MOwNiT – Znajdowanie miejsc zerowych funkcji nieliniowych metodą siecznych i metodą Newtona

Przygotował: Szymon Budziak

Problem 1:

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania **f(x)=0** w zadanym przedziale [a, b]. Dla metody Newtona wybierz punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a, b].

Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności), stosując jako kryterium stopu:

$$\bullet |x^{(i+1)} - x^i| < \rho$$

•
$$|f(x^i)| < \rho$$

Funkcja f do zadania w zadanym przedziale [a,b]:

$$f(x) = x^n - (1 - x)^m$$

gdzie $n = 12$, $m = 14$ a przedziałem to $[-1, 1]$.

Czyli nasza funkcja ma postać:

$$f(x) = x^{12} - (1 - x)^{14}$$
 na przedziale [- 1, 1].

Wykres funkcji

Wykres 1: Wykres funkcji podanej w problemie 1

Znajdowanie miejsc zerowych funkcji nieliniowych metodą Newtona

Do znajdowania miejsc zerowych funkcji nieliniowych metodą Newtona zostały użyty wzór:

$$f(x) = 0$$
, α - prosty pierwiastek x_{i-1} - przybliżenie α niech $\alpha = x_{i-1} + h$

$$\begin{split} f(\alpha) &= 0 = f(x_{i-1} + h) = f(x_{i-1}) + h \cdot f'(x_{i-1}) + \cdots \\ h &= -\frac{f(x_{i-1})}{f'(x_{i-1})} \end{split}$$

$$x_{i} = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Graficznie metodę tą można przedstawić w następujący sposób:

Wykres 2: Graficzna reprezentacja metody Newtona

Znajdowanie miejsc zerowych funkcji nieliniowych metodą siecznych

Startujemy z (x_0, x_1) i korzystamy z wzoru:

$$x_{i+2} = x_{i+1} - \frac{x_{i+1} - x_i}{f_{i+1} - f_i} \cdot f_{i+1}$$

Graficznie metodę tą można przedstawić w następujący sposób:

Wykres 3: Graficzna reprezentacja metody siecznych

Wyniki dla metody Newtona

x value	number of iterations		
0,47331	21		
0,47331	20		
0,47331	19		
0,47331	19		
0,47331	18		
0,47331	17		
0,47331	16		
0,47331	15		
0,47331	14		
0,47331	13		
0,47331	11		
0,47331	10		
0,47331	8		
0,47331	7		
0,47331	4		
0,47331	3		
0,47331	5		
0,47331	7		
0,47331	9		
0,47331	10		
0,47331	11		

Tabela 1: Wyniki dla metody Newtona i pierwszego kryterium stopu

x value	number of iterations		
0,47331	20		
0,47331	20		
0,47331	19		
0,47331	18		
0,47331	17		
0,47331	16		
0,47331	15		
0,47331	14		
0,47331	13		
0,47331	12		
0,47331	11		
0,47331	10		
0,47331	8		
0,47331	6		
0,47331	4		
0,47331	3		
0,47331	5		
0,47331	7		
0,47331	8		
0,47331	10		
0,47331	11		

Tabela 2: Wyniki dla metody Newtona i drugiego kryterium stopu

Wyniki dla metody siecznych

ody Siecznych	1			
x value	number of iterations			
0,47331	17			
-	-			
0,47331	17			
0,47331	29			
0,47331	17			
0,47331	28			
0,47331	17			
0,47331	27			
0,47331	17			
0,47331	26			
0,47331	16			
0,47331	25			
0,47331	16			
0,47331	23			
0,47331	16			
0,47331	22			
0,47331	15			
0,47331	20			
0,47331	13			
0,47331	19			
0,47331	6			
0,47331	17			
0,47331	12			
0,47331	15			
0,47331	12			
0,47331	13			
0,47331	11			
0,47331	10			
0,47331	8			
0,47331	7			
0,47331	6			
0,47331	5			
0,47331	9			
0,47331	8			
0,47331	11			
0,47331	11			
0,47331	13			
0,47331	13			
0,47331	15			
0,47331	15			
0,47331	16			
0,47331	17			
3: Wyniki dla metody siecznych i nierwszego kryterium st				

Tabela 3: Wyniki dla metody siecznych i pierwszego kryterium stopu

0.47004	
0,47331	17
-	-
0,47331	17
0,47331	29
0,47331	17
0,47331	28
0,47331	17
0,47331	27
0,47331	17
0,47331	26
0,47331	16
0,47331	25
0,47331	16
0,47331	23
0,47331	16
0,47331	22
0,47331	15
0,47331	20
0,47331	13
0,47331	19
0,47331	6
0,47331	17
0,47331	12
0,47331	15
0,47331	12
0,47331	13
0,47331	11
0,47331	10
0,47331	8
0,47331	7
0,47331	6
0,47331	5
0,47331	9
0,47331	8
0,47331	11
0,47331	11
0,47331	13
0,47331	13
0,47331	15
0,47331	15
0,47331	16
0,47331	17

Tabela 4: Wyniki dla metody siecznych i drugiego kryterium stopu

Wnioski

Dzięki tabelom możemy zaobserwować, że metoda Newtona w znacznej większości przypadków potrzebuje dużo mniejszej liczby iteracji niż metoda siecznych aby otrzymać wynik. Jednak do wykorzystania metody Newtona musi być spełnione więcej założeń, potrzebna jest pochodna zadanej funkcji i nie zawsze jest ona zbieżna do pierwiastka funkcji.

