CONTROLE N°1: 19 SEPTEMBRE 2014

Documents et appareils électroniques non autorisés. Durée : 45 minutes.

Exercice 1. (4pts)

Soit $a \in \mathbb{R}$, et soit f une fonction définie, continue et positive sur l'intervalle $[a, +\infty[$.

- 1.1 Pourquoi peut-on dire que f est localement intégrable sur $[a, +\infty[$? 1.2 Pourquoi dit-on que $\int_a^{+\infty} f(x) \, dx$ est une intégrale impropre ou généralisée ?
- 1.3 Montrer que s'il existe un réel $\alpha>1$ tel que $x^{\alpha}f(x)$ tende vers 0 quand x tend vers $+\infty$ alors l'intégrale généralisée $\int_a^{+\infty} f(x) dx$ est convergente.
- 1.4 Application : Etudier la nature de l'intégrale généralisée $\int_0^{+\infty} e^{-x^2} dx$.

Exercice 2. (4 pts)

Soit $a \in \mathbb{R}$. Soient f et g deux fonctions définies, continues et positives sur l'intervalle $[a, +\infty[$. On suppose, pour tout $x \in [a, +\infty[$, $0 \le f(x) \le g(x)$. Donner, lorsque cela est possible et sans justification:

- 2.1 La nature de l'intégrale généralisée $\int_a^{+\infty} f(x) \, dx$ dans les cas suivants :

 - 2.1.1 $\int_a^{+\infty} g(x) dx$ est divergente; 2.1.2 $\int_a^{+\infty} g(x) dx$ est convergente.
- 2.2 La nature de l'intégrale généralisée $\int_a^{+\infty} g(x)\,dx$ dans les cas suivants :

 - 2.2.1 $\int_a^{+\infty} f(x) dx$ est divergente; 2.2.2 $\int_a^{+\infty} f(x) dx$ est convergente.

Exercice 3. (6 pts)

Etudier la convergence de l'intégrale :

$$I_1 = \int_0^{+\infty} \frac{\arctan t}{t\sqrt{t}} dt$$

Exercice 4. (6 pts)

Etudier la convergence de l'intégrale :

$$I_2 = \int_1^{+\infty} \frac{\ln t}{\sqrt{t^3 + t^2 + 1}} dt$$