TEORIA DOS GRAFOS

ÁRVORE GERADORA MÍNIMA (MINIMUM SPANNING TREE - MST)

> PROF. ANDRÉ KAWAMOTO

AGENDA

- Motivação
- O que é uma Árvore Geradora Mínima?
- Algoritmos para MST
 - Prim
 - Kruskal
 - Complexidade dos Algoritmos

MOTIVAÇÃO

- Considere as situações
 - Em um circuito, vários pinos devem ser eletricamente carregados ao mesmo tempo. Preciso conectar esses pinos usando o mínimo de fiação.
 - Em um edifício, desejo interconectar vários pontos numa mesma rede (elétrica, hidráulica ou de dados, por exemplo), usando a menor quantidade de material
 - Em um roteiro turístico numa mata densa preciso de trilhas para que as pessoas possam passar por vários pontos de interesse derrubando menos árvores.
 - Como fazer isso?

UMA SOLUÇÃO

- Represente a situação desejada como um grafo
- Aplique um algoritmo de Árvore Geradora Mínima
- Outros nomes:
 - Minimum spanning Tree (MST)
 - Árvore Geradora de Custo Mínimo
 - Árvore de Extensão Mínima

O QUE É UMA MST?

Uma **Árvore** é um grafo conexo e sem ciclos

Em um grafo qualquer, uma **Árvore Geradora** é um conjunto de arestas que resulta em uma Árvore

Um mesmo grafo pode possuir várias Árvores Geradoras

> Uma Árvore Geradora Mínima é aquela cuja soma dos pesos nas arestas é o menor possível.

ALGORITMOS PARA GERAR MST

- Existem dois algoritmos bastante conhecidos para gerar MSTs
 - Kruskal
 - Prim
- Ambos são Algoritmos Gulosos (Greedy)*
 - Kruskal adição de arestas
 - Prim adição de vértices

^{*}Algoritmos Gulosos tentam resolver um problema fazendo a escolha localmente ótima em cada fase na tentativa de encontrar uma solução ótima global.

ALGORITMO DE KRUSKAL PARA MST

ADIÇÃO DE ARESTAS

ALGORITMO DE KRUSKAL

- Funciona em grafos não-direcionados e conexos
- Uma MST terá (V-1) arestas, sendo V o número de vértices do grafo

- Para reflexão
 - Por que V-1 arestas?
 - Se o grafo não for conexo, faz sentido pensar em uma MST?

ALGORITMO DE KRUSKAL

- 1. Crie um conjunto A, inicialmente vazio
- 2.Considere cada vértice de V uma única árvore (Make-Set)
- 3.Ordene as arestas do grafo em ordem crescente
- 4. Para cada aresta (u-v), em ordem crescente, até atingir (V-1) arestas:
 - 1.Se u e v não pertencem à mesma árvore
 (Find-u ≠ Find-v)
 - 2.Adicione a aresta (u-v) ao conjunto A, combinando as duas árvores em uma só
- 5.Retorna A

Origem	Destino	Peso
А	В	1
D	Е	2
В	Е	3
В	D	4
В	С	5
С	Е	6
А	С	7

Arestas em ordem crescente de valor

Cada vértice do grafo é considerado uma árvore

$$A = \{\}$$

	Origem	Destino	Peso
\	А	В	1
	D	Е	2
	В	Е	3
	В	D	4
	В	С	5
	С	Е	6
	А	С	7
	Λ .		

Aresta de menor peso

$$A = \{(a,b)\}$$

Origem	Destino	Peso
А	В	1
D	Е	2
В	Е	3
В	D	4
В	С	5
С	Е	6
А	С	7

$$A = \{(a,b), (d,e)\}$$

Origem	Destino	Peso
А	В	1
D	Е	2
В	Е	3
В	D	4
В	С	5
С	Е	6
А	С	7

$$A = \{(a,b), (d,e), (b,e)\}$$

	Origem	Destino	Peso
	А	В	1
	D	Е	2
	В	Е	3
	В	D	4
	В	С	5
	С	Е	6
	А	С	7

B e D pertencem à mesma árvore, logo não podemos inserir essa aresta

$$A = \{(a,b), (d,e), (b,e)\}$$

	Origem	Destino	Peso
	А	В	1
	D	Е	2
	В	Е	3
	В	D	4
•	В	С	5
	С	Е	6
	А	С	7

 $A = \{(a,b), (d,e), (b,e), (b,c)\}$

COMPLEXIDADE DO ALGORITMO DE KRUSKAL

COMPLEXIDADE DO ALGORITMO DE KRUSKAL

- 1. Ordenar as arestas pode ser feito em O (E log E) (usando quicksort, p. ex.)
- 2. Após a ordenar, iteramos pelas as arestas (E) e aplicamos um algoritmo* para verificar se suas extremidades pertencem à mesma árvore.
 - A complexidade desse algoritmo é de no máximo O(Log V)
 - Logo, temos O (E Log V) para todas as arestas
- 3. A complexidade geral é: O (E Log E + E Log V), ou seja , o tempo para ordenar as arestas + tempo de aplicar a iteração pelas arestas.
- 4. Em grafos densos, o valor de E pode chegar a V², então O (Log E) e O (Log V) são praticamente a mesma grandeza.

Assim, a Complexidade Geral desse algoritmo é O (E Log E) ou O (V Log V)

ALGORITMO DE PRIM PARA MST

ALGORITMO DE PRIM

- Funciona em grafos não-direcionados e conexos
- Inicia em um vértice aleatório qualquer
- Em vez de adicionar arestas, adiciona vértices
- Abordagem Gulosa

ALGORITMO DE PRIM

- 1. Crie um conjunto mstSet para armazenar os vértices da MST, inicialmente vazio
- 2. Atribua um valor de custo de entrada paraa todos os vértices no grafo. Esse valor inicial é **INFINITO**
- 3. Escolha um vértice inicial qualquer
- 4. Atribua o valor de custo 0 (zero) para o vértice inicial
- 5. Enquanto o mstSet não incluiu todos os vértices
 - a) Escolha um vértice u, adjacente à árvore, que não esteja no mstSet e tenha o menor valor de custo de entrada
 - b) Inclua **u** no mstSet.
 - c) Atualize o valor do custo de entrada para todos os vértices adjacentes a u*.

*Para atualizar esses valores, itere através de todos os vértices adjacentes.

Para cada vértice adjacente \mathbf{v} , se o custo de entrada da aresta $\mathbf{u}-\mathbf{v}$ for menor que o valor anterior de \mathbf{v} , atualize esse valor com o peso da aresta $\mathbf{u}-\mathbf{v}$

$$MST = \{\}$$

Custos

Α	В	С	D	Е
∞	∞	∞	∞	∞

V:

Inicialização

U:

6

vértice inicial

aleatório

Inicialização

Todos os vértices pertencem a MST

 $MST = \{A, B, E, D, C\}$

Custos 0 1 5 2 3

u: C

COMPLEXIDADE DO ALGORITMO DE PRIM

COMPLEXIDADE DO ALGORITMO DE PRIM

- A complexidade desse algoritmo varia de acordo com a estrutura de dados usada para representar o grafo e da implementação
 - Usando Listas de Adjacência, pode chegar a O (E Log V)
 - Usando Matriz de Adjacência, pode chegar a O (V^2)

COMO SABER SE 2 VÉRTICES PERTENCEM À MESMA ÁRVORE?

BÔNUS*

- No algoritmo de Kruskal, é necessário saber se 2 vértices (**u** e **v**) pertencem à mesma árvore.
- Na explicação foi dito que é possível saber isso em tempo O (Log V)
- Se usarmos uma busca em profundidade a partir de ${\bf u}$ e verificar se chegamos em ${\bf v}$, teremos uma operação de tempo O (V+E)
- Existe estrutura de dados que pode ajudar: Disjoint Sets (Conjuntos Disjuntos)
- Essa estrutura está disponível em material adicional

REFERÊNCIAS USADAS NESSE MATERIAL

- FEOFILOFF, P. Algoritmo de Prim. Disponível em: https://www.ime.usp.br/~pf/algoritmos_para_grafos/aulas/prim.html. Acesso em: 24 jun. 2020.
- CORMEN, Thomas. **Desmistificando algoritmos**. Elsevier Brasil, 2017.