

密级状态: 绝密() 秘密() 内部资料() 公开(√)

RK_ISP10_Camera_User_Manual

s 文件状态:	文件标识:	
[]草稿	当前版本:	2.1
[]正式发布 [√]正在修改	作 者:	邓达龙、钟以崇、欧阳亚凤、张云 龙、叶志明、黄春成
	完成日期:	2018-5-22

福州瑞芯微电子股份有限公司
Fuzhou Rockchips Electronics Co., Ltd (版本所有,翻版必究)

历史版本

版本	日期	描述	作者	审核
V1. 0	2015-3-17	建立文档,主要介绍	张云龙	
		RK3288/RK3368Camera 的注意事项		
V2. 0	2016-8-19	添加 RK3399 Camera 的注意事项	黄春成	
V2. 1	2017-10-24	添加 camera 驱动移植指导	张云龙	
V2. 2	2018-05-22	完善 camera 驱动移植指导	陈泽发	
			7/1	
			BA	
		X		

目录

目	录	3
1.	文档适用平台	5
	1.1. 平台说明	5
	1) RK3288	
	2) RK3368	5
	3) RK3399	5
2.	硬件说明	5
	2.1. DVP SOC CAMERA SENSOR	5
	1) RK3288	5
	2) RK3368	5
	3) RK3399	
	2.2. MIPI CAMERA SENSOR	
	2.3. 2 个 CAMERA SENSOR 同时工作的限制说明	5
	1) RK3288、RK3368	5
	2.4. RAW CAMERA SENSOR 选型说明	5
3.	文件目录说明	6
4.	版本说明	7
_	4. 1. 版本获取方式	
Э.	5. 1. Sensor 注册信息	/
	5. 1. SENSOR 注册信息	7
	5. 2. VCM 注册信息	11
	5.3. 软件功能配置信息	
	5. 4. FLASH 注册信息	
	5. 5. CAM_BOARD.XML 支持多个 SENSOR 配置	
	5. 6. 如何测试 CTS_VERIFY FOV	
	5. 7. 如何解决开启 CAMERA 取初几帧的偏巴问题	
	SOC SENSOR 支持列表	
7.	SENSOR 驱动移植指导	19
	7.1 基本概念	19
	7.1.1 MIPI	19
	7.1.2 Lane	_
	7.2 常用数据类型	
	IsiRegisterFlags_t	
	IsiRegDescription_t	
	IsiSensorHandle_t	
	IsiSensorCaps_tIsiAfpsInfo_t	
	7.3 API 参考	
	OV8858_IsiCreateSensorIss.	
	OV8858_IsiReleaseSensorIss	
	OV8858_IsiGetCapsIssInternal	

OV8858_SetupOutputFormat	30
OV8858_get_PCLK	31
OV8858_SetupOutputWindowInternal	31
OV8858_SetupImageControl	32
OV8858_IsiSetupSensorIss	32
OV8858_IsiChangeSensorResolutionIss	33
OV8858_IsiSensorSetStreamingIss	34
OV8858_IsiSensorSetPowerIss	34
OV8858_IsiCheckSensorConnectionIss	35
OV8858_IsiGetGainIss	35
OV8858_IsiSetGainIss	36
OV8858_IsiGetIntegrationTimeIss	36
OV8858_IsiSetIntegrationTimeIss	37
OV8858_IsiGetAfpsInfoHelperIss	38
OV8858_IsiGetAfpsInfoIss	38
OV8858_IsiGetSensorI2cInfo	39
7.4 移植步骤	40
驱动目录结构	40
准备工作	40
开始移植	40
寄存器配置	41
7.5 编译及验证	44

1. 文档适用平台

该文档适用于 RK3288、RK3368 和 RK3399 平台。

- 1.1. 平台说明
- 1) RK3288

两个 PHY, PHY0 以及 PHY1 都支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

- 2) RK3368
 - 一个 PHY,PHY 支持 1lane、2lane、4lane,最大支持 8M pixel raw sensor。
- 3) RK3399 两个 PHY,PHY 支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

2. 硬件说明

- 2.1. DVP SOC Camera Sensor
- 1) RK3288

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3288 CIF_D2 - CIF_D9

- 2) RK3368
 - 建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3368 CIF_D4 CIF_D11
- 3) RK3399

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3399 CIF D0 - CIF D7

2.2. MIPI Camera Sensor

(模组的 MIPI Lane 数 >= PHY 支持的 MIPI Lane 数)满足这一条件都可以连接到对应的 PHY,但是最后实际使用的 Lane 数以 PHY 支持的 Lane 数为准;

MIPI Camera Sensor 在选用时,建议事先查阅 RockChip 的认证列表:《RKISPV1_Camera_Module_AVL》,确认是否调试通过.

- 2.3. 2 个 Camera Sensor 同时工作的限制说明
- 1) RK3288 RK3368
 - 1、2 个 Sensor 只能有一个是 RAW Sensor;
 - 2、必须有一个是 MIPI Sensor;
- 2) RK3399
 - 1、2个 Sensor 都为 RAW Sensor 或者 mipi sensor;
- 2.4. RAW Camera Sensor 选型说明
 - 1、事先获取 RockChip 的认证列表: 《RKISPV1 Camera Module AVL》;
- 2、列表中已经有相关型号,并且状态显示 Ready,那么建议按照列表中的模组配置信息让模组厂进行打样;
- 3、列表中没有相关型号,或是想选择不同配置(镜头、VCM)的模组,那么建议填写《RockChip 摄像头模组调试需求申请表》,同时发给 RockChip。
 - 注: RAW Camera Sensor 调试周期在 4 周左右; 模组配置更换 调试周期在 3 周左右;

3. 文件目录说明

```
3288 Android:
      | hardware\rk29\camera
                                         CameraHal 源码
         |CameraHal
                                          Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
                                          Sensor 驱动源码
           |isi\drv
                                          Sensor 模组 tunning 参数
             |OV8825\calib
3368 Android:
      | hardware\rockchip\camera
                                         CameraHal 源码
         |CameraHal
                                         Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
           |isi\drv
                                          Sensor 驱动源码
                                          Sensor 模组 tunning 参数
             |OV8825\calib
 Kernel:
     |drivers\media\video\rk camsys
                                          CamSys 驱动源码
     |include\media\camsys_head.h
3399 Android:
    | hardware\rockchip\camera
                                         CameraHal 源码
        CameraHal
                                          Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
           |isi\drv
                                          Sensor 驱动源码
                                          Sensor 模组 tunning 参数
             |OV8825\calib
 Kernel:
```


|drivers\media\video\rk_camsys |include\media\camsys head.h CamSys 驱动源码

4. 版本说明

4.1. 版本获取方式

在机器的 shell 中执行以下命令:

root@rk3288:/ # getprop

[sys_graphic.cam_camboard.ver]: [0.2.0] 支持 cam_board.xml 的版

本

[sys_graphic.cam_drv_camsys.ver]:[0.8.0]camsys 驱动版本[sys_graphic.cam_hal.ver]:[0.9.0]CameraHal 版本[sys_graphic.cam_isi.ver]:[0.1.0]ISI 接口版本[sys_graphic.cam_libisp.ver]:[0.4.0]ISP 库版本[sys_graphic.0V8825.ver]:[0.9.0]sensor 驱动版本号

由于各个源码以及库之间版本需要匹配使用,所以在代码中已经做了版本校验规则,如果出现 panic 等信息,麻烦先关注是否是版本之间的不匹配导致!!

例如:

D/CameraHal(1739): CamSys_Head.h Version Check:

D/CameraHal(1739): Kernel camsys_head.h: v0.6.0

D/CameraHal(1739): Kernel camsys_drv: v0.8.0

D/CameraHal(1739): CameraHal camsys_head.h: v0.7.0

D/CameraHal(1739):

D/CameraHal(1739):

D/CameraHal(1739):

F/CameraHal(1739): static int

camera_board_profiles::RegisterSensorDevice(rk_cam_total_info*):

F/CameraHal(1739): VERSION-WARNING: camsys_head.h version isn't

match in Kernel and CameraHal

5. 如何注册 DVP/MIPI Sensor

注册 DVP/MIPI Sensor 方式通过填写 cam_board. xml 来实现,该文件使用简要说明如下:

注: 如果机器中没有 DVP/MIPI Sensor, 删除 cam_board. xml 文件即可;

<BoardXmlVersion version="v0.2.0">

以上标识的为当前 xml 文件的版本号,如果与 sys_graphic.cam_camboard.ver 不一致,可能导致错误,麻烦更新 cam board.xml。

5.1. Sensor 注册信息

<SensorName name="0V8858" ></SensorName>

填写 Sensor 名字,该名字必须与 Sensor 驱动的名字一致,目前提供的 Sensor 驱动如下:

libisp_isi_drv_OV8858.so libisp_isi_drv_GC0308.so libisp_isi_drv_GC2035.so libisp_isi_drv_GC2155.so libisp_isi_drv_GS8604.so libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5645.so libisp_isi_drv_OV5645.so libisp_isi_drv_OV5648.so
libisp_isi_drv_GC0308.so libisp_isi_drv_GC2035.so libisp_isi_drv_GC2155.so libisp_isi_drv_GS8604.so libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_GC2035.so libisp_isi_drv_GC2155.so libisp_isi_drv_GS8604.so libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_GC2155.so libisp_isi_drv_GS8604.so libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_GS8604.so libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_HM2057.so libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_IMX214.so libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_NT99252.so libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_OV2659.so libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_OV2680.so libisp_isi_drv_OV2685.so libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
☐ libisp_isi_drv_OV2685.so ☐ libisp_isi_drv_OV5640.so ☐ libisp_isi_drv_OV5645.so
libisp_isi_drv_OV5640.so libisp_isi_drv_OV5645.so
libisp_isi_drv_OV5645.so
libien isi day OV5648 so
libisp_isi_div_Ov3048.so
libisp_isi_drv_OV8820.so
libisp_isi_drv_OV8825.so
libisp_isi_drv_OV13850.so
libisp_isi_drv_OV13860.so
libisp_isi_drv_OV2710.so
libisp_isi_drv_HM5040.so

