Contact Information

- Stephan Heinemann
- SMS: +1 (250) 891-5446
- Email: stephan.heinemann@hotmail.com
- Bookings, Questions

Approach and Landing

- Review Descending, Slow Flight and Slipping
- Definition and Motivation
- Approach and Landing
 - Normal, Short-Field, Soft-Field, Crosswind
 - Factors
- Summary and Questions
- Pre-Flight Briefing

Review Descending and Slow Flight

- Mentally perform a power-off and power-on descent and state all observations and required actions (PAT).
- Define and state the best glide airspeed.
- How do we recognize that a ground reference can be reached during a descent?
- What is slow flight and how do we recover from the slow flight range?
- Define and state the two stall v-speeds.

Definition and Motivation

- Landing is the last part of a flight, where a flying animal, aircraft, or spacecraft returns to the ground.
- Stabilized approach, flare, touchdown, ground roll
- Essential maneuver used in every single flight

Normal Approach and Landing

- Criteria: hard uncontaminated surface, long runway, no obstacles, low density altitude, no or steady headwind
- Check environment and consult performance data in POH
- Perform pre-landing checks according to checklists in POH
- Conduct passenger, crew arrival and emergency briefings

Normal Landing — Approach

Align and Descent

Perspective Approach Speed

- Align with runway and establish a stabilized descent
- Aim for runway threshold to flare into landing zone (TCH 50 ft)
- Set **flaps** as required (10°-20°) decelerating in white arc (below 85 KIAS)
- Continuously check correct approach airspeed (65-75 KIAS)
- Adjust attitude and power to maintain approach perspective

Approach Perspective

- Attitude plus Power equals Performance
- Maintain descent angle (perspective) and attitude
- Control descent airspeed and rate of descent with attitude and power
- Be aware of potential visual illusions

Normal Landing – Flare and Touchdown

- Callout Landing Assured before initiating landing flare
- Reduce power smoothly to idle keeping straight
- Use runway end as reference for directional control
- Continue to decelerate in level slow flight above runway
- Gently increase elevator back-pressure to assume landing attitude gradually – slightly nose-up, main wheels first

Normal Landing – Ground Roll

- Keep straight with rudder using runway end and peripheral vision
- Control elevator back-pressure allowing nose-wheel to settle
- Gently apply brakes keeping straight towards runway end
- Slow down to taxi speed and vacate runway
- Post-landing checks: flaps, transponder, lights, time, clearance

Overshoot / Go-Around

Full Power | Control Yaw

Assume Slight
Nose-Up Attitude

Flaps Up In Stages

- Reasons: balked landing, failures, traffic, animals, humans
- Apply <u>full</u> power controlling yaw with <u>rudder</u>
- Assume a slight nose-up attitude just above the horizon
- Retract flaps to 20° (balked landing) or 10° (go-around) immediately
 and accelerate to safe climb airspeed
- Maintain climb airspeed and retract flaps at safe altitude in white arc

Touch and Go

Runway End

- Ensure sufficient runway length beforehand
- Align with runway centerline and keep straight with rudder first, then
- Retract flaps completely during ground roll, trim for take-off
- Apply <u>full</u> power and keep straight with <u>rudder</u>
- Use runway end as reference for directional control
- Perform take-off run and initial climb as required

Stop and Go

- Ensure sufficient runway length beforehand
- Perform landing to full stop on the runway
- Perform subsequent take-off from stop position

Short-Field Landing

- Criteria: hard uncontaminated surface, short runway, obstacles, high density altitude, no or steady headwind
- Check environment and consult performance data in POH
- Pre-landing checks according to checklists in POH
- Conduct passenger, crew arrival and emergency briefings

Short-Field Landing – Approach

Align and Descent

Perspective | Approach Speed

- Align with runway and establish a stabilized descent
- Aim for runway threshold to flare into landing zone (TCH 50 ft)
- Set full flaps (30°) decelerating in white arc (below 85 KIAS)
- Continuously check correct final approach airspeed (61 KIAS)
- Adjust attitude and power to maintain approach perspective

Short-Field Landing – Flare and Touchdown

- Callout Landing Assured before initiating landing flare
- Reduce power to idle keeping straight
- Use runway end as reference for directional control
- Continue to decelerate in level slow flight above runway
- Gently increase elevator back-pressure to assume landing attitude gradually – slightly nose-up, main wheels first

Short-Field Landing – Ground Roll

Keep Straight Runway End

- Keep straight with rudder using runway end and peripheral vision
- Control elevator back-pressure allowing nose wheel to settle
- Retract flaps immediately (weight on wheels)
- Apply brakes firmly without skidding and increase elevator back-pressure
- Keep straight and slow down to taxi speed and vacate runway
- Post-landing checks: flaps, transponder, lights, time, clearance

Landing Performance

SHORT FIELD LANDING DISTANCE AT 2550 POUNDS

CONDITIONS:

Flaps 30° Power Off Maximum Braking Paved, level, dry runway Zero Wind Speed at 50 Ft: 61 KIAS

	0°C		10°C		20°C		30°C		40°C	
Press Alt In Feet		Total Ft To Clear 50 Ft Obst	Grnd Roll Ft	Total Ft To Clear 50 Ft Obst	Grnd Roll Ft	Total Ft To Clear 50 Ft Obst	Grnd Roll Ft	Total Ft To Clear 50 Ft Obst		Total Ft To Clear 50 Ft Obst
S. L.	545	1290	565	1320	585	1350	605	1380	625	1415
1000	565	1320	585	1350	605	1385	625	1420	650	1450
2000	585	1355	610	1385	630	1420	650	1455	670	1490
3000	610	1385	630	1425	655	1460	675	1495	695	1530
4000	630	1425	655	1460	675	1495	700	1535	725	1570
5000	655	1460	680	1500	705	1535	725	1575	750	1615
6000	680	1500	705	1540	730	1580	755	1620	780	1660
7000	705	1545	730	1585	760	1625	785	1665	810	1705
8000	735	1585	760	1630	790	1670	815	1715	840	1755

NOTES:

- Short field technique as specified in Section 4.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on dry, grass runway, increase distances by 45% of the "ground roll" figure.
- If landing with flaps up, increase the approach speed by 9 KIAS and allow for 35% longer distances.

