OPL1000

ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

BLE Set-up Network User Guide

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

OPL1000

REVISION HISTORY

Date	Version	Contents Updated
2018-05-18	0.1	Initial Release
2018-10-29	0.2	Update APK, the flowchart of setup network.
2018-11-28	0.3	Add BLE OTA function
2018-12-27	0.4	Modify the app's interface
2019-07-09	0.5	 Add section 3.3 and 4.2.3 to introduce IOS APP operation on ; change BLEWIFI example location file path from Bluetooth to System

TABLE OF CONTENTS

1.	介绍			1
	1.1.	文档应	用范围	1
	1.2.	缩略语		1
	1.3.	参考文i	献	1
2.	蓝牙	配网相关	API 说明	2
	2.1.	OPL10	000 端 API	2
3.	OPL:	1000 配瓦	网示例	6
	3.1.	概述		6
			机蓝牙配网过程	
		3.2.1.	硬件和软件准备	6
			安装 Android APP	
		3.2.3.	烧录 BLEWIFI 固件	7
		3.2.4.	APP 连接 DEVKIT 板	7
		3.2.5.	设置 AP 密码	9
		3.2.6.	连接 AP	11
	3.3.	iphone	e 手机蓝牙配网过程	11
		3.3.1.	硬件和软件准备	11
		3.3.2.	安装 IOS APP	12
		3.3.3.	烧录 BLEWIFI 固件	13
		3.3.4.	APP 连接 DEVKIT 板	13
		3.3.5.	设置 AP 密码	16
		3.3.6.	连接 AP	18
4.	BLE (OTA 功能	ti	19
	4.1.	概述		19
	4.2.	OTA BI	LE 实现固件升级的过程	19
		4.2.1.	OPL1000 烧录 OTA FIRMWARE	19
		4.2.2.	Android 手机 APP 操作流程	19
		4.2.3.	iphone 手机 APP 操作流程	22

LIST OF TABLES

LIST OF FIGURES

Figure 1: 选择 BLE Tool 开始扫描	7
Figure 2: 连接 Devkit 板	8
Figure 3: 功能界面	9
Figure 4: 选择目标 AP 并输入密码	9
Figure 5: 成功连接到 AP	11
Figure 6: 打开网址安装配网 APP	12
Figure 7:安装 OBWApp	12
Figure 8: 选择 BLE Tool 开始扫描	13
Figure 9: 连接 Devkit 板	14
Figure 10: 功能界面	16
Figure 11: 选择目标 AP 并输入密码	16
Figure 12: 成功连接到 AP	18
Figure 13: opl1000 中的固件属性	19
Figure 14: 选择手机中存储的固件	21
Figure 15: OTA 文件传输	21
Figure 16: opl1000 中的固件属性	23
Figure 17: 选择手机中存储的固件	24
Figure 18: OTA 文件传输	24
Figure 19: OTA 固件升级后查看固件版本号	25

OPL1000

LIST OF TABLES

LIST OF TABLES

Table 1: OPI 1000 SDk	〈提供的蓝牙配网 ΔPI 列表	2

1. 介绍

1.1. 文档应用范围

OPL1000 集成了 2.4G WIFI 和 BLE4.2 蓝牙功能,支持蓝牙配网功能。

本文档介绍了基于 OPL1000 DEVKIT 和 SDK BLEWIFI 示例工程·结合 Opulinks 提供的蓝牙配网 APK 程序·如何实现蓝牙配网过程以及通过 BLE 进行空中固件升级。针对用户如何在自己的应用程序中实现蓝牙配网功能也做了介绍。

1.2. 缩略语

Abbr.	Explanation	
AP	Wireless Access Point 无线访问接入点	
APK	Android Package 安卓应用程序包文件	
APP	APPlication 应用程序	
APS	Application Sub-system 应用子系统,在本文中亦指 M3 MCU	
BLE	Bluetooth Low Energy 低功耗蓝牙	
Blewifi	BLE config WIFI 蓝牙配网应用	
DevKit	Development Kit 开发工具板	
ОТА	Over-the-Air 控制下载技术	

1.3. 参考文献

- [1] DEVKIT 开发板上手指南 OPL1000-DEVKIT-getting-start-guide.pdf
- [2] OPL1000 固件下载工具使用帮助文档 OPL1000-patch-download-tool-user-guide.pdf

