

TLV379, TLV2379, TLV4379

SBOS785B - APRIL 2016-REVISED AUGUST 2017

TLVx379

Cost-Optimized, Low-Voltage, 4-µA, Rail-to-Rail I/O Operational Amplifiers

Features

- Cost-Optimized Precision Amplifiers
- microPower: 4 μA (Typical)
- Low Offset Voltage: 0.8 mV (Typical)
- Rail-to-Rail Input and Output
- Unity-Gain Stable
- Wide Supply Voltage Range: 1.8 V to 5.5 V
- microSize Packages:
 - 5-Pin SC70
 - 5-Pin SOT-23
 - 8-Pin SOIC
 - 14-Pin TSSOP

Applications

- **Power Banks**
- Solar Inverters
- Low-Power Motor Controls
- **Battery-Powered Instruments**
- Portable Devices
- Medical Instruments
- Handheld Test Equipment

3 Description

The TLV379 family of single, dual, and quad operational amplifiers represents a cost-optimized generation of low-voltage and micropower amplifiers. Operating on a supply voltage as low as 1.8 V (±0.9 V) and consuming extremely low quiescent current of 4 µA per channel, these amplifiers are wellsuited for power-sensitive applications. In addition, the rail-to-rail input and output capability allows the TLV379 family to be used in virtually any singlesupply application.

The TLV379 (single) is available in 5-pin SC70 and SOT23, and 8-pin SOIC packages. The TLV2379 (dual) comes in an 8-pin SOIC package. The TLV4379 (quad) is offered in a 14-pin TSSOP package. All versions are specified from -40°C to +125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SC70 (5)	2.00 mm x 1.25 mm
TLV379	SOT-23 (5)	2.90 mm × 1.60 mm
	SOIC (8)	4.90 mm × 3.91 mm
TLV2379	SOIC (8)	4.90 mm × 3.91 mm
TLV4379	TSSOP (14)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TLV379 in a Battery-Monitoring Application

Table of Contents

1	Features 1		8.4 Device Functional Modes	13
2	Applications 1	9	Application and Implementation	14
3	Description 1		9.1 Application Information	14
4	Revision History2		9.2 Typical Application	14
5	Device Comparison Table 3		9.3 System Examples	15
6	Pin Configuration and Functions	10	Power Supply Recommendations	17
7	Specifications		10.1 Input and ESD Protection	17
•	7.1 Absolute Maximum Ratings	11	Layout	18
	7.2 ESD Ratings		11.1 Layout Guidelines	18
	7.3 Recommended Operating Conditions		11.2 Layout Example	18
	7.4 Thermal Information: TLV379	12	Device and Documentation Support	19
	7.5 Thermal Information: TLV2379		12.1 Documentation Support	19
	7.6 Thermal Information: TLV4379		12.2 Related Links	19
	7.7 Electrical Characteristics: V _S = 1.8 V to 5.5 V 8		12.3 Receiving Notification of Documentation Update	es 19
	7.8 Typical Characteristics9		12.4 Community Resources	19
8	Detailed Description 12		12.5 Trademarks	19
·	8.1 Overview		12.6 Electrostatic Discharge Caution	19
	8.2 Functional Block Diagram		12.7 Glossary	19
	8.3 Feature Description	13	Mechanical, Packaging, and Orderable Information	20
			IIIOI IIIauoii	20

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (September 2016) to Revision B	
Added underscores to pin names in Pin Functions tables to match connection diagrams	4
Changes from Original (April 2016) to Revision A	Page
Changed DBV pinout	3

