TD2

Félix Yvonnet

21 septembre 2023

Ex 1 : continuité de quelques distributions

- 1. On a $\int_X f d\mu = \int_X \frac{f}{g} g d\mu = \int_X |\frac{f}{g}| g d\mu \le \int_X \|\frac{f}{g}\|_{\infty} g d\mu \le \|\frac{f}{g}\|_{\infty} \int_X g d\mu$. CQFD.
- 2. On va choisir les bonnes fonctions afin d'appliquer le lemme d'avant. Soit $\alpha > 1$ et (x_n) une suite positive. $X = \mathbb{N}$ et μ la mesure de comptage. $f: \begin{cases} \mathbb{N} & \to \mathbb{R}_+ \\ n & \mapsto x_n \end{cases}$
- 3. Soit $f: \mathbb{R}^d \to \mathbb{R}$ mesurable et $g: \begin{cases} \mathbb{R}^d \to \mathbb{R} \\ x \mapsto \frac{1}{(1+\|x\|^2)^{\frac{\alpha}{2}}} \end{cases}$ mesurable. Intégrabilité de $(1+\|x\|^2)^{-\frac{\alpha}{2}}$, $\alpha > d$ sur \mathbb{R}^d .
 - Par Fubini : Montrer que $(1+|x|^2)^{-\alpha/2} \leq \prod_{n=1}^d (1+|x_i|^2)^{-\frac{d}{2d}}$. L'inégalité est équivalente à $\prod_{i=1}^d (1+|x_i|^2) \leq (1+|x|^2)^d$. Ce qui est vrai car $\forall i \in [\![1;d]\!], \ x_i^2 \leq \|x\|^2 = x_1^2 + \dots + x_d^2$. On a alors $\int_{\mathbb{R}^d} (1+\|x\|^2)^{-\frac{\alpha}{2d}} d\lambda_1(x_1) \cdots d\lambda_d(x_d) \stackrel{Fub}{\leq} \prod_{i=1}^d \int_{\mathbb{R}} (1+|x_i|^2)^{\frac{\alpha}{2d}} dx_i < 0$
 - $\infty \sim |x_i|$ donc intégrable. Par le passage en polaire : So $f:\mathbb{R}^d \to \mathbb{R}$ mesurable alors on a $\int_{\mathbb{R}^d} f(x) dx = \int_{r=0}^\infty \int_{\theta \in S^{d-1}} f(r\theta) d\theta r^{d-1} dr$. Avec le S la sphère unité. Alors $\int_{\mathbb{R}^d} \frac{1}{(1+|x|^2)^{\frac{\alpha}{2}}} dx = \int_0^\infty \int_{S^{d-1}} \frac{r^{\alpha-1}}{(1+|x|^2)^{\frac{\alpha}{2}}} d\theta dr = \lambda(S^{d-1}) \int_0^\infty \frac{r^{d-1}}{(1+|x|^2)^{\alpha/2}}$ intégrable
- 4. φ linéaire clair (NB \sum cv vers sup f compact $\to \sum$ finie). Soit $f \in D(\mathbb{R})$, $|\varphi(f)| \leq \sum_{n \in \mathbb{N}} |f^{(n)}(n)| \leq C_2 \sup_{n \in \mathbb{N}} (1+n)^2 |f^{(n)}(n)| \leq C_2 \sup_{x \in \mathbb{R}} \sup_{n \leq |x| (=\eta(x))} (1+|x|)^2 |f^{(n)}(x)| = C_2 |f|_{w,\eta}.$
- 5. $\varphi(f) = \int_{\mathbb{R}} f(t)g(t)dt = [f(t\int_0^t g(x)dx]_{-\infty}^{\infty} \int_{\mathbb{R}} f'\int_0^{\infty} g(x)dx$. Posons $g: t \mapsto \int_0^t g(x)dx$ on a: $\varphi(f) = \int_{\mathbb{R}} f'(t)G(t)dt$ donc $|\varphi(f)| \leq \int_{\mathbb{R}} |f'(t)G(t)|dt$ puis par la question $3 |\varphi(f)|C_{\alpha} \sup_{x \in \mathbb{R}} \underbrace{(1+|x|^2)^{\alpha/2}|G(x)|}_{w(x)} |f'(x)|$. w est continue car $g \in L^1(\mathbb{R})$ et on prend $\eta = 1$.

