Primer Certamen

Introducción a la Informática Teórica Informática Teórica

14 de noviembre de 2015

1. Para una palabra $\alpha = a_1 a_2 a_3 \dots a_n$ ($a_i \in \Sigma$ son símbolos) se define la operación even mediante:

even
$$(\alpha) = \begin{cases} a_2 a_4 \dots a_n & \text{si } n \text{ es par} \\ a_2 a_4 \dots a_{n-1} & \text{si } n \text{ es impar} \end{cases}$$

Usando propiedades de clausura, demuestre que si L es un lenguaje regular, lo es even(L).

(25 puntos)

2. Demuestre que el lenguaje

$$\{a^{\lfloor \sqrt{n} \rfloor}b^n \colon n \ge 0\}$$

no es regular.

(30 puntos)

3. Se define la operación shuffle entre palabras $\alpha = a_1 a_2 \dots a_n$ y $\beta = b_1 b_2 \dots b_n$ mediante:

shuffle(
$$\alpha$$
, β) = $a_1b_1a_2b_2...a_nb_n$

Demuestre que si L_1 y L_2 son lenguajes regulares, lo es shuffle(L_1, L_2).

Pista: Parta con DFAs para L_1 y L_2 , obtenga un DFA para shuffle (L_1, L_2) .

(30 puntos)

4. Un conjunto \mathscr{C} se llama *lineal* si para algún $k \in \mathbb{N}$ hay valores $v_0, \dots, v_k \in \mathbb{N}$ tales que:

$$\mathscr{C} = \{ v_0 + \lambda_1 v_1 + \dots + \lambda_k v_k \colon \lambda_i \in \mathbb{N}_0 \}$$

Note que *k* puede ser 0, en cuyo caso el conjunto tiene un único elemento. Un conjunto se llama *semilineal* si es la unión de un número finito de conjuntos lineales.

Demuestre que si L es regular, el conjunto $\{|\sigma|: \sigma \in L\}$ es semilineal

Pista: Use el lema de bombeo.

(30 puntos)

5. Usando el problema 4 demuestre que el lenguaje $L_p = \{a^p : p \text{ es primo}\}$ no es regular.

Pista: Para todo $n, n! + 2, n! + 3, \dots, n! + n$ son todos compuestos.

(20 puntos)

 $HvB/\LaTeX_{E}X2_{\mathcal{E}}$