Recurrent Neural Networks (RNNs)

Lorena Gallego Viñarás

(logalleg@pa.uc3m.es)

What are RNNs?

- Designed to process sequential data by maintaining a memory of previous inputs.
- RNNs capture temporal dependencies the output at time t depends on previous steps.
- They use a **hidden state** passed across time steps, enabling the network to "remember" past context.
- RNNs share weights across all time steps.
- Trained via Backpropagation Through Time (BPTT)

Unrolled RNNs

Horizontal Axis (Time – t):

Each column corresponds to a single time step $(x_1, x_2, ..., x_n)$

Vertical Axis (Depth – Layers):

Each row represents a different RNN layer. Inputs are processed layer by layer, from bottom to top.

States:

- h,(1): Hidden state at time t, layer I
- o c_t^{(l):} Cell state at time t, layer I (only in LSTM)

RNN has two outputs - out and hidden.

Types of RNNs

Applications of RNNs

Language Modeling & Translation

Sentiment Analysis

Speech Recognition & Synthesis

Time-Series Forecasting

Music Generation

Video & Gesture Recognition

Robotics & Autonomous Systems

Dialogue Systems & Storytelling

Problems of traditional RNNs

- Vanishing gradients
- **Exploding gradients**
- Long-term memory fade
- Limited global context
- Low parallelism

Solutions?

Reduce network depth to lower complexity.

Techniques such as gradient clipping, learning rate scheduling, and careful regularization

Use advanced architectures like **LSTM** or GRU.

Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Decides what information to discard.

Input gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Determines what information to store.

Input gate

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Determines what information to store.

Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Controls what information is sent to the next layer

GRU (Gated Recurrent Unit)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Reset gate: decides how much of the information from the past should be kept for future steps
- **Update gate:** determines **how much** past information **should be forgotten.**

Comparative table

Aspect	RNN	LSTM	GRU
Architecture	Simple recurrent structureVanishing gradient issue	- Memory cells- Input, forget, output gates	- Fewer gates - Simpler than LSTM
Learning Capability	- Short-term dependencies only	- Good for long-term dependencies	- Handles both short & long dependencies
Training Complexity	Easy to implementUnstable gradients	- Complex - Slow to train	- Simpler than LSTM - Faster training
Typical Applications	Basic sequence modelingStock prediction	Language modelingTranslation	- Speech & video processing
Advantages	- Easy to understand	- Effective for long sequences	LightweightComparable to LSTM
Challenges	Vanishing gradientPoor long-term memory	Slow trainingMany parameters	- Sometimes slightly less accurate

PyTorch implementation

Import useful libraries...

```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
import numpy as np
```

... and now, let's get hands on!

Bibliography

https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks

https://www.kaggle.com/code/kanncaa1/recurrent-neural-network-with-pytorch/notebook

https://medium.com/data-science/pytorch-basics-how-to-train-your-neural-net-intro-to-rnn-cb6ebc594677

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://aiml.com/compare-the-different-sequence-models-rnn-lstm-gru-and-transformers/

https://github.com/udacity/deep-learning-v2-pytorch/blob/master/recurrent-neural-networks/time-series/Simple_R NN.ipvnb

https://medium.com/aimonks/recurrent-neural-network-working-applications-challenges-f445f5f297c9