<u>Help</u>

sandipan_dey >

Progress <u>Course</u> <u>Dates</u> <u>Calendar</u> **Discussion**

Lecture due Oct 5, 2021 20:30 IST

Practice

Points in 3D

1/1 point (graded)

Let $P_0=(1,2,5)$ and $P_1=(-2,1,6).$ Consider the plane given by -x-3y+z=12.

Are P_0 and P_1 on the same side of the plane, opposite sides, or is one in the plane?

They are on the same side.

They are on opposite sides.

One is in the plane.

Solution:

We can substitute the x,y, and z values of P_0 and P_1 into the equation for the plane. For P_0 , the left-hand-side becomes -1-3 (2)+5=-2. Since -2<12, we conclude that P_0 is not the plane.

For P_1 , the left-hand-side becomes 2-3+6=5. Since 5<12, we conclude that P_1 is also not in the plane.

Since both points led to a < 12 result, both points are in the same "half-space" described by -x-3y+z<12

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Points and Planes

3/3 points (graded)

Let $P_0=(1,2,5)$ and $P_1=(-2,1,6)$. Let $P\left(t
ight)$ be the position of a moving point that goes from P_0 to P_1 at constant speed, with $P\left(0\right)=P_{0}$ and $P\left(1\right)=P_{1}$. Find equations for the position $P\left(t\right)=\left(x\left(t\right),y\left(t\right),z\left(t\right)\right)$ of this moving point.

$$x\left(t
ight)=oxed{1-3*t}$$

✓ Answer: -3*t+1

$$y(t) =$$
 2-t

✓ Answer: -t+2

$$z(t) =$$
 5+t

✓ Answer: t+5

? INPUT HELP

Solution:

The desired trajectory may be written as a vector as:

$$\vec{P}(t) = P_0 + t \overrightarrow{P_0 P_1} \tag{6.87}$$

We can compute
$$\overrightarrow{P_0P_1}=egin{pmatrix} -3 \ -1 \ 1 \end{pmatrix}$$
 . Therefore we have

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + t \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$$
(6.88)

Thus,

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 1 - 3t \\ 2 - t \\ 5 + t \end{pmatrix}$$
(6.89)

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Line and Plane

1/1 point (graded)

Let $P_0=(1,2,5)$ and $P_1=(-2,1,6)$, and consider the plane given by -x-3y+z=12. Let P(t) be the position of a moving point that goes from P_0 to P_1 at constant speed, with $P(0)=P_0$ and $P(1)=P_1$.

For what value of t does P(t) enter the plane?

Solution:

We need to solve the equation -x(t) - 3y(t) + z(t) = 12. If we substitute the values for x(t), y(t), z(t) found in the previous problem, we have the equation:

$$-(1-3t)-3(2-t)+(t+5) = 12 (6.90)$$

$$7t - 2 = 12 (6.91)$$

$$7t = 14$$
 (6.92)

Thus we obtain t=2.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

9. Practice Points in 3D

Topic: Unit 5: Curves and Surfaces / 9. Practice Points in 3D

Hide Discussion

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

深圳巾恒于博科技有限公司 <u>粤ICP备1/044299号-2</u>