Conditional Models

Emorie D Beck

9/7/2017

Packages

```
library(psych)
library(sjPlot)
library(broom)
library(lme4)
library(MuMIn)
library(merTools)
library(reghelper)
library(stargazer)
library(lsmeans)
library(multcompView)
library(plyr)
library(tidyverse)
```

Basic Syntex

From last week:

- ▶ Level 1: $Y_{ij} = \beta_{0j} + \varepsilon ij$
- ▶ Level 2: $\beta_{0j} = \gamma_{00} + U_{0j}$

Sample Data

The National Longitudinal Study of Youths 1979 Child and Young Adult Sample (NLSYCYA) is a longitudinal study conducted by the National Bureau of Labor Statistics. The sample includes the children of the original 1979 sample. Here, we are going to use a subset of the more than 11,000 variables available that include the following.

Item Name	Description	Time-Varying?
PROC_CID	Participant ID	No
Dem_DOB	Year of Date of Birth	No
groups	Jail, Community Service, None	No
DemPWeight	Weight Percentile at age 10	No
age	Age of participant	Yes
Year	Year of Survey	Yes
age0	Age of participant (centered)	Yes
SensSeek	Sensation-Seeking Composite	Yes
CESD	CESD Depression Composite	Yes

Simple Growth Curve Model

- ▶ Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{ij} + \varepsilon ij$
- ► Level 2:
 - $\beta_{0j} = \gamma_{00} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + U_{1j}$

Simple Growth Curve Model

In R

```
mod0 <- lmer(SensSeek ~ age0 + (1|PROC_CID), data = sample_dat)</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + (1 | PROC CID)
     Data: sample_dat
##
## REML criterion at convergence: 3404.2
##
## Scaled residuals:
     Min
          10 Median 30 Max
## -3.6782 -0.5396 0.0276 0.4739 3.2174
##
## Random effects:
## Groups Name
                       Variance Std.Dev.
## PROC_CID (Intercept) 0.1349 0.3673
## Residual
                       0.2003 0.4475
## Number of obs: 2084, groups: PROC CID, 924
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 2.765851 0.020067 137.83
## age0 -0.005879 0.003407 -1.73
##
## Correlation of Fixed Effects:
##
       (Intr)
## age0 -0.611
```

Conditional Models: Adding Predictors

Let's see if we can better predict participants' change in sensation seeking over time by adding covariates.

Predictor	Continuous	Categorical
Time Invariant Time Varying	Weight for Age CESD Scores	Group Depression

Time Invariant Predictors

Time Invariant Predictors: Continuous

The basic equation, specifying a random intercept and slope:

- ▶ Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{1j} + \varepsilon ij$
- ► Level 2:
 - $\beta_{0i} = \gamma_{00} + \gamma_{01} * X_{2i} + U_{0i}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}$

But we need to break this down to see that adding additional predictors results in interaction terms:

$$Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j} + (\gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}) * X_{1j} + \varepsilon ij$$

$$Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + \gamma_{10} * X_{1j} + \gamma_{11} * X_{2j} * X_{1j} + U_{0j} + U_{1j} * X_{1j} + \varepsilon ij$$

We can also fit this with intercepts depending on weight, but without the change (slope) dependent on weight:

$$Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j} + (\gamma_{10} + U_{1j}) * X_{1j} + \varepsilon ij$$

$$Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + \gamma_{10} * X_{1j} + U_{0j} + U_{1j} * X_{1j} + \varepsilon ij$$

Time Invariant Predictors: Continuous Example - Weight for Age Percentile

```
describe(sample_dat$DemPweight)
```

```
## vars n mean sd median trimmed mad min max range skew ku
## X1 1 2084 0.66 0.31 0.69 0.67 0.36 -0.06 1.62 1.68 -0.29
## se
## X1 0.01
```

Time Invariant Predictors: Continuous Example - Weight for Age Percentile

Time Invariant Predictors: Continuous Example - Weight for Age Percentile

Time Invariant Predictors: Categorical Example - 2 level group

Lets's start with 2 groups: Jail v. None

- ▶ Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{1j} + \varepsilon ij$
- ► Level 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}$

Time Invariant Predictors: Example - 2 level group

- ▶ Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * age_{0ij} + \varepsilon_{ij}$
- ► Level 2:
 - $\qquad \qquad \beta_{0j} = \gamma_{00} + \gamma_{01} * groupsNone + U_{0j}$
 - lacksquare $eta_{1j} = \gamma_{10} + \gamma_{11} * groupsNone + U_{1j}$

Variable	D1
Jail	0
None	1

2 Group Time Invariant Conditional Growth Models Sensation Seeking Composite groups - None

20

14

16

18

Age

22

24

Time Invariant Predictors: Example - 2 level group

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + groups + age0 * groups + (age0 | PROC_CID)
     Data: sample_dat %>% filter(groups != "CommServ")
##
## REML criterion at convergence: 2607.6
## Scaled residuals:
      Min
              10 Median
                              30
                                     Max
## -3.2324 -0.4860 0.0463 0.4643 3.0578
##
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
## PROC CID (Intercept) 0.1613721 0.40171
##
            age0
                        0.0008963 0.02994 -0.31
                        0.1897644 0.43562
## Residual
## Number of obs: 1573, groups: PROC_CID, 689
##
## Fixed effects:
                   Estimate Std. Error t value
##
## (Intercept)
                 2.717417
                             0.036423
                                        74.61
## age0
                  -0.003998 0.006382 -0.63
## groupsJail
                 0.093497 0.048257 1.94
## age0:groupsJail -0.007432 0.008272 -0.90
##
## Correlation of Fixed Effects:
##
              (Intr) age0 grpsJl
## age0
              -0.624
## groupsJail -0.755 0.471
## age0:grpsJl 0.481 -0.772 -0.623
```

Side Note: 1me4 helper functions

```
vcov(mod2g)
VarCorr(mod2g)
fixef(mod2g)
ranef(mod2g)
coef(mod2g)
confint.merMod(mod2g, method = "boot")
reghelper::ICC(mod2g)
MuMIn::r.squaredGLMM(mod2g)
```

vcov(mod2g)

age0

```
## 4 x 4 Matrix of class "dpoMatrix"
                                         age0 groupsJail age
```

groupsJail -0.0013266680 1.449788e-04 0.0023287011 ## age0:groupsJail 0.0001449788 -4.072833e-05 -0.0002486054

-0.0001449788 4.072833e-05 0.0001449788

##		(Intercept)	age0	groupsJail
##	(Intercept)	0.0013266680 -1	1.449788e-04	-0.0013266680

VarCorr(mod2g)

##	Groups	Name	Std.Dev.	Corr
##	PROC_CID	(Intercept)	0.401711	
##		age0	0.029938	-0.313
##	Residual		0.435620	

fixef(mod2g)

##

##

(Intercept)

age0

2.717416961 -0.003997618

0.093496648

-0.0074317

groupsJail age0:groupsJa

ranef(mod2g)

```
## $PROC CID
            (Intercept)
##
                                 age0
            0.282588931 -3.611031e-03
## 9102
## 9501
            0.158291229 1.331088e-03
## 9502
            0.154297404 -3.923893e-04
## 9503
            0.141135024 2.529397e-04
## 10001
            0.181445259 -8.900323e-04
## 12802
            0.299965270 -2.762459e-03
## 13801
            0.295128758 -6.380208e-03
## 14302
            0.457651355 -3.128200e-03
## 17502
            0.059294263 7.862636e-03
## 18301
           -0.005625690 6.023488e-03
## 18801
            0.051321841
                        4.697355e-04
           -0.170342105 2.176698e-03
## 22901
## 23603
           -0.023323357 5.432364e-04
## 29201
            0.236336994 -5.180336e-05
## 37902
            0.399042993 -7.794982e-03
##
  38803
           0.129866933 -3.024798e-03
## 42801
            0.131611919 -1.681788e-03
## 43902
           -0.170342105 2.176698e-03
```

confint.merMod(mod2g, method = "boot", nsim = 10)

```
## 2.5 % 97.5 %

## .sig01 0.327385686 0.4383052800

## .sig02 -0.449329241 1.0000000000

## .sig03 0.003594104 0.0395529858

## (Intercept) 2.687572155 2.7526852249

## age0 -0.008431261 0.0003451138

## groupsJail 0.045594498 0.1406432924

## age0:groupsJail -0.009248090 0.0023639599
```

All units of the random effects are in standard deviation units (which means you need to square them to get the variance!!)

- .sig01= sd of random intercept $=\sqrt{ au_{00}}$
- .sig02 = correlation between slope and intercept = $\sqrt{ au_{10}}$
- .sig03 = sd of random slope = $\sqrt{ au_{11}}$
- .sigma = residual variance = $\hat{\sigma}$

```
reghelper::ICC(mod2g)
```

[1] 0.4609468

Conditional R^2 : How much variance fixed + random effects explain **Marginal** R^2 : how much variance the fixed effects explain explained here

```
MuMIn::r.squaredGLMM(mod2g)
```

```
## R2m R2c
## 0.005234242 0.452019164
```

There are lots of helpful packages for this, including stargazer and sjPlot, which are demonstrated below.

