The Tensorial Cluster Expansion

- Needed to express configurationaldependence of many important properties:
 - elastic constants, equilibrium strain/stress
 - dielectric constant
 - ferroelectric vector
 - piezoelectric tensor
 - (electro/magneto)striction
 - optoelectric coupling, etc.

Scalar Cluster Expansion

$$q(\sigma) = \sum_{\alpha} J_{\alpha} \Gamma_{\alpha}(\sigma)$$
 (without symmetry)
$$q(\sigma) = \sum_{\alpha} J_{\alpha} m_{\alpha} \langle \Gamma_{\alpha'}(\sigma) \rangle_{\alpha} \text{ (with symmetry)}$$

where

- $q(\sigma)$ a scalar function of configuration $\sigma = (\sigma_1, \sigma_2, ...)$
- α is a *cluster* (i.e. a set of lattice sites)
- Sum: over all symmetrically distinct α
- $\Gamma_{\alpha'}(\sigma) = \prod_{i \in \alpha'} \sigma_i$ ("cluster functions")
- $\langle \cdots \rangle_{\alpha}$: average over α' equivalent by symmetry to α
- m_{α} : multiplicities (# of terms in average/unit cell)
- J_{α} are coefficients to be determined.

The $\langle \Gamma_{\alpha'}(\sigma) \rangle_{\alpha}$ form a basis for the space of scalar functions of configuration.

Bases and Tensors

$$Q = \sum_{\beta} c_{\beta} \beta$$
 where $\begin{cases} \bullet \beta \text{ is a "basis tensor"} \\ \bullet c_{\beta} \text{ are coefficients to be determined} \end{cases}$

Example: A basis for symmetric rank 2 tensors in 3D is:

$$\beta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1/\sqrt{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1/\sqrt{2} \\ 0 & 0 & 0 \\ 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1/\sqrt{2} & 0 & 0 \\ 0 & 1/\sqrt{2} & 0 \end{bmatrix}$$

The β form a basis for the space of tensors.

"Tensor-product" basis

Basis a_i for space A $\sum_i c_i a_i$

Basis b_j for space B $\sum_{j} c_j b_j$

Basis $a_i b_i$ for space $A \otimes B$

$$\sum_{i} \sum_{j} c_{ij} a_{i} b_{j} \neq c_{i} c_{j}$$

To obtain a basis for tensor-function $Q(\sigma)$ of configuration,

form every possible pairwise product of β 's and $\Gamma_{\alpha}(\sigma)$:

$$Q(\sigma) = \sum_{\alpha} \sum_{\beta} J_{\alpha\beta} \Gamma_{\alpha}(\sigma) \beta$$

Still need to exploit symmetry...

Exploiting symmetry

 $J_{\alpha\beta} = J_{\alpha'\beta'}$ if (α, β) is equivalent by symmetry to (α', β') .

Re-grouping...

Re-grouping...

$$Q(\sigma) = \sum_{\star(\alpha,\beta)} \sum_{S} \sum_{P:P(\alpha)=\alpha} J_{S(P(\alpha))S(P(\beta))} \Gamma_{S(P(\alpha))}(\sigma) S(P(\beta))$$

$$= \sum_{\star(\alpha,\beta)} \sum_{S} \sum_{P:P(\alpha)=\alpha} J_{\alpha\beta} \Gamma_{S(\alpha)}(\sigma) S(P(\beta))$$

$$= \sum_{\star(\alpha,\beta)} J_{\alpha\beta} \sum_{S} \Gamma_{S(\alpha)}(\sigma) S\left(\sum_{P:P(\alpha)=\alpha} P(\beta)\right)$$
(Reordering)
$$Disappears if \beta$$
is not allowed by symmetry of cluster α

Symmetry restrictions

Example 1

Example 2

Example 3

Simplifying...

$$Q(\sigma) = \sum_{\alpha} \sum_{\beta \in C(\alpha)} J_{\alpha\beta} \sum_{S} \Gamma_{S(\alpha)}(\sigma) S(\beta)$$

$$= \sum_{\alpha} \sum_{\beta \in C(\alpha)} J_{\alpha\beta} m_{\alpha} \left(\frac{1}{m_{\alpha}} \sum_{S} \Gamma_{S(\alpha)}(\sigma) S(\beta) \right)$$

$$\langle \Gamma_{\alpha'}(\sigma) \beta' \rangle_{(\alpha,\beta)}$$
Multiplicities
(same as for conventional CE)

Tensorial Cluster Expansion

$$Q(\sigma) = \sum_{\alpha} \sum_{\beta \in C(\alpha)} J_{\alpha\beta} m_{\alpha} \langle \beta' \Gamma_{\alpha'}(\sigma) \rangle_{(\alpha,\beta)}$$

- Outer sum: over all symmetrically distinct α
- $\Gamma_{\alpha'}(\sigma) = \prod_{i \in \alpha'} \sigma_i$ ("cluster functions")
- m_{α} : multiplicities
- β : basis tensor
- $C(\alpha)$: set of basis tensors compatible with point group of cluster α

Same as in conventional

cluster expansion

- $\langle \cdots \rangle_{\alpha,\beta}$: average over all (α',β') equivalent to (α,β) by symmetry
- $J_{\alpha\beta}$ are coefficients to be determined.

A graphical representation of tensors

Plot $f(\mathbf{u})$ as a function of unit vector \mathbf{u} .

$$f(\mathbf{u}) = \sum_{i,j,k,\ldots} Q_{ijk,\ldots} u_i u_j u_k \cdots$$

Works for any symmetric tensors (two different antisymmetric tensors could give same plot).

fcc with symmetric 2nd rank tensor

Tetragonal body-centered lattice with symmetric 2nd rank tensor

Can fcc superstructures be ferroelectric?

Triplets do couple with vector-valued quantities:

Yes, ferroelectricity possible

Special cases

Cubic harmonics

Hexagonal harmonics

Example configuration-strain coupling in (Ga_xIn_{1-x}N)

(Ga-In sublattice shown)

Extensions

Can combine any number of "Symmetry obeying objects":

Local tensorial cluster expansion (e.g. environment-dependent force constants):

Code enables these generalizations, through object-oriented programming:

