clock. 2.5 or 25 MHz clock recovered by the PHY.				
MRXD[3-0]	A9, D9, D10, E10	I	<u>PD</u>	MII Receive Data. Parallel receive data lines driven by the external PHY synchronous with MRXCLK.				
MRXDV	C10	I	PD	MII Receive Data Valid.				
MRXERR	A10	I	<u>PD</u>	MII Receive Error. Asserted by the PHY when it detects a data decoding error.				
MTXCLK	A12	I	<u>PD</u>	MII Transmit Clock. Always active 2.5 or 25 MHz clock supplied by the PHY.				
MTXD[3-0]	C11, B11, A11, C12	О	<u>PD</u>	MII Transmit Data. Parallel transmit data lines synchronized to MTXCLK.				
MTXENA	B12	О	<u>PD</u>	MII Transmit Enable. Signals that transmit is active from the MII				
				port to the PHY.				
MIIVCC	D11, D12, E11, E12	Power		MII Interface Power. 3.3V ±5%.				
MIIVCC25	D13, E13	Power		MII Suspend Power. 2.5V ±5%.				
RAMVCC	E7	Power		Power For Internal LAN RAM. 2.5V ±5%.				
RAMGND	E8	Power		Ground For Internal LAN RAM.				

Serial EEPROM Interface								
Signal Name Pin # I/O PU Signal Description								
EECS#	A13	О		Serial EEPROM Chip Select.				
EECK	C14	О		Serial EEPROM Clock.				
EEDO	A14	I		Serial EEPROM Data Output. Connect to EEPROM Data Out pin.				
EEDI	B14	О		Serial EEPROM Data Input. Connect to EEPROM Data In pin.				

These pins are disabled if the SDCS1# pin is strapped low to enable serial EEPROM connection via the MII interface.

Low Pin Count (LPC) Interface									
Signal Name	Signal Name Pin # I/O PU Signal Description								
LFRM#	AE7	O		LPC Frame.					
LREQ#	AD7	I		LPC DMA / Bus Master Request.					
LAD[3-0]	AF7, AD8, AE8, AF8	IO	PU	LPC Address / Data.					

Note: Connect the LPC interface LPCRST# (LPC Reset) signal to PCIRST#

PC / PCI DMA								
Signal Name Pin # I/O PU Signal Description								
PCREQA / GPI8 / GPO8 / VGATE	C8	I		PC / PCI Request A. Device 17 Function 0 Rx53[7] = 1				
PCREQB / <u>GPI9</u> / GPO9	В7	I		PC / PCI Request B. Device 17 Function 0 Rx53[7] = 1				
PCGNTA / <u>GPI12</u> / GPO12	A7	О		PC / PCI Grant A. Device 17 Function 0 Rx53[7] = 1				
PCGNTB / <u>GPI13</u> / GPO13	В8	О		PC / PCI Grant B. Device 17 Function $0 \text{ Rx}53[7] = 1$				

USB, SMB and Programmable Chip Select Pin Descriptions

	Universal Serial Bus 2.0 Interface							
Signal Name	Pin #	I/O	Signal Description					
USBP0+	A21	IO	USB 2.0 Port 0 Data +					
USBP0-	B21	IO	USB 2.0 Port 0 Data –					
USBP1+	E21	IO	USB 2.0 Port 1 Data +					
USBP1-	D21	IO	USB 2.0 Port 1 Data –					
USBP2+	A19	IO	USB 2.0 Port 2 Data +					
USBP2-	B19	IO	USB 2.0 Port 2 Data –					
USBP3+	E19	IO	USB 2.0 Port 3 Data +					
USBP3-	D19	IO	USB 2.0 Port 3 Data –					
USBP4+	A17	IO	USB 2.0 Port 4 Data +					
USBP4-	B17	IO	USB 2.0 Port 4 Data –					
USBP5+	E17	IO	USB 2.0 Port 5 Data +					
USBP5-	D17	IO	USB 2.0 Port 5 Data –					
USBCLK	D23	I	USB 2.0 Clock. 48MHz clock input for the USB interface					
USBREXT	C23	AI	USB External Resistor.					
USBOC0#	A15	I	USB 2.0 Port 0 Over Current Detect. Port 0 is disabled if low.					
USBOC1#	B15	I	USB 2.0 Port 1 Over Current Detect. Port 1 is disabled if low.					
USBOC2#	C15	I	USB 2.0 Port 2 Over Current Detect. Port 2 is disabled if low.					
USBOC3#	E15	I	USB 2.0 Port 3 Over Current Detect. Port 3 is disabled if low.					
USBOC4#	D14	I	USB 2.0 Port 4 Over Current Detect. Port 4 is disabled if low.					
USBOC5#	E14	I	USB 2.0 Port 5 Over Current Detect. Port 5 is disabled if low.					
USBVCC	(see pin list)	Power	USB 2.0 Port Differential Output Interface Logic Voltage. 3.3V					
USBGND	(see pin list)	Power	USB 2.0 Port Differential Output Interface Logic Ground.					
VSUSUSB	D15	Power	USB 2.0 Suspend Power. $2.5V \pm 5\%$.					
VCCUPLL	A23, D22	Power	USB 2.0 PLL Analog Voltage. 2.5V ±5%.					
GNDUPLL	B23, E22	Power	USB 2.0 PLL Analog Ground.					

System Management Bus (SMB) Interface (I ² C Bus)							
Signal Name	Pin #	I/O	Signal Description				
SMBCK1	AB3	IO	SMB / I ² C Channel 1 Clock.				
SMBCK2 / GPI27 / GPO27	AE1	IO	SMB / I^2C Channel 2 Clock. Rx95[2] = 0				
SMBDT1	AC2	IO	SMB / I ² C Channel 1 Data.				
SMBDT2 / GPI26 / GPO26	AD1	IO	SMB / I^2C Channel 2 Data. $Rx95[2] = 0$				
SMBALRT#	AB2	I	SMB Alert. (enabled by System Management Bus I/O space Rx08[3] = 1) When the chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a power management resume event. Connect to a 10K ohm pullup to VSUS33 if not used.				

Programmable Chip Selects								
Signal Name Pin # I/O Signal Description								
PCS0# / GPIO20 / ACSDIN2	U2	О	Programmable Chip Select 0. RxE4[6]=1, E5[1]=1					
PCS1# / GPIO21 / ACSDIN3 / SLPBTN#	V1	О	Programmable Chip Select 1. RxE4[6]=1, E5[2]=1					

EIDE Interface Pin Descriptions

	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface						
Signal Name	Pin #	I/O	Signal Description				
PDRDY / PDDMARDY / PDSTROBE	Y26	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers				
SDRDY / SDDMARDY / SDSTROBE	AD15	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers				
PDIOR# / PHDMARDY / PHSTROBE	Y24	О	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers				
SDIOR# / SHDMARDY / SHSTROBE	AF22	O	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers				
PDIOW# / PSTOP	Y25	O	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
SDIOW# / SSTOP	AC21	O	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
PDDRQ	Y22	I	Primary Device DMA Request. Primary channel DMA request				
SDDRQ	AE15	I	Secondary Device DMA Request. Secondary channel DMA request				
PDDACK#	W26	О	Primary Device DMA Acknowledge. Primary channel DMA acknowledge				
SDDACK#	AD22	О	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge				
IRQ14	AE24	I	Primary Channel Interrupt Request.				
IRQ15	AF24	I	Secondary Channel Interrupt Request.				

Ţ	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface (continued)						
Signal Name	Pin #	I/O	Signal Description				
PDCS1#	V24	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.				
PDCS3#	W24	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.				
SDCS1#/strap	AC23	0	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector. Strap low (resistor to ground) to enable serial EEPROM interface via the MII bus (this disables the EExx pins). This pin has an internal pullup to default to serial EEPROM interface via the EExx pins.				
SDCS3# / strap	AD23	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector. Strap information is communicated to the north bridge via VAD[7].				
PDA[2-0]	V26, V25, Y23	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.				
SDA[2-0] / strap	AF23, AC22, AE23	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed. Strap information is communicated to the north bridge via VAD[6:4].				
PDD[15-0]	(see pin list)	IO	Primary Disk Data.				
SDD[15-0] / SA[15-0]	(see pin list)	IO / IO	Secondary Disk Data.				
PDCOMP	W23	I	Primary Disk Compensation.				
SDCOMP	AC15	I	Secondary Disk Compensation.				

Serial IRQ and AC97 Pin Descriptions

Serial IRQ								
Signal Name	Pin #	I/O	Signal Description					
SERIRQ	AE10	I	Serial IRQ. This pin has an internal pull-up resistor.					

AC97 Audio / Modem Interface								
Signal Name		Pin #	I/O	Signal Description				
ACRST#		R3	О	AC97 Reset.				
ACBTCK		Т3	I	AC97 Bit Clock.				
ACSYNC		T1	О	AC97 Sync.				
ACSDO		U1	О	AC97 Serial Data Out.				
ACSDIN0	(VSUS33)†	T2	I	AC97 Serial Data In 0.				
ACSDIN1	(VSUS33)†	U3	I	AC97 Serial Data In 1.				
ACSDIN2 / GPIO20 / PCS	80#	U2	I	AC97 Serial Data In 2. RxE4[6]=0,E5[1]=0, PMIO Rx4C[20]=1				
ACSDIN3 / GPIO21 / PCS	S1# / SLPBTN#	V1	I	AC97 Serial Data In 3. RxE4[6]=0,E5[2]=0, PMIO Rx4C[21]=1				

[†]The supply voltage for ACSDIN0-1 is VSUS33 so these inputs can support wake-up on modem ring.

Internal Keyboard Controller and Speaker Pin Descriptions

	Internal Keyboard Controller						
Signal Name	Pin #	I/O	PU	Signal Description			
MSCK / IRQ1	W2	IO / I	PU	MultiFunction Pin (Internal mouse controller enabled by Rx51[1]) Rx51[2]=1 Mouse Clock. From internal mouse controller. Rx51[2]=0 Interrupt Request 1. Interrupt input 1.			
MSDT / IRQ12	W1	IO / I	PU	MultiFunction Pin (Internal mouse controller enabled by Rx51[1]) Rx51[2]=1 Mouse Data. From internal mouse controller. Rx51[2]=0 Interrupt Request 12. Interrupt input 12.			
KBCK / KA20G	V3	IO / I	PU	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Clock. From internal keyboard controller Rx51[0]=0 Gate A20. Input from external keyboard controller.			
KBDT / KBRC	V2	IO / I	PU	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Data. From internal keyboard controller. Rx51[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation			
KBCS# / ROMCS# / strap	AF12	O/O		Keyboard Chip Select (Rx51[0]=0). To external keyboard controller chip. Strap high to enable LPC ROM:			

Note: KBCK, KBDT, MSCK, and MSDT are powered by the VSUS33 suspend voltage plane.

ISA Subset / Parallel BIOS ROM Interface						
Signal Name	Pin #	I/O	PU	Signal Description		
ROMCS# / KBCS# / strap	AF12	О		ROM Chip Select (Rx51[0]=1). Chip Select to the BIOS ROM. Strap high to enable LPC ROM.		
SPKR / strap	AE9	О		Speaker. Strap low to enable (high to disable) CPU frequency strapping.		
MEMR#	AE12	О		Memory Read.		
MEMW#	AF10	О		Memory Write.		
IOR#	AC10	О		I/O Read.		
IOW#	AD9	О		I/O Write.		
IORDY / GPI19	AD10	I		I/O Ready. Used to insert wait states in I/O or memory cycles. $RxE5[0] = 0$		
SOE# / strap	AD12	О		XD Bus Tranceiver Output Enable. Strap low to enable auto reboot.		
XD[7-0]	AD13, AE13, AF13, AD14, AE14, AF14, AC13, AC14	IO		XD Bus. For input of BIOS ROM data or data from other on-board I/O or memory devices.		
SA[19-16] / GPO[19-16] / straps	AC11, AD11, AE11, AF11	О	<u>PD</u>	System Address 19-16. Strap states are passed to North Bridge via $VAD[3-0]$. Functions as $SA[19-16]$ if $RxE4[5] = 0$.		
SA[15-0] / SDD[15-0]	(see pin list)	О		System Address 15-0.		

General Purpose Input Pin Descriptions

	General Purpose Inputs						
Signal Name		Pin #	I/O	Signal Description			
GPI0	(VBAT)	AE3	I	General Purpose Input 0. Status on PMIO Rx20[0]			
GPI1 (VSUS33)	AC3	I	General Purpose Input 1. Status on PMIO Rx20[1]			
	VSUS33)	AA1	I	General Purpose Input 2. Status on PMIO Rx20[4]			
	VSUS33)	Y2	I	General Purpose Input 3. Status on PMIO Rx20[8]			
GPI4 / <u>LID#</u>	VSUS33)	AC1	I	General Purpose Input 4. Status on PMIO Rx20[11]			
GPI5 / BATLOW#	VSUS33)	W4	I	General Purpose Input 5. Status on PMIO Rx20[12]			
GPI6 / <u>AGPBZ#</u>		A8	I	General Purpose Input 6. Status on PMIO Rx20[5]			
<u>GPI7</u> / REQ5#		N4	I	General Purpose Input 7. $RxE4[2] = 0$			
GPI8 / GPO8 / PCREQA / VGATE		C8	I	General Purpose Input 8. $RxE4[3] = 0$, $E5[4]=0$, $53[7] = 0$			
GPI9 / GPO9 / PCREQB		В7	I	General Purpose Input 9. $RxE4[3] = 0, 53[7] = 0$			
GPI10 / GPO10		D7	I	General Purpose Input 10. $RxE4[3] = 0$			
GPI11 / GPO11		A6	I	General Purpose Input 11. $RxE4[3] = 0$			
GPI12 / GPO12 / INTE# / PCGNTA		A7	I	General Purpose Input 12. $RxE4[4] = 0$, $5B[1]=0$, $53[7]=0$			
GPI13 / GPO13 / INTF# / PCGNTB		В8	I	General Purpose Input 13. $RxE4[4] = 0$, $5B[1]=0$, $53[7]=0$			
<u>GPI14</u> / GPO14 / INTG#		D8	I	General Purpose Input 14. $RxE4[4] = 0, 5B[1] = 0$			
GPI15 / GPO15 / INTH#		C7	I	General Purpose Input 15. $RxE4[4] = 0, 5B[1] = 0$			
GPI16 / INTRUDER#	(VBAT)	AD3	I	General Purpose Input 16. Status on PMIO Rx20[6]			
GPI17 / CPUMISS		Y1	I	General Purpose Input 17. Status on PMIO Rx20[5]			
GPI18 / THRM# / AOLGPI		Y4	I	General Purpose Input 18. $Rx8C[3] = 0$			
GPI19 / IORDY		AD10	I	General Purpose Input 19. $RxE5[0] = 1$			
GPI20 / GPO20 / <u>ACSDIN2</u> / PCS0#		U2	I	General Purpose Input 20. RxE4[6]=1, E5[1]=0, PMIO 4C[20] = 1			
GPI21 / GPO21 / ACSDIN3 / PCS1# /	SLPBTN#	V1	Ī	General Purpose Input 21. RxE4[6]=1, E5[2]=0			
, c c c c c c c c c c c c c c c c c c c		, -	_	PMIO 4C[21] = 1			
GPI22 / GPO22 / GHI#		R24	I	General Purpose Input 22. $RxE5[3] = 1$, PMIO $4C[22] = 1$			
GPI23 / GPO23 / DPSLP#		P26	I	General Purpose Input 23. $RxE5[3] = 1$, PMIO $4C[23] = 1$			
GPI24 / GPO24 / GPIOA		AE5	I	General Purpose Input 24. $RxE6[0] = 0$			
GPI25 / GPO25 / GPIOC		AE6	I	General Purpose Input 25. $RxE6[1] = 0$			
	VSUS33)	AD1	I	General Purpose Input 26. $Rx95[2] = 1,95[3] = 0$			
	VSUS33)	AE1	I	General Purpose Input 27. $Rx95[2] = 1,95[3] = 0$			
GPI28 / GPO28 / VIDSEL	,	P25	I	General Purpose Input 28. $RxE5[3] = 1$, $PMIO 4C[28] = 1$			
GPI29 / GPO29 / VRDSLP		P24	I	General Purpose Input 29. $RxE5[3] = 1$, PMIO $4C[29] = 1$			
GPI30 / GPO30 / GPIOD		AD6	I	General Purpose Input 30. $RxE6[6] = 0$			
GPI31 / GPO31 / GPIOE		AC6	I	General Purpose Input 31. RxE6[7] = 0			
OTTOT, GLOST, GLIGE		1100		Comment any social part of the Color of the			

Note: Default pin function is underlined in the signal name column above.

Note: Input pin status for the above GPI pins 31-0 is also available on PMIO Rx4B-48[31-0]

Note: See also Power Management I/O register Rx50 for input pin change status for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx52 for SCI/SMI select for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx4C. General purpose input pins 20-31 are shared with OD (open drain) general purpose output functions, so to use one of these pins as an input pin, a one must be written to the corresponding bit of PMIO Rx4C.

General Purpose Output and GPIO Pin Descriptions

General Purpose Outputs						
Signal Name	Pin #	I/O	Signal Description			
GPO0 (VSUS33)	AA3	О	General Purpose Output 0.			
GPO1 / <u>SUSA#</u> (VSUS33)	AA2	О	General Purpose Output 1. Rx94[2] = 1			
GPO2 / <u>SUSB#</u> (VSUS33)	AF2	О	General Purpose Output 2. Rx94[3] = 1			
GPO3 / <u>SUSST1#</u> (VSUS33)	Y3	О	General Purpose Output 3. Rx94[4] = 1			
GPO4 / SUSCLK (VSUS33)	AB1	О	General Purpose Output 4. Rx95[1] = 1			
GPO5 / CPUSTP#	AC7	О	General Purpose Output 5. RxE4[0] = 1			
GPO6 / PCISTP#	AF6	О	General Purpose Output 6. RxE4[1] = 1			
GPO7 / GNT5#	P4	О	General Purpose Output 7. RxE4[2] = 0			
GPO8 / GPI8 / PCREQA / VGATE	C8	О	General Purpose Output 8. RxE4[3]=1, E5[4]=0, 53[7]=0			
GPO9 / GPI9 / PCREQB	В7	О	General Purpose Output 9. RxE4[3]=1, 53[7]=0			
GPO10 / <u>GPI10</u>	D7	О	General Purpose Output 10. RxE4[3]=1			
GPO11 / GPI11	A6	О	General Purpose Output 11. RxE4[3]=1			
GPO12 / GPI12 / INTE# / PCGNTA	A7	О	General Purpose Output 12. RxE4[4]=1, 5B[1]=0, 53[7]=0			
GPO13 / GPI13 / INTF# / PCGNTB	В8	О	General Purpose Output 13. RxE4[4]=1, 5B[1]=0, 53[7]=0			
GPO14 / <u>GPI14</u> / INTG#	D8	О	General Purpose Output 14. RxE4[4]=1, 5B[1]=0			
GPO15 / <u>GPI15</u> / INTH#	C7	О	General Purpose Output 15. RxE4[4]=1, 5B[1]=0			
GPO16 / <u>SA16</u> / strap	AF11	О	General Purpose Output 16. RxE4[5] = 1			
GPO17 / <u>SA17</u> / strap	AE11	О	General Purpose Output 17. RxE4[5] = 1			
GPO18 / <u>SA18</u> / strap	AD11	О	General Purpose Output 18. RxE4[5] = 1			
GPO19 / <u>SA19</u> / strap	AC11	О	General Purpose Output 19. RxE4[5] = 1			
GPO20 / GPI20 / <u>ACSDIN2</u> / PCS0#	U2	OD	General Purpose Output 20. RxE4[6]=1, E5[1]=0			
GPO21 / GPI21 / <u>ACSDIN3</u> / PCS1# /SLPBTN#	V1	OD	General Purpose Output 21. RxE4[6]=1, E5[2]=0			
GPO22 / <u>GPI22</u> / GHI#	R24	OD	General Purpose Output 22. RxE5[3]=1			
GPO23 / <u>GPI23</u> / DPSLP#	P26	OD	General Purpose Output 23. RxE5[3]=1			
GPO24 / <u>GPI24</u> / GPIOA	AE5	O/ <u>OD</u>	General Purpose Output 24. RxE6[0] = 1			
GPO25 / <u>GPI25</u> / GPIOC	AE6	O/ <u>OD</u>	General Purpose Output 25. RxE6[1] = 1			
GPO26 / GPI26 / <u>SMBDT2</u> (VSUS33†)	AD1	OD	General Purpose Output 26. Rx95[2] = 1, 95[3] = 1			
GPO27 / GPI27 / <u>SMBCK2</u> (VSUS33†)	AE1	OD	General Purpose Output 27. $Rx95[2] = 1, 95[3] = 1$			
GPO28 / GPI28 / VIDSEL	P25	OD	General Purpose Output 28. RxE5[3] = 1			
GPO29 / GPI29 / VRDSLP	P24	OD	General Purpose Output 29. RxE5[3] = 1			
GPO30 / <u>GPI30</u> / GPIOD	AD6	O/ <u>OD</u>	1 1 1			
GPO31 / <u>GPI31</u> / GPIOE	AC6	O/ <u>OD</u>	General Purpose Output 31. RxE6[7] = 1			

Note: The output state for each of the above general purpose outputs is selectable via Power Management I/O registers Rx4C-48 Note: The output types of GPO24-25 and 30-31 are selectable OD vs TTL (see Function 0 RxE7)

Note: Default pin functions are underlined in the table above.

[†] The suspend voltage is only used for maintaining the operation of the SMB function on these pins (Device 17 Function 0 Rx95[3] = 0). If VCC power is lost, the GPIO function of these pins and the state of PMIO Rx4C[27:26] (which determines the GPO output level) will be lost also.

General Purpose I/O						
Signal Name Pin # I/O Signal Description						
GPIOA / <u>GPI24</u> / GPO24	AE5	IO	General Purpose I/O A / 24. $RxE6[0] = 1$			
GPIOC / GPI25 / GPO25	AE6	IO	General Purpose I/O C / 25. RxE6[1] = 1			
GPIOD / <u>GPI30</u> / GPO30	AD6	IO	General Purpose I/O D / 30. RxE6[6] = 1			
GPIOE / <u>GPI31</u> / GPO31	AC6	IO	General Purpose I/O E / 31. $RxE6[7] = 1$			

The output type of the above pins may be selected as either OD or TTL (see Device 17 Function 0 RxE7)

Power Management and Event Detection Pin Descriptions

Power Management and Event Detection						
Signal Name	Pin #	I/O	Signal Description			
PWRBTN#	AD2	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. Internal logic powered by VSUS33.			
SLPBTN# / GPIO21 / ACSDIN3 / PCS1#	V1	I	Sleep Button. Used by the Power Management subsystem to monitor an external sleep button or switch. $RxE4[6] = 1$, $80[6] = 1$, $E5[2] = 0$ and PMIO $Rx4C[21] = 1$			
RSMRST#	AD5	I	Resume Reset. Resets the internal logic connected to the VSUS33 power plane and also resets portions of the internal RTC logic. Internal logic powered by VBAT.			
EXTSMI# / GPI2	AA1	IOD				
PME#	W3	I	Power Management Event. (10K PU to VSUS33 if not used)			
SMBALRT#	AB2	I	SMB Alert . When programmed to allow it (SMB I/O Rx8[3]=1), assertion generates			
LID# / GPI4	AC1	I	an IRQ, SMI, or power management event. (10K PU to VSUS33 if not used) Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high or high-to-low transitions to generate an SMI#. (10K PU to VSUS33 if not used)			
INTRUDER# / GPI16	AD3	I	Intrusion Indicator. The value of this bit may be read at PMIO Rx20[6]			
THRM# / GPI18 / <u>AOLGPI</u>	Y4	I	Thermal Alarm Monitor. $Rx8C[3] = 1$. Rising or falling edges (selectable by PMIO $Rx2C[6]$) may be detected to set status at PMIO $Rx20[10]$. Setting of this status bit may then be used to generate an SCI or SMI. THRM# may also be used to enable duty cycle control of stop-clock (STPCLK#) to automatically limit maximum temperature (see Device 17 Function 0 $Rx8C[7-3]$).			
RING# / GPI3	Y2	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VSUS33 if not used)			
BATLOW# / GPI5	W4	I	Battery Low Indicator. (10K PU to VSUS33 if not used) (3.3V only)			
CPUSTP# / GPO5	AC7	О	CPU Clock Stop (RxE4[0] = 0). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used.			
PCISTP# / GPO6	AF6	О	PCI Clock Stop (RxE4[1] = 0). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.			
SUSA# / GPO1	AA2	О	Suspend Plane A Control (Rx94[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VSUS33 if not used)			
SUSB# / GPO2	AF2	О	Suspend Plane B Control (Rx94[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VSUS33 if not used)			
SUSC#	AF1	О	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry. (10K PU to VSUS33 if not used)			
SUSST1# / GPO3	Y3	O	Suspend Status 1 (Rx94[4] = 0). Typically connected to the North Bridge to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VSUS33.			
SUSCLK	AB1	О	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., KT400A, CLE266 or P4X400) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VSUS33.			
CPUMISS / GPI17	Y1	I	CPU Missing. Used to detect the physical presence of the CPU chip in its socket. High indicates no CPU present. Connect to the CPUMISS pin of the CPU socket. The state of this pin may be read in the SMBus 2 registers. This pin may be used as CPUMISS and GPI17 at the same time.			
AOLGPI / GPI18 / THRM#	Y4	I	Alert On LAN. The state of this pin may be read in the SMBus 2 registers. This pin may be used as AOLGPI, GPI18 and THRM# all at the same time.			

Clock, Resets, Power Status, Power and Ground Pin Descriptions

	Resets, Clocks, and Power Status					
Signal Name	Pin #	I/O	Signal Description			
PWRGD	AF4	I	Power Good. Connected to the Power Good signal on the Power Supply. Internal logic			
			powered by VBAT.			
PWROK#	AE2	O	Power OK. Internal logic powered by VSUS33.			
PCIRST#	R2	О	PCI Reset. Active low reset signal for the PCI bus. The VT8235M Version CD will assert this pin during power-up or from the control register.			
OSC	AC12	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.			
RTCX1	AD4	I	RTC Crystal Input: 32.768 KHz crystal or oscillator input. This input is used for the			
K1 C211	7151	1	internal RTC and power-well power management logic and is powered by VBAT.			
RTCX2	AF3	О	RTC Crystal Output: 32.768 KHz crystal output. Internal logic powered by VBAT.			
TEST	AF9	I	Test.			
TPO	U24	О	Test Pin Output. Output pin for test mode.			
NC	W22, AD17	_	No Connect. Reserved. Do not connect.			
	-	=	Power and Ground			
Signal Name	Pin #	I/O	Signal Description			
VCC33	(see pin list)	P	I/O Power. 3.3V ±5%			
VCC	(see pin list)	P	Core Power. 2.5V $\pm 5\%$. This supply is turned on only when the mechanical switch on			
			the power supply is turned on and the PWRON signal is conditioned high. Note: The			
			VT8233A Version CE (VT8235ML) core voltage is 3.3V so board designs that are			
			intended to allow use of either VT8235M Version CD or VT8233A Version CE			
			(VT8235ML) should take this difference into account and allow the core voltage to be			
			selected as either 2.5V (for the VT8235M Version CD) or 3.3V (for the VT8233A			
GND	(see pin list)	P	Version CE / VT8235ML). Ground. Connect to primary motherboard ground plane.			
VSUS33	AA4, AB4,	P	Suspend Power. $3.3V \pm 5\%$. Always available unless the mechanical switch of the			
V 5 0 5 5 5	AC4, AC5	1	power supply is turned off. If the "soft-off" state is not implemented, then this pin can be			
	110 1,1100		connected to VCC33. Signals powered by or referenced to this plane are: PWRGD,			
			RSMRST#, PWRBTN#, SMBCK1/2, SMBDT1/2, GPO0, SUSA# / GPO1, SUSB# /			
			GPO2, SUSC#, SUSST1# / GPO3, SUSCLK / GPO4, GPI1, GPI2 / EXTSMI#, GPI3 /			
			RING#, GPI4 / LID, GPI5 / BATLOW#, GPI6 / PME#, SMBALRT#			
VSUS25	T4, U4	P	Suspend Power. 2.5V ±5%.			
VSUSUSB	D15	P	USB Suspend Power. 2.5V ±5%.			
VBAT	AE4	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)			
VLVREF VCCVK	J23	P	V-Link Voltage Reference. $0.9V \pm 5\%$ for 4x transfers and $0.625V \pm 5\%$ for 8x transfers.			
	(see pin list)	P	V-Link Compensation Circuit Voltage. 2.5V ±5%			
MIIVCC	D11, D12, E11, E12	P	LAN MII Power. 3.3V ±5%.Power for LAN Media Independent Interface (interface to external PHY). Connect to VCC33 through a ferrite bead.			
MIIVCC25	D13, E13	P	LAN MII Suspend Power. 2.5V ±5%.			
RAMVCC	E7	P	LAN RAM Power. 2.5V ±5%. Power for LAN internal RAM. Connect to VCC			
KANIVEC	L/	1	through a ferrite bead.			
RAMGND	E8	P	LAN RAM Ground. Connect to GND through a ferrite bead.			
USBVCC	(see pin list)	P	USB 2.0 Differential Output Power. 3.3V ±5%. Power for USB differential outputs			
			(USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-, P4+, P4-, P5+, P5-). Connect to VSUS33			
			through a ferrite bead.			
USBGND	(see pin list)	P	USB 2.0 Differential Output Ground. Connect to GND through a ferrite bead.			
VCCUPLL	A23, D22	P	USB 2.0 PLL Analog Voltage. 2.5V ±5%. Connect to VCC through a ferrite bead.			
GNDUPLL	B23, E22	P	USB 2.0 PLL Analog Ground. Connect to GND through a ferrite bead.			
PLLVCC	P22	P	PLL Analog Power. 2.5V ±5%. Connect to VCC through a ferrite bead.			
PLLGND	P23	P	PLL Analog Ground. Connect to GND through a ferrite bead.			

†Created by a resistive voltage divider of 1K Ω 1% to 3.3V and 383 Ω 1% to ground (see Design Guide)

Strap Pin Descriptions

	Strap Pins						
Strap Pins for VT8235M Version CD Configuration							
Signal Name	Pin #	Function	Description	Note			
Strap_SOE#	AD12	Auto Reboot	L: Enable Auto Reboot H: Disable Auto Reboot (Default)				
SPKR	AE9	CPU Frequency Strapping	L: Enable CPU Frequency Strapping H: Disable CPU Frequency Strapping (Default)				
ROMCS#/KBCS#	AF12	Internal Keyboard Controller	L: Disable internal KBC H: Enable internal KBC (Default)				
SDCS1#	AC23	Eliminate External LAN EEPROM	L: Enable. Use external EEPROM (Default) H: Disable. Do not use external EEPROM				
		Strap Pins for N	North Bridge Configuration				
SDCS3#	AD23	NB Configuration	SDCS3# signal state is reflected on signal pin VD[7] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SDA2	AF23	NB Configuration	SDA2 signal state is reflected on signal pin VD[6] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SDA1	AC22	NB Configuration	SDA1 signal state is reflected on signal pin VD[5] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SDA0	AE23	NB Configuration	SDA0 signal states is reflected on signal pins VD[4] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SA19	AC11	NB Configuration	SA19 signal state is reflected on signal pin VD[3] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SA18	AD11	NB Configuration	SA18 signal state is reflected on signal pin VD[2] during power up for North Bridge configuration.				
SA17	AE11	NB Configuration	SA17 signal state is reflected on signal pin, VD[1] during power up for North Bridge configuration.	Check the North Bridge DS for details			
SA16	AF11	NB Configuration	SA16 signal state is reflected on signal pin, VD[0] during power up for North Bridge configuration.	Check the North Bridge DS for details			

Summary of Internal Pull-Up / Pull-Down Resistor Implementation
Internal Pullups are present on pins KBCK, KBDT, MSCK, MSDT, SERIRQ, LAD[3:0], SDCS1#
Internal Pulldowns are present on pins SA[19-16] and all LAN pins

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8235M Version CD. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 3. Memory Mapped Registers

FEC00000	APIC Index	(8-bit)
FEC00010	APIC Data	(32-bit)
FEC00020	APIC IRQ Pin Assertion	(8-bit)
FEC00040	APIC EOI	(8-bit)

[&]quot;APIC" = "Advanced Programmable Interrupt Controller"

Table 4. Function Summary

Bus	Device	Func	Device ID	Function
0	16 (10h)	0	3038h	USB 1.1 UHCI Ports 0-1
0	16 (10h)	1	3038h	USB 1.1 UHCI Ports 2-3
0	16 (10h)	2	3038h	USB 1.1 UHCI Ports 4-5
0	16 (10h)	3	3104h	USB 2.0 EHCI Ports 0-5
0	17 (11h)	0	3074h	Bus Control & Power Mgmt
0	17 (11h)	1	0571h	IDE Controller
0	17 (11h)	5	3059h	AC97 Audio Codec Controller
0	17 (11h)	6	3068h	MC97 Modem Codec Ctrlr
	, ,			
0	18 (12h)	0	3065h	VIA LAN Controller

Table 5. System I/O Map

<u>Port</u>	<u>Function</u>	Actual Port Decoding
00-1F	Master DMA Controller	0000 0000 000x nnnn
20-3F	Master Interrupt Controller	0000 0000 001x xxxn
40-5F	Timer / Counter	0000 0000 010x xxnn
60-6F	Keyboard Controller	0000 0000 0110 xnxn
(60h)	KBC Data	0000 0000 0110 x0x0
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	0000 0000 0110 x1x0
70-77	RTC/CMOS/NMI-Disable	0000 0000 0111 0nnn
78-7F	-available for system use-	0000 0000 0111 1xxx
80	-reserved- (debug port)	0000 0000 1000 0000
81-8F	DMA Page Registers	0000 0000 1000 nnnn
90-91	-available for system use-	0000 0000 1001 000x
92	System Control	0000 0000 1001 0010
93-9F	-available for system use-	0000 0000 1001 nnnn
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	

Table 6. Registers

Legacy I/O Registers

Port	Master DMA Controller Registers	Default	Acc
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		WO
0A	Write Single Mask		WO
0B	Write Mode		WO
0C	Clear Byte Pointer FF		WO
0D	Master Clear		WO
0E	Clear Mask		WO
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	Acc
20	Master Interrupt Control	_	*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow		$\mathbf{R}\mathbf{W}$
21	Master Interrupt Mask Shadow	_	RW

^{*} RW if shadow registers are disabled

<u>Port</u>	Timer/Counter Registers	<u>Default</u>	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	<u>Default</u>	Acc
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	<u>Default</u>	Acc
70	CMOS Memory Address & NMI Disa		WO
71	CMOS Memory Data (128 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-Dh). Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

Legacy I/O Registers (continued)

<u>Port</u>	DMA Page Registers	<u>Default</u>	Acc
87	DMA Page – DMA Channel 0		RW
83	DMA Page – DMA Channel 1		RW
81	DMA Page – DMA Channel 2		RW
82	DMA Page – DMA Channel 3		RW
8F	DMA Page – DMA Channel 4		RW
8B	DMA Page – DMA Channel 5		RW
89	DMA Page – DMA Channel 6		RW
8A	DMA Page – DMA Channel 7		RW

<u>Port</u>	System Control Registers	<u>Default</u>	Acc
92	System Control		RW

Port	Slave Interrupt Controller Regs	Default	Acc
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow		RW
A1	Slave Interrupt Mask Shadow	_	$\mathbf{R}\mathbf{W}$

^{*} RW accessible if shadow registers are disabled

Port	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		WO
D6	Write Mode		WO
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		WO
DE	Read / Write Mask		RW

Keyyboard / Mouse Wakeup Registers (I/O Space)

Port	KB / Mouse Wakeup Registers	Default	Acc
002E	Keyboard / Mouse Wakeup Index †	00	RW
002F	Keyboard / Mouse Wakeup Data †	00	RW

[†] Keyboard / Mouse Wakeup registers (index values E0-EF defined below) are accessible if Function 0 PCI Configuration register Rx51[1] = 1.

