Binarne relacije

1. Binarna relacija. Relacija ekvivalencije i razredi (klase) ekvivalencije. Svojstva razreda ekvivalencije. (Ilustrirati primjerima).

Definicija: **Binarna relacija na skupu X** je bilo koji neprazan podskup $\rho \subseteq X \times X$. Kažemo da su x i y u relaciji ρ ako je $(x, y) \in \rho$. U tom slučaju pišemo $x \rho y$.

Definicija: Za binarnu relaciju ρ na X kažemo da je:

- a) **refleksivna** ako vrijedi $(\forall x \in X) \ x \rho x$;
- b) simetrična ako vrijedi $(\forall x, y \in X) (x \rho y \Rightarrow y \rho x)$
- c) antisimetrična ako vrijedi $(\forall x, y \in X) (x \rho y \land y \rho x \Rightarrow x = y)$
- d) tranzitivna ako vrijedi $(\forall x, y, z \in X) (x \rho y \land y \rho z \Rightarrow x \rho z)$

Definicija: Za binarnu relaciju ρ na skupu X kažemo da je **relacija ekvivalencije** ako je refleksivna, simetrična i tranzitivna.

Napomena: U literaturi se često relaciju ekvivalencije označava i sa \sim umjesto ρ , pa se piše $x \sim y$.

Primjeri relacija ekvivalencije:

- Na skupu X svih trokuta u ravnini možemo definirati binarnu relaciju sličnosti trokuta $\Delta ABC \sim \Delta DEF$ (jednaki kutevi)
- Na skupu X svih trokuta u ravnini možemo definirati binarnu relaciju sukladnosti (kongruentnosti) trokuta $\triangle ABC \cong \triangle DEF$ (jednake stranice
- ρ = "biti paralelan sa" na skupu X svih pravaca u ravnini
- ρ = "biti koncentričan sa" na skupu svih kružnica zadanih u ravnini R^2

Definicija: Neka je ρ relacija ekvivalencije na skupu X. **Razred (klasa) ekvivalencije** [x] elementa $x \in X$ je skup svih elemenata iz X koji su u relaciji ρ s x. Dakle,

$$[x] = \{ y \in X : x \rho y \} \subseteq X .$$

Napomena:

- $x \in [x]$ jer je $x \rho x$
- Bilo koji $y \in [x]$ se zove **reprezentant** razreda (klase) [x]

Teorem: Neka je ρ relacija ekvivalencije na skupu X. Onda za sve $x,y\in X$ vrijedi:

- ili [x] = [y] ili $[x] \cap [y] = \emptyset$
- $x \rho y$ postoji ako i samo ako je [x] = [y]

2. Particija skupa i pridružena relacija ekvivalencije na tom skupu (citirati teorem)

Definicija: Kažemo da obitelj podskupova $\{A_i\}_{i\in I}$ od X čini **particiju (rastav)** skupa X ako vrijedi:

- a) $X = \bigcup_{i \in I} A_i$, tj. obitelj skupova $\left\{A_i\right\}_{i \in I}$ je **pokrivač** od X
- b) $A_i \cap A_j = \emptyset$ za sve $i, j \in I, i \neq j$, tj. skupovi iz $\{A_i\}_{i \in I}$ su međusobno disjunktni.

Ponekad se i sam prikaz skupa $X = \bigcup_{i \in I} A_i$ kao disjunktne unije podskupova A_i zove particijom od X.

Teorem: Neka je $\{A_i\}_{i\in I}$ particija skupa X. Definirajmo relaciju ρ na skupu X tako da je $x \rho y$ onda i samo onda ako x i y pripadaju istom skupu iz particije. Onda je ρ relacija ekvivalencije na skupu X, a pripadne klase ekvivalencije se podudaraju sa A_i .

3. Što je kvocjentni skup nekog skupa po zadanoj relaciji ekvivalencije na tom skupu? Ilustriraj primjerom kvocjentnog skupa od Z po relaciji ≡ (mod n).

Definicija: Neka je ρ relacija ekvivalencije na skupu X. Onda skup svih klasa ekvivalencije nazivamo **kvocijentni skup** od X s obzirom na relaciju ρ i označavamo:

$$X/_{\rho} = \{[x]\}_{x \in X}$$

Primjer: Kvocijentni skup od Z po relaciji ≡ (mod n) jednak je slijedećem skupu:

$$Z/_{\equiv} = \{ [0], [1], ..., [n-1] \}$$

Taj skup se naziva **kvocijentni skup ostataka po modulu** n, ili skup ostataka pri dijeljenju sa n. Razredi ekvivalencije su:

$$[0] = \{ q n : q \in Z \}$$

$$[1] = \{ q n + 1 : q \in Z \}$$

$$\vdots$$

$$[n-1] = \{ q n + (n-1) : q \in Z \}$$

Dakle, razred [r] sadrži skup svih onih cijelih brojeva koji nakon dijeljenja sa n daju ostatak r.

