

Inteligencia Artificial

Ing. Mauricio Loachamín V, Ph.D.

Representación del Conocimiento

Introducción

La representación de conocimiento (RC) en Inteligencia Artificial (IA) se refiere al proceso de convertir información del mundo real en un formato que los sistemas computacionales puedan comprender, manipular y utilizar para realizar tareas inteligentes.

Se enfoca en cómo representar *conceptos*, *objetos*, *relaciones* y *hechos* de manera formal y eficiente, permitiendo a los sistemas inferir y razonar sobre esa información

Sistemas Basados en Conocimiento

Programas que resuelven problemas usando un determinado dominio de conocimiento

A veces son llamados *sistemas expertos*

Sistemas Basados en Conocimiento

Ventajas

- Fácil acceso y disponibilidad de conocimiento (experto)
- Coste reducido
- Permanencia
- Fiabilidad y rapidez
- Respuestas no subjetivas
- Explicación del razonamiento
- Herramientas de aprendizaje
- Competitivos con expertos humanos

Sistemas Basados en Conocimiento

Componentes principales de un SBC

- ☐ Conocimiento, que necesita ser representado
- Mecanismos que permitan inferir nuevo conocimiento
- Estos componentes deberían constituir módulos independientes

Otros componentes:

- Interfaz de usuario
- Subsistema de explicación del conocimiento inferido
- Subsistema de adquisición de nuevo conocimiento
- Herramientas de aprendizaje

Representación del Conocimiento

Algunos formalismos de representación:

☐ Reglas, redes semánticas, marcos, lógicas de descripción, lógica de primer orden.

Cada formalismo de representación usa un método de inferencia específico:

Razonamiento hacia adelante, razonamiento hacia atrás, (SLD-resolución), herencia, tableros, resolución, . . .

Representación del Conocimiento

Requisitos de la representación del conocimiento:

- Potencia expresiva
- Facilidad de interpretación
- Eficiencia deductiva
- Posibilidad de explicación y justificación

Representación de conocimiento mediante reglas

Reglas

```
SI la luz del semáforo es verde
Y no hay peatones cruzando
ENTONCES continúa la marcha
```

SI x es número natural
Y x es par
ENTONCES x es divisible por 2

SI el reactivo toma color azul

Y la morfología del organismo es alargada

Y el paciente es un posible receptor

ENTONCES existe una evidencia (0.7) de que la infección proviene de pseudomonas.

Hechos

La luz del semáforo es verde El reactivo toma color azul

Representación del Conocimiento

Esencialmente, existen dos mecanismos para inferir nuevo conocimiento a partir de un conjunto de reglas

- Razonamiento hacia atrás (backward chaining)
- Razonamiento hacia adelante (*forward chaining*)

Razonamiento hacia atrás

El razonamiento hacia atrás, o "backward chaining", es un método de inferencia que busca las condiciones necesarias para alcanzar un objetivo.

En lugar de comenzar con hechos conocidos y deducir conclusiones (como en el razonamiento hacia adelante), el razonamiento hacia atrás parte de un objetivo y trabaja hacia atrás para encontrar las condiciones que deben ser verdaderas para que se cumpla ese objetivo.

Razonamiento hacia adelante

El razonamiento hacia adelante, también conocido como encadenamiento hacia adelante, es un método de razonamiento en el que se parte de hechos o condiciones conocidas y se utiliza una serie de reglas para derivar conclusiones o alcanzar metas.

Es opuesto al razonamiento hacia atrás, que comienza con un objetivo y trabaja hacia atrás para encontrar los medios para lograrlo.

Representación con Frames

La representación del conocimiento con frames (marcos) es una técnica en inteligencia artificial utilizada para modelar conocimiento estructurado de manera jerárquica y contextualizada. Fue propuesta por Marvin Minsky en los años 70 como una forma de representar el conocimiento común que tienen los humanos sobre el mundo.

¿Qué es un frame?

Un **frame** es una estructura de datos que representa un **concepto o situación**, como un objeto, una acción, o una escena, con un conjunto de **atributos (slots)** y sus posibles valores (llamados *fillers*).

Cada *frame* puede incluir:

- Propiedades o características del concepto.
- Relaciones con otros frames.
- Reglas o procedimientos (como *if-needed* o *if-added*).

Estructura de un frame

```
Frame: NombreDelFrame

- Slot1: Valor1

- Slot2: Valor2

- Slot3:

- If-needed: procedimiento para obtener el valor

- If-added: procedimiento a ejecutar si se agrega un valor
```

Ejemplo simple: frame para representar un "Perro"

```
Frame: Perro

- Especie: Canino

- Nombre: [variable]

- Color: [variable]

- Tamaño: Mediano

- Comportamiento:

- Ladrar()

- Correr()

- Dueño: [frame Persona]
```

Aquí:

- "Perro" es el nombre del frame.
- "Nombre", "Color", "Tamaño" son slots.
- "Ladrar()", "Correr()" pueden ser acciones asociadas.
- "Dueño" es un slot que se enlaza con otro frame (composición jerárquica).

Herencia en Frames

Los **frames** pueden estar organizados en **jerarquías**, como en la programación orientada a objetos.

```
Ejemplo:
```

```
Frame: Animal

- Tiene_células: Sí

- Se_mueve: Sí

Frame: Perro (hereda de Animal)

- Ladrar: Sí

- Dueño: Persona
```

¿Dónde se usan los frames?

- ☐ Sistemas expertos
- ☐ Modelado del conocimiento en agentes inteligentes
- ☐ Representación semántica en procesamiento de lenguaje natural
- ☐ Ontologías (por ejemplo, OWL en Web Semántica)
- ☐ Planificación y razonamiento basado en casos

Ventajas

- Claridad en la estructura del conocimiento.
- Modularidad y reutilización.
- ☐ Fácil de relacionar con conceptos del mundo real.
- ☐ Soporte para herencia y reglas asociadas.

Desventajas

- ☐ Poca flexibilidad ante conocimientos altamente dinámicos o inciertos.
- ☐ Puede ser costoso en memoria si no se organiza eficientemente.
- Menos potente que otras técnicas probabilísticas para tareas de IA moderna

Resumen

Elemento	Descripción
Frame	Estructura que representa un concepto
Slot	Atributo del frame
Filler	Valor del atributo
If-needed	Procedimiento para obtener un valor si no está presente
If-added	Acción que se ejecuta al agregar un valor al slot
Herencia	Los frames pueden heredar propiedades de otros frames

Preguntas