Metoda puleni intervalu (bisekce):

Spojita na intervale, f(a) a f(b) maju opacne znamienka, hladame vzdy stred

Newtonova metoda (metoda tecen):

Konvergencia: Fourierova podmienka f'(x) a f''(x) spojite a nemenia znamienko, potom x_0 zvolime ked f(x)*f''(x)>0

Zvolime x_0 dalsie ako $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

Metoda proste iterace:

Konvergencia: $MAX(x=\langle a,b \rangle) |g'(x)| < 1$

Upravime na \mathbf{x} =g(\mathbf{x}) a potom pocitame ako $x_{k+1}=g(x_k)$

Jacobiho metoda:

Konvergencia: musi byt riadkovo alebo stlpcovo dominantna

Naraz vyjadrime z 1. rovnice 1. neznamu, z 2. rovnice 2. neznamu, z 3. rovnice 3. neznamu .

Gauss-Seidelova metoda:

Rovnaka ale postupne s novymi hodnotami dosadzame.

Konvergencia: riadkovo dominantna alebo stlpcovo dominantna alebo pozitivne definitni

Pozitivne definitni: prepisanie na tvar A^T*Ax=A^T*b

Metoda proste iterace pro soustavu:

Upravime na tvar x=g1(x,y), y=g2(x,y) a tak pocitame aj dalsie aproximacie

Newtonova metoda pro soustavu:

Upravim na tvar f1(x,y)=0, f2(x,y)=0, spravim maticu prvych derivacii[f1'x:f1'y;f2'x:f2'y], dosadim do nej x0 a y0. Vytvorim rovnice f1'x*delta1+f1'y*delta2=-f1(xk,yk) a f2'x*delta1+f2'y*delta2=-f2(xk,yk). Vypocitam delta1 a delta2, $x_{k+1}=x_k+delta1$, $y_{k+1}=y_k+delta2$.

Lagrangeuv interpolacni polynom:

$$\begin{split} P_n(x) &= f_0 * \frac{(x-x_1)*(x-x_2)...(x-x_n)}{(x_0-x_1)*(x_0-x_2)...(x_0-x_n)} + f_1 * \\ \frac{(x-x_0)*(x-x_2)...(x-x_n)}{(x_1-x_0)*(x_1-x_2)...(x_1-x_n)} + \cdots + f_n * \\ \frac{(x-x_0)*(x-x_1)...(x-x_{n-1})}{(x_n-x_0)*(x_n-x_1)...(x_n-x_{n-1})} \end{split}$$

Newtonuv interpolacni polynom:

$$P_n(x) = a_0 + a_1 * (x - x_0) + a_2 * (x - x_0) * (x - x_1) + \dots + a_n * (x - x_0) * (x - x_1) \dots (x - x_{n-1})$$

Tabulka pomernych diferencii $f[x_i, x_{i+1}] = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$ a tiez $f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$

Potom f0=a0, f[0,1]=a1, f[0,1,2]=a2

Linearni splajn:

Spojene body priamkami: $S_i(x) = f_i + \frac{f_{i+1} - f_i}{x_{i+1} - x_i} * (x - x_i)$

Kubicky splajn:

Podmienky: najviac x^3 , body spojenia funkcii musia mat rovnaku 0. 1. a 2. Derivaciu

Nejmensi ctverce-primka:

$$y = c_0 + c_1 * x$$

$$c_0 * (n+1) + c_1 * \sum_{i=0}^n x_i = \sum_{i=0}^n y_i$$

$$c_0 * \sum_{i=0}^n x_i + c_1 * \sum_{i=0}^n x_i^2 = \sum_{i=0}^n x_i * y_i$$

Nejmensi ctverce-parabola:

$$y = c_0 + c_1 * x + c_2 * x^2$$

$$c_0 * (n+1) + c_1 * \sum_{i=0}^n x_i + c_2 * \sum_{i=0}^n x_i^2 = \sum_{i=0}^n y_i$$

$$c_0 * \sum_{i=0}^n x_i + c_1 * \sum_{i=0}^n x_i^2 + c_2 * \sum_{i=0}^n x_i^3 = \sum_{i=0}^n x_i * y_i$$

$$c_0 * \sum_{i=0}^n x_i^2 + c_1 * \sum_{i=0}^n x_i^3 + c_2 * \sum_{i=0}^n x_i^4 = \sum_{i=0}^n x_i^2 * y_i$$

