1 Last class

Theorem 1.1. T sufficient + T complete $\implies T$ minimal

Not very useful because proving completeness is difficult: need to show for *any* function *f* .

2 More properties of statistics

Definition 2.1. V(X) is ancillary if its distribution does not depend on θ

Example 2.2. For $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, 1)$, the sample variance is ancillary and does not tell us anything about θ

Theorem 2.3 (Basu). *T complete and sufficient, V ancillary, then T, V are independent* $\forall \theta \in \Theta$. *Proof.* NTS $P_{\theta}(T \in B, V \in A) = P_{\theta}(T \in B)P_{\theta}(V \in A), \forall A, B$ measurable, $\forall \theta$.

$$P_{\theta}(T \in B, V \in A) = \mathbb{E}_{\theta} 1_B(T) 1_A(V) \tag{2.1}$$

$$= \mathbb{E}_{\theta} \mathbb{E}_{\theta} \left[1_{R}(T) 1_{A}(V) | T \right] \tag{2.2}$$

$$= \mathbb{E}_{\theta} \left\{ 1_B(T) \mathbb{E}_{\theta} \left[1_A(V) | T \right] \right\} \tag{2.3}$$

By completeness of *T*

$$\mathbb{E}_{\theta}\left[1_{A}(V)|T\right] = q_{A}(T) \tag{2.4}$$

Hence

$$\mathbb{E}_{\theta} 1_A(V) = \mathbb{E}_{\theta} q_A(T) \tag{2.5}$$

But since V is ancillary, the LHS is a constant wrt θ so we can define a constant $p_A := \mathbb{E}_{\theta} 1_A(V)$ and write

$$\mathbb{E}_{\theta}q_A(T) = p_A \tag{2.6}$$

But since T is complete, we have $q_A(T) = p_A$ is constant as well. Hence, eq. (2.3) becomes

$$P_{\theta}(T \in B, V \in A) = \mathbb{E}_{\theta} 1_{B}(T) p_{A} \tag{2.7}$$

$$= P_{\theta}(T \in B)P_{\theta}(V \in A) \tag{2.8}$$

so *T* and *V* are independent.

Example 2.4. Consider $\mathcal{P}_{\mu} = \{\mathcal{N}(\mu, \sigma^2)^n : \mu \in \mathbb{R}\}$. The joint distribution is

$$\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[\underbrace{\frac{n\mu}{\sigma^2}\bar{x}}_{\eta'T} - \underbrace{\frac{n\mu^2}{2\sigma^2}}_{A(\eta)} - \underbrace{\frac{1}{2\sigma^2}\sum_{i}^{n}x_i^2}_{h(x)}\right]$$
(2.9)

 \bar{x} is sufficient, also complete (can check if full-rank).

We will show $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ is ancillary i.e. should not depend on μ .

Define $Y_i = X_i - \mu$, $\bar{Y} = \frac{1}{n} \sum_i Y_i$. $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$. Notice $X_i - \bar{X} = Y_i - \bar{Y}$ so $S^2 = \frac{1}{n-1} \sum_i (Y_i - \bar{Y})^2$. As $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$, the distribution S^2 does not depend on μ (i.e. is ancillary) and hence (by Basu's Theorem) $\bar{X} - S^2$ is independent for all μ i.e. over the family $\mathcal{P} = \mathcal{N}(\mu, \sigma^2)$.

NOTE: This result is only true for μ but for a *fixed* σ^2 . The general result *does* hold for $\mathcal{P}_{\mu,\sigma^2}$ but needs to be shown. Could show the result by taking union of above result over all $\sigma^2 > 0$.

This is often useful for the t test, where \bar{X} \mathcal{N} , $S^2 \sim \chi^2$, and the statistic used is $t = \frac{\bar{X}}{\sqrt{S^2}}$.

3 The case for convex loss

Definition 3.1. *f* is *convex* if $\forall x, y \in \text{dom } f, \gamma \in [0, 1]$

$$f(\gamma x + (1 - \gamma)y) \le \gamma f(x) + (1 - \gamma)f(y) \tag{3.1}$$

Theorem 3.2 (Jensen). *f convex*

$$f(\mathbb{E}X) \le \mathbb{E}f(x) \tag{3.2}$$

Definition 3.3. A *loss function* $L(\theta, \delta)$ takes a parameter θ and estimator $\delta(X)$ for $g(\theta)$ which evaluates how "good" the estimator is.

Convex loss means that *L* is convex in the second argument (i.e. $L(\theta, \cdot)$ is convex).

Theorem 3.4 (Rao-Blackwell). *T sufficient, loss L convex,* $\delta(X)$ *estimator for* $g(\theta)$. *Let*

$$\eta(T) = \mathbb{E}\left[\delta(X)|T\right] \tag{3.3}$$

Then

$$R(\theta, \eta) \le R(\theta, \delta) \tag{3.4}$$

(Strict "<" if L strictly convex, unless $\delta(X) = \eta(T)$)

Proof.

$$R(\theta, \delta) = \mathbb{E}_{\theta} L(\theta, \delta) \tag{3.5}$$

$$= \mathbb{E}_{\theta} \mathbb{E}_{\theta} \left[L(\theta, \delta) | T \right]$$
 Tower prop. (3.6)

$$\geq \mathbb{E}_{\theta}L(\theta, \mathbb{E}_{\theta}\left[\delta|T\right])$$
 Jensen (3.7)

$$= R(\theta, \eta) \tag{3.8}$$

Definition 3.5 (See Keener 4.1). δ is *unbiased* for $g(\theta)$ if

$$\mathbb{E}_{\theta}\delta(X) = g(\theta) \quad \forall \theta \in \Theta \tag{3.9}$$

g is *U-estimable* or *estimable* if an unbiased estimator exists.

Example 3.6 (Non-estimable statistic). $X \sim \text{Binom}(n, \theta)$, n fixed. Consider $g(\theta) = \sqrt{\theta}$. Suppose we have an estimator $\delta(X)$.

$$\mathbb{E}_{\theta}\delta(X) = \sum_{x=0}^{n} \binom{n}{x} \theta^{x} (1-\theta)^{n-x} \delta(X)$$
 (3.10)

This is a polynomial wrt θ , so it will not be equal to $\sqrt{\theta} \ \forall \theta \in \Theta$. Hence, $g(\theta)$ is not estimable.