Error in Linear/Quadratic Interpolation

Linear case: Error should depend on

- 1. $x x_0$
- 2. $x x_1$
- 3. something about f''

Quadratic case: Error should depend on

- 1. $x x_0$
- 2. $x x_1$
- 3. $x x_2$
- 4. something about f'''

Maybe something like $\max |f'''(\xi)||(x - x_0)(x - x_1)(x - x_2)|$??

Error in Linear Interpolation (Exactly!)

Interpolation points: x_0, x_1 .

$$p(x)$$
 linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$.

1). A X0 W X, 6

Want to estimate p(w) - f(w) for some w in [a, b].

Error in Linear Interpolation (Exactly!)

Interpolation points: x_0, x_1 .

$$p(x)$$
 linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$.

p(x) linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$. Want to estimate p(w) - f(w) for some w in [a, b].

Let q(x) be the quadratic interpolant at x_0 , x_1 and at w.

Interpolation points: x_0, x_1 .

$$p(x)$$
 linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$.

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$

Interpolation points: x_0, x_1 .

$$p(x)$$
 linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$.

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$

$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$q(x_0) = p(x_0) + \lambda(x_0 - x_0)(x_0 - x_1)$$

$$= p(x_0) = f(x_0)$$

Interpolation points: x_0, x_1 .

$$p(x)$$
 linear, $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$.

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$

$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$q(w) = f(w)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$q(w) = \rho(w) + \left(f(w) - \rho(w)\right)(w - x_0)(w - x_1)$$

$$(w - x_0)(w - x_1)$$

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$

$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

Let's graph $\phi(x) = f(x) - q(x)$:

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$
$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

Let's graph $\phi(x) = f(x) - q(x)$:

There are two points z_0 and z_1 such that $\phi'(x) = 0$

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$
$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

Let's graph $\phi(x) = f(x) - q(x)$:

There are two points z_0 and z_1 such that $\phi'(x) = 0$

Mean Value Theorem sez:

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$
$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

Let's graph $\phi(x) = f(x) - q(x)$:

There are two points z_0 and z_1 such that $\phi'(x) = 0$

Mean Value Theorem sez: $\phi''(\xi) = 0$ at some point between z_0 and z_1 .

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$

$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$\phi(x) = f(x) - q(x)$$

$$\phi''(\xi) = 0$$

somewhere.

$$0 = p''(2) = f''(2) - g''(2) = f''(2) - Z$$

$$q(x)$$
 quadratic, $q(x_0) = f(x_0)$, $q(w) = f(w)$, $q(x_1) = f(x_1)$
$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$\phi(x) = f(x) - q(x)$$

$$\phi''(\xi) = 0$$

somewhere.

$$\phi''(\xi) = f''(\xi) - 2\lambda = f''(\xi) - 2\frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$q(x) \text{ quadratic, } q(x_0) = f(x_0), \ q(w) = f(w), \ q(x_1) = f(x_1)$$

$$q(x) = p(x) + \lambda(x - x_0)(x - x_1)$$

$$\lambda = \frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$

$$\phi(x) = f(x) - q(x)$$

$$\phi''(\xi) = 0$$

somewhere.

$$\phi''(\xi) = f''(\xi) - 2\lambda = f''(\xi) - 2\frac{f(w) - p(w)}{(w - x_0)(w - x_1)}$$
$$f(w) = p(w) + f''(\xi)\frac{(w - x_0)(w - x_1)}{2!}.$$

General Interpolation Error

Theorem

Suppose f is n+1 times differentiable on [a,b] and $x_0, \ldots, x_n \in [a,b]$. Let p be the polynomial interpolant of f at these points. Then for all $x \in [a,b]$ there exists $\xi \in [a,b]$ such that

$$f(x) = p(x) + f^{(n+1)}(\xi) \frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!}.$$

$$f(x) = p(x) + f'(z) (x-x_0)(x-x_1)$$
 $w = x$