Postulates and Theorems

Jonathan R. Bacolod

Sauyo High School

What is a Postulate?

Postulate: a statement that is accepted without proof

What is a Postulate?

Postulate: a statement that is accepted without proof
The most often used postulates in Geometry are the axioms or properties of equality and congruence.

1. Addition Property of Equality: If a = b, then a + c = b + c.

- 1. Addition Property of Equality: If a = b, then a + c = b + c.
- 2. Subtraction Property of Equality: If a = b, then a c = b c.

- 1. Addition Property of Equality: If a = b, then a + c = b + c.
- 2. Subtraction Property of Equality: If a = b, then a c = b c.
- 3. Multiplication Property of Equality: If a = b, then ac = bc.

- 1. Addition Property of Equality: If a = b, then a + c = b + c.
- 2. Subtraction Property of Equality: If a = b, then a c = b c.
- 3. Multiplication Property of Equality: If a = b, then ac = bc.
- 4. Division Property of Equality: If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.

5. Reflexive Property of Equality: If a is any real number, then a = a.

- 5. Reflexive Property of Equality: If a is any real number, then a = a.
- 6. Symmetric Property: If a = b, then b = a.

- 5. Reflexive Property of Equality: If a is any real number, then a = a.
- 6. Symmetric Property: If a = b, then b = a.
- 7. Transitive Property: If a = b and b = c, then a = c.

- 5. Reflexive Property of Equality: If a is any real number, then a = a.
- 6. Symmetric Property: If a = b, then b = a.
- 7. Transitive Property: If a = b and b = c, then a = c.
- 8. Substitution Property: If a + b = c and b = x, then a + x = c.

1. Reflexive Property: Any angle or segment is congruent to itself $(\overline{AB} \cong \overline{AB})$.

- 1. Reflexive Property: Any angle or segment is congruent to itself $(\overline{AB} \cong \overline{AB})$.
- 2. Symmetric Property: If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

- 1. Reflexive Property: Any angle or segment is congruent to itself $(\overline{AB} \cong \overline{AB})$.
- 2. Symmetric Property: If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
- 3. Transitive Property: If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

1. If
$$2x - 3 = 5$$
, then $2x - 3 + 3 = 5 + 3$.

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality

2. If
$$2x = 10$$
 then $\frac{2x}{2} = \frac{10}{2}$.

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality
- 2. If 2x = 10 then $\frac{2x}{2} = \frac{10}{2}$.
 - Division Property of Equality

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality
- 2. If 2x = 10 then $\frac{2x}{2} = \frac{10}{2}$.
 - Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality

2. If
$$2x = 10$$
 then $\frac{2x}{2} = \frac{10}{2}$.

- Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.
 - Substitution Property

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality
- 2. If 2x = 10 then $\frac{2x}{2} = \frac{10}{2}$.
 - Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.
 - Substitution Property
- 4. If AB + BC = 2AB and 2AB = AC, then AB + BC = AC.

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality
- 2. If 2x = 10 then $\frac{2x}{2} = \frac{10}{2}$.
 - Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.
 - Substitution Property
- 4. If AB + BC = 2AB and 2AB = AC, then AB + BC = AC.
 - Transitive Property

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality

2. If
$$2x = 10$$
 then $\frac{2x}{2} = \frac{10}{2}$.

- Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.
 - Substitution Property
- 4. If AB + BC = 2AB and 2AB = AC, then AB + BC = AC.
 - Transitive Property
- 5. If $\angle X \cong \angle Y$, then $\angle Y \cong \angle X$.

- 1. If 2x 3 = 5, then 2x 3 + 3 = 5 + 3.
 - Addition Property of Equality

2. If
$$2x = 10$$
 then $\frac{2x}{2} = \frac{10}{2}$.

- Division Property of Equality
- 3. If x + y = 12 and y = 9, then x + 9 = 12.
 - Substitution Property
- 4. If AB + BC = 2AB and 2AB = AC, then AB + BC = AC.
 - Transitive Property
- 5. If $\angle X \cong \angle Y$, then $\angle Y \cong \angle X$.
 - Symmetric Property

 Linear Pair Postulate: If two angles form a linear pair, then they are supplementary.

- Linear Pair Postulate: If two angles form a linear pair, then they are supplementary.
- 2. Segment Addition Postulate: If B lies on \overline{AC} , then $\overline{AC} = AB + BC$.

- Linear Pair Postulate: If two angles form a linear pair, then they are supplementary.
- 2. Segment Addition Postulate: If B lies on \overline{AC} , then $\overline{AC} = AB + BC$.
- 3. Angle Addition Postulate: If B is in the interior of $\angle AOC$, then $m\angle AOC = m\angle AOB + m\angle BOC$.

What is a Theorem?

Theorem: a statement that is accepted after it is proved deductively

Some Theorems in Geometry

Some Theorems in Geometry

 Vertical Angle Theorem: If two angles are vertical, then they are congruent.

Some Theorems in Geometry

- 1. Vertical Angle Theorem: If two angles are vertical, then they are congruent.
- Complement Theorem: If two angles are complement of the same (or congruent) angles, then they are congruent.

Some Theorems in Geometry

- 1. Vertical Angle Theorem: If two angles are vertical, then they are congruent.
- Complement Theorem: If two angles are complement of the same (or congruent) angles, then they are congruent.
- Supplement Theorem: If two angles are supplement of the same (or congruent) angles, then they are congruent.

Provide the reason for each statement.

1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.
 - Complement Theorem

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.
 - Complement Theorem
- 4. If Y lies on \overline{XZ} , then XZ = XY + YZ.

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.
 - Complement Theorem
- 4. If Y lies on XZ, then XZ = XY + YZ.
 - Segment Addition Postulate

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.
 - Complement Theorem
- 4. If Y lies on XZ, then XZ = XY + YZ.
 - Segment Addition Postulate
- 5. If $m\angle D + m\angle E = 180^{\circ}$ and $m\angle E + m\angle F = 180^{\circ}$, then $\angle D \cong \angle F$.

- 1. If $\angle X$ and $\angle Y$ are vertical angles, then $\angle X \cong \angle Y$.
 - Vertical Angle Theorem
- 2. If $\angle M$ and $\angle N$ form a linear pair, then $\angle M$ and $\angle N$ are supplementary.
 - Linear Pair Postulate
- 3. If $m \angle J + m \angle K = 90^{\circ}$ and $m \angle K + m \angle L = 90^{\circ}$, then $\angle J \cong \angle L$.
 - Complement Theorem
- 4. If Y lies on XZ, then XZ = XY + YZ.
 - Segment Addition Postulate
- 5. If $m\angle D + m\angle E = 180^{\circ}$ and $m\angle E + m\angle F = 180^{\circ}$, then $\angle D \cong \angle F$.
 - Supplement Theorem

Thank you for watching.