Previous Year Questions 2024

Q1: The maximum number of common tangents that can be drawn to two circles intersecting at two distinct points is: (CBSE 2024)

(a) 4

(b) 3

(c) 2

(d) 1

Ans: (c)

Here, circle with centre O and O' are intersecting at two distinct points A and B. So, in this situation PQ, RS are the tangents which can be drawn.

Q2: In the given figure, O is the centre of the circle. MN is the chord and the tangent ML at point M makes an angle of 70° with MN. The measure of ∠MON is: (CBSE 2024)

(a) 120°

(b) 140°

(c) 70°

(d) 90°

Ans: (b)

 $OM \perp ML$ [as tangent from centre is \perp at point of contact]

∠OML = 90°

and ∠NML = 70°

⇒ ∠OMN = 90° - 70° = 20°

: OM = ON = Radii of same circle

∴ ∠OMN = ∠ONM = 20°

In ΔMON,

∠OMN + ∠ONM + ∠MON = 180°

⇒ 20° + 20° + ∠MON = 180°

→ ∠MON = 140°

+91 8827431647

Q3: In the given figure, if PT is tangent to a circle with centre O and \angle TPO = 35°, then the measure of $\angle x$ is (CBSE 2024)

(a) 110°

(b) 115°

(c) 120°

(d) 125°

Ans: (d)

 \angle OTP = 90° [Line from centre is \bot to tangent at point of contact]

 $\angle x = \angle TPO + \angle OTP$ [Exterior Angle Prop.]

 $x = 35^{\circ} + 90^{\circ} = 125^{\circ}$

Previous Year Questions 2023

Q4: In the given figure, PT is a tangent at T to the circle with centre O. If \angle TPO = 25°, then x is equal to:

(a) 25°

(b) 65°

(c) 90°

(d)115° (CBSE 2023)

Ans: (d)

Since tangent is perpendicular to radius at the point of contact.

∴ ∠PTO = 90°

Hence, by the exterior angle formula, in \triangle OTP, we get x = 90° + 25°

= 115°

Q5: In the given figure, PQ is tangent to the circle centred at O. If $\angle AOB = 95^{\circ}$, then the measure of ∠ABQ will be (2023)

(a) 47.5°

(b) 42.5°

(c) 85°

(d) 95°

Ans: (a)

We have ∠AOB = 95°

In ΔAOB, ∠OAB = ∠OBA

Now, \angle OAB + 95° + \angle OBA = 180° (Angle sum property of a triangle)

$$\Rightarrow \angle OAB = \frac{85^{\circ}}{2} = 42.5$$

∴ ∠OAB = ∠OBA = 42.5° [From (i)]

Now, OB is perpendicular to the tangent line PQ

∠OBQ = 90°

OA = OB (Radius of circle)

So ∠OAB = ∠OBA

95 + 2x = 180 (Sum of angles of a triangle is 180)

2x = 85

=> x = 42.5

∠ABQ = 90 - 42.5

= 47.5

Q6: In the given figure. TA is a tangent to the circle with centre O such that OT = 4 cm, \angle OTA= 30 $^{\circ}$, then length of TA is (2023)

- (a) 2√3 cm
- (b) 2cm
- (c) 2√2 cm
- (d) √3 cm

Ans: (a)

Draw OA \perp TA.

In \triangle OTA \angle OAT = 90° [: Tangent to a circle is perpendicular to the radius passing through the point of contact]

and ∠OTA = 30°

$$\therefore \frac{TA}{O7} = \cos 30^{\circ} \Rightarrow TA = 4\cos 30^{\circ} = 4 \times \frac{\sqrt{3}}{2}$$

Q7: In figure, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O. If ∠QPR= 90°. then length of PQ is (2023)

- (a) 3 cm
- (b) 4 cm
- (c) 2 cm
- (d) 2√2 cm

Ans: (b)

Join OR.

We know that tangent to a circle is \bot to radius at the point of contact. So, QQ \bot PQ and

QR⊥PR.

Also, ∠QPR = 90°

Now, in quadrilateral OQPR,

∠QQR - 360o - (90° + 90° + 90°)

= 90°

Also, PQ - PR [∵ Tangents drawn from an external point are equal)

∴ PQQR is a square.

Hence, PQ = OQ = 4 cm

Q8: The length of tangent drawn to a circle of radius 9 cm from a point 41 cm from the centre is (2023)

(a) 40 cm

(b) 9 cm (c) 41 cm

(d) 50 cm

Ans: (a)

OB \perp AB [:: As tangent to a circle is perpendicular to the radius through the point the contact] In ΔOAB,

 $OA^2 = OB^2 + AB^2$ [By Pythagoras theorem]

$$\Rightarrow$$
 (41)² = 9² + AB²

$$\Rightarrow AB^2 = 41^2 - 9^2$$

$$= (41 - 9)(41 + 9)$$

$$\Rightarrow$$
 AB = $\sqrt{1600}$

= 40 cm

Q9: In the given figure. O is the centre of the circle and PQ is the chord. If the tangent PR at P makes an angle of 50° with PQ, then the measure of ∠POQ is (2023)

- (a) 50°
- (b) 40°
- (c) 100°
- (d) 130°

Ans: (c)

PR is tangent which touches circle at point P.

In, ΔPOQ,

OP = OQ (Radii of circle)

So,
$$\angle$$
OQP = \angle OPQ=40°

⇒ ∠POQ = 180° - 40° - 40° = 100°

+91 8827431647

Q10: Case Study: The discus throw is an event in which an athlete attempts to throw a discus. The athlete spins anti-clockwise around one and a half times through a circle, then releases the throw. When released, the discus travels along tangent to the circular spin orbit.

In the given figure, AB is one such tangent to a circle of radius 75cm. Point Q is the centre of the circle and $\angle ABO = 30^{\circ}$. PQ is parallel to OA.

(: Radius)

Based on above information

- (a) Find the length of AB.
- (b) Find the length of OB.
- (c) Find the length of AP.

OR

Find the value of PO. (2023)

Ans:

(a): Given,
$$\angle ABO = 30^{\circ}$$
, $OA = 75$ cm
In $\triangle OAB$, $tan 30^{\circ} = \frac{OA}{AB}$

$$\Rightarrow \quad \frac{1}{\sqrt{3}} = \frac{75}{AB} \Rightarrow AB = 75\sqrt{3} \text{ cm}$$

(b)
$$\ln \triangle OAB$$
, $\sin 30^\circ = \frac{OA}{OB}$

$$\Rightarrow \frac{1}{2} = \frac{75}{OB} \Rightarrow OB = 150 \text{ cm}$$

(c) In
$$\triangle OAB$$
, $PQ||OA$

$$\frac{QB}{QO} = \frac{BP}{AP}$$

$$\Rightarrow \frac{150-75}{75} = \frac{AB}{AP} - 1 \Rightarrow 2 = \frac{AB}{AP} = \frac{75\sqrt{3}}{AP}$$

$$\Rightarrow AP = 75 \times \frac{\sqrt{3}}{2} \Rightarrow AP = \frac{75\sqrt{3}}{2} cm$$

OR

OA = OQ = 75 cm

In ∆OAB,

We have, PQIIOA In $\triangle BQP$ and $\triangle BOA$

∠BQP = ∠BOA (corresponding angles) $\angle B = \angle B$ (common)

 $\Delta BQP \sim \Delta BOA$ (By AA similarity)

$$\therefore \frac{BQ}{BO} = \frac{QP}{OA} = \frac{BP}{BA}$$

$$\Rightarrow \frac{PQ}{75} = 1 - \frac{AP}{AB}$$

$$\Rightarrow \frac{PQ}{75} = 1 - \frac{75\sqrt{3}}{2 \times 75\sqrt{3}}$$

$$\Rightarrow \frac{PQ}{75} = \frac{1}{2} \therefore PQ = \frac{75}{2} = 37.5$$

⇒ PQ = 37.5 cm

Q11: Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2\angle OPQ$. (2023)

Ans:

We know that the lengths of tangents drawn from an external point to a circle are egual.

- ∴ TP = TQ ... (1)
- \therefore \angle TQP = \angle TPQ (angles of equal sides are equal) ... (2)

Now, PT is tangent, and OP is the radius.

