

Data Science - Course contents

- 1. Introduction to data science
 - a. What is data science?
 - √ How is data science different from BI and Reporting?
 - b. Who are data scientists?
 - √ What skillsets are required?
 - c. What do they do?
 - ✓ What kind of projects they work on?

2. Business statistics

- a. Data types
 - ✓ Continuous variables
 - ✓ Ordinal Variables
 - √ Categorical variables
 - ✓ Time Series
 - ✓ Miscellaneous
- b. Descriptive statistics
- c. Sampling
 - ✓ Need for Sampling?
 - ✓ Different types of Sampling
 - ✓ Simple random sampling
 - ✓ Systematic sampling
 - ✓ Stratified Sampling
- d. Data distributions
 - ✓ Normal Distribution Characteristics of a normal distribution
 - ✓ Binomial Distribution
- e. Inferential statistics
- Hypothesis testing
 - ✓ Type I error
 - ✓ Type II error
 - ✓ Null and alternate hypothesis
 - √ Reject or acceptance criterion

3. Introduction to R

- a. A Primer to R programming
- b. What is R? similarities to OOP and SQL
- c. Types of objects in R lists, matrices, arrays, data.frames etc.
- d. Creating new variables or updating existing variables
- f. String manipulations
- g. Sub setting data from matrices and data.frames

- h. Casting and melting data to long and wide format.
- Merging datasets
- 4. Exploratory data analysis and visualization
 - a. Getting data into R reading from files
 - b. Cleaning and preparing the data converting data types (Character to numeric etc.)
 - c. Handling missing values Imputation or replacing with place holder values
 - d. Visualization in R using ggplot2 (plots and charts) Histograms, bar charts, box plot, scatterplots
 - e. Adding more dimensions to the plots
 - f. Visualization using Tableau(Introduction)
 - g. Correlation Positive, negative and no correlation
 - h. What is a spurious correlation
 - Correlation vs. causation
- 5. Introduction to Python:
 - a. Understanding the reason of Python's popularity
 - b. Basics of Python: Operations, loops, functions, dictionaries
 - c. Advanced operations with text: Finding, Sequencing and basic analytics
 - d. Ground-up for Deep-Learning
- 6. Predictive analytics
 - a. Different types of predictive analytics prediction, forecasting, optimization, segmentation etc.
 - b. Supervised learning
 - ✓ Prediction (Linear)
 - 1. Simple Linear Regression
 - 2. Assumptions
 - 3. Model development and interpretation
 - 4. Sum of least squares
 - 5. Model validation tests to validate assumptions
 - 6. Multiple linear regression
 - 7. Disadvantages of linear models

Classification

- 1. Logistic Regression
 - 1. Need for logistic regression
 - 2. Logit link function
 - 3. Maximum likelihood estimation
 - 4. Model development and interpretation
 - 5. Confusion Matrix error measurement
 - 6. ROC curve
 - 7. Measuring sensitivity and specificity
 - 8. Advantages and disadvantages of logistic regression models

- 2. Decision trees with R
 - 1. Classification and Regression trees(CART)
 - a. Process of tree building
 - b. Entropy and Gini Index
 - c. Problem of over fitting
 - d. Pruning a tree back
 - e. Trees for Prediction (Linear) example
 - f. Tress for classification models example
 - g. Advantages of tree based models?
- 3.KNN K nearest neighbors (with R and Python)
 - 1. Advantages and disadvantages of KNN
- c. Re-Sampling and Ensembles Methods (R or Python)
 - 1. Bagging
 - 2. Random Forests
 - 3. Boosting Gradient boosting machines
- b. Advanced methods
 - 1. Support Vector machines
 - 2. Neural networks
 - 3. Introduction to deep learning
 - 4. Introduction to online learning
- d. Un-Supervised learning

Cluster analysis

- 1. Hierarchical clustering
- 2. K-Means clustering
- 3. Distance measures
- 4. Applications of cluster analysis Customer Segmentation
- e. Time series analysis Forecasting
 - 1. Simple moving averages
 - 2. Exponential smoothing
 - 3. Time series decomposition
 - 4. ARIMA

Collaborative filtering

- 5. User based Filtering
- 6. Item based Filtering

- 7. Model validation and deployment
 - a. Error measurement
 - 1. RMSE Root Mean squared error
 - 2. Misclassification rate
 - 3. Area under the curve (AUC)
- 8. Practical use cases and best practices
 - a. Business problem to an analytical problem
 ✓ Problem definition and analytical method selection
 - b. Guidelines in model development
- 9. Introduction to big-data and other tools (Python and R-Server)
 - a. Big data and analytics?
 - ✓ Leverage Big data platforms for Data Science
 - b. Introduction to evolving tools e.g Spark
 - ✓ Machine learning with Spark
- 10. Introduction to Azure cloud and Big-Data computing over cloud
 - a. Creation of R-Server clusters
 - b. Computation of Big-Data ML algorithms over the Azure cloud
- 11. Introduction to Deep Learning
 - a. What is DL and how does it score better over traditional MLs?
 - b. Convolutional and Perceptron models
 - c. Comparison between DL and ML performances over the MNIST dataset
- 12. Analytical Visualisation with Tableau
 - a. Why is it important for Data-Analyst
 - b. Tableau workbook walkthrough
 - c. Instruction of creation of your own workbooks
 - d. Demo of few more workbooks

Complimentary offerings to candidates:

- Mock interviews questions and case studies walkthrough over Azure Cortana gallery
- Guidance to prepare resumes
- Information on companies and industry trends on data science

Online Demo: [Click] Webinar on Careers in Artificial Intelligence: How to prepare for the future