#### MTH 201 -- Calculus Module 2A: The derivative of a function at a point

September 14-15, 2020

#### Agenda for today

- Polling activity over Daily Preparation
- Q&A time
- The definition of the derivative, and a couple of computations
- Activity: Using limits to find derivatives
- Bonus activity: Applying the concept to velocities
- Quick (ungraded) quiz
- Feedback time

#### The slope of the line that connects the two red points in this graph is





### The slope of the line that connects the two red points in this graph is the same thing as



The instantaneous rate of change in f(x) at x = a+h

The instantaneous rate of change in f(x) at x = a

The average rate of change in f(x) from x = a to x = a+h

The average rate of change in f(x) from x = 0 to x = a



## The derivative of a function at a point

#### The derivative of a function f(x) at a point x=a is:

- The instantaneous rate of change in f(x) at x = a
- The <u>slope of the tangent line</u> to the graph of f(x) at x = a
- The <u>instantaneous velocity</u> of an object whose position is given by f(x), at time x = a





$$g(2) = 5.074$$

BUT: g'(2) is **negative** 

At x=2, the function g(x) is positive but changing at a negative rate (i.e. decreasing)

$$g'(2) \approx (0.5-5.074)/(4-2) = -2.287$$

That's an **estimate**Can we get the value *exactly?* 



Secant line slope/average rate:

$$\frac{f(a+h)-f(a)}{h}$$

To get a better approximation to the instantaneous rate: **ZOOM IN AND RECALCULATE** 

This means let "h" approach zero.

$$f'(a) = \lim_{h o 0} rac{f(a+h)-f(a)}{h}$$

#### **Activities**

https://jamboard.google.com/d/1aQ4WEllrFbAPTIm31GwvK72
Ir-8qbqh-avZKMY3sZ7E/edit?usp=sharing

(Posted in chat and on Campuswire)

#### The derivative $f^{\prime}(a)$ tells you

The instantaneous rate of change in f(x) at x = a

The slope of the tangent line touching the graph of f(x) at x = a

The slope of the secant line connecting x = 0 and x = a on the graph of f(x)

Both (a) and (b)



## Here's the graph of a function g(x) and the point on its graph at x = 2. Which of the following are true statements? Select ALL that apply.



g(2) is positive g(2) is negative g'(2) is positive g'(2) is negative



# Arthur says the derivative of a function f(x) at x=2 is found by computing the fraction $\frac{f(a+h)-f(a)}{h}$ . What, if anything, is wrong with Arthur's statement? Select ALL that apply.

He's missing  $\lim_{h \to 0}$ 

He's missing  $\lim_{h\to 2}$ 

He's missing  $\lim_{a \to 2}$ 

The h on the bottom should be a 2

Both of the a's should be 2's

Nothing -- Arthur's statement is correct



Feedback: <a href="http://gvsu.edu/s/1rx">http://gvsu.edu/s/1rx</a>

Add sticky notes for comments, ideas, and questions.

#### **Next:**

- Followup Activities to complete: Find them on Blackboard > MODULES > Module 2 > Module 2A Followup.
- Daily Prep for Module 2B
- Checkpoint 1 will be assigned Wednesday 9/16. See announcements + Campuswire for information. Will include Learning Targets F.2 and L.1.

See the Calendar for all due dates.