Eindpresentatie Smartgrid

Olaf, Ruben en Sam

June 2020

Inleiding

Situatie

Inleiding

Situatie

Indleiding

Constraints

Indleiding

Constraints

Simpeler geval

- elke huis: maximale productie
- elke batterij: maximale capaciteit
- kabels niet delen

Uitbreiding

- Hetzelfde als simpeler geval
- behalve: kabels delen
- batterijen niet verbonden

Indleiding

Optimalisatieprobleem

Theorie

- Gegeven n huizen, en k batterijen. Op hoeveel manieren kunnen we de n huizen verdelen over de k batterijen met de constraint
- MinBatterij is de capaciteit van de batterij met de laagste capaciteit
- MaxHuis is de maximale productie van het huis met de grootste maximale productie
- Div = MinBatterij/MaxHuis. Pak Div willekeurige huizen, dan passen ze allemaal samen in elke batterij
- Bovengrens: kⁿ manieren
- Ondergrens: $\prod_{l=0}^{k-1} {n-l(Div) \choose (Div)}$

Theorie

- Gegeven 150 huizen, en 5 batterijen. Op hoeveel manieren kunnen we de 150 huizen verdelen over de 5 batterijen met de constraint
- MinBatterij = 1507 is de capaciteit van de batterij met de laagste capaciteit
- MaxHuis = 76 is de maximale productie van het huis met de grootste maximale productie
- MinBatterij/MaxHuis = 20
- ullet Bovengrens: 5^{150} manieren. Is ongeveer 33 keer het aantal atomen in universum
- Ondergrens: $\prod_{l=0}^4 {150-l\cdot 20 \choose 20} \approx 10^{106}$ is dus ongeveer 24 keer het aantal atomen in het universum

Theorie

- Kostenfunctie
- Ondergrens efficienste oplossing: $\sum_{huis \in huizen} min\{d(huis, batterij) : batterij \in batterijen\}$
- Div = MinBatterij/MaxHuis. Pak Div willekeurige huizen, dan passen ze allemaal samen in elke batterij
- Bovengrens efficienste oplossing: Laat H de gesorteerde verzameling huizen zijn, met h_i het i'de huis. $\sum_{h_i \in H, i \leq Div} min\{d(h_i, batterij) : batterij \in batterijen\} +$ $\sum_{h_i \in H, i \geq Div} max\{d(huis, batterij) : batterij \in batterijen\}$

- Probleem erg groot
- Dus opgedeeld in twee:
 - huizen verdelen en kabels leggen
 - Assumpties week 1 and 2: Eén huis één kabel:
- We starten met Random huizen verdelen onder de batterijen

- Random is te duur!
- Greedy Algoritme
 - Kiest altijd de momentaire best keuze
- Gekozen heuristiek:
 - Volheid van de potentiele volgende batterij
 - Huis afstand van batterij

- Probleem opgedeeld in twee: huizen verdelen en kabels leggen
- Assumpties week 1 and 2: Eén huis één kabel:
 - 1: Random €75.000
 - 2: Greedy, heuristiek: Afstand naar batterij €65.000
 - 3: Random hill-decent, heuristiek: batterij capaciteit €65.000
 - 4: Kabels leggen langs op Manhattan distance
 - 5: Random en greedy combineren met echte kabels, heuristiek: Afstand naar batterij €60.000
 - 6: Simulated Annealing, heuristiek: Afstand naar batterij en capaciteit batterij €60.000
 - 7: Hill climber, heuristiek: Afstand naar batterij
 - 8: A-Star kabels leggen en delen, heuristiek: Afstand naar batterij en connect met ander huizen

10 / 18

Datastructuur

Resultaten

- Kies eerst voor elk huis de dichtsbijzijnde batterij.
- Hill descent de som van de overschrijdingen van batterijcapaciteiten.

Figure: kosten van 1 000 iets minder willekeurig gegenereerde oplossingen in histogram tegen random (district 1)

- Idee voor betere resultaten
- We nemen weer wijk 1 als voorbeeld

• We kunnen de huizen van wijk 1 in een heat map als volgt weergeven:

• één huis ziet er dan zo uit:

- Neem als heuristiek de som van spanningen groter dan nul (batterijen kunnen de spanning absorberen).
- Met batterijen erbij, ziet het er zo uit:

Olaf, Ruben en Sam

Eindpresentatie Smartgrid

June 2020 16 / 18

• Een kabel leggen aan een batterij, ziet er dan zo uit:

Het einde :)

Bedankt voor de aandacht!