ULTRA-LOW POWER 2.4GHZ WI-FI + BLUETOOTH SMART SOC

Opulinks Wireless Utilities User Guide

http://www.opulinks.com/

Copyright © 2017-2022 Opulinks. All Rights Reserved.

版本纪录

日期	版本	更新内容
2022-12-14	1.0	● 初版

TABLE OF CONTENTS

目录

1.	介绍			3
	1.1.	文档应	用范围	3
	1.2.	缩略语		3
2.				
			硬件和软件准备	
			安装 APP	
3.	OWI	J 介面 _		7
	3.1. OWU 界面介绍			7
		3.1.1.	Android	7
		3.1.2.	iOS	10
	3.2.	BLE 扫	描界面介绍	13
		3.2.1.	Android	13
		3.2.2.	iOS	17
	3.3.	OWU	功能界面介绍	20
		3.3.1.	Android	20
		3.3.2.		40

LIST OF FIGURES

图目录

Figure 1: Google Play 下载 OWU (Android)	5
Figure 2: APP Store 下载 OWU (iOS)	6
Figure 3: OWU in Android 桌面	7
Figure 4:OWU 主界面 (Android)	8
Figure 5: BLE 扫描界面 (Android)	9
Figure 6 : OWU app (iOS)	10
Figure 7: OWU 主画面 (iOS)	11
Figure 8: BLE 扫描界面 (iOS)	12
Figure 9: BLE Scan result (1)	13
Figure 10: BLE scan result (2)	14
Figure 11: BLE scan result (3)	15
Figure 12: BLE scan result (4)	16
Figure 13: BLE Scan result (iOS)	17
Figure 14: BLE 搜寻结果 (iOS)	18
Figure 15: BLE 关键字搜寻 (iOS)	19
Figure 16: OWU 功能界面	20
Figure 17: Wi-Fi 扫描结果图	21
Figure 18:輸入 desired AP 密码图	22
Figure 19:连接 AP 成功图	23
Figure 20: OTA 升级新固件界面	24
Figure 21: 新版本固件的路径	25
Figure 22: BLE OTA 升级成功	26
Figure 23: 读写 MAC 地址功能界面	27
Figure 24:烧录 Wi-Fi MAC 地址图	28
Figure 25:烧录 BLE MAC 地址图	29

LIST OF FIGURES

Figure 26 · 读取 MAC 本項图	20
Figure 26:读取 MAC 来源图	
Figure 27: 烧录 MAC 地址来源处	31
Figure 28:系統模式功能界面	32
Figure 29:初始化模式	33
Figure 30:使用者模式	34
Figure 31: 功耗测量模式	35
Figure 32 : Smart Sleep	36
Figure 33:没有 Wi-Fi 连接和 BLE 广播无法执行 Smart Sleep	37
Figure 34: Timer Sleep	38
Figure 35 : Deep Sleep	39
Figure 36:OWU 功能界面 (iOS)	40
Figure 37: AP list	41
Figure 38: AP 密码输入栏位	42
Figure 39: AP 连接成功	43
Figure 40: OTA 升级新固件界面 (iOS)	44
Figure 41: OTA 档案路径 (iOS)	45
Figure 42: OTA 成功	46
Figure 43:读取 MAC 地址	47

1. 介绍

1.1. 文档应用范围

本文档介绍了基于 OPL1000 系列/OPL2500 DEVKIT 和 依据 Quick Dev 所产出的示例固件" qd_app" · 结合 Opulinks Wireless Utilities 提供的蓝牙配网 APK 程序·如何实现蓝牙配网过程以及通过 BLE 进行空中固件升级等功能。针对用户如何在自己的应用程序中实现蓝牙配网功能也做了介绍。

1.2. 缩略语

Abbr.	Explanation	
AP	Wireless Access Point 无线访问接入点	
APK	Android Package 安卓应用程序包文件	
OWU	Opulinks Wireless Utilities	
APP	APPlication 应用程序	
APS	Application Sub-system 应用子系统,在本文中亦指 M3 MCU	
BLE	Bluetooth Low Energy 低功耗蓝牙	
DevKit	Development Kit 开发工具板	
ОТА	Over-the-Air 控制下载技术	
qd	Quick Dev	

