AL und Boolesche Funktionen

 \rightarrow Abschnitt 3

 \mathcal{B}_n : die Menge aller *n*-stelligen Booleschen Funktionen

$$f: \mathbb{B}^n \longrightarrow \mathbb{B}$$

 $(b_1, \ldots, b_n) \longmapsto f(b_1, \ldots, b_n)$

speziell für $\varphi \in AL_n$:

$$egin{array}{cccc} f_{arphi}:\mathbb{B}^n & \longrightarrow & \mathbb{B} \ (b_1,\ldots,b_n) & \longmapsto & arphi[b_1,\ldots,b_n] \end{array} igg\} \in \mathcal{B}_n$$

beachte: $\mathit{f}_{\varphi} = \mathit{f}_{\psi}$ gdw. $\varphi \equiv \psi$

also: $\operatorname{AL}_n/\equiv\longrightarrow \mathcal{B}_n$ injektiv! $[\varphi]_{\equiv}\longmapsto f_{\varphi}$

Fragen:

• wieviele *n*-stellige Boolesche Funktionen gibt es?; $|\mathcal{B}_n| = ?$

• ist jedes $f \in \mathcal{B}_n$ durch AL-Formel $\varphi \in \mathrm{AL}_n$ darstellbar?

Sommer 2015

Teil 1: AL AL 3 Boolesche Funktionen

Disjunktive und konjunktive Normalformen, DNF, KNF

p bzw. $\neg p$ (für $p \in \mathcal{V}$) heißen *Literale* Nomenklatur:

Disjunktionen von Konjunktionen von Literalen: **DNF**-Formeln Konjunktionen von Disjunktionen von Literalen: KNF-Formeln

"große" Konjunktion/Disjunktion (Schreibweisen):

für endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$:

$$\bigwedge \Phi := \bigwedge_{i=1}^n \varphi_i = \varphi_1 \wedge \ldots \wedge \varphi_n$$

$$\bigvee \Phi := \bigvee_{i=1}^n \varphi_i = \varphi_1 \vee \ldots \vee \varphi_n$$

Konvention: auch leere Disjunktionen/Konjunktionen zulässig

mit der Interpretation: $\bigvee \emptyset \equiv 0$ (!)

$$\bigwedge \emptyset \equiv 1$$
 (!)

Funktionale Vollständigkeit

Funktionale Vollständigkeit von AL_n für \mathcal{B}_n :

zu jedem $f \in \mathcal{B}_n$ existiert DNF-Formel $\varphi \in \mathrm{AL}_n$ mit $f = f_{\varphi}$.

 $(\Rightarrow$ bijektive Korrespondenz zw. \mathcal{B}_n und $\mathrm{AL}_n \mathrel{/}\equiv)$

Beweis:

betrachte
$$arphi_f := \bigvee ig\{ arphi_{\mathbf{b}} \colon f(\mathbf{b}) = 1 ig\}$$
 wo $arphi_{\mathbf{b}} = \bigwedge \{ p_i \colon b_i = 1 \} \land \bigwedge \{ \neg p_i \colon b_i = 0 \}$

Korollar: Satz über DNF und KNF

 $\mathsf{zu}\ \varphi \in \mathsf{AL}_n \ \mathsf{existieren}\ \mathsf{stets} \colon \begin{cases} \mathsf{DNF}\text{-}\mathsf{Formel}\ \varphi_1 \in \mathsf{AL}_n \ \mathsf{mit}\ \varphi_1 \equiv \varphi, \\ \mathsf{KNF}\text{-}\mathsf{Formel}\ \varphi_2 \in \mathsf{AL}_n \ \mathsf{mit}\ \varphi_2 \equiv \varphi. \end{cases}$

