绝密 ★ 启用前

考试形式: 闭卷 考试时间: _150_ 分钟 满分: _100_ 分

题号	_	<u>-</u> -	11	四	五.	六	七	八	总 分
满分	25	10	10	10	10	10	10	15	100
得分									

注意: 1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效.

- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号,

得分	
评阅人	

一、填空题 (本题满分 25 分, 每题 5 分)

- 1. 幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{3\sqrt{n}}$ 的收敛域是 ______.
- 2. 曲线 L 是以原点为圆心的上半单位圆周,则 $\int_L \max(x,y) \, \mathrm{d}s$ ______.
- 3. 设 a 是参数, $f(x) = \begin{cases} x^a \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 的导函数在 x = 0 连续的条件是
- 4. 实二次型 $f(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_4)^2 + (x_4 x_1)^2$ 的正惯性指数为 _____
- 5. 平面 Ax+By+Cz+D=0 与三个坐标轴夹角相等的充要条件是 _____

得分	
评阅人	

二、解答题(本题满分 10 分)

在空间直角坐标系中,过x轴和y轴分别做动平面,其夹角为 α (常数),求两平 面交线的轨迹方程,并指出它是什么曲面.

得分	
评阅人	

三、解答题(本题满分 10 分)

 \mathbf{R}^4 是具有通常内积的欧氏空间,设 W 是方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 3x_1 + x_2 + x_3 - x_4 = 0 \\ x_1 + 3x_2 - 3x_3 - x_4 = 0 \\ 5x_1 + 5x_2 - x_3 - x_4 = 0 \end{cases}$$

的解空间, 求 W 在 \mathbb{R}^4 中的正交补 W^1 的一组标准正交基.

得分	
评阅人	

四、解答题(本题满分 10 分)

求函数 $f(x) = e^{\sin x} + e^{\cos x}$ 的最大值,并证明你的结论.

礌

得分	
评阅人	
设 <i>X</i> , <i>Y</i>	是同阶方

五、解答题(本题满分 10 分)

设 X,Y 是同阶方阵, 定义 [X,Y] = XY - YX. 证明: 对任意 2 阶复矩阵 A,B,C 有 $\big[[A,B]^2,C \big] = 0.$

省市:

得分	
评阅人	

六、解答题 (本题满分 10 分)

讨论正整数 p,q 满足什么条件时,广义积分

$$I(p,q) = \int_0^{+\infty} \frac{\cos^p x - \cos^q x}{x} dx$$

收敛.

得分	
评阅人	

七、解答题 (本题满分 10 分)

设 V 是复数域 \mathbb{C} 上的 n 维线性空间, $n \geq 3$.

- 1. 求 V 上的所有线性变换的不变子空间个数的最小值.
- 2. 如果 ϕ 是 V 上的线性变换, 使得 ϕ 的不变子空间个数最少, 求 ϕ 的矩阵的 Jordan 标准形.

得分	
评阅人	

八、解答题 (本题满分 15 分)

设 f(x) 在 [a,b] 上连续, 在 (a,b) 内二阶可导, f(a) = f(b) = 0, 且 $\forall x \in (a,b)$, 有 $f''(x) + f(x) \ge 0$. 若 $x_0 \in (a,b)$, 使得 $f(x_0) > 0$, 证明: $b - a \ge \pi$

礌