- 16. Dane są funkcje $f(x) = \sqrt{x}$ i g(x) = 1 x. Rozwiązać równanie f(g(x)) = g(f(x)).
- 17. Dany jest ciąg geometryczny (a_n) . Pokazać, że ciąg (b_n) , gdzie $b_n = a_{n+1} a_n$, też jest ciągiem geometrycznym.
- 18. Dwa punkty wyruszają jednocześnie z wierzchołka kąta o mierze 120° po jego ramionach z prędkościami odpowiednio 5 m/s i 3 m/s. Po jakim czasie odległość między nimi będzie wynosiła 49 m?
- 19. Napisać równanie okręgu stycznego do obu osi układu współrzędnych i przechodzącego przez punkt P(2,1).
- 20. Na podstawie definicji obliczyć pochodną funkcji $f(x) = \cos 3x$.
- 21. Narysować wykres funkcji $f(x) = 2^{\log_{\frac{1}{2}}x}$.
- 22. Wyznaczyć największą i najmniejszą wartość funkcji $f(x) = x + \operatorname{ctg} x$ w przedziale $\langle \frac{1}{4}\pi; \frac{3}{4}\pi \rangle$.
- 23. Z prawdopodobieństwem 1/2 w urnie znajduje się albo kula biała, albo czarna. Do urny dokładamy kulę białą i następnie losujemy jedną kulę. Jakie jest prawdopodobieństwo tego, że wylosujemy kulę białą?
- 24. Udowodnić, że wszystkie trójkąty prostokątne, których boki tworzą ciąg arytmetyczny, są podobne.
- 25. Wyznaczyć asymptoty funkcji $y = \frac{\sqrt{x^2 + x + 1}}{x}$.
- 26. Obliczyć tg $\alpha,$ jeśli $\sin\alpha-\cos\alpha=\frac{\sqrt{2}}{2}$ i $\alpha\in(\frac{\pi}{4};\frac{\pi}{2}).$
- 27. Narysować na płaszczyźnie zbiór punktów, których współrzędne spełniają nierówność $y^2 + xy 2x^2 < 0$.
- 28. Obliczyć długości przekątnych równoległoboku zbudowanego na wektorach \vec{a} i \vec{b} , jeżeli $\vec{a}=2\vec{m}-\vec{n},$ $\vec{b}=3\vec{n}-\vec{m},$ gdzie wektory \vec{m} i \vec{n} są ortogonalne i $|\vec{m}|=|\vec{n}|=1.$
- 29. Wykazać, że funkcja $y=\sqrt{x^3-1}$ jest różnowartościowa w swojej dziedzinie. Następnie wyznaczyć funkcją do niej odwrotną.
- 30. Wykazać, że jeśli ciąg (a_n) jest ograniczony i $\lim_{n\to\infty} b_n = 0$, to $\lim_{n\to\infty} a_n \cdot b_n = 0$.