

Prof. Dr. Florian Künzner

CA 2 – Data representation

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Goal

Computer Science

Goal

- Important basics
- ASCII
- Unicode and UTF
- Data types: Numbers

Important basics

0(1

Which numeral systems do you know?

Computer Science

Important basics

Numeral systems

- DEC: 0, 1, ..., 9;
- BIN: 0, 1;
- HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x128

Conversion between:

- HEX <-> DEC
- BIN <-> HEX
- DEC <-> BIN

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: O. 1:

HEX: 0 1 9 A B F:

e.g.: 291

e.g.: 100100011

e.g.: 0x123

Conversion between:

- HEX <-> DEC
- BIN <-> HEX
- DEC <-> BIN

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

e.g.: 291

e.g.: 100100011

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123 △

Conversion between:

HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

e.g.: 291

e.g.: 100100011

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

_ ----- 0, -, -, -, -, -, -, -, -,

e.g.: 291

e.g.: 100100011

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

BIN <-> HEX

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

BTN <-> HEX

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

■ BIN <-> HEX

Important basics - hints

Computer Science

Important basics - short exercise 1/2

Convert HEX: 0xCOFE to BIN.

1,00 100001 nnn 1 nno

Important basics - short exercise 2/2

Convert BIN: 1100 0000 1101 1110 to HEX.

Binary system

Why is the binary (dual) system used in computer science?

Binary system for digits and characters

- lacksquare Technically easy to realise (0/1)
- Well understood theoretical basis
 - Boolean algebra
 - Formal logic

Computer Science

Binary system

Why is the binary (dual) system used in computer science?

Binary system for digits and characters

- \blacksquare Technically easy to realise (0/1)
- Well understood theoretical basis
 - Boolean algebra
 - Formal logic

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011
2 6: -> 00110
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010

