

Regularizing your neural network

Dropout regularization

Dropout regularization

Implementing dropout ("Inverted dropout")

Illustrice with layer
$$l=3$$
. keep-prob= $\frac{0.8}{2}$
 $\Rightarrow d3$ = np. random. rand (a3. shape To2, a3. shape Ti2) < keep-prob

 $a3 = np$. multiply (a2, d3) # a3 * = d3.

 $\Rightarrow 2 = \frac{1}{2}$ keep-prob < 10 units shat off

 $a3 = \frac{1}{2}$ whits. which is shat off

 $a3 = \frac{1}{2}$ whits. which is shad off

 $a3 = \frac{1}{2}$ which is shad off.

Making predictions at test time

/= keap-pols

Regularizing your neural network

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.

