LEMMA Mvmt Force

Chris Hoover 5/28/2020

Purpose

Use movement data incorporated into a dynamic model of COVID transmission via a forcing function to fit early-stage outbreak dynamics and forecast transmission into the future using movement projections.

Movement Data

Descartes Labs

Technical report here. Data represents "the median of the max-distance mobility for all samples in the specified region" derived from anonymized mobile phone data.

Epi Data

COVID Deaths in San Francisco County

Model

We use a slight tweak to LEMMA to add an explicit deaths compartment in order to fit to deaths data in addition to hospitalizations

$$\begin{split} \dot{S} &= -\beta S(I_R + I_H)/N \\ \dot{E} &= \beta S(I_R + I_H)/N - \sigma E \\ \dot{I}_R &= \sigma (1 - \alpha) E - \gamma_R I_R \\ \dot{I}_H &= \sigma \alpha E - \rho I_H \\ \dot{H} &= \rho I_H - \gamma_H H \\ \dot{D} &= \gamma_H \mu H \\ \dot{R} &= \gamma_R I_R \gamma_H (1 - \mu) H \end{split}$$

Loading required package: parallel

[[1]]

Table 1: Parameter values and descriptions used in the model

	Value	Definition
\overline{N}	883305	population size
t.sim	102	time to run simulation
$\overline{E_0}$	2	starting number of exposed
β	0.1	transmission rate
c_r	1	Relative contact rate between S and Ir
c_h	1	Relative contact rate between S and Ih
σ	0.25	1/serial interval
α	0.05	proportion severely symptomatic (will be hospitalized)
$\overline{\rho}$	0.25	time between symptom onset and hospitalization
γ_r	0.2	1/time to recovery (non-infectiousness) for mildly symptomatic
γ_h	0.083	1/time hospitalized
μ	0.2	proportion of hospitalized cases who die

```
##
    [1] "forcats"
                         "stringr"
                                          "dplyr"
                                                           "purrr"
    [5] "readr"
                         "tidyr"
                                          "tibble"
                                                           "ggplot2"
##
##
   [9] "tidyverse"
                         "deSolve"
                                          "RevoUtils"
                                                           "stats"
## [13] "graphics"
                         "grDevices"
                                          "utils"
                                                           "datasets"
  [17] "RevoUtilsMath" "methods"
                                          "base"
##
##
## [[2]]
   [1] "forcats"
                         "stringr"
                                          "dplyr"
                                                           "purrr"
##
   [5] "readr"
                         "tidyr"
                                          "tibble"
##
                                                           "ggplot2"
   [9] "tidyverse"
                         "deSolve"
                                                           "stats"
##
                                          "RevoUtils"
## [13] "graphics"
                         "grDevices"
                                          "utils"
                                                           "datasets"
  [17] "RevoUtilsMath" "methods"
##
                                          "base"
##
## [[3]]
##
   [1] "forcats"
                         "stringr"
                                          "dplyr"
                                                           "purrr"
                         "tidyr"
                                          "tibble"
   [5] "readr"
                                                           "ggplot2"
   [9] "tidyverse"
                         "deSolve"
                                                           "stats"
##
                                          "RevoUtils"
## [13] "graphics"
                         "grDevices"
                                          "utils"
                                                           "datasets"
## [17] "RevoUtilsMath" "methods"
                                          "base"
```

^{##} Warning: Removed 22 rows containing missing values (geom_point).

Warning: Removed 6 rows containing missing values (geom_point).

TODO: Two populations

• How to divide movement/contact between the two populations?

```
## iteration: 100 out of 1000 acceptance rate: 0.12
## iteration: 200 out of 1000 acceptance rate: 0.065
## iteration: 300 out of 1000 acceptance rate: 0.04333333
## iteration: 400 out of 1000 acceptance rate: 0.0375
## iteration: 500 out of 1000 acceptance rate: 0.036
## iteration: 600 out of 1000 acceptance rate: 0.03
## iteration: 700 out of 1000 acceptance rate: 0.02571429
## iteration: 800 out of 1000 acceptance rate: 0.02375
## iteration: 900 out of 1000 acceptance rate: 0.02111111
## iteration: 1000 out of 1000 acceptance rate: 0.021
```