10 ------

11 X00101 => 5
```

Computer Science

Codes

ASCII
Unicode (177 > 8/16/32
Latin 1 1 150 8 859-1
Wrdown Code Pox 1252

Which codes for characters do you know?

Computer Science

ASCII (American Standard Code for Information Interchange)

_					ı –					ı_									
<u>Dec</u>	<u>H</u>	x Oct	Cha	,	Dec	HX	Oct	Html	Chr	Dec	НХ	Oct	Html	Chr	Dec	НХ	Oct	Html Ch	<u>ır </u>
0	0	000	NUL	(null)	32	20	040	& # 32;	Space	64	40	100	<u>@#64;</u>	0	96	60	140	a#96;	1
1	1	001	SOH	(start of heading)	33	21	041	4#33;	1	65	41	101	%#65;	A	97	61	141	a#97;	a
2	2	002	STX	(start of text)	34	22	042	۵#3 4 ;	**	66	42	102	4#66 ;	В	98	62	142	6#98;	b
3				(end of text)				4#35;					a#67;					@#99;	
4	4	004	EOT	(end of transmission)	I			4#36;		I			4#68;					d	
5	5	005	ENQ	(enquiry)				6#37;					<u>4</u> #69;					e	
6				(acknowledge)				6#38;	6				a#70;					f	
7	7	007	BEL	(bell)	ı			6#39;	1				a#71;					a#103;	
8	_	010		(backspace)	ı			a#40;					@#72;					a#104;	
9	9	011	TAB	(horizontal tab)				a#41;					a#73;					i	
10		012		(NL line feed, new line)	ı			&# 4 2;					@#7 4 ;					j	
11	В	013	VT	(vertical tab)	ı			a#43;	+				a#75;		ı			k	
12		014		(NP form feed, new page)				,	F				a#76;					l	
13		015		(carriage return)				&#45;</td><td></td><td>77</td><td></td><td></td><td>6#77;</td><td></td><td>ı</td><td></td><td></td><td>m</td><td></td></tr><tr><td>14</td><td></td><td>016</td><td></td><td>(shift out)</td><td></td><td></td><td></td><td>a#46;</td><td></td><td></td><td>_</td><td></td><td>a#78;</td><td></td><td></td><td></td><td></td><td>n</td><td></td></tr><tr><td>15</td><td></td><td>017</td><td></td><td>(shift in)</td><td></td><td></td><td></td><td>a#47;</td><td></td><td>l · -</td><td></td><td></td><td>6#79;</td><td></td><td></td><td></td><td></td><td>o</td><td></td></tr><tr><td>16</td><td>10</td><td>020</td><td>DLE</td><td>(data link escape)</td><td></td><td></td><td></td><td>6#48;</td><td></td><td>ı</td><td></td><td></td><td>4#80;</td><td></td><td></td><td></td><td></td><td>@#112;</td><td>_</td></tr><tr><td>17</td><td>11</td><td>021</td><td>DC1</td><td>(device control 1)</td><td></td><td></td><td></td><td>a#49;</td><td></td><td>I</td><td></td><td></td><td>4#81;</td><td></td><td> </td><td></td><td></td><td>q</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 2)</td><td></td><td></td><td></td><td>2</td><td></td><td>ı</td><td></td><td></td><td>6#82;</td><td></td><td></td><td></td><td></td><td>a#114;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 3)</td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td>4#83;</td><td></td><td> </td><td></td><td></td><td>s</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 4)</td><td></td><td></td><td></td><td>4</td><td></td><td>ı</td><td></td><td></td><td>a#84;</td><td></td><td></td><td></td><td></td><td>t</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(negative acknowledge)</td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>4#85;</td><td>_</td><td>1</td><td></td><td></td><td>@#117;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(synchronous idle)</td><td>ı</td><td></td><td></td><td>a#54;</td><td></td><td>ı</td><td></td><td></td><td>4#86;</td><td></td><td>ı</td><td></td><td></td><td>4#118;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(end of trans. block)</td><td></td><td></td><td></td><td>4#55;</td><td></td><td>I</td><td></td><td></td><td>6#87;</td><td></td><td> </td><td></td><td></td><td>w</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(cancel)</td><td>ı</td><td></td><td></td><td>8</td><td></td><td>ı</td><td></td><td></td><td>6#88;</td><td></td><td></td><td></td><td></td><td>x</td><td></td></tr><tr><td></td><td></td><td></td><td>EM</td><td>(end of medium)</td><td>I</td><td></td><td></td><td>9</td><td></td><td>I</td><td></td><td></td><td>6#89;</td><td></td><td>ı</td><td></td><td></td><td>y</td><td></td></tr><tr><td></td><td></td><td>032</td><td></td><td>(substitute)</td><td></td><td></td><td></td><td>:</td><td></td><td>ı</td><td></td><td></td><td>6#90;</td><td></td><td>ı</td><td></td><td></td><td>z</td><td></td></tr><tr><td></td><td></td><td>033</td><td></td><td>(escape)</td><td>I</td><td></td><td></td><td>;</td><td></td><td>I</td><td></td><td></td><td>6#91;</td><td>-</td><td>ı</td><td></td><td></td><td>@#123;</td><td></td></tr><tr><td></td><td></td><td>034</td><td></td><td>(file