<u>Keyboard / Mouse Wakeup Registers (Indexed via Port 2E/2F)</u>

Offset	Reserved	<u>Default</u>	Acc
00-DF	-reserved-		RO

Offset	KB / Mouse Wakeup (Rx51[1]=1)	Default	Acc
E0	Keyboard / Mouse Wakeup Enable	08	RW
E1	Keyboard Wakeup Scan Code Set 0	F0	RW
E2	Keyboard Wakeup Scan Code Set 1	00	RW
E3	Keyboard Wakeup Scan Code Set 2	00	RW
E4	Keyboard Wakeup Scan Code Set 3	00	RW
E5	Keyboard Wakeup Scan Code Set 4	00	RW
E6	Keyboard Wakeup Scan Code Set 5	00	RW
E7	Keyboard Wakeup Scan Code Set 6	00	RW
E8	Keyboard Wakeup Scan Code Set 7	00	RW
E9	Mouse Wakeup Scan Code Set 1	09	RW
EA	Mouse Wakeup Scan Code Set 2	00	RW
EB	Mouse Wakeup Scan Code Mask	00	RW
EC-EF	-reserved-	_	RO

Game Port Registers (I/O Space)

Offset	Game Port (200-20F typical)	Default	Acc
0	-reserved-	00	
1	Game Port Status		RO
1	Start One-Shot		WO
2-F	-reserved-	00	

Memory Mapped Registers - IOAPIC

Address	APIC Index / Data	Default	Acc
FEC00000	APIC Register Index	00	RW
FEC00001-0F	-reserved-	00	
FEC00010-13	APIC Register Data	0000 0000	RW
FEC00014-1F	-reserved-	00	_
FEC00020	APIC IRQ Pin Assertion	XX	WO
FEC00021-3F	-reserved-	00	_
FEC00040	APIC EOI	XX	WO
FEC00041-FF	-reserved-	00	_

0 APIC ID 0000 0000 RW 1 APIC Version 0017 8003 RO 2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.66	L DIC D	D.C. 14	
1 APIC Version 0017 8003 RO 2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Offset		<u>Default</u>	Acc
2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx				
3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection— AIRQ0 xxx1xxxx xxxxxxxx RW 13-12 I/O Redirection— AIRQ1 xxx1xxx xxxxxxxx RW 15-14 I/O Redirection— AIRQ2 xxx1xxxx xxxxxxxx RW 17-16 I/O Redirection— AIRQ3 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxx xxxxxxxx RW 1B-1A I/O Redirection— AIRQ5 xxx1xxx xxxxxxxx RW 1B-1A I/O Redirection— AIRQ6 xxx1xxxx xxxxxxxx RW 1D-1C I/O Redirection— AIRQ6 xxx1xxxx xxxxxxxx RW 1F-1E I/O Redirection— AIRQ7 xxx1xxxx xxxxxxxx RW 21-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxxx xxxxxxxxx RW 29-28 I/O Redirection— AIRQ11 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxxx RW 21-20 I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxxx RW 21-20 I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxxx RW 21-20 I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxxxx RW 21-20 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxxx RW 21-20 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxxx RW 21-20 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx				RO
4-F -reserved- 0000 0000 — 11-10 I/O Redirection— AIRQ0 xxx1xxxx xxxxxxx RW 13-12 I/O Redirection— AIRQ1 xxx1xxx xxxxxxxx RW 15-14 I/O Redirection— AIRQ2 xxx1xxx xxxxxxxx RW 17-16 I/O Redirection— AIRQ3 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ5 xxx1xxx xxxxxxxx RW 1B-1A I/O Redirection— AIRQ6 xxx1xxx xxxxxxxx RW 1D-1C I/O Redirection— AIRQ6 xxx1xxx xxxxxxxx RW 1F-1E I/O Redirection— AIRQ7 xxx1xxx xxxxxxxx RW 21-20 I/O Redirection— AIRQ9 xxx1xxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxx xxxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 38-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 38-3A I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 38-3B I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 38-3B I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxxx RW 38-3B I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxxx RW 38-3B I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxxxxxxxxx RW 38-3B I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxxx RW 38-3B I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxxx RW		APIC Arbitration		
11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxx RW 19-18 I/O Redirection—AIRQ5 xxx1xxxx xxxxxxxx RW 1B-1A I/O Redirection—AIRQ6 xxx1xxxx xxxxxxxx RW 1D-1C I/O Redirection—AIRQ6 xxx1xxxx xxxxxxxx RW 1F-1E I/O Redirection—AIRQ7 xxx1xxxx xxxxxxxx RW 21-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection—AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection—AIRQ11 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxxx RW	3	Boot Configuration	0000 0000	RW
13-12 I/O Redirection— AIRQ1 xxx1xxxx xxxxxxxx RW 15-14 I/O Redirection— AIRQ2 xxx1xxxx xxxxxxxx RW 17-16 I/O Redirection— AIRQ3 xxx1xxxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxxx xxxxxxxx RW 1B-1A I/O Redirection— AIRQ5 xxx1xxxx xxxxxxxx RW 1D-1C I/O Redirection— AIRQ6 xxx1xxxx xxxxxxxx RW 1F-1E I/O Redirection— AIRQ7 xxx1xxxx xxxxxxxx RW 21-20 I/O Redirection— AIRQ8 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	4-F	-reserved-	0000 0000	—
15-14 I/O Redirection- AIRQ2 xxx1xxx xxxxxxx RW 17-16 I/O Redirection- AIRQ3 xxx1xxx xxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxx xxxxxxx RW 1B-1A I/O Redirection- AIRQ5 xxx1xxx xxxxxxx RW 1D-1C I/O Redirection- AIRQ6 xxx1xxx xxxxxxx RW 1F-1E I/O Redirection- AIRQ7 xxx1xxx xxxxxxx RW 21-20 I/O Redirection- AIRQ8 xxx1xxx xxxxxxx RW 23-20 I/O Redirection- AIRQ9 xxx1xxx xxxxxxx RW 25-24 I/O Redirection- AIRQ10 xxx1xxx xxxxxxx RW 27-26 I/O Redirection- AIRQ11 xxx1xxx xxxxxxx RW 29-28 I/O Redirection- AIRQ12 xxx1xxx xxxxxxx RW 29-28 I/O Redirection- AIRQ12 xxx1xxx xxxxxxx RW 2D-2C I/O Redirection- AIRQ13 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection- AIRQ14 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection- AIRQ15 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection- AIRQ16 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection- AIRQ17 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection- AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection- AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection- AIRQ21 xxx1xxx xxxxxxxx RW 3B-3A I/O Redirection- AIRQ21 xxx1xxx xxxxxxxx RW 3B-3C I/O Redirection- AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection- AIRQ23 xxx1xxxx xxxxxxxx RW	11-10	I/O Redirection– AIRQ0	xxx1xxxx xxxxxxx	RW
17-16 I/O Redirection— AIRQ3	13-12	I/O Redirection– AIRQ1	xxx1xxxx xxxxxxx	RW
19-18 I/O Redirection- AIRQ4 xxx1xxx xxxxxxx RW 1B-1A I/O Redirection- AIRQ5 xxx1xxx xxxxxxx RW 1D-1C I/O Redirection- AIRQ6 xxx1xxx xxxxxxx RW 1F-1E I/O Redirection- AIRQ7 xxx1xxx xxxxxxx RW 21-20 I/O Redirection- AIRQ8 xxx1xxx xxxxxxx RW 23-20 I/O Redirection- AIRQ9 xxx1xxx xxxxxxx RW 25-24 I/O Redirection- AIRQ10 xxx1xxx xxxxxxx RW 27-26 I/O Redirection- AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection- AIRQ12 xxx1xxx xxxxxxx RW 29-28 I/O Redirection- AIRQ12 xxx1xxx xxxxxxx RW 2B-2A I/O Redirection- AIRQ13 xxx1xxx xxxxxxxx RW 2D-2C I/O Redirection- AIRQ14 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection- AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection- AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection- AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection- AIRQ19 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection- AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection- AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection- AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection- AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection- AIRQ23 xxx1xxxx xxxxxxxx RW	15-14	I/O Redirection– AIRQ2	xxx1xxxx xxxxxxx	RW
IB-1A I/O Redirection- AIRQ5xxx1xxxx xxxxxxxxRW1D-1C I/O Redirection- AIRQ6xxx1xxxx xxxxxxxxRW1F-1E I/O Redirection- AIRQ7xxx1xxxx xxxxxxxxRW21-20 I/O Redirection- AIRQ8xxx1xxxx xxxxxxxxRW23-20 I/O Redirection- AIRQ9xxx1xxxx xxxxxxxxRW25-24 I/O Redirection- AIRQ10xxx1xxxx xxxxxxxxRW29-28 I/O Redirection- AIRQ11xxx1xxxx xxxxxxxxRW29-28 I/O Redirection- AIRQ12xxx1xxxx xxxxxxxxRW2D-2C I/O Redirection- AIRQ13xxx1xxxx xxxxxxxxRW2F-2E I/O Redirection- AIRQ14xxx1xxxx xxxxxxxxRW31-30 I/O Redirection- AIRQ16xxx1xxxx xxxxxxxxRW33-32 I/O Redirection- AIRQ17xxx1xxxx xxxxxxxxRW35-34 I/O Redirection- AIRQ18xxx1xxxx xxxxxxxxRW37-36 I/O Redirection- AIRQ19xxx1xxxx xxxxxxxxRW39-38 I/O Redirection- AIRQ20xxx1xxxx xxxxxxxxRW3B-3A I/O Redirection- AIRQ21xxx1xxxx xxxxxxxxRW3D-3C I/O Redirection- AIRQ22xxx1xxxx xxxxxxxxRW3F-3E I/O Redirection- AIRQ23xxx1xxxx xxxxxxxxRW	17-16	I/O Redirection– AIRQ3	xxx1xxxx xxxxxxx	RW
1D-1C I/O Redirection— AIRQ6	19-18	I/O Redirection– AIRQ4	xxx1xxxx xxxxxxx	RW
1F-1E I/O Redirection— AIRQ7 xxx1xxxx xxxxxxx RW 21-20 I/O Redirection— AIRQ8 xxx1xxxx xxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	1B-1A	I/O Redirection– AIRQ5	xxx1xxxx xxxxxxx	RW
21-20 I/O Redirection—AIRQ8 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection—AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection—AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3B-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	1D-1C	I/O Redirection– AIRQ6	xxx1xxxx xxxxxxxx	RW
23-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	1F-1E	I/O Redirection– AIRQ7	xxx1xxxx xxxxxxxx	RW
25-24 I/O Redirection—AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection—AIRQ11 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW	21-20	I/O Redirection– AIRQ8	xxx1xxxx xxxxxxxx	RW
27-26 I/O Redirection—AIRQ11 xxx1xxx xxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxx xxxxxxx RW 2B-2A I/O Redirection—AIRQ13 xxx1xxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	23-20	I/O Redirection– AIRQ9	xxx1xxxx xxxxxxx	RW
29-28 I/O Redirection—AIRQ12 xxx1xxx xxxxxxx RW 2B-2A I/O Redirection—AIRQ13 xxx1xxx xxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	25-24	I/O Redirection– AIRQ10	xxx1xxxx xxxxxxxx	RW
2B-2A I/O Redirection—AIRQ13 xxx1xxx xxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxx xxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	27-26	I/O Redirection– AIRQ11	xxx1xxxx xxxxxxxx	RW
2D-2C I/O Redirection—AIRQ14 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	29-28	I/O Redirection– AIRQ12	xxx1xxxx xxxxxxx	RW
2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	2B-2A	I/O Redirection– AIRQ13		
31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	2D-2C	I/O Redirection– AIRQ14	xxx1xxxx xxxxxxxx	RW
33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	2F-2E	I/O Redirection– AIRQ15	xxx1xxxx xxxxxxx	RW
35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	31-30	I/O Redirection– AIRQ16	xxx1xxxx xxxxxxxx	RW
37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	33-32	I/O Redirection– AIRQ17	xxx1xxxx xxxxxxx	RW
39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxx RW	35-34	I/O Redirection– AIRQ18	xxx1xxxx xxxxxxxx	RW
39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxx RW	37-36	I/O Redirection– AIRQ19	xxx1xxxx xxxxxxx	RW
3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxx RW	39-38	I/O Redirection– AIRQ20		
3F-3E I/O Redirection- AIRQ23 xxx1xxxx xxxxxxx RW	3B-3A	I/O Redirection– AIRQ21		
	3D-3C	I/O Redirection– AIRQ22	xxx1xxxx xxxxxxx	RW
	3F-3E	I/O Redirection– AIRQ23	xxx1xxxx xxxxxxx	RW
	40-4F			

Note: The "I/O Redirection" registers are 64-bit registers, so each uses two consecutive index locations, with the lower 32 bits at the even index and the upper 32 bits at the odd index.

Device 16 Function 0 Registers – USB 1.1 UHCI Ports 0-1

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	-reserved-	00	
D	Latency Timer	16	RW
E-1F	-reserved-	00	
23-20	USB I/O Registers Base Port Address	00000301	RW
24-2B	-reserved-	00	
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	01	RO
3E-3F	-reserved-	00	

RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	-
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	FFC20001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

Memory Mapped I/O Registers – USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	

Device 16 Function 1 Registers – USB 1.1 UHCI Ports 2-3

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
Α	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	-reserved-	00	_
D	Latency Timer	16	RW
E-1F	-reserved-	00	
23-20	USB I/O Registers Base Port Address	00000301	$\mathbf{R}\mathbf{W}$
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	_
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	02	RO
3E-3F	-reserved-	00	_

RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	<u>Acc</u>
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	-
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	FFC20001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

Memory Mapped I/O Registers – USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	

Device 16 Function 2 Registers – USB 1.1 UHCI Ports 4-5

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	-reserved-	00	_
D	Latency Timer	16	RW
E-1F	-reserved-	00	_
23-20	USB I/O Registers Base Port Address	00000301	RW
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	_
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	_

RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	-
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	FFC20001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

Memory Mapped I/O Registers – USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	_

<u>Device 16 Function 3 Registers – USB 2.0 EHCI Ports 0-5</u>

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3104	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	20	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	Cache Line Size	00	RW
D	Latency Timer	16	RW
E-F	-reserved-	00	
13-10	EHCI Mem Mapped I/O Base Addr	0000 0000	RW
14-2B	-reserved-	00	
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3104	RO†
30-33	-reserved-	00	
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	

RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41-47	-reserved- (Do Not Program)	00	
48	USB Miscellaneous Control 5	A0	RW
49	USB Miscellaneous Control 6	20	RW
4A-4B	-reserved- (Do Not Program)	00	_
4C-4F	-reserved-	00	
50-57	-reserved- (test, do not program)	00	
58-5D	-reserved- (Do Not Program)	00	_
5E-5F	-reserved-	00	
60	USB Serial Bus Release Number	20	RO
61	Frame Length Adjust	20	RW
63-62	Port Wake Capability	0001	RW
64-67	-reserved-	00	_
6B-68	Legacy Support Extended Capability	0000 0001	RW
6F-6C	Legacy Support Control / Status	0000 0000	RW
70-7F	-reserved-	00	
83-80	PM Capability	FFC20001	RO
84	PM Capability Status	00	RW
85-FF	-reserved-	00	

Memory Mapped I/O Registers - USB EHCI

Offset	EHCI Capabilities	<u>Default</u>	Acc
00	Capability Register Length	00	RW
01	-reserved-	00	_
03-02	Interface Version Number	0100	RO†
07-04	Structure Parameters	0000 3206	RO†
0B-08	Capability Parameters	0000 6872	RO†
0C-0F	-reserved-	00	

[†] RW if Rx42[4] = 1.

Offset	Host Controller Operation	<u>Default</u>	Acc
13-10	USB Command	0000 0000	RW
17-14	USB Status	0000 0000	RW
1B-18	USB Interrupt Enable	0000 0000	RW
1F-1C	USB Frame Index	0000 0000	RW
23-20	4G Segment Selector	0000 0000	RW
27-24	Frame List Base Address	0000 0000	RW
2B-28	Next Asynchronous List Address	0000 0000	RW
2C-4F	-reserved-	00	
53-50	Configured Flag Register	0000 0000	RW
57-54	Port 1 Status / Control	0000 0000	RW
5B-58	Port 2 Status / Control	0000 0000	RW
5C-FF	-reserved-	00	

<u>Device 17 Function 0 Registers – Bus Control & Power Management</u>

Configuration Space Bus Control & PM Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3177	RO
5-4	Command	0087	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
Α	Sub Class Code	01	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	
D	-reserved- (latency timer)	00	
E	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	
28-2B	-reserved- (unassigned)	00	
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
30-33	-reserved- (expan. ROM base addr)	00	
34-3B	-reserved- (unassigned)	00	_
3C	-reserved- (interrupt line)	00	
3D	-reserved- (interrupt pin)	00	
3E	-reserved- (min gnt)	00	
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	Default	Acc
40	ISA Bus Control	00	RW
41	BIOS ROM Decode Control	00	RW
42	Line Buffer Control	00	RW
43	Delay Transaction Control	00	RW
44-47	-reserved-	00	_
48	Read Pass Write Control	00	RW
49	CCA Control	00	RW
4A-4B	-reserved-	00	

Offset	Miscellaneous Control	Default	Acc
4C	IDE Interrupt Routing	00	RW
4D	-reserved-	00	_
4E	Internal RTC Test Mode	00	RW
4F	PCI Bus & CPU Interface Control	00	RW

Offset	Function Control	Default	Acc
50	Function Control 1	08	RW
51	Function Control 2	0D	RW

Offset	Serial IRQ, LPC & PC/PCI Control	<u>Default</u>	<u>Acc</u>
52	Serial IRQ & LPC Control	00	RW
53	PC/PCI DMA Control	00	RW

Offset	Plug and Play Control	Default	<u>Acc</u>
54	PCI Interrupt Polarity	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW

Offset	GPIO and Miscellaneous Control	<u>Default</u>	Acc
58	Miscellaneous Control 0	40	RW
59	Miscellaneous Control 1	00	RW
5A	DMA Bandwidth Control	00	RW
5B	Miscellaneous Control 2	00	RW

Offset	Programmable Chip Select Control	<u>Default</u>	Acc
5D-5C	PCS0# I/O Port Address	0000	RW
5F-5E	PCS1# I/O Port Address	0000	RW
61-60	PCS2# I/O Port Address	0000	RW
63-62	PCS3# I/O Port Address	0000	RW
64	PCS[1-0]# I/O Port Address Mask	00	RW
65	PCS[3-2]# I/O Port Address Mask	00	RW
66	Programmable Chip Select Control	00	RW
67	Output Control	04	RW
68-6B	-reserved-	00	_

Offset	<u>Miscellaneous</u>	<u>Default</u>	Acc
6C	ISA Positive Decoding Control 1	00	RW
6D	ISA Positive Decoding Control 2	00	RW
6E	ISA Positive Decoding Control 3	00	RW
6F	ISA Positive Decoding Control 4	00	RW
71-70	Sub Vendor ID Backdoor	00	RW
73-72	Sub Device ID Backdoor	00	RW
70-78	-reserved-	00	_
79	PnP IRQ/DRQ Test (do not prog)	00	RW
7A	IDE / USB Test (do not program)	00	RW
7B	PLL Test (do not program)	00	RW
7C	I/O Pad Control	00	RW
7D-7F	-reserved-	00	

Configuration Space Power Management Registers

Offset	Power Management	<u>Default</u>	Acc
80	General Configuration 0	00	RW
81	General Configuration 1	04	RW
82	ACPI Interrupt Select	00	RW
83	-reserved-	00	
85-84	Primary Interrupt Channel	0000	RW
87-86	Secondary Interrupt Channel	0000	RW
8B-88	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
8C	Host Bus Power Mgmt Control	00	RW
8D	Throttle / Clock Stop Control	00	RW
8E-8F	-reserved-	00	
93-90	GP Timer Control	0000 0000	RW
94	Power Well Control	00	RW
95	Miscellaneous Control	00	RW
96	Power On / Reset Control	00	RW
97	-reserved-	00	
98	GP2 / GP3 Timer Control	00	RW
99	GP2 Timer	00	RW
9A	GP3 Timer	00	RW
9B-A0	-reserved-	00	
A1	Write value for Offset 9 (Prog Intfc)	00	WO
A2	Write value for Offset A (Sub Class)	00	WO
A3	Write value for Offset B (Base Class)	00	WO
A4-BF	-reserved-	00	
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power Management Capability CSR	0000 0000	RW
C8-CF	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	Default	Acc
D1-D0	SMBus I/O Base (16 Bytes)	0001	RW
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-DF	-reserved-	00	_

Configuration Space General Purpose I/O Registers

Offset	General Purpose I/O	<u>Default</u>	Acc
E0	GPI Inversion Control	00	RW
E1	GPI SCI / SMI Select	00	RW
E2-E3	-reserved-	00	_
E4	GPO Pin Select	00	RW
E5	GPIO I/O Select 1	00	RW
E6	GPIO I/O Select 2	00	RW
E7	GPO Output Type	00	RW

Configuration Space Watchdog Timer Registers

Offset	Watchdog Timer	Default	Acc
EB-E8	Watchdog Timer Memory Base	00	RW
EC	Watchdog Timer Control	00	RW
ED-FF	-reserved-	00	_

I/O Space Power Management Registers

Offset	Basic Control / Status Registers	Default	Acc
1-0	Power Management Status	0000	WC
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	

Offset	Processor Registers	Default	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	

Offset	General Purpose Registers	Default	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_

Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	_
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	_

Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40	Extended I/O Trap Status	00	WC
41	-reserved-	00	
42	Extended I/O Trap Enable	00	RW
43-44	-reserved-	00	
45	SMI / IRQ / Resume Status	00	RO
46-47	-reserved-	00	
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	FFFFCFFF	RW
50	GPI Pin Change Status	00	RW
51	-reserved-	00	
52	GPI Pin Change SCI/SMI Select	00	RW
53-57	-reserved-	00	_
59-58	I/O Trap PCI I/O Address	0000	RO
5A	I/O Trap PCI Command / Byte Ena	00	RO
5B	-reserved-	00	
5C	CPU Performance Control	00	RW
5D-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	Default	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
Е	-reserved-	00	
F	SMBus GPIO Slave Address	00	RW

System Management Bus Command Codes

Code	System Management Bus	Default	Acc
00	SMBus GPIO Slave Input Data	_	RO
01	SMBus GPIO Slave Output Data	00	RW
02	SMBus GPIO Slave Polarity Inversion	F0	RW
03	SMBus GPIO Slave I/O Configuration	FF	RW

Device 17 Function 1 Registers – IDE Controller

Configuration Space IDE Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0290	RW
8	Revision ID	nn	RO
9	Programming Interface	85	RW
A	Sub Class Code	01	RO
В	Base Class Code	01	RO
C-F	-reserved-	00	_
13-10	Base Address – Pri Data / Command	000001F1	RW
17-14	Base Address – Pri Control / Status	000003F5	RW
1B-18	Base Address – Sec Data / Command	00000171	RW
1F-1C	Base Address – Sec Control / Status	00000375	RW
23-20	Base Address – Bus Master Control	0000CC01	RW
24-2B	-reserved- (unassigned)	00	_
2D-2C	Sub Vendor ID	0000	RO
2F-2E	Sub Device ID	0000	RO
30-33	-reserved- (expan ROM base addr)	00	_
34	Capability Pointer	C0	RO
35-3B	-reserved- (unassigned)	00	_
3C	Interrupt Line	0E	RO
3D	Interrupt Pin	01	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	Default	Acc
40	IDE Chip Enable	00	RW
41	IDE Configuration I	00	RW
42	IDE Configuration II	00	RW
43	IDE FIFO Configuration	0A	RW
44	IDE Miscellaneous Control 1	08	RW
45	IDE Miscellaneous Control 2	10	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E	Sec Non-170 Port Access Timing	B6	RW
4F	Pri Non-1F0 Port Access Timing	B 6	RW

Configuration Space IDE-Specific Registers (continued)

Offset	Configuration Space IDE Registers	Default	Acc
53-50	UltraDMA Extended Timing Control	07070707	RW
54	UltraDMA FIFO Control	04	RW
55	IDE Clock Gating	00	RW
56-5F	-reserved-	00	_
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	_
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	01	RW
72-77	-reserved-	00	
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	01	RW
7A-7F	-reserved-	00	
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-BF	-reserved-	00	
C3-C0	Power Management Capabilities	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-CF	-reserved-	00	_

Offset	IDE Back Door Registers	Default	Acc
D0	Back Door – Revision ID	06	RW
D1	-reserved-	00	
D3-D2	Back Door – Device ID	0571	RW
D5-D4	Back Door – Sub Vender ID	0000	RW
D7-D6	Back Door – Sub Device ID	0000	RW
D8-FF	-reserved-	00	

I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant

Offset	IDE I/O Registers	<u>Default</u>	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	_
2	Primary Channel Status	00	WC
3	-reserved-	00	
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	_
A	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

Device 17 Function 5 & 6 Registers – AC/MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3059	RO
5-4	Command	0000	RW
7-6	Status	0210	RO
8	Revision ID	50	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
C-F	-reserved-	00	
13-10	Base Address 0 - SGD Control/Status	0000 0001	$\mathbf{R}\mathbf{W}$
17-14	Base Address 1 (reserved)	0000 0000	
1B-18	Base Address 2 (reserved)	0000 0000	_
1F-1C	Base Address 3 (reserved)	0000 0000	
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	
2F-2C	Subsystem ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	C0	RW
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	Default	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	-reserved-	00	_
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	_
4B-48	Test Mode (reserved)	00	_
4C-BF	-reserved-	00	_
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-FF	-reserved-	00	

Function 6 Configuration Space MC97 Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	$\mathbf{R}\mathbf{W}$
7-6	Status	0200	RO
8	Revision ID	70	RO
9	Programming Interface	00	RO
A	Sub Class Code	80	RO
В	Base Class Code	07	RO
C-F	-reserved-	00	
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 (reserved)	0000 0000	
1B-18	Base Address 2 (reserved)	0000 0000	
1F-1C	Base Address 3 (reserved)	0000 0000	
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	
28-29	-reserved-	00	_
2F-2C	Subsystem ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	D0	RW
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RO
43	-reserved-	00	_
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
4B-48	Test Mode (reserved)	00	_
4C-CF	-reserved-	00	_
D3-D0	Power Management Capability	0002 0001	RO
D7-D4	Power State	0000 0000	RW
D8-FF	-reserved-	00	

Function 5 I/O Base 0 Registers – AC97 Audio S/G DMA

Offset	AC97 SGD I/O Registers	<u>Default</u>	Acc
x0	SGD Channel x Status	00	WC
x1	SGD Channel x Control	00	RW
x2	SGD Channel x Left Volume	3F	RW
x3	SGD Channel x Right Volume	3F	RW
x7-x4	SGD Channel x Table Pointer Base	0000 0000	WR
	SGD Channel x Current Address		RD
xB-x8	Stop Index / Data Type / Sample Rate	FF0F FFFF	RW
xF-xC	SGD Channel x Current Count	0000 0000	RO
40	SGD 3D Channel Status	00	WC
41	SGD 3D Channel Control	00	RW
42	SGD 3D Channel Format	00	RW
43	SGD 3D Channel Scratch	00	RW
47-44	SGD 3D Channel Table Pointer Base	0000 0000	WR
	SGD 3D Channel Current Address		RD
4B-48	SGD 3D Channel Slot Select	FF00 0000	RW
4F-4C	SGD 3D Channel Current Count	0000 0000	RO
50-5F	-reserved-	00	_
60	SGD Write Channel 0 Status	00	WC
61	SGD Write Channel 0 Control	00	RW
62	SGD Write Channel 0 Format	00	RW
63	SGD Write Channel 0 Select	00	RW
67-64	SGD Write Channel 0 Table Ptr Base	0000 0000	WR
	SGD Write Channel 0 Current Addr		RD
6B-68	SGD Write Channel 0 Stop Index	FF00 0000	RW
6F-6C	SGD Write Channel 0 Current Count	0000 0000	RO
70	SGD Write Channel 1 Status	00	WC
71	SGD Write Channel 1 Control	00	RW
72	SGD Write Channel 1 Format	00	RW
73	SGD Write Channel 1 Select	00	RW
77-74	SGD Write Channel 1 Table Ptr Base	0000 0000	WR
	SGD Write Channel 1 Current Addr		RD
	SGD Write Channel 1 Stop Index	FF00 0000	
7F-7C	SGD Write Channel 1 Current Count	0000 0000	RO

Offset AC97 / Audio Codec I/O Registers **Default** <u>Acc</u> 83-80 AC97 Controller Command / Status 0000 0000 RW 87-84 SGD Global IRQ Shadow 0000 0000 **RO** 8B-88 Modem Codec GPI Intr Status / GPIO 0000 0000 RO 8F-8C Modem Codec GPI Interrupt Enable 0000 0000 RO 90-9F Shadow PCI Config Registers 40-4F RO n/a A0-FF -reserved-00

Function 6 I/O Base 0 Registers – MC97 Modem S/G DMA

Offset	MC97 SGD I/O Registers	<u>Default</u>	Acc
0-7	-reserved-	00	_
8-F	-reserved-	00	_
10-17	-reserved-	00	
18-1F	-reserved-	00	_
20-27	-reserved-	00	_
28-2F	-reserved-	00	_
30-37	-reserved-	00	_
38-3F	-reserved-	00	—
40	SGD Read Channel Status	00	WC
41	SGD Read Channel Control	00	RW
42	SGD Read Channel Type	00	RW
43	-reserved-	00	_
47-44	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
4B-48	-reserved- (Test)	0000 0000	RO
4F-4C	SGD Read Channel Current Count	0000 0000	RO
50	SGD Write Channel Status	00	WC
51	SGD Write Channel Control	00	RW
52	SGD Write Channel Type	00	RW
53	-reserved-	00	_
57-54	SGD Write Channel Table Ptr Base	0000 0000	WR
	SGD Write Channel Current Address		RD
5B-58	Reserved (Test)	0000 0000	RO
5F-5C	SGD Write Channel Current Count	0000 0000	RO
60-7F	-reserved-	00	

Offset	AC97 / Modem Codec I/O Registers	<u>Default</u>	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Global IRQ Shadow	0000 0000	RO
8B-88	Modem Codec GPI Intr Status / GPIO	0000 0000	WC
8F-8C	Modem Codec GPI Interrupt Enable	0000 0000	RW
90-9F	Shadow PCI Config Registers 40-4F	n/a	RO
A0-FF	-reserved-	00	

Device 18 Function 0 Registers - LAN

Configuration Space LAN Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3065	RO
5-4	Command	0000	RO
7-6	Status	0470	WC
8	Revision ID	40	RO
9	Programming Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	00	RO
C	Cache Line Size	00	$\mathbf{R}\mathbf{W}$
D	Latency Timer	00	$\mathbf{R}\mathbf{W}$
E	Header Type	00	RO
F	BIST	00	RO
13-10	I/O Base Address	0000 0000	RW
17-14	Memory Base Address	0000 0000	RW
18-27	-reserved-	00	
2B-28	Card Bus CIS Pointer	0000 0000	RW
2C-2F	-reserved-	00	
33-30	Expansion ROM Base Address	0000 0000	RW
34	Capabilities Offset	40	RO
35-3C	-reserved-	00	_
3D	Interrupt Pin	01	RO
3E-3F	-reserved-	00	

Configuration Space LAN Device Specific Registers

Offset	Power Management	<u>Default</u>	Acc
40	Capability ID	01	RO
41	Next Item Pointer	00	RO
43-42	Power Management Configuration	0002	RO
47-44	Power Management Control / Status	0000 0000	WC
48-FF	-reserved-	00	_

I/O Space LAN Registers

Offset	Power Management	<u>Default</u>	Acc
5-0	Ethernet Address		RW
6	Receive Control	00	RW
7	Transmit Control	08	RW
8	Command 0	00	RW
9	Command 1	00	RW
A-B	-reserved-	00	—
C	Interrupt Status 0	00	RW
D	Interrupt Status 1	00	RW
Е	Interrupt Mask 0	00	RW
F	Interrupt Mask 1	00	RW
17-10	Multicast Address		RW
1B-18	Receive Address		RW
1F-1C	Transmit Address		RW
23-20	Receive Status	0000 0400	RW
27-24	Receive Data Buffer Control	0000 0000	RO
2B-28	Receive Data Buffer Start Address		RO
2F-2C	Receive Data Buffer Branch Address		RO
30-3F	-reserved-	00	—
43-40	Transmit Status	0000 0000	RW
47-44	Transmit Data Buffer Control	0000 0000	RO
4B-48	Transmit Data Buffer Start Address		RO
4F-4C			RO
50-6B	-reserved-	00	—
6C	PHY Address	01	RW
6D	MII Status	13	RW
6E	Buffer Control 0	00	RW
6F	Buffer Control 1	00	RW
70	MII Management Port Command	00	RW
71	MII Management Port Address	81	RW
73-72	MII Management Port Data	0000	RW
74	EEPROM Command / Status	00	RW
75-77	-reserved-	00	_
78	EEPROM Control	00	RW

I/O Space LAN Registers (continued)

Offset	Power Management	<u>Default</u>	Acc
79	Configuration 1	00	RW
7A	Configuration 2	00	RW
7B	Configuration 3	00	RW
7C-7F	-reserved-	00	—
80	Miscellaneous 1	00	RW
81	Miscellaneous 2	00	RW
82	-reserved-	00	—
83	Sticky Hardware Control	00	RW
84	MII Interrupt Status	00	WC
85	-reserved-	00	—
86	MII Interrupt Mask	00	RW
	-reserved-	00	_
8D-8C	Flash Address	0000	RW
8E	-reserved-	00	_
8F	Flash Write Data Output	00	RW
90	Flash Read / Write Command	00	RW
91	Flash Write Data Input	00	RO
92	-reserved-	00	—
93	Flash Checksum	00	RW
95-94	Suspend Mode MII Address	0000	RW
96	Suspend Mode PHY Address	00	RW
97	-reserved-	00	—
99-98	Pause Timer	0000	RW
9A	Pause Status	00	RW
9B	-reserved-	00	_
9D-9C	Soft Timer 0	0000	RW
9F-9E	Soft Timer 1	0000	RW
A0/A4	Wake On LAN Control Set / Clear	00 / 00	RW
	Power Configuration Set / Clear	00 / 00	RW
	-reserved- (do not program)	00 / 00	_
A3/A7	Wake On LAN Config Set / Clear	00 / 00	RW
A8-AF	-reserved-	00	_
B3-B0	Pattern CRC 0	0000 0000	RW
	Pattern CRC 1	0000 0000	RW
BB-B8	Pattern CRC 2	0000 0000	
BF-BC	Pattern CRC 3	0000 0000	RW
CF-C0	Byte Mask 0	0000 0000	RW
	Byte Mask 1	0000 0000	RW
	Byte Mask 2	0000 0000	
FF-F0	Byte Mask 3	0000 0000	RW

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7	SERR# StatusRO
	0 SERR# has not been asserted default
	1 SERR# was asserted by a PCI agent
	Note: This bit is set when the PCI bus SERR# signal
	is asserted. Once set, this bit may be cleared
	by setting bit-2 of this register. Bit-2 should
	be cleared to enable recording of the next
	SERR# (i.e., bit-2 must be set to 0 to enable
	this bit to be set).
6	IOCHK# StatusRO
	0 IOCHK# has not been asserteddefault
	1 IOCHK # was asserted by an ISA agent
	Note: This bit is set when the ISA bus IOCHCK#
	signal is asserted. Once set, this bit may be
	cleared by setting bit-3 of this register. Bit-3
	should be cleared to enable recording of the
	next IOCHCK# (i.e., bit-3 must be set to 0 to
	enable this bit to be set). IOCHCK# generates
	NMI to the CPU if NMI is enabled.
5	Timer/Counter 2 OutputRO
	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
•	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3	IOCHK# Enable
3	0 Enable (see bit-6 above) default
	1 Disable (force IOCHCK# inactive and clear
	any "IOCHCK# Active" condition in bit-6)
2	SERR# Enable
_	0 Enable (see bit-7 above)default
	1 Disable (force SERR# inactive and clear any
	"SERR# Active" condition in bit-7)
1	Speaker Enable
-	0 Disable default
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 Enable
v	0 Disable default
	1 Enable Timer/Counter 2
	1
Port 92	h - System ControlRW
7-2	Reserved always reads 0
1	A20 Address Line Enable
	0 A20 disabled / forced 0 (real mode) default
	1 A20 address line enabled
0	High Speed Reset
	0 Normal
	1 Briefly pulse system reset to switch from
	protected mode to real mode
	-

Port 60 - Keyboard Controller Input Buffer......WO

Keyboard Controller I/O Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" that control pins dedicated to specific functions. In the integrated version, connections are hard wired as listed below. Outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

Bit Input Port

- 0 Keyboard Data In
- 1 Mouse Data In

Bit Output Port

- 0 System Reset (1 = Execute Reset)
- 1 Gaste A20 (1 = A20 Enabled)
- 2 Mouse Data Out
- 3 Mouse Clock Out
- 6 Keyboard Clock Out
- 7 Keyboard Data Out

Bit Test Port

- 0 Keyboard Clock In
- 1 Mouse Clock In

Hardwired Internal Connections

Keyboard Data Out (Open Collector) <=> Keyboard Data In Keyboard Clock Out (Open Collector) <=> Keyboard Clk In

Mouse Data Out (Open Collector) <=> Mouse Data In Mouse Clock Out (Open Collector) <=> Mouse Clock In

Keyboard OBF Interrupt => IRQ1

Mouse OBF Interrupt => IRQ12

Input / Output / Test Port Command Codes

C0h transfers input port data to the output buffer. D0h copies output port values to the output buffer. E0h transfers test input port data to the output buffer.

The above definitions are provided for reference only as actual keyboard and mouse control is no longer performed bit-by bit using the above ports but controlled directly by keyboard / mouse controller internal logic. Data is sent and received using the command codes listed on the following page.

Only w	rite to port 60h if port 64h bit-1 = 0 (1=full).
Port 60	- Keyboard Controller Output BufferRO
	ead from port 60h if port 64h bit- $0 = 1$ (0=empty).
·	• • • • • • • • • • • • • • • • • • • •
	4 - Keyboard / Mouse StatusRO
7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received from keyboard / mouse
6	General Receive / Transmit Timeout
v	0 No error
	1 Error
5	Mouse Output Buffer Full
	0 Mouse output buffer empty default
	1 Mouse output buffer holds mouse data
4	Keylock Status
	0 Locked
_	1 Free
3	Command / Data
	Last write was data write
2	1 Last write was command write System Flag
2	0 Power-On Defaultdefault
	1 Self Test Successful
1	Input Buffer Full
	0 Input Buffer Empty default
	1 Input Buffer Full
0	Keyboard Output Buffer Full
	0 Keyboard Output Buffer Empty default
	1 Keyboard Output Buffer Full
KBC C	Control Register(R/W via Commands 20h/60h)
7	Reservedalways reads 0
6	PC Compatibility
	0 Disable scan conversion
	1 Convert scan codes to PC format; convert 2- byte break sequences to 1-byte PC-compatible
	break codes default
5	Mouse Interface
	0 Enable default
	1 Disable
4	Keyboard Interface
	0 Enable default
_	1 Disable
3	Reserved always reads 0
2	System Flag default=0
1	This bit may be read back as status register bit-2 Mouse Interrupts
1	0 Disabledefault
	1 Enable - Generate interrupt on IRQ12 when
	mouse data comes into output buffer
0	Keyboard Interrupts
	0 Disabledefault
	1 Enable - Generate interrupt on IRQ1 when
	output buffer has been written.

Port 64 - Keyboard / Mouse CommandWO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT8235M Version CD are listed in the table below.

Table 7. Keyboard Controller Command Codes

Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)
21-3Fh	Read SRAM Data (next byte is Data Byte)
60h	Write Control Byte (next byte is Control Byte)
61-7Fh	Write SRAM Data (next byte is Data Byte)
A1h	Output Keyboard Controller Version #
A4h	Test if Password is installed
A4II	(always returns F1h to indicate not installed)
A7h	Disable Mouse Interface
A7II A8h	
_	Enable Mouse Interface Mayor Interface Test (puts test regults in part 60h)
A9h	Mouse Interface Test (puts test results in port 60h)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,
A A 1.	3=data stuck lo, 4=data stuck hi, FF=general error)
AAh	KBC self test (returns 55h if OK, FCh if not)
ABh	Keyboard Interface Test (see A9h Mouse Test)
ADh	Disable Keyboard Interface
AEh	Enable Keyboard Interface
AFh	Return Version #
C0h	Read Input Port (read input data to output buffer)
Clh	Poll Input Port (read Mouse Data In
G01	continuously to status bit 5
C8h	Unblock Mouse Output (use before D1 to change
	active mode)
C9h	Reblock Mouse Output (protection mechanism
a.,	for D1)
CAh	Read Mode (output KBC mode info to port 60
D 01	output buffer: bit-0=0 if ISA, 1 if PS/2)
D0h	Read Output Port (copy output port values
541	to port 60)
D1h	Write Output Port (data byte following is written to
	keyboard output port as if it came from keyboard)
D2h	Write Keyboard Output Buffer & clear status bit-5
	(write following byte to keyboard)
D3h	Write Mouse Output Buffer & set status bit-5 (write
	following byte to mouse; put value in mouse input
	buffer so it appears to have come from the mouse)
D4h	Write Mouse (write following byte to mouse)
E0h	Read Keyboard Clock In and Mouse Clock In
	(return in bits 0-1 respectively of response byte)
Exh	Set Mouse Clock Out per command bit 3
	Set Mouse Data Out per command bit 2
	Set Gate A20 per command bit 1
Fxh	Pulse Mouse Clock Out low for 6usec per cmd bit 3
	Pulse Mouse Data Out low for 6usec per cmd bit 2
	Pulse Gate A20 low for 6usec per command bit 1
	Pulse System Reset low for 6usec per cmd bit 0

All other codes not listed are undefined.

