Übungsblatt 10 zur Algebra I

Abgabe bis 24. Juni 2013, 17:00 Uhr

Aufgabe 1. Weitere Anwendungen der Gradformel

a) Sei z eine algebraische Zahl und seien $x, y \in \mathbb{Q}(z)$. Zeige, dass

$$[\mathbb{Q}(z):\mathbb{Q}(x)]\cdot[\mathbb{Q}(x):\mathbb{Q}] = [\mathbb{Q}(z):\mathbb{Q}(y)]\cdot[\mathbb{Q}(y):\mathbb{Q}],$$

und gib ein Diagramm zur Veranschaulichung an.

- b) Sei a eine algebraische Zahl und $y \in \mathbb{Q}(a)$. Sei f ein normiertes Polynom mit Koeffizienten aus $\mathbb{Q}(y)$, das über $\mathbb{Q}(y)$ auch irreduzibel ist. Sei der Grad von f mindestens 2 und teilerfremd zu $\deg_{\mathbb{Q}(y)} a$. Zeige, dass keine Zahl aus $\mathbb{Q}(a)$ Nullstelle von f sein kann.
- c) Beweise oder widerlege: Sei z ein primitives Element zu algebraischen Zahlen x, y. Dann ist $\deg_{\mathbb{Q}} z$ ein Teiler von $\deg_{\mathbb{Q}} x \cdot \deg_{\mathbb{Q}} y$.

Lösung.

a) Aus der Voraussetzung folgt $\mathbb{Q}(x) \subseteq \mathbb{Q}(z)$ und $\mathbb{Q}(y) \subseteq \mathbb{Q}(z)$. Daher kann man das Diagramm

zeichnen. Die Behauptung liefert nun einfach die Gradformel, angewendet auf den linken bzw. rechten Zweig.

b) Sei $x \in \mathbb{Q}(a)$ mit f(x) = 0. Dann ist f das Minimalpolynom von x über $\mathbb{Q}(y)$, also gilt $\deg_{\mathbb{Q}(y)} x = [\mathbb{Q}(y, x) : \mathbb{Q}(y)] = \deg f$; die Situation können wir in dem Diagramm

veranschaulichen. Mit der Gradformel folgt die Beziehung

$$\deg_{\mathbb{Q}(y)} a = \left[\mathbb{Q}(a) : \mathbb{Q}(y)\right] = \left[\mathbb{Q}(a) : \mathbb{Q}(x,y)\right] \cdot \left[\mathbb{Q}(x,y) : \mathbb{Q}(y)\right] = \left[\mathbb{Q}(a) : \mathbb{Q}(x,y)\right] \cdot \deg f,$$

die wegen deg $f \geq 2$ ein Widerspruch zur Teilerfremdheitsvoraussetzung ist (sonst wäre deg f ein echter Teiler von $\deg_{\mathbb{Q}(y)} a$).

Bemerkung: Allgemein gilt für den Grad einer algebraischen Zahl wüber einer weiteren algebraischen Zahl u die Formel

$$\deg_{\mathbb{Q}(u)} w = [\mathbb{Q}(u, w) : \mathbb{Q}(u)] = \text{Grad des Minimalpolynoms von } u \text{ ""iber } \mathbb{Q}(w).$$

Nur falls $u \in \mathbb{Q}(w)$, gilt $\mathbb{Q}(u, w) = \mathbb{Q}(w)$, sodass sich dann die Formel noch ein wenig vereinfacht.

c) Das stimmt im Allgemeinen nicht: Setze $x = \sqrt[3]{2}$ und $y = \omega \cdot \sqrt[3]{2}$, wobei $\omega = \exp(2\pi i/3)$ ist. Dann gilt

$$\begin{split} \deg_{\mathbb{Q}} z &= [\mathbb{Q}(z):\mathbb{Q}] = [\mathbb{Q}(x,y):\mathbb{Q}] = [\mathbb{Q}(x,\omega):\mathbb{Q}] \\ &= [\mathbb{Q}(x,\omega):\mathbb{Q}(x)] \cdot [\mathbb{Q}(x):\mathbb{Q}] = 2 \cdot 3 = 6, \\ \deg_{\mathbb{Q}} x \cdot \deg_{\mathbb{Q}} &= 3 \cdot 3 = 9, \end{split}$$

aber 6 ist kein Teiler von 9. Dabei war der Wert des hinteren Faktors in der zweiten Zeile der Rechnung klar (Minimalpolynom ist X^3-2 nach Eisenstein), und dass der vordere Faktor gleich 2 ist, kann man wie folgt begründen: Das Polynom X^2+X+1 besitzt bekanntermaßen ω als Nullstelle und ist über $\mathbb{Q}(x) \subset \mathbb{R}$ irreduzibel, da es vom Grad 2 ist und seine Nullstellen ω und ω^2 echt komplex sind.

