154 Exemples de décompositions de matrices. Applications.

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $n \ge 1$.

I - Décomposition et réduction

1. Décomposition de Dunford

a. Décomposition "classique"

[DEV]

Théorème 1 (Décomposition de Dunford). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que π_A est scindé sur \mathbb{K} . Alors il existe un unique couple de matrices (D, N) tels que :

p. 203

[GOU21]

- *D* est diagonalisable et *N* est nilpotente.
- A = D + N.
- -DN = ND.

Corollaire 2. Si A vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $A^k = (D+N)^k = \sum_{i=0}^m \binom{k}{i} D^i N^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de N.

Remarque3. On peut montrer de plus que D et N sont des polynômes en A.

Exemple 4. On a la décomposition de Dunford suivante :

[**C-G**] p. 165

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Contre-exemple 5. L'égalité suivante n'est pas une décomposition de Dunford :

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

car les deux matrices du membre de droite ne commutent pas.

Lemme 6. (i) La série entière $\sum \frac{z^k}{k!}$ a un rayon de convergence infini.

(ii) $\sum \frac{A^k}{k!}$ est convergente pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$.

[ROM21] p. 761 **Définition 7.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit **l'exponentielle** de A par

$$\sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

on la note aussi $\exp(A)$ ou e^A .

Théorème 8. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) Si $A = \text{Diag}(\lambda_1, ..., \lambda_n)$, alors $\exp(A) = \text{Diag}(e_1^{\lambda}, ..., e_n^{\lambda})$.
- (ii) Si $B = PAP^{-1}$ pour $P \in GL_n(\mathbb{K})$, alors $e^B = P^{-1}e^AP$.
- (iii) $\det(e^A) = e^{\operatorname{trace}(A)}$.
- (iv) $t \mapsto e^{tA}$ est de classe \mathscr{C}^{∞} , de dérivée $t \mapsto e^{tA}A$.

Proposition 9. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ qui commutent. Alors,

$$e^A e^B = e^{A+B} = e^B e^A$$

Exemple 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$ qui admet une décomposition de Dunford A = D + N où D est diagonalisable et N est nilpotente d'indice q. Alors,

- $-e^A = e^D e^N = e^D \sum_{k=0}^{q-1} \frac{N^k}{k!}$
- La décomposition de Dunford de e^A est $e^A = e^D + e^D(e^N I_n)$ avec e^D diagonalisable et $e^D(e^N I_n)$ nilpotente.

Application 11. Une équation différentielle linéaire homogène (H): Y' = AY (où A est constante en t) a ses solutions maximales définies sur \mathbb{R} et le problème de Cauchy

$$\begin{cases} Y' = AY \\ Y(0) = y_0 \end{cases}$$

a pour (unique) solution $t \mapsto e^{tA} y_0$.

b. Décomposition multiplicative

Définition 12. On dit qu'une matrice $U \in \mathcal{M}_n(\mathbb{K})$ est **unipotente** si $U - I_n$ est nilpotente.

[ROM21] p. 687

[GOU20]

p. 380

Théorème 13 (Décomposition de Dunford multiplicative). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que π_A est scindé sur \mathbb{K} . Alors il existe un unique couple de matrices (D, U) tels que :

— *D* est diagonalisable et *U* est unipotente.

$$-A = DU$$
.

$$-DU = UD.$$

2. Décomposition de Jordan

Définition 14. Un **bloc de Jordan** de taille m associé à $\lambda \in \mathbb{K}$ désigne la matrice $J_m(\lambda)$ suivante :

[**BMP**] p. 171

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_m(\mathbb{K})$$

Proposition 15. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- (i) A est semblable à $J_n(0)$.
- (ii) A est nilpotente et cyclique (voir Définition 21).
- (iii) A est nilpotente d'indice de nilpotence n.

Théorème 16 (Réduction de Jordan d'un endomorphisme nilpotent). On suppose que A est nilpotente. Alors il existe des entiers $n_1 \ge \cdots \ge n_p$ tels que A est semblable à la matrice

$$\begin{pmatrix}
J_{n_1}(0) & & \\
& \ddots & \\
& & J_{n_n}(0)
\end{pmatrix}$$

De plus, on a unicité dans cette décomposition.

