

(MATNA1901) Lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu/

2025. február 27.

Négyzetes mátrixok determinánsa I

▶ <u>Leibnitz-féle definíció:</u> Ha az A mátrix $n \times n$ -es típusú, ahol n > 1 és $n \in \mathbb{N}$ (vagyis négyzetes), akkor az A mátrix determinánsa alatt a következő számot értjük:

$$\det(A) = \sum_{\{i_1, i_2, \dots, i_n\} \in P_n} (-1)^{I(i_1, i_2, \dots, i_n)} \alpha_{1i_1} \cdot \alpha_{2i_2} \cdot \dots \cdot \alpha_{ni_n},$$

ahol az összegzés az $1, 2, \ldots, n$ számok összes permutációjára történik, és $I(i_1, i_2, \ldots, i_n)$ jelöli az (i_1, i_2, \ldots, i_n) permutációban lévő inverziók számát. Jelölése:

$$\det(A), \begin{vmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{vmatrix}, \quad |A|.$$

Négyzetes mátrixok determinánsa II

- A determináns az egy nézetes mátrixhoz rendelt szám, amelynek a tulajdonságait a mátrix határozza meg. Valójában a vegyes szorzat kiterjesztése magasabb dimenziókra. Multivektorok pszeudoskalár komponense, amely megadja az elemi térfogatok nagyságát.
- Axiomatikus definíció: Legyen $\mathbf{A} \in \mathbb{R}^{n \times n}$ négyzetes mátrix és det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény. Ezt a det (\mathbf{A}) függvényt az $\mathbf{A}^{n \times n}$ mátrix determinánsának hívjuk, ha
 - 1. Homogén: $\det(\ldots \lambda_i \mathbf{a}_i \ldots) = \lambda_i \det(\ldots \mathbf{a}_i \ldots)$;
 - 2. Additív $\det(\ldots \mathbf{a}_i + \mathbf{b}_i \ldots) = \det(\ldots \mathbf{a}_i \ldots) + \det(\ldots \mathbf{b}_i \ldots);$
 - 3. Alternáló: $\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_j \ldots) = -\det(\ldots \mathbf{a}_j \ldots \mathbf{a}_i \ldots);$
 - 4. Az egységmátrix determinánsa 1: $\det(\mathbf{E}_n) = 1$,
 - ahol $\lambda_i \in \mathbb{R}$ és $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$ a $\mathbf{A}^{n \times n}$ mátrix oszlop vektorai.
- Ezt a leképezést egy n változós függvénynek tekinthetjük a mátrix oszlopai felett: $\mathbb{R}^n \to \mathbb{R}$.

Négyzetes mátrixok determinánsa III

- Ezek az axiómák egyértelműen meghatározzák a leképezést. Egy másik $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény ezekkel a tulajdonságokkal azonos a det-tel.
- Másképpen, a mátrix egyértelműen hozzá lehet rendelni egy értéket ezekkel a szabályokkal.
- ▶ Ha $\mathbf{A} \in \mathbb{R}^{n \times n}$, akkor a determináns n^{th} -ed rendű.
- A determináns egy funkcionál. Ez egy olyan leképezés, amely skalárt rendel egy függvényhez.

Mátrix inverze I

Definíció: Az n-ed rendű egységmátrix:

$$E_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

▲ Állítás: Bármely $A \in \mathcal{M}_{n \times n}$ esetén teljesül: $A \cdot E_n = E_n \cdot A = A$, azaz E_n egységelem az $n \times n$ -es négyzetes mátrixok körében a mátrixszorzásra nézve. Bizonyítás: Legyen $A = (\alpha_{ij})_{n \times n}$ és $E_n = (\beta_{ij})_{n \times n}$ két mátrix, ahol $\beta_{ij} = 1$, ha i = j, különben nulla. Az A és E_n mátrixok szorzata a $A \cdot E_n = (\sum_{l=1}^n \alpha_{il}\beta_{lj})_{n \times n}$ mátrix. Ez pedig pontosan az $A = (\alpha_{ij})_{n \times n}$ mátrix, mert b_{ij} definiciója miatt lenulláza az összeg minden olyan tagját, ami nem α_{ij} .

Mátrix inverze II

- Definíció: Az $A \in \mathcal{M}_{n \times n}$ (négyzetes) mátrixnak létezik inverze, ha van olyan $B \in \mathcal{M}_{n \times n}$, hogy $AB = BA = E_n$. Az A mátrix inverzét A^{-1} -gyel jelöljük.
- $ightharpoonup rac{ ext{Allítás:}}{ ext{Az } A \in \mathcal{M}_{n \times n}}$ mátrixnak pontosan akkor létezik inverze, ha det $(A) \neq 0$.
- ▶ $A \in \mathcal{M}_{n \times n}$ mátrixot regulárisnak nevezzük, ha det $(A) \neq 0$.
- $ightharpoonup A \in \mathcal{M}_{n \times n}$ mátrixot szingulárisnak nevezzük, ha det (A) = 0.
- Az inverz mátrix kiszámítható elemi átalakítással
 - Sor szorzása $\lambda \neq 0$ számmal.
 - Egy sor λ-szorosának hozzáadása egy másik sorhoz.
 - Sorok cseréje.

Ha A egy reguláris mátrix, akkor az $(A|E_n)$ kibővített mátrix soraival végzett elemi átalakítások útján $(E_n|B)$ alakúra hozható, ahol B az A inverze.

Szinguláris mátrix esetén az átalakítás nem végezhető el.

