レポート提出票

科目名:	情報工学実験1
実験課題名:	課題3論理回路
実施日:	2020年6月15日
学籍番号:	4619055
氏名:	辰川力駆
共同実験者:	

1 実験の要旨

背景

2 実験の目的

ディジタル回路の設計・解析に必要な基本となるゲート素子 (AND、OR、NOT、NAND、NOR、EX-OR) の基礎的動作原理を理解し、その応用について考察する。

3 実験概要

本実験は論理回路実習装置 ITF-02 を用いて行う。この装置の使用に当たっては次の注意を守る。

- パネル面での結線は必ず電源スイッチをオフにしておく。
- リードチップの抜き差しはプラグの部分を持って行う。リード線を持って抜き差しする と断線の原因になる。
- パネル面での結線を行う場合には、リードチップがからまないようにその結線に合った リードチップを使用する。

実験は以下に示す順序で行うこと。

- (1) 論理積 (AND) 回路
- (2) 論理和 (OR) 回路
- (3) 否定 (NOT) 回路
- (4) 論理積の否定 (NAND) 回路
- (5) 論理和の否定 (NOR) 回路
- (6) ド・モルガンの定理の証明
- (7) 排他的論理和 (EX-OR) 回路
- (8) 加算器 (ADDER) の実習
- (9) デコーダの実習
- (10) R-S フリップ・フロップ
- (11) J-K フリップ・フロップ

4 実験

4.1 操作手順

本器 ITF-02 の基本的な操作手順は、次の通りとする。

- 1. 電源スイッチを OFF にする。
- 2. 各実習項目における結線を行う。
- 3. 電源スイッチを ON にする。
- 4. 各実習項目における実習を行う。
- 5. 実習が終了したら電源スイッチをOFFにして、結線を解く。

<注意>

結線を行ったり、結線を解いたりするときは、原則として電源スイッチをOFFにしておくこと。ただし、実習を行っている途中で結線を変えたり、結線を増やしたりするときは、その都度電源スイッチをOFFにする必要はない。その場合には、出力信号をアースに短絡したり、出力端子と出力端子を接続したりしないよう注意すること。結線を途中で変えるときは、信号出力端子に差し込んであるリードチップを抜き、次に信号入力端子に差し込んであるリードチップを抜く。また、結線を追加するときは、リードチップを信号入力端子に差し込み、次に信号出力端子に差し込む。

4.2 組み合わせ回路の実習

組み合わせ回路は、出力が入力だけに関係する論理回路で、基本になる素子として、論理積 (AND)、論理和 (OR)、否定 (NOT)、論理積の否定 (NAND)、論理和の否定 (NOR) などがあり、その応用として排他的論理和 (Exclusive-OR)、半加算器 (Half-ADDER)、全加算器 (Full-ADDER)、エンコーダ、デコーダなどがある。

(1) 論理積 (AND) 回路

目的

 $Y = A \cdot B$ を理解する。

理論

論理積は、 $Y = A \cdot B$ で表現され、入力 $A \in B$ がいずれも "1" のときのみ、出力 Y が "1"、他の条件ではすべて "0" となるもので、この式を満足する論理回路を AND 回路という。

表 1: AND の真理値表

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

実習

パネル上の AND 回路素子を使用し、 $Y = A \cdot B$ の真理値表 1 を表示器で表示して確認することにより行う。

A、Bの入力レベルは、設定スイッチにより設定する。

(2) 論理和 (OR) 回路

目的

Y = A + Bを理解する。

理論

論理和は、Y = A + Bで表現され、入力 $A \land B$ がいずれも "0" のときのみ、出力 Y が "0"、他の条件ではすべて "1" となるもので、この式を満足する論理回路を OR 回路という。

表 2: OR の真理値表

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

実習

パネル上の OR 回路素子を使用し、Y = A + B の真理値表 2 を表示器で表示して確認することにより行う。

A、Bの入力レベルは、設定スイッチにより設定する。

(3) 否定 (NOT) 回路

目的

 $Y = \overline{A}$ を理解する。

理論

否定回路は、インバータとも言われ、 $Y = \overline{A}$ で表現される。入力と出力の関係は常に正反対になり、この式を満足する論理回路を否定回路という。

