$12a_{0569} (K12a_{0569})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{33} + 5u^{32} + \dots + b - 3, 7u^{33} - 11u^{32} + \dots + 2a + 9, u^{34} - 3u^{33} + \dots - 5u - 2 \rangle$$

$$I_2^u = \langle -21u^{24}a - 357u^{24} + \dots + 85a - 335, -2u^{23}a - 2u^{24} + \dots + a^2 - a, u^{25} + u^{24} + \dots + u - 1 \rangle$$

$$I_3^u = \langle u^7 - 4u^5 + u^4 + 4u^3 - 2u^2 + b - u, -u^5 - u^4 + 3u^3 + 2u^2 + a - u, u^8 - 5u^6 + 7u^4 - 2u^2 + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 92 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{33} + 5u^{32} + \dots + b - 3, 7u^{33} - 11u^{32} + \dots + 2a + 9, u^{34} - 3u^{33} + \dots - 5u - 2 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{7}{2}u^{33} + \frac{11}{2}u^{32} + \dots - \frac{29}{2}u - \frac{9}{2} \\ 3u^{33} - 5u^{32} + \dots + 11u + 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -5.50000u^{33} + 8.50000u^{32} + \dots - 20.5000u - 6.50000 \\ 5u^{33} - 8u^{32} + \dots + 17u + 5 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} - 6u^{9} + 12u^{7} - 10u^{5} + 5u^{3} \\ -u^{13} + 7u^{11} - 17u^{9} + 16u^{7} - 4u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{2}u^{33} + \frac{5}{2}u^{32} + \dots - \frac{13}{2}u - \frac{3}{2} \\ 2u^{33} - 3u^{32} + \dots + 9u + 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{7}{2}u^{33} - \frac{11}{2}u^{32} + \dots + \frac{27}{2}u + \frac{11}{2} \\ -3u^{33} + 5u^{32} + \dots - 10u - 3 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{34} + 14u^{33} + \dots + 2u + 1$
c_2, c_6, c_7 c_{12}	$u^{34} + 7u^{32} + \dots + 2u - 1$
c_3, c_4, c_9 c_{10}	$u^{34} + 3u^{33} + \dots + 5u - 2$
c_5	$u^{34} - 15u^{33} + \dots - 4575u + 358$
<i>C</i> ₈	$u^{34} + 9u^{33} + \dots - 281u - 136$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{34} + 22y^{33} + \dots - 102y + 1$
c_2, c_6, c_7 c_{12}	$y^{34} + 14y^{33} + \dots + 2y + 1$
c_3, c_4, c_9 c_{10}	$y^{34} - 39y^{33} + \dots - 21y + 4$
<i>C</i> ₅	$y^{34} + 9y^{33} + \dots - 2328229y + 128164$
c_8	$y^{34} - 3y^{33} + \dots - 79233y + 18496$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877399 + 0.216772I		
a = 0.475747 - 0.156573I	1.81473 - 6.46317I	9.54481 + 4.22755I
b = 0.73016 + 1.40055I		
u = 0.877399 - 0.216772I		
a = 0.475747 + 0.156573I	1.81473 + 6.46317I	9.54481 - 4.22755I
b = 0.73016 - 1.40055I		
u = -0.708573 + 0.517031I		
a = -0.145662 + 0.387973I	-0.14844 - 13.04060I	6.35227 + 10.72030I
b = 0.22304 - 2.36773I		
u = -0.708573 - 0.517031I		
a = -0.145662 - 0.387973I	-0.14844 + 13.04060I	6.35227 - 10.72030I
b = 0.22304 + 2.36773I		
u = 0.780460 + 0.363894I		
a = -0.627024 - 0.012240I	4.40948 + 4.16383I	12.6794 - 7.1623I
b = 0.031716 - 1.019530I		
u = 0.780460 - 0.363894I		
a = -0.627024 + 0.012240I	4.40948 - 4.16383I	12.6794 + 7.1623I
b = 0.031716 + 1.019530I		
u = -0.736699 + 0.432721I		
a = 0.353503 - 0.411057I	3.92336 - 2.16093I	12.40932 + 2.19070I
b = -0.48051 + 1.43982I		
u = -0.736699 - 0.432721I		
a = 0.353503 + 0.411057I	3.92336 + 2.16093I	12.40932 - 2.19070I
b = -0.48051 - 1.43982I		
u = -0.562396 + 0.535053I		
a = -0.351346 + 0.308190I	-3.10387 + 1.61500I	3.93469 - 1.70541I
b = -1.167160 - 0.153798I		
u = -0.562396 - 0.535053I		
a = -0.351346 - 0.308190I	-3.10387 - 1.61500I	3.93469 + 1.70541I
b = -1.167160 + 0.153798I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.369153 + 0.566173I		
a = 0.060405 - 1.357450I	-3.66613 - 5.39835I	2.14176 + 8.12985I
b = 0.522127 - 0.471400I		
u = -0.369153 - 0.566173I		
a = 0.060405 + 1.357450I	-3.66613 + 5.39835I	2.14176 - 8.12985I
b = 0.522127 + 0.471400I		
u = 0.478774 + 0.474535I		
a = 0.006193 - 0.459110I	-1.82601 + 1.67416I	6.00203 - 5.31904I
b = 0.318164 + 0.001013I		
u = 0.478774 - 0.474535I		
a = 0.006193 + 0.459110I	-1.82601 - 1.67416I	6.00203 + 5.31904I
b = 0.318164 - 0.001013I		
u = -0.184105 + 0.612147I		
a = -2.40151 - 0.24206I	-1.68891 + 9.20421I	3.04718 - 5.89874I
b = -0.085419 - 0.531958I		
u = -0.184105 - 0.612147I		
a = -2.40151 + 0.24206I	-1.68891 - 9.20421I	3.04718 + 5.89874I
b = -0.085419 + 0.531958I		
u = 1.43714 + 0.08661I		
a = 0.678840 + 0.278085I	2.03333 + 7.62639I	0
b = -0.085956 - 1.097670I		
u = 1.43714 - 0.08661I		
a = 0.678840 - 0.278085I	2.03333 - 7.62639I	0
b = -0.085956 + 1.097670I		
u = -0.050097 + 0.546766I		
a = 1.46207 - 0.24634I	1.94188 - 1.14446I	7.91735 + 3.10614I
b = 0.040124 + 0.397505I		
u = -0.050097 - 0.546766I		
a = 1.46207 + 0.24634I	1.94188 + 1.14446I	7.91735 - 3.10614I
b = 0.040124 - 0.397505I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.53119 + 0.11501I		
a = 0.777108 + 0.261273I	4.89311 - 3.68703I	0
b = -1.053720 - 0.389785I		
u = -1.53119 - 0.11501I		
a = 0.777108 - 0.261273I	4.89311 + 3.68703I	0
b = -1.053720 + 0.389785I		
u = 1.54361		
a = -0.986884	7.42344	0
b = 0.729443		
u = 1.54714 + 0.14618I		
a = -1.43226 + 0.61040I	3.92568 + 0.82031I	0
b = 1.95694 - 0.15000I		
u = 1.54714 - 0.14618I		
a = -1.43226 - 0.61040I	3.92568 - 0.82031I	0
b = 1.95694 + 0.15000I		
u = -0.432002		
a = 0.604501	0.622618	16.1500
b = -0.356295		
u = 1.60778 + 0.15231I		
a = 1.23471 + 3.38333I	7.6999 + 15.5437I	0
b = -0.71168 - 4.36160I		
u = 1.60778 - 0.15231I		
a = 1.23471 - 3.38333I	7.6999 - 15.5437I	0
b = -0.71168 + 4.36160I		
u = 1.61580 + 0.12438I		
a = -1.19491 - 2.06212I	11.94790 + 4.25345I	0
b = 0.95223 + 2.61552I		
u = 1.61580 - 0.12438I		
a = -1.19491 + 2.06212I	11.94790 - 4.25345I	0
b = 0.95223 - 2.61552I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.62557 + 0.09964I		
a = -0.15988 + 2.10696I	12.65520 - 5.90157I	0
b = 0.28288 - 2.81306I		
u = -1.62557 - 0.09964I		
a = -0.15988 - 2.10696I	12.65520 + 5.90157I	0
b = 0.28288 + 2.81306I		
u = -1.63252 + 0.05614I		
a = 1.20521 - 2.66840I	10.38340 + 5.46156I	0
b = -1.65951 + 3.54397I		
u = -1.63252 - 0.05614I		
a = 1.20521 + 2.66840I	10.38340 - 5.46156I	0
b = -1.65951 - 3.54397I		

II.