FGdI II Sommer 2015 M Otto 23/1

Teil 1: AL Boolesche Funktionen AL 3

Dualität Kunjunktion/Disjunktion

→ Abschnitt 3.2

nützliche Umformungen/Rechenregeln

$$\neg(\varphi_1 \land \varphi_2) \equiv \neg\varphi_1 \lor \neg\varphi_2 \text{ verallgemeinert sich zu } \boxed{\neg(\bigwedge \Phi) \equiv \bigvee \Phi^{\neg}}$$

wobei
$$\Phi^{\neg} := \{ \neg \varphi \colon \varphi \in \Phi \}$$

$$\neg(\varphi_1 \lor \varphi_2) \equiv \neg\varphi_1 \land \neg\varphi_2$$
 verallgemeinert sich zu $\neg(\bigvee \Phi) \equiv \bigwedge \Phi \neg$

für KNF \longleftrightarrow DNF:

$$\neg \bigwedge_{i=1}^{k} (\bigvee C_{i}) \equiv \bigvee_{i=1}^{k} (\bigwedge C_{i}^{\neg})$$

$$\mathsf{KNF} \qquad \mathsf{DNF}(^{*})$$

 C_1, \ldots, C_k (endl.) Mengen von Literalen * Doppelnegationen in den C_i^- eliminieren

FGdl II Sommer 2015 M Otto 24/2

Beispiel für exponentiellen "blow-up"

$$\varphi_m = \varphi_m(p_1, \dots, p_{2m}) := \bigwedge_{i=1}^m \neg(p_{2i-1} \leftrightarrow p_{2i}) \in AL_{2m}$$

- ullet $arphi_m$ hat genau 2^m erfüllende Interpretationen in \mathbb{B}^{2m}
- KNF von Länge $\sim m$ (linear in m):

$$\varphi_m \equiv \bigwedge_{i=1}^m ((p_{2i-1} \vee p_{2i}) \wedge (\neg p_{2i-1} \vee \neg p_{2i}))$$

• DNF in Länge $\sim 2m2^m$ (exponentiell in m):

$$\varphi_m \equiv \bigvee \{ \varphi_{\mathbf{b}} \colon \mathbf{b} \in \mathbb{B}^{2m}, \varphi_m[\mathbf{b}] = 1 \}$$

Teil 1: AL AL 3 Boolesche Funktionen

Vollständige Systeme von Junktoren \rightarrow Abschnitt 3.3

Für $n \ge 1$ ist jede Funktion in \mathcal{B}_n darstellbar durch AL_n -Formel, die nur die Junktoren \neg und \land (nur \neg und \lor) benutzt.

Begr.: Eliminiere
$$\vee$$
 oder \wedge mit
$$\begin{cases} \varphi_1 \vee \varphi_2 \equiv \neg(\neg \varphi_1 \wedge \neg \varphi_2) \\ \varphi_1 \wedge \varphi_2 \equiv \neg(\neg \varphi_1 \vee \neg \varphi_2) \end{cases}$$

Systeme von Junktoren (Booleschen Funktionen) mit dieser Eigenschaft heißen vollständig.

weitere Beispiele vollständiger Systeme:

- mit der Definition $p \mid q := \neg(p \land q)$ (NAND) benutze z.B.: $\neg p \equiv p \mid p$; $p \land q \equiv \neg(p \mid q) \equiv (p \mid q) \mid (p \mid q)$.
- ightarrow zusammen mit 0benutze z.B.: $\neg p \equiv p \rightarrow 0$; $p \lor q \equiv \neg p \rightarrow q \equiv (p \rightarrow 0) \rightarrow q$.

nicht vollständig sind z.B. $\left\{ \left\{ \wedge, \vee \right\} \right\}$ (Monotonie); $\left\{ \rightarrow \right\}$ ($0 \in \mathcal{B}_n$ nicht darstellbar).

Teil 1: AL

Kompakatheit

AL 4

Kompaktheitssatz (Endlichkeitssatz)

(Satz 4.1)

Erfüllbarkeit von unendlichen Formelmengen hängt nur von je endlich vielen ab, i.d.S.d.

für alle $\Phi \subseteq AL$ gilt:

$$oldsymbol{\Phi}$$
 erfüllbar

$$\Leftrightarrow$$

jedes endliche $\Phi_0 \subset \Phi$ erfüllbar

für alle $\Phi \subseteq AL, \psi \in AL$ gilt:

$$\Phi \models \psi$$

$$\Leftrightarrow$$

$$\Phi_0 \models \psi$$
 für ein endliches $\Phi_0 \subseteq \Phi$

(*)

Konsequenz:

Unerfüllbarkeit einer unendlichen Formelmenge lässt sich durch ein endliches Zertifikat nachweisen. (Warum?)

