Notes

Week 4

Module 2 Week 4B

Chi-Squared Tests

- The Chi-squared distribution is a member of the normal family of distributions and often arises as the sampling distribution for a test statistic.
- We will use the Chi-squared distribution for:
 - Goodness of fit tests
 - Tests of independence
 - Tests of homogeneity
 - Tests of a single variance
- ullet A Chi-squared distribution has a *mean* equal to df and *standard deviation* equal to $\sqrt{2df}$
- A Chi-squared random variable with k degrees of freedom is the sum of k independent, squared standard normal distributions.
 - => The *Test Statistic* > 0, *never negative*!
- ullet A Chi-squared distribution is *skewed to the right* and the skew decreases as df increases.
- A Chi-squared distribution with df>90 can be approximated with a *Normal Distribution*.

Goodness of fit test

- Do the data fit a particular distribution?
- Often used for categorical data
- H_0 : data fit the expected distribution
- H_a : data do not fit the expected distribution
- The test involves comparing expected frequencies (E) with observed frequencies (O).
- ullet Let k= the number of categories of the variable of interest
- Test statistic = $\sum_k \frac{(O-E)^2}{E}$
- The test is always right-tailed.
- df = k-1
- Want *Expected Value* for each category ≥ 5

• E.g. The following table shows the distribution of grades a professor expects in a class of 100 students as well as the grades she observes.

	Grade	Expected (E)	Observed (O)	(O-E)^2	((O-E)^2)/E
•	Α	20	11	81	4.05
	В	30	38	64	2.13
	С	30	42	144	4.8
	D	10	7	9	0.90
	F	10	2	64	6.4

- \blacksquare Test-stat = 4.05 + 2.13 + 4.8 + 0.90 + 6.4 = 18.28
- df = k-1 = 5-1 = 4
- p-value = 0.0011
- ullet 0.0011 < 0.05 => reject H_0 , the observed grades do not fit the expected distribution

Test of independence

- Are two variables independent (i.e. knowing values for one variable of interest doesn't give you information about other variable's values)?
- Often used for nominal variables
- H_0 : the two variables are independent
- H_a : the two variables are not independent
- Test statistic $=\sum_k \frac{(O-E)^2}{E}$
- $df = (number of rows-1) \times (number of columns-1)$
- ullet Expected frequencies (E) won't always be obvious.
 - $\circ \quad \text{Calculate using } \frac{(\operatorname{row\ total}) \times (\operatorname{column\ total})}{(\operatorname{total\ number\ of\ observations})}$
 - Row and column totals are often referred to as row and column marginals
- E.g. Is there a relationship between gender and being a STEM major?

	STEM	Non-STEM	Total
Male	22	47	69
Female	18	53	71
Total	40	100	140

0	Observed (O)	Expected (E)	(O – E)	(O – E)^2	((O – E)^2)/E
	22	19.7	2.3	5.3	0.27
	18	20.3	-2.3	5.3	0.26
	47	49.3	-2.3	5.3	0.11
	53	50.7	2.3	5.3	0.10

 \circ Test-stat = 0.27 + 0.26 + 0.11 + 0.10 = 0.74

- $o df = (2-1) \times (2-1) = 1$
- \circ p-value = 0.39
- $\circ~0.39>0.05$ => fail to reject H_0 , gender and being a STEM major are independent

Test for homogeneity

- *Motivation*: The goodness of fit test is used to determine if the data fit a *particular* distribution, but it won't suffice for determining whether two variables follow the same *unknown* distribution.
- H_0 : distributions are the same
- ullet H_a : distributions are different
- Test statistic is calculated in same way as for the goodness of fit test.
- df = number of columns-1
- Comparing a single qualitative variable with more than 2 categories across two populations
- All values in table must be greater than or equal to 5
- E.g. Is there a difference in favorite professional sport to watch between those living on the east coast versus the west coast?

		Baseball		Football		Basketball		Total
0	East coast	18		22		14		54
	West coast	20		19		17		56
	Total	38		41		31		110
0	Observed	Expected			(O – E)^2		((O – E)^2)/E	
	18 18.		18.65		0.42		0.023	
	19.35		0.42		0.02		22	
	22		20.13	3.5			0.1	74
	19		20.87		3.5		0.168	
	14		15.22	1.49			0.0	98
	17		15.78		1.49		0.094	

- Test-statistic = 0.023 + 0.022 + 0.174 + 0.168 + 0.098 + 0.094 = 0.579
- p-value = 0.749
- 0.749 > 0.05 => fail to reject H_0 , there is not a statistically significant difference between east and west coast in the distribution of favorite pro sports

Test of a single variance

- Assume underlying population is normal
- Can still have *One* or *Two-Tailed* test for a Single Variance (but the Test Stat is still *positive*)
- E.g. Is the variance in waiting time at the DMV greater than 10 minutes?
 - $\circ H_0$: $\sigma^2=10$ (Note the *Equal* sign: because the Sampling Distribution is under the assumption that the Null Hypothesis is true => a *Single* distribution; an Inequality sign would imply infinite number of distributions => "=" is more accurate in H_0 than " \geq " or " \leq ")
 - \circ H_a : $\sigma^2 > 10$
 - \circ Test-statistic $=\frac{(n-1)s^2}{\sigma^2}$, where s^2 Sample Variance
 - \circ df = n-1
 - Suppose in a random sample of 30 people at the DMV the sample variance is calculated and equal to 12.
 - Test-statistic = $\frac{29 \times 12}{10}$ = 34.8
 - \circ p-value = 0.21
 - $\circ~0.21>0.05$ => fail to reject Ho, the variance in wait times is not greater than 10 minutes.