Frühjahr 24 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ und

$$\begin{split} \varphi: \hat{\mathbb{C}} &\to \hat{\mathbb{C}} \\ z &\mapsto \begin{cases} \frac{z-1}{z+1} & \text{ für } z \in \mathbb{C} \backslash \{-1\}, \\ \infty & \text{ für } z = -1, \\ 1 & \text{ für } z = \infty. \end{cases} \end{split}$$

- a) Bestimmen Sie mit Begründung $\varphi(\{z \in \mathbb{C} : |z| = 1\})$ und $\varphi(\mathbb{R})$.
- b) Geben Sie für

$$U := \{ z \in \mathbb{C} : |z| < 1, \operatorname{Im}(z) > 0 \}$$

und

$$V := \{ z \in \mathbb{C} : \operatorname{Re}(z) < 0, \operatorname{Im}(z) > 0 \}$$

eine biholomorphe Abbildung $f:U\to V$ an und zeigen Sie, dass diese biholomorph ist.

Lösungsvorschlag:

a) $A := \varphi(\{z \in \mathbb{C} : |z| = 1\})$: Wegen |-1| = 1 gilt $\infty \in A$. Ist $z \in \mathbb{C} \setminus \{-1\}$ mit |z| = 1, so folgt

$$\frac{z-1}{z+1} = \frac{(z-1)(\overline{z}+1)}{(z+1)(\overline{z}+1)} = \frac{|z|^2 + z - \overline{z} - 1}{|z|^2 + z + \overline{z} + 1} = \frac{2i \operatorname{Im}(z)}{2 + 2\operatorname{Re}(z)} = \frac{\operatorname{Im}(z)}{1 + \operatorname{Re}(z)} \ i \in \mathbb{R} \ i.$$

Wir erhalten also nur rein imaginäre Zahlen. Wir behaupten $A=\mathbb{R}\ i\cup\{\infty\}$ und haben bereits " \subset " und $\infty\in A$ gezeigt. Sei nun $r\in\mathbb{R}$, wir müssen $ri\in A$ zeigen. Wir betrachten die Zahlen $z_t:=e^{it}$ für $t\in[0,2\pi]\backslash\{\pi\}$, für diese gilt $|z_t|=1,z_t\neq -1$ und $\varphi(z_t)=\frac{\sin(t)}{1+\cos(t)}i$. Die Abbildung $\tau:[0,\pi)\to\mathbb{R}, \tau(t)=\frac{\sin(t)}{1+\cos(t)}$ ist stetig als Verknüpfung stetiger Funktionen (Nenner wird nicht 0!) und erfüllt $\tau(0)=0$ und $\lim_{t\to\pi}\tau(t)=+\infty$ (l' Hospital), nach dem Zwischenwertsatz gilt also $\tau([0,\pi))=[0,+\infty)$. Völlig analog sieht man für $\mu:(\pi,2\pi]\to\mathbb{R}, \mu(t)=\frac{\sin(t)}{1+\cos(t)},$ dass die Abbildung stetig ist, $\mu(2\pi)=0$ und $\lim_{t\to\pi}-\infty$ ist, also $\mu((\pi,2\pi])=(-\infty,0]$ gilt. Für jedes $r\in\mathbb{R}$ gibt es also ein $t\in[0,2\pi]\backslash\{\pi\}$ mit $r=\tau(t)$ oder $r=\mu(t)$. Für dieses t gilt dann $\varphi(z_t)=ri$, womit die Behauptung bewiesen ist. $\varphi(\mathbb{R}):$ Für $x\in\mathbb{R}\backslash\{-1\}$ ist $\varphi(x)\in\mathbb{R}$. Völlig analog wie oben, sieht man, dass die Funktionen $f:(-1,+\infty)\to\mathbb{R}, f(x)=\frac{x-1}{x+1}, g:(-\infty,-1)\to\mathbb{R}, g(x)=\frac{x-1}{x+1}$ als Bildmengen $f((-1,+\infty))=(-\infty,1)$ und $g((-\infty,-1))=(1,+\infty)$ erfüllen, also folgt $\varphi(\mathbb{R})=\mathbb{R}\backslash\{1\}\cup\{\infty\}$, wegen $-1\in\mathbb{R}$.

b) Wir zeigen, dass die Funktion φ eingeschränkt auf U diese Eigenschaft hat. Es handelt sich um eine Möbiustransformation, diese sind biholomorph, wir rechnen aber trotzdem nochmal alle benötigten Eigenschaften nach. Für $z \in U$ gilt $\varphi(z) = \frac{|z|^2 + z - \overline{z} - 1}{|z|^2 + z + \overline{z} + 1} = \frac{|z|^2 - 1 + i(2\operatorname{Im}(z))}{|z|^2 + 1 + 2\operatorname{Re}(z)} = \frac{|z|^2 - 1}{|z|^2 + 1 + 2\operatorname{Re}(z)} + \frac{i(2\operatorname{Im}(z))}{|z|^2 + 1 + 2\operatorname{Re}(z)}.$

Daher gilt $|z| < 1 \implies |z|^2 < 1 \implies \operatorname{Re}(\varphi(z)) < 0$, und $\operatorname{Im}(z) > 0 \implies$ $\operatorname{Im}(\varphi(z)) > 0$, wobei verwendet wurde, dass $|z|^2 + 1 + 2\operatorname{Re}(z) \ge |z|^2 + 1 - 2|\operatorname{Re}(z)| \ge |z|^2 + 1 - 2|\operatorname{Re}(z)| \ge |z|^2 + 1 - 2|\operatorname{Re}(z)| \ge |z|^2 + 1 + 2\operatorname{Re}(z) = |z|^2 + 2\operatorname{Re}(z) = |z|$ $(|z|-1)^2 > 0$ gilt, weil $|z| \neq 1$ ist. Die Nenner haben also keine Nullstellen in U. Als Verknüpfung holomorpher Funktionen ist φ auf U holomorph, weil der Nenner keine Nullstellen in U besitzt und bildet nach den obigen Ungleichungen in V ab. Also ist $\varphi|_U:U\to V$ holomorph und injektiv. Die Mengen U und V sind beide offen. Mit den Eigenschaften der Möbiustransformationen (oder durch direktes Nachrechnen: $(\varphi(z) = x \iff z - 1 = (z + 1)x \iff z(1 - x) = x + 1 \iff z = \varphi^{-1}(z))$ erhalten

wir die Umkehrfunktion von φ als $\varphi^{-1}(z) = \begin{cases} \frac{z+1}{-z+1} & \text{für } z \in \mathbb{C} \setminus \{1\}, \\ \infty & \text{für } z = 1, \\ -1 & \text{für } z = \infty. \end{cases}$

Weil V die 1 nicht enthält, ist φ^{-1} auf V holomorph als Verknüpfung holomorpher

Funktionen. Wir berechnen für $z \in V : \varphi^{-1}(z) = \frac{(z+1)(-\overline{z}+1)}{(-z+1)(-\overline{z}+1)}$ $= \frac{z-\overline{z}+1-|z|^2}{-z-\overline{z}+|z|^2+1} = \frac{1-|z|^2+i(2\mathrm{Im}(z))}{|z|^2+1-2\mathrm{Re}(z)} = \frac{1-|z|^2}{|z|^2+1-2\mathrm{Re}(z)} + \frac{i(2\mathrm{Im}(z))}{|z|^2+1-2\mathrm{Re}(z)}.$ Für die Nenner erhalten wir die Abschätzung $|z|^2+1-2\mathrm{Re}(z) \ge |z|^2+1 \ge 1 > 0$, da $\operatorname{Re}(z) < 0$ gilt. Für $z \in V$ gilt auch wieder $\operatorname{Im}(\varphi^{-1}(z)) > 0$, wir bestimmen noch

$$\begin{split} |\varphi^{-1}(z)|^2 &= \frac{z+1}{-z+1} \cdot \frac{\overline{z}+1}{-\overline{z}+1} = \frac{z\overline{z}+z+\overline{z}+1}{z\overline{z}-z-\overline{z}+1} \\ &= \frac{|z|^2 + 2\operatorname{Re}(z)+1}{|z|^2 - 2\operatorname{Re}(z)+1} < \frac{|z|^2 - 2\operatorname{Re}(z)+1}{|z|^2 - 2\operatorname{Re}(z)+1} = 1, \end{split}$$

wobei wieder die Positivität des Nenners aus vorheriger Rechnung und die Ungleichung Re(z) < 0 benutzt wurde. Radizieren zeigt $|\varphi^{-1}(z)|$ < 1 für alle $z \in V$. Das heißt, dass für $z \in V$ auch $\varphi^{-1}(z) \in U$ ist und dass $\varphi^{-1}|_{V}: V \to U$ holomorph ist. Wir haben für $v \in V$ also $\varphi^{-1}(v) \in U$ und $v = \varphi(\varphi^{-1}(v))$, also ist $\varphi|_U$ auch surjektiv. Damit ist $f = \varphi|_U$ eine Funktion mit den gewünschten Eigenschaften, denn es ist $f: U \to V$ holomorph und bijektiv mit Umkehrfunktion $f^{-1} = \varphi^{-1}|_{V}: V \to U$, die ebenfalls holomorph ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$