O-Notation

$$g(n) = O(f(n)) \Leftrightarrow \left(g(n) \frac{1}{f(n)}\right)$$
 ist beschraenkt (z.B. Konvergent)

Fester Wert \Rightarrow g =O(f(n)) UND f = O(g(n);

Logarithmen: •
$$log(xy) = log(x) + log(y)$$

•
$$e^{ln(x)} = x$$

• $ln(e^x) = x$

•
$$log(x^c) = clog(x)$$

Differenzengleichungen

1. Aus Angabe lesen:

b: Für Eingabe=1,
$$x_n = a_n x_{n-1} + b_n$$

2. $\pi_n = \prod_{i=2}^n \frac{a_i}{a_i}$

Hinweis:
$$\prod_{i=2}^{n} 3 = 3^{n-1}$$

•
$$x_n = a_n x_{n-1} = b \prod_{i=2}^n a_i$$

• $x_n = x_{n-1} + b_n = b + \sum_{i=2}^n b_i$

$$\prod_{i=2}^{n} i = n!$$
3. $x_n = \pi_n \left(b + \sum_{i=2}^{n} \frac{b_i}{\pi_i} \right)$

Nützliche Zahlen

•
$$\sum_{i=1}^{n} \frac{1}{i} = H_n$$
 Abschatzung: $ln(n+1) \le H_n \le ln(n) + 1$

$$\sum_{i=1}^{n} H_i = (n+1)H_n - n$$

•
$$x_n = \sum_{i=1}^{n-1} x_i + sth_n \Rightarrow x_{n-1} = \sum_{i=1}^{n-2} x_i + sth_{n-1} \Rightarrow \sum_{i=1}^{n-2} x_i = x_{n-1} - sth_{n-1}$$

 $\Rightarrow x_n = 2x_{n-1} + sth_n - sth_{n-1}$

•
$$\sum_{i=1}^{n} c = nc$$

$$\sum_{i=1}^{n} i = rac{n(n+1)}{2}$$
 $\sum_{i=1}^{n} i^2 = rac{n(n+1)(n+2)}{6}$ $\sum_{i=1}^{n} i^3 = \left(rac{n(n+1)}{2}
ight)^2$

•
$$\sum_{i=1}^{n} \lfloor log_2(i) \rfloor = (n+1) \lfloor log_2(n) \rfloor - 2 \left(2^{\lfloor log_2(n) \rfloor} - 1 \right)$$

rationale Summen:

1.
$$\sum_{i=1}^{n} \frac{sth}{polynom}$$

2.
$$Partialbruchzerlegung : \frac{x_i}{polynom} = \frac{a}{1.NST} + \frac{b}{2.NST} \dots$$

Bei Mehrfachen NST $(k.NST)^{Vielfachheit}$ statt k. NST

3. Koeffizientenvergleich;

Indexverschiebung:
$$\sum_{i=1}^{n} i - 1 = \sum_{i=0}^{n-1} i$$
$$\sum_{i=2}^{n} i = \sum_{i=0}^{n} (i) - 1 - 0$$

Gleichung erstellen:

for
$$i=1$$
 to $n-1$ {

$$DoRec(i) \Rightarrow \sum_{i=1}^{n-1} x_i$$
 // siehe Nützliche Zahlen (rot)

DoRec(n-1)
$$\Rightarrow \sum_{i=1}^{n-1} x_{n-1} = (n-1)x_{n-1}$$

print("hallo")
$$\Rightarrow \sum_{i=1}^{n-1} 1 = n-1$$
 }

m = Tabellenplätze, n=Anzahl der Datensätze, $B=\frac{n}{m}$

Hashfunktionen

Multiplikation: $h(s)|m\{sc\}|$ mit $\{sc\} = sc - |sc|$; optimal mit $c = 0.5(1 + \sqrt{5})$

Implementieren mit Shift-Operationen für $\mathbf{m} = \mathbf{2}^{\mathbf{p}}$, $\mathbf{p} \le$ wortbreite

 \Rightarrow die p vordersten Bits des unteren Worts von $s \cdot c$ (low-Register)

$$h(s): 10011110 * 100 = 1001111000 = h(4) = 30$$

Universelle Familien:

Funktionsfamilie ist universelle Familie, wenn Kollisionswahrscheinlichkeit = $\frac{1}{m}$