<SensorLens name="LG-9569A2"></SensorLens>

填写模组所配置的镜头型号, 镜头型号必须根据模组实际配置填写, 这个将直接影响到最后的成像质量。

注意:非 OTP 模组及有 OTP 但读取不到 lens ID 则以这里配置的为准;有 OTP 且能读取到 lens ID 则以读取到的镜头型号为准。

目前 tuning 过的 sensor 及可配置镜头型号如下:

0V8825:

LG-5008A7

0V8820:

LG-5008A7

0V8858:

SUNNY-3813A

LG-9569A2

R5AV08

0V5648:

CHT-842B-MD

XY-LE001B1

<SensorDevID IDname="CAMSYS_DEVID_SENSOR_1A"></SensorDevID>

填写 Sensor 软件 ID, 注册的 ID 只需要不一致即可,可填写以下值: CAMSYS_DEVID_SENSOR_1A

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

CAMSYS_DEVID_SENSOR_1B CAMSYS DEVID SENSOR 2

〈SensorI2cBusNum busnum="3"></SensorI2cBusNum>
填写 Sensor 所连接的主控 I2C 通道号

⟨SensorI2cAddrByte byte="2"⟩⟨/SensorI2cAddrByte⟩
填写 Sensor 寄存器地址长度,单位: Byte

<SensorI2cRate rate="100000"></SensorI2cRate>

填写 Sensor 的 I2C 频率,单位: Hz

<SensorDovdd name="NC" min="18000000" max="18000000"
delay="5000"></SensorDovdd>

填写 Sensor DOVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC,注意 min 以及 max 值必须填写,这决定了 Sensor 的 IO 电压; RK3399 中有 delay,调整上电时序;

<SensorDvdd name="NC" min="12000000" max="12000000" delay="0"></SensorDvdd>
填写 Sensor DVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC

<SensorGpioPwdn ioname="RK30_PIN1_PC2" active="0"
delay="0"></SensorGpioPwdn>

填写 Sensor PowerDown 引脚,直接填写名称即可, active 填写休眠的有效电平; RK3399 中 phy0、phy1 有单独的 "SensorGpioPwdn",分别 为"SensorGpioPwdn0"、"SensorGpioPwdn 1";

<SensorGpioRst ioname="NC" active="0" delay="1000"></SensorGpioRst>

填写 Sensor Reset 引脚,直接填写名称即可, active 填写复位的有效电平

⟨SensorGpioPwen ioname="NC" active="1" delay="1000"⟩⟨/SensorGpioPwen⟩ 填写 Sensor Power 引脚,直接填写名称即可, active 填写电源有效电平

<SensorFacing facing="front"></SensorFacing>

填写 Sensor 作为前置还是后置,可填写如下值:

front

back

<SensorInterface mode="CCIR601"></SensorInterface>

填写 Sensor 的接口方式,可填写如下值:

CCIR601

CCIR656,

MIPI,

SMIA

<SensorMirrorFlip mirror="0"></SensorMirrorFlip>

暂不支持

<SensorOrientation orientation="0"></SensorOrientation>

填写 Sensor 的角度信息

<SensorPowerupSequence seq="1234"></SensorPowerupSequence>

暂不支持

<SensorFovParemeter h="60.0" v="60.0"></SensorFovParemeter>

FOV 配置选项, h 代表水平视角度数, v 代表垂直视角度数

理论上,FOV 值可以由模组规格书中获得,由于可能不精确,在测试 Cts_Verify FOV 选项时,可以先测试一张全分辨率照片,查看具体的 FOV 值,然后将测试出的 FOV 值 重新填入该处,重新烧写固件测试。

<SensorAWB Frame Skip fps="15"></SensorAWB Frame Skip>

设置 Camera 进入时,过滤 awb 不稳定的最大帧数

如果 sensor 帧率可以达到 30 帧, 建议设置成 15 帧;

如果 sensor 帧率只在 15 帧左右,建议跳桢数减少,避免刚进入黑屏时间较长。

DVP Sensor:

<SensorPhy phyMode="CamSys_Phy_Cif" sensor_d0_to_cif_d ="2" cif_num="0"
sensorFmt="CamSys Fmt Raw 10b"></SensorPhy>

phyMode:

Sensor 接口硬件连接方式,可填写如下值: CamSys Phy Cif

sensor d0 to cif d:

Sensor DVP 输出数据位 DO 对应连接的主控 DVP 接口的数据位号码

cif num:

Sensor DVP 连接到主控 DVP 接口编号

sensorFmt:

Sensor 输出的数据格式,目前支持 CamSys Fmt Raw 10b 和 CamSys Fmt Raw

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

 $_12b$

MIPI Sensor:

<SensorPhy phyMode="CamSys_Phy_Mipi" lane="1" phyIndex="0"
sensorFmt="CamSys_Fmt_Raw_10b"></SensorPhy>

phyMode:

Sensor 接口硬件连接方式,可填写如下值: CamSys_Phy_Mipi

lane:

Sensor mipi 接口数据通道数

phyindex:

Sensor mipi 连接的主控 mipi phy 编号 RK3368 仅支持 phyIndex="0"

sensorFmt

Sensor 输出数据格式,目前仅支持 CamSys_Fmt_Raw_10b

5. 2. VCM 注册信息

<VCMDrvName name="NC"></VCMDrvName>

填写马达驱动 IC 的名称,如果 Sensor 集成马达驱动 IC 的话,请填写:BuiltInSensor

<VCMName name="NC"></VCMName>

填写马达的名称

<VCMI2cBusNum busnum="0"></VCMI2cBusNum>

填写马达驱动 IC 的连接的主控 I2C 通道号,一般与 Sensor 同一个通道

<VCMI2cAddrByte byte="0"></VCMI2cAddrByte>

填写马达驱动 IC 的 i2c 地址字节数

<VCMI2cRate rate="0"></VCMI2cRate>

填写马达驱动 IC的 i2c 速率

<VCMVdd name="NC" min="0" max="0"></VCMVdd>

填写模组上连接 AF VCC(马达电源)的 PMU LDO 名称

<VCMGpioPwdn ioname="NC" active="0"></VCMGpioPwdn>

填写模组上马达驱动 IC 的休眠使能 IO, 一般与 Sensor 的休眠使能 IO 一致

<VCMGpioPower ioname="NC" active="0"></VCMGpioPower>

填写使能模组 AF VCC 的使能 IO


```
<VCMCurrent start="20" rated="80" vcmmax="100" stepmode="13"
drivermax="100"></VCMCurrent>
```

填写马达的电流参数:

start: 马达的启动电流 rated: 马达的额定电流 vcmmax: 马达的最大电流

stepmode: 马达驱动 ic 的电流输出方式,该指标关系到马达的移动速度,麻烦参考驱动 icdatasheet;

drivermax: 马达驱动 ic 的最大输出电流

注意事项: start、rated、stepmode 这 3 项指标有可能会导致马达在对焦过程中的异响问题;

如果出现模组对焦远处无法清晰,近处可以清晰,麻烦确认启动电流相对马达实际 启动电流是否配置过大;

