

Update on Ara

22/02/2023

Matteo Perotti
Matheus Cavalcante

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Scaling

- #Lanes
- Data width
- Data type

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	?

Scaling

- #Lanes
- Data width
- Data type

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	32.47

Scaling

- #Lanes
- Data width
- Data type

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	32.47

CVA6 Power is ~constant

8L

Scaling

- #Lanes
- Data width
- Data type

CVA6 Power is ~constant ∑(Lane Power) ~doubles

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	32.47

Scaling

- #Lanes
- Data width
- Data type

CVA6 Power is ~constant

∑(Lane Power) ~doubles
Ara non-lane power?

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	32.47

Scaling

- #Lanes
- Data width
- Data type

fmatmul, 128x128x128

Lanes	Efficiency (GOPS/W)
2	30.09
4	34.33
8	32.47

CVA6 Power is ~constant

∑(Lane Power) ~doubles

Ara non-lane power?

SLDU, MASKU, VLSU

Relative area increase when scaling up

ETH Zürich | 8 |

Relative area increase when scaling up

Relative area increase when scaling up

Relative area increase when scaling up

SLDU is also the largest unit 8L: SLDU area == 1.7x VLSU area

64*L² connections

- How to simplify the SLDU?
 - Only slides by 1?
 - Only slides by powers of 2?
 - Time Multiplex slides and encoding?

SLDU - A New Datapath

- Time-multiplex p2 slides and re-encoding
- Some difficulties to support undisturbed policy
- In parallel:
 - Energy efficiency of 4L and 8L without SLDU