ATLAS IMPLEMENTATION: USER GUIDE

1. Code Summary

construction(S,init,delta,rho,m,p,t_0,d)

- inputs
 - S SDE simulator, see simulator.m for example
 - delta homogenization scale, affects density of sample net
 - rho given distance function
 - m desired number of landmarks to generate for each net point
 - p num sample paths for each point in net
 - t_0 desired time of simulation for each call to S
 - d- intrinsic dimension of dynamics
 - net_info struct for delta-net, contains
 - * net output δ -net, columns are data points,
 - * deg $N \times 1$ vector, entry j is the number of neighbors (degree) of net point j
 - * max_deg maximum entry of deg
 - * neighbors $N \times max_deg$ array, row j is neighbor indices of net point j, with 0's after deg(j) index
- outputs:
 - new_Sim struct with key values that specify parameters for simulating a constant coefficient SDE

Constructs the landmarks, ATLAS charts, and local SDE simulators for a given delta net and simulator. Can be run with input parameters, or with no parameters and it will load from current_driver.mat.

The output is a struct new_S containing parameters for the family of local SDEs learned by the ATLAS algorithm. In particular, each net point n has a corresponding local simulator for the constant coefficient SDE

$$dX_t = b_n dt + \sigma_n dW$$

, and any neighboring net points $j \sim k$ have associated transition maps T_{jk}, T_{kj} which allow the global ATLAS simulator to switch between the two local SDE simulators.

The struct new_S has key values:

- c $d \times N \times N$ array containing local coordinates of neighboring charts, updated each iteration of construct_local_SDE, c(:,i,j) is a $d \times 1$ vector, is j-th neighbor of net point n, expressed in chart n coordinates
- b $d \times 1$ vector, drift coordinate for n's local SDE
- sigma $d \times d \times N$ array, sigma(:,:,n) is $d \times d$ matrix of diffusion coords for n's local SDE, mu $d \times N \times N$ array containing mean landmarks of local neighboring charts mu(:,i,j) is a $d \times 1$ vector, the average of chart j's landmark expressed in chart n coords

learned_simulator_step

- inputs:
 - x initial point for the simulator, vector in \mathbb{R}^d
 - i chart index for x
 - new_S new simulator struct, struct containing computed T,B,C,mu,Phi structs mentioned above as new_S.T,,new_S.B etc.
 - neighbors as above
 - d intrinsic dimension of dynamics
 - dt desired time-step length
 - delta as above
- outputs:
 - $-\mathbf{x}$ new x value after timestep, vector in \mathbb{R}^d
 - j chart index of x above, used for future timesteps

delta_net(net,init,delta,rho,is_random)

- inputs:
 - init $D \times N$ matrix, set of N vectors in \mathbb{R}^d
 - delta coarseness of delta-net
 - rho given distance function
- outputs:
 - net output δ -net, columns are data points,
 - deg $N \times 1$ vector, entry j is the number of neighbors (degree) of net point j
 - max_deg maximum entry of deg
 - neighbors $N \times maxdeg$ array, row j is neighbor indices of net point j, with 0's after deg(j) index

This function takes a set of points init and:

- Sub-samples the given set of points to create a delta-net, i.e. a set of points Γ in a domain \mathcal{M} such that
 - $-d(y_i,y_j) > \delta$ for all $y_i,y_j \in \Gamma$
 - Given $x \in \mathcal{M}$, there exists $y \in \Gamma$ with $d(x, y) < \delta$.
- identifies neighboring points in the delta net, i.e net points with $d(y_i, y_j) < 2(\delta)$.

LMDS(L,Z,rho,d)

- inputs:
 - L set of landmarks for Z, array with columns in \mathbb{R}^D as landmark vectors Z set of data points, array with columns in \mathbb{R}^D as data vectors

 - rho given distance function
 - d intrinsic dimension, LMDS projects columns of Z, L onto \mathbb{R}^d
- outputs:
 - embed_L MDS output for landmarks, array with columns in \mathbb{R}^d as projected landmark vectors
 - embed_Z projected Z data, array with columns in \mathbb{R}^d as projected data vectors

Implementation of the Landmark Multi-Dimensional Scaling Algorithm (cite!!) for a given set of landmarks and data

References