

LOS NÚMEROS REALES: Inversos Multiplicativos

Coordinación de Cálculo I

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Lovola

LOS NÚMEROS REALES: Inversos Multiplicativos

Coordinación de Cálculo I

Primera versión - Agosto 2020

Colaboradores:

Mery Choque Valdez

Rodolfo Viera

Julio Rincón

Solange Aranzubia

Aldo Zambrano

Carolina Martínez

Pablo García

Manuel Galaz

Karina Matamala

Daniel Saa

Profesor:

Patricio Cerda Loyola

Inversos multiplicativos y división

Definición

Dado un número $a \in \mathbb{R}$, $a \neq 0$, definimos su **inverso multiplicativo**, el cual denotaremos como a^{-1} , como el único número real que al multiplicarlo con a dé como resultado 1. Es decir:

$$a \cdot a^{-1} = 1.$$

Ejemplo:

- El inverso multiplicativo de 3 es $\frac{1}{3}$, dado que $3 \cdot \frac{1}{3} = 1$.
- Il inverso multiplicativo de -5 es $-\frac{1}{5}$, ya que

$$(-5)\cdot\left(-\frac{1}{5}\right)=1.$$

Observación

La razón por la cual no se considera el 0 en nuestra definición de inverso multiplicativo, es que si 0 tuviera inverso, el cual denotaremos por $b \in \mathbb{R}$, entonces $0 \cdot b = 1$. Pero por otro lado sabemos que

$$0 \cdot b = 0$$

luego, $0 = 0 \cdot b = 1$, lo cual es imposible.

Recordemos también la siguiente definición:

Dados $a,b\in\mathbb{R}$, con $b\neq 0$, definimos el **cociente** entre a y b, el cual denotaremos por $\frac{a}{b}$ (o a:b), como el número $a\cdot b^{-1}$. Es decir,

$$\frac{a}{b} := a \cdot b^{-1}.$$

Para el cociente entre números reales tenemos las siguientes propiedades:

Sean $a, x, y, z, u \in \mathbb{R}$. Entonces:

- 1) $\frac{a}{1} = a$.
- 2) Si $a \neq 0$, entonces $\frac{1}{a} = a^{-1}$.
- 3) Si $a \neq 0$, entonces $\frac{a}{2} = 1$.
- 4) Si $y, u \neq 0$, entonces $\frac{x}{y} = \frac{z}{u} \Leftrightarrow xu = zy$.
- 5) Si $a, y \neq 0$, entonces $\frac{xa}{ya} = \frac{x}{y}$.
- 6) Si $y, u \neq 0$, entonces $\frac{x}{y} \cdot \frac{z}{u} = \frac{xz}{yu}$.
- 7) Si $y, u \neq 0$, entonces $\frac{x}{y} \pm \frac{z}{u} = \frac{xu \pm yu}{yu}$.
- 8) Si $y, z, u \neq 0$, entonces $\frac{x}{y} : \frac{z}{u} = \frac{xu}{zy}$.

A modo de ejemplo, demostraremos una de las propiedades anteriores. La demostración del resto quedará como ejercicio.

Demostración propiedad 8

Asumiremos que las propiedades de la 1 hasta el 7 ya están demostradas. Por definición de cociente tenemos que

$$\frac{x}{y}: \frac{z}{u} = \frac{x}{y} \cdot \left(\frac{z}{u}\right)^{-1}.$$

Ahora, observe que $\left(\frac{z}{u}\right)^{-1} = \frac{u}{z}$. En efecto,

(Propiedad 5)
$$\frac{z}{u} \cdot \frac{u}{z} = \frac{zu}{uz}$$
(Conmutatividad)
$$= \frac{zu}{zu}$$
(Propiedad 2).
$$= 1$$

Por lo tanto, $\frac{z}{u} \cdot \frac{u}{z} = 1$. Así, por la deifinición de **inverso multiplicativo**, tenemos que $\frac{u}{z}$ es el inverso multiplicativo de $\frac{z}{u}$, es decir, $\left(\frac{z}{u}\right)^{-1} = \frac{u}{z}$. Finalmente, haciendo nuevamente uso de la propiedad 6 tenemos que

$$\frac{x}{y} : \frac{z}{u} = \frac{x}{y} \cdot \left(\frac{z}{u}\right)^{-1} = \frac{x}{y} \cdot \frac{u}{z}$$
$$= \frac{xu}{v^{2}} \quad \text{(Propiedad 6)}.$$

Ahora veremos algunos ejemplos en los cuales usaremos las propiedades anteriores para simplificar expresiones con muchos factores.

