Comfile Technology www.comfiletech.com

FA-DUINO-12RA User's Manual

Warning

- For instruments with risk to life or property (e.g. nuclear power control, medical equipment, vehicles, railways, aviation, combustion equipment, recreation equipment, safety devices, etc.), always employ adequate fail-safe mechanisms.
- Risk of fire, personal injury, and/or property damage
- Always mount to a panel.
- . Do not attempt to repair, inspect, or wire while power is applied.
- I. Do not attempt to alter or repair. Refer to a qualified technician.
- Confirm all electrical connections

Caution

- . Do not use outdoors.
- Always use the product within its specifications and ratings.
 Risk of fire and shortening of product's life.
- 3. Do not exceed ratings of relay switching contacts.
- 4. Does not use in environments with flammable or explosive materials, moisture, direct sunlight, radiation, vibration and/or shock.
- Keep product free of dust and debris.
- 6. Make connections correctly and confirm polarity by measuring at the appropriate terminals.

Overview

The FA-DUINO is an Arduino-based industrial controller. It has features similar to those found in other Arduino products and can be programmed with the Arduino IDE.

Other Arduino products are not very well suited for fields such as factory automation. The FA-DUINO has been designed to handle signals of higher voltage and current, and remove the burden of external circuit design and fabrication from the user.

The FA-DUINO requires only simple connections to its terminal blocks and headers without the need for external peripherals.

The FA-DUINO-12RA

The FA-DUINO-12RA has a built-in Mega2560 MCU

Program memory: 256KB

SRAM: 8KB EEPROM: 4KB

Clock Speed: 16MHz

• 8 - 24VDC Inputs (pins 4~11)

• 4 - 10A Relay Outputs (pins 22~25)

1 - RS-232C Communication Port

4 – 0~10V Analog Inputs

4 – 0~20mA Analog Inputs

10-bit ADC (0~1023)

Powered by 24VDC

Operating Temperature: 0 ~ 60℃

• Operating Humidity: 35 ~ 85% RH

Programming the FA-DUINO

The FA-DUINO can be programmed using the Arduino IDE available from http://arduino.cc

Arduino IDE

Arduino 1.0.5

Download

Arduino 1.0.5 (release notes), hosted by Google Code:

NOTICE: Arduino Drivers have been updated to add support for Windows
8.1, you can download the updated IDE (version 1.0.5-r2 for Windows) from the download links below.

Windows Installer, Windows ZIP file (for non-administrator install)

Mac OS X

Linux: 32 bit. 64 bit

Select the Arduino **Mega 2560** option from the Tools-->Board menu.

Select the PC COM port that the FA-DUINO is connected to from the Tools-->Serial Port menu. You can find the COM port number in Windows Device Manager.

Write your program, and click the "Upload" icon to compile the program and upload to the ${\sf FA-DUINO}$.

IO Map

Direction	Pins	Input Voltage	Description
Input	4~11	0 or 24VDC (20~28V is logic high)	24V = Logic High 0V = Logic Low
Output	22~25	10A Relay Outputs	Logic High = On Logic Low = Off
Analog Input	0~7	0~3 - 0~20mA 4~7 - 0~10V	VA = analogRead(A0) // Read channel 0 VA = analogRead(A4) // Read channel 4

Example:

Status LED

The FA-DUINO has a programmable status LED on pin 13 for providing visual indication to the operator.

Example:

Connecting the Upload Cable

Physical Connections

Digital IO Connections

Analog Input Connections

Using Proximity Sensors

Proximity sensors can be used to detect the existence, movement, and displacement of objects without any physical contact with the object. They are used quite often in the field of automation.

DC 2-Wire Model

Sensor output connected in reverse

DC 3-Wire Model (PNP type)

Sensor output connected in reverse

DC 3-Wire Model (NPN type)

Sensor output connected in reverse

Digital I/O Specifications

Input Specifications			
Number of Inputs	8		
Input Voltage Range	20VDC ~ 28VDC		
Recommended Operating Voltage	24VDC		
On/Off Switching Speed	10ms (Ladder Scan Time is 10ms)		
Input Impedance	2.2kΩ @ 24VDC (Do not connect)		

Output Relay Specifications		
Number of Outputs	4	
Input Voltage Range	5 ~ 30VDC / 4 ~ 264VAC	
Recommended Operating Voltage	6 ~ 27VDC / 6 ~ 240VAC	
On/Off frequency	10Hz (10 times per second)	
Maximum Current	10A per relay	
Minimum Current	100mA per relay	

Analog I/O Specifications

Analog Current Input (0 ~ 3) Specification		
Resolution and Error	10-bit, +/- 2%	
Input Current Range	0mA ~ 22mA	
Recommended Operating Current	4mA ~ 20mA	
Туре	Non-isolated, Built-in LPF	

Analog Voltage Input (4 ~ 7) Specifications		
Resolution and Error	10-bit, +/- 2%	
Input Voltage Range	-0.5VDC ~ 10.5VDC Don't connect series resistance	
Operating Voltage	0VDC ~ 10VDC	
Туре	Non-isolated, Built-in LPF	

Communication Specifications

Communication Port Specifications		
Туре	RS-232 (+/- 10VDC)	
Flow Control	No RTS Flow Control	
Maximum Baud Rate	115200	
Maximum Distance	2 meters	

Simple Examples

Example 1 - Flashing the Status LED

```
const int StatusLED = 13;

void setup()
{
   pinMode(StatusLED, OUTPUT);
}

void loop()
{
   digitalWrite(StatusLED, HIGH);
   delay(1000);
   digitalWrite(StatusLED, LOW);
   delay(1000);
}
```

Example 2 - Toggling a Relay

```
const int Relay22 = 22;

void setup()
{
   pinMode(Relay22, OUTPUT);
}

void loop()
{
   digitalWrite(Relay22, HIGH);
   delay(1000);
   digitalWrite(Relay22, LOW);
   delay(1000);
}
```

Example 3 – Input and Output Control

```
const int StatusLED = 13;
const int Relay22 = 22;
const int Input_4 = 4;

void setup()
{
   pinMode(StatusLED, OUTPUT);
   pinMode(Relay22, OUTPUT);
   pinMode(Input_4, INPUT);
}

void loop()
{
   if(HIGH==digitalRead(Input_4))
   {
      digitalWrite(StatusLED, HIGH);
      digitalWrite(Relay22, HIGH);
   }
   else
   {
      digitalWrite(StatusLED, LOW);
      digitalWrite(Relay22, LOW);
   }
}
```

Example 4 – Analog Input with the Serial Monitor

```
int ADI_Value0;
int ADV_Value4;

void setup()
{
    Serial.begin(9600);
}

void loop()
{
    ADI_Value0 = analogRead(A0);
    delay(100);

    ADV_Value4 = analogRead(A4);
    delay(100);

    Serial.print(" CH 0 = ");
    Serial.print(ADI_Value0);
    Serial.print("\n");

    Serial.print(" CH 4 = ");
    Serial.print(ADV_Value4);
    Serial.print("\n\n");

    delay(200);
```

Interfacing with the UIF-5K

The UIF-5K is a 5-key character LCD panel that can be used in conjunction with the FADUINO to add a simple user interface.

Front View

Rear View

The following shows how to connect the two together. The UIF-5k must be powered separately with a $9V\sim24V$ supply.

Example 1

The following source code will output text to the UIF-5K's display.


```
oid setup()
 Serial1.begin(115200); //Baud rate 115200
 uif clear();
                          //Clear the display
 delav(20):
 uif buzzer(1);
 delay(20);
                          //buzzer on
 uif locate(0,0);
 Serial1.print("=== UIF 5K TEST ===");
 delay(100); uif_locate(2,1);
 Serial1.print(" FA-DUINO-12RA ");
 delay(100);
void loop()
{ }
// Clear the display
void uif clear()
 Serial1.write(0x1b);
 Serial1.write(0x43);
// Set the cursor the given x & y coordinates
void uif locate (unsigned char x, unsigned char y)
 Serial1.write(0x1b);
 Serial1.write(0x4C);
 Serial1.write(x);
 Serial1.write(y);
// Turn the buzzer on (1) or off (0)
void uif buzzer(unsigned char on off)
 Serial1.write(0x1b);
 Serial1.write(0x5a);
 Serial1.write(on off);
```

Example 2

The following example will display the result of a button press on the UIF-5K's display.


```
void setup()
 Serial1.begin(115200);
                             // baud rate 115200
 uif clear();
                             // Clear the display
 delay(20);
 uif light(1);
 delay(20);
                            // backlight on
 uif buzzer(1); delay(20); // buzzer on
  delay(100); uif locate(0,0);
  Serial1.print("=== UIF 5K TEST ===");
  delay(100); uif locate(2,1);
 Serial1.print("comfiletech.com");
  delay(100); uif_locate(2,2);
 Serial1.print("COUNTER : ");
  delay(100); uif locate(2,3);
  Serial1.print("BUTTON : ");
 delay(100);
int cnt = 0;
void loop()
 cnt++;
                          // Increment the counter
 uif locate(12,2);
 Serial1.print(cnt, DEC); // Display the count
 delav(100):
 serial1Event();
void serial1Event()
  \ensuremath{//} Display the value of the button pressed
 while (Serial1.available())
   char inChar = (char)Serial1.read();
   uif locate(10,3);
   Serial1.print(inChar, DEC);
// Display (1) or hide (0) the cursor
void uif csron(unsigned char on off)
 if(on_off)
   Serial1.write(0x1b);
   Serial1.write(0x53);
 else
   Serial1.write(0x1b);
   Serial1.write(0x73);
// Clear the display
void uif clear()
```

```
Serial1.write(0x1b);
 Serial1.write(0x43);
// Turn the backlight on (1) or off (0)
void uif light(unsigned char on off)
 Serial1.write(0x1b);
 Serial1.write(0x42);
 Serial1.write(0x4c);
 Serial1.write(on off);
// Set the cursor to the given x & y coordinates
void uif locate(unsigned char x, unsigned char y)
 Serial1.write(0x1b);
 Serial1.write(0x4C);
 Serial1.write(x);
 Serial1.write(y);
// Turn the UIF-5K's LED on (1) or off (0)
void uif swled(unsigned char on off)
 Serial1.write(0x1b);
 Serial1.write(0x45);
 Serial1.write(on off);
// Turn one of the UIF-5K's button's LEDs on (1) or off (0)
void uif led(unsigned char number, unsigned char on off)
 Serial1.write(0x1b);
 Serial1.write(0x46);
 Serial1.write(number);
 Serial1.write(on off);
// Turn the buzzer on (1) or off (0)
void uif_buzzer(unsigned char on_off)
 Serial1.write(0x1b);
 Serial1.write(0x5a);
 Serial1.write(on_off);
```

Interfacing to a Character LCD (CLCD)

Connect the FA-DUINO to the CLCD via RS-232 as shown in the image below. Set all the dip switches on the CLCD to the ON position. The baudrate should be 115200.


```
void setup()
 Serial1.begin(115200);
                                        // baud rate 115200
 clcd_clear();
                                        // clear the screen
 delay(20);
 //Position the cursor
 clcd locate(0,0);
 Serial1.print("=== CLCD Test ===");
 delay(100);
 clcd_locate(2,1);
Serial1.print(" FA-DUINO-12RA ");
 delay(100);
void loop()
// Clear the display
void clcd_clear()
 Serial1.write(0x1b);
 Serial1.write(0x43);
// Move the cursor to the given x & y coordinates
void clcd locate(unsigned char x, unsigned char y)
 Serial1.write(0x1b);
 Serial1.write(0x4C);
 Serial1.write(x);
 Serial1.write(y);
```

Interfacing to the CN-RS235485

The CN-RS232485 can be used to convert the FA-DUINO's RS-232 signal to RS-485.

Interfacing to the ML-THRT1

The ML-THRT1 can be used to measure temperatures from -100~500°C through a PT100 resistance thermometer.

For more information please see the ML-THRT1 user's manual.

Dimensions

Unit: mm

42.9 70.5 BOTTOM VIEW

MOUNTING VIEW

Unit: mm