Uvažujme skalární lineární diferenciální rovnici $y' = \lambda y$. Mějme midpoint metodu zadanou pomocí Butcherovy tabulky:

$$\begin{array}{c|c}
0 \\
\frac{1}{2} & \frac{1}{2} \\
\hline
0 & 1
\end{array}$$

Příklad (6.1)

Vyjádřete přírůstkovou funkci $\Phi(t, y, h)$ midpoint metody. Poté napište předpis y_{k+1} pro zadanou rovnici a midpoint metodu (v závislosti na t_k, y_k, h, λ).

Řešení

Máme $f(t,y) = \lambda y(t)$. Tedy koeficienty jsou

$$K_1 = f(t+0 \cdot h, y) = \lambda \cdot y(t)$$

$$K_2 = f\left(t + \frac{1}{2}h, y + \frac{1}{2}K_1h\right) = \lambda \cdot \left(y(t) + \frac{1}{2}K_1h\right) = \lambda \cdot \left(y(t) + \frac{1}{2}\lambda \cdot y(t)h\right).$$

Přírůstková funkce je pak $\Phi(t, y, h) = 0 + \lambda \cdot (y(t) + \frac{1}{2}\lambda \cdot y(t)h)$. Předpis je pak

$$y_{n+1} = y_n + h\Phi(t_n, y_n, h) = y_n + h \cdot \lambda \cdot \left(y_n + \frac{1}{2}\lambda \cdot y_n h\right) = y_n \cdot \left(1 + h \cdot \lambda + \frac{1}{2} \cdot h^2 \cdot \lambda^2\right).$$

Příklad (6.2)

Vyšetřete midpoint metodu z hlediska A-stability vzhledem k rovnici. Určete, pro jaké délky časového kroku je metoda A-stabilní, když $\lambda = -25$. Poté ověřte konzistenci a řád 2 midpoint metody.

Řešení

Metoda je A-stabilní, pokud amplifikační faktor je (v absolutní hodnotě) menší než 1. Tj. $1+h\cdot(-25)+\frac{1}{2}\cdot h^2\cdot(-25)^2$, tedy chceme aby $\frac{625}{2}h^2-25h=25h\left(\frac{25}{2}h-1\right)<0$, takže je stabilní, pokud $h<\frac{2}{25}$.

Metoda je konzistentní pokud $\lim_{h\to 0} \Phi(t,y,h) = f(x,y)$. To zřejmě je, neboť

$$\lim_{h \to 0} \Phi(t, y, h) = \lim_{h \to 0} \lambda \cdot \left(y(t) + \frac{1}{2} \lambda \cdot y(t) h \right) = \lambda y + \lim_{h \to 0} h \cdot (\ldots) = \lambda y.$$

K řádu použijeme, že podle Taylora je $y(x+h)=y(x)+\frac{y'(x)}{1}h+\frac{y''(x)}{2}h^2+o(h^3)$: $|\tau(x,y)|=$

$$\left| \frac{y(x+h) - y(x)}{h} - y'(x) - \frac{h}{2}y''(x) \right| = \left| y'(x) + \frac{y''(x)}{2}h + o(h^2) - y'(x) - \frac{h}{2}y''(x) \right| = o(h^2).$$

Příklad (5.3)

Použijte předpis z první úlohy pro výpočet numerického řešení rovnice v čase t=1 s $\lambda=-25$ a počáteční podmínkou y(0)=1 pro časové kroky $h_1=0.1$ a $h_2=0.05$. Spočtěte globální chybu v čase t=1. Odpovídá chování globální chyby výsledkům o A-stabilitě z druhé úlohy?

$\check{R}e\check{s}eni$

Pro $h_1=0.1$ dává metoda řešení přibližně 128.39, což je úplně mimo. Pro druhou hodnotu $h_2=0.05<\frac{2}{25}=0.08$ dává metoda řešení přibližně $3.2\cdot 10^{-6}$, což je pořád daleko od $\exp(-25)\approx 1.3888\cdot 10^{-11}$, ale alespoň správným směrem a řádově "na půl cesty". (Globální chyba je v prvním případě přibližně 128.39 a v druhém $3.2\cdot 10^{-6}$.)