

Quantity	Sign	When applicable			
W	-	Work done by the system (expansion)			
W	4	work done on the system (compression)			
8	rils4	Keat absorbed by the system			
9	2/4/2	Keat given out by the system .			
Δ0	+	Energy absorbed by the system			
Δ0		Energy given out by the system			
Extensive P	sope sty	Intensive Property			
Mass, volume, no of m		oles, Density, M.P, B.P, Refroctive index,			
internal Energy, neat specific heat capacity, Viscosity.					
capacity		Concentration terms: > Molarity, molality,			
1 Energy	Paris	mole fraction, Normality			
+ ent	ralpy Langu	Mala Catron Malax Cathalou			
J. Gib	bls free &	enesgy pM, Temperature, Surface tension,			
$Im^3 = 10^3 dm^3 = 10^6 cm^3 = 10^6 mL = 10^3 L$					
12 = 1000m2; 1m2 = 103/2; 12=1dm3 = 103cm3					
Gord Enthalpy & Enthalpy of Reaction.					
DH° (reaction) = \le m DH° (reactant) - \le n DH° (Paraducti) Bonds) Bonds					
Internal Energy & Temperature. [10 = n CvaT]					
Heat at Const. Volume 1 = U (Internal E) # Entropy: Graphite > Diamond.					
const. Pressure Qp = M (Enthalpy) Graphite > Diamond.					
		$\Delta S_{\text{vop}} = \Delta M_{\text{vop}}$ $\Delta S_{\text{sub}} = \Delta M_{\text{sub}}$			

Cyclic: The process in which initial & Anal States are same with the formation of loop.

Calcul of Entropy in diff process.

$$\Delta s = nC_{v,m} \log \left(\frac{T_0}{T_1}\right) + nR \log \left(\frac{V_2}{V_1}\right)$$

$$\Delta s = \eta C_{P,m} \log_e \left(\frac{T_2}{T_1}\right) + \eta R \left(\frac{\log_e \left(\frac{P_1}{P_2}\right)}{P_2}\right)$$

Case 3: Isothermal

$$\Delta S = nR \log_e \left(\frac{V_2}{V_1} \right) = nR \log_e \left(\frac{P_1}{P_2} \right)$$

Drocesses.

Case I: In IsoCarric process:

$$\Delta S = N C_{p,m} \log_e \left(\frac{T_2}{T_1} \right)$$

$$\Delta S = N C_{p,m} \log_e \left(\frac{T_2}{T_1} \right)$$

$$\Delta S = N C_{p,m} \log_e \left(\frac{T_2}{T_1} \right)$$

$$\Delta S = N C_{p,m} \log_e \left(\frac{T_2}{T_1} \right)$$

$$\Delta S = N C_{p,m} \log_e \left(\frac{T_2}{T_1} \right)$$
is aentropic

		0	
ΔN	.24	Cond"	Eg.
tve (emdo)	tue	20T > NO	$CaCO_3 \rightarrow CaO + (O_2)$
ave (endo)	-ve	Always non-sponto	$30_{29} \rightarrow 20_{39}$
-VR (exo	tve	Always sponta	$20_{2(g)} \rightarrow 30_{2(g)}$
- UR (PXO)	-ve	1 DU / > 1 TOS	Ca051+00, -> Ca00

Reactivity or Bond length

(4), 12/1 - (4), 12 = 20