## Semi-Supervised Learning

### Maria-Florina Balcan 03/30/2015

### Readings:

- Semi-Supervised Learning. Encyclopedia of Machine Learning. Jerry Zhu, 2010
- Combining Labeled and Unlabeled Data with Co-Training. Avrim Blum, Tom Mitchell. COLT 1998.

## Fully Supervised Learning



## Fully Supervised Learning



$$S_l = \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\}$$

 $x_i$  drawn i.i.d from D,  $y_i = c^*(x_i)$ 

Goal: h has small error over D.

$$\operatorname{err}_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$$

#### Two Core Aspects of Supervised Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

E.g.: Naïve Bayes, logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

VC-dimension, Rademacher complexity, margin based bounds, etc.

## Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.



Protein sequences



Billions of webpages



Images

## Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Techniques that best utilize data, minimizing need for expert/human intervention.

Paradigms where there has been great progress.

· Semi-supervised Learning, (Inter)active Learning.









## Inductive Semi-Supervised Learning



## Semi-supervised Learning

- Major topic of research in ML.
- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
  - Transductive SVM [Joachims '99]
  - Co-training [Blum & Mitchell '98]
  - Graph-based methods [B&C01], [ZGL03]

Test of time awards at ICML!

Workshops [ICML '03, ICML' 05, ...]

- Books: Semi-Supervised Learning, MIT 2006

  O. Chapelle, B. Scholkopf and A. Zien (eds)
  - Introduction to Semi-Supervised Learning, Morgan & Claypool, 2009 Zhu & Goldberg

## Semi-supervised Learning

- Major topic of research in ML.
- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
  - Transductive SVM [Joachims '99]
  - Co-training [Blum & Mitchell '98]
  - Graph-based methods [B&C01], [ZGL03]

Test of time awards at ICML!

Both wide spread applications and solid foundational understanding!!!

## Semi-supervised Learning

- Major topic of research in ML.
- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
  - Transductive SVM [Joachims '99]
  - Co-training [Blum & Mitchell '98]
  - Graph-based methods [B&C01], [ZGL03]

Test of time awards at ICML!

Today: discuss these methods.

Very interesting, they all exploit unlabeled data in different, very interesting and creative ways.

Semi-supervised learning: no querying. Just have lots of additional unlabeled data.

A bit puzzling; unclear what unlabeled data can do for us.... It is missing the most important info. How can it help us in substantial ways?



#### Key Insight

Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.

## Semi-supervised SVM

[Joachims '99]

## Margins based regularity

Target goes through low density regions (large margin).

- assume we are looking for linear separator
- belief: should exist one with large separation







Transductive SVM

Optimize for the separator with large margin wrt labeled and

unlabeled data. [Joachims '99]

```
\begin{split} & \underline{Input} \colon S_l \text{=} \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\} \\ & S_u \text{=} \{x_1, ..., x_{m_u}\} \\ & \text{argmin}_w \ \big| |w| \big|^2 \text{ s.t.} \\ & \bullet \ y_i \ w \cdot x_i \geq 1, \text{ for all } i \in \{1, ..., m_l\} \\ & \bullet \ \widehat{y_u} w \cdot x_u \geq 1, \text{ for all } u \in \{1, ..., m_u\} \\ & \bullet \ \widehat{y_u} \in \{-1, 1\} \text{ for all } u \in \{1, ..., m_u\} \end{split}
```

Find a labeling of the unlabeled sample and w s.t. w separates both labeled and unlabeled data with maximum margin.

Optimize for the separator with large margin wrt labeled and



Find a labeling of the unlabeled sample and w s.t. w separates both labeled and unlabeled data with maximum margin.

Optimize for the separator with large margin wrt labeled and unlabeled data.

```
\begin{split} & \underline{\textbf{Input}} \colon S_{l} \text{=} \{ (x_{1}, y_{1}), ..., (x_{m_{l}}, y_{m_{l}}) \} \\ & S_{u} \text{=} \{ x_{1}, ..., x_{m_{u}} \} \\ & \text{argmin}_{w} \left| |w| \right|^{2} + C \sum_{i} \xi_{i} + C \sum_{u} \widehat{\xi_{u}} \\ & \bullet \quad y_{i} \text{ w} \cdot x_{i} \geq 1 \text{-} \xi_{i}, \text{ for all } i \in \{1, ..., m_{l}\} \\ & \bullet \quad \widehat{y_{u}} \text{w} \cdot x_{u} \geq 1 - \widehat{\xi_{u}}, \text{ for all } u \in \{1, ..., m_{u}\} \\ & \bullet \quad \widehat{y_{u}} \in \{-1, 1\} \text{ for all } u \in \{1, ..., m_{u}\} \end{split}
```

NP-hard..... Convex only after you guessed the labels... too many possible guesses...

Optimize for the separator with large margin wrt labeled and unlabeled data.

#### Heuristic (Joachims) high level idea:

- First maximize margin over the labeled points
- Use this to give initial labels to unlabeled points based on this separator.
- Try flipping labels of unlabeled points to see if doing so can increase margin

Keep going until no more improvements. Finds a locally-optimal solution.

## Experiments [Joachims99]



Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299.

#### Helpful distribution



#### Non-helpful distributions

#### Margin not satisfied



#### Margin satisfied



## Co-training

[Blum & Mitchell '98]

Different type of underlying regularity assumption: Consistency or Agreement Between Parts

## Co-training: Self-consistency

#### Agreement between two parts: co-training [Blum-Mitchell98].

- examples contain two sufficient sets of features,  $x = \langle x_1, x_2 \rangle$
- belief: the parts are consistent, i.e.  $\exists c_1, c_2 s.t. c_1(x_1)=c_2(x_2)=c^*(x)$

For example, if we want to classify web pages:  $x = \langle x_1, x_2 \rangle$  as faculty member homepage or not







## Iterative Co-Training

Idea: Use small labeled sample to learn initial rules.

- E.g., "my advisor" pointing to a page is a good indicator it is a faculty home page.
- Text. E.g., "I am teaching" on a page is a good indicator it is a faculty home page.

Idea: Use unlabeled data to propagate learned information.



## Iterative Co-Training

Idea: Use small labeled sample to learn initial rules.

- E.g., "my advisor" pointing to a page is a good indicator it is a faculty home page.
- E.g., "I am teaching" on a page is a good indicator it is a faculty home page.

Idea: Use unlabeled data to propagate learned informations

Look for unlabeled examples where one rule is confident and the other is not. Have it label the example for the other.

$$C_{1}(x_{1}) = C_{2}(x_{1})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

$$X_{1}(x_{2})$$

Training 2 classifiers, one on each type of info. Using each to help train the other.

## Iterative Co-Training

Works by using unlabeled data to X=(X), Y=(X), Y=(X



- Have learning algos  $A_1$ ,  $A_2$  on each of the two views.
- Use labeled data to learn two initial hyp. h<sub>1</sub>, h<sub>2</sub>.

#### Repeat

- Look through unlabeled data to find examples where one of h<sub>i</sub> is confident but other is not.
- Have the confident  $h_i$  label it for algorithm  $A_{3-i}$ .

## Co-Training Algorithm

h(x) = sign (wix)

Mra Play

) Wx (

**Input**: labeled data  $\{(\mathbf{x}_i,y_i)\}_{i=1}^l$ , unlabeled data  $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$  confidence each instance has two views  $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$ , and a learning speed k.

- 1. let  $L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$
- 2. Repeat until unlabeled data is used up:
- 3. Train view-1  $f^{(1)}$  from  $L_1$ , view-2  $f^{(2)}$  from  $L_2$ .
- 4. Classify unlabeled data with  $f^{(1)}$  and  $f^{(2)}$  separately.
- Add  $f^{(1)}$ 's top k most-confident predictions  $(\mathbf{x}, f^{(1)}(\mathbf{x}))$  to  $L_2$ . Add  $f^{(2)}$ 's top k most-confident predictions  $(\mathbf{x}, f^{(2)}(\mathbf{x}))$  to  $L_1$ . Remove these from the unlabeled data.

(abelied: ty x 1/1 x 1/1)

unlabel uf Xr. M Xz

## Original Application: Webpage classification

12 labeled examples, 1000 unlabeled

|                 | Page-based | Hyperlink-based | Combined |
|-----------------|------------|-----------------|----------|
| Std. Supervised | 12.9       | 12.4            | 11.1     |
| Co-training     | 6.2        | 11.6            | 5.0      |
| Just say neg    | 22         | 22              | 22       |



## Iterative Co-Training A Simple Example: Learning Intervals



Use labeled data to learn  $h_1^1$  and  $h_2^1$ 

#### Use unlabeled data to bootstrap





Expansion, Examples: Learning Intervals



Consistency: zero probability mass in the regions





## Co-training [BM'98]

Say that  $h_1$  is a weakly-useful predictor if

$$\Pr[h_1(x) = 1 | c_1(x) = 1] > \Pr[h_1(x) = 1 | c_1(x) = 0] + \gamma.$$

Has higher probability of saying positive on a true positive than it does on a true negative, by at least some gap  $\gamma$ 

Say we have enough labeled data to produce such a starting point.

**Theorem:** if C is learnable from random classification noise, we can use a weakly-useful  $h_1$  plus unlabeled data to create a strong learner under independence given the label.