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0 Register Name 0000 0000 000x 0000 Ch 0 Base / Current Address RW0000 0000 000x 0001 Ch 0 Base / Current Count RW0000 0000 000x 0010 Ch 1 Base / Current Address **RW** 0000 0000 000x 0011 Ch 1 Base / Current Count RW0000 0000 000x 0100 Ch 2 Base / Current Address RWCh 2 Base / Current Count 0000 0000 000x 0101 **RW** 0000 0000 000x 0110 Ch 3 Base / Current Address **RW** Ch 3 Base / Current Count 0000 0000 000x 0111 RWStatus / Command **RW** 0000 0000 000x 1000 0000 0000 000x 1001 Write Request WO Write Single Mask 0000 0000 000x 1010 WO Write Mode WO 0000 0000 000x 1011 0000 0000 000x 1100 Clear Byte Pointer F/F WO 0000 0000 000x 1101 **Master Clear** WO 0000 0000 000x 1110 Clear Mask WO 0000 0000 000x 1111 R/W All Mask Bits **RW**

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 4 Base / Current Address	\mathbf{RW}
0000 0000 1100 001x	Ch 4 Base / Current Count	\mathbf{RW}
0000 0000 1100 010x	Ch 5 Base / Current Address	\mathbf{RW}
0000 0000 1100 011x	Ch 5 Base / Current Count	$\mathbf{R}\mathbf{W}$
0000 0000 1100 100x	Ch 6 Base / Current Address	$\mathbf{R}\mathbf{W}$
0000 0000 1100 101x	Ch 6 Base / Current Count	\mathbf{RW}
0000 0000 1100 110x	Ch 7 Base / Current Address	$\mathbf{R}\mathbf{W}$
0000 0000 1100 111x	Ch 7 Base / Current Count	\mathbf{RW}
0000 0000 1101 000x	Status / Command	\mathbf{RW}
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	Read/Write All Mask Bits	wo

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 -Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 - Channel 1 Byte CountRO
Port 4 - Channel 2 Base AddressRO
Port 5 - Channel 2 Byte CountRO
Port 6 - Channel 3 Base AddressRO
Port 7 - Channel 3 Byte CountRO
Port 8 – 1 st Read Channel 0-3 Command Register RO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 – 3 rd Read Channel 0 Mode RegisterRO
Port 8 –4 th Read Channel 1 Mode RegisterRO
Port 8 –5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
Port F - Channel 0-3 Read All MaskRO
Port C4 - Channel 5 Base AddressRO
Port C6 - Channel 5 Byte CountRO
Port C8 -Channel 6 Base AddressRO
Port CA -Channel 6 Byte CountRO
Port CC -Channel 7 Base AddressRO
Port CE -Channel 7 Byte Count
Port D0 –1 st Read Channel 4-7 Command Register RO
Port D0 –2 nd Read Channel 4-7 Request RegisterRO
Port D0 –3 rd Read Channel 4 Mode RegisterRO
Port D0 –4 th Read Channel 5 Mode RegisterRO
Port D0 –5 th Read Channel 6 Mode RegisterRO
Port D0 -6 th Read Channel 7 Mode RegisterRO
-
Port DE -Channel 4-7 Read All MaskRO

Interrupt Controller I/O Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0	Register Name	
0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0	Register Name	
0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20 - Master Interrupt Control ShadowRO Port A0 - Slave Interrupt Control ShadowRO	
7	Reserved always reads 0
6	OCW3 bit 2 (POLL)
5	OCW3 bit 0 (RIS)
4	OCW3 bit 5 (SMM)
3	OCW2 bit 7 (R)
2	ICW4 bit 4 (SFNM)
1	ICW4 bit 1 (AEOI)
0	ICW1 bit 3 (LTIM)
Port 21	- Master Interrupt Mask ShadowRO
Port A	1 - Slave Interrupt Mask ShadowRO
7-5	Reserved always reads 0
4-0	T7-T3 of Interrupt Vector Address
Timer /	Counter Registers

Ports 40-43 - Timer / Counter I/O Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

CMOS	/ RTC	I/O	Registers
-------------	-------	-----	-----------

Port 70	- CMOS AddressRW
7	NMI DisableRW
	0 Enable NMI Generation. NMI is asserted on
	encountering SERR# on the PCI bus.
	1 Disable NMI Generationdefault
6-0	CMOS Address (lower 128 bytes)RW
Port 71	- CMOS DataRW
7-0	CMOS Data (128 bytes)
Note:	Ports 70-71 may be accessed if Device 17 Function 0 Rx51 bit-3 is set to one to select the internal RTC. If Rx51 bit-3 is set to zero, accesses to ports 70-71 will be directed to an external RTC.
Port 74	- CMOS AddressRW
7-0	CMOS Address (256 bytes)RW

7-0 CMOS Data (256 bytes)

Note: Ports 74-75 may be accessed only if Rx4E bit-3 (Port 74/75 Access Enable) is set to one to enable port 74/75 access.

Note: Ports 70-71 are compatible with PC industrystandards and may be used to access the lower 128 bytes of the 256-byte on-chip CMOS RAM. Ports 74-75 may be used to access the full on-chip extended 256-byte space in cases where the on-chip RTC is disabled.

Note: The system Real Time Clock (RTC) is part of the "CMOS" block. The RTC control registers are located at specific offsets in the CMOS data area (0-0Dh and 7D-7Fh). Detailed descriptions of CMOS / RTC operation and programming can be obtained from the VIA VT82887 Data Book or numerous other industry publications. For reference, the definition of the RTC register locations and bits are summarized in the following table:

Offset	Description	<u>I</u>	Binary Range	BCD Range
00	Seconds		00-3Bh	00-59h
01	Seconds Alarm		00-3Bh	00-59h
02	Minutes		00-3Bh	00-59h
03	Minutes Alarm		00-3Bh	00-59h
04	Hours	am 12hr	: 01-1Ch	01-12h
		pm 12hr	: 81-8Ch	81-92h
		24hr	: 00-17h	00-23h
05	Hours Alarm	am 12hr	: 01-1Ch	01-12h
		pm 12hr	: 81-8Ch	81-92h
		24hr	: 00-17h	00-23h
06	Day of the Wee	k Sun=1	: 01-07h	01-07h
07	Day of the Month		01-1Fh	01-31h
08	Month		01-0Ch	01-12h
09	Year		00-63h	00-99h

0A Register A 7 UIP Update In Progress 6-4 DV2-0 Divide (010=ena osc & keep time) 3-0 RS3-0 Rate Select for Periodic Interrupt

7	SET	Inhibit Update Transfers
6	PIE	Periodic Interrupt Enable
5	AIE	Alarm Interrupt Enable
4	UIE	Update Ended Interrupt Enable
3	SQWE	No function (read/write bit)
2	DM	Data Mode (0=BCD, 1=binary)
1	24/12	Hours Byte Format (0=12, 1=24)
0	DSE	Daylight Savings Enable

0C	Register C		
	7	IRQF	Interrupt Request Flag
	6	PF	Periodic Interrupt Flag
	5	AF	Alarm Interrupt Flag
	4	UF	Update Ended Flag
	3-0	0	Unused (always read 0)

Register B

0B

0D	Regist	er D	
	7	VRT	Reads 1 if VBAT voltage is OK
	6-0	0	Unused (always read 0)

0E-7C Software-Defined Storage Registers (111 Bytes)

<u>Offset</u>	Extended Functions	Binary Range	BCD Range
7D	Date Alarm	01-1Fh	01-31h
7 E	Month Alarm	01-0Ch	01-12h
7F	Century Field	13-14h	19-20h

80-FF Software-Defined Storage Registers (128 Bytes)

Table 8. CMOS Register Summary

Keyboard / Mouse Wakeup Index / Data Registers

The Keyboard / Mouse Wakeup registers are accessed by performing I/O operations to / from an index / data pair of registers in system I/O space at port addresses 2Eh and 2Fh. The registers accessed using this mechanism are used to initialize Keyboard / Mouse Wakeup functions at index values in the range of E0-EF.

Keyboard / Mouse Wakeup initialization is accomplished in three steps:

- 1) Enter initialization mode (set Function 0 Rx51[1] = 1)
- 2) Initialize the chip
 - a) Write index to port 2Eh
 - b) Read / write data from / to port 2Fh
 - c) Repeat a and b for all desired registers
- 3) Exit initialization mode (set Function 0 Rx51[1] = 0)

Port 2Eh - Keyboard Wakeup IndexRW

7-0 Index Value

Function 0 PCI configuration space register Rx51[1] must be set to 1 to enable access to the configuration registers.

Port 2Fh - Keyboard Wakeup Data.....RW

7-0 Data Value

Keyboard / Mouse Wakeup Registers

These registers are accessed via the port 2E / 2F index / data register pair with Function 0 Rx51[1] = 1 using the indicated index values below

Index E0 – Keyboard / Mouse Wakeup Enable (08h)....RW 7-5 **Reserved** always reads 0

4 **Reserved (Do Not Program)**......default = 0

3 Win98 Keyboard Power Key Wake-up

0 Disable

Enabledefault 1

2 Password Wake-up

0 Disabledefault

1 Enable

1 PS/2 Mouse Wake-up

0 Disabledefault

1 Enable

Keyboard Wake-up

0 Disabledefault

Enable

Index E1 – Keyboard Wakeup Scan Code Set 0 (F0h) RW
7-0 Keyboard Wakeup First Scan Codedef = F0l
Index E2 – Keyboard Wakeup Scan Code Set 1 (00h) RW
7-0 Keyboard Wakeup Second Scan Code def = 00l
Index E3 – Keyboard Wakeup Scan Code Set 2 (00h) RW
7-0 Keyboard Wakeup Third Scan Code def = 00l
Index E4 – Keyboard Wakeup Scan Code Set 3 (00h) RW
7-0 Keyboard Wakeup Fourth Scan Code def = 00l
Index E5 – Keyboard Wakeup Scan Code Set 4 (00h) RW
7-0 Keyboard Wakeup Fifth Scan Codedef = 001
Index E6 - Keyboard Wakeup Scan Code Set 5 (00h) RW
7-0 Keyboard Wakeup Sixth Scan Codedef = 001
Index E7 – Keyboard Wakeup Scan Code Set 6 (00h) RW
7-0 Keyboard Wakeup Seventh Scan Codedef = 001
Index E8 – Keyboard Wakeup Scan Code Set 7 (00h) RW
7-0 Keyboard Wakeup Eighth Scan Codedef = 001
Index E9 – Mouse Wakeup Scan Code Set 1 (09h) RW
7-0 Mouse Wakeup Scan Code Set 1def = 091
Index EA -Mouse Wakeup Scan Code Set 2(00h) RW
7-0 Mouse Wakeup Scan Code Set 2def = 001
-
Index EB -Mouse Wakeup Scan Code Mask (00h) RW
7-0 Mouse Wakeup Scan Code Maskdef = 001

Memory Mapped I/O APIC Registers

Memor	y Address FEC00000 – APIC IndexRW		
7-0	APIC Index default = 00h		
	8-bit pointer to APIC registers.		
Memor	y Address FEC00013-10 – APIC DataRW		
31-0	APIC Data default = 0000 0000h		
	Data for the APIC register pointed to by the APIC		
	index		
3.5	ALL EFCOMOSO ARICHRORY A COMO		
Memor	y Address FEC00020 – APIC IRQ Pin AssertionWO		
7-5	Reserved always reads 0		
4-0	APIC IRQ Numberdefault undefined		
	IRQ # for this interrupt. Valid values are 0-23 only.		
Memory Address FEC00040 – APIC EOIWO			
7-0			
7-0			
	When a write is issued to this register, the APIC will		
	check this field and compare it with the vector field		
	for each entry in the I/O redirection table. When a		
	match is found, the "Remote_IRR" bit for that I/O		

Redirection Entry will be cleared.

Indexed I/O APIC Registers

Offset 0	- APIC Identification (0000 0000h)RW		
31-28	Reserved always reads 0		
	APIC Identification default = 0		
	Software must program this value before using the APIC.		
23-0	Reserved always reads 0		
Offset 1	- APIC Version (00178003)RO		
31-24	Reserved always reads 00h		
23-16	Maximum Redirectionalways reads 17h		
	Equal to the number of APIC interrupt pins minus one. For this APIC, this value is 17h (23 decimal).		
15	PCI IRQ		
	Always reads 1 to indicate that the IRQ assertion register is implemented and that PCI devices are allowed to write to it to cause interrupts.		
14-8	<u> </u>		
7-0	APIC Version always reads 03h		
7-0	The implementation version for this APIC is 03h.		
Offset 2	2 – APIC Arbitration (0000 0000h)RO		
31-28	Reserved always reads 00h		
	APIC Arbitration IDalways reads 00h		
23-0	Reserved always reads 00h		
Offset 3 – Boot Configuration (0000 0000h)RW			
31-1	Reservedalways reads 00h		
0	interrupt being internation		
	0 APIC Serial Busdefault1 Front Side Bus Message		

Offset 3F-10 - I/O Redirection Table

This table contains 24 registers, with one dedicated table entry for each of the 24 APIC interrupt signals. Each 64-bit register consists of two 32-bit values at consecutive index locations, with the low 32 bits at the even index and the upper 32 bits at the odd index. The default value for all registers is xxx1 xxxx xxxx xxxxxh.

Offset 11-10 - I/O Redirection - APIC IRQ0	RW
Offset 13-12 - I/O Redirection - APIC IRQ1	RW
Offset 15-14 - I/O Redirection - APIC IRQ2	RW
Offset 17-16 – I/O Redirection – APIC IRQ3	RW
Offset 19-18 – I/O Redirection – APIC IRQ4	RW
Offset 1B-1A – I/O Redirection – APIC IRQ5	RW
Offset 1D-1C - I/O Redirection - APIC IRQ6	RW
Offset 1F-1E - I/O Redirection - APIC IRQ7	RW
Offset 21-20 - I/O Redirection - APIC IRQ8	RW
Offset 23-22 - I/O Redirection - APIC IRQ9	RW
Offset 25-24 - I/O Redirection - APIC IRQ10	RW
Offset 27-26 - I/O Redirection - APIC IRQ11	RW
Offset 29-28 - I/O Redirection - APIC IRQ12	RW
Offset 2B-2A - I/O Redirection - APIC IRQ13	RW
Offset 2D-2C - I/O Redirection - APIC IRQ14	RW
Offset 2F-2E - I/O Redirection - APIC IRQ15	RW
Offset 31-30 - I/O Redirection - APIC IRQ16	RW
Offset 33-32 - I/O Redirection - APIC IRQ17	RW
Offset 35-34 - I/O Redirection - APIC IRQ18	RW
Offset 37-36 - I/O Redirection - APIC IRQ19	RW
Offset 39-38 - I/O Redirection - APIC IRQ20	RW
Offset 3B-3A - I/O Redirection - APIC IRQ21	RW
Offset 3D-3C - I/O Redirection - APIC IRQ22	RW
Offset 3F-3E - I/O Redirection - APIC IRQ23	RW

Format for Each I/O Redirection Table Entry:

<u>Format</u>	tor Ea	ach I/O Redirection Table Entry:
Physica	l Mode	(bit-11=0)
63-60	Reser	ved always reads 0
59-56	APIC	default = undefined
Logical	Mode	(bit-11=1)
63-56	Desti	nation default = undefined
55-17	Reser	ved always reads 0
		Ž
16	Inter	rupt Masked
	0	Not masked default
	1	Masked
15	Trigg	er Mode
	0	Edge Sensitive default
	1	Level Sensitive
14	Remo	te IRR (Level Sensitive Interrupts Only) RO
	0	EOI message with a matching interrupt vector
		received from a local APIC
	1	Level sensitive interrupt sent by IOAPIC
		accepted by local APIC(s)
13	Inter	rupt Input Pin Polarity
	0	Active High default
	1	Active Low
12	Deliv	ery StatusRO
	Conta	ins the current status of the delivery of this
	interri	upt.
	0	Idle (no activity)
	1	Send Pending (the interrupt has been injected
		but its delivery is temporarily delayed either
		because the APIC bus is busy or because the
		receiving APIC unit cannot currently accept
		the interrupt)
11		nation Mode
	Deter	mines the interpretation of bits 56-63.
	0	Physical Mode default
	1	Logical Mode
10-8		ery Mode
		fies how the APICs listed in the destination
		should act upon reception of this signal
		Fixeddefault
		Lowest Priority
		SMI
		-reserved-
		NMI
		INIT
		-reserved-
	111	External INT

7-0 Interrupt Vector

Contains the interrupt vector for this interrupt. Vector values range from 10h to FEh.

Configuration Space I/O

Configuration space accesses for all functions use PCI configuration mechanism 1 (see PCI specification revision 2.2 for more details). The ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

There are 8 "functions" implemented in the VT8235M Version CD (see Table 5 on page 22). The following sections describe the registers and register bits of these functions.

Port CFB-	CF8 - Configuration AddressRW
31 C	onfiguration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24 R	eserved always reads 0
23-16 PC	CI Bus Number
Us	sed to choose a specific PCI bus in the system
15-11 De	evice Number
Us	sed to choose a specific device in the system
10-8 Fu	unction Number
Us	sed to choose a specific function if the selected
	evice supports multiple functions
7-2 R	egister Number
Us	sed to select a specific doubleword in the device's
	onfiguration space
	xedalways reads 0
Port CFF-	CFC - Configuration DataRW

Device 16 Function 0 Registers - USB 1.1 UHCI Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 0 PCI configuration space of the VT8235M Version CD. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 1 for ports 2-3 and function 2 for ports 4-5).

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h)RO
15-0	Vendor ID (1106h = VIA Technologies)
O.CC 4.0	0.4 D ID (2020L)
	3-2 - Device ID (3038h)RO
15-0	Device ID (3038h = VT8235M-CD USB Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Reserved (address stepping)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate. default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Error default=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abortdefault=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

7-0 Silicon Revision Code (0 indicates first silicon)
Offset 9 - Programming Interface (00h)RO Offset A - Sub Class Code (03h=USB Controller)RO Offset B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset D - Latency Timer (16h)RW
Offset 23-20 - USB I/O Register Base Address
Offset 2D-2C - Sub Vendor ID (1106h)
Offset 34 - Power Management Capabilities (80h) RW
Offset 3C - Interrupt Line (00h)RW
Offset 3C - Interrupt Line (00h)
Offset 3C - Interrupt Line (00h)
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing default
Offset 3C - Interrupt Line (00h)
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0100 IRQ4
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing default 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing default 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1011 IRQ13
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
Offset 3C - Interrupt Line (00h) RW 7-4 Reserved always reads 0 3-0 USB Interrupt Routing 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0101 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14

USB-Specific Configuration Registers

ffset 4	40 - Miscellaneous Control 1 (40h)RW	Offset 4	1 - Miscellaneous Control 2 (10h)RW
7	Reserved always reads 0	7	USB 1.1 Improvement for EOP
6	Babble Option		This bit controls whether USB Specification 1.1 or
	This bit controls whether the port is disabled when		1.0 is followed when a stuffing error occurs before an
	EOF (End-Of-Frame) babble occurs. Babble is		EOP (End-Of-Packet). A stuffing error results when
	unexpected bus activity that persists into the EOF		the receiver sees seven consecutive ones in a packet.
	interval. When this bit is 0, the port with the EOF		Under USB specification 1.1, when this occurs in the
	babble is disabled. When it is 1, it is not disabled		interval just before an EOP, the receiver will accept
	0 Automatically disable babbled port when EOF		the packet. Under USB specification 1.0, the packet
	babble occurs		is ignored.
	1 Don't disable babbled portdefault		0 USB Spec 1.1 Compliant (packet accepted) def
5	PCI Parity Check		1 USB Spec 1.0 Compliant (packet ignored)
	0 Disabledefault	6-3	Reserved (Do Not Program) default = 0
	1 Enable	2	Trap Option
4	Frame Interval Select		Under the UHCI spec, port 60 / 64 is trapped only
	0 1 msec frame timedefault		when its corresponding enable bits are set. When this
	1 0.1 msec frame time		bit is set, trap can be set without checking the enable
3	USB Data Length Option		bits.
	0 Support TD length up to 1280default		0 Set trap 60/64 status bits only when trap 60/64
	1 Support TD length up to 1023		enable bits are setdefault
	(TD = Transfer Descriptor)		1 Set trap 60/64 status bits without checking
2	Improve FIFO Latency		enable bits
	0 Improve latency if packet size < 64 bytesdef	1	A20Gate Pass Through Option
	1 Disable improvement		This bit controls whether the A20Gate pass-through
1	DMA Option		sequence (as defined in UHCI) is followed. The
	0 Enhanced performance (8 DW burst access		A20Gate sequence consists of 4 commands. When
	with better FIFO latency)default		this bit is 0, the 4-command sequence is followed.
	1 Normal performance (16 DW burst access		When this bit is 1, the last command (write FFh to
	with normal FIFO latency)		port 64) is skipped.
0	Reserved always reads 0		0 A20GATE Pass-through command sequence
			as defined in UHCI default
			1 Last command skipped
		0	Reserved (Do Not Program) default = 0

Offset 4	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h)RW
7	Reserved (Do Not Program) default = 0	7-6	Reserved always reads 0
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program) default = 0
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reserved
7	0 Rx2C-2F ROdefault	1	EHCI Supports PME Assertion in D3 Cold State
	1 Rx2C-2F RW	1	0 Not Supported
3-2	Reserved (Do Not Program) default = 0		1 Supporteddefault
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion in D3 Cold State
	·		0 Not Supported
Offset 4	43 - Miscellaneous Control 4 (00h)RW		1 Supporteddefault
7-5	Reserved always reads 0		
4	Reserved (Do Not Program) default = 0	<u>Offset</u>	4A - Miscellaneous Control 7 (00h)RW
3	Continue Transmission of Erroneous Data on	7-3	Reserved always reads 0
	FIFO Underrun	2	Reserved (Do Not Program) default = 0
	0 Enabledefault	1	Reserved always reads 0
	1 Disable	0	Use External 60 MHz Clock
2	Issue CRC Error Instead of Stuffing Error on		0 Disabledefault
	FIFO Underrun		1 Enable
	0 Enabledefault		
	1 Disable		
1-0	Reserved always reads 0	Official	(0. Cardal Dua Dalaasa Numban DO
O.CC 4	40 M. II C 4 I. DW		60 - Serial Bus Release NumberRO
	48 - Miscellaneous Control 5RW	7-0	Release Numberalways reads 10h
7-5	Reserved always reads 0		
4-3	Reserved (Do Not Program) default = 0		
4-3	Issue Bad CRC5 in SOF After FIFO Underrun	Offset	83-80 – PM Canability RO
	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enabledefault		83-80 – PM CapabilityRO PM Capability always reads FEC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable		83-80 – PM CapabilityRO PM Capabilityalways reads FFC2 0001h
	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0	PM Capabilityalways reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability StatusRW
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability StatusRW PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability StatusRW PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability StatusRW PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability StatusRW PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun O Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun O Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 Offset 7-0	PM Capabilityalways reads FFC2 0001h 84 – PM Capability Status

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

<u>I/O Offset 5-4 - USB Interrupt Enable</u>

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 16 Function 1 Registers - USB 1.1 UHCI Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 1 PCI configuration space of the VT8235M Version CD. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 0 for ports 0-1 and function 2 for ports 4-5).

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h)RO
	Vendor ID (1106h = VIA Technologies)
0.004.2	2.4 D ID (2020L)
	3-2 - Device ID (3038h)RO
15-0	Device ID (3038h = VT8235M-CD USB Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Memory Write and Invalidate. default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Error default=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

7-0 Silicon Revision Code (0 indicates first silicon)
Offset 9 - Programming Interface (00h)
Offset D - Latency Timer (16h)RW
Offset 23-20 - USB I/O Register Base Address
Offset 2D-2C - Sub Vendor ID (1106h)
Offset 34 - Power Management Capabilities (80h) RW
Offset 3C - Interrupt Line (00h)RW
7-4 Reserved always reads 0
3-0 USB Interrupt Routing
0000 Disabled default
0000 Disabled

USB-Specific Configuration Registers

Offset 4	40 - Miscellaneous Control 1 (40h)RW	Offset 4	41 - Miscellaneous Control 2 (10h)RW
7 6	Reserved	7	USB 1.1 Improvement for EOP This bit controls whether USB Specification 1.1 or 1.0 is followed when a stuffing error occurs before an EOP (End-Of-Packet). A stuffing error results when the receiver sees seven consecutive ones in a packet. Under USB specification 1.1, when this occurs in the interval just before an EOP, the receiver will accept the packet. Under USB specification 1.0, the packet is ignored. 0 USB Spec 1.1 Compliant (packet accepted) def
5	PCI Parity Check 0 Disabledefault 1 Enable	6-3 2	1 USB Spec 1.0 Compliant (packet ignored) Reserved (Do Not Program) default = 0 Trap Option
4	Frame Interval Select 0 1 msec frame time		Under the UHCI spec, port 60 / 64 is trapped only when its corresponding enable bits are set. When this bit is set, trap can be set without checking the enable
3	USB Data Length Option 0 Support TD length up to 1280default 1 Support TD length up to 1023 (TD = Transfer Descriptor)		bits. 0 Set trap 60/64 status bits only when trap 60/64 enable bits are set
2	Improve FIFO Latency 0 Improve latency if packet size < 64 bytesdef 1 Disable improvement	1	enable bits A20Gate Pass Through Option This bit controls whether the A20Gate pass-through
0	DMA Option 0 Enhanced performance (8 DW burst access with better FIFO latency)		sequence (as defined in UHCI) is followed. The A20Gate sequence consists of 4 commands. When this bit is 0, the 4-command sequence is followed. When this bit is 1, the last command (write FFh to port 64) is skipped. 0 A20GATE Pass-through command sequence
v	reserved arways reads o	0	as defined in UHCI

Offset 4	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h) RW
7	Reserved (Do Not Program) default = 0		Reserved	
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program)	
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reserved	
-	0 Rx2C-2F RO default	1	EHCI Supports PME Assertion	
	1 Rx2C-2F RW	-	0 Not Supported	in be com state
3-2	Reserved (Do Not Program) default = 0		1 Supported	default
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion	
10	iteser reu	v	0 Not Supported	in be con state
Offset 4	43 - Miscellaneous Control 4 (00h)RW		1 Supported	default
7-5	Reserved always reads 0			
4	Reserved (Do Not Program) default = 0	Offset	4A - Miscellaneous Control 7 (00h	
3	Continue Transmission of Erroneous Data on	7-3	Reserved	always reads 0
	FIFO Underrun	2	Reserved (Do Not Program)	\dots default = 0
	0 Enabledefault	1	Reserved	always reads 0
	1 Disable	0	Use External 60 MHz Clock	
2	Issue CRC Error Instead of Stuffing Error on		0 Disable	default
	FIFO Underrun		1 Enable	
	0 Enabledefault			
	1 Disable			
1-0	Reserved always reads 0	Offset	60 - Serial Bus Release Number	RO
Offset 4	48 - Miscellaneous Control 5RW	7-0	Release Number	
7-5	Reserved always reads 0	, 0	Ttolouse 1 (units of	arways reads 1011
1-5	Reserved arways reads 0			
4_3	Reserved (Do Not Program) $default = 0$			
4-3	Reserved (Do Not Program)			
4-3 2	Issue Bad CRC5 in SOF After FIFO Underrun		83-80 – PM Capability	
	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enabledefault		83-80 – PM Capabilityalway	
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0	PM Capabilityalway	s reads FFC2 0001h
	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0	PM Capabilityalway 84 – PM Capability Status	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0 01 -reserved-	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0 01 -reserved- 10 -reserved-	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0 01 -reserved-	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0 01 -reserved- 10 -reserved-	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status 00 D0 01 -reserved- 10 -reserved-	s reads FFC2 0001h
2	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault
1	Issue Bad CRC5 in SOF After FIFO Underrun 0 Enable	31-0 <u>Offset</u> 7-0 <u>Offset</u>	PM Capabilityalway 84 – PM Capability Status PM Capability Status	s reads FFC2 0001hRWdefault

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

<u>I/O Offset 5-4 - USB Interrupt Enable</u>

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Offset 8 - Revision ID (nnh).....RO

Device 16 Function 2 Registers - USB 1.1 UHCI Ports 4-5

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 0 PCI configuration space of the VT8235M Version CD. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 4-5 (see function 0 for ports 0-1 and function 1 for ports 2-3).

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h)RO
15-0	Vendor ID (1106h = VIA Technologies)
0.00	
Offset 3	-2 - Device ID (3038h)RO
15-0	Device ID (3038h = VT8235M-CD USB Controller)
Offset 5	-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Reserved (address stepping)fixed at 0
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate. default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Error default=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

Offset 8	8 - Revision ID (nnh)RO
7-0	Silicon Revision Code (0 indicates first silicon)
7 0	Sincon Revision code (o maicates mist sincon)
Offset 9	9 - Programming Interface (00h)RO
	A - Sub Class Code (03h=USB Controller)RO
Offset 1	B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset 1	D - Latency Timer (16h) RW
Offset 2	23-20 - USB I/O Register Base Address RW
	Reservedalways reads 0
	USD I/O Desister Days Address Don't Address for
15-5	USB I/O Register Base Address. Port Address for
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4-0	00001b
Offset 2	2D-2C - Sub Vendor ID (1106h)RO†
Offset 2	2F-2E - Sub Device ID (3038h)RO†
	f Rx42[4] = 1.
IX VV II	$1 \times 42 \begin{bmatrix} 4 \end{bmatrix} = 1$.
Offset 3	34 - Power Management Capabilities (80h) RW
Offset 3	3C - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	
	0000 Disabled default
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
0.00	ND 1 (021)
Offset 3	BD - Interrupt Pin (03h)RO
7-0	Interrupt Pin default = 03h (INTC#)
	•

USB-Specific Configuration Registers

ffset	40 - Miscellaneous Control 1 (40h)RW	Offset 41	l - Miscellaneous Control 2 (10h)RW
7	Reserved always reads 0	7	USB 1.1 Improvement for EOP
6	Babble Option		This bit controls whether USB Specification 1.1 or
	This bit controls whether the port is disabled when		1.0 is followed when a stuffing error occurs before an
	EOF (End-Of-Frame) babble occurs. Babble is		EOP (End-Of-Packet). A stuffing error results when
	unexpected bus activity that persists into the EOF		the receiver sees seven consecutive ones in a packet.
	interval. When this bit is 0, the port with the EOF		Under USB specification 1.1, when this occurs in the
	babble is disabled. When it is 1, it is not disabled		interval just before an EOP, the receiver will accept
	0 Automatically disable babbled port when EOF		the packet. Under USB specification 1.0, the packet
	babble occurs		is ignored.
	1 Don't disable babbled portdefault		0 USB Spec 1.1 Compliant (packet accepted) def
5	PCI Parity Check		1 USB Spec 1.0 Compliant (packet ignored)
	0 Disabledefault	6-3	Reserved (Do Not Program) default = 0
	1 Enable	2	Trap Option
4	Frame Interval Select		Under the UHCI spec, port 60 / 64 is trapped only
	0 1 msec frame timedefault		when its corresponding enable bits are set. When this
	1 0.1 msec frame time		bit is set, trap can be set without checking the enable
3	USB Data Length Option		bits.
	0 Support TD length up to 1280default		0 Set trap 60/64 status bits only when trap 60/64
	1 Support TD length up to 1023		enable bits are setdefault
	(TD = Transfer Descriptor)		1 Set trap 60/64 status bits without checking
2	Improve FIFO Latency		enable bits
	0 Improve latency if packet size < 64 bytesdef		A20Gate Pass Through Option
	1 Disable improvement		This bit controls whether the A20Gate pass-through
1	DMA Option		sequence (as defined in UHCI) is followed. The
	0 Enhanced performance (8 DW burst access		A20Gate sequence consists of 4 commands. When
	with better FIFO latency)default		this bit is 0, the 4-command sequence is followed.
	1 Normal performance (16 DW burst access		When this bit is 1, the last command (write FFh to
	with normal FIFO latency)		port 64) is skipped.
0	Reserved always reads 0		0 A20GATE Pass-through command sequence
			as defined in UHCIdefault
			1 Last command skipped
		0	Reserved (Do Not Program) default = 0

Offset	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h)) RW
7	Reserved (Do Not Program) default = 0	7-6	Reserved	always reads 0
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program)	
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reserved	
•	0 Rx2C-2F RO default	1	EHCI Supports PME Assertion	
	1 Rx2C-2F RW	-	0 Not Supported	in De Cola State
3-2	Reserved (Do Not Program) default = 0		1 Supported	default
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion	
10	Teser ved """""""""""""""""""""""""""""""""""	v	0 Not Supported	III Do Cola State
Offset	43 - Miscellaneous Control 4 (00h)RW		1 Supported	default
7-5	Reserved always reads 0		**	
4	Reserved (Do Not Program) default = 0	Offset	4A - Miscellaneous Control 7 (00h	ı) RW
3	Continue Transmission of Erroneous Data on	7-3	Reserved	always reads 0
	FIFO Underrun	2	Reserved (Do Not Program)	
	0 Enabledefault	1	Reserved	
	1 Disable	0	Use External 60 MHz Clock	•
2	Issue CRC Error Instead of Stuffing Error on		0 Disable	default
	FIFO Underrun		1 Enable	
	0 Enabledefault			
	1 Disable			
1-0	Reserved always reads 0	Off4	(O. Cardal Day Dalama Namahan	DO.
0.66	40 No. 11 C 4 Lo		60 - Serial Bus Release Number	
	48 - Miscellaneous Control 5RW	7-0	Release Number	always reads 10h
7-5	Reserved always reads 0			
4-3	Reserved (Do Not Program) default = 0			
2	Issue Bad CRC5 in SOF After FIFO Underrun	Offset	83-80 – PM Capability	RO
	0 Enable default		PM Capabilityalways	
	1 Disable	31-0	The Capabilityarways	3 1 caa 3 1 1 C2 000111
1	Lengthen PreSOF Time	Offset	84 – PM Capability Status	RW
	The preSOF time point determines whether there is	7-0	PM Capability Status	
	enough timein the remaining frame period to perform		00 D0	default
	a 64-byte transaction. It prevents a packet that may		01 -reserved-	
	not fit in the remaining frame period from being		10 -reserved-	
	initiated. This bit controls whether the preSOF time		11 D3 Hot	
	point is moved back so that the preSOF time is			
	lengthened.			
	0 Disabledefault			
	1 Enable (PreSOF time lengthened)		C1-C0 - Legacy Support	
0	Issue Nonzero Bad CRC Code on FIFO Underrun	15-0	UHCI v1.1 Compliant	always reads 2000h
	A FIFO underrun occurs when there is no data in the			
	FIFO to supply data transmission. When this occurs,			
	the south bridge invalidates the data by sending an			
	incorrect CRC code to the device. This bit controls			
	the type of incorrect CRC sent.			
	0 Non zero CRC (recommended)default			
	1 All zero CRC			
	This option isn't really needed any more as non-zero			
	CRC always works.			

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

<u>I/O Offset 5-4 - USB Interrupt Enable</u>

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 16 Function 3 Registers - USB 2.0 EHCI

This Enhanced Serial Bus host controller interface is fully compatible with EHCI specification v1.0. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 3 PCI configuration space of the VT8235M Version CD. The USB I/O registers are defined in EHCI specification v1.0. The registers in this function control USB 2.0 functions (see functions 0-2 for USB 1.1 UHCI control).

Offset 1-0 - Vendor ID (1106h)RO

PCI Configuration Space Header

15-0	Vendor ID (1106h = VIA Technologies)
Offset 3	8-2 - Device ID (3104h)RO
15-0	Device ID (3104h = VT8235M Version CD USB
	2.0 EHCI Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate. default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signaled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signaled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)

Reservedfixed 10h (PCI PMI)

Offset 8 - Revision ID (nnh).....RO 7-0 Silicon Revision Code

10 Slow11 Reserved

Offset	9 - Programming Interface (20h)RO A - Sub Class Code (03h=USB Controller)RO B - Base Class Code (0Ch=Serial Bus Controller)RO
	C – Cache Line Size (10h)
Offset	13-10 – EHCI Memory Mapped I/O Base Addr. RW
31-8	
31-0	Address. Memory Address for the base of the USB
	2.0 EHCI I/O Register block, corresponding to
	AD[31:8]
7-3	
2-1	Memory Mappingreads 00b for 32-bit addressing
0	Reserved always reads 0
† RW i	2F-2E - Sub Device ID (3104h)
Offset :	3C - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routing
	0000 Disabled default
	0001 IRQ1 0010 Reserved
	0010 Reserved 0011 IRQ3
	0110 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14

1111 Disabled

USB-Specific Configuration Registers

Offset 4	40 - Miscellaneous Control 1 (40h)RW	(
7	Reserved always reads 0	
6	Babble Option	
	This bit controls whether the port is disabled when	<u>(</u>
	EOF (End-Of-Frame) babble occurs. Babble is	
	unexpected bus activity that persists into the EOF	
	interval. When this bit is 0, the port with the EOF	(
	babble is disabled. When it is 1, it is not disabled	
	0 Automatically disable babbled port when EOF	
	babble occurs	
	1 Don't disable babbled portdefault	(
5	PCI Parity Check	
	0 Disabledefault	
	1 Enable	(
4	Reserved (Do Not Program) default = 0	
3-2	Reserved always reads 0	
1	DMA Options	
	0 16 DW burst accessdefault	
	1 8 DW burst access	<u>(</u>
0	Reserved always reads 0	
Offset 4	48 - Miscellaneous Control 5 (A0h)RW	(
7-6	Reserved (Do Not Program) default = 0	_
5	CCA Burst Access	
	0 Burst enable	
	1 Burst disabledefault	
4-1	Reserved always reads 0	
0	Reserved (Do Not Program)default = 0	
Offset 4	49 - Miscellaneous Control 6 (20h)RW	
7-6	Reserved (Do Not Program) default = 0	
5	Clock Auto Stop	
	0 Disable, no stop	
	1 Enable, auto stopdefault	
4	Auto Power Down Receiver Squelch Detector	
-	0 Auto Power Downdefault	
	1 Always Powered Up	
3-0	Reserved always reads 0	

Offset 6	0 - Serial Bus Release Number (20h)RO
7-0	Release Number always reads 20h for USB 2.0
Offset 6	1 - Frame Length Adjust (20h)RO
Offset 6.	3-62 – Port Wake Capability (0001h)RO
	B-68 - Legacy Support Extended Capability RO Capabilitiesalways reads 0000 0001h
Offset 6	F-6C - Legacy Support Control / StatusRW
	Control / Statusalways reads 0000 0000h
	3-80 – PM CapabilityRO PM Capabilityalways reads FFC2 0001h
Offset &	4 PM Canability Status PW
	4 – PM Capability StatusRW PM Capability Status
7-0	00 D0 default 01 -reserved- 10 -reserved- 11 D3 Hot

EHCI USB 2.0 I/O Registers

These registers are compliant with the EHCI v1.0 standard. Refer to the EHCI v1.0 specification for further details.

