Uncertain Databases - Data Representation Databases and Information Systems

Fabian Panse

panse @informatik.uni-hamburg.de

University of Hamburg

Introduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB Properties

Representation Systems

- Large number of possible worlds
- Many worlds overlap to a large extent
- ⇒ Impractical and unnecessary to store all worlds separately
- ⇒ Compact representation systems required
 - Possible worlds representation as naive representation system and reference point
 - Each representation system can be transformed into the possible worlds representation
 - The possible worlds representation of a probabilistic database pdb is defined as $pwr(pdb) = (\mathbf{W}, Pr)$
 - Mapping pws maps pdb to \mathbf{W} , i.e. $pws(pdb) = \mathbf{W}$

Introduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB Properties

Representation Systems

Primary key:

- World key (short WK): unique for tuples of the same possible world (graphics: single underline)
- Representation key (short RK): unique for tuples of all possible worlds (graphics: double underline)

Semantic correctness:

- Representation system R has to be consistent with the possible worlds semantics
- \Rightarrow For each query Q, it exists a system-specific query Q^R that computes the compact result of Q, i.e.

$$pwr(Q^R(pdb)) = Q(pwr(pdb))$$

Representation Systems

Introduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB Properties

Representation Systems

Goals:

- Compact representation (i.e. low storage requirements)
- Powerful representation system (i.e. should be able to represent as many possible worlds representations as possible)
- Low modeling/query complexity (i.e. easy to understand and efficient to query)

Problem:

- These goals are contradictory
- Increasing two of them comes always at the cost of decreasing the third
- ⇒ Choice of a system is always a trade-off between these goals
- ⇒ Choice of a system depends on use case

Representation Systems

roduction **TI-DB** AOR-DB AOR?-DB BID-DB pc-DB Properties

Tuple-Independent Databases (TI-databases)

high modeling power

low modeling power

roduction **TI-DB** AOR-DB AOR?-DB BID-DB pc-DB Propertie

Tuple-Independent Databases (TI-databases)

- Each tuple is associated with its marginal probability
- Tuples as independent events (tuple-level uncertainty)

	<u>WK</u>	name	age	р
t_1	р1	J.Doe	27	0.8
t_2	p2	K.Smith	32	1.0
t_3	рЗ	J.Ho	28	0.4

- Tuples are mutually independent
- ⇒ One possible world that contains all tuples
- ⇒ World key can be used as representation key

Possible World Generation (formal):

- One possible world per combination of maybe-tuples
- Let pdb be a TI-database
- Let pdb! the set of all certain-tuples of pdb
- Let pdb? the set of all maybe-tuples of pdb
- Number of possible worlds: $|\mathbf{W}| = 2^{|pdb^{?}|}$

Possible world space:

$$\mathbf{W} = \mathit{pws}(\mathit{pdb}) = \{\mathit{pdb}^! \cup \mathit{S} \mid \mathit{S} \subseteq \mathit{pdb}^?\}$$

Probability of a possible world $W \in W$:

$$Pr(W) = \prod_{t \in W} p(t) \times \prod_{t \in pdb^7, t \notin W} (1 - p(t))$$

Possible World Generation (example):

Two maybe-tuples $\Rightarrow 2^2 = 4$ possible worlds:

	<u>WK</u>	name	age	р
t_1	р1	J.Doe	27	0.8
t_2	p2	K.Smith	32	1.0
t_3	рЗ	J.Ho	28	0.4

Possible World Generation (example):

Possible world $W_1 = \{t_2\}$:

	<u>WK</u>	name	age	р
t_1	p1	J.Doe	<i>2</i> 7	0.8
t_2	p2	K.Smith	32	1.0
t ₃	рЗ	J.Ho	28	0.4

$$Pr(W_1) = (1 - p(t_1)) \times p(t_2) \times (1 - p(t_3))$$

= 0.2 \times 1.0 \times 0.6 = **0.12**

Possible World Generation (example):

Possible world $W_2 = \{t_1, t_2\}$:

	<u>WK</u>	name	age	p
t_1	p1	J.Doe	27	0.8
<i>t</i> ₂	p2	K.Smith	32	1.0
t ₃	рЗ	J.Ho	28	0.4

$$Pr(W_2) = p(t_1) \times p(t_2) \times (1 - p(t_3))$$

= $0.8 \times 1.0 \times 0.6 =$ **0.48**

Possible World Generation (example):

Possible world $W_3 = \{t_2, t_3\}$:

	<u>WK</u>	name	age	р
t_1	p1	J.Doe	<i>2</i> 7	0.8
t_2	p2	K.Smith	32	1.0
t ₃	рЗ	J.Ho	28	0.4

$$Pr(W_3) = (1 - p(t_1)) \times p(t_2) \times p(t_3)$$

= 0.2 × 1.0 × 0.4 = **0.08**

Possible World Generation (example):

Possible world $W_4 = \{t_1, t_2, t_3\}$:

	<u>WK</u>	name	age	р
t_1	p1	J.Doe	27	0.8
t_2	p2	K.Smith	32	1.0
t ₃	рЗ	J.Ho	28	0.4

$$Pr(W_4) = p(t_1) \times p(t_2) \times p(t_3)$$

= $0.8 \times 1.0 \times 0.4 =$ **0.32**

Possible World Generation (example): Overview

Computation of the most probable world:

- Removal of all tuples with probability lower than 0.5
- If some tuples have probability 0.5
- ⇒ More than one most probable world exists

