Conditional GAN

Haenara SHIN 신해나라

- Summary
- 레이블을 사용해서 생성자/판별자 훈련 생성할 데이터의 종류를(특징) 결정할 수 있음. 원하는 데이터를 생성함.

Summary of cGAN

- "Conditional Generative Adversarial Nets" [1] Mehdi Mirza and Simon Osindero, 2014, https://arxiv.org/abs/1411.1784
 - 한 줄 요약: 생성자와 판별자가 훈련하는 동안 추가 정보(Condition)를 사용해 조건이 붙는 생성적 적대 신경망.

→ 클래스 레이블, 일련의 태그 또는 글로 쓰인 설명…

- GAN 과 학습방법 자체는 다를 것 없음. D 학습 후 G 학습시킴.대신 c가 더해질 뿐.
- CGAN을 훈련하는 동안,
 - 생성자(G): 훈련 데이터셋에 있는 각 레이블에 대해 '실제 같은 샘플'을 생성하는 법을 배움.
 - 판별자(D): '진짜 샘플-레이블' 쌍과 '가짜 샘플-레이블(c)' 쌍을 구별하는 법을 배움.
 - → <u>판별자(D): '진짜 샘플 '에 '올바른 레이블(c)'을 할당하는 것을 학습함.</u>
 - → 판별자(D): 각 클래스를 구분하는 것을 학습하지 않음.

Expectation

→ 판별자(D): '진짜 샘플-레이블' 쌍만 받아들이고, '샘플-레이블' 쌍이 맞지 않거나 가짜 샘플의 쌍은 거부 (ex) MNIST 에서 (3, 4) x)

- GAN과 CGAN objective function
 - $\blacksquare \quad \mathsf{GAN} \colon \min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim P_data(x)}[log D(x)] + \mathbb{E}_{x \sim P_Z(z)} \left[log \left(1 D(G(z)) \right) \right]$
 - CGAN: $min_G max_D V(D, G) = \mathbb{E}_{x \sim P_data(x)}[log D(x|c)] + \mathbb{E}_{x \sim P_Z(z)} \left[log \left(1 D \left(G(z|c) \right) \right) \right]$

D(real)의 확률

[2] https://github.com/hwalsuklee/tensorflow-generative-model-collections

N(0,1)에서

샘플링된 z

생성자(Generator, G) & 판별자(Discriminator, D) in CGAN

- <u>생성자(G)</u>는 랜덤한 잡음 벡터(z, 혹은 latent variable 내재 변수, 잠재 변수..)와 조건 레이블(c)를 사용해서 가짜 샘플 G(z,c) = x*|c 를 합성함.
 - 가짜 샘플 x*|c 의 목표는 레이블(c)이 주어졌을 때 진짜 샘플에 가능한 한 가깝게 보이도록 하는 것.
- <mark>판별자(D)</mark>는 진짜 샘플과 레이블(x,c)를 받고, 가짜 샘플과 이 샘플을 생성하는데 사용한 레이블 (x*lc, c)를 받음.
 - 진짜 샘플-레이블 쌍으로 부터 판별자는 진짜 데이터를 구별하고 그에 맞는 쌍을 판별하는 법을 배움.
 - 생성자가 만든 샘플에서는 가짜 이미지-레이블 쌍을 판별하는 법을 배움.
 - (1) 입력이 진짜이고, (2) 올바른 쌍인지를 나타내는 하나의 확률(sigmoid 활성화 함수로 계산)을 출력함.

	생성자(G)	판별자(D)
입력	랜덤 잡음 벡터와 레이블 (z, c)	(1) 훈련 데이터셋의 샘플과 레이블 (x, c)(2) 레이블에 맞게 생성자가 만든 가짜 샘플과 레이블 (x* c, c)
출력	레이블에 가능한 한 맞도록 생 성된 가짜 샘플 G(z,c) = x* c	입력 샘플이 진짜 & 샘플-레이블 쌍이 맞는지 나 타내는 하나의 <u>확률</u>
목표	레이블에 맞는 진짜처럼 보이는 가짜 샘플 생성	생성자가 만든 가짜 샘플-레이블 쌍과 훈련 데이 터셋의 진짜 샘플-레이블 쌍을 구별

Code link

목적함수 (Objective function, V)

■ D의 목적함수는 G를 고정한 채로 진짜 데이터 m개와 가짜 데이터 m개를 D에 넣고, G에 대한 V를 계산한 뒤 gradient를 구하고 V를 높여 D를 최종적으로 업데이트함.

$$max_D V(D) = rac{1}{m} \sum_{i=1}^m log D(x^i) + rac{1}{m} \sum_{i=1}^m log D(1 - D(G(z^i)))$$

■ G의 목적함수는 D를 고정한 채로 가짜 데이터 m개를 생성해 V를 계산한 뒤, G에 대한 V의 gradient를 계산하고 V를 낮춰 G를 업데이트 함.

$$min_GV(G) = \frac{1}{m} \sum_{i=1}^{m} log(D(G(z^j)))$$

■ 진짜 데이터 분포와 G가 생성한 가짜 데이터 분포 사이의 차이를 줄이는 것 == (목적 함수 최적화) == KLD 최소화