Новиков ДЕ

1. Перевести из 10 в 16 систему числа: 12345678, 1000000.

- о Разделим число 12345678 на группы по четыре цифры
 - **1234**
 - **5678**
- Запишем каждую группу в виде шестнадцатеричного числа:
 - **1234 = 0001**
 - 5678 = 0011
- Объединим полученные шестнадцатеричные числа: 0001 + 0011 = 00010011
- Число 12345678 в шестнадцатеричной системе будет равно 00010011.
- Повторим ту же процедуру для числа 1000000:
 - 0 1000
 - 0000
- Запишем в виде шестнадцатеричного числа:
 - o 1000 = 0001
 - \circ 0000 = 0000
- Объединим полученные шестнадцатеричные числа: 0001 + 0000 = 00010000
- Таким образом, число 1000000 в шестнадцатеричной системе будет равно 00010000.

Перевести из 16 в 10 систему числа: 12345678, 1000000

- о Разделим число 12345678 на группы по четыре цифры
- 0 1234
- 0 5678
- Запишем каждую группу в виде десятичного числа:
 - \circ 1234 = 1 * 16³ + 2 * 16² + 3 * 16¹ + 4 * 16⁰ = 4662
 - \circ 5678 = 5 * 16^3 + 6 * 16^2 + 7 * 16^1 + 8 * 16^0 = 27644
- Сложим полученные десятичные числа: 4662 + 27644 = 32306
- число 12345678 в десятичной системе будет равно **32306**.
- Для числа 1000000:
 - 0 1000
 - 0000
- Запишем каждую группу в виде десятичного числа:
 - $0 1000 = 1 * 16^3 + 0 * 16^2 + 0 * 16^1 + 0 * 16^0 = 4096$
 - $0000 = 0 * 16^3 + 0 * 16^2 + 0 * 16^1 + 0 * 16^0 = 0$
- Сложим полученные десятичные числа: 4096 + 0 = 4096
- Таким образом, число 1000000 в десятичной системе будет равно 4096.

3. (есть сгущенное молоко) &&(есть мед) && (можно есть без хлеба).

A&&B&&C

<u>4. Доказать тождества A \rightarrow B =!A||B, A \leftrightarrow B = (A && B) || (!A && !B)</u>

 $A \rightarrow B = |A||B$

Доказательство:

Пусть А и В - произвольные высказывания.

 $A \to B$ означает, что из истинности A следует истинность B.

!А означает ложность высказывания А.

В означает истинное высказывания В.

 $\|A\|B$ означает, что хотя бы одно из высказываний $\|A\|$ или B является истинным.

Тогда, если А истинно, то В также истинно, следовательно, !В ложно.

Если A ложно, то B может быть как истинным, так и ложным, следовательно, !В может быть как истинным, так и ложным.

Таким образом, в любом случае !А||В будет истинным,

$$A \leftrightarrow B = (A \&\& B) \parallel (!A \&\& !B)$$

Доказательство:

Пусть А и В - произвольные высказывания.

А ↔ В означает, что A и В одновременно истинны или одновременно ложны.

А && В означает, что оба высказывания А и В истинны.

!А && !В означает, что оба высказывания А и В ложны.

!А означает ложность высказывания А.

!В означает ложность высказывания В.

|A||B означает, что хотя бы одно из высказываний |A| или |B| является истинным.

Тогда, если А и В одновременно истинны, то !А и !В будут ложными, следовательно, (!А && !В) будет ложным.

Если А и В одновременно ложны, то !А и !В будут истинными, следовательно, (!А && !В) будет истинным.

Таким образом, в любом случае (A && B) $\|$ (!A && !B) будет истинным,

Доказать тождества $A \to B = !A \| B, A \leftrightarrow B = (A \&\& B) \| (!A \&\& !B)$

5. Не совсем понял. что надо....