EE2302 Foundations of Information Engineering

Assignment 4 (Solution)

1. The statement is true.

Proof: Suppose *m* is any even integer and *n* is any integer. [We must show that *mn* is even.]

By the definition of even numbers, there exists an integer k such that m=2k. By substitution,

$$mn = (2k)n = 2(kn).$$

Q.E.D.

Since *kn* is an integer, by the definition of even numbers, *mn* is even.

- 2. Let p = "the number is prime", q = "the number is either odd or 2". We should prove by contraposition: $p \to q \equiv \sim q \to \sim p$. Suppose the number is neither odd nor 2. Then it is even but not 2, i.e., 4, 6, 8, or 10, Therefore, it can be divided by 2 and is not prime. By contraposition, the statement is true. *Q.E.D.*
- 3. Yes. Define a function $f:(0,1) \to (1,100)$ such that f(x) = 99x + 1. Suppose $f(x_1) = f(x_2)$. Then $99x_1 + 1 = 99x_2 + 1$, which implies that $x_1 = x_2$. Hence, f is one-to-one. Given any $y \in (1,100)$, there exists $x = \frac{y-1}{100} \in (0,1)$ such that f(x) = y. Hence, f is onto. Therefore, f is a one-to-one correspondence. Hence, the two sets have the same cardinality.