

Implementing VLANs and Trunks

Issues in a Poorly Designed Network

- Unbounded failure domains
- Large broadcast domains
- Large amount of unknown
 MAC unicast traffic
- Unbounded multicast traffic
- Management and support challenges
- Possible security vulnerabilities

VLAN Overview

- Segmentation
- Flexibility
- Security

VLAN (Virtual LAN) = Broadcast Domain = Logical Network (Subnet)

Network Traffic Types

Traffic types to consider when designating VLANs:

- Network management
- IP telephony
- IP Multicast
- Normal data
- Scavenger class

Designing VLANs for an Organization

 VLAN design must take into consideration the implementation of a hierarchical network addressing scheme.

- The benefits of hierarchical addressing are:
 - Ease of management and troubleshooting
 - Minimization of errors
 - Reduced number of routing table entries

Guidelines for Applying IP Address Space

- Allocate one IP subnet per VLAN.
- Allocate IP address spaces in contiguous blocks.

VLAN Creation Guidelines

- The maximum number of VLANs is switch-dependent.
- Most Cisco Catalyst desktop switches support 128 separate spanningtree instances, one per VLAN.
- VLAN 1 is the factory default Ethernet VLAN.
- Cisco Discovery Protocol and VTP advertisements are sent on VLAN 1.
- The Cisco Catalyst switch IP address is in the management VLAN (VLAN 1 by default).
- If using VTP, the switch must be in VTP server or transparent mode to add or delete VLANs.

Adding a VLAN

```
SwitchX# configure terminal
SwitchX(config)# vlan vlan-id
SwitchX(config-vlan)# name vlan-name
```

Example:

```
SwitchX# configure terminal
SwitchX(config)# vlan 2
SwitchX(config-vlan)# name switchlab99
```

Assigning Switch Ports to a VLAN

```
SwitchX(config-if)# switchport mode access
SwitchX(config-if)# switchport access vlan vlan-id
```

Example:

```
SwitchX# configure terminal
SwitchX(config)# interface fastethernet0/2
SwitchX(config-if)# switchport mode access
SwitchX(config-if)# switchport access vlan 2
```

```
SwitchX(config)# interface range fastethernet 0/3 - 5
SwitchX(config-if-range)# switchport mode access
SwitchX(config-if-range)# switchport access vlan 2
```

Or:

```
SwitchX(config) # interface range fastethernet0/3-5
```

Verifying VLAN Membership

SwitchX# show vlan [brief | id vlan-id || name vlan-name]

SwitchX# show vlan brief						
VLAN	Name	Status	Ports			
1	default	active	Fa0/1, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20			
2	switchlab99	active	Fa0/21, Fa0/22, Fa0/23, Fa0/24 Fa0/2, Fa0/3, Fa0/4, Fa0/5			
1002	fddi-default	act/unsup				
	token-ring-default	act/unsup				
	fddinet-default trnet-default	act/unsup act/unsup				

Verifying VLAN Membership (Cont.)

SwitchX# show interfaces interface switchport

```
SwitchX# show interfaces fa0/2 switchport
Name: Fa0/2
Switchport: Enabled
Administrative Mode: dynamic auto
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 2 (switchlab99)
Trunking Native Mode VLAN: 1 (default)
--- output omitted ----
```

Verifying a VLAN

SwitchX# show vlan [brief | id vlan-id || name vlan-name]

```
SwitchX# show vlan id 2
VLAN Name
                                Status Ports
2 switchlab99
                                active Fa0/2, Fa0/3,
Fa0/4, Fa0/5
VLAN Type SAID MTU Parent RingNo BridgeNo Stp
BrdgMode Trans1 Trans2
2 enet 100002 1500 - - -
SwitchX#
```

Trunking

Trunking (Cont.)

Encapsulation Types

- 802.1Q (dot1Q) and ISL (Inter-Switch Link) are two types of encapsulation that are used to carry data from multiple VLANs over trunk links (VLAN tagging).
 - 802.1Q is the IEEE standard for tagging frames on a trunk.
 - ISL is a Cisco proprietary protocol for the interconnection of multiple switches and maintenance of VLAN information as traffic goes between switches.

802.1Q Frame

ISL Encapsulation

Understanding Native VLANs

Understanding Native VLANs (Cont.)

Native VLAN Mismatch

802.1Q Trunking Issues

- Make sure that the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link.
- Note that native VLAN frames are untagged.
- A trunk port cannot be a secure port.
- All 802.1Q trunking ports in an EtherChannel group must have the same configuration.

Dynamic Trunking Protocol (DTP)

- The Dynamic Trunking Protocol (DTP) is used to negotiate forming a trunk between two Cisco devices.
- DTP is a Cisco proprietary protocol. Switches from other vendors do not support DTP.
- DTP causes increased traffic, and is enabled by default, but may be disabled.
- DTP manages trunk negotiation only if the port on the neighbor switch is configured in a trunk mode that supports DTP.
- To enable trunking from a Cisco switch to a device that does not support DTP, use the switchport mode trunk and switchport nonegotiate interface configuration mode commands. This causes the interface to become a trunk but not generate DTP frames.

