Infectious Disease Forecast Evaluation Via Social Utility: Allocation Scores MIDAS 2023

Aaron Gerding, Nick Reich, Ben Rogers, Evan Ray

School of Public Health and Health Sciences, UMass, Amherst Department of Biostatistics and Epidemiology

Outbreak Forecast Hubs and Informed Resource Allocation

Hubs developed to "inform public health responses"

- > such as how resources are allocated among locations
- e.g., medical supplies, facility capacity, personnel

Scoring rules and social welfare

Hubs strive to rank and combine forecasts so as to optimize social welfare via the public health decisions that forecasts inform

- uncertainty quantification, and therefore, probabilistic forecasting essential
- basic strategy: use a **scoring rule** S which assigns a loss S(F,y) when a probabilistic forecast F of Y is chosen and Y=y is observed.
- ▶ optimizing welfare requires that forecasters say what they believe; so S should be **proper** meaning $E_F[S(F,Y)] \leq E_FS(G,Y)$] for all F,G

Current standard is the Weighted Interval Score (discrete CRPS)

adopted largely for convenient scoring of quantile forecasts.

Tools from decision theory

A central goal in design of scoring rules

Tie forecast scores directly to the benefits to society of the decisions they inform

Key tools from decision theory for linking success/failure of forecast-informed policy actions to scoring rules:

- Let l(x,y) be the **loss** of experiencing y after taking policy action x
- ▶ The Bayes risk of a forecast $Y \sim F$ is $\min_x E_F[l(x, Y)]$
- \blacktriangleright A Bayes act for F is an action x^F that attains this minimum
- Losses from Bayes acts define an automatically proper scoring rule

$$S(F, y) := l(x^F, y)$$

Note: Scoring rules are really only a means to an end. It is the expected score, in this case the Bayes risk, which characterize the value a forecast adds for a decision maker. Scoring rule sample averages estimate the expected score.

A new scoring rule via a new loss function for constrained actions

Our basic example:

- ightharpoonup x and y are vectors in \mathbb{N}_0^{52}
- ightharpoonup y = number of severe cases in US states and territories
- $lackbox{l}(x,y)=$ unmet need when x beds allocated and y severe cases occur

$$l(x,y) = \sum_{i=1}^{52} \max(y_i - x_i, 0)$$

$$x^F = \text{minimizer of } E_F[l(x,Y)] \text{ over all feasible } x$$

Our new idea: Define feasible x as satisfying $\sum x_i \leq K$

Computation

Obtaining \boldsymbol{x}^F is a constrained stochastic optimization problem

- known in inventory management as a constrained multi-product newsvendor problem
- \blacktriangleright formally solvable using Lagrange multiplier method to get a quantile representation $x_i^F=F_i^{-1}(\tau(K,F)), i=1,\dots,N$
- \blacktriangleright in practice, we find x_i^F 's via an iterative method:

Application

December 2021: Omicron wave clearly started US but forecast teams unsure of severity given uncertainty about R_0 , cross-protection by vaccination, previous infection, etc.

Oracle adjusted allocation scores near Omicron peak

Some Observations

- related to the Murphy curves of Ehm, Gneiting, Jordan, Krüger, 2016
- extreme shortage or surplus diminishes oracle's advantage
- ranking consistent across large *K* region.

Alloscore and WIS rank models differently

Explanations?

Limitations

This is post-hoc analysis

Hub forecasters were unaware of

- an allocation score (on joint forecast)
- any allocation based loss
- our quantile interpolation/extrapolation methods (distfromq)
 - might be especially important for tails

We hope/think that allocation scoring is sensitive to implicit dependence structures in forecasts, but all work so far only refers directly to marginals - nothing yet with copulas, etc.

Thank you!

A very rough R package I wrote to implement scoring procedures: https://github.com/aaronger/alloscore
A less rough package Evan wrote to implement cdf reconstruction https://github.com/reichlab/distfromq