PARTIE 1: généralités

Soit E un \mathbb{R} -espace vectoriel non trivial. On notera id l'application identité de E et \mathbb{O} l'application nulle.

On considère un endomorphisme f de E vérifiant :

$$f^2 = \frac{1}{2} (f + id)$$
 (*)

- 1. L'ensemble des endomorphismes de E vérifiant (*) n'est pas un sous espace vectoriel de $\mathcal{L}(E)$, puisque l'endomorphisme nul ne vérifie pas (*)!
- **2.** Une homothétie de E est une application de la forme $f = \lambda \operatorname{id}, \lambda \in \mathbb{R}$. Pour une telle application, (*) s'écrit

$$\lambda^2 \operatorname{id}^2 = \frac{1}{2} \left(\lambda \operatorname{id} + \operatorname{id} \right) \Leftrightarrow \left(\lambda^2 - \frac{1}{2} \lambda - \frac{1}{2} \right) \operatorname{id} = 0 \Leftrightarrow \lambda^2 - \frac{1}{2} \lambda - \frac{1}{2} = 0$$

Les seules homothéties vérifiant (*) sont id et $-\frac{1}{2}$ id $(1 \text{ et } -\frac{1}{2} \text{ sont les racines de } X^2 - \frac{1}{2}X - \frac{1}{2})$

On supposera désormais que f n'est pas une homothétie.

3. D'après (*), on a

$$2f^2 - f = id \Rightarrow f \circ (2f - id) = (2f - id) \circ f = id$$

Donc f est inversible, et

$$f^{-1} = 2f - \mathrm{id}$$

4. Démontrons que $E = \ker \left(f + \frac{1}{2} \operatorname{id} \right) \oplus \ker \left(f - \operatorname{id} \right)$:

Soit $x \in E$. Cherchons $y \in \ker \left(f + \frac{1}{2} \operatorname{id} \right)$ et $z \in \ker \left(f - \operatorname{id} \right)$ tels que x = y + z

Analyse : supposons les avoir trouvés : alors en appliquant f à x = y + z, on obtient par linéarité

$$f\left(x\right)=f\left(y\right)+f\left(z\right)=-\frac{1}{2}y+z \quad \text{puisque } \left\{ \begin{array}{l} y\in\ker\left(f+\frac{1}{2}\operatorname{id}\right)\Longleftrightarrow f\left(y\right)=\frac{1}{2}y\\ z\in\ker\left(f-\operatorname{id}\right)\Longleftrightarrow f\left(z\right)=z \end{array} \right.$$

Ainsi

$$\left\{ \begin{array}{l} x=y+z \\ f\left(x\right)=-\frac{1}{2}y+z \end{array} \right. \iff \left\{ \begin{array}{l} y=\frac{2}{3}\left(x-f\left(x\right)\right) \\ z=\frac{1}{3}\left(2f\left(x\right)+x\right) \end{array} \right.$$

- <u>Synthèse</u>: soient donc $\begin{cases} y = \frac{2}{3}(x f(x)) \\ z = \frac{1}{3}(2f(x) + x) \end{cases}$

 - * $y \in \ker (f + \frac{1}{2} id)$: en effet

$$f\left(y\right) = \frac{2}{3}\left(f\left(x\right) - f^{2}\left(x\right)\right) \stackrel{(*)}{=} \frac{2}{3}\left(f\left(x\right) - \frac{1}{2}\left(f\left(x\right) + x\right)\right) = \frac{1}{3}\left(f\left(x\right) - x\right) = -\frac{1}{2}y$$

* $z \in \ker(f - \mathrm{id})$: en effet

$$f(z) = \frac{1}{3} (2f^{2}(x) + f(x)) \stackrel{(*)}{=} \frac{1}{3} (f(x) + x + f(x)) = \frac{1}{3} (2f(x) + x) = z$$

Conclusion : les espaces proposés sont supplémentaires.

PCSI 1

5. On note
$$p = \frac{2}{3} \left(f + \frac{1}{2} id \right)$$
 et $q = -\frac{2}{3} \left(f - id \right)$

a) Calculons p^2 :

$$p^2 = \frac{4}{9} \left(f^2 + f + \frac{1}{4} \operatorname{id} \right) = \frac{4}{9} \left(\frac{1}{2} \left(f + \operatorname{id} \right) + f + \frac{1}{4} \operatorname{id} \right) = \frac{2}{9} \left(3f + \frac{3}{2} \operatorname{id} \right) = \frac{2}{3} \left(f + \frac{1}{2} \operatorname{id} \right) = p$$

p est donc un projecteur

Par ailleurs, p + q = id, donc q = id - p est le projecteur associé à p.

