逻辑门

Discrete Mathematics

黄正华

数学与统计学院 武汉大学

December 27, 2012

主要内容

- 逻辑门;
- 逻辑电路;
- 逻辑电路的化简.

逻辑门 (Logic Gates)

(1) 逻辑非门 (NOT gate, inverter):

3 / 20

逻辑门 (Logic Gates)

(1) 逻辑非门 (NOT gate, inverter):

(2) 逻辑或门 (OR gate):

逻辑门 (Logic Gates)

(1) 逻辑非门 (NOT gate, inverter):

(2) 逻辑或门 (OR gate):

(3) 逻辑与门 (AND gate):

逻辑电路的两种画法

画出下列输出结果的逻辑电路: (a) $(x+y)\overline{x}$, (b) $\overline{x}\overline{(y+\overline{z})}$, (c) $(x+y+z)(\overline{x}\overline{y}\overline{z})$.

画出下列输出结果的逻辑电路: (a) $(x+y)\overline{x}$, (b) $\overline{x}(\overline{y+\overline{z}})$, (c) $(x+y+z)(\overline{x}\overline{y}\overline{z})$.

解

(a)
$$(x+y)\overline{x}$$
:

5 / 20

画出下列输出结果的逻辑电路: (a) $(x+y)\overline{x}$, (b) $\overline{x}(\overline{y+\overline{z}})$, (c) $(x+y+z)(\overline{x}\overline{y}\overline{z})$.

解

(b) $\overline{x}(\overline{y+\overline{z}})$:

画出下列输出结果的逻辑电路: (a) $(x+y)\overline{x}$, (b) $\overline{x}(\overline{y+\overline{z}})$, (c) $(x+y+z)(\overline{x}\overline{y}\overline{z})$.

解

(c)
$$(x + y + z)(\overline{x}\,\overline{y}\,\overline{z})$$
:

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

6 / 20

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

 \mathbf{p} 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开.

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

 \mathbf{p} 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开.

记 F(x, y) = 1, 若电灯点亮; 记 F(x, y) = 0, 若电灯熄灭.

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

解 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开. 记 F(x,y) = 1, 若电灯点亮; 记 F(x,y) = 0, 若电灯熄灭. 假定两个开关都闭合时电灯点亮, 即 F(1,1) = 1.

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

解 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开.

记 F(x, y) = 1, 若电灯点亮; 记 F(x, y) = 0, 若电灯熄灭.

假定两个开关都闭合时电灯点亮, 即 F(1,1) = 1. 注意到改变其中一个开关的状态, 会导致灯泡熄灭, 故

$$F(1,0) = 0,$$
 $F(0,1) = 0.$

再次改变其中一个开关的状态, 会导致灯泡点亮, 故 F(0,0) = 1.

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

解 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开.

记 F(x, y) = 1, 若电灯点亮; 记 F(x, y) = 0, 若电灯熄灭.

假定两个开关都闭合时电灯点亮, 即 F(1,1) = 1. 注意到改变其中一个开关的状态, 会导致灯泡熄灭, 故

$$F(1,0) = 0,$$
 $F(0,1) = 0.$

再次改变其中一个开关的状态, 会导致灯泡点亮, 故 F(0,0) = 1. 则真值表为

x	y	F(x, y)
1	1	1
1	0	0
0	1	0
0	0	1

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

 \mathbf{R} 用 x, y 表示两个开关, 取值 1, 0 分别表示闭合、断开.

记 F(x, y) = 1, 若电灯点亮; 记 F(x, y) = 0, 若电灯熄灭.

假定两个开关都闭合时电灯点亮, 即 F(1,1) = 1. 注意到改变其中一个开关的状态, 会导致灯泡熄灭, 故

$$F(1,0) = 0,$$
 $F(0,1) = 0.$

再次改变其中一个开关的状态, 会导致灯泡点亮, 故 F(0,0) = 1. 则真值表为

x	y	F(x, y)	
1	1	1	
1	0	0	$\Rightarrow F(x,y) = xy + \overline{x}\overline{y}.$
0	1	0	
0	0	1	

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

解

$$xy + \overline{x}\overline{y}$$
:

设计由两个开关控制的电路, 使得开合其中任何一个开关都可以控制电灯的点亮和熄灭.

解

 $xy + \overline{x}\overline{y}$:

如何设计由三个开关控制的类似电路?