Remarque 17. Comme l'indice de nilpotence d'un bloc de Jordan est égal à sa taille, l'indice de nilpotence de *A* est la plus grande des tailles des blocs de Jordan de la réduite.

Théorème 18 (Réduction de Jordan d'un endomorphisme). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que le polynôme caractéristique de A est scindé sur \mathbb{K} :

[**GOU21**] p. 209

$$\chi_A = \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$$
 où les λ_i sont distincts deux-à-deux

Alors il existe des entiers $n_1 \ge \cdots \ge n_p$ tels que A est semblable à la matrice

$$\begin{pmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_p}(\lambda_p) \end{pmatrix}$$

De plus, on a unicité dans cette décomposition.

Application 19. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, A et 2A sont semblables si et seulement si A est nilpotente.

Application 20. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, A et tA sont semblables.

3. Décomposition de Frobenius

Soient E un espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

p. 397

Définition 21. On dit que u est **cyclique** s'il existe $x \in E$ tel que $\{P(u)(x) \mid P \in \mathbb{K}[X]\} = E$.

Proposition 22. u est cyclique si et seulement si $deg(\pi_u) = n$.

Définition 23. Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_0 \in \mathbb{K}[X]$. On appelle **matrice compagnon** de P la matrice

$$\mathscr{C}(P) = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \ddots & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{p-2} \\ 0 & \dots & 0 & 1 & -a_{p-1} \end{pmatrix}$$

Proposition 24. u est cyclique si et seulement s'il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u,\mathscr{B})=\mathscr{C}(\pi_u).$

Théorème 25. Il existe F_1, \ldots, F_r des sous-espaces vectoriels de E tous stables par u tels que :

- $-E = F_1 \oplus \cdots \oplus F_r$.
- $u_i = u_{|F_i|}$ est cyclique pour tout i.
- Si $P_i = \pi_{u_i}$, on a $P_{i+1} \mid P_i$ pour tout i.

La famille de polynômes P_1, \dots, P_r ne dépend que de u et non du choix de la décomposition. On l'appelle **suite des invariants de similitude** de u.

Théorème 26 (Réduction de Frobenius). Si $P_1, ..., P_r$ désigne la suite des invariants de u, alors il existe une base \mathcal{B} de E telle que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} \mathcal{C}(P_1) & & \\ & \ddots & \\ & & \mathcal{C}(P_r) \end{pmatrix}$$

On a d'ailleurs $P_1 = \pi_u$ et $P_1 \dots P_r = \chi_u$.

Corollaire 27. Deux endomorphismes de *E* sont semblables si et seulement s'ils ont la même suite d'invariants de similitude.

Application 28. Pour n=2 ou 3, deux matrices sont semblables si et seulement si elles ont mêmes polynômes minimal et caractéristique.

Application 29. Soit \mathbb{L} une extension de \mathbb{K} . Alors, si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables dans $\mathcal{M}_n(\mathbb{L})$, elles le sont aussi dans $\mathcal{M}_n(\mathbb{K})$.

II - Décomposition et résolution de systèmes

1. Décomposition LU

Définition 30. Les **sous-matrices principales** d'une matrice $(a_{i,j})_{i,j\in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{K})$ sont les matrices $A_k = (a_{i,j})_{i,j\in [\![1,k]\!]} \in \mathcal{M}_k(\mathbb{K})$ où $k\in [\![1,n]\!]$. Les **déterminants principaux** sont les déterminants des matrices A_k , pour $k\in [\![1,n]\!]$.

[ROM21] p. 690

Théorème 31 (Décomposition lower-upper). Soit $A \in GL_n(\mathbb{K})$. Alors, A admet une décomposition

$$A = LU$$

(où L est une matrice triangulaire inférieure à diagonale unité et U une matrice triangulaire supérieure) si et seulement si tous les déterminants principaux de A sont non nuls. Dans ce cas, une telle décomposition est unique.

