Advances in Quantitative MRI: Acquisition, Estimation, and Applications

Gopal Nataraj

Dissertation Proposal May 15, 2017

Dept. of Electrical Engineering and Computer Science University of Michigan

Goal: rapidly and reliably localize biomarkers from MR data

• biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation
- reliably accurate signal models, precise estimation

Goal: rapidly and reliably localize biomarkers from MR data

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation
- reliably accurate signal models, precise estimation

Challenges (beyond conventional MRI):

- complicated, nonlinear signal models
- more data required, so longer scan times

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5] Given data from an informative acquisition, how can we rapidly and accurately quantify these biomarkers?

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Signal Model

After reconstruction, single voxel y_d in dth image modeled as

$$y_d = s_d(\mathbf{x}; \boldsymbol{\nu}, \mathbf{p}_d) + \epsilon_d \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{p}_d \in \mathbb{R}^A$
- $s_d: \mathbb{R}^{L+K+A} \mapsto \mathbb{C}$
- $\epsilon_d \in \mathbb{C}$

latent free parameters known parameters acquisition parameters

dth signal model

 $\mathsf{noise} \sim \mathbb{C} \mathcal{N} \big(\mathbf{0}, \sigma_d^2 \big)$

Signal Model

A scan profile contains D voxels $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$, modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

•
$$\nu \in \mathbb{R}^K$$

•
$$P := [p_1, ..., p_D]$$

•
$$\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$$

$$ullet$$
 $\epsilon \sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

latent free parameters

known parameters

acquisition parameter matrix

vector signal model

noise, with $\Sigma := \mathsf{diag} ig(\sigma_1^2, \dots, \sigma_D^2 ig)$

5

Signal Model

A scan profile contains D voxels $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$, modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$
 latent free parameters
• $\mathbf{v} \in \mathbb{R}^K$ known parameters

• $P := [p_1, \dots, p_D]$ acquisition parameter matrix

• $\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$ vector signal model

 $\bullet \ \epsilon \sim \mathbb{C} \mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma}) \qquad \text{ noise, with } \mathbf{\Sigma} := \mathsf{diag} \big(\sigma_1^2, \dots, \sigma_D^2 \big)$

Task: design P to enable precise unbiased estimation of x

When \mathbf{s} is analytic in \mathbf{x} (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}).$$
 (3)

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or equivalently (for Gaussian data) at sufficiently high SNR.

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}).$$
 (3)

Maximum-likelihood (ML) estimates achieve CRB asymptotically or equivalently (for Gaussian data) at sufficiently high SNR.

Idea: choose P such that imprecision matrix F^{-1} "small"

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \text{tr}\Big(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\Big), \tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\breve{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\} \tag{5}$$

where $\mathbb{X}^t \subseteq \mathbb{R}^L$ and $\mathbb{N}^t \subseteq \mathbb{R}^K$ are "tight" ranges of interest and \mathbb{P} is defined by acquisition/timing constraints

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\}$$
(5)

Bayesian scan design

[§6.3]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \nu, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \nu, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\} \tag{5}$$

Bayesian scan design

[§6.3]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu} (\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]
- For each scan profile feasible under total time constraint:
 - 1. Let **s** model corresponding single-component signal
 - $\mathbf{x} \leftarrow [m_0, T_1, T_2]^\mathsf{T}$, where m_0 is a scale factor
 - ullet u \leftarrow flip angle variation
 - $P \leftarrow$ nominal flip angles, repetition times
 - 2. Optimize **P** subject to flip angle, sequence timing constraints
 - $W \leftarrow \text{diag}(0, 0.1, 1)$ emphasizes T_1, T_2 est roughly equally
 - ullet \mathbb{X}^t chosen to focus on WM/GM at 3T field strength
 - ullet \mathbb{N}^{t} chosen to allow 10% flip angle variation

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
Optimized Cost	4.0	4.9	3.5

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
Optimized Cost	4.0	4.9	3.5

Main finding: 2 DESS sequences can yield T_1 , T_2 WM/GM estimates that are at least as precise as T_1 , T_2 estimates from SPGR/DESS scan profiles, under this competitive time constraint.

