Models: pets and herds

Carlos J. Gil Bellosta cgb@datanalytics.com

September 2014

This is a pet...

 $Source: \ \mathtt{http://jessfalcone.wordpress.com}$

... and this is a herd

Source: http://bonfirehealth.com/negative-influences-comparisons-social-cues-herd/

Some people treat computers as pets...

Source: aliexpress.com

... an others like herds

Figure 8: Impact of scan errors on survival probability. Left figure shows aggregate survival probability for all drives after first scan error. Middle figure breaks down survival probability per drive ages in months. Right figure breaks down drives by their number of scan errors.

Source: Failure Trends in a Large Disk Drive Population, Pinheiro et al.

This is a statistical model treated as a pet

logit y c.r##c.m cv1, nolog

Logistic regression	Number of obs	=	200
	LR chi2(4)	=	66.80
	Prob > chi2	=	0.0000
Log likelihood = -77.953857	Pseudo R2	=	0.3000

У	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
r	.4342063	.1961642	2.21	0.027	.0497316	.8186809
m	.5104617	.2011856	2.54	0.011	.1161452	.9047782
c.r#c.m	0068144	.0033337	-2.04	0.041	0133483	0002805
cv1	.0309685	.0271748	1.14	0.254	0222931	.08423
_cons	-34.09122	11.73402	-2.91	0.004	-57.08947	-11.09297

Source: http://www.ats.ucla.edu/stat/stata/seminars/interaction_sem/interaction_sem.htm

Pets are very demanding and require...

- uariable selection,
- ② checks for outilers,
- assessment of the goodness of fit,
- 4 finding confidence intervals,
- s calculating p-values,
- interpretating the results,
- discuss the generalization,
- 8 ...

Models... as herds?

 $Source: \ \mathtt{http://www.gotmedieval.com}$

Model construction: population

Model construction: data enrichment (aka left join)

id		id	
001		001	
002	Left join	002	
003	after left	003	
004	join	004	
005		005	
006		006	

id	sex	age	prov	
001	Н	<18	80	
002	М	25-30	28	
003	М	45-50	28	
004	М	45-50	50	
005	Н	>65	47	
006	Н	30-35	28	

But subject data is often messy...

Source: http://arquitectolegista.com.ar/

... and contains temporal data...

Source: http://thirdorderscientist.org/

... that is difficult to fit in a box (table)

Source: http://cutestcatpics.com/cat-trying-to-fit-into-tiny-box/

We have a whole dataset per subject!

... and a model per subject?

(Most) models are sophisticated summaries of data

Do you seek α ? Build a model per stock!

The Journal of FINANCE

Vol. XIX

SEPTEMBER 1964

No. 3

CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK*

WILLIAM F. SHARPE†

I. Introduction

ONE OF THE PROBLEMS which has plagued those attempting behavior of capital markets is the absence of a body of I economic theory dealing with conditions of risk. Although

Fitting a million models in the nineties was all of an achievement (for some)

I Just Ran Two Million Regressions

By XAVIER X. SALA-I-MARTIN*

Following the seminal work of Robert Barro An initial answer to this question was given (1991), the recent empiri TABLE 1-MAIN RESULTS OF REGRESSIONS David Renelt (1992). (DEPENDENT VARIABLE = GROWTH) nomic growth has identifi d Leamer's (1985) Independent (i) (ii) (iii) SD variable B CDF^a Equipment investment 0.2175 0.0408 1.000 Number of years open economy 0.0195 0.00421.000 Fraction Confucian 0.0676 0.0149 1.000 Rule of law 0.0049 1.000 0.0190 Fraction Muslim 0.0142 0.0035 1.000 -0.0026Political rights 0.00090.998Latin America 0.998dummy -0.01150.0029Sub-Saharan Africa dummy -0.01210.00320.997

Civil liberties

coups

Revolutions and

0.0010

0.0045

0.997

0.995

-0.0029

-0.0118

Beyond recency and frequency: self exciting processes

Source: Bursting transition in a linear self-exciting point process, Onaga, T. et al

One logistic regression per Gmail user...

Challenges: statistical, computational,... and more!

This approach faces many challenges:

- ① Computational: how do you fit so many models? (but Spark rocks!)
- Statistical: how do you...
 - perform variable selection?
 - 2 evaluate the fit?
 - 3 deal with outliers?
 - 4 ...
- 3 And finally, how do you sell these approaches to business people (ex-Google)?