UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2019/1 Prova da área IIB

1 - 5	6	7	Total	

Forma exponencial

Nome:					Cartão:	
Ponto extra:	()Wikipédia	()Apresentação	()Nenhum	Tópico:		

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

Séries e transformadas de Fourier:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.

1.	Linearidade	Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$ $\mathcal{F}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{F}\{f(t)\} + \beta \mathcal{F}\{g(t)\}$			
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty}f(t)=0$, então $\mathcal{F}\left\{f'(t)\right\}=iw\mathcal{F}\left\{f(t)\right\}$			
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$			
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$			
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$			
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$			
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$			
7.	Teorema da Convolução	$\mathcal{F}\{(f*g)(t)\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$			
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$			
8.	Conjugação	$\overline{F(w)} = F(-w)$			
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$			
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$			
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$			
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$			
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$			

Série de Fourier $f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$ $f(t) = \sum_{n=-\infty}^{\infty} C_n e^{iw_n t},$ onde $w_n = \frac{2\pi n}{T}, \quad T$ é o período de f(t) onde $C_n = \frac{a_n - ib_n}{2}$ $a_0 = \frac{2}{T} \int_0^T f(t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt,$ $a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$ $b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$

Forma trigonométrica

Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
de Fourier	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Tabela de integrais definidas:

18	abela de integrais definidas:	
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases}$	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) \cos(nx) dx =$
		$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	22. $\int_0^\infty xe^{-a^2x^2}\sin(mx)dx = \frac{m\sqrt{\pi}}{4a^3}e^{-\frac{m^2}{4a^2}} (a>0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

- Questão 1 (1.0 ponto) Assinale as alternativas que indicam representações corretas para o número complexo $Z = \left(\sqrt{3} + i\right)^8$
 - () $Z = -128 \left(1 + \sqrt{3}i\right)$

() $Z = 256e^{\frac{-2\pi i}{3}}$

() $Z = -256 \left(1 + \sqrt{3}i\right)$

() $Z = 128e^{\frac{-2\pi i}{3}}$ () $Z = 256e^{\frac{-\pi i}{3}}$

() $Z = 128 \left(1 + \sqrt{3}i \right)$

() $Z = 256e^{-3}$

() $Z = 256 \left(1 + \sqrt{3}i\right)$

() $Z = 128e^{\frac{-\pi i}{3}}$

() Nenhuma das anteriores.

() Nenhuma das anteriores.

ullet Questão 2 (1.0 ponto) Considere a função periódica f(t) constante por partes de período 4 cujo grafíco é esboçado abaixo:

e sua séries de Fourier dada por

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{\pi}{2}nt\right) + b_n \left(\frac{\pi}{2}nt\right) \right].$$

Podemos afirmar que:

- () $a_0 = 0$ e $a_n = 0$ quando $n \ge 1$.
- () $a_0 \neq 0$ e $a_n = 0$ quando $n \geq 1$.
- () $a_0 = 0$ e $a_n \neq 0$ quando $n \geq 1$.
- () $a_0 \neq 0$ e $a_n \neq 0$ quando $n \geq 1$.
- () Nenhuma das anteriores.

- $() b_1 > 0$
 - $() b_1 = 0$
 - $() b_1 < 0$
 - () Não é possível determinar.

• Questão 3 (1.0 ponto) Agora considere a função $g(t) = f(t)^2$, onde a f(t) é função definida na questão 2. Quando escrita em séries de Fourier g(t) assume a seguinte forma:

$$g(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$$

onde $w_n = \frac{2\pi}{T}$ e T é o período fundamental de g(t).

- () T=1.
- () T=2.
- () T=4.
- () T = 8.
- () Nenhuma das anteriores.

- () $C_0 = \frac{1}{4}, C_1 = -\frac{1}{\pi}$
- () $C_0 = \frac{1}{2}, C_1 = -\frac{1}{\pi}$
- () $C_0 = \frac{1}{4}, C_1 = -\frac{2}{\pi}$
- () $C_0 = \frac{1}{2}, C_1 = -\frac{2}{\pi}$
- () Nenhuma das anteriores.

• Questão 4 (2.0 pontos) Suponha que a função f(t) represente os valores medidos por um microfone exposto ao som de um contrabaixo executando na faixa de 33Hz a 400Hz) e um oboé executando na faixa de 700Hz a 1500Hz. Seja dada por:

$$g(t) = \frac{10}{\pi} \frac{a^2 t}{(a^2 + t^2)^2}$$

onde $a = \frac{1}{2000\pi}$. Defina $G(w) := \mathcal{F}\{g(t)\}\ e\ h(t) := f(t) * g(t)$. Assinale as alternativas corretas e esboce a parte positiva do diagrama de espectro de amplitudes de G(w) no espaço dado, indicando o ponto de máxima amplitude.

- () $G(w) = 5a|w|ie^{-a|w|}$
- () $G(w) = -5a|w|ie^{-a|w|}$
- () $G(w) = 5awie^{-a|w|}$
- () $G(w) = -5awie^{-a|w|}$
- () Nenhuma das anteriores.
- () A operação de convolução aplicada privilegia em $\boldsymbol{h}(t)$ o som do contrabaixo em detrimento do oboé.
- () A operação de convolução aplicada privilegia em h(t) o som do oboé em detrimento do contrabaixo.
- () A operação de convolução aplicada desloca todas as frequência para
- A operação de convolução aplicada desloca todas as frequência para valores mais baixos.

• Questão 5 (1.0 ponto) Considere a equação diferencial parcial dada por:

$$u_t(x,t) - u_x(x,t) = 0,$$

$$u(x,0) = f(x).$$

Assinale as alternativas que indicam $U(k,t) := \mathcal{F}_x \{u(x,t)\}$ e u(x,t) em termos da função f(x) dada. Considere a notação F(k) $\mathcal{F}\{f(x)\}.$

- $(\quad)\ U(k,t) = F(k)e^{-ikt}$
- () $U(k,t) = F(k)e^{-ik^2t}$
- () $U(k,t) = F(k)e^{ik^2t}$
- $(\quad)\ U(k,t)=F(k)e^{ikt}$
- () Nenhuma das anteriores.

- () u(x,t) = f(x-t)
- () u(x,t) = f(x+t)
- () $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} f(y)e^{-(x-y)^2/4t} dy$
- () $u(x,t) = \frac{f(x)}{\sqrt{4\pi t}}e^{-(x-t)^2/4t}$
- () Nenhuma das anteriores.

 \bullet Questão 6 (2.0 ponto) Calcule a transformada de Fourier da função dada por:

$$f(t) = \sum_{j=0}^{\infty} e^{-j} \delta(t-j).$$

Observação: aplicar a transformada de Fourier vale até 1.0, somar a série vale até 1.5 e; separar parte real e imaginária vale até 2.0.

• Questão 7 (2.0 pontos) Seja f(t) uma função que possue transformada de Fourier $F(w) = \mathcal{F}\{f(t)\}$. O gráfico abaixo apresenta o diagrama de espectro de magnitudes de F(w).

Esboce o diagrama de magnitudes de $g(t) = f'(t)\cos(3t)$ e $h(t) = \frac{d}{dt}\left(f(t)\cos(3t)\right)$.