4. Što je to relacija parcijalnog poretka, a što relacija potpunog poretka. Primjerima $(2^X, \subseteq)$ i (N, |) pokaži da parcijalno poredani skup ne mora biti i potpuno poredan.

Definicija: Za binarnu relaciju ρ na skupu X kažemo da **je relacija parcijalnog** (**djelomičnognog**) **poretka** ako je refleksivna, **antisimetrična** i tranzitivna.

Definicija: Za parcijalno poredan skup (X, \le) kažemo da je **potpuno (totalno) poredan** ako za svaka dva elementa vrijedi da su usporediva, tj. za svaki $x, y \in X$ vrijedi $x \le y$ ili $y \le x$.

Primjer 1: Skup $(2^X, \subseteq)$ je parcijalno poredan skup. Ako partitivni skup 2^X ima barem dva elementa, onda skup $(2^X, \subseteq)$ nije potpuno poredan skup, jer disjunktni podskupovi A i B iz 2^X nisu usporedivi, tj. nisu u relaciji $A \subseteq B$ ili $B \subseteq A$.

Primjer 2: Skup (N, |) je parcijalno poredan skup, ali on nije potpuno poredan skup, tj. za svaki $a, b \in N$ ne vrijedi da a | b ili b | a.

5. Objasni pojmove donje (gornje) međe, odozdol (odozgor) omeđenog podskupa, infimuma (supremuma), minimuma (maksimuma) i ilustriraj primjerima u $(R, \leq), (2^X, \subseteq)$ i (N, |).

Definicija: Neka je (X, \leq) parcijalno poredan skup i $S \subseteq X$.

- Kažemo da je $m \in X$ donja međa skupa S, ako je $(\forall s \in S) (m \le s)$
- Kažemo da je $M \in X$ gornja međa skupa S, ako je $(\forall s \in S)$ $(s \le M)$
- Za skup S kažemo da je **odozdol omeđen** ako ima barem jednu donju među
- Za skup S kažemo da je **odozgor omeđen** ako ima barem jednu gornju među
- Kažemo da je m* ∈ X (ako postoji) infimum skupa skupa S, i označavamo sa inf S, ako vrijedi:
 a) m* = inf S je donja međa od S
 - b) za svaku donju među $m \in X$ vrijedi $m \le \inf S$
- Kažemo da je M* ∈ X (ako postoji) supremum skupa skupa S, i označavamo sa sup S, ako vrijedi:
 a) M* = sup S je gornja međa od S
 - b) za svaku gornju među $M \in X$ vrijedi $\sup S \le M$
- Ako vrijedi da je inf $S \in S$, onda se inf S zove **minimum skupa** S i označava **min** S .
- Ako vrijedi da je sup S ∈ S, onda se sup S zove maksimum skupa S i označava max S.

Primjer: Za skup (R, \le) i S = (0, 1) vrijedi: inf S = 0 , min S ne postoji sup S = 1 , max S ne postoji

Za skup
$$S = [0, 1)$$
 je: $\inf S = 0$, $\min S = 0$

Primjer: Za A, B \in 2^X je: inf {A, B} = A \cap B sup {A, B} = A \cup B.

Primjer: Za skup (N, |) i $S = \{2, 4, 6\}$ vrijedi:

inf
$$S = Nzm \{2, 4, 6\}$$
, min $S = 2$
sup $S = nzv \{2, 4, 6\} = 12$, max S ne postoji

6. Što je to Kartezijev produkt parcijalno poredanih skupova? Primjerom pokaži da Kartezijev produkt totalno poredanih skupova ne mora biti totalno poredan. Što je to leksikografski poredak?

Definicija: Neka su (X_1, \le_1) i (X_2, \le_2) dva parcijalno poredana skupa. **Kartezijev produkt parcijalno poredanih skupova** definiramo kao $(X_1 \times X_2, \le)$. Pritom za elemente (a_1, a_2) , $(b_1, b_2) \in X_1 \times X_2$ kažemo da je $(a_1, a_2) \le (b_1, b_2)$ ako je $a_1 \le_1 b_1$ i $a_2 \le_2 b_2$.

