

# Nombres réels approchés

## Algo & Prog avec R

A. Malapert, B. Martin, M. Pelleau, et J.-P. Roy 6 avril 2019

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

# Nombres réels approchés

Ou nombres réels inexacts. On parle de nombres flottants (float).

### Calcul entier et réel en précision finie

Ils n'ont qu'un nombre limité de chiffres avant et après la "virgule" (le point décimal).

#### Donc aucun nombre irrationnel!

### Approximation de $\pi$

```
> pi
[1] 3.141593
> sprintf('%.17f',pi)
[1] "3.14159265358979312"
> typeof(pi)
[1] "double"
```

### **Approximation de** $\sqrt{2}$

```
> sqrt(2)
[1] 1.414214
> sprintf('%.17f', sqrt(2) ** 2)
[1] "2.0000000000000044"
> sqrt(2) ** 2 == 2
[1] FALSE
```

Mais,

```
\pi = 3.14159265358979323...
```

## Nombres rationels

Les nombres rationels peuvent être représenté sous la forme d'une fraction, par exemple  $\frac{1}{10}$ .

- ▶ Le nombre  $\frac{1}{10} = (0.1)_{10}$ , par exemple, est simple dans le système décimal.
- Mais, il possède une infinité de chiffres après la virgule dans le système binaire!

Lorsque R affiche une valeur approchée, ce n'est qu'une approximation de la véritable valeur interne de la machine :

```
> 0.1 # quelle est la valeur de 0.1 ?
[1] 0.1 # ceci est une illusion !
```

La fonction print ou printf permet de voir (en décimal) la véritable représentation en machine de 0.1 qui n'est pas 0.1 mais :

```
> print(0.1,digits=17)
[1] 0.1000000000000001
```

# Représentation des nombres réels

- Les ressources d'un ordinateur étant limitées, on représente seulement un sous-ensemble des réels de cardinal fini.
- Ces éléments sont appelés nombres à virgule flottante.
- Leurs propriétés sont différentes de celles des réels.

#### Problèmes et limitations

- les nombres et les calculs sont nécessairement arrondis.
- l y a des erreurs d'arrondi et de précision
- On ne peut plus faire les opérations de façon transparente

### Le zéro n'est plus unique!

```
> 10^20 + 1 == 10^20

[1] TRUE

> 10^20 + 2 == 10^20

[1] TRUE
```

En math, il existe un unique nombre y tel que x + y = x, le zéro!

# Égalité entre nombres flottants

Le calcul sur des nombres approchés étant par définition INEXACT, on évitera sous peine de surprises désagréables de questionner l'ÉGALITÉ en présence de nombres approchés!

```
> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 0.7

[1] TRUE
> 0.1 * 7 == 0.7

[1] FALSE
> 0.1 + 0.1 + 0.1 == 0.3

[1] FALSE
> 0.1 * 3 == 0.3

[1] FALSE
```

Le domaine du calcul approché est TRES difficile, et prévoir à l'avance le nombre exact de décimales correctes lors d'un résultat de calcul reste réservé aux spécialistes d'Analyse Numérique (brrr) . . .

## Alors que faire? Remplacer l'égalité par une précision h

```
a == b # BAD !
```

```
(a - b) < h # GOOD !
```

## Autres problèmes avec les nombres flottants

#### Une boucle infinie?

```
x <- 1
while( x > 0 ) {
  print(x)
  x <- x / 2
}</pre>
```

Est-ce que cette boucle s'arrête? En math? En info?

## **Annulation catastrophique** $x^2 - y^2$

```
> y <- 2**50

> x <- y + 1

> z1 <- x**2 - y**2 # appliquer directement la formule

> z2 <- (x - y)*(x + y) # appliquer une identité remarquable

> z2 - z1 # Est-ce que les résultats sont identiques ?

[1] 1
```

# Exemple : approximation de $\sqrt{r}$

Par la méthode des tangentes de Newton (1669).

Soit à calculer la racine carrée approchée d'un nombre réel r > 0, par exemple  $\sqrt{2}$ , sans utiliser sqrt!

#### Newton

Si a est une approximation de  $\sqrt{r}$  alors :

$$b=\frac{1}{2}(a+\frac{r}{a})$$

est une exception encore meilleure! Pourquoi? Cf TD.

Nous allons développer cet algorithme en répondant à trois questions :

ITÉRATION Comment améliorer l'approximation courante?

**TERMINAISON** Mon approximation courante a est-elle assez bonne?

**INITIALISATION** Comment initialiser la première approximation?

# Algorithme d'approximation de $\sqrt{r}$

### **ITÉRATION**

Pour améliorer l'approximation, il suffit d'appliquer la formule de Newton, qui fait approcher a de  $\sqrt{r}$  :

$$a = 0.5 * (a + r / a)$$

#### **TERMINAISON**

Mon approximation courante a est-elle assez bonne? Elle est assez bonne lorsque a est très proche de  $\sqrt{r}$ . Notons h la variable dénotant la précision, par exemple  $h=2^{-20}$ .

```
abs(a*a - r) < h
```

#### INITIALISATION

Comment initialiser l'approximation ? En fait, les maths sous-jacentes à la technique de Newton montrent que n'importe quel réel a > 0 convient :

```
a = 1
```

# Programme d'approximation de $\sqrt{r}$

```
Racine <- function(r, h = 2**(-10)) {
    a <- 1
    while( abs(a*a -r) >= h) {
        print(a)
        a <- 0.5 * (a + r/a)
    }
    return(a)
}</pre>
```

```
> approx <- Racine(r = 2, h = 10**(-10))
[1] 1
[1] 1.5
[1] 1.416667
[1] 1.414216
> print(approx, digit = 15)
[1] 1.41421356237469
> print(sqrt(2), digit = 15)
[1] 1.4142135623731
```

#### Observation

La méthode de Newton converge rapidement vers le résultat.

