EE2023E Signals & Systems Quiz Semester 2 AY2014/15

Date: 16 March 2015 Time Allowed: 1.5 hours

•	-	- 4		. •		
	n	st	rı	tı,	Λn	•

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :				
Matric #:				

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1 The discrete-frequency spectrum of two signals x(t) and y(t) are shown in figure below. Following questions are based this figure.

Figure Q.1

- (a) Determined the powers of x(t) and y(t).
- (b) Indicate the fundamental frequency(ies) for the periodic signal(s) in x(t) and y(t).
- (c) Indicate the Fourier series for the periodic signal(s) in x(t) and y(t).
- (d) Show how you can generate y(t) if only two signals $y_1(t) = \cos(810\pi t + \frac{\pi}{3})$, $y_2(t) = \cos(1620\pi t)$, an analog multiplier and an analog adder are available.

Q.1 ANSWER

Q.1 ANSWER ~ continued

Q.2. (a) Determine the Fourier transform of the signal x(t) shown in Figure Q.2, where the hump in the middle of the pulse comprises a half cosine signal shape.

(b) Using the replication property of the Dirac- δ function, the periodic signal $x_p(t)$ can be obtained as:

$$x_p(t) = x(t) \otimes \sum_{k=-\infty}^{\infty} \delta(t-15k)$$

where the period is 15 seconds, and \otimes denotes convolution. Derive the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$ based on this approach.

Q.2 ANSWER

Q.2 ANSWER ~ continued

Q.3 Figure Q.3(a) below shows the amplitude spectrum Z(f) of signal z(t). Figure Q.3(b) is the time domain waveform of the periodic signal v(t).

- (a) What is the expression for Z(f)?
- (b) Find the 3 dB bandwidth of z(t) and the percentage of energy within its 3 dB bandwidth.
- (c) What is the Fourier series expansion of v(t)?

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.4. The signal x(t) shown in Fig.Q.4 is sampled at 2Hz to form a sampled signal $x_s(t)$.

- (a) Sketch and label the sampled signal $x_s(t)$.
- (b) Determine the Fourier Transform, $X_s(f)$, of the sampled signal $x_s(t)$.
- (c) Sketch the amplitude spectrum of $X_s(f)$.

Q.4 ANSWER

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

FOURIER T	FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)	
Constant	K	$K\delta(f)$	
Unit Impulse	$\delta(t)$	1	
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$	
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$	
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$	
Triangle	$\operatorname{tri}\!\left(\frac{t}{T}\right)$	$T\operatorname{sinc}^2(fT)$	
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$	
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$	
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$	
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$	
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$	
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$	

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\left(\frac{f}{\beta}\right)$
Duality	X(t)	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)}{\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0}$

TRIGONOMETRIC IDENTITIES		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$	
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$	
$\cos^2(\theta) = \frac{1}{2} \Big[1 + \cos(2\theta) \Big]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$	