2. 蓝牙配网相关 API 说明

2.1. OPL1000 端 API

OPL1000 SDK package 包含一个 BLE 配网示例程序。目录为

SDK\APS_PATCH\examples\system\blewifi

BLE 配网示例程序里面包含若干.c 文件· Table 1 列出了主要使用的 API 接口和功能说明。

Table 1: OPL1000 SDK 提供的蓝牙配网 API 列表

文件名	API 接口	API 说明
	BleWifiAppInit	完成如下功能:
		WIFI 功能调用前的初始化
blewifi_app		BLE 协议栈初始化
		创建 blewifi "control" 任务
		创建 blewifi "user app" 任务
	wifi_event_handler_cb	WIFI 事件处理的 Call back 函数实现。处理 WIFI 相关事件,例如 Scan·Connection,Got IP 等。
blewifi_ble_a	BleWifi_Ble_Init	BLE 初始化
pi	blewifi_ble_start_advertisi ng	BLE 发送广播信息·被 blewifi_ctrl.c 文件的 blewifi_ctrl_task_evt_handler 函数所调用
	blewifi_ble_stop_advertisi	BLE 停止发送广播信息
	BleWifi_Ble_StatusSet	设置 BLE 状态
	BleWifi_Ble_StatusGet	获取 BLE 状态
blewifi_wifi_	BleWifi_Wifi_DoScan	开始 wifi 扫描
api	BleWifi_Wifi_DoConnecti on	获取 AP list,连接匹配的 AP
	BleWifi_Wifi_GetManufN ame	获取厂商名信息
	BleWifi_Wifi_SetManufNa me	设置厂商名信息

文件名	API 接口	API 说明
	BleWifi_Wifi_SendSingleS canReport	发送单个扫描到的 AP 信息给 BLE
	BleWifi_Wifi_SendDevicel nfo	发送设备信息
	BleWifi_Wifi_SendStatusl	发送 AP 的状态信息
	BleWifi_Wifi_SendScanRe port	逐个发送所有扫描到的 AP 信息给 BLE · 通过调用 BleWifi_Wifi_SendSingleScanReport()
	BleWifi_Wifi_ScanReport Complete	发送扫描报告已完成反馈。通过调用 BleWifi_Ble_SendResponse () 发送 BLEWIFI_RSP_SCAN_END
	BleWifi_Wifi_ConnectCo mplete	发送建立连接已完成反馈。通过调用 BleWifi_Ble_SendResponse 发送 BLEWIFI_RSP_CONNECT
	BleWifi_Wifi_DisconnectC omplete	发送断开连接已完成反馈。通过调用 BleWifi_Ble_SendResponse 发送 BLEWIFI_RSP_DISCONNECT
	BleWifi_Wifi_ResetRecord	发送重置记录已完成反馈。通过调用 BleWifi_Ble_SendResponse 发送 BLEWIFI_RSP_RESET
	BleWifi_Wifi_Indication	通过调用 BleWifi_CtrlMsgSend()向 wifi_ctrl 模块发送消息。
	BleWifi_Wifi_IndScanDon e	通过调用 BleWifi_Wifi_Indication ()向 wifi_ctrl 模块发送 BLEWIFI_CTRL_MSG_WIFI_SCAN_DONE_IND 消息
	BleWifi_Wifi_IndConnecti on	通过调用 BleWifi_Wifi_Indication ()向 wifi_ctrl 模块发送BLEWIFI_CTRL_MSG_WIFI_CONNECTION_IND消息
	BleWifi_Wifi_IndConnectionFail	通过调用 BleWifi_Wifi_Indication ()向 wifi_ctrl 模块发送BLEWIFI_CTRL_MSG_WIFI_CONNECTION_FAIL_IND消息
	BleWifi_Wifi_IndDisconne ction	通过调用 BleWifi_Wifi_Indication () 向 wifi_ctrl 模块发送BLEWIFI_CTRL_MSG_WIFI_DISCONNECTION_IND 消息
	BleWifi_Wifi_AutoConnec tTrigger	触发自动连接 AP
	BleWifi_Wifi_AutoConnec tTimerCreate	为自动连接 AP 创建定时器
	BleWifi_Wifi_ReqConnect Retry	尝试多次连接 AP .
blewifi_ctrl	blewifi_ctrl_task_evt_han dler	处理 BLE 配网过程中产生的事件消息,包括: MSG_BLE_INIT_COMPLETE: BLE 初始化完成后发广播