Numericke derivovani:

$$f'_x = \frac{f(x+h) - f(x)}{h}$$

Pre 3 body:
$$f'(x_0) = \frac{-3*f(x_0)+4*f(x_1)-f(x_2)}{2*h}$$

$$f'(x_1) = \frac{f(x_2) - f(x_0)}{2 * h}$$

$$f'(x_2) = \frac{f(x_0) - 4 * f(x_1) + 3 * f(x_2)}{2 * h}$$

$$f''(x_1) = \frac{f(x_0) - 2 * f(x_1) + f(x_2)}{h^2}$$

Numericke integrovani:

Lichobeznikova metoda:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} * (f(a) + f(b))$$

Slozena lichobeznikova metoda:

$$h = \frac{b-a}{n}$$
 n-pocet dielikov (m)

$$\int_{a}^{b} f(x)dx = h * (\frac{1}{2} * f(x_{0}) + f(x_{1}) + \dots + f(x_{n-1}) + \frac{1}{2} * f(x_{n}))$$

Chyba lichobeznikovej metody:

$$|int - Lnum| \le \frac{(b-a)^3}{12 * n^2} * MAX(f = < a, b >) |f''(t)|$$

Simpsonova metoda:

Uzly a, (a+b)/2, b
$$\int_a^b f(x) dx = \frac{b-a}{6} * (f(a) + 4 * f(\frac{a+b}{2}) + f(b))$$

Slozena simpsonova metoda:

$$h = \frac{b-a}{n}$$
, n musi byt sude

$$\int_{a}^{b} f(x)dx = \frac{h}{3} * (f(x_0) + 4 * \sum_{\substack{0 < i < n \\ i \ je \ liche}} f(x_i) + 2$$

$$* \sum_{\substack{0 < i < n \\ i \ je \ sude}} f(x_i) + f(x_n))$$

Chyba simpsonovej metody:

$$|int - Snum| \le \frac{(b-a)^5}{180 * n^4} * MAX(f = < a, b >)|f^{(4)}(t)|$$

Diferencialne rovnice:

Eulerova metoda:

$$y_{i+1} = y_i + h * f(x_i, y_i)$$

1. Modifikovana eulerova metoda:

$$y_{i+1} = y_i + h * k_2$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2} * k_1)$$

2. Modifikovana eulerova metoda:

$$y_{i+1} = y_i + \frac{h}{2} * (k_1 + k_2)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + h, y_i + h * k_1)$$

Metoda Runge-Kutta 4.radu: hodime na tvar: f(x,y)=y'=....

$$y_{i+1} = y_i + \frac{1}{6} * h * (k_1 + 2 * k_2 + 2 * k_3 + k_4)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{1}{2} * h, y_i + \frac{1}{2} * h * k_1)$$

$$k_3 = f(x_i + \frac{1}{2} * h, y_i + \frac{1}{2} * h * k_2)$$

$$k_4 = f(x_i + h, y_i + h * k_3)$$

PRAVDEPODOBNOST:

 $P(B|A) = \frac{P(A \cap B)}{P(A)}$ pravdepodobnost javu B za podminky, ze nastal jav A

Ked nezalezi na mieste napr. 6x hadzeme a padne 3x L a 3x R tak je to $\binom{6}{3}/2^6$, teda 20/64

napr. 6x hadzeme pocet L > pocet R, teda $P = \frac{\binom{6}{0}\binom{6}{1}\binom{6}{2}}{64}$

P(cerviva)=P(cerviva|dodavatel1)*P(dodavatel1)+P(cerviva|dodavatel2)*P(dodavatel2)

 $P(dodavatel2|cerviva) = \frac{P(dodavatel2) * P(cerviva|dodavatel2)}{P(cerviva)}$

Bayesuv vzorec:

$$P(Hj|A) = \frac{P(Hj \cap A)}{P(A)} = \frac{P(Hj) * P(A|Hj)}{P(A)}$$
$$= \frac{P(Hj) * P(A|Hj)}{\sum_{i=1}^{n} P(Hi) * P(A|Hi)}$$

