HTTP and Transport

Jana lyengar jri@google.com

What does TCP do?

- Loss recovery via retransmissions
 - Fast retransmit, FACK, early retransmit, tail loss probe, RTO, F-RTO
- Congestion control
 - Determine reasonable rate for sending data
 - NewReno, Cubic
- Bytestream abstraction
 - SOCK_STREAM

HTTP and **TCP**

HTTP/1.0 and TCP

- 1 object per connection
- multiple connections per page

HTTP/1.1 and TCP

- Persistence (and pipelining): multiple objects per connection
- Problem: Loss of parallelism

Efforts to fix transport for HTTP use

- TCP Session, Congestion Manager, Ensemble-TCP
- SCTP: Multistreaming, message framing

HTTP/2 and TCP

Implements needed services directly above TCP's bytestream

Opportunities

- Better congestion control
 - Reno, Cubic, CompoundTCP, are all buffer-filling
- Faster loss recovery
 - TLP is great, but not deployed in non-Linux platforms
- Connection Pooling
 - Single tail is still better than multiple tails
- Transport multiplexing
 - avoids HoL blocking in the transport
- Faster Connection Setup
 - TFO? (slowly seeing deployment)
- Multipath, Mobility
 - O MPTCP?

Opportunities

- Better integration with applications
 - because the socket API is not good enough
 - better decisions made based on application intent
 - eg: different congestion controllers
 - o eg: sliding-scale reliability
 - eg: bw-intensive vs. latency-sensitive data

Challenges and Trends

Deploying TCP changes is hard

- SACK took more than 10 years to deploy after standardization
- TFO started as an Internet-draft in 2011, deployment slow
- middleboxes stomp on TCP modifications and new IP transports

Networking moving out of OS kernels

- increases deployment agility, enables customized stacks
- reduces buffering in the stack
- o packet slinging frameworks such as netmap, Intel DPDK
- UDP-based transports

Success == Ossification

- network optimizes for successful protocols
- hinders evolution of stack

"Layering is an optimization on clarity;

it never improves performance."

Matt Mathis