Bsp: Primzahl p, Tabellengröße

$$m \leq p$$
; Wähle $a, b \in \mathbb{Z}_p$

$$h(x) = ((ax+b) \bmod p) \bmod m$$

Bsp: Primzahl p, $a = (a_1, \dots, a_r) \in \mathbb{Z}_p^r$, x als p-adische Entwicklung, $x \leq p^r - 1$

$$h_a(x_1, x_2, ..., x_r) = \sum_{i_1}^r a_i x_i \mod p$$

Verkettung mit Überlaufbereich

Hashfunktionen liefern Adressen im Primärbereich, Tabelleneinträge speichern zusätzlich

Nachfolgeradresse im Überlaufbereich; Freie überlaufzellen zusätzliche verkettung

Zugriffe bei Erfolg: $< 1 + \frac{1}{2}B$, Zugriffe bei Misserfolg: $\le 1 + B$

Wahrscheinlichkeit für i Kollisionen:
$$p_i = \binom{n}{i} \left(\frac{1}{m}\right)^i \left(1 - \frac{1}{m}\right)^{n-i}$$

=> Überlaufbereich $= n - m(1 - p_0) =$ Kollisionen (m=Primärbereich)

Freie Plätze im Mittel: $|(n-m-\ddot{\text{U}}\text{berlauf})|$

Offene Adressierung

Bei Kollision wird anhand der Sondierfolge ein anderer Platz in der Tabelle gesucht

Einfügen: Suche erste freie/gelöschte Zelle in Sondierfolge, füge ein;

Suchen: Durchlaufe Sondierfolge, bis gefunden oder sicher nicht in Tabelle

Löschen: Suche und markiere als gelöscht

mittlere Länge Sondierfolge beim Suchen :
$$\frac{1}{B}ln\left(\frac{1}{1-B}\right)$$
 beim Einfügen: $1/1-B$

Lineares Sondieren: betrachte immer den nächsten eintrag bis Erfolg; $(i(s)_j = h(s) + j \mod m)$

Nachteil: Sondierfolgen verketten sich (Cluster)

mittlere Länge Sondierfolge beim Suchen :
$$\frac{1}{2} \left(\frac{1}{1+B} \right)$$
 beim Einfügen: $\frac{1}{2} \left(1 + \left(\frac{1}{1-B} \right)^2 \right)$

Quadratisches Sondieren: m = Prim; $m \equiv 3 \mod 4$

$$i(s)_j = h(s) \pm j^2 \mod m$$
 (also 0,+1,-1,+4,-4,...)

Doppelhashing:
$$i(s)_j = h(s) + jh^*(s) \mod m$$
, $h \neq h^*$, $m = prim$

Bäume

Preorder:: Knoten -linkerBaum-rechterBaum // Wurzeln sind links

Inorder:: linkerBaum-Knoten -rechterBaum

Postorder:: linkerBaum-rechterBaum- Knoten // Wurzeln sind rechts

Binärer Suchbaum

Knoten haben 2 Kinder, kleiner im Linken, größer im rechten Teilbaum

Suche: Starte bei Wurzel, rekursiv: wenn gesucht größer: rechts, wenn kleiner links

Einfügen: Suche im Baum; füge ein (achte auf links/rechts)

Löschen: Suche den Knoten: wenn:

- 1 Nachfolger: Referenz im Vorgänger auf nachfolger, lösche Knoten
- 2 Nachfolger: Tausche mit größtem Element im linken Teilbaum (symmetrischer Vorgänger), lösche Element

symmetrischer Vorgänger: einmal nach links, dann rechts solange möglich;

AVL-Baum

Bedingung: |Balancefaktor| < 1

Balancefaktor = $H\ddot{o}he_{rechterTeilbaum} - H\ddot{o}he_{linkerTeilbaum}$

 $h < 1.45 \log_2(n+2) - 1.33 \Rightarrow$ höhe max. 45 % schlechter als best-case

Einfügen/Löschen: wie bei binär, anschließend Ausgleichen

Ausgleich nach einfügen: (Umgekehrt für +2)

Suche balancefaktor -2 am weitesten unten im Pfad zum eingefügten element betrachte linken Nachfolger (b):

bei -1: Rechtsrotation um linken Nachfolger (a)

bei +1: Doppelrotation

Maximal einmal ausgleichen nötig

Ausgleich nach Löschen:: (Umgekehrt für +2)

Suche balancefaktor -2 am weitesten unten im Pfad zum gelöschten element;

betrachte linken Nachfolger (a):

bei -1,0: Rechtsrotation um linken Nachfolger (a)

bei +1: Doppelrotation

wenn linker Nachfolger +1 oder -1 war, dann für höhere knoten vllt. weiter ausgleichen.

