Chapitre 1 : Principes de démonstration

1 Implication

• Une assertion est une phrase mathématique qui peut être soit vraie, soit fausse.

Exemple 1.1. "5+2=8" est une assertion fausse. "5+3=8" est une assertion vraie.

- Une assertion peut dépendre d'une variable, auquel cas il faut des informations sur la variable pour conclure si elle est vraie ou pas. Par exemple "n est pair."
- Beaucoup de théorèmes sont de la forme : "Si P est vraie, alors Q est vraie" où P et Q sont deux assertions. On appelle P l'hypothèse et Q la conclusion. On note $P\Rightarrow Q$, ce qui se lit « P implique Q » , ou « l'implication $P\Rightarrow Q$ est vraie » . On dit aussi « P est une condition suffisante à Q » , et « Q est une condition nécessaire à P » .

Méthode pour démontrer une implication $P\Rightarrow Q$

- On suppose que P est vraie : « Supposons P » .
- Viennent ensuite des « alors » , « donc » , « on en déduit » ...
- On arrive jusqu'à Q : « Donc Q » .
- On conclut si besoin : « Ainsi P implique Q » ou « Finalement, si P alors Q » .

En général, une implication est un énoncé universel : elle concerne tous les éléments pris dans une certaine classe d'objets (des entiers, des fonctions, des suites...). Dans ce cas, lorsqu'on demande de démontrer l'implication, il est sous-entendu qu'on doit la démontrer pour tous les objets de la classe.

Exemple 1.2. Soit n un entier. Montrer que si n est pair alors n^2 est pair.

Solution: On suppose que n est un entier pair. Alors n est multiple de 2, donc il existe un entier k tel que n = 2k. Alors $n^2 = 4k^2 = 2 \times 2k^2$ donc n^2 est pair. Ainsi, si n est pair alors n^2 est pair.

Exemple 1.3. Soient a, b et c trois entiers non-nuls. Montrer que si a divise 1 b, alors ac divise b c.

Solution: Supposons que a divise b. Alors il existe un entier k tel que b = ka. Donc bc = kac et ac divise bc. Conclusion: si a divise b, alors ac divise bc.

⚠ L'implication " $P \Rightarrow Q$ " n'affirme ni P, ni Q, mais le lien entre les deux. Pour cette raison, il faut éviter d'utiliser le symbole " \Rightarrow " comme une abréviation du mot « donc » ou « alors ». De manière générale et pour faciliter la lecture, on évite aussi de mélanger les symboles mathématiques avec les paragraphes de raisonnement rédigés en français 2 .

EXERCICE 1.1. Soit n un entier. Montrer que si 4 divise n, alors 6 divise 3n.

EXERCICE 1.2. Soient a, b et c trois entiers. Montrer que si a divise b et b divise c, alors a divise c.

EXERCICE 1.3. Soient a et b deux entiers non-nuls. Montrer que si a divise b et b divise a, alors a = b ou a = -b

2 Notion de contrexemple

• À partir d'une assertion P, on peut construire sa **négation** non P: non P est vraie quand P est fausse et non P est fausse quand P est vraie.

Exemple 2.1. La négation de "x > 3" est "x < 3".

^{1.} a divise b signifie qu'il existe un entier k tel que $b = k \times a$. Autrement dit, b est un multiple de a. Par exemple, 4 divise 12.

^{2.} À quelques exceptions près, comme l'utilisation du signe "=" ou l'écriture de certains nombres en chiffres plutôt qu'en toutes lettres!

- Pour montrer qu'une assertion P est fausse, il suffit donc de montrer que sa négation non P est vraie.
- Soient P et Q deux assertions. L'implication $P \Rightarrow Q$ est elle-même une assertion, et admet donc une négation. La négation de $(P \Rightarrow Q)$ est (P et non Q).

Exemple 2.2. Par exemple, la phrase « il pleut et je n'ai pas mon parapluie » est la négation de la phrase « si il pleut, alors j'ai mon parapluie » .

• Pour montrer qu'une implication $P \Rightarrow Q$ concernant une classe d'objets x est fausse, il suffit donc de trouver un x qui vérifie P et non Q. Un tel x est appelé « **contrexemple** ». La présentation d'un contrexemple constitue une démonstration rigoureuse qui se suffit à elle-même.

