

Calibration Curve

- X axis: predicted probabilities
 - In bins or intervals

Y axis: fraction of positive observations

Calibration Curve

- X axis: predicted probabilities
 - In bins or intervals

• Y axis: fraction of positive observations

Calibration Curve

 The proximity to the red line is important

The number of observations per interval is important

 Harder to obtain the real positive fraction if we have few observations

Calibration Curve – Balanced data

Calibration Curve – Balanced data

Too few bins may look well fit

Too many bins may look noisy

We need the right balance of bins

Calibration Curve – Imbalanced Data

Calibration Curve – Imbalanced Data

With imbalanced datasets it is very hard to say if the probability is calibrated, because there are few observations of the positive class.

Increase the size of the dataset

THANK YOU

www.trainindata.com