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

5 Device Comparison Table

FEATURES	PRODUCT
1 $\mu\text{A},70$ kHz, 2-mV $V_{\text{OS}},1.8\text{-V}$ to 5.5-V supply	OPAx349
1 μ A, 5.5 kHz, 390- μ V V _{OS} , 2.5-V to 16-V supply	TLV240x
1 $\mu\text{A},5.5\text{ kHz},0.6\text{-mV}$ V $_{\text{OS}},2.5\text{-V}$ to 12-V supply	TLV224x
$7~\mu\text{A},160~\text{kHz},0.5\text{-mV}~\text{V}_{\text{OS}},2.7\text{-V}$ to 16-V supply	TLV27Lx
$7~\mu\text{A},~160~\text{kHz},~0.5\text{-mV}~\text{V}_{\text{OS}},~2.7\text{-V}$ to 16-V supply	TLV238x
$20~\mu\text{A},350~\text{kHz},2\text{-mV}~\text{V}_{\text{OS}},2.3\text{-V}~\text{to}~5.5\text{-V}~\text{supply}$	OPAx347
$20~\mu\text{A},500~\text{kHz},550\text{-}\mu\text{V V}_{\text{OS}},1.8\text{-V}$ to 3.6-V supply	TLV276x
45 μ A, 1 MHz, 1-mV V _{OS} , 2.1-V to 5.5-V supply	OPAx348

6 Pin Configuration and Functions

Pin Functions: TLV379

NO.			1/0	DESCRIPTION	
NAME	NAME DCK DBV D		DESCRIPTION		
-IN	3	4	2	I	Negative (inverting) input
+IN	1	3	3	I	Positive (noninverting) input
NC	_	_	1, 5, 8	_	No internal connection (can be left floating)
OUT	4	1	6	0	Output
V-	2	2	4	_	Negative (lowest) power supply
V+	5	5	7	_	Positive (highest) power supply

Copyright © 2016–2017, Texas Instruments Incorporated

Product Folder Links: *TLV379 TLV2379 TLV4379*

Pin Functions: TLV2379

NAME	NO.	1/0	DESCRIPTION
-IN_A	2	I	Inverting input, channel A
+IN_A	3	I	Noninverting input, channel A
-IN_B	6	I	Inverting input, channel B
+IN_B	5	I	Noninverting input, channel B
OUT_A	1	0	Output, channel A
OUT_B	7	0	Output, channel B
V-	4	_	Negative (lowest) power supply
V+	8	_	Positive (highest) power supply

Pin Functions: TLV4379

NAME	NO.	1/0	DESCRIPTION
	-		
-IN_A	2	I	Inverting input, channel A
+IN_A	3	I	Noninverting input, channel A
-IN_B	6	I	Inverting input, channel B
+IN_B	5	I	Noninverting input, channel B
-IN_C	9	I	Inverting input, channel C
+IN_C	10	I	Noninverting input, channel C
-IN_D	13	1	Inverting input, channel D
+IN_D	12	I	Noninverting input, channel D
OUT_A	1	0	Output, channel A
OUT_B	7	0	Output, channel B
OUT_C	8	0	Output, channel C
OUT_D	14	0	Output, channel D
V-	11	_	Negative (lowest) power supply
V+	4	_	Positive (highest) power supply

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Voltage	Supply, $V_S = (V+) - (V-)$		7	V
	Signal input pin (2)	(V-) - 0.5	(V+) + 0.5	V
Current	Signal input pin (2)		±10	mA
	Output short-circuit (3)	Continuous		
Temperature	Operating, T _A	-40	125	
	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
M. Flacture de Carlo di Carlo de Carlo	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _S S	Cumply valtage	Single supply	1.8	5.5	
	Supply voltage	Dual supply	±0.9	±2.75	V
T _A	Operating temperature		-40	125	°C

⁽²⁾ Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be current-limited to 10 mA or less.

⁽³⁾ Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information: TLV379

	THERMAL METRIC ⁽¹⁾	DCK (SC70)	DBV (SOT23)	D (SOIC)	UNIT
		5 PINS	5 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	262.2	220.8	130.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	99.7	148.3	77.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	49.0	48.2	71.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	3.3	28.6	30.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	18.2	47.3	70.6	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: TLV2379

		TLV2379	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	116.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	59.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	57.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	17.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	57.0	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Thermal Information: TLV4379

		TLV4379	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	110.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	35.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	53.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	52.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TLV379 TLV2379 TLV4379