Treap

jedem element wird zusätzlich eine zufällige Priorität zugewiesen

Heapbedingung: $Prio_{Vater} < Prio_{Kind}$ => Treap ist eindeutig bestimmt

Erwartungswert Pfadlänge: $2^{\frac{n+1}{n}}H_n - 3$; Erwartungswert Rotationen: <2

Einfügen: Analog Binärer Baum; danach: Rotation(nach oben) bis heapbedingung erfüllt

Löschen: Suche knoten, rotiere mit kleinerem Nachfolger (Priorität) bis Blatt; lösche

B-Bäume

Entwickelt für Festplatten, minimieren zugriffe in datenbanken

Ordung d => Knoten hat $\lceil \frac{d}{2} \rceil$ bis d Nachfolger, zwischen $\lfloor \frac{d-1}{2} \rfloor$ und d-1 Elemente,

Wurzel hat mind. 2 Nachfolger oder ist Blatt

alle Blätter sind immer auf einer Ebene => immer vollst, ausgeglichen

Baum mit höhe h hat mindestens $1 + 2\frac{\lceil \frac{d}{2} \rceil^h - 1}{\lceil \frac{d}{2} \rceil - 1}$ und maximal $\frac{d^{h+1} - 1}{d-1}$ Knoten

höhe ist $\mathbf{O}(\log_2(\mathbf{n}))$, genauer: zwischen $\log_d(n+1)-1$ und $\log_{\lfloor (d-1)/2\rfloor+1}$

Aufbau eines Knotens/Seite: Adresse Element Adresse

Es gilt binärbaum Bedingung für jedes Element mit seiner rechte/linke Adresse

Einfügen: Suche; füge ein (sortierung beachten)

Wenn das Blatt übervoll ist: (ggf. rekursiv)

- 1. Suche das mittlere Element M_{itte} des übervollen Blattes, die elemente rechts davon werden neues Blatt:
- 2. verschiebe die M_{itte} in den Vaterknoten, der rechte Verweis zeigt auf das neue Blatt;
- 1. Element nicht in einem Blatt => tausche es mit dem Nachfolger in Sortierreihenfolge (ist in einem Blatt); lösche;
- 2. ist Seite danach zu Klein ($< \lfloor \frac{d-1}{2} \rfloor$) versuche Ausgleich mit direkten Nachbarblatt: dazwischenliegendes Element (M_{itte}) kommt vom Vaterknoten in den zu kleinen Knoten, der Nachfolger/Vorgänger aus dem anderen in den Vaterknoten
- 3. Ausgleich nicht möglich: Füge 2 benachbarte Knoten + Mitte aus Vaterknoten zu einem Zusammen. Wiederhole ggf. rekursiv.

B*-Baum: Beim Einfügen in volle Seite versuche ausgleich mit direkten Nachbarn => bessere Speicherausnutzung

Suche im Array

Sequentiell: gehe der reihe nach alle elemente durch bis das element gefunden O(n)

Binär: Sortiertes Array; betrachte mittleres Element;

<: Wiederhole im linken Teilarray, >: im rechten; worst-Case: O(log₂ n)

Quick-Select: Suche k. kleinstes element: Analog zu probab. Quicksort, betrachte nur das Teilarray, in dem der Index k liegt; durchschnitt **O(n)**

Selection-Sort

Suche Minimum; Tausche es mit dem ersten Element; Wiederhole im Array [2...n], $\mathbf{O}\{n^2\}$

Bubble-Sort

durchlaufe elemente, tausche mit nachfolger wenn dieser kleiner; wiederhole $O\{n^2\}$ Ouicksort

- 1. Wähle Pivot= letztes Element
- 2. lasse zeiger von beiden Enden des Restarrays nach innen laufen: wenn der rechte zeiger auf ein kleineres bzw. der linke auf ein größeres Element als das Pivot zeigt stoppe den zeiger; wenn beide gestoppt: tausche sie, wenn sich die Zeiger treffen tausche das Pivot nach innen
- 3. Wiederhole Quicksort im Rechten und linken Teilarray.