表 3: NOT の真理値表

A	Y
0	1
1	0

● 実習

パネル上の NOT 回路素子を使用し、入力 A に対し出力 $Y = \overline{A}$ の真理値表 3 を表示器で表示して確認することにより行う。

A、Bの入力レベルは、設定スイッチにより設定する。

(4) 論理積の否定 (NAND) 回路

目的

 $Y = \overline{A \cdot B}$ を理解する。

理論

論理積の否定は、 $Y = \overline{A \cdot B}$ で表現され、入力 $A \land B$ がいずれも "1" のときのみ、出力 Y が "0"、他の条件ではすべて "1" となるもので、この式を満足する論理回路を NAND 回路という。

表 4: NAND の真理値表

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

実習

パネル上の NAND 回路素子を使用し、 $Y = \overline{A \cdot B}$ の真理値表 4 を表示器で表示して確認することにより行う。

A、Bの入力レベルは、設定スイッチにより設定する。

(5) 論理和の否定 (NOR) 回路

目的

 $Y = \overline{A + B}$ を理解する。

理論

論理和の否定は、 $Y = \overline{A+B}$ で表現され、入力 A と B がいずれも "0" のときのみ、出力 Y が "1"、他の条件ではすべて "0" となるもので、この式を満足する論理回路を NOR 回路という。

表 5: NOR の真理値表

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

実習

パネル上の NOR 回路素子を使用し、 $Y = \overline{A+B}$ の真理値表 5 を表示器で表示して確認することにより行う。

A、Bの入力レベルは、設定スイッチにより設定する。

(6) ド・モルガンの定理の証明

目的

ド・モルガンの定理証明として、

 $\overline{A \cdot B} = \overline{A} + \overline{B}$

 $\overline{A+B} = \overline{A} \cdot \overline{B}$

の式に、実際の値を入れて行う。

理論

ド・モルガンの定理は、式(1)、 および式(2)で表示される。

$$\overline{A \cdot B} = \overline{A} + \overline{B} \tag{1}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B} \tag{2}$$

式 (1)、および式 (2) の証明の際し、上記を書き直すと、式 (3)、および式 (4) になる。

$$Y_1 = \overline{A \cdot B} \qquad Y_2 = \overline{A} + \overline{B} \qquad Y_1 = Y_2 \tag{3}$$

$$Y_3 = \overline{A + B} \qquad Y_4 = \overline{A} \cdot \overline{B} \qquad Y_3 = Y_4 \tag{4}$$

表 6: $Y_1 = \overline{A \cdot B}$ 、 $Y_2 = \overline{A} + \overline{B}$ の真理値表

A	B	Y_1	Y_2
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

表 7: $Y_3 = \overline{A + B}$ 、 $Y_4 = \overline{A} \cdot \overline{B}$ の真理値表

A	B	Y_3	Y_4
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

• 実習

論理回路をパネル上で構成し、それぞれの真理値表 6、7を表示器で表示して確認し、 $Y_1 = Y_2$ 、 $Y_3 = Y_4$ であれば証明が成立したという方法で行う。

(7) 排他的論理和 (Exclusive-OR) 回路

目的

 $Y = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$ を理解する。

理論

排他的論理和は、 $Y = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$ で表現され、入力 $A \lor B$ が同じレベルのとき、出力 Y が "0"、異なるレベルのときは "1" となるもので、この式を満足する論理回路を Exclusive-OR 回路という。

表 8: $Y = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$ の真理値表

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

● 実習

論理回路をパネル上で構成し、真理値表8を表示器で表示して確認することにより行う。 *A、B*の入力レベルは、設定スイッチにより設定する。

(8) 加算器 (ADDER)

目的

- 1. 加算器のSの部分が排他的論理和(Exclusive-OR)であることを理解する。
- 2. 半加算器の動作を理解する。

理論

加算器には、下位からの桁上げを考慮しない半加算器 (Half-ADDER) と、下位からの桁上げを考慮する全加算器 (Full-ADDER) とがある。全加算器は、半加算器を 2 個、OR 回路を 1 個直列に接続した形になる。