5.3. 软件功能配置信息

<AWB>

</aWB_Auto>

<AWB_Incandescent support="1"></AWB_Incandescent>

<AWB_Fluorescent support="1"></AWB_Fluorescent>

<AWB_Warm_Fluorescent support="1"></AWB_Warm_Fluorescent>

<AWB_Daylight support="1"></AWB_Daylight>

<AWB_Cloudy_Daylight support="1"></AWB_Cloudy_Daylight>

<AWB Twilight support="1"></AWB Twilight>

</aWB_Shade>

</AWB>

配置 AWB 模式

- 1: 使能该功能
- 0: 屏蔽该功能

<Sence>

<Sence Mode Auto support="1"></Sence Mode Auto>

<Sence Mode Action support="1"></Sence Mode Action>

<Sence Mode Portrait support="1"></Sence Mode Portrait>

<Sence Mode Landscape support="1"></Sence Mode Landscape>

<Sence Mode Night support="1"></Sence Mode Night>

<Sence Mode Night Portrait support="1"></Sence Mode Night Portrait>

<Sence_Mode_Theatre support="1"></Sence_Mode_Theatre>

<Sence_Mode_Beach support="1"></Sence_Mode_Beach>

<Sence Mode Snow support="1"></Sence Mode Snow>

<Sence Mode Sunset support="1"></Sence Mode Sunset>

<Sence_Mode_Steayphoto support="1"></Sence_Mode_Steayphoto>

<Sence Mode Pireworks support="1"></Sence Mode Pireworks>

<Sence Mode Sports support="1"></Sence Mode Sports>

<Sence Mode Party support="1"></Sence Mode Party>

<Sence_Mode_Candlelight support="1"></Sence_Mode_Candlelight>


```
<Sence_Mode_Barcode support="1"></Sence_Mode_Barcode>

<Sence Mode HDR support="1"></Sence Mode HDR>

</Sence>
    配置 Scence 功能, 暂不支持
<Effect>
   <Effect_None support="1"></Effect_None>
   <Effect Mono support="1"></Effect Mono>
   <Effect Solarize support="1"></Effect Solarize>
   <Effect_Negative support="1"></Effect_Negative>
   <Effect Sepia support="1"></Effect Sepia>
   <Effect Posterize support="1"></Effect Posterize>
   <Effect_Whiteboard support="1"></Effect_Whiteboard>
   <Effect Blackboard support="1"></Effect Blackboard>
   <Effect_Aqua support="1"></Effect_Aqua>
</Effect>
   配置 Effect 功能, 暂不支持
<FocusMode>
   <Focus Mode Auto support="1"></Focus Mode Auto>
   暂不支持
   <Focus_Mode_Infinity support="1"></Focus_Mode_Infinity>
   暂不支持
   <Focus_Mode_Marco support="1"></Focus_Mode_Marco>
   暂不支持
   <Focus_Mode_Fixed support="1"></Focus_Mode_Fixed>
   暂不支持
   <Focus_Mode_Edof support="1"></Focus_Mode_Edof>
   暂不支持
   ⟨Focus Mode Continuous Video support="1"⟩⟨/Focus Mode Continuous Video⟩
   配置是否使能录像时预览界面的连续对焦功能
   1:
      使能该功能
   0: 屏蔽该功能
   <Focus_Mode_Continuous_Picture</pre>
support="1"></Focus Mode Continuous Picture>
   配置是否使能拍照预览界面的连续对焦功能
      使能该功能
   1:
      屏蔽该功能
   0:
</FocusMode>
<FlashMode>
   <Flash_Mode_Off support="1"></Flash_Mode_Off>
   <Flash_Mode_On support="1"></Flash_Mode_On>
   <Flash Mode Torch support="1"></Flash Mode Torch>
```


<Flash_Mode_Auto support="1"></Flash_Mode_Auto>
 <Flash_Mode_Red_Eye support="1"></Flash_Mode_Red_Eye>
</FlashMode>

配置 Flash 功能, 暂不支持

<AntiBanding>

<Anti_Banding_Auto support="1"></Anti_Banding_Auto>

<Anti Banding 50HZ support="1"></Anti Banding 50HZ>

<Anti_Banding_60HZ support="1"></Anti_Banding_60HZ>

<Anti_Banding_Off support="1"></Anti_Banding_Off>

</AntiBanding>

配置 AntiBanding 功能, 暂不支持

<HDR support="0"></HDR>

配置 HDR 功能, 暂不支持

<ZSL support="0"></ZSL>

配置 ZSL 功能, 暂不支持

<DigitalZoom support="1"></DigitalZoom>

配置是否使能数码变焦功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Continue_SnapShot support="1"></Continue_SnapShot>

配置是否使能连拍功能

- 1: 使能该功能
- 0: 屏蔽该功能

<InterpolationRes resolution="0"></InterpolationRes>

配置插值分辨率,目前支持的插值像素 1M/2M/3M/5M/8M。 比如想插值到 5M,那么设置 resolution="5000000"。

<PreviewSize width="0" height="0"></PreviewSize>

配置客户强制需求的预览分辨率,一般来说,宽高各设置成 0,由系统来进行选择;但是有可能系统选择出来的分辨率帧率过低,那么可以指定你所需要的分辨率;

注: 目前 ov8825, 建议将该项设置成 1920x1080;

<FaceDetect support="1" MaxNum="1"></FaceDetect>

配置是否支持人脸检测功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Cproc support="1" contrast="1.1" saturation="1.0" hue="0"</pre>

brightness="0"></Cproc>

配置是否调整色彩效果;

1: 使能该功能

0: 屏蔽该功能

Contras(对比度): (0.0, 1.992)

Saturation(饱和度): (0.0, 1.992)

Hue (色相): (-90, 87.188)

Brightness (亮度): (-128, 127)

<Gammaout support = "0" gamma = "1.0" offset = "0"></Gammaout>

配置 gamma 值;

5. 4. FLASH 注册信息

<FlashName name="Internal"></FlashName>

Flash 的名称,采用默认值

<FlashI2cBusNum busnum="0"></FlashI2cBusNum>

暂不支持

<FlashI2cAddrByte byte="0"></FlashI2cAddrByte>

暂不支持

<FlashI2cRate rate="0"></FlashI2cRate>

暂不支持

<FlashTrigger ioname="NC" active="0"></FlashTrigger>

填写 ISP 的 FLASHTRIGOUT 使能的有效电平

rk3288: 对应 GPIO7-B5

rk3368: 对应 GPIO3-C4

rk3399: 对应 GPIO1-A3

<FlashEn ioname="NC" active="0"></FlashEn>

填写 ISP 的 PRILIGHTTRIG 使能的有效电平

rk3288: 对应 GPIO7-B6

rk3368: 对应 GPIO3-C5

rk3399: 对应 GPIO1-A4

<FlashLuminance luminance="0"></FlashLuminance>

暂不支持

<FlashColorTemp colortemp="0"></FlashColorTemp>

暂不支持

<FlashModeType mode="1"></FlashModeType>

填写 Flash 的工作方式, 目前支持以下两种 flash 工作模式:

Mode 1:

该模式下 prelight_trig 和 flash_trig 的时序图如下:

prelight_trig 为高,flash_trig 为低时进入 movie/torch mode; prelight_trig 为低,flash_trig 为高时进入 flash mode。

以 SGN3780 芯片为例:

ENF <----> FlashTrigger <----> GPIO7-B5

ENM <----> FlashEn <----> GPIO7-B6

ENM 为低, ENF 为高时进入 flash 模式; ENM 为高, ENF 为低时进入 Movie/Torch 模式。

Mode 2:

该模式下 prelight_trig 和 flash_trig 的时序图如下:

prelight_trig 为高,flash_trig 为低进入 movie/torch mode; prelight_trig 为高,flash_trig 为高时进入 flash mode。

以 SGM3140 芯片为例:

FLASH <----> FlashTrigger<----> GPIO3-C4

EN <----> FlashEn <----> GPIO3-C5

EN 为高,FLASH 为高时进入 flash 模式; EN 为高,FLASH 为低时进入 torch 模式。

注意:在 mode2 情况下,FlashTrigger 和 FlashEn 的有效电平须配置一致,否则会导致 panic 错误。

5. 5. cam_board.xml 支持多个 sensor 配置

Cam_board.xml 支持多个 sensor device 配置,在 xml 里添加自己可能用到的 <CamDevie>,填写上面所述相应所需的硬件信息即可。 例如下图:

5. 6. 如何测试 CTS_Verify FOV

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorFovParameter>的说明 5. 7. 如何解决开启 Camera 最初几帧的偏色问题

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorAWB_Frame_Skip >的说明; 5. 8. Camera 插值说明 麻烦参考 5.3 章节(软件功能配置信息)中关于〈InterpolationRes〉的说明。

6. SOC Sensor 支持列表

Camera Sensor	Туре	Optical format	VCM	VCM driver	IR-cut filter	Dimensio n(mm)	Lens	Module Vendor and Module number
			X					
raw sensor	参见文	C件《RKISP\	/1_Camera_	Module_AVL	》			
MIPI soc SE	NSOR							
2Mega								
Ov2685								
GC2155		1						
DVP soc SE	NSOR							
5Mega		/ /						
OV5640								
HM5065								
2Mega								
GC2035								
HM2057								
NT99252								
SP2518								
OV2659								
0.3Mega	0.3Mega							

000000				
GC0308				
00000				

7. Sensor 驱动移植指导

7.1 基本概念

7.1.1 MIPI

MIPI 的全称是 Mobile Industry Processor Interface(移动行业处理器接口),本文描述的 MI PI 接口特指物理层使用 D-PHY 传输规范,协议层使用 CSI-2 的通信接口。

7.1.2 Lane

用于连接发送端和接收端的一对高速差分线,既可以是时钟 Lane,也可以是数据 Lane。

7.2 常用数据类型

IsiRegisterFlags_t

eReadOnly

[说明]

寄存器配置结构体中的 Flag 枚举类型

[定义]

```
typedef enum IsiRegisterFlags_e
{
```

```
// basic features
eTableEnd = 0x00, /**< special flag for end of register table */
eReadable = 0x01,
eWritable = 0x02,
eVolatile = 0x04, /**< register can change even if not written by I2C */
eDelay = 0x08, /**< wait n ms */
eReserved = 0x10,
eNoDefault = 0x20, /**< no default value specified */
eTwoBytes = 0x40, /**< SMIA sensors use 8-, 16- and 32-bit registers */
eFourBytes = 0x80, /**< SMIA sensors use 8-, 16- and 32-bit registers */
// combined features
```

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

= eReadable,

eWriteOnly = eWritable,

eReadWrite = eReadable | eWritable,

eReadWriteDel = eReadable | eWritable | eDelay,

eReadWriteVolatile = eReadable | eWritable | eVolatile,

eReadWriteNoDef = eReadable | eWritable | eNoDefault,

eReadWriteVolNoDef = eReadable | eWritable | eVolatile | eNoDefault,

eReadVolNoDef = eReadable | eVolatile | eNoDefault,

eReadOnlyVolNoDef = eReadOnly | eVolatile | eNoDefault,

// additional SMIA features

eReadOnly_16 = eReadOnly | eTwoBytes,

eReadWrite_16 = eReadWrite | eTwoBytes,

eReadWriteDel_16 = eReadWriteDel | eTwoBytes,

eReadWriteVolatile_16 = eReadWriteVolatile | eTwoBytes,

eReadWriteNoDef_16 = eReadWriteNoDef | eTwoBytes,

eReadWriteVolNoDef_16 = eReadWriteVolNoDef | eTwoBytes,

eReadOnlyVolNoDef_16 = eReadOnly_16 | eVolatile | eNoDefault,

eReadOnly_32 = eReadOnly | eFourBytes,

eReadWrite_32 = eReadWrite | eFourBytes,

eReadWriteVolatile_32 = eReadWriteVolatile | eFourBytes,

eReadWriteNoDef_32 = eReadWriteNoDef | eFourBytes,

eReadWriteVolNoDef_32 = eReadWriteVolNoDef | eFourBytes

} IsiRegisterFlags_t;

[关键成员]

成员名称	描述
@eReadWrite	读写标志
@eTableEnd	寄存器数组结束的标志
@eDelay	延时标志,若寄存器序列需要延时可用这个标志来实现延时

[示例]


```
{0x06, 0x16,"0x0100",eReadWrite},
{0x00, 0x05,"0x0100",eDelay},//延时 5ms
{0x00, 0x00,"0x0100",eTableEnd}//数组结束
```

IsiRegDescription_t

[说明]

寄存器配置信息结构体

[定义]

```
typedef\ struct\ IsiRegister Flags\_s
```

{

```
uint32_t Addr; /* register address */
uint32_t DefaultValue; /* register value */
const char * pName;
uint32_t Flags; /*see IsiRegisterFlags_t */
```

} IsiRegDescription_t;

[关键成员]

成员名称	描述
@Addr	寄存器地址,具体字节数根据实际写;
@DefaultValue	寄存器数组结束的标志
@pName	给寄存器起名称,不用太关心;
@Flags	寄存器类型的标志,用于标记当前寄存器是读写使能,还是用于延时,
191	或是寄存器数组结束的标志等;

[示例]

{0x06, 0x16, "0x0100", eReadWrite},

IsiSensorHandle_t

[说明]

Sensor 驱动 handle 的定义

[定义]

typedef void *IsiSensorHandle_t;

[关键成员]

成员名称	描述
@IsiSensorHandle_t	空类型指针,赋值时匹配具体类型;

```
[示例]
 IsiSensorHandle_t
                    handle;
IsiSensorCaps_t
[说明]
   Sensor 配置信息结构体
[定义]
typedef struct IsiSensorCaps_s
{
   uint32_t BusWidth;
                                         **< supported bus-width */
                                           < supported operating modes */
   uint32_t Mode;
   uint32_t FieldSelection;
                                          **< sample fields */
   uint32_t YCSequence;
   uint32_t Conv422;
   uint32_t BPat;
                                      /**< bayer pattern */
   uint32 t HPol;
                                      /**< horizontal polarity */
   uint32_t VPol;
                                      /**< vertical polarity */
   uint32_t Edge;
                                       /**< sample edge */
                                      /*< black level substraction */
   uint32_t Bls;
   uint32_t Gamma;
                                        /**< gamma */
   uint32_t CConv;
   uint32 t Resolution;
                                      /**< supported resolutions */
   uint32_t DwnSz;
   uint32_t BLC;
```

uint32_t AGC;


```
uint32_t AWB;
uint32_t AEC;
uint32_t DPCC;
uint32_t CieProfile;
uint32_t SmiaMode;
uint32_t MipiMode;
uint32_t AfpsResolutions; /**< resolutions supported by Afps */
uint32_t SensorOutputMode;
uint32_t Index;
} IsiSensorCaps_t;</pre>
```

[关键成员]

成员名称 描述 ISI_BUSWIDTH_8BIT_ZZ ISI_BUSWIDTH_8BIT_EX ISI_BUSWIDTH_10BIT_EX ISI_BUSWIDTH_10BIT_ZZ	
ISI_BUSWIDTH_8BIT_EX ISI_BUSWIDTH_10BIT_EX ISI_BUSWIDTH_10BIT_ZZ	
ISI_BUSWIDTH_10BIT_EX	
ISI BUSWIDTH 10BIT 77	
BusWidth ISI_BUSWIDTH_10BIT_ZZ	
ISI_BUSWIDTH_12BIT	
ISI_BUSWIDTH_10BIT(ISI_BUSWIDTH_10BIT_EX)	
总线宽度,用于配置 ISP 采集位宽,后缀 ZZ 表示低位补零, EX	表示
高位补零	
ISI_MODE_BT601	
ISI_MODE_BT656	
ISI_MODE_BAYER	
ISI_MODE_DATA	
ISI_MODE_PICT	
Mode ISI_MODE_RGB565	
ISI_MODE_MIPI	
ISI_MODE_BAY_BT656	
ISI_MODE_RAW_BT656	
配置 ISP 采集的数据格式,一般 MIPI 用的比较多; DVP 使用 IS	_MO
DE_PICT 或 ISI_MODE_BT601,具体自行查找格式定义;	
ISI_FIELDSEL_BOTH	
FieldSelection ISI_FIELDSEL_EVEN	
ISI_FIELDSEL_ODD	
域选择,一般情况下使用 ISI_FIELDSEL_BOTH	
ISI_YCSEQ_YCBYCR	
YCSequence ISI_YCSEQ_YCRYCB	
ISI_YCSEQ_CBYCRY	

	ISL VESTE COVERY
	ISI_YCSEQ_CRYCBY
	YUV 的 UV 分量排列方式
	ISI_CONV422_COSITED
Conv422	ISI_CONV422_INTER
	ISI_CONV422_NOCOSITED
	YUV422 的三种排列方式
	ISI_BPAT_RGRGGBGB
	ISI_BPAT_GRGRBGBG
BayerPatttern	ISI_BPAT_GBGBRGRG
bayen atteni	ISI_BPAT_BGBGGRGR
	Bayer 格式,根据 Sensor 手册提供的格式配置,仅输出数据格式为 B
	ayer 时设置有效
	ISI_HPOL_SYNCPOS
	ISI_HPOL_SYNCNEG
HPolarity	ISI_HPOL_REFPOS
	ISI_HPOL_REFNEG
	行同步信号极性
	ISI_VPOL_POS
VPolarity	ISI_VPOL_NEG
	ISI_EDGE_RISING
Edge	ISI_EDGE_FALLING
	 同步时钟极性
	ISI_BLS_OFF only_now
Bls	一
_	ISI_GAMMA_OFF only now
Gamma	加马校验
	ISI_CCONV_OFF only now
ColorConv	颜色校验
2/12	Such as ISI_RES_2592_1944P30
1 1/4/1	所有已支持的分辨率可以在 hardware/rockchip/camera/SiliconImage/
Resolution	include/isi/isi_common.h 中查看。如果没有你想要的分辨率,请联系
	我们添加(自行在/isi_common.h 中添加是不够的)。
74.47	ISI_DWNSZ_SUBSMPL
N/A	ISI_DWNSZ_SCAL_BAY
DwnSz	ISI DWNSZ SCAL COS
202	降低图像输出尺寸的方式,常用的是二分采样(ISI_DWNSZ_SUBSMP
	L)
	ISI_BLC_OFF
BLC	ISI_BLC_OTT
	ISI_BLC_A010 黑电平校验
AGC	ISI_AGC_OFF 白 zh i
ANA/D	自动增益控制
AWB	ISI_AWB_OFF

	自动白平衡控制
AFC	ISI_AEC_OFF
AEC	自动曝光控制
DDCC	ISI_DPCC_OFF
DPCC	坏点校正
AFDC	ISI_AFPS_NOTSUPP
AFPS	自动帧率调整
Index	Default 0
	Sensor 索引号

更多信息请查看 hardware/rockchip/camera/SiliconImage/include/isi/isi_common.h。

```
[示例]
 static RESULT OV8858 IsiGetCapsIssInternal(
                                                  mipi lanes)
                       *plsiSensorCaps, uint32_t
     IsiSensorCaps_t
 {
      RESULT result = RET SUCCESS;
      if (plsiSensorCaps == NULL)
           return ( RET NULL POINTER );
      }
      else
      {
          if (mipi_lanes == SUPPORT_MIPI_FOUR_LANE) {
           } else if(mipi_lanes == SUPPORT_MIPI_TWO_LANE) {
             else if(mipi_lanes == SUPPORT_MIPI_ONE_LANE) {
           }
           plsiSensorCaps->BusWidth
                                            = ISI BUSWIDTH 10BIT;
           plsiSensorCaps->Mode
                                             = ISI MODE MIPI;
           plsiSensorCaps->FieldSelection = ISI_FIELDSEL_BOTH;
           plsiSensorCaps->YCSequence
                                            = ISI YCSEQ YCBYCR;
           plsiSensorCaps->Conv422
                                             = ISI_CONV422_NOCOSITED;
           plsiSensorCaps->BPat
                                            = ISI_BPAT_BGBGGRGR;
           plsiSensorCaps->HPol
                                            = ISI HPOL REFPOS;
           plsiSensorCaps->VPol
                                            = ISI VPOL POS;
           plsiSensorCaps->Edge
                                            = ISI_EDGE_RISING;
           plsiSensorCaps->Bls
                                            = ISI BLS OFF;
           plsiSensorCaps->Gamma
                                              = ISI GAMMA OFF;
           plsiSensorCaps->CConv
                                             = ISI_CCONV_OFF;
           plsiSensorCaps->BLC
                                             = (ISI BLC AUTO | ISI BLC OFF);
                                           = (ISI AGC OFF);
           plsiSensorCaps->AGC
           plsiSensorCaps->AWB
                                          = (ISI AWB OFF);
           plsiSensorCaps->AEC
                                          = ( ISI_AEC_OFF );
```



```
plsiSensorCaps->DPCC
                                     = ( ISI_DPCC_AUTO | ISI_DPCC_OFF );
         plsiSensorCaps->DwnSz
                                        = ISI DWNSZ SUBSMPL;
         plsiSensorCaps->CieProfile
                                      = (ISI CIEPROF A
                                            ISI CIEPROF D50
                                            ISI CIEPROF D65
                                            ISI CIEPROF D75
                                            | ISI CIEPROF F2
                                            | ISI CIEPROF F11);
         plsiSensorCaps->SmiaMode
                                         = ISI SMIA OFF;
                                        = ISI MIPI MODE RAW 10;
         plsiSensorCaps->MipiMode
         plsiSensorCaps->AfpsResolutions = (ISI AFPS NOTSUPP);
 plsiSensorCaps->SensorOutputMode = ISI SENSOR OUTPUT MODE RAW
     }
 end:
     return result;
 }
IsiAfpsInfo t
[说明]
   Sensor 的 AFPS 配置信息结构体,用于调整帧率时的参数配置,因曝光调节的最大值为帧
输出时间(即场信号有效时),当曝光调到最大时,图像的亮度效果未达到合适的值时,会通过
调整帧率,从而改变曝光时间范围,使输出的图像亮度达到较合适的值;
[定义]
typedef struct IsiAfpsInfo_s
{
   float AecMinGain; /*< minimum gain for AEC in Afps mode */
   float AecMaxGain; /*< maximum gain for AEC in Afps mode */
   float AecMinIntTime; /*< minimum integration time for AEC in Afps mode */
   float AecMaxIntTime; /* < maximum integration time for AEC in Afps mode */
   uint32_t AecSlowestResolution; /*< slowst resolution for AEC in Afps mode */
   IsiAfpsResInfo t Stage[ISI NUM AFPS STAGES];
                                                    /*< the list of supported
resolutions with .MaxIntTime in ascending(!) order;Resolution = 0 marks end of list
if not all array elements are used */
   uint32_t CurrResolution; /*< current resolution */</pre>
   float CurrMinIntTime; /*< minimum integration time of current resolution */
```



```
float CurrMaxIntTime; /*< maximum integration time of current resolution

*/
} IsiAfpsInfo_t;

其中 IsiAfpsResInfo_t 结构如下:

typedef struct IsiAfpsResInfo_s

{
    uint32_t Resolution; /**< the corresponding resolution ID */
    float MaxIntTime; /**< the maximum supported integration time */
} IsiAfpsResInfo_t;
[关键成员]
```