De plus, l'espace de projection de p (et direction de q) est $\overline{\operatorname{Im} p = \ker q = \ker (f - \operatorname{id})}$

<u>La direction de p</u> (et espace de projection de q) est $\ker p = \operatorname{Im} q = \ker \left(f + \frac{1}{2} \operatorname{id} \right)$

(Rappelons que si $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}^*$, alors $\operatorname{Im}(\lambda f) = \operatorname{Im} f$ et $\ker(\lambda f) = \ker f$)

b) Or, une propriété fondamentale des projecteurs dit que $E=\ker p\oplus\operatorname{Im} p$ On en déduit donc une autre démonstration du résultat de la question 4. :

$$E = \ker \left(f + \frac{1}{2} \operatorname{id} \right) \oplus \ker \left(f - \operatorname{id} \right)$$

c) On a
$$f = \frac{3}{2}p - \frac{1}{2}id = \frac{3}{2}p - \frac{1}{2}(p+q) = p - \frac{1}{2}q$$
.

Comme p et q commutent $(p \circ q = q \circ p = \mathbb{O})$, on peut appliquer la formule du binôme : $\forall n \in \mathbb{N}^*$

$$f^{n} = \sum_{k=0}^{n} \binom{n}{k} \left(-\frac{1}{2}\right)^{n-k} p^{k} \circ q^{n-k}$$

Or pour $k \in [\![1,n-1]\!]$, $\ p^k \circ q^{n-k} = p \circ q = \mathbb{O}.$ Il reste

$$f^n = p^n + \left(-\frac{1}{2}\right)^n q^n$$

soit

$$f^n = p + \left(-\frac{1}{2}\right)^n q$$

Relation qui est évidemment vraie aussi pour n = 0.

d) Montrons que la relation précédente reste vraie pour $n \in \mathbb{Z}$: pour cela, choisissons $n \in \mathbb{N}$, et posons

$$g = p + \left(-\frac{1}{2}\right)^{-n} q$$

alors

$$g \circ f^{n} = \left(p + \left(-\frac{1}{2}\right)^{-n} q\right) \circ \left(p + \left(-\frac{1}{2}\right)^{n} q\right)$$

$$= p^{2} + \left(-\frac{1}{2}\right)^{-n} q \circ p + \left(-\frac{1}{2}\right)^{n} p \circ q + q^{2}$$

$$= p + q = \text{id}$$

On a de même $f^n \circ g = \mathrm{id}$, donc g est l'inverse de f^n . f étant inversible, on a donc

$$f^{-n} = (f^n)^{-1} = p + \left(-\frac{1}{2}\right)^{-n} q$$
 CQFD.

6. a) Si ker $(f + \frac{1}{2} id) = E$, cela signifie que

$$\forall x \in E, \ f(x) + \frac{1}{2}x = 0$$
 i.e. $f(x) = -\frac{1}{2}x$

f est alors une homothétie, ce qui est contraire à notre hypothèse. Ainsi

$$\ker\left(f + \frac{1}{2}\operatorname{id}\right) \neq E$$

De la même manière

$$\ker(f - \mathrm{id}) \neq E$$

b) Mais alors, si $\ker (f - \mathrm{id}) = \{0_E\}$, alors

$$E = \ker\left(f + \frac{1}{2}\operatorname{id}\right) \oplus \{0_E\} = \ker\left(f + \frac{1}{2}\operatorname{id}\right)$$

contradiction. Ainsi

$$\boxed{\ker\left(f + \frac{1}{2}\operatorname{id}\right) \neq \{0_E\}}$$

et de la même manière

$$\ker\left(f - \mathrm{id}\right) \neq \{0_E\}$$

c) Soit $\lambda \in \mathbb{R}$: supposons que l'équation $f(x) = \lambda x$ admet une solution $x \neq 0$. Alors

$$f^{2}(x) = \lambda f(x) = \lambda^{2}x$$

L'égalité (*) s'écrit dans ces conditions :

$$\lambda^{2}x - \frac{\lambda}{2}x - \frac{1}{2}x = 0_{E} = \left(\lambda^{2} - \frac{\lambda}{2} - \frac{1}{2}\right)x$$

x étant non nul, on a nécessairement $\lambda^2 - \frac{\lambda}{2} - \frac{1}{2} = 0.$ Necessairement

$$\boxed{\lambda \in \left\{1, -\frac{1}{2}\right\}}$$

d) **Réciproquement**, si $\lambda = 1$, on a vu que $\ker (f - \mathrm{id}) \neq \{0_E\}$, donc

$$\exists x \neq 0_E / f(x) = x$$

De même si $\lambda=-\frac{1}{2}, \ker\left(f+\frac{1}{2}\operatorname{id}\right) \neq \{0_E\}\,,$ donc

$$\exists x \neq 0_E / f(x) = -\frac{1}{2}x$$

Dans les deux cas :

 $f\left(x\right)=\lambda x$ admet des solutions non nulles dans E

Partie 2: applications

1. Application 1 : on considère $E = \mathbb{R}^3$, et f l'endomorphisme de E associé à la matrice

$$A = \frac{1}{2} \left(\begin{array}{rrr} 0 & 3 & 1 \\ 1 & 2 & 1 \\ -1 & -3 & -2 \end{array} \right)$$

 $A = \frac{1}{2} \begin{pmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ -1 & -3 & -2 \end{pmatrix}$ a) Un calcul facile donne $A^2 = \frac{1}{4} \begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 & 1 \\ -1 & -3 & 0 \end{pmatrix} = \frac{1}{2} (A + I_3).$

On peut donc dire que $f^2 = \frac{1}{2}(f + id)$, puisque $\forall X \in E$.

$$f^{2}(X) = A^{2}X = \frac{1}{2}(A + I_{3})X = \frac{1}{2}(AX + X) = \frac{1}{2}(f(X) + X)$$

f vérifie donc la relation (*).

b) On sait alors que $E = \ker \left(f + \frac{1}{2} \operatorname{id} \right) \oplus \ker \left(f - \operatorname{id} \right)$, et que pour $X = \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in E$, la décomposition de

X s'écrit

$$X = p(X) + q(X)$$
 avec $p = \frac{2}{3} \left(f + \frac{1}{2} \operatorname{id} \right)$ et $q = -\frac{2}{3} \left(f - \operatorname{id} \right)$

En posant

$$P = \frac{2}{3} \left(A + \frac{1}{2} I_3 \right) = \frac{1}{3} \begin{pmatrix} 1 & 3 & 1 \\ 1 & 3 & 1 \\ -1 & -3 & -1 \end{pmatrix} \quad \text{et} \quad Q = -\frac{2}{3} \left(A - I_3 \right) = \frac{1}{3} \begin{pmatrix} 2 & -3 & -1 \\ -1 & 0 & -1 \\ 1 & 3 & 4 \end{pmatrix}$$

on a

$$p\left(X\right) = PX = \frac{1}{3} \left(\begin{array}{c} x + 3y + z \\ x + 3y + z \\ -x - 3y - z \end{array} \right) \quad \text{et} \quad \boxed{q\left(X\right) = QX = \frac{1}{3} \left(\begin{array}{c} 2x - 3y - z \\ -x - z \\ x + 3y + 4z \end{array} \right)}$$

qui sont les deux vecteurs de $F = \ker \left(f + \frac{1}{2} \operatorname{id} \right)$ et $G = \ker \left(f - \operatorname{id} \right)$ de somme X.

- c) Les projecteurs sur F parallèlement à G et sur G parallèlement à F sont donc les projecteurs p et q définis à la question 5 partie 1, et associés aux matrices P et Q.
 - i. L'espace de projection de p est son image, soit l'espace engendré par les colonnes de P: celles-ci sont colinéaires, donc

$$F = \operatorname{Im} p = \operatorname{Vect} (Y_0), \quad \operatorname{avec} \quad Y_0 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 (droite vectorielle)

ii. La direction de p est son noyau. Mais les lignes de P sont égales, donc

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker p \iff x + 3y + z = 0 \iff X = \begin{pmatrix} x \\ y \\ -x - 3y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$$

Donc

$$G = \ker p = \operatorname{Vect}(Y_1, Y_2), \text{ avec } Y_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ Y_2 = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$$

