CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A system for pervasive enablement of business processes, comprising:
2	a workflow engine that executes a business process model;
3	a context service that allows context-aware applications to obtain user
4	context information;
5	an interaction controller that receives specification of individual staff
6	activities from the workflow engine, and upon receiving a staff activity
7	specification, obtains context information of a partner instance from the
8	context service to determine an appropriate collaboration modality for the
9 -	partner instance, and forwards the engine responses from human partners back
10	to the workflow engine, thereby handling individual interactions with human
11	participants; and
12	one or more modality adapters that encapsulate details of
13	communicating with a specific collaboration modality.
1	2. The system in Claim 1, wherein the context service provides dynamic
2	context information about human participants.
1	3. The system in Claim 2, wherein said dynamic context information includes
2	a human participants' location, activity, connectivity and preferences.
1	4. The system of Claim 2, wherein the context service supports both
2	synchronous query and asynchronous callback context functions.

l	5. The system in Claim 1, further comprising an address book that maps
2	individual IDs to modality-specific addresses, the interaction controller
3	accessing the address book to look up a modality-specific address.
1	6. The system in Claim 1, wherein the modality adapters include the adapters
2	for instant messaging, email, e-meeting, discussion threads, phones, pagers,
3	and other communication devices.
1	7. A method for pervasive enablement of business processes, comprising the
2	steps of:
3	executing a business process model;
4	storing user context information;
5	receiving specification of individual staff activities;
6 :	obtaining context information of a partner instance from the context
7	information to determine an appropriate collaboration modality for the partne
8	instance;
9	directing human tasks to one of a plurality of modality adapters, each
10	of which is adapted to exchange data with said human participants in a
11	modality-specific manner; and
12	gathering responses from human participants via said modality
13	adapter.
ē	
1	8. The method in Claim 7, further comprising the step of mapping individual
.2	IDs to modality-specific device addresses.
1	9. The method in Claim 7, wherein said directing step is based on an explicit
2	command when instantiating the hyginess process madel

- 1 10. The method in Claim 7, wherein said directing step is based on dynamic
- 2 context information on said human participant.
- 1 11. The method in Claim 10, wherein said dynamic context information
- 2 includes a human participants' location, activity, connectivity and
- 3 preferences.
- 1 12. The system of Claim 10, wherein the directing step supports both
- 2 synchronous query and asynchronous callback context functions.