VPN 기술

VPN 기술

✓인터넷망을 통해 사설망 연결

- ✓VPN의 장점
 - ✔비용절약
 - ✔보안성
 - ✓확장성
 - ✔Broadband기술과의 호환성
- ✓VPN의 종류
 - ✓ Site-to-Site VPN
 - ✓ Remote-Access VPN
 - **√**GRE
 - **✓** DMVPN

✓VPN 구성요소

- ✔인터넷 연결
- ✓ VPN Gateway
 - ✓ Router
 - **√**FW
 - √VPN Concentrator
 - ✓ ASA
- ✔VPN 터널 생성, 관리 소프트웨어

안전한 VPN 연결설정

✓캡슐화 ✔터널링 ✔암호화 ✓ Hash ✔데이터 무결성 ✔인증 **✓ Hash** 알고리즘 ✔MD5 : 128bit 공유키 ✓ SHA-1(Secure Hash Algorithm 1) : 160bit 공유키 √인증 방법 ✓ Pre-shared key ✔RSA 서명 : 인증서 교환

✔암호화 ✔암호화 알고리즘 ✔키 길이 ✔암호화 알고리즘 **✓**DES ✔대칭키 ✓ 56bit 키 √3DES **√**AES ✓ DES보다 강력 ✓3DES보다 효율적 √128,192,256bit 키 **√RSA** ✔비대청키 √512,768,1024bit ||

1. IPSEC VPN

IPSec VPN

- ▶ IP 보안을 위한 VPN 프로토콜 모음
- ▶ 인터넷 상에서 안전하게 데이터를 주고받기 위한 표준
- ▶ 인증, 암호화, 무결성 제공

IPSec 프레임워크 프로토콜

- ✓ IKE(Internet Key Exchange)
- ✓ 인증 헤더(AH) : 기밀성이 필요하지 않거나 허용되지 않을 때 사용
 - ✓ 인증
 - ✓ 무결성
- ✓ ESP(Security Payload)
 - ✓ 기밀성(선택)
 - ✓ 인증(선택)
 - ✓ 무결성

IPSec 운영모드

```
✔운영모드
✔Transport 모드
✔패킷 사이즈, remote-access VPN, 클라이언트
S/W
```

```
✓Tunnel 모드
✓Site to site VPN
```

동작 방식 흐름

- 1. 알고리즘/정책 협상
- 2. 키 교환 (DH 알고리즘)
- 3. 상호 인증 (PSK, 인증서 등)
- 4. SA 설정 → 데이터 암호화 시작

IPSec 구현 단계(site to site VPN

- ✓IKE Phase 1 터널 설정(ISAKMP 터널)
- ✓IKE Phase 2 터널 설정(IPSec 터널)
- ✓ Crypto map 적용

IKE Phase 1 터널 설정(ISAKMP 터널

```
R1(config)#crypto isakmp policy 1
R1(config-isakmp)#authentication pre-share
R1(config-isakmp)#hash sha
R1(config-isakmp)#encryption aes 128
R1(config-isakmp)#group 2
R1(config-isakmp)#lifetime 86400
R1(config-isakmp)#exit
R1(config)#crypto isakmp key C1sc0Press address 172.16.0.2
```

```
R2(config)#crypto isakmp policy 1
R2(config-isakmp)#authentication pre-share
R2(config-isakmp)#hash sha
R2(config-isakmp)#encryption aes 128
R2(config-isakmp)#group 2
R2(config-isakmp)#lifetime 86400
R2(config-isakmp)#exit
R2(config)#crypto isakmp key C1sc0Press address 172.16.0.1
```

IKE Phase 2 터널 설정(IPSec 터널

```
R1(config)#crypto ipsec transform-set MYSET esp-aes esp-sha
R1(cfg-crypto-trans)#exit
R1(config)#access-list 101 permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
R1(config)#crypto map R1_TO_R2 10 ipsec-isakmp
R1(config-crypto-map)#set peer 172.16.0.2
R1(config-crypto-map)#match address 101
R1(config-crypto-map)#set transform-set MYSET
```

```
R2(config)#crypto ipsec transform-set MYSET esp-aes esp-sha-hmac R2(cfg-crypto-trans)#exit R2(config)#access-list 101 permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255 R2(config)#crypto map R2_TO_R1 10 ipsec-isakmp R2(config-crypto-map)#set peer 172.16.0.1 R2(config-crypto-map)#match address 101 R2(config-crypto-map)#set transform-set MYSET
```

Crypto map 적용

```
R1(config)#int s0/0
R1(config-if)#crypto map R1_TO_R2
R1(config-if)#exit
R1(config)#ip route 192.168.2.0 255.255.255.0 172.16.0.2
```

R1(config)#int s0/0 R1(config-if)#crypto map R2_TO_R1 R1(config-if)#exit R1(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.1

IPSec 확인

R1#sh crypto engine connections active R1#sh crypto session R1#sh crypto isakmp sa R1#sh crypto ipsec sa

2.L2VPN

L2VPN이란

✓ L2VPN은 "L2(Frame 기반)를 터널링하는 VPN 기술"로, MAC 프레임 단위의 통신을 ISP망을 통해 다른 지점까지 연결하는 가상 사설망입니다.

