Question 1:

a) Convert to linear program problem:

```
Decision variables:
```

x = # of pounds of corn

y = # of pounds of soybean

Objective:

min(0.2*x+0.6*y)

Constraints:

x + y = 90

 $0.001*x + 0.002*y \le 90*1\%$

0.09*x + 0.6*y >= 90*30%

 $0.02*x + 0.06*y \le 90*5\%$

x, y >= 0

b) Find the solution with Excel's Solver.

The optimal solution to our optimization problem is (x,y)=(52.94, 37.06) providing the objective value of 0.2*x+0.6*y=32.82

Question 2:

- a) Convert to linear program problem:
 - a. Decision variables:

x11: # of labors with 1 month of employment recruited in the 1st month x12: # of labors with 2 month of employment recruited in the 1st month x13: # of labors with 3 month of employment recruited in the 1st month x14: # of labors with 4 month of employment recruited in the 1st month x15: # of labors with 5 month of employment recruited in the 1st month x21: # of labors with 1 month of employment recruited in the 2nd month x22: # of labors with 2 month of employment recruited in the 2nd month x23: # of labors with 3 month of employment recruited in the 2nd month x24: # of labors with 4 month of employment recruited in the 3rd month x32: # of labors with 1 month of employment recruited in the 3rd month x32: # of labors with 3 month of employment recruited in the 3rd month x41: # of labors with 1 month of employment recruited in the 4th month x42: # of labors with 2 month of employment recruited in the 4th month x42: # of labors with 1 month of employment recruited in the 5th month

b. Objective:

min (110*(x11+x21+x31+x41+x51)+140*(x12+x22+x32+x42)+170*(x13+x23+x33)+23 0*(x14+x24)+250*x15)

c. Constraints:

x11+x12+x13+x14+x15>=110 x12+x13+x14+x15+x21+x22+x23+x24>=130 x13+x14+x15+x22+x23+x24+x31+x32+x33>=70 x14+x15+x23+x24+x32+x33+x41+x42>=165 x15+x24+x33+x42+x51>=50 x11,x12,x13,x14,x15,x21,x22,x23,x24,x31,x32,x33,x41,x42,x51>=0

b) Find the solution with Excel's Solver.

The optimal solution to our optimization problem is (x14,x15,x23,x41)=(60,50,20,35), where all the other decision variables = 0, providing the objective value of 33550.

Question 3:

Solution: The optimal values of the decision variables are (x1, x2) = (3, 9). The optimal value of the objective function is 210.

Question 4:

- a) Convert to linear program problem:
 - a. Decision variables:

x11: # of units shipped from factory 1 to Customer 1 x12: # of units shipped from factory 1 to Customer 2 x13: # of units shipped from factory 1 to Customer 3 x21: # of units shipped from factory 2 to Customer 1 x22: # of units shipped from factory 2 to Customer 2 x23: # of units shipped from factory 2 to Customer 3

b. Objective:

min (600*x11+800*x12+700*x13+400*x21+900*x22+600*x23)

c. Constraints:

x11+x12+x13<=400 x21+x22+x23<=500 x11+x21=300 x12+x22=200 x13+x23=400 x11,x12,x13,x21,x22,x23>=0

b) Find the solution with Excel's Solver:

Optimal values of the decision variables are (x11,x12,x13,x21,x22,x23)=(0,200,200,300,0,200).

Optimal values of the objective function is 540000.