```
stargazer::stargazer(mod2g)
sjPlot::sjt.lmer(mod2g)
```

The problem is that stargazer() doesn't include all the terms we want, and sjt.lmer() only renders html. Embedded in the .Rmd version of these slides is some code that should help you to extract the terms you need and create a table using dplyr and tidyr that you can render in LATEX using stargazer.

But let's understand where those variables came from. To do so, we'll use the broom package in R to grab the terms we need.

Description	Math Notation
Fixed Effect Intercept	γ_{00}
Fixed Effect Group Intercept	γ_{01}
Fixed Effect Age Slope	γ_{10}
Fixed Effect Group Slope	γ_{11}
Individual Random Intercepts	U_{0i}
Variance of Random Intercepts	$ au_{00}$
Random Age Slopes	U_{10}
Variance of Random Age Slopes	$ au_{11}$
Correlation b/w Random Slopes and Intercepts	$ au_{10}$
Residual Variance	$\hat{\sigma}^2$
Intraclass Correlation	ICC
Conditional R^2	R_c^2
Marginal R^2	R_c^2 R_m^2

```
broom::tidy(mod2g)
broom::glance(mod2g)
```

```
##
                                       estimate std.error statistic
## 1
                       (Intercept) 2.717416961 0.036423454 74.6062393
## 2
                              age0 -0.003997618 0.006381875 -0.6264017
## 3
                       groupsJail 0.093496648 0.048256617
                  age0:groupsJail -0.007431764 0.008271833 -0.8984423
## 4
           sd_(Intercept).PROC_CID 0.401711448
## 5
## 6
                  sd_age0.PROC_CID 0.029938129
                                                        NA
                                                                    NΑ
## 7 cor (Intercept).age0.PROC CID -0.312526843
                                                        NA
                                                                    NΑ
## 8
           sd Observation.Residual 0.435619527
                                                         NΑ
                                                                    NΑ
##
        group
## 1
       fixed
## 2
       fixed
## 3
      fixed
## 4
       fixed
## 5 PROC CID
## 6 PROC CID
## 7 PROC_CID
## 8 Residual
         sigma
                 logLik
                              AIC
                                      BIC deviance df.residual
## 1 0.4356195 -1303.786 2623.571 2666.457 2579.802
                                                           1565
```

```
options(knitr.kable.NA = '')
knitr::kable(tab, caption = "Ugly MLM Table Example")
```

Table 5: Ugly MLM Table Example

type	term	estimate	CI
Fixed Parts	(Intercept)	2.72	(2.65, 2.79)
Fixed Parts	age0	-0.00	(-0.01, 0.01)
Fixed Parts	groupsJail	0.09	(-0.01, 0.16)
Fixed Parts	age0:groupsJail	-0.01	(-0.02, 0.01)
Random Parts	au00	0.16	(0.12, 0.20)
Random Parts	$ au_{11}$	0.00	(0.00, 0.00)
Random Parts	$ au_{10}$	0.10	(1.00, 0.03)
Random Parts	$\hat{\sigma^2}$	0.19	(0.17, 0.21)
Model Terms	ICC	0.46	
Model Terms	R_m^2	0.01	
Model Terms	R_c^2	0.45	

Table 6: Ugly MLM Table Example

	Model 1	
term	estimate	CI
Fixed		
Intercept	2.72	(2.65, 2.79)
age0	-0.00	(-0.01, 0.01)
groupsJail	0.09	(-0.01, 0.16)
age0:groupsJail	-0.01	(-0.02, 0.01)
Random		
au00	0.16	(0.12, 0.20)
τ_{11}	0.00	(0.00, 0.00)
$ au_{10}$	0.10	(1.00, 0.03)
$\hat{\sigma}^2$	0.19	(0.17, 0.21)
Model		
ICC	0.46	
R_m^2	0.01	
$R_c^{2'}$	0.45	

(#tab:unnamed-chunk-27) MLM Table Example

term	estimate	CI
Fixed		
(Intercept)	2.72	(2.65, 2.79)
age0	-0.00	(-0.01, 0.01)
groupsJail	0.09	(-0.01, 0.16)
age0:groupsJail	-0.01	(-0.02, 0.01)
Random		,
au00	0.16	(0.12, 0.20)
$ au_{11}$	0.00	(0.00, 0.00)
$ au_{10}$	0.10	(1.00, 0.03)
$\hat{\sigma^2}$	0.19	(0.17, 0.21)
ICC	0.46	, ,
R_m^2	0.01	
$R_c^{"}$	0.45	
•		

Side Note: Plotting Simple Effects

Side Note: Plotting Simple Effects (Categorical)

Side Note: Plotting Simple Effects (Continuous)

sjp.int(mod1b, type = "eff", p.kr = F, swap.pred = T, mdrt.value

Side Note: Comparisons with 1smeans

