K Nearest Neighbors with Python

You've been given a classified data set from a company! They've hidden the feature column names but have given you the data and the target classes.

We'll try to use KNN to create a model that directly predicts a class for a new data point based off of the features.

Let's grab it and use it!

Import Libraries

```
In [43]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline
```

Get the Data

Set index_col=0 to use the first column as the index.

```
In [74]: df = pd.read_csv("Classified Data",index_col=0)
```

In [75]:	df	.head()										
Out[75]:		WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	HQE	NXJ	TARGET CLASS
	0	0.913917	1.162073	0.567946	0.755464	0.780862	0.352608	0.759697	0.643798	0.879422	1.231409	1
	1	0.635632	1.003722	0.535342	0.825645	0.924109	0.648450	0.675334	1.013546	0.621552	1.492702	0
	2	0.721360	1.201493	0.921990	0.855595	1.526629	0.720781	1.626351	1.154483	0.957877	1.285597	0
	3	1.234204	1.386726	0.653046	0.825624	1.142504	0.875128	1.409708	1.380003	1.522692	1.153093	1
	4	1.279491	0.949750	0.627280	0.668976	1.232537	0.703727	1.115596	0.646691	1.463812	1.419167	1

Standardize the Variables

Because the KNN classifier predicts the class of a given test observation by identifying the observations that are nearest to it, the scale of the variables matters. Any variables that are on a large scale will have a much larger effect on the distance between the observations, and hence on the KNN classifier, than variables that are on a small scale.

```
In [78]: from sklearn.preprocessing import StandardScaler
In [79]: scaler = StandardScaler()
In [80]: scaler.fit(df.drop('TARGET CLASS',axis=1))
Out[80]: StandardScaler(copy=True, with_mean=True, with_std=True)
In [81]: scaled_features = scaler.transform(df.drop('TARGET CLASS',axis=1))
```

```
In [82]: df_feat = pd.DataFrame(scaled_features,columns=df.columns[:-1])
df_feat.head()
```

Out[82]:		WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	HQE	NXJ
	0	-0.123542	0.185907	-0.913431	0.319629	-1.033637	-2.308375	-0.798951	-1.482368	-0.949719	-0.643314
	1	-1.084836	-0.430348	-1.025313	0.625388	-0.444847	-1.152706	-1.129797	-0.202240	-1.828051	0.636759
	2	-0.788702	0.339318	0.301511	0.755873	2.031693	-0.870156	2.599818	0.285707	-0.682494	-0.377850
	3	0.982841	1.060193	-0.621399	0.625299	0.452820	-0.267220	1.750208	1.066491	1.241325	-1.026987
	4	1.139275	-0.640392	-0.709819	-0.057175	0.822886	-0.936773	0.596782	-1.472352	1.040772	0.276510

Train Test Split

Using KNN

Remember that we are trying to come up with a model to predict whether someone will TARGET CLASS or not. We'll start with k=1.

```
In [85]: from sklearn.neighbors import KNeighborsClassifier
In [86]: knn = KNeighborsClassifier(n_neighbors=1)
In [87]: knn.fit(X_train,y_train)
Out[87]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=1, p=2, weights='uniform')
```

```
In [88]: pred = knn.predict(X_test)
```

Predictions and Evaluations

Let's evaluate our KNN model!

```
In [89]: from sklearn.metrics import classification report, confusion matrix
In [90]: print(confusion matrix(y test,pred))
         [[125 18]
          [ 13 144]]
In [91]: print(classification report(y test,pred))
                       precision
                                    recall f1-score
                                                        support
                    0
                                      0.87
                            0.91
                                                0.89
                                                            143
                    1
                            0.89
                                      0.92
                                                0.90
                                                            157
         avg / total
                                      0.90
                                                0.90
                                                            300
                            0.90
```

Choosing a K Value

Let's go ahead and use the elbow method to pick a good K Value:

```
In [98]: error_rate = []

# Will take some time
for i in range(1,40):

knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train,y_train)
pred_i = knn.predict(X_test)
error_rate.append(np.mean(pred_i != y_test))
```

Out[99]: <matplotlib.text.Text at 0x11ca82ba8>

Here we can see that that after arouns K>23 the error rate just tends to hover around 0.06-0.05 Let's retrain the model with that and check the classification report!

```
In [100]: # FIRST A QUICK COMPARISON TO OUR ORIGINAL K=1
          knn = KNeighborsClassifier(n neighbors=1)
          knn.fit(X train,y train)
          pred = knn.predict(X test)
          print('WITH K=1')
          print('\n')
          print(confusion matrix(y test,pred))
          print('\n')
          print(classification report(y test,pred))
          WITH K=1
          [[125 18]
           [ 13 144]]
                       precision
                                    recall f1-score
                                                        support
                            0.91
                                      0.87
                                                 0.89
                    0
                                                            143
                    1
                            0.89
                                      0.92
                                                 0.90
                                                            157
          avg / total
                                                 0.90
                            0.90
                                      0.90
                                                            300
```

```
In [101]: # NOW WITH K=23
          knn = KNeighborsClassifier(n neighbors=23)
          knn.fit(X train,y train)
          pred = knn.predict(X test)
          print('WITH K=23')
          print('\n')
          print(confusion matrix(y test,pred))
          print('\n')
          print(classification report(y test,pred))
          WITH K=23
          [[132 11]
           [ 5 152]]
                       precision
                                    recall f1-score
                                                        support
                                      0.92
                    0
                             0.96
                                                 0.94
                                                            143
                            0.93
                                      0.97
                                                 0.95
                    1
                                                            157
          avg / total
                            0.95
                                      0.95
                                                 0.95
                                                            300
```

Great job!

We were able to squeeze some more performance out of our model by tuning to a better K value!