Analysis of a Complex Kind Week 3

Lecture 5: First Properties of Analytic Functions

Petra Bonfert-Taylor

Analytic Functions with Zero Derivative

Theorem

If f is analytic on a domain D, and if f'(z) = 0 for all $z \in D$, then f is constant in D.

Recall the 1-dimensional analog:

Fact

If $f:(a,b)\to\mathbb{R}$ is differentiable and satisfies f'(x)=0 for all $x\in(a,b)$, then f is constant on (a,b).

Idea of proof:

- First show that f is constant in any disk $B_r(a)$, contained in D, using the 1-dimensional fact.
- Second, use the fact that D is connected and the first fact to show that f is constant in D.

Analytic Functions with Zero Derivative, cont.

Here are the main steps in these proofs:

① Let $B_r(a)$ be a disk contained in D, and let $c \in B_r(a)$. Pick the point $b \in B_r(a)$ as in the picture.

Since f'(z) = 0 in D we have $u_x = u_y = v_x = v_y = 0$ in D. In particular, look at u on the horizontal line segment from a to b. It depends only on one parameter (namely x) there, and $u_x = 0$. By the 1-dimensional fact, we find that u is constant on the line segment, in particular, u(a) = u(b). Similarly, u(b) = u(c), thus u(a) = u(c).. Since c was an arbitrary point in u0, u1 is thus constant in u1. Similarly, u2, is constant in u3, thus u4 is constant in u5.

Analytic Functions with Zero Derivative, cont.

Here is the second step of the proof:

2 Let *a* and *b* be two arbitrary points in *D*. Since *D* is connected, there exist a nice curve in *D*, joining *a* and *b*.

By the previous step, f is constant in the disk around the point a (see picture). Furthermore, f is also constant in the neighboring disk. Since these two disks overlap, the two constants must agree. Continue on in this matter until you reach b. Therefore, f(a) = f(b). Thus f

is constant in D.

Consequences

The previous theorem, together with the Cauchy-Riemann equations, has strong consequences.

• Suppose that f = u + iv is analytic in a domain D. Suppose furthermore, that u is constant in D. Then f must be constant in D.

Proof: u constant in D implies that $u_x = u_y = 0$ in D. Since f is analytic, the Cauchy-Riemann equations now imply that $v_x = v_y = 0$ as well. Thus $f' = u_x + iv_x = 0$ in D. By our theorem, f is constant in D.

- Similarly, if f = u + iv is analytic in a domain D with v being constant, then f must be constant in D.
- Suppose next that f = u + iv is analytic in a domain D with |f| being constant in D. This too implies that f itself must be constant!

Let me show you why:

Analytic Functions with Constant Norm

Let f = u + iv be analytic in a domain D, and suppose that |f| is constant in D. Then $|f|^2$ is also constant, i.e. there exists $c \in \mathbb{C}$ such that

$$|f(z)|^2 = u^2(z) + v^2(z) = c$$
 for all $z \in D$.

- If c = 0 then u and v must be equal to zero everywhere, and so f is equal to zero in D.
- If $c \neq 0$ then in fact c > 0. Taking the partial derivative with respect to x (and similarly with respect to y) of the above equation yields:

$$2uu_x + 2vv_x = 0$$
 and $2uu_v + 2vv_v = 0$.

Substituting $v_x = -u_y$ in the first and $v_y = u_x$ in the second equation gives

$$uu_x - vu_y = 0$$
 and $uu_y + vu_x = 0$.

Multiplying the first equation by u and the second by v we find

$$u^2u_x - uvu_v = 0$$
 and $uvu_v + v^2u_x = 0$.

Analytic Functions with Constant Norm, cont.

$$u^2u_x - uvu_y = 0 \quad \text{and} \quad uvu_y + v^2u_x = 0.$$

We now add these two equations! The result:

$$u^2u_x+v^2u_x=0.$$

Since $u^2 + v^2 = c$, this last equation becomes

$$cu_x=0.$$

But c > 0, so it must be the case that $u_x = 0$ in D. We can similarly find that $u_y = 0$ in D, and using the Cauchy-Riemann equations we also obtain that $v_x = v_y = 0$ in D. Hence f'(z) = 0 in D, and our theorem yields that f is constant in D.

Note: The assumption of *D* being connected is important!

A Strange Example

Let's look at a strange example: Let

$$f:\mathbb{C}\to\mathbb{C},\quad f(z)=egin{cases} e^{-rac{1}{z^4}}, & z
eq 0\ 0, & z=0. \end{cases}$$

- One can find u, v, u_x, u_y, v_x, v_y and they actually satisfy the Cauchy-Riemann equations in \mathbb{C} .
- Clearly, f is analytic in $\mathbb{C} \setminus \{0\}$.
- At the origin, one can show that $u_x(0) = u_y(0) = v_x(0) = v_y(0) = 0$.
- However, *f* is not differentiable at 0. How is this possible?
- The function *f* isn't even continuous at the origin!

A Strange Example, cont.

$$f:\mathbb{C}\to\mathbb{C},\quad f(z)=egin{cases} e^{-rac{1}{z^4}}, & z
eq 0\ 0, & z=0. \end{cases}$$

Why is *f* not continuous at the origin?

• Consider z approaching the origin along the real axis, i.e. $z = x + i \cdot 0 \rightarrow 0$. Then

$$f(z) = f(x) = e^{\frac{-1}{x^4}} \to 0.$$

• Next, consider z approaching the origin along the imaginary axis, i.e. $z = 0 + iy \rightarrow 0$. Then

$$f(z) = f(iy) = e^{\frac{-1}{i^4y^4}} \to 0.$$

So far so good?

• However... Consider $z = re^{i\frac{\pi}{4}} \to 0$. Then $z^4 = r^4 e^{i\frac{\pi}{4} \cdot 4} = -r^4$, so

$$f(z) = e^{-\frac{1}{-r^4}} = e^{\frac{1}{r^4}} \to \infty \neq f(0).$$

A Strange Example, cont.

What happened? The functions u and v satisfy the Cauchy-Riemann equations, yet, f is not differentiable at the origin?

Recall our theorem:

Theorem

Let f = u + iv be defined on a domain $D \subset \mathbb{C}$. Then f is analytic in D if and only if u(x,y) and v(x,y) have continuous first partial derivatives on D that satisfy the Cauchy-Riemann equations.

In our strange example, the partial derivatives are not continuous at 0, so the assumptions of the theorem are not satisfied.

Next...

Next week:

Conformal mappings and Möbius transformations. Bonus: The Riemann mapping theorem.