Report for Q3 and Q4

Ruixiang JIANG 19079662d

Q3

Q3(1)

The probability that he do not run out of money after 100,1,000,10,000, and 100,000 times are (approximately) 1, 0.99, 0.085, 0 respectively.

(This answer is obtained by Monte Carol Simulation, so may have minor error to the accurate value.)

Q3(2)

My observation: The more he gamble, the less money he will have on average.(i.e. the money he have is a decreasing liner function to the gamble times *T* until he run out of money. He will eventually end up with no money.)

Q4

Q4(1)

Our sample looks like this,

Age vs. Height

to find the linear regression line is to find a line which minimize the sum of errors.

for each point, error
$$d_i = y_i - (\widehat{\beta_1}x_i + \widehat{\beta_0})$$
.

Sum of error square
$$D = (y_i - (\widehat{\beta_1}x_i + \widehat{\beta_0}))^2$$

To minimize D, we shall use calculus. Find the partial derivate of $\widehat{\beta_0}$ and $\widehat{\beta_1}$

$$\frac{\partial D}{\partial \widehat{\beta_0}} = \sum_{i=1}^n -2(y_i - \widehat{\beta_0} - \widehat{\beta_1}x_i)$$

$$\frac{\partial D}{\partial \widehat{\beta_1}} = -2(\sum_{i=1}^n x_i y_i - \widehat{\beta_0} \sum_{i=1}^n x_i - \widehat{\beta_1} x_i^2)$$

let $\frac{\partial D}{\partial \widehat{\beta_0}}$ and $\frac{\partial D}{\partial \widehat{\beta_1}}$ be 0, $n\bar{x} = \sum_{i=1}^n x_i$ and $n\bar{y} = \sum_{i=1}^n y_i$. (I think unbiased estimation is also ok here (as slides shows), anyway it do not affect the result)

We have:

$$\sum_{i=1}^{n} x_i y_i - \bar{y} \sum_{i=1}^{n} x_i + \widehat{\beta_1} \bar{x} \sum_{i=1}^{n} x_i - \widehat{\beta_1} \sum_{i=1}^{n} x_i^2 = 0$$
and $\widehat{\beta_0} = \bar{y} - \widehat{\beta_1} \bar{x}$

Finally, we can get:
$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1}\overline{x}$$

and
$$\widehat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_1 - \bar{x})^2}$$

Q4(2)

Q4(3)

the model we get in Q4(2) is y = 0.75016 + 0.06388x.

To predict height, just simply use this model with different x value. So, for a 3.5-yr-old boy, his expected height is 0.75016+0.06388*3.5=0.97374 meters.

and for an 8-yr-old boy, it's 0.75016 + 0.06388 * 8 = 1.2612 meters