This is the html version of the file http://www-leland.stanford.edu/class/ee103/julia slides/julia vs math.pdf. Google automatically generates html versions of documents as we crawl the web.

Tip: To quickly find your search term on this page, press Ctrl+F or ℋ-F (Mac) and use the find bar.

Page 1

EE103 Prof. S. Boyd

Mathematical Notation Versus Julia Syntax

In the tables below we show how to express some mathematical notation (as in the textbook Vectors, Matrices, and Least Squares) in the computer language Julia. Be careful to never confuse mathematical notation and Julia syntax!

In the tables below we use this font to denote things you'd type in to Julia.

Vectors

Basics

vector size

mathematical notation concept Julia syntax n-vector $(x_1,...,x_n)$, or in column for-Represented as 1-d array of length n. For example, a 3-vector mat. can be written as $\square_{\,X1}\,\,\square\qquad\qquad\square_{\,X1}\,\,\square$ $[x_1, x_2, x_3]$ or $[x_1; x_2; x_3].$ If you type x in interactive mode, it will be displayed as a column. vector entries Xi. x[i].

length(x).

n (x has n entries).

	Mathematical Notation Vers	us dulla Cyritax vectors
vector slice	$\mathbf{x}_{i:j} = (\mathbf{x}_i,, \mathbf{x}_j).$	x[i:j].
stacking	$(x, y) = (x_1,,x_n,y_1,,y_m)$	[x; y].
equality	x = y.	x==y returns true or false.(x=y assigns x to the value of y.)
list of vectors	X ₁ ,,X _k . x _i : the ith vector.	# list of vectors $list = [x_1, x_2, x_3]$
	$(x_i)_j$: jth entry of x_i .	# first vector
		list[1]
		# third entry of second vector

list[2][3]

1

Page 2

Specific vectors

concept	mathematical notation	Julia syntax
zero vector	0_n or (more commonly) just 0 .	zeros(n).
ones vector	1_n or 1 .	ones(n).
unit vectors	$e_i = (0,,0,1,0,,0)$ (ith entry is one).	No built-in Julia syntax for unit vectors. The following code creates e: # create zero vector ei = zeros(n) # set i-th entry to 1
		ei[i] = 1

Vector operations and functions

In the table below we give the native Julia syntax, and the syntax using a simple module called MMA, which contains Julia definitions of some common functions arising in the course.

concept	mathematical notation	Julia syntax
vector addition,	x + y, $x - y$.	x + y, $x - y$.

scalar-vector multiplication	ax (or xa), with a a number.	a*x or x*a.
vector sum	1⊤x.	sum(x).
scalar-vector addition	x + a1.	x .+ a or a .+ x.
inner product	хт у.	dot(x, y).
vector norm	x. √	norm(x).
RMS value	rms(x) = x/ n.	norm(x)/sqrt(length(x)). Using MMA: rms(x).
distance	dist(x, y) = x - y.	norm(x-y). Using MMA: dist(x, y).
average	$avg(x)=(x_1+\cdots+x_n)/n.$	mean(x).

2

Page 3

de-mean	x - avg(x)1.	x - mean(x).Using MMA: demean(x).
standard deviation	std(x).	norm(x-mean(x))/sqrt(length(x)). Using MMA: $std(x)$.
angle	(x, y).	acos(dot(x,y)/(norm(x)*norm(y)). Using MMA: angle(x, y).
correlation coefficient	$\rho(x, y)$.	No built-in function for correla- tion coefficient. The following code computes it: # de-mean vectors xt = x-mean(x); yt = y-mean(y) rho = dot(xt,yt)/(norm(xt)*norm(yt)). Using MMA: corrcoef(x, y).
convolution	x * y	conv(x,y).

3

Page 4

Matrices

Basics

concept mathematical notation Julia syntax $A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \cdots & \cdots & \cdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}.$ Represented as 2-d array $m \times n$ matrix of size $m \times n$. For example, a 2 × 3 matrix can be written as $A = [A_11, A_12, A_13;$ A_21, A_22, A_23].

Typing A in interactive

mode displays the entries of A. matrix entries Aij. A[i,j]. matrix $\mathbf{m} \times \mathbf{n}$. m, n = size(A). dimensions To get row or column dimensions separately: m = size(A)[1]n = size(A)[2].submatrices A[p:q, r:s].block matrix A = [B C; D E]. \Box . equality A = B. A==B returns true or

4

false.

value of B.)

(A = B assigns A to the

Page 5

Specific matrices

mathematical notation concept Julia syntax zero matrix $0_{m \times n}$ or, more commonly, 0. zeros(m,n). identity matrix $I_{n\times n}$ or, more commonly, I. eye(n)

Matrix operations and functions

concept	mathematical notation	Julia syntax
matrix transpose	Ат.	A' or transpose(A).
matrix-matrix sum, difference	A + B, $A - B$.	A + B, A - B.
column selection jth c	olumn of A.	A[:,j].
row selection	jth row of A.	A[j,:].
scalar-matrix product	bA (or Ab), with b a number.	b*A or A*b.
matrix-vector product	Ax (A an $m \times n$ matrix, x an n-vector).	A*x.
matrix-matrix product	AB (A an $m \times n$ matrix, B an $n \times p$ matrix).	A*B.
matrix power	A_k (A square, k integer ≥ 1).	A^k.
matrix inverse	A-1 (A square, invertible).	inv(A).
matrix pseudo-inverse	$A_{\dagger}.$	pinv(A).
diagonal matrix	diag(d), with d a vector	diagm(d).

Linear equations and least squares

concept	mathematical notation	Julia syntax
---------	-----------------------	--------------

5

Page 6

solve equations	$x = A_{-1}b$ (A invertible)	$x=A\b$.
least squares	$x = (A_T A)_{-1} A_T b$ (A has independent columns)	$x=A \b$.
least-norm	$x = A_T(AA_T)_{-1}b$ (A has independent rows)	$x=A \ b$.