Divide and Conquer

Divide and Conquer

- 1. Multiplying two large numbers (thousands of bits long)
 - Useful in applications like RSA
- 2. Median
 - Find the median without first sorting the list
- 3. Fast Fourier Transform
 - Most important numerical algorithm of our lifetime
 - Complex numbers
 - Recursive approach

Divide and Conquer: Overview

- 1. Examples:
 - MergeSort
 - Fast modular exponentiation algorithm
 - Euclid's GCD algorithm
 - Now: multiplying n-bit integers
 - Given n-bit integers x and y
 - Goal: compute z = xy
 - Faster than $O(n^2)$ time
 - Median
 - FFT

Multiplying Complex Numbers

- 1. Setting: Multiplication is expensive
 - Adding/subtracting is cheap
- 2. Two complex numbers: a + bi, c + di
 - (a + bi)(c + di)
 - ac bd + i(bc + ad)
 - 4 real number multiplications, 3 additions/subtractions
 - Compute bc + ad without individual terms

Improved Approach

- 1. Two complex numbers: a + bi, c + di
 - (a + bi)(c + di)
 - ac bd + i(bc + ad)
 - (a + b)(c + d) = ac + bd + (bc + ad)
 - (bc + ad) = (a + b)(c + d) ac bd
 - Substitute this in
 - (a + bi)(c + di) = ac bd + ((a + b)(c + d) ac bd)
 - Compute ac, bd, and (a+b)(c+d)
 - Only 3 expensive multiplications

Divide and Conquer: Naive Approach

- 1. Input: n-bit integers x and y
- 2. Goal: Compute z = xy (running time in terms of n)
- 3. D&C idea: Break input into 2 halves
 - $\bullet \ \ x = x_l \ and \ x_r$
 - Break x into first $\rm n/2$ bits and last $\rm n/2$ bits

```
 \begin{array}{l} \bullet \ \ y = y_l \ and \ y_r \\ - \ Break \ y \ into \ first \ n/2 \ bits \ and \ last \ n/2 \ bits \\ \bullet \ \ x = 182 = 10110110 \\ - \ \ x_l = 1011, \ x_r = 0110 \\ - \ \ 182 = 11 \ \ ^*2^4 + 6 \end{array}
```

Naive: Recursive Idea

- 1. Partition x and y
 - $x = x_l + 2^{n/2} + x_r$
 - $y = y_l + 2^{n/2} + y_r$
 - $xy = 2^n x_l y_l + 2^{n/2} (x_l y_r) + x_r y_r$

Naive: Pseudocode

```
def EasyMultiply(x,y):
    # input: n-bit integers x and y, n = 2^k
    # output: z = xy
    xl = first n/2 bits of x, xr = last n/2 bits of x
    yl = first n/2 bits of y, yr = last n/2 bits of y
    A = EasyMultiply(xl, yl)
    B = EasyMultiply(xr, yr)
    C = EasyMultiply(xl, yr)
    D = EasyMultiply(xr, yl)
    z = A * 2 ** n + (C + D) * 2 ** (n/2) + B
    return z
```

Naive: Running Time

- 1. Partitioning x and y is O(n)
- 2. Calls to EasyMultiply is 4T(n/2)
- 3. Calculating z is O(n)
- 4. Let $T(n) = \mbox{worst-case}$ running time of Easy Multiply on input of size n
 - $T(n) = 4T(n/2) + O(n) = O(n^2)$

Divide and Conquer: Improved Approach

```
1. xy = 2^n x_l y_l + 2^{n/2} (x_l y_r) + x_r y_r

• (x_l + x_r)(y_l + y_r) = x_l y_l + x_r y_r + (x_l y_r + x_r y_l)

• (x_l y_r + x_r y_l) = (x_l + x_r)(y_l + y_r) - x_l y_l - x_r y_r
```

Improved: Pseudocode

```
def FastMultiply(x,y):
    # input: n-bit integers x and y, n = 2^k
    # output: z = xy
    xl = first n/2 bits of x, xr = last n/2 bits of x
    yl = first n/2 bits of y, yr = last n/2 bits of y
    A = FastMultiply(xl, yl)
    B = FastMultiply(xr, yr)
    C = FastMultiply(xl+xr, yl+yr)
    z = A * 2 ** n + (C - A - B) + B
    return z
```

Improved: Running Time

- 1. T(n) = 3T(n/2) + O(n)• <= cn + 3T(n/2)• $<= cn + 3(cn/2 + 3T(n/2^2))$ • $<= cn(1 + 3/2) + 3^2(cn / 2^2 + 3T(n/2^3))$ • $= O(n * (3/2)^{\log_2 n})$ • $= O(3^{\log_2 n})$ • $= O(n^{\log_2 3})$ • $\log_2 3 = 1.59$
- 2. Running time is $O(n^{\log_2 3})$

Improved: Summary

- 1. Example: x = 182, y = 154
 - x = 10110110
 - y = 10011010
 - $\bullet \ x_l=1011=11$
 - $x_r = 0110 = 6$
 - $y_l = 1001 = 9$
 - $y_r = 1010 = 10$
 - 11 * 9 = 99
 - 6*10 = 60
 - (ll + 6)(9 + 10) = 323
 - 182 * 154 = 99 * 256 (323 99 60) * 16 + 60 = 28028
 - Strassen's algorithm: Similar idea for multiplying matrices