separator)</td><td>ı</td><td></td><td></td><td>4#60;</td><td></td><td>ı</td><td></td><td></td><td>6#92;</td><td></td><td></td><td></td><td></td><td>a#124;</td><td></td></tr><tr><td></td><td></td><td>035</td><td></td><td>(group separator)</td><td>I</td><td></td><td></td><td>=</td><td></td><td> </td><td></td><td></td><td>6#93;</td><td>-</td><td>ı</td><td></td><td></td><td>}</td><td></td></tr><tr><td></td><td></td><td>036</td><td></td><td>(record separator)</td><td></td><td></td><td></td><td>></td><td></td><td>ı</td><td></td><td></td><td>a#94;</td><td></td><td></td><td></td><td></td><td>4#126;</td><td></td></tr><tr><td></td><td></td><td>037</td><td></td><td>(unit separator)</td><td></td><td></td><td>077</td><td>? _</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>6#95;</td><td>_</td><td>127</td><td>7F</td><td>177</td><td></td><td>DEI</td></tr><tr><td></td><td></td><td></td><td></td><td>0000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>											

Computer Science

Extended ASCII codes

128	Ç	144	É	160	á	176		192	L	208	Ш	224	α	240	=
129	ü	145	æ	161	í	177	•••••	193	\perp	209	₹	225	В	241	±
130	é	146	Æ	162	ó	178		194	т	210	π	226	Γ	242	≥
131	â	147	ô	163	ú	179		195	F	211	L	227	π	243	≤
132	ä	148	ö	164	ñ	180	4	196	- (212	L	228	Σ	244	ſ
133	à	149	ò	165	Ñ	181	4	197	+	213	F	229	σ	245	J
134	å	150	û	166	•	182	1	198	F	214	Г	230	μ	246	÷
135	ç	151	ù	167	۰	183	П	199	╟	215	#	231	τ	247	æ
136	ê	152	ÿ	168	ż	184	7	200	L	216	+	232	Φ	248	۰
137	ë	153	Ö	169	Ė	185	4	201	F	217	J	233	Θ	249	
138	è	154	Ü	170	4	186		202	<u>JL</u>	218	г	234	Ω	250	
139	ï	155	¢	171	1/2	187	a	203	ī	219		235	δ	251	V
140	î	156	£	172	1/4	188	ī	204	ŀ	220		236	00	252	n
141	ì	157	¥	173	i	189	Ш	205	=	221		237	ф	253	2
142	Ä	158	R	174	«	190	4	206	#	222		238	ε	254	
143	Å	159	f	175	»	191	٦	207	±	223	•	239	\Diamond	255	

Source: www.LookupTables.com

[source: asciitable.com]

ASCII

ASCII - American Standard Code for Information Interchange

Any problems with ASCII?

Computer Science

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Computer Science

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

- International standard (ISO 10646)
- For every character one code

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Computer Science

Unicode

Character range:

first code U+00 0000

last code U+10 FFFF

Character sets Name Unit

Calculation #chars first

ast

Computer Science

Unicode

Character range:

first code U+00 0000

last code U+10 FFFF

Character sets
Name Unit

Calculation #chars first

ast

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets Name Unit

Calculation #chars first

last

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets Name Unit

UCS-2 16 Bit

 2^{16}

Calculation #chars first

65536

U+0000

last

U+FFFF

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Charact	er	sets
NI		14

 Name
 Unit
 Calculation
 #chars
 first
 last

 UCS-2
 16 Bit
 2^{16} 65536
 U+0000
 U+FFFF

 UCS-4
 17 Planes
 $17 * 2^{16}$ 1114112
 U+00
 0000
 U+10
 FFFF

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets

Name	Unit	Calculation	#chars	first	last
UCS-2	16 Bit	2^{16}	65536	U+0000	U+FFFF
UCS-4	17 Planes	$17 * 2^{16}$	1114112	U+00 0000	U+10 FFFF

Examples:

Unicode Full number Character

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets

 Name
 Unit
 Calculation
 #chars
 first
 last

 UCS-2
 16 Bit
 2^{16} 65536
 U+0000
 U+FFFF

 UCS-4
 17 Planes
 17×2^{16} 1114112
 U+00
 0000
 U+10
 FFFF

Examples:

Unicode Full number Character

U+0041 00 0041 A

Computer Science

Unicode

Character range:

first code U+00 0000

last code U+10 FFFF

Character sets

Name Unit Calculation #chars first last

UCS-2 16 Bit 2¹⁶ 65536 U+0000 U+FFFF

UCS-4 17 Planes $17 * 2^{16}$ 1114112 U+00 0000 U+10 FFFF

Examples:

Unicode Full number Character

U+0041 00 0041

U+1F600 01 F600

Computer Science

Unicode 14.0 - Planes

Plane 0 00 0000-00 FFFF BMP Basic Multilungual Plane	Plane 1 01 0000-01 FFFF SMP Supplementary Multilungual Plane	Plane 2 02 0000-02 FFFF SIP Supplementary Ideographic Plane	Plane 3 03 0000-03 FFFF unassigned	Plane 4 04 0000-04 FFFF unassigned
Plane 5 05 0000-05 FFFF unassigned	Plane 6 06 0000-06 FFFF unassigned	Plane 7 07 0000-07 FFFF unassigned	Plane 8 08 0000-08 FFFF unassigned	Plane 9 09 0000-09 FFFF unassigned