电路的简化

电路的简化

$$xyz + x \overline{y} z = (y + \overline{y})xz$$
$$= 1 \cdot (xz)$$
$$= xz.$$

电路的简化

$$xyz + x \overline{y} z = (y + \overline{y})xz$$
$$= 1 \cdot (xz)$$
$$= xz.$$

卡诺图 (Karnaugh map, K-map)

两个变元 x, y 构成的小项:

	y	\overline{y}
x	xy	$x\overline{y}$
\overline{x}	$\overline{x}y$	$\overline{x}y$

卡诺图 (Karnaugh map, K-map)

两个变元 x, y 构成的小项:

	y	\overline{y}
x	xy	$x\overline{y}$
\overline{x}	$\overline{x}y$	$\overline{x}y$

用 K-map 表示 (a) $xy + \overline{x}y$, (b) $x\overline{y} + \overline{x}y$, (c) $x\overline{y} + \overline{x}y + \overline{x}\overline{y}$.

	y	\overline{y}
\boldsymbol{x}	1	
\overline{x}	1	

	y	\overline{y}
\boldsymbol{x}		1
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	1

	y	\overline{y}
x	1	
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	

	y	\overline{y}
x		1
\bar{x}	1	1

	y	\overline{y}
x	1	
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	1

(a)
$$xy + \overline{x}y = (x + \overline{x})y = y$$
.

	$y \qquad \overline{y}$	
x	1	
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	1

(a)
$$xy + \overline{x}y = (x + \overline{x})y = y$$
.

	y	\overline{y}
x		1
\overline{x}	1	

	y	\overline{y}
x		1
\overline{x}	1	1

- (a) $xy + \overline{x}y = (x + \overline{x})y = y$.
- (b) $x\bar{y} + \bar{x}y$ 不能化简.

	y	\overline{y}	
x		1	
\overline{x}	1		

	y	\overline{y}
x		1
\overline{x}	1	1

- (a) $xy + \overline{x}y = (x + \overline{x})y = y$.
- (b) $x\bar{y} + \bar{x}y$ 不能化简.

	y	\overline{y}	
x		1	
\overline{x}	1	1	

- (a) $xy + \overline{x}y = (x + \overline{x})y = y$.
- (b) $x\bar{y} + \bar{x}y$ 不能化简.

- (a) $xy + \overline{x}y = (x + \overline{x})y = y$.
- (b) $x\bar{y} + \bar{x}y$ 不能化简.
- (c) $x\overline{y} + \overline{x}y + \overline{x}\overline{y} = \overline{x} + \overline{y}$.

相邻的小项, 只有一个变量不同.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
\boldsymbol{x}	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

F

相邻的小项, 只有一个变量不同.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

F

相邻的小项, 只有一个变量不同.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

☞ 相邻的小项, 只有一个变量不同.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

相邻关系类型: 1×2 , 2×1 , 2×2 , 4×1 .

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$		
\boldsymbol{x}	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$		
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$		

$$\overline{y}\,\overline{z} = x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,\overline{z}$$
(a)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
\boldsymbol{x}	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$
		~ ~ ~~	$\overline{z} \perp \overline{x} \overline{u}$	~

$$\overline{y}\,\overline{z} = x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,\overline{z}$$
(a)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{x}z = \overline{x}yz + \overline{x}\overline{y}z$$
(b)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{y}\,\overline{z} = x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,\overline{z}$$
(a)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{x}z = \overline{x}yz + \overline{x}\overline{y}z$$
(b)

$$\overline{z} = xy\overline{z} + \overline{x}yz + x\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$$
(c)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
\boldsymbol{x}	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{y}\,\overline{z} = x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,\overline{z}$$
(a)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{z} = xy\,\overline{z} + \overline{x}yz + x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,\overline{z}$$
(c)

$$\begin{array}{c|ccccc} yz & y\overline{z} & \overline{y}\,\overline{z} & \overline{y}z \\ x & xyz & xy\overline{z} & x\overline{y}\,\overline{z} & x\overline{y}z \\ \hline x & \overline{x}yz & \overline{x}y\overline{z} & \overline{x}\,\overline{y}\,\overline{z} & \overline{x}\,\overline{y}z \end{array}$$

$$\overline{x}z = \overline{x}yz + \overline{x}\overline{y}z$$
(b)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	xyz	$xy\overline{z}$	$x\overline{y}\overline{z}$	$x\overline{y}z$
\overline{x}	$\overline{x}yz$	$\overline{x}y\overline{z}$	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$

$$\overline{x} = \overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z$$
(d)

用 K-maps 化简下列表达式:

(a) $xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$.

逻辑门

(a)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}	1		1	

$$xy\,\overline{z}+x\,\overline{y}\,\overline{z}+\overline{x}\,yz+\overline{x}\,\overline{y}\,\overline{z}=$$

(a)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}	1		1	

$$xy\,\overline{z} + x\,\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z}$$

(a)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}	1		1	

$$xy\,\overline{z} + x\,\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z} + \overline{y}\,\overline{z}$$

(a)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
\boldsymbol{x}		1	1	
\overline{x}	1		1	

$$xy\,\overline{z} + x\,\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z} + \overline{y}\,\overline{z} + \overline{x}\,yz.$$

用 K-maps 化简下列表达式:

(b) $x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$.

(b)
$$x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x			1	1
\overline{x}	1		1	1

$$xy\,\overline{z}+x\,\overline{y}\,\overline{z}+\overline{x}\,yz+\overline{x}\,\overline{y}\,\overline{z}=$$

(b)
$$x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x			1	1
\overline{x}	1		1	1

$$xy\,\overline{z} + x\,\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,\overline{z} = \overline{y}$$

(b)
$$x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x			1	1
\overline{x}	1		1	1

$$xy\,\overline{z} + x\,\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,\overline{z} = \overline{y} + \overline{x}\,z.$$

用 K-maps 化简下列表达式:

(c) $xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$.

(c)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	1	1	1	1
\overline{x}	1		1	1

$$xyz + xy\,\overline{z} + x\overline{y}\,z + x\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} =$$

(c)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	1	1	1	1
\overline{x}	1		1	1

$$xyz + xy\,\overline{z} + x\overline{y}\,z + x\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x$$

(c)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	1	1	1	1
\overline{x}	1		1	1

$$xyz + xy\,\overline{z} + x\overline{y}\,z + x\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x + \overline{y}$$

(c)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x	1	1	1	1
\overline{x}	1		1	1

$$xyz + xy\,\overline{z} + x\overline{y}\,z + x\overline{y}\,\overline{z} + \overline{x}\,yz + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x + \overline{y} + z.$$

用 K-maps 化简下列表达式:

(d) $xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$.

(d)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}			1	1

$$xy\,\overline{z}+x\overline{y}\,\overline{z}+\overline{x}\,\overline{y}\,z+\overline{x}\,\overline{y}\,\overline{z}=$$

(d)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}			1	1

$$xy\,\overline{z} + x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z}$$

(d)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
x		1	1	
\overline{x}			1	1

$$xy\,\overline{z} + x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z} + \overline{x}\,\overline{y}.$$

用 K-maps 化简下列表达式:

(d)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$
.

$$xy\,\overline{z} + x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z} = x\,\overline{z} + \overline{x}\,\overline{y}.$$

☞ 最后的一个红色圈已经没有新的 1, 不产生约简.

K-map: 四个变量

☞ 相邻的小项, 只有一个变量不同.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx	wxyz	$wxy\overline{z}$	$wx\overline{y}\overline{z}$	$wx\overline{y}z$
$w\overline{x}$	$w\overline{x}yz$	$w\overline{x}y\overline{z}$	$w\overline{x}\overline{y}\overline{z}$	$w\overline{x}\overline{y}z$
$\overline{w}\overline{x}$	$\overline{w}\overline{x}yz$	$\overline{w}\overline{x}y\overline{z}$	$\overline{w}\overline{x}\overline{y}\overline{z}$	$\overline{w}\overline{x}\overline{y}z$
$\overline{w}x$	$\overline{w} xyz$	$\overline{w} xy\overline{z}$	$\overline{w}x\overline{y}\overline{z}$	$\overline{w}x\overline{y}z$

第1,4列是相邻的;第1,4行是相邻的.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx				
$w\overline{x}$				
$\overline{w}\overline{x}$				
$\overline{w}x$				

 $w\,\overline{\boldsymbol{x}}\,\boldsymbol{z} = w\overline{\boldsymbol{x}}\boldsymbol{y}\boldsymbol{z} + w\overline{\boldsymbol{x}}\,\overline{\boldsymbol{y}}\,\boldsymbol{z}$

(a)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx				
$w\overline{x}$				
$\overline{w}\overline{x}$				
$\overline{w}x$				

$$w\,\overline{x}\,z = w\overline{x}yz + w\overline{x}\,\overline{y}\,z$$

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx				
$w\overline{x}$				
$\overline{w}\overline{x}$				
$\overline{w}x$				

$$\overline{w}\,\overline{x} = \overline{w}\,\overline{x}yz + \overline{w}\,\overline{x}\,y\,\overline{z} \\ + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,\overline{x}\,\overline{y}z$$

