Progettazione ed implementazione di un sistema Smart Parking basato su comunicazione Device-To-Device

Presentata da: Andrea Sghedoni

Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Informatica

Sessione III Anno Accademico 2015/2016

Relatore: Chiar.mo Prof. Marco Di Felice

Correlatore: Dott. Federico Montori

Indice

- Il parcheggio
- II Crowdsensing
- Simulazione e Modellazione
- Risultati
- Conclusioni

Il parcheggio

- Il continuo processo di urbanizzazione ha portato sovraffollamento di autoveicoli nelle città metropolitane
- Più del 30% della congestione del traffico è causata da utenti in cerca di parcheggio
- Parcheggi on-street
- Conseguenze negative:
 - perdita di tempo e denaro
 - inquinamento ambientale (CO₂)
 - peggioramento della qualità di vita

II Crowdsensing

- Condivisione di dati con la collettività
- Intelligenza condivisa
- Il singolo contribuisce al benessere collettivo

Architettura IoE

- Città metropolitana
- Alta dinamicità
- Ruoli dei device:
 - Access Point
 - client

Architettura IoE

Tecnologie utilizzate

- SO Android 4.0 e superiori
- WiFi Direct
 - Peer-To-Peer (P2P) Group
 - Bonjour beacon
 - serialized Socket
- SQLite

Probabilità di parcheggio

- Sincronizzazione sugli eventi parcheggio/rilascio della cella i
- ullet Eventi parcheggio $E_{
 m i}^{
 m p}$ e rilascio $E_{
 m i}^{
 m r}$
- Slot totali $N_i^{\rm t}$ noto a priori
- Slot occupati:

$$N_{\mathrm{i}}^{\mathrm{o}} = E_{\mathrm{i}}^{\mathrm{p}} - E_{\mathrm{i}}^{\mathrm{r}}$$

• Tasso di occupazione:

$$p_{\mathrm{i}}^{\mathrm{o}}=rac{\mathit{N}_{\mathrm{i}}^{\mathrm{o}}}{\mathit{N}_{\mathrm{i}}^{\mathrm{t}}}$$

Probabilità di trovare parcheggio:

$$ho_{
m i}^{
m f}=1-
ho_{
m i}^{
m o}$$

Simulazione e Modellazione

- OMNeT++, Veins, SUMO
- Zona nord-est di Bologna 1.5km x 2.5km
- Verificare l'efficacia del processo di spreading
- circa 3000 veicoli in 1800 simsec
- Modulo SmartParking per modellazione logica
- Tecnologie considerate :
 - V2V 802.11p
 - D2D WiFi Direct
 - Bluetooth

Risultati (1)

 convergenza sulla conoscenza della cella corrente e dello scenario generale

Risultati (2)

- L'accuratezza media decresce all'aumentare della distanza dalla posizione corrente
- L'accuratezza migliore nel raggio di 500m della posizione corrente (sincronizzazioni su cella corrente e adiacenti)

 Tasso di partecipazione determinante per la tecnologia D2D WiFi Direct

Screenshot 1

Conclusioni

Grazie per l'attenzione!