

Nome: Maikon Andrei de Oliveira Vieira - 49253_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	75.66	75.34	75.52	75.46	75.2	75.35	75.06	75.59	75.48
A	Medição 2	75.35	75.86	75.46	75.55	75.37	75.46	75.38	75.53	75.62
	Medição 3	75.47	75.89	75.9	75.55	75.58	75.13	75.41	75.57	75.51
	Medição 1	75.33	75.37	75.52	75.22	75.64	75.47	75.9	75.72	75.44
В	Medição 2	75.57	75.62	75.09	75.71	75.31	75.48	75.34	75.81	75.35
	Medição 3	75.5	75.45	75.4	75.93	75.59	75.42	75.08	75.62	75.39
	Medição 1	75.64	75.39	75.27	75.33	75.51	75.19	75.23	75.45	75.48
$\mid C \mid$	Medição 2	75.51	75.02	75.29	75.74	75.55	75.53	75.61	75.5	75.63
	Medição 3	75.37	75.53	75.87	75.84	75.09	75.08	75.99	75.55	75.12

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.2	4.7	5.93	6.6	7.17	8.19	8.46	9.68

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 21°C e 25°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	11.24	8.4	9.1	9.81	10.39	8.11	9.94	8.17
$I_a (mA)$	111.647	83.023	90.573	98.679	102.994	80.299	99.813	82.495

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Incerteza
$\pm (0.8\% + 3D)$
$\pm (1.2\% + 4D)$
$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.