福建师范大学(公共课)数信 学院

2020 — 2021 学年第 一 学期 期中考 试卷

知明科葛

在城城户

业: 全校各专业 **+**

年 级: 全校各年级

课程名称:《线性代数》

任课教师: 陈兰清 等

沚

狐

Φį

1111

 \mathbb{H}

李

平全

MA

学院

江

试卷类别: 开卷() 闭卷(√) 考试用时: 120 分钟

考试时间: 2020 年 11 月 28 日 下 午 14 点 00 分

题号	_	=	11)/
	1-5	6-10	11	12	13	14	15	16	总得分
得分									

1. 答案一律写在答题纸上, 否则无效.

2. 答题要写清题号,不必抄原题.

须知 3. 考试结束,试卷与答题纸一并提交.

说明: 试卷中的矩阵默认都是实矩阵

- 一. 单项选择题: 1~5 小题, 每小题 3 分, 共 15 分.
- 1、下列结论错误的是(C)
- (A) 行列式的元素 a_{ii} 的代数余子式和余子式至多相差一个负号;
- (B) 齐次线性方程组 $A_{m \times n} x = 0$ 有非零解的充分必要条件是 R(A) < n;

(C)
$$\begin{vmatrix} a_1 + x_1 & a_2 + x_2 \\ a_3 + x_3 & a_4 + x_4 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 \\ x_3 & x_4 \end{vmatrix};$$

- (D) 行列式某列的元素与另一列的对应元素的代数余子式的乘积之和为零.
- 2、设 A.B.C 都是 n 阶可逆矩阵,则必有 (C)

(A)
$$(A+B+C)^{-1} = A^{-1} + B^{-1} + C^{-1}$$

(B) ABC = CBA

(C)
$$R(ABC) = R(A) = R(B) = R(C)$$
 (D) 以上均不对

福建师范大学试卷纸 共 4 页,第 1 页

- 3、下列矩阵中与矩阵 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 等价的是(B).
- (A) $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
- 4、设A,B为n阶方阵,则下列结论正确的是(B).
- (A) $(A+2E)(B-3E)=O \Rightarrow A=-2E$, $\vec{\boxtimes} \vec{\exists} \vec{B} = \vec{\exists} \vec{E}$; (B) |AB|=|BA|
- (C) R(A-B) = R(A) R(B) (D) |A+B| = |A| + |B|
- 5、设 A 为 $m \times n$ 矩阵,B 为 $n \times m$ 矩阵,则当 m > n 时,必有 (A)
- (A) |AB| = 0 (B) |BA| = 0
- (C) $|AB| \neq 0$ (D) $|BA| \neq 0$
- 二. 填空题: 6~10 小题, 每小题 3 分, 共 15 分.
- 6、已知 4×1 β_1 , β_2 , β_3 , β_4 都是的矩阵,设 $A = (\beta_1, \beta_2, \beta_3, \beta_4)$, $B = (5\beta_4 + \beta_3, \beta_2, \beta_1, \beta_3)$,

若|A|=-2,则|B|= ___-10____

- 8、已知 $A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -3 & 5 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$,则 $A^{-1} =$ ______. $\begin{pmatrix} -5 & -2 & 0 & 0 \\ -3 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{6} \end{pmatrix}$
- 9、设A为4阶矩阵,|A|=2,则 $|3A^{-1}A^*-(A^*)^2|=$ ____4___.
- $10 \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{11} = --- \cdot \begin{pmatrix} 6 & 4 & 2 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{pmatrix}$

三. 判断题: 11~15 小题, 每小题 2 分, 共 10 分.

11. 若
$$A, B$$
 均为 n 阶对称矩阵, 则 AB 也对称:

12. 若
$$A$$
 是列满秩的矩阵,且有 $AB = O$,则一定可以推出 $B = O$; ($\sqrt{\ }$

13. 若矩阵
$$A$$
 中可以找到一个 3 阶子式不等于零,则 $R(A) \ge 3$; ($\sqrt{\ }$)

14. 若
$$|A| \neq 0$$
; 则有 $R(A^m) = R(A)$; (√)

15. 若存在矩阵
$$B$$
, 使得 $AB = E$, 则 A 可逆, 且 B 为 A 的逆矩阵; (×)

四. 解答题: 16~22 小题, 共60 分(要求写出过程和计算步骤)

16、(10分) 计算n 阶行列式

$$D_{n} = \begin{vmatrix} 1+a & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1+a & 1 & \cdots & 1 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1+a & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1+a \end{vmatrix}.$$

解: $(n+a)a^{n-1}$

17、(8分) 设
$$P^{-1}AP = \Lambda$$
, 其中 $P = \begin{pmatrix} 1 & -4 \\ 1 & 2 \end{pmatrix}$, $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, 则 $A^{10} = \frac{1}{6} \begin{pmatrix} 2+2^{12} & 4-2^{12} \\ 2-2^{11} & 4+2^{11} \end{pmatrix}$.

18、(8分)设行列式
$$|A| = \begin{vmatrix} 3 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 4 & 0 \\ 3 & 2 & 3 & -1 \end{vmatrix}$$
, M_{ij} 和 A_{ij} $(i, j = 1, 2, 3, 4)$ 分别为 $|A|$ 余子式和代数余子式,

19、(8分)设方阵 A 满足 $A^2 + A - 7E = 0$,证明 $A + 3E \mathcal{D}A + 5E$ 都可逆,并求 $(A + 3E)^{-1}$ 及 $(A + 5E)^{-1}$.

$$(A-2E)(A+3E) = E \Rightarrow (A+3E)^{-1} = (A-2E);$$

解题思路:
$$\frac{1}{-13}(A-4E)(A+5E) = E \Rightarrow (A+5E)^{-1} = \frac{1}{13}(4E-A)$$

20、(12 分) 求解下列非齐次线性方程组:
$$\begin{cases} 2x_1+x_2-x_3+x_4=1;\\ 4x_1+2x_2-2x_3+x_4=2;\\ 2x_1+x_2-x_3-x_4=1;\\ 2x_1+2x_2+4x_3+6x_4=-1; \end{cases}$$

解: 通解为
$$\begin{cases} x_1 = 3x_3 + \frac{3}{2}; \\ x_2 = -5x_3 - 2; , \Leftrightarrow x_3 = c(c \in R), & 即 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = c \begin{pmatrix} 3 \\ -5 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \\ -2 \\ 0 \\ 0 \end{pmatrix}.$$

21、(9分) 已知
$$_{A}=\begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
, $_{AX=2X+A}$, 求 X.

解: 因为| *A*-2*E*|=-1≠0,则有:

$$X = (A - 2E)^{-1}A = \begin{pmatrix} -1 & -2 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 4 & -8 \\ 0 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$

22、(5分)设n阶矩阵A可逆(即非奇异) $(n \ge 2)$, A^* 为其伴随矩阵,证明: $(A^*)^* = |A|^{n-2} A$.

证: 因为 A 可逆,即 $|A| \neq 0$,则 $AA^* = |A|E \Longrightarrow |A||A^*| = |AA^*| = |A|E| = |A|^n \Longrightarrow |A^*| = |A|^{n-1} \neq 0$.

因此
$$A^*$$
 可逆.又因为 $A^{-1} = \frac{1}{|A|} A^* \Rightarrow A^* = |A| A^{-1}$.

$$(A^*)^* = |A^*|(A^*)^{-1} = |A|^{n-1} (|A|A^{-1})^{-1} = |A|^{n-2} A$$