

CMP4012

Satellite Imaging Semester Project Post Flood Damage Detection

Presented By:

Name	Section	Bench Number
Ahmed Waleed	1	13
Gaser Ashraf	1	23
Mohamed Salama	2	15
Yousef Mostafa ElMahdy	2	42

Supervised By:

Dr. Sandra Wahid Amin Eng. Amr Abd elbakay

Problem Definition:	2
Introduction:	2
1- Classical Approaches Pipeline:	3
1. Data preprocessing:	3
2. Feature Extraction:	3
3. Model Training:	3
4. Model Evaluation:	4
2- Deep Learning Approaches:	8
1. Data preprocessing:	8
2. Feature Extraction:	8
3. Model Training:	9
4. Model Evaluation:	9
3- Images Regions Segmentation:	9
1. IOSDATA Clustering:	9
2. Kmeans Clustering:	9

Problem Definition:

Floods are one of the most devastating natural disasters that affect millions of people worldwide every year. The ability to quickly and accurately assess the damage caused by floods is crucial for emergency responders, disaster relief organizations, and government agencies to plan and allocate resources effectively. Satellite imagery provides a unique and powerful tool for post-flood damage assessment, as it can cover large areas and capture high-resolution images of the affected regions. However, manually analyzing these images is a time-consuming and labor-intensive process, making it challenging to provide timely and accurate assessments.

Introduction:

In this project we adopted two methodologies to detect whether the image given depicts damage caused by a flood or not and also identify the area damaged.

For Classification:

- 1. Classical approach
 - a. Random forest
 - b. AdaBoost
 - c. Naive Bayes
 - d. XGBoost
- 2. Deep learning approach
 - a. CNN
 - b. ResNet (Pre-trained Model with fine tuning)

For images regions segmentation in the image:

1. ISODATA Clustering

1- Classical Approaches Pipeline:

1. Data preprocessing:

During this step, two operations are performed on the images. Firstly, the images are resized to a desired dimension. Secondly, contrast enhancement is applied by equalizing the histogram of each band.

2. Feature Extraction:

In the features extraction phase, the following techniques are employed:

- 1. Modified Normalized Difference Water Index (MNDWI): This index is calculated to identify water regions within the images.
- 2. Gray-Level Co-occurrence Matrix (GLCM): GLCM is utilized to extract texture features such as contrast, dissimilarity, homogeneity, energy (computed using graycoprops), and correlation.
- 3. Color Histogram: The color distribution of the image is captured using a histogram, providing information about the color composition.
- 4. Local Binary Pattern (LBP): LBP is employed to extract texture features based on local variations in pixel intensities.

3. Model Training:

Different models are used:

Model	Parameters
Random Forest	n_estimators=80, max_depth=8, random_state=42

AdaBoost	n_estimators=100 ,learning_rate=0.2 , random_state=42
Naive Bayes	Default
XGBoost	max_depth=15 , n_estimators=150 , learning_rate=0.2, random_state=42

4. Model Evaluation:

a. Random Forest:

1. Confusion matrix:

 2. Precision:
 0.9132505175983436

 3. Recall:
 0.9195039932744851

 4. F1-score:
 0.9133056133056132

 5. Accuracy:
 0.9136690647482014

 6. Omission error:
 0.08049600672551493

 7. Commission error:
 0.08674948240165636

Evauation of Random Forest							
Accuracy	: 0.	91366906474	82014				
		precision	recall	f1-score	support		
	0	0.97	0.87	0.92	78		
	1	0.86	0.97	0.91	61		
accur	racy			0.91	139		
macro	avg	0.91	0.92	0.91	139		
weighted	avg	0.92	0.91	0.91	139		
Precision	n : 6	.9132505175	983436				
Recall:	Recall: 0.9195039932744851						
Ommision	Error	. 0.08049	600672551	493			
Commission Error : 0.08674948240165636							
F1 Score : 0.9133056133056132							
Confusion Matrix :							
[[68 10]							
[2 59]]							

b. AdaBoost:

1. Confusion matrix:

2. Precision: 0.84875

3. Recall: 0.851828499369483

4. F1-score:0.84165285832642915. Accuracy:0.841726618705036

6. Omission error: 0.14817150063051698

7. Commission error: 0.15125

Evauation of AdaBoost Accuracy: 0.841726618705036					
necuracy .	f1-score	support			
	0	0.94	0.77	0.85	78
	1	0.76	0.93	0.84	61
accurac	v			0.84	139
macro av	-	0.85	0.85	0.84	139
weighted av	g	0.86	0.84	0.84	139

Precision: 0.84875

Recall: 0.851828499369483

Ommision Error: 0.14817150063051698

Commission Error: 0.15125 F1 Score : 0.8416528583264291

Confusion Matrix :

[[60 18] 4 57]]

c. Naive Bayes:

1. Confusion matrix:

2. Precision: 0.8125258799171843 3. Recall: 0.8172551492223623

4. F1-score: 0.8121621621622

5. Accuracy: 0.8129496402877698

6. Omission error: 0.1827448507776377

7. Commission error: 0.18747412008281572

Evaluation of N	laiva Pavas					
Evauation of Naive Bayes						
Accuracy: 0.	81294964028	77698				
	precision	recall	f1-score	support		
0	0.87	0.78	0.82	78		
1	0.75	0.85	0.80	61		
accuracy			0.81	139		
macro avg	0.81	0.82	0.81	139		
weighted avg	0.82	0.81	0.81	139		
Precision: 0.8125258799171843						
Recall: 0.8172551492223623						
Ommision Error : 0.1827448507776377						
Commission Error: 0.18747412008281572						
E4 France : A 0424624624622						

F1 Score : 0.8121621621621622 Confusion Matrix :

[[61 17] [9 52]]

d. XGBoost:

1. Confusion matrix:

2. Precision:	0.9092039800995024
3. Recall:	0.9148802017654476
4. F1-score:	0.9063002333419756
5. Accuracy:	0.9064748201438849
6. Omission error:	0.0851197982345524
7. Commission error:	0.09079601990049757

Evauation of XG	Boost					
Accuracy : 0.9064748201438849						
P	recision	recall	f1-score	support		
0	0.99	0.85	0.91	78		
1	0.83	0.98	0.90	61		
accuracy			0.91	139		
macro avg	0.91	0.91	0.91	139		
weighted avg	0.92	0.91	0.91	139		
Precision : 0.9092039800995024						
Recall: 0.9148802017654476						
Ommision Error	Ommision Error : 0.0851197982345524					
Commission Error : 0.09079601990049757						
F1 Score : 0.9063002333419756						
Confusion Matrix :						
[[66 12]						
[1 60]]						

2- Deep Learning Approaches:

1. Data preprocessing:

During this step, two operations are performed on the images. Firstly, the images are resized to a desired dimension. Secondly, The images are converted from RGB to BGR, then each color channel is zero-centered with respect to the ImageNet dataset, without scaling.

Another secondary preprocessing which was applied for the CNN model training data is data augmentation which applies a diverse set of transformations on the input image which has helped the model to generalize better and increased the size of the dataset.

2. Feature Extraction:

Image themselves are the features flattened to a vector of size W*H*3.

3. Model Training:

a. CNN:

Epoches	Batch Size
50	64

loss=categorical_crossentropy | optimizer=adam

Total params: 18,146,178 Trainable params: 18,145,346

Non-trainable params: 832

b. ResNet:

ResNet-50 is a deep convolutional neural network architecture with 50 layers. It introduces residual connections to address the vanishing gradient problem, gradually reduces spatial dimensions, and applies global average pooling for classification. It has achieved state-of-the-art performance in computer vision tasks. Trained on imageNet dataset.

4. Model Evaluation:

1. CNN:

a.	Precision:	0.873
b.	Recall:	0.822
c.	F1 score:	0.824
d.	Accuracy:	0.832
e.	Omission error:	0.177
f.	Commission error:	0.126

2. ResNet:

a.	Accuracy:	0.9783
b.	F1 score:	0.9783
c.	Precision:	0.9784
d.	Recall:	0.9783
e.	Omission error:	0.0217
f.	Commission error:	0.0216

Choosed Model:

- ResNet50
- Reason: ResNet (Residual Neural Network) is an effective deep learning architecture for flood detection in images. It excels at capturing complex patterns and features in visual data. ResNet's advantages for this task include its deep architecture, which allows it

to handle the hierarchical nature of image data, and its ability to extract useful features from large-scale training datasets. The network's residual connections enable it to preserve lower-level information and capture fine-grained details important for flood detection. Additionally, ResNet's pretrained models can be fine-tuned on smaller flood-specific datasets, enabling transfer learning and improving performance with limited training samples. Overall, ResNet is a powerful tool for analyzing images, extracting relevant features, and classifying whether an image contains indications of a flood.

3- Images Regions Segmentation:

1. ISODATA Clustering:

Max clusters: 2 (as all we need are water class and other class)

Max iterations: 100

Minimum distance: 20

Minimum cluster size: 10

2. K Means Clustering:

• K = 2

Example output:

