Systemtheorie und Regelungstechnik Übungsblatt 11

Aufgabe 1

Aus dem Plot in Abbildung 1 ist zu erkennen, dass die Sprungantwort für einen Verstärkungsfaktor $K_{kr}=2,55$ nicht divergiert. In Abbildung 2 ist ein vergrößerter Ausschnitt der gleichen Sprungantwort dargestellt, anhand dessen die kritische Periodendauer $T_{kr}=6$ s abgelesen werden kann. Aus der Tabelle zur Bestimmung der Reglerparameter im Skript lassen sich die Konstanten K_P , K_I und K_D berechnen. Diese sind in Tabelle 1 dargestellt.

Abbildung 1: Sprungantwort des mit P-Regler geschlossenen Kreises für $K_{kr}=2,55$.

Abbildung 2: Vergrößerte Sprungantwort des mit P-Regler geschlossenen Kreises für $K_{kr}=2,55.$

Tabelle 1: Tuning-Parameter nach Ziegler und Nichols.

Regler	K_P	K_{I}	K_D
Р	1,275	-	=
PΙ	1,1475	0,2252	-
PID	1,53	0,51	1,1016

Abbildung 3: Sprungantwort des mit P-Regler nach Tabelle 1 geregelten Systems.

Abbildung 4: Sprungantwort des mit PI-Regler nach Tabelle 1 geregelten Systems.

Abbildung 5: Sprungantwort des mit PID-Regler nach Tabelle 1 geregelten Systems.

Die Einschwingzeit ist mit dem PI-Regler am längsten, mit dem PID-Regler am kürzesten. Die Überschwingung ist mit dem PI-Regler am höchsten, mit P- und PID-Regler beinahe gleich, wobei der PID-Regler eine leicht größere Überschwinghöhe verursacht. Der statische Fehler wird durch die Integrierglieder des PI- und PID-Reglers eliminiert. Mit dem P-Regler bleibt ein statischer Fehler bestehen.

Die Amplitudenreserve und Phasenreserver lassen sich mit dem Python control Modul bestimmen.

Für den P-Regler ergibt sich $GM=1,\,\phi=180^{\circ}.$

Für den PI-Regler ergibt sich $GM = 0, 28, \phi = -17, 37^{\circ}$.

Für den PID-Regler ergibt sich $GM=\infty,\,\phi=47,13^{\circ}.$