Computabilidade

Teoria da Computação

INF05501

Solucionabilidade de Problemas

- Objetivo do estudo da solucionabilidade de problemas é investigar a existência ou não de algoritmos que solucionem determinada classe de problemas
- Isto é, quer-se determinar os limites da computabilidade

Solucionabilidade de Problemas (cont.)

- Sabendo-se que um problema não tem solução, evita-se gasto de esforço e tempo em tentar solucioná-lo
- Por exemplo, o décimo problema de Hilbert:

"Existe ou não um algoritmo que determine se uma equação polinomial, com coeficientes inteiros, possui solução nos inteiros?"

Em 1970, Matijasevic provou ser tal problema sem solução

Classes de Solucionabilidade de Problemas

Problema Solucionável

Um problema é dito Solucionável ou Totalmente Solucionável se existe um algoritmo (Máquina Universal) que solucione o problema tal que sempre pare para qualquer entrada, com uma resposta afirmativa (ACEITA) ou negativa (REJEITA)

Classes de Solucionabilidade de Problemas

Problema Solucionável

Um problema é dito Solucionável ou Totalmente Solucionável se existe um algoritmo (Máquina Universal) que solucione o problema tal que sempre pare para qualquer entrada, com uma resposta afirmativa (ACEITA) ou negativa (REJEITA)

 Logo, a Classe dos Problemas Solucionáveis é equivalente à Classe das Linguagens Recursivas

Classes de Solucionabilidade de Problemas (cont.)

Problema Não-Solucionável

Um problema é dito Não-Solucionável se **não** existe um algoritmo (Máquina Universal) que solucione o problema tal que sempre pare para qualquer entrada

Alguns Problemas Não-Solucionáveis

- Equivalência de Compiladores: Não existe algoritmo genérico que sempre pare capaz de comparar quaisquer dois compiladores de linguagens livres do contexto (reconhecidas pelo formalismo Autômato Não-Determinístico com Uma Pilha), tais como Pascal, verificando se são equivalentes (se reconhecem a mesma linguagem)
- Detector Universal de Loops: Dados um programa e uma entrada quaisquer, não existe algoritmo genérico capaz de verificar se o programa vai parar ou não para a entrada (Problema da Parada)

Não-Solucionabilidade

- Refere-se à inexistência de um método geral e efetivo para decidir se um programa para uma máquina universal para para qualquer entrada
- Portanto, é possível existirem métodos específicos para programas particulares
- Importância de problemas não-solucionáveis:
 - Permitem estabelecer, por si sós, **importantes resultados**
 - Demonstram as limitações da capacidade de expressarem-se soluções através de programas
 - Podem ser usados para verificar que outros problemas também são não-solucionáveis, usando o princípio da redução

Classes de Solucionabilidade de Problemas (cont.)

Problema Parcialmente Solucionável

Um problema é dito Parcialmente Solucionável ou Computável se existe um algoritmo (Máquina Universal) que solucione o problema tal que pare quando a resposta for afirmativa (ACEITA), mas, em caso de resposta negativa, pode parar (REJEITA) ou processar indefinidamente (LOOP)

Solucionabilidade Parcial

- Alguns problemas não-solucionáveis possuem soluções parciais (são computáveis)
- Isto é, existe um algoritmo capaz de responder "sim", embora possa ficar em loop infinito para uma resposta que deveria ser "não"

Solucionabilidade Parcial

- Alguns problemas não-solucionáveis possuem soluções parciais (são computáveis)
- Isto é, existe um algoritmo capaz de responder "sim", embora possa ficar em loop infinito para uma resposta que deveria ser "não"
- Logo, a Classe dos Problemas Parcialmente Solucionáveis é equivalente à Classe das Linguagens Enumeráveis Recursivamente

Classes de Solucionabilidade de Problemas (cont.)

Problema Completamente Insolúvel

Um problema é dito Completamente Insolúvel ou Não-Computável se não existe um algoritmo (Máquina Universal) que solucione o problema tal que pare quando a resposta for afirmativa (ACEITA)

Problemas completamente insolúveis não possuem solução total nem parcial

Relacionamentos entre Classes

 Classe dos Problemas Parcialmente Solucionáveis contém propriamente a Classe dos Problemas Solucionáveis e parte da Classe dos Não-Solucionáveis

• Logo:

- Todo problema solucionável é parcialmente solucionável
- Existem problemas não-solucionáveis que possuem solução parcial

Relacionamentos entre Classes (cont.)

