DataQuality

DI Cruz Dávalos 7/26/2019

Methods

Samples

The samples included in this study were taken from 24 individuals whose remains belonged to the anthropological collection from the National Museum in Rio de Janeiro, Brazil. Throughout this document we keep the National Museum's identifiers to refer to such individuals. Twenty-two of the individuals were identified from the Museum's archival as belonging to a "Botocudo" group. Similarly, one mummified individual from a cave in Minas Gerais, Brazil, was not associated to any specific group, and one individual was excavated from a shell mound from Santa Catarina, Brazil. Regarding the twenty-two Botocudos, one tooth was sampled for twenty of them, and one piece of skull and petrous bone for the remaining two individuals (MN00019 and MN0008, respectively). One tooth was sampled from the Minas Gerais' mummy and one tooth from the shell mound's individual. Two of the Botocudo individuals presented here (MN00013 and MN00065) have been previously studied by [?], but no genomic data was reported at the time.

DNA extraction, library preparation, and sequencing

Twenty-four DNA extracts were prepared: one from petrous bone, one from a piece of skull and twenty-two

Genomic data quality assessment

Mapping

Remnants of adapters, low-quality bases and nucleotides reported as "N" were trimmed from the reads with AdapterRemoval version 2.1.7 ([?]). Reads of 30 bp length and above were mapped to the human genome reference built 19 with BWA aln version 0.7.15 ([?]), disabling the seed to avoid mapping bias due to damage at the 5' termini of the reads ([?]). Reads with a mapping quality score equal or greater than 30 were retained. Duplicate reads were identified and removed with picard tools MarkDuplicates version 2.9.0 (http://broadinstitute.github.io/picard/), and indel realignment was performed with GATK version 3.7 with default options ([?]). Molecular damage parameters were obtained with mapDamage2 ([?]).

Contamination estimation

We estimated contamination using a Bayesian statistical approach on mitochondrial data (\cite{Fu2013}),

Error rate estimation

Molecular sex determination and uniparental markers

Molecular sex was determined by computing the ratio of reads mapping to the Y chromosome with respect t To call Y-chromosome and mitochondrial haplogroups, we used ANGSD version 0.921 (\cite{Korneliussen2014})

Y-chromosome and mitochondrial DNA analyses

Results

Processing of genomes and ancient DNA authentication

We shotgun-sequenced 24 samples to an average depth of coverage between $0.001 \times$ and $9.2 \times$ (Table ??).

```
<!-- %Between 21,554,888 and 1,124,846,215 reads were sequenced per sample. -->
```

After trimming adaptors and removing low-quality bases from the reads, between 69.1% and 95.6% of the reads were retained and used as input for mapping.% (that is, between 16,504,949 and 1,030,165,295 reads per sample). The clonality levels (percentage of mapped reads classified as PCR duplicates) within samples ranged from 0.50% to 26.0%. After removing duplicates, we obtained between 70,205 and 533,336,166 reads mapped per sample. Therefore, the percentage of retained reads that were uniquely mapped (i.e., endogenous content) per sample ranged from 0.03% to 51.8%.

The sequenced reads show the common signatures of molecular damage observed in ancient samples, such as short lengths and high rates of deamination (Figure \ref{figure}). Retained and mapped reads had similar lengths, with an average of 47.1 - 67.5 bp and 42.0 - 67.1 bp per sample, respectively. Non-USER-treated libraries showed average deamination rates between -% and -% at the termini of the reads.

We estimated contamination based on mitochondrial data. The estimates vary according to the number of reads used in the calculations, which also varies depending on whether we consider transitions as mismatches to the endogenous mitochondrial genome. We notice a larger dispersion in the posterior distribution when using $\sim 2,000$ reads or less.

When accounting for all polymorphism types and samples with more than 2,000 mitochondrial reads (n = 19, mitochondrial coverage: $9.9 \times$ - $222.4 \times$), the maximum a posteriori estimate for contamination is between 0.69% and 8.41%. If we remove transitions from the estimation, we have 14 samples with more than 2,000 (mitochondrial coverage: $35.6 \times$ - $222.4 \times$) for which we estimated between 0.03% and 3.10% of contaminant reads.

Regarding samples with mitochondrial coverage above $10\times$, we estimated less than 6% of contaminant reads (Table ??).

Data quality assessment

Molecular damage patterns

Contamination estimates

Molecular sex determination

Sequenced reads

Total number of reads

Reads retained after trimming

Endogenous content

Endogenous content per sample

Read length

Average read length (retained and mapped)

Molecular damage

Genome coverage

Clonality

Sex determination

[1] 120

Sex determination

Contamination estimates

Work in progress

Mitochondrial

Text on plots:

Mitochondrial coverage,

number of reads (all polymorphisms), number of reads (removing transitions)

 \mathbf{X}

sampleibrar	y mito_	es tinto te	lo wn<u>itest</u>u	ıppXe <u>re</u> st	sitaXi <u>at</u> kov	<u>Xes</u> tupp	e <u>mitot</u> nı	um <u>itRe</u> æda	ke <u>r</u> angnen	<u>Xsit</u> esin	sobespth
MN00 A19	6%	2%	26%	NA%	NA%	NA%	36	0.1240	NA	3	XY
MN00 0.1 19	4%	0%	66%	NA%	NA%	NA%	7	0.0213	NA	3	consistent
											with XY
											but not XX
MN00 0.2 9	2%	0%	26%	NA%			28	0.1030	NA	3	XY
MN00 A3 1	2%	0%	4%	NA%	NA%	NA%	7954	35.6000	NA	3	XY
MN00 0.3	2%	0%	4%	NA%	NA%	NA%	7953	35.6000	NA	3	XY
MN00 A4 5	2%	0%	2%	NA%	NA%	NA%	10926	55.4000	NA	3	XY
MN00 04 5	2%	0%	2%	NA%	NA%	NA%	10926	55.4000	NA	3	XY
MN00 A6 4	2%	2%	4%	NA%	NA%	NA%	11327	56.5000	NA	3	XY
MN00 0 64	2%	2%	4%	NA%	NA%	NA%	11327	56.5000	NA	3	XY
MN00 461 7	4%	2%	6%	2%	-2%	6%	21590	100.0000	82	3	XY
MN00 0 67	4%	2%	6%	NA%	NA%	NA%	8362	37.8000	NA	3	XY
MN00 0.2 7	2%	2%	4%	2%	-2%	4%	13228	62.5000	29	3	XY
MN00 A68	4%	2%	10%	NA%	NA%	NA%	2466	11.3000	NA	3	XY
MN00 0 68	4%	2%	8%	NA%	NA%	NA%	2462	11.3000	NA	3	XY
MN00 A69	12%	8%	20%	NA%	NA%	NA%	1192	5.3400	NA	3	XY
MN00 0 69	12%	8%	18%	NA%	NA%	NA%	1192	5.3400	NA	3	XY
MN00 48 1	0%	0%	2%	2%	2%	2%	47938	222.00004	7991	3	XY
MN00 0 8	0%	0%	2%	NA%	NA%	NA%	16319	77.3000	NA	3	XY
MN00 0 2	0%	0%	0%	0%	0%	0%	15672	69.0000 1	2347	3	XY
MN00 03 U	2%	0%	2%	2%	2%	2%	15950	76.1000 1	0001	3	XY
MN00 A9 1	4%	4%	6%	0%	0%	2%	37239	205.0000		3	XY
MN00 0 9	2%	2%	4%	2%	0%	4%	18871	105.0000	314	3	XY
MN00 0.2	2%	2%	4%	0%	-2%	4%	18368	100.0000	162	3	XY
MN00 241 6	2%	0%	2%	0%	0%	0%	26013	134.0000	1	3	XY
MN00 B 116	0%	0%	2%	NA%	NA%	NA%	12198	63.9000	NA	3	XY
MN00 B 26	2%	0%	2%	0%	0%	0%	13820	70.5000	1	3	XY
MN00 344 6	2%	0%	2%	0%	0%	0%	29390	149.0000	97	3	XY
MN00 B4 6	0%	0%	2%	0%	0%	0%	15392	78.6000	10	3	XY
MN00 B 26	2%	0%	2%	0%	0%	0%	14000	70.2000	20	3	XY
MN01 7/2 1	20%	14%	28%	NA%	NA%	NA%	317	1.0700	NA	3	consistent
	- / V	, ,	- / 0	,0	-, 5	-, 0				~	with XY
											but not XX
MN017001CaptNiAe%		NA%	NA%	NA%	NA%	NA%	1199	8.2400	NA	3	consistent
. 5	r	, 0	,	/0		, 0	0			9	with XY
											but not XX

sampleibrar	y mito_	_es tinito te	elo wn<u>it</u>es t	upp X e <u>r e</u> st	sitnXatkov	<u>Xes</u> tupp	e <u>mi</u> tet_n	um <u>itRe</u> ada	X er age n	<u>Xsit</u> esin	_sdexpth
MN19 43 l	20%	14%	30%	NA%	NA%	NA%	11402	40.8000	NA	3	consistent with XY but not XX
MN19 4.3	22%	14%	32%	NA%	NA%	NA%	341	1.0100	NA	3	consistent with XY but not XX

Supplementary table 1