 \therefore OP \perp TP (Tangent at any point of a circle is perpendicular to the radius through the point of contact)

- ∴ ∠OPT = 90°
- or, $\angle OPQ + \angle TPQ = 90^{\circ}$
- or, ∠TPQ = 90° ∠OPQ ... (3)

In ΔTPQ,

 \angle TPQ + \angle PQT + \angle QTP = 180° (Sum of angles of a triangle is 180°

or, 90° - ∠OPQ + ∠TPQ + ∠QTP = 180°

or, \angle (90° - \angle OPQ) + \angle TPQ + \angle QTP = 180° [from (2) an

or, 180° - 2∠OPQ + ∠TPQ = 180°

or, $2\angle OPQ = \angle TPQ$ - proved

Q12: In the given figure, a circle is inscribed in a quadrilateral ABCD in which $\angle B =$ 90°. If AD = 17 cm, AB = 20 cm and DS = 3 cm, then find the radius of the circle. (2023)

Ans: Given, $\angle B = 90^{\circ}$, AD = 17 cm, AB = 20cm, DS = 3 cm

Now, DS = DR and AR = AQ [: Tangents drawn from an externa! point to the circle are equal]

∴ DR = 3 cm

AR = AD - DR = 17 - 3 = 14 cm

∴ AQ = 14 cm

Now, BQ = AB - AQ = 20 - 14 = 6 cm

OQ ⊥ BQ, OP ⊥ BP (∵ Tangent at any point of a circle is perpendicular to the radius through the point of contact)

- ∴ Quadrilateral BQOP is a square
- \therefore BQ = OQ = r = 6 cm

Hence, the radius of the circle = 6 cm.

Q13: From an external point, two tangents are drawn to a circle. Prove that the line joining the external point to the centre of the circle bisects the angle between the two tangents. (CBSE 2023)

+91 8827431647

Ans: Let P lie an external point, O be the centre of the circle and PA and PB are two tangents to the circle as shown in figure.

In ΔQAP and ΔOBP.

OA = OB [Radius of the circle]

OP = OP [common]

PA = PB

[: Tangents drawn from an external point to a circle are equal]

So, $\triangle OAP = \triangle OPB$

So. ∠APO = ∠BPO

Hence. OP bisects ∠APB

Ans: Let the centre of the two concentric circlet is O and AB be the chord of the larger circle which touches the smaller circle at point P as shown in figure.

 \therefore AB is a tangent to the smaller circle at point P

⇒ OP⊥ AB

By Pythagoras theorem, in ΔΟΡΑ

$$OA^2 = AP^2 + OP^2$$

$$\Rightarrow 5^2 = AP^2 + 3^2$$

$$\Rightarrow AP^2 = 5^2 - 3^2 = 25 - 9$$

$$\Rightarrow$$
 AP² = 16 \Rightarrow AP = 4cm

∴ AB = 2AP = 8cm

In ΔOPB Since, OP ⊥ AB

AP = PB [: Perpendicular drawn from the centre of the circle bisects the chord]

$$\therefore$$
 AS = 2AP = 2 x 4 = 8 cm

 \therefore The length of the chord of the larger circle is 8 cm.

Q15: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre. (2023)

Ans: Let PA and PB are two tangents on a circle from point P as shown in the figure. Let is known that tangent to a circle is perpendicular to the radius through the point of contact.

In quadrilateral AOBP,

$$\angle OAP + \angle APB + \angle PBO + \angle BOA = 360^{\circ}$$

$$90^{\circ} + \angle APB + 90^{\circ} + \angle BOA = 360^{\circ}$$
 [Using (i)]

∠APB + ∠BOA = 360° - 180°

∴ ∠APB + ∠BOA = 180°

Previous Year Questions 2022

Q16: In Fig, AB is the diameter of a circle centered at O. BC is tangent to the circle at B. If OP bisects the chord AD and ∠AOP= 60°, then find m∠C. (2022)

Ans: Since, OP bisects the chord AD, therefore ∠OPA = 90°[: The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord]

Now, In ΔAOP,

= 30°

Also, we know that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Now, In ΔABC,

= 60°

Q17: In Fig. XAY is a tangent to the circle centred at 0. If $\angle ABO = 40^{\circ}$. Then find ∠BAY and ∠AOB (2022)

