برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

•		<u> </u>	-
1	مقداری اور سمتیه	1.1	
2	سمتي الجبرا	1.2	
3	كارتيسي محدد	1.3	
5	اكائبي سمتيات	1.4	
9	ميداني سمتيم	1.5	
9	سمتى رقبہ	1.6	
10	غیر سمتی ضرب	1.7	
14	سمتی ضرب یا صلیبی ضرب	1.8	
17	گول نلكى محدد	1.9	
20	1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب		
20	1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق		
25	1.9.3 نلكي لامحدود سطحين		
27	کروی محلد	1.10	
37	کا قانون	كولومب	2
37	قوت کشش یا دفع	2.1	
41	برقبی میدان کی شدت	2.2	
44	یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان	2.3	
49	يكسان چارج بردار بموار لامحدود سطح	2.4	
53	چارج بردار حجم	2.5	
54	مزید مثال	2.6	
61	برقی میدان کے سمت بہاو خط	2.7	
63	سوالات	2.8	

iv		عنمان

65																																									بلاو	. پھي	اور	ون	کا قان	س ک	گاؤ.	3
65																																										رج	چار	کن .	ساك		3.1	
65			•																																						جربہ	ا تج	کا	<u>ا</u> کے	فيراد		3.2	
66					٠	٠			•												٠																				زن	قانو	کا	س	گاؤ		3.3	
68																																					ل	مما	است	کا	نون	ے قا	کے	س	گاؤ		3.4	
68																																	•	•					رج	چا	قطہ	i		3.4	4.1			
70																															į	طح	سبا	وی	کرو	ٔ ر	بردا	ج	چار	اں	بکس	ی		3.4	4.2			
70																												ر	لكي	ود	حد	لام	ی ا	لھے	سيا	ار ،	بردا	ج	چار	اں	بکس	ی		3.4	1.3			
71									•																																ر	، تار	ری	محو	<u>ب</u> م ،		3.5	
73																																	لح	سط	د	بدو	مح	Υ_	موا	ار ۽	ا برد	ارج	چا	ساں	یکس		3.6	
73					•	•			•																				(للاق	اط	کا	ون	قان	ے	5	رس	گاؤ	ا پر	ج	ے ح	و ڻو	چ	ائى	انتم		3.7	
76																																												دو	پهيا		3.8	
78					•	•																												ن	وان	ساو	, م	کی	لاو	پهي	میں	دد د	حد	ی م	نلك		3.9	
80					•	•																																ات	ساو	ے م	مومي	، ع	کی	(و َ	پهيا	3	.10	
																																										٠,	هيلا	ئلہ پ	fa	3	.11	
82	•					•	•	•	•	•	•	•	•	•	•	•			•	•	٠	٠	•	٠	•		•	•	•	•		•)-		•		_		
	•					•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•																		
85	•					•	•	•		•	•	•	•																													و	دبار		ور بر	ئی ا	توانا	4
85 85																													•												م	و ِ کا	دباو اور	ائی	ور بر توانا	ئی ا	توانا: 4.1	4
85 85 86																																									أم	و کاا ملہ	دباور اور تک	ائی ری	ور بر توانا لکیر	ئی ا	توانا: 4.1 4.2	4
85 85 86 91			•				•																														•				۴.	و كا مله	دباور اور تک	ائی ری د ب	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1	4
85 85 86 91																																		او	دبا	٠	برق			۔	ُم قطہ	و كاد مله	دباور اور تک	ئى رى دبر 4.3	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92						 																							او		رقىي	٠.	٠.	سے	دبا	ئى	برق	. كا	 چار		م قطہ کیر	و كا مله ن	دباور تک باو	ائی ری دبر 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92 93		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92 93		 		 		 																							٠ ٠ ٠	٠.	رقى	٠	بيد او	بے دبا	دبا قى او	نی بره دب	برق کثاف	کا تار		ی حور	م تقطم حکیر جارج	و مله مله ن	دباور تک تک	ری ری 4.3 4.3	ور بر توانا لکیر برقی 3.1 3.2	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94		 		 		 																								٠.	رقى	٠	بيد او	سے دبا	دبا قى او	نی برهٔ دب	برة كثاة كا	کا تار ، بر		ی چا حور حوں لموان	م م كير م م جارج خدر	و کاللہ ممللہ د کی	دباور اور تک باو	ائی ری 4.3 4.3 لاد :	ور بر توانانا لکیبرقی برقی 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94		 				 																							٠			٠	پيد او	او بے دبا	دبا قى او لواد	نی برز دب	برة كثاف	. کا تار ، می		ی . یی . یوں یوں لوان	م تقطه عارج عارج للكي	و کاا مللہ او کا	دبارا تک نقط	ائی دبر 4.3 4.3 د ن	ور بر توانا برقح 3.1 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98																													٠	٠	٠	٠	او	سے دبا دبا	دبا قى او ىلواا	ئى برۇ دى	برة كثاف	کا تار ، می			م م حم م م م م م م م م م م م م م م م م	و کا	دبارا تک باو	ائی ری 4.3 4.3 4.3 4.3 4.5	ور بر توانا برقی 3.1 3.3 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98 102																															٠		پيد او	سے دبا ن	دبا قى او ىلوا	نی برز دب	برة كثافا كا	کا تار کا تار ، بر بر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،			م محير . حم م بارج بارج کروء کروء	و كا. مالم	اور تک تک باو	ائی ری دبر 4.3 4.3 4.3 4.4 2.4	ور بر توانا برقی 3.1 3.2 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4