Méthode pour démontrer qu'une implication $P \Rightarrow Q$ est fausse

- On trouve un x tel que P(x) est vraie et Q(x) est fausse.
- On présente le x trouvé comme un contrexemple : « L'implication est fausse, comme le montre le contrexemple suivant... »
- On vérifie P(x) : « D'une part, on a P(x) car... »
- On vérifie non-Q(x) : « Mais d'autre part, on n'a pas Q(x) car... »
- On conclut si besoin : « Ainsi P n'implique pas Q » .

Exemple 2.3. Soit n un nombre entier. Montrer que l'implication suivante est fausse : " si n est premier alors 2n + 1 est premier ".

Solution: L'implication est fausse, comme le montre le contrexemple n=7. D'une part, 7 est un nombre premier. Mais d'autre part, $2 \times 7 + 1 = 15 = 3 \times 5$, donc $2 \times 7 + 1$ n'est pas premier. Ainsi, n premier n'implique pas 2n+1 premier.

Remarque 2.4. Pour résoudre cet exercice, il a fallu au brouillon dresser le tableau suivant

On voit que sur les cinq premières valeurs possibles de n, seul n=7 constitue un contrexemple.

EXERCICE 2.1. Soit n un nombre entier. Démontrer que les implications suivantes sont fausses :

- 1. Si 4 divise n^2 alors 4 divise n.
- 2. Si n est premier alors n est impair.
- 3. Si $n^2 = 16$ alors n = 4.

EXERCICE 2.2. Soient x et y des nombres réels. Est-ce que les assertions suivantes sont vraies? Si oui, les démontrer. Sinon, donner un contrexemple.

- 1. $x^2 = 4 \Rightarrow x = 2$
- 2. $x > 2 \Rightarrow x^2 > 4$
- 3. $x = 1 \Rightarrow x^2 3x + 2 = 0$
- 4. Si x = y + 1 et y = -x alors x = y = 1.
- 5. Si x + y = 2 et xy = 1 alors x = y = 1.

3 Réciproque d'une implication

- Soient P et Q deux assertions. La **réciproque** de l'implication $P \Rightarrow Q$ est l'implication $Q \Rightarrow P$.
- La réciproque d'une implication peut être vraie ou fausse, **indépendamment** de la vérité ou de la fausseté de l'implication initiale.
- Puisque la réciproque d'une implication est elle-même une implication, on lui applique les mêmes techniques de démonstration.

Exemple 3.1. Soient a, b et c trois entiers non-nuls. Énoncer puis démontrer la réciproque de l'exemple 1.3.

Solution: La réciproque de l'exemple 1.3 est : si ac divise bc, alors a divise b. Démontrons-la. Supposons que ac divise bc. Alors il existe un entier k tel que bc = kac. Or c est non-nul, donc b = ka, c'est-à-dire que a divise b. La réciproque de l'exemple 1.3 est donc vraie.

EXERCICE 3.1. Soit n un nombre entier. On note respectivement P, Q et R les assertions "2 divise n", "3 divise n" et "4 divise n".

- 1. Que penser de l'implication $P \Rightarrow R$ et de sa réciproque? Que penser de l'implication $P \Rightarrow Q$ et de sa réciproque?
- 2. Démontrer les quatre affirmations faites à la question 1.

Définition 3.2. Soit x un nombre réel. On dit que x est rationnel s'il existe deux entiers relatifs p,q avec $q \neq 0$ tels que $x = \frac{p}{q}$. L'ensemble des nombres rationnels est noté \mathbb{Q} . Un nombre qui n'est pas rationnel est dit irrationnel. Tout nombre rationnel s'écrit de manière unique sous la forme d'une fraction irréductible, c'est-à-dire telle que le numérateur p et le dénominateur q n'ont pas de facteur commun.

Par exemple, $\frac{2}{3}$ est rationnel, -2 est rationnel, mais $\sqrt{2}$ est irrationnel (voir Exemple 7.1).

EXERCICE 3.2. Soient x et y des nombres réels. Montrer que les assertions suivantes sont fausses, puis montrer que leurs réciproques sont vraies.

- 1. Si x^2 est rationnel, alors x est rationnel.
- 2. Si x + y et xy sont rationnels, alors x et y sont rationnels.

EXERCICE 3.3. Étudier les réciproques des assertions de l'exercice 2.2.

4 Équivalence

- Soient P et Q deux assertions. Si $P \Rightarrow Q$ et $Q \Rightarrow P$, on dit que P et Q sont **équivalentes** et on note $P \Leftrightarrow Q$. On dit aussi « P est vraie si et seulement si Q est vraie » .
- Par exemple, le théorème de Pythagore énonce une équivalence : on peut l'utiliser "dans les deux sens".
- Lorsque $P \Leftrightarrow Q$, les assertions P et Q sont "interchangeables" : Q est vraie quand P est vraie et Q est fausse quand P est fausse.

Méthode pour démontrer une équivalence $P \Leftrightarrow Q$

- On écrit qu'on procède par double implication.
- On démontre $P \Rightarrow Q$.
- On démontre $Q \Rightarrow P$.
- On conclut si besoin : « Ainsi, P si et seulement si Q » .

EXERCICE 4.1. Soient a, b et c trois entiers non-nuls. Démontrer que a divise b si et seulement si ac divise bc.

5 Succession d'équivalences

Lorsqu'on démontre une équivalence $P\Leftrightarrow Q$ avec la méthode ci-dessus, il arrive que la démonstration de $Q\Rightarrow P$ soit la même que celle de $P\Rightarrow Q$, mais " écrite à l'envers". C'est le cas lorsque les arguments permettant de démontrer $P\Rightarrow Q$ sont les mêmes que ceux utilisés pour la réciproque. On peut, **dans ce cas**, raisonner par succession d'équivalences, comme si on menait un calcul par égalités successives. On pensera alors à **justifier chaque étape** du raisonnement et à vérifier que les arguments fonctionnent " dans les deux sens".

Exemple 5.1. Soient x et y deux réels strictement positifs. Montrer que x < y si et seulement si $\frac{-1}{x^3} < \frac{-1}{y^3}$.

Solution : On a

$$x < y \Leftrightarrow x^3 < y^3 \qquad \text{car la fonction } X \mapsto X^3 \text{ est strictement croissante sur }]0, +\infty[$$

$$\Leftrightarrow \frac{1}{x^3} > \frac{1}{y^3} \qquad \text{car la fonction } X \mapsto \frac{1}{X} \text{ est strictement décroissante sur }]0, +\infty[$$

$$\Leftrightarrow \frac{-1}{x^3} < \frac{-1}{y^3} \qquad \text{en multipliant par } -1 \text{ des deux côtés.}$$

Attention : dans les deux premières lignes, c'est la décroissance **stricte** qui fait fonctionner les équivalences dans les deux sens.

EXERCICE 5.1. Soit x un nombre réel différent de 1. Montrer que $\left(\frac{x+1}{x-1}\right)^2 > 1$ si et seulement si x > 0.

6 Contraposée d'une implication

Soient P et Q deux assertions. La **contraposée** de l'implication $P \Rightarrow Q$ est l'implication (non Q) \Rightarrow (non P). Une implication et sa contraposée sont **équivalentes** : démontrer la contraposée revient à démontrer l'implication initiale.

Exemple 6.1. La contraposée de « si il pleut, alors j'ai mon parapluie » est « si je n'ai pas mon parapluie, alors il ne pleut pas ».

La contraposée de « si je gagne au loto alors j'ai joué au loto » est « si je n'ai pas joué au loto alors je ne gagne pas au loto ».

↑ La contraposée d'une implication n'est pas la négation de cette implication.

⚠ La contraposée d'une implication n'est pas la réciproque de cette implication.

Méthode pour démontrer une implication $P \Rightarrow Q$

- On indique qu'on raisonne par contraposition.
- On suppose que Q est fausse : « Supposons non Q » .
- On arrive jusqu'à non P : « Donc non P » .
- On conclut si besoin : « Ainsi non $Q\Rightarrow$ non P, donc $P\Rightarrow Q$ » .

Exemple 6.2. Soit n un entier. Montrer que si n^2 est pair alors n est pair.

Solution: on raisonne par contraposée. Supposons que n n'est pas pair, donc n est impair. Alors n-1 est pair, donc il existe un entier k tel que n-1=2k, donc n=2k+1. Alors $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$. Donc n^2 est impair, donc n'est pas pair. Par contraposition, si n^2 est pair, alors n est pair.

EXERCICE 6.1. Soit n un entier et p un nombre premier. Montrer 3 que p divise n si et seulement si p divise n^2 .

7 Démonstration par l'absurde

Pour démontrer qu'une assertion P est vraie, on va supposer que P n'est pas vraie, et en déduire une contradiction. Donc notre hypothèse ne tient pas et P doit être vraie.

