<u>CLAIMS</u>

ı	1. `	A method of producing nitride films comprising:
2		(a) providing first and second electrodes,
3		(b) applying a voltage between said first and second electrodes to establish a
4	corona dischar	ge therebetween,
5		(c) introducing nitrogen into the corona discharge under pressure to activate
6	the nitrogen ar	nd to direct the activated nitrogen toward a substrate, and
7		(d) applying the activated nitrogen to the substrate in the presence of at least
8	one further ele	ment to form a nitride film.
1	2.	The method according to claim 1, wherein the one further element is selected
2		consisting of Al, Ga and In.
1	3.	The method according to claim 2, wherein step (d) comprises introducing the at
2	least one furthe	er element to the substrate at the location of application of the activated nitrogen to
3	the substrate.	
1	4.	The method according to claim 1, wherein, in step (d) the at least one further
2	element is oxyg	gen and the nitride film thus formed is an oxynitride film.
1	5.	The method according to claim 1, wherein the substrate is a semiconductor
2	stratum having	an oxide layer thereon and step (d) comprises applying the activated nitrogen to
3	the oxide layer.	
l	6.	The method according to claim 5, wherein applying the activated nitrogen to an
2	oxide layer on t	he semiconductor stratum comprises providing a silicon stratum having an oxide
3	layer for contact	t by the activated nitrogen.

2

5

6

7.

The method according to claim 1, wherein step (c) comprises passing the nitrogen

through a corona discharge to create metastable activated nitrogen molecules.

corona-discharge electrodes, a skimmer located downstream of the nozzle in the direction of

nitrogen flow, the skimmer defining an opening to collimate a beam of activated nitrogen

3

4

5

2

1

2

1

2

3

4

- molecules passing therethrough, at least one chamber downstream of the skimmer, means for 7 evacuating the chamben to draw off gases other than the activated nitrogen molecules prior to the 8 activated nitrogen molecules reaching the substrate: 9
- 1 The apparatus according to claim 13, wherein the at least one chamber comprises 14. one of a plurality of succeeding chambers with means for evacuating each of the succeeding 2 3 chambers to draw off gases other than the activated nitrogen molecules passing therethrough _towards the substrate.
 - The apparatus according to claim 14, wherein the nozzle comprises a restricted 15. end of a tube, the tube being in the nitrogen delivery path, the first one of the corona-discharge electrodes being located within the tube, and the second of the corona discharge electrodes being located outside the tube, the nitrogen emergent from the tube into a corona discharge between the electrodes forming with the corona discharge a corona discharge supersonic free-jet.
 - 16. The apparatus according to claim 15, wherein the second of the corona discharge electrodes is generally annular and surrounds the restricted end of the tube.
 - The apparatus according to claim 15, wherein the second of the corona discharge 17. electrodes is downstream of the restricted end of the tube in the direction of nitrogen flow.
- The apparatus according to claim 17, wherein the skimmer serves as the second of 18. the corona discharge electrodes.
- In a semiconductor manufacturing process, a method of applying a layer to a 19. substrate comprising at least a semiconductor stratum; the method comprising:
- directing onto the substrate an activated molecule comprising at least: (a)
 - a first atom operative chemically to bond to an element at the (i)
- 5 substrate, and

	6	(ii) a second atom operative to disassociate and leave the substrate
	7	removing heat caused by a reaction between the first atom and at least one substrate constituent
	8	in so-doing.
	1	20. A method of forming a multi-layer semiconductor constituent comprising:
	2	(a) providing a target substrate comprising at least a stratum of semiconductor
	3	material,
4 5 6	4	(b) producing a beam at least partially comprised of metastable activated
	5	nitrogen molecules, and
	6	(c) impacting a surface of the target substrate with the beam of metastable
	7	activated nitrogen molecules.
j	1	21. The method according to claim 20, wherein the beam of metastable activated
	2	nitrogen molecules comprises diatomic nitrogen molecules.
Bern B	1	22. The method according to claim 21, wherein step (c) comprises binding a first
2	2	atom of the diatomic nitrogen molecules with at least one further element at the surface of the
	substrate in an exothermic reaction and releasing the heat of the exothermic reaction by release	
	4	of a second atom of the diatomic nitrogen molecules.
	1	23. The method according to claim 20 or 22, wherein the diatomic molecule is of the
	2	form $N_2A^3\Sigma_u^+$.
	1	24. The method according to one of claims 20 through 22, wherein step (c) includes
	2	reacting the metastable activated molecule with a group III metal.
	1	25. The method according to one of claims 20 through 22, wherein step (c) includes
	2	reacting the metastable activated nitrogen molecule with at least one of an element chosen from
	2	omening annihility CALC 17

group consisting of Al, Ga and In.

3

	1	26.	The m	nethod according to one of claims 20 through 22, wherein step (a) comprises
	2	providing a s	ubstrate	having a semiconductor stratum and an oxide layer, and step (c) comprises
	3	impacting the	oxide l	layer with the beam of metastable activated nitrogen molecules.
	1	27.	The m	nethod according to any one of claims 20 through 22, wherein step (b)
	2	comprises pro	oducing	the beam by introducing nitrogen in a corona discharge supersonic free-jet
	3	directed at the		
	1	28.	In a se	emiconductor manufacturing process, a method of applying a nitride layer to
	2	a substrate co	mprisin	g at least a stratum of semiconductive material, including the steps of:
	3		(a)	directing a beam of metastable activated nitrogen molecules onto the
٥	4	substrate by:		
	5			(i) providing a corona discharge supersonic free-jet source (CD-SFJ);
العادة العادة	6			(ii) supplying nitrogen to the CD-SFJ to produce the metastable
	7	activated nitro	gen mo	plecule beam;
	8			(iii) locating the substrate in the path of the beam; and
	9			(iv) introducing at least one further element operative in association
	10	with the activa	ated nitr	rogen molecules to produce a nitride layer on the substrate.
	1	29.	A meth	nod of producing a film on a semiconductor substrate comprising:
	2	•	(a)	establishing in a vacuumized location a corona discharge across a set of
	3	corona dischar	rge elect	trodes,
	4		(b)	creating a flow of diatomic, activated, metastable nitrogen molecules by
	5	directing press	surized r	nitrogen gas through a nozzle into the plasma discharge,
	6			collimating the flow of activated nitrogen molecules,

	7	(d) positioning the semiconductor substrate in the collimatic flow of activated
	8	nitrogen molecules,
	9	(e) reacting the activated nitrogen molecules with at least one other element at
	10	a surface of the substrate to grow a nitride layer on the surface by:
	11	(i) exothermic reaction of one atom of each molecule thus reacting,
	12	and
	13	(ii) disassociating a further atom and the one atom of each molecule
	14	thus reacting to dissipate the heat produced in the exothermic reaction.
	1	30. The method according to claim 29, wherein step (b) includes pressurizing the
	2	nitrogen gas to a stagnation pressure of substantially 200 torr or greater.
M	1 2 1	31. The method according to claim 30, wherein step (a) comprises establishing the
	2	corona discharge at a location vacuumized to a pressure of less than 1 x 10 torr.
** <u>*</u>	1	32. The method according to any one of claims 29 through 31, wherein step (b)
	2	further comprises creating in the corona discharge nitrogen molecules substantially only of the
	3	excited form $N_2A^3\Sigma_u^+$ and the ground state form $N_2X^1\Sigma_g^+$.
	1	33. The method according to any one of claims 29 through 31, further comprising
	2	directing at least one further stream of collimated diatomic, activated, metastable nitrogen
	3	molecules to the surface of the substrate by concurrently performing the steps (a) to (d) by
	4	directing nitrogen gas under pressure to at least one further nozzle.
	1	34. The method according to claim 29, further comprising the step of elevating the
	2	temperature of the substrate at least several hundred celsius degrees above ambient.

III metal nitride film on the surface.

1	35.	The method according to claim 34, wherein the step of raising the temperature of		
2	the substrat	e comprises raising the temperature to a temperature in the range from about 600°C		
3	to about 900	•		
1	36.	Apparatus for producing a film on a semiconductor substrate comprising:		
2		(a) means for establishing a vacuumized environment,		
3	_	(b) means for establishing a corona discharge in the vacuumized environment,		
4	7ks/	(c) means for creating a supersonic flow of nitrogen gas into the corona		
50	discharge to create a supersonic jet of diatomic, activated metastable nitrogen molecules,			
6		(d) means for collimating the jet of nitrogen molecules, and		
7		(e) means for locating a target semiconductor substrate in the path of the		
8	collimated je	t of nitrogen particles.		
1	37.	The apparatus according to claim 36, further comprising means for withdrawing		
2	background g	gases from around the collimated jet of nitrogen molecules.		
1	38.	The apparatus according to claim 36, further comprising means for supplying a		
2	group III meta	al to react with the nitrogen molecules at a surface of the substrate to grow a group		