Projekt 1 – instalacja wodna

Wykonał: Karol Mataczyno Indeks: 323542

Projekt wykonałem od najbardziej niekorzystnego punktu nr. 1 który stanowi początek ścieżki głównej do wodomierzy nr. 7. Punkty 8-11 stanowią elementy ścieżki pomocniczej.

Nomogramy wraz z naniesionymi odczytanymi punktami znajdują się na koniec projektu 1.

Projekt pomieszczenia P4 z naniesionym schematem instalacji.

Rys 1. Opracowanie własne

Aksonometria.

Rys 2. Opracowanie własne

Dane, którymi się posługiwałem do wyznaczenia wypływu wody.

Normatywny wypływ wody z punktu czerpalnego

(wg. PN-B-01706:1992)

			Normatywny wypływ wody			
rodzaj punktu czerpalnego		wymagane ciśnienie	miesza	anej ¹⁾	tylko zimnej lub ciepłej	
		[MPa]	q _n zimna, [dm³/s]	q _n ciepła, [dm³/s]	q _n [dm³/s]	
Zawór czerpalny						
bez perlatora 2)	d _n 15	0,05			0,30	
	d _n 20	0,05			0,50	
	d _n 25	0,05			1,00	
z perlatorem	d _n 10	0,10			0,15	
	d _n 15	0,10			0,15	
Płuczka ciśnieniowa	d _n 15	0,12			0,7	
	d _n 20	0,12			1,0	
	d _n 25	0,04			1,0	
Zawór spłukujący pisuarów	d _n 15	0,1			0,3	
Zmywarka do naczyń (domowa)	d _n 15	0,1			0,15	
Pralka automatyczna	d _n 15	0,1			0,25	
Baterie czerpalne:						
dla natrysków	d _n 15	0,1	0,15	0,15		
dla wanien	d _n 15	0,1	0,15	0,15		
dla zlewozmywaków	d _n 15	0,1	0,07	0,07		
dla umywalek	d _n 15	0,1	0,07	0,07		
dla wanien do siedzenia	d _n 15	0,1	0,07	0,07		
Bateria czerpalna z mieszalnikiem	d _n 20	0,1	0,3	0,3		
Płuczka zbiornikowa	d _n 15	0,05			0,13	
1) woda zimna t _z = 15°C, ciepła t _c = 55°C	;					

Tabela 1. Źródło MS Teams.

²⁾ jeżeli zawór z wężem L≤10m, to ciśnienie 0,15 MPa

d_n – średnica nominalna punktu czerpalnego [mm]

Obliczenia wody zimnej

Ścieżka główna

Odcinek	długość	normatywny wypływ wody zimnej	suma qn od początku przewodu	przepływ obliczeniowy	średnica zewnętrzna przewodu	średnica wewnętrzna przewodu	obliczeniowa prędkość przepływu	jednostkowa	liniowe	oporów	miejscowe straty ciśnienia	suma strat ciśnienia L*R+Z
[-]	L [m]	qn [dm^3/s]	∑qn [dm^3/s]	ч [dm^3/s]	Dz[mm]	Dw[mm]	V[m/s]	R[daPa/m]	L*R [m]	Σζ[-]	Z [m]	[m]
1-2	1,01	0,3	0,3	0,26	21,8	20	0,7	110	0,11	3,1	0,08	0,2
2-3	0,92	0,07	0,37	0,29	21,8	20	0,8	150	0,14	0,5	0,02	0,2
3-4	0,96	0,25	0,62	0,41	21,8	20	1,1	250	0,24	0,50	0,03	0,3
4-5	3,61	0,15	0,77	0,47	21,8	20	1,25	300	1,08	1,8	0,14	1,2
5-6	0,19	0,34	1,11	0,57	27,2	25	0,96	135	0,03	0,651	0,03	0,1
6-7	2,23	0,13	1,24	0,61	27,2	25	1	150	0,33	8,5	0,43	0,8
Σ	8,92	1,24										2,7

Ścieżka pomocnicza

		normatywny wypływ	suma qn od początku	przepływ	średnica zewnętrzna	średnica wewnętrzna
Odcinek	długość odcinka	wody zimnej	przewodu	obliczeniowy	przewodu	przewodu
[-]	L [m]	qn [dm^3/s]	∑qn [dm^3/s]	q [dm^3/s]	Dz[mm]	Dw[mm]
5-11	1,06	0,07	0,07	0,07	21,8	20
10-11	1,18	0,07	0,14	0,14	21,8	20
9-10	0,63	0,07	0,21	0,2	21,8	20
8-9	1,26	0,13	0,34	0,28	21,8	20
Σ	4,13	0,34				

