▼ 4.0 - Punti critici e forme quadratiche

▼ 4.1 - Tipologie di punti critici

Punti di massimo e minimo locale

Sia
$$f:A o\mathbb{R}$$
 $\qquad (A\subseteq\mathbb{R}^n)$, $\overline{x}\in A$ si dice di **massimo (minimo) locale** per f se: $\exists \ \delta>0 \ ext{tale che} \ f(x)\le (\ge)f(\overline{x}) \quad orall \ x\in A\cap B(\overline{x},\delta)$

Teorema di fermat

Sia $f:A\to\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$, f differenziabile. Se $\overline{x}\in A$ è di massimo/minimo locale, allora:

$$\nabla f(\overline{x}) = \underline{0} \in \mathbb{R}^n$$

Dimostrazione in n=2

Definiamo la funzione $h(t)=f(\overline{x}+t,\overline{y})$, definita per $t\in$ intorno dell'origine. Siccome f ha un minimo in $(\overline{x},\overline{y})$, allora $f(\overline{x}+t,\overline{y})\geq f(\overline{x},\overline{y}) \quad \forall t\in$ intorno dell'origine, dunque $h(t)\geq h(0)$, quindi h(t) ha un minimo in 0.

Inoltre, per definizione di derivata parziale, abbiamo che $\exists \ h'(t)=\partial_x f(\overline{x}+t,\overline{y})$. Per il teorema di fermat in n=1 sappiamo infine che f'(0)=0, e possiamo quindi concludere che $\partial_x f(\overline{x}+t,\overline{y})=0$.

È possibile fare lo stesso ragionamento con $h(t)=f(\overline{x},\overline{y}+t)$ e arrivare alla conclusione che $\partial_u f(\overline{x}+t,\overline{y})=0$, dunque abbiamo dimostrato che $\nabla f(\overline{x})=(0,0)$.

Punto critico o stazionario

Un punto in cui $\nabla f(x) = \underline{0}$ si dice **punto critico o stazionario**.

Caso n=1

Una funzione $f:\mathbb{R} o\mathbb{R}$ tale che f'(x)=0, con $x\in\mathbb{R}$, può avere in x:

- Punto di massimo
- Punto di minimo
- Punto di flesso

Caso n=2

Una funzione $f:\mathbb{R}^2 o\mathbb{R}$ tale che $abla f(\overline{x})=0$, con $\overline{x}\in\mathbb{R}^2$, può avere in \overline{x} :

- Punto di massimo
- Punto di minimo
- Punto di sella

Una funzione $f:\mathbb{R}^2 o\mathbb{R}$ ha un punto di sella in $\overline{x}\in\mathbb{R}$ se:

$$orall$$
 intorno $B(\overline{x},\delta),\exists\;x_-\;\mathrm{e}\;x_+\in B(\overline{x},\delta)$ tale che $f(x_-)< f(\overline{x})\;\mathrm{e}\;f(x_+)> f(\overline{x})$

Esempio grafico di punto di sella.

▼ 4.2 - Derivate parziali seconde e forme quadratiche

Derivate parziali seconde

Caso \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}$ differenziabile con $egin{cases} \partial_x f:\mathbb{R}^2 o\mathbb{R} \ \partial_y f:\mathbb{R}^2 o\mathbb{R} \end{cases}$, allora definiamo **derivate parziali** seconde le seguenti:

$$\begin{cases} \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \\ \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \to \text{miste} \\ \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \\ \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \end{cases} \to \text{pure}$$

Caso \mathbb{R}^n

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile, allora definiamo **derivate parziali seconde** le seguenti:

$$orall \ j,k \in \{1,\ldots,n\} \quad rac{\partial^2 f}{\partial x_j x_k} \coloneqq rac{\partial}{\partial x_j} (rac{\partial f}{\partial x_k})$$

Nel caso in cui j=k scriviamo $rac{\partial^2 f}{\partial x_j}$ e tali derivate vengono dette **pure**.

Nel caso in cui $j \neq k$ tali derivate vengono dette **miste**.

Teorema di Schwarz

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ e siano tutte le sue derivate seconde continue allora:

$$orall \ j,k \in \{1,\ldots,n\} \quad rac{\partial^2 f}{\partial x_j x_k} = rac{\partial^2 f}{\partial x_k x_j} \quad ext{(in ogni punto di A)}$$

Matrice Hessiana

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ e siano tutte le sue derivate seconde continue allora possiamo definire la **matrice Hessiana** $Hf(x)\in\mathbb{R}^{n imes n}$ nel seguente modo:

$$(Hf(x))_{jk} = rac{\partial^2 f}{\partial x_j \partial x_k}(x) \qquad Hf = egin{pmatrix} \partial_{11} f & \partial_{12} f & \dots & \partial_{1n} f \ \partial_{21} f & \partial_{22} f & \dots & \partial_{2n} f \ \dots & & & & \ \partial_{n1} f & \partial_{n2} f & \dots & \partial_{nn} f \end{pmatrix}$$

La matrice Hessiana è l'equivalente del gradiente per le derivate seconde.