Negotiated Interface Modes

- **switchport mode access**: The interface becomes a <u>nontrunk</u> interface, regardless of whether the neighboring interface is a trunk interface.
- switchport mode dynamic auto: Makes the interface able to convert the link to a trunk link. The default switchport mode for newer Cisco switch Ethernet interfaces is dynamic auto.
- switchport mode dynamic desirable: Makes the interface actively attempt to convert the link to a trunk link. This is the default switchport mode on older switches, such as the Catalyst 2950 and 3550 Series switches.
- switchport mode trunk: Puts the interface into permanent trunking mode and negotiates to convert the neighboring link into a trunk link.
- **switchport nonegotiate**: Prevents the interface from generating DTP frames. You can use this command only when the interface switchport mode is access or trunk. You must manually configure the neighboring interface as a trunk interface to establish a trunk link.

Trunking Modes

	Dynamic Auto	Dynamic Desirable	Trunk	Access
Dynamic Auto	Access	Trunk	Trunk	Access
Dynamic Desirable	Trunk	Trunk	Trunk	Access
Trunk	Trunk Trunk		Trunk	Limited Connectivity
Access	Access	Access	Limited Connectivity	Access

Configuring 802.1Q Trunking

```
SwitchX(config-if)#
```

```
switchport trunk encapsulation {dot1q | isl}
```

Configures the trunking encapsulation

```
switchport mode {access| dynamic{auto|desirable}| trunk}
```

Configures the trunking characteristics of the port

Example:

```
SwitchX(config) #interface Fa0/24
SwitchX(config-if) #switchport trunk encapsulation dot1q
SwitchX(config-if) #switchport mode trunk
```


Verifying a Trunk

SwitchX# show interfaces interface [switchport | trunk]

```
SwitchX# show interfaces fa0/24 switchport
Name: Fa0/24
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
. . . .
```

```
SwitchX# show interfaces trunk

Port Mode Encapsulation Status Native vlan trunking 1

Port Vlans allowed on trunk 1-4094

Port Vlans allowed and active in management domain 1-13
```

End-to-End VLANs

- Users are grouped into VLANs independent of physical location.
- If users are moved within the campus, their VLAN membership remains the same.

Local VLANs

- Users are grouped into VLANs depending of physical location.
- If users are moved within the campus, their VLAN membership changes.

VTP Features

VTP (VLAN Trunking Protocol)

VTP Modes

VTP Operation

- VTP advertisements are sent as multicast frames.
- VTP servers and clients are synchronized to the latest <u>revision number</u>.
- VTP advertisements are sent every 5 minutes or when there is a change.

VTP Pruning

VTP Configuration Guidelines

- VTP defaults for the Cisco Catalyst switch:
 - VTP domain name: None
 - VTP mode: Server mode
 - VTP pruning: Enabled or disabled (model specific)
 - VTP password: Null
 - VTP version: Version 1
- A new switch can automatically become part of a domain once it receives an advertisement from a server.
- A VTP client can overwrite a VTP server database if the client has a higher revision number.
- A domain name cannot be removed after it is assigned; it can only be reassigned.

Creating a VTP Domain

```
SwitchX# configure terminal
SwitchX(config)# vtp mode [server | client | transparent]
SwitchX(config)# vtp domain domain-name
SwitchX(config)# vtp password password
SwitchX(config)# vtp pruning
SwitchX(config)# end
```

VTP Configuration and Verification Example

```
SwitchX(config) # vtp domain ICND
Changing VTP domain name to ICND
SwitchX(config) # vtp mode transparent
Setting device to VTP TRANSPARENT mode.
SwitchX(config)# end
SwitchX# show vtp status
VTP Version
Configuration Revision
Maximum VLANs supported locally: 64
Number of existing VLANs
                                : Transparent
VTP Operating Mode
VTP Domain Name
                                : ICND
                                : Disabled
VTP Pruning Mode
VTP V2 Mode
                               : Disabled
VTP Traps Generation
                              : Disabled
                                : 0x7D 0x6E 0x5E 0x3D 0xAF 0xA0 0x2F
MD5 digest
0xAA
Configuration last modified by 10.1.1.4 at 3-3-93 20:08:05
SwitchX#
```

Executing Adds, Moves, and Changes for VLANs

- When using VTP, the switch must be in VTP server or transparent mode to add, change, or delete VLANs.
- When you make VLAN changes from a switch in VTP server mode, the change is propagated to other switches in the VTP domain.
- Changing VLANs typically implies changing IP networks.
- After a port is reassigned to a new VLAN, that port is automatically removed from its previous VLAN.
- When you delete a VLAN, any ports in that VLAN that are not moved to an active VLAN will be unable to communicate with other stations.

#