```
# create a reference grid
ref.grid2g <- ref.grid(mod2g)</pre>
# create the lsmeans object
lsgroups <- lsmeans(ref.grid2g, "groups")</pre>
# compact letter display
cld(lsgroups, alpha = .10)
# plot
plot(lsgroups)
# contrasts of the ref.grid object
contrast(ref.grid2g, method = "eff")
# comparisons
groups.sum <- summary(lsgroups, infer = c(TRUE, TRUE),</pre>
                       level = .90, adjust = "bon", by = "groups")
```

```
# create a reference grid
(ref.grid2g <- ref.grid(mod2g))</pre>
```

```
## 'ref.grid' object with variables:
## age0 = 3.9123
## groups = None, Jail
```

```
# create the lsmeans object
(lsgroups <- lsmeans(ref.grid2g, "groups"))</pre>
```

```
## groups lsmean SE df lower.CL upper.CL
## None 2.701777 0.02855972 701.42 2.645704 2.757850
## Jail 2.766199 0.02480113 676.80 2.717505 2.814892
##
## Degrees-of-freedom method: satterthwaite
```

Confidence level used: 0.95

```
# compact letter display
cld(lsgroups, alpha = .10)
```

Confidence level used: 0.95

```
## groups lsmean SE df lower.CL upper.CL .gr

## None 2.701777 0.02855972 701.42 2.645704 2.757850 1

## Jail 2.766199 0.02480113 676.80 2.717505 2.814892 2
```

Degrees-of-freedom method: satterthwaite

significance level used: alpha = 0.1

plot
plot(lsgroups)


```
# contrasts of the ref.grid object
contrast(ref.grid2g, method = "eff")
```

0.0890

##

```
## contrast estimate SE

## 3.91226954863318,None effect -0.03221079 0.01891265 690

## 3.91226954863318,Jail effect 0.03221079 0.01891265 690

## p.value

## 0.0890
```

P value adjustment: fdr method for 2 tests

```
## groups = None:
## lsmean SE df lower.CL upper.CL t.ratio p
```

2.701777 0.02855972 701.42 2.654739 2.748816 94.601 ·

groups = Jail:

##

lsmean SE df lower.CL upper.CL t.ratio p ## 2.766199 0.02480113 676.80 2.725351 2.807047 111.535

Degrees-of-freedom method: satterthwaite
Confidence level used: 0.9

Time Invariant Predictors: Example - 3 level group

Time Invariant Predictors: Example - 3 level group

- ▶ **Level 1:** $Y_{ij} = \beta_{0j} + \beta_{1j} * age0_{ij} + \varepsilon ij$
- ► Level 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} * D1 + \gamma_{02} * D2 + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} * D1 + \gamma_{12} * D2 + U_{1j}$

Variable	D1	D2
 Jail	0	0
None	1	0
CommServ	0	1

Time Invariant Predictors: Example - 3 level group

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + groups + age0 * groups + (age0 | PROC_CID)
     Data: sample_dat
##
## REML criterion at convergence: 3418.7
##
## Scaled residuals:
##
      Min
              10 Median
                             30
                                   Max
## -3.2994 -0.5006 0.0368 0.4533 3.0815
##
## Random effects:
## Groups Name
                     Variance Std.Dev. Corr
## PROC_CID (Intercept) 0.1446194 0.38029
##
           age0
                    0.0008903 0.02984 -0.23
                     0.1888364 0.43455
## Residual
## Number of obs: 2084, groups: PROC_CID, 924
##
## Fixed effects:
##
                     Estimate Std. Error t value
## (Intercept)
                     2.717703 0.035554
                                          76.44
## age0
                   -0.004101 0.006376
                                          -0.64
               0.092594 0.047097 1.97
## groupsJail
## groupsCommServ 0.035192 0.053386 0.66
## age0:groupsJail -0.007181 0.008265 -0.87
## age0:groupsCommServ 0.005939 0.009871 0.60
##
## Correlation of Fixed Effects:
## (Intr) ago) grngIl grngCG ago.gI
```

