PIZZA SALES ANALYSIS USING SQL

KHUSHBOO

CONTENTS

- overview
- DATA SOURCE AND METHODOLOGY
- UPLOADING CSVS INTO sql server
- DATA MODELLING (ER DIAGRAM)
- INSIGHT SLIDES (SQL QUERIES & THEIR SIGNIFICANCE)
- CONCLUSION

OVERVIEW

- Diving into the world of pizza sales to analyze customer behavior.
- Studying sales data to identify key metrics and patterns.
- Understanding how menu items and promotions influence customer choices.
- Providing insights to help Pizza Hut enhance its sales strategies.
- Embarking on an exciting journey of decoding pizza sale behavior together!

DATASETS DESCRIPTIONS

Orders					
Field	Туре	Null	Key	Default	Description
order_id	int	NO	PRI	NULL	Unique identifier for each order.
order_date	date	NO		NULL	Date when the order was placed.
order_time	time	NO		NULL	Time at which the order was placed.

Orders_Details					
Field	Туре	Null	Key	Default	Description
order_details_id	int	NO	PRI	NULL	Unique identifier for each order detail.
order_id	int	NO		NULL	Unique identifier for each order.
pizza_id	text	NO		NULL	Identifier for the type of pizza ordered.
quantity	int	YES		NULL	Quantity of the specific pizza ordered.

Pizza_Types 1					
Field	Туре	Null	Key	Default	Description
pizza_type_id	text	YES		NULL	Identifier for the type of pizza.
name	text	YES		NULL	Name of the pizza type.
category	text	YES		NULL	Category of the pizza (e.g., vegetarian).
ingredients	text	YES		NULL	Ingredients used in the pizza.

Pizzas					
Field	Type	Null	Key	Default	Description
pizza_id	text	YES		NULL	Unique identifier for each pizza.
pizza_type_id	text	YES		NULL	Identifier for the type of pizza.
size	text	YES		NULL	Size of the pizza (e.g., small, medium).
price	double	YES		NULL	Price of the pizza.

RETRIEVE THE TOTAL NUMBER OF ORDERS PLACED.

select count(order_id)
as total_order from
orders;

Total_Orders

CALCULATE THE TOTAL REVENUE GENERATED FROM PIZZA SALES.

QUERY

select

round(sum(order_details.quantity*pizzas.price),2)
as TOTAL_SALES
from order_details join pizzas
on pizzas.pizza_id=order_details.pizza_id

OUTPUT

Total_Sales

817860.05

Significance: Total pizza sales revenue measures financial performance, guiding strategic decisions for Pizza Hut.

13 IDENTIFY THE HIGHEST-PRICED PIZZA.

OUTPUT

Name	Total
The Greek Pizza	109.95

select TOP 1 pizza_types1.name,pizzas.price
from pizza_types1
join
pizzas
on
pizza_types1.pizza_type_id=pizzas.pizza_type_id

order by pizzas.price desc;

IDENTIFY THE MOST COMMON PIZZA SIZE ORDERED.

OUTPUT

Size	Total
L	18956
м	15635
s	14403
XL	552
XXL	28

LIST THE TOP 5 MOST ORDERED PIZZA TYPES ALONG WITH THEIR QUANTITIES.

PREPARATION

Name	Total_Quantity	
The Classic Deluxe Pizza	2453	
he Barbecue Chicken Pizza	2432	434
The Hawaiian Pizza	2422	1900
The Pepperoni Pizza	2418	1525
The Thai Chicken Pizza	2371	100 100
		Carlot Carlot
	,	
		1 TO 1 TO 1 TO 1

JOIN THE NECESSARY TABLES TO FIND THE TOTAL QUANTITY OF EACH PIZZA CATEGORY ORDERED.

select pizza_types1.category, sum(order_details.quantity) as quantity from pizza_types1 join pizzas

OUTPUT

Category	Total_Quantity
Classic	14888
Supreme	11987
Veggie	11649
Chicken	11050

DETERMINE THE DISTRIBUTION OF ORDERS BY HOUR OF THE DRY.

select datepart(HOUR,[order_time]) as
hourtime,count(order_id) as order_count
from orders
group by datepart(hh,[order_time])
order by order_count desc;

Hours	Orders
12	2520
13	2455
- 18	2399
17	2336
19	2009
16	1920
20	1642
14.	1472
15	1468
-11	1231
21	1198
22	663
23	28
10	
9	1

JOIN RELEVANT TABLES TO FIND THE CATEGORY-WISE DISTRIBUTION OF PIZZAS.

SELECT

pizza_types1.CATEGORY,count(order_details.order_id)as num_ordrs from pizza_types1 join pizzas

on

pizza_types1.pizza_type_id=pizzas.pizza_type_id

join order_details on

order_details.pizza_id=pizzas.pizza_id

group by pizza_types1.category order by num_ordrs desc

Category	Orders
Classic	14579
Supreme	11777
Veggie	11449
Chicken	10815

GROUP THE ORDERS BY DATE AND CALCULATE THE AVERAGE NUMBER OF PIZZAS ORDERED PER DAY.

QUERY

OUTPUT

Avg_Pizza_Ordered_Per_Day

DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED ON REVENUE.

OUTPUT

select top 3 pizza_types1.name as top_3, sum(order_details.quantity*pizzas.price)as revenue from pizza_types1 join pizzas

pizzas.pizza_type_id=pizza_types1.pizza_type_id
join order_details

order_details.pizza_id=pizzas.pizza_id group by pizza_types1.name order by revenue desc;

Name	Revenue
The Thai Chicken Pizza	43434.25
The Barbecue Chicken Pizza	42768
The California Chicken Pizza	41409.5

CALCULATE THE PERCENTAGE CONTRIBUTION OF EACH PIZZA TYPE TO TOTAL REVENUE.

QUERY

OUTPUT

select pizza_types1.category,
round(sum(order_details.quantity*pizzas.price)/
(select round(sum(order_details.quantity*pizzas.price),2)as
total

from order_details

join

pizzas on pizzas.pizza_id=order_details.pizza_id)*100,2)as revenue

Category	Revenue	Percentage_Revenue
Classic	220053.1	26.91
Supreme	208197	25.46
Chicken	195919.5	23.96
Veggie	193690.45	23.68

ANALYZE THE CUMULATIVE REVENUE GENERATED OVER TIME.

QUERY

select order_date,
sum(revenue) over (order by order_date) as
cum_revenue
from

(select orders.order_date, sum(order_details.quantity*pizzas.price) as revenue from order_details join pizzas

on

order_details.pizza_id = pizzas.pizza_id join orders on orders.order_id=order_details.order_id group by orders.order_date) as revenue;

OUTPUT

order_date	Revenue	Cum_Revenue
01-01-2015	2713.85	2713.85
02-01-2015	2731.9	5445.75
03-01-2015	2662.4	8108.15
04-01-2015	1755.45	9863.6

DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED ON REVENUE FOR EACH PIZZA CATEGORY.

OUTPUT

pizza	_types1.pizza_type_id=pizzas.pizza_type
	_id
	join order_details
on o	order_details.pizza_id=pizzas.pizza_id
	group by
pizzo	_types1.name,pizza_types1.category)as
	a) as b
	where top_rank<=3;

Name	Revenue	
The Thai Chicken Pizza	43434.25	
The Barbecue Chicken Fizza	42768	
The California Chicken Pizza	41409.5	
The Classic Deluke Pizza	38180.5	

CONCLUSION

Our project utilized Pizza Sales Analysis data, harnessing SQL for efficient database management. Through meticulous data preparation and SQL analysis, we addressed key inquiries, revealing essential insights into pizza sales behavior.

These insights, ranging from popular pizza types to revenue trends, provide actionable implications for menu optimization and marketing strategies. Our project highlights the versatility of SQL in handling complex datasets, emphasizing the importance of systematic analysis in shaping Pizza Hut's strategies.

The outcomes of this project have the potential to drive decision-making within Pizza Hut, showcasing the value of rigorous data analysis within MySQL environments for the food industry.

