

CMOR

version 3.6

Last generated: December 16, 2020

Table of Contents

Overview

Getting started	
CMOR API	11
Acknowledgements	31
PrePARE	32
Installation	
Anaconda	35
Source (GitHub)	38
Examples	
Python	41
Fortran	73
C	88
Controlled Vocabulary (CMIP6)	
Appendix	
CMIP6 table Excerpt	106
CMIP6 required Global Attributes	
CMIP6 User Input	117
Appendix A	120
Appendix B	
Contact us!	
Contact	126

Getting started overview

Design Considerations and Overview

This document describes Version 3 of a software library called "Climate Model Output Rewriter" (CMOR3)[1] (page 9), written in C with access also provided via Fortran 90 and through Python[2] (page 9). CMOR is used to produce CF-compliant[3] (page 9) netCDF[4] (page 9) files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community's standard model experiments (which are referred to here as "MIPs"[5] (page 9) and include, for example, AMIP, PMIP, APE, and IPCC [DN1] scenario runs).

CMOR was not designed to serve as an all-purpose writer of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP model output. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways, but if a group can read its own data, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs. The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for other MIPs.

CMOR output has the following characteristics:

- Each file contains a single primary output variable (along with coordinate/grid variables, attributes and other metadata) from a single model and a single simulation (i.e., from a single ensemble member of a single climate experiment). This method of structuring model output best serves the needs of most researchers who are typically interested in only a few of the many variables in the MIP databases. Data requests can be satisfied by simply sending the appropriate file(s) without first extracting the individual field(s) of interest.
- There is flexibility in specifying how many time slices (samples) are stored in a single file. A single file can contain all the time-samples for a given variable and climate experiment, or the samples can be distributed in a sequence of files.
- Much of the metadata written to the output files is defined in MIP-specific tables of
 information, which in this document are referred to simply as "MIP tables". These
 tables are JSON files that can be read by CMOR and are typically made available
 from MIP web sites. Because these tables contain much of the metadata that is
 useful in the MIP context, they are the key to reducing the programming burden
 imposed on the individual users contributing data to a MIP. Additional tables can be
 created as new MIPs are born.

- For metadata, different MIPs may have different requirements, but these are accommodated by CMOR, within the constraints of the CF convention and as specified in the MIP tables (e.g. CMIP6 MIP tables (https://github.com/PCMDI/cmip6-cmor-tables)).
- CMOR can rely on NetCDF4 See unidata web page (http://www.unidata.ucar.edu/software/netcdf) to write the output files and can take advantage of its compression and chunking capabilities. In that case, compression is controlled with the MIP tables using the shuffle, deflate and deflate level attributes, default values are respectively 0, 0 and 0(disable). It is worth noting that even when using NetCDF4, CMOR3 still produces NETCDF4 CLASSIC formatted output. This allows the file generated to be readable by any application that can read NetCDF3 provided they are re-linked against NetCDF4. When using the NetCDF4 library it is also still possible to write files that can be read through the NetCDF3 library by adding " 3" to the appropriate cmor setup argument (see below). Note: CMOR3 **NOW** output NetCDF4 files by default. For CMIP6, the NetCDF4/NC CLASSIC Model mode is used (and chunking is **NOW** invoked... shuffle and deflation can be invoke on-demand by setting flags in the table. example (https://github.com/PCMDI/cmor/blob/master/Test/ speed test table A#L1691-L1693)).
- CMOR also must be linked against the udunits2 library see
 http://www.unidata.ucar.edu/software/udunits/
 (http://www.unidata.ucar.edu/software/udunits/), which enables CMOR to check
 that the units attribute is correct[6] (page 9). Finally CMOR3 must also be linked
 against the uuid library see http://www.ossp.org/pkg/lib/uuid
 (http://www.ossp.org/pkg/lib/uuid) in order to produce a unique tracking number for
 each file.

Although the CMOR output adheres to a fairly rigid structure, there is considerable flexibility allowed in the design of codes that write data through the CMOR functions. Depending on how the source data are stored, one might want to structure a code to read and rewrite the data through CMOR in several different ways. Consider, for example, a case where data are originally stored in "history" files that contain many different fields, but a single time sample. If one were to process several different fields through CMOR and one wanted to include many time samples per file, then it would usually be more efficient to read all the fields from the single input file at the same time, and then distribute them to the appropriate CMOR output files, rather than to process all the time-samples for a single field and then move on to the next field. If, however, the original data were stored already by field (i.e., one variable per file), then it would make more sense to simply loop through the fields, one at a time. The user is free to structure the conversion program in either of these ways (among others).

The following input files are typically needed by CMOR:

- The "User Input File" (e.g., CMIP6_input_example.json), which provides user-supplied metadata and configuration directives.
- A "controlled vocabulary file" (e.g., "CMIP6_CV.json), which concatenates into a single file most of the CMIP6 controlled vocabularies archived at https://github.com/

WCRP-CMIP/CMIP6_CVs. This file is updated frequently as additional models and institutions register to participate in CMIP6.

- A "CMOR Table" (e.g., CMIP6_Amon.json), which provides for each variable that might be written by CMOR much of the required metatdata. It also provides additional information that CMOR uses to correctly write the data and to enable certain QC checks.
- A "Vertical Coordinate Formula Terms Table" (e.g., CMIP6_formula_terms.json)
- A "Coordinates Table" (e.g., CMIP6_coordinate.json) CMIP6
- CMIP6_grids.json supplements the Coordinates Table with axis information that is sometimes needed in the treatment of unstructured grids.

The files used by CMOR for CMIP6 are archived in https://github.com/PCMDI/cmip6-cmortables/tree/master/Tables

(https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables), and all but the CMIP6_input_example.json file must not be modifed by the user. The CMIP6_input_example.json file must be edited to accurately reflect the output being written by the user (but do not modify the lines of text appearing after the comment line, "#note_CV": " ** The following will be obtained from the CV and do not need to be defined here"). Note that the CMIP6_CV.json file found in https://github.com/PCMDI/cmip6-cmortables/tree/master/Tables

(https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables) is updated whenever new models and institutions are registered to participate in CMIP6.

Converting data with CMOR typically involves the following steps (with the CMOR function names given in parentheses):

- Initialize CMOR and specify where output will be written and how error messages will be handled (cmor setup).
- Provide information directing where output should be placed and identifying the data source, project name, experiment, etc. (cmor_dataset_json). User need to provide a User Input CMOR file to define each attribute.
- Set any additional "dataset" (i.e. global) attributes (cmor_set_cur_dataset function). Note that all CMIP6 attributes can also be defined in the CMOR input user JSON file (cmor dataset json).
- Define the axes (i.e., the coordinate values) associated with each of the dimensions of the data to be written and obtain "handles", to be used in the next step, which uniquely identify the axes (cmor axis).
- In the case of non-Cartesian longitude-latitude grids or for "station data", define the grid and its mapping parameters (cmor grid and cmor set grid mapping)
- Define the variables to be written by CMOR, indicate which axes are associated with each variable, and obtain "handles", to be used in the next step, which uniquely identify each variable (cmor_variable). For each variable defined, this function fills internal table entries containing file attributes passed by the user or obtained from a MIP table, along with coordinate variables and other related information. Thus, nearly all of the file's metadata is collected during this step.

- Write an array of data that includes one or more time samples for a defined variable (cmor_write). This step will typically be repeated to output additional variables or to append additional time samples of data.
- Close one or all files created by CMOR (cmor close)

There is an additional function (cmor_zfactor), which enables one to define metadata associated with dimensionless vertical coordinates.

CMOR was designed to reduce the effort required of those contributing data to various MIPs. An important aim was to minimize any transformations that the user would have to perform on their original data structures to meet the MIP requirements. Toward this end, the code allows the following flexibility (with the MIP requirements obtained by CMOR from the appropriate MIP table and automatically applied):

- The input data can be structured with dimensions in any order and with coordinate values either increasing or decreasing monotonically; CMOR will rearrange them to meet the MIP's requirements before writing out the data.
- The input data and coordinate values can be provided in an array declared to be whatever "type" is convenient for the user (e.g., in the case of coordinate data, the user might pass type "real" values (32-bit floating-point numbers on most platforms) even though the output will be written type double (64-bit IEEE floating-point); CMOR will transform the data to the required type before writing.
- The input data can be provided in units different from what is required by a MIP. If those units can be transformed to the correct units using the udunits (version 2) software (see udunits)[http://www.unidata.ucar.edu/software/udunits/], then CMOR performs the transformation before writing the data. Otherwise, CMOR will return an error. Time units are handled via the built-in cdtime interface [7] (page 9).
- So-called "scalar dimensions" (sometimes referred to as "singleton dimensions") are automatically inserted by CMOR. Thus, for example, the user can provide surface air temperature (at 2 meters) as a function of longitude, latitude, and time, and CMOR adds as a "coordinate" attribute the "height" dimension, consistent with the metadata requirements of CF. If the model output does not conform to the MIP requirements (e.g., carries temperature at 1.5 m instead of 2 m), then the user can override the MIP table specifications.

The code does not, however, include a capability to interpolate data, either in the vertical or horizontally. If data originally stored on model levels, is supposed to be stored on standard pressure levels, according to MIP specifications, then the user must interpolate before passing the data to CMOR.

The output resulting from CMOR is "self-describing" and includes metadata summarized below, organized by attribute type (global, coordinate, or variable attributes) and by its source (specified by the user or in a MIP table, or generated by CMOR).

Global attributes typically provided by the MIP table or generated by CMOR:

- *title*, identification of the project, experiment, and table.
- Conventions, ('CF-1.4')

- *history*, any user-provided history along with a "timestamp" generated by CMOR and a statement that the data conform to both the CF standards and those of a particular MIP.
- activity_id, scientific project that inspired this simulation (e.g., CMIP6)
- *table_id*, MIP table used to define variable.
- data specs version Base on the latest CMIP6-Datarequest latest database version.
- *mip_era*, define what cycle of CMIP dictates the experiment and data specificiation.
- experiment, a long name title for the experiment.
- realm(s) to which the variable belongs (e.g., ocean, land, atmosphere, etc.).
- *tracking_id*, a unique identification string generated by uuid, which is useful at least within the ESG distributed data archive.
- cmor_version, version of the library used to generate the files.
- frequency, the approximate time-sampling interval for a time-series of data.
- creation date, the date and time (UTZ) that the file was created.
- product, a descriptive string that distinguishes among various model data products.

Global attributes typically provided by the user in a call to a CMOR function:

- institution, identifying the modeling center contributing the output.
- *institute_id*, a shorter identifying name of the modeling center (which would be appropriate for labeling plots in which results from many models might appear).
- source, identifying the model version that generated the output.
- contact, providing the name and email of someone responsible for the data
- source id, an acronym that identifies the model used to generate the output.
- experiment id, a short name for the experiment.
- *history*, providing an "audit trail" for the data, which will be supplemented with CMOR-generated information described above.
- references, typically containing documentation of the model and the model simulation.
- *comment*, typically including initialization and spin-up information for the simulation.
- realization_index, an integer distinguishing among simulations that differ only from different equally reasonable initial conditions. This number should be greater than or equal to 1.
- *initialization_index*, an integer distinguishing among simulations that differ only in the method of initialization. This number should be greater than or equal to 1.
- physics_index, an integer indicating which of several closely related physics versions of a model produced the simulation.

- parent_experiment_id, a string indicating which experiment this branches from. For CMIP6 this should match the short name of the parent experiment id.
- parent_experiment_rip, a string indicating which member of an ensemble of parent experiment runs this simulation branched from.
- branch_time, time in parent experiment when this simulation started (in the units of the parent experiment).

Note: additional global attributes can be added by the user via the cmor set cur dataset attribute function (see below).

Coordinate attributes typically provided by a MIP table or generated by CMOR:

- standard name, as defined in the CF standard name table.
- *units*, specifying the units for the coordinate variable.
- axis, indicating whether axis is of type x, y, z, t, or none of these.
- bounds, (when appropriate) indicating where the cell bounds are stored.
- *positive*, (when appropriate) indicating whether a vertical coordinate increases upward or downward.
- formula_terms, (when appropriate) providing information needed to transform from a dimensionless vertical coordinate to the actual location (e.g., from sigma-level to pressure).
- Coordinate or grid mapping attributes typically provided by the user in a call to a CMOR function:*
- calendar, (when appropriate) indicating the calendar type assumed by the model.
- grid_mapping_name and the names of various mapping parameters, when necessary to describe grids other than lat-lon. See CF conventions at: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#appendix-grid-mappings
 (http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#appendix-grid-mappings)
- Variable attributes typically provided by a MIP table or generated by CMOR:*
- standard name as defined in the CF standard name table.
- *units*, specifying the units for the variable.
- *long name*, describing the variable and useful as a title on plots.
- missing value and FillValue, specifying how missing data will be identified.
- *cell_methods*, (when appropriate) typically providing information concerning calculation of means or climatologies, which may be supplemented by information provided by the user.
- *cell_measures*, when appropriate, indicates the names of the variables containing cell areas and volumes.

- *comment*, providing clarifying information concerning the variable (e.g., whether precipitation includes both liquid and solid forms of precipitation).
- history, indicating what CMOR has done to the user supplied data (e.g., transforming its units or rearranging its order to be consistent with the MIP requirements)
- *coordinates*, (when appropriate) supplying either scalar (singleton) dimension information or the name of the labels containing names of geographical regions.
- flag values and flag meanings
- modeling_realm, providing the realm associated to the variable (ocean, land, aerosol, Sealce, Landlce, ...)

Variable attributes typically provided by the user in a call to a CMOR function:

- grid mappingi
- original_name, containing the name of the variable as it is known at the user's home institution.i*
- original units, the units of the data passed to CMOR.
- *history*, (when appropriate) information concerning processing of the variable prior to sending it to CMOR. (This information may be supplemented by further history information generated by CMOR.)
- *comment*, (when appropriate) providing miscellaneous information concerning the variable, which will supplement any comment contained in the MIP table.

As is evident from the above summary of metadata, a substantial fraction of the information is defined in the MIP tables, which explains why writing MIP output through CMOR is much easier than writing data without the help of the MIP tables. Besides the attribute information, the MIP tables also include information that controls the structure of the output and allows CMOR to apply some rudimentary quality assurance checks. Among this ancillary information in the MIP tables is the following:

- The direction each coordinate should be stored when it is output (i.e., either in order of increasing or decreasing values). The user need not be concerned with this since, if necessary, CMOR will reorder the coordinate values and the data.
- The acceptable values for coordinates (e.g., for a pressure coordinate axis, for example, perhaps the WCRP standard pressure levels).
- The acceptable values for various arguments passed to CMOR functions (e.g., acceptable calendars, experiment i.d.'s, etc.)
- The "type" of each output array (whether real, double precision, or integer). The user need not be concerned with this since, if necessary, CMOR will convert the data to the specified type.
- The order of the dimensions for output arrays. The user need not be concerned with this since, if necessary, CMOR will reorder the data consistent with the specified dimension order.

- The normally applied values for "scalar dimensions" (i.e., "singleton dimensions").
- The range of acceptable values for output arrays.
- The acceptable range for the spatial mean of the absolute value of all elements in output arrays.
- The minimal global attributes required.

[1] CMOR is pronounced "C-more", which suggests that CMOR should enable a wide community of scientists to "see more" climate data produced by modeling centers around the world. CMOR also reminds us of Ecinae Corianus, the revered ancient Greek scholar, known to his friends as "Seymour". Seymour spent much of his life translating into Greek nearly all the existing climate data, which had originally been recorded on largely inscrutable hieroglyphic and cuneiform tablets. His resulting volumes, organized in a uniform fashion and in a language readable by the common scientists of the day, provided the basis for much subsequent scholarly research. Ecinae Corianus was later indirectly honored by early inhabitants of the British Isles who reversed the spelling of his name and used the resulting string of letters, grouped differently, to form new words referring to the major elements of climate.

- [2] CMOR1 was written in Fortran 90 with access also provided through Python.
- [3] See http://www.cgd.ucar.edu/cms/eaton/cf-metadata
- [4] See http://my.unidata.ucar.edu/content/software/netcdf/
- [5] "MIP" is an acronym for "model intercomparison project".
- [6] CMOR1 was linked to an earlier version of the netCDF library and udunits was optional.
- [7] Cdtime is now built into CMOR. Therefore linking against cdms is no longer necessary.

Preliminary notes

In the following, all arguments should be passed using keywords (to improve readability and flexibility in ordering the arguments). Those arguments appearing below that are followed by an equal sign may be optional and, if not passed by the user, are assigned the default value that follows the equal sign. The information in a MIP-specific input table determines whether or not an argument shown in brackets is optional or required, and the table provides MIP-specific default values for some parameters. All arguments not in brackets and not followed by an equal sign are always required.

Three versions of each function are shown below. The first one is for Fortran (green text) the second for C (blue text), and the third for Python (orange text). In the following, text that applies to only one of the coding languages appears in the appropriate color.

Some of the arguments passed to CMOR (e.g., names of variables and axes are only unambiguously defined in the context of a specific CMOR table, and in the Fortran version of the functions this is specified by one of the function arguments, whereas in the C and Python versions it is specified through a call to cmor load table and cmor set table.

All functions are type "integer". If a function results in an error, an "exception" will be raised in the Python version (otherwise None will be returned), and in either the Fortran or C versions, the error will be indicated by the integer returned by the function itself. In C an integer other than 0 will be returned, and in Fortran errors will result in a negative integer (except in the case of cmor grid, which will return a positive integer).

If no error is encountered, some functions will return information needed by the user in subsequent calls to CMOR. In almost all cases this information is indicated by the value of a single integer that in Fortran and Python is returned as the value of the function itself, whereas in C it is returned as an output argument). There are two cases in the Fortran version of CMOR, however, when a string argument may be set by CMOR (cmor_close and cmor_create_output_path). These are the only cases when the value of any of the Fortran function's arguments might be modified by CMOR.

CMOR Application program interface (API)

cmor_setup()

Fortran: error_flag = cmor_setup(inpath='./', netcdf_file_action=CMOR_PRESERVE, set verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile, create subdirectories)

C: error_flag = cmor_setup(char *inpath, int *netcdf_file_action, int *set_verbosity, int *exit control, char *logfile, int *create subdirectories)

Python: setup(inpath='.', netcdf_file_action=CMOR_PRESERVE, set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile=None, create subdirectories=1)

Description: Initialize CMOR, specify path to MIP table(s) that will be read by CMOR, specify whether existing output files will be overwritten, and specify how error messages will be handled

Arguments:

- **[inpath]** = a character string specifying the path to the directory where the needed MIP-specific tables reside.
- [netcdf_file_action] = controls handling of existing netCDF files. If the value passed is CMOR_REPLACE, a new file will be created; any existing file with the same name as the one CMOR is trying to create will be overwritten. If the value is CMOR_APPEND, an existing file will be appended; if the file does not exist, it will be created. If the value is CMOR_PRESERVE, a new file will be created unless a file by the same name already exists, in which case the program will error exit.[8] To generate a NetCDF file in the "CLASSIC" NetCDF3 format, a "_3" should be appended to the above parameters (e.g., CMOR_APPEND would become CMOR_APPEND_3). To generate a NetCDF file in the "CLASSIC" NetCDF4 format, a "_4" should be appended to the above parameters (e.g., CMOR_APPEND would become CMOR_APPEND_4), this allows the user to take advantage of NetCDF4 compression and chunking capabilities. The default values (no underscore) are aliased to the 4 values (satisfying the requirements of CMIP6).
- [set_verbosity] controls how informational messages and error messages generated by CMOR are handled. If set_verbosity=CMOR_NORMAL, errors and warnings will be sent to the standard error device (typically the user's screen). If verbosity=CMOR_QUIET, then only error messages will be sent (and warnings will be suppressed).
- **[exit control]** determines if errors will trigger program to exit:
- CMOR EXIT ON MAJOR = stop only on critical error;
- CMOR NORMAL = stop only if severe errors;

- CMOR EXIT ON WARNING = stop even after minor errors detected.
- [logfile] where CMOR will write its messages default is "standard error" (stderr).
- [create_subdirectories] do we want to create the correct path subdirectory structure or simply dump the files wherever cmor_dataset will point to.

Returns upon success:

• Fortran: 0

• C: 0

Python: None

cmor_dataset_json()

Fortran: cmor_dataset_json(filename)

C: cmor_dataset_json(char *name)

Python: dataset json(name)

Description: This function provides information to CMOR that is common to all output files that will be written. The "dataset" defined by this function refers to some or all of the output from a single model simulation (i.e., output from a single realization of a single experiment from a single model). Only one dataset can be defined at any time, but the dataset can be closed (by calling cmor_close()), and then another dataset can be defined by calling cmor_dataset. Note that after a new dataset is defined, all axes and variables must be defined; axes and variables defined earlier are not associated with the new dataset.

Arguments:

 name: JSON file which contains all information needed by CMOR in the form of key:value. Here is an example: CMIP6_input_example.json (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/ CMIP6_input_example.json)

Returns upon success:

Fortran: 0

• C: 0

• Python: 0

cmor set cur dataset attribute()

```
Fortran: error flag = cmor set cur dataset attribute(name, value)
```

C: error flag = cmor set cur dataset attribute(char *name, char *value, int optional)

Python: set cur dataset attribute(name, value)

Description: Associate a global attribute with the current dataset. In CMIP5, this function can be called to set, for example, "institute id", "initialization" and "physics".

Arguments:

- **name** = name of the global attribute to set.
- **value** = character string containing the value of this attribute.
- **optional** = an argument that is ignored. (Internally, CMOR calls this function and needs this argument.)

Returns upon success:

- Fortran: 0
- C: 0
- Python: None

```
cmor get cur dataset attribute()
```

```
Fortran: error_flag = cmor_get_cur_dataset_attribute(name,result)
```

```
C: error flag = cmor get cur dataset attribute(char *name, char *result)
```

```
Python: result = get cur dataset attribute(name)
```

Description: Retrieves a global attribute associated with the current dataset.

Arguments:

- name = name of the global attribute to retrieve.
- **result** = string (or pointer to a string), which is returned by the function and contains the retrieved global attribute (not for Python).

Returns upon success:

- Fortran: 0
- C: 0
- Python: None

```
cmor has cur dataset attribute()
```

```
Fortran: error_flag = cmor_has_cur_dataset_attribute(name)
```

C: error_flag = cmor_has_cur_dataset_attribute(char *name)

```
Python: error flag = has cur dataset attribute(name)
```

Description: Determines whether a global attribute is associated with the current dataset.

Arguments:

• **name** = name of the global attribute of interest.

Returns:

- a negative integer if an error is encountered; otherwise returns 0.
- 0 upon success
- True if the attribute exists, False otherwise.

cmor load table()

Fortran: table id = cmor load table(table)

C: error flag = cmor load table(char *table, int *table id)

Python: table id = load table(table)

Description: Loads a table and returns a "handle" (table_id) to use later when defining CMOR components. CMOR will look for the table first following the path as specified by the "table" argument passed to this function. If it doesn't find a file there it will prepend the outpath defined in calling cmor_dataset. If it still doesn't find it, it will use the "prefix" where the library CMOR is to be installed (from configure time) followed by share (e.g /usr/local/cmor/share). If it stills fails an error will be raised.

cmor set table()

Fortran: cmor set table(table id)

C: error flag = cmor set table(int table id)

Python: table id = set table(table id)

Description: Sets the table referred to by table_id as the table to obtain needed information when defining CMOR components (variables, axes, grids, etc...).

cmor_axis()

Fortran: axis_id = cmor_axis([table], table_entry, units, [length], [coord_vals], [cell_bounds], [interval])

C: error_flag = cmor_axis(int *axis_id, char *table_entry, char *units, int length, void *coord vals, char type, void *cell bounds, int cell bounds ndim, char *interval)

Python: axis_id = axis(table_entry, length=??, coord_vals=None, units=None, cell bounds=None, interval=None)

Description: Define an axis and pass the coordinate values associated with one of the dimensions of the data to be written. This function returns a "handle" (axis_id) that uniquely identifies the axis to be written. The axis_id will subsequently be passed by the user to other CMOR functions. The cmor_axis function will typically be repeatedly invoked to define all axes. The axis specified by the table_entry argument must be found in the currently "set" CMOR table, as specified by the cmor_load_table and cmor_set_table

functions, or as an option, it can be provided in the Fortran version (for backward compatibility) by the now deprecated "table" keyword argument. There normally is no need to call this function in the case of a singleton (scalar) dimension unless the MIP recommended (or required) coordinate value (or cell_bounds) are inconsistent with what the user can supply, or unless the user wants to define the "interval" attribute. When defining a time axis in CMOR "Append mode" (in case the file already existed before a call to cmor_setup), time values and bounds should be set to NULL and instead be passed via cmor write when writing data.

