Stat
330: Homework #1

Due on January 22, 2014 at $3{:}10\mathrm{pm}$

 $Mr.\ Lanker\ Section\ A$

Josh Davis

Math and calculus review.

Part A

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Solution

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$
$$\sum_{k=1}^{5} (k-1)^2 = (1-1)^2 + (2-1)^2 + (3-1)^2 + (4-1)^2 + (5-1)^2 = 30$$

Part B

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Solution

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^4 + 3x^2 - 2) = 4x^3 + 6x$$

Part C

Find the derivative of $f(x) = 1 - e^{-\lambda x}$.

Solution

$$\frac{\mathrm{d}}{\mathrm{d}x}(1 - \mathrm{e}^{-\lambda x}) = \lambda \cdot \mathrm{e}^{-\lambda x}$$

Part D

Evaluate the integrals $\int_0^1 (1-x^2) dx$ and $\int_1^\infty \frac{1}{x^2} dx$.

$$\int_{0}^{1} (1 - x^{2}) dx = x - \frac{1}{3}x^{3} \Big|_{0}^{1} = (1 - \frac{1}{3}) - (0 - 0) = \frac{2}{3}$$

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx$$

$$= \lim_{b \to \infty} -\frac{1}{x} \Big|_{1}^{b}$$

$$= \lim_{b \to \infty} -\frac{1}{b} + \frac{1}{1}$$

Examples of sample spaces.

Part A

Driving to work and passing through 3 intersections.

Solution

$$\Omega = \{ccc, ccs, csc, css, scc, scs, ssc, sss\}$$

Part B

What is the probability that she doesn't stop?

$$\Pr(\text{no stops}) = \frac{|\{ccc\}|}{|\Omega|} = \frac{1}{8}$$

Part C

Let A be the event that the commuter stops at the first light. Let B be the event that the commuter stops at the second light.

- 1. $A = \{scc, scs, ssc, sss\}$
- 2. $B = \{csc, css, ssc, sss\}$
- 3. $\overline{B} = \{ccc, ccs, scc, scs\}$
- 4. $A \cup B = \{scc, scs, csc, css, ssc, sss\}$
- 5. $A \cap B = \{ssc, sss\}$
- 6. $A \cap \overline{B} = \{scc, scs\}$

Let G and H be disjoint events in some sample space Ω .

Part A

Describe the event $G \cup H$.

Solution

A new event that includes outcomes in G or in H.

Part B

What is $P(G \cup H)$ in terms of P(G) and P(H)?

Solution

Since G and H are disjoint, $P(G \cap H) = 0$:

$$P(G \cup H) = P(G) + P(H) - P(G \cap H)$$
$$= P(G) + P(H) - 0$$
$$= P(G) + P(H)$$

Part C

Describe the event $G \cap H$.

Solution

A new event that includes the outcomes that happen in event G and in H.

Part D

What is the probability of event $G \cap H$?

Solution

The probability of $G \cap H = 0$ because the two events are disjoint.

Venn diagrams. The grey areas indicate the solution.

Part A

 $A \cup B$

Solution

 $\underline{\underline{\mathbf{Part}}}$ B

 $\overline{A \cup B}$

Solution

 $\frac{\mathbf{Part}}{\overline{A}}$ C

$\frac{\mathbf{Part}\ \mathbf{D}}{\overline{B}}$

Solution

 $\frac{\mathbf{Part}}{\overline{A} \cap \overline{B}} \mathbf{E}$

Employees at a firm, 70% know C, 60% know Fortran and 50% know both.

Part A

Let A be the event that an employee knows C and B be the event that employee knows Fortran. Draw a Venn diagram.

Solution(Drawing)

Part B

What percentage of programmers do not know Fortran?

Solution

$$Pr(\neg B) = 1 - Pr(B) = 1 - .6 = .4$$

Part C

What percentage of programmers do not know Fortran and C?

Solution

$$\Pr(\neg(B \land C)) = 1 - \Pr(B \land C) = 1 - \Pr(B \cap C) = 1 - (.5) = .5$$

Part D

What percentage of programmers know Fortran but not C?

Solution

$$\Pr\left(\mathbf{B} \land \neg\mathbf{C}\right) = \Pr\left(B\right) - \Pr\left(\mathrm{both}\right) = .6 - .5 = .1$$

Problem 6

Total 60 students attending University. 9 were living off campus, 36 were undergrads, 3 were undergrads living off campus.

Let A be the event denoting undergraduates and B denote living off campus.

$$A = 36$$
, $B = 9$, $\overline{A} = 60 - 36 = 24$, $\overline{B} = 60 - 9 = 51$, $A \cap B = 3$

Part A

Number of students who were undergrads living on campus.

Solution

$$A \cap \overline{B} = A \setminus B = 36 - 9 + 3 = 30$$

Part B

Number of students who were graduate students living on campus.

$$\overline{A} \cap \overline{B} = \overline{A} \setminus B = 24 - 9 + 3 = 18$$