Day 3: MODELS OF DECISION MAKING, BIOPHYSICAL MODELS & MACHINE LEARNING

Active Inference

Philipp Schwartenbeck
Wellcome Trust Centre for Human Neuroimaging, UCL

Computational Psychiatry Course 2019, TNU, Zurich

What is active inference?

To make sense of the world, we need to infer its latent structure (hidden causes)

Perception as inference, Bayesian Brain Lee & Mumford, 2003; Knill & Pouget, 2004; Doya et al., 2007

v. Helmholtz, 1867

Active inference is concerned with closing the link between perception and action

Inferring the latent structure of the world - to behave adaptively!

Inferring the latent structure of the world - to behave adaptively!

- Necessary to have insight into preferences
- Requires to optimise the balance between information and reward
- Requires knowledge about informative actions -> active learning/inference
- Necessary to get sequence right

Inferring the latent structure of the world to behave adaptively!

Central quantity of interest: (variational) free energy

Central idea:

expectations

surprise)

free energy

Quantifies the mismatch between observations and beliefs about the world

Outline

- I. (Variational) inference
 - Generative models and state inference
 - Variational free energy
 - Information theory
- II. Active Inference and active learning
 - Using variational inference for understanding action
- III. Some interesting predictions
 - What makes an action valuable?
 - Different types of information gain

I. (Variational) inference

Inference: generative models and hidden states

Imagine a mouse in a T-maze:

Inference is based on a generative model

• I.e. a probabilistic mapping based on a **likelihood function** and a **prior density**:

$$p(o,s|m) = p(o|s,m)p(s,m)$$

Perform inference on hidden states by applying Bayes rule ('model inversion'):

$$p(s|o,m) = \frac{p(o|s,m)p(s|m)}{p(o|m)}$$
Marginal likelihood, model evidence

Inference: generative models and hidden states

Imagine a **Bayesian** mouse in a T-maze:

$$p(o_{t} = 1 | s_{t} = 1, m) = p(o_{t} = 2 | s_{t} = 2, m) = 0.7 \qquad t = 0: \qquad p(s_{t} = 1, m) = p(s_{t} = 2, m) = 0.5$$

$$p(o_{t} = 1 | s_{t} = 2, m) = p(o_{t} = 2 | s_{t} = 1, m) = 0.3 \qquad t \neq 0: \qquad p(s_{t}, m) = p(s_{t-1}, m)$$

$$p(s_{t} | o_{t}, m) = \frac{p(o_{t} | s_{t}, m)p(s_{t} | m)}{p(o_{t} | m)} = \frac{p(o_{t} | s_{t}, m)p(s_{t} | m)}{\sum_{i} p(o_{t} | s_{t} = i, m)p(s_{t} = i | m)}$$

obtaining cheese?

Variational Bayes

This usually doesn't work

Exact inference is generally intractable

$$p(s|o,m) = \frac{p(o|s,m)p(s|m)}{p(o|m)}$$

Variational Bayes allows to cast an inference problem (difficult) as a bound optimisation problem (easier) (Beal, 2003)

• Idea: approximate model evidence in Bayesian inference

Allows to derive specific variational update equations for a given problem

- Maths is not trivial but only has to be done once!
- Then implement resulting update equations

Provides hypotheses about neuronal implementation of Bayesian inference

Variational Bayes: free energy

Negative variational free energy provides a lower bound on model evidence:

Variational free energy \rightarrow 0 implies maximising model evidence and obtaining a good approximation of the true posterior

Note: when q(s) = p(s|o, m), free energy is identical to model evidence (and inference becomes exact)

Information theory

Information theory quantifies the information content of a signal

Unlikely events are more informative than likely events

This can be quantified as the **self-information** or **surprise** of a signal (Shannon, 1948):

$$I(o) = \boxed{-logP(o|m)}$$

This is negative log- $F = \overline{\log p(o|m)} - D_{KL}[q(s), p(s|o, m)]$ model evidence!

Other important quantities that we will use:

Expected value of surprise is called (Shannon) entropy:

$$H(o) = \mathbb{E}_o[I(o)] = -\sum_i p(o_i|m) \cdot \log p(o_i|m)$$

Mutual information: how much information about a variable can be gained by observing another variable?

$$I(s; o) = H(s) - H(s|o) = \mathbb{E}_{o}[D_{KL}(p(s|o)||p(s))]$$

(Variational) inference summary

III. Surprise is the negative of model evidence

$$I(o) = -logP(o|m)$$

Minimising free energy minimises surprise, and maximises model evidence!

Minimising free energy results in a distribution that approximates the posterior

$$q(s) = \underset{q(s)}{\operatorname{argmin}} F = p(s|o,m)$$

II. Inference is **approximated** based on (**negative**) **variational free energy**

$$F = \log p(o|m) - D_{KL}[q(s), p(s|o, m)]$$

This is hard

I. Inference on hidden states is based on a **generative model** of the world

$$p(s|o,m) = \frac{p(o|s,m)p(s|m)}{p(o|m)}$$

II. Active inference and active learning

Active (variational) inference?

This works well for 'perception', but can we use the same approach to understand action?

Friston et al. (2013; 2017)

But we need to change the definition of the (variational) free energy slightly, because

- 1. The free energy should depend on action (policies)
- 2. The free energy should be about future observations

$$F = \log p(o|m) - D_{KL}[q(s), p(s|o, m)]$$

$$\Leftrightarrow F = \sum_{s} q(s) \log \frac{q(s)}{p(o, s)}$$

$$\Leftrightarrow F = \sum_{s} q(s) \log \frac{q(s)}{$$

Class of problems: Markov Decision Processes

We are dealing with partially observable Markov decision processes (POMDP)

Key ingredients:

• 1, ..., T discrete time-steps

Class of problems: Markov Decision Processes

We are dealing with partially observable Markov decision processes (POMDP)

Key ingredients:

• 1, ..., T discrete time-steps

• $P(o_t|s_t)$ not trivial

Class of problems: Markov Decision Processes

We are dealing with partially observable Markov decision processes (POMDP)

Key ingredients:

• 1, ..., T discrete time-steps

• $P(o_t|s_t)$ not trivial

• Markov-property: $P(s_{t+1}|s_t, a_t) = P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, ...)$

A Markovian generative model

(empirical and full) priors likelihood p(o,s|m) = p(o|s,m)p(s,m) $P(\tilde{o}, \tilde{s}, \pi, \gamma, A) = \prod_{t=1}^{\tau} P(o_t|s_t) P(s_t|s_{t-1}, \pi) P(\pi|\gamma) P(\gamma) P(A)$ Generative model $= P(\tilde{o}|\tilde{s})P(\tilde{s}|\pi)P(\pi|\gamma)P(\gamma)P(A)$ Observation model: mapping from hidden states to observations $P(o_t|s_t) =: \mathbf{A}$ $P(s_{t+1}|s_t,\pi)=: \mathbf{B}(\pi(t))$ Transition probabilities: mapping from current to next states contingent on policies $P(s_0) =: d$ Beliefs about initial states in a task $P(o_t) =: \boldsymbol{c}_t$ Beliefs about outcomes in a task (= preferences) $P(\pi|\gamma) = \sigma(-\gamma \cdot G(\pi))$ Beliefs about policies P(A) = Dir(a)Parameters of observation model $P(\gamma) = \Gamma(1, \beta)$ Precision (inverse stochasticity in behaviour) $G(\pi) = \sum_{s} q(s_t|\pi) \log \frac{q(s_t|\pi)}{p(o_t, s_t|\pi)}$ Expected free energy

Key idea: use (variational) inference to solve MDPs

A Markovian generative model: observation model

A Markovian generative model: transition probabilities

A Markovian generative model: priors about outcomes and states

A Markovian generative model: priors on observation model

A Markovian generative model: precision

(Variational) belief updating

Approximate posterior

$$F = \log p(o|m) - D_{KL}[q(s), p(s|o, m)]$$

$$\Leftrightarrow F = \sum_{s} q(s) \log \frac{q(s)}{p(o, s)}$$

Variational free energy F

$$Q(\hat{s}_t, \pi, A, \gamma) = \underset{Q(\hat{s}_t, \pi, A, \gamma)}{\operatorname{argmin}} F = P(\hat{s}_t, \pi, A, \gamma | o, m)$$

$$F = -E_Q[\ln P(o, s_t, \pi, A, \gamma | m)] - E_Q[\ln Q(s_t, \pi, A, \gamma)]$$

$$= \log A \cdot o_t + \log B_{t-1}^{\pi} \cdot \hat{s}_{t-1} + \log B_t^{\pi} \cdot \hat{s}_{t+1} + \cdots$$

Belief updating

Perception
$$\hat{s}_t = \sigma(\log A \cdot o_t + \log B_{t-1}^{\pi} \cdot \hat{s}_{t-1} + \log B_t^{\pi} \cdot \hat{s}_{t+1})$$

Policy selection
$$\hat{\pi} = \sigma(-\gamma \cdot G)$$

Precision
$$\hat{\beta} = \beta - \hat{\pi} \cdot G$$

$$Q(\tilde{s}, \pi, A, \gamma) = Q(s_1 | \pi) \dots Q(s_T | \pi) Q(\pi) Q(A) Q(\gamma)$$

$$Q(s_t|\pi) = Cat(s_t|\pi)$$

$$Q(\pi) = Cat(\boldsymbol{\pi})$$

$$Q(\mathbf{A}) = Dir(\mathbf{a})$$

$$Q(\gamma) = \Gamma(1, \boldsymbol{\beta})$$

Friston et al., 2015, Cognitive Neuroscience; Friston et al., 2017, Neural Computation; Bogacz, 2017, Journal of Mathematical Psychology

(Variational) inference

Belief updating

Perception

$$\hat{s}_t = \sigma(\log A \cdot o_t + \log B_{t-1}^{\pi} \cdot \hat{s}_{t-1} + \log B_t^{\pi} \cdot \hat{s}_{t+1})$$

"Infer the current state based on your observations and beliefs about transitions between states"

Policy selection

$$\hat{\pi} = \sigma(-\gamma \cdot G)$$

"Infer the **best policy** based on the **value of policies** and your **goal-directedness**"

Precision

$$\hat{\beta} = \beta + (\hat{\pi} - \pi_0) \cdot G$$

"Infer the right level of goal-directedness based on a prediction error between prior and posterior expected free energies"

Makes predictions for neuronal implementation, e.g. different message passing schemes (Parr, Markovic, Kiebel & Friston, 2018)

(Active) learning

We use generative models to perform inference on hidden states.

Belief updating

Perception $\hat{s}_t = \sigma(\log A \cdot o_t + \log B_{t-1}^{\pi} \cdot \hat{s}_{t-1} + \log B_t^{\pi} \cdot \hat{s}_{t+1})$

Policy selection $\hat{\pi} = \sigma(-\gamma \cdot G)$

Precision $\hat{\beta} = \beta - \hat{\pi} \cdot G$

But we also learn and update our models.

Learning

Observation model P(A) = Dir(a)

where

 $a_t = a_{t-1} + \eta \cdot \sum_t o_t \otimes s_t$

Counting number of transitions from one particular hidden state to a particular outcome

Modulated by learning rate η Friston et al., 2017, Neural Computation

Variational inference applied to POMDPs predicts specific types of belief updating and learning

Active inference and active learning summary

Need to define **variational free energy** wrt $G = \sum_{t} q(s_t|\pi) \log \frac{q(s_t|\pi)}{p(o_t, s_t|\pi)}$

- Future states and observations
- Contingent on policies

Let's use variational inference during action and planning

 $F = \log p(o|m) - D_{KL}[q(s), p(s|o, m)]$

III. Some interesting predictions

What makes an action valuable?

Actions become valuable if they

- Maximise reward/utility
- Allow us to minimise uncertainty about the world
 - Uncertainty about **states** (active inference)
 - Uncertainty about models of the world (active learning)

Utilities (preferences) are defined as log-expectations over outcomes:

Fulfilling these preferences minimises surprise $-\log P(o_t|m)!$

This can be approximated with variational free energy!

What makes an action valuable?

Values of policies $G(\pi)$ defined as expected free energy:

$$P(\pi) = \sigma(-\gamma \cdot G(\pi))$$

$$G(\pi) = \sum_{\tau} G(\pi, \tau)$$

$$G(\pi, \tau) = \mathbb{E}_{\tilde{Q}}[\ln Q(s_{\tau}, A | \pi) - \ln P(o_{\tau}, s_{\tau}, A | \pi)]$$

$$= \mathbb{E}_{\tilde{Q}}[\ln Q(A) + \ln Q(s_{\tau} | \pi) - \ln P(A | s_{\tau}, o_{\tau}, \pi) - \ln P(s_{\tau} | o_{\tau}, \pi) - \ln P(o_{\tau})]$$

$$\approx \mathbb{E}_{\tilde{Q}}[\ln Q(A) + \ln Q(s_{\tau} | \pi) - \ln Q(A | s_{\tau}, o_{\tau}, \pi) - \ln Q(s_{\tau} | o_{\tau}, \pi) - \ln P(o_{\tau})]$$

$$G(\pi, \tau) = \mathbb{E}_{\tilde{Q}}[\ln Q(A) - \ln Q(A | s_{\tau}, o_{\tau}, \pi)] + \mathbb{E}_{\tilde{Q}}[\ln Q(s_{\tau} | \pi) - \ln Q(s_{\tau} | o_{\tau}, \pi)] - \mathbb{E}_{\tilde{Q}}[\ln P(o_{\tau})]$$
'Model exploration' (Active learning) 'Hidden state exploration' (Active Inference) (Exploitation)

Mutual information

see Friston et al., 2017 Neural Computation; Parr & Friston, 2017 Cerebral Cortex; Schwartenbeck et al. 2019, eLife; Solopchuck 2019 Tutorial on Active Inference and Free Energy, Action Value and Curiosity

Expectations over

outcomes

Active learning: 'model exploration'

Prob high reward = 0.5

Prob high reward = 0.75

$$G(\pi,\tau) = \mathbb{E}_{\tilde{Q}}[\ln Q(A) - \ln Q(A|s_{\tau},o_{\tau},\pi)] + \mathbb{E}_{\tilde{Q}}[\ln Q(s_{\tau}|\pi) - \ln Q(s_{\tau}|o_{\tau},\pi)] - \mathbb{E}_{\tilde{Q}}[\ln P(o_{\tau})]$$
'Model exploration'
(Active learning)

'Hidden state exploration'
(Active Inference)

(Exploitation)

'Broken' active learning

Active learning: 'model exploration'

Active Inference: 'hidden sate exploration'

'Broken' active Inference

Value of actions summary

$$G(\pi,\tau) = \mathbb{E}_{\tilde{Q}}[\ln Q(A) - \ln Q(A|s_{\tau},o_{\tau},\pi)] + \mathbb{E}_{\tilde{Q}}[\ln Q(s_{\tau}|\pi) - \ln Q(s_{\tau}|o_{\tau},\pi)] - \mathbb{E}_{\tilde{Q}}[\ln P(o_{\tau})]$$
'Model exploration'
(Active learning)

'Hidden state exploration'
(Active Inference)

(Exploitation)

Let's use variational free energy during action and planning

This can be applied in lots of other (more relevant) contexts

Modelling 'epistemic' (foraging) saccades based on a factorised MDP with different levels of precision (Parr & Friston, 2017)

Saccades and scene construction (Mirza & Adams, Mathys & Friston, 2016)

Different message passing schemes underlying active inference (Parr, Markovic, Kiebel & Friston, 2019)

Use this to understand failures in epistemic foraging, such as visual hemineglect (Parr & Friston, 2019)

Computational Phenotyping in active inference

All models are wrong, but some are useful - for understanding how things can break

Active inference/learning provides a tool for understanding

Failures in active inference

Lack of insight into informative states

Failures in active learning

Lack of insight into observations that can reduce uncertainty

Suboptimal **preferences**

Suboptimal **model configurations**, i.e.

- Suboptimal action sequences
- Wrong/noisy observation model, transition probs, ...

Failures of **precision**

- Of action selection
- Of different aspects of value

Other introductory resources

Blog by Oleg Solopchuk:

- Tutorial on Active Inference (https://medium.com/@solopchuk/tutorial-on-active-inference-30edcf50f5dc)
- Free Energy, Action Value and Curiosity (https://medium.com/@solopchuk/free-energy-action-value-and-curiosity-514097bccc02)

"What does the free energy principle tell us about the brain?" by Sam Gershman (arXiv, 2019)

"A tutorial on the free-energy framework for modelling perception and learning" by Rafal Bogacz (Journal of Mathematical Psychology, 2017)

"The free energy principle for action and perception: A mathematical review" by Buckley, Kim, McGregor & Seth (Journal of Mathematical Psychology, 2017)

"Combining active inference and hierarchical predictive coding: a tutorial introduction and case study" by Beren Millidge (*PsyArXiv*, 2019)

Take home messages

- I. Active inference applies variational inference to Markov Decision Processes
 - Central idea: actions fulfil expectations ⇔ minimise surprise ⇔ maximise model evidence
- II. This predicts
 - Inference on the current state, policy and goal-directedness
 - Learning (model optimisation) of the observation model, transition probabilities, ...
- III. Defining the value of policies as expected free energy over future observations predicts
 - Exploration of hidden states
 - Exploration of 'model parameters'
 - Exploitation (fulfilling preferences)
- IV. Provides a computational framework for active inference and active learning and how this might break
 - Failures of inference, learning, preferences, precision, ...

Thank you

Collaborators

Tim Behrens Ray Dolan Karl Friston

Rick Adams

Alon Baram

Ben Castine

Tom FitzGerald

Daniel Freinhofer

Dorothea Hammerer

Tobias Hauser

Lilla Horvath

Jakob Howy

Martin Kronbichler

Zeb Kurth-Nelson

Yunzhe Liu

Andrei Manoliu

Christoph Mathys

Shirley Mark

Matthew Nour

Thomas Parr

Johannes Passecker

Giovanni Pezzulo

Natalie Rens

Nitzan Shahar

Ryan Smith