Arguments:

- **[table]** = character string containing the filename of the MIP-specific table where the axis defined here appears. (e.g., 'CMIP5_table_Amon', 'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.). In CMOR2 this is an optional argument and is deprecated because the table can be specified through the cmor load table and cmor set table functions.
- axis_id = the "handle": a positive integer returned by CMOR, which uniquely identifies the axis stored in this call to cmor_axis and subsequently can be used in calls to cmor write.
- **table_entry** = name of the axis (as it appears in the MIP table) that will be defined by this function. units = units associated with the coordinates passed in coord_vals and cell_bounds. (These are the units of the user's coordinate values, which, if CMOR is built with udunits (as is required in version 2), may differ from the units of the coordinates written to the netCDF file by CMOR. For non-standard calendars (e.g., models with no leap year), conversion of time values can be made only if CMOR is built with CDMS.) These units must be recognized by udunits or must be identical to the units specified in the MIP table. In the case of a dimensionless vertical coordinate or in the case of a non-numerical axis (like geographical region), either set units='none', or, optionally, set units='1'.
- **[length]** = integer specifying the number of elements that CMOR should extract from the coord_vals array (normally length will be the size of the array itself). For a simple "index axis" (i.e., an axis without coordinate values), this specifies the length of the dimension. In the Fortran and Python versions of the function, this argument is not always required (except in the case of a simple index axis); if omitted "length" will be the size of the coord vals array,
- **[coord_vals]** = 1-d array (single precision float, double precision float, or, for labels, character strings) containing coordinate values, ordered consistently with the data array that will be passed by the user to CMOR through function cmor_write (see documentation below). This argument is required except if: 1) the axis is a simple "index axis" (i.e., an axis without coordinate values), or 2) for a time coordinate, the user intends to pass the coordinate values when the cmor_write function is called. Note that the coordinate values must be ordered monotonically, so, for example, in the case of longitudes that might have the values, 0., 10., 20, ... 170., 180., 190., 200., ... 340., 350., passing the (equivalent) values, 0., 10., 20, ... 170., 180., -170., -160., ... -20., -10. is forbidden. In the case of time-coordinate values, if cell bounds are also passed, then CMOR will first check that each coordinate value is not outside its associated cell bounds; subsequently, however,

the user-defined coordinate value will be replaced by the mid-point of the interval defined by its bounds, and it is this value that will be written to the netCDF file. In the case of character string coord_vals there are no cell_bounds, but for the C version of the function, the argument cell_bounds_ndim is used to specify the length of the strings in the coord_val array (i.e., the array will be dimensioned [length][cell_bounds_ndim]).

- **type** = type of the coord_vals/bnds passed, which can be 'd' (double), 'f' (float), 'l' (long) or 'i' (int).
- [cell_bounds] = 1-d or 2-d array (of the same type as coord_vals) containing cell bounds, which should be in the same units as coord_vals (specified in the "units" argument above) and should be ordered in the same way as coord_vals. In the case of a 1-d array, the size is one more than the size of coord_vals and the cells must be contiguous. In the case of a 2-d array, it is dimensioned (2, n) where n is the size of coord_vals (see CF standard document, http://www.cgd.ucar.edu/cms/eaton/cfmetadata, for further information). This argument may be omitted when cell bounds are not required. It must be omitted if coord vals is omitted.
- **cell_bounds_ndim** = This argument only appears in the the C version of this function. Except in the case of a character string axis, it specifies the rank of the cell_bounds array: if 1, the bounds array will contain n+1 elements, where n is length of coords and the cells must be contiguous, whereas if 2, the dimension will be (n,2) in C order. Pass 0 if no cell_bounds values have been passed. In the special case of a character string axis, this argument is used to specify the length of the strings in the coord_val array (i.e., the array will be dimensioned [length] [cell_bounds_ndim]).
- **[interval]** = Supplemental information that will be included in the cell_methods attribute, which is typically defined for the time axis in order to describe the sampling interval. This string should be of the form: "value unit comment: anything" (where "comment:" and anything may always be omitted). For monthly mean data sampled every 15 minutes, for example, interval = "15 minutes".

Returns:

- Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the "handle") uniquely identifying the axis ..
- C: 0 upon success.
- Python: upon success, a positive integer (the "handle") uniquely identifying the axis, or if an error is encountered an exception is raised.

cmor grid()

Fortran: grid_id = cmor_grid(axis_ids, latitude, longitude, [latitude_vertices], [longitude vertices], [area])

C: error_flag = cmor_grid(int *grid_id, int ndims, int *axis_ids, char type, void *latitude, void *longitude, int nvertices, void *latitude vertices, void *longitude vertices, void *area)

Python: grid_id = grid(axis_ids, latitude, longitude, latitude_vertices=None, longitude vertices=None, area=None)

Description: Define a grid to be associated with data, including the latitude and longitude arrays. The grid can be structured with up to 6 dimensions. These dimensions, which may be simple "index" axes, must be defined via cmor_axis prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely identifies the grid (and its data/metadata) to be written. The grid_id will subsequently be passed by the user to other CMOR functions. The cmor_grid function will typically be invoked to define each grid necessary for the experiment (e.g ocean grid, vegetation grid, atmosphere grid, etc...). There is no need to call this function in the case of a Cartesian lat/lon grid. In this case, simply define the latitude and longitude axes and pass their id's ("handles") to cmor_variable.

Arguments:

- **grid_id** = the "handle": a positive integer returned by CMOR, which uniquely identifies the grid defined in this call to CMOR and subsequently can be used in calls to CMOR.
- **ndims** = number of dimensions needed to define the grid. Namely the number of elements from axis_ids that will be used.
- axis_ids = array containing the axis_s returned by cmor_axis when defining the axes constituing the grid.
- **latitude** = array containing the grid's latitude information (ndim dimensions)
- **longitude** = array containing the grid's longitude information (ndim dimensions)
- **[latitude_vertices]** = array containing the grid's latitude vertices information (ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of the array (i.e first one in Fortran, last one in C, last one in Python)
- [longitude_vertices] = array containing the grid's longitude vertices information (ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of the array (i.e first one in Fortran, last one in C, last one in Python)
- [area] = array containing the grid's area information (ndim)

Returns:

- Fortran: a positive integer if an error is encountered; otherwise returns a negative integer (the "handle") uniquely identifying the grid.
- C: 0 upon success.
- Python: upon success, a positive integer (the "handle") uniquely identifying the axis, or if an error is encountered an exception is raised.

cmor_set_grid_mapping()

Fortran: error_flag = cmor_set_grid_mapping(grid_id, mapping_name, parameter_names, parameter_values, parameter_units)

C: error_flag = cmor_set_grid_mapping(int grid_id, char *mapping_name, int nparameters, char **parameter_names, int lparameters, double parameter_values[], char **parameter units, int lunits)

Python: set_grid_mapping(grid_id, mapping_name, parameter_names, parameter values=None, parameter units=None)

Description: Define the grid mapping parameters associated with a grid (see CF conventions for more info on which parameters to set). Check validity of parameter names and units. Additional mapping names and parameter names can be defined via the MIP table.

Arguments:

- **grid_id** = the "handle" returned by a previous call to cmor_grid, indicating which grid the mapping parameters should be associated with.
- **mapping_name** = name of the mapping (see CF conventions). This name dictates which parameters should be set and for some parameters restricts their possible values or range. New mapping names can be added via MIP tables.
- **nparameters** = number of parameters set.
- parameter_names = array (list for Python) of strings containing the names of the parameters to set. In the case of "standard_parallel", CF allows either 1 or 2 parallels to be specified (i.e. the attribute standard_parallel may be an array of length 2). In the case of 2 parallels, CMOR requires the user to specify these as separate parameters, named standard_parallel_1 and standard_parallel_2, but then the two parameters will be stored in an array, consistent with CF. In the case of a single parallel, the name standard_parallel should be specified. In the C version of this function, parameter_names is declared of length [nparameters][lparameters], where lparameters in the length of each string array element (see below). In Python parameter_names can be defined as a dictionary containing the keys that represent the parameter_names. The value associated with each key can be either a list [float, str] (or [str, float]) representing the value/units of each parameter, or another dictionary containing the keys "value" and "units". If these conditions are fulfilled, then parameter_units and parameter_values are optional and would be ignored if passed.
- **Iparameters** = length of each element of the string array. If, for example, parameter_names includes 5 parameters, each 24 characters long (i.e., it is declared [5][24]), you would pass lparameters=24.
- **parameter_values** = array containing the values associated with each parameter. In Python this is optional if parameter_names is a dictionary containing the values and units.
- parameter_units = array (list for Python) of string containing the units of the
 parameters to set. In C parameter_units is declared of length [nparameters][lunits].
 In Python it is optional if parameter_names is a dictionary containing the value and
 units.

• **lunits** = length of each elements of the units string array (e.g., if parameters_units is declared [5][24], you would pass 24 because each elements has 24 characters).

Returns upon success:

• Fortran: 0

• C: 0

Python: None

cmor time varying grid coordinate()

Fortran: coord_var_id = cmor_time_varying_grid_coordinate(grid_id, table_entry, units, missing_value)

C: error_flag = cmor_time_varying_grid_coordinate(int *coord_var_id, int grid_id, char *table entry, char *units, char type, void *missing, [int *coordinate type])

Python: coord_var_id = time_varying_grid_coordinate(grid_id, table_entry, units, [missing value])

Description: Define a grid to be associated with data, including the latitude and longitude arrays. Note that in CMIP5 this function must be called to store the variables called for in the cf3hr MIP table. The grid can be structured with up to 6 dimensions. These dimensions, which may be simple "index" axes, must be defined via cmor_axis prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely identifies the grid (and its data/metadata) to be written. The grid_id will subsequently be passed by the user to other CMOR functions. The cmor_grid function will typically be invoked to define each grid necessary for the experiment (e.g., ocean grid, vegetation grid, atmosphere grid, etc.). There is no need to call this function in the case of a Cartesian lat/lon grid. In this case, simply define the latitude and longitude axes and pass their id's ("handles") to cmor_variable.

Arguments:

- **coord_var_id** = the "handle": a positive integer returned by this function, which uniquely identifies the variable and can be used in subsequent calls to CMOR.
- grid id = the value returned by cmor grid when the grid was created.
- **table_entry** = name of the variable (as it appears in the MIP table) that this function defines.
- **units** = units of the data that will be passed to CMOR by function cmor_write. These units may differ from the units of the data output by CMOR. Whenever possible, this string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/software/udunits/). In the case of dimensionless quantities the units should be specified consistent with the CF conventions, so for example: percent, units='%'; for a fraction, units='1'; for parts per million, units='1e-6', etc.).

- **type** = type of the missing_value, which must be the same as the type of the array that will be passed to cmor_write. The options are: 'd' (double), 'f' (float), 'l' (long) or 'i' (int).
- [missing_value] = scalar that is used to indicate missing data for this variable. It must be the same type as the data that will be passed to cmor_write. This missing_value will in general be replaced by a standard missing_value specified in the MIP table. If there are no missing data, and the user chooses not to declare the missing value, then this argument may be omitted.
- [coordinate type] = place holder for future implementation, unused, pass NULL

Returns:

- Fortran: a positive integer if an error is encountered; otherwise returns a negative integer (the "handle") uniquely identifying the grid.
- C: 0 upon success.
- Python: upon success, a positive integer (the "handle") uniquely identifying the axis, or if an error is encountered an exception is raised.

cmor zfactor()

Fortran: zfactor_id = cmor_zfactor(zaxis_id, zfactor_name, [axis_ids], [units], zfactor_values, zfactor_bounds)

C: error_flag = cmor_zfactor (int *zfactor_id, int zaxis_id, char *zfactor_name, char *units, int ndims, int axis ids[], char type, void *zfactor values, void *zfactor bounds)

Python: zfactor_id = zfactor(zaxis_id, zfactor_name, units, axis_ids, data_type, zfactor values=None, zfactor bounds=None)

Description: Define a factor needed to convert a non-dimensional vertical coordinate (model level) to a physical location. For pressure, height, or depth, this function is unnecessary, but for dimensionless coordinates it is needed. In the case of atmospheric sigma coordinates, for example, a scalar parameter must be defined indicating the top of the model, and the variable containing the surface pressure must be identified. The parameters that must be defined for different vertical dimensionless coordinates are listed in Appendix D of the CF convention document (http://www.cgd.ucar.edu/cms/eaton/cfmetadata). Often bounds for the zfactors will be needed (e.g., for hybrid sigma coordinates, "A's" and "B's" must be defined both for the layers and, often more importantly, for the layer interfaces). This function must be invoked for each z-factor required.

Arguments:

- **zfactor_id** = the "handle": a positive integer returned by this function which uniquely identifies the grid defined in this call to CMOR and can subsequently be used in calls to CMOR.
- **zaxis_id** = an integer ("handle") returned by cmor_axis (which must have been previously called) indicating which axis requires this factor.

- **zfactor_name** = name of the z-factor that will be defined by this function. This should correspond to an entry in the MIP table.
- [axis_ids] = an integer array containing the list of axis_id's (individually defined by calls to cmor_axis), which the z-factor defined here is a function of (e.g. for surface pressure, the array of i.d.'s would usually include the longitude, latitude, and time axes.) The order of the axes must be consistent with the array passed as param_values. If the z-factor parameter is a function of a single dimension (e.g., model level), the single axis_id should be passed as an array of rank one and length 1, not as a scalar. If the parameter is a scalar, then this parameter may be omitted. If this parameter is carried on a non-cartesian latitude-longitude grid, then the grid_id should be passed instead of axis_ids, for latitude/longitude. Again if axis_ids collapses to a scalar, it should be passed as an array of rank one and length 1, not as a scalar.
- **[units]** = units associated with the z-factor passed in zfactor_values and zfactor_bounds. (These are the units of the user's z-factors, which may differ from the units of the z-factors written to the netCDF file by CMOR.) . These units must be recognized by udunits or must be identical to the units specified in the MIP table. In the case of a dimensionless z-factors, either omit this argument, or set units='', or set units='1'.
- **type** = type of the zfactor_values and zfactor_bounds (if present) passed to this function. This can be 'd' (double), 'f' (float), 'l' (long), 'i' (int), or 'c' (char).
- **[zfactor_values]** = z-factor values associated with dimensionless vertical coordinate identified by zaxis_id. If this z-factor is a function of time (e.g., surface pressure for sigma coordinates), the user can omit this argument and instead store the z-factor values by calling cmor_write. In that case the cmor_write argument, "var_id", should be set to zfactor_id (returned by this function) and the argument, "store_with", should be set to the variable id of the output field that requires zfactor as part of its metadata. When many fields are a function of the (dimensionless) model level, cmor_write will have to be called several times, with the same zfactor_id, but with different variable ids. If no values are passed, omit this argument.
- **[zfactor_bounds]** = z-factor values associated with the cell bounds of the vertical dimensionless coordinate. These values should be of the same type as the zfactor_values (e.g., if zfactor_values is double precision, then zfactor_bounds must also be double precision). If no bounds values are passed, omit this argument or set zfactor = 'none'. This is a ONE dimensional array of length nlevs+1.

Returns:

- Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the "handle") uniquely identifying the z-factor.
- C: 0 upon success.
- Python: upon success, a positive integer (the "handle") uniquely identifying the z-factor, or if an error is encountered an exception is raised.

cmor variable()

Fortran: var_id = cmor_variable([table], table_entry, units, axis_ids, [missing_value], [tolerance], [positive], [original_name], [history], [comment])

C: error_flag = int cmor_variable(int var_id, char *table_entry, char *units, int ndims, int axis_ids[], char type, void *missing, double *tolerance, char *positive, charoriginal_name, char *history, char *comment)

Python: var_id = variable(table_entry, units, axis_ids, data_type='f', missing_value=None, tolerance = 1.e-4, positive=None, original name=None, history=None, comment=None)

Description: Define a variable to be written by CMOR and indicate which axes are associated with it. This function prepares CMOR to write the file that will contain the data for this variable. This function returns a "handle" (var_id), uniquely identifying the variable, which will subsequently be passed as an argument to the cmor_write function. The variable specified by the table_entry argument must be found in the currently "set" CMOR table, as specified by the cmor_load_table and cmor_set_table functions, or as an option, it can be provided in the Fortran version (for backward compatibility) by the now deprecated "table" keyword argument. The cmor_variable function will typically be repeatedly invoked to define other variables. Note that backward compatibility was kept with the Fortran-only optional "table" keyword. But it is now recommended to use cmor_load_table and cmor_set_table instead (and necessary for C/Python).

Arguments:

- **var_id** = the "handle": a positive integer returned by this function, which uniquely identifies the variable and can be used in subsequent calls to CMOR.
- **[table]** = character string containing the filename of the MIP-specific table where table_entry (described next) can be found (e.g., "CMIP5_table_amon", 'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.) In CMOR2 this is an optional argument and is deprecated because the table can be specified through the cmor load table and cmor set table functions.
- **table_entry** = name of the variable (as it appears in the MIP table) that this function defines.
- **units** = units of the data that will be passed to CMOR by function cmor_write. These units may differ from the units of the data output by CMOR. Whenever possible, this string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/software/udunits/). In the case of dimensionless quantities the units should be specified consistent with the CF conventions, so for example: percent, units='%'; for a fraction, units='1'; for parts per million, units='1e-6', etc.).
- ndims = number of axes the variable contains (i.e., the rank of the array), which in fact is the number of elements in the axis_ids array that will be processed by CMOR.
- **axis_ids** = 1-d array containing integers returned by cmor_axis, which specifies, via their "handles" (i.e., axis_ids), the axes associated with the variable that this function defines. These handles should be ordered consistently with the data that

will be passed to CMOR through function cmor_write (see documentation below). If the size of the 1-d array is larger than the number of dimensions, the 'unused' dimension handles must be set to 0. Note that if the handle of a single axis is passed, it must not be passed as a scalar but as a rank 1 array of length 1. Scalar ("singleton") dimensions defined in the MIP table may be omitted from axis_ids unless they have been explicitly redefined by the user through calls to cmor_axis. A "singleton" dimension that has been explicitly defined by the user should appear last in the list of axis_ids if the array of data passed to cmor_write for this variable actually omits this dimension; otherwise it should appear consistent with the position of the axis in the array of data passed to cmor_write. In the case of a non-Cartesian grid, replace the values of the grid specific axes (representing the lat/lon axes) with the single grid id returned by cmor grid.

- **type** = type of the missing_value, which must be the same as the type of the array that will be passed to cmor_write. The options are: 'd' (double), 'f' (float), 'l' (long) or 'i' (int).
- [missing_value] = scalar that is used to indicate missing data for this variable. It must be the same type as the data that will be passed to cmor_write. This missing_value will in general be replaced by a standard missing_value specified in the MIP table. If there are no missing data, and the user chooses not to declare the missing value, then this argument may be omitted or assigned the value 'none' (i.e., missing_value='none').
- **[tolerance]** = scalar (type real) indicating fractional tolerance allowed in missing values found in the data. A value will be considered missing if it lies within ±tolerance*missing_value of missing_value. The default tolerance for real and double precision missing values is 1.0e-4 and for integers 0. This argument is ignored if the missing_value argument is not present.
- **[positive]** = 'up' or 'down' depending on whether a user-passed vertical energy (heat) flux or surface momentum flux (stress) input to CMOR is positive when it is directed upward or downward, respectively. This information will be used by CMOR to determine whether a sign change is necessary to make the data consistent with the MIP requirements. This argument is required for vertical energy and salt fluxes, for "flux correction" fields, and for surface stress; it is ignored for all other variables.
- **[original_name]** = the name of the variable as it is commonly known at the user's home institute. If the variable passed to CMOR was computed in some simple way from two or more original fields (e.g., subtracting the upwelling and downwelling fluxes to get a net flux), then it is recommended that this be indicated in the "original_name" (e.g., "irup irdown", where "irup" and "irdown" are the names of the original fields that were subtracted). If more complicated processing was required, this information would more naturally be included in a "history" attribute for this variable, described next.
- **[history]** = how the variable was processed before outputting through CMOR (e.g., give name(s) of the file(s) from which the data were read and indicate what calculations were performed, such as interpolating to standard pressure levels or adding 2 fluxes together). This information should allow someone at the user's institute to reproduce the procedure that created the CMOR output. Note that this

history attribute is variable-specific, whereas the history attribute defined by cmor_dataset provides information concerning the model simulation itself or refers to processing procedures common to all variables (for example, mapping model output from an irregular grid to a Cartesian coordinate grid). Note that when appropriate, CMOR will also indicate in the "history" attribute any operations it performs on the data (e.g., scaling the data, changing the sign, changing its type, reordering the dimensions, reversing a coordinate's direction or offsetting longitude). Any user-defined history will precede the information generated by CMOR.

• **[comment]** = additional notes concerning this variable can be included here.

Returns:

- Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the "handle") uniquely identifying the variable.
- C: 0 upon success.
- Python: upon success, a positive integer (the "handle") uniquely identifying the variable, or if an error is encountered an exception is raised.

cmor_set_deflate()

Fortran: error flag = cmor set deflate(var id, shuffle, deflate, deflate level)

C: error flag = cmor set deflate(int var id, int shuffle, int deflate, int deflate level)

Python: set deflate(var id, shuffle, deflate, deflate level)

Description: Sets netCDF4 shuffle and compression on a cmor variable.

Arguments:

- **var_id** = the cmor variable id
- **shuffle** = if true, turn on netCDF the shuffle filter
- **deflate** = if true, turn on the deflate filter at the level specified by the deflate_level parameter
- **deflate_level** = if the deflate parameter is non-zero, deflate variable using value. Must be between 0 and 9

Returns upon success:

- Fortran: 0
- C: 0
- Python: 0

cmor_set_variable_attribute()

Fortran: error_flag = cmor_set_variable_attribute(integer var_id, character(*) name, character(*) type, character(*) value)

C: error_flag = cmor_set_variable_attribute(int variable_id, char *attribute_name, char type, void *value)

Python: set variable attribute(var id,name,data type,value)

Description: Defines an attribute to be associated with the variable specified by the variable_id. This function is unlikely to be called in preparing CMIP5 output, except to delete the "ext_cell_measures" attribute (setting it to a empty string). For this reason you can only set character type attributes at the moment via Python and Fortran.

Arguments:

- variable_id = the "handle" returned by cmor_variable (when the variable was
 defined), which will become better described by the attribute defined in this
 function.
- **attribute_name** = name of the attribute
- **type** = type of the attribute value passed, which can be 'd' (double), 'f' (float), 'l' (long), 'i' (int), or 'c' (char).
- **value** = whatever value you wish to set the attribute to (type defined by type argument).