v عنوان

115	، ذو برق اور کپیسٹر	موصل،	5
115	برقمی رو اور کتافت برقمی رو	5.1	
117	استمراری مساوات	5.2	
119	موصل	5.3	
124	موصل کے خصوصیات اور سرحدی شرائط	5.4	
127	عکس کی ترکیب	5.5	
130	نيم موصل	5.6	
131	خو برق	5.7	
136	کامل ذو برق کے سرحد پر برقی شرائط	5.8	
140	موصل اور ذو برقی کے سرحدی شرائط	5.9	
140	كپيسٹر	5.10	
142	5.10.1 متوازی چادر کپیسٹر		
143	5.10.2 بم محوری کپیسٹر		
143	5.10.3 بم کوه کپیسٹر		
145	سلسلہ وار اور متوازی جڑے کپیسٹر	5.11	
146	دو متوازی تاروں کا کپیسٹنس	5.12	
155	اور لاپلاس مساوات	پوئسن	6
157	مسئلہ یکتائی	6.1	
	۔ لاپلاس مساوات خطی ہے	6.2	
	نلکی اور کروی محدد میں لاپلاس کی مساوات	6.3	
160	۔ لاپلاس مساوات کے حل	6.4	
	۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	6.5	
	پر میں وات کا ضربی حل	6.6	
	عددی دہرانے کا طریقہ	6.7	

vi

183	ناطیسی میدان	' ساكن مق
183	بايوڭ-سيوارڭ كا قانون	7.1
187	ایمپیئر کا دوری قانون	7.2
191	گردش	7.3
198	7.3.1 نلكى محدد ميں گردش	
204	7.3.2 عمومی محدد میں گردش کی مساوات	
205	7.3.3 کروی محدد میں گردش کی مساوات	
206	مسئلہ سٹوکس	7.4
210	مقناطیسی بهاو اور کثافت مقناطیسی بهاو	7.5
216	غیر سمتی اور سمتی مقناطیسی دباو	7.6
221	ساکن مقناطیسی میدان کرے قوانین کا حصول	7.7
222	7.7.1 سمتی مقناطیسی دباو	
	7.7.2 ايمپيئر كا دوري قانون	
223	J -35 J4.	
223		ا مقناطيسي
227		
227 227	، فوتیں، مقناطیسی مادمے اور امالہ	8.1
227227228	ی قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1
227227228231	ی قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3
227227228231232	ی قوتیں، مقناطیسی ماد نے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4
227 227 228 231 232 237	ی قوتیں، مقناطیسی ماد نے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4
227 227 228 231 232 237 238	ر قوتیں، مقناطیسی مادیے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5
227 227 228 231 232 237 238 241	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5
227 227 228 231 232 237 238 241 242	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5 8.6 8.7
227 228 231 232 237 238 241 242 245	ر قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8

vii

253	نے ساتھ بدلتے میدان اور میکس ویل کے مساوات	وقت کے	9
253	فيرالخُ ے کا قانون	9.1	
259	انتقالی برقمی رو	9.2	
263	میکس ویل مساوات کی نقطہ شکل	9.3	
264	میکس ویل مساوات کی تکمل شکل	9.4	
266	تاخیری دباو	9.5	
271	امواج	مستوى	10
271	خالی خلاء میں برقی و مقناطیسی مستوی امواج	10.1	
272	برقی و مقناطیسی مستوی امواج	10.2	
279	10.2.1 خالی خلاء میں امواج		
281	10.2.2 خالص یا کامل ذو برق میں امواج		
283	10.2.3 ناقص یا غیر کامل ذو برقی میں امواج		
286	پوئنٹنگ سمتیہ	10.3	
290	موصل میں امواج	10.4	
296	انعکاس مستوی موج	10.5	
302	شرح ساکن موج	10.6	
309	تار	تر سیلی	11
309	ترسیلی تار کے مساوات		
	ترسیلی تار کے مستقل		
	11.2.1 بم محوری تار کے مستقل		
	11.2.2 دو متوازی تار کے مستقل		
	11.2.3 سطح مستوی ترسیلی تار		
	ترسیلی تار کے چند مثال	11.3	
	ترسیمی تجزیه، سمته نقشہ		
	11.4.1 سمته فراوانی نقشه		
	تجرباتی نتائج پر مبنی چند مثال	11.5	

337	ن ع	تقطیب م	12
337	خطي، بيضوي اور دائري تقطيب	12.1	
340	بیضوی یا دائری قطبی امواج کا پوئنٹنگ سمتیہ	12.2	
343	.د، انعکاس، انحراف اور انکسار	ترچھی آم	13
343	ترچهی آمد	13.1	
354	ترسيم بائي گن	13.2	
357	گهمکیا	مويج اور	14
357	برقی دور، ترسیلی تار اور مویج کا موازنہ	14.1	
358	دو لامحدود وسعت کے مستوی چادروں کے موبج میں عرضی برقی موج	14.2	
364	كهوكهلا مستطيلي مويج	14.3	
373	14.3.1 مستطیلی مویج کے میدان پر تفصیلی غور		
380	مستطیلی مویج میں عرضی مقناطیسی TM _{mn} موج	14.4	
384	كهوكهلى نالى مويج	14.5	
391	انقطاعی تعدد سے کم تعدد پر تضعیف	14.6	
393	انقطاعی تعدد سے بلند تعدد پر تضعیف	14.7	
395	سطحي موج	14.8	
400	ذو برق تختی مویج	14.9	
403	شيش ريشہ	14.10	
406	پرده بصارت	14.11	
	میکس ویل مساوات کا عمومی حل		
419	شعاعي اخراج	اينثينا اور	15
419	تعارف	15.1	
419	تاخیری دباو	15.2	
420	مختصر جفت قطبي ايتثينا	15.3	

