A Practical Introduction to Data Science

Part 6 Time Series Analysis

Course Agenda

l.	Introduction to Data Science
II.	Business and Data Understanding
III.	Introduction to Supervised Learning
IV.	Advanced Supervised Learning
V.	Unsupervised Learning
VI.	Time Series Analysis
VII.	Deep Learning
VIII.	Machine Learning Operations

Time Series Analysis

Simple Forecasting Methods

Time Series Decomposition

Statistical Modelling

Machine Learning

Simple Forecasting Methods

Simple Forecasting Methods

Average method

Naive method

Seasonal naive method

Drift method

$$\hat{y}_{T+h} = \bar{y}$$

$$\hat{y}_{T+h} = y_T$$

$$\hat{y}_{T+h} = y_{T+h-m}$$

$$\hat{y}_{T+h} = y_T + h * \left(\frac{y_T - y_1}{T - 1}\right)$$

Prediction intervals

- A range of values that the random variable could take with relatively high probability
- Assuming that the forecast errors are normally distributed, a 95% prediction interval for the h-step forecast is

$$\hat{y}_{T+h} \pm 1.96 * \hat{\sigma}_h$$

Simple Linear Models

• Trend:

$$\hat{y}_t = \beta_0 + \beta_1 * t$$

• Trend and seasonality dummies:

$$\hat{y}_t = \beta_0 + \beta_1 * t + \beta_{Q1} * I_{Q1} + \beta_{Q2} * I_{Q2} + \beta_{Q3} * I_{Q3}$$

Time Series Decomposition

Decomposition

Components

- Trend
- Seasonality
- Cyclical patterns
- Random noise
- Other drivers
 - Autoregression
 - External variables
 - Special events

US treasury bill contracts

Google daily changes in closing stock price

Decomposition

Additive model:

Multiplicative model:

$$y_t = S_t + T_t + R_t$$

$$y_t = S_t * T_t * R_t$$

Seasonally adjusted data: the remaining data after removing the seasonal component. Helpful, if the variation due to seasonality is not of primary interest

Electrical equipment manufacturing (Euro area)

Source: Forecasting: Principles and Practice (2nd ed)

Decomposition

$$\widehat{T}_t = \frac{1}{m} \sum_{j=-k}^k y_{t+j}$$

Electrical equipment manufacturing (Euro area)

Moving Averages: estimate the trend-cycle component with the moving average of the time series

Decomposition Steps:

- 1. Compute the trend-cycle component using MA
- 2. Calculate the detrended series
- 3. To estimate the seasonal component for each season, simply average the detrended values for that season. For example, with monthly data, the seasonal component for March is the average of all the detrended March values in the data
- 4. The remainder component is calculated by subtracting the estimated seasonal and trend-cycle components

Forecasting with decomposition

Forecasting Steps:

- 1. Decompose the time series
- 2. Forecast the components separately
 - The seasonal component can usually be considered constant
 - Use dummy variables for holiday effects
 - Use any forecasting method for the trend-cycle component and the remaining component (regression, ARIMA etc.)
- 3. Combine the component forecasts

When to use decomposition?

- Understand the underlying components
- Complex seasonal pattern that needs to be isolated
- Preprocessing step before applying other forecasting methods

Prophet

Prophet: Easy to use framework in R and Python

Additive model:

- Piecewise-linear trend (trend with changepoints)
- Seasonal effects
- Holiday effects

Features:

- Automatic changepoint detection
- Automatic seasonality modelling with Fourier terms
- Additional regressors
- Easy cross-validation and hyperparameter tuning
- Uncertainty Intervals

NeuralProphet: Fusing traditional time series algorithms using standard deep learning methods

Source: Seasonality, Holiday Effects, And Regressors | Prophet

Statistical Modelling

Statistical Time Series Models

- Exponential smoothing (Exponential Moving Average, EMA)
 - $s_0 = x_0$
 - $s_t = \alpha * x_t + (1 \alpha) * s_{t-1}$
 - Weights decrease exponentially
 - Longer memory compared to simple MA
- ARIMA model family
- Python:
 - statsmodels
 - pmdarima

Stationarity

Stationarity is a common assumption in many time series techniques.

