# Formulario di fisica

DI GIANLUCA MONDINI E DI CHIUNQUE ALTRO MI AIUTI

ATTENZIONE: il seguente formulario potrebbe contenere errori. Non mi assumo nessuna responsabilità sui contenuti. Il formulario è ancora in costruzione e necessita una revisione.

Sono contenute alcune brevi descrizioni delle formule, che molto probabilmente saranno eliminate prima della stampa.

A destra di alcune formule è indicata l'unità di misura del valore corrispondente all'interno di parentesi quadre (es.  $V = I \cdot R[v]$ )

# 1 Cinematica

## 1 Calcolo del centro di massa

## 1.1 In un sistema di N punti materiali

(da verificare)

$$R_x = \frac{m_1 r_{1_x} + m_2 r_{2_x} + \dots + m_n r_{n_x}}{M} = \frac{\sum_{i=1}^n m_i r_{i_x}}{\sum_{i=1}^n m_i}$$

dove  $M = m_1 + m_2 + ... m_n$ ,  $R_x$  è la componente x del vettore centro di massa,  $r_{i_x}$  è la componente x del vettore del centro di massa  $m_i$ 

#### 1.2 In un sistema continuo

$$M(\Omega) = \int_{\Omega} \rho(r) dV$$

Dove  $\rho(r)$  è una funzione scalare rappresentante la densità

# 2 Energia meccanica

#### 2.1 Energia cinetica del centro di massa

$$E_c = \frac{1}{2} \, m \, v^2$$

## 2.2 Energia cinetica di rotazione

$$E_{\rm rot} = \frac{1}{2} m v^2 = \frac{1}{2} m r^2 w^2$$

a questo punto si pone  $m r^2 = I$  e si ottiene

$$E_{\rm rot} = \frac{1}{2} I w^2$$

1

# 3 Impulso

(da verificare)

$$F = m a$$
  $a = \frac{v_2 - v_1}{t_2 - t_1}$   $F(t_2 - t_1) = m v_2 - m v_1$   $q = m v$   $I = F(t_2 - t_1)$ 

dove I è l'impulso, che rappresenta il prodotto della forza applicata ad un corpo per l'intervallo di tempo in cui tale forza viene applicata.

Si ha quindi che l'impulso è la variazione della quantità di moto

$$\Delta \vec{p} = \int_{t_0}^{t_1} \vec{F} \, \mathrm{dt}$$

## 3.1 Teorema dell'impulso

Il teorema dell'impulso (o della variazione della quantità di moto) consiste nell'affermazione: il secondo principio della dinamica comporta che l'impulso corrisponde alla variazione della quantità di moto del sistma in un intervallo temporale. Infatti per il secondo principio:

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Sfruttando la definizione di differenziale di una funzione

$$d\vec{p} = \vec{F}dt$$

Integrando entrando ambo i membri tra due istanti  $t_0$  e  $t_1$  otteniamo:

$$\int_{\vec{p}(t_0)}^{\vec{p}(t_1)} d\vec{p} = \int_{t_0}^{t_1} \vec{F} dt$$

ma la primitiva di un differenziale è la grandezza differenziata, e in base al teorema di Torricelli:

$$\vec{p}(t_1) - \vec{p}(t_0) = \int_{t_0}^{t_1} \vec{F} \, dt$$

Nel caso in cui la forza sia costante, la si può portare fuori dal segno d'integrale, cosicché:

$$\Delta \vec{p} = \vec{F} \, \Delta t$$

## 4 Pendolo

#### 4.1 Periodo di oscillazione

#### 4.1.1 Pendolo semplice

$$T = 2\pi \sqrt{\frac{l}{g}}$$

#### 4.1.2 Pendolo fisico

$$T = 2 \, \pi \, \sqrt{\frac{I}{m \, g \, d}}$$

# 2 Elettromagnetismo

# 1 Campo elettrico

"Definizione': 'Forza per unità di carica che una carica sonda percepisce per la presenza delle cariche sorgenti

# 1.1 Legge di Coulomb

$$|F_e| = k_e \cdot \frac{|q_1| \cdot |q_2|}{r^2}$$

dove  $k_e = 8.9876 \times 10^9 \, N \cdot m^2 / C^2$ .  $k_e$  si può indicare anche come  $\frac{1}{4 \, \pi \, \varepsilon_0}$ 