Proposizioni

- Per il teorema del gradiente la matrice Hessiana Hf(x) è simmetrica $orall \ x \in A$.

Forma quadratica

Sia $A \in \mathbb{R}^{n \times n}, A = A^T$, la forma quadratica associata ad A è la funzione:

$$q: \mathbb{R}^n o \mathbb{R} \quad q(h) = \langle Ah, h \rangle \quad \forall \ h \in \mathbb{R}^n$$

Caso \mathbb{R}^2

Sia $A=egin{pmatrix} a & b \ b & c \end{pmatrix}$, la forma quadratica associata ad A è:

$$q(h_1,h_2) = \langle egin{pmatrix} a & b \ b & c \end{pmatrix} egin{pmatrix} h_1 \ h_2 \end{pmatrix}, egin{pmatrix} h_1 \ h_2 \end{pmatrix}
angle = \langle egin{pmatrix} ah_1 + bh_2 \ bh_1 + ch_2 \end{pmatrix}, egin{pmatrix} h_1 \ h_2 \end{pmatrix}
angle = ah_1^2 + 2bh_1h_2 + ch_2^2$$

Segno di forme quadratiche

Sia $A = A^T \in \mathbb{R}^{n \times n}$:

- $\langle Ah,h \rangle > 0, \forall \ h \neq 0 \in \mathbb{R}^n \iff A > 0$
- $\langle Ah,h \rangle < 0, \forall \ h \neq 0 \in \mathbb{R}^n \iff A < 0$
- ullet $\exists \ h^+,h^-\in\mathbb{R}^n,\langle Ah^-,h^angle < 0<\langle Ah^+,h^+
 angle \iff A$ è indefinita.

Osservazioni

• Sia $A = A^T \in \mathbb{R}^{n \times n}$:

$$\circ \begin{cases} a > 0 \\ det(A) > 0 \end{cases} \iff A > 0.$$

$$\circ \begin{cases} a < 0 \\ det(A) > 0 \end{cases} \iff A < 0.$$

$$\circ \ det(A) < 0 \iff A$$
 è indefinita.

$$oldsymbol{o} det(A) = 0 \iff A$$
 è semidefinita ($A \geq 0$ oppure $A \leq 0$ in base all valore di a).

Dimostrazione

Dimostriamo solo il caso in cui A>0:

 $\circ \implies$

Dalle ipotesi abbiamo che $a>0 \land det(A)=ac-b^2>0$. Siccome $(h_1,h_2)\neq (0,0)$ si possono presentare i seguenti due casi:

■ $h_2 = 0$

In questo caso deve essere sicuramente $h_1 \neq 0$. e calcolando la forma quadratica otteniamo $q(h) = ah_1^2$, la quale è sicuramente $> 0 \quad \forall (h_1,h_2) \neq (0,0) \in \mathbb{R}^2$ perchè dalle ipotesi abbiamo che a>0.

■ $h_2 \neq 0$

Calcolando la forma quadratica otteniamo $q(h)=ah_1^2+2bh_1h_2+ch_2^2=h_2^2(a(\frac{h_1}{h_2})^2+2b\frac{h_1}{h_2}+c)$. Calcoliamo il $\Delta=4b^2-4ac=-4(ac-b^2)$. Dalle ipotesi abbiamo che $ac-b^2>0$, quindi $\Delta<0\implies q(h)>0 \quad \forall (h_1,h_2)\neq (0,0)\in\mathbb{R}^2$

∘ ←

Dalle ipotesi abbiamo che $A>0 \implies \langle A(h_1,h_2),A\rangle>0 \implies ah_1^2+2bh_1h_2+ch_2^2>0 \quad \forall (h_1,h_2)\neq (0,0)\in \mathbb{R}^2.$

Scegliamo ad esempio h=(1,0), in tal caso la disequazione diventa a>0, avendo dimostrato la prima condizione.