Given, ∠ABO = 40°

 \angle XAO = 90° ...(Angle between radius and tangent)

OA = OB ...(Radii of same circle)

Now, applying the linear pair of angles property,

we get

$$\angle$$
BAY + \angle OAB + \angle XAO = 180°

$$\Rightarrow \angle BAY + 40^{\circ} + 90^{\circ} = 180^{\circ}$$

⇒ ∠BAY = 180° - 130°

⇒ ∠BAY = 50°

Now, In ΔAOB,

∠AOB + ∠OAB + ∠OBA = 180°

or, ∠AOB + 40° + 40° = 180°

or, ∠AOB = 180° - 80° = 100°

Hence proved.

Q18: In Figure, two circles with centres at O and O' of radii 2r and r, respectively, touch each other internally at A. A chord AB of the bigger circle meets the smaller circle at C. Show that C bisects AB. (2022)

Ans: Given: Two circles with centres O and O' of radii 2r and r respectively, touch each other internally at A, AB is the chord of bigger circle touches the smaller circle at C.

To prove: C bisects AB i.e. AC = CB

Here, for smaller circle (O'r)

∠ACO = 90° (Angle in a semicircle is 90°)

∴ OC ⊥ AC

Now, in bigger circle (O, 2r)

Since. AB is a chord and OC \perp AB.

AB = CB

[: Perpendicular drawn from centre of the circle to a chord bisects the chord] Hence, C bisects the chord AB.

Q19: In Figure, PQ and PR are tangents to the circle centred at O. If \angle OPR = 45°, then prove that ORPQ is a square. (2022)

Ans: It is given that ∠QPR =

We know that the lengths of the tangents drawn from the outer point to the circle are equal.

PQ = PR ... (1)

The radius is Perpendicular to the tangent line at the point of contact.

..∠PQO = 90°

and

∠ORP = 90°

In quadrilateral OQPR:

 $\angle QPR + \angle PQO + \angle QOR + \angle ORP = 360^{\circ}$

 \Rightarrow 90° + 90° + \angle QOR + 90° = 360°

∠QOR = 360° - 270° = 90°

 $\therefore QPR = \angle PQO = \angle QOR = \angle ORP = 90^{\circ}$

It can be concluded that PQOR is a square.

+91 8827431647

Q20: In Fig., there are two concentric circles with centre O. If ARC and AQB are tangents to the smaller circle from point A lying on the larger circle, find the length of AC if AO = 5 cm. (2022)

Ans: Given, AQ = 5 cm

AQ = AR = 5 cm (v Tangents drawn from an external point to the circle are equal)

Now, AC = AR + RC (: OR is a perpendicular bisector of AC AR = RC)

AC = 10 cm

Q21: In Figure, O is the centre of the circle. PQ and PR are tangent segments. S that the quadrilateral PQOR is cyclic. (2022)

Ans: Given: PQ and PR are tangents from an external point P.

To prove: PQOR is a cyclic quadri lateral.

Proof OR and OQ are tlie radius of circle centred at O, and PR a ltd PQ are tangents.

 \angle ORP = 90° and \angle OQP = 90°

In quadrilateral PQOR, we have

$$\angle OQP + \angle QOR + \angle ORP + \angle RPQ = 360^{\circ}$$

 $\angle P$ and $\angle O$ are opposite angles of quadrilateral which are supplementary.

∴ PQOR is a cyclic quadrilateral.

Q22: In Figure O is centre of a circle of radius 5 cm. PA and BC are tangents to the circle at A and B respectively. If OP = 13 cm. then find the length of tangents PA and BC. (2022)

Given, radius of circle =5cm

PA and BC are two tangent at point A and B

OP = 13 cm

Step1: OA is perpendicular on tangent AP (OA is radius of the circle)

In right angle triangle AOAP

$$(OP)^2 = (OA)^2 + (AP)^2$$

$$\rightarrow$$
 (AP)² = (OP)² - (OA)²

$$\Rightarrow$$
 (AP)² = (13)² - (5)² = 169 - 25 = 144

Step 2: Let length of BC be x

But AC = BC = x (tangent from an external point)

So length of PC = 12 - x and PB = OP - OB = 13 - 58cm

(OB is the radius and length of OP is given)

