

PI49FCT3805D

3.3V, 2 x 1:5 CMOS Clock Driver

Features

- Low output skew: <270ps
- Switching frequency of 133 MHz
- Fast output rise/fall time: <1.5ns
- Low propagation delay: <3.0ns
- Low input capacitance: <6.0pF
- **Balanced CMOS outputs**
- Industrial Temperature: -40°C to +85°C
- $3.3V\pm10\%$ operation
- Packages available:
 - -20-pin 300-mil wide SOIC(S)
 - -20-pin 150-mil wide QSOP(Q)
 - -20-pin 209-mil wide SSOP(H)

Description

Pericom Semiconductor's PI49FCT series of logic circuits are produced using the Company's advanced submicron CMOS technology to achieve fast speed, low skew, fast slew rate, and low propagation delay for most computing and communication applications.

The PI49FCT3805D is composed of non-inverting drivers. The outputs are configured into 2 groups of one-in, five-out with independent output enable. Group B has an extra MON output. Excellent output signals to power and ground ratio minimize power and ground noise and also improves output performance.

Logic Block Diagram

Pin Configuration

Product Pin Description

Pin Name	Description
$\overline{OE}A, \overline{OE}B$	Hi-Z State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAN, OBN	Clock Outputs
MON	Monitor Output
GND	Ground
V _{CC}	Power

Truth Table(1)

In	puts	Outputs		
$\overline{\mathbf{OE}}$ A, $\overline{\mathbf{OE}}$ B	INA, INB	OAN, OBN MO		
L	L	L	L	
L	Н	Н	Н	
Н	L	Z	L	
Н	Н	Z	Н	

Note:

1

- 1. H=High Voltage Level
 - L=Low Voltage Level
 - Z = High Impedance

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters	Description	Test Conditions	Тур	Max.	Units
C_{IN}	Input Capacitance	V _{IN} =0V	3.0	4	nE
C _{OUT}	Output Capacitance	V _{OUT} =0V		6	pF

Note:

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to+150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)0.5Vto+7.0V
Supply Voltage to Ground Potential (Outputs & I/O Only)0.5V to+V _{CC} +0.5V
DC Input Voltage0.5V to +4.6V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Range

Ambient Temperature = -40°C to +85°C, $V_{CC} = 3.3 V \pm 0.3 V$

DC Electrical Characteristics (Over the Operating Range)

Symbol	Description	Test Condition	$s^{(1)}$	Min.	Typ. ⁽²⁾	Max.	Units
V _{OH}	Output high voltage $V_{CC} = Min$. $V_{IN} = V_{IL}$ or V_{IH}	$I_{OH} = -0.1 \text{mA}$ $I_{OH} = -8 \text{mA}$ $I_{OH} = -12 \text{mA}$		V _{CC} -0.2 2.4 ⁽³⁾ 2.4 ⁽³⁾	3.0 3.0	_ _ _	
Vol	$\begin{aligned} & \text{Output low voltage} \\ & V_{CC} = \text{Min.} \\ & V_{IN} = V_{IL} \text{ or } V_{IH} \end{aligned}$	$I_{OH} = 0.1 \text{mA}$ $I_{OH} = 8 \text{mA}$ $I_{OH} = 12 \text{mA}$		- - -	0.2 0.3	0.2 0.4 0.4	V
V _{IH}	Input high voltage	LOW logic		2.0	_	5.5	
V _{IL}	Input low voltage	HIGH logic		-0.5	_	0.8	
I_{IH}	Input high current	$V_{CC} = Max., V_{IN} = V_{CC}$		_	_	1	
I_{IL}	Input low current	$V_{CC} = Max., V_{IN} = GND$		_	_	-1	μΑ
I _{OZH} I _{OZL}	High impedance output current	$V_{CC} = Max$, all $V_{OUT} = V_{CC}$ outputs disabled $V_{OUT} = GND$		_	_	1 -1	
V_{IK}	Clamp diode voltage	$V_{\rm CC}=Min.,~I_{\rm IN}=-18mA$		_	-0.7	-1.2	V
Іон	Output HIGH ⁽⁴⁾ current	$V_{OUT} = 1.5V$, $V_{IN} = V_{IL}$ or V_{IH} , $V_{CC} = 0V$		-45	-74	-180	
IoL	Output LOW ⁽⁴⁾ current	$V_{\rm OUT}$ = 1.5V, $V_{\rm IN}$ = $V_{\rm IL}$ or $V_{\rm IH}$, $V_{\rm CC}$ = 0V		50	90	200	mA
Ios	Short circuit ⁽⁵⁾ current	$V_{CC} = Max.$		-60	-135	-240	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. $V_{OH} = V_{CC} 0.6V$ at rated current.
- 4. This parameter is determined by device characterization but is not production tested.
- 5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

^{1.} This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions	Test Conditions ⁽¹⁾		Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	V _{CC} =Max.	V_{IN} =GND or V_{CC}	_	0.1	30	μА
ΔI_{CC}	Supply Current per Inputs @ TTL HIGH	V _{CC} =Max.	$V_{IN} = V_{CC} - 0.6V^{(3)}$	_	110	300	μА
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} =Max., Outputs Open OEA or OEB = GND Per Output Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$	_	0.09	0.16	mA/ MHz
I_{C}		$V_{CC}=Max.,$ Outputs Open $f_{O}=10 MHz$	$V_{IN} = V_{CC}$ $V_{IN} = GND$		1.3	9.0(5)	
		50% Duty Cycle OEA or OEB = GND Mon. Outputs Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$	_	1.3	10.0(5)	mA
		$V_{CC}=Max.,$ Outputs Open $f_{O}=2.5 MHz$	V _{IN} =V _{CC} V _{IN} =GND	_	4.4	6.0(5)	
		50% Duty Cycle OEA or OEB = GND Eleven Outputs Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		4.4	7.0(5)	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = V_{CC} 0.6V$); all other inputs at V_{CC} or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
- 6. $I_{C} = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$
 - $I_{C} = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_O N_O)$
 - I_{CC} = Quiescent Current
 - ΔI_{CC} = Power Supply Current for a TTL High Input ($V_{IN} = V_{CC} 0.6V$)
 - $D_{H} \quad = Duty \; Cycle \; for \; TTL \; Inputs \; High \;$
 - N_T = Number of TTL Inputs at D_H
 - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - f_O = Output Frequency
 - N_O = Number of Outputs at f_O
 - All currents are in milliamps and all frequencies are in megahertz.

Switching Characteristics over Operating Range

Symbol	Description	Condition	Max. ⁽²⁾	Units
t _{PLH} t _{PHL}	Propagation Delay A to Bn	Reference Voltage = 1.5V	3.0	
t _{R/} t _F	Rise/Fall Time 0.4V to 2.4V 2.4V to 0.4V	$C_{L} = 15 pF$ $C_{L} = 15 pF$	1.5	
t _{SK(p)}	Pulse Skew	Reference 1.5V	0.27	ns
t _{SK(o)}	Output Skew	Reference 1.5V	0.27	
t _{SK(t)}	Package Skew	Reference 1.5V	0.55	
$t_{ZL}, t_{ZH,}$ t_{LZ}, t_{HZ}	Enable/Disable Time		5.2	
F _{MAX}	Input Frequency		133	MHz

Note:

- 1. Lumped load, $C_L = 15pF$
- 2. These parameters are guaranteed by design
- 3. Series Resistor loading = 33ohms (See Test Circuit)

Switch Position

Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND
All Other Inputs	Open

Definitions:

 $\mathbf{C}_L = \text{Load capacitance: includes jig and probe capacitance.}$ $\mathbf{R}_T = \text{Termination resistance: should be equal to Zout of the Pulse}$ Generator.

Tests Circuit for 133 MHz

Enable/Disable Time Test Set-Up

Switching Waveforms

Propagation Delay

Enable and Disable Times

Package Skew - tsk(t)

 $tSK(t) = | \ tPLH2 - tPLH1 \ | \ or \ | \ tPHL2 - tPHL1 \ |$

Output Skew-tsk(o)

tSK(o) = | tPLHy - tPLHx | or | tPHLy - tPHLx |

Pulse Skew - tsk(p)

tSK(p) = | tPHL - tPLH |

20-Pin 300-mil wide SOIC(S)

20-Pin 150-mil wide QSOP(Q)

20-Pin 209-mil wide SSOP (H)

Ordering Information

Ordering Code	Part Marking	Package Type	Rating
PI49FCT3805DH	PI49FCT3805HD	20-pin 209 mil SSOP	
PI49FCT3805DQ	PI49FCT3805QD	20-pin 150 mil QSOP	Industrial
PI49FCT3805DS	PI49FCT3805SD	20-pin 300 mil SSIC	

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com