Blatt 4

Hannah Rotgeri Lena Olbrich

1. Juni 2020

Aufgabe 1

Aufgabenteil a

Zuerst Nummierung berechnen:

$$1 = \int_{-\pi}^{\pi} N e^{-|\psi|k} d\psi = N \left(\left[\frac{1}{k} e^{\psi k} \right]_{-\pi}^{0} + \left[-\frac{1}{k} e^{-\psi k} \right]_{0}^{\pi} \right) = \frac{2}{k} (1 - e^{-\pi k}) \Leftrightarrow N = \frac{k}{2(1 - e^{-\pi k})}$$

Wurde implemetiert, aber leider nicht erfolgreich getestet

Aufgabenteil b

Kumulative Verteilung berechnen:

$$A(x) = \int_{-\pi}^{\psi} e^{-|\psi|k} d\psi = \int_{-\pi}^{0} e^{\psi k} d\psi + \int_{0}^{\psi} e^{-\psi k} d\psi$$
$$= \left[\frac{1}{k} e^{\psi k} \right]_{-\pi}^{0} + \left[-\frac{1}{k} e^{-\psi k} \right]_{0}^{\psi} = \frac{1}{k} \left(2 - e^{-\pi k} - e^{-\psi k} \right)$$

Normierte Fläche:

$$r(x) = A(x) \cdot N = \left(2 - e^{-\pi k} - e^{-\psi k}\right) \cdot \frac{1}{2(1 - e^{-\pi k})}$$

Wurde implemetiert, aber nicht erfolgreich getestet

Aufgabenteil c

Inverse berechnen:

$$\psi(r) = -\frac{1}{k}\ln(2 - 2r(1 - e^{-\pi k}) - e^{-\pi k})$$

Wurde implemetiert, aber nicht erfolgreich getestet

Abbildung 1: Ergebnis der Testdatei von Aufgabe 1

Aufgabe 2

Die graphischen Ergebisse stimmen mit der Erwartung überein. Lediglich der "Passed directions"Test wird als False ausgegenen. Einen Fehler in der Implementierung oder bei den Ergebissen haben wir aber nicht gefunden.

Abbildung 2: Ergebnis der Testdatei von Aufgabe 2