

eq.

Hopcroft (2001), p. 91 (105)

ω-Automata

	Deter- ministic	Non-deter- ministic
Büchi		\checkmark
Muller	\checkmark	$\sqrt{}$
Rabin	\checkmark	\checkmark
Streett	\checkmark	\checkmark
Parity	√	V

A: regular language B, C: ω -regular language L is a ω -regular language if

- $L = A^{\omega}$
- L = AB
- L = B∪C

http://en.wikipedia.org/ wiki/Omega-regular_language

			•
Grammar Type	Language Class	Automata Class	http
0 (unrestricted)	Recursivly enumerable	Turing Machine	wiki
1 (context-sensitive)	Context-sensitive	Linear bounded Turing machine	-
2 (context-free)	Context-free	Pushdown automata	
3 Regular Grammars	Regular Languages	Finite State Automata	Reg
	=> <	eq. DFA eq. <:	=>

Regular Expressions