AOR-DB

Attribute-OR Databases (AOR-databases)

high modeling power

low modeling power

roduction TI-DB **AOR-DB** AOR?-DB BID-DB pc-DB Properties

Attribute-OR Databases (AOR-databases)

- Each tuple is a certain event
- Values in non-key attributes as independent random variables
- ⇒ Each tuple has several alternative values per attribute (attribute-level uncertainty)
 - Tuples are sets of random variables (so-called A-tuples)

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t_3		J.Ho	:0.3	29	:0.5

roduction TI-DB **AOR-DB** AOR?-DB BID-DB pc-DB Propertie

Attribute-OR Databases (AOR-databases)

- All A-tuples are certain
- ⇒ Each possible world contains all A-tuples
- ⇒ World key can be used as representation key

	<u>WK</u>	name		age	
t_1	р1	J.Doe	:1.0	27	:0.8
L1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		J.Ho	:0.3	29	:0.5

- Each A-tuple models a set of possible instances
- One instance per combination of one alternative value per attribute
- Let $\{A_1, \ldots, A_k\}$ be the attributes of the considered table
- Let Prob(t[A] = a) be the probability that A-tuple t has the alternative value a in attribute A
- Set of possible instances of an A-tuple t is defined as:

$$pws(t) = \{a_1 \in dom(A_1) \mid Prob(t[A_1] = a_1) > 0\}$$

$$\times \{a_2 \in dom(A_2) \mid Prob(t[A_2] = a_2) > 0\}$$

$$\dots$$

$$\times \{a_k \in dom(A_k) \mid Prob(t[A_k] = a_k) > 0\}$$

$$= \{(a_1, \dots, a_k) \in dom(A_1) \times \dots \times dom(A_k) \mid \prod_{i=1}^k Prob(t[A_i] = a_i) > 0\}$$

Attribute values are mutually independent

```
\Rightarrow p(t^{(*)}) = \prod_{i=1}^{k} Prob(t[A_i] = t^{(*)}[A_i]) for every t^{(*)} \in pws(t).
```


Possible Instance Generation (example): A-tuple t_3

2 attributes with each 2 alternative values $\Rightarrow 2^2 = 4$ instances:

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t ₁				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		J.Ho	:0.3	29	:0.5

Possible Instance Generation (example): A-tuple t_3

Possible instance $t_3^{\langle 1 \rangle} = (\text{'p3','J.Doe','28'})$:

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		J.Ho	:0.3	29	:0.5

$$p(t_3^{(1)}) = Prob(t_3['name'] = 'J.Doe') \times Prob(t_3['age'] = '28')$$

= 0.7 × 0.5 = **0.35**

Possible Instance Generation (example): A-tuple t_3

Possible instance $t_3^{\langle 2 \rangle} = (\text{'p3','J.Doe','29'})$:

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		J.Ho	:0.3	29	:0.5

$$p(t_3^{(2)}) = Prob(t_3['name'] = 'J.Doe') \times Prob(t_3['age'] = '29')$$

= 0.7 × 0.5 = **0.35**

Possible Instance Generation (example): A-tuple t_3

Possible instance $t_3^{\langle 3 \rangle} = (\text{'p3','J.Ho','28'})$:

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		Ј.Но	:0.3	29	:0.5

$$p(t_3^{(3)}) = Prob(t_3['name'] = 'J.Ho') \times Prob(t_3['age'] = '28')$$

= 0.3 × 0.5 = **0.15**

Possible Instance Generation (example): A-tuple t_3

Possible instance $t_3^{\langle 4 \rangle} = (\text{'p3','J.Ho','29'})$:

	<u>WK</u>	name		age	
+	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
t ₃		J.Ho	:0.3	29	:0.5

$$p(t_3^{(3)}) = Prob(t_3['name'] = 'J.Ho') \times Prob(t_3['age'] = '29')$$

= 0.3 × 0.5 = **0.15**

Minimal Hitting Set

- Let $C = \{S_1, \dots, S_k\}$ be a collection of sets
- Set H is a hitting set for C if
 - it contains only elements that belong to sets in C, i.e.

$$H\subseteq \bigcup_{i=1}^k S_i$$

- it contains at least one element per set in C, i.e.

$$H \cap S_i \neq \emptyset$$
 for every $i \in \{1, \ldots, k\}$

- Set H is a minimal hitting set for C if
 - no strict subset of H is a hitting set for C
 - \Rightarrow H contains exactly one element per set in C, i.e. $|H \cap S_i| = 1$ for every $i \in \{1, \ldots, k\}$
- $\mathfrak{H}(C)$ is the set of all minimal hitting sets of C

Minimal Hitting Set - Example

Let $C = \{S_1, S_2, S_3\}$ be a collection of sets with

- $S_1 = \{a, b, c\}$
- $S_2 = \{k, l, m, n\}$
- $S_3 = \{x, y, z\}$

Which of the following sets are (minimal) hitting sets of C?

- $H_1 = \{a, b, k, x\}$
- $H_2 = \{a, k, q, z\}$ no hitting set
- $\bullet n_2 = \{a, \kappa, q, z\}$
- $H_3 = \{b, l, y\}$ minimal hitting set
- $H_4 = \{m, z\}$

no hitting set

non-minimal hitting set

How many minimal hitting sets of C exist? $3 \times 4 \times 3 = 36$

Possible World Generation (formal):

- Possible world is constructed by selecting for each A-tuple one alternative value per attribute
- ⇒ One possible world per combination of possible instances (one instance per A-tuple)
 - Let pdb be an AOR-database
 - Number of possible worlds: $|\mathbf{W}| = \prod_{t \in pdb} |pws(t)|$

Possible world space:

$$\mathbf{W} = \mathfrak{H}(C)$$
 where $C = \{pws(t) \mid t \in pdb\}$

Probability of a possible world $W \in W$:

$$Pr(W) = \prod_{t^{\langle * \rangle} \in W} p(t^{\langle * \rangle})$$

Given: A-tuples t_1 , t_2 and t_3 with

$$\textit{pws}(t_1) = \{t_1^{\langle 1 \rangle}, t_1^{\langle 2 \rangle}, t_1^{\langle 3 \rangle}\}, \; \textit{pws}(t_2) = \{t_2^{\langle 1 \rangle}, t_2^{\langle 2 \rangle}\}, \; \textit{pws}(t_3) = \{t_3^{\langle 1 \rangle}, t_3^{\langle 2 \rangle}\}$$

Corresponding Minimal Hitting Sets:

Min	Minimal Hitting Sets					
H_1	$\{t_1^{\langle 1 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 1 \rangle}\}$					
H ₂	$\{t_1^{\langle 1 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 2 \rangle}\}$					
Н3	$\{t_1^{\langle 1 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 1 \rangle}\}$					
H ₄	$\{t_1^{\langle 1 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 2 \rangle}\}$					

Min	Minimal Hitting Sets					
H ₅	$\{t_1^{\langle 2 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 1 \rangle}\}$					
H ₆	$\{t_1^{\langle 2 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 2 \rangle}\}$					
H ₇	$\{t_1^{\langle 2 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 1 \rangle}\}$					
H ₈	$\{t_1^{\langle 2 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 2 \rangle}\}$					
	(1 / 2 / 3)					

Minimal Hitting Sets					
H ₉	$\{t_1^{\langle 3 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 1 \rangle}\}$				
H ₁₀	$\{t_1^{\langle 3 \rangle}, t_2^{\langle 1 \rangle}, t_3^{\langle 2 \rangle}\}$				
H ₁₁	$\{t_1^{\langle 3 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 1 \rangle}\}$				
H ₁₂	$\{t_1^{\langle 3 \rangle}, t_2^{\langle 2 \rangle}, t_3^{\langle 2 \rangle}\}$				

Possible World Generation (example):

Person

	<u>WK</u>	name		age	
<i>±</i>	р1	J.Doe	:1.0	27	:0.8
t_1				28	:0.2
t_2	p2	K.Smith	:1.0	32	:1.0
+	рЗ	J.Doe	:0.7	28	:0.5
<i>t</i> ₃		J.Ho	:0.3	29	:0.5

A-tuple t_1 : 2 possible instances

A-tuple t_2 : 1 possible instances \Rightarrow 2 × 1 × 4 = 8 possible worlds

A-tuple t_3 : 4 possible instances

Possible World Generation (example): Overview

Computation of the most probable world:

- Select the most probable value per attribute for each A-tuple
- If an A-tuple has more than one most probable value per attribute
- ⇒ More than one most probable world exists

high modeling power

> low modeling power

- Combines the ideas of AOR-databases and TI-databases
- ⇒ Values in non-key attributes as independent random variables
- ⇒ A-tuples as independent events

	<u>WK</u>	name		age		р
+	p1	J.Doe	:1.0	27	:0.8	0.8
t ₁				28	:0.2	0.0
t_2	p2	K.Smith	:1.0	32	:1.0	1.0
+	рЗ	J.Doe	:0.7	28	:0.5	1.0
t ₃		Ј.Но	:0.3	29	:0.5	1.0

- All A-tuples are mutually independent
- ⇒ One possible world contains all A-tuples
- ⇒ World key can be used as representation key

	<u>WK</u>	name		age		р
+	p1	J.Doe	:1.0	27	:0.8	0.8
t ₁	ρι			28	:0.2	0.6
t ₂	p2	K.Smith	:1.0	32	:1.0	1.0
t ₃	рЗ	J.Doe	:0.7	28	:0.5	1.0
		J.Ho	:0.3	29	:0.5	1.0

Possible World Generation:

- Select one possible instance per certain A-tuple
- Select one or none possible instance per maybe A-tuple
- Formal Definition: Similar to BID-databases (see next section)

Attribute-OR DBs with Maybe-Tuples (AOR?-databases)

Possible World Generation (example):

Person

	<u>WK</u>	name		age	р	
+	n1	J.Doe	:1.0	27	:0.8	0.8
t ₁	t ₁ p1			28	:0.2	0.6
t_2	p2	K.Smith	:1.0	32	:1.0	1.0
+	рЗ	J.Doe	:0.7	28	:0.5	1.0
<i>t</i> ₃	μσ	J.Ho	:0.3	29	:0.5	1.0

A-tuple t_1 (maybe): 2 poss. instances

A-tuple t_2 (certain): 1 poss. instances \Rightarrow $(2+1) \times 1 \times 4 = 12$ poss. worlds

A-tuple t_3 (certain): 4 poss. instances

Attribute-OR DBs with Maybe-Tuples (AOR?-databases)

