Detector Modeling and CMB Polarimetry Technology Development at GSFC

David T. Chuss, Edward J. Wollack, S. Harvey Moseley NASA Goddard Space Flight Center

Stafford Withington, George Saklatvala
University of Cambridge

Introduction

- Planar de troter modality

- Goal: To investigate the consequences of using planar bolometers in the limit in which pixel size is comparable to wavelength
- We use the k-domain dyadic (Withington et al. 2003) to propagate the second-order statistical correlations of radiation through a model optical system
- Model is general and preliminary, but it is unlikely more realistic bolometers will be better.
- Modulators
- Antenna-coupled detectors

Single-Mode

- Horn-coupled detectors
- · Coherent across horn aperture
- Diffraction-limited resolution of optical system is dependent upon horn illumination of primary

Multi-Mode

- Geometric Limit
- Incoherent across imaging element
- Diffraction-limited resolution normally determined by size of the primary

This work explores the intermediate case-Incoherent techniques in the limit where the Geometric limit is not strictly valid (few-mode-Umit)

Bolometer Arrays

Selected Filled Focal Planes

Instrument	Array Size	Detector Type	λ(mm)	Pixel pitch (mm)	p/λ
HAWC/SOFIA	12×32	Semiconducting Bolometer	0.053	1.00	18.87
	12×32	Semiconducting Bolometer	0.088	1.00	11.36
	12×32	Semiconducting Bolometer	0.155	1.00	6.45
	12×32	Semiconducting Bolometer	0.215	1.00	4.65
SHARC II	12×32	Semiconducting Bolometer	0.350	1.00	2.86
	12×32	Semiconducting Bolometer	0.450	1.00	2.22
	12×32	Semiconducting Bolometer	0.850	1.00	1.18
SCUBA 2	64×64	TES	0.450	1.135	2.52
	32×32	TES	0.850	1.135	1.34
GBT	8×8	TES	3.00	3.00	1.00
GISMO	8×16	TES	2.00	2.00	1.00
ACT	32×32	TES	1.13	1.00	0.88
	32×32	TES	1.33	1.00	0.75
	32×32	TES	2.07	1.00	0.48

Beam Overlap

Space-Domain Dyadic

$$\bar{\bar{E}}(\bar{r}_1,\bar{r}_2) = \left\langle \bar{E}(\bar{r}_2)\bar{E}^*(\bar{r}_1) \right\rangle$$

NASA

K-domain Dyadic

$$\begin{split} \overline{\overline{A}}(\overline{k}_t',\overline{k}_t) &= \frac{1}{(2\pi)^2} \int \int \overline{\overline{E}}(\overline{r}_1,\overline{r}_2) e^{-j\overline{k}_t\cdot\overline{r}_{t2}} e^{j\overline{k}_t'\cdot\overline{r}_{t1}} e^{-jk_zz_2} e^{jk_z'z_1} d^2\overline{r}_{t1} d^2\overline{r}_{t2} \\ \overline{\overline{E}}(\overline{r}_1,\overline{r}_2) &= \frac{1}{(2\pi)^2} \int \int \overline{\overline{A}}(\overline{k}_t',\overline{k}_t) e^{j\overline{k}_t\cdot\overline{r}_{t2}} e^{-j\overline{k}_t'\cdot\overline{r}_{t1}} e^{jk_zz_2} e^{-jk_z'z_1} d^2\overline{k}_t d^2\overline{k}_t' \end{split}$$

NASA

Stokes Parameters

$$I = E_{xx}(\bar{r}, \bar{r}) + E_{yy}(\bar{r}, \bar{r})$$

$$Q = E_{xx}(\bar{r}, \bar{r}) + E_{yy}(\bar{r}, \bar{r})$$

$$U = \Re E_{xy}(\bar{r}, \bar{r})$$

$$V = \Im E_{xy}(\bar{r}, \bar{r}).$$

NASA

Withington et al. 2003 Bolometer Modeling Method

Technique

- Develop space domain correlation dyadic for blackbody radiation using plane wave expansion
- Transform to k-domain and scatter through aperture(pixel)
- Limit number of modes (pupil)
- · Reconstruct the 2-D space domain correlation dyadic
- Construct the real Stokes parameters from the complex space domain correlation dyadic

 $\rho(x,y,\Delta x,\Delta y) = \frac{1}{\Gamma}I(x,y)I(x+\Delta x,y+\Delta y)$

NASA

Summary

- Pixel size limits the resolution in the focal plane. This should be accounted for in optical design. Alternatively, this reduces the effective number of independent detectors.
- Polarization and scattering are intrinsically related, and both are more severe at low p/lambda.
- Future work: Quantification of the pixel cross-coupling- calculate a theoretical covariance matrix to predict performance of future detector arrays.

GSFC CMBPol Detector Effort

Harvey Moseley, Ed Wollack, Dave Chuss, Gary Hinshaw, Al Kogut, Chuck Bennett (JHU)

Modulators