Numerical Simulation

- Simulated many WM-like, GM-like voxel realizations
- ullet Studied sample statistics of $\mathcal{T}_1,\,\mathcal{T}_2$ ML estimates $\widehat{\mathcal{T}}_1^{\mathrm{ML}},\,\widehat{\mathcal{T}}_2^{\mathrm{ML}}$

Numerical Simulation

- Simulated many WM-like, GM-like voxel realizations
- ullet Studied sample statistics of $T_1,\,T_2$ ML estimates $\widehat{T}_1^{\mathrm{ML}},\,\widehat{T}_2^{\mathrm{ML}}$

Profile	(2, 1)	(1, 1)	(0,2)	Truth
WM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	830 ± 17	830 ± 15	830 ± 14	832
GM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	$1330 \pm 30.$	1330 ± 24	1330 ± 24	1331
WM $\widehat{T}_2^{ ext{ML}}$	$80. \pm 1.0$	$80. \pm 2.1$	79.6 ± 0.94	79.6
GM $\widehat{T}_2^{ m ML}$	$110.\pm1.4$	$110.\pm3.0$	$110.\pm1.6$	110

Table 1: $\widehat{T}_1^{\mathrm{ML}}, \widehat{T}_2^{\mathrm{ML}}$ sample means \pm sample standard deviations

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- Four inversion recovery (IR) scans for T_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- ullet Four inversion recovery (IR) scans for \mathcal{T}_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Bloch-Siegert (BS) acquisition for separate flip angle calibration

- Acquired 2 BS-shifted SPGR scans in 1m40s total
- Used for T_1 , T_2 est from both candidate and reference profiles

Phantom Accuracy Results

Compared against NIST NMR measurements [Keenan et al., 2016]

Phantom Precision Results

- Repeated each profile 10 times
- ullet Estimated $\mathcal{T}_1,\,\mathcal{T}_2$ std dev of typical voxel across repetitions

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	50 ± 12	$40\pm10.$	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{ ext{ML}}}$	70 ± 18	60 ± 15	70 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35

Table 2: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	70 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\hat{\sigma}_{\hat{T}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35

Table 2: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Similar trends across profiles of empirical vs. theoretical std dev!

In vivo Results

Figure 1: Colorbar ranges in ms.

Contributions

- MR scan design method for precise parameter estimation
- \bullet Fast SPGR/DESS scan profile for ${\it T}_1, {\it T}_2$ estimation in brain

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting sensitivity to model mismatch.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting sensitivity to model mismatch.

How to address model mismatch?

- More complete in vivo signal models
- More scalable parameter estimation

Overview

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Quantitative MRI (QMRI) Parameter Estimation

Given: MR image sequence informative about a physical process

- flow
- diffusion
- multi-compartmental relaxation
- . . .

Quantitative MRI (QMRI) Parameter Estimation

Given: MR image sequence informative about a physical process

- flow
- diffusion
- multi-compartmental relaxation
- ...

Task: estimate MR tissue properties characterizing the process

- flow velocity
- diffusivity
- compartmental relaxivity
- . . .

QMRI Problem Statement

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$
- $oldsymbol{\epsilon} \in \mathbb{C}^D$

latent free parameters

known parameters

signal model

noise $\sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$

QMRI Problem Statement

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

• $\mathbf{x} \in \mathbb{R}^L$ latent free parameters

• $u \in \mathbb{R}^K$ known parameters

• $\mathbf{s} : \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$ signal model

 $oldsymbol{\epsilon} \in \mathbb{C}^D$ noise $\sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- ullet signal ullet might be difficult to write in closed form

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis
 - several unintuitive tuning parameters

[?]

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis

[?]

- several unintuitive tuning parameters
- grid search e.g., for MR fingerprinting [Ma et al., 2013]

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	$\sim 100^2$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	$\sim \! 100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	$\sim\!100^6$
	6-10	$\sim \! 100^5 - 100^9$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	$\sim \! 100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	$\sim\!100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Can we scale computation with ${\it L}$ more gracefully?

