Grundlagen R

Jan-Philipp Kolb

11 Juni, 2019

R IST EINE OBJEKT-ORIENTIERTE SPRACHE

Vektoren und Zuweisungen

- R ist eine Objekt-orientierte Sprache
- <- ist der Zuweisungsoperator

b <- c(1,2) #erzeugt ein Objekt mit den Zahlen 1 und 2

• Eine Funktion kann auf dieses Objekt angewendet werden:

mean(b) # berechnet den Mittelwert

[1] 1.5

OBJEKTSTRUKTUR

Mit den folgenden Funktionen können wir etwas über die Eigenschaften des Objekts lernen:

```
length(b) # b hat die Länge 2
```

[1] 2

str(b) # b ist ein numerischer Vektor

```
## num [1:2] 1 2
```

FUNKTIONEN IM BASE-PAKET

Funktion	Bedeutung	Beispiel
length()	Länge	length(b)
max()	Maximum	max(b)
min()	Minimum	min(b)
sd()	Standardabweichung	sd(b)
var()	Varianz	var(b)
mean()	Mittelwert	mean(b)
median()	Median	median(b)

Diese Funktionen brauchen nur ein Argument.

FUNKTIONEN MIT MEHR ARGUMENTEN

Andere Funktionen brauchen mehr Argumente:

Argument	Bedeutung	Beispiel
quantile() sample()	90 % Quantile Stichprobe ziehen	quantile(b,.9) sample(b,1)

Beispiel - Funktionen mit einem Argument

```
max(b)
## [1] 2
min(b)
## [1] 1
sd(b)
## [1] 0.7071068
var(b)
## [1] 0.5
```

ARGUMENTE

```
FUNKTIONEN MIT EINEM ARGUMENT
mean(b)
## [1] 1.5
median(b)
## [1] 1.5
FUNKTIONEN MIT MEHR ARGUMENTEN
```

```
quantile(b,.9)
## 90%
## 1.9
sample(b,1)
```

ZUFALLSZAHLEN ZIEHEN

n <- 100

```
x <- runif(n) # x und y sind Vektoren
y <- rnorm(n)
str(x)
## num [1:100] 0.501 0.33 0.99 0.519 0.85 ...
Indizieren von Vektoren
x[1]
## [1] 0.5005903
x[1:4]
## [1] 0.5005903 0.3302994 0.9898086 0.5187669
x[97:100]
```

Grundlagen R

Jan-Philipp Kolb

BUCHSTABEN

```
a <- letters
length(letters)
## [1] 26
a[1:4]
## [1] "a" "b" "c" "d"
VARIABLENTYP CHARACTER
str(a)
## chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "
  • Hier kann man bspw keinen Mittelwert berechnen
mean(a)
```

Warning in mean default(a): argument is not numeric or logica

Aufgabe - Zuweisungen und Funktionen

Erzeugen Sie einen Vektor b mit den Zahlen von 1 bis 5 und berechnen Sie. . .

- den Mittelwert
- die Varianz
- die Standardabweichung
- die quadratische Wurzel aus dem Mittelwert

Kommentierung / Style Guide

Kommentierung

- Man kann mit einem Hashtag Kommentare einfügen.
- Es macht Sinn am Anfang kurz einen Header einzufügen, bspw. mit folgenden Informationen: Autor, Thema, Erstellungsdatum,...
- Kommentarzeichen, die mehrere Zeilen als Kommentare kennzeichnen (siehe Stata) gibt es nicht.

Google Style Guide

• Enthält bspw. Richtlinien zur Benennung von Objekten

DATA.FRAMES

```
ab <- data.frame(a,x=x[1:26])
head(ab)
```

```
## a x
## 1 a 0.5005903
## 2 b 0.3302994
## 3 c 0.9898086
## 4 d 0.5187669
## 5 e 0.8496848
## 6 f 0.5374005
```

str(ab)

```
## 'data.frame': 26 obs. of 2 variables:

## $ a: Factor w/ 26 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8

## $ x: num 0.501 0.33 0.99 0.519 0.85 ...
```

Matrizen

 Eine Matrix ist invertierbar - Allerdings haben alle Variablen gleichen Typ.

```
xy <- rbind(x[1:4],y[1:4])
str(xy)
##
   num [1:2, 1:4] 0.501 0.69 0.33 -0.465 0.99 ...
ху
            [,1] [,2] [,3] [,4]
##
## [1,] 0.5005903 0.3302994 0.9898086 0.5187669
## [2.] 0.6897319 -0.4654253 1.2518449 -0.9214134
t(xy)
            [,1] [,2]
##
## [1,] 0.5005903 0.6897319
## [2.] 0.3302994 -0.4654253
   [3,] 0.9898086 1.2518449
```

Jan-Philipp Kolb Grundlagen R

ÜBERSICHT BEFEHLE

http://cran.r-project.org/doc/manuals/R-intro.html

An Introduction to R

Table of Contents

Preface

- 1 Introduction and preliminaries
 - 1.1 The R environment
 - 1.2 Related software and documentation
 - 1.3 R and statistics
 - 1.4 R and the window system
 - 1.5 Using R interactively
 - 1.6 An introductory session
 - 1.7 Getting help with functions and features
 - 1.8 R commands, case sensitivity, etc.
 - 1.9 Recall and correction of previous commands
 - 1.10 Executing commands from or diverting output to a file
 - 1.11 Data permanency and removing objects