```
In [1]: import pandas as pd
         import numpy as np
 In [2]: df=pd.read csv('datasets/IceCreamData.csv')
         df.head()
 Out[2]:
             Temperature
                          Revenue
               24.566884 534.799028
               26.005191 625.190122
          2
              27.790554 660.632289
              20.595335 487.706960
               11.503498 316.240194
 In [3]: df.corr()
 Out[3]:
                      Temperature Revenue
                         1.000000 0.989802
          Temperature
                        0.989802 1.000000
             Revenue
 In [4]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 500 entries, 0 to 499
         Data columns (total 2 columns):
              Column
                            Non-Null Count
                                            Dtype
          #
          0
              Temperature 500 non-null
                                             float64
              Revenue
                            500 non-null
                                             float64
         dtypes: float64(2)
         memory usage: 7.9 KB
 In [5]: df.isnull().sum()
 Out[5]: Temperature
         Revenue
         dtype: int64
 In [6]: | x = df['Temperature'].values.reshape(-1,1) #Independent variable
         y = df['Revenue'].values.reshape(-1,1)
                                                   #dependent variable
 In [7]: from matplotlib import pyplot as plt
 In [8]: plt.scatter(x,y)
 Out[8]: <matplotlib.collections.PathCollection at 0x22979b8fc70>
          1000
           800
           600
           400
           200
                                  20
                                            30
                                                     40
 In [9]: df.shape
 Out[9]: (500, 2)
In [10]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=0,test_size=0.1)
In [11]: x_train.shape
Out[11]: (450, 1)
```

```
In [12]: x_test.shape
Out[12]: (50, 1)
In [13]: x_test
                 [11.05909651],
                [12.57151377],
                [19.81463838],
                [23.98464085],
                [23.05621357],
                [12.27096675],
                [21.61064376],
                [24.5288527],
                [32.00436506],
                [18.43998163],
                [20.94791347],
                 [24.34910395],
                [18.60275025],
                [40.47398918],
                [26.00519115],
                [23.15300185],
                 [ 7.2613484 ],
                [30.22810362],
                [14.28719594]])
In [14]: from sklearn.linear_model import LinearRegression
In [15]: lr = LinearRegression()
In [16]: lr.fit(x_train,y_train)
Out[16]: LinearRegression()
In [17]: y_pred = lr.predict(x_test)
```

```
In [18]: prediction = pd.DataFrame(y_test,columns = ['Y'])
    prediction['y_hat'] = y_pred
    prediction['residuals'] = y_test - y_pred
    prediction
```

Out[18]:

	Υ	y_hat	residuals
0	704,281439	697.707072	6.574367
1	632.901914	652.739041	-19.837127
2	662.558990	664.134040	-1.575050
3	449.813300	450.147723	-0.334423
4	636.298374	664.877682	-28.579308
5	469.909033	441.006651	28.902383
6	587.221246	583.553776	3.667470
7	581.074005	623.271996	-42.197991
8	675.828916	666.888049	8.940867
9	493.710333	468.333683	25.376650
10	506.432135	546.354759	
11	427.138369	443.047811	-15.909442
12	644.488633	622.399213	22.089420
13	350.629036	377.351271	-26.722234
14	366.247714	366,776707	-0.528993
15	965.493040	944.779684	20.713356
15	898.805423	892.959033	5.846390
17	648.453609	693.827041	-45.373432
18	586.138767	545.578718	40.560049
19	405.661446	420.245072	-14.583626
20	395.273750	390.775779	
21	572.537048	596.488947	
22	288.158145	283.039720	5.118425
23	643.788331	654.913996	-11.125665
24	396.935648	380.689328	16.246321
25	412.082357	411.986607	0.095750
26	353.325633	370.762345	-17.436712
27	478.598509	509.804905	-31.206397
28	474.749392	479.300534	-4.551142
29	463.065614	456.304042	6.761573
30	654.894955	639.545333	15.349621
31	306.749930	281.457797	25.292133
32	319.349462	313.960895	5.388568
33	471.701557	469.621630	2.079927
34	559.135869	559.238431	-0.102561
35	552.819351	539.285761	13.533590
36	335.156856	307.501891	27.654965
37	537.664801	508.219271	29.445530
38	594.110352	570.933993	23.176359
39	675.807151	731.588934	-55.781783
40	463.480508	440.079120	23.401388
41	500.925065	493.976649	6.948416
42	572.672047	567.071044	5.601004
43	472.549343	443.577152	28.972190
44	918.391232	913.608158	4.783074
45	625.190122	602.661727	
46	506.493748		
47	223.435016	199.841051	23.593965
48	679.712058	693.415607	-13.703548
49	322.592741	350.832323	-28.239582

```
In [19]: m = lr.coef_ #sLop
In [20]: b = lr.intercept_ #y_intercept
In [21]: x_test
Out[21]: array([[30.42779184],
                 [28.33536277],
                 [28.86558895],
                 [18.90848865],
                 [28.90019172],
                 [18.48314099],
                 [25.11606991],
                 [26.96421749],
                 [28.99373705],
                 [19.75470829],
                 [23.38514451],
                 [18.57811922],
                 [26.9236056],
                 [15.52116187],
                 [15.02911176],
                 [41.92444647],
                 [39.5131548],
                 [30.24724825],
                 [23.34903419],
                 [17.51707397],
                 [16.14582413],
                 [25.71796257],
                 [11.13270573],
                 [28.43656665],
                 [15.67648661],
                 [17.13279538],
                 [15.21456942],
                 [21.68442569],
                 [20.26501213],
                 [19.19495126],
                 [27.72143999],
                 [11.05909651],
                 [12.57151377],
                [19.81463838],
                 [23.98464085],
                 [23.05621357],
                 [12.27096675],
                 [21.61064376],
                 [24.5288527],
                 [32.00436506],
                 [18.43998163],
                 [20.94791347],
                 [24.34910395],
                 [18.60275025],
                 [40.47398918],
                 [26.00519115],
                 [23.15300185],
                 [ 7.2613484 ],
                 [30.22810362],
                [14.28719594]])
In [22]: y_1=m*30.42779184 + b
         y_1
Out[22]: array([[697.70707182]])
In [23]: from sklearn.metrics import mean_squared_error
         mse = mean_squared_error(y_test,y_pred)
Out[23]: 510.36278285590174
```

```
In [24]: plt.scatter(x,y)
plt.plot(x_test,y_pred,color = 'red')
Out[24]: [<matplotlib.lines.Line2D at 0x2297c650f40>]

In []:
In []:
In []:
```