

Lecture 8: F-Test for Nested Linear Models

Zhenke Wu
Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health
zhwu@jhu.edu
http://zhenkewu.com

11 February, 2016

Lecture 7 Main Points Again

Constructing *F*-distribution:

- $ightharpoonup Y_i \stackrel{iid}{\sim} Gaussian(\mu_i, \sigma_i^2)$
- $ightharpoonup Z_i = rac{Y_i \mu_i}{\sigma_i}; \ Z_i \stackrel{iid}{\sim} Gaussian(0,1)$
- ▶ Define **quadratic** forms $Q_1 = Z_1^2 + \cdots + Z_{n_1}^2$ and $Q_2 = Z_{n_1+1}^2 + \cdots + Z_{n_1+n_2}^2$
- lacksquare $Q_1 \sim \chi^2_{n_1}$ with mean n_1 and variance $2n_1$
- $Q_2 \sim \chi^2_{n_2}$ with mean n_2 and variance $2n_2$
- ▶ Q_1 is **independent** of Q_2
- ▶ $F_{n_1,n_2} = \frac{Q_1/n_1}{Q_2/n_2} \sim \mathcal{F}(n_1,n_2)$ (*F*-distribution with n_1 and n_2 degrees of freedom; "F" for Sir R.A. Fisher)

Lecture 7 Main Points Again (continued)

- ► Data:
 - n observations; p + s covariates
 - \triangleright continuous outcome Y_i , measured with error
 - ightharpoonup covariates: $\mathbf{X}_i = (X_{i1}, \dots, X_{ip}, X_{i,p+1}, \dots, X_{i,p+s})^{\top}$, for $i = 1, \dots, n$
- Question: In light of data, can we use a simpler linear model nested within a complex one?
- ► Hypothesis testing:
 - (a) Null model: $\mathbf{Y} \sim \text{Gaussian}_n(\mathbf{X}_N \boldsymbol{\beta}_N, \sigma^2 \mathbf{I}_n)$
 - **X**_N: design matrix $n \times (p+1)$ obtained by stacking observations X_i
 - ► First *p* (transformed) covariates and 1 intercept
 - Regression coefficients: $\beta_N = (\beta_0, \beta_1, \dots, \beta_p)^{\top}$
 - Standard deviation of measurement errors: σ
 - (b) Extended model: $\mathbf{Y} \sim \mathsf{Gaussian}_n(\mathbf{X}_E \boldsymbol{\beta}_E, \sigma^2 \mathbf{I}_n)$
 - **X**_E: design matrix with intercept+p + s covariates
 - $\beta_{E} = (\beta_{N}^{\top}, \beta_{p+1}, \dots, \beta_{p+s})^{\top}$
 - Null model: H_0 : $\beta_{p+1} = \beta_{p+2} = \cdots = \beta_{p+s} = 0$

Lecture 7 Main Points Again (continued)

Null model:
$$H_0$$
: $\beta_{p+1} = \beta_{p+2} = \cdots = \beta_{p+s} = 0$

Let
$$\boldsymbol{\beta}_{[p+]} = (\beta_{p+1}, \cdots, \beta_{p+s})^{\top}$$

- ▶ Rationale of the *F*-Test
 - ▶ If H_0 is true, estimates $\widehat{\beta}_{p+1}, \cdots, \widehat{\beta}_{p+s}$ should all be close to 0
 - ▶ Reject H_0 if these estimates are sufficiently different from 0s.
 - ▶ However, not every β_{p+j} , $j=1,\ldots,s$, should be treated the same; they have different precisions
 - Use a quadratic term to measure their joint differences from 0, taking account of different precisions:

$$\widehat{\boldsymbol{\beta}}_{[\rho+]}^{\top} \left(\operatorname{Var}_{\mathcal{E}} [\widehat{\boldsymbol{\beta}}_{[\rho+]}] \right)^{-1} \widehat{\boldsymbol{\beta}}_{[\rho+]}$$
 (1)

- ► Estimate σ^2 by RSS_E/(n-p-s-1); RSS for "residual sum of squares"

Lecture 7 Main Points Again (continued)

▶

$$F = \frac{(RSS_N - RSS_E)/s}{RSS_E/(n - p - s - 1)}$$
 (2)

- ▶ F(s, n-p-s-1): F-distribution with s and n-p-s-1 degrees of freedom
- ► $RSS_N = Y'(I H_N)Y$; $H_N = X_N(X'_NX_N)^{-1}X_N$; "H" for **hat** matrix, or projector
- ► $RSS_E = Y'(I H_E)Y$; $H_E = X_E(X'_EX_E)^{-1}X_E$
- ▶ $(RSS_N RSS_E)/\sigma^2 \sim \chi_s^2$ and $RSS_E/\sigma^2 \sim \chi_{n-p-s-1}^2$; they are **independent** [Proof]:
 - Algebraic: The former is a function of \widehat{eta}_E , which is independent of RSS_E]
 - Geometric: Squared lengths of orthogonal vectors