- Consider conditions
- Select pressure altitude
- Select temperature
- Determine required landing ground roll and distance
- Apply corrections as applicable

Soft-Field Landing

- Criteria: soft, rough or contaminated surface, long runway, no obstacles, low density altitude, no or steady headwind
- Check environment and consult performance data in POH
- Pre-landing checks according to checklists in POH
- Perform passenger, crew arrival and emergency briefings

Soft-Field Landing – Approach

Align and Descent

Perspective Approach Speed

- Align with runway and establish a stabilized descent
- Aim for runway threshold to flare into landing zone (TCH 50 ft)
- Set full flaps (30°) decelerating in white arc (below 85 KIAS)
- Continuously check correct final approach airspeed (61-70 KIAS)
- Adjust attitude and power to maintain approach perspective

Soft-Field Landing – Flare and Touchdown

- Callout Landing Assured before initiating landing flare
- Reduce power to *idle* keeping *straight*
- Use runway end as reference for directional control
- Continue to decelerate in level slow flight above runway
- Gently increase elevator back-pressure to assume landing attitude gradually – slightly nose-up
- Gently add power to relieve main wheels controlling touchdown

Soft-Field Landing – Ground Roll

Keep Straight Runway End

Hold Nose Wheel Off

- Keep straight with rudder using peripheral vision
- Adjust power and elevator back-pressure to <u>hold off</u> nose wheel
- Apply minimum brakes and keep straight
- Keep rolling at taxi speed with elevator back-pressure and vacate runway
- Stop on supporting surface before retracting flaps
- Post-landing checks: flaps, transponder, lights, time, clearance

Review Slipping

- Define a slip and explain the difference between a side and a forward slip and their applications.
- Mentally perform a side slip and state all observations and actions.

Crosswind Landing

- Criteria: steady or gusty crosswind component
- Check environment and consult performance data in POH
- Pre-landing checks according to checklists in POH
- Maximum demonstrated crosswind component 15 knots
- Conduct passenger, crew arrival and emergency briefings

Crosswind Landing – Approach

- Align with runway and establish a crabbing stabilized descent
- Aim for runway threshold to flare into landing zone (TCH 50 ft)
- Set minimum flaps as required decelerating white arc (below 85 KIAS)
- Continuously check correct approach airspeed (65-75 KIAS)
- Consider higher approach speed in gusts (gust factor / 2)
- Adjust attitude and power to maintain approach perspective
- Transition from crab into side-slip at 200' AGL

Crosswind Landing – Flare and Touchdown

- Callout Landing Assured before initiating landing flare
- Reduce power to idle keeping straight during side-slip
- Use runway end as reference for directional control
- Continue to decelerate side-slipping in level slow flight above runway
- Gently increase elevator back-pressure to assume landing attitude gradually – slightly nose-up
- Touch down with windward wheel first

Crosswind Landing – Ground Roll

- Keep straight with rudder using runway end and peripheral vision
- Allow leeward wheel to settle and use alleron into the wind
- Control elevator back-pressure allowing nose wheel to settle
- Gently apply brakes keeping straight towards runway end
- Slow down to taxi speed increasing aileron input and vacate runway
- Post-landing checks: flaps, transponder, lights, time, clearance

Crosswind Component

Landing Factors

- Runways and **aerodrome** environment
- Surface material (hard, soft, rough) and slope
- Surface contamination (wet, dry, slush, snow, ice)
- Air density (altitude, pressure, temperature, humidity)
- Wind and turbulence (head-/tailwind, gusts, windshear)
- Wake turbulence
- Obstacles
- Weight and balance
- Ground effect, wheelbarrowing, weathercocking

Density Altitude – Koch Chart

High Density Altitude Operations

- Check environment and consult performance data in POH
- Pre-take-off checks according to checklists in POH
- Lean for maximum RPM above 3000 ft DALT
- High (high density altitude = low air density), hot, humid

Special Take-Offs

- Landings featuring combined factors
- Soft, short, high, hot, gusty, heavy, contaminated...

Wheelbarrowing

- Higher load on the **nose-wheel** compared to main wheels
- Tendency to pivot about the nose wheel may result in ground loop
- Before pivoting: ease back elevator to reduce weight on nose wheel
- After pivoting: relax forward elevator and abort if not stopped

Summary / Quiz

- What are the factors affecting landings and the selection of a landing type?
- Mentally perform a short-field landing and state all observations and actions.
- Mentally perform a soft-field landing and state all observations and actions.
- Mentally perform a crosswind landing and state all observations and actions.

Pre-Flight Briefing

- Exercise
- Training Area
- Departure and Arrival Procedures
- Weather Briefing / NOTAMs
- Aircraft and Documents
- Time and Fuel Requirements
- Safety Considerations and Responsibilities

Additional Materials

- Additional materials for Approach and Landing
- Flight Instructor Guide Exercise 18
- Flight Instructor Guide Lesson Plans 4-6, 8-10, 12-19