Plane 10 OA 0000-0A FFFF unassigned	Plane 11 0B 0000-0B FFFF unassigned	Plane 12 oc 0000-oc FFFF unassigned	Plane 13 OD 0000-0D FFFF unassigned	Plane 14 OE 0000-0E FFFF SSP Supplementary Special-purpose Plane
Plane 15	Plane 16			

CAMPUS Rosenheim Computer Science

Unicode

Enter unicode characters

OS Program

Keyboard shortcut

More shortcuts: wikipedia.org

*must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS Program

Linux Terminal, xed, LibreOffice

Keyboard shortcut

CTRL+SHIFT+U + HEX Number

More shortcuts: wikipedia.org

^{*}must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS Program

Linux Terminal, xed, LibreOffice CTRL+SHIFT+U + HEX Number

Windows Microsoft Word, Excel, WordPad HEX Number + ALT+C

More shortcuts: wikipedia.org

^{*}must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS	Program	Keyboard shortcut
Linux	Terminal, xed, LibreOffice	CTRL+SHIFT+U + HEX Number
Windows	Microsoft Word, Excel, WordPad	HEX Number + ALT+C
macOS*	Console, Text	ALT + HEX Number

More shortcuts: wikipedia.org

^{*}must be enabled as input source

Computer Science

Unicode usage

CAMPUS Rosenheim Computer Science

Technische Hochschule Rosenheim Technical University of Applied Sciences

Unicode

Character set vs. character encoding?

Unicode vs UTF

CAMPUS Rosenheim Computer Science

Technische Hochschule Rosenheim Technical University of Applied Sciences

Unicode

Character set vs. character encoding?

Unicode vs UTF

Computer Science

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

Choice depends on

- Storage space
- Source code compatibility
- Interoperability with other systems
- Runtime for encoding/decoding

Computer Science

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

CAMPUS Rosenheim Computer Science

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

Choice depends on

- Storage space
- Source code compatibility
- Interoperability with other systems
- Runtime for encoding/decoding

Computer Science

UTF - Unicode Transformation Format

Overview of UTF encodings

Encoding Bits Length

Common use

UTF-8

8-bit Variable length: 1 to 4 bytes Internet, Linux

UTF-16

16-bit Variable length: 2 or 4 bytes Qt, Java, Tcl

UTF-32

32-bit Fixed length: 4 bytes

Goal Important basics Binary system Codes Numbers Summary

CAMPUS Rosenheim

Computer Science

UTF-8

UTF-8 length

	Bits for code point		Unicodo	e rai	nge	Comment
1	7		0 -	00	007F	Compatible with ASCII
2	11		80 -	00	O7FF	
3	16		800 -	00	FFFF	
4	21	1	0000 -	10	FFFF	

UTF-8 encoding details

Computer Science

UTF-8

UTF-8 length

Number	Bits for				
of bytes	code point		Unicode ra	nge	Comment
1	7		0 - 00	007F	Compatible with ASCII
2	11		80 - 00	O7FF	
3	16		800 - 00	FFFF	
4	2.1	1	0000 - 10	FFFF	

UTF-8 encoding details

	Unicode range			Byte 1	Byte 2	Byte 3	Byte 4
	0 -	00	007F	Oxxxxxxx			
	80 -	00	O7FF	110xxxxx	10xxxxxx		
	800 -	00	FFFF	1110xxxx	10xxxxxx	10xxxxxx	
1	0000 -	10	FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Computer Science

Slide 24 of 44

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

- e ü in UTF-8:
- 9 11000011 10111100
- 10 C 3 B C -> 0xC3BC

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

UTF-16

UTF-16 length

Number Bits for of bytes code point Unicode range Comment

2 16 0 - 00 FFFF
4 20 01 0000 - 10 FFFF subtraction required: U+XXXXXX - 0x10000

UTF-16 encoding details

code range byte 1 byte 2 byte 5 byte

0 - 00 FFFF xxxxxxxx xxxxxxx

High surrogate Low surrogate

01 0000 - 10 FFFF 110110xx xxxxxxxx 110111xx xxxxxxxx

Computer Science

UTF-16

UTF-16 length

Number Bits for of bytes code point Unicode range Comment

2 16 0 - 00 FFFF
4 20 01 0000 - 10 FFFF subtraction required:
U+XXXXXXX - 0x10000

UTF-16 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

0 - 00 FFFF xxxxxxxxx xxxxxxxx

High surrogate Low surrogate

01 0000 - 10 FFFF 110110xx xxxxxxxx 110111xx xxxxxxxx

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

- 1 4 byte variant and therefore correction required:
- $_{2}$ 0x1F600 0x10000 = 0xF600

- 5 1111 0110 0000 0
- 7 In UTF-16:
- 8 High surrogate Low surrogate
- 9 11011000 00111101 11011110 0000000

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

