Übung 3 - Neuronale Netze

Tobias Hahn - 3073375

XOR Funktion

Zuerst zeichnen wir die XOR Funktion mit Belegungen auf, um zu ermitteln für welche Belegungen unsere Gewichte welches Ergebnis liefern müssen.

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Nehmen wir nun zwei beliebige aber fixe Gewichte w_1 und w_2 sowie einen beliebigen aber fixen Schwellwert θ an, so erhalten wir folgende Gleichungen:

$$\begin{aligned} w_1 * 0 + w_2 * 0 &< \theta \\ w_1 * 0 + w_2 * 1 &\geq \theta \\ w_1 * 1 + w_2 * 0 &\geq \theta \\ w_1 * 1 + w_2 * 1 &< \theta \end{aligned}$$

Formen wir nun die letzen drei Gleichungen in Aussagen über die Gewichte um, so kommen wir zu unserem Widerspruch:

$$w_2 \ge \theta$$
$$w_1 \ge \theta$$
$$w_1 + w_2 < \theta$$

Da es nicht sein kann dass zwar w_2 und w_1 jeweils größer sind als θ , sie zusammengerechnet jedoch kleiner sind, gibt es keine Gewichte w_1 , w_2 und θ die diese Gleichungen erfüllen können, damit ist gezeigt dass die XOR Funktion mit einem einfachen Perzeptron nicht berechnet werden kann.