WINTER-2017

UNIT 1

Q.1 a) Obtain principle disjunctive normal form of (7)

 $(P \wedge R) \vee (\neg P \wedge \neg Q) \vee (Q \wedge R)$

- **b)** Explain with example:
 - i) Tautology ii) Contradiction iii) Equivalent formulas.
- Q.2 a) Show the following equivalences:

(6)

(6)

- i) $P \rightarrow (Q \cup R) \Leftrightarrow (P \land \neg Q) \rightarrow R$
- **ii)** $(A \cup B) \rightarrow C \Leftrightarrow (A \rightarrow C) \land (B \rightarrow C)$
- **b)** Obtain Principle Conjunctive Normal form of $(P \rightarrow R) \land (Q = P)$ (7)

UNIT 2

- **Q.3 a)** Show that R V S is tautological implied by $(P \lor Q)$, $(P \to R)$ and $(Q \to S)$.
- **b)** Symbolize the following statements: (6)
 - i) Every apple is redii) All Indians are braveiii) Some Cats are black.
- **Q.4 a)** $x(A(x) \rightarrow B(x)) \land (x) (B(x) \rightarrow C(x)) \Rightarrow (x) (A(x) \rightarrow C(x)).$ (7)
- **b)** Show that $(G \vee H)$ is a valid conclusion for $(B \wedge C)$, $(B \Leftrightarrow C) \rightarrow (H \vee G)$.

UNIT 3

Q.5 a) Let
$$P = \{<1, 2>, <2, 4>, <3, 3>\}$$
 and $Q = \{<1, 3>, <2, 4>, <4, 2>\}.$ (7)

Find $P \cup Q$, $P \cap Q$, D(P), D(Q), R(P), R(Q), $D(P \cup Q)$ and $R(P \cap Q)$. Also show that,

 $D(P \cup Q) = D(P) \cup D(Q)$ and $R(p \cap Q) \subseteq R(P) \cap R(Q)$.

- **b)** Let $X = \{1, 2, 3, 4, 10\}$ and $R = \{\langle x, y \rangle / x + y = 10\}$ (7) Draw graph of R and give its Matrix representation.
- Q.6 a) Draw Venn Diagrams of (7)
 - i) $A \cup B = A \cup C$ but $B \neq C$ ii) $A \cap B = A \cap C$ but $B \neq C$ iii) $A \cup B \subset A \cup C$ but $B \not\subset C$.
- **b)** Given the relation Matrices M_R and M_S find $M_{R \circ S}$, $M_{\overline{R}}$, $M_{\overline{S}}$, $M_{R \circ S}$. Show that $M_{R \circ S} = M_{\overline{S} \circ \overline{R}}$

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
 (7)

UNIT 4

Q.7 a) Write composition table for

i)
$$<$$
Z₇, $+$ ₇ $>$ ii) $<$ Z₇, $*$ ₇ $>$ (7)

- **b)** Find out left coset of H in <Z₆, +₆> where H = {[0], [3]}. **(6)**
- Q.8 a) Explain: i) Monoid ii) Group iii) Semigroup. (6)
- **b)** Convert the following infix expressions to Prefix and Postfix: (7)

i)
$$(A * B) - (C * (D/F))$$
 ii) $(A + B) * (C - D)$

UNIT 5

Q.9 a) Expand the following functions into their Sum of product form: (7)

i)
$$f(x, y, z) = xy' + y' z'$$

ii)
$$f(w, x, y, z) = xy + w' yz$$
.

b) Draw the lattice diagram of $\langle S_n, D \rangle$ where n = 12, 15, 30, 75 (7)

Q.10 a) Use K-Map representation to find Minimal Sum of product expressions for: (7)

i)
$$f(x, y, z) = \sum (0, 1, 4, 6)$$

ii)
$$f(w, x, y, z) = \sum (0, 5, 7, 8, 12, 14)$$

b) Find the complement of every element of the lattice $\langle S_n, D \rangle$ for n = 75

UNIT 6

Q.11 a) Prove that in a simple directed graph the sum of degrees of all the nodes is twice the number of edges of the graph. (6)

b) Give the directed tree representation of following: (7)

$$(P \land (P \lor Q)) \land (P \lor Q) \lor R)$$

Q.12 a) Traverse the following tree with three techniques: Inorder, Preorder, Postorder. (7)

b) Obtain adjacency Matrix and Path Matrix of the digraph given below. (6)