Les deux vecteurs Y_1 et Y_2 n'étant pas colinéaires, $\ker p$ est un plan vectoriel.

iii. On sait évidemment que les éléments caractéristiques de q sont G et F calculés en (i) et (ii).

d) On a montré en 5. que pour tout $n\in\mathbb{Z}$ on a $f^n=p+\left(-\frac{1}{2}\right)^nq$. On en déduit que

$$A^n = P + \left(-\frac{1}{2}\right)^n Q$$

Soit

$$A^{n} = \frac{1}{3} \begin{pmatrix} 1 & 3 & 1 \\ 1 & 3 & 1 \\ -1 & -3 & -1 \end{pmatrix} + \frac{1}{3} \left(-\frac{1}{2} \right)^{n} \begin{pmatrix} 2 & -3 & -1 \\ -1 & 0 & -1 \\ 1 & 3 & 4 \end{pmatrix}$$

soit

$$A^{n} = \frac{1}{3} \begin{pmatrix} 1+2\left(-\frac{1}{2}\right)^{n} & 3-3\left(-\frac{1}{2}\right)^{n} & 1-\left(-\frac{1}{2}\right)^{n} \\ 1-\left(-\frac{1}{2}\right)^{n} & 3 & 1-\left(-\frac{1}{2}\right)^{n} \\ -1+\left(-\frac{1}{2}\right)^{n} & -3+3\left(-\frac{1}{2}\right)^{n} & -1+4\left(-\frac{1}{2}\right)^{n} \end{pmatrix}$$

2. Application 2 : on considère l'ensemble E des fonctions f de classe C^{∞} sur $]0,+\infty[$ vérifiant l'équation différentielle:

$$2x^{2}y''(x) + xy'(x) - y(x) = 0 \quad (\mathcal{E})$$

Si $f \in E$, on définit la fonction $\varphi(f)$ sur $]0, +\infty[$ par

$$\forall x > 0, \ \varphi(f)(x) = xf'(x)$$

- a) * La fonction nulle est dans E (elle est solution de (\mathcal{E}))
 - * De plus si (f,g) sont dans E et λ un réels, alors $\lambda f + g$ est C^{∞} sur $]0, +\infty[$ et pour tout réel x > 0:

$$\begin{aligned} 2x^2 \left(\lambda f + g\right)''(x) + x \left(\lambda f + g\right)'(x) - \left(\lambda f + g\right)(x) &= \lambda \left(2x^2 f''(x) + x f'(x) - f(x)\right) + \left(2x^2 g''(x) + x g'(x) - g(x)\right) \\ &= 0 \quad \text{puisque } f \text{ et } g \text{ v\'erifient } (\mathcal{E}) \end{aligned}$$

Donc $\lambda f + g \in E$ et

$$E$$
 est un sous-espace vectoriel de $C^{\infty}\left(\left]0,+\infty\right[,\mathbb{R}\right)$

Par ailleurs, il est bien clair que, sous les mêmes conditions, on a pour tout x > 0:

$$\varphi(\lambda f + g)(x) = x(\lambda f + g)'(x) = \lambda x f'(x) + x g'(x) = \lambda \varphi(f)(x) + \varphi(g)(x)$$

D'où
$$\varphi(\lambda f + g) = \lambda \varphi(f) + \varphi(g)$$
 et

$$\varphi$$
 est linéaire

b) Montrons que φ est un endomorphisme de E : pour cela, il faut voir que

si
$$f \in E$$
, alors $\varphi(f) \in E$, c'est-à-dire $\varphi(f)$ vérifie (\mathcal{E})

Or en dérivant (\mathcal{E}) , on obtient $\forall x > 0$

$$2x^{2}f'''(x) + 4xf''(x) + xf''(x) + f'(x) - f'(x) = 0$$

i.e.

$$2x^{2}f'''(x) + 5xf''(x) = 0$$

 $2x^{2}f'''\left(x\right)+5xf''\left(x\right)=0$ Par ailleurs, en posant $g=\varphi\left(f\right)$, on a $\forall x>0,$

$$\begin{cases} g'(x) = xf''(x) + f'(x) \\ g''(x) = xf'''(x) + 2f''(x) \end{cases}$$

