Simulador de Elevador Inteligente

Este simulador de elevador inteligente foi desenvolvido para modelar o funcionamento de sistemas de transporte vertical em edifícios com múltiplos andares. A proposta é explorar heurísticas que otimizam o atendimento e os tempos de espera, utilizando uma abordagem orientada a objetos em Java.

Bruno Ibiapina e Paulo Henrique

Matéria: Estrutura de Dados

Objetivos da Apresentação

Funcionamento do Simulador

Entender a estrutura e dinâmica do sistema, incluindo a interface gráfica e os ciclos de tempo simulados.

Heurísticas Aplicadas

Analisar as regras que guiam a alocação de elevadores para chamadas, visando eficiência.

Avaliar o desempenho de cada heurística por meio de dados coletados durante as simulações.

Descrição Geral do Sistema

O sistema é orientado a objetos e implementado em Java, focado em simular edifícios com vários andares e um fluxo dinâmico de pessoas.

Utiliza ciclos de tempo simulados, em que cada ciclo representa um segundo real, para controlar as ações e eventos do sistema.

A interface gráfica é desenvolvida via Java Swing, proporcionando visualização interativa do estado dos elevadores e chamadas em tempo real.

Essa arquitetura modular favorece futuras expansões e ajustes no código.

Componentes Principais do Sistema

Simulador.java

Gerencia o tempo e coordena os eventos em cada ciclo simulado.

Predio.java

Representa o edifício com seus andares e controla as operações centrais.

CentralDeControle.java

Toma as decisões sobre quais elevadores atenderão as chamadas de forma otimizada.

Elevador.java

Responsável pelo movimento, embarque e desembarque dos passageiros.

Pessoa.java

Modelo dos usuários que geram chamadas para os elevadores.

PainelElevador.java

Interface dos botões de chamada nos andares.

HeuristicaElevador.java

Define a lógica aplicada para controlar o posicionamento e atendimento dos elevadores.

Heurísticas Implementadas

FCFS (Sem Heurística)

Atende as chamadas dos andares seguindo a ordem de chegada, sem priorizações.

Simples e direta, mas pode causar tempos de espera elevados em demanda alta.

Otimização de Tempo de Espera

Prioriza andares com maior número de chamadas para reduzir o tempo médio de espera.

Ideal para ambientes com picos intensos de passageiros.

Otimização de Consumo de Energia

Seleciona o elevador mais próximo para diminuir deslocamentos desnecessários.

Foca na eficiência energética, adequado para horários de menor movimento.

Funcionamento do Simulador

Ciclo Simulado

Cada ciclo corresponde a 1 segundo real, acionando a execução das operações do sistema.

Ações dos Elevadores

Portas abrem e fecham, passageiros embarcam e desembarcam, e o elevador avalia o próximo destino.

Central de Controle

3

Distribui as chamadas de forma otimizada, baseando-se na heurística selecionada.

Geração Dinâmica

Novas pessoas aparecem constantemente, simulando o fluxo real de usuários.

Resultados Estatísticos

Modelo	Tempo Total (s)	Pessoas	Espera (s)	Viagem (s)
FCFS (Sem Heurística)	605	100	95,83	1,69
Otimização de Tempo	468	100	97,76	2,08
Otimização de Energia	328	100	107,55	2,28

Gráficos Comparativos e Análise

FCFS

Sistema simples, mas apresenta ineficiência sob alta demanda, gerando altas esperas.

Otimização de Tempo

Reduz o tempo total especialmente em horários de pico, priorizando a redução da espera.

Otimização de Energia

Foca na eficiência energética, ideal para períodos de menor utilização e demanda.

Além disso, a arquitetura modular do sistema permite futuras melhorias, como heurísticas com aprendizado de máquina e integração com sensores para controle em tempo real.

Obrigado!