成员名称 描述 最小增益 @AecMinGain @AecMaxGain 最大增益 @AecMinIntTime 最小曝光时间 最大曝光时间 @AecMaxIntTime 帧率最低的分辨率 @AecSlowestResolution 分辨率信息结构数组 @IsiAfpsResInfo_t @CurrResolution 当前分辨率

当前分辨率下最小曝光时间

当前分辨率下最大曝光时间

```
static RESULT OV8858_IsiGetAfpsInfoHelperIss(
OV8858 Context t *pOV8858Ctx,
```

@CurrMinIntTime

@CurrMaxIntTime

[示例]

```
uint32_t Resolution,
IsiAfpsInfo_t* pAfpsInfo,
uint32_t AfpsStageIdx
)
{

RESULT result = RET_SUCCESS;
TRACE( OV8858_INFO, "%s: (enter)\n", __FUNCTION__);
DCT_ASSERT(pOV8858Ctx != NULL);
DCT_ASSERT(pAfpsInfo != NULL);
DCT_ASSERT(AfpsStageIdx <= ISI_NUM_AFPS_STAGES);
// update resolution in copy of config in context
```



```
pOV8858Ctx->Config.Resolution = Resolution;
        // tell sensor about that
        result = OV8858 SetupOutputWindowInternal(pOV8858Ctx,
&pOV8858Ctx->Config,BOOL FALSE,BOOL FALSE);
        if (result != RET SUCCESS)
             TRACE( OV8858 ERROR, "%s: SetupOutputWindow failed for resolution
ID %08x.\n", FUNCTION , Resolution);
             return ( result );
        }
        // update limits & stuff (reset current & old settings)
        result = OV8858 AecSetModeParameters( pOV8858Ctx, &pOV8858Ctx->Config );
        if ( result != RET SUCCESS )
             TRACE( OV8858_ERROR, "%s: AecSetModeParameters failed for resolution
ID %08x.\n", __FUNCTION__, Resolution);
             return ( result );
        }
        // take over params
        pAfpsInfo->Stage[AfpsStageIdx].Resolution = Resolution;
        pAfpsInfo->Stage[AfpsStageIdx].MaxIntTime =
pOV8858Ctx->AecMaxIntegrationTime;
        pAfpsInfo->AecMinGain
                                            = pOV8858Ctx->AecMinGain;
        pAfpsInfo->AecMaxGain
                                            = pOV8858Ctx->AecMaxGain;
        pAfpsInfo->AecMinIntTime
                                           = pOV8858Ctx->AecMinIntegrationTime;
        pAfpsInfo->AecMaxIntTime
                                           = pOV8858Ctx->AecMaxIntegrationTime;
        pAfpsInfo->AecSlowestResolution = Resolution;
        TRACE( OV8858_INFO, "%s: (exit)\n", __FUNCTION__);
        return ( result );
    }
7.3 API 参考
```

OV8858_IsiCreateSensorIss

```
[描述]
```

创建一个 Sensor 实例,包含初始化 hSensor,Sensor 的 I2C 配置信息、一些 Sensor 状态参数、VCM 配置等;

[语法]

Static RESULT OV8858_IsiCreateSensorIss(IsiSensorInstanceConfig_t

*pConfig)

[参数]

参数名称	描述	输入输出
IsiSensorInstanceConfig	IsiSensorInstanceConfig_t 结构体指针	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_NULL_POINTER	失败,空指针
RET_OUTOFMEM	失败,内存溢出

OV8858_IsiReleaseSensorIss

[描述]

释放 Sensor 实例,包含停止数据流、掉电、释放 Sensor handle;

[语法]

static RESULT OV8858_IsiReleaseSensorIss(IsiSensorHandle_t handle)

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle_t 结构体句柄	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败, 错误句柄

OV8858_IsiGetCapsIssInternal

[描述]

为 Sensor 描述结构填写正确的指针,包含 Resolution、BusWidth、Mode 等,具体可以参考 7.2.4 IsiSensorCaps_t 结构中的介绍;

[语法]

static RESULT OV8858_IsiGetCapsIssInternal(IsiSensorCaps_t *pIsiSensorCaps, uint32_t mipi_lanes)

[参数]

参数名称	描述	输入输出
pIsiSensorCaps	IsiSensorCaps_t 结构体指针	输出
mipi_lanes	MIPI 的通道数	输入

[返回值]

返回值	描述	
RET_SUCCESS	成功	
RET_NULL_POINTER	失败,空指针	\$7

OV8858_SetupOutputFormat

[描述]

根据配置设置图像输出格式,目前没有做什么处理,比如 pConfig->BusWidth 一般是根据外部输入配置为固定值,不能动态调整,但是 pConfig->BusWidth 的 switch 语句中 case 没有 ISI_BUSWIDTH_8BIT_ZZ,而外部输入又是这个格式,则需要补上,否则 CameraHal 程序有可能报错;比如 BLC、AGC 这类设置一般都处于 OFF 状态,所以移植的时候不需要做多少改动,除非有需要实现对应功能;

[语法]

RESULT OV8858_SetupOutputFormat(OV8858_Context_t *pOV8858Ctx, const IsiSensorConfig_t *pConfig)

[参数]

参数名称	描述	输入输出
pOV8858Ctx	OV8858_Context_t 结构体指针	输入
pConfig	IsiSensorConfig_t 的结构体指针	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_NULL_POINTER	失败, 空指针

OV8858_get_PCLK

[描述]

获取 Sensor 的 PLL 输出像素时钟,一般通过获取 Sensor 的寄存器值,根据公式去换算;若应用不需要更改 PLL 输出,也可直接返回定值,减少计算步骤;

[语法]

int OV8858_get_PCLK(OV8858_Context_t *pOV8858Ctx,int XVCLK)

[参数]

参数名称	描述	输入输出
pOV8858Ctx	OV8858_Context_t 结构体指针	输入
XVCLK	外部输入时钟	输入

[返回值]

返回值	描述
PCLK	返回像素时钟值

OV8858_SetupOutputWindowInternal

[描述]

根据 CameraHal 传进来的分辨率去配置 Sensor 的寄存器,移植的时候根据 Sensor 支持的分辨率去修改;目前 8M 及以下的 Sensor 可只实现全分辨率,减少工作量,需要更低的分辨率可以通过 ISP 裁剪;8M 以上无法实现全分辨率 30fps 预览,需要实现 binning;

[语法]

RESULT OV8858_SetupOutputWindowInternal(OV8858_Context_t *pOV8858Ctx,const IsiSensorConfig_t *pConfig,bool_t set2Sensor, bool_t res_no_chg)

[参数]

参数名称	描述	输入输出
pOV8858Ctx	OV8858_Context_t 结构体指针	输入
pConfig	IsiSensorConfig_t 的结构体指针	输入
set2Sensor	true 表示设置到 Sensor,false 不做操作	输入

res_no_chg	false 表示更改分辨率,true 不做操作 输入	
[返回值]		
返回值	描述	
RET_SUCCESS	成功	

失败, 空指针

失败,不支持的设置

OV8858_SetupImageControl

RET_NULL_POINTER

RET_NOTSUPP

[描述]

设置传感器的 BLC, AGC, AWB, AEC, DPCC 等功能,一般没有用上,都是 OFF 状态,移植不需要修改;若需要用,请自行修改程序,并且跟前面的 lsiSensorCaps_t 结构中配置的参数对应;

[语法]

RESULT OV8858_SetupImageControl(OV8858_Context_t *pOV8858Ctx, const IsiSensorConfig_t *pConfig)

