

Spark Essentials

Amy Krause, Andreas Vroutsis

EPCC, The University of Edinburgh

Slides thanks to Rosa Filgueira, EPCC

Review of Concepts

- ▶ What is Functional Programming Python
 - Lambda Functions
 - Map, Filter, Reduce
- List Comprehensions
- List Slicing

Functional Programming

- Functional Programming is a style whose underlying model of computation is the function.
- Functions take input and produce output, without any side effects
- No state
- Immutable data
- Function as first-class citizen
- Recursion
- Purity ...

https://marcobonzanini.com/2015/06/08/functional-programming-in-python/

Python Functional Programming

Python is a multi paradigm programming language. As a Python programmer why uses functional programming in Python?

Python is not a functional language but have a lot of features that enables us to applies functional principles in the development, turning our code more elegant, concise, maintanable, easier to understand and test.

Lambda function

- Syntax : lambda argument_list: expression
 - argument_list: comma separated list of arguments
 - expression: arithmetic expression using these arguments
- ▶ The function can be assigned to a variable

Lambda function

Example

```
>> f = lambda x,y: x + y
>> f(1,2)
Out[1]: 3
```

- Only **one** expression in the lambda body
- Advantage of the lambda can be seen when it is used in combination with other functions (e.g. map, filter, reduce)

The map() function

- Syntax: r = map(func, seq)
 - func: the name of a function
 - Seq: a sequence (e.g. a list)
- Map applies the function func to all the elements of the sequence seq and returns a new list with the elements changed by func

The map() function

The filter() function

- Syntax: f = filter(function, list)
 - **▶** Function that returns true or false applied to every element of the list
- Filter returns a **new list** with the "True" elements returned from applying the function to the list

The filter() function

Example

```
>> fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>> result = filter(lambda x: x % 2 == 1, fib)
>> print result
Out[1]: [1, 1, 3, 5, 13, 21, 55]
```


The reduce() function

- Syntax: r = reduce(func, seq)
 - func: the name of the function
 - ▶ seq: a sequence (e.g. A list)
- ▶ Reduce continually applies the function func to the sequence seq and returns a single value.

The reduce() function

Example

```
>> result= reduce(lambda x,y: x + y, [47, 11, 42, 13])
Out[1]: 113
```


List Comprehensions

```
doubled_odds= []
for n in numbers:
    if n % 2 == 1:
        doubled_odds.append(n*2)

doubled_odds = [n*2 for n in numbers if n % 2 == 1]
```

- Copy-paste the for-loop into a list comprehension by:

 - Copying the expression that we've been appending
 - Copying the for loop line
 - Copying the if statement line

List slicing

```
    Slicing: Extracting parts of list
```

Syntax:

```
list[start:end]
list[start:]
list[end:]
list[:]
```

- start inclusive and excluding end
- Slicing returns a new list

```
>>> colors = ['yellow', 'red', 'blue', 'green', 'black']
>>> colors[0:]
['yellow', 'red', 'blue', 'green', 'black']
>>> colors[:4]
['yellow', 'red', 'blue', 'green']
>>> colors[1:3]
['red', 'blue']
>>> colors[:]
['yellow', 'red', 'blue', 'green', 'black']
```


Spark Essentials

- SparkContext
- Creating RDDs
- Operations on RDDs
 - Basic transformations
 - Basic actions
- Persistence

SparkContext

- Main entry point to Spark functionality
- Created for you in Spark shells and notebooks as variable sc
- In standalone programs, you'd create your own
 - ▶ (See last slide)
 - Now we are assuming that we are working either in the shell or with notebooks

Creating RDDs

```
# Turn a local collection into an RDD
>> rdd_1 = sc.parallelize([1, 2, 3])
# Load text file from local FS, HDFS, or S3
>> rdd_2 = sc.textFile("file.txt")
>> rdd_3 = sc.textFile("directory/*.txt")
>> rdd_4 =
sc.textFile("hdfs://namenode:9000/path/file")
# Transforming an existing RDD
>> rdd_5 = rdd2.filter(function)
```


RDD operations

- ► Transformations
 - lazy operation to build RDDs from other RDDs
- Actions
 - Computes a result based on existing RDD or write it to storage

Transformations

map (func)
flatMap(func)
filter(func)
groupByKey()
reduceByKey(func)
mapValues(func)
sample(...)
union(other)
distinct()
sortByKey()
...

Actions

reduce(func)
collect()
count()
first()
take(n)
saveAsTextFile(path)
countByKey()
foreach(func)
...

