- **1.1.** (i) Suppose you know that $(\sim p \land q) \lor p$ is false. What can you conclude about the truth values of each of the two variables?
 - (ii) Suppose you know that $(p \lor q) \land \sim r$ is true. What can you conclude about the truth values of each of the three variables?
 - (iii) Suppose you know that $(\sim p \land \sim q) \land r$ is false. What can you conclude about the truth values of each of the three variables?
- **1.2.** For each of the following, write down a truth table for the statement, and determine whether the statement is a tautology, a contradiction, or neither.
 - (i) $((p \land q) \lor (q \land r)) \lor \sim q$
 - (ii) $(\sim p \lor q) \lor (p \land \sim q)$
- **1.3.** (i) Use a truth table to show that $(p \lor q) \land \sim p \equiv q \land \sim p$.
 - (ii) Use a truth table to show that $(p \oplus q) \land r \equiv (p \land r) \oplus (q \land r)$.
 - (iii) Use the laws of logical equivalence and the fact that $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$, to show that $(p \oplus q) \land r \equiv (p \land r) \oplus (q \land r)$.
- **1.4.** (i) Use the laws of logical equivalence to show that $p \wedge q \equiv (p \vee p \vee q)$.
 - (ii) Use the laws of logical equivalence to show that $\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv \sim p$.
- 1.5. For each of the following sentences, use De Morgan's laws to write an equivalent sentence.
 - (i) It is not true that I am studying Computer Science and I am studying Engineering.
 - (ii) I am not going to the movies this weekend or I am not going swimming this weekend.
- **1.6.** For each of the following, write down a truth table for the statement, and determine whether the statement is a tautology, a contradiction, or neither.
 - (i) $(\sim p \land (p \rightarrow q)) \rightarrow \sim q$
 - (ii) $(p \to (q \lor r)) \longleftrightarrow ((p \land \sim q) \to r)$
- **1.7.** Write each of the following statements in the form "if ... then ...".
 - (a) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
 - (b) Jane gets seasick whenever she is on a boat.

Now negate the following two statements.

- (c) If it rains, then Sue takes her umbrella.
- (d) The cakes burn if the oven temperature is too high.

Here are two **puzzles** that you can think about during week 2; they are related to the first lecture. If you're stuck, I might drop some hints on a later tutorial sheet!

A. Suppose each point of the plane is coloured either red or blue. Show that the four vertices of some rectangle are all of the same colour.

Hint: Draw three parallel lines. What do you notice when you draw a common perpendicular to them?

B. Suppose you label 10 points on a circle randomly with the numbers $1, 2, 3, \ldots, 10$, with each number used exactly once. Show that there are always 3 consecutive points whose labels sum to strictly more than 16.

Extra practice questions from the textbook (Solutions at the back of the book.)

Epp 5th ed.:

Section 2.1, pp. 51–53: Questions 6, 8ad, 10ac, 11, 12, 14, 16, 25, 27, 32, 34, 36, 40, 41, 48, 50. Section 2.2, pp. 63–65: Questions 1, 3, 5, 7, 9, 12, 16, 19, 29, 32, 34, 40, 42, 44, 47, 49.

Epp 4th ed.:

Section 2.1, pp. 37–38: Questions 6, 8ad, 10ac, 11, 12, 14, 16, 25, 27, 32, 34, 36, 40, 41, 48, 50. Section 2.2, pp. 49–50: Questions 1, 3, 5, 7, 9, 12, 16, 19, 29, 32, 34, 40, 42, 44, 47, 49.