Mátrix inverze III

- Az inverz mátrix kiszámítása algebrai aldeterminánssal
 - Kiszámítjuk a mátrix determinánsát. Ha ez nem nulla, akkor létezik inverz mátrix.
 - Minden elemhez felírva a hozzá tartozó algebrai aldeterminánst, A_{ij} -t, majd az a kapott mátrixot transzponálva és elosztva det (A)-val, megkapjuk az A mátrix inverzét:

$$\left(A^{-1}\right)_{ij} = \frac{A_{ij}}{\det\left(A\right)}.$$

(Az A mátrix α_{ij} eleméhez tartozó algebrai aldeterminánsa: $A_{ij}=(-1)^{i+j}D_{ij}$, ahol D_{ij} az α_{ij} elemet tartalmazó sor és oszlop elhagyásával keletkező $(n-1)\times (n-1)$ -es mátrix determinánsa.)

Mátrix inverze IV

- ightharpoonup Állítás: Legyen $A, B \in \mathcal{M}_{n \times n}$.
 - 1. Ha A és B invertálható, akkor AB is és $(AB)^{-1} = B^{-1}A^{-1}$.
 - 2. $(AB)^{T} = B^{T}A^{T}$
 - 3. A invertálható, akkor A^T is és $(A^T)^{-1} = (A^{-1})^T$.

Lineáris kombináció, lineáris egyenletrendszerek I

▶ <u>Definíció:</u> Legyen $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in V^3$ és $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$. Az $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ vektorok $\lambda_1, \lambda_2, \dots, \lambda_n$ együtthatókkal vett lineáris kombinációja:

$$\lambda_1 \mathbf{a}_1 + \lambda_1 \mathbf{a}_1 + \cdots + \lambda_n \mathbf{a}_n$$
.

- <u>Definíció:</u> Egyenletek lineáris kombinációja alatt azok valamely valós együtthatókkal vett összegét értjük.
- ▶ <u>Definíció:</u> Legyenek $\alpha_{ij} \in \mathbb{R}$ és $\beta_i \in \mathbb{R}$, ahol $(1 \le i \le m, 1 \le j \le n)$ és $m, n \in \mathbb{N}^+$. Az alábbi egyenletrendszert lineáris egyenletrendszernek nevezzük:

$$\alpha_{11}x_{1} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n} = \beta_{1}
\alpha_{21}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n} = \beta_{2}
\vdots
\alpha_{m1}x_{1} + \alpha_{m2}x_{2} + \dots + \alpha_{mn}x_{n} = \beta_{m}$$

Lineáris kombináció, lineáris egyenletrendszerek II

<u>Definíció</u>: A lineáris egyenletrendszer alapmátrixa (együtthatómátrixa) alatt a következőt értjük:

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

Gauss-féle eliminációs módszer lineáris egyenletrendszerek megoldására

- <u>Definíció</u>: Két lineáris egyenletrendszer ekvivalens, ha az összes megoldásaik halmaza megegyezik.
- ► <u>Tétel</u>: Az alábbi átalakítások egy lineáris egyenletrendszert egy vele ekvivalens egyenletrendszerbe visznek át:
 - 1. Egy egyenlet szorzása $\lambda \neq 0$ -val.
 - 2. Egy egyenlet λ -szorosának hozzáadása egy másik egyenlethez, ahol $\lambda \in \mathbb{R}$.
 - 3. Olyan egyenlet elhagyása, mely a megmaradóak lineáris kombinációja
 - 4. Egyenletek sorrendjének felcserélése
 - 5. Az ismeretlenek sorrendjének felcserélése együtthatóikkal együtt.

A lineáris egyenletrendszer Gauss eliminációval való megoldása azt jelenti, hogy a fenti átalalkításokkal trapéz alakúra hozzuk azt. (Cél: $\alpha_{ij}=0$ minden i>j esetén.)

Cramèr szabály I

▶ Ha az n egyenletből álló n ismeretlenes lineáris egyenletrendszer alapmátrixának determinánsa nem 0 ($det(A) \neq 0$), akkor a lineáris egyenletrendszer megoldható és egyetlen megoldása:

$$x_k = \frac{\Delta_k}{|A|}, (k = 1, 2, \dots, n \in \mathbb{N}^+)$$

ahol

$$\Delta_{k} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \beta_{1} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \beta_{2} & \dots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \beta_{n} & \dots & \alpha_{mn} \end{pmatrix},$$

azaz a k-adik oszlopba került a szabadtagok vektora.

Cramèr szabály II

▶ Igaz továbbá, hogy ha det(A) = 0, de $\exists k \in \{1, 2, ..., n\}$, ahol $n \in \mathbb{N}$ úgy, hogy $\Delta_k \neq 0$, akkor az egyenletrendszernek nincs megoldása, ám $det(A) = \Delta_k = 0 \ (k = 1, 2, ..., n)$ esetén lehet végtelen sok vagy 0 megoldás.

Lineáris függetlenség

lacktriangle Azt mondjuk, hogy az ${f a}_1,{f a}_2,\ldots,{f a}_n\in V^3$ vektorok lineárisan függetlenek, ha

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \cdots + \lambda_n \mathbf{a}_n = \mathbf{0},$$

ahol $(\lambda_i \in \mathbb{R}, i \in \{1, 2, \dots, n\}, n \in \mathbb{N}^+)$ csak úgy teljesülhet, ha $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$. Ellenkező esetben: ha van olyan, nem csupán 0-kból álló $\lambda_1, \lambda_2, \dots, \lambda_n$, hogy $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_n \mathbf{a}_n = \mathbf{0}$, akkor azt mondjuk, hogy az $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ vektorok lineárisan függőek. Ez utóbbi esetben valamelyik vektor előáll a többiek lineáris kombinációjaként.

Vége

Köszönöm a figyelmüket!