Chapitre 1

Feuille d'exercices : Séquence 1

S Exercice 1.

Soient $P(X) = 2X^2 - 3 \in \mathbb{K}[X]$ et $Q(X) = X^4 - 7X^3 + X - 5 \in \mathbb{K}[X]$. Donner les polynômes P + Q, PQ et P - 2Q.

Solution:

$$(P+Q)(X) = X^4 - 7X^3 + 2X^2 + X - 8,$$

$$PQ(X) = 2X^6 - 14X^5 - 3X^4 + 23X^3 - 10X^2 - 3X + 15,$$

$$(P-2Q)(X) = -2X^4 + 14X^3 + 2X^2 - 2X + 7.$$

Exercice 2.

Trouver le polynôme $P \in \mathbb{K}[X]$ de degré inférieur ou égal à 3 tel que :

$$P(0) = 1$$
, $P(1) = 0$, $P(-1) = -2$ et $P(2) = 4$.

Solution:

$$P(X) = \frac{3}{2}X^3 - 2X^2 - \frac{1}{2}X + 1.$$

S Exercice 3.

Effectuer la division euclidienne de A par B:

1.
$$A = 3X^5 + 4X^2 + 1$$
, $B = X^2 + 2X + 3$

2.
$$A = 3X^5 + 2X^4 - X^2 + 1$$
, $B = X^3 + X + 2$

3.
$$A = X^4 - X^3 + X - 2$$
, $B = X^2 - 2X + 4$

4.
$$A = X^5 - 7X^4 - X^2 - 9X + 9$$
, $B = X^2 - 5X + 4$

Solution:

1.
$$A = B(3X^3 - 6X^2 + 3X + 16) - 41X - 47$$
.

2.
$$A = B(3X^2 + 2X - 3) - 9X^2 - X + 7$$
.

3.
$$A = B(X^2 + X - 2) - 7X + 6$$
.

4.
$$A = B(X^3 - 2X^2 - 14X - 63) - 268X + 261$$
.

Exercice 4.

À quelle condition sur $(a,b,c) \in \mathbb{R}^3$ le polynôme $X^4 + aX^2 + bX + c \in \mathbb{R}[X]$ est-il divisible par $X^2 + X + 1$?

Solution : Si et seulement si b - a + 1 = 0 et c - a = 0.

Exercice 5.

Pour quelles valeurs de $\lambda \in \mathbb{R}$ le polynôme

$$P(X) = X^3 + \lambda X^2 + (\lambda + 1)X + \lambda + 2 \in \mathbb{K}[X]$$

est-il divisible par (X+3) ?

Solution : Si et seulement si $\lambda = 4$.

S Exercice 6.

Justifiez le fait que $P_0 \in \mathbb{K}[X]$ divise $P_1 \in \mathbb{K}[X]$ dans les cas suivants :

1)
$$P_0(X) = X + 1$$
 et $P_1(X) = -X^2 + 2X + 3$,

2)
$$P_0(X) = X^2 + X + 1$$
 et $P_1(X) = 2X^3 + X^2 + X - 1$,

3)
$$P_0(x) = X^2 - 1$$
 et $P_1(X) = X^4 + X^3 - X - 1$.

Exercice 7.

Soit $P(X) = \sum_{k=0}^{n} a_k X^k$ un polynôme de $\mathbb{C}[X]$ dont tous les coefficients sont réels et soit α une racine de P. Montrer que $\bar{\alpha}$ est une racine de P.

Exercice 8.

Soit P un polynôme $\mathbb{K}[X]$ et soit $\alpha \in \mathbb{K}$ une racine d'ordre de multiplicité $m \in \mathbb{N}^*$ de $P, m \geq 2$.

- 1) Exprimer grâce au cours, P en fonction de α et de m.
- 2) Montrer que α est une racine d'ordre m-1 de P' le polynôme dérivée de P sur \mathbb{K} .

S Exercice 9.

On considère le polynôme $P(X) = 2X^3 + 3X^2 - 8X + 3 \in \mathbb{K}[X]$. Calculer P(1). En déduire la factorisation de P(X) en un produit de polynômes de degré 1.

Exercice 10.

Décomposer les polynômes de $\mathbb{K}[X]$ ci-dessous en facteurs irréductibles pour $\mathbb{K} = \mathbb{R}$, puis pour $\mathbb{K} = \mathbb{C}$.

1)
$$2X^3 - 3X^2 - 5X + 6$$
.

3)
$$X^4 - 3X^3 - 3X^2 + 11X - 6$$
.

2)
$$X^4 - 1$$
.

4)
$$X^3 - 27$$
.

Solution:

1)
$$2X^3 - 3X^2 - 5X + 6 = (X - 1)(X - 2)(2X + 3)$$
.

2)
$$X^4 - 1 = X - 1(X + 1)(X^2 + 1)$$
 dans $\mathbb{R}[X]$
 $X^4 - 1 = (X - 1)(X + 1)(X - i)(X + i)$ dans $\mathbb{C}[X]$.

3)
$$X^4 - 3X^3 - 3X^2 + 11X - 6 = (X - 1)^2(X + 2)(X - 3)$$
.

4)
$$X^3 - 27 = (X - 3)(X^2 + 3X + 9)$$
 dans $\mathbb{R}[X]$
 $X^3 - 27 = (X - 3)\left(X + \frac{3 + 5i}{2}\right)\left(X + \frac{3 - 5i}{2}\right)$ dans $\mathbb{C}[X]$

Exercice 11.

Dans cet exercice, on souhaite décomposer un polynôme en produit de polynômes irréductibles.

- 1) Effectuer la division euclidienne de $P(X) = X^4 + 6X^3 + 10X^2 + 3X 6 \in \mathbb{R}[X]$ par $Q(X) = X^2 + 3X \in \mathbb{R}[X]$.
- 2) Calculer Q(X) + 1. En déduire une expression de P en fonction de Q.
- 3) Décomposer le polynôme $Y^2 + Y 6$ dans $\mathbb{R}[Y]$.
- 4) En déduire une expression de P en produit de polynômes de $\mathbb{R}[X]$ du second degré.
- 5) Donner la décomposition de P dans $\mathbb{R}[X]$ puis dans $\mathbb{C}[X]$.

Exercice 12.

On cherche s'il existe un polynôme P de degré 3 tel que pour tout $n \in \mathbb{N}$,

$$P(n) = \sum_{k=0}^{n} k^2.$$

- 1) Montrer que $2X^2 + 7X + 6 = 2(X+2)(X+\frac{3}{2})$.
- 2) On suppose qu'il existe un polynôme P de degré 3 tel que pour tout $n \in \mathbb{N}$, $P(n) = \sum_{k=0}^{n} k^2$.
 - a) Donner P(0), P(1), P(2) P(3).
 - b) En déduire un système de 4 équations dont les inconnues sont les coefficients de P.
 - c) En déduire P.
- 3) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $P(n) = \sum_{k=0}^{n} k^2$.