CARNEGIE MELLON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 15-445/645 – DATABASE SYSTEMS (FALL 2018) PROF. ANDY PAVLO

Homework 3 (by Lin Ma)

Due: Monday Oct 15, 2018 @ 11:59pm

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Monday Oct 15, 2018.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- You have to use this PDF for all of your answers.

For your information:

- Graded out of 100 points; 2 questions total
- Rough time estimate: $\approx 1 2$ hours (0.5 1 hours for each question)

Revision: 2018/10/08 18:37

Question	Points	Score
Sorting Algorithms	40	
Join Algorithms	60	
Total:	100	

Question 1: Sorting Algorithms	we want to sort it affering or blocked
 (a) [10 points] Assume that the DBMS has six buffers. How many pass need to perform in order to sort the file? □ 4 □ 6 □ 8 □ 10 □ 12 	es does the DBMS
(b) [10 points] Again, assuming that the DBMS has <u>six</u> buffers. What it to sort the file? □ 56,000,000 □ 64,000,000 □ 80,000,000 □ 40,000,000	□ 88,000,000
(c) [10 points] What is the smallest number of buffers B that the DBMS file using only two passes? \Box 44 \Box 45 \Box 46 \Box 158 \Box 159 \Box 160 \Box 161 \Box \Box 2,001 \Box 4,000,000 \Box 4,000,001	S can sort the target $1,999 \Box 2,000$
(d) [10 points] What is the smallest number of buffers B that the DBMS file using only three passes? \Box 44 \Box 45 \Box 46 \Box 158 \Box 159 \Box 160 \Box 161 \Box \Box 2,001 \Box 4,000,000 \Box 4,000,001	S can sort the target $1,999 \Box 2,000$

Question 2: Join Algorithms	0 points
------------------------------------	----------

Consider relations R(a, b) and S(a, c, d) to be joined on the common attribute a. Assume that there are no indexes.

- There are B = 50 pages in the buffer
- Table R spans M = 2000 pages with 80 tuples per page
- Table S spans N = 300 pages with 40 tuples per page

Answer the following questions on computing the I/O costs for the joins. You can assume the simplest cost model, where pages are read and written one at a time. You can also assume that you will need <u>one</u> buffer block to hold the evolving output block and <u>one</u> input block to hold the current input block of the inner relation. You may ignore the cost of the final writing of the results.

(a)		lock nested loop join with R as the outer relation and S as the inner relation:	
	□ 12,000 □	$12,300 \Box 12,600 \Box 14,300 \Box 14,600$	
(b)	[5 points] Blo	ock nested loop join with S as the outer relation and R as the inner relation:	
	□ 12,000 □	$12,300 \Box 14,000 \Box 14,300 \Box 16,300$	
(c)	Sort-merge joir	n with S as the outer relation and R as the inner relation:	
()	0 0		
		What is the cost of sorting the tuples in R on attribute a?	
	\Box 7,854	\Box 7,772 \Box 5,833 \Box 1,166 \Box 875	
	ii. [5 points]	What is the cost of sorting the tuples in S on attribute a?	
	_	\square 7,772 \square 5,833 \square 1,166 \square 875	
	•		
	iii. [10 points]	What is the cost of the merge phase assuming there are no duplicates in	
	the join att	ribute?	
	3	□ 4,600 □ 6,900 □ 154 □ 77	
	iv. [10 points]	What is the cost of the merge phase in the worst case scenario?	
	_	□ 6,900 □ 600,000 □ 1,200,000 □ 300,000,000	
(d)	Hash join with	S as the outer relation and R as the inner relation. You may ignore recursive	
	partitioning and partially filled blocks.		
		What is the cost of the partition phase?	
	\square 2,300	\Box 4,600 \Box 6,900 \Box 3,600 \Box 1,000	
	ii. [5 points]	What is the cost of the probe phase?	
	_	$\Box 4.600 \ \Box 6.900 \ \Box 3.600 \ \Box 1.000$	