Returns upon success:

- Fortran: 0
- C: 0
- Python: 0

cmor get variable attribute()

Fortran: error_flag = cmor_get_variable_attribute(integer var_id, character(*) name, character *value)

C: error_flag = cmor_get_variable_attribute(int variable_id, char *attribute_name, char type, void *value)

Python: get_variable_attribute(var_id,name)

Description: retrieves an attribute value set for the variable specified by the variable_id. This function is unlikely to be called in preparing CMIP5 output. The Python and Fortran version will only work on attribute of character (string) type, otherwise chaotic results should be expected

Arguments:

- **variable_id** = the "handle" returned by cmor_variable (when the variable was defined) identifying which variable the attribute is associated with.
- **attribute_name** = name of the attribute
- **type** = type of the attribute value to be retrieved. This can be 'd' (double), 'f' (float), 'l' (long), 'i' (int), or 'c' (char)
- **value** = the argument that will accept the retrieved attribute.

Returns upon success:

- Fortran: 0
- C: 0
- Python: The attribute value

cmor has variable attribute()

Fortran: error flag = cmor has variable attribute(integer var id, character(*) name)

C: error_flag = cmor_has_variable_attribute(int variable_id, char *attribute_name)

Python: has variable attribute(var id,name)

Description: Determines whether an attribute exists and is associated with the variable specified by variable_id, which is a handle returned to the user by a previous call to cmor variable. This function is unlikely to be called in preparing CMIP5 output.

Arguments:

- **variable_id** = the "handle" specifying which variable is of interest. A variable_id is returned by cmor variable each time a variable is defined.
- **attribute name** = name of the attribute of interest.

Returns upon success (i.e., if the attribute is found):

- Fortran: 0
- C: 0
- Python: True

cmor create output path()

Fortran: call cmor create output path(var id, path)

C: isfixed = cmor create output path(int var id, char *path)

Python: path = create output path(var id)

Description: construct the output path, consistent with CMIP5 specifications, where the file will be stored.

Arguments:

- **var_id** = variable identification (as returned from cmor_variable) you wish to get the output path for.
- **path** = string (or pointer to a string), which is returned by the function and contains the output path.

Returns:

- Fortran: nothing it is a subroutine
- C: 0 upon success or 1 if the filed is a fixed field
- Python: the full path to the output file

cmor_write()

Fortran: error_flag = cmor_write(var_id, data, [file_suffix], [ntimes_passed], [time_vals], [time_bnds], [store with])

C: error_flag = cmor_write(int var_id, void *data, char type, char *file_suffix, int ntimes passed, double *time vals, double *time bounds, int *store with)

Python: write(var_id, data, ntimes_passed=None, file_suffix="", time_vals=None, time_bnds=None, store with=None)

Description: For the variable identified by var_id, write an array of data that includes one or more time samples. This function will typically be repeatedly invoked to write other variables or append additional time samples of data. Note that time-slices of data must be written chronologically.

Arguments:

- **var_id** = integer returned by cmor_variable identifying the variable that will be written by this function.
- data = array of data written by this function (of rank<8). The rank of this array should either be: (a) consistent with the number of axes that were defined for it, or (b) it should be 1-dimensional, in which case the data must be stored contiguously in memory. In case (a), an exception is that for a variable that is a function of time and when only one "time-slice" is passed, then the array can optionally omit this dimension. Thus, for a variable that is a function of longitude, latitude, and time, for example, if only a single time-slice is passed to cmor_write, the rank of array "data" may be declared as either 2 or 3; when declared rank 3, the time-dimension will be size 1. It is recommended (but not required) that the shape of data (i.e., the size of each dimension) be consistent with those expected for this variable (based on the axis definitions), but they are allowed to be larger (the extra values beyond the defined dimension domain will be ignored). In any case the dimension sizes (lengths) must obviously not be smaller than those defined by the calls to cmor axis.
- **type** = type of variable array ("data"), which can be 'd' (double), 'f' (float), 'l' (long) or 'i' (int).

- [file suffix] = string that will be concatenated with a string automatically generated by CMOR to form a unique filename where the output is written. This suffix is only required when a time-sequence of output fields will not all be written into a single file (i.e., two or more files will contain the output for the variable). The file prefix generated by CMOR is of the form variable table, where variable is replaced by table entry (i.e., the name of the variable), and table is replaced by the table number (e.g., tas A1 refers to surface air temperature as specified in table A1). Permitted characters will be: a-z, A-Z, 0-9, and "-". There are no restrictions on the suffix except that it must yield unique filenames and that it cannot contain any "". If the user supplies a suffix, the leading " should be omitted (e.g., pass '1979-1988', not ' 1979-1988'). Note that the suffix passed through cmor write remains in effect for the particular variable until (optionally) redefined by a subsequent call. In the case of CMOR "Append mode" (in case the file already existed before a call to cmor setup), then file suffix is to be used to point to the original file, this value should reflect the FULL path where the file can be found, not just the file name. CMOR2 will be smart enough to figure out if a suffix was used when creating that file. Note that this file will be first moved to a temporary file and eventually renamed to reflect the additional times written to it.
- **[ntimes_passed]** = integer number of time slices passed on this call. If omitted, the number will be assumed to be the size of the time dimension of the data (if there is a time dimension).
- **[time_vals]** = 1-d array (must be double precision) time coordinate values associated with the data array. This argument should appear only if the time coordinate values were not passed in defining the time axis (i.e., in calling cmor_axis) such as when CMOR is set to "Append mode." The units should be consistent with those passed as an argument to cmor_axis in defining the time axis. If cell bounds are also passed (see next argument, '[time_bnds]'), then CMOR will first check that each coordinate value is not outside its associated cell bounds; subsequently, however, the user-defined coordinate value will be replaced by the mid-point of the interval defined by its bounds, and it is this value that will be written to the netCDF file.
- **[time_bnds]** = 2-d array (must be double precision) containing time bounds, which should be in the same units as time_vals. If the time_vals argument is omitted, this argument should also be omitted. The array should be dimensioned (2, n) in Fortran, and (n,2) in C/Python, where n is the size of time_vals (see CF standard document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further information).
- **[store_with]** = integer returned by cmor_variable identifying the variable that the zfactor should be stored with. This argument must be defined when and only when writing a z-factor. (See description of the zfactor function above.)

Returns upon success:

• Fortran: 0

• C: 0

Python: None

cmor_close()

Fortran: error_flag = cmor_close(var_id, file_name, preserve)

C: error flag = cmor close(void) or

C: error flag = cmor close variable(int var id, char *file name, int *preserve)

Python: error_flag (or if name=True, returns the name of the file) = close(var_id=None, file_name=False, preserve=False)

Description: Close a single file specified by optional argument var_id, or if this argument is omitted, close all files created by CMOR (including log files). To be safe, before exiting any program that invokes CMOR, it is best to call this function with the argument omitted. In C to close a single variable, use: cmor_close_variable(var_id). When using this function to close a single file, an additional optional argument (of type "string") can be included, into which will be returned the file name created by CMOR. [In python, the string is returned by the function.] Another additional optional argument can be passed specifying if the variable should be preserved for future use (e.g., if you want to write additional data but to a new file). Note that when preserve is true, the original var id is preserved.

Arguments:

- **[var_id]** = the "handle" identifying an individual variable and the associated output file that will be closed by this function.
- **[file_name]** = a string where the output file name will be stored. The file_name is returned only if its var_id has been included in the close_cmor argument list. This option provides a convenient method for the user to record the filename, which might be needed on a subsequent call to CMOR, for example, in order to append additional time samples to the file.
- **[preserve]** = Do you want to preserve the var definition? (0/1) If true, the original var id is preserved.

Returns:

Fortran: 0 upon success

- C: 0 upon success
- Python: None if file_name=False, or the name of the file if file_name=True and a var id is passed as an argument.

cmor_get_terminate_signal()
Fortran: signal_code = cmor_get_terminate_signal()
C: signal_code = cmor_get_terminate_signal()
Python: signal_code = get_terminate_signal()

Description: Get the current value of the signal code issue by CMOR's C when encountering a termination error. Initially this is set to -999. If the user does not set it then the first call to cmor_setup will set the signal to SIGTERM for C and Python and to SIGINT for FORTRAN. FORTRAN does exit nicely with SIGTERM, hence the different default values

Returns upon success:

- Fortran: the current signal code
- C: the current signal code
- Python: the current signal code

cmor_set_terminate_signal()

Fortran: cmor set terminate signal(signal)

C: cmor set terminate signal(int signal)

Python: set_terminate_signal(signal)

Description: Set sthe signal code to send uppon termination from an error

Arguments:

• **[signal]** = an integer representing the signal code desired

Acknowledgements

Acknowledgements

Several individuals have supported the development of the CMOR1 software and provided encouragement, including Dean Williams, Dave Bader, and Peter Gleckler. Jonathan Gregory, Jim Boyle, and Bob Drach all provided valuable suggestions on how to simplify or in other ways improve the design of this software, and we particularly appreciate the time they spent reading and thinking about this problem. Jim Boyle additionally helped in a number of other ways, including porting CMOR to various platforms. Brian Eaton provided his usual careful and thoughtful responses to questions about CF compliance. Finally, we appreciate the encouragement expressed by the WGCM for developing CMOR.

The complete rewrite of CMOR, along with the new capabilities added to version 2, was implemented by Charles Doutriaux. We thank Dean Williams, Bob Drach, Renata McCoy, Jim Boyle, and the British Atmospheric Data Center (BADC). We also thank every one of the "early" adopters of CMOR2 who patiently helped us test and debug CMOR2. In particular we would like to thank Jamie Kettleborough from the UK Metoffice, Stephen Pascoe of the British Atmospheric Data Centre, Joerg Wegner of Zentrum für Marine und Atmosphärische Wissenschaften, Yana Malysheva of the Geophysical Fluid Dynamics Laboratory and Alejandro Bodas-Salcedo of UK Metoffice for the many lines of codes, bug fixes, and sample tests they sent our way

Enhancements to CMOR with capabilities added for version 3 were implemented by Denis Nadeau with help from Charles Doutriaux. We thanks Paul Durack and Martin Juckes who provided inputs, enhancement and solutions to improve flexibility. We also thank the "early" users of CMOR3 for their patience and for helping use improving CMOR3.

PrePARE

Note

In order to use PrePARE please follow these instructions.

• Anaconda installation (https://cmor.llnl.gov/mydoc cmor3 conda/)

PrePARE has been created to validate CMIP6 data before publishing files to ESGF. It may not work properly on CMIP5 files.

Usage

```
PrePARE [-h] [-l [CWD]] [--variable VARIABLE] [-v] [--table-path TABLE_PATH]
[--max-processes 4] [--all] [--hide-progress] [--no-text-color]
[--ignore-dir PYTHON_REGEX] [--include-file PYTHON_REGEX]
[--exclude-file PYTHON_REGEX]
input [input ...]
```

where:

- **input** Input CMIP6 netCDF data to validate. If a directory is submitted all netCDF recursively found will be validated independently.
- -h Display synopsis of the program.
- -I, -log Logfile directory. Default is the working directory. If not, standard output is used. Only available in multiprocessing mode.
- -variable Specify geophysical variable name. If not variable is deduced from filename.
- -v, -version Version of software.
- **-table-path** Specify the CMIP6 CMOR tables path (JSON file). If not submitted read the CMIP6_CMOR_TABLES environment variable if it exists. If a directory is submitted table is deduced from filename (default is "./Tables").
 - CMIP6 tables (https://github.com/PCMDI/cmip6-cmor-tables/)
- **-max-processes** Maximum number of processes to simultaneously validate several files. Set to one seems sequential processing (default). Set to "-1" uses all available resources as returned by "multiprocessing.cpu count()".
- -all Show all results. Default only shows error(s) (i.e., file(s) not compliant).
- **-hide-progress** Do not show the percentage of progress / number of files checked while running PrePARE.

- -no-text-color Remove text color from output.
- **-ignore-dir** Filter directories NON-matching the regular expression. Default ignores paths with folder name(s) starting with ".".
- -exclude-file Filter files NON-matching the regular expression. Duplicate the flag to set several filters. Default only exclude hidden files (with names not starting with ".").

Validation

PrePARE will verify that all attributes in the input file are present and conform to CMIP6 for publication into ESGF. We also recommand running the python program cfchecker (https://pypi.python.org/pypi/cfchecker) created by the University of Reading in the UK to confirm that your file is CF-1 compliant.

In order to validate all CMIP6 required attributes by PrePARE, a Controlled Vocabulary file
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6_CV.json)
 is read by the program where a JSON dictionnary called "required_global_attributes"
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/
 CMIP6_CV.json#L3)
 point to a list of strings. Each element of that list corresponds to a global attribute.

- PrePARE can also use regular expressions to validate the value of the some global attributes. Here is an example
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/
 CMIP6_CV.json#L6343-L6344)
 used for variant_label.
- Institutions and institution_ids need to be registered into a list. PrePARE will only
 accept institutions which have been pre-registered for CMIP6 publication into ESGF.
 Click here

(https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6 CV.json#L65)

for the list of institutions. If you wish to register your institution write to the cmor mailing list.

 Source and Source ID also need to be registered for CMIP6 publication. Here is the list

(https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6_CV.json#L93) of registered sources.

• Only experiments found in the Controlled Vocabulary files are accepted for CMIP6 publication. A list of experiment_ids

(https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6_CV.json#L548)

have been pre-defined including mandatory attributes. A warning will be displayed if one experiment attribute is missing or is not properly set by your program.

• grid and nominal_resolution are mandatory global attributes in CMIP6. PrePARE will make sure that these attributes are conformed to one of the following syntax:

grid	nominal_resolution
gs1x1	1x1 degree
gs1x1 or gn0 to gn9	1x1 degree
gs1x1 or gr0 to gr9	1x1 degree
gn0 to gn9	"5 km" or "10 km" or "25 km" or "50 km" or "100 km" or "250 km" or "500 km" or "1000 km" or "2500 km" or "5000 km" or "10000 km"
gr0 to gr9	"5 km" or "10 km" or "25 km" or "50 km" or "100 km" or "250 km" or "500 km" or "1000 km" or "2500 km" or "5000 km" or "10000 km"

- PrePARE verifies that the creation date found in the netCDF file is conform to ISO 8601 (https://en.wikipedia.org/wiki/ISO 8601) standard.
- The Further Info URL attribute has to be set according to a very specific template. The PrePARE will use global attribute names found in the netCDF input file and replace the corresponding tag found in a template to rebuild proper CMIP6 link. If the reconstructed URL does not correspond to the value found in the input file, PrePARE will display an critical error on the screen.
 - Below is the defaul template used for the **furtherinfourl** attribute. Each string found between the "<>" characters correspond to a global attribute. The program will replace these strings with the corresponding global attribute values and add the "." character between each tag.

http://furtherinfo.es-doc.org/<mip_era><institution_id><source_id><experiment_i
d><sub experiment id><variant label>

becomes

http://furtherinfo.es-doc.org/CMIP6.CSIRO-BOM.NICAM.piControl.none.rlilplf1"

• PrePARE will also verify variable attributes necessary for CMIP6 publication. It validates: long_name, standard_name, units and missing_value according the CMIP6 tables information.

Anaconda installation

All Platforms System Requirements

- CMOR 3.6.1 on conda-forge has support for Python 3.6, 3.7, 3.8, and 3.9.
- Anaconda (https://www.continuum.io/)
- Make sure anaconda is in your PATH (assuming ananconda is installed in \${HOME}/anaconda)

```
export PATH=${HOME}/anaconda/bin:${PATH} # for [ba]sh
setenv PATH ${HOME}/anaconda/bin:${PATH} # for [t]csh
```

Bypassing firewalls

If your institution has a firewall

```
conda config --set ssl_verify False
```

Installing

Run the following commands

```
# install cmor
# ------
conda create -n CMOR -c conda-forge cmor
conda activate CMOR
# Clone the CMIP6 table to your working directory.
# ------
mkdir CMIP6_work
cd CMIP6 work
# Disable SSL verification (firewall only).
# ------
export GIT SSL NO VERIFY=true
git clone https://github.com/PCMDI/cmip6-cmor-tables.git
# Note:
# ------
# UDUNITS2 XML PATH is set automatically by activating CMOR.
# export UDUNITS2_XML_PATH=${CONDA_PREFIX}/share/udunits/udunits2.xml
```

Testing

· Run the following commands

```
# Install cmor with cdms2 and testsrunner
# -----
conda install -n CMOR -c cdat/label/nightly -c cdat -c conda-forge cdms2
testsrunner
# Clone the CMOR repository to your working directory.
# ------
git clone https://github.com/PCMDI/cmor.git
cd cmor
# Update the CMIP6 tables submodule.
# ------
git submodule init
git submodule update
# Set PYTHONPATH to the Test directory.
# ------
export PYTHONPATH=Test/
# Run the tests.
# ------
python run_tests.py -v2 -H -n1 Test/test_python_CMIP6_CV*.py
```

Conda environment

• Create your different CMOR environment with anaconda.

```
conda create -n [YOUR_ENV_NAME_HERE] -c conda-forge cmor
source activate [YOUR_ENV_NAME_HERE]
```

• To learn more about conda environments (http://conda.pydata.org/docs/using/envs.html)

Obtaining Nighlty builds

• Create a dedicated environment for nightly (in between releases code):

```
conda create -n [YOUR_ENV_NAME_HERE] -c pcmdi/label/nightly -c conda-forg
e cmor
source activate [YOUR_ENV_NAME_HERE]
```

Source installation

Obtaining the source code and CMIP6 tables

· Clone the repo from gituhb

```
git clone git://github.com/pcmdi/cmor
cd cmor
git submodule init
git submodule update
```

Anaconda System Requirements (if building using anaconda compilers)

Getting Anaconda

- Anaconda (https://www.continuum.io/)
- Make sure anaconda is in your PATH (assuming ananconda is installed in \${HOME}/anaconda)

```
export PATH=${HOME}/anaconda/bin:${PATH} # for [ba]sh
```

Bypassing firewalls

If your institution has a firewall

```
conda config --set ssl_verify False
```

Creating the conda environement with compilers and needed libraries

Depending on your os conda brings different compilers
 For Linux

```
export CONDA_COMPILERS="gcc_linux-64 gfortran_linux-64"
```

For Mac

```
export CONDA_COMPILERS="clang_osx-64 gfortran_osx-64"
```

Run the following command to build CMOR for your version of Python
 For Python 2.7

conda create -q -n cmor_dev -c cdat/label/nightly -c conda-forge -c cdat
six libuuid json-c udunits2 hdf5 libnetcdf openblas netcdf4 numpy openss
l lazy-object-proxy cdms2 python=2.7 \$CONDA_COMPILERS testsrunner

For Python 3.8

conda create -q -n cmor_dev -c cdat/label/nightly -c conda-forge -c cdat
six libuuid json-c udunits2 hdf5 libnetcdf openblas netcdf4 numpy openss
l lazy-object-proxy cdms2 python=3.8 \$CONDA_COMPILERS testsrunner

Activate the conda environment

source activate cmor_dev

Configuring cmor

Depending on your OS linking environment variables are different
 For Linux

```
export LDSHARED_FLAGS="-shared -pthread"
```

For Mac

```
{\tt export\ LDSHARED\_FLAGS="-bundle\ -undefined\ dynamic\_lookup"}
```

Set the PREFIX

Since your environment can use a different name and its location is system dependent use:

```
export PREFIX=$(python -c "import sys; print(sys.prefix)")
```

configure cmor:

./configure --prefix=\$PREFIX --with-python --with-uuid=\$PREFIX --with-json-c=\$PREFIX --with-udunits2=\$PREFIX --with-netcdf=\$PREFIX --enable-verbose-test

Building CMOR

• Run

make install

Testing the installation

Two sets of test can be used

· C and Fortran tests

make test

· Python tests

export PYTHONPATH=Test/
python run_tests.py -v2 -H -n1 Test/test_python_CMIP6_CV*.py

Example Python

CMOR Input Files

- CMOR_input_example.json
 (https://github.com/PCMDI/cmor/blob/master/Test/CMOR_input_example.json)
- CMIP6_coordinate.json
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6_coordinate.json)
- CMIP6_formula_terms.json
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/
 CMIP6 formula terms.json)
- CMIP6_CV.json (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6 CV.json)
- CMIP6_Amon.json
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6 Amon.json)
- CMIP6_Omon.json
 (https://github.com/PCMDI/cmip6-cmor-tables/blob/master/Tables/CMIP6 Omon.json)

Example 1: Python source code

• test_doc.py (https://github.com/PCMDI/cmor/blob/master/Test/test_doc.py)

Click to expand Python code

```
import cmor
cmor.setup(
        # inpath has to point to the CMOR
        # tables path (CMIP6, input4MIPs or otherwise)
        inpath='Tables',
        netcdf file action=cmor.CMOR REPLACE 4
)
cmor.dataset_json("Test/CMOR_input_example.json")
# Loading this test table overwrites the normal CF checks on valid variable valu
es.
# This is perfect for testing but shouldn't be done when writing real data.
table='CMIP6_Amon.json'
cmor.load table(table)
# here is where you add your axes
itime = cmor.axis(table entry= 'time',
                  units= 'days since 2000-01-01 00:00:00',
                  coord vals= [15,],
                  cell_bounds= [0, 30])
ilat = cmor.axis(table entry= 'latitude',
                 units= 'degrees_north',
                 coord vals= [0],
                 cell bounds= [-1, 1])
ilon = cmor.axis(table_entry= 'longitude',
                 units= 'degrees east',
                 coord vals= [90],
                 cell bounds= [89, 91])
axis ids = [itime,ilat,ilon]
# here we create a variable with appropriate name, units and axes
varid = cmor.variable('ts', 'K', axis_ids)
# then we can write the variable along with the data
cmor.write(varid, [273])
# finally we close the file and print where it was saved
outfile = cmor.close(varid, file_name=True)
print("File written to: {}".format(outfile))
cmor.close()
```

