

On the Connection Between Citation-based and Topical Relevance Ranking: Results of a Pretest using iSearch

Workshop on Bibliometric-enhanced Information Retrieval Amsterdam, 2014-04-13

Zeljko Carevic and Philipp Schaer firstname.lastname@gesis.org

Motivation

- Bibliometric-enhanced Information Retrieval
 - One interpretation: Using citation data to improve retrieval
 - Could not be evaluated by IR standards up to now
 - Test collection now available: iSearch (Lykke et al. 2010)
- → Pretest of co-citation analysis using iSearch

iSearch: Possibilities

Research Questions

- 1. Is the iSearch Test-Collection suitable for Co-Citation analysis?
- 2. Can we find an overlap between documents relevant to a given topic and the results of a Co-Citation analysis to the given topic?

Co-citation analysis with iSearch

- Technically:
 - 1,6 million references with internal IDs
 - 3,4 million references without IDs (author/venue/year)
- Information coverage:
 - Sparse coverage per topic ...

Number of seed documents with at least one potential candidate per topic

Research Questions

- 1. Is the iSearch Test-Collection suitable for Co-Citation analysis?
- 2. Can we find an overlap between documents relevant to a given topic and the results of a Co-Citation analysis to the given topic?
 - 1. Due to the sparseness we could only ...

How to rank Results of a Co-Citation Analysis?

Ranking co-cited documents with TF*IDF (White 2010)

IR – TF*IDF ranking

- Starts with a query term
- tf = Term frequency in current doc
- df = Number of docs query term apears in
- TF*IDF = similarity between doc and query term

Co-Citation - TF*IDF ranking

- Start with a seed doc
- tf = Number of times a doc is co-cited
- df = Number of times a doc is cited in the corpus overall
- TF*IDF = similarity between doc and the seed

Example Result for Topic 48

Seed document: Kinetic exchange vs. Room temperature ferromagnetism in diluted magnetic semiconductors. Rated **fairly relevant** to the given Topic

ID	Field	Title	Topic/ Rating	tf	df	log_tf	log_df	tf*idf
0201012	cond- mat	Kinetic exchange vs. room tempera- ture ferromagnetism in diluted magnetic semiconductors	48/2	9	9	0.95	4.04	3.86
0309509	cond- mat	First-principles investigation of the assumptions underlying Model- Hamiltonian approaches to ferro- magnetism of 3d impurities in III-V semiconductors	31/0	2	2	0.30	4.69	1.41
0201179	cond- mat	Why ferromagnetic semiconductors?	48/1	2	3	0.30	4.52	1.36
0208596	cond- mat	Disorder effects in diluted ferromag- netic semiconductors	-/-	2	4	0.30	4.39	1.32
0208010	cond- mat	Magneto-optical study of ZnO based diluted magnetic semiconductors	48/2	2	5	0.30	4.30	1.29
0302178	cond- mat	Self-interaction effects in (Ga,Mn)As and (Ga,Mn)N	31/0	2	9	0.30	4.04	1.21
0111045	cond- mat	Mean-field approach to ferromag- netism in (III,Mn)V diluted magnetic semiconductors at low carrier densi- ties	50/1	2	10	0.3	4.0	1.20
0111314	cond- mat	Ferromagnetism in (III,Mn)V Semi- conductors	-/-	2	36	0.3	3.44	1.03

Slide 8 / 9

a	esi	S
	Leibniz	

Seed a magna

Z ₁									
	ID	Field	Title	Topic/ Rating	tf	df	log_tf	log_df	tf*idf
	0201012	cond-	Kinetic exchange vs. room tempera-	48/2	9	9	0.95	4.04	3.86
		mat	ture ferromagnetism in diluted						
		11111	magnetic semiconductors						
ł	0309509	cond-		31/0	2	2	0.30	4.69	1.41
(0309309		First-principles investigation of the	31/0	2	2	0.30	4.09	1.41
ا،		mat	assumptions underlying Model-						
Ì			Hamiltonian approaches to ferro-						
			magnetism of 3d impurities in III-V						
			semiconductors						
	0201179	cond-	Why ferromagnetic semiconductors?	48/1	2	3	0.30	4.52	1.36
		mat	, ,						
Ì	0208596	cond-	Disorder effects in diluted ferromag-	-/-	2	4	0.30	4.39	1.32
	0200370	mat	netic semiconductors	-, -	-	7	0.50	4.57	1.32
\mathbf{I}	0000010			40/0		_	0.00	4.20	1.00
	0208010	cond-	Magneto-optical study of ZnO based	48/2	2	5	0.30	4.30	1.29
		mat	diluted magnetic semiconductors						
	0302178	cond-	Self-interaction effects in	31/0	2	9	0.30	4.04	1.21
		mat	(Ga,Mn)As and (Ga,Mn)N						
	0111045	cond-	Mean-field approach to ferromag-	50/1	2	10	0.3	4.0	1.20
		mat	netism in (III.Mn)V diluted magnetic						
			semiconductors at low carrier densi-						
			ties						
				,					
	0111314	cond-	Ferromagnetism in (III,Mn)V Semi-	-/-	2	36	0.3	3.44	1.03
		mat	conductors						

Discussion and future work

- Preliminary results of experiments using iSearch test collection.
- Using only internal reference identifiers did not retrieve a high enough number of documents.
- Expand the co-citation analysis by using:
 - Authors
 - Titles
 - Journal
 - Publication Year
- Implement citation analysis in an IR System for an evaluation of the recommended documents
- Source code available at: https://github.com/ZCarevic/iSearchCitationAnalysis

References

- [1] Buckley, C.: Why current IR engines fail. Inf. Retr. 12, 6, 652–665 (2009).
- [2] Lykke, M. et al.: Developing a Test Collection for the Evaluation of Integrated Search. In: Gurrin, C. et al. (eds.) Advances in Information Retrieval. pp. 627–630 Springer, Berlin, Heidelberg (2010).
- [3] White, H.: Some new tests of relevance theory in information science. Scientometrics. 83, 3, 653–667 (2010).