(1) MLE for Bernoulli distribution: Let variable \mathcal{X} follow a Bernoulli distribution with parameter p, i.e., the probability of x is $f(x) = p^x (1-p)^{1-x}$. If the set of independent and identically distributed data (i.i.d.) samples $\mathcal{X} = \{x_1, \dots, x_N\}$ follows the Bernoulli distribution, derive the maximum likelihood estimate (MLE) for p^{MLE} .

(2) MLE for exponential distribution: Let variable \mathcal{X} follow an exponential distribution with parameter λ , i.e., the probability of x is $f(x) = \lambda e^{-\lambda x}$. If the set of independent and identically distributed data (i.i.d.) samples $\mathcal{X} = \{x_1, \dots, x_N\}$ follows the exponential distribution, derive the maximum likelihood estimate (MLE) for λ^{MLE} .