ririchiroyo@csu.fullerton.edu

Algorithm 2: Greedy Approach to Hamiltonian Problem

Pseudocode:

Problem: finding the best starting city to make a round trip given distance, mpg, and fuel

Input: distance (vec int), fuel (vec int), mpg (int)

Output: best starting city

Constraints: valid ints (no negatives), total fuel from all cities must cover the journey, must

be a circular route

FUNCTION findStartingCity(distance, fuel, mpg)

Int citycount = distance.size

Int fuelbalance = 0

For I from 0 to n-1:

Calculate total fuel for one round trip

If fuelbalance < 0

Start with the next city

Reset fuelbalance to 0

Return starting city

Time Complexity:

Code	Time Complexity	
Int citycount = distance.size	O(1)	
Int fuelBalance = 0	O(1)	
For 1 from 0 n-1	O(n+1)	
Calculate	O(n)	
If fuelBalance < 0	O(n)	
Start with next city		
fuelBalance = 0		
Return starting city	O(1)	

Wors	T.	O(n)

Proving with Limits:

$$F(n) = 4n + 4$$
 $G(n) = n$

$$\lim_{n \to \infty} F(n) / G(n)$$

$$\lim_{n \to \infty} 4n + 4/n$$

$$\lim n \to \infty (4n/n) + (4/n)$$

$$\lim n \to \infty 4 + (4/n)$$

$$4 + \lim_{n \to \infty} 4/n$$

$$4 + 0 = 4$$

4 is a const
$$\rightarrow \theta(n)$$