# 1.2 Vettore campo elettrico

$$\vec{E} \equiv \frac{\vec{F_e}}{q_0} \left[ \frac{N}{C} \right]$$

Da questo ricaviamo che, presa una carica  $q_0$  immersa in un campo elettrico  $\vec{E}$ , la forza che spinge la carica è uguale a

$$\vec{F}_e = q_0 \vec{E}$$

## 1.3 Lavoro per spostare una carica

Il lavoro necessario per spostare una carica dalla posizione  $r_A$ alla posizione  $r_B$  è pari a

$$W = \int_{r_A}^{r_B} F_t \, dr$$

dove  $F_t$  è la forza tangente che compie lo spostamento. Siccome  $F_t$  è sempre tangente, abbiamo

$$W = \int_{r_A}^{r_B} q E dr$$

Sostituendo e semplificando otteniamo

$$W = \frac{q_1 \, q_2}{4 \, \pi \, \varepsilon_0} \left( \frac{1}{r_A} - \frac{1}{r_B} \right)$$

# 1.4 Energia potenziale elettrica

Un campo conservativo ammette energia potenziale.

Partendo dalla relazione

$$W_{\rm cons} = -\Delta U_E = U_{\rm finale} - U_{\rm iniziale}$$

Abbiamo che l'energia potenziale associata al campo elettrico è uguale a

$$U_E = \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{1}{r}$$

dove r è la distanza tra le due cariche

# 1.5 Momento di dipolo elettrico

Dato un sistema di cariche, il momento elettrico (o momento di dipolo) è una grandezza vettoriale che quantifica la separazione tra le cariche positive e negative, ovvero la polarità del sistema, e si misura in Coulomb per metro.

Date due cariche di segno opposto e uguale modulo q, il momento elettrico p è definito come

$$\vec{p} = q \cdot \vec{d}$$

dove  $\vec{d}$  è il vettore spostamento dell'uno rispetto all'altro, orientato dalla carica negativa alla carica positiva.

#### 1.6 Flusso elettrico

È proporzionale al numero di linee di campo elettrico che attraversano una superficie. Se il campo elettrico è uniforme e forma un angolo con la normale ad una superficie di area A, il flusso elettrico attraverso la superficie è

$$\Phi_E = E A \cos(\theta) \left[ \frac{N m^2}{C} \right]$$

# 1.7 Flusso elettrico (legge di Gauss)

Data una superficie chiusa,

$$\Phi_S(\vec{E}) = \oint \vec{E} \cdot d\vec{A} = \frac{\sum q_{\rm in}}{\varepsilon_0}$$

dove  $\sum q_{\rm in}$  è la carica totale contenuta all'interno della superficie.

In pratica, il flusso attraverso una superficie è uguale alla somma delle cariche interne diviso  $\varepsilon_0$ . Le cariche esterne non danno un contributo al flusso in quanto le linee di forza entrano ed escono, quindi la somma dei contributi è nulla.

#### 1.7.1 Scelta della superficie E

È fondamentale che la superficie chiusa E soddisfi una o più delle seguenti condizioni:

- 1. Da considerazioni di simmetria si può arguire che il valore del campo elettrico deve essere costante sulla porzione di superficie
- 2. Il prodotto scalare E dA che compare nella formula può essere espresso come un semplice prodotto algebrico E dA in quanto  $\vec{E}$  e  $\vec{dA}$  sono paralleli.
- 3. Il prodotto scalare E dA che compare nella formula è nullo, in quanto  $\vec{E}$  e  $\overrightarrow{dA}$  sono perpendicolari.
- 4. Il campo elettrico è nullo sulla porzione di superficie.

#### 1.8 Relazione con il campo magnetico

Un campo magnetico variabile genera un campo elettrico

$$\oint_L \left( \vec{E} \right) = -\frac{d}{dt} \, \Phi_S \! \left( \vec{B} \right)$$

# 1.9 Equilibrio elettrostatico

Un conduttore in equilibrio elettrostatico ha le seguenti proprietà:

- 1. Il campo elettrico all'interno del conduttore è ovunque nullo sia che il conduttore sia pieno sia che sia cavo
- 2. Un qualunque eccesso di carica su un conduttore isolato deve risiedere interamente sulla sua superficie
- 3. Il campo elettrico in un punto nelle immediate vicinanze del conduttore è perpendicolare alla sua superficie ed ha intensità  $\sigma / \varepsilon_0$ , dove  $\sigma$  è la densità di carica superficiale in quel punto
- 4. Su un conduttore di forma irregolare la densità di carica è massima dove il raggio di curvatura della superficie è minimo.

