Lycée Berthollet MPSI² 2023-24

Devoir numéro 5, à rendre le vendredi 20 octobre 2023

1 Fonctions trigonométriques hyperboliques

On définit la fonction cosinus hyperbolique par ch $(x) = \frac{e^x + e^{-x}}{2}$, la fonction sinus hyperbolique par sh $(x) = \frac{e^x - e^{-x}}{2}$ et la fonction tangente hyperbolique par th $= \frac{\sinh}{\cosh}$.

- 1. Donner des expressions simples des fonctions ch + sh et ch sh.
- 2. Les graphes de ch et sh admettent-ils des symétries?
- 3. Montrer que ces deux fonctions sont dérivables sur \mathbb{R} et exprimer simplement leur dérivées.
- 4. En déduire leurs variations.
- 5. Déterminer leurs limites en $\pm \infty$.
- 6. Montrer que $(\forall x \in \mathbb{R}_+, \, \operatorname{sh}(x) \leq \frac{e^x}{2} \leq \operatorname{ch}(x))$ et déterminer le comportement de ch sh au voisinage de $+\infty$.
- 7. Tracer leurs graphes dans un même repère orthonormé.
- 8. Faire une étude complète de la fonction th.

2 Trigonométrie hyperbolique

Soient a et b dans \mathbb{R} .

- 1. Exprimer à l'aide de la fonction exponentielle $\operatorname{ch} a \cdot \operatorname{ch} b$, $\operatorname{sh} a \cdot \operatorname{ch} b$ et $\operatorname{ch} a \cdot \operatorname{sh} b$, puis en déduire des expressions de $\operatorname{ch} (a+b)$ et $\operatorname{sh} (a+b)$ en fonction de $\operatorname{ch} a$, $\operatorname{sh} a$, $\operatorname{ch} b$ et $\operatorname{sh} b$.
- 2. Pour $x \in \mathbb{R}$, en déduire la valeur de $\operatorname{ch}^2(x) \operatorname{sh}^2(x)$.
- 3. Déduire de la première question une expression de th (a+b) en fonction uniquement de th (a) et th (b).
- 4. Pour $p, q \in \mathbb{R}$, exprimer sh p sh q sous la forme $2f\left(\frac{p+q}{2}\right)g\left(\frac{p-q}{2}\right)$, où f et g sont des fonctions trigonométriques hyperboliques à déterminer.

3 Fonction Argth

- 1. Montrer que la fonction th admet une fonction réciproque dérivable, qu'on notera Argth et dont on précisera l'ensemble de définition D_{Argth} .
- 2. Montrer que pour tout $x \in D_{Argth}$, $Argth'(x) = \frac{1}{1-x^2}$. Retrouver ainsi les variations de Argth et donner ses limites aux bornes de D_{Argth} .
- 3. Trouver deux réels a et b tels que, pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$,

$$\frac{1}{1 - x^2} = \frac{a}{x + 1} + \frac{b}{x - 1}.$$

- 4. On rappelle qu'une *primitive* d'une fonction f est une fonction F dérivable telle que F'=f. Trouver une primitive de $x \longmapsto \frac{1}{x+1}$ et une primitive de $x \longmapsto \frac{1}{x-1}$.
- 5. En déduire une expression de Argth à l'aide de la fonction ln.

4 Fonctions de variables complexes

On étend la fonction exponentielle en une application de $\mathbb C$ vers $\mathbb C$, qu'on note encore exp, par la formule suivante :

$$\forall z \in \mathbb{C}, \quad \exp(z) = e^{\operatorname{Re}z} (\cos(\operatorname{Im}z) + i\sin(\operatorname{Im}z)).$$

On étend ensuite ch, sh, cos et sin en des applications de $\mathbb C$ vers $\mathbb C$ par les formules suivantes, pour $z\in\mathbb C$:

$$ch(z) = \frac{exp(z) + exp(-z)}{2}, sh(z) = \frac{exp(z) - exp(-z)}{2}, cos(z) = \frac{exp(iz) + exp(-iz)}{2}, sin(z) = \frac{exp(iz) - exp(-iz)}{2i}.$$

- 1. Démontrer que, pour $a, b \in \mathbb{C}$, $\exp(a+b) = \exp(a) \exp(b)$.
- 2. Pour $z \in \mathbb{C}$, exprimer les valeurs de ch, sh, cos et sin en -z à l'aide de leurs valeurs en z.
- 3. Démontrer que les formules de la section 2 s'étendent à \mathbb{C} .
- 4. Pour $z \in \mathbb{C}$, exprimer $\cos(z)$ et $\sin(z)$ avec ch et sh, puis $\operatorname{ch}(z)$ et $\operatorname{sh}(z)$ avec cos et sin.
- 5. En déduire, pour $a, b, z, p, q \in \mathbb{C}$, des formules pour
 - (a) $\cos(a+b)$;
 - (b) $\sin(a+b)$;
 - (c) tan(a+b);
 - (d) $\cos^2(z) + \sin^2(z)$;
 - (e) $\sin(p) \sin(q)$.
- 6. Expliquer comment "déduire" toute formule de trigonométrie hyperbolique de la formule de trigonométrie classique correspondante.