Gates

The p-n junction diode structure and symbol

Transmission gate

Multiplexer

If S == 0 then Y = D₀
If S == 1 then Y = D₁

Decoder

<i>A</i> ₁	A_0	Y ₃	Y_2	<i>Y</i> ₁	Y_0	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

SR latch

Case	S	R	Q	\overline{Q}
IV	0	0	Q_{pro}	\overline{Q}_{prev}
1	0	1	0	1
11	1	0	1	0
Ш	1	1	0	0

D latch

If CLK == 1 then set D = X
If CLK == 0 then select Q

CLK	D	\bar{D}	S	R	Q	\bar{Q}
0	Х	\bar{x}	0	0	Qpre	ev Qprev
1	0	1	0	1	0	1
1	1	0	1	0	1	0
(b)						

D flip-flop

CLK	D	-D	S	R	Q	-Q
0	X	X	0	0	\mathbf{Q}_{p}	-Q _p
1	0	1	0	1	0	1
1	1	0	1	0	1	0

4-bit register

Enabled flip-flop

Synchronously resettable flip-flop

1-bit half adder

Adder

Α	В	$C_{ m out}$	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$
$$C_{\text{out}} = AB$$

1-bit full adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Carry propagate adder

32-bit ripple-carry adder

Subtractor

N-bit magnitude comparator

ALU

Table 5.1 ALU operations

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR \overline{B}
110	A - B
111	SLT

N-bit ALU

Counter

N-bit counter

Shift register

Shift register

Scannable flip-flop

Generic memory array

4-3 memory array

(a)

(b)

32 Kb array: depth = **2**¹⁰ = **1024** words, width = **32** bits

DRAM stored values

SRAM bit cell

32-32 register file with two read ports and one write port

4-word 1-bit memory array used as a lookup table

Cyclone IV Logic Element (LE)

http://booksite.elsevier.com/9780123944245/?ISBN=9780123944245
1111 D. 7 7 DOKSICE CONC. COM 7 7 CO1233 4 72 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 7 2 4 3 7 . 13 DIV - 3 7 CO 123 3 4 4 2 4 3 7 . 13 DIV - 3 7 CO 123 3 7 CO 123 3 7 CO 123 3 7 CO