## 1.10 Differenza di potenziale

$$\Delta V_{AB} = V_A - V_B \equiv \frac{\Delta U}{q_2} = -\int_A^B \vec{E} \cdot d\vec{s}$$

$$\Delta V_{AB} = \frac{q_1}{4 \pi \varepsilon_0} \left( \frac{1}{r_A} - \frac{1}{r_B} \right)$$

Ponendo, per convenzione, potenziale nullo all'infinito, abbiamo che

$$V = \frac{q_1}{4\pi \,\varepsilon_0} \, \frac{1}{r} \bigg[ v = \frac{J}{C} \bigg]$$

### 1.11 Variazione di energia potenziale

Quando una carica di prova positiva  $q_1$  si sposta dal punto (A) al punto (B) in un campo elettrico  $\vec{E}$ , la variazione di energia potenziale del sistema carica-campo è

$$\Delta U = -q_1 \int_A^B \vec{E} \cdot d\vec{s}$$

### 1.12 Condensatore

$$C = \frac{Q}{\Delta V} \left[ \frac{C}{v} = F \right]$$

dove Q è la carica (per convenzione quella positiva) depositata sul condensatore.

L'energia potenziale del campo elettrostatico contenuta nel condensatore è uguale a

$$U = \frac{1}{2}C \,\Delta V = \frac{1}{2} \,\frac{Q^2}{C}$$

# 2 Campo magnetico

Il campo magnetico è costituito da linee chiuse

#### 2.1 Teorema di Ampère

È il duale del teorema di Gauss per il campo magnetico

La circuitazione del campo magnetico lungo una linea  $\gamma$  è uguale a  $\mu_0$  moltiplicata per la somma delle correnti  $I_i$  concatenate con la linea stessa

$$\oint_{\gamma} B \cdot d \, l = \mu_0 \sum_{i} I_i$$

#### 2.1.1 Legge di Biot-Savart

Si applica nel caso di un filo rettilineo indefinito percorso da corrente stazionaria I. Supponendo di essere nel vuoto, il modulo di B è inversamente proporzionale alla distanza dal filo r secondo l'espressione:

$$B = \mu_0 \cdot \frac{I}{2 \pi r}$$

Si ricava dal teorema di Ampère integrando d l lungo la circonferenza di raggio r e considerando la corrente I come l'unica corrente concatenata alla linea  $\gamma$ .

# 2.2 Teorema di Ampère-Maxwell

Rispetto al teorema di Ampère tiene conto anche delle variazioni di campo elettrico

$$\oint_{\gamma} B = \mu_0 \left( I_{\text{conc}} + \varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t} \right)$$

La superficie S ha come bordo  $\gamma$ 

Il termine  $\varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t}$  prende il nome di **corrente di spostamento** 

## 2.3 Legge di Gauss per il campo magnetico

$$\Phi_S(\vec{B}) = 0$$

Ovvero non è possibile isolare un monopolo magnetico. Un ulteriore conseguenza è che il campo magnetico  $\vec{B}$  è solenoidale, ovvero è composto da linee chiuse.

#### 2.4 Particella in movimento in un campo magnetico uniforme

La traiettoria della particella è circolare, ed il piano del cerchio è perpendicolare al campo magnetico. Il raggio r della traiettoria circolare è

$$r\!=\!\frac{m\,v}{q\,B}$$

dove m è la massa della particella e q la sua carica. La velocità angolare della particella carica è

$$\omega = \frac{q B}{m}$$

# 2.5 Momento di dipolo magnetico

$$\vec{m} = I \cdot S [A \cdot m^2]$$

La direzione è data dalla direzione positiva di attraversamento di S, che viene individuata tramite la regola della mano destra (ponendo il pollice nella direzione della corrente I che scorre lungo il "contorno" di S)

# 2.6 Campo magnetico generato da un solenoide

$$|B| = \mu_o \cdot n \cdot I$$

# 2.7 Energia potenziale magnetica

L'energia potenziale del sistema formato da un momento di dipolo magnetico in un campo magnetico è

$$U = -\vec{\mu} \cdot \vec{B}$$

# 3 Costanti

• Costante dielettrica (o permittività) del vuoto

$$\varepsilon_0 = 8.8542 \times 10^{-12} \, C^2 \, / \, N \cdot m^2$$

• Permeabilità magnetica del vuoto

$$\mu_0 = 4 \pi \times 10^{-7} H/m$$

(necessita di revisione)

$$\mu_0 \cong 1.25663706144 \times 10^{-6} \, H/m$$

si può anche esprimere in  $T \cdot m \, / \, A$ 

• Costante di Coulomb

$$k_e = 8.9876 \times 10^9 \, N \cdot m^2 / C^2$$

• Massa dell'elettrone

$$m_e \cong 9.1093826 \times 10^{-31} \,\mathrm{kg}$$

# 4 Momenti d'inerzia