Example 2: Usual Treatment of a 2-D Field

example2.py (page 0)

click to expand Python code

```
import cmor
import numpy
import os
hfls = numpy.array([120, 116, 112, 108,
                    104, 100, 96, 92,
                    88, 84, 80, 76,
                    119, 115, 111, 107,
                    103, 99, 95, 91,
                    87, 83, 79, 75
                    ])
hfls.shape = (2, 3, 4)
lat = numpy.array([10, 20, 30])
lat bnds = numpy.array([5, 15, 25, 35])
lon = numpy.array([0, 90, 180, 270])
lon bnds = numpy.array([-45, 45,
                         135,
                         225,
                         315
                         ])
time = numpy.array([15.5, 45])
time bnds = numpy.array([0, 31, 60])
ipth = opth = 'test'
cmor.setup(inpath=ipth,
           set verbosity=cmor.cmor normal,
           netcdf file action=cmor.cmor replace)
cmor.dataset json("cmor input example.json")
cmor.load_table("cmip6_amon.json")
cmorlat = cmor.axis("latitude",
                    coord vals=lat,
                    cell bounds=lat bnds,
                    units="degrees north")
cmorlon = cmor.axis("longitude",
                    coord vals=lon,
                    cell bounds=lon bnds,
                    units="degrees_east")
cmortime = cmor.axis("time",
                     coord_vals=time,
                     cell bounds=time bnds,
                     units="days since 2018")
axes = [cmortime, cmorlat, cmorlon]
cmorhfls = cmor.variable("hfls", "w/m2", axes, positive="up")
cmor.write(cmorhfls, hfls)
filename = cmor.close(cmorhfls, file name=true)
print("stored in:", filename)
cmor.close()
```

click to expand netcdf dump

```
netcdf hfls amon pcmdi-test-1-0 picontrol-withism r3ilp1f1 gn 201801-201802 {
dimensions:
        time = unlimited ; // (2 currently)
        lat = 3;
        lon = 4;
        bnds = 2;
variables:
        double time(time) ;
                time:bounds = "time bnds" ;
                time:units = "days since 2018";
                time:calendar = "360 day";
                time:axis = "t" ;
                time:long name = "time" ;
                time:standard_name = "time" ;
        double time bnds(time, bnds) ;
        double lat(lat) ;
                lat:bounds = "lat bnds" ;
                lat:units = "degrees north" ;
                lat:axis = "y" ;
                lat:long name = "latitude" ;
                lat:standard_name = "latitude" ;
        double lat bnds(lat, bnds);
        double lon(lon);
                lon:bounds = "lon bnds" ;
                lon:units = "degrees_east" ;
                lon:axis = "x" ;
                lon:long name = "longitude" ;
                lon:standard name = "longitude" ;
        double lon bnds(lon, bnds) ;
        float hfls(time, lat, lon);
                hfls:standard name = "surface upward latent heat flux" ;
                hfls:long name = "surface upward latent heat flux" ;
                hfls:comment = "the surface called \'surface\' means the lower b
oundary of the atmosphere. \'upward\' indicates a vector component which is posi
tive when directed upward (negative downward). the surface latent heat flux is t
he exchange of heat between the surface and the air on account of evaporation (i
ncluding sublimation). in accordance with common usage in geophysical discipline
s, \'flux\' implies per unit area, called \'flux density\' in physics.";
                hfls:units = "w m-2";
                hfls:original_units = "w/m2";
                hfls:history = "2019-01-08t23:32:26z altered by cmor: converted
units from \'w/m2\' to \'w m-2\'. 2019-01-08t23:32:26z altered by cmor: converte
d type from \'l\' to \'f\'.";
                hfls:cell methods = "area: time: mean" ;
                hfls:cell measures = "area: areacella" ;
                hfls:missing value = 1.e+20f;
                hfls:_fillvalue = 1.e+20f ;
// global attributes:
                :conventions = "cf-1.7 cmip-6.2";
```

```
:activity id = "ismip6" ;
                :branch method = "no parent" ;
                :branch time in child = 59400.;
                :branch time in parent = 0.;
                :contact = "python coder (coder@a.b.c.com)" ;
                :creation date = "2019-01-08t23:32:26z";
                :data specs version = "01.00.27";
                :experiment = "preindustrial control with interactive ice shee
t";
                :experiment id = "picontrol-withism";
                :external variables = "areacella" ;
                :forcing_index = 1;
                :frequency = "mon" ;
                :further_info_url = "https://furtherinfo.es-doc.org/cmip6.pcmd
i.pcmdi-test-1-0.picontrol-withism.none.r3i1p1f1" ;
                :grid = "native atmosphere regular grid (3x4 latxlon)" ;
                :grid label = "gn" ;
                :history = "2019-01-08t23:32:26z ;rewrote data to be consistent
with ismip6 for variable hfls found in table amon.;\n",
                        "output from archivel al.nce/giccm 03 std 2xco2 2256.";
                :initialization_index = 1 ;
                :institution = "program for climate model diagnosis and intercom
parison, lawrence livermore national laboratory, livermore, ca 94550, usa";
                :institution id = "pcmdi" ;
                :mip_era = "cmip6" ;
                :nominal resolution = "10000 km";
                :parent_activity_id = "no parent" ;
                :parent experiment id = "no parent" ;
                :parent_mip_era = "no parent" ;
                :parent source id = "no parent" ;
                :parent time units = "no parent";
                :parent variant label = "no parent" ;
                :physics index = 1;
                :product = "model-output" ;
                :realization index = 3;
                :realm = "atmos" ;
                :references = "model described by koder and tolkien (j. geophy
s. res., 2001, 576-591). also see http://www.gicc.su/giccm/doc/index.html. th
e ssp245 simulation is described in dorkey et al. \'(clim. dyn., 2003, 323-35
7.)\'";
                :run variant = "3rd realization" ;
                :source = "pcmdi-test 1.0 (1989): \n",
                        "aerosol: none\n",
                        "atmos: earth1.0-gettinghotter (360 x 180 longitude/lati
tude; 50 levels; top level 0.1 mb)\n",
                        "atmoschem: none\n",
                        "land: earth1.0\n",
                        "landice: none\n",
                        "ocean: bluemarble1.0-warming (360 x 180 longitude/latit
ude; 50 levels; top grid cell 0-10 m)\n",
```

```
"ocnbgchem: none\n",
                        "seaice: declining1.0-warming (360 x 180 longitude/latit
ude)";
                :source id = "pcmdi-test-1-0";
                :source type = "aogcm ism aer" ;
                :sub experiment = "none";
                :sub experiment id = "none";
                :table id = "amon" ;
                :table_info = "creation date:(30 july 2018) md5:fa9bc503f57fb067
bf398cab2c4ba77e";
                :title = "pcmdi-test-1-0 output prepared for cmip6";
                tracking_id = "hdl:21.14100/ded65b61-6588-48f6-bd07-7e4281be9be
e";
                :variable id = "hfls";
                :variant label = "r3i1p1f1" ;
                :license = "cmip6 model data produced by lawrence livermore pcmd
i is licensed under a creative commons attribution sharealike 4.0 international
license (https://creativecommons.org/licenses). consult https://pcmdi.llnl.gov/c
mip6/termsofuse for terms of use governing cmip6 output, including citation requ
irements and proper acknowledgment. further information about this data, includi
ng some limitations, can be found via the further_info_url (recorded as a globa
l attribute in this file) and at https:///pcmdi.llnl.gov/. the data producers an
d data providers make no warranty, either express or implied, including, but no
t limited to, warranties of merchantability and fitness for a particular purpos
e. all liabilities arising from the supply of the information (including any lia
bility arising in negligence) are excluded to the fullest extent permitted by la
w.";
                :cmor version = "3.4.0";
data:
 time = 15.5, 45.5;
 time bnds =
 0, 31,
 31, 60;
 lat = 10, 20, 30;
 lat bnds =
  5, 15,
  15, 25,
 25, 35;
 lon = 0, 90, 180, 270;
 lon bnds =
  -45, 45,
  45, 135,
  135, 225,
  225, 315;
```

```
hfls =
120, 116, 112, 108,
104, 100, 96, 92,
88, 84, 80, 76,
119, 115, 111, 107,
103, 99, 95, 91,
87, 83, 79, 75;
}
```

Example 3: Usual Treatment of a 3-D Field on Pressure Levels

• example3.py (page 0)

Click to expand Python code

```
import cmor
import numpy
import os
ta = 10. * numpy.random.random.sample((2, 19, 3, 4)) + 250.
lat = numpy.array([10, 20, 30])
lat bnds = numpy.array([5, 15, 25, 35])
lon = numpy.array([0, 90, 180, 270])
lon bnds = numpy.array([-45, 45,
                        135,
                        225,
                        315
                        ])
time = numpy.array([15.5, 45])
time_bnds = numpy.array([0, 31, 60])
lev = numpy.array([100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000,
                   25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000, 50
0, 100])
ipth = opth = 'Test'
cmor.setup(inpath=ipth,
           set_verbosity=cmor.CMOR_NORMAL,
           netcdf file action=cmor.CMOR REPLACE)
cmor.dataset_json("CMOR_input_example.json")
cmor.load table("CMIP6 Amon.json")
cmorLat = cmor.axis("latitude",
                    coord vals=lat,
                    cell bounds=lat bnds,
                    units="degrees north")
cmorLon = cmor.axis("longitude",
                    coord vals=lon,
                    cell bounds=lon bnds,
                    units="degrees east")
cmorTime = cmor.axis("time",
                     coord vals=time,
                     cell bounds=time bnds,
                     units="days since 2018")
cmorLev = cmor.axis("plev19", coord vals=lev, units='Pa')
axes = [cmorTime, cmorLev, cmorLat, cmorLon]
cmorTa = cmor.variable("ta", "K", axes)
cmor.write(cmorTa, ta)
filename = cmor.close(cmorTa, file name=True)
print("Stored in:", filename)
cmor.close()
os.system("ncdump {}".format(filename))
```

Click to expand NetCDF dump

```
netcdf ta Amon PCMDI-test-1-0 piControl-withism r3ilp1f1 gn 201801-201802 {
dimensions:
        time = UNLIMITED ; // (2 currently)
        plev = 19;
        lat = 3;
        lon = 4;
        bnds = 2;
variables:
        double time(time) ;
                time:bounds = "time_bnds" ;
                time:units = "days since 2018";
                time:calendar = "360 day";
                time:axis = "T";
                time:long_name = "time" ;
                time:standard_name = "time" ;
        double time bnds(time, bnds) ;
        double plev(plev) ;
                plev:units = "Pa" ;
                plev:axis = "Z" ;
                plev:positive = "down" ;
                plev:long_name = "pressure" ;
                plev:standard_name = "air_pressure" ;
        double lat(lat) ;
                lat:bounds = "lat bnds" ;
                lat:units = "degrees_north" ;
                lat:axis = "Y" ;
                lat:long_name = "latitude" ;
                lat:standard name = "latitude" ;
        double lat_bnds(lat, bnds) ;
        double lon(lon) ;
                lon:bounds = "lon bnds" ;
                lon:units = "degrees east" ;
                lon:axis = "X" ;
                lon:long name = "Longitude" ;
                lon:standard name = "longitude" ;
        double lon bnds(lon, bnds);
        float ta(time, plev, lat, lon) ;
                ta:standard_name = "air_temperature" ;
                ta:long name = "Air Temperature" ;
                ta:comment = "Air Temperature" ;
                ta:units = "K";
                ta:cell_methods = "time: mean" ;
                ta:cell measures = "area: areacella" ;
                ta:missing value = 1.e+20f;
                ta:_FillValue = 1.e+20f ;
                ta:history = "2019-01-08T23:35:44Z altered by CMOR: Converted ty
pe from \'d\' to \'f\'.";
// global attributes:
                :Conventions = "CF-1.7 CMIP-6.2";
```

```
:activity id = "ISMIP6";
                :branch method = "no parent" ;
                :branch time in child = 59400.;
                :branch time in parent = 0.;
                :contact = "Python Coder (coder@a.b.c.com)" ;
                :creation date = "2019-01-08T23:35:44Z";
                :data specs version = "01.00.27";
                :experiment = "preindustrial control with interactive ice shee
t";
                :experiment id = "piControl-withism";
                :external variables = "areacella" ;
                :forcing_index = 1;
                :frequency = "mon" ;
                :further_info_url = "https://furtherinfo.es-doc.org/CMIP6.PCMD
I.PCMDI-test-1-0.piControl-withism.none.r3i1p1f1" ;
                :grid = "native atmosphere regular grid (3x4 latxlon)" ;
                :grid label = "gn" ;
                :history = "2019-01-08T23:35:44Z ;rewrote data to be consistent
with ISMIP6 for variable ta found in table Amon.;\n",
                        "Output from archivel Al.nce/giccm 03 std 2xC02 2256.";
                :initialization_index = 1 ;
                :institution = "Program for Climate Model Diagnosis and Intercom
parison, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA";
                :institution id = "PCMDI";
                :mip_era = "CMIP6" ;
                :nominal resolution = "10000 km";
                :parent_activity_id = "no parent" ;
                :parent experiment id = "no parent" ;
                :parent_mip_era = "no parent" ;
                :parent source id = "no parent" ;
                :parent time units = "no parent";
                :parent variant label = "no parent" ;
                :physics index = 1;
                :product = "model-output" ;
                :realization index = 3;
                :realm = "atmos" ;
                :references = "Model described by Koder and Tolkien (J. Geophy
s. Res., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. Th
e ssp245 simulation is described in Dorkey et al. \'(Clim. Dyn., 2003, 323-35
7.)\'";
                :run variant = "3rd realization" ;
                :source = "PCMDI-test 1.0 (1989): \n",
                        "aerosol: none\n",
                        "atmos: Earth1.0-gettingHotter (360 x 180 longitude/lati
tude; 50 levels; top level 0.1 mb)\n",
                        "atmosChem: none\n",
                        "land: Earth1.0\n",
                        "landIce: none\n",
                        "ocean: BlueMarble1.0-warming (360 x 180 longitude/latit
ude; 50 levels; top grid cell 0-10 m)\n",
```

```
"ocnBgchem: none\n",
                        "seaIce: Declining1.0-warming (360 x 180 longitude/latit
ude)";
                :source id = "PCMDI-test-1-0";
                :source type = "AOGCM ISM AER" ;
                :sub experiment = "none";
                :sub_experiment_id = "none" ;
                :table id = "Amon" ;
                :table_info = "Creation Date:(30 July 2018) MD5:fa9bc503f57fb067
bf398cab2c4ba77e";
                :title = "PCMDI-test-1-0 output prepared for CMIP6";
                :tracking_id = "hdl:21.14100/11fd8d79-f1d9-453d-8293-7603dc5dfe1
e";
                :variable_id = "ta" ;
                :variant label = "r3i1p1f1" ;
                :license = "CMIP6 model data produced by Lawrence Livermore PCMD
I is licensed under a Creative Commons Attribution ShareAlike 4.0 International
License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/C
MIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requ
irements and proper acknowledgment. Further information about this data, includi
ng some limitations, can be found via the further_info_url (recorded as a globa
l attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers an
d data providers make no warranty, either express or implied, including, but no
t limited to, warranties of merchantability and fitness for a particular purpos
e. All liabilities arising from the supply of the information (including any lia
bility arising in negligence) are excluded to the fullest extent permitted by la
w.";
                :cmor version = "3.4.0";
data:
 time = 15.5, 45.5;
 time bnds =
 0, 31,
 31, 60;
 plev = 100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000,
    20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000, 500, 100;
 lat = 10, 20, 30;
 lat bnds =
 5, 15,
  15, 25,
 25, 35;
 lon = 0, 90, 180, 270;
 lon_bnds =
  -45, 45,
```

```
45, 135,
135, 225,
225, 315;
ta =
259.8408, 258.941, 252.4908, 251.0074,
256.835, 258.2486, 250.7763, 256.6857,
255.0459, 250.3535, 255.2871, 259.8668,
253.4483, 256.5141, 259.7679, 252.1754,
253.76, 250.867, 251.4578, 254.0015,
252.3708, 258.2815, 255.3655, 257.9578,
250.4145, 256.8469, 252.7675, 255.7654,
258.5681, 259.7048, 254.8929, 252.6632,
253.612, 258.3735, 256.299, 256.6488,
253.1254, 254.9136, 255.2808, 253.8569,
257.0341, 251.0754, 254.2664, 252.9441,
255.2702, 255.9075, 253.3035, 257.6259,
255.9043, 252.595, 253.9338, 258.0882,
256.6787, 253.8391, 258.4736, 256.7391,
252.671, 258.3957, 252.4797, 253.4284,
258.6154, 258.6605, 255.7659, 252.4936,
256.9681, 254.4894, 252.7608, 254.783,
250.0667, 255.6354, 258.6563, 259.6775,
254.3134, 250.8413, 250.2444, 254.6606,
255.1599, 257.21, 252.6211, 256.2644,
254.1385, 257.6524, 252.9917, 251.8146,
259.5888, 256.2946, 255.9592, 254.3341,
258.4659, 259.7941, 258.0905, 258.1966,
257.4232, 259.0263, 251.2242, 259.6272,
257.456, 259.999, 258.7972, 256.6927,
256.5442, 250.3652, 254.9976, 254.2698,
256.8535, 252.3693, 259.0882, 258.8849,
 253.6198, 259.3818, 251.4028, 254.9819,
250.2339, 251.6083, 256.1446, 258.8874,
259.977, 252.5453, 253.6287, 252.0314,
 257.0711, 254.6262, 253.957, 258.0355,
250.333, 255.8116, 252.4928, 250.0648,
256.737, 251.6935, 251.2943, 250.1732,
256.9901, 256.2216, 259.1346, 258.9967,
258.4938, 257.6587, 252.6762, 256.5123,
 254.6203, 257.5838, 259.8249, 257.2421,
251.5132, 250.6997, 255.1321, 255.9642,
250.5069, 251.3887, 252.1133, 253.0272,
 257.2178, 251.7756, 256.3568, 255.6339,
250.4361, 258.3318, 259.5203, 258.9857,
254.0756, 251.2124, 252.6628, 259.1253,
 252.2022, 254.2113, 259.4847, 252.9702,
251.1179, 259.7756, 253.7968, 257.081,
254.7999, 253.5379, 259.9748, 257.6128,
 257.1583, 258.5191, 252.2605, 251.6866,
```

```
251.9091, 255.4374, 259.1645, 255.4471,
251.6325, 252.1992, 256.1027, 252.4458,
251.5014, 252.293, 250.0457, 251.2812,
252.3479, 253.4959, 250.742, 254.3526,
254.2659, 258.3052, 259.6293, 253.8284,
255.0674, 250.3642, 252.008, 258.3384,
258.2568, 257.897, 253.424, 254.922,
254.939, 253.0223, 257.8987, 256.4419,
254.1967, 257.1554, 253.706, 256.5611,
259.3974, 254.3611, 251.2371, 257.0125,
255.4547, 255.4249, 252.8776, 257.173,
258.8824, 252.4057, 250.6023, 253.0139,
255.5045, 257.2598, 257.7797, 253.2221,
253.2658, 252.578, 255.4973, 252.6226,
259.9648, 251.6002, 254.1322, 251.8064,
254.0982, 252.5025, 251.4612, 251.3052,
254.25, 251.7179, 251.4255, 256.1079,
257.282, 255.7924, 252.2107, 255.8521,
252.7759, 253.0962, 252.638, 255.9666,
259.5663, 253.6493, 256.8842, 255.4041,
254.6592, 255.4181, 258.7055, 254.7371,
257.1625, 255.0113, 253.0983, 252.3584,
257.2872, 253.2124, 256.9593, 250.7623,
257.287, 257.2986, 252.6907, 251.519,
254.1635, 250.1762, 256.4446, 259.7633,
259.0938, 253.0846, 250.5819, 258.3493,
258.6836, 257.3046, 255.8258, 257.9142,
257.3879, 252.5779, 255.3217, 254.2868,
255.9011, 252.4209, 253.7516, 255.2315,
257.6159, 257.8478, 253.0855, 254.9258,
255.5278, 257.5585, 258.8186, 250.2102,
250.1217, 256.8153, 255.6852, 255.1126,
257.7202, 256.3726, 252.1865, 253.0071,
251.8633, 255.1148, 254.0191, 253.4735,
257.7912, 253.4579, 255.0269, 250.1707,
253.9734, 254.2229, 257.9263, 250.1125,
258.5282, 250.8859, 257.5581, 255.8632,
252.3537, 253.3955, 252.4796, 251.3484,
259.0306, 250.2142, 253.429, 251.3313,
257.0627, 253.5232, 254.0599, 253.5528,
254.7048, 257.3163, 258.5922, 259.0777,
253.2622, 258.1998, 254.3777, 259.3747,
252.3826, 251.1805, 253.8417, 251.8928,
256.3958, 256.0284, 253.0213, 256.2551,
258.8141, 258.835, 259.7631, 254.7228,
254.3701, 251.3905, 250.6818, 258.296,
258.9814, 258.1483, 256.1503, 252.6487,
252.123, 256.3247, 252.2733, 259.7609,
259.3987, 252.3202, 250.5132, 252.3688,
257.4306, 256.0952, 253.014, 251.8331,
```

```
253.5333, 259.0857, 257.7149, 259.9082,
 259.6393, 258.5578, 256.9663, 252.2192,
 254.2118, 251.6638, 255.6581, 255.7678,
 253.8299, 251.3065, 255.6969, 259.1021,
 256.2309, 257.8936, 251.7329, 253.7878,
 256.5732, 254.0137, 253.6299, 250.413,
 258.7727, 251.4784, 253.509, 255.0283,
 254.1883, 255.0535, 250.6044, 257.4061,
 252.835, 255.2766, 257.4215, 259.0279,
 255.3313, 254.1923, 254.1777, 258.1096,
 250.3586, 255.7441, 258.2351, 257.1729,
 258.3901, 256.7424, 259.8389, 254.8441,
 252.9138, 256.6953, 255.918, 253.6417,
 252.3907, 255.4751, 258.3704, 255.8665,
 250.0418, 251.8351, 258.5436, 256.8799,
 252.2263, 255.383, 253.3702, 253.7597,
 251.112, 254.6407, 251.4067, 252.6422,
 258.1817, 252.3663, 253.5502, 252.4341,
  257.1426, 254.4529, 254.8314, 254.7638;
}
```

Example 4: Treatment of a Scalar Dimension (near-surface air temperature)

• example4.py (page 0)

Click to expand Python code

```
import cmor
import numpy
import os
tas = 10. * numpy.random.random_sample((2, 3, 4)) + 250.
lat = numpy.array([10, 20, 30])
lat bnds = numpy.array([5, 15, 25, 35])
lon = numpy.array([0, 90, 180, 270])
lon_bnds = numpy.array([-45, 45,
                        135,
                        225,
                        315
                        ])
time = numpy.array([15.5, 45])
time\_bnds = numpy.array([0, 31, 60])
ipth = opth = 'Test'
cmor.setup(inpath=ipth,
           set verbosity=cmor.CMOR NORMAL,
           netcdf file action=cmor.CMOR REPLACE)
cmor.dataset json("CMOR input example.json")
cmor.load_table("CMIP6_Amon.json")
cmorLat = cmor.axis("latitude",
                    coord vals=lat,
                    cell bounds=lat bnds,
                    units="degrees north")
cmorLon = cmor.axis("longitude",
                    coord_vals=lon,
                    cell bounds=lon bnds,
                    units="degrees east")
cmorTime = cmor.axis("time",
                     coord vals=time,
                     cell bounds=time bnds,
                     units="days since 2018")
axes = [cmorTime, cmorLat, cmorLon]
cmorTas = cmor.variable("tas", "K", axes)
cmor.write(cmorTas, tas)
filename = cmor.close(cmorTas, file name=True)
print("Stored in:", filename)
cmor.close()
```

Click to expand NetCDF dump

```
netcdf tas Amon PCMDI-test-1-0 piControl-withism r3i1p1f1 gn 201801-201802 {
dimensions:
        time = UNLIMITED ; // (2 currently)
        lat = 3;
        lon = 4;
        bnds = 2;
variables:
        double time(time) ;
                time:bounds = "time bnds" ;
                time:units = "days since 2018";
                time:calendar = "360 day";
                time:axis = "T" ;
                time:long name = "time" ;
                time:standard_name = "time" ;
        double time bnds(time, bnds) ;
        double lat(lat) ;
                lat:bounds = "lat bnds" ;
                lat:units = "degrees north" ;
                lat:axis = "Y" ;
                lat:long name = "latitude" ;
                lat:standard_name = "latitude" ;
        double lat bnds(lat, bnds);
        double lon(lon) ;
                lon:bounds = "lon bnds" ;
                lon:units = "degrees_east" ;
                lon:axis = "X";
                lon:long name = "Longitude" ;
                lon:standard name = "longitude" ;
        double lon bnds(lon, bnds);
        double height;
                height:units = "m";
                height:axis = "Z";
                height:positive = "up" ;
                height:long name = "height";
                height:standard name = "height";
        float tas(time, lat, lon) ;
                tas:standard_name = "air_temperature" ;
                tas:long_name = "Near-Surface Air Temperature" ;
                tas:comment = "near-surface (usually, 2 meter) air temperature"
;
                tas:units = "K" ;
                tas:cell_methods = "area: time: mean" ;
                tas:cell measures = "area: areacella" ;
                tas:history = "2019-01-08T23:41:05Z altered by CMOR: Treated sca
lar dimension: \'height\'. 2019-01-08T23:41:05Z altered by CMOR: Converted type
from \'d\' to \'f\'.";
                tas:coordinates = "height";
                tas:missing value = 1.e+20f;
                tas:_FillValue = 1.e+20f ;
```

```
// global attributes:
                :Conventions = "CF-1.7 CMIP-6.2";
                :activity_id = "ISMIP6" ;
                :branch method = "no parent";
                :branch time in child = 59400.;
                :branch time in parent = 0.;
                :contact = "Python Coder (coder@a.b.c.com)" ;
                :creation date = "2019-01-08T23:41:05Z" ;
                :data specs version = "01.00.27";
                :experiment = "preindustrial control with interactive ice shee
t";
                :experiment_id = "piControl-withism";
                :external variables = "areacella" ;
                :forcing_index = 1;
                :frequency = "mon" ;
                :further info url = "https://furtherinfo.es-doc.org/CMIP6.PCMD
I.PCMDI-test-1-0.piControl-withism.none.r3i1p1f1" ;
                :grid = "native atmosphere regular grid (3x4 latxlon)" ;
                :grid_label = "gn" ;
                :history = "2019-01-08T23:41:05Z ;rewrote data to be consistent
with ISMIP6 for variable tas found in table Amon.;\n",
                        "Output from archivel Al.nce/gicem 03 std 2xC02 2256.";
                :initialization index = 1;
                :institution = "Program for Climate Model Diagnosis and Intercom
parison, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA";
                :institution id = "PCMDI";
                :mip_era = "CMIP6" ;
                :nominal_resolution = "10000 km" ;
                :parent activity id = "no parent" ;
                :parent experiment id = "no parent" ;
                :parent mip era = "no parent" ;
                :parent source id = "no parent" ;
                :parent time units = "no parent" ;
                :parent variant label = "no parent" ;
                :physics index = 1;
                :product = "model-output" ;
                :realization index = 3;
                :realm = "atmos" ;
                :references = "Model described by Koder and Tolkien (J. Geophy
s. Res., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. Th
e ssp245 simulation is described in Dorkey et al. \'(Clim. Dyn., 2003, 323-35
7.)\'";
                :run variant = "3rd realization" ;
                :source = "PCMDI-test 1.0 (1989): \n",
                        "aerosol: none\n",
                        "atmos: Earth1.0-gettingHotter (360 x 180 longitude/lati
tude; 50 levels; top level 0.1 mb)\n",
                        "atmosChem: none\n",
                        "land: Earth1.0\n",
                        "landIce: none\n",
```

```
"ocean: BlueMarble1.0-warming (360 x 180 longitude/latit
ude; 50 levels; top grid cell 0-10 m)\n",
                        "ocnBgchem: none\n",
                        "seaIce: Declining1.0-warming (360 x 180 longitude/latit
ude)";
                :source id = "PCMDI-test-1-0";
                :source type = "AOGCM ISM AER" ;
                :sub_experiment = "none";
                :sub experiment id = "none";
                :table id = "Amon" ;
                :table info = "Creation Date:(30 July 2018) MD5:fa9bc503f57fb067
bf398cab2c4ba77e";
                :title = "PCMDI-test-1-0 output prepared for CMIP6";
                :tracking id = "hdl:21.14100/f93e4db7-d6e5-404d-983b-dbfebc93225
0";
                :variable_id = "tas" ;
                :variant label = "r3i1p1f1" ;
                :license = "CMIP6 model data produced by Lawrence Livermore PCMD
I is licensed under a Creative Commons Attribution ShareAlike 4.0 International
License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/C
MIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requ
irements and proper acknowledgment. Further information about this data, includi
ng some limitations, can be found via the further info url (recorded as a globa
l attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers an
d data providers make no warranty, either express or implied, including, but no
t limited to, warranties of merchantability and fitness for a particular purpos
e. All liabilities arising from the supply of the information (including any lia
bility arising in negligence) are excluded to the fullest extent permitted by la
w.";
                :cmor version = "3.4.0";
data:
 time = 15.5, 45.5;
 time bnds =
 0, 31,
 31, 60;
 lat = 10, 20, 30;
 lat bnds =
 5, 15,
 15, 25,
  25, 35;
 lon = 0, 90, 180, 270;
 lon bnds =
  -45, 45,
  45, 135,
```

```
135, 225,

225, 315;

height = 2;

tas =

254.0895, 258.4085, 250.5549, 258.7101,

258.668, 258.299, 252.1237, 255.0432,

253.7254, 251.246, 254.3168, 255.4808,

259.7908, 252.2754, 257.1892, 253.3132,

253.8823, 253.4698, 253.5381, 254.973,

256.1002, 251.8168, 259.3698, 250.2994;

}
```

Example 5: Treatment of Auxiliary Coordinates (northward ocean heat transport; a function of latitude, ocean basin, month)

• example5.py (page 0)

Click to expand Python code

```
import cmor
import numpy
import os
data = 10. * numpy.random.random sample((2, 3, 4)) + 250.
data = numpy.array([-80, -84, -88,
                    -100, -104, -76,
                    -120, -92, -96,
                    -79, -83, -87,
                    -99, -103, -75,
                    -107, -111, -115
                    1)
data.shape = (2, 3, 3)
lat = numpy.array([10, 20, 30])
lat_bnds = numpy.array([5, 15, 25, 35])
time = numpy.array([15.5, 45])
time_bnds = numpy.array([0, 31, 60])
region = [
    "atlantic_arctic_ocean",
    "indian_pacific_ocean",
    "global_ocean"
]
ipth = opth = 'Test'
cmor.setup(inpath=ipth,
           set verbosity=cmor.CMOR NORMAL,
           netcdf file action=cmor.CMOR REPLACE)
cmor.dataset json("CMOR input example.json")
cmor.load_table("CMIP6_0mon.json")
cmorLat = cmor.axis("latitude",
                    coord vals=lat,
                    cell bounds=lat bnds,
                    units="degrees_north")
cmorTime = cmor.axis("time",
                     coord vals=time,
                     cell bounds=time bnds,
                     units="days since 2018")
cmorBasin = cmor.axis("basin", coord vals=region, units="")
axes = [cmorTime, cmorBasin, cmorLat]
cmorVar = cmor.variable("htovgyre", "W", axes)
cmor.write(cmorVar, data)
filename = cmor.close(cmorVar, file name=True)
print("Stored in:", filename)
cmor.close()
os.system("ncdump {}".format(filename))
```

Click to expand NetCDF dump

```
netcdf htovgyre Omon PCMDI-test-1-0 piControl-withism r3ilplfl gn 201801-201802
dimensions:
        time = UNLIMITED ; // (2 currently)
        basin = 3;
        lat = 3;
        bnds = 2;
        strlen = 21;
variables:
        double time(time) ;
                time:bounds = "time bnds" ;
                time:units = "days since 2018";
                time:calendar = "360 day";
                time:axis = "T";
                time:long name = "time" ;
                time:standard name = "time" ;
        double time bnds(time, bnds);
        char sector(basin, strlen) ;
                sector:long_name = "ocean basin" ;
                sector:standard name = "region" ;
        double lat(lat) ;
                lat:bounds = "lat bnds" ;
                lat:units = "degrees north" ;
                lat:axis = "Y" ;
                lat:long name = "latitude" ;
                lat:standard name = "latitude" ;
        double lat bnds(lat, bnds) ;
        float htovgyre(time, basin, lat) ;
                htovgyre:standard name = "northward ocean heat transport due t
o_gyre";
                htovgyre:long name = "Northward Ocean Heat Transport due to Gyr
e";
                htovgyre:comment = "From all advective mass transport processe
s, resolved and parameterized.";
                htovgyre:units = "W" ;
                htovgyre:cell methods = "longitude: mean time: mean" ;
                htovgyre:missing value = 1.e+20f ;
                htovgyre:_FillValue = 1.e+20f ;
                htovgyre:history = "2019-01-08T23:45:26Z altered by CMOR: Conver
ted type from \'l\' to \'f\'.";
                htovgyre:coordinates = "sector" ;
// global attributes:
                :Conventions = "CF-1.7 CMIP-6.2";
                :activity id = "ISMIP6";
                :branch method = "no parent" ;
                :branch time in child = 59400.;
                :branch time in parent = 0.;
                :contact = "Python Coder (coder@a.b.c.com)" ;
                :creation_date = "2019-01-08T23:45:26Z" ;
```

```
:data specs version = "01.00.27";
                :experiment = "preindustrial control with interactive ice shee
t";
                :experiment id = "piControl-withism";
                :forcing index = 1;
                :frequency = "mon" ;
                :further info url = "https://furtherinfo.es-doc.org/CMIP6.PCMD
I.PCMDI-test-1-0.piControl-withism.none.r3ilp1f1" ;
                :grid = "native atmosphere regular grid (3x4 latxlon)" ;
                :grid label = "gn" ;
                :history = "2019-01-08T23:45:26Z ;rewrote data to be consistent
with ISMIP6 for variable htovgyre found in table Omon.;\n",
                        "Output from archivcl_A1.nce/giccm_03_std_2xC02_2256.";
                :initialization index = 1;
                :institution = "Program for Climate Model Diagnosis and Intercom
parison, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA";
                :institution id = "PCMDI";
                :mip era = "CMIP6" ;
                :nominal_resolution = "10000 km";
                :parent activity id = "no parent";
                :parent_experiment_id = "no parent" ;
                :parent_mip_era = "no parent" ;
                :parent source id = "no parent" ;
                :parent time units = "no parent" ;
                :parent_variant_label = "no parent" ;
                :physics index = 1;
                :product = "model-output" ;
                :realization index = 3;
                :realm = "ocean" ;
                :references = "Model described by Koder and Tolkien (J. Geophy
s. Res., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. Th
e ssp245 simulation is described in Dorkey et al. \'(Clim. Dyn., 2003, 323-35
7.)\'";
                :run variant = "3rd realization" ;
                :source = "PCMDI-test 1.0 (1989): \n",
                        "aerosol: none\n",
                        "atmos: Earth1.0-gettingHotter (360 x 180 longitude/lati
tude; 50 levels; top level 0.1 mb)\n",
                        "atmosChem: none\n",
                        "land: Earth1.0\n",
                        "landIce: none\n",
                        "ocean: BlueMarble1.0-warming (360 x 180 longitude/latit
ude; 50 levels; top grid cell 0-10 m)\n",
                        "ocnBgchem: none\n",
                        "seaIce: Declining1.0-warming (360 x 180 longitude/latit
ude)";
                :source id = "PCMDI-test-1-0";
                :source type = "AOGCM ISM AER";
                :sub_experiment = "none" ;
                :sub experiment id = "none";
```

```
:table id = "Omon";
                :table info = "Creation Date:(30 July 2018) MD5:fa9bc503f57fb067
bf398cab2c4ba77e";
                :title = "PCMDI-test-1-0 output prepared for CMIP6";
                tracking id = "hdl:21.14100/631e76b6-64a0-4f24-8c67-e3a9a03a292"
0";
                :variable id = "htovgyre" ;
                :variant_label = "r3i1p1f1" ;
                :license = "CMIP6 model data produced by Lawrence Livermore PCMD
I is licensed under a Creative Commons Attribution ShareAlike 4.0 International
License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/C
MIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requ
irements and proper acknowledgment. Further information about this data, includi
ng some limitations, can be found via the further_info_url (recorded as a globa
l attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers an
d data providers make no warranty, either express or implied, including, but no
t limited to, warranties of merchantability and fitness for a particular purpos
e. All liabilities arising from the supply of the information (including any lia
bility arising in negligence) are excluded to the fullest extent permitted by la
w.";
                :cmor_version = "3.4.0";
data:
 time = 15.5, 45.5;
 time bnds =
 0, 31,
 31, 60;
 sector =
  "atlantic_arctic_ocean",
  "indian pacific ocean",
  "global ocean" ;
 lat = 10, 20, 30;
 lat bnds =
 5, 15,
 15, 25,
 25, 35;
 htovgyre =
  -80, -84, -88,
  -100, -104, -76,
  -120, -92, -96,
  -79, -83, -87,
  -99, -103, -75,
  -107, -111, -115;
}
```

Example 6: Treatment of a 3-D Field on Model Levels (cloud fraction; a function of longitude, latitude, model level, month)

• example6.py (page 0)

Click to expand Python code

```
import cmor
import numpy
import os
data = 10. * numpy.random.random.sample((2, 3, 4)) + 250.
data = numpy.array([
    72.8, 73.2, 73.6, 74,
    71.6, 72, 72.4, 72.4,
    70.4, 70.8, 70.8, 71.2,
    67.6, 69.2, 69.6, 70,
    66, 66.4, 66.8, 67.2,
    64.8, 65.2, 65.6, 66,
    63.6, 64, 64.4, 64.4,
    60.8, 61.2, 62.8, 63.2,
    59.6, 59.6, 60, 60.4,
    58, 58.4, 58.8, 59.2,
    56.8, 57.2, 57.6, 58,
    54, 54.4, 54.8, 56.4,
    52.8, 53.2, 53.2, 53.6,
    51.6, 51.6, 52, 52.4,
    50, 50.4, 50.8, 51.2,
    72.9, 73.3, 73.7, 74.1,
    71.7, 72.1, 72.5, 72.5,
    70.5, 70.9, 70.9, 71.3,
    67.7, 69.3, 69.7, 70.1,
    66.1, 66.5, 66.9, 67.3,
    64.9, 65.3, 65.7, 66.1,
    63.7, 64.1, 64.5, 64.5,
    60.9, 61.3, 62.9, 63.3,
    59.7, 59.7, 60.1, 60.5,
    58.1, 58.5, 58.9, 59.3,
    56.9, 57.3, 57.7, 58.1,
    54.1, 54.5, 54.9, 56.5,
    52.9, 53.3, 53.3, 53.7,
    51.7, 51.7, 52.1, 52.5,
    50.1, 50.5, 50.9, 51.3])
data.shape = (2, 5, 3, 4)
lat = numpy.array([10, 20, 30])
lat bnds = numpy.array([5, 15, 25, 35])
lon = numpy.array([0, 90, 180, 270])
lon bnds = numpy.array([-45, 45,
                         135,
                         225,
                         315
                         ])
time = numpy.array([15.5, 45])
time bnds = numpy.array([0, 31, 60])
lev = [0.92, 0.72, 0.5, 0.3, 0.1]
lev_bnds = [1, 0.83,
            0.61,
```

```
0.4,
            0.2,
            0
p0 = 100000
a = [0.12, 0.22, 0.3, 0.2, 0.1]
b = [0.8, 0.5, 0.2, 0.1, 0]
ps = numpy.array([
    97000, 97400, 97800, 98200,
    98600, 99000, 99400, 99800,
    100200, 100600, 101000, 101400,
    97100, 97500, 97900, 98300,
    98700, 99100, 99500, 99900,
    100300, 100700, 101100, 101500])
ps.shape = (2, 3, 4)
a bnds = [
    0.06, 0.18,
    0.26,
    0.25,
    0.15,
    0]
b bnds = [
    0.94, 0.65,
    0.35,
    0.15,
    0.05,
    0]
ipth = opth = 'Test'
cmor.setup(inpath=ipth,
           set verbosity=cmor.CMOR NORMAL,
           netcdf file action=cmor.CMOR REPLACE)
cmor.dataset json("CMOR input example.json")
cmor.load table("CMIP6 Amon.json")
cmorLat = cmor.axis("latitude",
                    coord vals=lat,
                    cell bounds=lat bnds,
                    units="degrees north")
cmorLon = cmor.axis("longitude",
                    coord vals=lon,
                    cell bounds=lon bnds,
                    units="degrees east")
cmorTime = cmor.axis("time",
                     coord vals=time,
                     cell bounds=time bnds,
                     units="days since 2018")
cmorLev = cmor.axis("standard hybrid sigma",
                    units='1',
                    coord vals=lev,
                    cell_bounds=lev_bnds)
axes = [cmorTime, cmorLev, cmorLat, cmorLon]
```

```
ierr = cmor.zfactor(zaxis_id=cmorLev,
                    zfactor name='a',
                    axis ids=[cmorLev, ],
                    zfactor values=a,
                    zfactor_bounds=a_bnds)
ierr = cmor.zfactor(zaxis_id=cmorLev,
                    zfactor name='b',
                    axis_ids=[cmorLev, ],
                    zfactor values=b,
                    zfactor_bounds=b_bnds)
ierr = cmor.zfactor(zaxis id=cmorLev,
                    zfactor_name='p0',
                    units='Pa',
                    zfactor_values=p0)
ips = cmor.zfactor(zaxis_id=cmorLev,
                   zfactor name='ps',
                   axis_ids=[cmorTime, cmorLat, cmorLon],
                   units='Pa')
cmorVar = cmor.variable("cl", "%", axes)
cmor.write(cmorVar, data)
cmor.write(ips, ps, store_with=cmorVar)
filename = cmor.close(cmorVar, file_name=True)
print("Stored in:", filename)
cmor.close()
os.system("ncdump {}".format(filename))
```

Click to expand NetCDF dump

```
netcdf cl Amon PCMDI-test-1-0 piControl-withism r3ilp1f1 gn 201801-201802 {
dimensions:
        time = UNLIMITED ; // (2 currently)
        lev = 5;
        lat = 3;
        lon = 4;
        bnds = 2;
variables:
       double time(time) ;
                time:bounds = "time_bnds" ;
                time:units = "days since 2018";
                time:calendar = "360 day";
                time:axis = "T" ;
                time:long_name = "time" ;
                time:standard name = "time" ;
        double time bnds(time, bnds);
        double lev(lev) ;
                lev:bounds = "lev bnds" ;
                lev:units = "1";
                lev:axis = "Z" ;
                lev:positive = "down" ;
                lev:long name = "hybrid sigma pressure coordinate" ;
                lev:standard name = "atmosphere hybrid sigma pressure coordinat
e";
                lev:formula = "p = a*p0 + b*ps";
                lev:formula terms = "p0: p0 a: a b: b ps: ps" ;
        double lev bnds(lev, bnds);
                lev bnds:formula = "p = a*p0 + b*ps";
                lev bnds:standard name = "atmosphere hybrid sigma pressure coord
inate";
                lev bnds:units = "1" ;
                lev bnds:formula terms = "p0: p0 a: a bnds b: b bnds ps: ps" ;
        double p0;
                p0:long name = "vertical coordinate formula term: reference pres
sure";
                p0:units = "Pa";
        double a(lev);
                a:long_name = "vertical coordinate formula term: a(k)" ;
        double b(lev) ;
                b:long name = "vertical coordinate formula term: b(k)" ;
        float ps(time, lat, lon);
                ps:long_name = "Surface Air Pressure" ;
                ps:units = "Pa" ;
        double a bnds(lev, bnds) ;
                a_bnds:long_name = "vertical coordinate formula term: a(k+1/2)"
        double b bnds(lev, bnds);
                b bnds:long name = "vertical coordinate formula term: b(k+1/2)"
;
        double lat(lat) ;
```

```
lat:bounds = "lat bnds" ;
                lat:units = "degrees north" ;
                lat:axis = "Y" ;
                lat:long name = "latitude" ;
                lat:standard name = "latitude" ;
        double lat bnds(lat, bnds) ;
        double lon(lon) ;
                lon:bounds = "lon bnds" ;
                lon:units = "degrees east" ;
                lon:axis = "X" ;
                lon:long name = "Longitude" ;
                lon:standard_name = "longitude" ;
        double lon bnds(lon, bnds) ;
        float cl(time, lev, lat, lon) ;
                cl:standard name = "cloud area fraction in atmosphere layer" ;
                cl:long_name = "Cloud Area Fraction" ;
                cl:comment = "Percentage cloud cover, including both large-scal
e and convective cloud.";
                cl:units = "%" ;
                cl:cell methods = "area: time: mean" ;
                cl:cell_measures = "area: areacella" ;
                cl:missing value = 1.e+20f ;
                cl: FillValue = 1.e+20f ;
                cl:history = "2019-01-08T23:49:05Z altered by CMOR: Converted ty
pe from \'d\' to \'f\'.";
// global attributes:
                :Conventions = "CF-1.7 CMIP-6.2";
                :activity id = "ISMIP6" ;
                :branch method = "no parent";
                :branch time in child = 59400.;
                :branch time in parent = 0.;
                :contact = "Python Coder (coder@a.b.c.com)" ;
                :creation_date = "2019-01-08T23:49:05Z" ;
                :data specs version = "01.00.27";
                :experiment = "preindustrial control with interactive ice shee
t" :
                :experiment_id = "piControl-withism";
                :external variables = "areacella" ;
                :forcing index = 1;
                :frequency = "mon" ;
                :further_info_url = "https://furtherinfo.es-doc.org/CMIP6.PCMD
I.PCMDI-test-1-0.piControl-withism.none.r3i1p1f1" ;
                :grid = "native atmosphere regular grid (3x4 latxlon)" ;
                :grid label = "gn" ;
                :history = "2019-01-08T23:49:05Z ;rewrote data to be consistent
with ISMIP6 for variable cl found in table Amon.;\n",
                        "Output from archivel Al.nce/gicem 03 std 2xC02 2256.";
                :initialization index = 1;
                :institution = "Program for Climate Model Diagnosis and Intercom
```

```
parison, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA";
                :institution id = "PCMDI";
                :mip era = "CMIP6" ;
                :nominal resolution = "10000 km";
                :parent_activity_id = "no parent" ;
                :parent experiment id = "no parent" ;
                :parent mip era = "no parent" ;
                :parent_source_id = "no parent" ;
                :parent_time_units = "no parent" ;
                :parent_variant_label = "no parent" ;
                :physics index = 1;
                :product = "model-output" ;
                :realization index = 3;
                :realm = "atmos" ;
                :references = "Model described by Koder and Tolkien (J. Geophy
s. Res., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. Th
e ssp245 simulation is described in Dorkey et al. \'(Clim. Dyn., 2003, 323-35
7.)\'";
                :run variant = "3rd realization" ;
                :source = "PCMDI-test 1.0 (1989): \n",
                        "aerosol: none\n",
                        "atmos: Earth1.0-gettingHotter (360 x 180 longitude/lati
tude; 50 levels; top level 0.1 mb)\n",
                        "atmosChem: none\n",
                        "land: Earth1.0\n",
                        "landIce: none\n",
                        "ocean: BlueMarble1.0-warming (360 x 180 longitude/latit
ude; 50 levels; top grid cell 0-10 m)\n",
                        "ocnBgchem: none\n",
                        "seaIce: Declining1.0-warming (360 x 180 longitude/latit
ude)";
                :source id = "PCMDI-test-1-0" ;
                :source type = "AOGCM ISM AER";
                :sub experiment = "none" ;
                :sub experiment id = "none";
                :table id = "Amon" ;
                :table info = "Creation Date: (30 July 2018) MD5:fa9bc503f57fb067
bf398cab2c4ba77e";
                :title = "PCMDI-test-1-0 output prepared for CMIP6";
                :variable id = "cl" ;
                :variant label = "r3i1p1f1" ;
                :license = "CMIP6 model data produced by Lawrence Livermore PCMD
I is licensed under a Creative Commons Attribution ShareAlike 4.0 International
License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/C
MIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requ
irements and proper acknowledgment. Further information about this data, includi
ng some limitations, can be found via the further info url (recorded as a globa
l attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers an
d data providers make no warranty, either express or implied, including, but no
t limited to, warranties of merchantability and fitness for a particular purpos
```

```
e. All liabilities arising from the supply of the information (including any lia
bility arising in negligence) are excluded to the fullest extent permitted by la
w.";
                :cmor version = "3.4.0";
                :tracking_id = "hdl:21.14100/68486bc9-5ee7-4a03-ba74-ec9cf9c86e3"
c";
data:
time = 15.5, 45.5;
 time bnds =
 0, 31,
 31, 60;
 lev = 0.92, 0.72, 0.5, 0.3, 0.1;
 lev bnds =
 1, 0.83,
 0.83, 0.61,
 0.61, 0.4,
 0.4, 0.2,
 0.2, 0;
 p0 = 100000;
 a = 0.12, 0.22, 0.3, 0.2, 0.1;
 b = 0.8, 0.5, 0.2, 0.1, 0;
 ps =
 97000, 97400, 97800, 98200,
 98600, 99000, 99400, 99800,
  100200, 100600, 101000, 101400,
 97100, 97500, 97900, 98300,
 98700, 99100, 99500, 99900,
  100300, 100700, 101100, 101500;
 a_bnds =
 0.06, 0.18,
 0.18, 0.26,
 0.26, 0.25,
 0.25, 0.15,
 0.15, 0;
 b bnds =
 0.94, 0.65,
 0.65, 0.35,
 0.35, 0.15,
 0.15, 0.05,
  0.05, 0;
```

```
lat = 10, 20, 30;
lat bnds =
 5, 15,
 15, 25,
 25, 35;
lon = 0, 90, 180, 270;
lon bnds =
 -45, 45,
 45, 135,
 135, 225,
 225, 315;
 cl =
 72.8, 73.2, 73.6, 74,
 71.6, 72, 72.4, 72.4,
 70.4, 70.8, 70.8, 71.2,
 67.6, 69.2, 69.6, 70,
 66, 66.4, 66.8, 67.2,
 64.8, 65.2, 65.6, 66,
 63.6, 64, 64.4, 64.4,
 60.8, 61.2, 62.8, 63.2,
 59.6, 59.6, 60, 60.4,
 58, 58.4, 58.8, 59.2,
 56.8, 57.2, 57.6, 58,
 54, 54.4, 54.8, 56.4,
 52.8, 53.2, 53.2, 53.6,
 51.6, 51.6, 52, 52.4,
 50, 50.4, 50.8, 51.2,
 72.9, 73.3, 73.7, 74.1,
 71.7, 72.1, 72.5, 72.5,
 70.5, 70.9, 70.9, 71.3,
 67.7, 69.3, 69.7, 70.1,
 66.1, 66.5, 66.9, 67.3,
 64.9, 65.3, 65.7, 66.1,
 63.7, 64.1, 64.5, 64.5,
 60.9, 61.3, 62.9, 63.3,
 59.7, 59.7, 60.1, 60.5,
 58.1, 58.5, 58.9, 59.3,
 56.9, 57.3, 57.7, 58.1,
 54.1, 54.5, 54.9, 56.5,
 52.9, 53.3, 53.3, 53.7,
 51.7, 51.7, 52.1, 52.5,
  50.1, 50.5, 50.9, 51.3;
}
```

Fortran Example

CMOR user input

• CMOR_input_example.json (https://github.com/PCMDI/cmor/blob/master/Test/CMOR_input_example.json)

Click to expand json file

```
{
  "#note":
                     "explanation of what source type is goes here",
                             "AOGCM ISM AER",
  "source type":
  "#note":
                             "CMIP6 valid experiment ids are found in CMIP6 CV.js
on",
  "experiment id":
                             "piControl-withism",
  "activity id":
                             "ISMIP6",
  "sub experiment id":
                             "none",
                             "3",
  "realization index":
                             "1",
  "initialization_index":
  "physics index":
                             "1",
  "forcing_index":
                             "1",
  "#note":
                             "Text stored in attribute variant info (recommende
d, not required description of run variant)",
                             "3rd realization",
  "run variant":
  "parent experiment_id":
                             "historical",
  "parent_activity_id":
                             "CMIP",
  "parent source id":
                             "PCMDI-test-1-0",
  "parent variant label":
                             "r3i1p1f1",
  "parent time units":
                             "days since 1850-01-01",
  "branch method":
                             "standard",
  "branch_time_in_child":
                            59400.0,
  "branch_time_in_parent":
                            59400.0,
  "#note":
                             "institution id must be registered at https://githu
b.com/WCRP-CMIP/CMIP6 CVs/issues/new ",
  "institution id":
                             "PCMDI",
  "#note":
                             "source id (model name) must be registered at http
s://github.com/WCRP-CMIP/CMIP6 CVs/issues/new ",
  "source id":
                             "PCMDI-test-1-0",
  "calendar":
                             "360_day",
  "grid":
                             "native atmosphere regular grid (3x4 latxlon)",
  "grid label":
                             "gn",
                             "10000 km",
  "nominal_resolution":
  "license":
                              "CMIP6 model data produced by Lawrence Livermore PC
MDI is licensed under a Creative Commons Attribution ShareAlike 4.0 Internationa
l License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.go
v/CMIP6/Terms0fUse for terms of use governing CMIP6 output, including citation r
equirements and proper acknowledgment. Further information about this data, incl
uding some limitations, can be found via the further_info_url (recorded as a glo
bal attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers
```

and data providers make no warranty, either express or implied, including, but n ot limited to, warranties of merchantability and fitness for a particular purpos e. All liabilities arising from the supply of the information (including any lia bility arising in negligence) are excluded to the fullest extent permitted by la W.", "#output": "Root directory for output (can be either a relativ e or full path)", "outpath": "CMIP6", "#note": " **** The following descriptors are optional and ma y be set to an empty string ", "Python Coder (coder@a.b.c.com)", "contact ": "Output from archivcl_A1.nce/giccm_03_std_2xC02_225 "history": 6.", ш, "comment": "references": "Model described by Koder and Tolkien (J. Geophys. R es., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. The ssp 245 simulation is described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)'", "#note": " **** The following will be obtained from the CV an d do not need to be defined here", "sub experiment": "none", ш, "institution": "source": "PCMDI-test 1.0 (1989)", "#note": " **** The following are set correctly for CMIP6 an d should not normally need editing", " controlled vocabulary file": "CMIP6 CV.json", "_AXIS_ENTRY_FILE": "CMIP6_coordinate.json", "_FORMULA_VAR_FILE": "CMIP6 formula terms.json", "CMIP6", " cmip6 option": "mip era": "CMIP6", "parent_mip_era": "CMIP6", "tracking_prefix": "hdl:21.14100", " history template": "%s ;rewrote data to be consistent with <activity_i d> for variable <variable_id> found in table <table_id>.", "#output path template": "Template for output path directory using tables ke ys or global attributes, these should follow the relevant data reference synta х", "output path template": "<mip_era><activity_id><institution_id><source_i</pre> d><experiment id>< member id><variable id><grid label><version>", "output_file_template": "<variable_id><source_id><experiment_id><_me mber id><grid label>",

}	

Fortran source code

- ipcc_test_code.f90 (https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.f90)
- reader_2D_3D.f90
 (https://github.com/PCMDI/cmor/blob/master/Test/reader_2D_3D.f90)

Click to expand Fortran code

```
!!$pgf90 -I/work/NetCDF/5.1/include -L/work/NetCDF/5.1/lib -l netcdf -L. -l cmo
r Test/test dimensionless.f90 -IModules -o cmor test
!!$pgf90 -g -I/pcmdi/charles work/NetCDF/include -L/pcmdi/charles work/NetCDF/li
b -lnetcdf -module Modules -IModules -L. -lcmor -I/pcmdi/charles work/Unidata/in
clude -L/pcmdi/charles work/Unidata/lib -ludunits Test/test dimensionless.f90
-o cmor test
MODULE local_subs
USE cmor_users_functions
PRIVATE
PUBLIC read_coords, read_time, read_3d_input_files, read_2d_input_files
CONTAINS
SUBROUTINE read_coords(alats, alons, plevs, bnds_lat, bnds_lon)
  IMPLICIT NONE
  DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alats
 DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alons
 DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: plevs
  DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds lat
  DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds lon
  INTEGER :: i
 DO i = 1, SIZE(alons)
      alons(i) = (i-1)*360./SIZE(alons)
      bnds lon(1,i) = (i - 1.5)*360./SIZE(alons)
      bnds lon(2,i) = (i - 0.5)*360./SIZE(alons)
  END DO
  DO i = 1, SIZE(alats)
      alats(i) = (size(alats)+1-i)*10
      bnds lat(1,i) = (size(alats)+1-i)*10 + 5.
      bnds lat(2,i) = (size(alats)+1-i)*10 - 5.
  END DO
 DO i = 1, SIZE(plevs)
      plevs(i) = i*1.0e4
  END DO
    plevs = (/100000., 92500., 85000., 70000.,&
      60000., 50000., 40000., 30000., 25000., 20000.,&
      15000., 10000., 7000., 5000., 3000., 2000., 1000., 500., 100./)
 RETURN
END SUBROUTINE read coords
SUBROUTINE read_time(it, time, time_bnds)
```

```
IMPLICIT NONE
 INTEGER, INTENT(IN) :: it
 DOUBLE PRECISION, INTENT(OUT) :: time
 DOUBLE PRECISION, INTENT(OUT), DIMENSION(2,1) :: time bnds
 time = (it-0.5)*30.
 time bnds(1,1) = (it-1)*30.
 time bnds(2,1) = it*30.
 RETURN
END SUBROUTINE read_time
INCLUDE "reader_2D_3D.f90"
END MODULE local subs
PROGRAM ipcc_test_code
!
ļ
               To serve as a generic example of an application that
    Purpose:
!
        uses the "Climate Model Output Rewriter" (CMOR)
     CMOR writes CF-compliant netCDF files.
!
!
     Its use is strongly encouraged by the IPCC and is intended for use
!
        by those participating in many community-coordinated standard
!
        climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE,
!
        etc.)
!
!
    Background information for this sample code:
!
ļ
       Atmospheric standard output requested by IPCC are listed in
    tables available on the web. Monthly mean output is found in
!
!
    tables Ala and Alc. This sample code processes only two 3-d
    variables listed in table A1c ("monthly mean atmosphere 3-D data"
!
!
    and only four 2-d variables listed in table Ala ("monthly mean
!
    atmosphere + land surface 2-D (latitude, longitude) data"). The
!
    extension to many more fields is trivial.
ļ
!
       For this example, the user must fill in the sections of code that
!
    extract the 3-d and 2-d fields from his monthly mean "history"
!
    files (which usually contain many variables but only a single time
!
    slice). The CMOR code will write each field in a separate file, but
!
    many monthly mean time-samples will be stored together. These
!
    constraints partially determine the structure of the code.
!
!
!
   Record of revisions:
!
                    Programmer(s)
                                            Description of change
        Date
```

```
!
      ====
                ========
ļ
     10/22/03
               Rusty Koder
                                     Original code
!
                Les R. Koder
      1/28/04
                                     Revised to be consistent
ļ
                                     with evolving code design
! include module that contains the user-accessible cmor functions.
USE cmor users functions
USE local subs
IMPLICIT NONE
   dimension parameters:
! -----
INTEGER, PARAMETER :: ntimes = 2 ! number of time samples to process
INTEGER, PARAMETER :: lev2 = 19
                               ! number of standard pressure levels
output.
be output.
   Tables associating the user's variables with IPCC standard output
!
  variables. The user may choose to make this association in a
   different way (e.g., by defining values of pointers that allow him
   to directly retrieve data from a data record containing many
!
  different variables), but in some way the user will need to map his
  model output onto the Tables specifying the MIP standard output.
                         ! My variable names for IPCC Table Alc fields
CHARACTER (LEN=5), DIMENSION(n3d) :: &
                          varin3d=(/'CLOUD', 'U ', 'T '/)
                         ! Units appropriate to my data
CHARACTER (LEN=5), DIMENSION(n3d) :: &
                          units3d=(/ '% ', 'm s-1', 'K ' /)
                 ! Corresponding IPCC Table Alc entry (variable name)
CHARACTER (LEN=2), DIMENSION(n3d) :: entry3d = (/ 'cl', 'ua', 'ta' /)
                         ! My variable names for IPCC Table Ala fields
CHARACTER (LEN=8), DIMENSION(n2d) :: &
             varin2d=(/ 'LATENT ', 'TSURF ', 'SOIL WET', 'PSURF ' /)
                         ! Units appropriate to my data
 CHARACTER (LEN=6), DIMENSION(n2d) :: &
                    units2d=(/ 'W m-2 ', 'K ', 'kg m-2', 'Pa
                                                            ' /)
```

```
CHARACTER (LEN=4), DIMENSION(n2d) :: &
                   positive2d= (/ 'down', ' ', ' ', ' /)
                   ! Corresponding IPCC Table Ala entry (variable name)
CHARACTER (LEN=5), DIMENSION(n2d) :: &
                    entry2d = (/ 'hfls ', 'tas ', 'mrsos', 'ps ' /)
! uninitialized variables used in communicating with CMOR:
INTEGER :: error_flag
INTEGER :: znondim id, zfactor id
INTEGER, DIMENSION(n2d) :: var2d ids
INTEGER, DIMENSION(n3d) :: var3d ids
REAL, DIMENSION(lon,lat) :: data2d
REAL, DIMENSION(lon,lat,lev2) :: data3d
DOUBLE PRECISION, DIMENSION(lat) :: alats
DOUBLE PRECISION, DIMENSION(lon) :: alons
DOUBLE PRECISION, DIMENSION(lev2) :: plevs
DOUBLE PRECISION, DIMENSION(1) :: time
DOUBLE PRECISION, DIMENSION(2,1):: bnds_time
DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat
DOUBLE PRECISION, DIMENSION(2,lon) :: bnds lon
DOUBLE PRECISION, DIMENSION(lev) :: zlevs
DOUBLE PRECISION, DIMENSION(lev+1) :: zlev bnds
REAL, DIMENSION(lev) :: a_coeff
REAL, DIMENSION(lev) :: b_coeff
REAL :: p0
REAL, DIMENSION(lev+1) :: a coeff bnds
REAL, DIMENSION(lev+1) :: b coeff bnds
INTEGER :: ilon, ilat, ipres, ilev, itim, itim2, ilon2,ilat2
DOUBLE PRECISION bt
character(256):: outpath,mycal
! Other variables:
! -----
INTEGER :: it, m
bt=0.
! Execution begins here:
! Read coordinate information from model into arrays that will be passed
! to CMOR.
! Read latitude, longitude, and pressure coordinate values into
!
   alats, alons, and plevs, respectively. Also generate latitude and
   longitude bounds, and store in bnds lat and bnds lon, respectively.
```

```
Note that all variable names in this code can be freely chosen by
ļ
   the user.
   The user must write the subroutine that fills the coordinate arrays
!
   and their bounds with actual data. The following line is simply a
   a place-holder for the user's code, which should replace it.
! *** possible user-written call ***
call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)
! Specify path where tables can be found and indicate that existing
    netCDF files should not be overwritten.
error_flag = cmor_setup(inpath='Test', netcdf_file_action='replace')
! Define dataset as output from the GICC model (first member of an
   ensemble of simulations) run under IPCC 2xCO2 equilibrium
    experiment conditions, and provide information to be included as
   attributes in all CF-netCDF files written as part of this dataset.
mycal = '360 day'
error flag = cmor dataset json("Test/CMOR input example.json")
! Define all axes that will be needed
ilat = cmor axis( &
     table='Tables/CMIP6 Amon.json',
      table entry='latitude',
                                    &
      units='degrees north',
                                    &
      length=lat,
                                    &
      coord vals=alats,
      cell bounds=bnds lat)
ilon2 = cmor axis( &
      table='Tables/CMIP6_Lmon.json',
      table entry='longitude',
      length=lon,
      units='degrees east',
                                    &
      coord_vals=alons,
                                    &
      cell bounds=bnds lon)
ilat2 = cmor_axis( &
     table='Tables/CMIP6 Lmon.json',
      table entry='latitude',
      units='degrees north',
                                    &
      length=lat,
                                    &
      coord vals=alats,
                                    &
```

```
cell bounds=bnds lat)
ilon = cmor axis( &
     table='Tables/CMIP6 Amon.json',
     table_entry='longitude',
                                    &
     length=lon,
     units='degrees east',
                                    &
     coord_vals=alons,
                                    &
     cell bounds=bnds lon)
ipres = cmor axis( &
     table='Tables/CMIP6_Amon.json',
     table entry='plev19',
     units='Pa',
                                    &
     length=lev2,
     coord vals=plevs)
!
   note that the time axis is defined next, but the time coordinate
ļ
   values and bounds will be passed to cmor through function
   cmor write (later, below).
itim = cmor axis( &
     table='Tables/CMIP6 Amon.json',
     table entry='time',
     units='days since 2030-1-1',
     length=ntimes,
     interval='20 minutes')
itim2 = cmor_axis( &
     table='Tables/CMIP6 Lmon.json',
     table entry='time',
                                    &
     units='days since 2030-1-1', &
     length=ntimes,
     interval='20 minutes')
! define model eta levels (although these must be provided, they will
    actually be replaced by a+b before writing the netCDF file)
zlevs = (/ 0.1, 0.3, 0.55, 0.7, 0.9 /)
zlev_bnds=(/ 0.,.2, .42, .62, .8, 1. /)
ilev = cmor_axis( &
     table='Tables/CMIP6 Amon.json',
     table_entry='standard_hybrid_sigma',
                                                 &
     units='1', &
     length=lev,
                                    &
                                    &
     coord_vals=zlevs,
     cell bounds=zlev bnds)
   define z-factors needed to transform from model level to pressure
p0 = 1.e5
a coeff = (/ 0.1, 0.2, 0.3, 0.22, 0.1 /)
```

```
b coeff = (/ 0.0, 0.1, 0.2, 0.5, 0.8 /)
a coeff bnds=(/0.,.15, .25, .25, .16, 0./)
b_coeff_bnds=(/0.,.05, .15, .35, .65, 1./)
error flag = cmor zfactor( &
      zaxis id=ilev,
                                          &
      zfactor_name='p0',
                                          &
      units='Pa',
                                          &
      zfactor_values = p0)
error_flag = cmor_zfactor( &
      zaxis id=ilev,
                                           &
      zfactor_name='b',
                                           &
                                           &
      axis_ids= (/ ilev /),
      zfactor values = b coeff,
      zfactor_bounds = b_coeff_bnds )
error_flag = cmor_zfactor( &
      zaxis id=ilev,
                                           &
      zfactor_name='a',
                                           &
      axis_ids= (/ ilev /),
                                           &
      zfactor_values = a_coeff,
      zfactor_bounds = a_coeff_bnds )
zfactor id = cmor zfactor( &
      zaxis_id=ilev,
                                             &
                                             &
      zfactor_name='ps',
                                             &
      axis ids=(/ ilon, ilat, itim /),
      units='Pa' )
! Define the only field to be written that is a function of model level
     (appearing in IPCC table A1c)
var3d ids(1) = cmor variable(
      table='Tables/CMIP6 Amon.json', &
      table entry=entry3d(1),
                                  &
      units=units3d(1),
      axis ids=(/ ilon, ilat, ilev, itim /), &
      missing_value=1.0e28, &
      original name=varin3d(1))
  Define variables appearing in IPCC table Alc that are a function of pressure
          (3-d variables)
DO m=2,n3d
    var3d_ids(m) = cmor_variable(
        table='Tables/CMIP6 Amon.json', &
        table_entry=entry3d(m),
                                    &
                                    &
        units=units3d(m),
```

```
axis ids=(/ ilon, ilat, ipres, itim /), &
        missing value=1.0e28,
        original name=varin3d(m))
ENDDO
 Define variables appearing in IPCC table Ala (2-d variables)
DO m=1, n2d
    if (m.ne.3) then
    var2d ids(m) = cmor variable(
        table='Tables/CMIP6_Amon.json',
                                             &
        table entry=entry2d(m),
                                    &
        units=units2d(m),
        axis_ids=(/ ilon, ilat, itim /), &
        missing value=1.0e28,
        positive=positive2d(m),
                                    &
        original name=varin2d(m))
else
    var2d ids(m) = cmor variable(
        table='Tables/CMIP6_Lmon.json',
                                             &
        table entry=entry2d(m),
                                    &
        units=units2d(m),
                                    &
        axis ids=(/ ilon2, ilat2, itim2 /), &
        missing value=1.0e28,
        positive=positive2d(m),
        original name=varin2d(m))
endif
ENDDO
PRINT*, ' '
PRINT*, 'completed everything up to writing output fields '
PRINT*, ' '
  Loop through history files (each containing several different fields,
!
!
        but only a single month of data, averaged over the month).
ļ
        extract fields of interest and write these to netCDF files (with
        one field per file, but all months included in the loop).
time_loop: DO it=1, ntimes
    ! In the following loops over the 3d and 2d fields, the user-written
    ! subroutines (read 3d input files and read 2d input files) retrieve
    ! the requested IPCC table Alc and table Ala fields and store them in
    ! data3d and data2d, respectively. In addition a user-written code
    ! (read time) retrieves the time and time-bounds associated with the
    ! time sample (in units of 'days since 1970-1-1', consistent with the
    ! axis definitions above). The bounds are set to the beginning and
    ! the end of the month retrieved, indicating the averaging period.
```

```
! The user must write a code to obtain the times and time-bounds for
      the time slice. The following line is simply a place-holder for
  !
      the user's code, which should replace it.
call read_time(it, time(1), bnds_time)
call read 3d input files(it, varin3d(1), data3d)
error flag = cmor write(
                                                          ď
      var_id
                    = var3d_ids(1),
                                                           &
                                                           &
                    = data3d,
      data
      ntimes_passed = 1,
                                                           &
                                                           'n
      time vals
                   = time,
      time bnds = bnds time
call read 2d input files(it, varin2d(4), data2d)
error flag = cmor write(
                                                          &
      var_id
                    = zfactor id,
                                                           &
      data
                    = data2d,
                                                           &
      ntimes_passed = 1,
                                                           &
                                                           &
      time vals
                   = time,
      time bnds
                                                           &
                   = bnds time,
                    = var3d_ids(1))
      store_with
! Cycle through the 3-d fields (stored on pressure levels),
! and retrieve the requested variable and append each to the
! appropriate netCDF file.
DO m=2.n3d
    ! The user must write the code that fills the arrays of data
    ! that will be passed to CMOR. The following line is simply a
    ! a place-holder for the user's code, which should replace it.
    call read_3d_input_files(it, varin3d(m), data3d)
    ! append a single time sample of data for a single field to
    ! the appropriate netCDF file.
    error_flag = cmor_write(
                                                              &
          var id
                        = var3d ids(m),
                                                               &
          data
                        = data3d,
                                                               &
          ntimes_passed = 1,
                                                               &
          time vals
                        = time,
                    = bnds_time )
          time_bnds
    IF (error flag < 0) THEN</pre>
        ! write diagnostic messages to standard output device
        write(*,*) ' Error encountered writing IPCC Table A1c ' &
            // 'field ', entry3d(m), ', which I call ', varin3d(m)
```

```
write(*,*) ' Was processing time sample: ', time
      END IF
   END DO
    ! Cycle through the 2-d fields, retrieve the requested variable and
    ! append each to the appropriate netCDF file.
   DO m=1, n2d
      ! The user must write the code that fills the arrays of data
      ! that will be passed to CMOR. The following line is simply a
      ! a place-holder for the user's code, which should replace it.
      call read 2d input files(it, varin2d(m), data2d)
      ! append a single time sample of data for a single field to
      ! the appropriate netCDF file.
      error_flag = cmor_write(
                                                                &
                         = var2d ids(m),
           var_id
                                                                 &
           data
                         = data2d,
                                                                 &
                                                                 &
           ntimes_passed = 1,
                                                                 &
            time vals
                        = time,
                      = bnds_time )
           time bnds
      IF (error_flag < 0) THEN</pre>
          ! write diagnostic messages to standard output device
         write(*,*) ' Error encountered writing IPCC Table Ala ' &
              // 'field ', entry2d(m), ', which I call ', varin2d(m)
         write(*,*) ' Was processing time sample: ', time
      END IF
   END DO
END DO time_loop
   Close all files opened by CMOR.
error_flag = cmor_close()
print*, ' '
print*, '**********************
print*, 'ipcc_test_code executed to completion '
print*, ' '
print*, '**********************
```

END PROGRAM ipcc_test_code

C example

CMOR user input

• CMOR_input_example.json (https://github.com/PCMDI/cmor/blob/master/Test/CMOR_input_example.json)

Click to expand JSON file

```
{
    "#note":
                       "explanation of what source type is goes here",
                               "AOGCM ISM AER",
    "source_type":
    "#note":
                               "CMIP6 valid experiment ids are found in CMIP6 C
V.json",
    "experiment id":
                               "piControl-withism",
    "activity id":
                               "ISMIP6",
    "sub experiment id":
                               "none",
                               "3",
    "realization index":
                               "1",
    "initialization_index":
    "physics index":
                               "1",
    "forcing_index":
                               "1",
    "#note":
                               "Text stored in attribute variant info (recommende
d, not required description of run variant)",
    "run variant":
                               "3rd realization",
    "parent experiment id":
                               "historical",
    "parent_activity_id":
                               "CMIP",
    "parent source id":
                               "PCMDI-test-1-0",
    "parent variant label":
                               "r3i1p1f1",
    "parent time units":
                               "days since 1850-01-01",
    "branch method":
                               "standard",
    "branch time in child":
                               59400.0,
    "branch_time_in_parent":
                              59400.0,
    "#note":
                               "institution id must be registered at https://gith
ub.com/WCRP-CMIP/CMIP6 CVs/issues/new ",
                               "PCMDI",
    "institution id":
    "#note":
                               "source id (model name) must be registered at http
s://github.com/WCRP-CMIP/CMIP6 CVs/issues/new ",
    "source id":
                               "PCMDI-test-1-0",
    "calendar":
                               "360_day",
    "grid":
                               "native atmosphere regular grid (3x4 latxlon)",
    "grid label":
                               "gn",
    "nominal_resolution":
                               "10000 km",
    "license":
                                "CMIP6 model data produced by Lawrence Livermore
PCMDI is licensed under a Creative Commons Attribution ShareAlike 4.0 Internatio
nal License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.g
ov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation
requirements and proper acknowledgment. Further information about this data, inc
luding some limitations, can be found via the further_info_url (recorded as a gl
obal attribute in this file) and at https:///pcmdi.llnl.gov/. The data producer
```

```
s and data providers make no warranty, either express or implied, including, bu
t not limited to, warranties of merchantability and fitness for a particular pur
pose. All liabilities arising from the supply of the information (including any
liability arising in negligence) are excluded to the fullest extent permitted b
y law.",
    "#output":
                              "Root directory for output (can be either a relati
ve or full path)",
    "outpath":
                              "CMIP6",
    "#note":
                              " **** The following descriptors are optional and
may be set to an empty string ",
    "contact ":
                              "Python Coder (coder@a.b.c.com)",
                              "Output from archivcl_A1.nce/giccm_03_std_2xC02_22
   "history":
56.",
    "comment":
                              ш,
   "references":
                              "Model described by Koder and Tolkien (J. Geophy
s. Res., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html. Th
e ssp245 simulation is described in Dorkey et al. '(Clim. Dyn., 2003, 323-35
7.)'",
                              " **** The following will be obtained from the CV
    "#note":
and do not need to be defined here",
    "sub experiment":
                              "none",
                              "",
    "institution":
    "source":
                              "PCMDI-test 1.0 (1989)",
                              " **** The following are set correctly for CMIP6 a
    "#note":
nd should not normally need editing",
    "_controlled_vocabulary_file": "CMIP6_CV.json",
    "_AXIS_ENTRY_FILE":
                               "CMIP6 coordinate.json",
    " FORMULA VAR FILE":
                                "CMIP6 formula terms.json",
    " cmip6 option":
                               "CMIP6",
    "mip_era":
                              "CMIP6",
                              "CMIP6",
    "parent mip era":
    "tracking prefix":
                              "hdl:21.14100",
    "_history_template":
                               "%s ;rewrote data to be consistent with <activit
y id> for variable <variable id> found in table .",
    "#output_path_template":
                               "Template for output path directory using tables
keys or global attributes, these should follow the relevant data reference synta
х",
    "output path template":
                               "<mip era><activity id><institution id><source i</pre>
d><experiment_id><_member_id><variable_id><grid_label><version>",
    "output file template":
                               "<variable id><source id><experiment i
```

```
d><_member_id><grid_label>",
}
```

C source code

- ipcc_test_code.c (https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.c)
- reader_2D_3D.h
 (https://github.com/PCMDI/cmor/blob/master/Test/reader_2D_3D.h)

Click to expand C code

```
#include <time.h>
#include <stdio.h>
#include<string.h>
#include "cmor.h"
#include <stdlib.h>
void read coords(alats, alons, plevs, bnds lat, bnds lon, lon, lat, lev)
double *alats, *alons;
int *plevs;
double *bnds_lat, *bnds_lon;
int lon, lat, lev;
{
    int i;
    for (i = 0; i < lon; i++) {
        alons[i] = i * 360. / lon;
        bnds_lon[2 * i] = (i - 0.5) * 360. / lon;
        bnds lon[2 * i + 1] = (i + 0.5) * 360. / lon;
    };
    for (i = 0; i < lat; i++) {</pre>
        alats[i] = (lat - i) * 10;
        bnds_lat[2 * i] = (lat - i) * 10 + 5.;
        bnds_lat[2 * i + 1] = (lat - i) * 10 - 5.;
    };
    plevs[0] = 1000;
    plevs[1] = 925;
    plevs[2] = 850;
    plevs[3] = 700;
    plevs[4] = 600;
    plevs[5] = 500;
    plevs[6] = 400;
    plevs[7] = 300;
    plevs[8] = 250;
    plevs[9] = 200;
    plevs[10] = 150;
    plevs[11] = 100;
    plevs[12] = 70;
    plevs[13] = 50;
    plevs[14] = 30;
    plevs[15] = 20;
    plevs[16] = 10;
    plevs[17] = 5;
    plevs[18] = 1;
}
void read time(it, time, time bnds)
int it;
double time[];
```

```
double time bnds[];
{
   time[0] = (it - 0.5) * 30.;
   time bnds[0] = (it - 1) * 30.;
   time bnds[1] = it * 30.;
   time[0] = it;
   time bnds[0] = it;
   time bnds[1] = it + 1;
}
#include "reader_2D_3D.h"
int main()
/*
               To serve as a generic example of an application that */
/*
        uses the "Climate Model Output Rewriter" (CMOR) */
/*
     CMOR writes CF-compliant netCDF files. */
/*
     Its use is strongly encouraged by the IPCC and is intended for use */
/*
        by those participating in many community-coordinated standard */
/*
        climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE, */
/*
        etc.) */
/*
    Background information for this sample code: */
/*
       Atmospheric standard output requested by IPCC are listed in */
/*
     tables available on the web. Monthly mean output is found in */
/*
     tables Ala and Alc. This sample code processes only two 3-d */
/*
    variables listed in table A1c ("monthly mean atmosphere 3-D data" */
/*
    and only four 2-d variables listed in table A1a ("monthly mean */
/*
    atmosphere + land surface 2-D (latitude, longitude) data"). The */
/*
    extension to many more fields is trivial. */
/*
       For this example, the user must fill in the sections of code that */
/*
    extract the 3-d and 2-d fields from his monthly mean "history" */
/*
     files (which usually contain many variables but only a single time */
/*
    slice). The CMOR code will write each field in a separate file, but */
/*
    many monthly mean time-samples will be stored together. These */
/*
    constraints partially determine the structure of the code. */
    Record of revisions: */
/*
/*
        Date
                    Programmer(s)
                                           Description of change */
/*
                                           */
                    ========
        ====
/*
       10/22/03
                  Rusty Koder
                                            Original code */
                   Les R. Koder
/*
        1/28/04
                                            Revised to be consistent */
/*
                                            with evolving code design */
{
   /* ----- */
        dimension parameters: */
   /* ----- */
#define
         ntimes 2
                             /* number of time samples to process */
         lon 4
                             /* number of longitude grid cells
#define
#define
         lat 3
                             /* number of latitude grid cells */
#define
         lev 19
                              /* number of standard pressure levels */
```

```
#define
         n2d 4
                              /* number of IPCC Table Ala fields to be outpu
t. */
                              /* number of IPCC Table Alc fields to be outpu
#define
         n3d 3
t. */
        Tables associating the user's variables with IPCC standard output */
   /*
        variables. The user may choose to make this association in a */
   /*
        different way (e.g., by defining values of pointers that allow him */
   /*
        to directly retrieve data from a data record containing many */
   /*
        different variables), but in some way the user will need to map his */
   /*
        model output onto the Tables specifying the MIP standard output. */
   /* ----- */
   /* My variable names for IPCC Table A1c fields */
   char varin3d[n3d][6] = { "CLOUD", "U", "T" };
   /* Units appropriate to my data */
   char units3d[n3d][6] = { "%", "m s-1", "K" };
   /* Corresponding IPCC Table Alc entry (variable name) */
   char entry3d[n3d][3] = { "cl", "ua", "ta" };
   /* My variable names for IPCC Table Ala fields */
   char varin2d[n2d][9] = { "LATENT", "TSURF", "SOIL WET", "PSURF" };
   /* Units appropriate to my data */
   char units2d[n2d][7] = { "W m-2", "K", "kg m-2", "Pa" };
   char positive2d[n2d][4] = { "down", " ", " ", " " };
   /* Corresponding IPCC Table Ala entry (variable name) */
   char entry2d[n2d][6] = { "hfls", "tas", "mrsos", "ps" };
/* uninitialized variables used in communicating with CMOR: */
   */
   int error_flag;
   int znondim id, zfactor id;
   int var2d ids[n2d];
   int var3d ids[n3d];
   double data2d[lat * lon];
   double data3d[lev * lat * lon];
   double alats[lat];
   double alons[lon];
   int ilats[lat];
   int ilons[lon];
   double plevs[lev];
   int iplevs[lev];
   long lplevs[lev];
```

```
float fplevs[lev];
   double Time[2];
   double bnds time[4];
   double bnds lat[lat * 2];
   double bnds_lon[lon * 2];
   double zlevs[lev];
   double zlev bnds[lev + 1];
   double a coeff[lev] = { 0.1, 0.2, 0.3, 0.22, 0.1 };
   double b_coeff[lev] = { 0.0, 0.1, 0.2, 0.5, 0.8 };
   float p0 = 1.e5;
   double a_coeff_bnds[lev + 1] = { 0., .15, .25, .25, .16, 0. };
   double b coeff bnds[lev + 1] = { 0., .05, .15, .35, .65, 1. };
   int ilon, ilat, ipres, ilev, itim;
   double dtmp, dtmp2;
   /* Other variables: */
   /* ----- */
   int it, m, i, ierr, j;
   int myaxes[10];
   int myaxes2[10];
   int myvars[10];
   char id[CMOR MAX STRING];
   char units[CMOR MAX STRING];
   char interval[CMOR MAX STRING];
   char anames[25][CMOR_MAX_STRING];
   char type;
   char regions [5][23] =
     { "atlantic_arctic_ocean", "indian_pacific_ocean", "pacific_ocean",
       "global ocean", "sf bay"
   };
   double timestest[5];
   /* Externals funcs */
   int tables[5];
   char msg[555];
   double bt = 0.;
   /* ======= */
   /* Execution begins here: */
   /* ======= */
   /* Read coordinate information from model into arrays that will be passed
*/
        to CMOR. */
   /* Read latitude, longitude, and pressure coordinate values into */
   /*
        alats, alons, and plevs, respectively. Also generate latitude and */
   /*
        longitude bounds, and store in bnds lat and bnds lon, respectively. */
   /* Note that all variable names in this code can be freely chosen by */
       the user. */
```

```
/*
     The user must write the subroutine that fills the coordinate arrays */
/*
     and their bounds with actual data. The following line is simply a */
/*
     a place-holder for the user's code, which should replace it. */
/* *** possible user-written call *** */
m = CMOR EXIT ON MAJOR;
j = CMOR_REPLACE_4;
i = 1;
it = 0;
printf("ok mode is:%i\n", m);
ierr = cmor_setup(NULL, &j, NULL, &m, NULL, &i); //," ipcc_test.LOG ");
read_coords(&alats[0], &alons[0], &iplevs[0], &bnds_lat[0], &bnds_lon[0],
            lon, lat, lev);
int tmpmo[12];
printf("Test code: ok init cmor\n");
char c1[CMOR MAX STRING];
char c2[CMOR_MAX_STRING];
strcpy(c1, "GICCM1(2002)\0");
strcpy(c2, "Nat\0");
printf("yep: %s, %s\n", c1, c2);
ierr = cmor_dataset_json("Test/CMOR_input_example.json");
printf("Test code: ok load cmor table(s)\n");
ierr = cmor_load_table("Tables/CMIP6_Omon.json", &tables[0]);
ierr = cmor_load_table("Tables/CMIP6_Amon.json", &tables[1]);
strcpy(id, "time");
strcpy(units, "months since 1980");
strcpy(interval, "1 month");
read time(0, &Time[0], &bnds time[0]);
read time(1, &Time[1], &bnds time[2]);
ierr =
  cmor axis(&myaxes[0], id, units, ntimes, &Time[0], 'd', &bnds time[0], 2,
            interval);
strcpy(id, "latitude");
strcpy(units, "degrees_north");
strcpy(interval, "");
ierr =
  cmor_axis(&myaxes[1], id, units, lat, &alats, 'd', &bnds_lat, 2,
            interval);
strcpy(id, "longitude");
strcpy(units, "degrees east");
ierr =
  cmor axis(&myaxes[2], id, units, lon, &alons, 'd', &bnds lon, 2,
```

```
interval);
    strcpy(id, "plev19");
    strcpy(units, "hPa");
    ierr =
      cmor axis(&myaxes[3], id, units, lev, &iplevs, 'i', NULL, 0, interval);
    zlevs[0] = 0.1;
    zlevs[1] = 0.3;
    zlevs[2] = 0.5;
    zlevs[3] = 0.72;
    zlevs[4] = 0.9;
    zlev bnds[0] = 0.;
    zlev_bnds[1] = .2;
    zlev bnds[2] = .42;
    zlev_bnds[3] = .62;
    zlev bnds[4] = .8;
    zlev_bnds[5] = 1.;
/*
   p0 = 1.e5; */
/*
   a_coeff = { 0.1, 0.2, 0.3, 0.22, 0.1 }; */
/*
   b coeff = { 0.0, 0.1, 0.2, 0.5, 0.8 }; */
/*
    a_coeff_bnds={0.,.15, .25, .25, .16, 0.}; */
/*
    b coeff bnds={0.,.05, .15, .35, .65, 1.}; */
    ierr =
      cmor_axis(&myaxes[4], "standard_hybrid_sigma", "1", 5, &zlevs, 'd',
                &zlev bnds, 1, interval);
    cmor set table(tables[0]);
    /* ok here we declare a "regions" axis */
    printf("Test code: defining axis region \n");
    ierr =
      cmor_axis(&myaxes[5], "basin", "", 4, &regions[0], 'c', NULL, 23,
                interval);
    printf("Test code: Redefining time/lat from 0 table\n");
    strcpy(id, "time");
    strcpy(units, "months since 1980");
    strcpy(interval, "1 month");
    read time(0, &Time[0], &bnds time[0]);
    read time(1, &Time[1], &bnds time[2]);
    ierr =
      cmor axis(&myaxes[7], id, units, ntimes, &Time[0], 'd', &bnds time[0], 2,
                interval);
    strcpy(id, "latitude");
    strcpy(units, "degrees_north");
```

```
strcpy(interval, "");
    ierr =
      cmor axis(&myaxes[8], id, units, lat, &alats, 'd', &bnds lat, 2,
                interval);
    cmor set table(tables[1]);
    dtmp = -999;
    dtmp2 = 1.e-4;
    myaxes2[0] = myaxes[0];
    myaxes2[1] = myaxes[3];
    myaxes2[2] = myaxes[1];
    myaxes2[3] = myaxes[2];
    printf("Test code: defining variables from table 1, %s\n", positive2d[0]);
    ierr =
      cmor_variable(&myvars[0], entry2d[0], units2d[0], 3, myaxes, 'd', &dtmp,
                    &dtmp2, positive2d[0], varin2d[0], "no history",
                    "no future");
    ierr =
      cmor_variable(&myvars[1], entry3d[2], units3d[2], 4, myaxes2, 'd', NULL,
                    &dtmp2, NULL, varin3d[2], "no history", "no future");
    printf("Test code: definig tas\n");
    ierr =
      cmor_variable(&myvars[5], "tas", "K", 3, myaxes, 'd', NULL, &dtmp2, NULL,
                    "TS", "no history", "no future");
    myaxes2[1] = myaxes[4];
    ierr =
      cmor variable(&myvars[2], entry3d[0], units3d[0], 4, myaxes2, 'd', NULL,
                    &dtmp2, NULL, varin3d[0], "no history", "no future");
    ierr =
      cmor zfactor(&myvars[3], myaxes2[1], "p0", "Pa", 0, NULL, 'f', &p0, NULL);
      cmor_zfactor(&myvars[3], myaxes2[1], "b", "", 1, &myaxes2[1], 'd',
                   &b coeff, &b coeff bnds);
    ierr =
      cmor_zfactor(&myvars[3], myaxes2[1], "a", "", 1, &myaxes2[1], 'd',
                   &a_coeff, &a_coeff_bnds);
/*
    printf("defining ap\n"); */
/*
     for(i=0;i<5;i++) {a_coeff[i]*=1.e3;printf("sending acoef: %i, %lf\n",i,a co
eff[i]);} */
     for(i=0;i<6;i++) {a coeff bnds[i]*=1.e5;printf("sending acoef: %i, %lf\</pre>
n",i,a coeff bnds[i]);} */
     ierr = cmor zfactor(&myvars[3], myaxes2[1], "ap", "hPa",1,&myaxes2[1], 'd',&a c
oeff,&a coeff bnds); */
    ierr =
      cmor_zfactor(&myvars[3], myaxes2[1], "ps", "hPa", 3, &myaxes[0], 'd',
                   NULL, NULL);
```

```
/* ok here we decalre a variable for region axis testing */
    cmor set table(tables[0]);
    myaxes2[0] = myaxes[7];
                               /* time */
    myaxes2[1] = myaxes[5];
                               /* region */
    myaxes2[2] = myaxes[8];
                               /* latitudes */
    printf("Test code: ok we define hfogo positive: %s\n", positive2d[0]);
      cmor variable(&myvars[4], "htovgyre", "W", 3, myaxes2, 'd', NULL, &dtmp2,
                    NULL, varin2d[0], "no history", "no future");
    cmor_set_table(tables[1]);
    for (i = 0; i < ntimes; i++) {</pre>
        printf("Test code: writing time: %i of %i\n", i + 1, ntimes);
        printf("2d\n");
        read 2d input files(i, varin2d[0], &data2d, lat, lon);
        sprintf(id, "%i", i);
        ierr = cmor write(myvars[0], &data2d, 'd', NULL, 1, NULL, NULL, NULL);
        if (ierr)
            return (1);
        printf("3d\n");
        read 3d input files(i, varin3d[2], &data3d, lev, lat, lon);
        ierr = cmor_write(myvars[1], &data3d, 'd', NULL, 1, NULL, NULL, NULL);
        if (ierr)
            return (1);
        printf("writing tas\n");
        read 2d input files(i, varin2d[1], &data2d, lat, lon);
        ierr = cmor_write(myvars[5], &data2d, 'd', NULL, 1, NULL, NULL, NULL);
        if (ierr)
            return (1);
        printf("3d zfactor\n");
        read 3d input files(i, varin3d[0], &data3d, 5, lat, lon);
        ierr = cmor write(myvars[2], &data3d, 'd', NULL, 1, NULL, NULL, NULL);
        if (ierr)
            return (1);
        printf("writing ps\n");
        read_2d_input_files(i, varin2d[3], &data2d, lat, lon);
        ierr = cmor write(myvars[3], &data2d, 'd', NULL, 1, NULL, NULL, &myvar
s[2]);
        if (ierr)
            return (1);
        /* rereading hfls to fake hfogo */
        printf("2d region\n");
        read_2d_input_files(i, "htov", &data2d, lat, lon);
```

```
ierr = cmor_write(myvars[4], &data2d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
    return (1);

}
ierr = cmor_close_variable(myvars[0], NULL, NULL);
ierr = cmor_close();
return (0);
}
```

Controlled Vocabulary (CMIP6)

CMIP6 Controlled vocabulary minimum requirements.

- CMOR 3 required a new Controlled Vocabulary file which must contains 4 mandatory keys for CMIP6.
 - institutions_ids: A dictionary of of registered institution IDs with a description.
 - source_ids: A dictionary of registered source IDS (model) with a specific description.
 - experiment_ids: A dictionary of experiment_ids (CMIP6) pointing to a dictionary of specific metadata.
 - grid_labels: A dictionary of grid labels(gr, gn, ...) pointing to a native resolution for the selected grid.

Click to expand example JSON file

```
{
"CV": {
    "institution_ids": { "BNU":"GCESS, BNU, Beijing, China" },
    "source_ids": { "CESM1-CAM5": "CESM1 (CAM5): model version ca. 2009" },
    "experiment_ids": { "piControl": { } },
    "grid_labels": { "gr": { "native_resolution":"5 km" } }
}
```

To register, activities, sources or institutions

Contact: cmor@listserv.llnl.gov

CMIP6 required global attributes

CMIP6_CV.json
 (https://github.com/PCMDI/cmor/blob/master/TestTables/CMIP6_CV.json)

Click to expand example JSON section

```
"required_global_attributes":
    "variant label",
    "activity_id",
    "branch_method",
    "Conventions",
    "creation date",
    "mip_era",
    "data_specs_version",
    "experiment_id",
    "experiment",
    "forcing_index",
    "further info url",
    "frequency",
    "grid",
    "grid label",
    "native_resolution",
    "initialization_index",
    "institution",
    "institution id",
    "license",
    "physics_index",
    "product",
    "realization_index",
    "realm",
    "variant label",
    "source",
    "source_id",
    "source_type",
    "sub_experiment",
    "sub_experiment_id",
    "table id",
    "tracking_id",
    "variable_id"
    ],
```

CMOR validates required attributes using list of values or regular expression(REGEX)

Click to expand example JSON section

```
"required_parent_attributes": [
    "parent_experiment_id"
    ],

"variant_label": [ "^r[[:digit:]]\\{1,\\}i[[:digit:]]\\{1,\\}p[[:digit:]]\\{1,\\}f[[:digit:]]\\{1,\\}$" ],

"sub_experiment_id": [ "^s[[:digit:]]\\{4,4\\}$", "none" ],

"product": [ "output" ] ,

"mip_era": [ "CMIP6" ],

"further_info_url": [ "http://furtherinfo.es-doc.org/[[:alpha:]]\\{1,\\}" ],
```

Registered activities

Click to expand example JSON section

```
"activity_id":[
             "AerChemMIP",
             "C4MIP",
             "CFMIP",
             "CMIP",
             "CORDEX",
             "DAMIP",
             "DCPP",
             "DynVarMIP",
             "FAFMIP",
             "GMMIP",
             "GeoMIP",
             "HighResMIP",
             "ISMIP6",
             "LS3MIP",
             "LUMIP",
             "OMIP",
             "PMIP",
             "RFMIP",
             "SIMIP",
             "ScenarioMIP",
             "VIACSAB",
             "VolMIP"
],
```

Registered sources

Click to expand example JSON section

```
"source_ids": {
     "ACCESS1-0": "ACCESS1.0: adaptation of unified model with interactive ch
emistry (ca. 2012)" ,
     ...
},
```

Registered institutions

Click to expand example JSON section

valid grids

Click to expand example JSON section

```
"grid labels": {
        "gs1x1": { "native_resolution":"1x1" },
       "gs1x1 gn": { "native_resolution":"1x1" },
        "gslx1 gr": { "native resolution":"1x1" },
        "gn": { "native_resolution":[ "5 km", "10 km", "25 km",
                                                                     "50 k
      "100 km", "250 km",
m",
               "500 km", "1000 km", "2500 km", "5000 km", "10000 km"] },
        "gr": { "native_resolution":[ "5 km", "10 km",
                                                            "25 km",
                                                                      "50 k
m",
      "100 km", "250 km",
               "500 km", "1000 km", "2500 km", "5000 km", "10000 km"] }
   },
```

Registered experiments

Click to expand example JSON section

```
experiment_ids": {
            "piControl":{
                 "activity_id":[
                     "CMIP"
                ],
                 "additional_allowed_model_components":[
                     "AER",
                     "CHEM",
                     "BGC"
                ],
                 "description": "DECK: control",
                 "end_year":"",
                 "experiment": "pre-industrial control",
                 "experiment_id":"piControl",
                 "min_number_yrs_per_sim":"500",
                 "parent_activity_id":[
                     "CMIP"
                ],
                 "parent_experiment_id":[
                     "piControl-spinup"
                 "required_model_components":[
                     "AOGCM"
                ],
                 "start_year":"",
                 "sub_experiment_id":[
                     "none"
                ],
                 "tier":"1"
}
```

CMIP6 Table Excerpt

WCRP Data Request links

The names of the MIP tables are constructed using the tokens described below, and a frequency token. The frequency is generally taken from the CIP6 frequency vocabulary, except for the "monClim" frequency, which is abbreviated to "clim".

• MIP Tables in the CMIP6 Data Request

about mip table (https://earthsystemcog.org/projects/wip/mip_table_about)

WCRP Table List

Here is the WCRP mip tables list (http://clipc-services.ceda.ac.uk/dreq/index/miptable.html)

Cmor Tables

Corresponding CMOR3 CMIP6 tables to link above can be found here (https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables).

Header

```
"Header": {
    "mip_era": "CMIP6",
    "approx_interval": "30.00000",
    "realm": "atmos",
    "product": "output",
    "cmor_version": "3.3",
    "Conventions": "CF-1.6 CMIP-6.0",
    "table_id": "Table Amon",
    "data_specs_version": "3.0",
    "generic_levels": "alevel alevhalf",
    "missing_value": "1e20",
    "table_date": "01 April 2016"
},
```

axis_entry

```
"axis_entry": {
    "forecast": {
        "stored direction": "increasing",
        "must_have_bounds": "no",
        "long_name": "ensemble time axis",
        "standard_name": "time",
        "out name": "forecast",
        "type": "double",
        "units": "days since 1900-01-01",
        "value": "0.0",
        "axis": "T"
    },
    "plev17": {
        "requested": [
            "100000.",
            "92500.",
            "85000.",
            "70000.",
            "60000.",
            "50000.",
            "40000.",
            "30000.",
            "25000.",
            "20000.",
            "15000.",
            "10000.",
            "7000.",
            "5000.",
            "3000.",
            "2000.",
            "1000."
        ],
        "stored direction": "decreasing",
        "z_factors": "",
        "positive": "down",
        "must_have_bounds": "no",
        "valid min": "",
        "requested_bounds": "",
        "z bounds factors": "",
        "bounds_values": "",
        "long_name": "pressure",
        "standard_name": "air_pressure",
        "value": "",
        "out_name": "plev",
        "type": "double",
        "units": "Pa",
        "formula": "",
        "climatology": "",
        "tolerance": "0.001",
        "valid max": "",
```

```
"axis": "Z"
},
"height2m": {
    "requested": "",
    "stored_direction": "increasing",
    "z factors": "",
    "positive": "up",
    "must_have_bounds": "no",
    "valid min": "1.0",
    "requested_bounds": "",
    "z bounds factors": "",
    "bounds_values": "",
    "long name": "height",
    "standard_name": "height",
    "value": "2.0",
    "out name": "height",
    "type": "double",
    "units": "m",
    "formula": "",
    "climatology": "",
    "tolerance": "",
    "valid_max": "10.0",
    "axis": "Z"
},
"latitude": {
    "requested": "",
    "stored_direction": "increasing",
    "z_factors": "",
    "positive": "",
    "must_have_bounds": "yes",
    "valid_min": "-90.0",
    "requested_bounds": "",
    "z_bounds_factors": "",
    "bounds_values": "",
    "long_name": "latitude",
    "standard_name": "latitude",
    "value": "",
    "out_name": "lat",
    "type": "double",
    "units": "degrees_north",
    "formula": "",
    "climatology": "",
    "tolerance": "",
    "valid_max": "90.0",
    "axis": "Y"
},
"longitude": {
    "requested": "",
    "stored_direction": "increasing",
    "z factors": "",
```

```
"positive": "",
        "must_have_bounds": "yes",
        "valid_min": "0.0",
        "requested_bounds": "",
        "z_bounds_factors": "",
        "bounds_values": "",
        "long name": "longitude",
        "standard_name": "longitude",
        "value": "",
        "out_name": "lon",
        "type": "double",
        "units": "degrees_east",
        "formula": "",
        "climatology": "",
        "tolerance": "",
        "valid_max": "360.0",
        "axis": "X"
    },
    "time": {
        "requested": "",
        "stored_direction": "increasing",
        "z factors": "",
        "positive": "",
        "must_have_bounds": "yes",
        "valid_min": "",
        "requested_bounds": "",
        "z_bounds_factors": "",
        "bounds_values": "",
        "long name": "time",
        "standard_name": "time",
        "value": "",
        "out name": "time",
        "type": "double",
        "units": "days since ?",
        "formula": "",
        "climatology": "",
        "tolerance": "",
        "valid_max": "",
        "axis": "T"
    }
},
```

variable_entry

```
"variable entry": {
   "rsutcs": {
        "comment": "",
        "dimensions": "longitude latitude time",
        "frequency": "mon",
        "positive": "up",
        "valid min": "0",
        "long name": "TOA Outgoing Clear-Sky Shortwave Radiation",
        "standard name": "toa outgoing shortwave flux assuming clear sky",
        "modeling_realm": "atmos",
        "cell measures": "time: mean",
        "cell_methods": "area: areacella",
        "ok min mean abs": "54.7",
        "units": "W m-2",
        "out name": "rsutcs",
        "type": "real",
        "valid max": "444",
        "ok max mean abs": "73.36"
   },
   "tas": {
        "comment": "near-surface (usually, 2 meter) air temperature",
        "dimensions": "longitude latitude time height2m",
        "frequency": "mon",
        "positive": "",
        "valid min": "180.6",
        "long name": "Near-Surface Air Temperature",
        "standard name": "air temperature",
        "modeling_realm": "atmos",
        "cell measures": "time: mean",
        "cell methods": "area: areacella",
        "ok min mean abs": "262.4",
        "units": "K",
        "out_name": "tas",
        "type": "real",
        "valid max": "335.1",
        "ok max mean abs": "293"
   },
    "tasforecast": {
        "comment": "near-surface (usually, 2 meter) air temperature",
        "dimensions": "longitude latitude time height2m forecast",
        "frequency": "mon",
        "positive": "",
        "valid min": "180.6",
        "long name": "Near-Surface Air Temperature",
        "standard_name": "air_temperature",
        "modeling realm": "atmos",
        "cell_measures": "time: mean",
        "cell methods": "area: areacella",
        "ok_min_mean_abs": "262.4",
        "units": "K",
```

```
"out name": "tas",
        "type": "real",
        "valid max": "335.1",
        "ok max mean abs": "293"
   },
    "rldscs": {
        "comment": "",
        "dimensions": "longitude latitude time",
        "frequency": "mon",
        "positive": "down",
        "valid min": "33.55",
        "long_name": "Surface Downwelling Clear-Sky Longwave Radiation",
        "standard name": "surface downwelling longwave flux in air assuming clea
r_sky",
        "modeling_realm": "atmos",
        "cell measures": "time: mean",
        "cell_methods": "area: areacella",
        "ok min mean abs": "238.6",
        "units": "W m-2",
        "out name": "rldscs",
        "type": "real",
        "valid max": "543.6",
        "ok max mean abs": "293.8"
   },
    "n2oglobal": {
        "comment": "",
        "dimensions": "time",
        "frequency": "mon",
        "positive": "",
        "valid min": "",
        "long name": "Global Mean Mole Fraction of N20",
        "standard name": "mole fraction of nitrous oxide in air",
        "modeling_realm": "atmos atmosChem",
        "cell_measures": "time: mean",
        "cell methods": "",
        "ok min mean abs": "",
        "units": "1e-09",
        "out_name": "n2oglobal",
        "type": "real",
        "valid max": "",
        "ok_max_mean_abs": ""
   },
    "ts": {
        "comment": "'skin' temperature (i.e., SST for open ocean)",
        "dimensions": "longitude latitude time",
        "frequency": "mon",
        "positive": "",
        "valid_min": "176.8",
        "long_name": "Surface Temperature",
        "standard_name": "surface_temperature",
```

```
"modeling realm": "atmos",
        "cell measures": "time: mean",
        "cell_methods": "area: areacella",
        "ok min mean abs": "262.8",
        "units": "K",
        "out name": "ts",
        "type": "real",
        "valid max": "339.6",
        "ok max mean abs": "293.3"
    },
    "clt": {
        "comment": "cloud area fraction",
        "dimensions": "longitude latitude time",
        "frequency": "mon",
        "positive": "",
        "valid min": "-0.0001822",
        "long name": "Total Cloud Fraction",
        "standard name": "cloud area fraction in atmosphere layer",
        "modeling_realm": "atmos",
        "cell measures": "time: mean",
        "cell_methods": "area: areacella",
        "ok min mean abs": "39.37",
        "units": "1.0",
        "out name": "clt",
        "type": "real",
        "valid max": "105",
        "ok_max_mean_abs": "84.98"
    },
    "tasmax": {
        "comment": "maximum near-surface (usually, 2 meter) air temperature (ad
d cell method attribute 'time: max')",
        "dimensions": "longitude latitude time height2m",
        "frequency": "mon",
        "positive": "",
        "valid min": "181.9",
        "long name": "Daily Maximum Near-Surface Air Temperature",
        "standard name": "air temperature",
        "modeling_realm": "atmos",
        "cell measures": "time: maximum within days time: mean over days",
        "cell methods": "area: areacella",
        "ok min mean abs": "264.9",
        "units": "K",
        "out name": "tasmax",
        "type": "real",
        "valid max": "341.9",
        "ok max mean abs": "294"
    }
}
```

CMIP6 Global Attributes

CMIP6 Global Attributes

- variant_label
- activity_id
- branch_method
- · Conventions
- creation_date
- mip_era
- data_specs_version
- experiment_id
- experiment
- forcing_index
- further_info_url
- frequency
- grid
- grid_label
- nominal_resolution
- initialization_index
- institution
- institution_id
- license
- physics_index
- product
- realization_index
- realm
- variant_label
- source
- source_id
- source_type

- sub_experiment
- sub_experiment_id
- table_id
- tracking_id
- variable_id

CMIP6 User Input

Notes

- 1. Keys beginning with character _ will not be written in netCDF file as attribute. They can be use for template filename of template path.
- 2. Keys beginning with character # can be used as comment.

CMIP6 CMOR User Input

CMIP6_global_attributes_filenames_CVs.doc (https://docs.google.com/document/d/ 1h0r8RZr f3-8egBMMh7aqLwy3snpD6 MrDz1q8n5XUk)

- _controlled_vocabulary_file:"Specify Controlled Vocabulary file name default: CMIP6_CV.json"
- _AXIS_ENTRY_FILE: "Specify Coordinate table file(axes) default: CMIP6_coordinate.json"
- _FORMULA_VAR_FILE: "Speciry Formula terms table file defalut: CMIP6_formula_terms.json"
- cmip6 option: "used to trigger validation for CMIP6 only."
- activity id: "Specify an activity PMIP, GeoMIP"
- output: "Output Path where files are written must be created by the user."
- experiment id: "Correspond to id found in " controlled vocabulary file""
- source type: "type of model used",
- sub experiment: "description of sub-experiment",
- sub_experiment_id: "none",
- parent_sub_experiment_id:
- parent_mip_era:
- mip_era:
- institution:
- source:
- calendar:
- realization index:
- initialization index:

- physics_index:
- forcing_index:
- *contact *:
- history:
- comment:
- references:
- institution id:
- model id:
- forcing:
- parent_variant_label:
- parent_experiment_id:
- branch time:
- parent_activity_id:
- parent source id:
- branch method:
- branch_time_in_child:
- branch_time_in_parent:
- branch_time_units_in_parent:
- further info url: "http://furtherinfo.es-doc.org//",
- grid:
- grid label:
- nominal_resolution:
- run variant:
- source id:
- output path template: "",
- output file template: "[]",
- license: "One of 2 licenses: CMIP6 model data produced by is licensed under a
 Creative Commons Attribution 'NonCommercial Share Alike' 4.0 International
 License (http://creativecommons.org/licenses/by/4.0/). Use of the data should be
 acknowledged following guidelines found at <what URL???> The data is hosted via
 the Earth System Grid Federation. Permissions beyond the scope of this license may
 be available at http://pcmdi.org/cmip5/terms-of-use. Individuals using this data
 should register at ??? to receive notice of selected categories of errata and updates.
 Further information about this data, including some limitations, can be found at ???.
 The data producers and data providers make no warranty, either express or implied,

including but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law. "

Appendix A

Critical Errors

The following errors are considered as CRITICAL and will cause a CMOR code to stop.

- 1. Calling a CMOR function before running cmor setup
- 2. NetCDF version is neither 3.6.3 or 4.1 or greater
- 3. Udunits could not parse units
- 4. Incompatible units
- 5. Udunits could not create a converter
- 6. Logfile could not be open for writing
- 7. Output directory does not exist
- 8. Output directory is not a directory
- 9. User does not have read/write privileges on the output directory
- 10. Wrong value for error mode
- 11. wrong value for netCDF mode
- 12. error reading udunits system
- 13. NetCDF could not set variable attribute
- 14. Dataset does not have one of the required attributes (required attributes can be defined in the MIP table)
- 15. Required global attribute is missing
- 16. If CMIP5 project: source attributes does not start with model id attribute.
- 17. Forcing dataset attribute is not valid
- 18. Leap year defined with invalid leap month
- 19. Invalid leap month (<1 or >12)
- 20. Leap month defined but no leap year
- 21. Negative realization number
- 22. Zfactor variable not defined when needed
- 23. Zfactor defined w/o values and NOT time dependent.
- 24. Variable has axis defined with formula terms depending on axis that are not part of the variable

- 25. NetCDF error when creating zfactor variable
- 26. NetCDF Error defining compression parameters
- 27. Calling cmor write with an invalid variable id
- 28. Could not create path structure
- 29. "variable id" contains a " " or a '-' this means bad MIP table.
- 30. "file_suffix" contains a "_"
- 31. Could not rename the file you're trying to append to.
- 32. Trying to write an "Associated variable" before the variable itself
- 33. Output file exists and you're not in append/replace mode
- 34. NetCDF Error opening file for appending
- 35. NetCDF could not find time dimension in a file onto which you want to append
- 36. NetCDF could not figure out the length time dimension in a file onto which you want to append
- 37. NetCDF could not find your variable while appending to a file
- 38. NetCDF could not find time dimension in the variable onto which you're trying to append
- 39. NetCDF could not find time bounds in the variable onto which you're trying to append
- 40. NetCDF mode got corrupted.
- 41. NetCDF error creating file
- 42. NetCDF error putting file in definition mode
- 43. NetCDF error writing file global attribute
- 44. NetCDF error creating dimension in file
- 45. NetCDF error creating variable
- 46. NetCDF error writing variable attribute
- 47. NetCDF error setting chunking parameters
- 48. NetCDF error leaving definition mode
- 49. Hybrid coordinate, could not find "a" coefficient
- 50. Hybrid coordinate, could not find "b" coefficient
- 51. Hybrid coordinate, could not find "a bnds" coefficient
- 52. Hybrid coordinate, could not find "b bnds" coefficient
- 53. Hybrid coordinate, could not find "p0" coefficient
- 54. Hybrid coordinate, could not find "ap" coefficient

- 55. Hybrid coordinate, could not find "ap bnds" coefficient
- 56. Hybrid coordinate, could not find "sigma" coefficient
- 57. Hybrid coordinate, could not find "sigma bnds" coefficient
- 58. NetCDF writing error
- 59. NetCDF error closing file
- 60. Could not rename temporary file to its final name.
- 61. Cdms could not convert time values for calendar.
- 62. Variable does not have all required attributes (cmor variable)
- 63. Reference variable is defined with "positive", user did not pass it to cmor_variable
- 64. Could not allocate memory for zfactor elements
- 65. Udunits error freeing units
- 66. Udunits error freeing converter
- 67. Could not allocate memory for zfactor_bounds
- 68. Calling cmor variable before reading in a MIP table
- 69. Too many variable defined (see appendix on CMOR limits)
- 70. Could not find variable in MIP table
- 71. Wrong parameter "positive" passed
- 72. No "positive" parameter passed to cmor variable and it is required for this variable
- 73. Variable defined with too many (not enough) dimensions
- 74. Variable defined with axis that should not be on this variable
- 75. Variable defined within existing axis (wrong axis id)
- 76. Defining variable with axes defined in a MIP table that is not the current one.
- 77. Defining a variable with too many axes (see annex on CMOR limits)
- 78. Defining variable with axes ids that are not valid.
- 79. Defining variable with grid id that is not valid.
- 80. Defining a variable with dimensions that are not part of the MIP table (except for var named "latitude" and "longitude", since they could have grid axes defined in another MIP table)
- 81. Trying to retrieve length of time for a variable defined w/o time length
- 82. Trying to retrieve variable shape into an array of wrong rank (Fortran only really)
- 83. Calling cmor write with time values for a timeless variable
- 84. Cannot allocate memory for temporary array to write
- 85. Invalid absolute mean for data written (lower or greater by one order of

- magintudethan what the MIP table allows)
- 86. Calling cmor_write with time values when they have already been defined with cmor_axis when creating time axis
- 87. Cannot allocate memory to store time values
- 88. Cannot allocate memory to store time bounds values
- 89. Time values are not monotonic
- 90. Calling cmor_write w/o time values when no values were defined via cmor_axis when creating time axis
- 91. Time values already written in file
- 92. Time axis units do not contain "since" word (cmor axis)
- 93. Invalid data type for time values (ok are 'f','l','i','d')
- 94. Time values are not within time bounds
- 95. Non monotonic time bounds
- 96. Longitude axis spread over 360 degrees.
- 97. Overlapping bound values (except for climatological data)
- 98. bounds and axis values are not stored in the same order
- 99. requested value for axis not present
- 100. approximate time axis interval much greater (>20%) than the one defined in your MIP table
- 101. calling cmor axis before loading a MIP table
- 102. too many axes defined (see appendix on CMOR limits)
- 103. could not find reference axis name in current MIP table
- 104. output axis needs to be standard_hybrid_sigma and input axis is not one of : "standard hybrid sigma", "alternate hybrid sigma", "standard sigma"
- 105. MIP table requires to convert axis to unknown type
- 106. requested "region" not present on axis
- 107. axis (with bounds) values are in invalid type (valid are: 'f','d','l','i')
- 108. requested values already checked but stored internally, could be bad user cleanup
- 109. MIP table defined for version of CMOR greater than the library you're using
- 110. too many experiments defined in MIP table (see appendix on CMOR limits)
- 111. cmor set table used with invalid table id
- 112. MIP table has too many axes defined in it (see appendix on CMOR limits)
- 113. MIP table has too many variables defined in it (see appendix on CMOR limits)

- 114. MIP table has too many mappings defined in it (see appendix on CMOR limits)
- 115. MIP table defines the same mapping twice
- 116. grid mapping has too many parameters (see appendix on CMOR limits)
- 117. grid has different number of axes than what grid mapping prescribes.
- 118. Could not find all the axes required by grid mapping
- 119. Call to cmor grid with axis that are not created yet via cmor axis
- 120. Too many grids defined (see appendix on cmor_limits)
- 121. Call to cmor_grid w/o latitude array
- 122. Call to cmor_grid w/o longitude array

Appendix B

Limits in cmor

```
The following are defined in cmor.h

#define CMOR_MAX_STRING 1024

#define CMOR_DEF_ATT_STR_LEN 256

#define CMOR_MAX_ELEMENTS 500

#define CMOR_MAX_AXES CMOR_MAX_ELEMENTS*3

#define CMOR_MAX_VARIABLES CMOR_MAX_ELEMENTS

#define CMOR_MAX_GRIDS 100

#define CMOR_MAX_DIMENSIONS 7

#define CMOR_MAX_ATTRIBUTES 100

#define CMOR_MAX_ERRORS 10

#define CMOR_MAX_TABLES 10

#define CMOR_MAX_TABLES 10

#define CMOR_MAX_GRID_ATTRIBUTES 25
```

Contact us

CMOR3 issues

https://github.com/PCMDI/cmor/issues (https://github.com/PCMDI/cmor/issues)

CMIP6 table issues

https://github.com/PCMDI/cmip6-cmor-tables/issues (https://github.com/PCMDI/cmip6-cmor-tables/issues)

http://dreq01.vanillaforums.com/categories/cmip6-issues (http://dreq01.vanillaforums.com/categories/cmip6-issues)

CMOR3 documentations issues

https://github.com/PCMDI/cmor3_documentation/issues (https://github.com/PCMDI/cmor3_documentation/issues)

Mailing list

cmor@lists.llnl.gov

- 1. To subscribe to the CMOR mailing list,
 - send an email writing subscribe cmor in the text of your message to LISTSERV@listserv.llnl.gov
- 2. To learn how to use the LISTSERV email application, go to https://www.lsoft.com/resources/manuals.asp (https://www.lsoft.com/resources/manuals.asp)
- 3. The following email addresses are used for the specified purposes:
 - To send an email to the list: CMOR@LISTS.LLNL.GOV (page 0)
 - To contact the list owner: CMOR-request@LISTSERV.LLNL.GOV
 - To send commands to the LISTSERV server: LISTSERV@LISTSERV.LLNL.GOV
 - To unsubscribe from the list: CMOR-signoff-request@LISTSERV.LLNL.GOV
- 4. INTERACTING WITH LISTSERV BY EMAIL *
 - You may leave the list at any time by sending a SIGNOFF CMOR command (include SIGNOFF CMOR in the email body to: LISTSERV@LISTSERV.LLNL.GOV)
 - Or by sending a blank email to: CMOR-signoff-request@LISTSERV.LLNL.GOV
 - You can also tell LISTSERV how you want it to confirm the receipt of messages that you send to the list. To send yourself a copy of your own messages, send a SET CMOR REPRO command.

- Alternatively, to have LISTSERV send you a short acknowledgement instead
 of the entire message, send a SET CMOR ACK NOREPRO command. Finally, you
 can turn off acknowledgements completely with the
 SET CMOR NOACK NOREPRO command.
- This list is available in digest form. If you wish to receive the digested version of the postings, then issue a SET CMOR DIGEST command.
- Please note that it is presently possible for other people to determine that
 you are signed up to the list using the REVIEW command, which returns the
 email address and name of all the subscribers (include Review CMOR in the
 email body) to: LISTSERV@LISTSERV.LLNL.GOV
- If you do not want your name to be visible, then just issue a SET CMOR CONCEAL command.
- Following instructions from the list owner, your subscription options have been set to "REPRO IETFHDR" rather than the usual LISTSERV defaults. For more information about subscription options, send a QUERY CMOR command to LISTSERV@LISTSERV.LLNL.GOV.