

Loan Approval Screener

Jim Petoskey

Flatiron School

Phase 3 Project

Outline

Business Problem

Summary

Data -

Overview, Manipulation, Feature Selection, Feature Importance

Methods

Results

Conclusions

Business Problem

Make strong inferences with data from prior applications about likelihood of approval.

Business Opportunity

- Reduce human-hours for banks
 - Use model to select applications that are highly likely to be approved.
- Improve pipeline for customer experience by automating questions and providing likelihood of approval for customer.

Data - Overview

Loan Application Data

- 307,511 Applications
- 122 Features
 - Type of Loan:
 - 90% Cash Loans
 - 10% Revolving Loans
 - Application Results:
 - 8% Approved
 - 92% Rejected

Data Manipulation

- Class Imbalance Issues:
 - Improve balance of Approval/Refusal ratio
 - Used under-sampling and over-sampling techniques to improve balance
- Replaced missing numerical and categorical data with mean and mode, respectively.
- 100 % of data from 39 features and 1 target feature used for model.

Data Manipulation, continued Improving Class Balance

- Initial data set had an 8% prevalence of Loan Approval.
 - Ideally, a classification model will have a 50% prevalence of each class.

Solutions for class imbalance:

- Under-sample Majority Class (Loan Rejection)
 - Randomly selected 40,000 applications that were rejected.
- Over-sample Minority Class (Loan Approval)
 - Used Synthetic Minority Oversampling (SMOTE) to increase loan approvals from 24,825 values to 40,000 values.

Feature Selection

Optimal number of features: 63

- Optimal number of features to include was 63.
- I chose 39 features, and after encoding the categorical features, the final models included 61 columns.
- I would have added more features, but I was limited in computational power on my machine.

Feature Importance

- Top Ten Features by importance in the 6th Random Forest Model.
- Top singular model produced
- EXT_SOURCE not defined, but could be a form of credit score.
- Important to note these features so they are included on future loan applications:
 - Birth Date
 - Employment start date
 - Amount of Credit Available
 - Common Annuities

Methods

- Classification Modeling
 - Main Models:
 - Random Forest
 - Gradient Boost
 - Voting Classifier
- Optimize for Loan Approval, or True Positive Rate
 - Value high True Negative Rate, as well.
 - Best scores for True Positive Rate valued because that means the model will have a high likelihood of flagging a
- Identify features with most influence on Loan Approval

Final Model Methods

- Voting Classifier
 - Used 3 models:
 - Top Random Forest optimized for True Positive Rate
 - Top Random Forest optimized for True Negative Rate
 - Top Gradient Boost Model optimized for True Positive Rate
 - Combination of these models yielded better results than any one of the models alone.
 - This is called an ensemble model and optimizes the best parts of each model.
 - 2x heavier weight was applied to the top Random Forest model for True Positive Rate

Results of Best Model

- 84% True Positive Rate
 - 84/100 applications that were approved, were flagged for approval by model
 - Maintained a 40% True Negative Rate, which means many applications can be successfully filtered out.
- Model as a Screener:
 - 84% of applications that are approved, will be recommended for viewing by a person.
 - 31% of applications can be filtered out, with an 84% chance that they would have been rejected.

Conclusions

- This model could save banks time and money by accurately filtering loan applications.
 - Could reduce applications read by people by over 30%
 - 84% likely that approved loans will be recommended for review by a person
 - Makes loan officer's job simpler and faster.
- Top features for banks to follow in this model:
 - Birth Date
 - Employment start date
 - Amount of Credit Available
 - Common Annuities

Further Studies Recommended

- Gather data on more relevant features
 - Credit Score
 - Cash and Invested Savings
 - Retirement Savings
 - Debt to Income Ratio
- Test model on other samples of market data
 - Iterate and improve model for these samples or market segments
- Improve pipeline for loans by developing digital questionnaire
 - Attain data inexpensively directly from consumer
 - Tailor questions to garner data from most relevant features