Bayesian Statistics

One-parameter models

Nan Lin

Department of Mathematics

Washington University in St. Louis

$y|\theta \sim Binomial(n,\theta)$

- Prior: $\theta \sim U(0,1)$
- ▶ Posterior distribution: $\theta | y \sim beta(y + 1, n y + 1)$
- ▶ Predictive distribution: $\tilde{y}|y \sim Bernoulli(\frac{y+1}{n+2})$
- Summary of posterior distribution
 - Posterior mean: $E(\theta|y) = \frac{y+1}{n+2}$
 - Posterior median, mode
 - Posterior variance: $var(\theta|y) = \frac{(y+1)(n-y+1)}{(n+2)^2(n+3)}$
 - Posterior quantile: find θ_{τ} such that $P(\theta \leq \theta_{\tau}|y) = \tau$

Summary of posterior distribution (cont)

▶ $100(1-\alpha)\%$ credible (posterior) interval [a, b]:

$$P(\theta \in [a, b]|y) = 1 - \alpha$$

- Highest posterior density (HPD) region
- Symmetric (quantile) posterior interval: $\left[\theta_{\frac{\alpha}{2}}, \theta_{1-\frac{\alpha}{2}}\right]$

(a) 95% HPD

(b) Symmetric 95%

Credible interval

- If the posterior distribution is not unimodal,
 - ▶ HPD interval comprises disjoint intervals
 - Symmetric (quantile) posterior interval is still a continuous interval
 - However, in such a situation, using a single interval is probably not a good idea

What if a different prior is used?

Let's consider the following prior

$$\theta \sim beta(\alpha, \beta)$$

- $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- Hyperparameters: α , β
- Posterior density:

$$p(\theta|y) \propto p(y|\theta)p(\theta) \propto \theta^{y+\alpha-1}(1-\theta)^{n-y+\beta-1}$$

Posterior distribution:

$$\theta | y \sim beta(y + \alpha, \beta + n - y)$$

Posterior mean:

$$E(\theta|y) = \frac{\alpha + y}{\alpha + \beta + n}$$

Posterior variance:

$$var(\theta|y) = \frac{(\alpha+y)(\beta+n-y)}{(\alpha+\beta+n)^2(\alpha+\beta+n+1)} = \frac{E(\theta|y)[1-E(\theta|y)]}{\alpha+\beta+n+1}$$

Comments

- Posterior mean is a weighted average of the posterior mean and sample mean
 - Prior mean: $E(\theta) = \frac{\alpha}{\alpha + \beta}$
 - Sample mean (MLE): y/n
 - $E(\theta|y) = \frac{\alpha + y}{\alpha + \beta + n} = wE(\theta) + (1 w)y/n, \text{ where } w = \frac{\alpha + \beta}{\alpha + \beta + n}$
- ▶ As $n \to \infty$, $w \to 0$, and $E(\theta|y) \to y/n$
 - The influence of prior distribution becomes negligible for large sample
- ▶ As $n \to \infty$, one can show that $\theta | y$ can be well approximated by a normal distribution
 - Different parameterization lead to different approximation accuracy
 - For example, $logit(\theta) = log[\theta/(1-\theta)]$ will make the normal approximation more accurate

$y|\theta \sim N(\theta, \sigma^2)$

- Prior: $\theta \sim N(\mu_0, \tau_0^2)$
- Likelihood: $p(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta)^2}{2\sigma^2}}$
- ▶ Posterior density: $p(\theta|y) \propto \exp\left(-\frac{(\theta-\mu_1)^2}{2\tau_1^2}\right)$, where

$$\mu_1 = \frac{\frac{\mu_0}{\tau_0^2} + \frac{y}{\sigma^2}}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}} \text{ and } \frac{1}{\tau_1^2} = \frac{1}{\tau_0^2} + \frac{1}{\sigma^2}$$

- Precision: 1/variance
- ▶ Posterior distribution: $\theta | y \sim N(\mu_1, \tau_1^2)$
- Predictive distribution: $\tilde{y}|y \sim N(\mu_1, \sigma^2 + \tau_1^2)$

$$y_1, \dots, y_n | \theta \sim N(\theta, \sigma^2)$$

- Prior: $\theta \sim N(\mu_0, \tau_0^2)$
- ▶ Likelihood: $p(y_1, ..., y_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i \theta)^2}{2\sigma^2}}$
- Posterior distribution:
- Posterior mean: