AsiaBSDcon 2018

Tuning FreeBSD for routing and firewalling

Olivier Cochard-Labbé

whoami(1)

olivier.cochard@

Benchmarking a router

- Router job: Forward packets between its interfaces at maximum rate
- Reference value: Packet Forwarding Rate in packets-per-second (pps) unit
 - NOT a bandwidth (in bit-per-second unit)
- RFC 2544: Benchmarking Methodology for Network Interconnect Devices

Some Line-rate references

- Gigabit line-rate: 1.48M frames-per-second
- 10 Gigabit line rate: 14.8M frames-per-second
- Small packets: 1 frame = 1 packet
- Gigabit Ethernet is a full duplex media:
 - A line-rate Gigabit router MUST be able to receive AND transmit in the same time, then to forward at 3Mpps

I want bandwidth values!

- Packets-per-second * Packets-size
- Estimated using Simple Internet Mix (IMIX) packet size trimodal reference distribution
- IPv4 layer in bits-per-second:

$$PPS \cdot (\frac{7 \cdot 40 + 4 \cdot 576 + 1500}{12}) \cdot 8$$

 Ethernet layer, add 14 bytes (switch counters):

$$PPS \cdot (\frac{7 \cdot 54 + 4 \cdot 590 + 1514}{12}) \cdot 8$$

 Since about 2004, Internet packets size distribution is bimodal (44% less than 100B and 37% more than 1400B in 2006)

5 / 61

Minimum router's performance

Link speed	Line-rate router	Full- duplex line-rate router	Minimum rate, using IMIX distribution for reaching link speed	Full-duplex minimum IMIX link speed router
1Gb/s	1.48 Mpps	3 Mpps	350 Kpps	700 Kpps
10Gb/s	14.8 Mpps	30 Mpps	3.5 Mpps	7 Mpps

Simple benchmark lab

- As a telco we measure the worse case (Denial-of-Service):
 - Smallest packet size
 - Maximum link rate

Hardware details

Servers	CPU	cores	GHz	Network card (driver name)
Dell PowerEdge R630	Intel E5-2650 v4	2x12x2	2.2	10G Intel 82599ES (ixgbe) 10G Chelsio T520-CR (cxgbe) 10G Mellanox ConnectX-3 Pro (mlx4en) 10-50G Mellanox ConnectX-4 LX (mlx5en)
HP ProLiant DL360p Gen8	Intel E5-2650 v2	8x2	2.6	10G Chelsio T540-CR (cxgbe) 10G Emulex OneConnect be3 (oce)
SuperMicro 5018A-FTN4	Intel Atom C2758	8	2.4	10G Chelsio T540-CR (cxgbe)
SuperMicro 5018A-FTN4	Intel Atom C2758	8	2.4	10G Intel 82599 (ixgbe)
Netgate RCC-VE 4860	Intel Atom C2558	4	2.4	Gigabit Intel i350 (igb)
PC Engines APU2	AMD GX-412 TC	4	1	Gigabit Intel i210AT (igb)

Same DAC for all 10G: QFX-SFP-DAC-3M

Multi-queue NIC & RSS

Multi-queue NIC & RSS

1) Needs multiple flows

- Local tunnel (IPSec, GRE,...) presents only one flow: Performance problem with 1G home fiber ISP using PPPoE as example
- 2) Needs multi-CPUs
- Benefit of physical cores vs logical cores (Hyper Threading) vs multiple socket?

Monitoring queues usage

- Python script from melifaro@ parsing sysctl NIC stats (RX queue mainly)
- Support: bxe, cxl, ix, ixl, igb, mce, mlxen and oce

https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/bin/nic-queue-usage

```
[root@hp]~# nic-queue-usage cxl0
                                                                                                854K/s] [QT 6811K/s 16440K/s -> 13K/s]
    856K/s] [Q1 862K/s] [Q2
                             846K/s] [Q3
                                            843K/s] [Q4
                                                         843K/s] [Q5
                                                                      843K/s] [Q6 861K/s] [Q7
                                                                      855K/s] [Q6
    864K/s] [Q1 871K/s] [Q2
                              853K/s] [Q3
                                            857K/s] [Q4
                                                         856K/s] [Q5
                                                                                   871K/s] [Q7
                                                                                                859K/s] [QT
                                                                                                            6889K/s 16670K/s \rightarrow 13K/s
                                            835K/s] [Q4
                  851K/s] [02
                               834K/sl [03
                                                         836K/s] [Q5
                                                                      836K/sl [06
                                                                                   858K/sl [07
                                                                                                854K/s] [OT 6750K/s 16238K/s -> 13K/s]
                 846K/s] [Q2
                               826K/s] [Q3 824K/s] [Q4
                                                         825K/s] [Q5
                                                                     823K/s] [Q6
                                                                                   843K/s] [Q7
                                                                                                            6671K/s 16168K/s -> 12K/s]
                  847K/s] [02
                               828K/sl [03
                                            829K/sl
                                                   [04
                                                                                                             6692K/s 16105K/s \rightarrow 13K/s
    867K/s] [Q1 874K/s] [Q2 855K/s] [Q3 855K/s] [Q4
                                                         854K/s] [Q5
                                                                     853K/s] [Q6
                                                                                   869K/s] [Q7
                                                                                                855K/s] [QT 6885K/s 16609K/s -> 13K/s]
                               814K/s] [Q3
                                            811K/s] [Q4 814K/s] [Q5 813K/s] [Q6
                                                                                   832K/s] [Q7
                                                                                                833K/s] [QT
                                                                                                            6578K/s 15831K/s -> 12K/s]
```

Summary of all queues

Global NIC RX counter

Global NIC TX counter

Hyper-threading & cxgbe

```
CPU: Intel Xeon CPU E5-2650 v2 @ 2.60GHz (2593.81-MHz K8-class CPU)
(...)
FreeBSD/SMP: Multiprocessor System Detected: 16 CPUs
FreeBSD/SMP: 1 package(s) \times 8 core(s) \times 2 hardware threads
(...)
cxl0: <port 0> numa-domain 0 on t5nex0
cxl0: Ethernet address: 00:07:43:2e:e4:70
cxl0: 16 txq, 8 rxq (NIC); 8 txq, 2 rxq (TOE)
cxl1: <port 1> numa-domain 0 on t5nex0
cxl1: Fthernet address: 00:07:43:2e:e4:78
cxl1: 16 \text{ txq}, 8 \text{ rxq} (NIC); 8 \text{ txq}, 2 \text{ rxq} (TOE)
```

Hyper-threading & cxgbe

- Config 1: default (8 rx queues)
- Config 2: 16 rx queues to use ALL 16 CPUs
 - hw.cxgbe.nrxq10g=16
- Config 3: disabling HT (8 rx queues)
 - machdep.hyperthreading_allowed=0
- FreeBSD 11.1-RELEASE amd64

Disabling Hyper-Threading

ministat(1) is my friend

```
x Xeon E5-2650v2 & cxgbe, HT-enabled & 8rxg(default): inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, HT-enabled & 16rxq: inet4 packets-per-second
* Xeon E5-2650v2 & cxgbe, HT-disabled & 8rxq: inet4 packets-per-second
      XX X +
                                                                ***
                                  Median
          Min
                          Max
                                              Avg
                                                             Stddev
                                              4648293.8
                                   4648451
          4500078 4735822
                                                          94545.404
Χ
          4925106
                                   5104512
                                              5088362.1
                                                          102920.87
                   5198632
Difference at 95.0% confidence
       440068 +/- 144126
       9.46731% +/- 3.23827%
       (Student's t, pooled s = 98821.9)
                     5801231.5
          5765684
                                   5783115
                                              5785004.7 13724.265
Difference at 95.0% confidence
       1.13671e+06 +/- 98524.2
       24.4544% +/- 2.62824%
       (Student's t, pooled s = 67554.4)
```

Queues/cores impact

Number of queues impact on forwarding performance (HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR)

Analysing bottleneck

kldload hwpmc
pmcstat -S CPU_CLK_UNHALTED_CORE -l 20 -0 data.out
stackcollapse-pmc.pl data.out > data.stack
flamegraph.pl data.stack > data.svg

Random harvest sources

```
~# sysctl kern.random.harvest
kern.random.harvest.mask_symbolic: [UMA],
[FS_ATIME],SWI,INTERRUPT,NET_NG,NET_ETHER,NET_TUN,MOUSE,KEYBOARD,
ATTACH,CACHED
kern.random.harvest.mask_bin: 00111111111
kern.random.harvest.mask: 511
```

- Config 1: default
- Config 2: Do not use INTERRUPT neither NET_ETHER as entropy sources

harvest_mask="351"

Security impact regarding the random generator

kern.random.harvest.mask

Setup CPU (cores) & NIC	511 (default) Median of 5	351 Median of 5	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	3.74 Mpps	3.78 Mpps	No diff. proven at 95.0% confidence
E5-2650v4 (2x12) & cxgbe Xeon & Chelsio T520	4.82 Mpps	4.87 Mpps	No diff. proven at 95.0% confidence
E5-2650v4 (2x12) & ml4en Xeon & Mellanox ConnectX-3 Pro	3.49 Mpps	3.92 Mpps	11.66% +/- 8.15%
E5-2650v4 (2x12) & ml5en Xeon & Mellanox ConnectX-4 Lx	0 Mpps	0 Mpps	System Overloaded
E5-2650v2 (8) & cxgbe Xeon & Chelsio T540	5.76 Mpps	5.79 Mpps	No diff. proven at 95.0% confidence
E5-2650v2 (8) & oce Xeon & Emulex be3	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% confidence
C2758 (8) & cxgbe Atom & Chelsio T540	2.83 Mpps	3.17 Mpps	12.52% +/- 1.82%
C2758 (8) & ixgbe Atom & Intel 82599ES	2.3 Mpps	2.43 Mpps	6.14% +/- 1.84%
C2558 (4) & igb Atom & Intel I354	951 Kpps	1 Mpps	4.75% +/- 1.08%
GX412 (4) & igb AMD & Intel I210	726 Kpps	749 Kpps	3.14% +/- 0.70%

10Gb/s full duplex IMIX 7 Mpps
1Gb/s full duplex IMIX 700 Kpps

18 / 61

arpresolve & ip_findroute

- Yandex contributions (melifaro@ & ae@)
- Published January 2016: projects/routing

https://wiki.freebsd.org/ProjectsRoutingProposal

Patches refreshed for FreeBSD 12-head:

https://people.freebsd.org/~ae/afdata.diff

https://people.freebsd.org/~ae/radix.diff

Patches backported to FreeBSD 11.1:

https://people.freebsd.org/~olivier/fbsd11.1.ae.afdata-radix.patch

Yandex's patches

setup	11.1	11.1-Yandex	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	3.78 Mpps	6.46 Mpps	73.58% +/- 7.3%
E5-2650v4 (2x12) & cxgbe Xeon & Chelsio T520	4.87 Mpps	9.60 Mpps	95.36% +/- 3.8%
E5-2650v4 (2x12) & mlx4en Xeon & Mellanox ConnectX-3 Pro	3.92 Mpps	8.01 Mpps	100.5% +/- 15.6%
E5-2650v4 (2x12) & mlx5en Xeon & Mellanox ConnectX-4 Lx	0 Mpps	14.64 Mpps	NA
E5-2650v2 (8) & cxgbe Xeon & Chelsio T540	5.75 Mpps	10.9 Mpps	90.56% +/- 1.24
E5-2650v2 (8) & oce Xeon & Emulex be3	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% confidence
C2758 (8) & cxgbe Atom & Chelsio T540	3.15 Mpps	4.2 Mpps	34.4% +/- 2.9%
C2758 (8) & ixgbe Atom & Intel 82599ES	2.43 Mpps	3.08 Mpps	26% +/- 1.18
C2558 (4) & igb Atom & Intel I354	1 Mpps	1.2 Mpps	20.17% +/- 2.56%
GX412 (4) & igb AMD & Intel I210	747 Kpps	729 Kpps	-2.37% +/- 0.58%

10Gb/s full duplex IMIX 7 Mpps 1Gb/s full duplex IMIX 700 Kpps

Tips 3: Use steroid patches from Russia

Avoid some NIC

- 10G Emulex OneConnect (be3)
 - No configurable number of rx/tx queues (4)
 - No configurable Ethernet Flow control
 - 1.33Mpps is not even a gigabit line-rate

Tips 4: Use good NIC (Mellanox, Chelsio, Intel)

Linear performance? (single socket)

Number of queues impact on forwarding performance (HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR)

Packets per second (minimum size, 2000 flows)

22 / 61

Notice the linear improvement in number of queue = power of 2

Queue/IRQ pins to CPU?

- # grep -R bus_bind_intr src/sys/dev/*
 - bxe: QLogic NetXtreme II Ethernet 10Gb PCIe
 - cxgbe: Chelsio T4-, T5-, and T6-based (into #ifdef RSS)
 - e1000 (igb, em, lem) : Intel Gigabit
 - ixgbe: Intel 10 Gigabit
 - ixl: Intel XL710 Ethernet 40Gb
 - qlnxe: Cavium 25/40/100 Gigabit Ethernet
 - sfxge: Solarflare 10Gb
 - vxge: Neterion X3100 10Gb

Can be useful on cxgbe

Queue/IRQ pins to CPU

- Config 1: Default
- Config 2: Queue/IRQ pining

chelsio_affinity_enable="YES"

```
~# service chelsio_affinity start
Bind t5nex0:0a IRQ 284 to CPU 0
Bind t5nex0:0a IRQ 285 to CPU 1
Bind t5nex0:0a IRQ 286 to CPU 2
Bind t5nex0:0a IRQ 287 to CPU 3
Bind t5nex0:0a IRQ 288 to CPU 4
Bind t5nex0:0a IRQ 289 to CPU 5
Bind t5nex0:0a IRQ 290 to CPU 6
Bind t5nex0:0a IRQ 291 to CPU 7
(...)
```

Queue/IRQ pins to CPU

No difference proven at 95.0% confidence

```
x Xeon E5-2650v2 & cxgbe, default: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, IRQ pinned to CPU: inet4 packets-per-second
XX XX
         X
                                                                 \mathsf{A}\mathsf{M}
              Min
                            Max
                                    Median
                                                      Ava
                                                                 Stddev
          10939210
                       10969716
                                     10952795
                                                  10951860
                                                              12056,937
          11132364
                       11161395
                                     11151483
                                                  11146670
                                                               12273,277
Difference at 95.0% confidence
       194810 +/- 17742.8
                                           Small benefit and only if pps >10Mpps
       1.77878% +/- 0.163429%
       (Student's t, pooled s = 12165.6)
x Atom C2750 & cxgbe, default: inet4 packets-per-second
+ Atom C2750 & cxgbe, IRQ pinned to CPU: inet4 packets-per-second
X
   X
                                                                      X
               Min
                                     Median
                                                                 Stddev
                            Max
                                                       Avg
           4059502
                                                   4139666 76051.798
                      4232479 4149250
                                                              43836.87625 / 61
         4112849.5
                                4173030
                                             4160909.7
                        4212811
```

Increasing RX queues number

Setup E5-2650v4 (2x12 cores)	8 queues (default for ixgbe & cxgbe)	24 queues (default for mlx5en)	ministat
ixgbe Intel 82599ES	6.72 Mpps	8.07 Mpps	21.34% +/- 4.96%
cxgbe Chelsio T520	9.59 Mpps	12.40 Mpps	29.45% +/- 0.37%
mlx5en Mellanox ConnectX-4 Lx	7.26 Mpps	14.64 Mpps	

Tips 5: Check default maximum of queues and increase it if ncpu > 8

mlx4en drivers didn't allow to changes number of queue (16 here)

10Gb/s full duplex IMIX	7 Mpps
1Gb/s full duplex IMIX	700 Kpps

NUMA affinity

Intel Xeon Processor E5-2600 v4 Product Family: Platform Brief

t5nex0: <Chelsio T520-CR> mem 0xc9200000-0xc927ffff,0xc8000000-0xc8ffffff,0xc9684000-0xc9685fff irq 50 at device 0.4 numa-domain 1 on pcil4

Default: NO NUMA affinity

Default CPU load with 12 RX queues:

Mem: 13M Active, 13M Inact, 1170M Wired, 6393K Buf, 248G Free

```
last pid:
           1080; load averages: 7.13, 3.04, 1.30
273 processes: 35 running, 125 sleeping, 113 waiting
CPU 0:
         0.0% user.
                    0.0% nice.
                                0.0% system, 0.4% interrupt, 99.6% idle
CPU 1:
                                0.0% system, 0.4% interrupt, 99.6% idle
         0.0% user.
                    0.0% nice.
CPU 2:
                                0.0% system, 0.0% interrupt,
        0.0% user, 0.0% nice,
                                                               100% idle
CPU 3:
         0.0% user, 0.0% nice,
                                0.0% system, 0.0% interrupt, 100% idle
         0.0% user. 0.0% nice.
CPU 4:
                                0.0% system, 89.8% interrupt, 10.2% idle
CPU 5:
        0.0% user, 0.0% nice,
                                0.0% system, 100% interrupt, 0.0% idle
                                                                           Numa-
CPU 6:
         0.0% user, 0.0% nice,
                                0.0% system, 94.9% interrupt, 5.1% idle
                                                                           domain 0
CPU 7:
         0.0% user, 0.0% nice,
                                0.0% system, 89.8% interrupt, 10.2% idle
CPU 8:
         0.0% user, 0.0% nice,
                                0.0% system, 84.6% interrupt, 15.4% idle
CPU 9:
         0.0% user, 0.0% nice,
                                0.0% system, 92.1% interrupt, 7.9% idle
CPU 10:
         0.0% user, 0.0% nice,
                                0.0% system, 84.6% interrupt, 15.4% idle
CPU 11:
         0.0% user, 0.0% nice,
                                0.0% system, 83.9% interrupt, 16.1% idle
CPU 12:
         0.0% user, 0.0% nice,
                                0.0% system, 85.8% interrupt, 14.2% idle
CPU 13:
         0.0% user. 0.0% nice.
                                0.0% system, 92.1% interrupt, 7.9% idle
CPU 14:
         0.0% user.
                    0.0% nice.
                                0.0% system, 85.0% interrupt, 15.0% idle
CPU 15:
         0.0% user,
                    0.0% nice,
                                0.0% system, 78.0% interrupt, 22.0% idle
CPU 16:
         0.0% user,
                    0.0% nice,
                                0.4% system,
                                             0.0% interrupt, 99.6% idle
CPU 17:
                                                                           Numa-
         0.0% user,
                    0.0% nice,
                                0.0% system,
                                              0.0% interrupt,
                                                               100% idle
CPU 18:
        0.0% user,
                    0.0% nice.
                                0.0% system,
                                              0.0% interrupt,
                                                               100% idle
                                                                           domain 1
CPU 19:
         0.0% user,
                                              0.0% interrupt,
                                                               100% idle
                    0.0% nice,
                                0.0% system,
CPU 20:
                                                               100% idle
         0.0% user,
                    0.0% nice,
                                0.0% system,
                                              0.0% interrupt,
CPU 21:
                                                               100% idle
         0.0% user,
                    0.0% nice,
                                0.0% system,
                                              0.0% interrupt,
CPU 22:
                                0.0% system,
         0.0% user.
                    0.0% nice,
                                              0.0% interrupt,
                                                               100% idle
                                                               100% idle / 28 / 61
CPU 23:
        0.0% user,
                                0.0% system,
                    0.0% nice,
                                              0.0% interrupt,
```

Scheduler or drivers not NUMA aware

NUMA affinity

 cxgbe configured with 12 RX queues, plugged on PCI-E belonging to numa-domain 1 (cores 12-23)

- Config 1: no-affinity (default)
- Config 2: cxgbe queues pined to core 0-11

chelsio_affinity_enable="YES"

Config 3: cxgbe queues pined to core 12-23

```
chelsio_affinity_enable="YES"
chelsio_affinity_firstcpu="12"
```

NUMA affinity

```
x Xeon 2xE5-2650v4 & cxgbe, default: inet4 packet-per-seconds
+ Xeon 2xE5-2650v4 & cxgbe, affinity-numa0: inet4 packet-per-seconds
* Xeon 2xE5-2650v4 & cxgbe, affinity-numa1: inet4 packet-per-seconds
                +X
      X X + +X+
                                                              I MA
                          Max Median
                                                             Stddev
              Min
                                              Ava
                                                9510859 98839.328
          9351036 9580847
                                 9571249
                       9603697
          9220385
                                   9557225 9493098.6 154964.3
No difference proven at 95.0% confidence
   5 10584085 10670945
                                  10617361 10629374 35170.165
Difference at 95.0% confidence
       1.11851e+06 +/- 108191
       11.7604% +/- 1.25701%
       (Student's t, pooled s = 74182.7)
```

Tips 6: Take care of NUMA affinity with queue to CPU pining

Linear performance? (NUMA)

Number of NIC's queues vs forwarding performance
Dell PowerEdge R630 with 2 Intel E5-2650 v4 2.2Ghz (2x12 cores)

(HyperThreading and LRO/TSO disabled, harvest.mask=351, FreeBSD 11.1 with AFDATA and RADIX patches)

Notice that mlx5en didn't required number of queue = power of 2 cxgbe reaches line-rate with only 16 queues

31 / 61

NIC hardware acceleration features

- Checksum offload: rxcsum, txcsum, ...
- VLAN offload: vlanmtu, vlanhwtag, vlanhwfilter, vlanhwcsum,...
- TSO:TCP Segmentation Offload
 - NIC split large segment into MTU-sized packets
 - MUST be disabled on a router (and incompatible with ipfw nat)
- LRO: Large Received Offload
 - Breaks the end-to-end principle on a router: MUST be disabled
- Hardware resources reservation

Disabling LRO & TSO

Server CPU (cores) & NIC	Enabled (default)	Disabled	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	7.97 Mpps	8.07 Mpps	No difference proven at 95.0% confidence
E5-2650v4 (2x12) & cxgbe Xeon & Chelsio T520	12.40 Mpps	12.40 Mpps	No difference proven at 95.0% confidence
E5-2650v4 (2x12) & ml4en Xeon & Mellanox ConnectX-3 Pro	8.05 Mpps	7.85 Mpps	No difference proven at 95.0% confidence
E5-2650v4 (2x12) & ml5en Xeon & Mellanox ConnectX-4 Lx	14.65Mpps	14.83 Mpps	1.3% +/- 0.1%
E5-2650v2 (8) & cxgbe Xeon & Chelsio T540	10.84 Mpps	10.92 Mpps	0.74% +/- 0.26%
C2758 (8) & cxgbe Atom & Chelsio T540	4.20 Mpps	4.18 Mpps	No diff. proven at 95.0% confidence
C2758 (8) & ixgbe Atom & Intel 82599ES	3.06 Mpps	3.06 Mpps	No diff. proven at 95.0% confidence
C2558 (4) & igb Atom & Intel I354	1.2 Mpps	1.2 Mpps	No diff. proven at 95.0% confidence
GX412 (4) & igb AMD & intel I210	729 Kpps	727 Kpps	No diff. proven at 95.0% confidence

33 / 61

hw.igb|ix.rx_process_limit

Server CPU (cores) & NIC	100(igb), 256(ix), default median	-1 (disabled) median	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	8.04 Mpps	8.34 Mpps	3.75% +/- 0.73%
C2758 (8) & ixgbe Atom & Intel 82599ES	3.12 Mpps	3.85 Mpps	22.66% +/- 2.14%
C2558 (4) & igb Atom & Intel I354	1.10 Mpps	1.13 Mpps	1.65% +/- 0.9%
GX412 (4) & igb AMD & Intel I210	730 Kpps	735 Kpps	No diff. proven at 95.0% conf.

Tips 6: Disable rx_process_limit with igb & ixgbe

Disabling unused features

"Disallowing capabilities provides a hint to the driver and firmware to not reserve hardware resources for that feature"

```
/boot/loader.conf:
hw.cxgbe.toecaps_allowed="0"
hw.cxgbe.rdmacaps_allowed="0"
hw.cxgbe.iscsicaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"
```

Disabling unused features

```
x Xeon 2xE5-2650v4 & cxgbe, default caps enabled: inet4 packet-per-seconds
+ Xeon 2xE5-2650v4 & cxgbe, caps disabled: inet4 packet-per-seconds
                         Max Median Avg
             Min
                                                          Stddev
x 5 12411366 12413439
                                12411915 12412289 901.22767
     14796094
                    14800927
                                14799082 14798629 2169.6179
Difference at 95.0% confidence
      2.38634e+06 +/- 2422.83
      19.2256% +/- 0.0201158%
       (Student's t, pooled s = 1661.24)
```

Tips 7: Disable unused caps with cxgbe

Forwarding tuning summary

- Yandex's patches: AFDATA and RADIX locks
- Increase Intel & Chelsio NIC queues if ncpu > 8, but kept power-of-two number
- boot/loader.conf

```
machdep.hyperthreading_allowed="0"
hw.igb.rx_process_limit="-1"
hw.em.rx_process_limit="-1"
hw.ix.rx_process_limit="-1"
hw.cxgbe.toecaps_allowed="0"
hw.cxgbe.rdmacaps_allowed="0"
hw.cxgbe.iscsicaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"
```

etc/rc.conf

Before vs after tuning (IPv4)

Setup CPU (cores) & NIC	Generic 11.1	Yandex patched & tuned 11.1	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	3.74 Mpps	8.61 Mpps	127.93% +/- 8.44%
E5-2650v4 (2x12) & cxgbe Xeon & Chelsio T520	4.83 Mpps	14.8 Mpps	204.3% +/- 4.80%
E5-2650v4 (2x12) & ml4en Xeon & Mellanox ConnectX-3 Pro	3.92 Mpps	8.06 Mpps	126.9% +/- 7.77%
E5-2650v4 (2x12) & ml5en Xeon & Mellanox ConnectX-4 Lx	0 Mpps	14.64 Mpps	NA
E5-2650v2 (8) & cxgbe Xeon & Chelsio T540	5.75 Mpps	11.15 Mpps	139.8% +/- 5.0%
E5-2650v2 (8) & oce Xeon & Emulex be3	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% confidence
C2758 (8) & cxgbe Atom & Chelsio T540	2.83 Mpps	4.19 Mpps	50.49% +/- 5.33%
C2758 (8) & ixgbe Atom & Intel 82599ES	2.29 Mpps	3.85 Mpps	66.97% +/- 2.7%
C2558 (4) & igb Atom & Intel I354	951 Kpps	1.13 Mpps	18.58% +/- 1.17%
GX412 (4) & igb AMD & Intel I210	726 Kpps	735 Kpps	1.03% +/- 0.56%

IPv4 vs IPv6 performance

Setup CPU (cores) & NIC	inet4	inet6	ministat
E5-2650v4 (2x12) & ixgbe Xeon & Intel 82599ES	8.35 Mpps	8.12 Mpps	-3.25% +/- 1.7%
E5-2650v4 (2x12) & cxgbe Xeon & Chelsio T520	14.8 Mpps	14.47 Mpps	-2.18% +/- 0.02%
E5-2650v4 (2x12) & ml4en Xeon & Mellanox ConnectX-3 Pro	8.06 Mpps	7.71 Mpps	-3.35% +/- 3.26%
E5-2650v4 (2x12) & ml5en Xeon & Mellanox ConnectX-4 Lx	14.84 Mpps	14.29 Mpps	-3.70% +/- 0.02%
E5-2650v2 (8) & cxgbe Xeon & Chelsio T540	10.94 Mpps	9.18 Mpps	-16.12% +/- 0.19%
C2758 (8) & cxgbe Atom & Chelsio T540	4.29 Mpps	3.43 Mpps	-19.08% +/- 1.61%
C2758 (8) & ixgbe Atom & Intel 82599ES	3.81 Mpps	3.43 Mpps	-9.84% +/- 1.3%
C2558 (4) & igb Atom & Intel I354	1.23 Mpps	1.08 Mpps	-11.79% +/- 0.5%
GX412 (4) & igb AMD & Intel I210	734 Kpps	709 Kpps	-3.6% +/- 0.70%

Configuration impact

- VLAN tagging
- VIMAGE & VNET jail
- Bridge

VLAN tagging

Config 1: No VLAN

```
ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"
```

Config 2: VLAN tagging

```
vlans_cxl0="2"
ifconfig_cxl0="up"
ifconfig_cxl0_2="inet 198.18.0.10/24"
vlans_cxl1="4"
ifconfig_cxl1="up"
ifconfig_cxl1_4="inet 198.19.0.10/24"
```

VLAN tagging

```
x Xeon E5-2650v2 & cxgbe, no VLAN tagging: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, VLAN tagging: inet4 packets-per-second
                                                                       XX
                                                                      XXX
                                                                      | A |
I MA I
               Min
                                       Median
                                                                   Stddev
                            Max
                                                        Avg
          10917371
                        10970686
                                      10945136
                                                   10946743
                                                                22298.313
X
                                                  9075563.7
           9056449
                        9104195
                                      9064032
                                                                21531.387
Difference at 95.0% confidence
       -1.87118e+06 +/- 31966.4
       -17.0935% +/- 0.267353%
       (Student's t, pooled s = 21918.2)
```

-17% with tagging: Known problem
Yet another patch from Yandex
ixgbe: https://reviews.freebsd.org/D12040
mlx5en: https://reviews.freebsd.org/D12041

Adding VIMAGE support

options	VIMAGE
---------	--------

E5-2650v2 & cxgbe Xeon & Chelsio T540	GENERIC (median) Mpps	VIMAGE (median) Mpps	ministat
inet 4 forwarding	10.9	10.2	-6.25% +/- 0.29%
inet 6 forwarding	9.18	9.39	2.24% +/- 0.33

Multi-tenant router


```
host /etc/rc.conf
ifconfig_cxl0="up -tso4 -tso6 -lro -vlanhwtso"
ifconfig_cxl1="up -tso4 -tso6 -lro -vlanhwtso"
jail_enable="YES"
jail_list="jrouter"
```

```
Jail jrouter /etc/rc.conf
gateway_enable=YES
ipv6_gateway_enable=YES
ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"
static_routes="generator receiver"
route_generator="-net 198.18.0.0/16 198.18.0.108"
route_receiver="-net 198.19.0.0/16 198.19.0.108"
```

VNET jail: impact on PPS

E5-2650v2 & cxgbe Xeon & Chelsio T540	No Jail	VNET-Jail	Ministat
inet 4 forwarding	10.8 Mpps	11.0 Mpps	No diff. proven at 95.0% confidence
inet 6 forwarding	10.0 Mpps	10.0 Mpps	No diff. proven at 95.0% confidence

VNET-jail rocks!

if_bridge

Config 1: No bridge

ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"

Config 2: Dummy bridge

cloned_interfaces="bridge0"
ifconfig_bridge0="inet 198.18.0.8/24 addm cxl0 up"

ifconfig cxl1="inet 198.19.0.10/24"

ifconfig cxl0="up"

if_bridge

```
x Xeon E5-2650v2 & cxgbe, NO bridge: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, bridge: inet4 packets-per-second
                                                                         XX
                                                                         ΙA
| AM |
               Min
                             Max
                                        Median
                                                                    Stddev
                                                         Avg
          11102006
                        11179490
                                      11155098
                                                    11149783
                                                                 28766,212
           4040161
                       4322481
                                      4201494.5
                                                   4178806.5
                                                                  113801.03
Difference at 95.0% confidence
        -6.97098e+06 +/- 121051
        -62.5212% +/- 1.05729%
        (Student's t, pooled s = 83000.5)
```

-62% with bridge interface involved bridge input() include lot's of LOCK

Firewalls: Disclaimer!

None of the following benches can conclude a firewall is better than another.

A firewall can't be reduced to its only forwarding performance impact

Firewalls

- How these impact throughput (PPS):
 - Enabling ipfw / pf / ipf with inet4 & inet6
 - Number of rules
 - Table size
 - Number of UDP flows

Firewalls impact on throughput

Packets per second (minimum size, 2000 flows)

Impact of enabling firewalls on FreeBSD 11.1 forwarding performance

Dell PowerEdge R630 with 2 Intel E5-2650 v4 2.2Ghz (2x12 cores) and Mellanox ConnectX-4 LC

Note: Minimum firewall rules, HyperThreading and LRO/TSO disabled, harvest.mask=351 Yandex patches applied: AFDATA lock, RADIX lock

50 / 61

Warning: do not conclude a firewall is better than another with this result!

Impact of enabling ipfw/pf/ipf on FreeBSD 11.1 forwarding performance HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz and Chelsio T540-CR

Note: Minimum firewall rules, harvest.mask=351, AFDATA and RADIX locks patched

Stateless: rules impact

Impact of firewalls rule number on FreeBSD 11.1 forwarding performance (harvest.mask=351, AFDATA and RADIX locks patched)
HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR

52 / 61

Stateless: Table size impact

Impact of firewall table size on FreeBSD 11.1 forwarding performance (harvest.mask=351, AFDATA and RADIX locks patched)
HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR

53 / 61

Stateful ipfw: number of states

One UDP flow create 1 state (dynamic rule)

check-state

ipfw add allow ip from any to any keep-state

keys	Default value	Increased value
<pre>dynamic rules net.inet.ip.fw.dyn_max</pre>	16 384	5 000 000
hash table size [max_dyn / 64 ?] (power of 2) net.inet.ip.fw.dyn_buckets	256	65 536 (max)

Stateful pf: number of state

- One UDP flow consumes 2 pf states
- Linear relationship between maximum number of states and hash table size

keys	Default value	Increased value
<pre>states limit set limit { states X }</pre>	10 000	10 000 000
Hash table size = state x 3 (power of 2) net.pf.pf_states_hashsize	32 768	33 554 432 (max with 8GB RAM)
RAM consummed (hashsize x 80) vmstat -m grep pf_hash	2.5Mb	2.5Gb

stateful: Number of state

Impact of firewalls states number on FreeBSD 11.1 forwarding performance (harvest.mask=351, AFDATA and RADIX locks patched)
HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR

56 / 61

Note: For a stateful firewall with more than 100K... use pf on FreeBSD 11.1

ipfw stateful lockless

- Andrey V. Elsukov (ae)'s reaction to the previous bench:
 - "Rework ipfw dynamic states implementation to be lockless on fast path"
 - Brings lot's of performance improvement
 - Use ConcurrencyKit
 - Committed on head as r328988

ipfw stateful lockless

Impact of firewalls states number on FreeBSD 12 r328509-yandex forwarding performance (harvest.mask=351, patches: AFDATA,RADIX locks and IPFW lockless)
HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR

58 / 61

For a fast stateful firewall... try IPFW on -head

Resources

 Benches scripts, configurations, RAW results, flamegraph

https://github.com/ocochard/netbenches

BSD Router Project (nanoBSD based on FreeBSD)

https://bsdrp.net

Questions?

Thanks!