XML Data

Semi structured Data

Dr. Shaheen Khatoon

Outline

- •Structured, Semistructured, and Unstructured Data
- •XML Hierarchical (Tree) Data Model
- Extracting XML Documents from Relational Databases
- •XML Documents, DTD, and XML Schema
- XML Languages

Structured, Semistructured, and Unstructured Data

Structured data

- Represented in a strict format (schema)
- -Example: information stored in databases

Semi structured data

- -Has a certain structure
- Not all information collected will have identical structure

Unstructured data

-Limited indication of the of data document that contains information embedded within it

Examples

- Structured: Excel spreadsheets Commaseparated value file (.csv) Relational database tables
- Semi-structured: Hypertext Markup Language (HTML) files JavaScript Object Notation (JSON) files Extensible Markup Language (XML) files
- Unstructured: Audio, Video, Flat Text

Semistructured Data

- Schema information mixed in with data values
- Self-describing data
- May be displayed as a directed graph
 - **–Labels** or **tags** on directed edges represent:
 - Schema names
 - Names of attributes
 - Object types (or entity types or classes)
 - Relationships

Semistructured Data (cont'd.)

Figure 12.1 Representing semistructured data as a graph.

XML: Extensible Markup Language

Data sources

- Database storing data for Internet applications
- -Standard for data representation and exchange

Hypertext documents (HTML)

- -Common method of specifying contents and formatting of Web pages
- -Tags describe content instead of formatting

XML data model

XML Hierarchical (Tree) Data Model

Elements and attributes

Main structuring concepts used to construct an XML document

Complex elements

-Constructed from other elements hierarchically

Simple elements

-Contain data values

XML tag names

- -Describe the meaning of the data elements in the document
- -Start tag: angled brackets: <...>, end tag with a slash: </...>

```
<?xml version="1.0" ?>
 <!-- Bookstore with no DTD -->
- <Bookstore>
 - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
     <Title>A First Course in Database Systems</Title>
   - <Authors>
     - <Author>
        <First Name>Jeffrey</First Name>
        <Last_Name>Ullman</Last_Name>
       </Author>
     - <Author>
        <First_Name>Jennifer/First_Name>
        <Last Name>Widom</Last Name>
                                                                      Simple
       </Author>
     </Authors>
                                                                      element
   </Book>
 - <Book ISBN="ISBN-0-13-815504-6" Price="100">
     <Remark>Buy this book bundled with "A First Course" -- a great deal!
     <Title>Database Systems: The Complete Book</Title>
   - <Authors>
     - <Author>
        <First_Name>Hector</First_Name>
        <Last_Name>Garcia-Molina/Last_Name
       </Author>
     - <Author>
        <First_Name>Jeffrey</First_Name>
        <Last_Name>Ullman</Last_Name>
       </Author>
     - <Author>
        <First Name>Jennifer</First Name>
```

Basic constructs

- Tagged elements (nested)
- Attributes
- **Text**

ole ent At

Attributes

Complex element

Relational to XML Mapping

Company ER Model

Company Relational Model

Company Entities

Figure 7.8

Preliminary design of entity types for the COMPANY database. Some of the shown attributes will be refined into relationships.

Relational to XML Mapping

```
<?xml version="1.0" standalone="yes" ?>
<Departments>
   <Department>
      <Dname>Research
      <Dnumber>5</Dnumber>
      <Mgr ssn>333445555</Mgr ssn>
      <Mgr start date>1988-05-22</mgr start date>
      <Dlocation>Bellaire
      <Dlocation>Sugarland
      <Dlocation>Houston
   </Department>
   <Department>
      <Dname>Administration
      <Dnumber>4
      <Mgr ssn>987654321</Mgr ssn>
      <Mqr start date>1995-01-01
      <Dlocation>Stafford
   </Department>
</Departments>
```

Please complete mapping from the homework exercise

Relational Model versus XML

	Relational	XML
Structure	Tables	Hierarchical Tree
Schema	Fixed in advance	Flexible "Self describing"
Queries	Simple (SQL)	Complex: Xpath, XQuery
Ordering	None – use order by clause	Implied ordering
Implementation	Native models of relational systems	Add-on

Knowledge Check

- You're creating a database to contain information about university records: students, courses, grades, etc. Should you use the relational model or XML?
- You're creating a database to contain information for a university web site: news, academic announcements, admissions, events, research, etc. Should you use the relational model or XML?
- You're creating a database to contain information about family trees (ancestry). Should you use the relational model or XML?

