EASY ROBOTICS FORMATION FOR MAKERS

MINICAT WORKSHOP & CURRICULUM

ALEXIS VEYNACHTER
16.11.2021

MINICAT WORKSHOP

Affordable robotics for makers

- Build your full robot from scratch!
- Workshop at Schools / MakerFabs

AGENDA

- Workshop Introduction
- 3D Parts models & Printing
- Hardware Modules & Test
- Final Software Integration

AGENDA

- Workshop Introduction
- 3D Parts models & Printing
- Hardware Modules & Test
- Final Software Integration

Workshop Overview MiniCat Robot modules

1. 3D Printed parts

Body structure

4 legs

2. Electronics

Electronics
Modules
on custom PCB
(green)

3. Software

Running on Arduino Module

Workshop Overview

Maker tools installation check w/ participants

- 1. Tools for 3D Print
- Modelling
 - Fusion360 tool
 - .stp files
- Slicing/Printing
 - Cura tool
 - .STL files

- 2. Tools for Electronics
 - no in scope

- 3. Software
- Development Environment
 - Arduino IDE tool

Workshop Overview Toolset installation (to do before workshop)

- Open: https://roboticsformakers.com/index.php/maker-software-tools/
- Follow the instructions to install all the Maker tools

Workshop Overview Software download

- Open: https://github.com/alex8411/minicat
- Click on "Code" then "Download ZIP":

- Store the ZIP in your preferred Folder & extract it to get "minicat-main"

ToDo:

- Explore the folder especially:
 - "3D_printing"
 - 3D parts for modelling & 3D print
 - "Software" for MiniCat Modules
 - GIT .ino files
 - Remark: <u>Libraries</u> to install separately

AGENDA

- Workshop Introduction
- 3D Parts models & Printing
- Hardware Modules & Test
- Final Software Integration

ToDo (.f3d assemby opening)

- Open Fusion360
- Click on "File/Open/Open from my computer"

 Navigate to "minicat-main/CAD/" & click "MiniCat_full_assembly_v32.f3d" (works only on Windows 10)

ToDo (Sketch opening & modifying)

- Navigate to:
 - "minicat_body_central_front_COMPONENT"
 - "Sketches"
 - "minicat_body_central_front_SKETCH"
- Right click on: "minicat_body_central_front_SKETCH"
 - "Edit Sketch"
- Try to modify it

- ToDo Editing the Sketch front part: rectangle and hole dimensions:

- click on "Finish Sketch" and observe the changes

- Changing the Extrusion dimension:

- - measuring with "Inspect" a dimension:

- - and gravity center:

ToDo (.STL file generation)

- Navigate to: "minicat_body_central_front_COMPONENT"- "Bodies"
 - "minicat_body_central_front_BODY"
- "Activate" the "minicat_body_central_front_COMPONENT"

ToDo (.STL file generation)

- Right click on "minicat_body_central_front_BODY"
- "Save as Mesh" (="als Netz speichern")
 / and select Format "STL (Binary)" / "Save"

ToDo (.STL file generation)

- Open CURA and Add a Non Networked Printer "Creality Ender3 Pro"
- "File/Open file(s)" the .STL file you just generated !
- "Slice" it!
- Check the "Preview" / click on "Play" button
- "Save to Disk" to save it as a 3D Printer Machine code (.gcode)

3D parts models & printing .STL file, generate your own

ToDo (Opening Toes .STL, Slicing & Simulation)

- For the Workshop we will not use the previously generated Body STL file but use an existing .STL: "minicat-main/3D_printing/STL/3__all_miniToe_rubber.stl"
- Background :
 Printer is now optimized for TPU ("gummi") print,
 not PLA rigid plastic
- Open CURA
- Open "minicat-main/3D_printing/STL/3__all_miniToe_rubber.stl"
- "Slice" and write the time

3D parts models & printing .STL file, generate your own

ToDo (3D printer config for TPU)

- Open Cura
- click on "Preferences/Configure Cura/Profiles
- "Import" the content of "CHEP4.11_TPU" profile from "minicat-main/3D_printing/printing_profiles/ender3pro/tpu"
- "Activate" the profile (work on on Mac, Windows10)
- Open your previously generated .STL file
- Slice it and check if the simulated printing time is different with the TPU profile vs "Default/Standard Quality" profile
- "Save to Disk" (.gcode machine code)

ToDo (Printing!)

3 ways to print a .gcode file:

- 1- SD Card:
- save generated .gcode and plugin in printer
- 2- Octoprint Server on Raspi:
- WLAN:

connect to **HUAWEI** WLAN / Password: **2Groesser?**

- Server :
- open http://octopi.local/login in your browser
- login: roboticsformakers / Password: 2Groesser?
- 3- Octoprint Plugin for CURA: -> Focus today
- connect to HUAWEI WLAN / Password: 2Groesser?
- open CURA and install Octoprint Plugin
- start the "Preparation" and Print

Bitte einloggen	
roboticsformakers	

✓ Login merken	Passwort vergessen?
Einloggen	

3D printing

I loaded the TPU (flexible filament profile) in CURA and generated the .gcode for you:

- Try to change some params: in "Temperatur" "Soll" for "Tool" and "Bett"
 - click on "Upload"

- - choose "minicat-main\3D_printing\gcode\creality_ender3pro\ CE3PRO_3__all_miniToe_rubber.gcode

3D print w/ Octoprint :

- Preheat the Tool (Extruder) at 225°C
- Preheat the Bed at 60°C

- IMPORTANT: Ask the teacher first!
- only one participant can start the printing after another!

End of the 2h

After the 2 hours break:

AGENDA

- Workshop Introduction
- 3D Parts models & Printing
- Hardware Modules & Test
- Final Software Integration

Hardware Modules & Test

Overview

Module 1: Arduino board

- "Brain" of the robot, runs Software

Module 2: Buzzer

- "Alive" signal generation

Module 3: Infrared Receiver & Remote

- Remote control

Module 4: I2C Bus

- comm. Betw. Arduino, Servomotors & Gyro boards

Module 5: Servomotors driver board

- drives the 8x Servomotors

Module 6: Gyroscope board

roll/pitch/yaw meas. vs calibrated 0 for robot balance

Module 7: PCB w/ all Modules & Final Software

Hardware Modules & Test

Overview

Module 1: Arduino board

- "Brain" of the robot, runs Software

Module 2: Buzzer

- "Alive" signal generation

Module 3: Infrared Receiver & Remote

- Remote control

Module 4: I2C Bus

- comm. between Arduino, Servomotors & Gyro boards

Module 5: Servomotors driver board

- drives the 8x Servomotors

Module 6: Gyroscope board

- roll/pitch/yaw meas. vs calibrated 0 for robot balance

Module 7: PCB w/ all Modules & Final Software

Hardware Modules & Test Module 1: Arduino Board, blink Led

Your Laptop USB

Module 1: Arduino board & blink Led

- "Brain" of the robot, runs the Software

ToDo:

- Plugin the provided USB cable to your Laptop
- Start the Arduino IDE

Your Laptop

- ToDo: Connect Arduino Nano Board w/ PC over USB
 - In the IDE, choose the Serial Port "COM*"
 - Choose the Board "Arduino Nano"
 - Choose the Bootloader "Old Bootloader"

- In the IDE, choose the USB / Serial Port you are using:

Your Laptop

USB

ToDo:

- Click on "File/Examples/Digital/Blink without delay"

For Windows 10, please install USBtoSerial driver "CH340G this is part of MiniCat GIT, see Software folder (or "DirectLink")
 MacOS and Ubuntu 20.04, no problems, no driver needed

BlinkWithoutDelay.ino

ToDo (Software):

- Change the **blinking interval** to 5000 (default 1000=1s)
- Click on "Upload" to start the Software
- Observe the result on the Arduino board

Hardware Modules & Test Module 2: Buzzer

Module 2: Buzzer

- "Alive" signal generation

ToDo:

- Unplug the USB cable from your Laptop
- Plugin the Arduino & Servodriver board on the PCB
- Plugin the USB cable to your Laptop
- open the buzzer test software: double click on "minicat-main/Software/buzzer_test/minicat_buzzer_test.ino"

Hardware Modules & Test

Module 2: Buzzer, modify the code adding:


```
int counter = 0;
void loop() {
 while (counter < 5)
  byte melody[] = {8, 13, 10, 13, 8, 0, 5, 8, 3, 5, 8, // definition of the tones list
as a "melody"
            8, 8, 32, 32, 8, 32, 32, 32, 32, 32, 8
            //8,8,16,16,8,16,16,16,16,8
 playMelody(melody, sizeof(melody) / 2); // we play the melody
```

Hardware Modules & Test Module 2: Buzzer

minicat_buzzer_test.ino

ToDo (Software):

- Change the melody by changing the values / deleting some
- Click on "Upload" to start the Software
- Observe the result on the Arduino board

Hardware Modules & Test Module 3: Infrared receiver & remote

Module 3: Infrared receiver & remote

- Remote Control

- Unplug the USB cable from your Laptop
- Plugin the Infrared receiver on the PCB
- Plugin the USB cable to your Laptop
- Check if the led is ON when you push the remote
- the **Software Library** "IRRemote" should be installed (Tools/Manage Libraries "IRremote")
- open the IRRemote test software: double click on "minicat-main/Software/ minicat_IRremote_test /minicat_IRremote_test.ino"

Hardware Modules & Test Module 3: Infrared receiver & remote

ToDo:

- Open the Arduino Serial Monitor
 (Arduino IDE "Tools/Serial Monitor")
- in serial monitor, set the communication speed to **57600 baud**

- **Push on the buttons** on the Remote control and verify that they are correct in the Serial Monitor

Hardware Modules & Test Module 3: Infrared receiver & remote

ToDo (Software):

- change a button description :
- push this button on remote
- verify that it is displayed in the serial monitor

```
minicat IRremote test §
void translateIR() {//fonction pour associer une action à chaque bouton
 switch(result.value){ //switch permet de lister tous les cas possibles et
   //de leur associer une action
   //on va donc lister tous les codes et retourner leur nom sur la télécommande
   //AV: FOR MINICAT1, "Carmp3" RemoteControl
   //AV: almost all original MiniCat RemoteControl codes are working except for the "Carm
   //AV: original MiniCat SW:
   case 0xFF18E7: Serial.println(" 2 (grey1) or 2 (grey2) or UP (black)"); break;
   //case 0x3D9AE3F7: Serial.println(" HAUT"); break;
   case 0xFF10EF: Serial.println(" 4 (grey1) or 4 (grey2) or LEFT (black) or Mode (grey2)
   //case 0x8C22657B: Serial.println(" GAUCHE"); break;
   case 0xFF38C7: Serial.println(" 5 (grey1) or 5 (grey2) or 0K (black)");
   //case 0x488F3CBB: Serial.println(" -OK-"): break:
   case 0xFF5AA5: Serial.println(" 6 (grey1) or 6 (grey2) or RIGHT (black)"); break;
   //case 0x449E79F: Serial.println(" DROITE"); break;
   case 0xFF4AB5: Serial.println(" 8 (grey1) or 8 (grey2) or DOWN (black)"); break;
   //case 0x1BC0157B: Serial.println(" BAS"); break;
   case 0xFFA25D: Serial.println(" CH- (grey1) or 0N (grey2) or 1 (black)");
                                                                               break:
   //case 0xE318261B: Serial.println(" 1"); break;
   case 0xFF629D: Serial.println(" CH (grey1) or Mode (grey2) or 2 (black)");
   //case 0x511DBB: Serial.println(" 2"); break;
   case 0xFFE21D: Serial.println(" CH+ (grey1) or LoudspeakerOFF (grey2) or 3 (black)");
   //case 0xEE886D7F: Serial.println(" 3"); break;
```

Hardware Modules & Test Module 4: I2C Bus connections

Module 4: I2C Bus connections / devices check

comm. between Arduino & Servomotors & Gyro boards

ToDo:

- Unplug the USB cable from your Laptop
 - Plugin the Gyro and Servodrivers boards on PCB
 - Plugin the USB cable to your Laptop
 - Put the 2 batteries in place and turn ON on holder (MPU6050 need enough power from Servodrivers board)
 - I2C library ("Wire") is installed by default (Arduino IDE)

"minicat-main/Software/minicat_i2c_test/minicat_i2c_test.ino"

- 3x I2C devices should appear (serial monitor)

0x40

Device 2

0x70

Device 1

Hardware Modules & Test Module 4: I2C Bus connections

ToDo:

- Open the Arduino **Serial Monitor** (Arduino IDE "Tools/Serial Monitor")

Gyroscope Set the communication speed to 57600 baud

- Verify that the 3 I2C Devices are present:
 - I2C device found at address 0x40 ! (Servos Driver)
 - I2C device found at address 0x68 ! (Gyro)
 - I2C device found at address 0x70 ! (Arduino Nano)

Module 5: Servomotors driver board

- drives the 8 servos, here we test w/ 1 servomotor
- based on Arduino inputs on I2C
- and Servodriver board 8 x PWM control signals outputs
- we use first 5V supply from Arduino (no batteries)

①: Desired angle trajectory ②: Sensing of angle position ③: Calculation of control input ④: Actuation by a DC motor ⑤: Torque transmission

- Unplug the USB cable from your Laptop
- The 8x Servomotors cables are already plugged

✓ Adafruit servo

▼ Topic All

Adafruit PWM Servo Driver Library Adafruit PWM Servo Driver Library

ToDo:

- Plugin the USB cable to your Laptop
- Start the Arduino IDE
- the Software Library
- "Adafruit PWM servo driver library"

should be installed

(Tools/Manage Libraries "Adafruit PWM Servo Driver Library")

ToDo (Software):

change servo n. and delay:

```
minicat one servo test §
//pwm.setrwm(SEKVU, U, SEKVUMIN+range/Z);//l'impulsion est large de SEKVUMIN + rang
                                 //=>position milieu du servomoteur
//delay(2000);
//AV: Commenting out below lines and changing the rotation angle to avoid too much r
//Contrôle du servomoteur par angle (voir fonction setToAngle)
//Serial.println("position 45 degrés ");
//setToAngle(45):
//Serial.println("position 20 degrés");
//setToAnale(20):
//AV : ToDo : MODIFY here to test the Servo Angle position.
//AV: ToDo : MODIFY THE 1st POSITION OF THE SERVO :
Serial.println("position 10 degrés");
setToAngle(10);
//AV: ToDo : MODIFY THE DELAY (in Miliseconds) BETWEEN 2 POSITIONS AS YOU WANT :
delay(1000);
//AV: ToDo : MODIEY THE 2d POSITION OF THE SERVO :
Serial.println("position 30 degrés");
setToAngle(30);
```


ToDo (Software):

Change the servo number to test all servos one by one:

Module 5bis: Servomotors driver board

- we use now the 2x4,2V Lithium batteries supply (your teacher will install them, please ask him)

- Unplug the USB cable from your Laptop
- Ask your teacher to install the 2 x Batteries in the robot
- Put the batteries holder button to "ON" under the robot
- Check if the Servomotor is moving (Front Right Top)

Module 6: Gyroscope board

- measuring roll/pitch/yaw
- compared with calibrated "zero"
- compensate the legs height / balance

- Unplug the USB cable from your Laptop
- Plug the Gyro module in the PCB
- Plugin the USB cable to your Laptop
- Start the Arduino IDE'
- Get the Arduino Libraries "I2Cdev and MPU6050"
- Start the 1x Gyro test software "minicat_i2c_test.ino"

The Gyroscope module need the Libraries "I2Cdev" and "MPU6050" for I2C communication to Gyroscope MPU6050 sensor:

- Open : https://github.com/jrowberg/i2cdevlib
- Click on "Code" and then "Download ZIP"
- the Downloaded .zip is normally stored into your"C:\Users*UserName*\Downloads" folder
- Unzip the "i2cdevlib-master.zip" in your
 "C:\Users*UserName*\Downloads" folder
 to get a "i2cdevlib-master" folder

1- Now to add the 2 libs we need, Click on "Sketch/Include Library/Add .ZIP Library"

2- Change the "Files of type" to "All Files" (as we already unzipped):

3- Navigate to

"C:\Users*UserName*\Documents\Arduino\libraries\i2cdevlib-master\Arduino\

4- Then Single Click on the "I2Cdev" Folder and then "Open":

5- Repeat the steps above for adding the "MPU6050" lib:

6- RESULT:

The 2 Libs should now appear in your "C:\Users*UserName*\Documents\Arduino\libraries\ folder:

Ubuntu 20.04

- Open the Serial Monitor
- Check the "ypr" = yaw pitch roll values when moving MiniCat : (click on "Autoscroll" to stop)

