Corrigé de l'examen d'asservissement (Avril 2020) CIR2/CNB2 2019-2020

Exercice 1: Question du cours

1. Les 2 types de performances : Régulation et Poursuite

Les critères de mesure :

- La rapidité, caractérisée par le temps de réponse
- o La précision, caractérisée par l'erreur statique ou l'erreur de poursuite
- La stabilité, caractérisé par les dépassements

2.

$$\varphi(p) = \frac{p}{p^3 + p^2 + p + 1} = \frac{p}{(p+1)(p^2 + 1)} = \frac{1}{2} \left(\frac{p+1}{p^2 + 1} - \frac{1}{p+1} \right)$$

$$\varphi(p) = \frac{1}{2} \left(\frac{p}{p^2 + 1} + \frac{1}{p^2 + 1} - \frac{1}{p + 1} \right)$$

En application la transformée de Laplace inverse, on a la fonction causale

$$\varphi(t) = \frac{1}{2}(\cos(t) + \sin(t) - e^{-t})$$

3. **Un correcteur** a pour rôle de contrer les défauts d'un système, en terme de rapidité, de précision et de stabilité. A chaque défaut correspond un correcteur, **Ce défaut de rapidité** est donc résolu par insertion d'une **correction proportionnelle** qui va artificiellement multiplier l'écart pour forcer le système à réagir de façon plus importante.

Exercice 2

Le schéma bloc doit contenir 2 comparateurs et les relations entre différentes entités du système.

Exercice 3

- 1. On a modélisé le système par des équations différentielles donc on peut dire que le système est dynamique. On a des équations différentielles linéaires avec des coefficients réels démontre que le système linéaire.
- 2. La fonction de transfert entre l'entrée et la sortie du système

$$S(t) = 1.5 x(t) + 1.5 y(t) \Rightarrow (TL) \Rightarrow s(p) = 1.5 X(p) + 1.5 Y(p)$$
 (a)

$$\frac{dx}{dt} = -x(t) - e(t) \Rightarrow (TL) \Rightarrow pX(p) = -X(p) - E(p) \Rightarrow E(p) = (p+1) X(p) (b)$$

$$\frac{dy}{dt} = -0.25y(t) + 0.25x(t) \Rightarrow TL \Rightarrow pY(p) = -0.25 Y(p) + 0.25 X(p) \Rightarrow (p+0.25)Y(p) = 0.25X(p) (c)$$

(b)
$$X(p) = \frac{1}{p+1} E(p)$$

(c) Y(p) =
$$\frac{0.25}{p+0.25}X(p)$$
 en remplaçant (b) on a $Y(p) = \frac{0.25}{p+0.25} \times \frac{1}{p+1}E(p)$

(a)
$$S(p) = 1.5 \frac{1}{p+1} E(p) + 1.5 \frac{0.25}{p+0.25} \times \frac{1}{p+1} E(p)$$

$$S(p) = \frac{1,5 (p+0,25)}{(p+0,25)(p+1)} E(p) + \frac{1,5 \times 0,25}{(p+0,25)(p+1)} E(p) = \frac{1,5 p+1,5 \times 0,25+1,5 \times 0,25}{\left(p+\frac{1}{4}\right)(p+1)} E(p) = \frac{1,5 p+0,75}{\left(\frac{4p+1}{4}\right)(p+1)} E(p)$$

$$\frac{S(p)}{E(p)} = \frac{6p+3}{(4p+1)(p+1)} = \frac{6p+3}{4p^2+5p+1} \ forme \ canonique \ \frac{3\ (1+2p)}{1+5p+4p^2}$$

- 3. Avec la forme canonique on peut identifier :
 - Ordre = 2 et Gain statique : Ks = 3,
 - Pour les pôles (4p+1) (p+1) = 0 on a 4p+1=0 d'où p= -1/4 ou p+1=0 d'où p =-1 donc on a Pôles: -1/4 et -1;
 - Pour le zéro, 6p+3 =0 d'où p = -3/6 = -1/2 donc on a Zéro : -1/2
 Résultat non détaillé = 0
- 4. Le système stable car les pôles (-1/4 et -1) sont réels et inférieur à 0.

Exercice 4

1.1 Exprimer ces quatre équations différentielles dans le domaine de Laplace. On suppose toutes les conditions initiales nulles.

(1)
$$U(p) = E(p) + RI(p) + LpI(p)$$
 (2) $C_m(p) - f \cdot \Omega(p) = Jp\Omega(p)$ (3) $C_m(p) = K_t I(p)$; (4) $E(p) = K_e \Omega(p)$

1.2 Sachant que f et L sont négligeables, réaliser le schéma fonctionnel en indiquant la fonction de transfert de chaque bloc.

$$(1)U(p) = E(p) + RI(p) \qquad (2) \quad C_M(p) = Jp\Omega(p) \qquad (3)C_M(p) = K_t I(p); \quad (4)E(p) = K_e \Omega(p)$$

1.3 Déterminer la fonction de transfert en boucle fermée : $H(p) = \frac{\Omega(p)}{U(p)}$. Mettre H(p) sous forme canonique. Préciser l'ordre de H(p). Donner le nom et la valeur numérique, avec les unités, des paramètres correspondant à cette forme canonique.

$$H(p) = \frac{\Omega(p)}{U(p)} = \frac{\frac{K_t}{RJp}}{1 + \frac{K_tK_e}{RJp}} = \frac{K_t}{RJp + K_tK_e} = \frac{\frac{K_t}{K_tK_e}}{\frac{RJp}{K_tK_e} + 1} = \frac{\frac{1}{K_e}}{1 + \frac{RJ}{K_tK_e}p} = \frac{K}{1 + \tau p}$$

Démonstration non détaillée = pas de note = 0

Paramètres:

Premier ordre ; gain statique :
$$K = \frac{1}{K_e} = \frac{1}{0.1} = 10 \ rad/s$$
 Calcul non détaillé = 0 et la constante du temps $\tau = \frac{RJ}{K_e K_t} = \frac{1 \times 1, 2.10^{-4}}{0.1 \times 0.1} = 12 \ ms$ Calcul non détaillé = 0

2.1 Schéma fonctionnel en indiquant la fonction de transfert de chaque bloc

2.2

a – Détermination de la fonction de transfert en boucle fermée : $G(p) = \frac{\theta_s(p)}{\theta_c(p)}$

Avec
$$A(p) = \frac{\theta_s(p)}{U(p)} = \frac{K}{1+\tau p} \times \lambda \times \frac{1}{p} = \frac{K\lambda}{p(1+\tau p)}$$

$$G(p) = \frac{\theta_s(p)}{\theta_c(p)} = \frac{K_r A(p)}{1 + K_r A(p)} = \frac{K_r \frac{K\lambda}{p(1 + \tau p)}}{1 + K_r \frac{K\lambda}{p(1 + \tau p)}} = \frac{K_r K\lambda}{K_r K\lambda + p(1 + \tau p)}$$

Démonstration non détaillée = 0

b - Forme canonique G(p) et préciser son ordre

$$G(p) = \frac{\theta_s(p)}{\theta_c(p)} = \frac{K_r K \lambda}{K_r K \lambda + p(1 + \tau p)} = \frac{K_r K \lambda}{K_r K \lambda + p + \tau p^2}$$
$$= \frac{1}{1 + \frac{1}{K_r K \lambda} p + \frac{\tau}{K_r K \lambda} p^2}; Second \ ordre$$

c- Identification des paramètres

Ordre: Second ordre

Par identification : Gain statique unitaire K = 1 ; Pulsation $\omega_0=\sqrt{\frac{K_rK\lambda}{\tau}}$; Amortissement $\xi=\frac{1}{2\sqrt{K_rK\lambda\tau}}$

- 2.3 On veut déplacer le bras d'une valeur angulaire de consigne θ_C = 30 degrés par une excitation en échelon de position. Le temps de réponse à 5% doit être minimal.
- a Calculer Kr . Faire l'application numérique. Quelle est la valeur de ce temps de réponse ?

Temps de réponse mini si $\xi = 0.69$ (dépassement = 5%),

$$\xi = \frac{1}{2\sqrt{K_r K \lambda \tau}} \Rightarrow \xi^2 = \frac{1}{4K_r K \lambda \tau} \Rightarrow K_r = \frac{1}{4\xi^2 K \lambda \tau}$$

A.N
$$K_r = \frac{1}{4 \times (0.69)^2 \times 10 \times \frac{1}{200} \times 12.10^{-3}} = 875 \text{ V/rad}$$

Calcul non détaillé (manque d'application numérique) = 0

$$\omega_0 = \sqrt{\frac{K_r K \lambda}{\tau}} = \sqrt{\frac{875 \times 10 \times \frac{1}{200}}{12.10^{-3}}} \Rightarrow \omega_0 = 60 \text{ rad/s}$$

Calcul non détaillé (manque d'application numérique) = 0

Temps de réponse mini $t_{5\%} = \frac{3}{\omega_0} = \frac{3}{60} = 0,05 \text{ s ou } 50 \text{ ms}$ Calcul non détaillé (manque d'application numérique) = 0

b - Calculer la position réelle du bras en régime permanent, préciser le théorème utilisé

Le théorème utilisé est le théorème de la valeur finale (0,5 pt)

Position finale du bras : $\theta_s(p) = G(p) \times \frac{\theta_c}{p}$ avec $\theta_c(p) = \frac{\theta_c}{p}$ (notation Laplace)

$$\lim_{t\to\infty}\theta_{s}(t) = \lim_{p\to 0}p\theta_{s}(p) = \lim_{p\to 0}p[G(p)\theta_{c}(p)] = \lim_{p\to 0}(p\times\frac{1}{1+\frac{1}{K_{r}K\lambda}p+\frac{\tau}{K_{r}K\lambda}p^{2}}\times\frac{\theta_{c}}{p}) = \theta_{c} = 30^{\circ}$$

$$\lim_{t\to\infty}\theta_s(t)=\lim_{p\to 0}p\theta_s(p)=\lim_{p\to 0}=\lim_{p\to 0}(p\times \frac{1}{1+\frac{1}{K_rK\lambda}p+\frac{\tau}{K_rK\lambda}p^2}\times \frac{\theta_c}{p})=\theta_c=30^\circ \text{ (0,5pt)}$$

0 pour résultat non détaillé

c - Quelle est l'erreur statique ? Quel est le dépassement ?

Erreur statique:

$$\varepsilon_{pos} = \lim_{t \to \infty} [\theta_c(t) - \theta_s(t)] = \lim_{p \to 0} p[\theta_c(p) - G(p)\theta_c(p)] = \lim_{p \to 0} p \times [\theta_c(p)(1 - G(p))]$$

$$\varepsilon_{pos} = \lim_{p \to 0} \left(p \times \frac{\theta_c}{p} \left(1 - \frac{1}{1 + \frac{1}{K_r K \lambda} p + \frac{\tau}{K_r K \lambda} p^2} \right) = 0 \quad (0,5 \text{ pt})$$

0 pour résultat non détaillé

Dépassement D = 5% car ξ = 0,69 (0,5 pt) ou justificatif par calcul $D = e^{-\frac{\xi * \pi}{\sqrt{1-\xi^2}}}$

0 pour résultat non détaillé

Bonus

2.4 On impose que le temps de réponse soit minimal, mais que le dépassement soit nul. Que devient alors la valeur de ce temps de réponse. Comment a-t-il évolué par rapport à celui trouvé à la question 2.3.a? Pourquoi?

Dépassement nul $\Rightarrow \xi = 1$

$$\xi = \frac{1}{2\sqrt{K_r K \lambda \tau}} \Rightarrow \xi^2 = \frac{1}{4K_r K \lambda \tau} \Rightarrow K_r = \frac{1}{4\xi^2 K \lambda \tau}$$

A.N
$$K_r = \frac{1}{4 \times (1)^2 \times 10 \times \frac{1}{200} \times 12.10^{-3}} = 417V/rad$$
 0 pour résultat non détaillé

$$\omega_0 = \sqrt{\frac{\kappa_r \kappa \lambda}{\tau}} = \sqrt{\frac{417 \times 10 \times \frac{1}{200}}{12.10^{-3}}} \Rightarrow \omega_0 \approx 42 \ rad/s0 \ \text{pour résultat non détaillé}$$

Temps de réponse $t_{5\%}=\frac{5}{\omega_0}=\frac{5}{42}=120~ms$ (utilisation de l'abaque) $\frac{0}{2}$ pour résultat non détaillé

Evolution : on remarque que le temps est beaucoup plus long car non dépassement et pulsation propre plus lente

2.5 Quelle est l'erreur de trainage correspondant à une consigne de vitesse ω_0 = 10 degrés/seconde ? Erreur de traînage :

$$\varepsilon_{tr} = \lim_{t \to \infty} [\theta_c(t) - \theta_s(t)] = \lim_{p \to 0} p[\theta_c(p) - \theta_s(p)] = \lim_{t \to \infty} p\theta_c(p)[1 - G(p)]$$

Avec
$$\theta_c(t)=\Omega_0 t u(t)$$
 et $\Omega_0=10 deg/s$ soit $\theta_c(p)=\frac{\Omega_0}{p^2}$

Finalement
$$\varepsilon_{tr} = \lim_{p \to 0} p \times \frac{\Omega_0}{p^2} \left[1 - \frac{K_r K \lambda}{K_r K \lambda + p + \tau p^2} \right] = \frac{\Omega_0}{K_r K \lambda}$$

Soit
$$\varepsilon_{tr}=$$
 0,23° pour $\xi=$ 0,69 et $\varepsilon_{tr}=$ 0,48° pour $\xi=$ 1