ORIENTING BIOCHEMICAL REACTIONS IN METABOLIC PATHWAYS AND NETWORKS

Presented by Zephyr Serret Verbist

Table of Contents:

- 1. Introduction
 - a. Terms and definitions
 - b. Problem definition
 - c. Objectives and Scope
- 2. Planning
- 3. Budget
- 4. Sustainability

- 5. Our AMPL model
 - a. Basics of AMPL
 - b. Our models
 - c. Mathematical grounding
 - d. Benchmarks
- Obtaining data from KEGG
- 7. Demo

1.a. Terms and definitions - Hypergraphs

Hypergraphs are an extension to graphs

They are defined as H = (V,E) where

- V is the set of vertices
- E is the set of hyperedges

Each hyperedge has a tail set and a head set

1.
$$v_1 \rightarrow v_2 + v_3$$

2.
$$v_1 + v_2 \rightarrow v_4$$

3.
$$v_4 + v_5 \rightarrow v_6 + v_7$$

4.
$$v_5 \rightarrow v_7$$

5.
$$v_2 + v_3 \rightarrow v_1$$

6.
$$v_7 \rightarrow v_5$$

1.a. Terms and definitions - Metabolic Pathway

Metabolic pathways are sets of linked chemical reactions that occur in the cell.

In this study, we model them using hypergraphs

1.a. Terms and definitions - Internal/external vertices

A vertex is **internal** if and only if

- It has one or more incoming edges
- It has one or more outgoing edges

Otherwise, it is **external**.

1.b. Problem definition

Given a **metabolic** pathway, orient the reactions in order to minimize the number of **external** compounds.

1.b. Problem definition

1.b. Problem definition

1.c. Objectives and Scope

- Develop a ILP (Integer Linear Programming) model that, given a hypergraph, orients all hyperedges in order to minimize the number of external vertices.
- Create an application that connects to **KEGG** and allows anyone to try out the models.

2. Planning

- Started around July
- ~ 25 hrs per week

ID	Task	Dependencies	Duration (hours)	
T1	Project Management		85	
T1.1	Definition of the context and project scope		25	
T1.2	Temporal planning of the project		15	
T1.3	Budget and sustainability		15	
T1.4	Integration of Key Project Components	15		
T1.5	Meetings with the tutor	15		
T2	Design of the ILP Model		90	
T2.1	Study of ILP Modeling Using AMPL		40	
T2.2	Formulate the Hypergraph Model	T2.1	15	
T2.3	Validation with Handcrafted Data	T2.2	10	
T2.4	Testing with Real Data	T2.2, T3.1	15	
T2.5	Benchmarking and Optimization	T2.4	10	
T3	App development		210	
T3.1	Database Interaction Setup		35	
T3.2	ILP Model Integration	T2.2	25	
T3.3	Functionality Implementation	T3.1, T3.2	50	
T3.4	User Interface Design	T3.3	50	
T3.5	User Documentation Creation	T3.4	50	
T4	Project documentation		50	
T5	Preparation for the oral defence	T1, T2, T3, T4	30	

Total: 435

2. Planning

3. Budget

Category	Cost	
Personnel Cost per Activity	€19,425.69	
Generic Costs	€146.12	
Incidental Costs	€843.75	

Total	€20,415.56
Total with Contingency	€22,457.12

4. Sustainability

Difficult to assess because:

- It's a novel problem, there are no alternatives or prior studies.
- It isn't clear whether the results from our algorithm bear any biological significance.

5.a. Basics of AMPL

AMPL = "A Mathematical Programming Language"

