Cоль - NaBr.

Предельный закон Дебая-Хюккеля (первое приближение):

$$\lg f_{\pm}^{(N)} = -|z_{+}z_{-}|h\sqrt{J}$$

Уравнение Дебая-Хюккеля во втором приближении:

$$\lg f_{\pm}^{(N)} = -\frac{|z_{+}z_{-}|h\sqrt{J}}{1 + aB\sqrt{J}}$$

Постоянные h и B определяются следующими соотношениями:

$$h = \frac{e^3}{8\pi\varepsilon\varepsilon_0 kT \cdot 2.3036} \sqrt{\frac{2 \cdot 10^3 N_A}{\varepsilon\varepsilon_0 kT}}$$

$$B = e^{\frac{2 \cdot 10^3 N_A}{\varepsilon\varepsilon_0 kT}}$$

Найдем параметр a исходя из следующей формы уравнения Дебая-Хюккеля во втором приближении:

$$1 + aB\sqrt{J} = -\frac{|z_{+}z_{-}|h\sqrt{J}}{\lg f_{\pm}^{(N)}}$$

В координатах $\sqrt{J} - \frac{|z_+ z_-| h \sqrt{J}}{\lg f_\pm^{(N)}}$ получим прямую, по угловому коэффициенту которой определим значение параметра a.

Рис. 1: Нахождение параметра a

Т, К	ε	$h, (\pi/\text{моль})^{1/2}$	$B, (\pi/\text{моль})^{1/2} / \text{ м}$	a, A
298.15	78.3	0.4860	$3.236 \cdot 10^9$	4.944

Таблица 1: Параметры уравнения Дебая-Хюккеля

Рис. 2: Зависимость среднего коэффициента активности от концентрации в водном растворе NaBr; точками отмечены справочные данные [1]

	r_{Cr} , Å	$r_M + \Delta r$, Å	r_K , Å	a_{DH} , Å	$a_{OF}, \text{Å}$
Na	1.02	2.18	1.0	4.94	4.71
Br-	1.96	2.31	2.0		

Таблица 2: Сопоставление данных о размерах ионов: r_{Cr} – кристаллографический радиус, $r_M+\Delta r$ – оценка размера сольватной оболочки из "исправленной "модели Борна; r_K – по подочным параметрам Киллэнда; a_{DH} – параметр во втором приближении теории Дебая-Хюккеля; $_{OF}$ – параметр в уравнении Онзагера-Фуосса

Уравнение Дебая-Хюккеля-Онзагера для эквивалентной электропроводности Λ в растворе 1,1-валентного электролита:

$$\Lambda = \Lambda^0 - (2b_2 + b_p \Lambda^0) \sqrt{c},$$

где

$$b_{9} = 4.124 \cdot 10^{-4} \frac{1}{\eta(\varepsilon T)^{1/2}} \left[\frac{\mathrm{Cm} \cdot \mathrm{m}^{2}}{\Gamma \cdot 9 \mathrm{kB}} \cdot \frac{\mathrm{H} \cdot \mathrm{c}}{\mathrm{m}^{2}} \cdot \frac{K^{1/2}}{(\Gamma \cdot 9 \mathrm{kB}/\mathrm{J})^{1/2}} \right]$$
$$b_{p} = 8.204 \cdot 10^{5} \frac{1}{(\varepsilon T)^{3/2}} \left[\left(\frac{\Gamma \cdot 9 \mathrm{kB}}{\mathrm{J}} \right)^{-1/2} \mathrm{K}^{3/2} \right]$$

В водных растворах при $T=298.15{\rm K}$ уравнение Дебая-Хюккеля-Онзагера для 1,1-валентного электролита сводится к:

$$\Lambda = \Lambda^0 - (60.4 \cdot 10^{-4} + 0.23\Lambda^0)\sqrt{c}$$

Рис. 3: Эквивалентная электропроводность Λ от корня из концентрации \sqrt{C} водного раствора NaBr

Список литературы

- 1. CRC Handbook. CRC Handbook of Chemistry and Physics, 88th edition. CRC Press, 2004
- 2. Jervis, R. E., Muir, D. R., Butler, J. P. and Gordon, A. R. J. Am. Chem. Soc., 1953, 75 (12)