## Co-training/Multi-view SSL: Direct Optimization of Agreement

$$\begin{array}{c} \underline{\text{Input: }} S_l = \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\} \\ S_u = \{x_1, ..., x_{m_u}\} \\ \\ \\ \text{argmin}_{h_1, h_2} \underbrace{\sum_{j=1}^{m_l} l(h_j(x_i), y_j)}_{\text{i} = 1} + \underbrace{\sum_{j=1}^{m_u} l(h_j(x_i), h_j(x_i))}_{\text{i} = 1} \\ \\ \\ \text{Each of them has small} \\ \\ \text{labeled error} \end{array} \right. \\ \begin{array}{c} \text{Regularizer to encourage} \\ \text{agreement over unlabeled dat} \\ \end{array}$$

P. Bartlett, D. Rosenberg, AISTATS 2007; K. Sridharan, S. Kakade, COLT 2008

E.g.,

## Co-training/Multi-view SSL: Direct Optimization of Agreement

Input: 
$$S_l = \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\}$$
  
 $S_u = \{x_1, ..., x_{m_u}\}$ 

$$argmin_{h_1,h_2} \sum_{l=1}^{2} \sum_{i=1}^{m_l} l(h_l(x_i), y_i) + C \sum_{i=1}^{m_u} agreement(h_1(x_i), h_2(x_i))$$

- $l(h(x_i), y_i)$  loss function
  - E.g., square loss  $l(h(x_i), y_i) = (y_i h(x_l))^2$
  - E.g.,  $0/1 loss l(h(x_i), y_i) = 1_{y_i \neq h(x_i)}$

E.g.,

P. Bartlett, D. Rosenberg, AISTATS 2007; K. Sridharan, S. Kakade, COLT 2008

### Many Other Applications

E.g., [Levin-Viola-Freund03] identifying objects in images. Two different kinds of preprocessing.









Original images

Foreground images

Goal: car detection

#labeled images: 50

#unlabeled images: 22,000

# Graph Similarity Based Regularity [Blum&Chwala01], [ZhuGhahramaniLafferty03]

## Graph-based Methods

- Assume we are given a pairwise similarity fnc and that very similar examples probably have the same label.
- If we have a lot of labeled data, this suggests a Nearest-Neighbor type of algorithm.
- If you have a lot of unlabeled data, perhaps can use them as "stepping stones".



## Graph-based Methods

Idea: construct a graph with edges between very similar examples.

Unlabeled data can help "glue" the objects of the same class together.



## Graph-based Methods

Often, transductive approach. (Given L + U, output predictions on U). Are alllowed to output any labeling of  $L \cup U$ .

#### Main Idea:

Construct graph G with edges between very similar examples.

 Might have also glued together in G examples of different classes.

 Run a graph partitioning algorithm to separate the graph into pieces.

#### Several methods:

- Minimum/Multiway cut [Blum&Chawla01]
- Minimum "Soft-cut" [ZhuGhahramaniLafferty'03]
- Spectral partitioning

**-** ...



# How to Create the Graph

• Empirically, the following works well:

$$S_1 = \{(x_i, y_i)\}_{i=1}^{\ell}$$

1. Compute distance between i, j

- 2. For each i, connect to its kNN. k very small but still connects the graph
- 3. Optionally put weights on (only) those edges

$$\exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

4. Tune  $\sigma$ 

How to Create the Graph

$$G = \langle V, E \rangle$$

$$V (Vertex / Node) : example (StVSN)$$

$$E (Edge) : similarity / Waight.$$

$$Save local information W \in \mathbb{R}$$

$$(1) k - NM (0-1)$$

$$(2) \leq -NN (0-1) \leq = \operatorname{dist}(X_1, X_1) \cdot \operatorname{dist}(X_1, X_2)$$

$$(1) Simple (2) P(-\frac{|X-X_2|^2}{26^2})$$

$$(3) V(VSN) = V(VSN)$$

$$V(VSN) = V(VSN)$$

## Minimum "soft cut"

[ZhuGhahramaniLafferty'03]

**Objective** Solve for probability vector over labels  $f_i$  on each unlabeled point i.

(labeled points get coordinate vectors in direction of their known label)

- Minimize  $\sum_{e=(i,j)} w_e \|f_i f_j\|^2$ where  $\|f_i - f_j\|$  is Euclidean distance.
- Can be done efficiently by solving a set of linear equations.



Mansdactive Minimum "soft cut" DInitial label assignment  $\sum_{i,j} W_{ij} \left( f_i - f_j \right)^2$ f = 3-1,0,1 n = mx + mu f = 1,0,1 n = mx + mu $=\sum_{i,j}w_{ij}\left(f_{i}^{2}-2f_{i}f_{j}+f_{i}^{2}\right)$  $=2\sum_{ij}N_{ij}f_{i}-2\sum_{ij}N_{i,j}f_{i}f_{j}$ 2) Prediction.  $y_i = sign(f_i).$ = 2 f Dif - 2 f Wf  $\min_{f} \left[ \sum_{i \neq j} \frac{(f_i - f_j)^2}{f_j} \right]$  $=2f^{T}(D-W)f$  $\begin{array}{ccc}
0 \\
0
\end{array}
\left(\begin{array}{c}
D_{i\bar{i}} &= \sum_{i=1}^{N} W_{i,j}
\end{array}\right)$ 5.t. fi= y;, x; 6 Sq L=1)-W UxicSn, , fic 3-1, 13 - hard Lazlacian Matrix

Incal Inductive 1-1,w<sup>T</sup>xi)++ 2,1/w//2 min X165.2  $\sim$ muni fold regularization, Semi-Supervised SVM Spectial Clustoning man f D + =

### What You Should Know

- Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.
- Different types of algorithms (based on different beliefs).

  Sem-supervisal 532 M
  - Transductive SVM [Joachims '99]
  - Co-training [Blum & Mitchell '98]
  - Graph-based methods [B&C01], [ZGL03]

# Supplementary Materials

- 1. Self-Training
- 2. Generative Models

# Self-Training

Maybe a simple way of using unlabeled data

- Initialize  $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$  and  $U = \{\mathbf{x}_i\}_{i=l+1}^n$
- Repeat
  - Train f from L using supervised learning
  - ② Apply f to the unlabeled instances in U
  - **3** Remove a subset S from U; add  $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$  to L
- Until  $U = \phi$

# Self-Training

- A wrapper method
- The choice of learner for f is open
- Good for many real world tasks, e.g., natural language processing
- But mistake in choosing the f can reinforce itself

#### Gaussian mixture model (GMM)

Model parameters:

$$\theta = \{\pi_i, \mu_i, \Sigma_i\}_{i=1}^K, \pi_i$$
: class priors,  $\mu_i$ :Gaussian means,  $\Sigma_i$ :covariance matrices

Joint distribution

$$p(\mathbf{x}, \mathbf{y}|\theta) = p(\mathbf{y}|\theta)p(\mathbf{x}|\mathbf{y}, \theta)$$
$$= \sum_{i=1}^{K} \pi_{i} \mathcal{N}(\mathbf{x}; \mu_{i}, \Sigma_{i})$$

Classification:

$$p(\mathbf{y}|\mathbf{x},\theta) = \frac{p(\mathbf{x},\mathbf{y}|\theta)}{\sum_{i=1}^{K} p(\mathbf{x},\mathbf{y}_i|\theta)}$$



#### Effect of unlabeled data in GMM

The difference comes from maximizing different quantities



#### Assumption

knowledge of the model form  $p(X, Y|\theta)$ .

joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

- find the maximum likelihood estimate (MLE) of  $\theta$ , the maximum a posteriori (MAP) estimate, or be Bayesian
- common mixture models used in semi-supervised learning:
  - Mixture of Gaussian distributions (GMM) image classification
  - Mixture of multinomial distributions (Naïve Bayes) text categorization
  - Hidden Markov Models (HMM) speech recognition
- Learning via the Expectation-Maximization (EM) algorithm

### Binary classification with GMM using MLE

- with only labeled data

  - MLE for  $\theta$  trivial (sample mean and covariance)
- with both labeled and unlabeled data  $\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta) + \sum_{i=l+1}^{l+u} \log \left( \sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$ 
  - MLE harder (hidden variables): EM

### The EM algorithm for GMM

- Start from MLE  $\theta = \{w, \mu, \Sigma\}_{1:2}$  on  $(X_l, Y_l)$ ,
  - $w_c$ =proportion of class c
  - $\mu_c$ =sample mean of class c
  - $ightharpoonup \Sigma_c = \text{sample cov of class } c$

#### repeat:

- ② The E-step: compute the expected label  $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$  for all  $x \in X_u$ 
  - ▶ label  $p(y = 1|x, \theta)$ -fraction of x with class 1
  - ▶ label  $p(y = 2|x, \theta)$ -fraction of x with class 2
- **3** The M-step: update MLE heta with (now labeled)  $X_u$

Can be viewed as a special form of self-training.

### The assumption of GMM

- **Assumption**: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional  $p(\mathbf{x}|y)$  are all correct.
- When the assumption is wrong:



#### The assumption of GMM



#### Heuristics to lessen the danger

- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data  $(\lambda < 1)$

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta)$$
$$+ \frac{\lambda}{\lambda} \sum_{i=l+1}^{l+u} \log \left( \sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$$