Odcinek	element	współczynnik oporów miejscowych
1-2	kolano 90st	1,3
1-2	kolano 90st	
		1,3
	trójnik przelot	0,5
	Σ	3,1
2-3	trójnik przelot	0,5
	Σ	0,5
3-4	trójnik przelot	0,5
	Σ	0,5
4-5	kolano 90st	1,3
	trójnik przelot	0,5
	Σ	1,8
5-6	trójnik przelot	0,5
	zwężenie	0,151
	Σ	0,651
6-7	kolano 90st	1,3
	kolano 90st	1,3
	zawór kulowy	2
	zawór kulowy	2
	zawór zwrotny	1,9
	Σ	8,5

Końcowa strata ciśnienia i dobór wodomierza							
[q] przepływ obliczeniowy = 0,61 dm^3/s							
obl. Przepływ końcowy =	2,2	m^3/h					
2,2m^3/h/0,6 =	3,67	m^3/h	<= q max				
stąd q max =	5	m^3/h					

obliczenia - straty w instalacji					
hw = 10*(2,2/5)^2 =	1,94	m			
wymagane ciśnienie przed punktem					
czerpalnym	0,1	Мра			
różnica wysokości	0,6	m			
strata ciśnienia w układzie					
przygotowania wody	0	m			

Końcowe sprawdzenie						
2,7 + 1,94 + 10 + 0,6 + 0 =	15,19	mH20				
sprawdzenie						
15,19	<= 25,5	mH20				

Warunek jest spełniony

Obliczenia wody ciepłej

Ścieżka główna

Odcinek	długość odcinka	normatywny wypływ wody cieplej	suma qn od początku przewodu	przepływ obliczeniowy	średnica zewnętrzna przewodu	średnica wewnętrzna przewodu	obliczeniowa prędkość przepływu	jednostkowa strata ciśnienia	liniowe straty ciśnienia	suma współczynników oporów miejscowych	miejscowe straty ciśnienia	suma strat ciśnienia
		qn	∑qn									L*R+Z
[-]	L [m]	[dm^3/s]	[dm^3/s]	q [dm^3/s]	Dz[mm]	Dw[mm	V[m/s]	R[daPa/m]	L*R [m]	Σζ[-]	Z [m]	[m]
2-4	1,78	0,07	0,07	0,07	21,3	15	0,375	40	0,07	3,9	0,03	0,10
4-5	3,68	0,15	0,22	0,2	21,3	15	1	300	1,10	2,6	0,14	1,23
5-7	1,98	0,21	0,43	0,33	21,3	15	1,58	780	1,54	8,5	1,06	2,61
Σ	7,44											3,94

Ścieżka pomocnicza

	0		suma qn od początku		średnica zewnętrzna	średnica wewnętrzna
Odcinek	odcinka	ciepłej	przewodu	obliczeniowy	przewodu	przewodu
[-]	L [m]	qn [dm^3/s]	∑qn [dm^3/s]	q [dm^3/s]	Dz[mm]	Dw[mm]
5-11	1,15	0,07	0,07	0,07	21,3	15
10-11	0,78	0,07	0,14	0,14	21,3	15
9-10	1,13	0,07	0,21	0,2	21,3	15
Σ	3,06					

odcinek	element	współczynnik oporów miejscowych
2-4	kolano 90st	1,3
	kolano 90st	1,3
	trójnik przelot	1,3
	Σ	3,9
4-5	kolano 90st	1,3
	trójnik przelot	1,3
	Σ	2,6
5-7	kolano 90st	1,3
	kolano 90st	1,3
	zawór kulowy	2
	zawór kulowy	2
	zawór zwrotny	1,9
	Σ	8,5

Końcowa strata ciśnienia i dobór wodomierza						
[q] przepływ obliczeniowy =	0,33	dm^3/s				
obl. Przepływ końcowy =	1,19	m^3/h				
2,2m^3/h/0,6 =	1,98	m^3/h	<= q max			
stąd q max =	5	m^3/h				

obliczenia - straty w instalacji					
hw = 10*(2,2/5)^2 =	0,57	m			
wymagane ciśnienie przed punktem					
czrpalnym	0,1	Мра			
różnica wysokości	0,4	m			
strata ciśnienia w układzie przygotowania					
wody	3	m			

Końcowe sprawdzenie					
3,94 + 0,57 + 10 + 0,4 + 3 = 17,9 mH20					
sprawdzenie					
17,9 <= 25,5 mH20					

Warunek jest spełniony

Nomogram N-1 wody zimnej wraz z naniesionymi odczytami

Rys. Z-1. Nomogram do obliczania przepływu i strat hydraulicznych w rurach instalacyjnych stalowych średnich, przyk = 1,5 mm i t = 10°C.

Nomogram N-5 wody ciepłej wraz z naniesionymi odczytami

Projekt 2 – instalacja wentylacyjna Wykonał Karol Mataczyno Indeks: 323542

Projekt domu jednorodzinnego o powierzchni ogrzewanej 120m².

Źródło: https://lipinscy.pl/projekt/verona/ dnia 10.05.2023

Tabela przedstawiająca ilości wywiewanego i nawiewanego powietrza z pomieszczeń.

lp.	pomieszczenie	W [m^3/h]	N [m^3/h]
1.1	wiatrołap	15	
1.2	salon		60
	jadalnia z aneksem kuchennym (kuchenka		
1.3	el.)	50	35
1.4	pralnia z C.O.	30	
1.5	korytarz		
1.6	sypialnia 1		20
1.7	sypialnia 2		20
1.8	sypialnia główna		40
1.9	łazienka z WC	50	
1.10	wydzielone WC	30	
	Σ	175	175

	straty liniowe					
		przepływ			jednostkowa	strata
oznaczenie	długość	powietrza	całkowity przepływ	średnica	strata ciśnienia	liniowa
odcinka	odcinka [m]	[m^3/h]	powietrza [m^3/h]	przewodu [mm]	[Pa/m]	[Pa]
1-2	9,1	40	40	80	1	9,1
2-3	4,1	20	60	100	0,7	2,9
3-4	5,0	20	80	100	1,3	6,5
4-5	5,5	30	110	125	0,6	3,3
5-6	7,6	30	140	125	0,75	5,7
6 - 7	1,3	35	175	125	1	1,3
Σ	32,6					28,8
8-9	1,2	30	30	80	0,9	1,08
9-10	2,6	50	80	100	1,3	3,38
10-11	8,5	30	110	125	0,6	5,1
11-12	6,8	15	125	124	0,7	4,76
Σ						14,32

Przykładowe dobranie punktu dla elementu 1-2 z aksonometrii

Straty liniowe dla najbardziej niekorzystnego punktu instalacji nawiewowej

Hawicwowcj				
	liczba			
	identycznych	wielkość straty		miejscowe
rodzaje strat	elementów	[Pa]		straty ciśnienia
Nawiewnik	1		30	30
tłumik	1		3	3
czerpnia	1		20	20
kolano			4	20
redukcja	2	2	1	2
trójnik przelot			1	5
Σ				80

Straty miejscowe dla najbardziej niekorzystnego punktu instalacji nawiewowej Straty całkowite [Pa] = 80 + 28,8 = 108,8

Nominalny punkt pracy P(175m^3/108,8Pa0

Maksymalny punkt pracy Pmax (1,5*175m^3/h; 2,25*108,8Pa) Pmax (262,5m^3/h; 244,8Pa)

Projekt instalacji

Dobrana centrala wentylacyjna: Vertic 500

2.3 DANE TECHNICZNE

MODEL Kod produktu		VERTIC 250 VERTIC- 250-2047	VERTIC 350 VERTIC- 350-2048	VERTIC 500 VERTIC- 500-2049
Nominalny przepływ powietrza [m³/h]* I bio	ieg ieg eg	250 175 145 100 80	350 245 180 130 100	500 350 270 185 105
Temperaturowa sprawnoś rekuperacji [%]	ć	≤ 95%	≤ 94%	≤ 94%
Klasa efektywności energetycznej [-]***		Α	A	Α
Napięcie [V] / Częstotliwość [H	lz]	230/50	230/50	230/50
Prąd znamionowy [A] V bi	eg	1,5	2,4	3,2
Znamionowa moc silnika [W]	eg	170	320	480
Stopień ochrony IP silnika [-]	X2	X2	X2
Waga netto [kg]		40	40	50
Głośność [dB(A)]****		35	37	39

Projekt 3 – instalacja grzewcza Wykonał Karol Mataczyno Indeks: 32354

Dane do projektu doboru grzejnika:

POLITECHNIKA WARSZAWSKA

Instytut Inżynierii Budowlanej Zakład Budownictwa Ogólnego

Grupa: ...

