Digitalna vezja UL, FRI

P2 - Logične funkcije

Vsebina

- ▶ Logične funkcije (n=2)
- Zapis logičnih funkcij
 - Popolna disjunktivna normalna oblika (PDNO)
 - Popolna konjunktivna normalna oblika (PKNO)
 - Nepopolne logične funkcije
- Vir:
 - Trebar, Osnove logičnih vezij (Poglavje 4 Logične funkcije, str. 31-44)

Logične funkcije - osnovni pojmi

- ▶ 0, 1 konstanti
- ▶ x, y, z, A,..., spremenljivke, ki zavzamejo vrednosti 0 ali 1: $x \in \{0,1\},...$
- ▶ f, g, h, so funkcije $((f,g,...), ki dobijo vrednosti 0 ali 1: f ∈ {0,1},...$
- Vsaka spremenljivka ima svoj **komplement ali negacijo**, to je x, x['], ...
- **Pravilnostna tabela** za funkcijo z *n* spremenljivkami: $f(x_1, x_2, ..., x_n)$
 - ▶ 2^n vrstic ali **vhodnih kombinacij** w_i , $i = 0,1, , 2^n-1$
 - vsaki vrstici pripada ena vrednost funkcije: $w_i \rightarrow f(w_i) = f_i \in \{0,1\}$
- ▶ **Minterm** konjunkcija vseh vhodov podane funkcije
- Maksterm disjunkcija vseh vhodov podane funkcije
- Vsota produktov ali disjunkcija konjunkcij

Produkt vsot ali konjunkcija disjunkcij

$$(x \lor y). (x \lor z)$$

- Tabelarični zapis (pravilnostna tabela)
- Analitični zapis
 - Normalna oblika: največ dva nivoja logičnih operatorjev (1 ali 2 nivojska funkcija)
 - ▶ Popolna oblika: v 1.nivo vstopajo vse vhodne spremenljivke

Popolna disjunktivna normalna oblika

- Minimalna oblika: najkrajša možna oblika zapisa funkcije (število operatorjev/vrat in vhodov vanje)
- Grafičen zapis: Veitchev diagram, Karnaughov diagram
- Logična shema (povezava logičnih vrat, elementov)

Zapis funkcij (n=2)

b _i	x	у	0	I	у	y'	x	x'	&	&'	٧	V'	∇					
b ₀	0	0	0	_	0	_	0	I	0		0		0	_	0	0	_	I
b _I	0	-	0	I	1	0	0	I	0	I	I	0	ı	0	ı	0	0	I
b ₂	-	0	0	I	0	I	I	0	0	I	I	0	I	0	0	I	I	0
b ₃		ı	0	-	I	0'	I	0	I	0	I	0	0	I	0	0	I	I
			f_0	f ₁₅	f ₁₀	f ₅	f ₁₂	f ₃	f ₈	f ₇	f ₁₄	f_1	f ₆	f ₉	f ₂	f ₄	f ₁₃	f_{11}

Zapis vseh 16 funkcij v odvisnosti od dveh spremenljivk x, y:

Konstanta 0 -
$$f_0 = f(x,y) = 0$$

Konstanta 1 -
$$f_{15} = f(x,y) = 1$$

• • •

Vir: Trebar, Osnove logičnih vezij, str. 34

• Negacija (NOT): \overline{x}

Х	X
0	1
1	0

Disjunkcija (NOR): x v y

Х	У	хуу
0	0	0
0	1	1
1	0	1
1	1	1

Konjunkcija (AND): x . y

Х	У	х.у
0	0	0
0	1	0
1	0	0
1	1	1

Negirana konjunkcija (NAND): $x \uparrow y = \overline{x \cdot y}$

х	У	x.y	x.y
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Negirana disjunkcija (NOR): x↓y= x v y

х	У	xvy	xvy
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Ekskluzivni OR (XOR): $x \nabla y = x \oplus y = \overline{x} \cdot y \vee x \cdot \overline{y}$

X	у	$X \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Negirani XOR (NXOR): $\overline{x \oplus y} = \overline{x}.\overline{y} \ v \ x.y = x \equiv y$ (Ekvivalenca)

X	у	$(\overline{\mathbf{x} \oplus \mathbf{y}})$
0	0	1
0	1	0
1	0	0
1	1	1

Zapis funkcij v PDNO

 \rightarrow Tabela \rightarrow Mintermi

i	X	у	Mintermi - m _i
0	0	0	$m_0 = \overline{x}.\overline{y}$
1	0	1	$m_1 = \overline{x}.y$
2	1	0	$m_2 = x.\overline{y}$
3	1	1	$m_3 = x.y$

- Minterm $m_i = 1$ (true), če je konjunkcija vhodov 1 (true).
- Zapis konjunkcija spremenljivk x=0 spr. negirana, x=1 spr. ni negirana

$$x=0$$
 in $y=0$ -> minterm $-m_0 = \overline{0}$. $\overline{0} = 1.1 = 1$ ($\overline{x}.\overline{y}$)

$$x=0 \text{ in } y=1 -> minterm - m_1 = \overline{0} \cdot 1 = 1 \cdot 1 = 1 \cdot (\overline{x}.y)$$

$$x=1 \text{ in } y=0 -> minterm - m_2 = 1 \cdot \overline{0} = 1.1 = 1 (x.\overline{y})$$

$$x=1 \text{ in } y=1 -> minterm - m_3 = 0 . 0 = 1.1 = 1 (x.y)$$

Mintermi → Vsota produktov

X	у	f	$m_i.f_i$
0	0	$0 = f_0$	x .y .0
0	1	$1 = \mathbf{f}_1$	\overline{x} .y .1
1	0	$1 = f_2$	x . y .1
1	1	$1 = f_3$	x .y .1

- minterme m_i in f_i
 konjuntivno povežemo
- 2. vse člene med seboj disjunktivno povežemo
- 3. poenostavimo funkcijo (Boole-ova algebra)
- Zapišimo funkcijo iz pravilnostne tabele v enačbo:

$$f = \overline{X}.\overline{y}.0 \vee \overline{X}.y.1 \vee X.\overline{y}.1 \vee X.y.1 = \bigvee_{i=0}^{2^{n}-1} m_{i}.f_{i}$$

$$f = \overline{X}.y \vee X.\overline{y} \vee X.y$$

- Rezultat: DISJUNKTIVNO povezani mintermi, kjer je izhod funkcije f_i=1
- Dobimo zapis, ki ga imenujemo:
 - Vsota produktov
 - Popolna disjunktivna normalna oblika (PDNO)

Primer: Funkcija (n=3) → PDNO

Vsota produktov ali popolna disjunktivna normalna oblika (PDNO).

Disjunktivna povezava mintermov m_i, kjer ima funkcija f_i vrednost 1.

i	X	у	Ζ		f	g
0	0	0	0	m_0	0	1
1	0	0	1	m_1	1	0
2	0	1	0	m_2	0	0
3	0	1	1	m_3^-	1	1
4	1	0	0	m_4	1	1
5	1	0	1	m_5	1	0
6	1	1	0	m_6	0	0
7	1	1	1	m ₇	0	0

$$f = m_{0}.0 \lor m_{1}.1 \lor m_{2}.0 \lor m_{3}.1 \lor m_{4}.1 \lor m_{5}.1 \lor m_{6}.0 \lor m_{7}.0 = m_{1} \lor m_{3} \lor m_{4} \lor m_{5} = m_{2} \lor m_{3} \lor m_{4} \lor m_{5} = m_{3} \lor m_{4} \lor m_{5} = m_{2} \lor m_{3} \lor m_{4} \lor m_{5} = m_{3} \lor m_{4} \lor m_{5} = m_{3} \lor m_{4} \lor m_{5} = m_{4} \lor m_{5} \lor m_{5} = m_{4} \lor m_{5} \lor m_{5} = m_{5} \lor m_{5} \lor m_{5} \lor m_{5} = m_{5} \lor m_{5} \lor m_{5} \lor m_{5} \lor m_{5} = m_{5} \lor m_{5} \lor$$

$$g = m_0.1 \lor m_3.1 \lor m_4.1 = \overline{X.Y.Z} \lor \overline{X.Y.Z} \lor X.\overline{Y.Z}$$

Zapis funkcij v PKNO

► Tabela → Makstermi

i	j=2 ⁿ -1-i	X	у	Makstermi - M _j
0	3	0	0	$M_3 = x \vee y$
1	2	0	1	$M_2 = x \vee \overline{y}$
2	1	1	0	$M_1 = \overline{x} \vee y$
3	0	1	1	$M_0 = \overline{x} \vee \overline{y}$

- Makstermi $M_i = 0$ (false), če je disjunkcija vhodov 0 (false).
- Zapis disjunkcije spremenljivk x=1-spr. negirana, x=0-spr. nenegirana

$$x=0 \text{ in } y=0 -> \text{maksterm} - M_3 = 0 \lor 0 = 0 (x \lor y)$$

$$x=0$$
 in $y=1$ -> maksterm - $M_2 = 0$ v $\overline{1} = 0$ (x v \overline{y})

$$x=1$$
 in $y=0$ -> maksterm - $M_1 = \overline{1} \vee 0 = 0 (\overline{x} \vee y)$

$$x=1 \text{ in } y=1 \rightarrow \text{maksterm} - M_0 = \overline{1} \vee \overline{1} = 0 (\overline{x} \vee \overline{y})$$

\rightarrow Makstermi \rightarrow Produkt vsot

X	y	f	$M_j \vee f_i$
0	0	$0 = f_0$	x v y v 0
0	1	$1 = \mathbf{f}_1$	x v y v 1
1	0	$1 = f_2$	
1	1	$1 = f_3$	<u>x</u> v <u>y</u> v 1

- maksterm M_j in f_i
 disjuntivno povežemo
- 2. vse člene med seboj konjunktivno povežemo
- 3. poenostavimo funkcijo (Booleova algebra)
- Zapišimo funkcijo iz pravilnostne tabele v enačbo:

$$f = (x \lor y \lor 0)(x \lor \overline{y} \lor 1)(\overline{x} \lor y \lor 1)(\overline{x} \lor \overline{y} \lor 1) = &^{2^{n}-1}_{i=0}(M_{j} \lor f_{i}) = \prod_{j=0}^{2^{n}-1}(M_{j} \lor f_{j})$$

$$f = x \lor y$$

• Rezultat:

KONJUNKTIVNO povezani makstermi, kjer je izhod funkcije f_i=0.

- Dobimo zapis, ki ga imenujemo:
 - Produkt vsot
 - Popolna konjunktivna normalna oblika (PKNO)

Primer: Funkcija (n=3) \rightarrow PKNO

Produkt vsot ali popolna konjunktivna normalna oblika (PKNO).

▶ Konjunktivna povezava makstermov M_j, kjer ima funkcija f_i vrednost 0.

j	X	у	Z		f	g
7	0	0	0	M_7	0	1
6	0	0	1	M_6	1	0
5	0	1	0	M_5	0	0
4	0	1	1	M_4	1	1
3	1	0	0	M_3	1	1
2	1	0	1	M_2	1	0
1	1	1	0	M_1	0	0
0	1	1	1	M_0	0	0

$$(M_{7} \lor 0)(M_{6} \lor 1)(M_{5} \lor 0)(M_{4} \lor 1)$$

 $(M_{3} \lor 1)(M_{2} \lor 1)(M_{1} \lor 0)(M_{0} \lor 0) =$
 $= M_{7}.M_{5}.M_{1}.M_{0} =$
 $= (X \lor Y \lor Z).(X \lor \overline{Y} \lor Z).$
 $(\overline{X} \lor \overline{Y} \lor Z).(\overline{X} \lor \overline{Y} \lor \overline{Z})$
 $g =$
 $= M_{6}.M_{5}.M_{2}.M_{1}.M_{0} =$
 $= (X \lor Y \lor \overline{Z}).(X \lor \overline{Y} \lor Z).$
 $(\overline{X} \lor Y \lor \overline{Z}).(X \lor \overline{Y} \lor Z).$

Nepopolna logična funkcija

- Imenujemo jo tudi funkcija z redundancami.
- Pri vhodnih kombinacijah x=y=1 izhodi niso določeni (označeni so z x)
- \bullet f(x,y,z):
 - Funkcijska vrednost f_6 = x -> vrednost je lahko 0 ali 1
 - Funkcijska vrednost $f_7 = x \rightarrow v$ rednost je lahko 0 ali 1

Х	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	X X
1	1	1	X

PDNO:

$$f = m_0 \lor m_2 \lor m_3 \lor m_4 \lor m_6 \lor m_7 =$$

$$= \overline{X.Y.Z} \lor \overline{X.Y.Z} \lor \overline{X.Y.Z} \lor$$

$$X.\overline{y}.\overline{z} \lor \overline{X.Y.\overline{z}} \lor X.y.Z$$
Redundanci
$$f_6 = 1 \text{ in } f_7 = 1$$

PKNO:

$$f = M_6.M_2.M_1.M_0 =$$

$$= (X \lor Y \lor \overline{Z}).(\overline{X} \lor Y \lor \overline{Z}).$$

$$(\overline{X} \lor \overline{Y} \lor Z).(\overline{X} \lor \overline{Y} \lor \overline{Z})$$

Redundanci $f_6 = 0$ in $f_7 = 0$

Povzetek

Analitični zapis

Minterm: konjunkcija vseh spremenljivk

$$m_{i} = X_{1}^{w_{1,i}} \cdot X_{2}^{w_{2,i}} \cdots X_{n}^{w_{n,i}}$$
, $i = 0,1,...,2^{n} - 1$
$$X^{w} = \begin{cases} X; w = 1 \\ \overline{X}; w = 0 \end{cases}$$

Maksterm: disjunkcija vseh spremenljivk

$$M_{2^{n}-1-i} = X_{1}^{\overline{w}_{1,i}} \vee X_{2}^{\overline{w}_{2,i}} \vee \cdots \vee X_{n}^{\overline{w}_{n,i}}$$
, $i = 0,1,...,2^{n}-1$

PDNO: popolna disjunktivna normalna oblika

$$f(X_1, X_2, ..., X_n) = \bigvee_{i=1}^{2^n-1} m_i f_i$$

PKNO: popolna konjunktivna normalna oblika

$$f(X_1, X_2, ..., X_n) = \&_0^{2^n-1}(M_{2^n-1-i} \vee f_i)$$

- Dualnost med m_i in M_{2^n-1-i} :
 - zamenjan operator in negirane spremenljivke

Tabela, funkcija, mintermi, makstermi

<i>X</i> ₁	X ₂	X ₃	$f(x_1, x_2, x_3)$	m _i		i	$M_{2^{n}-1-i}$		j
0	0	0	1	m_0	$\bar{X}_1.\bar{X}_2.\bar{X}_3$	0	M_7	$X_1 \vee X_2 \vee X_3$	7
0	0	1	0	m_1	$\bar{X}_1.\bar{X}_2.X_3$	1	M_6	$X_1 \vee X_2 \vee \overline{X}_3$	6
0	1	0	1	m_2	$\bar{X}_1.X_2.\bar{X}_3$	2	M_5	$X_1 \vee \overline{X}_2 \vee X_3$	5
0	1	1	1	m_3	$\bar{X}_1.X_2.X_3$	3	M_4	$X_1 \vee \overline{X}_2 \vee \overline{X}_3$	4
1	0	0	1	m_4	$X_1.\overline{X}_2.\overline{X}_3$	4	M_3	$\overline{X}_1 \vee X_2 \vee X_3$	3
1	0	1	0	m_5	$X_1.\overline{X}_2.X_3$	5	M_2	$\overline{X}_1 \vee X_2 \vee \overline{X}_3$	2
1	1	0	0	m_6	$X_1.X_2.\overline{X}_3$	6	M_1	$\overline{X}_1 \vee \overline{X}_2 \vee X_3$	1
1	1	1	1	m_7	$X_1.X_2.X_3$	7	$M_{\rm O}$	$\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3$	0

Priprava za laboratorijske vaje

- Tabela logičnih funkcij za n=2: AND, OR, NAND, NOR, XOR, XNOR
- Zapis zgoraj podanih logičnih funkcij n=2 z operatorji: NOT, AND, OR
- Analitičen zapis logičnih funkcij v PDNO
- Analitičen zapis logičnih funkcij v PKNO

Zapiske obvezno prinesete na 2. laboratorijske vaje.

Naloge

Podani sta funkciji F in G:

F=1, če sta vhoda A=1 in B=0 in če sta vhoda A=0 in C=1 F=0, sicer

G=I, če sta po dva vhoda enaka I in če so vsi trije vhodi 0

G=0, sicer

- Zapišite F in G v pravilnostno tabelo
- Zapišite PDNO za F in G
- Zapišite PKNO za F in G

Α	В	С	F	G
0	0	0		
0	0	1		
0	1	0		
0	1	1		
I	0	0		
1	0	1		
1	1	0		
1	I	I		