Algoritmos e Estruturas de Dados III

Aula 8.2 – RLE e Métodos Estatísticos

Prof. Hayala Curto 2022

Run-Length Encoding (Supressão de Repetições): O método RLE opera reduzindo o tamanho de sequências de símbolos repetidos.

Como: Substitui seqüências de caracteres repetidos pelo número de ocorrências seguido do caracter

Exemplo

AAAABBBAABBBBCCCCCCCDABCAAABBBB 4A3BAA5B8CDABC3A4B (redução de 32 p/ 18 bytes)

Formatos de imagem do tipo bitmap: TIFF (Tag Image File Format), BMP (Microsoft Windows Bitmap), PCX (PC Paintbrush File Format), MacPaint (Macintosh Paint) e TGA (Truevision Graphics Adapter).

Fácil implementação e de execução rápida, mas que não produz taxas de compressão comparáveis com métodos mais complexos, porém mais lentos

Explora a redundância existente entre os pixels de uma imagem (a tendência de que pixels adjacentes possuem valores iguais).

Classificação: Método de compressão simétrico, sem perdas e adaptativo

Problema: se o texto contiver números, como diferenciar entre os caracteres e o número de repetições?

Usar um caracter especial precedendo o número &4ABBBAA&5B&8CDABCAAA&4B (32 p/ 24 bytes)

Caracter especial não pode ser utilizado no texto

Infelizmente, esse método não funciona bem para textos pois normalmente não há muitas repetições de caracteres

Adequado para certas sequências binárias (por exemplo: imagens)

- armazena-se para cada linha o número de seqüências de 0's e 1's iniciando-se sempre com 0
- considerando que 5 bits s\u00e3o gastos para cada contagem, o exemplo abaixo reduz o arquivo de 310 para 205 bits

```
3 28
2 13 1 15
3 11 3 14
5 9 3 14
0 2 3 9 3 14
9 5 3 7 7
0 2 3 9 3 14
5 9 3 14
2 13 1 15
3 28
```

Problema: se o texto contiver números, como diferenciar entre os caracteres e o número de repetições?

Usar um caracter especial precedendo o número &4AB4BAA&5B&8CDABCAAA&4B (32 p/ 24 bytes)

Caracter especial não pode ser utilizado no texto

Infelizmente, esse método não funciona bem para textos pois normalmente não há muitas repetições de caracteres

Simples e rápido tanto para a compressão quanto para a descompressão Taxa de compressão fortemente dependente da entrada de dad_x005F_x0000_os:

Imagem preto branco: contém grande regiões brancas e será comprimida significativamente.

Imagem com cores chapadas: tendem a apresentar extensas regiões de mesma cor - compressão boa

Imagem fotográfica: muitas e sutis variações de cores/tons tende a não apresentar um boa taxa de compressão

Métodos Estatísticos

Métodos Estatísticos

- Utilizam códigos de comprimentos variáveis.
- Dados na informação original que aparecem com maior frequência são representados por palavras-código menores
- Dados de menor incidência são representados por palavras-código maiores
- Ex: Shannon-Fano / Huffman

Métodos Estatísticos – Entropia

A capacidade de um texto ser comprimido pode ser medida pela *entropia*.

Podemos definir *entropia* **como a menor quantidade de** *bits* **por** *símbolos* **necessária para guardar o conteúdo de informação da fonte** e, portanto, para representar textos recuperáveis gerados por ela.

Ela pode ser considerada um **limite para a compressão** e é usada como uma medida de eficiência para os métodos de compressão.

- Baseada na estimativa (ou cálculo) da frequência de cada símbolo
- Símbolos mais frequentes usarão menos bits
- Símbolos menos frequentes usarão mais bits

Exemplo:

aaaeabbaaaabcaaadacaaabbaaaabbcaaaeaaaba

a: 26 vezes Código: 1 d: 1 vez Código: 0110

b: 8 vezes Código: 00 e: 2 vezes Código: 0111

c: 3 vezes Código: 010

Exemplo:

aaaeabbaaaabcaaadacaaabbaaaabbcaaaeaaaba

$$S_x = -log_2(P_x)$$

- x = Símbolo
- S_x = Entropia de x
- P_x= Probabilidade de x

aubu —		
Pa = 26/40 = 0,65	Sa = 0,62 * 26	= 15,50
Pb = 8/40 = 0,2	Sb = 2,32 * 8	= 18,58
Pc = 3/40 = 0.075	Sc = 3,74 * 3	= 11,21
Pd = 1/40 = 0,025	Sd = 5,32 * 1	= 5,32
Pe = 2/40 = 0,05	Se = 4,32 * 2	= 8,54
		59,15

