Segment 2: Randomized Studies

Section 03: Blocked and Paired Designs

Motivating Idea: Reducing "Unlucky" Assignments

- Randomized assignment will give us the "right" answer on average
 - ▶ Because potential outcomes will be *balanced* between groups, on average
 - ► Covariates, too
- Does not guarantee the estimate for any particular random assignment will be close to the truth
 - "Unlucky" assignment
- ▶ Reducing the chances of "unlucky" randomizations → decrease the variance of effect estimates
- ► The comparison between Bernoulli randomization and the Completely Randomized Design is one example

Table: Observed Data from the Hypothetical Dietary Experiment, **Idealized Assignment**

			Treatment	Potential	Potential
Unit, i	Female, x_{1i}	Age, x_{2i}	Z_i	Y_i^c	Y_i^t
Audrey	1	40	0	140	135
Anna	1	40	1	140	135
Bob	0	50	0	150	140
Bill	0	50	1	150	140
Caitlin	1	60	0	160	155
Cara	1	60	1	160	155
Dave	0	70	0	170	160
Doug	0	70	1	170	160

Table: Observed Data from the Hypothetical Dietary Experiment, **Unlucky Assignment**

			Treatment	Potential	Potential
Unit, i	Female, x_{1i}	Age, x_{2i}	Z_i	Y_i^c	Y_i^t
Audrey	1	40	1	140	135
Anna	1	40	1	140	135
Bob	0	50	1	150	140
Bill	0	50	0	150	140
Caitlin	1	60	0	160	155
Cara	1	60	0	160	155
Dave	0	70	0	170	160
Doug	0	70	1	170	160

Question: Is there anything we can do in our randomized study design to reduce the chance of this type of unlucky imbalance?

Blocking in Design

Key Idea: If there are certain types of units with the same potential outcomes, randomize (possibly differently) within these types of units (i.e., within *blocks*)

Blocking in Design

Key Idea: If there are certain types of units with the same potential outcomes, randomize (possibly differently) within these types of units (i.e., within *blocks*)

- We will never know the potential outcomes
- \Rightarrow determine *randomization blocks* based on observed covariates, \mathbf{X}
 - ► E.g., if we expect sex and age to be important in determining blood pressure, consider sex/age strata as *blocking factors* to ensure equal numbers in each treatment group
 - Guarantee that all randomizations will be balanced with respect to these factors
- Result will be a randomization distribution that only considers randomizations that are balanced with respect to these factors
- ⇒ Fewer "unlucky" randomizations, less uncertainty in the inference

Block Randomized Experiment

- Divide units into J blocks based on covariates
 - $\triangleright B_i = B(\mathbf{X}_i) \in \{1, 2, \dots, J\}$
- ► Conduct a completely randomized experiment in each block:

$$Pr(\mathbf{Z}|\mathbf{X}, \mathbf{Y}^c, \mathbf{Y}^t) = \prod_{j=1}^J \binom{n(j)}{n_t(j)}^{-1}$$

- ▶ Set of possible **Z** is: $\{\mathbf{Z}; \sum_{i:B_i=j}^n Z_i = n_t(j) \text{ for } j=1,2,\ldots,J\}$
- ▶ Randomization depends on X through definition of blocks

Ignorability and Unconfoundedness

For a block-randomized experiment, the assignment mechanism:

$$Pr(\mathbf{Z}|\mathbf{X}, \mathbf{Y}^c, \mathbf{Y}^t) = \prod_{j=1}^{J} \binom{n(j)}{n_t(j)}^{-1}$$

Depends (overall) on:

- ► Unit characteristics, X
- Potential outcomes
- ⇒ Not unconfounded!

Block-randomized design is only unconfounded within blocks (just a completely-randomized design within each bock)

Formalized with the assumption of conditional ignorability

Implications of (Conditional) Ignorability

$$Z \perp \!\!\! \perp Y^c, Y^t | \mathbf{X}$$

Within blocks (or strata) defined by X,

- Observed covariates provide information about treatment assignment
- Within values of X, potential outcomes do not
- Mithin values of X, comparison of observed outcomes in treated/control groups will provide an **unbiased estimate** of the conditional average causal effect, $\tau_{CATE|X}$
- An unbaised estimate of τ_{SATE} can be obtained by averaging block-specific estimates

Key Implication: The analysis must "adjust" for X in order to provide unbiased estimation of τ_{PATE}

- A weighted average of block-specific estimates
- A regression that adjusts for indicator of block

Now with more units!

Table: Observed Data from the Hypothetical Dietary Experiment

			Treatment	Potential	Potential
Unit, i	Female, x_{1i}	Age, x_{2i}	Z_i	Y_i^c	Y_i^t
Audrey	1	40	0	140	135
Abigail	1	40	0	140	135
Arielle	1	40	0	140	135
Anna	1	40	1	140	135
Bob	0	50	0	150	140
Bill	0	50	0	150	140
Burt	0	50	0	150	140
Brad	0	50	1	150	140
Caitlin	1	60	0	160	155
Cara	1	60	1	160	155
Cassie	1	60	1	160	155
Cindy	1	60	1	160	155
Dave	0	70	0	170	160
Doug	0	70	1	170	160
Dylan	0	70	1	170	160
Derik	0	70	1	170	160

Now with more units! And blocks!

Table: Observed Data from the Hypothetical Dietary Experiment

			Treatment	Potential	Potential
Unit, i	Female, x_{1i}	Age, x_{2i}	Z_i	Y_i^c	Y_i^t
Audrey	1	40	0	140	135
Abigail	1	40	0	140	135
Arielle	1	40	0	140	135
Anna	1	40	1	140	135
Bob	0	50	0	150	140
Bill	0	50	0	150	140
Burt	0	50	0	150	140
Brad	0	50	1	150	140
Caitlin	1	60	0	160	155
Cara	1	60	1	160	155
Cassie	1	60	1	160	155
Cindy	1	60	1	160	155
Dave	0	70	0	170	160
Doug	0	70	1	170	160
Dylan	0	70	1	170	160
Derik	0	70	1	170	160

Need to Account for Design in the Analysis

If observations were randomized within blocks, we need to take this into account when we analyze the results of the trial

- Calculate treatment effects within each block
 - ▶ Randomized within block ⇒ unbiased for treatment effect in that block
- Average block-specific estimates to estimates
 - ▶ Represent the effect in the sample (or population)
 - $ightharpoonup au_{SATE}$ or au_{PATE}

Examples of Blocking Factors

Blocking factors work best when they arise "naturally"

- Randomize students within blocks defined by school
 - Avoid problems where school membership is *imbalanced* across treated/control students
- Randomize products within blocks defined by product class
 - Avoid problems where a treatment group of products is dominated by products in a certain class
- Randomize surgery recovery programs within blocks defined by the type of surgery
 - Make sure there are equal numbers of pancreatic, liver, stomach cancer patients in the two treatment groups

Bottom Line: Define blocks based on covariates believed to be predictive of the outcome, but balance against practical constraints

Matched Pairs Design

Basic Idea: push the idea of blocking to the extreme \Rightarrow have as many blocks as units in the treatment group

- Special case of randomized block design
- Units are arranged into pairs based on having closely-matched characteristics, X
 - 2-unit blocks
- Randomize exactly one unit per pair to receive treatment
- Practical limitation is the ability to find units that are well matched based on the entire X
- Can arise naturally when pairs present themselves "naturally"
 - ► E.g., twins, family members

Paired Randomized Experiment

Same as a blocked experiment where there are 2 units within each stratum and one is randomized to treatment:

$$Pr(\mathbf{Z}|\mathbf{X}, \mathbf{Y}^c, \mathbf{Y}^t) = 2^{n/2}$$

- ▶ Set of possible **Z** is: $\{\mathbf{Z}; \sum_{i:B_i=j}^n Z_i = 1 \text{ for } j=1,2,\ldots,n/2\}$
- Extreme stratified/block experiment
- Randomization depends on X through definition of pairs

Table: Observed Data from the Hypothetical Dietary Experiment, **Idealized Assignment**

			Treatment	Potential	Potential
Unit, i	Female, x_{1i}	Age, x_{2i}	Z_i	Y_i^c	Y_i^t
Audrey	1	40	0	140	135
Anna	1	40	1	140	135
Bob	0	50	0	150	140
Bill	0	50	1	150	140
Caitlin	1	60	0	160	155
Cara	1	60	1	160	155
Dave	0	70	0	170	160
Doug	0	70	1	170	160

Analysis of Matched Pair Designs

- ▶ Ignorability: $Z \perp \!\!\! \perp Y^c, Y^t | \mathbf{X}$
- ► Equal probability of treatment in each block ⇒ adjustment for pair not required for unbiasedness
- ► For efficiency gains, analysis must account for pairs
- Analysis:
 - Simple difference in means:
 - ► Average of within-pair differences: