Lecture 7 - Local destornation conditions, continued

Table K/Op Pmile,
$$\Gamma = G_{K}$$

$$\overline{C}_{K} \Rightarrow GL_{2}(IF) \quad \overline{C} = (\overline{C}_{K}, \overline{Z}_{k})$$

$$\Rightarrow \overline{A}_{1} = 1, \quad \overline{X}_{2} |_{I_{K}} \neq 1$$

$$\overline{X}_{1} \overline{X}_{2} = 1 \neq \overline{E}_{p}$$

Chass som V: Ixin = Ox litting Tel Tu cuel consider the clos problem Doid: CWLO > SETS from lost time, A > Slits p to A sh. Q is strictly equive to (x, x) with Nilia 1, Xel I = Y)

We saw last tons that Dord is supol by Rand & CNLO-

Goal: Under the above assumptions, Roll = O[x1,-,xgl, g=4+[K=8p]

First, let l be any prime and let L/Q_l be finish. Let V be a find of F-vact sp with $d = G_L$ -action. Let V^* be its dual space and let $V^*(1) = V^* \otimes \overline{G}_p$.

Thm (Local Tate duality) For any C = 3 = 2, $H^{1}(G_{L}, V) \cong H^{2-1}(G_{L}, V^{*}(L))^{*}$

Im (Local Enl., characteristic)

2 (-1) ding H (Gz, V) = { [L: 8] ding V if l= p

When $V=col_{\overline{D}}$, the pointing $(X,Y)\mapsto fr(XY)$ is perfect an $ad\overline{D}$, so $(od\overline{D})(1)=ad\overline{D}(1)$.

Prop (Indu our assumptions of or, Don's formally smoothy i.s. for any A & As ad ideal Is A & L I'-O, the map Dond (A) -> Dond (A/I) is supertive.
A & As and ideal I & A & L. I & C) the wor
[Ord (A/I)
is sujective.
Pred Inducting on the length of I, we can assure $I = (I)$ is principal annihilated by may so $I = I = I = I = I = I = I = I = I = I $
One annihilated by may so I = IF as an O-red.
(aho O'S) (A/I). WLOG, No Con wiste
$O' = \begin{pmatrix} x_1' & b \end{pmatrix} \qquad \begin{cases} x_1' \mid I_{k} = 1 \\ 1 \end{cases} \qquad \begin{cases} x_2' \mid I_{k} = 1 \\ 1 \end{cases}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
16 / 1 / 500 M Q 11/13
It only somains to show we can lift the cocycle to a $b \in \mathbb{Z}^2(G_k, A(x_1 x_2^{-1}))$
Since we can let any cohomology it suffices to show And
Since we can lift any cohomology, it suffices to show that $H^{2}(G_{k}, A(x, x_{k}^{\prime})) \rightarrow H^{1}(G_{k}, (A/I)(x, x_{k}^{\prime}))$
is swingely. The coknownal is
$H^2(G_{\kappa}, \mathcal{I}(x_1x_2^{-1})) \cong H^2(G_{\kappa}, F(\overline{x}, \overline{x}_2^{-1}))$
$\cong H^{\circ}(G_{\nu}, F(\overline{\chi}, \overline{\chi}, \overline{\xi}_{0}))$
$H^{2}(G_{\kappa}, A(x_{1}x_{2}^{\prime})) \rightarrow H^{1}(G_{\kappa}, (A/I)(x_{1}x_{1}^{\prime}))$ is swysching. The cocksonal is $H^{2}(G_{\kappa}, I(x_{1}x_{2}^{\prime})) \cong H^{2}(G_{\kappa}, F(x_{1}, x_{2}^{\prime}))$ $\cong H^{0}(G_{\kappa}, F(x_{1}^{\prime}, x_{2}^{\prime}) \neq G_{\kappa})$ $= C \text{smor} \overline{x_{1}} \overline{x_{2}} \neq G_{\kappa}$
Using some commitative alog applied to CMO, we get
0
Con Rose Olixin, xg I for some go
a = dim + mond (mond, m) = dim (mond (m) an)
g = din = m Roun ((n Round, no) = din = (m Round (m Round, no))* = din = Dound (FEE) = Z1(Gk, odo)