National University of Computer and Emerging Sciences, Lahore Campus

STATIONAL UNIVERSITY	Course Name:	Digital Logic Design	Course Code:	EE227
	Program:	BCS & BDS	Semester:	Spring 2022
E 65	Duration:	150 Minutes	Total Marks:	80
	Paper Date:	23-June-22	Weight	40%
THE S. EMERGING	Section:	ALL	Page(s):	9
	Exam Type:	Final		

Name: Roll No. Section:

Instruction/Notes:

- 1. Attempt all the questions on this answer booklet. You can do your scratch work on rough sheets but they will not be collected and marked.
- 2. Properly label all blocks and inputs/outputs to get credit.
- **3. Provide only "one" final solution in the given space**. Otherwise, both solutions will be cancelled and no mark will be given.

Question # 1: [Marks: 10]

a) Design and implement a sequential circuit which counts the following sequence using D flip flops:

State Table and State Diagram

0, 2, 4, 5, 7, 0 and repeat

Donartment of Computer Science	Page 1 of 0

Name:	Roll No

Question # 2: [Marks: 15]

Analyze the following circuit to derive the **equations**, **state table** and the **state diagram** of the sequential circuit shown below.

Note: Show complete solution of state table, equations, state diagrams to get full credit.

Name:		Roll No
	State Table and State Diagram	

Name:	Roll No
Question # 3:	[15 Marks]
A synchronous sequential circuit is to be designed for stream of binary digits. The output of the circuit preceived at the input is even. The output is "0" othe flops as memory elements.	roduces a logic "1" if the number of 1's

Name:	KOII NO
Question # 4:	[Marks: 20]
Design and implement a sequential circuit that receive digits and counts the frequency of digit 6 (binary 0110 input BCD stream is 4326590662618, then the count is four 6's in this stream. In the input stream, digit 6 can) received at its input. e.g., if the s 4 (binary 0100) because there are
Note : the BCD numbers are arriving serially; so, every arrive.	y BCD digit takes four clock cycles to

Name:_____

Roll No._____

Name: Roll No

Question # 5: [Marks: 20]

Design a 4-bit mini-Process Unit that works according to the given functionality:

M ₁	M ₀	F(A,B) = Operation	Function Description
0	0	A – 2*B	Subtract 2 times B from A
0	1	A + 4*B	Add 4 times B to A
1	0	A + B	Add A and B
1	1	A + 1	Increment A

Where A and B are two 4-bit numbers. M inputs to your mini processor are control inputs. Your task is to add required logic in the design given below in order to make mini-processor fully functional.

Note: Assume that you already have Adder, Subtractor, Decoder(s), Encoder(s), MUX(s), DMUX(s) and Multiplier(s) blocks available. **Properly label all blocks and inputs/outputs to get full credit.**

Name:	Roll No

Name:	_	Roll No
	Rough Sheet	