Bemerkung: Aussagen (*) und (**) sind äquivalent.

27/1

Teil 1: AL

Kompakatheit

AL 4

Kompaktheitssatz: Beweis

→ Abschnitt 4

für
$$\Phi \subseteq AL(V)$$
, $V = \{p_i : i \geqslant 1\}$

Sei jedes endliche $\Phi_0 \subseteq \Phi$ erfüllbar.

Konstruiere induktiv $\mathfrak{I}_0, \mathfrak{I}_1, \mathfrak{I}_2, \ldots$ so, dass für jedes n:

- \mathfrak{I}_n eine \mathcal{V}_n -Interpretation ist.
- \mathfrak{I}_{n+1} verträglich ist mit \mathfrak{I}_n : $\mathfrak{I}_{n+1}(p_i) = \mathfrak{I}_n(p_i)$ für $1 \leqslant i \leqslant n$.
- alle endlichen $\Phi_0 \subset \Phi$ erfüllbar sind durch \Im , die mit \Im_n verträglich sind.

Dann ist $\mathfrak{I}\models\Phi$ für die Interpretation $\left\{egin{array}{ccc} \mathfrak{I}\colon\mathcal{V}&\longrightarrow&\mathbb{B}\\ p_n&\longmapsto&\mathfrak{I}_n(p_n) \end{array}\right.$

Frage: Wie kommt man von \Im_n zu \Im_{n+1} ?

Teil 1: AL AL 4 Kompakatheit

Kompaktheitssatz: Konsequenzen

vgl. auch Skript u. Aufgaben

Lemma von König

(Lemma 4.4)

Ein endlich verzweigter Baum mit unendlich vielen Knoten muss einen unendlichen Pfad haben. beachte Voraussetzung!

k-Färbbarkeit

Ein Graph ist genau dann k-färbbar, wenn jeder endliche Teilgraph k-färbbar ist.

Domino-Parkettierungen

Ein endliches Domino-System erlaubt genau dann eine Parkettierung der Ebene, wenn sich beliebig große endliche Quadrate parkettieren lassen.

Teil 1: AL AL 4 Kompakatheit

Domino-Parkettierung

ein interessantes, algorithmisch unentscheidbares Problem

Zu gegebener Menge von Kacheln mit gefärbten Rändern: Kann man damit beliebig große Quadrate kacheln?

Beispiel:

Mit AL-Kompaktheit lässt sich zeigen:

Ein endlicher Kachel-Satz erlaubt genau dann eine Parkettierung der unendlichen $\mathbb{N} \times \mathbb{N}$ -Ebene (oder auch der $\mathbb{Z} \times \mathbb{Z}$ -Ebene), wenn sich beliebig große endliche Quadrate parkettieren lassen.

Lemma von König aus AL-Kompaktheit

Betrachte $\mathcal{T} = (V, E, \lambda)$ Baum mit

– Wurzel λ und abzählbar unendlicher Knotenmenge V,

AL 4

- endlich verzweigter Kantenrelation E: $E[u] = \{v \in V : (u, v) \in E\}$ endlich f.a. $u \in V$.
- Pfaden $\lambda \stackrel{E}{\rightarrow} \dots \stackrel{E}{\rightarrow} u$ jeder endlichen Länge, da sonst V endlich.