## Mais d'où vient la formule de Newton?

D'un simple calcul de tangentes (cf  $\mathsf{TD}$ ) . . .

TODO Ajouter figure

### Le nombre $\pi$

- $\blacktriangleright$   $\pi$  est défini comme le rapport constant entre la circonférence d'un cercle et son diamètre dans le plan euclidien.
- ▶ De nos jours, les mathématiciens définissent  $\pi$  par l'analyse réelle à l'aide des fonctions trigonométriques elles-mêmes introduites sans référence à la géométrie.
- Le nombre  $\pi$  est irrationnel, ce qui signifie qu'on ne peut pas l'écrire comme une fraction.
- Le nombre  $\pi$  est transcendant ce qui signifie qu' il n'existe pas de polynôme à coefficients rationnels dont  $\pi$  soit une racine.

# Calcul de $\pi$ par la formule de Leibniz

On utilisera la formule de Leibniz issue du développement en série de Taylor en 0 de arctan(x) évalué au point 1 :

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{9} + \frac{1}{11} + \dots = \frac{\pi}{4}$$

Elle a été découverte en Occident au XVIIe, mais apparaît déjà chez Madhava, mathématicien indien de la province du Kerala, vers 1400.

c.f. Wikipedia

Nous allons développer un algorithme d'approximation de  $\pi$ .

ITÉRATION Comment améliorer l'approximation courante?

TERMINAISON Mon approximation courante est-elle assez bonne?

Est-ce que le calcul prend trop de temps?

INITIALISATION Comment initialiser la première approximation?

# Algorithme d'approximation de $\pi$

#### **ITÉRATION**

Pour améliorer l'approximation, étant en possession de la somme acc des i premiers termes, on voudra obtenir la somme des i+1 premiers. Il suffira donc d'incrémenter i, puis d'ajouter  $\frac{(-1)^i}{2i+1}$  à acc.

```
i <- i + 1
term <- (-1)**i / (2*i + 1)
acc <- acc + term
```

#### **TERMINAISON**

Mon approximation courante a est-elle assez bonne? Elle est assez bonne lorsque je n'arrive plus à l'améliorer. Notons h la précision.

Est-ce que le calcul prend trop de temps? Notons n le nombre maximum de termes à calculer.

```
abs(term) < h || i > n
```

#### **INITIALISATION**

```
i <- 0
acc <- 1
```

# Programme d'approximation de $\boldsymbol{\pi}$

```
LeibnizPi <- function(n = 10**4, h = 2^(-20)) {
    i <- 0
    term <- 1
    acc <- 1
    while( (i <= n) && 4*abs(term) > h) {
        i <- i + 1
        term <- (-1)**i / (2*i + 1)
        acc <- acc + term
    }
    return(4*acc)
}</pre>
```

```
> LeibnizPi(n = 100, h = 0)
[1] 3.131789
> LeibnizPi(n = 1000, h = 0)
[1] 3.140595
> LeibnizPi(n = 100000, h = 0)
[1] 3.141583
> pi
[1] 3.141593
```

# Calcul de $\pi$ : analyse du programme

Calculons le temps nécessaire pour atteindre une précision donnée sans limiter le nombre d'itérations.

```
> system.time(LeibnizPi(n = Inf, h = 10**(-4)))
utilisateur système écoulé
0.006 0.000 0.006
```

- ► Le temps d'exécution et le nombre d'itérations augmentent linéairement avec la précision.
- ightharpoonup La recherche d'une estimation très précise de  $\pi$  demande un temps de calcul important.
- ▶ En extrapolant ces résultats, il faudrait  $5 \times 10^8 secondes$  (≥ 15 ans) pour obtenir une estimation de  $\pi$  à la précision machine (approximativement 15 décimales).
- Certaines formules convergent beaucoup plus rapidement.

| Précision        | Temps (s) |
|------------------|-----------|
| $10^{-4}$        | 0.006     |
| $10^{-5}$        | 0.147     |
| $10^{-6}$        | 0.599     |
| $10^{-7}$        | 5.347     |
| 10 <sup>-8</sup> | 52.860    |
|                  |           |

## Calcul de $\pi$ : optimisation du programme

- Les multiplications, divisions, et puissances sont plus coûteuse en temps de calcul que les additions et soustractions.
- Exploitons la récurrence pour accélerer les calculs.

```
LeibnizPi2 <- function(n = 10**4, h = 2^{(-20)}) {
  i <- 0
  term <- 1
  acc <- 1
  h <- h / 4 ## éviter la multiplication du test
  sign <- 1 ## mémoriser le signe du terme
  denom <- 1 ## mémoriser le dénominateur du terme
  while ((i \le n) \&\& abs(term) > h) {
    i < -i + 1
    sign <- -1 * sign # éviter une puissance
    denom <- denom + 2 # éviter une multiplication
    term <- sign / denom
    acc <- acc + term
  return (4*acc)
```

# Calcul de $\pi$ : comparaison de programmes

| Précision    | Temps (s) |
|--------------|-----------|
| LeibnizPi    | 5.347     |
| LeibnizPi2   | 4.157     |
| En langage C | 0.007     |

- Les optimisations du programme offrent un gain supérieur à 20%.
- R est donc un langage interprété de haut niveau ce qui se paie au niveau des performances.
- ► Le langage C, entre autres, est beaucoup plus rapide.
- ► Le langage C est un langage impératif, généraliste et de bas niveau où chaque instruction du langage est compilée.

# Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R