UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2006 question paper

9701 CHEMISTRY

9701/04 Paper 4 (Theory 2), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			70
Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	4

1	(a)	boiling points increase down the group (because of) (1)	
		larger van der Waals/intermolecular attractions or bigger induced dipoles (1)	
		due to more electrons per molecule (1)	[3]
	(b)	tetrahedral - clear from diagram (1) angles = 109°-110° (1)	[2]
	(c)	(i) four bonded pairs + 2 lone pairs around Xe (1) three lone pairs on at least one F atom (1)	
		(ii) square planar (can be read into very clear diagram in (i)) (1) angles = 90° (1)	[4]
	(d)	CCl ₄ does not react or SiCl ₄ does (or read into an equation) (1)	
		due to presence of available/low-lying/d-orbitals on Si (1)	
		$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$ (or $SiCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$ etc: also allow partial hydrolysis) (1)	[3]
	(e)	$PbCl_4 +8_Na +4_C_2H_5Cl \longrightarrow Pb(C_2H_5)_4 +8_NaCl(1)$	
		$Pb(C_2H_5)_4 = 207 + 4x29 = 323 (1)$	
		323g needs 8 x 23 = 184g Na	
		∴1000g needs 1000 x 184/323 = 569 or 570 g ecf from equn (1) (correct ans = (2) marks)	
	(alternative method:		
		1.0kg of Pb(C ₂ H ₅) ₄ is 3.096 moles (1) ∴we need 8 x 3.096 = 24.77 moles of Na, which is 569 or 570 g) (1)	[3]

[Total: 15]

			7 0
Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	4

2 (a) (i) [one chiral centre only] (1)

(ii)
$$C_{13}H_{18}O_2(1)$$

(iii)
$$M_r = 206$$
 ecf (1)

mass =
$$0.15 \times (100/1000) \times 206 = 3.1 \text{ g}$$
 ecf (1) (correct ans = (2) marks)

(iv)
$$n(NaOH) = 0.1 \times 12/100 = 1.2 \times 10^{-3} \text{ moles (1)}$$

$$n(\mathbf{A}) = 0.6 \times 10^{-3}$$
, so $M_r = 0.1/(0.6 \times 10^{-3}) = 167$ (allow 166-170) (1) (correct ans = (2) marks)

This fits with $HO_2C-C_6H_4-CO_2H$ (which has $M_r = 166$) (1)

(b) (i)
$$(K_a =) [H^+][A^-]/[HA] (1)$$

(ii)
$$[H^{+}] = \sqrt{K_a}.c = \sqrt{6.3 \times 10^{-6} \times 0.15} = 9.72 \times 10^{-4} (1)$$

pH = **3.0** (1)

(c) (i) one that resists/control/maintains changes in pH (NOT no change in pH) (1)

when **small amounts** of acid/H⁺ (or base/OH⁻) are added. (1)

(ii)
$$HPO_4^{2-} + H^+ \longrightarrow H_2PO_4^{-}(1)$$

 $H_2PO_4^{-} + OH^- \longrightarrow HPO_4^{2-} + H_2O(1)$

[Total: 16 max 15]

[6]

[7]

			7 0
Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	4

3 (a) (i) $2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2 (or x \frac{1}{2}) (1)$

(ii) (Down the group the nitrates)

become more stable or are more difficult to decompose

or need a higher temperature (to decompose) (1)

because the radius of **cation/Group II ion//M**²⁺ increases *or* charge density **of the cation** decreases (1)

thus causing less polarisation/distortion of the anion/NO₃ /nitrate (1)

"molar mass" of mixture = 211.6 + 3 x 12 = 247.6 (1)

10 g is thus 10/247.6 = 0.040(4) moles (allow ecf for 0.047(3), from $M_r = 211.6$) (1)

no of moles of gas produced = $0.0404 \times 4 = 0.162 \text{ moles}$ (ecf: 0.189 mol)

: volume =
$$0.1616 \times 24 = 3.88 \text{ or } 3.9 \text{ dm}^3$$
 (allow ecf for 4.54 dm^3) (1) (correct ans = (3) marks)

(alternative method:

(b)

1 mole/247.6g of mixture will produce
$$4 \times 24 = 96 \text{ dm}^3 \text{ of gas (1)}$$

::10g of mixture will produce $96 \times 10/247.6 = 3.88 \text{ or } 3.9 \text{ dm}^3 \text{) (1)}$

(CO is poisonous...)

due to complexing/ligand exchange with (Fe of) haemoglobin (1) (NOT redox involving Fe^{2+}/Fe^{3+})

stopping O₂ being transported around body/in blood/to tissues/from lungs (1) [2]

[Total: 9 max 8]

[4]

[3]

			70
Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	4

4 (a) (i) light or heat [aq or $AlCl_3$ negates] (1)

(ii) NaOH/KOH/alkali/OH⁻(1) in alcohol/ethanol + heat [aq negates] (1)

(iii) $[-CH_2CH(C_6H_5)-]$ [C-C not needed, but C=C is wrong] (1)

(iv) CH₂=CHCN [C=C is needed here] (1)

[5]

[4]

[3]

(b) (i) /OH⁻(aq)/NaOH(aq)/aqueous alkali/ + heat [aq or solution or dil etc. needed] (1)

(ii) (pale) yellow ppt/crystals (NOT orange or orange-yellow) (1)

(iii) C/D is $C_6H_5CO_2Na \checkmark D/C$ is $CHI_3 \checkmark (1) + (1)$

(c) (i)

(1)

(ii) needs AlCl₃ or similar [light or aq negates] (1)

(iii) (hot) KMnO₄(aq) + OH⁻ or H⁺ [NOT $Cr_2O_7^{-2}$] (1)

[Total: 12]

studyguide.pk

			70
Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	4

5 (a) (i) $Br_2(aq)$ (or solution or in an inert solvent) [light or $AlCl_3$ etc negates] (1)

(ii) G is

$$CH_3$$
—NHCOCH $_3$ (1)

H is

[charges needed] (1)

(iii) amide [NOT peptide] (1)

[4]

(b) IV: $H^+/HCl + NaNO_2$ or $HNO_2/nitrous$ acid (1)

0°C≤T≤10°C ["REFLUX" negates] (1)

V:

in NaOH(aq) (1) [4]

(c) To increase its solubility in water *or* to increase binding to food components (1)

due to ionic solvation *or* more oxygen atoms to H-bond to H₂O/glucose etc (1)

[Total: 10]

[2]