عنوان

باب 15

اينطينا اور شعاعي اخراج

- 15.1 تعارف
- 15.2 تاخيري دباو

کسی بھی اخراج شعاع کے نظام میں موج کے ترسیل کے لئے در کار دورانیہ اہمیت رکھتا ہے۔ یوں شکل 15.1 میں دکھائے تارمیں برقی روسے پیدامیدان کااثر نقطہ N پر کچھ وقفے سے ہوگا۔ خالی خلاء میں بیہ وقفہ موج کو تار سے نقطے تک پہنچنے کادورانیہ ﷺ ہے جہاں 8 m/s سے 108 m/s خالے میں شعاع کی رفتار ہے۔ یوں N کے نقطہ نظر سے تارمیں برقی رو

$$(15.1) I = I_0 \cos \omega t$$

کی بجائے

$$[I] = I_0 \cos \omega \left(t - \frac{r}{c} \right)$$

(t-1) کھی جاستی ہے جہاں [1] تاخیری برتی رو اکہلاتی ہے۔ تاخیری تفاعل کو چکور قوسین میں بند کھھا جاتا ہے۔ تاخیری برتی رو لکھتے ہوئے وقت t کی جگہ تاخیری وقت t

مساوات 15.2 کہتا ہے کہ نقطہ N پر پیدااثر، گزرے کھے $(t-rac{r}{c})$ پر تاریمیں برقی روکااثر ہے جہاں تارسے N تک فاصلہ r ہے۔تارسے N تک شعاع پہنچنے کادورانیہ $\frac{r}{c}$ ہے۔

retarded current¹

شكل 15.1: برقى رو گزارتي تار كي چهوڻي لمبائي

باب 15. اینٹینا اور شعاعی اخراج

گزشته بابول میں امواج کی بات کرتے ہوئے $(\omega t - eta x)$ استعال کیا گیا جس میں امواج کی بات کرتے ہوئے

$$\cos(\omega t - \beta x) = \cos \omega \left(t - \frac{x}{c} \right)$$

لکھاجا سکتاہے جو تاخیری تفاعل کو ظاہر کرتی ہے۔

مساوات 15.2 کی دوری سمتیه شکل

(15.4)
$$[I] = I_0 e^{j\omega(t - r/c)} = I_0 e^{j(\omega t - \beta r)}$$

ہے۔اسی طرح کثافت برقی رو کی تاخیری دوری سمتیہ شکل

$$[\boldsymbol{J}] = \boldsymbol{J}_0 e^{j\omega(t-r/c)} = \boldsymbol{J}_0 e^{j(\omega t - \beta r)}$$

ہو گی جسے استعال کرتے ہوئے تاخیر ی مقناطیسی دباو

$$[A] = \frac{\mu}{4\pi} \int_{h} \frac{[J]}{r} dh = \frac{\mu}{4\pi} \int_{h} \frac{J_0 e^{j\omega(t-r/c)}}{r} dh$$

لکھاجائے گا۔اس طرح تاخیری محجی کثافت حارج

$$[\rho_h] = \rho_0 e^{j\omega(t-r/c)}$$

کھتے ہوئے تاخیری برقی دیاو

$$[V] = \frac{1}{4\pi\epsilon} \int_{h} \frac{[\rho_h]}{r} \, \mathrm{d}h$$

کھاجائے گا۔ باب-9 کے آخر میں مساوات 9.74 اور مساوات 9.73 کے بائیں ہاتھ کے تفاعل کو چکور قوسین میں لکھ کر موج کی رفتاری لیتے ہوئے اور فاصلے کو کروی محد د کے رداس سے ظاہر کرنے سے یہی مساوات حاصل ہوتے ہیں۔

15.3 مختصر جفت قطبي اينطينا

مختصر لمبائی کے سیدھے موصل تار کو عموماً مختصر جفت قطب² کہا جاتا ہے۔ مندرجہ ذیل گفتگو میں مختصر جفت قطب کی لمبائی محدود ہو گی۔لامحدود حد تک کم لمبائی کی صورت میں اسے صغاری جفت قطب³ کہا جائے گا۔

خطی نوعیت کے کسی بھی اینٹینا کو متعدد تعداد کے سلسلہ وار جڑے مخضر جفت قطبوں کا مجموعہ تصور کیا جا سکتا ہے للمذا مخضر جفت قطب کی خاصیت جانتے ہوئے زیادہ لمبے جفت قطب یا مختلف انداز میں جڑے موصل تاروں کی خاصیت جاننے میں مدد ملے گی۔

آئیں شکل 15.2-الف میں دکھائے مختصر جفت قطب پر غور کریں جس کی لمبائی 1 طول موج سے بہت کم $\lambda \gg 1$ ہے۔ جفت قطب کے سروں پر موصل چادر بطور کپیسٹر بوجھ کردار ادا کرتے ہیں۔ جفت قطب کی مختصر لمبائی اور اس کے سروں پر موصل چادر مل کر جفت قطب کی پوری لمبائی پر تقریباً برابر برقی رور کھنے میں مدد دیتے ہیں۔ جیسے شکل-الف میں دکھایا گیا ہے، جفت قطب کو متوازن تریبلی تارسے طاقت مہیا کی جاسکتی ہے۔ یہ فرض کرتے 15.3. مختصر جفت قطبی اینٹینا

ب: جفت قطب بطور چهوٹی تار

الف: متوازن ترسیلی تار سے جفت قطب کو طاقت مہیا کی گئی ہے۔

شكل 15.2: جفت قطب

$$I = \frac{\partial q}{\partial t}$$

-4

آئیں لا محدود وسعت کی خالی خلاء میں جفت قطب کے میدان حاصل کریں۔ جفت قطب کے وسط کو کروی محدد کے مرکز اور لمبائی کو z محدد پر رکھتے ہوئے آگے بڑھتے ہیں۔ کسی بھی نقطہ N پر عموماً آپس میں عمودی تین میدان Εθ ، Εγ یائے جائیں گے۔

سمي بھي نقطه N پر مساوات 9.79 اور مساوات 9.71 بالترتيب مقناطيسي ميدان اور برقی ميدان ديتے ہيں

$$H = \frac{1}{\mu_0} \nabla \times A$$

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

جہاں

نقطه N پر مقداری برقی د باو V

نقطه N پر سمتی د باو $oldsymbol{A}$

ہیں۔اگر ہمیں کسی بھی نقطے پر مقداری دباو V اور سمتی دباو A معلوم ہوں تب مندرجہ بالا دو مساوات سے اس نقطے پر برقی اور مقناطیسی میدان حاصل کئے جا سکتے ہیں۔چو نکہ ہمیں جفت قطب سے دور میدان در کار ہیں لہٰذاالی صورت میں مساوات 15.6 اور مساوات 15.8 میں دئے تاخیری دباو قابل استعال ہوں گے۔یوں ان مساوات کو

$$H = \frac{1}{\mu_0} \nabla \times [A]$$

(15.13)
$$E = -\nabla[V] - \frac{\partial[A]}{\partial t} = -\nabla[V] - j\omega[A]$$

لکھا جا سکتا ہے جہال مساوات 9.57 اور مساوات 9.58 سے تاخیر کی دباو

$$[A] = \frac{\mu_0}{4\pi} \int_h \frac{J_0 e^{j\omega(t-r/c)}}{r} \,\mathrm{d}h$$

$$[V] = \frac{1}{4\pi\epsilon_0} \int_h \frac{\rho_0 e^{j\omega(t-r/c)}}{r} \, \mathrm{d}h$$

لکھے جا سکتے ہیں۔

کسی بھی برقی چارج اور برقی روسے پیدا میدان مساوات 15.12 اور مساوات 15.13 سے حاصل کئے جا سکتے ہیں۔ مساوات 15.15 کے تحت تاخیر ی مقداری دباو [V] صرف ساکن چارجوں پر مخصر ہے جبکہ مساوات 15.14 کے تحت تاخیر ی سمتی دباو [A] صرف برقی رویعنی حرکت کرتے چارجوں پر مخصر ہے۔مساوات 15.13 کے تحت مقناطیسی میدان H صرف برقی رویعنی حرکت کرتے چارجوں پر مخصر ہے جبکہ مساوات 15.13 کے تحت برقی میدان E ساکن چارج اور برقی رودونوں پر مخصر ہے۔ہم جلد دیکھیں گے کہ کسی بھی چارج اور برقی روسے دور پیدا مقناطیسی اور برقی میدانوں کا دارومدار صرف برقی رویر ہوتا ہے۔ چونکہ اس باب میں تاخیر کی دباو ہی استعال کئے جائیں گے للذا انہیں چکور قوسین میں لکھنے سے گریز کیا جائے گا۔اس باب میں یہاں سے آگے بغیر چکور قوسین میں لکھنے سے گریز کیا جائے گا۔اس باب میں یہاں سے آگے بغیر چکور قوسین کے دباو کو تاخیر کی دباو ہی سمجھا جائے۔

شکل سے ظاہر ہے کہ سمتی دباو کا صرف $a_{
m Z}$ جزو

(15.16)
$$A = \frac{a_{\rm Z} \mu_0 I_0}{4\pi} \int_{-l/2}^{l/2} \frac{e^{j(\omega t - \beta s)}}{s} \, \mathrm{d}z$$

پایا جاتا ہے۔اگر جفت قطب کی لمبائی I، نقطہ I سے جفت قطب تک فاصلہ I سے نہایت کم I اور طول موج I سے بھی نہایت کم I ہو تب مندر جہ بالا مساوات میں متغیر فاصلہ I کی جگہ مستقل فاصلہ I پر کیا جا سکتا ہے اور ساتھ ہی ساتھ I پر مختلف نقطوں سے I پر پیدا دباو میں زاویائی فرق کو نظر انداز کیا جا سکتا ہے۔ یوں مندر جہ بالا مساوات سے

(15.17)
$$A = \frac{a_{\rm Z}\mu_0 I_0 l e^{j(\omega t - \beta r)}}{4\pi r}$$

حاصل ہوتا ہے۔ اس مساوات کو کروی محدد میں یوں

$$\mathbf{A} = A_r \mathbf{a}_{\mathbf{r}} + A_{\theta} \mathbf{a}_{\theta} + A_{\phi} \mathbf{a}_{\phi}$$

لکھا جائے گا جہاں

(15.18)
$$A_{r} = \mathbf{a}_{\mathbf{r}} \cdot \mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \mathbf{a}_{\mathbf{r}} \cdot \mathbf{a}_{\mathbf{Z}} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \cos \theta$$

$$A_{\theta} = \mathbf{a}_{\theta} \cdot \mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \mathbf{a}_{\theta} \cdot \mathbf{a}_{\mathbf{Z}} = -\frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \sin \theta$$

$$A_{\phi} = \mathbf{a}_{\phi} \cdot \mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \mathbf{a}_{\phi} \cdot \mathbf{a}_{\mathbf{Z}} = 0$$

$$C_{\phi} = \mathbf{a}_{\phi} \cdot \mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \mathbf{a}_{\phi} \cdot \mathbf{a}_{\mathbf{Z}} = 0$$

$$C_{\phi} = \mathbf{a}_{\phi} \cdot \mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \left(\cos \theta \mathbf{a}_{\mathbf{r}} - \sin \theta \mathbf{a}_{\theta}\right)$$

$$\mathbf{A} = \frac{\mu_{0} I_{0} l e^{j(\omega t - \beta r)}}{4\pi r} \left(\cos \theta \mathbf{a}_{\mathbf{r}} - \sin \theta \mathbf{a}_{\theta}\right)$$

لکھا جائے گا۔

ساکن چارج جفت قطب کے سروں پر پایا جاتا ہے للمذا مقداری دباو

(15.20)
$$V = \frac{q_0}{4\pi\epsilon_0} \left[\frac{e^{j(\omega t - \beta s_1)}}{s_1} - \frac{e^{j(\omega t - \beta s_2)}}{s_2} \right]$$

ہو گا جہاں مساوات 15.9 کے تحت

$$q = \int I \, \mathrm{d}t = \frac{I}{j\omega}$$

کے برابر ہے جہال

$$I = I_0 e^{j(\omega t - \beta s)}$$
$$q = q_0 e^{j(\omega t - \beta s)}$$

یں۔ مساوات 15.21 سے $q_0=rac{I_0}{j\omega}$ حاصل کرتے ہوئے مساوات 15.20 میں پر کرتے ہیں۔

$$V = \frac{I_0}{4\pi\epsilon_0 j\omega} \left[\frac{e^{j(\omega t - \beta s_1)}}{s_1} - \frac{e^{j(\omega t - \beta s_2)}}{s_2} \right]$$

شکل کو دیکھ کر

$$s_1 = r - \frac{l}{2}\cos\theta$$
$$s_2 = r + \frac{l}{2}\cos\theta$$

لکھے جا سکتے ہیں جنہیں مساوات 15.22 میں پر کرتے

$$V = \frac{I_0 e^{j(\omega t - \beta r)}}{4\pi\epsilon_0 j\omega} \left[\frac{(r + \frac{1}{2}\cos\theta)e^{j\frac{\beta l}{2}\cos\theta} - (r - \frac{1}{2}\cos\theta)e^{-j\frac{\beta l}{2}\cos\theta}}{r^2 - \frac{l^2}{4}\cos^2\theta} \right]$$

ملتا ہے۔ چکور قوسین میں شرح کے نچلے جصے میں $l\gg r\gg 1$ کی وجہ سے $au \cos^2 heta \cos^2 heta$ کو نظر انداز کرتے ہیں۔مسئلہ ڈی مویور $t\gg 1$ استعال سے

(15.24)
$$V = \frac{I_0 e^{j(\omega t - \beta r)}}{4\pi\epsilon_0 j \omega r^2} \left[\left(r + \frac{l}{2} \cos \theta \right) \left(\cos \frac{\beta l \cos \theta}{2} + j \sin \frac{\beta l \cos \theta}{2} \right) - \left(r - \frac{l}{2} \cos \theta \right) \left(\cos \frac{\beta l \cos \theta}{2} - j \sin \frac{\beta l \cos \theta}{2} \right) \right]$$

 $l \gg l = 1$ کھا جائے گا۔ چو نکہ $l \gg l \gg 1$ لہذا

$$\cos \frac{\beta l \cos \theta}{2} = \cos \frac{\pi l \cos \theta}{\lambda} \approx l$$
$$\sin \frac{\beta l \cos \theta}{2} \approx \frac{\beta l \cos \theta}{2}$$

ہوں گے، جنہیں مساوات 15.24 میں پر کرنے سے

(15.25)
$$V = \frac{I_0 l e^{j(\omega t - \beta r)} \cos \theta}{4\pi \epsilon_0 c} \left(\frac{1}{r} + \frac{c}{j\omega r^2}\right)$$

حاصل ہوتاہے جہاں

Aبر تی رو کا حیطہ لیعنی اس کی زیادہ سے زیادہ قیمت، I_0

m جفت قطب کی لمبائی، m

ناویائی تعدد ($\omega=2\pi f$)، اکائی rad/s جہاں ہرٹز Hz بیں تعدد و ہے ω

 $(e^{j\alpha} = \cos \alpha + j \sin \alpha)$ de Moivre's theorem⁴

$$\operatorname{rad/m}$$
 زاویائی مستقل $eta=rac{2\pi}{\lambda}$ اکائی eta

ا وقت،

ہ جفت قطب اور جفت قطب سے نقطہ N تک سمتیہ کے مابین زاویہ heta

 $8.854\,\mathrm{pF/m}$ ، خالی خلاء کا برقی مستقل ϵ_0

 $3 imes 10^8 \, \mathrm{m/s}$ خالی خلاء میں شعاع کی رفتار، c

 $\sqrt{-1}$ خالی عدد i

m، جفت قطب کے وسط سے نقطہ N تک فاصلہ r

ہیں۔

مختصر جفت قطب کے وسط سے، $\lambda \gg l$ اور $r \gg l$ کی صورت میں، r فاصلے اور θ زاویے پر مساوات 15.19 سمتی دباو اور مساوات 15.25 مقدار کی دباو دیتے ہیں۔ کروی محدد میں مقدار کی دباو کی ڈھلوان

$$\nabla V = \frac{\partial V}{\partial r} \boldsymbol{a}_{\mathrm{r}} + \frac{1}{r} \frac{\partial V}{\partial \theta} \boldsymbol{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \boldsymbol{a}_{\phi}$$

$$= \frac{I_{0} l e^{j(\omega t - \beta r)}}{4\pi \epsilon_{0} c} \left[-\left(\frac{\cos \theta}{r^{2}} + \frac{2c \cos \theta}{j\omega r^{3}}\right) \boldsymbol{a}_{\mathrm{r}} - \left(\frac{\sin \theta}{r} + \frac{c \sin \theta}{j\omega r^{2}}\right) \boldsymbol{a}_{\theta} \right]$$

کے برابر ہے۔ برتی میدان م $E=E_ra_\Gamma+E_ heta a_ heta+E_\phi$ کے اجزاء مساوات 15.13 کی مدد سے

$$E_r = -\frac{\partial V}{\partial r} - j\omega A_r$$

$$E_{\theta} = -\frac{1}{r}\frac{\partial V}{\partial \theta} - j\omega A_{\theta}$$

$$E_{\phi} = -\frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi} - j\omega A_{\phi}$$

کھے جا سکتے ہیں جن میں مطلوبہ تفاعل پر کرنے سے برقی میدان کے عمومی مساوات

$$E_r = rac{I_0 l \cos heta e^{j(\omega t - eta r)}}{2\pi\epsilon_0} \left(rac{1}{cr^2} + rac{1}{j\omega r^3}
ight)$$
 (15.27)
$$E_{ heta} = rac{I_0 l \sin heta e^{j(\omega t - eta r)}}{4\pi\epsilon_0} \left(rac{j\omega}{c^2 r} + rac{1}{cr^2} + rac{1}{j\omega r^3}
ight)$$
 خوی میدان $E_{\phi} = 0$

حاصل ہوتے ہیں۔

مقناطیسی میدان مساوات 15.12 سے حاصل ہو گی۔ کروی محدد میں سمتی دباو کی گردش

(15.28)
$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left[\frac{\partial (A_{\theta} \sin \theta)}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi} \right] \mathbf{a}_{\Gamma} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial (rA_{\phi})}{\partial r} \right] \mathbf{a}_{\theta} + \frac{1}{r} \left[\frac{\partial (rA_{\theta})}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \right] \mathbf{a}_{\phi}$$

میں مساوات 15.18 پر کرنے سے مقناطیسی میدان کی عمومی مساوات

$$H_{\phi}=rac{I_0 l\sin heta e^{j(\omega t-eta r)}}{4\pi}\left(rac{j\omega}{cr}+rac{1}{r^2}
ight)$$
 ميدان $H_r=0$ $H_{ heta}=0$

حاصل ہوتے ہیں۔

مساوات 15,27 اور مساوات 15,29 کے تحت جفت قطب سے پیدا میدان کے صرف تین اجزاء E_{θ} ، E_{r} اور مساوات 15,27 کے جاتے ہیں۔ جفت قطب سے زیادہ فاصلے پر میدان کی مساوات میں $\frac{1}{r^{2}}$ یا $\frac{1}{r^{3}}$ کو نظر انداز کیا جا سکتا ہے۔ یول E_{r} قابل نظر انداز ہو گا لہٰذا E_{r} تصور کیا جائے گا جبکہ

$$E_{\theta} = \frac{I_0 l \sin \theta e^{j(\omega t - \beta r)}}{4\pi\epsilon_0} \frac{j\omega}{c^2 r} = j \frac{30I_0 \beta l}{r} \sin \theta e^{j(\omega t - \beta r)}$$

$$H_{\phi} = \frac{I_0 l \sin \theta e^{j(\omega t - \beta r)}}{4\pi} \frac{j\omega}{cr} = j \frac{I_0 \beta l}{4\pi r} \sin \theta e^{j(\omega t - \beta r)}$$

$$e^{j(\omega t - \beta r)}$$

ہوں گے۔مساوات 15.30 استعال کرتے ہوئے برقی اور مقناطیسی میدان کی شرح

$$\frac{E_{\theta}}{H_{\phi}} = \frac{1}{\epsilon_0 c} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 376.7 \,\Omega$$

حاصل ہوتی ہے جو خالی خلاء کی قدرتی رکاوٹ ہے۔

یہاں اس حقیقت پر توجہ دیں کہ خالی خلاء میں TEM موج کی طرح، جفت قطب سے دور E_{θ} اور H_{ϕ} آپس میں ہم قدم ہیں۔اس کے علاوہ دونوں میدان θ $\sin\theta$ کے راست تناسب ہیں لیعنی جفت قطب کے محوری سمت $\theta=\theta$ پر ان کی قیمت صفر جبکہ $\theta=\theta$ پر ان کی قیمت زیادہ سے زیادہ سے اندرسہ 5 شکل کی ان میدان کو شکل میں دکھایا گیا ہے۔

جفت قطب سے دور میدان حاصل کرتے وقت مساوات 15.27 اور مساوات 15.29 میں $\frac{1}{r^3}$ یا $\frac{1}{r^3}$ رکھتے اجزاء کو نظر انداز کیا گیا یعنی E_{θ} میں

$$\left| j \frac{\omega}{c^2 r} \right| \gg \frac{1}{c r^2}$$

$$\left| j \frac{\omega}{c^2 r} \right| \gg \left| \frac{1}{j \omega r^3} \right|$$

$$(15.32) r \gg \frac{c}{\omega}$$

تصور کیا گیا۔اسی طرح Ho میں بھی

$$\left| j \frac{\omega}{cr} \right| \gg \frac{1}{r^2}$$

يا

$$(15.33) r \gg \frac{c}{\omega}$$

تصور کیا گیا جسے

$$r\gg rac{1}{eta}$$
 (دور میدان) $angle$

15.29 اور مساوات 15.27 اور مساوات 15.29 کھا جا سکتا ہے۔ اگر جفت قطب کے قریب میدان کی بات کی جائے تو $r \ll \frac{c}{\omega} \gg r$ لیا جائے گا۔ یوں مساوات 15.29 اور مساوات 15.29 میں

$$\frac{1}{cr^2} \ll \left| \frac{1}{j\omega r^3} \right|$$

$$\left| \frac{j\omega}{c^2 r} \right| \ll \left| \frac{1}{j\omega r^3} \right|$$

$$\frac{1}{cr^2} \ll \left| \frac{1}{j\omega r^3} \right|$$

$$\left| \frac{j\omega}{cr} \right| \ll \frac{1}{r^2}$$

ہوں گے للذا قریبی میدان

$$E_{r} = \frac{I_{0}l\cos\theta e^{j(\omega t - \beta r)}}{2\pi\epsilon_{0}} \frac{1}{j\omega r^{3}} = \frac{I_{0}l\cos\theta e^{j(\omega t - \beta r - \frac{\pi}{2})}}{2\pi\epsilon_{0}\omega r^{3}}$$

$$E_{\theta} = \frac{I_{0}l\sin\theta e^{j(\omega t - \beta r)}}{4\pi\epsilon_{0}} \frac{1}{j\omega r^{3}} = \frac{I_{0}l\sin\theta e^{j(\omega t - \beta r - \frac{\pi}{2})}}{4\pi\epsilon_{0}\omega r^{3}}$$

$$H_{\phi} = \frac{I_{0}l\sin\theta e^{j(\omega t - \beta r)}}{4\pi} \frac{1}{r^{2}} = \frac{I_{0}l\sin\theta e^{j(\omega t - \beta r)}}{4\pi r^{2}}$$

$$\tilde{\theta}_{\sigma} = \frac{I_{0}l\sin\theta e^{j(\omega t - \beta r)}}{4\pi r^{2}}$$

لکھے جا سکتے ہیں۔ کل قریبی برقی میدان

(15.36)
$$E = E_r \mathbf{a}_r + E_\theta \mathbf{a}_\theta = \left[\frac{I_0 l \cos \theta}{2\pi\epsilon_0 \omega r^3} \mathbf{a}_r + \frac{I_0 l \sin \theta}{4\pi\epsilon_0 \omega r^3} \mathbf{a}_\theta \right] e^{j(\omega t - \beta r - \frac{\pi}{2})}$$

ہو گا۔ مساوات 15.36 کے برتی میدان میں جزو ضربی $e^{i(\omega t - \beta r - \frac{\pi}{2})}$ پایا جاتا ہے جبکہ مقناطیسی میدان میں جزو ضربی $e^{i(\omega t - \beta r - \frac{\pi}{2})}$ پایا جاتا ہے جبکہ مقاطیسی میدان میں $e^{i(\omega t - \beta r - \frac{\pi}{2})}$ زاویے کا فرق پایا جاتا ہے جو ساکن میدان کی نشانی ہے۔

جفت قطب کے قریب برقی اور مقناطیسی میدان میں کھاتی طور ﷺ ریڈیئن کا زاویہ پایا جاتا ہے جبکہ جفت قطب سے دور دونوں میدان کھاتی طور پر ہم قدم ہیں للذاکسی درمیانے فاصلے پر ان میدانوں میں °45 کا زاویہ ہو گا۔آپ دیکھ سکتے ہیں کہ جفت قطب سے فاصلہ بڑھانے سے برقی میدان وقت کی نسبت سے گھوم کر مقناطیسی میدان کے ہم قدم ہوجاتا ہے۔

يوسننتك سمتيه استعال كرتے ہوئے مساوات 15.30 سے دور ميدان ميں كثافت تواناكي

$$m{E} imesm{H}^*=E_ heta H_\phi^*m{a}_\Gamma=rac{30I_0^2eta^2l^2}{4\pi r^2}\sin^2 hetam{a}_\Gamma$$
 وور ميدان

حاصل ہوتی ہے جو رداس ۴ سمت میں منتقل ہوتی حقیقی توانائی ہے۔ یہی اینٹینا کی شعاعی اخراج ہے۔شعاعی اخراج 90° = 0 پر زیادہ سے زیادہ ہے۔اسی طرح یوئنٹنگ سمتیہ استعال کرتے ہوئے مساوات 15.35 سے قریبی میدان میں کثافت توانائی

$$\boldsymbol{E}\times\boldsymbol{H}^{*}=\left(E_{r}\boldsymbol{a}_{\mathrm{r}}+E_{\theta}\boldsymbol{a}_{\theta}\right)\times H_{\phi}^{*}\boldsymbol{a}_{\phi}=\left[-\frac{I_{0}l\cos\theta}{2\pi\epsilon_{0}\omega r^{3}}\boldsymbol{a}_{\theta}+\frac{I_{0}l\sin\theta}{4\pi\epsilon_{0}\omega r^{3}}\boldsymbol{a}_{\mathrm{r}}\right]\frac{I_{0}l\sin\theta}{4\pi r^{2}}e^{-j\frac{\pi}{2}}$$

عاصل ہوتی ہے جس کا بیشتر حصہ خیالی ہے اور ساتھ ہی ساتھ شعاعی اخراج کے علاوہ یہاں θ سمت میں گھومتی طاقت بھی پائی جاتی ہے۔