Adheres to basic structural requirements

- Single root element
- Matched tags, proper nesting
- Unique attributes within elements

```
<?xml version="1.0" ?>
 <!-- Bookstore with no DTD -->
- <Bookstore>
 - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
     <Title>A First Course in Database Systems</Title>
   - <Authors>
     - <Author>
        <First_Name>Jeffrey</First_Name>
        <Last Name>Ullman</Last Name>
      </Author>
     - <Author>
        <First_Name>Jennifer</First_Name>
        <Last_Name>Widom</Last_Name>
      </Author>
     </Authors>
   </Book>
 - <Book ISBN="ISBN-0-13-815504-6" Price="100">
     <Remark>Buy this book bundled with "A First Course" -- a great deal!
     <Title>Database Systems: The Complete Book</Title>
     Authores
```

Adheres to basic structural requirements

- Single root element
- Matched tags, proper nesting
- Unique attributes within elements

Displaying XML

Use rule-based language to translate to HTML

- Cascading stylesheets (CSS)
- Extensible stylesheet language (XSL)

```
<?xml version="1.0" ?>
 <!-- Bookstore with no DTD -->
- <Bookstore>
 - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
    <Title>A First Course in Database Systems</Title>
   - <Authors>
    - <Author>
        <First_Name>Jeffrey</First_Name>
        <Last_Name>Ullman</Last_Name>
      </Author>
    - <Author>
        <First_Name>Jennifer</First_Name>
        <Last_Name>Widom</Last_Name>
      </Author>
     </Authors>
   </Book>
 - <Book ISBN="ISBN-0-13-815504-6" Price="100">
    <Remark>Buy this book bundled with "A First Course" -- a great deal!</pr
    <Title>Database Systems: The Complete Book</Title>
```

Displaying XML

Use rule-based language to translate to HTML

- Cascading stylesheets (CSS)
- Extensible stylesheet language (XSL)

Extensible Markup Language (XML)

- Standard for data representation and exchange
- Formal specification is enormous; we cover most important components

```
<?xml version="1.0" ?>
<!-- Bookstore with no DTD -->
<Bookstore>
- <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
   <Title>A First Course in Database Systems</Title>
  - <Authors>
   - <Author>
       <First_Name>Jeffrey</First_Name>
       <Last Name>Ullman</Last Name>
     </Author>
   - <Author>
       <First_Name>Jennifer</First_Name>
       <Last Name>Widom</Last Name>
     </Author>
   </Authors>
  </Book>
- <Book ISBN="ISBN-0-13-815504-6" Price="100">
   <Remark>Buy this book bundled with "A First Course" -- a great deal!
   <Title>Database Systems: The Complete Book</Title>

    Authors
```

Practice: Identify Well Formed XML

XML Data

DTDs

Adheres to basic structural requirements

- Single root element
- Matched tags, proper nesting
- Unique attributes within elements

```
<?xml version="1.0" ?>
 <!-- Bookstore with no DTD -->
- <Bookstore>
 - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
    <Title>A First Course in Database Systems</Title>
   - <Authors>
    - <Author>
        <First_Name>Jeffrey</First_Name>
        <Last_Name>Ullman</Last_Name>
      </Author>
    - <Author>
        <First_Name>Jennifer</First_Name>
        <Last_Name>Widom</Last_Name>
      </Author>
    </Authors>
   </Book>
 - <Book ISBN="ISBN-0-13-815504-6" Price="100">
    <Remark>Buy this book bundled with "A First Course" -- a great deal!
    <Title>Database Systems: The Complete Book</Title>
     Authores
```

"Valid" XML

Adheres to basic structural requirements

- ➤ Also adheres to content-specific specification
 - Document Type Descriptor (DTD)
 - XML Schema Description (XSD)

```
<?xml version="1.0" ?>
 <!-- Bookstore with no DTD -->

    - <Bookstore>

 - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
    <Title>A First Course in Database Systems</Title>
  - <Authors>
    - <Author>
        <First_Name>Jeffrey</First_Name>
        <Last Name>Ullman</Last Name>
      </Author>
    - <Author>
        <First Name>Jennifer</First Name>
        <Last_Name>Widom</Last_Name>
      </Author>
    </Authors>
   </Book>
 - <Book ISBN="ISBN-0-13-815504-6" Price="100">
    <Remark>Buy this book bundled with "A First Course" -- a great deal!
    <Title>Database Systems: The Complete Book</Title>
     \(\Delta\) uthors >
```

"Valid" XML

Adheres to basic structural requirements

> Also adheres to content-specific specification

"Valid" XML

Adheres to basic structural requirements

➤ Also adheres to content-specific specification

Document Type Descriptor (DTD)

 Grammar-like language for specifying elements, attributes, nesting, ordering, #occurrences

Please refer to below link for more detail

w3schools.com/xml/xml_dtd_attributes.asp

Here is an XML DTD

Create a XML documents that is valid with given DTD?

XML Schema (XSD)

- Extensive language
- Like DTDs, can specify elements, attributes, nesting, ordering, #occurrences
- Also data types, keys, (typed) pointers, and more

XSD is written in XML

```
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="person">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="fname" type="xs:string"/>
        <xs:element name="initial" type="xs:string"</pre>
            minOccurs="0"/>
        <xs:element name="lname" type="xs:string"/>
        <xs:element name="address" type="xs:string"</pre>
            maxOccurs="2"/>
        <xs:choice>
          <xs:element name="major" type="xs:string"/>
          <xs:element name="minor" type="xs:string"</pre>
              minOccurs="2" maxOccurs="2"/>
        </xs:choice>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

DTD/XSD versus none (well-formed)

+ DTD/XSD

- Program can assume the structure
- CSS/XSL rules are simple when program has particular structure
- Specification language- DTD as a specification what the XML look like
- Documentation
- Strongly typed Data

- DTD/XSD

- Flexibility and ease of change is difficult
- DTD can be messy- irregular structure
- Benefits of no typing