Time Varying Predictors

Time Varying Predictors: Continuous

Next, we'll add in a time-varying predictor. Maybe it's not that our participants sensation seeking is moderated by early life experiences of jail or court-ordered community service. Instead, their sensation seeking is moderated by depression.

How does this look?

- ▶ **Level 1:** $Y_{ij} = \beta_{0j} + \beta_{1j} * time + \beta_{2j} * CESD + \varepsilon ij$
- ► Level 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + U_{1j}$
 - $\beta_{2j} = \gamma_{20}$

Time Varying Predictors: Continuous

To Interaction or Not - That Is the Question

- ▶ **Level 1:** $Y_{ij} = \beta_{0j} + \beta_{1j} * age0 + \beta_{2j} * CESD + \varepsilon ij$
- ▶ Level 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + U_{1j}$
 - $\beta_{2j} = \gamma_{20}$

$$Y_{ij} = \gamma_{00} + \gamma_{01} + U_{0j} + (\gamma_{10} + U_{1j}) * age0 + \gamma_{20} * CESD$$

Time Varying Predictors: Continuous

```
modTV1 <- lmer(SensSeek ~ age0 + CESD + (age0|PROC_CID), data =</pre>
```

summary(modTV1)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ ageO + CESD + (ageO | PROC_CID)
     Data: sample_dat
##
##
## REML criterion at convergence: 3391.9
##
## Scaled residuals:
## Min 1Q Median 3Q
## -3.4390 -0.5035 0.0363 0.4423 3.1508
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## PROC CID (Intercept) 0.1412389 0.37582
##
           age0 0.0008117 0.02849 -0.21
## Residual
              0.1892164 0.43499
## Number of obs: 2084, groups: PROC_CID, 924
##
## Fixed effects:
##
             Estimate Std. Error t value
## (Intercept) 2.710845 0.025121 107.91
## age0 -0.006475 0.003553 -1.82
## CESD 0.078617 0.021519 3.65
##
## Correlation of Fixed Effects:
##
      (Intr) age0
## age0 -0.467
## CESD -0.604 -0.036
```

Time Varying Predictors: Categorical

Next, we'll add in a time-varying predictor. Maybe it's not that our participants sensation seeking is moderated by early life experiences of jail or court-ordered community service. Instead, their sensation seeking is moderated by depression.

How does this look?

- ▶ **Level 1:** $Y_{ij} = \beta_{0j} + \beta_{1j} * time + \beta_{2j} * depressed + \varepsilon ij$
- ► Level 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + U_{1j}$
 - $\beta_{2j} = \gamma_{20}$

Time Varying Predictors: Categorical

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + depressed + (age0 | PROC_CID)
##
     Data: sample_dat
##
```

REML criterion at convergence: 3401 ## ## Scaled residuals:

Min 1Q Median Max ## -3 3686 -0 5094 0 0363 0 4522 3 1406 ## Random effects:

Groups Name Variance Std.Dev. Corr age0 0.0008415 0.02901 -0.21

PROC CID (Intercept) 0.1427349 0.37780 0.1895332 0.43535

Estimate Std. Error t value

Residual ## Number of obs: 2084, groups: PROC CID, 924 ## ## Fixed effects: ## ## (Intercept) 2.760189 0.020388 135.38 -0.006154 0.003564 -1.73

age0 ## depressedNot Depressed 0.068617 0.039992 1.72 ## ## Correlation of Fixed Effects: ## (Intr) age0 ## age0 -0.599 ## dprssdNtDpr -0.174 -0.024

##

cohen's d - changing intercept with 0 at last

time point