a) Apply 0R and 1R to the following dataset (at first ignoring Age)

Cust. ID	Age	Capital Gain	Savings	Attrite
1	41	low	low	yes
2	35	high	low	no
3	26	low	high	yes
4	37	low	high	yes
5	32	high	low	no
6	40	low	low	yes
7	30	high	low	no
8	21	low	low	no
9	28	high	low	no
10	27	low	high	yes

Table 1: Customer attrition data (modified from Java Data Mining, Hornick et al)

b) Discretize Age and complete the 1R rule generation for Table 1.

Going from left to right, make a division between classes where there is a change in class, and there are at least three instances in the majority class but if the class changes while age is constant, shift division to right and merge groups with the same majority class.