

门电路逻辑功能及测试

1. 实验目的

- ▶ 熟悉门电路逻辑功能;
- ▶ 掌握数字示波器的使用方法。

2. 预习要求

- ▶ 复习门电路工作原理及相应逻辑表达式;
- ▶ 阅读本实验所用各门电路 IC 的数据手册;
- ▶ 熟悉所用集成电路的引线位置及各引线用途;
- ▶ 了解数字示波器使用方法。

3. 实验器材

序号	名 称	型号与规格	数量	备 注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	信号发生器 DG1022		
4	面包板		1	
5	元器件	74LS00 2片, 74LS20 1片, 74LS86 1片, 74LS04 1片。 LED, 电阻若干	5	

4. 实验内容

4.1测试门电路逻辑功能

- (1) 选用双四输入与非门74LS20 一只,插入面包板,按图1.1 接线
- (2) 将逻辑电平开关按表 1.1 状态转换,测出输出逻辑状态值及电压值填表。

图1.1 双四输入与非门

表 1.1

输出		输入			
电压(V	Y	4	3	2	1
0.036	0	1	1	1	1
4. 867 4. 864 4. 862 4. 861		1	1	1	0
4. 864	1	1	1	0	0
4.862	1	l	0	0	0
4.861		0	0	0	0

4.2 逻辑电路的逻辑关系

(1) 用 74LS00 双输入四与非门电路,按图1.2、图1.3 接线,将输入输出逻辑关系分别填入表1.2,表1.3 中。

表 1.2					
输	输出				
A	В	Y			
0	0	0			
0	1	1			
1	0	1			
1	ī	0			

表 1.3	-			
输	λ	输出		
A	В	Y	Z	
0	0	0	0	
0	i	l	0	
1	0	(0	
1	1	D	1	

(2) 写出两个电路的逻辑表达式。

(. 2 : Y = AB + AB') Z = AB

4.3利用与非门控制输出

用一片 74LS00 按图 1.4 接线。S 分别接高、低电平开关,用示波器观察 S 对输出脉冲的控制作用。

在下面画出波形图:

4.4用与非门组成其他门电路

(1) 组成或非门:

用一片二输入端四与非门组成或非门 $Y = \overline{A + B} = \overline{A} \cdot \overline{B}$ 画出电路图,测试并填表1.4。

表 1.4

输	输入		
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

(2) 组成异或门:

① 将异或门表达式转化为与非门表达式:

$$Y = AB' + A'B = \overline{AB' + A'B} = (\overline{AB'}) \cdot (\overline{A'B})$$

② 画出逻辑电路图

③ 测试并填表 1.5。

表 1.5

输	入	输出	
Α	В	Y	
0	0	0	
0	1	١	
1	0	1	
1	1	0	

4.5 异或门逻辑功能测试

选二输入四异或门电路74LS86,按图1.5 接线,输入端1、2、4、5 接电平开关输出插口,输出端A、B、Y 接电平显示发光二极管。将电平开关按表1.6 的状态转换,将结果填入表中。

表 1.6

输入			输出				
1	2	3	4	Λ	В	Y	Y 电压(V)
0	0	0	0	0	0	0	- 0.31 mV
1	0	0	0		0	(5. गेडार
1	1	0	0	0	0	0	-0.47 mV
1	1	1	0	0	1	1	5.0753V
1	1	1	1	0	0	0	-0.41 mV
0	1	0	1	1	1	0	- 0.53mV

4.6逻辑门传输延迟时间的测量

用六反相器 74LS04 逻辑电路按图 1.6 接线,输入 1KHz 脉冲,将输入脉冲和输出脉冲分别接入数字示波器两路输入端,观察并记录输入、输出端的延时值,计算出每个门的平均延时值。

图1.6六反相器

每个门的平均延时:

9.6 ns

观察到的波形:

5. 思考题

1. 与非门一个输入接连续脉冲,其余端什么状态允许脉冲通过? 什么状态时禁止脉冲通过?

因为与非门输入有一个为1则输出为0,所以其余端为0时允许脉冲通过,其余端为1时禁止脉冲通过

2. 异或门又称可控反相门,为什么?

如图,输入端一端设为输入,另一端为1时,输出为输入的反相,另一端设为0时,输出与输入一致,所以是否可控是可控的

附录: IC引脚图

方波器与信号发生器直搭据上电压正常但连上输入端后电压骤降. 怀疑是芯片有问题.更换芯片后解准.

示波器读数小310倍. 解液: 掘钉电压换为10X.