$$I_2^u = \langle -21u^{24}a - 357u^{24} + \dots + 85a - 335, \ -2u^{23}a - 2u^{24} + \dots + a^2 - a, \ u^{25} + u^{24} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0589888au^{24} + 1.00281u^{24} + \dots - 0.238764a + 0.941011 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0477528au^{24} + 0.811798u^{24} + \dots + 0.997191a - 0.0477528 \\ 0.0112360au^{24} + 0.191011u^{24} + \dots - 0.235955a + 0.988764 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} - 6u^{9} + 12u^{7} - 10u^{5} + 5u^{3} \\ -u^{13} + 7u^{11} - 17u^{9} + 16u^{7} - 4u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0477528au^{24} + 0.188202u^{24} + \dots - 0.997191a + 1.04775 \\ -0.0112360au^{24} + 0.808989u^{24} + \dots + 0.235955a - 0.988764 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0477528au^{24} + 0.188202u^{24} + \dots + 1.00281a + 0.0477528 \\ 0.0477528au^{24} + 0.188202u^{24} + \dots + 1.00281a + 0.952247 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 4u^{23} - 56u^{21} + 328u^{19} - 4u^{18} - 1040u^{17} + 44u^{16} + 1936u^{15} - 192u^{14} - 2164u^{13} + 420u^{12} + 1440u^{11} - 484u^{10} - 508u^9 + 296u^8 - 4u^7 - 100u^6 + 64u^5 + 4u^4 - 20u^3 + 4u^2 - 4u + 10u^4 + 100u^4 + 100u^$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{50} + 27u^{49} + \dots + 35u + 4$
c_2, c_6, c_7 c_{12}	$u^{50} + u^{49} + \dots + 5u + 2$
c_3, c_4, c_9 c_{10}	$(u^{25} - u^{24} + \dots + u + 1)^2$
c_5	$(u^{25} + 5u^{24} + \dots - 47u - 11)^2$
c ₈	$(u^{25} + 7u^{24} + \dots + 41u + 7)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{50} - 9y^{49} + \dots + 1407y + 16$
c_2, c_6, c_7 c_{12}	$y^{50} + 27y^{49} + \dots + 35y + 4$
c_3, c_4, c_9 c_{10}	$(y^{25} - 29y^{24} + \dots + y - 1)^2$
c_5	$(y^{25} + 11y^{24} + \dots - 827y - 121)^2$
<i>c</i> ₈	$(y^{25} - 5y^{24} + \dots + 197y - 49)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.718272 + 0.485243I		
a = -0.496142 - 0.419262I	2.29194 + 7.50021I	9.62573 - 7.29113I
b = 0.26577 + 1.44202I		
u = 0.718272 + 0.485243I		
a = -0.100137 + 0.365766I	2.29194 + 7.50021I	9.62573 - 7.29113I
b = -0.06988 - 2.11914I		
u = 0.718272 - 0.485243I		
a = -0.496142 + 0.419262I	2.29194 - 7.50021I	9.62573 + 7.29113I
b = 0.26577 - 1.44202I		
u = 0.718272 - 0.485243I		
a = -0.100137 - 0.365766I	2.29194 - 7.50021I	9.62573 + 7.29113I
b = -0.06988 + 2.11914I		
u = -0.816872 + 0.280683I		
a = 0.751695 - 0.110614I	3.64682 + 1.11527I	12.41631 + 0.71281I
b = -0.004403 - 0.561403I		
u = -0.816872 + 0.280683I		
a = -0.229043 - 0.316380I	3.64682 + 1.11527I	12.41631 + 0.71281I
b = -0.73086 + 1.46356I		
u = -0.816872 - 0.280683I		