Corollaire 32. Soit $A \in GL_n(\mathbb{K}) \cap \mathscr{S}_n(\mathbb{K})$. Alors, on a l'unique décomposition de A:

$$A = LD^tL$$

où L est une matrice triangulaire inférieure et D une matrice diagonale.

Application 33 (Décomposition de Cholesky). Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors, $A \in \mathcal{S}_n^{++}(\mathbb{R})$ si et seulement s'il existe $B \in GL_n(\mathbb{R})$ triangulaire inférieure telle que $A = B^t B$. De plus, une telle décomposition est unique si on impose la positivité des coefficients diagonaux de B.

Exemple 34. On a la décomposition de Cholesky:

[**GRI**] p. 368

$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

[**C-G**] p. 257

Proposition 35. Soit $A \in GL_n(\mathbb{K})$ vérifiant les hypothèses du Théorème 31. On définit la suite (A_k) où $A_0 = A$ et $\forall k \in \mathbb{N}$, A_{k+1} est la matrice obtenue à partir de A_k à l'aide du pivot de Gauss sur la (k+1)-ième colonne. Alors, A_{n-1} est la matrice U de la décomposition A = LU du Théorème 31.

Remarque 36. Pour résoudre un système linéaire AX = Y, on se ramène à A = LU en $O\left(\frac{2}{3}n^3\right)$. Puis, on résout deux systèmes triangulaires "en cascade":

$$LX' = Y$$
 puis $UX = X'$

ceux-ci demandant chacun $O(2n^2)$ opérations.

Théorème 37 (Décomposition PLU). Soit $A \in GL_n(\mathbb{K})$. Alors, il existe $P \in GL_n(\mathbb{K})$, matrice de permutations, telle que $P^{-1}A$ admet une décomposition LU.

2. Décomposition QR

Théorème 38 (Décomposition QR). Soit $A \in GL_n(\mathbb{R})$. Alors, A admet une décomposition

[ROM21] p. 692

$$A = QR$$

où Q est une matrice orthogonale et R est une matrice triangulaire supérieure à coefficients diagonaux strictement positifs. On a unicité d'une telle décomposition.

Corollaire 39 (Théorème d'Iwasawa). Soit $A \in GL_n(\mathbb{R})$. Alors, A admet une décomposition

$$A = QDR$$

où Q est une matrice orthogonale, D est une matrice diagonale à coefficients strictement positifs et R est une matrice triangulaire supérieure à coefficients diagonaux égaux à 1. On a unicité d'une telle décomposition.

7

Exemple 40. On a la factorisation QR suivante,

[**GRI**] p. 272

p. 368

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 2 & \sqrt{2} \\ \sqrt{3} & -1 & \sqrt{2} \\ \sqrt{3} & 1 & -\sqrt{2} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} 2\sqrt{3} & \sqrt{3} & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2\sqrt{2} \end{pmatrix} \end{pmatrix}$$

qui peut être obtenue via un procédé de Gram-Schmidt.

Remarque 41. Pour résoudre un système linéaire AX = Y, si l'on a trouvé une telle factorisation A = QR, on résout

$$RX = {}^tQY$$

c'est-à-dire, un seul système triangulaire (contre deux pour la factorisation LU).

III - Décomposition et topologie

Lemme 42.

 $\forall A \in \mathscr{S}_n^{++}(\mathbb{R}) \exists ! B \in \mathscr{S}_n^{++}(\mathbb{R}) \text{ telle que } B^2 = A$

[**C-G**] p. 376

[DEV]

Théorème 43 (Décomposition polaire). L'application

$$\mu: \begin{array}{ccc} \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \to & \mathrm{GL}_n(\mathbb{R}) \\ (O,S) & \mapsto & OS \end{array}$$

est un homéomorphisme.

Corollaire 44. Tout sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $\mathcal{O}_n(\mathbb{R})$ est $\mathcal{O}_n(\mathbb{R})$.

Corollaire 45. $GL_n(\mathbb{R})^+$ est connexe.

p. 401

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie*. 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$