OB is perpendicular on tangent CB, so \angle OBC = \angle CBP = 90 °

In right angle triangle ΔCBP

$$(CP)^2 = (BP)^2 + (BC)^2$$

$$(CP)^{2} = (BP)^{2} + (BC)^{2}$$

$$\Rightarrow (12 - x)^2 = (8)^2 + (x)^2$$
$$\Rightarrow 144 - 2x + x^2 = 64 + x^2$$

$$\Rightarrow$$
 144 - 24x - 64 = 0

$$\Rightarrow$$
 80 - 24x = 0 \Rightarrow x = 80/24 = 3.33cm

Hence, the length of BC is 3.33 cm and PA is 12 cm

Q23: In fig. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q meet at a point T. Find the length of TP. (2022)

Ans: In the given figure,

PQ = 8 cm and OP = 5 cm

OR \perp PQ and so, OR bisects PQ. [: Perpendicular drawn from the center to the chord

bisects the chord]

$$\Rightarrow$$
 PR = RQ = 4 cm

In Δ POR.

$$OP^2 = OR^2 + PR^2$$

$$\Rightarrow 5^2 = OR^2 + 4^2$$

⇒ OR = 3 cm

In ΔTPO and ΔPRO,

$$\angle$$
 TOP = \angle ROP [common]

and \angle TPO = \angle PRO [each 90°]

 \therefore \triangle TPO and \triangle PRO are similar. [by AAA Similarity]

$$\Rightarrow \frac{\text{TP}}{\text{PO}} = \frac{\text{RP}}{\text{RO}}$$

$$\Rightarrow \frac{\text{TP}}{5} = \frac{4}{3}$$

[:Tangents drawn from an external point to a circle are equal in length]

Q24: Prove that a parallelogram circumscribing a circle is a rhombus. (2022)

Ans: Given: A parallelogram ABCD circumscribing a circle with centre O.

To prove: ABCD is a rhombus.

Proof: We know that the tangents drawn to a circle from an external Doint are eaual in length.

- ⇒ AP = AS [Tangents drawn from A] ...(i)
- ⇒ BP = BQ [Tangents drawn from B] ...(ii)
- ⇒ CR= CQ [Tangents drawn from C] ...(iii)
- ⇒ DR = DS [Tangents drawn from D] ...(iv)

Adding (i), (ii), (iii) and (iv) we get

$$AP + BP + CR + DR = AS + BQ + CQ + DS$$

$$= (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$$

$$\Rightarrow$$
 AB + CD = AD + BC

 \Rightarrow 2AB = 2BC [Opposite sides of the given parallelogram are equal \therefore AB = DC and

AB = BC = DC = AD

Hence, ABCD is a rhombus.

Q25: In fig, if a circle touches the side QR of Δ PQR at S and extended sides PQ and PR at M and N, respectively, then

Prove that $PM = \frac{1}{2}(PQ + QR + PR)$ (2022)

Ans: Given: A circle is touching a side QR of \triangle PQR at point S.

PQ and PR are produced at M and N respectively.

To prove:
$$PM = \frac{1}{2} (PQ + QR + PR)$$

Proof: PM = PN ...(i) (Tangents drawn from an external point P to a circle are equal)

QM = QS ...(ii) (Tangents drawn from an external point Q to a circle are equal)

RS = RN ...(iii) (Tangents drawn from an external point R to a circle are equal)

Now, 2PM = PM + PM

- = PM + PN ...[From equation (i)]
- = (PQ + QM) + (PR + RN)
- = PQ + QS + PR + RS ...[From equations (i) and (ii)]
- = PQ + (QS + SR) + PR
- = PQ + QR + PR

:. PM =
$$\frac{1}{2}$$
 (PQ + QR + PR)

Hence proved.

+91 8827431647

Q26: In figure, a triangle ABC with ∠B = 90° is shown. Taking AB as diameter, a circle has been drawn intersecting AC at point P. Prove that the tangent drawn at point P bisects BC. (2022)

Ans:

According to the question,

In a right angle \triangle ABC is which \angle B = 90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P.