半加算器の論理式は、次の式で与えられる。

$$S = \overline{A} \cdot B + A \cdot \overline{B} \tag{5}$$

$$C = A \cdot B \tag{6}$$

または、

$$S = A \oplus B \tag{7}$$

式 (5)、式 (7) から分かるように、回路の和 (Sum) を構成している部分は、Exclusive-OR になる。

全加算器の論理式は、次の式で与えられる。

$$S = \overline{A} \cdot \overline{B} \cdot C_i + \overline{A} \cdot B \cdot \overline{C_i} + A \cdot \overline{B} \cdot \overline{C_i} + A \cdot B \cdot C_i$$

$$C_O = \overline{A} \cdot B \cdot C_i + A \cdot \overline{B} \cdot C_i + A \cdot B \cdot \overline{C_i} + A \cdot B \cdot C_i$$

$$= A \cdot B + B \cdot C_i + A \cdot C_i$$

V \mathbf{E} , $S_1 = \overline{A} \cdot B + A \cdot \overline{B} \times \overline{B}$

$$S = \overline{S_1} \cdot C_i + S_1 \cdot \overline{C_i}$$

また、 $C_1 = A \cdot B$ 、 $C_2 = S_1 \cdot C_i$ とすれば、

$$C_O = C_1 + C_2$$
$$= A \cdot B + S_1 \cdot C_i$$

となり、さらに、Exclusive-OR を用いて表せば、

$$S = A \oplus B \oplus C_i$$

$$C_O = A \cdot B + (A \oplus B) \cdot C_i$$

となる。

表 9: Half-ADDER の真理値表

A	B	C	S
0	0	0	0
0	1	1	
1	0	0	1
1	1	1	0

表 10: Full-ADDER の真理値表

A	B	C_i	C_O	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

実習

論理回路をパネル上で構成し、真理値表 9、10 を表示器で表示して確認することにより行う。

(9) デコーダ (DECODER)

目的

2進数を10進数に変換する動作を理解する。

理論

4ビットの2進数コードを、もとの10進数に戻すようなコード翻訳動作をする論理回路を、デコーダといい、2進数と10進数の関係式は、次のようになる。

2 進数コード
$$A=2^0$$
 ビット、 $B=2^1$ ビット $C=2^2$ ビット, $D=2^3$ ビット $D=2^3$ $D=2^3$

この式を満足する真理値表を表 11 に示す。

表 11: デコーダ (2 進-10 進) の真理値表

	2進数			10 進数										
	D	C	B	A	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	1	1	0	0	0	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0	1	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	1	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	0	0	1	0	0	0	0	0	0	0	0	0	1

• 実習

パネル上のデコーダ部分を使用し、真理値表 11 を表示器で表示して確認することにより 行う。

順序回路の実習 4.3

順序回路 (Sequential Circuit) は、出力が入力だけでなく回路そのものの状態によって左右さ れる論理回路で、R-S フリップ・フロップ回路 (R-S Flip・Flop Circuit)、J-K フリップ・フロッ プ回路 (J-K Flip・Flop Circuit)、シフトレジスタ (Shift Register) などがあり、その応用として n 進力ウンタや、n ビットのシフトレジスタがある。

(10) R-S フリップ・フロップ回路

目的

- 1. R-S フリップ・フロップが1ビットの記憶素子であることを理解する。
- 2. R-S フリップ・フロップにおいて禁止とされる入力が存在することを理解する。

理論

R-Sフリップ・フロップ回路は、"0"、または"1"の論理レベルを記録する機能を持った 回路である。論理式、シンボル、真理値表は各々式(8)、式(9)、表12で表される。

$$Q^{(n+1)} = \overline{\overline{S^{(n)} \cdot \overline{Q}^{(n)}}}$$

$$\overline{Q}^{(n+1)} = \overline{\overline{R^{(n)} \cdot Q^{(n)}}}$$
(8)

$$\overline{Q}^{(n+1)} = \overline{R^{(n)} \cdot Q^{(n)}} \tag{9}$$

ただし時刻nに関して、 $S^{(n)}$ 、 $R^{(n)}$ 、および $Q^{(n)}$ 、 $\overline{Q}^{(n)}$ は入力S、Rと出力Q、 \overline{Q} を表す ものとする。