Ejemplo 1

Simplifique la expresión :

$$\frac{x-4}{x^2-4}:\frac{x^2-3x-4}{x^2+5x+6}.$$

Solución: Por la propiedad 8 tenemos que

$$\frac{x-4}{x^2-4}: \frac{x^2-3x-4}{x^2+5x+6} = \frac{(x-4)(x^2+5x+6)}{(x^2-4)(x^2-3x-4)}.$$

Ahora, factorizando y simplificando (propiedad 5) tenemos que

$$\frac{(x-4)(x^2+5x+6)}{(x^2-4)(x^2-3x-4)} = \frac{\cancel{(x-4)}(x+3)\cancel{(x+2)}}{\cancel{(x+2)}(x-2)\cancel{(x-4)}(x+1)}$$
$$= \frac{x+3}{(x-2)(x+1)}.$$

Por lo tanto,
$$\frac{x-4}{x^2-4}$$
: $\frac{x^2-3x-4}{x^2+5x+6} = \frac{x+3}{(x-2)(x+1)}$.

Simplifique la expresión

$$\frac{\frac{1}{a+h}-\frac{1}{a}}{h}$$
.

Solución: Usando la propiedad 7, tenemos que

$$\frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a - (a+h)}{a(a+h)}}{\frac{h}{h} + \frac{1}{a(a+h)}}$$

$$= \frac{\frac{1}{a(a+h)} - \frac{h}{a(a+h)}}{\frac{h}{h}}$$

$$= -\frac{\frac{h}{a(a+h)} \cdot \frac{1}{h}}{\frac{1}{h}} \quad \text{(Propiedad 8)}$$

$$= -\frac{1}{a(a+h)}.$$

Demuestre que

$$\left(\frac{x-y}{x+y} + \frac{x+y}{x-y}\right) \left(\frac{x^2+y^2}{2xy} + 1\right) \left(\frac{xy}{x^2+y^2}\right) = \frac{x+y}{x-y}.$$

Solución: Reduciremos cada uno de los factores del producto que aparece a la izquierda de la igualdad y obtendremos la parte derecha de la igualdad.

$$\frac{x-y}{x+y} + \frac{x+y}{x-y} = \frac{(x-y)^2 + (x+y)^2}{(x+y)(x-y)}$$

$$= \frac{x^2 - 2xy + y^2 + x^2 + 2xy + y^2}{x^2 - y^2}$$

$$= \frac{2x^2 + 2y^2}{x^2 - y^2}$$

$$= 2\left(\frac{x^2 + y^2}{x^2 - y^2}\right).$$

Para el segundo factor tenemos que

$$\frac{x^2 + y^2}{2xy} + 1 = \frac{x^2 + y^2 + 2xy}{2xy}$$
$$= \frac{(x + y)^2}{2xy}.$$

Luego, juntando los tres factores tenemos que

$$\left(\frac{x-y}{x+y} + \frac{x+y}{x-y}\right) \left(\frac{x^2+y^2}{2xy} + 1\right) \left(\frac{xy}{x^2+y^2}\right) = 2\left(\frac{x^2+y^2}{x^2-y^2}\right) \cdot \frac{(x+y)^2}{2xy} \cdot \left(\frac{xy}{x^2+y^2}\right) \\
= \frac{2xy(x^2+y^2)(x+y)^2}{2xy(x^2-y^2)(x^2+y^2)} \\
= \frac{(x+y)^2}{(x^2-y^2)} \\
= \frac{(x+y)^2}{(x^2-y^2)} \\
= \frac{(x+y)(x+y)}{(x+y)(x-y)} \\
= \frac{x+y}{x-y}.$$

Ejercicios

- Demuestre las propiedades 1-7.
- Simplifique la expresión

$$\frac{x^2}{1 - \frac{1}{x^2 + \frac{\frac{1}{x}}{x + \frac{1}{x}}}} + \frac{x^2 - 2}{1 - \frac{1}{x^2 - \frac{\frac{1}{x}}{x - \frac{1}{x}}}}$$

Ecuación Lineal:

Una ecuación lineal es una expresión de la forma:

$$ax + b = 0$$

donde $a, b \in \mathbb{R}$, $a \neq 0$ y x es la variable.

Ejemplos:

• Ecuación lineal: $3x + \frac{1}{2} = 7$.

② Ecuación no lineal: $2\sqrt{x} + 5x = 0$.

Solución de una ecuación lineal:

Sea $a, b \in \mathbb{R}$, $a \neq 0$, se tiene la siguiente afirmación:

$$ax + b = c \Leftrightarrow x = \frac{c - b}{a}$$

Usando propiedad de los reales, se tiene:

$$ax + b = c \Leftrightarrow ax + (b + (-b)) = c + (-b)$$

$$\Leftrightarrow ax + 0 = c + (-b)$$

$$\Leftrightarrow ax = c - b$$

$$\Leftrightarrow (a^{-1}a)x = a^{-1}(c - b)$$

$$\Leftrightarrow 1 \cdot x = \frac{1}{a}(c - b)$$

$$\Leftrightarrow x = \frac{c - b}{a}$$

Por tanto se satisface que $ax + b = c \Leftrightarrow x = \frac{c - b}{a}$.