```
1 4 byte variant and therefore correction required: 0x1F600 - 0x10000 = 0xF600
```

4 F 6 0 0 5 1111 0110 0000 0000

```
In UTF-16:

High surrogate Low surrogate

11011000 00111101 11011110 00000000

D B 3 D D E 0 0
```

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

Computer Science

UTF-32

UTF-32 length

Number Bits for

of bytes code point Unicode range Comment

4 21 00 0000 - 10 FFFF directly representable

UTF-32 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

0 - 10 FFFF 00000000 000xxxxx xxxxxxxx xxxxxxx

Computer Science

UTF-32

UTF-32 length

Number Bits for

of bytes code point Unicode range Comment

4 21 00 0000 - 10 FFFF directly representable

UTF-32 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

```
1 Unly the 4 byte variant exists
2 0x1F600
3
4 1 F 6 0 0
5 0001 1111 0110 0000 0000
6
7 In UTF-32:
8 0000000 00000001 11110110 00000000
9 0 0 0 1 F 6 0 0
```

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

- only the 4 byte variant exists
- 2 0x1F600

7 In IITF-39

8 00000000 00000001 11110110 00000000

Computer Science

UTF-32 - example

Encode the "(U+1F600) into UTF-32!

- only the 4 byte variant exists
- 2 0x1F600
- 4 1 F 6 0
- 5 0001 1111 0110 0000 0000

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

```
1 Only the 4 byte variant exists
```

2 0x1F600

4 1 F 6 0 0

5 0001 1111 0110 0000 0000

7 In UTF-32:

8 0000000 00000001 11110110 00000000

0 0 0 1 F 6 0 0 -> 0x0001F600

CAMPUS Rosenheim **Computer Science**

Numbers

Type

Integer

Floating point – binary float, double, ...

Fixed point – binary Fixed point – decimal Common data type

unsigned int, int, ...

Floating point – decimal decimal32, decimal64, ...

Often not well integrated Mostly in software Often not well integrated Mostly in software

Realisation

Hardware: ALU

Hardware: FPU Mostly in software

Computer Science

Integer (signed)

Example: short int

Positive number: The weight for position i is 2^i Negative number: The sign is interpreted as -2^N Example short int: Minimum: -32768; Maximum: 32768

limits: http://www.cplusplus.com/reference/climits

Computer Science

Integer (signed)

Example: short int

Positive number: The weight for position i is 2^{i}

Negative number: The sign is interpreted as -2^N

Example short int: Minimum: -32768; Maximum: 32767

limits: http://www.cplusplus.com/reference/climits

CAMPUS RosenheimComputer Science

Integers

Any problems with integers?

Computer Science

Fixed width integer types (since C99)

Available types:

```
Bits signed unsigned

8 int8_t uint8_t

16 int16_t uint16_t

32 int32_t uint32_t

64 int64_t uint64_t

Example:

1 #include <stdint.h>

2 ...

