Convolutional Autoencoder with gamma correction module (GAE) for automatic image colorization

course: Computer Vision 2023/24

student: Angelo Gianfelice 1851260

PROJECT PRESENTATION

Outline:

- Introduction
- Related Works
- Proposed methods
- Datasets and Metrics
- Implementation details
- Experimental results
- Conclusion and Future Works

Deep Learning Image Colorization

- Improving many computer vision tasks by augmenting feature extraction, contrast, and interpretability.
- 1. Historical and cultural restoration
- 2. Enhancing medical imaging
- 3. Object Detection & Scene Understanding (and much more ...)

Related Works

- Early Approaches
 - Levin et al. (2004): Scribble-based colorization
 - Irony et al. (2005): Image retrieval for color transfer
- CNN-Based Methods
- Zhang et al. (2016): End-to-end CNN for realistic colorization
- <u>lizuka et al</u>. (2016): Colorization with global-local image priors
- GAN-Based Colorization
- Zhang et al. (2017): User-guided GAN for interactive colorization
- Nazeri et al. (2018): Adversarial learning for vibrant colors
- Transformer & Diffusion Models
 - Kumar et al. (2021): Colorization Transformer
 - <u>Liu et al.</u> (2023): Diffusion models for semantic colorization

Proposed Architecture (GAE)

LAB Color Space

- designed to match human vision closer than rgb
- LAB color has 3 components:

$$L^* \rightarrow Lightness (0 = black, 100 = white)$$

$$\mathbf{A}^{\bigstar}$$
 \rightarrow Green–Red axis (-128 = green, 127 = red)

$$\mathbf{B}^{\star}$$
 \rightarrow Blue–Yellow axis (-128 = blue, 127 = yellow)

- color information stored in only 2 channels(ab)
- widely used in colorization tasks

Autoencoder architecture

- symmetric 10-layer convolutional autoencoder
- batch normalization after every encoder layer
- upsampling through deconvolution in decoder
- Tanh final activation function to predict a*b* channels (normalized in [-1,1])

Gamma Correction

empirically I noticed that colorized images often are very dull and unsaturated, as the model does very conservative predictions in order to minimize loss

$$X_{\text{out}} = X_{\text{in}}^{\gamma}$$

- non linear operator to enhance colorization, augmenting saturation and contrast
- **learnable** γ (initialized to 1)

Baseline

- □ Resnet-18 model as a fixed feature extractor
- Feature fed directly to decoder-only architecture
- faster training, but worst results as only the decoder part is trained for the colorization task

Dataset

small subset of the Places dataset, which contains 10 million images from diverse environments, from natural landscapes to urban settings.

- 30K image dataset divided in a 70-15-15 split
- resized images to 224x224
- data augmentation: random rotation, flipping and cropping

Evaluation Metrics

pixel-wise metrics:

<u>MSE</u>: average squared difference between corresponding pixels.

<u>PSNR</u> (Peak Signal-to-Noise Ratio): Measures image quality in decibels (dB)

$$MSE = rac{\sum_{i=1}^{n}(x_i - \widehat{x}_i)^2}{n}$$

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight)$$

perceptual metrics:

<u>SSIM</u>: measures luminance, contrast, and structure similarity.

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

 $\Delta E(76)$: measures perceptual color difference

$$\Delta E_{ab}^* = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$

Results: Baseline Comparison

model tested on **test set** (4500 images) and compared with baseline

	MSE↓	PSNR ↑	SSIM ↑	∆E ↓
baseline	0.0063	23.7471	0.9189	13.9822
GAE	0.0057	24.5263	0.9408	12.9247

The proposed architecture outperforms the baseline in every metric by a substantial margin

Results: Colorized Images

Results: Different Experiments

- model trained on more than 4000nature/landscapes images
- model trained on a 5k subset of the **CelebA** dataset

Historical photograph colorization

since there exists no ground truth, the results are very hard to judge, but promising

Conclusions and future works

Even though results cannot be comparable to the state of the art, my model is successfully able to colorize images in a **natural** and **vibrant** way, while being relatively **lightweight**. Future improvement might include:

- Increasing number of images in training data for better generalization
- Use perceptual loss for more realistic colors
- Finetune model on different datasets for different application
- Extend model in order to colorize videos

THANKS FOR THE ATTENTION!!

References

- Places: A 10 million Image Database for Scene Recognition B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017*
- Levin A., Lischinski D., Weiss Y. (2004). Colorization using optimization. In *ACM SIGGRAPH 2004 Papers* (pp. 689–694).
- Irony, R., Cohen-Or, D., & Lischinski, D. (2005). Colorization by example. Proceedings of the 16th Eurographics Conference on Rendering Techniques, 201–210. https://www.cs.tau.ac.il/~dcor/online_papers/papers/colorization05.pdf
- Zhang, R., Isola, P., & Efros, A. A. (2016). Colorful image colorization. European Conference on Computer Vision (ECCV), 649–666. https://doi.org/10.1007/978-3-319-46487-9 40
- Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2016). Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Transactions on Graphics (TOG), 35(4), 1–11. https://doi.org/10.1145/2897824.2925974
- Nazeri, K., Ng, E., & Ebrahimi, M. (2018). Image colorization using generative adversarial networks. arXiv preprint arXiv:1803.05400. https://arxiv.org/abs/1803.05400
- Zhang, R., Zhu, J. Y., Isola, P., Geng, X., Lin, A. S., Yu, T., & Efros, A. A. (2017). Real-time user-guided image colorization with learned deep priors. https://doi.org/10.48550/arXiv.1705.02999
- Kumar, M., Weissenborn, D., & Kalchbrenner, N. (2021). Colorization transformer. International Conference on Learning Representations (ICLR). https://arxiv.org/abs/2102.04432
- Liu, H., Xing, J., Xie, M., Li, C., & Wong, T.-T. (2023). Improved diffusion-based image colorization via piggybacked models. arXiv preprint arXiv:2304.11105. https://arxiv.org/abs/2304.11105