Ejemplo: Resolver $2 = -\frac{1}{3}x + 7$.

Solución:

$$2 = -\frac{1}{3}x + 7 \Leftrightarrow \frac{1}{3}x = 7 - 2 = 5$$

$$x = 15$$

A continuación algunos ejemplos que se reducen a una ecuación lineal.

Ejemplo 1

Sabiendo que $x \neq -2$ y $x \neq 1$, resolver la ecuación:

$$\frac{x-1}{x+2} = \frac{x+2}{x-1}.$$

Solución: Usando propiedades de los números reales, tenemos que

$$\frac{x-1}{x+2} = \frac{x+2}{x-1} \Leftrightarrow (x-1)^2 = (x+2)^2$$
$$\Leftrightarrow x^2 - 2x + 1 = x^2 + 4x + 4$$
$$\Leftrightarrow x = -\frac{1}{2}$$

Resolver la siguiente ecuación:

$$(x-2)(2x+1) = (x-1)^2 + (3-x)^2$$

Solución: Usando distributividad, productos notables y propiedades de los reales, se tiene:

$$\begin{array}{rcl} (x-2)(2x+1) & = & (x-1)^2 + (3-x)^2 \\ 2x^2 - 3x - 2 & = & x^2 - 2x + 1 + 9 - 6x + x^2 \\ 2x^2 - 3x - 2 & = & 2x^2 - 8x + 10 \\ 5x & = & 12 \\ x & = & \frac{12}{5}. \end{array}$$

Ecuaciones cuadráticas:

Una ecuación cuadrática es una expresión de la forma $ax^2+bx+c=0$. Donde $a,b,c\in\mathbb{R}$, $a\neq 0$ y x la variable.

Solución de una ecuación cuadrática:

Si $a,b,c\in\mathbb{R}$, con $a\neq 0$ y $b^2-4ac\geq 0$, las soluciones de la ecuación cuadrática $ax^2+bx+c=0$ son de la forma:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Demostración:

En la ecuación $ax^2 + bx + c = 0$, se realiza completación de cuadrados y se obtiene:

$$\left(x + \frac{b}{2a}\right)^2 = \frac{-4ac + b^2}{4a^2}$$

Esta última igualdad, se satisface sólo si $b^2-4ac\geq 0$, (Se explicará con mas argumentos ésta afirmación, en la sección de axiomas de orden). Asumiendo esa afirmación, se tiene:

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Así,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Observación

En el cuerpo de los números reales $\mathbb R$, si se tiene una ecuación cuadrática $ax^2+bx+c=0$, el número real b^2-4ac , denotado generalmente por $\Delta=b^2-4ac$, tiene una de las siguientes posibilidades:

- $oldsymbol{\Delta} \in \mathbb{R}^+$
- $\Delta = 0$
- \bullet $-\Delta \in \mathbb{R}^+$

Según el signo de Δ , se deduce si la ecuación cuadrática tiene o no solución en \mathbb{R} . Se tiene que si $\Delta \geq 0$ la ecuación cuadrática tiene solución real, y si $\Delta < 0$, no tiene soluciones reales. Se explicará, con mas argumentos por que si $\Delta < 0$, la ecuación cuadrática no tiene soluciones reales y las propiedades de cuerpo ordenado de los números reales ayudarán para eso.

Ejemplo 1

Determine si la ecuación $x^2 + 5x + 6 = 0$, tiene solución real.

Solución: En este ejercicio se tiene que $\dot{\Delta}=5^2-4\cdot 6=1>0$. Por lo que la ecuación cuadrática tiene solución real.

Ejemplo 2

Determine si la ecuación $x^2 - 2x + 2 = 0$, tiene solución real.

Solución: En este ejercicio se tiene que $\dot{\Delta}=(-2)^2-4\cdot 2\cdot 1=-4<0$. Por lo que la ecuación cuadrática no tiene solución real.

Ejercicios que se reducen a ecuaciones cuadráticas.

Ejemplo 3

Sea $x \in \mathbb{R}$, tal que $x \neq 1$, $x \neq -2$. Resolver la siguiente ecuación

$$\frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4}$$

. Solución: Notar que la igualdad dada se reduce, a la siguiente ecuación cuadrática:

$$\frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4} \implies 5x^2 - 3x - 14 = 0$$

Luego $\Delta=9-4\cdot 5\cdot (-14)=289>0$, por tanto la ecuación cuadratica tiene solución real. Sus soluciones son:

$$x = \frac{3 \pm \sqrt{289}}{10} = \frac{3 \pm 17}{10}.$$

Finalmente $x_1 = 2$ y $x_2 = -\frac{7}{5}$.

LOS NÚMEROS REALES: Inversos Multiplicativos

Coordinación de Cálculo

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Loyola

