Package 'simodels'

August 22, 2024

Title Flexible Framework for Developing Spatial Interaction Models

Version 0.2.0

Description Develop spatial interaction models (SIMs). SIMs predict the amount of interaction, for example number of trips per day, between geographic entities representing trip origins and destinations. Contains functions for creating origin-destination datasets from geographic input datasets and calculating movement between origin-destination pairs with constrained, production-constrained, and attraction-constrained models (Wilson 1979) <doi:10.1068/a030001>.

```
License AGPL (>= 3)
```

```
URL https://github.com/robinlovelace/simodels,
    https://robinlovelace.github.io/simodels/
```

BugReports https://github.com/robinlovelace/simodels/issues

Depends R (>= 2.10)

Imports dplyr, geodist, od (>= 0.5.1), rlang, sf

Suggests ggplot2, knitr, minpack.lm, nngeo, rmarkdown, tmap

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Robin Lovelace [aut, cre] (https://orcid.org/0000-0001-5679-6536), Jakub Nowosad [aut] (https://orcid.org/0000-0002-1057-3721)

Maintainer Robin Lovelace <rob00x@gmail.com>

Repository CRAN

Date/Publication 2024-08-22 14:10:01 UTC

od_aus

Contents

destinations_york	
od_aus	
$si_calculate \ \ldots \ldots \ldots \ldots \ldots \ldots$	
si_oa_wpz	
$si_oa_wpz_d \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
$si_oa_wpz_o \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
$si_od_census \dots \dots \dots \dots \dots \dots$	
si_predict	
$si_pubs $	
si_to_od	
si_zones	
zones_aus	
zones_york	

Index 10

destinations_york

Example destinations dataset: schools in York

Description

Example dataset from York, UK

Details

See data-raw/zones_york.qmd for details on the data source.

Examples

head(destinations_york)

od_aus

Example OD dataset: flows between regions in Australia

Description

Example dataset from Australia

Note

Regenerate the data with scripts in the data-raw directory.

Examples

head(od_aus)

si_calculate 3

si_calculate

Calculate flow using a pre-existing function

Description

Executes a spatial interaction model based on an OD data frame and user-specified function

Usage

```
si_calculate(
  od,
  fun,
  constraint_production,
  constraint_attraction,
  constraint_total,
  output_col = "interaction",
  ...
)
```

Arguments

od A data frame representing origin-destination data, e.g. as created by si_to_od()

fun A function that calculates the interaction (e.g. the number of trips) between each

OD pair

constraint_production

Character representing column in od. This argument, when set, ensures that the outputs are 'production constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the total for each zone of origin cannot go above this

value.

constraint_attraction

Character representing column in od. This argument, when set, ensures that the outputs are 'attraction constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the sum of trips to destination is equal to the mean value per destination.

constraint_total

Single number representing the total interaction. This argument, when set, ensures that the sum of the interaction calculated will equal the value given.

output_col

Character string containing the name of the new output column. "interaction" by default.

... Arguments passed to fun

Value

An sf data frame

4 si_oa_wpz_d

Examples

```
od = si_to_od(si_zones, si_zones, max_dist = 4000)
fun_dd = function(d = "distance_euclidean", beta = 0.3) exp(-beta * d / 1000)
fun_dd(d = (1:5) * 1000)
od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean)
plot(od$distance_euclidean, od_dd$interaction)
fun = function(0, n, d, beta) 0 * n * exp(-beta * d / 1000)
od_output = si_calculate(od, fun = fun, beta = 0.3, 0 = origin_all,
 n = destination_all, d = distance_euclidean)
head(od_output)
plot(od$distance_euclidean, od_output$interaction)
od_pconst = si_calculate(od, fun = fun, beta = 0.3, 0 = origin_all,
 n = destination_all, d = distance_euclidean, constraint_production = origin_all)
# Origin totals in OD data should equal origin totals in zone data
library(dplyr)
origin_totals_zones = od_pconst |>
 group_by(geo_code = 0) |>
 summarise(all_od = sum(interaction)) |>
 sf::st_drop_geometry()
zones_joined = left_join(si_zones, origin_totals_zones)
plot(zones_joined$all, zones_joined$all_od)
plot(od_pconst$distance_euclidean, od_pconst$interaction)
plot(od_pconst["interaction"], logz = TRUE)
od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean, output_col = "res")
head(od_dd$res)
od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean, constraint_total = 10)
sum(od_dd$interaction)
```

si_oa_wpz

Origin-Destination Data for Leeds

Description

This dataset contains origin-destination data for Leeds, including the number of trips between output areas (OAs) and workplace zones (WPZs).

Examples

```
head(si_oa_wpz)
```

si_oa_wpz_d

Destination Data for Leeds

Description

This dataset contains the number of trips destined for each workplace zone (WPZ) in Leeds.

 $si_oa_wpz_o$

Details

See wicid.ukdataservice.ac.uk for details on the data source and the file data-raw/si_oa_wpz.qmd in the package repo for details on how the example dataset was generated.

Examples

```
head(si_oa_wpz_d)
sf:::plot.sf(si_oa_wpz_d["n_d"])
```

si_oa_wpz_o

Origin Data for Leeds

Description

This dataset contains the number of trips originating from each output area (OA) in Leeds.

