CSCI S-89c Deep Reinforcement Learning

Part I of Assignment 2

Please consider a Markov Decision Process with two states: s^A and s^B .

Assume that the sets of admissible actions in states s^A and s^B are $\mathcal{A}(s^A) = \{a_1^A, a_2^A\}$ and $\mathcal{A}(s^B) = \{a_1^B, a_2^B\}$, respectively. Further, assume that the transition probabilities are given by:

$$\begin{split} p(s',r|s^A,a_1^A) &= \begin{cases} 1, & \text{if } s'=s^A, r=r_1^A,\\ 0, & \text{otherwise,} \end{cases} \\ p(s',r|s^A,a_2^A) &= \begin{cases} 1, & \text{if } s'=s^A, r=r_2^A,\\ 0, & \text{otherwise,} \end{cases} \\ p(s',r|s^B,a_1^B) &= \begin{cases} 1, & \text{if } s'=s^B, r=r_1^B,\\ 0, & \text{otherwise,} \end{cases} \\ p(s',r|s^B,a_2^B) &= \begin{cases} 1, & \text{if } s'=s^B, r=r_2^B,\\ 0, & \text{otherwise,} \end{cases} \end{split}$$

where r_1^A , r_2^A , r_1^B , and r_2^B are known.

If policy $\pi(a|s)$ is to always take action a_1^A in state s^A and action a_1^B in state s^B , find

(a)
$$v_{\pi}(s^A)$$

(b)
$$q_{\pi}(s^A, a_1^A)$$

(c)
$$q_{\pi}(s^A, a_2^A)$$

SOLUTION:

$$\alpha - V_{\pi}(s^{A}) = \frac{r^{A}}{1-r}$$

(a)
$$v_{\pi}(s^{A})$$

(b) $q_{\pi}(s^{A}, a_{1}^{A})$
(c) $q_{\pi}(s^{A}, a_{2}^{A})$
SOLUTION:
 $a - V_{\pi}(s^{A}) = \frac{r^{A}}{1-Y}$
where $r = \frac{r^{A}}{1-Y}$
where $r = \frac{r^{A}}{1-Y}$
where $r = \frac{r^{A}}{1-Y}$
where $r = \frac{r^{A}}{1-Y}$
 $r = \frac{r^{A}}{1-Y}$

$$b-q_{\pi}(S^{A},\alpha^{A})=\mathbb{E}_{\pi}\left[G_{\tau}|S_{\tau}=S,A_{t}=\alpha\right]$$

$$=\gamma^{A}+VV_{\pi}(S^{A})=\left[\gamma^{A}+V^{A}\right]$$

$$(-9\pi(S^A, a_2) = r_1^B + y V_{\pi}(S^A) = [r_1^B + y \frac{r_1^A}{1-r}]$$