EHCI Capabilities

I/O Offset 0 - Capability Register Length (10h)

I/O Offset 3-2 - Interface Version Number (0100h)RO† I/O Offset 7-4 - Structure Parameters (0000 3206h) ...RO† I/O Offset B-8 - Capability Parameters (0000 6872h) .RO† † RW if Rx42[4] = 1.

Host Controller Operations

I/O Offset 13-10 - USB Command

I/O Offset 17-14 - USB Status

I/O Offset 1B-18 - USB Interrupt Enable

I/O Offset 1F-1C - USB Frame Index

I/O Offset 23-20 - 4G Segment Selector

I/O Offset 27-24 - Frame List Base Address

I/O Offset 2B-28 - Next Asynchronous List Address

I/O Offset 53-50 - Configured Flags

I/O Offset 57-54 - Port 0 Status / Control

I/O Offset 5B-58 - Port 1 Status / Control

<u>Device 17 Function 0 Registers – Bus Control and Power Management</u>

All registers are located in the device 17 function 0 configuration space of the VT8235M Version CD. These registers are accessed through PCI configuration mechanism #1 via I/O address 0CF8h / 0CFCh.

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID (1106h)RO	
Offset 3-2 - Device ID (3177h)RO		
Offset 5	5-4 - CommandRW	
15-8	Reserved always reads 0	
7	Address / Data Stepping	
	0 Disable	
	1 Enabledefault	
6-4	Reserved always reads 0	
3	Special Cycle Enable RW, default = 0	
2	Bus Master always reads 1	
1	Memory SpaceRO, reads as 1	
0	I/O Space RO, reads as 1	
Offset 7	7-6 - StatusRWC	
15	Detected Parity Error write one to clear	
14	Signalled System Error always reads 0	
13	Signalled Master Abort write one to clear	
12	Received Target Abort write one to clear	
11	Signalled Target Abort write one to clear	
10-9	DEVSEL# Timing fixed at 01 (medium)	
8	Data Parity Detected	
	Reads 1 if PERR# is asserted (driven or observed) or	
	a bus master data parity error occurred.	
7	Fast Back-to-Back Capable always reads 0	
- ^	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

.....always reads 0

Offset 8 - Revision ID (nnh)RO
7-0 Revision ID
Offset 9 - Program Interface (00h)RO
Offset A - Sub Class Code (01h)RO
Offset D. Class Code (06h)
Offset B - Class Code (06h)RO
Offset E - Header Type (80h)RO
7-0 Header Type Code 80h (Multifunction Device)
Offset F - RIST (00h)RO
Offset F - BIST (00h)RO
Offset F - BIST (00h)RO
Offset F - BIST (00h)RO
Offset 2F-2C - Subsystem IDRO
Offset 2F-2C - Subsystem IDRO
Offset 2F-2C - Subsystem IDRO
Offset 2F-2C - Subsystem IDRO

ISA Bus Control

Table Sample Sa	Offset -	40 - ISA Bus Control (00h)RW	Offset 4	42 – Line Buffer Control (00h) R'	W
6 L/O Recovery Time The number of clocks between 2 L/O commands 0 Disable 1 Enable (Rx4C[7:6] determines the # of clocks) 5 ROM Wait States 0 1 Wait States 0 1 Wait States 0 1 Wait States 1 0 Wait States 1 0 Wait States 1 0 Wait States 1 0 Wait States 0 Disable (ROM write are ignored) 1 Enable (ROM can be written) 1 Enable (ROM can be written) 1 Enable (ROM can be written) 2 4DO / 4D1 Port Configuration Controls whether ports 4DO / 4D1 determine whether IRQ requests are edge or level triggerred (4DO/7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8] (0 = level, 1 = edge). 0 Disable 1 Enable (Shadow register values can be read) 0 Double ISA Bus Clock 0 Disable with a part of the properties of	7	ISA Command Delay	7	ISA Master DMA Line Buffer	
6 NO Recovery Time The number of clocks between 2 I/O commands 0 Disable 1 Enable (Rx4C[7:6] determines the # of clocks) 5 ROM Wart States 0 I Wait States default 1 O Wait States 4 ROM Write 0 Disable (ROM can be written) 3 Double DMA Clock 0 DMA clock runs at 4 MHz. default 1 DMA clock runs at 8 MHz 2 40D0 / 4D1 fertoffiguratino Controls whether ports 4D0 / 4D1 clar be configured. Orthords whether ports 4D0 / 4D1 clar be configured. ODisable (ROM can be written) 1 DMA clock runs at 8 MHz 2 40D0 / 4D1 fertoffiguratino Controls whether ports 4D0 / 4D1 clar be configured. ODisable (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ7-0] of Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ7-0] of Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ8[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ9[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ9[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ9[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ7-0, 4D1[7-0] for IRQ9[5-8] (0 = level, 1 = edge). ODisable (3D0 Disable (4D0[7-0]) for IRQ9[6-0] for IRQ9[0 Normaldefault		Controls whether the DMA line buffer is used.	
The number of clocks between 2 I/O commands 0 Disable		1 Extra		0 Disabledefai	ult
Disable Control State	6			1 Enable. Master DMA waits until the li-	ine
there are no coherency issues). ROM Wait States				buffer is full (8 DWords) before transmitting	ng
5 ROM Wait States 0 1 Wait States 1 0 Wait States 4 ROM Write 1 Enable (ROM writes are ignored) default 1 Enable (ROM writes are ignored) default 1 Enable (ROM can be written) 3 Double DMA Clock 0 DMA clock runs at 4 MHz default 1 DMA clock runs at 8 MHz 2 4DO / 4DI Port Configuration Controls whether ports 4DO / 4D1 can be configured. Ports 4DO / 4D1 determine whether IRQ requests are edge or level triggerred (4D0/7-0) for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disable default 1 Enable 1 DMA / Interrupt / Timer Shadow Register Read 0 Disable default 1 Enable default 1 Bus clock runs at PCLK / 2 (16 MHz). default 1 Bus clock runs at PCLK / 2 (16 MHz). default 1 Bus clock runs at PCLK / 2 (16 MHz). Offset 41 – BIOS ROM Decode Control (00th)		0 Disabledefault			nat
1 Wait State. 1 0 Wait States 4 ROM Write 0 Disable (ROM writes are ignored) default 1 Enable (ROM can be written) 3 Double DMA Clock 0 DMA clock runs at 4 MHz default 1 DMA clock runs at 8 MHz 2 4D0 / 4D1 Port Configuration Controls whether ports 4D0 / 4D1 can be configured. Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0/Pol f) for IRQ7-0, 4D1(7-0) for IRQ7-0, 4D1 (3D1) and becoming whether IRQ requests are edge or level triggerred (4D0/Pol f) for IRQ7-0, 4D1 (3D1) and becoming whether IRQ requests are edge or level triggerred (4D0/Pol f) for IRQ7-0, 4D1 (3D1) and (3D1					
1	5		6		e
ROM Write 0 Disable (ROM writes are ignored) default 1 Enable (ROM can be written) 3 Double DMA Clock uns at 4 MHz default 1 DMA clock runs at 8 MHz default 1 Enable (ROM can be written) 2 4D0 / 4D1 Port Configuration Controls whether ports 4D0 / 4D1 can be configured. Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0/T/O] for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8) (0 = level, 1 = edge). 4D1/(7-0) for IRQ15-8 (lefault 4D1/(7-0) for IRQ15-8) (1 = leable 4D1/(7-0) for IRQ15-8 (lefault 4D1/(7-0) for IRQ15-8 (lef					
1 Disable (ROM writes are ignored) default 1 Enable (ROM can be written) 2 Double DMA Clock cruns at 4 MHz. default 1 DMA clock cruns at 8 MHz 2 4D0 / 4D1 Port Configuration Controls whether ports 4D0 / 4D1 can be configured. Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disable default 1 Enable 1 DMA / Interrupt / Timer Shadow Register Read 0 Double ISA Bus Clock 0 Double ISA Bus Clock 0 Duble ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz) default 1 Bus clock runs at PCLK / 2 (16 MHz) Offiset 41 — BIOS ROM Decode Control (00h)					
3 Double DMA Clock 0 DMA clock runs at 4 MHz	4				
Souble DMA clock runs at 4 MHz					ıcy
1 DMA clock runs at 4 MHzdefault 1 DMA clock runs at 8 MHzdefault 1 DMA clock runs at 8 MHzdefault 1 DMA clock runs at 8 MHzdefault Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disabledefault 1 Enabledefault 1 Enable (shadow register values can be read) 0 Disabledefault 1 Enable (shadow register values can be read) 0 Double ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz)default 1 Bus clock runs at PCLK / 4 (8 MHz)default 1 Bus clock runs at PCLK / 4 (8 MHz)default 1 Enabledefault 1 Enable shits to 1 enables the indicated address range to be included in the ROMCS# decode: 7 000E0000h-000EFFFFhdefault=0 (disable) 5 FFE80000h-FFFFFFFhdefault=0 (disable) 4 FFE00000h-FFFFFFFhdefault=0 (disable) 5 FFE80000h-FFFFFFFhdefault=0 (disable) 6 FFC00000h-FFCFFFFFhdefault=0 (disable) 6 FFC00000h-FFC7FFFFhdefault=0 (disable) 6 FFC00000h-FC0000h-0000h-0000FFFTFFFFdefault=0 (disable) 6 FFC00	_	· · · · · · · · · · · · · · · · · · ·	_		
1 DMA clock runs at 8 MHz 2 4D0 / 4D1 Port Configuration Controls whether ports 4D0 / 4D1 can be configured. Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disable default 1 Enable 1 Enable DMA / Interrupt / Timer Shadow Register Read 0 Disable default 1 Enable default 1 Enable Dma / Interrupt / Timer Shadow Register Read 0 Disable default 1 Enable default 1 Enable default 2 Enable default 3 Enable default 4 Enable default 5 Enable default 5 Enable default 6 Enable default 7 Enable default 8 Enable default 9 Enable default 8 Enable default 9 E	3		5		
Setting these bits to 1 enables the indicated address range to be included in the ROMCS# decode: Port ROMOODD-FFFFFFF default=0 (disable)					
Controls whether ports 4D0 / 4D1 can be configured. Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disable	•				bit
Ports 4D0 / 4D1 determine whether IRQ requests are edge or level triggerred (4D0[7-0] for IRQ7-0, 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 0 Disable	2				1.
edge or level triggerred (4D0[7-0] for IRQ7-0,					ult
4D1[7-0] for IRQ15-8) (0 = level, 1 = edge). 1 Disable default 1 DMA / Interrupt / Timer Shadow Register Read 0 Disable default 1 Enable (shadow register values can be read) 0 Double ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz) default 1 Bus clock runs at PCLK / 2 (16 MHz) Offset 41 – BIOS ROM Decode Control (00h) RW Setting these bits to 1 enables the indicated address range to be included in the ROMCS# decode: 7 000E0000h-000EFFFFh default=0 (disable) 5 FFE800000h-FFE7FFFFh default=0 (disable) 4 FFE00000h-FFE7FFFFh default=0 (disable) 5 FFE800000h-FFE7FFFFh default=0 (disable) 6 FFF000000h-FF07FFFFh default=0 (disable) 1 FFC80000h-FF07FFFFh default=0 (disable) 0 FFC00000h-FF07FFFFh default=0 (disable) 1 FFC800000h-FF07FFFFh default=0 (disable) 1 FFC800000h-FF07FFFFh default=0 (disable) 0 FFC00000h-FF07FFFFh default=0 (disable) 1 FFC800000h-FF07FFFFh default=0 (disable) 1 FFC800000h-FF07FFFFh default=0 (disable) 0 FFC00000h-FF07FFFFh default=0 (disable) 1 Enable Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F000-000FFFFFF are decoded. Note: ROMCS# is always active when ISA addresses FFF800000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFF			4		
1 Enable Clock			4		14
until burst read transactions from the north bridge are completed. 1 DMA / Interrupt / Timer Shadow Register Read 0 Disable default 1 Enable (shadow register values can be read) 1 Enable (shadow register values can be read) 1 Bus clock runs at PCLK / 4 (8 MHz) default 1 Bus clock runs at PCLK / 2 (16 MHz) Offset 41 – BIOS ROM Decode Control (00h) RW Setting these bits to 1 enables the indicated address range to be included in the ROMCS# decode: 7 000E0000h-000EFFFFh default=0 (disable) 6 FFF000000h-FFFFFFFh default=0 (disable) 7 FFE80000h-FFFFFFFh default=0 (disable) 8 FFE80000h-FFFFFFFh default=0 (disable) 9 FFC80000h-FFFFFFFh default=0 (disable) 1 FFC80000h-FFCFFFFFh default=0 (disable) 9 FFC900000h-FFCFFFFFh default=0 (disable) 1 FFC80000h-FFCFFFFFh default=0 (disable) 1 FFC80000h-FFCFFFFFh default=0 (disable) 3 FFD80000h-FFFFFFFF default=0 (disable) 4 FFC80000h-FFCFFFFFh default=0 (disable) 5 FFE80000-FFFFFFFh default=0 (disable) 6 FFC900000h-FFCFFFFFh default=0 (disable) 7 Disable default anways reads 0 ODisable ANWAY Transaction Control (00h) RW ODISABLE ANWAY Transaction Spec Rev 2.1) This bit controls whether delayed transactions (delayed read / write and posted write is enabled, as opposed to bit-3 which controls whether delayed read / write as well as posted write are enabled. ODISABLE ANWAY Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. ODISABLE ANWAY Transaction Timeout Timer When enabled, if a delayed transaction (read cycle only) is not retried after 2 ¹² PCI clocks, the					
bridge are completed. O Disable				· · · · · · · · · · · · · · · · · · ·	
3 Gate IRQ Until Line Bufer Flush Completed 1 Enable (shadow register values can be read) 0 Double ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz) default 1 Bus clock runs at PCLK / 2 (16 MHz) Offset 41 – BIOS ROM Decode Control (00h)	1				1 111
1 Enable (shadow register values can be read) 0 Double ISA Bus Clock 0 Bus clock runs at PCLK / 4 (8 MHz)default 1 Bus clock runs at PCLK / 2 (16 MHz) Offset 41 – BIOS ROM Decode Control (00h)	1		3		
1 Enable 2-0 Reserved			3		nlt
0 Bus clock runs at PCLK / 4 (8 MHz)default 1 Bus clock runs at PCLK / 2 (16 MHz) Offset 41 – BIOS ROM Decode Control (00h)	0				un
Offset 41 – BIOS ROM Decode Control (00h)	U		2-0		c N
Offset 41 – BIOS ROM Decode Control (00h)			2-0	iteserveuarways reads	3 0
Setting these bits to 1 enables the indicated address range to be included in the ROMCS# decode: 7 000E0000h-000EFFFFh		T Bus violatinis wit edit, 2 (10 mill)	Offset 4	43 – Delay Transaction Control (00h)R	W
included in the ROMCS# decode: 7 000E0000h-000EFFFFh	Offset -	41 – BIOS ROM Decode Control (00h)RW	7-4	Reserved (Do Not Program) default =	= 0
7 000E0000h-000EFFFFh			3	Delayed Transactions (PCI Spec Rev 2.1)	
6 FFF00000h-FFF7FFFh default=0 (disable) 5 FFE80000h-FFFFFFFh default=0 (disable) 4 FFE00000h-FFFFFFFh default=0 (disable) 3 FFD80000h-FFD7FFFFh default=0 (disable) 2 FFD00000h-FFC7FFFFh default=0 (disable) 6 FFC00000h-FFC7FFFFh default=0 (disable) 7 FFC80000h-FFC7FFFFh default=0 (disable) 8 FFC80000h-FFC7FFFFh default=0 (disable) 9 FFC00000h-FFC7FFFFh default=0 (disable) 1 FFC80000h-FFC7FFFFh default=0 (disable) 1 FFC80000h-FFC7FFFFh default=0 (disable) 2 FFD00000h-FFC7FFFFh default=0 (disable) 3 FFC80000h-FFC7FFFFh default=0 (disable) 4 FFC80000h-FFC7FFFFh default=0 (disable) 5 FFC80000h-FFC7FFFFh default=0 (disable) 6 FFC00000h-FFC7FFFFh default=0 (disable) 7 FFC80000h-FFC7FFFFh default=0 (disable) 8 Disable default 1 Enable 9 Disable default 1 Enable 1 Enable 1 Write Delay Transaction Timeout Timer 1 When enabled, if a delayed transaction (write cycle only) is not retried after 2 PCI clocks, the transaction Timeout Timer 1 Enable 1 Enable 2 Only Posted Write 2 This bit controls whether posted write is enabled, as opposed to bit-3 which controls whether delayed read / write as well as posted write are enabled. 0 Disable default 1 Enable 1 Enable 2 Only Posted Write 1 Enable 3 PCI clocks, the transaction is terminated. 0 Disable default 1 Enable 2 Only Posted Write 2 Only Posted Write 3 PCI clocks, the transaction is terminated. 0 Disable default 1 Enable 2 Only Posted Write 3 PCI clocks, the transaction is terminated. 0 Disable default 1 Enable 2 Only Posted Write 3 PCI clocks, the transaction is terminated.	include	d in the ROMCS# decode:			
6 FFF00000h-FFF7FFFh default=0 (disable) 5 FFE80000h-FFEFFFFh default=0 (disable) 4 FFE00000h-FFE7FFFFh default=0 (disable) 3 FFD80000h-FFD7FFFFh default=0 (disable) 4 FFC80000h-FFD7FFFFh default=0 (disable) 5 FFC80000h-FFC7FFFFh default=0 (disable) 6 FFC00000h-FFC7FFFFh default=0 (disable) 7 FFC80000h-FFC7FFFFh default=0 (disable) 8 FFC80000h-FFC7FFFFh default=0 (disable) 9 FFC00000h-FFC7FFFFh default=0 (disable) 1 FFC80000h-FFC7FFFFh default=0 (disable) 1 FFC80000h-FFC7FFFFh default=0 (disable) 2 Only Posted Write This bit controls whether posted write is enabled, as opposed to bit-3 which controls whether delayed read / write as well as posted write are enabled. 1 Enable Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable	7	000E0000h-000EFFFFh default=0 (disable)		(delayed read / write and posted write) are enabled.	
5 FFE80000h-FFEFFFFh	6				ult
4 FFE00000h-FFE7FFFh default=0 (disable) 3 FFD80000h-FFDFFFFh default=0 (disable) 2 FFD00000h-FFD7FFFFh default=0 (disable) 1 FFC80000h-FFC7FFFFh default=0 (disable) 0 FFC00000h-FFC7FFFFh default=0 (disable) 0 FFC00000h-FFC7FFFFh default=0 (disable) Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFFF and 000F0000-000FFFFF are decoded. Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFFF and 000F0000-000FFFFF are decoded. Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF					
FFD80000h-FFDFFFFh default=0 (disable) FFC80000h-FFCFFFFFh default=0 (disable) FFC00000h-FFC7FFFFh default=0 (disable) FFC00000h-FFC7FFFFh default=0 (disable) FFC00000h-FFC7FFFFh default=0 (disable) Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. Disable			2		
2 FFD00000h-FFD7FFFFh default=0 (disable) 1 FFC80000h-FFCFFFFFh default=0 (disable) 0 FFC00000h-FFC7FFFFh default=0 (disable) Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. 1 Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable	3				
O Disable default Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. O Disable default 1 Enable Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. O Disable default 1 Enable	2				ad
Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. 1 Enable Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable	1	FFC80000h-FFCFFFFFh default=0 (disable)			4.
Note: ROMCS# is always active when ISA addresses FFF80000-FFFFFFFF and 000F0000-000FFFFF are decoded. 1 Write Delay Transaction Timeout Timer When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable	0	FFC00000h-FFC7FFFFh default=0 (disable)			ult
FFF80000-FFFFFFF and 000F0000-000FFFFF are decoded. When enabled, if a delayed transaction (write cycle only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable	3. T	DOMGG# : 1	4	***	
only) is not retried after 2 ¹² PCI clocks, the transaction is terminated. 0 Disable			1		1
transaction is terminated. 0 Disable	FFF800	100-FFFFFFF and 000F0000-000FFFFF are decoded.		when enabled, if a delayed transaction (write cyc	cie
0 Disable					ne
1 Enable 0 Read Delay Transaction Timeout Timer When enabled, if a delayed transaction (read cycle only) is not retried after 2 ¹² PCI clocks, the					14
O Read Delay Transaction Timeout Timer When enabled, if a delayed transaction (read cycle only) is not retried after 2 ¹² PCI clocks, the					uii
When enabled, if a delayed transaction (read cycle only) is not retried after 2 ¹² PCI clocks, the			Λ		
only) is not retried after 2 ¹² PCI clocks, the			U		റിച
				only) is not retried after 2^{12} PCI clocks of	the
transaction is terminated.					.110
0 Disabledefault					ult

Offset 48 - Read Pass Write Control.....RW

7 APIC FSB Fixed at Low DW

- 0 Disable (Address Bit-2 not masked)default
- 1 Enable (force A2 from APIC FSB to low)

Address bit A2 controls whether data is in the lower (0) or upper (1) doubleword of a quadword sent to the CPU. When this bit is enabled, A2 is masked which means it is always 0 to select the lower doubleword.

- **6-4 Reserved**always reads 0
- 3 AC97 / LPC Read Pass Write
 - O Disable (a read cannot be performed before a preceeding write has been completed) ...default
 - 1 Enable (internal AC97 and LPC devices are allowed to perform a read before a preceeding write)

2 IDE Read Pass Write

- 0 Disable (a read cannot be performed before a preceeding write has been completed) ...default
- 1 Enable (the internal IDE controller is allowed to perform a read before a preceeding write)

1 USB Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) ... default
- 1 Enable (the internal USB controllers are allowed to perform a read before a preceeding write)

0 NIC Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) ...default
- 1 Enable (the internal LAN controller is allowed to perform a read before a preceeding write)

Offset 4	49 – CCA Control RW
7	Reservedalways reads 0
6	South Bridge Internal Master Devices Priority
	Higher Than External PCI Master
	0 Disabledefault
	1 Enable
	The "CCA" is an internal arbiter that controls the
	priority of external PCI masters vs. internal master
	devices. Normally priority is the same for internal
	and external PCI master devices, but when this bit is
	enabled, internal master devices are given higher
	priority than external PCI masters (3/4 : 1/4).
5	CCA Clean to Mask Off IRQ
	Controls whether interrupt requests are gated until
	data is written to memory.
	0 Disabledefault
	1 Enable
4-3	Reserved (Do Not Program) default = 0
2	WSC Mask Off INTR
	Controls whether INTR is masked until write snoop
	is complete.

0 Disable default

1-0 Reserved (Do Not Program) default = 0

Miscellaneous Control

Offset 4	4C - IDE Interrupt Routing (04h)RW
7-6	I/O Recovery Time Select
	When Rx40[6] is enabled, this field determines the
	I/O recovery time.
	00 1 Bus Clockdefault
	01 2 Bus Clock
	10 4 Bus Clock
	11 8 Bus Clock
5-4	Reserved (do not program) default = 0
3-2	IDE Secondary Channel IRQ Routing
	00 IRQ14
	01 IRQ15default
	10 IRQ10
	11 IRQ11
1-0	IDE Primary Channel IRQ Routing
	00 IRQ14default
	01 IRQ15
	10 IRQ10
	11 IRQ11

Note: IRQ Routing to the APIC is fixed as follows:

INTA# => IRQ16

 $INTB\# \Rightarrow IRQ17$

INTC# => IRQ18

INTD# => IRQ19

IDE (Native Mode) => IRQ20

USB IRQ (All four functions) and INTF => IRQ21

AC97 / MC97 IRQ and INTG=> IRQ22

LAN IRQ and INTH=> IRQ23

Table 9. APIC Fixed IRQ Routing

Offset 4	4E - Internal RTC Test ModeRW
7-5	Reserved always reads 0
4	Last Port 70/74 Written Status
	0 Last write was to port 70default
	1 Last write was to port 74
3	Extra RTC Port 74/75
	The RTC is normally accessed though ports 70/74.
	This bit controls whether two extra ports (74 / 75)
	can be used to access the RTC.
	0 Disabledefault
	1 Enable
2-0	Reserved (Do Not Program) default = 0
Offset 4	4F – PCI Bus and CPU Interface Control RW
7-4	Reserved always reads 0
3	CPU Reset Source
	This bit determines whether CPU Reset (generated
	through port 92 or the keyboard) uses INIT or
	CPURST.
	0 Do not use CPURST as CPU Reset default
	1 Use INIT as CPU Reset
2	Reserved (Do Not Program) default = 0
_	
1	Reservedalways reads 0

Function Control

<u> 50 – Fi</u>	<u>unction Control 1 (08h)</u>	RW
Devi	ce 17 Function 6 MC97	
0	Enable	default
1	Disable	
Devi	ce 17 Function 5 AC97	
0	Enable	default
1	Disable	
Devi	ce 16 Function 1 USB 1.1	UHCI Ports 2-3
0	Enable	default
1	Disable	
Devi	ce 16 Function 0 USB 1.1	UHCI Ports 0-1
0	Enable	default
1	Disable	
Devi	ce 17 Function 1 IDE	
0	Enable	
1	Disable	default
Devi	ce 16 Function 2 USB 1.1	UHCI Ports 4-5
0	Enable	default
1	Disable	
Devi	ce 16 Function 3 USB 2.0	ЕНСІ
0	Enable	default
1	Disable	
Rese	rved	always reads 0
	Devi 0 1	1 Disable Device 17 Function 5 AC97 0 Enable

Offset :	51 – Fi	unction C	ontrol 2 (0Dh)	RW
7-6	Rese	rved		always reads 0
5	Inter	nal LAN	Controller Clock	k Gating
	When	n bit-4 o	f this register is	disabled, the LAN
	funct	ion is dis	abled but the LA	N controller clock is
	not g	gated auto	matically. This	bit controls whether
	the c		ually gated.	
	0	Disable.		default
	1	Enable		
4	Inter	nal LAN	Controller	
	0	Disable.		default
	1	Enable		
3	Inter	nal RTC		
	0	Disable		
	1	Enable		default
2		nal PS2 I	Mouse	
	0	Disable		
	1			default
1			Configuration	
	0			ets E0-EF default
	_ 1		oorts 2E / 2F offse	ts E0-EF
0		nal KBC		
	0	Disable		1.0.1.
	1	Enable		default
		ъ.	0 / Disable	
		Pin A F12		
		AF12		ROMCS#
		V2	KBRC	KBDT
		V3		KBCK
		W1	IRQ12	MSDT
		W2	IRQ1	MSCK

Plug and Play Control - PCI

Serial IRQ, LPC, and PC/PCI DMA Control

Offset	52 – Serial IRQ & LPC Control (00h)RW	Offset	54 - PCI Interrupt PolarityRW
7	Reservedalways reads 0		Reservedalways reads 0
6	LPC Short Wait Abort	7-4	iteservedarways reads o
v	0 Disabledefault		The following bits all default to "level" triggered (0)
	1 Enable. During a short wait, the cycle is	3	PCI INTA# Invert (edge) / Non-invert (level). (1/0)
	aborted after 8Ts.	2	PCI INTB# Invert (edge) / Non-invert (level). (1/0)
5	LPC Frame Wait State Time	1	PCI INTC# Invert (edge) / Non-invert (level). (1/0)
	0 Frame Wait State is 1Tdefault	0	PCI INTD# Invert (edge) / Non-invert (level). (1/0)
	1 Frame Wait State is 2T	Note:	PCI INTA-D# normally connect to PCI interrupt pins
4	LPC Stop to Start Frame Wait State	Note.	INTA-D# (see pin definitions for more information).
	0 Enable. One idle state is inserted between		INTA-D# (see pill definitions for more information).
	Stop and Startdefault	Offset	55 – PCI PNP Interrupt Routing 1RW
	1 Disable. Stop is followed immediately by		PCI INTA# Routing (see PnP IRQ routing table)
	Start.	3-0	Reservedalways reads 0
3	Serial IRQ		itesei veu
	0 Disabledefault	Offset	56 – PCI PNP Interrupt Routing 2RW
	1 Enable (IRQ asserted via SerialIRQ pin AE10)	7-4	PCI INTC# Routing (see PnP IRQ routing table)
2	Serial IRQ Quiet Mode	3-0	PCI INTB# Routing (see PnP IRQ routing table)
	0 Continuous Modedefault		
	1 Quiet Mode		57 - PCI PNP Interrupt Routing 3RW
1-0	Serial IRQ Start-Frame Width		PCI INTD# Routing (see PnP IRQ routing table)
	00 4 PCI Clocksdefault	3-0	Reserved always reads 0
	01 6 PCI Clocks		
	10 8 PCI Clocks		
	11 10 PCI Clocks		
Offset	53 – PC/PCI DMA ControlRW	Table	10. PnP IRQ Routing Table
7	PCI DMA Pair A and Pair B		0000 Disabled default
	0 Disabledefault		0001 IRQ1
	1 Enable		0010 Reserved
6	PCI DMA Channel 7		0011 IRQ3
	0 Disabledefault		0100 IRQ4
	1 Enable		0101 IRQ5
5	PCI DMA Channel 6		0110 IRQ6
	0 Disabledefault		0111 IRQ7
	1 Enable		1000 Reserved
4	PCI DMA Channel 5		1001 IRQ9
	0 Disabledefault		1010 IRQ10
	1 Enable		1011 IRQ11
3	PCI DMA Channel 3		1100 IRQ12
	0 Disabledefault		1101 Reserved
_	1 Enable		1110 IRQ14
2	PCI DMA Channel 2		1111 IRQ15
	0 Disabledefault		
_	1 Enable		
1	PCI DMA Channel 1		
	0 Disabledefault		
•	1 Enable		
0	PCI DMA Channel 0		
	0 Disabledefault		
	1 Enable		

GPIO and Miscellaneous Control

Offset	58 – Miscellaneous Control 0 (40h)RW
7	Reserved always reads 0
6	Internal APIC
	0 Disable
	1 Enabledefault
5	South Bridge Interrupt Cycles Run at 33 MHz
	0 Disabledefault
	1 Enable
4	Address Decode
	0 Subtractivedefault
	1 Positive
3	RTC High Bank Access
	0 Disable access to upper 128 bytesdefault
	1 Enable access to upper 128 bytes
2	RTC Rx32 Write Protect
	0 Disable (not protected)default
	1 Enable (write protected)
1	RTC Rx0D Write Protect
	0 Disable (not protected)default
	1 Enable (write protected)
0	RTC Rx32 Map to Century Byte
	Controls whether RTC Rx32 is mapped to the
	century byte.
	0 Disabledefault
	1 Enable

Offset :	59 – Miscellaneous Control 1 (00h)RW
7-6	Reservedalways reads 0
5	LPC RTC
	0 Disabledefault
	1 Enable
4	LPC Keyboard
	0 Disable (ISA Keyboard)default
	1 Enable (LPC Keyboard)
3	LPC MicroController Chip Select (MCCS)
	Controls whether the MicroController Chip Select
	function is through LPC or ISA when Port 62/66h
	decode is enabled (see below bit-2 of this register).
	0 ISA MCCS# Pin Active for Port 62/66h def
	1 LPC MCCS (Port 62/66h directed to LPC)
2	Port 62h / 66h (MCCS#) Decoding
	0 Disabledefault
	1 Enable
1	A20M# Active
	0 Disable (A20M# signal not asserted) default
	1 Enable (A20M# signal asserted)
0	NMI on PCI Parity Error
	0 Disabledefault
	1 Enable (to generate NMI, Port 61[3] and Port
	70[7] must also be set)

ult
ult
u

The above bits determine if DMA bandwidth is improved for the specified channel. If enabled, bandwidth improvement is accomplished by reducing the transaction latency between the DMA Controller and the LPC Bus Controller.

Offset :	5B – Miscellaneous Control 2 (01h)RW
7-4	Reserved always reads 0
3	Bypass APIC De-Assert Message
	0 Disabledefault
	1 Enable
2	APIC HyperTransport Mode
	0 Disabledefault
	1 Enable
1	INTE#, INTF#, INTG#, INTH# (pins GPIO12-15)
	0 Disabledefault
	1 Enable
0	Dynamic Clock Stop
	0 Disable
	1 Enable default

Programmable Chip Select Control

Offset 5D-5C – PCS 0 L	O Port Address (0000h)RW	Offset	66 – PCS Control (00h)RW
	Address $default = 0$	7	PCS 3 Internal I/O
			0 Disable (External)default
<u> </u>	O Port Address (0000h)RW		1 Enable (Internal)
15-0 PCS 1 I/O Port	Address default = 0	6	PCS 2 Internal I/O
Off	O D (A 11 (0000h) DW		0 Disable (External)default
	O Port Address (0000h)RW		1 Enable (Internal)
15-0 PCS 2 I/O Port	Address default = 0	5	PCS 1 Internal I/O
Offset 63-62 – PCS 3 I/O	O Port Address (0000h)RW		0 Disable (External)default
	Address default = 0		1 Enable (Internal)
13-0 FCS 3 1/O FOR	Address defauit – 0	4	PCS 0 Internal I/O
			0 Disable (External)default
			1 Enable (Internal)
<u>Offset 65-64 – PCS I/O</u>	Port Address Mask (0000h)RW		bove 4 bits determine whether Programmable Chip
15-12 PCS 3 I/O Port	Address Mask 3-0	Selects	s 0-3 are treated as internal I/O
0000 Decode ra	ange is 1 bytedefault	3	PCS 3
0001 Decode ra	ange is 2 bytes		0 Disabledefault
0011 Decode ra	ange is 4 bytes		1 Enable
0111 Decode ra	ange is 8 bytes	2	PCS 2
	ange is 16 bytes		0 Disable default
11-8 PCS 2 I/O Port	Address Mask 3-0		1 Enable
	ange is 1 bytedefault	1	PCS 1
0001 Decode ra			0 Disabledefault
0011 Decode ra			1 Enable
0111 Decode ra		0	PCS 0
	ange is 16 bytes		0 Disabledefault
	Address Mask 3-0		1 Enable
	ange is 1 bytedefault		
0001 Decode ra			
0011 Decode ra		Offset	67 – Output Control (04h)RW
0111 Decode ra			Reserved always reads 0
	ange is 16 bytes	2	FERR Voltage
	Address Mask 3-0	4	0 2.5V
	ange is 1 bytedefault		1 1.5Vdefault
0001 Decode r	2 ,	1-0	
0011 Decode ra 0111 Decode ra		10	22002
	ange is 8 bytes ange is 16 bytes		
IIII Decode II	ange is to bytes		

ISA Decoding Control

Offset (6C – ISA Positive Decoding Control 1RW	Offset	6E – ISA Positive Decoding Control 3	RW
7	On-Board I/O (Ports 00-FFh) Positive Decoding	7	COM Port B Positive Decoding	
	0 Disabledefault		0 Disable	default
	1 Enable		1 Enable	
6	Microsoft-Sound System I/O Port Positive	6-4	COM-Port B Decode Range	
	Decoding		000 3F8h-3FFh (COM1)	default
	0 Disabledefault		001 2F8h-2FFh (COM2)	
	1 Enable (bits 5-4 determine the decode range)		010 220h-227h	
5-4	Microsoft Sound System I/O Decode Range		011 228h-22Fh	
	00 0530h-0537hdefault		100 238h-23Fh	
	01 0604h-060Bh		101 2E8h-2EFh (COM4)	
	10 0E80-0E87h		110 338h-33Fh	
	11 0F40h-0F47h		111 3E8h-3EFh (COM3)	
3	Internal APIC Positive Decoding	3	COM Port A Positive Decoding	
	0 Disabledefault		0 Disable	default
	1 Enable		1 Enable	
2	BIOS ROM Positive Decoding	2-0	COM-Port A Decode Range	
	0 Disabledefault		000 3F8h-3FFh (COM1)	default
	1 Enable		001 2F8h-2FFh (COM2)	
1	Internal PCS1# Positive Decoding		010 220h-227h	
	0 Disabledefault		011 228h-22Fh	
	1 Enable		100 238h-23Fh	
0	Internal PCS0# Positive Decoding		101 2E8h-2EFh (COM4)	
	0 Disabledefault		110 338h-33Fh	
	1 Enable		111 3E8h-3EFh (COM3)	
Offset	6D – ISA Positive Decoding Control 2RW	Offset	6F – ISA Positive Decoding Control 4	рW
7	FDC Positive Decoding		Reservedalw	
,	0 Disabledefault	7-0 5	PCS2# and PCS3# Positive Decoding	ays reads 0
	1 Enable	3	0 Disable	default
6	LPT Positive Decoding		1 Enable	uciauit
U	0 Disabledefault	4	I/O Port 0CF9h Positive Decoding	
	1 Enable	7	0 Disable	default
5-4	LPT Decode Range		1 Enable	derauit
3-4	00 3BCh-3BFh, 7BCh-7BEhdefault	3	FDC Decoding Range	
	01 378h-37Fh, 778h-77Ah	3	0 Primary	default
	10 278h-27Fh, 678h-67Ah		1 Secondary	deladit
	11 -reserved-	2	Sound Blaster Positive Decoding	
3	Game Port Positive Decoding		0 Disable	default
3	0 Disabledefault		1 Enable	derauit
	1 Enable	1-0	Sound Blaster Decode Range	
2	MIDI Positive Decoding	1-0	00 220-233h	default
4	0 Disabledefault		01 240-253h	aciault
	1 Enable		10 260-273h	
1-0	MIDI Decode Range		11 280-293h	
1-0	00 300-303hdefault		11 200 27511	
	01 310-313h			
	10 320-323h			
	10 320-323h 11 330-333h			
	11 330 33311			

I/O Pad Control

Offset '	7C – I/O Pad	Control (00h)RW
7-6	Reserved	always reads 0
5-4	IDE Interfac	ce Output Drive Strength
	00 Lowes	stdefault
	11 Highe	st
3-0	Reserved	always reads 0

Power Management-Specific Configuration Registers

ffset	80 – General Configuration 0 (00h)RW	Offset 8	81 - General Configuration 1 (04h)RW
7	Reserved always reads 0	7	I/O Enable for ACPI I/O Base
6	Sleep Button		0 Disable access to ACPI I/O block default
	0 Disabledefault		1 Allow access to Power Management I/O
	1 Sleep Button is on GPI21 / ACSDIN3 pin (V1)		Register Block (see offset 8B-88 to set the
5	Debounce LID and PWRBTN# Inputs for 16ms		base address for this register block). The
	This bit controls whether the debounce circuit for the		definitions of the registers in the Power
	LID# and PWRBTN# inputs is enabled to reduce		Management I/O Register Block are included
	possible noise.		later in this document, following the Power
	0 Disabledefault		Management Subsystem overview.
	1 Enable		Reservedalways reads 0
4	Reserved (Do Not Program) default = 0	3	ACPI Timer Count Select
3	Microsoft Sound Monitor in Audio Access		0 24-bit Timer default
	This bit controls whether an I/O access to the sound	•	1 32-bit Timer
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.	2	RTC Enable Signal Gated with PSON (SUSC#) in
	0 Disabledefault		Soft-Off Mode This hit controls whether DTC control signals are
	1 Enable		This bit controls whether RTC control signals are gated during system suspend state. This is to prevent
2	Game Port Monitor in Audio Access		CMOS and Power-Well register data from being
	This bit controls whether an I/O access to the game		corrupted during system on/off when the control
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.		signals (PWRGD) may not be stable.
	0 Disabledefault		0 Disable
	1 Enable		1 Enable default
1	Sound Blaster Monitor in Audio Access	1	Clock Throttling Clock Select (STPCLK#)
	This bit controls whether an I/O access to the sound	•	This bit controls the timer tick base for the throttle
	blaster port sets I/O Rx33-30[10] (Audio Access Status) = 1.		timer.
	0 Disabledefault		0 30 usec (480 usec cycle time when using a 4-
	1 Enable		bit timer) default
0	MIDI Monitor in Audio Access		1 1 msec (16 msec cycle time when using a 4-bit
U	This bit controls whether an I/O access to the MIDI		timer)
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.		The timer tick base can be further lowered to 7.5 usec
	0 Disable		(120 usec cycle time when using a 4-bit timer) by
	1 Enable		setting $Rx8D[4] = 1$. When $Rx8D[4] = 1$, the setting
	2 2340.0		of this bit is ignored.
		0	Reserved (Do Not Program)default = 0

Offset 8	82 - ACPI Interrupt SelectRW
7	ATX / AT Power IndicatorRO
	0 ATX
	1 AT
6	PSON (SUSC#) GatingRC
	During system on/off, this status bit reports whether
	PSON gating state has been completed, 0 meaning
	that gating is active now and 1 meaning that gating is
	complete. Software should not access any CMOS of
	Power-Well registers until this bit becomes 1 in
	Rx81[2] = 1 (see register description on previous
	page).
	0 PSON Gating Active
_	1 PSON Gating Complete
5	Reserved always reads (
4	SUSC# AC-Power-On Default ValueRC
	This bit is written at RTC Index 0D bit-7. If this bit is 0, the greatest is configured to "default on" when
	is 0, the system is configured to "default on" when
3-0	power is connected. SCI Interrupt Assignment
3-0	This field determines the routing of the ACPI IRQ.
	0000 Disableddefaul
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 IRQ15

Offset 85-84 - Primary Interrupt Channel (0000h)......RW

If a device IRQ is enabled as a Primary IRQ, that device's IRQ can be used to generate wake events. The bits in this register are used in conjunction with:

- PMIO Rx28[7] Primary Resume Status
- PMIO Rx2A[7] Primary Resume Enable

If a device on one of the IRQ's is set to enable the Primary Interrupt, once the device generates an IRQ, the PMIO Rx28[7] status bit will become 1 to report the occurrence of the Primary IRQ. If PMIO Rx2A[7] is set to 1 to enable Resume-on-Primary-IRQ, the IRQ then becomes a wake event.