Napomena: Slično se definira Kartezijev produkt više parcijalno poredanih skupova.

Primjer: Skup svih točaka T(x, y) u ravnini $R \times R = R^2$ koje su $\geq (0, 0)$ jednak je prvom kvadrantu: $x \geq 0$, $y \geq 0$.

Primjer: Primjerom treba pokazati da Kartezijev produkt totalno poredanih skupova ne mora biti totalno poredan. Npr. neka je $X = \{0, 1\}, 0 < 1, i Y = \{d, g\}, d < g$. Elementi (0, g) i (1, d) nisu usporedivi u $X \times Y$.

Definicija: Neka su (X_1, \le_1) i (X_2, \le_2) dva parcijalno poredana skupa. Na Kartezijevom produktu $X_1 \times X_2$ definiramo tzv. relaciju **leksikografskog poretka** \le_L . Pritom za elemente (a_1, a_2) , $(b_1, b_2) \in X_1 \times X_2$ kažemo da je $(a_1, a_2) \le_L (b_1, b_2)$, ako je ispunjen jedan od dva slijedeća uvjeta:

- 1) $a_1 \le b$ (a_2 i b_2 bilo kakvi)
- 2) a1 = b1 i $a_2 \le_2 b_2$

 $(X_1 \times X_2, \leq_L)$ je parcijalno poredan skup.

Napomena: Neka su (X_1, \leq_1) i (X_2, \leq_2) dva totalno poredana skupa, onda je i $(X_1 \times X_2, \leq_L)$ totalno poredan skup.

Primjer: Neka je skup svih točaka T(x, y) u ravnini R^2 snabdjeven leksikografskim poretkom. Skup svih točaka koje su $\geq (0, 0)$ jednak je desnoj poluravnini $x \geq 0$, bez negativnog dijela y osi.

7. Jednostavnim primjerima objasniti što je to usmjereni graf.

Neka je X konačan skup i ρ relacija na X. Tada relaciju ρ možemo predočiti dijagramom kojeg nazivamo **usmjereni graf**.

- Svaki element skupa reprezentira (označcena) točka koju nazivamo **čvor** ili **vrh**.
- Ako je a ρ b, tada dva čvora označena sa a i b povežemo strelicom od a do b. Tu strelicu nazivamo **usmjereni brid**.
- Ako je a ρ b i b ρ a onda imamo dva usmjerena brida između a i b, pa, zbog jednostavnosti, a i b povezujemo jednom dvostranom strelicom.
- Ako je a ρ a, usmjereni brid između a i a se zove **petlja**.

Primjer: Neka na skupu $X = \{1, 2, 3\}$ vrijedi relacija x < y. Tada usmjereni graf izgleda:

Primjer: Neka na skupu $X = \{1, 2, 3\}$ vrijedi relacija $x \mid y$. Tada usmjereni graf izgleda:

8. Jednostavnim primjerima objasni što je to Hasseov dijagram relacije poretka na nekom skupu.

Neka je X konačan skup i ρ (\leq) relacija parcijalnog poretka na X. Tada relaciju \leq možemo predočiti pomoću **Hasseovog dijagama**.

- Svaki element skupa reprezentira točka u ravnini koju nazivamo čvor ili vrh.
- Ispuštamo petlje, jer je relacija refleksivna.
- Ako je a < b i između njih ne postoji niti jedan c ∈X, tj. iz a ≤ c ≤ b slijedi a = c ili b = c, onda čvor koji pripada b satavljamo iznad čvora koji pripada a i spajamo ih crtom.
- Usmjereni brid koji je imliciran tranzitivnošu ne crtamo.

Primjer: U ovom primjeru $X \subseteq N$, a relacija poretka \leq je "biti djelitelj od", tj. $x \leq y$ znači $x \mid y$.

a)
$$X = \{1, 2, 4, 8\}$$

b)
$$X = \{ 2, 3, 5, 7, 10, 12, 24 \}$$

c)
$$X = \{1, 2, 3, 5, 6, 10, 15, 30\}$$
 - djelitelji broja 30

9. Kad kažemo da je neki parcijalno poredan skup izomorfan nekom drugom parcijalno poredanom skupu?

Definicija: Kažemo da je parcijalno poredan skup (X, \leq_1) izomorfan parcijalno poredanom skupu (Y, \leq_2) ako postoji bijekcija $f: X \to Y$ koja čuva poredak tako da vrijedi

$$(\forall x, y \in X) (x \leq_1 y \Leftrightarrow f(x) \leq_2 f(y))$$
.

