بسم الله الرحمن الرحيم

فصل دوم

آتوماتای متناهی (۱)

Finite Automata (1)

کاظم فولادی kazim@fouladi.ir دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

Finite Automata

Finite Automaton

Finite Accepter

Transition Graph

Initial Configuration

Reading the Input

Output: "accept"

Rejection

Another Example

Rejection

Output: "reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Aplhabet Σ

$$\Sigma = \{a, b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b) = q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

		•	
δ	а	Ь	
90	q_1	95	
91	9 5	92	
92	9 5	93	
<i>9</i> ₃	94	95	a,b
94	9 5	95	
<i>9</i> 5	9 5	<i>9</i> ₅	95
b a b a, b a, b a, b a, b a, b a b a a b a a b a			
		 (q_0 \xrightarrow{a} (q_1) \xrightarrow{b} (q_2) \xrightarrow{b} (q_3) \xrightarrow{a} (q_4)

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q_0,ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_1 \qquad b \qquad q_3 \qquad a \qquad b$$

$$q_4 \qquad b \qquad q_4 \qquad b$$

Languages Accepted by DFAs Take DFA $\,M$

Definition:

The language L(M) contains all input strings accepted by M

L(M) = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \mathcal{S}^* (q_0, w) \in F \}$$
 alphabet transition initial final function state states

Observation

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all substrings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language
$$L$$
 is regular if there is a DFA M such that $L = L(M)$

All regular languages form a language family

Example

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