Scegliendo invece h=(x,1) la disequazione diventa $ax^2+2bx+c>0$. Poniamo il $\Delta=b^2-ac<0\implies -det(A)<0\implies det(A)>0$.

qed

• Sia $A = A^T \in \mathbb{R}^{n imes n}$, allora A ammette n autovalori reali e vale:

$$\circ \ A>0 \iff$$
 tutti gli autovalori sono >0

$$\circ \ A < 0 \iff$$
 tutti gli autovalori sono < 0

$$\circ~~A$$
 indefinita $\iff\exists~\lambda_1,\lambda_2$ autovalori tali che $egin{cases} \lambda_1<0 \ \lambda_2>0 \end{cases}$

Esercizi

lacktriangledown Classificare il segno della forma quadratica $A=egin{pmatrix} 2 & 1 \ 1 & e \end{pmatrix}$ al variare di e nei reali.

Calcoliamo innanzitutto il valore di det(A) = 2e - 1.

Notando che a=2 otteniamo 3 casistiche:

•
$$e > \frac{1}{2} \iff det(A) > 0 \iff A > 0$$

•
$$e < \frac{1}{2} \iff det(A) < 0 \iff A < 0$$
.

•
$$e=\frac{1}{2}\iff det(A)=0\iff A$$
 è semidefinita positiva.

Calcoliamo inoltre la forma quadratica associata ad A:

$$egin{aligned} q(h_1,h_2) &= 2h_1^2 + 2h_1h_2 + rac{1}{2}h_2^2 = rac{1}{2}(4h_1^2 + 4h_1h_2 + h_2^2) \ &= rac{1}{2}(2h_1 + h_2)^2 \geq 0 \quad orall (h_1,h_2) \in \mathbb{R}^2 \end{aligned}$$

Possiamo infatti notare che $q(h_1,h_2)$ si annulla $\forall h=\lambda(1,2),\quad \lambda\in\mathbb{R}$, dunque A non può essere definita positiva.

Segno del determinante delle sottomatrici

Sia
$$A=A^T\in\mathbb{R}^{n imes n}$$
 tale che $A=egin{pmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\dots&&&\\a_{n1}&a_{n2}&\dots&a_{nn}\end{pmatrix}$, considero A_k (es. $A_1=a_{11}$, $A_2=egin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ ecc.), allora:

•
$$det(A_k) > 0 \quad \forall \ k \in \{1, \ldots, n\} \implies A > 0$$

•
$$(-1)^k det(A_k) > 0 \quad \forall \ k \in \{1, \dots, n\} \implies A < 0$$

Ovvero il determinante assume segni alternati per ogni k (k pari $\implies det(A_k)$ positivo, k dispari $\implies det(A_k)$ negativo).

▼ 4.3 - Teorema di Taylor

Teorema di Taylor di grado 2

Caso \mathbb{R}^2

Sia $f:\mathbb{R} o\mathbb{R}$ con f' e f'' continue, allora $orall\, \overline{x},h\in\mathbb{R},\exists\ \sigma\in\]0,1[$ tale che:

$$f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+f''(\overline{x}+\sigma h)rac{h^2}{2}\quadorall\ \overline{x}\in\mathbb{R}$$

Osservazioni

• Dalla formula trovata segue quella con gli o piccoli:

$$f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+f''(\overline{x}+\sigma h)rac{h^2}{2} \ =f(\overline{x})+f'(\overline{x})h+f''(\overline{x})rac{h^2}{2}+\underbrace{(f''(\overline{x}+\sigma h)-f''(\overline{x}))rac{h^2}{2}}_{o(h^2)}$$

Dimostrazione

Usando $x=\overline{x}+h$ dimostriamo che $\forall \ \overline{x}, x\in \mathbb{R}, \exists \ \sigma\in]0,1[$ tale che:

$$f(x) = f(\overline{x}) + f'(\overline{x})(x-\overline{x}) + f''(\overline{x} + \sigma(x-\overline{x})) rac{(x-\overline{x})^2}{2}$$

Modifichiamo la formula da dimostrare nella seguente: $f(x)-f(\overline{x})-f'(\overline{x})(x-\overline{x})-k(x-\overline{x})^2=0$ e mostriamo che esiste $\sigma\in]0,1[$ tale che $k=\frac{f''(\overline{x}+\sigma(x-\overline{x}))}{2}.$

Costruiamo la seguente funzione:

$$g(t) = f(x) - f(t) - f'(t)(x - t) - k(x - t)^{2}$$

Se utilizziamo x e \overline{x} come t otteniamo:

$$g(x) = f(x) - f(x) - f'(x)(x - x) - k(x - x)^2 = 0$$

$$g(\overline{x}) = f(x) - f(\overline{x}) - f'(\overline{x})(x - \overline{x}) - k(x - \overline{x})^2 = 0$$

