Final Project Submission

Please fill out:

• Student name:

• Student pace: self paced / part time / full time

• Scheduled project review date/time:

• Instructor name:

• Blog post URL:

Student Name: Cassidy Exum

Student Pace: Flex/part time, 40 week pace

Schedule Project Review Date/Time:

Instructor Name: Morgan Jones

Blog Post URL: https://exumexaminesdata.blogspot.com/2022/06/data-analysis-and-solar-

energy.html

Project Overview

Business Understanding

My goal is to analyze movie metrics such as rating, profit, runtime, budget, etc and come up with three proposals for microsofts new studio. Let's break down how I'm going to do this. Using Pandas and Sqlite I'll read in the different data sets. It seems like we have a plethora of data so I'm not too concerned about cleaning it, I can most likely just get rid of any bad rows of data. Making movies for a large studio is a business decision, it's not for the love of film, so we are going to proceed with that intnet in mind and keep budget and profit at the forefront. And now for analysis and proposals:

Our measure of success in this project will be profit and/or rating

Proposal 1 - What genres perform the best? What genre movie should we make?

For the first proposal I'm going to go through the data find the best genres. Genre is fairly general so it will leave us with plenty of movie options to make once we find genres that are successful.

Proposal 2 - Recent Success

For the second proposal we will look at only the last 2 years and figure out what movies have done the best. With this we will have a second approach that will follow recent trends.

Proposal 3 - Select one of the three reccomended directors

```
#import whats needed, set matplotlib inline
In [1]:
          import pandas as pd
          import numpy as np
          import sqlite3
          import matplotlib.pyplot as plt
          import seaborn as sea
          import matplotlib.ticker as mtick
          %matplotlib inline
          #Acess the data -
In [2]:
          file_path_1 = 'zippedData/bom.movie_gross.csv.gz'
          file_path_2 = 'zippedData/rt.movie_info.tsv.gz'
          file_path_3 = 'zippedData/rt.reviews.tsv.gz'
          file_path_4 = 'zippedData/tmdb.movies.csv.gz'
          file_path_5 = 'zippedData/tn.movie_budgets.csv.gz'
          db = 'zippedData/im.db'
          bom_movie_gross = pd.read_csv(file_path_1)
          rt_movie_info = pd.read_csv(file_path_2, sep="\t", index_col = 0)
          #rt reviews = pd.read csv(file path 3, sep="\t")
          #rt review not working. Have enough data, we can ignore.
          tmdb movies = pd.read csv(file path 4, index col = 0)
          tn movie budgets = pd.read csv(file path 5, index col = 0)
          conn = sqlite3.connect(db)
          #data scouting
In [3]:
          bom movie gross.head()
                                           title studio domestic_gross foreign_gross year
Out[3]:
         0
                                     Toy Story 3
                                                   \mathsf{BV}
                                                          415000000.0
                                                                         652000000 2010
         1
                         Alice in Wonderland (2010)
                                                   ΒV
                                                          334200000.0
                                                                         691300000 2010
         2 Harry Potter and the Deathly Hallows Part 1
                                                          296000000.0
                                                                         664300000 2010
                                                   WB
         3
                                       Inception
                                                   WB
                                                          292600000.0
                                                                         535700000 2010
                                                                         513900000 2010
         4
                               Shrek Forever After
                                                 P/DW
                                                          238700000.0
          #data scouting
In [4]:
          rt_movie_info.head()
               synopsis rating
                                               genre
                                                        director
                                                                         writer theater_date dvd_0
Out[4]:
         id
              This gritty,
              fast-paced,
                                           Action and
                                                         William
          1
                                                                  Ernest Tidyman
                                                                                  Oct 9, 1971
                    and
                               Adventure|Classics|Drama
                                                        Friedkin
               innovative
                police...
```

		Syllopsis	ratin	g		genre	u	irector		writer	theater_date	e ava_i
	id											
	3	New York City, not- too-distant- future: Eric Pa	- - >	R [Orama Scienc and	e Fiction Fantasy	Cron	David enberg	Cro	David onenberg Don DeLillo	Aug 17, 201	2 J.
	5	Illeana Douglas delivers a superb performance	6 9 9	R	Drama Mus Perform	sical and ning Arts		Allison Anders	Д	ıllison Anders	Sep 13, 199	6 Ap
	6	Michae Douglas runs afoul of treacherous su	l S f	R	Drama Mys S	stery and suspense	Le	Barry evinson	Attaı	Paul nasio Michael Crichton	Dec 9, 199	4 Aug
	7	NaN		R	Drama F	Romance		Rodney Bennett		Giles Cooper	Nal	N
In [5]:		data scouts)								
Out[5]:		genre_ids	id	origina	al_language	original	_title	popula	arity	release_date	title	vote_av
	0	[12, 14, 10751]	12444		en		nd the eathly	33	.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	
	1	[14, 12, 16, 10751]	10191		en	How to Your D		28	.734	2010-03-26	How to Train Your Dragon	
	2	[12, 28, 878]	10138		en	Iron N	√lan 2	28	3.515	2010-05-07	Iron Man 2	
	3	[16, 35, 10751]	862		en	Toy	Story	28	.005	1995-11-22	Toy Story	
	4	[28, 878, 12]	27205		en	Ince	eption	27	7.920	2010-07-16	Inception	
In [6]:		data scouts n_movie_buc	_	head()								
Out[6]:		release_dat	:e		movie	product	ion_b	udget	dome	estic_gross v	vorldwide_g	ross
	id											
	1	Dec 18, 200	9		Avatar	\$4	125,00	0,000	\$7	760,507,625	\$2,776,345	,279

genre

director

writer theater_date dvd_c

synopsis rating

2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

```
In [7]: #data scouting
   pd.read_sql("""
        SELECT *
        FROM movie_basics
        """, conn).head()
```

Out[7]:		movie_id	primary_title	original_title	start_year	runtime_minutes	genres
	0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
	1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography, Drama
	2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
	3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama
	4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy, Drama, Fantasy

Ok, we generally know what the data looks like now.

The rt_movie_info table looks a bit useless. We have no title for the movies and thats essentially the primary key connecting all of these files/db's together. All the others seem good and useful so we will ignore that one for now.

Lets start by using the IMBD sqlite db to find the highest rated movies

```
In [9]: highest_rated.head(20)
```

	original_title	genres	averagerating	numvotes
0	Exteriores: Mulheres Brasileiras na Diplomacia	Documentary	10.0	5
1	The Dark Knight: The Ballad of the N Word	Comedy, Drama	10.0	5
2	Freeing Bernie Baran	Crime, Documentary	10.0	5
3	Hercule contre Hermès	Documentary	10.0	5
4	l Was Born Yesterday!	Documentary	10.0	6
5	Dog Days in the Heartland	Drama	10.0	5
6	Revolution Food	Documentary	10.0	8
7	Fly High: Story of the Disc Dog	Documentary	10.0	7
8	All Around Us	Documentary	10.0	6
9	Atlas Mountain: Barbary Macaques - Childcaring	Documentary	10.0	5
10	Requiem voor een Boom	Documentary	10.0	5
11	A Dedicated Life: Phoebe Brand Beyond the Group	Documentary	10.0	5
12	Ellis Island: The Making of a Master Race in A	Documentary, History	10.0	6
13	Calamity Kevin	Adventure,Comedy	10.0	6
14	Pick It Up! - Ska in the '90s	Documentary	10.0	5
15	Renegade	Documentary	10.0	20
16	Gini Helida Kathe	Drama	9.9	417
17	The Wedding Present: Something Left Behind	Documentary	9.9	8
18	LA Foodways	Documentary	9.9	8
19	Moscow we will lose	Documentary	9.9	18

Honestly, not very useful... Way too many documentaries, and way too few votes. Lets look at the numvotes column and determine some number of votes that we feel a movie must have to be included

```
In [10]: print(highest_rated['numvotes'].mean())
# Lets arbitrarily choose 2000
```

3523.6621669194105

Out[11]: original_title genres averagerating numvotes

	original_title	genres	averagerating	numvotes
0	Once Upon a Time in Hollywood	Comedy, Drama	9.7	5600
1	Ekvtime: Man of God	Biography, Drama, History	9.6	2604
2	Aloko Udapadi	Drama,History	9.5	6509
3	Peranbu	Drama	9.4	9629
4	Dag II	Action, Drama, War	9.3	100568
5	Aynabaji	Crime, Mystery, Thriller	9.3	18470
6	Wheels	Drama	9.3	17308
7	Natsamrat	Drama,Family	9.2	4297
8	C/o Kancharapalem	Drama	9.2	2195
9	CM101MMXI Fundamentals	Comedy,Documentary	9.2	41560
10	On vam ne Dimon	Documentary	9.2	2721
11	A Man Called Ahok	Drama	9.1	4162
12	Oggatonama	Drama	9.1	2973
13	Pariyerum Perumal	Drama	9.0	4854
14	Yowis Ben	Comedy, Drama	9.0	2992
15	Tylko nie mów nikomu	Documentary	8.9	2111
16	Godhi Banna Sadharana Mykattu	Drama,Family	8.9	2001
17	A Billion Lives	Documentary, History, News	8.9	2715
18	O.J.: Made in America	Biography,Crime,Documentary	8.9	14946
19	Burn the Stage: The Movie	Documentary, Music	8.8	2067

I think we also want to make the region US / language ENG and eliminate pure Documentaries

```
In [12]: #Set region to US
    highest_rated = pd.read_sql("""
    SELECT original_title, genres, averagerating, numvotes, region
    FROM movie_basics
    INNER JOIN movie_ratings
        USING(movie_id)
    INNER JOIN movie_akas
        USING(movie_id)
    WHERE numvotes > 2000 AND genres NOT LIKE "%Documentary%" AND region = "US"
    ORDER BY averagerating DESC
    """, conn)
    highest_rated.drop_duplicates(subset = "original_title", inplace = True)
```

In [13]:	highest_rated.head(20)					
Out[13]:	original_title	genres averaç	gerating	numvotes	region	

r[13];		original_title	genies	averagerating	Hullivotes	region
	0	Once Upon a Time in Hollywood	Comedy, Drama	9.7	5600	US
	2	Peranbu	Drama	9.4	9629	US
	3	Wheels	Drama	9.3	17308	US

	original_title	genres	averagerating	numvotes	region
4	Inception	Action,Adventure,Sci-Fi	8.8	1841066	US
8	Kill Bill: The Whole Bloody Affair	Action,Crime,Thriller	8.8	3406	US
9	Avengers: Endgame	Action, Adventure, Sci-Fi	8.8	441135	US
12	96	Drama,Romance	8.8	10903	US
13	Super Deluxe	Action,Crime,Drama	8.8	2254	US
14	Mahanati	Biography, Drama	8.7	6917	US
15	Interstellar	Adventure,Drama,Sci-Fi	8.6	1299334	US
19	Uri: The Surgical Strike	Action,Drama,War	8.6	30292	US
20	Yatra	Biography, Drama	8.6	2913	US
21	Rangasthalam	Action,Drama	8.6	15407	US
22	An Hour to Kill	Action,Comedy,Horror	8.6	2302	US
27	Intouchables	Biography,Comedy,Drama	8.5	677343	US
28	Whiplash	Drama, Music	8.5	616916	US
29	Thani Oruvan	Action,Crime,Thriller	8.5	13747	US
30	Capharnaüm	Drama	8.5	20215	US
31	Dhuruvangal Pathinaaru	Action,Crime,Mystery	8.5	8560	US
32	Avengers: Infinity War	Action, Adventure, Sci-Fi	8.5	670926	US

Now we have some actual data. Lets start looking at the profit info and start relating that to genres and things like that. Because I limited the previous table to US release, I'm going to limit our gross to domestic as well.

bom_movie_gross.sort_values('domestic_gross')

TII [14].	DOM_	movic_grobb.borc_varacb(domeses			
Out[14]:		title	studio	domestic_gross	foreign_gross	year
	1476	Storage 24	Magn.	100.0	NaN	2013
	2321	The Chambermaid	FM	300.0	NaN	2015
	2756	News From Planet Mars	KL	300.0	NaN	2016
	2757	Satanic	Magn.	300.0	NaN	2016
	1018	Apartment 143	Magn.	400.0	426000	2012
	•••		•••			
	1975	Surprise - Journey To The West	AR	NaN	49600000	2015
	2392	Finding Mr. Right 2	CL	NaN	114700000	2016
	2468	Solace	LGP	NaN	22400000	2016
	2595	Viral	W/Dim.	NaN	552000	2016
	2825	Secret Superstar	NaN	NaN	122000000	2017

Ok now we are running into NaN issues. Lets figure out if we can remove them.

```
# Check NAN
In [15]:
           bom_movie_gross.isna().sum()
Out[15]: title
                                  0
                                  5
          studio
          domestic gross
                                 28
          foreign gross
                               1350
          year
                                  0
          dtype: int64
           #Drop foreign gross
In [16]:
           bom_movie_gross.drop('foreign_gross', axis = 1, inplace = True)
           bom_movie_gross = bom_movie_gross.dropna()
In [17]:
           bom_movie_gross = bom_movie_gross.sort_values('domestic_gross', ascending=False)
           bom_movie_gross
In [18]:
                                      title studio domestic_gross
                                                                   vear
Out[18]:
           1872 Star Wars: The Force Awakens
                                                                   2015
                                               BV
                                                      936700000.0
          3080
                              Black Panther
                                               BV
                                                      700100000.0 2018
           3079
                        Avengers: Infinity War
                                               BV
                                                      678800000.0 2018
                              Jurassic World
                                                      652300000.0 2015
           1873
                                              Uni.
            727
                       Marvel's The Avengers
                                               BV
                                                      623400000.0
                                                                   2012
                                                               ...
           1018
                              Apartment 143
                                            Magn.
                                                            400.0
                                                                   2012
           2757
                                    Satanic
                                            Magn.
                                                            300.0
                                                                   2016
           2756
                      News From Planet Mars
                                                            300.0 2016
                                               KL
           2321
                           The Chambermaid
                                               FM
                                                            300.0 2015
           1476
                                 Storage 24 Magn.
                                                             100.0 2013
          3356 rows × 4 columns
           gross and rating df = bom movie gross.merge(highest rated, how='inner', left on=
In [19]:
           gross_and_rating_df.head(20)
In [20]:
Out[20]:
                    title studio domestic_gross year original_title
                                                                                      genres averagera
                   Black
                                                             Black
                            BV
                                    700100000.0 2018
           0
                                                                        Action, Adventure, Sci-Fi
                 Panther
                                                           Panther
               Avengers:
                                                         Avengers:
                  Infinity
                            BV
                                   678800000.0 2018
                                                                        Action, Adventure, Sci-Fi
            1
                                                        Infinity War
                    War
                 Jurassic
                                                           Jurassic
```

2

Uni.

World

652300000.0 2015

Action, Adventure, Sci-Fi

World

	title	studio	domestic_gross	year	original_title	genres	averagera
3	Incredibles 2	BV	608600000.0	2018	Incredibles 2	Action, Adventure, Animation	
4	Finding Dory	BV	486300000.0	2016	Finding Dory	Adventure, Animation, Comedy	
5	Avengers: Age of Ultron	BV	459000000.0	2015	Avengers: Age of Ultron	Action,Adventure,Sci-Fi	
6	The Dark Knight Rises	WB	448100000.0	2012	The Dark Knight Rises	Action,Thriller	
7	The Hunger Games: Catching Fire	LGF	424700000.0	2013	The Hunger Games: Catching Fire	Action,Adventure,Sci-Fi	
8	Jurassic World: Fallen Kingdom	Uni.	417700000.0	2018	Jurassic World: Fallen Kingdom	Action,Adventure,Sci-Fi	
9	Toy Story 3	BV	415000000.0	2010	Toy Story 3	Adventure, Animation, Comedy	
10	Wonder Woman	WB	412600000.0	2017	Wonder Woman	Action, Adventure, Fantasy	
11	Captain America: Civil War	BV	408100000.0	2016	Captain America: Civil War	Action,Adventure,Sci-Fi	
12	The Hunger Games	LGF	408000000.0	2012	The Hunger Games	Action,Adventure,Sci-Fi	
13	Jumanji: Welcome to the Jungle	Sony	404500000.0	2017	Jumanji: Welcome to the Jungle	Action,Adventure,Comedy	
14	Frozen	BV	400700000.0	2013	Frozen	Adventure, Animation, Comedy	
15	Guardians of the Galaxy Vol. 2	BV	389800000.0	2017	Guardians of the Galaxy Vol. 2	Action,Adventure,Comedy	
16	The Secret Life of Pets	Uni.	368400000.0	2016	The Secret Life of Pets	Adventure, Animation, Comedy	
17	Despicable Me 2	Uni.	368100000.0	2013	Despicable Me 2	Adventure, Animation, Comedy	
18	Deadpool	Fox	363100000.0	2016	Deadpool	Action, Adventure, Comedy	
19	Inside Out	BV	356500000.0	2015	Inside Out	Adventure, Animation, Comedy	

```
sea.scatterplot(x, y);
```

/Users/cassidyexum/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/seab orn/_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

```
warnings.warn(
```



```
In [22]: genres_df = gross_and_rating_df['genres']
    genres_df = genres_df.str.split(',')
    genres_list_all = genres_df.tolist()
    genres_dict_all = {}
    for x in genres_list_all:
        for y in x:
        if y not in genres_dict_all:
            genres_dict_all[y] = 1
        else:
            genres_dict_all[y] += 1
```

```
In [24]: genres_series = pd.Series(genres_dict)
    genres_series.sort_values(ascending = False, inplace=True)
    genres_series
```

```
Out[24]: Adventure
                       126
         Action
                        97
                        81
         Comedy
                        47
         Animation
                        41
         Drama
         Sci-Fi
                        39
         Thriller
                        24
                        20
         Fantasy
```

```
Crime
               18
Biography
               13
               12
Family
               11
Mystery
Romance
                9
                8
Horror
                5
History
                3
Music
                2
Western
                2
Musical
                2
Sport
dtype: int64
```

```
In [25]: genres_series.plot.barh();
#bar chart of top 200
```

Sci-Fi Drama Animation Comedy Action Adventure

20

40

Sport

Musical

Western

Music

History

Horror

Romance

Mystery

Family

Biography

Crime

Fantasy

Thriller

60

```
genres_series_all = pd.Series(genres_dict_all)
genres_series_all.sort_values(ascending = False, inplace=True)
genres_series_all.plot.barh()
#bar chart of all
```

80

100

120

Out[26]: <AxesSubplot:>


```
In [27]: #scuffed bar chart
  width = 1
    plt.bar(genres_dict.keys(), genres_dict.values(), width, color='g')
    plt.title('Number of movies within a genre')
    plt.xlabel('Genres')
```


Reccomendation 1 - Make an action, adventure, scifi, comedy film

So it looks like rating plays some effect on domestic gross, but not too much of an effect. Something that we can see from the top 20 we posted earlier is the similarity in genres. Action, adventure, comedy, and SciFi are all constantly being repeated. So lets make this our first reccomendation. Make a movie that is an action, adventure, scifi, and comedy.

Recent Trends

Lets combine some tables and find films in the last 2 years (our data ends in 2018 so we will use 2016, 2017, and 2018) that have done exceptionally well.

tn_movie_budgets will be a great table to use for this.