Possible World Generation (example): Overview

							`								
\bigcap	<i>W</i> ₁, P	r=0.224			<i>W</i> ₂ , P	r=0.224			<i>W</i> ₃ , F	r=0.096			<i>W</i> ₄, F	r=0.096	
	<u>WK</u>	name	age		<u>WK</u>	name	age		<u>WK</u>	name	age		<u>WK</u>	name	age
t ₁	р1	J.Doe	27	t_1	р1	J.Doe	27	t_1	р1	J.Doe	27	t_1	р1	J.Doe	27
t ₂	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32
t ₃	рЗ	J.Doe	28	t_3	р3	J.Doe	29	t_3	рЗ	J.Ho	28	t_3	рЗ	J.Ho	29
	W ₅ , Pr=0.056 W ₆ , Pr=0.056					W ₇ , Pr=0.024			W ₈ , Pr=0.024						
	<u>WK</u>	name	age		<u>WK</u>	name	age		<u>WK</u>	name	age		<u>WK</u>	name	age
t ₁	р1	J.Doe	28	t_1	р1	J.Doe	28	t_1	р1	J.Doe	28	t ₁	р1	J.Doe	28
t_2	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32
t ₃	рЗ	J.Doe	28	t_3	рЗ	J.Doe	29	t_3	рЗ	J.Ho	28	t_3	рЗ	J.Ho	29
	<i>W</i> ₉ , P	r=0.07			W ₁₀ ,	Pr=0.07			W ₁₁ ,	Pr=0.03			W ₁₂ , Pr=0.03		
	<u>WK</u>	name	age		<u>WK</u>	name	age		WK	name	age		<u>WK</u>	name	age
t ₂	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32	t_2	p2	K.Smith	32
t ₃	рЗ	J.Doe	28	t_3	рЗ	J.Doe	29	t_3	рЗ	J.Ho	28	t_3	рЗ	J.Ho	29

Attribute-OR DBs with Maybe-Tuples (AOR?-databases)

Transformation from TI-database to AOR?-database:

- One A-tuple per tuple
- One alternative value per attribute

Transformation from AOR-database to AOR?-database:

Associating every A-tuple with probability 1.0

Attribute-OR DBs with Maybe-Tuples (AOR?-databases)

Computation of the most probable world:

- Select the most probable instance per certain A-tuple
- \Rightarrow select the most probable value per attribute for each certain A-tuple
 - Select the most probable state (most probable instance or no instance) per maybe A-tuple
 - If an A-tuple has more than one most probable instance/state
- ⇒ More than one most probable world exists

BID-DB

Block-Independent-Disjoint Databases (BID-databases)

power

Block-Independent-Disjoint Databases (BID-databases)

- Each tuple is associated with its marginal probability
- Tuples are grouped in blocks
 - Tuples of different blocks are mutually independent
 - Tuples of the same block are mutually exclusive
- Block is maybe if probabilities of its tuples do not sum up to 1

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	р1	J.Doe	27	0.6
t_2	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t_4	4	3	рЗ	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

- Each tuple is associated with its marginal probability
- Tuples are grouped in blocks
 - Tuples of different blocks are mutually independent
 - Tuples of the same block are mutually exclusive
- Block is maybe if probabilities of its tuples do not sum up to 1

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р	
t_1	1	1	р1	J.Doe	27	0.6	← maybe-tuple
t_2	2	1	р1	J.Doe	28	0.2	← maybe-tuple
t_3	3	2	p2	K.Smith	32	1.0	← certain-tuple
t_4	4	3	рЗ	J.Doe	28	0.8	← maybe-tuple
t_5	5	3	рЗ	J.Ho	29	0.2	← maybe-tuple

Block-Independent-Disjoint Databases (BID-databases)

- Each tuple is associated with its marginal probability
- Tuples are grouped in blocks
 - Tuples of different blocks are mutually independent
 - Tuples of the same block are mutually exclusive
- Block is maybe if probabilities of its tuples do not sum up to 1

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р	maybe block
t_1	1	1	р1	J.Doe	27	0.6	
t_2	2	1	р1	J.Doe	28	0.2	certain block
t_3	3	2	p2	K.Smith	32	1.0	certain block
t_4	4	3	рЗ	J.Doe	28	0.8	
t_5	5	3	рЗ	J.Ho	29	0.2	_

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	р1	J.Doe	27	0.6
t_2	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t_4	4	3	рЗ	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

- Tuples can be exclusive
- Different tuples can share the same world key value
- ⇒ World key cannot be used as representation key

Possible World Generation (formal):

- Let *pdb* be a BID-database
- Let $\mathcal{B}^!$ the set of all certain blocks of pdb
- Let \mathcal{B} ? the set of all maybe blocks of *pdb*
- Number of possible worlds: $|\mathbf{W}| = \prod_{B \in \mathcal{B}^!} |B| \times \prod_{B \in \mathcal{B}^?} (|B| + 1)$

Possible world space:

$$\mathbf{W} = \bigcup_{C \in \{\mathcal{B}^! \cup S \mid S \subseteq \mathcal{B}^?\}} \mathfrak{H}(C)$$

Probability of a possible world $W \in W$:

$$Pr(W) = \prod_{t \in W} p(t) \times \prod_{B \in \mathcal{B}^?, B \cap W = \emptyset} (1 - p(B))$$

where $p(B) = \sum_{t \in B} p(t)$.