Wykonać obliczenia oraz dobór grzejnika dla pomieszczenia o poniższych parametrach. Założyć iż pomieszczenie styka się podłogą z gruntem, zaś ścianami działowymi z pomieszczeniami ogrzewanymi do tej samej temperatury.

Wymiary pomieszczenia		_		
długość	A [m]	3,5	5,0	6,0
szerokość	B [m]	3,0	4.5	5,5
wysokość pomieszczenia (w świetle przegród)	H [m]	2,6	2,9	3,2
grubość stropu (nad pomieszczeniem ogrzewanym)	c [m]	0,30	0,35	0,40
grubość podłogi na gruncie	d [m]	0,25	0,20	0,30
grubość ścian zewnętrznych	[m]		0,35	
wymiary okna O1 (szerokość/wysokość)	w/h [cm]	140/140	160/140	200/140
wymiary okna O2 (szerokość/wysokość)	w/h [cm]	100/200	120/140	150/140

Okna		0		
współczynnik Uw okna	U _w [W/m ² K]	1,6	1,3	0,9
współczynnik U _s ścian	U _s [W/m ² K]	0,85	0,5	0,25
współczynnik Up podłogi na gruncie	U _{equiv,p} [W/m ² K]	0,8	0,6	0,3

Dane klimatyczne Szczecin Warszawa Suwałki lokalizacja strefa klimatyczna projektowana temperatura zewnętrzna θ_e [°C]

Parametry dodatkowe				
projektowana temperatura wewnętrzna	θ _{int} [°C]	(16)	20	24
krotność wymiany powietrza wewnętrznego	n ₅₀ [h ⁻¹]	6,0	3,0	1,5
klasa osłonięcia budynku		brak	średnia	dobra
minimalna krotność wymiany powietrza	n _{min} [h ⁻¹]	0,5		1,0

System ogrzomania	Marie Control of the			
parametry wody grzejnej	t _z /t _p [°C]	55/45	70/60	75/65
długość grzejnika		< szerokość okna		
wysokość grzeinika	h _a [cm]	40	(50)	60

Politechnika Warszawska

1. obliczanie powierzchni

Pow. okna 1 = P ₀₁ = 1,6*1,4=	2,24	[m ²]
Pow. okna 2 = P _{O2} = 1*2 =	2	[m ²]
Pow. ściany 1 = P_{51} = $(3,5+0,06+0,35)*(2,6+0,35+0,25)-2,24=$	9,9	[m ²]
Pow. ściany 2 = P_{52} = $(4,5+0,06+0,35)*(2,6+0,35+0,25)-2=$	13,7	$[m^2]$
Pow. podłogi = P _P = (3,5+0,06+0,35)*(4,5+0,12+0,35)=	19,4	[m ²]
Ak = ∑ powierzchni =	47,3	[m ²]

2. Obliczanie H_{T,ig}

fg1=	1,45	
fg2= (16-7,7)/(16-(-16))=	0,26	
Gw =	1	
Θint =	16	
Θe =	-16	
θm,e =	7,7	
Ak = (3,5+0,06+0,35)*(4,5+0,06+0,35)=	19,2	[m ²]
$H_{T,ig} = fg1*fg2*(\Sigma Ak*U)*Gw=1,45*0,26*19,4*1*0,8$	5,85	[W/k]

3. Obliczanie θ v,i

Kubatura pomieszczenia: A*B*H = 3,5*4,5*2,6 =	40,95	[m ³]
Minimalny strumień objętości pow. V=nmin*Vi= 1*40,95=	40,95	[m ³]
H _{v,i} = 0,34 * V _i = 0,34* 40,95=	13,92	[W/K]
$\theta_{v,i} = H_{v,i} * (\theta_{int} - \theta_e) = 13,9(16-(-16)) =$	445,5	[W]

4. Strumień objętości powietrza wentylacyjnego

n50, współczynnik krotność wymiany powietrza =	3	[h ⁻¹]
V _i = Kubatura przestrzeni ogrzewanej (i)	40,95	[m ³]
Współczynnik osłonięcia e _i =	0,05	
Współczynnik poprawkowy uwzględniający wzrost prędkości		
wiatru ε_i =	1	
$V_{\text{inf,i}} = 2 \text{ V}_{\text{i}} \text{ *n}_{50} \text{ *e}_{\text{i}} \text{ *} \varepsilon_{\text{i}} = 2 \text{*40,95*3*1,0*0,05} =$	12,3	[m ³ /h]

