In the Name of God

Digital Circuit Design

Chapter 7:

Memory and Programmable Logic

✓ Memories

- ❖ A device to which binary information is transferred for storage and from which information is retrieved when needed for processing

 □
- ❖ When data processing takes place, information from memory is transferred to selected registers in the processing unit and then, the final results are transferred back in memory □
- ❖ Write operation: The process of storing new information into memory □
- * <u>Read operation</u>: The process of transferring the stored information out of memory
- **❖** Types of memories: □
 - ✓ <u>Random-Access Memory (RAM)</u>: Perform both write and read operations
 - \checkmark Read-Only Memory (ROM): Perform only the read operation \bigcirc

- ❖ A collection of storage cells, together with associated circuits needed to transfer information into and out of a device

 □
- ❖ The information can be selectively retrieved from any of its internal location □
- The times it takes to transfer data to or from any desired random location is always the same
- ❖ A memory unit stores binary information in group of bits called <u>word</u> □
- ❖ A group of 8 bits is called a <u>byte</u>
- ❖ Most computer memories use words that are multiples of 8 bits in length □
- ❖ The capacity of a memory unit is usually stated as the total number of bytes that the unit can store

 □

- ❖ The memory unit is specified by the number of words it contains and the number of bits in each word □
- ❖ Each word in memory is assigned an identification number, called <u>address</u>

 □
- An internal decoder accepts this address and opens the paths needed to select the word specified

- Number of words (or bytes) in memory can be referred with one of the letters K (equals to 2^{10}), M (equals to 2^{20}), G (equals to 2^{30})
 - ✓ $1K \times 16$ memory has 10 bits in the address and 16 bits in each word
 - ✓ $64K \times 10$ memory has 16 bits in the address and 10 bits in each word

✓ <u>Random-Access Memory (RAM)</u>

- ❖ <u>Write Operation</u>
 - ✓ Apply the binary address of the desired word to the address lines
 - ✓ Apply the data bits that must be stored in memory to the data input lines
 - ✓ Activate the write input
- Read Operation
 - ✓ Apply the binary address of the desired word to the address lines
 - ✓ Activate the read input

Control Inputs to Memory Chip

Most ICs provide two other control inputs: one input selects the unit (Chip Select) and the other determines the operation

Memory Enable	Read/Write	Memory Operation			
0	X	None			
1	0	Write to selected word			
1	1	Read from selected word			

🌣 <u>Internal construction</u> 🥫

✓ A binary storage cell is the basic building block of a memory unit

- ✓ The binary cell (BC) stores one bit in its internal latch
- ✓ The select input enables the cell for reading or writing
- ✓ A "1" in the read/write input provides the <u>read</u> operation and a "0" provides the <u>write</u> operation

- > Types of RAM [=]
 - ✓ <u>SRAM</u>: Consists of internal latches that stores the binary information
 - ✓<u>DRAM:</u> Stores the binary information in the form of electric charges on capacitors provided inside the chip by MOS transistors
- ❖ DRAM offers reduced power and larger storage capacity, while SRAM is easier to use □
- ❖ In a Sequential-Access Memory (SAM), the information is not immediately accessible (a magnetic tape) and the time it takes to access a word depends on the position of the word ▶
- ❖ In RAMs, the stored information are removed when power is turned off

- ❖ A memory device in which permanent binary information is stored □
- Performs only read operation
- ❖ The binary information stays within the unit even when power is turned off and on again

 □
- ROM does not have data inputs

- **❖** A 32×8 ROM **□**
- ❖ The 32 outputs of the decoder are connected to each of the eight OR
- ❖ Each OR gate must be considered as having 32 inputs
- ❖ The ROM contains $32 \times 8 = 256$ internal connections ■
- * In general, a $2^k \times n$ ROM will have an internal $k \times 2^k$ decoder and n OR gates

- ❖ The 256 intersections are programmable □
- ❖ A programmable connection between two lines is logically equivalent to a switch ☐
 - ✓ Closed: meaning that two lines are connected
 - ✓ Opened: meaning that two lines are disconnected
- ❖ One of the simplest technology employs a *fuse* □
 - ✓ Normally connects two points
 - ✓ Is opened (blown) by the application of a high-voltage pulse into the fuse

- ❖ The internal binary storage of a ROM is specified by truth table

 □
- ❖ The hardware procedure that programs the ROM, blows fuse links in accordance with a given truth table

ROM	Truth	Table ((Partial))
				•

Inputs					Outputs							
I ₄	I ₃	I ₂	<i>I</i> ₁	I ₀	A ₇	A6	A ₅	A ₄	A ₃	A ₂	<i>A</i> ₁	A ₀
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	. 0	0	1	0
		:							:			
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

$$A_7(I_4, I_3, I_2, I_1, I_0) = \Sigma(0, 2, 3, \dots, 29)$$

> Types of ROMs: The required paths in ROM may be programmed in four different ways

❖ <u>Mask programming</u>: **□**

- ✓ Done by the semiconductor company during the fabrication
- ✓ This procedure is costly, thus is economical only for a large quantity of the same ROM □

❖ PROM (Programmable ROM): □

✓ Contain all the fuses intact and can be blown by the application of a high-voltage pulse □

❖EPROM (Erasable PROM): □

✓ Can be restructured to the initial state by placing under a special ultraviolet light □

*EEPROM (Electrically Erasable PROM):

- ✓ The previously programmed connections can be erased with an electrical signal □
- ✓ The device can be erased without removing it from its socket □