Examples

```
head(si_oa_wpz_o)
sf:::plot.sf(si_oa_wpz_o["n_o"])
```

si_od_census

Example OD dataset

Description

Example OD dataset from the 2011 UK Census

Note

Regenerate the data with scripts in the data-raw directory.

Examples

```
head(si_od_census)
```

6 si_predict

si_predict

Predict spatial interaction based on pre-trained model

Description

Predict spatial interaction based on pre-trained model

Usage

```
si_predict(
  od,
  model,
  constraint_production,
  constraint_attraction,
  constraint_total,
  output_col = "interaction",
  ...
)
```

Arguments

od

A data frame representing origin-destination data, e.g. as created by si_to_od()

model

A model object, e.g. from lm() or glm()

 $constraint_production$

Character representing column in od. This argument, when set, ensures that the outputs are 'production constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the total for each zone of origin cannot go above this value.

constraint_attraction

Character representing column in od. This argument, when set, ensures that the outputs are 'attraction constrained': the total 'interaction' (e.g. n. trips) for all OD pairs is set such that the sum of trips to destination is equal to the mean value per destination.

constraint_total

Single number representing the total interaction. This argument, when set, ensures that the sum of the interaction calculated will equal the value given.

output_col

Character string containing the name of the new output column. "interaction" by default.

... Arguments passed to fun

Value

An sf data frame

See Also

si_calculate

si_pubs 7

Examples

```
od = si_to_od(si_zones, si_zones, max_dist = 4000)
m = lm(od$origin_all ~ od$origin_bicycle)
od_updated = si_predict(od, m)
```

si_pubs

Example destinations dataset: pubs in Leeds

Description

Example dataset from Leeds, UK

Note

Regenerate the data with scripts in the data-raw directory.

Examples

```
head(si_pubs)
```

si_to_od

Prepare OD data frame

Description

Prepares an OD data frame that next could be used to estimate movement between origins and destinations with a spatial interaction model.

Usage

```
si_to_od(origins, destinations, max_dist = Inf, intrazonal = TRUE)
```

Arguments

origins	sf object representing origin locations/zones
destinations	sf object representing destination locations/zones
max_dist	Euclidean distance in meters (numeric). Only OD pairs that are this distance apart or less will be returned and therefore included in the SIM.
intrazonal	Include intrazonal OD pairs? Intrazonal OD pairs represent movement from one place in a zone to another place in the same zone. TRUE by default.

8 si_zones

Details

In most origin-destination datasets the spatial entities that constitute origins (typically administrative zones) also represent destinations. In this 'unipartite' case origins and destinations should be passed the same object, an sf data frame representing administrative zones.

'Bipartite' datasets, by contrast, represent "spatial interaction systems where origins cannot act as destinations and vice versa" (Hasova et al. 2022).

a different sf object can be passed to the destinations argument.

Value

An sf data frame

Examples

```
library(sf)
origins = si_centroids[c(1, 2, 99), ]
destinations = origins
plot(origins$geometry)
odsf = si_to_od(origins, destinations, max_dist = 1200)
plot(odsf)
# note: result contains intrazonal flows represented by linestrings
# with a length of 0, e.g.:
sf::st_coordinates(odsf$geometry[1])
# With different destinations compared with origins
library(sf)
origins = si_centroids[c(2, 99), c(1, 6, 7)]
destinations = si_centroids[1, c(1, 6, 8)]
odsf = si_to_od(origins, destinations)
nrow(odsf) # no intrazonal flows
plot(odsf)
```

si_zones

Example zones and centroids

Description

si_zones and si_centroids represent administrative zones between which flows are to be estimated.

Note

The schema data can be (re-)generated using code in data-raw

Examples

```
si_zones
sf:::plot.sfg(si_zones$geometry)
sf:::plot.sfg(si_centroids$geometry, add = TRUE)
```

zones_aus 9

zones_aus

Example zones dataset: regions of Australia

Description

Example dataset from Australia

Note

Regenerate the data with scripts in the data-raw directory.

Examples

```
head(zones_aus)
```

zones_york

Example zones dataset: administrative zones of York

Description

See data-raw/zones_york.qmd for details on the data source.

Examples

```
head(zones_york)
sf:::plot.sfg(zones_york$geometry)
```

Index

```
\ast datasets
    {\tt destinations\_york, 2}
    od_aus, 2
    si_oa_wpz, 4
    si_oa_wpz_d, 4
    si_oa_wpz_o, 5
    si_od_census, 5
    si_pubs, 7
    si\_zones, 8
    zones_aus, 9
    zones_york, 9
{\tt destinations\_york, 2}
glm(), 6
lm(), 6
od_aus, 2
si_calculate, 3
si_centroids(si_zones), 8
si_oa_wpz,4
si\_oa\_wpz\_d, 4
si_oa_wpz_o, 5
si_od_census, 5
si_predict, 6
si_pubs, 7
si_to_od, 7
si_to_od(), 3, 6
si\_zones, 8
zones_aus, 9
zones_york, 9
```