

Soit f la fonction définie sur $]0,+\infty[$ par : $f(x)=\frac{\ln(x)}{\ln(x+1)}$ et \mathbb{C} sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1°) a) Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - **b)** Vérifier que pour tout réel $x \in]0,+\infty[$, $\ln(x+1) = \ln(x) + \ln(1+\frac{1}{x})$.
 - c) Déduire que $\lim_{x\to +\infty} f(x) = 1$. Interpréter graphiquement le résultat.
- 2°) a) Montrer que pour tout réel $x \in]0, +\infty[$, $f'(x) = \frac{x \ln(1 + \frac{1}{x}) + \ln(x + 1)}{x(x + 1) \ln^2(x + 1)}$.
 - **b)** Dresser le tableau de variation de la fonction f.
 - c) Tracer la courbe $\, {f C} \,$ tout en précisant son intersection avec l'axe des abscisses.
- 3°) Montrer que f admet une fonction réciproque f^{-1} définie sur $]-\infty,1[$.
- **4°)** Pour tout entier naturel $n \ge 2$, on pose $a_n = f^{-1} \left(\frac{1}{n} \right)$.
 - **a)** Calculer $\lim_{n\to +\infty} a_n$.
 - **b)** Montrer que a_n est une solution de l'équation $x^n = x + 1$.
 - **c)** Calculer $\lim_{n\to +\infty} (a_n)^n$.

Exercice 2

© 25 min

4 pt

On considère la fonction f définie et dérivable sur l'intervalle $]1,+\infty[$ par : $f(x) = \ln(\ln(x))$.

- 1°) a) Déterminer les limites de f en 1 et en $+\infty$.
 - **b)** Etudier les variation de f.
 - c) Resoudre l'équation f(x) = 0. En déduire le signe de f(x) sur l'intervalle $]1,+\infty[$.
- **2°)** On considère la suite (u_n) défine, pour tout $n \ge 3$ par : $u_n = \int_e^n f(x) dx$
 - **a)** Montrer que pour tout $n \ge 3$, $u_n \ge 0$.
 - **b)** Montrer que (u_n) est croissante.
 - c) Resoudre l'inéquation $f(x) \ge \ln 2$. Prouver alors, pour tout $n \ge 3$, ona :

$$\int_{e}^{n} f(x) dx \ge \int_{e^{2}}^{n} f(x) dx \ge (\ln 2) (n - e^{2})$$

d) En déduire la limite de (u_n) .

Exercice 3

(S) 45 min

7 pt

Soit f la fonction définie sur
$$[0,+\infty[$$
 par :
$$\begin{cases} f(x) = \frac{x}{1+x\ln(x)}, \text{ pour tout } x > 0\\ f(0) = 0 \end{cases}$$

On désigne par C sa courbe représentative dans un repère orthonormé $\left(\textit{O}_{,\vec{\textit{i}}}\,,\vec{\textit{j}}\right)$.

- 1°) Soit h la fonction définie sur $]0,+\infty[$ par $h(x)=1+x\ln(x)$. Dresser le tableau de variation de h et en déduire que pour tout x de $]0,+\infty[$, h(x)>0.
- **2°) a)** Etudier la dérivabilité de f à droite en 0 et donner une équation de la tangente (T) au point d'abscisse 0.
 - **b)** Etudier la position de C par rapport à (T).
 - c) Montrer que pour tout x de $]0,+\infty[$, $f'(x)=\frac{1-x}{(1+x\ln(x))^2}$.
 - d) Dresser le tableau de variation de f.
 - e) Tracer (T) et C.
- **3°)** Soit g la restriction de f à l'intervalle [0,1].
- a) Montrer que g possède une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera.
 - **b)** Tracer la courbe C' de g^{-1} dans le repère (O,\vec{i},\vec{j}) .
- **4°)** Soit u un réel de l'intervalle]0,1]. On pose $A(u) = \int_u^1 f(t) dt + \int_{f(u)}^1 g^{-1}(t) dt$.
 - a) Interpréter graphiquement le nombre A(u).
 - **b)** Montrer alors que $\lim_{u\to 0^+} A(u) = 1$.
- **5°)** On considère la suite (U_n) définie par $U_0 = \frac{1}{2}$ et pour tout entier naturel n, $U_{n+1} = f(U_n)$.
 - a) Montrer que pour tout entier naturel n, $0 < U_n \le 1$.
 - **b)** Montrer que la suite (U_n) est croissante.
 - c) En déduire que (U_n) est convergente et calculer sa limite.
 - **d)** Montrer que pour tout entier naturel n, $\frac{1}{U_{n+1}} \frac{1}{U_n} = \ln(U_n)$.
 - **e)** Montrer alors que $\lim_{n\to+\infty} (U_0 \times U_1 \times \dots \times U_n) = \frac{1}{e}$.
 - **f)** Pour tout entier naturel n, on note V_n la valeur moyenne de f sur l'intervalle $\left[U_n, U_{n+1}\right]$. Calculer $\lim_{n \to +\infty} V_n$.