In [28]:	<pre>tn_movie_budgets.head()</pre>								
Out[28]:		release_date	movie	production_budget	domestic_gross	worldwide_gross			
	id								
	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279			
	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875			
	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350			
	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963			
	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747			

```
In [29]:
            tn movie budgets recent = tn movie budgets.sort values('release date', ascending
In [30]:
            #converting to column to datetime and then recasting that column
            release_date = pd.to_datetime(tn_movie_budgets_recent['release_date'])
            tn_movie_budgets_recent['release_date'] = release_date
In [31]:
In [32]:
            tn movie budgets recent.sort values('release date', ascending = False, inplace =
In [33]:
            tn_movie_budgets_recent.head(25)
                                            movie production_budget domestic_gross worldwide_gross
                release_date
Out[33]:
            id
                                      Hannibal the
            6
                 2020-12-31
                                                          $50,000,000
                                                                                    $0
                                                                                                     $0
                                        Conqueror
           95
                 2020-12-31
                                          Moonfall
                                                         $150,000,000
                                                                                    $0
                                                                                                     $0
                                    Call of the Wild
           36
                 2020-02-21
                                                          $82,000,000
                                                                                   $0
                                                                                                     $0
           30
                  2019-12-31
                                                                                                     $0
                                           Reagan
                                                          $25,000,000
                                                                                   $0
           81
                  2019-12-31
                                  Army of the Dead
                                                          $90,000,000
                                                                                                     $0
                                                                                    $0
           72
                  2019-12-31
                                              355
                                                          $75,000,000
                                                                                                     $0
                                                                                    $0
           13
                  2019-12-31
                                                                                                     $0
                                        Rogue City
                                                          $13,000,000
                                                                                    $0
           16
                  2019-12-31
                                               Eli
                                                          $11,000,000
                                                                                                     $0
                                                                                    $0
                  2019-12-31
                                 Down Under Cover
                                                          $40,000,000
           44
                                                                                    $0
                                                                                                     $0
            8
                  2019-11-22
                                The Rhythm Section
                                                          $50,000,000
                                                                                    $0
                                                                                                     $0
           53
                  2019-11-08
                                           Midway
                                                          $59,500,000
                                                                                    $0
                                                                                                     $0
            7
                  2019-11-08
                                       Arctic Dogs
                                                          $50,000,000
                                                                                    $0
                                                                                                     $0
           30
                 2019-09-30
                                         Unhinged
                                                          $29,000,000
                                                                                   $0
                                                                                                     $0
            9
                 2019-09-20
                                          Ad Astra
                                                          $49,800,000
                                                                                    $0
                                                                                                     $0
                                     The Goldfinch
           43
                 2019-09-13
                                                          $40,000,000
                                                                                   $0
                                                                                                     $0
           71
                 2019-08-30
                                       PLAYMOBIL
                                                          $75,000,000
                                                                                   $0
                                                                                                     $0
           64
                 2019-08-14
                                Blinded by the Light
                                                          $15,000,000
                                                                                    $0
                                                                                                     $0
           16
                 2019-07-12
                                            Crawl
                                                          $17,000,000
                                                                                    $0
                                                                                                     $0
           48
                 2019-06-21
                                    Burn Your Maps
                                                                                    $0
                                                                                                     $0
                                                           $8,000,000
           39
                 2019-06-21
                                            Kursk
                                                          $40,000,000
                                                                                    $0
                                                                                              $4,212,799
                                      Men in Black:
           42
                 2019-06-14
                                                         $110,000,000
                                                                            $3,100,000
                                                                                              $3,100,000
                                      International
           98
                 2019-06-14
                                             Shaft
                                                          $30,000,000
                                                                             $600,000
                                                                                               $600,000
                              The Secret Life of Pets
                 2019-06-07
           81
                                                          $80,000,000
                                                                                            $113,351,496
                                                                           $63,795,655
                 2019-06-07
                                                         $350,000,000
            3
                                      Dark Phoenix
                                                                           $42,762,350
                                                                                            $149,762,350
           35
                 2019-06-07
                                                           $4,000,000
                                                                                               $246,305
                                        Late Night
                                                                             $246,305
```

Everything before 2019-06-21 is too recent and has \$0 as the listed gross. Lets drop those.

```
tn_movie_budgets_recent.drop(index=tn_movie_budgets_recent.index[:20], axis=0, i
In [34]:
           tn_movie_budgets_recent.head()
In [35]:
                                        movie production_budget domestic_gross worldwide_gross
Out[35]:
              release_date
           id
                                   Men in Black:
                                                     $110,000,000
                                                                      $3,100,000
                                                                                      $3,100,000
          42
                2019-06-14
                                   International
                                                     $30,000,000
                                                                       $600,000
                                                                                        $600,000
          98
                2019-06-14
                                         Shaft
                2019-06-07
                                   Dark Phoenix
                                                    $350,000,000
                                                                     $42,762,350
                                                                                     $149,762,350
           3
                                                      $4,000,000
          35
                2019-06-07
                                     Late Night
                                                                       $246,305
                                                                                        $246,305
                             Godzilla: King of the
                2019-05-31
                                                     $170,000,000
                                                                     $85,576,941
                                                                                     $299,276,941
          25
                                      Monsters
           #obtain all movies not documentaries and more than 2000 votes
In [36]:
           recent imdb = pd.read sql("""
           SELECT original_title, start_year, genres, averagerating, numvotes
           FROM movie basics
           JOIN movie_ratings
               USING(movie id)
           WHERE numvotes > 2000 AND genres NOT LIKE "%Documentary%"
           ORDER BY start year DESC, averagerating DESC
           """, conn)
           recent imdb.head(20)
```