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx				
$w\overline{x}$				
$\overline{w}\overline{x}$				
$\overline{w}x$				

$$\begin{split} x\,z &= \,wxyz + \,wx\,\overline{y}\,z \\ &+ \overline{w}\,xyz + \,\overline{w}\,x\,\overline{y}\,z \end{split}$$

(c)

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx				
$w\overline{x}$				
$\overline{w}\overline{x}$				
$\overline{w}x$				

REP

$$\begin{aligned} x\,z &=\, wxyz + \,wx\,\overline{y}\,z \\ &+ \overline{w}\,xyz + \,\overline{w}\,x\,\overline{y}\,z \end{aligned}$$

(c)

$$\begin{split} \overline{z} &= wxy\,\overline{z} + wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} \\ &+ \overline{w}\,\overline{x}\,y\,\overline{z} + \overline{w}\,\overline{x}\,\overline{y}z + \overline{w}\,xy\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} \end{split}$$

(d)

用 K-maps 化简下列表达式:

(a) $wx\overline{y}\overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x}\overline{y}\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$.

用 K-maps 化简下列表达式:

(a)
$$wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx			1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$			1	

 $wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,y\,\overline{z} + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z}$

用 K-maps 化简下列表达式:

(a)
$$wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx			1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$			1	

 $wx\overline{y}\overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x}\overline{y}\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}xy\overline{z} + \overline{w}\overline{x}\overline{y}\overline{z}$

用 K-maps 化简下列表达式:

(a)
$$wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx			1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$			1	

$$\begin{split} & wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,\overline{x}\,y\,\overline{z} + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} \\ &= \overline{y}\,\overline{z} + \overline{x}\,\overline{z} \end{split}$$

用 K-maps 化简下列表达式:

(a)
$$wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} \overline{y} \overline{z}$$
.

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx			1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$			1	

$$\begin{split} & wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,\overline{x}\,y\,\overline{z} + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} \\ &= \overline{y}\,\overline{z} + \overline{x}\,\overline{z} + w\,\overline{x}\,y. \end{split}$$

(b) $wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} x \overline{y} \overline{z} + wxy \overline{z} + \overline{w} xyz + \overline{w} xy \overline{z} + \overline{w}$

(b) $wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} \overline{y} \overline{z} + wxy \overline{z} + \overline{w} xyz + \overline{w} xy \overline{z} + \overline{$

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx		1	1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$	1	1	1	1

$$\begin{split} & wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} \\ & + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} + wxy\,\overline{z} + \overline{w}\,xyz + \overline{w}\,xy\,\overline{z} + \overline{w}\,x\,\overline{y}\,z \end{split}$$

(b) $wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} \overline{y} \overline{z} + wxy \overline{z} + \overline{w} xyz + \overline{w} xy \overline{z} + \overline{w} x$

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx		1	1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$	1	1	1	1

$$\begin{split} & wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} \\ & + \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} + wxy\,\overline{z} + \overline{w}\,xyz + \overline{w}\,xy\,\overline{z} + \overline{w}\,x\,\overline{y}\,z \\ & = \overline{z} \end{split}$$

(b) $wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} \overline{y} \overline{z} + wxy \overline{z} + \overline{w} xyz + \overline{w} xy \overline{z} + \overline{w} x$

	yz	$y\overline{z}$	$\overline{y}\overline{z}$	$\overline{y}z$
wx		1	1	
$w\overline{x}$	1	1	1	
$\overline{w}\overline{x}$		1	1	
$\overline{w}x$	1	1	1	1

$$wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,y\,\overline{z}$$

$$+ \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} + wxy\,\overline{z} + \overline{w}\,xyz + \overline{w}\,xy\,\overline{z} + \overline{w}\,x\,\overline{y}\,z$$

$$= \overline{z} + \overline{w}\,x$$

(b) $wx \overline{y} \overline{z} + w \overline{x} yz + w \overline{x} y \overline{z} + w \overline{x} \overline{y} \overline{z} + \overline{w} x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} \overline{y} \overline{z} + wxy \overline{z} + \overline{w} xyz + \overline{w} xy \overline{z} + \overline{w} x$

$$wx\,\overline{y}\,\overline{z} + w\,\overline{x}\,yz + w\,\overline{x}\,y\,\overline{z} + w\,\overline{x}\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,\overline{y}\,\overline{z} + \overline{w}\,x\,y\,\overline{z}$$

$$+ \overline{w}\,\overline{x}\,\overline{y}\,\overline{z} + wxy\,\overline{z} + \overline{w}\,xyz + \overline{w}\,xy\,\overline{z} + \overline{w}\,x\,\overline{y}\,z$$

$$= \overline{z} + \overline{w}\,x + w\,\overline{x}\,y.$$

20 / 20