3 int16_t val 16 = 5;
```

More details: https://en.cppreference.com/w/cpp/types/integer

Computer Science

Floating point – binary

Usually scientific numbers with mantissa and exponent.

Requires hardware support (FPU - floating point unit).

Format: $x = m \cdot B^e$ (m = mantissa, B = basis, and e = exponent)

Examples:

C: float x;

Ada: x: float

CAMPUS Rosenheim Computer Science

Technical University of Applied Sciences

Floating point – binary

Floating point binary formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

		Number		
Name	Common name	of bits	Characteristic	Mantissa
binary16	Half precision	16	5 bits; $c = e + 15$	10 bits
float binary32	Single precision	32	8 bits; $c = e + 127$	23 bits
double binary64	Double precision	64	11 bits; $c = e + 1023$	52 bits
binary128	Quadruple precision	128	15 bits; $c = e + 16383$	112 bits
binary256	Octuple precision	256	19 bits; $c = e + 262143$	236 bits

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE_754

Computer Science

Floating point – binary

Example: float (single precision)

Exponent $-126,\ldots,\pm127$ Exponent is represented via the characteristic

Characteristic c = e + 127

Mantissa $1 \leq m < B$ Is normalised in the binary system

1. MMM... M

Advantage: 1 doesn't have to be saved!

Computer Science

Floating point – binary

Example: float (single precision)

Exponent $-126, \ldots, +127$ Exponent is represented via the characteristic

Characteristic c = e + 127

Mantissa $1 \le m < B$ Is normalised in the binary system:

1.MMM...M

Advantage: 1 doesn't have to be saved!

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

10 Hex representation:

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

10 Hex representation:

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Hex representation:

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Prof. Dr. Florian Künzner, SoSe 2022

Computer Science

Floating point – binary

Let's do some (binary) floating point number crunching.

Nr. Code different equal

Computer Science

Floating point – binary

	Nr.	Code	different	equal
-	1	36.2 != 36.2		

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		
4	(0.362 * 100.0) / 100.0 != 0.362		

Computer Science

Floating point - decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} imes 10^{\text{exponentbits}_2 - 101_{10}} imes \text{truesignificand}_{10}$

Number of

decimal 128 34
$$-6143$$
 $+6144$

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format:
$$x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$$

decimal
$$04$$
 10 -383 $+384$

decimal 128 34
$$-6143$$
 $+6144$

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name	decimal digits	Exponent min.	Exponent max.
decimal32	7	-95	+96
decimal64	16	-383	+384
decimal128	34	-6143	+6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with Decimal32. Decimal64. and Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name decimal digits Ex	xponent min.	Exponent max.
------------------------	--------------	---------------

decimal32	7	-95	+96
decimal64	16	-383	+384
decimal128	34	-6143	+6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format_

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name	decimal	digits	Exponent	min.	Exponent	max.
------	---------	--------	----------	------	----------	------

decimal32	7	-95	+96
decimal64	16	-383	+384
decimal128	34	-6143	+6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format

Computer Science

Floating point – decimal

Let's do some (decimal) floating point number crunching.

Nr. Code different equal

Computer Science

Floating point – decimal

	Nr.	Code	different	equal
-	1	36.2 != 36.2		

Computer Science

Floating point - decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		

Computer Science

Floating point - decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		

Computer Science

Floating point – decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		
4	(0.362 * 100.0) / 100.0 != 0.362		

CAMPUS Rosenheim Computer Science

Fixed point

Fixed point numbers have a fixed imaginary point that is not moved.

Usage:

- Areas where rounding errors must be avoided (e.g. commercial applications)
- If no floating point hardware (FPU) is available (e.g. in embedded systems)
- Devices use the numbers in this format anyway (e.g. analog/digital converter)

Two variants:

Type Usage

Binary fixed point technical

Decimal fixed point economical

CAMPUS Rosenheim Computer Science

Fixed point

Fixed point numbers have a fixed imaginary point that is not moved.

Usage:

- Areas where rounding errors must be avoided (e.g. commercial applications)
- If no floating point hardware (FPU) is available (e.g. in embedded systems)
- Devices use the numbers in this format anyway (e.g. analog/digital converter)

Two variants:

Type Usage

Binary fixed point technical

Decimal fixed point economical

Computer Science

Fixed point – binary

Uses integers with an imaginary binary point.

Often without specialised hardware: Poor man's floating point.

Ada: type analog_input is delta 0.125 range -16.0..15.0;

[C++ library example: Compositional Numeric Library]

Computer Science

Fixed point – decimal

Uses the binary coded decimal (BCD) system with an imaginary decimal point and BCD arithmetic.

Used in IBM main frame. Sometimes there exists specialised hardware.

BCD: Every digit (0-9) is represented by 4 bits

Ada: type money is delta 0.01 digits 8;

imaginary point

2 digits per byte

[C++ library example: Decimal data type for <math>C++]

Computer Science

When to use what?

A first try for a property overview

Summary

Computer Science

Summary and outlook

Summary

- Important basics
- ASCII
- Unicode and UTF
- Data types: Numbers

Outlook

Logical hardware

Computer Science

Summary and outlook

Summary

- Important basics
- ASCII
- Unicode and UTF
- Data types: Numbers

Outlook

Logical hardware