文件名	API 接口	API 说明
		MSG_BLE_ADVERTISING_CMF: 广播被确认等待触发连接操作
		MSG_BLE_CONNECTION_COMPLETE: BLE 连接完成
		MSG_BLE_DISCONNECT: BLE 断线·重发广播消息
		MSG_BLE_DATA_IND: BLE GATTS 写事件
		MSG_WIFI_SCAN_DONE_IND: WIFI 扫描完成
		MSG_WIFI_CONNECTION_IND: WIFI 连接完成
		MSG_WIFI_DISCONNECTION_IND: WIFI 连接断开
		MSG_WIFI_SCAN_RESULTS_SEND: 得到 WIFI 扫描结果
	blewifi_ctrl_task_create	创建 blewifi_ctrl_task 任务·建立 Memory pool 以及消息队列
blewifi_data	blewifi_send_scan_report	发送 WIFI scan 的结果·被 blewifi_app.c 的 wifi_scan_send_report 函数调用。
	blewifi_data_recv_handle	ble 配网过程中 GATT 数据处理函数·被 blewifi_ctrl.c 的
	r	blewifi_ctrl_task_evt_handler
	blewifi_data_send_encap	透过 GATT 发送 BleWifi Frame Format 数据
blewifi_serve	BleCmMsgHandler	BLE 连接管理 CM 消息处理函数
r_app	BleAppSmMsgHandler	BLE 安全管理 SM 消息处理函数
	BleAppMsgHandler	BLE 应用消息处理函数
	BleAppSetAdvtisingPara	BLE 设置广播消息参数
blewifi_serve	gGattSvcDb	定义 GATT service table
r_app_gatt	gGapSvcDb	定义 GAP service table
	gBwpSvcDb	定义 BWP service table
	BleAppHandleGattServic eRead	BLE GATT service 读操作事件处理函数
	BleAppHandleGattServic eWrite	BLE GATT service 写操作事件处理函数
	BleAppHandleGapServic eRead	BLE GAP service 读操作事件处理函数
	BleAppHandleGapServic eWrite	BLE GAP service 写操作事件处理函数
	BleAppHandleBwpServic eRead	BLE BWP service 读操作事件处理函数
	BleAppHandleBwpServic eWrite	BLE BWP service 写操作事件处理函数

OPL1000

文件名	API 接口	API 说明
	BleWifiServerAppGattMs gHandler	BLE GATT 消息处理函数
blewifi_user_ blewifi_user_app_ta app eate		创建 "user app"任务。被 blewifi_app.c 的 BleWifiAppInit 调用。
	blewifi_user_app_task	"user app"任务执行函数·循环等待来自对端的事件消息·然后调用 blewifi_user_app_task_evt_handle 处理接收到的任务消息。

3. OPL1000 配网示例

3.1. 概述

OPL1000 支持 WIFI 和 BLE 两种 2.4G 方案 。 OPL1000 WIFI 仅作为 STA 模式,在复杂的场景下,用户需要通过 BLE 来配置 WIFI AP 的 名称和密码,实现 OPL1000 WIFI 联网功能。

OPL1000 SDK 提供了 BLEWIFI 应用例程、Android APK(opulinks_iot_app)或者 ios app,可以帮助用户快速实现 BLE 配网的功能。

3.2. 安卓手机蓝牙配网过程

3.2.1. 硬件和软件准备

硬件包括:

- OPL1000 DEVKIT 一套
- PC 机一台,其上运行 OPL Download Tool
- Android 手机一台或者运行 Android 系统的平板智能设备,建议系统在 6.0 以上。

软件包括:

- 编译 BLEWIFI 工程·产生 M3 bin 文件。路径 SDK\APS_PATCH\examples\system\blewifi 使用 Download tool 将 M3·M0 Bin 文件合并·并下载到 DEVKIT 中。
- Android 手机运行的 opulinks_iot_app 程序。

3.2.2. 安装 Android APP

OPL1000 SDK 提供 BLEWIFI APP,它可以从 SDK 的 Demo\BLE_Config_AP 目录下取得。

3.2.3. 烧录 BLEWIFI 固件

在 **Demo\BLE_Config_AP** 目录下面已经存放有支持蓝牙配网的固件 bin 文件。文件名 opl1000_ota.bin。用户也可以自己编译 BLEWIFI 应用例程,产生 M3 bin 文件,然后和 M0 bin 文件合成 opl1000.bin 固件文件,最后和 opl1000_ota_loader.bin 文件合成 opl1000_ota.bin 即可。

得到 opl1000_ota.bin 固件文件后,参照文献[2] 使用 Download tool 把固件下载到 DEVKIT 板。

3.2.4. APP 连接 DEVKIT 板

用户在 Android 设备安装好 BLEWIFI APP 并且烧录好 BLEWIFI binary 以后,复位 DEVKIT 板。

DEVKIT 板复位后上电自动发送 BLE ADV 消息,打开 APP 会自动扫描 OPL1000 的 BLE ADV 消息。

Figure 1:选择 BLE Tool 开始扫描

选择正确的设备,点击连接,连接成功后返回到 'OPL1000'的功能界面。

Figure 2: 连接 Devkit 板

3.2.5. 设置 AP 密码

连接成功之后,在 'OPL1000' 的进入新的功能界面,界面提供三个功能,包括:断开蓝牙连接,蓝牙配网功能,BLE OTA 固件升级功能。界面如下图 Figure 3:

Figure 3:功能界面

选择 Wifi Setup,在扫描到的 AP list 内选择目标 AP 并输入该 AP 的密码·输入完成后 按 "加入"按钮确认连接。

Figure 4: 选择目标 AP 并输入密码

輸入 [Opulinks-TEST-AP] 的密碼

取消

輸入密碼

加入

密碼 _____

您可以將手機靠近已連接此網路,且您的資料已包含於其聯絡資訊中的 iPhone,iPad 或 Mac,以要求連接此Wi-Fi網路

3.2.6. 连接 AP

如果密码输入正确,将会弹出一个连接成功的提示窗口,如图 Figure 5、表示 BLE 成功配置 OPL1000 连接到该 WIFI AP。

Figure 5: 成功连接到 AP

3.3. iphone 手机蓝牙配网过程

3.3.1. 硬件和软件准备

硬件包括:

- OPL1000 DEVKIT 一套
- PC 机一台,其上运行 OPL Download Tool
- iphone 手机一台或者运行 ios 系统的平板智能设备,建议系统在 12.0 以上。

软件包括:

- 编译 BLEWIFI 工程·产生 M3 bin 文件。路径 SDK\APS_PATCH\examples\system\blewifi 使用 Download tool 将 M3·M0 Bin 文件合并·并下载到 DEVKIT 中。
- iphone 手机运行程序

3.3.2. 安装 IOS APP

- 首先前往 APP store 下载 TestFlight.
- 在 TestFlight 中登录自己的 Apple ID
- 在手机中打开网址: https://testflight.apple.com/join/rYeW3ogy
- 打开网址后点击按钮"开始测试",如下图:

Figure 6: 打开网址安装配网 APP

第1步 获取 TestFlight

使用 TestFlight App 帮助开发人员测试 Beta 版 App。请在 iPhone、iPad 和 Apple TV 版 App Store 中下载 TestFlight。

在 App Store 中查看 7

第2步 加入此 Beta 版本

如果您已在此设备上安装 TestFlight,现在即可 开始测试。

开始测试

● 点击"安装"按钮

Figure 7:安装 OBWApp

3.3.3. 烧录 BLEWIFI 固件

在 **Demo\BLE_Config_AP** 目录下面已经存放有支持蓝牙配网的固件 bin 文件。文件名 opl1000_ota.bin。用户也可以自己编译 BLEWIFI 应用例程,产生 M3 bin 文件,然后和 M0 bin 文件合成 opl1000.bin 固件文件,最后和 opl1000_ota_loader.bin 文件合成 opl1000_ota.bin 即可。

得到 opl1000_ota.bin 固件文件后,参照文献[2] 使用 Download tool 把固件下载到 DEVKIT 板。

3.3.4. APP 连接 DEVKIT 板

用户在 ios 设备安装好 BLEWIFI APP 并且烧录好 BLEWIFI binary 以后,复位 DEVKIT 板 。

DEVKIT 板复位后上电自动发送 BLE ADV 消息·打开 APP 会自动扫描 OPL1000 的 BLE ADV 消息。

Figure 8: 选择 BLE Tool 开始扫描

选择正确的设备,点击连接,连接成功后返回到 'OPL1000'的功能界面。

Figure 9: 连接 Devkit 板

3.3.5. 设置 AP 密码

连接成功之后,在 'OPL1000' 的进入新的功能界面,界面提供三个功能,包括:断开蓝牙连接,蓝牙配网功能,BLE OTA 固件升级功能。界面如下图 Figure 10:

Figure 10: 功能界面

选择 Wifi Setup,在扫描到的 AP list 内选择目标 AP 并输入该 AP 的密码、输入完成后 按 "join" 按钮确认连接。

Figure 11: 选择目标 AP 并输入密码

3.3.6. 连接 AP

如果密码输入正确,将会弹出一个连接成功的提示窗口,如图 Figure 12,表示 BLE 成功配置 OPL1000 连接到该 WIFI AP。

Figure 12: 成功连接到 AP

4. BLE OTA 功能

4.1. 概述

OTA(空中下载技术)可以帮助产品无线升级软件。OPL1000 支持通过蓝牙更新固件。OPL1000 通过 BLE 升级时,用户需要先将新版本软件下载到移动设备上(例如手机,平板电脑等),然后通过蓝牙连接,将新版软件传送到 OPL1000 设备上升级。