왜 사용하는가?

- ✔지사와 본사를 같은 VLAN처럼 연결하고 싶을 때
- ✔VM이나 서버 간 L2 통신이 필요할 때
- ✔기존 L2 기반 프로토콜(예: STP, CDP 등)을
- 유지하며 통신하고 싶을 때
- ✔MPLS, VXLAN, GRE 등과 결합해 고성능 통신이 필요할 때

주요 구성 요소

구성요소

CE (Customer Edge)

PE (Provider Edge)

P (Provider)

Pseudowire

설명

고객측 라우터나 스위치 (일 반적으로 **L2**장비)

ISP측 라우터 (L2VPN을 구성하는 핵심 장비)

백본 라우터, L2VPN의 경로를 중계

PE-PE 사이를 연결하는 가상 회선 (L2 프레임을 캡슐화)

L2VPN의 주요 기술

기술

VPWS (Virtual Private Wire S

ervice)

VPLS (Virtual Private LAN Se

rvice)

EVPN (Ethernet VPN)

설명

1:1 연결, 포인트 투 포인트

L2VPN

1:N 또는 N:N 연결, 스위칭 허

브처럼 동작

MPLS + BGP + VXLAN 기반의

고급 L2VPN (데이터센터에서

사용)

GRE 터널 구성하기

▶ 지사 A와 B를 인터넷(IP망)으로 연결하고, 양쪽 라우터 간에 Tunnel을 통해 통신하는 구조.

기본 설정 예

```
<R1>
interface Tunnel0
ip address 10.0.0.1 255.255.255.0
tunnel source 192.168.1.1
tunnel destination 192.168.2.1
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
ip route 192.168.2.0 255.255.255.0
FastEthernet0/0
ip route 10.0.0.0 255.255.255.0 Tunnel0
```

```
•PC-A: IP 10.0.0.10 / GW: 10.0.0.1
•PC-B: IP 10.0.0.20 / GW: 10.0.0.2

→ ping 10.0.0.20 → 성공하면 GRE 터널이 정상적으로 작동!
```

```
<R2>
interface Tunnel0
ip address 10.0.0.2 255.255.255.0
tunnel source 192.168.2.1
tunnel destination 192.168.1.1
!
interface FastEthernet0/0
ip address 192.168.2.1 255.255.255.0
!
ip route 192.168.1.0 255.255.255.0
FastEthernet0/0
ip route 10.0.0.0 255.255.255.0 Tunnel0
```

3.SSLVPN

SSL

SSL(Secure Sockets Layer)은 웹사이트와 사용자 사이의 데이터를 안전하게 암호화해서 주고받게 해주는 보안 기술입니다.

SSL동작

- •클라이언트 Hello
- → "안녕하세요! SSL 통신하고 싶어요!"
- → 사용할 암호화 알고리즘 리스트와 버전 등 전송
- •서버 Hello + 인증서 전달
- → 서버는 자신의 **SSL 인증서(**공개키 포함)를 클라이언트에 전달
- → 브라우저는 이걸 보고 "이 서버 믿을 수 있나?" 검사
- •Pre-Master Secret 전달
- → 클라이언트는 랜덤한 비밀 숫자를 만들어서 서버의 **공개키로 암호화**해 보냄 → 서버만 복호화 가능
- •세션키 생성 (양쪽 모두 같은 키 계산)
- → 이 Pre-Master Secret을 바탕으로 클라이언트와 서버는 **같은 세션키**를 계산함
- •세션키로 안전한 통신 시작
- → 이 키로 암호화된 데이터만 주고받음 (https 동작)

SSLvsTLS

항목	SSL (Secure Sockets Layer)	TLS (Transport Layer Security)
관계	TLS는 SSL의 후속 버전	SSL은 이전 세대 기술
버전	SSL 2.0, 3.0 (현재는 폐기)	TLS 1.0 → 1.1 → 1.2 → 1.3 (현재 최신)
보안성	여러 보안 취약점 존재 (POODLE 등)	보안 취약점 개선됨, 더 강력한 암호화
키 교환	RSA 기반 위주	RSA 외에도 ECDHE 등 다양한 방식 지원
메시지 인증	MAC-then-encrypt 방식	Encrypt-then-MAC (또는 AEAD)
표준화	넷스케이프(Netscape)가 개발	IETF에서 RFC로 표준화
지원 현황	대부분의 브라우저/서버에서 사용 금지	TLS 1.2 이상이 현재 업계 표준

Device Monitoring

SNMP 개요

- ✔관리자와 에이전트 간의 통신을 위한 메시지 형식을 제공
- ✓SNMP 구성 요소
 - ✓SNMP 관리자
 - ✓SNMP 에이전트
 - ✔관리 정보 기반(MIB)
- ✓ SNMP Message
 - **√**Get
 - ✓ Set
 - ✓ trap

SNMP 버전

✓ SNMPv1: RFC 1157

✓SNMPv2c: RFC 1901 ~ 1908

✓SNMPv3: RFC 2273 ~ 2275 네트워크를 통해 패킷을 인증

및 암호화 지원

- ✓V1과 v2c는 community string 이용하여 접근 제어
- ✓Community string = plaintext password
 - ✔RO/RW 두 가지 유형

SNMP 설정 및 확인

```
R1(config)# ip access-list standard SNMP_ACL
R1(config-std-nacl)# permit host 172.16.3.110
R1(config-std-nacl)# exit
R1(config)# snmp-server community 4md!n0n1y RO SNMP_ACL
R1(config)# snmp-server location Lima, OH
R1(config)# snmp-server contact Jess Jang
R1(config)# end
```

R1# show snmp
Chassis: FTX1636848Z
Contact: Bob Smith
Location: Lima, OH
0 SNMP packets input
0 Bad SNMP version errors
:
:
:
SNMP logging: enabled

NMP logging: enabled Logging to 172.16.3.10, 0/10, 359 sent, 0 dropped.

syslog

- **✓UDP 514**
- ✔세 가지 기본 기능을 제공
 - ✔모니터링 및 문제 해결을 위한 로깅 정보 수집
 - ✓캡처되는 로깅 정보 유형 선택
 - ✓캡처된 syslog 메시지의 대상 지정
- ✓모든 syslog 메시지에는 심각도수준 및 기능이 포함

단계	심각도이름	설명
0	emergency	System 사용불가
1	Alert	즉각적인 대응 필요
2	Critical	심각한 상황
3	Error	에러 상황
4	Warning	경고 상황
5	Notification	주의
6	Informational	정보
7	debugging	디버그

syslog 설정 및 확인-1

R1# show logging

√Console/buffer (logging console/logging buffer)

```
Syslog logging: enabled (0 messages dropped, 2 messages rate-limited, 0 flushes,
 0 overruns, xml disabled, filtering disabled)
 Console logging: level debugging, 32 messages logged, xml disabled,
         filtering disabled
 Buffer logging: level debugging, 32 messages logged, xml disabled,
         filtering disabled
Log Buffer (8192 bytes):
*Jan 2 00:00:02.527: %LICENSE-6-EULA ACCEPT ALL: The Right to Use End User
 License Agreement is accepted
*Jan 2 00:00:02.631: %IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL:
 Module name = c1900 Next reboot level = ipbasek9 and License = ipbasek9
able No such file or directory
<output omitted>
```

syslog 설정 및 확인-2

```
✓ Syslog server 설정
    ✓ Router(config)#logging 192.168.1.100
✔심각도 수준 설정
    ✓ Router(config)#logging trap 4
✓ Logging source-interface 설정
    ✓ Router(config)#logging source-interface g0/0
R1# show logging
 Trap logging: level warnings, 43 message lines logged
   Logging to 192.168.1.3 (udp port 514, audit disabled,
       link up),
       4 message lines logged,
       0 message lines rate-limited,
       0 message lines dropped-by-MD,
       xml disabled, sequence number disabled
       filtering disabled
```

Network Time Protocol

✔장치 간에 타임스탬프가 일관되도록 시간 시계를 동기화하는 방법을 제공

```
R1(config)# ntp server 172.16.2.2
R1(config)# ^Z
R1#
R1# show ntp status
Clock is synchronized, stratum 8, reference is 172.16.2.2
:
R1# show ntp associations
address ref clock st when poll reach delay offset disp
*172.16.2.2 127.127.1.1 7 36 64 1 1.261 -0.001 7937.5

* sys.peer, # selected, + candidate, - outlyer, x falseticker, configured
```

R1(config)# ntp master