Out[36]:		original_title	start_year	genres	averagerating	numvotes
	0	Once Upon a Time in Hollywood	2019	Comedy, Drama	9.7	5600
	1	Avengers: Endgame	2019	Action, Adventure, Sci-Fi	8.8	441135
	2	Super Deluxe	2019	Action,Crime,Drama	8.8	2254
	3	Uri: The Surgical Strike	2019	Action,Drama,War	8.6	30292
	4	Yatra	2019	Biography, Drama	8.6	2913
	5	The Tashkent Files	2019	Drama, Mystery, Thriller	8.4	3175
	6	Gully Boy	2019	Drama, Music	8.3	17483
	7	Badla	2019	Crime, Drama, Mystery	8.1	9988
	8	John Wick: Chapter 3 - Parabellum	2019	Action,Crime,Thriller	8.0	81568
	9	Maharshi	2019	Action,Drama	8.0	2733
	10	Balkanskiy rubezh	2019	Action,War	7.8	2958
	11	Rocketman	2019	Biography, Drama, Music	7.7	24266
	12	Lucifer	2019	Action,Crime,Drama	7.7	4412
	13	Kesari	2019	Action,Drama,History	7.7	7557

otes	numv	averagerating	genres	start_year	original_title	
2802	2	7.7	Drama	2019	Dolor y gloria	14
2522	2	7.7	Action,Comedy,Drama	2019	Madhura Raja	15
0769	60	7.6	Action, Adventure, Animation	2019	How to Train Your Dragon: The Hidden World	16
2752	2	7.6	Crime	2019	Once Upon a Time in London	17
0725	10	7.6	Drama	2019	The Boy Who Harnessed the Wind	18
8207	88	7.5	Action, Adventure, Sci-Fi	2019	Alita: Battle Angel	19

In [37]: recents_merged_df = tn_movie_budgets_recent.merge(recent_imdb, how='inner', left

In [38]: recents_merged_df.sort_values('release_date', ascending = False, inplace = True)
 recents_merged_df.head(20)

Out[38]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	original_title
0	2019-06-07	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	Dark Phoenix
1	2019-05-31	Godzilla: King of the Monsters	\$170,000,000	\$85,576,941	\$299,276,941	Godzilla: King of the Monsters
2	2019-05-10	The Professor and the Madman	\$25,000,000	\$0	\$5,227,233	The Professor and the Madman
3	2019-05-03	Long Shot	\$40,000,000	\$30,202,860	\$43,711,031	Long Shot
4	2019-04-12	Hellboy	\$50,000,000	\$21,903,748	\$40,725,492	Hellboy
6	2019-04-05	Pet Sematary	\$21,000,000	\$54,724,696	\$109,501,146	Pet Sematary
8	2019-04-05	Shazam!	\$85,000,000	\$139,606,856	\$362,899,733	Shazam!
9	2019-03-29	Unplanned	\$6,000,000	\$18,107,621	\$18,107,621	Unplanned
10	2019-03-29	Dumbo	\$170,000,000	\$113,883,318	\$345,004,422	Dumbo
11	2019-03-22	Us	\$20,000,000	\$175,006,930	\$254,210,310	Us
12	2019-03-15	Five Feet Apart	\$7,000,000	\$45,729,221	\$80,504,421	Five Feet Apart
13	2019-03-15	Captive State	\$25,000,000	\$5,958,315	\$8,993,300	Captive State
14	2019-03-15	Wonder Park	\$100,000,000	\$45,216,793	\$115,149,422	Wonder Park
15	2019-03-08	Captain Marvel	\$175,000,000	\$426,525,952	\$1,123,061,550	Captain Marvel

	release_date	movie	production_budget	domestic_gross	worldwide_gross	original_title
16	2019-02-22	How to Train Your Dragon: The Hidden World	\$129,000,000	\$160,791,800	\$519,258,283	How to Train Your Dragon: The Hidden World
17	2019-02-14	Alita: Battle Angel	\$170,000,000	\$85,710,210	\$402,976,036	Alita: Battle Angel
18	2019-02-13	Happy Death Day 2U	\$9,000,000	\$28,051,045	\$64,179,495	Happy Death Day 2U
19	2019-02-08	Cold Pursuit	\$60,000,000	\$32,138,862	\$62,599,159	Cold Pursuit
20	2019-02-08	What Men Want	\$20,000,000	\$54,611,903	\$69,911,903	What Men Want
21	2019-02-01	Velvet Buzzsaw	\$21,000,000	\$0	\$0	Velvet Buzzsaw

Lets find the most profitable movies (domestic gross - budget) of the last 3 years (roughly 300 movies)

In [39]: recents_df = recents_merged_df.drop(index=recents_merged_df.index[300:], axis=0)

In [40]: recents_df

original_t	worldwide_gross	domestic_gross	production_budget	movie	release_date		Out[40]:
Dark Phoe	\$149,762,350	\$42,762,350	\$350,000,000	Dark Phoenix	2019-06-07	0	
Godzi King of Monst	\$299,276,941	\$85,576,941	\$170,000,000	Godzilla: King of the Monsters	2019-05-31	1	
Profes and Madn	\$5,227,233	\$0	\$25,000,000	The Professor and the Madman	2019-05-10	2	
Long S	\$43,711,031	\$30,202,860	\$40,000,000	Long Shot	2019-05-03	3	
Helli	\$40,725,492	\$21,903,748	\$50,000,000	Hellboy	2019-04-12	4	
						•••	
Ja: Bou	\$416,168,316	\$162,192,920	\$120,000,000	Jason Bourne	2016-07-29	304	
Ice A Collis Cou	\$402,156,682	\$64,063,008	\$105,000,000	Ice Age: Collision Course	2016-07-22	307	
Lights (\$148,806,510	\$67,268,835	\$5,000,000	Lights Out	2016-07-22	306	
Star T Beyo	\$335,802,233	\$158,848,340	\$185,000,000	Star Trek Beyond	2016-07-22	305	
Ghostbust	\$229,008,658	\$128,350,574	\$144,000,000	Ghostbusters	2016-07-15	308	

```
#remove $ and commas
In [41]:
           recents_df['domestic_gross'] = recents_df['domestic_gross'].str.strip('$')
           recents df['production budget'] = recents df['production budget'].str.strip('$')
           recents df['domestic gross'] = recents df['domestic gross'].str.replace(',','')
           recents df['production_budget'] = recents_df['production_budget'].str.replace(',
In [42]:
           recents df
                                                                                             original_t
                                   movie production_budget domestic_gross worldwide_gross
                release_date
Out[42]:
             0
                 2019-06-07
                             Dark Phoenix
                                                 350000000
                                                                  42762350
                                                                                $149,762,350
                                                                                             Dark Phoe
                                 Godzilla:
                                                                                                 Godzi
             1
                 2019-05-31
                               King of the
                                                 170000000
                                                                  85576941
                                                                                $299,276,941
                                                                                               King of
                                Monsters
                                                                                                Monst
                                     The
                                Professor
                                                                                                Profes
             2
                 2019-05-10
                                                                         0
                                                  25000000
                                                                                  $5,227,233
                                  and the
                                                                                                  and
                                 Madman
                                                                                                 Madn
             3
                 2019-05-03
                                Long Shot
                                                  40000000
                                                                  30202860
                                                                                 $43,711,031
                                                                                               Long S
                 2019-04-12
                                  Hellboy
                                                  50000000
                                                                                 $40,725,492
             4
                                                                  21903748
                                                                                                  Helli
                                   Jason
                                                                                                   Jas
          304
                 2016-07-29
                                                 120000000
                                                                 162192920
                                                                                $416,168,316
                                  Bourne
                                                                                                  Bou
                                 Ice Age:
                                                                                                 Ice A
           307
                 2016-07-22
                                 Collision
                                                 105000000
                                                                  64063008
                                                                                $402,156,682
                                                                                                 Collis
                                  Course
                                                                                                  Cou
          306
                 2016-07-22
                                Lights Out
                                                   5000000
                                                                  67268835
                                                                                $148,806,510
                                                                                               Lights (
                                 Star Trek
                                                                                                 Star T
          305
                 2016-07-22
                                                 185000000
                                                                 158848340
                                                                               $335,802,233
                                  Beyond
                                                                                                  Beyo
          308
                 2016-07-15 Ghostbusters
                                                 144000000
                                                                 128350574
                                                                               $229,008,658
                                                                                            Ghostbust
          300 rows × 10 columns
           #converting to INT
In [43]:
           recents df['domestic gross'] = recents df['domestic gross'].astype(int)
           recents df['production budget'] = recents df['production budget'].astype(int)
           recents_df['profit'] = recents_df['domestic_gross'] - recents_df['production_bud
In [44]:
           recents df.sort values('profit', ascending = False, inplace = True)
In [45]:
           recents df.head(20)
In [46]:
                release_date
                                  movie
                                         production_budget domestic_gross worldwide_gross original_ti
Out[46]:
                                                                                                   Bla
                                   Black
           117
                 2018-02-16
                                                 20000000
                                                                700059566
                                                                              $1,348,258,224
                                 Panther
                                                                                                 Pantl
```

	release_date	movie	production_budget	domestic_gross	worldwide_gross	original_ti
217	2017-03-17	Beauty and the Beast	160000000	504014165	\$1,259,199,706	Beauty a the Be
133	2017-12-20	Jumanji: Welcome to the Jungle	90000000	404508916	\$964,496,193	Juma Welcome the Jun
164	2017-09-08	lt	35000000	327481748	\$697,457,969	
188	2017-06-02	Wonder Woman	150000000	412563408	\$821,133,378	Wond Wom
15	2019-03-08	Captain Marvel	175000000	426525952	\$1,123,061,550	Capt Mar
90	2018-05-18	Deadpool 2	110000000	324591735	\$786,680,557	Deadpoc
249	2016-12-21	Sing	75000000	270329045	\$634,454,789	Si
223	2017-02-24	Get Out	5000000	176040665	\$255,367,951	Get (
99	2018-04-06	A Quiet Place	17000000	188024361	\$334,522,294	A Quiet Pla
48	2018-11-02	Bohemian Rhapsody	55000000	216303339	\$894,985,342	Bohem Rhapsc
177	2017-07-07	Spider-Man: Homecoming	175000000	334201140	\$880,166,350	Spider-Ma Homecomi
11	2019-03-22	Us	20000000	175006930	\$254,210,310	
302	2016-08-05	Suicide Squad	175000000	325100054	\$746,059,887	Suic Squ
67	2018-08-15	Crazy Rich Asians	30000000	174532921	\$238,099,711	Crazy R Asia
143	2017-11-03	Thor: Ragnarok	180000000	315058289	\$846,980,024	Th Ragnai
235	2017-01-20	Split	5000000	138141585	\$278,964,806	SI
251	2016-12-09	La La Land	20000000	151101803	\$426,351,163	La La La
74	2018-07-13	Hotel Transylvania 3: Summer Vacation	65000000	167500092	\$527,079,962	Hc Transylva 3: Sumn Vacati
221	2017-03-03	Logan	127000000	226277068	\$615,461,394	Log

```
recents_pos_df = recents_df[recents_df['profit']>0]

In [48]: #bad plot
    x = recents_pos_df['profit']
    y = recents_pos_df['production_budget']

plt.scatter(x, y)
    plt.title('Profit vs Production Budget')
    plt.xlabel('Profit x 10^8')
```

