Hints:

- 1) Losh @ out and cmp files!
- 2) You can send the same output multiple places!

ef

Mux16 (...., out = out, out = q, out [15] = ...)

Menon.

S-R latch.

			$\overline{}$	
Ø:/~	5			
5		40		Gait
R —				qu ₁

S	R	Qout		
0	٥	(Stay same)		
l	٥	Ì		
0	1	0		
M				

D latch (data latch)

\mathcal{D}	S	Gort
?	0	Stay same
7	l	D

Pollen: timby/synchronization!

Solution: clock.

Clocked D-latch:

Better - updates when clock goes $0 \rightarrow 1$.

D flip-flop

RAM = Random Access Mening L can access any port equally fast.

Every location has an address which is an integer.

Hack compile: 15-bit addresses. -> 2'5 memory locations.

Each location stores 1 word = 16 bits.

-> 215 - 24 = 219 bits.

1 byte = 8 bils. -> 219 bits = 216 bytes.

1 kB (technically, "kibibyk" (K:B)) = 1024 = 2" byt.

So 216 bytes = 26 kB = 64 kB. - 1/2 for screen, 1/2 for menny.

$$32-67$$
 addresses = ____ memony?
 2^{22} bytes = 2^{22} kB = 2^{12} MB = 2^2 =468.
 $641-67$ addresses ?
 2^{64} bytes = 2^{54} kB = 2^{44} MB = 2^{34} GB = 2^{24} TB = 2^{14} PB = 2^{4} EB

Project 3