Carbon Capture and Storage

What is it?

Point Source

- CO₂ from fossil fuels combustion or cement production captured, and injected into rocks underground
- Best accomplished with a concentrated point source of CO₂ (such as coal-fired power plant)
- CO₂ injected below freshwater aquifers (saline aquifers OK)
- Injected at depths greater than 800 m, where CO₂ is a supercritical fluid.
- Over time the CO₂ may form solid minerals in the subsurface
- Currently a number of pilot projects underway

Fate of Injected CO₂

- Supercritical CO2 is less dense than water, therefore migrates upward
- Initially saturates reservoir (A), then breaks into droplets (B), then dissolves (C)
- Eventually may precipitate as solid carbonate minerals

CO₂ Injection to Enhance Oil Recovery

- CO₂ injection used for decades in petroleum industry
- Ironically, the limiting factor is the cost of CO₂!
- Most CO₂ used is geological, produced from other wells

CCS Pilot Project, Sleipner Field, Norway

CCS Pilot Project, Illinois Basin, U.S.

- Experiment to test geologic carbon sequestration
- Injecting 1 million tones of supercritical CO₂ at depth of 7,000 ft., starting in 2011

Wisconsin MICHIGAN CO_2 ? BASIN IA Kanakakee Arch FOREST CITY BASIN OH ILLINOIS BASIN WV Ozark Dome KY New Madrid Rough Creek Graben Rift System Na shrille Ascolo Arch edge of Mississippi Illinois Geological Survey Embayment of Gulf > NC Coastal Plain ARKOMA BASIN

WI

Unresolved Issues

- Point sources only account for about 50% of CO₂ emissions; need to capture more?
- Cost not well known, but commonly estimated to add 50% to 100% of energy generated
- Most economically feasible where used for enhanced oil recovery, due to value of oil recovered (but burning that oil creates more CO₂...)
- Depleted oil and gas fields provide existing infrastructure, but the volume of suitable fields is limited
- Deep saline aquifers offer much larger volume to store CO₂, but are largely undrilled. Large infrastructure investment required.
- Induced seismicity (earthquakes) likely? (volume of injection required to effectively mitigate atmospheric CO₂ concentrations very large)
- Potential for leakage of CO₂ back to surface (small risk?)
- Other environmental effects not well known

For More Information

- <u>Report</u>: Intergovernmental Panel on Climate Change (IPCC): https://www.ipcc.ch/pdf/special-reports/srccs/srccs/wholereport.pdf
- <u>Report</u>: International Energy Agency (IEA): http://www.iea.org/topics/ccs/
- <u>Video</u>: Julio Friedmann, Deputy Assistant Energy Secretary for Clean Coal: http://www.c-span.org/video/?323368-
 <u>1/discussion-coal-us-energy-policy</u>