a = 0.751695 + 0.110614I	3.64682 - 1.11527I	12.41631 - 0.71281I
b = -0.004403 + 0.561403I		
u = -0.816872 - 0.280683I		
a = -0.229043 + 0.316380I	3.64682 - 1.11527I	12.41631 - 0.71281I
b = -0.73086 - 1.46356I		
u = -0.664564 + 0.449435I		
a = 0.455137 + 0.809467I	-3.14595 - 4.18290I	4.98515 + 7.72660I
b = -0.62549 - 2.26185I		
u = -0.664564 + 0.449435I		
a = -0.833552 + 0.255403I	-3.14595 - 4.18290I	4.98515 + 7.72660I
b = -1.15382 - 0.82719I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.664564 - 0.449435I		
a = 0.455137 - 0.809467I	-3.14595 + 4.18290I	4.98515 - 7.72660I
b = -0.62549 + 2.26185I		
u = -0.664564 - 0.449435I		
a = -0.833552 - 0.255403I	-3.14595 + 4.18290I	4.98515 - 7.72660I
b = -1.15382 + 0.82719I		
u = 0.629613 + 0.295912I		
a = 1.103490 + 0.019629I	-2.09040 + 0.82124I	8.96410 - 1.46331I
b = 0.691062 - 1.047430I		
u = 0.629613 + 0.295912I		
a = -0.169580 - 1.235130I	-2.09040 + 0.82124I	8.96410 - 1.46331I
b = 1.03458 + 1.49781I		
u = 0.629613 - 0.295912I		
a = 1.103490 - 0.019629I	-2.09040 - 0.82124I	8.96410 + 1.46331I
b = 0.691062 + 1.047430I		
u = 0.629613 - 0.295912I		
a = -0.169580 + 1.235130I	-2.09040 - 0.82124I	8.96410 + 1.46331I
b = 1.03458 - 1.49781I		
u = 0.433714 + 0.460017I		
a = 0.310449 - 0.823732I	-1.87609 + 1.61686I	4.87509 - 4.54712I
b = 0.084915 - 0.370987I		
u = 0.433714 + 0.460017I		
a = -0.354969 - 0.143817I	-1.87609 + 1.61686I	4.87509 - 4.54712I
b = 0.517702 + 0.309879I		
u = 0.433714 - 0.460017I		
a = 0.310449 + 0.823732I	-1.87609 - 1.61686I	4.87509 + 4.54712I
b = 0.084915 + 0.370987I		
u = 0.433714 - 0.460017I		
a = -0.354969 + 0.143817I	-1.87609 - 1.61686I	4.87509 + 4.54712I
b = 0.517702 - 0.309879I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.142727 + 0.579000I		
a = -1.227520 + 0.034036I	0.61424 - 3.87050I	6.00448 + 2.43861I
b = 0.026860 + 0.617172I		
u = 0.142727 + 0.579000I		
a = 2.25381 - 0.36959I	0.61424 - 3.87050I	6.00448 + 2.43861I
b = 0.014633 - 0.246499I		
u = 0.142727 - 0.579000I		
a = -1.227520 - 0.034036I	0.61424 + 3.87050I	6.00448 - 2.43861I
b = 0.026860 - 0.617172I		
u = 0.142727 - 0.579000I		
a = 2.25381 + 0.36959I	0.61424 + 3.87050I	6.00448 - 2.43861I
b = 0.014633 + 0.246499I		
u = -0.209074 + 0.473774I		
a = -0.39992 - 1.91880I	-4.45458 + 0.92486I	-0.08147 - 1.66278I
b = 0.211890 - 0.974935I		
u = -0.209074 + 0.473774I		
a = -2.62374 - 0.86746I	-4.45458 + 0.92486I	-0.08147 - 1.66278I
b = 0.619265 - 0.124151I		
u = -0.209074 - 0.473774I		
a = -0.39992 + 1.91880I	-4.45458 - 0.92486I	-0.08147 + 1.66278I
b = 0.211890 + 0.974935I		
u = -0.209074 - 0.473774I		
