## **ASSIGNMENT 1**

Name: Harsh

Roll: 200123022

- By first fundamental theorem of asset pricing, if a market model has a risk neutral measure, then it does not admit arbitrage. Therefore, we will check for the existence of risk neutral measure for checking noarbitrage condition in the model.
- Under risk neutral measure, the discounted portfolio is a martingale. Therefore

$$E[e^{-rt_1}S(t_1)|S(t_0)] = e^{-rt_0}S(t_0)$$

• For one step binomial model taking  $t_0 = 0$ ,

$$E[S(t_1)|S(0)] = e^{rt_1}S(0)$$
 ...eq1

• In one step binomial model,

 $E[S(t_1)|S(0)] = quS(0) + (1-q)dS(0)$  ...eq2 where q is the risk neutral probability

• By eq1 and eq2 -

$$quS(0) + (1-q)dS(0) = e^{rt_1}S(0)$$

$$q = \frac{e^{rt_1} - d}{u - d}$$

• q will be valid risk neutral probability if  $0 \le q \le 1$ . Therefore, for a binomial model no arbitrage condition boils down to checking if  $0 \le q \le 1$ . The case of multistep binomial model is equivalent to applying the same single step binomial model multiple times. Therefore checking for  $0 \le q \le 1$  is sufficient.

#### **QUESTION 1**

Price of the option can be calculated by using multistep binomial model.

Given Data -

S(0) = Initial stock price = 100

K = Strike price = 105

T = Time to maturity = 5 years

r = Risk free rate = 0.05%

 $\sigma$  = Volatility of the stock.

At each time step prices of the stock can go up by a factor of u or go down by a factor of d.

Formula used for u and d -

$$u = e^{\sigma\sqrt{\Delta t} + (r - \frac{\sigma^2}{2})\Delta t}$$

$$d = e^{-\sigma\sqrt{\Delta t} + (r - \frac{\sigma^2}{2})\Delta t}$$

where  $\Delta t = T/M$  with M being the number of subintervals in the time interval [0,T]. Final payoff can be calculated using following formula –

for call option – max(S(T) - K, 0)

for put option – max(K - S(T),0)

After calculating the final payoff, we have to discount it to time 0 to get the price of the option. Discounting at each step i can be done using following formula –

$$C(i) = e^{-r\Delta t}(qC_u + (1-q)C_d)$$

where C(i) is value of the option in step i,  $C_u$  is payoff in up state and  $C_d$  is payoff in down state.

On running the program for various values of M, following initial option prices were obtained.

| harsh@hi aise_heen % cd 200123022_lab1 • harsh@hi 200123022_lab1 % python3 q1.py |            |                  |                  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|------------|------------------|------------------|--|--|--|--|--|--|--|--|
| St                                                                               | ep Size Ca | ill Option Price | Put Option Price |  |  |  |  |  |  |  |  |
| 0                                                                                | 1          | 38.167635        | 19.941717        |  |  |  |  |  |  |  |  |
| 1                                                                                | 5          | 34.906533        | 16.680615        |  |  |  |  |  |  |  |  |
| 2                                                                                | 10         | 33.625022        | 15.399104        |  |  |  |  |  |  |  |  |
| 3                                                                                | 20         | 33.859449        | 15.633532        |  |  |  |  |  |  |  |  |
| 4                                                                                | 50         | 33.981184        | 15.755267        |  |  |  |  |  |  |  |  |
| 5                                                                                | 100        | 34.011161        | 15.785243        |  |  |  |  |  |  |  |  |
| 6                                                                                | 200        | 34.019579        | 15.793661        |  |  |  |  |  |  |  |  |
| 7                                                                                | 400        | 34.019132        | 15.793214        |  |  |  |  |  |  |  |  |

# **QUESTION 2**









### **Observations**

- 1. Value of the European call option converges to 34.0 and value of the put option converges to 15.7.
- 2. As the value of M increases deviation in the options prices decreases.
- 3. Option prices oscillates around the final value of convergence.

### **QUESTION 3**

Depending on number of up steps and down steps taken till the ith step we have (i+1) possible values of the options. Values of the options at different t values are tabulated below -

|   | h h Oh - 1 - 1                                                                    | 200422022                           |        |      |                                                                                                       |      |                                                                                                                                                       |     |                                                                                                                                                                                                                          |
|---|-----------------------------------------------------------------------------------|-------------------------------------|--------|------|-------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | harsh@hi 2<br>For t = 0                                                           |                                     |        |      | ns qs.py                                                                                              | /    |                                                                                                                                                       |     |                                                                                                                                                                                                                          |
|   | No. of                                                                            | up steps                            | No. of | down | steps<br>0                                                                                            | Call | Option Values<br>33.859449                                                                                                                            | Put | Option Values<br>15.633532                                                                                                                                                                                               |
| ! | For t = 0:<br>No. of<br>0<br>1<br>2                                               |                                     | No. of |      | steps<br>2<br>1<br>0                                                                                  | Call | Option Values<br>15.095873<br>31.893253<br>59.958769                                                                                                  | Put | Option Values<br>24.672817<br>15.487143<br>8.479204                                                                                                                                                                      |
|   | For t = 1<br>No. of<br>0<br>1<br>2<br>3<br>4                                      | (time st<br>up steps<br>1<br>2<br>3 | No. of |      | steps<br>4<br>3<br>2<br>1                                                                             | Call | Option Values<br>5.154831<br>13.469716<br>29.803955<br>57.699995<br>100.662666                                                                        |     | Option Values<br>35.965304<br>24.983287<br>15.269432<br>8.004223<br>3.504174                                                                                                                                             |
|   | For t = 1<br>No. of<br>0<br>1<br>2<br>3<br>4<br>5<br>6                            |                                     | No. of |      | steps<br>6<br>5<br>4<br>3<br>2<br>1                                                                   | Call | Option Values<br>1.125003<br>4.121405<br>11.767497<br>27.573204<br>55.295356<br>98.438869<br>160.611388                                               |     | Option Values 48.304951 36.970072 25.270960 14.963372 7.436262 2.998250 0.942427                                                                                                                                         |
|   | For t = 3<br>No. of<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | f up ster                           |        |      | n steps<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2                                     | Cal  | 0.000000<br>0.000000<br>0.000000<br>0.118330<br>1.235971<br>6.148520<br>19.725206<br>46.976188<br>91.193433<br>154.841699<br>242.030183<br>359.934184 |     | t Option Values<br>78.228223<br>72.357695<br>64.433311<br>53.854842<br>40.533314<br>25.955024<br>13.221829<br>4.958186<br>1.235702<br>0.172103<br>0.008705<br>0.000000                                                   |
|   | For t = 4. No. o' 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                     | f up ster                           |        |      | n steps<br>18<br>17<br>16<br>15<br>14<br>13<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2 | Call | 0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000                                                                                              |     | t Option Values<br>95.534063<br>93.129316<br>89.883248<br>85.501514<br>79.586791<br>71.602751<br>60.825424<br>46.277554<br>26.639984<br>8.281211<br>0.601546<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000 |