Hadoop/MapReduce: Translating DB Operations to Hadoop Jobs

DB Operations

- Select
- Projection
- Grouping and Aggregation
- Duplicate Elimination
- Join

Selection: σ

- Select: $\sigma_c(R)$:
 - Select subset of tuples from R that satisfy **selection condition** c

R

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 $\sigma_{((A=B)^{\land}(D>5))}$ (R)

Α	В	С	D
α	α	1	7
β	β	23	10

Select *
From R
Where R.A = R.B
And R.D > 5;

In Hadoop, Selection is implemented as a Map-Only Job

Remember: Color Filter

Job: Select only the blue and the green colors

Projection: π

- $\pi_{A1, A2, ..., An}$ (R)
 - returns all tuples in R, but only columns A1, A2, ..., An

Compute this expression

Rename column A to V

and call it X $\pi_{C, V \leftarrow A, X \leftarrow C^*3+B} (R)$

Select C, A as V, C*3+B as X **From** R;

R

Α	В	С
1	2	5
3	4	6
1	2	7
1	2	8

_		
С	V	Χ
5	1	17
6	3	22
7	1	23
8	1	26

In Hadoop,
Projection is
implemented as a
Map-Only Job

Grouping & Aggregation

- **Aggregation function** takes a collection of values from a GROUP of records and returns a single value for that group:
 - avg: average value
 - min: minimum value
 - max: maximum value
 - **sum**: sum of values
 - **count**: number of values
- Grouping & Aggregate operation in relational algebra
 - $\gamma_{g1,g2,...gm, F1(A1), F2(A2),...Fn(An)}(R)$

Grouping & Aggregation Operator: Example

R

Α	В	С
α	α	7
α	β	7
β	β	3
β	β	10

S

branch_name	account_number	balan
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

 $\gamma_{\text{sum(c)}}(R)$

sum(c)
27

γ_{branch_name,sum(balance)}(S)

branch_name	sum(balance)	
Perryridge	1300	
Brighton	1500	
Redwood	700	

In Hadoop,
Grouping &
Aggregation is
implemented as a
Map-Reduce Job

Select sum(C) **From** R;

Select sum(balance) **From** S

What is the key/value?

Back to Word Count

• Job: Count the occurrences of each word in a data set

Duplicate Elimination: δ (R)

Delete all duplicate records

Select Distinct * **From** R;

R

А	В
1	2
3	4
1	2
1	2

d (R)

Α	В
1	2
3	4

In Hadoop, duplicate elimination is implemented as a Map-Reduce Job

What is the key/value?

Map (Key= hash code of the tuple, Value= tuple itself).

Join: $R \bowtie_C S$

R

S

А	В
1	2
3	2

$$R \square_{R.A \ge S.C} S$$

A	В	D	С
3	2	2	3

Several alternate join logic and algorithms exist. Several variations of Hadoop Join implementations possible.

Joining Two Large Datasets: Re-Partition Join

Joining Large Dataset (A) with Small Dataset (B) Broadcast/Replication Join

- Every map task processes one block from A and the entire B
- Every map task performs the join (MapOnly job)

Translating DB Operations to Hadoop Jobs (Summary)

- Select (Filter) → Map-only job
- Projection → Map-only job
- Grouping and aggregation → Map-Reduce job
- Duplicate Elimination → Map-Reduce job
- Join → Map-Reduce job