a = -2.62374 + 0.86746I	-4.45458 - 0.92486I	-0.08147 + 1.66278I
b = 0.619265 + 0.124151I		
u = 1.48298		
a = 1.09851 + 1.36235I	0.787691	3.78220
b = -0.26943 - 1.89202I		
u = 1.48298		
a = 1.09851 - 1.36235I	0.787691	3.78220
b = -0.26943 + 1.89202I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.49660 + 0.07007I		
a = -0.198609 + 0.768663I	4.41001 - 3.32898I	8.74899 + 3.47484I
b = -0.401251 - 1.286810I		
u = -1.49660 + 0.07007I		
a = 1.298030 + 0.149609I	4.41001 - 3.32898I	8.74899 + 3.47484I
b = -1.096220 - 0.011479I		
u = -1.49660 - 0.07007I		
a = -0.198609 - 0.768663I	4.41001 + 3.32898I	8.74899 - 3.47484I
b = -0.401251 + 1.286810I		
u = -1.49660 - 0.07007I		
a = 1.298030 - 0.149609I	4.41001 + 3.32898I	8.74899 - 3.47484I
b = -1.096220 + 0.011479I		
u = -1.59018 + 0.09388I		
a = 1.13331 + 1.34552I	5.52546 - 2.31852I	10.07988 - 0.26267I
b = -2.13417 - 1.44076I		
u = -1.59018 + 0.09388I		
a = 2.17950 - 2.41711I	5.52546 - 2.31852I	10.07988 - 0.26267I
b = -2.37114 + 2.78140I		
u = -1.59018 - 0.09388I		
a = 1.13331 - 1.34552I	5.52546 + 2.31852I	10.07988 + 0.26267I
b = -2.13417 + 1.44076I		
u = -1.59018 - 0.09388I		
a = 2.17950 + 2.41711I	5.52546 + 2.31852I	10.07988 + 0.26267I
b = -2.37114 - 2.78140I		
u = 1.59510 + 0.12778I		
a = -1.45878 + 1.14196I	4.53379 + 6.30957I	7.83367 - 5.57691I
b = 2.53044 - 0.90497I		
u = 1.59510 + 0.12778I		
a = 0.17314 + 3.89558I	4.53379 + 6.30957I	7.83367 - 5.57691I
b = 0.21333 - 4.54298I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.59510 - 0.12778I		
a = -1.45878 - 1.14196I	4.53379 - 6.30957I	7.83367 + 5.57691I
b = 2.53044 + 0.90497I		
u = 1.59510 - 0.12778I		
a = 0.17314 - 3.89558I	4.53379 - 6.30957I	7.83367 + 5.57691I
b = 0.21333 + 4.54298I		
u = -1.61122 + 0.14112I		
a = 0.98524 - 1.89455I	10.2089 - 9.8448I	11.88321 + 5.59341I
b = -0.56722 + 2.33541I		
u = -1.61122 + 0.14112I		
a = -0.89838 + 3.28439I	10.2089 - 9.8448I	11.88321 + 5.59341I
b = 0.51623 - 4.20300I		
u = -1.61122 - 0.14112I		
a = 0.98524 + 1.89455I	10.2089 + 9.8448I	11.88321 - 5.59341I
b = -0.56722 - 2.33541I		
u = -1.61122 - 0.14112I		
a = -0.89838 - 3.28439I	10.2089 + 9.8448I	11.88321 - 5.59341I
b = 0.51623 + 4.20300I		
u = 1.62760 + 0.07696I		
a = 0.05235 + 1.49265I	12.01820 + 0.23028I	13.77375 + 0.13265I
b = -0.36051 - 2.03840I		
u = 1.62760 + 0.07696I		
a = -1.30429 - 2.61429I	12.01820 + 0.23028I	13.77375 + 0.13265I
b = 1.55773 + 3.42070I		
u = 1.62760 - 0.07696I		
a = 0.05235 - 1.49265I	12.01820 - 0.23028I	13.77375 - 0.13265I
b = -0.36051 + 2.03840I		
u = 1.62760 - 0.07696I		
a = -1.30429 + 2.61429I	12.01820 - 0.23028I	13.77375 - 0.13265I
b = 1.55773 - 3.42070I		

III.