- Para qualquer algoritmo que solucione um problema parcialmente solucionável que é não-solucionável, sempre existe pelo menos uma palavra de entrada que faz com que o algoritmo fique em loop
- União da Classe dos Problemas Solucionáveis com a Classe dos Problemas Não-Solucionáveis é o Universo de Todos os Problemas
- União da Classe dos Problemas Parcialmente Solucionáveis com a Classe dos Problemas Completamente Insolúveis é o Universo de Todos os Problemas

Relacionamentos entre Classes (cont.)

Solucionáveis Não-Solucionáveis Parcialmente Solucionáveis Computáveis Não-Computáveis

Classes de Problemas

- Cardinal da Classe dos Problemas Computáveis é contável
- Cardinal da Classe dos Problemas Não-Computáveis é não-contável
- Assim, cardinal da Classe dos Problemas Não-Computáveis é "muito maior" que o da Classe dos Problemas Computáveis
- Logo, existem muito mais problemas não-computáveis do que computáveis

Princípio da Redução

- Para o estudo da solucionabilidade de um problema, pode-se partir de um outro problema cuja classe de solucionabilidade seja conhecida
- Isto é, dados dois problemas de decisão A e B pode ser possível modificar ("reduzir") o problema A de tal forma que ele se porte como um caso do problema B

Princípio da Redução

- Se A é não-solucionável (respectivamente, não-computável), então, como A é um caso de B, conclui-se que B também é não-solucionável (respectivamente, não-computável)
- Se B é solucionável (respectivamente, parcialmente solucionável), então, como A é um caso de B, conclui-se que A também é solucionável (respectivamente, parcialmente solucionável)

Problemas de Decisão

- Abordagem tradicional de análise de solucionabilidade concentra-se nos problemas de decisão (respostas "sim" ou "não")
- Dado um programa P para uma máquina universal M, decidir se a função computada $\langle P, M \rangle$ é total (ou seja, se a correspondente computação é finita)
- São mais fáceis de verificar, visto que só há duas respostas possíveis
- Em geral, problemas de outros tipos podem ser (e são) transformados em problemas de decisão

Problemas de Decisão (cont.)

- Da mesma forma, a questão da solucionabilidade de problemas pode ser transformada em um problema de decisão
- Neste caso, investiga-se a solucionabilidade de um problema através de verificação do problema de reconhecimento de linguagens (o qual é um problema de decisão)
 - Problema é reescrito como um problema de decisão
 - Argumentos do problema são codificados como palavras de um alfabeto, gerando uma linguagem

Problema de Decisão (cont.)

- Assim, a questão da solucionabilidade de um problema pode ser traduzida como uma investigação se a linguagem gerada é recursiva (problema solucionável) ou enumerável recursivamente (problema parcialmente solucionável)
- Nesta situação
 - Problemas solucionáveis são ditos decidíveis
 - Problemas não-solucionáveis são ditos indecidíveis
 - Problemas parcialmente solucionáveis são ditos semidecidíveis

Codificação de Programas

- Veremos uma abordagem é específica para programas monolíticos da Máquina Norma
- Vimos a função de codificação de programas como número naturais, aqui denominada cod
- No entanto, ela não é bijetora, pois nem todo natural é codificação de algum programa

Codificação de Programas (cont.)

Seja \mathbb{P} o **conjunto de todos os programas** do tipo que está sendo considerado (monolítico, iterativo ou recursivo). Considere a sequência de naturais p_0 , p_1 , p_2 , formada pelos **códigos dos programas de** \mathbb{P} (ordenados pela relação "menor" sobre os naturais).

Então:

```
cod\_bij = \lambda p.cod\_bij(p): P \to \mathbb{N} cod\_bij(p) = n, para qualquer p \in \mathbb{P}, se o código de p \notin p_n cod\_bij^{-1} = \lambda n.cod\_bij^{-1}(n): \mathbb{N} \to P cod\_bij^{-1}(n) = p, para qualquer n \in \mathbb{N}
```

Codificação de Programas (cont.)

- Algoritmo para determinar cod_bij(P)
 - 1. Calcula p = cod(P)
 - 2. Verifica (usando decod) quantos números naturais menores do que p são codificações de programas
 - 3. Se forem n-1, então $cod_bij(P)=n$
- Algoritmo para determinar $cod_bij^{-1}(n)$
 - 1. Verifica (usando decod) os n primeiros números naturais que denotam codificações de programas
 - 2. Se p é o n-ésimo natural, então o n-ésimo programa será a decodificação de p