# Confidence Intervals for the Mean and Variance

Data Science for Quality Management: Sampling Distributions, Error and Estimation

with Wendy Martin

#### Learning objective:

Calculate interval estimates for the mean, variance and standard deviation

### Calculating Confidence Intervals

- Confidence intervals may be calculated for various statistics
  - Mean
    - Sigma known
    - Sigma unknown
  - Standard Deviation / Variance

## Means (Sigma Known)

 If the standard deviation is known, the following formula may be used

$$\mu_{CI} = \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 For example, assume a sample was taken with the following characteristics

$$n = 150$$
,  $\overline{X} = 20$ ,  $s = 5$   
Confidence Level Desired = 95%

 The 95% confidence interval (CI) for the mean is 19.2 to 20.8

$$\mu_{CI} = 20 \pm 1.96 \frac{5}{\sqrt{150}} = 20 \pm 0.80$$

# Interval Estimate for the Mean (when $\sigma$ is known)

#### In RStudio

- > z.test.onesample
- > z.test.onesample.simple

## Means (Sigma Unknown)

 When the standard deviation is unknown, there is also uncertainty in the estimate of the standard error

 To account for this, instead of using the z distribution, we must use the t distribution

#### The t Distribution

- This distribution is commonly employed with small samples and an unknown population  $\sigma$
- The t distribution is lower at the mean and higher at the tails than the normal distribution



#### The t Distribution

• The shape of the t distribution is dependent upon v, or (df), the degrees of freedom. Degrees of freedom relate to "the number of values which can be freely chosen"

#### The t Distribution

• The t distribution considers the fact there is error associated with the use of s, the sample standard deviation to estimate the population  $(\sigma)$ 

 This error increases the variability of the resulting statistic, the t, relative to a standard normal distribution

## Means (Sigma Unknown)

 If the standard deviation is unknown, the following formula may be used

$$\mu_{CI} = \bar{X} \pm t_{\alpha/2,(n-1)df} \frac{3}{\sqrt{n}}$$

 For example, assume a sample was taken with the following characteristics

> n = 14,  $\overline{X}$  = 15,000, s =500 Confidence Level desired = 90%

- The df are equal to n 1 or 13
- The t value corresponding to this is 1.771

$$\mu_{CI} = 15000 \pm 1.771 \frac{500}{\sqrt{14}} = 15000 \pm 236.66$$

 The 90% (CI) for the mean is 14763.35 to 15236.65

# Interval Estimate for the Mean (when σ is unknown)

#### In RStudio

- > t.test.onesample
- > t.test.onesample.simple

#### **Standard Deviation / Variance**

 The following formula may be used to generate a confidence interval for a standard deviation

$$\sqrt{\frac{s^{2}(n-1)}{\chi_{\alpha/2,(n-1)df}^{2}}} < \sigma < \sqrt{\frac{s^{2}(n-1)}{\chi_{1-\alpha/2,(n-1)df}^{2}}}$$

#### **Standard Deviation / Variance**

 This formula assumes that the population sampled from may be approximated by the normal distribution

 For example, a process is studied for variability and a sample is drawn with the following characteristics

$$s = 10$$
 and  $n = 25$   
Confidence Level desired = 95%

 The 95% CI for the standard deviation is 7.81 to 13.91

$$\sqrt{\frac{10^2(24)}{39.364}} < \sigma < \sqrt{\frac{10^2(24)}{12.401}}$$

## Interval Estimate for the Variance / Standard Deviation

#### In RStudio

- > variance.test.onesample
- > variance.test.onesample.simple

#### Sources

 Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982