First Prototype

```
## Inputs
  set V; # nodes
  set E; # hyperedges
  set X{E}; # for each hyperedge, its tail set
  set Y{E}; # for each hyperedge, its head set
  param invertible {E} binary; # determines whether an edge is invertib
  ## Helpers
  #######################
16
  set substrate_in{i in V} := {i in E: i in X[i]}:
  set product_in{i in V} := {j in E: i in Y[j]};
19
  ## Variables
  var inverted {E} binary; #determines whether an edge is inverted
25
26 var has_out{V} binary;
  var has_in{V} binary;
  var is_internal{V} binary;
```

```
32 ## Rules
  maximize obj: sum{i in V} is_internal[i];
  subject to compute_is_internal{i in V}:
          is internal[i] <= has in[i] + has out[i] - 1:
  subject to substrates_not_inverted{i in V, j in substrate_in[i]}:
          has_in[i] >= 1-inverted[j];
43 subject to substrates_inverted{i in V, j in substrate_in[i]}:
          has_out[i] >= inverted[j];
  subject to products_not_inverted{i in V, j in product_in[i]}:
          has_out[i] >= 1-inverted[j];
  subject to products_inverted{i in V, j in product_in[i]}:
          has_in[i] >= inverted[i];
  subject to not_substrate_at_all{i in V}:
          has_in[i] <=
              sum{j in substrate_in[i]} (1-inverted[j]) +
55
              sum{j in product_in[i]} inverted[j];
  subject to not_product_at_all{i in V}:
          has out[i] <=
              sum{j in product_in[i]} (1-inverted[j]) +
60
              sum{j in substrate_in[i]} inverted[i]:
  subject to respect invertability {i in E}:
          inverted[i] <= invertible[i];
```

<u>MODEL A</u>

```
19 ## Rules
   ## Parameters
  set V:
                                     maximize obj: sum {j in V} is_internal[j];
  set E:
                                      subject to outgoing_half_implies_internal {j in V}:
  set X{E} within V:
                                          sum {i in E: j in X[i]} (1-inverted[i]) +
  set Y{E} within V:
                                          sum {i in E: j in Y[i]} inverted[i]
                                          >= is_internal[j];
                                          # will only allow is_internal to be one if there's an outgoing edge.
  ## Variables
                                      subject to incoming_half_implies_internal { j in V}:
  #######################
                                   31
                                          sum {i in E: j in Y[i]} (1-inverted[i]) +
13
                                          sum {i in E: j in X[i]} inverted[i]
  var inverted{E} binary;
                                          >= is_internal[i]:
  var is_internal{V} binary;
                                          # will only allow is_internal to be one if there's an incoming edge.
16
```

<u>MODEL B</u>

```
set V;
  set E:
  param M = card(V);
  set X {E} within V;
  set Y {E} within V;
10 var inverted {E} binary;
 var source {V} binary;
  var sink {V} binary:
  var is internal{V} binary:
 maximize internal: sum {j in V} is_internal[j];
  s.t. outgoing_1{j in V}: #for every vertex
      sum{i in E: j in Y[i]} inverted[i] +
      sum{i in E: j in X[i]} (1-inverted[i])
      - M * source[i]
      <= 0;
 s.t. outgoing_2{j in V}:
      sum{i in E: j in Y[i]} inverted[i] +
      sum{i in E: j in X[i]} (1-inverted[i])
      - 0.5 * source[i]
      >= 0:
```

```
###############
33 s.t. incoming_1{j in V}:
      sum{i in E: j in Y[i]} (1-inverted[i]) +
      sum{i in E: j in X[i]} inverted[i]
      - M * sink[i]
      <= 0;
39 s.t. incoming_2{j in V}:
      sum{i in E: j in Y[i]} (1-inverted[i]) +
      sum{i in E: j in X[i]} inverted[i]
      - 0.5 * sink[i]
      >= 0:
44
46
  s.t. internal_1 {j in V}:
      source[j] + sink[j] -1 - M * is_internal[j] <= 0;
50 s.t. internal_2 { j in V}:
51
      source[j] + sink[j] -1 - 0.5 * is_internal[j] >= 0;
```

Serret's DualImply model

```
########################
                                                    25 ## Rules
  ## Parameters
                                                      # #####################
  # #####################
                                                      maximize internal : sum {j in V} is_internal[j];
  set V:
                                                      subject to is_internal_1 {i in V}:
  set E:
                                                              is_internal[i] * 2 <= has_incoming[i] + has_outgoing[i];</pre>
6
                                                      subject to outgoing_implies_has_outgoing {j in V}:
  param M = card (E);
                                                              sum {i in E: j in X[i]} (1- inverted [i]) +
8
                                                              sum {i in E: j in Y[i]} inverted [i]
                                                              >= has_outgoing [i];
  set X {i in E} within V:
  set Y {i in E} within V:
                                                      subject to has_outgoing_implies_outgoing {j in V}:
                                                    38
                                                              sum {i in E: j in X[i]} (1- inverted [i]) +
                                                              sum {i in E: j in Y[i]} inverted [i]
     ######################
                                                              <= M * has_outgoing [j];
  ## Variables
                                                      subject to incoming_implies_has_incoming { j in V}:
  # #######################
                                                              sum {i in E: j in X[i]} inverted [i] +
  var inverted {E} binary ;
                                                              sum {i in E: j in Y[i]} (1- inverted [i])
                                                              >= has_incoming [i]:
  var has_outgoing {V} binary ;
                                                      subject to has_incoming_implies_incoming {j in V}:
  var has_incoming {V} binary ;
                                                              sum {i in E: j in X[i]} inverted [i] +
  var is_internal {V} binary;
                                                              sum {i in E: j in Y[i]} (1- inverted [i])
                                                    50
                                                              <= M * has_incoming [j];
```

Serret's DualImply model Extra restrictions

5.b. Our models

```
set uninvertibles within E; # set of edges that cannot be inverted
13 set forced_internals within V; # set of nodes that must be sinks
  set forced_externals within V; # set of nodes that must be sources
  # #######################
  ## Extra Restrictions
  # #######################
55
  subject to forced_externals_rule {i in forced_externals }:
57
          has_incoming [i] + has_outgoing [i] <= 1;
58
59
  subject to forced_internals_rule {i in forced_internals }:
60
          has_incoming [i] + has_outgoing [i] = 2;
61
  subject to respect_invertability {i in uninvertibles }:
63
          inverted [i] = 0;
```

5.c. Mathematical grounding

 $is_internal_i \equiv has_incoming_i \land has_outgoing_i$

```
has_outgoing<sub>i</sub> \iff (\exists \ j \in \mathbf{inTailSet}(i) : \neg inverted_j) \lor (\exists \ j \in \mathbf{inHeadSet}(i) : inverted_j) has_incoming<sub>i</sub> \iff (\exists \ j \in \mathbf{inTailSet}(i) : inverted_j) \lor (\exists \ j \in \mathbf{inHeadSet}(i) : \neg inverted_j)
```

5.b. Mathematical grounding

MODEL A

has_outgoing_i \Longrightarrow ($\exists j \in \mathbf{inTailSet}(i)$: $\neg inverted_j$) \lor ($\exists j \in \mathbf{inHeadSet}(i)$: $inverted_j$) has_incoming_i \Longrightarrow ($\exists j \in \mathbf{inTailSet}(i)$: $inverted_j$) \lor ($\exists j \in \mathbf{inHeadSet}(i)$: $\neg inverted_j$)

is_internal_i \Longrightarrow $(\exists j \in \mathbf{inTailSet}(i) : \neg inverted_j) \lor (\exists j \in \mathbf{inHeadSet}(i) : inverted_j)$ is_internal_i \Longrightarrow $(\exists j \in \mathbf{inTailSet}(i) : inverted_j) \lor (\exists j \in \mathbf{inHeadSet}(i) : \neg inverted_j)$

5.c. Benchmarks

entry	solver	First Prototype	Serret DualImply	Serret UniImply	Model A	Model B
map01100	cbc	74.960s	24.274s	9.383s	8.572s	24.458s
map01110	cbc	25.927s	9.704s	4.631s	3.938s	10.407s
map01120	cbc	9.042s	3.279s	1.460s	1.186s	4.058s
map01200	cbc	0.474s	0.485s	0.266s	0.258s	0.521s
map01210	cbc	0.462s	0.507s	0.239s	0.343s	0.604s
map01212	cbc	0.467s	0.329s	0.202s	0.211s	0.385s
map01230	cbc	0.432s	0.389s	0.260s	0.243s	0.419s
map01232	cbc	0.350s	0.331s	0.224s	0.244s	0.424s
map01250	cbc	0.401s	0.382s	0.257s	0.245s	0.710s
map01240	cbc	1.148s	1.080s	0.476s	0.301s	1.373s
map01220	cbc	0.769s	0.539s	0.260s	0.276s	0.479s
map00010	cbc	0.357s	0.307s	0.273s	0.275s	0.339s
map00020	cbc	0.351s	0.299s	0.312s	0.281s	0.308s
map00030	cbc	0.351s	0.313s	0.265s	0.256s	0.365s

7. Obtaining data from KEGG

https://rest.kegg.jp/get/map00533/

7. Obtaining data from KEGG

DEMONSTRATION

