COLLE DE PHYSIQUE – MP2I - SEMAINE 8

Déroulement de la colle

- La connaissance du **cours** étant primordiale, elle est évaluée soit avec des questions de cours, soit au travers des exercices.
- ➤ Un (ou plusieurs) exercice(s) sont à traiter.
- > Si la **note est** <u>inférieure ou égale</u> à 12, vous devez rédiger le (les) exercice(s) donné(s) en colle et me **remettre votre copie** (avec le sujet!) le plus rapidement possible.

Chapitre ECT1 – Description macroscopique d'un système thermodynamique à l'équilibre

- Système thermodynamique, milieu extérieur, nature des parois en fonction des échanges entre le système et le milieu extérieur, variables d'état, grandeurs extensives et intensives (grandeurs molaires, massiques)
- Équilibre thermodynamique : équilibres mécanique, thermique, de diffusion ; équation d'état d'un GP, d'une phase condensée incompressible et indilatable
- <u>Énergie interne</u>, capacité thermique à volume constant, variation d'énergie interne : pour un GPM, GPP, 1ère loi de Joule ; cas d'une phase condensée

Chapitre ECT2 – Bilan d'énergie lors d'une transformation d'un système thermodynamique

- <u>Transformations</u> isochore, isobare, isotherme, monobare, monotherme; transformations quasi-statiques
- <u>Échange d'énergie mécanique</u> avec le milieu extérieur : travail des forces de pression, pression extérieure, lien avec l'aire sous la courbe dans le diagramme de Clapeyron
- 1^{er} principe : énoncé
- Échange d'énergie thermique avec le milieu extérieur : modes de transfert thermique; modèles du transfert conductif (résistance thermique, flux thermique) et du transfert conducto-convectif (loi de Newton), transformations adiabatiques, modèle du thermostat (source de chaleur), modélisation des transformations : adiabatique ou isotherme? Détermination du transfert thermique à l'aide du 1er principe
- Enthalpie et capacité thermique à pression constante : gaz parfait, phase condensée ; calorimétrie

Extraits Bulletin Officiel (Programme 2021)

Notions et contenus	Capacités exigibles
3.1. Descriptions microscopique et macroscopique d'un système : modèles du gaz parfait et de	
la phase condensée incompressible indilatablétat microscopique et état macroscopique.	Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique sur un exemple. Relier qualitativement les valeurs des grandeurs macroscopiques aux propriétés du système à l'échelle microscopique.
Modèle du gaz parfait. Masse volumique, température thermodynamique, pression. Équation d'état du gaz parfait.	Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz.
Énergie interne du gaz parfait monoatomique. Capacité thermique à volume constant du gaz parfait monoatomique. Capacité thermique à volume constant d'un gaz considéré comme parfait.	Exploiter l'expression de la variation de l'énergie interne d'un gaz considéré comme parfait.
Modèle de la phase condensée incompressible et indilatable. Énergie interne et capacité thermique à volume constant d'une phase condensée considérée incompressible et indilatable.	Exploiter l'expression de la variation de l'énergie interne d'un système considéré incompressible et indilatable en fonction de sa température.
3.2. Bilan d'énergie pour un système thermodynamique	
Énergie interne d'un système. Aspects microscopiques. Premier principe de la thermodynamique. Transfert thermique, travail.	Citer les différentes contributions microscopiques et macroscopiques à l'énergie d'un système. Analyser qualitativement les différents termes intervenant dans l'écriture du premier principe.
Modes de transfert thermique.	Caractériser qualitativement les trois modes de transfert thermique : conduction, convection, rayonnement.
Flux thermique. Résistance thermique.	Exploiter la relation entre flux thermique, résistance thermique et écart de température, l'expression de la résistance thermique étant donnée.
Loi phénoménologique de Newton, modélisation de l'évolution de la température d'un système incompressible au contact d'un thermostat.	Effectuer un bilan d'énergie pour un système incompressible et indilatable en contact avec un thermostat : établir et résoudre l'équation différentielle vérifiée par la température du système.
Transformation thermodynamique subie par un système. Évolutions isochore, isotherme, isobare, monobare, monotherme.	Exploiter les conditions imposées par le milieu extérieur pour déterminer l'état d'équilibre final.
Travail des forces de pression. Transformation isochore. Transformation monobare.	Évaluer un travail par découpage en travaux élémentaires et sommation sur un chemin donné dans le cas d'une seule variable. Interpréter géométriquement le travail des forces de pression dans un diagramme de Clapeyron.
Bilans d'énergie.	Conduire un bilan d'énergie sur un système modélisé par un gaz parfait ou par une phase condensée incompressible et indilatable.
	Mettre en œuvre un protocole expérimental de mesure d'une capacité thermique.

Enthalpie d'un système. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase condensée incompressible et indilatable.	Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et dans l'état final. Exprimer l'enthalpie H _m (T) du gaz parfait à partir de l'énergie interne. Citer l'ordre de grandeur de la capacité thermique massique de l'eau liquide.