動作は、Q と \overline{Q} が相補の関係 (Q と \overline{Q} が互いに異なる値を持つ) にあるとき、R と S が "0" レベルの時、出力はもとの状態を保持し、S が "1"、R が "0" なら出力 Q は "1"、Sが "0"、Rが "1" なら出力 Q は "0" にそれぞれ落ち着く。しかしながら S と Rが共に "1" の場合は $Q imes \overline{Q}$ が共に"1"となり、相補の関係が満たされなくなる。この状態において、 RとSを同時に "0" レベルにすると、Qと \overline{Q} が "0" と "1" のレベルを交互に繰り返すこ ととなる。(ただし、実際には各 NAND 素子の応答速度の差異や配線の長さによって、Q と \overline{Q} が相補になるように落ち着く。) このため、R-Sフリップ・フロップ回路では、Sと Rを共に"1"として入力することを"禁止"としている場合が多い。

表 12: R-S フリップ・フロップの真理値表

	$S^{(n)}$	$R^{(n)}$	$Q^{(n+1)}$	$ \overline{Q}^{(n+1)} $	
	0	0	$Q^{(n)}$	$\overline{Q}^{(n)}$	
ĺ	0	1	0	1	
	1	0	1	0	
	1	1	1	1	禁止

実習

パネル上のR-Sフリップ・フロップの素子を使用し、S、Rの入力レベルに対する出力レ ベルQ、 \overline{Q} のレベルを表示器で確認することにより行う。

(11) J-K フリップ・フロップ回路

目的

- 1. J-K フリップ・フロップがトリガ型フリップ・フロップ回路であることを理解する。
- 2. J、K をともに "1" としたときには、T フリップ・フロップにもなることを理解する。

理論

R-Sフリップ・フロップ回路は、R、Sのレベルが直接出力を決定するのに対して、J-Kフリップ・フロップ回路は、 $J \geq K$ のレベルの他に、トリガが加えられないと出力が決 定されない、トリガ型のフリップ・フロップ回路の一種である。

論理式、真理値表は、各々式 (10)、(11)、表 13 で表される。

$$Q^{(n+1)} = \overline{K^{(n)}} \cdot Q^{(n)} + J^{(n)} \cdot \overline{Q}^{(n)}$$

$$\overline{Q}^{(n+1)} = \overline{Q^{(n+1)}}$$
(10)

$$\overline{Q}^{(n+1)} = \overline{Q}^{(n+1)} \tag{11}$$

動作は次のようになる。

- 1. $J \geq K$ が "0" レベルのときの出力 Q は、トリガパルス T が加えられても元の状態を 保持する。
- 2. Jが "1"、Kが "0" のときの出力 Qは、トリガパルスTが加えられると "1" になり、 この状態でさらにトリガパルスが加えられても、元の状態 ("1") を保持する。
- 3. Jが "0"、Kが "1" のときの出力 Qは、トリガパルス Tが加えられると "0" となり、 この状態でさらにトリガパルスが加えられても、元の状態("0")を保持する。
- 4. J と K が "0" レベルのときの出力 <math>Q はトリガパルス T が加えられるごとにレベルが 反転する。(Tフリップ・フロップ:トグルフリップ・フロップ)
- 5. PC を "0" にすると、J, K, T のレベルに関係なく、出力 Q は "0" になる。 (Pre-Clear)

なお、トリガパルス入力端子の先端は否定回路同様に"○"と書かれるが、これはトリガ パルスの下降部でトリガされることを意味する。

表 13: J-K フリップ・フロップの真理値表

$J^{(n)}$	$K^{(n)}$	T	$Q^{(n+1)}$	$\overline{Q}^{(n+1)}$	動作
0	0	↓	$Q^{(n)}$	$\overline{Q}^{(n)}$	ホールド
0	1	+	0	1	リセット
1	0	+	1	0	セット
1	1	↓	$\overline{Q}^{(n)}$	$Q^{(n)}$	トグル

PC	$Q^{(n+1)}$	
0	0	
1	$Q^{(n)}$	

実習

パネル上の J-K フリップ・フロップの素子を使用し、J、K の入力に対してトリガパルスを加えたときの出力 Q、 \overline{Q} のレベルを表示器で確認することにより行う。

トリガパルスは、パネル上のパルス発生器から、手動による単発パルスを用いる。また、 PC 端子には、同じパルス発生器のクロックパルスを使用する。

5 検討・考察

6 結論

参考文献

- [1] J. J. Collins et al., *PRE*, **52**(4):R3321, 1995.
- [2] E. M. Izhikevich, *IEEE Trans. NN*, **14**(6):1569, 2003.