n-step Tree Backup for estimating $Q \approx q_*$ or q_π Initialize Q(s, a) arbitrarily, for all $s \in S, a \in A$ Initialize π to be greedy with respect to Q, or as a fixed given policy Algorithm parameters: step size $\alpha \in (0,1]$, a positive integer n

All store and access operations can take their index mod n+1

Loop for each episode:
Initialize and store
$$S_0 \neq \text{terminal}$$

Choose an action A_0 arbitrarily as a function of S_0 ; Store A_0

 $T \leftarrow \infty$

Loop for
$$t = 0, 1, 2, \dots$$
:

| If $t < T$:

Take action A_t ; observe and store the next reward and state as R_{t+1}, S_{t+1} If S_{t+1} is terminal:

If
$$S_{t+1}$$
 is terminal $T \leftarrow t+1$ else:

Choose an action A_{t+1} arbitrarily as a function of S_{t+1} ; Store A_{t+1} $\tau \leftarrow t + 1 - n$ (τ is the time whose estimate is being updated)

Choose an action
$$\tau \leftarrow t + 1 - n$$
 (τ is If $\tau \geq 0$:

If t + 1 > T:

else

Until $\tau = T - 1$

$$\mid \quad T \leftarrow t + 1 - h \quad (T \text{ is the thr})$$
 $\mid \quad \text{If } \tau \geq 0:$
 $\mid \quad \quad \text{If } t + 1 \geq T:$
 $\mid \quad \quad G \leftarrow R_T$

$$G \leftarrow R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)$$

Loop for $k = \min(t, T - 1)$ down through $\tau + 1$:

- $G \leftarrow R_k + \gamma \sum_{a \neq A_k} \pi(a|S_k)Q(S_k, a) + \gamma \pi(A_k|S_k)G$
- $Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[G Q(S_{\tau}, A_{\tau}) \right]$
- If π is being learned, then ensure that $\pi(\cdot|S_{\tau})$ is greedy wrt Q