Given:

Certain blocks $\mathcal{B}^! = \{B_1, B_2\}$ with $B_1 = \{t_1\}$ and $B_2 = \{t_2, t_3\}$ Maybe blocks $\mathcal{B}^? = \{B_3, B_4\}$ with $B_3 = \{t_4, t_5\}$ and $B_4 = \{t_6\}$

Corresponding Collections and Minimal Hitting Sets:

Collection C _i	Minimal Hitting Sets $\mathfrak{H}(C_i)$
$C_1=\{B_1,B_2\}$	$H_{11} = \{t_1, t_2\}, H_{12} = \{t_1, t_3\}$
$C_2 = \{B_1, B_2, B_3\}$	$H_{21} = \{t_1, t_2, t_4\}, H_{22} = \{t_1, t_3, t_4\}$ $H_{23} = \{t_1, t_2, t_5\}, H_{24} = \{t_1, t_3, t_5\}$
$C_3 = \{B_1, B_2, B_4\}$	$H_{31} = \{t_1, t_2, t_6\}, H_{32} = \{t_1, t_3, t_6\}$
$C_4 = \{B_1, B_2, B_3, B_4\}$	$H_{41} = \{t_1, t_2, t_4, t_6\}, H_{42} = \{t_1, t_3, t_4, t_6\}$ $H_{43} = \{t_1, t_2, t_5, t_6\}, H_{44} = \{t_1, t_3, t_5, t_6\}$

Possible World Generation (example):

Two certain blocks (1 & 2 tupels), one maybe block (2 tupels) $\Rightarrow 1 \times 2 \times 3 = 6$ possible worlds:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	р1	J.Doe	27	0.6
t_2	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t_4	4	3	рЗ	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

Possible World Generation (example):

Possible world $W_1 = \{t_1, t_3, t_4\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	р1	J.Doe	27	0.6
<i>t</i> ₂	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t ₄	4	3	рЗ	J.Doe	28	0.8
<i>t</i> ₅	5	3	р3	J.Ho	29	0.2

$$Pr(W_1) = p(t_1) \times p(t_3) \times p(t_4)$$

= 0.6 × 1.0 × 0.8 = **0.48**

Possible World Generation (example):

Possible world $W_2 = \{t_1, t_3, t_5\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	р1	J.Doe	27	0.6
<i>t</i> ₂	2	1	р1	J.Doe	28	0.2
<i>t</i> ₃	3	2	p2	K.Smith	32	1.0
t ₄	4	3	р3	J.Doe	28	0.8
t_5	5	3	р3	J.Ho	29	0.2

$$Pr(W_2) = p(t_1) \times p(t_3) \times p(t_5)$$

= 0.6 × 1.0 × 0.2 = **0.12**

Possible World Generation (example):

Possible world $W_3 = \{t_2, t_3, t_4\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	p1	J.Doe	27	0.6
<i>t</i> ₂	2	1	р1	J.Doe	28	0.2
t_3	3	2	<i>p2</i>	K.Smith	32	1.0
t_4	4	3	рЗ	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

$$Pr(W_3) = p(t_2) \times p(t_3) \times p(t_4)$$

= 0.2 × 1.0 × 0.8 = **0.16**

Possible World Generation (example):

Possible world $W_4 = \{t_2, t_3, t_5\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	p1	J.Doe	27	0.6
<i>t</i> ₂	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t_4	4	3	р3	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

$$Pr(W_4) = p(t_2) \times p(t_3) \times p(t_5)$$

= 0.2 × 1.0 × 0.2 = **0.04**

Possible World Generation (example):

Possible world $W_5 = \{t_3, t_4\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	p1	J.Doe	27	0.6
<i>t</i> ₂	2	1	р1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t ₄	4	3	рЗ	J.Doe	28	0.8
t_5	5	3	р3	J.Ho	29	0.2

$$Pr(W_5) = (1 - p(B_1)) \times p(t_3) \times p(t_4)$$

= 0.2 × 1.0 × 0.8 = **0.16**

Possible World Generation (example):

Possible world $W_6 = \{t_3, t_5\}$:

	<u>RK</u>	BNo.	<u>WK</u>	name	age	р
t_1	1	1	p1	J.Doe	27	0.6
<i>t</i> ₂	2	1	p1	J.Doe	28	0.2
t_3	3	2	p2	K.Smith	32	1.0
t_4	4	3	р3	J.Doe	28	0.8
t_5	5	3	рЗ	J.Ho	29	0.2

$$Pr(W_6) = (1 - p(B_1)) \times p(t_3) \times p(t_5)$$

= 0.2 × 1.0 × 0.2 = **0.04**

Possible World Generation (example): Overview

	W ₁ , Pr=0.48			W ₃ , Pr=0.16			W ₅ , Pr=0.16				
	<u>WK</u>	name	age		<u>wk</u>	name	age		<u>WK</u>	name	age
t ₁	p1	J.Doe	27	t ₂	p1	J.Doe	28	t ₃	p2	K.Smith	32
t ₃	p2	K.Smith	32	t ₃	p2	K.Smith	32	t ₄	р3	J.Doe	28
t₄	р3	J.Doe	28	t ₄	р3	J.Doe	28				
					_						
	W₂ , P	r=0.12			W ₄ , F	r=0.04			<i>W₀,</i> P	r=0.04	
	<i>W</i> ₂, P	r=0.12 name	age		<i>W</i> ₄, F	r=0.04 name	age		<i>W₆</i> , P	r=0.04 name	age
t ₁	-,		age 27	t ₂			age 28	t₃			age 32
t ₁	<u>WK</u>	name		t₂ t₃	<u>WK</u>	name		t₃ t₅	<u>WK</u>	name	

Transformation from AOR?-database to BID-database:

- One block per A-tuple
- One tuple per possible instance
- ⇒ Plain presentation of possible instances
- ⇒ Loss in Compactness

Example:

- A-tuple with 3 alternative values in each of 5 attributes
- \Rightarrow 3⁵ = 243 possible instances
- \Rightarrow 243 \times 5 = 1215 attribute values instead of 5 \times 3 = 15

Block-Independent-Disjoint Databases (BID-databases)

Computation of the most probable world:

- Select the most probable tuple per certain block
- Select the most probable state (most probable tuple or no tuple) per maybe block
- If a block has more than one most probable tuple/state
- ⇒ More than one most probable world exists

- Finite set of mutually independent random variables
- Each random variable has a finite number of possible values
- Each tuple is associated with a condition over these variables (tuple-level uncertainty)

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	р1	J.Doe	27	X=1
t_2	2	р1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	p2	S.Kmith	32	Y=2
t_5	5	рЗ	J.Doe	28	X=1 v X=3
t_6	6	рЗ	J.Ho	29	X=2

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	8.0
Υ	2	0.2

Probabilistic Conditional Databases (pc-databases)

- The same variable can appear in conditions of different tuples
- ⇒ Variables can be used to introduce tuple correlations

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t ₁	1	p1	J.Doe	27	X=1
t ₂	2	p1	J.Doe	28	X=2
t₃	3	p2	K.Smith	32	Y=1
t ₄	4	p2	S.Kmith	32	Y=2
t 5	5	р3	J.Doe	28	X=1 v X=3
t ₆	6	р3	J.Ho	2 9	X=2

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	0.8
Υ	2	0.2

Probabilistic Conditional Databases (pc-databases)

- The same variable can appear in conditions of different tuples
- ⇒ Variables can be used to introduce tuple correlations

Person

		<u>RK</u>	<u>WK</u>	name	age	condition
Evalusion	t_1	1	p1	J.Doe	27	X=1
Exclusion	t_2	2	p1	J.Doe	28	X=2
	t ₃	3	p2	K.Smith	32	Y=1
	t ₄	4	p2	S.Kmith	32	Y=2
	t 5	5	р3	J.Doe	28	X=1 v X=3
	t ₆	6	р3	J.Ho	29	X=2

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	0.8
Υ	2	0.2

Probabilistic Conditional Databases (pc-databases)

- The same variable can appear in conditions of different tuples
- ⇒ Variables can be used to introduce tuple correlations

Person condition <u>RK</u> WK age name 1 p1 J.Doe 27 X=12 X=2 J.Doe 28 р1 positive t₃ 3 Y=1 **p2** K.Smith 32 **Implication** 4 S.Kmith 32 Y=2 t₄ **p2** 5 t5 р3 J.Doe 28 $X=1 \lor X=3$ 6 р3 J.Ho 29 X=2 t₆

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	0.8
Υ	2	0.2

- Tuples can be exclusive
- Different tuples can share the same world key value
- ⇒ World key cannot be used as representation key

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	р1	J.Doe	27	X=1
t_2	2	р1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	p2	S.Kmith	32	Y=2
t_5	5	рЗ	J.Doe	28	X=1 v X=3
t_6	6	рЗ	J.Ho	29	X=2

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	8.0
Υ	2	0.2

Variable Assignment:

- A variable assignment θ maps each random variable to one of its possible values
- $\Rightarrow \theta(X) = 1$ means that assignment θ maps variable X to value 1
 - All variables are mutually independent
- \Rightarrow Probability of assignment θ

$$Prob(\theta) = \prod_{X \in \mathbf{X}} Prob(X = \theta(X))$$

where $Prob(X = \theta(X))$ is the probability that variable X takes value $\theta(X)$.

Variable Assignment (Example):

World-Table

var	value	Prob
Χ	1	0.6
Χ	2	0.2
Χ	3	0.2
Υ	1	0.8
Υ	2	0.2

• $3 \times 2 = 6$ possible variable assignments

	Y = 1	Y = 2
X = 1	θ_1	θ_2
X = 2	θ_3	θ_4
<i>X</i> = 3	θ_5	θ_6

• Probability of assignment θ_2 is

$$Prob(\theta_2) = Prob(X = 1) \times Prob(Y = 2)$$

= $0.6 \times 0.2 = 0.12$

Marginal Tuple Probabilities:

- Let Θ be the set of all possible variable assignments
- Let Φ_t be the condition of tuple t
- The marginal probability of a tuple t results from summing up the probabilities of all variable assignments that satisfy condition Φ_t , i.e.

$$p(t) = \sum_{\theta \in \Theta, \Phi_t(\theta) = true} Prob(\theta)$$

Marginal Tuple Probabilities (Example):

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	р1	J.Doe	27	X=1
t_2	2	р1	J.Doe	28	X=2
t,	3	n2	K Smith	.32	Y=1

32 Y=2 p2 S.Kmith 28 X=1 v X=3 р3 J.Doe р3 J.Ho 29 X=2

World Table

World-Table					
var	value	Prob			
Χ	1	0.6			
Χ	2	0.2			
Χ	3	0.2			
Υ	1	0.8			
Υ	2	0.2			

• Condition of tuple t_5 is satisfied if $\theta(X) = 1$ or $\theta(X) = 3$

$$p(t_5) = Prob(\theta_1) + Prob(\theta_2) + Prob(\theta_5) + Prob(\theta_6)$$

= $Prob(X = 1) + Prob(X = 3) = 0.6 + 0.2 = 0.8$

Possible World Generation (formal):