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$(\widehat{h}_l, \widehat{b}_l) \in \left\{ \arg \min_{\substack{h_l \\ b_l \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_l(\mathbf{q}_n) + b_l - x_{l,n})^2 \right\}$$

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(8)

Solution: solve a *kernel ridge regression* (KRR) problem

- restrict function space over which we optimize
- include function regularization

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with *reproducing property*

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k:\mathcal{Q}^2\mapsto\mathbb{R}$ called a reproducing kernel (RK)

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

Relevant facts

- Bijection between RKHS \mathbb{H} and RK k [Aronszajn, 1950]
- Function $k(\cdot, \mathbf{q}) \in \mathbb{H}$ called a *feature mapping*

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

- Nonlinear kernel corresponds to nonlinear estimation
- We use $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-\frac{1}{2} \left\| \mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}') \right\|_2^2\right)$

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \tag{9}$$

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \tag{9}$$

• Optimal \widehat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
(10)

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(9)

• Optimal \widehat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
 (10)

• Plug (10) into (9); solve now instead for $(\widehat{a}_l, \widehat{b}_l)$; construct:

$$\widehat{x}_{l}(\cdot) = \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n}) + \widehat{b}_{l}$$
(11)

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
 (12)

•
$$\mathbf{x}_{l} := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$

training pt regressands

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

$$\bullet \ \mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$$
 Gram matrix

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
 (12)

$$\bullet \ \, \mathbf{x}_I := \begin{bmatrix} x_{I,1}, \dots, x_{I,N} \end{bmatrix}^\mathsf{T} \qquad \qquad \text{training pt regressands} \\ \bullet \ \, \mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix} \qquad \text{Gram matrix} \\ \bullet \ \, \mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N \mathbf{I}_N^\mathsf{T} \qquad \qquad \text{de-meaning operator}$$

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(12)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt re

• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix

• $M := I_N - \frac{1}{N} I_N I_N^T$

•
$$\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$$

training pt regressands

de-meaning operator nonlin kernel embedding

MRI Parameter Estimation via KRR

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\mathsf{T}$ de-meaning operator

Can we scale computation with L more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

• Yes, in fact (12) separable in $I \in \{1, ..., L\}$ by construction

nonlin kernel embedding

MRI Parameter Estimation via KRR

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbb{I}_N - \frac{1}{N} \mathbb{I}_N \mathbb{I}_N^{\mathsf{T}}$ de-meaning operator

Can we scale computation with L more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^T$

- Yes, in fact (12) separable in $l \in \{1, ..., L\}$ by construction
- However, explicitly computing K may be undesirable...

nonlin kernel embedding

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathbf{1}_{N} + \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} \left(\frac{1}{N} \widetilde{\mathsf{Z}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} + \rho_{l} \mathsf{I}_{Z} \right)^{-1} \left(\widetilde{\mathsf{z}}(\cdot) - \frac{1}{N} \widetilde{\mathsf{Z}} \mathbf{1}_{N} \right)$$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for dim $(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.\tag{13}$$

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \Big(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \Big)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(14)

which is regularized ("ridge") Z-dimensional affine regression!

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.\tag{13}$$

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \Big(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \Big)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(14)

which is regularized ("ridge") Z-dimensional affine regression!

Does such a $\tilde{\mathbf{z}}$ exist and work well in practice?

- Yes, e.g. for "shift invariant" kernels (like our Gaussian) of form $k(\mathbf{q}, \mathbf{q}') \equiv k(\mathbf{q} \mathbf{q}')$ [Rahimi and Recht, 2007]
- ullet In such cases, can reduce from $\sim\!N^2$ to $\sim\!NZ$ computations

Application: Myelin Water Fraction (MWF) Imaging

Application: Myelin Water Fraction (MWF) Imaging

simple two-compartment model

Application: Myelin Water Fraction (MWF) Imaging

simple two-compartment model

Goal: rapidly estimate f_F (proxy for MWF) in white matter (WM)

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{F}, T_{1,F}, T_{2,F}, T_{1,S}, T_{2,S}, m_{0}]^{\mathsf{T}}$
- ullet u \leftarrow flip angle variation
- y ← voxel values from 10 datasets

[Nataraj et al., 2017a]

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathrm{T}}$
- $\nu \leftarrow$ flip angle variation
- y ← voxel values from 10 datasets [Nataraj et al., 2017a]

