

Week 44: Lecture 1

**Conditional multivariate Gaussian distributions** 

Geir-Arne Fuglstad

October 26, 2020

#### Information

- Minutes from reference group meeting 2 available under "course information".
- We aim to conduct a physical exam with letter grades, but faculty/NTNU will assess the infection situation in the next two weeks.
- The backup plan is a digital home exam with pass/fail.
- Physical guidance on October 27 and November 3 in R2, and November 2 in S21/Smia.
- Looking into possibility for guidance also on November 5 or 6.
- Online intro course to R available here: https://digit.ntnu.no/courses/course-v1: NTNU+IMF001+2020/course/

# Section 2.3 (Note)



# **Example 1**

$$\textbf{\textit{X}} \sim \mathcal{N}_2 \left( \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 2 \end{bmatrix} \right).$$

- a) Determine the distribution of  $X_2$ .
- b) Determine the distribution of  $\bar{X} = 0.5(X_1 + X_2)$ .

#### Theorem (Theorem 1)

Assume  ${\pmb X}\sim {\cal N}_n(\mu,\Sigma)$  and  ${\pmb L}$  is the Cholesky factor of  $\Sigma$  (i.e.,  $\Sigma={\pmb L}{\pmb L}^T).$  Then

- 1)  $\boldsymbol{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  implies  $\boldsymbol{Z} = \mathbf{L}^{-1}(\boldsymbol{X} \boldsymbol{\mu}) \sim \mathcal{N}_n(\mathbf{0}, \mathbf{I})$ .
- 2)  $\boldsymbol{Z} \sim \mathcal{N}_n(\boldsymbol{0}, \boldsymbol{I})$  implies  $\boldsymbol{X} = \boldsymbol{L}\boldsymbol{Z} + \boldsymbol{\mu} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ .

www.ntnu.no Fuglstad, G.-A., Week 44: Lecture

# Section 2.4 (Note)



#### Theorem (Theorem 2)

lf

$$\label{eq:X_A} \textit{\textbf{X}} = \left(\textit{\textbf{X}}_{\mathrm{A}}, \textit{\textbf{X}}_{\mathrm{B}}\right) \sim \mathcal{N}_{\textit{\textbf{n}}_{\mathrm{A}} + \textit{\textbf{n}}_{\mathrm{B}}} \left( \begin{bmatrix} \boldsymbol{\mu}_{\mathrm{A}} \\ \boldsymbol{\mu}_{\mathrm{B}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathrm{AA}} & \boldsymbol{\Sigma}_{\mathrm{AB}} \\ \boldsymbol{\Sigma}_{\mathrm{BA}} & \boldsymbol{\Sigma}_{\mathrm{BB}} \end{bmatrix} \right),$$

where  $\boldsymbol{X}_{\mathrm{A}}$  is  $n_{\mathrm{A}}$ -dimensional and  $\boldsymbol{X}_{\mathrm{B}}$  is  $n_{\mathrm{B}}$ -dimensional, then

$$m{\textit{X}}_{\mathrm{A}} | m{\textit{X}}_{\mathrm{B}} = m{\textit{x}}_{\mathrm{B}} \sim \mathcal{N}_{\textit{n}_{\mathrm{A}}}(m{\mu}_{\mathrm{C}}, \Sigma_{\mathrm{C}}),$$

where

$$\begin{split} \boldsymbol{\mu}_{\mathrm{C}} &= \boldsymbol{\mu}_{\mathrm{A}} + \boldsymbol{\Sigma}_{\mathrm{AB}}\boldsymbol{\Sigma}_{\mathrm{BB}}^{-1}(\boldsymbol{x}_{\mathrm{B}} - \boldsymbol{\mu}_{\mathrm{B}}) \\ \boldsymbol{\Sigma}_{\mathrm{C}} &= \boldsymbol{\Sigma}_{\mathrm{AA}} - \boldsymbol{\Sigma}_{\mathrm{AB}}\boldsymbol{\Sigma}_{\mathrm{BB}}^{-1}\boldsymbol{\Sigma}_{\mathrm{BA}}. \end{split}$$

8

### Example 2

Assume  $-1 < \rho < 1$  and  $\sigma^2 > 0$ , and let

$$(X_1, X_2, X_3) \sim \mathcal{N}_3 \left( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{bmatrix} \right).$$

Determine the distribution of  $X_1|X_3 = x_3$ .

9

### Example 3

Assume  $-1 < \rho < 1$  and  $\sigma^2 > 0$ , and let

$$(X_1, X_2, X_3) \sim \mathcal{N}_3 \left( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{bmatrix} \right).$$

Determine the distribution of  $X_1|X_2 = x_2, X_3 = x_3$ .

# Section 2.5 (Note)



# Simulation from $\mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

#### Input:

n: dimension

 $\mu$ : mean vector

Σ: covariance matrix

#### Algorithm:

1. calculate Choleksy factorization  $\Sigma = \mathbf{L}\mathbf{L}^{\mathrm{T}}$ .

2. for i = 1 ... n

3. draw  $z_i \sim \mathcal{N}(0,1)$ 

4. end

5. set  $\mathbf{x} = \mathbf{L}\mathbf{z} + \boldsymbol{\mu}$ 

**Output:**  $\boldsymbol{x}$  is a simulation from  $\mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ .

# Section 3 (Note)



#### Definition (Def. 1)

The stochastic process  $\{B(t): t \geq 0\}$  with state space  $\mathbb{R}$  is called **Brownian motion** with **variance parameter**  $\sigma^2 > 0$  if

1) 
$$B(s+t) - B(s) \sim \mathcal{N}(0, t\sigma^2)$$
 for  $s \ge 0$  and  $t > 0$ .

2) for  $0 \le t_1 < t_2 \le t_3 < t_4$ ,

$$B(t_2) - B(t_1)$$
 and  $B(t_4) - B(t_3)$ 

are independent.

3) B(0) = 0 (and the realizations are continuous).

### Example 4

We consider simulations from Brownian motions with

- 1.  $\sigma^2 = 1$  and  $t \in [0, 1]$
- 2.  $\sigma^2 = 1$  and  $t \in [0, 10]$
- 3.  $\sigma^2 = 1/10$  and  $t \in [0, 100]$
- 4.  $\sigma^2 = 1/100$  and  $t \in [0, 1000]$

### Example 5

Let  $\{B(t): t \geq 0\}$  be Brownian motion with variance parameter  $\sigma^2 > 0$ . Derive an expression for the function C(t,s) = Cov[B(t),B(s)].