Bemerkung: Obige Lösung benötigt gar keine explizite Darstellung des primitiven Elements z.

Bemerkung: Eine ähnliche und richtige Behauptung ist $\deg_{\mathbb{Q}} z \leq \deg_{\mathbb{Q}} x \cdot \deg_{\mathbb{Q}} y$, denn

$$\begin{split} \deg_{\mathbb{Q}} z &= [\mathbb{Q}(x,y) : \mathbb{Q}] = [\mathbb{Q}(x,y) : \mathbb{Q}(x)] \cdot [\mathbb{Q}(x) : \mathbb{Q}] \\ &\leq [\mathbb{Q}(y) : \mathbb{Q}] \cdot [\mathbb{Q}(x) : \mathbb{Q}] = \deg_{\mathbb{Q}} y \cdot \deg_{\mathbb{Q}} x. \end{split}$$

(Wieso gilt die Abschätzung?)

Aufgabe 2. Galoissche Konjugierte

- a) Finde zwei algebraische Zahlen, die nicht zueinander galoissch konjugiert sind.
- b) Wie viele galoissch Konjugierte hat die Zahl $\sqrt[4]{3}$?
- c) Seien p und q zwei verschiedene Primzahlen. Finde alle galoissch Konjugierten von $\sqrt{p} + \sqrt{q}$.
- d) Seien x, y, z algebraische Zahlen, sodass x zu y und y zu z galoissch konjugiert ist. Zeige, dass dann auch x galoissch konjugiert zu z ist.
- e) Sei t eine algebraische Zahl. Zeige, dass die Summe von t mit all seinen galoisschen Konjugierten eine rationale Zahl ist. Wie steht es mit dem Produkt?

Lösung.

- a) Es gibt [abzählbar] unendlich viele Beispiele. Eines ist (x, y) = (0, 1) mit den Minimalpolynomen X bzw. X 1.
- b) Die Zahl $\sqrt[4]{3}$ hat insgesamt genau so viele galoissch Konjugierte, wie ihr Grad angibt. Dieser ist 4, denn das Minimalpolynom ist X^4-3 die Irreduzibilität ist wegen des Eisenstein-Kriteriums sofort klar. Explizit sind die vier galoissch Konjugierten

$$\sqrt[4]{3}$$
, $i\sqrt[4]{3}$, $-\sqrt[4]{3}$, $-i\sqrt[4]{3}$.

c) Wir suchen zunächst ein Polynom mit rationalen Koeffizienten, dass $z:=\sqrt{p}+\sqrt{q}$ als Nullstelle besitzt:

$$z = \sqrt{p} + \sqrt{q}$$

$$z^{2} = p + 2\sqrt{p}\sqrt{q} + q^{2}$$

$$\Leftrightarrow \qquad z^{2} - (p+q) = 2\sqrt{p}\sqrt{q}$$

$$\Rightarrow \qquad \left(z^{2} - (p+q)\right)^{2} = 4pq$$

$$\Leftrightarrow \qquad 0 = z^{4} - 2(p+q)^{2}z^{2} + (p-q)^{2}$$

Kandidat für's Minimalpolynom von z ist also $X^4 - 2(p+q)^2 X^2 + (p-q)^2$. Die vier Nullstellen dieses Polynoms sind

$$x_1 = \sqrt{p} + \sqrt{q}, \quad x_2 = \sqrt{p} - \sqrt{q}, \quad x_3 = -\sqrt{p} + \sqrt{q}, \quad x_4 = -\sqrt{p} - \sqrt{q};$$

wenn wir seine Irreduzibilität nachgewiesen haben, erkennen wir genau diese Zahlen als die galoissch Konjugierten von z.

Irreduzibilitätsnachweis mit dem Verfahren der Vorlesung:

- Keine der Nullstellen ist ganzzahlig (wieso?), also kann kein Linearfaktor abspalten.
- Für jede zweielementige Auswahl der Nullstellen sind stets nicht beide elementarsymmetrischen Funktionen in den Nullstellen ganzzahlig:

$$e_1(x_1, x_2) = 2\sqrt{p} \notin \mathbb{Z}$$

 $e_1(x_1, x_3) = 2\sqrt{q} \notin \mathbb{Z}$
 $e_1(x_1, x_4) = 0 \in \mathbb{Z}$, $aber e_2(x_1, x_4) = -(p + q + 2\sqrt{p}\sqrt{q}) \notin \mathbb{Z}$

• Kubische Faktoren können nicht abspalten, da die komplementären Faktoren Linearfaktoren wären.

