

Visual Analytics of Time Series Data

Chris Zhenghao Chen | Summer Scholar 2016 February 2016

Stage 1 Preferences Clusters

- Objectives
 - Discover preferences of certain attractions[1]
 - Group customers with similar preferences[1]
 - Visualize trajectory patterns_[2]
- Data Preprocessing
 - Check-in Frequency Data
 - Time-spend Data
 - Attraction Data

Stage 1 Preferences Clusters

Methodologies

- K-Nearest Neighborhoods_[3] & K-means_{[1][4]}
 - Cluster top-k groups of customers[3][4]
 - Supervisory, performance depends on k, sensitive to noise [4]
- Self-Organizing Map_{[5][11]}
 - Un-supervisory, Artificial Neuron Network [5], extension of K-means [6]

• Algorithm[5]

Input \rightarrow Training -Competition $O(t) = O(t) e^{-t \over k}$ Training $O(t) = O(t) e^{-t \over k}$ Cooperation $O(t) = O(t) e^{-t \over k}$ Adaptation $O(t) = O(t) e^{-t \over k}$ $O(t) = O(t) e^{-t \over k}$

Self-organizing Map Results in Stage 1

Heat Map for single Attraction

· U-matrix for clustering preference of attraction 3 days

Stage 2 Groups Visualization

Objectives

- Discover trajectory of groups
- Find difference_[6] & similarity_[8] of groups
- Visualize the overall similarity[3]
- Study communications pattern[1][2]

Data Preprocessing

- Groups Data (From Stage 1)
- Aggregated Trajectory Data
- Trajectory Data for Single Person
- Average Speed Rates Change Data
- Communication Data

Stage 2 Groups Visualization

Methodologies

- Frequency & Time Spend Visualization
 - Bar chart & Heat map[1]
- Real Time Trajectory Computation
 - Using Animation_[7] & 3D plot
- Communication Pattern Visualization[1][2]
 - Line Chart
- Dynamic Time Warping
 - Calculate similarity of 2 Sequence Data[10]
 - Algorithm[10] $g(\emptyset, \emptyset) = 0$ $g(s, \emptyset) = dist(\emptyset, q) = \infty$ $g(s, q) = dist(s_1, q_1) + min \begin{cases} g(s, \langle q_2, \dots, q_m \rangle) \\ g(\langle s_2, \dots, s_m \rangle, q) \\ g(\langle s_2, \dots, s_m \rangle, \langle q_2, \dots, q_m \rangle) \end{cases}$
 - Running Time [9] & Memory Space[9] O(n²)
- Fast Dynamic Time Warping[10]
 - A Optimization of Dynamic Time Warping
 - Running time[10] & Memory Space[10] O(n)
- Distance Matrix_[3]
 - Distance Value D = D1*W1 + D2*W2 + Dn*Wn

Framework of Stage 2

Case Study: Crime Detection

- Background
 - A Crime Group vandalized exhibiting of a local soccer star(DinoFunNews 2014)
 - Occurred between 9:40 AM to 11:30 AM_[2]

Crime Visualization

Conclusion

Group 2 has high probability to commit while further hypothesize Group 1 assist crime

Project Summary and Further Work

Project Summary

Future Work

- Trajectory can be further clustered (e.g. hierarchical Dirichlet process Hidden Markov Model)
- Behaviour and motivation can be learnt and prediction (e.g. Deep Learning)

Reference

- [1] ParkAnalyzer: Characterizing the Movement Patterns of Visitors. VAST 2015 Mini-Challenge 1. Jieqiong Zhao. Guizhen Wang. Junghoon Chae. Hanye Xu.
- [2] Steptoe, Michael, et al. "VAST Challenge 2015: Grand Challenge-Team VADER/VIS Award for Outstanding Comprehensive Submission." Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on. IEEE, 2015.
- [3] Zheng, Yu. "Trajectory data mining: an overview." ACM Transactions on Intelligent Systems and Technology (TIST) 6.3 (2015): 29.
- [4] Ossama, Omnia, Hoda MO Mokhtar, and Mohamed E. El-Sharkawi. "An extended k-means technique for clustering moving objects." *Egyptian Informatics Journal* 12.1 (2011): 45-51.
- [5] Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1-3), pp.1-6.
- [6] Baçao, Fernando, Victor Lobo, and Marco Painho. "Self-organizing maps as substitutes for k-means clustering." *Computational Science–ICCS 2005*. Springer Berlin Heidelberg, 2005. 476-483.
- [7] Visual Analysis of Route Choice Behaviour based on GPS Trajectories. Min Lu1,2,3. Chufan Lai1,2,3. Tangzhi Ye1,2. Jie Liang1,2. Xiaoru Yuan1,2,3 *.
- [8] Haase, Jens, and Ulf Brefeld. "Finding similar movements in positional data streams." Proc. ECML/PKDD Workshop on Machine Learning and Data Mining for Sports Analytics. 2013.
- [9] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion (2007): 69-84.
- [10] Salvador, Stan, and Philip Chan. "Toward accurate dynamic time warping in linear time and space." Intelligent Data Analysis 11.5 (2007): 561-580.
- [11] Moosavi, Vahid. "Computing With Contextual Numbers." arXiv preprint arXiv:1408.0889 (2014).

Thank you

Data61 | Machine Learning Group Chris Zhenghao Chen Summer Scholar 2016

t +61 04 1657 1168E Zhenghao.Chen@nicta.com.au