Laufzeit: best Case: $O(n \log_2 n)$, worst-Case $O(n^2)$

Vergleiche(mittel): $2(n+1)H_n - 4n$

Zuweisungen(mittel): $\frac{1}{3}(n+1)H_n - \frac{1}{9}n - \frac{5}{18}$

probabilistisch:: start: wähle zufälliges Element als Pivot und tausche ans ende z.B. [37,45,57,59,58,99]=

Interpretation Array als binärer Heap;

a[2i] und a[2i+1] sind die Kinder von a[i];

Array durchläuft die Ebenen von oben nach

unten, von links nach rechts Heapbedingung: Vater < Kinder

 $\begin{array}{lll} \mbox{Heapbedingung: Vater} \leq \mbox{Kinder} & 59 & 58 & 99 \\ \mbox{Heapsort: Erzeuge Heap; Tausche letztes Element mit Wurzel, DownHeap in [1...n-1]} \,, \end{array}$

wiederhole bis array leer; worst-case: $O(n \log_2 n)$

Erzeuge Heap: Führe DownHeap für alle knoten durch (ebenenweise von unten zur wurzel); **O(n)**

DownHeap: Knoten > Kind: Tausche mit Kleinerem nachfolger; wiederhole rekursiv **Revisited**: Bestimme Pfad der kleineren Nachfolger bis zum Blatt, speichere den index.

=> index des i. Knotens auf dem Pfad sind die vordersten i Bits des Blattindex

Lineare Suche:: Suche vom Pfadende aus die Einfügestelle, speichere Wurzel, alle Pfadelemente rücken eine Ebene nach oben, einfügen Wurzel

binärsuche:: analog dazu, suche Einfügestelle mit binärer Suche im Pfad

Netzwerk

Quelle S, Ziel T

Flusserhaltung: für alle außer Quelle/Ziel: IN = OUT

Totaler Fluss: output(quelle) - input(quelle)

Ford Fulkerson (maximaler Fluss/Schnitt minimaler Kapazität): Bilde Restgraph aus Netzwerk

Suche Pfad von Quelle -> Ziel, erhöhe fluss an diesem Pfad um dessen minimale Kante Wiederhole solange ein Pfad Quelle -> Ziel existiert

Edmonds-Karp: wähle den Pfad im Restgraph mit wenigsten **Kanten** (durch Weitensuche von der Quelle aus) $O(ke^2)$

Schnitt minimaler Kapazität: : Zusammenhangskomponente von S im Restgraph nach Ford-Fulkerson)

Priority Queue

Speichert Elemente mit Prioritäten, entnahme des Elements mit kleinster Priorität; Implementierung durch Heap und Positionsarray für die Elemente;

Wird durch UpHeap/DownHeap die Position verändert: anpassen des Positionsarrays **Einfügen**: füge das Element am HeapEnde ein, Umgekehrtes DownHeap (UpHeap)

Löschen: Entnahme der Heapwurzel, ersetzen durch letztes Element; DownHeap

Union-Find

dynamische Partitionierung; parent array; Für Erweiterungen: array rank Partition als Wurzelbaum => Elemente in einer Menge wenn gleiche Wurzel Repräsentant ist Wurzel; Wurzeln haben parent[w] =0

Find(e): return Wurzel der Partition von e: durchlaufe parent-Beziehung bis Wurzel *Pfadkomprimierung:*: setze gefundene Wurzel als parent aller Knoten auf diesem Pfad **Union(x,y)**: return true wenn in selber Partition, sonst false + vereinige diese Partitionen i = Find(i); j = Find(j) if (i!=j) { parent[i] = Find(j)}

Höhen-Balancierung: rank[i] speichert rang von i; hänge bei Union die Kleinere Wurzel unter die größere, bei gleichheit steigt der rang der neuen Wurzel

worst-case Laufzeit für n-1 unions und m finds: $O((m+n)\alpha(n))$; $\alpha(n) \le 4$

Graphen

k = Anzahl Knoten, e = Anzahl Kanten

a adjazent zu b: es existiert die kante a->b, also $(a,b) \in E$

Umgebung:: alle zu einem knoten adjazenten knoten

$$e \le \binom{k}{2}$$
 (ungerichtet) bzw. $\le k(k-1)$ (gerichtet)

Teilgraph:: Knoten und Kanten sind Teilmenge des Originalgraphen

aufspannender Teilgraph:: alle Knoten und Teilmenge der Kanten des Originalgraphen

erzeugender Teilgraph:: Teilmenge der Knoten und alle Kanten zwischen diesen

Pfad:: Folge von Knoten v_0, v_1, \dots, v_n , mit Kanten von $v_i - > v_{i+1}$

Zyklus:: geschlossener Pfad mit länge ≥ 3 (ungerichtet) bzw. ≥ 2 (gerichtet)

Zusammenhangskomponente:: alle gegenseitig erreichbaren knoten bilden Komponente

Baum:: zusammenhängend, azyklisch und e = k-1

Bipartiter Graph:: zwei Mengen von Knoten V_1, V_2 , alle Kanten gehen von V_1 nach V_2

