ADVANCED MACHINE LEARNING

K-NEAREST NEIGHBOURS

Instructor: Rossano Schifanella

@UDD

Distance or Similarity Measures

- Many data mining and analytics tasks involve the comparison of objects in terms of their distance or similarity, e.g.:
 - k-Nearest Neighbors search, classification, and prediction
 - Clustering
- Many real-world applications rely on the computation similarities or distances among objects
 - Personalization
 - Recommender systems
 - Document categorization
 - Information retrieval
 - Target marketing

Measuring Distance

- In order to compare similar items, we need a way to **measure the distance** between objects (e.g., records)
- Often requires the representation of objects as feature vectors

An Employee DB

ID	Gender	Age	Salary	
1	F	27	19,000	
2	M	51	64,000	
3	M	52	100,000	
4	F	33	55,000	
5	М	45	45,000	

Feature vector corresponding to Employee 2: <M, 51, 64000.0>

Term Frequencies for Documents

	T1	T2	T 3	T4	T5	T6
Doc1	0	4	0	0	0	2
Doc2	3	1	4	3	1	2
Doc3	3	0	0	0	3	0
Doc4	0	1	0	3	0	0
Doc5	2	2	2	3	1	4

Feature vector corresponding to Document 4: <0, 1, 0, 3, 0, 0>

Data Matrix and Distance Matrix

Data matrix

- Conceptual representation of a table
 - Cols = features; rows = data objects
- n data points with p dimensions
- Each row in the matrix is the vector representation of a data object

Distance (or Similarity) Matrix

- n data points, but indicates only the pairwise distance (or similarity)
- A triangular matrix
- Symmetric

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$

Properties of a distance measure

1.
$$d(x,y) \ge 0$$

non-negativity or separation axiom

2.
$$d(x,y)=0 \Leftrightarrow x=y$$

identity of indiscernibles

3.
$$d(x,y) = d(y,x)$$

symmetry

$$4. d(x,z) \leq d(x,y) + d(y,z)$$

sub-additivity or triangle inequality

Distance Measures

Euclidean distance:

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2}$$

Manhattan distance:

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \ldots + |x_{ip} - x_{jp}|$$

They are specific cases of the Minkowski distance

$$d(i,j) = (|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)^{1/q}$$

The path is irrelevant

Vector-Based Similarity Measures

- In some situations, distance measures provide a skewed view of data
 - E.g., when the data is **very sparse** and O's in the vectors are not significant
- In such cases, typically vector-based similarity measures are used
 - Cosine similarity
 - Dot product
 - Norm

Correlation as Similarity

- In cases where there could be **high mean variance** across data objects (e.g., movie ratings), Pearson Correlation coefficient is a good option
- Pearson Correlation

$$r = \frac{\sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2}}$$

 Often used in recommender systems based on Collaborative Filtering

Nearest Neighbor Classifiers

K-Nearest-Neighbor Strategy

- Given object x:
 - Find the k most similar objects to x (k-nearest neighbors)
 - · Variety of distance or similarity measures can be used
 - This requires comparison between x and all objects in the database (expensive!)

K-Nearest-Neighbor Strategy

Classification

- Find the class label for each of the k-neighbor
- Use a voting or weighted voting approach to determine the majority class among the neighbors (a combination function)
 - Distance-based
 - closer neighbors get higher weights
 - Heuristic
 - weight for each neighbor is based on domain-specific characteristics of that neighbor
- Assign the majority class label to x

K-Nearest-Neighbor Strategy

Prediction:

- · Identify the value of the target attribute for the k-neighbors
- Return the weighted average as the predicted value of the target attribute for x

Geometric Interpretation

Boundaries created by a 1-NN classifier.

Model Complexity

Binary kNN Classification (k=1)

Binary kNN Classification (k=5)

Binary kNN Classification (k=25)

k-NN Properties

- Memory-based, no explicit training or model, "lazy learning"
 - defers all of the work until new instance is obtained
- Less data preprocessing and model evaluation, but more work has to be done at classification time
- In its basic form, one of the most **simple** machine learning methods
- Gives the maximum likelihood estimation of the class posterior probabilities.
- Can be used as a baseline method.

k-NN Algorithm Advantages

- Easy to understand and program
- Explicit reject option
 - if there is no majority agreement
- Easy handling of missing values
 - restrict distance calculation to subspace
- Extremely flexible classification scheme
- Well suited for
 - Multi-classes
 - · Records with multiple or ambiguous class labels
- Can sometimes be the best method!

k-NN Algorithm Disadvantages

- Affected by local structure
- Sensitive to noise, irrelevant features
- Computationally expensive
- Large memory requirements
- More frequent classes dominate result (if distance not weighed in)
- Curse of dimensionality:
 - high number of dimensions and low number of training samples
 - "nearest" neighbor might be very far
 - in high dimensions "nearest" becomes meaningless

Questions?

- @rschifan
- schifane@di.unito.it
- http://www.di.unito.it/~schifane