1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel 15 1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel 14 1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel 13 1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel 12 1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel 11 1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel 10 9 1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel 8 1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel 7 1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel 6 5 1/0 = Ena/Disa IRQ5 as Primary Intrpt Channel 4 1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel 3always reads 0 2 1 1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel

Offset 87-86 - Secondary Interrupt Channel (0000h).... RW

For legacy PMU, the bits in this register are used in conjunction with:

- PMIO Rx28[1] Secondary Event Timer Timeout Status
- PMIO Rx2A[7] SMI on Secondary Event Timer Timeout

Secondary IRQ's are different from Primary IRQ's in that systems that resume due to a Secondary IRQ can return directly to suspend state after the secondary event timer times out. For this to work, PMIO Rx2A[1] needs to be set to one to enable SMI-on-Secondary-Event-Timer-Timeout (when PMIO Rx28[1] = 1). The timer's count value can be set via Rx93-90[27-26].

15

1/0 = Ena/Disa IRQ15 as Secondary Intr Channel 1/0 = Ena/Disa IRQ14 as Secondary Intr Channel 14 1/0 = Ena/Disa IRQ13 as Secondary Intr Channel 13 1/0 = Ena/Disa IRQ12 as Secondary Intr Channel 12 1/0 = Ena/Disa IRQ11 as Secondary Intr Channel 11 1/0 = Ena/Disa IRQ10 as Secondary Intr Channel 10 9 1/0 = Ena/Disa IRQ9 as Secondary Intr Channel 8 1/0 = Ena/Disa IRQ8 as Secondary Intr Channel 7 1/0 = Ena/Disa IRQ7 as Secondary Intr Channel 1/0 = Ena/Disa IRQ6 as Secondary Intr Channel 6 5 1/0 = Ena/Disa IRO5 as Secondary Intr Channel 4 1/0 = Ena/Disa IRQ4 as Secondary Intr Channel 3 1/0 = Ena/Disa IRQ3 as Secondary Intr Channel 2always reads 0 1 1/0 = Ena/Disa IRQ1 as Secondary Intr Channel 1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 8B-88 - Power Management I/O BaseRW

31-16 Reserved always reads 0

15-7 Power Management I/O Register Base Address

Port Address for the base of the 128-byte Power Management I/O Register block, corresponding to AD[15:7]. See "Power Management I/O Space Registers" in this document for definitions of the registers in the Power Management I/O Register Block

6-0 0000001b

Offset 8C - Host Bus Power Management Control......RW

7-4 Thermal Duty Cycle

This field determines the duty cycle of STPCLK# when the THRM# pin is asserted. The STPCLK# duty cycle when THRM# is NOT asserted is controlled by PMIO Rx10[3:0]. The duty cycle indicates the percentage of performance (the lower the percentage, the lower the performance and the higher the power savings). If the Throttling Timer Width (Function 0 Rx8D[6-5]) is set to 3-bit width, bit-0 of this field should be set to 0 (and the performance increment will be 12.5%). If the Throttling Timer Width is set to 2-bit width, bits 1-0 of this field should be set to 0 (and the performance increment will be 25%).

Throttling Timer Width 4-Rit 2 Rit 2 Rit 2 Rit

	<u>4-Bit</u>	<u>3-Bit</u>	<u>2-Bit</u>
0000	-reserved-	-reserved-	-reserved-
0001	6.25%	-reserved-	-reserved-
0010	12.50%	12.50%	-reserved-
0011	18.75%	-reserved-	-reserved-
0100	25.00%	25.00%	25.00%
0101	31.25%	-reserved-	-reserved-
0110	37.50%	37.50%	-reserved-
0111	43.75%	-reserved-	-reserved-
1000	50.00%	50.00%	50.00%
1001	56.25%	-reserved-	-reserved-
1010	62.50%	62.50%	-reserved-
1011	68.75%	-reserved-	-reserved-
1100	75.00%	75.00%	75.00%
1101	81.25%	-reserved-	-reserved-
1110	87.50%	87.50%	-reserved-
1111	93.75%	-reserved-	-reserved-

3 THRM Enable

0	Disable	default
1	Enable	
Proce	essor Break Event	

2 Processor Break Event 0 Disabledefault

l Enable	2
Reserved	always reads 0

Offset 8D - Throttle / Clock Stop Control.....RW

7 Throttle Timer Reset......def = 0

6-5 Throttle Timer

This field determines the number of bits used for the throttle timer, which in conjunction with the throttle timer tick determines the cycle time of STPCLK#. For example, if a 2-bit timer and a 7.5 usec timer tick are selected, the STPCLK# cycle time would be 30 usec (2**2 x 7.5). If a 4-bit timer and a 7.5 usec timer tick is selected, the cycle time would be 120 usec (2**4 x 7.5).

0x	4-Bit	default
10	2 D:4	

10 3-Bit

11 2-Bit

(see also Rx8C[7-4] and PMIO Rx10[3-0])

4 Fast Clock (7.5us) as Throttle Timer Tick

This bit controls whether the throttle timer tick uses 7.5 usec as its time base (120 usec cycle time when using a 4-bit timer).

- 0 Timer Tick is selected by Rx81[1]...... default
- 1 Timer Tick is 7.5 usec (Rx81[1] is ignored)

3 SMI Level Output (Low)

- 0 Disable.....default
- 1 Enable (during an SMI event, SMI# is held low until SMI event status is cleared)

2 Internal Clock Stop for PCI Idle

This bit controls whether the internal PCI clock is stopped when PCKRUN# is high.

- 0 PCI clock is not stopped default
- 1 PCI clock is stopped

1 Internal Clock Stop During C3

This bit controls whether the internal PCI clock is stopped during C3 state.

- 0 PCI clock is not stopped.....default
- 1 PCI clock is stopped

0 Internal Clock Stop During Suspend

This bit controls whether the internal PCI clock is stopped during Suspend state.

- 0 PCI clock is not stopped default
- 1 PCI clock is stopped

Offset 93-90 - GP Timer Control (0000 0000h)RW

31-30 Conserve Mode Timer Count Value

00 1/16 seconddefault

- 01 1/8 second
- 10 1 second
- 11 1 minute

29 Conserve Mode Status

This bit reads 1 when in Conserve Mode

28 Conserve Mode

This bit controls whether conserve mode (throttling) is enabled. When this bit is set, the system can enter conserve mode when primary activity is not detected within a given time period (determined by bits 31-30 of this register). Primary activity is defined in PMIO Rx33-30.

- 0 Disabledefault
- 1 Enable

27-26 Secondary Event Timer Count Value

- 00 2 millisecondsdefault
- 01 64 milliseconds
- 10 ½ second
- 11 by EOI + 0.25 milliseconds

25 Secondary Event Occurred Status

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

24 Secondary Event Timer Enable

- 0 Disabledefault
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP1 Timer Automatic Reload

- 0 GP1 Timer stops at 0default 1 Reload GP1 timer automatically after counting
- down to 0

5-4 GP1 Timer Base

- 00 Disable.....default
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP0 Timer Automatic Reload

- GP0 Timer stops at 0default
 Reload GP0 timer automatically after counting down to 0
- 1-0 GP0 Timer Base
 - 00 Disable.....default
 - 01 1/16 second
 - 10 1 second
 - 11 1 minute

Offset 9	94 – Power Well ControlWO	Offset 9	95 – Miscellaneous Power Well Control RW
7	SMBus Clock Select	7	CPUSTP# to SUSST# Delay Select
	0 SMBus Clock from 14.31818 MHz Divider		This bit controls the delay between the deassertion of
	1 SMBus Clock from RTC 32.768 KHz defult		CPUSTP# and the deassertion of SUSST# during a
6	Reserved always reads 0		resume.
5	Internal PLL Reset During Suspend		0 1 msec minimum
	0 Enabledefault		1 125 usec minimum
	1 Disable	6	SUSST# Deasserted Before PWRGD for STD
4	SUSST1# / GPO3 Select (Pin Y3)		0 Disabledefault
	0 SUSST1#default		1 Enable (SUST# is deasserted before PWRGD
	1 GPO3		when resuming from STD)
3	GPO2 / SUSB# Select (Pin AF2)	5	Keyboard / Mouse Port Swap
_	0 SUSB#default	_	This bit determines whether the keyboard and mouse
	1 GPO2		ports can be swapped.
2	GPO1 / SUSA# Select (Pin AA2)		0 Disable default
_	0 SUSA#default		1 Enable
	1 GPO1	4	Reservedalways reads 0
1-0	GPO0 Output Select (Pin AA3)	3	SMB2 / GPO Select
10	This field controls the GPO0 output signal for Pulse		0 SMBDT2 / SMBCK2 default
	Width Modulation.		1 GPO26 / GPO27
	00 GPO0 Fixed Output Level (defined by PMIO	2	AOL 2 SMB Slave
	Rx4C[0])default	_	This bit controls whether external SMB masters can
	01 GPO0 output is 1 Hz "SLOWCLK"		access internal SMB registers (for Alert-On-LAN).
	10 GPO0 output is 4 Hz "SLOWCLK"		0 Enable (external SMB masters may reset /
	11 GPO0 output is 16 Hz "SLOWCLK"		resume the system or detect GPI status) default
	11 GPOO output is 10 Hz SLOWCLK		· · · · · · · · · · · · · · · · · · ·
		4	1 Disable
		1	SUSCLK / GPO4 Select
			0 SUSCLKdefault
		•	1 GPO4
		0	USB Wakeup for STR / STD / SoftOff
			This bit controls whether USB Wakeup is enabled
			when PMIO $Rx21-20[14]$ (USB Wakeup Status) = 1.
			This allows wakeup from STR, STD, Soft Off, and
			POS.
			0 Disabledefault
			1 Enable
		Offered	OC Deman On / Deset Control
			96 – Power On / Reset ControlRW
		7-4	Reservedalways reads 0
		3-0	CPU Frequency Strapping Value Output to NMI,
			INTR, IGNNE#, and A20M# during RESET#
			The value written to this field is strapped through
			NMI, INTR, IGNNE#, and A20M# during RESET#
			to determine the multiplier for setting the CPU's
			internal frequency. If the CPU hangs due to

inappropriate settings written here, the GP3 timer (second timeout) can be used to initiate a system reboot (PMIO Rx42[2] = 1). Refer to the BIOS

Porting Guide for additional details.

Offset 98 – GP2 / GP3 Timer ControlRW

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by Rx9A and starts counting down. The GP3 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

- 0 GP3 Timer stops at 0default
- 1 Reload GP3 timer automatically after counting down to 0

5-4 GP3 Timer Tick Select

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by Rx99 and starts counting down. The GP2 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

- 0 GP2 Timer stops at 0default
- 1 Reload GP2 timer automatically after counting down to 0

1-0 GP2 Timer Tick Select

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

	99 – GP2 Timer RW
7	Write: GP2 Timer Load Valuedefault = 0
	Read: GP2 Timer Current Count
Offset 9	A – GP3 TimerRW
7	Write: GP3 Timer Load Valuedefault = 0
	Read: GP3 Timer Current Count
	C3-C0 – Power Management CapabilityRO Power Management Capability.always reads 0002h Next Pointeralways reads 00h Capability IDalways reads 01h
31-16 15-8 7-0	Power Management Capability. always reads 0002h
31-16 15-8 7-0 Offset (Power Management Capability always reads 0002h Next Pointer always reads 00h Capability ID always reads 01h C7-C4 – Power Mgmt Capability CSR
31-16 15-8 7-0 Offset 0 31-24	Power Management Capability. always reads 0002hNext Pointeralways reads 00hCapability IDalways reads 01h
31-16 15-8 7-0 Offset 0 31-24 23-16	Power Management Capability always reads 0002h Next Pointer always reads 00h Capability ID always reads 01h C7-C4 – Power Mgmt Capability CSR RW Power Management Data always reads 00h

System Management Bus-Specific Configuration Registers **SMB GPIO Slave Command Codes** Offset D1-D0 - SMBus I/O BaseRW SMBus Command Code 0 - GPIO Slave Input Port..... RO 7-0 Input Data default per pins **15-4 I/O Base (16-byte I/O space)** default = 00halways reads 0001b Reflects the incoming logic levels of the pins, Fixed regardless of whether the pin is defined as an input or Offset D2 - SMBus Host ConfigurationRW an output. Writes to this register have no effect.always reads 0 Reserved SMBus Command Code 1 - GPIO Slave Output Port.. RW 3 **SMBus Interrupt Type** Output Datadefault = 0 SMIdefault 1 SCI Controls the levels of the GPIO output pins defined always reads 0 2 Reserved as outputs. Bit values in this register have no effect **SMBus Interrupt Enable** on pins defined as inputs. Reads from this register 0 Disable SCI / SMIdefault reflect the saved value last written, not the actual pin Enable SCI / SMI 0 **SMBus Host Controller Enable** SMBus Cmd Code 2 - GPIO Slave Polarity Inversion . RW 0 Disable SMB controller functions......default **Polarity Inversion** default = 0Fh Enable SMB controller functions This register enables polarity inversion of pins Offset D3 – SMBus Host Slave Command.....RW defined as inputs by Command Code 3. 7-0 SMBus Host Slave Command Code default=0 0 Corresponding pin's polarity unchanged Corresponding pin's polarity inverted Offset D4 - SMBus Slave Address for Port 1RW SMBus Cmd Code 3 - GPIO Slave I/O Configuration . RW SMBus Slave Address for Port 1 default=0 Input / Output Configuration......default = 0FFh Read / Write for Shadow Port 1 This register configures the directions of the I/O pins. Offset D5 – SMBus Slave Address for Port 2RW 0 Corresponding pin is an output SMBus Slave Address for Port 2 default=0 Corresponding pin is an input..... default Read / Write for Shadow Port 2 Offset D6 - SMBus Revision ID.....RO 7-0 SMBus Revision Code

General Purpose I/O Control Registers

Offset 1	E0 – GPI Inversion ControlRW
7-0	GPI[27-24, 19-16] Input Inversion
	0 Non-inverted inputdefault
	1 Inverted input
Offset 1	E1 – GPI SCI / SMI SelectRW
7-0	GPI[27-24, 19-16] SCI / SMI Select
	When GPI[27-24,19-16] are set to enable SCI / SMI generation (PMIO Rx52), this field determines
	whether an SCI or SMI is generated.
	0 SCIdefault
	1 SMI
	1 SIVII
Offset 1	E4 – GPO Pin SelectRW
7	Reserved always reads 0
6	ACSDIN2,3 / GPIO20,21 Select (Pins U2, V1)
	This bit is ignored if any of RxE5 bits 1, 2, 4, or $5 = 1$
	0 U2 = ACSDIN2, V1 = ACSDIN3default
	1 $U2 = GPIO20$, $V1 = GPIO21$
5	SA[19:16] / GPO[19:16] Select (AC11, AD11,
	AE11, AF11)
	0 SA[19:16]default
	1 GPO[19:16]
4	GPIO[15:12] Direction
	0 Input (pins are GPI[15:12])default
2	1 Output (pins are GPO[15:12])
3	GPIO[11:8] Direction 0 Input (pins are GPI[11:8])default
	1 Output (pins are GPO[11:8])
2	GNT5# / GPO7 Select (Pin P4)
2	REQ5# / GPI7 Select (Pin N4)
	0 P4 = GPO7, N4 = GPI7default
	1 P4 = GNT5#, N4 = REQ5#
1	PCISTP# / GPO6 Select (Pin AF6)
-	0 V6 = PCISTP#default
	1 V6 = GPO6
0	CPUSTP# / GPO5 Select (Pin AC7)
	0 Y5 = CPUSTP#default
	1 Y5 = GPO5

Offset	E5 – GPIO I/O Select 1 RW
7	Voltage Regulator Change Timer Select
,	0 100 usec default
	1 200 usec
6	AGPBZ# Source of Bus Master Status
U	0 Disabledefault
	1 Enable
5	Reservedalways reads 0
4	VGATE on GPIO8 (Pin C8)
7	0 U2 = GPIO8default
	1 U2 = VGATE (bit 1 and RxE4[6] are ignored)
3	CPU Frequency Change
3	0 Enable: Pin P25 = VIDSELdefault
	Pin P24 = VRDSLP
	Pin R24 = GHI#
	Pin P26 = DPSLP#
	1 Disable: Pin P25 = GPIO28, P24 = GPIO29,
•	Pin R24 = GPIO22. P26 = GPIO23
2	PCS1# on ACSDIN3 (Pin V1)
	0 V1 = ACSDIN3 / GPIO21 / SLPBTN#. default
	1 V1 = $PCS1\#$ (RxE4[6] ignored)
1	PCS0# on ACSDIN2 (Pin U2)
	0 U2 = ACSDIN2 / GPIO20default
	1 U2 = PCS0# (RxE4[6] ignored)
0	IORDY / GPI19 Select (Pin AD10)
	$0 AD10 = IORDY \dots default$
	1 AD10 = GPI19
Offset	E6 – GPIO I/O Select 2 RW
7	GPI31 / GPO31 (GPIOE) Select (Pin AC6)
•	0 AC6 = GPI31 default
	1 $AC6 = GPO31 / GPIOE$
6	GPI30 / GPO30 (GPIOD) Select (Pin AD6)
•	0 AD6 = GPI30default
	1 AD6 = GPO30 / GPIOD
5-2	Reserved always reads 0
1	GPI25 / GPO25 (GPIOC) Select (Pin AE6)
	0 AE6 = GPI25 default
	1 AE6 = GPO25 / GPIOC
0	GPI24 / GPO24 (GPIOA) Select (Pin AE5)
•	$0 AE5 = GPI24 \dots default$
	1 AE5 = GPO24 / GPIOA
	E7 – GPO Output TypeRW
	bits determine whether the indicated GPO pin is open
drain o	r TTL when the corresponding bit of $RxE6 = 1$.
7	GPO31 OD/TTL Select (Pin AC6)
6	GPO30 OD/TTL Select (Fin AD6)
5-2	
5-2 1	GPO25 OD/TTL Select (Pin AE6)
0	
U	GPO24 OD/TTL Select (Pin AE5)
For all	defined bits above:
	0 OD default

1 TTL

Watchdog Timer Registers

Offset l	<u> EB-E8 – Watchdog Timer</u>	Memory BaseRW
31-8	Watchdog Timer Memor	ry Base [31:8]
7-0	Reserved	always reads 0
Offset l	EC – Watchdog Timer Co	ntrol (00h)RW
7-3	Reserved	always reads 0
2	C3 VID / FID Latency R	
1	Watchdog Timer	
	0 Disable	default
	1 Enable (after being	set to 1, this bit can only
	be set to 0 by PCI r	eset)
0	Watchdog Timer Memor	ry
	0 Disable	default
	1 Enable	

Power Management I/O-Space Registers

Basic Power Management Control and Status

I/O Off	fset 1-0 - Power Management StatusRWC	I/O Off	set 3-2 - Power Management EnableRW
	s in this register are set only by hardware and can be software by writing a one to the desired bit position.		s in this register correspond to the bits in the Power ment Status Register at offset 1-0.
15	Wakeup Status	15	Reserved always reads 0
	Reserved always reads 0	14-12	Reserved always reads 0
11	Abnormal Power-Off Status default = 0	11	Reserved always reads 0
10	RTC Alarm Status	10	RTC Alarm Enable
9	Sleep Button Status	9	Sleep Button Enable
8	Power Button Status	8	Power Button Enable
7-6	Reserved always reads 0	7-6	Reserved always reads 0
5	Global Status	5	Global Enable
	same time by hardware.	4	Reservedalways reads 0
4	Bus Master Status		
	DMA devices are included.	3-1	Reserved always reads 0
3-1 0	Reserved always reads 0 ACPI Timer Carry Status default = 0 The bit is set when the 23 rd (31st) bit of the 24 (32) bit ACPI power management timer changes.	0	ACPI Timer Enable

I/O Offset 5-4 - Power Management ControlRW

15 Soft Resume

This bit is used to allow a system using an AT power supply to operate as if an ATX power supply were being used. Refer to the BIOS Porting Guide for implementation details.

- 0 Disabledefault
- 1 Enable
- **14 Reserved** always reads 0

12-10 Sleep Type

- 000 Normal On
- 001 Suspend to RAM (STR)
- 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VSUS33 and VBAT planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU/PCI Reset
- 11x Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

- 9 Reserved always reads 0
- 8 STD Command Generates System Reset Only
 - 0 Disabledefault
 - 1 Enable (STD command generates a system reset and not STD)
- **7-3 Reserved** always reads 0

1 Bus Master Reload

This bit controls whether bus master requests (PMIO Rx00[4] = 1) transition the processor from C3 to C0 state.

- 0 Bus master requests are ignored by power management logicdefault
- Bus master requests transition the processor from the C3 state to the C0 state

0 SCI / SMI Select

This bit controls whether SCI or SMI is generated for power management events triggered by the Power Button, Sleep Button, and RTC (when PMIO Rx1-0 bits 8, 9, or 10 equal one).

- 0 Generate SMI default
- 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, Timer Status & Global Status always generate SCI and BIOS Status always generates SMI.

I/O Offset 0B-08 - Power Management Timer.....RW

31-24 Extended Timer Value

This field reads back 0 if the 24-bit timer option is selected (Rx81 bit-3).

23-0 Timer Value

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Offset 13-10 - Processor & PCI Bus Control 31-12 Reserved always reads 0 11 Disable PCISTP# When PCKRUN# is Deasserted default 1 Disable default 1 Disable PCI Bus Clock Run Without Stop 0 PCKRUN# is always asserted default 1 PCKRUN# will be de-activated after the PCI bus is idle for 26 clocks

9 Host Clock Stop

This bit controls whether CPUSTP# is asserted in C3 and S1 states. Normally CPUSTP# is not asserted in C3 and S1 states, only STPCLK# is asserted.

- O CPUSTP# will not be asserted in C3 and S1 states (only STPCLK# is asserted).......default
- 1 CPUSTP# will be asserted in C3 and S1 states

8 Assert SLP# for Processor Level 3 Read

This bit controls whether SLP# is asserted in C3 state.

- 0 SLP# is not asserted in C3 statedefault
- 1 SLP# is asserted in C3 state

Used with Intel CPUs only.

7 Lower CPU Voltage During C3 / S1

This bit controls whether the CPU <u>voltage</u> is lowered when in C3/S1 state. The voltage is lowered using the VRDSLP signal to the voltage regulator. PMIO RxE5[3] must be 0 to enable the voltage change function. Bits 8 and 9 of this register must also be set to 1.

- 0 Disable (normal voltage during C3/S1)def
- 1 Enable (lower voltage during C3/S1)
 6-5 Reservedalways reads 0

4 Throttling Enable

Setting this bit starts clock throttling (modulating the STPCLK# signal) regardless of the CPU state. The throttling duty cycle is determined by bits 3-0 of this register.

3-0 Throttling Duty Cycle

This field determines the duty cycle of the STPCLK# signal when the system is in throttling mode ("Throttling Enable" bit of this register set to one). The duty cycle indicates the percentage of performance (the lower the percentage, the lower the performance and the higher the power savings). If the Throttling Timer Width (Function 0 Rx8D[6-5]) is set to 3-bit width, bit-0 of this field should be set to 0 (and the performance increment will be 12.5%). If the Throttling Timer Width is set to 2-bit width, bits 1-0 of this field should be set to 0 (and the performance increment will be 25%).

Throttli	ing	Timer	Width

	<u>4-Bit</u>	<u>3-Bit</u>	<u>2-Bit</u>
0000	-reserved-	-reserved-	-reserved-
0001	6.25%	-reserved-	-reserved-
0010	12.50%	12.50%	-reserved-
0011	18.75%	-reserved-	-reserved-
0100	25.00%	25.00%	25.00%
0101	31.25%	-reserved-	-reserved-
0110	37.50%	37.50%	-reserved-
0111	43.75%	-reserved-	-reserved-
1000	50.00%	50.00%	50.00%
1001	56.25%	-reserved-	-reserved-
1010	62.50%	62.50%	-reserved-
1011	68.75%	-reserved-	-reserved-
1100	75.00%	75.00%	75.00%
1101	81.25%	-reserved-	-reserved-
1110	87.50%	87.50%	-reserved-
1111	93.75%	-reserved-	-reserved-

I/O Offset 14 - Processor Level 2.....RO

7-0 Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT8235M Version CD asserts STPCLK# to suspend the processor). Wake up from

STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3.....RO

7-0 Level 3always reads 0
Reads from this register put the processor in the C3
clock state with the STPCLK# signal asserted. If
Rx10[9] = 1 then the CPU clock is also stopped by
asserting CPUSTP#. Wakeup from the C3 state is by
interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

General Purpose Power Management Registers

15	North Bridge SERR# Status	
14	USB Wake-Up Status	
	For STR / STD / Soff	
13	AC97 Wake-Up Status	
	Can be set only in suspend mode	
12	Battery Low Status	
	Set when the BATLOW# input is asserted low.	
11	Notebook Lid Status	
	Set when the LID input detects the edge selected by	
	Rx2C bit-7 (0=rising, 1=falling).	
10	Thermal Detect Status	
	Set when the THRM# input detects the edge selected	
	by Rx2C bit-6 (0=rising, 1=falling).	
9	Reserved always reads 0	
8	Ring Status	
	Set when the RING# input is asserted low.	
7	Reserved always reads 0	
6	INTRUDER# Status	
_	Set when the INTRUDER# pin is asserted low.	
5	PME# Status	
	Set when the PME# pin is asserted low.	
4	EXTSMI# Status	
•	Set when the EXTSMI# pin is asserted low.	
3	Internal LAN PME Status	
_	Set when the internal LAN PME signal is asserted.	
2	Internal KBC PME Status	
_	Set when the internal KBC PME signal is asserted.	
1	GPI1 Status	
•	Set when the GPI1 pin is asserted low.	
0	GPI0 Status	
	Set when the GPI0 pin is asserted low.	

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

O Off	set 23-22 - General Purpose SCI EnableRW
15	Enable SCI on setting of Rx21-20[15]def=0
14	Enable SCI on setting of Rx21-20[14]def=0
13	Enable SCI on setting of Rx21-20[13]def=0
12	Enable SCI on setting of Rx21-20[12]def=0
11	Enable SCI on setting of Rx21-20[11]def=0
10	Enable SCI on setting of Rx21-20[10]def=0
9	Reserved always reads 0
8	Enable SCI on setting of Rx21-20[8]def=0
7	Reserved always reads 0
6	Enable SCI on setting of Rx21-20[6]def=0
5	Enable SCI on setting of Rx21-20[5]def=0
4	Enable SCI on setting of Rx21-20[4]def=0
3	Enable SCI on setting of Rx21-20[3]def=0
2	Enable SCI on setting of Rx21-20[2]def=0
1	Enable SCI on setting of Rx21-20[1]def=0
0	Enable SCI on setting of Rx21-20[0]def=0

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

<u>/O Off</u>	<u>set 25-24 - General Purpose SMI Enable RW</u>
15	Enable SMI on setting of Rx21-20[15]def=0
14	Enable SMI on setting of Rx21-20[14]def=0
13	Enable SMI on setting of Rx21-20[13]def=0
12	Enable SMI on setting of Rx21-20[12]def=0
11	Enable SMI on setting of Rx21-20[11]def=0
10	Enable SMI on setting of Rx21-20[10]def=0
9	Reserved always reads 0
8	Enable SMI on setting of Rx21-20[8]def=0
7	Reserved always reads 0
6	Enable SMI on setting of Rx21-20[6]def=0
5	Enable SMI on setting of Rx21-20[5]def=0
4	Enable SMI on setting of Rx21-20[4]def=0
3	Enable SMI on setting of Rx21-20[3]def=0
2	Enable SMI on setting of Rx21-20[2]def=0
1	Enable SMI on setting of Rx21-20[1]def=0
0	Enable SMI on setting of Rx21-20[0]def=0

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

O Of	fset 29-28 - Global StatusRWC
15	GPIO Range 1 Access Status default = 0
14	GPIO Range 0 Access Status default = 0
13	GP3 Timer Timeout Status default = 0
12	GP2 Timer Timeout Status default = 0
11	SERIRQ SMI Status default = 0
10	Rx5[5] Write SMI Status default = 0
	This bit reports whether Rx5[5] is written. It
	Rx2B[3] is set to enable SMI, an SMI in generated
	when this bit $= 1$.
9	Reserved always reads 0
8	PCKRUN# Resume Status default = 0
	This bit is set when PCI bus peripherals wake up the
	system by asserting PCKRUN#
7	Primary IRQ/INIT/NMI/SMI Resume Statusdef=0
	This bit is set at the occurrence of primary IRQs as
	defined in Rx85-84 of PCI configuration space
6	Software SMI Status default = 0
·	This bit is set when the SMI Command port (Rx2F)
	is written.
5	BIOS Status default = 0
	This bit is set when the Global Release bit is set to
	one (typically by the ACPI software to release
	control of the SCI/SMI lock). When this bit is reset
	(by writing a one to this bit position) the Global
	Release bit is reset at the same time by hardware.
4	Legacy USB Status
7	This bit is set when a legacy USB event occurs. This
	is normally used for USB keyboards.
3	GP1 Timer Time Out Status default = 0
3	This bit is set when the GP1 timer times out.
2	GP0 Timer Time Out Status
2	This bit is set when the GP0 timer times out.
1	
1	Secondary Event Timer Time Out Status def=0
	This bit is set when the secondary event timer times
•	out.
0	Primary Activity Status default = 0
	This bit is set at the occurrence of any enabled
	primary system activity (see the Primary Activity
	Detect Status register at offset 30h and the Primary
	Activity Detect Enable register at offset 34h). After
	checking this bit, software can check the status bits in
	the Primary Activity Detect Status register at offset
	30h to identify the specific source of the primary
	event. Note that setting this bit can be enabled to
	reload the GP0 timer (see bit-0 of the GP Timer
	Reload Enable register at offset 38).

Note that SMI can be generated based on the setting of any of the above bits (see the Rx2A Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

The bits in this register are for SMI's only while the bits in Rx21-20 are for SMI's and SCI's

I/O Of	fset 2B-2A - Global EnableRW
15	GPIO Range 1 SMI Enable default = 0
14	GPIO Range 0 SMI Enable default = 0
13	GP3 Timer Timeout SMI Enable default = 0
12	GP2 Timer Timeout SMI Enable default = 0
11	SERIRQ SMI Enabledefault = 0
10	SMI on Sleep Enable Writedefault = 0
	·
9	Reservedalways reads 0
8	PCKRUN# Resume Enable default = 0
	This bit may be set to trigger an SMI to be generated
	when the PCKRUN# Resume Status bit is set.
7	Primary IRQ/INIT/NMI/SMI Resume Enable In
	Post State default = 0
	This bit may be set to trigger an SMI to be generated
	when the Primary IRQ / INIT / NMI / SMI Resume
	Status bit is set.
6	SMI on Software SMIdefault = 0
	This bit may be set to trigger an SMI to be generated
_	when the Software SMI Status bit is set.
5	SMI on BIOS Status
4	SMI on Legacy USBdefault = 0 This bit may be set to trigger an SMI to be generated
	when the Legacy USB Status bit is set.
3	SMI on GP1 Timer Time Outdefault = 0
	This bit may be set to trigger an SMI to be generated
2	when the GP1 Timer Timeout Status bit is set.
Z	SMI on GP0 Timer Time Out default = 0 This bit may be set to trigger an SMI to be generated
	when the GP0 Timer Timeout Status bit is set.
1	SMI on Secondary Event Timer Time Out def=0
1	This bit may be set to trigger an SMI to be generated
	when the Secondary Event Timer Timeout Status bit
	is set.
0	SMI on Primary Activitydefault = 0
v	This bit may be set to trigger an SMI to be generated
	when the Primary Activity Status bit is set.

I/O Off	set 2D-	-2C - Global ControlRW
		vedalways reads (
11		Secondary Bus Power-Off
	0	Disabledefaul
	1	Enable
10	IDE I	Primary Bus Power-Off
	0	Disabledefault
	1	Enable
9	Reser	vedalways reads (
8	SMI	Active
	0	SMI Inactivedefault
	1	SMI Active. If the SMI Lock bit is set, this bit
		needs to be written with a 1 to clear it before
		the next SMI can be generated.
7	LID T	Triggering Polarity
	0	Rising Edgedefaul
	1	Falling Edge
6	THR	M# Triggering Polarity
	0	Rising Edgedefault
	1	Falling Edge
5	Batte	ry Low Resume Disable
	0	2140101010041110
	1	Disable resume from suspend when
		BATLOW# is asserted
4-3	Reser	
2	Powe	r Button Triggering Select
	0	SCI/SMI generated by PWRBTN# rising edge
		defaul
	1	SCI/SMI generated by PWRBTN# falling edge
	Set to	zero to avoid the situation where the Power

Set to zero to avoid the situation where the Power Button Status bit is set to wake up the system then reset again by PBOR Status to switch the system into the soft-off state.

1 BIOS Release

This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the Global Status bit. This bit is cleared by hardware when the Global Status bit cleared by software.

Note that if the Global Enable bit is set (Power Management Enable register Rx2[5]), then setting this bit causes an SCI to be generated (because setting this bit causes the Global Status bit to be set).

0 SMI Enable

- 0 Disable all SMI generationdefault
- 1 Enable SMI generation

I/O Offset 2F - SMI Command.....RW

7-0 SMI Command

Writing to this port sets the Software SMI Status bit. Note that if the Software SMI Enable bit is set (see Global Enable register Rx2A[6]), then an SMI is generated.

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in Rx37-34. If the corresponding bit is set in that register, setting of a bit below will cause the Primary Activity Status (PACT_STS) bit to be set (Global Status register Rx28[0]). All bits in this register default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

- 31-11 Reserved always read 0
 10 Audio Access Status (AUD_STS)
 Set if Audio is accessed.
 - 9 Keyboard Controller Access Status (KBC_STS) Set if the KBC is accessed via I/O port 60h.
 - 8 VGA Access Status(VGA_STS)
 Set if the VGA port is accessed via I/O ports 3B03DFh or memory space A0000-BFFFFh.
 - 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
 - 6 Serial Port B Access Status(COMB_STS) Set if the serial port is accessed via I/O ports 2F8-2FFh or 2E8-2Efh (COM2 and COM4 respectively).
 - 5 Serial Port A Access Status......(COMA_STS) Set if the serial port is accessed via I/O ports 3F8-3FFh or 3E8-3EFh (COM1 and COM3, respectively).
 - 4 Floppy Access Status(FDC_STS)
 Set if the floppy controller is accessed via I/O ports
 3F0-3F5h or 3F7h.
 - 3 Secondary IDE Access Status(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
 - 2 Primary IDE Access Status......(PIDE_STS)
 Set if the IDE controller is accessed via I/O ports
 1F0-1F7h or 3F6h.
 - Primary Interrupt Activity Status.....(PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Device 17 Function 0 PCI configuration register offset 84h).
 - **O** PCI Master Access Status(DRQ_STS) Set on the occurrence of PCI master activity.

Note: Setting of Primary Activity Status (PACT_STS) may be done to enable a "Primary Activity Event": an SMI will be generated if the Primary Activity Enable bit is set (Global Enable register Rx2A[0]) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (GP Timer Reload Enable register Rx38[0]).

