WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/82, 9/12, C07K 14/415, A01H 5/00

A1

(11) International Publication Number:

WO 97/43427

(43) International Publication Date: 20 November 1997 (20.11.97)

(21) International Application Number:

PCT/EP97/02443

(22) International Filing Date:

13 May 1997 (13.05.97)

(30) Priority Data:

9610044.1

14 May 1996 (14.05.96)

GB

(71) Applicant (for all designated States except US): NOVARTIS AG [CH/CH]; Scharzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DE VRIES, Sape, Comelis [NL/NL]; Roghorst 192, NL-6708 KS Wageningen (NL). SCHMIDT, Edward, Daniel, Leendert (NL/NL); Callunastraat 25, NL-6813 ET Amheim (NL). VAN HOLST, Gerrit, Jan [NL/NL]; De Gouw 8, NL-1602 DN Enkhuizen (NL). HECHT, Valerie, France, Gabrielle [NL/NL]; Kees Muldenweg 25, NL-6707 HA Wageningen (NL).
- (74) Agent: ROTH, Bernhard, M.; Novartis AG, Patent- und Markenabteilung, Klybeckstrasse 141, CH-4002 Basel (CH).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

(54) Title: PRODUCTION OF APOMICTIC SEED

(57) Abstract

The present invention provides, inter alia, a method of producing apomictic seeds comprising the steps of: (i) transforming plant material with a nucleotide sequence encoding a protein the presence of which in a cell, or membrane thereof, renders said cell embryogenic, (ii) regenerating the thus transformed material into plants, or carpel containing parts thereof, and (iii) expressing the sequence in the vicinity of the embryo sac. The protein may be a leucine repeat rich receptor kinase which preferably is modified to the extent that the ligand binding domain is deleted or functionally inactivated.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				_			
Al.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	L.T	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ.	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
88	Barbados	GH	Ghana	MG	Madagascar	T)	Tajikistan
BE	Belgium	GN	Guines	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ircland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	îsrael	MR	Mauritania	UG	Uganda
By	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT.	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	ı,	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	\$G	Singapore		

Production of Apomictic Seed

The present invention relates to the production of genetically transformed plants. In particular the invention relates *inter alia* to a process for inducing apomixis, to the apomictic seeds which result from the process, and to the plants and progeny thereof which result from the germination of such seeds.

Apomixis, which is vegetative (non-sexual) reproduction through seeds, is a genetically controlled reproductive mechanism found in some polyploid non-cultivated species. The process is classified as gametophytic or non-gametophytic. In gametophytic apomixis - of which there are two types (apospory and diplospory), multiple embryo sacs which typically lack antipodal nuclei are formed, or else megasporogenesis in the embryo sac takes place. In adventitious embryony (non-gametophytic apomixis), a somatic embryo develops directly from the cells of the embryo sac, ovary wall or integuments. In adventitious embryony, somatic embryos from surrounding cells invade the sexual ovary, one of the somatic embryos out-competes the other somatic embryos and the sexual embryo and utilizes the produced endosperm.

Were apomixis to be a controllable and reproducible phenomenon it would provide many advantages in plant improvement and cultivar development in the case that sexual plants are available as crosses with the apomictic plant.

For example, apomixis would provide for true-breeding, seed propagated hybrids. Moreover, apomixis could shorten and simplify the breeding process so that selfing and progeny testing to produce and/or stabilize a desirable gene combination could be eliminated. Apomixis would provide for the use as cultivars of genotypes with unique gene combinations since apomictic genotypes breed true irrespective of heterozygosity. Genes or groups of genes could thus be "pyramided and "fixed" in super genotypes. Every superior apomictic genotype from a sexual-apomictic cross would have the potential to be a cultivar. Apomixis would allow plant breeders to develop cultivars with specific stable traits for such characters as height, seed and forage quality and maturity. Breeders would not be limited in their commercial production of hybrids by (i) a cytoplasmic-nuclear interaction to produce male sterile female parents or (ii) the fertility restoring

capacity of a pollinator. Almost all cross-compatible germplasm could be a potential parent to produce apomictic hybrids.

Finally, apomixis would simplify commercial hybrid seed production. In particular, (i) the need for physical isolation of commercial hybrid production fields would be eliminated; (ii) all available land could be used to increase hybrid seed instead of dividing space between pollinators and male sterile lines; and (iii) the need to maintain parental line seed stocks would be eliminated.

The potential benefits to accrue from the production of seed *via* apomixis are presently unrealized, to a large extent because of the problem of engineering apomictic capacity into plants of interest. The present invention provides a solution to that problem in that it provides the means for obtaining plants which exhibit the adventitious embryony type of apomixis.

According to the present invention there is provided a method of producing apomictic seeds comprising the steps of:

- (i) transforming plant material with a nucleotide sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell embryogenic,
- (ii) regenerating the thus transformed material into plants, or carpel-containing parts thereof, and
- (iii) expressing the sequence in the vicinity of the embryo sac.

By "vicinity of the embryo sac" is meant in one or more of the following: carpet, integuments, ovule, ovule premordium, ovary wall, chalaza, nucellus, funicle and placenta. The skilled man will recognize that the term "integuments" also includes those tissues, such as endothelium, which are derived therefrom. By "embryogenic" is meant the capability of cells to develop into an embryo under permissive conditions. It will be appreciated that the term "in an active form" includes proteins which are truncated or otherwise mutated with the proviso that they initiate or amplify embryogenesis whether or not in doing this they interact with the signal transduction components that they otherwise would in the tissues in which they are normally present.

The term "plant material" includes protoplasts, isolated plant cells (such as stomatal guard cells) possessing a cell wall, pollen, whole tissues such as emerged radicle, stem, leaf, petal,

hypocotyl section, apical meristem, ovaries, zygotic embryo *per se*, roots, vascular bundle, pencycle, anther filament, somatic embryos and the like.

A turner embodiment of the invention relates to a DNA molecule comprising a nucleotide sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell embryogenic.

The said nucleotide sequence may be introduced into the plant material, inter alia, via a bacterial or viral vector, by micro-injection, by co-incubation of the plant material and sequence in the presence of a high molecular weight glycol or by coating of the sequence onto the surface of a booogcally inert particle which is then introduced into the material.

Expression of the sequence may yield a protein kinase capable of spanning a plant cell memorane. Typically the kinase may be a leucine rich repeat receptor like kinase which has the capacity to auto-phosphorylate. The skilled man will recognize what is meant by the term Reucine non repeat receptor like kinase". Examples of such proteins include Arabidopsis RLK5 (Waker, 1993), Arabidopsis RPS2 (Bent et al. 1994), Tomato CF-9 gene product (Jones et al. 1994). Tomato N (Whitham et al. 1994), Petunia PRK1 (Mu et al. 1994), the product of the Drosophila Toll gene (Hashimoto et al. 1988), the protein kinase encoded by the rice OsPK10 gene (Zhao et al. 1994), the translation product of the rice EST clone ric2976 and the product of the Drosophila Pelle gene (Shelton and Wasserman, 1993). Still further examples of such proteins include the TMK1, Clavatal, Erecta, and TMKL1 gene products from Arabidopsis, the Fightess-1 gene product from Drosophila, the TrkC gene product from pig. the rat LhCG receptor and FSH receptor, the dog TSH receptor, and the human Trk receptor kinase. The protein may comprise a ligand binding domain, a proline box, a transmembrane domain, a kmase domain and a protein binding domain. In many receptor kinases the extracellular (ligand becamp) domain serves as an inhibitor of the kinase domain in the ligand-free state. This arrest is removed after binding of the ligand. Accordingly, in one embodiment of the invention the protein • lacks a ligand binding domain or the domain is functionally inactivated so that the kinase domain can be constitutively active in the absence of an activating signal (ligand). Whether or not the protein possesses a ligand binding domain - functional or otherwise, once expressed and encorporated into the plant cell membrane the protein binding domain is preferably located entra-coaularly.

In a preferred embodiment of the method, the said sequence further encodes a cell membrane targeting sequence. The sequence may be that which is depicted in SEQ ID Nos. 1, 2, 20, or 32, or it may be similar in that it is complementary to a sequence which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity. By "similar" is meant a sequence which is complementary to a test sequence which is capable of hybridizing to the inventive sequence. When the test and inventive sequences are double stranded the nucleic acid constituting the test sequence preterably has a TM within 20°C of that of the inventive sequence. In the case that the test and inventive sequences are mixed together and denatured simultaneously, the TM values of the sequences are preferably within 10°C of each other. More preferably the hybridization is performed under stringent conditions, with either the test or inventive DNA preferably being supported. Thus either a denatured test or inventive sequence is preferably first bound to a support and hybridization is effected for a specified period of time at a temperature of between 50 and 70°C in double strength citrate buffered saline (SSC) containing 0.1%SDS followed by rinsing of the support at the same temperature but with a buffer having a reduced SSC concentration. Depending upon the degree of stringency required, and thus the degree of similarity of the sequences, at a particular temperature, - such as 60°C, for example - such reduced concentration buffers are typically single strength SSC containing 0.1%SDS, half strength SSC containing 0.1%SDS and one tenth strength SSC containing 0.1%SDS. Sequences having the greatest degree of similarity are those the hybridization of which is least affected by washing in buffers of reduced concentration. It is most preferred that the test and inventive sequences are so similar that the hybridization between them is substantially unaffected by washing or incubation in one tenth strength sodium citrate buffer containing 0.1%SDS.

Accordingly, further comprised by the present invention is a DNA sequence as depicted in SEQ ID NOS: 22, 24, 26, 28 and 30 or a sequence which is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.

The sequence may be modified in that known mRNA instability motifs or polyadenylation signals may be removed and/or codons which are preferred by the plant into which the sequence is to be inserted may be used so that expression of the thus modified sequence in the said plant may yield substantially similar protein to that obtained by expression of the unmodified sequence in the organism in which the protein is endogenous.

In order to obtain expression of the sequence in the regenerated plant (and in particular the carpel thereof) in a tissue specific manner the sequence is preferably under expression control of an inducible or developmentally regulated promoter, typically one of the following: a promoter which regulates expression of SERK genes *in planta*, the *Arabidopsis* ANT gene promoter, the promoter of the O126 gene from *Phalaenopsis*, the carrot chitinase DcEP3-1 gene promoter, the *Arabidopsis* AtChittV gene promoter, the *Arabidopsis* LTP-1 gene promoter, the *Arabidopsis* bellingene promoter, the petunia fbp-7 gene promoter, the *Arabidopsis* AtDMC1 promoter, the pTA7001 inducible promoter. The DcEP3-1 gene is expressed transiently during inner integument degradation and later in cells that line the inner part of the developing endosperm. The AtChitV gene is transiently expressed in the micropylar endosperm up to cellularisation. The LTP-1 promoter is active in the epidermis of the developing nucellus, both integuments, seed coat and early embryo. The bel-1 gene is expressed in the developing inner integument and the fbb-7 promoter is active during embryo sac development. The *Arabidopsis* ANT gene is expressed during integument development, and the O126 gene from *Phalaenopsis* is expressed in the mature ovule.

It is most preferred that the sequence is expressed in the somatic cells of the embryo sac, ovary wall, nucellus, or integuments.

The endosperm within the apomictic seed results from fusion of polar nuclei within the embryo sac with a pollen-derived male gamete nucleus. It is preferred that the sequence encoding the protein is expressed prior to fusion of the polar nuclei with the male gamete nucleus.

The invention further includes a DNA, but preferably a recombinant DNA, comprising a sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell embryogenic. Preferred is a DNA encoding a protein which is a leucine rich repeat receptor like kinase and comprises a ligand binding domain, a proline box, a transmembrane domain, a kinase domain and a protein binding domain, the ligand binding domain optionally being absent or functionally inactive.

In particular, the invention embodies a DNA comprising a DNA sequence encoding a N-terminal protein fragment having the following amino acid sequence: Gin Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val Thr Cys Asn.

A specific embodiment of the invention relates to a DNA comprising a DNA sequence encoding a protein having the sequence depicted in SEQ ID Nos. 3 or 21, or a protein substantially similar thereto which is capable of being membrane bound and which has kinase activity. By substantially similar is meant a pure protein having an amino acid sequence which is at least 90% similar to the sequence of the proteins depicted in SEQ ID No 3 below. In the context of the present invention, two amino acid sequences with at least 90% similarity to each other have at least 90% identical or conservatively replaced amino acid residues in a like position when aligned optimally allowing for up to 8 gaps with the proviso that in respect of each gap a total not more than 4 amino acid residues is affected. For the purpose of the present invention conservative replacements may be made between amino acids within the following groups:

- (i) Serine and Threonine:
- (a) Glutamic acid and Aspartic acid;
- (m) Arginine and Lysine;
- (N) Asparagine and Glutamine;
- (v) Isoleucine, Leucine, Valine and Methionine;
- (vi) Phenylalanine, Tyrosine and Tryptophan
- (v*) Alanine and Glycine

In addition, non-conservative replacements may also occur at a low frequency. Accordingly, the invention futher embodies a DNA comprising a DNA sequence encoding a N-terminal protein tragment having the following amino acid sequence: Val Xaa Gin Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Tsp Phe His Val Thr Cys Asn, with Xaa being a variable amino acid, but preferably Leu or Val.

Especially preferred within the scope of the invention is a DNA comprising a DNA sequence encoding a N-terminal protein fragment having the following amino acid sequence: Val Xaa Glin Ser Tro Asp Pro Thr Leu Val Asn Pro Cys Thr Tro Phe His Val Thr Cys Asn Xab Xac Xad Xae Val Xaf Arg Val Asp Leu Gly Asn Xag Xah Leu Ser Gly His Leu Xai Pro Glu Leu Gly Xaj Leu Xak Xal Leu Gln, with Xaa to Xak representing variable amino acids, but preferably

Xaa = Leucr Val

Xaxb = Asn or Gan

Xac = Gau or Asp or His

Xaxd = Asmortis

Xase = Ser or Arg or Glin

WO 97/43427 PCT/EP97/02443

Xaf = le or Thr

Xag = Ala or Ser

Xah = Glu or Asn

Xai = Valor Ata

Xai= Valor Lys

Xak=Lys or Glu

Xal = Asn or His

It is preferred that the DNA further encodes a cell membrane targeting sequence, and that the protein encoding region is under expression control of a developmentally regulated or inducible promoter, such as, for example, a promoter which regulates expression of SERK genes in planta, the carrot chitinase DcEP3-1 gene promoter, the Arabidopsis AtChitIV gene promoter, the Arabidopsis LTP-1 gene promoter, the Arabidopsis bel-1 gene promoter, the petunia fbp-7 gene promoter, the Arabidopsis ANT gene promoter, or the promoter of the O126 gene from Phalaenopsis; the Arabidopsis AtDMC1 promoter, or the pTA7001 inducible promoter.

Particularly preferred embodiments of the said DNA include those depicted in SEQ ID Nos. 1, 2, 20 or 32, or those which are complementary to one which hybridizes under stringent conditions with the said sequences and which encode a membrane bound protein having kinase activity. As indicated above, the DNA may be modified in that known mRNA instability motifs or polyadenylation signals may be removed and/or codons which are preferred by the plant into which the DNA is to be inserted may be used so that expression of the thus modified DNA in the said plant may yield substantially similar protein to that obtained by expression of the unmodified DNA in the organism in which the protein is endogenous.

The invention still further includes a vector which contains DNA as indicated in the three immediately preceding paragraphs, plants transformed with the recombinant DNA or vector, and the progeny of such plants which contain the DNA stably incorporated, and/or the apomictic seeds of such plants or such progeny.

The recombinant DNA molecules of the invention can be introduced into the plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant, i.e. monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection

(Crossway et al., BioTechniques 4:320-334 (1986)), electroporation (Riggs et al., Proc. Natl. Acad. Sci. USA 83:5602-5606 (1986), Agrobacterium mediated transformation (Hinchee et al., Biotechnology 6:915-921 (1988)), direct gene transfer (Paszkowski et al., EMBO J. 3:2717-2722 (1984)), ballistic particle acceleration using devices available from Agracetus, Inc., Madison, Wisconsin and Dupont, Inc., Wilmington, Delaware (see, for example, Sanford et al., U.S. Patent 4,945,050; and McCabe et al., Biotechnology 6:923-926 (1988)), and protoplast transformation/regeneration methods (see U.S. Patent No. 5,350,689 issued Sept. 27, 1994 to Ciba-Geigy Corp.). Also see, Weissinger et al., Annual Rev. Genet. 22:421-477 (1988); Sanford et al., Particulate Science and Technology 5:27-37 (1987)(onion); Christou et al., Plant Physiol. 87:671-674 (1988)(soybean); McCabe et al., Bio/Technology 6:923-926 (1988)(soybean); Datta et al., Bio/Technology 8:736-740 (1990)(rice); Klein et al., Proc. Natl. Acad. Sci. USA, 85:4305-4309 (1988)(maize); Klein et al., Bio/Technology 6:559-563 (1988)(maize); Klein et al., Plant Physiol. 91:440-444 (1988)(maize); Fromm et al., Bio/Technology 8:833-839 (1990); and Gordon-Kamm et al., Plant Cell 2:603-618 (1990)(maize).

Comprised within the scope of the present invention are transgenic plants, in particular transgenic fertile plants transformed by means of the aforedescribed processes and their asexual and/or sexual progeny, which still contain the DNA stably incorporated, and/or the apomictic seeds of such plants or such progeny.

The transgenic plant according to the invention may be a dicotyledonous or a monocotyledonous plant. Such plants include field crops, vegetables and fruits including tomato, pepper, melon, lettuce, cauliflower, broccoli, cabbage, brussels sprout, sugar beet, com, sweetcom, onion, carrot, leek, cucumber, tobacco, alfalfa, aubergine, beet, broad bean, celery, chicory, cow pea, endive, gourd, groundnut, papaya, pea, peanut, pineapple, potato, safflower, snap bean, soybean, spinach, squashes, sunflower, sorghum, water-melon, and the like; and omamental crops including Impatiens, Begonia, Petunia, Pelargonium, Viola, Cyclamen, Verbena, Vinca, Tagetes, Primula, Saint Paulia, Ageratum, Amaranthus, Anthimhinum, Aquilegia, Chrysanthemum, Cineraria, Clover, Cosmo, Cowpea, Dahlia, Datura, Delphinium, Gerbera, Gladiolus, Gloxinia, Hippeastrum, Mesembryanthemum, Salpiglossis, Zinnia, and the like. In a preferred embodiment, the DNA is expressed in "seed crops" such as com, sweet com and peas etc. in such a way that the apomictic seed which results from such expression is not physically mutated or otherwise damaged in comparison with seed

from untransformed like crops. Preferred are monocotyledonous plants of the Graminaceae family involving <u>Lolium</u>, <u>Zea</u>, <u>Triticum</u>, <u>Triticale</u>, <u>Sorghum</u>, <u>Saccharum</u>, <u>Bromus</u>, <u>Oryzae</u>, <u>Avena</u>, <u>Hordeum</u>, <u>Secale</u> and <u>Setaria</u> plants.

More preferred are transgenic maize, wheat, barley, sorghum, rye, oats, turf and forage grasses, millet and rice. Especially preferred are maize, wheat, sorghum, rye, oats, turf grasses and rice.

Among the dicotyledonous plants Arabidopsis, soybean, cotton, sugar beet, sugar cane, oilseed rape, tobacco and sunflower are more preferred herein. Especially preferred are soybean, cotton, tobacco, sugar beet and oilseed rape.

The expression 'progeny' is understood to embrace both, "asexually" and "sexually" generated progeny of transgenic plants. This definition is also meant to include all mutants and variants obtainable by means of known processes, such as for example cell fusion or mutant selection and which still exhibit the characteristic properties of the initial transformed plant, together with all crossing and fusion products of the transformed plant material. This also includes progeny plants that result from a backcrossing, as long as the said progeny plants still contain the DNA according to the invention

Another object of the invention concerns the proliferation material of transgenic plants.

The proliferation material of transgenic plants is defined relative to the invention as any plant material that may be propagated sexually or asexually in vivo or in vitro. Particularly preferred within the scope of the present invention are protoplasts, cells, calli, tissues, organs, seeds, embryos, pollen, egg cells, zygotes, together with any other propagating material obtained from transgenic plants.

Parts of plants, such as for example flowers, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed by means of the process of the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention. Espeically preferred a apomictic seeds.

A further object of the invention is a method of producing apomictic seeds, but preferably seeds that are of the adventitious embryony type, comprising the steps of:

(i) transforming plant material with a nucleotide sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell

embryogenic, but preferably a protein which is a protein kinase capable of spanning a plant cell membrane and capable of autophosphorylation.

- (ii) regenerating the thus transformed material into plants, or carpel-containing parts thereof, and
- (iii) expressing the sequence in the vicinity of the embryo sac.

The kinase protein being expressed by the DNA according to the invention is preferably a leucine rich repeat receptor like kinase and comprises a ligand binding domain, a proline box, a transmembrane domain, a kinase domain and a protein binding domain. In a specific embodiment of the invention, the said kinase protein may lack a functional ligand binding domain but comprises a proline box, a transmembrane domain, a kinase domain and a protein binding domain.

The genetic properties engineered into the transgenic seeds and plants described above are passed on by sexual reproduction or vegetative growth and can thus be maintained and propagated in progeny plants. Generally said maintenance and propagation make use of known agricultural methods developed to fit specific purposes such as tilling, sowing or harvesting. Specialized processes such as hydroponics or greenhouse technologies can also be applied. As the growing crop is vulnerable to attack and damages caused by insects or infections as well as to competition by weed plants, measures are undertaken to control weeds, plant diseases, insects, nematodes, and other adverse conditions to improve yield. These include mechanical measures such a tillage of the soil or removal of weeds and infected plants, as well as the application of agrochemicals such as herbicides, fungicides, gametocides, nematicides, growth regulants, ripening agents and insecticides.

Use of the advantageous genetic properties of the transgenic plants and seeds according to the invention can further be made in plant breeding which aims at the development of plants with improved properties such as tolerance of pests, herbicides, or stress, improved nutritional value, increased yield, or improved structure causing less loss from lodging or shattering. The various breeding steps are characterized by well-defined human intervention such as selecting the lines to be crossed, directing pollination of the parental lines, or selecting appropriate progeny plants. Depending on the desired properties different breeding measures are taken. The relevant techniques are well known in the art and include but are not limited to hybridization, inbreeding, backcross breeding, multiline breeding,

variety blend, interspecific hybridization, aneuploid techniques, etc. Hybridization techniques also include the sterilization of plants to yield male or female sterile plants by mechanical, chemical or biochemical means. Cross pollination of a male sterile plant with pollen of a different line assures that the genome of the male sterile but female fertile plant will uniformly obtain properties of both parental lines. Thus, the transgenic seeds and plants according to the invention can be used for the breeding of improved plant lines which for example increase the effectiveness of conventional methods such as herbicide or pestidice treatment or allow to dispense with said methods due to their modified genetic properties. Alternatively new crops with improved stress tolerance can be obtained which, due to their optimized genetic "equipment", yield harvested product of better quality than products which were not able to tolerate comparable adverse developmental conditions.

In seeds production germination quality and uniformity of seeds are essential product characteristics, whereas germination quality and uniformity of seeds harvested and sold by the farmer is not important. As it is difficult to keep a crop free from other crop and weed seeds, to control seedborne diseases, and to produce seed with good germination, fairly extensive and well-defined seed production practices have been developed by seed producers, who are experienced in the art of growing, conditioning and marketing of pure seed. Thus, it is common practice for the farmer to buy certified seed meeting specific quality standards instead of using seed harvested from his own crop. Propagation material to be used as seeds is customarily treated with a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures thereof. Customarily used protectant coatings comprise compounds such as captan, carboxin, thiram (TMTD*), methalaxyl (Apron*), and pirimiphos-methyl (Actellic*). If desired these compounds are formulated together with further carriers, surfactants or applicationpromoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal or animal pests. The protectant coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Other methods of application are also possible such as treatment directed at the buds or the fruit.

It is thus a further object of the present invention to provide plant propagation material for cultivated plants, but especially plant seed that is treated with an seed protectant coating customarily used in seed treatment.

It is a further aspect of the present invention to provide new agricultural methods such as the methods examplified above which are characterized by the use of transgenic plants, transgenic plant material, or transgenic seed according to the present invention.

To breed progeny from plants transformed according to the method of the present invention, a method such as that which follows may be used: plants produced as described in the examples set forth below are grown in pots in a greenhouse or in soil, as is known in the art, and permitted to flower. Pollen is obtained from the mature stamens and used to pollinate the pistils of the same plant, sibling plants, or any desirable plant. Similarly, the pistils developing on the transformed plant may be pollinated by pollen obtained from the same plant, sibling plants, or any desirable plant. Transformed progeny obtained by this method may be distinguished from non-transformed progeny by the presence of the introduced gene(s) and/or accompanying DNA (genotype), or the phenotype conferred. The transformed progeny may similarly be selfed or crossed to other plants, as is normally done with any plant carrying a desirable trait. Similarly, tobacco or other transformed plants produced by this method may be selfed or crossed as is known in the art in order to produce progeny with desired characteristics. Similarly, other transgenic organisms produced by a combination of the methods known in the art and this invention may be bred as is known in the art in order to produce progeny with desired characteristics.

Further comprised by the invention is a method of obtaining embryogenic cells in plant material, comprising transforming the material with a recombinant DNA sequence or a vector according to the invention, expressing the sequence in the material or derivatives thereof and subjecting the said material or derivatives to a compound which acts as a ligand for the gene product of the said sequence.

The invention further relates to a method of generating somatic embryos under *in vitro* conditions wherein the SERK protein is overexpressed ectopically.

The invention still further includes the use of the said DNA in the manufacture of apomictic seeds, in which use the sequence is expressed in the vicinity of the embryo sac.

In a specific embodiment of the invention the SERK gene may be expressed in transgenic plants such as, for example, an *Arabidopsis* plant, under the control of plant expression signals, particularly a promoter which regulates expression of SERK genes *in planta*, but preferably a

developmentally regulated or inducible promoter such as, for example, the carrot chitinase DcEP3-1 gene promoter, the *Arabidopsis* AtChitlV gene promoter, the *Arabidopsis* LTP-1 gene promoter, the *Arabidopsis* bel-1 gene promoter, the petunia fbp-7 gene promoter, the *Arabidopsis* ANT gene promoter, or the promoter of the O126 gene from *Phalaenopsis*; the *Arabidopsis* AtDMC1 promoter, or the pTA7001 inducible promoter.

The promoters of the DcEP3-1 and the AtChit IV genes may be cloned and characterized by standard procedures. The DcSERK coding sequence (SEQ ID No. 2) is cloned behind the DcEP3-1, the AtChit IV or the AtLTP-1 promoters and transformed into Arabidopsis. The ligation is performed in such a way that the promoter is operably linked to the sequence to be transcribed. This construct, which also contains known marker genes providing for selection of transformed material, is inserted into the T-DNA region of a binary vector such as pBIN19 and Agrobacterium-mediated transformation into Arabidopsis is transformed into Arabidopsis. performed by the vacuum infiltration or root transformation procedures known to the skilled man. Transformed seeds are selected and harvested and (where possible) transformed lines are established by normal selfing. Parallel transformations with 35S promoter-SERK constructs and the entire SERK gene itself are used as controls to evaluate over-expression in many cells or only in the few cells that naturally express the SERK gene. The 35S promoter-SERK construct may give embryo formation wherever the signal that activates the SERK-mediated transduction chain is present in the plant. A testing system based on emasculation and the generation of donor plant lines for pollen carrying LTP1 promoter-GUS and SERK promoter-barnase is established.

The same constructs (35S, EP3-1, AtChitlV, AtLTP-1 and SERK promoters fused to the SERK coding sequence) are employed for transformation into several *Arabidopsis* backgrounds. These backgrounds are wild type, male sterile, fis (allelic to emb 173) and primordia timing (pt)-1 lines, or a combination of two or several of these backgrounds. The wt lines are used as a control to evaluate possible effects on normal zygotic embryogenesis, and to score for seed set without fertilization after emasculation. The ms lines are used to score directly for seed set without fertilization. The fis lines exhibit a certain degree of seed and embryo development without fertilization, so may be expected to have a natural tendency for apomictic embryogenesis, which may be enhanced by the presence of the SERK constructs. The pt-1 line has superior regenerative capabilities and has been used to initiate the first stably embryogenic *Arabidopsis* cell suspension cultures. Combinations of several of the above backgrounds are obtained by

crossing with each other and with lines containing ectopic SERK expressing constructs. Except for the ms lines, propagation can proceed by normal selfing, and analysis of apomictic traits following emasculation. A similar strategy is followed in which the ATChiIV, AtLTP-1 and SERK promoters are replaced by the bel-1 and fbp-7 promoters as well by other promoters specific for components of the female gametophyte.

Additional constructs are generated that have constitutive receptor kinase activity. Most of the receptor kinases of the SERK type act as homodimeric receptors, requiring autophosphorylation before being able to activate downstream signal transduction cascades. In many receptor kinases the extracellular domain serves as an inhibitor of the kinase domain in the ligand-free stage. This arrest is removed after binding of the ligand (Cadena and Gill, 1992). By introduction of a SERK construct, from which the extracellular ligand-binding domain has been removed, mutant homodimeric (in cells that do not have a natural population of SERK proteins) or heterodimenic (in cells that also express the unmodified forms) proteins can be generated with a constitutively activated kinase domain. This approach, when coupled to one of the promoters active in the nucellar region, results in activation of the embryogenic pathway in the absence of the activating signal. This may be an important alternative in cases where it is necessary or desirable to have activation of the SERK pathway only dependant on specific promoter activity and independent of temporal regulation of an activating signal. Introduction of SERK constructs that result in fertilization-independent-embryogenesis (fie) are tested in other species for their effect. In order to recognize the fie phenotype, the skilled man will use appropriate male sterile backgrounds. However, pollination is often necessary for apomixis of the adventitious embryony type, in order to ensure the production of endosperm.

Whilst the present invention has been particularly described by way of the production of apomictic seed by heterologous expression of the SERK gene in the nucellar region of the carpel, the skilled man will recognize that other genes, the products of which have a similar structure/function to the SERK gene product, may likewise be expressed with similar results. Moreover, although the example illustrates apomictic seed production in *Arabidopsis*, the invention is, of course, not limited to the expression of apomictic seed-inducing genes solely in this plant. Moreover, the present disclosure also includes the possibility of expressing the SERK (or related) gene sequences in the transformed plant material in a constitutive - tissue non-specific manner (for example under transcriptional control of a CaMV35S or NOS promoter). In this case, tissue specificity is assured by the localized presence within the vicinity of the embryo

sac of the ligand of the product of the said gene. Furthermore, the SERK (or related) gene products may interact with proteins such as transcription factors which are involved in regulating embryogenesis. This interaction within tissue which has been transformed according to the present disclosure is also part of the present invention.

The swited man who has the benefit of the present disclosure will also recognize that the SERK gene (and others as indicated in the preceding paragraph) may be transformed into plant material which may be propagated and/or differentiated and used as an explant from which sometic embryos can be obtained. Expression of such sequences in the transformed tissue is subjected to a ligand of the kinase gene products) substantially increases the percentage of the cells in the tissue which are competent to form somatic embryos, in companson with the number present in non-transformed like tissue.

The invention will be further apparent from the following description and the associated drawings and sequence listings.

SEQ ID NO. 1 depicts the *Daucus carota* genomic clone of the putative receptor kinase (SERK) associated with the transition of competent to embryogenic cells;

SEQ ID NO. 2 depicts the cDNA of the said putative kinase;

SEQ ID NOs. 3 depicts the the predicted protein sequence of the SERK protein encoded by the DNA of SEQ ID NO:1.

SEQ ID NOs: 4-16 depict the sequences of various PCR primers; and

SEO IO NOs. 17-19 depict specific peptides contained within the gene product of SEO ID NO. 2.

SEQ ID NO: 20 depitcts the *Arabidopsis thaliana* partial genomic clone of the putative receptor (SERK) associated with the transition of competent to embryogenic cells.

SEQ ID NO: 21 depicts the predicted protein sequence of the SERK protein encoded by the DNA of SEQ ID NO:20.

SEO ID NOs: 22, 24, 26, 28 and 30 depict the partial DNA sequences of 5 EST clones with high homology to the SERK LRR sequences.

SEQ ID NOs. 23, 25, 27, 29 and 31 depict the predicted protein sequence of the partial DNA sequences of the 5 EST clones of SEQ ID Nos: 22, 24, 26, 28 and 30.

SEQ ID NO: 32 depicts the nuclotide sequence of the SERK cDNA from Arabidopsis thaliana.

SEQ ID NO: 33 depicts the predicted amino acid sequence of the SERK protein from Anabotopsis thaliana encoded by the DNA of SEQ ID NO: 32. Figure 1 shows the results of an RT-PCR experiment performed on RNA extracted from the indicated tissues. 40 cycles followed by Southern blotting of the resulting bands is necessary to visualize SERK expression. Lanes include explants at day 7, treated for less (lane 1) or more (lane 2) then 3 days with 2,4-D. In the original a very faint signal is visible in lane 2, but not in lane 1. Established embryogenic cultures (lanes 4-6) but not a non-embryogenic control (lane 3) express the SERK gene. In carrot plants, no expression is detectable except for developing seeds after pollination (lane 7). Up to day 7 after pollination, the carrot zygote remains undivided, suggesting that the observed signal is coming only from the zygote. At day 10, the early globular and at day 20 the heart stage is reached in carrot zygotic embryogenesis. No signals are seen on Northem blots.

Figure 2A shows the results of a whole-mount *in situ* hybridization with the SERK cDNA on 7 day explants treated for 3 days with 2,4 D. Few cells on the surface of the explant express the SERK gene, and those cells that do are the ones that become embryogenic. Figure 2B shows a whole mount *in situ* hybridization on a partially dissected seed containing a globular zygotic embryo. Hybridization is visualized by DIG staining.

Figure 3 shows SERK expression in embryogenic hypocotyl cells during hormone-induced activation, determined by whole mount in situ hybridization. Bar: 50 mm

- (A-E) Cell population generated by mechanical fragmentation of the activated hypocotyls. Only few of a certain type of cell, defined enlarged cell show SERK expression (asterisks). Small cytoplasmic cells (c), enlarging cells (eg) and large cells (l) never show SERK expression.
- (F) Hypocotyl longitudinal section before hormone-induced activation. It is not possible to detect any SERK expression in any type of cell.
- (G-I) Proliferating mass coming from the inner hypocotyl tissues 10 days after the beginning of the hormonal treatment (longitudinal section). In G a single enlarged cells showing SERK expression is detectable within a row of negative cells showing the same morphology. In H a single enlarged cell showing serk expression is detaching from the surface of the proliferating mass. In I a cluster of enlarged cells showing SERK expression is detectable at the surface of proliferating tissue.
- (J) Proliferating mass coming from the inner tissues of the hypocotyl 10 days after the beginning of the rooting treatment (24 hours with 2,4-D followed by hormone removal). Both the root primordia and the enlarged cells detaching from the surface do not show any SERK expression.

Figure 4 shows the phenotype of Arabidopsis WS plants transformed with the 2200 bp SERK-luciferase consturct at the seedling level. Pictures were taken at 28 days after germination of T2 seeds. In plant II and III no clear shoot meristem is visible at the seedling stage, 7 days after germination. The first two leaves, if they develop at all, are needleshaped as hown on the pictures taken 28 days after germination. At this time plant I, which shows no clear phenotype, already starts flowering. Secondary shoot meristems are already developing in plant no II and will also develop later from no III. Shoot meristems, influorescences and normal flowers eventually develop on all plants.

Figure 5 shows how the 2200 bp SERK luciferase construct affects the number of developing ovules in the siliques of transformed plants.

Figure 6 shows autophosphorylation of purified SERK fusion protein *in vitro*. Lane 1: purified SERK fusion protein; Lane 2: serine phosphate; Lane 3: threonine phosphate; Lane 4: thyrosine phosphate.

The following description illustrates the isolation and cloning of the SERK gene and the production of apomictic seed by heterologous expression of the said gene in the nucellar region of the carpel so that somatic embryos form which penetrate the embryo sac and are encapsulated by the seed as it develops.

ISOLATION AND CLONING OF THE SERK GENE FROM DAUCUS CAROTA

isolation of cDNA clones that are preferentially expressed in embryogenic cell cultures of carrox

In order to increase the chance of success for obtaining genes expressed in carrot suspension cets competent to form embryos, the number of embryo-forming cells as present in a series of established cell cultures was determined. A sub-population of cells that passed through a 30 mm nyton serve was isolated from eight different cultures that ranged in age between 2 months and 4 years. In these sub 30 mm populations, the number of embryos formed from the single cells and small cell clusters was determined and expressed as a percentage of the total number of cells present at the start of embryogenesis. Sieved <30 mm cultures able to form somatic embryos with a frequency of more than 1% were then used as a source for competent cells, and cultures that produced less than 0.01% embryos were used as non-embryogenic controls. As mean coming strategies, cold plaque screening (Hodge et al. 1992) and differential display (dd) RT-PCR (Liang and Pardee, 1992) were used besides conventional differential screening of cONA libranes.

Labeled probes for differential screening were obtained from RNA out of a <30 mm sieved sub-population of cells from either embryogenic or non-embryogenic cell cultures. Employing these probes in a library screen of approximately 2000 plagues yielded 26 plagues that failed to show any hybridization to either probe. These so-called cold plagues were purified and used for turner analysis. From the total number of plagues that did hybridize, about 30 did so only with the probe from embryogenic cells, ddRT-PCR reactions using a combination of one anchor proper and one decamer primer were performed on mRNA isolated from three embryogenic, and three non-embryogenic suspension cultures. About 50 different ddRT-PCR fragments were obtained from each reaction. Using combinations of three different anchor and six different decamer primers, a total of approximately 1000 different cDNA fragments was visualized. Six of these PCR tragments were only found in lanes made with mRNA from <30 mm populations of cells from embryogenic cultures (Table 1) and with oligo combinations of the anchor primer (5'-TTTTTTTTTGC-3') and the decamer primers (5'-GGGATCTAAG-3'), (5'-ACACGTGGTC-3'), (5'-TCAGCACAGG-3'). Because differential PCR fragments often consist of several unresolved cONA tragments (Li et al. 1994), cloning proved to be essential prior to undertaking further characterization of the PCR fragments obtained.

All clones obtained were subjected to a second screen, that consisted of spot-dot Northern hybridization performed under conditions of high stringency. This method, that used RNA from entire unsieved embryogenic and non-embryogenic suspension cultures, proved to be a fast and reliable additional selection method. Only one clone (22-28) of the 30 clones obtained after differential screening, proved to be restricted to embryogenic cell cultures while the majority was constitutively expressed. The 26 clones obtained from the cold plaque screening required long exposure times in the spot-dot Northern analysis. Six of these clones failed to show any hybridization signal and 19 proved to be expressed in both embryogenic and non-embryogenic cell cultures. One clone (31-50) showed low expression in all embryogenic cultures, and in one non-embryogenic culture, but not in the others. Of the six cloned fragments obtained by ddRT-PCR display, four showed hybridization more or less restricted to transcripts present in embryogenic cultures. All clones that passed through the second screening were sequenced. Two of the ddRT-PCR clones (6-8 and 7-13) were identical to the carrot Lipid Transfer Protein (LTP) gene, previously identified as a marker for embryogenic carrot cell cultures. LTP expression is restricted to embryogenic cell clusters and the protoderm of somatic and zygotic embryos from the early globular stage onwards (Sterk et al. 1991). Therefore, while the LTP gene is not a marker for competent cells, its appearance in the screening confirms the validity of our methods with respect to the cloning of genes expressed early during somatic embryogenesis.

cDNA clone 31-50 encodes a leucine-rich repeat containing receptor-like kinase

The mRNA corresponding to the isolated clone 31-50 had an open reading frame of 1659 nucleotides encoding a protein with a calculated Mw of 55 kDa. Because clone 31-50 is mainly expressed in embryogenic cell cultures it was renamed Somatic Embryogenesis Receptor Kinase (SERK). The SERK protein contains a N-terminal domain with a five-times repeated leucine-rich motif that is proposed to act as a protein-binding region in LRR receptor kinases (Kobe and Deisenhofer, 1994). Between the extracellular LRR domain of SERK and the membrane-spanning region is a 33 amino acid region rich in prolines (13), that is unique for the SERK protein. Of particular interest is the sequence SPPPP, that is conserved in extensins, a class of universal plant cell wall proteins (Vamer and Lin, 1989). The proposed intracellular domain of the protein contains the 11 subdomains characteristic of the catalytic core of protein kinases. The core sequences HRDVKAAN and GTLGYIAPE in respectively the kinase subdomains VB and VIII suggest a function as a serine / threonine kinase (Hanks et al. 1988).

Another interesting feature of the intracellular part of the SERK protein is that the C-terminal 24 amino-acids resembles a single LRR. The serine and threonine residues present within the intracellular LRR sequence are surrounded by acidic residues and might be targets for the autophosphorylation of SERK, thereby regulating the ability of other proteins to interact with this receptor-kinase in a similar fashion as described for the SH2 domain of the EGF family of tyrosine receptor kinases.

Hybridization of the SERK cDNA clone to the carrot genome revealed the presence of only a single main hybridizing band after digestion with EcoR1, probably reflecting a single SERK gene in the carrot genome. This was confirmed after digestion with Ddel, an enzyme that cuts three times within the SERK gene. No signal was observed after Northern blotting of mRNA from embryogenic cell cultures and hybridization with labeled SERK probes, reflecting the low levels of transcript present in these cultures. Detection of the SERK transcript on the original spot-dot Northerns was only possible after long exposure times compared with other probes.

The ability of the SERK protein to autophosphorylate was investigated *in vitro*, using a previously described autophosphorylation assay (Mu et al. 1994), with a bacterial fusion protein that contained the complete intracellular region of the SERK protein. The bacterially expressed SERK fusion protein was able to autophosphorylate, indicating that the SERK protein is able to fulfill a role as a protein kinase *in vivo* (Heldin, 1995).

Expression of the SERK gene corresponds with the first appearance of competent cells during hypocotyl activation

When carrot hypocotyls are induced with 2,4-D, only the cells of the provascular tissue proliferate. Cells of epidermal and cortical origin merely expand, suggesting that the provascular tissue derived cells form the newly initiated suspension culture. After removal of 2,4-D, the formation of somatic embryos occurs after 2-3 weeks. Somatic embryos are preceded by embryogenic cells, that are developed in turn from competent cells. While competent and embryogenic cell formation take place in the presence of 2,4-D, it was not clear when this occurred, and which cells acquired competence. Since previous experiments (Toonen et al. 1994) revealed that cell morphology is not a good criterion, the first appearance of single competent cells was determined experimentally by semi-automatic cell tracking performed on large populations of immobilized cells. Hypocotyl explants activated with 2,4-D for seven days were mechanically fragmented and samples of the resulting population of mainly single

suspension cells were immobilized to allow recording of their development by cell tracking. In the immobilized cell populations obtained in this way all the morphologically discemible cell types were present that were also seen in the un-fragmented activated hypocotyls. Because the different cell morphologies observed during hypocotyl activation were known (Guzzo et al. 1995), it was possible to trace back the original position of each type of cell in the activated explant. Small cytoplasm-rich cells (16x16 mm) are the proliferating cells that surround the vascular elements. Enlarging vacuolated cells (16x40 mm) are encountered on the surface of the mass of proliferating cells and these can detach from the surface when fully enlarged (35x90 mm). Large vacuolated cells (more than 60x140 mm) are the non-proliferating remnants of the hypocotyl epidermis and cortical parenchyma. The shape of the enlarging and fully enlarged cells could change from oval to elongate or triangular. Cell tracking on a total of 24,722 cells released from seven days activated hypocotyls showed that only 20 single cells formed a somatic embryo. Because of their dependance on continued 2,4-D treatment, the embryoforming single cells are still in the competent cell stage. All of the embryo-forming single cells belonged to the category of 3,511 enlarged cells, that contained therefore competent cells in a frequency of 0.56%. The single cell tracking experiments clearly reveal that the ability of explant cells to reinitiate cell division under the influence of 2,4-D, resulting in a population of highly cytoplasmic and rapidly proliferating cells, does have a causal relation with the ability to become embryogenic. It is also clear that only a very limited number of the cells that make up the newly initiated embryogenic suspension culture are actually competent to form embryogenic cells.

Expression of the SERK gene, determined by whole mount *in situ* hybridization on a similar population of cells as used for the cell tracking experiments, was found to be restricted to only 0.44% of the enlarged cells. Therefore, the expression of the SERK gene appears closely correlated both qualitatively and quantitatively with the presence of competent single cells.

To obtain insight into the temporal regulation of SERK expression in the course of explant activation, whole mount in situ hybridization was performed on entire intact or hand-sectioned explants treated for different periods with 2,4-D. Representative samples were collected at daily intervals from explants untreated and treated for three days, six days, seven days or ten days with 2,4-D before returning to B5-0. No SERK-expressing cells were ever found in explants treated for less then three days with 2,4-D. While enlarged cells became present after the first five days of culture, the first few SERK-expressing enlarged cells were found after six-seven days of culture in the presence of 2,4-D treatment. These few cells were present at the surface

of the mass of proliferating cells originating from the provascular tissue. In the hypocotyls treated for ten days with 2,4-D, the number of SERK-positive cells had increased to 3.04% and included at this stage also cells present in small clusters. No SERK transcript was ever detected in small cytoplasm-rich cells or large vacuolated cells. Hypocotyls were also treated for only one day with 2,4-D and subsequently cultured in hormone-free medium for a total of seven or ten days. Under these conditions explant cells proliferated and gave rise to roots and non-embryogenic cell cultures, while SERK expression could never be detected. The in situ hybridization results described above were obtained from a relatively small number of explants and a few hundred cells, so RT-PCR followed by Southern hybridization was performed to obtain more quantitative results. These are shown in Figure 7 and confirm the close temporal correlation between the first appearance of competent cells in explants treated for three days with 2,4-D and the expression of the SERK gene. Northern hybridization never gave any signal after hybridization with SERK cDNA probes, not even after prolonged exposure in a Phosphorimager, in line with the extremely restricted expression pattern of the SERK gene.

Expression of the SERK gene corresponds with the occurrence of competent cells in established embryogenic cell cultures

While the results described so far indicate that competent and embryogenic cell formation is restricted to a particular class of enlarged cells during explant activation, the situation in an established embryogenic cell culture is more complex. Competent single cells in such cultures do not appear to belong to one cell type in particular, but have been shown to originate from all morphologically different cell types. In cell tracking experiments, embryogenic cells, that do not require exogenous auxin treatment, were never observed to be single but consisted of clusters of at least 3-4 cells (Toonen et al. 1994). SERK expression was found in all morphologically discernible single cell types that were present in an embryogenic cell culture at a frequency between 0.1 and 0.5% depending on the cell type. In non-embryogenic cultures, SERK expression was not restricted to single cells, but also occurred in small clusters of 2 to 16 cells. Since clusters of this size are known to consist of embryogenic cells, these data show that SERK expression is not restricted to competent single cells, but may persist in small clusters of embryogenic cells. No SERK expression was encountered during the late globular, heart and torpedo-stages of somatic embryogenesis.

The SERK gene is transiently expressed in zygotic embryogenesis

The expression of the SERK gene in carrot plants was determined by RT-PCR. The results indicate that no SERK mRNA accumulates in any of the adult plant organs nor in flowers prior to pollination. The first occasion when SERK expression can be detected is in flowers at three days after pollination (DAP), at which stage fertilization has taken place and endosperm development has commenced. SERK mRNA remains present in flowers up to twenty DAP, corresponding with the early globular stage of the zygotic embryo (Yeung et al. 1996). Whole mount in situ hybridization on partially dissected carrot seeds confirmed that the SERK gene was only expressed in early embryos up to the globular stage. Expression was observed in the entire embryo including the suspensor. No expression was seen in seedlings, roots, stems, leaves, developing and mature flower organs, pollen grains and stigma's before and after fertilization. Tissues in the developing seed such as seed coat, integuments, all embryo sac constituents before fertilization as well as the endosperm at all stages of development investigated did not show any SERK expression. Later stages of carrot zygotic embryos were also completely devoid of SERK mRNA. Given this pattern of expression, that is restricted to the zygotic embryo, the signal as detected by RT-PCR in flowers at 3 and 7 DAP must come from SERK mRNA as present in zygotes, because in carrot the zygote remains undivided up to one week after pollination (Yeung et al. 1996). Although SERK expression persists to slightly later stages in zygotic globular embryos when compared to the somatic ones, these results confirm the transient pattern of expression as observed for the SERK gene during somatic embryogenesis and also imply that there is a correspondence between the formation of competent cells in vitro and the formation of the zygote in vivo.

METHODS

Cell culture, hypocotyl explant induction and cell tracking

Cell cultures were derived from *Daucus carota* cv. Flakkese and maintained as previously described (De Vries et al. 1988a). Cell suspension cultures were maintained at high cell density in B5 medium (Gamborg et al. 1968) supplemented with 2 mM 2,4-D (B5-2 medium). Embryo cultures with globular, heart and torpedo-stage somatic embryos were derived from <30 mm sieved cell cultures cultured at low cell density (100 000 cells / ml) in B5 medium without 2,4-D (B5-0). For hypocotyl explant induction experiments, plantlets were obtained from seed of

Daucus carota cv. S Valery as described previously (Guzzo et al., 1994). The hypocotyls of one week old plantlets were divided in segments of 3-5 mm, incubated for various periods of time in B5-2 medium and returned to B5-0 medium. Seven days after explantation and exposure to 2,4-D the hypocotyl segments were fragmented on a 170 mm sieve and the resulting cells collected to form a fine cell suspension. Immobilization of these cells in B5-0.2 medium was performed in a thin layer of phytagel (Toonen et al. 1994). After one week of further culture 2,4-D was removed by washing the plates with B5-0 medium. This allowed embryos to develop beyond the globular stage. Recording the development of the immobilized cells was performed with a procedure modified from the previously described by Toonen et al. (1994). The main change involved a new MicroScan program for automatic 3-axis movement to scan all cells in the phytagel (Toonen et al. 1996).

Nucleic acid isolation and analysis

RNA was isolated from cultured cells and plant tissues as described by De Vries *et al.* (1988b). Poly(A)*-RNA was obtained by purification by oligo (dT) cellulose (Biolabs). For RNA gel blot analysis samples of 10 mg total RNA were electrophoresed on formarnide gel, and transferred to nytran-plus membranes. For RNA spot-blot analysis 5 mg of total RNA was denatured and spotted onto nytran-plus filters using a hybridot manifold (BRL).

Genomic DNA was isolated according to Sterk et al. (1991). Samples of 10 mg genomic DNA were digested with different restriction enzymes and separated on agarose gel, and transferred to nytran-plus membrane (Schleicher & Schuell). Hybridization of RNA blots took place at 42°C in hybridization buffer containing 50% formamide, 6xSSC, 5xDenhardt, 0.5% SDS and 0.1 mg/ml salm sperm DNA. Hybridization of DNA blots was performed as previously described (Sterk et al. 1991). Following hybridization, filters were washed under stringent conditions (3x20 min in 0.1% SSC, 1% SDS, at 65°C). Filters were exposed to Kodak X-Omat AR film. The integrity and the amount of RNA on the blots was confirmed by hybridization with an 18S ribosomal RNA probe. Nucleotide sequence analysis was performed on an ABI 373A automated DNA sequencer (Applied Biosystem).