5. Minimalny strumień objętości powietrza ze względów higienicznych

$V_{\text{min,i}} = n_{\text{min}} * V_{\text{i}} = 1*40,95 =$	40,95	[m ³ /h]
--	-------	---------------------

6. Projektowe obciążenie cieplne budynku lub jego części

Przyjęte określenia -> P=Podłogi, Ś=Ściany, O=Okna		_
$H_{T,ie} = \sum A_k * U_k = A_k P_{O1} * U_k O + A_k P_{O2} * U_k O + A_k P_{S1} * U_k S + A_k P_{S2} * U_k S + A_k P_P * U_k P = 0$		
$H_{T,ie} = \sum A_k U_k = 2,24 1,6 + 2 1,6 + 9,9 0,5 + 13,7 0,5 + 19,4 0,8 =$	34,1	[W/K]
$H_{T,ig} = fg1*fg2*(\Sigma Ak*U)*Gw=1,45*0,26*19,4*1*0,8$	5,9	[W/k]
$\theta_{t,i} = (H_{T,ie} + H_{T,ig})*(\theta_{int,i}-\theta_e)[W] = (34,1+5,85)*(16-(-16))=$	1279	[W]
$\theta_{v,i} = H_{v,i} * (\theta_{int} - \theta_e) = 13,9(16-(-16)) =$	445,5	[W]
$\theta_i = \sum \theta_{T,i} + \theta_{v,i} =$	1725	[W]

θ_i <= Moc grzejnika

Wybrałem model

Dobieram dwa grzejniki, model: C22 500x1000 każdy o mocy cieplnej 881W, co daje 2x881 = 1762W

Spełnia to obliczony warunek cieplny 1725<=1762W

300 1000 102 F002203010010300 C 22 300x1000 801 23.0 3.3 140 F1010 32, 37, 02, 0	500	1000	102	F062205010010300	C 22 500x1000	881	25.8	5.5	148	PN10	32, 37, 62, 67
--	-----	------	-----	------------------	---------------	-----	------	-----	-----	------	----------------

Deklaracja Właściwości Użytkowych

Nr: F062205010010300

Niepowtarzalny kod identyfikacyjny typu wyrobu:

F062205010010300

Nazwa: Compact Typ: 22 Wysokość (mm): 500 Długość (mm): 1000

2. Zamierzone zastosowanie lub zastosowania:

Instalacje grzewcze w budynkach

3. Producent:

PURMO GROUP Plc Bulevardi 46 P.O. Box 115 FI-00121 Helsinki Finland

www.purmogroup.com

4. Upoważniony przedstawiciel:

Purmo Group Poland Sp. z o.o. ul. Przemysłowa 11 44-203 Rybnik

5. System(-y) oceny i weryfikacji stałości właściwości użytkowych:

System 3

6a. Norma zharmonizowana:

EN 442-1: 2014

Jednostka lub jednostki notyfikowane:

7. Deklarowane właściwości użytkowe:

Zasadnicze charakterystyki	Właściwości użytkowe	Zharmonizowana specyfikacja techniczna		
Reakcja na ogień	Al			
Uwalnianie substancji niebezpiecznych	Brak			
Szczelność pod działaniem ciśnienia	Brak wycieków przy ciśnieniu 1.3 razy wyższym niż maksymalne ciśnienie robocze Pmax (MOP)			
Temperatura powierzchni	Max. 110 °C			
Odporność na działanie ciśnienia	Brak odkształceń przy ciśnieniu 1.69 razy wyższym niż maksymalne ciśnienie robocze (MOP)=1000 kPa	EN 442-1: 2014		
Nominalna moc cieplna	φ ₃₀ = 746 W φ ₅₀ = 1470 W			
Moc cieplna w różnych warunkach pracy (charakterystyka)	φ= 8.181 * ΔT ^{1.327}			
Trwało				
Odporność na korozję	Brak korozji po 100 h w wilgoci			
Odporność na stabe uderzenia	Klasa 0			

8. Odpowiednia dokumentacja techniczna lub specjalna dokumentacja techniczna: Nie dotyczy

Właściwości użytkowe określonego powyżej wyrobu są zgodne z zestawem deklarowanych właściwości użytkowych. Niniejsza deklaracja właściwości użytkowych wydana zostaje zgodnie z rozporządzeniem (UE) nr 305/2011 na wyłączną odpowiedzialność producenta określonego powyżej.

W imieniu producenta podpisał(-a): Marek Kiszka, Dyrektor Operacyjny, Dział Grzejników Peter Doppelreiter, Dział Badań i Rozwoju, Dział Grzejników Helsinki, 03.01.2022