Problem 2:

Rozwiąż wskazany układ równań metodą Newtona:

$$\begin{cases} x_1^2 + x_2^2 + x_3 = 1 \\ 2x_1^2 + x_2^2 + x_3^3 = 2 \\ 3x_1 - 2x_2^3 - 2x_3^2 = 3 \end{cases}$$

Przeprowadź eksperymenty dla różnych wektorów początkowych. Sprawdź, ile rozwiązań ma układ. Przy jakich wektorach początkowych metoda nie zbiega do rozwiązania? Jakie wektory początkowe doprowadzają do jakiego rozwiązania? Należy także zastosować dwa różne kryteria stopu.

Metoda Newtona dla układu równań

Metoda Newtona dla układu równań jest analogiczna jak dla równań nieliniowych. Jedyną różnicą jest to, że nie używamy tutaj pochodnej tylko jakobian macierzy. W naszym przypadku macierz oraz jakobian wyglądają następująco:

$$F(X) = \begin{bmatrix} f_1(X) \\ f_2(X) \\ f_3(X) \end{bmatrix} \begin{bmatrix} x_1^2 + x_2^2 + x_3 - 1 \\ 2 \cdot x_1^2 + x_2^2 + x_3^3 - 2 \\ 3 \cdot x_1 - 2 \cdot x_2^3 - 2 \cdot x_3^2 - 3 \end{bmatrix}$$

$$J(X) = \begin{bmatrix} 2 \cdot x_1 + 2 \cdot x_2 + 1 \\ 4 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3^2 \\ 3 - 6 \cdot x_2^2 - 4 \cdot x_3 \end{bmatrix}$$

Otrzymujemy wtedy:

$$X_{k+1} = X_k - \frac{F(X_k)}{J(X_k)}$$

czyli:

$$X_{k+1} = X_k - J^{-1}(X_k) \cdot F(X_k)$$

W metodzie Newtona zostały wzięte pod uwagę wektory początkowe: [-1, -.6, -0.2, 0.2, 0.6, 1] oraz epsilon [0.0001, 0.00001, 0.000001].

Wyniki dla metody Newtona

end 1	end 2	end 3	epsilon	number of iterations
-1	-1	-1	0,0001	5
-1	-1	-1	0,00001	6
-1	-1	-1	0,000001	6
-1	-1	-0,6	0,0001	9
-1	-1	-0,6	0,00001	10
-1	-1	-0,6	0,000001	10
1	1	-0,2	0,00001	18
1	1	-0,2	0,000001	22
1	1	0,2	0,0001	15
1	1	0,2	0,00001	18
1	1	0,2	0,000001	22
1	1	0,6	0,0001	13
1	1	0,6	0,00001	13
1	1	0,6	0,000001	13
1	1	1	0,0001	206
1	1	1	0,00001	206
1	1	1	0,000001	207

Tabela 5: Wyniki dla metody Newtona i pierwszego kryterium stopu

end 1	end 2	end 3	epsilon	number of iterations
-1	-1	-1	0,0001	4
-1	-1	-1	0,00001	5
-1	-1	-1	0,000001	5
-1	-1	-0,6	0,0001	8
-1	-1	-0,6	0,00001	9
-1	-1	-0,6	0,000001	9
-1	-1	-0,2	0,0001	8
-1	-1	-0,2	0,00001	10
-1	-1	-0,2	0,000001	12
•••	•••	•••		
1	1	0,2	0,0001	9
1	1	0,2	0,00001	10
1	1	0,2	0,000001	12
1	1	0,6	0,0001	12
1	1	0,6	0,00001	12
1	1	0,6	0,000001	13
1	1	1	0,0001	205
1	1	1	0,00001	205
1	1	1	0,000001	206

Tabela 6: Wyniki dla metody Newtona i drugiego kryterium stopu

Wnioski

Metoda Newtona jest efektywną metodą do rozwiązywania układów równań nieliniowych. Wymaga ona jednak poprawnego wyboru wektora początkowego, ponieważ metoda ta często nie jest zbieżna do rozwiązania. Również znajomość pochodnych cząstkowych równań do wyznaczenia jakobianu jest tutaj niezbędna. Jednak metoda Newtona pozwala w małej liczbie iteracji wyznaczyć rozwiązanie zadanego układu równań z dużą precyzją.

Literatura

- Wykład nr 6 dr Rycerz z przedmiotu MOwNiT
- Wikipedia na temat metody Newtona oraz metody siecznych