Giảng viên ra đề: Ngày ra đề: 15/07/2020	Người phê duyệt: Ngày duyệt đế: 16/07/2020
. 0	P.Truởng BM
Topul	M
ThS Nguyễn Thị Xuân Anh	/ /
Ins Nguyen Ini Auan Ann	TS. Trần Ngọc Diễm

(phần phía trên cần che đi khi in sao để thi)

TRƯỚNG ĐH BÁCH KHOA – ĐHQG-HCM			Học kỳ/năm học Ngày thi		2 2019-2020 20/07/2020	
	Môn học	Giải tích 2				
	Mã môn học	MT1005				
	Thời lượng	100 phút C	CA THI	CA 1		

Ghi - Đề thi có 10 câu được in trên 2 mặt 1 tờ giấy A4.

chú: - Sinh viên KHÔNG ĐƯỢC sử dụng tài liệu.

- Nộp lại đề thi cùng với bài làm

<u>Câu</u>1: (1d) L.O.1

Cho hàm số $f(x,y)=x^2-2y^2+2x$ có đồ thị là mặt cong S. Tìm điểm M trên mặt S sao cho tiếp diện của mặt S tại M vuông góc với trực Oz.

$\underline{Câu}$ 2: (1d) L.O.3

Cho đường cong C là giao tuyến của nửa mặt cầu $z=\sqrt{4-x^2-y^2}$ với mặt trụ $x^2+y^2=2x.$ Tính độ dài của đường cong C.

<u>Câu</u>3: (1d) L.O.3

Trong mặt phẳng Oxy cho C là đoạn thẳng nối từ điểm (x_1, y_1) đến điểm (x_2, y_2) .

Chứng minh: TẠI LIỆU SƯU TẬP $\int\limits_C x dy - y dx = x_1 y_2 - x_2 y_1.$ BƠI HCMUT-CNCP

<u>Câu</u>4: (2đ) L.O.3

Cho tứ diện Ω giới hạn bởi 4 mặt phẳng x=0,y=0,z=0,x+y+z=2. Chia Ω thành 2 phần Ω_1,Ω_2 bởi mặt trụ parabol $y=x^2$.

a/ Tính thể tích Ω_1, Ω_2 .

b/ Nếu khối Ω có khối lượng riêng tại mọi điểm đều là hằng số, thể tích khối là $V(\Omega)$ thì tọa độ trọng tâm G của khối được tính bởi công thức:

$$x_G = \frac{1}{V(\Omega)} \iiint\limits_V x dx dy dz, y_G = \frac{1}{V(\Omega)} \iiint\limits_V y dx dy dz, z_G = \frac{1}{V(\Omega)} \iiint\limits_V z dx dy dz.$$

Tìm tọa độ trọng tâm tứ diện Ω .

<u>Câu</u> 5: (**1đ**) L.O.3

Một cái phễu bằng kim loại mỏng có hình dạng là một phần mặt nón $z=\sqrt{x^2+y^2}$ ứng với $0.5 \le z \le 4$. Tính khối lượng phễu, biết mật độ tại điểm (x,y,z) trên mặt nón là: $\rho(x,y,z)=14-x-2z$ (bỏ qua các đơn vị tính).

<u>Câu</u> 6 : (1đ) L.O.3 Tính tích phân $I=\iint_S xydydz+\left(y^2+xe^z\right)dzdx+2yzdxdy$ với mặt S là phần mặt trụ $z=1-x^2$ bị cắt bởi 3 mặt phẳng y=0,z=0,y+z=2, lấy phía dưới theo hướng trục Oz.

Câu 7 : (1đ) L.O.3 Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{(-3n)^{n+1}}.$

 $\begin{array}{l} \underline{\mathbf{Câu}} \; 8: \; (\mathbf{2d}) \; \mathrm{L.O.3} \\ & \mathrm{Cho} \; \mathrm{chuỗi} \; \mathrm{l\~uy} \; \mathrm{th\`ua:} \sum_{n=1}^{\infty} \left(2 + \frac{1}{(-3)^{n-1}}\right) (2x-1)^n. \\ & \mathrm{a/} \; \mathrm{T\`im} \; \mathrm{miền} \; \mathrm{hội} \; \mathrm{tự} \; D \; \mathrm{c\'ua} \; \mathrm{chuỗi} \; \mathrm{l\~uy} \; \mathrm{th\`ua} \; \mathrm{trēn.} \\ & \mathrm{b/} \; \mathrm{T\`im} \; \mathrm{tắt} \; \mathrm{c\'a} \; \mathrm{c\'ac} \; \mathrm{gi\'a} \; \mathrm{trị} \; x \in D \; \mathrm{sao} \; \mathrm{cho} \; \sum_{n=2}^{\infty} \left(2 + \frac{1}{(-3)^{n-1}}\right) (2x-1)^n = 1 \end{array}$

ĐÁP ÁN

Câu 1 Vecto pháp của mặt S tại (x, y, z) là $\overrightarrow{n} = (-2x - 2, 4y, 1)$ (0.25), \overrightarrow{n} song song với trục Oz (0.25) $\leftrightarrow \overrightarrow{n} = k(0, 0, 1) \leftrightarrow x = -1, y = 0$. (0.25) Vậy M(-1, 0, -1) (0.25)

Câu 2 Lưu ý: Nếu dùng t
p Mặt hoặc tham số hóa z=z(x), không tính y thì KHÔNG CHO ĐIỂM