آئیں اب نہایت کم تعدد پر صورت حال دیکھیں۔ مساوات 15.27 میں $I_0=j\omega q_0$ پر کرتے ہوئے اور مساوات 15.29 کو جول کا تول دوبارہ پیش کرتے ہیں۔ کرتے ہیں۔

$$\begin{split} E_r &= \frac{q_0 l \cos \theta e^{j(\omega t - \beta r)}}{2\pi \epsilon_0} \left(\frac{j\omega}{cr^2} + \frac{1}{r^3} \right) \\ E_\theta &= \frac{q_0 l \sin \theta e^{j(\omega t - \beta r)}}{4\pi \epsilon_0} \left(-\frac{\omega^2}{c^2 r} + \frac{j\omega}{cr^2} + \frac{1}{r^3} \right) \\ H_\phi &= \frac{I_0 l \sin \theta e^{j(\omega t - \beta r)}}{4\pi} \left(\frac{j\omega}{cr} + \frac{1}{r^2} \right) \end{split}$$

تعدد کو صفر کے قریب تر $\omega o \omega$ کرنے سے ان مساوات کو

$$E_r = \frac{q_0 l \cos \theta e^{-j\beta r}}{2\pi \epsilon_0 r^3}$$

$$E_\theta = \frac{q_0 l \sin \theta e^{-j\beta r}}{4\pi \epsilon_0 r^3}$$

$$H_\phi = \frac{I_0 l \sin \theta e^{-j\beta r}}{4\pi r^2}$$

لکھا جا سکتا ہے۔

باب 16

سوالات

مويج

سوال 16.1: ہوااور تانبے کے سرحد پر GHz تعدد کے موج کا جھکاو حاصل کریں۔ جواب: °0.00177

سوال 16.2: ہوااور پانی 78 $\epsilon_R=7$ کے سرحد پر $1\,\mathrm{GHz}$ تعدد کے موج کا جھکاو حاصل کریں۔ جواب: 6.46°

باب 16. سوالات

 σ :16.1 جدول

$\sigma, \frac{S}{m}$	چیر	$\sigma, \frac{S}{m}$	چيز
7×10^4	گريفائٿ	6.17×10^{7}	چاندى
1200	سليكان	5.80×10^{7}	تانبا
100	فيرائك (عمومي قيمت)	4.10×10^{7}	سونا
5	سمندری پانی	3.82×10^{7}	المونيم
10^{-2}	چهونا پتهر	1.82×10^{7}	ٹنگسٹن
5×10^{-3}	چکنی مٹنی	1.67×10^{7}	جست
10^{-3}	تازه پانی	1.50×10^{7}	بيتل
10^{-4}	تقطیر شده پانی	1.45×10^{7}	نکل
10^{-5}	ریتیلی مٹی	1.03×10^{7}	لوبا
10^{-8}	سنگ مرمر	0.70×10^{7}	قلعى
10^{-9}	بيك لائث	0.60×10^{7}	كاربن سٹيل
10^{-10}	چینی مٹی	0.227×10^{7}	مینگنین
2×10^{-13}	ا بيرا	0.22×10^{7}	جرمينيم
10^{-16}	پولیسٹرین پلاسٹک	0.11×10^{7}	سٹینلس سٹیل
10^{-17}	كوارش	0.10×10^{7}	نائيكروم

باب 16. سوالات

 $\sigma/\omega\epsilon$ and ϵ_R :16.2 جدول

σ/ωε	ϵ_R	چير
	1	خالي خلاء
	1.0006	ب وا
0.0006	8.8	المونيم اكسائذ
0.002	2.7	عنبر
0.022	4.74	بيك لائث
	1.001	كاربن ڈائى آكسائڈ
	16	جرمينيم
0.001	4 تا 7	شيشہ
0.1	4.2	برف
0.0006	5.4	ابرق
0.02	3.5	نائلون
0.008	3	كاغذ
0.04	3.45	پلیکسی گلاس
0.0002	2.26	پلاسٹک (تھیلا بنانے والا)
0.00005	2.55	پولیسٹرین
0.014	6	چینی مٹی
0.0006	4	پائریکس شیشہ (برتن بنانے والا)
0.00075	3.8	كوارثس
0.002	2.5 تا 3	ريز
0.00075	3.8	SiO ₂ سلیکا
	11.8	سليكان
0.5	3.3	قدرتی برف
0.0001	5.9	کھانے کا نمک
0.07	2.8	خشک مٹنی
0.0001	1.03	سٹائروفوم
0.0003	2.1	ٹیفلان
0.0015	100	ٹائٹینیم ڈائی آکسائڈ
0.04	80	مقطر پانی
4		سمندری پانی
0.01	1.5 تا 4	خشک لکڑی

μ_R :16.3 جدول

μ_R	چيز
0.999 998 6	بسمت
0.99999942	پيرافين
0.999 999 5	لکڑی
0.999 999 81	چاندى
1.00000065	المونيم
1.00000079	بيريليم
50	نکل
60	ڈھلواں لوہا
300	مشين سٹيل
1000	فيرائك (عمومي قيمت)
2500	پرم بھرت (permalloy)
3000	ٹرانسفارمر پتری
3500	سيلكان لوبا
4000	خالص لوبا
20 000	میو میٹل (mumetal)
30 000	سنڈسٹ (sendust)
100 000	سوپرم بهرت (supermalloy)

جدول 16.4: اہم مستقل

قيمت	علامت	چير
$(1.6021892 \mp 0.0000046) \times 10^{-19} \mathrm{C}$	e	اليكثران چارج
$(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$	m	اليكثران كميت
$(8.854187818 \mp 0.000000071) \times 10^{-12}\frac{F}{m}$	ϵ_0	برقى مستقل (خالى خلاء)
$4\pi 10^{-7} rac{ ext{H}}{ ext{m}}$	μ_0	مقناطیسی مستقل (خالی خلاء)
$(2.997924574 \mp 0.000000011) \times 10^8\frac{m}{s}$	c	روشنی کی رفتار (خالی خلاء)

باب 16. سوالات