

Efficiency of Behavioral Synthesis

Inefficienc

Note from CAD Developers:

Behavioral Synthesis would be more efficient if circuit designers didn't suck.

Hardware (MUD)

Behaviorally synthesized HW's tend to look like specialized processors.

Classification

What is FPGA?

Field Programmable Gate Array

• FPGA, CPLD, GAL, PAL

Programmable

Synthesizable

Why needing FPGA?

- An easy way to implement complex digital systems
- A simple and flexible way to debug a hardware design
- A quick way to evaluate designs to shorten the time-to-market costs

A design verification before IC

TV/DTV
Setop Box
Image

USB Host/Dev

ATERA.

Audio/MP3

Ethernet IrDA RS232

Memory

Altera UP3 FPGA

TR1 - Ideal for Undergrad Projects

T-REX C1 Development Kit Components & Interfaces

DE2 - Development and Educational Board II

Design Supporting

- Hardware design:
 - HDL: (Hardware Description Language)
 - Verilog HDL, VHDL, AHDL......
- Hardware/Software Co-Designs
- EDA Supporting

PLD

Programmable Logic Devices

- Programmable Array Logic.
 Fuse technology
- GAL (Near to disappear)
 Generic Array Logic. E²
 technology
 - CPLD

Complex PLD. E²PROM or Flash technology

- FPGA

Field Programmable Gate Array. SRAM technology

SPLDs

- Both AND and OR planes are programmable
- PALs (Programmable Array Logics)
 - The AND plane is programmable; the OR plane is fixed
 - Simpler to manufacture, less expensive, better performance than PLAs

AND plane

Output inverters OR plane

SPLDs' Structure

CPLDs

FPGA

- FPGAs do not contain AND or OR planes
- Three elements:
 - Logic blocks
 - I/O blocks
 - Interconnection wires and switches

FPGA Logic Block

- The storage cells in the LUTs in an FPGA are volatile
- Volatile: losing stored contents whenever the power is off
- Using PROM to hold data permanently
- The storage cells are loaded automatically from PROM when the chip is initialized

Programming an FPGA

$$f_{1} = x_{1}x_{2}$$

$$f_{2} = \overline{x_{2}}x_{3}$$

$$f = x_{1}x_{2} + \overline{x_{2}}x_{3}$$

Programming Technologies

- Floating Gate Programming Technology
- SRAM Programming Technology
- Antifuse Programming Technology

In-System Programming (ISP) : performing the programming while the chip is still attached to its circuit board

JTAG (Boundary Scan):

A port added to FPGAs for testing purposes, as a means of downloading the design in the programmable device via serial port of a PC

The Main Producers

Altera and Xilinx PLDs

Altera

- CPLD
 - MAX3000A –
 MAX7000
- FPGA
 - Cyclone
 - Stratix Stratix GX
 - APEX II APEX 20K
 - Mercury
 - FLEX 10K
 - ACEX 1K

Xilinx

- CPLD
 - CoolRunner-II
 - CoolRunner
 XPLA3
 - XC9500 Series
- FPGA
 - Rocket-PHY
 - Virtex Virtex-IIVirtex-II ProSeries
 - Spartan 3,Spartan-IIE,
 Spartan-II,
 Spartan-XL,
 Spartan Seires