Adjazenzmatrix:
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{c} 2 \\ 1 & 2 \\ 2 & 3 \end{array}$$
 Adjazenzliste:
$$\begin{array}{c} 1: 2 \\ 2: \\ 3: 1 \end{array}$$

Weitensuche

Besuche die Nachbarn des Startknotens, dann die Nachbarn des ersten Nachbarn usw. \$\iff \text{gehe den entstehenden Baum Ebenenweise durch.}\$

 V_T : besuchte Knoten, V_{ad} : zum besuch Vorgemerkte Knoten als Queue, V_R : Rest implementierung: int[k] where; // <0: in der Queue, 0: V_R , >0: besucht

Visit(Node k): füge k in die Queue;

durchlaufe die Queue, für jeden Knoten füge alle Nachbarn aus V_R in die Queue Laufzeit: bei Liste: O(e+k), bei Matrix: $O(k^2)$

Erweiterung:: Test auf Zyklen ⇔ Test ob Nachbar schon im Baum (und nicht parent) Ermittlung des Abstands von der Wurzel des erzeugten Baums

Tiefensuche

Besuche den 1.Nachbarn des Startknotens, dann den 1.Nachbarn des 1.Nachbarn usw. ⇔ durchlaufe einen Pfad nach dem Anderen

Visit: durchlaufe die Adjazenzliste, für jeden nicht besuchten Nachbarn rufe Visit auf Laufzeit: **O(e+k)**

Erweiterung:: Test auf Azyklität: Kanten auf einen Vorgänger

bei Visit Start/Ende: A vorgänger von B wenn $[Start_B, End_B] \subset [Start_A, End_A]$ *Topologisches Sortieren*: Array der Länge k, fülle von hinten bei Visitende

Starke Zusammenhangskomponente::

- 1. Nummeriere in Terminierungsreihenfolge
- 2. Drehe alle Kanten um (Konstruiere den reversen Graph)
- 3. Tiefensuche von höchster Terminierungsnummer aus, alle Erreichbaren sind starke Zusammenhangskomp.
- 4. (wiederhole letzten Schritt bei bedarf)

Dijkstra/Prim (minimaler aufspannender Baum)

Start:: ({Startknoten}, 0) // Startknoten, keine Kanten

Schritt:: füge die kleinste vom konstruierten Baum ausgehende Kante in den baum ein;

Priorität: bei Prim: Kantengewicht, bei Dijkstra Pfad zur Wurzel

Implementierung durch Priority Queue bei Adjazenzliste

Laufzeit: $O(n^2)$ bei Matrix, $O((p+q)\log(p))$ bei liste

Kruskal (minimaler aufspannender Baum)

Start: $T = (V, \emptyset)$ // alle Knoten, keine Kanten

Schritt: füge die kleinste Kante ein, die keinen Zyklus erzeugt

Implementierung: Knoten in Union-Find; Sortiere Kanten nach gewicht, durchlaufe die Kanten und führe für jede Kante Union(v_{Start} , v_{End}) aus; wenn false füge die Kante ein;

Laufzeit: O(p+qlog(q))

Boruvka (minimaler aufspannender Baum)

minimale indizente Kante: kleinste Kante an einem Knoten

Start:: Tree(V, \emptyset) Graph(V,E)

Schritt:: füge alle Minimal indizenten Kanten im Baum ein, Kontrahiere sie im Graph; wiederholen Laufzeit: O((p+q)log(p)) Gewicht nicht eindeutig => Min-Max-Ordnung: kante ist Kleiner falls gewicht kleiner bzw. kleinerer Knoten kleiner bzw. größerer Knoten

kleiner Warshall (transitiver Abschluss)

Erzeugt Graph, bei dem jede Kante einem Pfad in der Eingabe darstellt

Start:: a_0 = Adjazenzmatrix;

für k=1 bis p:

Schritt:: $a_k[i,j] = a_{k-1}[i,j] or(a_{k-1}[i,k] and a_{k-1}[k,j])$ für implementierung: es wird nur speicher für eine Matrix benötigt, diese wird angepasst. 3 forschleifen $(k,i,j) \Rightarrow O(\mathbf{p}^3)$

Floyd (minimaler aufspannender Baum)

Adjazenzmatrix gewichteter Graph, gewicht= ∞ wenn keine Kante, 0 in Hauptdiagonale;

Start:: $a_0 = Adjazenzmatrix$;

für k=1 bis p:

Schritt:: Schritt: $a_k[i, j] = min(a_{k-1}, a_{k-1}[i, k] + a_{k-1}[k, j])$

funktioniert auch mit negativen gewichten, wenn keine negativen Zyklen, implementierung analog zu Warshall