Donc

$$2x^{2}g''(x) + xg'(x) - g(x) = 2x^{3}f'''(x) + 4x^{2}f''(x) + x^{2}f''(x) + xf'(x) - xf'(x)$$

$$= 2x^{3}f'''(x) + 5x^{2}f''(x)$$

$$= x(2x^{2}f'''(x) + 5xf''(x))$$

$$= 0$$

 φ est donc bien un endomorphisme de E

c) Soit $f \in E$, et posons $g = \varphi(f)$ alors $\varphi^{2}(f) = \varphi(g)$, i.e. $\forall x > 0$,

$$\varphi^{2}(f)(x) = xg'(x) = x(xf'(x))' = x(xf''(x) + f'(x)) = x^{2}f''(x) + xf'(x)$$

Mais alors

$$\varphi^{2}(f)(x) - \frac{1}{2}\varphi(f)(x) - \frac{1}{2}f(x) = x^{2}f''(x) + xf'(x) - \frac{1}{2}xf(x) - \frac{1}{2}f(x)$$

$$= x^{2}f''(x) + \frac{1}{2}xf(x) - \frac{1}{2}f(x)$$

$$= 0$$

puisque f est solution de (\mathcal{E}) . On peut donc dire que

$$\forall f \in E, \quad \varphi^{2}\left(f\right) - \frac{1}{2}\varphi\left(f\right) - \frac{1}{2}f = 0_{E}$$

i.e.

φ vérifie la relation (*)

d) Les solutions sur $]0, +\infty[$ de l'équation différentielle xy'-y=0 (\mathcal{E}_1) sont de la forme

$$y: x \mapsto Ce^{\int \frac{dx}{x}} = Ce^{\ln x} = Cx, \quad C \in \mathbb{R}$$

Les solutions sur $]0, +\infty[$ de l'équation différentielle $xy' + \frac{1}{2}y = 0$ (\mathcal{E}_2) sont de la forme

$$y: x \mapsto Ce^{-\frac{1}{2}\int \frac{dx}{x}} = Ce^{-\frac{1}{2}\ln x} = \frac{C}{\sqrt{x}}, \quad C \in \mathbb{R}$$

e) On note f_1 et f_2 les solutions de (\mathcal{E}_1) et (\mathcal{E}_2) vérifiant $f_1(1) = f_2(1) = 1$. On a clairement

$$f_1: x \mapsto x \quad \text{et} \quad f_2: x \mapsto \frac{1}{\sqrt{x}}$$

Il est clair (vérification facile) que ces fonctions sont dans E. De plus

$$f \in \ker (\varphi - \mathrm{id}) \iff \varphi (f) - f = 0$$

 $\iff \forall x > 0, \ xf'(x) - f(x) = 0$
 $\iff \exists C \in \mathbb{R} \ / \ \forall x > 0, \ f(x) = Cx = Cf_1(x)$

D'où

$$\ker (\varphi - \mathrm{id}) = \mathrm{Vect} (f_1)$$

est une droite vectorielle. De même

$$f \in \ker\left(\varphi + \frac{1}{2}\operatorname{id}\right) \iff \varphi\left(f\right) + \frac{1}{2}f = 0$$

$$\iff \forall x > 0, \ xf'\left(x\right) + \frac{1}{2}f\left(x\right) = 0$$

$$\iff \exists C \in \mathbb{R} \ / \ \forall x > 0, \ f\left(x\right) = \frac{C}{\sqrt{x}} = Cf_2\left(x\right)$$

D'où

$$\ker\left(f + \frac{1}{2}\operatorname{id}\right) = \operatorname{Vect}\left(f_2\right)$$

est une droite vectorielle.

f) Appliquons le résultat de la partie 1, question 3.b) puisque φ vérifie (*), on a

$$E = \ker (\varphi - \mathrm{id}) \oplus \ker \left(\varphi + \frac{1}{2}\mathrm{id}\right) = \mathrm{Vect}(f_1) \oplus \mathrm{Vect}(f_2)$$

Cela signifie que tout élément f de E s'écrit de manière unique $f=\lambda f_1+\mu f_2,\quad (\lambda,\mu)\in\mathbb{R}^2$:

$$E$$
 est un plan vectoriel de base (f_1, f_2)

On a donc établi que les solutions de (\mathcal{E}) sur $]0, +\infty[$ étaient les fonctions de la forme :

$$f: x \mapsto \lambda x + \frac{\mu}{\sqrt{x}}, \text{ avec } (\lambda, \mu) \in \mathbb{R}^2$$