7.7 Electrical Characteristics: $V_S = 1.8 \text{ V to } 5.5 \text{ V}$

at T_A = 25°C, R_L = 25 k Ω connected to V_S / 2, and V_{CM} < (V+) – 1 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET V	OLTAGE					
Vos	Input offset voltage	V _S = 5 V		0.8	2.5	mV
dV _{OS} /dT	V _{OS} drift	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		3		μV/°C
PSRR	Power-supply rejection ratio		92	104		dB
INPUT VOI	LTAGE RANGE	,			•	
V _{CM}	Common-mode voltage range		(V-) - 0.1		(V+) + 0.1	V
		$(V-) < V_{CM} < (V+) - 1 V$	85	100		
CMRR	Common-mode rejection ratio ⁽¹⁾	$T_A = -40$ °C to +125°C, (V-) < V_{CM} < (V+) - 1 V	62			dB
INPUT BIA	S CURRENT					
I _{IB}	Input bias current	$V_{S} = 5 \text{ V}, V_{CM} \le V_{S} / 2$		±5		pA
I _{IO}	Input offset current	V _S = 5 V		±5		pA
INPUT IMP	PEDANCE					
	Differential			10 ¹³ 3		Ω pF
	Common-mode			10 ¹³ 6		Ω pF
NOISE					ļ	
	Input voltage noise	f = 0.1 Hz to 10 Hz		2.8		μV _{PP}
e _n	Input voltage noise density	f = 1 kHz		83		nV/√ Hz
OPEN-LOC		L	l .			
A _{OL}	Open-loop voltage gain	$V_S = 5 \text{ V}, R_L = 5 \text{ k}\Omega,$ 500 mV < V_O < (V+) - 500 mV	90	110		dB
OUTPUT			1			
		$R_L = 5 \text{ k}\Omega$		25	50	mV
	Voltage output swing from rail	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, R_L = 5 \text{ k}\Omega$				
I _{SC}	Short-circuit current			±5		mA
C _{LOAD}	Capacitive load drive		See Capacitive L	oad and Stab	ility section	
R _{OUT}	Closed-loop output impedance	G = 1, f = 1 kHz, I _O = 0		10	-	Ω
Ro	Open-loop output impedance	f = 100 kHz, I _O = 0		28		kΩ
FREQUEN	CY RESPONSE (C _{LOAD} = 30 pF)		l l			
GBW	Gain bandwidth product			90		kHz
SR	Slew rate	G = 1		0.03		V/μs
	Overload recovery time	V _{IN} × Gain > V _S		25		μS
t _{ON}	Turn-on time			1		ms
POWER SI	UPPLY					
V _S	Specified, operating voltage range		1.8		5.5	V
I _O	Quiescent current per amplifier	V _S = 5 V, T _A = -40°C to +125°C		4	12	μА
TEMPERA		, , , , , , , , , , , , , , , , , , ,				
T _A	Specified, operating range		-40		125	°C
T _{stq}	Storage range		-65		150	°C
ary					.00	

⁽¹⁾ See typical characteristic graph, Common-Mode Rejection Ratio vs Frequency (Figure 2).

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

7.8 Typical Characteristics

at T_A = 25°C, V_S = 5 V, and R_L = 25 k Ω connected to V_S / 2 (unless otherwise noted)

Figure 5. Short-Circuit Current vs Supply Voltage

Figure 6. Offset Voltage Production Distribution

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at T_A = 25°C, V_S = 5 V, and R_L = 25 k Ω connected to V_S / 2 (unless otherwise noted)

Submit Documentation Feedback

Figure 11. Small-Signal Overshoot vs Capacitive Load

Copyright © 2016–2017, Texas Instruments Incorporated

Figure 12. Small-Signal Step Response

Typical Characteristics (continued)

at T_A = 25°C, V_S = 5 V, and R_L = 25 k Ω connected to V_S / 2 (unless otherwise noted)

8 Detailed Description

8.1 Overview

The TLV379 devices are a family of micropower, low-voltage, rail-to-rail input and output operational amplifiers designed for battery-powered applications. This family of amplifiers features impressive bandwidth (90 kHz), low bias current (5 pA), low noise (83 nV/ $\sqrt{\text{Hz}}$), and consumes very low quiescent current of only 12 μ A (maximum) per channel.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Operating Voltage

The TLV379 series is fully specified and tested from 1.8 V to 5.5 V (± 0.9 V to ± 2.75 V). Parameters that vary with supply voltage are illustrated in the *Typical Characteristics* section.