[参数]

参数名称	描述	输入输出
pOV8858Ctx	OV8858_Context_t 结构体指针	输入
pConfig	IsiSensorConfig_t 的结构体指针	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_NOTSUPP	失败,不支持的设置

OV8858_IsiSetupSensorIss

[描述]

根据获取的配置信息去配置 Sensor,基本上是一些宏及外部传进来的参数,移植的时候程序不需要怎么修改,具体看程序的实现;

[语法]

RESULT OV8858_IsiSetupSensorIss(IsiSensorHandle_t handle,const IsiSensorConfig_t *pConfig)

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
pConfig	IsiSensorConfig_t 的结构体指针	输入

[返回值]

返回值	描述	
RET_SUCCESS	成功	
RET_NULL_POINTER	失败,空指针	^ \V

OV8858_IsiChangeSensorResolutionIss

[描述]

更改 Sensor 输出分辨率,调用 OV8858_SetupOutputWindowInternal 用于设置分辨率, OV8858_AecSetModeParameters 用于重新设置曝光取值范围, OV8858_IsiExposureControllss 用于重新设置曝光、增益值;移植时,此函数不需要修改;

[语法]

RESULT OV8858_IsiChangeSensorResolutionIss(IsiSensorHandle_t handle, uint32_t Resolution,uint8_t *pNumberOfFramesToSkip)

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
Resolution	需要设置的分辨率	输入
pNumberOfFramesToSkip	需要丢掉的帧数	输出

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_NULL_POINTER	失败, 空指针

OV8858_IsiSensorSetStreamingIss

[描述]

开启或关闭数据流,直接通过寄存器写入;移植时不需要修改函数实现,修改对应寄存器 addr 及 value 的宏定义;

[语法]

static RESULT OV8858_IsiSensorSetStreamingIss(IsiSensorHandle_t handle, bool_t on)

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
on	true 表示开启数据流	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_WRONG_STATE	失败,错误的状态

OV8858_IsiSensorSetPowerIss

[描述]

Sensor 上电或掉电,根据 Sensor 手册的上电时序编写;很少需要修改;

[语法]

static RESULT OV8858_IsiSensorSetPowerIss(IsiSensorHandle_t handle, bool_t on)

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
on	True 表示上电	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄

OV8858_IsiCheckSensorConnectionIss

[描述]

检测 Sensor 的连接状态,通过 i2c 获取 Sensor 的 Chip ID,并与 Sensor 驱动中的 宏定义比较,匹配则返回 RET_SUCCESS; 移植的时候只需修改宏定义; 另外 Chip ID 有分 3 个字节和 2 个字节,若原来的程序是 3 个字节,而 Sensor 实际只有 2 个字节的 Chip ID,需进行适当修改;

[语法]

 $static\ RESULT\ OV8858_IsiCheck Sensor Connection Iss (IsiSensor Handle_t\ handle)$

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_FAILURE	失败
RET_NULL_POINTER	失败, 空指针

OV8858_IsiGetGainIss

[描述]

获取增益值;每次设置 gain 的时候都会将 gain 值缓存在 Sensor handle 的变量中,若是返回这个变量的值,程序不需要修改;若是通过 i2c 向 Sensor 读取,则根据不同的 Sensor 换算公式,需要进行适当的修改;

[语法]

RESULT OV8858_IsiGetGainIss(IsiSensorHandle_t handle,float *pSetGain) [参数]

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
pSetGain	获取的增益倍数	输出

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败, 空指针

OV8858_IsiSetGainIss

[描述]

设置增益倍数,根据 Sensor 手册提供的换算方式修改程序,以倍数为单位;

[语法]

RESULT OV8858_IsiSetGainIss(IsiSensorHandle_t handle,float NewGain, float *pSetGain)

[参数]

/ V 1 \			
参数名称		描述	输入输出
handle		IsiSensorHandle 结构体句柄	输入
NewGain	11 75	要设置的增益倍数	输入
pSetGain	4363	实际设置到 Sensor 的增益倍数	输出

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败, 空指针

OV8858_IsiGetIntegrationTimeIss

[描述]

获取曝光时间,与获取增益值的方式同,若是从 Sensor handle 缓存值获取,不需要修改程序;

[语法]

 $RESULT\ OV8858_Is iGetIntegrationTimelss (Is iSensor Handle_t\ handle, float\ *pSetIntegrationTime)$

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
pSetIntegrationTime	获取到的曝光时间,浮点型,秒为单位	输出

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败, 空指针

OV8858_IsiSetIntegrationTimeIss

[描述]

设置曝光时间,需要将曝光时间由秒为单位转换成行时间单位(line length); 并根据所占的寄存器位将值写入寄存器;根据 Sensor 手册进行修改;

[语法]

RESULT OV8858_IsiSetIntegrationTimeIss(IsiSensorHandle_t handle, float NewIntegrationTime, float *pSetIntegrationTime, uint8_t *pNumberOfFramesToSkip) [参数]

参数名称	描述	输入输出
handle	IsiSensorHandle 结构体句柄	输入
NewIntegrationTime	要设置的曝光时间,浮点型,秒为单位	输入
pSetIntegrationTime	实际设置的曝光时间,浮点型,秒为单位	输出
pNumberOfFramesToSkip	需要丢掉的帧数	输出

[返回值]

返回值	描述
-----	----

RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败, 空指针

OV8858_IsiGetAfpsInfoHelperIss

[描述]

返回给定分辨率的可能的 AFPS 分辨率信息,也就是返回分辨率、最小曝光时间、最大曝光时间、最小增益倍数、最大增益倍数等信息,通过 pAfpsInfo 返回;每次调用只能获取一个分辨率的信息,通过 AfpsStageIdx 索引来分别存储信息;

[语法]

 $static\ RESULT\ OV8858_IsiGetAfpsInfoHelperIss (OV8858_Context_t \quad *pOV8858Ctx, uint32_t\ Resolution,\ IsiAfpsInfo_t*\ pAfpsInfo,\ uint32_t\ AfpsStageIdx)$

[参数]

参数名称	描述	输入输出
pOV8858Ctx	OV8858_Context_t 结构体指针	输入
Resolution	需要获取详细信息的分辨率	输入
pAfpsInfo	lsiAfpsInfo_t 结构体指针,用于返回信息	输出
AfpsStageIdx	分辨率列表的索引	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败,空指针
RET_NOTSUPP	失败,不支持的设置

OV8858_IsiGetAfpsInfoIss

[描述]

对 OV8858_IsiGetAfpsInfoHelperIss 多做了层封装; 假设是 MIPI 接口的会根据 lane

数来区分不同 lane 下的不同分辨率;

[语法]

 $RESULT\ OV8858_IsiGetAfpsInfolss (IsiSensorHandle_t\ handle, uint32_t\ Resolution, IsiAfpsInfo_t*\ pAfpsInfo)$

[参数]

参数名称	描述	输入输出
handle	IsiSensorHandle_t 结构体句柄	输入
Resolution	需要获取详细信息的分辨率	输入
pAfpsInfo	IsiAfpsInfo_t 结构体指针,用于返回信息	输出

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败, 空指针

OV8858_IsiGetSensorI2cInfo

[描述]

用于上层代码获取 Sensor i2c 信息,可能有些地方会用到,所以一般根据寄存器字节数进行适当的修改,防止出错;

[语法]

static RESULT OV8858 IsiGetSensorl2cInfo(sensor i2c info t** pdata)

[参数]

参数名称	描述	输入输出
pdata	sensor_i2c_info_t 结构体的双重指针	输入

[返回值]

返回值	描述
RET_SUCCESS	成功
RET_WRONG_HANDLE	失败,错误的句柄
RET_NULL_POINTER	失败,空指针

注:

- 1、Sensor 驱动还有些较为简单的接口或暂时没用上的接口,不做介绍,自行阅读;
- 2、Sensor 驱动中的 OTP 接口请参考现有程序及厂家资料修改;驱动移植时优先点亮 Sensor,再根据模组是否有烧录 OTP,决定是否实现或修改 OTP 程序;
- 3、Sensor 驱动的 VCM 程序请根据模组资料实现或修改,同样优先实现 Sensor 点亮,再根据有无 VCM 去实现或修改对应程序,VCM 接口如下:

```
/* AF functions */
pIsiSensor->pIsiMdiInitMotoDriveMds = 0V8858_IsiMdiInitMotoDriveMds;
pIsiSensor->pIsiMdiSetupMotoDrive = 0V8858_IsiMdiSetupMotoDrive;
pIsiSensor->pIsiMdiFocusSet = 0V8858_IsiMdiFocusSet;
pIsiSensor->pIsiMdiFocusGet = 0V8858_IsiMdiFocusGet;
pIsiSensor->pIsiMdiFocusCalibrate = 0V8858_IsiMdiFocusCalibrate;
```

7.4 移植步骤

驱动目录结构

以 OV8858 的驱动为例:

hardware\rockchip\camera\SiliconImage\isi\drv\OV8858

```
|--calib
|--OV8858_lens_LG-9569A2.xml
|--include_priv
|--OV8858_MIPI_priv.h
|--source
|--OV8858_MIPI.c
|--OV8858_tables.c
|--Android.mk
```

准备工作

开始移植驱动之前, 你需要拿到以下资料:

- 1.摄像头模组规格书。
- 2.VCM driver-IC datasheet(如果摄像头模组带 VCM)。
- 3.摄像头 sensor datasheet 和 application note(例如,OV 一般会提供)。
- 4.所需要的分辨率的寄存器配置表。

