Logistic Regression

```
In [19]: % matplotlib inline

from IPython.core.display import display, HTML
    display(HTML("<style>.container { width:90% !important; }</style>"))
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 100)

df = pd.read_csv('User_Knowledge.csv')

df.loc[df.UNS == 'very_low','grade'] = 0
    df.loc[df.UNS == 'Low','grade'] = 1
    df.loc[df.UNS == 'Middle','grade'] = 2
    df.loc[df.UNS == 'High','grade'] = 3

df.sample(5)
```

Out[19]:

	STG	scg	STR	LPR	PEG	UNS	grade
191	0.42	0.700	0.72	0.30	0.80	High	3.0
220	0.61	0.258	0.56	0.62	0.24	Low	1.0
136	0.38	0.100	0.40	0.48	0.26	Low	1.0
60	0.09	0.610	0.53	0.75	0.01	Low	1.0
208	0.55	0.170	0.71	0.48	0.11	very_low	0.0

Attribute Information

- STG (The degree of study time for goal object materails), (input value)
- SCG (The degree of repetition number of user for goal object materails) (input value)
- STR (The degree of study time of user for related objects with goal object) (input value)
- LPR (The exam performance of user for related objects with goal object) (input value)
- PEG (The exam performance of user for goal objects) (input value)
- UNS (The knowledge level of user) (target value)
 - Very Low: 50
 - Low:129
 - Middle: 122
 - High 130

```
In [20]: #y = list(df['UNS'])
y = df.grade

# feature selection, dropping SCG
#X = df.drop(columns=['SCG']).iloc[:,0:4]
# keeping all features
X = df.iloc[:,0:5]

X.sample()
```

Out[20]:

	STG	SCG	STR	LPR	PEG
184	0.38	0.59	0.31	0.62	0.2

```
In [21]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_sta
    te=0)

# separating transformed
sc = StandardScaler()
X_train_sc=sc.fit_transform(X_train)
X_test_sc=sc.transform(X_test)
```

Linear regression

print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))

MAE: 0.279069767442 MSE: 0.279069767442 RMSE: 0.528270543795

Linear regression + SVC approach

```
In [24]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train_sc)
    X_test_pca = pca.transform(X_test_sc)

reg_pca.fit(X_train_pca, y_train)
    reg_y_pred_pca = reg_pca.predict(X_test_pca)
    print("Logistic Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test ))

Logistic Regression (with PCA) accuracy: 0.546511627907
```

MAE, MSE, RMSE

In [25]: from sklearn import metrics
 print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred_pca))
 print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred_pca))
 print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred_pca)))

MAE: 0.476744186047 MSE: 0.523255813953 RMSE: 0.723364233256

Feature selection. Dropping SCG to see whether RMSE improves

```
In [26]: # feature selection, dropping SCG to see whether RMSE improves
         X = df.drop(columns=['SCG']).iloc[:,0:4]
         X.sample()
         from sklearn.model_selection import train test split
         from sklearn.preprocessing import StandardScaler
         X train, X test, y train, y test = train test split(X, y, test size=0.33, random sta
         te=0)
         # separating transformed
         sc = StandardScaler()
         X train sc=sc.fit transform(X train)
         X_test_sc=sc.transform(X_test)
         # Linear regression
         from sklearn.linear model import LinearRegression
         reg = LinearRegression()
         reg pca = LinearRegression()
         reg.fit(X train, y train)
         reg y pred=reg.predict(X test)
         print("Logistic Regression accuracy: ", reg.score(X test, y test))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y pred))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred)))
         # Linear regression + SVC approach
         from sklearn.decomposition import PCA
         pca = PCA(n_components=2)
         X_train_pca = pca.fit_transform(X_train_sc)
         X test pca = pca.transform(X test sc)
         reg pca.fit(X train pca, y train)
         reg_y_pred_pca = reg_pca.predict(X_test_pca)
         print("Logistic Regression (with PCA) accuracy: ", reg_pca.score(X_test_pca, y_test
         ))
         from sklearn import metrics
         print("MAE: ", metrics.mean_absolute_error(y_test, reg_y_pred_pca))
         print("MSE: ", metrics.mean_squared_error(y_test, reg_y_pred_pca))
         print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, reg_y_pred_pca)))
         Logistic Regression accuracy: 0.932686320712
         MAE: 0.169140096604
         MSE: 0.0551997653979
         RMSE: 0.234946303223
         Logistic Regression (with PCA) accuracy: 0.477349803784
         MAE: 0.546350442153
         MSE: 0.428592947546
         RMSE: 0.65467010589
```

Logistic Regression with 4 columns increases significantly. However Logistic Regression with PCA decreases.