(*working with the eigen energies of the 1D harmonic oscillator*)

In[30]:=

explicitPartitionfunctionH0[beta_] :=
$$\sum_{n=0}^{\infty} Exp[-beta(n+1/2)]$$

In[33]:=

FullSimplify[explicitPartitionfunctionHO[beta]]

Out[33]=
$$\frac{1}{2}$$
 Csch $\left[\frac{\text{beta}}{2}\right]$

In[34]:=

explicitEnergyH0[beta_] := $-\partial_{beta}$ Log[explicitPartitionfunctionH0[beta]]

In[35]:=

FullSimplify[explicitEnergyHO[beta]]

Out[35]=
$$\frac{1}{2} \text{Coth} \left[\frac{\text{beta}}{2} \right]$$

(*these are the 1D harmonic oscillator eigen states*)

In[46]:= EigenstatesHO[n_, x_, beta_] :=
$$\frac{1}{\sqrt{2^n (n!) \sqrt{\pi}}} Exp\left[-\frac{x^2}{2}\right] HermiteH[n, x]$$

(*to get the density,

we need to square the eigen states and multiply by the wieght factor; of course, we also need to normalize by the partition function*)

In[47]:=

explicitDensityH0[x_, beta_] :=
$$\frac{\sum_{n=0}^{\infty} (EigenstatesH0[n, x, beta])^2 Exp[-beta (n+1/2)]}{FullSimplify[explicitPartitionfunctionH0[beta]]}$$

(* we can try to see if Mathemtica can evaluate the infinite sum... turns out that Mathemtica does not know how to do this...*)

In[48]:=

FullSimplify[explicitDensityHO[x, beta]]

Out[48]=
$$2 \sinh \left[\frac{\text{beta}}{2}\right] \sum_{n=0}^{\infty} \frac{2^{-n} e^{-\text{beta} \left(\frac{1}{2}+n\right)-x^2} \text{HermiteH}[n, x]^2}{\sqrt{\pi} n!}$$

(*if we want to use the explicit expression, we need to change the sum from infinity to a sufficiently large value; here, I am using 100 (if the temperature is really high, then we need to include even more states in the sum)*)

In[49]:=

explicitDensityCutoffHO[x_, beta_] := $\sum_{n=0}^{100} (EigenstatesH0[n, x, beta])^2 Exp[-beta (n+1/2)]$ FullSimplify[explicitPartitionfunctionHO[beta]]

(*implementing the analytical expressions for the 1D harmonic oscillator from the notes*)

In[1]:=

densityH0[x_, beta_] :=
$$\sqrt{\frac{Tanh[beta/2]}{\pi}} Exp[-x^2 Tanh[beta/2]]$$

In[18]:=

partitionfunctionHO[beta_] :=
$$\frac{Exp[-beta/2]}{1 - Exp[-beta]}$$

In[17]:=

In[24]:=

Series[energyHO[beta], {beta, 0, 2}]

Out[24]=
$$\frac{1}{\text{beta}} + \frac{\text{beta}}{12} + 0[\text{beta}]^3$$

In[51]:=

 $Plot[{densityH0[x, 0.01], densityH0[x, 0.1],}$ densityH0[x, 1], densityH0[x, 10]}, $\{x, -20, 20\}$]

ln[52]:= Plot[{densityH0[x, 0.01], densityH0[x, 0.1]}, {x, -20, 20}]

ln[40]:= Plot[{densityH0[x, 1], densityH0[x, 100]}, {x, -4, 4}]

Plot[energyH0[beta], {beta, 0, 10}]

In[20]:= Plot[energyH0[beta] /. beta \rightarrow 1 / temp, {temp, 0, 1}]

In[22]:= Plot[partitionfunctionHO[beta], {beta, 0, 10}]

In[54]:=

(*the following graph compares the analytical expression for the density from class with the "brute-force" implemention above (i.e., the implementation where I introduced a finite cutoff for the sum): as expected, the expressions give the same result!*)

In[55]:=

Plot[{explicitDensityCutoffH0[x, 0.9], densityH0[x, 0.9]}, $\{x, -5, 5\}$]