Screening procedures

Two independent cDNA libraries were constructed with equal amounts of poly(A)*-RNA from total established cell cultures grown for six days in B5-2 medium, sieved <125 mm cell cultures grown for six days in B5-0 medium and sieved <30 mm cell cultures grown for six days in B5-0

medium. cDNA synthesis and cloning into the Uni-ZAPTM XR vector was performed according to the manufacturers protocol (Stratagene).

Differential screening of the cDNA libraries was performed essentially as described by Scott et al. (1991). RNA was isolated from either three embryogenic or three non-embryogenic cell cultures, that were grown for seven days in B5-2 after sieving through 30 mm mesh. First strand cDNA synthesis was performed on 4 mg total RNA using AMV reverse transcriptase (Gibco BRL). [32P]dATP labeled probes were prepared using random prime labeling on first strand cDNA. Pooled probes from embryogenic and non-embryogenic cell populations were hybridized to two pairs of nitrocellulose filters, each containing 1000 plaques from one cDNA library. After washing for 3x20 min in 0.1% SSC, 1% SDS at 65°C, hybridization was visualized by autoradiography for two days on Kodak X-omatic film. Plaques that only showed signal with the embryogenic transcript probe were purified by two further rounds of screening.

In order to identify cDNA clones which are expressed at low levels in the <30 mm sieved cell population, cold plaque screening was performed as described by Hodge et al. (1992). Plaques from the differential screening that did not show any signal after seven days of autoradiography were purified by two further rounds of screening. The resulting clones were used as probes for characterization of the expression pattern of the corresponding genes.

Differential Display RT-PCR

Differential display of mRNA was performed essentially as described by Liang and Pardee (1992). cDNA synthesis took place by annealing 1 mg of total RNA in 10 ml buffer containing 200 mM KCl, 10 mM Tris-HCl (pH 8.3), and 1 mM EDTA with 100 ng of one of the following anchor primers: (5'-TTTTTTTTTTTGC-3'), (5'-TTTTTTTTTTCG-3'), (5'-TTTTTTTTTTCA-3'). Annealing took place by heating the mix for 3 min. at 83°C followed by incubation for 30 min at 42°C. Annealing was followed by the addition of 15 ml pre-warmed cDNA buffer containing 16 mM MgCl₂, 24 mM Tris-HCl (pH 8.3), 8 mM DTT, 400 mM dNTP, and 4 Units AMV reverse transcriptase (Gibco BRL). cDNA synthesis took place at 42°C for 90 min. First strand cDNA was phenol/chlorophorm extracted and precipitated with ethanol using glycogen as a carrier. The PCR reaction was performed in a reaction volume of 20 ml containing 10% of the synthesized cDNA, 100 ng of anchor primer, 20 ng of one of the following 10-mer primers: (5'-GGGATCTAAG-3'), (5'-TCAGCACAGG-3'), (5'-GACATCGTCC-3'), (5'-CCCTACTGGT-3'), (5'-ACACGTGGTC-3'), (5'-GGTGACTGTC-3'), 2 mM dNTP, 0.5 UnitTag enzyme in PCR buffer (10

mM Tris-HCl (pH 9.0), 1.5 mM MgCl₂, 50 mM KCl, 0.01% gelatin and 0.1% Triton X100) and 6 nM [a-32P] dATP (Amersham). PCR parameters were 94°C for 30 sec, 40°C for 1 min, and 72°C for 30 sec for 40 cycles using a Cetus 9600 (Perkin-Elmer). Amplified and labeled cDNAs were separated on a 6% denaturing DNA sequencing gel. Gels were dried without fixation and bands were visualized by 16 hours of autoradiography using Kodak X-omatic film. Bands containing differentially expressed cDNA fragments of 150-450 nucleotides were cut out of the gel and DNA was extracted from the gel slices by electroelution onto DE-81 paper (Whatmann). After washing of the paper in low salt buffer (100 mM LiCl₂ in 10 mM TE buffer), and elution of the cDNA in high salt buffer (1 M LiCl₂ in 10 mM TE buffer with 20% ethanol) the cDNA was concentrated by precipitation in ethanol using glycogen as carrier. Reamplification of the cDNA fragments using the same PCR cycling parameters as described above but PCR buffer containing 2.5 mM of both the 10-mer and the anchor oligo and 100 mM dNTP. DE-81 paper allowed an efficient recovery of the DNA fragments and reamplification generated an average of 500 ng DNA after 40 cycles. Amplified PCR products were blunt-ended using the Klenow fragment of E.coli DNA Polymerase I (Pharmacia), purified on Sephacryl-S200 columns (Pharmacia), ligated into a Smal linearized pBluescript vector II SK (Stratagene) and transformed into E.coli using electroporation.

RT-PCR

Adult plant tissues from *Daucus carota* were obtained from S&G Seeds (Enkhuizen). Controlled pollination was performed by hand. Flower tissue RNA was obtained from three compete umbels for each time-point and contained all flower organs including pollen grains. 2 mg of total RNA from adult plant tissue or cell cultures was annealed at 42°C with 50 ng oligo (5'-TCTTGGACCAGATAATTC-3') in 10 ml annealing buffer (250 mM KCl, 10 mM Tris-HCl pH 8.3, 1 mM EDTA). After 30 min. annealing, 1 unit AMV-reverse transcriptase was added in a volume of 15 ml cDNA buffer (24 mM Tris-HCl pH 8.3, 16 mM MgCl₂, 8 mM DTT, 0.4 mM dNTP). The reverse transcription reaction took place for 90 min. at 42°C. PCR amplification of SERK-cDNA was carried out with two specific oligos for the SERK kinase domain, (5'-CTCTGATGACTTTCCAGTC-3') and (5'-AATGGCATTTGCATGG-3'). Amplification was carried out with 30 cycles of 30 sec. at 94°C, annealing at 54°C for 30 sec. and extension at 72°C for 1 min., followed by a final extension for 10 min.at 72°C.

Whole mount in situ hybridization

Whose mount in situ hybridizations were performed essentially as previously described (Engler et al. 1994). Cell cultures and somatic embryos were immobilized on poly-L-lysine coated glasses during fixation to improve handling. Whole mount in situ hybridization on explants took place by embedding hypocotyls from seven-days old plantlets in 3% Seaplaque agarose (Duchefa) and processing them in Eppendorf tubes. Transverse as well as longitudinal sections were made with a vibrotome (Biorad Microcut). Sections of 50-170 mm thick were incubated in B5-2 medium for a minimum of three days to induce formation of embryo-forming cells. Optimal induction was activated with longitudinal hypocotyl sections with a thickness of at least 90 mm. To obtain proving and subsequently transferred to B5-0 medium (Guzzo et al. 1994). Whole mount in situ hybridization on developing seeds was performed by removing the chalazal end of the seeds to allow easier probe penetration. After hybridization, the enveloping layers of integuments and endosperm were carefully removed to expose the developing embryos. In situ hybridization on sections was performed as described previously (Sterk et al. 1991) except for the use of non-radioactive probes.

All samples were fixed for 60 min. in PBS containing 70 mM EGTA, 4% paraformaldehyde, 0.25* glutaraldehyde, 0.1% Tween 20, and 10% DMSO. Samples were then washed, treated with proteinase K for 10 min, again washed and fixed a second time. Hybridization solution consisted of PBS containing 0.1% Tween 20, 330 mM NaCl, 50 mg/ml heparin, and 50% decorated formamide. Hybridization took place for 16 hours at 42°C using digoxigenin-labeled sense or antisense riboprobes (Boehringer Mannheim). After washing the cells were treated with RNaseA, and incubated with anti-digoxigenin-alkaline phosphatase conjugate (Boehringer Mannheim) which had been preabsorbed with a plant protein extract. Excess antibody was removed by washing followed by rinsing in staining buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5 mM MgCl₂, 1 mM levamisole) and the staining reaction was performed for 16 hours in a buffer containing NBT and BClP. Observations were performed using a Nikon Optiphot microscope equipped with Nomarski optics.

Autophosphorylation assay

A 1.4 kB Sspl cDNA fragment of the SERK cDNA encoding most of the open reading frame apart from the N-terminal three LRRs was cloned into the pGEX expression vector (Pharmacia).

A fusion protein consisting of SERK and the glutathione S-transferase gene product was synthesized by a three hours induction of transformed *E.coli* with 2 mM IPTG. Fusion protein was isolated and purified as described previously (Hom and Walker, 1994). Purified fusion protein was coupled to glutathione agarose beads (Sigma) and incubated for 20 min. at 20°C in a volume of 10 ml buffer: 50 mM Hepes (pH 7.6), 10 mM MgCl₂, 10 mM MnCl₂, 1 mM DTT, 1 mCi [y -³²P] (3 000 Ci/mmol). Excess label was removed by washing the fusion protein/glutatione agarose beads three times for 5 min. in 50 mM Tris-HCl (pH 7.3), 10 mM MgCl₂ at 4°C. Protein was removed from the beads by cooking in SDS-PAGE loading buffer. Equal amounts of protein were separated by SDS-PAGE and protein autophosphorylation was visualized by autoradiography.

SERK fusion proteins produced with the Baculovirus expression system.

Further fusion proteins containing the intracellular part of the *Daucus carota* SERK protein (1.0 kB HindIII / Sspl fragment of the carrot SERK cDNA clone 31-50) were made using the baculorvirus vector pAcHLT.

In vitro phosphorylation studies with this purified protein showed that most if not all of the autophosphorylation of this SERK fusion protein was at threonine residues (Figure 6)

Construction of viral transfer vectors

The pAcHLT-B and pAcHLT-C baculovirus transfer vectors were used for the cloning of two cDNA fragments of the carrot SERK gene. The Sspl 1.41 kB fragment of carrot DcSERK cDNA was cloned into the Smal site of pAcHLT-B and the Sspl / Pvull 1.07 kB fragment of carrot DcSERK cDNA was cloned into the Smal site of pAcHLT-C. The first construct contains the complete C-terminal part of the DcSERK protein and from the putative extracellular region the proline-rich region and three of the lecuine-rich repeats. The second construct contains only the putative intracellular region of the DcSERK gene product. Nucleotide sequence analysis was performed in order to confirm the presence and the orientation of the DcSERK cDNA within the vector.

Transformation of insect cells

The resulting transfer vectors were used to transfect (lipofect) insect cell culture Sf21 from Spodoptera frugiperda in combination with linearized AcMNPV baculovirus DNA.

Monolayers of SF21 cells were transfected in 35 mm petridishes containing 2 ml of Hink's

medium. One microgram of linearized AcMNPV baculovirus DNA (Baculogold, Invitrogen) was added to 5 microgram of pAcHLT / SERK vector construct in 25 microliter of water. Fifteen microliter of Lipofectin (BRL) was mixed with 10 microliter of water, after which the DNA solution was added. After mixing 200 microliter of Hink's medium was added to the mix and the solution was transferred to the cell monolayer, from which the medium was removed. After one hour, 500 microliter of Hink's medium was added and the cells were incubated for anotehr 3 hours. Finally, 1 ml of Hink's medium with 20% foetal bovine serum (FBS) was added and the cells were incubated for 4 days. After transfection, the viral infection could be identified by the reduced growth of cells, the swollen shape and the enlarged nucleus. After four days, infected cells were harvested and the medium containing infectious budded virus was collected and used for plaque assays and amplification of recombinant virus stocks.

Isolation of single recombinant viruses

Single recombinant virus plaques were isolated from monolayers of cells infected with a titration range of the primairy virus stock. Infections was performed in 35 mm petridishes with monolayers of cells. Virus stocks were diluted in 600 microlieter of Graces medium and added to the cell monolayer, followed by a 90 minutes incubation period at in Graces medium with 20% FBS. Afterwards, 3% Sea Plaque agarose was autoclaved, mixed with an equal amount of 2x Graces medium with 20% FBS and from the resulting agarose overlay solution 2 ml. was spread over the cell monolayers after removal of the viral inoculum. After 4 days of incubation single plaques could be visualized and purified for further analysis.

Fusion protein production.

After determining the titer of purified recombinant viruses, monolayers of Sí21 cells in 75 cm² flasks were infection with a multiplicity of infection (MOI) of 10. Incubation of cells with the virus inoculum was performed for 90 min. after which 8 ml. of Hink's medium with 10%FBS was added. After 3 days of incubation, cells were harvested and washed twice with PBS. Cells were lysed for 45 min on ice in twenty volumes of 1x insect cell lysis buffer (10 mM Tris pH 7.5, 130 mM NaCl, 1% Triton, 100 mM NaF, 10 mM NaPi, 10 mM NaPi, with proteinase inhibitors: 16 mg/l benzamidine, 10 mg/l phenanthroline, 10 mg/l aprotinin, 10 mg/l leupeptin, 10 mg/l pepstatin A, 1 mM PMSF).

The lysate was cleared by centrifugation at 10,000 g for 30 min and the supernatant was batchwise incubated in TALON resin (with high affinity for the 6xHIS tag of the recombinant fusion protein). Binding was performed by gentle agitation for 20 min. at room temp. The resin was washed three times with lysis buffer, followed by an elution step with lysis buffer with 200 mM imidazole. Purified fusion protein was collected and purify and integrity was tested by SDS-PAGE.

Autophosphorylation assays

Protein kinase activity was determined by incubating 1 microgram of purified fusion protein for 30 min. at room temp. in a buffer containing 10 mM MgCl2, 10 mM MnCl2, 1 mM DTT and 10 µM [gamma-32]ATP (10 5 pm/pmol ATP). The autophosphorylated fusion protein was purified after SDS-PAGE from the get in a buffer containing 50 mM NH4CO3, 0.1% SDS, 0.25% beta-mercaptoethanol. Protein was precipitated with 20 µg/ml BSA and 20% (w/v) solid trichloroacetic acid. The precipitate was collected after centrifugation, hydrolysed in 50 µl 6N HCl for 1 hour at 120 degrees Celcius. HCl was subsequently removed by hyophikzation and the pellet was resuspended in a buffer consiting of 2.2% formic acid and 7.8% acetic acid. Hydrolysed protein was loaded onto cellulose thin layer chromatography plates together with control amino acid samples (phosphoserine, phosphothreonine, phosphotyrosine). Chromatography was performed in a buffer containing propionic acid: 1M ammonium hydroxide: isopropyl alcohol (90:35:35 v/v/v). After separation and drying of the plates, the separated amino-acids were visualized by spraying with 0.25% ninhydrin in aceton, followed by heating for 5 min. at 65 degrees Celcius. Plates were afterwards exposed to Phospho Imager casettes in order to detect the phospho-labeled aminoacids.

SERK antibodies

Punted fusion proteins (10 µg) were mixed in complete Freund adjuvant and injected IP into BALBc mice. After 4 weeks booster antigen was injected (10 µg purified fusion protein in imcomplete Freund adjuvant). Two weeks later a final booster was injected. One week after the final booster, serum was collected from these mice. The specificity and the titer of the resulting sera was tested on Western blots using total insect cell extracts with or without the SERK fusion proteins.

INTRODUCTION OF THE SERK GENE INTO *PLANTA* AND THE PRODUCTION OF APOMICTIC SEED

Carrot transformation with a SERK promoter fragment/luciferase gene fusion

The binary vector pMT500 is based on the pBIN19 vector (Bevan, 1984) and contains the firefly luciferase gene downstream of a polylinker containing 5 unique restriction sites was created by uni-directional ligation of the firefly luciferase coding region followed by the polyadenylation sequence from the pea rbcS::E9 gene in the HindIII-Xbal site of the binary vector pMOG800 (kindly provided by Mogen N.V., Leiden, The Netherlands). The binary vector pMOG800 is based upon pBIN19 (Bevan, 1984) but while in pBIN19 the polylinker is flanked by the left border and the neomycin phosphotransferase (NPT II) expression cassette, the polylinker in pMOG800 is flanked by the right border and the NPT II expression cassette. From a genomic lambda clone, transcription regulating sequences from the carrot SERK gene were isolated by digestion with HindIII and Dral (SEQ ID No. 1), and cloned into the HindIII / Smal sites of pBluescript SK+. From the resulting vector a Kpnl / Sstl fragment containing the SERK genomic DNA was isolated and cloned into the Kpnl / Sstl sites of the binary vector pMT500. The resulting DNA construct, pMT531, contained the 2200 bp genomic SERK DNA fragment as promoter sequence, the luciferase gene as vital reporter, and the E9 transcription terminator sequence.

The binary vector pMT531 was transformed by electroporation into *Agrobacterium* tumefaciences strains MOG101 and MOG301 (for transformation into carrot cells) and into *Agrobacterium tumefaciences* strain C58C1 (for transformation into *Arabidipsis thaliana* plants). Transformed colonies were selected on LB plates with 100mg/l kanamycin.

Transformation of carrot cells

The firefly luciferase coding sequence under control of the genomic carrot HindIII / Dral 2200 bp DNA fragment was introduced into carrot cells by *Agrobacterium tumefaciens* mediated transformation of hypocotyl segments. Transformation of *Daucus carota* cv. 'Amsterdamse bak' was performed by slicing one week old dark grown seedlings into segments of 10 to 20 mm. Segments were incubated for 20 minutes in a freshly prepared 10 fold diluted overnight culture of *Agrobacterium*... The segments were dried and transferred to a modified Gamborgs B5 medium (P1 medium; S&G seeds, Enkhuizen, The Netherlands) supplemented with 2 µM 2,4-D (P1-2) and solidified with agar (Difco, Detroit, Mi, USA). After two days of culture in the dark at 25 ± 0.5 _C, segments were transferred to

solidified P1-2 medium supplemented with kanamycin (100 mg·l⁻¹), carbenicillin (500 mg·l⁻¹; Duchefa) and vancomycin (100 mg·l⁻¹; Duchefa). After three weeks segments were transferred to fresh plates and transformed calli were selected after an additional three weeks. Transformed calli were grown on P1-2 plates with antibiotics for 3 weeks at a 16 hour light/8 hour darkness regime. Transformed embryogenic suspension cultures were initiated as described by transferring 0.2 g callus to 10 ml liquid P1-2 medium supplemented with 200 mg·l⁻¹ kanamycin, 250 mg·l⁻¹ carbenicillin and 50 mg·l⁻¹ vancomycin. During the first weeks 1 to 3 volumes of fresh medium were added to the culture at weekly intervals. After 5 to 7 weeks cultures were subcultured to a packed cell volume of 2 ml per 50 ml medium every two weeks and incubated at a 16 hour light / 8 hour darkness regime at 25 ± 0.5 °C.

One week after transfer to kanamycin selection medium, hypocotyl segments were sprayed with luciferin to test whether luciferase expression could be detected in transformed callus shortly after transformation. A large number of hypocotyl segments showed luciferase activity at the cut edges, but did not develop calli. Instead, growth of bacteria occurred, suggesting that the luciferase activity was of bacterial origin. Six to ten weeks after transformation, calli were obtained that showed luciferase activity in variable amounts, while no bacterial growth could be observed anymore. After 12 weeks, calli measuring 5 to 10 mm in diameter were used to start suspension cultures. At this time no bacterial contamination was observed. A control transformation experiment in which luciferase expression under influence of the CaMV 35S promoter was observed in single cells and cell clusters in the suspension culture demonstrating that the luciferase protein is active in Daucus carota suspension cultured cells.

Cell immobilisation

One-week old high-density (10⁶ - 10⁷ cells·ml⁻¹) suspension cultures were sieved through nylon sieves with successive 300, 125, 50 and 30 µm pore sizes (Monodur-PES; Verseidag Techfab, Walbeck, Germany). Single cells and cell clusters passing the last sieve are designated as < 30 µm populations. Control experiments with untransformed cells were performed with *Daucus carota* cv. 'Trophy' (S&G seeds) suspension cultures grown in P1-2 medium. Size fractionated cell populations smaller then 30 µm were immobilised in phytagel (P8196; Sigma, St Louis, Mo, USA) in petriperm dishes (Heraeus, Hanau, Germany). The bottom layer consisted of 1 ml P1-0 medium with 5 mM Ca ²⁺ and 0.2 % phytagel. Two

hundred thousand cells (< 30 μm and < 50 μm populations) in B5-0 medium without Ca ²⁺ supplemented with 0.1 % phytagel were poured on top of the bottom layer. For this layer B5 was applied since, at room temperature, phytagel solidified in P1 medium without Ca ²⁺. After 2 hours of solidification an additional P1-0 layer with 0.2 % phytagel was poured onto the cell layer preventing the B5 layer to move. To prevent dehydration of the phytagel layers and to supply luciferin to the cells, 0.5 ml P1-0 medium containing 0.05 μM luciferin (Promega, Madison, Wi, USA) was added after solidification. The final luciferin concentration in the culture was 0.02 μM. Luciferin detection on single cells was determined with a CCD camera for a period of 5 times one hour (Schmidt et al. (1997) Development 124: 2049-2062). After 7 days of culture, luciferin was removed from the cultures by extensive washing with P1-0 medium.

Arabidopsis transformation with a SERK promoter fragment/luciferase gene fusion

Wildtype WS plants were grown under standard long day conditions: 16 hours light and 8 hours dark.

The first emerging influorescense was removed in order to increase the number of influorescenses. Five days later, plants were ready for vacuum infiltration.

Agrobacterium strain C58C1 containing the transformation plasmid was grown on a LB plate with 50 mg/l kanamycin, 50 mg/l rifampicin and 25 mg/l gentamycin. A single colony was used to inoculate 500 ml of LB medium containing 50 mg/l kanamycin, 50 mg/l rifampicin and 25 mg/l gentamycin. The cultures were grown O/N at 28 degrees Celcius and the resulting log phase culture (OD600 0.8) was centrifuged to pellet the cells and resuspended in 150 ml of infiltration medium (0.5x MS medium (pH 5.7) with 5% sucrose and 10 µl/l benzylaminopurine). The inflorescenses of 6 Arabidopsis plants are submerged in the infiltration suspension while he remaining parts of the plants (which are still potted) are placed upside down on meshed wire to avoid contact with the infiltration suspension.

Vacuum is applied to the whole set-up for 10 min. at 50 kPa. Plants are directly afterwards placed under standard long day conditions. After completed seed setting the seeds were surface sterilized by a 1% sodium hypochlorite soak, then thoroughly washed with sterile water and plated onto petridishes with 0.5xMS medium and 80 mg/l kanamycin in order to select for transformed seeds. After 5 days germination under long day conditions (10.000 lux), the transformed seedlings could be identified by their green color of their cotyledons

(the untransformed seedlings turn yellow), and were further grown in soil under C1 lab conditions under long day conditions. This vacuum infiltration method resulted in approximately 0.1% transformed seeds.

Transformation of a construct containing both a gene encoding kanamycin resistance and the 2200 bp (HindIII / Dral) SERK genomic DNA fused to the firefly luciferase gene into Arabidopsis thaliana (WS) by vacuum infiltration resulted in six different kanamycin-resistent primary transformants (I, II, III, IV, V and VI). Plants IV and VI died at the seedling stage, although they were kanamycin resistant. A T2 generation could be obtained from the four plants I, II, III and V (Figure 4). Within the siliques of the T2 generation of plants no. III and V, an early inhibition in development could be observed in appoximatetely 25-50 % of the seeds. The plants I and II did not show a reduction in the number of developing seeds. (Figure 5). Similar results were observed in a T3 generation, in which again approximately 25-50% of the seeds showed an early inhibition of normal seed development.

Arabidopsis transformation with a AtSERK gene

Isolation of the AtSERK genomic and cDNA clones

Using the DcSERK cDNA sequence (seq ID no. 2) as a probe, a lambda ZipLox genomic library made form Arabidopsis Landsberg erecta total genomic DNA is screened for the presence of homologous sequences. Three different lambda clones with inserts of 14, 18 and 20 kb respectively are obtained. The 14 kb clone is digested by EcoRl and the resulting fragments subcloned into pBluescript vectors. Fragments spanning the entire coding sequence of the AtSERK gene are isolated, sequenced and compared with the Daucus homologues. The resulting sequence is shown as SEQ ID NO: 20.

Using the DcSERK cDNA sequence (SEQ ID NO: 2) as a probe, a lambda ZAPII cDNA library is screened for the presence of homologous sequences. Four lambda clones are obtained and their inserts subcloned into pBluescript vectors using the helper phage excision procedure. Fragments spanning the entire AtSERK cDNA coding sequence of the AtSERK gene are isolated, sequenced and compared with the Daucus homologues. The resulting sequence is shown as SEQ ID NO: 32.

Plasmids containing promoter sequences

Arabidopsis thaliana LTP1 promoter fragment is obtained from the binary plasmid pUH1000 (Thoma, S., Hecht, U., Kipper, A., Borella, J., De Vries, S.C., Sommerville, C. (1994) Plant Physiol. 105, 35-45) by digestion with *Bam*H1 and *HindIII* and cloning into pBluescript SK⁻ (pMT121).

- The CaMV 35S promoter enhanced by duplication of the -343 to -90 region (Kay et al., (1987) Science 236: 1299-1302) is isolated from the pMON999 vector by digestion with Hindll and Sstl and cloned into the pBluescript SK* vector (pMT120).
- The promoter AtDMC1 (Klimyuk and Jones (1997) Plant Journal 11: 1-14).

 Plasmid SLJ 9691 is a construct consisting of pBluescript SK+ in which the *Arabidopsis* thaliana DMC1 genomic clone (accession number U76670) is cloned into the EcoRV site.

 SLJ 9691 carries *Eco*RV fragments of the 5' end of the AtDMC1 gene with the following modification: a BgIII site instead of the second Hpal site, two ATG codons in the first exon and an Xhol site at the ATG codon of the second exon.
- The FBP7 promoter from Petunia (Angenent et al. (1995) Plant Cell 7: 1569-1582). The promoter of the FBP7 gene is cloned by subcloning the 0.6 kb *HindIII* Xbal genomic DNA fragment of FBP7 into the *HindIII* Xbal site of pBluescript KS-, resulting in the vector FBP201.

The pAtSERK binary vector constructs.

Based on the pBIN 19 vector, a binary vector pAtSERK is constructed for transformation of the Arabidopsis thaliana SERK cDNA under the control of different promoters.

The full length *Arabidopsis thaliana* cDNA clone of SERK (Seq ID No. NEW) is obtained from a pBiuescript SK- plasmid. A Smal - Kpnl 2.1 kb fragment containing the AtSERK cDNA is cloned into pBIN19 Smal - Kpnl. The polyadenylation sequence from the pea rbcS::E9 gene (Millar et al., 1992), Plant Cell 4: 1075-1087) is placed downstream from the AtSERK cDNA by cloning a Klenow-filled EcoRl - HindIII E9 DNA fragment into the Klenow-filled Xmal site of the pBIN19:AtSERK vector in order to generate the binary vector pAtSERK.

Construction of plant expression vectors

The pAtSERK binary vector is used to generate the following promoter-AtSERK constructs.

- The AtLTP1 promoter is cloned in the Smal site of the pAtSERK binary vector as a Klenow-filled Kpnl-Ssfl DNA fragment to give the pAtLTP1AtSERK vector.
- The CaMV 35S promoter is cloned in the Smal site of the pAtSERK binary vector as a Klenow-filled *Kpnl-Sstl* fragment to give the p35SAtSERK vector.
- The AtDMC1 promoter consisting of the Bglll Xhol 3.3kB fragment from the clone SLJ 9691 is filled in with Klenow and cloned into the Small site of the pAtSERK binary vector to give the pAtDMC1AtSERK vector.
- A Sacl-Kpnl fragment of FBP2101 is filled in with Klenow and cloned into the Smal site of the pAtSERK binary vector to give the pFBP2101AtSERK vector.

Introduction of plant expression vectors into Arabidopsis thaliana plant cells

The above described vector constructs (pAtLTP1AtSERK, p35SAtSERK, pAtDMC1AtSERK, pFBP2101AtSERK) have been electrotransformed into *Agrobacterium tumifacienses* strain C58C1 as known in the art.

Wild type *Arabidopsis thaliana* WS plants are grown under standard long day conditions: 16 hours light and 8 hours dark.

The first emerging inflorescence is removed in order to increase the number of influorescences. Five days later, plants are ready for vacuum infiltration.

Agrobacterium strain C58C1 containing the transformation plasmid (the pAtLTP1AtSERK vector or the p35SAtSERK or the pAtDMC1AtSERK vector or the pFBP2101AtSERK vector) is grown on a LB plate with 50 mg/l kanamycin, 50 mg/l rifampicin and 25 mg/l gentamycin. A single colony is used to inoculate 500 ml of LB medium containing 50 mg/l kanamycin, 50 mg/l rifampicin and 25 mg/l gentamycin. The cultures are grown O/N at 28 degrees Celsius and the resulting log phase culture (OD600 0.8) is centrifuged to pellet the cells and resuspended in 150 ml of infiltration medium (0.5x MS medium (pH 5.7) with 5% sucrose and 1 mg/l benzylaminopurine). The inflorescences of 6 Arabidopsis plants are submerged in the infiltration suspension while the remaining parts of the plants (which are still potted) are placed upside down on meshed wire to avoid contact with the infiltration suspension.

Vacuum is applied to the whole set-up for 10 min. at 50 kPa. Plants are directly afterwards placed under standard long day conditions. After completed seed setting the seeds are surface sterilized by a 1% sodium hypochlorite soak, then thoroughly ished with sterile water and plated onto petridishes with 0.5xMS medium and 80 mg/l kanamycin in order to select for transformed seeds. After 5 days germination under long day conditions (10.000 lux), the transformed seedlings could be identified by their green colour of their cotyledons (the untransformed seedlings turn yellow), and are further grown in soil under long day conditions. This vacuum infiltration method resulted in approximately 0.1% transformed seeds.

Expression of SERK sequences in Arabidopsis thaliana plant cells

The inflorescences from transgenic and not transgenic *Arabidopsis thaliana* plants are analysed by Whole mount *in situ* hybridisation analysis with AtSERK cDNA as probe. The inflorescences in different stages of development are fixed for 60 min. in PBS containing 70 mM EGTA, 4% paraformaldehyde, 0.25% glutaraldehyde, 0.1% Tween 20, and 10% DMSO. Samples are then washed, treated with proteinase K for 10 min, again washed and fixed a second time. Hybridisation solution consisted of PBS containing 0.1% Tween 20, 330 mM NaCl, 50 mg/ml heparin, and 50% deionized formamide. Hybridisation took place for 16 hours at 42°C using digoxigenin-labeled sense or antisense riboprobes (Boehringer Mannheim). After washing, the cells are treated with RNaseA and incubated with anti-digoxigenin-alkaline phosphatase conjugate (Boehringer Mannheim) which had been preabsorbed with a plant protein extract. Excess antibody is removed by washing followed by rinsing in staining buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5 mM MgCl₂, 1 mM levamisole) and the staining reaction is performed for 16 hours in a buffer containing NBT and BClP. Observations are performed using a Nikon Optiphot microscope equipped with Nomarski optics.

The transformed plants show ectopic expression of SERK in the vicinity of the embryo sac.

O

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: NOVARTIS AG
 - (B) STREET: Schwarzwaldallee 215
 - (C) CITY: Basel
 - (E) COUNTRY: Switzerland
 - (F) POSTAL CODE (ZIP): 4058
 - (G) TELEPHONE: +41 61 69 11 11
 - (H) TELEFAX: + 41 61 696 79 76
 - (I) TELEX: 962 991
- (ii) TITLE OF INVENTION: Improvements in or relating to organic compounds
- (iii) NUMBER OF SEQUENCES: 33
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IEM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6695 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iiii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Daucus carota
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3696..6617
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 3731..3802
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 3851..3979
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 4124..4211
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 4284..4357
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 4430..4528
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 4642..4757

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 4890..4967

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 5295..5803

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 6197..6339

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

TCTAGATGAC GAAATCGCGC TACCTTTGAT TINGAAATAC TAGGTTGTAG TATCTTGATT 60 AGITTITING ATAINTINGCT GTAATITNIT TAGGAGATGC AAACGGTCTT CAITTAATAT 120 GAGCCCTTGT GACTIGACAA AAGTATCTAG CATGTTTGAT CACGAGGTAG CTAAAAAGTA 180 GOGTGTTTGA TTAAGCACAT AATATTGTAT TGGGCCTATT GGCTATCAAT GAAGTTTGAT 240 GCAAGTATAT AGCTIGTATT ATGCATGTGA TGAGGGTATA TAAAAGAAGT AAAGAACATT 300 CTCTCGTAGC ATTCATTTTT CTCTTGCCTA TAGTTAACGA GTTTTGTCAC ACATGACGTT 360 GAAACTGGAT GTGTCTGTTC TTCCATCTAA GTTTGGATTA CCTGATAGAT GCTCAACTTC 420 TTCGTCAGCC TFTTCTTTCC GATTFTTCCC AAGACAAGAT TCTTTAGTTA ATAGTTATTG 480 540 CTACCITITI TICTGIGITIC CCITITATGA TATCACCIGC TIGGAGGCGI TIAGACITIA 600 TCCACCTAAA CIATTCATGT TTACCAGACA AGCTATACGT TTTATCCCCC CCCCCGCGG 660 ACCIGNOGAC AAAAGAAGOG CIGATGAACI GATTTAATOC GIGITTTATT ATATTACACA 720

TTGATGCTTC	ATGGAGCTAA	TATCTTTGGT	TAAATIYCAT	GTATATATAT	ACCCTTCCCT	780
CITCICATCC	CAGTGGCCCC	TCGITTAATT	AGCGTACTTA	ATTATCIGAT	GGATACTGTA	840
TGCTTGGCAG	ATGATGTCAT	CAGATTATAC	CATTIGTIGT	GCTCTACAAA	ATAAAAAACC	900
TCTATTTATG	TICATCIPIT	TGGTAACAAG	TAACTAATIG	ATGCGCTATG	TTGACAGGCG	960
ATGCATTACA	CAACTTACGA	ACTAGCTTGC	AAGATCCCAA	CAATGICCTG	CAGAGCTGGG	1020
ATCCAACCCT	TGTGAACCCT	TGCACATGGT	TTCATGIGAC	ATGTAACAAT	GAAAACAGIG	1080
TTATAAGAGT	GIAGGICACT	TCCCTTATTA	ATTTTTTAG	CAAGITACGA	ATATTTACTC	1140
AATTGAGCAG	ATGICTCTTT	TTTTTAAAA	CTTTAATTIC	TTAGCTAAGC	GGAGCATCTA	1200
TCTTAAGTAT	CICTACIGAA	TTTAAGACAT	AATACATTTT	TAAAAATTT	CTATTAGAGT	1260
GITTTTTCCG	CACAGCGCAC	ATATATCTTT	TTTCTCGTAA	TTCAGACAAC	CTTTCTCCCG	1320
ACGATAAAAT	AATATAAGAT	TAACTCCTTG	AACTAATTTT	TTATTTTTCT	TTTCTTTTTA	1380
TGTTCTTTGC	AGAAAGITIC	TTATGGTCTT	DAAAADITT	TACATTCTAT	GATAATTTT	1440
TGGCAACTCA	TATAAATTTA	TATATATTCC	ATGTAGTTAT	AAGITAAAA	AAGCTTCCTA	1500
TTAATICCAA	GATAGAGGTT	CATTTTTATA	GTTTGGGCAT	CCATGAGTTT	TIGAAAATGT	1560
CAGAAATTTT	GTTGAGTTAA	TTTTACTTAC	CAACITITAT	GGCGTCATGC	AGIGATOTIG	1620
GGAATGCAGC	ATTATOTOGT	CAATTGGTTC	CTCTTGGCCA	GITGAAAAAT	TTACAATACT	1680
TGTAAGACCA	TATCACTTOG	AATGCTTTAG	TTTTTATACA	GCACAATGCT	TICAATATCT	1.740
GITAAAAGIG	TGAAAAAGTT	GACTITICTAG	CTTCAGCAGT	TGITCGGATA	ADTATOTATA	1800

ACCACTTAAA	AGGCTGGGCA	ATTTTTTIGT	TATTATTCA	ATATTGITA	ATIGITACTA	1860
CTTATATA	TAAACTGATT	TAACTOCTCA	TGATTGGICT	CAGICCAAIG	TGCCCTCATT	1920
ASTUACIANA	VESTITAAAAT	GGGTTGGACA	TECARTATAA	CTTTTCTTAA	GGTCCAGAAA	1980
CATTAT	CAACCITGIC	TAGCGCATAA	CGTCACAGTG	GGTCAGTC AC	GGGCTATCCA	2040
CTTTCXXXXX	GTTTTAATGA	GCACTTATTT	ACCITGICIT	TTAAACGTCT	GACGATOTTA	2100
TWETT	CATCATTCAG	AGTTTAAATT	AGCACTITICA	GITGTATTAT	GAATGGTACA	2160
TOWANTE	ATATCTTAAT	GITCCTATGC	CIGITICAAC	ATGICICIAA	TATICIGITA	2220
and mandenda and a	CTTAAAAATG	GCACTGATTA	ADADTOTAAA	AAGGTAGTCT	TYCAATACYA	2280
THINITATI	ACCAGAGAA T	ATCATAATTT	TTITAAATCA	TAAGITGGGC	CCTAGAGTTT	2340
TIKITATI	GGICTATITA	TATTTTCCAC	CATTTAGAAC	TGIGITGICA	GATGAAAATC	2400
	ACAGAAGATC	TTATAGTAAA	AGIATICITT	AGATCTGATG	ATGAAAGITG	2460
TATESTOTE	GCCTGTCCCA	GAATTTAAAT	CAATCCCATG	TCACATGTTT	GTIGATCIGA	2520
CIACIOACIO	TTAATCGAAG	AGTAACTATT	TGTGAATTAA	ATGCTTTTTT	TTTGTTCTT	2580
CATCCTTACC	GTTATAAAGG	TCTACGTCTG	ACTATGGTTT	TTAACATGTT	ATAGTTTTGT	2640
ACTOLCAACT	TTAAAGITIC	TCTTGTTTAC	GAATTAAGAA	TATATAATAT	AAAACGCTTT	2700
AACTITICTCT	CTCGAAGGTG	TTCTTACCTT	TTTATATATA	TATATAGATA	CTCAGACICT	2760
CTTACAATT	ATATCTTACG	AACTTACGAG	TATACAGAAC	TTGTATATTA	GGTTCAGATG	2820
ATTOCTO	GTAGAACACC	TTAACCAAGA	ACITAATCAT	GAGGITTICAA	CCTTTTAACT	2880
TICTTING	ATTTTTCAA	GTTTATGGAA	AATTGTACCT	CATGATCGTG	GTTTCTTTCC	2940

ATAAACTTTC	CATATAAGTC	CGTTTCTTGA	CGTTTTCATG	TAAGCTGTTG	ACGAGTGATT	3000
ATTAGCGGTT	CTTTCAATAA	TCATAATGTG	TCTCACTTTG	ATGAGGCCTG	TACTTATTAT	3060
TGCACCTTGC	ACTTAACCTT	GATCCTCATG	TCATCTTGAT	TGTCATAGTC	TACTAACCGA	3120
GTTGAACATG	GTTTATCATG	TCTTTTGAGG	TAACAATGTA	GCTTTCACCT	CIGICCIIGA	3180
TATAGGTTTA	AGGCTTGCAC	CTCCCACTAG	CCTTICGTIG	TTTTATTCAC	AGTTCACACA	3240
CCTACTAGCA	CTGTTCACCT	CTAGICTTT	GTCCGCAAAT	AGTAAGAAGT	TTCTTTCGCA	3300
TAATAGIGGA	TGATCATTTA	AGAAATAGTG	AATCAAATTA	TCGIGITATI	GIGITIGIAC	3360
TTTGGAATTA	AATGAGTTGC	TGAACATIGT	TCCTCTTTAT	CGTTGTCAAG	GCTTTGCCAA	3420
GGAAGGCGAT	TAGTAAGAGT	GGGCATCCAA	GCGCCTTTAT	CTTGAAGGGG	CGGGGGGCAC	3480
GITGTGGATT	CIGGGIGICT	ATTAGAGGAC	ATTATCTATA	TATACTGATT	ATTTATTAGA	3540
ATATAAATCA	ACTACTATAT	TTTTCTTTGT	AATGTTTATA	TAGAAATCCC	ACTCGTAAAC	3600
TTGACAAATA	CCATIGAAAT	ATTTGAACCT	AATTAATTAG	TAGIGICAGG	TTTAAATTCA	3660
AACTCATTA	ATTTTACTTT	AAAAAATAAT	TCTATATGAA	TCGTAACAGT	TATATATATA	3720
TAAATTACAT	GTATGIGIGC	CTATATATAG	CIGAAIGICT	AATAGACTCC	AAGACGGCTG	3780
CICTIACIGC	CTAGGGGTCC	AGGCAGTTCA	CTGATGCTTA	CCTTGACAAA	TATGGGTTC	3840
GIATGACATT	GTTGGGGATC	CCTATCACTG	GATTCCIGIT	TIGCIGACCC	TCTGTTCAAT	3900
TGATTTCAT	TGATGTAGTA	TTACTAGTTT	TATAAATAT	CTTTATTGCA	ATAATTTAAC	3960
TGGAGTTTAA	CAATGACAGG	GAGCTTTACA	GCAATAACAT	AAGTGGACCA	ATTCCTAGTG	4020

ATCTTGGGAA TCTGACAAAT TTGGTGAGCT TGGACCTATA CATGAATAGC TTCTCTGGAC	4080
CTATACCGGA CACATTAGGA AAGCTTACAA GGCTAAGATT CTTGTATGAC TACAAATCTT	4140
CACTAGITT TAACITAATG CAATTIGATT ATCCTTTCAA GIGATTGATT ATATCACAAA	4200
TTACTGGATA GCCGTCTCAA CAACAACTGC CTCTCTGGTC CAATTCCAAT GTCACTGACT	4260
AATATTACAA CYCTTCAAGT CCTGTAAGTA TYCCGACCYT TCCAGATAGT TYTGTTGTTG	4320
TGGATGITTC AATTITAATA CTAAATATGT TCATCAGGGA TTTATCAAAC AATCGGCTAT	4380
CAGGACCAGT ACCGGATAAT GGCTCATTTT CTTTGTTTAC ACCTATCAGG TTTAATGCTA	4440
GTAATATCTT TAATATTATG GTTCTTACTT CTACTGCGAA AGCTATGATA ATATTTTTTT	4500
TOTOCTICAT ATATTATCAC TITOGCAGTT TITGGCAATAA TITGAATITA TGTGGACCTG	4560
TAACTGGGAG GCCCTGCCCT GGATCTCCCC CATTTTCTCC ACCACCTCCG TTCATCCCAC	4620
CATCAACAGT ACAGCCTCCA GGTGATTTAG TTTTTATATT AATTCCCGTA ATTAATTTTA	4680
TGACTGTAAA AATTGGTGTT AATTTCACCA GTTGCGAATA AAGTATTTTC CTTCTTTCTC	4740
TICTTATTAT TATGAAGGAC AAAATOGTCC CACTOGAGCT ATTGCTGGGG GAGTAGCTGC	4800
TOGTGCTGCT TTACTGTTTG CTGCACCTGC AATGGCATTT GCATGGTGGC GGAGAAGAAA	4860
ACCGCGAGAA CATTICITIG ATGIGCCAGG TTAGTCCTGT AAATAGATAT CTATTGAAGC	4920
GCTTACTGTC TGTGGACTTT GTTTTCACTG TCATTAGTTA ACTTCAGCTG AAGAGGACCC	4980
AGAAGTGCAC CITGGTCAAC TGAAGAGGTT TTCTCTGCGA GAATTGCAAG TOGCAACGGA	5040
TACTTTAGT ACCATOCTE GAAGAGGIGG ATTIGGTAAG GIGTATAAGG GACGCCTIGC	5100
TGATGGCTCA CTTGTAGCAG TTAAAAGGCT TAAAGAAGAA CGAACACCAG GTGGCGAGCT	5 160

GCAGTTTCAA	ACAGAAGTGG	AAATGATTAG	CATGGCTGTG	CATCGAAATC	TICIGOGICT	5220
ACGIGGITIC	TGCATGACAC	CTACCGAGCG	GCTTCTTGTA	TATCCATACA	TEGCTAATEG	5280
AAGIGTIGCG	TCATGITTAA	GAGGIATCIC	AGTTACAATT	ACCATAACTT	GCCAGAAGTT	5340
TGTTTGATTA	AAAATGAAAT	ATAACTCCCT	ACACTATGIT	TATTETEDAA	AATTICIGAG	5400
CAGATCTTAT	TTCCCATTGC	AAGATACCAG	TTATTATIGT	TTTTTCTGTA	ATTGATACCG	5460
GITATATITC	TTTCTTGTAT	TIGGITATAT	GCAAGGATTT	CGAGTCTAAT	AAGTTATCAA	5520
ACTGGATGCT	ATGITTATIC	TGCAATTGAA	TICTICCTIC	ATGTGCCAAA	ATATATATGA	5580
TTCAACTIGG	AATCATCTTA	TAATATACTG	TGTAAAGTCA	GCTGTTGACT	TTCATCATTA	5640
ATTAGICITC	ATAAATCAGA	ATCTGCCTAG	TGAGCTTTAC	CGACATACTC	TAAACCTTTC	5700
TTATGGCCCT	GTATATAATC	GTCCCACTTA	CTTTATTCAG	TTIGICIGCI	CTCTGAATTT	5760
TTGATCTGTA	CATTGTGATG	TCTTGTTTC	ATCAAATGTA	GAGCGTCAGC	CATCAGAACC	5820
TCCCCCTGAT	TGGCCAACTA	GGGAGAGGAT	TGCACTAGGA	TCTTCTAGGG	GCCTATCTAA	5880
ATTGCATGAC	CATTGTGATC	CCAAGATTAT	CCATCGCGAT	GTAAAAGCTG	CAANTATATT	5940
ATTGGACGAA	GAATTTGAGG	CIGITGTAGG	TGATTTTGGG	TTAGCTAGGC	TCATGGATTA	6000
CAAGGATACC	CATGITACGA	CIGCIGIAAG	GGGTACCATT	GGGCACATAG	CICCCGAGTA	6060
CCICICGACT	GGAAAGTCAT	CAGAGAAGAC	CGAIGICITT	GGTTATGGGA	TAATGCTCCT	6120
AGAGCTCATT	ACTGGACAGA	GGGCTTTTGA	Tallealosc	CTTCCGAACG	ATGATGATGT	6180
TATGITGITG	GATTGGGTAT	GIGICCCGGG	TGITCCITIG	GPTAATTATT	TCACATATTA	6240

GIGCTTACTA	CITIGINGIG	GCCCTTIGTT	TTTATTTCCT	GCCIGIATTT	GATICTIAGT	6300
CATGITATGC	ATATTGACCT	GCTTTGCAAT	GICTTITAGG	TTAAAAGCCT	TTTGAAAGAG	6360
AAAAAGTTGG	AGATGCIGGT	CGATCCTGAC	CTGCAGAACA	ATTACATIGA	CACAGAAGIT	6420
GAGCAGCTTA	TTCAAGTAGC	ATTACTCTGT	ACCCAGGGIT	CGCCAATGGA	GCGGCCTAAG	6480
ATGTCAGAGG	TAGTCCGAAT	GCTTGAAGGT	GATGGCCTTG	CAGAAAAGTG	GGACGAGTTGG	6540
CAAAAAGTTG	AAGTCATCCA	TCAAGACGTA	GAATTAGCTC	CACATOGAAC	TTCTGAATGG	6600
ATCCTAGACT	CGACAGATAA	CTTGCATGCT	TTTGAATTAT	CTGGTCCAAG	ATAAACAGCA	6660
TATAAAATGT	AATGAAATTA	ATATTTTTTA	TGGTT			6695

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDELINESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Daucus carota
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 94..1752

(xi) SEX	JUENCE	DESCRIPTION:	SEQ	ID	NO:	2:
----------	--------	--------------	-----	----	-----	----

GACAAATACC ATTGAAATAT TIGAACCIAA TIAATTAGTA GIGICAGGIT TAAATTCAAA	60
CICATTTAAT TITACTITAA AAAATAATTC TAT ATG AAT CGT AAC AGT ATA AAT Met Asn Arg Asn Ser Ile Asn 1 5	114
ATA TTA AAT TAC ATG CAG TTC ACT GAT GCT TAC CTT GAC AAA TAT GGG	162
Ile Leu Asn Tyr Met Gln Phe Thr Asp Ala Tyr Leu Asp Lys Tyr Gly 10 15 20	
GTT CTT ATG ACA TTG GAG CTT TAC AGC AAT AAC ATA AGT GGA CCA ATT Val Leu Met Thr Leu Glu Leu Tyr Ser Asn Asn Ile Ser Gly Pro Ile 25 30 35	210
CCT AGT GAT CTT GGG AAT CTG ACA AAT TTG GTG AGC TTG GAC CTA TAC Pro Ser Asp Leu Gly Asn Leu Thr Asn Leu Val Ser Leu Asp Leu Tyr	258
40 45 50 55	
ATG AAT AGC TTC TCT GGA CCT ATA CCG GAC ACA TTA GGA AAG CTT ACA Met Asn Ser Phe Ser Gly Pro Ile Pro Asp Thr Leu Gly Lys Leu Thr 60 65 70	306
AGG CTA AGA TIC TIG CGT CTC AAC AAC AGC CTC TCT GGT CCA ATT Arg Leu Arg Phe Leu Arg Leu Asn Asn Asn Ser Leu Ser Gly Pro Ile 75 80 85	354
CCA ATG TCA CTG ACT AAT ATT ACA ACT CTT CAA GTC CTG GAT TTA TCA Pro Met Ser Leu Thr Asn Ile Thr Thr Leu Gln Val Leu Asp Leu Ser 90 95 100	402
AAC AAT CGG CTA TCA GGA CCA GTA CCG GAT AAT GGC TCA TIT TCT TIG Asn Asn Arg Leu Ser Gly Pro Val Pro Asp Asn Gly Ser Phe Ser Leu 105 110 115	450
THE ACA COT ATC AGE THE GOO AAT AAT THE AAT THA TEN EGA COO SHA	498

Phe	Thr	Pro	Ile	Ser	Phe	Ala	Asn	Asn	Leu	Asn	Leu	Cys	Gly	Pro	Val	
120					125					130					135	
										**************		,		~~~	000	~.~
ACT																546
Thr	Gly	Arg	Pro		Pro	GIY	Ser	Pro		Pne	Ser	Pro	Pro		rro	
				140					145					150		
TTC	ATC	CCA	CCA	TCA	ACA	GTA	CAG	CCT	CCA	GGA	CAA	AAT	GGT	ccc	ACT	594
Phe	Ile	Pro	Pro	Ser	Thr	Val	Gln	Pro	Pro	Gly	Gln	Asn	Gly	Pro	Thr	
			155					160					165			
GGA	GCT	TTA	GCT	GGG	GGA	GTA	GCT	GCT	GGT	GCT	GCT	TTA	CIG	Jalal,	GCT	642
Gly	Ala	Ile	Ala	Gly	Gly	Val	Ala	Ala	Gly	Ala	Ala	Leu	Leu	Phe	Ala	
		170					175					180				
												AAA			_	690
Ala		Ala	Met	Ala	Phe		Trp	Trp	Arg	Arg		Lys	Pro	Arg	GIu	
	185					190					195					
CAT	TTC	TTT	gat	GIG	CCA	GCT	GAA	GAG	GAC	CCA	GAA	GIG	CAC	CIT	GGT	738
												Val		•		
200			_		205				_	210					215	
CAA	CIG	AAG	AGG	LLL	TCI	CIG	CGA	GAA	TIG	CAA	GIC	GCA	ACG	GAT	ACT	786
Gln	Leu	Lys	Arg	Phe	Ser	Leu	Arg	Glu	Leu	Gln	Val	Ala	Thr	Asp	Thr	
				220					225					230		
															GGA	834
Phe	Ser	Thr			Gly	Arg	Gly			Gly	Lys	Val			Gly	
			235					240					245			
æ	بلملم	تارس	' ርኔጥ	. C	ማ የ	بلملم	י כיויא	ርያሞል	بلملم	מממ	አርንር	فهلمها ،	ממת י	CA A	GAA	882
															Glu	002
~ 3 7	**********	250	-	· CIJ		ALP CONTAGE	255			ت وسد	rang	260	_	- 100000	· uau	
												_~0				
CGA	ACA	CCA	. GGI	GGI	'GAG	CIC	CAC	TIT	CAA	ACA	. GAC	GTC	GA.	OTA 1	TTA	930
															: Ile	

	265					270					275						
AGC	ATG	GCT	GTG	CAT	CGA	TAA	CTT	CIG	CGT	CTA	CGT	ϔ	TIC	TGC	ATG		978
Ser	Met	Ala	Val	His	Arg	Asn	Leu	Leu	Arg	Leu	Arg	Gly	Phe	Cys	Met		
280					285					290					295		
ACA	CCA	ACA	GAG	CGG	CTT	CTT	GTA	TAT	CCA	TAC	ATG	GCT	TAA	GGA	AGT	1	.026
Thr	Pro	Thr	Glu	Arg	Leu	Leu	Val	Tyr	Pro	Tyr	Met	Ala	Asn	Gly	Ser		
				300					305					310			
GIT	GCG	TCG	TGT	TTA	AGA	GAG	CCI	CAG	CCA	TCA	GAA	CCT	$\alpha\alpha$	CIT	GAT	1	.074
Val	Ala	Ser	Cys	Leu	Arg	Glu	Arg	Gln	Pro	Ser	Glu	Pro	Pro	Leu	Asp		
			315					320					325				
TGG	CCA	ACT	AGG	AAG	AGG	ATT	GCA	CTA	GGA	TCT	GCT	AGG	GGG	CIT	TCT	1	122
Trp	Pro	Thr	Arg	Lys	Arg	Ile	Ala	Leu	Gly	Ser	Ala	Arg	Gly	Leu	Ser		
		330					335					340					
TAT	TIG	CAT	GAC	CAT	TGT	GAT	ccc	AAG	ATT	ATC	CAT	CGT	GAT	GTA	AAA	1	170
Tyr	Leu	His	Asp	His	Cys	Asp	Pro	Lys	Ile	Ile	His	Arg	Asp	Val	Lys		
	345					350					355						
GCT	GCA	AAT	ATA	TTA	TIG	GAC	GAA	GAA	TTT	GAG	GCT	GIT	GTA	GGT	GAT	1	.218
Ala	Ala	Asn	Ile	Leu	Leu	Asp	Glu	Glu	Phe	Glu	Ala	Val	Val	Gly	Asp		
360					365					370					375		
Talal	GGG	TTA	GCT	AGG	CIC	ATG	GAT	TAC	AAG	GAT	ACC	CAT	GIT	ACA	ACT	1	.266
Phe	Gly	Leu	Ala	Arg	Leu	Met	Asp	Tyr	Lys	Asp	Thr	His	Val	Thr	Thr		
				380					385					390			
cci	GIA	AGG	GGT	ACC	TIG	GGC	TAC	ATA	GCT	ccc	GAG	TAC	crc	TCG	ACT	1	.314
Ala	Val	Arg	Gly	Thr	Leu	Gly	Tyr	Ile	Ala	Pro	Glu	Tyr	Leu	Ser	Thr		
			395	•				400					405				
GGA	AAG	TCA	TCA	GAG	AAG	ACC	GAT	GIC	TTT	GGT	TAT	GGG	ATT	ATG	CTC	1	.362
Gly	Lys	Ser	Ser	Glu	Lys	Thr	Asp	Val	Phe	Gly	Tyr	Gly	Ile	Met	Leu		
		410					415					420					

TTA GAG CTC ATT AC	TT GGA CAG AGA	GCT TTT GAT CTI	C GCT CGC CTT	GCG 1410
Leu Glu Leu Ile Th	r Gly Gln Arg	Ala Phe Asp Lev	Ala Arg Leu	Ala
425	430	435	5	
AAC GAT GAT GAT GI	TT ATG TIG TIG	GAT TGG GTT AAA	AGC CIT TIG	AAA 1458
Asn Asp Asp Asp Va	al Met Leu Leu	Asp Trp Val Lys	Ser Leu Leu	Lys
440	445	450		455
GAG AAA AAG TIG G	AG ATG CTG GTC	GAT CCT GAC CTC	G GAG AAC AAT	TAC 1506
Glu Lys Lys Leu Gl	lu Met Leu Val	Asp Pro Asp Leu	Glu Asn Asn	Tyr
46	50	465	470	
ATT GAC ACA GAA G	IT GAG CAG CIT	att caa gta gce	A TTA CIC TGT	ACC 1554
Ile Asp Thr Glu Va	al Glu Gln Leu		a Leu Leu Cys	Thr
475		480	485	
CAG GGT TCG CCA A				
Gln Gly Ser Pro Me		Lys Met Ser Glu		Met
490	495		500	
CTT GAA GGT GAT G		_		_
Leu Glu Gly Asp G				Val
505	510	515	>	
GAA GIC ATC CAT C				
Glu Val Ile His G			s Arg Thr Ser	
520	525	530		535
The second secon	~~ , , , , , , , , , , , , , , , , , ,		22	
TGG ATC CTA GAC TO				
Trp Ile Leu Asp S	_			GTÀ
5	40	545	550	
CCA AGA TAAACAGCA	ጥ አጥኢኢኢአጥማኛ፤ አን	ነባንጋል አለማየል - ልማማስል ለ ለድምስ	والمعلمة المعالمة المعلمانة المعلمانة	ልእአ 1900
	n dielingenien i	mountin Minil	፣ ፣ ፣ ፣ ነን ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣ ፣	AAA 1802
Pro Arg				

AAAAAAAAA AAA 1815

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 553 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Asn Arg Asn Ser Ile Asn Ile Leu Asn Tyr Met Gln Phe Thr Asp 1 5 10 15

Ala Tyr Leu Asp Lys Tyr Gly Val Leu Met Thr Leu Glu Leu Tyr Ser 20 25 30

Asn Asn Ile Ser Gly Pro Ile Pro Ser Asp Leu Gly Asn Leu Thr Asn 35 40 45

Leu Val Ser Leu Asp Leu Tyr Met Asn Ser Phe Ser Gly Pro Ile Pro
50 55 60

Asp Thr Leu Gly Lys Leu Thr Arg Leu Arg Phe Leu Arg Leu Asn Asn 65 70 75 80

Asn Ser Leu Ser Gly Pro Ile Pro Met Ser Leu Thr Asn Ile Thr Thr 85 90 95

Leu Gln Val Leu Asp Leu Ser Asn Asn Arg Leu Ser Gly Pro Val Pro
100 105 110

Asp Asn Gly Ser Phe Ser Leu Phe Thr Pro Ile Ser Phe Ala Asn Asn 115 120 125

Leu	Asn	Leu	Cys	Gly	Pro	Val	Thr	Gly	Arg	Pro	Cys	Pro	Gly	Ser	Pro
	130					135					140				
												,			
Pro	Phe	Ser	Pro	Pro		Pro	Phe	Ile	Pro		Ser	Thr	Val	Gln	
145					150					155					160
										_			_	_	- 4
Pro	Gly	Gln	Asn		Pro	Thr	Gly	Ala	Ile	Ala	Gly	Gly	Val		Ala
				165					170					175	
	_ ~		_	_			- 3				- 3			_	
Gly	Ala	Ala		Leu	Pne	Ala	Ala		Ala	Met	Ala	Phe		Trp	Trp
			180					185					190		
			_	_		an 7			um.1	_		_			~ 3
Arg	Arg	_	Lys	Pro	Arg	GIU		Pne	Pne	Asp	Val		Ala	GIU	Glu
		195					200					205			
_	_		7			1	~ 1		•	•	951				~1 .
Asp		GLu	Val	His	Leu		GIn	Leu	Lys	Arg	Phe	Ser	Leu	Arg	GIU
	210					215					220				
Y	C1-	1 V 1	አግ ـ	m	X	FTTDs we	Dh m	C	Mile	T 3	T	03	N	~1··	c1
	GLII	AGT	Ala	mr		1111	rne	Ser	1111		Leu	GIÀ	Arg	GTĀ	
225					230					235					240
Dhe	Gly	Y a re-	T-1	Ur re	T sec	Cly	N res	Lou	ΑΙ =	yez	Gly	Ear.	Low	l ett	αſΛ
EING	GTÅ	Llys	A COLLE	245	цуэ	Сту	my	Leu	250	w	GTĀ	ಎಲ್	The CT	255	P.I.O.
				ಬ%ು					42V					د. د. یک	
(/a)	I a re-	ሽ ጉ ም	Len	Tyre	Glu	Glu	ĎΥΥ	ማንተ	Dra	Glar	Gly	Clu	Lon	Cln	Pho
ACTT	nys	arg	260		O,L.	Carr	rug	265		GTĀ	GTĀ	GTU	270	/3771	EING
			200					200					210		
Gln	ማካተ	Glu	Val	Glu	Met	מוד	Ser	Mot	Δla	Val	Hie	Δπα	λen	I æi i	Leu
02.14	****	275		224	2 2) and they	all all to	280		4 84.44	****	8825	285		2244	1200
		ن 1 به					200					4.03			
Arm	· Lean	Arr	Glv	Phe	(Væ	Met	Thr	Pro	سمدارال	Glii	Arg	د دھے آ	Y acon 1	(Jal	ማ ኒም-
25	290		~~xy	a. A #4-	. പൃയ	295				غدة مقدحيت	300	arii (d	Lecu	o cull.	4 1 4
	·					نت حد بيج					240				
Pyro	ጥ ረም	Mar	Ala	Δαν	Gly	Car	· Val	Ala	Ser	· (~\re	i jeni	Am	cln	Δm	Gln
	-3-	A 444 M		. الانطقاء	. <u>.</u> <u>.</u>	برسيده دري		لية بخبج م		~y =	الما تناصد	~ *** <u>`</u>		وياحده	

Pro Ser Glu Pro Pro Leu Asp Trp Pro Thr Arg Lys Arg Ile Ala Leu

315

320

310

305

Gly Ser Ala Arg Gly Leu Ser Tyr Leu His Asp His Cys Asp Pro Lys lle Ile His Arg Asp Val Lys Ala Ala Asn Ile Leu Leu Asp Glu Glu Five Clu Ala Val Val Gly Asp Phe Gly Leu Ala Arg Leu Met Asp Tyr Lys Asp Thr His Val Thr Thr Ala Val Arg Gly Thr Leu Gly Tyr Ile Ala Pro Glu Tyr Leu Ser Thr Gly Lys Ser Ser Glu Lys Thr Asp Val Pro Gly Tyr Gly Ile Met Leu Leu Glu Leu Ile Thr Gly Gln Arg Ala Prom Acp Leu Ala Arg Leu Ala Asn Asp Asp Asp Val Met Leu Leu Asp Trp Val Lys Ser Leu Leu Lys Glu Lys Lys Leu Glu Met Leu Val Asp Pro Asp Leu Glu Asn Asn Tyr Ile Asp Thr Glu Val Glu Gln Leu Ile Gin Val Ala Leu Leu Cys Thr Gln Gly Ser Pro Met Glu Arg Pro Lys Met Ser Glu Val Val Arg Met Leu Glu Gly Asp Gly Leu Ala Glu Lys Trp Asp Glu Trp Gln Lys Val Glu Val Ile His Gln Asp Val Glu Leu

Ala Pro His Arg Thr Ser Glu Trp Ile Leu Asp Ser Thr Asp Asn Leu 530 535 540

His Ala Phe Glu Leu Ser Gly Pro Arg 545 550

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 base pairs

(B) TYPE: nucleic acid

(C) STRANDELNESS: single

(D) TOPOLOGY: unknown

- (iii) HYPOTHETTCAL: NO
- (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

THEFTHEFT TO:

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDELNESS: single

(D) TOPOLOGY: unknown

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

GGGATCTAAG 10

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

ACACGTGGTC 10

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEXGIH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDELNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO

- (111) ANTI-SENSE: NO
- (Va) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

TACACAC 10

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (111) HYPOTHETICAL: NO
 - (111) ANTI-SENSE: NO
 - (V1) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (XL) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

THE TOTAL TOTAL

- (2) DIFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEWITH: 13 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

TITTITITIT TCA

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xd) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GACATOGTOC 10

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCCTACTGGT 10

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

- (D) TOPOLOGY: unknown
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

ACACGIGGIC 10

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEINESS: single

(D) TOPOLOGY: unknown

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGTGACTGTC 10

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDELNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TCTTGGACCA GATAATTC

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDELNESS: single

- (D) TOPOLOGY: unknown
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CICIGATGAC TITICCAGIC

19

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

AATGGCATTT GCATGG

16

- (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Daucus carota
- (xd) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Ser Pro Pro Pro Pro

. 5

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Daucus carota
 - (xd) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

His Arg Asp Val Lys Ala Ala Asm

1 5

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEWFIH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Daucus carota
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Gly Thr Leu Gly Tyr Ile Ala Pro Glu 5

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4081 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANCEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Arabidopsis thaliana

(vii) IMMEDIATE SOURCE:

(B) CLONE: Arabidopsis SERK gene

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 1280..1367

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 1796..1928

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2014..2085

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2203..2346

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2450..2521

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2617..2688

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2772..2884

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3015...3146

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3305..3646

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3760..4081

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TCTAGAAACC TITTGATCAT AATGAAAATA AAGAGTCCAT CCACCACATG GGGTAAGCAT 60 AATGTGTGAT ATTTAAAGGG TAACAAATGT AATCTGCTTT TTATTTTACT TTTTACCTCT 120 ACTCAAATTG TATGGGCAGT TTTTTTTTT TTTTAAATGA TAAGACAAGT ATCTGTTTAA 180 TGGTATTGTG ATGAAACAGT AGTAAAGTCA TATCGGGCAC GCCATACTAC TTCCACAGTG 240 GAACTIGGCC AAATTIGTC TITGCCGTCT CTACAGITTC TICCACCAAA TITTITGTIG 300 ACAAAACTCA AATCTITCAA TCTCATCTCT GCCAAAGTTG GGTTTAGAAA GAATATCAGC 360 AAACACTAAT ATCTTTATTG TTGCATGGTT TATCAATCAC AAAATTCACA ACCATTGTAA 420 AAAAAAATTC ACATTITTGG TATGAGATTG CTCACATGAT AGTGAACCTC TTTAACATTT 480 TAACTTTACT TICATAAATA CGGGATTACG AATCTTACTT GCATTAAAAA TTTAGAAAAG 540 GITTTICTAC TIAAAGAAAA AAGGGACCCA ACAGAGAGAG GITTGACCAG GAGAAACGGG 600 TGCATAGCCT TAAGAGCTTT CAACTACTTT ACCCCAAACC CAAAGCGATG TCACTTTCAA 660 CCATCICTIC TCTCCCCCGA ACCCGTTTTT TTGACCGGTC AGTTCGGGCA GCAGCACCGT 720 TACGGCAGC TTATATTCCT CGTCTTCCTC CTCTACACCA CTGCATGCCC ATAAATAAAG 780

CCCUTTGAGA	TCTTTAAAA	TATTAAATAA	TATATCAACG	AAAAAGCTAT	TTTATTCATA	840
AAMACAACA	GAGAGGAACA	ACAACAACAC	ACTAATCATA	GITICICIGG	CAGGCTTGTT	900
CTTCCCCTT	AATAAAAAGC	TCTTTGTTA	TTATTACTTC	ACGTAGATTT	TCCCCAAAAA	960
Common with	TTTTGTTTAA	AAAAAAAAGT	TTCATCTTTA	TICAACTTIT	GTTTTACAGT	1020
Charles Car	GAGAGAGAGT	GIGGITIGAT	TGAGGAAAGA	CGACGACGAG	AACGCCGGAG	1080
Al man Transport	TITTATTTAT	TTTTTACICT	TIGITIGITT	TAATGCTAAT	GGGITTITAA	1140
AJJJC	GAAAAATGA	GIGAGITIGI	GTIGAGGTIG	TCTCTGTAAA	GIGITAAIGG	1200
approvedoper a consecutable a land a land a land	CGGAAGTTAG	GETTTICTCG	GATCTGAAGA	GATCAAATCA	AGATTCGAAA	1260
***************************************	TIGITIGAAA	TGGAGTCGAG	TTATGIGGIG	TITATCITAC	TTTCACTGAT	1320
CTTACTTCCC	AATCATTCAC	TGTGGGTTGC	TICIGCIAAT	TTGGAAGGTT	CGTGGTTACT	1380
ATTATOA	GCTTTACTOG	TTTCTCAATT	ACTITICICGA	TICTTITTA	TTTGGAGGTG	1440
e o mara-mana mana	TITAGIGICT	GCATTTTGAT	TTATGAAAAT	TGTTGTTGTT	CTTTGTATTT	1500
S. N. S.	GTGGCTAGTA	CTTTGAATAC	ACTGTTTTGC	TITICIIGIT	CAGATCAACT	1560
	TAAAGGCATG	TTCTTTGGGT	TGAAAAGCIG	GGITAITTIGA	TATCITAAGA	1620
مان و در	TGATCCAAAC	ATTOTOTGAA	AGACTTCATT	TGTTTTTGGT	TTTGTAAAGA	1680
٨٣٣٣٨٨	TIATTAGCCT	CTAATCTCAG	AGAGGCCTGT	TTGAATAGTT	CTCTCTTGAA	1 74 0
g conson m y managaga Ma a h Maddi Bar a a a	TCACCAATTG	ATGCTAATTG	TGTAGATTTG	TIGTICTIGT	TATAGGTGAT	1800
CCTTTCCATA	CTTTGAGGGT	TACTCTAGTT	GATOCAAACA	ATGTCTTGCA	GAGCTGGGAT	1860
CCTACOCTAC	TGAATCCTTG	CACATGGTTC	CATGICACTI	GCAACAACGA	GAACAGTGTC	1920

ATAAGAGTGT	AAAGCTTTCT	TCIACTAATC	CCACTTTTA	AACITIGACC	TCAGCGTGGT	1980
TACOGACATT	TTTGTTTCTT	TTGTCAAATA	CAGTGATTIG	GGGAATGCAG	AGITATCIGG	2040
CCATTTAGTT	CCAGAGCTTG	GIGIGCICAA	GAATITGCAG	TATTIGIAAG	TICCACTIAT	2100
GCATCATGCT	TTAACAAAAC	AAATCCAAGA	TTTGACAGAA	GAAGCACTGG	AGITACCITT	2160
TGTAATTGAA	ACTITITAA	CAAGTTTCTT	ATTTTCTTAC	AGGGAGCTTT	ACAGTAACAA	2220
CATAACTGGC	CCGATICCIA	GTAATCTTGG	AAATCIGACA	AACITAGIGA	GPTIGGATCT	2280
TTACTTAAAC	AGCTTCTCCG	GICCIATICC	GGAATCATTG	GGAAAGCTTT	CAAAGCTGAG	2340
ATTICIGIGA	GTATACATAT	GCTTTACCGG	CTCAGTTACA	GICTTIGHT	AATCITAGGT	2400
TTTGTTCCAA	TTTTTGACTC	TTTGCTGAAA	ATTTTACATG	CAAGAATAGC	CGGCITAACA	2460
ACAACAGTCT	CACTGGGTCA	ATTCCTATGT	CACTGACCAA	TATTACTACC	CITCAAGIGT	2520
TGTGAGTCCT	CTCATTAACT	TICATITATG	TCTACTTCAT	TOTOCOTCAG	TIGATITGIT	2580
GAGTTAATGC	ACTTAACCTT	GATGGATGCA	ACACAGAGAT	CTATCAAATA	ACAGACTCTC	2640
TGGTTCAGTT	CCTGACAATG	GCICCITCIC	ACTOTTCACA	CCCATCAGGT	TCTATGATIT	2700
ATCCTCTTCA	GTTATTTCAG	TIGITGIGIC	AGIGICIGAA	CITATTCTGA	AACITICATT	2760
TCCTTGTGCA	GITTIGCTAA	TAACTTAGAC	CTATGTGGAC	CTGTTACAAG	TCACCCATGT	2820
CCTGGATCTC	ccccgrrrc	TCCTCCACCA	CCTTTTATTC	AACCTCCCCC	AGTTTCCACC	2880
CCGAGTAAGC	CICCICITI	TAGTTTACAT	TATAGGAAAC	AGAAGATGAA	ATCTTTGCTT	2940
CTCTGTCAAT	cerrrrere	ATATAACICA	TCTTGCCAAT	AAGGCAATAA	CCAAATGATC	3000

TAATITGATT TCAGGIGGGT ATGGTATAAC TGGAGCAATA GCTGGIGGAG TTGCTGCAGG 3060 TECTECTITE CICTITECTE CICCIECAAT AGCCTITECT TEGTEGGGAC GAAGAAAGCC 3120 ACTAGATATT TTCTTCGATG TGCCTGGTGA GTTTATTATT CGCATTAGTT TCTGTTCTTA 3180 GCCAGCAATT TIGITTIGCA GAAAAGTATT GGAACAACTG TTAATGAAAA TCAATACATA 3240 AGICATIGIT TITTAAGITA CAAACTCITT TGAGTAAAAT CICGATIGCA AAATCICIAT 3300 GCAGCCGAAG AAGATCCAGA AGTICATCTG GGACAGCTCA AGAGGTTTTC TTTGCGGGAG 3360 CTACAAGTGG CGAGTGATGG GITTAGTAAC AAGAACATTT TGGGCAGAGG TGGGTTTGGG 3420 AAAGTOTACA AGGGACGCTT GGCAGACGGA ACTOTTGTTG CTGTCAAGAG ACTGAAGGAA 3480 GAGCGAACTC CAGGTGGAGA GCTCCAGTTT CAAACAGAAG TAGAGATGAT AAGTATGGCA 3540 GTTCATCGAA ACCTGTTGAG ATTACGAGGT TTCTGTATGA CACCGACCGA GAGATTGCTT 3600 GTGTATCCTT ACATGGCCAA TGGAAGTGTT GCTTCGTGTC TCAGAGGTAA AAACTAAACA 3660 ATTAAACATC TIGIGCTCTC TCTCAATTAC TITGACGTGA AGIGTTTTTT CATGITTTCC 3720 TTTATGGGTT CATAATTGTT GGTTACACTA ATGACACAGA GAGGCCACCG TCACAACCTC 3780 OSCITGATIG GOCAACGOG AAGAGAATOG CGCTAGGCTC AGCTCGAGGT TIGTCTTACC 3840 TACATGATCA CTGCGATCCG AAGATCATTC ACCGTGACGT AAAAGCAGCA AACATCCTCT 3900 TAGACGAAGA ATTCGAAGCG GTTGTTGGAG ATTTCGGGTT GGCAAAGCTA ATGGACTATA 3960 AAGACACTCA CGTGACAACA GCAGTCCGTG GCACCATCGG TCACATCGCT CCAGAATATC 4020 TOTCAACCGG AAAATCTTCA GAGAAAACCG ACGTTTCGG ATACGGAATC ATGCTTCTAG 4080

4081

A

(2:	CIFORMATION	FOR	SEO	ID	NO:	21:
(سما	لانكسانك للانكانك كالأنس تماه صلا	101	اسلامهات		A 100 1	approximation 1

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 494 amino acids

(B) TYPE: amino acid

(C) STRANDELINESS: unknown

(D) TOPOLOGY: linear

(11) MOLECULE TYPE: protein

(111) HYPOTHETICAL: NO

(V) FRAGMENT TYPE: N-terminal

(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Met Glu Ser Ser Tyr Val Val Phe Ile Leu Leu Ser Leu Ile Leu Leu 1 5 10 15

Pro Asn His Ser Leu Trp Leu Ala Ser Ala Asn Leu Glu Gly Asp Ala 20 25 30

His Thr Leu Arg Val Thr Leu Val Asp Pro Asm Asm Val Leu Gln
35 40 45

Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val Thr 50 55 60

Cys Asn Asn Glu Asn Ser Val Ile Arg Val Asp Leu Gly Asn Ala Glu 65 70 75 80

Leu Ser Gly His Leu Val Pro Glu Leu Gly Val Leu Lys Asn Leu Gln 85 90 95 WO 97/43427 PCT/EP97/02443

Glu Leu Tyr Ser Asn Asn Ile Thr Gly Pro Ile Pro Ser Asn Leu Gly
100 105 110

Asn Leu Thr Asn Leu Val Ser Leu Asp Leu Tyr Leu Asn Ser Phe Ser 115 120 125

Gly Pro Ile Pro Glu Ser Leu Gly Lys Leu Ser Lys Leu Arg Phe Leu 130 135 140

Arg Leu Asn Asn Asn Ser Leu Thr Gly Ser Ile Pro Met Ser Leu Thr 145 150 155 160

Asn Ile Thr Thr Leu Gln Val Leu Asp Leu Ser Asn Asn Arg Leu Ser 165 170 175

Gly Ser Val Pro Asp Asn Gly Ser Phe Ser Leu Phe Thr Pro Ile Ser 180 185 190

Phe Ala Asn Asn Leu Asp Leu Cys Gly Pro Val Thr Ser His Pro Cys 195 200 205

Pro Gly Ser Pro Pro Phe Ser Pro Pro Pro Pro Phe Ile Gln Pro Pro 210 215 220

Pro Val Ser Thr Pro Ser Gly Tyr Gly Ile Thr Gly Ala Ile Ala Gly
225 230 235 240

Gly Val Ala Ala Gly Ala Ala Leu Leu Phe Ala Ala Pro Ala Ile Ala 245 250 255

Phe Ala Trp Trp Arg Arg Lys Pro Leu Asp Ile Phe Phe Asp Val 260 265 270

Pro Ala Glu Glu Asp Pro Glu Val His Leu Gly Gln Leu Lys Arg Phe 275 280 285

Ser Leu Arg Glu Leu Gln Val Ala Ser Asp Gly Phe Ser Asn Lys Asn

Ile Leu Gly Arg Gly Gly Phe Gly Lys Val Tyr Lys Gly Arg Leu Ala Asp Gly Thr Leu Val Ala Val Lys Arg Leu Lys Glu Glu Arg Thr Pro Gly Gly Glu Leu Gln Phe Gln Thr Glu Val Glu Met Ile Ser Met Ala Val His Arg Asn Leu Leu Arg Leu Arg Gly Phe Cys Met Thr Pro Thr Glu Arg Leu Leu Val Tyr Pro Tyr Met Ala Asn Gly Ser Val Ala Ser Cys Leu Arg Glu Arg Pro Pro Ser Gln Pro Pro Leu Asp Trp Pro Thr Arg Lys Arg Ile Ala Leu Gly Ser Ala Arg Gly Leu Ser Tyr Leu His Asp His Cys Asp Pro Lys Ile Ile His Arg Asp Val Lys Ala Ala Asn Ile Leu Leu Asp Glu Glu Phe Glu Ala Val Val Gly Asp Phe Gly Leu Ala Lys Leu Met Asp Tyr Lys Asp Thr His Val Thr Thr Ala Val Arg

Gly Thr Ile Gly His Ile Ala Pro Glu Tyr Leu Ser Thr Gly Lys Ser
465 470 475 480

Ser Glu Lys Thr Asp Val Phe Gly Tyr Gly Ile Met Leu Leu
485 490

WO 97/43427	PCT/EP97/02443

0 3 1143461		1 4 1/11/1
	- 71 -	

(2) INFORMATION FOR SEQ ID NO	21 TATECHEMATICAL	FOR	SEO	ID	NO:	22:
-------------------------------	-------------------	-----	-----	----	-----	-----

(i)	SECUENCE	CHARACTERISTICS:
----	---	----------	------------------

(A) LEWGIH: 1106 base pairs

(B) TYPE: nucleic acid

(C) STRANDELNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CINA to mRNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 142..795

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

TCGACCCACG CGTCCGTCCA ACTTCAATAA AGGGGAAACC AACGTAACCC TAATTTGCT 60

TTCTCCTCTT TGTTCAGAAA ATTTTCCCTT TACTCTCAAA TTCCTTTTCG ATTTCCCTCT 120

CTTAAACCTC CGAAAGCTCA C ATG GCG TCT CGA AAC TAT CGG TGG GAG CTC 171

Met Ala Ser Arg Asn Tyr Arg Trp Glu Leu

1 5 10

TTC GCA GCT TCG TTA ACC CTA ACC TTA GCT TTG ATT CAC CTG GTC GAA 219

Phe Ala Ala Ser Leu Thr Leu Thr Leu Ala Leu Ile His Leu Val Glu

15 20 25

GCA AAC TCC GAA GGA GAT GCT CTC TAC GCT CTT CGC CGG AGT TTG ACA

Ala Asm Ser Glu Gly Asp Ala Leu Tyr Ala Leu Arg Arg Ser Leu Thr

30 35 40

GAT	CCA	GAC	CAT	GIC	CIC	CAG	AGC	TGG	GAT	CCA	ACT	CTT	GIT	AAT	CCT	315
Asp	Pro	Asp	His	Val	Leu	Gln	Ser	Trp	Asp	Pro	Thr	Leu	Val	Asn	Pro	
		45					50					55				
													GIC			363
Cys		Trp	Phe	His	Val		Cys	Asn	Gln	Asp		Arg	Val	Thr	Arg	
	60					65					70					
GIG	GAT	TIG	GGA	AAT	TCA	AAC	CTC	TCT	GGA	CAT	CTT	GCG	CCT	GAG	CIT	411
Val	Asp	Leu	Gly	Asn	Ser	Asn	Leu	Ser	Gly	His	Leu	Ala	Pro	Glu	Leu	
75					80					85					90	
GGG	AAG	CIT	GAA	CAT	TTA	CAG	TAT	CTA	GAG	CIC	TAC	AAA	AAC	AAC	ATC	459
Gly	Lys	Leu	Glu	His	Leu	Gln	Tyr	Leu	Glu	Leu	Tyr	Lys	Asn	Asn	Ile	
				95					100					105		
CAA	GGA	ACT	ATA	CCI	TCC	GAA	CII	GGA	TAA	CIG	AAG	AAT	CIC	ATC	AGC	507
Gln	Gly	Thr		Pro	Ser	Glu	Leu	_	Asn	Leu	Lys	Asn	Leu	Ile	Ser	
			110					115					120			
martines.	a.m	~~~~	mr a	330	330	330	com	3.03	,	St (Park	e-accesses	~~~	3 (1977)	ame.	mma	lan kan ba
									_	_	_		ACT	_		555
Leni	nsp	125	lyr	ASII	ASII	ASII	130	1111	GLY	TTE	vai	135	Thr	rne	nea	
		2,2,2					730					ر.نـــ				
GGA	AAA	TTG	AAG	TCT	CIG	GIC	TTT	TTA	ccc	CTT	AAT	GAC	AAC	CGA	TIG	603
Gly	Lys	Leu	Lys	Ser	Leu	Val	Phe	Leu	Arg	Leu	Asn	Asp	Asn	Arg	Leu	
	140					145					150					
ACC	GGT	CCA	ATC	CTA	GAG	CAC	TCA	CGG	CAA	TCC	CAA	GCC	TTT	AAA	GIT	651
Thr	Gly	Pro	Ile	Leu	Glu	His	Ser	Arg	Gln	Ser	Gln	Ala	Phe	Lys	Val	
155					160					165					170	
GIT	GAC	GIC	TCA	AGC	AAT	GAT	TIG	IGI	GGG	ACA	ATC	CCA	ACA	AAC	GGA	699
Val	Asp	Val	Ser	Ser	Asn	Asp	Leu	Cys		Thr	Ile	Pro	Thr		Gly	
				175					180					185		
nac	Warker				-	ppane			99246	<i>_</i>	Va. 18 - 3 -	w a a.	مد سع عقو		Depter of	20 A
CCC	LLL	GCT	CAC	ATT	CCI	TTA	CAG	AAC	TIT	GAG	AAC	AAC	CCG	AGA	TTG	747

1106

Pro	Phe	Ala	His	Ile	Pro	Leu	Gln	Asn	Phe	Glu	Asn	Asn	Pro	Arg	Leu
	190							195					200		

GAG GGA CCG GAA TTA CTC GGT CTT GCA AGC TAC GAC ACT AAC TGC ACC 795 Glu Gly Pro Glu Leu Leu Gly Leu Ala Ser Tyr Asp Thr Asn Cys Thr 205 210 215 TGAAACAACT GGCAAAACCT GAAAATGAAG AATTGGGGGG TGACCTTGTA AGAACACTTC 855 ACCACTITAT CAAATATCAC ATCTATTATG TAATAAGTAT ATATATGTAG TAAAAACAAA 915 AAAAATGAAG AATCGAATCG GTAATATCAT CTGGTCTCAA TTGAGAACTT CGAGGTCTGT 975 ATGTAAATT TCTAAATGCG ATTITCCCTT ACTGTAATGT TCGGTTGTGG GATTCTGAGA 1035 AGIAACATIT GTATTGGTAT GGTATCAAGT TGTTCTGCCT TGTCTGCAAA AAAAAAAAA 1095

(2) INFORMATION FOR SEQ ID NO: 23:

Α ΑΑΑΑΑΑΑΑ

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 218 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Met Ala Ser Arg Asn Tyr Arg Trp Glu Leu Phe Ala Ala Ser Leu Thr 1 5 10 15

Leu Thr Leu Ala Leu Ile His Leu Val Glu Ala Asn Ser Glu Gly Asp 20 25 30

Ala Leu Tyr Ala Leu Arg Arg Ser Leu Thr Asp Pro Asp His Val Leu
35 40 45

Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val
50 55 60

Thr Cys Asn Gln Asp Asn Arg Val Thr Arg Val Asp Leu Gly Asn Ser
65 70 75 80

Asn Leu Ser Gly His Leu Ala Pro Glu Leu Gly Lys Leu Glu His Leu 85 90 95

Gln Tyr Leu Glu Leu Tyr Lys Asn Asn Ile Gln Gly Thr Ile Pro Ser 100 105 110

Glu Leu Gly Asn Leu Lys Asn Leu Ile Ser Leu Asp Leu Tyr Asn Asn 115 120 125

Asn Leu Thr Gly Ile Val Pro Thr Phe Leu Gly Lys Leu Lys Ser Leu 130 135 140

Val Phe Leu Arg Leu Asn Asp Asn Arg Leu Thr Gly Pro Ile Leu Glu 145 150 155 160

His Ser Arg Gln Ser Gln Ala Phe Lys Val Val Asp Val Ser Ser Asn 165 170 175

Asp Leu Cys Gly Thr Ile Pro Thr Asn Gly Pro Phe Ala His Ile Pro 180 185 190

Leu Gln Asn Phe Glu Asn Asn Pro Arg Leu Glu Gly Pro Glu Leu Leu 195 200 205

Gly Leu Ala Ser Tyr Asp Thr Asn Cys Thr 210 215

(2) INFORMATION FOR SEQ ID NO: 24:

40

(i) S	EDQUENCE CH	ARACTERI	STICS:				
	(A) LENGTH	I: 981 ba	se pairs	;			
	(B) TYPE:	nucleic	acid				
	(C) STRAND	EDNESS:	single				
	(D) TOPOLO	XY: line	ar				
(ii) <i>P</i>	OLECULE TY	PE: CLIVE	to mRNV	À			
(iii) F	IYPOIHETICA	L: NO					
(ix) F	FEATURE:						
	(A) NAME/K	ŒY: CDS					
	(B) LOCATI	(ON: 104.	757				
111	manuta anno sono sono sono sono sono sono son	3000m		rn 300. 0.	۹.		
(XL) 2	SEQUENCE DE	SCRIPTIC	an: Seq .	ID NO: 24	£ :		
AGTGTGAGT	A ATTTAGTT	ng CITIC	recte tr	IGTICAGA	TTTTAAA	CCC TITA	CICICA 66
AATTCCTTT	r cgatticcc	er cretta	AAACC TC	CGAAAGCT	CAC ATG	GCG TCT	CGA 11
					Met	Ala Ser	Arg
					1		
AAC TAT CO	eg teg gag	CIC TIC	GCA GCT	TCG TTA	ACC CTA	ACC TTA	GCT 165
Asn Tyr A	rg Trp Glu	Leu Phe	Ala Ala	Ser Leu	Thr Leu	Thr Leu	Ala
5		10		15			20
TTG ATT C	ac cig gic	GAA GCA	AAC TCC	GAA GGA	GAT GCT	CIC TAC	GCT 21
Leu Ile H	is Leu Val	Glu Ala	Asn Ser	Glu Gly	Asp Ala	Leu Tyr	Ala
	25			30		35	
CIT OGC O	GG AGT TTG	ACA GAT	CCA GAC	CAT GTC	CTC CAG	AGC TGG	GAT 25

Leu Arg Arg Ser Leu Thr Asp Pro Asp His Val Leu Gln Ser Trp Asp

45

						TGT Cys										307
•		55					60	-				65	_			
GAC	AAC	CGC	GIC	ACT	CCI,	GTG	GAT	TIG	GGA	TAA	TCA	AAC	CIC	TCT	GGA	355
Asp	Asn	Arg	Val	Thr	Arg	Val	Asp	Leu	Gly	Asn	Ser	Asn	Leu	Ser	Gly	
	70					75					80					
CAT	CIT	GCG	CCT	GAG	CIT	GGG	AAG	CIT	GAA	CAT	TTA	CAG	TAT	CTA	GAG	403
His	Leu	Ala	Pro	Glu	Leu	Gly	Lys	Leu	Glu	His	Leu	Gln	Tyr	Leu	Glu	
85					90					95					100	
CIC	TAC	AAA	AAC	AAC	ATC	CAA	GGA	ACT	ATA	CCT	TCC	GAA	CIT	GGA	TAA	451
Leu	Tyr	Lys	Asn	Asn	Ile	Gln	Gly	Thr	Ile	Pro	Ser	Glu	Leu	Gly	Asn	
				105					110					115		
CIG	AAG	AAT	CIC	ATC	AGC	TIG	GAT	CIG	TAC	AAC	AAC	AAT	CTT	ACA	GGG	499
Leu	Lys	Asn	Leu	Ile	Ser	Leu	Asp	Leu	Tyr	Asn	Asn	Asn	Leu	Thr	Gly	
			120					125					130			
ATA	GIT	ccc	ACT	TCT	TIG	GGA	AAA	TTG	AAG	ICI	CIG	GIC	JAL	TTA	CCC	547
Ile	Val	Pro	Thr	Ser	Leu	Gly	Lys	Leu	Lys	Ser	Leu	Val	Phe	Leu	Arg	
		135					140					145				
CII	AAT	GAC	AAC	CGA	TIG	ACC	GGT	CCA	ATC	CCT	AGA	GCA	CIC	ACG	GCA	595
Leu		Asp	Asn	Arg	Leu	Thr	Gly	Pro	Ile	Pro	Arg	Ala	Leu	Thr	Ala	
	150					155					160					
ATC	CCA	AGC	CIT	AAA	GIT	GIT	GAC	GIC	TCA	AGC	TAA	GAT	TIG	TGT	GGA	643
	Pro	Ser	Leu	Lys	Val	Val	Asp	Val	Ser	Ser	Asn	Asp	Læu	Cys	Gly	
165					170					175					180	
						ccc										691
Thr	Ile	Pro	Thr			Pro	Phe	Ala			Pro	Leu	Gln		Phe	
				185					190					195		
GAG	AAC	AAC	CCG	AGA	. TTG	GAG	GGA	. CCG	GAA	ATT.	CIC	GGI	CII	GCA	AGC	739

PCT/EP97/02443

- 77 -

Clu Asn Asn Pro Arg Leu Glu Gly Pro Glu Leu Leu Gly Leu Ala Ser 200 205 210	
TAI GAO ACT AAC TGO ACC TGAAACAACT GGCAAAACCT GAAAATGAAG Tyr Asp Thr Asn Cys Thr 215	787
AATTOCCCCC TEACCTTCTA AGAACACTTC ACCACTTTAT CAAATATCAC ATCTATTATG	847
CATAACTAT ATATATGTAG TAAAAACAAA AAAAATGAAG AATOGAATOG GTAATATCAT	907
CTOUTTURA TIGAGAACIT CGAGGICIGI AIGIAAAAIT ICIAAAIGCG AITITICGCCI	967
ALATTACTCA CACT	981
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(11) MOLECULE TYPE: protein	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
Met Ala Ser Arg Asn Tyr Arg Trp Glu Leu Phe Ala Ala Ser Leu Thr 10 15	
Law Thr Law Ala Law Ila His Law Val Glu Ala Asn Ser Glu Gly Asp 20 25 30	
Ala Lou Tyr Ala Leu Arg Arg Ser Leu Thr Asp Pro Asp His Val Leu 35 40 45	

Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val

- 78 -

50 55 60

Thr Cys Asn Gln Asp Asn Arg Val Thr Arg Val Asp Leu Gly Asn Ser
65 70 75 80

Asn Leu Ser Gly His Leu Ala Pro Glu Leu Gly Lys Leu Glu His Leu 85 90 95

Gln Tyr Leu Glu Leu Tyr Lys Asn Asn Ile Gln Gly Thr Ile Pro Ser 100 105 110

Glu Leu Gly Asn Leu Lys Asn Leu Ile Ser Leu Asp Leu Tyr Asn Asn 115 120 125

Asm Leu Thr Gly Ile Val Pro Thr Ser Leu Gly Lys Leu Lys Ser Leu 130 135 140

Val Phe Leu Arg Leu Asn Asp Asn Arg Leu Thr Gly Pro Ile Pro Arg 145 150 155 160

Ala Leu Thr Ala Ile Pro Ser Leu Lys Val Val Asp Val Ser Ser Asn 165 170 175

Asp Leu Cys Gly Thr Ile Pro Thr Asm Gly Pro Phe Ala His Ile Pro 180 185 190

Leu Gln Asn Phe Glu Asn Asn Pro Arg Leu Glu Gly Pro Glu Leu Leu 195 200 205

Gly Leu Ala Ser Tyr Asp Thr Asn Cys Thr 210 215

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 789 base pairs

(B) TYPE: nucleic acid

286

(C)	STRANDELNESS:	single
-----	---------------	--------

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 2..661

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

T CC	aa co	C AC	a ca	er co	cc cc	ia ai	AC TX	YT CO	G TO	ig ga	vs ci	r T	C GC	A GO	T	46
Α	Arg Pro Thr Arg Pro Arg Asn Tyr Arg Trp Glu Leu Phe Ala Ala															
	1				5				1	10				1	L5	
TCG	TTA	ATC	CTA	ACC	TTA	GCT	TIG	TTA	CAC	CIG	GIC	GAA	GCA	AAC	ICC	94
Ser	Leu	Ile	Leu	Thr	Leu	Ala	Leu	Ile	His	Leu	Val	Glu	Ala	Asn	Ser	
				20					25					30		
GAA	GGA	GAT	GCT	CIT	TAC	GCT	CIT	CGC	CGG	AGT	TTA	ACA	GAT	ace	GAC	142
Glu	Gly	Asp	Ala	Leu	Tyr	Ala	Leu	Arg	Arg	Ser	Leu	Thr	Asp	Pro	Asp	
			35					40					45			
CAT	GIT	CIC	CAG	AGC	TGG	GAT	CCA	ACT	CIT	GIT	AAT	CCT	TGT	ACC	TGG	190
His	Val	Leu	Gln	Ser	Trp	Asp	Pro	Thr	Leu	Val	Asn	Pro	Cys	Thr	Trp	
		50					55					60				
TIC	CAT	GIC	ACC	TGT	AAC	CAA	GAC	AAC	CGC	GIC	ACT	CGT	GIG	GAT	TTG	238
Phe	His	Val	Thr	Cys	Asn	Gln	Asp	Asn	Arg	Val	Thr	Arg	Val	Asp	Leu	
	65					70					75					

GOG AAT TCA AAC CTC TCT GGA CAT CTT GOG CCT GAG CTT GOG AAG CTT

Gly Asn Ser Asn Leu Ser Gly His Leu Ala Pro Glu Leu Gly Lys Leu

80					85					90					95		
			CAG													3	334
Glu	His	Leu	Gln		Leu	Glu	Leu	Tyr		Asn	Asn	Ile	Gln		Thr		
				100					105					110			
																_	
			GAA								_					-	382
Ile	Pro	Ser	Glu	Leu	Gly	Asn	Leu	Lys	Asn	Leu	Ile	Ser	Leu	Asp	Leu		
			115					120					125				
			AAT													4	130
Tyr	Asn.		Asn	Leu	Thr	Gly		Val	Pro	Thr	Ser		Gly	Lys	Leu		
		130					135					140					
AAG	*****	cic	GIC	TTT	TTA	CGG	CIT	TAA	GAC	AAC	CGA	TIG	ACG	GGG	CCA	4	178
Lys	Ser	[æ]	Val	Phe	Leu	Arg	Leu	Asn	Asp	Asn	Arg	Leu	Thr	Gly	Pro		
	145					150					155						
ATC	Cai	AGA	GCA	CIC	ACT	GCA	ATC	CCA	AGC	CIT	AAA	GIT	GIT	GAT	GIC	5	526
Ile	Pro	Arg	Ala	Leu	Thr	Ala	Ile	Pro	Ser	Leu	Lys	Val	Val	Asp	Val		
160					165					170					175		
TCA	ACC	AAT	GAT	TIG	TGT	GGA	ACA	ATC	CCA	ACA	AAC	GGA	CCT	TrIT	GCT	Ę	574
Ser	Ser	Asn	Asp	Leu	Cys	Gly	Thr	Ile	Pro	Thr	Asn	GJA	Pro	Phe	Ala		
				180					185					190			
CAC	ATT	CCI	TTA	CAG	AAC	TTT	GAG	AAC	AAC	cce	AGG	MG	GAG	GGA	CCC	(522
His	Ile	Pro	Leu	Gln	Asn	Phe	Glu	Asn	Asn	Pro	Arg	Leu	Glu	Gly	Pro		
			195					200					205				
GAA	TTA	C.i.C	GGT	CIT	GCA	AGC	TAC	GAC	ACT	AAC	TGC	ACC	TGA	AAAA	ATT	•	571
Glu	Leu	Leu	Gly	Leu	Ala	Ser	Tyr	Asp	Thr	Asn	Cys	Thr					
		210					215					220					
	کممہ		Gaaa	ATGA	AG A	ATTG	3 3 66	g TG	ACCT	IGIA	AGA	ACAC	TTC :	ACCA	CTTTAT		731
CAA	MATA	CAC .	ATCT	ACTA:	rg t	ATA	AGTA'	T AT	TATA	GTAG	TCC	AAAA	AAA .	AAAA	AAAA		789

(2)	INFORMATION	FOR	SEO	ID	NO:	27:
-----	-------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 220 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Arg Pro Thr Arg Pro Arg Asn Tyr Arg Trp Glu Leu Phe Ala Ala Ser

Leu Ile Leu Thr Leu Ala Leu Ile His Leu Val Glu Ala Asn Ser Glu

Gly Asp Ala Leu Tyr Ala Leu Arg Arg Ser Leu Thr Asp Pro Asp His

Val Leu Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe

His Val Thr Cys Asn Gln Asp Asn Arg Val Thr Arg Val Asp Leu Gly

Asn Ser Asn Leu Ser Gly His Leu Ala Pro Glu Leu Gly Lys Leu Glu

His Leu Gln Tyr Leu Glu Leu Tyr Lys Asn Asn Ile Gln Gly Thr Ile

Pro Ser Glu Leu Gly Asn Leu Lys Asn Leu Ile Ser Leu Asp Leu Tyr

Asn Asn Asn Leu Thr Gly Ile Val Pro Thr Ser Leu Gly Lys Leu Lys

130
135
140

Ser Leu Val Phe Leu Arg Leu Asn Asp Asn Arg Leu Thr Gly Pro Ile 145 150 155 160

Pro Arg Ala Leu Thr Ala Ile Pro Ser Leu Lys Val Val Asp Val Ser 165 170 175

Ser Asn Asp Leu Cys Gly Thr Ile Pro Thr Asn Gly Pro Phe Ala His 180 185 190

Ile Pro Leu Gln Asn Phe Glu Asn Asn Pro Arg Leu Glu Gly Pro Glu
195 200 205

Leu Leu Gly Leu Ala Ser Tyr Asp Thr Asn Cys Thr 210 215 220

- (2) INFORMATION FOR SEQ ID NO: 28:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 894 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: CDNA to mENA
- (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..675
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

GGA	ccc	ATT	CAA	GCC	TCC	GAA	GGG	GAC	GCT	CIT	CAC	GCG	CTT	CGC	CGG	48
Gly	Pro	Ile	Gln	Ala	Ser	Glu	Gly	Asp	Ala	Leu	His	Ala	Leu	Arg	Arg	
1				5					10					15		
AGC	ATT	TCA	GAT	CCA	GAC	TAA	GIT	GIT	CAG	AGT	TGG	GAT	CCA	ACT	CIT	96
Ser	Leu	Ser	Asp	Pro	Asp	Asn	Val	Val	Gln	Ser	Trp	Asp	Pro	Thr	Leu	•
			20					25					30			
									5.	***					<i>-</i>	
				ACT												144
Val	Asn		Cys	Thr	Trp	Phe		Val	Thr	Cys	Asn		HIS	His	Gin	
		35					40					45				
ساللث	∀(مل	ررغان	CallC	GAT	كالمك	GGG	ፖልፋ	TCA	AAC	Jala Vilali	וובאני	GGA	CAT	CTA	GTA	192
				Asp												2.5 0.
-	50					55					60	2				
CCT	GAA	CIT	GGG	AAG	CTT	GAA	CAT	TTA	CAA	TAT	CIG	TAT	GGA	ATC	ATC	240
Pro	Glu	Leu	Gly	Lys	Leu	Glu	His	Leu	Gln	Tyr	Leu	Tyr	Gly	Ile	Ile	
65					70					75					80	
ACT	CIT	TTG	CCT	TTT	GAT	TAT	CTG	AAA	ACA	TTT	ACA	TTA	TCA	GTC	ACA	288
Thr	Leu	Leu	Pro	Phe	Asp	Tyr	Leu	Lys	Thr	Phe	Thr	Leu	Ser	Val	Thr	
				85					90					95		
				TGC												336
His	He	Thr		Cys	Phe	Glu	Ser		Ser	Glu	Leu	Tyr		Asn	Giu	
			100					105					110			
ىلملى	ልልግ	CCX	سمک⊽	ATA	ىلمك	بلمك	GMG	بلغلم	CCY	<u>አ</u> ልጥ	تكلما	אמב	אנשיי	מיזיי	ልጥኅ	384
				Ile												204
odia odir top	W.24.6	115	****		110		120		OLY	1,50-39.3	ADC. UE	125	tarina.	ALPHA (A	TYC	
		گيم بولڊ محد										e-4e-J				
AGT	TIG	GAT	CIG	TAC	AAC	AAC	AAT	CIC	ACC	GGG	AAA	ATC	CCA	TCT	TCT	432
				Tyr												
	130	_		-		135				-	140					

TIG	GGA	AAA	TIG	AAG	TCA	CIT	GIT	TTT	TIG	CGG	CIT	AAC	GAA	AAC	CGA	480
Leu	Gly	Lys	Leu	Lys	Ser	Leu	Val	Phe	Leu	Arg	Leu	Asn	Glu	Asn	Arg	
145					150					155		÷			160	
TTG	ACC	GGT	CCT	ATT	CCT	AGA	GAA	CTC	ACA	GIT	TTA	TCA	AGC	CIT	AAA	528
Leu	Thr	Gly	Pro	Ile	Pro	Arg	Glu	Leu	Thr	Val	Ile	Ser	Ser	Leu	Lys	
				165					170					175		
GIT	GIT	GAT	GIC	TCA	GGG	AAT	GAT	TTG	TGT	GGA	ACA	ATT	CCA	GTA	GAA	576
Val	Val	Asp	Val	Ser	Gly	Asn	Ąsp	Leu	Cys	Gly	Thr	Ile	Pro	Val	Glu	
			180					185					190			
GGA	CCT	TTT	GAA	CAC	ATT	CCT	ATG	CAA	AAC	TTT	GAG	AAC	AAC	CIG	AGA	624
Gly	Pro	Phe	Glu	His	Ile	Pro	Met	Gln	Asn	Phe	Glu	Asn	Asn	Leu	Arg	
		195					200					205				
TTG	GAG	GGA	CCA	GAA	CTA	CTA	GGT	CIT	GCG	AGC	TAT	GAC	ACC	AAT	TGC	672
Leu	Glu	Gly	Pro	Glu	Leu	Leu	Gly	Leu	Ala	Ser	Tyr	Asp	Thr	Asn	Cys	
	210					215					220					
ACT	TAA	aaag:	AAG '	riga	AGAA	C T	AATA	AGAA	G AA	IGIT	AGGT	GAO	cing	AAT		725
Thr																
225																
GAA	CICN	JTA (CCAA	gigr	IT G	TAAA	ICIA'	r at	AGAG	crr	GIT	ICAT	GTT .	ATAT.	ATGAAA	785
GCT	ITGA	GAG A	ACAG	TAAC	rr G	CAAT	TAT	r GG	TATI	GGTA	GAA	aaag	TIG .	AAAT	GAGAAT	845
TGC	rrig	raa '	MGG	ATTT	gr G	TTTC	TATI	g TA	ACTIV	GAAT	TIC	TAT	TA			894

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 225 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

Gly Pro Ile Gln Ala Ser Glu Gly Asp Ala Leu His Ala Leu Arg Arg

1 5 10 15

Ser Leu Ser Asp Pro Asp Asn Val Val Gln Ser Trp Asp Pro Thr Leu
20 25 30

Val Asm Pro Cys Thr Trp Phe His Val Thr Cys Asm Gln His His Gln
35 40 45

Val Thr Arg Leu Asp Leu Gly Asn Ser Asn Leu Ser Gly His Leu Val
50 55 60

Pro Glu Leu Gly Lys Leu Glu His Leu Gln Tyr Leu Tyr Gly Ile Ile
65 70 75 80

Thr Leu Leu Pro Phe Asp Tyr Leu Lys Thr Phe Thr Leu Ser Val Thr 85 90 95

His Ile Thr Phe Cys Phe Glu Ser Tyr Ser Glu Leu Tyr Lys Asn Glu
100 105 110

Ile Gln Gly Thr Ile Pro Ser Glu Leu Gly Asn Leu Lys Ser Leu Ile 115 120 125

Ser Leu Asp Leu Tyr Asn Asn Leu Thr Gly Lys Ile Pro Ser Ser 130 135 140

Leu Gly Lys Leu Lys Ser Leu Val Phe Leu Arg Leu Asn Glu Asn Arg 145 150 155 160

Leu Thr Gly Pro Ile Pro Arg Glu Leu Thr Val Ile Ser Ser Leu Lys 165 170 175 Val Val Asp Val Ser Gly Asn Asp Leu Cys Gly Thr Ile Pro Val Glu 180 185 190

Gly Pro Phe Glu His Ile Pro Met Gln Asn Phe Glu Asn Asn Leu Arg 195 200 205

Leu Glu Gly Pro Glu Leu Leu Gly Leu Ala Ser Tyr Asp Thr Asn Cys 210 215 220

Thr

225

- (2) INFORMATION FOR SEQ ID NO: 30:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1063 base pairs

(B) TYPE: nucleic acid

(C) STRANDEINESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: CLNA to mRNA
- (iii) HYPOTHETICAL: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 106..759
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

TOGACOCACG CGICCGACGA AACCCTAATT TIGCTICCIC ATCTTGTICA GAAAATTACT

114

60

CAAAITCCTA TTAGATTACT CTCTCTTCGA CCTCCGATAG CTCAC ATG GCG TCT

Met Ala Ser

		****	200	maci	~~~	~~~	m	003	r-com	66.8~	erre y	איזאיי	رخلدي	አረናግ	Valsh.	-4	162
	AAC Asn															,	LUZ
MLG	<i>A</i> SII	TÄT	n. g	ريدد	Ora	10	1.110	rane.	*******		15	226	2,04	***			
	,					20											
GCT	TIG	TTA	CAC	CIG	GIC	GAA	GCA	AAC	TCC	GAA	GGA	GAT	GCT	CIT	TAC	2	210
Ala	Leu	Ile	His	Leu	Val	Glu	Ala	Asn	Ser	Glu	Gly	Asp	Ala	Leu	Tyr		
20					25					30					35		
	CIT															4	258
Ala	Leu	Arg	Arg		Leu	Thr	Asp	Pro		His	Val	Leu	Gln		Trp		
				40					45					50			
ርንጥ	CCA	2/ C4U)	بلغلغا	باغلغا	יוזאא	المحقاد	ילא אלני	እርም	ייראנו	مالعل	ייאמיי	مكلت	አርር	بالمقالات	አልሮ	4	306
	Pro															٠	,,,,
gen	110	1111	55	VCLL	rusi i	110	Cys	60	روبد	***	******	V C.A.J.	65	Cy Lo	1 1		
CAA	GAC	AAC	CGC	GIC	ACT	CGT	GIG	GAT	TTG	GGG	AAT	TCA	AAC	CTC	TCT	:	354
Gln	Asp	Asn	Arg	Val	Thr	Arg	Val	Asp	Leu	Gly	Asn	Ser	Asn	Leu	Ser		
		70					75					80					
GGA	CAT	CIT	GCG	CCT	GAG	CIT	GGG	AAG	CIT	GAA	CAT	TTA	CAG	TAT	CTA	4	402
Gly	His	Leu	Ala	Pro	Glu	Leu	Gly	Lys	Leu	Glu	His	Leu	Gln	Tyr	Leu		
	85					90					95						
ሮ እሮ	سملتم	mn /c	222	8 ክ ርግ	3 B C	n mc	C 3 3	CV:3	78 CW771	አ ግ	بنغيات	WY.	<i>ር</i> ግ አ አ	Canana Canana	CC 3		4EN
	CTC Leu															•	450
100	Marie LA	* A *	wy 5	nau	105	***	(3111	GLY	1111	110	110	.JCI	Giu	LACTO	115		
					2000										a. a. a.		
TAA	CIG	AAG	AAT	CIC	ATC	AGC	TIG	GAT	CIG	TAC	AAC	AAC	AAT	CIT	ACA		498
Asn	Leu	Lys	Asn	Leu	Ile	Ser	Leu	Asp	Leu	Tyr	Asn	Asn	Asn	Leu	Thr		
				120			·		125			•		130			
GGG	ATA	GIT	$\alpha\alpha$	ACT	TCI	TTG	GGA	. AAA	TIG	AAG	TCI	CIG	GIC	TTT	TTA		546
Gly	Ile	Val	Pro	Thr	Ser	Leu	Gly	Lys	Leu	Lys	Ser	Leu	Val	Phe	Leu		
			135					140					145				

CGG CTT AAT GAC AAC CGA TTG ACG GGG CCA ATC CCT AGA GCA CTC ACT	594
Arg Leu Asn Asp Asn Arg Leu Thr Gly Pro Ile Pro Arg Ala Leu Thr	
150 155 160	
GCA ATC CCA AGC CIT AAA GIT GIT GAT GIC TCA AGC AAT GAT TIG TGT	642
Ala Ile Pro Ser Leu Lys Val Val Asp Val Ser Ser Asn Asp Leu Cys	
165 170 175	
GGA ACA ATC CCA ACA AAC GGA CCT TTT GCT CAC ATT CCT TTA CAG AAC	690
Gly Thr Ile Pro Thr Asn Gly Pro Phe Ala His Ile Pro Leu Gln Asn	
180 185 190 195	
TIT GAG AAC AAC COG AGG TIG GAG GGA COG GAA TTA CTC GGT CIT GCA	738
Phe Glu Asn Asn Pro Arg Leu Glu Gly Pro Glu Leu Leu Gly Leu Ala	
200 205 210	
ስምም መለም መለም አለም አለም መምም እረም መምለአአአአአክመመ ምምለአአአአምመው ምእአአአመሞለአም	789
AGC TAC GAC ACT AAC TGC ACC TGAAAAAATT GGCAAAACCT GAAAATGAAG	707
Ser Tyr Asp Thr Asn Cys Thr 215	
AATTGGGGG TGACCTTGTA AGAACACTTC ACCACTTTAT CAAATATCAC ATCTACTATG	849
	5.25
TAATAAGTAT ATATATGTAG TOCAAAAAAA AAATGAAGAA TOGAATCAGT AATATCATCT	909
GGICTCAATT GAGAACTITG AGGICTGTGT ATGTAAAATT TCTAAATGCG ACTTTCGCGT	969
ACTGIAATGI TCGGITGTGG GATTCTGAGA AGTAACATTT GIATTGGTAT GGTATCAAGT	1029
TGTTCTGCCT TGTCTGCAAA AAAAAAAAA AAAA	1063

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 218 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(11) MOLECULE TYPE: protein

(x:) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Met Ala Ser Arg Asn Tyr Arg Trp Glu Leu Phe Ala Ala Ser Leu Ile

Low The Lew Ala Lew Ile His Lew Val Glu Ala Asn Ser Glu Gly Asp

Ala Leu Tyr Ala Leu Arg Arg Ser Leu Thr Asp Pro Asp His Val Leu

Gin Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val

Thr Cys Asn Gln Asp Asm Arg Val Thr Arg Val Asp Leu Gly Asn Ser

Asr. Leu Ser Gly His Leu Ala Pro Glu Leu Gly Lys Leu Glu His Leu

Gin Tyr Leu Glu Leu Tyr Lys Asn Asn Ile Gln Gly Thr Ile Pro Ser

Clu Leu Cly Asn Leu Lys Asn Leu Ile Ser Leu Asp Leu Tyr Asn Asn

Ann Law Thr Gly Ile Val Pro Thr Ser Leu Gly Lys Leu Lys Ser Leu

Val Pre Leu Arg Leu Asn Asp Asn Arg Leu Thr Gly Pro Ile Pro Arg

Ala Leu Thr Ala Ile Pro Ser Leu Lys Val Val Asp Val Ser Ser Asn

165 170 175

Asp Leu Cys Gly Thr Ile Pro Thr Asn Gly Pro Phe Ala His Ile Pro 180 185 190

Leu Gln Asn Phe Glu Asn Asn Pro Arg Leu Glu Gly Pro Glu Leu Leu 195 200 205

Gly Leu Ala Ser Tyr Asp Thr Asn Cys Thr 210 215

- (2) INFORMATION FOR SEQ ID NO: 32:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: CDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Arabidopsis thaliana
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: SERK gene cONA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 195..2069

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

GGATTTTTAT TITE	ATTITT ACICTI	ngir igririyan	G CTAATGGGTT TTTAAAAGGG	60
TIACCAAAA AAT	HAGIGAG TITIGIK	entga ggitgicic.	r graaagigit aatggiggig	120
ATTTTCGGAA GTT	AGGITT TCICCO	GAAGAGATO	A AATCAAGATT CGAAATTTAC	180
CATTGTTGTT TGA			G TTT ATC TTA CTT TCA	230
	1	5	10	
CTG ATC TTA CT	r ccg aat cat	TCA CTG TGG CT	I GCT TCT GCT AAT TIG	278
Leu Ile Leu Le 15	ı Pro Asn His	Ser Leu Trp Lei 20	u Ala Ser Ala Asn Leu 25	
GAA GGT GAT GC	r tig cat act	TIG AGG GTT AC	i cta git gat cca aac	326
			r Leu Val Asp Pro Asn	
30	35		40	
AAT GIC TIG CA	G AGC TGG GAT	CCT ACG CTA GIV	g aat oot too aca tog	374
			l Asn Pro Cys Thr Trp	
45	50	5	5 60	
TTC CAT GTC AC	I TGC AAC AAC	GAG AAC AGT GT	C ATA AGA GIT GAT TIG	422
Phe His Val Th	r Cys Asn Asn	Glu Asn Ser Va	l Ile Arg Val Asp Leu	
	65	70	75	
GGG AAT GCA GA	G TTA TOT GGO	CAT TTA GTT CC	A GAG CIT GGT GTG CTC	470
Gly Asn Ala Gl	u Leu Ser Gly	His Leu Val Pr	o Glu Leu Gly Val Leu	
8	0	85	90	
AAG AAT TTG CA	g tat tig gag	CTT TAC AGT AA	C AAC ATA ACT GGC CCG	518
	n Tyr Leu Glu	-	n Asm Ile Thr Gly Pro	
95		100	105	
ATT CCT AGT AA	T CTT GGA AAT	CTG ACA AAC TI	A GIG AGT TIG GAT CIT	566

Ile	Pro	Ser	Asn	Leu	Gly	Asn	Leu	Thr	Asn	Leu	Val	Ser	Leu	Asp	Leu		
	110					115					120						
												J					
TAC	ATT	AAC	AGC	TTC	TCC	GGT	CCT	TTA	ccc	GAA	TCA	TTG	GGA	AAG	CIT	(514
Tyr	Leu	Asn	Ser	Phe	Ser	Gly	Pro	Ile	Pro	Glu	Ser	Leu	Gly	Lys	Leu		
125					130					135					140		
TCA	AAG	CIG	AGA	TTT	CIC	CGG	CIT	AAC	AAC	AAC	AGT	CIC	ACT	GGG	TCA	(662
Ser	Lys	Leu	Arg	Phe	Leu	Arg	Leu	Asn	Asn	Asn	Ser	Leu	Thr	Gly	Ser		
				145					150					155			
ATT	CCT	ATG	TCA	CIG	ACC	AAT	TTA	ACT	ACC	CIT	CAA	GIG	TTA	GAT	CTA	•	710
Ile	Pro	Met	Ser	Leu	Thr	Asn	Ile	Thr	Thr	Leu	Gln	Val	Leu	Asp	Leu		
			160					165					170				
TCA	AAT	AAC	AGA	CIC	TCT	GGT	TCA	GIT	CCT	GAC	AAT	GGC	TCC	TIC	TCA		758
Ser	Asn	Asn	Arg	Leu	Ser	Gly	Ser	Val	Pro	Asp	Asn	Gly	Ser	Phe	Ser		
		175					180					185					
CIC	TTC	ACA	$\alpha\alpha$	ATC	AGT	J.J.J.	GCT	AAT	AAC	TTA	GAC	CTA	TGT	GGA	CCT	:	806
Leu	Phe	Thr	Pro	Ile	Ser	Phe	Ala	Asn	Asn	Leu	Asp	Leu	Cys	Gly	Pro		
	190					195					200						
GIT	ACA	AGT	CAC	CCA	TGT	CCI	GGA	TCT	ccc	ccc	TTT	TCT	CCT	CCA	CCA		854
Val	Thr	Ser	His	Pro	Cys	Pro	Gly	Ser	Pro	Pro	Phe	Ser	Pro	Pro	Pro		
205					210					215					220		
CCT	TTT	ATT	CAA	ccr	ccc	CCA	GTT	TCC	ACC	CCG	AGT	GGG	TAT	GGT	ATA		902
Pro	Phe	Ile	Gln	Pro	Pro	Pro	Val	Ser	Thr	Pro	Ser	Gly	Tyr	Gly	Ile		
				225					230					235			
ACT	GGA	GCA	ATA	GCT	GGT	GGA	GTT	GCT	GCA	GGT	GCT	GCT	TIG	$\alpha\alpha$	TTT		950
Thr	Gly	Ala	Ile	Ala	Gly	Gly	Val	Ala	Ala	Gly	Ala	Ala	Leu	Pro	Phe		
			240		-			245					250				
GCT	GCT	CCT	GCA	ATA	GCC	JalaL	GCT	TGG	TGG	CGA	OGA	AGA	AGC	CCA	CTA		998
									Trp								-
									- 4			- 2					

		255					260			,		265				
								GAA Glu				2				1046
	270					275					280					
GGA	CAG	CIC	AAG	AGG	TTT	TCT	TIG	CGG	GAG	CTA	CAA	GIG	GCG	AGT	GAT	1094
Gly	Gln	Leu	Lys	Arg	Phe	Ser	Leu	Arg	Glu	Leu	Gln	Val	Ala	Ser	Asp	
285					290					295					300	
GGG	TIT	AGT	AAC	AAG	AAC	TTA	TIG	GGC	AGA	GGT	GGG	TTT	GGG	AAA	GIC	1142
Gly	Phe	Ser	Asn	Lys	Asn	Ile	Leu	Gly	Arg	Gly	Gly	Phe	Gly	Lys	Val	
				305					310					315		
TAC	AAG	GGA	CGC	TIG	GCA	GAC	GGA	ACT	Crr	GTT	GCT	GIC	AAG	AGA	CIG	1190
Tyr	Lys	Gly	Arg	Leu	Ala	Asp	Gly	Thr	Leu	Val	Ala	Val	Lys	Arg	Leu	
e-			320					325					330			
AAG	GAA	GAG	CGA	ACT	CCA	GGT	GGA	GAG	CIC	CAG	TTT	CAA	ACA	GAA	GTA	1238
Lys	Glu		Arg	Thr	Pro	Gly	_	Glu	Leu	Gln	Phe		Thr	Glu	Val	
		335					340					345				
								CGA								1286
Glu		Ile	Ser	Met	Ala		His	Arg	Asn	Leu		Arg	Leu	Arg	Gly	
	350					355					360					
TTC	TGT	ATG	ACA	CCC	ACC	GAG	AGA	TIG	CIT	GIG	TAT	CCI	TAC	ATG	CCC	1334
	Cys	Met	Thr	Pro	Thr	Glu	Arg	Leu	Leu	Val	Tyr	Pro	Tyr	Met	Ala	
365					370					375					380	
aat	GGA	agt	GIT	GCT	TCG	TGT	CIC	AGA	GAG	AGG	CCA	ccc	TCA	CAA	CCT	1382
Asn	Gly	Ser	Val	Ala 385	Ser	Cys	Leu	Arg	Glu 390	Arg	Pro	Pro	Ser	Gln 395	Pro	
ccc	CTT	GAT	TGG	CCA	ACG	CGG	AAG	AGA	ATC	GCG	CTA	GGC	TCA	GCT	CGA	1430
								Arg								
		-	400			2		405				~	410		~	

GGT	TTG	TCT	TAC	CTA	CAT	GAT	CAC	TGC	GAT	ccc	AAG	ATC	ATT	CAC	CGT	1478
Gly	Leu	Ser	Tyr	Leu	His	Asp	His	Cys	Asp	Pro	Lys	Ile	Ile	His	Arg	
		415					420					425				
GAC	GTA	AAA	GCA	GCA	AAC	ATC	CIC	ATT	GAC	GAA	GAA	TIC	GAA	GCG	GIT	1526
Asp	Val	Lys	Ala	Ala	Asn	Ile	Leu	Leu	Asp	Glu	Glu	Phe	Glu	Ala	Val	
	430					435					440					
GIT	GGA	GAT	TTC	GGG	TTG	GCA	AAG	CIT	ATG	GAC	TAT	AAA	GAC	ACT	CAC	1574
Val	Gly	Asp	Phe	Gly	Leu	Ala	Lys	Leu	Met	Asp	Tyr	Lys	Asp	Thr	His	
445					450					455					460	
GIG	ACA	ACA	GCA	GIC	CGT	GGC	ACC	ATC	GGT	CAC	ATC	GCT	CCA	GAA	TAT	1622
Val	Thr	Thr	Ala	Val	Arg	Gly	Thr	Ile	Gly	His	Ile	Ala	Pro	Glu	Tyr	
				465					470					475		
CIC	TCA	ACC	GGA	AAA	JCI	TCA	GAG	AAA	ACC	GAC	GIT	TIC	GGA	TAC	GGA	1670
Leu	Ser	Thr	Gly	Lys	Ser	Ser	Glu	Lys	Thr	Asp	Val	Phe	Gly	Tyr	Gly	
			480					485					490			
		CII														1718
Ile	Met	Leu	Leu	Glu	Leu	He		Gly	Gln	Arg	Ala		Asp	Leu	Ala	
		495					500					505			•	
~~~	COMP.	~~~~	***	~~~	C3.C	~>~	~~~	76 FEB-71	more to	Canada	~~~	6437-27-4	~***	***	~~~	4 0-4 0-0
		GCT														1766
ALG		Ala	WEI	ASD	MSD	515	VOL	ræc	Læu	Læu		irb	vali	nys	GTĀ	
	510					272					520					
تفلفك	-Alati	AAG	CNG	מממ	አአር	لاملية	CNC	አጣም	Verteb	تتلت	ርኔጥ	מייצו	<i>(</i> !ሕጥ	رييين	<b>ሮ</b> ስ አ	1814
		Lys														T01.4
525		mja	47.4	ыyы	530	L.C.U	Gau	. ra	TYCHT.	535	rap	ELU	rap	LAC: LA	540	
പ്പോ					∪ تــ					کټو کټ دن					-3-8c√	
ልግል	<u>አ</u> ልሮ	TAC	GyG	GXG	ACD.	GDA	و الم	CAA	CAA	تهلك	ልሞል	ረ ልግ	تغلمگ	Gas	تىلىك	1862
		Tyr														سار کیا کہا گئی
20 0 00is	e and Li	~ 2 4	~	545	-	ngar aku buh			550		an da Var	V/2 40-46 8	7 to de	555		
				-278-0										آب کی عد		

CTA	TGC	ACG	CAA	GGA	TCA	CCA	ATG	GAA	AGA	CCA	AAG	ATG	TCT	GAA	GIT	1910
Leu	Cys	Thr	Gln	Gly	Ser	Pro	Met	Glu	Arg	Pro	Lys	Met	Ser	Glu	Val	
			560					565					570			
GTA	AGG	ATG	CIG	GAA	GGA	GAT	GGG	CIT	GCG	GAG	AAA	TGG	GAC	GAA	TGG	1958
Val	Arg	Met	Leu	Glu	Gly	Asp	Gly	Leu	Ala	Glu	Lys	Trp	Asp	Glu	Trp	
		575					580					585				
CAA	AAA	GTT	GAG	ATT	TIG	AGG	GAA	GAG	TTA	GAT	TIG	AGT	CCT	TAA	CCT	2006
Gln	Lys	Val	Glu	Ile	Leu	Arg	Glu	Glu	Ile	Asp	Leu	Ser	Pro	Asn	Pro	
	590					595					600					
AAC	TCT	GAT	TGG	TTA	CIT	GAT	TCT	ACT	TAC	AAT	TIG	CAC	GCC	GIT	GAG	2054
Asn	Ser	Asp	Trp	Ile	Leu	Asp	Ser	Thr	Tyr	Asn	Leu	His	Ala	Val	Glu	
605					610					615					620	
TTA	TCT	GGT	CCA	AGG	TAA	AAAA	AAA A	AAA/	KAAA	AA						2089
Leu	Ser	Gly	Pro	Arg												
				625												

- (2) INFORMATION FOR SEQ ID NO: 33:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 625 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

Met Glu Ser Ser Tyr Val Val Phe Ile Leu Leu Ser Leu Ile Leu Leu 1 5 10 15

Pro Asm His Ser Leu Trp Leu Ala Ser Ala Asm Leu Glu Gly Asp Ala 20 25 30

Leu	His	Thr 35	Leu	Arg	Val	Thr	Leu 40	Val	Asp	Pro	Asn	Asn 45	Val	Leu	Gln
		22					-14-0					, <b>* -</b>			
Ser	Trp 50	Asp	Pro	Thr	Leu	Val 55	Asn	Pro	Cys	Thr	Trp 60	Phe	His	Val	Thr
				•											
Cys	Asn	Asn	Glu	Asn	Ser	Val	Ile	Arg	Val	Asp	Leu	Gly	Asn	Ala	Glu
65					70					75					80
Leu	Ser	Gly	His	Leu	Val	Pro	Glu	Leu	Gly	Val	Leu	Lys	Asn	Leu	Gln
				85					90					95	
Tyr	Leu	Glu	Leu	Tyr	Ser	Asn	Asn	Ile	Thr	Gly	Pro	Ile	Pro	Ser	Asn
-			100	-				105		-			110		
Lear	Gly	y c.u.	T em	Max	λen	T.OU	Ual	Sor	I an i	yen	T.co. T	17 h m	I an	λen	Car
2004	ary	115	1.9-W	1111	A-ESSA	1.XCC	120	Ju	2004	ديده د	ماند	125	3300	8-30-74-4	w
		נגג					120					140			
Dia -	O	<b>⇔</b> 1	D	<b>71</b>	ъ	<b>~</b> 3	0	¥	<b>0</b> 1	<b>.</b>	<b>*</b>	<b>~</b>	7	<b>7</b>	<b>N</b>
Pne	Ser	GIY	PTO	TTE	Pro		ser	reu	GIÀ	Lys		Ser	rys	reu	Arg
	130					135					140				
	Leu	Arg	Leu	Asn	Asn	Asn	Ser	Leu	Thr	Gly	Ser	Ile	Pro	Met	Ser
145					150					155					160
Leu	Thr	Asn	Ile	Thr	Thr	Leu	Gln	Val	Leu	Asp	Leu	Ser	Asn	Asn	Arg
				165					170					175	
Leu	Ser	Gly	Ser	Val	Pro	Asp	Asn	Gly	Ser	Phe	Ser	Leu	Phe	Thr	Pro
			180					185					190		

Pro Cys Pro Gly Ser Pro Pro Phe Ser Pro Pro Pro Pro Pro Phe Ile Gln 210 215 220

Ile Ser Phe Ala Asn Asn Leu Asp Leu Cys Gly Pro Val Thr Ser His

205

200

225	Gly	C)			230					235					240
7. T	Gly	03										,			
wig		GTÀ	Val	Ala 245	Ala	Gly	Ala	Ala	Leu 250	Pro	Phe	Ala	Ala	Pro 255	Ala
Ile	Ala	Phe	Ala 260	Trp	Trp	Arg	Arg	Arg 265	Ser	Pro	Leu	Asp	Ile 270	Phe	Phe
Asp	Val	Pro 275	Ala	Glu	Glu	Asp	Pro 280	Glu	Val	His	Leu	Gly 285	Gln	Leu	Lys
Arg	Phe 290	Ser	Leu	Arg	Glu	Leu 295	Gln	Val	Ala	Ser	<b>Asp</b> 300	Gly	Phe	Ser	Asn
Lys 305	Asn	Ile	Leu	Gly	Arg 310	Gly	Gly	Phe	Gly	Lys 315	Val	Tyr	Lys	Gly	Arg 320
Leu	Ala	Asp	Gly	Thr 325	Leu	Val	Ala	Val	Lys 330	Arg	Leu	Lys	Glu	Glu 335	Arg
Thr	Pro	Gly	Gly 340	Glu	Leu	Gln	Phe	Gln 345	Thr	Glu	Val	Glu	<b>Met</b> 350	Ile	Ser
Met	Ala	Val 355	His	Arg	Asn	Leu	Leu 360	Arg	Leu	Arg	Gly	Phe 365	Cys	Met	Thr
Pro	Thr 370	Glu	Arg	Leu	Leu	Val 375	Tyr	Pro	Tyr	Met	Ala 380	Asn	Gly	Ser	Val
Ala 385	Ser	Cys	Leu	Arg	Glu 390	Arg	Pro	Pro	Ser	Gln 395	Pro	Pro	Leu	Asp	Trp
Pro	Thr	Arg	Lys	Arg 405	Ile	Ala	Leu	Gly	Ser 410	Ala	Arg	Gly	Leu	Ser 415	Tyr

Leu His Asp His Cys Asp Pro Lys Ile Ile His Arg Asp Val Lys Ala

Ala Asn Ile Leu Leu Asp Glu Glu Phe Glu Ala Val Val Gly Asp Phe Gly Leu Ala Lys Leu Met Asp Tyr Lys Asp Thr His Val Thr Thr Ala Val Arg Gly Thr Ile Gly His Ile Ala Pro Glu Tyr Leu Ser Thr Gly Lys Ser Ser Glu Lys Thr Asp Val Phe Gly Tyr Gly Ile Met Leu Leu Glu Leu Ile Thr Gly Gln Arg Ala Phe Asp Leu Ala Arg Leu Ala Asn Asp Asp Asp Val Met Leu Leu Asp Trp Val Lys Gly Leu Leu Lys Glu Lys Lys Leu Glu Met Leu Val Asp Pro Asp Leu Gln Thr Asn Tyr Glu Glu Arg Glu Leu Glu Gln Val Ile Gln Val Ala Leu Leu Cys Thr Gln Gly Ser Pro Met Glu Arg Pro Lys Met Ser Glu Val Val Arg Met Leu Glu Gly Asp Gly Leu Ala Glu Lys Trp Asp Glu Trp Gln Lys Val Glu Ile Leu Arg Glu Glu Ile Asp Leu Ser Pro Asn Pro Asn Ser Asp Trp 

Ile Leu Asp Ser Thr Tyr Asn Leu His Ala Val Glu Leu Ser Gly Pro

Arg

### REFERENCES

Aleith, F. and Richter, G. (1990) Planta 183, 17-24.

Bent, A.F., Kunkel, B.N., Dahlbeck D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B.J. (1994) Science 265, 1856-1860.

Braun T, Schofield P.R. and Sprengel R. (1991) EMBO J. 10, 1885-1890.

Dangl, J.L. (1995) Cell 80, 363-366.

De Jong, A.J., Schmidt, E.D.L. and De Vries, S.C. (1993) Plant. Mol. Biol. 5, 367-377.

De Vries, S.C., Booij, H., Meyerink, P., Huisman, G., Wilde, H.D., Thomas T.L. and Van Kammen, A. (1988a) Planta 176, 196-204.

De Vries, S.C., Hoge, H., and Bisseling, T. (1988b) In Plant Molecular Biology Manual, B6,

S.B. Gelvin, R.A. Schilperoort, and D.P.S. Verma. eds (Dordrecht, the Netherlands: Kluwer Academic Publishers), pp 1-13.

Dubois, T., Guedira, M., Dubois, D. and Vasseur, J. (1991) Protoplasma 162, 120-127.

Dudits, D., Györgyey, J., Bögre, L. and Bakó, L. (1995) In: In vitro Embryogenesis in Plants.

Ed. Thorpe, T.A. Kluwer Press, pp. 267-308.

Engler J.A., Van Montagu M. and Engler G. (1994) Plant Mol. Biol. Rep. 12, 321-331.

Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Exp. Cell. Res. 50, 151-158.

Giorgetti, L., Vergara, M.R., Evangelista, M., LoSchiavo, F., Terzi, M. and Ronchi, V.N. (1995) Mol. Gen. Genet. 246, 657-662.

Goldberg, R.B., Barker, S.J. and Perez-Grau, L. (1989) Cell 56, 149-160.

Goldberg, R.B., Barker, S.J., Perez-Grau, L. (1989) Cell 56, 149-160.

Goldberg, R.B., de Paiva, G. and Yadegari, R. (1994) Science 266, 605-614.

Govind, S. and Steward, R. (1991) Dorsoventral pattern formation in *Drosophila*. Trends Genet. 7, 119-125.

Guzzo, F., Baldan, B., Levi, M., Sparvoli, E., LoSchiavo, F., Terzi, M., and P. Mariani (1995). Protoplasma 185, 28-36.

Guzzo, F., Baldan, B., Mariani, P., LoSchiavo, F. and Terzi, M. (1994) Exper. Botany 45, 1427-1432.

Hanks, S.K., Quinn, A.M. and Hunter, T. (1988) Science 241, 42-52.

Hashimoto, C., Hudson, K.L. and Anderson K.V. (1988) Cell 52, 269-279.

Heck, G.R., Perry, S.E., Nichols, K.W. and Fernandez, D.E. (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7, 1271-1282.

Heldin, C-H. (1995) Cell 80, 213-223.

Hodge, R., Paul, Wyatt, Draper, J. and Scott, R. (1992) Plant J. 2, 257-260.

Horn, M.A. and Walker, J.C. (1994) Biochim. Biophys. Acta 1208, 65-74.

Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J. and Jones, J.D.G. (1994) Science 266, 789-792.

Kobe B. and Deisenhofer J. (1994) TIBS 19, 415-421.

Li, F., Barnathan, E.S. and Karikó, K. (1994) Nucl. Acid Res. 22, 1764-1765.

Liang, P. and Pardee, A.B. (1992) Science, 257, 967-971.

Meyerowitz, E.M. (1995) EDBC 95 congress of the European developmental biology organization. Abstract SI4.

Mu J-H., Lee H-S. and Kao T-h. (1994) Plant Cell 6, 709-721.

Pennell, R.I., Janniche, L., Scofield, G.N., Booij, H., de Vries, S.C. and Roberts, K. (1992) J. Cell Biol. 119, 1371-1380.

Rounswey, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Plant Cell 7, 1259-1269.

Sato, S., Toya, T., Kawahara, R., Whittier, R.F., Fukuda, H. and Komamine, A. (1995) Plant Mol. 28, 39-46.

Shorton, C.A. and Wasserman, S.A. (1993) Cell 72, 515-525.

Sterk. P., and De Vries, S.C. (1992) In Redenbaugh K (ed), Synseeds: Applications of synthetic seeds to crop improvement, CRC Press, London (1992).

Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A. and De Vries, S.C. (1991) Plant Cet 3, 907-921.

Thomas, T.L. (1993) Plant Cell 5, 1401-1410

Toonen, M.A.J. and De Vries, S.C. (1995) In: Embryogenesis, the generation of a plant.

Eds Wang, T.L. and Cuming, A. BIOS Scientific Publishers, Oxford, UK, pp. 173-189.

Toonen, M.A.J., Hendriks, T., Schmidt, E.D.L., Verhoeven, H.A., Van Kammen, A and De Vnes. S.C. (1994) Planta 194, 565-572.

Toonen, M.A.J., Schmidt, E.D.L., Hendriks, T., Verhoeven, H.A., Van Kammen, A. and De Vnes. S.C. (1996) submitted.

Tork. K.U. and Komeda, Y. (1994) 4th international congress of plant molecular biology. Abstract 692.

Van Engelen, F.A. and De Vries, S.G. (1992) Trends Genet. 8, 66-70.

Vamer, J.E. and Lin, L.-S. (1989) Cell 56, 231-239.

Walker J.C. (1994) Plant Mol. Biol. 26, 1599-1609.

Walker, J.C. (1993) Plant J. 3, 451-456.

Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. (1994) Cell 78, 1101-1115.

Wilde, H.T., Nelson, W.S., Booij H., de Vries, S.C. and Thomas, T.L. (1988) Planta 176, 205-213.

Wurtele, E.S., Wang, H., Durgerian, S., Nikolau, B.J. and Ulrich, T.H. (1993) Plant Physiol. 102, 303-312.

Zhao, Y., Feng, X.H., Watson, J.C., Bottino, P.J. and Kung, S.D. (1994) Plant Molec. Biol. 26, 791-803.

Zimmerman, J.L. (1993) Plant Cell 5, 1411-1423.

## What is Claimed is:

- 1. A method of producing apomictic seeds comprising the steps of:
  - (i) transforming plant material with a nucleotide sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell embryogenic,
  - (ii) regenerating the thus transformed material into plants, or carpel-containing parts thereof, and
  - (iii) expressing the sequence in the vicinity of the embryo sac.
- A method according to the preceding claim, wherein the apomictic seeds are of the adventitious embryony type.
- A method according to either of the preceding claims, wherein expression of the sequence yields a protein kinase capable of spanning a plant cell membrane.
- A method according to the preceding claim wherein the kinase is capable of autophosphorylation.
- 5. A method according to any of the preceding claims, wherein the protein is a leucine rich repeat receptor like kinase and comprises a ligand binding domain, a proline box, a transmembrane domain, a kinase domain and a protein binding domain.
- 6. A method according to the preceding claim, wherein the protein lacks a functional ligand binding domain but comprises a proline box, a transmembrane domain, a kinase domain and a protein binding domain.
- A method according to any preceding claim, wherein once incorporated into the cell membrane, the protein binding domain is located intra-cellularly.
- A method according to any preceding claim, wherein the sequence further encodes a cell membrane targeting sequence.

- 9. A method according to any preceding claim, wherein the sequence is that depicted in SEQ ID Nos. 1 or 2 or is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.
- A method according to any preceding claim, wherein the sequence is modified in that known mRNA instability motifs or polyadenylation signals are removed and/or codons which are preferred by the plant into which the sequence is to be inserted are used so that expression of the thus modified sequence in the said plant yields substantially senter protein to that obtained by expression of the unmodified sequence in the organism in which the protein is endogenous.
- 11. A method according to any preceding claim, wherein expression of the sequence is under control of an inducible or developmentally regulated promoter.
- A method according to the preceding claim, wherein expression of the sequence is under control of one of the following: a promoter which regulates expression of SERK genes in planta, the carrot chitinase DcEP3-1 gene promoter, the Arabidopsis AtChitIV gene promoter, the Arabidopsis LTP-1 gene promoter, the Arabidopsis bel-1 gene promoter, the petunia fbp-7 gene promoter, the Arabidopsis ANT gene promoter, the promoter of the O126 gene from Phalaenopsis.
- 13. A method according to any of the preceding claims, wherein the sequence is expressed in the somatic cells of the embryo sac, ovary wall, nucellus, or integuments.
- 14. A method according to any of the preceding claims, wherein the endosperm within the approxic seed results from fusion of polar nuclei within the embryo sac with a pollen-derived male gamete nucleus.
- 15. A method according to the preceding claim, wherein the sequence encoding the protein is expressed prior to fusion of the polar nuclei with the male gamete nucleus.

- 16. DNA comprising a sequence encoding a protein the presence of which in an active form in a cell, or membrane thereof, renders said cell embryogenic.
- 17. DNA according to claim 16, wherein the protein is a leucine rich repeat receptor like kinase and comprises a ligand binding domain, a proline box, a transmembrane domain, a kinase domain and a protein binding domain, the ligand binding domain optionally being absent or functionally inactive.
- 18. DNA according to either of claims 16 or 17 comprising a DNA sequence encoding a N-terminal protein fragment having the following amino acid sequence: Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Oys Thr Trp Phe His Val Thr Oys Asn.
- 19. DNA according to claim 18 comprising a DNA sequence encoding a N-terminal protein fragment having the following amino acid sequence: Val Xaa Gin Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val Thr Cys Asn with Xaa being a variable amino acid, but preferably Leu or Val.
- 20. DNA according to claim 19 comprising a DNA sequence encoding a N-terminal protein fragment having the following amino acid sequence: Val Xaa Gln SerTrp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp Phe His Val Thr Cys Asn Xab Xac Xad Xae Val Xaf Arg Val Asp Leu Gly Asn Xag Xah Leu Ser Gly His Leu Xai Pro Glu Leu Gly Xaj Leu Xak Xal Leu Gln with Xaa to Xak being a variable amino acid, but preferably

Xaa = Leu or Val

Xab = Asn or Gin

Xac = Gku or Asp or His

Xad = AsnorHis

Xae = Seror Arg or Gan

 $Xaf = \mathbf{ke} \text{ or } Thr$ 

Xag = Aba or Ser

Xah=Gluor Asn

Xai = Valor Ala

Xaj=Valor Lys

Xak=Lys or Gau

Xal = Asn or His

- 21. DNA comprising a sequence encoding a protein having the sequence depicted in SEQ ID No. 3, or a protein substantially similar thereto which is capable of being membrane bound and which has kinase activity.
- 22. DNA comprising a sequence encoding a protein having the sequence depicted in SEQ ID No. 21, or a protein substantially similar thereto which is capable of being membrane bound and which has kinase activity.
- 23. DNA comprising a sequence encoding a protein having the sequence depicted in SEQ ID No. 33, or a protein substantially similar thereto which is capable of being membrane bound and which has kinase activity.
- 24. DNA comprising a sequence encoding a protein having the sequence depicted in SEQ ID Nos. 23, 25, 27, 29 and 31, or a protein substantially similar thereto which is capable of being membrane bound and which has kinase activity.
- 25. DNA according to any preceding claim, comprising a DNA having the sequence depicted in SEQ ID Nos. 1 or 2 or a sequence which is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.
- 26. DNA according to any preceding claim, comprising a DNA having the sequence depicted in SEQ ID No: 20 or a sequence which is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.
- 27. DNA according to any preceding claim, comprising a DNA having the sequence depicted in SEQ ID No: 32 or a sequence which is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.

- 28. DNA according to any preceding claim, comprising a DNA having the sequence depicted in SEQ ID Nos: 22, 24, 26, 28 and 30 or a sequence which is complementary to one which hybridizes under stringent conditions with the said sequences and which encodes a membrane bound protein having kinase activity.
- 29. DNA according to any of the preceding claims, which further encodes a cell membrane targeting sequence.
- 30. DNA according to any one of the preceding claims, in which the protein encoding region is under expression control of a developmentally regulated or inducible promoter.
- 31. DNA according to claim 30, wherein the promoter is one of the following: a promoter which regulates expression of SERK genes in planta, the carrot chitinase DcEP3-1 gene promoter, the Arabidopsis AtChitlV gene promoter, the Arabidopsis LTP-1 gene promoter, the Arabidopsis bel-1 gene promoter, the petunia fbp-7 gene promoter, the Arabidopsis ANT gene promoter, the promoter of the O126 gene from Phalaenopsis; the Arabidopsis DMC1 promoter, the pTA7001 inducible promoter.
- 32. DNA according to any preceding claim, wherein said DNA is a recombinant DNA.
- 33. DNA according to any preceding claim, wherein the sequence is modified in that known mRNA instability motifs or polyadenylation signals are removed and/or codons which are preferred by the plant into which the DNA is to be inserted are used so that expression of the thus modified DNA in the said plant yields substantially similar protein to that obtained by expression of the unmodified DNA in the organism in which the protein is endogenous.
- 34. DNA which is complementary to that which hybridizes under stringent conditions with the DNA of any one of claims 16 to 29.
- 35. A vector containing a DNA sequence as claimed in any one of claims 16 to 34.
- 36. Plant cell transformed with the DNA of any one of claims 16 to 34 or the vector of claim 35, which contains the DNA stably incorporated into its genome.

- 37. Plant cell according to claim 36, which is part of a whole plant.
- 38. Plants transformed with the DNA of any one of claims 16 to 34 or the vector of claim 35, the progeny of such plants which contain the DNA stably incorporated, and/or the apomictic seeds of such plants or such progeny.
- 39. Plants transformed with the DNA comprised by the recombinant DNA of claims 16 to 34.
- 40. Use of the DNA of any one of claims 16-34 in the manufacture of apomictic seeds.
- 41. Plants which are derived from apomictic seeds obtainable by the method of any one of claims 1-15 or 40.
- 42. A method of obtaining cultivars comprising the steps of fertilizing plants with the pollen of the plants of either of claims 38, 39 or 40 and cultivars which result from the said method.
- 43. A method of obtaining embryogenic cells in plant material, comprising transforming the material with a recombinant DNA sequence as claimed in any one of claims 16-34, the DNA comprised by the recombinant DNA of any one of claims 16 to 34, or the vector of claim 35, expressing the sequence in the material or derivatives thereof and subjecting the said material or derivatives to a compound which acts as a ligand for the gene product of the said sequence.
- 44. A method according to the preceding claim, wherein the sequence encodes a leucine rich repeat receptor like kinase, and the compound is a phyto-hormone.
- 45. A method of generating somatic embryos under *in vitro* conditions wherein the SERK protein is overexpressed ectopically.
- 46. A bag containing apomictic seeds obtainable by the method of any one of claims 1-15 or 40.



SUBSTITUTE SUFET (DUE 26)



Hin: 2

FIG. 2A



FIG. 28

SUBSTITUTE SHEET (RULE 26)





## Fig. 3 (cont.)











#### SUBSTITUTE SHEET (BILLE 26)

# 





SUBSTITUTE SHEET (RULE 26)



no. I

no. II

ro. III









Intern al Application No PCT/EP 97/02443

				POHE	, , , , , , , , , , , , , , , , , , , ,
A. CLASSI IPC 6	FICATION OF SUBJECT MATTE C12N15/82 C12N	9/12 C07K1	4/415	A01H5/00	
According t	o International Patent Classification	(IPC) or to both national (	classification	and IPC	
	SEARCHED	######################################			NOON THE PROPERTY OF THE PROPE
Minimum d IPC 6	ocumentation searched (classificatio C12N A01H C07K	n system followed by class	ification sym	ibols)	
Documentat	ion searched other than minimum de	ocumentation to the extent	that such do	curnents are included in the fields	searched
Electronic d	ata base consulted during the interna	tonal search (name of dat	a base and,	where practical, search terms used	)
C. DOCUM	ENTS CONSIDERED TO BE RE	LEVANT	***************************************		
Category *	Citation of document, with indicate	on, where appropriate, of t	the relevant	D97258&c2	Relevant to class No.
X	HANNA, W.W. AND ITS IDENTIFICATION BREEDING" CROP SCIENCE, vol. 27, November pages 1136-1139, see page 1138, 1	ON AND USE IN 1987.	PLANT	IXIS:	1,2
			-/		
X Fund	er documents are listed in the contin	uation of box C.	X	Patent family members are listed	in annex.
"A" docume conside "E" earlier of filing d "L" docume which is citation other is "0" docume other is "p" docume later th	nt which may throw doubts on prior is cated to establish the publication of or other special reason (as specified at referring to an oral disclosure, us teans in published prior to the internations an the priority date claimed	he international ity claim(s) or ate of another i) e, exhibition or al filing date but	or cit in a cas in a	er document published after the in- priority date and not in conflict we do understand the principle or to rention.  Current of particular relevance; the most be considered novel or canno- volve an inventive step when the di- current of particular relevance; the ninot be considered to involve an in- current is combined with one or a mit, such combination being obvict the art.	nth the application but theory underlying the claimed invention of the considered to occurrent is taken alone claimed invention needs when the nore other such docurrent to a person skilled at family
	September 1997	a search	Da	e of mailing of the international s	earch report
Name and m	nailing address of the ISA  European Patent Office, P.B. 58  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 ( Fax. (+31-70) 340-3016		Aus	horized officer Holtorf, S	

1

Inter al Application No PCT/EP 97/02443

		PCT/EP 97/02443	
C.(Continu	suon) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Х	KOLTUNOW,A.M., ETAL .: "APOMIXIS: MOLECULAR STRATEGIES FOR THE GENERATION OF GENETICALLY IDENTICAL SEEDS WITHOUT FERTILIZATION" PLANT PHYSIOLOGY, vol. 108, 1995,	1,2,16, 35-41	
Y	pages 1345-1352, XP002040860 page 1345, right column, line 1-7; page 1347, right column; page 1348, right column, line 35-50; page 1349, 1350, 1351, left column, line 18-21; Fig. 2 + 3	9	
X	KOLTUNOW, A.M.: "APOMIXIS: EMBRYO SACS AND EMBRYOS FORMED WITHOUT MEIOSIS OR FERTILIZATION IN OVULES" THE PLANT CELL, vol. 5, October 1993,	1,2,16, 35-41	
Υ	pages 1425-1437, XP002040861 see the whole document	9	
Х	WO 89 00810 A (MAXELL HYBRIDS INC) 9 February 1989	1,2,16, 35-41	
Υ	pages 7,15,29-35	9	
X	MARTIN, G.B.M., ET AL .: "A MEMBER OF THE TOMATO Pto GENE FAMILY CONFERS SENSITIVITY TO FENTHION RESULTING IN RAPID CELL DEATH" THE PLANT CELL, vol. 6, 1994,	21-28, 30,32, 34-39	
Y	pages 1543-1552, XP002040862 page 1546; Fig.4	9	
X	SONG, W-Y, ET AL .: "A RECEPTOR KINASE-LIKE PROTEIN ENCODED BY THE RICE DISEASE RESISTANCE GENE , Xa21" SCIENCE, vol. 270, 15 December 1995, pages 1804-1806, XP002040863 see the whole document	24,30, 32,35-39	
X	NEWMAN, T., ET AL .: "GENES GALORE: A SUMMARY OF METHODS FOR ACCESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF ANONYMOUS ARABIDOPSIS cDNA CLONES" PLANT PHYSIOLOGY, vol. 106, 1994, pages 1241-1255, XP000571449 see the whole document	27,28	
	~/~~		

Inten and Application No PCT/EP 97/02443

		7C1/EP 97/02443
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NEWMAN,T., ET AL.: "GENES GALORE: A SUMMARY OF METHODS FOR ASSESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF	27,28
	ANONYMOUS ARABIDOPSIS cDNA CLONES" EMBL SEQUENCE DATA LIBRARY, 30 August 1993, HEIDELBERG, GERMANY, XP002040864 ACCESSION No. T04109	
x	NEWMAN, T., ET AL .: "GENES GALORE: A SUMMARY OF METHODS FOR ASSESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF ANONYMOUS ARABIDOPSIS cDNA CLONES" EMBL SEQUENCE DATA LIBRARY, 27 July 1995, HEIDELBERG, GERMANY, XP002040865 ACCESSION No. H37195	28
X	NEWMAN, T., ET AL.: "GENES GALORE: A SUMMARY OF METHODS FOR ASSESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF ANONYMOUS ARABIDOPSIS cDNA CLONES" EMBL SEQUENCE DATA LIBRARY, 27 July 1995, HEIDELBERG, GERMANY, XP002040866 ACCESSION No. H36800	28
X	DESPREZ, T., ET AL.: "THE ARABIDOPSIS THALIANA TRANSCRIBED GENOME: THE GDR cDNA PROGRAM" EMBL SEQUENCE DATA LIBRARY, 25 June 1994, HEIDELBERG, GERMANY, XP002040867 ACCESSION No. Z34606	28
A	DECROOCQ-FERRANT, V., ET AL.: "PETUNIA HYBRIDA HOMOLOGUES OF shaggy/zeste-white 3 EXPRESSED IN FEMALE AND MALE REPRODUCTIVE ORGANS" THE PLANT JOURNAL, vol. 7, no. 6, 1995, pages 897-911, XP002040868 see page 907, right-hand column	1-46
P,X	SCHMIDT, E.D.L., ET AL.: "A LEUCINE-RICH REPEAT CONTAINING RECEPTOR-LIKE KINASE MARKS SOMATIC PLANT CELLS COMPETENT TO FORM EMBRYOS" DEVELOPMENT, vol. 124, no. 10, 1997, pages 2049-2062, XP002040869 see the whole document	16-18, 21-32, 34-37, 39,45

Inter nat Application No PCT/EP 97/02443

-		PCT/EP 9//02443	
~~~~	saon) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
P,X	WO 97 11167 A (US GOVERNMENT) 27 March 1997 page 1,5,21,24	1,2,41	
P,X	WO 97 10704 A (US GOVERNMENT) 27 March 1997 see the whole document	1,2,41	

Intern at Application No PCT/EP 97/02443

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 8900810 A	09-02-89	AU 629796 B AU 2255288 A EP 0329736 A CN 1040123 A JP 5503836 T	15-10-92 01-03-89 30-08-89 07-03-90 24-06-93
WO 9711167 A	27-03-97	AU 7367396 A	09-04-97
WO 9710704 A	27-03-97	AU 7367496 A	09-04-97