8.3.2 Rail-to-Rail Input

The input common-mode voltage range of the TLV379 family typically extends 100 mV beyond each supply rail. This rail-to-rail input is achieved using a complementary input stage. CMRR is specified from the negative rail to 1 V below the positive rail. Between (V+) - 1 V and (V+) + 0.1 V, the amplifier operates with higher offset voltage because of the transition region of the input stage. See the typical characteristic graph, *Offset Voltage vs Common-Mode Voltage vs Temperature* (Figure 7).

Feature Description (continued)

8.3.3 Rail-to-Rail Output

Designed as a micropower, low-noise operational amplifier, the TLV379 delivers a robust output drive capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing capability. For resistive loads up to 25 k Ω , the output typically swings to within 5 mV of either supply rail, regardless of the power-supply voltage applied.

8.3.4 Capacitive Load and Stability

Follower configurations with load capacitance in excess of 30 pF can produce extra overshoot (see the typical characteristic graph, *Small-Signal Overshoot vs Capacitive Load*, Figure 11) and ringing in the output signal. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads. In unity-gain configurations, capacitive load drive can be improved by inserting a small (10 Ω to 20 Ω) resistor, R_S, in series with the output as shown in Figure 14. This resistor significantly reduces ringing and maintains direct current (dc) performance for purely capacitive loads. However, if a resistive load is in parallel with the capacitive load, a voltage divider is created, introducing a dc error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio of R_S / R_L and is generally negligible.

Figure 14. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive

In unity-gain inverter configuration, phase margin can be reduced by the reaction between the capacitance at the operational amplifier (op amp) input and the gain-setting resistors. Best performance is achieved by using smaller-value resistors. However, when large-value resistors cannot be avoided, a small (4 pF to 6 pF) capacitor (C_{FB}) can be inserted in the feedback, as shown in Figure 15. This configuration significantly reduces overshoot by compensating the effect of capacitance (C_{IN}) that includes the amplifier input capacitance (3 pF) and printed circuit board (PCB) parasitic capacitance.

Figure 15. Improving Stability for Large R_F and R_{IN}

8.4 Device Functional Modes

The TLV379 family has a single functional mode. These devices are powered on as long as the power-supply voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).

Copyright © 2016–2017, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

When designing for ultra-low power, choose system components carefully. To minimize current consumption, select large-value resistors. Any resistors can react with stray capacitance in the circuit and the input capacitance of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. Use of a feedback capacitor assures stability and limits overshoot or gain peaking.

9.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 16. An inverting amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the same magnitude. In the same manner, the amplifier also makes negative input voltages positive on the output. In addition, amplification can be added by selecting the input resistor R_I and the feedback resistor R_F.

Figure 16. Application Schematic

9.2.1 Design Requirements

The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The limits of the input common-mode range (V_{CM}) and the output voltage swing to the rails (V_O) must also be considered. For instance, this application scales a signal of ± 0.5 V (1 V) to ± 1.8 V (3.6 V). Setting the supply at ± 2.5 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{V} = \frac{V_{OUT}}{V_{IN}} \tag{1}$$

$$A_{V} = \frac{1.8}{-0.5} = -3.6 \tag{2}$$

Typical Application (continued)

When the desired gain is determined, choose a value for R_I or R_F . Choosing a value in the kilohm range is desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This milliamp current range ensures the device does not draw too much current. The trade-off is that very large resistors (100s of kilohms) draw the smallest current but generate the highest noise. Very small resistors (100s of ohms) generate low noise but draw high current. This example uses 10 k Ω for R_I , meaning 36 k Ω is used for R_F . These values are determined by Equation 3:

$$A_{V} = -\frac{R_{F}}{R_{I}} \tag{3}$$

9.2.3 Application Curve

Figure 17. Inverting Amplifier Input and Output

9.3 System Examples

Figure 18 shows the basic configuration for a bridge amplifier using the TLV379.

