Теоретический материал к семинару №6

Видоизменим краевую задачу из предыдущего семинара, сделав из нее задачу на собственные значения

$$\begin{cases} \frac{d}{dx} \left(\left(k_0 + k_1 u^2 \right) \frac{du}{dx} \right) + \lambda u = 0 \\ u(a) = u(b) = 0 \end{cases}, \tag{1}$$

где [a;b] - отрезок, на котором ищется решение.

Разностная схема легко получается из схемы для краевой задачи заменой $-h^2f_n$ на $h^2\lambda u_n$:

$$\begin{cases} (u_{n+1} - u_n) \left(k_0 + k_1 \frac{u_n^2 + u_{n+1}^2}{2} \right) - (u_n - u_{n-1}) \left(k_0 + k_1 \frac{u_n^2 + u_{n-1}^2}{2} \right) + h^2 \lambda u_n = 0 \\ u_0 = u_N = 0 \end{cases}$$
(2)

Здесь h - шаг равномерной сетки, N - число интервалов сетки.

Поскольку это нелинейная задача на собственные значения, то для ее решения надо использовать метод дополненного вектора — вариант метода Ньютона для задач на собственные значения.

В этом методе строится новый вектор по следующему правилу

$$\begin{cases} \nu_n = u_n, & 0 \le n \le N \\ \nu_{N+1} = \lambda & . \end{cases}$$
 (3)

Добавление новой переменной потребует увеличения на одно числа уравнений — иначе задача не будет иметь однозначного решения. Так мы снова приходим к необходимости постановки дополнительного граничного условия в задаче на собственные значения.

Дальше задача решается методом Ньютона, подобно тому, как это делалось при решении нелинейной краевой задачи в предыдущем семинаре. Переделки программы будут минимальными.

В данном случае очень полезно провести серию расчетов на сгущающихся сетках и понаблюдать за сходимостью серии найденных собственных значений к некоторому пределу. Это важно, чтобы вовремя заметить «перескок» на другое собственное значение, если он будет иметь место. При «перескоке» серию расчетов придется повторить с другим начальным приближением.

Ясно, что результат расчета на более грубой сетке следует использовать в качестве начального приближения при расчете на более подробной. Для равномерной сетки и сгущения сетки в 2 раза значения в нечетных узлах переносятся непосредственно (1 в 3, 2 в 5 и т.п.), а в четных получаются интерполяций – полусуммой соседних нечетных узлов (например $u_2 = 0.5(u_1 + u_3)$). Вычисленное на грубой сетке собственное значение переносится на подробную непосредственно, выполняя роль начального приближения.

К полученному в результате серии расчетов набору приближенных значений λ можно применять методы апостериорной оценки погрешности решения Ричардсона и Эйткена. Используя рекуррентное сгущение, можно получить результат с высокой точностью даже на не слишком подробных сетках.

Задачи к семинару №6

Задачу следует решать на отрезке [0;1], $k_0 = 1$, $k_1 = 0.5$, начальное приближение для собственного значения $\lambda_0 = 40$, самая первая сетка пусть имеет 8 интервалов, последняя – 512 (серия из 7 расчетов).

Дополнительное граничное условие выглядит следующим образом (здесь u - дополненный вектор):

Python:

```
u[(len(u)//2) + 1] - u[(len(u)//2) - 1] - 2 * h = 0.
```

MATLAB:

```
u(end/2+1) - u(end/2-1) - 2*h = 0.
```

В данном случае ставится условие на производную собственной функции в середине отрезка (она должна быть равна 1).

Построить график λ от номера расчета. Также вывести на график собственную функцию с самой подробной сетки. По полученному набору λ определить эффективный порядок метода и получить апостериорную оценку погрешности. С помощью техники рекуррентных сгущений вычислить собственное значение с максимально возможной точностью.