Note: Bits 2-9 above also correspond to bits of GP Timer Reload Enable register Rx38: If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in Rx33-30. Setting of any of these bits also sets the Primary Activity Status (PACT_STS) bit (Rx28[0]) which causes the GP0 timer to be reloaded (if the Primary Activity GP0 Enable bit is set) or generates an SMI (if Primary Activity Enable is set).

ctivity	Enabl	le is set).
31-11	Rese	rved always read 0
10	SMI	on Audio Status(AUD EN)
	0	Don't set PACT_STS if AUD_STS is set def
	1	Set PACT_STS if AUD_STS is set
9	SMI	on Keyboard Controller Status (KBC_EN)
	0	Don't set PACT_STS if KBC_STS is set def
	1	Set PACT_STS if KBC_STS is set
8	SMI	on VGA Status(VGA_EN)
	0	Don't set PACT_STS if VGA_STS is set def
	1	Set PACT_STS if VGA_STS is set
7	SMI	on Parallel Port Status(LPT_EN)
	0	<u> </u>
	1	Set PACT_STS if LPT_STS is set
6		on Serial Port B Status(COMB_EN)
	0	Don't set PACT_STS if COMB_STS is set. def
_	1	Set PACT_STS if COMB_STS is set
5		on Serial Port A Status(COMA_EN)
	0	
	l	Set PACT_STS if COMA_STS is set
4		on Floppy Status(FDC_EN)
	0	Don't set PACT_STS if FDC_STS is set def
2	1	Set PACT_STS if FDC_STS is set
3	0	on Secondary IDE Status(SIDE_EN) Don't set PACT STS if SIDE STS is set def
2	l SMI	Set PACT_STS if SIDE_STS is set on PrimaryIDE Status(PIDE_EN)
2	0	Don't set PACT_STS if PIDE_STS is set def
	1	Set PACT STS if PIDE STS is setder
1	_	on Primary IRQ Status(PIRQ_EN)
	0	Don't set PACT_STS if PIRQ_STS is set def
	1	Set PACT STS if PIRQ STS is set der
	-	2011121_515 1111100_515 15 15 000
0	SMI	on PCI Master Status(DRQ EN)

Don't set PACT STS if DRO STS is set def

Set PACT STS if DRQ STS is set

I/O Off	fset 3B-38 - GP Timer Reload EnableRW	I/O Of	fset 40 – Extended I/O Trap StatusRWC
All bits	in this register default to 0 on power up.	7-5	Reserved always reads 0
31-8	Reservedalways reads 0	4	BIOS Write Access Status
7	GP1 Timer Reload on KBC Access	3	GP3 Timer Second Timeout With No Cycles
	Normal GP1 Timer Operationdefault		0 Disabledefault
	1 Setting of KBC_STS causes the GP1 timer to reload.		1 Enable (GP3 timer timed out twice with no cycles in between)
6	GP1 Timer Reload on Serial Port Access	2	GP3 Timer Second Timeout Status
	0 Normal GP1 Timer Operationdefault	1	GPIO Range 3 Access Status
	1 Setting of COMA_STS or COMB_STS causes the GP1 timer to reload.	0	GPIO Range 2 Access Status
			fset 42 – Extended I/O Trap EnableRW
5	Reservedalways reads 0	7-5	Reserved always reads 0
_		4	SMI on BIOS Write Access
4	GP1 Timer Reload on VGA Access		This bit controls whether SMI is generated when
	0 Normal GP1 Timer Operationdefault		BIOS Write Access Status $Rx40[4] = 1$.
	1 Setting of VGA STS causes the GP1 timer to		0 Disabledefault
	reload.		1 Enable (can be reset only by OCI_Reset)
3	GP1 Timer Reload on IDE/Floppy Access	3	Reservedalways reads 0
	0 Normal GP1 Timer Operationdefault	2	GP3 Timer Second Timeout Reboot
	1 Setting of FDC_STS, SIDE_STS, or PIDE_STS causes the GP1 timer to reload.		This bit controls whether the system is rebooted when the GP3 timer times out twice (Rx40[2] = 1). 0 Disabledefault
2	CP3 Timer Paleed on CPIO Pange 1 Access		1 Enable
2	GP3 Timer Reload on GPIO Range 1 Access Normal GP3 Timer Operationdefault	1	SMI on GPIO Range 3 Access
	1 Setting of GR1 STS causes the GP3 timer to	•	This bit controls whether SMI is generated when
	reload.		GPIO range 3 is accessed $(Rx40[1] = 1)$
1	GP2 Timer Reload on GPIO Range 0 Access		0 Disabledefault
•	0 Normal GP2 Timer Operationdefault		1 Enable
	1 Setting of GR0 STS causes the GP2 timer to	0	SMI on GPIO Range 2 Access
	reload.		This bit controls whether SMI is generated when
	1410444.		GPIO range 2 is accessed $(Rx40[0] = 1)$
0	GP0 Timer Reload on Primary Activity		0 Disabledefault
-	0 Normal GP0 Timer Operationdefault		1 Enable
	1 Setting of PACT STS causes the GP0 timer to		
	reload. Primary activities are enabled via the		
	Primary Activity Detect Enable register (offset		
	27.24) :d		

37-34) with status recorded in the Primary Activity Detect Status register (offset 33-30).

General Purpose I/O Registers

7-5	Reservedalways reads 0
4	Latest PCSn Status
	0 Latest PCSn was an I/O Read
	1 Latest PCSn was an I/O Write
3	Serial SMI Status
	This bit is used to report a Serial-IRQ-generated SMI.
2	Reservedalways reads 0
1	SMBus IRQ Status
	This bit is used to report an SMBus SMI.
0	SMBus Resume Status
	This bit is used to report an SMBus Resume Event.

I/O Offset 4B-48 - GPI Port Input Value (GPIVAL).....RO 31-0 GPI[31-0] Input Value......Read Only

I/O Offset 4F-4C - GPO Port Output Value (GPOVAL)RW

Reads from this register return the last value written (held on chip). Some GPIO pins can be used as both input and output (GPIO pins 8-15 and 20-31). The output type of these pins is OD (open drain) so to use one of these pins as an input pin, a one must be written to the corresponding bit of this register. See also Function 0 RxE4[4-3] for I/O control of GPIO pins 8-15.

31-0 GPO[31-0] Output Valuedef = FFFFFFFh

I/O Of	<u> fset 50 – GPI Pin Change Status</u>	RW
7	GPI27 Pin Change Status	default = 0
6	GPI26 Pin Change Status	
5	GPI25 Pin Change Status	
4	GPI24 Pin Change Status	
3	GPI19 Pin Change Status	\dots default = 0
2	GPI18 Pin Change Status	
1	GPI17 Pin Change Status	
0	GPI16 Pin Change Status	default = 0
I/O Of	fset 52 – GPI Pin Change SCI/SMI S	SelectRW
7	GPI27 Pin SCI / SMI Select	
6	GPI26 Pin SCI / SMI Select	
5	GPI25 Pin SCI / SMI Select	
4	GPI24 Pin SCI / SMI Select	
3	GPI19 Pin SCI / SMI Select	
2	GPI18 Pin SCI / SMI Select	
1	GPI17 Pin SCI / SMI Select	
0	GPI16 Pin SCI / SMI Select	
	0 SCI on pin input change	default

1 SMI on pin input change

I/O Trap Registers

I/O Off	set 57-54 – I/O Trap PCI DataRO
31-0	PCI Data During I/O Trap SMI
I/O Off	set 59-58 – I/O Trap PCI I/O AddressRO
15-0	PCI Address During I/O Trap SMI
I/O Off	set 5A – I/O Trap PCI Command / Byte Enable RO
7-4	PCI Command Type During I/O Trap SMI
3-0	PCI Byte Enable During I/O Trap SMI

I/O Offset 5C - CPU Performance Control.....RW

- **7-1 Reserved**always reads 0
- 0 Lower CPU Frequency During C3 / S1

This bit controls the CPU frequency in C3/S1 state. The frequency is lowered using the GHI# signal (Device 17 Function 0 RxE5[3] must be 0 to enable the frequency change function).

- 0 Enable (lower voltage / frequency during C3/S1)def
- 1 Disable (normal voltage / frequency during C3/S1)

System Management Bus I/O-Space Registers

The base address for these registers is defined in RxD1-D0 of the Device 17 Function 0 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if Device 17 Function 0 RxD2[0] = 1.

I/O Of	fset 00 – SMBus Host StatusRWC
7	Reserved always reads 0
6	SMB SemaphoreRWC
ŭ	This bit is used as a semaphore among various
	independent software threads that may need to use
	the Host SMBus logic and has no effect on hardware.
	After reset, this bit reads 0. Writing 1 to this bit
	causes the next read to return 0, then all reads after
	that return 1. Writing 0 to this bit has no effect.
	Software can therefore write 1 to request control and
	if readback is 0 then it will own usage of the host
_	controller.
5	Reserved always reads 0
4	Failed Bus TransactionRWC
	0 SMBus interrupt not caused by failed bus
	transactiondefault
	1 SMBus interrupt caused by failed bus
	transaction. This bit may be set when the
	KILL bit (I/O Rx02[1]) is set and can be
	cleared by writing a 1 to this bit position.
3	Bus CollisionRWC
	0 SMBus interrupt not caused by transaction
	collisiondefault
	1 SMBus interrupt caused by transaction
	collision. This bit is only set by hardware and
	can be cleared by writing a 1 to this bit
	position.
2	1
2	Device ErrorRWC
	0 SMBus interrupt not caused by generation of
	an SMBus transaction errordefault
	1 SMBus interrupt caused by generation of an
	SMBus transaction error (illegal command
	field, unclaimed host-initiated cycle, or host
	device timeout). This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
1	SMBus InterruptRWC
	0 SMBus interrupt not caused by host command
	completiondefault
	1 SMBus interrupt caused by host command
	completion. This bit is only set by hardware
	and can be cleared by writing a 1 to this bit
	position.
0	1
U	Host BusyRO 0 SMBus controller host interface is not
	processing a commanddefault
	1 SMBus host controller is busy processing a

command. None of the other SMBus registers

should be accessed if this bit is set.

	set 01h – SMBus Slave StatusRWC
7-6 -	Reserved always reads 0
5	Alert Status
	0 SMBus interrupt not caused by SMBALERT#
	signaldefault 1 SMBus interrupt caused by SMBALERT#
	signal. This bit will be set only if the Alert
	Enable bit is set in the SMBus Slave Control
	Register at I/O Offset R08[3]. This bit is only
	set by hardware and can be cleared by writing
	a 1 to this bit position.
4	Shadow 2 StatusRWC
	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 2 default
	1 SMBus interrupt or resume event caused by
	slave cycle address match to SMBus Shadow
	Address Port 2. This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
3	Shadow 1 StatusRWC
	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 1 default
	1 SMBus interrupt or resume event caused by
	slave cycle address match to SMBus Shadow Address Port 1. This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
2	Slave StatusRWC
-	0 SMBus interrupt not caused by slave event
	matchdefault
	1 SMBus interrupt or resume event caused by
	slave cycle event match of the SMBus Slave
	Command Register at PCI Function 4
	Configuration Offset D3h (command match)
	and the SMBus Slave Event Register at
	SMBus Base + Offset 0Ah (data event match).
	This bit is only set by hardware and can be
1	cleared by writing a 1 to this bit position. Reservedalways reads 0
1 0	
U	Slave Busy
	processing data
	1 SMBus controller slave interface is busy
	receiving data. None of the other SMBus
	registers should be accessed if this bit is set.
	Č

I/O Off	fset 02h – SMBus Host ControlRW	I/O Offset 03h – SMBus Host CommandRW
7 6	Reserved always reads 0 Start always reads 0 0 Writing 0 has no effect default 1 Start Execution of Command	7-0 SMBUS Host Command
	Writing a 1 to this bit causes the SMBus controller host interface to initiate execution of the command programmed in the SMBus Command Protocol field (bits 4-2). All necessary registers should be programmed prior to writing a 1 to this bit. The Host Busy bit (SMBus Host Status Register bit-0) can be used to identify when the SMBus controller has completed command execution.	I/O Offset 04h – SMBus Host Address
5-2	SMBus Command Protocol Selects the type of command the SMBus host controller will execute. Reads or Writes are determined by Rx04[0]. 0000 Quick default 0001 Byte 0010 Byte Data 0011 Word Data 0100 Process Call 0101 Block 0110 I2C with 10-bit Address	I/O Offset 05h – SMBus Host Data 0
	0111 -reserved- 10xx -reserved- 1100 I2C Process Call 1101 I2C Block 1110 I2C with 7-bit Address 1111 Universal	I/O Offset 06h – SMBus Host Data 1
1	 Kill Transaction in Progress Normal host controller operationdefault Stop host transaction currently in progress. Setting this bit also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt selected by the SMB Interrupt Select bit (Function 4 SMBus Host Configuration Register RxD2[3]). 	I/O Offset 07h – SMBus Block Data
0	Interrupt Enable O Disable interrupt generationdefault Enable generation of interrupts on completion of the current boot transaction.	transaction always starts at index address 0. 7-0 SMBUS Block Data

of the current host transaction.

1/O Off 7-5 4	Reserved always reads 0 SMBus GPIO Slave Enable 0 Disable default 1 Enable generation of a resume event upon an external SMBus master generating a transaction with an address that matches the GPIO Slave Address register (I/O offset 0Fh). SMBus Alert Enable 0 Disable default 1 Enable generation of an interrupt or resume	I/O Offset 0B-0Ah – SMBus Slave Event
2	event on the assertion of the SMBALERT# signal SMBus Shadow Port 2 Enable	SMBus host address 10h. I/O Offset 0D-0Ch – SMBus Slave DataRO
2	O Disable	This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port. 15-0 SMBus Slave Data
1	SMBus Shadow Port 1 Enable 0 Disable	whose address field matched one of the slave shadow port addresses or the SMBus host controller slave port address of 10h. I/O Offset 0Fh – SMBus GPIO Slave Address (30h) RW 7-1 SMBus GPIO Slave Address
0	SMBus Slave Enable O Disable	incoming SMBus addresses for a GPIO slave. 0 Reserved always reads 0
This re	fset 09h – SMBus Shadow CommandRO register is used to store command values for external	
SMBus ports.	shadow Command	

This field contains the command value which was received during an external SMBus master access whose address field matched the host slave address (10h) or one of the slave shadow port addresses.

Device 17 Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT8235M Version CD. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO		
Offset 3-2 - Device ID (0571h=IDE Controller)RO		
Offset 5-4 – Command (0000h)RW		
15-3	Reserved always reads 0	
2	Bus Master default = 0 (disabled)	
	S/G operation can be issued only when the "Bus	
	Master" bit is enabled.	
1	Reserved always reads 0	
0	I/O Space default = 0 (disabled)	
	When the "I/O Space" bit is disabled, the device will	
	not respond to any I/O addresses for both compatible	
	and native mode.	

Offset 7	7-6 – Status (0290h))	RO
15	Detected Parity Error	fixed at 0
14	Signalled System Error	fixed at 0
13	Received Master Abort.	default = 0
12	Received Target Abort.	\dots default = 0
11	Signalled Target Abort.	fixed at 0
10-9	DEVSEL# Timing	. always reads 01 (medium)
8	Data Parity Detected	fixed at 0
7	Fast Back to Back	fixed at 1
6-5	Reserved	always reads 0
4	Capability List	fixed at 1
3-0	Reserved	always reads 0

Offset 8 - Revision ID (06)RO 7-0 Revision Code for IDE Controller Logic Block

Offset 9 - Programming Interface.....RW

- Master IDE Capability fixed at 1 (Supported) 6-4
-always reads 0
- Programmable Indicator Secondary fixed at 1 Supports both modes (may be set to either mode by writing Rx42[6])
- **Channel Operating Mode Secondary** 2
 - 0 Compatibility Modedefault
 - 1 Native Mode
- Programmable Indicator Primary fixed at 1 Supports both modes (may be set to either mode by writing Rx42[7])
- **Channel Operating Mode Primary**
 - Compatibility Modedefault
 - 1 Native Mode

Compatibility Mode (fixed IRQs and I/O addresses):

In this mode, fixed IRQs are used and IDE controller registers are hard wired to fixed I/O addresses as defined below.

	Command Block	Control Block	
Channel	Registers	Registers	IRQ
Pri	1F0-1F7	3F6	14
Sec	170-177	376	15

Native PCI Mode (registers are programmable in I/O space)

In this mode, IRQs for the primary and secondary IDE channels are programmable via configuration register Rx3C and the registers of the IDE channels are relocatable in I/O space (using base addresses provided in the IDE Controller PCI configuration space). Specific base address registers are used to map the different register blocks as defined below:

	Command Block	Control Block
Channel	Registers	Registers
Pri	BA @offset 10h	BA @offset 14h
Sec	BA @offset 18h	BA @offset 1Ch

Command register blocks are 8 bytes of I/O space Control registers are 4 bytes of I/O space (only byte 2 is used)

Offset A - Sub Class Code (01h=IDE Controller).....RO

Offset B - Base Class Code (01h=Mass Storage Ctrlr)... RO

Offset 13-10 - Pri Data / Command Base AddressRW	Offset 2D-2C - Sub Vendor ID (0000h)RO
Specifies an 8 byte I/O address space.	The readback value may be changed by writing to RxD5-D4.
31-16 Reserved always read 0 15-3 Port Address default=01F0h 2-0 Fixed at 001b fixed	Offset 2F-2E – Sub Device ID (0000h)RO The readback value may be changed by writing to RxD7-D6.
Offset 17-14 - Pri Control / Status Base AddressRW	
Specifies a 4 byte I/O address space of which only the third byte is active (i.e., 3F6h for the default base address of 3F4h).	Offset 34 - Capability Pointer (C0h)RO
31-16 Reserved always read 0 15-2 Port Address default=03F4h 1-0 Fixed at 01b fixed	
1-0 Pixeu at 010	Offset 3C - Interrupt Line (0Eh)RO
Offset 1B-18 - Sec Data / Command Base AddressRW Specifies an 8 byte I/O address space. 31-16 Reservedalways read 0 15-3 Port Addressdefault=0170h 2-0 Fixed at 001bfixed Offset 1F-1C - Sec Control / Status Base AddressRW Specifies a 4 byte I/O address space of which only the third byte is active (i.e., 376h for the default base address of 374h). 31-16 Reservedalways read 0 15-2 Port Addressdefault=0374h	7-4 Reserved
1-0 Fixed at 01b fixed	x010 IRQ18
Offset 23-20 - Bus Master Control Regs Base AddressRW Specifies a 16 byte I/O address space compliant with the SFF-8038i rev 1.0 specification.	x111 IRQ23 Officiat 3D Interrupt Bin (01b)
31-16 Reserved always read 0 15-4 Port Address default=CC0h 3-0 Fixed at 0001b fixed	Offset 3D - Interrupt Pin (01h)
See Rx42[7-6] for Native / Compatibility mode select for the above registers	Offset 3E - Minimum Grant (00h)RO Offset 3F - Maximum Latency (00h)RO

IDE-Controller-Specific Configuration Registers

Offset 4	0 - Chip Enable (00h)RW	
7-2	Reserved always reads 0	
1	Primary Channel	
	0 Disabledefault	
	1 Enable	
0	Secondary Channel	
	0 Disabledefault	
	1 Enable	
Offset 4	1 - IDE Configuration I (00h)RW	
7	Primary IDE Read Prefetch Buffer	
	0 Disabledefault	
	1 Enable	
6	Primary IDE Post Write Buffer	
	0 Disabledefault	
	1 Enable	
5	Secondary IDE Read Prefetch Buffer	
	0 Disabledefault	
	1 Enable	
4	Secondary IDE Post Write Buffer	
	0 Disabledefault	
• •	1 Enable	
3-0	Reserved always reads 0	
Offset 4	2 - IDE Configuration II (00h)RW	
7	PIO Operating Mode - Primary Channel	
	Selects the mode used in the primary channel for the	
	I/O Base Address (not IRQ routing or sharing)	
	0 Compatibility Mode (fixed addressing) .default	
	1 Native PCI Mode (flexible addressing)	
6	PIO Operating Mode - Secondary Channel	
	Selects the mode used in the secondary channel for	
	the I/O Base Address (not IRQ routing or sharing)	
	0 Compatibility Mode (fixed addressing) .default	
	1 Native PCI Mode (flexible addressing)	

5-0 Reserved always reads 0

Offset 4	43 - FIFO Configuration (0Ah)RW
7-4	Reserved always reads 0
3-2	Primary Channel FIFO Threshold
	Determines the threshold required before the primary
	channel FIFO is flushed.
	00 FIFO flushed when 1/4 full
	01 FIFO flushed when 1/2 full
	10 FIFO flushed when 3/4 full default
	11 FIFO flushed when completely full (32 DWs)
1-0	Secondary Channel FIFO Threshold
	Determines the threshold required before the
	secondary channel FIFO is flushed.
	00 FIFO flushed when 1/4 full
	01 FIFO flushed when 1/2 full
	11 FIFO flushed when completely full (32 DWs)
1-0	01 FIFO flushed when 1/2 full 10 FIFO flushed when 3/4 full

-5	Reserved always reads 0	7	Reservedalways reads 0
4	PIO Read Pre-Fetch Byte Counter	6	Interrupt Steering Swap
	Determines whether the amount of data prefetched		Controls whether primary and secondary channel
	under PIO read is limited.		interrupts are swapped.
	0 Disable (no limit)default		0 Primary channel interrupt is steered to IRQ14,
	1 Enable. The maximum number of bytes that		Secondary channel is steered to IRQ15. default
	can be prefetched is determined by Rx61-		1 Primary channel interrupt is steered to IRQ15,
	60[11:0] for the primary channel and Rx69-		Secondary channel interrupt steered to IRQ14
	68[11:0] for the secondary channel.	5	Reserved always reads 1
3	Bus Master IDE Status Register Read Retry	4	Rx3C Write Protect
	Determines whether a read to the bus master IDE		0 Disable (writes to Rx3C are allowed) default
	status register is retried when DMA operation is not		1 Enable (writes to Rx3C are ignored). Under
	complete.		Native Mode (Rx9[2]=1 or Rx9[0]=1) Rx3C
	0 Disable. Reads will return status even if DMA		should not be write protected as it is used to
	operation is not complete.		route IRQ lines.
	1 Enable. Reads of the status register are	3	"Memory-Read-Multiple" Command
	automatically retried while DMA operation is		0 Disabledefault
	not completedefault		1 Enable
2	Packet Command Prefetching	2	"Memory-Write-and-Invalidate" Command
	Determines whether prefetching is enabled for packet		0 Disabledefault
	commands. Packet commands are commands for		1 Enable
	ATAPI, which is used for operating devices such as	1-0	Reservedalways reads 0
	CD-ROM drives.		
	0 Disabledefault		
	1 Enable	Offset	46 - Miscellaneous Control 3 (C0h) RW
1	Reserved always reads 0		
0	UltraDMA Host Must Wait for First Transfer	7	Primary Channel Read DMA FIFO Flush 0 Disable
	Before Termination		
	0 Enable. The UltraDMA host must wait until at		1 Enable. The primary channel DMA FIFO is
	least the first transfer is completed before it		flushed when an interrupt request is generated
	can terminate a transactiondefault		default
	1 Disable	6	Secondary Channel Read DMA FIFO Flush 0 Disable
			1 Enable. The secondary channel DMA FIFO is flushed when an interrupt request is generated
			default
		5 A	
		5-0	Reserved always reads 0

Offset 4B-48 - Drive Timing Control (A8A8A8A8h).....RW

The following fields define the Active Pulse Width and Recovery Time for the IDE DIOR# and DIOW# signals when accessing the data ports (1F0 and 170):

31-28	Primary Drive 0 Active Pulse Width def=1010b
27-24	Primary Drive 0 Recovery Timedef=1000b
23-20	Primary Drive 1 Active Pulse Width def=1010b
19-16	Primary Drive 1 Recovery Timedef=1000b
15-12	Secondary Drive 0 Active Pulse Width def=1010b
11-8	Secondary Drive 0 Recovery Time def=1000b
7-4	Secondary Drive 1 Active Pulse Width def=1010b
3-0	Secondary Drive 1 Recovery Time def=1000b

The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks. For example, if the value in the field is 1010b (10 decimal), the active pulse width or recovery time is 11 PCI clocks.

Offset 4C - Address Setup Time (FFh).....RW

The following fields define the Address Setup Time. The Address Setup Time is measured from the point when address signals are stable to the point when DIOR# and DIOW# are asserted. The IDE specification requires the setup time to not exceed 1T. However, this register provides flexibility for devices that may not be able to meet the 1T requirement.

- 7-6 Primary Drive 0 Address Setup Time
- 5-4 Primary Drive 1 Address Setup Time
- 3-2 Secondary Drive 0 Address Setup Time
- 1-0 Secondary Drive 1 Address Setup Time

For each field above:

00 1T

01 2T

10 3T

11 4Tdefault

Offset 4E – Sec Non-170 Port Access Timing (B6h)......RW

- 7-4 **DIOR# / DIOW# Active Pulse Width......** def = 0Bh

Offset 4F - Pri Non-1F0 Port Access Timing (B6h)RW

- 7-4 DIOR# / DIOW# Active Pulse Width......def = 0Bh
- 3-0 DIOR# / DIOW# Recovery Time...... def = 06h

The above fields define the primary and secondary channel DIOR# and DIOW# active pulse widths and recovery times when accessing non-data ports. The times are defined in terms of PCI clocks and the actual value is equal to the value encoded in the field plus one.

Offset 5	33-50 - UltraDMA Extended Timing Control RW
31	Pri Drive 0 UltraDMA-Mode Enable Method
	0 Enable by using "Set Feature" command def
20	1 Enable by setting bit-30 of this register
30	Pri Drive 0 UltraDMA-Mode Enable
	0 Disable
••	1 Enable UltraDMA-Mode Operation
29	Pri Drive 0 Transfer Mode
	0 DMA or PIO Modedefault
• •	1 UltraDMA Mode
28	Pri Drive 0 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
27-24	Pri Drive 0 Cycle Time (T = 7.5 ns for 133 MHz)
	0000 2T
	0001 3T
	0010 4T
	0011 5T
	0100 6T
	0101 7T
	0110 8T
	0111 9Tdefault
	1000 10T
	1001 11T
	1010 12T
	1011 13T
	1100 14T
	1101 15T
	1110 16T
	1111 17T
22	D.D. AHL DMAN LE LLMAL
23	Pri Drive 1 UltraDMA-Mode Enable Method
22	Pri Drive 1 UltraDMA-Mode Enable
21	Pri Drive 1 Transfer Mode
20	Pri Drive 1 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
19-16	Pri Drive 1 Cycle Timedefault = 0111b
15	Sec Drive 0 UltraDMA-Mode Enable Method
14	Sec Drive 0 UltraDMA-Mode Enable
13	Sec Drive 0 Transfer Mode
12	Sec Drive 0 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
11-8	Sec Drive 0 Cycle Timedefault = 0111b
11 0	·
7	Sec Drive 1 UltraDMA-Mode Enable Method
6	Sec Drive 1 UltraDMA-Mode Enable
5	Sec Drive 1 Transfer Mode
4	Sec Drive 1 Cable Type Reporting
	0 40-pin cable is being used default
	1 80-pin cable is being used
3-0	

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

	54 – UltraDMA FIFO Control (04h)RW		55 - IDE Clock Gating (00h)RW
7 6	Reserved always reads 0 Lower ISA Request Priority When Write Device	/-2 1	Reserved always reads 0 Dynamic 100 / 133 MHz Clock Gating
O	Packet Command is Issued	1	0 Enabledefault
	The IDE secondary channel shares a bus internally		1 Disable
	with the ISA interface. When this bit is enabled, the	0	Dynamic 66 MHz Clock Gating
	IDE secondary channel is given higher priority over	U	0 Enable default
	ISA, which results in better performance.		1 Disable
	0 Disabledefault		1 Distore
	1 Enable		
5	Clear Native Mode Interrupt on Falling Edge of		
	Gated Interrupt	<u>Offset</u>	61-60 - Primary Sector Size (0200h) RW
	0 Disabledefault	15-12	Reserved always reads 0
	1 Enable. The interrupt will be automatically	11-0	Number of Bytes Per Sector def=200h (512 bytes)
	cleared on the falling edge of the gated		This field determines the maximum number of bytes
	interrupt.		that can be prefetched when $Rx44[4] = 1$.
4	Improve PIO Prefetch and Post-Write	Offset	69-68 - Secondary Sector Size (0200h)RW
	Performance		
	0 Enable. PIO prefetch and post write		Reservedalways reads 0 Number of Bytes Per Sector def=200h (512 bytes)
	performance is increased by being given	11-0	This field determines the maximum number of bytes
	higher throughputdefault		that can be prefetched when $Rx44[4] = 1$.
	1 Disable		that can be prefetched when KX44[4] = 1.
3	Memory Prefetch Size		
	This bit determines how many lines are prefetched		
	from memory for IDE transactions.		
	0 Prefetch 1 linedefault 1 Prefetch 2 lines (16 DoubleWords). This		
	1 Prefetch 2 lines (16 DoubleWords). This setting improves ATA100 throughput.		
2	Change Drive Clears All FIFO & Internal States		
Z	0 Disable		
	1 Command switch from one drive to another		
	drive in the same channel terminates all		
	previous outstanding transactions involving		
	the previous drivedefault		
1	Reserved always reads 0		
0	Complete DMA Cycle with Transfer Size Less		
	Than FIFO Size		
	0 Enable. DMA transfer size is less than the		

FIFO size......default

1

Disable

Offset	70 – Primary IDE StatusRO	IDE Power Management Registers
7	Interrupt StatusRO	IDE I ower Management Registers
	1 Primary channel interrupt request pending	Offset C2 C0 Power Management Canabilities PO
6	Prefetch Buffer StatusRO	Offset C3-C0 – Power Management Capabilities RO
	1 PIO Prefetch transaction in progress	31-0 PCI PM Block 1always reads 0002 0001h
5	Post Write Buffer StatusRO	This field reports support details for Power Management Capabilities according to the PCI Power
	1 PIO Post Write transaction in progress	Management specification.
4	DMA Read Prefetch StatusRO	Management specification.
	1 DMA Read Prefetch transaction in progress	Offset C7-C4 – Power StateRO
3	DMA Write Pipeline StatusRO	31-2 Reserved always reads 0
	1 DMA Write transaction in progress	1-0 Power State
2	S/G Operation CompleteRO	00 D0default
	1 Scatter / Gather operation complete	01 -reserved-
1	FIFO Empty StatusRO	10 -reserved-
0	1 Primary Channel FIFO empty Response to External DMA RequestRO	11 D3 Hot
U	1 External pri channel DMA request pending	
	1 External pri chamier Divir i request pending	
Offset	71 – Primary Interrupt Control (01h)RW	
7-1	Reserved always reads 0	IDE Back Door Registers
0	Interrupt Gating	
	0 Disable	Offset D0 - Back Door - Revision ID (06h)RW
	1 Enable (IRQ output gated until FIFO empty)	
	default	Offset D3-D2 – Back Door – Device ID (0571h)RW
		Offset D5-D4 - Back Door - Sub-Vendor ID (0000h) RW
Offact	70 Secondary IDE Status DO	Grisce De D Duck Door - Sub + enuol 1D (0000n/m 10+)
	78 – Secondary IDE StatusRO	Offset D7-D6 - Back Door - Sub-Device ID (0000h) RW
7	Interrupt StatusRO	
	1 Secondary channel interrupt request pending	
6	1 Secondary channel interrupt request pending	
6	Prefetch Buffer StatusRO	
	Prefetch Buffer StatusRO 1 PIO Prefetch transaction in progress	
6 5	Prefetch Buffer StatusRO 1 PIO Prefetch transaction in progress Post Write Buffer StatusRO	
	Prefetch Buffer StatusRO 1 PIO Prefetch transaction in progress	IDE I/O Registers
5	Prefetch Buffer Status	
5	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0
5 4 3	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further
5 4	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0
5 4 3 2	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details.
5 4 3	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further
5 4 3 2	Prefetch Buffer Status RO 1 PIO Prefetch transaction in progress Post Write Buffer Status RO 1 PIO Post Write transaction in progress DMA Read Prefetch Status RO 1 DMA Read Prefetch transaction in progress DMA Write Pipeline Status RO 1 DMA Write transaction in progress S/G Operation Complete RO 1 Scatter / Gather operation complete FIFO Empty Status RO 1 Secondary Channel FIFO empty	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details.
5 4 3 2	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status
5 4 3 2	Prefetch Buffer Status RO 1 PIO Prefetch transaction in progress Post Write Buffer Status RO 1 PIO Post Write transaction in progress DMA Read Prefetch Status RO 1 DMA Read Prefetch transaction in progress DMA Write Pipeline Status RO 1 DMA Write transaction in progress S/G Operation Complete RO 1 Scatter / Gather operation complete FIFO Empty Status RO 1 Secondary Channel FIFO empty	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command
5 4 3 2 1 0	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status
5 4 3 2 1 0 Offset 7-1	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status
5 4 3 2 1 0	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status
5 4 3 2 1 0 Offset 7-1	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command
5 4 3 2 1 0 Offset 7-1	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address
5 4 3 2 1 0 Offset 7-1	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command
5 4 3 2 1 0 Offset 7-1	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command I/O Offset A - Secondary Channel Status
5 4 3 2 1 0 Offset 7-1 0	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command I/O Offset A - Secondary Channel Status
5 4 3 2 1 0 Offset 7-1 0	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command I/O Offset A - Secondary Channel Status
5 4 3 2 1 0 Offset 7-1 0 Offset Offset	Prefetch Buffer Status	These registers are compliant with the SFF 8038I v1.0 standard. Refer to the SFF 8038I v1.0 specification for further details. I/O Offset 0 - Primary Channel Command I/O Offset 2 - Primary Channel Status I/O Offset 4-7 - Primary Channel PRD Table Address I/O Offset 8 - Secondary Channel Command I/O Offset A - Secondary Channel Status

Device 17 Function 5 Registers - AC97 Audio Controller

The audio controller interface is hardware compatible with AC97. The PCI configuration registers for the audio controller are located in the function 5 PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO	Offset	13-10 - Base Address 0 - SGD	Control / Status RW
15-0	Vendor ID (1106h = VIA Technologies)	31-16	Reserved	always reads 0
0.00	14 P + ID	15-8	Base Address	\dots default = 00h
	3-2 - Device IDRO	7-0	00000001b (256 bytes)	
15-0	Device ID (3059h = VT8235M-CD Audio Controller)			
Offset 5	5-4 - CommandRW			
15-10	Reserved always reads 0	Device	0 Offset 2D-2C - Subsystem V	<u>/endor ID (0000h)*RO</u>
9	Reserved (fast back-to-back) fixed at 0	15-0	Subsystem Vendor ID	default = 0
8	SERR# Enablefixed at 0	*This re	egister is RW if function 5 Rx42	2[5] = 1
7	Reserved (address stepping)fixed at 0			
6	Reserved (parity error response)fixed at 0	Device	0 Offset 2F-2E - Subsystem II	D (0000h)*RO
5	Reserved (VGA palette snoop)fixed at 0	15-0	Subsystem ID	default = 0
4	Reserved (memory write and invalidate)fixed at 0		egister is RW if function 5 Rx42	
3	Reserved (special cycle monitoring)fixed at 0			. ,
2	Bus Master	Offset 3	34 – Capture Pointer (C0h)	RO
1	Memory Space fixed at 0			
0	I/O Spacedefault=0 (disabled)	Offset 3	3C - Interrupt Line	RW
Offerst ?	7 (Status	7-4		
	7-6 - Status RO	3-0	Audio Interrupt Routing	,
15	Detected Parity Error		0000 Disabled	default
14	Signalled System Error		0001 IRQ1	
13	Received Master Abort		0010 Reserved	
12	Received Target Abort		0011 IRQ3	
11	Signalled Target Abort		0100 IRQ4	
10-9	DEVSEL# Timing		0101 IRQ5	
	00 Fast		0110 IRQ6	
	01 Medium fixed		0111 IRQ7	
	10 Slow		1000 IRQ8	
0	11 Reserved		1001 IRQ9	
8	Data Parity Error		1010 IRQ10	
7	Fast Back-to-Back Capable fixed at 0		1011 IRQ11	
6-5	Reserved always reads 0		1100 IRQ12	
4 3-0	PM 1.1 fixed at 1		1101 IRQ13	
3-0	Reserved always reads 0		1110 IRQ14	
Offset 8	8 - Revision ID (nnh)RO		1111 Disabled	
7-0	Silicon Revision Code default = nnh		APIC (See Device 17 Function	n 0 Rx58[6])
7-0	Sincon revision code detaut min		x000 IRQ16	
			x001 IRQ17	
			x010 IRQ18	
Offset 9	9 - Programming Interface (00h)RO			
			x111 IRQ23	
Offset A	A - Sub Class Code (01h=Audio Device)RO	Offact	3D - Interrupt Pin (03h)	DΩ
Offeet 1	D. Dasa Class Code (Mh-Multimedia Davisa) DO	Onset.	3D - Interrupt rm (03f)	RU
Offset	B - Base Class Code (04h=Multimedia Device)RO	Offset	3E - Minimum Grant (00h)	PΩ
		OHSEL .	SE - MINIMUM Grant (UUII)	NO

Offset 3F - Maximum Latency (00h).....RO

Audio-Specific PCI Configuration Registers

Offset 4	10 – AC	C Link Interface Status	RO
7-6	Reser	vedalway	s reads 0
5	Code	c CID=11b Ready Status	
	0	Codec Not Ready	
	1	Codec Ready (audio ctrlr can access c	odec)
4	Code	c CID=10b Ready Status	RO
	0	Codec Not Ready	
	1	Codec Ready (audio ctrlr can access c	odec)
3	Reser	vedalway	s reads 0
2	Code	c CID=01b Ready Status	
	0	Codec Not Ready	
	1	Codec Ready (audio ctrlr can access c	odec)
1	AC97	Low-Power Status	
	0	AC97 Codecs not in low-power mode	
	1	AC97 Codecs in low-power mode	
		This bit reports 1 when Rx26[4] of the	e codecs
		is 1. It is used to determine whether	r the bit-
		clock should be gated.	
0	Code	c CID=00b Ready Status	RO
	0	Codec Not Ready	
	1	Codec Ready (audio ctrlr can access c	odec)

Offset -	1 – AC Link Interface ControlRV
7	AC-Link Interface
	0 Disabledefaul
	1 Enable
6	AC-Link Reset
	0Assert AC-Link Reset (used for cold reset) de
	1De-assert AC-Link Reset
5	AC-Link Sync
	0 Release SYNC defaul
	1 Force SYNC High (used for warm reset)
4	AC-Link Serial Data Out
	0 Release SDOdefaul
	1 Force SDO High
3	Variable-Sample-Rate On-Demand Mode
	0 Disable (AC Link sends data every frame) de
	1 Enable (AC Link sends data only when there is
	a request from the codec)
2	3D Audio Channel Slots 3/4
	0 Disabledefaul
	1 Enable
	Note that slots 7/8 and 6/9 do not have to be selected
	as they are not muxed with DXS as are slots 3/4)
1-0	Reserved always reads (

Offset 4	42 – Function EnableRW
7-6	Reserved always reads 0
5	Function 5 Config Reg Rx2C WritableRW
	0 Device 17 Function 5 Rx2C-2F ROdefault
	1 Device 17 Function 5 Rx2C-2F RW
4-0	Reserved always reads 0
Offset 4	44 – MC97 Interface ControlRO
	RO to function 5 (RW in func 6) for status reporting.
7	AC-Link Interface for Slot-5 (Modem)RO
,	0 Disable
	1 Enable
6	Secondary Codec SupportRO
v	0 Disabledefault
	1 Enable
5	Function 6 Config Reg Rx9-B WritableRO
	0 Device 17 Function 6 Rx9-B ROdefault
	1 Device 17 Function 6 Rx9-B RW
4	Function 6 Config Reg 2Ch WritableRO
	0 Device 17 Function 6 Rx2C-2F ROdefault
	1 Device 17 Function 6 Rx2C-2F RW
3	SyncRO
	This bit reports whether there is activity in function 6
	(modem). When function 5 (audio) enters low-power
	state and wants to gate bit-clock, software needs to
	check this bit to see whether bit-clock can actually be
	gated, as function 6 shares the same bit-clock.
	0 Function 6 activity in progress that requires
	bit-clock
	1 Function 6 does not need bit-clock so bit-clock
2-0	can be gated
4-0	Reserved always reads 0

Offset (<u> C3-C0 – Power Mgmt Capabili</u>	<u>ty RO</u>
31-0	Power Mgmt Capabilityalv	vays reads 0002 0001h
Offset (C7-C4 – Power State	RW
31-2	Reserved	always reads 0
1_0	Power State (D3 / D0 Only)	-

I/O Base 0 Regs - Audio Scatter / Gather DMA

DXS Channel 0-3 SGD Registers (x = 0-3)

7	SGD ActiveRO
	0 SGD has completed or been terminated.default
	1 SGD Active
6-5	Reserved always reads 0
4 Current SGD Index Equals Stop IndexR	
	0 SGD index not equal to stop indexdefault
	1 SGD index being processed equals the stop
	index. This bit differs from bit-2 of this
	register in that this bit becomes 1 as soon as
	the SGD reaches the index equal to the stop
	index. Bit-2 becomes 1 after the SGD finishes
	processing the index equal to the stop index.
	So this bit will always turn on before bit-2.
3	SGD Trigger QueuedRO
	This bit reports whether the trigger used to restart the
	SGD operation is queued (I/O Offset $x1[1] = 1$ while
	the SGD engine is running).
	0 SGD trigger not queueddefault
	1 SGD trigger queued (when SGD reaches EOL,
_	it will restart).
2	SGD Stop Interrupt StatusRWC
	1 SGD finished the index equal to the stop index
	set in xB-x8[31-24]. SGD EOL (End Of Link)RWC
1	
	a broom is the most of the finni. That of distance
	software as a signal to generate an interrupt request if I/O Offset $x1[1] = 1$.
0	
U	SGD Flag
	signal to generate an interrupt request if I/O
	SIRDAL TO REDELATE AT THE FIRM TECHNEST IT 1/O

	fset x1 – DXS Channel x SGD ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
_	1 Start SGD operation
6	SGD TerminateWO (always reads 0)
	0 No effect
_	1 Terminate SGD operation
5	SGD Auto-Start
	0 Stop at EOL default
4	1 Auto Restart at EOL
4 3	Reserved always reads 0
3	SGD Pause
	0 Release pause and resume the transfer 1 Pause SGD read operation (SGD pointer stays
	1 Pause SGD read operation (SGD pointer stays at the current address). SGD will finish
	transferring the current block before pausing.
2	Interrupt on Stop Index = Current Index and End
_	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(x0[2] = 1)$.
	0 Disabledefault
	1 Enable
1	Interrupt on EOL @ End of Block
-	Controls whether an interrupt is generated on EOL
	(x0[1] = 1).
	0 Disable default
	1 Enable
0	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(x0[0] = 1).
	0 Disable default
	1 Enable

I/O Offset x2 – DXS Left Channel x Volume (3Fh)......RW I/O Offset x3 – DXS Right Channel x Volume (3Fh)RW Reserved (Do Not Program).....always write 0's 5-0 **Volume Control** 000000 0 db 000111 -10.5 db 011111 -46.5 db 111111 Muted (instead of -94.5 db)default I/O Offset x7-x4 – DXS Chan x SGD Table Ptr Base.....RW SGD Table Pointer Base Address (even addr) W Current Pointer Address.....R I/O Offset xB-x8 – StopIndex / DataType / SampleRateRW **31-24 SGD Stop Index Setting**.....default = FFh **23-22 Reserved** always reads 0 21-20 PCM Format Selects the format used by the controller to process the incoming sample. 00 8-bit Monodefault 01 8-bit Stereo 10 16-bit Mono 11 16-bit Stereo **19-0** Sample Rate.....default = FFFFFh (48K)

This field allows the sample rate converter to know the sample rate of an incoming sample so the converter can properly convert the sample into the required 48 KHz sample output. Program as (2^{20})

48.000) * Sample Rate

I/O Offset xF-xC – DXS Chan x SGD Current Count ... RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Audio SGD Table Format

<u>63</u>	<u>62</u>	<u>61-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	\overline{FLAG}	-reserved-	Base	Base
			Count	Address
			[23:0]	[31:0]

- EOL End Of Link. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer.
- **FLAG** <u>Block Flag</u>. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.

Multichannel SGD Registers

I/O Of	fset 40 – Multichannel SGD StatusRWC	I/O Offset 41 – Multichannel SGD ControlRW
7	SGD ActiveRO	7 SGD StartWO (always reads 0)
	0 SGD has completed or been terminated.default	0 No effect
	1 SGD Active	1 Start SGD operation
6-5	Reservedalways reads 0	6 SGD TerminateWO (always reads 0)
4	Current SGD Index Equals Stop IndexRO	0 No effect
	0 SGD index not equal to stop indexdefault	1 Terminate SGD operation
	1 SGD index being processed equals the stop	5 SGD Auto-Start
	index. This bit differs from bit-2 of this	0 Stop at EOLdefault
	register in that this bit becomes 1 as soon as	1 Auto Restart at EOL
	the SGD reaches the index equal to the stop	4 Reservedalways reads 0
	index. Bit-2 becomes 1 after the SGD finishes	3 SGD Pause
	processing the index equal to the stop index.	0 Release pause and resume the transfer
	So this bit will always turn on before bit-2.	1 Pause SGD read operation (SGD pointer stays
3	SGD Trigger QueuedRO	at the current address). SGD will finish
	This bit reports whether the trigger used to restart the	transferring the current block before pausing.
	SGD operation is queued (I/O Offset $41[1] = 1$ while	2 Interrupt on Stop Index = Current Index and End
	the SGD engine is running).	of Block
	0 SGD trigger not queueddefault	Controls whether an interrupt is generated when the
	1 SGD trigger queued (when SGD reaches EOL,	current index equals the stop index $(40[2] = 1)$.
	it will restart).	0 Disabledefault
2	SGD Stop Interrupt StatusRWC	1 Enable
	1 SGD finished the index equal to the stop index	1 Interrupt on EOL @ End of Block
	set in 4B-48[31-24].	Controls whether an interrupt is generated on EOL
1	SGD EOL (End Of Link)RWC	(40[1] = 1).
	1 Block is the last of the link. May be used by	0 Disabledefault
	software as a signal to generate an interrupt	1 Enable
	request if I/O Offset $41[1] = 1$.	0 Interrupt on FLAG @ End-of-Block
0	SGD FlagRWC	Controls whether an interrupt is generated on FLAG
	1 Block complete. May be used by software as a	(40[0] = 1).
	signal to generate an interrupt request if I/O	0 Disabledefault
	Offset $41[0] = 1$.	1 Enable

I/O Offset 47-44 - Multichannel SGD Table Ptr Base ... RW

31-0 SGD Table Pointer Base Address (even addr) W

Current Pointer Address.....R

7	PCM Format	31-24	SGD Stop Index Setting default = FFh
	Selects the PCM format used by the controller to		Data Select of Slot 9
	process the incoming sample.		0 No data assigned to slot 9default
	0 8-bitdefault		1 1 st data in sample assigned to slot 9
	1 16-bit		2 2 nd data in sample assigned to slot 9
6-4	Number of Channels Supported		3 3 rd data in sample assigned to slot 9
	000 -reserveddefault		4 4 th data in sample assigned to slot 9
	001 One Channel		5 5 th data in sample assigned to slot 9
	010 Two Channels		6 6 th data in sample assigned to slot 9
	011 Three Channels		7-F -reserved
	100 Four Channels	19-16	Data Select of Slot 6
	101 Five Channels	15-12	Data Select of Slot 8
	110 Six Channels	11-8	Data Select of Slot 7
	111 -reserved-	7-4	Data Select of Slot 4
3-0	Reserved always reads 0	3-0	Data Select of Slot 3
<u>I/O Of</u>	fset 43 – Multichannel Scratch RegisterRW	I/O Off	<u> Set 4F-4C – Multichannel SGD Current Count RO</u>
7-0	No Hardware Function default = 00h	31-24	Current SGD Index
			This field reports the index the SGD engine is

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Write Channel 0 SGD Registers

		- Write Channel 0 SGD StatusRWC	<u>I/O O</u>	
7		ActiveRO	7	SG
	0	SGD has completed or been terminated default		
_	1	SGD Active		0.0
6		PausedRO	6	SG
	0	SGD not pauseddefault		
_	1	SGD Paused	_	0.0
5	Reser		5	SG
4		ent SGD Index Equals Stop IndexRO		
	0	SGD index not equal to stop indexdefault	4	n.
	1	SGD index being processed equals the stop index. This bit differs from bit-2 of this	4	Re
			3	SG
		register in that this bit becomes 1 as soon as		
		the SGD reaches the index equal to the stop		
		index. Bit-2 becomes 1 after the SGD <i>finishes</i>		
		processing the index equal to the stop index.	2	Int
3	SCD	So this bit will always turn on before bit-2.	Z	of
3		Trigger QueuedRO bit reports whether the trigger used to restart the		Co
		operation is queued (I/O Offset 61[1] = 1 while		cui
		GD engine is running).		Cui
	0	SGD trigger not queueddefault		
	1	SGD trigger not queued (when SGD reaches EOL,	1	Int
	1	it will restart).	1	Co
2	SCD	Stop Interrupt StatusRWC		(60
_	1	SGD finished the index equal to the stop index		(00
		set in 6B-68[31-24].		
1	SGD	EOL (End Of Link)RWC	0	Int
•	1	Block is the last of the link. May be used by	v	Co
		software as a signal to generate an interrupt		(60
		request if I/O Offset 61[1] = 1.		(00
0	SGD			
•	1	Block complete. May be used by software as a		
	-	signal to generate an interrupt request if I/O		
		Offset 61[0] = 1.		
		r J		

7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD operation
5	SGD Auto-Start
	0 Stop at EOLdefault
	1 Auto Restart at EOL
4	Reservedalways reads 0
3	SGD Pause
	0 Release pause and resume the transfer
	1 Pause SGD read operation (SGD pointer stays
	at the current address). SGD will finish
	transferring the current block before pausing.
2	Interrupt on Stop Index = Current Index and End
	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(60[2] = 1)$.
	0 Disable default
	1 Enable
1	Interrupt on EOL @ End of Block
	Controls whether an interrupt is generated on EOL
	(60[1] = 1).
	0 Disabledefault
	1 Enable
0	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(60[0] = 1).
	0 Disabledefault
	1 Enable

I/O Of	fset 62	- Write Channel 0 SGD FormatRW
7	Rese	ved (Do Not Program) always write 0
6		rding FIFO
	0	Disabledefault
	1	Enable
5-0	Rese	ved always reads 0
<u>I/O Of</u>	fset 63	– Write Channel 0 Input SelectRW
<u>I/O Off</u> 7-3	fset 63 Resei	
	Rese	
7-3	Rese	ved always reads 0
7-3	Reser	ved always reads 0
7-3	Reser Input 0 1	ved always reads 0 s Source Select Line In (Slot 3, 4)default
7-3	Reser Input 0 1 Recor	rved always reads 0 t Source Select Line In (Slot 3, 4) default Mic In (Slot 6)
7-3	Reser Input 0 1 Recor 00	t Source Select Line In (Slot 3, 4)default Mic In (Slot 6) rding Source Select
7-3	Reser Input 0 1 Recor 00 01	rved always reads 0 t Source Select Line In (Slot 3, 4) default Mic In (Slot 6) rding Source Select Primary Codex default
7-3	Reser Input 0 1 Recor 00 01 10	rved always reads 0 t Source Select Line In (Slot 3, 4) default Mic In (Slot 6) rding Source Select Primary Codex default Secondary Codec 01

I/O Off	I/O Offset 67-64 – Wr Channel 0 SGD Table Ptr BaseRW		
31-0	SGD Table Pointer Base Address (even addr)	W	
	Current Pointer Address	R	

I/O Offs	<u>set 6B-68 – Write Channel 0 S</u>	GD Stop Index RW
31-24	SGD Stop Index Setting	default = FFh
	Reserved	
21-20	PCM Format	
	Selects the PCM format used	l by the controller to
	process the incoming sample.	
	00 8-bit Mono	default
	01 8-bit Stereo	
	10 16-bit Mono	
	11 16-bit Stereo	
19-16	Reserved	RW
15-0	Reserved	always reads 0

I/O Offset 6F-6C - Wr Channel 0 SGD Current Count. RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Write Channel 1 SGD Registers

I/O Off	Set 70 – Write Channel 1 SGD StatusRWC	I/O Of	fset 71 – `
7	SGD ActiveRO	7	SGD St
	0 SGD has completed or been terminated.default		0 N
	1 SGD Active		1 S
6	SGD PausedRO	6	SGD To
	0 SGD not pauseddefault		0 N
	1 SGD Paused		1 Т
5	Reservedalways reads 0	5	SGD A
4	Current SGD Index Equals Stop IndexRO		0 S
	0 SGD index not equal to stop indexdefault		1 A
	1 SGD index being processed equals the stop	4	Reserve
	index. This bit differs from bit-2 of this	3	SGD Pa
	register in that this bit becomes 1 as soon as		0 F
	the SGD reaches the index equal to the stop		1 F
	index. Bit-2 becomes 1 after the SGD finishes		a
	processing the index equal to the stop index.		tı
	So this bit will always turn on before bit-2.	2	Interru
3	SGD Trigger QueuedRO		of Bloc
	This bit reports whether the trigger used to restart the		Control
	SGD operation is queued (I/O Offset $71[1] = 1$ while		current
	the SGD engine is running).		0 I
	0 SGD trigger not queueddefault		1 E
	1 SGD trigger queued (when SGD reaches EOL,	1	Interru
	it will restart).		Control
2	SGD Stop Interrupt StatusRWC		(70[1] =
	1 SGD finished the index equal to the stop index		0 [
	set in 7B-78[31-24].		1 E
1	SGD EOL (End Of Link)RWC	0	Interru
	1 Block is the last of the link. May be used by		Control
	software as a signal to generate an interrupt		(70[0] =
	request if I/O Offset $71[1] = 1$.		0 [
0	SGD FlagRWC		1 E
	1 Block complete. May be used by software as a		
	signal to generate an interrupt request if I/O		
	Offset $71[0] = 1$.		

I/O Of	fset 71 – Write Channel 1 SGD ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD operation
5	SGD Auto-Start
	0 Stop at EOL default
	1 Auto Restart at EOL
4	Reserved always reads 0
3	SGD Pause
	0 Release pause and resume the transfer
	1 Pause SGD read operation (SGD pointer stays
	at the current address). SGD will finish
	transferring the current block before pausing.
2	Interrupt on Stop Index = Current Index and End
	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(70[2] = 1)$.
	0 Disabledefault
	1 Enable
1	Interrupt on EOL @ End of Block
	Controls whether an interrupt is generated on EOL
	(70[1] = 1).
	0 Disable default
	1 Enable
0	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(70[0] = 1).
	0 Disable default
	1 Enable

	13Ct /2	<u>– Write Channel 1 SGD Forr</u>	natRW
7	Resei	rved (Do Not Program)	always write (
6		rding FIFO	Ž
	0	Disable	defaul
	1	Enable	
5-0	Reser	rved	always reads (
I/O Of	fset 73	– Write Channel 1 Input Sele	ectRW
7-3	Reser	rved	always reads (
_			
2	Input	t Source Select	
2		t Source Select Line In (Slot 3, 4)	
2			
2 1-0	0	Line In (Slot 3, 4)	
_	0 1 Reco	Line In (Slot 3, 4) Mic In (Slot 6)	defaul
_	0 1 Reco	Line In (Slot 3, 4) Mic In (Slot 6) rding Source Select	defaul
_	0 1 Reco 00 01 10	Line In (Slot 3, 4) Mic In (Slot 6) rding Source Select Primary Codex Secondary Codec 01 Secondary Codec 10	defaul
_	0 1 Reco 00 01 10	Line In (Slot 3, 4) Mic In (Slot 6) rding Source Select Primary Codex Secondary Codec 01	defaul

I/O Offset 77-74 – Wr Channel 1 SGD Table Ptr Base..RW

SGD Table Pointer Base Address (even addr) W

Current Pointer Address.....R

I/O Off	set 7B-78 – Write Channel 1 SGD Stop Index RW
31-24	SGD Stop Index Setting default = FFh
	Reserved always reads 0
21-20	PCM Format
	Selects the PCM format used by the controller to
	process the incoming sample.
	00 8-bit Monodefault
	01 8-bit Stereo
	10 16-bit Mono
	11 16-bit Stereo
19-16	ReservedRW
15-0	Reserved always reads 0

I/O Offset 7F-7C - Wr Channel 1 SGD Current Count. RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

I/O Off	set 83-	-80 – AC97 Controller Cmd (W) / Status (R)
This reg	ister n	nay be accessed from either function 5 or 6
31-30	Code	c IDRW
	00	Select Codec CID = 00
	01	Select Codec CID = 01
	10	Select Codec CID = 10
	11	Select Codec CID = 11
29	Code	c 11 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
28	Code	c 10 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
27		c 01 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
26	Reser	rvedalways reads 0
25	Code	c 00 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
24		7 Controller BusyRO
		Codec is ready for a register access command
	1	AC97 Controller is sending a command to the
		codec (commands are not accepted)
23		c Register Read / Write ModeRW
	0	2
	1	Select Codec register read mode
22-16		c Register Index [7:1]RW
		of the AC97 codec register to access (in the
		ned codec). Data must be written before or at
		ame time as Index because writing to the index
		ers the AC97 controller to access the addressed
4-0		register over the AC-link interface.
15-0	Code	c Register DataRW

/O Off	set 87-84 – Audio SGD Status ShadowRO
31	Audio Record 1 SGD Active Shadow (Rx70[7])
30	Audio Record 1 SGD Stop Shadow(Rx70[2])
29	Audio Record 1 SGD EOL Shadow(Rx70[1])
28	Audio Record 1 SGD Flag Shadow(Rx70[0])
27	Audio Record 0 SGD Active Shadow (Rx60[7])
26	Audio Record 0 SGD Stop Shadow(Rx60[2])
25	Audio Record 0 SGD EOL Shadow(Rx60[1])
24	Audio Record 0 SGD Flag Shadow(Rx60[0])
	114410 1166014 0 0 0 2 1 14 g 0 11460 (14110 (14110 (14)))
23-20	Reserved always reads 0
19	MultiChannel SGD Active Shadow (Rx40[7])
18	MultiChannel SGD Stop Shadow
17	MultiChannel SGD EOL Shadow(Rx40[1])
16	MultiChannel SGD Flag Shadow(Rx40[0])
10	Multichanner SOD Flag Shadow(KX+0[0])
15	DX Channel 3 SGD Active Shadow(Rx30[7])
14	DX Channel 3 SGD Stop Shadow
13	DX Channel 3 SGD Stop Snadow(Rx30[2]) DX Channel 3 SGD EOL Shadow(Rx30[1])
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
12	DX Channel 3 SGD Flag Shadow
11	DX Channel 2 SGD Active Shadow(Rx20[7])
10	DX Channel 2 SGD Stop Shadow
9	DX Channel 2 SGD EOL Shadow (Rx20[1])
8	DX Channel 2 SGD Flag Shadow(Rx20[0])
_	DV CI 14 CCD + 4 CL 1 (D 40/E)
7	DX Channel 1 SGD Active Shadow(Rx10[7])
6	DX Channel 1 SGD Stop Shadow(Rx10[2])
5	DX Channel 1 SGD EOL Shadow(Rx10[1])
4	DX Channel 1 SGD Flag Shadow(Rx10[0])
3	DX Channel 0 SGD Active Shadow(Rx00[7])
2	DX Channel 0 SGD Stop Shadow(Rx00[2])
1	DX Channel 0 SGD EOL Shadow(Rx00[1])
0	DX Channel 0 SGD Flag Shadow(Rx00[0])
/O Off	get OD OO Codes CDI Interment Status / CDIO DO
	set 8B-88 – Codec GPI Interrupt Status / GPIO RO
l his reg	ister may be accessed from either function 5 or 6
31-16	GPI Interrupt StatusRO
	R GPI[15-0] Interrupt Status
	W 1 to clear
15-0	Codec GPIORO
	R Reflect status of Codec GPI[15-0]
	W Triggers AC-Link slot-12 output to codec
/O Off:	set 8F-8C – Codec GPI Interrupt EnableRO
Γhis reg	sister may be accessed from either function 5 or 6
31-16	Interrupt on GPI[15-0] Change of Status RO
21 10	0 Disable
	1 Enable
15-0	Reservedalways reads 0
15-0	arways reads 0
Offeet 0	0_0F _ Mannad from Function 5/6 Rv/0_4F RO

Device 17 Function 6 Registers - AC97 Modem Controller

The modem controller interface is hardware compatible with AC97. The PCI configuration registers for the modem controller are located in the function 6 PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h)RO
15-0	Vendor ID (1106h = VIA Technologies)
Offset 3	8-2 - Device ID (3068h)RO
15-0	Device ID (3068h = VT8235M-CD Modem Controller)
Offset 5	5-4 - Command (0000h)RW
15-10	Reserved always reads 0
9	Reserved (fast back-to-back) fixed at 0
8	SERR# Enablefixed at 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response)
5	Reserved (VGA palette snoop)
4	Reserved (memory write and invalidate)fixed at 0
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master fixed at 0
1	Memory Space
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0200h)RO
15	Detected Parity Error always reads 0
14	Signalled System Error
13	Received Master Abortfixed at 0
12	Received Target Abortfixed at 0
11	Signalled Target Abort fixed at 0
10-9	DEVSEL# Timing
10 /	00 Fast
	01 Medium fixed
	10 Slow
	11 Reserved
8	Data Parity Error
7	Fast Back-to-Back Capablefixed at 0
6-0	Reserved always reads 0
Offset 8	- Revision ID (nnh)RO
7-0	Silicon Revision Code default = nnh
Offset 9	- Programming Interface (00h)*RO
Offset A	A - Sub Class Code (80h)*RO
Offset I	3 - Base Class Code (07h)*RO
	ers 9-B are RW if function 6 Rx44[5] = 1

Offset 1	13-10 - Base Address 0 - SGD Control / Status RW
31-16	Reserved always reads 0
15-8	Base Address default = 00h
7-0	00000001b (256 bytes)
Device	0 Offset 2D-2C – Subsystem Vendor ID (0000h)*RO
15-0	Subsystem Vendor ID default = 0
*This re	egister is RW if function $6 \text{ Rx}44[4] = 1$
	0 Offset 2F-2E – Subsystem ID (0000h)**RO
15-0	
*This re	egister is RW if function $6 \text{ Rx}44[4] = 1$
Offset 3	3C - Interrupt Line (00h)RW
7-4	
3-0	· ·
	0000 Disabled default
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6 0111 IRQ7
	1000 IRQ8
	1000 IRQ8 1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
	APIC (See Device 17 Function 0 Rx58[6])
	x000 IRQ16
	x001 IRQ17
	x010 IRQ18
	x111 IRQ23
Offset 3	3D - Interrupt Pin (03h)RO
311500	
0.00	T 10 1 G (00)
	3E - Minimum Grant (00h)RO
Offset 3	3F - Maximum Latency (00h)RO

Modem-Specific PCI Configuration Registers

iiset 4	<u> 40 – A</u>	<u> Clink Interface StatusRO</u>
7-6	Rese	rvedalways reads 0
5	Code	ec CID=11b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
4	Code	ec CID=10b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
3	Rese	rvedalways reads 0
2	Code	ec CID=01b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
1	AC9	7 Low-Power StatusRO
	0	AC97 Codecs not in low-power mode
	1	AC97 Codecs in low-power mode
		This bit reports 1 when Rx26[4] of the codecs
		is 1. It is used to determine whether the bit-
		clock should be gated.
0	Code	ec CID=00b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)

<u>1 – AC Link Interface Control RW</u>
AC-Link Interface
0 Disable default
1 Enable
AC-Link Reset
0Assert AC-Link Reset (used for cold reset) def
1De-assert AC-Link Reset
AC-Link Sync
0 Release SYNCdefault
1 Force SYNC High (used for warm reset)
AC-Link Serial Data Out
0 Release SDOdefault
1 Force SDO High
Variable-Sample-Rate On-Demand Mode RO
This bit is controlled through function 5 but may be
read from function 6.
0 Disable (AC Link sends data every frame) def
1 Enable (AC Link sends data only when there is
a request from the codec)
3D Audio Channel Slots 3/4RO
This bit is controlled through function 5 but may be
read from function 6.
0 Disable default
1 Enable
Note that slots 7/8 and 6/9 do not have to be selected
as they are not muxed with DXS as are slots 3/4)
Reserved always reads 0

Offset 4	2 – Function EnableRO		
	ister is controlled through function 5 but may be read		
	iction 6.		
7-6	Reserved always reads 0		
5	Function 5 Config Reg Rx2C WritableRO		
	0 Device 17 Function 5 Rx2C-2F ROdefault		
	1 Device 17 Function 5 Rx2C-2F RW		
4-0	Reserved always reads 0		
Offset 4	4 – MC97 Interface ControlRW		
7	AC-Link Interface for Slot-5 (Modem)		
	0 Disable default		
	1 Enable		
6	Secondary Codec Support		
	0 Disabledefault		
	1 Enable		
5	Function 6 Config Reg Rx9-B Writable		
	0 Device 17 Function 6 Rx9-B ROdefault		
	1 Device 17 Function 6 Rx9-B RW		
4	Function 6 Config Reg 2Ch Writable		
	0 Device 17 Function 6 Rx2C-2F ROdefault		
	1 Device 17 Function 6 Rx2C-2F RW		
3	Sync		
	This bit reports whether there is activity in function 6		
	(modem). When function 5 (audio) enters low-power		
	state and wants to gate bit-clock, software needs to		
	check this bit to see whether bit-clock can actually be		
	gated, as function 6 shares the same bit-clock.		
	0 Function 6 activity in progress that requires		
	bit-clock		
	1 Function 6 does not need bit-clock so bit-clock		
	can be gated		
2-0	Reserved always reads 0		

Offset l	<u> D3-D0 – Power Mg</u>	mt CapabilityRO
31-0	Power Mgmt Cap	abilityalways reads 0002 0001h
Offset 1	D7-D4 – Power Stat	teRW
31-2	Reserved	always reads 0
1-0	Power State (D3 /	D0 Only)

I/O Base 0 Regs - Modem Scatter / Gather DMA

I/O Offset 40 - Modem SGD Read Channel Status.....RWC

Modem SGD Read Channel Registers

7	SGD ActiveRO	7 Auto-Start SGD at EOL	
	0 SGD has completed or been terminated.default	0 Stop at EOL defaul	t
	1 SGD Active	1 Auto restart at EOL	
6	SGD PausedRO	6-4 Reserved always reads	0
	0 SGD not pauseddefault	3-2 Interrupt Select	
	1 SGD Paused	This bit determines the timing of interrupt generation	n
5-4	Reserved always reads 0	when bit-1 or bit-0 of this register are equal to 1.	
3	SGD Trigger QueuedRO	00 Interrupt at PCI Read of Last Line defaul	t
	This bit reports whether the trigger used to restart the	01 Interrupt at Last Sample Sent	
	SGD operation is queued (I/O Offset $41[1] = 1$ while	10 Interrupt at Less Than One Line to Send	
	the SGD engine is running).	11 -reserved-	
	0 SGD trigger not queueddefault	1 Interrupt on EOL @ End of Block	
	1 SGD trigger queued (when SGD reaches EOL,	0 Disabledefaul	t
	it will restart).	1 Enable	
2	SGD Stop Interrupt StatusRWC	0 Interrupt on FLAG @ End-of-Blk	
	1 SGD finished the index equal to the stop index	0 Disabledefaul	t
	set in 4B-48[31-24].	1 Enable	
1	SGD EOL (End Of Link)RWC		
	1 Block is the last of the link. May be used by		
	software as a signal to generate an interrupt	LO OCC. A AT AA M. J COD D Cl. T. LL. DA. D DU	17
	request if I/O Offset $41[1] = 1$.	I/O Offset 47-44 – Modem SGD R Ch Table Ptr Base RV	
	1		
0	SGD FlagRWC	31-0 SGD Table Pointer Base Address (even addr) V	
0		31-0 SGD Table Pointer Base Address (even addr) V Current Pointer Address	
0	SGD Flag		
0	SGD FlagRWC 1 Block complete. May be used by software as a		
0	SGD Flag		2
0	SGD Flag	Current Pointer Address I	2
	SGD Flag 1 Block complete. May be used by software as a signal to generate an interrupt request if I/O Offset 41[0] = 1.	Current Pointer Address I I/O Offset 4F-4C – Modem SGD R Ch Current Count RO	?)
I/O Off	SGD Flag	Current Pointer Address	?)
	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is	?)
I/O Off	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing.	O
<u>I/O Of</u> 7	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RO 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count	example of the second of the s
I/O Off	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current	N D s s
<u>I/O Of</u> 7	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of	N D s s
<u>I/O Of</u> 7	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would	N D s s
<u>I/O Off</u> 7 6	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would	N D s s
I/O Off 7 6 5-4	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would	N D s s
I/O Off 7 6 5-4	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining. Modem SGD Table Format	N D s s
I/O Off 7 6 5-4	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining. Modem SGD Table Format 63 62 61 60-56 55-32 31-0	N D s s
I/O Off 7 6 5-4	SGD Flag	I/O Offset 4F-4C – Modem SGD R Ch Current Count RC 31-24 Current Modem SGD Read Channel Index This field reports the index the SGD engine is currently processing. 23-0 Current Modem SGD Read Channel Count This field reports the count remaining in the current entry being processed. For example, if 10 bytes of 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining. Modem SGD Table Format	N D s s

.....always reads 0

I/O Off	set 42 – Modem SGD Read Channel Type RW
7	Auto-Start SGD at EOL
	0 Stop at EOLdefault
	1 Auto restart at EOL
6-4	Reserved always reads 0
3-2	Interrupt Select
	This bit determines the timing of interrupt generation
	when bit-1 or bit-0 of this register are equal to 1.
	00 Interrupt at PCI Read of Last Line default
	01 Interrupt at Last Sample Sent
	10 Interrupt at Less Than One Line to Send
	11 -reserved-
1	Interrupt on EOL @ End of Block
	0 Disabledefault
	1 Enable
0	Interrupt on FLAG @ End-of-Blk
	0 Disabledefault
	1 Enable
I/O Off	set 47-44 – Modem SGD R Ch Table Ptr Base RW
31-0	SGD Table Pointer Base Address (even addr) W

irrent Count.. RO

nnel Index

nnel Count

at

<u>63</u>	<u>62</u>	<u>61</u>	<u>60-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	FLAG	STOP	-reserved-	Base	Base
				Count	Address
				[23:0]	[31:0]

Reserved

Modem SGD Write Channel Registers

/O Of	<u>set 50 – Modem SGD Write Channel StatusRO</u>
7	SGD ActiveRO
	0 SGD has completed or been terminated default
	1 SGD Active
6	SGD PausedRO
	0 SGD not pauseddefault
	1 SGD Paused
5-4	Reserved always reads 0
3	SGD Trigger QueuedRO
	This bit reports whether the trigger used to restart the
	SGD operation is queued (I/O Offset $51[1] = 1$ while
	the SGD engine is running).
	0 SGD trigger not queueddefault
	1 SGD trigger queued (when SGD reaches EOL,
	it will restart).
2	SGD Stop Interrupt StatusRWC
	1 SGD finished the index equal to the stop index
	set in 5B-58[31-24].
1	SGD EOL (End Of Link)RWC
	1 Block is the last of the link. May be used by
	software as a signal to generate an interrupt
	request if I/O Offset $51[1] = 1$.
0	SGD FlagRWC
	1 Block complete. May be used by software as a
	signal to generate an interrupt request if I/O
	Offset $51[0] = 1$.

I/O Off	set 51 – Modem SGD Write Channel ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD write channel operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD write channel operation
5-4	Test (Do Not Program) always write 0
3	SGD PauseRW
	0 Release SGD write channel pause and resume
	the transfer from the paused line
	1 Pause SGD write channel operation (SGD
	write channel pointer stays at current address)
2	Reserved always reads 0
1	Reset Modem Write SGD OperationRW
0	Reserved always reads 0

7	Auto	-Start SGD at EOL	
	0	Stop at EOL	defau
	1	Auto restart at EOL	
6-2	Rese	rved	always reads
1	Inter	rupt on EOL @ End of Bl	ock
	0	Disable	
	1	Enable	
0	Inter	rupt on FLAG @ End-of-	Blk
	0	Disable	defau
	1	Enable	

I/O Offset 5F-5C - Modem SGD W Ch Current Count. RO

- 31-24 Current Modem SGD Write Channel Index
 This field reports the index the SGD engine is currently processing.
- 23-0 Current Modem SGD Write Channel Count
 This field reports the count remaining in the current
 entry being processed. For example, if 10 bytes of a
 30-byte count have been transferred, this field would
 read 20 to indicate 20 bytes remaining.
- EOL <u>End Of Link</u>. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer.
- **FLAG** <u>Block Flag</u>. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.
- STOP Block Stop. If set, transfer pauses at the end of this block. To resume the transfer, write 1 to Rx?0[2].

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

Offset 8	3-80 -	- AC97 Controller Command (W) / Status (R)
This reg	ister n	nay be accessed from either function 5 or 6
31-30	Code	e ID RW
	00	Select Codec CID = 00
	01	Select Codec CID = 01
	10	Select Codec CID = 10
	11	Select Codec CID = 11
29	Code	c 11 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
28	Code	c 10 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
27	Code	c 01 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
26	Reser	rved always reads 0
25	Code	c 00 Data / Status / Index ValidRO
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
24	AC97	Controller BusyRO
	0	Codec is ready for a register access command
	1	AC97 Controller is sending a command to the
		codec (commands are not accepted)
23	Code	c Register Read / Write ModeRW
	0	Select Codec register write mode
	1	Select Codec register read mode
22-16	Code	c Register Index [7:1]RW
	Index	of the AC97 codec register to access (in the
	attach	ned codec). Data must be written before or at
	the sa	ame time as Index because writing to the index
	trigge	ers the AC97 controller to access the addressed
		register over the AC-link interface.
15-0	Code	c Register DataRW

Offset 8	87-84 -	- Modem SGD Status Shadow	RO
31-30	Rese	rved	always reads 0
29	Mod	em Write SGD Active Shadow	
28	Mod	em Read SGD Active Shadow	(Rx40[7])
27-26	Rese	rved	always reads 0
25	Mod	em Write SGD Stop Shadow	(Rx50[2])
24	Mod	em Read SGD Stop Shadow	(Rx40[2])
23-22		rved	
21		em Write SGD EOL Shadow	
20	Mod	em Read SGD EOL Shadow	
19-18	Rese		
17		em Write SGD Flag Shadow	
16	Mod	em Read SGD Flag Shadow	(Rx40[0])
15-0	Rese	rved	always reads 0
		- Codec GPI Interrupt Status	
_		may be accessed from either fund	
31-16	GPI	Interrupt Status	RWC
	R	or -[o]	
		1 to clear	
15-0		ec GPIO	
		Reflect status of Codec GPI[15	
	W	Triggers AC-Link slot-12 outp	out to codec
Offset 8	8F-8C	- Codec GPI Interrupt Enable	2RW
This reg	gister r	may be accessed from either fund	etion 5 or 6
31-16	Inter	rupt on GPI[15-0] Change of S	StatusRW
	0	Disable	
	1	Enable	
15 0	Dogo	rand	almong roads 0

Offset 90-9F - Mapped from Function 5/6 Rx40-4F RO

Device 18 Function 0 Registers - LAN

All registers are located in the Device 18 Function 0 PCI configuration space of the VT8235M Version CD. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8 / CFC.

PCI Configuration Space Header

Offset 1-0 - Vendor ID = 1106hRO	Offset 34 - Capabilities Offset (40h)RO
Offset 3-2 - Device ID = 3065hRO	7-0 Capabilities Offset
	Offset into the LAN function PCI space pointing to
Offset 5-4 - CommandRW	the location of the <u>first</u> item in the function's
15-3 Reserved always reads 0	capability list.
2 Bus Master always reads 0	000 420 14 41
1 Memory Space always reads 0	Offset 3C - Interrupt LineRW
$0 \qquad \mathbf{I/O} \ \mathbf{Space} \qquad \dots \qquad \mathbf{RW}, \ \mathbf{default} = 0$	7-4 Reservedalways reads 0
Official 7 (Status (0400k)	3-0 LAN Interrupt Routing
Offset 7-6 – Status (0400h)RO	0000 Disabled
15 Detected Parity Error always reads 0	0001 IRQ1
14 Signalled System Error always reads 0	0010 Reserved
13 Received Master Abort always reads 0 12 Received Target Abort always reads 0	0011 IRQ3 0100 IRQ4
9	0100 IRQ4 0101 IRQ5
11 Signalled Target Abort always reads 0 10-9 DEVSEL# Timing fixed at 10 (slow)	0110 IRQ6
8 Data Parity Detected always reads 0	0111 IRQ7
7 Fast Back-to-Back Capablealways reads 0	1000 IRQ8
6 UDF Support always reads 1	1001 IRQ9
5 66 MHz Capablealways reads 1	1010 IRQ10
4 Capabilities (e.g. PCI Pwr Mgmt) always reads 1	1011 IRQ11
3-0 Reservedalways reads 0	1100 IRQ12
	1101 IRQ13
Offset 8 - Revision ID (40h)RO	1110 IRQ14
Offset 9 - Program InterfaceRO	1111 Disabled
Offset A - Sub Class CodeRO	APIC (See Device 17 Function 0 Rx58[6])
Offset B - Class CodeRO	x000 IRQ16
OTISCE B CARSS CORE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	x001 IRQ17
Offset C - Cache Line SizeRW	x010 IRQ18
This register must be implemented by master devices that can	
generate the memory-write-and-invalidate command.	x111 IRQ23
,	Offset 3D - Interrupt Pin (01h)RO
Offset D – Latency TimerRW	
This register must be implemented as writable by any master	7-0 Interrupt Routing Mode
that can burst more than two data phases.	00h Legacy mode interrupt routing 01h Native mode interrupt routing
1	orn Native mode interrupt routing deraut
Offset E - Header Type (00h)RO	LAN-Specific PCI Configuration Registers
Offset F - BIST (00h)RO	LAN-Specific FCI Configuration Registers
	Offset 40 – Capability ID (01h)RO
	7-0 Capability IDalways reads 01h
	Identifies the linked list item as being PCI power
Offset 13-10 – I/O Base Address (0000 0000h)RW	management registers
Offset 17-14 - Memory Base Address (0000 0000h)RW	
Offset 2B-28 - Card Bus CIS Pointer (0000 0000h)RW	Offset 41 – Next Item Pointer (00h)RO
Offset 33-30 – Expansion ROM Base (0000 0000h)RW	7-0 Next Item Pointeralways reads 00h
	Offset into the LAN function PCI space pointing to

the location of the next item in the function's

capability list.

