Number	Functional form	Range of γ
1	$p = \text{poly}(t, \gamma) + (1/k)$	$\gamma \in \{3,4,5,6\}$
2	$p = \operatorname{poly}(t, \gamma) + (1/k) + \operatorname{poly}(t, \gamma) * 1/k$	$\gamma \in \{3,4,5,6\}$
3	$p = \text{poly}(t, \gamma) + \log(k) + \text{poly}(k, \gamma) * \log(k)$	$\gamma \in \{3,4,5,6\}$
4	$p = poly(t, \gamma) + k + (1/k)$	$\gamma \in \{3,4,5,6\}$
5	$p = \text{poly}(\log(t), \gamma) + \log(k)$	$\gamma \in \{3,4,5,6,8,9,10\}$
6	$p = \text{poly}(\log(t), \gamma) * \log(k)$	$\gamma \in \{3, 4, 5, 6, 8, 9, 10\}$

Table 1: Description of all tested models....

Functional form	RMSE	${\rm RMSE_cor}$	${\rm RMSE}_0.2$	$RMSE_cor_0.2$
$bc(p) = poly(bc(t), 10) * log(k) + poly(bc(t), 10) * \sqrt{k}$	$4.97\cdot 10^{-4}$	$4.69\cdot10^{-4}$	$8.05\cdot10^{-4}$	$7.16 \cdot 10^{-4}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$5.39\cdot 10^{-4}$	$5.11\cdot 10^{-4}$	$8.54\cdot 10^{-4}$	$7.61\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$7.68\cdot10^{-4}$	$6.91\cdot 10^{-4}$	$1.01\cdot 10^{-3}$	$8.97\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$7.79\cdot10^{-4}$	$7.04\cdot10^{-4}$	$1.05\cdot 10^{-3}$	$9.31\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$7.82\cdot10^{-4}$	$7.07\cdot10^{-4}$	$1.06\cdot 10^{-3}$	$9.41\cdot 10^{-4}$

Table 2: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where all underlying test are included and case 1.

Functional form	RMSE	${\rm RMSE_cor}$	${\rm RMSE}_0.2$	$RMSE_cor_0.2$
$\log(p) = \text{poly}(bc(t), 10) * \log(k)$	$1.27\cdot 10^{-3}$	$1.25\cdot 10^{-3}$	$1.05\cdot 10^{-3}$	$9.52\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$6.82\cdot10^{-4}$	$6.22\cdot 10^{-4}$	$1.28\cdot 10^{-3}$	$1.12\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$7.32\cdot10^{-4}$	$6.63\cdot 10^{-4}$	$1.39\cdot 10^{-3}$	$1.20\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$8.38\cdot10^{-4}$	$7.78\cdot10^{-4}$	$1.48\cdot 10^{-3}$	$1.31\cdot 10^{-3}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$9.08\cdot10^{-4}$	$8.42\cdot10^{-4}$	$1.69\cdot 10^{-3}$	$1.50\cdot 10^{-3}$

Table 3: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where *all* underlying test are included and case 2.

Functional form	RMSE	${\rm RMSE_cor}$	$RMSE_0.2$	$RMSE_cor_0.2$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$4.58\cdot10^{-4}$	$4.55\cdot 10^{-4}$	$3.37\cdot 10^{-4}$	$3.16 \cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$5.17\cdot 10^{-4}$	$5.14\cdot 10^{-4}$	$3.904 \cdot 10^{-4}$	$3.73\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$1.04\cdot 10^{-3}$	$1.04\cdot 10^{-3}$	$6.760 \cdot 10^{-4}$	$6.50\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$1.18\cdot 10^{-3}$	$1.17\cdot 10^{-3}$	$2.06\cdot10^{-3}$	$2.05\cdot 10^{-3}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$1.16\cdot 10^{-3}$	$1.06\cdot 10^{-3}$	$2.08\cdot 10^{-3}$	$1.80\cdot 10^{-3}$

Table 4: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where *all* underlying test are included and case 3.

Functional form	RMSE	${\rm RMSE_cor}$	${\rm RMSE}_0.2$	$RMSE_cor_0.2$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$4.75\cdot10^{-4}$	$4.44\cdot 10^{-4}$	$7.81\cdot 10^{-4}$	$6.84 \cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$6.54\cdot10^{-4}$	$5.87\cdot 10^{-4}$	$1.01\cdot 10^{-3}$	$7.81\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$7.60\cdot10^{-4}$	$6.13\cdot 10^{-4}$	$1.46\cdot 10^{-3}$	$1.06\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$7.64\cdot10^{-4}$	$7.45\cdot10^{-4}$	$1.29\cdot 10^{-3}$	$1.23\cdot 10^{-3}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$1.01\cdot 10^{-3}$	$9.17\cdot 10^{-4}$	$1.89\cdot 10^{-3}$	$1.65\cdot 10^{-3}$

Table 5: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where EG-J underlying test are included and case 3.