Siccome $g(x)=g(\overline{x})$ possiamo utilizzare il teorema di Rolle nell'intervallo $[x,\overline{x}]$ e ottenere:

$$\exists \ \sigma \in]0,1[\quad q'(\overline{x} + \sigma(x - \overline{x})) = 0$$

Calcoliamo g'(t):

$$g'(t) = -f'(t) - f''(t)(x - t) - f'(t)(-1) - 2k(x - t)^{1}(-1)$$

= $(-f''(t) + 2k)(x - t)$

Sappiamo dunque che:

$$\exists \ \sigma \in [0,1[\quad (-f''(\overline{x}+\sigma(x-\overline{x}))+2k)(x-\overline{x}+\sigma(x-\overline{x}))=0$$

Siccome per $\sigma\in]0,1[\Longrightarrow (x-\overline{x}+\sigma(x-\overline{x}))
eq 0$, allora $(-f''(\overline{x}+\sigma(x-\overline{x}))+2k)=0$, ovvero $k=\frac{f''(\overline{x}+\sigma(x-\overline{x}))}{2}$, come volevasi dimostrare.

Caso \mathbb{R}^n

Sia $f:A\to\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ con derivate parziali prime e seconde continue, allora $\forall\ \overline{x}\in A,h\in\mathbb{R}^n,\exists\ \sigma\in]0,1[\ (\{\overline{x}+\sigma h\}\subseteq A)$ tale che:

$$egin{aligned} f(\overline{x}+h) &= f(\overline{x}) + \langle
abla f(\overline{x}), h
angle + rac{1}{2} \langle Hf(\overline{x}+\sigma h)h, h
angle \ &= f(\overline{x}) + \sum_{k=1}^n \partial_k f(\overline{x})h_k + rac{1}{2} \sum_{j,k=1}^n \partial_{jk} f(\overline{x}+\sigma h)h_j h_k \end{aligned}$$

Osservazioni

• Dalla formula trovata segue quella con gli o piccoli:

$$f(\overline{x}+h)=f(\overline{x})+\langle
abla f(\overline{x}),h
angle +rac{1}{2}\langle Hf(\overline{x})h,h
angle +o(h^2)$$

Dimostrazione

Basta mostrare che:

Dimostrazione

Siano f, \overline{x}, h come da ipotesi, costruiamo la funzione:

$$g(t) = f(\overline{x} + th)$$
 $t \in [0,1]$

Abbiamo dunque che $g(0)=f(\overline{x}), g(1)=f(\overline{x}+h).$

Utilizziamo Taylor grado 2 per g(1):

$$g(1) = g(0) + g'(0) + \frac{1}{2}g''(\sigma)$$

Calcoliamo ora $g^\prime(t)$ utilizzando il teorema per il calcolo della derivata di una funzione su una curva:

$$g'(t) = rac{\partial}{\partial t} f(\overline{x} + th) = \langle
abla f(\overline{x} + th), h
angle = \sum_{i=1}^n \partial_i f(\overline{x} + th) h_i$$

Dunque, $g'(0) = \langle \nabla f(\overline{x}), h \rangle$.

Passiamo a calcolare g''(t):

$$g''(t) = \sum_{j=1}^n \sum_{k=1}^n (\partial_k \partial_j f(\overline{x} + th) h_k) h_j = \sum_{k,j=1}^n \partial_{kj} f(\overline{x} + th) h_k h_j \ = \langle Hf(\overline{x} + th) h, h
angle$$

Dunque, $g''(\sigma) = \langle Hf(\overline{x} + \sigma h)h, h \rangle$.

Possiamo infine concludere che:

$$f(\overline{x}+h)=f(\overline{x})+\langle
abla f(\overline{x}),h
angle +rac{1}{2}\langle Hf(\overline{x}+\sigma h)h,h
angle$$

▼ 4.4 - Teorema di classificazione dei punti critici

Teorema di classificazione dei punti critici

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ con derivate parziali prime e seconde continue e sia $\overline{x}\in A$, se $\nabla f(\overline{x})=0$ allora:

- se $Hf(\overline{x}) > 0 \implies \overline{x}$ è un punto di **minimo locale**.
- se $Hf(\overline{x}) < 0 \implies \overline{x}$ è un punto di massimo locale.
- se $Hf(\overline{x})$ è indefinita \implies è un punto di **sella**.
- se $Hf(\overline{x})$ è semidefinita \implies nessuna conclusione, occorre verificare in altro modo, magari analizzando gli intorni di \overline{x} .

Lemma

Sia $A = A^T \in \mathbb{R}^{n imes n}$ tale che A > 0, allora:

$$\exists \ m>0 \quad \langle Ah,h
angle \geq m \quad \underbrace{|h|^2}_{\langle Ih,h
angle = \displaystyle\sum_{j=0}^n h_j^2} \quad orall h \in \mathbb{R}^n$$

Dimostrazione lemma in \mathbb{R}^2

Sia
$$A=A^T\in\mathbb{R}^{2 imes 2}$$
 tale che $A=egin{pmatrix} a & b \ b & c \end{pmatrix}>0.$

Sia $h=(r\cos\theta,r\sin\theta)
eq 0$, con $\theta\in[0,2\pi]$, e sia r=|h|.

Calcoliamo $\langle Ah, h \rangle$:

$$\langle Ah,h
angle = ar^2\cos^2 heta + 2br^2\sin heta\cos heta + cr^2\sin^2 heta \ = r^2(a\cos^2 heta + 2b\sin heta\cos heta + c\sin^2 heta) = r^2g(heta) = |h|^2g(heta)$$

Siccome A>0, allora $g(\theta)>0 \quad \forall \theta \in [0,2\pi]$.

Inoltre, siccome $g(\theta)$ è continua su $[0,2\pi]$, allora per il teorema di Weierstrass esiste un valore $\overline{\theta} \in [0,2\pi]$ tale che $g(\theta) \geq \underbrace{g(\overline{\theta})}_{m>0} \quad \forall \theta \in [0,2\pi].$

Siccome $\langle Ah,h\rangle=|h|^2g(\theta)\geq |h|^2m$, possiamo dunque concludere che:

$$\langle Ah,h
angle \geq |h|^2 m$$

Dimostrazione (primo caso)

Sia $f:A o\mathbb{R}$ $A\subseteq\mathbb{R}^n$ e $\overline{x}\in A$, supponiamo che $egin{cases}
abla f(\overline{x})=0\\ Hf(\overline{x})>0 \end{cases}$, dobbiamo dimostrare che \overline{x} è un punto di minimo, ovvero che.

$$\exists \ \delta > 0 \quad f(\overline{x} + h) \geq f(\overline{x}) \quad orall \ h \in B(0, \delta) \ ext{ovvero} \ f(\overline{x} + h) - f(\overline{x}) \geq 0 \quad orall \ h \in B(0, \delta)$$

Approssimiamo $f(\overline{x}+h)-f(\overline{x})$ tramite la formula di Taylor:

$$egin{aligned} f(\overline{x}+h)-f(\overline{x}) &= \langle
abla f(\overline{x}),h
angle + rac{1}{2}\langle Hf(\overline{x})h,h
angle + o(|h|^2) \ &= rac{1}{2}\langle Hf(\overline{x})h,h
angle + o(|h|^2) \end{aligned}$$

Siccome da ipotesi sappiamo che $Hf(\overline{x})>0$, per il lemma abbiamo che $\exists \ m>0 \quad \langle Hf(\overline{x})h,h\rangle \geq m|h|^2 \quad \forall \ h\in \mathbb{R}^n.$

Per l'equivalenza mostrata sopra abbiamo dunque che:

$$f(\overline{x}+h)-f(\overline{x})\geq \frac{m}{2}|h|^2+o(|h^2|)$$

Usando la definizione di o piccolo con $\epsilon=\frac{m}{4}$ sappiamo che $\exists \ \delta>0$ tale che $-\frac{m}{4}\leq \frac{o(|h|^2)}{|h|^2}\leq \frac{m}{4} \ \ \forall \ h\in B(0,\delta)$, dunque, per $|h|<\delta$, abbiamo che $o(|h|^2)\leq \frac{m}{4}|h|^2$ e $o(|h|^2)\geq -\frac{m}{4}|h|^2$. Possiamo dunque procedere affermando che:

$$egin{aligned} f(\overline{x}+h)-f(\overline{x})&\geq rac{m}{2}|h|^2+(-rac{m}{4}|h|^2) &orall\ h\in B(0,\delta) \ \Longrightarrow\ f(\overline{x}+h)-f(\overline{x})&\geq rac{m}{4}|h|^2\geq 0 &orall\ h\in B(0,\delta) \ \Longrightarrow\ f(\overline{x}+h)\geq f(\overline{x}) &orall\ h\in B(0,\delta) \ \Longrightarrow\ \overline{x}\ ext{\`e}\ ext{di minimo locale}. \end{aligned}$$