- One possible world per variable assignment
- Let *pdb* be a pc-database
- Let $W_{pdb}^{\theta}=\{t\mid t\in pdb, \Phi_t(\theta)=true\}$ be the world that results from assignment θ

Possible world space:

$$\mathbf{W} = \mathit{pws}(\mathit{pdb}) = \{ W_\mathit{pdb}^\theta \mid \theta \in \Theta \}$$

Probability of a possible world $W \in W$:

$$Pr(W) = \sum_{\theta \in \Theta, W_{adb}^{\theta} = W} Prob(\theta)$$

Possible World Generation (example):

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	р1	J.Doe	27	X=1
t_2	2	р1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	p2	S.Kmith	32	Y=2
t_5	5	рЗ	J.Doe	28	X=1 v X=3
t_6	6	рЗ	J.Ho	29	X=2

World Table				
var	value	Prob		
Χ	1	0.6		
Χ	2	0.2		
Χ	3	0.2		
Υ	1	0.8		
Υ	2	0.2		

Possible World Generation (example):

Possible world $W_1 = \{t_1, t_3, t_5\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	p1	J.Doe	27	X=1
<i>t</i> ₂	2	<i>p</i> 1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	<i>p2</i>	S.Kmith	32	Y=2
t_5	5	рЗ	J.Doe	28	X=1 v X=3
<i>t</i> ₆	6	р3	J.Ho	29	X=2

vvoi iu- rabie				
var	value	Prob		
Χ	1	0.6		
X	2	0.2		
Χ	3	0.2		
Υ	1	0.8		
Υ	2	0.2		

$$Pr(W_1) = Prob(X = 1) \times Prob(Y = 1)$$

= 0.6 × 0.8 = **0.48**

Possible World Generation (example):

Possible world $W_2 = \{t_2, t_3, t_6\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t ₁	1	p1	J.Doe	27	X=1
t ₂	2	p1	J.Doe	28	X=2
t ₃	3	p2	K.Smith	32	Y=1
t ₄	4	p2	S.Kmith	<i>32</i>	Y=2
t 5	5	р3	J.Doe	<i>28</i>	X=1 v X=3
t ₆	6	р3	J.Ho	29	X=2

WOITU-TUDIE				
var	value	Prob		
Χ	1	0.6		
Х	2	0.2		
X	3	0.2		
Υ	1	0.8		
Υ	2	0.2		

$$Pr(W_2) = Prob(X = 2) \times Prob(Y = 1)$$

= 0.2 × 0.8 = **0.16**

Possible World Generation (example):

Possible world $W_3 = \{t_3, t_5\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	<i>p</i> 1	J.Doe	27	X=1
t_2	2	<i>p</i> 1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	<i>p2</i>	S.Kmith	32	Y=2
t_5	5	рЗ	J.Doe	28	X=1 v X=3
<i>t</i> ₆	6	рЗ	J.Ho	29	X=2

vvoi iu- rabie					
var	value	Prob			
X	1	0.6			
X	2	0.2			
Χ	3	0.2			
Υ	1	0.8			
Υ	2	0.2			

$$Pr(W_3) = Prob(X = 3) \times Prob(Y = 1)$$

= 0.2 × 0.8 = **0.16**

Possible World Generation (example):

Possible world $W_4 = \{t_1, t_4, t_5\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	p1	J.Doe	27	X=1
t_2	2	<i>p</i> 1	J.Doe	28	X=2
t_3	3	p2	K.Smith	32	Y=1
t_4	4	p2	S.Kmith	32	Y=2
<i>t</i> ₅	5	рЗ	J.Doe	28	X=1 v X=3
<i>t</i> ₆	6	р3	J.Ho	29	X=2

World-Table

World-Table					
var	value	Prob			
X	1	0.6			
Χ	2	0.2			
Χ	3	0.2			
Υ	1	8.0			
Υ	2	0.2			

$$Pr(W_4) = Prob(X = 1) \times Prob(Y = 2)$$

= 0.6 × 0.2 = **0.12**

Possible World Generation (example):

Possible world $W_5 = \{t_2, t_4, t_6\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t ₁	1	p1	J.Doe	27	X=1
t ₂	2	p1	J.Doe	28	X=2
t ₃	3	p2	K.Smith	32	Y=1
t 4	4	p2	S.Kmith	32	Y=2
t 5	5	р3	J.Doe	28	X=1 v X=3
t ₆	6	р3	J.Ho	29	X=2

World-Table

VV OI IU- I UDIE					
var	value	Prob			
Х	1	0.6			
Х	2	0.2			
X	3	0.2			
Υ	1	0.8			
Υ	2	0.2			

$$Pr(W_5) = Prob(X = 2) \times Prob(Y = 2)$$

= 0.2 × 0.2 = **0.04**

Possible World Generation (example):

Possible world $W_6 = \{t_4, t_5\}$:

Person

	<u>RK</u>	<u>WK</u>	name	age	condition
t_1	1	<i>p</i> 1	J.Doe	27	X=1
t_2	2	<i>p</i> 1	J.Doe	28	X=2
t_3	3	<i>p2</i>	K.Smith	32	Y=1
t_4	4	p2	S.Kmith	32	Y=2
<i>t</i> ₅	5	рЗ	J.Doe	28	X=1 v X=3
<i>t</i> ₆	6	р3	J.Ho	29	X=2