						/dev/tt
accreal	553	-308	4142			
ypr	5.81	5.19	0.40			
accreal	555	-307	4137			
ypr	5.81	5.19	0.40			
accreal	562	-306	4137			
ypr	5.83	5.19	0.40			
accreal	564	-301	4139			
ypr	5.84	5.19	0.40			
accreal	562	-295	4144			
ypr	5.86	5.20	0.40			
accreal	555	-292	4142			
ypr	5.87	5.19	0.40			
accreal	544	-298	4147			
ypr	5.88	5.19	0.40			
accreal	543	-303	4141			
ypr	5.89	5.19	0.40			
J	croll 🗌	Show times	tamp			

Module 7a: All modules + calib

Module 7a: All Modules + calibration

- servos check + gyro calibration
- not in focus of this workshop (time consuming)
- servo need to be placed at their zero (middle) angle
- gyro need to be calibrated to know its zero angles (rpy)

Todo:

- Make sure all modules plugged on the PCB
- Put the battery holder button on "ON" first
- Plugin the USB cable to your Laptop

Module 7a: All modules + calib

Todo (Software): calib done, not in focus of workshop

- disconnect all legs of MiniCat, no servo blocked
- make sure MiniCat is on a flat surface
- start the "minicat_servos_and_gyro_calibration.ino"
 - Open the **Serial Monitor**
 - "Upload" the Software
 - The Gyroscope will measure the MiniCat chassis roll/pitch/yaw angles offsets compared to the MPU6050 chip default zero angles, the **offsets will be shown** "in the serial monitor

Module 7a: All modules + calib

Background:

servos calib:

- we need to put all servos at their central zero position before mounting the legs of MiniCat

gyroscope (MPU6050 chip) calib:

- we need to measure the offset of the gyro yaw pitch roll angles compared to the default zero angles in the Gyro board firmware (MiniCat should be put on a flat surface)

Remark:

the gyro angles offset values will be stored in EEPROM (non volatile memory of Arduino Nano) so that this Calibration is needed only once on a particular Arduino

Module 7a: All modules + calib

Todo (Software):

- the gyro and servos calibration process will start
- if everything is fine, you get this output in the serial monitor

Module 7a: All modules + calib

Todo (Software):

- keep the serial monitor open and
 type "c" in the command line then "Enter"
 This will place the servos at their central "zero" position
- The Servo angles will be shown w/zeros in the serial monitor (only 8 to 15 are our 8 servos)

```
      8,
      9,
      10,
      11,
      12,
      13,
      14,
      15

      0,
      0,
      0,
      0,
      0,
      0,
      0,
```

- Keep the battery holder button on "ON"
- Do not remove the USB cable from your Laptop yet!
- you will only insert the tighs & feet parts in the servos axis see how on next slide, do not turn the servo axis manually!

 (as you just set the servos to their zero angle pos.)

Module 7a: All modules + calib

Todo (Software):

Now that you have set the servos to their zero angle you can mount them as below
(Hint: do not move the servo axis anymore!
If so, start again
"minicat_servos_and_gyro_calibration.ino"):

Module 7a: All modules + calib

Optional / Todo (Software): Servos angle Fine tuning:

- If you can not achieve 100% the above, you can still **fine tune the** servo angles by software by running the below in the Serial Monitor:

c "servo link index" "correction angle

For example, if you want to change the angle of link 12 of +5 deg you can run : *c12 5*

Servos indexes reminder

Remark: each tooth of the servo axis is 360deg/20teeth so 18deg so the fine tuning makes sense for +/- 9deg, if more needed just remove the servo arm from the servo axis and place it on a next tooth!

Module 7a: All modules + calib

Todo (Software):

- put the servo screws in the servo axis to fix the positions :

- Once you have achieved the above, **type** "s" in the serial monitor (this will save your servos angles calibration in Arduino EEPROM (non volatile))

Module 7a: All modules + calib

Todo (Software):

- to test your servos calibration, try different positions :
 - type "d" in monitor to go in default position ("stop"), expected :

- type "pbalance" to go in "stand" position, expected :

Hardware Modules & Test Module 7b: All modules on PCB

Module 7b: All Modules on PCB and Play!

- Unplug the USB cable from your Laptop
- Make sure all modules plugged on the PCB
- Put the battery holder button on "ON" first
- Plugin the USB cable to your Laptop
- open the minicat_basic software: double click on "minicat-main/Software/minicat_basic/minicat_basic.ino
- Use the remote control to play!