Méthode pour démontrer par l'absurde une assertion ${\cal P}$

- On écrit « Supposons par l'absurde que P n'est pas vraie » .
- On aboutit à une impossibilité et on écrit : « Contradiction! Donc P est vraie ».

Exemple 7.1. Montrer que $\sqrt{2}$ est irrationnel.

Solution: On suppose par l'absurde que $\sqrt{2}$ est un nombre rationnel. On peut donc écrire $\sqrt{2} = \frac{a}{b}$ où la fraction $\frac{a}{b}$ est irréductible (c'est à dire que a et b sont deux entiers sans facteur commun). Alors $\sqrt{2}b = a$ et en élevant au carré, $2b^2 = a^2$. Donc a^2 est pair. Par l'exemple 6.2, a est pair. Il existe donc un entier k tel que a = 2k. Alors $2b^2 = (2k)^2 = 4k^2$ donc $b^2 = 2k^2$. Par l'exemple 6.2, b est pair. Mais alors a et b sont tous les deux pairs, donc la fraction $\frac{a}{b}$ n'est pas irréductible. Contradiction! Donc $\sqrt{2}$ est irrationnel.

EXERCICE 7.1. Soit p un nombre premier. Montrer que \sqrt{p} est irrationnel.

EXERCICE 7.2. Montrer que l'ensemble des nombres premiers est infini.

^{3.} On admet le lemme d'Euclide : Soit p un nombre premier et a, b deux entiers. Si p divise ab alors p divise a ou p divise b.

8 Disjonction de cas

Il arrive qu'une assertion P(x) soit vraie pour tout x mais pour des raisons différentes selon la valeur de x. Lorsque c'est le cas, il est nécessaire de structurer sa démonstration en plusieurs étapes, chacune correspondant à un ensemble de valeurs que peut prendre x. Si l'ensemble de tous les cas considérés recouvre toutes les valeurs possibles de x, on dit qu'on a raisonné par "disjonction de cas".

Méthode pour démontrer P(x) pour tout x.

- On écrit qu'on procède par disjonction de cas.
- On démontre P(x) pour x vérifiant une certaine propriété \mathcal{P}_1 : « Premier cas : x vérifie \mathcal{P}_1 . Alors ... donc ... et P(x) est vraie ».
- On démontre P(x) pour x vérifiant une autre propriété \mathcal{P}_2 : « Deuxième cas : x vérifie \mathcal{P}_2 . Alors ... donc ... et P(x) est vraie ».
- On répète cette étape jusqu'à avoir épuisé tous les cas possibles.
- On conclut : « Finalement, P(x) est vraie pour tout x ».

Exemple 8.1. Soit n un nombre entier. Montrer que $\frac{n(n+1)}{2}$ est un nombre entier.

Solution: On procède par disjonction de cas.

Premier cas: n est pair. Alors n(n+1) est pair et $\frac{n(n+1)}{2}$ est un entier.

<u>Deuxième cas</u>: n est impair. Dans ce cas n+1 est pair, donc n(n+1) est pair et $\frac{n(n+1)}{2}$ est un entier.

Finalement, $\frac{n(n+1)}{2}$ est un nombre entier.

EXERCICE 8.1. Soit n un entier. Montrer que 6 divise n(n+1)(n+2). Indice : séparer les cas n=3k, n=3k+1, n=3k+2.

EXERCICE 8.2. Soit n un entier. Montrer que 24 divise n(n+1)(n+2)(n+3).

9 Analyse – Synthèse

Certains problèmes mathématiques sont de la forme "trouver tous les x vérifiant P" (c'est le cas des équations à résoudre par exemple). On peut alors utiliser le raisonnement en deux étapes appelé "analyse – synthèse".

- Analyse : On suppose qu'on a trouvé une solution au problème et on en déduit des choses sur la solution. Cette étape permet de cerner l'ensemble des solutions éventuelles.
- Synthèse : Parmi les solutions éventuelles trouvées à l'étape d'analyse, on détermine celles qui sont effectivement solution et celles qui ne le sont pas.

Méthode pour trouver tous les x vérifiant P

- On écrit qu'on procède par analyse synthèse.
- On suppose qu'on a une solution : « Analyse : soit x vérifiant P »
- On en déduit un ensemble $\mathcal E$ (petit) de solutions éventuelles : « Donc... Alors... Ainsi... Finalement x est dans $\mathcal E$ » .
- On étudie les solutions éventuelles : « Synthèse : dans $\mathcal E$, les seuls éléments vérifiant P sont... »
- On conclut : « Conclusion : les solutions au problème sont... »

Exemple 9.1. Résoudre l'équation $\sqrt{x+2} = x$ pour $x \ge -2$.

