Introduction à la notion de série numérique

Soit $(u_n)_{n\geq 1}$ une suite réelle, on note $(S_n)_{n\geq 1}$ la suite dont le terme général est donné par : $S_n=\sum_{k=1}^n u_k$.

On se propose ici d'étudier la nature de la suite $(S_n)_{n\geq 1}$ en fonction de la suite $(u_n)_{n\geq 1}$.

Partie I – Etude de quelques exemples

- 1. On se propose d'étudier dans un premier temps le cas où $(u_n)_{n\geq 1}$ est la suite géométrique de terme général $u_n=q^n$ avec $q\in\mathbb{R}$ fixé.
- 1.a Déterminer la nature de $(S_n)_{n\geq 1}$ dans le cas q=1.
- 1.b On suppose $q \neq 1$. Exprimer le terme général de $(S_n)_{n\geq 1}$ puis discuter la nature de $(S_n)_{n\geq 1}$ en fonction de q.
- 2. On s'intéresse ici à la suite $(u_n)_{n\geq 1}$ de terme général $u_n=\frac{1}{n}$.
- 2.a Etablir que $\forall x \in \mathbb{R}^+, \ln(1+x) \le x$ puis que $\forall n \in \mathbb{N}^*, \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2.b En déduire que pour tout $n\in\mathbb{N}^*$, $S_n\geq \ln(n+1)$. Que dire de $(S_n)_{n\geq 1}$?
- 3. On s'intéresse maintenant à la suite $(u_n)_{n\geq 1}$ de terme général $u_n=\frac{1}{n^2}$.
- 3.a Etablir que $\forall n \in \mathbb{N} \setminus \{0,1\}, \frac{1}{n^2} \le \frac{1}{n-1} \frac{1}{n}$.
- 3.b En déduire que la suite $(S_n)_{n\geq 1}$ est majorée.
- 3.c Déterminer la nature de $(S_n)_{n\geq 1}$.
- 4. On s'intéresse désormais à la suite $(u_n)_{n\geq 1}$ de terme général $u_n=\frac{(-1)^n}{n}$.
- 4.a Montrer que les suites extraites $(S_{2n-1})_{n\geq 1}$ et $(S_{2n})_{n\geq 1}$ sont adjacentes.
- 4.b Quelle est la nature de $(S_n)_{n\geq 1}$?

Partie II – Propriétés générales.

On revient au cadre général : $(u_n)_{n\geq 1}$ suite réelle quelconque et $(S_n)_{n\geq 1}$ définie par $S_n=\sum_{k=1}^n u_k$.

- 1. Montrer que si la suite $(S_n)_{n\geq 1}$ converge alors $u_n\to 0$.

 Observer que la réciproque est fausse en vous appuyant sur l'un des exemples étudiés précédemment.
- 2. On suppose dans cette question que la suite $(u_n)_{n\geq 1}$ est formée de réels positifs. Etudier la monotonie de $(S_n)_{n\geq 1}$.
- 3. On suppose encore que $(u_n)_{n\geq 1}$ est une suite de réels positifs. On considère de plus une suite $(v_n)_{n\geq 1}$ telle qu'à partir d'un certain rang $n_0\in\mathbb{N}^*$ on ait $u_n\leq v_n$ et on introduit $(T_n)_{n\geq 1}$ définie par $T_n=\sum_{i=1}^n v_i$.
- 3.a Former une inégalité permettant de comparer S_n et T_n pour tout entier $n \ge n_0$.
- 3.b On suppose que $(T_n)_{n\geq 1}$ converge. Montrer que $(S_n)_{n\geq 1}$ converge aussi.

3.c Application:

Montrer que si la suite $(n^2u_n)_{n\geq 1}$ converge alors $(S_n)_{n\geq 1}$ converge.

4. On revient au cas général : $(u_n)_{n\geq 1}$ suite de réels de signes quelconques.

On suppose que
$$\left(\sum_{k=1}^n |u_k|\right)_{n\geq 1}$$
 converge et on désire établir que $\left(S_n\right)_{n\geq 1} = \left(\sum_{k=1}^n u_k\right)_{n\geq 1}$ converge.

Pour cela on définit deux nouvelles suites de réels positifs $(u_n^+)_{n\geq 1}$ et $(u_n^-)_{n\geq 1}$ par :

$$u_n^+ = \max(u_n, 0) \text{ et } u_n^- = \max(-u_n, 0)$$

puis on introduit $(S_n^+)_{n\geq 1}$ et $(S_n^-)_{n\geq 1}$ définies par :

$$S_n^+ = \sum_{k=1}^n u_k^+ \ \ {\rm et} \ \ S_n^- = \sum_{k=1}^n u_k^- \ .$$

$$\text{4.a} \qquad \text{Exprimer} \ u_{\scriptscriptstyle n} \ \text{et} \ \left| u_{\scriptscriptstyle n} \right| \ \text{en fonction de} \ u_{\scriptscriptstyle n}^+ \ \text{et} \ u_{\scriptscriptstyle n}^- \,.$$

4.b Justifier que
$$(S_n^+)_{n\geq 1}$$
 et $(S_n^-)_{n\geq 1}$ convergent.

5. Généraliser l'implication du 3.c aux suites réels de signes quelconques.