MAGVIT: Masked Generative Video Transformer

Lijun Yu^{‡†}°, Yong Cheng[†], Kihyuk Sohn[†], José Lezama[†], Han Zhang[†], Huiwen Chang[†], Alexander G. Hauptmann[‡], Ming-Hsuan Yang[†], Yuan Hao[†], Irfan Essa[†][†], and Lu Jiang[†]° [‡]Carnegie Mellon University, [†]Google Research, [†]Georgia Institute of Technology

San Diego Machine Learning Ryan Chesler

Overview

- Many models have gotten really great at generating images and various different modalities
- Is it possible to train good video models in a similar way?
 - Difficult because of compute
 - 24 frames of video = generating 24 images at the same time
 - Need continuity between frames
- Popular techniques like diffusion, GANs, flow-matching, etc.
 - Quality
 - Memory/Compute
 - Speed

MAGVIT: Two-Stage Approach

- Stage 1: 3D vector-quantized autoencoder
 - Train a model that compresses and decompresses videos really well
 - Need a very compressed in the middle that we can use in the second stage
 - Reducing down to discrete tokens makes it possible to re-use all the transformer innovations
- Stage 2: Transformer
 - Train a masked token model to fill in blanks from the previous stage
 - Can use this to extrapolate or interpolate in many creative ways and then decode with stage 1

Stage 1: 3D Vector-Quantized Autoencoder

- Autoencoder model that heavily compresses and decompresses video
- Bottleneck is discrete tokens, not continuous values
- Compresses 8x on height and width and 4x on frames with a vocabulary size of 1024
 - >256x Compression!!!
- Able to compress very heavily because frames are largely related
- JPEG vs MP4

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The output of the encoder z(x) is mapped to the nearest point e_2 . The gradient $\nabla_z L$ (in red) will push the encoder to change its output, which could alter the configuration in the next forward pass.

Stage 1: 3D Vector-Quantized Autoencoder

- Autoencoder model that heavily compresses and decompresses video
- Bottleneck is discrete tokens, not continuous values
- Compresses 8x on height and width and 4x on frames with a vocabulary size of 1024
 - >256x Compression!!!
- Able to compress very heavily because frames are largely related
- JPEG vs MP4

Stage 2: Masked Token Modeling

With compressed representation guess tokens in various different ways

Full-pipeline

Inference

- Second stage decodes in steps similar to diffusion
- Previous approaches have worked autoregressively, much slower

Inference

- Second stage decodes in steps similar to diffusion
- Previous attempts have been autoregressive and much slower

Inference Thro At 128×128 native MAGVIT-B 37 fps on 1x

Performance

Method	K600 FVD↓	BAIR FVD \downarrow		
CogVideo [34]	109.2	_		
CCVS [41]	55.0 ± 1.0	99 ± 2		
Phenaki [63]	36.4 ± 0.2	97		
TrIVD-GAN-FP [43]	25.7 ± 0.7	103		
Transframer [44]	25.4	100		
MaskViT [26]	=	94		
FitVid [4]	-1	94		
MCVD [64]	-	90		
NÜWA [69]	-	87		
RaMViD [35]	16.5	84		
Video Diffusion [33]	$\underline{16.2 \pm 0.3}$	-		
MAGVIT-B-FP (ours)	24.5±0.9	76±0.1 (48±0.1)		
MAGVIT-L-FP (ours)	9.9 \pm 0.3	$\overline{62 \pm 0.1} \ (31 \pm 0.2)$		

Table 2. Frame prediction performance on the BAIR and Kinetics-600 datasets. - marks that the value is unavailable in their paper or incomparable to others. The FVD in parentheses uses a debiased evaluation protocol on BAIR detailed in Appendix B.3. See Appendix C for more comparisons with earlier works.

Decoding Method	Tokenizer	Type	Param.	Seq. Len.↓	# Steps↓	FVD↓
MoslcCIT [12]	2D-VQ	NAR	53M+87M	4096	12	222 (177)
MaskGIT [12]	3D-VQ	NAR	41M + 87M	1024	12	122 (74)
MaskViT [26]	2D-VQ	NAR	53M+189M	4096	18	94*
AR	3D-VQ	AR	41M+87M	1024	1024	91 (56)
MAGVIT (ours)	3D-VQ	NAR	41M+87M	1024	12	76 (48)

Table 6. **Comparison of decoding methods** on BAIR frame prediction benchmark. The number of parameters is broken down as VQ + Transformer. NAR is non-autoregressive and AR is autoregressive. FVD and debiased FVD (in parentheses) are reported. * marks the quoted number from their paper.

Performance

Tokenizer	From	Scratch	ImageNet [16] Initialization					
TORCHIZEI	FVD↓	IS↑	FVD↓ IS↑ FVD↓ IS		IS↑			
MaskGIT [12] 2D-VQ	240	80.9	216	82.6		-		
TATS [21] 3D-VQ	162	80.6		-				
			Average		Central			
MAGVIT 3D-VQ-B (ours)	127	82.1	103	84.8	58	87.0		
MAGVIT 3D-VQ-L (ours)	45	87.1	35	88.3	25	88.9		

Table 7. Comparison of tokenizer architectures and initialization methods on UCF-101 training set reconstruction results. The 2D-VQ compresses by 8×8 spatially and the 3D-VQ compresses by $4\times8\times8$ spatial-temporally.

Method	Task	BAIR-MT8↓	FP	FI	OPC	OPV	OPH	OPD	IPC	IPD	SSV2-MT10↓	CG	CFP
MAGVIT-B-UNC	Single	150.6	74.0	71.4	119.0	46.7	55.9	389.3	145.0	303.2	258.8	107.7	279.0
MAGVIT-B-FP	Single	201.1	47.7	56.2	247.1	118.5	142.7	366.3	357.3	272.7	402.9	1780.0	59.3
MAGVIT-B- <i>MT</i>	Multi	32.8	47.2	36.0	28.1	29.0	27.8	32.1	31.1	31.0	43.4	94.7	59.3
MAGVIT-L- <i>MT</i>	Multi	22.8	31.4	26.4	21.3	21.2	19.5	20.9	21.3	20.3	27.3	79.1	28.5