Offset 4	43-42 – Power Mgmt Configuration (0002h)RO
15-11	Power State In Which LAN Can Assert PME#
	$\dots default = 0$
	1xxxx PME# can be asserted from D3C
	x1xxx PME# can be asserted from D3H
	xx1xx PME# can be asserted from D2
	xxx1x PME# can be asserted from D1
	xxxx1 PME# can be asserted from D0
10	D2 PM State
	0 Not Supporteddefault
	1 Supported
9	D1 PM State
	0 Not Supporteddefault
	1 Supported
8-6	PCI 3.3V Auxiliary Current Requirements
	always reads 0
5	Device-Specific Initialization always reads 0
4	Reserved always reads 0
3	PME# Operation Uses PCI Clock
	0 No PCI clock req'd for PME# generationdef
	1 PME# generated using PCI clock
2-0	Power Management Interface Revision reads 010b
	Readback of 010b indicates compliance with revision
	1.1 of the power mangement interface specification

Offset 47-44 - Power Management Control / Status .. RWC

31-0 Control / Status......default = 0000 0000h (see Power Management Specification 1.0)

LAN I/O Registers

Offset 05-00 – Ethernet AddressRW	Offset 07 - Transmit Control (08h)RW
Unless the EEPROM is disabled, the Ethernet Address is	7-3 Reserved (Do Not Program)
loaded to this register from the EEPROM every time the	2-1 Transmit Loopback Mode
system starts up.	00 Normal default
	01 Internal loopback (signal is looped back to the
Offset 06 - Receive Control (00h)RW	host from the MAC)
7-5 Reserved (Do Not Program)	10 MII loopback (signal is looped back to the host
4 Physical Address Packets Accepted	from the PHY)
0 Packets with a physical destination address are	11 -reserved- (do not program)
not accepteddefault	0 Reserved always reads 0
1 All packets with a physical destination address	Offset 08 - Command 0 (00h)RW
are accepteddefault	7 Reservedalways reads 0
3 Broadcast Packets Accepted	6 Receive Poll Demanddefault = 0
0 Broadcast packets are rejecteddefault	If this bit is set to 1, the Receive Descriptor (RD) will
1 Broadcast packets are accepted	be polled once (this bit will be cleared by hardware
2 Multicast Packets Accepted	after the polling is complete)
0 Multicast packets are rejecteddefault	5 Transmit Poll Demand default = 0
1 Multicast packets are accepted	If this bit is set to 1, the Transmit Descriptor (TD)
1 Small Packets Accepted	will be polled once (this bit will be cleared by
0 Packets smaller than 64 bytes are rejecteddef	hardware after the polling is complete)
1 Packets smaller than 64 bytes are accepted	4 Transmit Process
0 Error Packets Accepted 0 Packets with receive errors are rejecteddef	0 Transmit engine disableddefault
0 Packets with receive errors are rejecteddef 1 Packets with receive errors are accepted	1 Transmit engine enabled (transmit may occur)
1 Tackets with receive errors are accepted	3 Receive Process
	0 Receive disableddefault
	1 Receive enabled
	2 Stop NIC
	0 NIC enableddefault
	1 NIC disabled (transmit/receive cannot occur)
	1 Start NIC
	0 No command entereddefault
	1 Start the NIC
	0 Reserved (Do Not Program)

Offset	09 – Command 1 (00h)RW	Offset	0C -
7	Software Reset	7	Cl
	0 No resetdefault		Se
	1 Reset the MAC		bit
6	Receive Poll Demand 1 default = 0	6	PO
	This bit functions the same as Rx8[6]. The function		Se
	can be enabled by setting either bit (for backward compatibility).	5	Re Se
5	Transmit Poll Demand 1 default = 0		pa
	This bit functions the same as Rx8[5]. The function	4	Re
	can be enabled by setting either bit (for backward compatibility).	3	Tı Se
4	Reservedalways reads 0		tra
3	TD / RD Auto Polling	2	Re
Ü	0 Enable (polling interval is determined by Rx6F[2:0])default	-	Se
	1 Disable	1	Pa
2	Full Duplex	0	Pa
	0 Set MAC to half duplex modedefault 1 Set MAC to full duplex mode	Offset	0D -
1-0	Reserved (Do Not Program)	7	Go Th

Offset <u>0C - Interrupt Status 0 (00h)RW</u>

- RC or Miss Packet Tally Counter Overflow et if either counter overflows (both counters are 16 ts)
- CI Bus Error

et if PCI bus error occurred.

eceive Buffer Link Error

et when there is not enough buffer space for a acket requiring multiple buffers.

- eserved (Do Not Program)
- ransmit Error (Packet Transmit Aborted) et due to excessive collisions (more than 16), ansmit underflow, or transmit data linking error
- eceive Error et due to CRC error, frame alignment error, FIFO verflow, or received data linking error
- acket Transmitted Successfully
- acket Received Successfully

- Interrupt Status 1 (00h).....RW

eneral Purpose Interrupt

his bit is set when there is a general purpose interrupt event (Rx84). This bit is set when any bit in Rx84 equals one and when its corresponding mask bit in Rx86 also equals one.

- **Port State Change (PHY)**
- **Transmit Abort Due to Excessive Collisions**

Set when there is a transmit error that is due to excessive collisions. Alternatively, Rx0C[3] is set for all transmit errors.

Receive Buffer Full

Set when there is no more buffer space available in system memory.

Receive Packet Race

Set when there is not enough room in the FIFO to receive an additional packet.

- **Receive FIFO Overflow** 2
- 1-0 Reserved (Do Not Program)

	Offset 0E – Interrupt Ma	Task 0 (00h)	RW
--	--------------------------	--------------	----

Bits correspond to the bits in Interrupt Status Register 0. An interrupt is generated when corresponding bits in both registers equal 1.

Offset 0F - Interrupt Mask 1 (00h)RW

Bits correspond to the bits in Interrupt Status Register 1. An interrupt is generated when corresponding bits in both registers equal 1.

Offset 17-10 - Multicast Address.....RW

The value in this register determines which Multicast addresses are received.

Offset 1B-18 – RX Address.....RW

This register reports the receive transcriptor address that is being accessed.

Offset 1F-1C - TX AddressRW

This register reports the transmit transcriptor address that is being accessed.

Offset 2	3-20 – Receive Status (0000 0400h) RW
31	Descriptor Owner
	0 Descriptor Owned By Host (NIC cannot
	access descriptor)
	1 Descriptor Owned by NIC (NIC can access
	descriptor)
	This bit has no default so must be set by the driver at
	initialization.
	Reserved always reads 0
26-16	Received Packet LengthRO, $def = 0$
15	Received Packet Successfully RO, $def = 0$
14	Reserved always reads 0
13	NIC Accepted Multicast PacketRO, $def = 0$
12	NIC Accepted Broadcast PacketRO, $def = 0$
11	NIC Accepted Physical Address PacketRO, $def = 0$
10	Chain Bufferalways reads 1
	Set if packet too large to occupy a single receive
	descriptor.
9-8	Buffer Descriptor Start / EndRO
	For packets too large to fit into a single receive
	descriptor and thus occupy multiple RD's, this field
	reports whether this RD is the start, middle or end.
	00 Chain Buffer Middle Descriptor default
	01 Chain Buffer End Descriptor
	10 Chain Buffer Start Descriptor
	11 Single Buffer Descriptor (packet accupies only
_	one descriptor)
7	Reserved (Do Not Program)
6	System Error
5	Runt Packet (< 64 bytes)
4	Long Packet ($> 2500 \text{ bytes}$)
3	FIFO Overflow Error
2 1	Frame Alignment Error
-	CRC Error RO, default = 0
0	Receiver ErrorRO , default = 0

	27-24 – Rx Data Buffer Control (0000 0000h)RO	Offset 4	47-44 – Tx Data Buffer Control (0000 0000h) RO
	Reserved always reads 0	31-24	Reserved always reads 0
10-0	Rx Data Buffer Size default = 0	23	Send-Complete Interrupt
	The receive data buffer size for this descriptor. The		0 Interrupt not generated default
	total byte count of the entire frame will be stored in		1 Interrupt generated after send complete
	the last descriptor.	22	End of Transmit Packet
			For packets too large to fit into a single transmit
			descriptor and thus occupy multiple TD's, this bit
Office 4	DO Do Do Doto Duffey Stout Address DO		reports whether this TD is the End TD.
_	2B-28 – Rx Data Buffer Start AddressRO		0 This TD is not the End TDdefault
31-0	Rx Data Buffer Start Address		1 This TD is the End TD
Offset 2	2F-2C – Rx Data Buffer Branch AddressRO	21	Start of Transmit Packet
	Rx Data Buffer Branch Address		For packets too large to fit into a single transmit
31-0	RX Data Duller Dranch Address		descriptor and thus occupy multiple TD's, this bit
			reports whether this TD is the Start TD.
Note: F	Rx20-2F reflect values from the RD being accessed.		0 This TD is not the Start TD default
11010. 1	and the following accessed.		1 This TD is the Start TD
Officet /	43-40 – Transmit Status (0000 0000h)RW		Reserved always reads 0
		16	Disable CRC Generation default = 0
31	Descriptor Owner	15	Chain Bufferdefault = 0
	Descriptor Owned By Host (NIC cannot access descriptor)		Reserved always reads 0
	1 Descriptor Owned by NIC (NIC can access	10-0	Tx Data Buffer Size default = 0
	descriptor)		The transmit data buffer size for this descriptor. The
	This bit has no default so must be set by the driver at		total byte count of the entire frame will be stored in
	initialization.		the last descriptor.
30-16	Reserved always reads 0		
15	Transmit Error		
10	0 Transmit Successful default	Offset 4	4B-48 – Tx Data Buffer Start AddressRO
	1 Excessive Collisions During Transmit Attempt	31-0	Tx Data Buffer Start Address
14	Reserved always reads 0		
13	System Error RO , default = 0		4F-4C – Tx Data Buffer Branch AddressRO
12	Invalid TD Format or Structure or TD Overflow		Tx Data Buffer Branch Address
	RO , default = 0	3-1	Reserved always reads 0
11	Reserved Do not program	0	Tx Interrupt Enable
10	Carrier Sense Lost During Transmit RO, def = 0		0 Issue interrupt for this packet default
9	Out of Window CollisionRO, $def = 0$		1 No interrupt generated
	(collision outside initial 64 bytes)		
8	Transmit Abort (Excessive Collisions). RO, $def = 0$		
7	CD Heartbeat Issued (10BaseT Only) RO, $def = 0$		
6-5	Reserved always reads 0		
4	Collision Detected During Transmit RO , $def = 0$		
3-0	Collision Retry CountRO, $def = 0$		

Offset (6C – PHY Address (01h)RW	Offset (6E – Buffer Control 0 (00h)RW
7-6	MII Management Polling Timer Interval (Polling	7-3	Reserved (Do Not Program)
	PHY)	2-0	DMA Length
	00 1024 MDC Clock Cyclesdefault		000 32 bytes 8 DWdefault
	01 512 MDC Clock Cycles		001 64 bytes 16 DW
	10 128 MDC Clock Cycles		010 128 bytes 32 DW
	11 64 MDC Clock Cycles		011 256 bytes 64 DW
	MDC is an internal clock with a 960 ns cycle time.		100 512 bytes 128 DW
5	Accelerate MDC Speed		101 1024 bytes 256 DW
	0 Normaldefault		11x Store & Forward
	1 4x Accelerated	0.00	CE D 66 C (14 (001) DW
4-0	Extended PHY Device Address default = 01h		6F - Buffer Control 1 (00h)RW
	Stored from EEPROM during power-up or EEPROM	7-3	Reserved (Do Not Program)
	auto-reload but can be programmed by software	2-0	Polling Interval Timer
O.CC 4	(D. MII (4.4 (121.)		This field determines the polling interval when TX /
	6D – MII Status (13h)RW		RX Auto-Polling is enabled (LAN I/O Rx09[3]=0).
7	PHY Reset		000 2 ¹³ V-Link Clocks
	0 PHY reset not asserteddefault		001 2 ¹⁵ V-Link Clocks
	1 PHY reset asserted		001 2 ¹⁴ V-Link Clocks
6-5	Reserved always reads 0		001 2 ¹² V-Link Clocks
4	PHY Option		001 2 ¹¹ V-Link Clocks
	0 PHY address updated from EEPROM		001 2 ¹⁰ V-Link Clocks 001 2 ⁹ V-Link Clocks
2	1 Use default PHY address of 0001hdefault		001 2 V-Link Clocks 001 28 V-Link Clocks
3	PHY Device Received Error		001 2 V-LINK CIOCKS
	0 No MII error default		
2	1 MII Error Reservedalways reads 0		
2 1	Link Failure		
1	0 Link successful		
0	1 Link unsuccessful (no connection)default PHY Speed		
U	0 100 Mb		
	1 10 Mbdefault		
	1 10 IVIUuciauli		

O Disable (polling interval determined by RxGC[7:6]) 6 PHY Read Every time this bit is set to one, the Phy is read once. The address read is determined by Rx71[4:0] and the data is stored in Rx73-72. O Disable	7	MII (PHY) Auto Polling	7	EEPROM Program CompleteRO , $def = 0$
RSGC[7:6] 6 PHY Read Every time this bit is set to one, the Phy is read once. The address read is determined by Rx71[4:0] and the data is stored in Rx73-72. 0 Disable				
Every time this bit is set to one, the Phy is read once. The address read is determined by Rx71[4:0] and the data is stored in Rx73-72. 0 Disable			6	
Every time this bit is set to one, the Phy is read once. The address read is determined by Rx71[4.0] and the data is stored in Rx73-72. 0 Disable				
The address read is determined by Rx71[4:0] and the data is stored in Rx73-72. 0 Disable	6	PHY Read		74, 78, 79, 7A, and 7B) will start to be programmed
data is stored in Rx73-72. 0 Disable default 1 Enable 5 PHY Write Every time this bit is set to one, the PHY is written once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. 0 Disable default 1 Enable (bits 3-0 are ignored, see bits 6-5)def 1 Enable (bits 3-0 are ignored, see bits 2-0) 3 MDIO Output Enable Indicator 2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy very time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming Clock This bit ats as the clock during direct programming Read Data InRO During direct programming Clock This bit ats as the clock during direct programming Read Data InRO During direct programming (or the EEPROM Data Out pin is stored in this bit.		Every time this bit is set to one, the Phy is read once.		into the EEPROM.
Teloaded from EFPROM Teloaded from EFPROM		The address read is determined by Rx71[4:0] and the	5	Dynamically Reload EEPROM Content def = 0
5 PHY Write Every time this bit is set to one, the PHY is written once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. 0 Disable		data is stored in Rx73-72.		When this bit toggles, the Ethernet ID (Rx5-0) is
5 PHY Write Every time this bit is set to one, the PHY is written once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. 0 Disable		0 Disabledefault		reloaded from EEPROM.
5 PHY Write Every time this bit is set to one, the PHY is written once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. 0 Disable		1 Enable	4	EEPROM Direct Program Mode
once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. O Disable	5	PHY Write		
once. The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to the PHY. O Disable		Every time this bit is set to one, the PHY is written		
Rx71[4:0] and the value in Rx73-72 will be written to the PHY. 0 Disable			3	
the PHY. 0 Disable			_	
1 Enable 1 EPROM 2 EP				
1 Enable 4 PHY Direct Programming Mode 0 Disable (bits 3-0 are ignored, see bits 6-5)def 1 Enable (bits 6-5 are ignored, see bits 2-0) 3 MDIO Output Enable Indicator 2 Phy Direct Programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock for direct programming (write), the value in this bit is written to the EEPROM Data In pin and written to the EEPROM Data In pin and written to the EEPROM Direct Programming Read DataRO During direct programming (read), every time bit-2 of this register (the "clock") toggles, the value on the EEPROM Data Out pin is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock for direct programming of the EEPROM Data In pin and written to the EEPROM Data In pin and written to the EEPROM Direct Programming Read DataRO During direct programming (read), every time bit-2 of this register (the "clock") toggles, the value on the EEPROM Data Out pin is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock for direct programming of the EEPROM Data In pin and written to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit is presented to the EEPROM Data Out pin is stored in this bit. 0 Polling Status 0			2	
the EEPROM 1 Disable (bits 3-0 are ignored, see bits 6-5)def 1 Enable (bits 6-5 are ignored, see bits 2-0) 3 MDIO Output Enable Indicator 2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time bit-2 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming Read Data InRO During direct programming (read), every time bit-2 of this register (the "clock") toggles. 1 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 2 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 3 Polling Status 4 Polling mechanism is busy (polling can be initiated) 4 Polling Type 4 Polling Type 5 Polling Complete 6 Polling Type 7 Polling Complete 8 Polling complete 9 Polling not complete			_	
1 Enable (bits 3-0 are ignored, see bits 6-5)def 1 Enable (bits 6-5 are ignored, see bits 2-0) 3 MDIO Output Enable Indicator 2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 2 Polling Type 0 Polling Complete 0 Polling Type 1 Polling complete (auto polling data ready) 4-0 MII Management Port Address Sits 4-0. def = 01h This field contains the address of the PHY register to be read or written.	4			
1 Enable (bits 6-5 are ignored, see bits 2-0) 3 MDIO Output Enable Indicator 2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 2 Phyling Status 6 Polling Type 0 Pollone Cycle	-		1	
3 MDIO Output Enable Indicator 2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data In			-	
2 Phy Direct Programming Write Data Out During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Type 0 Polling Type 0 Polling Complete 1 Auto polling — close the pause function at bit-5 5 Polling Complete 0 Polling Complete 1 Polling complete (auto polling data ready) 4-0 MII Management Port Address 6th e PHY register to be read or written.	3			
During direct programming (write), the value in this bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 1 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 2 Polling Status 3 Polling mechanism is busy (polling can't be initiated) 4 Polling Type 5 Polling Complete 6 Polling Complete 1 Auto polling - close the pause function at bit-5 5 Polling Complete 1 Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.				
bit is written to the Phy every time bit-0 of this register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time bit-2 of this register (the "clock") toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Complete 0 Polling Complete 0 Polling not complete	_			
register (the "clock") toggles. 1 Phy Direct Programming Read Data InRO During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Type 0 Poll One Cycle			0	
of this register (the "clock") toggles, the value on the EEPROM Data Out pin is stored in this bit. Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. Polling Status Polling mechanism is busy (polling can't be initiated) Polling Type Polling Type Polling Complete Polling complete (auto polling data ready) Polling contains the address of the PHY register to be read or written.			v	
During direct programming (read), every time the "clock" (bit-0) toggles, the value from the Phy is stored in this bit. O Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. Offset 71 – MII Management Port Address (81h)RW Polling Status O Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Type O Polling Type O Polling Complete O Polling not complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0 def = 01h This field contains the address of the PHY register to be read or written.	1			
"clock" (bit-0) toggles, the value from the Phy is stored in this bit. 0 Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status O Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Type O Polling Complete O Polling Complete O Polling complete (auto polling data ready) 4-0 MII Management Port Address Gits 4-0. def = 01h This field contains the address of the PHY register to be read or written. Offset 78 – EEPROM Control (00h)RW FEPROM Embedded & Direct Programming D Disable (EEPROM cannot be programmed) def Extension Clock D Disable	•			
stored in this bit. Phy Direct Programming Clock This bit acts as the clock during direct reads from and direct writes to the Phy. Offset 71 – MII Management Port Address (81h)RW Polling Status Polling mechanism is busy (polling can't be initiated) Polling Type Polling Type Polling Type Polling Complete Polling Complete Polling Complete Polling Complete Polling Complete MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.				ELI KOM Butta Gut più is stored in tins oit.
Offset 71 – MII Management Port Address (81h)RW 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated) 1 Polling Type 0 Polling Type 0 Polling Complete 0 Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.				
This bit acts as the clock during direct reads from and direct writes to the Phy. 7 Polling Status O Polling mechanism is busy (polling can't be initiated) 1 Polling Type O Pollone Cycle default 1 Auto polling – close the pause function at bit-5 Folling Complete O Polling not complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0 def = 01h This field contains the address of the PHY register to be read or written. 7 EEPROM Embedded & Direct Programming O Disable (EEPROM cannot be programmed) def 1 Enable (allow EEPROM to be programmed) 6 Extension Clock O Disable (EPROM to the EEPROM is sent prior to the start of data to allow more time for the EEPROM to return to the ready state) 5-0 Reserved 5-0 Reserved	0			
direct writes to the Phy. Offset 71 – MII Management Port Address (81h)RW Polling Status O Polling mechanism is busy (polling can't be initiated) Polling mechanism is idle (polling can be initiated)	v		<u>Offset</u>	78 – EEPROM Control (00h) RW
Offset 71 – MII Management Port Address (81h)RW 7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated)			7	EEPROM Embedded & Direct Programming
7 Polling Status 0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated)		uncer writes to the ring.		0 Disable (EEPROM cannot be programmed) def
0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated)	Offset	71 – MII Management Port Address (81h)RW		1 Enable (allow EEPROM to be programmed)
0 Polling mechanism is busy (polling can't be initiated) 1 Polling mechanism is idle (polling can be initiated)	7	Polling Status	6	
initiated) 1 Polling mechanism is idle (polling can be initiated)				0 Disabledefault
1 Polling mechanism is idle (polling can be initiated)				1 Enable (the clock to the EEPROM is sent prior
initiated)				to the start of data to allow more time for the
6 Polling Type 0 Poll One Cycle				EEPROM to return to the ready state)
0 Poll One Cycle	6		5-0	· · · · · · · · · · · · · · · · · · ·
1 Auto polling – close the pause function at bit-5 5 Polling Complete 0 Polling not completedefault 1 Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.	ŭ	0 11		•
 Polling Complete Polling not completedefault Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written. 				
0 Polling not completedefault 1 Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.	5			
1 Polling complete (auto polling data ready) 4-0 MII Management Port Address Bits 4-0 def = 01h This field contains the address of the PHY register to be read or written.	3			
4-0 MII Management Port Address Bits 4-0def = 01h This field contains the address of the PHY register to be read or written.				
This field contains the address of the PHY register to be read or written.	4_0			
be read or written.	-1 -0			
		=		
Offset 73-72 – MII Management Port Data DataRW		oc read of withen.		
	Offset	73-72 – MII Management Port Data DataRW		

in this register.

After a Phy read, the data read from the PHY is stored in this register. For writes to the Phy, the data to be written is placed

Offset	79 – Configuration 1 (00h)RW		Configuration 2 (00h)	
7	Transmit Frame Queueing 0 Enable (frames from the PCI bus can be queued in the transmit FIFO – a maximum of 2 packets may be queued)default 1 Disable	6 Unus This addre 0	\mathcal{E}	MA sed BootROM memory
6 5	Data Parity Generation and Checking This bit controls whether PCI parity is enabled. 0 Enable	Read This	Tied high nyed Transactions for d bit controls whether PC enabled.	•
3	This bit controls whether PCI Memory-Read-Line is supported. 0 Enable	0 1	Disable Enable	defaultalways reads 0
4	Transmit FIFO DMA Interleaved to Receiving FIFO DMA After 32 DW Transaction This bit controls whether during a transmit, priority can be given to a receive transaction. 0 Disable	7 Mem 0 1 6-4 Rese 3 Back	erved (Do Not Program) koff Algorithm	default = 0
3	Receive FIFO DMA Interleaved to Transmitting FIFO DMA After 32 DW Transaction This bit controls whether during a receive, priority can be given to a transmit transaction. 0 Disable	1 2-1 Rese 0 Back	erved (Do Not Program) koff Algorithm Optional	default = 0
2	Memory Read Wait States (for ISA only) 0 Nonedefault 1 Insert one wait state 2222			
1	Memory Write Wait States s (for ISA only) 0 None			
0	Latency Timer This bit controls whether PCI Delayed Transactions are enabled. 0 Disable			

Offset	80 – Miscellaneous 1 (00h)RW
7-4	Reserved always reads 0
3	Full Duplex Flow Control
	0 Disabledefault
	1 Enable
2	Half Duplex Flow Control
	0 Disabledefault
	1 Enable
1	Soft Timer 0 Status / Start
	0 Timer Countingdefault
	(write 0 after time out to start timer counting)
	1 Timer Timed Out
0	Soft Timer 0 Enable
	0 Disabledefault
	1 Enable timer to count
Offset	81 – Miscellaneous 2 (00h)RW
7	Reserved always reads 0
6	Force Software Reset
	Setting this bit resets the MAC. This bit functions
	differently from Rx09[7] in that when Rx09[7] is set,
	the MAC will reset only after all state machines are
	in idle mode (all on-going transactions have been
	completed). When this bit is set, the MAC will be
	reset regardless of the status of the state machines.
	This bit is used when Rx09[7] cannot force a reset
	due to issues with the state machines.
	0 Normal default
_	1 Force Reset
5 4-1	Reserved (Do Not Program)
4-1 0	Reserved always reads 0 Soft Timer 1 Enable
U	0 Disabledefault
	1 Enable timer to count

	83 – Sticky Hardware Control (00h)RW
7	Legacy WOL Status (for software reference) RO
	This bit reports whether legacy WOL is supported.
	0 Disabledefault
	1 Enable
6-4	Reserved always reads 0
3	Legacy WOL StatusRO
	This bit is set when there is a legacy WOL event.
	0 No legacy WOL event occurred default
	1 Legacy WOL event occurred
2	Legacy WOL Enable
	This bit controls whether legacy WOL is a wake
	event.
	0 Disable (if a wake event is detected (bit- $3 = 1$),
	PME# will not be asserted)default
	1 Enable (if a wake event is detected (bit- $3 = 1$),
	PME# will be asserted)
1-0	Sticky DS Shadow
	This field reports the current power management
	state of the device.
	00 D0 State default
	01 D1 State
	10 D2 State
	11 D3 State

Offset 84 – MII Interrupt Status (00h)	Offset 8D-8C – Flash Address
7 Power Event Report in Test Mode (RO) def = 0 6 User Defined Host Driven Interrupt def = 0 5 Reserved	15-0 Flash Address [15:0]
7 Interrupt on MII Interrupt Status (Rx84) Bit-7 6 Interrupt on MII Interrupt Status (Rx84) Bit-6 5 Reserved	address specified in Rx8D-8C will be read and stored in Rx91). Offset 91 – Flash Write Data In

Offset 95-94 - Suspend Mode MII Address (0000h)RW

15-0 MII Address During Suspend default = 0 Functionally, this field is the same as Rx71[4:0]. However, during suspend state this field is used because Rx71[4:0] cannot be accessed.

Offset 96 - Suspend Mode PHY Address (00h).....RW

PHY Address During Suspend default = 0 This field stores the address of the PHY to access during suspend state. This field selects the PHY while Rx95-94 selects the specific register within the PHY.

Offset 9	99-98 – Pause Timer (0000h)RW
7-0	Pause Timer Value
	send a pause frame to the transmitting side (generally a switch) to request a pause. The length of pause time is determined by this field.
Offset 9	9A – Pause Status (00h) RW
7-1	Reserved always reads 0
0	Pause Status
	0 Not pauseddefault
	1 Paused
Offset 9	9D-9C – Soft Timer 0 (0000h) RW
7-0	Soft Timer 0 Count Value default = 0 This field reports the count value of soft timer 0.
Offset 9	9F-9E – Soft Timer 1 (0000h)RW
7-0	Soft Timer 1 Count Value default = 0 This field reports the count value of soft timer 1.

Offset A0 – Wake On LAN Control Set (00h).....RW Offset A4 – Wake On LAN Control Clear (00h)....RW

- 7 **Link Off Detected** (determines whether the system wakes up from link off detection)
- **6 Link On Detected** (determines whether the system wakes up from link <u>on</u> detection)
- 5 Magic Packet Filter (determines whether the system wakes up when a Magic Packet is detected)
- 4 Unicast Filter (determines whether the system wakes up when a Unicast Packet is detected)
- 3 CRC3 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC3 pattern is detected)
- 2 CRC2 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC2 pattern is detected)
- 1 CRC1 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC1 pattern is detected)
- O CRCO Pattern Match Filtering (determines whether the system wakes up when packet matching CRCO pattern is detected)

All bits above:

0 Disabledefault

1 Enable

Offset A1 – Power Configuration Set (00h)RW Offset A5 - Power Configuration Clear (00h).....RWalways reads 0 Reserved 7-6 WOL Type 5 0 Driven by Level default 1 Driven By Pulse Legacy WOL 4 0 Disabledefault Enable always reads 0 Reserved 3-2 **Reserved (Do Not Program)**.....default = 0

Offset A3 – Wake On LAN Configuration Set (00h)..... RW Offset A7 – Wake On LAN Configuration Clear (00h). RW

- 7 Force Power Management Enable over PME Enable Bit (Legacy Use Only)
- 6 Full Duplex During Suspend
- 5 Accept Multicast During Suspend

This bit controls whether multicast packets are accepted during suspend state. Whether a multicast packet will actually wake up the system depends on whether the packet is a type of packet set to wake up the system, as determined by RxA0[5:0].

4 Accept Broadcast During Suspend

This bit controls whether broadcast packets are accepted during suspend state. Whether a broadcast packet will actually wake up the system depends on whether the packet is a type of packet set to wake up the system, as determined by RxA0[5:0].

3 MDC Acceleration

1

Enable

2 Extend Clock During Suspend

When enabled, the clock to the PHY is sent prior to the start of data to allow more time for the PHY to return to ready state.

1-0 Reserved always reads 0
All bits above:
0 Disable default

 Offset BB-B8 – Pattern CRC2
 RW

 127-0
 CRC2 Pattern
 default = 0

 Offset BF-BC – Pattern CRC3
 RW

127-0 CRC3 Patterndefault = 0

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT8235M Version CD is indicated in the following block diagram:

Figure 3. Power Management Subsystem Block Diagram

Refer to ACPI Specification v2.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT8235M Version CD supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the Processor Level 2 register (PMIO Rx14) is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the Processor Level 3 register (PMIO Rx15) is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT8235M Version CD. If the Host Stop bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the Throttle Enable bit to 1, the duty cycle defined in Throttle Duty Cycle (PMIO Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THRM# Duty Cycle (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT8235M Version CD. The first power plane (VSUS33) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VSUS33 and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT8235M Version CD is powered by VCC. The amount of logic powered by VSUS33 is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT8235M Version CD supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the Host Stop bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT8235M Version CD. As to the PCI bus, setting the PCLK Run bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be de-activated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI STP bit is enabled. When the system resumes from POS, the VT8235M Version CD can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (e.g., VSUS25 of the P4X400) and the suspend logic of the VT8235M Version CD (VSUS33).
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT8235M Version CD (VSUS33).
- **Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the Sleep Enable bit to 1. Three power plane control signals (SUSA#, SUSB# and SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT8235M Version CD.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT8235M Version CD includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT8235M Version CD offers many general-purpose I/O ports with the following capabilities:

- I²C / SMB Support
- Thermal Detect
- Notebook Lid Open / Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT8235M Version CD provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- 1) **ACPI-required Fixed Events** defined in the PM1a Status and PM1a Enable registers. These events can trigger either SCI or SMI depending on the SCI Enable bit:
 - PWRBTN# Triggering
 - · RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP Status and GP SCI Enable, and GP SMI Enable registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the Global Status and Global Enable registers. These registers are mainly used for SMI:
 - · PCI Bus Clock Run Resume
 - · Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - · Secondary Event Timer Time Out
 - Occurrence of Primary Events
 (defined in the Primary Activity Status and Primary Activity Enable registers)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VSUS-based events. Event logic resides in the VSUS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 4. System Block Diagram Using the P4X400 North Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT8235M Version CD includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events **Conserve Mode Timer**: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP Timer Count).
- 2) Then activate counting by setting the GP0 Start or GP1 Start bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0 Timeout Enable and GP1 Timeout Enable in the Global Enable register) with status recorded (GP0 Tomeout Status and GP1 Timeout Status in the Global Status register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the Primary Activity Status and Primary Activity Enable registers:

Bit Event
7 Keyboard Access
6 Serial Port Access
1/O port 60h
1/O ports 3F8h-3FFh, 2F8h-2FFh, 3E8h-3EFh, or 2E8h-2EFh
5 Parallel Port Access
4 Video Access
1/O ports 378h-37Fh or 278h-27Fh
1/O ports 3B0h-3DFh or memory A/B segments
1/O ports 1F0h-1F7h, 170h-177h, or 3F5h

2 Reserved

1 **Primary Interrupts** Each channel of the interrupt

controller can be programmed to be a primary or secondary interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the Primary Activity Enable register to 1. If enabled, the occurrence of the primary event reloads the

GP0 timer if the Primary Activity GP0 Enable bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of Primary Activity Status register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0 Timeout Enable bit in the Global Enable register to one) to trigger an SMI to switch the system to a power down mode.

The VT8235M Version CD distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT8235M Version CD allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the Primary IRQ Channel and Secondary IRQ Channel registers. Secondary interrupts are the only system secondary events defined in the VT8235M Version CD.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ Enable bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the Primary Activity Enable bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT8235M Version CD through the GP1 timer. The following four categories of peripheral events are distinguished (via the GP Reload Enable register):

Bit-7 Keyboard Access
Bit-6 Serial Port Access
Bit-4 Video Access
Bit-3 IDE/Floppy Access

The four categories are subsets of the primary events as defined in Primary Activity Enable and the occurrence of these events can be checked through a common register Primary Activity Status. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Comment
T_{S}	Storage Temperature	-55	125	°C	
$T_{\rm C}$	Case Operating Temperature	0	85	°C	
V _{CC}	Core Voltage	-0.5	2.625	Volts	2.5V (VT8233A Version CE / VT8235ML is 3.3V Core)
V_{SUS25}	Suspend Voltage – 2.5V	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{SUSUSB}	Suspend Voltage – USB	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{SUSMII}	Suspend Voltage – LAN	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCVK}	V-Link Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCPLL}	PLL Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCUPLL}	USB PLL Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CC LAN}	RAM Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V_{CC33}	I/O Voltage	-0.5	3.6	Volts	3.3V
V_{SUS33}	Suspend Voltage – 3.3V	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V _{CCUSB}	USB Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V _{CCMII}	LAN Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V_{BAT}	Battery Voltage	$V_{CC33} - 0.9$	$V_{CC33} + 0.3$	Volts	3.3V
V _{VLVREF}	Reference Voltage – V-Link	-0.5	V _{CCVK} * 0.38	Volts	0.9V
	Input voltage (3.3V only inputs)	-0.5	$V_{CC33} + 0.3$	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, SMBCK1-2, SMBDT1-2

Note: Stress above the conditions listed may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

$$T_{\rm C} = 0 - 85^{\circ}{\rm C}$$

$$V_{CC} = V_{SUS25} = V_{SUSUSB} = V_{SUSMII} = V_{CCVK} = V_{CCPLL} = V_{CCUPLL} = V_{CCLAN} = 2.5V \pm 5\%,$$

$$V_{CC33} = V_{SUS33} = V_{CCUSB} = V_{CCMII} = 3.3V \pm 5\%, \ V_{BAT} = 3.3V + 0.3 \ / \ -0.9V, \ V_{VLVREF} = 0.9V \pm 5\%, \ GND = 0V + 0.00 \ / \ -0.9V + 0.00 \ / \ -0.00 \ / \ -0.00 \ / \ -0.00 \ / \ -0.00 \ / \ -0.00 \ / \ -0.00 \ / \ -0.0$$

Symbol	Parameter	Min	Max	Unit	Condition
$V_{ m IL}$	Input low voltage	-0.5	0.8	V	
V_{IH}	Input high voltage	2.0	$V_{CC33} + 0.3$	V	
V_{OL}	Output low voltage	_	0.45	V	$I_{OL} = 4.0 \text{mA}$
V_{OH}	Output high voltage	2.4	ı	V	$I_{OH} = -1.0 \text{mA}$
I_{IL}	Input leakage current	-	±10	uA	$0 < V_{IN} < V_{CC33}$
I_{OZ}	Tristate leakage current	_	±20	uA	$0.45 < V_{OUT} < V_{CC33}$

Register Bits Powered by VBAT

Register	Description
RTC Rx0D[7]	VBAT Voltage OK
F0 Rx96[3:0]	CPU Frequency Strapping Value
PMIO Rx20[0]	GPI0 Status
PMIO Rx20[6]	INTRUDER# Status
PMIO Rx22[2]	Enable SCI on KBC PME Asserted

Register Bits Powered by VSUS25

Register	Description
F0 Rx81[2]	RTC Enable Gated During Soft Off
F0 Rx94[7:0]	Power Well Control Register
F0 Rx95[3:0]	Misc Power Well Control Register
PMIO Rx00[15,11,10,8]	Wake, Abnormal PowerOff, RTC Alarm, and Power Button Status bits
PMIO Rx02[10,8]	RTC Alarm and Power Button Enables
PMIO Rx04[12:10]	Sleep Type
PMIO Rx20[13,11,9:8,5:2]	AC97 Wakeup, LID, USB Resume, Ring, PME#, EXTSMI#, LAN PME, and KBC PME Status bits
PMIO Rx22[13,11,8,6:3,1:0]	SCI on corresponding bits of PMIO Rx20
PMIO Rx24[13,11,8,6:3,1:0]	SMI on corresponding bits of PMIO Rx20
PMIO Rx2C[7,5,2]	LID polarity, Battery Low Resume Disable, Power Button triggering select
PMIO Rx4C[4:0]	GPO 4:0 Output Value

PACKAGE MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications – 487 Pin Ball Grid Array Package

Figure 6. Lead-Free Mechanical Specifications – 487 Pin Ball Grid Array Package