Stredna hodnota diskretnej nahodnej veliciny:

$$EX = \sum_{x} x * p(x)$$

Rozptyl:

 $DX=E*(X-EX)^2$

$$DX = \sum_{x} x^2 * p(x) - (EX)^2$$

Smerodajna odchylka:

$$delta = \sqrt{DX}$$

Geometricke rozdeleni: hadzeme vela krat kym nepadne 6. PST ze padne najneskor v druhom hode? p(0)+p(1)

$$X \sim Ge(p)$$
 $p(k) = p^k * (1-p)$ $EX = \frac{p}{1-p}$ $DX = \frac{p}{(1-p)^2}$

Binomicke rozdeleni: hadzeme n-krat kockou, p je pst, ze padane 6. Aka je pst ze 6 padne 2x? p(2)

$$X \sim Bi(n, p)$$
 $p(k) = \binom{n}{k} * p^k - (1 - p)^{n-k}$
 $EX = n * p$ $DX = n * p * (1 - p)$

Hypergeometricke rozdeleni: 16 kariet(N), 4 esa(M). Nahodne 3 karty(n). X udava pocet es v trojici.

$$X \sim Hg(N, M, n)$$
 $p(k) = \frac{\binom{M}{k} * \binom{N-M}{n-k}}{\binom{N}{N}}$ $EX = n * \frac{M}{N} DX = n * \frac{M}{N} * \left(1 - \frac{M}{N}\right) * \frac{N-n}{N-1}$

Poissonovo rozdeleni: urcime si casovu jednotku. X =pocet udalosti za jednotku casu, priemerne nastava λ udalosti za jednotku casu. k=kolko udalosti sa stalo

$$X \sim Po(\lambda)$$
 $p(k) = \frac{\lambda^k}{k!} * e^{-\lambda}$ $EX = \lambda$

NAHODNE VELICINY:

Distribucni funkce:

Diskretna

$$\sum_{x_i:p(x_i)>0} p(x_i) = 1$$

$$F(x) = P(X < x) = \sum_{i \le x} p(t_i) ; i = 1,2,3 ...$$

Spojita

-je spojita a nadvazuje na seba, neklesajuca

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
$$P(a < X < b) = F(b) - F(a)$$

Hustota pravdepodobnosti:

Spojita

$$f(x) = F'(x)$$

$$P(a < X < b) = \int_{a}^{b} f(x)dx$$

$$\int_{a}^{+\infty} f(x)dx = 1$$

Stredna hodnota:
$$EX = \int_{-\infty}^{+\infty} x * f(x) dx$$

Rozptyl:
$$DX = E(X - EX)^2 = \int_{-\infty}^{+\infty} (x - EX)^2 * f(x) dx = \int_{-\infty}^{+\infty} x^2 * f(x) dx$$

Kvantil:
$$\alpha - kvantil F(x_{\alpha}) = P(X < x_{\alpha}) = \alpha$$

Je to hranicni hodnota, pod kterou zustane lpha*100% hodnot

Median = 0.5-kvantil

Exponencialni rozdeleni: podobne ako poissonove rozdeleni. X=doba medzi dvoma vyskytmi udalosti ked vieme ze priemerne nastava λ udalosti za jednotku casu

$$X \sim Exp(\lambda) \qquad f(x) = \begin{cases} \lambda * e^{-\lambda * x} \ pro \ x \ge 0 \\ 0 \ pro \ x < 0 \end{cases}$$
$$F(x) = \begin{cases} 1 - e^{-\lambda * x} \ pro \ x \ge 0 \\ 0 \ pro \ x < 0 \end{cases}$$

$$EX = \frac{1}{\lambda}$$
 $DX = \frac{1}{\lambda^2}$

Normalni rozdeleni:

$$f(x) = \frac{1}{\pi * \sqrt{2 * \pi}} * e^{\frac{-(x-\mu)^2}{2 * \pi^2}}$$

$$X = No(\mu, \sigma^2)$$
 $EX = \mu$ $DX = \sigma^2$

Standardizovane normalni rozdeleni:

$$U \sim No(0,1)$$

$$f(x) = \frac{1}{\sqrt{2 * \pi}} * e^{\frac{-x^2}{2}}$$

Distribucni funkce: $\Phi(u) = P(U < u)$

$$\Phi(-u) = 1 - \Phi(u)$$

Transformacia na standardizovane normalni rozdeleni:

$$U = \frac{X - \mu}{\sigma}$$

Moivre-Laplaceova veta: Podmienky:

$$n*p>5$$
, $n*(1-)>5$, $n*p*(1-p)>9$

$$X \sim Bi(n, p) => X \sim No(\mu, \sigma^2)$$

$$\mu = n * p$$
 $\sigma^2 = n * p * (1 - p)$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < U < \frac{b - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Aproximacia s korekciou: Podmienky: a,b su cele cisla

$$P(a < X < b) = P(a - 0.5 < X < b + 0.5)$$
$$= \Phi\left(\frac{b + 0.5 - \mu}{\sigma}\right) - \Phi\left(\frac{a - 0.5 - \mu}{\sigma}\right)$$

Testovani hypotez:

Nulova hypoteza-je to nahoda

Alternativna hypoteza - nie je to nahoda

Urcena hladina vyznamnosti – $\alpha=0.01$ => kriticka hodnota T= $\mu_{0.99}$

$$P(X > T) = 0.01$$

$$T = \mu_{0.99}$$

$$P(X < T) = 0.99$$

Zmenime na normlane rozdeleni a vypocitame T. to porovname so zadanou hodnotou.

Priemer hodnot veliciny X:

Vypocitam priemer z hodnot

$$X \sim No(\mu, \sigma^2)$$
 $\bar{X} \sim No(\mu, \frac{\sigma^2}{N})$

Smerodajna odchylka: $\frac{\sigma}{\sqrt{N^2}}$

0,29	0,28	0,27	0,26	0,25	0,24	0,23	0,22	0,21	0,20	0,19	0,18	0,17	0,16	0,15	0,14	0,13	0,12	0,11	0,10	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0,00	u
																													_	1
0,6140919	0,6102612	0,6064199	0,6025681	0,5987063	0,5948349	0,5909541	0,5870004	0,5851002	0,5792597	0,5753454	0,5714237	0,5674949	0,5635595	0,5596177	0,5556700	0,5517168	0,5477584	0,5437953	0,5398278	0,5358564	0,5318814	0,5279032	0,5239222	0,5199388	0,5159534	0,5119665	0,5079783	0,5039894	0,5000000	$\Phi(u)$
0,59	0,58	0,57	0,56	0,55	0,54	0,53	0,52	0,51	0,50	0,49	0,48	0,47	$0,\!46$	$0,\!45$	0,44	$0,\!43$	$0,\!42$	0,41	$0,\!40$	0,39	$0,\!38$	0,37	$0,\!36$	$0,\!35$	$0,\!34$	0,33	$0,\!32$	0,31	0,30	u
0,7224047	0,7190427	0,7156612	0,7122603	0,7088403	0,7054015	0,7019440	0,0984082	0,0949743	0,6914625	0,6879331	0,6843863	0,6808225	0,6772419	0,6736448	0,6700314	0,6664022	0,6627573	0,6590970	0,6554217	0,6517317	0,6480273	0,6443088	0,6405764	0,6368307	0,6330717	0,6293000	0,6255158	0,6217195	0,6179114	$\Phi(u)$
0,89	0,88	0,87	0,86	0,85	0,84	0,83	0,02	0,01	0,80	0,79	0,78	0,77	0,76	0,75	0,74	0,73	0,72	0,71	0,70	0,69	0,68	0,67	0,66	0,65	0,64	0,63	0,62	0,61	0,60	u
0,8132671	0,8105703	0,8078498	0,8051055	0,8023375	0,7995458	0,7967306	0,7938919	0,792010				0,7793501		0,7733726	0,7703500	0,7673049	0,7642375	0,7611479	0,7580363	0,7549029	0,7517478	0,7485711	0,7453731	0,7421539	0,7389137	0,7356527	0,7323711	0,7290691	0,7257469	$\Phi(u)$
1,19	1,18	1,17	1,16	1,15	1,14	1,13	1,12	1,11	1,10	1,09	1,08	1,07	1,06	1,05	1,04	1,03	1,02	1,01	1,00	0,99	0,98	0,97	0,96	0,95	0,94	0,93	0,92	0,91	0,90	u
0,8829768	0,8809999	0,8789995			0,8728568			0,8000000	0,8043339			0,8576903			0,8508300	0,8484950	0,8461358	0,8437524	0,8413447	0,8389129	0,8364569	0,8339768	0,8314724	0,8289439	0,8263912	0,8238145	0,8212136	0,8185887	0,8159399	$\Phi(u)$
1,49	1,48	1,47	1,46	1,45	1,44	1,43	1,42	1,41	1,40	1,39	1,38	1,37	1,36	1,35	1,34	1,33	1,32	1,31	1,30	1,29	1,28	1,27	1,26	1,25	1,24	1,23	1,22	1,21	1,20	u
0,9318879	0,9305634	0,9292191	0,9278550	0,9264707	0,9250663	0,9236415	0,9221962	0,9207302	0,9192433	0,9177356	0,9162067	0,9146565	0,9130850	0,9114920	0,9098773	0,9082409	0,9065825	0,9049021	0,9031995	0,9014747	0,8997274	0,8979577	0,8961653	0,8943502	0,8925123	0,8906514	0,8887676	0,8868606	0,8849303	$\Phi(u)$
1,79	1 78	1.77	1,76	1,75	1,74	1,73	1,72	1,71	1,70	1,69	1,68	1,67	1,66	1,65	1,64	1,63	1,62	1,61	1,60	1,59	1,58	1,57	1,56	1,55	1,54	1,53	1,52	1,51	1,50	u
0	0	0	0,9607961	0,9599408	0,9590705	0,9581849	0,9572838	0,9563671	0,9554345	0,9544860	0,9535213	0	0,9515428	0,9505285	0,9494974	0,9484493	0,9473839	0,9463011	0,9452007	0,9440826	0,9429466	0,9417924	0,9406201	0,9394392	0,9382198	0,9369916	0,9357445	0,9344783	0,9331928	$\Phi(u)$
			2,06		2,04	2,03	2,02	2,01	2,00	1,99								1,91			1,88	1,87	1,86	1,85	1,84	1,83		1,81	1,80	u
				0,9798178	0,9793248	0,9788217	0,9783083	0,9777844	0,9772499	0,9767045	0,9761482		0,9750021	0,9744119	0,9738102		0,9725711	0,9719334			0,9699460	0,9692581	0,9685572	0,9678432	0,9671159	0,9663750	0,9656205	0,9648521	0,9640697	$\Phi(u)$
2,39	2 38	2,37	2,36	2,35	2,34	2,33	2,32	2,31	2,30	2,29	2,28	2,27	2,26	2,25	2,24	2,23	2,22	2,21	2,20	2,19	2,18	2,17	2,16	2,15	2,14	2,13	2,12	2,11	2,10	u
					0,9903581	0,9900969	0,9898296	0,9895559	0,9892759	0,9889893	0,9886962		0,9880894	0,9877755	0,9874545		0,9867906	0,9864474			0,9853713	0,9849966	0,9846137	0,9842224	0,9838226	0,9834142	0,9829970	0,9825708	0,9821356	$\Phi(u)$
	3 80	3,60	3,40	3,20	3,00	2,90	2,80	2,70	2,60	2,59	2,58	2,57	2,56	2,55	2,54	2,53	2,52	2,51	2,50	2,49	2,48	2,47	2,46	2,45	2,44	2,43	2,42	2,41	2,40	u
					0,9986501	0,9981342	0,9974449	0,9965330	0,9953388	0,9952012			0,9947664		0,9944574		0,9941323	0,9939634			0,9934309	0,9932443	0,9930531	0,9928572	0,9926564	0,9924506	0,9922397	0,9920237	0,9918025	$\Phi(u)$
																											5,50	5,00	4,50	u
																											0,9999999	0,9999997	0,9999966	$\Phi(u)$