

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Lecture 8: Supervised Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 4^{TH} FEB, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 8

- Introduction Segment
 - Recap of Lecture 7
- Main Segment
 - A plethora of methods
 - Naïve Bayes Method
 - Gradient Tree Boosting
 - Neural Network MLP
 - Metrics: ROC/ AUC
 - Paper discussion: 10 tips
 - What's next: choosing a method that works
 - · Mostly an art
 - Paper: Data-driven advice for applying machine learning to bioinformatics problems
- Concluding Segment
 - About Next Lecture Lecture 9, 10
 - Ask me anything

Introduction Segment

Recap of Lecture 7

- Reviewed Quiz, Project and Topic Schedule
- Supervised ML
 - Review datasets
 - Review Weka
 - Decision trees/ random forest

Main Segment

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification, clustering, dimensionality reduction, anomaly detection, neural methods
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Classifier Method Types

- Individual methods
 - Decision Tree
 - Naïve Bayes
- Ensemble
 - Bagging: Aggregate classifiers ("bootstrap aggregation" => bagging)
 - Random Forest
 - Samples are chosen with replacement (bootstrapping), and combined (aggregated) by taking their average
 - Gradient Boosting: aggregate to turn weak learners into strong learners
 - Boosters (aggregators) turn weak learners into strong learners by focusing on where the individual weak models (decision trees, linear regressors) went wrong
 - Gradient Boosting
 - XGBoost: "eXtreme Gradient Boosting."

Source:

- Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber
- https://towardsdatascience.com/getting-started-with-xgboost-in-scikit-learn-f69f5f470a97

Naïve Bayes Classifier

Notation:

Class variable y and dependent feature vector x₁ through x_n

Bayes assumption: given the value of the class variable, every pair of features are conditionally independent

$$P(y \mid x_1, \dots, x_n) = rac{P(y)P(x_1, \dots, x_n \mid y)}{P(x_1, \dots, x_n)}$$

Using the naive conditional independence assumption that

$$P(x_i|y,x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)=P(x_i|y),$$

for all i, this relationship is simplified to

$$P(y \mid x_1, \dots, x_n) = rac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

Since $P(x_1,\ldots,x_n)$ is constant given the input, we can use the following classification rule:

Source: https://scikit-learn.org/stable/modules/naive_bayes.html

Concepts

- Weak learner: a classifier that is only slightly correlated with the true classification
 - label examples better than random guessing
- **Strong learner**: a classifier that is (arbitrarily) well-correlated with the true classification.

Boosting

- "Convert weak learners to strong learners"
- Adapt[at]ive Resampling and Combining algorithm

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

Source: https://en.wikipedia.org/wiki/Boosting_(machine_learning)

Image Courtesy: Prof. Cheng Li

Gradient Boosting = Gradient Descent + Boosting Adaboost

 $H(x) = \sum_{t} \rho_t h_t(x)$

- ▶ Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- ▶ In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- ► In Adaboost, "shortcomings" are identified by high-weight data points.

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

Content and Image Courtesy: Prof. Cheng Li https://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/slides/gradient_boosting.pdf

AdaBoost,

Illustration: for binary classification, images

- 1. Form a large set of simple features
- 2. Initialize weights for training images
- 3. For T rounds
 - 1. Normalize the weights
 - 2. For available features from the set, train a classifier using a single feature and evaluate the training error
 - 3. Choose the classifier with the lowest error
 - 4. Update the weights of the training images: increase if classified wrongly by this classifier, decrease if correctly
- 4. Form the final strong classifier as the linear combination of the T classifiers (coefficient larger if training error is small)

Source: https://en.wikipedia.org/wiki/Boosting_(machine_learning)

Gradient Boosting = Gradient Descent + Boosting Adaboost

$$H(x) = \sum_{t} \rho_t h_t(x)$$

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

Image Courtesy: Prof. Cheng Li https://www.ccs.neu.edu/home/vip/teach/MLcourse/4 boosting/slides/gradient boosting.pdf

Gradient Boosting = Gradient Descent + Boosting

Gradient Boosting

- ▶ Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- ▶ In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- ► In Gradient Boosting, "shortcomings" are identified by gradients.
- Recall that, in Adaboost, "shortcomings" are identified by high-weight data points.
- ▶ Both high-weight data points and gradients tell us how to improve our model.

Gradient Boosting = Gradient Descent + Boosting Adaboost

$$H(x) = \sum_{t} \rho_t h_t(x)$$

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

Content and Image Courtesy: Prof. Cheng Li https://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/slides/gradient_boosting.pdf

Neural Network Methods

NN – Multi Layer Perceptron

Content and Image Courtesy:

https://github.com/Thanasis1101/MLP-from-scratch

Logistic Regression in a Slide

Function estimate (linear)

W: weight, b: bias

$$f(X_j) = X_j W + b$$

Update Weight

$$W^* = W - \eta \frac{dL}{dW}$$

Error Term (mean squared error)

$$MSE = \frac{1}{n} \sum_{j=1}^{n} [f(X_{j\cdot}) - y_j]^2$$

Common Code Pattern

y = tf.matmul(x, W) + b loss = tf.reduce_mean(tf.square(y - y_label))

Keras and TensorFlow

- By Example:
 - https://github.com/biplav-s/course-nl/blob/master/l9-mlreview/Basic%20TensorFlow%20and%20Keras.ipynb
- TensorFlow's NMIST tutorial
 - https://www.tensorflow.org/tutorials/quickstart/beginner
- More examples
 - Number Addition by sequence learning: https://keras.io/examples/nlp/addition-rnn/
 - AutoEncoder: https://machinelearningmastery.com/lstm-autoencoders/

Review: Code on GitHub

• Notebook: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-l8-supervised-ml/Supervised-NaiveBayes-GradientBoost-NN-Classification.ipynb

Activity: Try Weka and Classifiers

- Naïve Bayes Method
- Gradient Tree Boosting
- Neural Network MLP

Metric Types

- Effectiveness: what the <u>user</u> of a system sees, primarily cares about
- Efficiency: what the <u>executor</u> in a system sees, primarily cares about

Efficiency Metrics

Metrics: Accuracy, Precision, Recall

	Predicted class		
Actual Class		Class = Yes	Class = No
	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

ROC – Receiver Operating Characteristic curve

True Positive Rate = Recall = (TP)/(TP+FN)

False Positive Rate = (FP)/(FP+TN)

	Predicted class		
Actual Class		Class = Yes	Class = No
	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

AUC – Area Under the ROC Curve

- Aggregate measure of performance across all possible classification thresholds.
- Interpretation: probability that the model ranks a random positive example more highly than a random negative example

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

References

- •Blogs: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
- Google: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Discussion: 10 Tips Paper

- Access: https://biodatamining.biomedcentral.com/articles/10.1186/s13040-017-0155-3
- Chicco, D. Ten quick tips for machine learning in computational biology. *BioData Mining* **10**, 35 (2017). https://doi.org/10.1186/s13040-017-0155-3

The Tips

- Tip 1: Check and arrange your input dataset properly
- Tip 2: Split your input dataset into three independent subsets (training set, validation set, test set), and use the test set only once you complete training and optimization phases
- Tip 3: Frame your biological problem into the right algorithm category
- Tip 4: Which algorithm should you choose to start? The simplest one!
- Tip 5: Take care of the imbalanced data problem
- Tip 6: Optimize each hyper-parameter
- Tip 7: Minimize overfitting
- Tip 8: Evaluate your algorithm performance with the Matthews correlation coefficient (MCC) or the Precision-Recall curve
- Tip 9: Program your software with open source code and platforms
- Tip 10: Ask for feedback and help to computer science experts, or to collaborative Q&A online communities

Lecture 8: Concluding Comments

We looked at taxonomies

Concluding Segment

About Next Lecture – Lecture 9

Lecture 9: Paper Reading

- Paper reading in pairs (Which ML to use)
- Implement a couple of methods and check

Lecture 10: Unsupervised Learning

- Structured Data: Unsupervised Methods
 - Setting and characteristics
- Methods: k-means
- Working with Weka