Irreduzibilitätsnachweis mit einem Gradformelargument: Wir haben die Inklusionen $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{p}) \subseteq \mathbb{Q}(\sqrt{p}, \sqrt{q})$. Dabei gilt $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$ (klar) und $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}(\sqrt{p})] = \deg_{\mathbb{Q}(\sqrt{p})} \sqrt{q} = 2$ (zeigt man wie bei Aufgabe 5 von Blatt 9). Also folgt mit der Gradformel $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 2 \cdot 2 = 4$. Da z ein primitives Element für diese Erweiterung ist (wieso?), ist also der Grad von z über \mathbb{Q} gleich 4. Somit muss obiges Polynom irreduzibel sein – es kann kein Polynom niedrigeren Grads geben, das ebenfalls normiert ist, rationale Koeffizienten hat und z als Nullstelle besitzt.

Bemerkung: Reduktion modulo p (oder q) funktioniert nicht: Modulo p erhält man das reduzible Polynom $(X^2-q)^2$. Auch kann nicht aus der Irreduzibilität von $g(X)=X^2-2(p+q)\,X+(p-q)^2$ die des eigentlich zu untersuchenden Polynoms $g(X^2)$ gefolgert werden. Ein einfaches Gegenbeispiel, das die Unmöglichkeit eines solchen Schlusses zeigt, ist das Polynom h(X)=X-1: Dieses ist irreduzibel, aber $h(X^2)=X^2-1=(X+1)\cdot (X-1)$ ist reduzibel.

d) Variante 1 (mit Vieta): Sei $m(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ das Minimalpolynom von t und t_1, \ldots, t_n seine Nullstellen (also alle galoissch Konjugierten von t). Nach dem Vietaschen Satz gilt dann

$$(-1)^n a_0 = e_n(t_1, \dots, t_n) = t_1 \cdots t_n,$$

 $a_{n-1} = e_1(t_1, \dots, t_n) = t_1 + \dots + t_n,$

also sind Summe und Produkt der galoissch Konjugierten bis auf Vorzeichen durch die Koeffizienten a_0 bzw. a_{n-1} des Minimalpolynoms gegeben und daher rational.

Variante 2 (mit Wirkung der galoisschen Gruppe): Seien t_1, \ldots, t_n alle galoissch Konjugierten von t, also die Nullstellen des Minimalpolynoms von t. Dann wollen wir zeigen, dass die Summe der t_i invariant unter der Wirkung der galoisschen Gruppe ist und daher rational sein muss: Sei also $\sigma \in \text{Gal}(t_1, \ldots, t_n)$ beliebig. Dann gilt in der Tat

$$\sigma \cdot (t_1 + \dots + t_n) = t_{\sigma(1)} + \dots + t_{\sigma(n)} = t_1 + \dots + t_n.$$

Analog kann man mit dem Produkt verfahren.

e) Seien m_x , m_y und m_z die Minimalpolynome von x, y bzw. z. Dann gilt nach Voraussetzung $m_x = m_y$ und $m_y = m_z$, also auch $m_x = m_z$. Damit sind x und z zueinander galoissch konjugiert.

Aufgabe 3. Eine konkrete Galoisgruppe

Bestimme die Galoisgruppe der vier Nullstellen des Polynoms $X^4 + 1$.

Lösung.

1. Die vier Nullstellen sind

$$x_1 = \xi$$
, $x_2 = \xi^3$, $x_3 = \xi^5$, $x_4 = \xi^7$,

wobei $\xi = \exp(2\pi i/8)$ eine primitive achte Nullstelle ist.

2. Es gilt

$$\mathbb{Q}(x_1, x_2, x_3, x_4) = \mathbb{Q}(\xi, \xi^3, \xi^5, \xi^7) = \mathbb{Q}(\xi),$$

also ist $t := \xi$ ein primitives Element.

3. Für die vier Nullstellen gilt jeweils $x_i = h_i(t)$, wobei

$$h_1(X) = X,$$

 $h_2(X) = X^3,$
 $h_3(X) = X^5,$
 $h_4(X) = X^7.$

4. Das Minimalpolynom von t ist $f(X) = X^4 + 1$: Die Irreduzibilität bestätigt das Eisenstein-Kriterium angewendet auf

$$f(X+1) = X^4 + 4X^3 + 6X^2 + 4X + 2$$

mit p=2. (Alternative Irreduzibilitätsbegründung: Das Polynom f(X) ist gerade das achte Kreisteilungspolynom.)

5. Die vier galoissch Konjugierten von t sind daher gerade die obigen vier Nullstellen:

$$t_1 = \xi, \quad t_2 = \xi^3, \quad t_3 = \xi^5, \quad t_4 = \xi^7.$$

6. Damit können wir die Elemente der Galoisgruppe auflisten:

t_i	$h_1(t_i)$	$h_2(t_i)$	$h_3(t_i)$	$h_4(t_i)$	σ_i
$\overline{t_1}$	x_1	x_2	x_3		id
t_2	x_2	x_1	x_4	x_3	$(1,2)\circ(3,4)$
t_3	x_3	x_4	x_1	x_2	$(1,3) \circ (2,4)$
t_4	x_4	x_3	x_2	x_1	$(1,4) \circ (2,3)$

Aufgabe 4. Polynome sind blind für galoissch Konjugierte

- a) Zeige, dass zwei algebraische Zahlen t und t' genau dann zueinander konjugiert sind, wenn jedes Polynom mit rationalen Koeffizienten, welches t als Nullstelle hat, auch t' als Nullstelle hat.
- b) Seien t und t' zueinander konjugierte algebraische Zahlen und f ein Polynom mit rationalen Koeffizienten. Zeige, dass dann auch x := f(t) und x' := f(t') zueinander konjugiert sind.

Lösung.

- - " \Longrightarrow " (schon im Skript als Proposition 4.2): Sei m_t das gemeinsame Minimalpolynom von t und t' und sei $f \in \mathbb{Q}[X]$ ein Polynom, das t als Nullstelle hat. Dann haben f und m_t also die gemeinsame Nullstelle t. Da m_t irreduzibel ist, folgt mit dem abelschen Irreduzibilitätssatz (Satz 3.10), dass f ein Vielfaches von m_t ist. Somit ist jede Nullstelle von m_t , insbesondere t', auch Nullstelle von f.
- b) Es ist klar, dass x und x' wieder algebraische Zahlen sind. Sei m_x das Minimalpolynom von x = f(t). Dann gilt

$$0 = m_x(x) = m_x(f(t)) = (m_x \circ f)(t),$$

das Polynom $m_x \circ f$ besitzt also t als Nullstelle. Nach Teilaufgabe a) besitzt dieses Polynom dann auch t' als Nullstelle, also gilt

$$m_x(x') = m_x(f(t')) = (m_x \circ f)(t') = 0.$$

Somit ist x' ebenfalls Nullstelle des Minimalpolynoms von x und somit zu x galoissch konjugiert.

Aufgabe 5. Gegenbeispiele

Zeige an jeweils einem Beispiel, dass

a) Hilfssatz 4.3 auf Seite 118

b) Proposition 4.4 auf Seite 119

falsch werden, wenn man von den dort vorkommenden Zahlen x_1, \ldots, x_n nicht voraussetzt, dass sie die gesamten Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten sind, sondern stattdessen beliebige algebraische Zahlen erlaubt.

Lösung.

a) Hilfssatz 4.3 lautet:

Seien x_1, \ldots, x_n die Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten. Ist dann $V(X_1, \ldots, X_n)$ ein Polynom mit rationalen Koeffizienten, so sind die galoissch Konjugierten von $t = V(x_1, \ldots, x_n)$ alle von der Form $t' = V(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$, wobei σ eine n-stellige Permutation ist.

Es gibt zahlreiche Gegenbeispiele, wenn man die Voraussetzung, dass die x_i alle Lösungen einer Polynomgleichung mit rationalen Koeffizienten sind, fallen lässt. Sei etwa $n = 1, x_1 = i$ und $V(X_1) = X_1$. Dann stimmt es nicht, dass alle galoissch Konjugierten von $t = V(x_1) = i$

von der (wegen n = 1 einzig möglichen) Form $t' = V(x_1)$ sind. Denn –i ist ja auch noch ein galoissch Konjugiertes von t.

Ein komplizierteres Gegenbeispiel ist $n=2, x_1=17, x_2=i, V(X_1,X_2)=X_2.$

b) Proposition 4.4 lautet:

Seien x_1, \ldots, x_n die Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten. Ist dann t ein primitives Element zu x_1, \ldots, x_n , so ist auch jedes galoissch Konjugierte t' von t ein primitives Element von x_1, \ldots, x_n .

Auch hier gibt es zahlreiche Gegenbeispiele, wenn man die Voraussetzung fallen lässt. Sei etwa $n=1, x_1=\omega\sqrt[3]{2}$ und $t=x_1$, wobei $\omega=\exp(2\pi i/3)$ eine primitive dritte Einheitswurzel ist. Dann stimmt es nicht, dass das galoissch Konjugierte $t'=\sqrt[3]{2}$ ebenfalls ein primitives Element von $\mathbb{Q}(x_1)$ ist: Denn $\mathbb{Q}(t')\subseteq\mathbb{R}$, aber $\mathbb{Q}(x_1)\not\subseteq\mathbb{R}$.