Geometric Interpretation: Projection

- $\widehat{Y}_N = H_N Y$: fitted means under the null model
- $\hat{Y}_E = H_E Y$: fitted means under the extended model

Analysis of Variance (ANOVA) for Regression Johns Hopkins

Table: ANOVA for Regression

Model	df	Resudial	Residual Sum	Residual
Model	aı	df	of Squares (RSS)	Mean Square
Null	p+1	n - p - 1	$RSS_N = R'_N R_N$	$\frac{\frac{R'_{N}R_{N}}{n-p-1}}{\frac{R'_{E}R_{E}}{n-p-s-1}} = S_{N}^{2}$
Extended	p+s+1	n-p-s-1	$RSS_E = R'_E R_E$	$\frac{R_E'R_E}{n-p-s-1} = S_E^2$
Change	S	-s	$(R_N'R_N-R_E'R_E)$	$\frac{R'_N R_N - R'_E R_E}{s}$
			$=R_N'R_N-R_E'R_E$	

▶
$$F_{s,n-p-s-1} = \frac{(R'_N R_N - R'_E R_E)/s}{R'_E R_E/(n-p-s-1)}$$

$$\hbox{ Reject H_0 if $F>$}\underbrace{\mathcal{F}_{1-\alpha}(s,n-p-s-1)}_{(1-\alpha\%) \ \textit{percentile of the \mathcal{F} distribution}}, \ \text{e.g., $\alpha=0.05$}$$

Some Quick Facts about *F*-distribution

Special cases of $\mathcal{F}(n_1, n_2)$

- $ightharpoonup n_2 o \infty$:
 - $ightharpoonup Q_2/n_2 \stackrel{in probability}{\longrightarrow} constant$
 - ▶ For a fixed n_1 , $F_{n_1,n_2} \stackrel{\text{in distribution}}{\longrightarrow} Q_1/n_1 \sim \chi^2_{n_1}$ as n_2 approaches infinity
 - Or equivalently $n_1 F_{n_1,\infty} \sim \chi^2_{n_1}$
- ▶ If s = 1:
 - ► The *F*-statistic equals $(\widehat{\beta_{p+1}}/se_{\widehat{\beta}_{p+1}})^2$ for testing the null model $H_0: \beta_{p+1} = 0$
 - ▶ Under H_0 , it is distributed as $\mathcal{F}(1, n-p-1)$
 - Approximately distributed as χ_1^2 when n>>p (therefore 3.84 is the critical value at the 0.05 level)

For F distribution with denominator $df_2 = 1, 2$, the 0.95 percentile increases with df_1 ; for $df_2 > 2$, the percentile decreases with df_1 .

$df_2 \backslash df_1$	1	2	3	10	100
1	161.45	199.50	215.71	241.88	253.04
2	18.51	19.00	19.16	19.40	19.49
3	10.13	9.55	9.28	8.79	8.55
100	3.94	3.09	2.70	1.93	1.39
1000	3.85	3.00	2.61	1.84	1.26
∞	3.84	3.00	2.60	1.83	1.24

Table: 95% quantiles for F-distribution with degrees of freedom df_1 and df_2 .

Figure: Density functions for F distributions; Red lines for 95% quantiles

Example

- ▶ Data: National Medical Expenditure Survey (NMES)
- Objective: To understand the relationship between medical expenditures and presence of a major smoking-caused disease among persons who are similar with respect to age, sex and SES
- $ightharpoonup Y_i = \log_e(total\ medical\ expenditure_i + 1)$
- $ightharpoonup X_{i1} = age_i 65 years$
- ► X_{i2} = ♂
- ► # of subjects : *n* = 4078

Table: NMES Fitted Models

Model	Design	df	Residual MS	Resid. df
Α	X_1, X_2	3	1.521	4075
В	$X_1, (X_1 - (-20)^+, (X_1 - 0)^+), X_2$	5	1.518	4073
C	$[X_1,(X_1-(-20)^+,(X_1-0)^+)]*X_2$	8	1.514	4070
	all interactions and main effects			

NMES Example: Question 1

Is average log medical expenditures roughly a linear function of age?

- ► Compare which two models?
- ► Calculate Residual Sum of Squares and Residual Mean Squares.
- Calculate F-statistic; What are the degrees of freedom for its distribution under the null?
- ► Compare it to the critical value at the 0.05 level

NMES Example: Question 2 (In-Class Exercise) JOHNS HOPKINS BLOOMBERG SCHOOL

- Is the non-linear relationship of average log expenditure on age the same for ♂ and ♀? (Are there curves parallel?)
- ► Or equivalently, is the difference between average log medical expenditure for ♂-vs-♀ the same at all ages?

Questions?

Notes:

► Ingo's Notes: http://biostat.jhsph.edu/ iruczins/teaching/140.751/

Next by Professor Scott Zeger:

▶ Delta method to calculate the variance of a **function** of estimates. For example, if we know the variance of **log** odds ratio (LOR) comparing two proportions, how do we obtain the variance of odds ratio (exponential of the LOR)?