Deep Learning através das abstrações

Autoencoders

Conceito geral

- Rede que aprende a reconstruir o dado original
- Não queremos que ela só aprenda a identidade!
 - Undercomplete Autoencoder
 - Overcomplete Autoencoder
 - Sparse Autoencoder
 - Denoising Autoencoder
 - Contractive

Pode ser usado em vários domínios

- Em imagens podemos usar um camadas convolucionais para melhorar desempenho
- Em dados sequencias (como textos) podemos usar LSTM ou GRU
 - o Pode ser usado para aprender word embeddings

Componentes de um autoencoder

Componentes de um autoencoder

Encoder e Decoder

- Encoder
 - Produz um código ou representação latente
 - Geralmente dimensão menor que a original
 - Propriedade interessantes
 - Focado em um domínio, não sabe codificar qualquer coisa
- Decoder
 - Reconstroí a entrada a partir do código
 - Interpreta um dado código para voltar ao dado original

Funções de Perda

- Chamada de erro de reconstrução
- Mean Squared Error
- Cross Entropy

Undercomplete AEs

- Aprende uma compressão com perdas da entrada
- Pode ser usado para redução de dimensionalidade
- Geralmente o código é uma boa representação apenas para os dados de treino
 - Note porém que por ser não supervisionado a gente pode treiná-lo usando tanto o conjunto de treino quanto o de teste (útil mais no kaggle mesmo)

Aplicação random: Criptografia de dados

- Podemos usar o autoencoder como um compressor (com perda)
- Treina-se o autoencoder
- Usa-se o codificador como compressor
- E o decodificador como descompressor

Overcomplete AEs

- O código tem dimensão maior que a entrada
- Se fizermos só isso ele aprende a identidade
- Duas saídas comuns e uma não tanto
 - Soluções esparsas
 - Denoising Autoencoder
 - Contractive Autoencoders

Sparse AEs

- Limitamos o número de ativações para cada entrada
 - Manualmente
 - Melhor usar regularização L1

Denoising AEs

O autoencoder aprende a remover o barulho da entrada

Termina aprendendo uma boa representação interna como efeito

colateral

Aplicação: Remover barulho

- Codamos um denoising autoencoder
- Recebe imagens com barulho, aprende a retornar imagens limpas
- Pode generalizar a ideia para arquivos mais gerais

Aplicação do Mal: DeepFake

- Frankenstein de autoencoders
- Treina um autoencoder em uma classe e outro em outra classe
- Corta a parte de codificação de um e liga na decodificação de outro
- Sérios problemas éticos

Fonte: Alan Zucconi

Aplicação interessante: espaco latente

- Podemos usar o código do autoencoder como um espaço latente dos nossos dados
- Redução de dimensionalidade
- Remove barulho
- Melhora a separabilidade
- Melhora o treinamento
- Podemos ver como o aprendizado de uma boa representação

Autoencoders Avancados

Contractive

- Usa uma penalidade da Norma de Frobenius da Jacobiana
- Torna a representação mais robusta contra pequenas mudanças, logo melhor generalização

Variational

- Generativo
- Área quente de pesquisa, muitas coisas surgindo todo dia
- Vamos ver daqui há duas aulas

Resources

- Wikipedia
- Slides do Moacir
- Blog do Keras
- Blog sobre CAEs
- Blog sobre DeepFakes
- Post do Kaggle