IFT780 - TP3 - Question 2

Endroits où du code a été ajouté (texte en vert: ajout, texte en rouge: retrait)

- Fichier 'src/train.py': [...] +from copy import copy +import numpy as np [...] if data_augment: print('Data augmentation activated!') data_augment_transforms = transforms.RandomRotation(15), transforms.ColorJitter(contrast=0, hue=0.1), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomCrop(32, padding=4) else: print('Data augmentation NOT activated!') data_augment_transforms = [] [...] base_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) if args.dataset == 'cifar10': # Download the train and test set and apply transform on it train_set = datasets.CIFAR10(root='../data', train=True, download=True, transform=base_transform)
test_set = datasets.CIFAR10(root='../data', train=True, download=True, transform=base_transform)
train_set = datasets.CIFAR10(root='../data', train=True, download=True, transform=transforms.ToTensor())
test_set = datasets.CIFAR10(root='../data', train=False, download=True, transform=None) elif args.dataset == 'svhn':
 # Download the train and test set and apply transform on it # Downtoad the train and test set and appty trainsform on it train_set = datasets.SVHN(root='../data', split='train', download=True, transform=base_transform)

test_set = datasets.SVHN(root='../data', split='trest', download=True, transform=base_transform)

train_set = datasets.SVHN(root='../data', split='train', download=True, transform=transforms.ToTensor())

test_set = datasets.SVHN(root='../data', split='test', download=True, transform=None) # Calculate dataset mean & std for normalization print('Calculating dataset mean & standard deviation...') r = [] g = [] b = [] for i in range(len(train_set)): r.append(np.dstack(train_set[i][0][:, :, 0]))
g.append(np.dstack(train_set[i][0][:, :, 1])) b.append(np.dstack(train_set[i][0][:, :, 2])) mean = (np.mean(r), np.mean(g), np.mean(b)) std = (np.std(r), np.std(g), np.std(b)) train_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std), *data_augment_transforms base transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std) 1) train_set.transform = train_transform
test_set.transform = base_transform len_val_set = int(len(train_set) * val_set) train_set, val_set = torch.utils.data.random_split(train_set, [len(train_set) - len_val_set, len_val_set]) val_set.dataset = copy(train_set.dataset)

val_set.dataset.transform = base_transform

Courbes d'entraînement et de validation

1. --model=ResNet --dataset=svhn --num-epochs=50 --batch_size=100

(ift725) simon@alien:~/tp3/src\$ python train.py --model=ResNet --dataset=svhn --num-epochs=50 --batch_size=100 Data augmentation NOT activated!
Using downloaded and verified file: ../data/train_32x32.mat
Using downloaded and verified file: ../data/test_32x32.mat
Calculating dataset mean & standard deviation...
Training ResNet on svhn for 50 epochs

Finished training. Accuracy (or Dice for UNet) on the test set: 93.282 %

2. --model=ResNet --dataset=svhn --num-epochs=50 --batch_size=100 --data_aug

(ift725) simon@alien:~/tp3/src\$ python train.py --model=ResNet --dataset=svhn --num-epochs=50 --batch_size=100 --data_aug Data augmentation activated! Using downloaded and verified file: ../data/train_32x32.mat Using downloaded and verified file: ../data/test_32x32.mat Calculating dataset mean & standard deviation... Training ResNet on svhn for 50 epochs

Finished training. Accuracy (or Dice for UNet) on the test set: 94.456 %

3. --model=ResNet --dataset=cifar10 --num-epochs=50 --batch_size=100

(ift725) simon@alien:~/tp3/src\$ python train.py --model=ResNet --dataset=cifar10 --num-epochs=50 --batch_size=100 Data augmentation NOT activated! Files already downloaded and verified Files already downloaded and verified Calculating dataset mean & standard deviation... Training ResNet on cifar10 for 50 epochs

Finished training. Accuracy (or Dice for UNet) on the test set: 80.180 %

4. --model=ResNet --dataset=cifar10 --num-epochs=50 --batch_size=100 --data_aug

(ift725) simon@alien:~/tp3/src\$ python train.py --model=ResNet --dataset=cifar10 --num-epochs=50 --batch_size=100 --data_aug
Data augmentation activated!
Files already downloaded and verified
Files already downloaded and verified
Calculating dataset mean & standard deviation...
Training ResNet on cifar10 for 50 epochs

Finished training. Accuracy (or Dice for UNet) on the test set: 85.580 %