Solution: On procède par analyse – synthèse.

Analyse : soit $x \ge -2$ vérifiant $\sqrt{x+2} = x$. Alors en élevant au carré, $x+2 = x^2$. Donc x est solution de l'équation $x^2 - x - 2 = 0$. Le discriminant de cette équation est 9 et deux solutions sont possibles : x = -1 ou x = 2. Dans les deux cas, $x \ge -2$.

Synthèse: posons x=2. Alors $\sqrt{x+2}=\sqrt{4}=2=x$. Donc x=2 est solution de l'équation. Posons x=-1. Alors $\sqrt{x+2}=\sqrt{1}=1$ et x=-1 n'est pas solution de l'équation.

<u>Conclusion</u>: l'unique solution de l'équation $\sqrt{x+2} = x$ est x = 2.

Exemple 9.2. Résoudre l'équation $|x| = \frac{1}{x}$ pour x réel non-nul.

Solution: on procède par analyse-synthèse.

Analyse: soit $x \neq 0$ tel que $|x| = \frac{1}{x}$. De deux choses l'une: ou bien x > 0, ou bien x < 0. Si x > 0, alors |x| = x, donc $x = \frac{1}{x}$ et en multipliant par x, $x^2 = 1$. Si x < 0, alors |x| = -x, donc $-x = \frac{1}{x}$ et en multipliant par x on a $-x^2 = 1$, ce qui n'est pas possible car un carré est toujours positif. Ainsi $x^2 = 1$, donc x = 1 ou x = -1.

Synthèse: Si x = -1, alors |x| = 1 mais $\frac{1}{x} = -1$, donc x = -1 n'est pas solution. Si x = 1, alors $|x| = 1 = \frac{1}{x}$ et x = 1 est donc solution.

<u>Conclusion</u>: L'unique solution de l'équation $|x| = \frac{1}{x}$ est x = 1.

EXERCICE 9.1. Résoudre sur $[1, +\infty[$ l'équation $\sqrt{x-1} = 1 - x$.

EXERCICE 9.2. Résoudre sur \mathbb{R} l'équation |2x+1|=x. Indice : raisonner sur le signe de |2x+1|.

EXERCICE 9.3. Résoudre sur \mathbb{R} l'équation |2x+1|=x+1.

10 Démonstration par récurrence

Soit P(n) une assertion dépendant d'un entier n. On veut souvent montrer que P(n) est vraie pour tout entier à partir d'un certain n_0 (en général, $n_0 = 0$ ou $n_0 = 1$). On peut alors tenter un **raisonnement par récurrence**.

Démonstration par récurrence

- On écrit qu'on procède par récurrence sur n.
- On écrit : « $\underline{\mbox{Initialisation}}$: Montrons que $P(n_0)$ est vraie » .

On démontre que $P(n_0)$ est vraie.

• On écrit : « <u>Hérédité</u> : On se donne un entier $n \ge n_0$ tel que P(n) est vraie et on doit montrer qu'alors P(n+1) est vraie » .

On démontre que P(n+1) est vraie.

• On écrit : « Conclusion : Par récurrence, P(n) est vraie pour tout $n \ge n_0$ » .

Exemple 10.1. On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n + 1}$. Montrer que pour tout $n \ge 0$, $u_n \le u_{n+1}$.

Solution : On procède par récurrence.

<u>Initialisation</u>: Montrons l'inégalité avec n=0. On a $u_0=1$ et $u_1=\sqrt{u_0+1}=\sqrt{2}$. On a donc bien $u_0\leq u_1$.

<u>Hérédité</u>: Donnons-nous un entier $n \geq 0$ et **supposons l'inégalité vraie au rang** n, c'est-à-dire que $u_n \leq u_{n+1}$. On doit montrer qu'elle est vraie au rang n+1, autrement dit $u_{n+1} \leq u_{n+2}$. Or par définition de la suite (u_n) on a $u_{n+2} = \sqrt{u_{n+1} + 1}$. Mais **par hypothèse de récurrence**, $u_n \leq u_{n+1}$. Donc $u_n + 1 \leq u_{n+1} + 1$ et $\sqrt{u_n + 1} \leq \sqrt{u_{n+1} + 1}$ (par croissance de la fonction $\sqrt{\cdot}$). Ainsi, $\sqrt{u_n + 1} \leq u_{n+2}$, c'est-à-dire $u_{n+1} \leq u_{n+2}$.

