

RELATÓRIO DE ATIVIDADES PRÁTICAS EM LABORATÓRIO APRESENTAÇÃO DE PROJETOS

Curso: Engenharia da Computação

Termo: 10° Termo

Disciplina: Projeto de Sistemas Embarcados II

Projeto: Comunicação para controle de motores.

Acadêmico(s):

Academi	co(s).	
RA	Nome	Assinatura
207180	Lucas Fernando Costa dos Santos	
207540	Pedro César Vagner Nogueira	

Professor(es): Amadeu Zanon Neto Araçatuba / SP

RELATÓRIO DE ATIVIDADES PRÁTICAS EM LABORATÓRIO - APRESENTAÇÃO DE PROJETOS

CURSO TERMO PERIO		PERIODO		DISCIPLINA
ENGENHARIA DA COMPUTAÇÃO 10 NOTURNO		NOTURNO	PROJETOS DE S	SISTEMAS EMBARCADOS II
PROFESSOR(A)	LABORATÓRIO / SALA	ATIVIDADE		
AMADEU ZANON NETO	EAD	02/2020		

Aluno(s):

#	RA	Nome	#	RA	Nome
1	207180	Lucas Fernando Costa dos Santos	6		
2	207540	Pedro César Vagner Nogueira	7		
3			8		
4			9		
5			10		

Função ou tarefa atribuída a cada aluno da equipe:

#	Função/atribuição	#	Função/atribuição
1	Circuito	6	
2	Programação	7	
3		8	
4		9	
5		10	

Projeto ou atividade a ser desenvolvida – Resumo, enunciado ou descrição: Exercício (X) - Trabalho () - Avaliação (

Neste projeto iremos fazer a integração de três sistemas de comunicação, RS-232, I²C e SPI.

O sistema deverá controlar a rotação de três motores de 12V através de potenciômetros digitais MCP 41010 determinandose a tensão de saída neles para controle por transístores.

Um supervisório criado em Visual Basic deverá controlar estes motores através da comunicação serial e que deverá passar por um PIC 16F887 que mostrará o percentual de 0 a 99 em displays de sete segmentos para os três motores. Este controle deverá ser feito por multiplexadores PCF8574 e comunicação I²C. Este comando é passado para um PIC 16F690 que através de comunicação SPI controlará os potenciômetros digitais que enviarão a tensão à base dos transístores e assim controlando a rotação dos motores.

Desenhos, esquemáticos ou croqui de modelo proposto para o trabalho ou projeto:

Datas e prazos:

Datas e prazos.					
Etapa	Pr	revista	Efetiva		
Apresentação do projeto pelo profe	essor: Data: 28/08/2020	Hora: 19:05	Data: 28/08/2020	Hora: 19:05	
Início do pro	ojeto: Data: 28/08/2020	Hora: 19:05	Data: 28/08/2020	Hora: 19:05	
Encerramento, entrega ou apresenta	ação: Data: 18/09/2020	Hora: 19:05	Data: / /	Hora: :	

Forma de apresentação:

Prevista / Solicitada	a / Solicitada Efetiva		do professor
() Montagem prática	() Montagem prática	Professor: Amadeu Zano	n Neto
(X) Seminário / Apresentação / Banner	() Seminário / Apresentação / Banner	Nota/Pontuação	
(X) Relatório	() Relatório		
(X) Simulação	() Simulação		
() Visita	() Visita		
(X) Mostra / Evento	() Mostra / Evento		Assinatura/Visto/Carimbo
() Artigo	() Artigo		
(X) Desenvolvimento de software	() Desenvolvimento de software		
() Monografia	() Monografia		
() Outro	() Outro	[Data

Observações/anotações:

·	

Componentes e materiais utilizados:

Qte Descrição # Qte Descrição

		T	24	
1		ARDUINO	21	
2	2	MICROCONTROLADOR PIC	22	
3		PROTOBOARD	23	
4	9	RESISTOR 220R	24	
5	2	RESISTOR 10K	25	
6	3	LED	26	
7		CHAVE TÁCTIL	27	
8	6	DISPLAY 7 SEGMENTOS	28	
9		DISPLAY LCD	29	
10	1	СОМРІМ	30	
11	6	4511	31	
12	3	MOTOR DC	32	
13	3	POTENCIÔMETRO DIGITAL 41010	33	
14	2	CRYSTAL	34	
15	4	CAPACITOR	35	
16	3	IRF720	36	
17	3	DIODO 1N4007	37	
18			38	
19			39	
20			40	
		1		1

Equipamentos e materiais de laboratório:

#	Qte	Descrição	#	Qte	Descrição
1	2	COMPUTADOR PC	13		FIOS
2		FONTE DE ALIMENTAÇÃO	14		SHIELD ARDUINO
3		CAIXA DE FERRAMENTAS	15		
4		MULTÍMETRO	16		
5		GRAVADOR DE MICROCONTROLADOR	17		
6		CLP – MODELO →	18		
7		SENSORES INDUSTRIAIS	19		
8		DISPLAY DE LCD	20		
9		IMPRESSORA 3D	21		
10		KIT ROBÓTICO LEGO	22		
11		KIT ROBÓTICO TAMIYA	23		
12		ESTANHO	24		

Softwares utilizados

#	Descrição /versão	#	Descrição/Versão
1	MikroBasic free	6	
2	Proteus 7	7	
3	Visual Studio 10	8	
4	Virtual Serial Ports Emulator	9	
5		10	

Conclusões e finalização de projeto

Problemas ou dificuldades encontradas e suas soluções (Se necessário anexar folhas suplementares):

Problemas e ou dificuldades	Soluções propostas e aplicadas.