Marid Table

vvoi iu- i abie						
var	value	Prob				
Χ	1	0.6				
Χ	2	0.2				
Х	3	0.2				
Υ	1	8.0				
Υ	2	0.2				

$$Pr(W_6) = Prob(X = 3) \times Prob(Y = 2)$$

= 0.2 × 0.2 = **0.04**

Transformation from BID-database to pc-database:

- One variable per block
- Certain block B
- \Rightarrow Variable has |B| possible values
 - Maybe block B
- \Rightarrow Variable has |B|+1 possible values

Consequences:

- No loss in compactness
- Increase in modeling/query complexity

Computation of the most probable world:

Case 1: Every assignment leads to another possible world:

- Select the most probable value per variable
- Compute all tuples whose conditions are satisfied by the selected assignment

Case 2: Different assignments lead to the same possible world:

- Compute all assignments
- Compute all possible worlds
- ⇒ Infeasible in practice

roduction TI-DB AOR-DB AOR?-DB BID-DB **pc-DB** Propertie:

Representation Systems - Overview

TI-database

uncertain tuples (mutually independent)

AOR-database

alternative values per attribute (mutually independent)

AOR?-database

uncertain tuples with alternative values per attribute

BID-database

mutually independent blocks of exclusive tuples

pc-database

- tuple conditions defined on independent random variables
- ⇒ any correlation possible

Properties: Completeness

Definition: A representation system is called *complete* if it can be used to represent any discrete probability distribution over a set of possible worlds.

- pc-databases are complete
- BID-databases are not complete
- ⇒ TI-databases, AOR-databases and AOR?-databases are not complete

Properties: Closeness

Definition: A representation system is called *closed* under a query language if the result of each query of this language can be represented with this system.

- pc-databases are complete
- ⇒ pc-databases are closed under every query language
- BID-databases are not closed under the join-operator
- ⇒ TI-databases, AOR-databases and AOR?-databases are not closed under the join-operator
 - AOR-databases are not closed even under the selection-operator

troduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB **Properties**

Properties: Closeness - Example

	Person					
	<u>RK</u>	<u>WK</u>	name	age	р	
t1	1	р1	J.Doe	27	0.6	
t_2	2	р1	J.Doe	28	0.2	
t ₃	3	p2	K.Smith	32	1.0	
t4	4	рЗ	J.Doe	28	0.8	
t_5	5	рЗ	J.Ho	29	0.2	

 $\begin{array}{lll} \textbf{SELECT} & \text{t.name AS nameA, u.name AS nameB} \\ \textbf{FROM} & \text{Person t, Person u} \\ \textbf{WHERE} & \text{t.WK} <> \text{u.WK} \\ \textbf{AND} & \text{t.age} < \text{u.age} \\ \end{array}$

\bigcap	W _A , Pr=0).48		W _B , Pr=0).32		W _C , Pr=0).16		W _D , Pr=0).04
	nameA	nameB		nameA	nameB		nameA	nameB		nameA	nameB
<i>t</i> ₆	J.Doe	K.Smith	t_6	J.Doe	K.Smith	t_6	J.Doe	K.Smith	t_8	J.Ho	K.Smith
t ₇	J.Doe	J.Doe				t_{8}	J.Ho	K.Smith			
						t_9	J.Doe	J.Ho			

Tuple t_9 pos. implicates tuple $t_8 \Rightarrow$ cannot be represented with a BID-database

oduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB **Properties**

Coupling Representation Systems with Views

Observations:

- Queries can introduce tuple dependencies
- BID- and TI-databases are not complete by themselves, but are complete if they are combined with views

Benefits:

- Simple representation system is used and dependencies are introduced on demand
- We can control which dependencies are allowed to exist in the database
- ⇒ Specific dependency assumptions can be made for such views
- ⇒ Often more efficient querying than in pc-databases
 - Useful if many tuples are correlated in the same way
 - Less useful if many tuples are correlated in different ways (one view per individual dependency?)

Choice of Representation System - Examples

Uncertain existence (or relevance) of individual persons

 \Rightarrow TI, AOR?, BID, pc

Uncertain attribute values of individual persons

 \Rightarrow AOR, AOR?, BID, pc

Correlations between different attribute values of the same person

 \Rightarrow BID, pc

Correlations between attribute values of different persons

 \Rightarrow pc

Exclusive existences of different persons

 \Rightarrow BID, pc

Correlations between existences of different persons

 \Rightarrow pc

oduction TI-DB AOR-DB AOR?-DB BID-DB pc-DB **Properties**

Choice of Representation System - Use Cases

Use Case 1: Duplicate Merging

- Given: Set of duplicate tuples with conflicting values
- Problem: Uncertainty on correct values for some attributes

PNo.	firstname	lastname	DoB	city
P23	William	Schulz	12.10.1987	НН
P14	Bill	Schultz	10.12.1987	St.Pauli
P31	William	Schultz	Т	Berlin

Solutions:

- Requires exclusion between alternative values or tuples
- AOR-database (loss of correlations between values)
- BID-database (no loss of value correlations)

Properties

Choice of Representation System - Use Cases

Use Case 2: Duplicate Detection

- Given: Set of potential duplicates
- Problem: Uncertainty whether or not these tuples are duplicates

PNo.	firstname	lastname	DoB	city
P23	William	Schulz	12.10.1987	НН
P14	Bill	Schultz	10.12.1987	St.Pauli

Solutions:

- Two cases: Different persons (2 tuple), same person (1 tuple)
- Requires modeling of complex relationships
 - BID-database with view
 - pc-database