Exemplo:

aaaeabbaaaabcaaadacaaabbaaaabbcaaaeaaaba

$$S_x = -log_2(P_x)$$

- x = Símbolo
- S_x = Entropia de x
- P_x= Probabilidade de x

Pa = 26/40 = 0,65	Sa = 0,62 * 26	= 15,50
Pb = 8/40 = 0,2	Sb = 2,32 * 8	= 18,58
Pc = 3/40 = 0,075	Sc = 3,74 * 3	= 11,21
Pd = 1/40 = 0,025	Sd = 5,32 * 1	= 5,32
Pe = 2/40 = 0,05	Se = 4,32 * 2	= 8,54
		59,15

Probabilidade de cada símbolo

Exemplo:

aaaeabbaaaabcaaadacaaabbaaaabbcaaaeaaaba

Entropia de cada símbolo

S_x	=	-lc	g_2	(P_x))
- 1			02	\ \ \ \ \ \ \	

- x = Símbolo
- S_x = Entropia de x
- P_x= Probabilidade de x

Pa = 26/40 = 0,65	Sa = 0,62 * 26	= 15,50
Pb = 8/40 = 0,2	Sb = 2,32 * 8	= 18,58
Pc = 3/40 = 0,075	Sc = 3,74 * 3	= 11,21
Pd = 1/40 = 0,025	Sd = 5,32 * 1	= 5,32
Pe = 2/40 = 0,05	Se = 4,32 * 2	= 8,54
		59,15

Probabilidade de cada símbolo

Exemplo:

Entropia de cada símbolo

$$S_x = -log_2(P_x)$$

aaaeabbaaaabcaaadacaaabbaaaabbcaaaeaaaba

- x = Símbolo
- S_x = Entropia de x
- P_x= Probabilidade de x

Pa = 26/40 = 0,65	Sa = 0,62 * 25
Pb = 8/40 = 0,2	Sb = 2,32 * 8
Pc = 3/40 = 0,075	Sc = 3,74 * 3
Pd = 1/40 = 0,025	Sd = 5,32 * 1
Pe = 2/40 = 0.05	Se = 4 32 * 2

Probabilidade de cada símbolo

Entropia Total

59,15

= 15,50

= 18,58

= 11,21

= 5,32

= 8,54

$$S_x = -log_2(P_x)$$

Símbolo	Probabilidade	Entropia para cada símbolo	Entropia total
U	12/72		
V	18/72		
W	7/72		
Х	15/72		
Υ	20/72		

$$S_x = -log_2(P_x)$$

Símbolo	Probabilidade	Entropia para cada símbolo	Entropia total
U	12/72	2,584963	31,01955
V	18/72	2,000000	36,00000
W	7/72	3,362570	23,53799
Х	15/72	2,263034	33,94552
Υ	20/72	1,847997	36,95994

- Apresentado por C. E. Shannon e por R. M. Fano em 1949.
- O objetivo deste método é associar códigos menores a símbolos mais prováveis e códigos maiores aos menos prováveis.
- A codificação parte da construção de uma árvore ponderada considerando o peso de cada símbolo, ou seja, a probabilidade de ocorrência do mesmo em um texto.

•

Shannon-Fano - Algoritmo

- 1) Criar uma lista de **probabilidades ou contagens de frequência** para o determinado **conjunto de símbolos** de forma que a frequência relativa de ocorrência de cada símbolo seja conhecida.
- 2) Classificar a lista de símbolos em ordem **decrescente de probabilidade**, os mais prováveis à esquerda e os menos prováveis à direita.
- 3) Dividir a **lista em duas partes**, com a probabilidade **total** de ambas as partes serem o mais próximas possível.
- 4) Atribuir o valor 0 à parte esquerda e 1 à parte direita.
- 5) Repetir os passos 3 e 4 para cada parte, até que todos os símbolos sejam divididos em subgrupos individuais.

https://wordcounter.net/character-count

Por exemplo, seja a seguinte lista $L = \{s1, s2, s3, s4, s5\}$, com respectivos pesos $P = \{0,3; 0,2; 0,2; 0,2; 0,1\}$, obtidos a partir da seguinte sequência de símbolos.

- s1s2s3s4s5s1s2s3s4s1s1s2s3s4s5s1 s2s3s4s1s1s2s3s4s5s1s2s3s4s1s1s2s 3s4s5s1s2s3s4s1s1s2s3s4s5s1s2s3s4 s1s1s2s3s4s5s1s2s3s4s1s1s2s3s4s5s 1s2s3s4s1s1s2s3s4s5s1s2s3s4s1s1s2 s3s4s5s1s2s3s4s1s1s2s3s4s5s1s2s3s 4s1s1s2s3s4s1
- 12 repetições da sequencia
 s1s2s3s4s5s1s2s3s4s1
- 120 símbolos no total
- 36 símbolos s1
- 24 símbolos s2,s3 e s4
- 12 símbolos s5

```
Por exemplo, seja a seguinte lista L = \{s1, s2, s3, s4, s5\} com respectivos pesos P = \{0,3; 0,2; 0,2; 0,1\}
```

```
{s1, s2, s3, s4, s5}
```


- Sem perdas
- Eficiente e prático, mas gera resultados sub-ótimos,
- Sua aplicação prática é quase nula em relação ao método de Compressão Huffman
- Huffman: constrói a árvore binária de forma bottom-up!

•

Huffman

Huffman

- Proposto por Huffman em 1952
- Método com o objetivo de obter a redundância mínima desejada do texto comprimido.
- Construção de uma árvore de menor altura ponderada.
- Como em Shannon-Fano, considera-se a existência de um alfabeto fonte, onde cada símbolo tem seu respectivo peso.
- Como o objetivo é criar um código de prefixo mínimo, associamos códigos menores a símbolos mais prováveis e códigos maiores a símbolos menos prováveis.

Huffman - Algoritmo

- 1)Considere uma floresta em que cada árvore tenha sua raiz associada a um símbolo do alfabeto com seu respectivo peso;
- 2)Remova quaisquer duas árvores cujas raízes tenham menor peso. Acrescente uma nova árvore que tenha uma raiz cujos filhos sejam árvores anteriores e cujo peso seja a soma dos pesos das raízes dessas árvores;
- 3)Repita o passo anterior até que exista somente um árvore na floresta.

Por exemplo, seja a seguinte lista $L = \{s1, s2, s3, s4, s5\}$, com respectivos pesos $P = \{0,1; 0,1; 0,2; 0,2; 0,4\}$, temos a seguinte floresta inicial

- 1) Remova quaisquer duas árvores cujas raízes tenham menor peso.
- 2) Acrescente uma nova árvore que tenha uma raiz cujos filhos sejam árvores anteriores e
- 3) cujo peso seja a soma dos pesos das raízes dessas árvores

- 1) Remova quaisquer duas árvores cujas raízes tenham menor peso.
- 2) Acrescente uma nova árvore que tenha uma raiz cujos filhos sejam árvores anteriores e
- 3) cujo peso seja a soma dos pesos das raízes dessas árvores

- 1) Remova quaisquer duas árvores cujas raízes tenham menor peso.
- 2) Acrescente uma nova árvore que tenha uma raiz cujos filhos sejam árvores anteriores e
- 3) cujo peso seja a soma dos pesos das raízes dessas árvores

- 1) Remova quaisquer duas árvores cujas raízes tenham menor peso.
- 2) Acrescente uma nova árvore que tenha uma raiz cujos filhos sejam árvores anteriores e
- 3) cujo peso seja a soma dos pesos das raízes dessas árvores

Hayala Curto

Hayala Curto

Hayala Curto

s1s1s5s4s3

=

4 01001000 1110

0000

s1s1s5s4s3s5s5

Código	Símbolo
00	s5
010	s1
011	s2
10	s3
11	s4

https://www.csfieldguide.org.nz/en/interactives/huffman-tree/

Huffman

- Sem perdas
- Construção da a árvore binária de forma bottom-up!
- A árvore não é única, mas garante códigos de redundância mínima.
- Necessita de duas leituras sobre o texto fonte = deficiente em alguns casos, como por exemplo na transmissão de dados
- Solução: códigos de Huffman dinâmico = a árvore de Huffman é reconstruída conforme as mudanças de pesos apresentadas pelos símbolos fonte.

•