Figure 18. Single Op Amp Bridge Amplifier

Copyright © 2016–2017, Texas Instruments Incorporated

System Examples (continued)

Figure 19 shows the TLV2379 used as a window comparator. The threshold limits are set by V_H and V_L , with $V_H > V_L$. When $V_{IN} < V_H$, the output of A1 is low. When $V_{IN} > V_L$, the output of A2 is low. Therefore, both op amp outputs are at 0 V as long as V_{IN} is between V_H and V_L . This architecture results in no current flowing through either diode, Q1 in cutoff, with the base voltage at 0 V, and V_{OUT} forced high.

If V_{IN} falls below V_L , the output of A2 is high, current flows through D2, and V_{OUT} is low. Likewise, if V_{IN} rises above V_H , the output of A1 is high, current flows through D1, and V_{OUT} is low.

The window comparator threshold voltages are set using Equation 4 and Equation 5.

$$V_{H} = \frac{R_{2}}{R_{1} + R_{2}} \times V_{S}$$

$$V_{L} = \frac{R_{4}}{R_{3} + R_{4}} \times V_{S}$$
(4)

- (1) R_{IN} protects A1 and A2 from possible excess current flow.
- (2) IN4446 or equivalent diodes.
- (3) 2N2222 or equivalent NPN transistor.

Figure 19. TLV2379 as a Window Comparator

10 Power Supply Recommendations

The TLV379 family is specified for operation from 1.8 V to 5.5 V (± 0.9 V to ± 2.75 V); many specifications apply from -40° C to $\pm 125^{\circ}$ C. The *Typical Characteristics* section presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 7 V can permanently damage the device (see the *Absolute Maximum Ratings* table).

Place 0.1- μ F bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement; see the *Layout Guidelines* section.

10.1 Input and ESD Protection

The TLV379 family incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA as stated in the *Absolute Maximum Ratings* table. Figure 20 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input that must be kept to a minimum in noise-sensitive applications.

Figure 20. Input Current Protection

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the
 operational amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close as possible to the device. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most
 effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to
 ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to
 physically separate digital and analog grounds, paying attention to the flow of the ground current. For
 more detailed information, see Circuit Board Layout Techniques, SLOA089.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than crossing in parallel with the noisy trace.
- Place the external components as close as possible to the device. Keep R_F and R_G close to the inverting input in order to minimize parasitic capacitance, as shown in Figure 21.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Example

Figure 21. Operational Amplifier Board Layout for Noninverting Configuration

Figure 22. Schematic Representation of Figure 21

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

Click here

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- EMI Rejection Ratio of Operational Amplifiers (SBOA128)
- Circuit Board Layout Techniques (SLOA089)
- QFN/SON PCB Attachment (SLUA271)
- Quad Flatpack No-Lead Logic Packages (SCBA017)

Click here

Click here

Click here

12.2 Related Links

PARTS

TLV379

TLV2379

TLV4379

Table 1 lists quick access links. Categories include technical documents, support and community resources. tools and software, and quick access to sample or buy.

TECHNICAL SUPPORT & TOOLS & PRODUCT FOLDER **SAMPLE & BUY DOCUMENTS SOFTWARE** COMMUNITY Click here Click here

Click here

Click here

Table 1. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

Click here

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Electrostatic Discharge Caution

Copyright © 2016-2017, Texas Instruments Incorporated

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV2379IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	V2379	Samples
TLV379IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12N	Samples
TLV379IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12N	Samples
TLV379IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	120	Samples
TLV379IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	120	Samples
TLV379IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 379	Samples
TLV4379IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV4379	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Mar-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2379IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV379IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV379IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV379IDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV379IDCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV379IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV4379IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 15-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2379IDR	SOIC	D	8	2500	367.0	367.0	35.0
TLV379IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV379IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV379IDCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TLV379IDCKT	SC70	DCK	5	250	180.0	180.0	18.0
TLV379IDR	SOIC	D	8	2500	367.0	367.0	35.0
TLV4379IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.