Aproksymacja średniokwadratowa dyskretna

Grams, Stanisław Jezierski, Maciej Korczakowski, Juliusz MFI UG Algorytmy Numeryczne

14 stycznia 2019

1 Implementacja

Program "approximations" został napisany w języku C++ a wyniki działania programu zapisywane są do poszczególnych plików *.csv.

1.1 Zaimplementowane oraz użyte algorytmy

- (G): Algorytm Gaussa z częściowym wyborem elementu
- (G_SPARSE): Algorytm Gaussa z częściowym wyborem elementu i optymalizacją dla macierzy rzadkich
- (GS_1E10): Algorytm Gaussa-Seidela (precyzja 1×10^{-10} , struktura macierzy tablicowa)
- (GS_EIGEN): Algorytm Gaussa-Seidela z implementacją dla biblioteki Eigen3 (precyzja 1×10^{-10}) ¹
- (LU_EIGEN): Algorytm SparseLU pochodzący z biblioteki Eigen3 ²

W celu obsługi metod **GS_EIGEN** oraz **LU_EIGEN** oparteych o bibliotekę *Eigen*3 należało w dodatku do zadania nr 3 doimplementować klasy *SparseMatrix* oraz *SparseGenerator* pozwalające na wydajne operacje na nowych typach.

Testy zostały wykonane dla ilości agentów równej N=3..60.

Przypomnienie: rząd macierzy można wyznaczyć ze wzoru $A = \frac{(N+1)*(N+2)}{2}$

2 Analiza wyników

¹http://komi.web.elte.hu/elektronikus/src/p184-koester.pdf

²https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

3 Aproksymacja

3.1 Wyliczone współczynniki wielomianów

- Rozwiązywanie układu równań:
 - 1. (G): $f(x) = 1.88345e 9x^3 + 5.25579e 8x^2 + (-1.30456e 5)x^1 + 0.00124971$
 - 2. (G_SPARSE): $f(x) = 1.82546e 7x^2 + (-8.8859e 5)x^1 + 0.00941105$
 - 3. (**GS_1E10**): $f(x) = 6.21178e 6x^2 + (-0.00284503)x^1 + 0.279666$
 - 4. (**GS_EIGEN**): $f(x) = 1.25348e 7x^2 + 6.14431e 6x^1 0.00112571$
 - 5. (**LU_EIGEN**): $f(x) = 0.000119035x^1 0.0127681$
- Generowanie macierzy:
 - 1. (G): $f(x) = -2.06199e 12x^3 + 2.9385e 8x^2 + -2.30313e 6x^1 + 0.000161398$
 - 2. (G_SPARSE): $f(x) = 2.54238e 8x^2 + (-1.99597e 6)x^1 0.000262153$
 - 3. (**GS**₋**1E10**): $f(x) = 2.4649e 8x^2 + (-1.68417e 7)x^1 + \exp 5.40007 6$
 - 4. (**GS_EIGEN**): $f(x) = 3.39916e 8x^2 + 5.10909e 8x^1 0.000618658$
 - 5. (**LU_EIGEN**): $f(x) = 6.26423e 5x^1 0.0134335$

3.2 Poprawność wyników aproksymacji – średnie błędy bezwzględne

	Obliczanie	Generowanie
G	0.307364774043810629	0.009470184227150496
G_SPARSE	0.043499922329411848	0.006761815415625999
GS_1E10	1.792431959293490085	0.013518592473739061
GS_EIGEN	0.020786725071974720	0.009817717627604215
LU_EIGEN	0.055710669049853154	0.081653183626553646

Wniosek 1. Uzyskane wyniki znajdują się w granicy tolerancji błędu dla funkcji aproksymującej opartej o aproksymacje średniokwadratową dyskretną.

4 Ekstrapolacja

4.1 Ekstrapolacja czasu obliczeń dla układu o rozmiarze rzędu 100000

	Wyliczony czas [s]	
G	2087048.540863713948056102	
G_SPARSE	1842.864744169787172723	
GS_1E10	67836.170996347194886766	
GS_EIGEN	1297.890374618339365043	
LU_EIGEN	12.933910601128554063	

5 Próba obliczenia układu o rozmiarze rzędu 100000 i klasa SparseMatrix

Jako najszybszą metodę uznaliśmy $\mathbf{LU_EIGEN}$ i tą metodą wykonaliśmy test dla macierzy rzędu 100 128 (446 agentów). Uzyskany czas wynosi 63.291921000000002095 i jest około 4.9x gorszy od aproksymowanego. Metody oparte o bibliotekę Eigen3 odznaczają się również znacznie niższym zużyciem pamięci operacyjnej.

6 Podział pracy

Stanisław Grams	Juliusz Korczakowski	Maciej Jezierski
Implementacja algorytmu Gaussa-	Implementacja klasy Approximation	Przygotowanie sprawozdania
Seidela		
Implementacja klasy SparseMatrix oraz	Przygotowanie wykresów oraz tabel	Agregacja uzyskanych wyników
SparseGenerator w oparciu o Eigen3		
Implementacja wywołania poszczegól-	Uruchomienie prób i testowanie	Praca nad strukturą projektu
nych prób (main.cc)		