FGdI II Sommer 2015 M Otto 31/1

Teil 1: AL Kompakatheit AL 4

Lemma von König aus AL-Kompaktheit

Kodierung in AL(V) mit $V := \{p_u : u \in V\}$:

$$\varphi_u := p_u \to \bigvee \{p_v \colon v \in E[u]\}$$

"wenn u gewählt wird,

dann auch mindestens ein direkter Nachfolger von u"

Für $\Phi := \{p_{\lambda}\} \cup \{\varphi_u \colon u \in V\}$ gilt:

- jedes endliche $\Phi_0 \subseteq \Phi$ ist erfüllbar, also auch Φ insgesamt.
- wenn $\mathfrak{I} \models \Phi$, so existiert ein unendlicher Pfad $\lambda = u_0 \stackrel{E}{\rightarrow} u_1 \stackrel{E}{\rightarrow} u_2 \stackrel{E}{\rightarrow} \dots$ mit $\mathfrak{I}(u_i) = 1$.

Bem.: mit $\varphi'_u := p_u \to$ "... genau ein direkter Nachfolger von u" beschreibt jedes $\mathfrak{I} \models \Phi'$ exakt einen unendlichen Pfad.

FGdI II Sommer 2015 M Otto 32/1

Logikkalküle: Deduktion und Refutation

Logikkalküle: rein syntaktische Formate für formale Beweise.

Formale Beweise: syntaktische Zeichenketten, nach einfach nachprüfbaren syntaktischen Regeln aufgebaut (Regelsystem: Kalkül).

Ableitung: Erzeugung von (regelkonformen) formalen Beweisen.

Korrektheit nur semantisch korrekte Sachverhalte sind formal beweisbar (ableitbar).

Vollständigkeit jeder semantisch korrekte Sachverhalt ist formal beweisbar (ableitbar).

Resolution: ein *Widerlegungskalkül* für die

Unerfüllbarkeit von KNF-Formeln.

Sequenzenkalkül: ein Deduktionskalkül für

Allgemeingültigkeit beliebiger AL-Formeln.

FGdI II Sommer 2015 M Otto 33/1

Teil 1: AL AL Resolution

KNF in Klauselform

 \rightarrow Abschnitt 5.1

KNF: Konjunktionen von Disjunktionen von Literalen.

Notation: L für Literal; \overline{L} für komplementäres Literal; $\overline{L} \equiv \neg L$.

Klausel: endliche Menge von Literalen

 $C = \{L_1, \ldots, L_k\}$ steht für $\bigvee C \equiv L_1 \vee \ldots \vee L_k$

□ steht für die leere Klausel.

Erinnerung: $\Box \equiv \bigvee \emptyset \equiv 0$.

Klauselmenge: Menge von Klauseln

 $\mathcal{K} = \{ \textit{C}_1, \ldots, \textit{C}_\ell \}$ steht für $\bigwedge \mathcal{K} \equiv \textit{C}_1 \wedge \ldots \wedge \textit{C}_\ell$

Erinnerung: $\bigwedge \emptyset \equiv 1$.

endliche Klauselmengen \approx KNF-Formeln

Resolutionskalkül arbeitet mit KNF in Klauselform

Ableitungsziel: Nachweis der Unerfüllbarkeit einer geg. Klausel-

menge durch Ableitung der leeren Klausel

FGdI II Sommer 2015 M Otto 34/1

Resolution \rightarrow Abschnitt 5.2

Beispiele: $L, \overline{L} \in C \Rightarrow C \equiv 1$ allgemeingültig. $C \equiv 1 \Rightarrow K \equiv K \setminus \{C\}.$

$$\Box \in K \Rightarrow K \equiv 0$$
 (unerfüllbar).

Resolventen und Resolutionslemma

$$L \in C_1, \overline{L} \in C_2 \Rightarrow \{C_1, C_2\} \equiv \{C_1, C_2, C\}$$
 wobei $C = \underbrace{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})}_{Resolvente}$

FGdI II Sommer 2015 M Otto 35/3

Teil 1: AL AL Resolution

Resolution

diagrammatisch:

$$C_1 = \{\ldots, L\}$$
 $C_2 = \{\ldots, \overline{L}\}$ $C = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$

$$\{p, \underline{\neg q}, r\}$$
 $\{p, \underline{q}, s, t\}$ $\{p, r, s, t\}$

FGdI II Sommer 2015 M Otto 36/1

Resolutionslemma

(Lemma 5.5)

Seien $C_1, C_2 \in K$, C Resolvente von C_1 und C_2 . Dann ist $K \equiv K \cup \{C\}$. [also $K \models C$]

Res(K) und Res*(K)

 $Res(K) := K \cup \{C : C \text{ Resolvente von Klauseln in } K \}.$

Klausel C heißt (im Resolutionskalkül) ableitbar aus K, gdw.