Dificuldade na lógica de envio de valores.	Foi utilizado valores do tipo double.
Conclusões e comentários finais	
Com este projeto foi possível ver a utilização da comunicação I2C e SPI trabalhando com conjunto com a integração de hardware	
e software via controle remoto, utilizando comunicação RS-232 serial. E com isso foi possível compreender melhor sobre essas	
tecnologias de comunicação.	
ANEXO - I	
Programação (Pode ser substituída por listagem impressa). program motores	
dim recebe as string[6]	

```
dim valor
               as integer
main:
TRISA=%11111111
TRISB=%00111111
TRISC=%00000000
INTCON=%00000000
ANSEL=%00000000
ANSELH=%00000000
portA=0
portB=0
portC=0
USART_INIT(9600)
portc.0 = 1 portc.1 = 1 portc.2 = 1
SPI_INIT
clearbit(portc,0) Spi_Write(17) Spi_Write(0) setbit(portc,0)
clearbit(portc,1) Spi_Write(17) Spi_Write(0) setbit(portc,1)
clearbit(portc,2) Spi_Write(17) Spi_Write(0) setbit(portc,2)
executa:
    if Usart Data Ready() > 0 then
      Usart_Read_Text(recebe,"/")
      valor = StrToInt(recebe)
      if (valor > 999) and (valor < 4256) then
       if (valor >= 1000) And (valor < 1256) then
         clearbit(portc,0)
         valor = valor - 1000
        end if
        if (valor >= 2000) And (valor < 2256) then
         clearbit(portc,1)
         valor = valor - 2000
        end if
       if (valor >= 3000) And (valor < 3256) then
         clearbit(portc,2)
         valor = valor - 3000
        end if
        if (valor >= 4000) And (valor < 4256) then
         portc.0 = 0
         portc.1 = 0
         portc.2 = 0
         valor = valor - 4000
        end if
       spi_write(17)
        spi_Write(valor)
       portc.0 = 1
       portc.1 = 1
       portc.2 = 1
       delay_ms(10)
      end if
      Usart_Write_Text(recebe)
    end if
```

```
goto executa
end.
program displays
dim recebe
                 as string[6]
dim valorRecebido
                    as integer
dim valorPorcent
                    as integer
dim uni
               as integer
dim dez
                as integer
dim valorPortas
                   as integer
dim escrita
                as integer
main:
TRISA=%11111000
TRISB=%11111111
TRISC=%10000001
INTCON=%00000000
ANSEL=%00000000
ANSELH=%00000000
portA=0
portB=0
USART_INIT(9600)
I2C_INIT(100000)
executa:
    if Usart Data Ready() > 0 then
      Usart Read Text(recebe,"/")
      valorRecebido = StrToInt(recebe)
      if (valorRecebido > 999) and (valorRecebido < 4256) then
         if (valorRecebido >= 1000) And (valorRecebido < 1256) then
           valorRecebido = valorRecebido - 1000
           valorPorcent = ((valorRecebido * 100) / 255)
           if valorPorcent > 99 then
             valorPorcent = 99
           end if
           dez = valorPorcent div 10
           uni = valorPorcent - (dez * 10)
           valorPortas = dez + (uni * 16)
           escrita = 0x42
           gosub escreve_I2C
         end if
         if (valorRecebido >= 2000) And (valorRecebido < 2256) then
           valorRecebido = valorRecebido - 2000
           valorPorcent = ((valorRecebido * 100) / 255)
           if valorPorcent > 99 then
             valorPorcent = 99
           end if
           dez = valorPorcent div 10
           uni = valorPorcent - (dez * 10)
           valorPortas = dez + (uni * 16)
           escrita = 0x44
           gosub escreve_I2C
         if (valorRecebido >= 3000) And (valorRecebido < 3256) then
```

```
valorRecebido = valorRecebido - 3000
           valorPorcent = ((valorRecebido * 100) / 255)
           if valorPorcent > 99 then
             valorPorcent = 99
           end if
           dez = valorPorcent div 10
           uni = valorPorcent - (dez * 10)
           valorPortas = dez + (uni * 16)
           escrita = 0x46
           gosub escreve_I2C
         end if
         if (valorRecebido >= 4000) And (valorRecebido < 4256) then
           valorRecebido = valorRecebido - 4000
           valorPorcent = ((valorRecebido * 100) / 255)
           if valorPorcent > 99 then
             valorPorcent = 99
           end if
           dez = valorPorcent div 10
           uni = valorPorcent - (dez * 10)
           valorPortas = dez + (uni * 16)
            escrita = 0x42
            gosub escreve_I2C
            escrita = 0x44
            gosub escreve_I2C
            escrita = 0x46
            gosub escreve_I2C
         end if
      end if
      Usart_Write_Text(recebe)
      delay_ms(5)
      USART_Write_Text("/")
      delay_ms(5)
    end if
    goto executa
escreve_I2C:
   I2C Start
   I2C_Wr(escrita)
   I2C_Wr(valorPortas)
   I2C Stop
   delay_ms(10)
   return
end.
```

