LOGIKSYSTEME: ÜBUNGSSERIE 2 LÖSUNGEN

Markus Pawellek markuspawellek@gmail.com

6. Januar 2019

Aufgabe 5

(1) Es seien α und β beliebige Formeln. In diesem Falle soll die folgende Äquivalenz gezeigt werden.

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

Sie ist genau dann wahr, wenn man für alle Belegungen $\ensuremath{\mathcal{B}}$ das Folgende zeigen kann.

$$\mathcal{B} \models \neg(\alpha \land \beta) \iff \mathcal{B} \models \neg\alpha \lor \neg\beta$$

Es sei nun ${\mathcal B}$ eine beliebige Belegung. Es gilt das Folgende.

$$\mathfrak{B} \vDash \neg(\alpha \land \beta)$$

$$\iff \mathfrak{B} \not\models \alpha \wedge \beta$$

$$\iff \mathfrak{B} \not\models \alpha \text{ oder } \mathfrak{B} \not\models \beta$$

$$\iff \mathcal{B} \vDash \neg \alpha \text{ oder } \mathcal{B} \vDash \neg \beta$$

$$\iff \mathfrak{B} \vDash \neg \alpha \vee \neg \beta$$

Da \mathcal{B} , α und β beliebig waren, ist damit die gewünschte Äquivalenz gezeigt. \Box

(2) Seien α und β beliebige Formeln. In diesem Falle soll die folgende Äquivalenz gezeigt werden.

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

Sie ist genau dann wahr, wenn man für alle Belegungen $\ensuremath{\mathfrak{B}}$ das Folgende zeigen kann.

$$\mathcal{B} \vDash \neg(\alpha \lor \beta) \iff \mathcal{B} \vDash \neg\alpha \land \neg\beta$$

Es sei nun $\mathcal B$ eine beliebige Belegung. Es gilt das Folgende.

$$\mathcal{B} \models \neg(\alpha \vee \beta)$$

$$\iff \mathcal{B} \not\models \alpha \vee \beta$$

$$\iff \mathfrak{B} \not\models \alpha \text{ und } \mathfrak{B} \not\models \beta$$

$$\iff \mathfrak{B} \vDash \neg \alpha \text{ und } \mathfrak{B} \vDash \neg \beta$$

$$\iff \mathcal{B} \vDash \neg \alpha \wedge \neg \beta$$

Da $\mathcal{B},\ \alpha$ und β beliebig waren, ist damit die gewünschte Äquivalenz gezeigt.

(3) Es seien α und β beliebige Formeln und $\mathcal B$ eine beliebige Belegung. In diesem Falle gilt das Folgende.

$$\mathfrak{B} \vDash \alpha \to (\beta \to \alpha)$$

$$\iff \mathcal{B} \not\models \alpha \text{ oder } \mathcal{B} \models \beta \rightarrow \alpha$$

$$\iff \mathcal{B} \not\models \alpha \text{ oder } (\mathcal{B} \not\models \beta \text{ oder } \mathcal{B} \models \alpha)$$

Fall $\alpha \in \mathcal{B}$:

$$\iff$$
 falsch oder ($\mathcal{B} \not\models \beta$ oder wahr)

Fall $\alpha \notin \mathcal{B}$:

$$\iff$$
 wahr oder ($\mathfrak{B} \not\models \beta$ oder falsch)

Damit gilt $\mathcal{B} \models \alpha \rightarrow (\beta \rightarrow \alpha)$. Da \mathcal{B} beliebig gewählt wurde, muss demnach auch $\models \alpha \rightarrow (\beta \rightarrow \alpha)$ gelten. \square

(4) Es seien α , β und φ beliebige Formeln und $\mathcal B$ eine beliebige Belegung. Dann gilt das Folgende.

$$\mathcal{B} \vDash (\alpha \to (\beta \to \varphi)) \to ((\alpha \to \beta) \to (\alpha \to \varphi))$$

$$\iff \mathcal{B} \not\models \alpha \to (\beta \to \varphi) \text{ oder}$$

$$\mathcal{B} \vDash (\alpha \to \beta) \to (\alpha \to \varphi)$$

$$\iff$$
 $(\mathcal{B} \models \alpha \text{ und } \mathcal{B} \not\models \beta \rightarrow \varphi) \text{ oder}$

$$(\mathfrak{B} \not\models \alpha \to \beta \text{ oder } \mathfrak{B} \models \alpha \to \varphi)$$

$$\iff (\mathfrak{B} \vDash \alpha \text{ und } (\mathfrak{B} \vDash \beta \text{ und } \mathfrak{B} \not\vDash \varphi)) \text{ oder }$$

$$((\mathcal{B} \models \alpha \text{ und } \mathcal{B} \not\models \beta) \text{ oder } (\mathcal{B} \not\models \alpha \text{ oder } \mathcal{B} \models \varphi))$$

Fall $\alpha \not \in \mathcal{B}$:

$$\iff$$
 (falsch und $(\mathcal{B} \models \beta \text{ und } \mathcal{B} \not\models \varphi)$) oder

((falsch und
$$\mathcal{B} \not\models \beta$$
) oder (wahr oder $\mathcal{B} \models \varphi$))

wahr

Fall $\varphi \in \mathcal{B}$:

$$\iff$$
 $(\mathcal{B} \models \alpha \text{ und } (\mathcal{B} \models \beta \text{ und falsch })) \text{ oder}$

$$((\mathcal{B} \models \alpha \text{ und } \mathcal{B} \not\models \beta) \text{ oder } (\mathcal{B} \not\models \alpha \text{ oder wahr }))$$

$$\iff$$
 ($\mathcal{B} \models \alpha$ und falsch) oder

1

$$((\mathcal{B} \vDash \alpha \text{ und } \mathcal{B} \not\vDash \beta) \text{ oder wahr})$$

$$\iff \text{ falsch oder wahr}$$

$$\iff \text{ wahr}$$

$$\mathbf{Fall } \alpha, \beta \in \mathcal{B} \text{ und } \varphi \not\in \mathcal{B}:$$

Fall
$$\alpha, \beta \in \mathcal{B}$$
 und $\varphi \not\in \mathcal{B}$:

Fall $\alpha \in \mathcal{B}$ und $\beta, \varphi \notin \mathcal{B}$:

Da B beliebig gewählt wurde, gilt damit auch das Folgende.

$$\vDash (\alpha \to (\beta \to \varphi)) \to ((\alpha \to \beta) \to (\alpha \to \varphi))$$

Die Aussage ist damit gezeigt.

⇔ wahr

(5) Es sei α eine Formel und \mathcal{B} eine beliebige Belegung. In diesem Falle gilt das Folgende.

$$\mathcal{B} \vDash \neg \neg \alpha \to \alpha$$

$$\iff \mathcal{B} \not\vDash \neg \neg \alpha \text{ oder } \mathcal{B} \vDash \alpha$$

$$\iff \mathcal{B} \vDash \neg \alpha \text{ oder } \mathcal{B} \vDash \alpha$$

$$\iff \mathcal{B} \not\vDash \alpha \text{ oder } \mathcal{B} \vDash \alpha$$

$$\iff \text{wahr}$$

Da B beliebig gewählt wurde, gilt damit auch die Aussage $\vDash \neg \neg \alpha \rightarrow \alpha$, die gezeigt werden sollte.

Aufgabe 6

Vor dem eigentlichen Beweis sollen zunächst ein paar Rechenregeln gezeigt werden. Es seien α,β und φ beliebige Formeln und B eine beliebige Belegung. In diesem Falle gelten die folgenden Aussagen.

$$\begin{split} \mathcal{B} \vDash \neg \bot &\iff \mathcal{B} \not\vDash \bot \iff \text{wahr} \iff \mathcal{B} \vDash \top \\ \mathcal{B} \vDash \varphi &\iff \mathcal{B} \vDash \varphi \text{ und wahr} \\ &\iff \mathcal{B} \vDash \varphi \text{ und } \mathcal{B} \vDash \top \iff \mathcal{B} \vDash \varphi \wedge \top \\ \mathcal{B} \vDash \neg \neg \varphi &\iff \mathcal{B} \not\vDash \neg \varphi \iff \mathcal{B} \vDash \varphi \\ \mathcal{B} \vDash \alpha \not\to \beta \iff \mathcal{B} \vDash \alpha \text{ und } \mathcal{B} \not\vDash \beta \\ &\iff \mathcal{B} \vDash \alpha \text{ und } \mathcal{B} \vDash \neg \beta \iff \mathcal{B} \vDash \alpha \wedge \neg \beta \end{split}$$

Da die Formeln und die Belegung beliebig gewählt wurden, gelten damit auch die folgenden Äquivalenzen.

$$\alpha \not\to \beta \equiv \alpha \land \neg \beta, \quad \varphi \equiv \neg \neg \varphi$$
$$\varphi \equiv \varphi \land \top, \quad \neg \bot \equiv \top$$

Diese Äquivalenzen werden nun in dem noch folgenden Induktionsbeweis verwendet.

Induktionsanfang: Für jede Formel φ , bei der es sich um T, ⊥ oder ein Atom handelt, muss gezeigt werden, dass es eine äquivalente Formel φ' gibt, sodass φ' nur aus Atomen, \top oder $\not\rightarrow$ besteht.

Fall $\varphi = \top$: Man verwendet für die folgende Definition, dass jede Formel zu sich selbst äquivalent ist.

$$\varphi' \coloneqq \top \equiv \top \equiv \varphi$$

Fall $\varphi = \bot$: Man verwendet für diese Definition die zuvor gezeigten Äquivalenzen.

$$\bot \equiv \neg \top \equiv \top \land \neg \top \equiv \top \nrightarrow \top =: \varphi'$$

Fall $\varphi = A_i$ für $i \in \mathbb{N}$: Auch hier kann wieder verwendet werden, dass jede Formel zu sich selbst äquivalent ist.

$$\varphi' \coloneqq A_i \equiv A_i = \varphi$$

In allen Fällen ist die definierte Formel φ' , aufgrund der Transitivität von \equiv , äquivalent zu φ und enthält nur Atome, \top oder $\not\rightarrow$. Der Induktionsanfang ist damit gezeigt.

Induktionsvoraussetzung: Es seien nun α und β Formeln, für die es äquivalente Formeln α' und β' gibt, sodass α' und β' nur aus Atomen, \top oder $\not\rightarrow$ bestehen.

Induktionsschluss: Zu zeigen ist nun, dass es auch für die Formeln $\alpha \to \beta$, $\alpha \land \beta$, $\alpha \lor \beta$ und $\neg \alpha$ äquivalente Formeln gibt, die nur aus Atomen, \top oder $\not\rightarrow$ bestehen.

Fall $\varphi = \neg \alpha$: Man verwendet zunächst das Lemma aus der Vorlesung und benutzt dann die gezeigten Äquivalenzen.

$$\neg \alpha \equiv \neg \alpha' \equiv \top \land \neg \alpha' \equiv \top \not\rightarrow \alpha' =: \varphi'$$

Fall $\varphi = \alpha \wedge \beta$: Dieser Fall kann komplett analog zu dem vorherigen Fall behandelt werden.

$$\alpha \wedge \beta \equiv \alpha' \wedge \beta' \equiv \alpha' \wedge \neg \neg \beta' \equiv \alpha' \not\rightarrow \neg \beta'$$
$$\equiv \alpha' \not\rightarrow (\top \not\rightarrow \beta') =: \varphi'$$

Fall $\varphi = \alpha \vee \beta$: Man verwendet zunächst das Lemma aus der Vorlesung und die De Morganschen Gesetze. Danach lassen sich wieder die gezeigten Äquivalenzen anwenden.

$$\alpha \lor \beta \equiv \alpha' \lor \beta' \equiv \neg(\neg \alpha' \land \neg \beta') \equiv \neg(\neg \alpha' \not\rightarrow \beta')$$
$$\equiv \neg((\top \not\rightarrow \alpha') \not\rightarrow \beta')$$
$$\equiv \top \not\rightarrow ((\top \not\rightarrow \alpha') \not\rightarrow \beta') =: \varphi'$$

Fall $\varphi = \alpha \rightarrow \beta$: Auch hier wurde ein analoges Vorgehen zu dem vorherigen Fall gewählt.

$$\alpha \to \beta \equiv \alpha' \to \beta' \equiv \neg \alpha' \lor \beta' \equiv \neg (\neg \neg \alpha' \land \neg \beta')$$
$$\equiv \neg (\alpha' \land \neg \beta') \equiv \neg (\alpha' \not\to \beta')$$
$$\equiv \top \not\to (\alpha' \not\to \beta') =: \varphi'$$

In allen Fällen ist die Formel φ' , aufgrund der Transitivität von \equiv , äquivalent zu φ und enthält nur Atome, \top oder $\not\rightarrow$. Der Induktionsschluss ist damit gezeigt. Demzufolge handelt es sich bei der Menge $\{\top, \neq\}$ um eine adäquate Menge von Verknüpfungszeichen.