10. Što je to mreža, a što potpuna mreža? Kako definiramo operacije zbrajanja i množenja u mreži i koja su im svojstva? Što je to distributivna, a što komplementirana mreža? (Sve ilustrirati jednostavnim primjerom)

Definicija: Parcijalno poredan skup (X, \le) zove se **mreža** ako za svaki par elemenata $a, b \in X$ postoji inf $\{a, b\}$ i sup $\{a, b\}$.

Primjer: Partitivni skup $(2^X, \subseteq)$ je mreža, a pripadna operacija zbrajanja je unija, a operacija produkta presjek.

Definicija: Parcijalno poredan skup (X, \le) naziva se **potpuna mreža** ako svaki njegov podskup (konačan ili beskonačan) ima infimum i supremum. Svaka potpuna mreža onda ima inf X koji se zove nula i sup X koji se zove jedinica.

Primjer: Mreža D_{30} svih djelitelja broja 30, s relacijom djeljivosti kao relacijom poretka, je potpuna mreža u kojoj je nula 1, a jedinica 30.

Operacije **zbrajanja** i **množenja** u mreži definiramo pomoću izraza:

$$a + b = \sup \{a, b\}$$
 $i \ a \cdot b = \inf \{a, b\}$

Teorem: Za operacije $+ i \cdot na \text{ mre} \check{z}i (X, \leq) \text{ vrijede svojstva:}$

- 1. Idempotentnost zbrajanja i množenja: a + a = a, $a \cdot a = a$
- 2. Asocijativnost: (a+b)+c=a+(b+c) $(a \cdot b) \cdot c=a \cdot (b \cdot c)$
- 3. Komutativnost: a + b = b + a, $a \cdot b = b \cdot a$
- 4. Apsortivnost ili svojstvo upijanja: $a \cdot (a + c) = a$, $a + (a \cdot c) = a$
- 5. a + 0 = a , $a \cdot 1 = a$

Definicija: Za potpunu mrežu (X, \le) kažemo da je **distributivna mreža** ako u njoj vrijede zakoni distribucije:

$$a (b + c) = ab + ac$$
 $i \quad a + (b \cdot c) = (a + b) \cdot (a + c)$

Primjer: Mreža D_{12} svih djelitelja broja 12, s relacijom djeljivosti kao relacijom poretka, je potpuna mreža u kojoj je nula 1, a jedinica 12. To je distributivna mreža.

Definicija: Za potpunu mrežu (X, \le) kažemo da je **komplementirana mreža** ako svaki $a \in X$ ima komplement \overline{a} , odnosno ako vrijedi:

$$a + \overline{a} = 1$$
 i $a \cdot \overline{a} = 0$

Primjeri:

- Mreža D_{12} nije komplementirana, npr. a = 2 nema komplement.
- Distributivna i komplementirana potpuna mreža je Booleova algebra $(X,+,\cdot\,,\stackrel{-}{,}0,1\,)$

11. Kako na Booleovoj algebri definiramo relaciju ≤ i koja su joj svojstva? Što je atom?

Definicija: Neka je $(B, +, \cdot, -, 0, 1)$ Booleova algebra. Za a, $b \in B$ kažemo da je $a \le b$ ako je $a \cdot b = a$.

Propozicija: Neka su a, b, c, d bilo koji elementi Booleove algebre B. Relacija ≤ ima slijedeća svojstva:

- 1) (B, ≤) je parcijalno poredan skup
- 2) $a \le b$ onda i samo onda ako je a + b = b
- 3) ako je $a \le b$ i $c \le d$, onda je a $c \le b$ d
- 4) $ab = \inf \{a, b\}$, $a + b = \sup \{a, b\}$
- 5) $a \le b$ onda i samo onda ako je $\overline{b} \le \overline{a}$

Definicija: Element a $\neq 0$ u Booleovoj algebri B naziva se **atom** Booleove algebre ako iz $x \le a$ slijedi x = 0 ili x = a. Drugim riječima, atomi su oni elementi koji pokrivaju nulu.

Primjer: U algebri $2^{\{a, b, c\}}$ atomi su jednočlani podskupovi $\{a\}$, $\{b\}$ i $\{c\}$. Za $C \subseteq \{a\}$ vrijedi da je $C = \emptyset$ ili $C = \{a\}$.

Napomena: Svaka konačna Booleova algebra ima neprazan skup atoma.