Pattern Causality in pairs trading

Relative value investing and neutrality

Разделение риска акции или портфеля акций на компонент рыночного риска и компонент специфического риска

Цель менеджеров, нейтральных к рынку акций, заключается в том, чтобы избежать любой чистой рыночной экспозиции в своем портфеле.

Продажа и покупка больше не являются последовательными независимыми действиями; они становятся связанными, а в некоторых случаях даже одновременными.

Кроме того, длинные и короткие позиции регулярно балансируются, чтобы всегда оставаться нейтральными по отношению к рынку, так что вся прибыль портфеля формируется исключительно за счет выбора акций, а не за счет рыночных условий.

dollar neutral: мы должны иметь равные долларовые инвестиции в длинные и короткие позиции, например, \$9 миллионов в длинные позиции и \$9 миллионов в короткие.

beta neutral: считается, что портфель нейтрален к рынку, если он генерирует доходность, некоррелированную с доходностью некоторого рыночного индекса. Поскольку бета рассчитывается на основе коэффициента корреляции, нулевая корреляция подразумевает нулевую бету.

Разложение риска портфеля акций

Pairs trading

Пример:

Long: EWH iShares MSCI Hong Kong ETF

Short: EWZ iShares MSCI Brazil ETF

Granger Causality test

• Пусть x, y – стационарные временные ряды.

 H_0 : x не является причиной y по Грэнджеру

 H_1 : H_0 неверна

() Определить желаемое количество лагов и построить регрессию:

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_m y_{t-m} + error_t$$

2) Аугментировать регрессию значениями лагов временного ряда x:

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_m y_{t-m} + b_p x_{t-p} + \dots + b_q x_{t-q} + error_t$$

Оставить только те лаги x_i , t-статистики которых значимы (при дополнительном условии общей значимости регрессии, проверяемой с помощью F-test). Нулевая гипотеза отвергается, если впоследствии данной процедуры не остается ни одного x_i

Алгоритм Convergent Cross Mapping (CCM)

Рассмотрим два временных ряда длины L, $\{X\} = \{X(1), X(2), ..., X(L)\}$ и $\{Y\} = \{Y(1), Y(2), ..., Y(L)\}.$

- 1) По данным т, Е сформируем матрицу эмбеддингов для ряда МХ и МҮ: $x(t) = \langle X(t), X(t-\tau), X(t-2\tau), ..., X(t-(E-1)\tau) \rangle$ для $t = 1+(E-1)\tau$ до t = L. $y(t) = \langle Y(t), Y(t-\tau), Y(t-2\tau), ..., Y(t-(E-1)\tau) \rangle$ для $t = 1+(E-1)\tau$ до t = L. Эти наборы векторов является "реконструированными многообразиями" или «shadow manifolds" МХ и МҮ соответственно.
- 2) Для каждого эмбеддинга x(t) находим его E+1 ближайших соседей в этой же матрице MX.
- 3) Сохраним все временные индексы и расстояния этих E+1 ближайших соседей для каждого x(t) (от ближайшего до самого дальнего) через t1, tE+1. Получим веса этих соседей через их экспоненциально взвешенные расстояния.
- 4) Применим эти индексы и веса от каждого эмбеддинга на МХ для определения соответствующего локально взвешенного среднего значения $\hat{Y}(t)$ МХ на МҮ.
- 5) Используем корреляцию для оценки соответствия полученного взвешенного значения $\hat{Y}(t)$ | МХ с реальным значением Y(t).

Если X и Y динамически связаны, то ближайшие соседи МХ должны определять временные индексы соответствующих ближайших соседей на МҮ. По мере увеличения L многообразие заполняется и расстояния между ближайшими соседями E+1 уменьшаются.

Алгоритм Pattern Causality (PC)

Рассмотрим два временных ряда длины L,

$${X} = {X(1), X(2), ..., X(L)}$$
 и

$$\{Y\} = \{Y(1), Y(2), ..., Y(L)\}.$$

1) По данным т, Е сформируем матрицу эмбеддингов для ряда МХ и МҮ:

$$x(t) = \langle X(t), X(t-\tau), X(t-2\tau), ..., X(t-(E-1)\tau) \rangle$$
 для $t = 1+(E-1)\tau$ до $t = L$.

$$y(t) = \langle Y(t), Y(t-\tau), Y(t-2\tau), ..., Y(t-(E-1)\tau) \rangle$$
 для $t = 1+(E-1)\tau$ до $t = L$.

Эти наборы векторов является "реконструированными многообразиями" или «shadow manifolds" MX и MY соответственно.

- 2) Для каждого эмбеддинга x(t) находим его E+1 ближайших соседей в этой же матрице MX.
- 3) Сохраним все временные индексы и расстояния этих E+1 ближайших соседей для каждого x(t) (от ближайшего до самого дальнего) через t1, tE+1. Получим веса этих соседей через их экспоненциально взвешенные расстояния.
- 4) Находим доходности внутри каждого эмбеддинга ближайших соседей для каждого эмбеддинга на МХ.
- 5) Считаем его средневзвешенную доходность на основе softmax весов и конвертируем значения доходностей в символы (-1, 0, 1)
- 6) На основе индексов и весов 4)-5) для МҮ и находим оценки доходностей и символы
- 7) Сравниваем эти символы на соответствие и помещаем их РС матрицу
- 8) Используем веса совпадений для оценки полученного значения доходностей $\hat{Y}(t)$ МХ с реальными значениеми доходностей Y(t).

Нахождение значения лага tau

Average Mutual Information (AMI)

$$I(x(t), x(t+\tau)) = \sum_{i,j} p_{ij}(\tau) \log \left(\frac{p_{ij}(\tau)}{p_i p_j}\right)$$

$$\tau_{optimal} = argminI(x(t), x(t+\tau))$$

$$\mathbf{y}(t) = (x(t), x(t+\tau), \dots, x(t+(D-1)\tau)$$

Результат работы метода AMI на аттракторе Лоренца

Average Mutual Information (AMI)

Временной ряд аттрактора Лоренца на плоскости оси X со сдвигом 40

Реконструированный аттрактор Лоренца с помощью сдвига

Deep reconstruction of strange attractors from time series

$$\mathcal{L}(X, \hat{X}, \hat{Y}) = \|X - \hat{X}\|^2 + \lambda \mathcal{L}_{FNN}(\hat{Y})$$

Фильтр Калмана (теория)

Составляется линейная модель зависимости одного инструмента от другого в момент t

 $y_t = \alpha_t + \beta_t x_t + \varepsilon_t$, (α_t, β_t) – параметры, зависящие от времени, $\varepsilon_t \sim N(0, \sigma^2)$, σ – параметр, который задается (можно оценить с помощью ЕМ до времени, с которых начитает работать алгоритм).

Предположим, что параметры $(\alpha_{t+1},\ \beta_{t+1})^T = T(\alpha_t,\ \beta_t)^T + \zeta_t$ медленно изменяются со временем с некоторыми возмущениями. Где $\zeta_t \sim N(0,\ Q),\ Q-$ матрица ковариации возмущений параметров тоже задается как параметр (можно оценить с помощью ЕМ до времени, с которых начитает работать алгоритм), а T- матрица перехода состояний (может быть как стационарной, так и динамичной).

Фильтр Калмана (алгоритм обновления параметров)

С помощью итерационного обновления и корректировки $(\alpha_{t+1},\ \beta_{t+1})^T$, с учетом свойств нормального распределения можно получить множество параметров $\{(\alpha_t,\ \beta_t)\}_{t=0}^{t=T}$.

$$\widehat{\mathbf{P}} = \mathbf{P} + \mathbf{Q}$$
 (возмущаем)
$$\mathbf{H} = (1, \ x_t)$$

$$\mathbf{K} = \widehat{\mathbf{P}}\mathbf{H}^T(\mathbf{H}\widehat{\mathbf{P}}\mathbf{H}^T + \sigma^2)^{-1} \ ($$
корректировка)
$$(\alpha_t, \ \beta_t)^T = (\alpha_{t-1}, \ \beta_{t-1})^T + \mathbf{K}(y_t - \mathbf{H}(\alpha_{t-1}, \ \beta_{t-1})^T) \ ($$
обновление параметров)
$$\mathbf{P} = (\mathbf{I} - \mathbf{K}\mathbf{H} \)\widehat{\mathbf{P}} \ ($$
обновление матрицы ковариации перехода состояний)

Фильтр Калмана (стратегии)

Рассмотрим стратегию торговли двух акций, которая была реализована с помощью фильтра Калмана.

Для периода t используется итерационное обновление Калмана для расчета коэффициента β_t . Затем рассчитывается ошибка линейной модели без коэффициента пересечения $y_{t-1} - \beta_{t-1} x_{t-1}$. Далее, стандартизируем ошибку с помощью скользящего среднего, где длинна окна взято как "half-life mean reversion" $dy(t) = (\lambda y(t-1) + \mu)dt + d\varepsilon$ (получаем Z оценку).

- Когда Z выходит за верхнюю Z оценку входа, переходим к шорт позиции. После закрываем позицию и обновляем Z как Z оценку для ухода с позиции.
- Когда Z выходит за нижнюю Z оценку для входа, открываем лонг позицию. После закрываем позицию и обновляем Z как Z оценку для ухода с позиции.

Фильтр Калмана (пример торговли)

Торговля с двух акций (пример):

Выручка с торговли ASML и TSM при коридоре (-1, 1)

Z score с торговли ASML и TSM при коридоре (-1, 1)