Homework 4

Problem 1. Use the Jacobi symbol to determine (113/997), (215/761), (514/1093), (401/757).

Proof. We see 113 and 997 are both prime. Note $113 \equiv 1 \equiv 5 \pmod{4}$ so

$$(113/997) = (997/113) = (93/113) = (3/113)(31/113) = (113/3)(113/31) = (2/3)(20/31)$$
$$= (2/3)(2/31)^{2}(5/31) = (2/3)(5/31)$$
$$= (2/3)(31/5) = (2/3)(1/5) = (-1)(1) = -1.$$

We see 761 is prime. Note also $761 \equiv 1 \equiv 5 \pmod{4}$ and $43 \equiv 3 \pmod{4}$. Then

$$(215/761) = (5/761)(43/761) = (761/5)(761/43) = (1/5)(30/43) = (2/43)(3/43)(5/43)$$
$$= -(-1)^{(43^2-1)/8}(43/3)(43/5)$$
$$= (1/3)(3/5) = (1)(-1) = -1.$$

We see 1093 is prime. Note $1093 \equiv 5 \pmod{8}$, $1093 \equiv 1 \equiv 65 \pmod{4}$ and $31 \equiv 3 \pmod{4}$. Then

$$(514/1093) = (2/1093)(257/1093) = -(1093/257) = -(65/257) = -(257/65)$$

$$= -(62/65) = -(65/62) = -(3/62) = -(3/2)(3/31)$$

$$= (31/3) = (1/3) = 1.$$

We see both 401 and 757 are prime. Note also $401 \equiv 1 \equiv 45 \pmod{4}$. Then

$$(401/757) = (757/401) = (356/401) = (401/356) = (45/356) = (356/45)$$
$$= (41/45) = (45/41)$$
$$= (4/41) = (2/41)^2 = 1.$$

Problem 2. An integer is called a biquadratic residue modulo p if it is congruent to a fourth power. Using the identity $x^4 + 4 = ((x+1)^2 + 1)((x-1)^2 + 1)$ show that -4 is a biquadratic residue modulo p iff $p \equiv 1 \pmod{4}$.

Proof. We want to find a solution to the equation $-4 \equiv x^4 \pmod{p}$ or equivalently $x^4 + 4 \equiv ((x+1)^2 + 1)((x-1)^2 + 1) \equiv 0 \pmod{p}$. Note then that this has a solution if and only if one of the factors $((x+1)^2 + 1)$ or $((x-1)^2 + 1)$ is congruent to 0 modulo p. Thus we either have $(x+1)^2 + 1 \equiv 0 \pmod{p}$ or $(x-1)^2 + 1 \equiv 0 \pmod{p}$. In either case -1 is a quadratic residue modulo p which is true if and only $p \equiv 1 \pmod{4}$.

Problem 3. This exercise and Exercises 27 and 28 give Dirichlet's beautiful proof that 2 is a biquadratic residue modulo p iff p can be written in the form $A^2 + 64B^2$, where $A, B \in \mathbb{Z}$. Suppose that $p \equiv 1 \pmod{4}$. Then $p = a^2 + b^2$ by Exercise 24. Take a to be odd. Prove the following statements:

- (a) (a/p) = 1.
- (b) $((a+b)/p) = (-1)^{((a+b)^2-1)/8}$.
- (c) $(a+b)^2 \equiv 2ab \pmod{p}$.
- $(d) (a+b)^{(p-1)/2} \equiv (2ab)^{(p-1)/4} \pmod{p}.$

Proof. (a) From part (c) and the fact that $p \equiv 1 \pmod{8}$ we know 1 = (2ab/p) = (2/p)(a/p)(b/p) = (a/p)(b/p) so (a/p) = (b/p). But it's not possible that both a and b are nonresidues modulo p so we must have (a/p) = 1.

- (b) Note that $2p = (a+b)^2 + (a-b)^2$ and a+b is odd. Thus (2p/(a+b)) = 1 since $2 \nmid a+b$. Then $1 = (2/(a+b))(p/(a+b)) = (-1)^{((a+b)^2-1)/8}((a+b)/p)$ since $p \equiv 1 \pmod{4}$.
 - (c) We have $(a + b)^2 \equiv a^2 + 2ab + b^2 \equiv p + 2ab \equiv 2ab \pmod{p}$.
- (d) Since $p \equiv 1 \pmod{4}$ we know k = (p-1)/4 is an integer. Then from part (c) we have $(a+b)^{2k} \equiv (2ab)^k \pmod{p}$. Putting in the value of k gives the result.

Problem 4. Suppose that f is such that $b \equiv af \pmod{p}$. Show that $f^2 \equiv -1 \pmod{p}$ and that $2^{(p-1)/4} \equiv f^{ab/2} \pmod{p}$.

Proof. Note that $b^2 \equiv a^2 f^2 \pmod{p}$ and that $0 \equiv a^2 + b^2 \equiv a^2 + a^2 f^2 = a^2 (1 + f^2)$. Since a^2 is not equivalent to 0 modulo p we see that $0 \equiv 1 + f^2 \pmod{p}$ and $f^2 \equiv -1 \pmod{p}$. Raising this to the power ab/2 and using Problem 3 gives the second result.

Problem 5. Show that $x^4 \equiv 2 \pmod{p}$ has a solution for $p \equiv 1 \pmod{4}$ iff p is of the form $A^2 + 64B^2$.

Proof. If $p = A^2 + 64B^2$ then let a = A and b = 8B so that $p = a^2 + b^2$. Then using Problem 4 we know there exists f such that $f^{ab/2} \equiv 2^{(p-1)/2} \pmod{p}$. Since $4 \mid ab/2$ we see that $x^4 \equiv 2 \pmod{p}$ is solvable. Conversely, suppose that $x^4 \equiv 2 \pmod{p}$ is solvable. Since $p \equiv 1 \pmod{4}$ we know $p = a^2 + b^2$ and we only need to show that $8 \mid b$. But this must be the case since Problem 4 tells us that $2^{(p-1)/4} \equiv f^{ab/2} \pmod{p}$ and $2 \equiv x^4 \pmod{p}$ for some x. Raising 2 the the power (p-1)/4 shows that $4 \mid ab/2$. Since a is odd we must have $8 \mid b$.

Problem 6. Show that $\sqrt{2} + \sqrt{3}$ is an algebraic integer.

Proof. Note that $\sqrt{2}$ is a root to $x^2 - 2$ and $\sqrt{3}$ is a root to $x^2 - 3$. These are both monic polynomials with coefficients in \mathbb{Z} , so $\sqrt{2}$ and $\sqrt{3}$ are both algebraic integers. Since the algebraic integers form a ring, it follows that $\sqrt{2} + \sqrt{3}$ is also an algebraic integer.

Problem 7. Let α be an algebraic number. Show that there is an integer n such that $n\alpha$ is an algebraic integer.

Proof. Since α is algebraic there exists some polynomial $p(x) \in \mathbb{Q}[x]$ such that $\alpha^m + a_1 \alpha^{m-1} + \cdots + a_m = 0$ and $a_i \in \mathbb{Q}$. Now find the least common multiple of the a_i and call it n. Multiply our polynomial by n so we have $n\alpha^m + b_1\alpha^{m-1} + \cdots + b_m = 0$ where $b_i \in \mathbb{Z}$. Finally, multiply both sides by n^{m-1} so we have $n^m\alpha^m + b_1n^{m-1}\alpha^{m-1} + b_2n^{m-1}\alpha^{m-2} + \cdots + b_mn^{m-1} = 0$. We can now pass the appropriate exponent of n inside each exponent of α for every term which results in the equation $(n\alpha)^m + b_1(n\alpha)^{m-1} + b_2n(n\alpha)^{m-2} + \cdots + b_{m-1}n^{m-2}(n\alpha) + b_mn^{m-1} = 0$. Since each $b_i n^{i-1}$ is an integer we see that $n\alpha$ is an algebraic integer. \square

Problem 8. If α and β are algebraic integers, prove that any solution to $x^2 + \alpha x + \beta = 0$ is an algebraic integer. Generalize this result.

Proof. Since α and β are algebraic integers they satisfy polynomials in $\mathbb{Z}[x]$ of the form $\alpha^n + a_{n-1}\alpha^{n-1} \cdots + a_0 = 0$ and $\beta^m + b_{m-1}\beta^{m-1} + \cdots + b_0 = 0$. Let γ be a root of $x^2 + \alpha x + \beta$ and let V be the \mathbb{Z} module generated by $\alpha^i \beta^j \gamma^k$ where $0 \le i \le n$, $0 \le j \le m$ and $0 \le k \le 1$. Then consider $\gamma \alpha^i \beta^j \gamma^k$. If k = 0 then this is clearly in V. If k = 1 then $\gamma \alpha^i \beta^j \gamma^k = \alpha^i \beta^j \gamma^2 = \alpha^i \beta^j (-\alpha \gamma - \beta) = -\alpha^{i+1} \beta^j \gamma^k - \alpha^i \beta^{j+1}$. This is also definitely an element of V except for the possibility that i = n or j = m. In this case we simply rewrite $\alpha^n = -(a_{n-1}\alpha^{n-1} + \cdots + a_0)$ and $\beta^m = -(b_{m-1}\beta^{m-1} + \cdots + b_0)$. Expanding this out gives an element of V. This statement generalizes so that if γ is a root of $x^n + \alpha_{n-1}x^{n-1} + \cdots + \alpha_0$ where the α_i are algebraic integers then γ is an algebraic integer. \square

Problem 9. Let $\omega = e^{2\pi i/3}$. ω satisfies $x^3 - 1 = 0$. Show that $(2\omega + 1)^2 = -3$ and use this to determine (-3/p) by the method of section 2.

Proof. We have $(2\omega+1)^2=4\omega^2+4\omega+1=4(\omega^2+\omega+1)-3=-3$. Note that if p=3 then (-3/p)=0 so we can assume $p\neq 3$. Let $\tau=2\omega+1$. Then $\tau^{p-1}=(\tau^2)^{(p-1)/2}=(-3)^{(p-1)/2}\equiv (-3/p)\pmod{p}$ (mod p) and $\tau^p\equiv (-3/p)\tau\pmod{p}$ (mod p). Note $\tau^p=(2\omega+1)^p\equiv 2^p\omega^p+1\pmod{p}$. Since $\omega^3=1$ we have $2^p\omega^p+1\equiv 2^p\omega+1\equiv 2\omega+1\equiv \tau\pmod{p}$ if $p\equiv 1\pmod{3}$ and $2^p\omega^p\equiv 2^p\omega^2+1\equiv 2(-\omega-1)+1\equiv -2\omega-1\equiv -\tau\pmod{p}$ if $p\equiv 2\pmod{3}$. We can now express this as $(-1)^\varepsilon\tau\equiv (-3/p)\tau\pmod{\tau}$ where $\varepsilon=3((p/3)-\lfloor (p/3)\rfloor)-1$. Multiply both sides by τ and note that we can divide by -3 to get $(-3/p)=(-1)^\varepsilon$.

Problem 10. By calculating $\sum_{t} (1 + (t/p))\zeta^{t}$ in two ways prove that $g = \sum_{t} \zeta^{t^{2}}$.

Proof. Note that

$$g = \sum_t \left(\frac{t}{p}\right) \zeta^t = \sum_t \zeta^t + \sum_t \left(\frac{t}{p}\right) \zeta^t = \sum_t \left(1 + \left(\frac{t}{p}\right)\right) \zeta^t = \sum_t \zeta^{t^2}$$

since 1 + (t/p) is the number of solutions to $x^2 \equiv t \pmod{p}$.