Ex2: prolongement de Tietze, preuve constructive

1. f est lipschitzienne $\Leftrightarrow \exists C, \ \forall x, y \in X, \ |f(x) - f(y)| \le Cd(x, y)$. $\alpha \in]0,1[,f]$ est $\alpha - Holder \Leftrightarrow \exists C, \ \forall x, y \in X, \ |f(x) - f(y)| \le \underbrace{Cd(x,y)^2}_{x(x) = x^2}$

Tout d'abord remarquons que w est concave (oui, dérivée seconde neg) Soir $s,t\in\mathbb{R}_+$ avec $s\geq t.$ w concave donc $w(s+t)\leq w'(s)(s+t-s)+w(s)$ donc $w(s+t)\leq\underbrace{\alpha}_{<1}\underbrace{s^{\alpha-1}}_{\leq t^{\alpha-1}}t+s^{\alpha}\leq t^{\alpha}+s^{\alpha}.$

- 2. Justifier que w est continue. On sait que croissant, s
s aditif et tend vers 0 en 0^+ . Soit s>0 on veut m
q $w(s+t)\xrightarrow[t\to+\infty]{}w(s)$ mais $w(s)\le w(s+t)\le <(s)+w(t)\to w(s)+w(0)=w(s)$ et on fait de même pour 0^- avec $w(s)-w(t)\le w(s-t)\le w(s)$.
- 3. On sait que $|f(x) f(y)| \le w(d(x, y))$ donc soit $x \in A$, on a d'une part $F(x) \le f(x)$ car on peut prendre y = x et c'est bon et $F(x) \ge f(x)$ car $F(x) f(x) = \inf_{y \in A} \underbrace{f(y) f(x) + w(d(x, y))}_{>0}$.
- 4. Spot $x_0, x_1 \in X$ $F(x_1) \le \inf f(y) + w(d(x_1, x_0) + d(x_0, y)) \le F(x_0) + w(d(x_1, x_0))$. Donc (par sym) $|F(x_1) F(x_0)| \le w(d(x_1, x_0))$.
- 5. Soit $\alpha, \beta \in \mathbb{R}$ Alors $\varphi : t \in \mathbb{R} \mapsto \max(\alpha, \min(\beta, t))$ est 1-Lipschitzienne. Donc $|\varphi \circ F(x) \varphi \circ F(y)| \leq |F(x) F(y)| \leq w(d(x, y))$.
- 6. $\varphi \circ F$ convient avec $\alpha = \inf_A f, \beta = \sup_A f$ et les conventions usuelles si $\alpha = -\infty$ et / ou $\beta = +\infty$.
- 7. $\forall s \geq 0, \ w_f(s) := \sup_{d(x,y) \leq s} |f(x) f(y)|$ croissant, borné et tend vers 0 en 0 car f c0 sur un compact donc bornée et eps + croissance => tend vers 0
- 8. jsp lis les notes de Corentin : "jsp lis les notes de Julien" et procède par récurrence sur les notes. Ce procédé termine car il y a un nombre fini d'élèves à l'ENS.

9.

Ex4: Preuve constructive du th de Banach-Steinhauss

1. Soit $T: E \to F$ et $x, \xi \in E$ alors $T(x+\xi) + T(x-\xi) = 2Tx$ donc $||T(x+\xi) + T(x-\xi)|| = 2||Tx|| \le ||T(x+\xi)|| + ||T(x-\xi)||$ and the rest...is History!