Increasing Network Size for Class Incremental Learning

Bioinformatics Project #11

Jana Magdeska S261427 Francesco Dibitonto S265421

Introduction

Task: Learning new classes by increasing the network size

Data: 7 classes of Colorectal Cancer classification

Data introduction

Dataset of images from 7 classes, 3 of which classes of interest:

- Healthy tissue (H)
- Cancer (AC)
- Adenoma (AD)

and 4 associated with a fake class from AC, AD, H:

- Blood (BLOOD)
- Fat (FAT)
- Glass (GLASS)
- Stroma (STROMA)

- The images (32x32x3) are in form of numpy arrays
- Divided in training set (12336 samples) and testing set (7308 samples)

Class incremental learning

- Incrementally learn new classes as training data for them becomes available
- Remember the previous knowledge and expand it to the new data as well (new class)

Process:

- Train model on initial classes & evaluate performance
- Feed network with samples from new classes
- Perform training on the new part & keep previous knowledge

Exemplar sets

- Dynamically created from dataset
- Maximum number of images in exemplar set shouldn't exceed parameter

 K
- Split K into num_classes parts, with each class having an equal number of samples present

Incremental learning: Training process

Initial step (number of classes = 1)

- Record network's output predictions
- 2. Compute loss and back-propagate the error
- 3. Repeat steps 1-2 for all batches of the samples

Next steps (number of classes > 1)

- 1. Save a copy of the old network
- 2. Update the network by adding one more output neuron
- 3. Record the network's output predictions
- 4. Compute total loss and back-propagate the error
- 5. Repeat steps 3-4 for all batches of the samples

- Choose new exemplars after each training step
- Test current model performance
- Process of updating the network

Incremental learning: Loss function

Classification loss (BCEWithLogitsLoss):

$$CE = -\sum_{i=1}^{C'=2} t_i log(f(s_i)) = -t_1 log(f(s_1)) - (1-t_1) log(1-f(s_1))$$

Distillation loss (MSELoss):

$$\ell(x,y)=L=l_1,...,l_N^T,l_n=(x_n-y_n)^2$$

Number of classes = 1:

$$loss = loss_{classification}$$

Number of classes > 1:

$$loss = loss_{classification} + loss_{distill} * lambda$$

Architecture: ResNet

 Characterized by the addition of skip connections, or shortcuts to jump over some layer

- Introduces the skip connections (identity shortcut connections) for preserving the gradient
- They allow the flow of information from earlier layers in the network to later layers

 Skip connections allow an alternate shortcut path for the gradient to flow through during back-propagation

Network choice: ResNet32

- Proved to be good when used in the incremental learning context (in particular in the CIL challenges on the CIFAR10 and CIFAR100)
- Use pre-trained ResNet32 model on CIFAR100

Fine tuning

- Use full dataset with all classes in order to compare performance to incremental learning approach
- Use all class samples instead of exemplars
- Loss function is simple classification term (BCEWithLogitsLoss)

Results: ResNet32 pretrained on CIFAR100

- Load pretrained ResNet32 model
- Replace FC layer with new Linear layer with output dimension = num. classes

 After each train batch, testing is performed on all the classes up to that point

Variation of each class accuracy during incremental learning:

Alternative class order

- Some class orders showed smoother accuracy decrease
- Example class order: H, stroma, fat, AC, glass, blood, AD

Results: ResNet32 model with finetuning

- Train ResNet32 model on the ful dataset
- Average test accuracy after evaluation of mode: ~87%

Comparison

```
### Test accuracy for H: 0.94
                                       ### Test accuracy for H: 0.93
    Test accuracy for AC: 0.88
                                           Test accuracy for AC: 0.94
   Test accuracy for AD: 0.76
                                           Test accuracy for AD: 0.92
   Test accuracy for blood: 0.92
                                           Test accuracy for blood: 0.95
                                           Test accuracy for fat: 0.99
   Test accuracy for fat: 0.98
                                           Test accuracy for glass: 1.0
   Test accuracy for glass: 1.0
                                           Test accuracy for stroma: 0.79
    Test accuracy for stroma: 0.79
                                       # Total Accuracy: 0.92
# Total Accuracy: 0.87
```

Fine tuning (on the left) compared to Incremental learning default order (on the right)

Knowledge distillation

 Train the simple student network to replicate the behavior of the more complex (already trained) teacher network

Knowledge distillation: Training steps

- Load the trained teacher model & set to evaluation mode
- Initialize a simple student model

Training process:

- 1. Compute output of teacher and student networks for current samples
- 2. Compute loss and back-propage it
- 3. Repeat 1-2 for all batches of samples

Knowledge distillation: Loss function

$$loss = loss_{classification} + loss_{kd distill} * lambda_{kd}$$

- Classification loss: difference between student network's output and target (BCEWithLogitsLoss used)
- Knowledge distillation loss: difference between student network's output and recorded teacher's output (MSELoss used)

Knowledge distillation: Results

Starting from pre-trained ResNet32 model

- After training of student network the average test accuracy is about 86%
- Without distillation loss term average test accuracy: 77%

Knowledge distillation: Results

Starting from finetuning

- After training of student network the average test accuracy is about 85%
- Without distillation loss average test accuracy: 77%

Conclusions

- Incremental learning performed slightly better than fine tuning
- Combination of replay and distillation gives the best results
- Distillation works also for encouraging a small network to behave similar to the bigger (trained) network

Thank you for your attention!