 $C \in \underline{\mathrm{Res} \cdots \mathrm{Res}}(K)$ für ein $n \in \mathbb{N}$.

 $Res^*(K)$: die Menge aller aus K ableitbaren Klauseln.

Korrektheit / Vollständigkeit

Korrektheit: $\Box \in \operatorname{Res}^*(K) \Rightarrow K \equiv 0$ (unerfüllbar). [R-Lemma]

Vollständigkeit: K unerfüllbar $\Rightarrow \Box \in \operatorname{Res}^*(K)$.

Sommer 2015

Teil 1: AL AL Resolution

Resolutionskalkül: Vollständigkeit → Abschnitt 5.3

z.z.: K über $\mathcal{V}_n = \{p_1, \dots, p_n\}$ unerfüllbar $\Rightarrow \Box \in \operatorname{Res}^*(K)$.

Beweis durch Induktion über *n*.

Induktions schritt von n nach n+1

Aus $K = \{C_1, \ldots, C_k\}$ über V_{n+1} gewinne K_0 und K_1 über V_n :

$$K_0 \equiv K \cup \{\{\neg p_{n+1}\}\}\$$
 $K_1 \equiv K \cup \{\{p_{n+1}\}\}\$ (wie?)

K unerfüllbar $\Rightarrow K_0$ und K_1 unerfüllbar $\Rightarrow \Box \in \operatorname{Res}^*(K_0) \text{ und } \Box \in \operatorname{Res}^*(K_1).$

Dann ist
$$\square \in \mathrm{Res}^*(K)$$
 oder
$$\begin{cases} \{p_{n+1}\} \in \mathrm{Res}^*(K) \\ \text{und} \\ \{\neg p_{n+1}\} \in \mathrm{Res}^*(K) \end{cases}$$

und demnach jedenfalls $\square \in \operatorname{Res}^*(K)$.

Resolutionsalgorithmus

breadth-first-search, Breitensuche

Eingabe: K [Klauselmenge, endlich] R := K WHILE $(\operatorname{Res}(R) \neq R \text{ and } \Box \not\in R)$ DO $R := \operatorname{Res}(R)$ OD IF $\Box \in R$ THEN output "unerfüllbar" ELSE output "erfüllbar"

Beweis im Resolutionskakül

Ableitungsbaum für □:

- Knoten mit Klauseln beschriftet
- − □ an der Wurzel
- Resolventen an binären Verzweigungen
- Klauseln aus K an den Blättern

FGdI II Sommer 2015 M Otto 39/1

Teil 1: AL AL Resolution

Hornklauseln

 \rightarrow Abschnitt 5.4

- interessanter Spezialfall für KI Anwendungen,
- AL-HORN-SAT-Problem effizient entscheidbar
- logische Programmierung (Prolog: FO Horn-Formeln)

Hornklausel:

Klausel mit höchstens einem positiven Literal

z.B.
$$C = \{ \neg q_1, \dots, \neg q_r, q \} \equiv (q_1 \wedge \dots \wedge q_r) \rightarrow q;$$
 auch \square ist Hornklausel.

Spezialfälle: C besteht nur aus positivem Literal: positiv.

C ohne positive Literale: negativ.

Beobachtungen:

Mengen von negativen Hornklauseln trivial erfüllbar $(p_i \mapsto 0)$. Mengen von nicht-negativen Hornklauseln besitzen eindeutige *minimale* erfüllende Interpretationen.

FGdI II Sommer 2015 M Otto 40/1