Chapter 2 Differentiation

Outline

- Derivative
 - Definitions
 - □ Rules of Differentiation

- Other Types of Differentiation
 - □ Parametric Differentiation
 - Implicit Differentiation
 - Higher Order Derivatives

Maxima and Minima

- □ Local and absolute extremes
- □ Finding Extreme Values
- Critical Points
- Increasing and Decreasing Functions

Derivative Test

- □ First Derivative Test for Local Extremes
- Concavity and Points of Inflection
- □ Second Derivative Test for Local Extremes

Optimization Problems

□ Absolute Extreme Values

- <u>Indeterminate Form</u> (Limits)
 - □ L'Hospital's Rule
 - Other Indeterminate Forms

Derivative

Derivative

$$y = x^n$$

$$f(x) = x^n$$

$$\frac{dy}{dx} = nx^{n-1}$$

$$f'(x) = nx^{n-1}$$

The derivative of y with respect to x.

The derivative of f(x) with respect to x.

with respect to --- w.r.t

Some results

 $\frac{d}{dx}(c) = 0$, where c is any constant.

 $\frac{d}{dx}(x^n) = nx^{n-1}$, where *n* is any constant.

$$\frac{d}{dx}(\ln x) = \frac{1}{x} \qquad \qquad \frac{d}{dx}(e^x) = e^x$$

Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Question: How to derive these results?

Using limits

1. Derivative --- using the concept of limit

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

2. Derivative --- (Geometrically)
Gradient (Slope) of the tangent line

3. Derivative --- instantaneous rate of change of the function

m ----- gradient (slope) of the line

c ----- y – intercept

Straight line --- find gradient

gradient at
$$A$$
 = gradient of tangent line at A
= $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

gradient at A =gradient of tangent line at A

gradient at $A \neq$ gradient of line AB

Pause and Think !!!

Similarly, gradient at A gives instantaneous rate of change of the function f(x).

Derivative

Let f(x) be a function.

The derivative of f at a is defined to be

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided the limit exists.

If f'(a) exists, we say that f is **differentiable** at x = a.

If f is differentiable at any point a in the domain of f, we say that f is differentiable.

Derivative

Let f(x) be a function.

The derivative of f at a is defined to be

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided the limit exists.

The value of
$$\frac{dy}{dx}$$
 at $x = a$.

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{dy}{dx}(a)$$

Theorem (to decide when limit exists)

 $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^{+}} f(x)$ and $\lim_{x \to a^{-}} f(x)$ both exist and are equal.

For
$$\lim_{x \to a} f(x)$$
 to exist,

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$$
Left limit = Right limit.

For
$$\lim_{x \to a}$$
 (expression) to exist,
 $\lim_{x \to a^{+}}$ (expression) = $\lim_{x \to a^{-}}$ (expression)
Left limit = Right limit.

For
$$\lim_{x \to a} f(x)$$
 to exist,

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$$
Left limit = Right limit.

For
$$\lim_{x \to a}$$
 (expression) to exist,
 $\lim_{x \to a^{+}}$ (expression) = $\lim_{x \to a^{-}}$ (expression)
Left limit = Right limit.

For
$$f'(a) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right)$$
 to exist,
$$\lim_{x \to a^{+}} \left(\frac{f(x) - f(a)}{x - a} \right) = \lim_{x \to a^{-}} \left(\frac{f(x) - f(a)}{x - a} \right)$$
Left limit = Right limit.

Derivative

Let f(x) be a function.

The derivative of f at a is defined to be

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided the limit exists.

An equivalent formulation is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Let
$$x = a + h$$
.

Since
$$(x \to a)$$
 so $a + h \to a$.

Therefore, we have

Thus,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{a+h-a}$$

$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Pause and Think !!!

(1)
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

(2)
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Question: When to use which one?

Question: Which one is easier to use?

Evaluate the derivative of $f(x) = x^2$ at the point x = 1.

Using
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
,

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

$$= \lim_{x \to 1} x + 1$$

$$= 1 + 1$$

$$= 2.$$

Recalled that

$$a^{2}-b^{2} = (a-b)(a+b).$$

Derivative - Example

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Let $f(x) = x^3$. Show that $f'(x) = 3x^2$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$
Binomial expansion
$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2$$

Let f(x) = |x|.

Show that f is differentiable for $x \neq 0$ and has no derivative at x = 0.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Note that : $|x| \ge 0$. (|x| is always positive)

When x = 3, |x| = |3| = 3.

(x is positive)

When x = -4, |x| = |-4| = 4 -x = -(-4) = 4Therefore, |x| = -x.

(x is negative and so-x is positive)

Let f(x) = |x|.

Show that f is differentiable for $x \ne 0$ and has no derivative at x = 0.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Let
$$f(x) = |x|$$
.

Show that f is differentiable for $x \neq 0$ and has no derivative at x = 0.

Question: At x = 0, f'(0) = 1 or -1??

No derivative at x = 0.

To show f has No derivative at x = 0, need to show f'(0) does not exist.

Since
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$
, we shall show that

$$\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0}$$
 does not exist.

For
$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right)$$
 to exist,

$$\lim_{x \to a^{+}} \left(\frac{f(x) - f(a)}{x - a} \right) = \lim_{x \to a^{-}} \left(\frac{f(x) - f(a)}{x - a} \right)$$
Left limit = Right limit.

Thus, we show that,

$$\lim_{x \to 0^{+}} \left(\frac{f(x) - f(0)}{x - 0} \right) \neq \lim_{x \to a^{-}} \left(\frac{f(x) - f(0)}{x - 0} \right)$$

Left limit ≠ Right limit.

Thus, we show that,

$$\lim_{x \to 0^{+}} \left(\frac{f(x) - f(0)}{x - 0} \right) \neq \lim_{x \to a^{-}} \left(\frac{f(x) - f(0)}{x - 0} \right)$$
Left limit \neq Right limit.

 $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{h \to 0^{+}} \frac{x}{x} = 1$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{h \to 0^{+}} \frac{-x}{x} = -1$$

Therefore,
$$\lim_{x \to 0^{+}} \left(\frac{f(x) - f(0)}{x - 0} \right) \neq \lim_{x \to a^{-}} \left(\frac{f(x) - f(0)}{x - 0} \right)$$
Left limit \neq Right limit.

No derivative at x = 0.

Let
$$f(x) = |x|$$
.

Show that f is differentiable for $x \neq 0$ and has no derivative at x = 0.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

No derivative at x = 0.

Note that:

- 1. There is a sudden change of direction for the graph of f(x) = |x| at x = 0.
- 2. The graph of f(x) = |x| at x = 0 is a "sharp point".

Derivative

The *existence* of f'(a) is a *smoothness* condition on the

 \blacksquare curve y = f(x) at "x = a".

No sudden change of direction.

Discontinuity

Indeed we have:

(*) If f'(a) exists, then f is continuous at x = a'.

Corner

Remark: The *converse* of (*) is *not* necessarily true.

(*) If f'(a) exists, then f is continuous at x = a'.

Cusp

Vertical tangent

m ----- gradient (slope) of the line

c ----- y – intercept

Point – Slope form

$$y - b = m(x - a)$$

Result:

(gradient of tangent line) \times (gradient of normal line) = -1

Find equation of lines which are tangent and normal to the curve $y = x^2$ at x = 1 respectively.

Equation of tangent:
$$y-1=2(x-1)$$

Equation of normal:
$$y-1=-\frac{1}{2}(x-1)$$

Derivative – Rules of Differentiation

Product Rule

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}f(x)g(x) = \frac{df(x)}{dx}g(x) + f(x)\frac{dg(x)}{dx}$$

$$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$$

| Derivative – Rules of Differentiation

Quotient Rule

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

| Quotient Rule

■ Show that $\frac{d}{dx} \tan x = \sec^2 x$.

 $= \sec^2 x$

$$\frac{d}{dx}\tan x = \frac{d}{dx}\frac{\sin x}{\cos x}$$

$$= \frac{\cos x \cdot \cos x - \sin x(-\sin x)}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

$$\frac{d}{dx}(\sin x) = \frac{d}{dx}(\sin x) = \frac{d}{dx}(\cos x) = \frac{1}{\cos^2 x}$$

$$\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$u = \sin x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$v = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\cos^2 x + \sin^2 x = 1$$

| Derivative – Rules of Differentiation

Chain Rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

The Chain Rule - Example

Find
$$\frac{d}{dx}\sin(x^3)$$
.

$$\frac{d}{dx}\sin(x^3)$$

$$=\cos(x^3)\cdot\frac{d}{dx}x^3$$

$$=3x^2\cos(x^3)$$

Fix a value for x

Let
$$x = \mathbf{p}$$

Step 1.
$$p^3$$

Step 2.
$$\sin(\mathbf{p}^3)$$

The Chain Rule - Example

Find
$$\frac{d}{dx}\sin^5(e^x)$$
.

The Chain Rule - Example

Let
$$y = (x^5 + \cos(3x^2))^9$$
. Find $\frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{d}{dx}(x^5 + \cos(3x^2))^9$$

$$= 9(x^5 + \cos(3x^2))^8 \cdot \frac{d}{dx}(x^5 + \cos(3x^2))$$

$$= 9(x^5 + \cos(3x^2))^8 (5x^4 - \sin(3x^2) \cdot 6x)$$

$$= 9x(x^5 + \cos(3x^2))^8 (5x^3 - 6\sin(3x^2))$$