此章介绍了如何通过 BLE 进行无限升级固件的流程和方法。

4.2. OTA BLE 实现固件升级的过程

4.2.1. OPL1000 烧录 OTA FIRMWARE

如上所述·要支持 OTA 功能·OPL1000 的软件需要支持无线升级功能。为此 OPL1000 先要烧录支持 OTA loader 的固件程序。在 Demo\BLE_Config_AP 目录下已经提供了 OPL1000_OTA .bin 固件·使用 Download 下载工具下载它即可。使用 download 工具可参考文献[2] Download Tool 使用指南

4.2.2. Android 手机 APP 操作流程

- 1. 软件支持 OTA 功能无线升级·点击 connect 按钮·当连接设备之后·进入功能界面 · 点击 BLE OTA 按钮进行固件更新:
- 2. 使用 Download Tool 完成 OTA Image 文件下载后,就可以使用 APP 进行 OTA 升级操作。
 上图中 MAC 地址为 11:22:33:44:55:66 的是 OPL1000 设备。OPL1000 会传回内容,里面包括 projectId (项目标识),chipId (芯片版本),fwId (固件版本标识)等信息。如 Figure 13,在手机中出现当前设备的固件版本号 fwid = 3.

Figure 13: opl1000 中的固件属性

OPL1000 OTA FILE SELECTION status: 0 projectId: 0x10001 chipId: 0x30001 fwld: 0x0003 -> [OTA_START] [OTA_UPGRADE_REQ] maxRxOctet: 5 *** Tx 01 01 1A 00 05 00 00 00 00 00 00 00 00 00 00 -> [TO_PROCESS_RX_PACKET] [OTA_UPGRADE_RSP] status: 0 [OTA_END_REQ] reason: 0 *** Tx 03 01 01 00 00 -> [TO_PROCESS_RX_PACKET] [OTA_END_RSP] reason: 0 ***** OTA time: 0

3. 当需要进行固件更新的时候,首先点击 file selection 按钮,则会进入选择手机中存储文件中选择 OTA 固件,在本地的生成的 ota image 文件要存储在手机,在本演示中,手机中的存储 bin 文件如 Figure 14 所示,进行无线升级操作。在本演示中从 fwid = 3 升至 fwid = 10.

Figure 14: 选择手机中存储的固件

4. 选择固件 opl1000_ota10.bin·选择完成后·自动进行固件更新。手机 APP 的将固件分割为若干帧 通过蓝牙发送给 OPL1000。在手机界面上持续打印#符号表示数据在传送中·如 Figure 15 所示。

Figure 15: OTA 文件传输

传输完成之后显示如图·完成固件更新·发送回来的固件版本号信息如上图中框中。**0A** 即显示固件版本号是 **10**.

4.2.3. iphone 手机 APP 操作流程

- 1. 软件支持 OTA 功能无线升级·点击 connect 按钮·当连接设备之后·进入功能界面 · 点击 BLE OTA 按钮进行固件更新:
- 2. 使用 Download Tool 完成 OTA Image 文件下载后,就可以使用 APP 进行 OTA 升级操作。

CHAPTER THREE

上图中 MAC 地址为 11:22:33:44:55:66 的是 OPL1000 设备。OPL1000 会传回内容,里面包括 projectId (项目标识),chipId (芯片版本),fwld (固件版本标识)等信息。如 Figure 16,在手机中出现当前设备的固件版本号 fwid = 0001.

Figure 16: opl1000 中的固件属性

3. 当需要进行固件更新的时候,首先点击 Choose OTA File 按钮,则会进入选择手机中存储文件中选择 OTA 固件,在本地的生成的 ota image 文件要存储在手机,在本演示中,手机中的存储 bin 文件如 Figure 17 所示,进行无线升级操作。在本演示中从 fwid = 0001 升至 fwid = 1235.

Figure 17: 选择手机中存储的固件

4. 选择固件 download_v0_ota_0x1235.bin·选择完成后·自动进行固件更新。手机 APP 的将固件分割为若干帧通过蓝牙发送给 OPL1000。在手机界面上持续打印#符号表示数据在传送中·如 Figure 18 所示。

Figure 18: OTA 文件传输

传输完成之后显示如图·完成固件更新,会提醒你重新进行蓝牙连接。重新连接蓝牙之后·进入 OTA 功能之后·固件版本号信息如下图 Figure 19 中·显示固件版本号即 fwid = 1235.

Figure 19: OTA 固件升级后查看固件版本号

OPL1000

CONTACT

sales@Opulinks.com

