Abstract Algebra hw4

Chengyu Hsieh, B13201053

1) (a) We assume that (b) is proven and use its proof and result. We have

$$|\mathbb{Z}/p\mathbb{Z}| = p$$
 and $|\mathbb{Z}/q\mathbb{Z}| = q$

Note that both $\mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/q\mathbb{Z}$ are cyclic.

Since (p,q) = 1, the direct product of the groups, $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$, is also cyclic, with (1,1) as its generator. Its order is the product of the individual orders:

$$|\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}| = pq$$

The order of $\mathbb{Z}/pq\mathbb{Z}$ is also pq:

Since both $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ and $\mathbb{Z}/pq\mathbb{Z}$ are cyclic groups of the same order pq, they are isomorphic. Now, the map ϕ that sends the generator of the direct product to the generator of $\mathbb{Z}/pq\mathbb{Z}$:

$$\phi: (1,1) \mapsto 1$$

is clearly an isomorphism.

(b) Assume that $G \times H$ is cyclic. Let (g, h) generate $G \times H$. Let (|G|, |H|) = k, |G| = ck, |H| = dk. Then [|G|, |H|] = cdk. Clearly, $(g, h)^{cdk} = (e, e)$. Since (g, h) is the generator, we must have $cdk \ge |G \times H| = |G||H| = cdk^2$. But also $cdk \le cdk^2$ so $cdk = cdk^2$ and hence k = 1.

Now assume that (|G|, |H|) = 1. Let g generate G and h generate H. Then for any i such that $(g,h)^i = (e,e)$, we must have $|G| \mid i$ and $|H| \mid i$. From this we have $|G||H| = [|G|, |H|] \mid i$ and $i \geq |G||H| = |G \times H|$. Also note that $(g,h)^{|G||H|} = (e,e)$. Hence (g,h) fullfill the properties of a generator for the group, and so $G \times H$ is cyclic.

- (c) The proper subgroups of S_3 are $\{e, r, r^2\}$, $\{e, s\}$, $\{e, rs\}$, $\{e, r^2s\}$ and e. All of those proper subgroups are cyclic, and by (b) if S_3 is a direct product of some of its proper subgroup then it should be cyclic, but S_3 is not cyclic and hence it cannot be a direct product of any of its proper subgroups.
- 2) $G = \{e, a, a^2, a^3, a^4, a^5, b, ba, ba^2, ba^3, ba^4, ba^5\}$, which has order 12. See that ba has order 4. However the elements in H can only be of order 1, 2, 3, 6. Hence the two groups are not isomorphic.

1

- 3) (a) Orbit of $\langle (12) \rangle$ is $\{\{1,2\},\{3\},\{4\}\}\}$. Orbit of $\langle (123) \rangle$ is $\{\{1,2,3\},\{4\}\}\}$. Orbit of V is $\{\{1,2,3,4\}\}$.
 - (b) $\langle (1234) \rangle$ has the same orbit.

- (c) Suppose that $s \in Z(S_4)$. ((12)s)(3) = ((12)s(12))(3) = s(3). Hence $s(3) \neq 1, 2$. Similarly, using (14), (24) we obtain that $s(3) \neq 1, 2, 4$. Hence s(3) = 3. Similarly we obtain s(i) = i for i = 1, 2, 3, 4, therefore s is the trivial permutation. We conclude that $Z(S_4)$ is trivial.
- 4) (a) For any $g \in G$, $s_1, s_2 \in S$, if $g(s_1) = g(s_2)$ then $s_1 = g^{-1}g(s_1) = g^{-1}g(s_2) = s_2$, hence $g(\cdot)$ is injective. Also for any $s \in S$, $g(g^{-1}(s)) = s$, hence $g(\cdot)$ is surjective. We conclude that $g(\cdot)$ is bijective and may generate a permutation of S. Let $\phi: G \to \operatorname{Perm}(S)$ be defined as $\phi(g) = \text{the permutation generated by } g(\cdot)$. Now for any $s \in S$, $g, h \in G$,

$$g(h(s)) = (gh)(s)$$

 $\Rightarrow \phi(g)\phi(h) = \phi(gh)$

Hence ϕ is a homomorphism.

- (b) If $\phi(g') = \phi(e)$, then $\phi(g')(H) = H$. Then we have g'H = H and hence $g' \in H$. We conclude that the kernel of ϕ is in H.
- (c) Note that |S| = |G|/|H| = n. Hence $S_n \simeq \text{Perm}(S)$. From (b) we know that $\ker \phi \subseteq H$. But $\ker \phi$ is a normal subgroup of G, and adding the condition that (c) gives we see that $\ker \phi$ must be trivial, meaning that ϕ is injective. We now define $\phi': G \to \text{Im}(\phi)$ by $\phi'(g) = \phi(g)$. Then ϕ' is clearly an isomorphism. Hence G is isomorphic to a subgroup of S_n .