CPSC 335 Project 1: Lawnmower

Alternating Algorithm:

int numOfSwap	-> 1 tu
disk Sort = unsorted	-> 1 tu
for i = 0 in sorted.size() / 2 do	-> (n / 2) tu
for $j = i$ in sorted.size() do	-> (n - 1) tu
if (LIGHT Disk is not followed by DARK Disk) do	-> 4 tu
swap LIGHT and DARK	-> 1 tu
numOfSwap++	-> 1 tu
return sorted and numOfSwap	

This is the pseudocode for the alternate algorithm, and it shows that the worst time complexity for this would be $O(n^2)$

By calculating every step of the pseudocode, we can figure out the time complexity is 1 + 1 + ((n / 2) * (n - 1) * (4 + 1 + 1)), and if we simplified this equation we would end up with $6\frac{n^2}{2} - 6\frac{n}{2} + 2$

Lawnmower Algorithm:

Int numOfSwaps	-> 1 tu
disk Sort = unsorted	-> 1 tu
for $i = 0$ in sorted.size() - 1 do	-> (n - 1) tu
for j in i to sorted.size() - 1 do	-> (n - 1) tu
if (LIGHT Disk is not followed by DARK Disk) do	-> 4 tu
Swap LIGHT and DARK	-> 1 tu
numOfSwap++	-> 1 tu

return sorted and numOfSwap

This is the pseudocode for the Lawnmower algorithm, and it shows that the worst time complexity for this would be $O(n^2)$

By calculating every step of the pseudocode, we can figure out the time complexity is 1 + 1 + ((n - 1) * (n - 1) * (4 + 1 + 1)), and if we simplified this equation we would end up with $6n^2 - 8n + 8$

Limit Theorem:


```
[tuffix@vclvm011104-225-174 LMCF-Project1]$ g++ -std=c++11 -Wall disks_test.cpp
[tuffix@vclvm011104-225-174 LMCF-Project1]$ ./a.out
disk_state still works: passed, score 1/1
sorted_disks still works: passed, score 1/1
disk_state::is_initialized: passed, score 3/3
disk_state::is_sorted: passed, score 3/3
alternate, n=4: passed, score 1/1
alternate, n=3: passed, score 1/1
alternate, other values: passed, score 1/1
lawnmower, n=4: passed, score 1/1
lawnmower, n=3: passed, score 1/1
lawnmower, other values: passed, score 1/1
TOTAL SCORE = 14 / 14
```

