Formula Sheet for the Final Exam of Unit ENSC2003 (Semester 1, 2021)

Power dissipated by a resistor	P=V*I
Energy	$E = \int_0^{\Delta t} P(t)dt$
Ohm's law	V = I * R
Resistors in series connection	$R_{eq} = \sum_{i=1}^{N} R_i = R_1 + R_2 + \dots + R_N$
Voltage division	$V_i = \frac{R_i}{R_1 + R_2 + \dots + R_N} V$
Resistors in parallel connection	$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$
Current division	$\frac{i_N}{i} = \frac{1/R_N}{1/R_1 + 1/R_2 + \dots + 1/R_N}$
Kirchhoff's current law	$\sum_{\substack{n \text{ at} \\ node}} i_n = 0$
Kirchhoff's voltage law	$\sum_{\substack{n,around\\loop}} V_n = 0.$
Source transformations	$v_S = i_S R_S$
Current-voltage relationship of Si diode	$i_D = I_S \left(e^{\frac{V_D}{0.025}} - 1 \right)$
Output of Op-Amp	$v_O = A (V_+ - V),$
Gain of Op-Amp circuits	$\mathbf{A}_{\mathrm{v}} = \mathbf{V}_{\mathrm{out}} / \mathbf{V}_{\mathrm{in}}$
Unit step-function	$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$

Current into a capacitor as a result of time varying voltage applied	$i = C \frac{dv}{dt}$
Capacitors in series connection	$\frac{1}{C_T} = \sum_{i=1}^N \frac{1}{C_i}$
Capacitors in parallel connection	$C_T = \sum\nolimits_{i=1}^N C_i$
Transient response of a first order RC circuit	$v(t) = V_{\infty} + (V_0 - V_{\infty})e^{-t/\tau}$, where $\tau = RC$
Voltage across an inductor as a result of time varying current applied	$v = L \frac{di}{dt}$
Inductors in series connection	$L_T = \sum_{i=1}^{N} L_i$
Inductors in parallel connection	$\frac{1}{L_T} = \sum_{i=1}^N \frac{1}{L_i}$
Transient response of a first order RL circuit	$i(t) = I_{\infty} + (I_0 - I_{\infty})e^{-t/\tau}$, where $\tau = L/R$
Sinusoidal signal	$s(t) = A\cos(\omega t + \phi)$
Complex number in cartesian format $z = x + jy$	Polar form $z = r \angle \theta$ Exponential form $z = re^{i\theta}$, where $r = \sqrt{x^2 + y^2}$, $\theta = tan^{-1}(\frac{y}{x})$
In time domain, $v(t) = V_0 cos(\omega t + \phi)$	In frequency/phasor domain, $\bar{V} = V_0 e^{j\phi}$
Conversion of signa \overline{V} from frequency domain to time domain	$v(t) = Re\{\bar{V}e^{j\omega t}\}$
Impedance and admittance of Resistor	$\bar{Z}=R\;;\qquad \bar{Y}=1/R$
Impedance and admittance of Capacitor	$\bar{Z} = 1/j\omega C \; ; \; \bar{Y} = j\omega C$
Impedance and admittance of Inductor	$\bar{Z} = j\omega L; \qquad \bar{Y} = 1/j\omega L$
Impedances in series connection	$ar{Z}_T = \sum_{i=1}^N ar{Z}_i$
Impedances in parallel connection	$\frac{1}{\bar{Z}_T} = \sum_{i=1}^N \frac{1}{\bar{Z}_i}$

June 2021 Page 2 of 4

DMC 1	
RMS voltage	$V_{RMS} = \sqrt{\frac{1}{T}} \int_{t=0}^{T} v^2(t) dt$
RMS current	$I_{RMS} = \sqrt{\frac{1}{T} \int_{t=0}^{T} i^2(t) dt}$
Average power	$P_{avg} = \frac{1}{T} \int_{t=0}^{T} P(t)dt$
Average power for sinusoidal signal	$P_{avg} = V_{RMS}I_{RMS}\cos(\phi)$
Complex power S	$S = \bar{V}_{RMS} \bar{I}^*_{RMS} = \frac{VI}{2} \angle (\theta - \phi) = P + jQ$
Maximum power transfer	$\overline{Z_L} = \overline{Z_S^*}; P_{max} = \frac{V_S^2}{4R_S}$
DC motor operation	Electrical side: $v_a - i_a R_a - k_{aP} \omega_m = 0$ Mechanical side $k_{TP} i_a = T_L + b \omega_m$
Ideal transformer	$\frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{i_p}{i_s} = n$
Impedance transformation	$\overline{Z_{in}} = \frac{1}{n^2} \overline{Z_L}$
Axioms and theorems of Boolean algebra — Identity	$X + 0 = X$ $X \cdot 1 = X$
Axioms and theorems of Boolean algebra — Null	$X + 1 = 1$ $X \cdot 0 = 0$
Axioms and theorems of Boolean algebra — Idempotency	$X + X = X$ $X \cdot X = X$
Axioms and theorems of Boolean algebra — Involution	(X')' = X
Axioms and theorems of Boolean algebra — Complementarity	$X + X' = 1$ $X \cdot X' = 0$
Axioms and theorems of Boolean algebra — Commutativity	$X + Y = Y + X$ $X \cdot Y = Y \cdot X$
Axioms and theorems of Boolean algebra — Associativity	$(X + Y) + Z = X + (Y + Z)$ $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

June 2021 Page 3 of 4

Axioms and theorems of Boolean algebra — Distributivity	$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$ $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$
Axioms and theorems of Boolean algebra — Uniting	$X \bullet Y + X \bullet Y' = X$ $(X + Y) \bullet (X + Y') = X$
Axioms and theorems of Boolean algebra — Absorption	$X + X \cdot Y = X$ $X \cdot (X + Y) = X$ $(X + Y') \cdot Y = X \cdot Y$ $(X \cdot Y') + Y = X + Y$
Axioms and theorems of Boolean algebra — Factoring	$(X + Y) \bullet (X' + Z) = X \bullet Z + X' \bullet Y$ $X \bullet Y + X' \bullet Z = (X + Z) \bullet (X' + Y)$
Axioms and theorems of Boolean algebra — Concensus	$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$ $(X + Y) \bullet (Y + Z) \bullet (X' + Z) = (X + Y) \bullet (X' + Z)$
Axioms and theorems of Boolean algebra — De Morgan's	$(X + Y +)' = X' \cdot Y' \cdot$ $(X \cdot Y \cdot)' = X' + Y' +$

June 2021 Page 4 of 4