In [47]:

#remove all the negatives

```
plt.ylabel('Production Budget x 10^8')
plt.show()
```


So there isnt exactly a relation between budget and profit. But have some budget generally gets you some profit. So lets take the average budget and reccomend that as the target budget for our film studio.

```
In [50]: recents_pos_df['production_budget'].mean()
```

Reccomendation 2 - Target Budget = \$43,000,000

People - Who can we get on a film that will draw a crowd?

How can we get this info?

• IMDB Sql database has a persons tables with a person_id and primary name.

One we have the person what do we want?

• lets generate a list of films for each person_id and determine with person_id has the highest average ratings of all the films they've been on.

```
persons_df = pd.read_sql("""
In [51]:
          SELECT p.primary_name,
                  mr.averagerating,
                  COUNT(DISTINCT mb.primary_title) as num_movies
          FROM directors as d
          JOIN persons as p
              USING(person_id)
          JOIN principals
              USING(person_id)
          JOIN movie_basics as mb
              USING(movie id)
          JOIN movie ratings as mr
              USING(movie id)
          WHERE numvotes > 3000
          GROUP BY p.primary_name
          HAVING num movies > 5
          """, conn)
```

```
In [52]: persons_df
```

ut[52]:		primary_name	averagerating	num_movies
	0	A.R. Murugadoss	6.8	7
	1	Adam Wingard	5.3	8
	2	Alex Gibney	7.3	8
	3	Anurag Kashyap	8.1	9
	4	Baltasar Kormákur	6.6	6
	5	Ben Wheatley	5.6	6
	6	Clint Eastwood	6.5	7
	7	Darren Lynn Bousman	6.4	7
	8	David Gordon Green	6.4	8
	9	Denis Villeneuve	8.3	6
	10	Frank D'Angelo	6.6	6

	primary_name	averagerating	num_movies
11	François Ozon	6.4	6
12	Hirokazu Koreeda	7.4	6
13	James Wan	7.2	6
14	Jon M. Chu	6.2	7
15	Kevin Macdonald	7.2	6
16	Lasse Hallström	6.8	7
17	Luc Besson	6.5	6
18	Michael Winterbottom	6.6	6
19	Mike Flanagan	5.8	6
20	Noah Baumbach	6.1	6
21	Ridley Scott	8.0	7
22	Rob Reiner	6.5	6
23	Rohit Shetty	5.5	8
24	Ron Howard	5.3	6
25	Sarik Andreasyan	4.5	6
26	Stephen Frears	6.8	6
27	Steven C. Miller	4.9	7
28	Steven Soderbergh	7.0	8
29	Steven Spielberg	7.4	7
30	Takashi Miike	7.4	6
31	Tim Burton	6.5	6
32	Tim Story	7.4	7
33	Tyler Perry	4.7	12
34	Werner Herzog	7.2	6
35	Woody Allen	6.3	8
36	Álex de la Iglesia	6.6	6

```
In [53]: persons_df.drop_duplicates(inplace = True)
    persons_df.sort_values('averagerating', ascending = False, inplace=True)
    persons_df.head()
```

Out[53]: primary_name averagerating num_movies 9 Denis Villeneuve 8.3 6 9 3 Anurag Kashyap 8.1 21 Ridley Scott 7 8.0 7 32 7.4 Tim Story 7.4 6 30 Takashi Miike

In order to get rid of outliers we limited our results directors with more than 5 movies, and those movies needed to have more than 3000 votes. Then we started those directors by the average rating of their films. This is the list we should use to select a director for any film our studio wishes to make. Don't choose arbitrarily though, some directors are from non US regions, and directors typically stay within genres. So it important to do research here as well.

There is no relationship between the number of movies and the average rating

Lets drop most of the list and for now, use one of the three directors at the top of this list: Denis Villeneuve, Anurag Kashyap, or Ridley Scott

Reccomendation 3 - Use one of these three directors: Denis Villeneuve, Anurag Kashyap, or Ridley Scott

Conclusion

We used rating and profit as our measures of success to determine what features like genre, budget, and director to use.

Reccomendation 1- Make an action, adventure, comedy film

Reccomendation 2- Use \$43,000,000 as your target budget

Reccomendation 3- Select either Denis Villeneuve, Anurag Kashyap, or Ridley Scott as the director