2. 软硬体配置

2.1.1. 硬件和软件准备

硬件包括:

- OPL 系列 DEVKIT 一套
- PC 机一台,其上运行 OPL2500 Download Tool

注意: Download Tool 操作可以参考 OPL2500-patch-download-tool-user-guide

Android 手机一台或者运行 Android 系统的平板智能设备,建议系统在 6.0 以上。

软件包括:

- 根据 DEVKIT 不同·分别要下载 opl2500_a0_qd_app、opl1000_a3_qd_app 或 Opl1000_a2_qd_app
- 手机运行的 opulinks_iot_app 程序

2.1.2. 安装 APP

2.1.2.1. 安装 Android APP

- 前往 Google Play 搜寻 Opulinks wireless Utilities
- 点击 Install 按钮,进行安装 APP

如 Figure 1。

Figure 1: Google Play 下载 OWU (Android)

2.1.2.2. 安装 iOS APP

- 前往 APP store 搜寻 Opulinks wireless Utilities
- 点击
 ・进行安装 APP

如 Figure 2。

Figure 2: APP Store 下载 OWU (iOS)

3. OWU 介面

3.1. OWU 界面介绍

3.1.1. Android

OWU 在 Android 手机桌面上呈现的界面图示,如 Figure 3 红框处。

Figure 3: OWU in Android 桌面

点选 Opulinks Wireless Utilities APK 进入 OWU 主界面,如 Figure 4。

Figure 4: OWU 主界面 (Android)

点击 BLE Tool·即可进入 BLE 扫描界面·如 Figure 5。BLE 扫描界面会在 3.2.1 节详细介绍。

Figure 5: BLE 扫描界面 (Android)

3.1.2. iOS

OWU 在 iOS 手机桌面上呈现的界面图示,如 Figure 6 红框处。

Figure 6: OWU app (iOS)

点选 Opulinks Wireless Utilities APP 进入主界面,如 Figure 7。

Figure 7: OWU 主画面 (iOS)

点击 BLE Tool,即可进入 BLE 扫描界面,如 Figure 8。BLE 扫描界面会在 3.2.2 节详细介绍。

Figure 8: BLE 扫描界面 (iOS)

3.2. BLE 扫描界面介绍

3.2.1. Android

进入 BLE 扫描界面,会自动扫描环境中 BLE 广播的设备,扫描的结果如 Figure 9,OWU (Android 版本) 提供 4 个方式给使用者搜寻扫描结果:

- (1) 扫描界面:直接在扫描界面直接找到欲连接的设备
- (2) 关键字搜寻栏位:使用者输入欲连接设备的蓝牙名称或是 BLE MAC 地址,如 Figure 10
- (3) 指定蓝芽协议:点击 🥌 · 扫描界面只会显示出旺凌的设备·如 Figure 11

Figure 9: BLE Scan result (1)

Figure 10: BLE scan result (2)

Figure 11: BLE scan result (3)

Figure 12: BLE scan result (4)

依照上述的搜寻方式,使用者选取欲连接的设备,点击 · 进入 OWU 功能界面 · 3.3.1 节详细 介绍 OWU 功能界面 ·

3.2.2. iOS

进入 BLE 扫描界面,会自动扫描环境中 BLE 广播的设备,扫描的结果,如 Figure 13。

Figure 13: BLE Scan result (iOS)

OWU (iOS 版本)提供两种方式给使用者搜寻扫描结果·直接从 BLE 扫描界面搜寻欲 BLE 连接的设备·如 Figure 14;或是关键字搜寻·在搜寻栏位输入关键字(蓝牙名称)·如 Figure 15

Figure 14: BLE 搜寻结果 (iOS)

Figure 15: BLE 关键字搜寻 (iOS)

依照上述的搜寻方式,使用者选取欲连接的设备,点击 · 进入 OWU 功能界面 · 3.3.2 节详细介绍 OWU 功能界面 ·

3.3. OWU 功能界面介绍

3.3.1. Android

OWU (Android 版本)功能界面,共有 5 个功能键可以点选,参考 Table 1 与 Figure 16。

Table 1: OWU 功能界面功能键表

编号	功能键名称	功能键简介
1	BLE Disconnect	对设备蓝牙断开连结
2	Wifi Setup	蓝牙配网
3	BLE OTA	蓝牙 OTA 固件升级功能
4	Read/Write Mac	读取/烧录 BLE 或 Wi-Fi MAC 地址
5	System Mode	系統模式
6	Current Measurement	量测功耗

Figure 16: OWU 功能界面

3.3.1.1. BLE Disconnect

点击 BLE Disconnect·APP 会跟已 BLE 连接的设备断开连结·APP 页面会跳回 BLE 扫描界面·如 Figure 5。

3.3.1.2. Wifi Setup

Wifi Setup 主要是让使用者通过 BLE 来配置 WIFI AP 的 名称和密码,实现设备联网功能。点击 Wifi Setup,进入 Wi-Fi 扫描结果界面,如 Figure 17。

Figure 17: Wi-Fi 扫描结果图

在扫描到的 AP list 内选择目标 AP 并输入该 AP 的密码·如 Figure 18。

Figure 18:输入 desired AP 密码图

输入完成后 按"加入"按钮进行 Wi-Fi 连线,设备连接 AP 成功后,如 Figure 19。

Figure 19:连接 AP 成功图

3.3.1.3. BLE OTA

OTA(空中下载技术)可以帮助产品无线升级软件。OWU 支持通过蓝牙更新固件。通过 BLE 升级时,用户需要先将新版本固件下载到移动设备上(例如手机、平板电脑等)、然后通过蓝牙连接、将新版软件传送到设备上升级。

点击 BLE OTA 功能键,进入 OTA 升级新固件界面,点选 Choose OTA File,如 Figure 20。

Figure 20: OTA 升级新固件界面

使用者选取新版本固件的路径后,点选其挡案,如 Figure 21。

Figure 21:新版本固件的路径

BLE OTA 升级新版本固件成功后,会收到[OTA_END_REQ] reason: 0,如 Figure 22 蓝框处。

Figure 22: BLE OTA 升级成功

3.3.1.4. Read/Write Mac

使用者可以通过 OWU 的 Read/Write Mac 功能对已蓝牙连线的设备进行读取/烧录蓝牙与 Wi-Fi MAC 地址·在功能界面(如 Figure 16)·点击 Read/Write Mac 功能键·进入读写 MAC 地址功能界面·如 Figure 23。

Figure 23:读写 MAC 地址功能界面

读写 MAC 地址功能一共有 7 种功能,由 Table 2 所列。

Table 2:读写 MAC 地址功能键表

编号	功能键名称	功能键简介
1	WRITE WIFI MAC	烧录 Wi-Fi MAC 地址
2	WRITE BLE MAC	烧录蓝牙 MAC 地址
3	READ WIFI MAC	读取 Wi-Fi MAC 地址
4	READ BLE MAC	读取 BLE MAC 地址
5	READ MAC SRC	读取 MAC 地址来源端
6	WRITE MAC SRC	烧录 MAC 地址来源端
7	RESET	通知设备重启

WRITE WIFI MAC

使用者在读写 MAC 地址功能界面的 Input WiFi MAC 栏位输入欲设定的 Wi-Fi MAC 地址,输入完成后点击 WRITE WIFI MAC 功能键,若是想要确认是否有正确输入到设备端,点击 READ WIFI MAC 功能键,如 Figure 24。

≭101 000+11:41 **Opulinks Utilities** 12:34:56:78:90:12 WRITE WIFI MAC WRITE BLE MAC Input BLE MAC WIFI WIFI MAC Shows READ WIFI MAC BLE BLE MAC Shows MAC: Here! READ BLE MAC MAC Sourc MAC Src Shows Here! READ MAC SRC WiFi Input Wi BLE Input BL RESET log msg: -> [TO_WRITE_WIFI_MAC] *** Tx 02 06 06 00 12 34 56 78 90 12

Figure 24: 烧录 Wi-Fi MAC 地址图

WRITE BLE MAC

-> [TO_PROCESS_RX_PACKET]
[PDU_TYPE_WRITE_WIFI_MAC_RSP]
reason: 0

使用者在读写 MAC 地址功能界面的 Input BLE MAC 栏位输入欲设定的 BLE MAC 地址·输入完成后点击 WRITE BLE MAC 功能键·若是想要确认是否有正确输入到设备端·点击 READ BLE MAC 功能键·如 Figure 25。

Figure 25: 烧录 BLE MAC 地址图

READ WIFI MAC

点击 READ WIFI MAC 功能键,读取设备 Wi-Fi MAC 地址。

READ BLE MAC

点击 READ BLE MAC 功能键,读取设备 BLE MAC 地址。

READ MAC SRC

OPL 系列产品,设备的 Wi-Fi 与 BLE MAC 地址来源有两种,flash 与 OTP,点击 READ MAC SRC 功能键,MAC Source 栏位显示现在设备的 MAC 地址是从何处读取,如 Figure 26。

Figure 26: 读取 MAC 来源图

WRITE MAC SRC

在 Input WiFi MAC SRC 栏位与 Input BLE MAC SRC 栏位输入 MAC 地址来源处,0 代表来源处为 OTP,1 代表来源处为 flash,输入完成后点击 WRITE MAC SRC 功能键,可以点击 READ MAC SRC 功能键进行

Figure 27: 烧录 MAC 地址来源处

RESET

若使用者完成对 MAC 地址的设定,可以点击 RESET 功能键,让设备重新开机。

注意:建议使用,可以避免设备不预期的现象。

3.3.1.5. System Mode

使用者在 OWU 功能界面点击 System Mode 功能键,进入系統模式功能界面,如 Figure 28。

Figure 28: 系統模式功能界面

系统模式功能界面主要有两个功能键:

1. INIT MODE 功能键:设备设定为初始化模式,如 Figure 29

2. USER MODE 功能键:设备设定为使用者模式,如 Figure 30

Figure 29:初始化模式

Figure 30:使用者模式

3.3.1.6. Current Measurement

OPL1000 系列/OPL2500 芯片提供三种可配置的睡眠模式, 芯片支持的三种睡眠模式如下:

- 1. Smart Sleep
- 2. Timer Sleep
- 3. Deep Sleep

在 OWU 功能界面(Figure 16)点击 Current Measurement · 进入功耗测量界面 · 如使用者可以结合具体需求选择睡眠模式并且配置相对应的参数。

Figure 31,使用者可以结合具体需求选择睡眠模式并且配置相对应的参数。

Figure 31: 功耗测量模式

注意:要执行功耗测量功能,必须使用"OPL_DATA_CURRENT_MEASURE_ENABLED"定义为"1"构建的 QuickDev 固件示例"qd_app"。

以下将分别详述三种睡眠模式

Smart Sleep

Smart Sleep 模式下,WIFI 系统本身会自动调整两次 DTIM Beacon 间隔时间的接收长短,

关闭或开启 Wi-Fi 模块电路·达到省电效果。在时间快到达的下次 Beacon 到来前自动唤醒, 是系统时钟模块来实现。睡眠同时可以保持与路由器的 Wi-Fi 连接·并通过路由器接受来自手机或者服务器的交互信息。

功耗测量界面点选 Smart Sleep,如 Figure 32,可以配置的参数如下

- 1. DTIM Period: 跳过 DTIM 功能,设定范围为 100 至 3000 毫秒,预设值为 3000 毫秒
- 2. BleAdvOnOff:是否开启蓝牙广播
- 3. BleAdvIntv:使用者若是选择开启蓝牙广播·需要设定蓝牙广播间隔·设定范围为 20 毫秒至 1000 毫秒·预设值为 1000 毫秒

使用者配置好参数后·確認 Power Monitor 儀器正確連結後·点击下方的 Run 功能键·即可执行 Smart Sleep

Figure 32: Smart Sleep

注意:使用者若想使用 Smart Sleep 模式量测功耗,而不打开蓝牙广播,Devkit 必须先连上 Wi-Fi,否则将无法使用,如 Figure 33。

Figure 33: 没有 Wi-Fi 连接和 BLE 广播无法执行 Smart Sleep

Timer Sleep

Timer Sleep 模式下,芯片会断开所有 Wi-Fi 连接与数据连接,并且转入到 Idle 状态 (没有 WIFI 和 BLE 通信操作) ,才能进入睡眠模式,只有系统时钟模块仍然工作,负责芯片的定时唤醒。

功耗量测界面点选 Timer Sleep,如 Figure 34,可以配置的参数如下:

SleepTime: Devkit 睡眠时长, 范围为 15 毫秒到 150000 毫秒, 预设值为 10000 毫秒。

WakeupTime: Devkit 清醒时长, 范围为 0 毫秒到 1000 毫秒, 预设值为 0 毫秒

例如使用者配置 SleepTime=10000 · 以及 WakeupTime=0 · 如 Figure 34 · Devkit 将会进入睡眠 10000 毫秒后唤醒 · 立马再度进入睡眠模式 · 周而复始的进行 Timer Sleep 。

使用者配置好参数后·確認 Power Monitor 儀器正確連結後·点击下方的 Run 功能键·即可执行 Timer Sleep。

Figure 34: Timer Sleep

Deep Sleep

Deep Sleep 模式下,芯片会断开所有 Wi-Fi 连接与数据连接,并且转入到 Idle 状态(没有 WIFI 和 BLE 通信操作),才能进入睡眠模式,就连系统时钟模块都会关闭。

使用者点选 Deep Sleep,確認 Power Monitor 儀器正確連結後,点击下方的 Run 功能键,即可执行 Deep Sleep,如 Figure 35。

Figure 35: Deep Sleep

注意:使用者若执行好睡眠模式,OWU会主动跳至OWU主界面(Figure 4),若使用者欲重新操作OWU。 必须先重启 Devkit,重新执行 APP 与 Devkit 蓝牙连接。

3.3.2. iOS

OWU (iOS 版本)功能界面,共有 4 个功能键可以点选,参考 Table 3 与 Figure 36。

Table 3:OWU 功能界面功能键表

编号	功能键名称	功能键简介
1	BLE Disconnect	对设备蓝牙断开连结
2	WiFi Setup	蓝牙配网
3	BLE OTA	蓝牙 OTA 固件升级功能
4	Read MAC	读取/烧录 BLE 或 Wi-Fi MAC 地址

Figure 36: OWU 功能界面 (iOS)

3.3.2.1. BLE Disconnect

点击 BLE Disconnect·APP 会跟已 BLE 连接的设备断开连结·APP 页面会跳回 BLE 扫描界面·如 Figure 13。

3.3.2.2. WiFi Setup

Wifi Setup 主要是让使用者通过 BLE 来配置 WIFI AP 的 名称和密码·实现设备联网功能。点击 Wifi Setup·进入 Wi-Fi 扫描结果界面·如 Figure 37。

Figure 37: AP list

在扫描到的 AP list 内选择目标 AP 并输入该 AP 的密码,如 Figure 38。

Figure 38: AP 密码输入栏位

输入密码正确后点击 Join·开始进行连接 AP 动作·连接 AP 成功后·如 Figure 39。

Figure 39: AP 连接成功

3.3.2.3. BLE OTA

OTA(空中下载技术)可以帮助产品无线升级软件。OWU 支持通过蓝牙更新固件。通过 BLE 升级时,用户需要先将新版本固件下载到移动设备上(例如手机、平板电脑等)、然后通过蓝牙连接、将新版软件传送到设备上升级。

点击 BLE OTA 功能键,进入 OTA 升级新固件界面,点选 Choose OTA File,如 Figure 40。

Figure 40: OTA 升级新固件界面 (iOS)

使用者选取新版本固件的路径后,点选其档案,如 Figure 41。

Figure 41: OTA 档案路径 (iOS)

BLE OTA 升级新版本固件成功后,在 log 提示框可以看到 OTA END RESPONSE SUCCESS,如 Figure 42。

Figure 42: OTA 成功

3.3.2.4. Read MAC

点击 READ WIFI MAC 功能键,读取设备 Wi-Fi MAC 地址;点击 READ BLE MAC 功能键,读取设备 BLE MAC 地址,如 Figure 43。

Figure 43:读取 MAC 地址

CONTACT

sales@Opulinks.com

