1 algorithm1(A, n)
2 if
$$n <= 20$$
3 return A[n]
4 $\times = \text{algorithm1}(A, n-5)$
5 for $i = 1$ to $[n/2]$
7 for $j = 1$ to $[n/2]$
8 $A[i] = A[i] - A[j]$
9 $\times = \times + \text{algorithm1}(A, n-8)$
10 $I(n-3)$
11 return $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 return $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
15 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 return $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
14 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
14 $I(n-3)$
15 $I(n-3)$
16 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
11 $I(n-3)$
11 $I(n-3)$
12 $I(n-3)$
12 $I(n-3)$
13 $I(n-3)$
14 $I(n-3)$
15 $I(n-3)$
16 $I(n-3)$
16 $I(n-3)$
17 $I(n-3)$
18 $I(n-3)$
19 $I(n-3)$
10 $I(n-3)$
10

$$2^{\frac{n}{5}} (n-5)^{2} + n^{2} < n^{2} \cdot 2^{\frac{n}{5}}$$

$$2^{\frac{n}{5}} (n^{2} - 10n + 2S - n^{2}) + n^{2} < 0$$

$$2^{\frac{n}{5}} (2S - 10n) + n^{2} < 0$$

$$10^{-3} (2S - 10n)$$

1 algorithm2(A, n):
2 if
$$n <= 50$$
3 return A[n]
4 $x = \text{algorithm2}(A, [n / 4])$
5
6 for $i = 1$ to $[n / 3]$
7 $A[i] = A[n - i] - A[i]$
8
9 $x = x + \text{algorithm2}(A, [n / 4])$
10
11 return x

Echu $n < 50$, to $T(n) = O(1)$

Echu $n > 50$, to $T(n) = 2 \cdot T(\frac{n}{4}) + n$

Bochonh 3 years Macrep - Teogramo i , t.e. $a = 2 > 1$, $b = 4 > 0$, $c = 1$.

 $\log_b a = \log_a 2 = \frac{1}{2} \log_b 2 = \frac{1}{2} < 1 = C \implies \log_a b < C$

Torga $T(n) = O(n) = O(n)$