Also PQ is a tangent at P

To Prove: PQ bisects BC i.e. BQ = QC

Proof: ∠APB = 90° ...[Angle in a semicircle is a right-angle]

∠BPC = 90° ...[Linear Pair]

$$\angle 3 + \angle 4 = 90^{\circ} ...[1]$$

Now, ∠ABC = 90°

So in $\triangle ABC$

∠ABC + ∠BAC + ∠ACB = 180°

90° + ∠1 + ∠5 = 180°

∠1 + ∠5 = 90° ...[2]

Now, $\angle 1 = \angle 3$...[Angle between tangent and the chord equals angle made by the chord

in alternate segment]

Using this in [2] we have

 $\angle 3 + \angle 5 = 90^{\circ}$...[3]

From [1] and [3] we have

 $\angle 3 + \angle 4 = \angle 3 + \angle 5$

∠4 = ∠5

QC = PQ ...[Sides opposite to equal angles are equal]

But also, PQ = BQ ...[Tangents drawn from an external point to a circle are equal]

So, BQ = QC

i.e. PQ bisects BC.

Q27: In the figure, two circles touch externally at P. A common tangent touches them at A and B, and another common tangent is at P, which meets the common tangent AB at C. Prove that ∠APB = 90°. (2022)

Ans: Let common tangent at P meets the tangent AB at C. Since, tangents drawn from an external point to a circle are equal

+91 8827431647

and BC = CP

$$\Rightarrow$$
 \angle CAP = \angle CPA = x (say) ...(i)

Now, ∠ACP+ ∠BCP = 180° [Linear pair] ...(*)

In △ACP, ∠ACP + ∠CPA + ∠CAP = 180° ...(iii)

and in \triangle BCP, \angle BCP+ \angle CPB + \angle CBP = 180°...(iv)

Adding (iii) and (iv), we get

$$\angle ACP + x + x + \angle BCP + y + y = 360^{\circ}$$

$$\angle ACP + \angle BCP + 2x + 2y = 360^{\circ} \text{ [Using (i) & (ii)]}$$

$$= 2(x + y) = 360^{\circ} - 180^{\circ} = 180^{\circ}[Using ('))$$

$$\Rightarrow$$
 x + y = 90°

Previous Year Questions 2021

Q28: In the given figure, PT and PS are tangents to a circle with centre O, from point P such that PT = 4 cm and \angle TPS = 60°. Find the length of the chord TS. (2021)

Ans: Given TP and SP are tangents from an external point P.

PT = PS = 4 cm (v Tangents drawn from an external point to the circle are equal)

(: Angles opposite to equal sides are equal) In A TPS, by angle sum property

$$\angle TPS = \angle PTS = \angle PST = 60^{\circ}$$

 \Rightarrow Δ TPS is an equilateral triangle.

$$\angle$$
OSP = 90° and \angle TSP = 60°

Now,
$$\frac{DS}{OS} = \cos 30^\circ \Rightarrow \frac{2}{OS} = \frac{\sqrt{3}}{2} \Rightarrow OS = \frac{4\sqrt{3}}{3} \text{ cm}$$

NRISE EDUCATION CENTRE by Er. Mohit Nariyani

+91 8827431647

Previous Year Questions 2020

Q29: In figure, PQ is tangent to the circle with centre at O, at the point B. If ∠AOB = 100°, then ∠ABP is equal to (2020)

(a) 50°

(b) 40°

 $(c) 60^{\circ}$

(d) 80°

Ans: (a)

Given that

∠ AOB = 100°

Since OA = OB

So ∠OAB = ∠OBA = 40°

Since PQ is tangent on the circle. So OB is perpendicular to PQ.

So.

∠ OBP = 90°

∠ OBA + ∠ ABP = 90°

∠ ABP = 90 - ∠ OBA

∴ ∠ ABP = 90° - 40°

∴∠ ABP = 50°

Q30: In the given figure, PT is a tangent at T to the circle with centre O. If ∠TPO 25°, then x is equal to (2020)

(a) 25°

(b) 65°

(c) 90°

(d) 115°

Ans: (d)

Since ∠TPO = 25° and ∠OTP = 90°

 $x = \angle OTP + \angle TPO$

= 90° + 25° = 115°

[: Radius is perpendicular to the tangent T]

Q31: In the given figure, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets QR at P If PT = 3.8 cm, then the length of QR(in cm] is (2020)

(a) 3.8

(b) 7.6

(c) 5.7

(d) 1.9

Ans: (b)

It is known that the length of the tangents drawn from an external point to a circle are

equal.

