Game Semantics

Dan R. Ghica University of Birmingham

 $July\ 21,\ 2018$

1 Game Semantics to Prove Equivalence

```
f: \ com \ -\!\!\!> \ nat \ -\!\!\!> \ com \ \vdash \ new \ s
                   new x
                   f(grab s; x++; rel s)
                   (new y;
                   grab s;
                   y\ :=\ !\,x\,;
                   rel s;
                   ! y )
                   new s
                   new x
                   f(grab \ s; x--; rel \ s)
                   (new y;
                   grab s;
                   y := -!x;
                   rel s;
                   ! y )
```

 $f: \ com \ -\!\!\!> \ nat \ -\!\!\!> \ com \ \vdash \ \ldots \ : \ com$

Two paths to follow:

\mathbf{q}'	q
$\operatorname{grab} s$	$\operatorname{grab} s$
okay s	okay s
$\operatorname{read} x$	read x
n x	m x
w(n-1)	rel s
okay x	okay s
rel s	-m
okay s	
0 x	

Which is $(Q \cdot 0)^*(Q' \cdot OK')(Q \cdot 1)^* \cdots$ play $p \to \exists t \text{ s.t.}$ $[\![t]\!] = \text{strat}(p)$ $P_{\text{Nat}_1 \to \text{Nat}_2 \to \text{Nat}} \ni qq_1 3_1 q_2 4_2 7 \in [\![\lambda x. \lambda y. x + y]\!]$ when composed with 3 4. In parallel: $\in \lambda x_1 \lambda x_2$ new \bar{y} in $(y_1 := x_1; || y_2 := x_2;); 7$ test (x) = new sem s; if x then skip else g(s); $g(s) \in \lambda x_1 \lambda x_2$ new \bar{y} in $(\text{test}(y_1 := 3); || \text{test}(y_2 := 4);); 7$ All together: $\in \lambda x_1 \lambda x_2 \text{ sem } \bar{s} \text{ in } (y_1 := x_1; \text{ release}(s))$ grab(s) $y_2 := x_2; \text{ test}(y_2 := 4);); 7$

2 Applications of GS

Sem Model (GS):

- precise
- elementary
- implemented
- generalized
- compilation
 - Automata
 - Circuits
 - Distributions
 - Heterogenous architecture
 - FFI
- unification
 - Obs = not decidable
 - Deciable equivalence
 - Approximation: CEGAR