

Edificios e Instalaciones, Urbanización y Accesos

Práctica: Previsiones de Tráfico

AUTORES					
Nombre	DNI	Especialidad			
Aitor Román	49144400R	ATA			
T	Nombre	Nombre DNI			

Fecha de entrega: 04/03/2024

0. Chequeo de Seguridad.

El propósito de este trabajo es analizar el transporte aéreo en el aeropuerto de Adolfo Suarez- Madrid Barajas como caso de estudio, enfocándonos en el perfil de los pasajeros y su distribución, con el objetivo de realizar una proyección del tráfico para 10 años vista.

Para ello nos hemos basado en el mes Julio de 2008 como punta de tráfico correspondiente a dicho año, por tanto, clasificamos los datos en función de los distintos segmentos. A posteriori, calculamos PAX hora y Aeronaves hora para el día y hora de análisis. (23 Julio 9:50).

Etiquetas de fila	▼ Suma de	Mercancía Suma	de Pasajeros	Suma de Asientos	Suma de Operaciones Operadas	Suma de Transitos
⊕ D		860	118	261	2	0
23/07/2008		860	118	261	2	0
■9:50:00		860	118	261	2	0
■ NACIONAL		0	52	90	1	. 0
LLEGADA		0	52	90	1	0
■ UE SCHENG	EN	860	66	171	1	0
SALIDA		860	66	171	1	0
Total general		860	118	261	2	. 0

1. Previsiones de Tráfico a 10 años vista.

En este apartado procedemos a elaborar unas predicciones de tráfico anual considerando la renta per cápita y estableciendo constante la capacidad aeroportuaria de Madrid-Barajas.

Focalizándonos más concretamente en el segmento nacional podemos observar un decrecimiento progresivo en la tendencia de tráfico de pasajeros, contraponiéndose, por consiguiente, con el continuo crecimiento de tráfico internacional, debido a la presencia de mayor competencia en el ámbito nacional como el AVE o el coche debido a que la diferencia de tiempo y rentabilidad no es tan notable como en el segmento internacional, que además de debido a la creciente globalización y alianzas, es el método más eficiente tanto económica como temporalmente.

Para la previsión del tráfico nacional nos hemos basado en el modelo econométrico tanto mediante ajuste lineal como exponencial, extrapolándolo así hasta el año 2030. Podemos observar el notable impacto que tuvo la crisis del 2008 y de finales de 2012 afectando notablemente al desarrollo de todas las previsiones consideradas hasta la fecha (obviamos el impacto del COVID-19)

2. Determinación Dia de Diseño

Para la elección del día tipo de diseño nos hemos basado en la idea de *Busy Day* de IATA, el cual lo define como el segundo día de mayor tráfico de PAX de una semana media del mes punta. Para ello hemos identificado el día tipo de varios años recientes, extrapolando su programa de vuelos para los diversos horizontes, diferenciando así entre segmentos.

Día Tipo	781532	16354	
Segmento (i)	Fecha	Pax (PDT) i	Hora Punta
Nacional	11/7/08	66454	16:00
Internacional*	19/7/08	40169	10:00
UE Schengen	27/7/08	48435	14:00
UE No Schengen	20/7/08	11869	15:00
Schengen No UE	15/7/08	810	15:00

Por tanto, el día de diseño que mejor representa las condiciones de tráfico del segmento nacional establecemos que es el 11 de Julio.

3. PHP, AHP, Días y Horas equivalentes del Día de Diseño

Para la determinación de los días y horas equivalentes del día de tipo debemos de calcular previamente los PHP, PDT, DE y HE por segmentos, siendo:

·DE: Días Equivalentes ·HE: Horas Equivalentes

·PT: Pasajeros Totales $DE = \frac{PT}{PDT)_i}$ ·PHP: Pasajeros Hora Punta $HE = \frac{PDT)_i}{PHP)_i}$

·PDT: Pasajeros Día Tipo

Pasajeros Días Tipo (PDT) y Pasajeros Hora Punta (PHP) por segmento					
Segmento	Fecha	PDT	PHP	DE	HE
Nacional	11/07/2008	161701	5030	314	13,2115308
Internacional*	19/07/2008	142697	5497	284	7,30744042
UE Schengen	27/07/2008	162692	4205	301	11,5184304
UE No Schengen	20/07/2008	157795	1329	295	8,93077502
Schengen No UE	15/07/2008	156647	293	609	2,76450512

Una vez conocido el día tipo de cada segmento (i) hemos calculado los pasajeros totales por día, así como la hora punta de cada segmento y los pasajeros de la propia hora punta.

Día Tipo		781532	16354	
Segmento (i)	Fecha	Pax (PDT) i	Hora Punta	Suma de Pax totales (i)
Nacional	11/7/08	66454	16:00	20.857.782
Internacional*	19/7/08	40169	10:00	11.398.704
UE Schengen	27/7/08	48435	14:00	14.598.848
UE No Schengen	20/7/08	11869	15:00	3.498.260
Schengen No UE	15/7/08	810	15:00	492.900

4. Análisis Crítico de la Flota Usuaria y Prevista en el Segmento Nacional

A continuación, se realizará un simple análisis crítico de la flota actual que opera o se espera que opere en el aeropuerto de Adolfo Suárez Madrid-Barajas, particularizada para el tráfico nacional. Al tratarse de este segmento no se tendrá en tendrá en cuenta el modelo de aeronave si no que definiremos la capacidad y la eficiencia mediante el factor de ocupación y la demanda.

Sin discretizar por aeronaves, el factor de ocupación del tráfico nacional es de un 67%, valor que puede considerarse rentable para las compañías (teniendo en cuenta que no han sido eliminadas las aeronaves privadas, de mercancías y otros vuelos menores).

Para obtener valores más precisos se evaluarán los datos obtenidos del mes de julio de 2008.

Como podemos observar en la siguiente imagen:

Etiquetas de fila 🔻	Suma de Asientos	Suma de Pasajeros	Suma de Mercancía	Factor de ocupación
■NACIONAL	3151150	2134202	3480263	68%
■ COMERCIAL	3151150	2134202	3480263	68%
A319	394564	245490	131603	62%
A320	1102559	700947	1009659	64%
A321	327068	228356	491200	70%
A332	22062	17579	2439	80%
A333	6736	2934	0	44%
A343	35822	28833	795222	80%
A346	8448	6045	177540	72%
AT72	33508	18282	359865	55%
B712	61215	44949	22669	73%
B737	3654	3175	8498	87%
B738	371515	299633	27976	81%
B763	12712	10393	2262	82%
CRJ2	66710	45645	2806	68%
CRJ9	83835	52275	1918	62%
DH8C	41448	25782	677	62%
MD82	138944	96449	143710	69%
MD83	144707	99696	144510	69%
MD87	196585	141602	120195	72%
MD88	99058	66137	37514	67%
Total general	3151150	2134202	3480263	68%

Los valores de factor de ocupación de las aeronaves principales que operan vuelos nacionales y comerciales mantienen factores de ocupación entre el 55% y el 80%, lo que nos indica que la flota es suficiente para abastecer al tráfico del aeropuerto. Aunque analizando las previsiones del tráfico podemos estimar que para garantizar que no haya cuellos de botella en el futuro y se mantengan niveles satisfactorios de oferta/demanda para las compañías se debe mejorar ligeramente la flota, además de incrementar ligeramente el número de pasajeros en algunas de las aeronaves, para ello se pueden realizar más conexiones, al tratarse del aeropuerto de Madrid-Barajas, se pueden seguir estrategias HUB.

5. PHP, AHP, Días y Horas equivalentes en 10 años vista.

	PT/PDTi (DE)	PDTi/PHPi (HE)	PDT 2034	PHP 2034
NACIONAL	315	13,21	44.807	3.392
INTERNACIONAL	285	7,31	137.051	18.755
UE SCHENGEN	301	11,52	89.068	7.733
UE NO SCHENGEN	295	7.86	26.939	3.427
SCHENGEN NO UE	224	8,19	11.823	1.444

Como podemos observar la tendencia general de la reducción de tráfico aéreo nacional se hace latente en las previsiones de 2034, contrarrestándose así con el internacional, todo ello debido a la globalización y a propuestas como el cielo único, entre otras.

Esto se debe a la mayor competencia en el mercado nacional, donde opciones como el AVE o el uso del automóvil ofrecen tiempos y costos competitivos en comparación con el transporte aéreo. Por otro lado, el tráfico internacional sigue creciendo gracias a la creciente globalización, alianzas y a su eficiencia tanto en términos económicos como temporales.