Definition:

- Statistical properties, such as mean and variance, do not change over time
- The joint probability distribution of the process remains the same when shifted in time.
- No trend, no seasonality, no heteroskedasticity the process should look the same at any time

Transformations to achieve stationarity:

- Remove trend and seasonality before modelling
- Differencing (for the mean) $y'_t = y_t y_{t-1}$
- Seasonal differencing $y'_t = y_t y_{t-m}$
- Log transformation (for variance)

Tests: the **Augmented Dickey-Fuller test** (ADF) tests the null hypothesis that a **unit root** is present, which means non-stationarity

White Noise: the variables are independent and identically distributed with a mean of zero

Stationarity

Source: Forecasting: Principles and Practice (2nd ed)

Autocorrelation

Autocorrelation Function (ACF)

- ACF measures the correlation between observations of a time series
- If the ACF shows significant correlations at certain lags, it indicates that past values influence future values.

Partial Autocorrelation Function (PACF)

- PACF measures the correlation between observations of a time series, but with the influence of intermediate lags removed.
- It helps identify the direct relationship between an observation and its lagged values, excluding the indirect effects.

40

60

80

100

20

Autoregressive Models

AR(p):
$$X_t = \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + ... + \varphi_p X_{t-p} + \varepsilon_t$$

- The PACF will show significant spikes up to lag (p) and then drop to zero
- The ACF typically tails off gradually.

Moving Average Models

MA(q):
$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

- The ACF will show significant spikes up to lag (q) and then drop to zero.
- The PACF typically tails off gradually.

ARIMA(p,d,q)

Autoregressive Integrated Moving Average

- p = order of the autoregressive part
- d = degree of first differencing involved
- q = order of the moving average part

When to use ARIMA?

- Univariate data
- No seasonality (or removed)
- Short-term forecasting
- Interpretable parameters
- Finance, economics

Steps:

- 1. Visualize the data
- 2. Check stationary (ADF test)
- 3. Differencing until stationarity
- 4. Plot ACF and PACF to determine the order of AR and MA terms (p and q values)
- 5. Fit the models with selected (p,d,q) orders. Compare different candidates with AIC
 - Akaike Information Criterion: $AIC = 2k 2\ln(\hat{L})$
- 6. Check if the residuals are white noise
- 7. Forecast and evaluate performance

SARIMAX

- Seasonal ARIMA: SARIMA(p, d, q) $(P, D, Q)_m$
- Seasonal ARIMA with Exogenous Variables: SARIMAX

Machine Learning

Forecasting with Machine Learning

- Use ML algorithms like Random Forest or XGBoost
- Use Deep Learning Architectures like RNN, LSTM and Transformers
- Input features:
 - Lags of the output variable
 - External variables
- When use machine learning?
 - Multivariate data with complex relationships (e.g. interactions)
 - When statistical models are not performing well
 - Large amount of data
- Python packages:
 - Skforecast
 - TensorFlow
 - PyTorch Forecasting

Forecasting with Machine Learning

Reshape the time series data to X and y

Recursive multi-step forecasting

Single-step forecasting

Direct multi-step forecasting

Source: Intro to Forecasting - Skforecast Docs

Preprocessing

- Deal with missing values and data errors
 - Consider business meaning (e.g. public holiday: sales = 0 + add dummy)
 - Forward fill
 - Interpolation
- Feature engineering (when using predictors)
 - Lags
 - Rolling statistics
 - External variables
- Seasonality
 - Add binary variables for the days of the week
 - Use 7 lags
 - Fourier series

Evaluation

Time series backtesting with refit and fixed train size

Time series backtesting with refit and fixed train size

Evaluation

Simple error term: $\epsilon_{T+h} = y_{T+h} - \hat{y}_{T+h}$

Scale-dependent errors:

$$MAE = mean(|\epsilon_t|)$$

$$RMSE = \sqrt{mean(\epsilon_t^2)}$$

➤ Not suitable for comparison

Percentage errors:

$$MAPE = mean\left(\left|\frac{\epsilon_t}{y_t}\right|\right)$$

 \triangleright Unstable if y_t is close to zero

> Percentage is not always meaningful

Scaled errors:

$$MASE = \frac{mean(|\epsilon_t|)}{\frac{1}{T-1}\sum_{i=2}^{T}|y_t - y_{t-1}|} = \frac{MAE}{MAE_{Naive}^{Training}}$$

Time Series Analysis

Simple Forecasting Methods

Time Series Decomposition

Statistical Modelling

Machine Learning

Thank you for your attention!

Your feedback would be much appreciated:

Any Questions?

