coordenadas rectangulares

Prof. Jhon Fredy Tavera Bucurú

2025

norma y dirección

suma y producto por escalar de vectores

producto interno

Sistema de coordenadas

Dado dos rectas numeradas perperdinculares (llamadas ejes "x" y "y"), con una de ellas horizontal (eje x); Dado un vector cualquiera \overrightarrow{OX} siendo el O el punto de intercepción de las rectas, y siendo e_1 el vector unitario con dirección O^o y e_2 el vector unitario en dirección de O^o ; existen números reales O^o , tales que

$$\overrightarrow{OX} = xe_1 + ye_2$$

tal descomposición es unica, por tanto en adelante un vector \overrightarrow{OX} queda bien definida por la pareja ordenada (x,y), que en adelante conoceremos como coordenadas rectangulares. Por tanto, definiremos

$$\overrightarrow{OX} = (x, y) = X$$

Norma

Sea el punto X con coordenadas rectangulares (x, y). La norma del vector $\|\overrightarrow{OX}\|$. Se calcula

$$||X|| = \left\| \overrightarrow{OX} \right\| = \sqrt{x^2 + y^2}$$

Propiedades de la norma

- 1. $||X|| \ge 0$
- 2. ||X|| = 0 si y sólo si $X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- 3. ||rX|| = |r| ||X||
- 4. $||X + U|| \le ||X|| + ||U||$ (Designaldad triangular)

Dirección

Sea un vector $\mathbf{v}=(x,y)$. Su dirección θ puede obtenerse con $\theta=\arctan\Bigl(\tfrac{y}{x}\Bigr) \quad \text{(más el ajuste que aparece en la tabla)}.$

Cuadrante	Condición sobre (x, y)	θ
I	$x > 0, y \ge 0$	$arctan(\frac{y}{x})$
П	x < 0, y > 0	$\arctan(\frac{y}{x}) + \pi$
Ш	x < 0, y < 0	$\arctan(\frac{y}{x}) + \pi$
IV	x > 0, y < 0	$\arctan(\frac{y}{x}) + 2\pi$

Suma y producto por escalar

Dados X, U con coordenadas rectangulares

$$X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad U = \begin{pmatrix} u \\ v \end{pmatrix}$$
 y un escalar r , definimos

$$X + U = \begin{pmatrix} x + u \\ y + v \end{pmatrix}, \qquad rX = \begin{pmatrix} rx \\ ry \end{pmatrix}.$$

Estas operaciones han sido definidas de tal modo que

$$X + U = R \iff \overrightarrow{OX} + \overrightarrow{OU} = \overrightarrow{OR}$$

 $rX = S \iff r \overrightarrow{OX} = \overrightarrow{OS}$

Propiedades de la suma y del producto por escalar en \mathbb{R}^2

Sea $X, Y, Z \in \mathbb{R}^2$ y $r, s \in \mathbb{R}$. Se cumplen:

- 1. $X + Y \in \mathbb{R}^2$
- 2. X + Y = Y + X
- 3. (X + Y) + Z = X + (Y + Z)
- 4. X + O = X
- 5. X + (-X) = 0
- 6. $rX \in \mathbb{R}^2$
- 7. 1X = X
- 8. r(sX) = (rs)X
- 9. r(X+Y) = rX + rY
- 10. (r+s)X = rX + sX

Distancia entre dos puntos en \mathbb{R}^2

La distancia entre los puntos
$$U = \begin{pmatrix} u \\ v \end{pmatrix}$$
 y $X = \begin{pmatrix} x \\ y \end{pmatrix}$ es

$$||X - U|| = \sqrt{(x - u)^2 + (y - v)^2}$$
.

Producto escalar en \mathbb{R}^2

El producto escalar de los vectores $X = \begin{pmatrix} x \\ y \end{pmatrix}$ y $U = \begin{pmatrix} u \\ v \end{pmatrix}$ es el escalar

$$X \cdot U = xu + yv.$$

Ángulo entre dos vectores en \mathbb{R}^2

Si α es el ángulo entre los vectores no nulos X y U, entonces

$$\cos\alpha \ = \ \frac{X \cdot U}{\|X\| \, \|U\|} \ .$$

Proyección de un vector sobre otro en \mathbb{R}^2

Si X y U son vectores cualesquiera de \mathbb{R}^2 con $U \neq O$, de la ya conocida fórmula

$$\operatorname{\mathsf{Proj}}_{\overrightarrow{OU}} \overrightarrow{OX} = \left(\frac{\overrightarrow{OX} \cdot \overrightarrow{OU}}{\|\overrightarrow{OU}\|^2} \right) \overrightarrow{OU}$$

se sigue, pasando a vectores algebraicos, que

$$\boxed{ \mathsf{Proj}_{U} X = \left(\frac{X \cdot U}{\|U\|} \right) \frac{U}{\|U\|} = \left(\frac{X \cdot U}{\|U\|^{2}} \right) U = \left(\frac{X \cdot U}{U \cdot U} \right) U}$$