Sampling using PESTO

- Making PESTO publically available
- Development on GitHub

PROFILING

- Making PESTO publically available
- Development on GitHub
- Main features: Interface for
 - optimization
 - profiles
 - sampling
 - Visualization

- Making PESTO publically available
- Development on GitHub
- Main features: Interface for
 - optimization
 - profiles
 - sampling
 - Visualization
- Recently added validated sampling routines:
 - AM (Adaptive Metropolis)
 - DRAM (Delayed Rejection AM)
 - MALA (Metropolis-adjusted Langevin Algorithm)
 - PT (Parallel Tempering)
 - PHS (Parallel Hierarchical Sampling)

- Making PESTO publically available
- Development on GitHub
- Main features: Interface for
 - optimization
 - profiles
 - sampling
 - Visualization
- Recently added validated sampling routines:
 - AM (Adaptive Metropolis)
 - DRAM (Delayed Rejection AM)
 - MALA (Metropolis-adjusted Langevin Algorithm)
 - PT (Parallel Tempering)
 - PHS (Parallel Hierarchical Sampling)
- Reworked & modularized most of the sampling code
- Added 2 new sampling examples (no biological meaning)
- Currently: Adapting the existing examples

Define the problem as a cost function (RingExample)

```
% Initialize example problem
path(pathdef);
addpath(genpath([pwd filesep '..' filesep '..']));
radius = 15;
sigma = 2;
logP = @(theta) simulateRingLLH(theta, radius, sigma);
ringDimension = 2;
```

conversion_reaction
 enzymatic_catalysis
 erbb_signaling
 GaussExample
 jakstat_signaling
 mRNA_transfection
 Pom1p_gradient_formation
 RingExample

Set general options

Set algorithm-specific options

```
opt.samplingAlgorithm = 'PT';
opt.objOutNumber = 1;
opt.PT.nTemps
            = 3;
opt.PT.exponentT = 4;
             = 0.51;
opt.PT.alpha
opt.PT.temperatureAlpha = 0.51;
opt.PT.memoryLength = 1;
                = 1e-4;
opt.PT.regFactor
opt.PT.temperatureAdaptionScheme = 'Lacki15'; %'Vousden16'; %
opt.theta0
                      = repmat([-15*ones(ringDimension,1)],1,opt.PT.nTemps);
                      = 1e5*diag(ones(1, ringDimension));
opt.sigma0
```

Set general options

Set algorithm-specific options

```
% Using DRAM

opt.samplingAlgorithm = 'DRAM';

opt.objOutNumber = 1;

opt.DRAM.nTry = 5;

opt.DRAM.verbosityMode = 'debug';

opt.DRAM.adaptionInterval = 1;

opt.DRAM.regFactor = 1e-4;

opt.theta0 = -15*ones(ringDimension,1);

opt.sigma0 = 1e5*diag(ones(1,ringDimension));
```

Start the sampling

```
par = getParameterSamples(par, logP, opt);
```

Visualize the results

```
% Visualize
figure
subplot(2,1,1); plot(squeeze(par.S.par(:,:,1))')
subplot(2,1,2);
plotRing(); hold all
plot(squeeze(par.S.par(1,:,1))', squeeze(par.S.par(2,:,1))','.')
```


Visualize the results

plotParameterSamples(par, '1D', [], [], samplingPlottingOpt)

plotParameterSamples(par, '2D', [], [], samplingPlottingOpt)

Combine Sampling with optimization & profiling

Questions?