2024.04.08

1. 利用 Young 不等式证明 Hölder 不等式.

定理 1. (Young 不等式)

设 p>1,q>1, 且 $\frac{1}{p}+\frac{1}{q}=1$, 则对 $\forall a,b\geq 0$, 有

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}. (1)$$

定理 2. (Hölder 不等式)

对 $f \in L^p(\Omega), g \in L^q(\Omega), 1 \leqslant p, q \leqslant +\infty, \frac{1}{p} + \frac{1}{q} = 1,$ 有

$$||fg||_{0,1,\Omega} \le ||f||_{0,p,\Omega} ||g||_{0,q,\Omega}.$$
 (2)

证明. 若 $||f||_{0,p,\Omega} = 0$ (或 $||g||_{0,q,\Omega} = 0$), 则 $f(\boldsymbol{x}) = 0$ (或 $g(\boldsymbol{x}) = 0$), a.e. $\boldsymbol{x} \in \Omega$, 进而 $f(\boldsymbol{x})g(\boldsymbol{x}) = 0$, a.e. $\boldsymbol{x} \in \Omega$, 此时 (2)左侧与右侧均为 0, 成立.

否则 $||f||_{0,p,\Omega} \neq 0$, $||g||_{0,q,\Omega} \neq 0$. 取 $a = \frac{|f(x)|}{||f||_{0,p,\Omega}}$, $b = \frac{|g(x)|}{||g||_{0,q,\Omega}}$, 代入 (1)式后两边在 Ω 上积分, 得到

$$\int_{\Omega} \frac{|f(\boldsymbol{x})|}{\|f\|_{0,p,\Omega}} \frac{|g(\boldsymbol{x})|}{\|g\|_{0,q,\Omega}} dx \le \frac{1}{p} \frac{\int_{\Omega} |f(\boldsymbol{x})|^p dx}{\|f\|_{0,p,\Omega}^p} + \frac{1}{q} \frac{\int_{\Omega} |g(\boldsymbol{x})|^q dx}{\|g\|_{0,q,\Omega}^q}
= \frac{1}{p} + \frac{1}{q}
= 1$$

整理即得(2).

2. 证明 $W^{1,p}$ 是 Banach 空间.(利用 L^p 完备)

证明. 直接证明 $W^{m,p}$ 是 Banach 空间. 只要证明 $W^{m,p}(\Omega)$ 在 Sobolev 范数下是完备的.

令 $\{v_j\} \subset W^{m,p}(\Omega)$ 是 Cauchy 列, 即 $\{D^{\alpha}v_j : |\alpha| \leq m\}$ 是 $L^p(\Omega)$ 中的 Cauchy 列. 由于 $L^p(\Omega)$ 是完备的, 从而存在 $v^{\alpha} \in L^p(\Omega)(|\alpha| \leq m)$, 使得 $D^{\alpha}v_j \to v_{\alpha}$ 在 $L^p(\Omega)$ 中, 当 $j \to \infty$ 时. 余下只要证明 $v_{\alpha} = D^{\alpha}v$, 即 $\forall \varphi \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} v_{\alpha} \cdot \varphi dx = (-1)^{|\alpha|} \int_{\Omega} v \cdot \partial^{\alpha} \varphi dx.$$

事实上,

$$\begin{split} \int_{\Omega} v_{\alpha} \cdot \varphi dx &= \lim_{j \to \infty} \int_{\Omega} D^{\alpha} v_{j} \cdot \varphi dx \\ &= \lim_{j \to \infty} (-1)^{|\alpha|} \int_{\Omega} v_{j} \cdot \partial^{\alpha} \varphi dx = (-1)^{|\alpha|} \int_{\Omega} v \cdot \partial^{\alpha} \varphi dx. \end{split}$$

3. 设 $\Omega = (-1,1)$,

$$f(x) = |x| = \begin{cases} x, & 0 \le x < 1 \\ -x, & -1 < x < 0 \end{cases}$$

证明

$$g(x) = \begin{cases} 1, & 0 < x < 1 \\ -1, & -1 < x < 0 \end{cases}$$

是 f 的一阶广义导数.

证明. $\forall \varphi \in C_0^{\infty}(\Omega)$, 由分部积分,

$$\int_{-1}^{1} f(x) \cdot \varphi'(x) dx = \int_{-1}^{0} f(x) \cdot \varphi'(x) dx + \int_{0}^{1} f(x) \cdot \varphi'(x) dx$$
$$= \int_{-1}^{0} \varphi(x) dx - \int_{0}^{1} \varphi(x) dx$$
$$= -\int_{-1}^{1} g(x) \varphi(x) dx$$

其中

$$g(x) = |x| = \begin{cases} 1, & 0 < x < 1 \\ -1, & -1 < x < 0 \end{cases}$$

显然 g 是局部 Lesbegue 可积函数, 故 g 是 f 的一阶广义导数.

4. 推导 Poisson 方程的混合边值问题

的变分形式, 这里 $\partial\Omega = \Gamma_1 \cup \Gamma_2$, 且 $\Gamma_1 \cap \Gamma_2 = \emptyset$. 并证明古典解和弱解在一定条件下等价.

解. 设 $V = \{v \mid v \in H^1(\Omega), v|_{\Gamma_1} = 0\}.$

对任意 $v \in V$, 用 Green 公式可得

$$\int_{\Omega} \nabla u \cdot \nabla v d\mathbf{x} - \int_{\Gamma_2} \frac{\partial u}{\partial n} v d\mathbf{s} = \int_{\Omega} f v d\mathbf{x}$$
$$\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v d\mathbf{x} = \int_{\Omega} f v d\mathbf{x} + \int_{\Gamma_2} g v d\mathbf{s}$$

则问题(3)的变分形式是: 求 $u \in H^1(\Omega)$ 且 $u|_{\Gamma_1} = g_1$ 使得

$$a(u,v) = (f,v) + \int_{\Gamma_2} g_2 v ds, \quad \forall v \in V.$$
 (4)

定理 3. 设 $f \in C(\overline{\Omega}), g_1, g_2 \in C(\partial \Omega)$. 如果 $u \in C^2(\overline{\Omega})$ 是问题(3)的古典解, 则它是弱解. 反过来, 如果 u 是问题(3)的弱解且 $u \in C^2(\overline{\Omega})$, 则它是古典解.

证明. 第一个结论显然.

如果 u 是问题(3)的弱解且 $u \in C^2(\overline{\Omega})$, 立得 $u|_{\Gamma_1} = g_1$.

第一步在(4)中取 $v \in C_0^\infty(\Omega)$, 利用 Green 公式和 $v|_{\partial\Omega}=0$ 得到

$$\int_{\Omega} (\Delta u + f) v d\mathbf{x} = 0.$$

推出 $\Delta u+f=0$. 第二步在 (4) 中取 $v\in C^\infty(\overline\Omega)$ 且 $v|_{\Gamma_1}=0$, 注意到 $\Delta u+f=0$, 可得

$$\int_{\Gamma_2} \frac{\partial u}{\partial n} v d\mathbf{s} = \int_{\Gamma_2} g_2 v d\mathbf{s}$$

由 v 的任意性得到 u 满足边界条件 $\frac{\partial u}{\partial n}\Big|_{\Gamma_2} = g_2$.

三个条件均满足,故u是古典解.