DEVOIR DE MATHS Bac Blanc

Durée :4h Proposé le 26 décembre 2014 de 8h à 12h Niveau : 7D

EXERCICE 1 (3 POINTS)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, avec justification, la réponse qui lui correspond.

N°	Questions	Réponses			
	_	a	b	c 7	d
1	La forme algébrique de $\frac{-1+7i}{3+4i}$ est	$-\frac{1}{7}$ + i	W 11+iW	Cl-1+i1.	1-i
2	Le module de $\frac{\left(\sqrt{3}+i\right)^2}{2+2i}$ est	h.1m	$\frac{1}{\sqrt{2}}$	$\sqrt{2}$	$\frac{1}{2}$
3	Si $\frac{\pi}{6}$ est un argument de z alors un argument de $\frac{\mathbf{i}}{\overline{z}^2}$ est	$-\frac{\pi}{6}$	$m^{\frac{\pi}{6}}$	_ <u>5π</u> αίδη.	$\frac{5\pi}{6}$
4	Si $z = -\sqrt{3} + 2e^{i\frac{\pi}{6}}$, alors la forme exponentielle de z est:	$e^{i\frac{\pi}{2}}$	$2\sqrt{3}e^{i\frac{\pi}{6}}$	$2\sqrt{3}e^{i\frac{7\pi}{6}}$	$\left(2-\sqrt{3}\right)e^{i\frac{\pi}{6}}$
5	Si \mathbf{z} et \mathbf{z}' sont deux nombres complexes tels que $ \mathbf{z} = 2$ et $\mathbf{z}' = \mathbf{z} - \frac{1}{\overline{\mathbf{z}}}$ alors $ \mathbf{z}' =$	1	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$
6	$\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^{2015} =$	$W_{1}aI$	nim	$a_{\underline{t}}h.$	2015

EXERCICE 2 (4 POINTS)

On considère la suite (U_n) définie pour $n \in IN$ par $\begin{cases} U_0 = \frac{1}{3} \\ U_{n+1} = \frac{U_n}{3U_n + 1} \end{cases}$

- 1° Calculer U_1 et U_2 .
- 2° Montrer, par récurrence, que $\left(U_{n}\right)$ est positive.
- 3° Montrer que la suite $\left(U_n\right)$ est décroissante. Que peut-on déduire ?
- 4° On pose $V_n = \frac{1}{U}$
 - a- Montrer que $\left(V_{n}\right)$ est une suite arithmétique.
 - b- Exprimer $\boldsymbol{V}_{\!n}$ en fonction de n- en déduire $\boldsymbol{U}_{\!n}$ en fonction de n-
 - c- Calculer, en fonction de \mathbf{n} , $\mathbf{S}_{\mathbf{n}} = \frac{1}{\mathbf{U}_{\mathbf{n}}} + \frac{1}{\mathbf{U}_{\mathbf{n}}} + \dots + \frac{1}{\mathbf{U}_{\mathbf{n}}}$.

ERCICE 3 (6 POINTS)

On considère dans l'ensemble des nombres complexes l'équation suivante :

$$z^2 + 6z + 25 = 0$$
 (E)

- 1. Déterminer les nombres complexes \mathbf{z}_1 et \mathbf{z}_2 solutions de (\mathbf{E}) tels que $\mathbf{Im}(\mathbf{z}_1) \succ \mathbf{0}$.
- 2. Le plan complexe est rapporté à un repère orthonormé direct $(\mathbf{O}; \mathbf{u}, \mathbf{v})$

Soient les points A, B et C d'affixes respectives : $\mathbf{z}_{A} = \mathbf{z}_{1} - 6\mathbf{i}$, $\mathbf{z}_{B} = \mathbf{z}_{2} + 4$ et $\mathbf{z}_{C} = -1 + 2\mathbf{i}$.

Placer les points A, B et C dans le repère.

- a- Déterminer la nature du triangle ABC.
- b- Déterminer l'affixe du point **D** tel que le quadrilatère **ABDC** soit un parallélogramme.
- 3. Pour tout nombre $z \neq 3$, on pose : $f(z) = \frac{z+3+2i}{z-3}$.
 - a- Calculer le nombre $\alpha = f(5-6i)$ puis l'écrire sous forme algébrique et trigonométrique.
 - **b-** Déterminer Γ_1 l'ensemble des points **M** du plan d'affixe **z** tel que $|\mathbf{f}(\mathbf{z})| = 1$.
- c- Déterminer Γ_2 l'ensemble des points M du plan d'affixe z tel que $|\mathbf{f}(\mathbf{z}) \mathbf{1}| = \sqrt{10}$.
 - 4. Pour tout n, on pose $z_n = \alpha^n$ (où α est le nombre calculé à la question 3.a-) et soit M_n le point d'affixe \mathbf{z}_n .
 - a- Déterminer l'ensemble des entiers $\bf n$ pour lesquels le point ${\bf M}_{\bf n}$ appartient à l'axe des abscisses.
 - b- Que peut-on dire des points M_{2014} et M_{2016} ?

EXERCICE 4 (5 POINTS)

La suite (U_n) est définie par $U_0 = 1$ et pour tout entier naturel n, par $U_{n+1} = \frac{1}{2}U_n + n - 1$.

- 1. a- Calculer les termes U_1 , U_2 et U_3 .
 - **b-** Justifier que la suite (U_n) n'est ni arithmétique, ni géométrique.
- 2. a- Démontrer que pour tout $n \ge 3$, on a $U_n \ge 0$.
 - **b-** En déduire que pour tout $n \ge 4$, on a $U_n \ge n-2$. **c-** En déduire la limite de la suite (U_n) .
- 3. On définit la suite (V_n) par $V_n = 4U_n 8n + 24$.
 - a- Démontrer que $\left(V_n\right)$ est une suite géométrique décroissante dont on donnera la raison et le premier terme.
 - **b-** Démontrer que, pour tout entier naturel **n**, $U_n = 7\left(\frac{1}{2}\right)^n + 2n 6$.
 - c- Vérifier que, pour tout entier naturel n, $U_n = x_n + y_n$ où (x_n) est une suite géométrique et (y_n) une suite arithmétique dont on précisera pour chacune le premier terme et la raison.
 - **d-** En déduire l'expression de la somme $S_n = U_0 + U_1 + ... + U_n$ en fonction de n.

Présentation et rédaction : 2 points

Fin.