

MINI PROJETO 1

Modelos probabilísticos e Dados

IDENTIFICAÇÃO DE DISTRIBUIÇÕES

OBJETIVO:

O objetivo deste projeto é identificar quais distribuições (funções de densidade de probabilidade - no caso contínuo, ou funções de probabilidade - no caso discreto) descrevem bem variáveis quantitativas extraídas de um *datasets*.

O resultado final esperado é um relatório que identifique, com bons argumentos, a escolha de um ou mais modelos probabilísticos para ajuste de uma variável quantitativa extraída de *dataset*.

Este projeto é estritamente individual.

O QUE DEVE SER FEITO:

Você precisa escolher uma variável quantitativa em *datasets* públicos de sua escolha. A sua variável pode ser discreta ou contínua.

Limpe e prepare os dados para processamento (tratando valores NaN ou N/A, por exemplo). Fique atento ao dicionário de dados (se houver) para identificar quais colunas do *dataset* de fato são quantitativas e eventualmente remover valores inválidos.

A seguir, estude a variável escolhida e procure identificar uma função adequada que descreva as probabilidades de ocorrência dos valores que essa variável pode assumir.

Sugerimos fortemente que o trabalho siga as seguintes fases:

- 1. Seleção de um dataset e escolha uma variável quantitativa adequada.
 - Não há restrições em relação à base de dados a utilizar, desde que não seja as mesmas bases da PNAD já usadas na disciplina. Aconselha-se evitar variáveis de bases com pequeno tamanho amostral.
 - Tornamos disponível uma <u>Lista de datasets</u> que pode ajudar nesta fase do trabalho.
 Atenção: nem todas as bases de dados desta lista têm variáveis quantitativas, analise com cuidado. Você não precisa ficar restrito a esta lista
 - Indique o dataset e a variável que escolheu no piazza. IMPORTANTE!!!

- 2. Limpeza da variável escolhida, se necessário.
- 3. Inspeção visual da distribuição dos valores da variável escolhida usando um histograma, por exemplo.
- 4. Formulação de hipóteses sobre o formato da distribuição dos dados (simetria, assimetria positiva e assimetria negativa) e escolha PELO MENOS DUAS DISTRIBUIÇÕES TEÓRICAS DIFERENTES PARA MODELAR SUA ÚNICA VARIÁVEL QUANTITATIVA definida no item 1. Justifique por que escolheu suas distribuições teóricas.
- 5. Tentativa de estimar os parâmetros da família de distribuições escolhida no item acima a partir dos dados.
- 6. As distribuições do pacote scipy.stats têm uma função chamada fit () que procura estimar os parâmetros a partir do conjunto de dados.
 - Use o fit() para fazer estimativa dos parâmetros da família de distribuições escolhida no item 4.
 - Compare os parâmetros estimados a partir do fit() com os parâmetros estimados por você no item 5. Para cada uma das suas distribuições teóricas, opte por um ajuste: o do item 5 ou o obtido pelo comando fit().
- 7. Construa o histograma dos dados junto com a fdp de cada distribuição teórica e analise.
- 8. Construa o QQ-Plot (quantil amostral vs quantil teórico) e analise. **Dica:** veja Exemplo 6.8 do Magalhães e Lima (7ª. edição) de como obter as frequências relativas acumuladas a partir de uma amostra de tamanho n e de como obter os quantis teóricos.
- Construa um gráfico com a frequência relativa acumulada (a partir dos dados) vs a função de distribuição acumulada e analise.
- 10. Faça um teste de aderência para a distribuição (veja o arquivo MiniProjetol Aderencia Numpy Pseudocodigo.ipynb). Teste de aderência é útil para mensurar a qualidade do ajuste do modelo teórico aos dados.
- 11. Elabore uma tabela que contrasta sua variável com as distribuições teóricas escolhidas e a qualidade do ajuste em cada caso. Analise essa tabela e faça a escolha da melhor das distribuições teóricas para o ajuste dos dados.

ENTREGÁVEIS ESPERADOS E DATAS:

Turmas A, B e C:

Item	Data	Descrição		
Indicação de dataset	19/09/2016	Indicar <i>dataset</i> e variável de interesse em post no Piazza de Ciência dos dados		
Entrega intermediária (check)	20/09/2016	Histogramas das variáveis candidatas e possíveis distribuições adequadas (Itens 1 a 4 completos).		
Relatório final	23/09/2016	Relatório enviado na pasta MiniProjeto1 no Github.		

FÓRUM DE DISCUSSÃO:

Um fórum de discussão foi criado no <u>Piazza</u> - procure participar para tirar suas dúvidas e ajudar seus colegas: (https://piazza.com/insper.edu.br/fall2016/cd2016 2)

Não aceitaremos mesma variável quantitativa analisada por dois alunos da mesma sala ou de turmas diferentes. Assim, aproveite o fórum para descrever as variáveis quantitativas que irá trabalhar. Uma vez publicadas, um outro aluno não poderá mais utilizá-las neste projeto. Esse fórum será único para as três turmas, fazendo com que isso seja válido para todas as turmas.

Engenharia Ciência dos Dados

Insper

RUBRICS DE AVALIAÇÃO DO OBJETIVO DE APRENDIZADO

Objetivo de aprendizado	Insatisfatório (I)	Em desenvolvimento (D)	Essencial (C)	Proficiente (B)	Avançado (A)
Especificar as	_ ·	Conseguiu fazer a leitura	Para a variável	Realizou os	Realizou os comportamentos
distribuições de	insuficientes ou	dos dados mas não	quantitativa escolhida:	comportamentos de C de	de B e C de maneira excelente
probabilidades 	atrasadas	avançou na análise		maneira excelente e:	e:
adequadas para as					
variáveis			- Leu os dados		
		Escolheu um conjunto de	adequadamente	Traçou adequadamente	- Avaliou entre pelo menos
		dados que já tinha sido		as fdp's ou fp's junto aos	duas distribuições alternativas
		escolhido pelo colega	- Traçou um histograma	histogramas.	usando um teste de aderência
			considerando densidade		e formulou uma conclusão
			no eixo y (normed=True).	- Construiu e avaliou	coerente em relação a escolha
				adequadamente o ajuste	da distribuição que gera o
		Não indicou	- Elegeu pelo menos duas	dos dados usando QQ-plot.	melhor ajuste.
		adequadamente a URL	distribuições teóricas e		
		do dataset escolhido ou	justificou escolhas.	- Construiu e avaliou	
		os nomes específicos das		adequadamente função de	
		variáveis	- Estimou os parâmetros	distribuição acumulada e	
			das distribuições teóricas a	frequência relativa	
			partir dos dados ou	acumulada.	
			utilizou comando fit(), mas	Analiaau anéficaa	
			justificou no item 6	- Analisou gráficos	
			escolha final para	impecavelmente.	
			estimativas.	(Até item 9!)	
			(Até item 6!)	price reciti 5.7	