PT tham số của $C: x = 1 + \cos t, y = \sin t, z = \sqrt{2 - 2\cos t}, 0 \le t \le 2\pi$ (0.5), độ dài C là $I = \int_{C} dl = \int_{0}^{2\pi} \sqrt{1 + \frac{\sin^2 t}{2 - 2\cos t}} dt$ (0.25) = 7.643 (0.25)

Câu 3 pt $C: x = x_1 + t(x_2 - x_1), y = y_1 + t(y_2 - y_1), t: 0 \to 1$ (0.5) nên $VT = \int_{0}^{1} (x_1 + t(x_2 - x_1))(y_2 - y_1) dt - (y_1 + t(y_2 - y_1))(x_2 - x_1) dt = x_1 y_2 - x_2 y_1$ (0.5)

Lưu ý: Nếu để $0 \le t \le 1$ (tức là không có hướng) thì cho 0.5đ nếu đúng kết quả

 $\begin{aligned} & \text{Ket quá} \\ & \text{Câu 4 a} / V(\Omega_1) = \int\limits_0^1 dx \int\limits_{x^2}^{2-x} dy \int\limits_0^{2-x-y} dz \; \textbf{(0.25)} = \frac{17}{20}, \; \textbf{(0.25)} V(\Omega) = \frac{1}{3}.2.\frac{1}{2}.2.2 = \frac{4}{3} \; \textbf{(0.25)} \\ & V(\Omega_2) = V(\Omega) - V(\Omega_1) = \frac{4}{3} - \frac{17}{20} = \frac{29}{60} \; \textbf{(0.25)} \end{aligned}$

Lưu ý: Nếu chỉ đúng cận tp, sai kết quả thì cho tối đa 50% điểm của tp đó

b/
$$x_G = \frac{3}{4} \int_0^2 dx \int_0^{2-x} dy \int_0^{2-x-y} \mathbf{E} \mathbf{U} \mathbf{S} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{P} = \frac{3}{4} \int_0^2 dx \int_0^{2-x} dy \int_0^{2-x-y} y dz = \frac{1}{2} \mathbf{(0.25)} \ z_G = \frac{3}{4} \int_0^2 dx \int_0^{2} dx \int_0^{2-x-y} dy \int_0^{2-x-y} z dz = \frac{1}{2} \mathbf{(0.25)}$$

Câu 5
$$m = \iint_{S} \rho(x, y, z) ds$$
 (0.25) $= \iint_{D} (14 - x - 2\sqrt{x^2 + y^2}) \sqrt{2} dx dy, D : 0.25 \le x^2 + y^2 \le 16$ (0.25) $= \sqrt{2} \int_{0}^{2\pi} d\varphi \int_{0.5}^{4} r(14 - r\cos\varphi - 2r) dr$ (0.25) $\approx 601.27 \left(= \frac{406\sqrt{2}}{3}\pi \right)$ (0.25)

Nếu là tp bội ba thì KHÔNG CHO ĐIỂM

Câu 6
$$\overrightarrow{n} = -\frac{(2x,0,1)}{\sqrt{4x^2+1}}$$
 hoặc $\overrightarrow{n} = \left(1,0,\frac{-1}{\sqrt{1-z}}\right)$
(0.25), $I = \iint_{S} -\frac{2x^2y+2yz}{\sqrt{4x^2+1}} ds$ (0.25)
Cách 1: $I = -\iint_{D_{xy}} \left(2x^2y+2y(1-x^2)\right) dxdy$, $D_{xy}: x = -1, x = 1, y = 0, y = 1+x^2$
(0.25) $= -\frac{56}{15}$ (0.25)

Cách 2:
$$I = -2 \iint_{D_{yz}} \frac{y}{\sqrt{1-z}} dy dz$$
, $D_{yz} : z = 0, z = 1, y = 0, y = 2-z$ (0.25) $= -\frac{56}{15}$ (0.25)

Lưu ý: Nếu không nói rõ về phía của mặt cong thì cho tối đa 0.5 điểm

Câu 7
$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{(2n+1)n^{n+1}}{3(n+1)^{n+2}}$$
 (0.5) $= \frac{2n+1}{3(n+1)} \left(\frac{n}{n+1} \right)^{n+1} \rightarrow \frac{2}{3} e^{-1}$ (0.25) HT (0.25) Lưu Ý: Nếu không có trị tuyết đối chỉ cho tối đa 0.5 điểm

Câu 8 a/
$$X = 2x - 1, R = \frac{1}{\lim \sqrt[n]{|a_n|}} = 1$$
, HOẶC $X = x - 1/2, R = \frac{1}{\lim \sqrt[n]{|a_n|}} = 1/2$
(0.5) $\sum_{n=1}^{\infty} \left(2 + \frac{1}{(-3)^{n-1}}\right), \sum_{n=1}^{\infty} \left(2 + \frac{1}{(-3)^{n-1}}\right) (-1)^n$ PK theo đkcsht (0.5) Kết luận MHT $D = (0,1)$ (0.25)
b/ $S(x) = \sum_{n=2}^{\infty} \left(2 + \frac{1}{(-3)^{n-1}}\right) (2x - 1)^n = 2\sum_{n=2}^{\infty} (2x - 1)^n + (-3)\sum_{n=2}^{\infty} \left(\frac{2x - 1}{-3}\right)^n$
(0.25) $S(x) = 2\frac{(2x - 1)^2}{1 - (2x - 1)} - 3\frac{\left(\frac{2x - 1}{-3}\right)^2}{1 - \frac{2x - 1}{-3}} = \frac{(2x - 1)^2(-2 - 6x)}{4x^2 - 4}$ (0.25)
 $S(x) = 1 \leftrightarrow x \approx 0.756$ (0.25)

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP