1)

O algoritmo de Thomos e mais eficiente que a eliminação de Gouss clássica, polo foto de ele usar uma motriz tridiogenal, ou seza, a processo e realizado na diagonal principal e mes diagonais adjocentes a ela somente, enquento que ma eliminação de Gouss clássica o processo e realizado na motrez inteira, portanto, o algoritmo de Thomos consegue ser mais eficiente do que a eliminação de Gouss clássica.

3)

Tempos para cada método em segundos

Algoritmo 1

Dimensão	1	2	3	4	5	Média
64	0.000633	0.000605	0.000314	0.001785	0.000143	0.000696
128	0.000824	0.000850	0.000842	0.000868	0.001702	0.001017
256	0.004139	0.000781	0.001659	0.000815	0.002639	0.002006
512	0.006707	0.006264	0.007213	0.007077	0.003293	0.006110
1024	0.012926	0.025982	0.011569	0.019740	0.025155	0.019074
2048	0.160742	0.080839	0.073761	0.170700	0.076173	0.112443

Algoritmo 2

Dimensão	1	2	3	4	5	Média
64	0.007266	0.001966	0.001247	0.000417	0.001407	0.002460
128	0.012246	0.005697	0.002800	0.001837	0.003588	0.005233
256	0.011654	0.008101	0.002231	0.003542	0.006639	0.006433
512	0.014337	0.007731	0.008274	0.006508	0.017256	0.010821
1024	0.059469	0.026942	0.029442	0.032358	0.027630	0.035168
2048	0.226598	0.295540	0.247610	0.241016	0.241207	0.162441

Algoritmo 3

Dimensão	1	2	3	4	5	Média
64	0.001620	0.001437	0.000253	0.000251	0.001028	0.000917
128	0.002566	0.001351	0.000563	0.000961	0.000720	0.001232
256	0.002469	0.001870	0.001053	0.001599	0.001484	0.001695
512	0.004587	0.003376	0.003299	0.004352	0.002985	0.003719
1024	0.008863	0.009376	0.007620	0.008509	0.008660	0.008605
2048	0.052450	0.051610	0.051604	0.053658	0.055831	0.053030

Algoritmo 4

Dimensão	1	2	3	4	5	Média
64	0.008365	0.001823	0.001154	0.001218	0.001194	0.002750
128	0.010274	0.005426	0.004949	0.004066	0.004905	0.005924
256	0.031110	0.027306	0.025999	0.027089	0.027580	0.027816
512	0.353171	0.354622	0.357822	0.391379	0.363820	0.364162
1024	3.776463	3.736921	3.811951	3.818809	3.777163	3.784261
2048	31.775395	31.875705	31.972255	31.747490	32.021431	31.878455

Algoritmo 5

Dimensão	1	2	3	4	5	Média
64	0.000308	0.000244	0.000397	0.000175	0.000071	0.000239
128	0.000441	0.000351	0.000464	0.000319	0.000472	0.000409
256	0.000543	0.000408	0.000399	0.000322	0.000635	0.000461
512	0.000527	0.000643	0.000501	0.000309	0.000604	0.000516
1024	0.000720	0.001242	0.000718	0.000641	0.000821	0.000828
2048	0.007571	0.002471	0.000477	0.001183	0.000599	0.002460

Gráficos dimensão n x tempo

Ordem de custo

Algoritmo 1: 1.6827 **Algoritmo 2:** 1.2363 **Algoritmo 3:** 1.3199

Algoritmo 4: 3.1875 **Algoritmo 5:** 0.6022

Observando os gráficos e a ordem de custo, percebe-se que o algoritmo 5 é o menos custoso e o mais rápido entre esses algoritmos, e que o algoritmo 4 é o mais lento e mais custoso. Além disso, apesar do algoritmo 1 ser mais rápido que o 2, ele é mais custoso, assim como o 3 é mais rápido que o 2 e mais custoso que ele também, outra relação que pode ser observada é que o algoritmo 3 é mais rápido que o algoritmo 1 nas dimensões 64 e 128, contudo nas dimensões maiores que a 128 o algoritmo 1 se torna mais rápido.

A ordem teórica é a logarítmica (log n), porque o algoritmo de Thomas não precisa percorrer a matriz inteira, ou seja, ele é inferior a ordem linear e não pode ser constante porque os tempos observados não são constantes, portanto, a ordem teórica é a logarítmica. Do mesmo modo, a ordem observada é a logarítmica também, haja vista que os tempos obtidos não são lineares e não são constantes.

Para calcular o tempo estimado, acredito que seja usar a fórmula tempo = dimensão elevada à ordem de custo $(T = N^p)$

O tempo estimado para cada método resolver um sistema com 1 milhão de incógnitas seria:

Algoritmo 1: 395.72 anos Algoritmo 2: 0.829 anos Algoritmo 3: 2.634 anos

Algoritmo 4: 4.23 x 10^11 anos

Algoritmo 5: 1.14 dias

O tempo estimado para cada método resolver um sistema com 1 bilhão de incógnitas seria:

Algoritmo 1: 4.42 x 10⁸ anos

Algoritmo 2: 4245 anos Algoritmo 3: 24004.5 anos Algoritmo 4: 1.54 x 10^21 anos

Algoritmo 5: 3.04 dias