. QP = PT = 3.8 cm and PR = PT = 3.8 cm

Now, QR = QP + PR = 3.8cm + 3.8cm = 7.6 cm

Q32: In Figure, if tangents PA and PB from an external paint P to a circle with centre O are inclined to each other at an angle of 80° then ∠POA is equal to (2020)

- (a) 50°
- (b) 60°
- (c) 80°
- (d) 100°

Ans: (a)

A tangent at any point of a circle is perpendicular to the radius at the point of contact.

In $\triangle OAP$ and in $\triangle OBP$:

- OA = OB (radii of the circle are always equal)
- AP = BP (length of the tangents)
- OP = OP (common)

Therefore, by SSS congruency $\triangle OAP \cong \triangle OBP$.

SSS congruence rule: If three sides of one triangle are equal to the three sides another triangle, then the two triangles are congruent.

If two triangles are congruent, then their corresponding parts are equal.

Hence:

- ∠POA = ∠POB
- ∠OPA = ∠OPB

Therefore, OP is the angle bisector of ∠APB and ∠AOB.

Hence, $\angle OPA = \angle OPB = 1/2 (\angle APB)$

- $= 1/2 \times 80^{\circ}$
- = 40°

By the angle sum property of a triangle, in $\triangle OAP$

∠A + ∠POA + ∠OPA = 180°

 $\mbox{OA} \perp \mbox{AP}$ (Theorem 10.1: The tangent at any point of a circle is perpendicular to the radius through the point of contact.)

Therefore, ∠A = 90°

Thus, option (A) 50° is the correct answer.

Q33: In figure, a quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = BC + AD (2020)

Ans: Let the circle touches the sides AB, BC, CD and DA of quadrilateral ABCD at P, Q, R and S respectively Since, lengths of tangents drawn from an external point to the circle are equal.

AP = AS ...(1) (Tangents drawn from A)

BP = BQ ...(2) (Tangents drawn from B)

+91 8827431647

CR = CQ ...(3) (Tangents drawn from C)

DR = DS ...(4) (Tangents drawn from D)

Adding (1), (2), (3) and (4), we get

AP + BP + CR + DR = AS + BQ + CQ + DS

 \Rightarrow (AP + PB) + (CR + RD) = (AS + SD) + (BQ + QC)

 \Rightarrow AB + CD = AD + BC

Q34: In figure, find the perimeter of \triangle ABC if AP = 12 cm.

Ans:

Step 1: Identify the Tangents

From the problem, we know that AP and AQ are tangents to the circle from point A, and BC is also a tangent. According to the properties of tangents from an external point, the lengths of the tangents drawn from the same external point to a circle are equal.

Step 2: Set Up the Equations

Since AP = 12 cm, we can conclude that:

• AP = AQ = 12 cm (Equation 1)

Step 3: Identify Other Tangents

From point B, the tangents BD and BP are equal:

• BD = BP (Equation 2)

From point C, the tangents CD and CQ are equal:

• CD = CQ (Equation 3)

Step 4: Express Perimeter of Triangle ABC

The perimeter of triangle ABC can be expressed as:

Perimeter = AB + BC + AC

Step 5: Substitute for BC

Since BC is composed of the tangents from B and C:

BC = BD + CD

Thus, we can rewrite the perimeter as:

Perimeter = AB + (BD + CD) + AC

Step 6: Express AB and AC in Terms of Tangents

From the properties of tangents:

- AP = AB + BP
- AQ = AC + CQ

Substituting BP and CQ with BD and CD respectively, we have:

- AP = AB + BD (Equation 4)
 - AQ = AC + CD (Equation 5)

Step 7: Substitute Equations into PerimeterNow, substituting the expressions from

Equations 4 and 5 into the perimeter equation: Perimeter = (AP - BD) + (BD + CD) + (AQ

- CD)

Step 8: Simplify the Expression

Since AP = AQ and both are equal to 12 cm:

Perimeter = (12 - BD) + (BD + CD) + (12 - CD)

This simplifies to:

Perimeter = 12 + 12 = 24 cm