Essential Core & Intermediate Spark Operations

TRANSFORMATIONS

General

Math / Statistical

randomSplit

sample

Set Theory / Relational

Data Structure / I/O

- map
- filter
- flatMap
- mapPartitions
- mapPartitionsWithIndex
- groupBy
- sortBy

- union
- intersection
- subtract
- distinct
- cartesian
- zip

- keyBy
- zipWithIndex
- zipWithUniqueID
- zipPartitions
- coalesce
- repartition
- repartitionAndSortWithinPartitions
- pipe

ACTIONS

- reduce
- collect
- · aggregate
- · fold
- · first
- take
- forEach
- · top
- treeAggregate
- treeReduce
- forEachPartition
- collectAsMap

- count
- takeSample
- max
- · min
- sum
- histogram
- mean
- variance
- stdev
- sampleVariance
- countApprox
- countApproxDistinct

takeOrdered

- saveAsTextFile
- saveAsSequenceFile
- saveAsObjectFile
- saveAsHadoopDataset
- saveAsHadoopFile
- saveAsNewAPIHadoopDataset
- saveAsNewAPIHadoopFile

pySpark map(), filter(), reduce()

- Note: Different syntax than Python
- Map syntax:
 - rdd.map(function)
- Filter syntax:
 - ▶ rdd.filter(function)
- Reduce syntax:
 - ▶ rdd.reduce(function)

Passing functions to Spark

The **lambda** syntax allows us to define "simple" functions inline. We can also pass defined functions.

```
def hasHadoop( line ):
    return "Hadoop" in line

>> lines = sc.textFile("README.txt")
>> hadoopLines = lines.filter(hasHadoop)
```


22

Basic Transformations

```
nums = sc.parallelize([1, 2, 3])
# Pass each element through a function
squares = nums.map(lambda x: x * x) # => [1, 4, 9]

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => [4]

# Map each element to zero or more others
nums.flatMap(lambda x: range(0, x)) # => [0, 0, 1, 0, 1, 2]

# Map each element to zero or more others
nums.map(lambda x: range(0, x)) # => [[0], [0, 1], [0, 1, 2]]
```


Map() vs flatmap()

• flatMap: Similar to map. It returns a new RDD by applying a function to each element of the RDD, but the output is flattened.

```
>> rdd = sc.parallelize([1, 2, 3])
>> rdd.map(lambda x: [x, x * 2])
Out[1]: [ [1, 2], [2, 4], [3, 6]]
>> rdd.flatMap(lambda x: [x, x * 2])
Out[1]: [ 1, 2, 2, 4, 3, 6]
```


Basic Actions

```
nums = sc.parallelize([5, 1, 3, 2])
nums.collect() # => [5, 1, 3, 2] # Retrieve RDD
contents as a local collection → Results must
fit in memory on the local machine
nums.take(2) # => [5, 1] # Return first K
elements
nums.takeOrdered(4) # => [1, 2, 3, 5] # Return
first K elements ordered
nums.takeOrdered(4, lamda n:-n) # => [5, 3, 2,
1]
nums.count() # => 4 # Count number of elements
# Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 12
nums.saveAsTextFile("hdfs://file.txt")
```


Persistence

- Spark recomputes the RDDs each time we call an action → expensive and can also cause data to be read from the disk again
- We can avoid this by caching data:
 - ▶ cache()
 - persist()
- Fault tolerant: In case of failure, Spark can rebuild the RDD
- Super Fast: will allow multiple operations on the same data set without recreating it

Persistence

- RDDs can be **cached** using the *cache* operation. They can also be **persisted** using *persist* operation.
- ▶ With cache(), you use only the default storage level MEMORY_ONLY.
- With persist(), you can specify which storage level you want to use.
- Use persist() if you want to assign another storage level than MEMORY_ONLY to the RDD
 - Memory only
 - Memory and disk
 - Memory and disk and replication

Persistence Example

```
>> lines = sc. textFile("README.md", 4)
                                           >> lines = sc. textFile("README.md", 4)
                                            >> lines.persist() # ~lines.cache()
>> lines.count()
                                            >> lines.count()
Out[1]: 1024
                                           Out[1]: 1024
                                            >> pythonLines = lines.filter(lambda line:
>> pythonLines = lines.filter(lambda
line: "Python" in line)
                                            "Python" in line)
                                            >> pythonLines.count()
>> pythonLines.count()
                                           Out[1]: 50
Out[1]: 50
Causes Spark to reload lines from disk used.
                                            Spark will avoid re-computing lines every
                                           time it is used.
```


SparkContext – Cluster execution

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu