Chapter 1 Introduction to Simulation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Outline

- N
- When Simulation Is the Appropriate Tool
- When Simulation Is Not Appropriate
- Advantages and Disadvantages of Simulation
- Areas of Application
- Systems and System Environment
- Components of a System
- Discrete and Continuous Systems
- Model of a System
- Types of Models
- Discrete-Event System Simulation
- Steps in a Simulation Study

Definition

- ٧
- A *simulation* is the imitation of the operation of real-world process or system over time.
 - Generation of artificial history and observation of that observation history
- A model construct a conceptual framework that describes a system
- The behavior of a system that evolves over time is studied by developing a simulation *model*.
- The model takes a set of expressed assumptions:
 - □ Mathematical, logical
 - Symbolic relationship between the entities

Goal of modeling and simulation

- A model can be used to investigate a wide verity of "what if" questions about real-world system.
 - □ Potential changes to the system can be simulated and predicate their impact on the system.
 - □ Find adequate parameters before implementation
- So simulation can be used as
 - Analysis tool for predicating the effect of changes
 - □ Design tool to predicate the performance of new system
- It is better to do simulation before Implementation.

How a model can be developed?

- M
- Mathematical Methods
 - □ Probability theory, algebraic method ,...
 - ☐ Their results are accurate
 - □ They have a few Number of parameters
 - ☐ It is impossible for complex systems
- Numerical computer-based simulation
 - □ It is simple
 - ☐ It is useful for complex system

When Simulation Is the Appropriate Tool

- Simulation enable the study of internal interaction of a subsystem with complex system
- Informational, organizational and environmental changes can be simulated and find their effects
- A simulation model help us to gain knowledge about improvement of system
- Finding important input parameters with changing simulation inputs
- Simulation can be used with new design and policies before implementation
- Simulating different capabilities for a machine can help determine the requirement
- Simulation models designed for training make learning possible without the cost disruption
- A plan can be visualized with animated simulation
- The modern system (factory, wafer fabrication plant, service organization) is too complex that its internal interaction can be treated only by simulation

When Simulation Is Not Appropriate

- When the problem can be solved by common sense.
- When the problem can be solved analytically.
- If it is easier to perform direct experiments.
- If cost exceed savings.
- If resource or time are not available.
- If system behavior is too complex.
 - ☐ Like human behavior

Advantages and disadvantages of simulation

- М
- In contrast to optimization models, simulation models are "run" rather than solved.
 - □ Given as a set of inputs and model characteristics the model is run and the simulated behavior is observed

Advantages of simulation

- New policies, operating procedures, information flows and son on can be explored without disrupting ongoing operation of the real system.
- New hardware designs, physical layouts, transportation systems and ... can be tested without committing resources for their acquisition.
- Time can be compressed or expanded to allow for a speed-up or slow-down of the phenomenon(clock is self-control).
- Insight can be obtained about interaction of variables and important variables to the performance.
- Bottleneck analysis can be performed to discover where work in process, the system is delayed.
- A simulation study can help in understanding how the system operates.
- "What if" questions can be answered.

Disadvantages of simulation

- Model building requires special training.
 - □ Vendors of simulation software have been actively developing packages that contain models that only need input (templates).
- Simulation results can be difficult to interpret.
- Simulation modeling and analysis can be time consuming and expensive.
 - Many simulation software have output-analysis.

Areas of application

- .
 - Manufacturing Applications
 - Semiconductor Manufacturing
 - Construction Engineering and project management
 - Military application
 - Logistics, Supply chain and distribution application
 - Transportation modes and Traffic
 - Business Process Simulation
 - Health Care
 - Automated Material Handling System (AMHS)
 - ☐ Test beds for functional testing of control-system software
 - Risk analysis
 - ☐ Insurance, portfolio,...
 - Computer Simulation
 - ☐ CPU, Memory,...
 - Network simulation
 - □ Internet backbone, LAN (Switch/Router), Wireless, PSTN (call center),...

Systems and System Environment

- A system is defined as a groups of objects that are joined together in some regular interaction toward the accomplishment of some purpose.
 - □ An automobile factory: Machines, components parts and workers operate jointly along assembly line
- A system is often affected by changes occurring outside the system: system environment.
 - □ Factory : Arrival orders
 - Effect of supply on demand : relationship between factory output and arrival (activity of system)
 - □ Banks : arrival of customers

Components of system

- Entity
 - ☐ An object of interest in the system : Machines in factory
 - Attribute
 - ☐ The property of an entity : speed, capacity
 - Activity
 - □ A time period of specified length :welding, stamping
 - State
 - A collection of variables that describe the system in any time : status of machine (busy, idle, down,...)
 - Event
 - A instantaneous occurrence that might change the state of the system: breakdown
 - Endogenous
 - Activities and events occurring with the system
 - Exogenous
 - Activities and events occurring with the environment

Discrete and Continues Systems

A discrete system is one in which the state variables change only at a discrete set of points in time: Bank example

Discrete and Continues Systems (cont.)

A continues system is one in which the state variables change continuously over time: Head of water behind the

dam

Model of a System

- М
- To study the system
 - □ it is sometimes possible to experiments with system
 - This is not always possible (bank, factory,...)
 - A new system may not yet exist
- Model: construct a conceptual framework that describes a system
 - It is necessary to consider those accepts of systems that affect the problem under investigation (unnecessary details must remove)

Types of Models

Characterizing a Simulation Model

- Deterministic or Stochastic
 - Does the model contain stochastic components?
 - □ Randomness is easy to add to a DES
- Static or Dynamic
 - ☐ Is time a significant variable?
- Continuous or Discrete
 - □ Does the system state evolve continuously or only at discrete points in time?
 - □ Continuous: classical mechanics
 - Discrete: queuing, inventory, machine shop models

Discrete-Event Simulation Model

- Stochastic: some state variables are random
- Dynamic: time evolution is important
- Discrete-Event: significant changes occur at discrete time instances

Model Taxonomy

DES Model Development

How to develop a model:

- 1) Determine the goals and objectives
- Build a conceptual model
- 3) Convert into a **specification** model
- 4) Convert into a *computational* model
- 5) Verify
- 6) Validate

Typically an iterative process

Three Model Levels

- Conceptual
 - □ Very high level
 - □ How comprehensive should the model be?
 - What are the state variables, which are dynamic, and which are important?
- Specification
 - □ On paper
 - □ May involve equations, pseudocode, etc.
 - □ How will the model receive input?
- Computational
 - □ A computer program
 - □ General-purpose PL or simulation language?

Verification vs. Validation

- BA
 - Verification
 - Computational model should be consistent with specification model
 - □ Did we build the model right?
 - Validation
 - Computational model should be consistent with the system being analyzed
 - □ Did we build the <u>right model</u>?
 - Can an expert distinguish simulation output from system output?
 - Interactive graphics can prove valuable

Steps in Simulation Study