Use KRR to estimate just $f_{\rm F}$

- Separable prior on x: $f_{\rm F}$, m_0 uniform; others log-uniform
- $N \leftarrow 10^6$ training points
- $Z \leftarrow 10^3$ kernel approximation order

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{F}, T_{1,F}, T_{2,F}, T_{1,S}, T_{2,S}, m_{0}]^{\mathsf{T}}$
- ullet u \leftarrow flip angle variation
- y ← voxel values from 10 datasets [Nataraj et al., 2017a]

Use KRR to estimate just $f_{\rm F}$

- Separable prior on \mathbf{x} : f_{F}, m_0 uniform; others log-uniform
- $N \leftarrow 10^6$ training points
- $Z \leftarrow 10^3$ kernel approximation order

Compare against grid search

- ullet unconstrained search would require $\sim 100^5$ dictionary atoms
- we artificially constrain search here to limit computation

MWF Imaging: Simulation Result

Fast-fraction $f_{\rm F}$ estimates, in simulation:

MWF Imaging: Simulation Result

Fast-fraction $f_{\rm F}$ estimates, in simulation:

 \sim 4h 40s training, 2s testing

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

• Full-scale grid search intractable on typical desktop

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

- Full-scale grid search intractable on typical desktop
- KRR estimates in single slice took about 70s

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

- Full-scale grid search intractable on typical desktop
- KRR estimates in single slice took about **70s**
- KRR MWF estimates in WM comparable to literature

Contributions

• Fast KRR method for nonlin MRI multiparameter estimation

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Ongoing work

- Conceptual: model selection, performance analysis
- Experimental: validation studies

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert nonlinear estimation problem into nonlinear regression problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Ongoing work

- Conceptual: model selection, performance analysis
- Experimental: validation studies

Backup: An Overview of Model Selection

Some model parameters require manual selection...

$$ullet$$
 Kernel shape $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-rac{1}{2}ig\|\mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}')ig\|_2^2
ight)$

Backup: An Overview of Model Selection

Some model parameters require manual selection...

• Kernel shape
$$k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-\frac{1}{2} \left\| \mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}') \right\|_2^2\right)$$

- Prior on **x** from tissue properties
- *N*, *Z* empirical methods

Backup: An Overview of Model Selection

Some model parameters require manual selection...

$$ullet$$
 Kernel shape $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-rac{1}{2}ig\|oldsymbol{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}')ig\|_2^2
ight)$

- Prior on **x** from tissue properties
- N, Z empirical methods

...but others tuned automatically

- ullet Kernel smoothing length-scale $oldsymbol{\Lambda} \leftarrow \operatorname{\mathsf{diag}}\Bigl(\sum_{n=1}^{\mathcal{N}} \mathbf{q}_n\Bigr)$
- Regularization parameters $\rho_l \leftarrow \frac{1}{N^2} \mathbf{x}_l^\mathsf{T} \mathbf{M} \mathbf{x}_l$
- ullet Prior on known u density estimation

Overview

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

References i

🚡 Crai

Cramér, H. (1946).

Mathematical methods of statistics.

Princeton Univ. Press, Princeton.

Aronszajn, N. (1950). **Theory of reproducing kernels.**

Trans. Amer. Math. Soc., 68(3):337-404.

Keenan, K. E., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Reddick, W. E., Cecil, K. M., Zheng, J., Hu, P., and Jackson, E. F. (2016).

Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom.

In Proc. Intl. Soc. Mag. Res. Med., page 3290.

References ii

Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., and Griswold, M. A. (2013).

Magnetic resonance fingerprinting.

Nature, 495:187-93.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017a).

Myelin water fraction estimation from optimized steady-state sequences using kernel ridge regression.

In *Proc. Intl. Soc. Mag. Res. Med.*, page 5076. To appear.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017b).

Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences.

IEEE Trans. Med. Imag., 36(2):467-77.

References iii

In NIPS.

Redpath, T. W. and Jones, R. A. (1988).

FADE-A new fast imaging sequence.

Mag. Res. Med., 6(2):224-34.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In *Proc. Computational Learning Theory (COLT)*, pages 416–426. LNCS 2111.

Zur, Y., Wood, M. L., and Neuringer, L. J. (1991). **Spoiling of transverse magnetization in steady-state sequences.** *Mag. Res. Med.*, 21(2):251–63.