<u>Conclusion</u> : Par récurrence, l'inégalité est vraie pour tout entier $n \ge 0$.

Remarque : on utilise toujours l'hypothèse de récurrence à l'étape d'hérédité.

EXERCICE 10.1. Soit x un nombre réel positif. Montrer par récurrence que pour tout entier $n \geq 0$:

$$(1+x)^n \ge 1 + nx.$$

EXERCICE 10.2. On rappelle la formule

$$\cos a \cos b = \frac{1}{2} \left(\cos(a+b) + \cos(a-b) \right).$$

- 1. Soit θ un nombre réel. On suppose que $\cos(\theta)$ est rationnel. Montrer par récurrence que pour tout entier $n \geq 1$, $\cos(n\theta)$ est rationnel.
- 2. En déduire par l'absurde que $\cos(1^\circ)$ est irrationnel.

11 La notation \sum pour les sommes

Soit f une fonction et a, b deux entiers tels que $a \le b$. On note $\sum_{n=a}^{b} f(n)$ la somme des valeurs de f pour tous les entiers n tels que $a \le n \le b$:

$$\sum_{n=a}^{b} f(n) = f(a) + f(a+1) + \dots + f(b-1) + f(b).$$

Exemple 11.1. On a

$$\sum_{n=0}^{4} n^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$$

$$\sum_{k=1}^{3} 2^k = 2^1 + 2^2 + 2^3 = 2 + 4 + 8 = 14.$$

La variable sous le symbole " \sum " est une variable "muette" qui ne sert qu'à écrire la somme : le résultat final n'en dépend pas. On peut la noter n, k, i... de sorte que

$$\sum_{n=1}^{5} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \sum_{k=1}^{5} \frac{1}{k}.$$

EXERCICE 11.1. Expliciter les sommes suivantes :

$$\sum_{k=1}^{4} k \qquad \sum_{k=1}^{4} k^2 \qquad \sum_{k=1}^{4} k^3 \qquad \sum_{k=1}^{4} k^{\ell} \qquad \sum_{\ell=1}^{4} k^{\ell} \qquad \sum_{k=1}^{4} \ell \qquad \sum_{\ell=1}^{4} \frac{1}{k+\ell}.$$

EXERCICE 11.2. A l'aide du symbole \sum , écrire les sommes suivantes :

$$A = 17 + 18 + \dots + 35$$
 $B = 2^6 + 2^7 + \dots + 2^{13}$ $C = 30 + 33 + 36 + \dots + 297 + 300$ $D_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n+1}.$

Le raisonnement par récurrence est souvent utile pour démontrer des formules sur des sommes.

Exemple 11.2. Montrer par récurrence que pour tout entier $n \geq 0$,

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Solution : On procède par récurrence.

 $\underline{\text{Initialisation}}$: montrons que la formule est vraie pour n=0. On a d'une part

$$\sum_{k=0}^{0} k = 0$$

et d'autre part,

$$\frac{0(0+1)}{2} = 0.$$

Donc la formule est vraie pour n = 0.

<u>Hérédité</u>: donnons-nous un entier $n \ge 0$ et supposons que la formule soit vraie au rang n. On doit montrer qu'elle est vraie au rang n + 1, c'est-à-dire:

$$\sum_{k=0}^{n+1} k = \frac{(n+1)(n+1+1)}{2}.$$

7

Or on a:

$$\sum_{k=0}^{n+1} k = \sum_{k=0}^{n} k + (n+1)$$
 séparation du dernier terme
$$= \frac{n(n+1)}{2} + (n+1)$$
 par **hypothèse de récurrence**
$$= \frac{n(n+1) + 2(n+1)}{2}$$
 même dénominateur
$$= \frac{(n+1)(n+2)}{2}$$
 factorisation par $(n+1)$.

<u>Conclusion</u> : par récurrence, la formule est vraie pour tout entier $n \ge 0$.

EXERCICE 11.3. Soit $q \neq 1$ un nombre réel. Montrer par récurrence que pour tout entier $n \geq 0$:

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}.$$

EXERCICE 11.4. Montrer par récurrence que pour tout entier $n \ge 0$:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

EXERCICE 11.5. Soient a et b deux réels. Montrer par récurrence la formule du binôme de Newton : pour tout entier $n \ge 0$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

On rappelle que le coefficient binomial « k parmi n » est défini par la formule

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$