$$I_3^u = \langle u^7 - 4u^5 + u^4 + 4u^3 - 2u^2 + b - u, \ -u^5 - u^4 + 3u^3 + 2u^2 + a - u, \ u^8 - 5u^6 + 7u^4 - 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} + u^{4} - 3u^{3} - 2u^{2} + u \\ -u^{7} + 4u^{5} - u^{4} - 4u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + u^{4} - 3u^{3} - 2u^{2} + 2u \\ -u^{7} + 4u^{5} - u^{4} - 4u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u^{4} - 3u^{3} - 2u^{2} + 2u \\ -u^{7} + 4u^{5} - u^{4} - 4u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{6} - 3u^{4} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{5} + 2u^{3} + u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{5} + 4u^{4} + 3u^{3} - 4u^{2} - u + 1 \\ u^{5} - 3u^{3} + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + u^{4} - 3u^{3} - 3u^{2} + 2u + 1 \\ -u^{7} + 4u^{5} - 4u^{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^6 + 16u^4 16u^2 + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u-1)^8$
c_2, c_6, c_7 c_{12}	$(u^2+1)^4$
c_3, c_4, c_9 c_{10}	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
<i>C</i> ₅	$u^8 - u^6 + 3u^4 - 2u^2 + 1$
c ₈	$(u^4 - u^3 + u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y-1)^8$
c_2, c_6, c_7 c_{12}	$(y+1)^8$
c_3, c_4, c_9 c_{10}	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
c_5	$(y^4 - y^3 + 3y^2 - 2y + 1)^2$
<i>c</i> ₈	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.506844 + 0.395123I		
a = 0.368534 - 1.072150I	-3.50087 + 1.41510I	0.17326 - 4.90874I
b = 0.858652 + 0.115465I		
u = 0.506844 - 0.395123I		
a = 0.368534 + 1.072150I	-3.50087 - 1.41510I	0.17326 + 4.90874I
b = 0.858652 - 0.115465I		
u = -0.506844 + 0.395123I		
a = -1.072150 + 0.368534I	-3.50087 - 1.41510I	0.17326 + 4.90874I
b = -0.155036 - 1.325220I		
u = -0.506844 - 0.395123I		
a = -1.072150 - 0.368534I	-3.50087 + 1.41510I	0.17326 - 4.90874I
b = -0.155036 + 1.325220I		
u = 1.55249 + 0.10488I		
a = -0.05948 + 1.76310I	3.50087 + 3.16396I	3.82674 - 2.56480I
b = 0.70068 - 1.80642I		
u = 1.55249 - 0.10488I		
a = -0.05948 - 1.76310I	3.50087 - 3.16396I	3.82674 + 2.56480I
b = 0.70068 + 1.80642I		
u = -1.55249 + 0.10488I		
a = 1.76310 - 0.05948I	3.50087 - 3.16396I	3.82674 + 2.56480I
b = -2.40430 + 0.01617I		
u = -1.55249 - 0.10488I		
a = 1.76310 + 0.05948I	3.50087 + 3.16396I	3.82674 - 2.56480I
b = -2.40430 - 0.01617I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$((u-1)^8)(u^{34} + 14u^{33} + \dots + 2u + 1)(u^{50} + 27u^{49} + \dots + 35u + 4)$
c_2, c_6, c_7 c_{12}	$((u^{2}+1)^{4})(u^{34}+7u^{32}+\cdots+2u-1)(u^{50}+u^{49}+\cdots+5u+2)$
c_3, c_4, c_9 c_{10}	$(u^8 - 5u^6 + 7u^4 - 2u^2 + 1)(u^{25} - u^{24} + \dots + u + 1)^2$ $\cdot (u^{34} + 3u^{33} + \dots + 5u - 2)$
c_5	$(u^8 - u^6 + 3u^4 - 2u^2 + 1)(u^{25} + 5u^{24} + \dots - 47u - 11)^2$ $\cdot (u^{34} - 15u^{33} + \dots - 4575u + 358)$
c_8	$((u^4 - u^3 + u^2 + 1)^2)(u^{25} + 7u^{24} + \dots + 41u + 7)^2$ $\cdot (u^{34} + 9u^{33} + \dots - 281u - 136)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$((y-1)^8)(y^{34} + 22y^{33} + \dots - 102y + 1)(y^{50} - 9y^{49} + \dots + 1407y + 16)$
c_2, c_6, c_7 c_{12}	$((y+1)^8)(y^{34}+14y^{33}+\cdots+2y+1)(y^{50}+27y^{49}+\cdots+35y+4)$
c_3, c_4, c_9 c_{10}	$((y^4 - 5y^3 + 7y^2 - 2y + 1)^2)(y^{25} - 29y^{24} + \dots + y - 1)^2$ $\cdot (y^{34} - 39y^{33} + \dots - 21y + 4)$
c_5	$((y^4 - y^3 + 3y^2 - 2y + 1)^2)(y^{25} + 11y^{24} + \dots - 827y - 121)^2$ $\cdot (y^{34} + 9y^{33} + \dots - 2328229y + 128164)$
c_8	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{25} - 5y^{24} + \dots + 197y - 49)^2$ $\cdot (y^{34} - 3y^{33} + \dots - 79233y + 18496)$