

Local Law 97

NYC local law 97, passed in April 2019, aims to reduce carbon emissions by 40% in 2030

- Group A (Residential): 0.00675 kgCO2e/ft²
- Group B (Business): 0.00846 kgCO2e/ft²
- Group E (Educational): 0.00574 kgCO2e/ft²
- Group I-1 and I-2 (Institutional): 0.00987 kgCO2e/ft²
- Group M (Mercantile): 0.01181 kgCO2e/ft²
- Group R-1 (Residential Hotels): 0.00987 kgCO2e/ft²
- Group S (Storage): 0.02003 kgCO2e/ft²

Over 70 percent of New York's greenhouse gas emissions come from buildings
- NYC Mayor's Office of Climate and Environmental Justice

We know that most buildings in Manhattan are high-rise...

- Do they meet this goal?
- What types of buildings produce most greenhouse gas emissions?
- How could future NYC skyscrapers work towards this goal?

Data Preparation

Data Exploration

- Loading the dataset & understanding basic information about it

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29842 entries, 0 to 29841
 Data columns (total 59 columns):

Data Cleaning

- Replacing "Not Available" / "Not Applicable" columns with Nan
- Selecting the most relevant columns through manual scrapping
- Removing rows that had >= 10 missing data columns

<u>Imputation to fill in missing values</u>

 KNN imputation to fill missing values given our assumption that GHG emissions of a certain property would be similar to other properties that are nearby

Exploratory Data Analysis: Total GHG Emissions by Borough

Manhattan (59 km²), followed by Staten Island (152 km²) and Queens (280 km²)

Since Manhattan produces the most GHG Emissions Intensity, we will focus our analysis on Manhattan.

Exploratory Data Analysis: ENERGY STAR Score and GHG Emissions

As we can see, Total GHG Emissions intensity and ENERGY STAR Score are negatively correlated

Exploratory Data Analysis: ENERGY STAR Score across building

types

Multifamily housing has lowest star scores alongside hotels and residential care facilities.

Exploratory Data Analysis: ENERGY STAR Score and EUI

- site EUI: energy use intensity used on-sit at a building
- source UI: total amount of energy used to operate building, both on-site and off
- The difference between site and source EUI gives an indication of the amount of energy lost during transmission

As we can see, multifamily housing produces most GHG emissions Distribution of Total GHG Emissions Intensity (kgCO2e/ft²) by Primary Property Type - Self Selected 200 175 nsity (kgCO2e/ft²) 100 Total GHG Emissions 75 50 25 osed Mall Primary Property Type - Self Selected

Understanding whether buildings are meeting the GHG emission limits based on property type.

```
fail
True 17806
False 2
Name: count, dtype: int64
Property Name Primary Property Type - Self Selected
6779 2022 Copy of Clearview 6 Bldg A-1
Multifamily Housing
16854 708-716 OCEAN COMMUNITY CORP
Multifamily Housing
```

```
Property Id
                                         Property Name \
                    2022 Copy of Clearview 6 Bldg A-1
6779
          21322144
16854
           6669870
                         708-716 OCEAN COMMUNITY CORP
                NYC Building Identification Number (BIN)
                                                               City
6779
       4443389; 4443384; 4443385; 4443388; 4458409; 444338...
                                                              0ueens
16854
                                                  3327291
                                                           BROOKLYN
      Postal Code Primary Property Type - Self Selected \
6779
            11357
                                    Multifamily Housing
16854
            11226
                                     Multifamily Housing
```

Only 2 of the buildings fall within the Local Law 97 regulations

A Look Into These Residential Buildings

NYC Department of Buildings

Property Profile Overview

158-18 CROSS ISLAND PARKWAY SR SOUTH		QUEENS 11357		BIN# 4443389	
CROSS ISLAND PARKWAY	158-18 - 158-18	Health Area	: 222	Tax Block	: 4742
		Census Tract	: 1029	Tax Lot	: 22
		Community Board	: 407	Condo	: NO
		Buildings on Lot	: 7	Vacant	: NO 📾

View DCP Addresses... Browse Block

Low-Rise Residential Building in Queens

A Look Into These Residential Buildings

NYC Department of Buildings

Property Profile Overview

706 OCEAN AVENUE BROOKLYN 11226 BIN# 3327291 OCEAN AVENUE 706 - 712 **Health Area** : 7210 Tax Block : 5123

> **Census Tract** : 510.01 Tax Lot : 31 Community Board : 314 Condo : NO : NO **Buildings on Lot** : 2 Vacant

View DCP Addresses.. **Browse Block** **Multi-story Low-Rise Building** with a Smaller Floor Area

To predict what factors lead to higher GHG emissions amongst multifamily housing, we made use of multiple regression models.

Cross-Validation Scores (Without Scaling):

KNN: 0.654218562676791 OLS: 0.6773510175383961 Ridge: 0.6773524705140357 Lasso: 0.6775105091230527

Cross-Validation Scores (With Scaling):

KNN: 0.65483416417694 OLS: 0.6773510175383741 Ridge: 0.6773723225776165 Lasso: 0.677570670035135 Best Model Overall: Lasso

Best Model Without Scaling: Lasso Best Model With Scaling: Lasso We made use of 4 regression models - KNN, OLS, Ridge and Lasso - and tested each model's accuracy with scaling and tuning. Here, X consists of variables like gross floor area, bedroom density, building height while Y is the gross GHG emissions.

Our best model achieved ~68%

accuracy.

Best Tuned KNN Mean CV Score: 0.6686673650029825 Best Tuned Ridge Mean CV Score: 0.6775631141633838 Best Tuned Lasso Mean CV Score: 0.6794305322559795

Best Overall Tuned Model: Lasso with Mean CV Score of 0.6794305322559795

To predict what factors lead to higher GHG emissions amongst multifamily housing, we made use of logistic regression model.

Accuracy: 0.6209994385176867

Confusion Matrix:

[[2212 0]

[1350 0]]

Classification Report:

		precision	recall	f1-score	support
	0	0.62	1.00	0.77	2212
	1	0.00	0.00	0.00	1350
accur	асу			0.62	3562
macro	avg	0.31	0.50	0.38	3562
weighted	avg	0.39	0.62	0.48	3562

We also made use of a logistic regression, where X consists of variables like gross floor area, bedroom density, building height while Y is a binary variable - whether gross GHG is above or below the national median. We achieved an accuracy score of 72%

262 FIFTH AVENUE

- 305 meter residential skyscraper (by 2024)

Based on current energy systems and consumption, future skyscrapers will not meet these goals by 2030, unless a radical change is made

Perhaps, the best way to ensure that is to increase the penalty, currently add 268\$ per ton of CO2 over the limit