开始移植

你可以从零开始,新建文件、添加函数...等,但是我建议最好是以 SDK 中已有的驱动为模板进行移植。例如,如果你当前你要驱动的摄像头是 DVP 接口的,那么可以参考 OV2659/GC2155 等;如果是 MIPI RAW 的,可以参考 OV5648/OV8858/IMX214 等;如果是 MIPI YUV 的,可以参考 OV2685。

下面以 OV8858 为例:

首先从 OV8858 目录拷贝一份,重命名成你要驱动的 sensor 名字,目录内的各个文件名、源码中引用的 sensor 名都要进行修改,包括 Android.mk 中引用的文件名以及生成库的名字。

代码中涉及到的宏:

代码中涉及到的太:			
名称	说明		
OV8858_MODE_SELECT	Stream(enable)控制寄存器、使能寄存器		
OV8858_MODE_SELECT_OFF	Stream off 的寄存器值		
OV8858_MODE_SELECT_ON	Stream on 的寄存器值		
OV8858_SOFTWARE_RST	Software reset 寄存器		
OV8858_SOFTWARE_RST_VALUE	Software reset 使能的寄存器值		
OV8858_CHIP_ID_HIGH_BYTE	Chip id(或 Model id)的 high-byte 寄存器 (如果有)		
OV8858_CHIP_ID_HIGH_BYTE_DEFAULT	默认的 high-byte 的寄存器值(用以跟实际读出的值进行校对)		
OV8858_CHIP_ID_MIDDLE_BYTE	Chip id(或 Model id)的 middle-byte 寄存器(如果有)		
OV8858_CHIP_ID_MIDDLE_BYTE_DEFAULT	默认的 middle-byte 寄存器值		
OV8858_CHIP_ID_LOW_BYTE	CHIP ID 的 low-byte 寄存器		
OV8858_CHIP_ID_LOW_BYTE_DEFAULT	默认的 low-byte 寄存器值		
OV8858_AEC_AGC_ADJ_H	Analog gain 寄存器的 high-byte		
OV8858_AEC_AGC_ADJ_L	Analog gain 寄存器的 low-byte		
OV8858_AEC_EXPO_H	Integration time 寄存器的 high-byte		
OV8858_AEC_EXPO_M	Integration time 寄存器的 middle-byte		
OV8858_AEC_EXPO_L	Integration time 寄存器的 low-byte		
OV8858_SLAVE_ADDR	IIC address		
OV8858_SLAVE_ADDR2	IIC addres(同一款 sensor,模组硬件接法不同,会有不同的 address,作为备选)		
OV8858_SLAVE_AF_ADDR	VCM driver IC 的 slave address		
Sensor_OTP_SLAVE_ADDR	读取 OTP 信息的 slave address		
OV8858_MAXN_GAIN	增益寄存器最大写入值		
OV8858_MIN_GAIN_STEP	最小增益增量		
OV8858_MAX_GAIN_AEC	最大增益倍数		
MAX_VCMDRV_CURRENT	VCM 最大电流		
MAX_VCMDRV_REG	VCM 寄存器最大写入值		
OV8858_I2C_NR_ADR_BYTES	寄存器地址的字节数		
OV8858_I2C_NR_DAT_BYTES	寄存器值的字节数		
10.1. 克大小草中的峡体,是更过去和关的牧根毛叫进行校业			

以上宏在代码中的赋值,需要阅读相关的数据手册进行修改。

注意:如果寄存器没有分 hight-byte、middle-byte、low-byte 的话,那么只使用 low-byte 即可,当然,你也完全可以根据自己的喜好进行修改。

寄存器配置

Sensor 的寄存器配置序列需要从 sensor 的 datasheet 或者由原厂提供的寄存器配置文件中整理后应用在代码中。

根据应用场景及 sensor 的支持情况,寄存器序列可分为 1lane,2lane,4lane 三组,每组有一个 global setting 或者叫 initial setting,然后还有 binning size 和 full size 的 setting (OV 的 sensor 一般是这样),以 ov8858 2lane 为例:

Global setting:

```
const IsiRegDescription t OV8858 g aRegDescription twolane[] =
              {0x0100, 0x00, "0x0100", eReadWrite}, (0x0100, 0x00, "0x0100", eReadWrite}, (0x0100, 0x00, "0x0100", eReadWrite}, (0x0100, 0x00, "0x0100", eReadWrite}, (0x0302, 0x1e, "0x0100", eReadWrite}, (0x0303, 0x00, "0x0100", eReadWrite}, (0x0304, 0x03, "0x0100", eReadWrite}, (0x0304, 0x03, "0x0100", eReadWrite}, (0x0304, 0x03, "0x0100", eReadWrite}, (0x0304, 0x00, 0
               (0x030f, 0x00, "0x0100", eReadWrite),
{0x030f, 0x09, "0x0100", eReadWrite},
{0x0312, 0x01, "0x0100", eReadWrite},
               (0x0000 ,0x00, "eTableEnd", eTableEnd)
 1:
Bining size setting:
   const IsiRegDescription t OV8858 g 1632x1224 twolane[]
                 {0x030e, 0x00, "0x0100", eReadWrite}, // pll2_rdiv
                 {0x030f, 0x09, "0x0100", eReadWrite}, // pll2_divsp
                 {0x0312, 0x01, "0x0100", eReadWrite}, // pll2_pre_div0, pll2_r_divdac
                 {0x3015, 0x01, "0x0100", eReadWrite}, /
                 {0x3501, 0x4d, "0x0100", eReadWrite}, // exposure M
                 (0x3502, 0x40, "0x0100", eReadWrite), // exposure L
(0x3706, 0x35, "0x0100", eReadWrite), //
                {0x370a, 0x00, "0x0100", eReadWrite}, /
                {0x370b, 0xb5, "0x0100", eReadWrite}, // {0x3778, 0x1b, "0x0100", eReadWrite}, //
                 {0x3808, 0x06, "0x0100", eReadWrite}, // x output size H
                {0x3809, 0x60, "0x0100", eReadWrite}, // x output size L {0x380a, 0x04, "0x0100", eReadWrite}, // y output size H
                 {0x380b, 0xc8, "0x0100", eReadWrite}, // y output size L
                 {0x380c, 0x07, "0x0100", eReadWrite}, // HTS H
                 (0x380d, 0x88, "0x0100", eReadWrite), // HTS L
                {0x380e, 0x04, "0x0100", eReadWrite}, // VTS H
{0x380f, 0xdc, "0x0100", eReadWrite}, // VTS L
                 {0x3814, 0x03, "0x0100", eReadWrite}, // x odd inc
                 {0x3821, 0x67, "0x0100", eReadWrite}, // mirror on, bin on
                {0x382a, 0x03, "0x0100", eReadWrite}, // y odd inc
                 {0x0000 ,0x00, "eTableEnd", eTableEnd}
```

Full size setting:


```
const IsiRegDescription_t OV8858_g_3264x2448 twolane[] =
      {0x030e, 0x02, "0x0100", eReadWrite}, // pll2_rdiv
      (0x030f, 0x04, "0x0100", eReadWrite), // pll2_divsp
      {0x0312, 0x03, "0x0100", eReadWrite}, // pll2_pre_div0, pll2_r_divdac
      {0x3015, 0x00, "0x0100", eReadWrite}, /
      (0x3501, 0x9a, "0x0100", eReadWrite), /
      {0x3502, 0x20, "0x0100", eReadWrite},
      {0x3706, 0x6a, "0x0100", eReadWrite}, /
      {0x370a, 0x01, "0x0100", eReadWrite}, //
     (0x370b, 0x6a, "0x0100", eReadWrite}, // (0x3778, 0x32, "0x0100", eReadWrite}, //
      {0x3808, 0x0c, "0x0100", eReadWrite}, // x output size H
      (0x3809, 0xc0, "0x0100", eReadWrite), // x output size L
      {0x380a, 0x09, "0x0100", eReadWrite}, // y output size H
      {0x380b, 0x90, "0x0100", eReadWrite}, // y output size L
      {0x380c, 0x07, "0x0100", eReadWrite}, // HTS H
      {0x380d, 0x94, "0x0100", eReadWrite}, // HTS L
      {0x380e, 0x09, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0xaa, "0x0100", eReadWrite}, // VTS L
      {0x3814, 0x01, "0x0100", eReadWrite}, // x odd inc
      {0x3821, 0x46, "0x0100", eReadWrite}, // mirror on, bin off
      {0x382a, 0x01, "0x0100", eReadWrite}, // y odd inc
     . . .
     . . .
      {0x0000 ,0x00, "eTableEnd", eTableEnd}
Fpschg setting:
 通过设定不同的 VTS 寄存器的值来调整帧率。
 const IsiRegDescription t DV8858 g 1632x1224P30 twolane fpschg[] =
      {0x380e, 0x04, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0xdc, "0x0100", eReadWrite}, // VTS L {0x0000 ,0x00, "eTableEnd", eTableEnd}
 1:
 const IsiRegDescription_t OV8858_g_1632x1224P25_twolane_fpschg[] =
      {0x380e, 0x05, "0x0100", eReadWrite}, // VTS H
      (0x380f, 0xd4, "0x0100", eReadWrite), // VTS L (0x0000 ,0x00, "eTableEnd", eTableEnd)
 1:
 const IsiRegDescription t OV8858 g 1632x1224P20 twolane fpschg[] =
      {0x380e, 0x07, "0x0100", eReadWrite}, // VTS H
      {0x380f, 0x4a, "0x0100", eReadWrite}, 
{0x0000 ,0x00, "eTableEnd", eTableEnd}
 1:
```

计算方法: 例如, 初始化序列帧率为 30fps, VTS 为 0x04dc 时, 那么 25fps 时的 VTS 为 0x04dc*30/25=0x05d4。

注意:

- 1、数组要以{0x0000, 0x00, "eTableEnd",eTableEnd}为结束标志。
- 2、如果寄存器值是两个字节,那么 IsiRegDescription_t 结构体的 Flags 值应为 eReadWrite 16,如:

```
//XVCLK=24Mhz, SCLK=4x120Mhz, MIPI 640Mbps, DACCLK=240Mhz {0x0103 ,0x10120 ,"0x0100",eReadWrite_16},// sc ctrl (software reset) {0x3638 ,0x20102 ,"0x0100",eReadWrite_16},// {0x0300 ,0x30230 ,"0x0100",eReadWrite_16},// PLL CTRL O(pll1_pre_div)
```

3、特别要注意的是,由于主控时序的要求,任何一个寄存器 setting 数组里面都不要 stream on sensor 或者叫 wake up sensor, 比如,一般 OV 的 sensor 的 stream 寄存器是 0x0100, 那么寄存器 setting 数组里不要对 0x0100 寄存器置 1,驱动的

IsiSensorSetStreamingIss 函数中会去操作 stream 寄存器,其他厂商的 sensor 的 stream 寄存器请参阅其 datasheet。

4、如果序列中需要延时操作,可以使用 eDelay 标志,如:

```
{0x3706, 0x6a, "0x0100", eReadWrite}, 
{0x370a, 0x01, "0x0100", eReadWrite},
 (0x370b, 0x6a, "0x0100", eReadWrite)
{0x0000, 0x05, "0x0100", eDelay}, //delay 5ms
{0x3808, 0x0c, "0x0100", eReadWrite}, // x output size H
{0x3809, 0xc0, "0x0100", eReadWrite}, // x output size L
{Ox380a, Ox09, "Ox0100", eReadWrite}, // y output size H
{0x380b, 0x90, "0x0100", eReadWrite}, // y output size L
```

- 5、关于结构体的更多信息参见《常用数据类型》章节中的相关说明。
- 6、有的 sensor 比如 sony 的,没有 global setting,这样的话将数组留空即可:

```
const IsiRegDescription t OV8858 g aRegDescription twolane[] =
    {0x0000 ,0x00, "eTableEnd", eTableEnd}
);
```

此外,驱动代码中函数 OV8858 IsiRegReadIss 和 OV8858 IsiRegWriteIss 对其的使用要考 虑修改。

7.5 编译及验证

以 RK3399 Android7.1 为例:

1、初始化环境

```
camera@ISP:~/camera/rk3399_android7.1$ source build/envsetup.sh including device/asus/fugu/vendorsetup.sh including device/generic/mini-emulator-arm64/vendorsetup.sh including device/generic/mini-emulator-arm64/vendorsetup.sh
including device/generic/mini-emulator-arm64/vendorsetup.sh device/generic/mini-emulator-armv7-a-neon/vendorsetup.sh device/generic/mini-emulator-mips64/vendorsetup.sh device/generic/mini-emulator-mips/vendorsetup.sh device/generic/mini-emulator-x86_64/vendorsetup.sh device/generic/mini-emulator-x86_64/vendorsetup.sh including device/generic/mini-emulator-x86/vendorsetup.sh including device/geogle/dragon/vendorsetup.sh device/htc/flounder/vendorsetup.sh device/htc/flounder/vendorsetup.sh including device/huawei/angler/vendorsetup.sh including device/linaro/hikey/vendorsetup.sh including device/linaro/hikey/vendorsetup.sh device/moto/shamu/vendorsetup.sh device/moto/shamu/vendorsetup.sh device/moto/shamu/vendorsetup.sh device/rockchip/rk3399/vendorsetup.sh sdk/bash_completion/adb.bash
```

2、根据板子型号选择


```
camera@ISP:~/camera/rk3399_android7.1$ lunch
You're building on Linux
Lunch menu... pick a combo:

1. aosp_arm-eng
2. aosp_arm64-eng
3. aosp_mips-eng
4. aosp_mips64-eng
5. aosp_x86-eng
6. aosp_x86 64-eng
                6. aosp_x86_64-eng
7. full_fugu-userdebug
8. aosp_fugu-userdebug
9. mini_emulator_arm64-userdebug
              9. mini_emulator_arm64-userdebug
10. m_e_arm-userdebug
11. m_e_mips64-eng
12. m_e_mips-userdebug
13. mini_emulator_x86_64-userdebug
14. mini_emulator_x86_userdebug
15. aosp_dragon-userdebug
16. aosp_dragon-eng
17. aosp_flounder-userdebug
18. aosp_angler-userdebug
19. aosp_bullhead-userdebug
20. hikey-userdebug
21. aosp_shamu-userdebug
22. rk3399-userdebug
23. rk3399_32-userdebug
24. rk3399_box-userdebug
25. rk3399_box-userdebug
27. rk3399_64-user
28. rk3399_64-userdebug
29. rk3399_64_vr-userdebug
                 29. rk3399_64_vr-user
                30. rk3399_disvr-userdebug
31. rk3399_disvr-user
32. rk3399_mid-userdebug
                 33. rk3399_mid-user
                 34. rk3399_laptop-userdebug
35. rk3399_laptop-user
which would you like? [aosp_arm-eng]
```

输入对应编号:

3、编译

camera@ISP:~/camera/rk3399_android7.1/hardware/rockchip/camera/siliconImage/isi/drv/ov8858\$ mm -B 到 Sensor 驱动目录下执行 mm -B 编译驱动;或在源码的根目录执行 mmm /驱动目录 -B

4、修改 cam board.xml

从板子取出原有 cam board.xml 来修改,在 cmd 命令行输入:

adb pull /etc/cam board.xml

修改完重新打进开发板,在命令行输入:

adb root

adb remount

adb push cam board.xml /etc/

5、将 IQ 文件 push 进开发板,cam_board.xml 的配置决定 IQ 文件的名称,以 OV8858 为例,若 SensorLens 为空,则 IQ 文件名称为 OV8858.xml,若 SensorLens 为 NC,则 IQ 文件名称为 OV8858_lens_NC.xml,若 SensorLens 为具体型号,则 OV8858_lens_型号.xml;在 cmd 命令行输入:

adb push /文件目录/OV8858.xml /etc/

6、编译生成的 Sensor 驱动输出到如下路径:

rk3399_android7.1\out\target\product\rk3399_mid\system\lib\hw Rk3399 的挖掘机版本的目录是 rk3399_mid,其他版本根据实际选目录; 在 cmd 命令行执行 push 命令将 so 库打进开发板:

adb push /文件目录/libisp_isi_drv_OV8858.so /system/lib/hw/

7、在 cmd 命令行输入 adb shell 进入 adb;

```
C:\Users\rockchip>adb shell
rk3399_mid:/ $ sync
rk3399_mid:/ $ reboot
```

同步文件,然后重启,以便新 push 进去的文件生效;

8、若相机 app 打开相机报错,可在 adb 命令行下通过 logcat 命令打印日志,查看错误; 可通过 logcat | grep CameraHal 仅打印相机相关的 log;

通过 logcat -c 清空 log 缓存;

另外可设置 log 打印等级,如下:

```
rk3399_mid:/ $ getprop | grep cam
[camera2.portability.force_apil: [1]
[init.svc.cameraserver]: [running]
[sys.camera.callprocess]: [cameraserver]
[sys.cts_camera.status]: [false]
[sys_graphic.cam_back.iq]: [/etc/GC8034.xml]
[sys_graphic.cam_back.iq.ver]: [2018-05-10_lsl_GC8034_matic_v1.0.1]
[sys_graphic.cam_back.len]: []
[sys_graphic.cam_back.modulename]: []
[sys_graphic.cam_camboard.ver]: [0x0.0xf.0x0]
[sys_graphic.cam_drv_camsys.ver]: [0x0.0x0.0x1]
[sys_graphic.cam_hal.ver]: [0x1.0x51.0x0]
[sys_graphic.cam_isi.ver]: [0x0.0xd.0x0]
[sys_graphic.cam_libisp.ver]: [0x2.0x3.0x0]
[sys_graphic.cam_otp_awb]: [false]
[sys_graphic.cam_otp_awb_enable]: [false]
[sys_graphic.cam_otp_lsc]: [false]
[sys_graphic.cam_otp_lsc_enable]: [false]
[sys_graphic.cam_trace]: [0]
rk3399_mid:/ $ setprop sys_graphic.cam_trace 2
rk3399_mid:/ $ getprop | grep cam
[camera2.portability.force_apil: [1]
[init.svc.cameraserver]: [running]
[sys.camera.callprocess]: [cameraserver]
[sys.cts_camera.status]: [false]
[sys_graphic.cam_back.iq]: [/etc/GC8034.xml]
[sys_graphic.cam_back.iq.ver]: [2018-05-10_ls1_GC8034_matic_v1.0.1]
[sys_graphic.cam_back.len]: []
[sys_graphic.cam_back.modulename]: []
[sys_graphic.cam_camboard.ver]: [0x0.0xf.0x0]
[sys_graphic.cam_drv_camsys.ver]: [0x0.0x0.0x1]
[sys_graphic.cam_hal.ver]: [0x1.0x51.0x0]
[sys_graphic.cam_isi.ver]: [0x0.0xd.0x0]
[sys_graphic.cam_libisp.ver]: [0x2.0x3.0x0]
[sys_graphic.cam_otp_awb]: [false]
[sys_graphic.cam_otp_awb_enable]: [false]
[sys_graphic.cam_otp_lsc]: [false]
[sys_graphic.cam_otp_lsc_enable]: [false]
[sys_graphic.cam_trace]: [2]
```